IEEE INFOCOM

Learning Best Paths in Quantum Networks

Xuchuang Wang¹, Maoli Liu², Xutong Liu³,

Mohammad Hajiesmaili¹, John C.S. Lui², Don Towsley¹

¹University of Massachusetts Amherst, ²Chinese University of Hong Kong, ³Carnegie Mellon University

May 2025

- Background and BeQuP Modeling
 - Network Benchmarking
- Online Learning Algorithms
 - Link-Level Benchmarking: BeQuP-Link
 - BestPath Subroutine
 - Path-Level Benchmarking: BeQuP-Path
 - LinkEst Subroutine
 - Analysis
- NetSquid Experiment

- Background and BeQuP Modeling
 - Network Benchmarking
- Online Learning Algorithms
 - Link-Level Benchmarking: BeQuP-Link
 - BestPath Subroutine
 - Path-Level Benchmarking: BeQuP-Path
 - LinkEst Subroutine
 - Analysis
- NetSquid Experiment

Learning Best Quantum Path

- Quantum Network: L links and K paths
 - Each link with fidelity f_{ℓ} , depolarization parameter p_{ℓ}

• Path
$$\mathcal{L}(k)$$
's fidelity $f^{\text{path}}(k) = \frac{1+p^{\text{path}}(k)}{2}$

$$K\gg L$$
 , e.g., $K=O(L^{L_{\max}})$

- Objective: Find the path with the highest channel fidelity $f^{\text{path}}(k)$ with as few quantum resources as possible (resource complexity)
 - $k^* = \operatorname{argmax}_k f^{\operatorname{path}}(k)$

$$f^{\text{path}}(k) \longleftrightarrow p^{\text{path}}(k) \longleftrightarrow \sum_{\ell \in \mathcal{L}(k)} \log p_{\ell} \triangleq F(k)$$

Network Benchmarki

Quantum Network Category		Operation Error	
		HEG	QEC
Loss Error	HEG	Two-Way (1G)	2G
	QEC		One-Way (3G)

Quantum

Operation

- Goal: estimate a channel fidelity $f = \frac{1+p}{2}$ via estimating depolarization parameter p
- Approach: bounce

Requires Clifford gate operation at quantum switches!

Link estimate \hat{p}_{ℓ} guarantees $p_{\ell} \in (\hat{p}_{\ell,t} - \text{rad}_{\ell,t}, \hat{p}_{\ell,t} + \text{rad}_{\ell,t})$ w.h.p.

Benchmarking Levels

Operation Error

HEG QEC

Loss Error

HEG Two-Way (1G) 2G

QEC

One-Way (3G)

Path-level
Benchmarking

Link-level

Link-level benchmarking: estimate p_ℓ of each link ℓ

- All quantum switches (all nodes) with required quantum operation ability
- Cost one unit of quantum resources

Path-level benchmarking: estimate $p^{\text{path}}(k)$ of each path k

Benchmarking

- Only source and destination switches (two nodes) need the quantum operation ability
- $\operatorname{Cost} L(k)$ (the number of links in the path) units of quantum resources

BeQuP: Online Learning for Best Quantum Path

Procedure 1 BeQuP: Learning Best Quantum Path

Input: Path set K, link set L, confidence parameter δ

1: repeat

2: Select a link ℓ_t / path k_t to benchmark

3: Observe link-level feedback $X_{\ell_t,t}$ from subroutine Bench (ℓ_t) / path-level $Y_t(k_t)$ from Bench $(\mathcal{L}(k_t))$

Stopping 4: until Identify the best path k^* with confidence $1 - \delta$

Output: Best path k^*

- Background and BeQuP Modeling
 - Network Benchmarking
- Online Learning Algorithms
 - Link-Level Benchmarking: BeQuP-Link
 - BestPath Subroutine
 - Path-Level Benchmarking: BeQuP-Path
 - LinkEst Subroutine
 - Analysis
- NetSquid Experiment

Link-level Benchmarking: BestPath Subroutine

• e.g., Shortest path (**Dijkstra's algorithm**) with edge weight $-\log p_{\ell}$

One natural idea is first to estimate all p_ℓ and apply BestPath.

Can we do better?

Link-level Benchmarking: BeQuP-Link Algo.

- Find the empirical best path $\hat{k}_t \leftarrow \text{BestPath}(\hat{p}_t, \mathcal{K})$
- Pess/Optimistic estimate $\tilde{p}_{\ell,t} \leftarrow \begin{cases} \hat{p}_{\ell,t} \operatorname{rad}_{\ell,t} & \text{if } \ell \in \mathcal{L}(\hat{k}_t) \\ \hat{p}_{\ell,t} + \operatorname{rad}_{\ell,t} & \text{otherwise} \end{cases}$
- $\underline{\bullet}$ Find the disturbed empirical best path $\widetilde{k}_t \leftarrow$ Best Path $(\widetilde{\boldsymbol{p}}_t, \mathcal{K})$

Stopping
$$\mathcal{L}(\hat{k}_t) = \mathcal{L}(\tilde{k}_t)$$
, then output the best path \hat{k}_t

Pick a link to explore [the most under-explored link]

$$\ell_t \leftarrow \underset{\ell \in \mathcal{L}(\hat{k}_t) \triangle \mathcal{L}(\tilde{k}_t)}{\operatorname{argmax}} \operatorname{rad}_{\ell,t}$$

Update Parameters

Making

- Background and BeQuP Modeling
 - Network Benchmarking
- Online Learning Algorithms
 - Link-Level Benchmarking: BeQuP-Link
 - BestPath Subroutine
 - Path-Level Benchmarking: BeQuP-Path
 - LinkEst Subroutine

#Path $K \gg$ #Link L, e.g., $K = O(L^{L_{\text{max}}})$

- Analysis
- NetSquid Experiment

Estimate Link Parameters from Path Feedback

Path-level BeQuP-Path: LinkEst Subroutine

- Input: a set of paths ${\mathcal S}$ and a number of samples N
- [1: G/D-Optimal Design] $\lambda^{\mathcal{S}} \leftarrow \max_{\lambda} \mathbb{E}_{k \in \mathcal{D}(\lambda, \mathcal{S})}[x(k)x^{T}(k)]$
- [2: Random Sampling] For n = 1, ..., N do
 - Sample path k_n from $\mathcal S$ with probability $\mathcal D(\lambda^{\mathcal S},\mathcal S)$
 - $Y_n \leftarrow \text{Bench}(\mathcal{L}(k_n))$ [Path Feedback]
- $A \leftarrow N \sum_{k \in \mathcal{S}} \lambda^{\mathcal{S}}(k) \mathbf{x}(k) \mathbf{x}^{T}(k)$
- $\boldsymbol{b} \leftarrow \sum_{n=1}^{N} \log(Y_n) \boldsymbol{x}(k_n)$
- [3: Solve Linear Equation] Output: $\log \hat{p} \leftarrow A^{-1}b$ [Link Estimates]

$$p^{\text{path}}(k) = \prod_{\ell \in \mathcal{L}(k)} p_{\ell}$$

$$\begin{cases} \log p^{\text{path}}(1) = \sum_{\ell \in \mathcal{L}(1)} \log p_{\ell} \\ \vdots \\ \log p^{\text{path}}(K) = \sum_{\ell \in \mathcal{L}(K)} \log p_{\ell} \end{cases}$$

Quantum Resource Complexity & Comparison

• BeQuP-Link:

$$Q^{\text{link}} = O\left(L_{\text{max}}^2 \sum_{\ell \in \mathcal{L}} \frac{1}{\Delta_{\ell}^2} \log \frac{L}{\delta}\right)$$

•
$$\Delta_{\ell} = \begin{cases} F(k^*) - \max_{k \in \mathcal{K}: \ell \in \mathcal{L}(k)} F(k) & \text{if } \ell \notin \mathcal{L}(k^*) \\ F(k^*) - \max_{k \in \mathcal{K}: \ell \notin \mathcal{L}(k)} F(k) & \text{if } \ell \in \mathcal{L}(k^*) \end{cases}$$

• $L_{\max} = \max_{k \in \mathcal{K}} L(k)$: length of the longest path

Compare with prior baselines

$$Q^{\text{uniform}} = O\left(\frac{KL_{\text{max}}}{\left(\Delta^{\text{path}}([1])\right)^2}\log\frac{K}{\delta}\right)$$

$$Q^{\text{LinkSelfiE}} = O\left(L_{\text{max}} \sum_{k \in \mathcal{K}} \frac{1}{\left(\Delta^{\text{path}}(k)\right)^2} \log \frac{K}{\delta}\right)$$
[Our INFOCOM'24]

• BeQuP-Path:

$$Q^{\mathrm{path}} = O\left(L_{\mathrm{max}} \sum_{\ell=2}^{L} \frac{1}{\left(\Delta^{\mathrm{path}}([\ell])\right)^{2}} \log \frac{K}{\delta}\right)$$
 $K \gg L$, e.g., $K = O(L^{L_{\mathrm{max}}})$

- $\Delta^{\text{path}}(k) = F(k^*) F(k)$
- $\Delta^{\mathrm{path}}([\ell])$ is the ℓ -th smallest path gap

Link vs. Path

$$Q^{\text{path}} = O\left(L_{\text{max}}^2 \sum_{\ell \in \mathcal{L}} \frac{1}{\left(\Delta^{\text{path}}([\ell])\right)^2} \log \frac{L}{\delta}\right)$$

$$Q^{\text{link}} = O\left(L_{\text{max}}^2 \sum_{\ell \in \mathcal{L}} \frac{1}{\Delta_{\ell}^2} \log \frac{L}{\delta}\right)$$

- Background and BeQuP Modeling
 - Network Benchmarking
- Online Learning Algorithms
 - Link-Level Benchmarking: BeQuP-Link
 - BestPath Subroutine
 - Path-Level Benchmarking: BeQuP-Path
 - LinkEst Subroutine
 - Analysis
- NetSquid Experiment

NetSquid Experiments

Extend our algorithm for finding the path with the highest SKF for QKD

Figure 1: High-fidelity Path Identification

Figure 2: High-SKF Path Identification

Learning Best Quantum Path Takeways

- Link-level: difference in lower and upper confidence bounds
- Path-level: optimal experimental design for link estimates
- Key idea: reduce from path [coarse-grained] to link [fine-grained]

Thank you!