

# REGULAR LANGUAGES

The theory of computation begins with a question: What is a computer? It is perhaps a silly question, as everyone knows that this thing I type on is a computer. But these real computers are quite complicated—too much so to allow us to set up a manageable mathematical theory of them directly. Instead we use an idealized computer called a *computational model*. As with any model in science, a computational model may be accurate in some ways but perhaps not in others. Thus we will use several different computational models, depending on the features we want to focus on. We begin with the simplest model, called the *finite state machine* or *finite automaton*.

# ١.٦

## FINITE AUTOMATA

Finite automata are good models for computers with an extremely limited amount of memory. What can a computer do with such a small memory? Many useful things! In fact, we interact with such computers all the time, as they lie at the heart of various electromechanical devices.

The controller for an automatic door is one example of such a device. Often found at supermarket entrances and exits, automatic doors swing open when sensing that a person is approaching. An automatic door has a pad in front to

detect the presence of a person about to walk through the doorway. Another pad is located to the rear of the doorway so that the controller can hold the door open long enough for the person to pass all the way through and also so that the door does not strike someone standing behind it as it opens. This configuration is shown in the following figure.



FIGURE 1.1
Top view of an automatic door

The controller is in either of two states: "OPEN" or "CLOSED," representing the corresponding condition of the door. As shown in the following figures, there are four possible input conditions: "FRONT" (meaning that a person is standing on the pad in front of the doorway), "REAR" (meaning that a person is standing on the pad to the rear of the doorway), "BOTH" (meaning that people are standing on both pads), and "NEITHER" (meaning that no one is standing on either pad).



FIGURE 1.2
State diagram for automatic door controller

| input | signa  | ı |
|-------|--------|---|
| mput  | 312110 | u |

|       |        | NEITHER | FRONT | REAR   | вотн   |
|-------|--------|---------|-------|--------|--------|
| state | CLOSED | CLOSED  | OPEN  | CLOSED | CLOSED |
|       | OPEN   | CLOSED  | OPEN  | OPEN   | OPEN   |

FIGURE 1.3
State transition table for automatic door controller

The controller moves from state to state, depending on the input it receives. When in the CLOSED state and receiving input NEITHER or REAR, it remains in the CLOSED state. In addition, if the input BOTH is received, it stays CLOSED because opening the door risks knocking someone over on the rear pad. But if the input FRONT arrives, it moves to the OPEN state. In the OPEN state, if input FRONT, REAR, or BOTH is received, it remains in OPEN. If input NEITHER arrives, it returns to CLOSED.

For example, a controller might start in state CLOSED and receive the series of input signals FRONT, REAR, NEITHER, FRONT, BOTH, NEITHER, REAR, and NEITHER. It then would go through the series of states CLOSED (starting), OPEN, OPEN, CLOSED, OPEN, OPEN, CLOSED, and CLOSED.

Thinking of an automatic door controller as a finite automaton is useful because that suggests standard ways of representation as in Figures 1.2 and 1.3. This controller is a computer that has just a single bit of memory, capable of recording which of the two states the controller is in. Other common devices have controllers with somewhat larger memories. In an elevator controller a state may represent the floor the elevator is on and the inputs might be the signals received from the buttons. This computer might need several bits to keep track of this information. Controllers for various household appliances such as dishwashers and electronic thermostats, as well as parts of digital watches and calculators, are additional examples of computers with limited memories. The design of such devices requires keeping the methodology and terminology of finite automata in mind.

Finite automata and their probabilistic counterpart *Markov chains* are useful tools when we are attempting to recognize patterns in data. These devices are used in speech processing and in optical character recognition. Markov chains have even been used to model and predict price changes in financial markets.

We will now take a closer look at finite automata from a mathematical perspective. We will develop a precise definition of a finite automaton, terminology for describing and manipulating finite automata, and theoretical results that describe their power and limitations. Besides giving you a clearer understanding of what finite automata are and what they can and cannot do, this theoretical development will allow you to practice and become more comfortable with mathematical definitions, theorems, and proofs in a relatively simple setting.

In beginning to describe the mathematical theory of finite automata, we do so in the abstract, without reference to any particular application. The following figure depicts a finite automaton called  $M_1$ .



FIGURE 1.4 A finite automaton called  $M_1$  that has three states

Figure 1.4 is called the *state diagram* of  $M_1$ . It has three *states*, labeled  $q_1$ ,  $q_2$ , and  $q_3$ . The *start state*,  $q_1$ , is indicated by the arrow pointing at it from nowhere. The *accept state*,  $q_2$ , is the one with a double circle. The arrows going from one state to another are called *transitions*.

When this automaton receives an input string such as 1101, it processes that string and produces an output. The output is either *accept* or *reject*. We will consider only this yes/no type of output for now to keep things simple. The processing begins in  $M_1$ 's start state. The automaton receives the symbols from the input string one by one from left to right. After reading each symbol,  $M_1$  moves from one state to another along the transition that has that symbol as its label. When it reads the last symbol,  $M_1$  produces its output. The output is *accept* if  $M_1$  is now in an accept state and *reject* if it is not.

For example, when we feed the input string 1101 to the machine  $M_1$  in Figure 1.4, the processing proceeds as follows.

- **1.** Start in state  $q_1$ .
- **2.** Read 1, follow transition from  $q_1$  to  $q_2$ .
- **3.** Read 1, follow transition from  $q_2$  to  $q_2$ .
- **4.** Read 0, follow transition from  $q_2$  to  $q_3$ .
- **5.** Read 1, follow transition from  $q_3$  to  $q_2$ .
- **6.** Accept because  $M_1$  is in an accept state  $q_2$  at the end of the input.

Experimenting with this machine on a variety of input strings reveals that it accepts the strings 1, 01, 11, and 0101010101. In fact,  $M_1$  accepts any string that ends with a 1, as it goes to its accept state  $q_2$  whenever it reads the symbol 1. In addition, it accepts strings 100, 0100, 110000, and 0101000000, and any string that ends with an even number of 0s following the last 1. It rejects other strings, such as 0, 10, 101000. Can you describe the language consisting of all strings that  $M_1$  accepts? We will do so shortly.

## FORMAL DEFINITION OF A FINITE AUTOMATON

In the preceding section we used state diagrams to introduce finite automata. Now we define finite automata formally. Although state diagrams are easier to grasp intuitively, we need the formal definition, too, for two specific reasons.

First, a formal definition is precise. It resolves any uncertainties about what is allowed in a finite automaton. If you were uncertain about whether finite automata were allowed to have 0 accept states or whether they must have exactly one transition exiting every state for each possible input symbol, you could consult the formal definition and verify that the answer is yes in both cases. Second, a formal definition provides notation. Good notation helps you think and express your thoughts clearly.

The language of a formal definition is somewhat arcane, having some similarity to the language of a legal document. Both need to be precise, and every detail must be spelled out.

A finite automaton has several parts. It has a set of states and rules for going from one state to another, depending on the input symbol. It has an input alphabet that indicates the allowed input symbols. It has a start state and a set of accept states. The formal definition says that a finite automaton is a list of those five objects: set of states, input alphabet, rules for moving, start state, and accept states. In mathematical language a list of five elements is often called a 5-tuple. Hence we define a finite automaton to be a 5-tuple consisting of these five parts.

We use something called a *transition function*, frequently denoted  $\delta$ , to define the rules for moving. If the finite automaton has an arrow from a state x to a state y labeled with the input symbol 1, that means that, if the automaton is in state x when it reads a 1, it then moves to state y. We can indicate the same thing with the transition function by saying that  $\delta(x,1)=y$ . This notation is a kind of mathematical shorthand. Putting it all together we arrive at the formal definition of finite automata.

## DEFINITION 1.5

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the states,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*, <sup>1</sup>
- **4.**  $q_0 \in Q$  is the *start state*, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Refer back to page 7 if you are uncertain about the meaning of  $\delta: Q \times \Sigma \longrightarrow Q$ .

<sup>&</sup>lt;sup>2</sup>Accept states sometimes are called *final states*.

The formal definition precisely describes what we mean by a finite automaton. For example, returning to the earlier question of whether 0 accept states is allowable, you can see that setting F to be the empty set  $\emptyset$  yields 0 accept states, which is allowable. Furthermore, the transition function  $\delta$  specifies exactly one next state for each possible combination of a state and an input symbol. That answers our other question affirmatively, showing that exactly one transition arrow exits every state for each possible input symbol.

We can use the notation of the formal definition to describe individual finite automata by specifying each of the five parts listed in Definition 1.5. For example, let's return to the finite automaton  $M_1$  we discussed earlier, redrawn here for convenience.



# FIGURE 1.6 The finite automaton $M_1$

We can describe  $M_1$  formally by writing  $M_1 = (Q, \Sigma, \delta, q_1, F)$ , where

- 1.  $Q = \{q_1, q_2, q_3\},\$
- **2.**  $\Sigma = \{0,1\},$
- 3.  $\delta$  is described as

- **4.**  $q_1$  is the start state, and
- 5.  $F = \{q_2\}.$

If A is the set of all strings that machine M accepts, we say that A is the **language of machine** M and write L(M) = A. We say that M **recognizes** A or that M **accepts** A. Because the term **accept** has different meanings when we refer to machines accepting strings and machines accepting languages, we prefer the term **recognize** for languages in order to avoid confusion.

A machine may accept several strings, but it always recognizes only one language. If the machine accepts no strings, it still recognizes one language—namely, the empty language  $\emptyset$ .

In our example, let

 $A = \{w | w \text{ contains at least one 1 and}$ an even number of 0s follow the last 1}.

Then  $L(M_1) = A$ , or equivalently,  $M_1$  recognizes A.

## **EXAMPLES OF FINITE AUTOMATA**

### EXAMPLE 1.7

Here is the state diagram of finite automaton  $M_2$ .



# FIGURE 1.8

State diagram of the two-state finite automaton  $M_2$ 

In the formal description  $M_2 = (\{q_1, q_2\}, \{0,1\}, \delta, q_1, \{q_2\})$ . The transition function  $\delta$  is

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

Remember that the state diagram of  $M_2$  and the formal description of  $M_2$  contain the same information, only in different form. You can always go from one to the other if necessary.

A good way to begin understanding any machine is to try it on some sample input strings. When you do these "experiments" to see how the machine is working, its method of functioning often becomes apparent. On the sample string 1101 the machine  $M_2$  starts in its start state  $q_1$  and proceeds first to state  $q_2$  after reading the first 1, and then to states  $q_2$ ,  $q_1$ , and  $q_2$  after reading 1, 0, and 1. The string is accepted because  $q_2$  is an accept state. But string 110 leaves  $M_2$  in state  $q_1$ , so it is rejected. After trying a few more examples, you would see that  $M_2$  accepts all strings that end in a 1. Thus  $L(M_2) = \{w | w \text{ ends in a 1}\}$ .

# EXAMPLE 1.9

Consider the finite automaton  $M_3$ .



# FIGURE 1.10

State diagram of the two-state finite automaton  $M_3$ 

Machine  $M_3$  is similar to  $M_2$  except for the location of the accept state. As usual, the machine accepts all strings that leave it in an accept state when it has finished reading. Note that, because the start state is also an accept state,  $M_3$  accepts the empty string  $\varepsilon$ . As soon as a machine begins reading the empty string it is at the end, so if the start state is an accept state,  $\varepsilon$  is accepted. In addition to the empty string, this machine accepts any string ending with a 0. Here,

$$L(M_3) = \{w | w \text{ is the empty string } \varepsilon \text{ or ends in a 0} \}.$$

# EXAMPLE 1.11

The following figure shows a five-state machine  $M_4$ 



# FIGURE 1.12 Finite automaton $M_4$

Machine  $M_4$  has two accept states,  $q_1$  and  $r_1$ , and operates over the alphabet  $\Sigma = \{a, b\}$ . Some experimentation shows that it accepts strings a, b, aa, bb, and bab, but not strings ab, ba, or bbba. This machine begins in state s, and after it reads the first symbol in the input, it goes either left into the q states or right into the r states. In both cases it can never return to the start state (in contrast to the previous examples), as it has no way to get from any other state back to s. If the first symbol in the input string is a, then it goes left and accepts when the string ends with an a. Similarly, if the first symbol is a b, the machine goes right and accepts when the string ends in a. So a0 accepts all strings that start and end with a1 or that start and end with a2 in other words, a3 accepts strings that start and end with the same symbol.

### EXAMPLE 1.13

Figure 1.14 shows machine  $M_5$ , which has a four-symbol input alphabet,  $\Sigma = \{\langle RESET \rangle, 0, 1, 2\}$ . We treat  $\langle RESET \rangle$  as a single symbol.



FIGURE 1.14 Finite automaton  $M_5$ 

Machine  $M_5$  keeps a running count of the sum of the numerical input symbols it reads, modulo 3. Every time it receives the  $\langle RESET \rangle$  symbol it resets the count to 0. It accepts if the sum is 0, modulo 3, or in other words, if the sum is a multiple of 3.

Describing a finite automaton by state diagram is not possible in some cases. That may occur when the diagram would be too big to draw or if, as in this example, the description depends on some unspecified parameter. In these cases we resort to a formal description to specify the machine.

# EXAMPLE 1.15

Consider a generalization of Example 1.13, using the same four-symbol alphabet  $\Sigma$ . For each  $i \geq 1$  let  $A_i$  be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol  $\langle \text{RESET} \rangle$  appears. For each  $A_i$  we give a finite automaton  $B_i$ , recognizing  $A_i$ . We describe the machine  $B_i$  formally as follows:  $B_i = (Q_i, \Sigma, \delta_i, q_0, \{q_0\})$ , where  $Q_i$  is the set of i states  $\{q_0, q_1, q_2, \ldots, q_{i-1}\}$ , and we design the transition function  $\delta_i$  so that for each j, if  $B_i$  is in  $q_j$ , the running sum is j, modulo i. For each  $q_j$  let

$$\begin{split} &\delta_i(q_j, \mathbf{0}) = q_j, \\ &\delta_i(q_j, \mathbf{1}) = q_k, \text{ where } k = j+1 \text{ modulo } i, \\ &\delta_i(q_j, \mathbf{2}) = q_k, \text{ where } k = j+2 \text{ modulo } i, \text{ and } \\ &\delta_i(q_j, \langle \text{RESET} \rangle) = q_0. \end{split}$$

#### FORMAL DEFINITION OF COMPUTATION

So far we have described finite automata informally, using state diagrams, and with a formal definition, as a 5-tuple. The informal description is easier to grasp at first, but the formal definition is useful for making the notion precise, resolving any ambiguities that may have occurred in the informal description. Next we do the same for a finite automaton's computation. We already have an informal idea of the way it computes, and we now formalize it mathematically.

Let  $M=(Q,\Sigma,\delta,q_0,F)$  be a finite automaton and let  $w=w_1w_2\cdots w_n$  be a string where each  $w_i$  is a member of the alphabet  $\Sigma$ . Then M accepts w if a sequence of states  $r_0,r_1,\ldots,r_n$  in Q exists with three conditions:

1. 
$$r_0 = q_0$$
,  
2.  $\delta(r_i, w_{i+1}) = r_{i+1}$ , for  $i = 0, \ldots, n-1$ , and  
3.  $r_n \in F$ .

Condition 1 says that the machine starts in the start state. Condition 2 says that the machine goes from state to state according to the transition function. Condition 3 says that the machine accepts its input if it ends up in an accept state. We say that M recognizes language A if  $A = \{w | M$  accepts  $w\}$ .

#### DEFINITION 1.16

A language is called a *regular language* if some finite automaton recognizes it.

# EXAMPLE 1.17

Take machine  $M_5$  from Example 1.13. Let w be the string

$$10\langle RESET \rangle 22\langle RESET \rangle 012$$

Then  $M_5$  accepts w according to the formal definition of computation because the sequence of states it enters when computing on w is

$$q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_0, q_1, q_0,$$

which satisfies the three conditions. The language of  $M_5$  is

 $L(M_5) = \{w | \text{ the sum of the symbols in } w \text{ is } 0 \text{ modulo } 3,$ except that  $\langle \text{RESET} \rangle$  resets the count to  $0 \}$ .

As  $M_5$  recognizes this language, it is a regular language.

## **DESIGNING FINITE AUTOMATA**

Whether it be of automaton or artwork, design is a creative process. As such it cannot be reduced to a simple recipe or formula. However, you might find a particular approach helpful when designing various types of automata. That is, put *yourself* in the place of the machine you are trying to design and then see how you would go about performing the machine's task. Pretending that you are the machine is a psychological trick that helps engage your whole mind in the design process.

Let's design a finite automaton using the "reader as automaton" method just described. Suppose that you are given some language and want to design a finite automaton that recognizes it. Pretending to be the automaton, you receive an input string and must determine whether it is a member of the language the automaton is supposed to recognize. You get to see the symbols in the string one by one. After each symbol you must decide whether the string seen so far is in the language. The reason is that you, like the machine, don't know when the end of the string is coming, so you must always be ready with the answer.

First, in order to make these decisions, you have to figure out what you need to remember about the string as you are reading it. Why not simply remember all you have seen? Bear in mind that you are pretending to be a finite automaton and that this type of machine has only a finite number of states, which means a finite memory. Imagine that the input is extremely long—say, from here to the moon—so that you could not possibly remember the entire thing. You have a finite memory—say, a single sheet of paper—which has a limited storage capacity. Fortunately, for many languages you don't need to remember the entire input. You need to remember only certain crucial information. Exactly which information is crucial depends on the particular language considered.

For example, suppose that the alphabet is  $\{0,1\}$  and that the language consists of all strings with an odd number of 1s. You want to construct a finite automaton  $E_1$  to recognize this language. Pretending to be the automaton, you start getting

an input string of 0s and 1s symbol by symbol. Do you need to remember the entire string seen so far in order to determine whether the number of 1s is odd? Of course not. Simply remember whether the number of 1s seen so far is even or odd and keep track of this information as you read new symbols. If you read a 1, flip the answer, but if you read a 0, leave the answer as is.

But how does this help you design  $E_1$ ? Once you have determined the necessary information to remember about the string as it is being read, you represent this information as a finite list of possibilities. In this instance, the possibilities would be

- 1. even so far, and
- 2. odd so far.

Then you assign a state to each of the possibilities. These are the states of  $E_1$ , as shown here.



### FIGURE 1.18

The two states  $q_{\text{even}}$  and  $q_{\text{odd}}$ 

Next, you assign the transitions by seeing how to go from one possibility to another upon reading a symbol. So, if state  $q_{\rm even}$  represents the even possibility and state  $q_{\rm odd}$  represents the odd possibility, you would set the transitions to flip state on a 1 and stay put on a 0, as shown here.



## **FIGURE 1.19**

Transitions telling how the possibilities rearrange

Next, you set the start state to be the state corresponding to the possibility associated with having seen 0 symbols so far (the empty string  $\varepsilon$ ). In this case the start state corresponds to state  $q_{\rm even}$  because 0 is an even number. Last, set the accept states to be those corresponding to possibilities where you want to accept the input string. Set  $q_{\rm odd}$  to be an accept state because you want to accept when

you have seen an odd number of 1s. These additions are shown in the following figure.



FIGURE **1.20** Adding the start and accept states

# EXAMPLE 1.21

This example shows how to design a finite automaton  $E_2$  to recognize the regular language of all strings that contain the string 001 as a substring. For example, 0010, 1001, 001, and 111111100111111 are all in the language, but 11 and 0000 are not. How would you recognize this language if you were pretending to be  $E_2$ ? As symbols come in, you would initially skip over all 1s. If you come to a 0, then you note that you may have just seen the first of the three symbols in the pattern 001 you are seeking. If at this point you see a 1, there were too few 0s, so you go back to skipping over 1s. But if you see a 0 at that point, you should remember that you have just seen two symbols of the pattern. Now you simply need to continue scanning until you see a 1. If you find it, remember that you succeeded in finding the pattern and continue reading the input string until you get to the end.

So there are four possibilities: You

- 1. haven't just seen any symbols of the pattern,
- 2. have just seen a 0,
- 3. have just seen 00, or
- **4.** have seen the entire pattern 001.

Assign the states q,  $q_0$ ,  $q_{00}$ , and  $q_{001}$  to these possibilities. You can assign the transitions by observing that from q reading a 1 you stay in q, but reading a 0 you move to  $q_0$ . In  $q_0$  reading a 1 you return to q, but reading a 0 you move to  $q_{00}$ . In  $q_{00}$ , reading a 1 you move to  $q_{001}$ , but reading a 0 leaves you in  $q_{00}$ . Finally, in  $q_{001}$  reading a 0 or a 1 leaves you in  $q_{001}$ . The start state is q, and the only accept state is  $q_{001}$ , as shown in Figure 1.22.

# 44 CHAPTER 1 / REGULAR LANGUAGES



FIGURE 1.22
Accepts strings containing 001