Coursework Exam Solution

(COMP3605 - Introduction to Data Analytics, 2022-2023)

Date Available: 3 PM, Friday, November 11, 2022

Due Date: 4 PM, Friday, November 11, 2022

Total Mark: 100 marks

Solution to Question 1 [50 marks] (*min sup*) count = 3

• Find all frequent itemsets in D using the vertical Apriori algorithm

[5 marks] for correct horizontal to vertical transformation

The Vertical Data Format of the Transaction Data Set D

Itemset	TID_set
A	{T300}
С	{T400, T500}
D	{T200}
Е	{T100, T200, T300, T500}
I	{T500}
K	{T100, T200, T300, T400, T500}
M	{T100, T300, T400}
N	{T100, T200}
О	{T100, T200, T500}
U	{T400}
Y	{T100, T200, T400}

[6 marks] for correct C_1

- set of candidate 1-itemsets $C_1 = \{\{A\}, \{C\}, \{D\}, \{E\}, \{I\}, \{K\}, \{M\}, \{N\}, \{O\}, \{U\}, \{Y\}\}\}$
- Determine supports of itemsets in C_1 using lengths of their *tid* lists

Itemset	TID_set	sup. count
A	{T300}	1
C	{T400, T500}	2
D	{T200}	1
Е	{T100, T200, T300, T500}	4
I	{T500}	1
K	{T100, T200, T300, T400, T500}	5
M	{T100, T300, T400}	3
N	{T100, T200}	2
O	{T100, T200, T500}	3
U	{T400}	1
Y	{T100, T200, T400}	3

Thus, we have $C_1 = \{\{A\}:1, \{C\}:2, \{D\}:1, \{E\}:4, \{I\}:1, \{K\}:5, \{M\}:3, \{N\}:2, \{O\}:3 \text{ (not4)}, \{U\}:1, \{Y\}:3\}$

[6 marks] for correct F_1

The set of frequent 1-itemsets is $F_1 = \{\{E\}: 4, \{K\}: 5, \{M\}: 3, \{O\}: 3, \{Y\}: 3\}$

- Construct vertical *tid* lists of each frequent item [by scanning the data set once]. The result is shown below.

frequent 1-itemsets in Vertical Data Format

Itemset	TID_set
Е	{T100, T200, T300, T500}
K	{T100, T200, T300, T400, T500}
M	{T100, T300, T400}
О	{T100, T200, T500}
Y	{T100, T200, T400}

- For k = 1
- while $F_1 \neq \emptyset$
- Generate C_2 by joining itemset-pairs in F_1 (k = 1): $C_2 = F_1 \bowtie F_1$

[6 marks] for correct C_2

 $C_2 = \{\{E, K\}, \{E, M\}, \{E, O\}, \{E, Y\}, \{K, M\}, \{K, O\}, \{K, Y\}, \{M, O\}, \{M, Y\}, \{O, Y\}\}\}$

- Prune itemsets from C_{k+1} that are infrequent due to their infrequent (k-1)-itemsets. (i.e., Prune itemsets from C_2 that are infrequent due to their infrequent 1-itemsets. Do nothing in this case.)
- Generate *tid* list of each **candidate itemset** in C_2 by intersecting *tid* lists of the itemset-pair in F_1 that was used to create **the candidate itemset**. The result of intersecting is shown below.

candidate 2-itemsets in Vertical Data Format

Itemset	TID set	
{E, K}	{T100, T200, T300, T500}	
{E, M}	{T100, T300}	
{E, O}	{T100, T200, T500}	
$\{E, Y\}$	{T100, T200}	
$\{K, M\}$	{T100, T300, T400}	
{K, O}	{T100, T200, T500}	
$\{K, Y\}$	{T100, T200, T400}	
{M, O}	{T100}	
{M, Y}	{T100, T400}	
$\{0, Y\}$	{T100, T200}	

- Determine supports of itemsets in C_2 using lengths of their *tid* lists

Itemset	TID_set	sup. count
{E, K}	{T100, T200, T300, T500}	4
{E, M}	{T100, T300}	2
{E, O}	{T100, T200, T500}	3
{E, Y}	{T100, T200}	2

{K, M}	{T100, T300, T400}	3
{K, O}	{T100, T200, T500}	3
{K, Y}	{T100, T200, T400}	3
{M, O}	{T100}	1
{M, Y}	{T100, T400}	2
$\{0, Y\}$	{T100, T200}	2

We have $C_2 = \{\{E, K\}: 4, \{E, M\}: 2, \{E, O\}: 3, \{E, Y\}: 2, \{K, M\}: 3, \{K, O\}: 3, \{K, Y\}: 3, \{M, O\}: 1, \{M, Y\}: 2, \{O, Y\}: 2\}$

[6 marks] for correct F_2

- F_2 = Frequent itemsets of C_2 together with their *tid* lists. Thus, we have the set of frequent 2-itemsets, F_2 , and their *tid* lists are shown below.

frequent 2-itemsets in Vertical Data Format

Itemset	TID_set
$\{E, K\}$	{T100, T200, T300, T500}
{E, O}	{T100, T200, T500}
{K, M}	{T100, T300, T400}
{K, O}	{T100, T200, T500}
{K, Y}	{T100, T200, T400}

- That is, we have $F_2 = \{\{E, K\}: 4, \{E, O\}: 3, \{K, M\}: 3, \{K, O\}: 3, \{K, Y\}: 3\}$ // removed $\{E, M\}, \{E, Y\}, \{M, O\}, \{M, Y\}, \{O, Y\}$
- For k = 2
- while $F_2 \neq \emptyset$
- Generate C_3 by joining itemset-pairs in F_2 (k = 2): $C_3 = F_2 \bowtie F_2$

[6 marks] for correct C₃

 $C_3 = \{\{E, K, O\}, \{K, M, O\}, \{K, M, Y\}, \{K, O, Y\}\}.$

- Prune itemsets from C_3 that are infrequent due to their infrequent 2-itemsets. Thus, we obtain $C_3 = \{\{E, K, O\}\}.$

// removed {K, M, O}, {K, M, Y}, {K, O, Y}

- Generate *tid* list of each **candidate itemset** in C_3 by intersecting *tid* lists of the itemset-pair in F_2 that was used to create **the candidate itemset**. The result of intersecting is shown below.

candidate 3-itemsets in Vertical Data Format

Itemset	TID_set
{E, K, O}	{T100, T200, T500}

- Determine supports of 3-itemsets in C_3 using lengths of their *tid* lists

Itemset	TID_set	sup. count
{E, K, O}	{T100, T200, T500}	3

We have $C_3 = \{\{E, K, O\}: 3\}$

[6 marks] for correct F_3

- F_3 = Frequent itemsets of C_3 together with their *tid* lists. Thus, we have the set of frequent 3-itemsets, F_3 , and their *tid* lists are shown below.

frequent 3-itemsets in Vertical Data Format

Itemset	TID_set
$\{E, K, O\}$	{T100, T200, T500}

- That is, we have $F_3 = \{\{E, K, O\}: 3\}$
- For k = 3
- while $F_3 \neq \emptyset$
- Generate C_4 by joining itemset-pairs in F_3 (k = 3): $C_4 = F_3 \bowtie F_3$

[4 marks] for correct C_4 and F_4

 $C_4 = \emptyset \rightarrow F_4 = \emptyset$, and the algorithm terminates.

[5 marks]

In conclusion, the set of all frequent itemsets found is

$$F = \{\{E\}:4, \{K\}:5, \{M\}:3, \{O\}:3, \{Y\}:3, \{E, K\}:4, \{E, O\}:3, \{K, M\}:3, \{K, O\}:3, \{K, Y\}:3, \{E, K, O\}:3\}\}$$

Solution to Question 2 [50 marks]

a. [6 marks] 3 marks for each correct support vector

Specify support vectors from the given data set D.

The first two instances \mathbf{x}_1 and \mathbf{x}_2 have Lagrange multipliers $\lambda_i > 0$ (i.e., $\lambda_1 = 2.7027$, $\lambda_2 = 2.7027$). Thus, the two support vectors (SVs) are $\mathbf{x}_1 = (2, 2.5)$ and $\mathbf{x}_2 = (2.5, 3.2)$.

b. [40 marks] Determine a decision boundary (DB) of a linear SVM (support vector machine). [20 marks] 10 marks for w_1 and 10 marks for w_2

Compute $\mathbf{w} = (w_1, w_2)$

Let $\mathbf{w} = (w_1, w_2)$ and b denote parameters of the DB.

Adopting the equation $\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$, where N = 8, we can calculate w_1 and w_2 as follows.

For m = 2 SVs $\mathbf{x}_1 = (2, 2.5)$ and $\mathbf{x}_2 = (2.5, 3.2)$ and two Lagrange multipliers $\lambda_1 = 2.7027$ and $\lambda_2 = 2.7027$, we have

$$w_j = \sum_{i=1}^N \lambda_i y_i x_{ij}$$
, where x_{ij} is the jth component of \mathbf{x}_i (e.g., $\mathbf{x}_i = (x_{i1}, x_{i2})$)

$$w_1 = \sum_{i=1}^m \lambda_i y_i x_{i1} = \lambda_1 y_1 x_{11} + \lambda_2 y_2 x_{21}$$

$$w_1 = 2.7027 \times 1 \times 2 + 2.7027 \times (-1) \times 2.5 = -1.3514 \approx -1.35$$

$$w_2 = \sum_{i=1}^{m} \lambda_i y_i x_{i2} = \lambda_1 y_1 x_{12} + \lambda_2 y_2 x_{22}$$

$$w_2 = 2.7027 \times 1 \times 2.5 + 2.7027 \times (-1) \times 3.2 = -1.8919 \approx -1.89$$

Thus, we obtain $\mathbf{w} = (w_1, w_2) = (-1.35, -1.89)$.

```
• [20 marks] 8 marks for b^{(1)}, 8 marks for b^{(2)}, 2 marks for average b, and 2 marks for DB We have b^{(k)} = y_i - \mathbf{w} \cdot \mathbf{x}_i, where \mathbf{x}_i are support vectors (i.e., i = 1, 2), k = 1, 2, ..., m)

For m = 2 SVs \mathbf{x}_1 = (2, 2.5) and \mathbf{x}_2 = (2.5, 3.2) and \mathbf{w} = (w_1, w_2) = (-1.35, -1.89), applying the formula b^{(i)} = y_i - w_1 \times x_{i1} - w_2 \times x_{i2} for i = 1, 2, ..., m, we obtain [8 marks]
b^{(1)} = y_1 - \mathbf{w} \cdot \mathbf{x}_1 = y_1 - w_1 \times x_{11} - w_2 \times x_{12}
b^{(1)} = 1 - (-1.35) \times 2 - (-1.89) \times 2.5 = 1 - (-7.425) = 8.425 \approx 8.43
[8 marks]
b^{(2)} = y_2 - \mathbf{w} \cdot \mathbf{x}_2 = y_2 - w_1 \times x_{21} - w_2 \times x_{22}
b^{(2)} = -1 - (-1.35) \times 2.5 - (-1.89) \times (3.2) = -1 - (9.423) = 8.423 \approx 8.42
[2 marks]
Averaging the values b^{(1)} and b^{(2)}, we obtain b = 8.425 \approx 8.43
[2 marks]
With \mathbf{w} = (w_1, w_2) = (-1.35, -1.89), b = 8.43, the DB of the linear SVM is w_1x_1 + w_2x_2 + b = 0 \Leftrightarrow -1.35x_1 - 1.89x_2 + 8.43 = 0.
```

- **c.** [4 marks] Describe how to use the trained linear SVM to classify a test instance **z**. With the found parameters **w** and *b* of the DB, a test instance **z** is classified as follows. $f(\mathbf{z}) = sign(\mathbf{w} \cdot \mathbf{z} + b)$.
- If $f(\mathbf{z}) > 0$ (or $\mathbf{w} \cdot \mathbf{z} + b \ge 1$), then \mathbf{z} is classified as positive class (i.e., class label y = 1).
- If $f(\mathbf{z}) < 0$ (or $\mathbf{w} \cdot \mathbf{z} + b \lesssim -1$), then \mathbf{z} is classified as negative class (i.e., class label y = -1).

End of Coursework Exam Solution