

Ministerul Educației și Cercetării Serviciul Național de Evaluare și Examinare Olimpiada Națională de Fizică Târgovişte - 2002

Proba teoretică

BAREM DE CORECTARE ŞI NOTARE

- pentru orice altă cale corectă de rezolvare a unui subiect se construiește un barem echivalent ca punctaj cu cel de mai jos şi se acordă, pe baza acestuia, punctajul corespunzător detalierea punctajului prevăzută la rubrica "Obs." este valabilă <u>doar</u> pentru rezolvări nefinalizate la punctajul fiecărei lucrări se adaugă din oficiu 10 puncte

SUBIECTUL I: 30 puncte

-\	1					
a) solutie corect ă ș i rezultat final $\Gamma = \frac{kmy}{kmy}$	15 p					
soluție corect ă ș i rezultat final $\Gamma = \frac{kmy}{\left(R^2 + y^2\right)^{\frac{3}{2}}}$						
Obs.: numai pentru împărțirea inelului în porțiuni infinitezimale Δ <i>m</i> : 1 p						
numai pentru expresia intensității câmpului produs de o porțiune la distanța y față de						
centrul inelului $\Delta \Gamma_1 = \frac{k \cdot \Delta m}{R^2 + y^2}$, sau orice formă echivalentă: 4 p numai pentru expresia intensității câmpului produs la distanța y față de centrul inelului de două porțiuni diametral opuse $\Delta \Gamma_2 = \frac{2k \cdot \Delta m \cdot y}{\left(R^2 + y^2\right)^{\frac{3}{2}}}$, sau orice formă echivalentă: 4 p						
					numai pentru compunerea intensităților $\Delta \vec{\Gamma}_2$ pentru obținerea intensității inelului: 2 p	
					b) mMv_0^2	10 p
soluție corectă și rezultat final $f = \frac{mMv_0^2}{2L(M+m)}$						
Obs.: numai pentru $L = \frac{v_0^2}{2(a_c + a_s)}$: 8 p						
numai pentru legea mişcării corpului sau a scândurii: 1 p Total 2 p						
numai pentru formula de calcul a vitezei corpului sau a scândurii: 1 p Total 2 p						
numai pentru accelerația corpului sau a scândurii: 2 p Total 4 p						
x(m) ↑	5 p					
$-v_0$ v(m/s)						
Obs.: numai pentru $x = L - \frac{v_0^2 - v^2}{2(a_s + a_c)}$ parabolă: 3 p						
Total	30 p					

Ministerul Educaţiei şi Cercetării Serviciul Naţional de Evaluare şi Examinare Olimpiada Naţională de Fizică Târgovişte – 2002

Proba teoretică

SUBIECTUL II: 30 puncte

a)	soluție corectă și rezultat final $v = \frac{1}{2} \left[(v_1 - v_2) \sin \alpha + \sqrt{(v_2 - v_1)^2 \sin^2 \alpha + 4v_1 v_2} \right]$ sau orice	15 p			
	formă echivalentă				
	Obs.: numai pentru observația că viteza maximă se atinge în regim uniform, exprimată în orice				
formă: 2 p					
	numai aplicarea principiului II pentru urcare, respectiv coborâre pe verticală:câte 1 p numai pentru expresia forței de tracțiune $F = \frac{k(v_1 + v_2)}{2}$:2 p				
	numai pentru expresia forței de greutate $mg = \frac{k(v_2 - v_1)}{2}$: 2 p				
	numai pentru expresia forței de frecare $\vec{F}_f = -k\vec{v}$ sau orice formă echivalentă: 1 p				
	numai pentru expresia forței de tracțiune în funcție de unghiul				
	α , $F^2 = k^2 v^2 + m^2 g^2 + 2mgkv \sin \alpha$ sau orice formă echivalentă: 2 p				
	numai pentru ecuația $-F^2 + k^2v^2 + m^2g^2 + 2mgkv \sin \alpha = 0$, sau orice formă				
	echivalentă: 1p				
b)	soluție corectă și rezultat final $d_{max} = 1000 \text{ m}$	7 p			
	soluție corectă și rezultat final $d_{min} = 333,(3)$ m (numai $d_{min} = \frac{T(v_{01}^2 - 2v_{02}^2)}{2(v_{01} + v_{02})}$: 7 p)	8 p			
	Obs.:				
	numai pentru legile de mişcare ale mobilelor la $t < T$, respectiv $t > T$: 1 p Total 2 p				
	numai pentru expresia $d_1 = \frac{Tv_{01}^2}{2(v_{01} + v_{02})}$ a maximului pentru $t < T$: 2 p				
	numai pentru expresia distanței dintre mobile la $t < T$, $d = v_{01}t - \frac{(v_{01} + v_{02})t^2}{2T}$, sau orice				
	formă echivalentă: 2 p numai pentru expresiile distanțelor parcurse de mobile în intervalul \mathcal{T} : 1p				
	$d = \frac{1}{2} \frac{v_{01} + v_{02}}{T} (t - T)^2 - v_{02} (t - T) + \frac{(v_{01} - v_{02})T}{2}$, sau orice formă echivalentă: 2 p				
	numai pentru determinarea maximului pentru $t > T$, care este chiar d_{max} : 3 p				
	Total	30 p			

Ministerul Educaţiei şi Cercetării Serviciul Naţional de Evaluare şi Examinare Olimpiada Naţională de Fizică Târgovişte – 2002

Proba teoretică

SUBIECTUL III: 30 puncte

a)	soluție corectă și rezultatul final $T = \frac{Mgl}{2R}$, sau orice formă echivalentă	8 p			
	soluție corectă și rezultatul final $a = \frac{gl}{2R}$, sau orice formă echivalentă				
	Obs.: numai pentru desen corect: 2 p numai pentru afirmația, sub orice formă, că viteza inițială fiind nulă și accelerația normală este nulă: 2 p numai pentru aplicarea principiului II pentru <u>fiecare</u> dintre corpuri: 2 p Total 4 p				
	numai pentru $sin\theta \cong \frac{1}{R}$: 1 p				
b)	soluție corectă și rezultatul final $T = F_1 + \left(M + \frac{mx}{I}\right) \frac{F_2 - F_1}{(2M + m)}$, sau orice formă	10 p			
	echivalent ă				
	soluție corect ă și rezultatul final $\Delta I = \frac{F_1 + F_2}{2k}$	5 p			
	Obs. : numai pentru aplicarea principiului II pentru sistem $F_2 - F_1 = (2M + m)a$: 4 p				
	numai pentru expresia masei porțiunii de fir de lungime x, $m' = \frac{mx}{I}$: 2 p				
	numai pentru expresia valorii medii a tensiunii $T_{med} = \frac{F_1 + F_2}{2}$:3 p				
	numai pentru $T_{med} = k \cdot \Delta I : 1 p$				
	Total	30 p			

OFICIU	l	10 p
ΤΩΤΔΙ	CENEDAL	100 n