TRANSFORMATIONS OF BOUNDARIES IN PARAMETRIC FORM

Suppose that in the z plane a curve C [Fig. 8-9], which may or may not be closed, has parametric equations given by

$$x = F(t), \quad y = G(t). \tag{11}$$

where we assume that F and G are continuously differentiable. Then the transformation

$$z = F(w) + iG(w) \tag{12}$$

maps curve C on to the real axis C' of the w plane [Fig. 8-10].

SOME SPECIAL MAPPINGS

For reference purposes we list here some special mappings which are useful in practice. For convenience we have listed separately the mapping functions which map the given region \mathcal{R} of the w or z plane on to the upper half of the z or w plane or the unit circle in the z or w plane, depending on which mapping function is simpler. As we have already seen there exists a transformation [equation (8)] which maps the upper half plane on to the unit circle.

(a)

 $w = \sin \frac{\pi z}{a}$

Fig. 8-15

z plane

Fig. 8-16

w plane

(b)

 $w = \cos \frac{\pi z}{a}$

Fig. 8-17

z plane

w plane

(c)

 $w = \cosh \frac{\pi z}{a}$

Fig. 8-19

z plane

Fig. 8-20

w plane

Δ_

Half plane with semicircle removed

 $w = \frac{1}{2}$

z plane

Fig. 8-22

w plane

A-5 Semicircle

 $w = \left(\frac{1+z}{1-z}\right)^2$

Fig. 8-23

z plane

Fig. 8-24

w plane

A-6 Sector of a circle

$$w = \left(\frac{1+z^m}{1-z^m}\right)^2, \quad m \ge \frac{1}{2}$$

Fig. 8-25

z plane

Fig. 8-26

w plane

A-7 Lens-shaped region of angle π/m [ABC and CDA are circular arcs.]

Fig. 8-27

z plane

Fig. 8-28

w plane

A-8 Half plane with circle removed

Fig. 8-29

z plane

Fig. 8-30

w plane

A-9 Exterior of parabola $y^2 = 4p(p-x)$

 $w \ = \ i(\sqrt{z} - \sqrt{p}\,)$

Fig. 8-31

Fig. 8-32 w plane

A-10

Interior of the parabola $y^2 = 4p(p-x)$

 $w = e^{\pi i \sqrt{z/p}}$

Fig. 8-33

z plane

Fig. 8-34

A-11

Plane with two semi-infinite parallel cuts

 $w = -\pi i + 2 \ln z - z^2$

Fig. 8-35

w plane

Fig. 8-36

z plane

A-12

Channel with right angle bend

 $w = \frac{2}{\pi} \{ \tanh^{-1} p \sqrt{z} - p \tan^{-1} \sqrt{z} \}$

Fig. 8-37

w plane

Fig. 8-38

z plane

w = 1/z

A-13 Interior of triangle

Fig. 8-40

 $w = \int_0^z t^{\alpha/\pi - 1} (1 - t)^{\beta/\pi - 1} dt$

A-14 Interior of rectangle

Fig. 8-41

Fig. 8-42

B. Mappings on the Unit Circle

B-1 Exterior of unit circle

Fig. 8-44

B-2 Exterior of ellipse

Exterior of parabola $y^2 = 4p(p-x)$

Fig. 8-47

Fig. 8-48

B-4 Interior of parabola $y^2 = 4p(p-x)$

Fig. 8-49

E

Fig. 8-50

w plane

Miscellaneous Mappings

Semi-infinite strip of width a on to quarter plane

Fig. 8-51

z plane

Fig. 8-52

C-2 Interior of cardioid on to circle

Fig. 8-53

Fig. 8-54

Solved Problems

TRANSFORMATIONS

- 1. Let the rectangular region \mathcal{R} [Fig. 8-61 below] in the z plane be bounded by x=0, y=0, x=2, y=1. Determine the region \mathcal{R}' of the w plane into which \mathcal{R} is mapped under the transformations:
 - (a) w = z + (1-2i), (b) $w = \sqrt{2} e^{\pi i/4} z$, (c) $w = \sqrt{2} e^{\pi i/4} z + (1-2i)$.
 - (a) If w=z+(1-2i), then u+iv=x+iy+1-2i=(x+1)+i(y-2) and $u=x+1,\ v=y-2$.