Equações do Simulador de Sondas Atmosféricas

Leonardo Celente

18 de abril de 2022

Sumário

1 Atmosfera Padrão		nosfera Padrão	2
	1.1	Temperatura	2
		Pressão	
	1.3	Densidade	2
2	Bala	Balão	
	2.1	Volume	2
		Peso	
	2.3	Empuxo	3
	2.4	Arrasto	3
	2 5	A calara aã c	9

1 Atmosfera Padrão

1.1 Temperatura

$$T_{ar}(h) = \begin{cases} -x & x \le 0 \\ -x & x \le 0 \\ x & x \ge 0 \end{cases} \tag{1}$$

1.2 Pressão

$$p_{ar}(h) = \begin{cases} -x & x \le 0\\ -x & x \le 0\\ x & x \ge 0 \end{cases}$$
 (2)

1.3 Densidade

$$\rho_{ar}(h) = \frac{p_{ar}(h)}{286.9 T_{ar}(h)} \tag{3}$$

2 Balão

2.1 Volume

Partindo da Lei dos Gases:

$$V(h) = T(h)R\frac{m_{gas}}{M_{he}} \tag{4}$$

Assumindo que a temperatura do balão é a mesma do ar, então $T(h) = T_{ar}(h)$. Também assumindo que a pressão do balão também está em equilibrio $p(h) = p_{ar}(h)$.

2.2 Peso

Bem simples:

$$W = -\left(m_{balao} + m_{payload} + m_{helio}\right)g\tag{5}$$

2.3 Empuxo

$$E = g \,\rho_{ar}(h) V_{balao} \tag{6}$$

2.4 Arrasto

$$D = -\frac{1}{2} C_d A(h) \rho_{ar}(h) |\vec{v}| \cdot \vec{v}$$

$$\tag{7}$$

Onde A(h) é calculada ainda assumindo um balão esférico.

$$r(h) = \frac{3\pi}{4}\sqrt[3]{V(h)} \tag{8}$$

$$A(h) = \pi \left[r(h) \right]^2 \tag{9}$$

2.5 Aceleração

$$\dot{h} = a = \frac{E + W + D}{m_{total}} \tag{10}$$