Session36:

TRACING OF ROSE CURVES $(r = a \sin n\theta \text{ or } r = a \cos n\theta)$.

Rule 1: No. of loops:

- 1. If n is odd then number of loops in the curve = n.
- 2. If n is even then number of loops in the curve = 2n.

Rule 2: Symmetry

- (a) Symmetry about initial line: If the equation of the curve remains unchanged by replacing θ by $-\theta$, then the curve is symmetric about the initial line $\theta = 0$.
- (b) Symmetry about the line $\theta = \frac{\pi}{2}$:
 - **1.** If the equation of the curve remains unchanged by replacing θ by $-\theta$ and r by -r respectively, then curve is symmetric about the line $\theta = \frac{\pi}{2}$.
 - 2. If the equation of the curve remains unchanged by replacing θ by $\pi \theta$ then curve is symmetric about the line $\theta = \frac{\pi}{2}$.
- **Rule 3:** Pole: Find in particular values of θ , which give r = 0.
- **Rule 4:** Tangents: To find tangents at the pole, put r = 0 in the equation, the values of θ gives the tangent at the pole.

Rule 5: Angle between radius vector and tangent $[\phi]$:

Use the formula $\tan \phi = r \frac{d\theta}{dr}$ and find ϕ and also the points where $\phi = 0$ or ∞ .

Rule 6: Form the table showing values of r for some values of θ

Q1. Trace the following curve:

$$r = a \sin 2\theta$$

Solution: We check the following points for tracing of the above curve

- 1. **Limit:** $|r| \le a$ i.e. total curve will lie inside the circle of radius 'a'.
- 2. **No. of loops:-** The curve contains 4 loops because n = 2 is even.
- 3. **Symmetry:-**
 - (i) **About the line perpendicular to initial line** $\theta = 0$ i.e. **the line** $\theta = \pi/2$: If we replace θ by $-\theta$ and r by -r then the equation of the curve is remains unchanged.
 - \therefore The curve is symmetry about the line $\theta = \pi/2$.
- 4. **Pole:-**
 - (i) For $\theta = 0 \implies r = 0$

Hence the curve passes through the pole.

(ii) Tangent at pole:- If we put r = 0, then we get the tangent at pole.

Putting
$$r = 0$$
 in (1), we have $a \sin 2\theta = 0$

$$\Rightarrow \sin 2\theta = 0$$

$$\Rightarrow 2\theta = \sin^{-1} 0$$

$$\Rightarrow$$
 $2\theta = 0, \pi, 2\pi, 3\pi$

$$\Rightarrow \qquad \theta = 0, \ \frac{\pi}{2}, \ \pi, \frac{3\pi}{2}$$

- 5. **Asymptotes:-**No asymptotes.
- 6. Table values:-

θ	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$	2π
r	0	а	0	а	0	а	0	а	0

It is clear that for $\theta = 0$, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, the value of r is zero therefore these are

tangents at pole and for $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ the value of r is maximum i.e. 'a'.

Hence we get four loops at those points. Hence the approximate shape of the curve is as follows.

Q. 2 Trace the following curve:

$$r = a \cos 3\theta$$

Solution: We check the following points for tracing of the above curve

- **1.** Limit:- $|r| \le a$ i.e. total curve will lie inside the circle of radius 'a'.
- **2.** No. of loops: The curve contains 3 loops because n = 3 is odd.
- 3. Symmetry:-
 - (i) About initial line $\theta = 0$:-

If we replace θ by $-\theta$, then the equation of the curve is remains unchanged.

 \therefore The curve is symmetry about the initial line $\theta = 0$.

4. Pole:-

(i) For
$$\theta = \frac{\pi}{6} \implies r = 0$$

Hence the curve passes through the pole.

(ii) Tangent at pole:- If we put r = 0, then we get the tangent at pole.

Putting r = 0 in (1), we have $a \cos 3\theta = 0$

$$\Rightarrow \cos 3\theta = 0$$

$$\Rightarrow 3\theta = \cos^{-1} 0$$

$$\Rightarrow 3\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{9\pi}{2}, \frac{11\pi}{2}$$

$$\Rightarrow \theta = \frac{\pi}{6}, \frac{3\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{9\pi}{6}, \frac{11\pi}{6}$$

$$\Rightarrow \theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$$

- **5. Asymptotes:-**No asymptotes.
- 6. Table values:-

θ	0	$\pi/6$	$\pi/2$	$2\pi/3$	π	$4\pi/3$	$3\pi/2$	$11\pi/6$	2π
r	а	0	0	а	0	а	0	0	а

It is clear that for $\theta = \frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{3\pi}{2}$, $\frac{11\pi}{6}$, the value of r is zero therefore these are tangents at pole and for $\theta = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$ the value of r is maximum i.e. 'a'. Hence we get three loops at those points. Hence the approximate shape of the curve is as follows.

