

WHAT IS A STAR?

 Massive, luminous, selfgravitating sphere that generates energy through nuclear <u>fusion</u>

- If stars have nuclear fusion, why don't they explode like hydrogen bombs?
- Alternatively, why doesn't everything immediately collapse into a black hole?

http://en.wikipedia.org/wiki/Hydrogen bomb

A PROTRACTED BATTLE WITH GRAVITY[1]

Bennett et al., The Cosmic Perspective, 6th ed., 2010

- Objects must support themselves against gravity:
 - Planets (and you!): van der Waals
 - Brown dwarfs, stellar remnants: degeneracy pressure
 - Stars: gas pressure
- Large gas pressure → gas is hot
 → hot gas radiates → loses
 energy → bad
- But, gas is hot → nuclear fusion is triggered → star obtains huge reservoir of energy

MEANS OF FUSION

Reaction:

$$4_1^1 H \rightarrow_2^4 He + 2e^+ + 2v_e + 2\gamma \ (26.9 \,\text{MeV})$$

Energy generation:

$$E = (\Delta m)c^2 = (m_{4He} - 4m_H)c^2 = fm_H c^2$$

- Proton-proton (p-p) chain:
 - Can occur in pure H environment
 - − Dominates for $M < 1.3 M_{\odot}$
- Carbon/nitrogen/oxygen (CNO) cycle:
 - Uses ¹²C, ¹⁴N and ¹⁶O as catalysts
 - Dominates for $M > 1.3M_{\odot}$

Bennett et al. 2010

STELLAR STRUCTURE

- Can use the equations of hydrostatic equilibrium, temperature, energy transport (includes opacity) and gas equation of state to determine stellar structure
- Observations done using surface observations, neutrinos, asteroseismology

STELLAR STRUCTURE

- For stars of differing masses:
 - L α M^{3.5} (massive stars are much more luminous)
 - R α M^{0.5} (massive stars are bigger)
 - T_{surface} α M^{0.625}
 (massive stars are hotter)
 - τ α M/L α M^{-2.5}
 (massive stars don't live as long)

HERTZSPRUNG-RUSSELL DIAGRAM

WHERE DO BABY STARS COME FROM?

http://apod.nasa.gov/apod/ap100919.html http://apod.nasa.gov/apod/ap130324.html

- Clouds of gas and dust supported by gas pressure, radiate and cool
- Cold clouds are "gravitationally unstable", will begin to collapse under gravity
- Collapse of a cloud continues until it become dense enough to begin heating → forms a protostar

WHERE DO BABY STARS COME FROM?

- Protostar accretes material still collapsing due to gravity
- Eventually protostar becomes massive and luminous enough to blow away infalling material
 → forms a pre-main sequence star
- Pressure balances gravity, but no fusion, so star contracts until its centre ignites fusion

http://www.daviddarling.info/encyclopedia/P/protostar.html http://en.wikipedia.org/wiki/T_Tauri_star

THE MAIN SEQUENCE

- For Sun-like star, core
 hydrogen burning goes on for
 10 Gyr (other star lifetimes
 scale like (M/M_O)^{-2.5})
- During this time, star is stable (expands and heats slightly)
- This allows planets reasonably stable conditions, essential for development of life

Wu 2011

http://en.wikipedia.org/wiki/Life

THE END OF THE MAIN SEQUENCE

- Core hydrogen will run out (it's being fused)
- Result: star's core either collapses or contracts until helium fusion ("triple-α" process) can begin
- During collapse/contraction, Hburning continues in shell, and luminosity goes up several orders of magnitude
- Stellar envelope expands and cools; star becomes a red giant

a Changes in the Sun's luminosity over time.

b Changes in the Sun's radius over time.

@ 2010 Pearson Education, Inc.

http://apod.nasa.gov/apod/ap090910.html, http://apod.nasa.gov/apod/ap111227.html, http://apod.nasa.gov/apod/ap080322.html

THE END TIMES FOR MASSIVE STARS

THE END TIMES FOR MASSIVE STARS

THE END TIMES FOR MASSIVE STARS

CORE COLLAPSE SUPERNOVAE

- Eventually $M > \sim 10 M_{\odot}$ stars have multilayered "onion" structure with iron in centre
- Iron fusion is net energy decrease
- Result is catastrophic collapse: "core collapse" supernovae

CORE COLLAPSE SUPERNOVAE

© Anglo-Australian Observatory

THE STELLAR GRAVEYARD

M < ~10M_O Stars

http://www.bbc.co.uk/schools/gcsebitesize/science/ed excel_pre_2011/space/theoriginsoftheuniverserev3.sht ml

- White dwarf
 - Carbon-oxygen
 - Earth-sized
 - Electron degeneracy
 - Inert

 \sim 10 ${\rm M}_{\odot}$ < M < \sim 25 ${\rm M}_{\odot}$ Stars

http://www.msnbc.msn.com/id/38757238/ns/technology_and_science-space/t/massive-mega-star-challenges-black-hole-theories/

- Neutron stars
 - Neutrons
 - City-sized
 - Neutron degeneracy
 - May emit pulses

 $M > \sim 25 M_{\odot} Stars$

http://www.nasa.gov/audience/forstudents/k-4/stories/what-is-a-black-hole-k4.html

- (Stellar) black holes
 - Singularity
 - City-sized
 - Gravity wins
 - Doesn't emit anything

SUMMARY

- Stars balance gravity with gas pressure, which requires high temperatures – these temperatures cause fusion, giving stars the energy they need
- In hydrogen-burning stars fusion occurs (depending on mass) primarily by the proton-proton chain or CNO cycle
- Stars form out of large, cold clouds of gas and dust that get smaller until hydrogen fusion begins
- While burning hydrogen, stars lie on a line called the "Main Sequence" in the Hertzsprung-Russell diagram
- When their cores run out of hydrogen, stars move off main sequence
- Sun-like stars become much redder and much more luminous when they leave the main sequence. Eventually they shed their outer layers and form white dwarfs
- Massive stars become redder and somewhat more luminous. They die in supernovae and become neutron stars or black holes