Experiment 2: Email Classification using Naïve Bayes and K-Nearest Neighbors

Pradeep Kumar R

Goal and Purpose

- Goal: To categorize emails as either Spam or Ham using machine learning algorithms.
- Purpose: Develop and assess Naïve Bayes and KNN models using metrics such as accuracy, precision, recall, F1-score, and ROC analysis. Apply 5-Fold Cross-Validation to measure model robustness.

Key Libraries Utilized

- pandas, numpy, matplotlib, seaborn
- sklearn.model_selection train_test_split, cross_val_score, KFold
- sklearn.naive_bayes GaussianNB, MultinomialNB, BernoulliNB
- sklearn.neighbors KNeighborsClassifier
- sklearn.metrics classification_report, confusion_matrix, roc_curve, auc
- sklearn.preprocessing StandardScaler, MinMaxScaler

Python Implementation

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
# Dataset Loading
df = pd.read_csv("/content/spambase_csv.csv")
print(df.isnull().sum().sum())
# Feature and Label Separation
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# Feature Scaling
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Data Visualization
sns.countplot(x=y)
plt.title("Email Label Distribution")
plt.xticks([0, 1], ['Ham', 'Spam'])
plt.show()
df.iloc[:, :5].hist(figsize=(10, 6))
plt.suptitle("Feature Distribution Overview")
plt.show()
# Train-Test Splitting
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, ratest)
```

```
# Preprocessing for Naïve Bayes
X_train_std = StandardScaler().fit_transform(X_train)
X_test_std = StandardScaler().fit_transform(X_test)
X_train_mnb = MinMaxScaler().fit_transform(X_train)
X_test_mnb = MinMaxScaler().fit_transform(X_test)
# Gaussian Naïve Bayes
gnb = GaussianNB()
gnb.fit(X_train_std, y_train)
y_pred = gnb.predict(X_test_std)
print("\nGaussianNB Results:")
print(classification_report(y_test, y_pred))
# Bernoulli Naïve Bayes
bnb = BernoulliNB()
bnb.fit(X_train_std, y_train)
y_pred = bnb.predict(X_test_std)
print("\nBernoulliNB Results:")
print(classification_report(y_test, y_pred))
# Multinomial Naïve Bayes
mnb = MultinomialNB()
mnb.fit(X_train_mnb, y_train)
y_pred = mnb.predict(X_test_mnb)
print("\nMultinomialNB Results:")
print(classification_report(y_test, y_pred))
# KNN for different k values
for k in [3, 5, 7]:
   knn = KNeighborsClassifier(n_neighbors=k)
   knn.fit(X_train, y_train)
   y_pred = knn.predict(X_test)
   print(f"\nKNN (k={k}) Results:")
   print(classification_report(y_test, y_pred))
# Model Evaluation Function
def evaluate_model(model, name):
```

```
y_pred = model.predict(X_test)
    y_prob = model.predict_proba(X_test)[:, 1] if hasattr(model, 'predict_proba')
    acc = accuracy_score(y_test, y_pred)
    prec = precision_score(y_test, y_pred)
    rec = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    print(f"\n{name} Metrics:\nAccuracy: {acc:.2f}, Precision: {prec:.2f}, Recall:
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
    plt.title(f"{name} Confusion Matrix")
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.show()
    if y_prob is not None:
        fpr, tpr, _ = roc_curve(y_test, y_prob)
        plt.plot(fpr, tpr, label=f"{name} (AUC = {auc(fpr, tpr):.2f})")
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title(f"{name} ROC Curve")
        plt.legend()
        plt.grid()
        plt.show()
evaluate_model(GaussianNB().fit(X_train, y_train), "GaussianNB")
evaluate_model(KNeighborsClassifier(n_neighbors=5).fit(X_train, y_train), "KNN (k=
# Cross-Validation using K-Folds
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
models = {
    'GaussianNB': GaussianNB(),
    'KNN (k=5)': KNeighborsClassifier(n_neighbors=5),
}
for name, model in models.items():
    scores = cross_val_score(model, X_scaled, y, cv=kfold)
    print(f"{name} Cross-Validation Accuracy: {np.mean(scores):.4f} ± {np.std(scores)}
```

Results and Observations

Data Exploration

Figure 1: Email Classes: Spam vs Ham

Figure 2: Histogram of Selected Features

Naïve Bayes Classifier Metrics

GaussianNB:

Accuracy: 0.83, Precision: 0.71, Recall: 0.96, F1-Score: 0.82

Figure 3: Confusion Matrix - GaussianNB

Figure 4: ROC Curve - GaussianNB

K-Nearest Neighbors (k=5)

Accuracy: 0.91, Precision: 0.89, Recall: 0.87, F1-Score: 0.88

Figure 5: Confusion Matrix - KNN (k=5)

Figure 6: ROC Curve - KNN (k=5)

Cross Validation Summary

 \bullet KNN (k=5) Mean Accuracy: 0.9085 \pm 0.0113

Comparison Tables

Naïve Bayes Variants

Model	Accuracy	Precision	Recall	F1 Score
Gaussian NB	0.83	0.71	0.96	0.82
Multinomial NB	0.91	0.88	0.88	0.88
Bernoulli NB	0.90	0.90	0.83	0.87

KNN with Various k

k	Accuracy	Precision	Recall	F1 Score
3	0.90	0.88	0.87	0.87
5	0.91	0.89	0.87	0.88
7	0.91	0.89	0.87	0.88

K-Fold Cross Validation (k=5)

Model	Mean Accuracy	Standard Deviation
GaussianNB	0.8153	0.0142
KNN (k=5)	0.9085	0.0113

Insights Gained

- Applied supervised learning techniques to differentiate between spam and non-spam emails.
- Evaluated models using key metrics and plotted ROC curves for probabilistic models.
- Understood the impact of preprocessing and hyperparameter tuning (e.g., value of k in KNN).

 \bullet Utilized k-fold cross-validation to validate the generalization performance of classifiers.