Theoretische Physik II (Hebecker)

Robin Heinemann

19. April 2017

Inhaltsverzeichnis

1	Lagr	range - Formalismus	1
	1.1	Grundidee (1788, Joseph-Louis Lagrange)	1
	1.2	Variationsrechnung: Der Funktionalbegriff	1
	1.3	Weglänge als Funktional	2
	1.4	Variationsrechnung: Extremalisieung von Funktionalen	3

1 Lagrange - Formalismus

1.1 Grundidee (1788, Joseph-Louis Lagrange)

Vorteile gegenüber Newton:

- Flexibelität
- · Zwangskräfte
- Zusammenhang zwischen Symmetrie und Erhaltungsgrößen

Zentrales Objekt: Wirkungsfunktional S.

Abbildung S: Trajektorie \mapsto reelle Zahl

(S definiiert mittls Lagrange-Funktion L)

Zentrale physikalische Aussage des Formalimus: "Wirkungsprinzip" ("Hamilton-Prinzip")

Letztes besagt: Eine physikalische Bewegung verläuft so, dass das Wirkungsfunktional minimal wird.

ightarrow DGL ("Euler-Lagrange-Gleichung"), im einfachen Fall \equiv Newton Gleichung

1.2 Variationsrechnung: Der Funktionalbegriff

Funktion (mehrerer Variablen) y;

$$y: \mathbb{R}^n \to \mathbb{R}, y: \vec{x} \mapsto y(\vec{x})$$

Funktional: analg, mit \mathbb{R}^n ersetzt durch eine Menge von Funktionen (Vektorraum \mathbb{V})

$$F: \mathbb{V} \to \mathbb{R}, F: y \mapsto F[y]$$

Beispiel 1.1 \mathbb{V} seinen differenziebare Funktionen auf [0,1] mit y(0)=y(1)=0Diskretisierung:

$$x_1,\dots,x_n \to \{y(x_1),\dots,y(x_n)\}$$

$$\downarrow$$

$$\text{Vektor} \equiv \text{Funktion}$$

⇒ im diskreten Fall ist unser Funktional schlicht eine Funktion mit Vektor-Argument. (Eigentlicher Funktionalbegriff folgt im Limes $n \to \infty$). Beispielfunktionale zu obigem V.

- $F_1[y] = y(0.5)$
- $F_2[y] = y'(0.3)$
- $F_3[y] = y(0.1) + y(0.5) + y'(0.9)$
- $F_4[y] = \int_0^1 dx (x \cdot y(x)^2 + y'(x)^2)$
- $F_5[y] = \int_0^1 dx f(y(x), y'(x), x)$

 F_5 hängt von Funktion f (von 3 Variablen) ab. Falls wir $f(a,b,c)=ca^2+b^2$ wählen, folgt F_4 wählen, folgt F_4 . Noch konkreter: wähle Beispielfunktion (ignoriere zur Einfachheit Randbedingung y(1) = 0

$$\begin{split} y_0: x \mapsto x^2; y_0(x) &= x^2; y_0'(x) = 2x; \\ \Rightarrow F_1[y_0] &= 0.25; F_2[y_0] = 0.6, F_3[y_0] = 0.01 + 0.25 + 1.8 = 2.06 \\ F_4[y_0] &= \int_0^1 \mathrm{d}x (x^5 + 4x^2) = \frac{1}{6} + \frac{4}{3} = \frac{3}{2} \end{split}$$

1.3 Weglänge als Funktional

Weg von \vec{y}_a nach $\vec{y}_b : \vec{y} : \tau \mapsto \vec{y}(\tau), \tau \in [0,1]; \vec{y}(0) = \vec{y}_a, \vec{y}(1) = \vec{y}_b$ Weglänge:

$$F[\vec{y}] = \int_{\vec{y}_a}^{\vec{y}_b} |\mathrm{d}\vec{y}| = \int_0^1 \mathrm{d}\tau \sqrt{\left(\frac{\mathrm{d}\vec{y}(\tau)}{\mathrm{d}\tau}\right)^2}$$

(Eigentlich haben wir sogar ein Funktional einer vektorwertigen Funktion beziehungsweise ein Funktional mit 3 Argumenten: $F[y] = F[y^1, y^2, y^3]$)

Etwas interessater: Weglänge im Gebirge:

Sei $\vec{x}(\tau) = \{x^1(\tau), x^2(\tau)\}$ die Projektion des Weges auf Horizontale. Zu jedem solchen Weg gehört die "echte" Weglänge im Gebirge. Beachte: Höhenfunktion $z: \vec{x} \mapsto z(\vec{x})$

 \Rightarrow 3-d Weg:

$$\begin{split} \vec{y}(\tau) &= \{y^1(\tau), y^2(\tau), y^3(\tau)\} \\ &\equiv \{x^1(\tau), x^2(\tau), z(\vec{x}(\tau))\} \\ F_{Geb.}[x] &= F[\vec{y}[\vec{x}]] = \int \mathrm{d}t \sqrt{\left(\frac{\mathrm{d}x^1(\tau)}{\mathrm{d}\tau}\right)^2 + \left(\frac{\mathrm{d}x^2(\tau)}{\mathrm{d}\tau}\right)^2 + \left(\frac{\mathrm{d}z(x^1(\tau), x^2(\tau))}{\mathrm{d}\tau}\right)} \end{split}$$

1.4 Variationsrechnung: Extremalisieung von Funktionalen

Funktionen: $y: x \mapsto y(x)$; wir wissen y hat Extremum bei $x_0 \Rightarrow y'(x_0) = 0$ Funktionale der Form: $F[y]=\int_0^1\mathrm{d}x f(y,y',x);y:[0,1]\to\mathbb{R};y(0)=y_a;y(1)=y_b$ Annahme: y_0 extremalisiert F. Sei weiterhin δy eine beliebige 2-fach differenziebare Funktion mit $\delta y(0) = \delta y(1) = 0$

$$\Rightarrow \underbrace{y_{\alpha} \equiv y_0 + \alpha \cdot \delta y}_{\text{Ist eine Funktion aus unserem Wertevorrat von } F} \quad (\alpha \in (-\varepsilon, \varepsilon))$$

 \Rightarrow Betrachte Abbildung $(-\varepsilon,\varepsilon) \to \mathbb{R}, \alpha \mapsto F[y_{\alpha}]$. Per unserer Annahme hat diese Abbildung Extremum bei $\alpha = 0$. Also gilt

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}F[y_{\alpha}] = 0\big|_{\alpha=0}$$

Taylor.entwickle um $\alpha = 0$:

$$\begin{split} F[y_{\alpha}] &= \int_{0}^{1} \mathrm{d}x f\big(y_{0} + \alpha \delta y, y_{0}' + \alpha \delta y', x\big) \\ &= F[y_{0}] + \int_{0}^{1} \mathrm{d}x \Big(\frac{\partial f}{\partial y}(y_{0}, y_{0}', x) \cdot \alpha \delta y + \frac{\partial f}{\partial y'}(y_{0}, y_{0}', x) \cdot \alpha \delta y'\Big) + O(\alpha^{2}) \end{split}$$

Term linear in α muss

$$0 = \int_0^1 dx \left(\frac{\partial f}{\partial y} \delta y x \frac{\partial f}{\partial y'} \frac{d}{dx} (\delta y) \right)$$

$$\frac{\partial f}{\partial y'}\delta y = 0$$
 bei $0, 1$

$$= \int_0^1 dx \left(\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right) \delta y = 0$$