PK4 Projekt

Temat: Lunar Lander

Sprawozdanie

Jakub Krzywoń

Prowadzący: dr inż. Krzysztof Taborek

5.07.2023

1.Temat: Gra Lunar Lander

Lunar Lander to dwuwymiarowa, zręcznościowa gra symulacyjna. Gracz kontroluje lądownik, który jest przyciągany przez siłę grawitacji, a jego zadaniem jest odpowiednie zarządzanie paliwem i użycie silnika, by bezpieczne wylądować we wskazanym miejscu. Za każde udane lądowanie zdobywa punkty, a za nieudane traci paliwo. Gracz gra aż do skończenia się paliwa.

2. Specyfikacja zewnętrzna

Instrukcja

Poruszanie się po menu odbywa się za pomocą strzałek oraz przycisku enter.

Po wybraniu opcji PLAY zaczyna się rozgrywka, aby obrócić lądownik należy użyć strzałek w lewo lub prawo, do uruchomienia silnika służy strzałka w górę. Z rozgrywki zawsze można wyjść naciskając esc. Po zakończeniu gry należy wpisać poprawny nick i zatwierdzić go klikając enter albo nacisnąć esc (wtedy wynik się nie zapisze). Opcja BEST SCORES wyświetla 10 najlepszych wyników, aby z niej wyjść trzeba nacisnąć enter lub esc. Opcja EXIT kończy działanie aplikacji.

Menu:

Best Scores:

```
1 JHKUBK 2188
2 TESTOME10 989
3 JOKUB 608
4 MSO 608
5 JAKUB 608
6 TEST2 469
7 TEST 380
9 JKK 300
9 SKEMDUDE 188
```

Rozgrywka:

Ekran końcowy:

3. Specyfikacja wewnętrzna

Schemat blokowy działania gry:

Diagram klas:

Klasy:

- Game główna klasa organizująca działanie gry
- -Lander reprezentuje lądownik, sprawdza kolizję, przechowuje punkty gracza
- -Terrain- reprezentuje teren, przechowuje położenie miejsc do lądowania, wykorzystuje bibliotekę random do generowania losowego terenu
- -FileManager- wykorzystuje biblioteki regex i filesystem, przechowuje ścieżkę do pliku z najlepszymi wynikami oraz posiada metodę sprawdzająca poprawność nicku, korzysta z biblioteki algorithm aby sortować wyniki

Wykorzystane biblioteki z laboratorium:

Filesystem – ustalenie ścieżki do pliku z najlepszymi wynikami oraz przechowywanie jej

Regex – sprawdzenie poprawności nicku wprowadzonego przez gracza

4. Testowanie i uruchamianie

Przy testowaniu wykrywania kolizji wbudowana w sfml metoda wykrywania kolizji intersects która miała sprawdzać czy dwa bounding boxy obiektów się nie przecinają nie działała prawidłowo, wykrywała kolizję przed faktycznym zderzeniem. Próbowałem wykryć kolizję między obracanym spritem a punktami reprezentującymi teren poprzez aproksymacje linii terenu pod lądownikiem i sprawdzaniem jej przecięcia z bounding boxem sprite'a, jednak ta metoda nie spełniała moich oczekiwań w przypadku dużej różnicy poziomu między dwoma sąsiednimi punktami. Ostatecznie zastosowałem metodę korzystającą z teorii SAT, poprzez rzutowanie środka sprite'a na odcinek oraz obliczenie nakładania się na osi x i y.

Wykrycie błędu polegającego na braku czyszczenia wektora z stanowiskami lądowania przy każdym generowaniu terenu, co powodowało niepoprawne naliczanie punktów.

5. Uwagi i wnioski

Aby rozbudować program można do niego dodać:

- dodatkowe pola lądowania (np. z paliwem)
- komunikat o niepoprawnym nicku
- -animacje silnika
- -dźwięk
- -bardziej wydajną i dokładną detekcje kolizji