DISEÑO GEOMÉTRICO DE CARRETERAS CLASE 4:

CURVAS CIRCULARES SIMPLES CON ESPIRALES DE TRANSICIÓN

ING. GUILLERMO DAVID MENDÓZA GONZÁLEZ SEMINARIO DE TOPOGRAFÍA Y CARRETERAS INGENIERÍA CIVIL UMG-2021.

CURVA SIMPLE CON ESPIRALES DE TRANSICIÓN

- CONCEPTO: las curvas circulares con espirales de transición constan de una espiral de entrada, una curva circular simple y una espiral de salida.
- También se le conoce como curva Clotoide.

tangentes
TE: punto donde
termina la tangente y
empieza la espiral.
EC: punto donde
termina la espiral y
empieza la curva
circular.
CE: punto donde
termina la curva circular
y empieza la espiral.
ET: punto donde
termina la espiral y
empieza la tangente.

PI: punto de

intersección de las

PSC - punto sobre la curva circular.

PSE — punto sobre la espiral. PSTe — punto sobre la tangente.

△ — deflexión de las tangentes.

△c — ángulo central de la curva circular.

θ e — deflexión de la espiral.

φ c — ángulo de la cuerda larga de la espiral con la STe.

STe — subtangente.
TL — tangente larga.

TC — tangente targa.

CLe - cuerda larga de la espiral.

Ec - externa.

Re — radio de la curva circular.

LC — longitud de la curva circular.

Le — longitud de la espiral de entrada o de salida.

Xc, Yc — coordenadas del EC o del CE.
k, p — coordenadas del PC o del PT.

ECUACIONES QUE SE UTILIZAN:

- Curva clotoide o Ecuación de Euler: $RL = K^2$ (1)
 - Donde:
 - R = radio de la curvatura
 - L = distancia del TE a un punto cualquiera de la espiral.
 - K = constante.

Además:

$$R \max = Rc$$

Por tanto:

$$RL = Rc Le = K^2$$

$$R = \frac{Le}{L}Rc \tag{2}$$

Que es la ecuación que expresa el radio de la curva espiralada.

• Si llamamos t el tiempo empleado en recorrer L a la velocidad V, se tendrá:

$$t = \frac{L}{v}$$

Y para t max:

$$t_{max} = \frac{Le}{V} \tag{3}$$

• La aceleración centrífuga en un punto cualquiera de la curva es:

$$\propto = \frac{V^2}{R}$$

Pero la aceleración centrífuga máxima se deja sentir en el punto donde empieza la curva circular:

$$\alpha_{m\acute{a}x} = \alpha_c = \frac{V^2}{Rc}$$
 (4)

Por otra parte:

$$\frac{\alpha_c}{t_{m\acute{a}x}} = incremento de aceleración = J$$

$$\frac{\alpha_c}{t_{max}} = J \tag{5}$$

• Sustituyendo los valores (3) y (4), en la (5), se encuentra:

$$J = \frac{\alpha_c}{t_{max}} = \frac{\frac{V^2}{R_C}}{\frac{Le}{V}} = \frac{V^3}{Le Rc} = \frac{V^3}{Le Rc}$$

Luego:

$$J = \frac{V^3}{Le\,Rc} \tag{6}$$

F.C. Royal Dawson determinó el valor de J = 0.61

R.A. Mayer encontró para J los valores: 0.915 para V = 50 km/h 0.61 para V = 100 km/h

Los valores de J se pueden obtener aplicando la fórmula:

$$J = 1.22 - 0.0061 V \tag{7}$$

Siendo V la velocidad en Km/h

Longitud de la espiral (Le)

• De la fórmula (6) se deduce:

$$Le = \frac{V^3}{JRc} \tag{8}$$

En la cual la velocidad V, en m/seg.

$$Le = \frac{V^3}{46.7 \, JRc}$$
 (9) V, en Km/h

Una fórmula que nos da un valor bastante aproximado al obtenido por la fórmula (9), es:

$$Le = 1.2 V \tag{10}$$

V, en km/h Le, en metros

EJEMPLO COMPLETO DE DISEÑO:

 Calcular la curva circular ampliada con espirales, con los siguientes datos:

KM PI = 0 + 357.36

DELTA = $64^{\circ}18'$ D

 $G = 08^{\circ}00'$

V = 70 Km/h

J = 0.61

SOLUCIÓN:

• CÁLCULO DEL RADIO DE LA CURVA:

$$Rc = \frac{1145.92}{G} = \frac{1145.92}{8} =$$
143.24 m

• CÁLCULO DE LA LONGITUD DE LA ESPIRAL DE ENTRADA:

$$L_e = \frac{V^3}{46.7 \cdot J \cdot Rc} = \frac{70^3}{46.7(0.61)(143.24)} = 84.06 \, m.$$

Es la longitud desde el punto TE hasta el punto EC

• CÁLCULO DEL ÁNGULO DE DEFLEXIÓN DE LA ESPIRAL:

$$\theta e = \frac{Le \ G}{40} = \frac{84.06 \ (8)}{40} = 16.812^{\circ}$$

= 16° 48′ 43″

$$\theta e = \frac{16.812^{\circ}}{57.3} = 0.2934 \ rad$$

• CÁLCULO DEL ÁNGULO CENTRAL DE LA CURVA CIRCULAR:

$$\Delta c = \Delta - 2\theta e = 64.3^{\circ} - 2(16.812^{\circ})$$

= 30.676° = 30°40′34"

• CÁLCULO DE LA LONGITUD DE CURVA:

$$LC = \frac{\Delta c}{G} * 20 = \frac{30.676^{\circ}}{8^{\circ}} * 20 = 76.69 \, m$$

• CÁLCULO DE LA LONGITUD TOTAL DE LA CURVA ESPIRALADA: incluye espiral de entrada + curva circular + espiral de salida.

$$L = Le + \frac{\Delta}{G} * 20 = 84.06 + \frac{64.3}{8} * 20 = 244.81 m$$

 CÁLCULO DE LAS COORDENADAS DEL EC: EC es el punto donde termina la espiral y empieza la curva circular simple. (NOTA: el ángulo de deflexión de la espiral con la tangente se debe ingresar en radianes)

$$Xc = Le\left(1 - \frac{\theta e^2}{10}\right) = 84.06\left(1 - \frac{0.2934^2}{10}\right)$$
$$= 83.34 m$$

$$Yc = Le\left(\frac{\theta e}{3} - \frac{\theta e^3}{42}\right)$$
$$= 84.06\left(\frac{0.2934}{3} - \frac{0.2934^3}{42}\right) = 8.17 m$$

EC : Xc = 83.34 m Yc = 8.17 m CÁLCULO DE LAS COORDENADAS DEL PC:
 PC es donde empieza la curva circular simple pero queda fuera del radio de la espiral.

$$k = Xc - Rc Sen \theta e$$

= 83.34 - 143.24 Sen(16.812°)
= 41.91 m

$$p = Yc - Rc(1 - Cos\theta e)$$

= 8.17 - 143.24(1 - Cos16.812°)
= 2.05 m

EC: k = 41.91 mp = 2.05 m • CÁLCULO DE SUBTANGENTE:

$$STe = (Rc + p)Tan\frac{\Delta}{2} + k$$

= $(143.24 + 2.05)Tan32^{\circ}09' + 41.91 = 133.23 m$

• CÁLCULO DE LA TANGENTE LARGA:

$$TL = Xc - Yc Cot \theta e = 83.34 - 8.17Cot 16.812^{\circ}$$

= 56.30 m

• CÁLCULO DE LA TANGENTE CORTA:

$$TC = Yc \ Csc \ \theta e = 8.17 Csc 16.812^{\circ} = 28.25 \ m$$

• CÁLCULO DE LA CUERDA LARGA DE LA ESPIRAL:

$$CLe = \sqrt{Xc^2 + Yc^2} = \sqrt{(83.34)^2 + (8.17)^2}$$

= 83.74 m

• CÁLCULO DE LA EXTERNA:

$$Ec = \frac{Rc + p}{\cos \Delta/2} - Rc = \frac{143.24 + 2.05}{\cos 32^{\circ}09'} - 143.24$$
$$= 28.36 m$$

• CÁLCULO DEL ÁNGULO DE LA CUERDA LARGA DE LA ESPIRAL CON LA STe:

$$\emptyset = \frac{\theta e}{3} - C = \frac{16.812^{\circ}}{3} = 5.604^{\circ}$$

$$C = \text{Cte} = 0$$

• COMPROBACIÓN DEL CÁLCULO DE COORDENADAS DEL EC DE LA CURVA:

$$Xc = CLe \ Cos\emptyset = 83.74Cos5.604^{\circ} = 83.34 \ m$$

$$Yc = CLe Sen\emptyset = 83.74Sen5.604^{\circ} = 8.17 m$$

• CÁLCULO DE KILOMETRAJES:

KILON	1ETRAJES	PI
KMPI	0 + 357.36	Ec Sp
-STe	133.22	PSC LC
KMTE	0 + 224.14	PT PSE
+Le	84.06	P.L.TE TOC de la la RC RC RC RC
KM EC	0 + 308.20	ser coder RC
+LC	76.69	80 A Dee
Km CE	0 + _384.89	O FIGURA No 143
+Le	84.06	
KM ET	0 + 468.95	

- CONSTRUCCIÓN DE TABLA DE DEFLEXIONES:
- 1. Como el grado de curvatura es de 8° y este es menor que 10°, entonces se utilizarán cuerdas de 20.00 m para el trazo de la curva.
- 2. Determinar la constante de curvatura K de la espiral:

$$K = \frac{\theta e}{Le^2} = \frac{16.812^{\circ}}{(84.06)^2} = \mathbf{0.00238}$$

• ESPIRAL DE ENTRADA:

ESPIRAL DE ENTRADA									
Estaciones				Cuerdas	L	L2	θ=Κ L2	$\phi c = \theta/3 - c$	
TE	0	+	224.14	0	0	0	0	0	
	0	+	240.00	15.86	15.86	251.4521806	0.598277	0.19942567	
	0	+	260.00	20.00	35.86	1285.741932	3.05914957	1.01971652	
	0	+	280.00	20.00	55.86	3120.031684	7.42345205	2.47448402	
	0	+	300.00	20.00	75.86	5754.321435	13.6911845	4.56372815	
EC	0	+	308.20	8.20	84.06	7065.878808	16.8117564	5.60391879	
			Le	84.06					

• CURVA CIRCULAR:

CURVA CIRCULAR								
Estaciones Cuerdas Def Parciales Def Totale								
KM EC	0.00	+	308.20	0	0	0		
	0	+	320	11.80	2.359692386	2.359692386		
	0	+	340	20.00	4	6.359692386		
	0	+	360	20.00	4	10.35969239		
	0	+	380	20.00	4	14.35969239		
Km CE	0.00	+	384.89	4.89	0.978551242	15.33824363		
			LC	76.69	D'm - 15	$C = 1.5(0) = 0.0^{\circ}12'$		

 $D'm = 1.5 G = 1.5(8) = 00^{\circ}12'$ $Def\ Par\ 1 = 00^{\circ}12' * 11.80 = 2.36^{\circ}$ $Def\ Par\ 2 = 00^{\circ}12' * 20 = 4^{\circ}00'00'$ $Def\ Par\ 3 = 00^{\circ}12' * 4.89 = 0.978^{\circ}$

• ESPIRAL DE SALIDA:

ESPIRAL DE SALIDA									
Estaciones				Cuerdas	L	L2	θ= KL2	$\phi c = \theta/3 - c$	
Km CE	0	+	384.89	0	84.06	7065.878808	16.8117564	5.60391879	
	0	+	400	15.11	68.95	4754.314602	11.3118808	3.77062693	
	0	+	420	20.00	48.95	2396.253079	5.70137474	1.90045825	
	0	+	440	20.00	28.95	838.1915566	1.9942986	0.6647662	
	0	+	460	20.00	8.95	80.13003381	0.19065238	0.06355079	
KM ET	0	+	468.95	8.95	0.00	0	0	0	
			Le	84.06					

• TABLA DE DEFLEXIONES PARA TRAZAR LA CURVA:

TABLA DE DEFLEXIONES PARA TRAZAR LA CURVA							
Es	tacio	ne	25	Cuerdas	DEFLEX	IONES	
TE	0 + 224.14		224.14	0.00	0.199425668		
	0	+	240	15.86	1.0197	16524	
	0	+	260	20.00	2.4744	184018	
	0	+	280	20.00	4.563	72815	
	0	+	300	20.00	5.6039	18791	
EC	0	+	308.20	8.20	0		
KM EC	(M EC 0 + 308.2		308.2	0.00	0		
1	0		320	11.80			
	0	+	340	20.00	6.359692386		
	0	+	360	20.00	10.35969239		
	0	+	380	20.00	14.35969239		
Km CE	0	+	384.9	4.89	15.33824363		
Km CE	CE 0 + 384.89 0.00 5.603918		918791				
	0		400.00	15.11	3.770626933		
	0	+	420.00	20.00	1.900458248		
	0	+	440.00	20.00	0.664766201		
	0	+	460.00	20.00	0.063550793		
KM ET	0	+	468.95	8.95	0		
		L	=	244.81	m		