Cryptography - Homework 2c

Samuel Breese

October 15, 2018

- 1 Users A and B use the Diffie-Hellman key exchange technique with a common prime q=71 and a primitive root $\alpha=7$
- 1.1 If user A has a private key $X_A = 5$, what is A's public key Y_A ?

$$Y_A = \alpha^{X_A} \mod q = 7^5 \mod 71 = 51$$

1.2 If user B has a private key $X_B = 12$, what is B's public key Y_B ?

$$Y_B = \alpha^{X_B} \mod q = 7^{12} \mod 71 = 4$$

1.3 What is the shared secret key?

$$K = Y_A^{X_B} \mod 71 = X_A^{Y_B} \mod 71 = 51^{12} \mod 71 = 30$$

1.4 In the Diffie-Hellman protocol, each participant selects a secret number x and sends the other participant $(\alpha^x \mod q)$ for some public number α .

What would happen if the participants sent each other $(x^{\alpha} \mod q)$ instead?

This modification means that an attacker trying to obtain the private key from the public key would only need to compute a modular root, not a discrete logarithm. Efficient algorithms exist to compute such roots, and thus all security is lost - our function is no longer one-way.

2 A network resource *X* is prepared to sign a message by appending the appropriate 64-bit hash code and encrypting that hash code with X's private key as described in class.

2.1 Describe the *Birthday Attack* where an attcker receives a valid signature for his fraudulent message?

An attacker would generate 2^{32} valid-looking messages and 2^{32} fraudulent messages, and would compute the hash of each of these. By the birth-day paradox, the probability that a collision occurs between at least one valid/fraudulent pair of messages is greater than 0.5. The attacker would then ask the network resource X to sign the valid-looking message, and attach the encrypted signature to the corresponding fraudulent message. The fraudulent message now has a valid signature (since its hash value is the same as the valid message).

2.2 How much memory space does attacker need for an Mbit message?

During the attack, the attacker needs to store 2×2^{32} messages, each of length M bits. The attacker must also store the 64-bit hash code for each of those messages. As such, the attacker requires $(M+64)\times 2^{33}$ bits of memory to perform the birthday attack.

2.3 Assuming that attacker's computer can process 2²0 hash/second, how long does it take (on average) to find a pair of messages that have the same hash?

Again, the attacker must hash 2^{33} messages, so the attack will take

$$\frac{2^{33} \text{ msg}}{2^{20} \text{ msg/s}} = 2^{13} \text{ s}$$

This is only about two hours and 15 minutes.

2.4 Answer the previous two questions when 128-bit hash is used instead.

The attacker will now need $(M+128)\times 2^{65}$ bits of memory, and 2^{45} seconds of computation time (this is more than one million years).

3 Use Trapdoor Oneway Function with following secrets as described in lecture notes to encrypt plaintext P = 01010111.

Decrypt the resulting ciphertext to obtain the plaintext P back. Show each step to get full credit.

$$S = \{5, 9, 21, 45, 103, 215, 450, 956\}$$
$$a = 1019, \ p = 1999$$

Assuming this describes the Merkle knapsack system, we must first compute the "hard" knapsack from

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$$

To do this, we compute $h_i = a(s_i) \mod p$ for all $1 \le i \le 8$. This yields

$$H = \{1097, 1175, 1409, 1877, 1009, 1194, 779, 651\}$$

From here, we can encrypt a message by summing the elements h_i of H where the corresponding bit p_i in P is one:

$$C = 1175 + 1877 + 1194 + 779 + 651 = 5676$$

To decrypt, we must first find the modular inverse of $a \mod p$, which is easy using Fermat's Little Theorem since 1999 is prime:

$$a^{-1} = 1019^{1997} \mod 1999 = 1589$$

Since multiplication distributes over addition, we can get the sum of elements in S by computing:

$$a^{-1}C \mod p = (1589)(5676) \mod 1999 = 1675$$

We can then easily solve the subset sum problem on S and $a^{-1}C$ with a greedly algorithm:

- 1. Given 1675, notice that $956 \le 1675$. The eighth bit of the plaintext is therefore 1, and 1675 956 = 719.
- 2. Given 719, notice that $450 \le 719$. The seventh bit of the plaintext is therefore 1, and \$719 450 = 269%.

- 3. Given 269, notice that $215 \le 269$. The sixth bit of the plaintext is therefore 1, and \$269 215 = 54%.
- 4. Given 54, notice that $103 \nleq 54$. The fifth bit of the plaintext is therefore 0.
- 5. Given 54, notice that $45 \le 54$. The fourth bit of the plaintext is therefore 1, and 54 45 = 9.
- 6. Given 9, notice that $21 \nleq 9$. The third bit of the plaintext is therefore 0.
- 7. Given 9, notice that $9 \le 9$. The second bit of the plaintext is therefore 1, and 9 9 = 0.
- 8. The first bit of the plaintext must be 0, since the subset sum has been found.

Thus, the decrypted ciphertext is 01010111 which is the same as the plaintext.