0.1 $(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}) = (130, 0)$ (ATLAS_CONF_2013_091)

• Process: $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to (W^{\pm} \tilde{\chi}_1^0)(Z \tilde{\chi}_1^0)$.

• Mass: $m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0} = 130$ GeV, $m_{\tilde{\chi}_1^0} = 0$ GeV.

• The number of events: $5 \cdot 10^4$.

• Event Generator: Herwig++ 2.5.2.

#	cut name	$\epsilon_{ m Exp}$	$\epsilon_{ ext{Atom}}$	Atom Exp	(Exp-Atom) Error	#/?	R_{Exp}	R_{Atom}	Atom Exp	(Exp-Atom) Error
0	MET > 50	100.0	100.0							
1	>= 2 central jets	70.76 ± 0.38	65.01 ± 1.19	0.92	-4.61	0	0.71 ± 0.0	0.65 ± 0.01	0.92	-4.61
2	2 leading jets central	66.66 ± 0.37	61.32 ± 1.16	0.92	-4.39	1	0.94 ± 0.01	0.94 ± 0.02	1.0	0.07
3	4th leading jet veto $(p_T > 25)$	58.09 ± 0.34	52.86 ± 1.08	0.91	-4.63	2	0.87 ± 0.01	0.86 ± 0.02	0.99	-0.52
4	baseline lepton veto	57.13 ± 0.34	49.1 ± 1.04	0.86	-7.33	3	0.98 ± 0.01	0.93 ± 0.02	0.94	-2.66
5	$m_{jj} > 50$	54.22 ± 0.33	45.76 ± 1.01	0.84	-7.99	4	0.95 ± 0.01	0.93 ± 0.02	0.98	-0.81
6	$m_T > 40$	44.87 ± 0.3	36.39 ± 0.9	0.81	-8.92	5	0.83 ± 0.01	0.8 ± 0.02	0.96	-1.57
7	$m_{CT} > 160$	5.43 ± 0.1	4.38 ± 0.32	0.81	-3.14	6	0.12 ± 0.0	0.12 ± 0.01	1.0	-0.07
8	exactly 2 leading bjets	4.3 ± 0.09	3.57 ± 0.29	0.83	-2.41	7	0.79 ± 0.02	0.82 ± 0.07	1.03	0.35
9	exactly 2 leading bjets	1.4 ± 0.05	1.15 ± 0.16	0.82	-1.45	8	0.33 ± 0.01	0.32 ± 0.05	0.99	-0.06
10	SRA: $100 < m_T < 130$	0.27 ± 0.02	0.25 ± 0.08	0.95	-0.18	9	0.19 ± 0.02	0.22 ± 0.07	1.15	0.42
_11	SRB: $m_T > 130$	0.01 ± 0.0	0.05 ± 0.03	4.29	1.07	10	0.04 ± 0.02	0.18 ± 0.13	4.53	1.09

Table 1: The cut-flow table for $(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1}) = (130, 0).$