EE2011 Engineering ElectromagneticsSemester II of Academic Year 2011/2012

Prof Yeo Swee Ping eleyeosp@nus.edu.sg

Coulomb's Law

quantitative observations (in free space)

$$\vec{F} = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \,\hat{\mathbf{u}}_r$$

- originally an empirical result later corroborated by further theory
- valid only for point charges (i.e. when r >> dimensions of q_1 and q_2)
- formula for pair of charges
 extend via superposition for linear systems

Coulomb's Law

vectorial addition for (linear) assembly of point charges (attract for opposite polarity but repel for same polarity)

total force on q_1

$$\vec{F}_1 = \vec{F}_{12} + \vec{F}_{13} + \vec{F}_{14}$$

for general N-charge assembly total force on $q_{\rm m}$

$$\vec{F}_{\rm m} = \left. \sum_{\rm n=1}^{\rm N} \vec{F}_{\rm mn} \right|_{\rm n\neq m}$$

not convenient to employ \vec{F} for analytical formulation proceed by defining electric field \vec{E} due to charge q

- (a) place positive test charge q_{test} at point of interest
- (b) divide Coulomb force by q_{test} magnitude

$$\vec{E} = \frac{q}{4\pi \varepsilon_0 r^2} \,\hat{\mathbf{u}}_r$$

- $q_{\text{test}} << q$ so as not to perturb original electric-field pattern of q
- unit of N C⁻¹ from definition but common to use V m⁻¹ instead
- valid for point charge q but can extend for linear systems

employ superposition for linear multi-charge systems

need to account for origin of coordinate system

include magnitude of direction vector?

$$\vec{E} = \frac{q}{4\pi \,\epsilon_0(r'')^2} \,\hat{\mathbf{u}}_{r''} \text{ or } \vec{E} = \frac{q}{4\pi \,\epsilon_0(r'')^3} \,\vec{r}''$$

direction vector generally regarded as a variable

(a) assembly of discrete charges

$$\vec{E} = \frac{1}{4\pi \varepsilon_0} \sum_{n=1}^{N} \frac{q_n}{(r'')_n^2} (\hat{u}_{r''})_n$$

(b) volume of distributed charges
$$\vec{E} = \frac{1}{4\pi\epsilon_0} \iiint_V \frac{\sigma}{(r'')^2} \hat{\mathbf{u}}_{r''} dV$$

Example #1: dipole (pair of point charges with opposite polarity)

$$+Q$$
 at $(0,0,+d)$ and $-Q$ at $(0,0,-d)$

$$\vec{E} = \frac{Q \left\{ x \hat{\mathbf{u}}_x + y \hat{\mathbf{u}}_y + (z - d) \hat{\mathbf{u}}_z \right\}}{4\pi \varepsilon_0 \left\{ x^2 + y^2 + (z - d)^2 \right\}^{\frac{3}{2}}}$$
$$- \frac{Q \left\{ x \hat{\mathbf{u}}_x + y \hat{\mathbf{u}}_y + (z + d) \hat{\mathbf{u}}_z \right\}}{4\pi \varepsilon_0 \left\{ x^2 + y^2 + (z + d)^2 \right\}^{\frac{3}{2}}}$$

cancellation when $\sqrt{x^2 + y^2 + z^2} >> d$ still need to derive residual fields useful result for practical applications

residual fields of dipole when $\sqrt{x^2 + y^2 + z^2} >> d$

(a) at $P_1(0, 0, z)$ where z >> d

residual fields of dipole when $\sqrt{x^2 + y^2 + z^2} >> d$

(b) at $P_2(x, 0, 0)$ where x >> d cancellation of their horizontal components doubling of (residual) vertical components

$$|E_z| = 2 \frac{Q}{4\pi \varepsilon_0 (x^2 + d^2)} \frac{d}{\sqrt{x^2 + d^2}} \rightarrow \frac{Qd}{2\pi \varepsilon_0 x^3}$$

inversely proportional to r^3 (instead of r^2) for both P_1 and P_2 however, residual field at P_2 not in radial direction

Example #2: rod (of length L) with uniform charge density λ C m⁻¹

simpler case: obtain electric field at A(a, 0, 0)

$$\vec{E}_{A} = \frac{1}{4\pi \varepsilon_{0}} \int_{x=0}^{L} \frac{\lambda}{(a-x)^{2}} \hat{u}_{x} dx \text{ with same direction for all } d\vec{E} \text{ terms}$$

$$= \hat{u}_{x} \frac{\lambda}{4\pi \varepsilon_{0}} \int_{x=0}^{L} \frac{1}{(a-x)^{2}} dx = \hat{u}_{x} \frac{\lambda}{4\pi \varepsilon_{0}} \frac{L}{a(a-L)} \longrightarrow \hat{u}_{x} \frac{(\lambda L)}{4\pi \varepsilon_{0} a^{2}}$$
when $a \gg L$

more difficult to derive electric field at B (0,b,0) due to variable \hat{u}_{OB}

$$\hat{\mathbf{u}}_{\mathrm{QB}} = -\frac{x}{\sqrt{b^2 + x^2}} \hat{\mathbf{u}}_x + \frac{b}{\sqrt{b^2 + x^2}} \hat{\mathbf{u}}_y$$

$$\frac{dq}{dq} = \lambda dx$$

$$\vec{E}_{\mathrm{B}} = \frac{1}{4\pi \epsilon_0} \int_{x=0}^{L} \frac{\lambda}{b^2 + x^2} \hat{\mathbf{u}}_{\mathrm{QB}} dx$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \int_{x=0}^{L} \frac{x}{(b^2 + x^2)^{\frac{3}{2}}} dx + b \hat{\mathbf{u}}_y \int_{x=0}^{L} \frac{1}{(b^2 + x^2)^{\frac{3}{2}}} dx \right\}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\} \rightarrow \hat{\mathbf{u}}_y \frac{(\lambda L)}{4\pi \epsilon_0 b^2}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\} \rightarrow \hat{\mathbf{u}}_y \frac{(\lambda L)}{4\pi \epsilon_0 b^2}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\} \rightarrow \hat{\mathbf{u}}_y \frac{(\lambda L)}{4\pi \epsilon_0 b^2}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\} \rightarrow \hat{\mathbf{u}}_y \frac{(\lambda L)}{4\pi \epsilon_0 b^2}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\} \rightarrow \hat{\mathbf{u}}_y \frac{(\lambda L)}{4\pi \epsilon_0 b^2}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \left\{ -\hat{\mathbf{u}}_x \left(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}} \right) + \hat{\mathbf{u}}_y \frac{L}{b\sqrt{b^2 + L^2}} \right\}$$

need to define Φ for electric field traversing plane surface

$$\Phi \propto E_{\rm n} A$$

(a) add proportionality constant *

$$\Phi = \varepsilon E_n A^*$$

(b) account for orientation via dot product

$$\Phi = \varepsilon \vec{E} \cdot \vec{A}$$

(c) consider elemental areas for curved surface

$$\Phi = \iint \varepsilon \vec{E} \cdot d\vec{A}$$

* will later introduce another vector $(D = \varepsilon E)$

special property for closed surface

$$\oint_{S} \varepsilon \vec{E} \cdot d\vec{A} = Q_{\text{total in enclosure}} = \begin{cases} \sum_{m=1}^{M} q_{m} & \text{for point charges} \\ \iiint_{V} \sigma dV & \text{for distributed charges} \end{cases}$$

possible simplifications:

(a) if using homogeneous material (uniform ε)

$$\iint_{S} \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon} Q_{\text{total}}$$

(b) if additionally adopting structural symmetry

$$E_{\rm n}A = \frac{1}{\varepsilon} Q_{\rm total}$$

S

macroscopic approach for deriving electric field from charges

$$\iint_{S} \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon} Q_{\text{total}}$$

always valid but useful only with symmetry

explanatory example: point charge in free space

$$\iint_{S_{\text{red}}} \vec{E} \cdot d\vec{A} = E_r \iint_{S_{\text{red}}} dA_r = E_r 4\pi r^2 = \frac{q}{\epsilon_o}$$

$$\Rightarrow E_r = \frac{q}{4\pi\epsilon_0 r^2} \quad i.e. \text{ Coulomb's Law}$$

- (b) for pink Gaussian surface $\iint_{S_{pink}} \vec{E} \cdot d\vec{A} = \frac{q}{\epsilon_0}$
- (c) for blue Gaussian surface $\iint_{S_{\text{blue}}} \vec{E} \cdot d\vec{A} = 0$

$$\iint_{S_{pink}} \vec{E} \cdot d\vec{A} = 0$$

Example #1: conducting sphere with distributed charges

infer from symmetry:

- no non-radial component (i.e. $\vec{E} = E_r \hat{\mathbf{u}}_r$)
- $E_{\rm r}$ constant of θ and ϕ coordinates
- (a) apply Gauss's Law to green surface

$$E_{\rm r} 4\pi r^2 = \frac{1}{\varepsilon_{\rm o}} \left(\sigma_{\rm s} 4\pi a^2 \right) \implies E_{\rm r} = \frac{\left(\sigma_{\rm s} 4\pi a^2 \right)}{4\pi \varepsilon_{\rm o} r^2} = \frac{q}{4\pi \varepsilon_{\rm o} r^2}$$

(b) apply Gauss's Law to blue surface

→ all charges residing at outermost surface

Gaussian surface

Example #2: large thin sheet with uniform charge density $\sigma_s C m^{-2}$

infer from symmetry:

- no non-normal component $(\vec{E} = E_n \hat{u}_n)$
- E_n constant of both planar coordinates apply Gauss's Law to green pill-box:
- (a) S_1 and S_2 equi-distant from sheet
- (b) no contribution at S_3 as $\vec{E}_3 \cdot d\vec{A}_3 = 0$

LHS =
$$(E_1 + E_2) \pi r^2 + 0 = 2 E_n \pi r^2$$

RHS = $\sigma_s \pi r^2$

 \rightarrow E_n constant of all 3 coordinates (but cannot extrapolate result)

Example #3: large flat interface between metal and air

infer from symmetry:

- no non-normal component $(\vec{E} = E_n \hat{u}_n)$
- E_n constant of both planar coordinates apply Gauss's Law to green pill-box:
- (a) E = 0 in perfect electric conductor
- (b) no contribution at S_3 as $\vec{E}_3 \cdot d\vec{A}_3 = 0$ $LHS = E_n \pi r^2$ $RHS = \sigma_s \pi r^2$ $E_n = \frac{\sigma_s}{\varepsilon_o}$

 \rightarrow E_n constant of all 3 coordinates (but cannot extrapolate result)

inside perfectly conducting material

(a) $Q_{\text{enclosed}} = 0 \Rightarrow \begin{cases} either \text{ no charges within Gaussian surface} \\ or \text{ zero sum of positive and negative charges} \end{cases}$

- (b) higher charge concentration at sharper corners
- (c) $\vec{E} = \frac{\sigma_s}{\epsilon_o} \hat{u}_n$ in immediate vicinity of surface (where σ_s and \hat{u}_n generally vary)

inconvenient to use \vec{E} when studying system of electric charges

- requires vector calculus for analysis
- cumbersome for visual representation

conservative nature of electrostatic fields

$$\oint_{\text{loop}} \vec{E} \bullet d\vec{s} = 0 \quad \to \quad \iint_{\text{area}} \nabla \times \vec{E} \bullet d\vec{A} = 0 \quad \to \quad \nabla \times \vec{E} = \vec{0}$$

define scalar potential (via null identity #1)

$$\vec{E} = -\nabla V$$
 (or $\vec{E} = -\nabla \phi$ especially in physics textbooks)

- negative sign by convention (so as to obtain positive V values)
- also extended to time-varying \vec{E} (although non-conservative)

integral definition for potential

$$V_{\rm P} = -\int_{\infty}^{\rm P} \vec{E} \bullet d\vec{s} \qquad \Delta V = V_{\rm P} - V_{\rm Q} = -\int_{\rm Q}^{\rm P} \vec{E} \bullet d\vec{s}$$

(a) dimensions of definition equation

Volt x Coulomb = Newton x metre = Joule

 \Rightarrow Volt = Joule / Coulomb

interpret V as work done in moving unit positive charge

- (b) require reference (due to need for constant of integration) common to set V = 0 at infinity but not tenable for infinitely-large systems
- (c) same V (or ΔV) for any path in conservative field

Example #1: point charge Q (in x-y plane)

(a) blue (radial) path from ∞ to P

$$V_{P} = -\int_{\infty}^{P} \frac{Q}{4\pi\varepsilon_{o} r^{2}} \hat{\mathbf{u}}_{r} \bullet dr \hat{\mathbf{u}}_{r}$$

$$= -\frac{Q}{4\pi\varepsilon_{o}} \left[-\frac{1}{r} \right]_{\infty}^{r} = \frac{Q}{4\pi\varepsilon_{o} r}$$

$$\mathbf{Y}_{P}(x, y, 0)$$

$$\mathbf{X}(x, 0, 0)$$

(b) red path from ∞ to P via X

$$V_{P} = -\int_{\infty}^{x} \frac{Q}{4\pi\varepsilon_{o} x^{2}} \hat{\mathbf{u}}_{x} \bullet dx \hat{\mathbf{u}}_{x} - \int_{0}^{y} \frac{Q}{4\pi\varepsilon_{o} r^{2}} \hat{\mathbf{u}}_{r} \bullet dy \hat{\mathbf{u}}_{y}$$

$$= -\int_{\infty}^{x} \frac{Q}{4\pi\varepsilon_{o} x^{2}} dx - \int_{0}^{\sqrt{r^{2}-x^{2}}} \frac{Qy}{4\pi\varepsilon_{o} (x^{2}+y^{2})^{\frac{3}{2}}} dy = \frac{Q}{4\pi\varepsilon_{o} r}$$

useful for deriving V of linear charge system via superposition

Example #2: dipole with r >> d

use parallel-ray approximation for paths to $P(r, \theta, \phi)$

$$\begin{cases} r_{+} \approx r - d \cos \theta \\ r_{-} \approx r + d \cos \theta \end{cases}$$

$$V = \frac{-Q}{r} = \frac{Q}{r} \{ (r - d \cos \theta)^{-1} + (r + d \cos \theta)^{-1} \}$$

 $V_{\rm P} = \frac{+Q}{4\pi\epsilon_{\rm o} r_{+}} + \frac{-Q}{4\pi\epsilon_{\rm o} r_{-}} = \frac{Q}{4\pi\epsilon_{\rm o}} \left\{ (r - d\cos\theta)^{-1} + (r + d\cos\theta)^{-1} \right\}$

easier to derive field
$$\vec{E} = -\nabla V = -\begin{bmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \end{bmatrix} \frac{Qd \cos \theta}{2\pi \varepsilon_{o} r^{2}} = \frac{Qd}{4\pi \varepsilon_{o} r^{3}}$$

$$\frac{Qd\cos\theta}{2\pi\varepsilon_{o}r^{2}} = \frac{Qd}{4\pi\varepsilon_{o}r^{3}} \begin{bmatrix} 2\cos\theta \\ \sin\theta \\ 0 \end{bmatrix}$$

Example #3: rod (of length L) with linear charge density λ C m⁻¹

$$dV_{\rm P} = \frac{\lambda dx'}{4\pi\epsilon_0(x-x')}$$
 for each elemental length along rod

$$V_{\rm P} = \frac{\lambda}{4\pi\varepsilon_{\rm o}} \int_{x'=0}^{x'=x} \frac{dx'}{(x-x')} = \frac{\lambda}{4\pi\varepsilon_{\rm o}} \ln \frac{x}{x-L} \text{ (symmetry } \rightarrow \text{ depends only on } x)$$

$$\vec{E}_{P} = -\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} V_{P}(x) = -\frac{d}{dx} V_{P}(x) \, \hat{\mathbf{u}}_{x} = -\frac{\lambda}{4\pi\varepsilon_{o}} \frac{d}{dx} \left(\ln \frac{x}{x-L} \right) \hat{\mathbf{u}}_{x} \\ = \frac{\lambda}{4\pi\varepsilon_{o}} \frac{L}{x(x-L)} \, \hat{\mathbf{u}}_{x}$$

Gauss's Law for any volume of distributed charges

$$\iint_{S} \varepsilon \vec{E} \cdot d\vec{A} = Q_{\text{total in enclosure}} = \iiint_{V} \sigma dV$$

$$\Rightarrow \iiint_{\mathbf{V}} \nabla \bullet \vec{E} \, d\mathbf{V} = \frac{1}{\varepsilon} \iiint_{\mathbf{V}} \sigma \, d\mathbf{V}$$

need non-integral version for application to any particular point

$$\nabla \bullet \vec{E} = \frac{1}{\varepsilon} \sigma$$

more convenient to use V instead of \vec{E} for analysis

$$\nabla \bullet (-\nabla V) = \frac{1}{\varepsilon} \sigma \rightarrow \begin{cases} \nabla^2 V = -\frac{1}{\varepsilon} \sigma & \text{Poisson equation} \\ \nabla^2 V = 0 & \text{Laplace equation} \end{cases}$$

partial differential equation requiring boundary conditions

Laplacian operator:

$$\nabla^{2} = \nabla \bullet \nabla = \begin{cases} \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \\ \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{\partial^{2}}{\partial z^{2}} \\ \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \end{cases}$$

uniqueness theorem:

only one possible solution that will satisfy partial differential equation (PDE) and all boundary conditions (BCs) regardless of approach (even by intelligent guess-work)

Example #1: (one-dimensional) electron cloud between electrodes

no variations in $\hat{\mathbf{u}}_{y}$ and $\hat{\mathbf{u}}_{z}$ directions

i.e.
$$\frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0$$

reduced to ordinary differential equation

$$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{(-6\varepsilon_0 x)}{\varepsilon_0} = 6x$$

$$\Rightarrow$$
 $V = x^3 + c_1 x + c_2$

BCs:
$$V(x=0) = 0$$

 $V(x=1) = 10$ \Rightarrow
$$\begin{cases} c_1 = 9 \\ c_2 = 0 \end{cases}$$

$$V = x^3 + 9x$$
 and $E_x = -3x^2 + 9$

Example #2: (two-dimensional) earthed trough with charged lid

no variations in $\hat{\mathbf{u}}_z$ direction (i.e. $\frac{\partial}{\partial z} = 0$) reduced to PDE in two coordinates

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

no free charges in trough \rightarrow Laplace equation (with RHS = 0)

try
$$V(x, y) = X(x) Y(y)$$
 $\rightarrow \begin{cases} \frac{\partial^2 V}{\partial x^2}(x, y) = \frac{d^2 X}{dx^2}(x) Y(y) \\ \frac{\partial^2 V}{\partial y^2}(x, y) = X(x) \frac{d^2 Y}{dx^2}(y) \end{cases}$

$$\therefore \frac{1}{X} \frac{d^2 X}{dx^2}(x) + \frac{1}{Y} \frac{d^2 Y}{dy^2}(y) = 0 \to \begin{cases} \frac{1}{X} \frac{d^2 X}{dx^2}(x) = -c^2 \\ \frac{1}{Y} \frac{d^2 Y}{dy^2}(y) = +c^2 \end{cases}$$
 (c = constant)

choice of sign for constant determined by boundary conditions

BC1:
$$V(0,y) = 0 \rightarrow X = A \sin(cx)$$

BC2:
$$V(x,0) = 0 \rightarrow Y = B \sinh(cy)$$

BC3:
$$V(a, y) = 0 \rightarrow \sin(c a) = 0$$

BC4:
$$V(x,b) = V_0$$

eigenvalues from BC3 \Rightarrow family of solutions with $c_m = \frac{m\pi}{a}$ not possible to satisfy BC4 with only one eigen-solution try superposition of all harmonics

$$\therefore V(x,y) = X(x)Y(y) = \sum_{m} d_{m} \sin(m\pi \frac{x}{a}) \sinh(m\pi \frac{y}{a})$$

obtain modal coefficient d_m from BC4 (where y = b for charged lid)

$$\sum_{m} d_{m} \sin(m\pi \frac{x}{a}) \sinh(m\pi \frac{b}{a}) = V_{0}$$

capitalize on orthogonality of $\sin(m\pi \frac{x}{a})$

- (a) multiply both sides by $\sin(n\pi \frac{x}{a})$
- (b) integrate over $0 \le x \le a$ (using process for Fourier series)

$$\int_{x=0}^{a} \sum_{m} d_{m} \left\{ \sin\left(m\pi \frac{x}{a}\right) \sin\left(n\pi \frac{x}{a}\right) \right\} \sinh\left(m\pi \frac{b}{a}\right) dx = \int_{x=0}^{a} V_{0} \sin\left(n\pi \frac{x}{a}\right) dx$$

$$\Rightarrow d_n = \frac{4V_0}{n\pi\sinh(n\pi\frac{b}{a})} \text{ when } n \text{ is odd n} \quad \text{but } d_n = 0 \text{ when } n \text{ is even}$$

$$\therefore V(x,y) = \frac{4V_0}{\pi} \sum_{m} \frac{\sin(m\pi \frac{x}{a}) \sinh(m\pi \frac{y}{a})}{m \sinh(m\pi \frac{b}{a})} \text{ for } m = 1,3,5, \dots$$

approximate solutions via numerical techniques

- (a) popular after availability of computational resources
- (b) must check for possibility of spurious solutions

two-dimensional finite differences

$$\frac{\partial^{2} V}{\partial x^{2}} = \frac{\Delta \left(\frac{\partial V}{\partial x}\right)}{\Delta x} = \frac{\frac{V_{1} - V_{0}}{\delta} - \frac{V_{0} - V_{3}}{\delta}}{\delta} = \frac{V_{1} + V_{3} - 2V_{0}}{\delta^{2}}$$

$$\frac{\partial^{2} V}{\partial y^{2}} = \frac{\Delta \left(\frac{\partial V}{\partial y}\right)}{\Delta y} = \frac{\frac{V_{2} - V_{0}}{\delta} - \frac{V_{0} - V_{4}}{\delta}}{\delta} = \frac{V_{2} + V_{4} - 2V_{0}}{\delta^{2}}$$

$$\frac{\mathbf{V}_{3}}{\delta^{2}}$$

$$\mathbf{V}_{3}$$

$$\mathbf{V}_{4}$$

$$\mathbf{V}_{4}$$

$$\rightarrow \nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \frac{V_1 + V_2 + V_3 + V_4 - 4V_0}{\delta^2}$$

Poisson equation in two-dimensional finite-difference form

$$\frac{V_1 + V_2 + V_3 + V_4 - 4V_0}{\delta^2} = -\frac{\sigma}{\epsilon_0}$$

$$\Rightarrow V_0 = \frac{1}{4} \left(\sum_{k=1}^4 V_k + \frac{\sigma}{\epsilon_0} \delta^2 \right)$$

Laplace equation for Example #2 with $\sigma = 0$

choose (appropriate) initial values: $V_A = V_B = 5V$ and $V_C = V_D = 0$ first iteration: $V_A = \frac{1}{4} (10 + V_B + V_D + 0) = \frac{10 + 5 + 0 + 0}{4} = 3.75 \text{ V}$

$$V_{B} = \frac{1}{4} (10 + 0 + V_{C} + V_{A}) = \frac{10 + 0 + 0 + 3.75}{4} = 3.44 V$$

$$V_C = \frac{1}{4} (V_B + 0 + 0 + V_D) = \frac{3.44 + 0 + 0 + 0}{4} = 0.86 V$$

$$V_D = \frac{1}{4} (V_A + V_C + 0 + 0) = \frac{3.75 + 0.86 + 0 + 0}{4} = 1.15 \text{ V}$$

next iteration: $V_A = \frac{1}{4} (10 + V_B + V_D + 0) = \frac{10 + 3.44 + 1.15 + 0}{4} = 3.65 \text{ V}$

iteration#
$$V_A$$
 V_B V_C V_D

0 5.00 5.00 0 0 0

1 3.75 3.44 0.36 1.15

2 3.65 3.63 1.20 1.21

3 3.71 3.73 1.24 1.24

4 3.74 3.75 1.25 1.25

5 3.75 3.75 1.25 1.25 \rightarrow onset of convergence

check numerical value of V_A against analytical result

$$V(\frac{a}{3}, \frac{2b}{3}) = \frac{40}{\pi} \sum_{\substack{m: \text{odd} \\ m \text{ sinh}(m\pi)}} \frac{\sin(\frac{m\pi}{3}) \sinh(\frac{2m\pi}{3})}{\min(m\pi)} = 3.81 \text{ V for } a = b = 1$$

can improve accuracy by reducing mesh size (i.e. $\delta <<$ a and b) quite robust (try using $V_A = V_B = V_C = V_D = 0$ as initial values)

polar material (with built-in dipoles)

define $\vec{p} = q\vec{\delta}$ for dipole \pm q separated by δ derive \vec{E} from $V(r,\theta,\phi) = \frac{q\delta\cos\theta}{4\pi\epsilon_0 r^2} = \frac{\vec{p} \cdot \vec{r}}{4\pi\epsilon_0 r^3}$ not possible to consider individual dipoles have to consider average density instead define polarization vector $\vec{P} = \frac{1}{\text{volume}} \sum_{k} \vec{p}_k$ $\therefore dV(r,\theta,\phi) = \frac{\vec{P} \cdot \vec{r}}{4\pi\epsilon_0 r^3} dV$ for dipoles in dV

non-polar materials $\begin{array}{l} \text{common} \pm \text{charge centers} \\ \text{separation induced by } \vec{E} \\ \text{dipole behavior in presence of } \vec{E} \\ \end{array}$

electric forces on dipole charges no net force \rightarrow no $\pm x$ shift for dipole dipole moment due to $\pm q$ separation rotation until alignment of forces linear increase of $|\vec{P}|$ until saturation

dielectric slab

- (a) originally random dipole orientations
 - → no net electric fields from dipoles
- (b) partial dipole alignment under E
 - \rightarrow need to include polarization P

Gauss's Law in differential form

$$\nabla \bullet \vec{E} = \frac{1}{\varepsilon_0} \sigma$$
 for free space

$$\nabla \bullet \left(\varepsilon_0 \vec{E} + \vec{P}\right) = \sigma \quad \text{for dielectric}$$

recast as
$$\nabla \cdot \vec{D} = \sigma$$

by introducing $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ electric flux density vector (Cm⁻²)

34

field-matter interactions

simply replace ε_0 by ε to account for presence of dielectric

point-charge example:
$$\vec{E}_0 = \frac{q}{4\pi \, \epsilon_0 \, r^2} \, \hat{\mathbf{u}}_r$$
 becomes $\vec{E} = \frac{q}{4\pi \, \epsilon \, r^2} \, \hat{\mathbf{u}}_r$

 $\left| \vec{E} \right| < \left| \vec{E}_{\rm o} \right|$ due to net electric fields of dipoles (after alignment)

Capacitors

two conductors separated by air/dielectric with

- equal and opposite charges $\pm Q$
- potential difference $\Delta V = V_1 V_2$

experiments $\rightarrow Q \propto \Delta V$

define storage parameter $C = \frac{Q}{\Delta V}$

$$(F = C V^{-1})$$

can be increased via:

- (a) increasing dielectric permittivity
- (b) reducing conductor separation
- (c) proper design of conductor structure

Capacitors

usual procedure to evaluate capacitance

- (a) assume $\pm Q$ on conductors
- (b) derive \vec{E} from charge distribution
- (c) derive ΔV via potential definition
- (d) compute ratio

Example #1: large parallel plates apply Gauss's Law to pill-box

$$E_{y} A_{pill-box} = -\frac{1}{\varepsilon_{o}} \sigma_{s} A_{pill-box} \implies E_{y} = -\frac{1}{\varepsilon_{o}} \sigma_{s}$$

$$\Delta V = -\frac{Q}{\varepsilon_{o} A} \int_{0}^{d} dy = \frac{Qd}{\varepsilon_{o} A} \implies C = \frac{A\varepsilon_{o}}{d}$$

larger C by inserting dielectric, increasing A or decreasing d

Capacitors

Example #2: coaxial cable with uniform charge density $\lambda \text{ Cm}^{-1}$

apply Gauss's Law to green cylinder infer from symmetry (for short *l*):

- no non-radial component (i.e. $\vec{E} = E_r \hat{u}_r$)
- E_r constant of z coordinate
- zero contribution from either end surface

$$2\pi r l E_{3} = \frac{1}{\varepsilon_{o}} \lambda l \implies E_{3} = \frac{\lambda}{2\pi \varepsilon_{o} r}$$

$$V_{a} - V_{b} = -\frac{\lambda}{2\pi \varepsilon_{o}} \int_{b}^{a} \frac{dr}{r} = \frac{\lambda}{2\pi \varepsilon_{o}} \ln(\frac{b}{a})$$

$$\frac{C}{l} = \frac{\lambda}{\Delta V} = \frac{2\pi \varepsilon_{o}}{\ln(\frac{b}{a})}$$

used in Z₀ formula (only for TEM mode)

Boundary Conditions

boundary between two materials (for electrostatics)

- field behavior affected by polarization in materials
- boundary conditions for PDEs $\nabla \times \vec{E} = \vec{0}$ and $\nabla \cdot \vec{E} = \frac{1}{\varepsilon} \sigma$ need to establish field inter-relationships at boundary
- (a) tangential \vec{E} component apply $\oint \vec{E} \cdot d\vec{s} = 0$ to red loop where $\Delta w \to 0$ negligible contributions from widths $(E_1)_t$ $\Rightarrow (E_1)_t = (E_2)_t$ i.e. E_t component continuous across interface generally extended to time-varying cases as well

Boundary Conditions

boundary between two materials (for electrostatics)

(b) normal \vec{E} component but consider \vec{D} instead

replace
$$\oiint_S \vec{E} \cdot d\vec{A} = \frac{1}{\epsilon} Q_{\text{total in enclosure}}$$
 by $\oiint_S \vec{D} \cdot d\vec{A} = Q_{\text{total in enclosure}}$

apply Gauss's Law (based on \vec{D}) to red pill-box where $\Delta w \rightarrow 0$

negligible contributions from cylindrical surface

$$\Rightarrow$$
 $(D_1)_n = (D_2)_n$

D_n component continuous across interface ' ' generally extended to time-varying cases too

special case for metal where |E| = |D| = 0 and $Q_{enclosed} = \sigma_s A \neq 0$ $\vec{E}_{air} = 0 \hat{u}_t + \frac{\sigma_s}{\epsilon} \hat{u}_n$

Currents

current density vector

• flow of charges ΔQ contained in $A \Delta L$

$$I = \frac{\Delta Q}{\Delta t} = \frac{\sigma(A\Delta L)}{\Delta t} = A\sigma v$$

average velocity of charges

$$\vec{\mathbf{v}} = \frac{1}{\mathbf{M}} \sum_{m=1}^{\mathbf{M}} \vec{\mathbf{v}}_m$$

• mobility under influence of \vec{E}

$$\vec{v} \propto \vec{E} \rightarrow \vec{v} = \xi \vec{E}$$

• material property: resistivity $\rho = \frac{1}{\sigma \xi}$

$$\vec{J} = \sigma \vec{v} = \frac{1}{\rho} \vec{E}$$

Currents

continuity equation

$$\sum_{m} I_{m} = -\frac{dQ}{dt}$$

$$\oiint \vec{J} \bullet d\vec{A} = -\frac{d}{dt} \iiint \sigma \, dV$$

$$\Rightarrow \iiint \nabla \cdot \vec{J} \, dV = -\iiint \frac{d}{dt} \sigma \, dV$$
 for application to any volume

$$\Rightarrow \qquad
abla oldsymbol{\sigma} ec{J} = -rac{d}{dt} oldsymbol{\sigma}$$

for application to any point

for steady state (i.e. $\frac{d}{dt} = 0$), no change of total charge in enclosure

$$\nabla \bullet \vec{J} = 0$$
 or $\sum_{m} I_{m} = 0$

$$\nabla \times \vec{E} = \nabla \times (\rho \vec{J}) = \vec{0}$$
 conservative property

Kirchhoff's Current Law

Currents

boundary conditions (for static case)

similar to equations for \vec{E} and $\vec{D} \rightarrow$ use same process with $\Delta w \approx 0$

$$\rho_1 (J_1)_t = \rho_2 (J_2)_t$$

J_n continuous across interface

J_t discontinuous across interface

 \rightarrow change of incident angle for \vec{J} when crossing interface

Resistance

resistance between conductors (not resistance along conductor)

$$R = \frac{\Delta V}{I} = \frac{-\oint \vec{E} \cdot d\vec{s}}{\oiint \vec{J} \cdot d\vec{A}} = -\rho \frac{\oint \vec{E} \cdot d\vec{s}}{\oiint \vec{E} \cdot d\vec{A}}$$

$$C = \frac{Q}{\Delta V} = \frac{\oiint \vec{D} \cdot d\vec{A}}{-\oint \vec{E} \cdot d\vec{s}} = -\varepsilon \frac{\oiint \vec{E} \cdot d\vec{A}}{\oint \vec{E} \cdot d\vec{s}}$$

time constant RC = $\rho \epsilon$

- (a) independent of design
- (b) possible economy of effort

illustration: resistance between parallel plates

$$R = \frac{\rho d}{A}$$

$$c.f. C = \frac{\varepsilon A}{d}$$

Resistance

leakage conductance between conductors

re-visit coaxial cable and add $\vec{J} = \rho \vec{E}$

$$E_r = \rho J_r = \frac{\Delta V}{r \ln(\frac{b}{a})}$$

$$E_{r} = \rho J_{r} = \frac{\Delta V}{r \ln(\frac{b}{a})}$$

$$I = \iint J_{r} dA = \frac{\Delta V}{\rho \ln(\frac{b}{a})} \iint \frac{1}{r} r d\phi dz = \frac{2\pi L \Delta V}{\rho \ln(\frac{b}{a})} \implies R = \frac{\rho \ln(\frac{b}{a})}{2\pi L}$$

compare with capacitance formula (for TEM mode) $C = \frac{2\pi \varepsilon L}{\ln(\frac{b}{s})}$ shunt components in transmission-line model

