

Smart Home Energy Demand Prediction

Un'applicazione loT per la previsione del consumo energetico

Autori: Mara Montinari, Giuseppe Ruberto

Corso: Internet of Things

Docente: Prof. Luigi Patrono

Tutor: Giuseppe Del Fiore

INTRODUZIONE

Contesto: Crescente bisogno di ottimizzazione energetica nelle abitazioni.

Problema: Come prevedere il consumo energetico giornaliero di una casa?

Obiettivo: Sviluppare un sistema basato su Machine Learning per stimare la domanda energetica e supportare decisioni consapevoli.

RELATED WORKS

Soluzioni simili:

- consultazione di paper all'interno della letteratura scientifica:
 - Pokharel & Ghimire (2023) Una casa a basso consumo in Belgio Evidenziano l'importanza di integrare dati esterni
 - Hosamo & Mazzetto (2024) Ottimizzazione funzionale dell'edificio
 Mostrano come i modelli a insiemi di alberi ottimizzano i consumi (ha guidato la scelta di XGBoost, CatBoost, Random Forest).
 - Eddaoudia et al. (2024), **«A Brief Review of Energy Consumption Forecasting Using Machine Learning Models»**Review che conferma l'efficacia dei modelli ML per la previsione energetica (supporto teorico alle nostre scelte)

Analogie:

- Utilizzo di dataset storici;
- Integrazione di dataset esterni: Kaggle, Umass;
- Utilizzo di modelli predittivi (RandomForest, XGBoost, CatBoost)

Differenze:

Integrazione con dati metereologici (API Tomorrow.io)

ANALISI DEI REQUISITI

Requisiti Funzionali:

- ☐ Previsione del consumo giornaliero;
- ☐ Acquisizione dati in tempo reale e storici.
- Pulizia e trasformazione dei dati.
- ☐ Valutazione delle prestazioni dei modelli di M.L.
- ☐ Predizione del consumo energetico tramite un modello di M.L.
- ☐ Visualizzazione interattiva dei risultati.

ANALISI DEI REQUISITI

Requisiti Non Funzionali:

 \Box Accuratezza del modello (R² > 0.8)

☐ Tempi di risposta rapidi per le previsioni

Interfaccia utente semplice e intuitiva.

TECNOLOGIE

- ☐ Framework: Streamlit per la creazione dell'interfaccia utente.
- ☐ Linguaggio di Programmazione: Python
- ☐ Librerie per Data Science:
- pandas: Per la manipolazione e l'analisi dei dati.
- numpy: Per il calcolo numerico e la gestione di array.
- XGBoost: L'algoritmo di machine learning specifico utilizzato per le previsioni.
- **joblib**: Per salvare e caricare il modello pre-addestrato.
- scikit-learn: Per la pre-elaborazione dei dati e la selezione dei modelli.

PROPOSTA

Modulo di Acquisizione Dati:

- Dati storici (dataset fornito).
- Dati in tempo reale (API Home Assistant).
- Dati meteorologici (API Tomorrow.io).

Modulo di Pre-elaborazione:

- Pulizia e integrazione dei dati utilizzando datasets esterni:
- Feature Engineering.

Modulo di Predizione:

• Addestramento dei modelli di M.L. (RandomForest, XGBoost, CatBoost)

Modulo di Visualizzazione:

- Interfaccia utente realizzata con Streamlit.
- Visualizzazione delle metriche dei 3 modelli e scelta del modello migliore.
- Valutazione delle previsioni.

INTEGRAZIONE DATASET ESTERNI

Integrazione di dataset esterni:

- Smart Home Energy Consumption Optimization;
- Energy Weather Raw Data
- Energy-consumption-prediction
- Smart Home Energy Consumption
- Dataset Smart Home (2013–2017)

Colonna	Descrizione		
Datetime	Timestamp (ora)		
EnergyConsumption	Consumo (W)		
Temperature	Temperatura (°C)		
Humidity	Umidità (%)		
Hour	Ora del giorno in cui è stato rilevato il		
	consumo		
Day_of_week	Giorno della settimana in cui è stato		
	rilevato il consumo:		
	- 0 = Lunedi.		
	– 6 = Domenica		
Month	Mese in cui è stato rilevato il consumo		
Day_of_year	Giorno dell'anno in cui è stato rilevato il		
	consumo (da 1 a 365)		
Week_of_year	Settimana dell'anno in cui è stato rilevato il		
	consumo (da 1 a 52)		
Is_weekend	Campo binario che indica se il giorno in		
	cui è stato rilevato il consumo è un		
	weekend(1) o no(0):		
	- Weekend = giorno della settimana tra 4,		
	5, 6.		

FONTE DATI	ABITAZIONI	LOCALIZZAZIONE	PERIODO COPERTO	RECORD DOPO
				CLEANING
Dataset fornito	1	Lecce	2023 - 2024	~8.000
(abitazione				
Lecce)				
Smart Home	10	Vari stati Europei	2020	~40.000
Energy				
Consumption				
Optimization				
Energy Weather	1	Messico	Novembre 2022	~20.000
Raw Data			– Febbraio 2024	
Energy-consum	10	Vari stati Europei	2019	~15.000
ption-prediction				
Smart Home	39	USA	2018	~100.000
Energy				
Consumption				
UMass Smart*	8	USA	2013 – 2017	~200.000
(A-H)				

Data pre-processing:

- Pulizia, accorpamento, ridenominazione dei dati e colonne dei vari dataset utilizzati.
- Creazione di un dataset unico (file_ripulito.csv)
 utilizzato come input per i modelli

DETTAGLI

Data Fusion:

• Combinazione dei dati da diverse fonti.

Modellazione: Addestramento e validazione di tre modelli:

- Random Forest;
- XGBoost;
- CatBoost

Salvataggio del modello:

• Il modello addestrato e testato migliore, viene salvato utilizzando joblib per essere riutilizzato.

VALIDAZIONE e METRICHE

Metriche di performance:

Addestramento e validazione dei modelli con il singolo file fornito;

•	Addestramento e validazione dei				
	modelli utilizzando il file_ripulito.csv				

MODELLO	\mathbb{R}^2	MSE (kW)	RMSE (kW)	MAPE
Random Forest	0.4750	27.72	5.26	3.77
XGBoost	0.4551	28.77	5.36	3.87
CatBoost	0.4472	29.18	5.40	3.90

MODELLO	R ²	MSE (kW)	RMSE (kW)	MAPE
Random Forest	0.8226	3.81	1.97	0.19
XGBoost	0.8302	3.71	1.93	0.19
CatBoost	0.8277	3.76	1.94	0.22

•Risultati attesi: R² superiore a 0.8, in linea con i requisiti non funzionali.

VALIDAZIONE e METRICHE

Metriche di performance:

 Risultati di previsione ottenuti dal modello addestrato con il solo file fornito

Risultati di previsione ottenuti dal modello addestrato con il file_ripulito.csv

A.A. 2018/2019

INTERFACCIA GRAFICA E DASHBOARD

Interfaccia grafica:

CONCLUSIONI E SVILUPPI FUTURI

Conclusioni:

- Il progetto ha dimostrato l'efficacia del Machine Learning e dell'IoT per la gestione energetica domestica.
- L'integrazione di dati in tempo reale migliora la precisione delle previsioni.

Sviluppi futuri:

- Sviluppo di un sistema di notifiche per avvisi in tempo reale.
- Integrazione con altri tipi di sensori (es. vento, luminosità, numero di occupanti...).
- Ottimizzazione del modello per prestazioni ancora migliori.

Grazie per l'attenzione

