Binary Adders

By **P. K. R**oy

Half Adder

- Addition of 2 bits only.
- No requirement of initial carry.

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Sum represents Ex-OR gate and Carry represents AND gate.

$$Sum = \overline{A} \cdot B + A \cdot \overline{B}$$

$$Carry = A.B$$

Full Adder

- Addition of 3 bits only.
- Requires an initial carry.

\mathbf{A}	В	\mathbf{C}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$Sum = \overline{A} \bullet \overline{B} \bullet C + \overline{A} \bullet B \bullet \overline{C} + A \bullet \overline{B} \bullet \overline{C} + A \bullet B \bullet C$$

Carry =
$$A \cdot B + A \cdot C + B \cdot C$$

Designing FA Using HA

Home Work: HS & FS

When FA Behaves Like HA?

$$Sum = \overline{A} \bullet \overline{B} \bullet C + \overline{A} \bullet B \bullet \overline{C} + A \bullet \overline{B} \bullet \overline{C} + A \bullet B \bullet C$$

$$Carry = A \bullet B + A \bullet C + B \bullet C$$

Suppose we let the carry–in C = 0. Then $\overline{C} = 1$. What we have then is as follows.

Sum =
$$\overline{A} \bullet \overline{B} \bullet 0 + \overline{A} \bullet B \bullet 1 + A \bullet \overline{B} \bullet 1 + A \bullet B \bullet 0$$

= $\overline{A} \bullet B + A \bullet \overline{B}$

Carry
$$= A \bullet B + A \bullet 0 + B \bullet 0$$

 $= A \bullet B$

The Full-Adder and Half-Adder as Circuit Elements

Each circuit is denoted as a simple box with inputs and outputs.

- (a) full-adder with carry-in
- (b) full-adder acting as a half-adder
- (c) half–adder with no carry–in

Serial Adder

For addition of 2 binary numbers.

Disadvantage:

- 1. Addition process is performed by bit-by-bit.
- 2. Time required for addition depends on number of bits (for n no. of bits it will be n clock cycles).

Parallel Adder

- For addition of 2 binary numbers.
- All bits are added concurrently.
- Time required does not depend on the number of bits.

Are of 2 types –

- 1. Carry Propagate Adder (CPA) or Ripple Carry Adder
- 2. Carry Look-Ahead Adder

Ripple Carry Adder or CPA

• *Propagating the Carry Bits* – carry-out from one stage is carried into the next stage.

Considering both A & B are of 4bits

4 – bit Ripple Carry Adder

Disadvantage:

- 1. Each FA has to wait for its Carry-in generated from the previous FA (except the initial one.)
- 2. *Max. Delay* $n\Delta$ for n-bit nos.

Carry Look-Ahead Adder

A	В	C	Sum	Carry
0	0	0	0	0
0	0	1.	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

No Generate, No Propagate

Carry Propagate

Carry Generate

- A carry signal will be generated in two cases:
 - (1) when both bits Aⁱ and Bⁱ are 1, or
 - (2) when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1.

Hence, $P_i = A_i \oplus B_i$ (1) $G_i = A_i B_i$ (2)

The output sum and carry can be defined as:

$$S_i = P_i \oplus C_i \dots (3)$$

$$C_{i+1} = G_i + P_i C_i \dots (4)$$

 G_i is known as the *carry Generate* signal since a carry (C_{i+1}) is generated whenever G_i =1, regardless of the input carry (C_i) .

 P_i is known as the *carry propagate* signal since whenever $P_i = 1$, the input carry is propagated to the output carry, i.e., $C_{i+1} = C_i$ (note that whenever $P_i = 1$, $G_i = 0$).

Considering 4-bit numbers –

The Boolean expression of the carry outputs of various stages can be written as follows:

$$\begin{split} C_1 &= G_0 + P_0 C_0 \\ C_2 &= G_1 + P_1 C_1 = G_1 + P_1 \left(G_0 + P_0 C_0 \right) \\ &= G_1 + P_1 G_0 + P_1 P_0 C_0 \\ C_3 &= G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \\ C_4 &= G_3 + P_3 C_3 \\ &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \end{split}$$

Conclusion: All of the Carry_{out} signals can be derived from the initial Carry_{in} signal only.

Max. Delay – 6Δ for n-bit nos. : For $G_i \& P_i \Rightarrow \Delta$; For $C_i \Rightarrow 2\Delta$; for $S_i \Rightarrow 3\Delta$

HW: 1. Design a 16-bit CPA using 4-bit CPAs

2. Derive the carry generate-propagate expressions for 8-bit CLA

4-Bit Binary Incrementer Unit

Addition of 1 with the actual number

4-Bit Binary Decrementer Unit

$$A_3A_2A_1A_0 - 1 \implies A_3A_2A_1A_0 + 11111$$

4-bit Parallel Subtractor

 $A-B \Rightarrow A + complement of B + 1$

4-bit Adder/Subtractor Composite Unit

 $S=1 \Rightarrow Subtraction \Rightarrow A + complement of B + 1 \Rightarrow A - B$ $S=0 \Rightarrow Addition \Rightarrow A + B + 0 \Rightarrow A + B$

1.	If both of the inputs in CLA are 0, carry is –							
	a) generated			b) pro	b) propagated			
	c) neither generated nor propagated d) none of these							
2.	Basic FA performs addition of –							
	a) 2 bits	b) 3 1	bits c)	4bits	d) 2 multi-bit nu	ımbers		
3.	FA is equi	ivalent to 1	HA only	when car	ry-in is-			
	a) 0	b) 1	c) 2	d)	3			
4.	To add 2 1	n-bit nos. 1	asing par	allel adde	r, the no. of clock	cycle is –		
	a) 1	b) 2	c) n	d)	2n			
5.	5. To add 2 n-bit nos. in serial adder, the no. of clock cycle is –							
	a) 1	b) 2	c) n	d)	2n			
6.	6. To add 2 n-bit nos. using CPA, the max. delay is –							
	a) Δ	b) 2Δ	c) 6	Δ	d) nΔ			
7.	7. To add 2 n-bit nos. using CLA, the max. delay is –							
	a) Δ	b) 2Δ	c) 6Δ	(d) nΔ			

8. V	Which one is	s faster than	the	oth	ers –		
	a) Serial ad	lder b) CPA		c)	CLA	d)	Can't be determined
9. F	FA has	Outpu	ıts				
	a) 1	b) 2	c)	3	d)	4	
10. HA has Outputs							
	a) 1	b) 2	c)	3	d)	4	
11. FA has Inputs							
	a) 1	b) 2	c)	3	d)	4	
12.	HA has	Inpi	ıts				
	a) 1	b) 2	c)	3	d)	4	
13.	If both of tl	he inputs in C	CLA	ar	e 1, ca	ırry	is –
	a) generated b) propagated						ngated
	c) neither g	generated nor	pro	paş	gated		d) none of these
14.	If both of tl	he inputs in C	CLA	a	re diff	ere	nt, carry is –
	a) generate	a) generated			b) pr	opa	ngated
c) neither generated nor propagated d) none of						d) none of these	

- 15. The initial FA for n-bit CPA can be considered as an HA
 - a) True

- b) False
- 16. $C_{i+1} = C_i$ is equivalent to
 - a) generate b) propagate c) both
- d) none

- 17. A_iB_i is equivalent to
 - a) generate b) propagate c) both
- d) none

References:

- 1. Salivahanan
- 2. T. K. Ghosh

Thank You