CREDIT SCORE

Data Analysis

Ying Cheung Elias Grant Ivan Chuang Lea Choe Manshu Huang Maya Thompson

NSDC SPRING 2025

Project Overview

Objectives:

- Create visualizations to explore relationships between variables in users_data.csv from the Financial Transactions dataset.
- 2. Analyze **users_data.csv** and identify a valid model to predict credit score from various explanatory variables.

Data Collection

Week 3 (data source, number of files, variables, variable types)

- Focused on two files: cards data.csv and users data.csv
- Variables (card data)
 - o Card id
 - User_id
 - Card_limit
 - Card_type
 - issued_date

- Variables (users data)
 - User_id
 - Current_age
 - Retirement_age
 - Gender
 - o Per_capita_income
 - Yearly_income
 - Total_debt
 - Num_credit_cards
 - Birth_year / birth_month

Data source: Kaggle Dataset: Transactions Fraud Datasets

⇔ id ID	F	≈ client_id	F	△ card_brand	F	∆ card_type	F	# card_number =	expires =	# cvv
0	6145		1999	Mastercard Visa Other (611)	52% 38% 10%	Debit Credit Other (578)	57% 33% 9%	300106b 6997197b	1997-06-30 2024-11-30	0
4524	0145	825	1999	Visa		Debit		4344676511958444	12/2022	623
2731		825		Visa		Debit		4956965974959986	12/2020	393
3701		825		Visa		Debit		4582313478255491	82/2824	719
42		825		Visa		Credit		4879494183869857	88/2824	693
4659		825		Mastercard		Debit (Prepaid)		5722874738736911	83/2889	75
4537		1746		Visa		Credit		4484898874682993	89/2883	736
1278		1746		Visa		Debit		4001482973848631	87/2822	972
3687		1746		Mastercard		Debit		5627228683418948	86/2822	48
3465		1746		Mastercard		Debit (Prepaid)		5711382187309326	11/2020	722
3754		1746		Mastercard		Debit (Prepaid)		5766121508358701	02/2023	908
5144		1718		Mastercard		Debit		5495199163052054	83/2822	677
2029		1718		Mastercard		Debit		5884499644388599	07/2023	258
2379		1718		Mastercard		Debit		5766352389579834	82/2828	992
2732		1718		Visa		Debit		4242015583697294	96/2020	928
4786		1718		Mastercard		Debit		5191030913182493	86/2824	360
281		708		Visa		Credit		4017261190134817	05/2015	877
1186		708		Mastercard		Debit (Prepaid)		5581970288727991	96/2929	448

Data Cleaning

Week 3

- **Cards_data.csv:** Checked structure and content with str(), head (), tail ()
 - Found no missing values and no duplicate rows
 - Transformed categorical variables into numeric formats (ex. Card_vrand → card_brand_num)
- Users_data.csv: used str(), head(), tail()
 - o Found no missing values and no duplicate rows
 - o Converted categorical variables into numeric
 - Ex. Gender → gender_num

Exploratory Data Analysis

Distribution of Credit Scores

Average Credit Score by Current Age

Average Credit Score by Retirement Age

Average Credit Score by Total Debt

Visualization Development

Users_data

The correlation matrix heatmap for the Users data set showed retirement_age and num_credit_cards as variables with possible positive correlation. And total_debt was a variable with a possible negative correlation.

Cards_data

The correlation matrix heatmap for the Cards data set showed a small possible positive correlation between the variable num_cards_issued and credit score.


```
##
## Call:
## lm(formula = credit_score ~ current_age + retirement_age + per_capita_income +
       yearly income + total debt + num credit cards, data = users data)
## Residuals:
       Min
                      Median
## -217.928 -36.282
                      -0.069
                               41.138 187.235
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     5.561e+02 2.688e+01 20.689 < 2e-16 ***
## current age
                    -6.107e-01 9.682e-02 -6.307 3.48e-10 ***
## retirement age
                     2.258e+00 4.014e-01
                                           5.625 2.12e-08 ***
## per capita income -3.420e-04 5.149e-04 -0.664
                                                    0.507
## yearly_income
                     3.263e-04 2.605e-04
                                          1.253
                                                    0.210
## total debt
                    -1.601e-04 3.465e-05 -4.622 4.05e-06 ***
## num_credit_cards 1.138e+01 1.018e+00 11.175 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 63.83 on 1993 degrees of freedom
## Multiple R-squared: 0.1012, Adjusted R-squared: 0.0985
## F-statistic: 37.4 on 6 and 1993 DF, p-value: < 2.2e-16
```

Highly Significant Predictors

(p < 0.001):

- current_age (negative effect)
- → retirement_age (positive effect)
- total_debt (negative effect)
- num_credit_cards (positive effect)

R-squared = 0.1012

About **10.12%** of the variance in credit score is explained by this model

Multiple Regression Model

Model Assumptions

Residuals vs. Fitted Plot

- Random scatter
- Constant variance
- No pattern!

Q-Q Plot of Residuals

- Diagonal straight line
- Normality of Residuals

Predictors and Multicollinearity

Yearly Income vs. Credit Score

VIF: 12.855461

Serious multicollinearity!

Total Debt vs. Credit Score

VIF: 1.547472

Acceptable, little correlation with other variables

Per Capita Income vs. Credit Score

VIF: 12.564242

Serious multicollinearity!

Model Selection

Method 1: Best Subset Selection

- Evaluate all possible subsets of predictors
- Based on Adjusted R^2, Cp and RSS
 - Adjusted R^2: 0.1001
 - o **RMSE**: 63.66
- Conclusions: the six predictors are moderate predictors of credit score and had the best performance across all metrics

Method 2: Forward Stepwise Regression

- Start with no predictors
- Add predictor that most improves model (lowest AIC)
- Continue until no additional variable improves the model

Method 3: Backwards Stepwise Regression

- Start with all predictors
- Remove predictor that hurts the model the least
- Stop when removing more variables makes the model worse

Limitations & Improvements

- Multicollinearity resulted in a lengthy process of model selection
- Even after model selection, final R² value was low
- Investigating further diagnostics such as Cook's distance, leverage points

Thank You