Differentiation Rules Benchmark # 8

Period:______Date:_____

1.	$\frac{d}{dx} \Big[\sin \left(2^x \right) \Big]$	
2.	$\frac{d}{dx} \left[\frac{g(x)}{h(x)} \right]$	
3.	$\frac{d}{dx} \Big[\ln \big(5x \big) \Big]$	
4.	$\frac{d}{dx} \Big[\operatorname{arccot}(2x) \Big]$	
5.	$f(x) = 10x^3 + x + 5$ $(f^{-1})'(2)$	SETUP ONLY!! You don't need to solve for the value.
6.	$\frac{d}{dx} [2e^5]$	
7.	$\frac{d}{dx} \Big[k(x) \cdot m(x) \Big]$	
8.	$\frac{d}{dx} \Big[\cos \big(\sin \big(x \big) \big) \Big]$	
9.	$\frac{d}{dx}\Big[e^{x-1}\Big]$	
10.	k is a constant $\frac{d}{dx} [k \cdot g(x)]$	
11.	$\frac{d}{dx} \Big[\sec \left(x^{-1} \right) \Big]$	
12.	$\frac{d}{dx}\left[\left(2x^2+3\right)^3\right]$	

13.	$\frac{d}{dx} \Big[\cot(2x) \Big]$	
14.	$\frac{d}{dx} \Big[\operatorname{arccsc} \left(-x \right) \Big]$	
15.	$\frac{d}{dx}[x]$	
16.	$\frac{d}{dx}\Big[\Big -x^2\Big \Big]$	
17.	$\frac{d}{dx} \left[3^{x^2 + 2x + 1} \right]$	
18.	$\frac{d}{dx} \Big[\arctan \left(-x\right)\Big]$	
19.	$\frac{d}{dx} \Big[\log_4 \Big(e^x + 4 \Big) \Big]$	
20.	$\frac{d}{dx}\Big[k(x)\mp m(x)\Big]$	
21.	$\frac{d}{dx} \Big[\arccos\Big(\tan\big(x\big)\Big)\Big]$	
22.	$\frac{d}{dx}\Big[\arcsin\Big(\ln\big(x\big)\Big)\Big]$	
23.	$\frac{d}{dx} \Big[\tan \left(x^2 \right) \Big]$	
24.	$\frac{d}{dx} \Big[\operatorname{arcsec} \big(5x \big) \Big]$	
25.	$\frac{d}{dx}\Big[\csc(\ln(x))\Big]$	
26.	$\frac{d}{dx}\Big[k\big(m(x)\big)\Big]$	