

Convocatoria ordinaria. Junio 2024

Álgebra. Grado en Estadística.

Apellidos, Nombre:	Grupo:
1100110100, 1101110101	J. 0. P C

- 1. Responde de forma razonada a las siguientes questiones.
 - a. Sea $f: \mathbb{R}^n \to \mathbb{R}^m$. Si m < n, entonces f no puede ser inyectiva.
 - b. Sea *V* un espacio vectorial euclídeo de dimensión *n* y sea *X* un conjunto de elementos de *V* que son ortogonales dos a dos. Demuestra que el cardinal de *X* es menor o igual que *n*.
 - c. Sea $f: \mathbb{R} \to \mathbb{R}^n$, con n un entero positivo, de forma que f(1) es no nulo. Sea A la matriz asociada a f respecto de las bases canónicas de \mathbb{R} y \mathbb{R}^n . Demuestra que A tiene inversa a la izquierda.
- 2. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (-x + y, x y, -2z).
 - a. Encuentra la matriz asociada a f respecto de la base usual de \mathbb{R}^3 , a la que llamamos A Calcula la forma escalonada reducida por filas de A.
 - b. Encuentra el núcleo de f. Demuestra que el núcleo de f es ortogonal al espacio generado por las filas de A respecto al producto escalar usual.
 - c. Encuentra P ortogonal de forma que P^tAP sea diagonal. Calcula A^{2024} .
- 3. En el espacio afín \mathbb{R}^3 cosideramos la recta r que pasa por P=(1,1,1) y con vector director v=(a,1-a,2-a), y sea π el plano con ecuación cartesiana x-y+z=6 (respecto de el sistema de coordenadas usual).
 - a. Encuentra un valor de a para el que r es paralela a π .
 - b. Encuentra una recta s que sea perpendicular a π y que pase por P. Escribe las ecuaciones cartesianas de s.
 - c. Dependiendo del valor de a, calcula la distancia de r a π .
- 4. Sea $A \in \mathcal{M}_{4\times 3}(\mathbb{R})$ la matriz

$$A = \left(\begin{array}{rrr} -1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 3 & 1 \\ 1 & -2 & -1 \end{array} \right).$$

- a. Encuentra la descomposición de rango pleno de A.
- b. Calcula A^{\dagger} , la inversa generalizada de A.
- c. Para b = (1, 1, 1, 1), calcula la solución mínimo cuadrática de norma mínima del sistema Ax = b.

