COURSE OUTLINE

Department:	Faculty of Computing			Communio Cloud Con	cation Networks & nputing
Programme:	Computer Science	Class:	Class: BSCS-12 ABC 6 th semester		mester
Course code:	CS-432	Academic Session/Semester: Spring 2025		Spring 2025	
Course name:	Parallel & Distributed Computing	Pre/co requisite (course name and code, if applicable): CS-330 or Equivalent			
Credit hours:	3+1			Equivalent	

Course	This course introduces and familiarizes students with the design and implementation of distributed				
Synopsis	systems. The course will cover both theoretical and practical aspects of distributed systems.				
Course	At the end of the course the students will be able to:				
Learning	1. Describe the theoretical and conceptual foundations of distributed computing				
Outcomes (CLOs)	 2. Differentiate architectural paradigms of an existing parallel & distributed systems 3. Assess distributed applications utilizing required evaluation measures. 4. Develop distributed applications using platforms (Solr or Omnet++) 				
Course	Sec-A: WED CR-14 (10-12PM) & THR (10-11AM)			Labs Sec-A Friday (9-1PM)	
Schedule	Sec-B: THR CR-14 (9-10AM) & FRI (9-11AM)			Sec-B Friday (2-5PM)	
	Sec-C: MON CR-15 (2-3PM) & WED (3-5PM)			Sec-C Thursday (2-5PM)	
Course lecturer	Name	Office	Contact	E-mail	
	Dr. Khurum Shahzad (AB)	A-308	2557	mkshahzad@seecs.edu.pk	
	Dr. Shah Khalid (C)	A-205		shah.khalid@seecs.edu.pk	
Lab Engineer	Mr. Aftab Farooq			aftab.farooq@seecs.edu.pk	

Mapping of the Course Learning Outcomes (CLO) to the Programme Learning Outcomes (PLO), Teaching & Learning (T&L) methods and Assessment methods: (Tentative CLOs/PLOs mapping)

No.	Course Learning Outcomes	PLO (SE)	PLO (CS)	BT Level	Teaching & Learning Methods	Assessment Methods
CLO 1	Describe the theoretical and	PLO-1	NA	C-2	Active learning,	Assignment
	conceptual foundations of			(Understa	Cooperative	Quiz
	distributed computing			nd)	Learning, Blended	MSE
	1 0				Learning	ESE
CLO 2	Differentiate architectural	PLO-2	NA	C-4	Active learning,	Assignment
	paradigms of an existing			(Analyze)	Cooperative	Quiz
	parallel & distributed systems				Learning, Blended	MSE
	ı ,				Learning	ESE
CLO 3	Assess distributed	PLO-4	NA	C-5	Active learning,	Assignment
	applications utilizing required			(Evaluate)	Cooperative	Quiz
	evaluation measures.				Learning, Blended	MSE
					Learning	ESE
CLO 4	Develop distributed	PLO-4	NA	C-6	Active learning,	Assignment
	applications using platforms			(Create)	Cooperative	Quiz
	(Solr or Omnet++)				Learning, Blended	MSE
	(,				Learning	ESE

Details on Innovative T&L practices:

No.	Type	Implementation
1.	Active learning	Conducted through in-class or hands-on activity.
2.	Cooperative learning	Conducted through a design project. Students in a team of 2+ will be given a design project that requires to articulate and design solutions. Compliance with the design specifications needs to be given in the form of written reports.
3.	Blended learning	Conducted through the Learning Management System (LMS) of NUST. All information as well as materials related to teaching and learning activities will be shared with the class through this system. Some formative assessments will be also conducted using this system.

Weekly Schedule:

Week 1	Introduction to distributed system - design goals, classification, and pitfalls	Steen & Tanenbaum Chap -1
Week 2	Distributed system architectures – styles, middleware and layered architectures	Steen & Tanenbaum Chap -2
Week 3	Content Addressable Networks P2P Algorithms Introduction to Network Simulator - Explore state-of-the-art research. Introduction to OMNeT++	Internet + research paper
Week 4	Need of Physical and Logical clocks Lampert Logical Time Algorithms	Steen & Tanenbaum Chap -5
Week 5	Distributed Snapshot Algorithms	Steen & Tanenbaum Chap-8
Week 6	Mutual Exclusion Leader selection Algorithms	Steen & Tanenbaum Chap -5
Week 7	Solr (Distributed IR simulator)	Solr
	<u> </u>	
Week 8	Amazon Web Services (AWS)	AWS book
Week 9	Mid-Semester Break	
Week 10	Hadoop and Big Data	Hadoop Book
Week 11	Introduction to Paxos – Distributed Consensus problem	Steen & Tanenbaum Chap-8 Internet resources/ research paper
Week 12	Fault Tolerance	Steen & Tanenbaum Chap-8
Week 13	Introduction to Message Passing Interface	Steen & Tanenbaum Chap-4 Internet sources
Week 14	Distributed Transactions	Steen & Tanenbaum Chap-8 Internet sources
Week 15	Distributed File System (Google)	DFS book Internet Sources
Week 16	Project Presentation	
Week 17	Project Presentation	

Assessment Methods:

	Theory (Lecture)	Percentage
1	Quizzes (10 marks & 20% - 5 quiz)	10%
2	Assignments (30, 30, 40)	10% (best of
		six)
3	Mid-Term Exam (60 marks)	30%
4	End-Semester Exam (100 marks)	50%
	Lab (hands on)	100
5	Labs (70%) (11-12 labs)	70%
6	Project (30%)	30%
		100

Learning resources:

Textbook

1. M. Van Steen and A.S. Tanenbaum, Distributed Systems, 4th ed., distributed-systems.net, 2023 [request a free copy from HERE].

Reference Books:

- 1. Distributed Systems: Concepts and Design by George Coulouris, Jean Dollimore, and Tim Kindberg, Addison Wesley, 5th edition, 2012.
- 2. Distributed Systems, An algorithmic approach, Sukumar Ghosh, Chapman & Hall/CRC Computer and Information Science Series, ISBN 10:1-58488-564-5
- 3. Parallel and distributed simulation systems, Richard Fujimoto, ISBN 0-471-18383-0
- 4. Any relevant book on Solr, AWS, Hadoop, and Cloud Computing
- 5. Research papers if required.

Grading Policy:

Quiz Policy:

The quizzes will be unannounced and normally last for ten minutes. The question framed is to test the concepts involved in the last few lectures. It is intended to conduct 5 quizzes (best of 6) - no re-take will be permissible, however average marks can be grated based on proper excuse through UG coordinator.

Project Policy:

Students will be required to develop a project during the course which should be completed towards the end of the semester. They will be graded based on project deliverables and presentation at the end. Students will work in a group/team for projects. A group of at most 3 students is recommended.

Assignment Policy:

In order to develop comprehensive understanding of the subject, assignments will be given. Late assignments will not be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment themselves. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee. The questions in the assignment are meant to be challenging to give students confidence and extensive knowledge about the subject matter and enable them to prepare for the exams.

Class participation:

The students are encouraged to participate in class by actively taking part in asking questions from the instructor, sharing his/her thoughts about the topic under discussion, replying to instructor questions, contribute in project presentation and demo. The class participation will be recorded by the instructor and 2% of project marks are assigned to student class participation.

Plagiarism:

SEECS maintains a zero-tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks in assignments and referral to the academic coordination office for disciplinary action.

Aim.