PRÁCTICO 2 - Direccionamiento y Lógica de Decodificación de Memorias

Mapa de memoria

Tabla de capacidad de direccionamiento y unidades de almacenamiento de información

Ejemplo de conexión en **paralelo** (para aumentar el ancho de palabra)

A[0..9] ADDRs DATA A[10..11] RAM 1Kx8bits R'/W Decodif. 2x4 Qο Q1 01 SELo A11 Q2 DATA ADDRs SELi Q3 11 RAM 1Kx8bits RAM 1Kx8bits **ADDRs** DATA

1Kx8bits

Ejemplo de conexión en **serie** (para aumentar la capacidad de direccionamiento)

Ejercicio 1:

Dados los siguientes bloques de memoria:

1)	8Kbyte	5) 16Knibble
2)	256 x 16bits	6) 32Mbyte
3)	2Kbits	7) 16K x 32bits
4)	4K x 4bits	8) 1024Kbyte

Se pide:

- A. Ordenar los bloques de forma descendente según su capacidad total.
- B. Ordenar los bloques de forma ascendente según su cantidad de palabras.

Ejercicio 2:

Cuantos "chip" de memoria RAM de 2K palabras x 8 bits se necesitan para implementar un banco de memoria de:

- A. 2K palabras de 16 bits?
- B. 4K palabras de 8 bits?
- C. 4K palabras de 16 bits?

Ejercicio 3:

Construir un sistema de memoria RAM de 4K palabras de 16 bits mediante la utilización de "chips" de memoria de:

- A. 4K palabras de 8 bits.
- B. 1K palabras de 16 bits.
- C. 2K palabras de 8 bits.

Ejercicio 4:

Basados en el sistema de memoria mostrado en la figura, se pide:

- A. Completar los cuadros en línea de puntos con los faltantes de cantidad de señales y su denominación (A[..] o D[..]) para los bloques #1, #2, #3 y #4.
- B. Desarrollar el mapa de memoria implementado, indicando la dirección de inicio y final de cada bloque. Especificar si se trata de un rango real o de posiciones imagen.

Arquitectura de Computadoras II Dr. Ing. Agustín Laprovitta - Ing. Delfina Velez Ibarra

Ejercicio 5:

Construir un sistema de memoria como el que se muestra en el mapa de memoria de la figura. Se dispone para su implementación con los siguientes "chip" de memoria: EPROM de 2K x 8 bits y RAM de 2K x 4 bits.

- A. Realizar una implementación que NO genere posiciones imagen en el espacio no implementado.
- B. Realizar una implementación en la cual se generen posiciones imagen del contenido de la EPROM y la RAM a lo largo de todo el espacio direccionable. Analizar: ¿cuántas veces se replica el contenido de la RAM? y ¿cuántas veces se replica el contenido de la EPROM?, ¿por qué?

0000 0000 0000 0000	
	EPROM
	8K x 8bits
0001 1111 1111 1111	Sit X Galles
0001 1111 1111 1111	
0010 0000 0000 0000	
	RAM
	4K x 8 bits
0010 1111 1111 1111	
0011 0000 0000 0000	
0011 0000 0000 0000	
	X
1111 1111 1111 1111	
	V

Ejercicio 6:

Basados en el sistema de memoria mostrado en la figura, se pide:

- A. Calcular el máximo espacio direccionable por el procesador expresado en palabras de 16 bits.
- B. Desarrollar el mapa de direcciones implementado indicando el inicio y final de cada bloque de memoria.
- C. Indicar en qué bloque se encuentran las siguientes direcciones:
 - i. 0x0654321
 - ii. 0x0ABCDEF
 - iii. 0x0FEDCBA
 - iv. 0x0123456
 - v. 0x2000000
- D. ¿Esta implementación genera posiciones imagen de algún bloque de memoria?, ¿Por qué?

Arquitectura de Computadoras II Dr. Ing. Agustín Laprovitta - Ing. Delfina Velez Ibarra

