

Data Sheet

December 2001

100A, 55V, 0.008 Ohm, N-Channel, Power MOSFETs

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

NOTE: Calculated continuous current based on maximum allowable junction temperature. Package limited to 75A continuous, see Figure 9.

Ordering Information

PART NUMBER	PACKAGE	BRAND
HRF3205	TO-220AB	HRF3205
HRF3205S	TO-263AB	HRF3205S

NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HRF3205ST.

Features

- 100A, 55V (See Note)
- Low On-Resistance, $r_{DS(ON)} = 0.008\Omega$
- Temperature Compensating PSPICE[®] Model
- Thermal Impedance SPICE Model
- · UIS Rating Curve
- · Related Literature
 - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-220AB

JEDEC TO-263AB

HRF3205, HRF3205S

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Othewise Specified Drain to Source Voltage (Note 1)......V_{DSS} 55 V 55 Gate to Source VoltageV_{GS} ±20V **Drain Current** 100 390 Pulsed Avalanche Rating......EAS Figure 10 175 W W/OC 1.17 οС -55 to 175 Maximum Temperature for Soldering οС 300 οС 260

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V		55	-	-	V
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 55V, V _{GS} = 0V		-	-	25	μΑ
		V _{DS} = 44V, V _{GS} = 0V, T _C = 150 ^o C		-	-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	100	nA
Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/$ ΔT_{J}	Reference to 25°C, $I_D = 250\mu A$		-	0.057	-	V
Drain to Source On Resistance	r _{DS(ON)}	I _D = 59A, V _{GS} = 10V (Figure 4)	-	0.0065	0.008	Ω
Turn-On Delay Time	t _d (ON)	$V_{DD} = 28V, I_{D} \cong 59A,$ $R_{L} = 0.47\Omega, V_{GS} = 10V,$ $R_{GS} = 2.5\Omega$		-	14	-	ns
Rise Time	t _r			-	100	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	43	-	ns
Fall Time	t _f			-	70	-	ns
Total Gate Charge	Qg	$V_{DD} = 44V, I_{D} \cong 59A,$ $V_{GS} = 10V, I_{g(REF)} = 3mA$ (Figure 6)		-	-	170	nC
Gate to Source Charge	Q _{gs}			-	-	32	nC
Gate to Drain "Miller" Charge	Q _{gd}			-	-	74	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 5)		-	4000	-	pF
Output Capacitance	C _{OSS}			-	1300	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	480	-	pF
Internal Source Inductance	LS	Measured From the Contact Screw on Tab to Center of Die Symbol Showing the	-	7.5	-	nH	
	Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die	Internal Devices Inductances					
Internal Drain Inductance	L _D	Measured From the Source Lead, 6mm (0.25in) From Head- er to Source Bonding Pad	G G LS S S S	-	4.5	-	nH
Thermal Resistance Junction to Case	$R_{\theta JC}$		1	-	-	0.85	oC/W
Thermal Resistance Junction to	$R_{\theta JA}$	TO-220		-	-	62	°C/W
Ambient		TO-263 (PCB Mount, Steady State)		-	-	40	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	MOSFET Symbol Showing	-	-	100 (Note 1	А
Pulsed Source to Drain Current (Note 2)	I _{SDM}	The Integral Reverse P-N Junction Diode	-	-	390	A
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 59A (Note 4)	-	-	1.3	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 59A$, $dI_{SD}/dt = 100A/\mu s$ (Note 4)	ı	110	170	ns
Reverse Recovered Charge	Q _{RR}	$I_{SD} = 59A$, $dI_{SD}/dt = 100A/\mu s$ (Note 4)	-	450	680	nC

NOTE:

2. Repetitive rating; pulse width limited by maximum junction temperature (See Figure 11)

Typical Performance Curves

FIGURE 1. OUTPUT CHARACTERISTICS

FIGURE 3. TRANSFER CHARACTERISTICS

FIGURE 2. OUTPUT CHARACTERISTICS

FIGURE 4. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 5. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 7. SOURCE TO DRAIN DIODE FORWARD VOLTAGE

FIGURE 9. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 6. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

FIGURE 8. FORWARD BIAS SAFE OPERATING AREA

FIGURE 10. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

Typical Performance Curves (Continued)

FIGURE 11. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

Test Circuits and Waveforms

FIGURE 12. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 13. UNCLAMPED ENERGY WAVEFORMS

FIGURE 14. GATE CHARGE TEST CIRCUIT

FIGURE 15. GATE CHARGE WAVEFORM

Test Circuits and Waveforms (Continued)

FIGURE 16. SWITCHING TIME TEST CIRCUIT

FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

PSPICE Electrical Model

SUBCKT HRF3205P3 2 1 3 : rev 7/25/97 CA 12 8 4.9e-9 CB 15 14 4.9e-9 LDRAIN CIN 6 8 3.45e-9 **DPLCAP** DRAIN 10 RLDRAIN **DBODY 7 5 DBODYMOD** ≶RSLC1 DBREAK 5 11 DBREAKMOD DBREAK 51 **DPLCAP 10 5 DPLCAPMOD** RSLC2 **ESLC** 11 EBREAK 11 7 17 18 57 50 EDS 14 8 5 8 1 **▲** DBODY EGS 13 8 6 8 1 **≻**RDRAIN 8 **EBREAK** ESG ESG 6 10 6 8 1 **EVTHRES** EVTHRES 6 21 19 8 1 16 21 EVTEMP 20 6 18 22 1 19 8 **MWEAK EVTEMP LGATE RGATE** GATE **i**← MMED IT 8 17 1 20 MSTRO RLGATE LDRAIN 2 5 1e-9 **LSOURCE** LGATE 1 9 2.6e-9 CIN SOURCE 8 LSOURCE 3 7 1.1e-9 K1 LGATE LSOURCE 0.0085 **RSOURCE** RLSOURCE MMED 16 6 8 8 MMEDMOD S1A MSTRO 16 6 8 8 MSTROMOD **RBREAK** 13 8 15 <u>14</u> 13 MWEAK 16 21 8 8 MWEAKMOD 17 18 RBREAK 17 18 RBREAKMOD 1 S1B RVTEMP S₂B RDRAIN 50 16 RDRAINMOD 3.5e-4 13 CB 19 RGATE 9 20 0.36 CA IT 1 14 RI DRAIN 2 5 10 VRAT **RLGATE 1 9 26** <u>5</u> **EGS EDS** RLSOURCE 3 7 11 RSLC1 5 51 RSLCMOD 1e-6 R RSLC2 5 50 1e3 **RVTHRES** RSOURCE 8 7 RSOURCEMOD 4.5e-3 RVTHRES 22 8 RVTHRESMOD 1 **RVTEMP 18 19 RVTEMPMOD 1** S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*550),3))} .MODEL DBODYMOD D (IS = 4.25e-12 RS = 1.8e-3 TRS1 = 2.75e-3 TRS2 = 5e-6 CJO = 5.95e-9 TT = 4e-7 M = 0.55) .MODEL DBREAKMOD D (RS = 0.0 6IKF = 30 TRS1 = -3e- 3TRS2 = 3e-6) .MODEL DPLCAPMOD D (CJO = 4.45e- 9IS = 1e-3 0N = 1 M = 0.88 VJ = 1.45) .MODEL MMEDMOD NMOS (VTO = 2.93 KP = 9.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1) .MODEL MSTROMOD NMOS (VTO = 3.23 KP = 150 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) MODEL MWEAKMOD NMOS (VTO = 2.35 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10) .MODEL RBREAKMOD RES (TC1 = 8e- 4TC2 = 4e-6) .MODEL RDRAINMOD RES (TC1 = 8e-2 TC2 = 5e-6) .MODEL RSLCMOD RES (TC1 = 1e-4 TC2 = 1.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-4 TC2 = 1.5e-5) .MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5) .MODEL RVTEMPMOD RES (TC1 = -2.2e- 3TC2 = -7e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -9 VOFF= -4) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4 VOFF= -9) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= 2.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.5 VOFF= 0)

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

.ENDS

SPICE Thermal Model

REV 25 July 97

HRF3205

CTHERM1 7 6 2.53e-5
CTHERM2 6 5 1.38e-3
CTHERM3 5 4 7.00e-3
CTHERM4 4 3 2.50e-2
CTHERM5 3 2 1.33e-1
CTHERM6 2 1 5.75e-1

RTHERM1 7 6 7.78e-4
RTHERM2 6 5 8.55e-3
RTHERM3 5 4 3.00e-2
RTHERM4 4 3 1.42e-1
RTHERM5 3 2 2.65e-1
RTHERM6 2 1 2.33e-1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
FACT™ MicroPak™ Quiet Series™ UHC™
FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4