ASYNCHRONOUS COUNTER(RIPPLE COUNTER)

Counters:

- Register that goes through prescribed sequence of states upon the application of input pulses is called a counter.
- There are 2 types of counters:
 - Asynchronous counters (Ripple counters): Clock inputs are triggered by transitions of other flipflop.
 - Synchronous counters: The clock inputs of all flip flops receive common clock.

MOD 2 or divide by 2 Counter using T ff

Asynchronous counters (Ripple counters)

Design a 2 – bit (MOD 4/ Divide by 4) asynchronous UP counter using negative edge triggered JK flip flops.

MODZ

MODZ

MODZ = MODZ

Ton

Ton 0-71-72-3 CLK CIK 1 fails=for). 01 10 00

Asynchronous counters (Ripple counters)

■ Design a 2 – bit (MOD 4/ Divide by 4) Asynchronous UP counter using negative edge triggered JK flip flops.

■ Design a 2 – bit Asynchronous UP counter using positive edge triggered JK flip flops.

■ Design a 2 – bit Asynchronous UP counter using negative edge triggered T flip flops.

■ Design a 2 – bit Asynchronous UP counter using positive edge triggered T flip flops.	— Decime of the Asymphosphus IID counter using positive adaptations and This flags
	■ Design a 2 – bit Asynchronous OP counter using positive edge triggered 1 lilp liops.

■ Design a 3 – bit (MOD 8/Divide by 8) Asynchronous UP counter using negative edge triggered D flip flops.

■ Design a 3 – bit Asynchronous UP counter using positive edge triggered D flip flops.

Praw the circuit in your note book