Dataset Summary

August 3, 2018

Col.	Col. Name	Format	Units	Range	Description
1	NODE_ID	str	-	1 - 960	Node ID
2	STATE_NAME	str	-	-	State in which node is located
3	NEM_REGION	str	-	-	NEM region in which node is located
4	NEM_ZONE	str	-	-	NEM zone in which node is located
5	$VOLTAGE_KV$	int	kV	110 - 500	Node voltage
6	RRN	int	-	0 - 1	If 1 node is a RRN, if 0 node is not a RNN
7	PROP_REG_D	float	-	0.0 - 0.123	Proportion of NEM regional demand consumed at node
8	LATITUDE	float	N°	-43.215.9	Latitude (GDA94)
9	LONGITUDE	float	E°	135.5 - 153.5	Longitude (GDA94)

Table 1: Network nodes dataset summary

Col.	Col. Name	Format	Units	Range	Description
1	LINE_ID	str	-	-	Network edge ID
2	$\overline{\text{NAME}}$	str	-	-	Name of network edge
3	FROM_NODE	int	-	1 - 960	Node ID for origin node
4	TO_NODE	int	-	1 - 960	Node ID for destination node
5	R_PU	float	p.u.	$6.09 \times 10^{-6} - 0.407$	Per-unit resistance
6	X_{PU}	float	p.u.	$1.52 \times 10^{-5} - 0.829$	Per-unit reactance
7	B_PU	float	p.u.	$1.07 \times 10^{-5} - 1.249$	Per-unit susceptance
8	NUM_LINES	int	-	1 - 4	Number of parallel lines
9	LENGTH_KM	float	km	0.03 - 315.7	Line length
10	VOLTAGE_KV	float	kV	110 - 500	Line voltage

Table 2: Network edges dataset summary

Col.	Col. Name	Format	Units	Range	Description
1	HVDC_LINK_ID	str	-	-	HVDC link ID
2	$FROM_NODE$	int	-	605 - 806	Node ID of origin node
3	TO_NODE	int	-	88 - 298	Node ID of destination node
4	FORWARD_LIMIT_MW	float	MW	180 - 594	'From' node to 'To' node power-flow limit
5	$REVERSE_LIMIT_MW$	float	MW	180 - 478	'To' node to 'From' node power-flow limit
6	VOLTAGE_KV	float	kV	132 - 400	HVDC link voltage

Table 3: Network HVDC links dataset summary

Col.	Col. Name	Format	Units	Range	Description
1	INTERCONNECTOR_ID	str	-	-	AC interconnector ID
2	$FROM_NODE$	int	-	40 - 806	Node ID of origin node
3	FROM_REGION	str	-	-	Region in which 'From' node is located
4	TO_NODE	int	-	5 - 807	Node ID for destination node
5	TO_REGION	str	-	-	Region in which 'To' node is located
6	$VOLTAGE_KV$	float	kV	110 - 330	Line voltage

Table 4: AC interconnector locations dataset summary

Col.	Col. Name	Format	Units	Range	Description
1	INTERCONNECTOR_ID	str	-	_	AC interconnector ID
2	FROM_REGION	str	-	-	Region in which 'From' node is located
3	TO_{REGION}	str	-	-	Region in which 'To' node is located
4	FORWARD_LIMIT_MW	float	MW	107 - 1600	'From' node to 'To' node power-flow limit
5	REVERSE_LIMIT_MW	float	MW	210 - 1350	'To' node to 'From' node power-flow limit

Table 5: AC interconnector flow limits summary

Col.	Col. Name	Format	Units	Range	Description	$\mathrm{Source}^{\dagger}$
1	DUID	str	-	-	Unique ID for each unit	[1]
2	STATIONID	str	-	-	ID of station to which DUID belongs	[1]
3	STATIONNAME	str	-	-	Name of station to which DUID belongs	[1]
4	NEM_REGION	str	-	-	Region in which DUID is located	
5	NEM_ZONE	str	-	-	Zone in which DUID is located	
6	NODE	int	-	9 - 940	Node to which DUID is assigned	
7	$FUEL_TYPE$	str	-	-	Primary fuel type	[1]
8	FUEL_CAT	str	-	-	Primary fuel category	
9	EMISSIONS	float	tCO_2/MWh	0.0 - 1.56	Equivalent CO ₂ emissions intensity	[3]
10	SCHEDULE TYPE	str	-	-	Schedule type for unit	[1]
11	REG CAP	float	MW	21 - 1500	Registered capacity	[1]
12	MIN GEN	float	MW	0.0 - 347.2	Minimum dispatchable output	[1, 2]
13	RR_STARTUP	float	MW/h	60 - 12000	Ramp-rate for start-up	[2]
14	RR_SHUTDOWN	float	MW/h	40 - 9740	Ramp-rate for shut-down	[2]
15	RR UP	float	MW/h	60 - 12000	Ramp-rate up when running	[2]
16	RR DOWN	float	MW/h	60 - 10080	Ramp-rate down when running	[2]
17	MIN_ON_TIME	int	h	0 - 16	Minimum on time	[2]
18	MIN_OFF_TIME	int	h	0 - 16	Minimum off time	[2]
19	SU COST COLD	int	\$	0 - 260400	Cold start start-up cost	[2]
20	SU COST WARM	int	\$	0 - 89280	Warm start start-up cost	[2]
21	SU COST HOT	int	\$	0 - 29760	Hot start start-up cost	[2]
22	VOM	float	MWh	0.0 - 12.5	Variable operations and maintenance costs	[2]
23	HEAT RATE ‡	float	$\mathrm{GJ/MWh}$	0.0 - 15.7	Heat rate	[2]
24	NL FUEL CONS	float	-	0.0 - 0.3	No-load fuel consumption as a proportion of full load consumption	[2]
25	$FC^{-2016-17}$	float	J	0.0 - 8.6	Fuel cost for the year 2016-17	[2]
26	$\overline{SRMC}_2016-17$	float	\$/MWh	0.0 - 129.7	Short-run marginal cost for the year 2016-17	

[†] Where no source is given, the value has been derived as part of the dataset construction procedure. NEM_REGION and NEM_ZONE were found by determining the region and zone of each generator's assigned node. FUEL_CAT assigns a generic category to FUEL_TYPE. MIN_GEN was computed by combining minimum output as a proportion of nameplate capacity from [2] with registered capacities from [1]. SRMC_2016-17 is calculated from VOM, HEAT_RATE, and FC_2016-17 fields, using equation (1).

Table 6: Generator dataset summary

[‡] While not explicitly stated, it is assumed that a lower heating value is referred to. This is consistent with another field in [2] that gives DUID thermal efficiency in terms of lower heating values.

Col.	Col. Name	Format	Units	Range	Description
1	SETTLEMENTDATE	timestamp	-	1/6/2017 12:30:00 AM - 1/7/2017 12:00:00 AM	Trading interval
2	NSW1	float	MW	6298.7 - 11652.8	New South Wales demand signal
3	QLD1	float	MW	4864.0 - 7728.7	Queensland demand signal
4	SA1	float	MW	1002.9 - 2287.1	South Australia demand signal
5	TAS1	float	MW	921.0 - 1708.6	Tasmania demand signal
6	VIC1	float	MW	3795.8 - 7357.3	Victoria demand signal

Table 7: Regional demand signals dataset summary

Col.	Col. Name	Format	Units	Range	Description
1 2-265	SETTLEMENTDATE (DUID)	timestamp float	- MW	1/6/2017 12:30:00 AM - 1/7/2017 12:00:00 AM -	Trading interval DUID dispatch profile

Table 8: DUID dispatch profiles. Columns correspond to DUIDs.

References

- [1] Australian Energy Market Operator. Data Archive. *NEMWEB Market Data* http://www.nemweb.com.au/#mms-data-model (2018).
- [2] Australian Energy Market Operator. 2016 NTNDP Database. AEMO NTNDP Database https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/National-Transmission-Network-Development-Plan/NTNDP-database (2018).
- [3] Australian Energy Market Operator. Current Reports. *NEMWEB Market Data* http://www.nemweb.com.au/Reports/Current/ (2018).

1 Appendix

SRMC calculation:

$$SRMC [\$/MWh] = Heat Rate [GJ/MWh] \times Fuel Cost [\$/GJ] + VOM Cost [\$/MWh]$$
 (1)