Определение. Пусть (X, \mathcal{A}, μ) — измеримое пространство, (Y, \mathcal{B}) — пространство с σ -алгеброй, $F \colon X \to Y$ — измеримое отображение. Тогда образом меры μ при отображении F называется мера $F_*\mu$ такая, что

$$F_*\mu(B) = \mu(F^{-1}B) \quad \forall B \in \mathcal{B}.$$

Определение. Пусть X — линейное топологическое пространство, μ — борелевская мера на X. Тогда производной меры μ по вектору $h \in X$ называется мера $\mu'_h = D_h(\mu)$, принимающая на каждом борелевском множестве A значение

$$\mu'_h(A) = (D_h \mu)(A) = \lim_{t \to 0} \frac{1}{t} (\mu(A + th) - \mu(A))$$

Постановка задачи. Пусть X, Y — линейные топологические пространства, $F: X \to Y$ - непрерывное линейное отображение (в частности, на лекции рассматривалось $X = W_2^1[0,T], Y = C[0,T], F: W_2^1[0,T] \hookrightarrow Y = C[0,T]$ — естественное вложение $f(t) \mapsto f(t)$).

Пусть h — вектор из X. Обозначим за $\mathfrak{M}(X)$, $\mathfrak{M}(Y)$ пространства борелевских мер на X и Y, а за $\mathfrak{M}_h(X) \subset \mathfrak{M}(X)$ и $\mathfrak{M}_{Fh}(Y) \subset \mathfrak{M}(Y)$ подпространства борелевских мер, дифференцируемых по $h \in X$ и $Fh \in Y$ соответственно. Тогда следующая диаграмма коммутативна:

$$\mathfrak{M}_{h}(X) \xrightarrow{F_{*}} \mathfrak{M}_{Fh}(Y)
\downarrow_{D_{h}} \qquad \downarrow_{D_{Fh}}
\mathfrak{M}(X) \xrightarrow{F_{*}} \mathfrak{M}(Y)$$

Доказательство. Так как F непрерывно, то оно измеримо относительно борелевских σ -алгебр X и Y, и значит отображение $F_* \colon \mathfrak{M}(X) \to \mathfrak{M}(Y)$ определено. Коммутативность диаграммы равносильна выполнению равенства $(D_{Fh}F_*\mu)(B) = (F_*D_h\mu)(B)$ для любой меры $\mu \in \mathfrak{M}(X)$ и для любого борелевского $B \subset Y$:

$$(D_{Fh}(F_*\mu))(B) =$$

$$= \lim_{t \to 0} \frac{1}{t} ((F_*\mu)(B + t \cdot Fh) - (F_*\mu)(B)) =$$

$$= \lim_{t \to 0} \frac{1}{t} (\mu(F^{-1}(B + t \cdot Fh)) - \mu(F^{-1}B)) =$$

$$= \lim_{t \to 0} \frac{1}{t} (\mu(F^{-1}B + th) - \mu(F^{-1}B)) =$$

$$= (D_h\mu)(F^{-1}B) =$$

$$= F_*D_h\mu(B)$$

Здесь линейность использовалась в равенстве $F^{-1}(B+t\cdot Fh)=F^{-1}B+t\cdot F^{-1}Fh=F^{-1}B+h.$