MÉCANIQUE DE VOL D'UN HÉLICOPTÈRE

Mohamed Thebti

14 février 2023

Table des matières

1	Introduction		3
	section2	Description d'un hélicopt è re4 Schéma cinématique	5
	subsection	n3.1 Vecteurs positions5 Angular momentum	6
sub	section4.	1 Formula6	
	4.2 Cor	ndition of stability	6
sub	section4.	3 Pivots à droite et à gauche7	

1 Introduction

But : étudier la mécanique de vol d'un hélicoptère. comme la portance, la stabilité de vol, puissance de vol,

Avoir les outils avant d'engager une étude dynamique plus complexe

2 Description d'un hélicoptère

pales principales, pales secondaires angle d'attaque des pales principales

3 Schéma cinématique

3.1 Vecteurs positions

origine: centre de rotation verticale se trouvant sous les pâles principales.

position des pâles principales (pp) : vecteur verticale

position de l'hélice arrière : vecteur allant de l'origine vers l'hélice (h) arrière.

4 Angular momentum

4.1 Formula

$$\vec{L} = \vec{OA} \otimes \vec{P} = \vec{r} \otimes \vec{P} = \vec{r} \otimes m \cdot \vec{v} = \vec{I} \otimes \vec{\omega}$$
 (1)

 $ec{L}$: Angular Momentum [$kg\cdotrac{m^2}{s}$]

 \vec{OA} and r : position of the mass [m] according to a reference

 \vec{P} : linear momentum $[kg \cdot \frac{m}{s}]^1$

 \vec{v} : velocity $[\frac{m}{s}]\,I$: moment of inertia $[m^2\cdot kg\cdot]$

 ω : angular speed $[\frac{rad}{s}]$

Torque:

$$M = \frac{d\vec{L}}{dt} = \frac{d(\vec{I} \otimes \vec{\omega})}{dt}$$
 (2)

if we consider a particule of mass m, \vec{r} is the position of the center of mass. If it is a solid object, L is first computed according to the axis of rotation of the object :

$$\vec{L}_{ar} = \vec{I}_{ar} \otimes \vec{\omega}_{ar} \tag{3}$$

To compute the angular moment according to an other axis of rotation (new referance), we use the Huygens-Steiner theorem (or the Parallel axis theorem):

$$\vec{L}_0 = \vec{I}_0 \otimes \vec{\omega}_{cm}$$
 (4)

$$\vec{I}_0 = \vec{I}_{ar} + m \cdot d^2 \tag{5}$$

with d the distance between the axis of rotation of the object and the new reference.

4.2 Condition of stability

Main rotor(s):

$$\vec{L}_{mr} = \vec{r}_{mr} \otimes m_{mr} \cdot \vec{v}_{mr} = \vec{I}_{mr} \otimes \vec{\omega}_{mr} \tag{6}$$

Rear rotor:

$$\vec{L}_{rr} = \vec{r}_{rr} \otimes m_{rr} \cdot \vec{v}_{rr} = \vec{I_r} \vec{r} \otimes \vec{\omega}_{rr} \tag{7}$$

assurer la stabilité lors du vol : les moments cinétiques doivent s'annuler. (poser la formule et résoudre)

$$\vec{L_{mr}} = \vec{L_{rr}} \tag{8}$$

or

The generated torque is compensated:

$$\sum \vec{M_{mr}} = \sum \vec{M_{rr}} \tag{9}$$

6

find a relation between ω_{mr} and ω_{rr} -> determine the transmission ratio

1. \vec{L} is perpendicular to both \vec{P} and \vec{r}

4.3 Pivots à droite et à gauche

pour tourner à gauche ou doite, on ne doit plus satisfaire la condition de stabilité. le pilote utiliser le pédalier pour accélérer/ralentir l'hélice arrière. ainsi les moments cinétiques ne sont plus égaux.

calculer l'effet de rotation sur l'hélicoptère si l'hélice est accélérée/ralentie de 10,20,30,... %. mettre un tableau. calculer la vitesse de rotation dans ces cas-là.

$$\begin{bmatrix} 0 \\ 0 \\ l_1 \end{bmatrix}_{R_1} \vec{AB}_{R_2} = \begin{bmatrix} 0 \\ l_2 \\ 0 \end{bmatrix}_{R_2} \vec{BC}_{R_3} = \begin{bmatrix} l_3 \\ 0 \\ 0 \end{bmatrix}_{R_3} \vec{CD}_{R_4} = \begin{bmatrix} 0 \\ 0 \\ -l_4 \end{bmatrix}_{R_4}$$
(10)

$$\vec{OE}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R$$
(11)

$$\vec{OF}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R + \vec{EF}_R$$
(12)

$$\vec{OG_R} = \vec{OA_R} + \vec{AB_R} + \vec{BB_{1R}} + \vec{B_1C_{1R}} + \vec{C_1C_R} + \vec{CC_{2R}} + \vec{C_2D_R} + \vec{DD_{1R}} + \vec{D_1E_R} + \vec{EF_R} + \vec{FF_{3R}} + \vec{F_3G_R}$$
(13)

$$\vec{OH}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R + \vec{EF}_R + \vec{FF}_{3R} + \vec{F_3G}_R + \vec{GH}_R$$
(14)

5 Conclusion