

Leveraging Social Media Data in Agent-based Simulations

Presenter:

Hamdi Kavak, PhD Student, hkava001@odu.edu

Authors:

Jose J. Padilla, Saikou Y. Diallo, Hamdi Kavak, Olcay Sahin, Brit Nicholson

Virginia Modeling, Analysis and Simulation Center Old Dominion University

Agent-based Simulations

- Applied to various phenomena in
 - Social Sciences, Economics, Biology, ...
- Typically, agent properties are derived from related theories.
- Usually, **property initialization** is based on random distributions.

Agent-based Simulations

- · Limitation:
 - Lack of data to make simulations more empirically grounded.
- Data of:
 - Individuals
 - Population
 - Individuals' interaction
 - Environment

Data Collection Alternatives

- 1. Surveys
 - Representativeness
 - Truthfulness
 - Quickly become outdated
 - Snapshot
- 2. Electronic devices
 - Sensors/badges (Eagle and Pentland 2006)
 - Cellphone trajectories (Gonzalez, Hidalgo, and Barabasi 2008)
 - Smartphone apps (Funf Framework by Behavio)
 - Longitudinal

Data Collection Alternatives

- 3. Social Media
 - Rich human behavior data
 - Preferences, Hobbies, Activities
 Opinions,...
 - Variable structure
 - Large
 - Not widely used in M&S studies
 - Repetitiveness
 - Near real-time & Longitudinal

Sample Social Media Studies

- General
 - National suicide numbers prediction (Won et al. 2013)
 - Stock market change prediction (Zhang et al. 2011)
 - Prediction of the spread of diseases (Sadilek et al. 2012)
- Modeling and Simulation
 - As Simulation Input Data (Yang, Liu, and Mo 2013; van Maanen and der Vecht 2013)
 - As Validation/Calibration reference (Yang, Liu, and Mo 2013; van Maanen and der Vecht 2013; Malleson and Birkin 2012)

Research Approach

- 1. Data Source Identification
 - Single or multiple
- 2. Data Processing (Labrinidis and Jagadish 2012)
 - Data acquisition (DA)
 - Information extraction (IE)
 - Data analysis (DAn)
 - Data mining (DM)
 - Interpretation (I)
- 3. What-if Analysis

Tool Framework

Use Cases

- 1. Population Preference Identification
- 2. Individual Mobility Patterns
- 3. People's Communication Based on Common Interests

	/ JESSONSSINGON VOLUME 1989
Factor	Percentage
Telecommunication	6.67
Chemical Hazardous Material	4.41
Healthcare and Public Health	5.94
Agriculture and Food	5.82
Government Facilities	5.34
Water	7.05
Information Technology	5.56
Nuclear	4.13
Transportation	5.74
National Monuments and Icons	7.29
Dams	4.84
Energy	5.40
Defense	5.62
Emergency Services	6.13
Postal and Shipping	5.45
Commercial Facilities	8.11
Banking and Finance	6.50

Use Cases

- 1. Population Preference Identification
- 2. Individual Mobility Patterns
- 3. People's Communication Based on Common Interests

Use Case 2: Individual Mobility Patterns

- Input:
 - Last location Id
 - Day of the week
 - Hour of the day
- Output:
 - Predicted location Id

Use Cases

- 1. Population Preference Identification
- 2. Individual Mobility Patterns
- 3. People's Communication Based on Common Interests

OldDominionUNIVERSITY

Use Case 3: People's Communication Based on Common Interests

Challenges

- Obtaining useful data
 - Introducing sample bias
 - Filtering out noise
- Data size & processing
 - 1% of tweets
 - Requires non-conventional data processing tools
- Designing simulations that make meaningful use of social media data

Thank you

Hamdi Kavak - hkava001@odu.edu

MASC

Details of the use cases

- Goal:
 - Rank the preferences of individuals towards a predetermined set of factors.
- Method:
 - Determine keywords
 - Public Twitter data collection
 - Sentiment analysis
 - Initialize people's preferences based on sentiment ranks.

Use Case 2: Individual Mobility Patterns

Goal:

Modeling human mobility patterns using social media data

Method:

- Foursquare accounts were created and managed.
- Individuals checked-in using Foursquare smartphone app.
- A Foursquare developer application was created.

Use Case 2: Individual Mobility Patterns

- Method(cont.):
 - A history of user check-ins were obtained using Foursquare's API endpoints.
 - Two datasets were created using check-in history
 - Place dataset:

	Place Id	Name	Loca	ation(lat, lor	ng) Place category
• Ch	eck-in do	ataset			
	1				

Example 2: Human Dynamics Simulation (Cont.)

Following conversions applied for NN training (per individual)

ld Place Id Date Time Da								
	7							
•	H							
•								
13 5 3/1/2013 16:00 Fri.								
14 0 2/1/2012 10:00 5:								
14 2 3/1/2013 19:00 Fri.								
15 1 3/1/2013 21:00 Fri.	4							
16 3 3/2/2013 12:00 Sat								
Spring Simulation Multi-Conference 2014								

Interpolated Check-in History			
Ple	ace Id	Time	Day
	5	16:00	Fri.
	5	17:00	Fri.
	5	18:00	Fri.
	2	19:00	Fri.
	2	20:00	Fri.
	1	21:00	Fri.
	1	22:00	Fri.
	•		
	1	11:00	Sat.
	3	12:00	Sat.

Binary Codified Check-in History			
Place Id	Time	Day	
•			
000101	01111	100	
000101	10000	100	
000101	10001	100	
000010	10010	100	
000010	10011	100	
000001	10100	100	
000001	10101	100	
000001	01010	101	
000011	01011	101	
. 21			

Use Case 3: People's Communication Based on Common Interests

· Goal:

VMASC

Simulate communication and information propagation among individuals

Method:

- Public tweets containing a specific keyword are obtained (June 05 – July 16 2013). Aprx: 1,3 million
- A network of retweets is created based on imperative words used.
- Sentiment analysis was conducted to verify network formation