NewTH4-19 [東京大]

電気製品によく使われているダイオードを用いた回路を考えよう。簡単化のため,ダイオードは図1のようなスイッチ S_D と抵抗とが直列につながれた回路と等価であると考え,Pの電位がQよりも高いか等しいときには S_D が閉じ,低いときには S_D が開くものとする。なお以下では,電池の内部抵抗,回路の配線に用いる導線の抵抗,回路の自己インダクタンスは考えなくてよい。

- I 図 2 のように、容量 C のコンデンサー 2 個、ダイオード D_1 、 D_2 、スイッチ S、および起電力 V_0 の電池 2 個を接続した。最初、スイッチ S は $+V_0$ 側にも $-V_0$ 側にも接続されておらず、コンデン サーには電荷は蓄えられていないものとする。点 G を電位の基準点(電位 0)としたときの点 P_1 、 P_2 それぞれの電位を V_1 、 V_2 として、以下の設問に答えよ。
 - (1) まず,スイッチSを $+V_0$ 側に接続した.この直後の V_1 , V_2 を求めよ.
 - (2) (1) の後,回路中の電荷移動がなくなるまで待った.このときの V_1 , V_2 , およびコンデンサー 1 に蓄えられている静電エネルギーUを求めよ.また,電池がした仕事Wを求めよ.
 - (3) (2) の後, スイッチ S を $-V_0$ 側に切り替えた. この直後の V_1 , V_2 を求めよ.
 - (4) (3) の後, 回路中の電荷移動がなくなったときの V_1 , V_2 を求めよ.
- II 図 2 の回路に多数のコンデンサーとダイオードを付け加えた図 3 の回路は、コッククロフト・ウォルトン回路と呼ばれ、高電圧を得る目的で使われる. いま、コンデンサーの容量は全て C とし、最初、スイッチ S は $+V_0$ 側にも $-V_0$ 側にも接続されておらず、コンデンサーには電荷は蓄えられていないとする.

スイッチSを $+V_0$ 側, $-V_0$ 側と何度も繰り返し切り替えた結果,切り替えても回路中での電荷移動が起こらなくなった.この状況において,スイッチSを $+V_0$ 側に接続したとき,点 P_{2n-2} と点 P_{2n-1} の電位は等しくなっていた($n=1,\ 2,\ \cdots,\ N$).また,スイッチSを $-V_0$ 側に接続したとき,点 P_{2n-1} と点 P_{2n} の電位は等しくなっていた($n=1,\ 2,\ \cdots,\ N$).スイッチSを $+V_0$ 側に接続したとき,点 P_{2n-1} と点 P_{2n} の電位 V_{2N-1} , V_{2N} を N と V_0 で表せ.なお,点 V_0 を電位の基準点(電位 V_0 0)とせよ.

