Convex Optimization

David Rosenberg

New York University

February 4, 2015

Convex Sets

Definition

A set C is **convex** if the line segment between any two points in C lies in C.

Convex and Concave Functions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if the line segment connecting any two points on the graph of f lies above the graph. f is **concave** if -f is convex.

Examples of Convex Functions on R

Examples

- $x \mapsto e^{ax}$ is convex on **R** for all $a \in \mathbf{R}$
- $x \mapsto x^a$ is convex on \mathbb{R}_{++} when $a \geqslant 1$ or $a \leqslant 0$ and concave for $0 \leqslant a \leqslant 1$
- $|x|^p$ for $p \ge 1$ is convex on **R**
- $\log x$ is concave on \mathbb{R}^{++}
- $x \log x$ (either on R_{++} or on R_{+} if we define $0 \log 0 = 0$) is convex

Examples of Convex Functions on \mathbb{R}^n

Examples

- Every norm on \mathbb{R}^n is convex
- Max: $(x_1, ..., x_n) \mapsto \max\{x_1, ..., x_n\}$ is convex on \mathbb{R}^n
- Log-Sum-Exp: $(x_1, ..., x_n) \mapsto \log(e^{x_1} + \cdots + e^{x_n})$ is convex on \mathbb{R}^n .

Convex Functions and Optimization

Definition

A function f is **strictly convex** if the line segment connecting any two points on the graph of f lies **strictly** above the graph (excluding the endpoints).

Consequences for optimization:

- convex: if there is a local minimum, then it is a global minimum
- strictly convex: if there is a local minimum, then it is the unique global minumum

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1,..., m$
 $a_i^T x = b_i, i = 1,...p$

where f_0, \ldots, f_m are convex functions. f_0 is called the **objective function**. f_i are called the **inequality constraint functions**.

Convex Optimization Problem: More Terminology

- The set of points satisfying the constraints is called the feasible set.
- A point x in the feasible set is called a **feasible point**.
- The optimal value p^* of the problem is defined as

$$p^* = \inf\{f_0(x) \mid f_i(x) \leq 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}.$$

• x^* is an **optimal point** (or a solution to the problem) if x^* is feasible and $f(x^*) = p^*$.

Convex Optimization Problem: Local Optimality

• We say that a feasible point x is **locally optimal** if there is an R > 0 such that x solves the following optimization problem:

minimize
$$f_0(z)$$

subject to $f_i(z) \leq 0, i = 1, ..., m$
 $h_i(z) = 0, i = 1, ..., p$
 $\|z - x\|_2 \leq R$

with optimization variable z.

• Roughly speaking, this means x minimizes f_0 over nearby points in the feasible set.

Fact

A fundamental property of convex optimization problems is that any locally optimal point is also globally optimal.

Why Convex Optimization?

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard
- Today:
 - Main distinction is between **convex** and **non-convex** problems
 - Convex problems are the ones we know how to solve efficiently
- Many techniques that are well understood for convex problems are applied to non-convex problems
 - e.g. SGD is routinely applied to neural networks

Your Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
 - Very clearly written, but has a ton of detail for a first pass.
 - See my "Extreme Abridgement of Boyd and Vandenberghe".

