Максимальное время выполнения всех заданий: 240 минут Максимальное количество баллов за задачу — 40 Ограничение по времени на каждый тест: 2 секунды Ограничение по памяти на каждую программу: 64 Мб

Задача А. Имена

Чтобы дать имя новорожденному, древнегреческие родители очень часто прибегали к советам опытного жреца. В этом важном деле решение принималось на основе данных астрологии и нумерологии, где особую роль играет так называемое число Пифагора. Жрецу необходимо было сложить все цифры, входящие в запись даты рождения ребенка, цифры полученного числа снова складывались и так до тех пор, пока не получали однозначное число — число Пифагора.

Имя ребенка выбиралось из специального перечня исходя из следующих соображений:

- •Длина имени (количество символов) должна быть равна числу Пифагора
- •Имя должно начинаться на любую букву имени отца или матери
- •Имя должно соответствовать полу ребенка Помогите жрецу определить подходящее ребенку имя.

Входной файл

В первой строке файла находится дата рождения ребенка в формате « $\partial \partial$. $\mathit{мм.2222}$ » (год может быть в диапазоне от 1 до 9999) и через пробел пол ребенка — слово «male» или «female». На следующей строке через пробел записаны имена родителей. На третьей строке записано одно число $1 \le K \le 100$ — количество имен в перечне. На каждой из K следующих строк располагается имя и через пробел слово «male» или «female». Все имена (из перечня и имена родителей) состоят из больших и малых букв алфавита английского языка, содержат не более 100 символов.

Выходной файл

Выведите имя ребенка, удовлетворяющее всем условиям. Если вариантов нет – вывести сообщение «Bad day», если вариантов несколько – вывести первое в алфавитном порядке подходящее имя.

Пример

Входной файл	Выходной файл
03.02.0570 male	Pythagor
Mnesarh Partenida	
3	
Pythagor male	
Perseus male	
Ariadne female	

Задача В. Символ

Одним из символов принадлежности к знаменитому пифагорейскому обществу являлась пятиконечная звезда в круге — знак единства четырех стихий и духа. К празднику ученики Пифагора изготовили отдельно звезды и круги — осталось только их совместить. Оказалось, что звезды имеют различное количество лучей, а сами эти лучи — разной длины. Это не беда, но как теперь совместить звезды и круги?!

Входной файл

В первой строке входного файла записаны два целых числа: $1 \le R \le 100$ - радиус круга, $1 \le N \le 100$ - количество звезд. Звезду можно считать набором отрезков, имеющих один общий конец — центр звезды. На i-й $(1 \le i \le N)$ из следующих N строк расположено число $1 \le Z_i \le 100$ $(1 \le i \le N)$ — количество лучей i-й звезды и через пробел Z_i целых чисел в диапазоне от 1 до 100 — длины лучей этой звезды.

Выходной файл

Вывести номер звезды, которую можно поместить внутрь круга. При совмещении центр звезды должен совпадать с центром круга, а лучи не должны пересекать линию окружности (конец отрезка луча звезды может быть на окружности). Если таких звезд нет, вывести фразу «No solution», если таких звезд несколько вывести наибольший номер.

Примеры

Входной файл	Выходной файл
3 2	2
3 1 2 3	
41111	
31	No solution
3 1 1 4	

Задача С. Храм Артемиды

В соответствии с древними свитками храмы Артемиды в древнегреческом городе возводили таким образом, что они все располагались на одном отрезке – от одного края города до другого (при этом в крайних точках этого отрезка также находились храмы Артемиды), а длина расстояния между любыми двумя стоящими рядом храмами Артемиды выражалась числом Фибоначчи (любой элемент последовательности, за исключением первого). Отметим интересную особенность такого строительства. Если расстояние между какими-то соседствующими храмами Артемиды выражается числом F_i - то есть i-м числом последовательности Фибоначчи, то никакое другое расстояние между рядом стоящими храмами не может выражаться числами F_{i-1} , F_i и F_{i+1} .

Помогите строителям подсчитать, сколько храмов Артемиды нужно будет построить на данном отрезке города.

Примечание: последовательность чисел Фибоначчи — это последовательность, первые два элемента которой равны 1, а каждый следующий равен сумме двух предыдущих: $F_1 = 1$, $F_2 = 1$, $F_3 = F_1 + F_2 = 2$, $F_4 = F_2 + F_3 = 3$ и т.д.

Входной файл

В единственной строке входного файла записано целое число $1 \le d \le 1000$ - длина отрезка, на котором расположены храмы Артемиды.

Выходной файл

Вывести необходимое для постройки количество храмов Артемиды. Если построить храмы указанным образом невозможно — вывести число 0. Если вариантов ответа несколько — вывести любой.

Примеры

Входной файл	Выходной файл
2	2
12	4

Пояснения к примерам: в первом примере 2 — число Фибоначчи. Необходимо построить 2 храма — в крайних точках отрезка, тогда расстояние между ними будет выражаться числом Фибоначчи. Во втором примере можно расположить, например, 4 храма Артемиды, расстояния между соседними будут составлять 1, 3, 8.

Задача D. Созвездия

Астрономия и астрология Древней Греции являлись очень развитыми дисциплинами — известные знаки Зодиака пришли к нам именно оттуда. Наша задача очень проста — помочь древнему астроному, поклоняющемуся духам деревьев, найти в звездном небе новое созвездие «Дерево». Оно будет состоять из одного связного набора звезд (звезды в наборе могут быть соединены непосредственно друг с другом или посредством цепочки соединенных друг с другом звезд), при этом в рисунке созвездия не будет циклов.

Дерево Не дерево Не дерево

Древнегреческие астрономы при составлении карты звездного неба руководствовались простым правилом: соединять воображаемыми линиями можно лишь звезды, расположенные достаточно близко друг к другу. При этом стоит отметить, что наш астроном хочет, чтобы его «Дерево» состояло из максимально большого числа звезд.

Входной файл

В первой строке входного файла записаны через пробел 2 целых числа: $1 \le N \le 100$ - количество звезд, $1 \le d \le 100$ - максимальное расстояние между звездами, которые еще можно соединить воображаемой линией. На следующих N строках расположены через пробел пары целых чисел (в диапазоне от -100 до 100): абсцисса и ордината каждой звезды в некоторой прямоугольной декартовой системе координат.

Выходной файл

Из всех подходящих вариантов соединения звезд в «Дерево» предпочтителен тот, в котором минимальный среди номеров входящих в созвездие звезд наименьший. Если таких вариантов несколько — вывести любой. В первой строке вывести количество звезд, которые будут соединены, а также через пробел количество S связей между ними. На следующих S строках вывести через пробел пары целых чисел — номеров звезд. Звезды нумеруются, начиная с 1, - в том порядке, в каком их координаты появляются во входном файле. Созвездие может состоять и из одной звезды (в этом случае S=0).

Примеры

Входной файл	Выходной файл
4 3	3 2
2 3	12
4 1	2 3
63	
4 7	
63	3 2
2 1	15
8 1	5 6
83	
10 1	
3 3	
4 1	