IN THE SPECIFICATION:

Amend the first paragraph on page 1 as follows:

--This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. provisional application No. 60/193,493, filed March 31, 2000. This is a continuation of application Serial No. 10/171,718, filed June 14, 2002, which is a continuation of application Serial No. 09/818,244 filed March 27, 2001, which claims the benefit of U.S. provisional application No. 60/193,493, filed March 31, 2000. The disclosure of each of these applications is incorporated in its entirety herein by reference.--

The paragraph on page 10, beginning on line 12, has been amended as follows:

--An exemplary contact lens 20 of the present invention is thus shown in schematic elevational view in Figure 1 flattened without shading to illustrate various zones thereon. The lens 20 includes a lens body of suitable soft or rigid material. Soft contact lenses are typically made of a hydrophilic material such as hydroxyethylmethacrylate, metallo-organic substances, silicone rubbers, silicone hydrogels, urethanes, etc. Alternatively, a rigid gas-permeable material such as siloxane acrylate or fluorosiloxane acrylate may be used. The lens body has an overall spherical curvature with a concave posterior face adapted to contact the cornea opposite an outwardly-facing concave convex anterior face.--

The paragraph on page 13, line 18, has been amended as follows:

--Figure 1 also illustrates a number of representative cross-sectional lines A-A', B-B', C-C', D-D', and E-E' extending

cross-sectional lines A-A', B-B', C-C', D-D', and E-E' extending perpendicularly with respect to the vertical meridian Z-Z' (i.e., horizontally). These sections are illustrated in Figure 2, with the base spherical curvature shown. The present invention provides that consecutive horizontal cross-sections shown in Figure 2 that possesses possess ballast each has a substantially uniform or iso-thickness, except in the optic zone 22 and peripheral zone 24. For example, one of the cross-sections in Figure 2 having ballast, such as D-D', has a substantially uniform thickness. Alternatively, all of the cross sections shown in Figure 2 that possess ballast may have a uniform thickness except in the optic zone 22 and peripheral zone 24.--

Page 19, amend the first full paragraph as follows:

--For prism ballasted lenses in accordance with the present invention, and along the 225° meridian, the distance between the point of maximum thickness (e.g., the ballast periphery 34) and the lens edge 36 is no greater than about 1.4 mm, regardless of the thickness. For any type of ballasted lens, the maximum thickness along the 225° meridian in accordance with the present invention is between about 200-4000 μ m, preferably between about 250-350 μ m, and more preferably about 320 μ m. Along the 270° meridian, the distance between the point of maximum thickness (e.g., the ballast periphery 34) and the lens edge 36 is no greater than 1.8 mm, also regardless of the thickness, though a thickness of about 320 μm is preferred. For fully molded prism ballasted lenses (i.e., molded on both the anterior and posterior faces), and along a 225° meridian, the distance between the between the point of maximum thickness (e.g., the ballast periphery 34) and the peripheral edge is less than about 1.8 mm, and desirably, along a 270° meridian, the distance between the point of maximum thickness and the peripheral edge is less than about 2.1 mm. Also, along a 180° meridian, the distance between

the inner zone and the peripheral edge is less than about 1.3 mm. In general, the peripheral zone 24 of the lenses of the present invention [[are]] is relatively narrow in comparison to the prior art ballasted lenses, yet because of the preferred thicknesses the comfort taper angle in the peripheral zone 24 is relatively shallow, as mentioned above.--