

Facultad de Ciencias

Universidad Autónoma de México Física Estadística Tarea 2 – 3.1.4

Profesores:

Dr. Ricardo Atahualpa Solórzano Kraemer

Alumno: Sebastián González Juárez

sebastian_gonzalezj@ciencias.unam.mx

3.1.4 Usa el resultado anterior para argumentar por qué quitar una constricción incrementa la entropía (de Shannon) de un sistema.

Explicación.

Recordemos brevemente que la entropía de Shannon mide la incertidumbre asociado a un conjunto de eventos con distribución de probabilidad P. Cuando un sistema tiene restricciones, estas limitan las posibles configuraciones o estados del sistema, reduciendo su incertidumbre (es decir, disminuyen la entropía).

El resultado previo muestra que: $S(P \otimes P') \leq S(P) + S(P')$

donde la igualdad se cumple solo si los eventos son independientes.

En palabras dice que si tenemos dos conjuntos de eventos $\{e_m\}$ y $\{e'_{m'}\}$ están correlacionados por una restricción, su entropía conjunta $S(P \otimes P')$ es menor que la suma de sus entropías individuales S(P) + S(P'), porque la restricción reduce la incertidumbre conjunta.

Al eliminar la restricción, los eventos se vuelven independientes y la entropía conjunta alcanza su valor máximo en $S(P \otimes P') = S(P) + S(P')$.

Imaginemos que tenemos n pelotas en una caja, las cuales hay n_r rojas y n_a azules. Si tenemos una barrera el número de configuraciones posibles se ha restringido es decir la entropía del sistema con barrera es:

$$S_h = S(P_r \otimes P_a)$$

Lo cual es menor a si no tuviéramos barrara donde seria la suma:

$$S(P) + S(P')$$

Por lo que este es un ejemplo en donde quitamos una restricción y aumenta la entropía.

