The Left Null Space of a Vector

Benjamin Ochoa

January 27, 2017

Let $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ be any vector, let $\mathbf{e}_1 = (1, 0, \dots, 0)^{\top}$, and let $\mathbf{v} = \mathbf{x} \pm ||x|| \mathbf{e}_1$. Calculate the Householder matrix $\mathbf{H}_{\mathbf{v}}$ such that $\mathbf{H}_{\mathbf{v}}\mathbf{x} = \mp ||x|| \mathbf{e}_1 = (\mp ||x||, 0, \dots, 0)^{\top}$.

$$\mathtt{H}_{\mathbf{v}} = \mathtt{I} - 2 \frac{\mathbf{v} \mathbf{v}^{\top}}{\mathbf{v}^{\top} \mathbf{v}}$$

Note that $H_{\mathbf{v}}$ is symmetric and orthogonal. \mathbf{v} is called the Householder vector for \mathbf{x} . For stability reasons, the sign ambiguity in defining \mathbf{v} should be resolved by setting

$$\mathbf{v} = \mathbf{x} + \operatorname{sign}(x_1) \|\mathbf{x}\| \mathbf{e}_1$$

In $[\mathbf{x}]^{\perp}\mathbf{x} = \mathbf{0}$, $[\mathbf{x}]^{\perp}$ is the left null space of \mathbf{x} and may be calculated from $\mathbf{H}_{\mathbf{v}}$ as follows.

$$\mathtt{H}_{\mathbf{v}} = egin{bmatrix} \mathbf{h}_{\mathbf{v}}^{1 op} \ [\mathbf{x}]^{ot} \end{bmatrix}$$

(i.e., $[\mathbf{x}]^{\perp}$ is $\mathbb{H}_{\mathbf{v}}$ with the first row omitted). Further, note that $([\mathbf{x}]^{\perp})^{\top}$ is the (right) null space of \mathbf{x}^{\top} (i.e., $\mathbf{x}^{\top}([\mathbf{x}]^{\perp})^{\top} = \mathbf{0}^{\top}$.