Clinical trial optimization approaches to Phase III trials with multiple objectives

Gautier Paux ¹ Alex Dmitrienko ²

¹Institut de Recherches Internationales Servier

²Mediana Inc.

Trend and Innovation in Clinical Trial Statistics
May 03, 2016

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

General goal

 Clinical trials (CT) should be designed to ensure a high probability to detect an effect if the treatment is effective

Sample size calculations in traditional setting

- Traditional CT with two arms, a single endpoint and no interim looks
- Sample size calculations can be done using closed-form expression
- Example of sample size per treatment arm for normally distributed endpoints:

$$n = \frac{2(z_{\alpha} + z_{\beta})^2 \sigma^2}{\delta^2}$$

Sample size calculations in complex setting

- CT sponsors are often interested in pursuing multiple objectives in Phase II or Phase III clinical trials such as:
 - Multiple dose-control comparisons
 - Multiple endpoints
 - Multiple patient populations
 - Interim looks and adaptations
- General analytic expressions of the power function do not exist in this case

Goal

How to evaluate power in clinical trials with complex clinical objectives?

FDA Enrichment strategies for CT

▶ Determining the required sample size that will provide reasonable power to test the different hypotheses while controlling type-I error [...] is challenging.

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

Overview

- ▶ Developed in Benda et al. (2010) and Friede et al. (2010)
- Decompose the problem of clinical trial simulations into three components

Objectives

- Systematic simulation-based assessment of study designs and analysis methods
- Selection of a robust approach to clinical trial design and analysis which demonstrates optimal performance
- Sensitivity assessment of key parameters

Data Model

Data Model

Analysis Model

Key components

- Data model is the structure for describing the data generation parameters
- Analysis model is the structure for defining the analysis strategies applied to the data
- Evaluation model is the structure for specifying the measures for evaluating the performance of the analysis strategies

Clinical trial optimization

Optimization criterion

 Crucial to choose a relevant criterion, aligned with clinical objectives

Optimal parameters

 Important to assess the performance of analysis models under optimal and nearly optimal configuration of parameters

Sensitivity assessment

 Critical to ensure that optimization is robust to reasonable deviations from original assumptions

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

Case study

MDD clinical trial

- Phase III clinical trial in patients with Major Depressive Disorder (MDD)
- Design: three doses of new treatment (Dose L, Dose M and Dose H) versus placebo
- Trial objective : demonstrate that at least one dose is effective
- Primary endpoint : change from baseline to end of treatment in MADRS score
- Reference : Dmitrienko, Paux and Brechenmacher (2015)

Data Model

Sample size

- Balanced groups
- n per group is set to 200

Outcome distribution

- Primary endpoint is normally distributed
- Expected effect sizes :

Analysis model

Tests

- ▶ *H*₁, null hypothesis of no effect for Dose H versus Placebo
- ► H₂, null hypothesis of no effect for Dose M versus Placebo
- ▶ *H*₃, null hypothesis of no effect for Dose L versus Placebo
- ▶ Null hypotheses are tested with Student *t*-tests

Multiple testing procedure

- Bonferroni-based chain procedure to control the Type I error rate
 - α allocation rule
 - α propagation rule

α allocation rule

Weight for H_1 is set to w and the remaining weight (1 - w) is split between H_2 and H_3

α propagation rule

Error rate is split between H_2 and H_3 after H_1 is rejected Error rate is transferred between H_2 and H_3

Evaluation model

Disjunctive power

Probability to reject at least one hypothesis

$$\psi_D(w,g) = P(\text{Reject } H_1 \text{ or } H_2 \text{ or } H_3)$$

Weighted power

Weighted sum of the probability to reject each hypothesis

$$\psi_W(w,g) = \sum_{i=1}^3 v_i P(\text{Reject } H_i)$$

 v_i ($\sum_{i=1}^3 v_i = 1$), relative importance of a significant treatment effect at dose i

Exhaustive search

► Explore multiple sets of parameters of chain procedure (hypotheses weight *w* and transition parameter *g*) to maximize an appropriate optimization criterion

Sensitivity assessment

 Evaluate the impact of random deviations from the initial dose-response assumptions on the performance of optimal chain procedure

Exhaustive search - Disjunctive power

- When w is close to 1, H₁ serves as a gatekeeper for H₂ and H₃
- $\psi_D(w,g)$ is equivalent to $P(\text{Reject } H_1)$
- $\psi_D(w,g)$ is mostly driven by w and unaffected by g

1	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.9	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.8	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.7	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
amete	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
Transition parameter	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
ansitic 0.4	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.3	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.2	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.1	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Hypothesis weight										

Exhaustive search - Weighted power

- ψ_W(w, g) is maximized for several combinations of the w and g parameters
- Example : w = 1 and g = 0.5

1	48.30	51.20	52.70	53.80	54.40	55.00	55.30	55.60	55.80	55.50
0.9	48.30	51.20	52.70	53.90	54.60	55.10	55.40	55.80	56.10	56.20
0.8	48.40	51.10	52.70	53.90	54.60	55.20	55.60	55.90	56.30	56.40
0.7	48.40	51.20	52.70	53.80	54.60	55.20	55.50	56.00	56.30	56.60
Transition parameter	48.40	51.20	52.70	53.90	54.60	55.20	55.60	56.00	56.30	56.50
on par	48.40	51.20	52.70	53.90	54.60	55.20	55.60	56.00	56.40	56.60
o.4	48.40	51.30	52.80	54.00	54.70	55.30	55.70	56.10	56.40	56.60
0.3	48.40	51.30	52.80	53.90	54.60	55.20	55.60	55.90	56.30	56.50
0.2	48.40	51.20	52.70	53.90	54.50	55.10	55.50	55.80	56.20	56.30
0.1	48.40	51.20	52.70	53.80	54.50	55.00	55.30	55.70	56.00	56.10
0	48.40	51.20	52.60	53.80	54.40	54.90	55.20	55.50	55.70	55.30
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Hypothesis weight										

Test H_1 at full α -level and split the error rate equally between H_2 and H_3 after H_1 is rejected

Algorithm

- $\theta = (\theta_1, \theta_2, \theta_3)$, assumed dose-response function
- ▶ Step 1 : Generate k "true" dose-response functions, i.e., $\theta_i^* = (\theta_{i1}^*, \theta_{i2}^*, \theta_{i3}^*), i = 1, \ldots, k$, where $\theta_{ij}^* \sim N(\theta_{ij}, \sigma)$ and σ quantifies the amount of random perturbation
- ➤ Step 2 : Compute weighted power for optimal chain procedure using each true dose-response function (10,000 simulation runs)
- Step 3: Summarize weighted power over k dose-response functions
 - Distribution of weighted power
 - Performance loss

Simulated dose-response functions

Weighted power distribution

Probability of performance loss

Case study

Key messages

- A range of sample sizes should be evaluated
- Several expected dose-response functions should be considered
- Irrelevant optimization criterion could lead to incorrect choice of optimal multiple testing procedure
- Important to assess the robustness of optimal procedure's performance by randomly perturbing the assumed dose-response functions

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

Mediana R package

Objective

- To provide a standard framework for clinical trial simulations typically performed in Phase II or Phase III trials
- To create best practices for clinical trial simulations
- ► To create reproducible simulation-based calculations

Overview

- Based on the Clinical Scenario Evaluation approach
- Supports a broad class of data, analysis and evaluation models
- Flexible framework easily extensible to define custom options in data, analysis and evaluation models
- High-performance computing

Mediana R package

Release

- ► First version was released on CRAN in Q3 2015 (currently v1.0.3)
- Dmitrienko, A., Paux, G., Brechenmacher, T. (2016). Power calculations in clinical trials with complex clinical objectives. *Journal* of the Japanese Society of Computational Statistics. 28, 15–50.
- Dmitrienko, A., Paux, G., Pulkstenis, E., Zhang, J. (2016). Tradeoff-based optimization criteria in clinical trials with multiple objectives and adaptive designs. *Journal of Biopharmaceutical Statistics*. 26, 120–140.

New features for next version

- Support to adaptive designs
- Interim analysis decision rules for futility or overwhelming efficacy

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

Key messages

Take home messages

- New drug development is a time-consuming and expensive process
- Need for more efficient drug development programs with innovative designs and advanced analysis strategies
- Crucial role of quantitative assessments of the performance of these designs and analysis strategies
- Mediana R package provides a turnkey solution to facilitate systematic quantitative assessment of performance for Phase II and III trial designs and analysis methods.

Thank you

Contact information

- Gautier Paux : gautier.paux@servier.com
- Alex Dmitrienko : admitrienko@medianainc.com

Website

Mediana package website

```
http://gpaux.github.io/Mediana/
```

- Mediana package on CRAN (latest released version)
 - https://cran.r-project.org/web/packages/Mediana/index.html

Mediana package on GitHub (latest development version)

```
https://github.com/gpaux/Mediana
```

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

- Benda, N., Branson, M., Maurer, W., Friede, T. (2010). Aspects of modernizing drug development using clinical scenario planning and evaluation. *Drug Information Journal*. 44, 299–315.
- Dmitrienko, A., Paux, G., Brechenmacher, T. (2016). Power calculations in clinical trials with complex clinical objectives. *Journal of the Japanese Society of Computational Statistics*. 28, 15–50.
- Dmitrienko, A., Paux, G., Pulkstenis, E., Zhang, J. (2016). Tradeoff-based optimization criteria in clinical trials with multiple objectives and adaptive designs. *Journal of Biopharmaceutical Statistics*. 26, 120–140.
- Friede, T., Nicholas, R., Stallard, N., Todd, S., Parsons, N.R., Valdes-Marquez, E., Chataway, J. (2010). Refinement of the clinical scenario evaluation framework for assessment of competing development strategies with an application to multiple sclerosis. *Drug Information Journal* 44:713–718.