Egzamin: Wstęp do Statystycznej Analizy Danych

UMK, styczeń 2020.

Wypełnij miejsca wykropkowane ["........"]. 1 pytanie = 1 punkt; Oceniane będą wyłącznie odpowiedzi wpisane w wykropkowane miejsca na tej kartce, bez uzasadnień i rachunków. Wpisz odpowiedzi dopiero po ostatecznym ich sprawdzeniu; odpowiedzi pokreślone lub nieczytelne będą traktowane jako błędne! Możesz korzystać z kalkulatora, tablic statystycznych, notatek, książek. Nie wolno korzystać z komputerów, telefonów ani z tabletów. Nie wolno się porozumiewać.

Imie i NAZW	TSKO:	
-------------	-------	--

- 1. Rzucamy 3 razy kostką. Zmienna losowa X oznacza liczbę rzutów, w których otrzymaliśmy "szóstke"
 - (a) Podač rozkład prawdopodobieństwa zmiennej losowej X w postaci tabelki.

 	100000000	*********

- (b) Oblicz $P(X \le 1)$. Odpowiedź:
- (c) Oblicz wortość oczekiwaną i wariancję zmiennej losowej X. Odpowiedż:.....
- (d) Oblicz wariancję zmiennej knowej X. Odpowiedż:
- 2. Zmienna losowa X ma rozkład prawdopodobieństwa o gęstości danej wzotem

$$f(x) = \begin{cases} \frac{3}{8}x^3 & \text{dia } 0 \leqslant x \leqslant 2; \\ \\ 0 & \text{w pozostalych przypadkach.} \end{cases}$$

- (a) Oblicz E(X). Odpowiedź:
- (b) Oblicz Var(X). Odpowied:
- (c) Oblicz $P(X \le 1)$. Odpowiedź
- (d) Podaj wzór na dystrybuantę:

ystrybuantę:
$$F(x) = \mathbb{P}(X \leqslant x) = \begin{cases} & \text{dla } x < 0; \\ & \text{dla } 0 \leqslant x \leqslant 2; \\ & \text{dla } x > 2. \end{cases}$$

- 3. Zakładamy, że X_1, \dots, X_{2m} jest prótką s rozkładu normaliego $N(\mu, \pi^2)$ s niemaną wartoścą oczokladamy, i wartancją π^2 . Obliczono średnią s prótki i nieobriątnny exymatos wartoścą X
 - Przeprowadz test hipotesy H_0 : $\mu=50$ przecze alternatywie H_1 $\mu>50$ na powiecze ocotowo.
 - (a) Oblicz wartość statystyki T (t-Studenta): T = ...
 - (b) Oblicz p-wartość testu: P -----
 - (c) Podejmij decyzję: odrzucamy Ha? (napiez TAK lub NIE)
 - Przeprowadź test hipotezy $H_0: \mu=50$ przeciw alternatywie $H_1: \mu\neq50$ na poziomie istotności
 - (d) Oblicz p-wartońć testu: P =
 - (e) Podejmij decyzję: odrzucamy H₀? (napisz TAK lub NIE)
 - (f) Oblicz przedział ufności dla μ na poziomie 1 α = 0,95.

Odpowied# ...

Uwaga: Rozkład t-Studenta z 399 stopniami swobody jest przybliżeniu równy standardowema rozkładowi normalnemu N(0,1). W szczególności można wykorzystać następujące przyblitone wartości kwantyli: $t_{0.95}(399) \approx z_{0.95} = 1.65$ i $t_{0.975}(399) \approx z_{0.975} = 1.96 \approx 2$. Do obliczania p-wartości

4. Obecne na rynku są 3 marki smartfonów: A,B i C. W celu zbadania, czy są one wybierane przes mężczym i przez kobiety z takim samym prawdopodobieństwem, zanotowano jakia markę wybrało 60 klientów i 60 klientek. Wyniki przedstawia następująca tabelka:

	marka	A	B	C
	klientów (M)	15	20	25
liczba	klientek (K)	25	20	15

Czy mamy podstawę do odrzucenia hipotezy H_0 mówiącej, że wybór marki jest niezalezny od plei? Przeprowadź odpowiedni test niezależności χ^2 na poziomie istotności $\alpha=0.05$.

(a) Oblicz tabelkę wartości oczekiwanych:

marka	A	B	0
liczba klientów (M)	·······		***************************************
liczba klientek (K)			**********

- (b) Oblicz statystykę testową $\chi^2 = \dots$
- (c) Porównujemy tę statystykę z kwantylem rzędu rozkładu χ² z stopniami swobody.
- (d) Podaj p-wartość testu: P =
- (e) Podejmij decyzja: czy odrzucamy H_0 na poziomie istotności $\alpha=0.05$ (tak/nie)?

Wskazówka: Wiadomo, że jeśli H_0 jest prawdziwa to rozkład statystyki testowej $Y=\chi^2$ ma w przybliżeniu rozkład o dystrybuancie dana wzorem $F(y) = \mathbb{P}(Y \leqslant y) = 1 - e^{-y/2} dla y > 0$. Odpowiedź na pytanie (d) będzie specjalnie premiowana.

 Wymkości sen 9 nieseżni, sprzedanych pram pownego potretnika były nartępujące: 280, 180, 250, 230, 200, 160, 110, 220

Na podstawie tych danych nalezy obliczyć następujące wielkości.

- (a) Oblics wartoid feeding only mentions. Odpowield
- (h) Oblicz medianą ceny mienikania. Odpowiedł
- (c) Oblicz wariancję ceny mienkania. Odpowiedz-
- (d) Oblics odchylense stambardnes very miestania. Odpowiedz-
- Na podstawe pomożnie wagi (w gramach) 120 noworodków, aporządzono następujący wykres podeliowy [Box-and-Whishere]. Odczytaj z rywonku przybliżone wartości pewnych charakterystyk.

licabowysia

- (a) Podaj medianę wagi noworodka. Odpowiedź
- (b) Padaj kwartyle Q11Q2 (kwartyle ragdu 1/413/4). Odpowiedz.
- (c) Peday rountep międzykwartylowy Odpowieda:
- (d) He w przybliżeniu było noworodków o wadze większej, niż 3700 g? Odpowiedź

Wotarroda: Dokladne wartotei są niemorliwe do oblicumia bez majomotei danych. Niemniej, na podensoje ryaunku można podać bardzo romadne przyblikecia.

p palących w populacji studentów.	cycu. interesuje nas frakcja
 (a) Zbudu) przedział ufności dla p na poziomie ufności 0,95. 	
Odpowied#	
(b) Zbuduj przedział ufności dla p na poziomie ufności 0,99.	
Odpowied2:	
Uwaga: Możesz przyjąć przybliżoną wartość kwantyla rozkładu norma	Ineser v
 Windą jedzie 4 pasażerów. Każdy z nich, niezależnie od pozostałych, w (z jednakowym prawdopodobieństwem 1/10). Oblicz 	ysiada na jednym z 10 pięter
(a) Prawdopodobieństwo, że każdy wysiądzie na innym piętrze. Odpo	wiedź:
(b) Prawdopodobieństwo, że wszyscy wysiądą na tym samym piętrze.	Odpowied±
(c) Prawdopodobieństwo, że wszyscy wysiądą na pierwszym piętrze.	Odpowiedź
9. Zmienna losowa X ma rozkład normalny $N(20, 5^2)$. Oblicz	
(a) $\mathbb{P}(X \leqslant 25)$. Odpowiedź:	
(b) P(X > 25). Odpowiedź:	***************************************
(c) P(15 ≤ X ≤ 25) Odpowiedź:	
(d) Podaj kwantyl rzędu 0.75 rozkładu zmiennej losowej X , tzn tak	og liczbę ξ , żn $\mathbb{P}(X\leqslant \xi)=0.75.$
ξ=	
10. Wiadomo, že zmienne losowe X_1,\dots,X_{20} są niezależne, mają ten sar $\mathbb{E} X_i=7$ i $\mathrm{Var} X_i=4$. Niech $\bar{X}=\frac{1}{20}\sum_{i=1}^{20}X_i$. Oblicz	n rozkład prawdopodobieństwa,
(a) Wartość oczekiwaną $\mathbb{E}(\bar{X}) = \dots$	
(b) Wariancję $Var(\bar{X}) = \dots$	
(c) Odchylenie standardowe pojedynczej zmiennej: $\mathrm{D}(X_i) =$	
(d) Odchylenie standardowe średniej: $D(\hat{X}) = \dots$	