الدورة العادية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - عيمتطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I-(2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

		Réponses		
N°	Questions	a	b	c
1	$\int_{-a}^{a} \left(x^{5} - \sin x \right) dx =$	$\frac{a^6}{6}$	$\frac{a^6}{24}$	0
2	$arg\left(\frac{e^{i\pi}}{i}\right) =$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π
3	Les racines de l'équation $z + z ^2 = 3 + i$ sont :	1 + i et i	1+i et $-2+i$	$ \begin{array}{c} -2 + i \\ et \\ -i \end{array} $
4	$Siu = z - 2\overline{z} + i$, alors $\overline{iu} =$	$i\overline{z} + 2iz + 1$	$i\overline{z} - 2iz + 1$	$i\overline{z}-2iz-1$
5	$\lim_{x \to -\infty} \left(x + e^{-x} \right) =$	+∞	0	- 8
6	Si $\alpha = \arcsin\left(\sin\frac{7\pi}{5}\right)$, alors $\alpha =$	$\frac{7\pi}{5}$	$-\frac{3\pi}{5}$	$-\frac{2\pi}{5}$

II-(2 points)

On considère un cube ABCDEFGH.

L'espace est rapporté au repère orthonormé direct (A ; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}).

On désigne par I le milieu de [EF] et par K le centre du carré ADHE.

1) a-Calculer l'aire du triangle IGA.

b-Calculer le volume du tétraèdre ABIG.

c-Déduire que la distance du point B au plan (AIG) est égale à $\frac{\sqrt{6}}{3}$.

- 2) a- Ecrire une équation du plan (AFH).
 - b- La droite (CE) coupe le plan (AFH) en un point L. Calculer les coordonnées de L.
 - c-Montrer que L est un point de la droite (FK). Que représente le point L pour le triangle AFH ?

III-(3 points)

On dispose de deux urnes U_1 et U_2 .

 U_1 contient quatre boules rouges et trois boules vertes.

U₂ contient deux boules rouges et une boule verte.

A-

On tire au hasard une boule de U_1 et on la met dans U_2 , puis on tire au hasard une boule de U_2 .

On désigne par X la variable aléatoire égale au nombre de boules rouges de l'urne U_2 après les deux tirages précédents.

- 1) Démontrer que la probabilité P(X = 2) est égale à $\frac{9}{14}$.
- 2) Donner les trois valeurs de X et déterminer la loi de probabilité de X.

B-

Dans cette partie les boules rouges portent chacune le nombre 1 et les boules vertes portent chacune le nombre -1.

On choisit une urne au hasard puis on tire au hasard et simultanément deux boules de l'urne choisie.

On considère les événements suivants :

E: « L'urne choisie est l'urne U₁ »

F: « La somme des nombres portés par les deux boules tirées est égale à 0 ».

- 1) a- Calculer les probabilités P (F/E) et P (F/ \overline{E}).
 - b- Déduire que P(F) = $\frac{13}{21}$.
- 2) On désigne par G l'événement « La somme des nombres portés par les deux boules tirées est égale à -2». Calculer P (G).

IV-(3 points)

Dans le plan rapporté à un repère orthonormé (O; i, j), on considère la droite (d) d'équation x = -4 et la parabole (P) de foyer O et de directrice (d).

2

- 1) a- Montrer qu'une équation de (P) est $y^2 = 8x + 16$. Déterminer le sommet S de (P).
- b- Tracer (P).
- c- Soit D le domaine limité par (P) et l'axe des ordonnées. Calculer l'aire de D.
- d- Calculer le volume du solide engendré par la rotation de D autour de l'axe des abscisses.

- 2) Soit A (6; 8) un point de (P).
 - a- Ecrire une équation de la tangente (T_A) en A à (P).
 - b- La droite (OA) recoupe (P) au point B. Calculer les coordonnées de B et écrire une équation de la tangente (T_B) en B à (P).
 - c- Vérifier que (T_A) et (T_B) sont perpendiculaires et qu'elles se coupent sur la directrice de (P).
- 3) Soit $M(x_0; y_0)$ un point de (P) distinct de S.

N est le projeté orthogonal de M sur la tangente en S à (P).

La perpendiculaire menée de N à la droite (MS) coupe l'axe des abscisses en I.

Montrer que l'abscisse de I est indépendante de x_o et y_o.

V-(3 points)

Dans la figure ci-dessus, ABCD et AEFG sont deux rectangles directs où $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} \pmod{2\pi}$.

S est la similitude plane directe qui transforme B en E et C en F;

T est la translation de vecteur \overrightarrow{EF} ;

f est la similitude définie par T o S.

- 1) a-Déterminer le rapport k et un angle α de S.
 - b-Déterminer l'image par S de D.
 - c-Démontrer que A est le centre de S.
- 2) a- Déterminer f(B) et f(A).
 - b- Préciser le rapport et un angle de la similitude f.
 - c- Construire le centre W de f.
- 3) Le plan complexe est muni d'un repère orthonormé direct (A; $\frac{1}{6}\overrightarrow{AB}$, $\frac{1}{4}\overrightarrow{AE}$).
 - a- Ecrire la forme complexe de f.
 - b- En déduire l'affixe du point W.
- 4) Soit F_1 l'image de F par S et pour tout entier naturel n non nul on désigne par F_{n+1} l'image de F_n par S. Déterminer les valeurs de n pour lesquelles les points A, F_1 et F_n sont alignés.

3

VI- (7 points)

Soit f la fonction définie sur $]-\infty$; 5[par $f(x) = \ln (5-x)$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}).

- 1) a- Calculer $\lim_{x\to 5} f(x)$, $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement les résultats obtenus.
 - b- Dresser le tableau de variations de f sur $]-\infty$; 5[.
- 2) a- Ecrire une équation de la tangente (T) à (C) au point d'abscisse 4.
 - b- Tracer (T) et (C).
 - c- (C) coupe la droite d'équation y = x en un point d'abscisse α . Vérifier que $1 < \alpha < 2$.
- 3) f admet une fonction réciproque f^{-1} . On désigne par (C') la courbe représentative de f^{-1} dans le même repère que (C).
 - a- Montrer que la tangente (T) à (C) est aussi tangente à (C').
 - b-Tracer (C').
- 4) Soit h la fonction définie sur $]-\infty$; 5[par h(x) = $(5-x) \ln(5-x)$.
 - a- Vérifier que h'(x) + f(x) = -1 et déduire une primitive de la fonction f.
 - b- On désigne par $A(\alpha)$ l'aire du domaine limité par (C), l'axe des abscisses et les deux droites d'équations $x = \alpha$ et x = 4. Prouver que $A(\alpha) = -\alpha^2 + 6\alpha 4$.
- 5) Soit l'intervalle I = [0; 3].
 - a- Montrer que f(I) est inclus dans I.
 - b- Montrer que, pour tout x de I, on $a|f'(x)| \le \frac{1}{2}$.
 - c- En déduire que, pour tout x de I, $|f(x) \alpha| \le \frac{1}{2} |x \alpha|$.
- 6) On considère la suite (U_n) définie par $U_0 = 1$ et, pour tout $n \ge 0$, $U_{n+1} = f(U_n)$.
 - a- Démontrer par récurrence sur n que, pour tout $n \ge 0$, U_n appartient à I.
 - b- Etablir que, pour tout $n \ge 0$, $\left| U_{n+1} \alpha \right| \le \frac{1}{2} \left| U_n \alpha \right|$.
 - c- Démontrer que, pour tout $n \ge 0$, $\left| U_n \alpha \right| \le \frac{1}{2^n}$ et déduire que la suite (U_n) est convergente.

4