Logistic Regression with a reject option

University of Seoul

Kim, Yoon-Hoe

Contents

001 Motivation

002 Method

Algorithm

Computation

003 Simulation

Simulation Data

Metrics for comparison

Numerical result

004 Conclusion

Motivation

Motivation

- In some cases, classification problems may be ambiguous or difficult to classify.
- In this case, rather than making a wrong decision, it would be desirable to hold the decision and make a definite decision after it is supplemented.
- For example, an observation with a conditional probability of 1/2 diagnosed as cancer would be better to consider a better test method than an immediate decision.
- The **reject option** is an option that reports you that it is difficult to make a decision and also holds the decision.

Does 'Logistic Classifier with a reject option' perform better than general Logistic Classifier?

Method

- Algorithm
- Computation

Bradley - Terry Model - Bradley and Terry (1952)

$$\Pr(i \text{ beats } j) = \frac{\pi_i}{\pi_i + \pi_j}$$
 $\Pr(j \text{ beats } i) = \frac{\pi_j}{\pi_i + \pi_j}$

Bradley - Terry Model with ties option - Rao and Kupper (1967)

$$\Pr(i \text{ beats } j) = \frac{\pi_i}{\pi_i + \kappa \pi_j} \qquad \Pr(j \text{ beats } i) = \frac{\pi_j}{\kappa \pi_i + \pi_j}$$
$$\Pr(i \text{ ties } j) = \frac{(\kappa^2 - 1)\pi_i \pi_j}{(\pi_i + \kappa \pi_j)(\kappa \pi_i + \pi_j)}$$

MM algorithm for the Bradley - Terry Model - Hunter (2004)

- The MM algorithm works by finding a surrogate function that minorizes or majorizes the objective function.
- Optimizing the surrogate function will drive the objective function upward or downward until a local optimum is reached.

https://upload.wikimedia.org/wikipedia/commons/c/cc/Mmalgorithm.jpg

MM algorithm for the Bradley - Terry Model

The objective function of MM algorithm for the Bradley - Terry Model is loglikelihood.

$$\min_{\mathbf{p},\kappa} l(\mathbf{p},\kappa) = -\sum_{i < j}^{M} \left(r_{ij} \log \frac{\pi_i}{\pi_i + \kappa \pi_j} + r_{ji} \log \frac{\pi_j}{\kappa \pi_i + \pi_j} + r_{ij}^{ties} \log \frac{(\kappa^2 - 1)\pi_i \pi_j}{(\pi_i + \kappa \pi_j)(\kappa \pi_i + \pi_j)} \right)$$
(1)

Logistic Classification Problem with a reject option

$$p_{-1}(\mathbf{x}) = \Pr(Y = -1|\mathbf{x}) = \frac{1}{1 + \kappa \pi(\mathbf{x})}$$
 $p_{+1}(\mathbf{x}) = \Pr(Y = +1|\mathbf{x}) = \frac{\pi(\mathbf{x})}{\kappa + \pi(\mathbf{x})}$

$$p_0(\mathbf{x}) = \Pr(Y = 0|\mathbf{x}) = \frac{(\kappa^2 - 1)\pi(\mathbf{x})}{(1 + \kappa\pi(\mathbf{x}))(\kappa + \pi(\mathbf{x}))}$$

$$f(\mathbf{x}) = \beta_0 + \mathbf{x}^T \beta$$
 and $\pi(\mathbf{x}) = \exp(f(\mathbf{x}))$

The corresponding likelihood is

$$L = \prod_{i=1}^{n} p_{-1}(\mathbf{x})^{I(y_i = -1)} p_{+1}(\mathbf{x})^{I(y_i = +1)} p_0(\mathbf{x})^{I(y_i = 0)}$$
(2)

Using censored framework which is similar to case of SVM with a reject option', the corresponding likelihood can be expressed as follows. $d(0 \le d < 1)$

$$L = \prod_{i=1}^{n} (p_{-1}(\mathbf{x})^{I(y_i = -1)} p_{+1}(\mathbf{x})^{I(y_i = +1)})^{1-d} (p_0(\mathbf{x})^{I(y_i = 0)})^d$$
 (3)

 $p_0(\mathbf{x}) > max(p_{-1}(\mathbf{x}), p_{+1}(\mathbf{x}))$: reject or postpone of the decision

$$p_{-1}(\mathbf{x}) > p_{+1}(\mathbf{x})$$
: allocate class '-1'

$$p_{-1}(\mathbf{x}) < p_{+1}(\mathbf{x})$$
: allocate class '1'

Let the negative loglikelihood of Eq. (3) be,

$$-l(\beta_+, \kappa) = (1 - d) \sum_{i=1}^n \left(I(y_i = -1) \left[-\log(1 + \kappa \pi(\mathbf{x}_i)) \right] + I(y_i = +1) \left[f(\mathbf{x}_i) - \log(\kappa + \pi(\mathbf{x}_i)) \right] \right)$$
$$+dI(y_i = 0) \left(\log(\kappa^2 - 1) + f(\mathbf{x}_i) - \log(1 + \kappa \pi(\mathbf{x}_i)) = \log(\kappa + \pi(\mathbf{x}_i)) \right)$$

let $\beta_+ = (\beta_0, \beta^T)^T$

For some $\lambda > 0$, then, the regularization is

$$\max_{\kappa > 1} \min_{\beta_+} l(\beta_+, \kappa) + \lambda \sum_{j=1}^p |\beta_j|$$

Summarized algorithm

- Step 1: Given λ , find inital κ and repeat steps 2-3 until convergence.
- Step 2: (βstep) For given κ , find

$$\widehat{\beta}_{+} = \underset{\beta_{+}}{\operatorname{argmin}} L(\beta_{+}, \kappa) + \lambda \sum_{j=1}^{p} |\beta_{j}|.$$

• Step 3: $(\kappa - \text{step})$ For given β_+ , find κ .

More succulently notation of Eq. (3) is,

$$L(\boldsymbol{\beta}_{+}) = -\sum_{i=1}^{n} \sum_{k \neq y_{i}} [f_{y_{i}}(\mathbf{x}_{i}) - f_{k}(\mathbf{x}_{i}) - \log(\kappa + \exp(f_{y_{i}}(\mathbf{x}_{i}) - f_{k}(\mathbf{x}_{i}))) - d\log(1 + \kappa \exp(f_{y_{i}}(\mathbf{x}_{i}) - f_{k}(\mathbf{x}_{i})))] - 2dn \log(\kappa^{2} - 1)$$
(R^p \to R)

let
$$\beta_+ = (\beta_0, \beta^T)^T$$

$$k = \{1, 0, -1\}$$

$$f(\mathbf{x}) = \beta_0 + \mathbf{x}^T \beta \qquad (\mathbf{R}^p \to \mathbf{R})$$

$$f_k(\mathbf{x}) = \beta_0 + \mathbf{x}^T \beta^{(k)}$$

$$f_1(\mathbf{x}) = \beta_0 + \mathbf{x}^T \beta^{(1)}$$
 $f_0(\mathbf{x}) = \beta_0 + \mathbf{x}^T \beta^{(0)}$ $f_{-1}(\mathbf{x}) = \beta_0 + \mathbf{x}^T \beta^{(-1)}$

Example

$$\beta = \begin{pmatrix} o \\ o \end{pmatrix} \qquad \qquad y = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \qquad \qquad \mathbf{x} = \begin{pmatrix} o & o \\ o & o \\ o & o \\ o & o \end{pmatrix}$$

$$L(\boldsymbol{\beta}_{+}) = -\sum_{i=1}^{n} \sum_{k \neq y_{i}} [f_{y_{i}}(\mathbf{x}_{i}) - f_{k}(\mathbf{x}_{i}) - \log(\kappa + \exp(f_{y_{i}}(\mathbf{x}_{i}) - f_{k}(\mathbf{x}_{i}))) - d\log(1 + \kappa \exp(f_{y_{i}}(\mathbf{x}_{i}) - f_{k}(\mathbf{x}_{i})))] - 2dn \log(\kappa^{2} - 1)$$

$$i = 1, y_1 = -1 \Rightarrow$$

$$\sum_{k \neq -1} [f_{-1}(\mathbf{x}_1) - f_k(\mathbf{x}_1) - \log(\kappa + \exp(f_{-1}(\mathbf{x}_1) - f_k(\mathbf{x}_1)) - d\log(1 + \kappa \exp(f_{-1}(\mathbf{x}_1) - f_k(\mathbf{x}_1)))]$$

$$= f_{-1}(\mathbf{x}_1) - f_1(\mathbf{x}_1) - \log(\kappa + \exp(f_{-1}(\mathbf{x}_1) - f_1(\mathbf{x}_1)) - d\log(1 + \kappa \exp(f_{-1}(\mathbf{x}_1) - f_1(\mathbf{x}_1)))$$

$$+ f_{-1}(\mathbf{x}_1) - f_0(\mathbf{x}_1) - \log(\kappa + \exp(f_{-1}(\mathbf{x}_1) - f_0(\mathbf{x}_1)) - d\log(1 + \kappa \exp(f_{-1}(\mathbf{x}_1) - f_0(\mathbf{x}_1)))$$

The gradient $\nabla(\beta_+)$ $(\mathbf{R}^p \to \mathbf{R}^p)$

$$k \neq y_{1} : \frac{\partial L(\beta)}{\partial \beta_{1}^{(1)}} = -x_{11} + \frac{x_{11} \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))} + d\frac{x_{11}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}$$

$$\frac{\partial L(\beta)}{\partial \beta_{2}^{(1)}} = -x_{12} + \frac{x_{12} \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))} + d\frac{x_{12}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}$$

$$\frac{\partial L(\beta)}{\partial \beta_{1}^{(0)}} = -x_{11} + \frac{x_{11} \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))} + d\frac{x_{11}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}$$

$$\frac{\partial L(\beta)}{\partial \beta_{2}^{(0)}} = -x_{12} + \frac{x_{12} \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))} + d\frac{x_{12}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}$$

$$k = y_{1} : \frac{\partial L(\beta)}{\partial \beta_{2}^{(-1)}} = x_{11} + x_{11} - \frac{x_{11} \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))} - d\frac{x_{11}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}$$

$$- \frac{x_{11} \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))} - d\frac{x_{11}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}$$

$$- \frac{\partial L(\beta)}{\partial \beta_{2}^{(-1)}} = x_{12} + x_{12} - \frac{x_{12} \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))} - d\frac{x_{11}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}$$

$$- \frac{x_{12} \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))} - d\frac{x_{12}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}$$

$$- \frac{x_{12} \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))} - d\frac{x_{12}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{0}(\mathbf{x}_{1}))}$$

$$k \neq y_{1} : \frac{\partial L(\beta)}{\partial \beta_{1}^{(1)}} = -x_{11} + \frac{x_{11} \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{\kappa + \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))} + d\frac{x_{11}\kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_{1}) - f_{1}(\mathbf{x}_{1}))}$$

$$k \neq y_{1} : \frac{\partial L(\beta)}{\partial \beta_{1}^{(1)}} = x_{11} - x_{11} \cdot \frac{\frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}}{\kappa + \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}} - dx_{11} \cdot \frac{\kappa \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}}{1 + \kappa \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}}$$

$$1) \quad x_{11} - x_{11} \cdot \frac{e^{f_{-1}(\mathbf{x}_{1})}}{\kappa e^{f_{1}(\mathbf{x}_{1})} + e^{f_{-1}(\mathbf{x}_{1})}}} = x_{11} \cdot \left(1 - \frac{e^{f_{-1}(\mathbf{x}_{1})}}{\kappa e^{f_{1}(\mathbf{x}_{1})} + e^{f_{-1}(\mathbf{x}_{1})}}\right) = -x_{11}d \cdot \frac{\kappa \exp f_{-1}(\mathbf{x}_{1})}{\kappa \exp f_{-1}(\mathbf{x}_{1}) + \exp f_{1}(\mathbf{x}_{1})}$$

$$= x_{11} \cdot \left(\frac{\kappa e^{f_{1}(\mathbf{x}_{1})} + e^{f_{-1}(\mathbf{x}_{1})} - e^{f_{-1}(\mathbf{x}_{1})}}{\kappa e^{f_{1}(\mathbf{x}_{1})} + e^{f_{-1}(\mathbf{x}_{1})}}\right)$$

$$= x_{11} \cdot \frac{\kappa \exp f_{1}(\mathbf{x}_{1})}{\kappa e^{f_{1}(\mathbf{x}_{1})} + e^{f_{-1}(\mathbf{x}_{1})}}$$

$$= x_{11} \cdot \frac{\kappa \exp f_{1}(\mathbf{x}_{1})}{\kappa e^{f_{1}(\mathbf{x}_{1})} + \kappa \exp f_{1}(\mathbf{x}_{1})}$$

$$= x_{11} \cdot \frac{\kappa \exp f_{1}(\mathbf{x}_{1})}{\exp f_{-1}(\mathbf{x}_{1}) + \kappa \exp f_{1}(\mathbf{x}_{1})}$$

$$= x_{11} \cdot \frac{\kappa \exp f_{1}(\mathbf{x}_{1})}{\exp f_{-1}(\mathbf{x}_{1}) + \kappa \exp f_{1}(\mathbf{x}_{1})}$$

$$k = y_1 : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_1^{(-1)}} = x_{11} + x_{11} - \frac{x_{11} \exp(f_{-1}(\mathbf{x}_1) - f_1(\mathbf{x}_1))}{\kappa + \exp(f_{-1}(\mathbf{x}_1) - f_1(\mathbf{x}_1))} - d\frac{x_{11} \kappa \exp(f_{-1}(\mathbf{x}_1) - f_1(\mathbf{x}_1))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_1) - f_1(\mathbf{x}_1))} - \frac{x_{11} \exp(f_{-1}(\mathbf{x}_1) - f_0(\mathbf{x}_1))}{\kappa + \exp(f_{-1}(\mathbf{x}_1) - f_0(\mathbf{x}_1))} - d\frac{x_{11} \kappa \exp(f_{-1}(\mathbf{x}_1) - f_0(\mathbf{x}_1))}{1 + \kappa \exp(f_{-1}(\mathbf{x}_1) - f_0(\mathbf{x}_1))}$$

$$k = y_{1} : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1}^{(-1)}} = -x_{11} + x_{11} \cdot \frac{\frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}}{\kappa + \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}} + dx_{11} \cdot \frac{\kappa \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}}{1 + \kappa \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{1}(\mathbf{x}_{1})}}} - x_{11} + x_{11} \cdot \frac{\frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{0}(\mathbf{x}_{1})}}}{\kappa + \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{0}(\mathbf{x}_{1})}}} + dx_{11} \cdot \frac{\kappa \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{0}(\mathbf{x}_{1})}}}{1 + \kappa \frac{e^{f_{-1}(\mathbf{x}_{1})}}{e^{f_{0}(\mathbf{x}_{1})}}}$$

$$f_{-1}(\mathbf{x}_{1})$$

1)
$$-x_{11} + x_{11} \cdot \frac{e^{f_{-1}(\mathbf{x}_1)}}{\kappa e^{f_1(\mathbf{x}_1)} + e^{f_{-1}(\mathbf{x}_1)}}$$
 2) $x_{11}d \cdot \frac{\kappa e^{f_{-1}(\mathbf{x}_1)}}{e^{f_1(\mathbf{x}_1)} + \kappa e^{f_{-1}(\mathbf{x}_1)}}$

$$= x_{11} \cdot \left(-1 + \frac{e^{f_{-1}(\mathbf{x}_1)}}{\kappa e^{f_1(\mathbf{x}_1)} + e^{f_{-1}(\mathbf{x}_1)}}\right)$$

$$= x_{11}d \cdot \frac{\kappa \exp f_{-1}(\mathbf{x}_1)}{\kappa \exp f_{-1}(\mathbf{x}_1) + \exp f_1(\mathbf{x}_1)}$$

$$= x_{11} \cdot \left(\frac{-\kappa e^{f_1(\mathbf{x}_1)} + e^{f_{-1}(\mathbf{x}_1)} - e^{f_{-1}(\mathbf{x}_1)}}{\kappa e^{f_1(\mathbf{x}_1)} + e^{f_{-1}(\mathbf{x}_1)}} \right)$$

$$= x_{11} \cdot \frac{-\kappa \exp f_1(\mathbf{x}_1)}{\exp f_{-1}(\mathbf{x}_1) + \kappa \exp f_1(\mathbf{x}_1)}$$

$$k = y_1 : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_j^{(k)}} = x_{1j} \sum_{g \neq y_1} \left[\frac{-\kappa \exp f_g(\mathbf{x}_1)}{\exp f_{y_1}(\mathbf{x}_1) + \kappa \exp f_g(\mathbf{x}_1)} + d \frac{\kappa \exp f_{y_1}(\mathbf{x}_1)}{\kappa \exp f_{y_1}(\mathbf{x}_1) + \exp f_g(\mathbf{x}_1)} \right]$$

$$k \neq y_1 : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_j^{(k)}} = x_{1j} \left[\frac{\kappa \exp f_k(\mathbf{x}_1)}{\exp f_{y_1}(\mathbf{x}_1) + \kappa \exp f_k(\mathbf{x}_1)} - d \frac{\kappa \exp f_{y_1}(\mathbf{x}_1)}{\kappa \exp f_{y_1}(\mathbf{x}_1) + \exp f_k(\mathbf{x}_1)} \right]$$

$$k \neq y_i : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_i^{(k)}} = \sum_{i=1}^n x_{ij} \left[\frac{\kappa \exp f_k(\mathbf{x}_i)}{\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_k(\mathbf{x}_i)} - d \frac{\kappa \exp f_{y_i}(\mathbf{x}_i)}{\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_k(\mathbf{x}_i)} \right]$$

$$k = y_1 : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_j^{(k)}} = x_{1j} \sum_{g \neq y_1} \left[\frac{-\kappa \exp f_g(\mathbf{x}_1)}{\exp f_{y_1}(\mathbf{x}_1) + \kappa \exp f_g(\mathbf{x}_1)} + d \frac{\kappa \exp f_{y_1}(\mathbf{x}_1)}{\kappa \exp f_{y_1}(\mathbf{x}_1) + \exp f_g(\mathbf{x}_1)} \right]$$

$$k = y_i : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_i^{(k)}} = \sum_{i=1}^n x_{ij} \sum_{g \neq y_i} \left[\frac{-\kappa \exp f_g(\mathbf{x}_i)}{\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_g(\mathbf{x}_i)} + d \frac{\kappa \exp f_{y_i}(\mathbf{x}_i)}{\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_g(\mathbf{x}_i)} \right]$$

$$k \neq y_i : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_j^{(k)}} = \sum_{i=1}^n x_{ij} \left[\frac{\kappa \exp f_k(\mathbf{x}_i)}{\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_k(\mathbf{x}_i)} - d \frac{\kappa \exp f_{y_i}(\mathbf{x}_i)}{\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_k(\mathbf{x}_i)} \right]$$

$$k \neq y_i : \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \beta_j^{(k)} \partial \beta_l^{(k)}}$$

$$= \sum_{i=1}^{n} x_{ij} \cdot \left[\frac{x_{il}\kappa \exp f_k(\mathbf{x}_i) \times (\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_k(\mathbf{x}_i)) - \kappa \exp f_k(\mathbf{x}_i)\kappa \exp f_k(\mathbf{x}_i) \cdot x_{il}}{(\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_k(\mathbf{x}_i))^2} + d \cdot \frac{\kappa \exp f_{y_i}(\mathbf{x}_i) \exp f_k(\mathbf{x}_i) \cdot x_{il}}{(\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_k(\mathbf{x}_i))^2} \right]$$

Hessian matrix be **H** with an element of being the second derivative of j and l^{th} variable of k class

$$k \neq y_i : \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \beta_i^{(k)} \partial \beta_l^{(k)}} = \sum_{i=1}^n x_{ij} x_{il} \left(\frac{\kappa \exp f_{y_i}(\mathbf{x}_i) \exp f_k(\mathbf{x}_i)}{(\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_k(\mathbf{x}_i))^2} + \frac{d\kappa \exp f_{y_i}(\mathbf{x}_i) \exp f_k(\mathbf{x}_i)}{(\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_k(\mathbf{x}_i))^2} \right)$$

$$k = y_i : \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_j^{(k)}} = \sum_{i=1}^n x_{ij} \sum_{g \neq y_i} \left[\frac{-\kappa \exp f_g(\mathbf{x}_i)}{\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_g(\mathbf{x}_i)} + d \frac{\kappa \exp f_{y_i}(\mathbf{x}_i)}{\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_g(\mathbf{x}_i)} \right]$$

$$k = y_i : \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \beta_j^{(k)} \partial \beta_l^{(k)}}$$

$$= \sum_{i=1}^{n} x_{ij} \sum_{g \neq y_i} \left(\frac{\kappa \exp f_g(\mathbf{x}_i) \exp f_{y_i}(\mathbf{x}_i) \cdot x_{il}}{(\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_g(\mathbf{x}_i))^2} + d \cdot \frac{x_{il} \cdot \kappa \exp f_{y_i}(\mathbf{x}_i) \times (\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_g(\mathbf{x}_i)) - \kappa \exp f_{y_i}(\mathbf{x}_i) \cdot \exp f_{y_i}(\mathbf{x}_i) \cdot x_{il}}{(\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_g(\mathbf{x}_i))^2} \right)$$

Hessian matrix be **H** with an element of being the second derivative of j and l^{th} variable of k class

$$k = y_i : \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \beta_i^{(k)} \partial \beta_l^{(k)}} = \sum_{i=1}^n \sum_{g \neq y_i} x_{ij} x_{il} \left(\frac{\kappa \exp f_{y_i}(\mathbf{x}_i) \exp f_g(\mathbf{x}_i)}{(\exp f_{y_i}(\mathbf{x}_i) + \kappa \exp f_g(\mathbf{x}_i))^2} + \frac{d\kappa \exp f_{y_i}(\mathbf{x}_i) \exp f_g(\mathbf{x}_i)}{(\kappa \exp f_{y_i}(\mathbf{x}_i) + \exp f_g(\mathbf{x}_i))^2} \right)$$

The gradient
$$\nabla(\boldsymbol{\beta}_{+}) = (\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{i}^{(k)}}) = (\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1}^{(k)}}, \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{2}^{(k)}})$$
 $(\mathbf{R}^{p} \to \mathbf{R}^{p})$

$$\mathbf{H}_{k} = \begin{pmatrix} h_{0}^{(k)} & \mathbf{h}_{0}^{(k)'} \\ \mathbf{h}_{0}^{(k)} & H_{k} \end{pmatrix} = \begin{pmatrix} \frac{\partial^{2}L(\boldsymbol{\beta})}{\partial \beta_{1}^{(k)} \partial \beta_{1}^{(k)}} & \frac{\partial^{2}L(\boldsymbol{\beta})}{\partial \beta_{1}^{(k)} \partial \beta_{2}^{(k)}} \\ H_{0} & 0 \\ \frac{\partial^{2}L(\boldsymbol{\beta})}{\partial \beta_{2}^{(k)} \partial \beta_{1}^{(k)}} & \frac{\partial^{2}L(\boldsymbol{\beta})}{\partial \beta_{2}^{(k)} \partial \beta_{2}^{(k)}} \end{pmatrix}$$
 Hessian matrix $\mathbf{H} = \begin{pmatrix} H_{1} & 0 & 0 \\ 0 & H_{0} & 0 \\ 0 & 0 & H_{-1} \end{pmatrix}$
$$(\mathbf{R}^{p} \to \mathbf{R}^{p \times p})$$

By Talyor expansion,

We can find optimizer of

$$L(\boldsymbol{\beta}_{+}) = f(\boldsymbol{\gamma}_{+}) + \sum_{k=1}^{K} \nabla^{(k)} (\boldsymbol{\gamma}_{+})' (\beta_{+}^{(k)} - \gamma_{+}^{(k)}) + \frac{1}{2} \sum_{k=1}^{K} (\beta_{+}^{(k)} - \gamma_{+}^{(k)})' \mathbf{H}_{k} (\beta_{+}^{(k)} - \gamma_{+}^{(k)})$$

$$+ \lambda \sum_{k=1}^{K} \|\beta^{(k)}\|_{1} \quad \text{with CD algorithm}$$

Or solve regression problem of corresponding Lagrange function

$$L(\boldsymbol{\beta}_{+}) = f(\boldsymbol{\gamma}_{+}) + \sum_{k=1}^{K} \nabla^{(k)} (\boldsymbol{\gamma}_{+})' (\beta_{+}^{(k)} - \gamma_{+}^{(k)}) + \frac{1}{2} \sum_{k=1}^{K} (\beta_{+}^{(k)} - \gamma_{+}^{(k)})' \mathbf{H}_{k} (\beta_{+}^{(k)} - \gamma_{+}^{(k)}) + \eta (\sum_{k=1}^{K} \|\beta^{(k)}\|_{1} - s) \quad \text{with LARS algorithm.} \quad - \text{ Efron (2004)}$$

- Simulation Data
- Metrics for comparison
- Numerical result

Simulation Data

n: sample size

 $\mu^+:p$ - dimensional vector whose first $\,q$ entries are $\,D$ and the other $\,p-q$ entries are zero. $\,(\mu^-=-\mu^+)$

 Σ : variance-covariance matrix that (k,l) entry of it be $r^{|k-l|}$, where $r\in[0,1)$

$$\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2$$

 $\mathcal{X}_1 \sim N_p(\mu^+, \Sigma)$, assign y = 1 $\qquad \qquad \mathcal{X}_2 \sim N_p(\mu^-, \Sigma)$, assign y = -1

Simulation Data - Regularization Parameter Tuning

d: controlling parameter for the reject probability

 λ : shrinkage parameter in Lasso penalty term

- Training set : n = 100
- Validation set : n = 100
- $\bullet \quad \text{Test set} : n = 2000$

Metrics for comparison

- Total MIS misclassification error rates obtained based on all observations in a test sample
- Accept MIS
 misclassification error rates obtained based only on accepted observations by a lgs-R
- Reject MIS
 misclassification error rates obtained based only on rejected observations by a lgs-R
- Reject rate portion of rejected observations by a lgs-R
- p-value obtained by the Wilcoxon signed-rank test with 30 paired Total MIS of lgs and lgs-R

Numerical result

Table 1
Comparison between prediction accuracy of the lgs and those of lgs-R: average misclassification errors (standard errors).

р	r	Method	Total MIS	Accept MIS	Reject MIS	Reject rate	p-value
100	0	lgs	0.1589(6e-04)	0.1169(0.0019)	0.3528(0.0034)		
		lgs-R	0.1571 (6e-04)	0.1162 (0.0019)	0.3472 (0.0037)	0.1725(0.0074)	0.0313
	0.3	lgs	0.2236(6e-04)	0.1621(0.0023)	0.3697(0.0019)		
		lgs-R	0.2202 (6e-04)	0.1610(0.0023)	0.3642(0.0021)	0.2418(0.0085)	0.0201
	0.6	lgs	0.2655(7e-04)	0.1960(0.0021)	0.3963(0.0018)		
		lgs-R	0.2601 (7e-04)	0.1939 (0.0021)	0.3913 (0.0017)	0.2889(0.009)	0.0083

• **Igs-R** always has significantly lower misclassification errors than the **Igs**, and the improvements are statistically significant in all cases.

Conclusion

Conclusion

- Analysis of simulated data sets proved that lgs-R has better performance than lgs.
- Analysis of simulated data sets suggested the potential for the application of lgs-R for real data sets.
- The real data to which lgs-R is applied may be limited.
- Multiple regularization parameters for tuning (λ, d) are exists.

Q&A