

ДЕРЖАВНІ БУДІВЕЛЬНІ НОРМИ УКРАЇНИ

ДЕРЕВ'ЯНІ КОНСТРУКЦІЇ Основні положення

ДБН В.2.6-161:2017

Видання офіційне

Київ Міністерство регіонального розвитку, будівництва та житлово-комунального господарства України 2017

ДЕРЖАВНІ БУДІВЕЛЬНІ НОРМИ УКРАЇНИ

ДЕРЕВ'ЯНІ КОНСТРУКЦІЇ Основні положення

ДБН В.2.6-161:2017

Видання офіційне

Київ Мінрегіон України 2017

ПЕРЕДМОВА

1 РОЗРОБЛЕНО: Товариство з обмеженою відповідальністю "Український

інститут сталевих конструкцій імені В.М. Шимановського" (ТОВ

Укрінсталькон ім. В.М. Шимановського)

РОЗРОБНИКИ: Харківський національний університет будівництва і

архітектури (В. Фурсов , д-р техн. наук (керівник розробки);

Національний університет "Львівська політехніка" (Б. Демчина, д-р

техн. наук);

Київський національний університет будівництва і архітектури (**Д. Михайловський**, канд. техн. наук; **А. Найчук**, д-р техн. наук);

ЗА УЧАСТЮ: Львівський національний аграрний університет (І. Добрянський,

д-р техн. наук);

Харківський національний університет будівництва і

архітектури (А. Бідаков, канд. техн. наук; М. Ковлев, канд.

техн. наук);

Національний університет "Львівська політехніка" (С. Лисюк, канд.

техн. наук);

Державне підприємство "Державний науково-дослідний інститут будівельних конструкцій" (**В. Крітов**, канд. техн. наук; **О. Ісаєнко**,

канд. техн. наук)

2 ВНЕСЕНО: Міністерство регіонального розвитку, будівництва та

житлово-комунального господарства України

3 ПОГОДЖЕНО: Державна служба України з питань праці,

лист від 10.02.2017 р. № 1525/1/5.2-

ДП-17 Міністерство охорони

здоров'я України,

лист від 18.01.2017 р. № 10.4-12/29/16/2060-16/1084

Державна служба України з надзвичайних ситуацій, лист від 02.03.2017 р. № 26-3236/261

4 ЗАТВЕРДЖЕНО Наказ Міністерства регіонального розвитку, будівництва та житлово-ТА НАДАНО комунального господарства України від 06.06.2017 р. № 140, чинні з

ЧИННОСТІ: першого числа місяця, що настає через 90 днів з дня їх

опублікування в офіційному друкованому виданні Міністерства "Інформаційний бюлетень Міністерства регіонального розвитку, будівництва та житлово-комунального господарства України"

5 НА ЗАМІНУ: На заміну ДБН В.2.6-161:2010 "Дерев'яні конструкції.

Основні положення"

Мінрегіон України, 2017

Видавець нормативних документів у галузі будівництва і промисловості будівельних матеріалів Мінрегіону України

Державне підприємство "Укрархбудінформ"

3MICT

Б.			C.
	•	NO 000700 VIDOLULIA	
1		ра застосуванняативні посилання	
3	•	іни та визначення понять	
4	•	аки та скорочення	
5		ви проектування	
J	5.1	Вимоги	
	5.2	Основні положення розрахунку за граничними станами	
	5.3	Вплив навантаження та навколишнього середовища	
6		гивості матеріалів	
U	6.1	Загальні положення	
	6.2	Розрахункові характеристики міцності матеріалів	
	6.3	Розрахункові значення геометричних параметрів	
	6.4	Розрахункові значення несучої здатності	
	6.5	Цільна деревина	
	6.6	Клеєна деревина	
	6.7	Матеріали з клеєного шпону (LVL)	
	6.8	Плити на основі деревини	
	6.9	Клеї	
7		рвічність	
•	7.1	Стійкість деревини до впливу біологічних організмів	
	7.2	Корозійна стійкість	
8		ви розрахунку конструкцій	
Ü	8.1	Загальні положення	
	8.2	Елементи	
	8.3	З'єднання	
	8.4	Збірні конструкції	
9	Розра	ахунок елементів дерев'яних конструкцій за граничними станами несучої	
		ості	
	9.1	Загальні положення	
	9.2	Центрально-розтягнуті вздовж волокон елементи	
	9.3	Центрально-стиснуті вздовж волокон елементи	
	9.4	Елементи, що працюють на згин	
	9.5	Елементи, що працюють на осьовий розтяг зі згином	
	9.6	Елементи, що працюють на осьовий стиск зі згином	
	9.7	Кручення	
	9.8	Стиск впоперек волокон	
	9.9	Напруження стиску під кутом до волокон	
	9.10	Розтяг впоперек волокон	28
10		ахунок елементів дерев'яних конструкцій за граничними станами експлуатаційної	00
		To a comparison of the compari	
	10.1	Податливість вузлів	
	10.2	Граничні прогини балок	
	10.3	Коливання елементів	31

11	Елем	енти і конструкції	34
	11.1	Розрахунок односхилих клеєних балок	34
	11.2	Розрахунок двосхилих, гнутоклеєних і гнутоклеєних балок з прямолінійними скатами постійної висоти поперечного перерізу	36
	11.3	Розрахунок клеєних балок з плоскими фанерними стінками	
	11.4	Елементи з підрізкою	
	11.5	Міцність системи	
12		ання в дерев'яних конструкціях	
	12.1	Загальні положення	
	12.2	Загальні рекомендації щодо проектування з'єднань	
	12.3	Загальні вказівки з розрахунку з'єднань	
	12.4	З'єднання з робочими в'язями	
	12.5	Металеві з'єднання нагельного типу	
13	_	ктування дерев'яних конструкцій	
	13.1	Загальні положення з проектування дерев'яних конструкцій	
	13.2	Проектування балок	
	13.3	Проектування рам	
	13.4	Проектування арок	
	13.5	Проектування ферм	
Дод	аток д	 А (обов'язковий)	
	-	тивості матеріалів	79
Дод	цаток	5 (довідковий)	
	Клас	и міцності деревини	81
Дод	-	З (довідковий)	
	Клеє	на деревина – вимоги	
	B.1	Загальні положення	
	B.2	Вимоги з виготовлення	88
	B.3	Заводський контроль продукції	
	B.4	Сторонній контроль	88
Дод	•	_ (довідковий)	
		для з'єднувальних елементів та з'єднань	89
Дод		Д (довідковий)	
_		ки у вигляді зубчастих шпонок	91
Дод		Е (довідковий)	07
По		мендований сортамент пиломатеріалів	97
дод	•	Ж (довідковий) мендовані залежності між класами міцності та сортами деревини	08
Пол		«сндовані залежності між класами мідності та сортами деревини { (довідковий)	
дод	•	х (довідковий) актні з'єднання	99
Дол		П (довідковий)	
H		ги до конструктивних елементів з LVL за [65]	101
Дод		V (довідковий)	
		ифікація і властивості клеїв для несучих дерев'яних конструкцій [46]	103
Дод	даток	Н (довідковий)	
	З'єдн	ання на металевих зубчастих пластинах [56]	104
Дод		7 (довідковий)	
	Біблі	трафія	108

ДЕРЖАВНІ БУДІВЕЛЬНІ НОРМИ УКРАЇНИ

ДЕРЕВ'ЯНІ КОНСТРУКЦІЇ Основні положення

ДЕРЕВЯННЫЕ КОНСТРУКЦИИ Основные положения

DESIGN OF TIMBER CONSTRUCTION Common rules

Чинні від 2018-02-01

ВСТУП

У даних Нормах наведено загальні положення щодо проектування дерев'яних конструкцій будівель та споруд.

У цих Нормах застосовуються основні правила та положення ДБН В.1.2-14 "Загальні принципи забезпечення надійності та конструктивної безпеки будівель, споруд, будівельних конструкцій та основ" та ДСТУ EN 1995-1-1:2010 "Єврокод 5: Проектування дерев'яних конструкцій — Частина 1-1: Загальні правила і правила для будівель".

1СФЕРА ЗАСТОСУВАННЯ

- **1.1** Дані Норми застосовують при проектуванні об'єктів будівництва з цільної (круглі лісоматеріали, пиломатеріали), клеєної деревини (монолітний матеріал, створений склеюванням шарів дощок по висоті по пласті чи комбіновано), клеєного шпону (LVL), фанери та інших матеріалів на основі деревини.
- **1.2** Дані Норми відповідають основним положенням і вимогам загальних принципів забезпечення надійності та конструктивної безпеки будівель, споруд, будівельних конструкцій, викладеним в ДБН В.1.2-14.
- **1.3** Дані Норми призначено для застосування у поєднанні з ДБН В.1.1-7, ДБН В.1.2-2, ДБН В.1.2-7, ДБН В.1.2-14, ДСТУ-Н-П Б В.2.6-157, ДСТУ-Н Б ЕN 1995-1-1, ДСТУ-Н Б EN 1995-1-2.
- **1.4** Норми не розповсюджуються на проектування дерев'яних конструкцій гідротехнічних споруд та дерев'яних мостів.
- **1.5** Дерев'яні конструкції в умовах постійного або періодичного тривалого нагріву допускається застосовувати, якщо температура навколишнього повітря не перевищує 50 °C для конструкцій з цільної деревини та 30 °C для конструкцій з клеєної деревини.

2НОРМАТИВНІ ПОСИЛАННЯ

У цих Нормах є посилання на наступні нормативні документи:

- ДБН В.1.1-7 Пожежна безпека об'єктів будівництва
- ДБН В.1.2-2 Навантаження і впливи. Норми проектування
- ДБН В.1.2-7 Основні вимоги до будівель та споруд. Пожежна безпека
- ДБН В.1.2-14 Загальні принципи забезпечення надійності та конструктивної безпеки будівель, споруд, будівельних конструкцій та основ
 - ДБН В.2.6-198 Сталеві конструкції. Норми проектування

ДСТУ 3651.1-97 Метрологія. Одиниці фізичних величин. Похідні одиниці фізичних величин Міжнародної системи одиниць та позасистемні одиниці. Основні поняття, назви та познаки ДСТУ-Н Б EN 1990 Єврокод. Основи проектування конструкцій (EN 1990:2002, IDT)

ДСТУ-Н Б EN 1995-1-1 Єврокод 5. Проектування дерев'яних конструкцій. Частина 1-1. Загальні правила і правила для споруд (EN 1995-1-1:2004, IDT)

ДСТУ-Н Б EN 1995-1-2 Єврокод 5. Проектування дерев'яних конструкцій Частина 1-2. Загальні положення. Розрахунок конструкцій на вогнестійкість (EN 1995-1-2:2004, IDT)

ДСТУ-Н-П Б В.2.6-157 Проектування дерев'яних конструкцій. Частина 1-2. Загальні положення. Розрахунок конструкцій на вогнестійкість (EN 1995-1-2:2004, MOD)

ДСТУ EN 335-1 Стійкість деревини та виробів з деревини. Визначання класів небезпеки біологічного ураження. Частина 1. Загальні положення (EN 335-1:1992, IDT)

ДСТУ EN 335-2 Стійкість деревини та виробів з деревини. Визначання класів небезпеки біологічного ураження. Частина 2. Застосування до деревних плит (EN 335-2:1992, IDT)

ДСТУ EN 335-3 Стійкість деревини та виробів з деревини. Визначання класів небезпеки біологічного ураження. Частина 3. Застосування до деревних плит (EN 335-3:1995, IDT)

ДСТУ EN 338 Лісоматеріали конструкційні. Класи міцності (EN 338:2003, IDT)

ДСТУ EN 350-2 Стійкість деревини та виробів з деревини. Природна стійкість суцільної деревини. Частина 2. Настанови щодо природної стійкості та просочності окремих порід деревини, що мають значення в Європі (EN 350-2:1994, IDT)

ДСТУ EN 351-1 Стійкість деревини та виробів з деревини. Суцільна деревина, просочена захисним засобом. Частина 1. Класифікація проникності та утримувальності захисного засобу (EN 351-1:1995, IDT)

ДСТУ EN 383 Конструкції з пиломатеріалу. Методи випробування. Визначення міцності з'єднання і оцінювання основи для штифтових кріпильних елементів (EN 383: 1993, IDT)

ДСТУ EN 460Стійкість деревини та виробів з деревини. Природна стійкість суцільної деревини. Настанови щодо вимог стійкості деревини стосовно класів небезпеки (EN 460:1994, IDT)

ЗТЕРМІНИ ТА ВИЗНАЧЕННЯ ПОНЯТЬ

Нижче подано терміни, вжиті в цих будівельних нормах, та визначення позначених ними понять. В цьому розділі використовуються терміни, встановлені в ДБН В 1.2-14:2009.

3.1 геометрична нелінійність

Нелінійна залежність між деформаціями і переміщеннями, обумовлена величиною переміщень і поворотів, що розглядаються

3.2 гнучкість стержня

Відношення розрахункової довжини стержня до радіуса інерції його поперечного перерізу

3.3 деформована схема

Розрахункова схема, в рівняннях рівноваги якої враховуються переміщення від початкового навантаженого стану та зміна розташування цих навантажень внаслідок деформації системи

3.4 довговічність

Властивість об'єкта зберігати роботоздатний стан до настання граничного стану в умовах установленої системи технічного обслуговування та ремонту (ГОСТ 27.002)

3.5 надійність будівельного об'єкта

Властивість об'єкта виконувати задані функції протягом заданого проміжку часу

3.6 несуча здатність

Здатність конструкції або її елементів чинити опір певному виду і рівню навантажень і впливів

3.7 граничний стан

Стан, за якого подальша експлуатація будівельного об'єкта недопустима, пов'язана з труднощами або недоцільна

3.8 розрахункова довжина елемента

Вільна довжина елемента між точками розкріплення, яку визначено з урахуванням форми втрати стійкості

3.9 складний напружений стан

Стан, за якого подальша експлуатація будівельного об'єкта недопустима, пов'язана з труднощами або недоцільна

3.10 вологість деревини

Відсотковий вміст вологи в деревині по відношенню до ваги сухої деревини

3.11 рівноважна вологість деревини

Відсотковий вміст вологи, за якого деревина не всмоктує і не віддає вологу до навколишнього середовища

3.12 точка насичення волокон деревини (границя гігроскопічності деревини)

Відсотковий вміст вологи, за якого вологою насичені тільки стінки клітин деревини

3.13 характеристичне значення міцності деревини

П'ятивідсотковий квантиль статичного розподілу границі міцності деревини

3.14 граничні стани за несучою здатністю

Стани, пов'язані з руйнуванням або іншими схожими формами відмови конструкції

3.15 граничні стани за експлуатаційною придатністю

Стани, що відповідають умовам, поза межами яких визначені експлуатаційні вимоги для конструкції або елемента конструкції більше не виконуються

3.16 розрахункове напруження

Напруження, яке було отримано в результаті розрахунку елемента чи з'єднання за правилами, що викладено в цих Нормах, і яке діє в напрямку однієї з головних геометричних осей елемента чи з'єднання

3.17 гниття деревини

Деструкція деревини внаслідок життєдіяльності спорових мікроорганізмів

3.18 нагель

Циліндричний гладкий стержень зі сталі, твердих порід деревини, конструкційних склопластиків, який щільно встановлено в отвори з'єднувальних елементів і деталей

3.19 металева зубчаста пластина (МЗП)

Пластина з тонкого листа, в якій методом штампування утворено загострені зубці

3.20 гладко-кільцева шпонка

Металеве кільце, яке встановлюється в попередньо утворені в з'єднувальних елементах кільцеві пази.

3.21 розрахунок конструкцій першого порядку

Розрахунок без урахування впливу деформацій конструкції (за недеформованою схемою), але з включенням геометричних недосконалостей

3.22 розрахунок конструкцій другого порядку

Розрахунок конструкцій з урахуванням їх деформацій (розрахунок за деформованою схемою)

3.23 зв'язки

Елементи, що використовуються для з'єднання елементів дерев'яних конструкцій (нагелі,

 G_d

G_{mean} H

болти, гвинти, зубчасті шпонки тощо)

3.24 LVL (англ. Laminated Veneer Lumber) – пиломатеріал із клеєного шпону

Конструкційний матеріал, виготовлений за технологією склеювання декількох шарів лущеного шпону хвойних порід (сосна, ялина, модрина) товщиною близько 3 мм таким чином, щоб волокна деревини суміжних шарів розташовувались паралельно

3.25 OSB (англ. Oriented Strand Board) – орієнтовано-стружкова плита

Багатошарова плита, що складається з деревинної стружки, яка має різну пошарову орієнтацію по товщині плити, склеєної різними смолами з додаванням синтетичного воску і борної кислоти.

В будівництві застосовуються OSB трьох технічних класів:

розрахункове значення модуля зсуву

середнє значення модуля зсуву

габаритний розмір

OSB/2 – для застосування в якості несучих конструкцій в сухих приміщеннях;

OSB/3 – для застосування в якості несучих конструкцій в умовах підвищеної вологості;

OSB/4 – для застосування в конструкціях, що працюють в умовах підвищеної вологості при значних механічних навантаженнях.

4ПОЗНАКИ ТА СКОРОЧЕННЯ

4.1 Основні літерні познаки

4.1	Основні літерні познаки
Α	площа поперечного перерізу
$A_{\it ef}$	розрахункова площа загальної поверхні контакту
A_f	площа поперечного перерізу полиці
$A_{net,t}$	площа нетто поперечного перерізу впоперек волокон
$A_{net,v}$	площа сколювання нетто вздовж волокон
$E_{0,05}$	5 % квантиль модуля пружності
E_d	розрахункове значення модуля пружності
E_{mean}	середнє значення модуля пружності
F	сила
$F_{A,Ed}$	розрахункова сила, яка діє на металеву зубчасту пластину у центрі ваги робочої площі
$F_{A,\min,d}$	мінімальна розрахункова сила, яка діє на металеву зубчасту пластину у центрі ваги робочої площі
$F_{ax,Ed}$	розрахункова осьова сила на з'єднувальний елемент
$F_{ax,Rd}$	розрахункове значення осьової несучої здатності з'єднувального елемента на висми-кування
$F_{ax,Rk}$	характеристичне значення осьової несучої здатності з'єднувального елемента на висмикування
F_c	сила стиску
F_d	розрахункова сила
$F_{d,ser}$	розрахункова сила при граничному стані за експлуатаційною придатністю
F_t	розтягувальна сила
$F_{v,0,Rk}$	характеристична несуча здатність з'єднання вздовж волокон
$F_{v,Rd}$	розрахункова несуча здатність з'єднувального елемента на площині сколювання; розрахункова несуча здатність на розтяг впоперек волокон
$F_{v,Rk}$	характеристична несуча здатність з'єднувального елемента на площині сколювання
$G_{0,05}$	5 % квантиль значення модуля зсуву

 I_f момент інерції площі поперечного перерізу полиці I_{tor} момент інерції перерізу елемента при крученні $I_z,\ I_x,\ I_y$ момент інерції площі перерізу відносно осей $z,\ x,\ y$

*K*_{ser} миттєвий модуль ковзання

 $K_{\text{ser,fin}}$ повне середн ϵ значення модуля ковзання

 K_{u} модуль ковзання при граничних станах за несучою здатністю

*L*_{net,t} ширина нетто поперечного перерізу впоперек волокон

 $M_{A,Ed}$ розрахунковий момент, який діє на металеву зубчасту пластину

 $M_{ap,d}$ розрахунковий момент у зоні гребеня

 M_d розрахунковий момент

N осьова сила

 $R_{90,d}$ розрахункове значення несучої здатності впоперек волокон характеристичне значення несучої здатності впоперек волокон

 $R_{ax,d}$ розрахункова несуча здатність з'єднання при осьовому навантаженні характеристична несуча здатність з'єднання при осьовому навантаженні

 $R_{ax,\alpha,k}$ характеристична несуча здатність під кутом до волокон

 R_d розрахункове значення несучої здатності

 $R_{ef,k}$ фактична характеристична несуча здатність з'єднання

 R_k характеристичне значення несучої здатності

V зусилля зрізу; об'єм

 W_{ν} момент опору перерізу відносно осі y

 X_d розрахункове значення властивості матеріалу X_k характеристичне значення властивості матеріалу

a відстань *b* ширина

*b*_w ширина стінки балки

d діаметр

 $d_{\it ef}$ фактичний діаметр

 $f_{c,0,d}$ розрахункове значення міцності при стиску вздовж волокон

 $f_{\text{c.90.k}}$ характеристичне значення міцності при стиску впоперек волокон

 $f_{m\,k}$ характеристичне значення міцності при згині

 $f_{m,y,d}$ розрахункове значення міцності при згині відносно головної осі y розрахункове значення міцності при згині відносно головної осі z розрахункове значення міцності при згині під кутом до волокна розрахункове значення міцності при розтягу вздовж волокон характеристичне значення міцності при розтягу вздовж волокон розрахункове значення міцності при розтягу впоперек волокон

 $f_{v,d}$ розрахункове значення міцності при сколюванні

h висота перерізу

 h_{ap} більша висота перерізу елемента

 $h_{\rm ef}$ розрахункова висота; висота ослаблення підрізкою

 $h_{f,c}$ висота стиснутої зони полиці елемента $h_{f,t}$ висота розтягнутої зони полиці елемента

 h_w висота стінки елемента

i нахил

$k_{c,v}$ або $k_{c,z}$ коефіцієнт поздовжнього згину

K_{crit} коефіцієнт втрати стійкості

*k*_{def} коефіцієнт для оцінки деформацій повзучості з урахуванням відповідного експлуата-

ційного класу

Kdis коефіцієнт, що враховує розподіл напружень у зоні максимальної висоти перерізу

коефіцієнт масштабності, що залежить від висоти поперечного перерізу k_h коефіцієнт перерозподілу згинальних напружень у поперечному перерізі k_m

коефіцієнт перетворення, що враховує тривалість дії навантаження та температурно k_{mod}

вологісні умови експлуатації

понижувальний коефіцієнт для несучої здатності $k_{R,red}$ **k**_{shape} коефіцієнт впливу форми поперечного перерізу

коефіцієнт міцності системи k_{svs}

k перехідний коефіцієнт для балок з врубками

 k_{vol} коефіцієнт об'єму

l прольот; довжина контакту

 l_{ef} розрахункова довжина; розрахункова довжина підрізки

маса на одиницю площі m P_d розподілене навантаження

 q_i еквівалентне рівномірно розподілене навантаження

радіус кривизни r

s крок

внутрішній радіус r_{in}

t товщина

глибина проникнення t_{pen} *U*_{creep} деформація повзучості повна деформація Ufin

миттєва деформація ис початковий прогин **U**inst

прогин від повзучості Wcrep

повний прогин W_{fin} миттєвий прогин Winst

чистий кінцевий прогин W_{net.fin}

кут між напрямом осі X і силою для металевих зубчастих пластин; кут між силою і

напрямом волокна; кут між напрямом навантаження і навантаженою гранню

β кут між напрямом волокна і силою

 β_c коефіцієнт прямолінійності

кут між напрямом осі X і лінією з'єднання деревини для металевих зубчастих пластин γ

коефіцієнт надійності за матеріалом γ_M

 λ_{ν} гнучкість при поздовжньому згині відносно осі у λ_z гнучкість при поздовжньому згині відносно осі z

 $\lambda_{rel, y}$ приведена гнучкість при поздовжньому згині відносно осі у приведена гнучкість при поздовжньому згині відносно осі z $\lambda_{rel, z}$

характеристичне значення густини ρ_k

середнє значення густини ρ_m

$\sigma_{c,0,d}$	розрахункове напруження стиску вздовж волокон
$\sigma_{c,\alpha,d}$	розрахункове напруження стиску під кутом $lpha$ до волокна
$\sigma_{\textit{m,crit}}$	критичне напруження при згині для перевірки плоскої форми деформування
$\sigma_{m,y,d}$	розрахункове напруження згину відносно головної осі у
$\sigma_{m,z,d}$	розрахункове напруження згину відносно головної осі z
$\sigma_{m,\alpha,d}$	розрахункове напруження згину під кутом до волокна
σ_N	осьове напруження
$\sigma_{t,0,d}$	розрахункове напруження розтягу вздовж волокон
$\sigma_{t,90,d}$	розрахункове напруження розтягу впоперек волокон
τ_d	розрахункове напруження сколювання
$\tau_{tor,d}$	розрахункове напруження сколювання від закручування
ψ_0	коефіцієнт комбінації для змінної дії
ψ_2	коефіцієнт умовно постійної величини змінної дії

4.2 У цих нормах використані такі скорочення:

SLS – граничний стан несучої здатності;

ULS – граничний стан експлуатаційної придатності;

LVL – (англ. Laminated Veneer Lumber) – пиломатеріал із клеєного шпону;

OSB – (англ. Oriented Strand Board) – орієнтовано-стружкова плита.

МЗП – металеві зубчасті пластини.

ДСП – деревинностружкова плита, що виготовляється шляхом гарячого пресування деревинної щепи, змішаної з вяжучою речовиною.

ДВП – деревинноволокниста плита, що виготовляється шляхом гарячого пресування або сушки килиму деревинних волокон з введенням за необхідності в'яжучих та спеціальних домішок.

МДФ – деревинноволокниста плита середньої густини (англ. Medium Density Fibreboard, MDF), плитний матеріал, що виготовляється шляхом сухої запресовки мілкої дере- винної щепи при високому тиску та температурі.

ЦСП – цементно-стружкові плити.

5 ОСНОВИ ПРОЕКТУВАННЯ

5.1 Вимоги

- 5.1.1 Дерев'яні конструкції всіх типів повинні задовольняти вимогам:
- -механічної міцності, стійкості, довговічності та експлуатаційної придатності згідно з цими Нормами, а також додатковим вимогам, визначеним у завданні на проектування;
- пожежної безпеки згідно з ДБН В.1.1-7, ДБН В.1.2-7 та іншими нормативними документами.
- **5.1.2** Проектування дерев'яних конструкцій встановленої надійності та строку експлуатації повинно здійснюватися у відповідності з ДБН В.1.2-14 та ДБН В.1.2-2.
- **5.1.3** Проектування дерев'яних конструкцій, до яких встановлено вимоги з вогнестійкості, повинно здійснюватися згідно з ДСТУ-Н-П Б В.2.6-157.

5.2 Основні положення розрахунку за граничними станами

5.2.1 Загальні положення

Розрахункові схеми конструкцій повинні враховувати наступне: умовність розрахункових схем; статистично випадкові фізико-механічні характеристики матеріалів (міцнісні, жорсткісні); характер роботи матеріалів залежно від плину часу; кліматичні умови місцевості будівництва об'єкта, що проектується; статистично випадкові навантаження і впливи згідно з ДБН В.1.2-2; різні

розрахункові випадки (монтажні навантаження, стадії будівництва, зміна умов опирання тощо).

5.2.2 Граничні стани за міцністю і стійкістю конструкцій

Дерев'яні конструкції повинні задовольняти вимогам розрахунку за несучою здатністю у відповідності з заданими розрахунковими схемами. Розрахунок повинен виконуватися на імовірні комбінації граничних розрахункових навантажень.

Розрахунок конструкцій повинен виконуватись із застосуванням наступних значень характеристик жорсткості:

- -в лінійно-пружному розрахунку, за якого внутрішні зусилля не залежать від розподілу жорсткостей всередині елемента (тобто елементи мають однакові сталі в часі характеристики), повинні застосовуватись середні величини;
- в лінійно-пружному розрахунку конструкцій першого порядку, за якого внутрішні зусилля залежать від розподілу жорсткостей всередині елемента (для композитів, які складаються з матеріалів, що мають різні, змінювані з часом, характеристики), повинні застосовуватись величини, приведені до навантаження, яке викликає найбільші напруження відносно міцності;
- для лінійно-пружного розрахунку другого порядку повинні застосовуватись розрахункові величини, що не залежать від тривалості дії навантаження.

Примітка 1. Повні середні величини, приведені до тривалості навантаження, обчислюються згідно з 5.3.5.

Примітка 2. Розрахункові величини характеристик жорсткості обчислюються згідно з 6.2.2.

Модуль ковзання при граничних станах за несучою здатністю K_u приймають, як:

$$K_u = \frac{2}{3} K_{ser} , \qquad (5.1)$$

де: K_{ser} – миттєвий модуль ковзання, що приймається згідно з 10.1 цих Норм.

5.2.3 Граничний стан за експлуатаційною придатністю

5.2.3.1 Деформації дерев'яних конструкцій, спричинені впливом навантажень і інших факторів, повинні відповідати обмеженням 10.2 цих Норм для запобігання можливості ушкодження стель, перекриттів, перегородок, технологічного обладнання, виникнення негативних фізіологічних і есте- тичних впливів на людину, погіршення зовнішнього вигляду конструкцій.

Розрахунок виконується на ймовірні комбінації експлуатаційних розрахункових значень наван- тажень.

- **5.2.3.2** При визначенні деформації дерев'яного елемента або елемента, виготовленого з матеріалів на основі деревини, під дією навантаження повинні враховуватися такі його складові (рисунок 5.1):
 - u_c попередня деформація (будівельний підйом), якщо є;
 - u_{inst} миттєва деформація (деформація, яка виникає безпосередньо від розрахункового навантаження);
 - и_{сгеер} деформація від повзучості матеріалу (деформація, яка виникає з плином часу під дією комбінації навантажень, що призводять до прояву ефекту повзучості)
 - *u_{fin}* загальна деформація (комбінація миттєвої деформації і деформації від повзучості матеріалу):
 - и_{пеt,fin} загальна деформація нетто (деформація без урахування попереднього вигину).
 Загальна деформація нетто може бути записана як:

$$U_{net,fin} = U_{inst} + U_{creep} - U_c ag{5.2}$$

або

$$U_{\text{net,fin}} = U_{\text{fin}} - U_{\text{c}} \,. \tag{5.3}$$

Для граничного стану за експлуатаційною придатністю відносно коливань повинні

застосовуватись відповідні середні значення модулів пружності та зсуву (E_{mean} та G_{mean}).

Рисунок 5.1 – Складові деформації балки

5.2.4 Основні положення розрахунку на вогнестійкість

- **5.2.4.1** Конструкції мають проектуватися та виготовлятися так, щоб вони зберігали несучу здатність протягом заданого часу вогневого впливу.
- **5.2.4.2** Для перевірки несучої здатності розрахункові значення міцності та жорсткості визначаються за 2.3.1 ДСТУ-Н-П Б В.2.6-157.
- **5.2.4.3** Розрахунок на вогнестійкість повинен базуватися на проектних сценаріях пожежі і має враховувати моделі зростання температури в межах конструкції та моделі механічної роботи конструкції за підвищеної температури згідно з ДСТУ-Н-П Б В.2.6-157.
- **5.2.4.4** Значення розрахункових напружень та деформацій визначають за значенням навантажень на конструкцію, які приймають як для розрахунку за нормальних температур, якщо є ймовірність їх дії під час пожежі з урахуванням коефіцієнта зниження, що визначає рівень навантаження під час пожежі і визначається згідно з 2.4.2 ДСТУ-Н-П Б В.2.6-157.

5.3 Вплив навантаження та навколишнього середовища

5.3.1 Загальні положення

- **5.3.1.1** Навантаження і впливи, які слід враховувати при проектуванні конструкцій з цільної та клеєної деревини, а також матеріалів на їх основі, приймаються відповідно до ДБН В.1.2-2.
- **5.3.1.2** Тривалість дії навантаження, вологість і температура суттєво впливають на характеристики міцності і жорсткості деревини та інших матеріалів на основі деревини, і повинні враховуватись при проектуванні в розрахунках за граничними станами несучої здатності і експлуатаційної придатності.

5.3.2 Класи навантажень за тривалістю дії

- **5.3.2.1** Класи навантажень за тривалістю дії характеризуються впливом навантажень, що діють протягом певного періоду часу.
- **5.3.2.2** Всі навантаження мають відноситись до одного з класів за тривалістю дії, наведених у таблиці 5.1, для розрахунків за граничними станами.

Таблиця 5.1 – Класи навантажень за тривалістю дії

Клас навантаження за тривалістю дії	Порядок розподілу тривалості навантажень
Постійне	Більше 10 років
Довготривале	Від 6 місяців – до 10 років
Середньої тривалості	Від 1 тижня – до 6 місяців
Короткочасне	Менше одного тижня
Миттєве	Менше однієї хвилини

Клас навантаження за тривалістю дії	Приклади навантаження
Постійне	Власна вага конструкцій; вага різного роду засипок; вага постійних перегородок, стаціонарного обладнання, комунікацій; конструкції підвісних стель; тиск ґрунту
Довготривале	Навантаження при зберіганні вантажів; навантаження від води в баках
Середньої тривалості	Снігове; рівномірно розподілені корисні навантаження на перекриття та балкони; тимчасові навантаження в гаражах-стоянках та в зонах транспортного руху; впливи, пов'язані зі зміною вологості; вага нестаціонарного обладнання; вага тимчасових перегородок
Короткочасне	Тимчасові навантаження на сходи; тимчасові зосереджені навантаження; горизонтальні навантаження на перегородки та парапети; тимчасові навантаження з обслуговування покрівель і перебування людей; транспортні навантаження; впливи від транспортних засобів та механізмів; складування вантажів; вітрове навантаження
Миттєве	Випадкові впливи

Таблиця 5.2 – Приклади призначення класу навантаження за тривалістю дії

5.3.3 Експлуатаційні класи

5.3.3.1 Конструкціям повинен призначатись один із наведених нижче експлуатаційних класів.

Примітка 1. Система експлуатаційних класів конструкцій необхідна для призначення величин міцності та жорсткості за певних умов навколишнього середовища.

Примітка 2. Інформація стосовно призначення експлуатаційних класів для конструкцій наведена у 5.3.3.2, 5.3.3.3 і 5.3.3.4.

- **5.3.3.2** <u>Експлуатаційний клас 1</u> характеризується вологістю матеріалів, що відповідає темпера- турі 20 °C і відносній вологості навколишнього повітря, що перевищує 65 % тільки декілька тижнів протягом року. Для експлуатаційного класу 1 середня вологість деревини хвойних порід не повинна перевищувати 12 %.
- **5.3.3.3** <u>Експлуатаційний клас 2</u> характеризується вологістю матеріалів, що відповідає температурі 20 °C і відносній вологості навколишнього повітря, що перевищує 85 % тільки декілька тижнів протягом року. Для експлуатаційного класу 2 середня вологість деревини хвойних порід не повинна перевищувати 20 %.
- **5.3.3.4** <u>Експлуатаційний клас 3</u> характеризується кліматичними умовами, що призводять до більш високої вологості ніж для експлуатаційного класу 2.

5.3.4 Вплив умов експлуатаційного класу та класу навантаження за тривалістю дії на міцність та деформативність матеріалів

- **5.3.4.1** Вплив умов експлуатаційного класу та класу навантаження за тривалістю дії на міцність враховується відповідними коефіцієнтами, що наведено в таблиці А.1 додатка А.
- **5.3.4.2** Якщо в з'єднанні два дерев'яних елементи мають різну залежність характеру роботи з часом, то їх розрахункову несучу здатність необхідно визначати за допомогою коефіцієнта *k*mod:

$$k_{\text{mod}} = \sqrt{k_{\text{mod,1}} k_{\text{mod,2}}} \,, \tag{5.4}$$

- де $k_{\text{mod},1}$ та $k_{\text{mod},2}$ коефіцієнти для двох дерев'яних елементів (k_{mod} поправочний коефіцієнт, що приймається з таблиці A.1).
- **5.3.5** Вплив умов експлуатаційного класу та класу навантаження за тривалістю дії на деформативність визначається, якщо конструкція складається з елементів або частин, що мають різні характеристики в залежності від часу. Повні середні значення модуля пружності $E_{mean,fin}$,

модуля зсуву $G_{mean,fin}$ і модуля ковзання $K_{ser,fin}$, які використовуються для обчислення повних деформацій, необхідно визначати за наступними виразами:

$$E_{mean,fin} = \frac{E_{mean}}{(1 + k_{def})}, \tag{5.5}$$

$$G_{mean,fin} = \frac{G_{mean}}{(1 + k_{def})}, \tag{5.6}$$

$$K_{\text{ser,fin}} = \frac{K_{\text{ser}}}{(1 + k_{\text{def}})}.$$
 (5.7)

5.3.5.1 Для граничних станів експлуатаційної придатності, якщо розподіл жорсткостей у конструкції впливає на розподіл різних зусиль, повні середні значення модуля пружності $E_{mean,fin}$, модуля зсуву $G_{mean,fin}$ і модуля ковзання $K_{ser,fin}$ повинні обчислюватись за наступними виразами:

$$E_{mean,fin} = \frac{E_{mean}}{(1 + \psi_2 k_{def})}, \tag{5.8}$$

$$G_{mean,fin} = \frac{G_{mean}}{(1 + \psi_2 k_{def})}, \tag{5.9}$$

$$K_{\text{ser,fin}} = \frac{K_{\text{ser}}}{(1 + \psi_2 k_{\text{def}})}, \qquad (5.10)$$

де: E_{mean} — середнє значення модуля пружності;

 G_{mean} — середнє значення модуля зсуву;

 K_{ser} — миттєвий модуль ковзання, що приймається згідно з 10.1 цих Норм;

 k_{def} — коефіцієнт для оцінки деформацій повзучості з урахуванням відповідного експлуатаційного класу;

 ψ_2 — коефіцієнт квазіпостійної величини навантаження, що викликає найбільші напруження відносно міцності (якщо така дія буде постійною, то ψ_2 слід приймати за 1).

Примітка 1. Значення k_{def} наведені у таблиці А.2.

Примітка 2. Значення ψ_2 для більш загальних дій наведено в таблиці А.1.1 ДСТУ-Н Б EN 1990.

- **5.3.5.2** Якщо в з'єднанні є два дерев'яних елементи з однаковим характером роботи в часі, значення k_{def} необхідно подвоїти.
- **5.3.5.3** Якщо в з'єднанні є два дерев'яних елементи, що мають різну залежність характеру роботи в часі, обчислення повних деформацій повинно виконуватись з урахуванням наступного коефіцієнта для оцінки деформацій повзучості з урахуванням відповідного експлуатаційного класу k_{def} .

$$k_{def} = 2\sqrt{k_{def,1} k_{def,2}}$$
, (5.11)

де $k_{def,1}$ та kdef,2 – коефіцієнти для оцінки деформацій повзучості з урахуванням відповідного експлуатаційного класу кожного з двох дерев'яних елементів.

6 ВЛАСТИВОСТІ МАТЕРІАЛІВ

6.1 Загальні положення

6.1.1 Характеристики міцності і жорсткості

Характеристики міцності і жорсткості повинні визначатись на основі випробувань для різних видів навантаження, які можуть впливати на матеріал у конструкції, або на основі порівнянь із такими ж зразками деревини чи матеріалами на основі деревини, або на основі перевірених залежностей між різними властивостями.

6.1.2 Залежність "напруження-деформації"

- **6.1.2.1** Оскільки характеристичні значення визначаються за припущенням умовно лінійної залежності між напруженнями і деформаціями до руйнування, перевірка міцності окремих елементів також повинна базуватись на такій лінійній залежності.
- **6.1.2.2** Для елементів або їх окремих частин, що зазнають стиску чи згину, може застосовуватись нелінійна залежність.
- **6.1.3 Для обчислення деформацій повзучості** для експлуатаційних класів повинні застосовуватись значення коефіцієнтів деформації k_{def} , які наведено у таблиці A.2.

6.2 Розрахункові характеристики міцності матеріалів

6.2.1 Розрахункова величина X_d характеристик міцності обчислюється за формулою:

$$X_d = k_{\text{mod}} \frac{X_k}{\gamma_M}, \tag{6.1}$$

де: X_k — характеристичне значення міцності;

 γ_{M} – коефіцієнт надійності за матеріалом, приймається за таблицею 6.1;

k_{mod} − коефіцієнт перетворення, що враховує тривалість дії навантаження та температурно–вологісні умови експлуатації, приймається за таблицею А.1.

Таблиця 6.1 — Коефіцієнти надійності за матеріалом γ_M

Основні комбінації	<i>үм</i>
Цільна деревина	1,3
Клеєна деревина	1,25
Клеєний шпон (LVL), фанера, OSB	1,2
ДСП, ДВП, МДФ	1,3
3'єднання	1,3
Металеві зубчасті пластини	1,25
Випадкові комбінації	1,0

6.2.2 Розрахункові величини жорсткості та зсуву елемента E_d або G_d слід визначати, як:

$$E_d = \frac{E_{mean}}{\gamma_m}, \tag{6.2}$$

$$G_d = \frac{G_{mean}}{\gamma_m} \,, \tag{6.3}$$

де: E_{mean} — середнє значення модуля пружності;

 G_{mean} — середнє значення модуля зсуву.

6.3 Розрахункові значення геометричних параметрів

- **6.3.1** Геометричні параметри поперечних перерізів та систем можуть прийматись як номінальні величини за нормативними документами або з робочих креслень.
- **6.3.2** Розрахункові величини допусків за геометричними розмірами, які встановлено у цих Нормах, охоплюють впливи від:
- геометричних дефектів (викривлення) елементів;
- дефектів конструкцій від виготовлення та монтажу;

- неоднорідності матеріалів (наприклад, сучків).

6.4 Розрахункові значення несучої здатності

6.4.1 Розрахункове значення несучої здатності R_d потрібно визначати, як:

$$R_d = k_{\text{mod}} \frac{R_k}{\gamma_M}, \tag{6.4}$$

де: R_k — характеристичне значення несучої здатності;

 γ_{M} — коефіцієнт надійності за матеріалом;

 k_{mod} — коефіцієнт, яким враховується експлуатаційний клас та клас навантаження за тривалістю дії.

Примітка 1. Коефіцієнти, що враховують вплив на міцність експлуатаційного класу та класу навантаження за тривалістю дії, наведено в додатку A;

Примітка 2. Рекомендовані коефіцієнти надійності за матеріалом γ_M наведено в таблиці 6.1.

6.5 Цільна деревина

6.5.1Дерев'яні елементи круглого перерізу повинні відповідати вимогам [20, 24 - 28, 36 - 38].

Примітка. Класи міцності деревини за ДСТУ EN 338 наведено в додатку Б цих Норм.

- **6.5.2** При визначенні розрахункових характеристик міцності необхідно враховувати вплив розмірів елемента.
- **6.5.3** Для прямокутних перерізів елементів з цільної деревини, що мають характеристичну густину $\rho_k \le 700$ кг/м³ з базовою висотою перерізу при роботі на згин або шириною (максимальний розмір поперечного перерізу) при розтягу менше 150 мм, характеристичні значення $f_{m,k}$, $f_{t,0,k}$ можуть бути збільшені на коефіцієнт k_h :

$$k_h = \min \left\{ \left(\frac{150}{h} \right)^{0,2}, \\ 1,3 \right\}$$
 (6.5)

де: h — висота перерізу елемента при згині або ширина перерізу при розтягу, мм.

- **6.5.4** Для деревини, яка має вміст вологості на межі гігроскопічності і яка може висохнути під навантаженням, значення k_{def} слід приймати 1,0.
 - 6.5.5 Шипові з'єднання повинні відповідати вимогам [11].

6.6 Клеєна деревина

- **6.6.1** Елементи з клеєної деревини повинні відповідати вимогам [59] та додатка В цих Норм.
- **6.6.2** Необхідно враховувати вплив на міцність деревини розмірів поперечного перерізу елемента.
- **6.6.3** Для елементів з клеєної деревини прямокутного перерізу за базову висоту при роботі на згин або ширину при роботі на розтяг приймають 600 мм. Для висоти при згині або ширині (максимальний розмір поперечного перерізу) при розтягу елементів з клеєної деревини менше ніж 600 мм характеристичні значення $f_{m,k}$ і $f_{t,0,k}$ можуть бути збільшені на коефіцієнт k_h :

$$k_h = \min \left\{ \left(\frac{600}{h} \right)^{0,1}, \\ 1,1 \right\}$$
 (6.6)

де: h — висота перерізу елемента при згині або ширина перерізу при розтягу, мм.

6.6.4 Шипові з'єднання, що відповідають вимогам ДСТУ EN 387, не слід застосовувати для виробів, які використовуються в експлуатаційному класі 3, якщо у вузлі змінюється напрям

волокон.

6.7 Матеріали з клеєного шпону (LVL)

- **6.7.1** Конструктивні елементи із LVL повинні відповідати [65, 66] та додатка Л цих Норм.
- **6.7.2** Для LVL прямокутного перерізу з орієнтацією всіх волокон шпону в одному напрямі повинен враховуватись вплив розміру елемента на міцність при згині і розтягу.
- **6.7.3** Базова висота поперечного перерізу при згині становить 300 мм. Якщо для елементів з висотою поперечного перерізу базова висота при згині не дорівнює 300 мм, характеристичне значення $f_{m,k}$ слід збільшувати на коефіцієнт k_h :

$$k_h = \min \left\{ \left(\frac{300}{h} \right)^{s}, \right.$$
(6.7)

де: h — висота перерізу елемента, мм,

s – ступінь впливу розміру, який приймається згідно з [65], але не менше 0,12.

6.7.4 Базова довжина елемента при розтягу становить 3000 мм. Для елементів, довжина яких не дорівнює 3000 мм при розтягу, характеристичне значення $f_{t,0,k}$ слід збільшувати на коефіцієнт k_i :

$$k_{l} = \min \left\{ \left(\frac{3000}{l} \right)^{s/2}, \\ 1,1 \right\}$$
 (6.8)

де: / – довжина елемента, мм,

- s ступінь залежність впливу розміру, який приймається згідно з [65], але не менше 0,12.
- **6.7.5**Великі шипові з'єднання згідно з [13] не повинні застосовуватись для виробів, які використовуються в експлуатаційному класі 3, а також у вузлах, в яких змінюється напрям волокон.
- **6.7.6** Для LVL з орієнтацією всіх волокон шпону в одному напрямі повинен враховуватися вплив розміру елемента на міцність при розтягу впоперек волокон.

6.8 Плити на основі деревини

- **6.8.1** Плити на основі деревини і LVL повинні відповідати вимогам, наведеним додатку Л.
- **6.8.2** При застосуванні м'яких ДСП у відповідності з [17] розрахункові дані при проектуванні слід брати з відповідних випробувань.

6.9 Клеї

- **6.9.1** Клеї, що застосовуються для будівельних конструкцій, повинні забезпечувати з'єднання такої міцності та довговічності, щоб зберігати цілісність з'єднання у відповідності з визначеним експлуатаційним класом протягом всього строку експлуатації конструкції.
- **6.9.2** Клеї, які відповідають типу І за додатком М, можуть застосовуватись для всіх експлуатаційних класів.
- **6.9.3** Клеї, які відповідають типу ІІ за додатком М, повинні застосовуватись тільки для експлуатаційних класів 1 або 2 при нетривалому впливі температури, що перевищує 50 °C.

7ДОВГОВІЧНІСТЬ

7.1 Стійкість деревини до впливу біологічних організмів

Деревина і матеріали на її основі повинні мати достатню природну довговічність відповідно до ДСТУ EN 350-2 для особливо небезпечного класу або піддаватись захисній обробці, визначеній відповідно до ДСТУ EN 351-1 і ДСТУ EN 460.

Примітка 1. Захисна обробка може впливати на міцність і жорсткість.

Примітка 2. Правила визначення захисних обробок деревини наведені у ДСТУ EN 350-2 і ДСТУ EN 335-1.

7.2 Корозійна стійкість

- **7.2.1** Металеві кріпильні деталі та інші конструктивні з'єднання повинні мати необхідну корозійну стійкість або бути захищеними від корозії.
- **7.2.2** Приклади мінімального протикорозійного захисту або технічних вимог до матеріалів для різних експлуатаційних класів наведені в таблиці 7.1.

Таблиця 7.1 – Приклади мінімальних технічних вимог до протикорозійного захисту металевих кріпильних деталей та інших конструктивних з'єднань

	Експлуатаційний клас		ac
Кріпильна деталь	1	2	$3^{6)}$
Цвяхи і шурупи з <i>d</i> < 4 мм	Захист не застосовується	Fe/Zn 12c ^{a)}	Fe/Zn 25c ^{a)}
Болти, нагелі, цвяхи і шурупи з $d > 4$ мм	Захист не застосовується	Не застосовуються	Fe/Zn 25c ^{a)}
Скоби	Fe/Zn 12c ^{a)}	Fe/Zn 12c ^{a)}	Нержавіюча сталь
Кріплення з металевих зубчастих пластин і сталевих пластин завтовшки до 3 мм	Fe/Zn 12c ^{a)}	Fe/Zn 12c ^{a)}	Нержавіюча сталь
Сталеві пластини завтовшки від 3 мм до 5 мм	Захист не застосовується	Fe/Zn 12c ^{a)}	Fe/Zn 25c ^{a)}
Сталеві пластини завтовшки більше 5 мм	Захист не застосовується	Не застосовуються	Fe/Zn 25c ^{a)}

а) Якщо застосовується гаряче цинкування, то Fe/Zn 12с необхідно замінювати на S275, а Fe/Zn 25с на S355 [58].
 б) Для особливо агресивних умов необхідно передбачати застосування нержавіючої сталі або більш інтенсивного гарячого цинкування.

8 ОСНОВИ РОЗРАХУНКУ КОНСТРУКЦІЙ

8.1 Загальні положення

- **8.1.1** Розрахунок повинен здійснюватись з застосуванням розрахункових моделей (доповнених, за необхідності, результатами випробувань) з використанням усіх відповідних змінних величин. Моделі повинні мати достатній рівень достовірності, щоб з належною точністю передбачити реальну роботу конструкції, відповідати високому рівню якості виготовлення і гарантувати надійність інформації, на якій ґрунтуються розрахунки.
- **8.1.2** Зазвичай при розрахунку конструкцій приймається лінійно-пружна модель роботи матеріалу.
- **8.1.3** Для розрахунків внутрішніх зусиль в елементах конструкцій, в яких можливий перерозподіл внутрішніх зусиль через з'єднання з відповідною податливістю, можна застосовувати пружно-пластичні моделі роботи матеріалу.
- **8.1.4** Модель для обчислення внутрішніх зусиль у конструкції або її частині повинна враховувати деформативність з'єднань.
- **8.1.5** Необхідно брати до уваги вплив деформацій в з'єднаннях через врахування їх жорсткості (наприклад, кута повороту) або через величини ковзання, що встановлюються як функція рівня навантаження у з'єднанні.

8.2 Елементи

- 8.2.1 При розрахунку елементів конструкцій повинні враховуватись наступні параметри:
- викривлення елементів;
- неоднорідність матеріалу.

Примітка. Викривлення елементів і неоднорідність матеріалу враховуються у відповідності з методами розрахунку, наведеними в 9.4 – 9.6 та 10.3.

- **8.2.2** При перевірці міцності елемента необхідно враховувати ослаблення у поперечному перерізі.
- **8.2.3** Ослабленням і відповідно зменшенням площі поперечного перерізу можна знехтувати у наступних випадках:
- цвяхи і шурупи діаметром 6 мм і менше, встановлені без попереднього висвердлювання отворів;
- отвори у стиснутій зоні елементів, що працюють на згин, заповнені матеріалом з вищими характеристиками жорсткості ніж деревина.
- **8.2.4** При визначенні розрахункового поперечного перерізу у вузлі з великою кількістю з'єднувальних деталей всі отвори, які знаходяться на відстані половини мінімального кроку з'єднувальних деталей вздовж волокон деревини даного поперечного перерізу, мають бути враховані.

8.3 З'єднання

- **8.3.1** Несуча здатність з'єднання повинна перевірятись з урахуванням внутрішніх зусиль і моментів між елементами, що обчислені під час загального розрахунку конструкції.
- **8.3.2** Розрахунок конкретного з'єднання повинен враховувати характер роботи всіх елементів, що його утворюють.

8.4 Збірні конструкції

8.4.1 Загальні положення

- **8.4.1.1** Розрахунок конструкцій слід виконувати з використанням статичних моделей, які враховують достовірну роботу конструкції та опор.
- **8.4.1.2** Для рамних моделей розрахунок повинен виконуватись у відповідності з 8.4.2, або за спрощеним розрахунком у відповідності з 8.4.3 для ферм із з'єднаннями металевими зубчастими пластинами. Розрахунок плоских рам і арок за деформованою схемою повинен виконуватись відповідно до 8.4.4.

8.4.2 Рамно-каркасні конструкції

8.4.2.1 Рамно-каркасні конструкції повинні розраховуватись так, щоб при визначенні внутрішніх зусиль враховувались деформації елементів та вузлів і вплив ексцентриситетів у вузлах та жорсткості опор (рисунок 8.1) для визначення конфігурації конструкції та моделювання елементів.

1 – вісь пояса в розрахунковій схемі; 2 – опора; 3 – панель верхнього пояса; 4 – нижній пояс; 5 – елемент решітки; 6 – виступний карниз (фіктивний елемент).

Рисунок 8.1 – Приклад розрахункової схеми

- **8.4.2.2** Якщо осі розрахункової схеми не збігаються з осями елементів, то під час перевірки міцності таких елементів повинен враховуватись вплив ексцентриситету.
- **8.4.2.3** Фіктивні елементи чи пружні елементи можуть бути застосовані для моделей з ексцентриситетами у вузлах та на опорах. Орієнтація фіктивних елементів та розміщення пружних елементів повинні якомога більш точно збігатися з фактичною конфігурацією вузла.
- **8.4.2.4** При лінійно-пружному розрахунку першого порядку при перевірці міцності елемента необхідно враховувати вплив початкових недосконалостей.
- **8.4.2.5** Розрахунок рамно-каркасних конструкцій повинен виконуватись з застосуванням відповідних величин модулів пружності елементів, визначених у 6.2.2. Жорсткість фіктивних елементів повинна відповідати реальній жорсткості з'єднань.
- **8.4.2.6** Якщо деформації повороту у з'єднанні не мають значного впливу на розподіл сил і моментів, то вузли можна приймати шарнірними. В іншому випадку з'єднання, як правило, приймаються жорсткими.
- **8.4.2.7** При перевірці міцності зсувом у вузлах можна знехтувати, якщо він суттєво не впливає на розподіл внутрішніх зусиль.
- **8.4.2.8** З'єднання внапусток, що застосовуються у наскрізних конструкціях, можуть моделюватись як жорсткі за наступних умов:
- з'єднання внапусток має несучу здатність, яка здатна витримати 1,5 кратне навантаження від комбінації прикладених сил і моментів;
- з'єднання внапусток має несучу здатність, що відповідає несучій здатності від комбінації прикладених сил і моментів за умови, що напруження від згину в дерев'яних елементах з'єднання не перевищують 30 % від міцності елемента на згин, при цьому монтажний стик вважається стійким, якщо всі з'єднання шарнірні.

8.4.3 Спрощений розрахунок ферм із з'єднаннями на металевих зубчастих пластинах

- 8.4.3.1 Спрощений розрахунок трикутних ферм повинен задовольняти наступним умовам:
- ширина опор знаходиться у межах довжини a_1 , а відстань a_2 на рис. 8.2 не більше ніж $a_1/3$ або 100 мм, в залежності від меншої з величин;
- висота ферми більша ніж 0,15 величини прольоту і в 10 разів більше максимальної висоти пояса ферми.

Рисунок 8.2 – Геометричні розміри опорного вузла

- 8.4.3.2 Осьові зусилля в елементах визначаються за умови, що всі вузли шарнірні.
- **8.4.3.3** Згинальні моменти в однопрогонових елементах визначаються за умови, що вузлові з'єднання шарнірні. Згинальні моменти в нерозрізних елементах визначаються за умови, що елемент є балкою з однією шарнірно-рухомою опорою у кожному вузлі. Вплив прогину у вузлах і часткове защемлення у з'єднанні враховуються шляхом зменшення на 10 % моментів на внутрішніх опорах елемента. Моменти на внутрішніх опорах повинні використовуватись для

обчислення згинальних моментів у прольотах.

8.4.4 Плоскі рамні та арочні конструкції

- 8.4.4.1 Необхідно враховувати вплив деформацій на внутрішні зусилля.
- **8.4.4.2** Врахування впливу початкових недосконалостей на внутрішні зусилля виконується шляхом лінійного розрахунку другого порядку за наступних умов:
- недосконала форма конструкції приймається такою, що відповідає певним початковим деформаціям, які знаходяться через прикладання до конструкції або її відповідних частин певного кута нахилу спільно з певною початковою синусоїдальною кривизною між вузлами конструкції, що відповідає максимальному ексцентриситету е;
- мінімальна величина ф (в радіанах) повинна прийматись, як

$$\phi = 0{,}005$$
 для $h \le 5$ м; $\phi = 0{,}005\sqrt{5/h}$ для $h \le 5$ м ; (8.1)

де: *h* – висота конструкції або довжина елемента, м;

- величина e повинна прийматись не менше e = 0,0025 I.

Приклади умовних початкових відхилів від геометричної схеми наведено на рисунку 8.3.

Рисунок 8.3 – Приклади умовних початкових відхилів від геометричної схеми для рами та арки (а), відповідно від симетричного навантаження (б) і несиметричного (в)

9 РОЗРАХУНОК ЕЛЕМЕНТІВ ДЕРЕВ'ЯНИХ КОНСТРУКЦІЙ ЗА ГРАНИЧНИМИ СТАНАМИ НЕСУЧОЇ ЗДАТНОСТІ

9.1 Загальні положення

Пункт 9.1 поширюється на цільну деревину, клеєну деревину та вироби на основі деревини постійного поперечного перерізу, волокна яких спрямовані в основному паралельно довжині елемента. Припускається, що елемент знаходиться під дією напружень у напрямку тільки однієї з його головних осей (рисунок 9.1).

Рисунок. 9.1 – Осі елемента

9.2 Центрально-розтягнуті вздовж волокон елементи

9.2.1 При розтягу вздовж волокон повинна задовольнятись наступна умова:

$$\frac{\sigma_{t,0,d}}{f_{t,0,d}} \le 1,\tag{9.1}$$

де: $\sigma_{t,0,d}$ — розрахункове напруження розтягу вздовж волокон (визначається за формулою (9.2));

 $f_{t,0,d}$ — розрахункове значення міцності при розтягу вздовж волокон (визначається згідно з 6.2).

9.2.2 Розрахункове напруження розтягу вздовж волокон слід визначати за формулою:

$$\sigma_{t,0,d} = \frac{N_d}{A_{rot}},\tag{9.2}$$

де: N_d — розрахункове зусилля розтягу вздовж волокон;

 A_{net} — розрахункова площа перерізу елемента (площа перерізу нетто).

При визначенні розрахункової площі перерізу елемента A_{net} всі ослаблення, які розташовані на довільній ділянці довжиною 15 см, слід приймати суміщеними в одному перерізі.

9.3 Центрально-стиснуті вздовж волокон елементи

Розрахунок центрально-стиснутих вздовж волокон елементів слід виконувати на міцність (9.3.1) та на стійкість (9.3.3).

9.3.1 При розрахунку центрально-стиснутих вздовж волокон елементів на міцність повинна задовольнятись наступна умова:

$$\frac{\sigma_{c,0,d}}{f_{c,0,d}} \le 1, \tag{9.3}$$

де: $\sigma_{c,0,d}$ — розрахункове напруження стиску вздовж волокон (визначається за формулою (9.4));

 $f_{c,0,d}$ — розрахункове значення міцності при стиску вздовж волокон (визначається згідно з 6.2).

9.3.2 Розрахункове напруження стиску вздовж волокон слід визначати за формулою:

$$\sigma_{c,0,d} = \frac{N_d}{A_{pet}},\tag{9.4}$$

де: N_d — розрахункове зусилля стиску вздовж волокон;

 A_{net} — розрахункова площа перерізу елемента (площа перерізу нетто).

9.3.3 При розрахунку центрально-стиснутих вздовж волокон елементів на стійкість повинні задовольнятись наступні умови:

$$\frac{\sigma_{c,0,d}}{k_{c,v} f_{c,0,d}} \le 1, \tag{9.5}$$

$$\frac{\sigma_{c,0,d}}{k_{c,z}f_{c,0,d}} \le 1, \tag{9.6}$$

де: $\sigma_{c,0,d}$ – розрахункове напруження стиску вздовж волокон (визначається за формулою (9.11));

 $f_{c,0,d}$ — розрахункове значення міцності при стиску вздовж волокон (визначається згідно з 6.2);

 $k_{c,y}$ та $k_{c,z}$ – коефіцієнти поздовжнього згину визначаються за формулами (9.7).

$$k_{c,y} = \frac{1}{k_y + \sqrt{k_y^2 - \lambda_{rel,y}^2}} \text{ Ta } k_{c,z} = \frac{1}{k_z + \sqrt{k_z^2 - \lambda_{rel,z}^2}},$$
(9.7)

в яких коефіцієнти k_{v} , k_{z} визначаються

$$k_{y} = 0.5 \left(1 + \beta_{c} (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^{2} \right), k_{z} = 0.5 \left(1 + \beta_{c} (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^{2} \right);$$
 (9.8)

де: $\lambda_{rel,y}$, $\lambda_{rel,z}$ – приведена гнучкість відносно відповідних осей, визначається за 9.3.4;

 β_c — коефіцієнт, який приймається, як: $\beta_c = 0.2$ — для елементів з цільної деревини, $\beta_c = 0.1$ — для елементів з клеєної деревини та LVL.

9.3.4 Приведена гнучкість визначається за формулою:

$$\lambda_{rel,y} = \frac{\lambda_y}{\pi} \sqrt{\frac{f_{c,0,k}}{E_{0.05}}}$$
 $\tau a \quad \lambda_{rel,z} = \frac{\lambda_z}{\pi} \sqrt{\frac{f_{c,0,k}}{E_{0.05}}}$, (9.9)

де: λ_{v} , λ_{z} — гнучкості елемента відносно відповідних осей;

 $E_{0,05}$ — п'ятивідсотковий квантиль модуля пружності вздовж волокон деревини (значення приймаються за додатком Б);

 $f_{c,0,k}$ — характеристичне значення міцності деревини при стиску вздовж волокон (значення приймаються за додатком Б).

9.3.5 Гнучкість центрально-стиснутого елемента визначається за формулою:

$$\lambda = \frac{l_{ef}}{l}, \tag{9.10}$$

де: *I_{ef}* – розрахункова довжина елемента згідно з таблицею 9.1;

і – радіус інерції перерізу відносно відповідної осі.

Таблиця 9.1 – Співвідношення розрахункової та геометричної довжин для стояків

Тип елемента	Тип навантаження	
Шарнірне опирання	Зосереджена осьова сила на одному кінці стояка	1,0
кінців	Рівномірно розподілене навантаження по довжині елемента	0,73
Жорстке защемлення	Зосереджена осьова сила на одному кінці стояка	2,2
одного кінця	Рівномірно розподілене навантаження по довжині елемента	1,2
Жорстке защемлення одного кінця і шарнірне опирання іншого	Зосереджена осьова сила на одному кінці стояка	0,8
1		

Співвідношення між розрахунковою довжиною l_{ef} та геометричною довжиною l наведені для елементів з зазначеним типом опирання, що обмежує кручення, і завантаженими в центрі ваги.

9.3.6 Розрахункове напруження стиску вздовж волокон для перевірки стійкості:

$$\sigma_{c,0,d} = \frac{N_d}{A_d},\tag{9.11}$$

де: N_d — розрахункове зусилля вздовж волокон;

A_d – розрахункова площа поперечного перерізу для перевірки стійкості, яка дорівнює:

 за відсутності ослаблень або при ослабленнях, які не виходять на кромки елемента (рисунок 9.2, a):

якщо площа ослаблення не перевищує 25 % A_{br} :

$$A_d = A_{br}, (9.12)$$

де A_{br} – площа перерізу брутто;

якщо площа ослаблення перевищує 25 % A_{net} :

$$A_d = (4/3) A_{net};$$
 (9.13)

- при симетричних ослабленнях, які виходять на кромки (рисунок 9.2, б):

$$A_d = A_{net}; (9.14)$$

- в зоні з'єднаннь слід суміщати всі наявні ослаблення в одному перерізі.

Рисунок 9.2 – Ослаблення стиснутих елементів

9.4 Елементи, що працюють на згин

9.4.1 Розрахунок міцності елементів, що працюють на згин в площині однієї осі перерізу, розкріплених від втрати стійкості плоскої форми деформування, за нормальними напруженнями від згину слід виконувати за формулою:

$$\frac{\sigma_{m,y,d}}{f_{m,y,d}} \le 1,\tag{9.15}$$

де: $\sigma_{m,y,d}$ – розрахункове напруження згину (визначається за формулою (9.16));

 $f_{m,v,d}$ — розрахункове значення міцності при згині (визначаються згідно з 6.2).

Розрахункове напруження від згину визначається за формулою:

$$\sigma_{m,y,d} = \frac{M_{y,d}}{W_{v,d}},\tag{9.16}$$

де: $M_{v,d}$ — розрахунковий згинальний момент;

 $W_{y,d}$ — розрахунковий момент опору поперечного перерізу. За наявності ослаблень $W_{y,d} = W_{y,net}$ визначається за умови, що всі ослаблення на ділянці довжиною 15 см суміщаються в одному розрахунковому перерізі.

9.4.2 Розрахунок міцності елементів, що працюють на згин за сколюванням, виконується за формулою:

$$, \frac{\tau_d}{f_{v,d}} \le 1, \tag{9.17}$$

де: τ_d — розрахункове напруження сколювання (визначається за формулою (9.18));

 $f_{v,d}$ — розрахункове значення міцності при сколюванні (визначаються згідно з 6.2).

Розрахункові напруження сколювання слід визначати за формулою:

$$\tau_d = \frac{V_d \cdot S_{br}}{I_{br} \cdot b_{ef}}, \tag{9.18}$$

де: S_{br} — статичний момент (брутто) частини перерізу, що зсувається, відносно нейтральної осі;

 I_{br} — момент інерції перерізу (брутто) відносно нейтральної осі;

b_{ef} – розрахункова ширина перерізу елемента.

При визначенні напружень сколювання для елементів прямокутного перерізу необхідно враховувати вплив тріщин шляхом застосування розрахункової ширини поперечного перерізу елемента:

$$b_{ef} = k_{cr} \cdot b, \tag{9.19}$$

де: *b* — ширина розрахункового поперечного перерізу;

 k_{cr} — коефіцієнт, що враховує вплив тріщин.

Рекомендується приймати наступні значення коефіцієнта k_{cr} :

 $k_{cr} = 0,67$ — для суцільної та клеєної деревини;

 $k_{cr} = 1,0 - для інших матеріалів на основі деревини.$

9.4.3 Розрахунок міцності елементів, що працюють на косий згин за нормальним напруженням, слід виконувати за формулами:

$$\frac{\sigma_{m,y,d}}{f_{m,v,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1; \tag{9.20}$$

$$k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1,$$
 (9.21)

де: $\sigma_{m,y,d}$ та $\sigma_{m,z,d}$ – розрахункові напруження згину відносно відповідних осей (визначаються за формулою (9.16));

 $f_{m,v,d}$ та $f_{m,z,d}$ — розрахункові значення міцності при згині (визначаються згідно з 6.2).

Примітка. Коефіцієнт k_m враховує перерозподіл напружень і вплив неоднорідності матеріалу в поперечному перерізі.

Величина коефіцієнта кт приймається наступним чином.

Для суцільної деревини, клеєної деревини та LVL:

- для прямокутного перерізу: $k_m = 0.7$;
- для інших видів поперечного перерізу: $k_m = 1,0$.

Для інших будівельних виробів на основі деревини для всіх поперечних перерізів: $k_m = 1,0$.

9.4.4 Перевірку стійкості плоскої форми деформування елементів, що працюють на згин, слід виконувати за формулою:

$$\frac{\sigma_{m,d}}{k_{crit} \cdot f_{m,d}} \le 1, \tag{9.22}$$

де: $\sigma_{m,d}$ — розрахункове напруження від згину (визначається за формулою (9.16));

 $f_{m,d}$ — розрахункове значення міцності на згин (визначається згідно з 6.2);

 k_{crit} — коефіцієнт, що враховує втрату стійкості плоскої форми деформування (визначається згідно з 9.4.4.1 та 9.4.4.3).

9.4.4.1 Для елементів з початковим викривленням з площини дії моменту M, k_{crit} можна визначити на основі виразу:

$$k_{crit} = egin{cases} 1 & \text{для} & \lambda_{rel,m} \leq 0,75 \\ 1,56-0,75\lambda_{rel,m} & \text{для} & 0,75 \leq \lambda_{rel,m} \leq 1,4 \ , \\ \frac{1}{\lambda_{rel,m}} & \text{для} & 1,4 < \lambda_{rel,m} \end{cases}$$
 (9.23)

Коефіцієнт k_{crit} можна прийняти як 1,0 для елемента, в якому бокові переміщення стиснутої грані виключені по всій довжині, а на опорах не припускається кручення.

9.4.4.2 Відносна гнучкість при згині:

$$\lambda_{rel,m} = \sqrt{\frac{f_{m,k}}{\sigma_{m,crit}}},$$
(9.24)

де: $\sigma_{m,crit}$ — критичне напруження від згину, визначене у відповідності з класичною теорією стійкості, враховуючи п'ятивідсотковий квантиль модуля пружності.

Критичне напруження від згину можна визначити так:

$$\sigma_{m,crit} = \frac{M_{y,crit}}{W_{y}} = \frac{\sqrt[\pi]{E_{0,05} I_{z} G_{0,05} I_{tor}}}{I_{ef} W_{y}},$$
(9.25)

де: $E_{0.05}$ — п'ятивідсотковий квантиль модуля пружності деревини вздовж волокон;

 $G_{0.05}$ – п'ятивідсоткове значення модуля зсуву деревини вздовж волокон;

 I_z — момент інерції перерізу з площини згину;

 I_{tor} — крутильний момент інерції перерізу;

 $l_{\rm ef}$ — розрахункова довжина елемента, що залежить від умов закріплення та конфігурації навантаження відповідно до таблиці 9.2;

 W_{ν} — момент опору перерізу в площині згину.

Таблиця 9.2 – Співвідношення розрахункової та геометричної довжин для балок

Тип елемента	Тип навантаження	$l_{ m ef}/l$
Шарнірне опирання кінців	Постійний момент	1,0
	Рівномірно розподілене навантаження	0,9
	Зосереджена сила всередині прольоту	0,8
Wonoтко одиомпония	Рівномірно розподілене навантаження	0,5
Жорстке защемлення	Зосереджена сила у вільного кінця	0,8

Співвідношення між розрахунковою довжиною $I_{\rm ef}$ та прольотом / відповідає елементам з зазначеним типом опирання, що обмежує кручення, і завантаженими в центрі ваги. Якщо навантаження прикладене біля стиснутого краю елемента, то $I_{\rm ef}$ слід збільшувати на 2h чи зменшити на 0,5h для навантаження розтягнутої зони балки.

Для хвойних порід деревини з суцільним прямокутним поперечним перерізом $\sigma_{\textit{m,crit}}$ приймається, як:

$$\sigma_{m,crit} = \frac{0.78b^2}{h \cdot l_{ef}} E_{0.05}, \tag{9.26}$$

де: b — ширина поперечного перерізу елемента;

h – висота поперечного перерізу елемента.

9.4.4.3 Коефіцієнт k_{crit} для хвойних порід деревини з суцільним прямокутним поперечним перерізом можна визначати:

$$k_{crit} = \frac{0.78b^2}{h \cdot l_{ef}} \frac{E_{0.05}}{f_{mk}}, \tag{9.27}$$

де: $f_{m,k}$ — характеристичне значення міцності деревини при згині.

9.5 Елементи, що працюють на осьовий розтяг зі згином

9.5.1 Розрахунок міцності елементів, що працюють на осьовий розтяг зі згином, слід виконувати за формулою:

$$\frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} \le 1, \tag{9.28}$$

де: $\sigma_{t,0,d}$ — розрахункове напруження розтягу вздовж волокон (визначається за 9.2.2);

 $\sigma_{m,y,d}$ — розрахункове напруження згину (визначається за 9.4.1);

 $f_{t,0,d}$, $f_{m,y,d}$ — розрахункові значення міцності розтягу вздовж волокон та згину (визначаються згідно з 6.2).

9.5.2 Розрахунок міцності елементів, що працюють на осьовий розтяг з косим згином за нормальними напруженнями, слід виконувати за формулами:

$$\frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1;$$
(9.29)

$$\frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1,$$
(9.30)

де: $\sigma_{t,0,d}$ — розрахункове напруження розтягу вздовж волокон (визначається за 9.2.2);

 $\sigma_{m,y,d}$ та $\sigma_{m,z,d}$ – розрахункові напруження згину відносно відповідних осей (визначаються за формулою (9.16));

 $f_{t,0,d}$, $f_{m,y,d}$ та $f_{m,z,d}$ — розрахункові значення міцності розтягу вздовж волокон та згину відносно відповідних осей (визначаються згідно з 6.2);

*k*_m – коефіцент що враховує перерозподіл напружень і вплив неоднорідності матеріалу в поперечному перерізі елемента, визначається згідно з 9.4.3.

9.6 Елементи, що працюють на осьовий стиск зі згином

9.6.1 Розрахунок елементів, що працюють на осьовий стиск зі згином, слід виконувати: при $\lambda_{rel,z} \leq 0.3$ за формулою:

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} \le 1;$$
(9.31)

при $\lambda_{rel,z} > 0,3$ за формулою:

$$\frac{\sigma_{c,0,d}}{k_{c,y} f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} \le 1,$$
(9.32)

де: $\sigma_{c,0,d}$ — розрахункове напруження стиску вздовж волокон (визначається за 9.3.2);

 $\sigma_{m,y,d}$ — розрахункові напруження при згині з врахуванням деформованої схеми визначається за формулою (9.16));

 $f_{c,0,d}$, $f_{m,y,d}$ — розрахункові значення міцності стиску вздовж волокон та згину (визначаються згідно з 6.2);

 $k_{c,v}$ — коефіцієнт повздовжнього згину, визначається за 9.3.3;

 $\lambda_{rel,z}$ — приведена гнучкість визначається за 9.3.4.

9.6.2 Розрахунок елементів, що працюють на осьовий стиск з косим згином:

при $\lambda_{rel,v} \le 0.3$ та $\lambda_{rel,z} \le 0.3$ повинні виконуватись умови:

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1;$$
(9.33)

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^{2} + k_{m} \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1;$$
(9.34)

при $\lambda_{rel,v} > 0,3$ та $\lambda_{rel,z} > 0,3$ повинні виконуватись умови:

$$\frac{\sigma_{c,0,d}}{k_{c,y}f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1;$$
(9.35)

$$\frac{\sigma_{c,0,d}}{k_{c,z}f_{c,0,d}} + k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1,$$
(9.36)

де: $\sigma_{c,0,d}$ — розрахункове напруження стиску вздовж волокон (визначається за 9.3.2);

 $\sigma_{\textit{m,y,d}}$, $\sigma_{\textit{m,z,d}}$ — розрахункові напруження при згині відносно відповідних осей з врахуванням деформованої схеми (визначаються за 9.4.1);

 $f_{c,0,d}$, $f_{m,y,d}$, $f_{m,z,d}$ — розрахункові значення міцності деревини при стиску вздовж волокон та згину відносно відповідних осей (визначаються згідно з 6.2);

 $k_{c,y}$, $k_{c,z}$ — коефіцієнти повздовжнього згину відносно відповідних осей, визначаються за 9.3.3;

k_m – коефіцієнт, що враховує перерозподіл напружень і вплив неоднорідності матеріалу в поперечному перерізі елемента, визначається згідно з 9.4.3;

 $\lambda_{rel,z}$, $\lambda_{rel,y}$ – приведена гнучкість визначається за 9.3.4.

9.6.3 У випадку сумісної дії напружень від стиску зі згином повинна задовольнятись умова плоскої форми деформування:

$$\left(\frac{\sigma_{m,d}}{k_{crit}f_{m,d}}\right)^{2} + \frac{\sigma_{c,0,d}}{K_{c,z}f_{c,0,d}} \le 1,$$
(9.37)

де: $\sigma_{m,d}$ — розрахункове напруження від згину (9.4.1) з урахуванням деформованої схеми;

 $\sigma_{c,0,d}$ – розрахункове напруження від стиску (9.3.2);

 $f_{m,d}$ та $f_{c,0,d}$ – розрахункові значення міцності згину та стиску вздовж волокон (визначаються згідно з 6.2);

 $k_{c,z}$ — коефіцієнт, що визначається за 9.3.3;

 k_{crit} — коефіцієнт, що враховує зменшення міцності при втраті стійкості плоскої форми деформування, визначається за 9.4.4.1, а для хвойних порід деревини з суцільним прямокутним поперечним перерізом за 9.4.4.3.

9.7 Кручення

9.7.1 При крученні повинна задовольнятись наступна умова:

$$\frac{\tau_{tor,d}}{k_{shape} \cdot f_{v,d}} \le 1 \tag{9.38}$$

де: τ_{tor,d} – розрахункове напруження при крученні (9.39);

 $f_{v,d}$ — розрахункове значення міцності при сколюванні (визначаються згідно з 6.2);

 k_{shape} — коефіцієнт, що залежить від форми поперечного перерізу (визначається за 9.7.2).

$$\tau_{tor,d} = \frac{M_{k,d}}{W_0},\tag{9.39}$$

де: $M_{k,d}$ — розрахунковий момент при крученні;

 W_{ρ} — момент опору крученню.

9.7.2 Коефіцієнт k_{shape} , що залежить від форми поперечного перерізу, визначається з умов:

де: *h* — найбільший розмір поперечного перерізу;

b – найменший розмір поперечного перерізу.

9.8 Стиск впоперек волокон

9.8.1 При стиску впоперек волокон повинна задовольнятись наступна умова:

$$\sigma_{c.90,d} \leq k_{c.90} f_{c.90,d}$$
, (9.41)

де: $\sigma_{c,90,d}$ – розрахункове напруження стиску впоперек волокон у зоні контакту (визначається за 9.8.2);

 $f_{c,90,d}$ — розрахункове значення міцності на стиск впоперек волокон (визначається згідно з 6 2).

 $k_{\rm c,90}$ — коефіцієнт що враховує конфігурацію навантаження, можливість розколювання і ступінь стискальних деформацій (визначається згідно з 9.8.3).

9.8.2 Розрахункове стискальне напруження впоперек волокон слід визначати за формулою:

$$\sigma_{c,90,d} = \frac{F_{c,90,d}}{A_{ef}}, \qquad (9.42)$$

де: $F_{c,90,d}$ — розрахункове зусилля стиску впоперек волокон;

A_{ef} – розрахункова площа контакту впоперек волокон.

Розрахункову площу контакту впоперек волокон A_{ef} слід визначати з урахуванням розрахункової довжини контакту вздовж волокон, яка дорівнює фактичній довжині контакту I, збільшеній на 30 мм в кожен бік, але не більше ніж a, I або I (див. рисунок 9.3).

Рисунок 9.3 – Елементи на безперервній (а) та окремій (б) опорах

- **9.8.3** Значення $k_{c,90}$ приймається 1,0, окрім випадків, зазначених в 9.8.4 та 9.8.5. В інших випадках слід приймати найбільше значення $k_{c,90}$, але не більше $k_{c,90} = 1,75$.
- **9.8.4** Для елемента на безперервній опорі при $I_1 \ge 2$ h (див. рисунок 9.3, a) значення $k_{c,90}$ слід приймати:

 $k_{c.90} = 1,25$ для суцільної деревини;

 $k_{c,90} = 1,5$ для клеєної деревини;

де: / – довжина площадки контакту;

h – висота перерізу елемента.

9.8.5 Для елемента на окремо розташованій опорі при $l_1 \ge 2 h$ (див. рисунок 9.3, б) значення $k_{c,90}$ слід приймати:

 $k_{c,90} = 1,5$ для суцільної деревини;

 $k_{c,90} = 1,75$ для клеєної деревини при $I \le 400$ мм.

9.9 Напруження стиску під кутом до волокон

- 9.9.1 Слід враховувати взаємодію між стискальними напруженнями у двох або більше напрямах.
- **9.9.2** Розрахункові стискальні напруження під кутом до волокон (див. рисунок 9.4) повинні задовольняти наступній умові:

$$\sigma_{c,\alpha,d} \le \frac{f_{c,0,d}}{\frac{f_{c,0,d}}{k_{c,90} f_{c,90,d}} \sin^2 \alpha + \cos^2 \alpha},$$
(9.43)

де: $\sigma_{c,\alpha,d}$ – розрахункове напруження стиску під кутом до волокон (визначається за 9.9.3);

 $f_{c,0,d}$ та $f_{c,90,d}$ – розрахункові значення міцності стиску вздовж та впоперек волокон відповідно (визначаються згідно з 6.2);

 $k_{c,90}$ — коефіцієнт, що враховує конфігурацію навантаження, можливість розколювання і ступінь стискальних деформацій (визначається згідно з 9.8.3).

Рисунок. 9.4 – Напруження стиску під кутом до волокон

9.9.3 Розрахункові стискальні напруження під кутом до волокон слід визначати за формулою:

$$\sigma_{c,\alpha,d} = \frac{F_{c,\alpha,d}}{A_{ef}},\tag{9.44}$$

де: $F_{c,\alpha,d}$ – розрахункова стискальна сила під кутом до волокон α ;

 A_{ef} — розрахункова площа контакту під кутом α до волокон.

9.10 Розтяг впоперек волокон

9.10.1 При розтягу впоперек волокон повинна задовольнятись наступна умова:

$$\frac{\sigma_{t,90,d}}{f_{t,90,d}} \le 1, \tag{9.45}$$

де: $\sigma_{t,90,d}$ — розрахункове напруження розтягу впоперек волокон (визначається за 9.10.2); $f_{t,90,d}$ — розрахункове значення міцності на розтяг впоперек волокон (визначається згідно з 6.2).

9.10.2 Розрахункове напруження розтягу впоперек волокон слід визначати за формулою:

$$\sigma_{t,90,d} = \frac{F_{t,90,d}}{A},\tag{9.46}$$

в якій $F_{t,90,d}$ – розрахункове зусилля розтягу впоперек волокон;

А – площа перерізу впоперек волокон.

10 РОЗРАХУНОК ЕЛЕМЕНТІВ ДЕРЕВ'ЯНИХ КОНСТРУКЦІЙ ЗА ГРАНИЧНИМИ СТАНАМИ ЕКСПЛУАТАЦІЙНОЇ ПРИДАТНОСТІ

10.1 Податливість вузлів

10.1.1 Для вузлів з використанням цвяхів, шурупів, гвинтів, скоб, зубчастих пластин, шпонок миттєвий модуль ковзання K_{ser} для площини зсуву на кріпильну деталь при експлуатаційному навантаженні береться з таблиці 10.1 при ρ_m , кг/м³, і d або d_c , мм.

Таблиця 10.1 – Значення K_{ser} для кріпильних деталей і конекторів, Н/мм, для з'єднань деревина – деревина і деревина – панель на основі деревини

Тип кріпильної деталі	K _{ser}
Нагелі	
Болти без допуску	$\rho_m^{1,5} d/23$
Гвинти	ρ _m α/25
Цвяхи (з попереднім просвердлюванням)	
Цвяхи (без попереднього просвердлювання)	$ ho_m^{1,5} d^{0,8}/30$
Скоби	$ ho_m^{1.5} d^{0.8}/80$
Металеві зубчасті пластини	$\rho_m d_c/2$
Металеві зубчасті шпонки Односторонні зубчасті шпонки (типи від С1 до С9 згідно з додатком Д) Двосторонні зубчасті шпонки (типи С10 і С11 згідно з додатком Д)	$1.5 \rho_m d_c/4$ $\rho_m d_c/2$

10.1.2 Якщо середні значення питомої густини двох з'єднувальних елементів на основі деревини є різними ($\rho_{m,1}$ і $\rho_{m,2}$), тоді ρ_m у вищевказаному виразі слід прийняти, як:

$$\rho_m = \sqrt{\rho_{m,1} \rho_{m,2}} . \tag{10.1}$$

10.1.3 За наявності з'єднань сталі із деревиною або бетону із деревиною K_{ser} визначають, враховуючи тільки збільшену на 2,0 питому густину деревини ρ_m .

10.2 Граничні прогини балок

Таблиця 10.2 – Значення граничних прогинів

Елемент	W _{inst}	W _{fin}	W _{net,fin}	
Балка на двох опорах	//300 до //500	//150 до //300	//150 до //350	
Консольна балка	//150 до //250	<i>I</i> /75 до <i>I</i> /150	//125 до //175	
Елементи покриття або перекриття з стелями зі штукатуркою або з гіпсокартону				
Балка на двох опорах			<i>I</i> /3250	
Консольна балка			<i>l</i> /125	
Елементи покриття або перекриття без стелі зі штукатуркою або з гіпсокартону				
Балка на двох опорах			<i>I</i> /150	
Консольна балка			<i>l</i> /75	
Примітка. /- прольот балки або довжина консолі.				

- **10.2.1** Для визначення прогину за граничними станами експлуатаційної придатності (SLS) слід застосовувати розрахункові експлуатаційні навантаження.
- **10.2.2** Миттєвий прогин w_{inst} для елемента суцільного перерізу, що працює окремо від інших конструкцій, повинен розраховуватися з використанням середньої величини модуля пружності вздовж волокон E_{mean} та/або середнього значення модуля зсуву G_{mean} . Для дерев'яних елементів $G_{mean} = E_{mean}$ /16, а для елементів, виготовлених з матеріалів на основі деревини, ці значення повинні визначатися за даними на ці матеріали.
- **10.2.3** Загальний прогин w_{fin} отримують шляхом підсумовування миттєвого прогину, обчислюваного відповідно до 10.2.2 і прогину від повзучості. При визначенні загального прогину слід керуватися положеннями цього розділу Норм.
- **10.2.4** Якщо елемент згинається під дією поперечної сили, додатково до прогину від згинального моменту повинен бути визначений прогин від цієї сили.
- **10.2.5** Прогин від зсуву може бути виражений у величинах прогину від згину, помноженого на коефіцієнт, що враховує вплив зсуву. Значення коефіцієнта для вільно обпертої балки прямокутного перерізу шириною b, висотою h і розрахунковим прольотом I для стандартних випадків завантаження наведено в таблиці 10.3. Загальний прогин від зсуву і згину в балці для прийнятого

випадку завантаження визначається шляхом множення прогину від згину на відповідний підвищувальний коефіцієнт, що враховує вплив зсуву.

Таблиця 10.3 – Рекомендовані формули для визначення прогину шарнірно обпертих балок прямокутного поперечного перерізу від згину і підвищувальних коефіцієнтів, що враховують вплив зсуву

Випадок навантаження	Прогин від згину, мм	Підвищувальний коефіцієнт при зсуві
Рівномірно розподілене навантаження	У середині прольоту	$\begin{bmatrix} E_{1} & (h)^{2} \end{bmatrix}$
по довжині шарнірно обпертої балки дорівнює повному навантаженню q_d	$\frac{5ql_{ef}^4}{32E_{0,mean}bh^3}$	$\left[1+0.96\frac{E_{0,mean}}{G_{0,mean}}\left(\frac{h}{l_{ef}}\right)^{2}\right]$

Кінець таблиці 10.3

Випадок навантаження	Прогин від згину, мм	Підвищувальний коефіцієнт при зсуві
Зосереджене навантаження <i>P</i> (кН) у середині прольоту шарнірно обпертої балки	У середині прольоту $\frac{P}{4E_{0,mean}b}\!\!\left(\frac{l_{\it ef}}{\it h}\right)^{\!3}$	$\left[1+1,2\frac{E_{0,mean}}{G_{0,mean}}\left(\frac{h}{l_{ef}}\right)^{2}\right]$
Зосереджене навантаження <i>Р</i> (кН) на кінці консольної балки	У крайній точці консолі $\frac{4P}{E_{0,mean}b}\!\!\left(\!\!\! \frac{l_{ef}}{h}\!\!\!\right)^{\!3}$	$\left[1+0.3\frac{E_{0,mean}}{G_{0,mean}}\left(\frac{h}{l_{ef}}\right)^{2}\right]$
Зосереджене навантаження <i>P</i> (кН) на 1/4 і 3/4 прольоту шарнірно обпертої балки	У середині прольоту $\frac{11P}{32E_{0,mean}b}{\left(\frac{l_{\it ef}}{h}\right)}^3$	$\left[1+0.873\frac{E_{0,mean}}{G_{0,mean}}\left(\frac{h}{l_{ef}}\right)^{2}\right]$
Зосереджене навантаження <i>P</i> (кН) на 1/4, 1/2 і 3/4 прольоту шарнірно обпертої балки	У середині прольоту $\frac{19P}{32E_{0,mean}b}{\left(\frac{l_{\it ef}}{h}\right)}^3$	$\left[1+1,011\frac{E_{0,mean}}{G_{0,mean}}\left(\frac{h}{l_{ef}}\right)^{2}\right]$

Примітка. $E_{0,mean}$ — средній модуль пружності для матеріалу вздовж волокон, к H/mm^2 ; $G_{0,mean}$ — средній модуль зсуву, к H/mm^2 ; b — ширина елемента, мм; h — висота елемента, мм; I_{ef} — розрахунковий проліт, мм.

10.2.6 Розрахунок прогину в шарнірно обпертих односхилих і двосхилих клеєних балках.

Для визначення прогину в середині прольоту шарнірно обпертих односхилих і двосхилих балок від дії згинального моменту і поперечної сили, під дією зосередженої сили в середині прольоту або рівномірно розподіленого навантаження по довжині балки кожного з типів можуть бути рекомендовані вирази, наведені в таблиці 10.4.

Таблиця 10.4 — Рекомендовані формули для визначення прогину шарнірно обпертих однопрогонових односхилих і двосхилих балок

Вид навантаження	Прогин від дії моменту	Прогин від дії поперечної сили		
Односхила балка				
Зосереджена сила F_d у середині прольоту L M_d = 0,25 F_d L	$\frac{5M_{d}L^{2}k_{1}}{96E_{0,g,mean}I_{h_{s}}}$ $k_{1} = 19, 2\left(\frac{1}{a-1}\right)^{3}\left(\ln a - 2\left(\frac{a-1}{a+1}\right)\right)$	$\frac{1,2M_d k_{1g}}{G_{0,g,mean} A_{h_s}}$ $k_{1g} = \frac{1}{(a-1)} \ln a$		
Рівномірно розподілене навантаження g_d $M_d = (g_d L^2)/8$	$\frac{5M_{d}L^{2}k_{2}}{48E_{0,g,mean}I_{h_{s}}}$ $k_{2} = 19, 2\left(\frac{1}{a-1}\right)^{4} \times \left(3(a+1)\ln\left(\frac{a+1}{2}\right) - (2a+1)\ln a - \left(\frac{(a-1)^{2}}{2(a+1)}\right)\right)$	$\frac{1,2M_d k_{2g}}{G_{0,g,mean} A_{h_s}}$ $k_{2g} = \frac{2(a+1)}{(a-1)^2} \ln \frac{(a+1)^2}{4a}$		

Вид навантаження	Вид навантаження Прогин від дії моменту Прогин від дії попереч	
	Для двосхилої балки	
Зосереджена сила F_d у середині прольоту L M_d = 0,25 F_d L	$\frac{5M_{d}L^{2}k_{3}}{96E_{0,g,mean}I_{h_{s}}}$ $k_{3} = 38, 2\left(\frac{1}{a-1}\right)^{3} \times \left(\ln\left(\frac{a+1}{2}\right) + \frac{4}{a+1} - \frac{2}{(a+1)^{2}} - 1, 5\right)$	$\frac{1,2M_d k_{3g}}{G_{0,g,mean} A_{h_s}}$ $k_{3g} = \frac{2}{(a-1)} \ln\left(\frac{a+1}{2}\right)$
Рівномірно розподілене навантаження g_d $M_d = (g_d L^2)/8$	$\frac{5M_{d}L^{2}k_{4}}{48E_{0,g,mean}I_{h_{s}}}$ $k_{4} = 19, 2\left(\frac{1}{a-1}\right)^{3} \times \left(2\left(\frac{a+2}{a-1}\right)\ln\left(\frac{a+1}{2}\right) + \frac{3}{(a+1)} - \frac{2}{(a+1)^{2}} - 4\right)$	$\frac{1,2M_{d} k_{4g}}{G_{0,g,mean} A_{h_s}}$ $k_{4g} = \frac{4}{(a-1)} \left(\left(\frac{a+1}{a-1} \right) \ln \left(\frac{a+1}{2} \right) - 1 \right)$

У таблиці прийняті наступні познаки:

 $E_{0,g,mean}$ – середній модуль пружності клеєного елемента вздовж волокон;

 $G_{0.a,mean}$ – середній модуль зсуву клеєного елемента;

 I_{h_s} — момент інерції поперечного перерізу клеєної балки висотою h_s , тобто $I_{h_s} = bh_s^3/12$;

 A_{h_s} – площа поперечного перерізу клеєної балки висотою h_s , тобто $A_{h_s} = bh_s$;

a – відношення h_l/h_s для односхилих балок і h_{ap}/h_s для двосхилих балок.

10.3 Коливання елементів

- **10.3.1** При розрахунку згинальних елементів за граничними станами експлуатаційної придатності необхідно перевірити, що впливи, яким можуть піддаватися елементи, а також їх складові частини або споруда в цілому, не викликають коливань, які негативно впливають на роботу споруди і не створюють дискомфорту у людей.
 - 10.3.2 Дискомфорт може бути обумовлений наступним:
- коливаннями, що виникають від працюючої машини (механізму);
- коливаннями, що виникають під час ходьби;
- коливаннями, що виникають через близьке розташування до джерела коливань.
- **10.3.3** При розрахунку дерев'яних перекриттів необхідно гарантувати, що їх поведінка під дією навантаження, що викликає коливання конструкції, залишається в рамках допустимих меж за граничними станами експлуатаційної придатності.
- 10.3.4 Рівні безперервних коливань у конструкціях, що виникають внаслідок роботи механізмів, не повинні перевищувати допустимих значень. Якщо коливання від механізму перевищують допустимий рівень, то найбільш поширеним способом вирішення проблеми є прибудова окремих від конструкції фундаментів під механізм або встановлення віброізоляторів між механізмом і конструкцією. Дані рішення повинні враховуватися під час розрахунку конструкцій.
- **10.3.5** При розрахунку перекриттів повинні враховуватися коливання, що виникають при ходьбі. Розрахункові вимоги поширюються виключно на конструкції перекриттів, що мають

частоту власних коливань понад 8Гц. Для перекриттів з частотою власних коливань менше 8 Гц необхідне проведення додаткових досліджень.

10.3.6 У житлових будинках для прямокутних у плані перекриттів, із власною частотою понад 8 Гц і розмірами $I \times b$, вільно обпертих по чотирьох сторонах, виконаних по дерев'яних балках прольотом I, значення частоти власних коливань f_1 може бути визначено з виразу:

$$f_1 = \frac{\pi}{2l_{ef}^2} \sqrt{\frac{(El)_l}{m}} , \qquad (10.2)$$

де: l_{ef} — розрахунковий проліт балки перекриття, м;

(*El*)₁ – еквівалентна згинальна жорсткість конструкції перекриття щодо осі, перпендикулярної до напряму прольоту балки, Н⋅м²/м;

m — маса на одиницю площі, кг/м², яка визначається з постійних навантажень.

Якщо настил перекриття не розрахований на спільну роботу з балками перекриття, то $(El)_I$ повинна залежати тільки від згинальної жорсткості балок перекриття. Врахування настилу при визначенні $(El)_I$ можливе, якщо він жорстко з'єднаний з дерев'яними балками перекриття, тобто з'єднаний на клею і розраховувався як обшивка плит перекриття у відповідності з 9.1.2 ДСТУ-Н Б EN 1995-1-1.

- **10.3.7** Основним типом перекриттів, виконаних з дерев'яних конструкцій, є балочні перекриття. При розрахунку таких перекриттів повинні розглядатися:
- низькочастотні ефекти (ефект від частоти кроку при ходьбі);
- високочастотні ефекти (ударний ефект від п'яти при ходьбі).
- **10.3.8** Якщо вимушені коливання перекриття від дії частоти кроку будуть менші за 8 Гц, то навантаження вважається статичним. Прогин у центрі перекриття від дії статичного навантаження в 1 кН, прикладеного в даній точці, що моделює ефект від сили, з якою тисне нога людини на перекриття, повинен бути не більше:

$$w \le 1,8 \,\mathrm{mm} \,$$
 — при довжині прольоту $\le 4000 \,\mathrm{mm}$ (10.3)

$$w \le \frac{16500}{I^{1,1}}$$
 мм – при довжині прольоту > 4000 мм (10.4)

де: w - прогин балки, мм;

– проліт балки перекриття, мм.

Прогин перекриття w під дією зосередженого навантаження в середині прольоту перекриття з розрахунковим прольотом I_{ef} визначається з виразу:

$$w = \frac{1000 k_{dist} l_{ef}^3 k_{amp}}{48(El)_{joist}},$$
 (10.5)

де: k_{dist} — переводить навантаження 1кН в навантаження на одну балку;

 I_{ef} — розрахунковий проліт балки перекриття, мм; для вільно обпертих балок I_{ef} повинен бути прийнятий аналогічним прольоту I, для крайніх прольотів нерозрізних балок $I_{ef} = 0.9I$, а для середніх прольотів — $I_{ef} = 0.851I$;

 k_{amp} — підвищувальний коефіцієнт, що враховує вплив зсуву на прогин у разі використання суцільних дерев'яних і клеєних балок, або податливість з'єднання у разі використання механічних зв'язків;

 $(EI)_{joist}$ — згинальна жорсткість балки, Н · мм², що розраховується з використанням середнього значення модуля пружності балки $E_{0,mean}$.

Значення коефіцієнта k_{amp} приймаються такими, що дорівнюють:

1,05 – для шарнірно обпертих суцільних дерев'яних балок;

1,1 – для нерозрізних суцільних дерев'яних балок;

- 1,15 для шарнірно обпертих двотаврових клеєних балок з тонкою стінкою;
- 1,3 для нерозрізних двотаврових клеєних балок з тонкою стінкою;
- 1,3 для вільно обпертих ферм покриття на механічних зв'язках у з'єднаннях;
- 1,45 для нерозрізних ферм покриття на механічних зв'язках у з'єднаннях.

Значення коефіцієнта k_{dist} для нерозрізних ферм покриття на механічних зв'язках в з'єднаннях слід визначати наступним чином:

$$k_{dist} = \max\left\{ \left[0,38 - 0,08 \ln\left[\frac{14(El)_b}{s^4} \right]; 0,30 \right] \right\},$$
 (10.6)

де: $(EI)_b$ — згинальна погонна жорсткість перекриття, $H \cdot mm^2/m$;

s – крок балок, мм.

Примітка. Згинальна жорсткість обчислюється як $(EI)_b$ з використанням середнього значення модуля пружності перекриття, а неоднорідності на кінцях перекриття можуть бути проігноровані.

10.3.9 Під дією імпульсного навантаження в 1 Н в центрі перекриття, що моделює контакт п'яти людей, максимальне початкове значення вертикального коливання (швидкості переміщення) перекриття у (м/с), має задовольняти умові:

$$v \le b^{(f_1 \cdot \zeta - 1)},\tag{10.7}$$

де: ∨ — величина імпульсної швидкості, м/(H·c²), тобто граничне значення швидкості коливання (м/с) у вертикальному напрямку, викликаної імпульсом у 1 H·c, що моделює випадок впливу п'яти людей, діючої на перекриття, при максимальному переміщенні;

 – постійна величина для контролю значення реакції імпульсу в залежності від прогону перекриття а. Значення b визначається наступним чином:

$$b = 150 - (30(w - 0.5)/0.5)) = 180 - 60 w$$
 при $w \le 1$ мм; (10.8)

$$b = 120 - (40(w-1) = 160 - 40w)$$
 при $w > 1 \text{ мм},$ (10.9)

де: w — прогин, мм, який визначається з виразу (10.5);

 f_1 — частота власних коливань перекриття, Гц, яка визначається з виразу (10.2);

 – модальний декремент загасання коливань перекриття, який для перекриттів приймається 0,02.

- **10.3.10** При обчисленні фактичної величини імпульсної швидкості конструкції повинні дотримуватися такі вимоги ДСТУ-Н Б EN 1995-1-1:
- для прямокутних перекриттів з розмірами в плані $b \times I$ і вільно обпертих по чотирьох сторонах середнє значення v може бути визначене з виразу:

$$v = \frac{4(0, 4+0, 6n_{40})}{mbl_{of} + 200},$$
(10.10)

де: b — ширина перекриття, м;

 l_{ef} — розрахунковий проліт перекриття, м;

m — визначається в кг/м²;

 n_{40} — номер першої форми коливання з власною частотою до 40 Гц.

- значення n_{40} визначається з виразу:

$$n_{40} = \left(\left(\frac{40}{f_1} \right)^2 - 1 \right) \left(\frac{b}{l_{ef}} \right) \frac{(EI)_l}{(EI)_b}^{0.25}, \tag{10.11}$$

де: $(EI)_I$ — еквівалентна згинальна жорсткість перекриття за напрямом прольоту балок, Hm^2/m . При цьому $(EI)_b < (EI)_L$

11 ЕЛЕМЕНТИ І КОНСТРУКЦІЇ

11.1 Розрахунок односхилих клеєних балок

11.1.1 Односхилі клеєні балки — це балки прямокутного перерізу з лінійним ухилом від одного кінця до іншого (див. рисунок 11.1), які використовуються в покриттях будівель і споруд. Розрахунок таких балок зводиться до перевірок, пов'язаних з максимальним сколювальним напруженням і максимальним нормальним напруженням від згину при перевірці за граничним станом за несучою здатністю, і прогинів — при перевірці за граничними станами за експлуатаційною придатністю.

Рисунок 11.1 – Односхила клеєна балка при згині і розподіл напруження в перерізі 1-1

11.1.2 Якщо на балку діє рівномірно розподілене навантаження або зосереджене навантаження в середині прольоту, розрахункове значення напруження сколювання слід визначати з виразу:

$$\tau_{v,d} = \frac{1.5 \, V_d}{b_{ef} \, h_s},\tag{11.1}$$

де: V_d — розрахункова зрізувальна сила на опорі;

 b_{ef} — розрахункова ширина поперечного перерізу, що визначається за формулою (9.19);

 h_s — висота на опорі.

Розрахункове нормальне напруження $\sigma_{m,\alpha,d}$ і $\sigma_{m,0,d}$ від згину (рисунок 11.1) слід визначати з виразу

$$\sigma_{m,\alpha,d} = \sigma_{m,0,d} = \frac{6M_d}{hh^2},\tag{11.2}$$

де M_d — розрахунковий момент, що діє в перерізі, розташованому на відстані x від опори; h_s — висота в небезпечному чи розрахунковому перерізі.

- **11.1.3** Відстань x до розрахункового перерізу, в якому нормальне напруження досягає максимального значення під дією рівномірно розподіленого або зосередженого навантаження, наведена в таблиці 11.1.
 - 11.1.4 Міцність балки вважається забезпеченою, якщо виконуються наступні умови:

$$\tau_{vd}/f_{vd} \le 1; \tag{11.3}$$

$$\sigma_{m,\alpha,d}/k_{m,\alpha}f_{m,d} \le 1, \tag{11.4}$$

де: $f_{v,d}$ — розрахункове значення міцності деревини при сколюванні вздовж волокон (визначається за 6.2);

 $f_{m,d}$ — розрахункове значення міцності деревини при згині клеєного елемента (визначається за 6.2);

 $k_{m,\alpha}$ – коефіцієнт, що визначається з виразів (11.5), (11.6), що враховують складний напружений стан односхилих балок.

Значення коефіцієнта $k_{m,\alpha}$ визначається:

– для напружень розтягу, що діють паралельно скатному боку балки:

$$k_{m,\alpha} = \frac{1}{\sqrt{1 + \left(\frac{f_{m,d}}{0.75f_{v,d}} \operatorname{tg}\alpha\right)^2 + \left(\frac{f_{m,d}}{f_{t,90,d}} \operatorname{tg}^2\alpha\right)^2}};$$
(11.3)

– для напружень стиску, що діють паралельно скатному боку балки:

$$k_{m,\alpha} = \frac{1}{\sqrt{1 + \left(\frac{f_{m,d}}{1,5f_{v,d}} \operatorname{tg}\alpha\right)^2 + \left(\frac{f_{m,d}}{f_{t,90,d}} \operatorname{tg}^2\alpha\right)^2}},$$
(11.3)

де: $f_{v,d}$ — розрахункове значення міцності деревини при сколюванні вздовж волокон для клеєної балки (визначається за 6.2);

 $f_{t,90,d}$ — розрахункове значення міцності деревини при розтягу впоперек волокон в клеєній балці (визначається за 6.2);

 $f_{c,90,d}$ — розрахункове значення міцності деревини при стиску впоперек волокон для клеєної балки (визначається за 6.2).

Таблиця 11.1 — Рекомендовані відстані *х* від опори до розрахункового перерізу в односхилій шарнірно обпертій балці, на якій нормальні напруження від згину досягають максимального значення

	Відстань від опори з висотою	Момент опору в	Напруження від згину
Вид навантаження	балки $h_{ m s}$ до розрахункового	розрахунковому перерізі	в розрахунковому
	перерізу	W_{x}	перерізі $\sigma_{m,\alpha,d}$, $\sigma_{m,0,d}$
Рівномірно	/(h.)	$2h(-1(-h))^2$	$xa_{\perp}(1-x)$
розподілене	$x = L / \left(1 + \frac{h_l}{h_s} \right)$	$W_x = \frac{2b}{3} \left(h_l / \left(1 + \frac{h_l}{h_s} \right) \right)^2$	$\frac{xg_d(L-x)}{2W_x}$
навантаження g_d	/ (<i>II</i> s)	3 (/ (II _s))	Σννχ
	при $h_l/h_s \le 3; x = L/2$	$W_X = b(h_l + h_s)^2 / 24$	$0.5F_d x/W_x$
Зосереджене навантаження <i>F_d</i>	$npu h_l/h_s > 3; x = L/\left(\frac{h_l}{h_s} - 1\right)$	$W_x = \frac{2}{3}bh_s^2$	$0.5F_d x/W_x$

11.1.5 При виконанні умов (11.3) і (11.4) необхідно також перевірити відповідні напруження стиску з урахуванням втрати стійкості плоскої форми деформування. У цьому випадку мають задовольнятись такі умови:

$$\frac{\sigma_{m,0,d}}{k_{crit}f_{m,d}} \le 1; \tag{11.7}$$

$$\frac{\sigma_{m,\alpha,d}}{k_{crit} k_{m,\alpha} f_{m,d}} \le 1, \tag{11.8}$$

де: $\sigma_{m,\alpha,d}$, $\sigma_{m,0,d}$ – розрахункові нормальні напруження від згину, які визначаються за (11.2);

 $f_{m,d}$ — розрахункове значення міцності деревини при згині клеєного елемента (визначається за 6.2);

 k_{crit} — коефіцієнт, що враховує зменшення міцності при втраті стійкості плоскої форми деформування, визначається за 9.4.4;

 $k_{m,\alpha}$ – коефіцієнт, що визначається з виразів (11.5), (11.6).

11.2 Розрахунок двосхилих, гнутоклеєних і гнутоклеєних балок з прямолінійними скатами постійної висоти поперечного перерізу

- 11.2.1 Ці типи балок мають прямокутний поперечний переріз і наведені на рисунку 11.2. Розрахункові перевірки для цих балок такі ж, як і для односхилих балок, які були наведені в 11.1. При перевірці граничних станів несучої здатності слід перевіряти максимальне напруження сколювання і максимальне нормальне напруження від згину. При перевірці граничних станів експлуатаційної придатності має бути визначений прогин. Для балок таких обрисів додатково до розрахункових перевірок в зоні скатів необхідно перевіряти напружений стан в зоні гребеня з урахуванням:
- залишкових напружень, що виникли під час виготовлення балок;
- розподілу напружень і об'ємних ефектів;
- спільної дії напружень сколювання і викликаних згином радіальних напружень розтягу впоперек волокон.
 - 11.2.2 В зоні гребеня згинальні напруження повинні задовольняти наступній вимозі:

$$\sigma_{md} = k_r f_{md}, \tag{11.9}$$

де: k_r — коефіцієнт, що враховує зниження міцності клеєної деревини в гнутоклеєних елементах через внутрішні напруження, викликані згином шарів під час їх виготовлення.

Даний коефіцієнт залежить від величини r_{in}/t і може приймати наступні значення:

- при $r_{in}/t \ge 240 k_r = 1$;
- при $r_{in}/t < 240 k_r = 0.76 + 0.001(r_{in}/t)$,

де r_{in} – внутрішній радіус криволінійної ділянки балки;

t — товщина шару (дошки).

- **11.2.3** Напружена область об'єму в зоні гребеня, обумовлена дією радіальних напружень (рисунок 11.2), називається гребеневою зоною. Ця зона обмежується величиною $2/3\,V_b$, де V_b загальний об'єм балки.
- **11.2.4** Під дією розрахункового моменту $M_{ap,d}$ в гребені двосхилих і гнутоклеєних з прямими скатами балках максимальне розрахункове напруження від згину $\sigma_{m,d}$ (рисунок 11.2) визначається наступним чином:

$$\sigma_{m,d} = k_l \frac{6M_{ap,d}}{bh_{ap}^2},\tag{11.10}$$

де: b і h_{ap} — ширина і висота поперечного перерізу балки в гребені (рисунки 11.2, 11.3);

 k_l — коефіцієнт, який визначається з наступних виразів:

$$k_{l} = k_{1} + k_{2} \left(\frac{h_{ap}}{r}\right) + k_{3} \left(\frac{h_{ap}}{r}\right)^{2} + k_{4} \left(\frac{h_{ap}}{r}\right)^{3};$$
 (11.11)

$$k_1 = 1 + 1,14tg(\alpha_{ap}) + 5,4tg^2(\alpha_{ap});$$
 (11.12)

$$k_2 = 0.35 - 8tg(\alpha_{ap});$$
 (11.13)

$$k_3 = 0.6 + 8.3 \text{tg}(\alpha_{ap}) - 7.8 \text{tg}^2(\alpha_{ap});$$
 (11.14)

$$k_4 = 6 \text{tg}^2(\alpha_{ap});$$
 (11.15)

$$r = r_{in} + 0.5h_{ap}, (11.16)$$

де: r_{in} — внутрішній радіус балки (рисунок 11.2, б і в)

а – двосхила балка; б – гнутоклеєна балка; в – гнутоклеєна з прямолінійними скатами

Рисунок 11.2 – Гребеневі зони в двосхилих, гнутоклеєних і гнутоклеєних з прямолінійними скатами балках

11.2.5 Під дією розрахункового моменту $M_{ap,d}$ в гребені двосхилих і гнутоклеєних з прямими скатами балках максимальне розрахункове напруження розтягу впоперек волокон деревини $\sigma_{t,90,d}$ (рисунок 11.3), визначається таким чином:

$$\sigma_{t,90,d} = k_p \frac{6M_{ap,d}}{bh_{ap}^2},\tag{11.17}$$

де: b і h_{ap} — ширина і висота поперечного перерізу в гребені (рисунок 11.3);

 k_p — коефіцієнт, який для двосхилих балок приймається 0,2 tg(α_{ap}), а для гнутоклеєних балок з прямими скатами визначається наступним чином:

$$k_p = k_5 + k_6 \left(\frac{h_{ap}}{r}\right) + k_7 \left(\frac{h_{ap}}{r}\right)^2;$$
 (11.18)

$$k_5 = 0.2 \text{tg}(\alpha_{ap});$$
 (11.19)

$$k_6 = 0,25 - 1,5tg(\alpha_{ap}) + 2,6tg^2(\alpha_{ap});$$
 (11.20)

$$k_7 = 2,1 \text{tg}(\alpha_{ap}) - 4 \text{tg}^2(\alpha_{ap})$$
 (11.21)

де: r – внутрішній радіус балки, який визначається з виразу (11.16).

Рисунок 11.3 — Розподіл нормальних і радіальних напружень у перерізі 1-1, розташованому в гребені двосхилої балки

11.2.6 Під дією розрахункового моменту $M_{ap,d}$ в гребені гнутоклеєних балок максимальне напруження від згину $\sigma_{m,d}$ (рисунок 11.4) визначається наступним чином:

$$\sigma_{m,d} = k_{curve,b} \frac{6M_{ap,d}}{bh_{ap}^2}, \qquad (11.22)$$

де:

$$k_{curve,b} = 1 + 0.35 \left(\frac{h_{ap}}{r}\right) + 0.6 \left(\frac{h_{ap}}{r}\right)^2,$$
 (11.23)

де: r – внутрішній радіус балки, який визначається з виразу (11.16).

Рисунок 11.4 — Розподіл нормальних і радіальних напружень в перерізі 1-1, розташованому в гребені гнутоклеєних балок

11.2.7 Під дією розрахункового моменту $M_{ap,d}$ в гребені гнутоклеєної балки, максимальне радіальне розтягувальне напруження, що діє впоперек волокон деревини $\sigma_{t,90,d}$ (рисунок 11.4), визначається таким чином:

$$\sigma_{t,90,d} = k_{curve,t} \frac{6M_{ap,d}}{bh_{ap}^2},$$
(11.24)

де: $k_{curve,t} = 0.25 (h_{ap}/r)$

r – внутрішній радіус балки, який визначається з виразу (11.16).

11.2.8 Розрахункове значення міцності $f_{r,t,90,d}$ клеєної деревини в гребеневих зонах балок при розтягу впоперек волокон визначається з виразу:

$$f_{r,t,90,d=k_{dis}k_{vol}f_{t,90,d}}$$
 (11.25)

де: $f_{t,90,d}$ — розрахункове значення міцності деревини на розтяг впоперек волокон, визначене за 6.2:

 k_{dis} — коефіцієнт розподілу напруження в гребеневій зоні, який дорівнює:

1,4 – для двосхилих і гнутоклеєних балок;

1,7 – для гнутоклеєних балок з прямолінійними схилами;

 k_{vol} — об'ємний коефіцієнт, який для суцільних елементів дорівнює 1, а для клеєних елементів та LVL з односпрямованим шпоном дорівнює:

$$k_{vol} = \left(\frac{V_0}{V}\right)^{0.2},\tag{11.26}$$

де: V_0 — базовий об'єм, дорівнює 0,01 м³;

V — об'єм в гребеневій зоні з максимальним значенням 2 V_{beam} /3, в якому виникають напруження розтягу впоперек волокон (в м³). V_{beam} — об'єм балки.

Об'єм V гребеневої зони, в якому виникає напруження розтягу впоперек волокон деревини, можна визначити з таблиці 11.2.

11.2.9 При розрахунку міцності балок за нормальним напруженням $\sigma_{m,d}$ повинна виконуватися наступна умова:

$$\sigma_{m,d} \le k_r \cdot f_{m,d} \,, \tag{11.27}$$

де: $\sigma_{m,d}$ — розрахункове напруження в гребеневій зоні при згині, яке визначається згідно з 11.2.4 для двосхилих і гнутоклеєних з прямими скатами балок і 11.2.6 — для гнутоклеєних балок;

 $f_{m,d}$ — розрахункове значення міцності клеєної шаруватої деревини при згині в гребеневій зоні балки, що визначається згідно 6.2 цих Норм.

11.2.10 При перевірці міцності балок за нормальними напруженнями розтягу впоперек волокон деревини $\sigma_{t,90,d}$, що діють в гребеневій зоні, повинна виконуватись умова:

$$\sigma_{t,90,d} \le f_{t,t,90,d},$$
 (11.28)

де: $\sigma_{t,90,d}$ — розрахункове напруження розтягу впоперек волокон в гребеневій зоні, визначається для двосхилих балок і гнутоклеєних балок з прямолінійними скатами згідно з 11.2.5, а для гнутоклеєних балок —11.2.7;

 $f_{r,t,90,d}$ — розрахункове значення міцності клеєної деревини в гребеневих зонах балок при розтягу впоперек волокон, що визначається згідно 11.2.8 цих Норм.

•		•
Тип балки	Об'єм, в якому виникають напруження розтягу*, <i>V</i>	Максимально допустиме значення величини об'єму, в якому виникають напруження розтягу
Двосхила балка	$bh_{ap}^{2} \left[1 - 0,25 \operatorname{tg}(\alpha_{ap}) \right]$	$\frac{2}{3}V_{dt}$
Гнутоклеєна балка	$\frac{\beta\pi}{180}b(h_{ap}^2+2h_{ap}r_{in})$	$\frac{2}{3}V_c$
Гнутоклеєна балка з прямолінійними скатами	$b \left[\sin(\alpha_{ap})\cos(\alpha_{ap})(r_{in} + h_{ap})^2 - r_{in}^2 \frac{\alpha_{ap}\pi}{180} \right]$	$\frac{2}{3}V_{pc}$
* Кути β і α в градусах.		1

Таблиця 11.2 – Об'єм гребеневої зони, в якому виникає напруження розтягу

11.2.11 Якщо двосхилі, гнутоклеєні балки та гнутоклеєні балки з прямолінійними скатами шириною b і висотою h_{ap} в гребеневій зоні схильні до спільної дії сколювальних напружень та напружень розтягу впоперек волокон, то повинна виконуватися наступна умова:

$$\frac{\tau_d}{f_{v,d}} + \frac{\sigma_{t,90,d}}{f_{r,t,90,d}} \le 1, \tag{11.29}$$

де: τ_d — розрахункове сколювальне напруження в перерізі гребеневої зони. Якщо розрахункова поперечна сила в гребені дорівнює Q_d , то розрахункове сколювальне напруження буде дорівнювати $\tau_d = 3\,Q_d/2bh_{ap}$

 $f_{v,d}$ — розрахункове значення міцності деревини при сколюванні, яке для клеєної деревини балки буде дорівнювати $k_{\mathsf{mod}}\,k_{\mathsf{sys}}\,f_{v,g,k}\big/\gamma_M\,;$

 $\sigma_{t, 90, d}$ — розрахункове розтягувальне напруження впоперек волокон в гребеневій зоні балки для відповідних типів балок визначається згідно з 11.2.5, 11.2.7 та 11.2.10 цих Норм;

 $f_{r,t,90,d}$ — розрахункове значення міцності клеєної деревини в гребеневій зоні балки при розтягу впоперек волокон, що визначається згідно з 11.2.8 для клеєних елементів.

11.3 Розрахунок клеєних балок з плоскими фанерними стінками

- **11.3.1** Перерізи клеєних балок з плоскими фанерними стінками складаються з елементів, склеєних разом. При використанні таких перерізів розрахункові передумови базуються на принципі, що між елементами в перерізі не виникне сколювання в жодному з швів. Даний принцип складає основу правил розрахунку.
- **11.3.2** У клеєних балках з плоскими фанерними стінками полиці можуть бути виконані з конструкційної деревини, LVL або шаруватої клеєної деревини, а стінки з фанери. Поперечний переріз таких балок може бути двотавровим або коробчастим (рисунок 11.5). Для клеєних складених перерізів потрібний високий рівень контролю, що досягається в заводських умовах.
- **11.3.3** Головною відмінністю між методикою розрахунку складених перерізів і розрахунком суцільних перерізів є те, що мала деформація згідно з теорією згину повинна коригуватися з урахуванням того, що складені перерізи складаються з елементів, що мають різні значення модуля пружності. Це повинно враховуватися при розрахунку характеристик міцності і жорсткості.

а – коробчастий переріз; б – двотавровий переріз; в – розподіл нормальних напружень в перерізі балки при згині

Рисунок 11.5 – Напруження в перерізі балки з фанерною стінкою

11.3.4 Для розрахунку перерізів балок з плоскими фанерними стінками використовується метод еквівалентного (приведеного) перерізу.

Відповідно до даного методу один з матеріалів у складеному перерізі приймається як основний, а інші — еквівалентні. При використанні даного методу формується однорідний еквівалентний переріз, до якого застосовна теорія згину. Для матеріалу, який був перетворений, напруження розраховують шляхом множення напружень згину в однорідному еквівалентному перерізі на відношення модуля пружності реального матеріалу в складеному перерізі до модуля пружності вибраного матеріалу. Таке відношення називають модульним відношенням. У процесі розрахунків для кожного матеріалу слід використовувати середнє значення модуля пружності E_{mean} (див. 5.3.5).

11.3.5 Для перерізів, наведених на рисунку 11.5, еквівалентна площа поперечного перерізу A_{ef} і момент інерції I_{ef} визначаються за формулами:

- для миттєвого стану

$$A_{ef,inst} = A_f + \left(\frac{E_{mean,w}}{E_{mean,f}}\right) A_w; {(11.30)}$$

$$I_{ef,inst} = I_f + \left(\frac{E_{mean,w}}{E_{mean,f}}\right)I_w;$$
(11.31)

- для стану, що враховує кінцеве середнє значення жорсткості:
- а) якщо розрахункова умова виникає від дії постійного навантаження:

$$A_{ef,inst} = A_f + \left(\frac{E_{mean,w}}{E_{mean,f}}\right) \left(\frac{1 + k_{def,f}}{1 + k_{def,w}}\right) A_w; \tag{11.32}$$

$$I_{ef,inst} = I_f + \left(\frac{E_{mean,w}}{E_{mean,f}}\right) \left(\frac{1 + k_{def,f}}{1 + k_{def,w}}\right) I_w;$$
(11.33)

б) якщо розрахункова умова виникає від дії змінного навантаження Q_i :

$$A_{ef,inst} = A_f + \left(\frac{E_{mean,w}}{E_{mean,f}}\right) \left(\frac{1 + \psi_{2,i} \, k_{def,f}}{1 + \psi_{2,i} \, k_{def,w}}\right) A_w; \tag{11.34}$$

$$I_{ef,inst} = I_f + \left(\frac{E_{mean,w}}{E_{mean,f}}\right) \left(\frac{1 + \psi_{2,i} k_{def,f}}{1 + \psi_{2,i} k_{def,w}}\right) I_w;$$
(11.35)

де: $\psi_{2,i}$ і ψ_2 – коефіцієнти для практично постійного значення змінної дії Q_i

 $I_{\rm f}$ — момент інерції перерізу обох полиць відносно нейтральної осі;

 I_{w} — момент інерції перерізу незміненої фанерної стінки відносно нейтральної осі.

Під дією розрахункового згинального моменту M_d , якщо модуль пружності стінки менший ніж полиці, напруження від згину в полиці зростатиме, а в стінці — зменшуватиметься з часом. Для даної умови необхідно перевірити лише напруження в полицях в кінцевому стані з середніми значеннями пружних характеристик, а також напруження в стінках в миттєвому стані. Проте, якщо модуль пружності стінки більше модуля пружності полиці, нормальні напруження від згину слід перевіряти в миттєвому стані в полицях і в кінцевому стані з середніми значеннями пружних характеристик в стінці. При розгляді симетричних перерізів істотної відмінності між відповідними значеннями геометричних параметрів в обох станах спостерігатися не буде, і отже відмінності в напруженнях будуть відносно невеликими.

11.3.6 Визначення напружень в полицях балки слід робити відповідно до наступних вимог:

а) напруження від згину.

Максимальне значення нормальних напружень від згину балки виникатиме в крайніх шарах волокон на відстані y_1 і y_2 від нейтральної осі (рисунок 11.5 в). Якщо переріз симетричний відносно осі, то відстані від нейтральної осі до крайніх волокон розтягнутої і стислої зон будуть рівні між собою, тобто $y_1 = y_2$, інакше y_1 і y_2 матимуть різні значення. Якщо переріз не симетричний відносно осі y-y, положення нейтральної осі відрізнятиметься в миттєвому і кінцевому станах, а відповідні значення y_1 і y_2 в цих станах також розрізнятимуться. Для врахування цих відмінностей були прийняті наступні познаки: $y_{1,inst}$ і $y_{2,inst}$ — для миттєвого стану, а $y_{1,fin}$ і $y_{2,fin}$ — для кінцевого стану з середніми значеннями модуля пружності.

Максимальне розрахункове напруження внаслідок згину в стиснутій зоні на відстані y_1 визначається:

– у миттєвому стані

$$\sigma_{f,inst,c,\max,d} = \sigma_{c,1} = \left(\frac{M_d}{I_{ef,inst}} y_{1,inst}\right); \tag{11.36 a}$$

- у кінцевому стані з середніми значеннями

$$\sigma_{f,fin,c,\max,d} = \sigma_{c,1} = \left(\frac{M_d}{I_{ef,fin}} y_{1,fin}\right). \tag{11.36 f}$$

Максимальне розрахункове напруження розтягу в розтягнутій зоні на відстані y_2 визначається:

- в миттєвому стані

$$\sigma_{f,inst,t,\max,d} = \sigma_{c,1} = \left(\frac{M_d}{I_{ef,inst}} y_{2,inst}\right); \tag{11.37 a}$$

- у кінцевому стані з середніми значеннями

$$\sigma_{f,fin,t,\max,d} = \sigma_{c,1} = \left(\frac{M_d}{I_{ef,fin}} y_{2,fin}\right). \tag{11.37 f}$$

Для забезпечення міцності перерізу розрахункові значення напружень, визначені за

формулами (11.36) і (11.37), мають бути менші або дорівнювати розрахунковому значенню міцності при згині $f_{m,d}$, тобто

$$\sigma_{f,inst,c,max,d}$$
, $\sigma_{f,fin,c,max,d}$ i $\sigma_{f,inst,t,max,d}$, $\sigma_{f,fin,t,max,d} \leq f_{m,d}$, (11.38)

де: $f_{m,d}$ – розрахункове значення міцності матеріалу полиці;

б) напруження стиску з врахуванням стійкості.

Стійкість балки забезпечується виключно міцністю при поздовжньому згині стислої полиці. Розрахункова вимога полягає в тому, щоб величина стискального напруження в полиці дорівнювала б або була б менша за значення міцності при стиску. Величина напруження стиску приймається такою, що дорівнює середньому значенню, яке визначається за формулами:

- в миттєвому стані

$$\sigma_{f,inst,c,\max,d} = \sigma_{c,2} = \left(\frac{M_d}{I_{ef,inst}} \left(y_{1,inst} - \frac{h_{f,c}}{2} \right) \right); \tag{11.39 a}$$

- у кінцевому стані з середніми значеннями

$$\sigma_{f,fin,c,\max,d} = \sigma_{c,2} = \left(\frac{M_d}{I_{ef,fin}} \left(y_{1,fin} - \frac{h_{f,c}}{2} \right) \right).$$
 (11.39 б)

Для забезпечення міцності перерізу з урахуванням стійкості повинна дотримуватись умова, щоб розрахункові напруження були менші або дорівнювали розрахунковому значенню міцності при стиску k_{c} $f_{c.0.d}$, тобто

$$\sigma_{f,inst,c,d} \mid \sigma_{f,fin,c,d} \le k_c f_{c,0,d}, \tag{11.40}$$

де: $f_{c,0,d}$ — розрахункове значення міцності при стиску матеріалу полиці, що визначається за 6.2;

 k_c — коефіцієнт поздовжнього згину, значення якого визначається з припущення, що стиснена полиця працює як центрально-стиснутий стержень, закріплений на кінцях від поперечного переміщення. Переріз традиційно приймається суцільним прямокутним висотою b.

При повному закріпленні полиці $k_c = 1$.

в) напруження розтягу.

Середнє розрахункове значення напруження розтягу в розтягнутій полиці має дорівнювати або бути менше розрахункового значення міцності при розтягу. Розрахункове напруження розтягу визначається за формулою:

– в миттєвому стані

$$\sigma_{f,inst,t,\max,d} = \sigma_{t,2} = \left(\frac{M_d}{I_{ef,inst}} \left(y_{2,inst} - \frac{h_{f,t}}{2} \right) \right); \tag{11.41 a}$$

- у кінцевому стані з середніми значеннями

$$\sigma_{f,fin,t,\max,d} = \sigma_{t,2} = \left(\frac{M_d}{I_{ef,fin}} \left(y_{2,fin} - \frac{h_{f,t}}{2}\right)\right). \tag{11.41 6}$$

Для забезпечення міцності перерізу повинна виконуватися наступна умова:

$$\sigma_{f,inst,t,d} i \sigma_{f,fin,t,d} \leq f_{t,0,d}, \tag{11.42}$$

де: $f_{t,0,d}$ — розрахункове значення міцності для матеріалу полиці при розтягу вздовж волокон (визначається за 6.2);

 $\sigma_{f,inst,t,max,d}$ і $\sigma_{f,fin,t,max,d}$ — розрахункові значення напружень, визначені за формулами (11.41 а, б).

- 11.3.7 Стінка балки має бути перевірена на міцність за напруженнями стиску та розтягу від згину балки, на міцність з'єднань (стиків) листів стінки, на міцність з урахуванням поздовжнього згину від дії напруження сколювання, тобто, що клейові шви між стінкою і полицями здатні передати горизонтальне напруження сколювання в перерізі:
 - а) визначення нормального напруження від згину балки.

Максимальні нормальні напруження, що виникають в стінці від згину балки, слід визначати за формулами:

максимальне стискальне напруження:

в миттєвому стані

$$\sigma_{f,inst,c,\max,d} = \sigma_{c,3} = \left(\frac{M_d}{I_{ef,inst}} y_{1,inst} \left(\frac{E_{mean,w}}{E_{mean,f}}\right)\right); \tag{11.43 a}$$

у кінцевому стані з середніми значеннями

$$\sigma_{f,fin,c,\max,d} = \sigma_{c,3} = \left(\frac{M_d}{I_{ef,fin}} y_{1,fin}\right) \left(\frac{E_{mean,w} (1 + \psi_2 k_{def,f})}{E_{mean,f} (1 + \psi_2 k_{def,w})}\right); \tag{11.43 6}$$

максимальне напруження розтягу:

в миттєвому стані

$$\sigma_{f,inst,t,\max,d} = \sigma_{t,3} = \left(\frac{M_d}{I_{ef,inst}} y_{2,inst}\right) \left(\frac{E_{mean,w}}{E_{mean,f}}\right); \tag{11.44 a}$$

у кінцевому стані з середніми значеннями

$$\sigma_{f,fin,t,\max,d} = \sigma_{t,3} = \left(\frac{M_d}{I_{ef,fin}} y_{2,fin}\right) \left(\frac{E_{mean,w}(1 + \psi_2 k_{def,f})}{E_{mean,f}(1 + \psi_2 k_{def,w})}\right); \tag{11.44 6}$$

Для забезпечення міцності перерізу повинні дотримуватися наступні умови:

$$\sigma_{w,inst,c,d} i \sigma_{f,fin,c,d} \le f_{c,w,d}, \tag{11.45}$$

$$\sigma_{w.inst.t.d} i \sigma_{f.fin.t.d} \le f_{t.w.d}, \tag{11.46}$$

де: $f_{c,w,d}$, $f_{t,w,d}$ – розрахункові значення міцності при стиску і розтягу матеріалу стінки, що визначаються за формулами:

$$f_{c,w,d} = \frac{k_{mod} \cdot k_{sys} \cdot f_{c,w,k}}{\gamma_M}, \qquad (11.47)$$

та

$$f_{t,w,d} = \frac{k_{mod} \cdot k_{sys} \cdot f_{t,w,k}}{\gamma_M} \,. \tag{11.48}$$

Складові формул були визначені вище, а $f_{c,w,k}$ і $f_{t,w,k}$ — характеристичні значення міцності при стиску і розтягу матеріалу стінки відповідно;

б) перевірка напружень з врахуванням поздовжнього згину.

При розрахунку стінки повинні виконуватись наступні умови:

якщо

$$h_{\mathsf{w}} \le 70b_{\mathsf{w}} \tag{11.49}$$

та

$$F_{v,w,Ed} = \begin{pmatrix} b_w h_w \left(1 + \frac{0.5(h_{f,t} + h_{f,c})}{h_w} \right) f_{v,0,d}, & \text{якщо} & h_w \le 35 b_w \\ 35 \cdot b_w^2 \left(1 + \frac{0.5(h_{f,t} + h_{f,c})}{h_w} \right) f_{v,0,d}, & \text{якщо} & 35 \le h_w \le 70 b_w \end{pmatrix}, \tag{11.50}$$

де: $F_{v,w,Ed}$ – розрахункова поперечна сила, що діє на кожну стінку;

в) напруження сколювання в клейових швах між стінками і полицями.

Напруження сколювання виникають на полиці і розподіляються між стінкою і полицями через клейову поверхню з'єднання. Розрахункові значення напружень сколювання визначаються таким чином:

в миттєвому стані

$$\tau_{inst,mean,d} = \frac{V_d S_{f,inst}}{I_{ef,inst}(nh_f)};$$
 (11.51 a)

у кінцевому стані з середніми значеннями

$$\tau_{fin,mean,d} = \frac{V_d S_{f,fin}}{I_{ef,fin}(nh_f)},$$
(11.51 б)

де: $\tau_{inst,mean,d}$, $\tau_{fin,mean,d}$ — розрахункові значення напружень сколювання в миттєвому (і остаточному) випадку деформування на клейовій поверхні між полицею і стінкою;

 V_d — розрахункове значення сили сколювання в області максимального зсуву;

 $S_{\it f,inst}$, $S_{\it f,fin}$ — статичний момент площі полиці (без врахування площі стінки) відносно нейтральної осі в миттєвому (і остаточному) випадку деформації;

 h_f — висота полиці, тобто $h_{f,c}$ або $h_{f,t}$, якщо відповідають;

п – кількість площин клейового шва між стінкою і полицею.

Для врахування концентрації напружень на поверхні стінки/полиці в області точки 2 (рисунок 11.5 а і б) при висоті стінки більше ніж $4b_{ef}$, мають виконуватися наступні умови:

$$au_{inst,mean,d}$$
 та $au_{fin,mean,d} = \begin{pmatrix} f_{v,90,d}, & \text{якщо} & h_f \leq 4b_{ef} \\ f_{v,90,d} \left(\frac{4b_{ef}}{h_f} \right)^{0,8}, & \text{якщо} & h_f > 4b_{ef} \end{pmatrix},$ (11.52)

де: $f_{v,90,d}$ – розрахункове значення міцності матеріалу стінки при сколюванні;

$$b_{\mathrm{ef}} = \begin{pmatrix} b_{\mathrm{w}} & -$$
 для корробчастого перерізу $\frac{b_{\mathrm{w}}}{2} & -$ для двотаврових балок
$$\tag{11.53}$$

11.4 Елементи з підрізкою

11.4.1 Загальні положення

- **11.4.1.1** При перевірці міцності елементів повинна враховуватись концентрація напружень у підрізках.
 - 11.4.1.2 Впливом концентрації напружень можна знехтувати у наступних випадках:
- при розтягу або стиску вздовж волокон при кутах менше 12°;
- при згині з напруженнями розтягу у підрізці, якщо перехід до звуження не крутіше ніж 1:i = 1:10, тобто i ≥10 (рисунок 11.6 a);
- під дією згину із напруженнями стиску у підрізці (рисунок 11.6 б).

а – при розтягувальних напруженнях у підрізці; б – при стискальних напруженнях у підрізці

Рисунок 11.6 – Схеми підрізки в згинальних елементах

11.4.2 Балки з підрізкою на опорах

11.4.2.1 Для балок прямокутного перерізу за умови розташування волокон вздовж елемента напруження сколювання на опорі у підрізці повинні визначатись із використанням фактичної (зменшеної) висоти h_{ef} (рисунок 11.7).

11.4.2.2 Необхідно перевіряти умову

$$\tau_d = \frac{1,5V}{bh_{ef}} \le k_{\nu} f_{\nu,d},\tag{11.54}$$

де: k_v — коефіцієнт зниження, що визначається:

для балок з підрізкою зверху і знизу (рисунок 11.7 б)

$$k_{\nu} = 1,0;$$
 (11.55)

– для балок із підрізкою знизу (рисунок 11.7 а)

$$k_{V} = \min \begin{cases} 1 & k_{D} \left(1 + \frac{1,1i^{1.5}}{\sqrt{h}} \right) \\ & \sqrt{h} \left(\sqrt{\alpha \left(1 - \alpha \right)} + 0.8 \frac{x}{h} \sqrt{\frac{1}{\alpha} - \alpha^{2}} \right) \end{cases}, \tag{11.56}$$

де: *i* — нахил підрізки (рисунок 11.7 a);

h – висота балки, мм;

л – відстань від лінії дії опорної реакції до початку підрізки;

 $\alpha = h_{ef}/h$

$$k_n = \begin{cases} 4,5 & -\text{для LVL} \\ 5 & -\text{для цільної деревини} \end{cases}$$
 (11.57) $6,5 & -\text{для клеєної деревини}$

Рисунок 11.7 – Підрізки на опорах балок

11.5 Міцність системи

- **11.5.1** Якщо кілька елементів конструкції мають однаковий проліт або збірні елементи розкріплені з одного боку системою в'язей, характеристики міцності слід множити на коефіцієнт міцності системи k_{sys} .
- **11.5.2** Передбачена система в'язей забезпечує перерозподіл зусиль від одного елемента до інших, при цьому коефіцієнт k_{sys} приймається 1,1.
- **11.5.3** Перевірка міцності системи в'язей повинна виконуватися за умови дії короткочасних навантажень.

Примітка. Для кроквяних ферм з максимальною відстанню між центрами вузлів 1,2 м можна прийняти, що обрешітка, прогони або панелі можуть передавати навантаження на сусідні ферми, забезпечуючи безперервність розподілу навантаження на двох останніх прольотах при коливанні будь-якого вузла.

11.5.4 Для настилів з клеєної деревини або перекриттів слід приймати значення $k_{\rm sys}$ наведені на рисунку 11.8.

1 – ламелі з фіксацією цвяхами або шурупами; 2 – ламелі склеєні

Рисунок 11.8 – Коефіцієнт міцності системи *ksys* для ламінованих листів настилу з цільної або клеєної деревини

12 З'ЄДНАННЯ В ДЕРЕВ'ЯНИХ КОНСТРУКЦІЯХ

12.1 Загальні положення

- **12.1.1** У дерев'яних конструкціях застосовуються контактні з'єднання і з'єднання з робочими в'язями.
- **12.1.2** У контактних з'єднаннях (врубках, упорах повздовжніх, ортогональних, косих, з застосуванням проміжних дерев'яних деталей) зусилля від одного елемента на інший (інші) повинно передаватись безпосередньо через контактні площадки з роботою деревини на зминання вздовж, впоперек і під кутом до напрямку волокон. Слід враховувати можливість появи роботи деревини на сколювання вздовж чи під кутом до напрямку волокон.
- **12.1.3** У з'єднаннях з робочими в'язями зусилля від одного елемента на інший (інші) передається чи безпосередньо через зв'язки (клейовий шов, циліндричні нагелі, металеві зубчасті пластини, кільцеві шпонки, цвяхи, шурупи), чи через допоміжні робочі деталі (парні накладки і прокладки з деревини або листових конструкційних матеріалів).
- **12.1.4** З'єднання на циліндричних нагелях, металевих зубчастих пластинах, кільцевих шпонках, цвяхах, шурупах є піддатливими.

Клейові з'єднання деревини з деревиною і з листовими конструкційними матеріалами (фанера, деревошаруваті пластики, склопластики) є жорсткими.

12.1.5 Не слід застосовувати конструкції з'єднань, в яких частина зусилля від одного елемента на інший (інші) передається через контактні площадки, а частина через робочі зв'язки.

12.2 Загальні рекомендації щодо проектування з'єднань

- **12.2.1** В зоні з'єднань не допускається наявність вад деревини (косошарості, тріщин, сучків, гнилизни тощо) і механічних пошкоджень елементів і деталей з'єднань.
- **12.2.2** Не слід застосовувати в стиках і вузлових з'єднаннях робочі зв'язки різної піддатливості і різнотипні парні деталі кріплень.
- **12.2.3** Конструкція з'єднання не повинна викликати надмірного ослаблення елементів, що з'єднуються.
- **12.2.4** Необхідно, щоб характер деформування робочих зв'язків і деревини в елементах і деталях багатозсувних з'єднань були однакові.
- **12.2.5** Робочі зв'язки слід розміщувати симетрично відносно осей елементів, що з'єднуються. Передача зусиль через робочі зв'язки не повинна викликати в елементах додаткових зусиль.
- **12.2.6** Вузли стержньових конструкцій слід виконувати центрованими за винятком випадків, коли таке позацентрове стикування дозволяє зменшити розрахунковий згинальний момент.
- **12.2.7** Якщо у вузлі передаються від одного до іншого елемента знакозмінні зусилля $F_{t,d}$ і $F_{c,d}$, слід передбачати окремі робочі деталі для передачі цих зусиль.
- **12.2.8** У контактних з'єднаннях з появою в деревині з'єднувальних елементів і в допоміжних деталях сколювання вздовж волокон слід встановлювати аварійні зв'язки.
- **12.2.9** У з'єднаннях з робочими в'язями зсуву між елементами для запобігання руйнуванню деревини елементів, що з'єднуються від сколювання вздовж волокон між дискретними в'язями, слід дотримуватися конструктивних вимог розміщення в'язей впоперек і вздовж довжини елементів.
- **12.2.10** Не слід застосовувати з'єднання, в яких деревина працює на сколювання впоперек волокон.

12.3 Загальні вказівки з розрахунку з'єднань

- **12.3.1** Зусилля, яке діє на з'єднання (в'язь, деталь кріплення, проміжну дерев'яну деталь) не повинно перевищувати розрахункової несучої здатності з'єднання (зв'язків, деталей кріплення, проміжної дерев'яної деталі).
- **12.3.2** Слід враховувати, що в з'єднаннях з парними, симетрично розташованими однотипними деталями кріплення ці деталі можуть працювати несумісно. В розрахунках з'єднань можлива несумісність роботи деталей кріплення враховується відповідним коефіцієнтом умови роботи.
- **12.3.3** Якщо в з'єднанні використовуються різні типи деталей кріплення, характер їхньої сумісної роботи встановлюється випробуванням з'єднань.
 - 12.3.4 При знакозмінному зусиллі в елементі окремі деталі кріплення розраховуються так:
- для сприйняття зусилля розтягу на $F_{t,d}$ + 0,5 $F_{c,d}$;
- для сприйняття зусилля стиску на $F_{c,d}$ + 0,5 $F_{t,d}$.
- **12.3.5** Якщо у вузлах передаються від одного елемента на інший зусилля під кутом до волокон (рисунок 9.1), то необхідно враховувати можливість розколювання деревини, викликаного складовою зусилля розтягу $F_{t,d} \cdot \sin \alpha$, перпендикулярною до напрямку волокон. Для перевірки можливості сколювання повинні виконуватись умови міцності:

$$F_{v,90,d} \le R_{v,90,d} F_{v,Ed} \le R_{90,Rd} ;$$

$$R_{90,Rd} = k_{\text{mod}} \frac{R_{90,Rk}}{\gamma_M}$$
(12.1)

при

$$F_{v,Ed} = \max \begin{cases} F_{v,Ed,1} \\ F_{v,Ed,2} \end{cases}, \tag{12.2}$$

де: $R_{v,90,d}$ – розрахункове значення несучої здатності сколюванню впоперек волокон.

12.3.6 Несуча здатність однорядного кріплення на одній площині зсуву визначається за формулою

$$R_d = R_{1d} \cdot n_1 , \qquad (12.3)$$

де: R_{1d} — розрахункове значення несучої здатності одного кріплення по одній площині зсуву; n_1 — кількість кріплень в ряду.

12.3.7 Розрахункове значення несучої здатності одного кріплення на одній площині зсуву в залежності від виду кріплення знаходиться як мінімальна з наступних умов:

$$R_{1d} = \min egin{cases} R_{1d,f,lpha} & -$$
 за умови зминання деревини під кутом $lpha$ до волокон (12.4) $R_{1d,f_{V}} = -$ за умови сколювання деревини з'єднувальних елементів чи деталі з'єднання (12.5) $R_{1d,f_{M}} = -$ за умови згину деталі з'єднання

- **12.3.8** Вважається, що в багатозсувних з'єднаннях (на рисунку 12.1, б двозсувне з'єднання) на піддатливих в'язях зусилля в елементах розподіляються рівномірно між площинами зсуву і усіма деталями кріплення.
- **12.3.9** Розрахункова несуча здатність з'єднання на піддатливих зв'язках R_d зростає пропорційно кількості площин зсуву n_v в з'єднані і кількості рядів кріплень n_n в елементах, що з'єднуються,

$$R_d = R_{1d} \cdot n_{v} \cdot n_{n} . \tag{12.7}$$

- **12.3.10** У вузлових з'єднаннях необхідно перевіряти, щоб складова розрахункового зусилля, яка діє в елементі паралельно ряду $F_{t,d}$ (рисунок 12.1, б), не перевищувала несучу здатність, визначену за формулою (12.3).
- **12.3.11** При одночасній дії в деревині в зоні з'єднання напружень вздовж і впоперек волокон та напружень сколювання слід враховувати можливість руйнування деревини від складного напруженого стану.
- **12.3.12** За відсутності методики розрахунку нових видів з'єднань дозволяється визначати їхню несучу здатність і деформативність на підставі випробувань згідно з чинними національними стандартами.

а – робота деревини на розколювання; б – двозсувні з'єднання

Рисунок 12.1 – Вузли, в яких відбувається передача зусилля під кутом до волокон

12.4 З'єднання з робочими в'язями

12.4.1 У з'єднаннях з робочими в'язями деревина в з'єднувальних елементах і допоміжних дерев'яних деталях працює на зминання: в отворах для циліндричних нагелів (цвяхів), встановлених під кутом чи ортогонально до напрямку волокон; в гніздах зубів металевих зубчастих пластин (МЗП) і кільцевих шпонок.

Між нагелями і кільцевими шпонками деревина працює на сколювання вздовж волокон або під кутом в залежності від напрямку діючого зусилля і напрямку волокон.

- **12.4.2** Циліндричні металеві, дерев'яні і склопластикові нагелі та цвяхи працюють на згин в з'єднаннях з накладками і вузлових з'єднаннях елементів.
- **12.4.3** Металеві стержні, встановлені під кутом до напрямку волокон деревини, працюють на згин і висмикування або продавлювання.
- **12.4.4** Металеві стержні, встановлені вздовж волокон деревини, працюють на висмикування чи стиск.
- **12.4.5** Якщо використовуються дубові чи склопластикові циліндричні нагелі і листові фасонки з будівельної чи бакелізованої фанери або конструкційних склопластиків, слід перевіряти міцність нагелів на зріз і фасонок на зминання матеріалу в отворах.
- **12.4.6** Металеві допоміжні деталі, застосовані в з'єднаннях, розраховуються відповідно до норм проектування металевих конструкцій.

12.5 Металеві з'єднання нагельного типу

- 12.5.1 Металеві з'єднання нагельного типу поділяються на дві основні групи:
- -металеві з'єднання нагельного типу це з'єднання, в яких рівновага нагеля забезпечується тільки поздовжніми силами, паралельними напрямку зсуву з'єднувальних елементів, наприклад, цвяхи, шурупи, нагелі, болти, скоби тощо;
- -з'єднання, що викликають зминання деревини в з'єднувальному елементі по контактних площадках, наприклад, штампована металева пластина, розрізні кільця тощо.

12.5.2 Цвяхи

12.5.2.1 Цвяхи, що застосовуються в з'єднаннях елементів дерев'яних конструкцій, за типом стержня поділяються на гладкі цвяхи, цвяхи з кільцевою і гвинтовою нарізкою, а за формою поперечного перерізу — на круглі і квадратні. Цвях з гвинтовою нарізкою забезпечує більш легке входження у волокна деревини, що дозволяє виключити розколи в деревині або матеріалах на її основі. Цвях з кільцевою нарізкою на стержні має поперечні насічки, завдяки яким він краще працює на висмикування. За рахунок наявності кільцевої та гвинтової нарізок підвищується рівень надійності з'єднань у порівнянні зі з'єднаннями з використанням звичайних цвяхів. Цвяхи виготовляються із сталевого дроту або з катанки нелегованої сталі.

Для цвяхів номінальний діаметр *d* повинен бути не менше 1,9 мм (рисунок 12.2)

Площа головки цвяха A_h повинна бути не менше $2,5d_2$, а товщина головки h_t не повинна бути менше 0,25d (рисунок 12.2). Довжина I_p вістря цвяха повинна бути не менше 0,5d та не перевищувати 1,5d.

Для профільованих цвяхів довжина нарізної частини I_a повинна становити не менше 4,5d.

12.5.2.2 Механічна міцність цвяхів характеризується наступними величинами:

- характеристичним значенням згинального моменту $M_{v,k}$ пластичної деформації;
- характеристичним значенням міцності при висмикуванні $f_{ax,k}$;
- характеристичним значенням міцності при втискуванні $f_{h,k}$;
- характеристичним значенням міцності при проштовхуванні головки $f_{head.k}$
- характеристичним значенням границі текучості f_u матеріалу цвяха.

При визначенні характеристичних значень цвяхових з'єднань діаметр цвяха приймається таким, що дорівнює номінальному значенню *d*.

Рисунок 12.2 – Загальний вигляд типів цвяхів і їх параметри

12.5.3 Гвинти й шурупи

- **12.5.3.1** Гвинти поділяються на шурупи, самонарізні гвинти або саморізи та гвинти, що вкручують у заздалегідь просвердлені отвори.
- **12.5.3.2** Використовуються гвинти, виконані відповідно до вимог [40 44]. У з'єднаннях елементів дерев'яних конструкцій найчастіше використовуються гвинти 6 мм $\leq d \leq$ 12 мм і $0.6 \leq d_1/d \leq 0.75$. Тут d зовнішній діаметр різьблення, а d_1 внутрішній діаметр різьблення (рисунок 12.3).

Рисунок 12.3 – Загальний вигляд гвинта

- **12.5.3.3** Гвинти повинні завжди бути закріплені шляхом вгвинчування в деревину, але не шляхом забивання. Гвинти з діаметром гладкої частини 6 мм і менше загвинчуються в елемент без попереднього свердління отворів. Якщо діаметр гвинта більше 6 мм, то його загвинчування виконується в попередньо просвердлені отвори, які повинні відповідати таким вимогам:
- глибина попередньо просвердленого отвору для гвинта повинна дорівнювати його довжині;
- діаметр попередньо просвердленого отвору повинен становити приблизно 70 % від діаметра гвинта.
 - 12.5.3.4 Механічна міцність гвинтів характеризується наступними властивостями:
- характеристичним значенням згинального моменту M_{vk} пластичної деформації;
- характеристичним значенням міцності $f_{ax,k}$ при висмикуванні гвинта з деревини;
- характеристичним значенням міцності $f_{tens,k}$ при проштовхуванні головки гвинта;
- характеристичним значенням границії текучості $f_{u,k}$ матеріалу гвинта;
- коефіцієнтом характеристичного опору крученню $f_{tor,k}/R_{tor,k}$.

Механічна жорсткість гвинтів характеризується кутом згину α і визначається на підставі характеристичного значення згинального моменту M_{yk} пластичної деформації, який визначається на підставі випробування, або розраховується за формулами, наведеними в таблиці 12.4.

12.5.4 Болти і нагелі

- **12.5.4.1** Нагелі циліндричні стержні, що виготовляються в основному із сталі і мають гладку або борознисту поверхню. Нагелі слід приймати діаметром від 6 мм до 30 мм. Болти нагелі з різьбленням, з шестикутними або напівсферичними головками і шестикутними гайками. Нагелі і болти слід використовувати для сприйняття в з'єднаннях великих зсувних зусиль між елементами.
- **12.5.4.2** При використанні болтів в якості нагелів в обов'язковому порядку між головкою і гайкою повинні встановлюватися шайби. Критерієм загвинчування болтів є втоплювання шайби в елемент з'єднання на один виток різьблення.
- **12.5.4.3** Нагелі повинні встановлюватися в попередньо просвердлені отвори. Діаметр отворів повинен бути не більше діаметра нагеля. У випадку з'єднання на болтах діаметр попередньо просвердленого отвору в деревині не повинен бути більше ніж на 1 мм від діаметра болта.

12.5.5 Основні положення з розрахунку з'єднань на металевих зв'язках нагельного типу

- **12.5.5.1** При розрахунку з'єднань на металевих зв'язках нагельного типу передбачається, що в з'єднанні раніше настане пластичне руйнування (зминання деревини нагельного гнізда, вигин нагеля), а потім тільки крихке (розколювання деревини нагелем). Це досягається шляхом дотримання встановлених вимог щодо розстановки нагелів, наведених нижче.
- **12.5.5.2** Для оцінки граничного навантаження нагельного з'єднання використовується жорсткопластична модель. Відповідно до цієї моделі з'єднані між собою кріпильний елемент і деревина (або матеріал на її основі) повинні працювати як абсолютно жорстко-пластичні матеріали відповідно до залежностей "напруження-деформація".

У з'єднаннях елементів "деревина-деревина", "плитний матеріал на основі деревини-деревина" і "деревина-сталь" можуть виникнути різні форми руйнування.

Вирази з визначення характеристичних значень несучої здатності кріпильних елементів для з'єднань "деревина-деревина" і "плитний матеріал на основі деревини-деревина" наведені в таблиці 12.1, а для з'єднань "деревина-сталь" – в таблиці 12.2.

- **12.5.5.3** В однозрізних і багатозрізних нагельних з'єднаннях зі сталевими пластинами ("деревина-сталь") тонкими пластинами називаються пластини, що відповідають товщині менше 0,5 діаметра (d) нагеля, а товсті товщиною 0,5 і більше діаметра (d) з допуском для отвору нагеля менше 0,1d.
- **12.5.5.4** Вирази, наведені в таблицях 12.1 і 12.2, відносяться до характеристичної несучої здатності для одного кріпильного елемента в площині зсуву.

Для з'єднань з однією площиною зсуву (рисунок 12.4 а-в) характеристична несуча здатність у площині зсуву $F_{v,Rk}$ дорівнює мінімальному значенню з виразів для відповідних випадків зсуву по одній площині, представлених у таблицях 12.1 і 12.2.

Для симетричних з'єднань з двома площинами зсуву (рисунок 12.4 г) характеристична несуча здатність кріпильного елемента в площині зсуву $F_{v,Rk}$ дорівнює мінімальному значенню рівняння для відповідних випадків зсуву, представлених у таблицях 12.1 і 12.2, і форма руйнування буде відповідати такому рівнянню. Однак, оскільки з'єднання має дві площини зсуву, характеристична несуча здатність кріпильного елемента має визначатись як $2F_{v,Rk}$.

Основні складові, використані у виразах (12.1) - (12.2), - це діаметр нагеля d,

характеристичний момент, що викликає текучість кріпильного елемента $M_{y,Rk}$, характеристична міцність при втискуванні $f_{h,i,k}$ i-го елемента з'єднання, значення яких наводяться нижче.

а, б і в – однозрізні з'єднання; г – багатозрізне з'єднання

Рисунок 12.4 – Приклади з'єднань на металевих зв'язках нагельного типу

Таблиця 12.1 — Вирази для визначення характеристичної несучої здатності кріпильного елемента по площині зсуву для з'єднань "деревина-деревина" і "деревина-плитний матеріал на основі деревини" *

	З'єднання з однією площиною зсуву/двома площин	нами зсуву		
Форми руйнування				
	$F_{v,Rk} = f_{h,1,k} \cdot t_1 \cdot d,$	форма (а) (12.8)		
	$F_{v,Rk} = f_{h,2,k} \cdot t_2 \cdot d,$	форма (b) (12.9)		
	$F_{v,Rk} = \frac{f_{h,1,k} \cdot t_1 \cdot d}{1 + \beta} \times$	форма (с) (12.10)		
здатність	на несуча здатність $ \left[\times \left[\sqrt{\beta + 2\beta^2} \left[\frac{1 + \frac{12}{t_1}}{t_1} + \left(\frac{12}{t_1} \right) \right] + \beta^3 \left(\frac{12}{t_1} \right) \right] - \beta \left[\frac{1 + \frac{12}{t_1}}{t_1} \right] \right] + \frac{\alpha \lambda_1 \alpha_1}{4} c $			
кріпильного елемента по площині зсуву	$F_{v,Rk} = 1,05 \frac{f_{h,1,k} \cdot t_1 \cdot d}{1+\beta} \times$	форма (d) (12.11)		
F _{v,Rk} – мінімальне значення з виразів для	$\times \left[\sqrt{2\beta(1+\beta) + \frac{4\beta(2+\beta)M_{y,Rk}}{f_{h,1,k} \cdot t_1^2 \cdot d}} - \beta \right] + \frac{F_{ax,Rk}}{4},$			
форм руйнування	$F_{v,Rk} = 1,05 \frac{f_{h,1,k} \cdot t_2 \cdot d}{1 + 2\beta} \times$	форма (е) (12.12)		
	$\times \left[\sqrt{2\beta^{2}(1+\beta) + \frac{4\beta(1+2\beta)M_{y,Rk}}{f_{h,1,k} \cdot t_{2}^{2} \cdot d}} - \beta \right] + \frac{F_{ax,Rk}}{4},$			
	$F_{v,Rk} = 1,15\sqrt{\frac{2\beta}{1+\beta}}\sqrt{2M_{y,Rk}f_{h,1,k}d} + \frac{F_{ax,Rk}}{4}$	форма (f) (12.13)		

Кінець таблиці 12.1

Характеристи	$F_{v,Rk} = f_{h,1,k} \cdot t_1 \cdot d,$	форма (g) (12.14)
чна несуча здатність кріпильного	$F_{v,Rk} = 0.5 f_{h,2,k} \cdot t_2 \cdot d ,$	форма (h) (12.15)
елемента по площині зсуву	$F_{v,Rk} = 1,05 \frac{f_{h,1,k} \cdot t_1 \cdot d}{2 + \beta} \times \left[\sqrt{2\beta(1+\beta) + \frac{4\beta(2+\beta)M_{y,Rk}}{f_{h,1,k} \cdot t_1^2 \cdot d}} - \beta \right] + \frac{F_{ax,Rk}}{4},$	форма (j) (12.16)
форм руйнування	$F_{v,Rk} = 1.15 \sqrt{\frac{2\beta}{1+\beta}} \sqrt{2M_{y,Rk} f_{h,1,k} d} + \frac{F_{ax,Rk}}{4}$	форма (k) (12.17)
* На підставі 8.2.2 і 8.2.3 ДСТУ-Н Б EN 1995-1-1.		

Таблиця 12.2 – Вирази для визначення характеристичної несучої здатності кріпильного елемента по площині зсуву для з'єднань "сталь-деревина" *

по площин обуду да	пя з єднань сталь-деревина			
Форми	З'єднання з однією площиною зсуву – форми (а) і (b) мають тонкі пластини, а форми (c), (d) і (e) мають товсті пластини	овщини, якщо		
Форми руйнування				
	(a) (b) (c) (d) (e) (f) (g) (h)	(j/l) (k) (m)		
Vanautanuatuuua	$F_{v,Rk} = 0, 4f_{h,k} \cdot t_1 \cdot d,$	форма (а) (12.18)		
Характеристична несуча здатність кріпильного	$F_{v,Rk} = 1,15\sqrt{2M_{y,Rk}} f_{h,k} d + \frac{F_{ax,Rk}}{4},$	форма (b) (12.19)		
елемента по площині зсуву $F_{v,Rk}$ – мінімальне значення з	$F_{v,Rk} = f_{n,k} \cdot t_1 \cdot d \left[\sqrt{2 + \frac{4M_{y,Rk}}{f_{h,k} \cdot t_1^2 \cdot d}} - 1 \right] + \frac{F_{ax,Rk}}{4},$	форма (с) (12.20)		
виразів для форм	$F_{v,Rk} = 2,3\sqrt{2M_{y,Rk}} f_{h,k} d + \frac{F_{ax,Rk}}{4},$	форма (d) (12.21)		
руипування	руйнування $F_{v,Rk} = f_{h,k} \cdot t_1 \cdot d$			
	$F_{v,Rk} = f_{h,1,k} \cdot t_1 \cdot d ,$	форма (g) (12.23)		
Характеристична несуча здатність кріпильного	$F_{v,Rk} = f_{n,1,k} \cdot t_1 \cdot d \left[\sqrt{2 + \frac{4M_{y,Rk}}{f_{h,1,k} \cdot t_1^2 \cdot d}} - 1 \right] + \frac{F_{ax,Rk}}{4}$	форма (h) (12.24)		
елемента по площині зсуву	$F_{v,Rk} = 2.3\sqrt{2M_{y,Rk}} f_{h,1,k} d + \frac{F_{ax,Rk}}{4}$	форма (j) (12.25)		
$F_{v,Rk}$ – мінімальне значення з	$F_{v,Rk} = 0.5f_{h,2,k} \cdot t_2 \cdot d$	форма (k) (12.26)		
виразів для форм руйнування	$F_{v,Rk} = 1,15\sqrt{2M_{y,Rk}} f_{h,2,k} d + \frac{F_{ax,Rk}}{4}$	форма (I) (12.27)		
	$F_{v,Rk} = 2,3\sqrt{2M_{y,Rk}} f_{h,2,k} d + \frac{F_{ax,Rk}}{4}$	форма (m) (12.27а)		
* На підставі п.п. 8.2.2 і 8.2.3 ДСТУ-Н Б EN 1995-1-1.				

- **12.5.5.5** Величина діаметра з'єднання нагельного типу у виразах таблиць 12.1 і 12.2 залежить від типу кріпильного елемента, використовуваного в з'єднанні, який визначається за правилами, встановленими в таблиці 12.3.
- **12.5.5.6** Значення характеристичного моменту текучості $M_{y,Rk}$ для різних типів металевих кріпильних елементів може бути визначено з виразів, наведених у таблиці 12.4.
- **12.5.5.7** Характеристична міцність вдавлення $f_{h,k}$ з'єднувального елемента в масив деревини або матеріалу на її основі це міцність при стисненні деревини або матеріалу на її основі від впливу жорсткого металевого нагеля.
- **12.5.5.8** Характеристична міцність при зминанні для цвяхів діаметром ≤ 8 мм змінюється залежно від діаметра використовуваного цвяха, типів використовуваних матеріалів у з'єднанні і від того, чи використовувалося попереднє свердління. Визначення міцності при зминанні для можливих випадків, що виникають при розрахунку, наведено в таблиці 12.5.
- **12.5.5.9** Характеристична міцність при зминанні для скоб визначається з використанням виразів, наведених у таблиці 12.5 для цвяхів, а якщо скоба має прямокутний поперечний переріз, то діаметр повинен визначатися як квадратний корінь з добутку розмірів двох сторін поперечного перерізу стержня.

Таблиця 12.3 – Вимоги до визначення діаметра кріпильного елемента

Кріпильний елемент	Діаметр <i>d</i> , мм, приймати таким, що дорівнює:
Цвяхи:	
– гладкі круглі цвяхи;	діаметру цвяха;
– квадратні цвяхи та цвяхи з пазами	розміру сторони
Скоби:	
– з круглими ногами;	діаметру стержня скоби;
 з прямокутним поперечним перерізом 	квадратному кореню з добутку сторін поперечного перерізу скоби
Болти	діаметру болта
Нагелі	діаметру нагеля
Гвинти: a) загальне;	(а) діаметру гвинта (діаметр стержня або зовнішній діаметр
	стержня):
(б) при визначенні згинального моменту гвинта значення враховано в міцності при згині від різьбової частини гвинта шляхом використання розрахункового діаметра наступним чином: 1) гвинти з гладкою частиною – якщо зовнішній діаметр різьби <i>d</i> дорівнює діаметру стержня, і гладка частина заходить в елемент в точці вгвинчування в поверхню, але не більше, ніж на 4 <i>d</i> ;	(б) (1) розрахунковий діаметр d _{ef} – діаметр стержня <i>d</i> ;
2) якщо умови (1) не виконуються	(б) (2) розрахунковий діаметр $d_{ m ef}-$ внутрішній діаметр різьби

Таблиця 12.4 — Вирази з визначення $M_{v,Rk}$

Кріпильний елемент	$M_{y,Rk}$, H · MM	
Цвяхи: – гладкі круглі цвяхи;	$0.3f_u d^{2.6}$,	(12.28)
– квадратні цвяхи	0, 45 f _u d ^{2,6}	(12.29)
Скоби	240 <i>d</i> ^{2,6}	(12.30)
Болти	$0.3f_{u,k}$ $d^{2.6}$	(12.31)
Нагелі	$0.3f_{u,k} d^{2.6}$	(12.32)
Гвинти: – гвинти з гладкою частиною діаметром $d \le 6$ мм;	як для нагелів	
– гвинти з гладкою частиною діаметром $d > 6$ мм	як для болтів	

Примітка. Тут d — діаметр цвяха, скоби або нагеля, мм. Для скоб з прямокутними перерізами d — квадратний корінь добутку розмірів двох сторін поперечного перерізу стержня, а для гвинтів d — розрахунковий діаметр, який визначається таблиці 12.3; f_u — міцність при розтягу дроту для цвяха (або матеріалу гвинта), H/мм2; $f_{u,k}$ — характеристична міцність при розтягу болта (або матеріалу гвинта), H/мм 2 .

Таблиця 12.5 – Характеристична міцність при зминанні для цвяхів

Умова	$f_{h,k}$, H/MM ²	
Для з'єднань з деревини і LVL з використанням цвяхів діаметром		
до 8 мм:		
 без попереднього свердління отворів; 	$0.082 \rho_k d^{-0.3}$	(12.33)
– з попереднім свердлінням отворів	$0.082(1-0.01d) \rho_k$	(12.34)
Для з'єднань з деревини і LVL з використанням цвяхів діаметром	Застосовуються виразі	и з таблиці
більше 8 мм	12.6 як для болтів	
Для з'єднань "плита-деревина" з використанням цвяхів, в яких		
діаметр головки не менше 2 <i>d</i> і умови, що матеріал плити – це:		
– клеєна фанера;	$0,11\rho_k d^{-0,3},$	(12.35)
– ДВП;	$30t^{0.6} d^{-0.3}$,	(12.36)
– ДСП або OSB	$60t^{0,1}d^{-0,7}$	(12.37)
Примітка. Тут d – діаметр цвяха, мм; ρ_k – характеристична густина μ	еревини, LVL або матер	іалу плити.

12.5.5.10Характеристична міцність при зминанні для болтів, цвяхів (діаметром > 8 мм) і нагелів визначається з використанням виразів, наведених у таблиці 12.6.

12.5.5.11Характеристична міцність при зминанні для гвинтів приймається:

– як для цвяхів при використанні гвинтів з гладкою частиною діаметром $d \le 6$ мм;

 $K\Gamma/M^3$; t — товщина плити, мм.

- як для болтів при використанні гвинтів з гладкою частиною діаметром d > 6 мм.

Таблиця 12.6 – Характеристична міцність при зминанні при використанні болтів, цвяхів

(діаметром > 8 мм) або нагелів

Умова	$f_{h,k}$, H/MM ²	
Для деревини та LVL:		
– навантажування вздовж волокон;	$0.082(1-0.01d) \rho_k$	(12.38)
– навантажування під кутом до волокон	$f_{h,0,k}/(k_{90}\sin\alpha^2+\cos\alpha^2)$	(12.39)
Для з'єднання плити з деревиною, навантажених під будь-яким кутом до поверхні, якщо матеріал плити клеєна фанера, то характеристична міцність при зминанні в матеріалі плити буде дорівнювати	0,11(1 – 0,01d) ρ _k	(12.40)
Для з'єднань плити з деревиною, навантажених під будь-яким кутом до поверхні, якщо матеріал плити ДСП або OSB, то характеристична міцність при зминанні в матеріалі плити буде дорівнювати	$50t^{0,2}d^{-0,6}$,	(12.41)

Примітка. Тут d — діаметр кріпильного елемента; ρ_k — характеристична густина прийнятого матеріалу; t — товщина матеріалу плити; α — кут прикладення сили до кріпильних елементів по відношенню до волокон; $k_{90} = (1,35 + 0,015d)$ — для м'яких (хвойних) порід, (1,3+0,015d) — для LVL і (0,9+0,015d) — для твердих порід деревини.

12.5.5.12 У з'єднанні елементи ділити на елемент 1 і елемент 2, як показано в таблицях 12.1 і 12.2, а їх товщини позначати відповідно, як t_1 і t_2 .

Для з'єднань на цвяхах:

- t_1 це товщина матеріалу з основною частиною цвяха для з'єднання з однією площиною зсуву; мінімальне значення з товщини матеріалу з основною частиною цвяха і величини забитої частини цвяха для двозрізного з'єднання;
- t_2 це величина забитої частини цвяха для з'єднання з однією площиною зсуву; товщина центрального елемента для двозрізного з'єднання.

За товщину матеріалу основної частини цвяха слід приймати товщину елемента, що включає капелюшок цвяха, а за величину забитої частини цвяха — відстань, на яку загострений кінець цвяха входить в елемент.

Для з'єднань на скобах: t_1 і t_2 приймаються відповідно до рисунка 12.5;

Рисунок 12.5 – Розміри скоби

Для з'єднань на болтах:

- t_1 товщина матеріалу основної частини болта для з'єднання з однією площиною зсуву або двома площинами зсуву (припускаючи з'єднання симетричним);
- t_2 товщина елемента, в який закручений болт для з'єднання з однією площиною зсуву, або товщина центрального елемента для двозрізного з'єднання.

Для з'єднань з нагелями:

 t_1 – це довжина нагеля в елементі 1 для з'єднання з однією площиною зсуву; мінімальна довжина нагеля в зовнішніх елементах – для двозрізного з'єднання;

 t_2 — це довжина нагеля в елементі 2 для з'єднання з однією площиною зсуву; товщина центрального елемента — для двозрізного з'єднання.

Для з'єднань на шурупах:

– при визначенні t_1 і t_2 застосовуються правила, як для цвяхів.

12.5.5.13 У виразах (таблиці 12.1 та 12.2) з визначення характеристичних значень несучої здатності, крім згину з'єднувального елемента і зминання деревини, враховуються ефекти тертя і висмикування кріпильного елемента, що виникають при його згині. Для врахування ефекту тертя, що виникає між контактуючими поверхнями з'єднувальних елементів, використовується відношення характеристичної міцності елемента 2 при вдавлюванні ($f_{h,2,k}$) до характеристичної міцності елемента 1 при вдавлюванні ($f_{h,1,k}$), тобто:

$$\beta = \frac{f_{h,2,k}}{f_{h,1,k}} \,. \tag{12.42}$$

При впливі на кріпильний елемент з'єднання зусилля зсуву в ньому виникатиме розтяг (висмикування). Для врахування ефекту висмикування кріпильного елемента у виразах з визначення характеристичної несучої здатності кріпильного елемента введено додатковий доданок $F_{ax,Rk}$ / 4, де $F_{ax,Rk}$ — характеристична осьова несуча здатність кріпильного елемента при висмикуванні. Визначення $F_{ax,Rk}$ для цвяхів і скоб наведено в 8.3.2 ДСТУ-Н Б EN 1995-1-1; для болтів — у 8.5.2 ДСТУ-Н Б EN 1995-1-1; для шурупів — у 8.7.2 EN 1995 — 1-1.

Для різьблених нагелів:

$$F_{ax,Rk} = \begin{cases} f_{ax,k} \cdot d \cdot t_{pen} & \text{(a)} \\ f_{head,k} \cdot d_h^2 & \text{(6)} \end{cases}$$

Для гладких нагелів:

$$F_{ax,Rk} = \begin{cases} f_{ax,k} \cdot d \cdot t_{pen} & \text{(a)} \\ f_{ax,k} \cdot d \cdot t \cdot f_{head,k} \cdot d_h^2, & \text{(6)} \end{cases}$$

де: $f_{ax,k}$ — характеристичне значення міцності на висмикування;

 $f_{head,k}$ — характеристичне значення міцності зони нарізки;

d — діаметр нагеля;

 t_{pen} — розрахункова довжина заглиблення нагеля або глибина зони різьблення;

t — товщина елементів з'єднання;

 d_n — номінальний діаметр нагеля нарізної частини.

Для гладких нагелів з проникненням щонайменше 12*d* характеристичні значення міцності на висмикування та характеристичні значення міцності зони різьби слід визначати з наступних виразів:

$$f_{ax,k} = 20 \times 10^{-6} \ \rho_k^2; \tag{12.45}$$

$$f_{head,k} = 70 \times 10^{-6} \, \rho_k^2 \,,$$
 (12.46)

де ρ_k – характеристичне значення густини деревини, кг/м³.

При визначенні характеристичних значень $F_{ax,Rk}$ з'єднувальних елементів повинні виконуватися такі вимоги з анкерування:

а) для гладких цвяхів мінімальна довжина анкерування з боку загостреного кінця в деревині не повинна бути менше 8d. При довжині анкерування цвяха 8d значення несучої здатності при висмикуванні цвяха приймається за нуль. Якщо довжина анкерування цвяха з боку загостреної частини менше або дорівнює 12d, то використовується повне характеристичне значення міцності при його висмикуванні, яке визначається за формулою (12.45). Якщо довжина анкерування

становить від 8d до 12d, то несуча здатність цвяха при висмикуванні повинна множитися на $(t_{pen}/4d-2)$, де t_{pen} – довжина анкерування цвяха з боку загостреного кінця;

- б) для інших типів цвяхів мінімальна довжина анкерування з боку загостреного кінця не повинна бути менше 6d. При довжині анкерування цвяха 6d значення несучої здатності при його висмикуванні приймається за нуль. Якщо довжина анкерування цвяха з боку загостреного кінця менше або дорівнює 8d, в розрахунках приймається повне характеристичне значення несучої здатності цвяха при висмикуванні, а якщо довжина анкерування знаходиться в інтервалі від 6d до 8d, то несуча здатність при висмикуванні повинна множитися на $(t_{pen}/2\ d-3)$;
- в) для скоб мінімальна довжина анкерування t_2 з боку загостреного кінця повинна бути менше або дорівнювати 14d, де d діаметр скоби (рисунок 12.5);
- г) для гвинтів мінімальна довжина анкерування з боку загостреного кінця різьбової частини, повинна становити 6 зовнішніх діаметрів гвинта, вимірюваних на різьбовій частині.
- 12.5.5.14Наведені в таблицях 12.1 і 12.2 вирази за визначенням значень характеристичної несучої здатності справедливі тільки якщо виключена поява розколювання або зсуву в деревині, що призводять до крихкого характеру руйнування з'єднання. Для виконання даної умови повинні бути дотримані всі вимоги щодо розміщення кріпильних елементів нагельного типу, що стосуються дотримання мінімальних відстаней від кромки і торця до осі з'єднувального елемента і кроку між осями кріпильних елементів (рисунок 12.6). Мінімальні відстані для з'єднань з використанням цвяхів, скоб, нагелів і шурупів наведені в таблицях 12.7 і 12.8.

При використанні в з'єднаннях цвяхів діаметром більше 6 мм і гвинтів з гладкою частиною (неповним різьбленням) діаметром більше 6 мм для їх установки повинно виконуватися попереднє свердління отворів згідно 10.4 ДСТУ-Н Б EN 1995-1-1.

а, б – величина кроку вздовж і впоперек волокон відповідно при рядовому і шаховому розташуванні кріпильних елементів; б, г – відстань від осі кріпильного елемента до торця елемента відповідно навантаженого і ненавантаженого; д, е – відстань від осі кріпильного елемента до кромки елемента відповідно навантаженої і ненавантаженої

Рисунок 12.6 – Розстановка з'єднувальних елементів нагельного типу

Попереднє свердління отворів також слід виконувати в щільній деревині:

- для цвяхів, що забиваються в деревину з характеристичною густиною понад 500 кг/м³;
- для всіх шурупів, які встановлюються в твердих породах деревини.

Окрім вимог, наведених в таблиці 12.7, для вузлів з цвяхами або скобами повинні дотримуватися такі додаткові вимоги:

- а) для поперечно навантажених цвяхів у деревині виконується попереднє свердління отворів, якщо:
- характеристична густина > 500 кг/м³;
- діаметр цвяха перевищує 6 мм.
- для з'єднання "деревина-деревина" на цвяхах елементи, що сполучаються, повинні попередньо свердлитися, якщо товщина дерев'яних елементів менше ніж t, яка визначається з виразу:

$$t = \max \left\{ \frac{7d}{(13d - 30)\rho_k / 400} \right\}, \tag{12.47}$$

де t – товщина дерев'яного елемента, в якому виконується попереднє свердління отворів, мм;

 ρ_{k} – характеристична густина деревини, кг/м³;

d – діаметр цвяха, мм.

Таблиця 12.7 – Мінімальні величини кроку чи відстані до торця або кромки при використанні цвяхів або скоб діаметром *d* для з'єднань "деревина-деревина" *

	Мінімальна величина кроку або відстані				
	Цвяхи			Cuafu	
Величина кроку або	3 попередньо просвердленими отворами		3 попередньо просвердленим	Скоби	
відстані і α**	$ ho_k \le 420 \ m kг/m^3$	420 κΓ/m³ <ρ _k ≤ 500 κΓ/m³	и отворами $d > 6$ мм і/або $\rho_k > 500$ кг/м ³		
Крок вздовж волокон — a_1 $0^{\circ} \le \alpha \le 360^{\circ}$	$d < 5$ MM; $(5 + 5 \cos\alpha) d$ $d \ge 5$ MM; $(5 + 7 \cos\alpha) d$	(7 + 8 cosα) <i>d</i>	(5 + 5 cosα) d	для $\theta \ge 30^\circ$; (10 + 5 cos α) d для $\theta < 30^\circ$; (15 + 5 cos α) d	
Крок впоперек волокон — a_2 $0^{\circ} \le \alpha \le 360^{\circ}$	5 <i>d</i>	7d	(4 + sinα) d	15 <i>d</i>	
Відстань до навантаженого торця $a_{3,t}$ $-90^{\circ} \le \alpha \le 90^{\circ}$	(10 + 5 cosα)	(15 + 5 cosα) d	(7 + 5 cosα) d	(15 + 5 cosα) <i>d</i>	
Відстань до ненавантаженого торця $a_{3,c}$ $-90^{\circ} \le \alpha \le 270^{\circ}$	10 <i>d</i>	15 <i>d</i>	7 <i>d</i>	15 <i>d</i>	
Відстань до навантаженої кромки $a4,t$ $0^{\circ} \le \alpha \le 180^{\circ}$	d < 5 MM; (5 + 2sin α) d d \geq 5 MM; (5 + 5sin α) d	d < 5 MM; $(7 + 2\sin\alpha) d$ $d \ge 5$ MM; $(7 + 5\sin\alpha) d$	d < 5 MM; (3 + 2sin α) d $d \ge 5$ MM; (3 + 4sin α) d	(15+5 sinα) <i>d</i>	
Відстань до ненавантаженої кромки $a_{4,c}$ $180^{\circ} \le \alpha \le 380^{\circ}$	5 <i>d</i>	7d	3 <i>d</i>	10 <i>d</i>	
* На підставі таблиць 8.2 і 8.3 в ДСТУ-Н Б EN 1995-1-1.					

 $^{^{**}\}alpha$ – кут між напрямком прикладення зусилля до цвяха і волокнами.

б) для з'єднання на цвяхах "плита-деревина" мінімальні величини кроку для всіх з'єднань на цвяхах "плита-деревина" приймати аналогічними наведеним в таблиці 12.7, помноженим на 0,85.

Мінімальні відстані до торця і кромки в елементах з клеєної деревини мають прийматися 3d на ненавантаженому торці (кромці) і $(3 + 4\sin\alpha) d$ – на навантаженому торці (кромці);

в) для з'єднання на цвяхах "сталь-деревина" мінімальні величини кроку дорівнюють наведеним в таблиці 12.7, помноженим на 0,7. Мінімальні відстані до торця і кромки залишаються незмінними.

Величина кроку і відстані до торця і кромки для з'єднань з болтами і/або нагелями наведені в таблиці 12.8.

Величина кроку і відстані до торця і кромки для з'єднань з гвинтами приймаються наступними:

- для гвинтів з гладкою частиною з діаметром більше 6 мм слід застосовувати правила як для нагелів.
- для гвинтів з гладкою частиною і діаметром ≤ 6 мм слід застосовувати правила як для болтів. Тут *d* – діаметр гладкої частини гвинта.

Таблиця 12.8 — Мінімальні величини кроку чи відстані до торця або кромки при використанні болтів і/або нагелів для з'єднань "деревина-деревина", "плита-деревина" і "сталь-деревина" *

Величина кроку або відстані	Мінімальна величина кроку або відстані		
(див. рисунок 12.4) і α^{**}	Болти	Нагелі	
Крок вздовж волокон – <i>a</i> ₁			
$0^{o} \leq \alpha \leq 360^{o}$	$(4 + \cos\alpha) d$	$(3 + 2 \cos\alpha) d$	
Крок впоперек волокон – а2			
$0^{\circ} \le \alpha \le 360^{\circ}$	4 <i>d</i>	3 <i>d</i>	
Відстань до навантаженого торця $a_{3,t}$			
$-90^{\circ} \le \alpha \le 90^{\circ}$	max (7 <i>d</i> ; 80 мм)	max (7 <i>d</i> ; 80 мм)	
Відстань до ненавантаженого торця $a_{3,c}$			
$90^{o} \leq \alpha \leq 150^{o}$	$\max[(1 + 6\sin\alpha) d; 4d]$	$\max[(a_{3,t} \sin\alpha) d; 3d]$	
$150^{\circ} \leq \alpha \leq 210^{\circ}$	4 <i>d</i>	3 <i>d</i>	
$210^{o} \leq \alpha \leq 270^{o}$	$\max[(1 + 6\sin\alpha) d; 4d]$	$\max[(a_{3,t} \sin\alpha) d; 3d]$	
Відстань до навантаженої кромки $a_{4,t}$			
$0^{\circ} \le \alpha \le 180^{\circ}$	$\max[(2 + 2\sin\alpha) d; 3d]$	$\max[(2 + 2\sin\alpha) d; 3d]$	
Відстань до ненавантаженої кромки а _{4,с}			
$180^{o} \leq \alpha \leq 380^{o}$	3 <i>d</i>	3 <i>d</i>	
* На підставі таблиць 8.4 та 8.5 ДСТУ-Н Б EN 1995-1-1.			
** α – KVT MİЖ HƏDDƏMKOM DOUKDƏJƏETLES 3V	сиппя до бопта і вопокон		

 $^{{}^{}t}$ а – кут між напрямком, прикладається зусилля до болта і волокон.

- 12.5.5.15Якщо з'єднання "сталь-деревина" розташоване біля торця дерев'яного елемента і працює на розтяг вздовж волокон, то при визначенні характеристичних значень несучої здатності слід керуватися 12.2.3 цих Норм тільки в тому випадку:
- якщо в ряду 10 або більше металевих кріпильних елементів нагельного типу $d \le 6$ мм, розташованих вздовж волокон;
- якщо в ряду 5 або більше металевих кріпильних елементів нагельного типу d > 6 мм, розташованих вздовж волокон.

12.5.5.16Якщо з'єднання схильне до дії розтягувальної сили, спрямованої під кутом до волокон (рисунок 12.7), то повинна бути виконана перевірка міцності від її складової ($F_{Ed} \sin \alpha$), яка викликає розтяг впоперек волокон, виходячи з умови:

$$F_{v,Ed} \le F_{90,Rd};$$
 (12.48)

$$F_{v,Ed} = \max \begin{cases} F_{v,Ed,1} \\ F_{v,Ed,2} \end{cases}$$
, (12.49)

де: $F_{90,Rd}$ – розрахункова несуча здатність при розколюванні деревини впоперек волокон, що визначається з виразу:

$$F_{90,Rd} = k_{\text{mod}} \frac{F_{90,Rk}}{\gamma_M},$$
 (12.50)

 $F_{v,Ed,1}$ і $F_{v,Ed,2}$ – розрахункові зусилля зсуву в кожному елементі з'єднання (рисунок 12.7).

Рисунок 12.7 – З'єднання під дією розтягу під кутом до волокон

12.5.5.17Для вузлів дерев'яних ферм, елементи яких виготовлені з м'яких (хвойних) порід деревини, характеристична несуча здатність при розколюванні елемента А чи елементів (рисунок 12.8) буде визначатись:

$$F_{90,Rk} = 14bw \sqrt{\frac{h_e}{\left(1 - (h_e/h)\right)}},$$
 (12.51)

де: w — поправочний коефіцієнт, який для металевої зубчастої пластини (МЗП) визначається $w = \max\left(\left(w_{pl}/100\right)^{0.35};1\right)$, а для всіх інших кріпильних елементів w=1;

 $F_{90.Rk}$ – характеристична несуча здатність при розколюванні, H;

 h_e – відстань від найвіддаленішого кріпильного елемента або торця металевої штампованої пластини до навантаженої кромки, мм;

h – висота елемента, мм;

b – товщина елемента, мм;

 w_{pl} — ширина металевої штампованої пластини вздовж волокон, мм.

a-3'єднання нагельного типу; б -3'єднання з металевою зубчастою пластиною (МЗП); в - розташування елементів

Рисунок 12.8 – Вузли ферм

12.5.5.18Несуча здатність з'єднання залежить від кількості кріпильних елементів у з'єднанні. Число кріпильних елементів, що розташовуються вздовж лінії, паралельної напрямку волокон (рисунок 12.9), називають рядом кріпильних елементів вздовж волокон. Наведена характеристична несуча здатність кріпильних елементів вздовж волокон *F*□,*ef*,*Rk*

наведена характеристична несуча здатність кріпильних елементів вздовж волокон *⊢*□,*еї,кк* визначається з виразу

$$F_{v,ef,Rk} = n_{ef} F_{v,Rk}, \tag{12.52}$$

де: $F_{v,ef,Rk}$ – наведена характеристична несуча здатність у поперечному напрямку в площині зсуву одного ряду кріпильних елементів, розташованих вздовж волокон;

 $n_{\rm ef}$ — розрахункова кількість кріпильних елементів у площині зсуву в ряду вздовж волокон;

 $F_{v,Rk}$ – характеристична несуча здатність в поперечному напрямку в площині зсуву кріпильних елементів одного типу.

в а, б – лінії кріпильних елементів; в – ряд з одиночних цвяхів

Рисунок 12.9 – Ряди кріпильних елементів

12.5.5.19Розрахункова кількість кріпильних елементів n_{ef} в з'єднанні залежить від типу кріпильних елементів і напрямку дії навантаження по відношенню до волокон, яка визначається:

– для з'єднань на цвяхах

а) навантажених вздовж волокон

Якщо цвяхи зміщені в ряду менш ніж на величину діаметра цвяха в напрямку впоперек волокон (рисунок 12.9 в), то вони всі є частиною ряду, а якщо вони зміщені більш ніж на величину діаметра цвяха в напрямку впоперек волокон, то це приймається за два окремих ряди. Для цвяхів у ряді, навантаженому в з'єднанні вздовж волокон:

- при використанні окремих цвяхів з однією або двома площинами зсуву

$$n_{\rm ef} = n^{k_{\rm ef}} \,; \tag{12.53}$$

– при використанні цвяхів, встановлених з двох боків (рисунок 12.4 в) таким чином, що вістря заходять один за одного

$$n_{\rm ef} = n_{\rm p}^{k_{\rm ef}} \,, \tag{12.54}$$

де: $n_{\rm ef}$ — розрахункова ефективна кількість цвяхів у ряду вздовж волокон;

n — розрахункова фактична кількість цвяхів в ряду вздовж волокон (для одиночних цвяхів);

 n_p — розрахункова фактична кількість цвяхів, що встановлюються з двох боків, у ряду вздовж волокон (зауважимо, що такий цвях внапусток складається з двох цвяхів);

 к_е – показник, що залежить від кроку цвяхів та попереднього свердління. Значення даного коефіцієнта наведені в таблиці 12.9.

Таблица 12.9 – Значення показників *kef* для виразів (12.53) і (12.54)*

Крок **	k _{ef}	
	3 попереднім свердлінням	Без попереднього свердління
$a_1 = 14d$	1,0	1,0
$a_1 = 12d$	0,925	0,925
$a_1 = 10d$	0,85	0,85
$a_1 = 9d$	0,8	0,8
$a_1 = 8d$	0,75	0,75
$a_1 = 7d$	0,7	0,7
$a_1 = 5d$	0,5	_

^{*} На основі таблиці 8.1 ДСТУ-Н Б EN 1995-1-1.

б) навантажених впоперек волокон

Якщо цвяхи навантажені впоперек волокон в однозрізному або багатозрізному з'єднаннях (рисунок 12.9 б), то розрахункова кількість цвяхів $n_{\rm ef}$ в кожному ряді буде дорівнювати фактичній кількості цвяхів n при використанні одиночних цвяхів, або кількістю цвяхів внапусток, як було визначено у виразі (12.54). При такому навантаженні з'єднання його несуча здатність буде дорівнювати меншій з величин несучої здатності розколювання елемента(-ів) під дією розтягувального зусилля і несучої здатності з'єднання, що обчислюється шляхом підсумовування несучої здатності кріпильних елементів.

с) навантажених під кутом до волокон

Якщо цвяхи в однозрізному або багатозрізному з'єднанні поперечно навантажені зусиллям, яке діє під кутом до волокон, то повинні обчислюватися складові зусилля вздовж і впоперек волокон: (1) складова розрахункового зусилля, що діє вздовж волокон, не повинна перевищувати несучої здатності, визначеної з розрахункового числа цвяхів в ряду; (2) складова розрахункового зусилля, що діє впоперек волокон, не повинна перевищувати несучої здатності.

– для з'єднань на скобах

Для з'єднань з використанням скоб *п* приймається таким, що дорівнює подвоєній кількості скоб у ряду вздовж волокон. Для розрахунків використовується вираз (12.53).

Якщо кут θ між верхньою частиною скоби і напрямком волокон деревини більше 30°, то слід користуватися виразом (12.53) без змін.

Якщо кут θ менше 30°, несуча здатність у поперечному напрямку множиться на коефіцієнт 0,7. Для кількох скоб у ряду $n_{\rm ef}$ визначається як для цвяхів: для скоби з одного боку слід використовувати (12.53) якщо з двох боків — (12.54).

– для з'єднань на болтах і нагелях

а) навантажених вздовж волокон

Оскільки болти/нагелі жорсткіші ніж цвяхи або скоби, то для з'єднань з однією або двома площинами зсуву зниження несучої здатності ряду вздовж волокон менше. Розрахункову кількість болтів/нагелів у цьому випадку слід визначати з виразу:

$$n_{ef} = \min \begin{cases} n \\ n^{0.9} \sqrt[4]{\frac{a_1}{13d}}, \end{cases}$$
 (12.55)

де: $n_{\rm ef}$ — розрахункова ефективна кількість болтів або нагелів в ряду вздовж волокон;

*a*₁ – крок болтів / нагелів вздовж волокон;

d — діаметр болта/нагеля;

^{**} Лінійна інтерполяція величини $k_{\rm ef}$ допускається для кроку між зазначеними значеннями; крок a_1 – як показано на рисунку 12.9 в.

п – розрахункова фактична кількість болтів або нагелів у ряду вздовж волокон.

б) навантажених впоперек волокон

При навантаженні впоперек волокон у з'єднаннях з однією або двома площинами зрізу зниження несучої здатності не спостерігається, отже:

$$n_{\rm ef} = n, \tag{12.56}$$

с) навантажених під кутом до волокон

Несуча здатність вздовж волокон або впоперек волокон повинна визначатися таким же чином, як для цвяхів у відповідності з вимогами 12.5.5.16 — 12.5.5.18 цих Норм. Для кутів 0° < α < 90° $n_{\rm ef}$ може визначатися лінійною інтерполяцією.

– для з'єднань на гвинтах

Якщо діаметр гладкої частини гвинта дорівнює 6 мм або менше, то при визначенні $n_{\rm ef}$ слід застосовувати правила, як для цвяхів, а якщо більше 6 мм — правила, як для болтів.

12.5.5.20 Якщо з'єднання схильне до дії короткочасних знакозмінних зусиль, то характеристична несуча здатність не буде змінюватися.

Якщо з'єднання схильне до дії знакозмінних зусиль, викликаних дією довготривалих навантажень і навантажень середньої тривалості, то характеристична несуча здатність з'єднання буде знижуватися. У цьому випадку, якщо розрахункове зусилля в з'єднанні змінює знак від розтягу на стиск, то з'єднання повинно розраховуватися на наступні зусилля:

$$N_{t,Ed} = (F_{t,Ed} + 0.5F_{c,Ed}),$$
 (12.57)

$$N_{c,Ed} = (F_{c,Ed} + 0.5F_{t,Ed}),$$
 (12.58)

де: $F_{t,Ed}$ — розтягувальне зусилля;

 $F_{c,Ed}$ — стискальне зусилля;

 $N_{t,Ed}$ — розрахункове розтягувальне зусилля;

 $N_{c,Fd}$ — розрахункове стискальне зусилля.

У формулах (12.57) та (12.58) значення зусиль слід приймати за модулем без врахування знака.

- **12.5.5.21**Розрахункове значення несучої здатності поперечно навантаженого з'єднання з металевими нагелями визначається в припущенні, що в з'єднанні розрахункова несуча здатність при зсуві кріпильних елементів буде завжди перевищувати розрахункову несучу здатність, яка визначається з виразів несучої здатності деревини / плити для відповідних типів кріпильних елементів.
- **12.5.5.22**Розрахункове значення несучої здатності поперечно навантаженого з'єднання з металевими нагелями під дією зусиль вздовж волокон визначається з виразу:

$$F_{v,Rd} = \frac{k_{\text{mod}}F_{v,Rk}}{\gamma_M},\tag{12.59}$$

де: $k_{\rm mod}$ — поправочний коефіцієнт, що приймається з таблиці А.1. Якщо з'єднання включає два дерев'яних елемента, то значення $k_{\rm mod,1}$ і $k_{\rm mod,2}$ повинні визначатися як $k_{\rm mod} = \sqrt{k_{\rm mod,1}\,k_{\rm mod,2}}$;

 γ_M — коефіцієнт надійності за матеріалом для з'єднань, що приймається за таблицею 6.1 цих Норм;

F_{v,Rk} – характеристична несуча здатність кріпильного елемента в площині зсуву при поперечному навантаженні, тобто найменше значення, отримане з відповідних виразів, наведених в таблицях 12.1 і 12.2.

Для з'єднання, що складається з кількох r_{pl} рядів поперечно навантажених кріпильних елементів, розташованих вздовж волокон, кожен з яких включає n кріпильних елементів однакового розміру з однаковими відстанями при розрахунковій міцності кожного елемента в

площині зсуву $F_{v,Rd}$, розрахункова несуча здатність з'єднання вздовж волокон $F_{v,Rd}$ буде дорівнювати:

$$F_{v,ef,Rd} = n_{sp} r_{pl} n_{ef} F_{v,Rd},$$
 (12.60)

де: $n_{\rm ef}$ — розрахункова ефективна кількість кріпильних елементів у ряду з'єднання вздовж волокон;

 n_{sp} — кількість площин зсуву в з'єднанні.

 r_{pl} — кількість рядів поперечно навантажених кріплень.

- **12.5.5.23**Розрахункове значення несучої здатності поперечно навантаженого з'єднання з металевими нагелями під дією зусиль впоперек волокон має визначатися з двох умов міцності:
- міцності деревини в результаті розколювання при розтягу впоперек волокон (дана умова описана в 12.5.5.16 цих Норм);
- текучості кріпильного елемента. Для цієї умови при кількості рядів кріпильних елементів r_{pr} , якщо кожен ряд включає n кріпильних елементів однакового розміру, то

$$F_{v.ef.Rd} = n_{sp} r_{pr} n F_{v.Rd}$$
, (12.61)

де: $F_{v,ef,Rd}$ – прийнята розрахункова несуча здатність кріпильного елемента в площині зсуву при його поперечному навантаженні та дії зусиль впоперек волокон;

 n_{sp} — кількість площин зсуву в з'єднанні;

n — розрахункова фактична кількість кріпильних елементів у кожному ряду кріпильних елементів впоперек волокон. Якщо використовуються цвяхи внапусток, то n буде дорівнювати числу цвяхів внапусток;

 $F_{v,Rd}$ – розрахункова несуча здатність поперечно навантаженого одного кріпильного елемента в площині зсуву під дією зусиль впоперек волокон.

Для цвяхів і скоб $d \le 8$ мм, а також для шурупів з гладкою частиною $d \le 6$ мм несуча здатність буде такою ж, як для кріпильного елемента під дією зусиль вздовж волокон. Для болтів і нагелів, а також для гвинтів d > 6 мм і цвяхів d > 8 мм в з'єднаннях з використанням LVL несуча здатність, що визначається з виразів таблиць 12.1 і 12.2, повинна визначатись з урахуванням 6.2, де характеристична міцність при вдавлюванні деревини або LVL у з'єднанні дорівнює:

$$f_{h,90,k} = \frac{f_{h,0,k}}{k_{90}} \,, \tag{12.62}$$

Для даного випадку розрахункова несуча здатність з'єднання $F_{v,ef,Rd}$, навантаженого впоперек волокон, буде визначатись:

$$F_{v,ef,Rd} = \min \begin{cases} F_{90,Rd} \\ F_{v,ef,Rd} \end{cases}, \tag{12.63}$$

де: $F_{90,Rd}$ – розрахункова несуча здатність, що визначається з виразу (12.1).

12.5.5.24При розрахунку дерев'яних конструкцій за граничними станами несучої здатності та експлуатаційної придатності зі з'єднаннями нагельного типу повинні враховуватися піддатливість з'єднань, які впливають на розподіл зусиль між елементами конструкції. Зміщення у з'єднаннях вузлів конструкції повинні враховуватися при будь-якому розрахунку переміщень конструкції. Величинами, що дозволяють враховувати модуль жорсткості таких з'єднань, при розрахунку дерев'яних конструкцій за граничними станами експлуатаційної придатності є значення модуля ковзання K_{ser} , а при розрахунку за граничним станами експлуатаційної придатності — Ku. Вирази з визначення K_{ser} наведені в таблиці 12.10.

Таблиця 12.10 – Значення K_{ser} , Н/мм, для кріпильних елементів у з'єднаннях "деревинадеревина" і "деревина-плита на основі деревини"

** 1	• • •						
Тип використовуваного кріпильного елемента	Модуль ковзання по SLS, $K_{ m ser}$						
Цвяхи: – без попереднього свердління;	$\rho_m^{1,5} d^{0,8}/30$						
– з попереднім свердлінням	$\rho_m^{1,5} d/23$						
Скоби	$\rho_m^{1,5} d^{0,8}/80$						
Шурупи	$\rho_m^{1,5} d/23$						
Болти з зазорами і без зазорів*	$\rho_m^{1,5} d/23$						
Нагелі	$\rho_m^{1,5} d/23$						
* Допуски на зазори для болта повинні бути додан	* Допуски на зазори для болта повинні бути додані до зміщення з'єднання.						

12.5.5.25 Значення K_{ser} залежить від діаметра кріпильного елемента d, мм, і середньої густини ρ_m , кг/м³, матеріалу з'єднання. Якщо з'єднання складається з елементів з різною густиною ρ_{m1} і ρ_{m2} , то ρ_m , яке повинно використовуватися у виразах таблиці 12.10, буде визначатись наступним чином:

$$\rho_m = \sqrt{\rho_{m1} \rho_{m2}} . \tag{12.64}$$

12.5.5.26Загальна величина миттєвого зміщення у з'єднанні u_{inst} , що складається з двох елементів, дорівнює сумі зміщень u_{inst} в елементі 1 і u_{inst} в елементі 2 (рисунок 12.10).

$$U_{inst} = U_{inst1} + U_{inst2} . ag{12.65}$$

Якщо елементи мають однакові характеристики, то

$$u_{inst} = u_{inst1} + u_{inst2} = 2_{uinst2}$$
 (12.66)

Якщо один з елементів виготовлений із сталі, то зсув в сталевому елементі дорівнює нулю, а в елементі 2 становить u_{ins2} . Тоді загальна величина зсуву в з'єднанні дорівнює:

$$u_{inst} = 0 + u_{inst2} = u_{inst2}$$
 (12.67)

Для з'єднань "сталь-деревина" миттєве зміщення буде становити половину значення в з'єднанні "деревина — деревина". Тому їх жорсткість буде теоретично дорівнювати подвійному значенню модуля ковзання з'єднання "деревина — деревина", тобто $2 \cdot K_{\text{ser}}$. Це є наближенням до реальної поведінки з'єднання, оскільки не враховується зазор між кріпильним і сталевим елементами. Обертання кріпильного елемента в сталевому елементі і текучість сталевого елемента не враховуються, що призводить до завищення жорсткості. Модуль для розрахунків значення K_u і "бетон-деревина" може прийматися $2 \cdot K_{\text{ser}}$; якщо розраховується конструкція, чутлива до відхилів, рекомендується використовувати менші значення.

а – навантажене з'єднання "деревина-деревина"; б – навантажене з'єднання "сталь-деревина"

Рисунок 12.10 – Миттєві зміщення в з'єднанні

12.5.5.27При визначенні несучої здатності з'єднання з декількома металевими кріпильними елементами нагельного типу у виразі несучої здатності вузла використовується фактичне число кріпильних елементів n з'єднання, а при обчисленні несучої здатності вздовж волокон має використовуватися розрахункова кількість кріпильних елементів n_{ef} . Незалежно від кута навантаження по відношенню до волокон для з'єднань з однією або двома площинами зсуву рекомендується завжди використовувати фактичну кількість кріпильних елементів n.

Значення модуля ковзання з'єднань, що містять n кріпильних елементів у площині зсуву ($K_{ser.sc}$ – для однозрізних, $K_{ser.dc}$ – для багатозрізних з'єднань) визначаються:

а) для з'єднання, що складається з n кріпильних елементів з однією площиною зсуву (рисунок 12.11 а);

$$K_{\text{ser,sc}} = nK_{\text{ser}}$$
, (12.68)

б) для з'єднання, що складається з n кріпильних елементів і двома площинами зсуву (рисунок 12.11 б);

$$K_{\text{ser,dc}} = 2nK_{\text{ser}}, \qquad (12.69)$$

в) для вузла з двома з'єднанями з однією площиною зсуву (рисунок 12.11 в);

$$K_{\text{ser,sc}} = 1/(1/K_{\text{ser,sc1}} + 1/K_{\text{ser,sc2}}),$$
 (12.70)

г) для вузла з двома з'єднаннями і двома площинами зсуву (рисунок 12.11 г);

$$K_{\text{ser.dc}} = 1/(1/K_{\text{ser.dc1}} + 1/K_{\text{ser.dc2}}),$$
 (12.71)

де: K_{ser} — модуль ковзання з'єднання для однієї площини зсуву;

K_{ser,sc} − модуль ковзання з'єднання для однієї площини зсуву;

 $K_{\text{ser,dc}}$ – модуль ковзання з'єднання для двох площин зсуву;

 $K_{\text{ser.sc1}}$ – модуль ковзання з'єднання 1 для однієї площини зсуву у вузлі дорівнює n_1 $K_{\text{ser.}}$

 $K_{\text{ser,sc2}}$ – модуль ковзання з'єднання 2 для однієї площини зсуву у вузлі дорівнює n_2 $K_{\text{ser,sc2}}$

 $K_{\text{ser,dc1}}$ — модуль ковзання з'єднання 1 для двох площин зсуву у вузлі дорівнює $2n_1$ K_{ser} ;

 $K_{\text{ser,dc1}}$ – модуль ковзання з'єднання 2 для двох площин зсуву у вузлі, дорівнює 2 n_2 K_{ser} .

а — з'єднання з однією площиною зсуву; б — з'єднання з двома площинами зсуву; в — вузол з двома з'єднаннями з однією площиною зсуву; r — вузол з двома з'єднаннями з двома площинами зсуву

Рисунок 12.11 – Схеми з'єднань і вузлів з однією і двома площинами зсуву

12.5.5.28Для з'єднань з одним кріпильним елементом і однією площиною зсуву величина зсуву визначається з виразу:

$$u_{inst} = \frac{F}{K_{ser}} + c , \qquad (12.72)$$

де: F — навантаження, що діє на з'єднання за першим граничним станом;

*K*_{ser} − модуль ковзання кріпильного елемента в площині зсуву в експлуатаційних умовах;

с – зазор (допуск), який приймається для болтів 1 мм.

12.5.5.29Якщо конструкція знаходиться під дією характеристичного постійного навантаження G_k , домінуючого характеристичного навантаження $Q_{k,1}$ і супутніх незалежних характеристичних змінних навантажень $Q_{k,i}$, то розрахункове навантаження F_d , діюче на з'єднання, за граничними станами SLS визначатиметься з розрахунку конструкції під дією комбінації характеристичного навантаження, тобто:

$$F_d = G_k + Q_{k,1} + \sum_{i=2}^n \psi_{0,i} Q_{k,i}, \qquad (12.73)$$

де: $\psi_{0,i}$ — коефіцієнт поєднання в комбінації під дією змінного навантаження $Q_{k,i}$.

Для визначення кінцевої деформації з'єднання в даному методі розрахунку повинні враховуватися залежності характеристик матеріалів від часу як самих елементів з'єднань, так і елементів конструкції.

12.5.5.30 Для конструкцій, які включають елементи, компоненти і з'єднання з однаковою поведінкою при повзучості, кінцева деформація визначається застосуванням комбінованої характеристичної і квазіпостійної комбінації впливів на конструкцію. У даному випадку розрахункове навантаження на з'єднання з характеристичної комбінації F_{cd} , визначатиметься з розрахунку конструкції під дією комбінованої характеристичної і квазіпостійної комбінацій, тобто:

$$F_{cd} = G_k \left(1 + k_{def} \right) + G_{k,1} \left(1 + \psi_{2,1} k_{def} \right) + G_{k,i} \left(\psi_{0,i} + \psi_{2,i} k_{def} \right), \tag{12.74}$$

де: $\psi_{2,i}$ — коефіцієнт поєднання для квазіпостійного впливу і квазіпостійної комбінації;

к_{def} – коефіцієнт деформації для деревини і матеріалів на її основі для практично постійних впливів, який визначається з таблиці А.2;

 G_k , $Q_{k,1}$, $Q_{k,i}$ – були визначені вище.

12.5.5.31 У цьому випадку кінцева деформація u_{fin} за граничними станами експлуатаційної придатності з'єднання з однією площиною зсуву в конструкції, які включає елементи, компоненти і з'єднання, що мають однакові характеристики повзучості, буде становити:

$$u_{inst} = \frac{F_{cd}}{K_{ser}} + c. ag{12.75}$$

Вираз (12.75) застосовується для статично визначених конструкцій (наприклад, ферм з шарнірними вузлами) і якщо з'єднання мають не співпадаючі з елементами характеристики повзучості.

12.5.5.32 При розрахунку конструкцій з використанням програмних комплексів поведінка при зсуві в з'єднаннях може бути врахована введенням лінійно пружного пружинного елемента в кожному зміненому з'єднанні з осьовою жорсткістю, що дорівнює поперечній жорсткості з'єднання. Також можуть бути змодельовані пружинні елементи з крутильною жорсткістю, що імітує напівжорстку поведінку при крученні.

13 ПРОЕКТУВАННЯ ДЕРЕВ'ЯНИХ КОНСТРУКЦІЙ

13.13агальні положення з проектування дерев'яних конструкцій

- **13.1.1** При проектуванні дерев'яних конструкцій необхідно враховувати: клас умов експлуатації, клас вогнестійкості конструкцій та групи поширення вогню по них, а також можливості матеріальної та виробничої бази, яка забезпечує виготовлення конструкцій.
 - 13.1.2 Для всіх видів будівель рекомендується приймати:
- крок дерев'яних кроквяних балок і ферм, рам і арок 3 м та 6 м;
- панелі та плити огороджувальних конструкцій шириною 1,2 м та 1,5 м, довжиною 3 м та 6 м.
- 13.1.3 Вибір конструктивної схеми й загальне компонування будівлі повинні забезпечувати необхідну надійність конструкції протягом проектного строку експлуатації. Особливу увагу слід приділяти забезпеченню простого й належного відведення води з покриття, віддаючи перевагу безліхтарним розв'язкам покриттів із зовнішнім водовідводом, без перепадів висот парапетів і надбудов, що сприяють утворенню снігових заносів, протікань і зон враження гниллю. Покриття з дерев'яними конструкціями повинні бути обов'язково вентильованими, доступними для огляду і виконання ремонтно-профілактичних робіт; не повинні утворюватися містки холоду, особливо в карнизних і гребеневих вузлах, у швах і сполученнях несучих й огороджувальних конструкцій.
- **13.1.4** Необхідна тісна ув'язка будівельної і технологічної частин проекту з метою виключення можливості перегрівання й зволоження конструкцій, а також не передбаченого проектом вібраційного й динамічного впливу на них. До конструкцій не повинні підвішуватися або розташовуватися поблизу них неізольовані гарячі трубопроводи, калорифери повітряного опалення.
- **13.1.5** При проектуванні дерев'яних конструкцій слід приділяти особливу увагу: умовам експлуатації за характеристиками температурно-вологісних впливів, за природною довговічністю відповідно до вимог ДСТУ EN 350-2 для конкретного класу експлуатації, установленого в ДСТУ EN 335-1, ДСТУ EN 335-2 і ДСТУ EN 335-3, за антикорозійною стійкістю. Слід уникати

застосування дерев'яних клеєних конструкцій у будинках, за умовами експлуатації яких рівноважна вологість деревини виявляється нижче заданої при виготовленні.

- **13.1.6** При проектуванні конструкцій і особливо їх вузлових з'єднань слід передбачати перевірку на транспортні й монтажні навантаження. У робочій документації вказувати місця і способи стропування, а за необхідності місцеві посилення під час перевезення, кантування та підйому елемента конструкції.
- **13.1.7** Способи транспортування, складування, укрупненого складання і монтажу, що впливають на конструктивне рішення, захисту дерев'яних конструкцій від корозії й вогню повинні бути заздалегідь визначені та представлені в проекті виконання робіт.
- **13.1.8** Велику увагу при проектуванні слід приділяти просторовій жорсткості та стійкості конструкцій, що забезпечується постановкою відповідних зв'язків жорсткості.
- **13.1.9** При проектуванні дерев'яних конструкцій повинні бути передбачені конструкційні заходи для:
- попередження безпосереднього зволоження деревини конструкцій атмосферними опадами, ґрунтовими і талими водами, експлуатаційними і виробничими водами;
- попередження промерзання, капілярного і конденсаційного зволоження деревини конструкцій;
- систематичної просушки деревини конструкцій шляхом створення осушувального температурно-вологісного режиму (природна і примусова вентиляція приміщення, влаштування у конструкціях та частинах будинків осушувальних продухів, аераторів).
- **13.1.10** Несучі дерев'яні конструкції (ферми, арки, балки тощо) повинні бути відкритими, добре провітрюваними, за можливості доступними для огляду, а також для проведення профілактичного ремонту, що включає роботи з хімічного захисту елементів конструкцій.
- **13.1.11** В опалюваних будинках і спорудах несучі конструкції слід розташовувати так, щоб вони цілком перебували або в межах опалюваного приміщення, або поза ним.

Допускається за відповідного обґрунтування розташовувати несучі дерев'яні клеєні конструкції (балки, рами, арки) частково у середині опалюваного приміщення, а частково зовні. При цьому конструкції повинні мати прямокутний суцільний поперечний переріз і посилений захист у місцях перетинань огороджувальних конструкцій (стін, перекриттів, покриттів) від зволоження і біоруйнування.

13.1.12 Не допускається закладення поясів, опорних і проміжних вузлів, кінців елементів решітки ферм у товщу стін, сполучених покриттів або горищних перекриттів.

Опорні частини несучих конструкцій (ферм, арок, балок) при розміщенні їх у гніздах кам'яних стін повинні бути відкриті. Не дозволяється зашпаровувати наглухо зазори між стінками гнізд і опорними частинами конструкцій цеглою, розчином, герметизуючими матеріалами тощо.

У зовнішніх кам'яних стінах опалюваних будинків і споруд, а також у внутрішніх стінах, що розділяють опалювані приміщення будівлі, стінки гнізд слід утеплювати відповідно до теплотехнічного розрахунку, щоб уникнути їх промерзання.

- **13.1.13** Для несучих конструкцій, що мають на опорах металеві опорні частини (ферми, арки тощо), опирання на зовнішні кам'яні стіни опалюваних будинків і споруд із заглиблинням гнізд не допускається через небезпеку випадання конденсату на метал. Такі конструкції слід опирати на залізобетонні опори (колони), пілястри стін і інші опори, що виступають у середину приміщення.
- **13.1.14** У місцях опирання несучих конструкцій на фундамент, кам'яні стіни, пілястри, залізобетонні колони між деревиною конструкцій і більш теплопровідним матеріалом опори слід розташовувати гідроізоляційні прокладки.

Якщо опорна частина несучих конструкцій встановлюється на дерев'яні підкладки (подушки), останні також слід відокремлювати від більш теплопровідного матеріалу опори гідроізоляційними прокладками. Підкладки (подушки) повинні виготовлятися з деревини твердих листяних порід і консервуватися незмивною або важкозмивною біозахисною сумішшю.

- 13.1.15 При експлуатації конструкцій в умовах, де можливе випадання конденсату на металевих поверхнях, слід вживати заходів щодо запобігання зволоженню деревини в місцях контакту з металевими кріпильними елементами (накладки, куточки, шайби під болти тощо). Для цього між деревиною і металевим елементом слід розташовувати гідроізоляційний шар (мастику, прокладки з рулонних гідроізоляційних матеріалів, еластичні прокладки або ущільнювальні стрічки).
- **13.1.16** При розташуванні дерев'яних рам, арок і стояків (колон) у середині приміщень обріз опори слід влаштовувати на такій висоті від рівня підлоги, щоб у процесі експлуатації виключалася можливість зволоження опорного вузла.

Якщо опорна частина несучої конструкції перебуває на відкритому повітрі, обріз фундаменту повинен бути влаштований так, щоб забезпечувався швидке відведення води, що попадає на нього у вигляді атмосферних опадів, і виключалося затоплення опорного вузла дощовими та талими водами.

- **13.1.17** У будинках і спорудах другого класу експлуатації, а також з агресивним середовищем несучі дерев'яні конструкції повинні мати суцільний переріз і мінімальне число металевих елементів.
- **13.1.18** Несучі конструкції, що експлуатуються на відкритому повітрі, повинні мати суцільний масивний поперечний переріз і виготовлятися з брусів, круглого лісу або із клеєної деревини. Конструкції із брусів або круглого лісу слід проектувати з зазорами між елементами поза зонами з'єднань, які сприяють більш швидкому висиханню деревини в процесі експлуатації.

У відкритих спорудах необхідно максимально використовувати засоби, що захищають дерев'яні елементи конструкцій від прямого потрапляння на них атмосферної вологи.

- **13.1.19** Для захисту від атмосферних опадів відкриті горизонтальні та похилі грані відповідальних несучих конструкцій слід захищати дошками, консервованими біозахисною сумішшю, козирками з атмосфероі корозійностійкого матеріалу.
- **13.1.20** Опорні частини та вузлові з'єднання несучих конструкцій, що експлуатуються на відкритому повітрі або в будинках з підвищеною вологістю, слід проектувати таким чином, щоб кінці елементів були, за можливості, добре провітрюваними і мали мінімальну площу контакту з металом. Слід уникати використання глухих металевих опорних частин при опиранні несучих конструкцій на фундамент, у гребеневих вузлах арок, рам тощо.
- **13.1.21** Дерев'яні покриття слід проектувати, як правило, з зовнішнім відведенням води. Влаштування розжолобків у сполучених покриттях не допускається.
- **13.1.22** В огороджувальних конструкціях опалюваних будинків і споруд повинне бути виключене вологонакопичення в процесі експлуатації. У панелях стін і плитах покриттів слід передбачати вентиляційні продухи, пов'язані із зовнішнім повітрям, а у випадках, передбачених теплотехнічним розрахунком, використовувати пароізоляційний шар.
- **13.1.23** Пароізоляцію огороджувальних конструкцій слід передбачати з рулонних і плівкових матеріалів, фарбувальну або обмазувальну.

Рулонна та плівкова пароізоляція повинні застосовуватися в огороджувальних конструкціях, у яких обшивки з'єднані з каркасом на піддатливих з'єднаннях (цвяхи, шурупи, дужки). При цьому пароізоляційний шар повинен бути суцільним і безперервним (рулонні полотнища склеюють, плівки зварюють або склеюють) і укладатися між каркасом і обшивкою.

Фарбувальна (обмазувальна) пароізоляція повинна застосовуватися в огороджувальних конструкціях із з'єднанням обшивок на клеї. Наноситься така пароізоляція на внутрішні поверхні обшивки. Фарбувальну пароізоляцію, якщо вона виконує функцію вологозахисного покриття, допускається розміщувати й на зовнішній поверхні обшивки.

13.1.24 Вентилювання плит покриття під рулонну покрівлю повинне здійснюватися через продухи, що спеціально влаштовуються між зовнішньою обшивкою й утеплювачем.

У плитах покриття під покрівлю із хвилястих листів, профільованого металевого настилу такі продухи не влаштовують. Карнизний вузол повинен проектуватися так, щоб зовнішнє повітря мало вільний доступ під покрівельні листи. Не допускається закривати підпокрівельний простір ззовні від задування снігу за допомогою гребінок без залишення продухів для вентиляції.

13.1.25 Стінові панелі з каркасом із деревини, фанери або деревинно-плитних матеріалів повинні встановлюватися на фундамент або цокольну панель так, щоб зовнішнє повітря могло вільно надходити до них знизу через вентиляційні продухи і виходити у карнизі. Не допускається встановлення панелі на фундамент (цокольну стінову панель) без прокладання гідроізоляційного шару, герметизації і утеплення швів між ними.

Не допускається використовувати для зовнішньої обшивки стінової панелі опалюваних будівель паронепроникні матеріали за відсутності вентиляційного продуху між обшивкою і заповненням.

- **13.1.26** 3 метою запобігання намоканню зовнішніх стін відстань від вимощення до низу панелей повинне бути не менше 40 см, а виліт карниза (звис покрівлі) при неорганізованому водовідведенні не менше 50 см.
- **13.1.27** При невідповідності елемента конструкції, що проектується, вимогам щодо вогнестійкості та пожежно-технічних характеристик деревини, для приведення у відповідність із даними вимогами мають бути застосовані проектні рішення з використанням вогнезахисних систем на основі вогнезахисних просочень, вогнезахисних облицювань та штукатурок.

13.2 Проектування балок

- **13.2.1** Дерев'яні балки є безрозпірними плоскими конструкціями, які можуть виготовлятися як із цільної, так і клеєної деревини та LVL. Балки з клеєної деревини можуть бути клеєдощатими масивними, які складаються із пакетів дощок, склеєних між собою в основному по пласті; клеєфанерними тонкостінними, що складаються із дощатих поясів і приклеєних до них стінок з фанери; клеєними тонкостінними, які складаються із дощатих поясів і приклеєних до них стінок з LVL або OSB.
- 13.2.2 По геометричному обрису балки поділяються на прямолінійні та криволінійні (повністю виготовлені з тонких дощок гнутоклеєні) або із криволінійними ділянками. Прямолінійні та гнутоклеєні балки можуть бути постійної або змінної висоти односхилі й двосхилі. Поперечний переріз клеєних балок може бути прямокутним і рідше двотавровим, а клеєфанерних і клеєних тонкостінних балок двотавровим, коробчастим і двотавровокоробчастим.
- **13.2.3** Балки слід розраховувати за граничними станами несучої здатності й граничним станом експлуатаційної придатності відповідно до вимог цих Норм.
- **13.2.4** Підрізування, скоси й вирізи в балках допускаються в тому випадку, якщо вони задовольняють вимоги цих Норм.
- **13.2.5** Складеним балкам на піддатливих зв'язках необхідно надавати будівельний підйом шляхом згинання елементів до постановки зв'язків. Величину будівельного підйому слід приймати збільшену у півтора рази в порівнянні із прогином складеної балки під дією розрахункового навантаження.
- 13.2.6 Клеєним балкам з шарнірним опиранням і прямолінійною нижньою гранню слід надавати будівельний підйом, що дорівнює 1/200 прольоту. У клеєних зігнутих елементах та стиснутозігнутих елементах допускається суміщати деревину двох класів міцності, використовуючи в крайніх зонах на 1/6 висоти поперечного перерізу більш високий клас міцності деревини, а в середній частині деревину більш низького класу міцності (рисунок 13.1). Поперечний переріз клеєних балок може бути сформований як з горизонтальним розташуванням клейових швів, так і вертикальним (рисунок 13.1).

а – поперечний переріз із горизонтальним і вертикальним розташуванням клейових швів; б – розподіл деревини за класами міцності в поперечному перерізі балки; 1 – клейові шви

Рисунок 13.1 – Загальний вид поперечного перерізу клеєної дерев'яної балки

13.2.7 Пояси клеєних балок із плоскою фанерною стінкою слід виконувати з вертикально складених шарів (дощок). У поясах балок коробчастого перерізу допускається застосовувати горизонтальне розташування шарів. Якщо висота перерізу поясів перевищує 100 мм, у них слід передбачати горизонтальні пропили у тих площинах, де відбувається вклеювання фанерних стінок.

Для стінок балок повинні застосовуватися фанера, LVL або OSB товщиною не менше 8 мм.

У клеєфанерних балках фанеру стінок доцільно розташовувати так, щоб волокна її зовнішніх шпонів були спрямовані уздовж осі балки. При такому розташуванні волокон зовнішніх шпон з'єднання фанерних листів здійснюється "на вус". При поперечному розташуванні зовнішніх шпон з'єднання листів виконується з використанням накладок на клеї.

Клеєфанерні балки із плоскою стінкою рекомендується використовувати для прольотів до 18 м. Висота поперечного перерізу таких балок приймається від 1/5 до 1/12 прольоту.

Розрахунок клеєфанерних балок за граничними станами несучої здатності повинен виконуватися відповідно до 11.3 цих Норм.

- **13.2.8** Виготовлення клеєних балок повинне повністю відповідати вимогам [12], а використані розрахункові передумови повинні базуватися на властивостях, що залежать від того, яка деревина (однорідна або комбінована) використовується в балці. Використана для виготовлення клеєних балок деревина повинна відповідати вимогам ДСТУ EN 338.
- **13.2.9** Для клеєних балок з однорідної клеєної деревини механічні властивості визначають із еквівалентних властивостей деревини шарів хвойної породи. Характеристичне значення міцності на згин $f_{m,g,k}$, наведене в таблицях Б.3, Б.4 додатка Б, відноситься до елементів з мінімальною висотою поперечного перерізу балки 600 мм і товщиною 150 мм. Це відноситься і до значень характерної міцності при розтягу вздовж волокон $f_{t,0,g,k}$. Тому для балок з меншим поперечним перерізом при визначенні характерних значень клеєної деревини повинен враховуватися коефіцієнт k_h .
- **13.2.10** Розрахункові значення міцності деревини для клеєних дерев'яних балок визначають у такий же спосіб, як і для зігнутих елементів з цільної деревини, тобто за формулою:

$$f_{m,d} = \frac{k_{\text{mod}} \cdot k_h \cdot k_{\text{sys}} \cdot f_{m,g,k}}{\gamma_M},$$
(13.1)

де: k_{mod} , k_h , k_{svs} , $f_{m.a.k}$ і γ_M — були визначені вище.

Проектування рам

13.2.11 Рами відносяться до плоских розпірних конструкцій. При проектуванні переважно слід використовувати клеєні дерев'яні рами суцільного перерізу. Наскрізні (решітчасті) рами проектують в основному із цільної деревини. За формоутворенням рами поділяються на: двошарнірні рами стояково-балкової системи та тришарнірні рами.

Двошарнірні рами слід проектувати із жорсткими вузлами приєднання стояків до фундаментів. У двошарнірних рамах стояково-балкової системи ригелями можуть бути будь-які безрозпірні конструкції.

У тришарнірних рамах з'єднання напівригеля зі стояком виконується жорстким.

- **13.2.12** Клеєні рами залежно від використовуваних матеріалів і формоутворення поділяються на: рами із прямолінійних елементів, виготовлених із клеєної масивної деревини; рами з багатошарової клеєної деревини із криволінійними ділянками та клеєфанерні рами.
- **13.2.13** Рами слід проектувати переважно зі змінною висотою h і постійною шириною b поперечних перерізів. Для більшості типів рам можуть бути рекомендовані наступні конструктивні розміри: висота поперечних перерізів у зоні карнизних вузлів $h_1 = (1/20 1/30)I$, у гребеневих вузлах $h_2 = (0.2 0.3)\ h_1$, а в опорних вузлах стояків $h_3 = 0.4h_1$. Відношення максимальної висоти до ширини поперечного перерізу в рамах може прийматися $h_1/b = 4 8$. Дані конструктивні рекомендації відносяться до рам масового застосування. Для великопрогонних та унікальних за формою рам вимоги встановлюються в залежності від конкретних завдань проектування.
- **13.2.14** В елементах клеєних рам в поперечних перерізах допускається поєднувати деревину двох класів міцності, використовуючи в крайніх зонах на 1/6 висоти поперечного перерізу більш високий клас міцності деревини, а в середній частині деревину більш низького класу міцності.
 - 13.2.15 Статичні розрахунки рам виконуються відповідно до вимог 8.4.2 та 8.4.4 цих Норм.
- **13.2.16** Рами повинні розраховуватися за граничними станами несучої здатності й експлуатаційної придатності відповідно до вимог цих Норм.
- **13.2.17** Криволінійні ділянки гнуто-клеєних рам з масивної деревини або LVL повинні розраховуватися з урахуванням вимог цих Норм.

13.3 Проектування арок

13.3.1 Арки, як і рами, відносяться до плоских розпірних конструкцій. Залежно від статичної схеми арки бувають двоі тришарнірні; залежно від матеріалу – клеєдощаті, клеєфанерні, дощаті й із пиломатеріалів на механічних зв'язках; залежно від типу перерізів – прямокутної із шаруватої клеєної деревини, двотаврового клеєфанерного, коробчастого, коробчасто-двотаврового, постійного і змінного поперечного перерізу (рисунок 13.2); залежно від обрису – з елементів прямолінійного, ламаного обрисів і криволінійних елементів постійного й змінного радіуса кривизни; залежно від зовнішнього вигляду – суцільні й решітчасті; залежно від типу з'єднань – на клеях, нагелях, кільцевих і зубчасто-кільцевих шпонках, цвяхах.

а — прямокутний; б — двотавровий; в — клеєфанерний двотавровий; г — клеєфанерний коробчастий; д — клеєфанерний двотаврово-коробчастий; е, ж — перерізи гратчастих арок

Рисунок 13.2 – Поперечні перерізи поясів арок

13.3.2 Стрілу підйому пологих арок приймають як 1/5 – 1/7 від прольоту. У загальному випадку

відношення стріли підйому до прольоту повинне прийматися залежно від функціонального призначення будівлі або покриття, що проектується. Переріз клеєдощатих арок невеликого прольоту (до $18\,$ м) рекомендується проектувати таким, щоб відношення висоти поперечного перерізу до ширини не перевищувало 5. При більшому відношенні h/b необхідно виконувати розрахунки на стійкість при вигині й передбачати конструктивні заходи з забезпечення стійкості поперечного перерізу.

- **13.3.3** У поперечних перерізах арок із клеєної деревини допускається поєднувати деревину двох класів міцності, використовуючи в крайніх зонах на 1/6 висоти поперечного перерізу більш високий клас міцності деревини, а в середній частині деревину більш низького класу міцності.
- **13.3.4** У криволінійних елементах арок, виготовлених із клеєної шаруватої деревини, товщина дощок не повинна перевищувати 33 мм 36 мм і бути не більш r/250, де r радіус кривизни.
- **13.3.5** При конструюванні клеєфанерних арок необхідно дотримуватися всіх вимог склеювання фанерної стінки з поясами, як для клеєфанерних балок.
 - 13.3.6 Крок арок в залежності від прольоту рекомендується приймати від 3 м до 6 м.
 - 13.3.7 Статичний розрахунок арок слід виконувати з врахуванням положень цих Норм.
- **13.3.8** Арки повинні бути розраховані за граничними станами несучої здатності й експлуатаційної придатності.

13.4 Проектування ферм

- 13.4.1 Ферми відносяться до наскрізних конструкцій балочного типу. Залежно від форми обрису верхнього пояса ферми бувають трикутні, з паралельними поясами, сегментні й лінзоподібні; залежно від матеріалу ферми із цільної деревини (брусів і дощок), клеєної шаруватої деревини й LVL, металодерев'янні ферми; залежно від типу вузлових з'єднань ферми на кільцевих і зубчастих шпонках, на зубчасто-шипових клейових з'єднаннях, на сталевих пластинах і нагелях, на металевих зубчастих пластинах (МЗП); в залежності від прольоту, що перекривається, ферми малого прольоту (9-15 м), ферми нормального прольоту (15-24 м), ферми великого прольоту більше 24 м.
- **13.4.2** Крок ферм залежно від матеріалу й перекритого прольоту рекомендується приймати від 2 м до 6 м. Дощаті ферми з вузлами на МЗП і інших нагельних пластинах установлюються з мінімальним кроком. Крок більше 6 м допускається за відповідного обгрунтування і розрахунку.

Не слід проектувати вузли й стики елементів із з'єднаннями на зв'язках різної піддатливості, а також стики, у яких частина стержнів з'єднана безпосередньо, а частина — через проміжні елементи й з'єднання.

У з'єднаннях на гладких циліндричних нагелях у вузлах і стиках елементів ферм повинні бути встановлені стяжні болти. Кількість стяжних болтів повинна становити не менше 25 % від усієї кількості нагелів. Складові елементи ферм на піддатливих зв'язках повинні стягуватися болтами. Діаметр стяжних болтів визначається розрахунками, але повинен бути не менше $12\,$ мм. Шайби повинні мати розмір сторін або діаметр не менше 3,5d і товщину не менше 0,25d.

- **13.4.3** Стики розтягнутих нижніх поясів ферм слід виконувати в середині довжини панелі або в середині прольоту з обов'язковою перевіркою міцності з урахуванням ослаблень, концентрації напружень і можливих ексцентриситетів.
- **13.4.4** Осі всіх елементів повинні центруватися у вузлах ферм. У випадку позацентрового приєднання решіток у розрахунках повинен враховуватися вузловий згинальний момент, який дорівнює добутку рівнодіючих зусиль в елементах решіток на їх плече відносно осі пояса.
- **13.4.5** У дерев'яних несучих елементах ферм площа поперечного перерізу нетто повинна бути не менше 5000 мм² і не менше половини повної площі перерізу брутто при симетричному ослабленні, а також не менше 0,67 повної площі перерізу брутто при несиметричному ослабленні. Розрахунки елементів ферм, що мають ослаблення, повинні виконуватися відповідно до вимог цих Норм.

мінімальний напусток пластини на будь-якому дерев'яному елементі повинен бути не менше 40 мм і не менше 1/3 висоти перерізу дерев'яного елемента, а в стиках поясів ферм — не менше 2/3 необхідної висоти перерізу елемента.

- **13.4.7** Усі ферми повинні мати будівельний підйом. Величина будівельного підйому повинна бути не менше 1/200 прольоту. У фермах прольотом більше 30 м одна з опор повинна бути шарнірно рухливою.
 - 13.4.8 Розрахунки ферм повинні виконуватися відповідно до вимог цих Норм.
- **13.4.9** Ферми повинні бути розраховані за граничними станами несучої здатності й експлуатаційної придатності.

ДОДАТОК А (обов'язковий)

ВЛАСТИВОСТІ МАТЕРІАЛІВ

Таблиця А.1 – Значення коефіцієнта перетворення, що враховує тривалість дії навантаження та температурно-вологісні умови експлуатації k_{mod}

	Клас навантаження за	Екс	плуатаційні кл	аси
Будівельний матеріал	тривалістю дії	1	2	3
Суцільна деревина, клеєна	постійне	0,60	0,60	0,50
деревина, балочна клеєна	тривале	0,70	0,70	0,55
деревина, фанера, ортогональна клеєна	середньої тривалості	0,80	0,80	0,65
деревина	короткочасне	0,90	0,90	0,70
	миттєве	1,10	1,10	0,90
ДСП, цементно-стружкові	постійне	0,30	0,20	_
плити (ЦСП), ДВП (Тип НВ.НLA2 [15])	тривале	0,45	0,30	_
	середньої тривалості	0,65	0,45	_
	короткочасне	0,85	0,60	_
	миттєве	1,10	0,80	_
OSB-плити (OSB/2, OSB/3	постійне	0,40	0,30	_
та OSB/4 [6])	тривале	0,50	0,40	_
	середньої тривалості	0,70	0,55	_
	короткочасне	0,90	0,70	_
	миттєве	1,10	0,90	_
ДВП (Тип МВН.LA2 [16])	постійне	0,20	0,15	_
	тривале	0,40	0,30	_
	середньої тривалості	0,60	0,45	_
	короткочасне	0,80	0,60	_
	миттєве	1,10	0,80	_

Таблиця А.2 – Значення коефіцієнта для оцінки деформацій повзучості з урахуванням відповідного експлуатаційного класу k_{def} для дерев'яних будівельних матеріалів та їх з'єднань при постійній та квазіпостійній тривалості дії навантаження

	Ексі	плуата	ційні		Експлуатаційні	
Будівельний матеріал		класи		Будівельний матеріал	класи	
	1	2	3		1	2
Суцільна деревина ^а				ДСП за [7]	2,25	_
Клеєна деревина				ДСП за [8]	2,25	3,00
Шпонові матеріали (LVL) ^b	0.60	0,60 0,80 2,0		ДСП за [9]	1,50	_
Балочна клеєна деревина	0,00			ДСП за [10]		2,25
Ортогональна клеєна деревина				ДВП (тверді) НВ.LA за [15]	2,25	_
Фанера ^с для експлуатації в				ДВП (тверді) НВ.НLА1,		
сухих умовах	0,80	_	_	HB.HLA2 3a [15]	2,25	3,00
Фанера ^с для експлуатації в				ДВП (середньої твердості)		
вологих умовах	0,80	1,00	_	МВН.LA1, МВН.LA2 за [16]	3,00	-
Фанера ^с для експлуатації на				ДВП (середньої твердості)		
свіжому повітрі	0,80	1,00	2,50	MBH.HLS1, MBH.HLS2 за	3,00	4,00
				[16]		
Плити OSB/2 за [6]	2,25	_		ДВП MDF.LA за [18]	2,25	_
Плити OSB/3, OSB/4 за [6]	1,50	2,25	_	ДВП MDF.HLS за [18]	2,25	3,00

а Значення для k_{def} підвищується до 1,0 для суцільної деревини, яка при будівництві вбирає вологу у волокна або вже є вологою та в збудованому стані може висихати.

Фанера для використання в вологих умовах характеризується вмістом вологості в матеріалі, що відповідає температурі 20° С і відносній вологості навколишнього середовища, що перевищує 85%, лише протягом декількох тижнів на рік.

Фанера для експлуатації на відкритому повітрі характеризується більш високим вмістом вологи ніж фанера для використання в сухих та в вологих умовах.

Таблиця А.3 – Рівноважна вологість дерев'яних будівельних матеріалів

перевищує 20 %.

1	Експлуатаційні класи	1	2	3	
2	Рівноважна вологість деревини	5 % до 15 % ^а	10 % до 20 % 12 % до 24 %		
^a B	більшості хвойної деревини в ег перевищує 12%.	ксплуатаційному кла	асі 1 середня рівно	важна вологість не	
b B	більшості хвойної деревини в ег	ксплуатаційному кла	асі 2 середня рівно	важна вологість не	

b 3 паралельним розташуванням волокон усіх шарів шпону.

с 3 поперечним розташуванням волокон у суміжних шарах шпону.

Фанера для використання в сухих умовах характеризується вмістом вологості в матеріалі, що відповідає температурі 20° С і відносній вологості навколишнього середовища, що перевищує 65% лише протягом кількох тижнів на рік.

ДОДАТОК Б (довідковий)

КЛАСИ МІЦНОСТІ ДЕРЕВИНИ

Таблиця Б.1 – Характеристичні значення міцності, жорсткості та густини для хвойної деревини

Nº													
3/П	Класи міцності	C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50
0,11				Знач	<u> </u>	L ІІ́ЦНОСТ	<u>I</u> i. Н/ми	<u> </u> Л ²					
1	Згин <i>f_{m,k}</i> а	14	16	18	20	22	24	27	30	35	40	45	50
2	Розтяг вздовж $f_{t,0,k}^{\ \ a}$	8	10	11	12	13	14	16	18	21	24	27	30
3	Розтяг впоперек $f_{t,90,k}$						0	,4					
4	Стиск вздовж $f_{c,0,k}^{a}$	16	17	18	19	20	21	22	23	25	26	27	29
5	Стиск впоперек $f_{c,90,k}$	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2
6	Сколювання та кручення $f_{v,k}^{\ \ c}$						2	,0					
		•		Значе	ння жс	рсткос	ті, Н/м	1M ²					
7	Модуль пружності вздовж Е _{0,mean} ^{a,b}	7000	8000	9000	95000	10000	11000	11500	12000	13000	14000	15000	16000
8	Модуль пружності впоперек $E_{90,mean}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	230	270	300	320	330	370	380	400	430	470	500	530
9	Модуль зсуву G _{mean} ^{b,c}	440	500	560	590	630	690	720	750	810	880	940	1000
					чення				·	·	·		
10	Густина ρ_k	290	310	320	330	340	350	370	380	400	420	440	460

Примітка. Значення характеристичної міцності при розтягу впоперек напряму волокон $f_{t,90,k}$, характеристична міцність під дією сколювання та кручення відрізняються від розрахункових значень за ДСТУ EN 338, але при розрахунку необхідно використовувати тільки значення, представлені тут.

Розрахункове значення для кругляка підвищується на 20% за відсутності на ньому кори та лубу без ослаблення краєвої зони.

b Характеристичне значення модуля зсуву $G_{R,k}$ всіх класів міцності може прийматися 1,0 Н/мм 2 при розрахунках. При напруженнях сколювання необхідно приймати значення модуля зсуву, який дорівнює $G_{R,mean} = 0,10 \cdot G_{mean}$.

с Для характеристичного значення жорсткості $E_{0,05}$, $E_{90,05}$ та $G_{0,05}$ розрахунковими значеннями є: $E_{0,05} = 2/3 \cdot E_{0,mean}$, $E_{90,05} = 2/3 \cdot E_{0,mean}$, $E_{90,05} = 2/3 \cdot E_{0,mean}$.

Таблиця Б.2 – Характеристичні значення міцності, жорсткості та густини для листяної деревини

№ 3/п	Класи міцності	D30	D35	D40	D50	D60	D70	
	Значення	міцност	i, H/мм ²					
1	Згин <i>f_{m,k}</i>	30	35	40	50	60	70	
2	Розтяг вздовж $f_{t,0,k}$	18	21	24	30	36	42	
3	Розтяг впоперек $f_{t,90,k}$			0	,5			
4	Стиск вздовж $f_{c,0,k}$	23	25	26	29	32	34	
5	Стиск впоперек $f_{c,90,k}$	8,0	8,4	8,8	9,7	10,5	13,5	
6	Сколювання та кручення $f_{v,k}$	3,0	3,4	3,8	4,6	5,3	6,0	
	Значення	жорсткос	ті, Н/мм ²			•		
7	Модуль пружності вздовж $E_{0,mean}^{a}$	10 000	10 000	11 000	14 000	17 000	20 000	
8	Модуль пружності впоперек $E_{90,mean}^{a}$	640	690	750	930	1130	1330	
9	Модуль зсуву G_{mean}^{a}	600	650	700	880	1060	1250	
	Значенн	я густині	и, кг/м ³					
10	Густина р _к	530	560	590	650	700	900	
Примітка. Розрахункове значення характеристичної міцності при розтягу впоперек напряму волокон $f_{t,90,k}$ відрізняється від розрахункових значень за ДСТУ EN 338, але при розрахунку необхідно використовувати тільки значення, представлені тут.								

Таблиця Б.3 – Характеристичні значення міцності, жорсткості та густини для однорідної клеєної деревини

Класи міцності клеєної дер	GL 24h	GL 28h	GL 32h	GL 36h					
	Знач	ення міцності,	H/mm ²						
Міцність при згині	$f_{m,g,k}$	24	28	32	36				
Міцність при розтягу	$f_{t,0,g,k}$	16,5	19,5	22,5	26				
тинцинств при розтягу	$f_{t,90,g,k}$	0,4	0,45	0,5	0,6				
Міцність при стиску	$f_{c,0,g,k}$	24	26,5	29	31				
инцпість при стиску	$f_{c,90,g,k}$	2,7	3,0	3,3	3,6				
Міцність при сколюванні	$f_{v,g,k}$	2,7	3,2	3,8	4,3				
	Значе	ння жорсткост	i, Н/мм²						
	$E_{0,g,mean}$	11 600	12 600	13 700	14 700				
Модулі пружності	E _{0,g,05}	9 400	10 200	11 100	11 900				
	E _{90,g,mean}	390	420	460	490				
Модуль зсуву	G _{g,mean}	720	780	850	910				
	Значення густини, кг/м ³								
Густина	$ ho_{g,k}$	380	410	430	450				

Таблица Б.4 – Характеристичні значення міцності, жорсткості та густини для комбінованої клеєної деревини

Класи міцності клеєної дер	евини	GL 24c	GL 28c	GL 32c	GL 36c			
	Зна	чення міцност	i, H/мм ²					
Міцність при згині	$f_{m,g,k}$	24	28	32	36			
Minuioti dou pootani	$f_{t,0,g,k}$	14	16,5	19,5	22,5			
Міцність при розтягу	$f_{t,90,g,k}$	0,35	0,4	0,45	0,5			
Minuier, Tru eruser	$f_{c,0,g,k}$	21	24	26,5	29			
Міцність при стиску	$f_{c,90,g,k}$	2,4	2,7	3,0	3,3			
Міцність при сколюванні	$f_{v,g,k}$	2,2	2,7	3,2	3,8			
	Знач	ення жорсткос	ті, Н/мм ²					
	$E_{0,g,mean}$	11 600	12 600	13 700	14 700			
Модулі пружності	E _{0,g,05}	9 400	10 200	11 100	11 900			
	E _{90,g,mean}	320	390	420	460			
Модуль зсуву	$G_{g,mean}$	590	720	780	850			
Значення густини, кг/м ³								
Густина	$\rho_{g,k}$	350	380	410	430			

Таблиця Б.5 – Характеристичні значення міцності, жорсткості та густини для фанери класів міцності F та модуля пружності Е згину F20/10 E40/20 та F20/15 E30/25 за [19] з характеристичним значенням густини щонайменше 350 кг/м³

	Класи	F20/10	E40/20	F20/15 E30/25		
№ з/п	Напруження	вздовж ^а	впоперек ^а	вздовж ^а	впоперек ^а	
	Зна	ачення міцнос	ті, Н/мм²			
Напру	ження в плитах					
1	Згин <i>f_{m,k}</i>	20	10	20	15	
2	Стиск f _{c,90,k}			4		
3	Сколювання $f_{v,k}$	0,90	0,60	1,0	0,70	
Напру	ження зсуву					
4	Згин <i>f_{m,k}</i>	9	7	8	7	
5	Розтяг $f_{t,k}$	9	7	8	7	
6	Стиск f _{c,k}	15	10	13	13	
7	Сколювання $f_{v,k}$	3	,5		4	
	Знач	нення жорстко	сті, Н/мм²			
Напру	ження в плитах					
8	Модуль пружності <i>Е</i> теап b	4000	2000	3000	2500	
9	Модуль зсуву <i>G</i> _{mean} b	35	25	35	25	
Напру	ження зсуву					
10	Модуль пружності <i>E</i> _{mean} b	4000	3000	4000	3000	
11	Модуль зсуву $G_{mean}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		3	350		

Кінець таблиці Б.5

	Класи	F20/10	E40/20	F20/1	5 E30/25		
№ 3/п	Напруження	вздовж ^а	впоперек ^а	вздовж ^а	впоперек ^а		
	Значення густини, кг/м ³						
12	Густина р _к	350					
b Для	апрямку волокон крайніх шарів шпо характеристичного значення жорс $_{5}=0.8\cdot E_{mean},\ G_{0.05}=0.8\cdot G_{mean}.$		т _{0,05} розрахунков	вими значенням	ии є:		

Таблиця Б.6 – Характеристичні значення міцності, жорсткості та густини для фанери класів міцності F та модуля пружності Е згину F40/30 E60/40, F50/25 E70/25 та F60/10 E90/10 за [19] з характеристичним значенням густини щонайменше 600 кг/м³

	Класи	F40/30	E60/40	F50/25	E70/25	F60/10	E90/10		
№ з/п	Напруження	вздовж ^а	впоперека	вздовж ^а	впоперека	вздовж ^а	впоперека		
		Значе	ення міцнос	ті, Н/мм ²			•		
Напру	ження в плитах								
1	Згин <i>f_{m,k}</i>	40	30	50	25	60	10		
2	Стиск f _{c,90,k}		9			10			
3	Сколювання $f_{v,k}$		2,2			2,5			
Напру	ження зсуву	•							
4	Згин <i>f_{m,k}</i>	29	31	36	24	36	24		
5	Розтяг $f_{t,k}$	29	31	36	24	36	24		
6	Стиск f _{c,k}	21	22	36	17	26	18		
7	Сколювання $f_{v,k}$		9,5			11			
		Значен	ня жорстко	сті, Н/мм²	1				
Напру	ження в плитах								
8	Модуль пружності <i>E_{mean}</i> b	6000	4000	7000	2500	9000	1000		
9	Модуль зсуву <i>G</i> _{mean} b		150			200	1		
Напру	ження зсуву	•			1				
10	Модуль пружності <i>E</i> _{mean} b	4400	4700	5500	3650	5500	3700		
11	Модуль зсуву G_{mean}^{b}		600			700	1		
		Знач	нення густин	НИ, КГ /М ³	•				
12	Густина р _к	600							
а R ы	апрямку вопокон крайніх	IIIanie IIIUOU	V						

а В напрямку волокон крайніх шарів шпону.

b Для характеристичного значення жорсткості $E_{0,05}$ та $G_{0,05}$ розрахунковими значеннями є: $E_{0,05}=0.8\cdot E_{mean},\ G_{0,05}=0.8\cdot G_{mean}.$

Таблиця Б.7 – Характеристичні значення міцності, жорсткості та густини для OSB-плит технічних класів OSB/2 та OSB/3 за [21]

	Напруження	Вздовж на верхнього	прямку стр <u>у</u> шару	ужки		Поперек напрямку стружки верхнього шару			
№ 3/п	Номінальна товщина плити, мм	>6 до10	>10 до18	>18 до 25	>6 до10	>10 до18	>18 до 25		
		Значе	ення міцнос	ті, Н/мм ²					
Напру	ження в плитах								
1	Згин <i>f_{m,k}</i>	18	16,4	14,8	9,0	8,2	7,4		
2	Стиск $f_{c,90,k}$			1	0		•		
3	Сколювання $f_{v,k}$			1	,0				
Напру	ження зсуву								
4	Згин <i>f_{m,k}</i>	9,9	9,4	9,0	7,2	7,0	6,8		
5	Розтяг $f_{t,k}$	9,9	9,4	9,0	7,2	7,0	6,8		
6	Стиск f _{c,k}	15,9	15,4	14,8	12,9	12,7	12,4		
7	Сколювання $f_{v,k}$			6	,8	1			
	l	Значен	ня жорстко	ості, Н/мм ²					
Напру	ження в плитах								
8	Модуль пружності <i>Е_{теап}</i>		4930			1980			
9	Модуль зсуву G _{mean} b			5	50				
Напру	ження зсуву								
10	Модуль пружності <i>E_{mean}</i>		3800			3000			
11	Модуль зсуву <i>G</i> _{mean} а			10	80				
		Знач	ення густи	ни, кг/м ³					
12	Густина рк		550			550			
	т 1 характеристичного знач ₅ = 0,85 · <i>E_{mean}, G</i> _{0,05} = 0,8		ості Е _{0,05} та	G _{0,05} розрах	унковими з	наченнями є):		

Таблиця Б.8 – Характеристичні значення міцності, жорсткості та густини для ЦСП технічних класів 1 та 2 за [21]

№ 3/п	Номінальна товщина плити, мм	Усі товщини від 8 мм до 40 мм
	Значення мі	цності, Н/мм²
Напрух	ження в плитах	
1	Згин <i>f_{m,k}</i>	9
2	Стиск f _{c,90,k}	12
3	Сколювання $f_{v,k}$	2
Напрух	ження зсуву	
4	Згин <i>f_{m,k}</i>	8
5	Розтяг $f_{t,k}$	2,5
6	Стиск f _{c,k}	11,5
7	Сколювання $f_{v,k}$	6,5
	Значення жор	осткості, Н/мм²
Напрух	ження в плитах	
8	Модуль пружності E_{mean}^{a}	Клас 1: 4500 Клас 2: 4000
Напрух	ження зсуву	
9	Модуль пружності E_{mean}^{a}	4500
10	Модуль зсуву <i>G</i> _{mean} ^a	1500
	Значення гу	летини, кг/м ³
11	Густина р _к	1000
	характеристичного значення жорсткості $E_{0,0} = 0.8 \cdot E_{mean}$, $G_{05} = 0.8 \cdot G_{mean}$.	₀₅ та G _{0,05} розрахунковими значеннями є:

Таблиця Б.9 – Розрахункові значення характеристичної міцності, жорсткості та густини для LVL технічного типу R [66]

	Напруження в плитах, Н/мм²				
1	Згин <i>f_{m,k}</i> (по грані)	48,0			
2	Згин $f_{m,k}$ (по пласті)	50,0			
3	Розтяг вздовж волокон $f_{t,0,k}$	36,0			
4	Розтяг впоперек волокон $f_{t,90,k}$ (по грані)	0,9			
5	Розтяг впоперек волокон $f_{t,90,k}$ (по пласті)	_			
6	Стиск вздовж волокон $f_{c,0,k}$	40,0			
7	Стиск впоперек волокон $f_{c,90,k}$ (по грані)	7,0			
8	Стиск впоперек волокон $f_{c,90,k}$ (по пласті)	3,0			
9	Сколювання $f_{v,k}$ (по грані)	4,6			
10	Сколювання $f_{v,k}$ (по пласті)	3,2			
	Значення жорсткості, Н/мм²				
Напр	уження в плитах				
11	Модуль пружності вздовж волокон $E_{0,mean}$	14000			
12	Модуль пружності вздовж волокон $E_{0,05}$	12000			
13	Модуль пружності впоперек волокон $E_{90,mean}$ (по грані)	_			
14	Модуль пружності впоперек волокон $E_{90,mean}$ (по пласті)	_			
Напр	уження зсуву				
15	Модуль зсуву <i>G</i> _{mean} (по грані)	500			
16	Модуль зсуву <i>G</i> _{mean} (по пласті)	500			
	Значення густини, кг/мм ³				
17	Густина рк	480			

ДОДАТОК В (довідковий)

КЛЕЄНА ДЕРЕВИНА – ВИМОГИ

В.1 Загальні положення

Цей додаток визначає вимоги до клеєної деревини.

В.2 Вимоги з виготовлення

- В.2.1 Клеєна деревина повинна відповідати вимогам [12] та додатка В.
- **В.2.2** Ця деревина сортується на класи міцності згідно з ДСТУ EN 338.
- **B.2.3** Для виготовлення клеєної деревини допускаються наступні види хвойної деревини: ялиця (Picea Abies), ялина (Abies alba), сосна (Pinus sylvestris), модрина (Larix decidua), північна сосна (Pinus echinata, Pinus elliottii, Pinus palustris, Pinus taeda), жовтий кедр (Chamaecyparis nootkatensis).
- **В.2.4** Радіуси згину R ламелей для гнутих елементів в експлуатаційних класах 1 та 2 повинні складати не менше ніж 230t та в експлуатаційному класі 3-205t. Дозволяється радіус згину до 150t, якщо товщина ламелей t відповідає умові B.1

$$t \le 13 + 0, 4 \left\lceil \frac{R}{t} - 150 \right\rceil,$$
 (B.1)

де: *R* – радіус згину ламелей, мм;

t — товщина ламелей, мм.

В.2.5 Допускається відхил від норми відносної вологості повітря, якщо дозволяє клейова міцність нанесеного клеєвого розчину при закритому пресуванні.

В.3 Заводський контроль продукції

- В.3.1 Заводський контроль продукції проводиться відповідно до 7.1 [12].
- **В.3.2** У кожному робочому шарі щонайменше два зразки зубчастого стику випробовують для визначення класу міцності за 7.1.2 [12].

Характеристичне значення міцності при згині зубчастого стику повинно відповідати щонайменше значенням таблиці В.1.

Таблиця В.1 — Мінімальні значення характеристичної міцності при згині $f_{m,k}$ для зубчастих з'єднань, $H/\text{мм}^2$

№ 3/п	Класи міцності ламелей	f _{m,k} , Н/мм2
1	C16	25
2	C24	30
3	C30	35
4	C35	40
5	C40	45

В.3.3 Підведення підсумків заводського контролю продукції виконується за 7.1.2.2 а) [12].

В.4 Сторонній контроль

- В.4.1 Виконується щонайменше два рази на рік.
- **В.4.2** Для контролю береться у випадковому порядку не менше ніж 20 зразків найвищого класу міцності і випробовуються за 7.1.2 [12].
- **В.4.3** Характеристичне значення міцності при згині зубчастого стику повинно відповідати щонайменше значенням таблиці В.1.
 - В.4.4 Підведення підсумків заводського контролю продукції виконується за 7.1.2.2 а) [12].

ДОДАТОК Г (довідковий)

ДАНІ ДЛЯ З'ЄДНУВАЛЬНИХ ЕЛЕМЕНТІВ ТА З'ЄДНАНЬ

Таблиця Г.1 – Характеристичні значення міцності для сталевих нагелів

№ 3/п	Клас сталі за ДСТУ EN 10025-2	Характеристична міцність $f_{u,k}$, Н/мм2			
1	S 235 (C 235)	360			
2	S 275 (C 275)	430			
3	S 355 (C 355)	510			
Приміт	Примітка. В дужках наведені класи сталей за ДБН				

Таблиця Г.2 – Розміри для сталевих нагелів

Таблиця Г.3 – Характеристичні значення міцності для сталевих стержнів з різьбою

Nº 3/⊓	Клас міцності за ДСТУ ISO 898-1 ([39])	Характеристична міцність $f_{u,k}$, $\mathrm{H/mm}^2$	Характеристична границя текучості $f_{y,k}$, $H/мм^2$			
1	4,8	400	320			
2	5,8	500	400			
3	8,8	800	640			
Примітк	Примітка. Клас міцності за ДСТУ ISO 898-1 [39] відповідає класу міцності для болтів за ДБН					

Таблиця Г.4 – Розміри шайб для сталевих стержнів з різьбою

ДОДАТОК Д (довідковий)

ЗВ'ЯЗКИ У ВИГЛЯДІ ЗУБЧАСТИХ ШПОНОК

Д.1 Зубчасті шпонки за своєю формою бувають круглими, квадратними, восьмикутними і у вигляді інших форм з розмірами від 38 мм до 165 мм. Існує 11 типів зубчастих шпонок. Кожен тип має своє маркування від С1 до С11 згідно з [70]. Кожен тип зубчастої шпонки класифікується за формою і використовуваним матеріалом. За розташуванням зубів шпонки бувають одноабо двосторонні.

Залежно від типу зв'язку зубчаста шпонка може бути виготовлена з холоднокатаної непокритої низковуглецевої сталі, звичайної сталі з цинкуванням за методом гарячого занурення або ковкого чавуну. Приклад зубчастих зв'язків у вигляді сталевих шпонок із зубами наведено на рисунку Д.1.

Односторонні зубчасті шпонки використовуються для з'єднання елементів з деревини. Якщо з'єднання має бути рознімним, то в з'єднанні "деревина – деревина" використовуються однобічні зубчасті шпонки. Двобічні зубчаті шпонки використовуються в нерознімних з'єднаннях "деревина – деревина".

Зубчасті шпонки типів C2, C4, C7, C9 і C11 є односторонніми, а шпонки типів C1, C3, C5, C6, C8 і C10 — двосторонніми. Для кожного типу шпонок характерні різні значення несучої здатності при їх використанні в з'єднанні.

а – загальний вигляд односторонньої зубчастої шпонки; б – загальний вигляд двосторонньої зубчастої шпонки

Рисунок Д.1 – Загальний вигляд зубчастих шпонок

Д.2 При складанні з'єднання з використанням зубчастих шпонок в елементах просвердлюються отвори під болти. Зв'язок розташовується в необхідному положенні, а потім з'єднання піддається механічному стиску. При використанні деревини з відносно невеликою густиною стиску здійснюється шляхом натягнення високоміцних болтів з великими шайбами. Після стиску шпонок до необхідного положення стяжний болт і його шайби фіксуються. Зуби шпонки мають бути втиснуті в деревину повністю. Оскільки опір деревини проникненню зубів шпонки зростатиме із збільшенням густини деревини, їх слід застосовувати для з'єднань елементів, характеристична густина яких не перевищує 500 кг/м³.

Д.3 При розрахунках з'єднань, виконаних з використанням зв'язків у вигляді зубчастих металевих шпонок, слід керуватися вимогами, наведеними в 8.10 ДСТУ-Н Б EN 1995-1-1.

Несуча здатність з'єднання визначається комбінацією зусиль, що сприймаються зубчастою шпонкою і болтом. Через те, що міцність болта на зріз значно перевищує міцність анкерування шпонки в деревині, при визначенні несучої здатності з'єднання міцність болта на зріз не враховується.

Д.4 Щоб уникнути крихкого руйнування з'єднання, виконаного з використанням зв'язків у вигляді зубчастих металевих шпонок, як і для металевих кріпильних елементів нагельного типу, мають бути дотримані вказівки з їх розташування. Мінімальні відстані від торця і кромки елементів, що сполучаються, для зубчастих шпонок наведені в таблиці Д.1, а крок стяжних болтів повинен прийматися з таблиці 12.8. Що стосується товщини елементів (рисунок Д.2), що сполучаються, то вона повинна становити:

$$t_1 \ge 2,25h_e \tag{Д.1}$$

$$t_2 \ge 3,75h_e \,, \tag{\square.2}$$

де: t_1 — товщина зовнішнього дерев'яного елемента з'єднання;

t₂ – товщина внутрішнього дерев'яного елемента з'єднання;

 $h_{\rm e}$ — глибина втискування зубів шпонки в даний елемент з'єднання, мм. Для двосторонніх зв'язків $h_{\rm e}=(h_{\rm c-t})/2$ і для однобічних зв'язків $h_{\rm e}=(h_{\rm c-t})$.

Тут h_{c} – довжина зубів шпонки, а t – товщина листа шпонки.

Рисунок Д.2 – З'єднання на зубчастих шпонках

Таблиця Д.1 – Мінімальні розміри і відстані від торця елемента до центра отвору для зубчастих шпонок типів C1-C11, розрізних кільцевих шпонок і кільцевих шпонок з фланцем*

	Мінімальні розміри кроку і відстаней					
Крок, відстані і кут $lpha^{**}$	Зубчасті зв'язки	у вигляді шпонок	Розрізні кільцеві			
проп, видотання пут а	Типи від С1 до С9	Типи від C10 до C11	шпонки і кільцеві шпонки з фланцем			
Крок уздовж волокон — a_1 $0^{\circ} \le \alpha \le 360^{\circ}$	$(1,2+0,3 \cos\alpha) d_c$	$(1,2+0,8 \cos \alpha) d_c$	$(1,2+0,8 \cos \alpha) d_c$			
Крок впоперек волокон — a_2 $0^{\circ} \le \alpha \le 360^{\circ}$	1,2 <i>d</i> _c	1,2 <i>d</i> _c	1,2 <i>d</i> _c			
Відстань до навантаженого						
торця — $a_{3,t}$ — $90^{\circ} \le \alpha \le 90^{\circ}$	2,0 <i>d</i> _c	2,0 <i>d</i> _c	1,5 <i>d</i> _c			
Відстань до ненавантаженого						
торця <i>а</i> _{3,с}						
$90^{\circ} \le \alpha \le 150^{\circ}$	$(0.9 + 0.6 \sin \alpha) d_c$	$(0, 4 + 1,6 \sin \alpha) d_c$	$(0, 4 + 1,6 \sin \alpha) d_c$			
150° ≤ α ≤ 210°	1,2 d _c	1,2 <i>dc</i>	1,2 d _c			
$210^{\circ} \le \alpha \le 270^{\circ}$	$(0.9 + 0.6 \sin \alpha) d_c$	$(0, 4 + 1, 6 \sin \alpha) d_c$	$(0, 4 + 1, 6 \sin \alpha) d_c$			
Відстань до навантаженої кромки $a_{4,t}$ $0^{\circ} \le \alpha \le 180^{\circ}$	$(0.6 + 0.2 \sin \alpha) d_c$	$(0.6 + 0.2 \sin \alpha) dc$	$(0.6 + 0.2 \sin \alpha) d_c$			
Відстань до ненавантаженої		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
кромки а _{4,с}						
$180^{\circ} \le \alpha \le 380^{\circ}$	0,6 <i>d_c</i>	0,6 <i>d_c</i>	0,6 <i>d_c</i>			

^{*} На підставі таблиці. 8.7, 8.8 і 8.9 в ДСТУ-Н Б EN 1995-1-1.

Д.5 Характеристичне значення несучої здатності з'єднання з використанням зубчастої шпонки визначається з виразу:

$$F_{v,Rk,conect} = F_{v,Rk} + F_{v,Rk,bolt}$$
, (Д.3)

де: $F_{v,Rk,conect}$ – характеристична міцність зубчастого з'єднання, H;

 $F_{v,Rk}$ — характеристична міцність зубчастої пластини, H;

 $F_{v,Rk,bolt}$ – характеристична міцність стяжного болта, Н.

Несуча здатність поперечно навантажених зубчастих шпонок не залежить від напряму зусилля, що прикладається, по відношенню до волокон. Враховуючи, що міцність на згин стяжного болта залежить від кута зусилля, що прикладається, по відношенню до волокон, ця обставина має враховуватися в розрахунках таких з'єднань.

Характеристичне значення несучої здатності $F_{v,Rk}$ зубчастої шпонки визначається з виразу

$$F_{v,Rk} = \begin{cases} 18k_1k_2k_3d_c^{1.5} & \text{для односторонніх типів} \\ 25k_1k_2k_3d_c^{1.5} & \text{для двосторонніх типів} \end{cases}$$
 (Д.4)

де: $F_{v,Rk}$ – характеристичне значення несучої здатності зубчастого зв'язку, H;

д_c – діаметр зубчастої шпонки для типів С1, С2, С6, С7, С10 і С11, мм. Для зубчастої шпонки типів С5, С8 і С9 – це довжина сторони, мм, і для зубчастої шпонки типів С3 і С4 – це квадратний корінь з добутку довжин обох сторін, мм;

^{**} Кут між напрямом реакції зв'язку і волокнами.

 k_1 – поправочний коефіцієнт, що залежить від товщини елемента з'єднання і визначається з виразу:

$$k_1 = \min \begin{cases} 1 \\ \frac{t_1}{3h_c}, \\ \frac{t_2}{5h_c} \end{cases}$$
 (Д.5)

тут t_1 і t_2 визначаються відповідно до рисунка Д.2;

 $h_{\rm e}$ – глибина проникнення зубів, мм. Несуча здатність з'єднання досягає 75 % від її максимального значення при використанні мінімально допустимих значень t_1 і t_2 . Крім того, якщо t_1 і t_2 перевищують $3h_e$ і $5h_e$ відповідно, то несуча здатність з'єднання, не зростатиме при зміні t_1 і t_2 ;

 k_2 – поправочний коефіцієнт, що залежить від відстані до навантаженого торця $a_{3,b}$ а для елементів із скошеним торцем відстань може бути прийнята, як показано на рисунку Д.З. Даний коефіцієнт застосовується лише для елементів з навантаженим торцем і залежить від типу зубчастої шпонки. Для типів С1-С9 величину відстані до навантаженого торця слід приймати $2d_c$ за таблицею Д.1. Менша відстань допустима, але має бути не менше $1,1d_c$ і не менше мінімальної величини відстані до навантаженого торця для болтів. Якщо відстань до навантаженого торця менше $2d_{c}$, значення k_{2} має визначатися з виразу:

$$k_2 = \min \begin{cases} 1 \\ \frac{a_{3,t}}{1,5d_c} \end{cases}$$
 (Д.6)

$$k_2 = \min \begin{cases} 1 \\ \frac{a_{3,t}}{1,5d_c} \end{cases}$$
 (Д.6)
$$a_{3,t} = \max \begin{cases} 1,1d_c \\ 7d \\ 80 \text{ мм} \end{cases}$$
 (Д.7)

 $\mathsf{T}\mathsf{V}\mathsf{T}$ dдіаметр болта, мм;

- визначено вище, мм.

Якщо мінімальна величина відстані до навантаженого торця, необхідна для стяжного болта, більше мінімальної відстані до навантаженого торця, необхідної для зубчастої пластини, то k_2 приймається за 1 при відстані до навантаженого торця, більшій $1,5\,d_c$. Даний коефіцієнт k_2 буде менше 1, лише якщо відстань буде менше $1,5d_{\rm c}$, тоді $k_2=0,73$ при допустимій відстані до навантаженого торця $1,1d_c$.

а – круглий зв'язок; б – прямокутний зв'язок

Рисунок Д.3 – Відстані від крайки і торця елемента до центра отвору для зв'язків

Для типів зубчастих шпонок С10 і С11 відстань до навантаженого торця $a_{3,t}$ може бути зменшена лише до $1,5d_c$, тобто:

$$k_2 = \min \begin{cases} 1 \\ \frac{a_{3,t}}{2d_c} \end{cases} \tag{Д.8}$$

i

$$a_{3,t} = \max \begin{cases} 1,5 d_c \\ 7d \\ 80 \text{ мм} \end{cases}$$
 (Д.9)

тут d_c і d – були визначені вище.

Для цих зв'язків, якщо мінімальна величина відстані від стяжного болта до навантаженого торця менше відповідної величини для зубчастої шпонки, то k_2 дорівнюватиме 1 при відстані до навантаженого торця $2d_c$ (або більше). Дана величина може зменшуватися до 0,75 при мінімально допустимій відстані до навантаженого торця $1,5d_c$;

 k_3 — коефіцієнт, що залежить від густини деревини і визначається за виразом:

$$k_3 = \min \begin{cases} 1 \\ \frac{\rho_k}{350} \end{cases}$$
, (Д.10)

де: ρ_k — характеристичне значення густини деревини в з'єднанні, кг/м³.

Вираз для несучої здатності (Д.4) наведено для з'єднання, в якому характеристична густина деревини складає 350 кг/м 3 , тобто клас міцності — С14 за ДСТУ EN 338. Коефіцієнт k_3 підвищує міцність зв'язку при використанні деревини вищого класу міцності, досягаючи максимального збільшення на 50 % при характеристичній густині 525 кг/м 3 . Це відноситься до всіх класів міцності хвойних порід за ДСТУ EN 338, а також до класу міцності D30 для листяних порід. Такі зв'язки допускається застосовувати при класах міцності деревини D35 і D40.

Для зубчастих шпонок типів С1, С2, С6 і С7, розташованих в шаховому порядку (рисунок Д.4), мінімальний крок a_1 і a_2 за таблицею Д.1 може бути зменшений шляхом використання коефіцієнтів k_{a1} і k_{a2} відповідно:

- мінімальна відстань уздовж волокон приймається, як k_{a1} a_1 ;
- мінімальна відстань впоперек волокон приймається, як добуток k_{a2} a_2 за умови, що

$$(k_{a1})^2 + (k_{a2})^2 \ge 1$$
, якщо
$$\begin{cases} 0 \le k_{a1} \le 1 \\ 0 \le k_{a2} \le 1 \end{cases}$$
 (Д.11)

Рисунок Д.4 – Схема розташування зв'язків у шаховому порядку

Д.5 Якщо з'єднання містить ряд зв'язків, розташованих вздовж волокон, несуча здатність такого з'єднання дорівнює сумі несучих здатностей всіх зубчастих шпонок в ряді, що навантажені в даному напрямі.

Для з'єднань з однією або декількома площинами зрізу незалежно від типу використаного зв'язку при визначенні несучої здатності з'єднання кількість зв'язків на одну площину зрізу дорівнюватиме кількості стяжних болтів. Це застосовується, якщо зв'язки навантажені вздовж або впоперек волокон.

Використані в з'єднаннях стяжні болти і шайби мають задовольняти вимогам, викладеним в розділі 10.4.3 ДСТУ-Н Б EN 1995-1-1.

ДОДАТОК Е (довідковий)

РЕКОМЕНДОВАНИЙ СОРТАМЕНТ ПИЛОМАТЕРІАЛІВ

Таблиця Е.1

Товщина, мм		Ширина, мм							
16	75	100	125	150	_	_	_	_	_
19	+	+	+	+	175	_	_	_	_
22	+	+	+	+	+	200	225	_	_
25	+	+	+	+	+	+	+	250	_
32	+	+	+	+	+	+	+	+	275
40	+	+	+	+	+	+	+	+	+
44	+	+	+	+	+	+	+	+	+
50	+	+	+	+	+	+	+	+	+
60	+	+	+	+	+	+	+	+	+
75	75	+	+	+	+	+	+	+	+
100	-	100	+	+	+	+	+	+	+
125	-	_	125	+	+	+	+	+	+
150	1	_	_	150	+	+	+	+	+
175	ı	_	1	_	175	+	+	+	+
200	-	_	-	_	_	200	+	+	+
250	_	_	_	_	_	_	250	+	+

ДОДАТОК Ж (довідковий)

РЕКОМЕНДОВАНІ ЗАЛЕЖНОСТІ МІЖ КЛАСАМИ МІЦНОСТІ ТА СОРТАМИ ДЕРЕВИНИ

Таблиця Ж.1

		Сорти деревини			
№ 3/п	Найменування елемента	1	2	3	
1	Елементи пиломатеріалів	C30	C20, C24, C27	C14, C16, C18	
2	Елементи з круглого лісу та бруса шириною перерізу більше 120 см	C27	C20	_	
3	Клеєні багатошарові елементи	C27, C30, C35	C24	_	

Примітка. Використовуються при неможливості експериментального визначення класу міцності деревини.

ДОДАТОК К (довідковий)

КОНТАКТНІ З'ЄДНАННЯ

Наведена методика розрахунку контактних з'єднань для традиційних для вітчизняної практики кутах нахилу покрівель – від 25° до 35°.

К.1 В контактних з'єднаннях елементів з цільної і клеєної деревини відбувається зминання і сколювання деревини (рисунок К.1).

а – несиметричне; б – симетричне; I_{v} – площадка сколювання цільної чи клеєної деревини **Рисунок К.1** – Контактні з'єднання

К.2 Розрахункова несуча здатність з'єднання повинна прийматись як мінімальне значення з наступних умов:

$$F_{c,d} = \min \begin{cases} f_{c,\alpha,d} \cdot A_{cl} & -\text{ за умови зминання деревини в торці упора під кутом } \alpha \text{ до волокон;} & \text{(K.1)} \\ f_{v,\mathsf{mod},d} \cdot A_v & -\text{ за умови сколювання деревини по довжині упора;} & \text{(K.2)} \end{cases}$$

де: A_{ch} , A_{v} – розрахункові площі відповідно зминанню і сколюванню в цільній чи клеєній деревині;

 $f_{c,a,d}$ — розрахункове значення міцності деревини при зминанні під кутом до волокон;

 $f_{v, {\sf mod}, d}$ — розрахункове значення міцності середнє по площі сколювання, що визначається за формулою

$$f_{v,\text{mod},d} = \frac{f_{v,0,d}}{1 + k_v(l_v/e_v)},$$
 (K.3)

де: $f_{v,0,d}$ — розрахункове значення міцності деревини при сколюванні вздовж волокон;

 k_{ν} — коефіцієнт, який дорівнює 0,25 при $\beta \geq 90^{\circ}$, і $k_{\nu} = 0,125$ при $\beta < 90^{\circ}$, якщо відсутнє обтискання по площині сколювання;

 e_v — плече сколювання, яке приймається $0.5h_w$ і $0.25h_w$ при розрахунку елементів відповідно з несиметрично і симетрично розташованими площами сколювання.

К.3 Перевірку міцності опорної площадки $A_{c,90}$ слід виконувати за формулою:

$$F_{c,90,d} \le f_{cl,90,d} \cdot A_{cl,90}$$
, (K.4)

де: $F_{c, 90, d}$ – вертикальна сила у вузлі (рисунок К.1);

 $f_{cl,90,d}$ — розрахункове значення міцності деревини при місцевому зминанні впоперек волокон в опорних частинах.

- **К.4** В контактних з'єднаннях з проміжними дерев'яними деталями їхні розміри визначаються за формулами:
- а) за умови зминання деревини деталі в торцях за формулою (К.1) з використанням розрахункового значення міцності $f_{c,0,d}$
- б) за умови сколювання деталі по довжині за формулою (К.2) з використанням розрахункового значення міцності $f_{v,0,d}$.

а – лобова врубка з одним зубом; б – примикання розкосу

Рисунок К.2 – З'єднання на врубках

К.5 З'єднання на лобових врубках

- 1. Врубки застосовуються у вузлах стержньових конструкцій з брусів (колод) і товстих дощок (завтовшки більше 60 мм).
 - 2. Рекомендований кут нахилу нормалі лобової врубки має знаходитись в межах 20° 30°.
- 3. Робоча площина зминання повинна розташуватися перпендикулярно до осі елемента, що примикає, і симетрично відносно його осі.
 - 4. Елементи у вузлі повинні бути стягнуті болтами чи з'єднані скобами.
- 5. Довжину площини сколювання слід приймати не менше ніж 1,5h. Глибину врубки h_{fr} слід приймати не більше 1/4h в проміжних вузлах наскрізних конструкцій і не більше 1/3h в опорних вузлах. При цьому h_{fr} в брусах повинна бути не менше ніж 2 см, в колодах 3 см.

ДОДАТОК Л (довідковий)

ВИМОГИ ДО КОНСТРУКТИВНИХ ЕЛЕМЕНТІВ 3 LVL 3A [65]

Л.1 Класифікація

- LVL/1 застосовується в сухих умовах експлуатації (експлуатаційний клас 1, див. 5.3.3.2);
- LVL/2 застосовується в вологих умовах експлуатації (експлуатаційний клас 2, див. 5.3.3.2);
- LVL/3 застосовується в умовах експлуатації зовнішнього природного середовища (експлуатаційний клас 3, див. 5.3.3.3).

Л.2 Вимоги

Л.2.1 Основні вимоги

LVL повинні відповідати загальним вимогам, наведеним в таблиці Л.1.

Вимоги, наведені в таблиці Л.1, слід застосовувати тільки в цілях контролю якості і не слід враховувати при розрахунках.

Таблиця Л.1 – Загальні вимоги для всіх типів LVL

№ 3/п	Властивість	Вимога		
1 ^a	Допуск розміру по довжині	≤ 1,5 мм/м		
2 ^a	Допуск розміру по ширині	≤ 2,0 MM/M		
3	Вологість при виготовленні на заводі-виробнику	Від 6 % до 12 %		
4	Допуск по середній густині	± 10		
5	Граничний відхил кутів поперечного перерізу від 90°	≤ 1:50		
6	Міцність при згині в напрямку: – вздовж волокон; – впоперек волокон	5 % відхил від значень за експериментальними		
Модуль пружності при згині в напрямку: 7 — вздовж волокон; — впоперек волокон		даними контрольної партії для кожного виду LVL		
а Для деяких видів LVL можуть застосовуватись інші допуски згідно з окремими стандартами на виріб.				

Л.3 Формальдегід

Для використання в елементах, що не є конструктивними, слід застосовувати наступні вимоги: LVL слід експериментально випробувати і класифікувати в клас E1 або E2.

Примітка 1. У деяких країнах тільки продукти класу формальдегіду Е1 можуть бути розміщені на ринку.

Вимоги до результатів експериментальних досліджень як для контрольних випробувань і заводського контролю виробництва викладені: для класу Е1 в таблиці Л.2, а класу Е2 в таблиці Л.3.

Примітка 2. Плити класу E1 можуть бути використані, не викликаючи концентрації в повітрі більше ніж 0.1×10^{-6} (ppm).

Вимога щодо експериментального дослідження не застосовується до LVL, при виготовленні якого формальдегід не застосовується. Такий матеріал одразу може бути класифікований як Е1 без спеціальних вимірювань.

Примітка 3. Прикладом такого LVL є ті смоли, які не виділяють або не мають у своєму складі формальдегіду, як, наприклад, ізоціанат або фенольний клей.

Таблиця Л.2 – Визначення класу за вмістом формальдегіду Е1

	Вимога	
Експериментальне дослідження	Вміст формальдегіду ≤ 0,124 мг/м³ повітря	
Заводський контроль	Вміст формальдегіду \leq 3,5 мг/м 2 за годину або \leq 5 мг/м 2 за годину протягом трьох днів після виготовлення	

Таблиця Л.3 – Визначення класу за вмістом формальдегіду Е2

	Вимога
Експериментальне дослідження	Вміст формальдегіду > 0,124 мг/м ³ повітря Обмеження вмісту формальдегіду від 3,5 мг/м ² до 8,0 мг/м ² за годину або від 5 мг/м ² до 12,0 мг/м ² за годину протягом трьох днів після виготовлення
Заводський контроль	Вміст формальдегіду від 3,5 мг/м 2 до 8,0 мг/м 2 за годину або від 5 мг/м 2 до 12,0 мг/м 2 за годину протягом трьох днів після виготовлення

ДОДАТОК М (довідковий)

КЛАСИФІКАЦІЯ І ВЛАСТИВОСТІ КЛЕЇВ ДЛЯ НЕСУЧИХ ДЕРЕВ'ЯНИХ КОНСТРУКЦІЙ [46]

М.1 Класифікація

Клеї в залежності від їх придатності для використання в різних кліматичних умовах класифікуються на тип I та II, основні вимоги до яких наведені в таблиці М.1.

Таблиця М.1 – Вимоги до клеїв типу І та ІІ для використання в різних кліматичних умовах

Температура	Кліматичні умови	Приклади	Тип клею
> 50 °C	_	Тривалий вплив високої температури	I
	Вологість > 85 % за температури 20 °C	Вплив навколишнього середовища	I
≤ 50 °C	Вологість ≤ 85 % за температури 20 °C	Всередині теплих та вентильованих будівель. В огороджувальних конструкціях за наявності захисту від впливу зовнішнього середовища. Короткі періоди впливу навколишнього середовища.	II

М.2 Випробування на зсув при розтягу

Значення зусилля розтягу для мінімального зсуву (приблизно 0,1 мм) для контрольних зразків мають відповідати наведеним в таблиці М.2.

Таблиця М.2 – Зусилля розтягу для мінімального зсуву для контрольних зразків

	Тип клею		
	I	II	
Умови експлуатації і термін витримки	Навантаження, що призводить до мінімального зсуву, Н		
$A1-7$ днів за температури (20 ± 2) °C і вологості (65 ± 5) %	2000	2000	
A2 — 7 днів за температури (20 \pm 2) °C і вологості (65 \pm 5) %, 4 дні в зволоженому стані за температури (15 \pm 5) °C. Зразки випробовують в зволоженому стані	1200	1200	
АЗ — 7 днів за температури (20 \pm 2) °C і вологості (65 \pm 5) %, 4 дні в зволоженому стані за температури (15 \pm 5) °C. Сушка протягом 7 днів за температури (20 \pm 2) °C і вологості (65 \pm 5) %. Зразки випробовують в сухому стані	1600	1600	
$A4-7$ днів за температури (20 ± 2) °C і вологості (65 ± 5) %, 6 годин в гарячій воді, 2 години в воді за температури (15 ± 5) °C. Зразки випробовують в зволоженому стані	1200	Не вимагається	
А5 — 7 днів за температури (20 ± 2) °C і вологості (65 ± 5) %, 6 годин в гарячій воді, 2 години в воді за температури (15 ± 5) °C. Сушка протягом 7 днів за температури (20 ± 2) °C і вологості (65 ± 5) %. Зразки випробовують в сухому стані	1600	Не вимагається	

М.3 Випробування на розшарування

Значення максимального разшарування клеєних зразків мають бути в межах до 5 % для типу клеїв І та до 10 % для типу клеїв ІІ.

ДОДАТОК Н (довідковий)

З'ЄДНАННЯ НА МЕТАЛЕВИХ ЗУБЧАСТИХ ПЛАСТИНАХ [56]

H.1 З'єднання на металевих зубчастих пластинах, що розташовуються на протилежних сторонах дерев'яних елементів, повинні мати однаковий розмір та орієнтацію.

Н.2 Геометрія пластини

Познаки, які застосовуються для визначення геометрії перфорованих металевих пластин, показані на рисунку Н.1 та визначаються наступним чином:

- напрям, що збігається з основним напрямом пластини;
- у напрям, перпендикулярний до основного напряму пластини;
- α кут між *х*-напрямом та силою (розтяг: 0° ≤ γ < 90°, стиск: 90° ≤ γ < 180°);
- β кут між напрямом волокон та напрямом діючої сили;
- γ кут між х-напрямом та лінією з'єднання;
- довжина пластини вздовж лінії з'єднання;
- А_еf площа загальної контактної поверхні між пластиною та деревиною, яка зменшена на 5 мм від країв граней вздовж деревини та від торця деревини, кратного 6 номінальним товщинам пластини.

1 – ефективна площина; 2 – напрям волокон

Рисунок Н.1 – Геометрія з'єднання з перфорованою металевою пластиною, навантаженого силою F_{Ed} та моментом M_{Ed}

Н.3 Міцнісні характеристики пластин

Характеристики міцності пластин повинні відповідати ряду вимог та мати нормативне значення для наступних властивостей, які визначаються згідно з [67] на основі випробувань, виконаних відповідно до ДСТУ Б EN 1075:

 $f_{a,0,0}$ — несуча здатність анкерування (защемлення) пластини на одиницю площі ($\alpha=0^\circ$ та $\beta=0^\circ$);

 $f_{a,90,90}$ — несуча здатність анкерування пластини на одиницю площі ($\alpha = 90^{\circ}$ та $\beta = 90^{\circ}$);

 $f_{t,0}$ — несуча здатність при розтягу на одиницю ширини пластини для $\alpha = 0^{\circ}$;

 $f_{c,0}$ — несуча здатність при стиску на одиницю ширини пластини для $\alpha = 0^{\circ}$;

 $f_{v,0}$ — несуча здатність при зсуві на одиницю ширини пластини у *x*-напрямі ($\alpha = 0^{\circ}$);

 $f_{t,90}$ — несуча здатність при розтягу на одиницю ширини пластини для $\alpha = 90^{\circ}$;

 $f_{c,90}$ — несуча здатність при при стиску на одиницю ширини пластини для $\alpha = 90^{\circ}$;

 $f_{v,90}$ — несуча здатність при зсуві на одиницю ширини пластини у *y*-напрямі ($\alpha = 90^{\circ}$);

 k_1, k_2, α_1 – постійні величини.

Для визначення несучої здатності при розтягу, стиску та зсуву значення коефіцієнта перетворення k_{mod} приймається 1.

Н.4 Міцність кріплення пластини

Характеристична міцність кріплення пластини $f_{a,\alpha,\beta,k}$ приймається на підставі результатів випробувань або розраховується:

$$f_{a,\alpha,\beta,k} = \max \begin{cases} f_{a,\alpha,0,k} - (f_{a,\alpha,0,k} - f_{a,90,90,k}) \cdot \frac{\beta}{45^{\circ}} & \text{при } \beta \geq 45^{\circ} \\ f_{a,0,0,k} - (f_{a,0,0,k} - f_{a,90,90,k}) \cdot \sin(\max(\alpha,\beta)) \end{cases}$$

$$f_{a,\alpha,\beta,k} = f_{a,0,0,k} - (f_{a,0,0,k} - f_{a,90,90,k}) \cdot \sin(\max(\alpha,\beta))$$
 при $45 < \beta \le 90^{\circ}$ (H.2)

Характеристична міцність кріплення пластини вздовж волокон:

$$f_{a,\alpha,0,k} = \begin{cases} f_{a,0,0,k} + k_1 \cdot \alpha & \alpha \le \alpha_0 \\ f_{a,0,0,k} + k_1 \cdot \alpha_0 + k_2 \cdot (\alpha - \alpha_0) & \alpha_0 < \alpha \le 90^{\circ} \end{cases}$$
(H.3)

Постійні величини k_1 , k_2 та α_0 визначаються при випробуваннях та згідно з методикою, наведеною у [67] для типу пластин, що використовується.

Н.5 Несуча здатність кріплення пластини (анкерування)

Розрахункове напруження анкерного кріплення $\tau_{F,d}$ на одну перфоровану металеву пластину під дією зусилля F_{Ed} та розрахункове напруження анкерування $\tau_{M,d}$ від моменту M_{Ed} приймається, як:

$$\tau_{F,d} = \frac{F_{A,Ed}}{A_{ef}},\tag{H.4}$$

$$\tau_{M,d} = \frac{M_{A,Ed}}{W_D} \tag{H.5}$$

при

$$W_{p} = \int_{A_{ef}} r dA, \qquad (H.6)$$

де: $F_{A,Ed}$ — розрахункова сила, яка діє на одну пластину у центрі ваги ефективної площі (тобто половини загального зусилля у дерев'яному елементі);

 $M_{A,Ed}$ — розрахунковий момент, який діє на одну пластину у центрі ваги ефективної площі;

dA – одинична площа перфорованої металевої пластини;

r — відстань від центра ваги до одиничної площі пластини;

A_{ef} – ефективна площа пластини.

Альтернативна апроксимація виразу (Н.6) для значення W_p може бути прийнятою у наступному вигляді:

$$W_p = \frac{A_{ef}d}{4} \tag{H.7}$$

при

$$d = \sqrt{\left(\frac{A_{\text{ef}}}{h_{\text{ef}}}\right)^2} + h_{\text{ef}}^2, \tag{H.8}$$

де $h_{\rm ef}$ — максимальна висота ефективної площі анкерного кріплення, перпендикулярна до найбільш довгої сторони.

Контактний тиск між дерев'яними елементами можна взяти до уваги для зниження значення F у стані стиску за умови, що зазор між елементами має середнє значення, яке не більше за 1,5 мм, а максимальне значення складає 3 мм. У таких випадках з'єднання повинно проектуватися з мінімальним стискальним розрахунковим зусиллям $F_{A,Ed}/2$.

Контактний тиск між дерев'яними елементами у стику поясів при стиску можна взяти до уваги шляхом врахування розрахункового зусилля $F_{A,Ed}$ та розрахункового моменту $M_{A,Ed}$ у відповідності з наступним виразом:

$$F_{A,Ed} = \sqrt{\frac{F_{Ed}}{2} - \frac{3|M_{Ed}|}{2h}^2 + (F_{Ed}\sin\beta)^2},$$
 (H.9)

$$M_{A,Ed} = \frac{M_{Ed}}{2} \,, \tag{H.10}$$

де: F_{Ed} — розрахункове осьове зусилля у поясі, що діє на одну пластину;

 M_{Ed} — розрахунковий момент у поясі на одну пластину;

h – висота пояса.

Міцність забезпечена, якщо виконується наступна умова:

$$\left(\frac{\tau_{F,d}}{f_{a,\alpha,\beta,d}}\right)^2 + \left(\frac{\tau_{M,d}}{f_{a,0,0,d}}\right)^2 \le 1.$$
(H.11)

Н.6 Несуча здатність пластини

Для кожної межі з'єднання зусилля у двох основних напрямках приймається, як:

$$F_{x,Ed} = F_{Ed} \cos \alpha \pm 2F_{M,Ed} \sin \gamma , \qquad (H.12)$$

$$F_{v,Ed} = F_{Ed} \sin \alpha \pm 2F_{M,Ed} \cos \gamma , \qquad (H.13)$$

де: F_{Ed} — розрахункова сила в одній пластині (тобто половина загального зусилля у дерев'яному елементі);

 $F_{M,Ed}$ — розрахункова сила від моменту в одній пластині ($F_{M,Ed}=2M_{Ed}/l$).

Міцність забезпечена, якщо виконується наступна умова:

$$\left(\frac{F_{x,Ed}}{F_{x,Rd}}\right)^2 + \left(\frac{F_{y,Ed}}{F_{y,Rd}}\right)^2 \le 1,$$
(H.14)

де: $F_{x,Ed}$ та $F_{y,Ed}$ – розрахункове значення сил, що діють у напрямах x та y;

 $R_{x,Ed}$ і $R_{y,Ed}$ — відповідні розрахункові значення несучої здатності пластини. Вони визначаються з максимуму нормативних несучих здатностей перерізів, паралельних або перпендикулярних до головних осей, на основі наступних виразів для нормативної несучої здатності пластини у цих напрямках:

$$F_{x,Rk} = \max \begin{cases} \left| f_{n,0,k} l \sin(\gamma - \gamma_0 \sin 2\gamma) \right| \\ \left| f_{v,0,k} l \cos \gamma \right| \end{cases}; \tag{H.15}$$

$$F_{y,Rk} = \max \begin{cases} \left| f_{n,90,k} l \cos \gamma \right| \\ \left| f_{v,90,k} l \sin \gamma \right| \end{cases}$$
 (H.16)

при

$$f_{n,0,k} = egin{cases} f_{t,0,k} & \text{для } F_{x,Ed} > 0 \\ f_{c,0,k} & \text{для } F_{x,Ed} \leq 0 \end{cases}$$
 (H.17)

$$f_{n,90,k} = \begin{cases} f_{t,90,k} & \text{для } F_{y,Ed} > 0 \\ f_{c,90,k} & \text{для } F_{y,Ed} \leq 0 \end{cases}$$
 (H.18)
$$k = \begin{cases} 1 + k_{v} \sin 2\gamma & \text{для } F_{x,Ed} > 0 \\ 1 & \text{для } F_{x,Ed} \leq 0 \end{cases}$$
 (H.19)

$$k = \begin{cases} 1 + k_{v} \sin 2\gamma & \text{для } F_{x,Ed} > 0 \\ 1 & \text{для } F_{x,Ed} \le 0 \end{cases}$$
 (H.19)

де γ_0 і k_v – постійні величини, які визначаються з випробувань на зсув згідно з методикою, що наведена у [67] для типу пластин, який використовується. У таблиці Н.1 наведені характеристики металевих зубчастих пластин системи "Wolf".

Якщо пластина охоплює більш ніж дві лінії з'єднань по елементу, то тоді зусилля по кожній прямій частині лінії з'єднання визначається так, щоб забезпечити стан рівноваги та щоб задовольнити вираз (Н.14) по кожній прямій частині з'єднувальної лінії. Необхідно взяти до уваги усі критичні перерізи.

Таблиця Н.1 – Характеристики металевих зубчастих пластин системи "Wolf" (рекомендується)

Типи пл "Wolf"	ластин системи	Wolf 101	12N	12NE	15N	15NE	20N	20NE	20ZE	20W		
Товщина пластини <i>t</i> , мм		1,00	1,25		1,5		2,00			2,00		
Характеристичні значення несучої здатності пластин, Н/мм²												
(для деревини густиною $\rho_k = 350 \; \text{кг/м}^3$)												
$f_{t,0,k}$	<i>х</i> -напрям (α= 0°)	170	253	351	320	444	418	580	709	454		
$f_{t,90,k}$	<i>у</i> -напрям (α= 90°)	139	16	60	20	00	283		242			
$f_{c,0,k}$	<i>х</i> -напрям (α= 0°)	85	175		210		131		274			
f _{c,90,k}	<i>у</i> -напрям (α= 90°)	93	97		151		120		242			
$f_{v,0,k}$	<i>х</i> -напрям (α= 0°)	78	83		106		88		168			
$f_{v,90,k}$	<i>у</i> -напрям (α= 90°)	41	78		87		91		118			
γο		-5°	25°		16°		24°		0°			
k _∨		1,70	0,23		0,70		0,26		0,5			
Характеристичні значення несучої здатності анкерування пластин												
$f_{a,0,0,k}, H/MM^2$		2,94	1,80		2,31		2,34		1,56	2,36		
$f_{a,90,90,k}, H/MM^2$		1,31	1,01		1,30		1,40		0,93	1,64		
k_1 , H/(MM ²)		-0,0049	-0,0075		-0,0221		-0,0145		-0,0097	-0,0183		
k_2 , H/(MM ²)		0,00258	-0,0006		0,0031		0,0		0,0006			
α_0		60°	30°		38°		48,5°		24,5°			
K_{ser} , H/мм (для деревини густиною $ ho_{mean} = 350 \; \text{кг/м}^3$)		10,0	8,	60	3	,5	4	,2	2,8	5,2		

ДОДАТОК П (довідковий)

БІБЛІОГРАФІЯ

- 1. ДСТУ 4479:2005 Речовини вогнезахисні водорозчинні для деревини. Загальні технічні вимоги та методи випробовування
- 2. ДСТУ 3760:2006 Прокат арматурний для залізобетонних конструкцій. Загальні технічні умови
- 3. ДСТУ 4020-2-2001 Лісоматеріали круглі та пиляні. Методи обмірювання та визначення об'ємів. Частина 2. Лісоматеріали круглі
- 4. ДК 011-96 Класифікатор системи позначень одиниць вимірювання та обліку
- 5. ДСТУ Б В.2.7-95-2000 Будівельні матеріали. Листи гіпсокартонні. Технічні умови
- 6. ДСТУ EN 300:2008 Плити деревинностружкові з орієнтованою стружкою (OSB). Терміни та визначення понять, класифікація та технічні вимоги (EN 300:2006, IDT)
- 7. ДСТУ EN 312-4:2003 Плити деревностружкові. Технічні умови. Частина 4. Вимоги до плит, застосовуваних для тримальних конструкцій, розрахованих на сухі умови експлуатації (EN 312-4:1996, IDT)
- 8. ДСТУ EN 312-5:2003 Плити деревностружкові. Технічні умови. Частина 5. Вимоги до плит, застосовуваних у тримальних конструкціях, розрахованих на вологі умови експлуатації (EN 312-5:1997, IDT)
- 9. ДСТУ EN 312-6:2003 Плити деревностружкові. Технічні умови. Частина 6. Вимоги до високонавантажених плит для тримальних конструкцій, розрахованих на сухі умови експлуатації (EN 312-6:1996, IDT)
- 10. ДСТУ EN 312-7:2003 Плити деревностружкові. Технічні умови. Частина 7. Вимоги до високонавантажуваних плит для тримальних конструкцій, розрахованих на вологі умови експлуатації (EN 312-7:1997, IDT)
- 11. ДСТУ prEN 385:2001 З'єднання дерев'яних конструкцій шипові. Функціональні та мінімальні виробничі вимоги (prEN 385:2001, IDT)
- 12. ДСТУ pr EN 386-2001 Лісоматеріали клеєні шаруваті. Функційні та мінімальні виробничі вимоги (pr EN 386:2001, IDT)
- 13. ДСТУ EN 387:2009 Лісоматеріали клеєні шаруваті. Відкриті шипові з'єднання. Експлуатаційні та мінімальні виробничі вимоги (EN 387:2001, IDT)
- 14. ДСТУ EN 518:2003 Лісоматеріали конструкційні. Сортування. Вимоги до стандартів на візуальне сортування за міцністю (EN 518:1995, IDT)
- 15. ДСТУ EN 622-2:2006 Плити деревинноволокнисті. Технічні умови. Частина 2. Вимоги до твердих плит (EN 622-2:2004, IDT)
- 16. ДСТУ EN 622-3:2006 Плити деревинноволокнисті. Технічні умови Частина 3. Вимоги до плит середньої твердості (EN 622-3:2004, IDT)
- 17. ДСТУ EN 622-4:2006 Плити деревинноволокнисті. Технічні умови. Частина 4. Вимоги до м'яких плит (EN 622-4:1997, IDT)
- 18. ДСТУ EN 622-5:2006 Плити деревноволокнисті. Технічні умови. Частина 5. Вимоги до плит, отриманих сухим способом (MDF) (EN 622-5:1997, IDT)
- 19. ДСТУ EN 636:2014 Фанера. Технічні умови (EN 636:2003, IDT)
- 20. ДСТУ EN 844-3:2004 Лісоматеріали круглі та пиломатеріали. Терміни та визначення понять. Частина 3. Загальні поняття щодо пиломатеріалів
- 21. ДСТУ EN 13986:2009 Плити деревинні, застосовні у конструкціях. Характеристики, оцінювання відповідності та маркування (EN 13986:2004, IDT)

- 22. ДСТУ EN 1310:2005 Лісоматеріали круглі та пиляні. Метод вимірювання параметрів (EN 1310:1997, IDT)
- 23. ДСТУ EN 1311-2001 Лісоматеріали круглі та пиляні. Методи вимірювання біологічних пошкоджень (EN 1311:1997, IDT)
- 24. ДСТУ EN 1315-1-2001 Класифікація за розмірами. Частина 1. Лісоматеріали круглі листяні (EN 1315-1:1997, IDT)
- 25. ДСТУ EN 1315-2-2001 Класифікація за розмірами. Частина 2. Круглі лісоматеріали хвойних порід (EN 1315-2:1997, IDT)
- 26. ДСТУ EN 1316-1:2005 Лісоматеріали круглі листяні. Класифікація за якістю. Частина 1. Дуб та бук (EN 1316-1:1997, IDT)
- 27. ДСТУ EN 1316-2:2005 Лісоматеріали круглі листяні. Класифікація за якістю. Частина 2. Тополя (EN 1316-2:1997, IDT)
- 28. ДСТУ EN 1316-3:2005 Лісоматеріали круглі листяні. Класифікація за якістю. Частина 3. Ясен, клен та явір (EN 1316-3:1997, IDT)
- 29. ДСТУ EN 10016-1:2006 Катанка з нелегованої сталі для волочіння та (або) холодного прокатування. Частина 1. Загальні вимоги (EN 10016-1:1994, IDT)
- 30. ДСТУ EN 10016-2:2006 Катанка з нелегованої сталі для волочіння та (або) холодного прокатування. Частина 2. Спеціальні вимоги до катанки загальної призначеності (EN 10016-2:1994, IDT)
- 31. ДСТУ EN 10083-1:2008 Сталі для гартування та відпускання. Частина 1. Загальні технічні умови постачання (EN 10083-1:2006, IDT)
- 32. ДСТУ EN 10083-2:2008 Сталі для гартування та відпускання. Частина 2. Технічні умови постачання нелегованих сталей (EN 10083 2:2006, IDT)
- 33. ДСТУ EN 10083-3:2007 Сталі поліпшувані. Частина 3. Технічні умови постачання легованих сталей (EN 10083 3:2006, IDT)
- 34. ДСТУ EN 10088-1:2008 Сталі нержавкі. Частина 1. Перелік нержавких сталей (EN 10088 1:2005, IDT)
- 35. ДСТУ EN 10088-2:2010 Сталі нержавкі. Частина 2. Лист і стрічка з корозійнотривких сталей загальної призначеності. Технічні умови постачання.
- 36. ДСТУ ENV 1927-1:2005 Лісоматеріали круглі хвойні. Класифікація за якістю. Частина 1. Ялина та ялиця (ENV 1927-1:1998, IDT)
- 37. ДСТУ ENV 1927-2:2005 Лісоматеріали круглі хвойні. Класифікація за якістю. Частина 2. Сосна (ENV 1927-2:1998, IDT)
- 38. ДСТУ ENV 1927-3:2005 Лісоматеріали круглі хвойні. Класифікація за якістю. Частина 3. Модрина та тис (ENV 1927-3:1998, IDT)
- 39. ДСТУ ISO 898-1:2003 Механічні властивості кріпильних виробів, виготовлених з вуглецевої і легованої сталі. Частина 1. Болти, гвинти і шпильки (ISO 898-1:1999, IDT)
- 40. ДСТУ ISO 898-2:2004 Механічні властивості кріпильних виробів. Частина 2. Гайки з установленими значеннями пробних навантаг. Нарізь з великим кроком
- 41. ДСТУ ISO 10642:2006 Ґвинти з потайною головкою та шестигранним заглибленням "під ключ". Технічні умови (ISO 10642:2004, IDT)
- 42. ДСТУ ISO 10666:2007 Ґвинти самосвердлувальні самонарізувальні. Механічні та функційні властивості (ISO 10666:1999, IDT)
- 43. ДСТУ ISO 15480:2007 Ґвинти самосвердлувальні самонарізувальні з шестигранною головкою з буртом. Технічні умови (ISO 15480:1999, IDT)
- 44. ДСТУ ISO 15481:2007 Ґвинти самосвердлувальні самонарізувальні з циліндричною скругленою головкою та хрестоподібним шліцом. Технічні умови (ISO 15481:1999, IDT)

- 45. ДСТУ ISO 15482:2007 Ґвинти самосвердлувальні самонарізувальні з потайною головкою та хрестоподібним шліцом. Технічні умови (ISO 15482:1999, IDT)
- 46. EN 301: 2006 Adhesives, phenolic and aminoplastic, for load-bearing timber structures Classification and performance requirements
- 47. EN 408:2010 Timber structures Structural timber and glued laminated timber Determination of some physical and mechanical properties
- 48. EN 409:2009 Timber structures Test methods Determination of the yield moment of dowel type fasteners
- 49. EN 844-1:1995 Round and sawn timber Terminology Part 1: General terms common to round and sawn timber
- 50. EN 844-2:1997 Round and sawn timber Terminology Part 2: General terms relating to round timber
- 51. EN 844-5:1997 Round and sawn timber Terminology Part 5: Terms relating to dimensions of round timber
- 52. EN 844-7:1997 Round and sawn timber Terminology Part 7: Terms relating to features of round timber
- 53. EN 844-8:1997 Round and sawn timber Terminology Part 8: Terms relating to anatomical structure of timber
- 54. prEN 844-10 Round and sawn timber Terminology Part 10: Terms relating to discolouration and fungal attack
- 55. prEN 844-11 Round and sawn timber Terminology Part 11: Terms relating to degrade by insects
- 56. EN 1075:2014 Timber structures Test methods Joints made with punched metal plate fasteners
- 57. prEN 1309-2:1998 Round and sawn timber Method of measurement of dimensions Part 2: Round timber
- 58. EN 10147:2000 Continuously hot-dip zinc coated structural steels strip and sheet. Technical delivery conditions
- 59. EN 14080:2013 Timber structures. Glued laminated timber and glued solid timber. Requirements
- 60. EN 14081-1:2014 Timber structures Strength graded structural timber with rectangular cross section Part 1: General requirements
- 61. EN 14081-2:2014 Timber structures Strength graded structural timber with rectangular cross section Part 2: Machine grading Additional requirements for initial type testing
- 62. EN 14081-3:2014 Timber structures Strength graded structural timber with rectangular cross section Part 3: Machine grading; additional requirements for factory production control
- 63. EN 14081-4:2014 Timber structures Strength graded structural timber with rectangular cross section Part 4: Machine grading Grading machine settings for machine controlled systems
 - 64. EN 14250:2010 Timber structures product requirements for prefabricated structural members assembled with punched metal plate fasteners
 - 65. EN 14279:2009 Laminated Veneer Lumber (LVL) Definitions, classification and specifications
 - 66. EN 14374:2004 Timber structures. Structural laminated veneer lumber. Requirements
 - 67. EN 14545: 2008 Timber structures Connectors Requirements
 - 68. EN 14592+A1: 2012 Timber structures Dowel-type fasteners Requirements
 - 69. EN 1611-1:1999 Sawn timber Appearance grading of softwoods Part 1: European spruces, firs, pines, Douglas firs and larches
 - 70. EN 912:2011 Timber fasteners. Specifications for connectors for timbers

УКНД 91.010.30, 91.080.20

Ключові слова: цільна деревина, клеєна деревина, фанера, розрахункові значення міцності, розрахункові напруження, несуча здатність, жорсткість, розрахунок елементів і з'єднань, проектування балок, проектування ферм, проектування рам, проектування арок, проектування колон, просторова жорсткість будівель.

Редактор – А.О. Луковська Комп'ютерна верстка – В.Б.Чукашкіна

* * * * * * * * * *

Формат $60x84^{1}/_{8}$. Папір офсетний. Гарнітура "Arial". Друк офсетний.

Державне підприємство "Укрархбудінформ".

вул. М. Кривоноса, 2А, м. Київ-37, 03037, Україна.

Тел. 249-36-62
Відділ реалізації: тел.факс (044) 249-36-62 (63, 64) E-mail:uabi90@ukr.net

Свідоцтво про внесення суб'єкта видавничої справи до державного реєстру видавців ДК № 690 від 27.11.2001 р.