worksheet_09

April 30, 2024

1 Worksheet 09

Name: Afiq Amjad bin Khairir UID: U41760804

1.0.1 Topics

- Clustering Review
- Clustering Aggregation

1.0.2 Clustering Aggregation

Point	С	Р
A	0	a
В	0	b
\mathbf{C}	2	b
D	1	\mathbf{c}
E	1	d

a) Fill in the following table where for each pair of points determine whether C and P agree or disagree on how to cluster that pair.

Pair	Disagreement
АВ	Disagree
A C	Agree
A D	Agree
A E	Agree
ВС	Disagree
ВД	Agree
ВЕ	Agree
CD	Agree
C E	Agree
DЕ	Disagree

As datasets become very large, this process can become computationally challenging.

b) Given N points, what is the formula for the number of unique pairs of points one can create?

Number of unique pairs =
$$\binom{N}{2} = \frac{N(N-1)}{2}$$

Assume that clustering C clusters all points in the same cluster and clustering P clusters points as such:

Point	Ρ
A	0
В	0
\mathbf{C}	0
D	1
\mathbf{E}	1
F	2
G	2
Η	2
I	2

c) What is the maximum number of disagreements there could be for a dataset of this size? (use the formula from b)?

$$9*8/2 = 72/2 = 36$$

d) If we look at cluster 0. There are $(3 \times 2) / 2 = 3$ pairs that agree with C (since all points in C are in the same cluster). For each cluster, determine how many agreements there are. How many total agreements are there? How many disagreements does that mean there are between C and P?

For cluster 1: (2 * 1) / 2 = 1 For cluster 2: (4 * 3) / 2 = 6

Total agreement: 10 Maximum disagreements: 36

Disagreements between C and P: 36 - 10 = 26

- e) Assuming that filtering the dataset by cluster number is a computationally easy operation, describe an algorithm inspired by the above process that can efficiently compute disagreement distances on large datasets.
- 1. Filter the dataset by cluster number.
- 2. Find intersection of data points in C and P that are in the same cluster.
- 3. For each grouping, use the N(N-1)/2 formula and total it together to get the total agreements.
- 4. Calculate the total number of disagreements using the same formula.
- 5. Subtract total number of disagreements with the total number of agreements to get the disagreement distance.