Homework 5

 $\operatorname{Lin} \operatorname{Zejin}$ May 28, 2025

• Collaborators: I finish this homework by myself.

Problem 1. (a) Reduce from the instance of MAX-E3SAT-6.

Variables x_i have $\sigma(x_i) \in \{0, 1\}$ and Clauses $c_i = x_{j_i}^1 \wedge x_{j_i}^2 \wedge x_{j_i}^3$ have $\sigma(c_i) \in [7]$ to represent the state of c_i . Therefore, constraint is naturally induced.

In the instance of MAX-E3SAT, the radio of |U| and |V| is 2. So this is a regular Label-Cover Game for K=2, L=7 and |V|=2|U|.

In the lecture we have proved that this is an instance of MAX – $LC_{1,1-\epsilon}$ for some ϵ .

So $MAX - LC_{1,1-\epsilon}$ is NP-Hard.

(b) We actually can construct another graph induced by (a).

We add \bar{x}_i to the graph in (a) and add the induced constraints from c_i contains variable x_i to \bar{x}_i .

Here the Label-Cover Game is regular and symmetric.

Then for the MAX – E3SAT – $6_{1,1-\epsilon}$ instance, the completeness is trivial.

Now we prove the soundness. That's because, if $OPT_{MAX-E3SAT-6} \leq 1 - \epsilon$, consider any $\sigma : U \to \{0,1\}, V \to [7]$. At least $(1 - \epsilon)|V|$ clauses are not satisfied by $\sigma|_U$. For each clause, there exists at least one variable x_i/\bar{x}_i such that do not satisfy the constraint.

So Verifier rejects with probability at least $(1 - \epsilon)|V|/2|V| = (1 - \epsilon)/2$. So the soundness property holds if we set $\epsilon' = \frac{1+\epsilon}{2}$.

So we prove that $GAP - LC(K, L)_{1,1-\epsilon}$ is NP-Hard for some ϵ and K, L even if the graph is regular and symmetric.

By Raz' Paralled Repetition Theorem, we can reduce an instance of GAP – $LC(K, L)_{1,\delta}$ to the instance of GAP – $LC_{1,\exp(-\Omega(\frac{\delta^3 t}{\log t}))}$. Therefore, we finally prove that for any $\eta > 0$, there exists K, L such that GAP – $LP(K, L)_{1,\eta}$ is NP-Hard.

Problem 2. (a) For a regular Label-Cover problem G = (U, V, E) that every veritce in U matches k vertices in V, |U| = |V| = n, consider the k-uniform hypergraph H = (V', E') where V' = E and k-tuples are all $[(u, v_1), (u, v_2), \cdots, (u, v_k)]$ for $(u, v_i) \in E$. [L'] now represents the value of (u, v_i) , i.e. $[L'] = [L] \times [K]$. [K] = [k+1].

The maps are defined as: For the labeling $\sigma: [V] \to [L] \times [K]$, $\sigma(u, v_i) = (l, k)$. If $\pi_{(u, v_i)}(k) = l$ is matching in Labek-Cover problem, then we let $\pi_e^i(\sigma(u, v_i)) = k + 1$. Otherwise, if (l, k) does not satisfy the constraint, then we let $\pi_e^i(\sigma(l, k)) = i$.

So the constraint is weakly satisfied iff at least two edges in the k-tuples are satisfied in the constraint before. Also, the constraint is strongly satisfied iff all edges in the k-tuples are satisfied.

Completeness is trivial since if there is some label in the Label-Cover Game satisfy all constraint, then it can be naturally induced in the hypergraph.

Soundness is because: Assume OPT $\geq \epsilon$ in k-ary-Consistent-Labeling problem. Then we choose all edges (u_i, v_j) that are satisfied in the Label-Cover Game, denoted as S. There are at least $2\epsilon n$ edges. Now we label each u_i, v_j one by one.

Since the graph G is regular, at most 2k-1 edges in S have common vertice with an edge in S.

So each time we choose an arbitrary $e = (u, v) \in S$, label it with the label in k-ary-Consistent-Labeling and then we remove those edges in S who intersects with e.

In the end, for those vertices that have not been labeled yet, label it randomly.

Then at least $\frac{2\epsilon n}{2k} = \frac{\epsilon}{k}n$ edges are satisfied in Label-Cover-Game.

Therefore $OPT \ge \frac{\epsilon}{k}$ for Label-Cover Game.

As a result, if $OPT \leq \eta$ in Label-Cover Game, then $OPT \leq k\eta$ in k-ary-Consistent-Labeling problem.

Since MAX – LC_{1, η} is NP-Hard, to distingish instance with strong value 1 and weak value less than $k\eta$ k-ary-Consistent-Labeling problem is NP-Hard $\forall \eta > 0$.

Here we end the proof.

(b)

Problem 3. Consider all values $d(r, v) \pmod{\frac{1}{2}}$. They divide $[0, \frac{1}{2})$ into |V| + 1 pieces of interval.(including the interval [v, v] if exists) If we choose θ in each interval, edges that will be removed are the same, so the cost is the same.

As a result, we can try θ in each interval and find the minimum cost. This will be less than 2OPT.

Problem 4. (a) If a connected component has diameter at most k in the (10, 0.1, 1, 1)-expandar G, we prove that it has at most 10^k vertices.

By induction, k = 1 is trivial. Assume k - 1 holds for it. Assume subgraph G' has the maxmimum number of vertices. There isn't any vertex in G' that has distance less than k - 1 with each vertex in G' and also connects with

other vertex u outside. Otherwise, u can be added to g', which causes contradiction with the maximum property. Then for k, any vertex in the graph with diameter k-1 has degree 10 so at most 10^k vertices are connected to the graph. Since any vertex beyond G' has distance larger than k with some vertices in G' as we proved before, the expanded graph has at most 10^k vertices.

So each connected component has at most $10^{1/2\log_{10}n} = n^{1/2}$ vertices in this problem. As n large enough, $n^{1/2} < 0.1n$. For those connected components S_1, \dots, S_k , removed edges are

$$|\partial S_1 \cup \partial S_2 \cup \dots \partial S_k| = \frac{1}{2} \sum_{t=1}^k |\partial S_t| \ge \frac{1.01}{2} \sum_{t=1}^k |S_t| > 0.5n$$

So we must have deleted $\Omega(n)$ edges.

Now we set the pair (s_i, t_i) to be all (u, v) where $u, v \in G$ and distance between u and v is k.

Then for any possible connected component in multicut, vertices u, v in it have distance is less than k.

For a (10, 0.1, 1.1)-expandar graph, by (a) we removed at least $\frac{1}{2}n$ if $k = \frac{1}{2}\log_{10}n$.

However, in LP case, we can set $x_e = \frac{1}{k}$ for any edge e. Then the cost will be

$$\frac{1}{k} \cdot |E| = \frac{5}{k}|V| = \frac{5n}{k}$$

So the integral gap is $\Omega(\log n)$.

Problem 5. (a)

$$\mathbb{E}(\text{cut value}) = \sum_{(i,j)\in E} \omega_{ij} \cdot \frac{\arccos\langle v_i, v_j \rangle}{\pi}$$

$$= \sum_{(i,j)\in E} \omega_{ij} - \sum_{(i,j)\in E} \frac{\frac{\pi}{2} + \arcsin\langle v_i, v_j \rangle}{\pi}$$

$$\geq \sum_{(i,j)\in E} \omega_{ij} - \beta \cdot \sum_{(i,j)\in E} \omega_{ij} \sqrt{\frac{1 + \langle v_i, v_j \rangle}{2}}$$

$$\geq \sum_{(i,j)\in E} \omega_{ij} - \beta \left(\sum_{(i,j)\in E} \omega_{ij} \frac{1 + \langle v_i, v_j \rangle}{2}\right)^{1/2} \left(\sum_{(i,j)\in E} \omega_{ij}\right)^{1/2}$$

$$= 1 - \beta (1 - \text{SDP})^{1/2}$$

$$\geq 1 - \beta (1 - \text{OPT})^{1/2}$$

where $\beta=\sup_{\alpha\in(-1,1)}\frac{\frac{\pi}{2}+\arcsin\alpha}{\sqrt{1+\alpha}}<+\infty$ by L'hospital rule.

Therefore, it is a $1 - \epsilon$ vs. $1 - \beta \sqrt{\epsilon}$ search algorithm.

(b)

Similar to max-cut. If we set $\mathbb{F}_2 = \{\pm 1\}$, then

$$\frac{1 - bx_i x_j}{2} = \begin{cases} 1 & x_i \oplus x_j = b \\ 0 & x_i \oplus x_j \neq b \end{cases}$$

where $1 \oplus 1 = -1 \oplus -1 = -1, 1 \oplus -1 = 1 \oplus 1 = 1$.

So the problem is to maximize the objective

$$\sum_{(i,j)\in E} \omega_{ij} \frac{1 - b_{ij} x_i x_j}{2}$$

Similarly, we set the SDP relaxation:

$$\min \sum_{(i,j)\in E} \omega_{ij} \frac{1 - b_{ij} \langle v_i, v_j \rangle}{2}$$

conditioned on $||v_i|| = 1$.

After finding a minimum, we design a randomize algorithm as follows:

Uniformly sample $\vec{r} \sim S^{n-1}$.

Set $x_i = \operatorname{sgn} \langle \vec{r}, \vec{v}_i \rangle$.

Then

$$\mathbb{E}(\text{cut value}) = \sum_{(i,j)\in E} \omega_{ij} \cdot \frac{\arccos b_{ij} \langle v_i, v_j \rangle}{\pi}$$

$$= \sum_{(i,j)\in E} \omega_{ij} - \sum_{(i,j)\in E} \frac{\frac{\pi}{2} + \arcsin b_{ij} \langle v_i, v_j \rangle}{\pi}$$

$$\geq \sum_{(i,j)\in E} \omega_{ij} - \beta \cdot \sum_{(i,j)\in E} \omega_{ij} \sqrt{\frac{1 + b_{ij} \langle v_i, v_j \rangle}{2}}$$

$$\geq \sum_{(i,j)\in E} \omega_{ij} - \beta \left(\sum_{(i,j)\in E} \omega_{ij} \frac{1 + b_{ij} \langle v_i, v_j \rangle}{2} \right)^{1/2} \left(\sum_{(i,j)\in E} \omega_{ij} \right)^{1/2}$$

$$= 1 - \beta (1 - \text{SDP})^{1/2}$$

$$\geq 1 - \beta (1 - \text{OPT})^{1/2}$$

where $\beta = \sup_{\alpha \in (-1,1)} \frac{\frac{\pi}{2} + \arcsin \alpha}{\sqrt{1+\alpha}} < +\infty$ by L'hospital rule.

Therefore, it is a $1 - \epsilon$ vs. $1 - \beta \sqrt{\epsilon}$ search algorithm.

Problem 6. For an arbitrary graph $G = (V, E), \epsilon > 0$, WLOG we assme $\sum_{(i,j) \in E} \omega(i,j) = 1$. Let

 $d_i = \max_{(i,j)\in E} \left\lceil \frac{\omega(v_i,v_j)}{\epsilon} \right\rceil$. We can construct a graph G' = (V',E') with $|V'| \leq \lceil \frac{1}{\epsilon} \rceil |V|$ by split each v_i into $v_{i,1},v_{i,2},\cdots,v_{i,d_i}$ and if $(i,j)\in E$, connects $v_{i,t}$ and $v_{j,t}$ equipped with weight ϵ .

Add another $|V'|^2 - |V'|$ vertices to the graph G' and we can use the algorithm to find an α -approximating solution for G' in $f(|V'|^2, \frac{|E'|}{|V'|^2}) = \text{poly}(|V'|^2) = \text{poly}(|V'|)$.

Rounding: Let $x_i \sim \text{Uniform}\{x_{i,1}, \cdots, x_{i,d_i}\}$. Then $\mathbb{E}[x_i] = \frac{\sum_{t=1}^{d_i} x_i}{d_i}$. Therefore,

 $\mathbb{E}[\text{value}] = \sum_{(i,j) \in E} \omega(i,j) \frac{1 - \frac{(\sum_{t=1}^{d_i} x_{i,t})(\sum_{t=1}^{d_j} x_{j,t})}{d_i d_j}}{2} \ge \sum_{(i,j) \in E} \omega(i,j) \cdot \frac{\sum_{t=1}^{d_i} x_{i,t}}{d_i d_j}$

Problem 7. hyperplane cuts $\frac{\alpha}{\pi}$ edges in G_d with angle α .

Then totally, hyperplane cuts

$$\frac{\int_{\arccos \rho^*}^{\pi} \sin^{d-2} \alpha \frac{\alpha}{\pi} \, \mathrm{d}\alpha}{\int_{\arccos \rho^*}^{\pi} \sin^{d-2} \alpha \, \mathrm{d}\alpha} < \frac{\int_{\arccos \rho^*}^{\pi} (\pi - \alpha)^{(d-2)/2} \frac{\alpha}{\pi} \, \mathrm{d}\alpha}{\int_{\arccos \rho^*}^{\pi} (\pi - \alpha)^{(d-2)/2} \, \mathrm{d}\alpha} = \frac{\arccos \rho^*}{\pi} + O(\frac{1}{d})$$

The first inequality is because $\frac{\sin \alpha}{\sin \beta} > \frac{\sqrt{\pi - \alpha}}{\sqrt{\pi - \beta}}$ if $\alpha < \beta$. Thus the probability of α in the left is less than the probability of β in the right if $\alpha < \beta$.

Problem 8. $f: \{\pm 1\}^n \to \mathbb{R}$ is a linear combination of function $f: \{\pm 1\}^n \to \{\pm 1\}$, which can be written in the form of linear combination of Fourier base functions:

$$f(x) = \sum_{S \subset [n]} \hat{f}(S) \chi_S(x)$$

where $\chi_S(x) = \prod_{i \in S} x_i$ is a multilinear polynomial.

So it is expressible as a multilinear polynomial.

The uniqueness is because, if there is some multilinear polynoimal g such that $g(x) = f(x), \forall x \in \{\pm 1\}$. Then using Parserval's Theorem we obtain that

$$\sum_{S \subset [n]} (\hat{f} - g)(S)^2 = \mathbb{E}_{\vec{x} \sim \{\pm 1\}^n} (f(\vec{x}) - g(\vec{x}))^2 = 0$$

So
$$f - g = \sum_{S \subset [n]} (\hat{f} - g)(S) \chi_S = 0.$$

Problem 9.

$$\langle f, g \rangle = \left\langle \sum_{S \subset [n]} \hat{f}(S) \chi_S, \sum_{S \subset [n]} \hat{f}(S) \chi_S \right\rangle = \sum_{S_1, S_2 \subset [n]} \hat{f}(S_1) \hat{g}(S_2) \left\langle \chi_{S_1}, \chi_{S_2} \right\rangle = \sum_{S \subset [n]} \hat{f}(S) \hat{g}(S)$$

However, if we let $f = \chi_{\{x\}}, g = \chi_{\{y\}}, h = \chi_{\{x,y\}}$, then

$$\mathbb{E}_{\vec{t}}\chi_{\{x\}}(t)\chi_{\{y\}}(t)\chi_{\{x,y\}}(t) = \mathbb{E}_{\vec{t}}t_x^2t_y^2$$

But

$$\hat{f}(S)\hat{g}(S)\hat{h}(S)\equiv 0,\,\forall S\subset [n]$$

due to they are Fourier basis.