15

WHAT IS CLAIMED IS:

1.	A method for timing recovery in a communication system
usina cvclic	extension, comprising:

computing ensemble correlation function output from a plurality of symbols;

determining a valid sampling region based on a width of a plateau of the ensemble correlation function output; and

determining at least one sampling position for at least one symbol based on the valid sampling region.

- 2. The method of claim 1, further comprising defining the valid sampling region based on a comparison of the ensemble correlation function output to a threshold.
 - The method of claim 1, further comprising:
 filtering the ensemble correlation function output.
- 20 4. The method of claim 3 wherein the filtering occurs prior to determining the valid sampling region.
 - The method of claim 3, further comprising:
 using a median filter to filter the ensemble correlation
- 25 function output.

6.	The method of claim 1, further comprising:	
	determining a peak value included in the ensemb	le
correlation fu	nction output.	

15

20

- The method of claim 6, further comprising:
 determining the threshold as a function of the peak value.
- 8. A system, comprising:

a correlator for computing an ensemble correlation function output from a plurality of received symbols; and

a timing estimator, operatively coupled to the correlator, for determining a valid sampling region based on a width of a plateau of the ensemble correlation function output; and determining at least one sampling position for at least one symbol based on the valid sampling region.

- 9. The system of claim 8, further comprising: a filter, operatively coupled to the correlator, for filtering the ensemble correlation function output .
- The system of claim 9, further comprising:

 a max detector, operatively coupled to the filter, for
 determining a peak value included in the filtered ensemble correlation

 function output.
- The system of claim 8, further comprising:

 a comparator, operatively coupled to the correlator, for
 comparing the ensemble correlation function output to a threshold to

 define the valid sampling region.

15

20

- 12. The system of claim 8, for use in a receiver.
- 13. The system of claim 12, wherein the receiver is wireless.

14. The system of claim 8, further comprising: at least one phase locked loop for tracking edges of the plateau.

15. A method for estimating delay spread in a communication system using cyclic extension, comprising:

computing an ensemble correlation function output from a plurality of symbols; and

using the ensemble correlation function to estimate the delay-spread.

16. The method of claim 15, further comprising: comparing the ensemble correlation function output to a threshold to define a valid sampling region; and

subtracting a width of the valid sampling region from a length of the cyclic extension of the symbol to obtain an estimate of the delay spread.

- 17. The method of claim 15, further comprising:filtering the ensemble correlation function output.
 - 18. The method of claim 17, further comprising:using a median filter to filter the ensemble correlation
- 30 function output.

19.	The method of claim 15, further comprising:
	determining a peak value included in the ensemble
correlation fu	unction output.

15

25

- 20. The method of claim 19, further comprising: determining the threshold as a function of the peak value.
- 21. The method of claim 16, wherein threshold crossing points of the ensemble correlating function output define the valid sampling region.
 - 22. A system for estimating delay spread in a communication system using cyclic extension, comprising:
 - a correlator for computing an ensemble correlation function output from a plurality of symbols; and
 - a delay-spread estimator, operatively coupled to the correlator, for estimating the delay-spread.
 - 23. The system of claim 22, further comprising:
- a comparator, operatively coupled to the correlator, for comparing the ensemble correlation function output to a threshold to define a valid sampling region; and
 - a subtractor, operatively coupled to the comparator, for subtracting a width of the valid sampling region from a length of the cyclic extension of the symbol to obtain an estimate of the delay spread.

24.	The system of claim 22, further comprising:
	a filter, operatively coupled to the correlator, for filtering the
ensemble co	orrelation function output.

25. The system of claim 24, further comprising:
a max detector, operatively coupled to the filter, for
determining a peak value included in the filtered ensemble correlation
function output.

10

20

- 26. The system of claim 22, for use in a receiver.
- 27. The system of claim 26, wherein the receiver is wireless.
- 15 28. A method for adapting a receiver in a communication system using cyclic extension, comprising:

computing an ensemble correlation function output from a plurality of symbols;

determining a multipath channel characteristic based on the ensemble correlation function output; and

adapting the receiver based on the multipath channel characteristic.

- 29. The method of claim 28, wherein the multipath channel characteristic is delay-spread.
 - 30. The method of claim 28, wherein the step of adapting comprises:

determining one or more coefficients of a channel estimation 30 filter in the receiver.

31. The method of claim 28, wherein the step of adapting comprises:

identifying an inter-symbol-interference free portion of a

cyclic extension of a received symbol; and

combining the inter-symbol-interference free portion of the

cyclic extension with the received symbol.

32. The method of claim 28 wherein the step of adapting comprises:

determining at least one sampling position for at least one symbol based on the multi-path channel characteristic.