测定空气的比热容比实验报告

姓名 陆皓喆 **学号** 2211044 **专业** 工科试验班(信息科学与技术) **组别 D 实验时间** 周二上午 4 月 18 日

一. 实验目的

- 1、用绝热膨胀法测定空气的比热容比
- 2、观察热力学过程中状态变化及基本物理规律
- 3、学习用传感器精确测定气体压强和温度的原理与方法

二. 实验原理

用比大气压 P_a 稍高的压力 P_1 ,向玻璃容器压入适量空气,并以与外部环境温度 T_e 相等之时单位质量的气体体积(称为比体积或比容)作为 V_1 ,表示为状态 $I\left(P_1,V_1,T_e\right)\left(P_1>P_a$ 大气压, T_e 为室温)

而后,急速打开放气活塞"B",亦即使其绝热膨胀,使其压强降至大气压 p_a ,并以状态 $II\left(P_a,V_2,T_2\right)$ 表示。

由于是绝热膨胀, $T_2 < T_e$,所以,若再迅速关闭活塞"B",并放置一段时间,系统将从外界吸收热量,且温度重新升高至 T_e ;因为吸热过程中体积 V_2 不变,所以压力将随之增加为 P_2 ,系统稳定后变为状态III (P_2 , V_2 , T_e)。

I->II绝热过程有

 $P_1V_1^{\gamma} = P_aV_2^{\gamma}$ (泊松公式)

I与III等温有

 $P_1V_1 = P_2V_2$ (玻意耳定律)

又因

替换得:

$$\gamma = \frac{\ln \frac{P_1}{P_a}}{\ln \frac{P_2}{P_a}}$$

由于

$$P_1' = P_1 - P_a << P_a \quad P_2' = P_2 - P_a << P_a$$

近似得:

$$\gamma = \frac{p_1'}{p_1 - p_2'}$$

三. 仪器用品

FD-NCD-II空气比热容比测定仪,由机箱(含数字电压表两只)、储气瓶、传感器两只。

四. 实验步骤

- 1. 连接线路,测定环境气压 p_a 及环境温度 T_e ,开启电子仪器部分的电源,预热 20 分钟,调节表 1 至 0mV。
- 2. 熟悉实验装置,正确使用活塞"A""B"及用压力传感器测量容器内外之压力差; 同时进行粗测,以寻求状态 I 到 II 进行的时间,并注意观察物理现象
- 3. 顺序完成 I 到 III 的状态变化过程。平稳地向 "V"内压入适量气体后关闭进气活塞 "A",待系统与外界达到热平衡【表(1)指示稳定】后,记录表(1)示值 p_1' 及表(2)示值 T_1 之后,迅速打开放气活塞"B",待喷气声音停止后立刻关闭;待表(1)指示稳定后,再记录 p_2' 及 T_2 。
- 4. 在 p_1' 数值大致相同的条件下重复实验 10 次,分别代入式 $\gamma = \frac{p_1'}{p_1' p_2'}$ 求出 γ_i 及其算数平均值。

五. 注意事项

1. 注意系统密封性,检查是否漏气;

- 2. 旋转活塞时不可动作过猛,以防活塞折断;
- 3. 压入气体时要平稳,不要使表(1)超量程;
- 4. 严格掌握放气活塞从打开到关闭的时间,否则会给实验结果带来较大的不确定度;
- 5. 注意掌握实验进程,防止因实验周期过长、环境温度过大变化对实验造成的影响;
- 6. 实验完毕后将仪器整理复原,并注意将放气活塞"B"打开,使容器与大气相通;
- 7. 关闭活塞"B"用听声音的方法更可靠一些。

六. 数据处理

 $T_e = 1464.4 \, mV \quad p_a = 0 \, mV$

i	$p_1^{'}/mV$	T_{1i} / mV	p_2' / mV	T_{2i} / mV	$p_1^{'}-p_2^{'}$	$\gamma = \frac{p_1}{p_1 - p_2}$
1	120.3	1463.7	29.0	1463.3	91.3	1. 318
2	118.7	1464.3	28. 1	1463.8	90.6	1. 310
3	127.5	1464.5	27.5	1464. 1	100.0	1. 275
4	122.5	1464.8	27. 2	1464.3	95. 3	1. 285
5	116.0	1465.0	25. 4	1464.6	90.6	1. 280
6	139.5	1465. 2	31.4	1464.7	108. 1	1. 290
7	138.9	1465. 5	31.0	1464.9	107.9	1. 287
8	128. 4	1465.6	27.8	1465.0	100.6	1. 276
9	128. 1	1465. 7	27.5	1465. 1	100.6	1. 273
10	135. 4	1465. 7	29.0	1465.3	106. 4	1. 273
	1. 287					

相对误差:

$$\frac{1.402 - 1.287}{1.402} \times 100\% = 8.2\%$$

答:相对误差为8.2%。

原始数据图片:

1	数据处理				3	2-7 测定空气比热等	学比 • 081
Y. *	f实测数据及	计算结果填	人下表: T_e :	= (Kbk.k;pa=	MU Sp.	THEORY	胜
i	p' ₁ /mV	T _{ti} /mV	p' ₂ /mV	T _{2i} /mV	$(p_1'-p_2')/mV$	$\gamma = \frac{p_1'}{p_1' - p_2'}$	
1	120.3	1468.7	29.0	14633	91-3	1-31763	
2	118		28.	1463.8	906	\$ 1.31015	
3	17.5	1464.5	27.5	1464.1	100.0	1-27500	
4	122.5	1464.8	27.2	1464.3	95.3	1-28541	
5	116.0	14650	25.4	1484.6	90.6	1.28035	
6	139-5	1465-2	3).4	1464.7	1.8.1	1.29.47	
7	138.9	1465 - 1	31.0	1864.9	107.9	1.28730	
8	128.4	1465.6	27.8	1465.7	100.6	1-27634	
9	128-1		7.5	1465-1	100.6	1.17335	
10	135.4	1465-7	79.0	1965.3	106.4	1.28686	The state of the s

七. 考查题

4. 如果从停止打气到读取 $p_1^{'}$,以及从停止放气到读取 $p_2^{'}$ 的时间都很短,那么它们对测量结果产生什么影响?若时间都很长,对测量结果有影响吗?为什么?

答:

从停止打气到读取 p_1' 时间过短:此时传感器示数不稳定,使 p_1' 的测量值偏大, γ 偏小。

从停止放气到读取 p_2' 时间过短:此时温度未升到室温, p_2' 的值偏小, γ 偏小

从停止打气到读取 p_i' 时间过长:装置难免有漏气, p_i' 测量值偏小, γ 偏大。

从停止放气到读取 p_2' 时间过长: p_2' 测量值偏小, γ 偏小。

八. 思考题

3. 现已假定 V_1 、 V_2 分别代表绝热膨胀前、后空气的比容,在此假定下,本实验所考察的热力学系统是什么?若重新假定绝热膨胀后仍留在"V"中的那部分空气作为我们所考察的热

力学系统,对实验有影响吗?在后一种假定下, V_2 及 V_1 将等于什么?(设容器体积为 V)答:状态下储气瓶内的气体,无影响;

$$V_1 = V$$
; $V_2 = \frac{p_1}{p_a}V$