## บทที่ 10

### กำลังไฟฟ้ากระแสสลับในสภาวะคงตัว

#### AC Steady-State Power

ในบทที่แล้วได้ศึกษาการหาผลตอบสนองต่อกระแสหรือแรงดันไซนูซอยด์ เรียกโดยรวมว่าเป็นการ วิเคราะห์วงจรกระแสสลับ (Alternating Current Circuit) ในบทนี้จะได้กล่าวถึงการหาค่ากำลังไฟฟ้าที่เกี่ยว ข้องกับแหล่งจ่ายไฟฟ้ากระแสสลับและกำลังที่จ่ายให้กับโหลดอิมพีแดนซ์ นอกจากนี้จะได้พิจารณาหลัก การซุปเปอร์โพสิชันและทฤษฎีบทการส่งกำลังสูงสุดสำหรับวงจรกระแสสลับ

#### 10.1 กำลังไฟฟ้า

ส่วนหนึ่งของการพัฒนาความเจริญและอารยธรรมของมนุษย์เกิดขึ้นจากความสามารถในการควบ คุมและกระจายการใช้พลังงาน ไฟฟ้าเป็นพลังงานที่สามารถส่งผ่านจากจุดหนึ่งไปยังอีกจุดหนึ่งได้สะดวก โดยการแปลงพลังงานรูปแบบอื่นๆ ให้เป็นพลังงานไฟฟ้า เราจะสามารถส่งและกระจายพลังงานได้อย่างมี ประสิทธิภาพ โดยการใช้ระบบสายส่งกำลัง กำลังไฟฟ้าจะสามารถส่งจากแหล่งผลิตไปยังโรงงานอุตสาห กรรม บ้านพักอาศัย และอาคารสำหรับการค้า ทั่วประเทศ

เนื่องจากมีการใช้พลังงานไฟฟ้าแพร่หลายทั่วโลก และนิยมใช้ระบบไฟฟ้ากระแสสลับ 50 Hz หรือ 60 Hz ดังนั้นการศึกษาเกี่ยวกับทฤษฎีและการคำนวณกำลังไฟฟ้ากระแสสลับจึงมีความจำเป็นอย่างยิ่ง สำหรับวิศวกรไฟฟ้า นอกจากการใช้ระบบกำลังไฟฟ้ากระแสสลับแล้วในระบบไฟฟ้าอย่างอื่นๆ เช่นระบบสื่อ สารก็มีการใช้สัญญาณไซนูซอยด์เช่นเดียวกัน แต่อาจจะใช้ความถี่สูงกว่าในระบบไฟฟ้ากำลังมาก เช่นใน ระบบโทรศัพท์มือถืออาจใช้ความถี่ 1800 MHz เป็นต้น รูปที่ 10.1 แสดงปัญหาการส่งผ่านกำลังสูงสุดใน ระบบโทรศัพท์มือถือ โดยการออกแบบวงจรแมชชิ่งสำหรับโหลดอิมพีแดนซ์ ซึ่งในกรณีนี้คือสายอากาศนั่น เอง



รูปที่ 10.1 การส่งผ่านกำลังสูงสุดในระบบโทรศัพท์มือถือ

### 10.2 กำลังไฟฟ้าชั่วขณะและกำลังไฟฟ้าเฉลี่ย

เราสนใจที่จะหาค่ากำลังที่ผลิตและใช้ไปในวงจรที่กำลังพิจารณา โดยจะเริ่มที่การพิจารณากำลัง ไฟฟ้าชั่วขณะ (Instantaneous Power) ซึ่งคือผลคูณของกระแสและแรงดันในโดเมนเวลา ซึ่งจะทำให้เรา สามารถหาค่ากำลังที่เวลาใดๆ ได้ กำลังไฟฟ้าชั่วขณะที่ส่งให้กับองค์ประกอบหนึ่งซึ่งมีกระแสไหลผ่าน i(t) และแรงดันตกคร่อม v(t) คือ

$$p(t) = v(t) \cdot i(t) = vi \tag{10.1}$$

หน่วยของกำลังคือ วัตต์ (W) พิจารณาวงจรในรูปที่ 10.2 เมื่อ  $v(t) = V_m \cos \omega t$  ในโดเมนเวลาค่าผลการ ตอบสนองในสภาวะคงตัว i(t) คือ

$$i(t) = I_m(\cos\omega t + \theta)$$

เมื่อ

$$I_m = \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}$$

และ

$$\theta = \tan^{-1} \left( \frac{\omega L}{R} \right)$$



**รูปที่ 10**.2 องค์ประกอบวงจร

ค่ากำลังไฟฟ้าชั่วขณะที่ส่งให้กับวงจรนี้คืด

$$p = V_m I_m(\cos \omega t)(\cos \omega t + \theta)$$

ใช้ตรีโกณมิติของผลคูณของฟังก์ชันโคไซน์สองฟังก์ชัน

$$\cos \alpha \cos(\alpha + \beta) = \cos \beta + \cos(2\alpha + \beta)$$

จะได้

$$p = \frac{V_m I_m}{2} \left[ \cos \theta + (\cos 2\omega t + \theta) \right]$$
 (10.2)

จากสมการ (10.2) จะเห็นว่าค่ากำลังไฟฟ้าชั่วขณะประกอบด้วยสองพจน์ พจน์แรกเป็นค่าไม่ขึ้นกับเวลา ส่วนพจน์ที่สองเปลี่ยนแปลงแบบไซนูซอยด์กับเวลาโดยมีความถี่เป็นสองเท่าของความถี่ของกระแสและแรง ดัน ค่าเฉลี่ยในหนึ่งคาบของพจน์ที่สองจะเป็นศูนย์ ดังนั้นค่าเฉลี่ยของกำลังที่ส่งไปให้กับวงจรจึงอยู่ในพจน์ แรก

พิจารณาตัวอย่าง กำหนดให้  $v(t)=10\cos\omega t$  V  $\omega=10^4$  rad/s  $L=12\,$  mH และ  $R=50\,\Omega$  ดังนั้นกระแส

$$i(t) = I_m(\cos\omega t + \theta)$$

โดยที่  $I_m=10/130=0.077$  A และ  $\theta=-\tan^{-1}(120/50)=-67.4^\circ$  จะได้ค่ากำลังไฟฟ้าชั่วขณะ

$$p = 0.15 + 0.38\cos(2\omega t - 67.4^{\circ})$$
 W

ในการหาค่ากำลังไฟฟ้าเฉลี่ย (Average Power) ของรูปคลื่นไซนูซอยด์ในช่วงเวลาหนึ่งคาบ T เมื่อแหล่งจ่ายเป็นสัญญาณคาบไซนูซอยด์

$$v(t) = v(t+T)$$

เนื่องจากสำหรับวงจรเชิงเส้นเมื่อแรงดันมีการซ้ำเป็นคาบจะทำให้กระแสก็จะมีการซ้ำเป็นคาบเช่นเดียวกัน

$$i(t) = i(t+T)$$

จะได้ค่ากำลัง

$$p(t) = v(t+T) \times i(t+T)$$

จากค่า p ในสมการ (10.2) ซึ่งมีพจน์แรกเป็นค่าคงที่ และพจน์ที่สองเป็นฟังก์ชันคาบ ที่มีคาบคือ  $T_2=\pi/\omega=T/2$  และอาศัยนิยามค่าเฉลี่ยของฟังก์ชันคาบคือค่าอินตริกรัลของฟังก์ชันนั้นในช่วงเวลาหนึ่ง คาบหารด้วยค่าคาบ ใช้ตัวอักษรใหญ่ P แทนค่ากำลังเฉลี่ย

$$P = \frac{1}{T} \int_{t_0}^{t_0 + T} p(t) dt$$
 (10.3)

เมื่อ  $t_0$  คือค่าเวลาเริ่มต้นใดๆ เนื่องจาก  $T=2T_2$  เราอาจเขียน

$$P = \frac{1}{2T_2} \int_{t_0}^{t_0 + 2T_2} p(t) dt$$

สังเกตว่าการอินตริเกรทในช่วงเวลา  $2T_2$  จะให้ผลเท่ากับการอินตริเกรทในช่วงเวลา  $T_2$ 

กำหนดค่าแรงดัน  $v(t)=V_m(\cos\omega t+\theta_V)$  และกระแส  $i(t)=I_m(\cos\omega t+\theta_I)$  จะได้ค่ากำลังไฟ ฟ้าชั่วขณะ

$$p(t) = V_m I_m (\cos \omega t + \theta_V) (\cos \omega t + \theta_I)$$

หรือ

$$p(t) = \frac{V_m I_m}{2} \left[ \cos(\theta_V - \theta_I) + \cos(2\omega t + \theta_V + \theta_I) \right]$$

แทน p(t) ลงในสมการ (10.3)

$$P = \frac{1}{T} \int_{0}^{T} \frac{V_{m}I_{m}}{2} \left[ \cos(\theta_{V} - \theta_{I}) + \cos(2\omega t + \theta_{V} + \theta_{I}) \right] dt$$

$$= \frac{1}{T} \int_{0}^{T} \frac{V_{m}I_{m}}{2} \cos(\theta_{V} - \theta_{I}) dt + \frac{1}{T} \int_{0}^{T} \frac{V_{m}I_{m}}{2} \cos(2\omega t + \theta_{V} + \theta_{I}) dt$$

$$= \frac{V_{m}I_{m}}{2T} \cos(\theta_{V} - \theta_{I}) \int_{0}^{T} dt + \frac{1}{T} \int_{0}^{T} \frac{V_{m}I_{m}}{2} \cos(2\omega t + \theta_{V} + \theta_{I}) dt$$

ผลการอินตริเกรทพจน์ที่สองจะเป็นศูนย์ เนื่องจากค่าเฉลี่ยของฟังก์ชันคาบโคไซน์เป็นศูนย์ ดังนั้น

$$P = \frac{V_m I_m}{2} \cos(\theta_V - \theta_I) + 0$$
$$= \frac{V_m I_m}{2} \cos(\theta_V - \theta_I)$$

**ตัวอย่าง 10.1** จงหาค่ากำลังเฉลี่ยที่ส่งให้กับตัวต้านทาน R เมื่อกระแส i(t) ที่ไหลผ่านตัวมันมีลักษณะ ดังแสดงในรูป Ex 10.1



รูปที่ Ex 10.1

**วิธีทำ** ค่ากระแสมีการซ้ำค่าทุกๆคาบ T ดังนั้นเลือกใช้ค่าเริ่มต้น  $t_0=0$  จะได้

$$i = \frac{I_m}{T}t \quad 0 \le t \le T$$

ค่ากำลังไฟฟ้าชั่วขณะ

$$p = i^2 R = \frac{I_m^2 R}{T^2} t^2 \quad 0 \le t \le T$$

จะได้ค่ากำลังเฉลี่ยคือ

$$P = \frac{1}{T} \int_0^T \frac{{I_m}^2 R}{T^2} t^2 dt$$

ทำการอินตริเกรท

$$P = \frac{I_m^2 R}{T^3} \int_0^T t^2 dt = \frac{I_m^2 R}{T^3} \frac{T^3}{3} = \frac{I_m^2 R}{3} \quad \text{W}$$

เพื่อความสะดวกในการอ้างอิง ได้นำผลการอินตริเกรทฟังก์ชันไซนูซอยด์ที่มีคาบ  $T=2\pi/\omega$  มา สรุปไว้ในตาราง 10.1

ตาราง 10.1 ผลการอินตริเกรทฟังก์ชันคาบไซนูซอยด์

| y(t)                                               | $\int_0^T y(t)dt$                                                  |
|----------------------------------------------------|--------------------------------------------------------------------|
| $\sin(n\omega t + \phi); \cos(n\omega t + \phi)$   | 0                                                                  |
| $\sin^2(\omega t + \phi); \cos^2(\omega t + \phi)$ | T/2                                                                |
| $\sin(n\omega t + \phi)\cos(m\omega t + \theta)$   | 0 	 m=n                                                            |
|                                                    | $\begin{cases} \frac{T\sin(\phi-\theta)}{2} & m\neq n \end{cases}$ |
| $\cos(n\omega t + \phi)\cos(m\omega t + \theta)$   | $0 	 m \neq n$                                                     |
|                                                    | $\begin{cases} \frac{T\cos(\phi - \theta)}{2} & m = n \end{cases}$ |

พิจารณาค่ากำลังเฉลี่ยที่อิมพีแดนซ์ Z ได้รับจากวงจรที่ถูกกระตุ้นด้วยไซนูซอยด์ ค่าเฟสเซอร์ของ แรงดันสัมพันธ์กับค่าเฟสเซอร์ของกระแสด้วย

$$V = ZI$$

ถ้า  $v(t) = V_m \cos \omega t$  และ  $\mathbf{Z} = Z \angle \theta$  จะได้

$$i(t) = I_m \cos(\omega t - \theta)$$

ค่ากำลังเฉลี่ยที่ส่งให้กับอิมพีแดนซ์ Z คือ

$$P = \frac{V_m I_m}{T} \int_0^T \cos \omega t \cos(\omega t - \theta) dt$$

ทำการอินตริเกรท อาศัยผลการอินตริเกรทจากตาราง 10.1

$$P = \frac{V_m I_m}{T} \left(\frac{T}{2} \cos \theta\right) = \frac{V_m I_m}{2} \cos \theta \tag{10.4}$$

ในกรณีที่อิมพีแดนซ์เป็นตัวต้านทาน R ซึ่ง heta=0° จะได้ค่ากำลังเฉลี่ย

$$P_R = \frac{V_m I_m}{2}$$

ถ้าอิมพีแดนซ์เป็นตัวเหนี่ยวนำ จะได้

$$\mathbf{Z}_{I} = \omega L \angle 90^{\circ}$$

ดังนั้นค่ากำลังเฉลี่ยกันสำหรับตัวเหนี่ยวนำ

$$P_L = \frac{V_m I_m}{2} \cos 90^\circ = 0$$

ในทำนองเดียวกันสำหรับตัวเก็บประจุ

$$\mathbf{Z}_C = \frac{1}{\omega C} \angle -90^{\circ}$$

ค่ากำลังเฉลี่ยสำหรับตัวเก็บประจุ

$$P_C = \frac{V_m I_m}{2} \cos(-90^\circ) = 0$$

สรุปได้ว่าค่ากำลังไฟฟ้าเฉลี่ยที่ส่งให้กับตัวเก็บประจุหรือตัวเหนี่ยวนำ โดยแหล่งจ่ายไซนูซอยด์จะมี ค่าเป็นศูนย์ ส่วนในกรณีที่ค่าอิมพีแดนซ์เป็นตัวแทนของหลายองค์ประกอบ

$$\mathbf{Z} = R + jX = Z \angle \theta$$

จากบทที่ 2 เราทราบแล้วว่าอิมพีแดนซ์พาสซีฟ ต้องการพลังงานสุทธิเป็นค่าบวก หรือค่าเฉลี่ยกำลังต้อง มากกว่าหรือเท่ากับศูนย์ เนื่องจากค่ากำลังเฉลี่ยคือ

$$P = \frac{V_m I_m}{2} \cos \theta$$

ดังนั้นอิมพีแดนซ์พาสซีฟจะต้องมีเฟส  $-\pi/2 \leq \theta \leq \pi/2$ 

**ตัวอย่าง 10.2** จงหาค่ากำลังเฉลี่ยที่ (ก) ส่งให้กับตัวต้านทาน R (ข) จ่ายออกจากแหล่งจ่ายสำหรับวงจร ดังแสดงในรูป Ex 10.2 เมื่อแรงดัน  $v(t) = 100\cos 1000t$  V

วิธีทำ หาค่าอิมพีแดนซ์ขององค์ประกอบที่ต่ออนุกรมกัน

$$\mathbf{Z} = R + j \left( \omega L - \frac{1}{\omega C} \right) = 10 + j10 = \sqrt{200} \angle 45^{\circ}$$

ดังนั้นค่ากำลังเฉลี่ยที่จ่ายออกจากแหล่งจ่ายให้กับอิมพีแดนซ์นี้คือ

$$P = \frac{V_m I_m}{2} \cos \theta$$

เมื่อ  $\theta=45^\circ$  และ  $V_{\scriptscriptstyle m}=100\,\mathrm{V}$  หาค่ากระแสได้จาก

$$I = \frac{V_s}{Z} = \frac{100 \angle 0^{\circ}}{10\sqrt{2} \angle 45^{\circ}} = \frac{10}{\sqrt{2}} \angle -45^{\circ}$$



ดังนั้น  $I_{\scriptscriptstyle m}=10\sqrt{2}\,\mathrm{A}$  จะได้ค่ากำลังเฉลี่ย

$$P = \frac{100}{2} \left( \frac{10}{\sqrt{2}} \right) \cos 45^\circ = 250 \text{ W}$$

ซึ่งจะเท่ากับกำลังเฉลี่ยที่ส่งให้กับตัวต้านทาน R อีกวิธีหนึ่งในการหาค่ากำลังเฉลี่ยที่ส่งให้กับอิมพีแดนซ์ ใดๆ จาก

$$\cos\theta = \frac{R}{Z}$$

เมื่อ  $\mathbf{Z}=R+jX$  และ  $Z=\left|\mathbf{Z}\right|$  และจาก

$$V_m = ZI_m$$

จะได้ค่ากำลังเฉลี่ย

$$P = \frac{V_m I_m}{2} \cos \theta$$
$$= \frac{(ZI_m)I_m}{2} \left(\frac{R}{Z}\right)$$
$$= \frac{I_m^2}{2} R$$

ซึ่ง R คือส่วนจริงของอิมพีแดนซ์  $\mathbf{Z}$  และค่ากำลังเฉลี่ยที่ส่งให้อิมพีแดนซ์ก็คือค่ากำลังที่ส่งให้ความต้าน ทาน R เพราะ ค่ากำลังเฉลี่ยในตัวเหนี่ยวนำและตัวเก็บประจุมีค่าเป็นศูนย์นั่นเอง แทนค่าในตัวอย่างที่ 10.2 จะได้ค่ากำลังเฉลี่ย

$$P = \frac{I_m^2}{2}R = \frac{1}{2}\left(\frac{10}{\sqrt{2}}\right)^2 \times 10 = 250 \text{ W}$$

### 10.3 หลักการซุปเปอร์โพสิชันกำลังไฟฟ้าและทฤษฎีการส่งกำลังสูงสุด

ในหัวข้อนี้จะได้พิจารณากรณีที่วงจรประกอบด้วยแหล่งจ่ายอิสระตั้งแต่สองแหล่งจ่ายขึ้นไป ดังเช่น วงจรในรูปที่ 10.3 (ก) ซึ่งมีแหล่งจ่ายแรงดันไซนูซอยด์สองแหล่งจ่าย ถ้าเราหาผลตอบสนองสุทธิโดย พิจารณาผลจากแหล่งจ่ายที่ละแหล่ง จะสามารถนำหลักการซุปเปอร์โพสิชันมาใช้ได้ ดังแสดงในรูปที่ 10.3 (ข) กำหนดให้  $i_1$  เป็นผลตอบสนองเนื่องจากแหล่งจ่ายแรงดัน  $v_1$  และ  $i_2$  เป็นผลตอบสนองเนื่องจากแหล่ง จ่ายแรงดัน  $v_2$  จะได้



รูปที่ 10.3 (ก) วงจรประกอบด้วยแหล่งจ่ายอิสระสองแหล่งจ่าย (ข) การหาค่ากระแสโดยใช้หลักการซุปเปอร์โพสิชัน

ค่ากำลังชั่วขณะ

$$p = i^{2}R$$

$$= (i_{1} + i_{2})^{2}R$$

$$= (i_{1}^{2} + 2i_{1}i_{2} + i_{2}^{2})R$$

เมื่อคือ R ค่าความต้านทานของวงจร ค่ากำลังเฉลี่ยคือ

$$P = \frac{1}{T} \int_0^T p(t)dt$$

$$= \frac{R}{T} \int_0^T (i_1^2 + 2i_1i_2 + i_2^2)dt$$

$$= \frac{R}{T} \int_0^T (i_1^2)dt + \frac{R}{T} \int_0^T (2i_1i_2)dt + \frac{R}{T} \int_0^T (i_2^2)dt$$

$$= P_1 + \frac{2R}{T} \int_0^T (i_1i_2)dt + P_2$$

เมื่อคือ  $P_1$  ค่ากำลังเฉลี่ยเนื่องจากแหล่งจ่ายแรงดัน  $v_1$  และ  $P_2$  คือค่ากำลังเฉลี่ยเนื่องจากแหล่งจ่ายแรง ดัน  $v_2$ 

พิจารณากรณีที่จะทำให้พจน์  $\frac{2R}{T}\int_0^T (i_1i_2)dt$  มีค่าเป็นศูนย์ ถ้าให้แหล่งจ่ายแรงดัน  $v_1$  มีค่าความถึ่  $m\omega$  และแหล่งจ่ายแรงดัน  $v_2$  มีค่าความถึ่  $n\omega$  โดยที่ m และ n เป็นตัวเลขจำนวนเต็ม ค่ากระแสจะ แทนได้ในรูปทั่วไป

$$i_1 = I_1 \cos(m\omega t + \phi)$$

และ

$$i_2 = I_2 \cos(n\omega t + \theta)$$

ดังนั้นจะได้ค่ากำลังเฉลี่ยของผลคูณของกระแสทั้งสอง

$$P_{12} = \frac{2R}{T} \int_0^T I_1 I_2 \cos(m\omega t + \phi) \cos(n\omega t + \theta) dt$$

จากตาราง 10.1 จะได้ว่าผลการอินตริเกรทจะเป็นศูนย์เมื่อ  $m \neq n$  และจะไม่เป็นศูนย์เมื่อ m = n

ดังนั้นสามารถสรุปได้ว่า ค่ากำลังเฉลี่ยสุทธิจะเท่ากับผลรวมของค่ากำลังเฉลี่ยที่ได้จากแหล่งจ่าย แต่ละแหล่ง เมื่อความถี่เชิงมุมของแต่ละแหล่งจ่ายเป็นจำนวนเท่าที่เป็นจำนวนเต็มของแหล่งจ่ายอื่นๆ ถ้า แหล่งจ่ายมีเมื่อความถี่เชิงมุมเดียวกัน จะไม่สามารถหาค่ากำลังเฉลี่ยสุทธิจากผลรวมของค่ากำลังเฉลี่ยที่ได้ จากแหล่งจ่ายแต่ละแหล่งได้

ในกรณีที่ m และ/หรือ n ไม่เป็นตัวเลขจำนวนเต็ม เช่น m=1 n=1.5  $\theta=\phi=0^\circ$  จะได้ว่า

$$\begin{split} P_{12} &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} p dt \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} \left[ 2RI_1 I_2 \cos(\omega t) \cos(1.5\omega t) \right] dt \\ &= \lim_{\tau \to \infty} \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} \left[ RI_1 I_2 \cos(0.5\omega t) + \cos(2.5\omega t) \right] dt \\ &= 0 \end{split}$$

ในสมการข้างบนต้องกลับไปใช้นิยามของกำลังเฉลี่ยเนื่องจากเรากำลังหาค่ากำลังเฉลี่ยของฟังก์ชัน โคไซน์สองฟังก์ชันซึ่งมีฟังก์ชันหนึ่งมีคาบไม่เป็นจำนวนเท่าที่เป็นจำนวนเต็มของคาบ *T* 

โดยสรุปจะกล่าวได้ว่า หลักการซุปเปอร์โพสิชันสำหรับกำลังเฉลี่ยเนื่องจากแหล่งจ่ายหลายแหล่ง สามารถใช้ได้ หากไม่มีแหล่งจ่ายใดมีความถี่เดียวกันกับแหล่งจ่ายอื่นๆ ในวงจร

ในกรณีที่แหล่งจ่ายคู่ใดคู่หนึ่งมีความถี่เดียวกันจะไม่สามารถใช้หลักการซุปเปอร์โพสิชันสำหรับ กำลังเฉลี่ยได้ กรณีนี้รวมในกรณีแหล่งจ่ายกระแสตรง  $\omega=0$  ด้วย หากต้องการหาค่ากำลังเฉลี่ยสุทธิ ให้ใช้

หลักการซุปเปอร์โพสิชันหาค่าผลรวมเฟสเซอร์ของกระแสจากแต่ละแหล่งจ่าย เช่นในกรณีมี N แหล่งจ่าย จะได้

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \ldots + \mathbf{I}_N$$

จากนั้นจึงคำนวณหาค่ากำลังเฉลี่ยสุทธิจาก

$$P = \frac{I_m^2}{2}R$$

โดยที่  $\mathbf{I} = I_m \cos \omega t$  และควรต้องระมัดระวังว่าเราไม่สามารถบวกเฟสเซอร์ที่ได้มาจากแหล่งจ่ายที่มี ความถี่ไม่เท่ากัน

**ตัวอย่าง** 10.3 จงหาค่ากำลังเฉลี่ยสำหรับวงจรดังแสดงในรูปที่ 10.3 (ก) เมื่อ  $R=1\,\Omega$  แรงดัน  $v_1=10\cos 10t$  V และแรงดัน (ก)  $v_2=2\cos 20t$  (ข)  $v_2=2\cos 10t$ 

**วิธีทำ** (ก) ในกรณีนี้แหล่งจ่ายแรงดัน  $v_1$  และ  $v_2$  มีความถี่ต่างกัน ดังนั้นสามารถใช้หลักการซุปเปอร์โพสิ ขันได้

$$P = P_1 + P_2$$

โดยที่

$$P_1 = \frac{I_1^2}{2}R = \frac{10^2}{2} = 50 \text{ W}$$

และ

$$P_2 = \frac{I_2^2}{2}R = \frac{2^2}{2} = 2 \text{ W}$$

ดังนั้นจะได้ค่ากำลังเฉลี่ยสุทธิ

$$P = 50 + 2 = 52 \text{ W}$$

(ข) ในกรณีนี้ แหล่งจ่ายแรงดัน  $v_1$  และ  $v_2$  มีความถี่เดียวกัน ดังนั้นไม่สามารถใช้หลักการซุปเปอร์โพสิชัน ได้ เนื่องจากวงจรเป็นเชิงเส้นดังนั้นจะหาค่าเฟสเซอร์ของกระแสสุทธิในตัวต้านทานได้จาก

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$$

จากวงจรได้ว่า  $\mathbf{I}_1 = 10 \; \mathsf{A} \;$  และ  $\mathbf{I}_2 = -2 \; \mathsf{A} \;$  ดังนั้น

$$I = 10 - 2 = 8 A$$

และจะได้ค่ากำลังเฉลี่ยสุทธิ

$$P = \frac{I^2}{2}R = \frac{8^2}{2} = 32 \text{ W}$$

ในบทที่ 5 เราได้พิสูจน์แล้วว่า สำหรับวงจรตัวต้านทาน ค่ากำลังสูงสุดจะถูกส่งผ่านเมื่อ ค่าความ ต้านทานโหลดมีค่าเท่ากับค่าความต้านทานเสมือนเทวินิน ในหัวข้อนี้จะพิจารณากรณีวงจรกระตุ้นด้วยไซนู ซอยด์ในสภาวะคงตัว ดังแสดงในรูปที่ 10.4 ซึ่งมีอิมพีแดนซ์โหลด  $\mathbf{Z}_{\scriptscriptstyle L}$  ต่ออยู่ค่ากำลังเฉลี่ยที่จ่ายไปยังโหลด คือ



รูปที่ 10.4 วงจรสมมูลเทวินินต่อกับอิมพีแดนซ์โหลด  $\mathbf{Z}_{\scriptscriptstyle L}$ 

ค่าเฟสเซอร์ของกระแส

$$\mathbf{I} = \frac{\mathbf{V}_{t}}{\mathbf{Z}_{t} + \mathbf{Z}_{L}}$$

$$= \frac{\mathbf{V}_{t}}{(R_{t} + jX_{t}) + (R_{L} + jX_{L})}$$

โดยที่เราสามารถเลือกค่า  $R_{\scriptscriptstyle L}$  และ  $X_{\scriptscriptstyle L}$  ได้ ค่ากำลังเฉลี่ยที่จ่ายให้โหลดคือ

$$P = \frac{I^2}{2} R_L = \frac{|\mathbf{V}_t|^2 R_L / 2}{(R_t + R_L)^2 + (X_t + X_L)^2}$$

เราต้องการค่ากำลังสูงสุดที่โหลด สามารถกำจัดพจน์  $(X_{\scriptscriptstyle t} + X_{\scriptscriptstyle L})^2$  ได้โดยให้  $X_{\scriptscriptstyle L} = -X_{\scriptscriptstyle t}$  จะได้

$$P = \frac{\left|\mathbf{V}_{t}\right|^{2} R_{L}}{2(R_{t} + R_{L})^{2}}$$

ค่ากำลังเฉลี่ยสูงสุดหาได้โดยการหาอนุพันธ์  $dP/dR_L$  และให้มีค่าเท่ากับศูนย์ ซึ่งเราจะพบว่า  $dP/dR_L=0$  เมื่อ  $R_L=R_\iota$  ดังนั้นจะได้ว่า

$$\mathbf{Z}_L = R_t - jX_t$$

หรือกล่าวว่าค่ากำลังเฉลี่ยสูงสุดที่อิมพีแดนซ์โหลดจะเกิดขึ้นเมื่อค่าอิมพีแดนซ์โหลด  $\mathbf{Z}_{\scriptscriptstyle L}$  คือคอนจูเกต (Conjugate) ของอิมพีแดนซ์เสมือนเทวินิน  $\mathbf{Z}_{\scriptscriptstyle L}^*$ 

**ตัวอย่าง 10.4** จงหาค่าอิมพีแดนซ์โหลดที่จะทำให้ค่ากำลังเฉลี่ยสำหรับวงจรดังแสดงในรูป Ex 10.4 มีค่า สูงสุด



ฐปที่ Ex 10.4

**วิธีทำ** เราเลือกค่าอิมพีแดนซ์โหลด  $\mathbf{Z}_{\scriptscriptstyle L}$  ให้เท่ากับคอนจูเกตของอิมพีแดนซ์เสมือนเทวินิน  $\mathbf{Z}_{\scriptscriptstyle t}^*$ 

$$\mathbf{Z}_{t} = \mathbf{Z}_{t}^{*} = 5 + j6$$

หาค่ากำลังสูงสุดได้ โดยที่ค่ากระแส

$$I = \frac{10\angle 0^{\circ}}{5+5} = 1\angle 0^{\circ}$$

ดังนั้นค่ากำลังเฉลี่ยสูงสุดที่ส่งให้อิมพีแดนซ์โหลดคือ

$$P = \frac{I_m^2}{2} R_L = \frac{1^2}{2} \times 5 = 2.5 \text{ W}$$

# 10.4 ค่าประสิทธิผลของรูปคลื่นไซนูซอยด์

ค่าแรงดันที่วัดได้จากปลั๊กไฟฟ้าในบ้านมีค่า 220 V ซึ่งย่อมไม่ใช่ค่าเฉลี่ยของแรงดันไซนูซอยด์ ที่เรา ทราบว่าจะมีค่าเป็นศูนย์ และคงไม่ใช่ค่าชั่วขณะหรือค่าสูงสุด  $V_m$  ของแรงดัน  $v=V_m\cos\omega t$  เช่นกัน

ค่าประสิทธิผล (Effective Value) ของแรงดัน คือการวัดความสัมฤทธิ์ผลของการส่งกำลังไปยังตัว ต้านทานโหลด เกิดขึ้นมาจากความต้องการที่จะให้แหล่งจ่ายแรงดัน (หรือกระแส) ส่งกำลังเฉลี่ยไปยังตัว ต้านทานโหลดเท่ากับแหล่งจ่ายแรงดัน (หรือกระแส) กระแสตรงที่มีค่าแรงดัน (หรือกระแส) เท่ากัน รูปที่ 10.5 แสดงแนวคิด และเป้าหมายของการหาค่าประสิทธิผล ซึ่งก็คือ การหาค่า  $V_{\rm eff}$  (หรือ  $I_{\rm eff}$ ) ที่จะส่ง กำลังหรือพลังงานเท่ากับแหล่งจ่ายที่เปลี่ยนแปลงกับเวลาเป็นฟังก์ชันคาบ  $v_{\rm s}(t)$  (หรือ  $i_{\rm s}(t)$ )

ค่าพลังงานที่ส่งในช่วงเวลาหนึ่งคาบ T คือ

$$w = PT$$

โดยที่ P คือค่ากำลังเฉลี่ย

ค่ากำลังเฉลี่ยที่ส่งให้กับตัวต้านทาน R โดยกระแส i คือ

$$P = \frac{1}{T} \int_0^T i^2 R dt \tag{10.5}$$

เราเลือกค่าคาบของกระแสที่เปลี่ยนแปลงกับเวลาเป็นช่วงในการอินตริเกรท

ค่ากำลังเฉลี่ยที่ส่งให้กับตัวต้านทาน R โดยกระแสตรง  $I_{\it eff}$  คือ

$$P = I_{eff}^2 R \tag{10.6}$$

เมื่อ  $I_{\it eff}$  คือค่ากระแสตรงที่จะส่งกำลังค่าเดียวกับกระแสที่เปลี่ยนแปลงกับเวลา นั่นคือ  $I_{\it eff}$  ถูกนิยามว่า เป็นค่ากระแสคงตัวหรือคงที่ ที่มีประสิทธิผลในการส่งกำลังค่าเดียวกับค่ากำลังเฉลี่ยของกระแสที่เปลี่ยน แปลงกับเวลา

ให้สมการ (10.5) เท่ากับสมการ (10.6) จะได้

$$I_{eff}^2 R = \frac{R}{T} \int_0^T i^2 dt$$

แก้สมการหาค่า  $I_{\it eff}$  ได้

$$I_{eff} = \sqrt{\frac{1}{T} \int_0^T i^2 dt}$$
 (10.7)

จากสมการ (10.7) จะเห็นได้ว่าค่า  $I_{\it eff}$  คือค่ารากกำลังสองของค่าเฉลี่ยของกระแสยกกำลังสองดังนั้นจึง นิยมเรียกค่าประสิทธิผล  $I_{\it eff}$  ว่าค่ากระแสรากของกำลังสองเฉลี่ย (Root-Mean-Square)  $I_{\it rms}$ 

พิจารณาค่ากระแสรากของกำลังสองเฉลี่ย  $I_{rms}$  ของกระแสไซนูซอยด์  $i=I_m\cos\omega t$  จะได้จากสม การ (10.7) ว่า

$$I_{rms} = \sqrt{\frac{1}{T} \int_0^T I_m^2 \cos^2 \omega t dt}$$
$$= \sqrt{\frac{I_m^2}{T} \int_0^T \frac{1}{2} (1 + \cos 2\omega t) dt}$$

จากตาราง 10.1 ได้ผลการอินตริเกรทเท่ากับ T/2 ดังนั้น

$$I_{rms} = \frac{I_m}{\sqrt{2}} \tag{10.8}$$

ค่ากระแสรากของกำลังสองเฉลี่ย  $I_{rms}$  ตามสมการ (10.8) ใช้สำหรับกระแสไซนูซอยด์เท่านั้นหาก กระแสเปลี่ยนแปลงกับเวลาเป็นรูปคลื่นอื่นๆ จะต้องทำการแทนฟังก์ชันรูปคลื่นนั้นแล้วทำการหาค่าจาก นิยามของค่ากระแสรากของกำลังสองเฉลี่ยในสมการที่ (10.7)

ในทำนองเดียวกัน ค่าแรงดันรากของกำลังสองเฉลี่ย  $V_{\mathit{rms}}$  ก็จะหาได้จากสมการ

$$V_{eff} = \sqrt{\frac{1}{T} \int_0^T v^2 dt} \tag{10.9}$$

**ตัวอย่าง 10.5** จงหาค่าประสิทธิผลของกระแสซึ่งมีรูปคลื่น ดังแสดงในรูป Ex 10.5



ฐปที่ Ex 10.5

**วิธีทำ** เขียนฟังก์ชันของกระแสในช่วงหนึ่งคาบ  $0 \le t \le T$  จะได้

$$i = \frac{I_m}{T}t \qquad 0 \le t \le T$$

ค่ากระแสประสิทธิผลคือ

$$\begin{split} I_{eff} &= \sqrt{\frac{1}{T} \int_{0}^{T} i^{2} dt} = \sqrt{\frac{1}{T} \int_{0}^{T} \frac{I_{m}^{2}}{T^{2}} t^{2} dt} \\ &= \sqrt{\frac{I_{m}^{2}}{T^{3}} \left[ \frac{t^{3}}{T^{3}} \right]_{0}^{T}} = \sqrt{\frac{I_{m}^{2}}{3}} \end{split}$$

หรือ

$$I_{eff} = \frac{I_m}{\sqrt{3}}$$

ในทางปฏิบัติจะต้องระมัดระวังว่าค่าแรงดันไซนูซอยด์อยู่ในรูปของค่าประสิทธิผล  $V_{eff}=V_{rms}$  หรือ ค่าสูงสุด  $V_m$  ซึ่งบางครั้งนิยมเรียกว่าค่ายอด (Peak Value)  $V_p$  ในระบบส่งและจำหน่ายไฟฟ้ากำลัง หรือ ตามบ้านทั่วไป ค่าแรงดัน 220 V จะเป็นค่ารากของกำลังสองเฉลี่ย  $V_{rms}$  หรือค่าประสิทธิผล  $V_{eff}$  แต่ใน ระบบอิเล็กทรอนิกส์ หรือระบบสื่อสารค่าแรงดันอาจบอกเป็นค่าสูงสุด  $V_m$  ค่ายอด  $V_p$  ก็ได้ ในกรณีที่ไม่ เขียนตัวห้อยให้พิจารณาจากระบบหรือวงจรที่เกี่ยวข้องหรือดูจากนัยของผู้ให้ข้อมูล ในการศึกษาต่อไปนี้จะ เขียนสัญลักษณ์ของค่ารากของกำลังสองเฉลี่ยหรือค่าประสิทธิผลโดยไม่เขียนตัวห้อย

เนื่องจากค่ากำลังเฉลี่ยถูกนำมาใช้ในการหาค่ารากของกำลังสองเฉลี่ย ดังนั้นเรากล่าวได้ว่าค่า กำลังเฉลี่ยในรูปของกระแสประสิทธิผลคือ

$$P = (I_1^2 + I_1^2 + \dots + I_N^2)R$$
 (10.10)

ถ้ากระแสประสิทธิผลแต่ละค่ามีความถี่ต่างกัน ถ้ามีกระแสคู่ใดมีความถี่เหมือนกัน จะไม่สามารถใช้วิธีการ รวมตามสมการที่ 10.10 ได้ ตัวอย่างเช่น ถ้ามีค่ากระแสประสิทธิผล 5 A ที่ความถี่ 50 Hz และ 2 A ที่ ความถี่ 60 Hz จะได้ค่ากำลังเฉลี่ยที่ถูกใช้โดยตัวต้านทาน 3 Ω เท่ากับ

$$P = (5^2 + 2^2) \times 3 = 87 \text{ W}$$

แต่ถ้ามีค่ากระแสประสิทธิผล 5 A ที่ความถี่ 50 Hz และ 2 A ที่ความถี่ 50 Hz ค่ากำลังเฉลี่ยสุทธิจะขึ้นกับ เฟสของกระแสไซนูซอยด์ทั้งสองด้วย ซึ่งอาจมีค่าตั้งแต่ 3 A ถึง 7 A แล้วแต่ความต่างเฟส

ถ้าต้องการหาค่าประสิทธิผลของกระแส I ซึ่งประกอบด้วยกระแสไซนูซอยด์หลายความถี่ จะ สามารถใช้สมการ (10.10) พิสูจน์ได้ว่าค่ากำลังสองของค่าประสิทธิผลคือ

$$I^{2} = I_{1}^{2} + I_{1}^{2} + \dots + I_{N}^{2}$$
(10.11)

### 10.5 กำลังเชิงซ้อน

พิจารณาวงจรเชิงเส้นในสภาวะคงตัว ค่าแรงดันและกระแสของแต่ละองค์ประกอบจะเป็นไซนู ซอยด์ที่มีความถี่เดียวกับความถี่ของสัญญาณเข้า เราสามารถวิเคราะห์วงจรนี้ในโดเมนความถี่ได้โดยใช้ เฟสเซคร์



**รูปที่ 10**.5 ค่ากระแสและแรงดันขององค์ประกอบหนึ่ง

(ก) ในโดเมนเวลา (ข) โดเมนความถี่

รูปที่ 10.5 แสดงค่ากระแสและแรงดันขององค์ประกอบหนึ่ง ในโดเมนเวลา (ก) และโดเมนความถี่ (ข) สังเกตว่าใช้ทิศทางอ้างอิงตามสัญนิยมเครื่องหมายพาสซีฟ ในหัวข้อที่แล้วเราได้ศึกษาการคำนวณค่า กำลังชั่วขณะและกำลังเฉลี่ย จากค่ากระแสและแรงดันขององค์ประกอบนี้ในโดเมนเวลา ในหัวข้อนี้จะ ศึกษาการหาค่ากำลังไฟฟ้าจากค่ากระแสและแรงดันขององค์ประกอบในโดเมนความถี่

$$\mathbf{I}(\omega) = I_m \angle \theta_I \tag{10.12}$$

และ

$$\mathbf{V}(\omega) = V_m \angle \theta_V \tag{10.13}$$

นิยามของค่ากำลังเชิงซ้อนที่ส่งมายังองค์ประกอบนี้คือ

$$\mathbf{S} = \frac{\mathbf{VI}^*}{2} = \frac{(I_m \angle - \theta_I)(V_m \angle \theta_V)}{2}$$

$$= \frac{I_m V_m}{2} \angle (\theta_V - \theta_I)$$
(10.14)

โดยที่  $\mathbf{I}^*$  คือค่าคอนจูเกตของเฟสเซอร์  $\mathbf{I}$  เรียกขนาดของกำลังเชิงซ้อน

$$\left|\mathbf{S}\right| = \frac{V_m I_m}{2} \tag{10.15}$$

ว่าค่ากำลังปรากฏ (Apparent Power) เขียนค่ากำลังเชิงซ้อนจากสมการ (10.14) ในรูปโพลาร์ได้

$$\mathbf{S} = \underbrace{\frac{I_m V_m}{2} \cos(\theta_V - \theta_I)}_{P} + j \underbrace{\frac{I_m V_m}{2} \sin(\theta_V - \theta_I)}_{Q}$$
(10.16)

หรือ

$$\mathbf{S} = P + jQ \tag{10.17}$$

โดยที่ค่ากำลังเฉลี่ยหรือกำลังจริง (Real Power) คือ

$$P = \frac{I_m V_m}{2} \cos(\theta_V - \theta_I) \tag{10.18}$$

และค่ากำลังรีแอกทีฟ (Reactive Power) หรือกำลังส่วนจินตภาพ (Imaginary Part Power) คือ

$$Q = \frac{I_m V_m}{2} \sin(\theta_V - \theta_I) \tag{10.19}$$

แม้ว่าค่ากำลังทั้งสามค่าคือ กำลังเชิงซ้อน กำลังจริง และกำลังรีแอกทีฟ จะคำนวณมาจากผลคูณ ของค่ากระแส และแรงดัน แต่จะใช้หน่วยแตกต่างกันคือ กำลังเชิงซ้อนมีหน่วยเป็น โวลท์แอมป์ (VA) กำลัง จริงมีหน่วยเป็น วัตต์ (W) และกำลังรีแอกทีฟมีหน่วยเป็น โวลท์แอมป์รีแอกทีฟ (VAR) ตาราง 10.2 สรุปการ คำนวณหาค่ากำลังไฟฟ้าในโดเมนความถี่

**ตาราง 10.2** การคำนวณหาค่ากำลังไฟฟ้าในโดเมนความถึ่

| ปริมาณ | ความสัมพันธ์                           | ความสัมพันธ์                                      | หน่วย |
|--------|----------------------------------------|---------------------------------------------------|-------|
|        | โดยใช้ค่ายอด                           | โดยใช้ค่ารากของกำลังสองเฉลี่ย                     |       |
| แรงดัน | $v(t) = V_m(\cos \omega t + \theta_V)$ | $v(t) = \sqrt{2}V_{rms}(\cos\omega t + \theta_V)$ | V     |
| กระแส  | $i(t) = I_m(\cos\omega t + \theta_I)$  | $i(t) = \sqrt{2}I_{rms}(\cos\omega t + \theta_I)$ | Α     |

| ปริมาณ        | ความสัมพันธ์                                                                                               | ความสัมพันธ์                                                                                           | หน่วย |
|---------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|
|               | โดยใช้ค่ายอด                                                                                               | โดยใช้ค่ารากของกำลังสองเฉลี่ย                                                                          |       |
| กำลังเชิงซ้อน | $\mathbf{S} = \frac{I_m V_m}{2} \cos(\theta_V - \theta_I) + j \frac{I_m V_m}{2} \sin(\theta_V - \theta_I)$ | $\mathbf{S} = I_{rms} V_{rms} \cos(\theta_V - \theta_I) + j I_{rms} V_{rms} \sin(\theta_V - \theta_I)$ | VA    |
| กำลังปรากฏ    | $ \mathbf{S}  = \frac{V_m I_m}{2}$                                                                         | $\left \mathbf{S}\right  = V_{rms}I_{rms}$                                                             | VA    |
| กำลังเฉลี่ย   | $\frac{I_m V_m}{2} \cos(\theta_V - \theta_I)$                                                              | $I_{rms}V_{rms}\cos(\theta_{V}-\theta_{I})$                                                            | W     |
| กำลังรีแอกทีฟ | $\frac{I_m V_m}{2} \sin(\theta_V - \theta_I)$                                                              | $I_{rms}V_{rms}\sin(\theta_V-\theta_I)$                                                                | VAR   |

จากรูปที่ 10.5 (ข) ค่าอิมพีแดนซ์ขององค์ประกอบนี้คือ

$$\mathbf{Z}(\omega) = \frac{\mathbf{V}(\omega)}{\mathbf{I}(\omega)} = \frac{V_m \angle \theta_V}{I_m \angle \theta_I} = \frac{V_m}{I_m} \angle (\theta_V - \theta_I)$$
(10.20)

เขียนในรูปเรกแทงกูลาร์ได้

$$\mathbf{Z}(\omega) = \underbrace{\frac{V_m}{I_m} \cos(\theta_V - \theta_I)}_{R} + j \underbrace{\frac{V_m}{I_m} \sin(\theta_V - \theta_I)}_{X}$$
(10.21)

หรือ

$$\mathbf{Z}(\omega) = R + jX$$

เมื่อค่าความต้านทาน

$$R = \frac{V_m}{I_m} \cos(\theta_V - \theta_I)$$

และค่ารีแอกทีฟ

$$X = \frac{V_m}{I_m} \sin(\theta_V - \theta_I)$$

สมการ (10.16) และ (10.21) อยู่ในรูปแบบเหมือนกัน ดังนั้นเราเขียนกำลังเชิงซ้อนในรูปของอิมพี แดนซ์ได้

$$\mathbf{S} = \frac{I_{m}V_{m}}{2}\cos(\theta_{V} - \theta_{I}) + j\frac{I_{m}V_{m}}{2}\sin(\theta_{V} - \theta_{I})$$

$$= \left(\frac{I_{m}^{2}}{2}\right)\frac{V_{m}}{I_{m}}\cos(\theta_{V} - \theta_{I}) + j\left(\frac{I_{m}^{2}}{2}\right)\frac{V_{m}}{I_{m}}\sin(\theta_{V} - \theta_{I})$$

$$= \left(\frac{I_{m}^{2}}{2}\right)\operatorname{Re}(\mathbf{Z}) + j\left(\frac{I_{m}^{2}}{2}\right)\operatorname{Im}(\mathbf{Z})$$

$$P \qquad O \qquad (10.22)$$

ค่ากำลังเฉลี่ยที่จ่ายให้กับองค์ประกอบนี้คือ

$$P = \left(\frac{I_m^2}{2}\right) \operatorname{Re}(\mathbf{Z}) \tag{10.23}$$

เมื่อองค์ประกอบนี้คือตัวต้านทาน  $\operatorname{Re}(\mathbf{Z}) = R$  จะได้

$$P_R = \left(\frac{I_m^2}{2}\right)R$$

เมื่อองค์ประกอบนี้คือตัวเก็บประจุหรือตัวเหนี่ยวนำ ค่า  $\mathrm{Re}(\mathbf{Z})=0$  ดังนั้นค่ากำลังเฉลี่ยที่จ่ายให้กับองค์ ประกอบนี้จะเป็นศูนย์

รูปที่ 10.6 สรุปสมการ (10.16) และ (10.21) ในรูปสามเหลี่ยมอิมพีแดนซ์และสามเหลี่ยมกำลัง



**รูปที่ 10.6** (ก) สามเหลี่ยมอิมพีแดนซ์ (ข) สามเหลี่ยมกำลัง

ค่ากำลังเชิงซ้อนจะอนุรักษ์ คือผลรวมของกำลังเชิงซ้อนที่ใช้โดยองค์ประกอบทุกองค์ประกอบในวง จรจะมีค่าเป็นศูนย์ ตามสมการ

$$\sum_{\substack{all \\ elements}} \frac{\mathbf{V}_k \mathbf{I}_k^*}{2} = 0 \tag{10.24}$$

เมื่อ  $\mathbf{V}_k$  และ  $\mathbf{I}_k$  คือเฟสเซอร์ของแรงดันและกระแสขององค์ที่ k'' ซึ่งมีทิศทางตามสัญนิยมเครื่องหมาย พาสซีฟ ค่า  $\mathbf{V}_k \mathbf{I}_k^*/2$  คือค่ากำลังเชิงซ้อนที่ใช้โดยสาขาที่ k'' ผลรวมของกำลังเชิงซ้อนตามสมการ (10.24) นั้นเป็นการรวมผลจากทุกองค์ประกอบในวงจร หากมีองค์ประกอบหนึ่งในวงจรทำหน้าที่จ่ายพลังงานให้กับ วงจร ค่า  $\mathbf{V}_k \mathbf{I}_k^*/2$  ขององค์ประกอบนั้นจะเป็นลบ ซึ่งเป็นการแสดงให้เห็นว่าองค์ประกอบนี้กำลังจ่ายพลัง งานไม่ใช่กำลังใช้พลังงาน ในบางครั้งเราจะเขียนสมการ (10.24) ใหม่ดังนี้

$$\sum_{\text{sources}} \frac{\mathbf{V}_k \mathbf{I}_k^*}{2} = \sum_{\substack{\text{other} \\ \text{elements}}} \frac{\mathbf{V}_k \mathbf{I}_k^*}{2}$$
 (10.25)

เมื่อทุกองค์ประกอบในวงจรมีทิศทางอ้างอิงตามสัญนิยมเครื่องหมายพาสซีฟ ยกเว้นองค์ประกอบแหล่ง จ่าย เมื่อไม่อ้างอิงทิศทางตามสัญนิยมเครื่องหมายพาสซีฟ จะทำให้ค่า  $\mathbf{V}_k\mathbf{I}_k^*/2$  คือกำลังเชิงซ้อนที่จ่าย ออกมาโดยสาขาที่  $k^{\prime\prime\prime}$  ดังนั้นสมการ (10.25) จะหมายความว่ากำลังเชิงซ้อนที่จ่ายโดยแหล่งจ่ายจะเท่ากับ กำลังเชิงซ้อนที่ใช้โดยองค์ประกอบอื่นๆของวงจร

สมการ (10.24) มีนัยว่าทั้งค่าส่วนจริง

$$\operatorname{Re}\left(\sum_{\substack{all\\elements}} \frac{\mathbf{V}_{k} \mathbf{I}_{k}^{*}}{2}\right) = \sum_{\substack{all\\elements}} \operatorname{Re} \frac{\mathbf{V}_{k} \mathbf{I}_{k}^{*}}{2} = 0$$

และส่วนจินตภาพ

$$\operatorname{Im}\left(\sum_{\substack{all \\ elements}} \frac{\mathbf{V}_{k} \mathbf{I}_{k}^{*}}{2}\right) = \sum_{\substack{all \\ elements}} \operatorname{Im} \frac{\mathbf{V}_{k} \mathbf{I}_{k}^{*}}{2} = 0$$

หรือ

$$\sum_{\substack{all\\elements}} P_k = 0$$

และ

$$\sum_{\substack{all\\alamants}} Q_k = 0$$

กล่าวได้ว่าค่ากำลังทั้งสามค่าคือ กำลังเชิงซ้อน กำลังจริง และกำลังรีแอกทีฟจะอนุรักษ์นั่นเอง

**ตัวอย่าง 10**.6 จงตรวจสอบว่าค่ากำลังเชิงซ้อนของวงจร ดังแสดงในรูป Ex 10.6 อนุรักษ์หรือไม่ เมื่อ กำหนด  $v_{_{\scriptscriptstyle S}}=100\cos 1000t$  V

