CLAIMS

1	1. A method of measuring a power spectrum of an optical
2	signal, comprising:
3	transmitting the optical signal through an optical fiber;
4	coupling a power of at least one wavelength of the optical signal
5	from a first mode to a second mode of the waveguide; and
6	measuring the power of the optical signal coupled from the first
7	mode to the second mode at a detector.
1	2. The method of claim 1, wherein a mode coupler is provided
2	to couple the power of the at least one wavelength.
1	3. The method of claim 2, wherein the mode coupler is selected
2	from an acoustic grating, a UV grating, a bending grating and a stress
3	induced grating.
1	4. The method of claim 2, wherein the mode coupler includes
2	an acoustic wave generator and an acoustic wave propagation member
3	coupled to the optical fiber.
1	5. The method of claim 1, further comprising:
2	removing that portion of the at least one wavelength that is not
3	coupled from the first mode to the second mode
I	6. The method of claim 4, wherein the wavelength of the optical
2	signal coupled from the first mode to the second mode is changed by
3	varying a frequency of an acoustic wave produced by a mode coupler
4	coupled to the optical fiber.
I	7. The method of claim 1, wherein the mode coupler produces
2	multiple acoustic signals with individual controllable strengths and

- 3 frequencies and each of the signals provides a coupling between one mode
- 4 to a different mode.
- 1 8. The method of claim 1, wherein an amount of the optical
- 2 signal coupled from the first mode to the second mode is changed by
- 3 varying an amplitude of a signal applied to the mode coupler.
- 1 9. The method of claim 1, wherein at least one core mode is
- 2 converted to a different core mode.
- 1 10. The method of claim 1, wherein at least one core more is
- 2 converted to a cladding mode.
- 1 The method of claim 1, wherein at least one cladding mode is
- 2 converted to a core mode.
- 1 12. The method of claim 1, wherein at least one cladding mode is
- 2 converted to a different cladding mode.
- 1 13. The method of claim 1, wherein the wavelength coupled
- 2 from the first mode to the second mode is changed by varying a frequency
- 3 of an acoustic wave produced by the mode coupler.
- 1 14. The method of claim 1, wherein a mode converter is
- 2 provided to produce multiple acoustic signals with individual controllable
- 3 strengths and frequencies and each of an acoustic signals provides a
- 4 coupling between one mode to a different mode.
- 1 15. The method of claim 1, wherein a mode coupler is coupled to
- 2 the optical fiber and configured to provide at least one perturbation in the
- 3 optical fiber to create a coherent coupling between a first mode to a second
- 4 mode in the optical fiber.

2	changing the polarization of the optical signal prior to cou	pling the
3	light.	
1	17. The method of claim 1, wherein the first and secon	d modes
2	have different polarization states in the optical fiber.	
1	18. The method of claim 1, further comprising:	
2	detecting a power spectrum of a band of wavelengths that	have been
3	coupled.	
1	19. The method of claim 1, further comprising:	
2	detecting a power spectrum of coupled second mode wave	lengths.
1	20. The method of claim 1, further comprising:	
2	adjusting a strength of a signal that provides coupling between	veen the
3	first and second modes.	
1	21. The method of claim 1, further comprising:	
2	scanning through a range of signals that provide coupling l	between
3	the first and second modes.	
1	22. The method of claim 1, further comprising:	
2	adjusting a strength of a signal that provides coupling betw	veen the
3	first and second mode to maximize coupling between the first and second	
4	modes.	
1	23. The method of claim 1, further comprising:	
2	dithering a strength of a signal that provides coupling betw	een the
3	first and second mode to maximize coupling between the first and	second
4	modes.	

The method of claim 1, further comprising:

1

16.

1	24. A method of monitoring a power spectrum of an optical
2	signal, comprising:
3	changing polarizations of the optical signal in a polarization
4	scrambler;
5	coupling a first mode of the optical signal to a second mode at a
6	mode converter;
7	detecting the second mode at a detector;
8	generating a signal responsive to detection of the second mode;
Ŋ	averaging the signal to measure a power of the second mode,
10	wherein measurement of the power of the second mode is
11	polarization independent.
1	25. The method of claim 24, wherein a wavelength of the optical
2	signal coupled from the first mode to the second mode is changed by
3	varying a frequency of an acoustic signal applied to the mode coupler.
1	26. The method of claim 24, wherein the mode coupler produces
2	multiple acoustic signals with individual controllable strengths and
3	frequencies and each of the acoustic signals provides a coupling between
4	one mode to a different mode.
1	27. The method of claim 24, wherein an amount of the optical
2	signal coupled from the first mode to the second mode is changed by
3	varying an amplitude of an acoustic signal applied to the mode coupler.
l	28. The method of claim 24, wherein at least one core mode is
2	coupled to a different core mode.
1	29. The method of claim 24, wherein at least one core mode is

coupled to a cladding mode.

1	30.	The method of claim 24, wherein at least one cladding mode
2	is coupled to	a core mode.
1	31.	The method of claim 24, wherein at least one cladding mode
2	is coupled to	a different cladding mode.
1	32.	The method of claim 24, wherein a wavelength coupled from
2	the first mode	e to the second mode is changed by varying the frequency of an
3	acoustic signa	al applied to the mode coupler.
1	33.	The method of claim 24, wherein the mode converter
2	produces mul	tiple acoustic signals with individual controllable strengths and
3	frequencies a	nd each of the acoustic signals provides a coupling between
4	one mode to	a different mode.
1	34.	The method of claim 24, wherein the mode converter
2	provides at le	ast one perturbation in the optical fiber to create a coherent
3	coupling bety	veen the first mode to the second mode in the optical fiber.
1	35.	A spectral monitor, comprising:
2	an op	tical fiber with multiple modes;
3	a mod	le coupler coupled to the optical fiber, the mode coupler
4	provides at le	ast one perturbation in the optical fiber to create a coherent
5	coupling bety	ween the first mode to the second mode in the optical fiber;
6	a dete	ector positioned to detect a coupling power spectrum of the
7	coupling fror	n the first mode to the second mode; and
8	a feed	back control coupled to the mode coupler and the detector to

control the power of the coupling power.

1	36. The apparatus of claim 35, wherein the mode coupler is
2	selected from an acoustic grating, a UV grating, a bending grating and a
3	stress induced grating.
1	37. The apparatus of claim 35, wherein the mode coupler
2	includes an acoustic wave generator and an acoustic wave propagation
3	member coupled to the optical fiber.
1	38. The monitor of claim 35, further comprising:
2	a polarization scrambler coupled to the optical fiber and the mode
3	coupler.
1	39. The monitor of claim 35, further comprising:
2	a modal filter coupled to the mode coupler and the detector.
1	40. A spectral monitor, comprising:
2	an optical fiber with multiple modes;
3	a mode coupler coupled to the optical fiber and configured to
4	provide at least one perturbation in the optical fiber to create a coherent
5	coupling between a first mode to a second mode in the optical fiber; and
6	a core-blocking membercoupled to the optical fiber, the core
7	blocking member configured to substantially block those portions of the first
8	mode that are not coupled to the second mode.
1	41. The monitor of claim 40, wherein thecoreblocking member
2	includes a reflective material positioned over a core region of a distal end
3	of the optical fiber.
1	42. The monitor of claim 40, wherein the mode coupler is
2	selected from an acoustic grating, a UV grating, a bending grating and a

stress induced grating.

1	43. The monitor of claim 40, wherein the mode coupler includes		
2	an acoustic wave generator and an acoustic wave propagation member		
3	coupled to the optical fiber.		
1	44. The monitor of claim 40, further comprising:		
2	a polarization scrambler coupled to the optical fiber and the mode		
3	coupler.		
1	45. A polarization independent spectral monitor, comprising:		
2	an optical fiber with multiple modes;		
3	a first mode coupler coupled to the optical fiber, the first mode		
4	coupler producing a first acoustic wave in the optical fiber to couple a first		
5	mode of an optical signal to a second mode in the optical fiber; and		
6	a second mode coupler coupled to the optical fiber, the second mode		
7	coupler producing a second acoustic wave in the optical fiber that is		
8	orthogonal to the first acoustic wave.		
1	46. The monitor of claim 41, wherein each mode coupler		
2	includes an acoustic wave generator and an acoustic wave propagation		
3	member coupled to the optical fiber.		
1	47. The monitor of claim 41, further comprising:		
2	a modal filter coupled to the second mode coupler and the optical		
3	fiber; and		
4	a detector coupled to the modal filter.		
1	48. A polarization independent spectral monitor, comprising:		
2	an optical fiber with multiple modes; and		
3	a mode coupler coupled to the optical fiber and configured to		
4	produce independent orthogonal acoustic waves in the optical fiber that		
5	couple a first mode to a second mode; and		

1

7	coupling from the first mode to the second mode.
1	49. The spectral monitor of claim 48, wherein the mode coupler
2	includes, a first pair and a second pair of electrodes, the first and second
3	pairs producing the horizontal and vertical independent acoustic waves in
4	response to application of first and second voltages to each pair of
5	electrodes.
1	50. The monitor of claim 48, further comprising:
2	a modal filter coupled to the mode coupler and the optical fiber; and
3	a detector coupled to the modal filter.

a detector positioned to detect a coupling power spectrum of the