ALGORITHMICS\$APPLIED

APPLIEDALGORITHMICS\$

CS\$APPLIEDALGORITHMI

DALGORITHMICS\$APPLIE

EDALGORITHMICS\$APPLI

GORITHMICS\$APPLIEDAL

HMICS\$APPLIEDALGORIT

ICS\$APPLIEDALGORITHM

OR TENA

Compression

21 March 2022

Sebastian Wild

Learning Outcomes

- Understand the necessity for encodings and know ASCII and UTF-8 character encodings.
- 2. Understand (qualitatively) the *limits of compressibility*.
- Know and understand the algorithms (encoding and decoding) for Huffman codes, RLE, Elias codes, LZW, MTF, and BWT, including their properties like running time complexity.
- **4.** Select and *adapt* (slightly) a *compression* pipeline for specific type of data.

Unit 7: Compression

Outline

7 Compression

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Entropy
- 7.5 Run-Length Encoding
- 7.6 Lempel-Ziv-Welch
- 7.7 Lempel-Ziv-Welch Decoding
- 7.8 Move-to-Front Transformation
- 7.9 Burrows-Wheeler Transform
- 7.10 Inverse BWT

7.1 Context

Overview

- ► Unit 4–6: How to *work* with strings
 - finding substrings
 - finding approximate matches
 - ► finding repeated parts
 - ▶ ..
 - ▶ assumed character array (random access)!
- ▶ Unit 7–8: How to *store/transmit* strings
 - computer memory: must be binary
 - ▶ how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question

What compression methods do you know?

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ coded text: encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- ▶ encoding: algorithm mapping source texts to coded texts
- ▶ **decoding:** algorithm mapping coded texts back to original source text

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts
- ▶ decoding: algorithm mapping coded texts back to original source text
- ► Lossy vs. Lossless
 - lossy compression can only decode approximately;
 the exact source text S is lost
 - ▶ lossless compression always decodes S exactly △ have
- ► For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- ▶ We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - size

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size
- ► Focus in this unit: size of coded text

 Encoding schemes that (try to) minimize the size of coded texts perform data compression.
- ► We will measure the *compression ratio*:
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!? (yes, that happens ...)

 $\frac{|C|}{|S| \cdot \lg |\Sigma_S|}$

size of source tex

Is this image compressible?

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ► Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

► Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ► Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

- ► Kolmogorov complexity = length of smallest such program
- ▶ **Problem:** finding smallest such program is *uncomputable*.
- → No optimal encoding algorithm is possible!
- → must be inventive to get efficient methods

What makes data compressible?

Lossless compression methods mainly exploit two types of redundancies in source texts:

uneven character frequencies some characters occur more often than others → Part I

2. repetitive texts
different parts in the text are (almost) identical → Part II

What makes data compressible?

- Lossless compression methods mainly exploit two types of redundancies in source texts:
 - uneven character frequencies some characters occur more often than others → Part I
 - 2. repetitive texts different parts in the text are (almost) identical \rightarrow Part II

There is no such thing as a free lunch!

Not *everything* is compressible (\rightarrow tutorials)

→ focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ► Simplest form of encoding: Encode each source character individually
- \rightsquigarrow encoding function $E: \Sigma_S \to \Sigma_C^*$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - ▶ for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- ▶ **fixed-length code:** |E(c)| is the same for all $c \in \Sigma_C$
- ▶ variable-length code: not all codewords of same length

Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

```
0000000 NUL
               0010000 DLE
                              0100000
                                            0110000 0
                                                         1000000 a
                                                                      1010000 P
                                                                                    1100000 '
                                                                                                 1110000 p
0000001 SOH
               0010001 DC1
                              0100001 !
                                            0110001 1
                                                         1000001 A
                                                                      1010001 0
                                                                                    1100001 a
                                                                                                 1110001 a
0000010 STX
               0010010 DC2
                              0100010 "
                                            0110010 2
                                                         1000010 B
                                                                      1010010 R
                                                                                    1100010 b
                                                                                                 1110010 r
0000011 ETX
               0010011 DC3
                              0100011 #
                                            0110011 3
                                                         1000011 C
                                                                      1010011 S
                                                                                    1100011 c
                                                                                                 1110011 s
0000100 FOT
               0010100 DC4
                              0100100 $
                                            0110100 4
                                                         1000100 D
                                                                      1010100 T
                                                                                    1100100 d
                                                                                                 1110100 t
0000101 ENO
               0010101 NAK
                              0100101 %
                                            0110101 5
                                                         1000101 E
                                                                      1010101 U
                                                                                    1100101 e
                                                                                                 1110101 u
0000110 ACK
               0010110 SYN
                              0100110 &
                                            0110110 6
                                                         1000110 F
                                                                      1010110 V
                                                                                    1100110 f
                                                                                                 1110110 v
0000111 BEL
               0010111 ETB
                              0100111 '
                                            0110111 7
                                                         1000111 G
                                                                      1010111 W
                                                                                    1100111 q
                                                                                                 1110111 w
0001000 BS
               0011000 CAN
                              0101000 (
                                            0111000 8
                                                         1001000 H
                                                                      1011000 X
                                                                                    1101000 h
                                                                                                 1111000 x
0001001 HT
               0011001 EM
                              0101001 )
                                            0111001 9
                                                         1001001 I
                                                                      1011001 Y
                                                                                    1101001 i
                                                                                                 1111001 v
0001010 LF
               0011010 SUB
                              0101010 *
                                            0111010 :
                                                                      1011010 Z
                                                         1001010 J
                                                                                    1101010 i
                                                                                                 1111010 z
0001011 VT
               0011011 ESC
                              0101011 +
                                            0111011 :
                                                         1001011 K
                                                                      1011011 [
                                                                                    1101011 k
                                                                                                 1111011 {
0001100 FF
               0011100 FS
                              0101100 .
                                            0111100 <
                                                         1001100 L
                                                                      1011100 \
                                                                                    1101100 l
                                                                                                 1111100
0001101 CR
               0011101 GS
                              0101101 -
                                            0111101 =
                                                         1001101 M
                                                                      1011101 1
                                                                                    1101101 m
                                                                                                 1111101 }
0001110 SO
               0011110 RS
                                                                      1011110 ^
                              0101110 .
                                            0111110 >
                                                         1001110 N
                                                                                    1101110 n
                                                                                                 1111110 ~
0001111 SI
               0011111 US
                              0101111 /
                                            0111111 ?
                                                         1001111 0
                                                                      1011111
                                                                                    1101111 o
                                                                                                 1111111 DEL
```

- ▶ 7 bit per character
- ▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)

Variable-length codes

- ▶ to gain more flexibility, have to allow different lengths for codewords
- ► actually an old idea: Morse Code

https://commons.wikimedia.org/wiki/File: International_Morse_Code.svg

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

sli.do/comp526

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

1	1	
١.	1	

(E) 20

(F) 34

G 256

sli.do/comp526

Variable-length codes – UTF-8

► Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- ► Encodes any Unicode character (137 994 as of May 2019, and counting)
- ▶ uses 1–4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- Non-ASCII charactters start with 1–4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence					
(hexadecimal)	(binary)					
0000 0000 - 0000 007F	0xxxxxx					
0000 0080 - 0000 07FF	110xxxxx 10xxxxxx					
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx					
0001 0000 - 0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx					

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- Suppose we have the following code: $\begin{array}{c|ccccc} c & a & n & b & s \\ \hline E(c) & 0 & 10 & 110 & 100 \\ \end{array}$

Pitfall in variable-length codes

7
$$C = 1100100100 \text{ decodes both to banana and to bass: } \frac{1100}{b} \frac{100}{a} \frac{100}{s} \frac{100}{s}$$

→ not a valid code . . . (cannot tolerate ambiguity)
but how should we have known?

Pitfall in variable-length codes

7
$$C = 1100100100 \text{ decodes both to banana and to bass: $\frac{1100100100}{b \text{ a s}} \frac{100100100}{s}$$$

→ not a valid code . . . (cannot tolerate ambiguity) but how should we have known?

- E(n) = 10 is a (proper) **prefix** of E(s) = 100
 - Leaves decoder wondering whether to stop after reading 10 or continue!
- → Require a *prefix-free* code: No codeword is a prefix of another.

 prefix-free ⇒ instantaneously decodable ⇒ uniquely decodable

Code tries

► From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)

- ► Encode AN_ANT 01001000
- Decode 11/1000001010111

TOU

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)

- ► Encode AN, ANT → 010010000100111
- ► Decode 111000001010111 → T0_EAT

Who decodes the decoder?

- ▶ Depending on the application, we have to **store/transmit** the **used code**!
- ► We distinguish:
 - ▶ <u>fixed coding:</u> code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)
 - static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - **adaptive coding:** code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW \rightarrow below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- ▶ Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- ▶ **Observation:** Some letters occur more often than others.

Typical English prose:

e	12.70%		d	4.25%		р	1.93%	
t	9.06%		1			b		
a	8.17%		c		_	v	0.98%	.
0	7.51%		u		_	-	0.77%	
i	6.97%		m		_	i	0.15%	1
n	6.75%	_	w	2.36%	_	X	0.15%	1
s	6.33%		f	2.23%	_		0.10%	1
h	6.09%	_	g	2.02%	-		0.07%	1
r	5.99%		v		-			
l -	0.000		•	2.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$
 (choose $w(c) = 0$)

of c in text

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

- ► If we use w(c) = #occurrences of c in S, this is the character encoding with smallest possible |C|
 - → best possible character-wise encoding

▶ Quite ambitious! *Is this efficiently possible?*

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u = E(\Box b)$.

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u = E(\Box b)$.
- efficient implementation using a (min-oriented) *priority queue*
 - start by inserting all characters with their weight as key
 - ▶ step 1 uses two deleteMin calls
 - step 2 inserts a new character with the sum of old weights as key

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

г

_

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

LOSSLESS \rightarrow <u>0100111</u>0100011 compression ratio: $\frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx 88\%$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - which subtree goes left, which goes right?
- ► For COMP 526: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the alphabetical order, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a 0-bit).
 - When combining trees of equal value, place the one containing the smallest letter to the left.

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - ▶ Pass 1: Count character frequencies in *S*
 - ► Construct Huffman code *E* (as above)
 - ► Store the Huffman code in *C* (details omitted)
 - ▶ Pass 2: Encode each character in *S* using *E* and append result to *C*
- Decoding works as follows:
 - ▶ Decode the Huffman code *E* from *C*. (details omitted)
 - ▶ Decode *S* character by character from *C* using the code trie.
- ► Note: Decoding is much simpler/faster!

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ▶ Given any optimal prefix-free code E^* (as its code trie).
- ightharpoonup code trie ightharpoonup \exists two sibling leaves x, y at largest depth D
- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- ▶ any optimal code for $\Sigma' = \Sigma \setminus \{a, b\} \cup \{ab\}$ yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- \leadsto recursive call yields optimal code for Σ' by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ .

7.4 Entropy

$$P_1 + P_2 + \cdots + P_m = 1$$
 $P_2 \in [0,1]$

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Pr (Pr)

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

- \rightarrow Need to cut [0, 1) in half $\lg(1/p_i)$ times
- ► more precisely: the expected number of bits (Yes/No questions) required to nail down the random value

Entropy and Huffman codes

▶ would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits . . .

Entropy and Huffman codes

would ideally encode value i using $\lg(1/p_i)$ bits but can be not always possible; cannot use codeword of 1.5 bits ... but:

not as length of single codeword that is; but can be possible on average!

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma = \{a_1, \dots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code E, we have

$$\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1 \quad \text{where } \mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_\sigma)}{W}\right) \text{ and } W = w(a_1) + \dots + w(a_\sigma).$$

$$\ell(E) = \sum_{i=1}^{\sigma} \omega(i) \cdot |E(a_i)|$$

Entropy and Huffman codes

would ideally encode value i using $\lg(1/p_i)$ bits but can be not always possible; cannot use codeword of 1.5 bits ... but:

not as length of single codeword that is;

but can be possible on average!

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma = \{a_1, \dots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code E, we have

$$\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$$
 where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_\sigma)}{W}\right)$ and $W = w(a_1) + \dots + w(a_\sigma)$.

Proof sketch:

▶ $\ell(E) \ge \mathcal{H}$ Any prefix-free code E induces weights $q_i = 2^{-|E(a_i)|}$. By Kraft's Inequality, we have $q_1 + \cdots + q_{\sigma} \le 1$. Hence we can apply <u>Gibb's Inequality</u> to get

$$\mathcal{H} = \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{p_i}\right) \stackrel{\text{\int}}{\leq} \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{q_i}\right) = \ell(E).$$

Entropy and Huffman codes [2]

Proof sketch (continued):

$$\blacktriangleright$$
 $\ell(E) \leq \mathcal{H} + 1$

$$\ell(E) \leq \Re + 1$$
Set $q_i = 2^{-\lceil \lg(1/p_i) \rceil}$. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \leq \Re + 1$.

We construct a code E' for Σ with $|E'(a_i)| \leq \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \leq q_2 \leq \cdots \leq q_{\sigma}$

- ▶ If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ls(=) > Qs(1)=0 [2(-1) >

[x] < x+1

▶ If $\sigma \ge 3$, we merge a_1 and a_2 to a_1a_2 , assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

By the inductive hypothesis, we have $\left|E'(\overline{a_1a_2})\right| \leq \lg\left(\frac{1}{2a_2}\right) = \lg\left(\frac{1}{a_2}\right) - 1$.

By construction, $|E'(a_1)| = |E'(a_2)| = |E'(\overline{a_1 a_2})| + 1$, so $|E'(a_1)| \le \lg(\frac{1}{a_1})$ and $|E'(a_2)| \le \lg(\frac{1}{a_2})$.

By optimality of
$$E$$
, we have $\ell(E) \leq \ell(E') \leq \sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) \leq \mathcal{H} + 1$.

Clicker Question

When does Huffman coding <u>yield more efficient</u> compression than a fixed-length character encoding?

- **A**) always
- **B** when $\mathcal{H} \approx \lg(\sigma)$
- **C** when $\mathcal{H} < \lg(\sigma)$
- **D** when $\mathcal{H} < \lg(\sigma) 1$
- \blacksquare when $\mathcal{H} \approx 1$

Clicker Ouestion

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

B when
$$\mathcal{H} \simeq \lg(\sigma)$$

$$C$$
 when $\mathcal{H} < \lg(\sigma)$

D when
$$\mathcal{H} < \lg(\sigma) - 1$$

sli.do/comp526

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - ightharpoonup can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - ightharpoonup can do $\Theta(\sigma)$ time when characters already sorted by weight
 - ▶ time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)
- optimal prefix-free character encoding
- b very fast decoding
- needs 2 passes over source text for encoding
 - one-pass variants possible, but more complicated
- \bigcap have to store code alongside with coded text

Continue

13:45

Part II

Compressing repetitive texts

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
 - → Huffman won't compression this very much

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
 - → Huffman won't compression this very much
- \rightarrow Have to encode whole *phrases* of S by a single codeword

7.5 Run-Length Encoding

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

```
0001011001000001111110000000000011111000
00111111111000111111111100000011111111000
00110000000000000000111000111000000000
001101100000000000000111001100111110000
00111111110000000000001110011111111111000
00000000111000000001110000111100011110
00000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
0000000011100011100000000110000001110
66666666611666611166666666111666611166
000101100000001010011001000000100100000
```

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

- same character repeated
- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets
- → run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - ▶ the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

```
0001011001000001111110000000000011111000
00111111111000111111111100000011111111000
001101100000000000000111001100111110000
00111111110000000000001110011111111111000
000000000111000000011100001110000001110
000000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
0000000011100011100000000110000001110
66666666611666611166666666111666611166
00110111111000111110111010000111111111000
000101100000001010011001000000100100000
```

same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4
- **Question**: How to encode a run length k in binary? (k can be arbitrarily large!)

Clicker Question

How would you encode a string that can we arbitrarily long?

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- (wasn't the whole point of RLE to get rid of long runs??)

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- ▶ (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - ► Followed by the binary digits themselves
 - ▶ little tricks:
 - ▶ always $\ell \ge 1$, so store $\ell 1$ instead
 - ▶ binary representation always starts with 1 → don't need terminating 1 in unary
 - \rightarrow Elias gamma code = $\ell 1$ zeros, followed by binary representation

Examples:
$$1 \mapsto 1$$
, $3 \mapsto 011$, $5 \mapsto 00101$, $30 \mapsto 000011110$

Clicker Question

Decode the **first** number in Elias gamma code (at the beginning) of the following bitstream:

000110111011100110.

sli.do/comp526

► Encoding:

$$C = 1$$

► Decoding:

$$C = 00001101001001010$$

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

$$C = 00001101001001010$$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

C = 00001101001001010

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

$$C = 00001101001001010$$

$$b = 0$$

$$S =$$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010
```

b = 0

 $\ell = 3 + 1$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010
```

b = 0

 $\ell = 3 + 1$

k = 13

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 1

\delta = 1
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 4

S = 000000000000001111
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 0

\ell = 0 + 1

k = 000000000000001111
```

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 0000110100100100
```

b = 0

 $\ell = 0 + 1$

k = 1

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 1

k = 1
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 2

S = 000000000000001111011
```

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)
- fairly simple and fast
- can compress n bits to $\Theta(\log n)$! for extreme case of constant number of runs
- negligible compression for many common types of data
 - ▶ No compression until run lengths $k \ge 6$
 - **expansion** for run length k = 2 or 6

7.6 Lempel-Ziv-Welch

Warmup

nttps://www.rtickr.com/pnotos/quintanaroo/2/42/26340

Clicker Question

sli.do/comp526

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - \triangleright either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - ightharpoonup either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).
 - Variants of Lempel-Ziv compression
 - "LZ77" Original version ("sliding window")
 Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...
 DEFLATE used in (pk)zip, gzip, PNG
 - "LZ78" Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- ► variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- ► variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \longrightarrow fixed-length
 - but they represent a variable portion of the source text!
- ▶ maintain a **dictionary** D with 2^k entries \longrightarrow codewords = indices in dictionary
 - ▶ initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - ▶ **add** a new entry to *D* **after each step**:
 - ► **Encoding:** after encoding a substring *x* of *S*, add *xc* to *D* where *c* is the character that follows *x* in *S*.

- \rightarrow new codeword in D
- \triangleright D actually stores codewords for x and c, not the expanded string

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C =

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! LY0U! LY0URLY0Y0!

 Σ_S = ASCII character set (0–127)

C = 89

Code	String
32	П
33	!
79	0
82	R
85	U
(89°)	Υ

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! \ Y0U! \ Y0UR \ Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0 -
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0
C =	89	79

Code	String
32	П
33	!
(79)	0
<u> </u>	
82	R
85	U
89	Υ

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

	Υ	0
C =	89	79

\mathcal{D}	_
\mathcal{D}	=

								6	_	en	cod	$\frac{\log x}{2}$	= b	an				
S	h	а	n	n	а	h	b	а	n	S	b	а	n	а	n	а	S	
		already encoded										х		c				
	add $xc = bana$ to dictionary																	

Code	String
32	⊔
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	- 1
C =	89	79	33

Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	!
C =	89	79	33

Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	1
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	
132	
133	
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

\Box	_
ν	_

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0
C = 89	79	33	32	128

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! L Y0 C = 89 79 33 32 128

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	 Y0	U
C = 89				

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	
134	
135	
136	
137	
138	
139	

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U
C = 89	79	33	32	128	85

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!
C = 89	79	33	32	128	85	130

D	=	

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
(130)	_:
131	Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	Ţ	ш	Y0	U	!
C = 89	79	33	32	128	85	130

Code	String						
32	П						
33	!						
79	0						
82	R						
85	U						
89	Υ						

D =

Codo String

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! Y
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0	U	!	YOU
C = 89	79	33	32	128	85	130	132

L
Γ

Code	String
32	П
33	-:
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
(132)	YOU
133	U!
134	!⊔Y
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D	=	
D	=	

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!Y
135	YOUR
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0	U	!	YOU	R
C = 89	79	33	32	128	85	130	132	82

_		
_		

Code	String
32	⊔
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! _ Y
135	YOUR
136	
137	
138	
139	

Input: Y0!,,Y0U!,,Y0UR,,Y0Y0!

 Σ_S = ASCII character set (0–127)

Y0 YOU $C = 89 \quad 79 \quad 33 \quad 32 \quad 128$ 85 130 132

D =

Code

32 33

82

85

89

String

0

R

U

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

.

Code	String
128	Y0
129	0!
130	_;
(131)	۲
132	YOU
133	U!
134	! _ Y
135	YOUR
136	R⊔
137	
138	·
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! _ Y0 U ! _ Y0U R _Y C = 89 79 33 32 128 85 130 132 82 131

								ç	_	en	cod	le x	= b	an				
S	h	а	n	n	а	h	b	а	n	S	b	a	n	а	n	a	s	
		already encoded								Τ	х		С					
		add x									= 1	oana	to	dict	ion	ary		

String
П
!
0
R
U
Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 م
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

L
Γ

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	
131	٦
132	YOU
133	U!
134	! _ Y
135	YOUR
136	R⊔
137	۷0_
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

l
l
l

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y = 0 ! U = Y0 U ! Y0U = R Y = 0 Y0 C = 89 = 79 = 33 = 32 = 128 = 85 = 130 = 132 = 82 = 131 = 79 = 128

L
Γ

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	R⊔
137	۷0 م
138	0Y
139	Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

D =

Code

String

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	٦Y0
138	0Y
139	Y0!

LZW encoding – Code

```
1 procedure LZWencode(S[0..n))
      x := \varepsilon // previous phrase, initially empty
     C := \varepsilon // output, initially empty
      D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie
    k := |\Sigma_S| // next free codeword
    for i := 0, ..., n-1 do
           c := S[i]
7
           if D.containsKey(xc) then
                x := xc
           else
10
                C := C \cdot D.get(x) // append codeword for x
11
                D.put(xc, k) // add xc to D, assigning next free codeword
12
                k := k + 1: x := c
13
      end for
      C := C \cdot D.get(x)
      return C
16
```