G - 115 - 2014

국소배기장치 구입 및 사용 시 안전보건 기술지침

2014. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 인제대학교 보건안전공학과 한돈희 교수
- 제·개정 경과
- 2014년 11월 산업안전일반분야 기준제정위원회 심의(제정)
- 관련 규격 및 자료
- HSE: Clearing the air -A simple guide to buying and using local exhaust ventilation (LEV)-, 2010
- ACGIH: Industrial Ventilation -A manual of recommended practice for design, 27th ed., 2010
- 공기조화 및 환기설비의 안전관리 기술지침(KOSHA GUIDE, P-63-2012)
- 산업환기설비에 관한 기술지침(KOSHA GUIDE, W-1-2014)
- 관련 법규·규칙·고시 등
- 산업안전보건기준에 관한 규칙 제429조, 제454조, 제500조(국소배기장치의 성능 등)
- 안전검사 고시(노동부고시 제2010-15호)
- 안전검사 절차에 관한 고시(고용노동부고시 제2014-164호)
- 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안 전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2014년 11월 27일

제 정 자 : 한국산업안전보건공단 이사장

국소배기장치 구입 및 사용 시 안전보건 기술지침

1. 목적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라고 한다) 제429 조, 제454조, 제500조(국소배기장치의 성능 등)에 의거 국소배기장치의 구입 및 사용 시 안전보건에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 국소배기장치의 구입 및 사용하는 작업에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
- (가) "국소배기장치(Local exhaust ventilation)"란 작업장 내 발생한 유해물질 이 근로자에게 노출되기 전에 포집·제거·배출하는 장치로서 후드, 덕 트, 공기정화장치, 송풍기, 배기구로 구성된 것을 말한다.
- (나) "후드(Hood)"란 유해물질을 함유한 공기를 덕트에 흡인하기 위해 만들어 진 흡입구를 말한다.
- (다) "덕트(Duct)"라 후드에서 흡인한 기류를 운반하기 위한 관을 말한다.
- (라) "공기정화장치(Air Cleaner)"란 후드에서 흡인한 공기 속에 포함된 유해 물질을 제거하여 공기를 정화하는 장치를 말한다.
- (마) "배풍기(혹은 송풍기)(Fan)"란 공기를 이송하기 위하여 에너지를 주는 장치를 말한다.

- (바) "배기구(Stack)"란 공기를 최종적으로 실외로 이송시키는 배출구를 말한다.
- (사) "댐퍼(Damper)"란 공기가 흐르는 통로에 저항체를 넣어 유량을 조절하는 장치를 말한다.
- (아) "제어풍속(Control velocity 또는 Capture velocity)"이란 발생원에서 근로 자를 향해 오는 유해물질을 잡아 횡단방해기류를 극복하고 후드 방향으로 흡인하는데 필요한 기류의 속도를 말한다.
- (자) "반송속도(Transport velocity)"란 유해물질이 덕트 내에서 퇴적이 일어나 지 않고 이동하기 위하여 필요한 최소 속도를 말한다.
- (차) "양압(Positive pressure)"이란 작업장 내 압력이 외기보다 높은 상태를 말한다.
- (카) "음압(Negative pressure)"이란 작업장 내 압력이 외기보다 낮은 상태를 말한다.
- (타) "보충용 공기(Make-up air)"란 배기로 인하여 부족해진 공기를 작업장에 공급하는 공기를 말한다.
- (파) "플레넘(혹은 공기충만실)(Plenum)"이란 공기의 흐름을 균일하게 유지시켜 주기 위해 후드나 덕트의 큰 공간을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 국소배기장치 구입 전 고려사항

(1) 국소배기장치가 없어도 작업이 가능한지 다음의 사항을 점검한다.

- (가) 유해물질이 발생하지 않도록 할 것
- (나) 유해물질의 배출량을 줄일 것
- (다) 작업자에게 덜 해로운 물질을 사용할 것
- (라) 유해물질의 발생회수나 발생시간이 적은 공정으로 바꿀 것
- (마) 유해물질에 노출되는 작업자의 수를 줄일 것
- (바) 뚜껑을 닫는 등 간단한 노출방지 방법을 사용할 것
- (2) 국소배기장치 설치 전 다음을 고려해야 한다.
- (가) 일반적인 생각과는 달리 국소배기장치가 매우 정교하게 설계되어 설치되지 않으면 유해물질의 배출이 용이하지 않다.
- (나) 한번 잘못 설치되면 무용지물이 되거나 재설치 시 엄청난 비용 부담이 발생한다.
- (다) 올바른 작동에 대한 명확한 확신이 없다면 전문가의 도움을 받아야 한다. 한국산업안전보건공단의 국소배기장치 전문가의 도움을 받도록 한다.
- (라) 3개 이상의 업체에게 작업공정을 보여 주고 환기방법에 대한 설명을 듣는다.
- (마) 필요하면 각 업체가 설계 및 시공한 업체를 방문하여 시공 후 환기가 잘 되는지 확인한다.
- (바) 설계 및 시공은 비용이 많이 들더라도 경험이 풍부한 업체에 맡기고 A/S 에 대한 확실한 보장을 받도록 한다.

5. 일반적인 국소배기장치 설치 원칙

- (1) 국소배기장치는 반드시 후드→덕트→공기정화장치→송풍기→배기구의 순서 대로 설치되어야 한다.
- (2) 국소배기장치의 작동이 잘되기 위해서는 보충용 공기를 공급하여 작업장 안을 양압으로 유지시켜야 한다.
- (3) 공정에 지장을 받지 않는 한 후드는 유해물질 배출원에 가능한 한 가깝게 설치한다.
- (4) 처리조에서 공기보다 무거운 유해물질이 배출된다고 하더라도 후드의 위치는 바닥이 아닌 오염원의 상방 혹은 측방이어야 한다.
- (5) 덕트는 사각형관이 아닌 원형관이어야 한다.

6. 후드

6.1 포위식 후드

- (1) 포위식 후드는 작업공정이 어떤 형태이든 가장 먼저 고려되어야 한다.
- (2) 개구부에서 일정한 공기 흐름을 유지하기 위해 다음의 조치를 취한다.
- (가) 후드의 뒤편의 깊이를 상대적으로 깊게 한다.
- (나) 플레넘을 설치한다.
- (다) 후드와 덕트의 연결부분(테이퍼)의 각도를 45°로 유지한다.
- (라) 분리영역(Separation)을 만들지 않기 위해서는 개구부의 높이와 폭을 확장시킨다.

KOSHA GUIDE G - 115 -2014

- (마) 보조 공기를 공급하여 공기흐름을 일정하게 만든다. 하방 부스식 후드의 경우 공기 흐름이 너무 늦거나 빠르지 않게 조절해야 한다(그림 1 참조).
- (바) 고열공정의 후드는 측방보다는 상방으로 설치해야 한다.
- (사) 실험실 후드의 경우 후드 안쪽에 차단판을 설치하여 공기의 흐름을 일정 하게 유지시켜야 한다(그림 2 참조).

<그림 1> 일정한 공기 흐름

6.2 리시버식 후드

G - 115 -2014

- (1) 가열로(Furnace)에서 생기는 상승기류나 회전연마기(Grinder)에서 나오는 피연마물체를 잡는데 적합하다.
- (2) 입자가 너무 작아 관성의 영향력을 받지 못하거나 충분한 속도를 내 주지 못하는 공정에는 적합하지 못하다.

6.3 외부식 후드

외부식 후드는 다음과 같이 분류할 수 있다(그림 3참조).

<그림 3> 외부식 후드의 형태

(1) 일반개구의 경우 반드시 플랜지(Flange)를 부착한다(그림 4 참조).

<그림 4> 플랜지부착 외부식 후드 <그림 5> 차단판이 있는 슬롯 후드

(2) 차단판이 있는 슬롯 후드의 경우 횡단방해기류의 속도가 느리면 흡인 효과 우수하지만 이 속도가 너무 빠르면 공기흐름에 채널(Channel)이 생겨 차단

판 위쪽으로 오염공기가 올라감으로 흡인효과가 감소한다(그림 5 참조).

- (3) 유해물질 발생원과 개구부 사이에 물체가 없어야 한다.
- (4) 유해물질의 발생 속도가 너무 빠르거나 상승기류가 생기면 외부식 후드가 적합하지 않을 수 있다. 이럴 경우 기류의 방향에 따라 후드의 위치를 조절 해야 한다.
- (5) 푸쉬-풀(Push-pull) 후드의 경우 중간에 물체가 놓여 있다면 푸쉬공기가 물체에 부딪혀 유해물질이 작업장으로 비산된다(그림 6 참조).

<그림 6> 푸쉬-풀 후드의 공기 유량 밸런스

- (6) 푸쉬-풀 후드의 경우 풀(배기) 유량이 후드에 도착하는 푸쉬(급기) 유량의 $1.5\sim2.0$ 배가 적합하다.
- (7) 공기흐름을 일정하게 유지시켜 처리조에서 유해물질이 흘러넘치는 일류현 상을 없애기 위해서는 반드시 슬롯 플레넘 후드를 설치한다. 비열원의 도금 조, 담금조에 적합하다.

7. 덕트

(1) 덕트 내 반송속도는 <표 1>과 같다.

< ₩	1>	유해물질별	던ㅌ	내	바솟속도
11.		11 91 2 2 2		-11	3' O

유해물질의 특성	실제 사례	반송속도, m/sec
증기, 가스, 연기	모든 증기, 가스 및 연기	5 ~ 10
<u>한</u>	용접흄	10 ~13
아주 작고 가벼운 분진	가벼운 면분진, 목분진, 암석가루	13 ~15
건조한 분진이나 분말	고무분진, 황마분진, 보통의 면분진, 이 발분진, 비누가루, 면도분진	15 ~20
보통의 산업분진	톱밥가루, 마쇄가루, 가죽분진, 모직물류, 커피가루, 구두먼지, 화강암분진, 락카분진, 파쇄블록가루, 흙가루, 석회 가루	18 ~20
무거운 분진	금속가루, 주물가루, 모래분진, 무거운 톱밥, 가축똥 분진, 황동분진, 주철분 진, 납분진	20 ~23
무겁고 습한 분진	습한 납분진, 습한 시멘트가루, 석면섬 유, 끈적이는 가죽분진, 생석회 가루	23이상

(2) 주관과 분지관의 연결방법은 <그림 7>을 따른다.

<그림 7> 주관 및 분지관의 연결방법

8. 공기정화장치

G - 115 -2014

- (1) 공기정화장치 구입에 가장 큰 영향을 주는 것은 유해물질의 농도와 입자크기이다.
- (2) 대기오염에 대한 규제기준을 충족시키기 위해서는 유해물질의 제거효율을 알아야 한다.
- (3) 공기와 유해물질의 물리적인 특성은 다음과 같다.
- (가) 유해물질의 종류와 물리적인 상태
- (나) 각 유해물질의 평균 배출량, 단시간의 최고 배출량
- (다) 입자상 물질인 경우 입자분포, 모양, 밀도 그리고 집진장치에 영향을 줄수 있는 기타 특성(예를 들어, 끈적거림 정도)
- (라) 배출가스의 온도, 습도
- (4) 초기설치비와 유지관리 시 소요되는 비용을 알아야 한다.
- (5) 제거 유해물질의 최종 처분방법을 알아야 한다.

9. 송풍기

- (1) 송풍기는 설계 시 계산된 압력(송풍기정압)과 배기량(송풍량)을 만족시킬 수 있는 크기의 송풍기를 구입한다.
- (2) 유해물질의 이화학적 특성 및 공정의 특성에 따라 내마모성, 내산성, 내부식 성 재질의 임펠러를 선택한다.
- (3) 마모, 부식, 분진의 퇴적에 의한 성능저하가 발생하지 않아야 한다.
- (4) 전동기는 부하에 다소간 변동이 있어도 안정된 성능을 유지해야 한다.

G - 115 -2014

- (5) 가능한 한 소음・진동이 적은 송풍기를 구입한다.
- (6) 화재·폭발의 위험이 있는 유해물질을 이송해야 하는 경우에는 방폭구조로 된 송풍기를 구입한다.
- (7) 원심형 송풍기의 특성과 용도는 <표 2>와 같다.

<표 2> 원심형 송풍기의 특성과 용도

종류	모양	특성	용도	
전향날개형 (다익형, 시 로코형)		 길이가 짧고 깃폭이 넓은 여러개의 날개(36∼64매) 낮은 효율(60%) 과부하 걸리기 쉬움 회적속도가 낮으나 빠른 배출 속도 소음 발생 적음 가격이 저렴 	 HVAC 시스템 낮은 정압에 적합 날개에 부착된 부착물 제거가 어려워 분진 작업에 부적합 	
평판형 (방사형)		 ■ 길이가 길고 폭이 좁은 가장 적은 수의 날개(6~12 매) ● 간단한 구조 ■ 회전차는 내마모성의 강한 재질 필요 ● 고속회전이 가능 ● 중간정도의 최고속도와 소음 발생 ● 가격이 비쌈 	 높은 정압 (500 mmHg)에 적합 무겁고 고농도의 분진에 적합(시멘트, 톱밥, 연마 등) 부착성이 강한 분진 	
후향날개형 (터보형)		 길이와 폭은 방사형과 동일하며 중간 수의 날개(12~24 매) 효율이 좋고(85%) 안정적이 성능 과부하가 걸리지 않음 소음은 낮으나 가장 큰 구조 	 가장 광범위하게 사용 압력변동이 심한 경우 적합 비교적 깨끗한 공기에 적합 	
익형		 깃 모양이 익형(airfoil)의 9~16개 날개 수 *송풍량이 많아도 동력 증가하지 않음 기계효율이 가장 우수하며 소음도 가장 적음 	●비교적 깨끗한 공기의 환기장치나 HVAC 시 스템에 적합 ●분진 작업에 부적합	

10. 보충용 공기의 공급

- (1) 국소배기장치의 원활한 작동을 위해서 보충용 공기가 반드시 필요하다.
- (2) 보충용 공기의 공급량은 배기량의 약 10%정도가 넘어야 한다.
- (3) 보충용 공기의 흐름이 깨끗한 지역의 공기가 유해물질이 존재하는 지역으로 흐르도록 유지해야 한다.
- (4) 겨울철 공급용 공기의 온도는 18℃로 유지하는 것이 바람직하다.
- (5) 여름철에는 외부공기를 보통 그대로 공급하지만 열부하가 심한 작업장에서 는 냉각시켜서 공급해야 한다.
- (6) 건물 밖의 보충용 공기 유입구는 배출된 유해물질의 재유입을 막을 수 있 도록 위치시켜야 한다.
- (7) 보충용 공기는 바닥에서부터 2.4~3.0 m높이로 유입되어야 한다.

11. 배기구 설치와 재유입 방지

- (1) 아래로 내려 미는 공기 즉, 세류(洗流: Downwash)를 없애기 위해서는 배기구의 속도가 바람 속도의 1.5배 이상이 되어야 한다.
- (2) 배기구의 속도는 15 m/sec가 적합하다.
- (3) 빠른 배출속도가 낮은 배기구의 높이를 상쇄시킨다.
- (4) 배기구의 속도가 13 m/sec를 초과하면 빗방울의 배기구 유입을 막을 수 있다(빗방울의 속도는 10 m/sec).
- (5) 가능하면 배기구는 지붕에서 가장 높은 곳에 위치시킨다.

G - 115 -2014

- (6) 배기구는 빗물이 유입되지 않는 구조를 갖아야 한다. 가장 좋은 배기구의 모양은 실린더 형이며 빗물 제거(Drain)가 필요하면 설치한다.
- (7) 여러 개의 배기구 구조가 하나의 배기구 구조보다 공기의 확산이 잘 이루 어져 유해물질의 재유입을 감소시킨다.
- (8) 배출지점은 작업장의 공기 흡인지점(창문, 출입구, 침기 위치 등)에서 멀리 있어야 한다.
- (9) 높은 배기구가 능사가 아니며 적절한 공기청정장치의 설치가 유해물질의 재유입을 막아준다.

12. 국소배기장치의 점검

- 12.1 발연관(스모그테스터)을 이용한 개략적인 환기 상태의 확인
 - (1) 발연관 양끝을 자르고 스퀴즈에 넣어 누르면 염화수소의 백색 흄이 분출된다.
 - (2) 백색 흄이 공기흐름에 따라 이동하게 되므로 그 모습을 보고 후드나 작업 장 내 공기의 흐름을 알 수 있다.

12.2 횡단측정법

- (1) 후드나 덕트에서의 공기흐름은 벽에 접한 부분의 속도는 느리고 중앙부분의 속도는 빠르다.
- (2) 후드나 덕트의 횡단면에 여러 개의 포인트를 정하고 속도나 속도압(동압)을 측정한 후 평균값을 산출하여 이것을 대표 값으로 사용한다.

12.3 공기 속도의 측정

(1) 제어풍속

- (가) 열선 풍속계를 이용하여 후드에서 가장 멀리 떨어져 있는 오염원에서 발생한 유해물질이 후드로 흡인하는 속도를 측정해야 한다.
- (나) 오염 발생장소에서의 평균속도가 아니라 가장 낮은 속도를 측정해야 한다.
- (다) 열선풍속계는 풍향에 아주 민감하고 제어풍속은 매우 느리므로(0.3~2.0 m/sec정도) 횡단방해기류를 제어풍속으로 오인하면 안 된다.
- (라) 발연관을 이용하여 측정지점에서의 풍향을 먼저 확인한 후에 풍속계의 센서가 풍향에 수직이 되도록 위치하여 측정해야 한다.
- (마) 후드별 제어풍속은 <표 3>을 따른다.

<표 3> 산업안전보건법의 국소배기장치 제어풍속

관리대상 유해물질에 대한 국소배기장치(안전보건규칙 제429조 관련)			
물질의 상태	후드형식	제어풍속(m/sec)	
	포위식 포위식	0.4	
가스 상태	외부식 측방흡인형	0.5	
754 84	외부식 하방흡인형	0.5	
	외부식 상방흡인형	1.0	
	포위식 포위식	0.7	
이크 사라	외부식 측방흡인형	1.0	
입자 상태	외부식 하방흡인형	1.0	
	외부식 상방흡인형	1.2	
허가대상 유해물질, 금지 유해물질에 대한 국소배기장치 (안전보건규칙 제454조. 500조)			
	물질의 상태	제어풍속(m/sec)	
	가스 상태	0.5	
	입자 상태	1.0	
3 / 3 / 20 - 1 - 1 - 3 - 20 3 - 3 - 3 - 3 - 3 - 3 - 3 -			

비고(제429조, 454조, 제500조 모두 해당)

- 1. 이 표에서 제어풍속이란 국소배기장치의 모든 후드를 개방한 경우의 제어풍속을 말한다.
- 2. 이 표에서 제어풍속은 후드의 형식에 따라 다음에서 정한 위치에서의 풍속을 말한다.
 - 가) 포위식 또는 부스식 후드에서는 후드 개구면에서의 풍속
 - 나) 외부식 또는 리시버식 후드에서는 유해물질의 가스·증기 또는 분진이 빨려 들어 가는 범위에서 해당 개구면으로부터 가장 먼 작업위치에서의 풍속

(2) 개구면 속도

G - 115 -2014

- (가) 후드의 개구면 속도는 권장 값 혹은 약간 벗어나는 정도로 유지시켜야 한다.
- (나) 가장 정확한 방법은 후드와 연결된 덕트의 횡단공기유량을 측정하고 이 것을 후드 개구면의 면적으로 나누어주는 것이다.
- (다) 대략적인 값을 측정하고자 할 때에는 후드에서 직접 속도를 측정할 수 있다.

(3) 덕트 내 속도

- (가) 드릴을 이용하여 열선풍속계의 탐침이 들어갈 정도로 구멍을 뚫는다.
- (나) 측정지점은 곡관, 후드 및 분지관 합류점에서 뒤쪽으로 덕트 직경의 7배 이상이야 한다.
- (다) 앞쪽 지점은 곡관, 후드 및 분지관 합류점에서 덕트 직경의 1배 이상 이어야 한다.

12.4 압력 측정

(1) 피토관 측정

- (가) 호스로 피토관의 압력 측정구와 마노메타를 연결한다.
- (나) 드릴을 이용하여 피토관이 들어갈 정도로 구멍을 뚫는다.
- (다) 피토관을 덕트와 수직이 되도록 덕트 내에 삽입하고 피토관 끝의 구멍이 나 있는 부분을 공기 흐름 방향에 마주하도록 위치시킨다(그림 8 참조).

<그림 8> 피토관과 경사마노메타를 이용한 덕트 내 압력 측정

- (라) 속도압은 낮은 속도에서는 잘 나타나지 않는 경우가 많기 때문에 전압과 정압을 측정하고 그 차이로 계산한다.
- (2) 열선풍속계에 의한 정압 측정
- (가) 측정구의 직경은 1.5~3.0 mm이면 충분하다.
- (나) 측정구 부위가 덕트의 안쪽으로 밀려들어가지 않도록 매끈하게 뚫어야 한다.
- (다) 제조사에 따라 양압과 음압을 측정하는 방식이 다르므로 주의해야 한다.

(3) 후드정압의 측정

- (가) 후드 정압을 정기적으로 측정하여 국소배기장치가 정상적으로 가동되고 있는지 확인해야 한다.
- (나) 측정구 위치는 후드와 덕트의 연결부(Takeoff)를 지난 지점에서부터 직경 2~4배 지점이 적당하다.
- (다) 과거보다 후드 정압이 떨어졌다면 원원은 다음 중 하나이다.
 - ① 측정구 뒤쪽 덕트가 막혔다

G - 115 -2014

- ② 측정구 앞쪽의 덕트가 새고 있다.
- ③ 측정구 뒤쪽의 연결부분이 막혔다.
- ④ 송풍기의 성능이 떨어졌다.
- ⑤ 공기정화장치가 막혔거나 유해물질이 과도하게 쌓여 있다.
- (라) 마노메타를 후드 정압 측정구에 설치해 놓고 작업자로 하여금 눈금의 변화가 생기면 곧바로 알리도록 교육시킨다.

13. 국소배기장치의 성능 부족 원인과 대책

- (1) 성능부족이란 제어풍속이 제대로 나오지 않아 유해물질이 충분히 배출되지 않는다는 의미이다.
- (2) 흡인능력의 부족원인은 <표 4>와 같이 요약할 수 있다.

<표 4> 후드 흡인능력 부족의 주된 원인

	• 송풍기	· 규정된 회전수가 나오지 않음		
다 하 다		·댐퍼 조정 불량		
	능력 있음	· 덕트 등 장치 중간에서 누설		
		· 예측 했던 · 압력손실 과소평가		사소평가
		송풍량은	·공기정화장치 등 압력손실기구의 과소평가	
		충분	・송풍기 작동	·송풍기 작동점 잘못 설정
흡				·설계보다 후드 개구면적이 큼(포위식 후드)
	· 송 풍 기 능력 부족	3 - 3 3	・설계상의	·유인비 계산 잘못(푸쉬-풀 후드)
			문제 혹은	·너무 먼 곳에서 작업하고 있음(포착거리가
			사용상 문제	멈)(외부식 후드)
				· 후드 밖에서 작업하고 있음(포위식 후드)
				·계산식의 오류
			^주 · 설계 와	· 안전계수의 과소평가
			실제 작	·흡인거리가 너무 멈(외부식 후드)
			동의 차이	· 횡단방해기류 과소평가(외부식 후드)
				·수반 기류 과소평가(리시버식 후드)

G - 115 -2014

- (3) 송풍기의 정격능력이 충분하면 환기장치 내 댐퍼를 잘못 조정하였거나 덕 트 중간에서 새는 곳이 있거나 보충용 공기가 부족한 경우 등이다.
- (4) 보충용 공기 공급장치가 없으면 출입문이나 창문을 열어둔다.
- (5) 전동기의 회전수가 정상적이라면 벨트가 이완되었거나 전동기와 연결되는 전기배선이 반대로 연결되었는지 확인한다.
- (6) 덕트 연결 부분이 떨어져 외부공기가 새어 들어올 수 있다.
- (7) 공기정화장치 내 청소를 하지 않았거나 흡착제를 교체하지 않았으면 과도 한 압력손실로 흡인 능력을 떨어뜨린다. 이럴 경우를 대비하여 공기정화장 치 내 차압계를 부착한다.
- (8) 작업자의 등 뒤에서 선풍기를 사용하는 경우 과도한 양의 바람이 유해물질의 후드 안 흡인을 방해할 수 있다.

14. 국소배기장치 안전검사

- (1) 국소배기장치 자체검사제도가 없어지고 2012년부터 안전검사(노동부고시 제 2010-15호)로 바뀌었다.
- (2) <표 5>와 같이 유해물질(49종)에 의한 건강장해를 예방하기 위하여 설치한 국소배기장치에 대해서는 반드시 안전검사를 실시하여야 한다(고용노동부 고시 제2014-164호).

<표 5>국소배기장치 안전검사대상 유해화학물질

G - 115 -2014

o 다음의 어느 하나에 해당하는 유해물질(49종)에 따른 건강장해를 예방하기 위하여 설치한 국소배기장치에 한정하여 적용

①디아니시딘과 그 염 ②디클로로벤지딘과 그 염 ③베릴륨 ④벤조트리클로리드 ⑤비소 및 그 무기화합물 ⑥석면 ⑦알파-나프틸아민과 그 염 ⑧염화비닐 ⑨오로토-톨리딘과 그 염 ⑩크롬광 ⑪크롬산 아연 ⑫황화니켈 ⑬휘발성 콜타르피치 ⑭2-브로모프로판 ⑮6가크롬 화합물 ⑯납 및 그 무기화합물 ⑰노말헥산 ⑱니켈(불용성 무기화합물) ⑭디메틸포름아미드 ⑳벤젠 ㉑이황화탄소 ㉒카드뮴 및 그 화합물 ㉓톨루엔 -2,4-디이소시아네이트 ㉔트리클로로에틸렌 ಏ포름알데히드 ⑯메틸클로로포름(1,1,1-트리클로로에탄) ㉑곡물분진 ۱ 엉망간 ৯메틸렌디페닐디이소시아네이트(MDI) ⑩무수프탈산 ③1 브롬화메틸 ※2수은 ③3스티렌 ※4시클로헥사논 ⑤하닐린 ⑥6아세토니트릴 ⑥1 아연(산화아연) ⑧아크릴로니트릴 ⑩아크릴아미드 ⑩알루미늄 ⑪디클로로메탄(염화메틸렌) ㉑용접흄 శ ��유리규산 ④로발트 ��크롬 ��탈크(활석) ��톨루엔 ��황산알루미늄 �� 황화수소

다만, 최근 2년 동안 작업환경측정결과가 노출기준 50% 미만인 경우에는 적용 제외