0.1. Integration and measure

• Dirichlet's function: $f:[0,1]\to\mathbb{R}$,

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

1. The real numbers

- $a \in \mathbb{R}$ is an **upper bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \leq a$.
- $c \in \mathbb{R}$ is a least upper bound (supremum) if $c \leq a$ for every upper bound a.
- $a \in \mathbb{R}$ is an **lower bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \geq a$.
- $c \in \mathbb{R}$ is a **greatest lower bound (supremum)** if $c \geq a$ for every upper bound a.
- Completeness axiom of the real numbers: every subset E with an upper bound has a least upper bound. Every subset E with a lower bound has a greatest lower bound.
- Archimedes' principle:

$$\forall x \in \mathbb{R}, \exists n \in \mathbb{N} : n > x$$

- Every non-empty subset of \mathbb{N} has a minimum.
- The rationals are dense in the reals:

$$\forall x < y \in \mathbb{R}, \exists r \in \mathbb{Q} : r \in (x, y)$$

1.1. Conventions on sets and functions

• For $f: X \to Y$, **preiamge** of $Z \subseteq Y$ is

$$f^{-1}(Z) := \{ x \in X : f(x) \in Z \}$$

• $f: X \to Y$ injective if

$$\forall y \in f(X), \exists ! x \in X : y = f(x)$$

- $f: X \to Y$ surjective if Y = f(X).
- Limit inferior of sequence x_n :

$$\liminf_{n\to\infty} x_n \coloneqq \lim_{n\to\infty} \Bigl(\inf_{m\geq n} x_m\Bigr) = \sup_{n>0} \inf_{m\geq n} x_m$$

• Limit superior of sequence x_n :

$$\limsup_{n \to \infty} x_n \coloneqq \lim_{n \to \infty} \left(\sup_{m \ge n} x_m \right) = \inf_{n \ge 0} \sup_{m \ge n} x_m$$

1.2. Open and closed sets

• $U \subseteq \mathbb{R}$ is open if

$$\forall x \in U, \exists \varepsilon : (x - \varepsilon, x + \varepsilon) \subseteq U$$

- Arbitrary unions of open sets are open.
- Finite intersections of open sets are open.
- $x \in \mathbb{R}$ is point of closure (limit point) for $E \subseteq \mathbb{R}$ if

$$\forall \delta > 0, \exists y \in E : |x - y| < \delta$$

Equivalently, x is point of closure if every open interval containing x contains another point of E.

- Closure of E, \overline{E} , is set of points of closure.
- F is closed if $F = \overline{F}$.
- If $A \subset B \subseteq \mathbb{R}$ then $\overline{A} \subset \overline{B}$.
- $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- For any set E, \overline{E} is closed.
- Let $E \subseteq \mathbb{R}$. The following are equivalent:
 - E is closed.
 - $\mathbb{R} E$ is open.
- Arbitrary intersections of closed sets are closed. Finite unions of closed sets are closed.

2. Further analysis of subsets of \mathbb{R}

TODO: up to here, check that all notes are made from these topics

2.1. Countability and uncountability

- A is countable if $A = \emptyset$, A is finite or there is a bijection $\varphi : \mathbb{N} \to A$ (in which case A is countably infinite). Otherwise A is uncountable. φ is called an enumeration.
- If surjection from \mathbb{N} to A, or injection from A to \mathbb{N} , then A is countable.
- Examples of countable sets:
 - \mathbb{N} $(\varphi(n) = n)$
 - $2\mathbb{N} (\varphi(n) = 2n)$
- Q is countable.
- Exercise (todo): show that \mathbb{N}^k is countable for any $k \in \mathbb{N}$.
- Exercise (todo): show that if a_n is a nonnegative sequence and $\varphi: \mathbb{N} \to \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\varphi(n)}$$

• Exercise (todo): show that if $a_{n,k}$ is a nonnegative sequence and $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}a_{n,k}=\sum_{n=1}^{\infty}a_{\varphi(n)}$$

- $f: X \to Y$ is monotone if $x \ge y \Rightarrow f(x) \ge f(y)$ or $x \le y \Rightarrow f(x) \ge f(y)$.
- Let f be monotone on (a, b). Then it is discountinuous on a countable set.
- Set of sequences in $\{0,1\}$, $\{((x_n))_{n\in\mathbb{N}}: \forall n\in\mathbb{N}, x_n\in\{0,1\}\}$ is uncountable.
- **Theorem**: \mathbb{R} is uncountable.

2.2. The structure theorem for open sets

• Collection $\{A_i : i \in I\}$ of sets is **(pairwise) disjoint** if $n \neq m \Longrightarrow A_n \cap A_m = \emptyset$.

• Structure theorem for open sets: let $U \subseteq \mathbb{R}$ open. Then exists countable collection of disjoint open intervals $\{I_n : n \in \mathbb{N}\}$ such that $U = \bigcup_{n \in \mathbb{N}} I_n$.

2.3. Accumulation points and perfect sets

• $x \in \mathbb{R}$ is accumulation point of $E \subseteq \mathbb{R}$ if x is point of closure of $E - \{x\}$. Equivalently, x is a point of closure if

$$\forall \delta > 0, \exists y \in E : y \neq x \land |x - y| < \delta$$

Equivalently, there exists a sequence of distinct $y_n \in E$ with $y_n \to x$ as $n \to \infty$.

- Exercise: set of accumulation points of \mathbb{Q} is \mathbb{R} .
- $E \subseteq \mathbb{R}$ is **isolated** if

$$\forall x \in E, \exists \varepsilon > 0: (x - \varepsilon, x + \varepsilon) \cap E = \{x\}$$

- **Proposition**: set of accumulation points E' of E is closed.
- Bounded set E is **perfect** if it equals its set of accumulation points.
- Exercise (todo): what is the set of accumulation points of an isolated set?
- Every non-empty perfect set is uncountable.

2.4. The middle-third Cantor set

- Middle third Cantor set:
 - Define $C_0 := [0, 1]$
 - Given $C_n = \bigcup_{i=1}^{2^n} [a_i, b_i], a_i < b_1 < a_2 < \cdots$, with $|b_i a_i| = 3^{-n}$, define

$$C_{n+1} \coloneqq \cup_{i=1}^{2^n} \left[a_i, a_i + 3^{-(n+1)} \right] \cup \left[b_i - 3^{-(n+1)}, b_i \right]$$

which is a union of 2^{n+1} disjoint intervals, with difference in endpoints equalling $3^{-(n+1)}$

• The middle third Cantor set is

$$C\coloneqq\bigcup_{n\in\mathbb{N}}C_n$$

Observe that if a is an endpoint of an interval in C_n , it is contained in C.

• **Proposition**: the middle third Cantor set is closed, non-empty and equal to its set of accumulation points. Hence it is perfect and uncountable.

2.5. G_s, F_{σ}

- Set E is G_{δ} if $E = \bigcap_{n \in \mathbb{N}} U_n$ with U_n open.
- Set E is \mathbf{F}_{σ} if $E = \bigcup_{n \in \mathbb{N}} F_n$ with F_n closed.
- Lemma: set of points where $f: \mathbb{R} \to \mathbb{R}$ is continuous is G_{δ} .