Active Damping of Vibrations in SCOLE Excited by Slewing

by

Jiguan Gene Lin Control Research Corp. ACTIVE DAMPING OF VIBRATIONS IN SCOLE EXCITED BY MINIMUM-TIME RAPID SLEWING

JIGUAN GENE LIN CONTROL RESEARCH CORPORATION LEXINGTON, MA Ø2173 INTRODUCTION

HIGHLIGHTS OF NUMERICAL RESULTS

MINIMUM-TIME RAPID LOS POINTING SLEW FOR SCOLE

ADAPTATION OF LOS ERROR EXPRESSION

CONCEPT OF "MODAL DASHPOTS"

MODAL-DASHPOT VIBRATION CONTROLLERS
-- DESIGN AND SIMULATION RESULTS

CONCEPT OF "MODAL SPRINGS"

MODAL-SPRING VIBRATION CONTROLLERS
-- DESIGN AND SIMULATION RESULTS

COMBINED USE OF MODAL DASHPIOTS AND SPRINGS -- MORE DESIGN AND SIMULATION RESULTS

CONCLUSIONS

HIGHLIGHTS OF NUMERICAL SIMULATION RESULTS

F0000: BPB SLEW EXCITATION 19,000 U-H on Shuttle, 800 lb on Refle. ACTIVE DAMPING AFTER EXCITATION 5 deglace rate lin ACTIVE DAMPING AFTER EXCITATION F0010:

F0100: ACTIVE STIFFENING DURING EXCITATION F2100:

ACTIVE DAMPING & STIFFENING

DURING EXCITATION

F3100: SAME

F0110: ACTIVE DAMPING & STIFFENING

DURING AND AFTER EXCITATION

F2110: SAME F3110: SAME

F125: BB SLEW ExcITATION; 10,000 lb-ft on Shuttle
25 lb on Reflector

I COPV

268

LINE-OF-SIGHT ERROR--GENERAL VECTOR EXPRESSION

- $\frac{\mathbf{F}\mathbf{R}}{\mathbf{F}} = \mathbf{R}\mathbf{A}\mathbf{Y} \text{ of emission} = \mathbf{R}_{\mathbf{R}} \mathbf{R}_{\mathbf{F}}$ $\frac{\mathbf{F}'\mathbf{R}}{\mathbf{F}} = \mathbf{R}\mathbf{E}\mathbf{F}\mathbf{L}\mathbf{E}\mathbf{C}\mathbf{T}\mathbf{E}\mathbf{D} \text{ RAY} = \mathbf{LOS} \text{ VECTOR} = \mathbf{R}_{\mathbf{LOS}}$
- O $\underline{RF}' = \underline{FR} + 2\underline{RR}'$ SINCE $\underline{FR} + \underline{RF}' = \underline{FF}'$; $\underline{FR} + \underline{RR}' = \underline{FR}'$; $\underline{FF}' = 2\underline{FR}'$
- 0 RR' = $(\underline{RF} \cdot R_{A})R_{A} = -(\underline{FR} \cdot R_{A})R_{A}$
- O IN <u>UN-NORMALIZED</u> FORM:

$$R_{LOS} = RF' = R_R - R_F - 2[(R_R - R_F) \cdot R_A]R_A$$

O TRANSFORMING TO INERTIAL FRAME, FORMING CROSS-PRODUCT WITH TARGET DIRECTION,

$$||\mathbf{D}_{T} \times \mathbf{T}_{1}\mathbf{R}_{LOS}|| = ||\mathbf{D}_{T}|| \cdot ||\mathbf{T}_{1}\mathbf{R}_{LOS}|| \cdot ||\mathbf{sin}|| \mathbf{e}_{LOS}|$$
$$= ||\mathbf{R}_{LOS}|| \cdot ||\mathbf{sin}|| \mathbf{e}_{LOS}|$$

O TAKING PRINCÍPAL VALUE

$$e_{LOS} = \pm \sin^{-1} \left[||\mathbf{p}_{T} \times T_{1}R_{LOS}|| / ||R_{LOS}|| \right]$$

LINE-OF-SIGHT ERROR-- GENERAL MATRIX EXPRESSION

$$0 \qquad R_{\text{A}} = \begin{bmatrix} R_{\text{Ax}} \\ R_{\text{Ay}} \\ R_{\text{Az}} \end{bmatrix} \qquad \text{IN REFLECTOR'S BODY AXES}$$

$$0 \qquad R_{R} - R_{F} = \begin{bmatrix} 18.75 \\ -32.5 \\ -130 \end{bmatrix} - \begin{bmatrix} 3.75 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ -32.5 \\ -130 \end{bmatrix}$$

$$0 (R_{R} - R_{F})^{T} R_{A} = [15 - 32.5 - 130] \begin{bmatrix} R_{Ax} \\ R_{Ay} \\ R_{Az} \end{bmatrix}$$
$$= 15R_{Ax} - 32.5R_{Ay} - 130R_{Az}$$

$$R_{LOS} = \begin{bmatrix} 15 \\ -32.5 \\ -130 \end{bmatrix} -2(15R_{Ax} -32.5R_{Ay} -130R_{Az}) \begin{bmatrix} R_{Ax} \\ R_{Ay} \\ R_{Az} \end{bmatrix}$$

$$= \begin{bmatrix} -2(15R_{Ax} -32.5R_{Ay} -130R_{Az})R_{Ax} +15 \\ -2(15R_{Ax} -32.5R_{Ay} -130R_{Az})R_{Ay} -32.5 \\ -2(15R_{Ax} -32.5R_{Ay} -130R_{Az})R_{Az} -130 \end{bmatrix}$$

$$0 \quad D_{T} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} D_{T} \times \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} T_{1}R_{LOS} \times \\ (T_{1}R_{LOS})_{y} \\ (T_{1}R_{LOS})_{z} \end{bmatrix} \qquad \begin{bmatrix} D_{T} \times T_{1}R_{LOS} \end{bmatrix} = \begin{bmatrix} -(T_{1}R_{LOS})_{y} \\ (T_{1}R_{LOS})_{x} \\ 0 \end{bmatrix}$$

$$||\mathbf{D}_{\mathbf{T}} \times \mathbf{T}_{\mathbf{1}} \mathbf{R}_{\mathsf{LOS}}|| = \sqrt{\left[(\mathbf{T}_{\mathbf{1}} \mathbf{R}_{\mathsf{LOS}})_{\mathsf{x}}\right]^{2} + \left[(\mathbf{T}_{\mathbf{1}} \mathbf{R}_{\mathsf{LOS}})_{\mathsf{y}}\right]^{2}}$$

MORE ON LOS ERROR EXPRESSION --

INCLUSION OF MAST BENDING AND TORSION

$$R_{R} - R_{F} = R_{T} - T_{1}^{T} T_{4} R_{B} - R_{F}$$

WHERE

$$R_{T} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ -\sqrt{130^{2} - BENDx^{2} - BENDy^{2}} \end{bmatrix}$$

$$R_{\mathbf{B}} = \begin{bmatrix} 18.75 \\ -32.5 \\ 0 \end{bmatrix} \qquad R_{\mathbf{F}} = \begin{bmatrix} 3.75 \\ 0 \\ 0 \end{bmatrix}$$

 $BENDx = u_{x}(4) - u_{x}(1)$

BENDy = $u_y(4) - u_y(1)$

$$LOS_{x} = -(T_{1} R_{LOS})_{y} = -T_{1ry}R_{LOS}$$

$$= \left[2T_{4yz}T_{4xz}, -1 + 2T_{4yz}^{2}, -2T_{4yz}T_{4zz}\right]T_{1}\left[R_{T} - R_{F}\right]$$

$$+ T_{4ry}R_{B}$$

LOS_y =
$$(T_1 R_{LOS})_{\times} = T_{1rx}R_{LOS}$$

= $\begin{bmatrix} 1-2T_{4xz}^2, & -2T_{4xz}T_{4yz}, & -2T_{4xz}T_{4zz} \end{bmatrix} T_1 \begin{bmatrix} R_T - R_F \end{bmatrix}$
+ $T_{4rx} T_B$

DYNAMICS:

$$M \frac{d^2 x}{dt^2} + D \frac{dx}{dt} + K x = F$$

FORCE (TORQUE) ACTUATORS AND VELOCITY SENSORS:

$$f = B_F u$$

$$y = C_V \frac{dx}{dt}$$

NORMAL MODAL REPRESENTATION $x = \overline{Q} \eta$:

$$\frac{d^2 \eta}{dt^2} + \Delta \frac{d\eta}{dt} + \Omega^2 \eta = \Phi T B_F u$$

$$y = C_V \Phi \frac{d\eta}{dt}$$

WHERE

$$\Omega^{2} = DIAG[\omega_{1}^{2}] = QT K Q$$

$$\Delta = QT D Q$$

CONTROL LAW FOR CONSTANT-GAIN VELOCITY-OUTPUT FEEDBACK:

FULL-ORDER CLOSED-LOOP SYSTEM EQUATION:

$$\frac{\mathrm{d}^{2} \eta}{\mathrm{d}t^{2}} + (\Delta + \underline{\mathfrak{o}}^{\mathrm{T}} B_{\mathrm{F}} G C_{\mathrm{V}} \underline{\mathfrak{o}}) \frac{\mathrm{d}\eta}{\mathrm{d}t} + \Omega^{2} \eta = \emptyset$$

MODAL-DASHPOT APPROACH

DESIGN TO ACHIEVE INDEPENDENT DAMPING AUGMENTATION FOR EACH MODE IN A REDUCED-ORDER MODEL

LET \$\zi\$ BE DAMPING RATIO DESIRED OF MODELED MODE i

SET
$$\frac{\delta_{\mathsf{M}}^{\mathsf{T}} \; \mathsf{B}_{\mathsf{F}} \; \mathsf{G} \; \mathsf{C}_{\mathsf{V}} \; \delta_{\mathsf{M}}^{\mathsf{M}}}{\delta_{\mathsf{V}}^{\mathsf{M}}} = \mathsf{DIAG} \left[2\zeta_{\mathsf{i}} \omega_{\mathsf{i}} \right]$$
THEN SOLVE FOR FEEDBACK GAIN MATRIX G

$$G = (\overline{2}M^T B_F)^{\dagger} DIAG \left[\underbrace{2\zeta_i \omega_i}_{\mathcal{E}_i^{\#}} \right] (C_{\mathcal{E}_M})^{\dagger}$$

USING THE PSEUDO-INVERSES () DEFINED AS FOLLOWS

$$(\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \ \boldsymbol{B}_{\mathsf{F}})^{\mathsf{T}} = (\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \ \boldsymbol{B}_{\mathsf{F}})^{\mathsf{T}} \left[(\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \ \boldsymbol{B}_{\mathsf{F}}) \ (\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \ \boldsymbol{B}_{\mathsf{F}})^{\mathsf{T}} \right]^{-1}$$

$$(C_{V} \ \underline{\nabla} M)^{\dagger} = \left[(C_{V} \ \underline{\nabla} M)^{T} \ (C_{V} \ \underline{\nabla} M) \right]^{-1} \ (C_{V} \ \underline{\nabla} M)^{T}$$

- NEUER DESTABILIZE LARGE FLEXIBLE SPACE STRUCTURES WHEN THE ACTUATORS ARE CO-LOCATED WITH THE SENSORS
- WITHIN THE REDUCED-ORDER DESIGN MODEL, ANY AMOUNT OF DAMPING DESIRED CAN BE ADDED TO ANY MODE EXACTLY

NUMERICAL ANALYSIS OF VIBRATION MODES

1. LOS ERROR DUE TO UNIT INITIAL MODAL DISPLACEMENT

MODE 1 2 3 4 5 6 7 8 9 10

PEAK .37 .53 .54 .93 1.3 .14 .51 .002 .18 .03

====> 5, 4, 3, 2, 7, 1, 9, 6, 10, 8

2. MODAL DISPLACEMENT DUE TO RAPID POINTING SLEW

MODE 1 2 3 4 5

PEAK 21.6 603 41.2 13.7 0.49

====> 2, 3, 1, 4, 5, 6, 7, ...

WHICH MODES REALLY REQUIRE ACTIVE CONTROL?

NEED AN ALTERNATIVE AND MORE INDICATIVE MEASURE !!!

3. LOS ERROR SOLELY DUE TO EACH MODE EXCITED BY THE SLEW

MODE 1 2

3 4

5

PEAK 3.26 88.6(?) 9.

9.57 6.53

0.33

====> 2, 3, 1, 4 (OR 4, 1), 5, 7, 6, ...

A SOUND MEASURE OF THE SIGNIFICANCE OF EACH MODE: INPUT (SLEW EXCITATION) AND OUTPUT (LOS ERROR) DULY COMBINED

275

LCOPY

-4.75E-01

ETAB RUN TIME = 4.892 pf0000.6ma

LCOPY

3.56E-02

-4.06E-02

ETA10 RUN TIME = 4.892 Pf0000.6na

r conu

LCOPY

ACTUATOR/SENSOR INFLUENCE ON FIRST 10 MODES

Mor	DE ACT. 1 - 3	Mor	DE ACT. 4 - 6	Mc	DE ACT. 7 - 8	M	10DE ACT. 9 - 12
2	0.30019961E-02	. 5	0.36487188E-01	L 2	? 0.14311218E+01	1 2	2 0.10711402E+00
4	0.41220308E-03	4	0.25172627E-01	. 1	0,14061384E+01	. 1	
1	0.40146321E-03	3	0.15999462E-01	. 3	0.81986851E+00) 3	,
3	0.19184369E-03	2	0.15595800E-01	. 4	0.39743480E+00	4	
5	0.11186474E-03	7	0.14711439E-01	. 7	0.30395976E+00	9	
6	0.69881789E-04	1	0.13037169E-01	9	0.25503686E+00	8	
7	0.36829457E-04	9	0.57048416E-02	6	0.21852742E+00	5	0.63191518E-01
8	0.26261532E-04	6	0.34139471E-02	8	0.14623879E+00	10	
9	0.15072107E-04	8	0.12352261E-02	10	0.10801539E+00	6	0.39935779E-01
10	0.13497747E-04	10	0.63637015E-03	5	0.74399590E-01	7	
Mode	SEN. 1 - 3	Mode	SEN. 4 - 6	Mod	E SEN. 7 - 8	Mc 	DDE SEN. 9 - 12
2	0,28690067E-03	. 5	0.34890966E-02	2	0.13466856E+00	2	0.10711402E+00
4	0.39390128E-04	3	0.32387748E-02	1	0.12736945E+00	1	0.10338868E+00
1	0.39113598E-04	4	0.24055073E-02	3	0.12407852E+00	3	0.10171293E+00
3	0.18940789E-04	2	0.15346858E-02	4	0.38158901E-01	4	
5	0.10689848E-04	7	0.14879148E-02	7	0.3679359Æ-01	9	0.68373762E-01
6	0.66779044E-05	1	0 .13531352 E-02	9	0.30879460E-01	8	0.67025743E-01
7	0.35194691E-05	9	0.67911280E-03	6	0.20832075E-01	5	0.6319151&E-01
8	0.25095521E-05	6	0.32624099E-03	8	0.14005536E-01	10	0.46103600E-01
9	0.14402938E-05	8	0.11804001E-03	10	0.10299906E-01	6	0.39935779E-01
10	0.12898448E-05	10	0.60812166E-04	5	0.90737212E-02	7	0.32263912E-01

MODAL-DASHPOT MD. 1

PART 1: LINEAR VELOCITY FEEDBACK GAIN GLUR

2 FORCE ACTUATOR ON REFLECTORS

--> U_7 (X AXIS); U_8 (Y AXIS)

2 LINEAR VELOCITY SENSORS AT REFLECTOR END

--> Y₁₅ (X AXIS); Y₁₆ (Y AXIS)

2 "MODELED MODES" FOR DAMPING AUGMENTATION

MODE 1: $\delta_1^* = 2 \times 60 \% \omega_1 = 2.0964$

--> TIME CONSTANT= 0.95 SEC

MODE 2: $\delta_2^* = 2 \times 67 \% \omega_2 = 2.6389$

--> TIME CONSTANT= 0.76 SEC

PART 2: ANGULAR VELOCITY FEEDBACK GAIN

3 TORQUE ACTUATORS ON REFLECTOR

--> U4 (X AXIS); U5 (Y AXIS); U6 (Z AXIS)

3 ANGULAR VELOCITY SENSORS AT REFLECTOR END

--> Y_{10} (X AXIS); Y_{11} (Y AXIS); Y_{12} (Z AXIS)

3 "MODELED MODES" FOR DAMPING AUGMENTATION

MODE 3: $\delta_3^* = 2 \times 3 \times \omega_3 = 0.3065$

--> TIME CONSTANT= 6.53 SEC

MODE 4: $\delta_4^* = 2X 3\% \omega_4 = 0.4470$

MODE 5: $\delta_5^{\pm} = 2 \times 3 \times \omega_5 = 0.7742$

--> TIME CONSTANT= 2.58 SEC

DYNAMICS:
$$M \frac{d^2 x}{dt^2} + D \frac{dx}{dt} + K x = f$$

FORCE (TORQUE) ACTUATORS AND DISPLACEMENT SENSORS:

$$f = B_F u 9 = C_D \frac{dx}{dt}$$

CONTROL LAW FOR DISPLACEMENT-OUTPUT FEEDBACK:

$$u = -G_D y$$

FULL-ORDER CLOSED-LOOP SYSTEM EQUATION:

$$\frac{d^2 \eta}{dt^2} + \Delta \frac{d\eta}{dt} + (\Omega^2 + \Phi^T)_{BF} G CD \Phi) \eta = 0$$

MODAL-SPRING APPROACH

DESIGN TO AUGMENT STIFFNESS TO EACH MODE
OF A REDUCED-ORDER MODEL

LET WINEW BE DESIRED FREQUENCY FOR MODELED MODE i

SET
$$\Phi_{M}^{T} B_{F} G C_{V} \Phi_{M} = DIAG \left[\omega_{iNEW}^{2} - \omega_{i}^{2} \right]$$

THEN SOLUE FOR FEEDBACK GAIN MATRIX G,

$$G = (\bar{\Delta}_{M}^{T} B_{F})^{\dagger} DIAG[\sigma_{i}] (C_{D} \bar{\Delta}_{M})^{\dagger}$$

USING THE PSEUDO-INVERSES () DEFINED AS FOLLOWS

$$(\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \; \boldsymbol{B}_{\mathsf{F}})^{\dagger} = (\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \; \boldsymbol{B}_{\mathsf{F}})^{\mathsf{T}} \left[(\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \; \boldsymbol{B}_{\mathsf{F}}) \; (\boldsymbol{\delta}_{\mathsf{M}}^{\mathsf{T}} \; \boldsymbol{B}_{\mathsf{F}})^{\mathsf{T}} \right]^{-1}$$

$$(C_{\mathbf{D}} \ \overline{\Phi}_{\mathsf{M}})^{\dagger} = \left[(C_{\mathbf{D}} \ \overline{\Phi}_{\mathsf{M}})^{\mathsf{T}} \ (C_{\mathbf{D}} \ \overline{\Phi}_{\mathsf{M}}) \right]^{-1} \ (C_{\mathbf{D}} \ \overline{\Phi}_{\mathsf{M}})^{\mathsf{T}}$$

PRE-DESIGN ANALYSES -- MODAL SPRINGS

PLACEMENT OF 2-AXIS PROOF-MASS ACTUATORS

- 1 AT REFLECTOR END -- PEAK OF MODES 1, 2, 3
- 1 AT 92FT FROM SHUTTLE (70.77% LENGTH)
 -- PEAK OF MODE 4

FFT AMALYSIS OF BPB SLEW DISTURBANCE

==> SHFIT MODES 2 & 3 UP AND AWAY !!!

AUOID CONTROL SPILLOUER TO MODE 1 !

IGNORE MODE 4

MODAL-SPRING MS. 1

LINEAR DISPLACEMENT FEEDBACK GAIN GLDM

- 2 2-AXIS PROOF-MASS ACTUATORS ON MAST:
 - 1 AT REFLECTOR END
 - --> Ug (X AXIS); U10 (Y AXIS)
- 1 AT 92 FT FROM SHUTTLE (70.77% LENGTH)
 - --> U_{11} (X AXIS); U_{12} (Y AXIS)
- 4 LINEAR DISPLACEMENT SENSORS ON MAST:

CO-LOCATED WITH PROOF-MASS ACTUATORS

--> Y₁₃, Y₁₇ (X AXIS);

Y14, Y18 (Y AXIS)

3 "MODELED MODES" FOR STIFFNESS AUGMENTATION

 $\underline{\mathsf{MODE}\ 1}\colon\ \sigma_1^{\bigstar}=\emptyset$

MODE 2: $\sigma_2^* = (2\pi \times 0.7)^2 - (2\pi \times 0.3136)^2$

= 15.4627

MODE 3: $\delta_3^* = (2\pi \times 0.85)^2 - (2\pi \times 0.812)^2$

= 2.4290

MODAL-DASHPOT MD. 2

LINEAR VELOCITY FEEDBACK GAIN GLUM

- 2 2-AXIS PROOF-MASS ACTUATORS ON MAST:
 - 1 AT REFLECTOR END
 - --> Ug (X AXIS); U10 (Y AXIS)
 - 1 AT 92 FT FROM SHUTTLE (70.77% LENGTH)
 - --> U_{11} (X AXIS); U_{12} (Y AXIS)
- 4 LINEAR VELOCITY SENSORS ON MAST:

CO-LOCATED WITH PROOF-MASS ACTUATORS

--> Y15, Y19 (X AXIS);

Y16, Y20 (Y AXIS)

3 "MODELED MODES" FOR DAMPING AUGMENTATION

MODE 1: $\delta_1^* = 2 \times 2.7 \times \omega_1 = 0.0943$

MODE 2: $\delta_2^* = 2X 2.7\% \omega_2(NEW) = 0.2375$

MODE 3: $\delta_3^* = 2 \times 2.7 \% \omega_3 = 0.2758$

MODAL-DASHPOT MD.3

PART 1: LINEAR VELOCITY FEEDBACK GAIN GLUM

PART 2: ANGULAR VELOCITY FEEDBACK GAIN GAUR

Y14 RUN TIME = 5.000 pf0010.6ma

289

ETAS RUN TIME = 5.000 pf0010.6ma

I CUBA

יעפח ז

291

TENDU

LCOPY

Y14 RUN TIME = 4.892 pf2100.6na

I CUPY

I CODU

I CUPY

I CUBA

ICOPY

300

ETAS RUN TIME = 5.000 pf0110.6ma

TOPV

ETAS RUN TIME = 5.000 pf2110.6na

I CUPY

Y14 RUN TIME = 5.000 pf3110.6na

ETAS RUN TIME = 5.000 pf3110.6na

CONCLUSIONS

GENERAL:

- PROVIDE QUICK AND EFFECTIVE VIBRATION CONTROL
 -- EVEN EXCITED BY MOST VIOLENT, BANG-BANG TYPE
- PHIGH-GAIN PROBLEMS CAN BE AUDIDED BY PROPER SELECTION OF "MODELED MODES" AND PROPER LEVEL OF AUGMENTATION
- MODAL DASHPOTS AND MODAL SPRINGS MOST EFFECTIVE DUDRING THE INITIAL PERIOD OF LARGE VIBRATIONS -- NEED LQG/LTR HIGH-PERFORMANCE CONTROLLERS FOR PRECISION POINTING/STABILIZATION LATER
- LOS ERROR DUE SOLELY TO EACH MODE EXCITED BY THE DISTURBANCE PROVIDES A SOUND MEASURE OF IMPORTANCE OF INDIVIDUAL MODES
 - -- CORRECT SELECTION OF MODES TO CONTROL

SPECIFIC ON THE NUMERICAL SIMULATIONS:

- Q USING MODAL DASHPOTS AFTER EXCITATION GREATLY REDUCED EXCESSIVE LOS JITTER AND MAST BENDING (F0010 US F000 →)
 - -- MAY REQUIRE LARGE CONTROL FORCES AND MOMENTS AND NOT BE VERY PRECISE
 - -- BUT ARE FAST AND EFFECTIVE
- USING MODAL SPRINGS DURING EXCITATION PREVENTED EXCESSIVE LOS JITTER AND MAST BENDING (F0100 VS F0000)
- USING MODAL DASHPOTS WITH MODAL SPRINGS DURING EXCITATION FURTHER REDUCED JITTER AND BENDING (F2100 & F3100 VS F0100)
- PAPPROPRIATE USE OF MODAL DASHPOTS AND SPRINGS BOTH DURING AND AFTER EXCITATION SUPPRESSED LOS JITTER AND MAST BENDING EFFECTIVELY AND QUICKLY (F0110, F2110 & F3110 VS F0000)
- ♠ MORE ACTIVE DAMPING SURING EXCITATION MAY NOT BE BETTER, HOWEVER (F3110 VS F2110)
 - -- MAY REQUIRE MORE CONTROL FORCES AND MOMENTS, SUPPRESS LESS LOS JITTER, LESS MAST BENDING

ISSUES NEEDED TO BE ADDRESSED:

- @ COUPLING OF RIGID-BODY DYNAMICS
- INTEGRATED DESIGN WITH LQG/LTR FOR HIGH PRECISION
 -- MODAL DASHPOTS AND SPRINGS AS INNER LOOP
 TO ENHANCE STABILITY AND ROBUSTNESS
 -- LQG/LTR AS OUTER LOOP TO ENHANCE PRECISION
- P TOTAL TIME FOR THE REQUIRED ACCURACY IN LOS POINTING AND STABILIZATION
- € EVLUATION ON THE LABORATORY APPARATUS