Contents

1	Beweisprinzipien		
	1.1	Aussagenlogik	4
	1.2	Axiome	4
	1.3	Direkter Beweis	4
		1.3.1 Beispiel	٠
	1.4	Indirekter Beweis durch Kontraposition	•
	1.5	Widerspruch	•
	1.6	Prinzip der vollständigen Induktion	•
	1.7	Summennotation	•
	1.8	Satz: Gaußformel	4

1 Beweisprinzipien

1.1 Aussagenlogik

Die Aussagenlogik befasst sich mit Aussagen, welche (w)ahr oder (f)alsch sein können. Aus den Operatoren

• Negation:

$$\neg a = \begin{cases} w & \text{falls } a \equiv f. \\ f & \text{falls } a \equiv w. \end{cases}$$

• Konjunktion:

$$a \vee b = \begin{cases} w & \text{falls } a \equiv w \text{ oder } b \equiv w \text{ (oder beide)}. \\ f & \text{sonst.} \end{cases}$$

• Disjunktion:

$$a \wedge b = \begin{cases} w & \text{falls } a \equiv w \text{ und } b \equiv w. \\ f & \text{sonst.} \end{cases}$$

• Implikation:

$$a \to b = \begin{cases} f & \text{falls } a \equiv w \text{ und } b \equiv f. \\ w & \text{sonst.} \end{cases}$$

• Äquivalenz:

$$a \leftrightarrow b = \begin{cases} w & \text{falls } a \equiv b. \\ f & \text{sonst.} \end{cases}$$

lassen sich aus bereits bestehenden aussagelogischen Ausdrücken Weitere bilden. Auch lassen sich einfach aus den Definitionen Gesetzmäßigkeiten ableiten.

1.2 Axiome

Axiome sind grundliegende Aussagen, die nicht weiter zurückgeführt werden (können). Wir beweisen, indem wir Aussagen auf Axiome zurückführen.

1.3 Direkter Beweis

Ein *Direkter Beweis* wird geführt, indem man eine Aussage A annimmt und ausgehend von dieser eine weitere Aussage B beweist.

1.3.1 Beispiel

Wir wollen zeigen, dass folgende Aussage korrekt ist:

Das Quadrat einer geraden Zahl ist wiederum gerade.

Sei $a \in \mathbb{N}$ eine gerade Zahl, welche sich also auch als $a = 2 \cdot k$ darstellen lässt. Betrachten wir nun das Quadrat von a, so gilt:

$$a^2 = (2 \cdot k)^2 = 2^2 \cdot k^2 = 4k^2 = 2 \cdot (2k^2)$$

Somit hat also $a^2 = 2 \cdot (2k^2)$ eine Zwei als Teiler und ist somit gerade.

1.4 Indirekter Beweis durch Kontraposition

Statt die Implikation $A \to B$ zu beweisen, können wir auch $\neg B \to \neg A$ beweisen. Wir nehmen also an, dass das zu zeigende nicht gilt und folgern daraus, dass unsere Annahme nicht gilt.

1.5 Widerspruch

Wir können eine Aussage A auch beweisen, indem wir $\neg A$ annehmen und daraus einen Widerspruch folgern.

1.6 Prinzip der vollständigen Induktion

Ist A(n) eine Aussage mit $n \in \mathbb{N}$, so können wir diese Gültigkeit dieser Aussage für alle $n > n_0$ zeigen, indem wir

- Die Gültigkeit der Aussage $A(n_0)$ zeigen und
- Aus der Annahme, dass die Aussage A(n) für ein festes $n \in \mathbb{K}$ bereits gilt, darauf schließen, dass auch A(n+1) gilt.

1.7 Summennotation

Seien a_i $(i \in \mathbb{N})$ eine Familie von Zahlen. Wir führen folgende Kurzschreibweise ein:

$$\sum_{k=m}^{n} a_i = a_m + \dots + a_n$$

1.8 Satz: Gaußformel

$$\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$$

Der Beweis erfolg einfach durch Induktion oder alternativ durch geschicktes, zweifaches Summieren obiger Summe.