W45 C.2

Water Resource Report 45

DEC 24 1979

GROUNDWATER RESOURCES OF THE DUBOIS AREA, CLEARFIELD AND JEFFERSON COUNTIES, PENNSYLVANIA

1 ---

Evan T. Shuster

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF ENVIRONMENTAL RESOURCES
BUREAU OF

TOPOGRAPHIC AND GEOLOGIC SURVEY

Arthur A. Socolow, State Geologist

IN THE DUBOIS AREA, JEFFERSON, CLEARFIELD, AND ELK COUNTIES, PI

BYEVAN T. SHUSTER 1979

John G. Kuchinski, Albert E. VanOlden, and Lajos J. Balogh, Cartographers

BLE AND TO THE TOP OF SALT WATER ELD, AND ELK COUNTIES, PENNSYLVANIA

COMMONWEALTH OF PENNSYLVANIA

HUSTER

20 FEET WITH

EXPLANATION

MEDIAN DEPTH (FEET)	RANGE OF THE MAJORITY OF WATER LEVELS BELOW LAND SURFACE (FEET)	DESCRIPTION OF SETTINGS
2-1/2	Flowing wells to 9	This category of water levels is generally found along valley bottoms that have per manent streams but lack floodplains. Flowing wells are common near the axes of major synclines.
15	10 to 21	These are the water levels in wells located on major floodplains, the great participates of deep college, broads aparticipate and participates of the property
40	25 tu 54	There water levels are found beneath fairly steep alopes, especially, the middle and upper stopes of valleys. Ferched water conditions and minor springs and seeps are occasionally water here meas. The depth to water here meas the depth is observed to be a seen of the steep and the
73	55 to 120	These depths to water are found under to batted hilltops and other high areas where recharge to the groundwater is limited. These depths are to the production in areas where deep occasionally encounter water depths may be under the production of water available from these is usually bimited.

SYMBOLS

In feet above mean sea level; contour interval 200 feet. Depth to salt water for a specific site can be determined by subtracting this number from the surface

DEPTH TO WATER TABLE

DEPTH TO WATER TABLE

The water table is defined as the surface below which essentially all of the bedrock opening, are saturated with groundwater. Above the water table both are and water may be found in these bedrock openings, it is the portion of a well below the water table both are not water may be found in these bedrock openings, it is the portion of a well below the water table that provides the water for well use.

The state of the post of the water as it characterized by atternating the post of the post of the water of the post of

SALT WATER

In the adimensity rock expense of the Dulies area, salt water underlies the fixeh water. The depth of the salt water below the ground surface varies from about 600 feet to 1,100 feet. The regional factors influencing the depth to salt water in the folded rocks of the Dulies area are the geologies structure and the roopprays. This deep salt water is probably comate water (sate-field). Comate water is well in the probably comate water (sate-field). Comate water is very highly mineralized, reflecting the saligness of the original sea water and the millions of years this water has been in contact with the sediment. The contours represent electrons of the top of the sall water mass in feet above mean sea level; the difference is the first of the probable of the sall water mass in feet above mean sea level; the contours represent electrons on the sallowest sall water encountered. To determine the approximate departs of control and the sallowed in the

MAP SHOWING GROUNDWATER YIELDS AND RELATED FEATURES IN THE DUI JEFFERSON, CLEARFIELD, AND ELK COUNTIES, PENNSYLVANIA

BY EVAN T. SHUSTER

1979

- 212

2000 CFT.

Geology of the Haren, Falls Creek, Reynoldstille, and Dulbon quadrangles by A. D. Glover and W. A. Bragonier P.G. Gool, Survey, 4th. ser., Allas 64, 1973; peology of the Sabula and Penfield quadrangles by T. M. Berg and A. D. Glover, Ph. Geol. Survey, 4th. ser., Allas 7-Ash, 1976); geology of the Luthersburg and Elliott Park quadrangles by W. E. Edunds and T. M. Berg P.B. Geol. Survey, 4th

Albert E. VanOlden, Virginia M. Milewsks, and Lajos J. Balogh, Cartographers.

CATED FEATURES IN THE DUBOIS AREA, COUNTIES, PENNSYLVANIA

ISTER

IONS

EXPLANATION

	EXPLAI	VATION		
GEOLOGIC UNIT	GENERAL CHARACTER OF THE ROCK	DOMESTIC WELLS CSTIMATED "IDIAN FOR MINUTE AND	PUBLIC AND INDUSTRIAL WELLS VIELD, IN GALLONS RANGE OF VIELDS	WATER QUALITY
Elliott Fark Formalion/ Jurgoon Sandatone, or Pottsville Group Pep/Mpb or Pp)	Elliott Park Formation/Burgoon Sandatone Parkagully medium-grained sandatone, Just also makes now what Captone, and cost a Captone, and cost a Captone Sandatone, and cost a Captone Sandatone, and captone Sandatone, medium to coarse-grained sandatone, undudes sery coarse, quantitose conglomerate in lower 75 Icel Also includes some shale, decontinuous coal, and claystone. Average Huckness is 1 lind feet.	50 16-10	150 50-400+	Fifty-five percent of the wells are reported to produce water of good quality. Generally, the shallow well produce water of farty good quality, the deep wells that pass through overlying geologic units tend to produce water having a somewhat proore quality as a result of mercases iron content.
Clearfield Creek/ Curwensville Formations (Pec/Pev)	Sandstone, shale, and coal are the major rock types. The average thickness is 125 feet	20 7-60	100 30-300+	Eighty percent of the wells a reported to produce water having high fron content.
Lower Mahoning	This unit often is a thick productive	5 o un.	87 20-200	Sixty percent of the wells product water of good quality.
Samescope [Mp)	With a process accounts.	v ant	: 20-200	i water of good quality.
Allegheny Group excluding the Clearfield Creek Formation (Pa)	Doble appells and	2-10	25 28-150	Sixty-seven percent of the wells in the unit are reported to produce water good quality. Mining solivities ofter cause a deterioration of the quality

GROUNDWATER RESOURCES OF THE DUBOIS AREA, CLEARFIELD AND JEFFERSON COUNTIES, PENNSYLVANIA

by Evan T. Shuster

INTRODUCTION

The purpose of this study is to determine the quantitative and purpose of the mean strates of the mean surface geologic units, secause the Dullois area is expected to undergo significant growth in the near future, the relative potential of these units as source to the second desire in the property of the property

of The point A are cover eight 7-1/2 minute forecastic quadranty. In Heave, Fall Ereck, Hernodoville, Disthon, Sabula, Penfelel, Latherhaug, and Ellott Park quadrangle. The are modeled gette of Geferfield and Jefferion Gonalise and a very small portion of 16-000 Township in Fix County, for Creatfield County Heave, 16-000 and 16-000 Township in Fix County, for Creatfield County Heave, 16-000 and a real fallon, Sandy, Junon, Pine, Heave, 16-000 and a real fallon, Sandy, Junon, Pine, Heave, 16-000 and 16

The follows findaments and agencies used in the completion of this state! High Konderf, Gorge Schutz, and David O'llari of he Wajer like with the state of the st

WELL YIELD:

The principal rock types in the Dulina area are sandstone and complained to Mole, days and substance Coal and limestone are site present, but or sit only in a substance Coal and innestone are site of the present to the coal and the substance of the coal and the coa

The well yield values were mathematically converted to undisate the yield, in caliban per mante, of each float of rock thickness providing water to the well. The complicating effects of see construction and variable pumping rates are thus manuned Because the overriding hydrologic consideration is the presence of sindistone each of the grobe formalions was evaluated according to the percentage of sandsone within that formation. Hydrogeologic unit, were determined by grouping hydrologically vanishing geologic formations. These have been shown on the map, and the hydrologic control of the property of the percentage of the property of

two converses was become known and water wells comes from two converses which will be within the rock mass. The most common the page is the special between the individual grants the make up the rock. These most between the individual grants the post expact from a hybridge called pure spaces. The usefulness of post expact from a hybridge called the effective proteity, For standardowns in the Dullon star in his will transper from 3 to 14 percent of the total rock volume. For shall and other three grained rocks the range is more the 6.0 to 5 percen pure spaces in the finegratined rocks the range is more than 6.0 to 5 percen present grained proteins of the protein of the finegratined rocks such as shalle are exceeding small. The water contained in them is difficult to remove.

The other 17pe of the willin the bedrock that provides were owells as the ana where the fractives and partings occur. These catures are found in all types of rock libroughout the rock mass practures (red to be more open near the surface and become lighter near the surface and become lighter than the contractive of t

STRUCTURE

The geologic structure of the DuBois area is shown by the structure constour lines, which are lines of equal elecation of selectic key rock layers for beds. The structure contour lines did not he lopography of the surface of these beds. In most instances in weiter hospotraphy of the surface of these beds. In most instances in weiter nock has the same general orientation. The key beds used it oldermine the structure are the base of the Lower Kitanning no 3 or "B₁" coal, which was used for most of the area; the kas of the Middle Kitanning or O' coal; and the base of the Lower Foreport or "D" coal. The Middle Kitanning coal is located in average of 60 feet above the Lower Kitanning coal.

Geologic structure influences the directions and rates of roundwater flow. The typical pattern of granulswater flow consists. I movement showward and outward from the high elevation flutting and plasses arreats, and upward and inward toward the tream valleys. This flow occurs more readily when the flow direction is parallel to the badrock dup than when the flow direction in poposition to the dip. Thus the major component of flow is generally is the direction of the bedrock dup.

FRACTURE TRACES

Practuring in bedrock plays a major role in the local movement and storage of geometraler. In brittle rocks such as sandstore fractures are usually well defined, extensive vertically and laterally and open. In the more plastic rocks, such as stake and classyon and open. In the more plastic rocks, such as stake and classyon the fractures are smaller and lighter. Unfortunately, fractures may be the only effective source of water from shales; the pore space are too small to be hydrologically beneficial.

are too small to be hydroogenary occurrence.

The fractures in bottock westlift from the set until stress in the The fractures of the seem in almost the court per rackseparation from the seem in almost the separation from the section of the separation from the section of the section from the section of the section from the section fro

ck has to the Seudards of the DaBon area were mapped on The maps' facture traces in the DaBon area were mapped on trail pholographs and trapposed to the map. Wells drilled on acture traces may almost aneather than similar wells drilled in a adjacent rock mass. The interestions of fracture traces may would even more water to the wells drilled on them. The fracturing sociated with fracture to not well drilled on them. The fracturing considerable driple, the nature traces also may represent roof considerable driple, the nature traces also may represent roof

DEEP MINES

In areas where deep mining of ecals has taken place, the structure contours will help to determine the direction of mine-drininge flows and, when combined with the topographic contours on the map, will help local mine-drining elactarpe points. The deep-muce areas are shown on the map. These mined often affect the guilly of the groundwale the mines. Vertical frontations of which become are to the state of the state of the characteristic from the becttor that the state of the state characteristic from the becttor that the state of the state from the coverlying rock mass. Wells that do not reach below the mines will tend a layer strengtar water levels and well yields. Bottle of groundwater overlying unflooded mines are, therefore, unreliable sources for wells. Once the minies are flooded it is possible for inwater to return to its pre-mine levels. However, a return pre-mining conditions cannot be quantited, in said as loop possible units water that normally occurs in though the mines, nature for other pollulous to more unique to the map does not show all of the mine carries and the state of the mandeson shows all the mines and the state of the mandeson shows all on the mines.

GROUNDWATER QUALITY

Groundwater quality is a major problem in the DuBols area. The most troublejome constituents and properties are iron, sulfate and total dissolved solids. Bacterial contamination is, for the most distributed to the distributed to the contamination is for the most distributed to the distributed to the distributed to the contamination is for the most distributed to the distr

until a localized problem action of wells that were sampled for for Fall c I show the cardion of wells shown producing water or conditionally determined. Those wells shown producing water or word to large unity and have water that is shortly hard. Wells show to the conditional producing the conditional producing the condition of the conditional producing the conditional producing the contraction of the conditional producing the condition of the contractional producing the conditional producing the contraction of the conditional producing the conditional producing the conditional producing the conditional producing the contraction of the conditional producing the conditional pro

and species wells in the well and springs that ducharge from the shallow, hardy produce weller of good to excellent quality modes well of the shallow and the

may be cased off and belief water suggesters in the Dullois area are All oil the rock units used as equifiers in the Dullois area are known to have occurrence of both poors and good quality water Some units are nationals for preducing water of poor quality, such so the Katamung and Homewood sandvones. Southwest of Dullois, deep mining may create local problems. Strip mines may have an adverse effect on the quality of water in wells located close to the stripping.

Table 2- Chemical Analysis of Groundware milligrams per liter unless otherwise indicated.

	j Res	olta are ut	milligrams per l	iter unless oth	recurse indicat	rd.]	
Well	Date of collection	Total iron (Fe)	Total manganese [Mn]	Calcium (Ca)	Sulfate SO ₄ 5	Chloride Cl]	Hardness (ppm)
-111.061	Conferior	1001	CLEARFIE	TD COUNTY			
				-	<20	-	34.2
62a	7/73	6	**		<20	-	17
242	8175	8	-		124	3	194
281	9/69	4.6	_	-	22	25	202
282	7/69	-1			14	2	130
283	7/69	1.6	11				85.8
284	1/75	.21	100				205
286	3/75	14	W		2.2	1.6	82
287	4/73	0	-		1.4	6	12
285	4/73	.01	44		2	2.4	65
259	4/73	17	**		18	18	110
290	4/73	1.2			220	2.2	200
292	4/73	3.0	17		220	2.2	200

INTRODUCTION

WELL YIELDS

cipal rock types in the DiBols area are sandato shale, clay, and sultstane. Cool and lineatone a court only in a very small portion of the near-ck types may be separated high two general hyd d upon water-yielding characteristics, Samilstur

STRUCTURE

FRACTURE TRACES

or upolity is a major problem in the Hall-issume cunstituents and properties are turn ed solids. Bacterial continuuation is, for problem affecting only individual wells was the location of wells that upon san terminate. Those wells stimus producing lay may have water that is slightly hard with of court in terminate.

bording. The number that is enjoyed to identify the will. It is preflect him a two letter chine ensists in all the county. Due let long is the a confliction, in degrees and educate, in the confliction countries in a 1 minute questions within which the well is located.

mans: Qal, allerbam, Pr., Carrategh Hrong, Pelos, Lowes Malioning Steddings, Pr., Allerbas, 1919, Prs., I. Intricel Evek, Extendion, Fr., Pottwille Group, Prr., Conwessellis Formation, Prp., 1919 Farmation, Mab, Burgorn Studdings, Mp., Pocono Formation.

	Fampia	computition	ginn, gall	one per ni	loule								
Wall final lim Number Lat Ling USini 13 - 3 - 1100 7833 Robert Warkhorn	Driller F. W. Weber	Dair cumpleted		quiler Compe rition	Well dipth (feet)		arlag Diabu te [Inshas]	Daph to water- r braing zone(s) (feet)	Statte was Bepth Below land surface [Beet]	es lewij Date Yiri meseured igpm	Pumping d d Drewdose i (lee1)	lata m Time [brs]	P
5 1111 7830 Pa Bunan of Parks 6 1105 7832 Strop Pales 7 4106 7831 Subert William	Pa. Dilliag	1957	Mph Mph Mph Mph	**	143 85 86 86	20,6	 8 0	138 70, 74-85	Flowing 8,0 36,5	1976 160 7/78 -	10	24	_
	John Pilor F. W. Welter	1920	Mph	-	100 6.5	-	0	=	78.1 13.9 5.00 7.1	7/78 - 7/73 - 7/73 - 7/73 - 7/73 -	=	=	
11 1100 7831 that Fashinite that 12 1100 7832 that 13 1100 7832 Sam Militon 10 1100 7832 Sam Militon 10 1100 7832 James Saminites 16 4089-7831 C D Ross 18 4101 7838 Rule Nulber	Pitryllie P. W. Weljer	1073	Per		120	-	6 6 0	во _	62.5	7/72 -		-	
10 4100 7838 Hulph Thomas 20 4100 7830 Albert Bloom	= 1	1 -	Mp Per Pa		105 158 10 85 21	21	-		4.1	7/70 -	=	-	
21 1100 7838 Mexics Pentro 21 1100 7838 A P Spr 23 4100 7838 26 4100 7837 Thirds Allson	Funythe	10 hD	Nyb Pea Pa Uav	=	20	-	-	=	15,7 15,3 ,5	7/73 - 7/73 - 7/73 -	-	-	
24 4100 7837 Thoras Allison 27 1100 7830 Japies Moldon 28 1100 7830 Hay Moldon 29 1100 7835 Byer Mel'alli 30 1100 7835 Jerri Mel'alligh		-	Pire	-	91 22 IN 9		- 6	-	26,6 68,1 16.2 8,16	7/73 - 7/73 7/73 -	=	-	
11 1100 7825 John McKentick 32 1100 7825 Weyne Walliam	Founythe	 1993	Per Per		22 2 21 00		-	=	11.16 9.75	7/73 ~ 7/73 ~ 7/73 ~	=	-	
35 1101 7839 Rogar Pattern 36 1101 7839 Rogar Pattern 36 1101/783h Genus Auderson		=	Per Per Per		26	-	- 6	=	2.5 34.7	7/78 - 7/73 - 7/73 - 7/73 -	-	-	
57 1101 7838 Victor Tubbs 48 1102 7838 59 1102 7838 Auderson Sportspan's		=	Mph Mph Pav Pav	-	25 18	Ē	Ē	=	12,3 14,08 7,85	7/73 - 7/73 -	=	-	
17th 	F W IValuer	-	Mpb Mpb		18	-		-	20,0 9.76 10,25	7/73 -	=	=	
42 [105.7819 John Shorer] 42 [105.7839 do 41 4101.7839 Min Thumas Welder		=	Mpb	-	77 10 27 29	-	-	-	.75 2.9 15.9	7/73 - 7/73 - 7/73 -	-	-	
17 1111 7839 Photos Base		-	Pay Pey Pay Pec	-	20 22	=	-	=	23.9 15.0 14.25	7/73 - 7/73 - 7/73 -	=	=	
50 (100 78 III -			Pee Pea Pea Pa Pa	-	-	-	Ē	= = =	6,9 3,0 6.4	7/73 - 7/73 - 7/73 - 7/73 -	=	-	
34a 4100 7841 Shaller Eater	Fonsile	-	t'a	-	26	-	6	=	14.75 33.5 61,2	7/73 - 7/73 - 7/73 - 7/73 -	=	-	
55 4100.7811 Lebud Fred Shellar 56 4101.7812 Robert Spezian 57 1101.7840 Photles Lee	Finishe Delp	-	Pa Pa 51pb	Ė	28 100 to 100	20	6	80	12.25 14.0 4h,7 3.0	7/13 -	-	-	
594 1181-7813 One London 595 4181-7813 do, 59c 1101-7840 do.		=	Pee -	-	100 81 25	32 20	6 6	=	10,3 40,00 35,00	7/73 - 7/73 I	Ξ	=	
62a 4161-7841 James Dollahile 62b 4101-7811 do	Limit mulb	1 1976	Pa Pec Prr Pa	-	24 28 42 85	-	-	-	12.4 12.5 17.0	7/73 - 7/73 -	_	-	
64 4100-783H John Withselph 65 4100-783H James Monay 66 4100-7830 James Beat 67 4103-7840 Michael Blair	du du.	1975 1983 1972 1972	Pey	-	100 80	25 25	6	98 78	51.8(?) - -	7/73 - 7/73 - 7/73 21 7/73 8-6	,4 ō	-7	6
68 1103-7842 John Gray 70 4104-7812 - 71 4101-7843 -	Crylie	-	Pay Pa Pa Pcc	Ē	120 14.3 48	25	6	38 -	7.8	7/73		-	
72 4105-7844 Clyds Miller 73 4106-7814 C A Kessler 71 4105-7843 Mrs Walles Dunken	Forsythe	-	Pe Pe Pelm	-	84 5 86 80	32	- 6	34 _	4,5 27,8 13,6	7/73 — 7/73 20 7/73 —	Ξ	-	
76 1105-7839 Don Wayland 78 4104-7839 Sunsel Lake Campgron 79 4104-7839 Bases Music Conter	nd Union Fossibe	=	Pce - Mpb	-	9,5 120	Ξ	-	40	4,1 6.4	7/73 — 7/73 — 7/73 —	Ξ	-	
81 1105-7838 V C Shaller 83 4106-7842 Phylin Stelling 84 4100-7838 Chel Stileling	=	=	Pev Pelm Qal	-	125 - 21	Ē	-	75 -	- 6.6 10.0	7173 - 7173 -	=	=	
85 41067838 Ronald Reed 86 41067836 - 87 41067839 Al Ornal and Son 88 41047811 Bernard Radaker	Forsythe	1957	Pelm Per Pelm	=	16.9 9,5 160 56	Ξ	Ğ	=	4.3 5,0 131.8	7/73 - 7/73 - 7/73 -	=	=	
68 4104-7811 Bernard Redaker 69 4104-7838 Grouge Postlethwart 91 4104-7840 Juliu Banbridge 92 4104-7844 Arthur Gerbari	do. _ _	1958	Palm Mpb Pec	-	135 27 6 25.7	30	-	18. 60, 120	28,0 11,9	7/73 — - 7 7/73 —	=	-	
92 4104:7844 Arthur Gerhari 93 4108:7812 — 94 4108:7811 Calvas Dixon 98 4111:7832 Don Georgino	F. W Waber	Ξ	-	-	14 79 110(*)	15	6	=	14,0 7,2 35,6	7/73 - 7/73 - 8/73 -	=	=	
101 114-7831 Shawmul Mines 103 4101-7845 James Boasall	Forsyths -	1969 - -	-	=	168 - 18	30	6		21,6 - 32,9 14.8	8/73 -	Ξ	-	
104 4101-7816 Cluir Bonsal1 105 4100-7847 Robert Lee 106 4100-7848 William Milla 124 4106-7848 Tim Robertson	Dinger Bros	1970	Pc	-	21.8 22.2	- 3	- 6	76: 206	1.4 10.1 13.6	8/73 - 8/73 - 8/73 - 8/73 5-6	=	-	
124 4106-7848 Tlm Robertson 127 4104-7848 Raymond Shafter 128 4108-7847 Gary Folif 129 4104-7845 James Gray	Forsythe	1972	Pe Pa	-	200	170	6	180	39.2 62.4	- 10 8/T3 - 8/Z3 -	Ē	_	
130 4105-784£ John Faller 132 4105-7845 Josephine Carlson 134 4112-7838	F. W Walter	1852	Pc Pc Pc	-	17.4 110 26	20	6	60; 94	9.6	9/73 - - 8/73 -	Ē	-	
136 4109-7839 William Kennedy 137 4107-7838 Date Weber		1970	Pa Pa	-	65 225 47 2	27	6	190	14.0 50.8	9/73 - 9/73 - 15	=	Ē	
109-7839 Millam Kennedy 137 4107-7839 Millam Kennedy 138 4112-7840 R. L. Close 138 4112-7840 R. L. Steward 1409-7840 Gordon Chilicates 142 4112-7849 George Cemar 143 4111-7849 Dale Fonder 145 4107-7844 Henry Shilay 145 1407-7844 Henry Shilay	Forsytha ,	1970	Qal Pe	-h	13.0 235 40 175	23 20	6 6 6	60; 140; 215	9,9 6,0	9/73 - 9/73 - - 12	Ē	_	
	Crytier	=	Pa Pc Pc	=	175 64 86	- S0(7)	6	165 -	111.5 15.1 22.6	9/73 3-5 9/73 - 9/73 -	=	-	
149 4109-7841 Ollo Edinger 151 4111-7841 Charles Young	= =	=	Pa Pa	-	69(7) 18	=	6	Ē	30,5 13,7 13,9	9/73 - 9/73 - 9/73 -	Ξ	=	
167 4107-7839 Franklin Tyler, Ja. 167 4107-7832 Pa. Bureau of Fotestry	Forsytha Crytsra	1973	Pc Pc	-	20(*) 245 152	20	- - 6	t00; 150	16,2 110,5 10,2	9/73 - 10/73 - 8/73 40	Ξ	=	
176 4111-7833 Deronian Gas & Gil Co 178 4106-7833 Camp 9C-244		1972	-	Ξ	606 149 8	25	-	165; 300	112,2 5.0	9/T3 - 9/T3 -	Ē	-	
181 4107-7839 Emory Miller 183 4107-7837	Forsylha	Ξ	=	-	150	Ξ	-	=	17.2 63.4 8.6	9/73 - 9/73 - 9/73 -	Ξ	=	
211 4108-7845 Dr. W. Lundgren 233 4111-7846 Mrs. Clask 234 4111-7846 Kruk Floors 235 4111-7846 Gotham Bros.	Crytser Lindamuth Forsytha	1966 1973 1972	Per Per	- ea	113 106 t20	24 21	6 6	50; 90 110	= =	- 15 - 10 - 10	30	2,5	
242 4101-7844 Hartzlall 243 4114-7834 Dafe Crawload 244 4114-7834 Dennia Crawlord	do, Crytacı	1972	Pec Ps	SSA — ESS	140 109 62	21 - 14	6 6	120 50	16.78	- 10 8/75 - - 20	-	- 2	
263 4111-7838 Clyde Krilar 264 4108-7846 Denion Const.(?) 265 4114-7832 Pa. State Univ.	do, Wabber Crylser Brooks	1956	Pe Pi Pi Pec	- 44	51 150 295	15 - 35	6 8	40 - 105; 250	t11.0	- 20 10/73 - - 45	-	2 - 4	
281 4103-7842 Luthersburg School 282 4102-7846 Helvelia Water Co. 283 4102-7846	Forsylha	1969 1965 1961 1945	Pa Pa Pa	- 50 55	125 260 230 183	55 22 20 50	8 6 8	80, 105 138; 154; 212; 26	105	9/65 11 2/75 28	1.5 1 27	45 1.25 4	
284 4105-7845 Highland High School 285 1112-7838 Ps. Core Hole #1 286 4103-7843 DuBus Assa School	Ps. Drilling Harvey	1969	Pa Pa	23 -	292 716 80	-	-	SR; 125; 182	38 30 55 50.2	5/64 23 1/75 2 4/73 — 2/75 —	18	4	
288 4111/7842 do. 289 4111/7812 do.	do. do.	1970	Pep Pen	-	360 290 410	31 22 24	10 6 10	36; 130, 159, 17 20; 98; 111; 24	4 Flowing	11/70 305 12/70 140 12/70 250	102 11(7) 56	48 12 48	
290 H10-7843 do. 291 4109-7842 do. 292 4109-7843 do.	do. do.	t970	Mp Mpb(?) Pe Pc	-	440 265 265	26 20 14	6 8	25, 41; 60; 202 50; 65; 120	t5 Flowing Flowing	9/70 200 8/70 80 8/70 132	27 50	12 48 12 48 48	
97 4114-7831 Barnice Washkow 165 4114-7843 Sam Sanla	-		_	-	ELK COUN				14.76	8/73 -		_	_
157 4113-7844 John Duttry 158a 4114-7842 Lorn Column		=	Pa Pa I ^{bro} Pp	Ē	21 19 55.6 72	Ξ	-	=	10.0 9.8 13.3	9/73 - 10/73 - 10/73 -	Ē	1	-
20% 4114-7842 Brockway Bor	_ =		Мр	- JEF	106 120 FERSON CO	UNTY	=	72; 86; 98	-	- 1.5 - 500(5) -	<u>'-</u>	_
109 4102-7851 Jim Douthit 109 1101-7850 Charles Kurtz 1111 4100-7849 Gosdon Knurr		1973	Pe Pe Pe	Ξ	160 85 125	21 25(7)	6	70	122.2 42.7 33.9	8/73 - 8/73 5 8/73 -	=	=	-
11	= 1	-	Pe Pa —	=	65(7) 32 25	Ξ	_	=	32.2 19.9 5,0	8/73 - 8/73 - 8/73 -	=	-	
	Morris Smith :	1954	Pe	-	25 49	26	=	Ē	18.5 5.9	8/73 - 8/73 - 8/73 - 8/73 -	Ξ	Ξ	
125 H 05-7848 Plyde Henryli	=	~	Pa Pa Pa	=	75 12,8 16.8	-	-	=	5,6 8.0 4.6	8/73 -	Ξ	=	-
133 4107-7819 L. C. Tapper	-	965(7)	Pa Pa Pp Si	=	37(7) 50 80	45 - 52	8 - 8	Ē	21.4 14.7 9,9 73.9	3/73 - 9/73 - 10/73 30	Ē	=	-
160h 4108-7850 do. 162 4108-785H Spilor 163 4109-7851 Appeli Panali	Forsylha 	_	Pa Pa Pec	=	184 92 14 13	19	6	=	18.2	10/73 - 10/73 - 10/73 - 10/73 -	=	=	-
164 4109-7851 165 4110-7850 Gerald Taff 185 4103-7852 John Wayle	=		Pee	=	47 45 90(?)	=	- 6	=	5.0 t7,0 11,6 49.7	10/73 - 10/73 - 6/74 15(2)	_	-	
186 4101-7853 Akeas 188 4103-7851 199 4102-7856 Rubert Hallangaler	E .	973	-	-	50(7) 27 175	-	_	40 170	6.5	6/74 - 10	Ξ	=	_
10.1 1101-7854 George Surkata	Cry laet t	974	-	-	24 150 177	_	6	100	15.8 96.0	6/74 — 6/74 15 — 30	Ξ	Ē	-
191 4101-7854 195 4102-7852 tl. L. Bulles 196 1101-7857 dim Hitxon 197 1101-7855 Dave Snydis	du. 1 ilii, t	969 973	-	-	190 385 40	-	_	60 200; 385 35	109.2 228.7	4/74 15 6/74 15 - 10	Ξ	Ξ	-
200 4107-7858 1 F Therefore	·· t	972 960 952	_	-	60 78 47	2.0	6 6	30; 75 45	34,9 	6/74 10 - t0-15 - 5	Ξ	-	-
902 4104-7850 doi: 903 1101-7900 ti M fletie 904 4101-7850 Aidan Johlea	= 1	971	_	-	28 85 220	_	-	15 40(?) 200 30 75, 106	18,8	6/74 5-10 - 2 - 10	-	=	111
95 1103-7855 Robert Uplinger 96 4106-7853 B. Virian 199 1104-7859 T. Erber	Diagei Bros. 1	94.8	-	-	40 120 45 130	21 21 22 20 130	G G	30 75, 166 15 40		- 3-4 - 5-10 - 90	=	=	7.6
10 1101-7856 Bob Wellman 13 4113-7815 B. Mellener	Forsytha 1	968 -	-	-	196 ≃45 100	60	i i	89; 245	=	- 10 - 5 - 5-10	=	=	=
18 4113-7852 Rodger Lindamath 10 4114-7850 Rubert Lindamath	Lindamuch 19 da, Crybar	- 971 -	-	-	18 25 50(7) 250	25 6		14 -	Ē	- 10+ - 10+ - 5r	=	=	_
22 4113-7817 Exampl Guidalion 23 4113-7849 Sam Gullu	Lindenruth 10	173	_	-	250 140 200 + 75	21 6 20 6 21 -		118, 140	=	- 5+ - 5-10 - 5+			
25 11.11-7851 Turk Kalgen	Crytaer 10	68 - 67		=	121	20 - - 6 50 6		- -	48.1	- 10+ 7/74 5-10	=		7 - 6.7
28 4112-7852 H. C. Boozer 29 4112-7859 A. Van Norman 31 4114-7854 William Brosius	Foraythe 18	71 60		-	110 30 52	27 6 20 6		10; 45	=	- 5-10 - 5-10 - 10 - 10+	10	- ,5	6.7
39 4112-7847 Dick Smith 37 4112-7854 Hick Onlon		73 P. 73 P. 74 .		sh -	140 80 55 40	20 6 30 6 22 8 34 6		70 _	-	- 10* - 7 - 10	10	,5 ,5 -	-
38 4113-7852 Melvin Lindamuth 39 4110-7852 Kanneth Tudos 46 4104-7857 Fa Dept. of	du. 19 Moody 19	T2 Pr T0 51	pb	85 85	40	34 6 32 6 170 6		15 28 —	34.18	_ 5 10/75 35		ıs é	.8
Transportation 487 4407-7552, Ibreld Raybuck 48 4108-7866 Pa. Dept. nl Transportation 49 4110-7850 July Transch	Crytses 19 Moody 19 Crytses 19	70 Pv	rp.	ah sa ah	70 295 50	14 6 85 6 28 6 23 6		50 79; 220; 250 34; 40	Ξ	- 8 - 35 - 20 - 15			.6

Albert E. VanOlden, Virginia M. Milewski, and Lajos J. Balogh, Carlographers.

TED FEATURES IN THE DUBOIS AREA, COUNTIES, PENNSYLVANIA

ER

EXPLANATION

GEOLOGIC UNIT	GENERAL CHARACTER OF THE ROCK		PUBLIC AND INDUSTRIAL WELLS YIELD, IN GALLONS RANGE OF YIELDS	WATER QUALITY
Elliott Park Formation/ Burgoon Sandstone, or Pottsville Group (Pep/Mpb or Pp)	Elliott Park Formalion/Burgoon Sandstone: Principally medium-grained sandstone, but also contains some shale, claystone, and cosl. International content of the content of the content Fottwale Group: Principally medium to coarse-grained sandstone, includes very coarse, quartrose conglomente in lower 75 feet. Also includes some shale, discontinuous coal, and claystone. Average thickness is 150 feet.	50 15- 10 0	150 50-400+	Edity five percent of the wells are reported to produce water of gase quality. Generally the shallow well produce water of farly good quality the deep wells that pass through overlying geologic units lend it produce water having a somewhar poorer quality as a result of increased iron content.
Clearfield Creek/ Curwensville Formations (Pcc/Pcv)	Sandstone, shale, and coal are the major rock types. The average thickness is 125 feet,	20 7-60	100 30-300+	Eighty percent of the wells ar reported to produce water having high iron content,
Lower Mahoning Sandstone (Pclm)	This unit often is a thick productive sandstone; there are some clay and shale beds. In places it may be fine grained and conturn a large amount of clay matrix. The unit has an average thickness of 60 (eet.	5 2.90	87 20-200	Sixty percent of the wells product water of good quality.
Conemaugh Group (Pc)	Mostly shale and siltatone, but also contains a few fine-grained clayey sandstones and some thin limestone and clay beds. The maximum thickness of the remaining part of the unit in the area is about 630 feet.	5 4-10	64 10-100	Suxty percent of the wells produc good-quality water; slight hardness is some areas; occasional iron problems
Pocono Formation excluding the Burgoon Sandstone (Mp)	Mixed silvatone, shale, and sandatone; some claystone beds. Upper red beds ("Fatton") are well exposed southeast of the Chestnut Ridge anticline. Average thickness of exposed part of unit is 360 feet.	1-20	40 10-500	No data available on water quality although quality should be fair t good.
All-sheny Group excluding the Clearfield Creek Formation (Fa)	Itably variable rock types which change character with depth and lateral dutance; cost, and manor limes, allicone, disparence, cost, and manor limes, cost, and manor limes are not successive to drill deeper than 80 feet to hild a 5 to 15-foot sandstone. The microcolimining activaties are in this unit. The average thickness is 210 feet.	5 2-40	25 28-150	Sixty-seven percent of the wells in th unit are reported to produce water of good quality. Mining activities one cause a deterioration of the quality

JEFFERSON CD CLEARFIFLD CO

STRUCTURE

SIRUCTURE

The peablest structure of the Dilbies area is shown by the structure contout large, ash is are large equal divisation of selected key nick layers (or least, in a curacture contout lines define the topegraphy of 16 startises of these beds in most instances in western remaybeau in 18 See no abserved that the overlying and underlying control of the starting on the starting on the starting on a reality of the starting on the starting of the starting on the starting on the starting of the starting on the starting of the starting o

FRACTURE TRACES

FRACTURE TRACES

Fracturing in bedrock plays a major role in the local movement and storage of groundwater, in brittle rocks such as sandsione, fractures are untilly well defined, extensive vertically and laterally, the fractures are waited and tapined to the fractures are waited and tapined to the fractures may be the only effective source of water from thales, the pore spaces are loos small to be hydrologically headresal.

The fractures is bedrock result from the natural stresses in the earth's crust. Fractures can be seen in almost every outcop or rock exposure; however, the density of fractures in not everywhere the same. There are long, issually strapple, narrow somes where fracturing is more intense than in the surrounding took. These zones may be only a few tens of feet wind. They can often be soon as alpend stream segment, or as straight, narrow more soon as alpend stream segment, or as straight, narrow more foresterned returned to the surface. These strates expressions, which are called fracture rocks, are knowled to result from the increased su-ceptibility that fractured rock has 10 th extellence processes.

are thought to result from the increased susceptibility that fractured rock has to the Neathering processor.

The major fracture traces in the Dullou srea were mapped on arrai photocorpis and transposed to the major Wild drilled on fracture traces may yield more water than smilar wild drilled on fracture traces may yield more waters than smilar wild drilled on the adjacent took mass. The intersections of fracture traces may provide even more water to the event material to the second of the provide even more water to the event for a result of the provided of the considerable depths. Practure traces also may represent roof weekness in the deep-mine areas shown on the map.

DEEP MINES

DEEP MINES

It awas n'here deep mining of coals has taken place, the structure contours will help to determine the direction of nunodranage flows and, when combined with the topographic contours on the ang, will help locate mines. These immediate assessment of the structure of

GROUNDWATER QUALITY

GROUNDWATER OUALITY

Groundwater quality is a major problem in the DuBois area.

The most trouble-joine constituents and preparties are tron, sulfate, and total dissolved solids. Becterial confarintenies are tron, sulfate, and total dissolved solids. Becterial confarintenies are tron, sulfate, and total dissolved solids. Becterial conformations were described to the recognition of verify that users of the conformation of verify that dissolved solids. A few analyses indicated moderately poor quality; the tron concentration is usually acceptable but the handness is high. Table 2 last chemical analyses for selected wells in the report area.

Stallow, handlong with a succession of the conformation of the conformation of the conformation of the conformation of the water of good to excellent quality. Mod of this water consect from sandstones that have been flushed of most of their soluble minerals by infiltrating propertation. Mater produced from shales, or sandstones overlain by shales, will tend to be more maneralized. The animant of irou or the described of the water consection of the conformation of the conformation of the soluble and the sand of the same good-quality water as Mahinel was the entires, and the deeper water as high in mon and handness. In some places, however, shallow sones of poor water may be easted off and better water obtained at greater depths.

All of the rock units used as aquifers in the DuBous continues of the continues of the properties of the properties of the properties. Similar mans and hand men and scheme effect on the quality of water in wells focated close to the stripping.

Table 2. Chemical Analyses of Groundwater

Well	Dair of collection	Total iron [Fe]	Total manganese (Mn)	Calclain (Ca)	Sulfate (SO ₄)	Chloride (CI)	ttardnes (ppmt
			CLEARFIE	LD COUNTY			
					<20	-	34.2
62a	7/73	6	*		<20	-	17
242	8/75	8	-		124	3	194
281	9/66	4.6	-	-	22	23	202
282	7/69	-1	-	-	14	2	130
283	7/69	1.6	**	-	1.4	_	85.5
284	1/75	.21	81				205
286	3/75	14	-		2.2	1.6	82
287	1/73	0	85	-	1.4	6	12
288	4/73	.01	99			2.4	65
289	4/13	.1	-	-	2	1.8	110
	4/73	-11	-	-	18	2.3	200
290	4/13	1 2		19	220	4.7	
292	4/13	10	JEFFERSO	N CONTRACTO			
		i	JEFFERSO	N COUNTY			
		-	4.5	15		-	
209	-	.0\$	411	183	-	-	-
225	-	.8	-	41.00	-	-	-
228	7/74	2	.2	11.2	48	4	36
246	5/70	2.74	.02	8	9.0	6.5	34
248	8/10	3 4 9	.02		_	-	359
271	-	- 1	-		_	8	49
293	10/64	4.2		12	4	7	46
297	2/69	0	0	14		-	34.2
289	11/73	7.01	-	-		-	17.1
500	11/73	.7(340	1.6	144
307	6/74	.01	,0·G		440		

The principal rots types in the future are one sometimes and dimensic, abbb, clay, and dilutions. You don't include a control of the control

STRUCTURE

STRUCTURE

spallege's structure of the Duffuis area is shown by the continual lines, which has been of squal elevation of selected type for body. The structure continue have define the type of the bedy. The structure continue have define the continue of the selected lines are conserved him the overlying and individual like for context of the structure of the key bedy and individual like for context of the structure are the base or. The key bedy and individual like for the structure are her bedy and the structure of the structure are her bedy and the base of the formation of the context of the structure and the structure of the

FRACTURE TRACES

FRACTURE TRACES

sectumng an bedrock plays a major role in the local movement unger of groundarders. In brittle rocks such as sandatone, so are usually well defined, extensive vertically and interactives are plastic rocks, such as saler and chystone, in the more plastic rocks, such as saler and chystone, cutures are smaller and righter. Unfortunately, fractures may olly effective source of water from shales; the pore spaces small to be hydrologically beneficial.

The control of the

DEEP MINES

DEEP MINES

reas where deep mining of coals has taken place, the contours will help to determine the direction of coals from and, when combined with the topographic coar flows and, when combined with the topographic means are shown on the map. These mines coast are shown on the map. These mines coals are stored to the quality of the groundwater and the well-dusts from the bedrock overlying the mines. Verticals one of which are naturally occurring and some of which are naturally occurring and some of which are naturally occurring and some of which are sufficiently and the store of the

GROUNDWATER QUALITY

GROUNDWATER QUALITY

valuer quality is a major problem in the DuBois area.

who some conditions and properties are usen, sulfate, obt. of solids. Bacterial contamination is, for the most of the problem of the problem

Well number	Date of softerion	Titul senn 1Fe i	Total manganese (Mn)	Caleium (Ca)	Sullate (SD ₄)	Chloride [Cl]	Hardne I ppm
			CLEARING	LICCOUNTY			
CT 622 242 241 253 253 251 253 251 255 257 255 257 257 257 257 257 257 257	7 73 8 75 9 61 7 69 7 69 1 75 3 15 4 73 4 73 4 73 4 75	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			< 20 < 20 124 21 14 21 14 22 1 4 22 1 5 20	3 2 3 2 6 6 1 4 2	34 2 17 104 202 130 55 5 205 82 12 65 110 200
		-	JEFFERS	DV COUNTY			
3+ 209 225 225 246 256 271	7 14 3 78 5:70	3 8	45 - 2 02	15 163 11.2 8	- 45 F 0	4 6 5	- 36 34
201 297 799	01.61 2.69 -1.75	4.2		1 2	4	. 8	359 19 16 31.4

Je- 108	Ek- 97 155 157 158a 158b 177 263	201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
410-750-750-750-750-750-750-750-750-750-75	4114-7831 4114-7843 4415-7844 4114-7842 4114-7838 4114-7838	110 7814 4101 7812 4101 7810 4101 7812 1101 7813 4101 7810 1100 7811 [161 7844
Ps. Dept. of Processing State of Processing St	Britice Washkii w Sam Siple John Dullry Lorn Coleman do, Carolin Hoorei Brockway Boi	ipmere Annteron Prices of Parties
Forsythe Design Broad. The state of the sta	-	Foresthe Foresthe Foresthe Critical Lindennith London House Critical Foresthe Foresthe Foresthe Foresthe Foresthe Foresthe Foresthe Critical Critical Foresthe Critical Foresthe Critical Foresthe Critical Critical Foresthe Critical
1970 1970 1970 1970 1970 1970 1970 1970	1969	1900 1900 1900 1900 1900 1900 1900 1900
**************************************	Pa Pa Pa Tee Pp Mp	MARCE MARKET PER CONTROL - ACCESS OF THE PERSON OF THE PER
	-	
	21 19 45-5 72 106 120 IEFFERSON C	25 10 10 10 10 10 10 10 1
20 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	:	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	:	
70	- - - 72: 86, 98	NO
1202 1202 1302 1302 1302 1302 1302 1302	14,76 10,0 9.9 9.7 13,3	105 38 30 55 50,2 74 Flowing 37,2
873	8/73 - 9/13 - 10/73 - 10/73 - 10/73 - 10/73 - 1.5	1
	15	
7.6.6.7.7.7.5.5	1 =	76 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1