

(19) Europäisches Patentamt
European Patent Office

Office européen des brevets

(11)

EP 1 186 672 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
30.11.2005 Bulletin 2005/48

(51) Int Cl.7: **C12Q 1/68, C07K 14/47,**
C07K 16/18

(21) Application number: **01306983.6**

(22) Date of filing: **17.08.2001**

(54) Polymorphisms in the human organic anion transporter C (OATP-C) gene

Polymorphismen im Gen für den humanen organischen Anionentransporter C (OATP-C)

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR	(56) References cited: WO-A-00/08157 WO-A-99/06046
(30) Priority: 23.08.2000 US 226909 P	<ul style="list-style-type: none">• TAMAI I ET AL: "MOLECULAR IDENTIFICATION AND CHARACTERIZATION OF NOVEL MEMBERS OF THE HUMAN ORGANIC ANION TRANSPORTER (OATP) FAMILY" BIOCHIMICA ET BIOPHYSICA ACTA, AMSTERDAM, NL, vol. 273, no. 1, 2000, pages 251-260, XP000941538 ISSN: 0006-3002 & DATABASE EMBL [Online] EBI; 8 June 1999 (1999-06-08) TAMAI I ET AL.: "Homo sapiens mRNA for organic anion transporter OATP-C" retrieved from HTTP://WWW.EBI.AC.UK/CGI-BIN/EMBLFETCH Database accession no. AB026257
(43) Date of publication of application: 13.03.2002 Bulletin 2002/11	<ul style="list-style-type: none">• DATABASE EMBL [Online] EBI; 2 February 2000 (2000-02-02) MUZNY DM ET AL.: "Homo sapiens 12p BAC RP11-12505" retrieved from HTTP://WWW.EBI.AC.UK/CGI-BIN/EMBLFETCH Database accession no. AC022335 XP002188259
(60) Divisional application: 05011183.0 / 1 589 115	<ul style="list-style-type: none">• HSIANG B ET AL: "A NOVEL HUMAN HEPATIC ORGANIC ANION TRANSPORTING POLYPEPTIDE (OATP2)" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 274, no. 52, 1999, pages 37161-37168, XP000877290 ISSN: 0021-9258
(73) Proprietor: AstraZeneca AB 151 85 Södertälje (SE)	<ul style="list-style-type: none">• ULBRECHT M ET AL.: "Assoziation of beta 2-adrenoreceptor variants with bronchial hyperresponsiveness" AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, vol. 161, no. 2, February 2000 (2000-02), pages 469-474, XP002188594
(72) Inventors: <ul style="list-style-type: none">• Adeokun, Monisola Cheshire, SK10 4TG (GB)• Ambrose, Helen Jean Cheshire, SK10 4TG (GB)• Cresswell, Carl John Cheshire, SK10 4TG (GB)• Dudley, Adam Jeston Wilmington, DE 19850-5437 (US)	
(74) Representative: Giles, Allen Frank et al AstraZeneca PLC Global Intellectual Property Mereside Alderley Park Macclesfield, Cheshire SK10 4TG (GB)	

EP 1 186 672 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] This invention relates to polymorphisms in the human OATPC gene and corresponding novel allelic polypeptides encoded thereby. The invention also relates to methods and materials for analysing allelic variation in the OATPC gene, and to the use of OATPC polymorphism in treatment of diseases with OATPC transportable drugs.

[0002] Na⁺-independent organic anion transporting polypeptide (OATP) C gene is a member of the OATP supergene family involved in multifunctional transport of organic anion. OATPC transports the organic anion taurocholate, conjugated steroids: DHEAS, estradiol 17 β -D-glucoronide and estrone-3-sulfate, eicosanoids: PGE₂, thromboxane B₂, leukotriene C₄, and E₄, and thyroid hormones T4 and T3 ^{1,2}. OATPC has also been shown to be involved in the transport of xenobiotics , and drugs involved in lipid lowering e.g. statins¹. Statins have been referred to as a first-line therapy for patients with atherosclerotic vascular diseases. The OATPC gene and its product is also thought to be of importance in other diseases due to its transport of DHEAS an adrenal steroid which has been suggested to have positive neuropsychiatric, immune, and metabolic effects³. Due to the substrate specificity, location in the liver, and being exclusively expressed in the liver, Abe *et al* suggested that OATPC could be the predominant clearance mechanism of several endogenous and exogenous substrates in the liver. OATPC is the first human molecule reported to transport thyroid hormones².

[0003] This liver specific transporter may be useful in liver-specific drug delivery systems and liver-specific chemotherapy, bile acid formation and the pathogenesis of diseases such as cholestasis, hyperbilirubinemia and thyroid hormone resistance.

[0004] The OATPC gene (sometimes called OAPT2 in the literature) has been cloned by four different groups, annotated and published as EMBL accession numbers AB026257 (OATPC, 2452bp), AF205071(OATP2, 2830, ref 1), AJ132573(OATP2, 2778)⁴ and AF060500 (LST-1)². Polymorphism has been reported by Tamai⁵ which is Asn 130Asp and Val174Ala although any functional effect was stated therein to be not clear. Konig (2000) J Biol Chem 275, 23161-23168 describes the genomic organisation of OATP 1, 2 and 8. International patent application WO 00/08157 describes human anion transporter genes and some polymorphisms.

[0005] All positions herein of polymorphisms in the OATPC polynucleotide relate to the position in one of SEQ ID NO 1 or 3-12 unless stated otherwise or apparent from the context.

[0006] All positions herein of polymorphisms in the OATPC polypeptide relate to the position in SEQ ID NO 2 unless stated otherwise or apparent from the context.

[0007] One approach is to use knowledge of polymorphisms to help identify patients most suited to therapy with particular pharmaceutical agents (this is often termed "pharmacogenetics"). Pharmacogenetics can also be used in pharmaceutical research to assist the drug selection process. Polymorphisms are used in mapping the human genome and to elucidate the genetic component of diseases. The reader is directed to the following references for background details on pharmacogenetics and other uses of polymorphism detection: Linder *et al.* (1997), Clinical Chemistry, **43**, 254; Marshall (1997), Nature Biotechnology, **15**, 1249; International Patent Application WO 97/40462, Spectra Biomedical; and Schafer *et al.* (1998), Nature Biotechnology, **16**, 33.

[0008] Clinical trials have shown that patient response to treatment with pharmaceuticals is often heterogeneous. Thus there is a need for improved approaches to pharmaceutical agent design and therapy.

[0009] Point mutations in polypeptides will be referred to as follows: natural amino acid (using 1 or 3 letter nomenclature), position, new amino acid. For (a hypothetical) example "D25K" or "Asp25Lys" means that at position 25 an aspartic acid (D) has been changed to lysine (K). Multiple mutations in one polypeptide will be shown between square brackets with individual mutations separated by commas.

[0010] The present invention is based on the discovery of polymorphisms in OATPC.

[0011] According to one aspect of the present invention there is provided a method for the detection of a polymorphism in OATPC in a human, which method comprises determining the sequence of the human at:

position 1561 of the OATPC gene as defined by the position in SEQ ID NO: 1 is not G; or
position 488 in OATPC polypeptide defined by position in SEQ ID NO: 2 is not Gly.

[0012] The term human includes both a human having or suspected of having a OATPC mediated disease and an asymptomatic human who may be tested for predisposition or susceptibility to such disease. At each position the human may be homozygous for an allele or the human may be a heterozygote.

² Identification of a Novel Gene Family Encoding Human liver-specific Organic Anion Transporter LST-1, Takaaki Abe *et al*/J Biol Chem **274**, 17159-17163 (1999)

³ A Novel Human Hepatic Organic Anion Transporting Polypeptide (OATP2), Hsiang *et al*/J Biol Chem **274**, 37161-37168 (1999)

⁴ Bates *et al* (1998) Curr. Opin. Endocrinol. Diab. **5**, 357-366

⁴ A novel human organic anion transporting polypeptide localised to the basolateral hepatocyte membrane, Konig Jorg *et al* (2000) Am J Physiol. Gastrointest. Liver Physiol. **278**: G156-G164

⁵Tamai *et al* (2000), BBRC, 273, 251-60

[0013] The term polymorphism includes single nucleotide substitution, nucleotide insertion and nucleotide deletion which in the case of insertion and deletion includes insertion or deletion of one or more nucleotides at a position of a gene.

[0014] The method for diagnosis is preferably one in which the sequence is determined by a method selected from amplification refractory mutation system and restriction fragment length polymorphism.

[0015] The status of the individual may be determined by reference to allelic variation at any one, two, three, four, five, six, seven, eight, nine or more positions.

[0016] The test sample of nucleic acid is conveniently a sample of blood, bronchoalveolar lavage fluid, sputum, or other body fluid or tissue obtained from an individual. It will be appreciated that the test sample may equally be a nucleic acid sequence corresponding to the sequence in the test sample, that is to say that all or a part of the region in the sample nucleic acid may firstly be amplified using any convenient technique e.g. PCR, before analysis of allelic variation.

[0017] It will be apparent to the person skilled in the art that there are a large number of analytical procedures which may be used to detect the presence or absence of variant nucleotides at one or more polymorphic positions of the invention. In general, the detection of allelic variation requires a mutation discrimination technique, optionally an amplification reaction and optionally a signal generation system. Table 1 lists a number of mutation detection techniques, some based on the PCR. These may be used in combination with a number of signal generation systems, a selection of which is listed in Table 2. Further amplification techniques are listed in Table 3. Many current methods for the detection of allelic variation are reviewed by Nollau *et al.*, Clin. Chem. **43**, 1114-1120, 1997; and in standard textbooks, for example "Laboratory Protocols for Mutation Detection", Ed. by U. Landegren, Oxford University Press, 1996 and "PCR", 2nd Edition by Newton & Graham, BIOS Scientific Publishers Limited, 1997.

Abbreviations:

[0018]

ALEX™	Amplification refractory mutation system linear extension
APEX	Arrayed primer extension
ARMS™	Amplification refractory mutation system
b-DNA	Branched DNA
bp	base pair
CMC	Chemical mismatch cleavage
COPS	Competitive oligonucleotide priming system
DGGE	Denaturing gradient gel electrophoresis
FRET	Fluorescence resonance energy transfer
HMG-CoA	3-hydroxy-3-methylglutaryl-coenzyme A
LCR	Ligase chain reaction
MASDA	Multiple allele specific diagnostic assay
NASBA	Nucleic acid sequence based amplification
OATP	Na ⁺ -independent organic anion transporting polypeptide
OLA	Oligonucleotide ligation assay
PCR	Polymerase chain reaction
PTT	Protein truncation test
RFLP	Restriction fragment length polymorphism
SDA	Strand displacement amplification
SNP	Single nucleotide polymorphism
SSCP	Single-strand conformation polymorphism analysis
SSR	Self sustained replication

(continued)

TGGE	Temperature gradient gel electrophoresis
------	--

5 Table 1 - Mutation Detection Techniques

[0019] **General:** DNA sequencing, Sequencing by hybridisation

Scanning: PTT*, SSCP, DGGE, TGGE, Cleavase, Heteroduplex analysis, CMC, Enzymatic mismatch cleavage

* Note: not useful for detection of promoter polymorphisms.

10 **Hybridisation Based**

[0020] Solid phase hybridisation: Dot blots, MASDA, Reverse dot blots,

Oligonucleotide arrays (DNA Chips)

Solution phase hybridisation: Taqman™ - US-5210015 & US-5487972 (Hoffmann-La Roche), Molecular Beacons

- Tyagi *et al* (1996), Nature Biotechnology, 14, 303; WO 95/13399 (Public Health Inst., New York)

Extension Based: ARMSTM, ALEX™ - European Patent No. EP 332435 B1 (Zeneca Limited), COPS - Gibbs *et al* (1989), Nucleic Acids Research, 17, 2347.

Incorporation Based: Mini-sequencing, APEX

Restriction Enzyme Based: RFLP, Restriction site generating PCR

Ligation Based: OLA

Other: Invader assay

25 Table 2 - Signal Generation or Detection Systems

[0021] **Fluorescence:** FRET, Fluorescence quenching, Fluorescence polarisation - United Kingdom

Patent No. 2228998 (Zeneca Limited)

Other: Chemiluminescence, Electrochemiluminescence, Raman, Radioactivity, Colorimetric, Hybridisation protection assay, Mass spectrometry

30 Table 3 - Further Amplification Methods

[0022] SSR, NASBA, LCR, SDA, b-DNA

[0023] Preferred mutation detection techniques include ARMS™, ALEX™, COPS, Taqman, Molecular Beacons, RFLP, and restriction site based PCR and FRET techniques.

[0024] Particularly preferred methods include ARMS™ and RFLP based methods. ARMS™ is an especially preferred method.

[0025] In a further aspect, the diagnostic methods of the invention are used to assess the pharmacogenetics of a drug transportable by OATPC.

[0026] Assays, for example reporter-based assays, may be devised to detect whether one or more of the above polymorphisms affect transcription levels and/or message stability.

[0027] Individuals who carry particular allelic variants of the OATPC gene may therefore exhibit differences in their ability to regulate protein biosynthesis under different physiological conditions and will display altered abilities to react to different diseases. In addition, differences arising as a result of allelic variation may have a direct effect on the response of an individual to drug therapy. The diagnostic methods of the invention may be useful both to predict the clinical response to such agents and to determine therapeutic dose.

[0028] In a further aspect, the diagnostic methods of the invention, are used to assess the predisposition and/or susceptibility of an individual to diseases mediated by OATPC. This may be particularly relevant in the development of hyperlipoproteinemia and cardiovascular disease and the present invention may be used to recognise individuals who are particularly at risk from developing these conditions.

[0029] In a further aspect, the diagnostic methods of the invention are used in the development of new drug therapies which selectively target one or more allelic variants of the OATPC gene. Identification of a link between a particular allelic variant and predisposition to disease development or response to drug therapy may have a significant impact on the design of new drugs. Drugs may be designed to regulate the biological activity of variants implicated in the disease process whilst minimising effects on other variants.

[0030] In a further diagnostic aspect of the invention the presence or absence of variant nucleotides is detected by reference to the loss or gain of, optionally engineered, sites recognised by restriction enzymes.

[0031] According to another aspect of the present invention there is provided a human OATPC gene or its complementary strand comprising a variant allelic polymorphism at one or more of positions defined herein or a fragment thereof of at least 20 bases comprising at least one novel polymorphism.

[0032] Fragments are at least 17 bases, more preferably at least 20 bases, more preferably at least 30 bases.

[0033] According to another aspect of the present invention there is provided a polynucleotide comprising at least 20 bases of the human OATPC gene and comprising an allelic variant selected from any one of the following:

Region	variant	Position in SEQ ID NO	SEQ ID NO
Exon 10	C	1561	1

[0034] According to another aspect of the present invention there is provided a human OATPC gene or its complementary strand comprising a polymorphism, preferably corresponding with one or more of the positions defined herein or a fragment thereof of at least 20 bases comprising at least one polymorphism.

[0035] Fragments are at least 17 bases, more preferably at least 20 bases, more preferably at least 30 bases.

[0036] The invention further provides a nucleotide primer which can detect a polymorphism of the invention.

[0037] According to another aspect of the present invention there is provided an ARMS allele specific primer or an allele-specific oligonucleotide probe selected from one of the following:

- an ARMS allele specific primer;
- or an allele-specific oligonucleotide probe;
- capable of detecting a OATPC gene polymorphism, preferably at one or more of the positions as defined herein.

[0038] An allele specific primer is used, generally together with a constant primer, in an amplification reaction such as a PCR reaction, which provides the discrimination between alleles through selective amplification of one allele at a particular sequence position e.g. as used for ARMS™ assays. The allele specific primer is preferably 17- 50 nucleotides, more preferably about 17-35 nucleotides, more preferably about 17-30 nucleotides.

[0039] An allele specific primer preferably corresponds exactly with the allele to be detected but derivatives thereof are also contemplated wherein about 6-8 of the nucleotides at the 3' terminus correspond with the allele to be detected and wherein up to 10, such as up to 8, 6, 4, 2, or 1 of the remaining nucleotides may be varied without significantly affecting the properties of the primer.

[0040] Primers may be manufactured using any convenient method of synthesis. Examples of such methods may be found in standard textbooks, for example "Protocols for Oligonucleotides and Analogues; Synthesis and Properties," Methods in Molecular Biology Series; Volume 20; Ed. Sudhir Agrawal, Humana ISBN: 0-89603-247-7; 1993; 1st Edition. If required the primer(s) may be labelled to facilitate detection.

[0041] According to another aspect of the present invention there is provided an allele-specific oligonucleotide probe capable of detecting a OATPC gene polymorphism, preferably at one or more of the positions defined herein.

[0042] The allele-specific oligonucleotide probe is preferably 17- 50 nucleotides, more preferably about 17-35 nucleotides, more preferably about 17-30 nucleotides.

[0043] The design of such probes will be apparent to the molecular biologist of ordinary skill. Such probes are of any convenient length such as up to 50 bases, up to 40 bases, more conveniently up to 30 bases in length, such as for example 8-25 or 8-15 bases in length. In general such probes will comprise base sequences entirely complementary to the corresponding wild type or variant locus in the gene. However, if required one or more mismatches may be introduced, provided that the discriminatory power of the oligonucleotide probe is not unduly affected. The probes of the invention may carry one or more labels to facilitate detection.

[0044] According to another aspect of the present invention there is provided an allele specific primer or an allele specific oligonucleotide probe capable of detecting a OATPC gene polymorphism at one of the positions defined herein.

[0045] In another aspect of the invention, the single nucleotide polymorphisms of this invention may be used as genetic markers in linkage studies. This particularly applies to the polymorphisms of relatively high frequency. The OATPC gene is on chromosome 12p (as shown from a database search with the cDNA as a query sequence). Low frequency polymorphisms may be particularly useful for haplotyping as described below. A haplotype is a set of alleles found at linked polymorphic sites (such as within a gene) on a single (paternal or maternal) chromosome. If recombination within the gene is random, there may be as many as 2^n haplotypes, where 2 is the number of alleles at each SNP and n is the number of SNPs. One approach to identifying mutations or polymorphisms which are correlated with clinical response is to carry out an association study using all the haplotypes that can be identified in the population of interest. The frequency of each haplotype is limited by the frequency of its rarest allele, so that SNPs with low frequency alleles are particularly useful as markers of low frequency haplotypes. As particular mutations or polymorphisms associated with certain clinical features, such as adverse or abnormal events, are likely to be of low frequency

within the population, low frequency SNPs may be particularly useful in identifying these mutations (for examples see: Linkage disequilibrium at the cystathione beta synthase (CBS) locus and the association between genetic variation at the CBS locus and plasma levels of homocysteine. *Ann Hum Genet* (1998) **62**:481-90, De Stefano V, Dekou V, Nicaud V, Chasse JF, London J, Stansbie D, Humphries SE, and Gudnason V; and Variation at the von willebrand factor (vWF) gene locus is associated with plasma vWF:Ag levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter. *Blood* (1999) **93**:4277-83, Keightley AM, Lam YM, Brady JN, Cameron CL, Lillicrap D).

[0046] According to another aspect of the present invention there is provided use of a statin in preparation of a medicament for treating a cardiovascular disease in a human detected as having an OATPC polymorphism at one or more of the following positions:

position 1561 of the OATPC gene as defined by the position in SEQ ID NO: 1 is not G;
position 488 in OATPC polypeptide defined by position in SEQ ID NO: 2 is not Gly.

[0047] Preferably determination of the status of the human is clinically useful. Examples of clinical usefulness include deciding which statin drug or drugs to administer and/or in deciding on the effective amount of the statin drug or drugs. Statins already approved for use in humans include atorvastatin, cerivastatin, fluvastatin, pravastatin and simvastatin. The reader is referred to the following references for further information: Drugs and Therapy Perspectives (12th May 1997), **9**: 1-6; Chong (1997) *Pharmacotherapy* **17**: 1157-1177; Kellick (1997) *Formulary* **32**: 352; Kathawala (1991) *Medicinal Research Reviews*, **11**: 121-146; Jahng (1995) *Drugs of the Future* **20**: 387-404, and Current Opinion in Lipidology, (1997), **8**, 362 - 368. A preferred statin drug is compound 3a (S-4522) in Watanabe (1997) *Bioorganic and Medicinal Chemistry* **5**: 437-444; now called rosuvastatin, see Olsson (2001) *American Journal of Cardiology*, **87**, supplement 1, 33-36. The term "drug transportable by OATPC" means that transport by OATPC in humans is an important part of a drug exerting its pharmaceutical effect in man. For example, some statins have to be transported to the liver by OATPC to exert their lipid lowering effects.

[0048] According to another aspect of the present invention there is provided an allelic variant of human OATPC polypeptide comprising:

an arginine at position 488 of SEQ ID NO 2;
or a fragment thereof comprising at least 10 amino acids provided that the fragment comprises at least one allelic variant.

[0049] Fragments of polypeptide are at least 10 amino acids, more preferably at least 15 amino acids, more preferably at least 20 amino acids.

[0050] The invention will now be illustrated but not limited by reference to the following Examples. All temperatures are in degrees Celsius.

[0051] In the Examples below, unless otherwise stated, the following methodology and materials have been applied.

[0052] AMPLITAQ™, available from Perkin-Elmer Cetus, is used as the source of thermostable DNA polymerase.

[0053] General molecular biology procedures can be followed from any of the methods described in "Molecular Cloning - A Laboratory Manual" Second Edition, Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory, 1989).

[0054] Electropherograms were obtained in a standard manner: data was collected by ABI377 data collection software and the wave form generated by ABI Prism sequencing analysis (2.1.2).

Example 1

Identification of Polymorphisms

1. Methods

50 DNA Preparation

[0055] DNA was prepared from frozen blood samples collected in EDTA following protocol I (Molecular Cloning: A Laboratory Manual, p392, Sambrook, Fritsch and Maniatis, 2nd Edition, Cold Spring Harbor Press, 1989) with the following modifications. The thawed blood was diluted in an equal volume of standard saline citrate instead of phosphate buffered saline to remove lysed red blood cells. Samples were extracted with phenol, then phenol/chloroform and then chloroform rather than with three phenol extractions. The DNA was dissolved in deionised water.

Template Preparation

[0056] Templates were prepared by PCR using the oligonucleotide primers and annealing temperatures set out below. The extension temperature was 72° and denaturation temperature 94°. Generally 50 ng of genomic DNA was used in each reaction and subjected to 35 cycles of PCR. Where described below, the primary fragment was diluted 1/100 and two microlitres were used as template for amplification of secondary fragments. PCR was performed in two stages (primary fragment then secondary fragment) to ensure specific amplification of the desired target sequence.

Polymorphisms in OATPC: cDNA screening of 15 Liver samples					
Region	SNP	Position	Amino Acid Change	Allele frequencies	
Exon 4	G/A	510	None	G=96.7% A=3.3%	
Exon 5	C/T	670	None	C=50% T=50%	
Exon 5	C/T	696	None	C=60% T=40%	
Exon 9	C/G	1299	Phe400Leu	C=96.7% G=3.3%	
Exon 9	G/A	1312	Va1405Ile	G=96.7% A=3.3%	
Exon 9	G/A	1347	None	G=96.7% A=3.3%	
Exon 10	G/C	1561	Gly488Arg	G=96.7% C=3.3%	
Exon 14	A/C	2028	Leu643Phe	A=90% C=10%	

[0057] OATP2 above refers to the clone sequenced by Hsiang et al (ref 1). Some comment on the numbering of exons in OATPC is required. This gene contains an exon (38 bp) upstream (5' UTR region) of the exon containing the ATG start site for translation. Therefore the exon numbering could vary depending whether this exon is counted as the first exon or not. In the literature, Konig (2000) JBC 275: 23161-68, have defined exon 1 as that containing the ATG start site and therefore we have adopted the same numbering in this application (but note that the priority document relating to the present application did vice versa; for example, exon 5 in this application is equivalent to exon 6 in the priority document).

PCR PRODUCTS		
Fragment	Forward Oligo	Reverse Oligo
443-999	443-466	979-999
874-1360	874-896	1337-1360
1255-1684	1255-1278	1663-1684
1559-2095	1559-1581	2073-2095

RFLP analysis			
Polymorphism	Position	RFLP Enzyme/PCR size	RFLP fragment size
G/A	510		

EP 1 186 672 B1

(continued)

RFLP analysis			
	Polymorphism	Position	RFLP Enzyme/PCR size
5	C/T	670	BmR I/ 595bp C=349bp, 246bp, T=595bp
10	C/T	696	
15	C/G	1299	Apo I/ 595bp C=30bp, 60bp, 380 bp G=90bp, 380bp
20	G/A	1312	Bst 4CI/ 595bp G=77bp, 393bp A=470bp
	G/A	1347	
	G/C	1561	HpyCH4IV/ 595bp G=470bp C=144bp, 326bp
	A/C	2028	Ase I/ 595bp A=89bp, 488bp C=577bp

Example 2

25 [0058]

30

35

40

45

50

55

Further OATPC Polymorphisms							
<u>SNPs in OATPC 3'UTR</u> (positions according to SEQ ID NO 1)							
Exon	Nucleotide	SNP				Frequency	Frequency
						Caucasian	Japanese
3' UTR	2327	Ins T				not screened	0.1
3' UTR	2342	T>C				not screened	0.4
<u>SNPs in OATPC promoter</u> (positions according to SEQ ID NO 3)							
	Nucleotide	SNP				Frequency	Frequency
						Caucasian	Japanese
	321	T>G				0.03	not screened
	1332	A>C				0.08	not screened
<u>SNPs in OATPC introns</u>							
Intron	Nucleotide	SNP	Nucleotide	Sequence			
	position in		position	ID No			
	relation to exon		in sequence				
1	IVS1+21	T>A	41	4			
2	IVS2+89	T>G	109	5			
2	IVS2+224	A>G	244	5			
3	IVS3+97	C>A	117	6			
3	IVS3+263	G>A	283	6			
4	IVS4+189	G>A	209	7			
4	IVS4+191	G>A	211	7			
4	IVS5-118	delCTTGTA	63	8			
6	IVS6+33	C>T	53	9			
9	IVS10-107	ins TTC	75	10			
11	IVS11+142	Ins T	162	11			
12	IVS13-97	G>C	84	12			

OATPC intronic SNPs**Key**

[0059] 20bp of exon sequence shown in uppercase

EP 1 186 672 B1

Intron sequence in lowercase (200 to 300bp only)

SNP shown in uppercase (one allele only)

5 Sequence ID No 4

IVS1+21 T>A SNP at position 41 in this sequence

GATACTGC~~A~~ TGGATTGAAG gtagaataag ttttatgttt Ttgagctaaa ataagtaat 60
aggaaactt aatgtataga aaagcaagt gttaaaaaga acattatgtt tcaaattata 120
atttcaatt gaagcatata ttgaaatatt aacataatga ttcatacctt gatttaacc 180
10 agtcttttaa tctgattaag 200

15 Sequence ID No 5

IVS2+89 T>G SNP at position 109 in this sequence

IVS2+224 A>G SNP at position 244 in this sequence

TGACCGAAC~~C~~ TTGAAATTG gtaacat~~tta~~ ttttctattt taataaccaa acttgc~~aa~~ag 60
ttaaaaata tatatgctt accacc~~tg~~ ttatcaactg gggt~~aa~~atTt atctctcaca 120
20 ggcaatttgg caataactaa aaacat~~tt~~gt ggttgtcata actgcacagg gg~~tt~~ggggc 180
aat~~gg~~aagt~~g~~ ctactgg~~t~~ ctaaaggtag aggtc~~agg~~gg tactgctaaa tattctataa 240
tgcA~~ca~~aaga atgat~~gt~~aac tgaaaatgtt gatagt~~g~~agg atgttc~~ag~~aa accctgattc 300

25 Sequence ID No 6

IVS3+97 C>A SNP at position 117 in this sequence

IVS3+263 G>A SNP at position 283 in this sequence

30 CCACATTTCT TCATGGGATA gtaagtgtta aaaaaaaaaaa aaacctctgt gccactatca 60
gtacctt~~gt~~a aattaggagt agaattttat tattatccct ttaaataggg agttacC~~ttt~~ 120
tgagaagata cccacta~~gt~~ gtgtacagaa atgaaatagt gtctattt~~gt~~ ctacataatc 180
at~~ttt~~at~~tta~~ tcgttagctt catatactt gaaataacaa aagactaaa ctgtagagtt 240
35 tcaa~~at~~gaaa taaataggct ttttat~~ga~~at ttttagtata acGtata~~ta~~c tgtac~~gt~~tctt 300

Sequence ID No 7

40 IVS4+189 G>A SNP at position 209 in this sequence

IVS4+191 G>A SNP at position 211 in this sequence

45 ACCTGAGATA GTGGGAAAAG gtaagaatta atattgacag taaaag~~t~~t tctaaaatgt 60
atacattaa ttacatctct aaaaattgtt gtgatattca ttag~~ca~~aaat ttaattaaga 120
at~~ga~~at~~gg~~aaa acacattt~~g~~ actcttacag acataattat agt~~gt~~taata tacacagttc 180
gcc~~cc~~at~~ta~~ac aacacag~~gt~~ taaactacGc Gttttcactt ctatg~~ca~~at tttgtccatc 240
tgaactggat gataa~~ac~~ctg c~~cg~~gt~~a~~agaa tatctgacat tttctatatt tggatt~~ga~~ac 300

55 Sequence ID No 8

IVS5-118 delCTTGTA deletion of 6bp from position 63 to 68 incl.

50 tagcagcata aga~~at~~ggact aata~~ca~~ccat attgt~~ca~~ag tttg~~ca~~aa~~gt~~ gaatataa~~at~~ 60
tACTTGTAct t~~gt~~aa~~at~~taa aaaa~~at~~aa~~ta~~ g~~t~~agaataat taag~~at~~tt~~a~~ ca~~gt~~tag~~tt~~a 120
aattt~~gt~~aat agaa~~at~~g~~ct~~a a~~at~~taatgt t~~ta~~aa~~at~~g~~aa~~ acact~~ct~~t~~tt~~t atctacat~~ag~~ 180
GTTGTTAAA GGAATCTGGG 200

5 Sequence ID No 9IVS6+33 C>T SNP at position 53 in this sequence
 TATTGGATAT GTAGATCTAA gtaagtacaa ccagaacaag gtaccatgt aaCgtcttcc 60
 taagcacaca tgcggaaaac attttttcaa ataactgaat tcactcttc aatagtcctt 120
 tgcttaatat aatttagaaag ttacaagttag gaaataaaatg tattactaat cagaataaat 180
 ataaaaatcca gtccttattt 200

10 Sequence ID No 10
 IVS10-107 Ins TTC SNP at position 75 in this sequence
 taaaaaaaaa ctttgcatt tcgtcatcat caaagcaat ttcttcataat aaagaaaaat 60
 tctttatcta cttt(TTC)ttttcc ctcttcctct gctttcactt tacttttcc ttcttcctccc 120
 ctctttgtc tttttttctt ctcttcctct ttttgatata tgtctatcat atattccag 180
 AAATAATCCA GTGACATCTC 200

15

Sequence ID No 11
 IVS11+142 InstT InstT at position 162 in this sequence

20 CATGTCATGC TGATTGTTAA gtaagtatga cttttaaaaa cattttcata tgcataatgac 60
 tataaacaca cctaatgata tgcataattt tacataatata actgggaatt caaattcata 120
 tttcatcaaa ttttaatttt ctgagaattt attttattaa aa(T)ttactatg aactctcaag 180
 gctgtaatta ataattttgc 200

25

Sequence ID No 12
 IVS13-97 G>C SNP at position 84 in this sequence

30 tgatttgggt ctttgcatt tctaataatc tttatttttg ggttagatgca gaacaaaaata 60
 ataaacgaat cctccaaatt tttGaaacttt tatttaatca aaatataatca atgtggaaata 120
 tcattgcaggat acattttaaa tatgttccctt aaactgacat ctcttcctt ctttattacag 180
 GAGGAATTCT AGCTCCAATA 200

OATPC promoter region

35 [0060] Total length of the sequence = 1538bp
 1500bp of OATPC sequence directly upstream from the cDNA sequence
 Sequence in uppercase represents 38bp overlap with the cDNA sequence (SEQ ID NO 1) where this 38bp is 5'UTR sequence.
 Nucleotide positions in the promoter have been determined where the -1 position is the base (lowercase) directly upstream of the end of the cDNA sequence.

40

45

50

55

atgctcttgc	acctctgaaa	atattggaga	attttacaac	tggcacccccc	agctcaggat	60
tataaaggtt	gttagtttgt	ttgtactgtt	ttatcttcat	tgtatataat	atatatatta	120
gtctccaaac	atgttgatgt	gttttcaat	aaatggatgt	ctgaggagaaa	aaccatttgc	180
ctgagaaaaac	ccaaactgtt	ttccccattgt	gaataaaaagg	aaggccatcaa	aatatgtgga	240
aaatgtttcg	catttcgttgc	atgatatacaa	aatctggcag	tacatggaaaa	tttttcaaaag	300
tgcttattta	acaggcataa	tctttggctc	cctgaggccag	aatctgtctgg	gtatgggact	360
ggattgttat	tttgacaact	cggccagtaga	ttcttactca	gcagagtattt	tggaaaggcc	420
actcttaat	tttgccttgc	ggttcatatc	tctcagggttct	gcacagtcata	tcttccccctc	480
tacactactc	tttagtttgt	ctcatgattc	caataacttc	aataattaac	caagaataga	540
actaaatcaat	cagataactg	ttggcacagac	atcaaaaatac	ttttgtctgc	accatatacaa	600
caaatgtccc	atgaatgata	agggggttaacc	atattctcat	atatgcattcc	tcacatttacc	660
acatatataat	atgtgcataat	gtgtatacag	gtaaaagtgt	gtatataatgt	atacatgttat	720
gtttgtgtt	atatacatac	atataatcttc	acacttttct	aaaatataata	tattttatgtg	780
agagaagggt	ctgtactttt	tttcagaaga	gagcttaatg	tccaaagggtat	aatttgagaa	840
cttaaaatgtt	tgaggattttt	atttaataaa	acttcatttc	tactcaagaa	aactttttac	900
tgagtttaagc	tctttctttc	ttccacaagtc	aaagtcaataa	aaaggaaactgt	tgatattaaat	960
aattcttccc	tgttttgatg	taaagaatct	atcgcataaa	gcagttttaa	ttttcatcat	1020
tcagaaaaat	ggtcttgcag	ttaattggga	ctctcttatt	ccaggtggta	tctccagttc	1080
ccatatacata	cacgttggaa	ccataactat	graccaagca	aaggagggtat	atttttaattt	1140
ttaaaatggca	atgttaacttc	taggcatttt	tttttatttgt	cttaaatttt	ttcttatttg	1200
gaagttttaa	atacctggaa	taattttatttgc	tacttcattt	ttttaaaagaaa	aaaatcttat	1260
gccaccaact	taatttgaata	aacaagttaa	agccatcccc	aaaagtaagg	tttacttgg	1320
aagattaaca	aaaaataatgt	tgagaatttc	gagaataata	atcttttaat	attggcaact	1380
ggagttgtat	ctttaaaacta	actaggttt	atagtttgc	cttagagcaat	gacataataaa	1440
ggtgggttaat	catctatggaa	tttgcgtttca	aaaaggccaa	tacttttaaga	ggaataaaagg	1500
GTGGACTTGT	TGCACTTGCT	GTAGGATTCT	AAATCCAG	1538		

25

SEQUENCE LISTING

[0061]

30

<110> AstraZeneca AB

<120> Chemical Compounds

35

ambrose
cresswell
dudley

40

<140>
<141>

<160> 12

45

<170> PatentIn Ver. 2.1

<210> 1

<211> 2452

<212> DNA

50

<213> Homo sapiens

<400> 1

55

EP 1 186 672 B1

gtggacttgc	tgcagggtct	gttaggattct	aatccaggt	gattgttca	aactgagcat	60
caacaacaaa	aacatttgta	tgatatatctat	atttcaatca	tggaccaaaa	tcaacatttg	120
aataaaaacag	cagaggcaca	accttcagag	aataagaaaa	caagatactg	caatggattg	180
aaagatgttct	tggcagctct	gtcaactcgac	tttattgtcta	agacactagg	tgcaatttt	240
atggaaaagg	ccatcatca	tatagaacgg	agatgttga	tatcccttc	tcttgggtt	300
ttttatggacg	gaagcttgc	aattggaaaatt	ttgcttgta	ttgttattgt	gagtttctt	360
ggatccaaac	tacatagacc	aaagttttaatt	ggaaatcggtt	gtttcattat	gggaatttgg	420
gggtttttga	ctgcttgc	acattttcttc	atgggatatt	acaggatttc	taaagaaact	480
aatatcaatt	catcagaaaa	ttcaacatcg	accttatcca	cttgtttaat	taatcaaatt	540
tttctactca	atagagcata	acctggagata	gtggggaaaag	gttgtttaaa	ggaatctggg	600
tcatacatgt	ggatatatgt	gttcatgggt	aatatgtcttc	gtggaatagg	ggagactccc	660
atagtaccac	tggggcttc	ttacattgtat	gatttgceta	aagaaggaca	ttctttttgg	720
tatttagga	tatgttgc	aatagcaatg	atgggttccaa	tcattggctt	tacccggga	780
tctctgtttt	ctaaaatgt	cgtggatatt	ggatatgttag	atctaagcac	tatcaggata	840
actctactg	attctcgat	ggttggagct	ttgtggctta	atttccctgt	gtctggacta	900
tttccat	tttctccat	accattttt	ttcttgcccc	aaactccaaa	taaaccacaa	960
aaagaaaagaa	aagcttcact	gtctttgc	gtgctggaaa	caaatgtga	aaaggatcaa	1020
acagcttaatt	tgaccaatca	agaaaaaaat	attacaaaaaa	atgtgactgg	ttttttccag	1080
tcttttttttt	gcacatcttac	taatccccctg	tatgtttagt	ttgtgcctt	gacgttggta	1140
caagtaagca	gttatattgg	tgctttact	tatgttctca	aatacgtaga	gcaacatgt	1200
ggtcagccct	catctaaaggc	taacatctta	ttgggagtc	taaccatacc	tatttttgca	1260
agtggaaatgt	ttttaggagg	atatacttatt	aaaaaaattca	aactgaacac	cgttggatt	1320
gccaattttt	catgttttac	tgttgtgtat	tcattgtctt	tttacctatt	atattttttc	1380
atactctgt	aaaacaaatc	agtggccgga	ctaaccatga	cctatgttgg	aaataatccca	1440
gtgcacatctc	atagagatgt	aceactttct	tatttgcact	catactgca	tttgtatgaa	1500
agtcaatggg	aaccagtctg	tggaaaacaat	ggaaataactt	acatctcacc	ctgtgttagca	1560
ggttgaaat	cttcaagtgg	caataaaaaag	cctatagtgt	tttacaactg	cagttttttt	1620
gaagtaactg	gtctccagaa	cagaatttac	tcagccccatt	ttgggtgaatg	cccaagagat	1680
gatgttgc	caagggaaatt	ttactttttt	gttgcataac	aagtcttgc	tttatttttc	1740
tctgcacttgc	gaggcacctt	acatgtcatg	ctgattgtta	aaattgttca	acctgttgg	1800
aaatcaacttgc	cactgggtt	ccactcaatg	tttatacgag	cacttagagg	aattttagtgc	1860
ccataatattt	ttggggctct	gattgatata	acgtgtatata	atggttccac	caacaactgt	1920
ggcacacgttgc	ggtcatgttag	gacatataat	ttccacatcat	tttacaagggt	ctacttgggc	1980
ttgtcttcaa	tgttaagagt	ctcatcaatt	gttttatata	ttatattaaat	ttatgccccat	2040
aagaaaaaaat	atcaagagaa	agatatacaat	gcatcagaaa	atggaagtgt	catggatgaa	2100
gcaaaacttag	aatccctaaa	taaaaataaa	cattttgtcc	cttctgttgg	ggcagatagt	2160
gaaaacacattt	gttaagggga	gaaaaaaaaacg	cattttctgtct	tctgttttc	caaacacat	2220
tgcatgttgc	cagtaagatgt	tttttttttttt	ggatgttcttgc	gtcttttccac	taaagtttttc	2280
cacatctttt	atggtggaa	tataataataag	cctatgttgc	tataataaaaa	caaactgttag	2340
gtagaaaaaaa	tgagagactt	cattgttacat	tatagttacca	tatgttgcgtt	taagggtttaga	2400
ctatatgtatc	catacaaatt	aaagtggagag	acatggttac	tgtgttaaaa	aa	2452

35

<210> 2

<211> 691

<212> PRT

40

<213> Homo sapiens

<400> 2

45

50

55

EP 1 186 672 B1

Met Asp Gln Asn Gln His Leu Asn Lys Thr Ala Glu Ala Gln Pro Ser
 1 5 10 15
 5 Glu Asn Lys Lys Thr Arg Tyr Cys Asn Gly Leu Lys Met Phe Leu Ala
 20 25 30
 Ala Leu Ser Leu Ser Phe Ile Ala Lys Thr Leu Gly Ala Ile Ile Met
 35 40 45
 10 Lys Ser Ser Ile Ile His Ile Glu Arg Arg Phe Glu Ile Ser Ser Ser
 50 55 60
 15 Leu Val Gly Phe Ile Asp Gly Ser Phe Glu Ile Gly Asn Leu Leu Val
 65 70 75 80
 Ile Val Phe Val Ser Tyr Phe Gly Ser Lys Leu His Arg Pro Lys Leu
 85 90 95
 20 Ile Gly Ile Gly Cys Phe Ile Met Gly Ile Gly Gly Val Leu Thr Ala
 100 105 110
 25 Leu Pro His Phe Phe Met Gly Tyr Tyr Arg Tyr Ser Lys Glu Thr Asn
 115 120 125
 30 Ile Asn Ser Ser Glu Asn Ser Thr Ser Thr Leu Ser Thr Cys Leu Ile
 130 135 140
 Asn Gln Ile Leu Ser Leu Asn Arg Ala Ser Pro Glu Ile Val Gly Lys
 145 150 155 160
 35 Gly Cys Leu Lys Glu Ser Gly Ser Tyr Met Trp Ile Tyr Val Phe Met
 165 170 175
 Gly Asn Met Leu Arg Gly Ile Gly Glu Thr Pro Ile Val Pro Leu Gly
 180 185 190
 40 Leu Ser Tyr Ile Asp Asp Phe Ala Lys Glu Gly His Ser Ser Leu Tyr
 195 200 205
 Leu Gly Ile Leu Asn Ala Ile Ala Met Ile Gly Pro Ile Ile Gly Phe
 210 215 220
 45 Thr Leu Gly Ser Leu Phe Ser Lys Met Tyr Val Asp Ile Gly Tyr Val
 225 230 235 240
 Asp Leu Ser Thr Ile Arg Ile Thr Pro Thr Asp Ser Arg Trp Val Gly
 245 250 255
 50 Ala Trp Trp Leu Asn Phe Leu Val Ser Gly Leu Phe Ser Ile Ile Ser
 260 265 270
 Ser Ile Pro Phe Phe Leu Pro Gln Thr Pro Asn Lys Pro Gln Lys
 275 280 285
 Glu Arg Lys Ala Ser Leu Ser Leu His Val Leu Glu Thr Asn Asp Glu
 290 295 300
 Lys Asp Gln Thr Ala Asn Leu Thr Asn Gln Gly Lys Asn Ile Thr Lys
 305 310 315 320
 Asn Val Thr Gly Phe Phe Gln Ser Phe Lys Ser Ile Leu Thr Asn Pro
 325 330 335

EP 1 186 672 B1

Leu Tyr Val Met Phe Val Leu Leu Thr Leu Leu Gln Val Ser Ser Tyr
 340 345 350
 5 Ile Gly Ala Phe Thr Tyr Val Phe Lys Tyr Val Glu Gln Gln Tyr Gly
 355 360 365
 Gln Pro Ser Ser Lys Ala Asn Ile Leu Leu Gly Val Ile Thr Ile Pro
 370 375 380
 10 Ile Phe Ala Ser Gly Met Phe Leu Gly Gly Tyr Ile Ile Lys Lys Phe
 385 390 395 400
 Lys Leu Asn Thr Val Gly Ile Ala Lys Phe Ser Cys Phe Thr Ala Val
 405 410 415
 15 Met Ser Leu Ser Phe Tyr Leu Leu Tyr Phe Phe Ile Leu Cys Glu Asn
 420 425 430
 Lys Ser Val Ala Gly Leu Thr Met Thr Tyr Asp Gly Asn Asn Pro Val
 435 440 445
 20 Thr Ser His Arg Asp Val Pro Leu Ser Tyr Cys Asn Ser Asp Cys Asn
 450 455 460
 Cys Asp Glu Ser Gln Trp Glu Pro Val Cys Gly Asn Asn Gly Ile Thr
 465 470 475 480
 25 Tyr Ile Ser Pro Cys Leu Ala Gly Cys Lys Ser Ser Ser Gly Asn Lys
 485 490 495
 Lys Pro Ile Val Phe Tyr Asn Cys Ser Cys Leu Glu Val Thr Gly Leu
 500 505 510
 30 Gln Asn Arg Asn Tyr Ser Ala His Leu Gly Glu Cys Pro Arg Asp Asp
 515 520 525
 Ala Cys Thr Arg Lys Phe Tyr Phe Val Ala Ile Gln Val Leu Asn
 530 535 540
 35 Leu Phe Phe Ser Ala Leu Gly Gly Thr Ser His Val Met Leu Ile Val
 545 550 555 560
 Lys Ile Val Gln Pro Glu Leu Lys Ser Leu Ala Leu Gly Phe His Ser
 565 570 575
 40 Met Val Ile Arg Ala Leu Gly Gly Ile Leu Ala Pro Ile Tyr Phe Gly
 580 585 590
 Ala Leu Ile Asp Thr Thr Cys Ile Lys Trp Ser Thr Asn Asn Cys Gly
 595 600 605
 45 Thr Arg Gly Ser Cys Arg Thr Tyr Asn Ser Thr Ser Phe Ser Arg Val
 610 615 620
 Tyr Leu Gly Leu Ser Ser Met Leu Arg Val Ser Ser Leu Val Leu Tyr
 625 630 635 640
 Ile Ile Leu Ile Tyr Ala Met Lys Lys Tyr Gln Glu Lys Asp Ile
 645 650 655
 50 Asn Ala Ser Glu Asn Gly Ser Val Met Asp Glu Ala Asn Leu Glu Ser
 660 665 670
 Leu Asn Lys Asn Lys His Phe Val Pro Ser Ala Gly Ala Asp Ser Glu
 675 680 685
 55 Thr His Cys

690

<210> 3
<211> 1538
<212> DNA
<213> *Homo sapiens*

<400> 3

10

atgcttttgc acctctgaaa atattggaga attttacaac tggcacccccc agctcaggat 60
tataaagggtt gtagtgttgg ttgtactgtt ttatcttcat tgtatataat atatatatta 120
gtctccaaac atgttgatgt gtttcaatg aatggatgt ctgaggagaa aaccattagc 180
ctgagaaaaac ccaaactgtt ttccccatgtt gaataaaaagg aagtccataa aaatgtatgg 240
aaatgttctg cattctgtt atgatatacc aatctggca tacatggaaa ttttcaaggg 300
tgcgttattt acaggcataa tcttgggtct ctgcggccag aatctgtcg ggatggact 360
ggattgttat tttgacaact cgccagtaga ttcttactca gcaggtat ttggaaagcc 420
actctaataat ttggccctg ggtctacatt tctcgttct gcacagtcat tcttccctc 480
tacactactc tttagtttg tctatgatcc caataactctc aataattaac caagaataga 540
actaatcaat cagataactg tggcacagac atcaaataca ttttgcata accatataaa 600
caaagtccctt atgaatgata agggtttaacc atattctcat atatgcatacc tcacattacc 660
acatataat atgtgcataat gtgtatatacg gtaaaagtgt gtatataatgt atacatgtat 720
gtttgtgtgt atatacatac atatacttc acacttttc gaaatataata tattttgtg 780
agagaagggt ctgtacttta ttccagaaga gagcttaatg tccaaggat aatttagaggt 840
ctaaaatgtt tgagtatttgc aattaattaa acttcataatc tactcaagaa aacttttaac 900
tgagttaaat ctttcccttc tccacaaggc aagtcaataaa aaggaaactg tgatattaaat 960
aattttttcc tgggttggat taaagaatct atcgcataaaa gcagtttttgc ttttcatcat 1020
tcagaaaaat ggtcttgcgc ttaattggat ctcttttttgc ccagggttgc tcttcgttgc 1080
ccatacatac cacgttagaa ccataacttat gtaccaagca aaggaggat attttatattt 1140
ttaaatgcac atgtaacctg taggcataatt ttttattttgt cttaaatttat ttccttatttgc 1200
gaagttttaa atacctggaa taatttatttgc tactcatat tttaaagaaa aaaatcttat 1260
gccaccaact taatttgcata aacaaaggtaaa agccattccccc aaaaggttgc ttacttgc 1320
aagattaaca aaaaataatg tgagaatctt gagaatataat atcttttaat attggcaat 1380
ggagtgaact cttaaaacta actagggtttt atatgttttgc cttagaccaat gacataataa 1440
gggtgttataat catacttggaa ctgttttgc aaaaaggccaaac tacttttaaga ggaataaaagg 1500
gtggacttgtt tgcaagggttgc tgaggattctt aaatccatg 1538

35 <210> 4
<211> 200
<212> DNA
<213> Homo sapiens

40 <400> 4

gatactgcaa tggattgaag gtagaataag ttttatgttt tttagctaaa ataagtaat 60
agggaaactt aatgtataga aaagcaagtt gttaaaaaga acattatgtt tcaaattata 120
attttcaatt gaagcatata ttgaaatatt aacataatga ttcataccctt gatttaaacc 180
agtcttttaa tctgattaag 200

50 <210> 5
<211> 300
<212> DNA
<213> Homo sapiens

<400> 5

55

5 tgacggaagc tttgaaattt gtaacatTTA ttttctatTT taataacca aactgcaaag 60
 ttaaaaata tatatGCTT acaccactgg ttatcaactg gggtaaattt atcttcaca 120
 ggcaatttgg caataactaa aaacatttGT ggTTgtcata actgcacagg ggTTggggc 180
 aatggaaagtG ctactggtat ctaaaggtag aggtcaggGG tactgctaaa tattctataa 240
 tgcacAAAGA atgatgtAAC tgAAAATGTT gatagtGAGG atgttcAGAA accctgattc 300

10 <210> 6
 <211> 300
 <212> DNA
 <213> Homo sapiens

15 <400> 6

15 ccacatttct tcatggata gtaagtgtta aaaaaaaaaaa aaacctctgt gccactatca 60
 gtaccttGTA aatttaggAGT agaattttat tattatccct ttaaaatAGGC agttacettT 120
 tgagaagata cccactaagt gtgtacagaa atgaaatAGT gtctatttGT ctacataatC 180
 atTTTATTtA tcgtAGCTT catatactt gaaATAACAA aaAGACTAAA ctgtAGAGTT 240
 tcaaatgAAA taaatAGGCT tttatGAAT ttttagtATA acgttatatac tGtacGtCtt 300

20 <210> 7
 <211> 300
 <212> DNA
 <213> Homo sapiens

25 <400> 7

30 acctgagata gtgggaaaAG gtaagaatTA atattGACAG taaaaAGTCT tctaaaATGT 60
 atacatttAA ttacatCTCT aaaaattGTT gtgtatTC ttAGCAAAAT ttaatttAAGA 120
 atGAATAGGA aaaacatttG actcttACAG acataatttAGTgttaATA tacacAGttC 180
 GCCCATTAAC aacacAGGTT taaACTACGC GTTTCACTT ctatGCAAT tttGTCATC 240
 tGAActGGat gataAAACCTG ccggtaAGAA tatctGACAT tttctatatt tggattGAAC 300

35 <210> 8
 <211> 200
 <212> DNA
 <213> Homo sapiens

40 <400> 8

45 tagcAGCATA agaatGGACT aatacACCAT attGTCaaAG tttGCAAAG gaataAAAT 60
 tacttGtaCT tGtaaattAA aaaaaAAAtAA gtagaATAAT taAGAGTTA caAGTAGTTA 120
 aatttGtaAT agaaATGCTA aaattaATGT ttaaaATGAA acactCTTT atctacatAG 180
 gttGTTAAA ggaatctGGG 200

50 <210> 9
 <211> 200
 <212> DNA
 <213> Homo sapiens

55 <400> 9

55 tattGGatAT gtagatCTAA gtaAGTACA CCAGAACAAg GTACCCATGAT AACGTCCTTC 60
 taAGCACACa TGCgAAAAAC ATTtTTCAA ATAactGAAT TCACTCTTC AATAGTCCTT 120
 TGCTTAATAT aattGAAAG ttacaAGTAG gaaATAAAATG tattactAAAT cagaATAAAAT 180
 ataAAATCCA gCTCCTATTt 200

<210> 10
<211> 203
<212> DNA
<213> Homo sapiens

5

<400> 10

```
ttaaaaaaaaaa ctttgcatt tcgtcatcat caaagcaaat ttcttcataat aaagaaaaat 60
tctttatcta ctttttctt ccccttttc tctgctttca ctttacttctt cccttctc 120
cccccttctt gtcttttct tctctcttc tcttttgat atatgtctat catatatttc 180
cagaaataat ccagtgacat ctc 203
;
```

10

<210> 11
<211> 201
<212> DNA
<213> Homo sapiens

15

<400> 11

20

```
catgtcatgc tgattgttaa gtaagtatga ctttaaaaa cattttcata tgcattgagac 60
tataaacaca cctaatgata tgcattattt tacataatat actggaaatt caaattcata 120
tttcatcaaa ttttaatttt ctgagaattc attttatcaa aatttactat gaactctcaa 180
ggctgttaattt aataattttt c 201
;
```

25

<210> 12
<211> 200
<212> DNA
<213> Homo sapiens

30

<400> 12

35

```
tgatttgggt cttttagatt tctaataatc tttattatgg ggttagatgca gaacaaaata 60
ataaacgaat cctccaaatt tttgaacttt tatttaatca aaatataatca atgtggaaata 120
tcatgcaggc acatttaaaa tatgtttccct aaactgacat cttctttctt cctattacag 180
gagaaatttc agctccaata. 200
;
```

40

Claims

45

1. A method for the detection of a polymorphism in OATPC in a human, which method comprises determining the sequence of the human at:

position 1561 of the OATPC gene as defined by the position in SEQ ID NO: 1 is not G; or
position 488 in OATPC polypeptide defined by position in SEQ ID NO: 2 is not Gly.

50

2. Use of a method as defined in claim 1 to assess the pharmacogenetics of a drug transportable by OATPC.
3. A polynucleotide comprising at least 20 bases of the human OATPC gene and comprising the allelic variant:

55

Region	variant	Position in SEQ ID NO	SEQ ID NO
Exon 10	C	1561	1

4. An ARMS allele specific primer or an allele-specific oligonucleotide probe selected from one of the following:
 - an ARMS allele specific primer; or
 - an allele-specific oligonucleotide probe,capable of detecting a OATPC gene polymorphism as defined in claim 1.
5. Use of an OATPC polymorphism as defined in claim 1 as a genetic marker in a linkage study.
6. Use of a statin in preparation of a medicament for treating a cardiovascular disease in a human detected as having an OATPC polymorphism at one or more of the following positions:
 - position 1561 of the OATPC gene as defined by the position in SEQ ID NO: 1 is not G;
 - position 488 in OATPC polypeptide defined by position in SEQ ID NO: 2 is not Gly.
7. A use according to claim 6 in which the drug is rosuvastatin.
8. An allelic variant of human OATPC polypeptide comprising;
an arginine at position 488 of SEQ ID NO 2
or a fragment thereof comprising at least 10 amino acids provided that the fragment comprises the allelic variant.

Patentansprüche

1. Verfahren zum Nachweis eines Polymorphismus in OATPC in einem Menschen, wobei man in dem Verfahren bestimmt, daß die Sequenz des Menschen in:

Position 1551 des OATPC-Gens, wie durch die Position in SEQ ID NO: 1 definiert, nicht G ist; oder Position 488 im OATPC-Polypeptid, definiert durch die Positionen in SEQ ID NO: 2, nicht Gly ist.
2. Verwendung eines Verfahrens gemäß Anspruch 1 zur Beurteilung der Pharmacogenetik eines durch OATPC transportierbaren Arzneistoffs.
3. Polynukleotid, umfassend wenigstens 20 Basen des menschlichen OATPC-Gens und umfassend die Allelvariante:

Region	Variante	Position in SEQ ID NO:	SEQ ID NO:
Exon 10	C	1561	1

4. ARMS-Allel-spezifischer Primer oder Allelspezifische Oligonukleotidsonde, ausgewählt aus einem der folgenden Moleküle:
 - einem ARMS-Allel-spezifischen Primer; oder
 - einer Allel-spezifischen Oligonukleotidsonde,womit ein OATPC-Gen-Polymorphismus gemäß Anspruch 1 nachgewiesen werden kann.
5. Verwendung eines OATPC-Polymorphismus gemäß Anspruch 1 als genetischer Marker in einer Verknüpfungsuntersuchung.
6. Verwendung eines Statins bei der Herstellung eines Arzneimittels zur Behandlung einer Herzkreislauferkrankung in einem Menschen, bei dem ein OATPC-Polymorphismus an einer oder mehreren der folgenden Positionen nachgewiesen wurde:

Position 1561 des OATPC-Gens, wie durch die Positionen in SEQ ID NO: 1 definiert, ist nicht G;
Position 488 im OATPC-Polypeptid, definiert durch die Positionen in SEQ ID NO: 2, ist nicht Gly.
7. Verwendung nach Anspruch 6, wobei es sich bei dem Arzneistoff um Rosuvastatin handelt.
8. Allelvariante des menschlichen OATPC-Polypeptids, umfassend:

ein Arginin in Position 488 der SEQ ID NO: 2
oder ein Fragment davon, umfassend wenigstens 10 Aminosäuren, vorausgesetzt, daß das Fragment die Allelvariante umfaßt.

5

Revendications

1. Procédé pour la détection d'un polymorphisme dans un OATPC d'un être humain, lequel procédé comprend l'étape consistant à déterminer la séquence de l'humain au niveau de :

10

la position 1561 du gène d'OATPC, comme cela est défini par la position dans la SEQ ID n° : 1, qui n'est pas un G ; ou
la position 488 dans un polypeptide d'OATPC, définie par la position dans la SEQ ID n° : 2, qui n'est pas une Gly.

15 2. Utilisation d'un procédé, comme cela est défini à la revendication 1, pour évaluer les aspects pharmacogénétiques d'une substance médicamenteuse pouvant être transportée par un OATPC.

3. Polynucléotide comprenant au moins 20 bases du gène d'OATPC humain et comprenant le variant allélique :

20

Région	Variant	Position dans la SEQ ID n° :	SEQ ID n° :
Exon 10	C	1561	1

25 4. Amorce spécifique d'un allèle ARMS ou sonde oligonucléotidique spécifique d'un allèle choisié parmi l'un des éléments suivants :

une amorce spécifique d'un allèle ARMS ; ou
une sonde oligonucléotidique spécifique d'un allèle,
30 capable de détecter un polymorphisme dans un gène d'OATPC, comme cela est défini à la revendication 1.

35 5. Utilisation d'un polymorphisme d'OATPC, comme cela est défini à la revendication 1, en tant que marqueur génétique dans une étude de liaison.

6. Utilisation d'une statine dans la préparation d'un médicament destiné à traiter une affection cardiovasculaire chez un être humain, chez qui on a détecté un polymorphisme d'OATCP au niveau d'une ou plusieurs positions parmi les suivantes :

40 la position 1561 du gène d'OATPC, comme cela est défini par la position dans la SEQ ID n° : 1, n'est pas un G ; ou
la position 488 dans un polypeptide d'OATPC, définie par la position dans la SEQ ID n° : 2, n'est pas une Gly.

7. Utilisation selon la revendication 6, dans laquelle la substance médicamenteuse est la rosuvastatine.

45 8. Variant allélique d'un polypeptide d'OATPC humain comprenant :

une arginine à la position 488 de la SEQ ID n° : 2 ou un fragment de celle-ci comprenant au moins 10 acides aminés, à condition que le fragment comprenne le variant allélique.

50

55