## Projeto: Capstone de análise preditiva

# Tarefa 1: Determine formatos de loja para as lojas existentes

## 1. Qual é o número ideal de formatos de loja? Como você chegou a esse número?

Inicialmente foi realizado o cálculo da importância das categorias para cada loja. Depois do cálculo, foi rodado um *K-Centroids Diagnostics* para determinar o número ideal de grupos. O resultado pode ser visto abaixo.

## **Adjusted Rand Indices**



#### Calinski-Harabasz Indices



Pelo que observamos acima, a opção com 3 grupos aparenta ser a mais indicada, apresentando maior estabilidade (maior mediana Rand) e compacidade / separação (maior mediana CH).

## 2. Quantas lojas enquadram-se em cada formato?

| Cluster Information | on:  |              |              |            |
|---------------------|------|--------------|--------------|------------|
| Cluster             | Size | Ave Distance | Max Distance | Separation |
| 1                   | 23   | 2.320539     | 3.55145      | 1.874243   |
| 2                   | 29   | 2.540086     | 4.475132     | 2.118708   |
| 3                   | 33   | 2.115045     | 4.9262       | 1.702843   |

# 3. Com base nos resultados do modelo de agrupamento, de que forma os *clusters* diferem um do outro?

|   | Sum_Dry_Grocery | Sum_Dairy               | Sum_Frozen_Food | Sum_Meat  | Sum_Produce | Sum_Floral | Sum_Deli  |
|---|-----------------|-------------------------|-----------------|-----------|-------------|------------|-----------|
| 1 | 0.327833        | -0.761016               | -0.389209       | -0.086176 | -0.509185   | -0.301524  | -0.23259  |
| 2 | -0.730732       | 0.702609                | 0.345898        | -0.485804 | 1.014507    | 0.851718   | -0.554641 |
| 3 | 0.413669        | -0.087039               | -0.032704       | 0.48698   | -0.53665    | -0.538327  | 0.64952   |
|   | Sum_Bakery      | Sum_General_Merchandise |                 |           |             |            |           |
| 1 | -0.894261       | 1.208516                |                 |           |             |            |           |
| 2 | 0.396923        | -0.304862               |                 |           |             |            |           |
| 3 | 0.274462        | -0.574389               |                 |           |             |            |           |



Tamanho representa importância percentual de um grupo para a soma dos absolutos de uma categoria.

- Grande distância entre o Cluster 2 e os outros na categoria Produce
- Grande distância entre o Cluster 1 e os outros na categoria General Merchandise
- Grande distância entre o Cluster 3 e os outros na categoria Bakery
- 4. Envie um dashboard do Tableau (salvo como um arquivo público do Tableau) que mostre a localização das lojas e utilize cores para mostrar os *clusters* e tamanhos para mostrar as vendas totais.



# Tarefa 2: Formato das lojas novas

1. Qual metodologia você usou para prever o melhor formato para as lojas novas?

Apesar de o Modelo de Floresta e o Modelo Boosted apresentarem a mesma acurácia geral, o Modelo Boosted acaba se mostrando como melhor por apresentar um escore F1 maior e possuir maior acurácia nos grupos com maior rendimento médio.

| Model Comparison Report |          |        |            |            |            |
|-------------------------|----------|--------|------------|------------|------------|
| Fit and error measures  |          |        |            |            |            |
| Model                   | Accuracy | F1     | Accuracy_1 | Accuracy_2 | Accuracy_3 |
| FM                      | 0.8235   | 0.8251 | 0.7500     | 0.8000     | 0.8750     |
| ВМ                      | 0.8235   | 0.8543 | 0.8000     | 0.6667     | 1.0000     |
| DT                      | 0.7059   | 0.7327 | 0.6000     | 0.6667     | 0.8333     |

2. Quais são as três variáveis mais importantes que ajudam a explicar a relação entre os indicadores demográficos e o formato das lojas?



- 1. Age0to9
- 2. HVal750kPlus
- 3. EdHSGrad

3. Em que formato cada uma das 10 lojas novas se enquadra? Preencha a tabela abaixo:

| N° da loja | Segmento |
|------------|----------|
| S0086      | 1        |
| S0087      | 2        |
| S0088      | 3        |
| S0089      | 2        |
| S0090      | 2        |
| S0091      | 1        |
| S0092      | 2        |
| S0093      | 1        |
| S0094      | 2        |
| S0095      | 2        |

## Tarefa 3: Prevendo a vendas de produtos

1. Qual tipo de modelo, ETS ou ARIMA, você usou para cada previsão? Use a notação ETS (a, m, n) ou ARIMA (ar, i, ma). Como você chegou a essa decisão?



Observando os gráficos de decomposição e de autocorrelação acima, percebemos que a série apresenta sazonalidade com ligeiro decremento, não possui tendência aparente e erro inconstante. Com isso em mente, foram testados diversos modelos ETS e ARIMA, ficando entre os 3 abaixo.

| Modelo                   | RMSE      | MASE | AIC   |
|--------------------------|-----------|------|-------|
| ETS (M,N,M)              | 760,267   | 0.38 | 1,283 |
| ARIMA (1,1,0)(1,1,0)[12] | 1,935,636 | 1.06 | 848   |
| ARIMA (1,0,0)(1,1,0)[12] | 1,050,239 | 0.55 | 880   |

Com base no resultado da validação contra a amostra de retenção, podemos concluir que o modelo **ETS (M,N,M)** se mostra como a melhor opção para o caso por apresentar o maor ganho em relação ao método *naive* e possuir menor desvio padrão empírico.

2. Envie um dashboard do Tableau (salvo como um arquivo público do Tableau) que inclua uma tabela e um gráfico das três previsões mensais; um para as existentes, um para as novas e um para todas as lojas. Nomeie a aba no arquivo "Tarefa 3" do Tableau.

| Mês    | Novas        | Existentes    |
|--------|--------------|---------------|
| jan/16 | 2,587,450.85 | 21,539,936.01 |
| fev/16 | 2,477,352.89 | 20,413,770.60 |
| mar/16 | 2,913,185.24 | 24,325,953.10 |
| abr/16 | 2,775,745.61 | 22,993,466.35 |
| mai/16 | 3,150,866.84 | 26,691,951.42 |
| jun/16 | 3,188,922.34 | 26,989,964.01 |
| jul/16 | 3,214,745.65 | 26,948,630.76 |
| ago/16 | 2,866,348.66 | 24,091,579.35 |
| set/16 | 2,538,726.85 | 20,523,492.41 |
| out/16 | 2,488,148.29 | 20,011,748.67 |
| nov/16 | 2,595,270.39 | 21,177,435.49 |
| dez/16 | 2,573,396.63 | 20,855,799.11 |

