### Linear regression

Hastie, Tibshirani, Friedman Ch 6-7 Kevin Murphy Ch. 7

> CS 6140 Machine Learning Professor Olga Vitek

January 19, 2017

## Generative vs discriminative models

- Goal: predict Y
  - Bayes rule:

$$p(Y|\mathbf{X}) = \frac{p(Y) \cdot p(\mathbf{X}|Y)}{p(\mathbf{X})}$$

- Generative classifiers
  - Specify prior probability of p(Y)
  - Assume conditional distribution p(X|Y)
  - Use Bayes rule to derive the posterior p(Y|X)
  - Example: Linear discriminant analysis
- Discriminative classifiers
  - Estimate the posterior the posterior p(Y|X)
  - Do not assume the distribution on  ${f X}$
  - **Example:** Y continuous: linear regression

# Linear regression with two predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i; \quad i = 1, ..., n$$

- $\beta_0$  is the intercept
- $\beta_1$  and  $\beta_2$  are the regression coefficients
- Meaning of regression coefficients
  - $\beta_1$  describes change in <u>mean response</u> per unit increase in  $X_1$  when  $X_2$  is held constant
  - $-\beta_2$  describes change in <u>mean response</u> per unit increase in  $X_2$  when  $X_1$  is held constant
- Variables  $X_1$  and  $X_2$  are **additive**.
- Same change in  $X_1$  for all  $X_2$ .
- The response surface is a plane.

#### Interaction model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

- Meaning of parameters:
  - Change in  $X_1$  when  $X_2 = x_2$

$$\Delta Y = (\beta_0 + \beta_1(X_1 + 1) + \beta_2 x_2 + \beta_3(X_1 + 1)x_2) - (\beta_0 + \beta_1 X_1 + \beta_2 x_2 + \beta_3 X_1 x_2)$$
  
=  $\beta_1 + \beta_3 x_2$ 

- Change in  $X_2$  when  $X_1 = x_1$ 

$$\Delta Y = \beta_2 + \beta_3 x_1$$

 Rate of change due to one variable affected by the other

#### Additive vs interaction model

$$\hat{Y}_i = -2.79 + 2.14X_{i1} + 1.21X_{i2}$$

#### versus

$$\hat{Y}_i = 1.5 + 3.2X_{i1} + 1.2X_{i2} - .75X_{i1}X_{i2}$$



# Linear regression with two predictors



Hastie, Tibshirani, Friedman, Fig 3.1 and 3.2



K. Murphy, Fig 7.1

## Polynomial regression and transformations

• Polynomial regression:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$
  
=  $\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$   
where  $X_{i2} = X_i^2$ .

- this is a linear model because it is a linear function of parameters  $\beta$
- Transformations

$$log(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

$$Y_i = \frac{1}{\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i}$$

- this is a linear model on the  $log(Y_i)$  scale

## General linear regression in matrix terms

As an equation

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

As an array

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1 p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2 p-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n p-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \cdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

In matrix notation

$$Y = X\beta + \varepsilon$$

## Estimation of regression coefficients

- Objective function: least squares
  - find  $\hat{\beta}$  to minimize

$$\sum_{i=1}^{N} (y_i - x_i'\beta)^2 = (\mathbf{Y} - \mathbf{X}\widehat{\beta})'(\mathbf{Y} - \mathbf{X}\widehat{\beta})$$

- Quadratic objective function ⇒
   its minimum always exists, but may not be unique
- Finding estimates
  - Differentiating wrt  $\beta$ :
  - Normal equations  $X'(y-X\beta) = 0 \Rightarrow \hat{\beta} = (X'X)^{-1}X'Y$
- Fitted values define a (hyper)plane

$$-\hat{Y} = X(X'X)^{-1}X'Y = HY$$

- Residuals: 
$$e = Y - \hat{Y} = (I - H)Y$$

## Multicollinearity



#### Qualitative predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

- Let  $X_2 = 1$  if case from Massachusetts
- Meaning of parameters:
  - Case from Massachusetts  $(X_2 = 1)$ :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 1 + \beta_3 X_1(1)$$
  
=  $(\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1$ 

- Case from other location  $(X_2 = 0)$ 

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 0 + \beta_3 X_1(0)$$
  
=  $\beta_0 + \beta_1 X_1$ 

- Have <u>two</u> regression lines
- ullet  $\beta_2$  and  $\beta_3$  quantify the differences

### Two groups: Wrong coding

- Assume an additive model with two groups
- Wrong approach: add both indicators

$$X_2 = \left\{ \begin{array}{l} 1 \text{ , if stock firm} \\ 0 \text{ , otherwise} \end{array} \right. X_3 = \left\{ \begin{array}{l} 1 \text{ , if mutual fund} \\ 0 \text{ , otherwise} \end{array} \right.$$

- the model below is wrong

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i$$

- The corresponding design matrix
  - 4 data points (first 2 from stock firm, last 2 from mutual fund)

$$\mathbf{X} = \begin{pmatrix} 1 & X_{11} & 1 & 0 \\ 1 & X_{21} & 1 & 0 \\ 1 & X_{31} & 0 & 1 \\ 1 & X_{41} & 0 & 1 \end{pmatrix}$$

– this model creates fully collinear columns in the design matrix  $\mathbf{X}$  (R will drop the first)

#### Two groups: Correct coding

• Correct approach 1:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

- interpretation:

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1}$$
 if mutual fund  $E\{Y_i\} = (\beta_0 + \beta_2) + \beta_1 X_{i1}$  if stock firm

- Mutual fund is the reference group
- $-\beta_2$ : the deviation of the intercept of the stock firm from the reference
- The corresponding design matrix:
  - 4 data points (first 2 from stock firm, last 2 from mutual fund)

$$\mathbf{X} = \begin{pmatrix} 1 & X_{11} & 1 \\ 1 & X_{21} & 1 \\ 1 & X_{31} & 0 \\ 1 & X_{41} & 0 \end{pmatrix}$$

### Three groups: Wrong coding

Extend the indicator

$$X_2 = \begin{cases} 0, & \text{if mutual fund} \\ 1, & \text{if stock firm} \\ 2, & \text{if foreign firm} \end{cases}$$

The model below is still appropriate

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

- interpretation: enforces an equal change in  $E\{Y\}$  for each extra indicator

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1} \qquad \text{if mutual fund}$$
 
$$E\{Y_i\} = (\beta_0 + \beta_2) + \beta_1 X_{i1} \qquad \text{if stock firm}$$
 
$$E\{Y_i\} = (\beta_0 + 2\beta_2) + \beta_1 X_{i1} \qquad \text{if foreign firm}$$

- The corresponding design matrix:
  - 6 data points (first 2 from mutual fund, 2 from stock, 2 foreign)

$$\mathbf{X} = \begin{pmatrix} 1 & X_{11} & 0 \\ 1 & X_{21} & 0 \\ 1 & X_{31} & 1 \\ 1 & X_{41} & 1 \\ 1 & X_{41} & 2 \\ 1 & X_{41} & 2 \end{pmatrix}$$

# Three groups: Correct coding

• First option:

$$X_2 = \left\{ \begin{array}{ll} 1 \text{ , if stock firm} \\ 0 \text{ , otherwise} \end{array} \right. X_3 = \left\{ \begin{array}{ll} 1 \text{ , if foreign firm} \\ 0 \text{ , otherwise} \end{array} \right.$$

• The model below contains two indicators

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i$$

- interpretation:

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1}$$
 if mutual fund  $E\{Y_i\} = (\beta_0 + \beta_2) + \beta_1 X_{i1}$  if stock firm  $E\{Y_i\} = (\beta_0 + \beta_3) + \beta_1 X_{i1}$  if foreign firm

- mutual fund is the reference
- $\beta_2$  and  $\beta_3$  are deviations of the intercepts from the reference
- also more flexibility in presence of interactions  $X_1X_2$  and  $X_1X_3$
- the number of indicators is always one less than the number of groups

#### Normal Error Model

- The least square estimates of the parameters do not require the assumption of Normality
- Normal error assumption greatly simplifies the theory of analysis
- Normality is used to construct confidence intervals / perform hypothesis tests follow known distributions (e.g., t, F)
- While not always true in practice, most inference only sensitive to large departures from normality

# Normal Error regression model

• 
$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$



# Normal Error regression model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- $\beta_0$  is the intercept
- $\beta_1$  in the slope
- ullet  $\varepsilon_i$  is the  $i^{ ext{t}h}$  random error term

$$- \varepsilon_i \sim N(0, \sigma^2) \longleftarrow NEW$$

- Uncorrelated → independent error terms
- Defines distribution of Y: p(Y|X)

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$$

# Assessing Normality: Quantile-quantile plot



Can be used with any other distribution

#### **Example**

#### Height of 11 women

| i  | Observed | Adj. percentile          | Z     | Sample    |
|----|----------|--------------------------|-------|-----------|
|    | height   | $100(i-\frac{1}{2})/11)$ |       | quantiles |
| 1  | 61.0     | 4.55                     | -1.69 | 60.6      |
| 2  | 62.5     | 13.64                    | -1.10 | 62.3      |
| 3  | 63.0     | 22.73                    | -0.75 | 63.4      |
| 4  | 64.0     | 31.82                    | -0.47 | 64.1      |
| 5  | 64.5     | 40.91                    | -0.23 | 64.8      |
| 6  | 65.0     | 50.00                    | 0.00  | 65.5      |
| 7  | 66.5     | 59.09                    | 0.23  | 66.2      |
| 8  | 67.0     | 68.18                    | 0.47  | 66.9      |
| 9  | 68. 0    | 77.27                    | 0.75  | 67.6      |
| 10 | 68.5     | 86.36                    | 1.10  | 68.7      |
| 11 | 70.5     | 95.45                    | 1.69  | 70.4      |

QQplot: plot Observed height vs sample quantiles

Sample quantiles  $= x + Z \cdot \hat{\sigma} + \hat{\mu}$ 

- > ?qqplot
- > ?qqnorm

### Maximum Likelihood Estimation

 Assumption of Normality gives us more choices of methods for parameter estimation

$$Y_i \sim \mathsf{N}(\beta_0 + \beta_1 X_i, \sigma^2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$f_i = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2\right\}$$

- Likelihood function  $L = f_1 \times f_2 \times \cdots \times f_n$  (i.e. the joint probability distribution of the observations, viewed as function of parameters)
- ullet Find  $eta_0$ ,  $eta_1$  and  $\sigma^2$  which maximizes L
- ullet Obtain same estimators  $\widehat{eta}_0$  and  $\widehat{eta}_1$
- ullet A slightly smaller estimate of  $\sigma^2$