Congratulations! You passed!

Grade received 93.33% Latest Submission Grade 93.33% To pass 80% or higher

Go to next item

1. Following is an example of a deep and wide network structure.

1/1 point

O True

False

⊘ Correct

2. Consider the following code and check all that are true:

```
class MyModel(Model):
    def __init__(self, units=30, activation='relu', **kwargs):
        super().__init__(**kwargs)
        self.hidden1 = Dense(units, activation=activation)
        self.hidden2 = Dense(units, activation=activation)
        self.main_output = Dense(1)
        self.aux_output = Dense(1)

def call(self, inputs):
        input_A, input_B = inputs
        hidden1 = self.hidden1(input_B)
        hidden2 = self.hidden2(hidden1)
        concat = concatenate([input_A, hidden2])
        main_output = self.main_output(concat)
        aux_output = self.aux_output(hidden2)
        return main_output, aux_output
```

- ▼ The output layers cannot give more than 1 result each.
- Correct They each hold only 1

Correct! They each hold only 1 unit.

The *init* function initializes the *MyModel* Class objects, as well as the attributes that are inherited from the *Model* Class.

⊘ Correct

Correct!

- The *concat* should be defined within the *init* function instead of the *call* function as it is also a hidden layer.
- The code is incomplete in the sense that you can only initialize and construct your model, you cannot perform training or inference.

3.	You have learned that Sequential and Functional APIs have their limitations.	0.666 / 1 po	66666666666666666666666666666666666666
	How can you build dynamic networks where the architecture changes on the fly, or networks where recursion is used? Check all that are true:	7 - 1 -	
	✓ Using model subclassing		
	 Correct Correct! With model subclassing it is relatively easier to build these complex networks. 		
	✓ Using Functional API		
	Correct Correct! With Functional APIs it is possible to build these networks, but it would require a lot of coding.		
	✓ Using Sequential API		
	This should not be selected Incorrect! With Sequential APIs it is not possible to build these type of networks.		
4.	Which one of the following is a false statement regarding model subclassing?		1 / 1 point
	O You can have modular architectures		
	O Instead of tweaking the entire architecture, you can have different modules and make changes in the as required, as opposed to entirely rewriting the structure.	nem	
	You cannot introduce a branch structure in the architecture when doing model subclassing.		
	O You can make use of Functional and Sequential APIs when writing code for model subclassing.		
	 ✓ Correct Correct! You can have branches within your network 		

Check all that are true:

When you make a loop of Residual Type 2 blocks, each block could have the same weights.

- You loop Residual Type 2 (Dense layers) because you cannot make a loop of Conv2D layers (Residual Type 1)
- Each Residual block has two hidden layers and one add layer in it.

✓ Correct!

You make a loop of Residual Type 2 blocks because you want to reduce the depth of the network (making it less complex of an architecture)

