Constrained optimization

- General theoretical and practical aspects
- A quick intro to linear programming

Beniamin Bogosel Computational Maths 2 1/62

Constrained optimization

- General theoretical and practical aspects
- A quick intro to linear programming

Beniamin BOGOSEL Computational Maths 2 2/62

Motivation

- * all algorithms presented before dealt with unconstrained optimization
- * Advantage in the unconstrained case: when looking for the next iterate you can search in any direction you want!
- \star In practice it may not be possible to include all information in the objective function!
- \star Sometimes, a minimization problem does not have non-trivial examples if no constraints are imposed!

- ★ constraints are necessary and useful in practice: what are the implications from the theoretical point of view?
- * how to deduce what are the relevant optimality conditions and how to solve practically optimization problems under constraints?

Beniamin Bogosel Computational Maths 2 3/62

Example 1

Source: http://people.brunel.ac.uk/~mastjjb/jeb/or/morelp.html

A company makes two products (X and Y) using two machines (A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B.

At the start of the current week there are 30 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours.

The demand for X in the current week is forecast to be 75 units and for Y is forecast to be 95 units. Company policy is to maximise the combined sum of the units of X and the units of Y in stock at the end of the week.

Getting the constraints and objective function...

•
$$50x + 24y \le 40 \times 60$$

•
$$30x + 33y < 35 \times 60$$

•
$$y > 5$$

Maximize: x + y - 50

Beniamin BOGOSEL Computational Maths 2 4/62

Example 2

Optimal can

For an aluminum can one can infer that its production cost may be proportional to its surface area. On the other hand, the can must hold a certain volume c of juice. Supposing that the can has a cylindrical shape, what are its optimal dimensions?

- \star we have two parameters: the height h and the radius r.
- * Area of the can (to be minimized): $A(h,r) = 2\pi r^2 + 2\pi rh$
- * Volume of the can (constraint): $V(h,r) = \pi r^2 h$
- * finally we obtain the problem

$$\min_{V(h,r)\geq c}A(h,r).$$

Beniamin BOGOSEL Computational Maths 2 5/62

The milkmaid problem

Suppose a person (M) in a large field trying to get to a cow (C) as fast as possible. Before milking the cow the bucket needs to be cleaned in a river nearby defined by the equation g(x,y)=0. What is the optimal point P on the river such that the total distance traveled MP+PC is minimal?

If $M(x_0, y_0)$ is the initial position and $C(x_C, y_C)$ is the position of the cow then the problem becomes

$$\min_{g(P)=0} MP + PC.$$

Beniamin BOGOSEL Computational Maths 2 6/6

General formulation

 \star given functions $f,h_1,...,h_m,g_1,...,g_k:\mathbb{R}^n\to\mathbb{R}$ we may consider problems like $(P) \quad \min f(x) \\ \text{s.t} \quad h_i(x)=0, i=1,...,m$

 $g_i(x) \leq 0, j = 1, ..., k$

- \star in the following we assume that functions f, h_i, g_j are at least C^1 (even more regular if necessary)
- * the cases where the constraints define a convex set are nice!
- \star we are interested in finding necessary and sufficient (when possible) optimality conditions

Beniamin BOGOSEL Computational Maths 2 7/62

Some terminology

- \star a feasible solution to (P) is any point which verifies all the constraints
- ★ the feasible set is the family of all feasible solutions
- \star if among feasible solutions of (P) there exists one x^* such that $f(x^*) \leq f(x)$ for all x which are feasible then we found an optimal solution of (P)
- * inequality constraints can be turned into equality constraints by introducing some slack variables: this increases the dimension of the problem...
- * keeping the inequality constraints is good in the convex case!
- \star is good to picture the geometry given by the constraints and only then go to the analysis results

Beniamin BOGOSEL Computational Maths 2 8/62

Intuitive Example

- * Minimize $f(x, y) = 2x^2 + y^2$ under the constraint $h(x, y) = \sqrt{(x 1)^2 + (y 1)^2} 0.5 = 0$
- \star Do the optimization and trace the gradients of f and h at the minimum:

* Looks like the gradients are colinear! Why?

Beniamin Bogosel Computational Maths 2 9/62

What happens if the gradients are not collinear?

- \star the gradient abla f has a non-zero component along the tangent line to the constraint
- \star **Consequence:** it should be possible to further decrease the value of f by moving tangentially to the constraint!

Beniamin Bogosel Computational Maths 2 10/62

Optimality condition: equality constraints

 \star the gradient $\nabla f(x^*)$ should be orthogonal to the tangent plane to the constraint set $h(x^*) = 0$, otherwise following the non-zero tangential part we could still decrease the value of f

Questions:

* definition of tangent space: look at the first order Taylor expansion!

The linearization of the constraint h_i around x s.t. $h_i(x) = 0$ is given by

$$\ell_i(y) = h_i(x) + \nabla h_i(x) \cdot (y - x) = \nabla h_i(x) \cdot (y - x)$$

If h(x) = 0 then the tangent plane at x is defined by

$$T_x = \{y : (y - x) \cdot \nabla h_i(x) = 0, i = 1, ..., m\}.$$

 \star existence of well-defined tangent spaces: the function h should be regular around the minimizer

Beniamin BOGOSEL Computational Maths 2 11/62

Examples

* $h(x)=x_1^2+x_2^2-1$ around the point $p=(\sqrt{2}/2,\sqrt{2}/2)$: we have $\nabla h(p)=2(x_1,x_2)$ so the tangent plane is

$$T_p = \{y : (y - p) \cdot (x_1, x_2) = 0\},\$$

which a well defined 1-dimensional line

 $\star h(x) = x_1^2 - x_2^2$ at the point p = (0,0): we have $\nabla f(x) = (2x_1, -2x_2)$ so $\nabla f(p) = 0$. Using the same definition we have

$$T_p = \{y : (y - p) \cdot 0 = 0\} = \mathbb{R}^2,$$

which is weird.

Goal: m equality constraints should give rise to a tangent space of dimension k = n - m! The gradient should be in the orthogonal to the tangent plane at the optimum: this has dimension equal to the rank of $Dh(x^*)$. Two situations occur:

- rank of $Dh(x^*)$ is strictly less than $m: \nabla f(x^*)$ might not be representable as a linear combination of $\nabla h_i(x^*)!$
- rank of $Dh(x^*)$ is exactly equal to m

Beniamin BOGOSEL Computational Maths 2 12/62

Further Examples

 \star intersect two spheres in $\mathbb{R}^3\colon$ you may end up with a point which is not a set of dimension 1

* intersect a sphere and a right cylinder: $h_1(x) = x_1^2 + x_2^2 + x_3^2 - 1$, $h_2(x) = x_1^2 + x_2^2 - x_2$. The gradients are $\nabla h_1(x) = 2(x_1, x_2, x_3)$ and $\nabla h_2(x) = (2x_1, 2x_2 - 1, 0)$ and they are linearly dependent at (0, 1, 0).

We expect an intersection made of a 1D curve, but there are points where the tangent is not unique!

Beniamin BOGOSEL Computational Maths 2 13/62

Regular points

Definition 1 (Regular points)

Given a family $h_1, ..., h_m$ of C^1 functions, $m \le n$, a solution x_0 of the system $h_i(x) = 0, i = 1, ..., m$

is called regular if the gradient vectors $(\nabla h_i(x_0))_{i=1}^m$ are linearly independent. Equivalently, the $m \times n$ matrix having $\nabla h_i(x_0)$ as rows has full rank m.

- \star the implicit function theorem implies that around regular points the system $h_i(x) = 0$ defines a C^1 surface of dimension k = n m!
- \star moreover, you can pick some k=n-m coordinates and express the set $h_i(x)$ in parametric form in terms of these coordinates
- * at regular points we can define the notion of tangent space which coincides with the one given by linearizing the constraints.

Beniamin Bogosel Computational Maths 2 14/62

Tangent plane property

Proposition 2

Let S be given by $h_i(x) = 0, i = 1, ..., m$ where h_i are C^2 functions and $x \in S$ be a regular solutions. Then the plane T_x defined by

$$T_x = \{(y - x)Dh(x) = 0\}$$

is the tangent plane to S at x. Furthermore, there exists a constant C such that

(1) for every $x' \in S$ there exists $y' \in T_x$ s.t. $|x' - y'| \le C|x' - x|^2$

and

- (2) for every $y' \in T_x$ there exists $x' \in S$ s.t. $|x' y'| \le C|y' x|^2$
- \star Just look at the Taylor expansion of h_i and the linearization ℓ_i around x! They coincide up to the second order.
- \star the statement (2) is false if x is not a regular point: the tangent space defined by T_x is larger than the real tangent space!

Beniamin BOGOSEL Computational Maths 2 15/62

More details: tangent plane

 \star if Dh(x) is of rank m then the linear system Dh(x)y=0 can be solved in terms of k=n-m parameters: e.g. $y_{m+1},...,y_n$:

$$\overline{y}_i = \ell_i(y_{m+1}, ..., y_n), i = 1, ..., m.$$

 \star implicit function theorem: there exist k = n - m coordinates (say $y_{m+1}, ..., y_n$) such that there exist C^1 functions φ_i s.t.

$$y_i = \varphi_i(y_{m+1}, ..., y_n), i = 1, ..., m$$

- * The gradients of φ_i are given by ℓ_i !
- \star Finally, the difference between the surface h(x) = 0 and the linearization contains only second order terms!

$$y_i - \overline{y}_i = O(|x - y|^2).$$

Beniamin BOGOSEL Computational Maths 2 16/62

First order optimality conditions

- \star suppose that x^* is a local minimum of f under the constraints h(x)=0
- \star suppose also that x^* is regular so that the tangent space T_x to the constraint gives a good approximation of h(x) = 0.
- \star it is reasonable to assume that x^* also minimizes the linearization of f:
- $\overline{f}(y) = f(x^*) + (y x^*)\nabla f(x^*)$ on this tangent plane defined by $Dh(x^*)(y x^*) = 0$.
- * this would imply that $\nabla f(x^*)$ is orthogonal to $(y x^*)$ for every y such that $Dh(x)(y x^*) = 0$.
- \star in usual notations we have $\nabla f(x^*) \in (\ker Dh(x^*))^{\perp}$
- * recall an important linear algebra result:

$$(\ker A)^{\perp} = \operatorname{Im} A^{T}$$
.

 \star finally, we obtain that there exists some $\lambda \in \mathbb{R}^m$ s.t.

$$\nabla f(x^*) = Dh(x^*)\lambda$$

which translates to the classical relation

$$\nabla f(x^*) = \sum_{i=1}^m \lambda_i \nabla h_i(x^*).$$

Beniamin BOGOSEL Computational Maths 2 17/62

Main result: Lagrange multipliers

Theorem 3

Let x^* be a local minimizer for the equality constrained problem

$$\min_{h(x)=0} f(x)$$

and suppose that x^* is a regular point for the system of equality constraints. Then the following two equivalent facts take place

• The directional derivative of f in every direction along the space $\{y: Dh(x^*)(y-x^*)=0\}$ tangent to the constraint at x^* is zero: $Dh(x^*)d=0 \Longrightarrow \nabla f(x^*) \cdot d=0$

• There exist a uniquely defined vector of Lagrange multipliers λ_i^* , i = 1, ..., m such that

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

Beniamin BOGOSEL Computational Maths 2 18/62

Proof:

- *S* denotes the set h(x) = 0.
- suppose that there exist a direction parallel to the tangent plane $Dh(x^*)\delta = 0$ which is not orthogonal to $\nabla f(x^*)$
- by eventually replacing it with $-\delta$ we may assume $\delta \cdot \nabla f(x^*) = -\alpha < 0$.
- denote $y_t = x^* + t\delta$. For small enough t we have $f(y_t) \le f(x^*) t\alpha/2$
- ullet since x^* is regular, for every t small there exists a point $x_t \in S$ such that

$$|y_t - x_t| \le C|y_t - x^*|^2 = C_1 t^2$$

• f is C^1 and therefore Lipschitz around x^* so

$$|f(x_t)-f(y_t)| \leq C_2|x_t-y_t| \leq C_1C_2t^2.$$

- Finally we get that $f(x_t) \le f(x^*) \alpha t/2 + C_1 C_2 t^2 < f(x^*)$ for t > 0 small enough, contradicting the optimality of x^*
- * the second points comes from $(\ker A)^{\perp} = \operatorname{Im} A^{T}!$

Beniamin BOGOSEL Computational Maths 2 19/62

The result may be false at irregular points

Counterexample: Minimize the function $f(x_1, x_2, x_3) = x_2$ under the constraints

$$0 = h_1(x) = x_1^6 - x_3, \quad 0 = h_2(x) = x_2^3 - x_3.$$

- * the constraints define the curve $\gamma(x) = (x, x^2, x^6)$.
- * the minimum of f is attained at (0,0,0)
- \star We have $\nabla f(0) = (0,1,0)$
- \star on the other hand $\nabla h_1(0) = \nabla h_2(0) = (0,0,-1)$
- \star it is clear that $\nabla f(0)$ is not a linear combination of $\nabla h_1(0)$ and $\nabla h_2(0)$

Beniamin BOGOSEL Computational Maths 2 20/62

Another counterexample

- ★ come back to the intersection between the sphere and the cylinder:
- $h_1(x) = x_1^2 + x_2^2 + x_3^2 1$, $h_2(x) = x_1^2 + x_2^2 x_2$. The gradients are $\nabla h_1(x) = 2(x_1, x_2, x_3)$ and $\nabla h_2(x) = (2x_1, 2x_2 1, 0)$ and they are linearly dependent at (0, 1, 0).
- \star we can obtain that $x_1^2 = x_3^2 x_3^4$ and $x_2 = 1 x_3^2$ so the curve representing the intersection between h_1 and h_2 has the parametrization

$$(\pm\sqrt{x_3^2-x_3^4,1-x_3^2,x_3})$$

- \star choose now the function $f(x_1, x_2, x_3) = x_1 + x_3 = x_3 \pm \sqrt{x_3^2 x_3^4}$. This function has the minimum value 0 for $x_3 = 0$ associated to the point (0, 1, 0).
- \star the gradient of f at the minimum is $\nabla f(0,1,0)=(1,0,1)$
- \star again, the conclusion of the theorem is not satisfied since the gradients of the constraints are not linearly independent at the optimum.

Beniamin Bogosel Computational Maths 2 21/62

Example of usage

- $\star \min(3x + 2y + 6z)$ such that $x^2 + y^2 + z^2 = 1$
- \star obviously, there exists a solution, since $x^2 + y^2 + z^2 = 1$ is closed and bounded
- \star write the optimality conditions: there exists λ such that

$$\nabla f(x^*) + \lambda \nabla h(x^*) = 0$$

$$(3,2,6) = \lambda(2x,2y,2z).$$

- \star this immediately gives x, y, z in terms of λ
- \star plug these expression in the constraint to get λ , and therefore x, y, z
- \star in this case we get two values of λ : one corresponding to the minimum, the other corresponding to the maximum!

Order one optimality conditions do not indicate whether we are at a minimum or at a maximum!

Beniamin Bogosel Computational Maths 2 22/62

The milkmaid problem

$$\min_{g(x)=0} d(P,x) + d(x,Q).$$

- \star suppose that g is a nice curve in the plane with non-zero gradient
- * the gradient of the distance function:

$$\nabla_{x}d(P,x)=\frac{x-P}{d(P,x)},$$

is the unit vector that points from P to the variable point x.

 \star the optimality condition says that there exists λ such that

$$\nabla_{x}d(P,x) + \nabla_{x}d(Q,x) + \lambda\nabla g(x) = 0$$

- \star what does this mean geometrically? The normal vector $\nabla g(x)$ to g(x)=0 cuts the angle PxQ in half
- ★ we obtain the classical reflection condition using Lagrange multipliers!

Beniamin BOGOSEL Computational Maths 2 23/62

The isoperimetric inequality

What is the curve which has the maximum area for a given perimeter?

- \star suppose we have a 2D curve parametrized by (x(t), y(t)) in a counter-clockwise direction.
 - the perimeter is $L = \int \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}$
 - the area is $A = \int \frac{1}{2} (x(t)\dot{y}(t) y(t)\dot{x}(t))$

Problem

Maximize A with the constraint L = p.

- $\star L = L(x, y), \ A = A(x, y)$ are functions for which variables are other functions. Sometimes the term functionals is employed!
- \star how to compute the gradient in such cases? when in doubt just come back to the one dimensional case using directional derivatives
- * the integrals are taken over a whole period of the parametrization

Beniamin BOGOSEL Computational Maths 2 24/62

- \star pick two directions u and v and $t \in \mathbb{R}$. Then compute the derivative of $t \mapsto L(x+tu,y+tv)$ at t=0.
- \star it is useful to take all derivatives off u and v to get the linear form

$$L'(x,y)(u,v) = -\int \left[\left(\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' u + \left(\frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' v \right]$$

 \star do the same for A(x, y) to get

$$A'(x,y)(u,v) = \int (\dot{y}u - \dot{x}v)$$

* in the end we get

$$\nabla L(x,y) = \left(\left(\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)', \left(\frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' \right), \nabla A(x,y) = (\dot{y}, -\dot{x}).$$

Beniamin BOGOSEL Computational Maths 2 25/62

Optimality condition and conclusion

 \star when maximizing A under the constraint L=p the solution should verify the optimality condition

$$\nabla A(x, y) + \lambda \nabla P(x, y) = 0, \ \lambda \in \mathbb{R}$$

* plugging the derivatives found previously we get

$$\begin{cases} \dot{y} - \lambda \left(\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} \right)' = 0 \\ -\dot{x} - \lambda \left(\frac{\dot{y}}{\dot{x}^2 + \dot{y}^2} \right)' = 0 \end{cases}$$

* integrating we obtain

$$\begin{cases} y - \lambda \frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = b \\ x + \lambda \frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = a \end{cases}$$

* in the end we have

$$(x-a)^2 + (y-b)^2 = \lambda^2$$
,

so the solution should be a circle.

Beniamin BOGOSEL Computational Maths 2 26/62

The Lagrangian

- \star the optimality conditions obtained involve the gradient of the objective function and the constraints.
- * the optimality condition can be written as the gradient of a function combining the objective and the constraints called the Lagrangian: $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m$

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) = f(x) + \lambda \cdot h(x).$$

 \star if x^* is a local minimum of f on the set $\{h(x)=0\}$ then the optimality condition tells us that there exists $\lambda^* \in \mathbb{R}^m$ such that

$$\frac{\partial \mathcal{L}}{\partial x}(x^*, \lambda^*) = 0$$
 and $\frac{\partial \mathcal{L}}{\partial \lambda}(x^*, \lambda^*) = 0$

* moreover, $\sup_{\lambda \in \mathbb{R}^n} \mathcal{L}(x,\lambda) = \begin{cases} f(x) & \text{if } h(x) = 0 \\ +\infty & \text{if } h(x) \neq 0 \end{cases}$ which gives $\min_{x \in \mathbb{R}^n} f(x) = \min_{x \in \mathbb{R}^n} \sup_{x \in \mathbb{R}^n} \mathcal{L}(x,\lambda)$

$$\min_{h(x)=0} f(x) = \min_{x \in \mathbb{R}^n} \sup_{\lambda \in \mathbb{R}^m} \mathcal{L}(x,\lambda).$$

 \star the minimizer of f becomes a saddle point for the Lagrangian

Beniamin BOGOSEL Computational Maths 2 27/62

Another point of view

 \star for $c_i \in \mathbb{R}, i = 1,...,m$ consider the problem

$$\min_{h_i(x)=c_i} f(x)$$

⋆ considering the Lagrangian

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i (c_i - h_i(x))$$

we see that $\frac{\partial L}{\partial c_i} = \lambda_i$ so the Lagrange multipliers represent the rate of change of the quantity being optimized as a function of the constraint parameter.

 \star denote by $x^*(c), \lambda^*(c)$ the optimizer and the Lagrange multipliers as a function of c. Then

$$\frac{\partial f(x^*(c))}{\partial c_i} = \frac{\partial \mathcal{L}(x^*(c), \lambda^*)}{\partial c_i}$$

$$= \frac{\partial \mathcal{L}}{\partial x}(x^*(c), \lambda^*) \frac{\partial x^*(c)}{c_i} + \frac{\partial \mathcal{L}}{\partial c_i}(x^*(c), \lambda^*)$$

$$= \lambda^*$$

Beniamin BOGOSEL Computational Maths 2 28/62

Another application: compute derivatives

* how to compute derivatives under constraints?

Example: Compute the derivative of $x \mapsto f$ under the constraint $f^2 = x$.

- * write the Lagrangian: $L(x, f, p) = f + (f^2 x)p$
- \star if $f = \sqrt{x}$ then L(x, f, p) = f.
- \star compute the derivative of f directly from above:

$$f'(x) = \frac{\partial L}{\partial x}(x, f, p) + \frac{\partial L}{\partial f}(x, f, p) \frac{df}{dx} + \frac{\partial L}{\partial p}(x, f, p) \frac{dp}{dx}$$

* cancel the terms which you don't know using the Lagrangian:

$$\frac{\partial L}{\partial p} = f^2 - x = 0, \frac{\partial L}{\partial f} = 1 + 2fp = 0.$$

- \star what remains is $f'(x) = \frac{\partial L}{\partial x}(x, f, -1/(2f)) = \frac{1}{2f} = \frac{1}{2\sqrt{x}}$.
- * we recover the classical result. This technique is known as the adjoint method and is useful for computing derivatives in complicated spaces: shape derivatives, control theory, etc.

Beniamin BOGOSEL Computational Maths 2 29/62