# **CS 3313 Foundations of Computing: Part II**

### **Pushdown Automata**

http://gw-cs3313.github.io

1

### **Automaton Models**

- Deterministic Finite Automata/ Finite State Machines
  - Finite number of states
  - Each state "summarizes" history of events occurred until current time
  - Reads one input at each step
  - Goes to a next state depending on value of input and current state
- DFAs = Regular Languages
- DFAs cannot accept context free languages

### **Recall definition: Automata**

- An <u>automaton</u> is an abstract model of a digital computing device
- An automaton consists of
  - An input mechanism
  - A control unit
  - Possibly, a storage mechanism
  - · Possibly, an output mechanism
- Control unit can be in any number of internal *states*, as determined by a *next-state* or *transition* function.
- There are a finite number of states

3

### **Augmenting the Finite State Machine**

- DFAs do not have external memory...
- To increase power of DFAs add external storage
  - Machine in current state can read input, can look up value in memory, and depending on (input + current state + value in memory) goes to next state and can store something in memory.



### Adding a simple memory model to DFAs

- One simple form of memory/storage = a box
  - Simple because we don't need to keep track of "memory address"
  - Throw/Write things into the box place it on the top of other items in the box
  - Remove/Read the topmost item in the box
- In terms of computational models, box = stack
  - First-in Last-out
- Let's call this machine model M, a "NFA+S" (NFA + Stack)
  - Known formally as a Pushdown Automata (PDA)
- Behavior of machine M:
  - 1. Reads input, Reads from top of the box/stack, and checks current states
  - 2. Goes to next state, and store (or not?) something into the box
    - And then reads next input

5

# Automata with Stack Storage Input tape head (read only, left to right) Storage: To read: POP one symbol To write: PUSH string Machine Model: In one step Current: current state, reads symbol (or empty string) from input, reads top of stack (POPs top of stack) Next: goes to next state, PUSHes a string (possibly empty) to the stack Accepts: if machine is in a Final state (or if stack is empty)

### **Recall: Machine design/description**

- Each state captures some property of the input processed thus far
- Based on the property and current input we define the next "action"
- Example: a(a\*)b(b)\*
  - Start in q<sub>0</sub>: Not read any input
    - Read an a, go to q<sub>1</sub>
    - Read b, go to trap/reject state
  - q<sub>1</sub>: have read at least one a.
    - Read a, stay in q<sub>1</sub>
    - Read b, go to q2
  - q2: Have read at least one a, followed by at least one b
    - Read b, stay in q2
    - Read a, go to trap/reject state

7

### **Example:** $L = \{a^nb^n | n > 0\}$

- 1.  $L = \{a^nb^n \mid n > 0\}$ 
  - 1. Start  $q_0$ : reading a's (bottom of stack marker = Z)
    - Read a with TOS=Z: push AZ to stack stay in Step 1
    - Read a with TOS=A: push AA to stack, stay in Step 1
    - Read b with TOS=A: push nothing (λ) to stack, goto Step 2
  - 2. q1: Completed reading a's so should only read b's with A on TOS. Match number of A's on stack with number of b's in input
    - Read b with TOS=A: push nothing ( $\lambda$ ), stay in Step 2
    - Read λ with TOS=Z: push Z, goto Step 3
  - 3. q<sub>2</sub>: We reach this step if we have equal number of a's and b's and input is empty and stack is empty (with Z on TOS)
    - Accept input.

### **Pushdown Automaton (PDA)**

- This machine model ( NFA with stack storage ) is formally known as a Pushdown Automaton (PDA).
  - The default PDA definition is a non-deterministic machine from current configuration, it has number of choices for next move each choice specifies: next state, push string to stack
- The PDA is an automaton that accepts Context free languages
  - and equivalent to Context Free Grammars in language-defining power.
  - But the deterministic version models parsers.
    - Syntax of most programming languages have deterministic PDA's.

9

### **Intuition: PDA**

- Think of an  $\lambda$ -NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
  - 1. The current state (of its "NFA"),
  - 2. The current input symbol (or  $\lambda$ ), and
  - 3. The current symbol on top of its stack.



### Intuition: PDA - (2)

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
  - 1. Change state, and also
  - 2. Replace the top symbol on the stack by a sequence of zero or more symbols.
    - Zero symbols = "pop."
    - ◆ Many symbols = sequence of "pushes."

11

11

### **PDA Formal Definition**

- A PDA M=  $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  is described by:
  - 1. A finite set of *states* Q (same as before).
  - 2. An *input alphabet*  $\Sigma$  (same as before).
  - 3. A *stack alphabet*  $\Gamma$  (typically assume  $\Gamma$  disjoint from  $\Sigma$ ).
  - 4. A transition function  $\delta$ 
    - $\delta: (Q \times (\Sigma \cup \lambda) \times \Gamma) \rightarrow 2^{(Q \times \Gamma^*)}$ (subset of  $Q \times \Gamma^*$ )
      - Number of choices (i.e., non-deterministic)
      - Ex:  $\delta(q_1, 0, X) = \{ (q_1, XX), (q_2, \lambda) \}$
  - 5. A *start state*  $q_0$ , in Q (same as before).
  - 6. A *start symbol*  $Z_0$ , in  $\Gamma$  (to indicate bottom of stack).
  - 7. A set of *final states*  $F \subseteq Q$

Need a few more definitions and notations to define acceptance....

### **Pushdown Automaton: Definitions**

- There is a specific stack alphabet  $\Gamma$ 
  - You could always make it equal to  $\Sigma$
  - Better to keep it separate but can have a 1-1 mapping
    - Ex:  $\Sigma = \{a,b\}$   $\Gamma = \{X,Y\}$  where X corresponds to a and Y to b.
- PDA by default is non-deterministic
  - $\delta(q,a,x)$  has a number of choices of (p,y) where p is a state and y is a stack symbol
  - A deterministic PDA is known as a DPDA (less powerful than PDA)
  - $\lambda$ -transitions are allowed as the default
- Can also push/pop λ onto stack = push/pop nothing
- Can define a transition graph for a pda
  - each edge is labeled with the input symbol, the stack top, and the string that replaces the top of the stack
  - But cumbersome to model as a graph....so use Parse trees formalism

13

### Some notational conventions

- *a, b,* ... are input symbols.
  - But sometimes we allow  $\lambda$  as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- $\alpha$ ,  $\beta$ ,... are strings of stack symbols.

### The Transition Function $\delta$

- Takes three arguments:
  - 1. A state, in Q.
  - 2. An input, which is either a symbol in  $\Sigma$  or  $\lambda$
  - 3. A stack symbol in  $\Gamma$ .
- $\delta(q, a, Z)$  is a set of zero or more actions of the form  $(p, \alpha)$ .
  - p is a state;  $\alpha$  is a string of stack symbols.

15

15

### **Actions of the PDA**

- If  $\delta(q, a, Z)$  contains  $(p, \alpha)$  among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
  - 1. Change the state to p.
  - 2. Remove a from the front of the input (but a may be  $\lambda$ ).
  - 3. Replace Z on the top of the stack by  $\alpha$ .
    - Pop Z and Push  $\alpha$
  - Note: (3) above implies that you always pop from TOS therefore to push onto TOS, you have to push the original TOS followed by the new stack symbol

### Example: PDA for $\{a^nb^n \mid n \ge 1\}$

- States:
  - $q_0$ : start state. We are in state  $q_0$  if we have only seen a's so far.
  - $q_I$ : we've seen at least one b and may now proceed only if the inputs are b's
  - q<sub>2</sub>: final state accept
- Stack symbols:
  - $Z_0$  = start symbol, marks bottom of the stack.
    - If this is top of stack, we know we have counted the same number of a 's and b 's
  - A = marker used to count the number of a's seen in the input

17

### **Example 1 – Transition Function**

 $L = \{a^nb^n \mid n > 0\} \quad M = (\{q_0, q_1, q_2\}, \{a, b\}, \{A, Z\}, \delta, q_0, Z, \{q_2\})$ 

- 1. Start  $q_0$ : (bottom of stack marker = Z)
  - $\delta(q_0, a, Z) = \{(q_0, AZ)\}$  Read a with TOS=Z: push AZ to stack stay in Step 1
  - $\delta(q_0, a, A) = \{(q_0, AA)\}$  Read a with TOS=A: push AA to stack, stay in Step 1
  - $\delta(q_0,b,A) = \{(q_0,\lambda)\}$  Read b with TOS=A: push  $\lambda$  to stack, goto Step 2
- 2. q1: read only b's with A on TOS. Match #A's on stack with # b's in input
  - $\delta(q_1,b,A) = \{(q_1, \lambda)\}$  Read b with TOS=A: push  $\lambda$ , stay in Step 2
  - $\delta(q_1, \lambda, Z) = \{(q_2, Z)\}$  Read  $\lambda$  with TOS=Z: push Z, goto Step 3
- 3. q<sub>2</sub>: Final State Accept. We reach this step if we have equal number of a's and b's and input is empty and stack is empty (with Z on TOS)

### **Transition Graph representation for PDAs....**

Edge labeled  $(a,X,\pmb{\alpha})$  from state p to state q if  $\delta(p,a,X)$  contains  $(q,\pmb{\alpha})$  Ex:  $\delta(q_0,b,A)$  contains  $(q_1,\lambda)$   $\delta(q_0,a,A)$  contains  $(q_0,AA)$ 



19

### **Deterministic PDA's (DPDA)**

- To be deterministic, there must be <u>at most one choice</u> of move for any state *q*, input symbol *a*, and stack symbol *X*.
- In addition, there must not be a choice between using input  $\boldsymbol{\lambda}$  or real input.
  - Formally,  $\delta(q, a, X)$  and  $\delta(q, \lambda, X)$  cannot <u>both</u> be nonempty.
  - Example for {an bn} is a DPDA

### **Instantaneous Descriptions**

- To trace the actions of a PDA, we must keep track of the current state of the control unit, the stack contents, and the unread part of the input string
  - Note: This was easy to do in a DFA the extended  $\delta$
- We can formalize the concept of a current configuration of the PDA with an *instantaneous description* (ID) that describes state, unread input symbols, and stack contents (with the top as the leftmost symbol)
- An ID is a triple  $(q, w, \alpha)$ , where:
  - I. q is the current state.
  - 2. w is the remaining input.
  - 3.  $\alpha$  is the stack contents, top at the left.

21

### **Moves in a PDA**

- In one "move" (step), a PDA goes from one ID to another
- We say that ID  $I_1$  can become ID  $I_2$  in one move of the PDA, we write  $I_1 \vdash I_2$ 
  - A move is denoted by the symbol + ("yields")
- Formally:  $(q, aw, X\alpha) \vdash (p, w, \beta\alpha)$  for any w and  $\alpha$ , iff  $\delta(q, a, X)$  contains  $(p, \beta)$ .
- Extend + to +\*, meaning "zero or more moves," by:
  - Basis: I+\*I.
  - Induction: If I+\*J and J+K, then I+\*K.

### **Example: Moves**

- Using the previous example PDA for  $\{a^nb^n\}$ , we can describe the sequence of moves by:
  - 1.  $(q_0, aabb, Z_0) \vdash (q_0, abb, AZ_0)$

23

23

### Language of a PDA

- The common way to define the language of a PDA is by *final* state.
  - the set of all strings that cause the PDA to halt in a final state, after starting in  $q_0$  with an empty stack.
  - The final contents of the stack are irrelevant
  - As was the case with nondeterministic automata, the string is accepted if any of the computations cause it to halt in a final state
- If M is a PDA, then L(M) is the set of strings w such that

 $(q_0, w, Z_0) \vdash^* (f, \lambda, \alpha)$  for final state f and any  $\alpha \epsilon \Gamma^*$ 

Important: note that there has to be no input remaining to be

processed/read; ex if  $(q_0, x, Z_0) \vdash^* (f, y, \alpha)$  then y is not accepted by the PDA

# Language of a PDA – Alternate Definition: Acceptance by Empty stack

- Another way to define acceptance of a language by a PDA is by empty stack.
- If M is a PDA, then N(M) is the set of strings w such that  $(q_0, w, Z_0) \vdash^* (q, \lambda, \lambda)$  for any state q.

Note: stack has to be empty (machine stops) and input remaining is empty.

25

25

### **Equivalence of PDA Language Definitions**

- 1. If L = L(P), then there is another PDA P' such that L = N(P').
- 2. If L = N(P), then there is another PDA P'' such that L = L(P'').

Either type of PDA acceptance works!

## **Example 1: Transition Function for acceptance on empty stack**

$$L = \{a^nb^n \mid n > 0\} \quad M = (\{q_0, q_1\}, \{a, b\}, \{A, Z\}, \delta, q_0, Z, \{\})\}$$

- 1. Start  $q_0$ : (bottom of stack marker = Z)
  - $\delta(q_0, a, Z) = \{(q_0, AZ)\}$  Read a with TOS=Z: push AZ to stack stay in Step 1
  - $\delta(q_0, a, A) = \{(q_0, AA)\}$  Read a with TOS=A: push AA to stack, stay in Step 1
  - $\delta(q_0, b, A) = \{(q_0, \lambda)\}$  Read b with TOS=A: push  $\lambda$  to stack, goto Step 2
- 2. q1: read only b's with A on TOS. Match #A's on stack with # b's in input
  - $\delta(q_1, b, A) = \{(q_1, \lambda)\}$  Read b with TOS=A: push  $\lambda$ , stay in Step 2
  - $\delta(q_1, \lambda, Z) = \{(q_2, \lambda)\}$  Read  $\lambda$  with TOS=Z: push  $\lambda$  stay in Step 2
  - String is accepted iff the input remaining is empty and the stack is empty

27

### Example 2: DesignPDAs $\{ wcw^R \mid w \text{ in } \{a,b\} + \}$

- $L = \{ wcw^R \mid w \text{ in } \{a,b\} + \}$
- Before reading c, we are in the first half (w) and we store it on the stack; after reading c we should check if w<sup>R</sup> is being read
  - Start Stack symbol = Z; symbol for a = A; symbol for b = B
- Algorithm Outline:

### Example 2: PDA for $\{ wcw^R \mid w \text{ in } \{a,b\} + \}$



29

### Example 3: Design PDA for $\{a^nb^n \mid n>0\} \cup \{a^nb^{2n} \mid n>0\}$

- $\bullet \ L = \{ \ a^nb^n \ | \ n{>}0 \ \} \ \cup \ \{ \ a^nb^{2n} \ | \ n{>}0 \ \}$
- Requires non-determinism
- Can you design a PDA  $M_1$  for  $\{a^nb^n \mid n>0\}$
- Can you design a PDA  $M_2$  for  $\{a^nb^{2n} | n>0\}$
- Recall "technique" for constructing NFA for union of two machines.....
  - Start machine and then without reading any input we non-deterministically go to  $M_1\, \text{or}\, M_2$

### PDA for $\{ a^n b^n \mid n > 0 \} \cup \{ a^n b^{2n} \mid n > 0 \}$



31

### **Exercises: Design/Describe PDAs for languages**

- For each of the languages, design/describe PDAs (algorithm) that accept the language
- 1.  $L_2 = \{a^i b^j c^k \mid i=j, \text{ and } i,j,k>0\} \cup \{a^i b^j c^k \mid j=k, \text{ and } i,j,k>0\}$
- 2.  $L_3 = \{ a^n b^m \mid n \le m \le 2n \text{ and } n > 0 \}$