ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Операционные усилители

Работу выполнили:

Шурыгин Антон Алексеевич, группа Б01-909 Тяжкороб Ульяна Владимировна, группа Б01-909 Широкова Ксения Михайловна, группа Б01-909

Долгопрудный, 2021

Содержание

1	Измерение коэффициента усления ОУ	3
2	Амплитудно-частотная характеристика ОУ	3
3	Неинвертирующий усилитель	4
4	Инвертирующий усилитель	8

1 Измерение коэффициента усления ОУ

$$R_1 = R_2 = R_3 = 100$$
кОм; $R_4 = 1$ кОм

$$U_{in} = 3B; f = 20\Gamma$$
ц

Измеренные : $U_a = 12.9 \text{мB}$; $U_{out} = 564.6 \text{мB}$

$$A_0 = (1 + \frac{R_3}{R_4}) * \frac{U_{out}}{U_{in}} = 19,0082$$

2 Амплитудно-частотная характеристика ОУ

Зависимость коэффициента усиления от частоты (АЧХ):

$$A(f) = \frac{U_{out}}{U_{in}} = \frac{U_{out}}{U_{in}} * \frac{U_a}{U_d} = (1 + \frac{R_3}{R_4}) * \frac{U_{out}}{U_a}$$

f, Hz	Ua, mV	Uout,mV	А	f
50	13,29	569,3	4326,508653	50
100	12,9	567,7	4444,782946	100
200	14,08	565,4	4055,78125	200
500	16,42	520	3198,538368	500
1000	17,2	439,8	2582,546512	1000
2000	25,42	416	1652,871755	2000
5000	30,11	302,6	1015,031551	5000
10000	68,04	276,1	409,8486185	10000
20000	97,75	226	233,5140665	20000
50000	180,6	114,2	63,86600221	50000

Рис. 1 Таблица амплитудно-частотной хар-ки ОУ

Рис. 2 Зависимость A(f)

3 Неинвертирующий усилитель

Собираем схему с параметрами $R_2=10\ {\rm кOm},\ R_1=1\ {\rm кOm}.$

1) Измеряем напряжение постоянного сдвига U_{OS} .

Для этого измеряем постоянное напржение на выходе.

$$U_{out} = 69 \text{mV}$$

$$U_{OS} = \frac{U_{out}}{1 + \frac{R_2}{R_2}} \approx 6.27 \text{mV}$$

- 2) Снимем зависимость коэффициента усиления от частоты и занесём данные в таблицу:
 - 3) Из таблицы 2 определяем граничную частоту
 F_{p} по уровню 0.7:

Рис. 3 Зависимость 20lgA(lgf)

Рис. 4 Схема Неинвертирующего ОУ

 $F \approx 160000 \text{ Hz}$

f, Hz	Uout, mV	K
50	2,11	11,28
100	2,11	11,28
200	2,11	11,28
500	2,11	11,28
1000	1,93	10,49
2000	2,11	11,28
5000	2,099	10,7
10000	2,08	10,24
20000	2,066	9,69
50000	2	9,3
100000	1,72	8,6
160000	1,75	8,1
195000	1,67	7,8
200000	1,4	6,8

Рис. 5 Заисимость кэффициента усиления от частоты

4)Рассчитаем:

$$\beta = \frac{R_1}{R_1 + R_2} \approx 0.09 \tag{1}$$

5) Измерим величину f $_{\rm t}$ - частоту, на которой K \approx 1.

$$f_{\rm t}\approx 1.7~MHz$$

Из графика видно, что на низких частотах $K_0 \approx 10$. Отсюда получаем, что, что действительно $K_0 \approx 11$.

6) Кроме того, получаем, что $F_{p} \approx \beta \cdot f_{t} = 0.9 \cdot 1.7 \; \text{MHz}$ действительно выполняется.

Рис. 6 Заисимость кэффициента усиления от частоты

7) Включим ОУ по схеме повторителя, т.е $R_1=\infty,\ R_2=0.$ Коэффициент передачи K=1.

Измерим на частоте f=0.5-1 МГц максимальную амплитуду неискажённого сигнала, получим $U_{\max}=1.15$ В. Рассчитаем её теоретическое значение по следующей формуле:

$$U_{\mathfrak{m}_{\mathfrak{out}}} = \frac{V_{\mathfrak{max}}}{2\pi f}$$

Действительно, $U_{m_{\rm out}} \approx 0.73 \approx 1$.

Полученное экспериментальное довольно хорошо близко к теоретическому.

Учитывая полученное $U_{max}=1.15$ B, а так же $V_{max}=3\frac{\mathrm{B}}{\mathrm{_{MKC}}}$.

Рис. 7 Схема инвертирующего усилителя

4 Инвертирующий усилитель

1) Соберём схему с теми же резисторами, что и в предыдущем пункте. Определим коэффициент усиления $K_0 \approx -11$.

Граничная частоту $F_p = 160 \text{ KHz}.$

Заметим, что $K_0=-\frac{R_2}{R_1}$, а частота $F_p\approx 160 KHz$ имеет то же значение, что и в предыдущем пункте.