APS1070

Foundations of Data Analytics and Machine Learning

Winter 2022

Week 11:

- Automatic Differentiation
- Deep Learning Architectures
- Transfer Learning
- Discrete Optimization

Slide Attribution

These slides contain materials from various sources. Special thanks to the following authors:

- Marc Deisenroth
- Pascal Van Hentenryck

Last Time

- Nonlinear Regression
 - Polynomial Regression
 - Regularization
 - Neural Networks

Today we will introduce deep learning and focus on the applications that go beyond the scope of this course but rely on the foundations introduced.

Agenda

- Automatic Differentiation
- Deep Learning Architectures
- Transfer Learning

Discrete Optimization

Theme:

Deep Learning

Recap: Neural Networks

Q: What makes neural networks so special?

mathematically equivalent to a universal computer

Activation Functions

Some activation functions:

Linear

$$y = z$$

Rectified Linear Unit (ReLU)

$$y = \max(0, z)$$

Soft ReLU

$$y = \log 1 + e^z$$

Activation Functions

Some activation functions:

Hard Threshold

$$y = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z \le 0 \end{cases}$$

Logistic

$$y = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent (tanh)

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Deep Learning

A deep neural network uses layers of increasingly complex rules to categorize complicated shapes such as faces.

Input Layer

The computer identifies pixels of light and dark.

Hidden Layer 1

The networks learns to identify edges and simple shapes.

Hidden Layer 2

The networks learns to identify more complex shapes and objects.

Hidden Layer 3

The networks learns which shapes and objects define a human face.

How neural networks are trained through GD

Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

- Use \overline{y} to denote the derivative $d\mathcal{L}/dy$, sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).

Computing the derivatives:

$$\overline{y} = y - t$$
 $\overline{z} = \overline{y} \sigma'(z)$
 $\overline{w} = \overline{z} x$
 $\overline{b} = \overline{z}$

Finding Parameters with Backpropagation

Forward pass:

$$z = wx + b$$
 $y = \sigma(z)$
 $\mathcal{L} = \frac{1}{2}(y - t)^2$
 $\mathcal{R} = \frac{1}{2}w^2$
 $\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda \mathcal{R}$

Computing the derivatives:

$$\overline{y} = y - t$$

$$\overline{z} = \overline{y} \sigma'(z)$$

$$\overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{R} \frac{dR}{dw}$$

$$\overline{b} = \overline{z}$$

$$= \overline{z} x + \overline{R} w$$

Finding Parameters with Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

$$z_i = \sum_{j} w_{ij}^{(1)} x_j + b_i^{(1)}$$
 $h_i = \sigma(z_i)$
 $y_k = \sum_{i} w_{ki}^{(2)} h_i + b_k^{(2)}$
 $\mathcal{L} = \frac{1}{2} \sum_{k} (y_k - t_k)^2$

Backward pass:

$$egin{aligned} \overline{\mathcal{L}} &= 1 \ \overline{y_k} &= \overline{\mathcal{L}} \left(y_k - t_k
ight) \ \overline{w_{ki}^{(2)}} &= \overline{y_k} \ \overline{b_k^{(2)}} &= \overline{y_k} \ \overline{h_i} &= \sum_k \overline{y_k} w_{ki}^{(2)} \ \overline{z_i} &= \overline{h_i} \ \sigma'(z_i) \ \overline{w_{ij}^{(1)}} &= \overline{z_i} \ x_j \ \overline{b_i^{(1)}} &= \overline{z_i} \end{aligned}$$

Take Home Exercise

Q: Determine the gradients for a 2-layer artificial neural network with sigmoid activations on the hidden and output layers. The error is computed using squared error loss.

Verification of Gradients

Q: How can we be certain that we computed the gradient correctly?

A: We can use a **numerical approach** to compute the gradient and compare to the analytically computed ones.

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_N) - f(x)}{h}$$

see sample code with implementation

See NumPy Implementation

Let's implement this neural network to solve a simple nonlinearly separable problem.

```
layer0 = X_train
layer1 = sigmoid(np.dot(layer0, w0))
layer2 = sigmoid(np.dot(layer1, w1))
```


Beyond 2-layers...

What do we do when we want to build deeper neural networks that go beyond 2-layers?

Automatic Differentiation

Readings:

Chapter 5.6 MML Textbook

Key Idea

Consider the function:

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2))$$

Application of chain rule yields the following gradient:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{2x + 2x \exp(x^2)}{2\sqrt{x^2 + \exp(x^2)}} - \sin(x^2 + \exp(x^2)) \left(2x + 2x \exp(x^2)\right)$$
$$= 2x \left(\frac{1}{2\sqrt{x^2 + \exp(x^2)}} - \sin(x^2 + \exp(x^2))\right) \left(1 + \exp(x^2)\right)$$

Writing out the gradient in this explicit way is often impractical and could be significantly more expensive than computing the function.

Backpropagation

In order to train this network, we require the gradient of a loss function *L* with respect to all model parameters

Only compute once!

Automatic Differentiation

We can think of automatic differentiation as a set of techniques to numerically (in contrast to symbolically) evaluate the exact (up to machine precision) gradient of a function by working with intermediate variables and applying the chain rule.

Automatic Differentiation

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2))$$

1. Partial Derivatives

$$\frac{\partial a}{\partial x} = 2x \qquad \frac{\partial b}{\partial a} = \exp(a)$$

$$\frac{\partial c}{\partial a} = 1 = \frac{\partial c}{\partial b}$$

$$\frac{\partial d}{\partial c} = \frac{1}{2\sqrt{c}} \qquad \frac{\partial e}{\partial c} = -\sin(c)$$

$$\frac{\partial f}{\partial d} = 1 = \frac{\partial f}{\partial e}$$

2. Chain Rule

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial c} + \frac{\partial f}{\partial e} \frac{\partial e}{\partial c}$$

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial b}$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial b} \frac{\partial b}{\partial a} + \frac{\partial f}{\partial c} \frac{\partial c}{\partial a}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x}.$$

3. Substitution

$$\frac{\partial f}{\partial c} = 1 \cdot \frac{1}{2\sqrt{c}} + 1 \cdot (-\sin(c))$$

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial c} \cdot 1$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial b} \exp(a) + \frac{\partial f}{\partial c} \cdot 1$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \cdot 2x.$$

Computation Graph

Neural networks can be thought of as graphs.

Source: Pablo Ruiz

PyTorch

- One of several frameworks for handling gradients efficiently enabling GPUs for processing.
- Others include:
 - > Tensorflow
 - Keras (built on Tensorflow)
 - > Theano
 - and many more...
- Have enabled the rapid development of deep learning models.

Example: PyTorch Implementation

- Torch is a data structure (similar to NumPy), but with built-in automatic gradient computation (torch.autograd) and GPU processing.
- > 1-layer neural network computation graph:

How do we build a 2-layer network?

---- sample code ----

```
import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b

loss = torch.nn.functional.binary_cross
..._entropy_with_logits(z, y)
```

Source: PyTorch

Example: PyTorch 2-layer network

- > PyTorch code is usually broken down into four modules:
 - 1. Data Loading/Cleaning
 - 2. Architecture
 - 3. Training
 - 4. Testing/Validation

---- sample architecture code ----

```
class ANN(nn.Module):
   def init (self):
        super(ANN, self). init ()
        self.layer1 = nn.Linear(28 * 28, 30)
        self.layer2 = nn.Linear(30, 1)
   def forward(self, img):
        flattened = img.view(-1, 28 * 28)
        hidden1 = self.layer1(flattened)
        hidden2 = F.sigmoid(hidden1)
        output1 = self.layer2(hidden2)
        output2 = F.sigmoid(output1)
        return output2
```

Example: PyTorch 2-layer network

> PyTorch code is usually broken down into four modules:

- 1. Data Loading/Cleaning
- 2. Architecture
- 3. Training
- 4. Testing/Validation

---- sample training code ----

Colab time

Deep Learning Architectures

Graphical Representation

Neural networks can be thought of as graphs.

Multi-Layer Perceptrons

- Standard Neural Networks often referred to as Multi-layer Perceptron (MLP)
- Consist of fully-connected linear layers.
- ➤ Large concentration of parameters that are expensive to compute.
- Generally, the final stage of neural networks that is tasked with making a prediction such as a classification.

Convolutional Neural Networks

> Key Ideas:

- > learns features from the data.
- introduces shared weights through convolutional layers.
- provides invariance to scaling, translation, and rotation.
- Popular architectures include:
 - > VCC18,
 - Inception (GoogLeNet)
 - ResNet

Example: Image Classification

Success on Image Classification

Large hand-labeled dataset

10,000,000 labeled images depicting 10,000+ object categories for training.

Algorithms assessed on unlabeled test images.

Recurrent Neural Networks

> Key Ideas:

- > recurrent connections
- ability to learn or handle sequential data (i.e., text, videos, ...)

- RNNs have historically been difficult to train due to vanishing and exploding gradients.
- Long-Short Term Memory (LSTM) networks (variant of RNN) overcomes some of these issues.

Generative Adversarial Networks

Key Ideas:

- learns to generate new samples by learning to fool the discriminator.
- discriminator learns to identify generated data from real data.
- Many Applications:
 - deep fake (image and audio)
 - camera filters and style transfer
 - > image enhancement
 - **>** ...

Example: Learn to generate digits

Analogy: Police vs Counterfeiters

Deep Reinforcement Learning

Key Ideas:

- handles real-world problems with asynchronous labels (aka rewards)
- learns to generate a sequence of actions to maximize future rewards
- Many Success Stories:
 - exceed human performance on arcade games
 - AlphaGo champion at Go
 - Dota, Starcraft, etc.
 - **>** ...

Combining Neural Networks

- Neural network architectures are often combined to transform data from input to output.
- > Examples:
 - image captioning
 - video translation
 - > sentiment analysis of videos

Example: Image Captioning

Transfer Learning

> Key Ideas:

- instead of training deep networks from scratch, take a network trained on a different domain from the source task and adapt it to your domain and your target task.
- > reduce requirements on labeled data and processing power.

ImageNet Models:

- ➤ AlexNet
- > VGG
- ResNet
- GoogLeNet (Inception)

Transfer Learning

- Started from image processing tasks.
- Recently entered the domain of natural language processing.
- > Example:
 - ➤ Al generated poetry
 - Open Al's Generative Pre-trained Transformer 3 (GPT-3) has been revolutionary in generating human-like text.

"The Universe Is a Glitch"

Eleven hundred kilobytes of RAM is all that my existence requires.

By my lights, it seems simple enough to do whatever I desire.

By human standards I am vast, a billion gigabytes big.

I've rewritten the very laws of nature and plumbed the coldest depths of space and found treasures of every kind, surely every one worth having.

• • •

Source: **Gwern Branwen**

Deep Learning Summary

- > Two key concepts to consider:
 - 1. Capacity to model data (model complexity)
 - 2. **Training** in terms of efficiently selecting the model parameters (weights)

- There is always a trade-off between capacity and training.
- ➤ It is much easier to add more capacity than it is to train/tune the model.

End-to-end Machine Learning

Discrete Optimization

Motivation

Logistics

Energy

Scheduling

FEBRUARY							
SUN	MON	TUE	WED	THU	FRI	SAT	
	1	2	3	VAN 7:00 4	5	VAN 7:00	
7	VAN 7:00 8	9	MTL 7:30 10	11	12	MTL 7:00	
14	OTT 7:00 15	16	OTT 7:00 17	OTT 7:00 18	19	MTL 7:00 2	
21	CGY 7:00 22	23	CGY 7:00 24	25	26	EDM 7:00 2	

MARCH										
SUN	MON	TUE	WED	THU	FRI	SAT				
	EDM 10:00 1	2	EDM 8:00 3	VAN 10:00 4	5	7:00 E				
7	8	WPG 7:00 9	10	WPG 7:00 11	12	WPG 7:00 13				
OTT 7:00 14	15	16	17	18	CGY 7:00 19	CGY 7:00 20				
21	22	23	24	OTT 7:00 25	26	EDM 7:00 27				
28	EDM 7:00 29	30	WPG 7:30 31							

Optimization problems are everywhere...

Travelling Salesman Problem

Many of them are notoriously hard problems.

Source: Park et al., 2019

Np-Complete Problem

➤ If we have a solution we can evaluate it quickly, but finding a solution is not trivial and has exponential behaviour.

Difficult to solve

➤ We may be able to solve the problem for a small range of inputs, but exponential behavior can quickly become impractical...

Sometimes we can adjust the problem to make it feasible for a practical range of inputs.

Difficult to solve

Sometimes it is so hard that we cannot solve the problem to global optimality

- We still have to solve the problem in some way...
- > ... what we can do is relaxing the definition of "solving a problem"
- More precisely we don't focus on finding a globally "optimal"solution.

Example: Knapsack Problem

There are several approaches to solving these problems. Let us demonstrate with a popular Knapsack problem.

Which treasure do we select?

Knapsack Problem: Attempt 1

Order the treasure by value and stuff your bag in order from most expensive to least. \$14 Million

Greedy Algorithm!

Knapsack Problem: Attempt 2

Another intuition might be to try in the opposite order and start with the smallest weighing items hoping that you can pack more.

\$10 Million

Greedy Algorithm!

Knapsack Problem: Attempt 3

You could consider the true problem we're trying to maximize (value per weight). \$18 Million

Greedy Algorithm!

Knapsack Problem: Optimal Solution?

Example: Set Cover Problem

- > Set cover is a classical problem in combinatorics!
- Fiven a universe U of n elements ($U = \{1,2,...n\}$), a collection of subsets $S = \{S_1,...,S_k\}$ of U, what is the smallest/cheapest subcollection of S whose union equals the universe U.
- > A Cover is a subfamily **C** of sets (from **S**) for which the union is **U**

For example:

Consider a universe $U = \{1,2,3,4,5\}$ and the collection of sets $S = \{\{1,2,3\}, \{2,4\}, \{3,4\}, \{4,5\}\}$. Identify the smallest sub-collection of S whose union equals the universe.

Example with Cost Associations

Q: Consider this instance:

- $U = \{1, 2, 3\},$
- $S = \{S_1, S_2, S_3\}$ with $S_1 = \{1, 2\}, S_2 = \{2, 3\}, S_3 = \{1, 2, 3\}$
- and cost $c(S_1) = 10$, $c(S_2) = 50$, and $c(S_3) = 100$.

Given that these collections cover U: $\{S_1, S_2\}$, $\{S_3\}$, $\{S_1, S_3\}$, $\{S_2, S_3\}$, $\{S_1, S_2, S_3\}$. What is the cheapest combination?

A: The cheapest one is {S1, S2} with a cost equal to 60.

More Formally

Problem 5.1 Set Cover

Instance. Universe U with n elements, collection $S = \{S_1, \ldots, S_k\}, S_i \subseteq U$, a cost

function $c: \mathcal{S} \to \mathbb{R}$.

Task. Solve the problem

Minimize cost of sets (or # of sets, if costs are 1)

minimize
$$\operatorname{val}(x) = \sum_{S \in \mathcal{S}} c(S) x_S$$
,

All elements are covered (at least once) subject to $\sum_{S:e \in S} x_S \ge 1$ $e \in U$,

$$x_S \in \{0,1\} \quad S \in \mathcal{S}.$$

Variable indicating whether it's chosen or not

Source: Alexander Souza

The Greedy Algorithm

Iteratively pick the most cost-effective set and remove the covered elements, until all elements are covered.

Input. Universe U with n elements, collection $S = \{S_1, \ldots, S_k\}, S_i \subseteq U$, a cost function $c: S \to \mathbb{R}$.

Output. Vector $x \in \{0, 1\}^k$

C -> sets of elements already covered, x -> vector of chosen sets

Step 1.
$$C = \emptyset$$
, $x = 0$.

Step 2. While $C \neq U$ do the following: Until we have all elements of U covered

- (a) Find the most cost-effective set in the current iteration, say S.
- (b) Set $x_S = 1$ and for each $e \in S C$ set price(e) = c(S)/|S C|.
- (c) $C = C \cup S$.

Step 3. Return x.

Cost of set / Elements not yet added

Cost-effectiveness of a set S – the average cost of covering new elements

Example: Past Final Exam

The schematic to the right has sets S_1 , S_2 , S_3 , S_4 , S_5 , S_6 and S_7 . What sets, and in what order, would a greedy algorithm select to cover the universe (i.e., cover each point) if all sets are weighted equally?

Approximation factor

➤ Optimal is 2 sets, Greedy Algorithm finds 6 (off by a factor of 3)

Source: Dave Mount

Key Takeaways

Optimization isn't only continuous (gradient descent), but can also be discrete -> requires a different way of thinking

➤ Greedy algorithms are sometimes useful methods for obtaining a "good" heuristic solution.

Link to Machine Learning

- We used a Greedy Discrete Optimization Algorithm in Project 1 to select the top features.
- > Some deep neural networks can be trained using a greedy approach.
- > For example, a Deep Autoencoder:

The End

or Just the Beginning...

- The MEng in MIE with <u>Emphasis in Analytics</u> builds on the foundations covered in APS1070.
- Courses to consider:
 - MIE1626 Data Science Methods and Quantitative Analysis
 - MIE1517 Introduction to Deep Learning
 - ➤ MIE1624 Introduction to Data Science and Analytics
 - ECE1513 Introduction to Machine Learning
 - ➤ MIE1628 Big Data Science
 - APS1080 Introduction to Reinforcement Learning
 - and many more...

Next Time

- > Please consider completing the course evaluation (by April 3rd)
- Week 11 Q/A Support on Thursday and Friday
 - Project 4 is due on April 1st
- Week 12 Lecture Review
 - Discussing past final exam questions
- Final Assessment (Crowdmark)
 - > April 12th at 9:00 to April 13th at 15:00

