Multilevel Logistic Regression for Binary Data – Part 2

Nambari Short Course

16 July 2019

Overview

- Revisit data structure of CTQ data
- Model treatment effect using multilevel logit model
- Compare conditional (subject-specific) versus marginal (population-averaged) treatment effect

Smoking Cessation Study: Summaries

Smoking Cessation Study: Summaries

Data Analyses

- Multilevel logistic regression with intercept only
- Multilevel logistic regression on single covariate
- MLR of time trend and treatment effect

Variables used in this analysis

```
Y_{ij} = quit status for person i at time t_j

= 1 if quit, 0 if not

t_j = measurement time in weeks

Z_i = treatment group (1 = exercise, 0 = control)

X_i = baseline level of nicotine dependence (0 to 10)
```

Data excerpt

	ID	week	wk>4	Z	X	Y
[1,]	305	4	0	0	8	0
[2,]	305	5	1	0	8	1
[3,]	305	6	1	0	8	1
[4,]	305	7	1	0	8	1
[5,]	305	8	1	0	8	1
[6,]	305	9	1	0	8	1
[7,]	305	10	1	0	8	1
[8,]	305	11	1	0	8	1
[9,]	305	12	1	0	8	1
[10,]	309	4	0	1	6	0
[11,]	309	5	1	1	6	0
[12,]	309	6	1	1	6	0
[13,]	309	7	1	1	6	0
[14,]	309	8	1	1	6	0
[15,]	309	9	1	1	6	0
[16,]	309	10	1	1	6	0
[17,]	309	11	1	1	6	0
[18,]	309	12	1	1	6	0

Model 2: Include individual-level covariate

Covariate here is nicotine dependence score (0 to 10)

Level 1

$$Y_{ij} \sim \text{Ber}(\pi_{ij})$$

 $\text{logit}(\pi_{ij}) = \alpha_i + \beta X_i$

Level 2

$$\alpha_i \sim N(0, \tau^2)$$

Interpretation:

- Coefficient β is the *subject-specific* effect of X; i.e., the effect of X within an individual.
- Another interpretation is that it is the *conditional* effect of X (conditioning on α_i , the individual-level propensity to quit smoking)

7 / 22

Fitting the model in R

```
> M1 = glmer( Y ~ totfager + (1 | id), family=binomial(link=logit), data=ctq)
> display(M1)
glmer(formula = Y ~ totfager + (1 | id), data = ctq, family = binomial(link = logit))
           coef.est coef.se
(Intercept) -0.23 0.94
totfager -0.44 0.15
Error terms:
Groups Name Std.Dev.
id (Intercept) 3.68
Residual
         1.00
number of obs: 1688, groups: id, 266
AIC = 1336.6, DIC = 257.7
deviance = 794.2
```

Fitting the model in R

```
> coef(MO)
$id
     (Intercept) totfager
305
       5.0808334 -0.4404643
309
      -1.6677924 -0.4404643
311
      -0.9908914 - 0.4404643
313
      -1.4195797 -0.4404643
314
       1.8312968 -0.4404643
317
      -0.8460499 -0.4404643
321
      -1.9349872 -0.4404643
```

Plot of individual-level effect of X on logit scale

Probability scale

11 / 22

Population-averaged versus subject-specific effect of X

Subject-specific effect

Can write model like this

$$P(Y_{ij} = 1 \mid \alpha_i, X_i) = \frac{\exp(\alpha_i + \beta X_i)}{1 + \exp(\alpha_i + \beta X_i)}$$

For each individual i, the effect of X is β

Population-averaged versus subject-specific effect of X

Population-averaged effect

- ullet To calculate PA effect, need to integrate (average) over distribution of α_i
- Recall that this distribution is $\mathcal{N}(\mu, \tau^2)$.
- Denote by $f(\alpha \mid \mu, \tau)$

The population-averaged effect is

$$P(Y_{ij} = 1 \mid X_i) = \int \frac{\exp(\alpha + \beta X_i)}{1 + \exp(\alpha + \beta X_i)} f(\alpha \mid \mu, \tau) d\alpha$$

Population-averaged versus subject-specific effect of X

When α has a normal distribution, can show that the integral is approximately

$$P(Y_{ij} = 1 \mid X_i) \approx \frac{\exp(\mu^* + \beta^* X_i)}{1 + \exp(\mu^* + \beta^* X_i)}$$

where

$$\beta^* = \frac{\beta}{(1 + .346\tau^2)^{1/2}}$$

In our example,

$$\widehat{\beta} = -0.44$$

$$\widehat{\beta}^* = \frac{-0.44}{(1 + .346(3.68^2))^{1/2}} \approx -0.18$$

- At the individual level, nicotine dependence has a strong negative effect on probability of smoking cessation in a given week, associated with decreased log odds of quitting of -.44
- Averaged over the population, the effect is attenuated toward zero. The population-averaged
 effect represents a between-group comparison of those who differ by one unit in dependence score.

Model of treatment effect

- The structure of the model is motivated by the longitudinal data patterns
- Three parameters:
 - Overall intercept (quit rate prior to week 5)
 - ▶ Quit rate for control from weeks 5-12 (constant)
 - ▶ Difference in quit rate for treatment from weeks 5-12 (constant)

Model of treatment effect

Level 1

$$Y_{ij} \sim \operatorname{Ber}(\pi_{ij})$$

 $\operatorname{logit}(\pi_{ij}) = \alpha_i + \beta T_j + \theta T_j Z_i$

Level 2

$$\alpha_i \sim \mathcal{N}(\mu, \tau^2)$$

In this notation,

$$T_i = 1 \text{ if week } \ge 5$$

= 0 if not

Fitting the model in R

```
> M2 = glmer( Y ~ target_wk + target_wk:Z + (1 | id ), family=binomial(link=logit),
> display(M2)
glmer(formula = Y ~ target_wk + target_wk:Z + (1 | id), data = ctq,
   family = binomial(link = logit))
           coef.est coef.se
(Intercept) -7.52 0.80
target_wk 4.08 0.53
target_wk:Z 1.36 0.66
Error terms:
Groups Name Std.Dev.
id (Intercept) 4.92
Residual 1.00
number of obs: 1887, groups: id, 266
AIC = 1220.6, DIC = 84.9
deviance = 648.7
```


Subject-specific effect

Population-averaged effect

