Dijet momentum imbalance

- Determination of the energy loss

Hao-Ren Jheng, NCU

Overview

 Jets loss energy when traversing the medium of quark-gluon plasma (QGP) → critical evidence for QGP

 Measurements of di-jet events with Pb-Pb collisions observed the transverse momentum (p_T) imbalance, indicating that the two jets from hard scattering suffer from different amounts of

energy loss ΔE

O (Right figure) ATLAS results of x_J=p_Tiet2/p_Tiet1 using PbPb and pp data. For PbPb data, the distribution flattens toward high x, value and develops a peak around $x_1 \sim 0.5$

- **Goal**: find a parametric model of $\langle \Delta E \rangle = f(p_T^{jet}, R)$, where R is the length of the jet traversing through the QGP, that can reproduce the ATLAS x_J distribution
- Simulated di-jet events
 - O Jet selections (following <u>arXiv:</u> <u>1706.09363</u>)
 - ▶ p_Tiet>25GeV
 - $\mid \eta_{jet} \mid < 2.1$
 - ▶ |ΔΦ|> 7π/8
 - O p_Tiet1>100GeV for x_J distributions

- **Goal**: find a parametric model of $\langle \Delta E \rangle = f(p_T^{jet}, R)$, where R is the length of the jet traversing through the QGP, that can reproduce the ATLAS x_J distribution
- Simulated di-jet events
 - O Jet selections (following <u>arXiv:</u> <u>1706.09363</u>)
 - ▶ p_Tiet>25GeV
 - $\mid \eta_{jet} \mid < 2.1$
 - ▶ |ΔΦ|> 7π/8
 - O p_Tiet1>100GeV for x_J distributions

- **Goal**: find a parametric model of $\langle \Delta E \rangle = f(p_T^{jet}, R)$, where R is the length of the jet traversing through the QGP, that can reproduce the ATLAS x_J distribution
- Glauber Monte-Carlo to simulate (1) the point where the hard process takes place (2) the correlation of path lengths between the two jets

Hao-Ren Jheng (NCU)

• **Goal**: find a parametric model of $\langle \Delta E \rangle = f(p_T^{jet}, R)$, where R is the length of the jet traversing through the QGP, that can reproduce the ATLAS x_J distribution

- Several combinations of a and b were tested, none of which can reproduce the peak structure as what ATLAS observed...
 - O For parametrization of $\langle \Delta E \rangle = C \times (p_T^{jet})^a \times R^b$, only results of (a,b)=(1,1) and (1,2) will be shown
 - O For parametrization of $\langle \Delta E \rangle = C \times \ln(p_T^{jet}) \times R^b$, only results of b=1 and 2 will be shown
- In this study, only statistical uncertainty is quoted in the results.
 No systematic uncertainty is evaluated and assigned

 $\Delta E > = C(p_T^{jet})^a R^b$ (a, b) = (1, 1)

pp events
with energy loss

ATLAS pp results (arXiv:1706.09363)

 $\Delta E > = C(p_T^{jet})^a R^b$ (a, b) = (1, 2)

pp events
with energy loss

ATLAS pp results (arXiv:1706.09363)

 $\Delta E > = Cln(p_T^{jet})R^b$ b = 1

pp events

pp events
with energy loss

ATLAS pp results (arXiv:1706.09363)

 $\Delta E = Cln(p_T^{jet})R^b$ b = 2

pp events

pp events
with energy loss

ATLAS pp results (arXiv:1706.09363)

Summary

- With simulated dijet events from pp collisions, Glauber Monte-Carlo simulation, and simple forms of energy loss of jet traversing in QGP $<\Delta E>=C(p_T^{jet})^aR^b$ and $<\Delta E>=Cln(p_T^{jet})^aR^b$, attempt to reproduce ATLAS results (arXiv:1706.09363) was made. However, none of the tested models work
 - O For $\langle \Delta E \rangle = C(p_T^{jet})^{\alpha}R^b$, results with (a, b) = (1, 1) and (1, 2) are shown; For $\langle \Delta E \rangle = C\ln(p_T^{jet})R^b$, results with b = 1 and 2 are shown.