

CSC2626 Imitation Learning for Robotics

Florian Shkurti

Week 7: Shared Autonomy and Human-in-the-Loop Learning

Today's agenda

- Shared autonomy with human in the loop in deep RL
- Hindsight optimization and interactive goal prediction
- Relaxed inverse kinematics for fluid interaction with robot arms

Shared Autonomy via Deep Reinforcement Learning

Siddharth Reddy, Anca Dragan, Sergey Levine UC Berkeley

Presented by Ioan Andrei Bârsan on February 22, 2019 iab@cs.toronto.edu

Key Question

How can a robot **collaborating** with a human infer the human's goals with as few **assumptions** as possible?

Motivation

- **Hard:** Actuating a robot with many DoF and/or unfamiliar dynamics.
- Hard: Specifying a goal formally (e.g., coordinates).
- Easy: Demonstrating the goal indirectly.
 - …let the machine figure out what I want!

Motivation: Unknown Dynamics are Hard for Humans

It can get even worse than Lunar Lander...

www.foddy.net/Athletics.html
or
Google "qwop"

Challenges

- Recall: Want to demonstrate the goal indirectly with minimal assumptions.
 - We expect the computer to start helping while it is still learning.
- Challenge #1: How to actually infer user's goal?
- Challenge #2: How can we learn this online with low latency?

Main Hypothesis

Shared autonomy can improve human performance without any assumptions about:

(1) dynamics,

(2) the human's policy,

(3) the nature of the goal.

Formulation: Reward

not tip, etc.

Formulation

 $R_{\text{feedback}}(s, a, s')$ unknown, but observed

• The authors introduce three variants of their method:

Needs virtual "user"!

- 1. Known goal space, known user policy.
- 2. Known goal space, unknown user policy.
- 3. Unknown goal space, unknown user policy.

The Method

- Based on Q-Learning.
- User input has two roles:
 - 1. A **prior policy** we should fine-tune.
 - 2. A sensor which can be used to decode the **goal**.
- Short version: Like Q-Learning, but execute closest high-value action to the user's input, instead of highest-value action.

The Method (Continued)

Algorithm 1 Human-in-the-loop deep Q-learning

Standard Q-Learning Initialization

Initialize target action-value function Q with weights $\theta^- = \theta$ for episode = 1, M do

for
$$t = 1, T$$
 do

Sample action $a_t \sim \pi_{\alpha}(a_t \mid \tilde{s}_t, a_t^h)$ using equation 3Execute action a_t and observe $(\tilde{s}_{t+1}, a_{t+1}^h, r_t)$ Store transition $(\tilde{s}_t, a_t, r_t, \tilde{s}_{t+1})$ in \mathcal{D}

if \tilde{s}_{t+1} is terminal then

for
$$k = 1$$
 to K do

▶ training loop

$$\pi_{\alpha}(a \mid \tilde{s}, a^h) = \delta \left(a = \underset{\{a: Q'(\tilde{s}, a) \geq (1 - \alpha)Q'(\tilde{s}, a^*)\}}{\operatorname{arg\,max}} f(a, a^h) \right)$$

$$f(a, a^h) = \delta \left(a = \underset{\{a: Q'(\tilde{s}, a) \geq (1 - \alpha)Q'(\tilde{s}, a^*)\}}{\operatorname{arg\,max}} f(a, a^h) \right)$$

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \sum_{j} (y_j - Q(\tilde{s}_j, a_j; \theta))^2$$

Interesting part!

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \sum_{j} (y_{j} - Q(\tilde{s}_{j}, a_{j}; \theta))^{2}$$

end for

end if

Every C steps reset $\hat{Q} = Q$

end for

end for

The Method (Continued)

Algorithm 1 Human-in-the-loop deep Q-learning

end for

```
Standard Q-Learning Initialization
```

...ensuring action is "close enough" to optimal one.

But where is Rfeedback?

- The choice of R_{feedback} determines what kind of **input** we give to the Q- Learning agent in addition to state!
 - Known goal space & user policy → exact goal.
 - Known goal space & unknown policy → predicted goal (pretrained LSTM).
 - 3. Unknown goal space & policy → the user's input (main focus)

Input to RL Agent

Experiments

- Virtual experiments with Lunar Lander in OpenAl gym.
- Physical experiments with an actual drone.

Real-World Experiments

Goal: Land drone on pad facing a certain way.

- Pilot: Human, knows target orientation.
- Copilot: Our Agent, knows where pad is, but not target orientation.

Real-World Results

Important observation: Only n = 4 humans in drone study.

Experimental Results: Assumptions

- Higher alpha means we take any action. $\alpha = 1.0$ means we ignore the pilot.
- Experimented in virtual environment.

Recap: Strengths

- Good results even when making no assumptions about user/goal.
- Writing is very clear!
- Possible applications in many fields, including e.g., prosthetics, wheelchairs.
- Source code released on GitHub!

Recap: Weaknesses

- User studies could have had more participants.
- Could have shown results on more Gym environments.
- Solution does not generalize to sophisticated long-term goals.

Conclusion

- Can do shared autonomy with minimal assumptions!
- Idea: Q-Learning & pick high-value action most similar to user's action.
- Works well in virtual environments (real humans).
- Seems to work well in real environments, too.

Thanks for your attention!

Q&A, if time permits it.

Project website: https://sites.google.com/view/deep-assist

Video of computer-assisted human piloting the lander.

Shared Autonomy via Hindsight Optimization

Teleoperation

Noisy, insufficient degrees of freedom, tedious

Image credit: Javdani RSS2015 talk

Autonomous Assistance

Achieve Goal

Achieve Goal

Predict goal Assist for single goal

[Dragan and Srinivasa 13]
[Kofman et al. 05]
[Kragic et al. 05]
[Yu et al. 05]
[McMullen et al. 14]

. . .

Autonomous Assistance

Achieve Goal

Predict goal Assist for single goal

[Dragan and Srinivasa 13]
[Kofman et al. 05]
[Kragic et al. 05]
[Yu et al. 05]
[McMullen et al. 14]

. . .

Predict goal distribution Assist for distribution

[Hauser 13] This work!

Achieve Goal

Method

System dynamics: x' = T(x, a)

Method

- System dynamics: x' = T(x, a)
- User (MDP) as (X, U, T, C_q^{usr})
 - User policy: $\pi_g^{\mathrm{usr}}(x) = p(u|x,g)$
 - MaxEnt IOC: $C_g^{\mathrm{usr}}: X \times U \to \mathcal{R}$

Method

- System dynamics: x' = T(x, a)
- User (MDP) as (X, U, T, C_q^{usr})
 - User policy: $\pi_g^{\mathrm{usr}}(x) = p(u|x,g)$
 - MaxEnt IOC: $C_g^{\mathrm{usr}}: X \times U \to \mathcal{R}$
- System (POMDP) as $(S, A, T, C^{\text{rob}}, U, \Omega)$
 - Uncertainty over user's goal
 - System state: $S = X \times G$
 - Observation: user inputs ${\it U}$
 - Observation model Ω

$$p(g|\xi^{0\to t}) = \frac{p(\xi^{0\to t}|g)p(g)}{\sum_{g'} p(\xi^{0\to t}|g')p(g')}$$

- Cost function $C^{\text{rob}}: S \times A \times U \rightarrow \mathcal{R}$

Hindsight Optimization

MDP solution:

$$V^{\pi^{\mathrm{r}}}(s) = \mathbb{E}igg[\sum_t C^{\mathrm{r}}(s_t, u_t, a_t) \mid s_0 = sigg]$$
 $V^*(s) = \min_{\pi^{\mathrm{r}}} V^{\pi^{\mathrm{r}}}(s)$

Hindsight Optimization

MDP solution:

$$V^{\pi^{ ext{r}}}(s) = \mathbb{E}igg[\sum_t C^{ ext{r}}(s_t, u_t, a_t) \mid s_0 = sigg]$$
 $V^*(s) = \min_{\pi^{ ext{r}}} V^{\pi^{ ext{r}}}(s)$

POMDP solution:

$$V^{\pi^{\mathrm{r}}}(b) = \mathbb{E} \left[\sum_t C^{\mathrm{r}}(s_t, u_t, a_t) \mid b_0 = b \right]$$
 $V^*(b) = \min_{\pi^{\mathrm{r}}} V^{\pi^{\mathrm{r}}}(b)$

Hindsight Optimization

MDP solution:

$$V^{\pi^{\mathrm{r}}}(s) = \mathbb{E}igg[\sum_t C^{\mathrm{r}}(s_t, u_t, a_t) \mid s_0 = sigg]$$
 $V^*(s) = \min_{\pi^{\mathrm{r}}} V^{\pi^{\mathrm{r}}}(s)$

POMDP solution:

$$V^{\pi^{\mathrm{r}}}(b) = \mathbb{E} \left[\sum_t C^{\mathrm{r}}(s_t, u_t, a_t) \mid b_0 = b
ight]$$
 $V^*(b) = \min_{\pi^{\mathrm{r}}} V^{\pi^{\mathrm{r}}}(b)$

HOP approximation:

$$V^{ ext{HS}}(b) = \mathbb{E}_b \left[\min_{\pi^{ ext{r}}} V^{\pi^{ ext{r}}}(s) \right]$$

= $\mathbb{E}_g[V_g(x)]$

Hindsight Optimization

MDP solution:

$$V^{\pi^{\mathrm{r}}}(s) = \mathbb{E}igg[\sum_t C^{\mathrm{r}}(s_t, u_t, a_t) \mid s_0 = sigg]$$
 $V^*(s) = \min_{\pi^{\mathrm{r}}} V^{\pi^{\mathrm{r}}}(s)$

POMDP solution:

$$V^{\pi^{\mathrm{r}}}(b) = \mathbb{E}\left[\sum_t C^{\mathrm{r}}(s_t, u_t, a_t) \mid b_0 = b\right]$$

$$V^*(b) = \min_{\pi^{\mathrm{r}}} V^{\pi^{\mathrm{r}}}(b)$$

HOP approximation:

$$V^{ ext{HS}}(b) = \mathbb{E}_b \left[\min_{\pi^{ ext{r}}} V^{\pi^{ ext{r}}}(s) \right]$$

= $\mathbb{E}_g[V_g(x)]$

Deterministic problem for each future

Results (video)

Results

Compare with method that predicts one goal, the proposed method has:

- Faster execution time
- Fewer user inputs

User Study

Limitations

- Requires prior knowledge about the world:
 - a dynamics model that predicts the consequences of taking a given
 - action in a given state of the environment;
 - the set of possible goals for the user;
 - the user's control policy given their goal.
- Suitable in constrained domains where where this knowledge can be directly hard-coded or learned.
- Unsuitable for unstructured environments with ill-defined goals and unpredictable user behavior.

References

- Javdani, S., Srinivasa, S. S., & Bagnell, J. A. (2015). Shared autonomy via hindsight optimization. *Robotics science and systems: online proceedings*, 2015.
- RSS2015 talk: "Shared autonomy via hindsight optimization"
- Javdani, S., Admoni, H., Pellegrinelli, S., Srinivasa, S. S., & Bagnell, J. A. (2018). Shared autonomy via hindsight optimization for teleoperation and teaming. *The International Journal of Robotics Research*, 37(7), 717-742.
- ICAPS 2015 talk: "Hindsight Optimization for Probabilistic Planning with Factored Actions"

RelaxedIK: Real-time Synthesis of Accurate and Feasible Robot Arm Motion

Tingwu Wang

University Of Toronto, CSC-2621, Paper Reading Seminar

Recap: Forward Kinematics (FK)

- Forward Kinematics
 - a. A common robotic skeleton is a tree of rigid bones
 - b. The relative Euler angles of all the bones determine the end-effectors
 - . End-effectors? A tool that's connected to the end of a robot arm

Recap: Inverse Kinematics (IK)

- Inverse Kinematics
 - a. The indirect control of forward kinematics makes it hard to use in application
 - i. Achieve certain poses?
 - ii. Achieve certain velocities (reward)?
 - b. We formulate the inverse kinematics function as: , which can be easily written in an analytic form for a simple tree s $|\Theta| = IK(\mathbf{P})$
 - i. Pose contains velocity?
 - ii. Hard to find feasible state space?
 - c. In reality, IK is often treated as an optimization problem

$$\chi_p(\Theta) = ||\mathbf{p}_g - FK(\Theta)||_2$$

- 1. Imitation learning has been studied by different communities
 - a. Motion synthesis in character animation?
 - b. Inverse optimal control?
 - c. Imitation learning?

- 1. Imitation learning has been studied by different communities
- 2. Within the focus of this course, people worked on imitation learning using
 - a. Forward dynamics
 - Shooting method (optimize the actions)

- 1. Imitation learning has been studied by different communities
- 2. Within the focus of this course, people worked on imitation learning using
 - a. Forward dynamics
 - b. Inverse dynamics
 - i. Collocation method (optimize states)

- 1. Imitation learning has been studied by different communities
- 2. Within the focus of this course, people worked on imitation learning using
 - a. Forward dynamics
 - Shooting method
 - b. Inverse dynamics
 - i. Collocation method
 - c. Model-free method
 - i. GAIL
 - d. Motion synthesis with IK
 - i. Today's paper
 - ii. Old school but with new techniques

- 1. Imitation learning using IK
 - a. Basic idea: Using IK to bridge between target pose and agent's angles
 - b. Input: M (consecutive) expert (goal) poses
 - c. Output: M (consecutive) frames of agent's euler joints
 - d. Constraints:
 - i. IK constraints (goal constraints)
 - ii. Between-frames constraints
 - iii. Etc.

- 1. Imitation learning using IK
 - a. Basic idea: minimize the difference of target pose and agent pose
- 2. Direct point-to-point approach
 - a. TRAC-IK (previous state-of-the-art)
 - b. Pose2pose / frame2frame imitation learning
 - i. Ignore most of the constraints between frames
 - c. Problems
 - i. Self-collision
 - 1. Time constraints

1. Self-collision

- 1. Imitation learning using IK
 - a. Basic idea: minimize the difference of target pose and agent pose
- 2. Direct point-to-point approach
 - a. TRAC-IK (previous state-of-the-art)
 - b. Pose2pose / frame2frame imitation learning
 - i. Ignore most of the constraints between frames
 - c. Problems
 - i. Self-collision
 - ii. Singularities

- 1. Singularities
 - a. E.g. Losing a DoF
 - b. Infinite control signals

- 1. Imitation learning using IK
 - a. Basic idea: minimize the difference of target pose and agent pose
- 2. Direct point-to-point approach
 - a. TRAC-IK (previous state-of-the-art)
 - b. Pose2pose / frame2frame imitation learning
 - i. Ignore most of the constraints between frames
 - c. Problems
 - i. Self-collision
 - ii. Singularities
 - iii. Discontinuity

1. Discontinuity

- 1. Imitation learning using IK
 - a. Basic idea: minimize the difference of target pose and agent pose
- 2. Direct point-to-point approach
- 3. Real-time motion planning approach
 - a. Output the (conservative) solutions real-time
 - i. Always meet the control & collision constraints
 - ii. Soft goal constraints
 - b. Problems
 - Goal mistracking

1. Goal mistracking

- 1. Imitation learning using IK
 - a. Basic idea: minimize the difference of target pose and agent pose
- 2. Direct point-to-point approach
- 3. Real-time motion planning approach
 - a. Output the (conservative) solutions real-time
 - i. Always meet the control & collision constraints
 - ii. Soft goal constraints
 - b. Problems
 - i. Goal mistracking
 - ii. Unpredictable behaviors

1. Unpredictable behaviors

 Basic Idea: Using soft (Relaxed) IK loss that considers self-collision and singularity for faster optimization

$$\mathbf{f}(\Theta) = \sum_{i=1}^{k} w_i f_i(\Theta, \Omega_i)$$

- 1. Loss functions
 - a. End-effector position & orientation matching
 - b. Minimize joint velocity, acceleration, jerk
 - c. Self-collision loss (fast)
 - d. Singularity loss

- Self-collision loss
 - a. Common approach: very slow
 - b. Relaxed IK:
 - i. Approximate how imminent the robot is to a collision state
 - Using simulated data to train a network to predict the distances between links

$$col(\Theta) = \sum_{i,j} b * exp(\frac{-dis(l_i, l_j)^2}{2c^2})$$

- Singularity loss
 - a. Kinematic singularities are well studied in robotics
 - b. Relaxed IK:
 - i. Find a metric that can approximate distance to a singularity
 - ii. Jacobian's condition number is used as a proxy distance to singularity
 - 1. Why?

$$\dot{\mathbf{x}} = \mathbf{J}(\Theta)\dot{\Theta}$$

- i. Penalize condition values less than mean b * std
 - 1. Estimate mean, std from simulated data

- 1. Pros
 - a. Much faster and smoother performance
 - i. combining neural network and traditional robotics
 - b. Data driven, less human-engineering
 - i. Novel singularity metric
 - c. Easy to deploy
 - i. Sim2Real

- 1. Pros
- 2. Cons
 - a. No safety / convergence guarantee
 - b. Weak experiments section
 - i. Under-tuned baseline
 - ii. Limited ablation study
 - c. Slower than point2point methods
 - d. Hyper-parameter sensitive

