Homework 4

Aiden Kenny STAT GR5205: Linear Regression Models Columbia University

November 9, 2020

Question 1

Question 2

Question 3

Question 4

Collaborators: None

(a) For this question we will assume the matrix **X** is *centered*, so that each predictor has mean zero. In *n*-dimensional Euclidean vector space, for any $\mathbf{v} \in \mathbb{R}^n$ we have $\|\mathbf{v}\|^2 = \mathbf{v}^T \mathbf{v}$, so the ridge regression loss function becomes

$$Q(\boldsymbol{\beta}; \lambda) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2 = \mathbf{y}^T \mathbf{y} - 2\boldsymbol{\beta} \mathbf{X}^T \mathbf{y} + \boldsymbol{\beta} \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}.$$

Differentiating the loss function with respect to β gives us

$$\frac{\partial Q}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} + 2\lambda \boldsymbol{\beta} = -2\mathbf{X}^T \mathbf{y} + 2(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) \boldsymbol{\beta} \stackrel{\text{set}}{=} \mathbf{0},$$

and finally solving for $\boldsymbol{\beta}$ gives us $\hat{\boldsymbol{\beta}}_{\lambda} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$.

(b) When $\lambda = 0$ we have $\hat{\beta}_{\lambda=0} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$, the OLS estimator.