Online Supplementary Material

Figure S1. (A). ASA for atoms with steric clash. (B). ASA for atoms corrected for steric clash. ASA in both of the figures is shown by thick circle. The additional ASA available to the atoms due to correction of the steric clash is shown by ticks on the bold line representing the ASA.

Figure S2. Plot showing the cumulative distribution of occurrence of pairwise *SP* distances in groups of docking complexes calculated using 1Å RMSD threshold. Note that about 85% of the cases are covered within a threshold *SP* value of 0.04.

Figure S3. A 5×5 matrix depicting how NE^G , SE^G are used for calculating score using Eq. 3. Origin O (0, 0) is located at the top-left corner of the matrix. If we move right, SE^G decreases, and NE^G increases if we move towards bottom. If the combination of NE^G and SE^G values are such that it occurs in cell A(1,2) The distance of cell A (1, 2) from O can be computed as $\sqrt{(1-0)\times(1-0)+(2-0)\times(2-0)} = 2.24$, and the score would be $2.24+10*SP^G$, where SP^G is the lowest SP value for that group. Similarly if NE^G and SE^G values occur in cell B (3, 1) the score would be $3.16+10*SP^G$. When calculating for unbound cases, NNE^G (NE^G per unit area) and NSE^G capacity (SE^G per unit area) is used for scoring in a 10×10 grid.

Figure S4. Close view of the predicted interface from our docking method. The structure of the complex is from PDB:2HLE, showing interaction of the EphB4 receptor with its preferred ligand, ephrinB2, in pathological forms of angiogenesis and in tumorigenesis. Note the groove binding mode of interaction and the compatible colors (blue↔red) suggesting a favorable interaction between positive and negatively charged surfaces.

Table S1. Parameter and values used in solvation energy calculation¹

Atom Type	$\Delta \sigma (\text{cal Å}^{-2} \text{mol}^{-1})$
Carbon	16
Charged Nitrogen of Arg, Lys	-50
Charged Oxygen of Asp, Glu	-24
Rest Nitrogen and Oxygen	-6
Sulfur	21

Table S2. Ranking of best near native quaternary structure output by various predictive docking methods

			Our me	ethod														
PDB*	With	n interfa	ce size	With	out inte	erface	2	ZDOCK			GRAMMX			PATCHDOCK			EDOC	CK
Target IA (\mathring{A}^2)		filter		size filter														
Unbound:Unbound		L _{RMSD}			L_{RMSD}		$L_{ m RMSD}$			$L_{ m RMSD}$			L_{RMSD}			L_{RMSD}		
	Rank †		Rank †		Rank	I_{RMSD}	$\mathbf{F}_{ ext{NAT}}$	Rank ⁺⁺	$I_{RMSD} \\$	F _{NAT}	Rank ⁺⁺	I_{RMSD}	NAT	Rank ⁺⁺	I_{RMSD}	NAT		
	R	(Å)	<u> </u>	R	(Å)	щ	R	(Å)	Щ	R	(Å)	щ	R	(Å)	щ	R	(Å)	
Unbound-Unbound cases (24)																		
1AVX <u>AB</u> (792)	>100			17	9.8	0.4	1	9.9	0.4	>100			>100	8.7		1	9.2	
1QQU <u>A</u> :1BA7 <u>B</u>	>100	-	-	17	8.1	0.4	1	8.4	0.4	>100	-	-	>100	4.7	-		2.9	-
1BRC <u>EI</u> (657)	60	7.3	0.5	2	6.3	0.0	100			100			1.7	15.9		-	6.7	
1BRA <u>A</u> :1AAP <u>B</u>	60	5.2	0.5	3	4.4	0.8	>100	-	-	>100	-	-	17	3.9	-	1	1.6	-
1BUH <u>AB</u> (662)	>100			>100			7	8.8	0.3	>100		_	>100			>100	5.9	0.6
1HCL:1DKS <u>A</u>	>100	-	-	>100	-	-	/	9.0	0.3	>100	-	-	>100	-	-	>100	4.1	0.6
1BVN <u>PT</u> (1111)	3	9.6	0.1	>100			1	4.1	0.5	22	8.9	0.5	74	8.9		6	7.7	
1PIG:1HOE	3	10.0	0.1	>100	-	-	1	4.0	0.5	22	7.8	0.3	/4	3.3	-	6	3.5	-

PDB*			Our me	ethod														
Target IA ($Å^2$)	With	interfa	ce size	Witho	out into	erface	Z	ZDOCK		GRAMMX		PATCHDOCK			FIREDOCK			
Unbound:Unbound		filter		size filter														
1CGI <u>EI</u> (1026)	2	9.5	0.2	42	7.6	0.4	22	7.1	0.4	1.5	5.0	0.4	100			10	4.1	
2CGA <u>B</u> :1HPT	3	7.1	0.3	43	5.8	0.4	33	5.4	0.4	15	4.5	0.4	>100	-	-	10	2.0	-
1CSE <u>EI</u> (744)	1	9.0	0.1	100			100			7	1.4	0.0	100				5.8	
1SCD <u>A</u> :1ACB <u>I</u>	1	7.7	0.1	>100	-	-	>100	-	-	7	0.8	0.8	>100	-	-	2	1.7	-
1DFJ <u>EI</u> (1291)	3	7.7	0.5	>100	_		1	4.8	0.7	>100	_	_	>100	_	_	>100	_	
9RSA <u>B</u> :2BNH	3	6.0	0.3	>100	-	-	1	3.8	0.7	>100	-	-	>100	-	-	>100	-	-
1J2J <u>AB</u> (605)	20	7.0	0.7	1	7.7	0.2	1	9.8	0.2	.	7.4	0.4	100			26	7.0	0.2
103Y <u>A</u> :10XZ <u>A</u>	20	6.5	0.5	1	7.5	0.2	1	9.6	0.2	56	7.0	0.4	>100	-	-	26	6.9	0.3
1JLT <u>AB</u> (1426)	3	8.2	0.4	>100	_		2	7.3	0.2	1	3.8	0.4	18	6.7	0.4	5	5.8	0.4
1VPI <u>A</u> :2I0U <u>E</u>	3	8.8	0.4	>100	-	-	2	6.9	0.3	1	3.5	0.4	18	6.8	0.4	3	4.6	0.4
1K9O <u>IE</u> (914)	>100			12	8.8	0.2	>100			× 100			>100			> 100		
1SEK <u>A</u> :3TGJ <u>E</u>	>100	-	-	43	6.6	0.2	>100	-	-	>100	-	-	>100	-	-	>100	-	-
1KXP <u>AD</u> (1670)	9	7.7	0.5	> 100			1	6.5	0.6	7	5.4	0.6	15	4.9	0.4	1	4.4	0.6
1IJ <u>B</u> :1KW2 <u>B</u>	9	5.3	0.5	>100		-	1	4.0	0.6	/	3.2	0.6	15	3.4	0.4	1	4.4 0.0	0.0

Target IA (Ų) With interface size Without interface ZDOCK GRAMMX PATCHDOCK Unbound: Unbound filter size filter 1.9	FIREDOCK
1LW6 <u>EI</u> (853) 3.4 3.5 2.0 1.9	
2SIC <u>E</u> :1TM1 <u>I</u> 2.2 2.6 10 0.8 1 0.9 1 0.9 1 0.9 1 1.7	
1MA9 <u>AB</u> (1786) 6.6 3.1	>100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	>100
1PPE <u>EI</u> (844)	3.6
1BTP:1LU0 <u>A</u> 1.7 9.6 0.2 1 0.6 1 0.7 3 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2
1R0R <u>EI</u> (704) 9.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	9 0.7
1SCN <u>E</u> :2GKR <u>I</u> 7.3	2.7
1UDI <u>EI</u> (1011) 3.3 3.6 3.6 6.4 4.2 4.2 1 1 0.7 >100 69 0.8 19 0.4 8 -	3.6 5 -
1UDH:2UGIB 3.3 0.7 5100 5 5 6.0 0.4 8 5 5 6.0 2.1	1.6
1UGH <u>EI</u> (1096) 5.2 6.8 7.0 5.5 10 0.6 >100 - - 14 0.4 6 0.2 42 -	4.7 1 -
2SSP <u>E</u> :1UDI <u>I</u> 4.6	2.4
1XD3 <u>AB</u> (1140) 9.6 7.9 7.1	>100
1UCH:1YJ1 <u>A</u> 9.1 5.3 6.2 5100 5.3 7.8 5.3 7.8	>100

PDB*			Our m	ethod															
Target IA (Å ²)	With	interfa	ce size	Witho	out int	erface	7	ZDOCK			GRAMMX			PATCHDOCK			FIREDOCK		
Unbound:Unbound		filter		size filter															
1YVB <u>AI</u> (871)	70	7.4	0.7	. 100				9.1	0.6	4	8.8	0.6	. 100				7.2	0.7	
2GHU <u>A</u> :1CEW <u>I</u>	70	3.5	0.7	>100	-	-	5	4.3	0.6	4	3.7	0.6	>100	-	-	2	3.8	0.7	
1Z0K <u>AB</u> (893)	. 100			12	9.3	0.1	2	4.9	0.7	58	9.4	0.2	. 100			1	8.7	0.5	
2BME <u>A</u> :1YZM <u>A</u>	>100	-	-	12	9.0	0.1	3	4.6	0.7	58	8.9	0.3	>100	-	-	1	8.3	0.5	
2BTF <u>AP</u> (1031)	46	7.1	0.2	>100	_		>100			. 100			>100			>100			
1IJ <u>B</u> :1PNE	46	7.6	0.2	>100	-	-	>100	-	-	>100	-	-	>100	-	-	>100	-	-	
2HLE <u>AB</u> (1058)	2	5.5	0.5	>100	_		39	8.6	0.4	81	6.4	0.5	>100	_		31	4.2	0.4	
2BBA <u>A</u> :1IKO <u>P</u>	2	5.0	0.5	>100	-	-	39	6.9	0.4	81	5.4	0.5	>100	-	-	31	3.9	0.4	
2SNI <u>EI</u> (814)	49	9.3	0.1	64	3.7	0.7	7	5.9	0.7	3	6.2	0.6	>100	_	_	13	11.2		
1UBN <u>A</u> :2CI2 <u>I</u>	49	9.0	0.1	04	2.7	0.7	/	4.5	0.7	3	4.6	0.0	>100	-	-	13	3.1	-	
2UUY <u>AB</u> (640)	>100	_	_	>100	_	_	>100	_	_	>100	_	_	>100	_	_	>100			
1HJ9 <u>A</u> :2UUX <u>A</u>	>100	-	-	>100	-	-	/100	-	-	/100	-	-	/100	-	-	>100	-	-	
	<u> </u>					Unbou	ınd-Bo	und ca	ses (6)	<u> </u>						<u> </u>			

Unbound-Bound cases (o)

PDB*			Our mo	ethod														
Target IA (Å ²)	With	interfac	ce size	Witho	out inte	erface	ZDOCK			GRAMMX			PATCHDOCK			FIREDOCK		
Unbound:Unbound		filter		si	ze filte	er												
1CT0 <u>EI</u> (523)	<i>(</i> 7	9.6	0.1	. 100			. 100			. 100			20	9.6	0.2	. 100		
3SGB <u>E</u> :1CT0 <u>I</u>	67	9.5	0.1	>100	-	-	>100	-	-	>100	-	-	39	8.6	0.2	>100	-	-
1E44 <u>BA</u> (1268)	1	1.2	1	7.1	1.3	0.0	1	1.3	1.0	1	0.5	0.0	1	0.8	0.0	1	1.2	1
2B5U <u>C</u> :1E44 <u>A</u>	1	1.2	1	71	1.2	0.9	1	1.2	1.0	1	0.5	0.9	1	0.8	0.9	1	1.1	1
1JTD <u>BA</u> (1090)	3	1.4	0.0	7.4	10.0	0.5	. 100			. 100				5.2	0.7	21	3.4	0.0
1JTD <u>B</u> :1ZG4 <u>A</u>	3	1.2	0.9	74	7.6	0.5	>100	-	-	>100	-	-	6	3.4	0.7	21	2.3	0.8
1JTG <u>CB</u> (1302)	1	1.7	0.8	>100	_		1	5.0	0.6	1	2.2	0.7	20	3.0	0.7	3	3.1	0.7
1ZG4 <u>A</u> :1JTG <u>B</u>	1	1.6	0.8	>100	-	-	1	3.9	0.6	1	2.0	0.7	20	2.5	0.7	3	2.7	0.7
1STF <u>EI</u> (895)	1	1.8	1.0	6	1.4	1.0	5	1.4	1.0	1	1.8	1.0	5	1.3	_	1	1.6	
1PPN <u>A</u> :1STF <u>I</u>	1	1.5	1.0	0	1.4	1.0	3	1.1	1.0	1	1.3	1.0	3	0.4	-	1	0.4	-
2TEC <u>EI</u> (780)	6	1.8	0.0	> 100	_		> 100			1	2.8	0.0	26	1.3		1	0.6	
1THM <u>A</u> :2TEC <u>I</u>	6	1.5	0.9	>100	-	-	>100	-	-	1	1.9	0.9	∠0	0.4	-	1	0.3	-

^{*}The four letter PDB code followed by the chain identifier (underlined) wherever present. **Acceptable accuracy according to Mendez definition ² is used. Cases italicized are directly taken from literature ³.

[—] in some cases F_{NAT} values were not available.

Table S3. RPScore and Pair Score evaluation on the unbound data set according to acceptable accuracy Mendez definition²

With interface size filter										Without interface size filter								
		RPSc		riuce si	ze mier	Pair S	core ⁵			RPSc		111101	iuce size	Pair S	core ⁵			
PDB	Rank	L_{RMSD}	I _{RMSD}	F _{NAT}	Rank	L_{RMSD}	I _{RMSD}	F _{NAT}	Rank	L_{RMSD}	I _{RMSD}	F _{NAT}	Rank	L _{RMSD}	I _{RMSD}	F _{NAT}		
1AVX		-	-	-	-	-	-	-	1	5.1	2.7	0.7	1	9.4	7.9	0.4		
1BRC	8	7.3	5.1	0.5	9	9.8	9.2	0.4	1	9.9	5.6	0.8	520	9.4	6.1	0.4		
1BUH	-	-	-	-	-	-	-	-	3	9.9	9.8	0.3	24	8.8	8.8	0.3		
1BVN	14	3.2	3.2	0.6	9	6.7	6.1	0.4	26	6.1	5.2	0.7	1	4.1	4.1	0.5		
1CGI	24	9.5	7.2	0.3	79	9.7	7.3	0.2	5	4.8	4.0	0.4	119	7.5	7.9	0.1		
1CSE	158	9.4	7.5	0.1	86	9.4	7.5	0.1	9344	2.8	1.8	0.7	6914	4.8	3.2	0.7		
1CT0	78	9.6	9.5	0.1	61	9.6	9.5	0.1	7427	8.8	9.8	0.1	213	8.8	9.8	0.1		
1DFJ	1	6.8	5.3	0.6	18	7.2	5.6	0.5	3	7.4	5.7	0.5	1	4.8	3.8	0.7		
1E44	1	1	1.1	0.9	32	5	4.7	0.3	402	1.3	1.2	0.9	3076	9.5	9.0	0.2		
1J2J	-	-	-	-	-	-	-	-	6	7.1	6.7	0.5	1	9.6	9.5	0.3		
1JLT	4	5.8	5.6	0.3	15	8.2	7.9	0.2	46	5.6	5.4	0.3	472	8.5	8.9	0.1		
1JTD	5	1.4	1.2	0.9	6	7.7	6.2	0.1	137	4.3	2.8	0.7	971	8.7	8.4	0.1		
1JTG	9	1.7	1.5	0.8	29	9.7	7.7	0.4	148	2.8	2.4	0.7	650	9.9	8.9	0.1		
1K9O	-	-	-	-	-	-	-	-	5	9.0	4.9	0.6	530	8.0	6.9	0.1		
1KXP	107	7.7	5.3	0.5	149	7.7	5.3	0.5	265	7.7	5.3	0.5	104	8.5	6.5	0.3		
1LW6	34	8.1	5.7	0.6	106	5.9	4.1	0.8	3	4.9	5.4	0.2	162	9.6	10.1	0.1		
1MA9	1	3.5	2.9	0.5	114	5.8	2.9	0.5	1	9.4	5.5	0.3	301	9.7	6.3	0.1		
1PPE	1	4	4	0.6	11	3.9	3.9	0.3	1	6.4	6.5	0.1	102	9.6	9.9	0.1		
1R0R	27	3.1	2.6	0.7	20	6.5	4.7	0.5	3698	5.7	4.5	0.5	4535	9.0	7.3	0.3		
1STF	39	3.4	2.2	0.8	7	3.4	2.2	0.8	3614	4.7	3.0	0.7	933	9.6	7.0	0.2		
1UDI	35	4.9	4.6	0.6	12	9.8	8.9	0.3	110	9.6	9.4	0.2	146	3.6	3.5	0.8		
1UGH	16	5.3	5.4	0.4	6	3.4	3.5	0.4	408	9.9	10.0	0.1	147	9.1	8.7	0.2		
1XD3	2	8.2	7.5	0.3	9	8.2	7.5	0.3	1	4.8	5.1	0.3	177	7.0	6.5	0.2		
1YVB	116	7.4	3.6	0.7	182	7.4	3.6	0.7	2508	9.5	4.5	0.6	26	7.7	3.4	0.7		
1 Z 0K	-	-	-	-	-	-	-	-	129	6.5	6.3	0.6	113	7.6	7.0	0.1		
2BTF	4	7.1	7.6	0.2	119	7.1	7.6	0.2	22	4.9	6.0	0.4	219	8.9	8.9	0.1		
2HLE	17	5.8	4.7	0.5	22	5.5	4.5	0.5	3071	9.4	7.6	0.3	2121	9.9	7.8	0.3		
2SNI	29	9.5	8.6	0.1	90	9.2	8.7	0.1	15	9.5	7.1	0.3	25	5.9	4.5	0.7		
2TEC	276	1.8	1.5	0.9	197	1.8	1.5	0.9	9386	3.5	2.5	0.7	339	9.1	9.5	0.1		
2UUY	-	-	-	-	-	-	-	-	1049	10.0	5.5	0.3	1182	9.8	11.4	0.1		

Table S4. RPScore and Pair Score re-ranking results for the top 50 ranked decoys from our method

PDB	IA of			od (wit ize filte			RPSc	ore ⁴		Pair Score ⁵				
ID	target	Rank ⁺⁺	LRMSD	$\mathbf{I}_{ ext{RMSD}}$	$\mathbf{F}_{\mathbf{NAT}}$	Rank ⁺⁺	LRMSD	$\mathbf{I}_{\mathbf{RMSD}}$	FNAT	Rank ⁺⁺	LRMSD	$\mathbf{I}_{\mathbf{RMSD}}$	$\mathbf{F}_{\mathbf{NAT}}$	
1BVN	1111	3	9.6	10.0	0.1	2	3.2	3.2	0.6	5	7.8	7.2	0.1	
1CGI	1026	3	9.5	7.1	0.3	6	9.5	7.2	0.3	25	9.5	7.2	0.3	
1CSE	744	1	9.0	7.7	0.1	38	9.4	7.5	0.1	31	9.4	7.5	0.1	
1DFJ	1291	3	7.7	6.0	0.5	1	6.8	5.3	0.6	8	8.6	6.5	0.6	
1E44	1268	1	1.2	1.2	1.0	1	1.0	1.1	0.9	21	5.0	4.7	0.3	
1J2J	605	20	7.0	6.5	0.5	20	7.0	6.5	0.5	20	7.0	6.5	0.5	
1JLT	1426	3	8.2	8.8	0.4	3	5.2	5.4	0.4	2	8.2	7.9	0.2	
1JTD	1090	3	1.4	1.2	0.9	5	1.4	1.2	0.9	5	7.3	4.2	0.6	
1JTG	1302	1	1.7	1.6	0.8	4	1.7	1.5	0.8	9	6.5	5.6	0.4	
1KXP	1670	9	7.7	5.3	0.5	2	4.8	5.1	0.3	9	7.7	5.3	0.5	
1LW6	853	1	3.4	2.2	0.8	12	8.1	5.7	0.6	25	5.9	4.1	0.8	
1MA9	1786	14	6.6	5.4	0.4	3	5.5	4.7	0.5	47	6.5	3.9	0.4	
1PPE	844	1	1.6	1.7	0.9	1	4.0	4.0	0.6	1	4.9	4.6	0.5	
1STF	895	1	1.8	1.5	1.0	13	3.4	2.2	0.8	2	3.4	2.2	0.8	
1UDI	1011	1	3.3	3.3	0.7	8	5.1	5.0	0.3	3	7.1	7.1	0.2	
1UGH	1096	10	5.2	4.6	0.6	12	4.0	3.6	0.6	15	4.2	3.9	0.4	
1XD3	1140	3	9.6	9.1	0.2	1	8.2	7.5	0.3	2	8.2	7.5	0.3	
2BTF	1031	46	7.1	7.6	0.2	4	7.1	7.6	0.2	48	7.1	7.6	0.2	
2HLE	1058	2	5.5	5.0	0.5	17	4.2	3.5	0.6	15	4.2	3.5	0.6	
2SNI	814	49	9.3	9.0	0.1	28	9.3	9.0	0.1	18	9.3	9.0	0.1	
2TEC	780	6	1.8	1.5	0.9	45	1.8	1.5	0.9	36	1.8	1.5	0.9	

Bold case indicates improvement in rank by RPScore and background shaded indicates improvement by Pair Score.

^{**}Acceptable accuracy according to Mendez definition ² is used.

References

- 1. Eisenberg, D. & McLachlan, A.D. Solvation energy in protein folding and binding. *Nature* **319**, 199-203 (1986).
- 2. Mendez, R., Leplae, R., De Maria, L. & Wodak, S.J. Assessment of blind predictions of protein-protein interactions: current status of docking methods. *Proteins* **52**, 51-67 (2003).
- 3. Andrusier, N., Nussinov, R. & Wolfson, H.J. FireDock: fast interaction refinement in molecular docking. *Proteins* **69**, 139-159 (2007).
- 4. Moont, G., Gabb, H.A. & Sternberg, M.J. Use of pair potentials across protein interfaces in screening predicted docked complexes. *Proteins* **35**, 364-373 (1999).
- 5. Ponstingl, H., Henrick, K. & Thornton, J.M. Discriminating between homodimeric and monomeric proteins in the crystalline state. *Proteins* **41**, 47-57 (2000).