

## $\Omega$

# Big 4 Team



Shuo Zhang

PHD Chemical

Engineering



Bin Fang

PHD GIS



Jingyu Zhang

PHD Electrical Engineering



**Yunrou Gong** 

Master Operational Research



## Content

- Introduction
- Data Preparation
- Modeling Workflow
- Exploratory Data Analysis
- Modelling
- Ensemble
- Prediction
- Conclusion and Future Work

#### Introduction

<u>Purpose</u>: predict the number of taxi pickups given a one-hour time window and a location within NYC

- •how to position cabs where they are most needed
- •how many taxi to dispatch
- •how ridership varies over time

#### Input:

Date, one-hour time window, and zipcode within NYC



#### Output:

Predicted number of taxi pickups at the input time and location





#### EDA (Tableau)





7



## EDA (Tableau)







## **MLR** and Ridge

Multiple-linear Regression



Train R^2: 0.75 RMSE: 127.35



Test R^2: 0.76 RMSE: 125.56

Ridge Regression



Bayesian
Optimization
12 iteration to find
best alpha



Train R^2: 0.75 RMSE: 127.34



Test R^2: 0.75 RMSE: 125.56



## **XGBOOST**

| Parameters       | Range      | Best (lowest MSE) |  |
|------------------|------------|-------------------|--|
| Max_depth        | 3 ~ 14     | 14                |  |
| Learning_rate    | 0.01 ~ 0.2 | 0.1186            |  |
| N_estimators     | 50, 1000   | 463               |  |
| gamma            | 0.01 ~ 1.0 | 1.0               |  |
| Min_child_weight | 1 ~ 10     | 6.1929            |  |
| Subsample        | 0.5 ~ 1    | 0.9675            |  |
| Colsample_bytree | 0.5 ~ 1    | 0.8544            |  |

**XGBOOST** 



Bayesian
Optimization
30 iteration to find
best parameters
combination



Train R^2: 0.99 RMSE: 21.85



Test R^2: 0.98 RMSE: 35.01

#### **Ensemble**

RandomForests Regression Xgboost Regression





| Model    | R^2  | RMSE   |  |
|----------|------|--------|--|
| MLR      | 0.76 | 125.56 |  |
| Ridge    | 0.75 | 125.56 |  |
| RFR      | 0.97 | 40.06  |  |
| XGBR     | 0.98 | 35.01  |  |
| Epgemble | 0.97 | 42.95  |  |
|          |      |        |  |





#### **Further Comparison of Models**

| Subset   | Taxi Demand | Size  | RFR RMSE | XGBR RMSE | Ensemble RMSE |
|----------|-------------|-------|----------|-----------|---------------|
| Subset 1 | >=1000      | 2479  | 150      | 123       | 156           |
| Subset 2 | 100 ~ 999   | 24759 | 75       | 66        | 80            |
| Subset 3 | <100        | 95472 | 8.7      | 7.2       | 9.5           |







## **Prediction for the coming week**

-RandomForest

-XGBOOST

-<u>Ensemble</u>

#### **Conclusion and Future Work**

- Overall, our models for predicting taxi pickups in NYC performed well.
- XGBOOST performed best.

#### Neutral network:

- automatically tune and model feature interactions
- learn nonlinearities

Extra features: distance to the nearest subway station, the number of bars and restaurants in a given zone





Exploit similar characteristics between different zones

