Aula 35: Árvore de Huffman

- Conceito de árvore binária de prefixo
- Árvore de Huffman

Método guloso: princípios

Árvore Binária de Prefixo

Árvore digital: alfabeto = { $a_1, ..., a_m$ }

Códigos: Sejam

 $S = \{ s_1, ..., s_n \} = conjunto de elementos denominados símbolos$

$$A = \{ a_1, ..., a_m \} = alfabeto$$

Problema de codificação: atribuir a cada símbolo $s_i \in S,$ uma seqüência de elementos $a_i \in A,$ denominada código de $s_i.$

Árvore Binária de Prefixo

Exemplo:

- A = { a_1, a_2, a_3 }

a₂ a₁ a₃ a₃ a₁ código de s_i

a₃ a₁ a₁ código de s_k

Codificação

Uma <u>codificação de prefixo</u> é aquela em que nenhum código é prefixo de outro.

Exemplo: $A = \{ a_1, a_2, a_3 \} S = \{ s_1, s_2, s_3, s_4 \}$

 $s_1 : a_1 a_3 a_2$

 $s_2 : a_3 a_1 a_2$

 $s_3 : a_3 a_2 a_1$

 $s_4 : a_1 a_2$

é de prefixo.

 $s_1 : a_1 a_3 a_2$

 $s_2 : a_3 a_1 a_2$

 $s_3 : a_3 a_1$

 $s_4 : a_1 a_2$

não é de prefixo, pois o código de s_3 é prefixo do de s_2 .

Arvores Digitais Representam Códigos

$$A = \{ a_1, ..., a_m \}$$
 $S = \{ s_1, ..., s_n \}$

$$S = \{ s_1, ..., s_n \}$$

Existe uma árvore digital T, de alfabeto A, tal que:

- cada símbolo $s_i \in S$ corresponde a algum nó de T.
- o caminho da raiz de T até o nó correspondente a s_i é o símbolo de s_i.

Ex.: A = { a_1 , a_2 , a_3 }, S = { s_1 , s_2 , s_3 , s_4 } a_1

 $s_1 : a_1 a_3 a_2$

 $s_2 : a_3 a_1 a_2$

 $s_3 : a_3 \ a_2 \ a_1$

 $s_4 : a_1 a_2$

Árvore Digital de Prefixo

Uma árvore digital que representa uma codificação de prefixo é uma árvore digital de prefixo.

árvore digital de prefixo | não é árvore digital de prefixo

Árvore Digital Binária

Uma árvore digital de alfabeto $\{\,0,\,1\,\}$ é uma <u>árvore digital binária</u> $(\,m=2\,)$.

Uma <u>árvore digital binária de prefixo</u> é uma árvore digital binária que é de prefixo.

árvore binária de prefixo

Exercício

Provar ou dar contra-exemplo.

Tempo: 8 minutos

Solução

Uma árvore binária é de prefixo se e somente se todos os símbolos se localizam em folhas.

1. árvore binária de prefixo ≠> todos os filhos se localizam em folhas

contra exemplo

2. todos os filhos se localizam em folhas => árvore binária de prefixo

Pois nenhum caminho raiz-folha pode ser subcaminho de outro caminho raiz-folha.

Códificação e Decodificação

Questões de interesse: codificar um texto decodificar um texto codificado

A codificação e a decodificação podem ser facilmente realizadas através das árvores de prefixo.

Codificação e Decodificação

 $s_1: 00$

 s_2 : 0100

 s_3 : 0101

 s_4 : 011

 s_5 : 1

cederj

Codificação e Decodificação

Complexidade: a codificação e a decodificação ambas podem ser realizadas em tempo linear no tamanho total da mensagem codificada.

- simplicidade
- eficiência

Desvantagens:

 a troca de apenas um bit na mensagem pode ocasionar um erro considerável

cederj

Questão Central

- Dado um conjunto de símbolos e um texto, deseja-se atribuir um código binário (de prefixo) aos símbolos, de modo a minimizar o tamanho do texto codificado.
- Se T é uma árvore binária de prefixo correspondente à codificação de um certo texto, o tamanho do texto codificado é o <u>custo</u> de T, denotado por c(T).

Exemplo

Texto: s_2 s_1 s_1 s_4 s_1 s_3 Texto codificado: 10000101011 c(T) = 11cederj

Árvore de Huffman

Uma árvore (binária) de prefixo que possui custo mínimo para um certo texto é uma <u>árvore de Huffman</u> para aquele texto.

Obs.: o que é relevante, em um texto, é a frequência f_i com que cada símbolo s_i aparece no texto.

Logo, a árvore de Huffman está sempre associada a um conjunto de símbolos, cada qual com sua freqüência.

Exemplo

Exemplo:

$\mid \mathbf{i} \mid$	1	2	3	4
$ \mathbf{f}_{\mathrm{i}} $	3	1	1	1

Árvore de Huffman

Árvore de Huffman

Seja dado um texto, onde cada símbolo s_i aparece f_i vezes.

Seja T uma árvore de prefixo correspondente ao texto dado.

Seja l_i o comprimento do código binário de s_i .

O produto $f_i.l_i$ representa a contribuição de s_i no custo c(T).

Então:

Exemplo

$\begin{bmatrix} \mathbf{i} \end{bmatrix}$	1	2	ဘ	4
$ \mathbf{f}_{\mathrm{i}} $	3	1	1	1

$$s_1 : 0$$
 $l_1 = 1$

$$s_2 : 100 \quad l_2 = 3$$

$$s_3: 11$$
 $l_3 = 2$

$$s_4: 101 \quad l_4 = 3$$

$$c(T) = f_1 l_1 + f_2 l_2 + f_3 l_3 + f_4 l_4 = 3.1 + 1.3 + 1.2 + 1.3 = 11$$

Árvores de Huffman e Árvores Binárias

Porque se a árvore não for estritamente binária, há um vértice v com um único filho w. A identificação de v e w produziria uma árvore de custo menor.

Toda árvore estritamente binária é arvore de Huffman para algum conjunto de freqüências de símbolos.

<u>cederj</u>

Exercício

- Provar ou dar contra-exemplo:
- Sejam s_i e s_j dois símbolos e l_i e l_j os respectivos níveis das folhas correspondentes a s_i , s_j em uma árvore de Huffman. Então $f_i < f_j => l_i \ge l_j$

Tempo: 5 minutos

Solução

Sejam s_i e s_j dois símbolos e l_i e l_j os respectivos níveis das folhas correspondentes a s_i , s_j em uma árvore de Huffman.

Então
$$f_i < f_j => l_i \ge l_j$$

Prova: a afirmativa é verdadeira. Pois, caso contrário,

$$f_i < f_j => l_i < l_j$$
. Então $f_i.l_j + f_j.l_i < f_i.l_i + f_j.l_j$.

Isto significa que a troca de posições entre s_i e s_j produziria uma árvore de custo menor, uma contradição.

$$l_i < l_j$$

<u>cederj</u>

Árvore de Huffman

Para construir uma árvore de Huffman para um dado conjunto de caracteres, utiliza-se um método denominado algoritmo guloso.

O algoritmo guloso procura resolver problemas de otimização através de um processo iterativo. A solução final do problema é obtida acrescentando-se um elemento, em cada iteração, à solução parcial até então obtida. O critério para a escolha desse elemento a ser adicionado é otimizar, localmente, a solução parcial, desde que obedeça às condições de viabilidade definidas pelo problema.

Características

- O algoritmo guloso quando resolve o problema geralmente é eficiente.
- A solução final é obtida, passo a passo, a partir das soluções parciais.
- Um elemento se for adicionado à solução parcial, necessariamente será parte da solução final.
- Para conhecer se a solução fornecida pelo algoritmo guloso, de fato, resolve o problema é necessário formular uma prova matemática de sua correção.

