Assignment 2

3D Projections

Task

Implement 3D line drawing by projecting models onto the view-plane. You will use HTML's Canvas 2D API.

3D Projections (to earn a C: 45 pts)

- Implement perspective projection for 3D models: 35 pts
 - o Transform models into canonical view volume
 - Implement the matrix functions in transforms.js
 - Implement Cohen-Sutherland 3D line clipping
 - Project onto view plane
 - o Draw 2D lines
- Implement camera movement to change the view of a scene: 10 pts
 - o A/D keys: translate the PRP and SRP along the u-axis
 - o W/S keys: translate the PRP and SRP along the n-axis

Additional features (to earn a B or A)

- Implement parallel projection for 3D models: 5 pts
 - Follows same steps as perspective
- Generate vertices and edges for common models: 5 pts
 - o Cube: defined by center point, width, height, and depth (1 pt)
 - Cone: defined by center point of base, radius, height, and number of sides (1 pt)
 - Cylinder: defined by center point, radius, height, and number of sides (1 pt)
 - Sphere: defined by center point, radius, number of slices, and number of stacks (2 pts)
- Allow for models to have a rotation animation: 5 pts
 - o Can be about the x, y, or z axis
 - Defined in terms of revolutions per second
- Left/right arrow keys: rotate SRP around the v-axis with the PRP as the origin: 5 pts

Scene

Scenes will be defined as a JavaScript object. The scene will contain both view parameters and a description of the models.

view:

- type (perspective / parallel)
- prp
- srp
- vup
- clip (array left, right, bottom, top, near, far)

models (array):

- type = generic
 - vertices (array of Vector4)
 - edges (array of lines)
 - line: array of vertex indices
- type = cube
 - center (Vector4)
 - width
 - height
 - depth
- type = cone
 - center (Vector4)
 - radius
 - o height
 - sides
- type = cylinder
 - center (Vector4)
 - radius
 - height
 - sides
- type = sphere
 - center (Vector4)
 - radius
 - o slices (think number of longitude lines on a globe)
 - o stacks (think number of latitude lines on a globe)
- All modes also optionally may have an 'animation' field
 - animation
 - axis (x, y, or z)
 - rps (revolutions per second)

^{*}Note: sample models can be found in the starter code.

Starter Code

Starter code is available on GitHub: <u>cg-3dprojections</u> (<u>Links to an external site.</u>). Please **fork** your own version of the code, then enable GitHub Pages in the project's settings (change *Source* from *None* to *master branch*).

How this Relates to My Capstone Project

This assignment relates to the Desktop Application Project because I need to perfectly size and place the wireframe objects just like the buttons and drop-down menus in the FXML files. If I do not properly size or place the wireframe objects, buttons, or drop-down menus, they can be too big, small, or be somewhere offscreen, which causes problems for the user.