•	PREDICTION Date Date						
	To predict a continuous value rather than a						
	categorical label.						
	The prediction of continuous values com be woodeled by						
	statistical techniques of Regression.						
	(I) Linear Regression.						
	(I) Linear Regression. Data are modeled very a straight line. Bivariate (II) Bivariant Linear Regression.						
1	(II) Bivariant Linear Regression.						
	It models a random valued variable (Y) called a response var)						
	as a linear function of another random variable(X)						
ĵ.	e $Y = \alpha + \beta X$ (called a predictor var)						
	variance of y is assumed to be constant						
: 1	& is the regression coefficient specifing the Y intercept						
- 8	B is the regression coefficient specifing slope of the line						
	Coefficients combe solved by the method of						
	Least Square, which minimised the error b/w						
	Least Square, which minimised the error by						
	the actual data and estimate of the line.						
	the actual data and estimate of the line.						
	the actual data and estimate of the line. Somoples or data points are (x1, y1), (x2, y2), 00- (x5, y5)						
	the actual data and estimate of the line. Samples or data points are (x_1,y_1) , (x_2,y_2) , ∞ . (x_3,y_3)						
	the actual data and estimate of the line. Samples or data points are (x_1,y_1) , (x_2,y_2) , ∞ . (x_3,y_3)						
	the actual data and estimate of the line. Somples or data points are (x_1,y_1) , (x_2,y_2) , or (x_3,y_3) $ \beta = \sum_{k=1}^{\infty} (x_1^2 - \overline{x})(y_1^2 + \overline{y}) $ $ \sum_{j=1}^{\infty} (x_1^2 - \overline{x})^2 $ $ \sum_{j=1}^{\infty} (x_1^2 - \overline{x})^2 $						
	the actual data and estimate of the line. Somples or data points are (π_1, y_1) , (π_2, y_2) , or (π_3, y_3) $\beta = \sum_{x=1}^{S} (\pi_1^2 - \overline{x})(y_1^2 - \overline{y})$ $\sum_{y=1}^{S} (\pi_1^2 - \overline{x})^2$ $\sum_{y=1}^{S} (\pi_1^2 - \overline{x})^2$						
	the actual data and estimate of the line. Samples or data points are (x_1, y_1) , (x_2, y_2) , or (x_3, y_3) $ A B = \sum_{i=1}^{S} (x_i^2 - \overline{x})(y_i^2 - \overline{y}) $ $ \sum_{j=1}^{S} (x_i^2 - \overline{x})^2 $ $ \downarrow d = \overline{y} - B\overline{x} $						
	the actual data and estimate of the line. Samples or data points are (x_1,y_1) , (x_2,y_2) , so- (x_3,y_3) $ \beta = \sum_{k=1}^{\infty} (x_1^2 - \overline{x})(y_1^2 - \overline{y}) $ $ \sum_{j=1}^{\infty} (x_1^2 - \overline{x})^2 $ $ j=1$ A $j = \overline{y}$						
	the actual data and estimate of the line. Samples or data points are (x_1, y_1) , (x_2, y_2) , or (x_3, y_3) $ A B = \sum_{i=1}^{S} (x_i^2 - \overline{x})(y_i^2 - \overline{y}) $ $ \sum_{j=1}^{S} (x_i^2 - \overline{x})^2 $ $ \downarrow d = \overline{y} - B\overline{x} $						
	the actual data and estimate of the line. Samples or data points are (x_1,y_1) , (x_2,y_2) , so- (x_3,y_3) $ \beta = \sum_{k=1}^{\infty} (x_1^2 - \overline{x})(y_1^2 - \overline{y}) $ $ \sum_{j=1}^{\infty} (x_1^2 - \overline{x})^2 $ $ j=1$ A $j = \overline{y}$						

Saleta

1266

	of Section 1	Ed delay of		Carlow Mal			
-> T	here we	marks or	n steps as well	Data			
	Develo	p a model	to predict the	salary a	of college		
	graduates with 10 years of work experience, predict the salary of a college graduate.						
				4 14			
	W1	rs-experience) Salary) y (salary) y \$1000s			1. 2.		
Ly	ears-exp	×	y \$10003 ((X-X)	(X-X) (4-7)		
) and	3	30				
	2	8	57				
274	3	9	64	La Erd	100		
	4	13	72	o ser auto	2. (48)		
	5	3	36				
	ç	6	43	TO NO.	PART		
	7	11	59				
	8	21	90	46			
	9	I	20	A. A.			
	10	16	83				
	predict Where (x=10)						
	$\overline{X} = 9.1$ $\overline{Y} = 55.4$						
100	B = (3-	9.1)(30-55	-4) +	Dros) 5	so the salary of		
		(3-9.1)2	美国的 对一种。	a collège gonduate			
	PB = 3.5374				with 10 years of		
	702	7 - B	£	experience is			
	GX = 55.4 - 3.5374 (9.1)				\$ 58.18 K		
	= 23.2096						
	=			^	- 10 March 2018		
Z=d+BX For X=10							
	(9=23·2096 + 3·5374 (10)						
	(7)=58.58 p						
	K	1					