Assignment 3

28-01-2019

- (1) Identify the set $A \subset \mathbb{N}$ given that: if $x \in A$, then $x + 1 \in A$. Justify your answer.
- (2) The absolute value or mod function is defined as follows: $\forall x \in \mathbb{R}$, define

$$|x| = \begin{cases} x & \text{when } x \ge 0\\ -x & \text{when } x < 0 \end{cases}$$

Identify the following sets:

- (i) $\{x \in \mathbb{R} : |x| = 3\}$ (ii) $\{x \in \mathbb{R} : |x| \le 3\}$ (iii) $\{x \in \mathbb{R} : |x + 5| \le 3\}$
- (3) Find lub(A) and glb(A) in B in the following examples, if they exist. If not, explain why they do not exist.
 - (a) $A = \mathbb{N}, B = \mathbb{N}$
 - (b) $A = \{x \in \mathbb{Z} : -1 \le |x+5| < 8\}, B = \mathbb{Z}$. Does your answer change if $B = \mathbb{R}$?
 - (c) $A = \{x \in \mathbb{Q} : -1 \le |x+5| < 8\}, B = \mathbb{Q}$. Does your answer change if $B = \mathbb{R}$?
 - (d) $A = \{x \in \mathbb{Q} : x \neq 0, 1/x \in \mathbb{N}\}, B = \mathbb{Q}$. Does your answer change if $B = \mathbb{R}$?
- (4) Let $A \subset \mathbb{R}$ and $\alpha \in \mathbb{R}$ such that α in an upper bound of S in \mathbb{R} . Show that the following statements are equivalent.
 - (a) α is the least upper bound of A in \mathbb{R} .
 - (b) For every $\epsilon > 0 \in \mathbb{R}$, there exist $a \in A$ such that $\alpha \epsilon < a \le \alpha$
 - (c) For every $t \in \mathbb{R}$ with $t < \alpha$, there exists $a \in A$ such that $t < a \le \alpha$.
- (5) Let $c \in \mathbb{R}$; $A, B \subset \mathbb{R}$ be bounded and non-empty. State whether the following are true or false. If true, prove it. If false, give a counter-example, and state and prove the corrected version.
 - (a) If $A \subset B$ then lub(A) = lub(B).
 - (b) $lub(A \cup B) = min\{lub(A), lub(B)\}$
 - (c) $lub(A \cap B)$ ____{{lub}(A), lub(B)}
 - (d) lub(cA) = c lub(A)
 - (e) lub(A + B) = lub(A) + lub(B)
- (6) Let X be a set, $A, B \subset X$. Show that the following are equivalent:
 - (i) $A \subset B$ (ii) $A = A \cap B$ (iii) $A \subset (A \cap B)$
 - (iv) $B^c \subset A^c$ (v) $B = A \cup B$ (vi) $(A \cup B) \subset B$
- (7) Let $a, b, c, d \in \mathbb{N}$. State the following mathematically and write their negations:
 - (a) c divides a. (Easier to think of: a is a multiple of c).
 - (b) c is a common divisor of a and b,
 - (c) d is a greatest common divisor of a and b.