ASEN 3112

Recitation 2

Problem 1: About 30 minutes

The figure shows a two-bar truss to a vertical load $P = 50 \, kN$ at joint B. Both bars have a rectangular cross-section and are made of an isotropic material with Young's modulus of $E = 2.1 \, Gpa$ and maximum tensile strength of $T.S. = 150 \, Mpa$.

- a. Compute the forces in the bars. Use FBD.
- b. Compute the smallest possible diameter of the cylindrical bolt joint A such that the shear in the bolt does not exceed $\tau = 100 \, MPa$. Use a proper FBD.
- c. Determine the cross-section area of each bar such that the factor of safety against failure in normal stress in the bar is $S_f = 4.0$.

$$\tan(\alpha) = 4/3 \ \tan(\beta) = 3/4$$

$$\Sigma F x = 0 \rightarrow -F_{AB} \cos(\alpha) + F_{BC} \cos(\beta) = 0$$

$$\Sigma F y = 0 \rightarrow F_{AB} \sin(\alpha) + F_{BC} \sin(\beta) - p = 0$$

$$F_{AB} = F_{BC} \frac{\cos(\beta)}{\cos(\alpha)}$$

$$F_{BC} \left(\cos(\beta) \frac{\sin(\alpha)}{\cos(\alpha)} + \sin(\beta)\right) = p, F_{BC} = \frac{p}{\sin(\beta) + \cos(\beta)4/3} = 30 \ kN, F_{AB} = 40 \ kN$$
b.

$$\begin{split} \Sigma Fy &= 0 \to F_S = \frac{F_{AB}}{2} = 20 \ kN \\ \tau &= \tau_{max} = \frac{F_S}{A_S}, A_S = \frac{\pi}{4} d^2 \to d = \sqrt{\frac{4F_S}{\pi \tau_{max}}} = 0.01596 \ m = 15.96 \ mm \\ \text{c.} \quad \frac{T.S.}{\sigma_{axial}} = s_f, \quad \sigma_{axial}^{AB} = \frac{F_{AB}}{A_{AB}}, \quad \sigma_{axial}^{BC} = \frac{F_{BC}}{A_{BC}} \\ A_{AB} &= \frac{s_f F_{AB}}{T.S.} = 0.001066 \ m^2 = 1066 \ mm^2, \quad A_{BC} = 0.0008 \ m^2 = 800 \ mm^2 \end{split}$$

Problem 2: About 20 minutes

Figure 1: Shape to be analyzed for problem 1.

Displacements u and v in the x and y dimensions, respectively, were measured at points A, B, C, and D of the two-dimensional rectangular body shown above. The gage lengths along x and y are 4 mm and 2 mm, respectively. Upon deformation, the displacement data is $u_a = -0.0100 \ mm$, $v_a = 0.0100 \ mm$, $u_b = -0.0050 \ mm$, $v_b = -0.0112 \ mm$, $u_c = 0.0050 \ mm$, $v_c = 0.0068 \ mm$, $u_d = 0.0100 \ mm$, and $v_d = 0.0080 \ mm$. [The displacements of D are irrelevant for the computation of the strains at A.]

Find the Lagrangian small strains ε_{xx} , ε_{yy} , and γ_{xy} at point A using displacement differences. All answers should be in micros (μ); [one micro is $0.000001 = 0.0001\% = 10^{-6}$].

$$\varepsilon_{xx} = \frac{\Delta u_{BA}}{\Delta x_{BA}} = \frac{u_B - u_A}{x_B - x_A} = \frac{0.0050}{4} = 0.00125 = 1250 \,\mu$$

$$\varepsilon_{yy} = \frac{\Delta v_{CA}}{\Delta y_{CA}} = \frac{v_C - v_A}{y_C - y_A} = \frac{-0.0032}{2} = -0.0016 = -1600 \,\mu$$

$$\gamma_{xy} = \frac{\Delta v_{BA}}{\Delta x_{BA}} + \frac{\Delta u_{CA}}{\Delta y_{CA}} = \frac{v_B - v_A}{x_B - x_A} + \frac{u_C - u_A}{y_C - y_A} = \frac{-0.0212}{4} + \frac{0.0150}{2} = 0.0022 = 2200 \,\mu$$

Problem 3: About 30 minutes

Figure 2: Rubber balloon to be analyzed for problem 2.

A rubber party balloon (see Figure above) is inflated from an initial diameter D0 = 50 mm (the reference state) to a final diameter $\underline{Df} = 150$ mm (the deformed or final state). Two easy items and a tougher one:

- a) Find the average circumferential strain in the deformed state as given by the Lagrangian measure ϵ_{circ}^L and the Eulerian measure ϵ_{circ}^E . Express both in %. Are these values close or far apart? Justify your answer (why is it close or far apart).
- b) Initial wall thickness is $t_0 = 0.18$ mm. The rubber is incompressible (When rubber deforms, it maintains its volume). Find the thickness t_f in the deformed state.
- (Tougher) For simplicity assume: (I) rubber is linearly elastic, (II) wall is in plane stress, (III) average Young's modulus for the Eulerian strain measure is $E_{rubber} \approx 1.9$ GPa, (IV) Poisson's ratio is $\nu = 1/2$. Under those assumptions, find the inflation pressure p.

- (a) $\epsilon_{circ}^L = \frac{D_f D_0}{D_0} = 2 = 200\%$; $\epsilon_{circ}^E = \frac{D_f D_0}{D_f} = 0.667 = 66.7\%$. The values are far apart as the difference between initial and final diameter(s) are large relative to original diameter.
- (b) Volume of the balloon (assuming it to be a spherical shell and taking $\frac{t_0}{D_0} \ll 1$) is $4\pi R_0^2 t_0$. Since we have assumed incompressibility, the volume remains constant. Final deformed volume is $4\pi R_f^2 t_f$. On solving, we obtain $t_f = 0.18/9 = 0.02 \ mm$
- (c) At an arbitrary wall point, choose z along thickness and x, y on tangent plane to sphere. Then $\sigma = \sigma_{xx} = \sigma_{yy} = pR_f/(2t_f)$ with $R_f = D_f/2$ (pressurized spherical vessel formula), $\epsilon_{circ}^E = \epsilon_{xx} = \epsilon_{yy} = (1-\nu)\,\sigma/E_{rubber}$. Solving: $p = 2E_{rubber}\,t_f\,\epsilon_{circ}^E/((1-\nu)R_f)$. Substituting (careful with units!) gives $p \approx 1.35\,MPa$.

Problem 4: About 30 minutes

Figure 3: Vessel to be analyzed for problem 3.

$$\sigma_{_{\!\mathit{XX}}} = \frac{pR}{2t} \quad \text{(axial stress)}, \qquad \sigma_{\theta\theta} = \frac{pR}{t} \quad \text{(hoop stress, also called circumferential stress)}. \tag{1}$$

- (a) For p = 3 psi, R = 10 in, t = 0.05 in, and compute σ_{xx} and $\sigma_{\theta\theta}$
- (b) For the plane stress state obtained for the cylindrical pressure vessel above, and using the numerical values determined in part (a), determine the in-plane stresses. Find:
 - The principal stresses σ₁ and σ₂, in which σ₁ ≥ σ₂.
 - The principal planes angles φ₁ and φ₂ (φ is measured from the x axis, positive CCW). Note: symbol φ is used in lieu of θ, as in the Notes, because ϑ is used here to denote the circumferential direction.
 - The maximum in-plane shear stress τ_p
- (c) Consider next the pressure vessel wall as a three-dimensional body. Use the fact that the radial (normal-to-the-wall) stress $\sigma_{rr} \approx 0$ is a zero principal stress, and that σ_{xx} and $\sigma_{\theta\theta}$ are principal stresses. Find the overall maximum shear stress $\tau_{max} = max(\frac{1}{2}|\sigma_{xx} \sigma_{\theta\theta}|, \frac{1}{2}|\sigma_{xx}|, \frac{1}{2}|\sigma_{\theta\theta}|)$, which follows from eqn (6.18) of text.
- (d) Compare τ_{max} to the maximum in-plane shear stress τ_p found in (b) above. Are they the same? What can you conclude about failure of the vessel if it is fabricated of a ductile material such a steel or aluminum?

(a) On substituting the values in the formulae given in eqn (1)

$$\sigma_{xx} = 300$$
psi, $\sigma_{\theta\theta} = 600$ psi

- (b) Mohr's circle for in-plane stresses shown in above figure. Principal stresses: $\sigma_1 = \sigma_{\theta\theta} = \frac{pR}{t} = 600 \text{ psi.}$ $\sigma_2 = \sigma_{xx} = pR/(2t) = 300 \text{ psi.}$ Principal plane angles: 0° to $\sigma_1 = \sigma_{\theta\theta}$ and 90° to $\sigma_2 = \sigma_{xx}$. Maximum in plane shear $\tau_p = (\sigma_1 \sigma_2)/2 = pR/(4t) = 150 \text{ psi,}$
- (c) Overall maximum shear stress is the maximum of |300-600|/2, |600|/2, |300|/2=300 psi, which is twice $\tau_p=150$ psi.
- (d) For a ductile material, failure will occur under the overall maximum shear stress τ_{max} . This acts at $\pm 45^{\circ}$ across the thickness.