UNIVERSIDADE DE SÃO PAULO

BEATRIZ ALVES DOS SANTOS JHONATAN BARBOZA DA SILVA KEVIN RYOJI NAKASHIMA

RELATÓRIO DE LABORATÓRIO DE FÍSICA PRÁTICA 2: MÓDULO DE ELASTICIDADE

PROFESSOR: RICHARD CHARLES GARRATT

SÃO CARLOS, SP 9 de abril de 2025

Anotações do último relatório:

- Descrever melhor os instrumentos de medidas
- Organizar a apresentação dos relatórios como está na apostila
- Mostrar todos os cálculos de forma explícita
- Construir tabelas da forma como está na apostila

OBJETIVO

O objetivo da prática, de maneira geral, consiste na extração de informações relacionadas ao comportamento de deflexão de uma barra metálica fornecida. Para isso, será necessário a realização de diversos objetivos secundários, como: a medição do objeto de análise, a construção de tabelas e gráficos, para uma melhor visualização das informações, identificação da linearidade dos dados e a determinação do coeficiente de Young do material.

MATERIAIS E MÉTODOS

Para execução do experimento, foram necessários diversos tipos de materiais e ferramentas, isso inclui:

- Dispositivo para a medida de deflexão.
- Paquímetro (incerteza de +- 0,05mm).
- Micrômetro (incerteza de +- 0,01mm).
- Balança de precisão (incerteza de +- 0,01g).
- Barra de aço.
- Pesos.

A primeira etapa do experimento se baseou na análise da deformação da barra, com diferentes forças atuantes, com o intuito de, no fim, determinar o valor do módulo de Young do material. Para isso, foram necessários alguns passos importantes. Primeiro, medimos, com o auxílio do paquímetro e do micrômetro, respectivamente, a largura e a espessura do objeto. Após isso, posicionamos a barra de aço no dispositivo para medida de deflexão e medimos o valor do início da régua até o ponto em que os pesos se situavam, determinando o valor de L. Por fim, medimos o valor da deformação x com a aplicação de diferentes cargas, com o intuito de construir uma tabela, para a organização dos dados, construir um gráfico em um papel milimetrado, para melhor visualização, e determinar o módulo de Young.

A segunda etapa do experimento consistiu na análise dos valores relacionados a deformação x, porém com a variação do valor de L, com intuito de determinar o valor do módulo de Young do material. Primeiro, escolhemos o peso de maior massa, medimos o valor de x, variando o comprimento L de dois em dois centímetros, e fizemos tabela com medidas de x, L e L³. Com a tabela em mãos, fizemos dois gráficos: um gráfico x contra L no papel dilogarítmico e um gráfico x contra L³ no papel milimetrado, a fim de analisar a linearidade dos dados. Por fim, usamos os resultados obtidos para calcular o valor do módulo de Young.

RESULTADOS E DISCUSSÃO

Determinação do Módulo de Young

 a) Com o uso do paquímetro e do micrômetro, chegamos nas seguintes medidas:

```
Espessura: 0,99 +- 0,01 mm ou 0,00099 m +- 0,00001 m
Largura: 25,1 +- 0,05 mm ou 0,0251 m +- 0,00005 m
```

b) Para a correta medição do valor do comprimento L, colocamos a barra na posição 28 cm, verificamos o alinhamento horizontal do objeto e, por fim, medimos o valor de L após pendurar a maior massa na barra. Com isso, chegamos no seguinte resultado:

```
L = 27 + -0.1 \text{ cm} ou 0.27 \text{ m} + -0.001 \text{ m}
```

c) A construção da tabela requer dois dados: a deformação e a força peso. Para isso, primeiro precisamos calcular a força exercida pelos pesos. Sabemos que:

```
F = m.a.
```

Tendo em vista que tínhamos oito pesos diferentes, fizemos oito diferentes medições, empilhando os pesos para variar os valores da força. Então, temos o seguinte:

```
primeira medição: F1
segunda medição: F1 + F2
terceira medição: F1 + F2 + F3
```

Ao usar a balança de precisão, obtemos as massas de cada peso:

```
massa1: 56,47 +- 0,01 g
massa2: 42,64 +- 0,01 g
massa3: 46,55 +- 0,01 g
massa4: 44,56 +- 0,01 g
massa5: 44,56 +- 0,01 g
massa6: 48,69 +- 0,01 g
massa7: 48,68 +- 0,01 g
massa8: 42,84 +- 0,01 g
```

Considerando a constante gravitacional como 9,8 m/s², aplicamos a fórmula e chegamos nos seguinte resultados:

```
força 1: 56,47*9,8\sim0,55 N força 2: 56,47*9,8+42,64*9,8\sim0,97 N força 3: 56,47*9,8+42,64*9,8+46,55*9,8\sim1,43 N força 4: 56,47*9,8+42,64*9,8+46,55*9,8+44,56*9,8\sim1,86 N força 5: 56,47*9,8+42,64*9,8+46,55*9,8+44,56*9,8+44,56*9,8+44,56*9,8+44,56*9,8+44,56*9,8+44,56*9,8+44,56*9,8+44,56*9,8+44,56*9,8+44,56*9,8+48,69*9,8\sim2,78 N
```

```
força 7: 56,47 * 9,8 + 42,64 * 9,8 + 46,55 * 9,8 + 44,56 * 9,8 + 44,56 * 9,8 + 48,69 * 9,8 + 48,68 * 9,8 ~ 3,26 N força 8: 56,47 * 9,8 + 42,64 * 9,8 + 46,55 * 9,8 + 44,56 * 9,8 + 44,56 * 9,8 + 48,69 * 9,8 + 48,68 * 9,8 + 42,84 * 9,8 ~ 3,67 N
```

Agora que temos a força exercida em cada medição, só precisamos da deformação em cada um dos casos. Ao utilizar a régua para medir deflexão, chegamos nos seguintes resultados para x:

```
deformação 1: 0,9 +- 0,1 cm deformação 2: 1,6 +- 0,1 cm deformação 3: 2,3 +- 0,1 cm deformação 4: 3 +- 0,1 cm deformação 5: 3,6 +- 0,1 cm deformação 6: 4,3 +- 0,1 cm deformação 7: 5 +- 0,1 cm deformação 8: 5,6 +- 0,1 cm
```

Com os valores da força e da deformação de cada caso em mãos, podemos construir a nossa tabela de x em função de F, utilizando as unidades do SI:

Tabela 1 - Variação da deformação x sofrida por uma barra de aço inox de 27 cm com uma força peso adicionada em sua extremidade.

Força peso (N) +- 0,01 N	Deformação x (m) +- 0,001 m
0,55	0,009
0,97	0,016
1,43	0,023
1,86	0,03
2,30	0,036
2,78	0,043
3,26	0,05
3,67	0,056

Fonte: Elaborada pelo autor

- d) GRÁFICO A partir do gráfico feito em papel milimetrado, podemos observar que a relação entre as grandezas do gráfico é linear.
- e) O coeficiente angular da reta pode ser encontrado a partir de dois pontos que pertencem a ela. Por isso, após traçar a melhor reta, escolhemos os pontos (5.50, 3.64) e (1.40, 0.80) e realizamos o cálculo:

```
inclinação = (y2-y1)/(x2-x1) = (0.80 - 3.64)/(0.00550-0.00140)=69,26829268~69,3
```

 f) Para o cálculo do valor do módulo de Young, temos a equação 4 e o coeficiente angular da reta do gráfico F contra x.

```
coeficiente angular = 69,3

F = [(E*d^3*b)/(4*L^3)]x (eq4)
```

Ao analisarmos a equação, chegamos na conclusão que F representa uma reta em relação a x, tendo como coeficiente angular [(E*d^3*b)/(4*L^3)]. Diante disso, podemos concluir também que [(E*d^3*b)/(4*L^3)] equivale ao coeficiente angular calculado anteriormente. Então, temos:

```
(E*d^3*b)/(4*L^3) = 69,3
```

Ao isolarmos E e substituir os valores, obtemos os seguintes resultados: E = $(69,3*4*L^3)/(d^3*b) = (69,3*4*(0,27)^3) / ((0,00099)^3*0,0251) = 224.029.501.827,40113924... ~22,4*10^10.$

Logo, chegamos em E \sim 22,4*10^10 Pa. Ao analisarmos a tabela de materiais e seus respectivos módulos de Young, verificamos que o aço possui, como valor, 20*10^10 Pa. Portanto, chegamos em um valor parecido com o esperado.

Análise da relação comprimento-deformação

a) Para a segunda parte do experimento, escolhemos como massa de carga fixa o peso que exerce mais força (3,67 N). No total, fizemos cinco medições, começando com L=27cm e diminuindo dois centímetros a cada medição subsequente. Após as medições, obtivemos os seguinte valores:

```
Medição 1: L = 27cm e x = 5,6cm
Medição 2: L = 25cm e x = 4,3cm
Medição 3: L = 23cm e x = 3,3cm
Medição 4: L = 21cm e x = 2,4cm
Medição 5: L = 19cm e x = 1,7cm
```

b) A tabela deve conter, como um dos dados, o valor de L^3. Então devemos calcular:

```
Medição 1: L = 27cm => L^3 = 27^3 = 19.683
```

Medição 2: L = 25cm => L^3 = 25 3 = 15.625 Medição 3: L = 23cm => L^3 = 23 3 = 12.167 Medição 4: L = 21cm => L^3 = 21 3 = 9.261 Medição 5: L = 19cm => L^3 = 19 3 = 6.859

Tabela 2 - Variação da deformação x com a variação do comprimento L

L (cm)	x (cm)	L^3 (cm^3)
27	5,6	19.683
25	4,3	15.625
23	3,3	12.167
21	2,4	9.261
19	1,7	6.859

Fonte: Elaborada pelo autor

c) GRÁFICO - Após analisar o gráfico, podemos concluir que as grandezas são linearmente relacionadas, uma vez que, podemos manipular a equação 4 dessa maneira:

 $F = [(E^*d^3b)/(4L^3)]^*x \Rightarrow [(F^*4^*)/(E^*d^3b)]L^3 = x$ Com isso, chegamos em a*L^3 = x, o que significa que se aplicarmos log em ambos os lados da igualdade obtemos log(a)+3log(L) = log(x), o que representa linearidade na escala logarítmica.

- d) Para traçar a melhor reta, escolhemos os pontos (22, 2.8) e (28, 6.4). Inclinação = $\log(y2)$ - $\log(y1)$ / $\log(x2)$ - $\log(x1)$ = $\log(6.4)$ - $\log(2.8)$ / $\log(28)$ - $\log(22)$ = 0.3590219426/0.1047353505 = 3.4278965114 ~ 3,4
- e) Logo, o coeficiente angular da reta é consistente com com a relação esperada a partir da equação 4(log(a)+3log(L) = log(x)).
- f) GRÁFICO LINEAR DE X EM FUNÇÃO DE L^3
- g) O coeficiente angular da reta pode ser encontrado a partir de dois pontos que pertencem a ela. Por isso, após traçar a melhor reta, escolhemos os pontos (7200, 1,8) e (19200, 5,4) e realizamos o cálculo, com os valores em SI:

inclinação = (y2-y1)/(x2-x1) = (0,054 - 0,018)/(0,019200 - 0,007200) = 0,036/0,012= 3VVVVV TO AQUI VVVVVV fazendo kk

h) Pela equação (4), temos: só escreve as contas, eu faço o texto bonitinho

```
coef = (4F)/(E^*d^3 *b) \Rightarrow E = (4F)/(3*d^3 *b) = (4*3,67)/(3*(0,00099)^3*0,0251) = 200.921.076.138,704 ~ 20,1 * 10^10
```

(Compare com o valor tabelado para o aço. Discuta os resultados! Os métodos para determinar E forneceram resultados compatíveis? Algum dos métodos é mais confiável?) ← Essa parte de discutir os resultados é melhor na conclusão, né?

CONCLUSÃO

Tal como orientado, calculamos o módulo de Young utilizando dois métodos diferentes: com escalas logarítmicas e com linearização dos dados. Ambos os resultados obtidos são relativamente próximos ao valor teórico na tabela de referência disponibilizada, mas o método de linearização se mostrou mais confiável, pois produziu um valor mais próximo ao esperado.

Análise dos Resultados

Em ambos os experimentos, os resultados obtidos foram consistentes com os valores esperados, dentro das margens de incerteza. No primeiro experimento, a densidade calculada do cilindro (2,71 ± 0,02 g/cm³) confirmou que o material era alumínio, uma vez que esse valor está dentro da faixa de referência (~2,70 g/cm³), sendo as pequenas discrepâncias atribuíveis às limitações de precisão do paquímetro (±0,05 mm) e a possíveis irregularidades na superfície do cilindro. O método indireto (cálculo por medidas dimensionais) demonstrou maior confiabilidade em comparação ao método direto (deslocamento de água), cuja alta incerteza (±1 cm³) decorre da precisão limitada da proveta.

Já no segundo experimento, o diâmetro médio do fio de cobre foi de $2,22 \pm 0,04$ mm, sendo a incerteza de $\pm 0,04$ mm um reflexo das variações reais do material, que superam a precisão do micrômetro (0,01 mm). Isso indica que as diferenças nas medições devem-se a características do fio, como irregularidades naturais ou pequenas deformações, e não apenas às limitações do instrumento.

Conhecimento Adquirido

A realização dos experimentos permitiu ao grupo desenvolver habilidades fundamentais em laboratório, como o manuseio correto de instrumentos de precisão (paquímetro e

micrômetro), incluindo calibração, leitura de escalas e técnicas para minimizar erros. Além disso, a experiência reforçou a importância do trabalho em equipe, com a divisão de tarefas e discussões críticas para validar resultados, e proporcionou um entendimento prático sobre propagação de incertezas. Por fim, o contato direto com o método científico — desde a formulação de hipóteses até a avaliação de erros — consolidou uma visão mais crítica e estruturada sobre como grandezas físicas são determinadas experimentalmente.

Considerações Finais

Os experimentos cumpriram seus objetivos, validando tanto os princípios físicos envolvidos quanto a importância do rigor metodológico. As discrepâncias observadas foram compatíveis com as limitações instrumentais.

BIBLIOGRAFIA

Jose F. Schneider. Laboratório de Física I: livro de práticas. Instituto de Física de São Carlos, 2017. Disponível em: < http://granada.ifsc.usp.br/labApoio/images/apostilas/fisicai-2017.pdf >. Acesso em: 30 mar. 2025.

Euroaktion. Tabela e densidade de materiais. *euroaktion*, 2025. Disponível em: < http://www.euroaktion.com.br/Tabela%20de%20Densidade%20dos%20Materiais.pdf >. Acesso em: 30 mar. 2025.

The End!

MakeAGIF.com Melhor parte do relatório!!

Kevin é de suma importância que esta ilustração esteja no relatório.

ass: Beatriz Alves

Eu reafirmo essa mensagem para o segundo relatório.

TARFIA '

TABELA 1		
Medidas diretas e indiretas		
Diâmetro externo	21,10 ± 0,05 mm	
Altura externa	36,20 ± 0,05 mm	
Diâmetro interno	10,00 ± 0,05 mm	
Altura interna	17,00 ± 0,05 mm	
Massa	$30,63 \pm 0,01$ g	
Volume externo	12657,94961 mm³	
Incerteza do volume externo	77,47363833 mm³	
Volume interno	1335,176878 mm³	

Incerteza do volume interno	17,27875959 mm³
Volume total	11322,77273 mm³
Incerteza do volume total	94,75239259 mm³
Volume medido diretamente	11 ± 1 cm ³
Densidade total	2,705830388 cm³/g
Incerteza da densidade	0,022396178 cm³/g