1 Calc 2 Basics

5.3 Average Value

Integrals are pretty much an infinite amount of Riemann sums. If f is integrable on [a,b], then its average value (or mean) on [a,b] is $\frac{1}{b-a}\int_a^b f(x)dx$.

5.5 U-Substitution

5.6

6.1

6.2

2 Integral Applications and Sections

8.2

8.3

8.4

8.5

3 Sequences, Series, and Tests

8.8

10.1

10.2

10.3

10.4

4 Sequences, Series, and Tests cont.

10.5

10.6

10.7

10.8

10.9

5 Parametric Curves

10.10

6.3 Arc Length

Pythagorean's Theoreom can be applied to find the length of a segment f(x). If ds is equal to a single straight segment in f(x), then dx is equal to the horizontal length and dy is equal to its vertical length.

$$(ds)^{2} = (dx)^{2} + (dy)^{2}$$

$$\sqrt{(ds)^{2}} = \sqrt{(dx)^{2} + (dy)^{2}}$$

$$ds = dx\sqrt{(dx)^{2}/(dx)^{2} + (dy)^{2}/(dx)^{2}}$$

$$ds = \sqrt{1 + (dy/dx)^{2}}dx$$
(1)

By taking the integral of this, you can get the total length of the segment.

$$s = \int_{a}^{b} \sqrt{1 + (f(x))^{2}} \, dx \tag{2}$$

- 6.4
- 11.1
- 11.2

6 Polar Coordinates

- 11.3
- 11.4
- 11.5