Table

Table 1: Estimated parameters of linear regression models explaining fish species richness in Hokkaido (Japan) and Midwest (US) regions. The 95% confidence intervals are shown in parenthesis. Dependent variables were log-10 transformed. Environmental variables (air temperature, precipitation, logit % forest, dam density) are deviations from the regional averages and were standardized to a mean of zero and a standard deviation of one prior to the analysis.

	Dependent variable:			
	α diversity	β diversity	γ diversity	
log_{10} Watershed area	0.07***	0.10***	0.16***	
	(0.02, 0.11)	(0.04, 0.15)	(0.12, 0.21)	
log_{10} Branching probability	-0.26	0.92**	0.66**	
	(-0.84, 0.32)	(0.22, 1.63)	(0.05, 1.27)	
Region (Midwest vs. Hokkaido)	0.45***	-0.09***	0.35***	
	(0.40, 0.50)	(-0.15, -0.04)	(0.30, 0.41)	
Air temperature	0.10***	-0.09***	0.01	
	(0.07, 0.13)	(-0.12, -0.05)	(-0.02, 0.04)	
Precipitation	-0.04***	0.07***	0.03**	
	(-0.06, -0.01)	(0.04, 0.10)	(0.003, 0.06)	
Logit % forest	-0.004	-0.01	-0.02	
	(-0.03, 0.02)	(-0.04, 0.01)	(-0.04, 0.01)	
Dam density	0.01	-0.01	-0.001	
·	(-0.01, 0.02)	(-0.03, 0.02)	(-0.02, 0.02)	
Intercept	0.31**	0.82***	1.13***	
-	(0.01, 0.60)	(0.46, 1.18)	(0.82, 1.44)	
R^2	0.80	0.27	0.78	
Note:	*p<0.1; **p<0.05; ***p<0.01			

```
source(here::here("/theory/analysis_sensitivity.R"))
## Warning: Missing column names filled in: 'X1' [1]
## -- Column specification -------
## cols(
##
    .default = col_double(),
    spatial_env_cor = col_logical()
##
## )
## i Use `spec()` for the full column specifications.
## Warning: Problem with `mutate()` input `group_id`.
## i The `...` argument of `group_keys()` is deprecated as of dplyr 1.0.0.
## Please `group_by()` first
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## i Input `group_id` is `group_indices(., sd_env_source)`.
## Warning: The `...` argument of `group_keys()` is deprecated as of dplyr 1.0.0.
## Please `group_by()` first
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## `summarise()` ungrouping output (override with `.groups` argument)
## Warning: Missing column names filled in: 'X1' [1]
##
## cols(
    .default = col double(),
##
    spatial_env_cor = col_logical()
## )
## i Use `spec()` for the full column specifications.
## `summarise()` ungrouping output (override with `.groups` argument)
stargazer::stargazer(fit\fit[1], fit\fit[2],
                   fit$fit[3], fit$fit[4],
                   fit$fit[5], fit$fit[6],
                   header = FALSE,
                   type = "latex",
                    title = "",
                    covariate.labels = c("$\\sigma_{h}$",
                                        "$\\sigma_{1}$",
                                       "$\\sigma_{z}$",
                                       "$\\phi$",
                                        "$\\nu$",
                                        "$\\alpha {max}$",
                                       "$\\theta$",
                                        "$p_{d}$",
                                        "Intercept"),
                    single.row = FALSE,
                    digits = 2,
                    dep.var.labels.include = FALSE,
                    column.labels = c("Effect of $N_{p}$ on $\\alpha$ diversity", "Effect of $P_{b}$ or
                                     "Effect of $N_{p}$ on $\\beta$ diversity", "Effect of $P_{b}$ on
```

"Effect of \$N_{p}\$ on \$\gamma\$ diversity", "Effect of \$P_{b}\$ or
keep.stat = c("rsq"),
model.numbers = FALSE)

Table 2:

				Dependent variable:	
	Effect of N_p on α diversity	Effect of P_b on α diversity	Effect of N_p on β diversity	Effect of P_b on β d	
σ_h	0.01***	0.01***	-0.002	0.01***	
	(0.002)	(0.003)	(0.001)	(0.002)	
σ_l	-0.01***	0.06***	-0.01^{***}	-0.05***	
	(0.002)	(0.003)	(0.001)	(0.002)	
σ_z	-0.001	-0.004	-0.01^{***}	-0.004**	
	(0.002)	(0.003)	(0.001)	(0.002)	
ϕ	0.001	0.002	-0.0000	0.001	
	(0.002)	(0.003)	(0.001)	(0.002)	
ν	-0.001	-0.001	-0.01***	-0.001	
	(0.002)	(0.003)	(0.001)	(0.002)	
$lpha_{max}$	0.02***	-0.003	0.03***	0.004**	
	(0.002)	(0.003)	(0.001)	(0.002)	
θ	-0.03***	0.02***	0.03***	-0.02***	
	(0.002)	(0.003)	(0.001)	(0.002)	
1 4	0.02***	0.01***	-0.01***	-0.01^{***}	
	(0.002)	(0.003)	(0.001)	(0.002)	
Intercept	0.18***	0.17***	0.11***	-0.11***	
	(0.002)	(0.003)	(0.001)	(0.002)	
${\mathrm{R}^2}$	0.50	0.49	0.73	0.63	

Note: