5.előadás: Adatbázisok-I. dr. Hajas Csilla (ELTE IK) http://sila.hajas.elte.hu/

Relációs algebra és az SQL SELECT

Tankönyv:

- 2.4. Relációs algebra, lekérdező nyelv
- 6.2. Több táblás lekérdezések SQL-ben
- + Példák: "Termékek" 2.4. végén a feladatok megoldása algebrai nyelven és SQL-ben

Relációs algebrai lekérdező nyelv ---1

- Nyelv: a kérdés szintaktikai alakja és a kérdés kiértékelése (algoritmus) kiértékelési szemantika
- Relációs algebra egyszerű és hatékony módszer adott relációkból új relációk létrehozására.
- Algebra műveleteket és atomi operandusokat tartalmaz, például számtani algebra esetén műveletek (összeadás, kivonás, szorzás, osztás) és operandusok (pl. x változó, és 15-höz hasonló konstansok), kifejezések megadása.
- Relációs algebra: az atomi operandusokon és az algebrai kifejezéseken végzett műveletek alkalmazásával kapott relációkon műveleteket adunk meg, kifejezéseket építünk (a kifejezés felel meg a kérdés szintaktikai alakjának). Fontos tehát, hogy minden művelet eredménye reláció, amelyen további műveletek adhatók meg.

Relációs algebrai lekérdező nyelv ---2

Relációs algebrai kifejezés, mint L lekérdező nyelv

Adott az adatbázis sémája: $\mathbb{R} = \{R_1, ..., R_k\}$

 $q \in L$ $q: R_1, ..., R_k \rightarrow V$ (eredmény-reláció)

E - relációs algebrai kifejezés: $E(R_1, ..., R_k) = V$ (output)

Relációs algebrai kifejezések formális felépítése

- Atomi operandusai a következők:
 - a relációkhoz tartozó változók, R_i ∈ ℝ (az adatbázissémában levő relációnevek, ahol az R_i kiértékelése: az aktuális előfordulása)
 - konstansok, amelyek véges relációt fejeznek ki.

Műveletei:

- (egy relációra) unér: vetítés, kiválasztás, [átnevezés];
- (két rel.) binér: halmazműveletek, összekapcsolások.

Relációs algebrai lekérdező nyelv ---3

Relációs algebrai kifejezések felépítése

- Elemi kifejezések (atomi operandusok) kifejezések
- Összetett kifejezések az alábbiak:
- ▶ Ha E₁, E₂ kifejezések, akkor a következő E is kifejezés
 - $ightharpoonup E:=\Pi_{lista}(E_1)$ vetítés (típus a lista szerint)
 - E:= σ_{Feltétel} (E ₁) kiválasztás (típus nem változik)
 - E:=E₁ U E₂ unió, ha azonos típusúak (és ez a típusa)
 - \triangleright E:= E₁ E₂ különbség, ha E₁, E₂ azonos típusúak (típus)
 - E:= E₁ ⋈ E₂ term. összekapcsolás (típus attr-ok uniója)
 - \triangleright E:= $\rho_{S(B_1, ..., B_k)}$ (E₁ (A₁, ... A_k)) átnevezés (típ.új attr.nevek)
 - E:=(E₁) kifejezést zárójelezve is kifejezést kapunk
- Ezek és csak ezek a kifejezések, amit így meg tudunk adni

Vetítés (project, jelölése ∏)

- Vetítés (projekció). Adott relációt vetít le az alsó indexben szereplő attribútumokra (attribútumok számát csökkentik)
- ∏_{lista}(R) ahol lista: {A_{i1}, ..., A_{ik}} R-sémájában levő attribútumok egy részhalmazának felsorolása eredmény típusa <A_{i1}: értéktípus_{i1}, ..., A_{ik}:értéktípus_{ik}> ∏_{lista}(R) := { t.A_{i1}, t.A_{i2}, ..., t.A_{ik} | t∈R} = { t[lista] | t∈R}
- Reláció soraiból kiválasztja az attribútumoknak megfelelő A_{i1}, ..., A_{ik}-n előforduló értékeket, ha többször előfordul akkor a duplikátumokat kiszűrjük (hogy halmazt kapjunk)
- Példa:

Α	В	С
а	b	С
С	d	е
С	d	d

 $\Pi_{A, B}(R)$

Α	В
а	b
С	d

Kiválasztás (select, jelölése: σ)

- Kiválasztás (szűrés). Kiválasztja az argumentumban szereplő reláció azon sorait, amelyek eleget tesznek az alsó indexben szereplő feltételnek.
- σ_{Feltétel}(R) és R sémája megegyezik
- σ_{Feltétel}(R) := { t | t∈R és t kielégíti σ -ban szereplő Feltételt}
- R(A₁, ..., A_n) séma feletti reláció esetén a σ_F kiválasztás F feltétele a következőképpen épül fel:
 - elemi feltétel: A_i θ A_j, A_i θ c, ahol c konstans, θ pedig =, ≠,<, >, ≤, ≥
 - » összetett feltétel: ha B_1 , B_2 feltételek, akkor \neg B_1 , $B_1 \land B_2$, $B_1 \lor B_2$ és zárójelezésekkel is feltételek

>	Pél	da:
		uu.

Α	В	С
а	b	С
С	d	е
g	а	d

$\sigma_{A='a'\vee C <='d'}(R)$	Α	В	С
	а	b	С
	g	а	d

Halmazműveletek (jelölése a szokásos)

- Reláció előfordulás véges sok sorból álló halmaz. Így értelmezhetők a hagyományos halmazműveletek: unió (az eredmény halmaz, csak egyszer szerepel egy sor) halmazműveleti különbség, metszet. Milyen művelet van még halmazokon? Vajon ez értelmezhető-e relációkon?
- R, S és azonos típusú, R ∪ S és R S típusa ugyanez R ∪ S := $\{t \mid t \in R \lor t \in S\}$, R S := $\{t \mid t \in R \land t \notin S\}$
- Az alapműveletekhez az unió és különbség tartozik, metszet műveletet származtatjuk R ∩ S = R − (R − S)

Α	В	C
а	b	С
С	d	е
g	а	d

Α	В	С
а	b	С
С	d	е
g	d	f

Példa: különbségre

$$R - S$$

Α	В	С
g	а	d

Példák: Halmazműveletek

Felszolgál1:

Söröző	Sör	Ár
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50

Felszolgál2:

Söröző	Sör	Ár
Joe's	Bud	2.50
Jack's	Bud	2.75

Felszolgál₁ ∪ Felszolgál2:

Söröző	Sör	Ár
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Jack's	Bud	2.75

Felszolgál1 ∩ Felszolgál2:

Söröző	Sör	Ár
Joe's	Bud	2.50

Felszolgál2 \ Felszolgál1:

Söröző	Sör	Ár
Jack's	Bud	2.75

Természetes összekapcsolás ---1

- Szorzás jellegű műveletek (attribútumok számát növeli) a relációs algebrai lekérdezésekben, kifejezésekben többféle lehetőséget is használhatunk, ebből az egyik alapművelet:
- Natural join (angol neve, jelölése: M "csokornyakkendő")
- ► Természetes összekapcsolás (magyar elnevezése) közös attribútum-nevekre épül. R ⋈ S azon sorpárokat tartalmazza R-ből illetve S-ből, amelyek R és S azonos attribútumain

megegyeznek. B a a a a а a a a b a a d h d e

Természetes összekapcsolás ---2

- Természetes összekapcsolás:
 - Legyen $R(A_1,...,A_k,B_1,...,B_n)$, illetve $S(B_1,...,B_n,C_1,...,C_m)$
- Arr R ⋈ S típusa (A₁,...,A_k,B₁,...,B_n,C₁,...,C_m) vagyis a két attribútum-halmaz uniója
- R ⋈ S elemei, vagyis sorai v ∈ R ⋈ S

$$R \bowtie S = \{ v \mid \exists t \in R, \exists s \in S : t[B_1,...,B_n] = s[B_1,...,B_n] \land v[A_1,...,A_k] = t[A_1,...,A_k] \land v[B_1,...,B_n] = t[B_1,...,B_n] \land v[B_1,...,B_n] \land v[B_1$$

$$\wedge v[C_1,...,C_m] = s[C_1,...,C_m]$$

Természetes összekapcsolás ---3

- Példákban: két azonos nevű attribútumot úgy tekintünk, hogy ugyanazt jelenti és a közös érték alapján fűzzük össze a sorokat.
- Milyen problémák lehetnek?
- Filmek adatbázisban ugyanarra a tulajdonságra más névvel hivatkozunk: Filmek.év és SzerepelBenne.filmÉv, illetve FilmSzínész.név és SzerepelBenne.színészNév
- Termékek adatbázisban pedig ugyanaz az azonosító mást jelent: Termék.típus más mint a Nyomtató.típus
- Emiatt a Filmek és a Termékek adatbázisokban ahhoz, hogy jól működjön az összekapcsolás szükségünk van egy technikai műveletre, az attribútumok illetve relációk átnevezésére

Átnevezés (rename, jelölése ró: Q)

- Miért van erre szükség? Nem tudjuk a reláció saját magával való szorzatát kifejezni, R ⋈ R = R lesz.
- Láttuk, hogy egyes esetekben szükség lehet relációnak vagy a reláció attribútumainak átnevezésére:

$$\mathbf{Q}_{S(B_1,\ldots,B_k)}(R(A_1,\ldots A_k))$$

- Az attribútumok átnevezése helyett alternatíva: R.A (vagyis relációnév.attribútumnév hivatkozás) amivel meg tudjuk különböztetni a különböző táblákból származó azonos nevű attribútumokat.

- További szorzás jellegű műveletek, amelyek két reláció sorait kombinálják: Descartes-szorzat (direkt-szorzat) Ezt is használjuk a relációs algebrai lekérdezésekben és lekérdezési tervekben, de a sokkal gyakrabban használt természetes összekapcsolást tekintjük alapműveletnek.
- Descartes-szorzat R × S: az R és S minden sora párban összefűződik, az első tábla minden sorához hozzáfűzzük a második tábla minden sorát.
 - Legyen $R(A_1,...,A_k,B_1,...,B_n)$, illetve $S(B_1,...,B_n,C_1,...,C_m)$
- Arr R imes S típusa $(A_1, ..., A_k, R.B_1, ..., R.B_n, S.B_1, ..., S.B_n, C_1, ..., C_m)$ vagyis a két attribútum-halmaz multihalmazként való uniója
- ightharpoonup R imes S elemei, sorai: $R imes S := \{ t \mid t[R] \in R \text{ \'es } t[S] \in S \}$

Descartes-szorzat (vagy szorzat, direkt-szorzat) esetén természetesen nem fontos az attribútumok egyenlősége. A két vagy több reláció azonos nevű attribútumait azonban meg kell különböztetni egymástól. Hivatkozás séma: oszlopok átnevezése illetve azonos nevű oszlop esetén: R.B₁,...,R.B_n, S.B₁,...,S.B_n Példa:

Α	В	С
а	b	С
С	d	е
g	а	d

Α	R.B	С	S.B	D
а	b	С	b	r
а	b	С	q	S
С	d	е	b	r
С	d	е	q	S
g	a	d	b	r
g	a	d	q	S

Felszolgál:

Söröző	Sör	Ár
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

Théta-join

Söröző:

Név	Cím
Joe's	Maple st.
Sue's	River rd.

Barinfo = Felszolgál ⋈ Felszolgál.söröző = Söröző.név Söröző

Söröző	Sör	Ár	Név	Cím
Joe's	Bud	2.50	Joe's	Maple st.
Joe's	Miller	2.75	Joe's	Maple st.
Sue's	Bud	2.50	Sue's	River rd.
Sue's	Miller	3.00	Sue's	River rd.

- ▶ Ha R, S sémái megegyeznek, akkor R ⋈ S = R ∩ S.
- Ha R, S sémáiban nincs közös attribútum, akkor R ⋈ S = R×S.
- Feladatok: Hogyan fejezhető ki az R x S direkt szorzat relációs algebrában? (a természetes összekapcsolást tekintjük alapműveletnek, ebből és az átnevezés segítségével felírható a direkt szorzat).
- Hogyan fejezhető ki a természetes összekapcsolás, ha a direkt szorzatot sorolnánk az alapműveletek közé?
- ► Köv.előadáson folytatjuk: Théta összekapcsolás ⋈ , stb Alkérdések segítségével félig összekapcsolások ⋈ is, Rel.algebra kiterjesztése külső összekapcsolások is!

6.2. Több táblára vonatkozó lekérdezések az SQL-ben

Select-From-Where (SFW) utasítás

- Gyakran előforduló relációs algebrai kifejezés Π_{Lista} (σ_{Felt} (R_1 x... x R_n)) típusú kifejezések
- Szorzat és összekapcsolás az SQL-ben
- SELECT s-lista -- milyen típusú sort szeretnénk az eredményben látni?
 FROM f-lista -- relációk (táblák) összekapcsolása, illetve szorzata
 WHERE felt -- milyen feltételeknek eleget tevő sorokat kell kiválasztani?
- FROM f-lista elemei (ezek ismétlődhetnek) táblanév [[AS] sorváltozó, ...]

Itt: a from lista elemei a táblák direkt szorzatát jelenti, az összekapcsolási feltételt where-ben adjuk meg, később bevezetünk majd további lehetőségeket a különböző összekapcsolásokra az SQL from záradékában.

Attribútumok megkülönböztetése ---1

- Milyen problémák merülnek fel?
- (1) Ha egy attribútumnév több sémában is előfordul, akkor nem elég az attribútumnév használata, mert ekkor nem tudjuk, hogy melyik sémához tartozik.
- Ezt a problémát az SQL úgy oldja meg, hogy megengedi egy relációnévnek és egy pontnak a használatát egy attribútum előtt: R.A (az R reláció A attribútumát jelenti).
- > Természetes összekapcsolás legyen R(A, B), S(B,C)

```
SELECT A, R.B B, C
FROM R, S
WHERE R.B=S.B;
```

Attribútumok megkülönböztetése ---2

- Milyen problémák merülnek még fel?
- (2) Ugyanaz a reláció többször is szerepelhet, vagyis szükség lehet arra, hogy ugyanaz a relációnév többször is előforduljon a FROM listában.
- Ekkor a FROM listában a táblához másodnevet kell megadni, erre sorváltozóként is szoktak hivatkozni, megadjuk, h. melyik sorváltozó melyik relációt képviseli:

FROM $R_1 [t_1], ..., R_n [t_n]$

Ekkor a SELECT és WHERE záradékok kifejezésekben a hivatkozás: t_i.A (vagyis sorváltozó.attribútumnév)

Példa: Két tábla összekapcsolása ---1

Mely söröket szeretik a Joe's Bárba járó sörivók?

```
SELECT sör
FROM Szeret, Látogat
WHERE söröző = 'Joe''s Bar'
AND Látogat.név = Szeret.név;
```

- Kiválasztási feltétel: söröző = 'Joe''s Bar'
- Összekapcsolási feltétel: Látogat.név = Szeret.név
- Alapértelmezése a következő oldalon a mai órán
- Összekapcsolások új szintaxisát köv.órán nézzük majd

Példa: Két tábla összekapcsolása ---2

SFW szabvány alapértelmezése ---1

- Kiindulunk a FROM záradékból: a FROM lista minden eleméhez egy beágyazott ciklus végigfut az adott tábla sorain a ciklus minden lépésénél az n darab sorváltozónak lesz egy-egy értéke
- ehhez kiértékeljük a WHERE feltételt, vagyis elvégezzük a WHERE záradékban szereplő feltételnek eleget tevő sorok kiválasztását (csak a helyesek, ahol TRUE=igaz választ kapunk), azok a sorok kerülnek az eredménybe.
- Alkalmazzuk a SELECT záradékban jelölt kiterjesztett projekciót. Az SQL-ben az eredmény alapértelmezés szerint itt sem halmaz, hanem multihalmaz.

Ahhoz, hogy halmazt kapjunk, azt külön kérni kell: SELECT **DISTINCT** Lista

SFW szabvány alapértelmezése ---2

FOR t1 sorra az R1 relációban DO FOR t2 sorra az R2 relációban DO

. . .

FOR tn sorra az Rn relációban DO

IF a where záradék igaz, amikor az attribútumokban t1, t2, ..., tn megfelelő értékei találhatóak THEN

t1, t2, ..., tn -nek megfelelően kiértékeljük a select záradék attribútumait és az értékekből alkotott sort az eredményhez adjuk

SFW szabvány alapértelmezése ---3

SELECT [DISTINCT] kif_1 [[AS] $onév_1$], ..., kif_n [[AS] $onév_n$] FROM R_1 [t_1], ..., R_n [t_n] WHERE feltétel (vagyis logikai kifejezés)

Alapértelmezés (a műveletek szemantikája -- általában)

- A FROM záradékban levő relációkhoz tekintünk egy-egy sorváltozót, amelyek a megfelelő reláció minden sorát bejárják (beágyazott ciklusban)
- Minden egyes "aktuális" sorhoz kiértékeljük a WHERE záradékot
- Ha helyes (vagyis igaz) választ kaptunk, akkor képezünk egy sort a SELECT záradékban szereplő kifejezéseknek megfelelően.

Megj.: konverzió relációs algebrába

SELECT [DISTINCT] kif_1 [[AS] $onév_1$], ..., kif_n [[AS] $onév_n$] FROM R_1 [t_1], ..., R_n [t_n]

WHERE feltétel (vagyis logikai kifejezés)

- 1.) A FROM záradék sorváltozóiból indulunk ki, és tekintjük a hozzájuk tartozó relációk Descartesszorzatát. Átnevezéssel valamint R.A jelöléssel elérjük, hogy minden attribútumnak egyedi neve legyen.
- 2.) A WHERE záradékot átalakítjuk egy kiválasztási feltétellé, melyet alkalmazunk az elkészített szorzatra.
- 3.) Végül a SELECT záradék alapján létrehozzuk a kifejezések listáját, a (kiterjesztett) vetítési művelethez.

$$\Pi_{\text{onév1....onévn}}$$
 ($\sigma_{\text{feltétel}}$ ($R_1 \times ... \times R_n$))

Tábla önmagával való szorzata ---1

- Bizonyos lekérdezéseknél arra van szükségünk, hogy ugyanannak a relációnak több példányát vegyük.
- Ahhoz, hogy meg tudjuk különböztetni a példányokat a relációkat átnevezzük, másodnevet adunk, vagyis sorváltozókat írunk mellé a FROM záradékban.
- A relációkat mindig átnevezhetjük ily módon, akkor is, ha egyébként nincs rá szükség (csak kényelmesebb).
- Példa: R(Szülő, Gyerek) séma feletti relációban adott szülő-gyerek adatpárokból állítsuk elő a megállapítható Nagyszülő-Unoka párokat! SELECT t1.Szülő NagySzülő, t2.Gyerek Unoka FROM R t1, R t2 WHERE t1.Gyerek = t2.Szülő;

Tábla önmagával való szorzata ---2

- Példa: Sörök(név, gyártó) tábla felhasználásával keressük meg az összes olyan sörpárt, amelyeknek ugyanaz a gyártója.
 - Ne állítsunk elő (Bud, Bud) sörpárokat.
 - A sörpárokat ábécé sorrendben képezzük, például ha (Bud, Miller) szerepel az eredményben, akkor (Miller, Bud) ne szerepeljen.

```
SELECT s1.név, s2.név
FROM Sörök s1, Sörök s2
WHERE s1.gyártó = s2.gyártó
AND s1.név < s2.név;</pre>
```

Halmazműveletek az SQL-ben

- Mi hiányzik még, hogy a relációs algebra alapműveleteit mindet az SQL-ben vissza tudjuk adni?
- A relációs algebrai halmazműveletek: unió, különbség mellett az SQL-ben ide soroljuk a metszetet is (ugyanis fontos a metszet és az SQL-ben is implementálva van).
- Az SQL-ben a halmazműveleteket úgy vezették be, hogy azt mindig két lekérdezés között lehet értelmezni, vagyis nem relációk között, mint R U S, hanem lekérdezem az egyiket is és a másikat is, majd a lekérdezések unióját veszem.

(SFW-lekérdezés1)

[UNION | INTERSECT | {EXCEPT | MINUS}]

(SFW-lekérdezés2);

Köv.előadáson lesz a multihalmazokra való kiterjesztése!

Példa: Intersect (metszet)

Szeret(név, sör), Felszolgál(söröző, sör, ár) és Látogat(név, söröző) táblák felhasználásával keressük

Trükk: itt ez az alkérdés valójában az adatbázisban tárolt tábla — azokat (név,sör) párokat, ahol a név = sörivó látogat olyan sörözőt, ahol felszolgálnak olyan sört, amelyet szeret (a "boldog" sörivók).

(SELECT * FROM Szeret)
INTERSECT

(név, sör) párok, ahol a sörivó látogat olyan sörözőt, ahol ezt a sört felszolgálják

(SELECT név, sör

FROM Látogat L, Felszolgál F WHERE L.söröző = F.söröző); Példák, gyakorló feladatok több táblára vonatkozó lekérdezésekre relációs algebrában és SQL-ben

Lekérdezések kifejezése algebrában ---1

- A relációs algebra procedurális nyelv, vagyis nemcsak azt adjuk meg, hogy mit csináljunk, hanem azt is hogyan.
- Kifejezés kiértékelése: összetett kifejezést kívülről befelé haladva átírjuk kiértékelő fává, levelek: elemi kifejezések.
- Legyen R, S az R(A, B, C), S(C, D, E) séma feletti reláció $\Pi_{B,D} \sigma_{A='c' \text{ and } E=2} (R \bowtie S)$
- Ehhez a kiértékelő fa: (kiértékelése alulról felfelé történik)

Tudunk-e ennél jobb, hatékonyabb megoldást találni?

Lekérdezések kifejezése algebrában ---2

Ekvivalens átalakítási lehetőségekkel, relációs algebrai azonosságokkal (például mikor cserélhető fel a ⋈ természetes összekapcsolás és a σ_{felt} kiválasztás?) át tudjuk alakítani a fentivel ekvivalens másik relációs algebrai kifejezésre. Kérdés: Hatékonyabb-e?

$$\Pi_{B,D} (\sigma_{A='c'}(R) \bowtie \sigma_{E=2}(S))$$

Ehhez is felrajzolva a kiértékelő fát:

Lekérdezések kifejezése algebrában ---3

- Ekvivalens átalakítás: oly módon alakítjuk át a kifejezést, hogy az adatbázis minden lehetséges előfordulására (vagyis bármilyen is a táblák tartalma) minden esetben ugyanazt az eredményt (vagyis ugyanazt az output táblát) adja az eredeti és az átalakított kiértékelő fa.
- Először táblákkal gondolkodva nézzük meg, hogy milyen stratégiákkal, milyen tábla műveletekkel tudjuk megkapni az output táblát, a kívánt eredményt, ezt írjuk fel relációs algebrában lineáris módon és kifejezőfával, majd SQL-ben!
- Ha egy-egy részkifejezést, ha gyakran használjuk, akkor új változóval láthatjuk el, segédváltozót vezethetünk be: T(C₁, ... C_n) := E(A₁, ... A_n), de a legvégén a bevezetett

változók helyére be kell másolni a részkifejezést.

Példa: Termékek (Tk.2.4.1.feladat) --- 1

Legyen adott az alábbi relációs sémák feletti relációk:

Termék (gyártó, <u>modell</u>, típus)
PC (<u>modell</u>, sebesség, memória, merevlemez, ár)
Laptop (<u>modell</u>, sebesség, memória, merevlemez, képernyő, ár)

Nyomtató (modell, színes, típus, ár)

Feladatok Tk.2.4.1.feladat (ezeket a kérdéseket konkrét táblák alapján természetes módon meg lehet válaszolni, majd felírjuk relációs algebrában)

- a) Melyek azok a PC modellek, amelyek sebessége legalább 3.00
- b) Mely gyártók készítenek legalább száz gigabájt méretű merevlemezzel rendelkező laptopot?
- c) Adjuk meg a B gyártó által gyártott összes termék modellszámát és árát! stb...
- !! i) Melyik gyártó gyártja a leggyorsabb számítógépet (laptopot vagy PC-t)?
- !! k) Melyek azok a gyártók, akik pontosan három típusú PC-t forgalmaznak?

Példa: Termékek (Tk.2.4.1.feladat) --- 2

Feladat: Az alábbi E/K diagramot írjuk át relációsémákra Nézzünk meg több megközelítéssel (1 v. 3 v. 4 táblára is)

Példa: Termékek (Tk.2.4.1.feladat) --- 3

- Relációs algebra kifejezések ilyen bevezetése valóban használható a lekérdezések megadására?
- Tk.2.4.1.feladat
- Példa: Adottak az alábbi relációs sémák feletti relációk Termék (gyártó, modell, típus)
 PC (modell, sebesség, memória, merevlemez, cd, ár)
 Laptop (modell, sebesség, memória, merevlemez, képernyő, ár)
 Nyomtató (modell, színes, típus, ár)
- Jelölje: T(gy, m, t)
 PC(m, s, me, ml, ár)
 L(m, s, me, ml, k, ár)
 Ny(m, sz, t, ár)

Megj.: a két típus attr.név nem ugyanazt fejezi ki és így T M Ny természetes összekapcsolásnál "zűr"

Probléma: természetes összekapcsolás

Termek táblának modell elsődleges kulcsára hivatkozik a Nyomtato táblában modell a külső kulcs (hivatkozás)

Természetes összekapcsolás: Itt hibás eredményt kapunk!

SELECT modell, gyarto, tipus FROM Termek **NATURAL JOIN** Nyomtato;

- -- Hiba: modell, tipus (két oszlopnak is megegyezik a neve)
- -- mivel a tipus mást jelent a két táblában, ezért ÜRES lesz

Köv.héten megnézzük a natural join művelet új szintaxisát, ahol megadhatjuk a kapcsolómezőket, ez jó megoldást ad:

SELECT modell, gyarto, T.tipus, N.tipus FROM Termek T **JOIN** Nyomtato N **USING** (modell);

Előző probléma megoldása

Descartes szorzattal (FROM listán a táblákat megadjuk, és a WHERE-be írjuk be a kapcsolást, itt a DBMS joint végez)

SELECT T.modell, gyarto, T.tipus, N.tipus FROM Termek T, Nyomtato N WHERE T.modell = N.modell;

Köv.héten ebben a szemléletben is lesz az új szintaxissal: SELECT T.modell, gyarto, T.tipus, N.tipus FROM Termek T **JOIN** Nyomtato N **ON** T.modell = N.modell;

Köv.előadáson az összekapcsolás további lehetőségeit is átvesszük, például alkérdésekkel (algebrában: szemijoin)

Példák relációs algebrai lekérdezésekre ---a.)

a.) Melyek azok a PC modellek, amelyek sebessége legalább 3.00?

Példák átírásokra ---a.)

a.) Melyek azok a PC modellek, amelyek sebessége legalább 3.00?

$$\prod_{m} (\sigma_{s \geq 3.00} (PC))$$

SELECT modell

FROM PC

WHERE sebesseg>=3.00;

$$\Pi_{\mathsf{m}}$$
 $|$
 $\mathsf{S}_{\mathsf{s}} = 3.00$

PC

Példák relációs algebrai lekérdezésekre ---b.)

b.) Mely gyártók készítenek legalább száz gigabájt méretű merevlemezzel rendelkező laptopot?

Példák relációs algebrai lekérdezésekre ---b.)

b.) Mely gyártók készítenek legalább száz gigabájt méretű merevlemezzel rendelkező laptopot?

$$\Pi_{gy}$$
 ($\sigma_{ml\geq 100}$ (T \bowtie L)) vagy ekv. Π_{gy} (T \bowtie ($\sigma_{ml\geq 100}$ (L))

Példák átírásokra ---b.)

 b.) Mely gyártók készítenek legalább száz gigabájt méretű merevlemezzel rendelkező laptopot?

 $\prod_{gy} (\sigma_{ml \ge 100} (T \bowtie L))$

SELECT gyarto FROM Termek natural join Laptop WHERE merevlemez>=100

SELECT gyarto FROM Termek T, Laptop L WHERE merevlemez>=100 AND T.modell=L.modell;

-- köv.előadáson (alkérdésekkel) SELECT gyarto FROM Termek WHERE modell IN (SELECT modell FROM Laptop WHERE merevlemez>=100)

Példák relációs algebrai lekérdezésekre ---c.)

c.) Adjuk meg a B gyártó által gyártott összes termék modellszámát és árát típustól függetlenül!

Példák relációs algebrai lekérdezésekre ---c.)

- c.) Adjuk meg a B gyártó által gyártott összes termék modellszámát és árát típustól függetlenül!
 - három részből áll (Nyomtató táblánál vigyázni, uis term.összekapcsolásnál a típus attr. itt mást jelent!)
 - -- keressünk több megoldást, különböző nézőpontokból!
 - -- segédváltozót vezetek be, legyen $BT := \prod_m \sigma_{gy='B'}(T)$

$$\Pi_{m, \text{ ár}}(BT \bowtie PC) \cup \Pi_{m, \text{ ár}}(BT \bowtie L) \cup \Pi_{m, \text{ ár}}(BT \bowtie Ny)$$

Példák átírásokra ---c.)

c.) Adjuk meg a B gyártó által gyártott összes termék modellszámát és árát típustól függetlenül! 1.mego.:

$$\begin{aligned} \text{BT} := & \prod_{m} \sigma_{\text{gy='B'}}(\text{T}) \text{ munkatáblával } \prod_{m, \text{ ár}}(\text{BT} \bowtie \text{PC}) \ \cup \\ & \prod_{m, \text{ ár}}(\text{BT} \bowtie \text{L}) \ \cup \\ & \text{with BT as} \end{aligned}$$

(select modell from termek where gyarto='B')

select modell, ar from pc natural join BT union

select modell, ar from laptop natural join BT union

select modell, ar from nyomtato natural join BT;

Példák átírásokra ---c.)

- c.) Adjuk meg a B gyártó által gyártott összes termék modellszámát és árát típustól függetlenül! 2.mego.:
 - -- más szemlélettel más segédváltozót vezetek be

```
Arlista := \prod_{m, \text{ ár}}(PC) \cup \prod_{m, \text{ ár}}(L) \cup \prod_{m, \text{ ár}}(Ny)
```

with Arlista as

(select modell, ar from pc

union

select modell, ar from laptop

union

select modell, ar from nyomtato)

select modell, ar from Arlista natural join Termek where gyarto='B';

Példák relációs algebrai lekérdezésekre ---d.)

d.) Adjuk meg valamennyi színes lézernyomtató modellszámát

Példák relációs algebrai lekérdezésekre ---d.)

- d.) Adjuk meg valamennyi színes lézernyomtató modellszámát: $\prod_{m} (\sigma_{sz='i'}(Ny)) \cap \prod_{m} (\sigma_{t='lézer'}(Ny))$
 - -- elvégezhető más módon is: $\prod_{m}(\sigma_{sz='i' \land t='lézer'}(Ny)) = \prod_{m}(\sigma_{sz='i'}, \sigma_{t='lézer'}(Ny)) = \prod_{m}(\sigma_{t='lézer'}, \sigma_{sz='i'}(Ny))$
 - -- és elvégezhető a tábla önmagával való szorzatával is:
 - = $\prod_{Ny1.m} (\sigma_{Ny1.sz='i' \land Ny2.t='l\acute{e}zer' \land Ny1.m=Ny2.m} (Ny1 x Ny2))$

!!! Hasonlítsuk össze azzal, amikor <u>szeret(Név, Gyümölcs)</u> sémájú reláció alapján keressük, hogy kik szeretik az almát is <u>és</u> a körtét is! A fenti relációs algebrai megoldások közül melyik ad helyes/illetve téves eredményt erre a kérdésre?

Példák átírásokra ---d.)

```
d.) Adjuk meg valamennyi színes lézernyomtató modellszámát: \Pi_{m}(\sigma_{sz='i'}(Ny)) \cap \Pi_{m}(\sigma_{t='lézer'}(Ny)) -- elvégezhető más módon is: \Pi_{m}(\sigma_{sz='i', \land t='lézer'}(Ny)) = \Pi_{m}(\sigma_{sz='i'}, \sigma_{t='lézer'}(Ny)) = \Pi_{m}(\sigma_{t='lézer'}, \sigma_{t='lézer'}(Ny))
```

select modell from Nyomtato --- 1.megoldás (metszet) where tipus='lézer'

intersect

select modell from Nyomtato where szines='igen';

select modell from Nyomtato --- 2.mego.: ekvivalens-e? where tipus='lézer' and szines='igen';

--- Hogyan tudjuk átírni SQL-be a többit (többféleképpen)

Példák relációs algebrai lekérdezésekre ---e.)

e) Melyek azok a gyártók, amelyek laptopot árulnak, PC-t viszont nem?

Példák relációs algebrai lekérdezésekre ---e.)

- e) Melyek azok a gyártók, amelyek laptopot árulnak, PC-t viszont nem? (itt elég lenne csak a Termék táblát használni, mert abban benne van a termék típusa: Ez, akkor az a feladat lenne, mint a Szeret(név, gyümölcs) tábla alapján adjuk meg "kik azok, akik szeretik az almát, de nem szeretik a körtét" típusú lekérdezési feladat).
- Vizsgáljuk meg a kérdést! Ha a Termék táblát bővítjük olyan PC modellekkel, akiknek a gyártója laptopot gyárt, akkor az alaptábla bővítésével, vagyis új sorok felvitelével az eredménytábla csökken. Az ilyen típusú lekérdezések nem monoton jellegűek, ezek az "Elhagyásos-feladatok", az alap relációs algebrában az egyetlen nem monoton művelet a halmazműveleti különbség szükséges: R – S

$$\prod_{gy} (T \bowtie L) - \prod_{gy} (T \bowtie PC)$$

Példák relációs algebrai lekérdezésekre ---f.)

! f) Melyek azok a merevlemezméretek, amelyek legalább két PC-ben megtalálhatók?

Példák relációs algebrai lekérdezésekre ---f.)

- ! f) Melyek azok a merevlemezméretek, amelyek legalább két PC-ben megtalálhatók? (táblát önmagával szorozzuk)
 - --- amikor egy táblát önmagával szorozzuk, akkor átnevezzük a táblákat: P1 := PC, P2 := PC $\prod_{p1.ml} (\sigma_{p1.m\neq p2.m \ \land \ p1.ml=p2.ml}$ (P1 x P2))

Példák átírásokra ---f.)

! f) Melyek azok a merevlemezméretek, amelyek legalább két PC-ben megtalálhatók? (táblát önmagával szorozzuk)

```
--- átnevezzük a táblákat P1 := PC, P2 := PC \prod_{p1.ml} (\sigma_{p1.m\neq p2.m \ \land \ p1.ml=p2.ml} (P1 x P2))
```

select distinct p1.merevlemez
from PC p1, PC p2
where p1.modell != p2.modell
and p1.merevlemez = p2.merevlemez;

Példák relációs algebrai lekérdezésekre ---g.)

! g) Adjuk meg azokat a PC-modell párokat, amelyek ugyanolyan gyorsak és a memóriájuk is ugyanakkora. Egy pár csak egyszer jelenjen meg, azaz ha már szerepel az (i, j), akkor a (j, i) ne jelenjen meg.

Példák relációs algebrai lekérdezésekre ---g.)

! g) Adjuk meg azokat a PC-modell párokat, amelyek ugyanolyan gyorsak és a memóriájuk is ugyanakkora. Egy pár csak egyszer jelenjen meg, azaz ha már szerepel az (i, j), akkor a (j, i) ne jelenjen meg.

 $\prod_{PC_1.m, PC.m} (\sigma_{PC_1.m < PC.m \land PC_1.s = PC.s \land PC_1.me = PC.me} (PC_1 \times PC))$

--- átírása SQL-be hasonló, mint f.)

Példák relációs algebrai lekérdezésekre ---h.)

!! h) Melyek azok a gyártók, amelyek gyártanak legalább két, egymástól különböző, legalább 2.80 gigahertzen működő számítógépet (PC-t vagy laptopot)

Példák relációs algebrai lekérdezésekre ---h.)

- !! h) Melyek azok a gyártók, amelyek gyártanak legalább két, egymástól különböző, legalább 2.80 gigahertzen működő számítógépet (PC-t vagy laptopot)
 - -- segédváltozó: Gyors := $\prod_{m}(\sigma_{s\geq 2.8}(PC)) \cup \prod_{m}(\sigma_{s\geq 2.8}(L))$
 - -- és ezzel legyen: $T_1 := T \bowtie Gyors$ és $T_2 := T \bowtie Gyors$

$$\prod_{T_1. gy} (\sigma_{T_1. gy= T_2. gy \wedge T_1. m \neq T_2. m} (T_1 \times T_2))$$

Példák relációs algebrai lekérdezésekre ---i.)

!! i) Melyik modell a leggyorsabb PC-t?

("elhagyás" típusú lekérdezések, nincs nála gyorsabb PC)

Példák relációs algebrai lekérdezésekre ---i.)

!! i) Melyik modell a leggyorsabb PC-t?

(az "elhagyás" típusú lekérdezések, lásd maximum kif.) Kiválasztjuk azokat a PC-ket, amelyiknél van gyorsabb, ha ezt kivonjuk a PC-ékből megkapjuk a leggyorsabbat:

EnnélVanNagyobb = $\prod_{PC.m} (\sigma_{PC.s < PC_1.s}(PC \times PC1))$ Leggyorsabb: $\prod_{m} (PC)$ – EnnélVanNagyobb

Ehhez rajzoljuk fel a kiértékelő fát is:

Példák relációs algebrai lekérdezésekre ---i.)

!! i) Melyik modell a leggyorsabb PC-t?

(az "elhagyás" típusú lekérdezések, lásd maximum kif.) Kiválasztjuk azokat a PC-ket, amelyiknél van gyorsabb, ha ezt kivonjuk a PC-ékből megkapjuk a leggyorsabbat:

EnnélVanNagyobb = $\prod_{PC.m} (\sigma_{PC.s < PC_1.s}(PC \times PC1))$ Leggyorsabb: $\prod_{m} (PC)$ – EnnélVanNagyobb

Ehhez rajzoljuk fel a kiértékelő fát is:

Példák átírásokra ---i.)

!! i) Melyik modell a leggyorsabb PC?

EnnélVanNagyobb = $\prod_{PC.m} (\sigma_{PC.s < PC_1.s}(PC \times PC1))$ Leggyorsabb: $\prod_{m} (PC)$ – EnnélVanNagyobb

select modell from PC minus

select p1.modell from PC p1, PC p2 where p1.sebesseg<p2.sebesseg;

-- Eredeti feladatban: Melyik gyártó gyártja a leggyorsabb számítógépet? Lásd köv.lapon:

Példák átírásokra ---i.)

!! i) Melyik gyártó gyártja a leggyorsabb számítógépet Segédváltozót vezetünk be, szgep (PC vagy laptop) with szgep as (select modell, sebesseg from pc union select modell, sebesseg from laptop) select gyarto, modell, sebesseg from termek natural join szgep where sebesseg = (select sebesseg from szgep minus select p1.sebesseg from szgep p1, szgep p2 where p1.sebesseg<p2.sebesseg);

MAX előállítása relációs algebrában

Nézzük meg a maximum előállításának a kérdését! Legyen R(A,B). Feladat: Adjuk meg MAX(A) értékét! (Ez majd átvezet az új témára, aggregáló függvényekre, illetve csoportosításra).

 $\rightarrow \pi_{A}(R) - \pi_{R1.A}(\sigma_{R1.A < R2.A}(\rho_{R1}(R) \times \rho_{R2}(R)))$

Folyt. Rel.alg. kifejezés átírása SQL-re

- Előző oldal folyt.max előállítás átírása SQL-re:
- Kiértékelő fa szerinti átírás SQL-be:

```
(SELECT A FROM R)
MINUS
(SELECT R1.A AS A
FROM R R1, R R2
WHERE R1.A<R2.A);
```

Köv.héten lesz másik megoldása, alkérdéssel:

```
SELECT A FROM R MAXA
WHERE NOT EXISTS
(SELECT A FROM R
WHERE A > MAXA.A);
```

Példák relációs algebrai lekérdezésekre ---6

!! j) Melyik gyártó gyárt legalább három, különböző sebességű PC-t? mint a legalább kettő, csak ott 2x, itt 3x kell a táblát önmagával szorozni. Legyenek S, S₁, S₂ := T ⋈ ∏_{m,s}(PC)

$$\prod_{S.gy} (\sigma_{S_1.gy=S.gy \land S_2.gy=S.gy \land S_1.s \neq S.s \land S_2.s \neq S.s \land S_1.s \neq S_2.s} (S \times S_1 \times S_2))$$

!! k) Melyek azok a gyártók, amelyek pontosan három típusú PC-t forgalmaznak? legalább 3-ból - legalább 4-t kivonni

Mire érdemes felhívni a figyelmet?
Mi a leggyakrabban előforduló típus, amiből építkezek?

 $\prod_{\text{lista}} (\sigma_{\text{feltétel}}(\text{táblák szorzata}))$

Ezt a komponenst támogatja legerősebben majd az SQL:

SELECT s-lista FROM f-lista WHERE feltétel;

Összefoglalás

- Az alap relációs algebra (Tankönyv 2.4)
- SELECT FROM WHERE lekérdezések és halmazműveletek SQL-ben (Tankönyv 6.1-6.2)
- Először relációs algebrai nyelven táblákkal és műveletekkel többféle megoldási lehetőséget vizsgáltunk meg, amelyeket összevetettünk, majd megnéztünk SQL lekérdezésként is.
- > 5.EA (Tk. 54-57.o.) 2.4.1.feladata Termékek feladataihoz
 - http://sila.hajas.elte.hu/AB1gy/create_termekek.txt
 - http://sila.hajas.elte.hu/AB1gy/Feladatok_Termekek.pdf
- > H.F. (Tk. 57-60.o.) 2.4.3.feladata Csatahajók feladataihoz
 - http://sila.hajas.elte.hu/AB1gy/create_csatahajok.txt
 - http://sila.hajas.elte.hu/AB1gy/Feladatok_Csatahajok.pdf

Kérdés/Válasz

Köszönöm a figyelmet! Kérdés/Válasz?

- Gépes gyakorlaton az Oracle Példatár feladatai
 3. fejezet: Többtáblás lekérdezések SQL-ben
- Következő előadásokon: Több táblás lekérdezések alkérdések használata az SQL SELECT utasítás FROM, WHERE és HAVING záradékaiban, továbbá összekapcsolások az SQL-ben (Tankönyv 6.3.)
- Később: Bonyolultabb lekérdezési feladatoknál a logikát (Datalog) is használjuk (Tk.5.3-5.4. és 10.2.)