ECE/CS 584: Verification of Embedded Computing Systems Model Checking Timed Automata

Sayan Mitra

Lecture 09

Reachability analysis: Integer Timed Automaton

Sayan Mitra
Verifying cyberphysical systems
mitras@illinois.edu

This course so far

- A modeling framework
 - Discrete and continuous dynamics
 - Compositional (modular) modeling
- General proof techniques for proving invariants

Next

- Focus on specific classes of Hybrid Automata for which safety properties (invariants) can be verified completely automatically
 - Alur-Dill's Timed Automata[1] (Today)
 - Rectangular initializaed hybrid automata
 - Linear hybrid automata
 - **—** ...
- Later we will look at other types of properties like stability, liveness, etc.
- We will introduce notions of abstractions and invariance are still going to be important

[1] Rajeev Alur et al. <u>The Algorithmic Analysis of Hybrid Systems</u>. Theoretical Computer Science, colume 138, pages 3-34, 1995.

Today

- Algorithmic analysis of (Alur-Dill's) Timed Automata[1]
 - A restricted class of what we call hybrid automata in this course with only clock variables

[1] Rajeev Alur and David L. Dill. <u>A theory of timed automata</u>. Theoretical Computer Science, 126:183-235, 1994.

Clocks and Clock Constraints

- A clock variable x is a continuous (analog) variable of type real such that along any trajectory τ of x, for all $t \in \tau$. dom, $(\tau \downarrow x)(t) = t$.
- For a set X of clock variables, the set $\Phi(X)$ of integral clock constraints are expressions defined by the syntax:

```
g := x \le q \mid x \ge q \mid \neg g \mid g_1 \land g_2
where x \in X and q \in \mathbb{Z}
```

- Examples: x = 10; $x \in [2, 5)$; true are valid clock constraints
- What do clock constraints look like?
- Semantics of clock constraints [g]

Integral Timed Automata

- Definition. A integral timed automaton is a HIOA
 - $\mathcal{A} = \langle V, \Theta, A, \mathcal{D}, \mathcal{T} \rangle$ where
 - $V = X \cup \{l\}$, where X is a set of n clocks and l is a discrete state variable of finite type k
 - A is a finite set
 - $-\mathcal{D}$ is a set of transitions such that
 - The guards are described by clock constraings $\Phi(X)$
 - $\langle x, l \rangle a \rightarrow \langle x', l' \rangle$ implies either x' = x or x = 0
 - \mathcal{T} set of clock trajectories for the clock variables in X

Example: Light switch

```
Math Formulation
automaton Switch
     variables
     internal x, y:Real := 0, loc: {on,off} := off
     transitions
     internal push
            pre x \ge 2
            eff if loc = on then x := 0
              else x,y := 0; loc := off
     internal pop
            pre y = 15 \wedge loc = off
            eff x := 0
     trajectories
            invariant loc = off => y \le 15
            evolve d(x) = 1; d(y) = 1
```

Description

Switch can be turned on whenever at least 2 time units have elapsed since the last turn on. Switches off automatically 15 time units after the last on.

Control State (Location) Reachability Problem

- Given an ITA, check if a particular (discrete) control state is reachable from the initial states
- Why is control state reachability (CSR) good enough?
- This problem is decidable [Alur Dill]
- Key idea:
 - Construct a finite automaton that is a time-abstract bisimilar to the ITA (behaves identically with respect to control state reachability)
 - Check reachability of FSM

An equivalence relation with a finite quotient

- Under what conditions do two states x_1 and x_2 of the automaton \mathcal{A} behave identically with respect to control state reachability (CSR)?
 - When do they satisfy the same set of clock constraints?
 - When would they continue to satisfy the same set of clock constraints?
- $\mathbf{x}_1.loc = \mathbf{x}_2.loc$ and
- \mathbf{x}_1 and \mathbf{x}_2 satisfy the same set of clock constraints
 - For each clock y int($x_1.y$) = int($x_2.y$) or int($x_1.y$) $\geq c_{\mathcal{A}y}$ and int($x_2.y$) $\geq c_{\mathcal{A}y}$. ($c_{\mathcal{A}y}$ is the maximum clock guard of y)
 - For each clock y with $\mathbf{x}_1.y \leq c_{\mathcal{A}_{\mathcal{V}}}$, $\mathrm{frac}(\mathbf{x}_1.y) = 0$ iff $\mathrm{frac}(\mathbf{x}_2.y) = 0$
 - For any two clocks y and z with $x_1.y \le c_{\mathcal{A}y}$ and $x_1.z \le c_{\mathcal{A}z}$, frac $(x_1.y) \le frac(x_1.z)$ iff $frac(x_2.y) \le frac(x_2.z)$
- Lemma. This is a equivalence relation on val(V) the states of \mathcal{A}
- The partition of val(V) induced by this relation is are called clock regions

What do the clock regions look like?

Example of Two Clocks

$$X = \{y,z\}$$

$$c_{\mathcal{A}y} = 2$$

$$c_{\mathcal{A}z} = 3$$

Complexity

• Lemma. The number of clock regions is bounded by $|X|! 2^{|X|} \prod_{z \in X} (2c_{\mathcal{A}z} + 2)$.

Region Automaton

- ITA (clock constants) defines the clock regions
- Now we add the "appropriate transitions" between the regions to create a finite automaton which gives a visits the same set of states (but timing information is lost) ITA with respect to control state reachability
 - Time successors: Consider two clock regions γ and γ' , we say that γ' is a time successor of γ if there exits a trajectory of ITA starting from γ that ends in γ'
 - Discrete transitions: Same as the ITA

Time Successors

The clock regions in blue are time successors of the clock region in red.

Example 1: Region Automata

ITA start $\longrightarrow l_1$ $x \ge 2 :: x := 0$

Corresponding FA

Example 2

Clock Regions

Corresponding FA

Drastically increasing with the number of clocks

Summary

- ITA: (very) Restricted class of hybrid automata
 - Clocks, integer constraints
 - No clock comparison, linear
- Control state reachability
- Alur-Dill's algorithm
 - Construct finite bisimulation (region automaton)
 - Idea is to lump together states that behave similarly and reduce the size of the model
- UPPAAL model checker based on similar model of timed automata