Hinweis: Wer als Schüler/in allein oder im Team die erste vollständige und selbst gefundene Lösung einreicht, erhält einen Raspberry PI Einplatinencomputer.

XOR. In einem Rechenzentrum gibt es n Server, nummeriert von 0 bis n-1. Der Systemadministrator möchte die Server so verbinden, dass jeder Server über das Netzwerk mit jedem anderen Server kommunizieren kann¹. Die Einrichtung einer Verbindung zwischen zwei Servern mit den Nummern i und j kostet $i \oplus j$ Euro, wobei sämtliche Verbindungen in beide Richtungen nutzbar sind.

Das Symbol \oplus bezeichnet das bitweise Exklusiv-Oder (XOR) und entspricht einer Addition im Binärsystem ohne Übertrag. Zum Beispiel ist $3 \oplus 5 = 6$, $2 \oplus 2 = 0$ und $9 \oplus 0 = 9$ (vgl. auch https://en.wikipedia.org/wiki/exclusive or).

- (i) Finde eine Möglichkeit, n = 5 Server mit minimalen Kosten zu verbinden.
- (ii) Beweise, dass die Einrichtung stets weniger als $3n \log_2(n) + 10$ Euro kostet.
- (iii) Gib einen Algorithmus an, der als Eingabe die Anzahl n der Server bekommt und als Ausgabe die minimalen Kosten für die Einrichtung des Rechenzentrums liefert. Programmiere deinen Algorithmus und teste ihn auf den Beispielen unter https://itaggoethe.github.io/xor (vgl. auch Tabelle 1).

Datei	1	2	3	4	5
Beschränkungen	$n \le 5$	$n \le 25$	$n \le 3000$	$n \le 10^5$	$n \le 10^{12}$

Tabelle 1: Informationen zu den Eingabegrößen

Lösungen per E-Mail an itag-goethe@protonmail.com.

Jeder kann Lösungen einsenden und jede Lösung bekommt Feedback. Aufgabenarchiv und Lösungen unter https://itaggoethe.github.io/.

Viel Spaß!

¹ Hier sind auch indirekte Verbindungen möglich. Gibt es beispielsweise n=3 Server und die Verbindungen $0 \leftrightarrow 2$ sowie $1 \leftrightarrow 2$, dann können Server 0 und 1 miteinander kommunizieren.