Явный метод простой итерации

Рассмотрим систему ЛАУ

$$Ax = f, \det(A) \neq 0. \tag{7.1}$$

Преобразуем исходное уравнение (7.1), для этого домножим обе части (7.1) на невырожденную матрицу $\tau_{k+1}B_{k+1}^{-1}$: $\tau_{k+1}B_{k+1}^{-1}Ax = \tau_{k+1}B_{k+1}^{-1}f$. К левой части добавим и вычтем x:

$$x - x + \tau_{k+1} B_{k+1}^{-1} A x = \tau_{k+1} B_{k+1}^{-1} f \implies x = (E - \tau_{k+1} B_{k+1}^{-1} A) x + \tau_{k+1} B_{k+1}^{-1} f.$$

Обозначим $H_k = (E - \tau_{k+1} B_{k+1}^{-1} A)$, $\phi_k = \tau_{k+1} B_{k+1}^{-1} f$ и получим так называемый явный нестационарный двухслойный метод простой итерации: $x^{(k+1)} = H_k x^{(k)} + \phi_k$. Если $B_{k+1} = B$ и $\tau_{k+1} = \tau$, то получим явный стационарный двухслойный метод простой итерации, который имеет вид

$$x^{(k+1)} = Hx^{(k)} + \varphi. (7.2)$$

Далее будем рассматривать явный стационарный метод простой итерации. Имеют место следующие теоремы.

Теорема 1. Необходимым и достаточным условием сходимости метода простой итерации (7.2) при любом начальном векторе $x^{(0)}$ к решению x^* системы $x = Hx + \varphi$ является требование, чтобы все собственные значения матрицы H были по модулю меньше единицы: $|\lambda(H)| < 1$.

Теорема .2. Для сходимости явного метода простой итерации достаточно, чтобы какая-либо из норм матрицы H была меньше единицы.

Теорема 3. Пусть $||H|| \le q < 1$, тогда для метода простой итерации (7.2) верны следующие оценки погрешности:

1)
$$\|x^{(k)} - x^*\| \le \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|$$
 (апостериорная);

2)
$$\|x^{(k)} - x^*\| \le \frac{q^k}{1-q} \|x^{(1)} - x^{(0)}\|$$
 (априорная).

Априорная оценка из теоремы 7.3 позволяет заранее подсчитать число итераций k, достаточное для получения решения x^* с заданной точностью при выбранном начальном приближении $x^{(0)}$. Для этого необходимо найти наименьшее целое решение неравенства $\frac{q^k}{1-q} \|x^{(1)} - x^{(0)}\| \le \varepsilon$ относительно переменной k. Апостериорной же оценкой удобно пользоваться непосредственно в процессе вычислений и останавливать вычислительный процесс, как только выполнится неравенство $\|x^{(k+1)} - x^{(k)}\| \le \frac{1-q}{q} \cdot \varepsilon$.

Отметим, что из выполнения неравенства $\|x^{(k+1)}-x^{(k)}\| \le \varepsilon$ будет гарантированно следовать выполнение неравенства $\|x^{(k)}-x^*\| \le \varepsilon$ только в том случае, когда $\|H\| \le q \le 0.5$. На практике вычисления по формуле (7.2) прекращают, когда $\|x^{(k+1)}-x^{(k)}\| < \varepsilon$ (для $\|H\| \le 0.5$) или когда $\|x^{(k+1)}-x^{(k)}\| < \varepsilon_1$, где $\varepsilon_1 = \frac{1-\|H\|}{\|H\|} \cdot \varepsilon$ (для $\|H\| \approx 1$).

Запишем алгоритм явного метода простой итерации решения системы ЛАУ $x = Hx + \varphi$ в виде, удобном для компьютерной реализации:

- 1) q := ||H||;
- 2) $xs := \varphi$;
- 3) $xn := H \cdot xs + \varphi$;
- 4) пока $\frac{q}{1-q} \cdot ||xn xs|| \ge \varepsilon;$
 - 5) xs := xn;
 - 6) $xn := H \cdot xs + \varphi$;
- 7) Вернуть хп.

Достоинства явного метода простой итерации: самоисправляемость; простота реализации на компьютере; возможность применения для систем ЛАУ больших размерностей с разреженными матрицами.

Расчётное задание

Рассмотрим систему ЛАУ Ax = f, где матрица A имеет вид

$$a_{ij} = \begin{cases} \frac{1}{i+j+v}, & i \neq j \\ 100+v, & i = j \end{cases}, i, j = \overline{1,n}$$

v — номер варианта, n = 10, а правая часть f определяется вектором случайных значений между a и b (значения чисел a и b определяются преподавателем при проверке работы программы).

Написать программу решения системы ЛАУ Ax = f методом простой итерации вида $x^{(k+1)} = H \cdot x^{(k)} + \varphi, \ \ H = E - \tau A$.

Нарисовать график убывания погрешности $\frac{q}{1-q}\|xn-xs\|$ на каждой итерации для различных параметров $\tau \in \{\frac{1}{2\|A\|}, \frac{1}{4\|A\|}, \frac{1}{8\|A\|}\}$.

Точность взять равной $\varepsilon = 10^{-3}$.

