IME ACM-ICPC Team Notebook

Contents

1	Tem	plate + vimrc							
	1.1	Template							
	1.2	vimrc							
2	Graphs 1								
	2.1	DFS							
	2.2	BFS							
	2.3	Zero-One-BFS							
	2.4	Toposort							
	2.5	MST (Kruskal)							
	2.6	MST (Prim)							
	2.7	Shortest Path (Dijkstra)							
	2.8								
	2.9	Max Flow							
	2.10	Min Cost Max Flow							
	2.11	Max Bipartite Cardinality Matching (Kuhn)							
	2.12	Lowest Common Ancestor							
	2.13	2-SAT							
	2.14	Assignment Problem							
3	Mathematics 5								
_	3.1	Fast Exponential							
	3.2	Fast Fourier Transform							
	3.3	Mobius Function							
	3.4								
	3.4	Sieve							
4	Strings 6								
	4.1	Aho-Corasick							
	4.2	Rabin-Karp							
	4.3	Manacher							
	4.4	Suffix Automaton							
	4.5	Knuth-Morris-Pratt							
	4.6	Z Function							
	4.7	String Hashing							
_	ъ.	a Structures 8							
5 Data Structures									
	5.1	BIT (Range Update, Point Query)							
	5.2	Centroid Decomposition							
	5.3	Max/Min Queue							
	5.4	Persistent Segment Tree							
	5.5	Segment Tree with Lazy							
	5.6	Segment Tree							
	5.7	Treap							
	5.8	Union Find Simple							
	5.9	Union Find with Rollback							
	5.10	Union Find Partial Persistent							
6	Dynamic Programming 10								
J	6.1	Convex Hull Trick							
	6.2	Steiner Tree							
-	C								
7		metry 11							
	7.1	Convex Hull							
	7.2	Minimum Enclosing Circle							
8	Miscellaneous 12								
_	8.1	Parallel Binary Search							
	8.2	Ternary Search							
	8.3	Ternary Search with Double							
	0.5								

```
      9 Math Extra
      12

      9.1 Combinatorial formulas
      12

      9.2 Number theory identities
      12

      9.3 Stirling Numbers of the second kind
      13

      9.4 Burnside's Lemma
      13

      9.5 Numerical integration
      13
```

$1 \quad \text{Template} + \text{vimrc}$

1.1 Template

```
#include <iostream>
#include <vector>
#include <chrono>
#include <random>
using namespace std;
mt19937_64 llrand((int) chrono::steady_clock::now().time_since_epoch().count());
#define st first
#define nd second
#ifndef ONLINE_JUDGE
  #define db(x) cerr << #x << " == " << x << endl
  #define dbs(x) cerr << x << endl
#define _ << ", " <<
#else
  #define db(x) ((void)0)
  #define dbs(x) ((void)0)
#endif
using ll = long long;
using ld = long double;
const 11 LINF = 0x3f3f3f3f3f3f3f3f3f3f;
const int INF = 0x3f3f3f3f, MOD = 1e9+7;
const int N = 1e5+5;
int main() {
  ios_base::sync_with_stdio(0), cin.tie(0);
```

1.2 vimrc

```
syntax on
set et ts=2 sw=0 sts=-1 ai nu hls cindent
set noswapfile
set mouse=a
nnoremap;:
vnoremap;:
noremap <--j> 15gj
noremap <---j> 15gj
noremap <--k> 15gk
nnoremap <--k> i<CR><ESC>
inoremap, . <esc>
vnoremap, . <esc>
nnoremap, . <esc>
nnoremap, . <esc>
```

2 Graphs

2.1 DFS

```
// Depth First Search O(V+E)

const int N = 1e5 + 5;

int vis[N];
vector<int> adj[N];

void dfs(int x) {
    vis[x] = 1;
    for(auto u : adj[x]) if(!vis[u]) dfs(u);
}
```

2.2 BFS

```
// Breadth First Search O(V+E)
const int N = 1e5 + 5;
int vis[N];
vector<int> adj[N];
queue<int> q;
void bfs(int x) {
   vis[x] = 1;
   q.push(x);
   while(!q.empty()) {
      int u = q.front(); q.pop();
      for(auto v : adj[u]) if(!vis[v]) {
       vis[v] = 1, q.push(v);
      }
   }
}
```

2.3 Zero-One-BFS

```
// 0-1 BFS - O(V+E)
const int N = 1e5 + 5;
int dist[N];
vector<pii> adj[N];
deque<pii> dq;
void zero_one_bfs (int x) {
   cl(dist, 63);
    dist[x] = 0;
    dq.push_back({x, 0});
    while(!dq.empty()){
       int u = dq.front().st;
       int ud = dq.front().nd;
        dq.pop_front();
        if(dist[u] < ud) continue;</pre>
        for(auto x : adj[u]) {
            int v = x.st;
            int w = x.nd;
            if(dist[u] + w < dist[v]){</pre>
                dist[v] = dist[u] + w;
                if(w) dq.push_back({v, dist[v]});
                else dq.push_front({v, dist[v]});
```

2.4 Toposort

```
// Kahn - Topological Sort O(V + E)
const int N = 1e5+5;
vector<int> adj[N];
int n, in[N];

// For directed graph: in[x] == 0
// For undirected graph: in[x] <= 1
void kahn() {
    queue<int> q;
    for(int i = 1; i <= n; i++) if(!in[i]) q.push(i);

    while(q.size()) {
        int u = q.front(); q.pop();
        for(auto x : adj[u]) if(in[x] and --in[x] == 0) q.push(x);
    }
}</pre>
```

2.5 MST (Kruskal)

```
// Kruskal - MST O(ElogE)
// + Union-Find
int par[N], sz[N];
//Path Compression
int find(int a) { return a == par[a] ? a : par[a] = find(par[a]); }
void unite(int a, int b) {
   if(find(a) == find(b)) return;
    a = find(a), b = find(b);
    if(sz[a] < sz[b]) swap(a, b);</pre>
    sz[a] += sz[b], par[b] = a;
for(int i = 0; i < N; i++) par[i] = i, sz[i] = 1;</pre>
vector<piii> edges;
// dist, node1, node2
sort(edges.begin(), edges.end());
int cost = 0;
for(auto e : edges) if(find(e.nd.st) != find(e.nd.nd)){
    cost += e.st, unite(e.nd.st, e.nd.nd);
```

2.6 MST (Prim)

```
// Prim - MST O(ElogE)
int cost, vis[N];
vector<pii> adj[N];
priority_queue<pii> pq;
void prim(int s = 1) {
   pq.push({0, s});
    while(!pq.empty()){
       int ud = -pq.top().st;
       int u = pq.top().nd;
       pq.pop();
        if(vis[u]) continue;
       vis[u] = 1;
        cost += ud;
        for(auto x : adj[u]) {
           int v = x.st;
           int w = x.nd;
           if(!vis[v]) pq.push((-w, v));
```

2.7 Shortest Path (Dijkstra)

```
// Dijkstra - O((V+E)logE)
int dist[N];
vector<pii> adj[N];
priority_queuepii> pq;

void dijkstra(int s){
    cl(dist, 63);
    dist[s] = 0;
    pq.push({0, s});
    while(!pq.empty()){
        int u = -pq.top().st;
        int u = pq.top().nd;
        pq.pop();
        if (dist[u] < ud) continue;
        for(auto x : adj[u]){
            int v = x.st;
        }</pre>
```

```
int w = x.nd;
if(dist[u] + w < dist[v]) {
    dist[v] = dist[u] + w;
    pq.push({-dist[v], v});
    }
}
</pre>
```

2.8 Shortest Path (SPFA)

2.9 Max Flow

```
// Dinic - O(n^2 * m)
// Max flow
const int N = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct edge { int v, c, f; };
int n, s, t, h[N], st[N];
vector<edge> edgs;
vector<int> g[N];
// directed from u to v with cap(u, v) = c
void add_edge(int u, int v, int c) {
  int k = edgs.size();
  edgs.push_back({v, c, 0});
  edgs.push_back({u, 0, 0});
  g[u].push_back(k);
  g[v].push_back(k+1);
int bfs() {
  memset(h, 0, sizeof h);
  h[s] = 1;
  queue<int> q;
  q.push(s);
  while(q.size()) {
    int u = q.front(); q.pop();
    for(auto i : g[u]) {
      int v = edgs[i].v;
      if(!h[v] and edgs[i].f < edgs[i].c)</pre>
        h[v] = h[u] + 1, q.push(v);
  return h[t];
int dfs(int u, int flow) {
  if(!flow or u == t) return flow;
  for(int &i = st[u]; i < g[u].size(); i++) {
    edge &dir = edgs[g[u][i]], &rev = edgs[g[u][i]^1];
    int v = dir.v;
    if(h[v] != h[u] + 1) continue;
```

```
int inc = min(flow, dir.c - dir.f);
inc = dfs(v, inc);
if(inc) {
    dir.f += inc, rev.f -= inc;
    return inc;
}

return 0;
}

int dinic() {
    int flow = 0;
    while(bfs()) {
    memset(st, 0, sizeof st);
    while(int inc = dfs(s, INF)) flow += inc;
}
return flow;
}
```

2.10 Min Cost Max Flow

```
// Min Cost Max Flow - O(n^2 * m^2)
struct edge { int v, f, c, w; };
vector<int> g[N];
vector<edge> edgs;
int s, t, inq[N], p[N], dist[N];
void add_edge(int u, int v, int c, int w) {
 int k = edgs.size();
  g[u].push_back(k);
  g[v].push_back(k+1);
  edgs.push_back({v, 0, c, w});
  edgs.push_back({u, 0, 0, -w});
 memset(dist, 63, sizeof dist);
  queue<int> q;
  dist[s] = 0;
  q.push(s), inq[s] = 1;
  while (q.size()) {
    int u = q.front(); q.pop(); inq[u] = 0;
    for (auto i : g[u])
     edge dir = edgs[i];
      int v = dir.v;
      if(dir.f < dir.c and dist[u] + w < dist[v]) {</pre>
       dist[v] = dist[u] + w;
        if(!inq[v]) q.push(v), inq[v] = 1;
  if(dist[t] == INF) return 0;
  for(int u = t; u != s; u = edgs[p[u]^1].v) {
   edge &dir = edgs[p[u]];
    inc = min(inc, dir.c - dir.f);
  int aux = 0;
  for(int u = t; u != s; u = edgs[p[u]^1].v) {
   edge &dir = edgs[p[u]], &rev = edgs[p[u]^1];
   dir.f += inc;
   rev.f -= inc;
   aux += inc*dir.w;
  return aux:
int mcmf() {
 int cost = 0:
  while(int inc = spfa()) cost += inc;
 return cost:
```

2.11 Max Bipartite Cardinality Matching (Kuhn)

```
// Khun (Maximum Bipartite Matching) - O(VE)
int n, cnt, vis[N], match[N], ans;
vector<int> adj[N];
bool find(int u) {
 if(vis[u] == cnt) return false;
  vis[u] = cnt;
  for(auto v : adj[u]) if(!match[v] or find(match[v])) return match[v] = u;
 return false;
// Maximum Independent Set on bipartite graph
// MIS = V - MATCH
// Minimum Vertex Cover
// MVC = MATCH
// Minimum Path Cover on DAG
// MPC = V - MATCH
// TIP: If you don't know the sides of the bipartite graph,
// run kuhn for all nodes and match = ans/2;
// in main (only for one of the sides)
for(int i = 1; i <= n; i++) ++cnt, ans += find(i);</pre>
```

2.12 Lowest Common Ancestor

```
// Lowest Common Ancestor - <0(nlog n), O(log n)>
const int N = 1e6;
const int M = 25; //m = log N
int anc[M][N], h[N], rt;
vector<int> adj[N];
void dfs(int x = rt, int p = -1, int ht = 0) {
 anc[0][x] = p, h[x] = ht;
 for(auto v : adj[x]) if(v != p) dfs(v, x, ht+1);
void build() {
 dfs(), anc[0][rt] = rt;
 for (int i = 1; i < M; i++)
   for (int i = 1; i <= n; i++) // 1-indexed
     anc[j][i] = anc[j-1][anc[j-1][i]];
int lca(int u, int v) {
 if(h[u] < h[v]) swap(u, v);
 for (int i = M-1; i \ge 0; i--) if (h[u] - (1 << i) >= h[v]) u = anc[i][u];
  if(u == v) return u;
  for(int i = M-1; i >= 0; i--) if(anc[i][u] != anc[i][v])
   u = anc[i][u], v = anc[i][v];
  return anc[0][u];
```

2.13 2-SAT

```
// 2-SAT - O(V+E)
int n, vis[2*N], ord[2*N], ordn, cnt, cmp[2*N], val[N];
vector<int> adj[2*N], adjt[2*N];

// for a variable u with idx i
// u is 2*i and !u is 2*i*1
// (a v b) == !a -> b ^ !b -> a
int v(int x) { return 2*x; }
int nv(int x) { return 2*x+1; }
```

```
// add a -> b
void add(int a, int b) {
  adj[a].push_back(b);
  adj[b^1].push_back(a^1);
  adjt[b].push_back(a);
  adjt[a^1].push_back(b^1);
// add clause (a v b)
void add_or(int a, int b) {
 adj[a^1].push_back(b);
  adj[b^1].push_back(a);
 adjt[b].push_back(a^1);
 adjt[a].push_back(b^1);
void dfs(int x) {
 for(auto v : adj[x]) if(!vis[v]) dfs(v);
 ord[ordn++] = x;
void dfst(int x) {
 cmp[x] = cnt, vis[x] = 0;
  for(auto v : adjt[x]) if(vis[v]) dfst(v);
bool run2sat(){
 for(int i = 1; i <= n; i++) {
   if(!vis[v(i)]) dfs(v(i));
   if(!vis[nv(i)]) dfs(nv(i));
 for(int i = ordn-1; i >= 0; i--)
   if(vis[ord[i]]) cnt++, dfst(ord[i]);
  for(int i = 1; i <= n; i ++) {
   if(cmp[v(i)] == cmp[nv(i)]) return false;
val[i] = cmp[v(i)] > cmp[nv(i)];
 return true;
```

2.14 Assignment Problem

```
// Hungarian - O(n^2 * m)
template<class T, bool is max = false, bool is zero indexed = false>
struct Hungarian (
 bool swap_coord = false;
 int lines, cols;
 T INF = numeric limits<T>::max() / 2, ans;
 vector<int> pairV, way;
 vector<bool> used:
 vector<T> pu, pv, minv;
 vector<vector<T>> cost;
  Hungarian(int _n, int _m) {
   if (_n > _m) swap(_n, _m), swap_coord = true;
   lines = _n + 1, cols = _m + 1;
   clear():
   cost.assign(lines, vector<T>(cols, _INF));
  void clear() {
   pairV.assign(cols, 0);
    way.assign(cols, 0);
    pv.assign(cols, 0);
    pu.assign(lines, 0);
  void update(int i, int j, T val) {
   if (is_zero_indexed) i++, j++;
    if (is_max) val = -val;
   if (swap_coord) swap(i, j);
    assert(i < lines);
   assert(j < cols);
   cost[i][j] = val;
 bool solution_exists() {
   for (int i = 1; i < lines; i++) {</pre>
```

```
bool has_val = false;
      for (int j = 1; j < cols; j++) if (cost[i][j] < _INF) { has_val = true; break; }</pre>
      if (!has_val) return false;
    return true;
  vector<int>& get_assignment() { return pairV; }
  // Only run this if solution exists
    for (int i = 1, j0 = 0; i < lines; i++) {
      pairV[0] = i;
      minv.assign(cols, _INF);
      used.assign(cols, 0);
      do {
        used[j0] = 1;
         int i0 = pairV[j0], j1;
        T delta = _INF;
for (int j = 1; j < cols; j++) {</pre>
           if (used[j]) continue;
           T cur = cost[i0][j] - pu[i0] - pv[j];
           if (cur < minv[j]) minv[j] = cur, way[j] = j0;</pre>
           if (minv[j] < delta) delta = minv[j], j1 = j;</pre>
         for (int j = 0; j < cols; j++) {
          if (used[j]) pu[pairV[j]] += delta, pv[j] -= delta;
else minv[j] -= delta;
         j0 = j1;
      } while (pairV[j0]);
      do {
        int j1 = way[j0];
        pairV[j0] = pairV[j1];
j0 = j1;
      } while (j0);
    for (int j = 1; j < cols; j++) if (pairV[j]) ans += cost[pairV[j]][j];</pre>
    if (is_max) ans = -ans;
    if (is_zero_indexed) {
      for (int j = 0; j + 1 < cols; j++) pairV[j] = pairV[j + 1], pairV[j]--;
pairV[cols - 1] = -1;</pre>
    if (swap coord) {
      vector(int> pairV_sub(lines, 0);
for (int j = 0; j < cols; j++) if (pairV[j] >= 0) pairV_sub[pairV[j]] = j;
      swap(pairV, pairV_sub);
    return ans;
};
template <bool is_max = false, bool is_zero_indexed = false>
struct HungarianMult : Hungarian<long double, is_max, is_zero_indexed> {
  using super = Hungarian<long double, is_max, is_zero_indexed>;
  HungarianMult(int _n, int _m) : super(_n, _m) {}
  void update(int i, int j, long double x) {
    super::update(i, j, log2(x));
};
```

3 Mathematics

3.1 Fast Exponential

```
// Fast Exponential - O(log b)
11 fexp (11 b, 11 e, 11 mod) {
    11 ans = 1;
    while (e) {
        if (e&1) ans = (ans*b) % mod;
        b = (b*b) % mod;
        e = e/2;
    }
    return ans;
```

3.2 Fast Fourier Transform

```
// FFT - Polynomial Multiplication in O(n log n)
// Made by tourist
// p(x)^k \rightarrow remeber to use fast exponentiation
// mod multiplication -> every coefficient in range [0, mod-1]
// be careful with overflow!
namespace fft {
 typedef double dbl;
  struct num {
   dbl x, y;
   num() \{ x = y = 0; \}
   num(dbl x, dbl y) : x(x), y(y) {}
  inline num operator+ (num a, num b) { return num(a.x + b.x, a.y + b.y); }
  inline num operator- (num a, num b) { return num(a.x - b.x, a.y - b.y); }
  inline num operator* (num a, num b) { return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); }
  inline num conj(num a) { return num(a.x, -a.y); }
 int base = 1;
  vector<num> roots = \{\{0, 0\}, \{1, 0\}\};
  vector<int> rev = {0, 1};
  const dbl PI = acosl(-1.0);
  void ensure_base(int nbase) {
   if(nbase <= base) return;</pre>
    rev.resize(1 << nbase);
    for(int i=0; i < (1 << nbase); i++) {</pre>
     rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
   roots.resize(1 << nbase);
    while(base < nbase) {</pre>
      dbl \ angle = 2*PI / (1 << (base + 1));
      for(int i = 1 << (base - 1); i < (1 << base); i++) {
       roots[i << 1] = roots[i];</pre>
        dbl \ angle_i = angle * (2 * i + 1 - (1 << base));
        roots[(i << 1) + 1] = num(cos(angle_i), sin(angle_i));
      base++;
  void fft(vector<num> &a, int n = -1) {
   if(n == -1) {
     n = a.size();
   assert((n & (n-1)) == 0);
    int zeros = __builtin_ctz(n);
    ensure_base(zeros);
    int shift = base - zeros;
for(int i = 0; i < n; i++) {
  if(i < (rev[i] >> shift)) {
        swap(a[i], a[rev[i] >> shift]);
    for (int k = 1; k < n; k <<= 1) {
      for (int i = 0; i < n; i += 2 * k) {
        for(int j = 0; j < k; j++) {
  num z = a[i+j+k] * roots[j+k];</pre>
          a[i+j+k] = a[i+j] - z;
          a[i+j] = a[i+j] + z;
  vector<num> fa, fb;
  vector<int> multiply(vector<int> &a, vector<int> &b) {
   int need = a.size() + b.size() - 1;
    int nbase = 0;
   while((1 << nbase) < need) nbase++;</pre>
    ensure_base(nbase);
    int sz = 1 << nbase;</pre>
   if(sz > (int) fa.size()) {
      fa.resize(sz);
```

6

```
for(int i = 0; i < sz; i++) {</pre>
   int x = (i < (int) a.size() ? a[i] : 0);</pre>
   int y = (i < (int) b.size() ? b[i] : 0);</pre>
   fa[i] = num(x, y);
 fft(fa, sz);
 num r(0, -0.25 / sz);
 for (int i = 0; i \le (sz >> 1); i++) {
   int j = (sz - i) & (sz - 1);
    num z = (fa[j] * fa[j] - conj(fa[i] * fa[i])) * r;
   if(i != j) {
      fa[j] = (fa[i] * fa[i] - conj(fa[j] * fa[j])) * r;
   fa[i] = z;
 fft(fa, sz);
  vector<int> res(need);
 for(int i = 0; i < need; i++) {</pre>
   res[i] = fa[i].x + 0.5;
vector<int> multiply_mod(vector<int> &a, vector<int> &b, int m, int eq = 0) {
 int need = a.size() + b.size() - 1;
 int nbase = 0;
 while ((1 << nbase) < need) nbase++;
 ensure_base(nbase);
 int sz = 1 << nbase;</pre>
 if (sz > (int) fa.size()) {
   fa.resize(sz);
 for (int i = 0; i < (int) a.size(); i++) {</pre>
   int x = (a[i] % m + m) % m;
   fa[i] = num(x & ((1 << 15) - 1), x >> 15);
 fill(fa.begin() + a.size(), fa.begin() + sz, num {0, 0});
 fft(fa, sz);
 if (sz > (int) fb.size()) {
   fb.resize(sz);
 if (eq)
   copy(fa.begin(), fa.begin() + sz, fb.begin());
 } else {
   for (int i = 0; i < (int) b.size(); i++) {</pre>
     int x = (b[i] % m + m) % m;
      fb[i] = num(x & ((1 << 15) - 1), x >> 15);
   fill(fb.begin() + b.size(), fb.begin() + sz, num {0, 0});
   fft(fb, sz);
 dbl ratio = 0.25 / sz;
 num r2(0, -1);
 num r3(ratio, 0);
 num r4(0, -ratio);
num r5(0, 1);
 num ro(0, 1);
for (int i = 0; i <= (sz >> 1); i++) {
  int j = (sz - i) & (sz - 1);
  num a1 = (fa[i] + conj(fa[j]));
  num a2 = (fa[i] - conj(fa[j])) * r2;
  num b1 = (fb[i] + conj(fb[j])) * r3;
   num b2 = (fb[i] - conj(fb[j])) * r4;
   if (i != j) {
      num c1 = (fa[j] + conj(fa[i]));
      num c2 = (fa[j] - conj(fa[i])) * r2;
      num d1 = (fb[j] + conj(fb[i])) * r3;
     num d2 = (fb[j] - conj(fb[i])) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
    fa[j] = a1 * b1 + a2 * b2 * r5;
   fb[j] = a1 * b2 + a2 * b1;
 fft(fa, sz);
 fft(fb, sz);
 vector<int> res(need);
 for (int i = 0; i < need; i++) {</pre>
   long long aa = fa[i].x + 0.5;
   long long bb = fb[i].x + 0.5;
   long long cc = fa[i].y + 0.5;
   res[i] = (aa + ((bb % m) << 15) + ((cc % m) << 30)) % m;
 return res;
vector<int> square_mod(vector<int> &a, int m) {
 return multiply_mod(a, a, m, 1);
```

3.3 Mobius Function

```
// Mobius Function
// u(1) = 1
// u(p) = -1
// u(p^k) = 0, k >= 2
// u(a*b) = u(a)*u(b), for a,b co-primes
// Sum for d \mid n of u(d) = [n == 1]
// Calculate Mobius all integers - O(n log(log n))
int cmp[N], mob[N];
void mobius() {
  for(int i = 1; i < N; i++) mob[i] = 1;</pre>
  for(11 i = 2; i < N; i++) if(!cmp[i]) {</pre>
   for (11 j = i; j < N; j += i) cmp[j] = 1, mob[j] *= -1;
    for (11 j = i*i; j < N; j += i*i) mob[j] = 0;
// Calculate Mobius for 1 integer - O(sqrt(n))
int mobius(int n) {
 if(n == 1) return 1;
  int p = 0;
 for (int i = 2; i*i <= n; i++) {
  if (n % i == 0) {</pre>
      n = n/i, p++;
      if(n % i == 0) return 0;
  if(n > 1) p++;
 return p&1 ? -1 : 1;
```

3.4 Sieve

```
// Sieve - O(n log(log n))
int cmp[N];
vector<int> p;

void sieve() {
  for(ll i = 2; i < N; i++) if(!cmp[i]) {
     p.push_back(i);
     for(ll j = i*i; j < N; j += i) cmp[j] = 1;
  }
}</pre>
```

4 Strings

4.1 Aho-Corasick

```
// Aho-Corasick
// Build: O(sum size of patterns)
// Find total number of matches: O(size of input string)
// Find number of matches for each pattern: O(num of patterns + size of input string)
// ids start from 0 by default!
template <int NUM_OF_PATTERNS = 1000, int ALPHA_SIZE = 62>
struct Aho {
 struct Node {
   int p, char_p, link = -1, str_idx = -1;
   vector<int> nxt:
   Node (int _p = -1, int _char_p = -1) : p(_p), char_p(_char_p), nxt(ALPHA_SIZE, -1) {}
 };
  vector<Node> nodes = { Node() };
  vector<int> ord;
 int cnt = 0;
 int ans;
 bool build_done = false;
  vector<pair<int, int>> rep;
```

```
// how many times the string had a matching
 vector<int> occur;
  // change this if different alphabet
 int remap(char c) {
   if (islower(c)) return c - 'a';
   if (isalpha(c)) return c - 'A' + 26;
   return c - '0' + 52;
 void add(string &p, int id = -1) {
   int u = 0;
   if (id == -1) id = cnt;
   for (char ch : p) {
     int c = remap(ch);
     if (nodes[u].nxt[c] == -1) {
       nodes[u].nxt[c] = (int)nodes.size();
        nodes.push_back(Node(u, c));
     u = nodes[u].nxt[c];
   assert (id < NUM_OF_PATTERNS);
   if (nodes[u].str_idx != -1) rep.push_back({ id, nodes[u].str_idx });
   else nodes[u].str_idx = id;
   cnt++;
 void build() {
   build_done = true;
   queue<int> q;
   for (int i = 0; i < ALPHA_SIZE; i++) {</pre>
     if (nodes[0].nxt[i] != -1) q.push(nodes[0].nxt[i]);
     else nodes[0].nxt[i] = 0;
   while(q.size()) {
     int u = q.front();
     if (nodes[u].str_idx != -1) ord.push_back(u);
     q.pop();
     int j = nodes[nodes[u].p].link;
     if (j == -1) nodes[u].link = 0;
     else nodes[u].link = nodes[j].nxt[nodes[u].char_p];
     for (int i = 0; i < ALPHA_SIZE; i++) {
   if (nodes[u].nxt[i] != -1) q.push(nodes[u].nxt[i]);</pre>
       else nodes[u].nxt[i] = nodes[nodes[u].link].nxt[i];
 void match(string &s) {
   if (!build_done) build();
   ans = 0:
   occur = vector<int>(NUM_OF_PATTERNS, 0);
   int n = 0
   for (char ch : s) {
     int c = remap(ch);
     u = nodes[u].nxt[c];
     if (nodes[u].str_idx != -1) occur[nodes[u].str_idx]++;
   for (int i = (int)ord.size() - 1; i >= 0; i--) {
     int v = ord[i];
     int fv = nodes[v].link;
     ans += occur[nodes[v].str_idx];
     if (nodes[fv].str_idx != -1) occur[nodes[fv].str_idx] += occur[nodes[v].str_idx];
   for (pair<int, int> x : rep) occur[x.first] = occur[x.second];
};
```

4.2 Rabin-Karp

```
// Rabin-Karp (String Matching + Hashing)
```

```
const int MOD = 1e9+9;
const int B = 313;
char s[N], p[N];
int n, m; // n = strlen(s), m = strlen(p)
// Chance of collision for k generated values and N possible hash values
// e^{(-k*(k-1)/2*N)}
int rabin(){
  if(n < m) return 0;</pre>
  ull hp = 0, hs = 0, E = 1, oc = 0;
for(int i = 0; i < m; i++){
   hp = ((hp*B) %MOD + p[i]) %MOD;
    hs = ((hs*B) %MOD + s[i]) %MOD;
    E = (E*B) %MOD;
  if(hs == hp) oc++; //match at 0
  for (int i = m; i < n; i++) {
   hs = ((hs*B) %MOD + s[i]) %MOD;
    hs = (hs - s[i-m] \star E MOD + MOD) MOD;
    if(hs == hp) oc++; //match at i-m+1
  return oc;
```

4.3 Manacher

```
// Manacher - O(n)

// d1 -> odd : size = 2*d1[i] - 1
// d2 -> even : size = 2*d2[i]

vector<int> d1, d2;

void manacher(string &s) {
   int n = s.size();
   d1.resize(n), d2.resize(n);
   for(int i = 0, 11 = 0, 12 = 0, r1 = -1, r2 = -1; i < n; i++) {
        if(i <= r1) d1[i] = min(d1[r1+11-i], r1-i+1);
        if(i <= r2) d2[i] = min(d2[r2*12-i+1], r2-i+1);

   while(i - d1[i] >= 0 and i + d1[i] < n and
        s[i - d1[i]] == s[i + d1[i]]) d1[i]++;

   while(i - d2[i] - 1) == s[i + d2[i]]) d2[i]++;

   if(i + d1[i] - 1 > r1) 11 = i - d1[i] + 1, r1 = i + d1[i] - 1;
   if(i + d2[i] - 1 > r2) 12 = i - d2[i], r2 = i + d2[i] - 1;
   }
}
```

4.4 Suffix Automaton

```
#include <bits/stdc++.h>
using namespace std:
const int N = 1e5 + 5;
int len[2*N], link[2*N], nxt[2*N][26], szt = 1, last = 1;
void add(string &s) {
 for(auto c : s) {
   int cur = ++szt, p = last, j = c - 'a';
    len[cur] = len[last] + 1;
   while(p and !nxt[p][j]) {
     nxt[p][j] = cur;
     p = link[p];
    if(!p) link[cur] = 1;
    else {
     int q = nxt[p][j];
     if(len[p] + 1 == len[q]) link[cur] = q;
     else {
       int clone = ++szt;
        len[clone] = len[p] + 1;
        link[clone] = link[q];
        for (int i = 0; i < 26; i++)
```

4.5 Knuth-Morris-Pratt

```
// KMP - O(n + m)
// max size pattern
const int N = 1e5 + 5;
int lps[N], cnt;

void prekmp(string &p) {
    for (int i = 1, j = 0; i < p.size(); i++) {
        while (j and p[j]! = p[i]) j = lps[j-1];
        if (p[j] == p[i]) j++;
        lps[i] = j;
    }
}

void kmp(string &s, string &p) {
    for (int i = 0, j = 0; i < s.size(); i++) {
        while (j and p[j]! = s[i]) j = lps[j-1];
        if (p[j] == s[i]) j++;
        if (j == p.size()) {
            // match i-j+1
            cnt++;
            j = lps[j-1];
    }
}
}</pre>
```

4.6 Z Function

```
// Z-Function - O(n)
vector<int> z(string s) {
  vector<int> z(s.size());
  for(int i = 1, 1 = 0, r = 0, n = s.size(); i < n; i++) {
    if(i <= r) z[i] = min(z[i-1], r - i + 1);
    while(i + z[i] < n and s[z[i]] == s[z[i] + i]) z[i]++;
    if(i + z[i] - 1 > r) 1 = i, r = i + z[i] - 1;
  }
  return z;
}
```

4.7 String Hashing

```
// String Hashing
// Rabin Karp - O(n + m)
// max size txt + 1
const int N = le6 + 5;

// lowercase letters p = 31 (remember to do s[i] - 'a' + 1)
// uppercase and lowercase letters p = 53 (remember to do s[i] - 'a' + 1)
// any character p = 313
const int MoD = le9+9;
ull h[N], p[N];
```

```
int cnt;
void build(string &s) {
  p[0] = 1, p[1] = 313;
  for(int i = 1; i <= s.size(); i++) {</pre>
   h[i] = ((p[1]*h[i-1]) % MOD + s[i-1]) % MOD;
   p[i] = (p[1] * p[i-1]) % MOD;
// 1-indexed
ull fhash(int 1, int r) {
 return (h[r] - ((h[l-1]*p[r-l+1]) % MOD) + MOD) % MOD;
ull shash(string &pt) {
  for(int i = 0; i < pt.size(); i++)</pre>
   h = ((h*p[1]) % MOD + pt[i]) % MOD;
void rabin_karp(string &s, string &pt) {
 build(s);
  ull hp = shash(pt);
  for(int i = 0, m = pt.size(); i + m <= s.size(); i++) {</pre>
   if(fhash(i+1, i+m) == hp) {
     // match at i
      cnt++;
```

5 Data Structures

5.1 BIT (Range Update, Point Query)

```
// Binary Indexed Tree
// Range Update and Point Query
// Update - O(log n)
// Query - O(log n)
int bit[N];

void add(int p, int v) {
    for (p+=2; p<N; p+=p&-p) bit[p] += v;
}

void update(int l, int r, int val) { add(l, val), add(r+1, -val); }
int query(int p) {
    int r = 0;
    for (p+=2; p; p-=p&-p) r += bit[p];
    return r;
}</pre>
```

5.2 Centroid Decomposition

```
// Centroid Decomposition - O(nlog n)
int n, m, sz[N], forb[N], par[N];

void dfs(int u, int p) {
    sz[u] = 1;
    for(auto v : adj[u]) {
        if(v != p and !forb[v]) {
          dfs(v, u);
          sz[u] += sz[v];
        }
    }
}
int cent(int u, int p, int amt) {
    for(auto v : adj[u]) {
        if(v == p or forb[v]) continue;
        if(sz[v] > amt/2) return cent(v, u, amt);
```

```
return u;
}

void decomp(int u, int p) {
    dfs(u, -1);
    int cen = cent(u, -1, sz[u]);
    forb[cen] = 1;
    if(p != -1) par[cen] = p;

    for (auto v : adj[u])
        if(!forb[v]) decomp(v, cen);
}

// in main
// decomp(1, -1);
```

5.3 Max/Min Queue

```
// Monotonic Queue (aka Max/Min Queue) - Operations in O(1)
template <class T, class C = greater_equal<T>>
struct MonoQueue {
 C cmp;
  T sum = 0;
 int 1 = 1, r = 0;
 deque<pair<T, int>> dq;
  void push(T x) {
    while (!dq.empty() and cmp(dq.back().first, x)) dq.pop_back();
   dq.push_back({x, ++r});
  T query() {
   assert(size() > 0);
    T val = dq.front().first;
   return val + sum;
  void pop() { if (!dq.empty() and dq.front().second == 1++) dq.pop_front(); }
  void clear() { sum = 0, 1 = 1, r = 0, dq.clear(); }
  void add(T x) { sum += x; }
 int size() { return r - 1 + 1; }
template <class T> using MinQueue = MonoQueue<T>;
template <class T> using MaxQueue = MonoQueue<T, less_equal<T>>;
```

5.4 Persistent Segment Tree

```
//Persistent Segment Tree
//Update and Query - O(log n)
//Space - O(n log n + q * log n)
//M \rightarrow n \log n + q * \log n
const int N = 2e5 + 5;
const int M = 1e7 + 5:
int n:
int st[M], lc[M], rc[M];
int cnt, v[N];
void init(int p = 0, int l = 1, int r = n) {
    if (1 == r) { st[p] = v[1]; return; }
    int \ mid = (1 + r) / 2;
    lc[p] = ++cnt;
    rc[p] = ++cnt;
    init(lc[p], 1, mid);
    init(rc[p], mid + 1, r);
    st[p] = st[lc[p]] + st[rc[p]];
int query(int i, int j, int p, int l = 1, int r = n) {
    if (r < i \text{ or } l > j) return 0;
```

```
if (i <= 1 and r <= j) return st[p];
int mid = (1 + r) / 2;
return query(i, j, lc[p], l, mid) + query(i, j, rc[p], mid + 1, r);
}
int update(int idx, int val, int p, int l = 1, int r = n) {
    int u = ++cnt;
    if (1 == r) st[u] = val;
    else {
        int mid = (1 + r) / 2;
        if (idx <= mid) {
            lc[u] = update(idx, val, lc[p], l, mid);
            rc[u] = rc[p];
        } else {
            lc[u] = lc[p];
            rc[u] = update(idx, val, rc[p], mid + 1, r);
        }
}
st[u] = st[lc[u]] + st[rc[u]];
return u;</pre>
```

5.5 Segment Tree with Lazy

```
//Segment Tree (Range Query and Point Update)
//Update and Query - O(log n)
//Space - 0(n)
int n, v[N], lz[4*N], st[4*N];
// n - size of the array (up to N)
void build(int p = 1, int l = 1, int r = n) {
   if(l == r) { st[p] = v[l]; return; }
    build(2*p, 1, (1+r)/2), build(2*p + 1, (1+r)/2 + 1, r);
    st[p] = st[2*p] + st[2*p + 1];
void push(int p, int 1, int r){
 if(lz[p]){
   st[p] = lz[p]*(r-l+1);

if(l != r) lz[2*p] = lz[2*p + 1] = lz[p];
   lz[p] = 0;
int query(int i, int j, int p = 1, int l = 1, int r = n) {
    push(p, 1, r);
    if(1 > j or r < i) return 0;
    if(l >= i and j >= r) return st[p];
   return query(i, j, 2*p, 1, (1+r)/2) + query(i, j, 2*p + 1, (1+r)/2 + 1, r);
void update(int i, int j, int v, int p = 1, int l = 1, int r = n) {
    push(p, 1, r);
    if(l > j or r < i) return;</pre>
    if(1 \ge i \text{ and } j \ge r) \{ lz[p] = v, push(p, l, r); return; \}
   update(i, j, v, 2*p, 1, (1+r)/2), update(i, j, v, 2*p+1, (1+r)/2+1, r);
    st[p] = st[2*p] + st[2*p + 1];
```

5.6 Segment Tree

```
//Segment Tree (Range Query and Point Update)
//NOT the Lazy Propagation version
//Update and Query - O(log n)
//Space - O(n)

int n, v[N], st[4*N];

// n - size of the array (up to N)
// You could do point update in all values of v, instead of using build void build(int p = 1, int 1 = 1, int r = n){
   if(l == r) { st[p] = v[l]; return; }
   build(2*p, l, (l+r)/2), build(2*p + 1, (l+r)/2 + 1, r);
   st[p] = st[2*p] + st[2*p + 1];
}

int query(int i, int j, int p = 1, int l = 1, int r = n){
```

```
if(l >= i and j >= r) return st[p];
if(l > j or r < i) return 0;
return query(i, j, 2*p, l, (l+r)/2) + query(i, j, 2*p + 1, (l+r)/2 + 1, r);
}

void update(int idx, int v, int p = 1, int l = 1, int r = n){
    if(l == r) { st[p] = v; return; }
    if(idx <= (l+r)/2) update(idx, v, 2*p, l, (l+r)/2);
    else update(idx, v, 2*p + 1, (l+r)/2 + 1, r);
    st[p] = st[2*p] + st[2*p + 1];
}</pre>
```

5.7 Treap

```
// Treap
// Operations in O (log n)
mt19937_64 llrand(random_device{}());
struct node{
   int val, cnt;
    node *r, *1;
    node(int x) : val(x), cnt(1), pri(llrand()), 1(0), r(0) {}
struct treap{
   node *root;
   int cnt(node *t) {return t ? t->cnt : 0;}
    void update(node *&t) {
       if(!t) return;
       t->cnt = cnt(t->1) + cnt(t->1) + 1;
    node *merge(node *1, node *r){
       if(!l and !r) return nullptr;
        if(!1 or !r) return 1 ? 1 : r;
        if(l->pri > r->pri) t = 1, t->r = merge(l->r, r);
        else t = r, t -> 1 = merge(1, r -> 1);
        update(t);
       return t;
    pair<node*, node*> split(node *t, int pos){
        if(!t) return {0, 0};
        if(cnt(t->1) < pos){
           auto x = split(t->r, pos - cnt(t->l) - 1);
           t->r = x.st;
           update(t);
           return {t, x.nd};
        auto x = split(t->1, pos);
       t->1 = x.nd:
        update(t):
        return {x.st. t}:
};
```

5.8 Union Find Simple

```
//Union-Find
//Union and Find - O(alpha n)
int par[N], sz[N];
//Path Compression
int find(int a) { return a == par[a] ? a : par[a] = find(par[a]); }
//Ranking
void unite(int a, int b) {
    if(find(a) == find(b)) return;
    a = find(a), b = find(b);
    if(sz[a] < sz[b]) swap(a, b);
    sz[a] += sz[b], par[b] = a;
}</pre>
```

```
//in main
for(int i = 0; i < N; i++) par[i] = i, sz[i] = 1;
```

5.9 Union Find with Rollback

```
//Union-Find with Rollback
//Union and find - O(log n)
int par[N], sz[N];
vector<pii> old_par, old_sz;
int find(int a) { return par[a] == a ? a : find(par[a]); }
void unite(int a, int b) {
    if(find(a) == find(b)) return;
    a = find(a), b = find(b);
    if(sz[a] < sz[b]) swap(a, b);</pre>
   old_par.pb({b, par[b]});
    old_par.pb({a, sz[a]});
    sz[a] += sz[b], par[b] = a;
void roolback(){
   par[old_par.top().st] = old_par.top().nd;
    sz[old_sz.top().st] = old_sz.top().nd;
    old_par.pop();
    old_sz.pop();
for(int i = 0; i < N; i++) par[i] = i, sz[i] = 1;</pre>
```

5.10 Union Find Partial Persistent

```
//Union-Find with Partial Persistence
//Union and Find - O(log n)
int t, par[N], sz[N], his[N];
int find(int a, int t){
    if(par[a] == a) return a;
    if(his[a] > t) return a;
    return find(par[a], t);
}

void unite(int a, int b){
    if(find(a, t) == find(b, t)) return;
    a = find(a, t), b = find(b, t), t++;
    if(sz[a] < sz[b]) swap(a, b);
    sz[a] += sz[b], par[b] = a, his[b] = t;
}

//in main
for(int i = 0; i < N; i++) par[i] = i, sz[i] = 1, his[i] = 0;</pre>
```

6 Dynamic Programming

6.1 Convex Hull Trick

```
// Convex Hull Trick
// max / min (a_i + m_j * x_i + b_j)
// max : m_j increasing, b_j decreasing
// min : m_j decreasing, b_j increasing
typedef long long type;
struct line { type b, m; };
int nh, pos;
line hull[N];
bool check(line s, line t, line u) {
    //attention for overflow
    return ld (u.b - t.b)/(t.m - u.m) > ld (t.b - s.b)/(s.m - t.m);
}
```

```
void update(line s) {
  if(nh == 1 and hull[nh-1].b == s.b) nh--;
  if(nh > 0 and s.m >= hull[nh-1].m) return;
  \label{eq:while} \textbf{while} \, (\text{nh} \, \geq \, 2 \, \, \textbf{and} \, \, ! \, \text{check} \, (\text{hull[nh-2], hull[nh-1], s)}) \, \, \, \text{nh---};
  pos = min(pos, nh);
  hull[nh++] = s;
type eval(int id, type x) { return hull[id].b + hull[id].m*x; }
// queries always move to the right
type query (type x) {
  while (pos+1 < nh and eval(pos, x) > eval(pos+1, x)) pos++;
  // max: change '<' to '>'
  return eval (pos, x);
type query(type x){
  int 1 = 0, r = nh-1, mid;
  while (r - 1 > 5) {
   mid = (1+r)/2;
     // max change '<' to '>'
    if(eval(mid+1, x) < eval(mid, x)) l = mid;
    else r = mid+1;
 type mn = LINF;
  // max change LINF to -LINF
  for(int i = 1; i <= r; i++) mn = min(mn, eval(i, x));</pre>
  // max change min to max
  return mn:
```

6.2 Steiner Tree

```
// Steiner-Tree O(2^t*n^2 + n*3^t + APSP)
// N - number of nodes
// T - number of terminals
int n, t, dp[N][(1 << T)], dist[N][N];</pre>
int steiner tree() {
 // + APSP
 memset(dp, 63, sizeof dp);
 for(int i = 1; i <= n; i++) dp[i][1 << (i-1)] = 0;
  for(int msk = 0; msk < (1 << t); msk++) {</pre>
   for(int i = 1; i <= n; i++) {
     for(int ss = msk; ss > 0; ss = (ss - 1) & msk)
       dp[i][msk] = min(dp[i][msk], dp[i][ss] + dp[i][msk - ss]);
     if(dp[i][msk] != INF)
        for(int j = 1; j <= n; j++)</pre>
          dp[j][msk] = min(dp[j][msk], dp[i][msk] + dist[i][j]);
 for (int i = 1; i <= n; i++) mn = min(mn, dp[i][(1 << t) - 1]);</pre>
 return mn;
```

7 Geometry

7.1 Convex Hull

```
// Convex Hull Graham's Scan Algorithm O(nlogn)
struct Point{
   int x, y;
   Point (int x = 0, int y = 0):x(x), y(y) {}
   Point operator-(Point p){ return Point(x - p.x, y - p.y); }
   Point operator+(Point p){ return Point(x + p.x, y + p.y); }
   int operator8(Point p){ return x*p.y - y*p.x; }
```

7.2 Minimum Enclosing Circle

#include <bits/stdc++.h>

```
using namespace std;
const double EPS = 1e-9;
const double PI = acos(-1.);
struct point {
 double x, y;
  point() : x(0.0), y(0.0) {}
  point (double x, double y) : x(x), y(y) {}
  point operator +(point b) { return point(x+b.x, y+b.y); }
  point operator -(point b) { return point(x-b.x, y-b.y); }
  point operator *(double k) { return point(x*k, y*k); }
  point operator / (double k) { return point (x/k, y/k); }
 double operator %(point b) { return x*b.y - y*b.x; }
double dist(point p1, point p2) { return hypot(p1.x - p2.x, p1.y - p2.y); }
point rot90cw(point p1) { return point(p1.y, -p1.x); }
struct circle{
 point c;
  double r;
  circle() { c = point(); r = 0; }
  circle(point c, double r) : c(c), r(r) {}
 bool contains(point p) { return dist(c, p) <= r + EPS; }</pre>
circle circumcircle(point a, point b, point c) {
       point u = rot90cw(b-a);
  point v = rot90cw(c-a);
        point n = (c-b)/2;
  point ans = ((a+c)/2) + (v*((u%n)/(v%u)));
 return circle(ans, dist(ans, a));
// Welzl - Minimum Enclosing Circle O(n)
circle minimumCircle(vector<point> p) {
 random_shuffle(p.begin(), p.end());
  circle C = circle(p[0], 0.0);
  for(int i = 0; i < p.size(); i++) {
   if(C.contains(p[i])) continue;
    for (int j = 0; j < i; j++) {
   if (C.contains(p[j])) continue;</pre>
      C = circle((p[j] + p[i])/2, dist(p[j], p[i])/2);
for(int k = 0; k < j; k++){</pre>
        if(C.contains(p[k])) continue;
        C = circumcircle(p[j], p[i], p[k]);
 return C:
```

8 Miscellaneous

8.1 Parallel Binary Search

```
// Parallel Binary Search - O(nlog n * cost to update data structure + qlog n * cost for bs condition)
struct query { int i, ans; /*+ query related info*/ };
int l_default, r_default, idx = l_default;
void pbs(vector<query>& qs, int l_pbs = l_default, int r_pbs = r_default) {
   int mid = (l_pbs + r_pbs) / 2;
    // mid = (L+R+1)/2 if different from simple upper/lower bound
   if(qs.empty()) return;
   while(idx < mid) {</pre>
       idx++;
        //add value to data structure
   while(idx > mid) {
       //remove value to data structure
        idx--;
   if(l_pbs == r_pbs) {
       for(auto q : qs) req[q.i].ans = l_pbs;
   vector<query> v1, vr;
   for (auto& q : qs) {
       if ( /* cond */ ) vl.pb(q);
       else vr.pb(q);
   pbs(vl, l_pbs, mid);
   pbs(vr, mid + 1, r_pbs);
```

8.2 Ternary Search

```
// Ternary Search - O(log n)
int ternary_search_min (int 1 = 1, int r = N) {
    int mid, mn = INF, idx;
    while (r - 1 > 5) {
        mid = (1+r)/2;
        if(func(mid + 1) < func(mid)) l = mid;</pre>
        else r = mid + 1:
    for(int i = 1; i <= r; i++) if(func(i) < mn) mn = func(i), idx = i;</pre>
int ternary_search_max (int 1 = 1, int r = N) {
    int mid, mx = -INF, idx;
    while (r - 1 > 5) {
       mid = (1+r)/2;
       if(func(mid + 1) > func(mid)) 1 = mid;
       else r = mid + 1;
    for(int i = 1; i <= r; i++) if(func(i) > mx) mx = func(i), idx = i;
    return idx;
```

8.3 Ternary Search with Double

```
// Ternary Search - O(log n)
double ternary_search_min (double 1, double r) {
    double mid1, mid2;
    for(int i = 0; i < 100; i++) {
        mid1 = (r-1)/3 + 1;
        mid2 = mid1 + (r-1)/3;
}</pre>
```

```
if(func(mid2) < func(mid1)) 1 = mid1;
    else r = mid2;
}
return 1;
}
double ternary_search_max (double 1, double r) {
    double mid1, mid2;
    for(int i = 0; i < 100; i++) {
        mid1 = (r-1)/3 + 1;
        mid2 = mid1 + (r-1)/3;
        if(func(mid2) > func(mid1)) 1 = mid1;
        else r = mid2;
}
return 1;
}
```

9 Math Extra

9.1 Combinatorial formulas

$$\begin{split} \sum_{k=0}^{n} k^2 &= n(n+1)(2n+1)/6 \\ \sum_{k=0}^{n} k^3 &= n^2(n+1)^2/4 \\ \sum_{k=0}^{n} k^4 &= (6n^5+15n^4+10n^3-n)/30 \\ \sum_{k=0}^{n} k^5 &= (2n^6+6n^5+5n^4-n^2)/12 \\ \sum_{k=0}^{n} x^k &= (x^{n+1}-1)/(x-1) \\ \sum_{k=0}^{n} kx^k &= (x-(n+1)x^{n+1}+nx^{n+2})/(x-1)^2 \\ \binom{n}{k} &= \frac{n!}{(n-k)!k!} \\ \binom{n}{k} &= \frac{(n-1)}{k} + \binom{n-1}{k-1} \\ \binom{n}{k} &= \frac{n}{n-k} \binom{n-1}{k} \\ \binom{n}{k} &= \frac{n-k+1}{k} \binom{n}{k-1} \\ \binom{n+1}{k} &= \frac{n-k+1}{n-k+1} \binom{n}{k} \\ \binom{n+1}{k+1} &= \frac{n-k}{n-k+1} \binom{n}{k} \\ \sum_{k=1}^{n} k \binom{n}{k} &= n2^{n-1} \\ \sum_{k=1}^{n} k^2 \binom{n}{k} &= (n+n^2)2^{n-2} \\ \binom{m+n}{r} &= \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} \\ \binom{n}{k} &= \prod_{i=1}^{k} \frac{n-k+i}{i} \end{split}$$

9.2 Number theory identities

Lucas' Theorem: For non-negative integers m and n and a prime p,

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

where

$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0$$

is the base p representation of m, and similarly for n.

9.3 Stirling Numbers of the second kind

Number of ways to partition a set of n numbers into k non-empty subsets.

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{(k-j)} {k \choose j} j^n$$

Recurrence relation:

9.4 Burnside's Lemma

Let G be a finite group that acts on a set X. For each g in G let X^g denote the set of elements in X that are fixed by g, which means $X^g = \{x \in X | g(x) = x\}$. Burnside's

lemma assers the following formula for the number of orbits, denoted |X/G|:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

9.5 Numerical integration

RK4: to integrate $\dot{y} = f(t, y)$ with $y_0 = y(t_0)$, compute

$$k_1 = f(t_n, y_n)$$

$$k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1)$$

$$k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2)$$

$$k_4 = f(t_n + h, y_n + hk_3)$$

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

	С	A	N	Assunto	Descricao	Diff
A						
В						
С						
D						
Е						
F						
G						
Н						
Ι						
J						
K						
L						