Екзаменаційна робота

Киращук Інна та Коломієць Микола

11 червня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	4

Завдання 1

Означення 1

Нехай $S\subseteq C(X)$. Множина S сильно розділяє точки множини X, якщо

$$\forall x_1, x_2 \in X, x_1 \neq x_2, \forall a_1, a_2 \in \mathbb{R}, \exists f \in S : f(x_1) = a_1, f(x_2) = a_2$$

Означення 2

Нехай $S\subseteq C(X)$. Множину S називають решіткою, якщо $\forall f,g\in S$: $\max\{f,g\}\in S, \min\{f,g\}\in S.$

теорема Какутані-Крейна.

Нехай X — компакт, $S\subseteq C(X)$. Припустимо, що:

- 1) S решітка
- 2) S замкнена множина
- 3) S сильно розділяє точки множини X
- **4**) 1 ∈ *S*

S співпадає з усім простором C(X).

Розв'язання:

Нехай $h \in C(X)$ і дана ε .

Ми шукаємо $f \in S$ що задовільняє умову $\|h-f\| < \varepsilon$.

Покажемо для кожного $x \in X$, існує $f_x \in S$ така, що

$$f_x(x) = h(x)$$
 i $h \le f_x + \varepsilon$.

Тоді для кожного x, знайдемо U_x , відкритий окіл x з $h(y) \geq f_x(y) - \varepsilon$ для кожного $y \in U_x$ (з неперервності $h - f_x$).

 U_x покриття X тож нехай U_{x_1}, \ldots, U_{x_n} підпокриття.

Тоді $f=f_{x_1}\wedge\cdots\wedge f_{x_m}$ задовільняють умову $f(y)+arepsilon=\min_i\left\{f_{x_i}(y)+arepsilon
ight\}\geq h(y).$

Більше того з того, що $y \in U_{x_i}$ для певного i:

$$f(y)-arepsilon \leq f_{x_i}(y)-arepsilon \leq h(y) \leq f_{x_i}+arepsilon.$$
 Таким чином $\|f-h\|_{\infty}$

Тепер спробуємо знайти f_x , що задовільняють цим умовам.

З того, що S сильно розділяє точки і $1 \in S$, для кожного x та y в X, ми можемо знайти $f_{xy} \in S$ з $f_{xy}(x) = h(x)$ і $f_{xy}(y) = h(y)$.

Для кожного y, ми можемо знайти V_y , відкриту множину навколо y з $f_{\dot{x}_y}(z)+\varepsilon\geq h(z)$ для $z\in V_y.V_{y_1},\ldots,V_{y_n}$ є покриттям X для підходящих $y_1,\ldots,y_n.$

Якщо взяти $f_x = f_{xy_1} \lor \dots \lor f_{xy_n}$, тоді $f_x(x) = h(x)$, і для будь-якого $z \in X$

$$f_x(z) + \varepsilon = \max_{i=1,\dots,n} \{ f_{xy_1}(z) + \varepsilon \} \ge h(z)$$

Це завершує доведення

Завдання 2

Завдання

Нехай неперервне відображення $f:B^n \to \mathbb{R}^n$ має властивість:

$$(f(x), x) \ge 0 \quad \forall x \in S^{n-1}.$$

Доведіть, що існує точка $x_0 \in B^n : f(x_0) = 0.$

Розв'язання:

Доводити будемо від супротивного.

Нехай
$$\forall x \in B^n, f(x) \neq 0.$$

Визначимо неперервне відображення

$$B^n \xrightarrow{\phi} B^n, \quad \phi x = -\frac{f(x)}{\|f(x)\|}$$

За теоремою Брауера

$$\exists y \in B^n, \quad -\frac{f(y)}{\|f(y)\|} = y \Rightarrow (f(y), y) = -\|f(y)\| < 0$$

З включення $y \in S^{n-1}$ маємо протиріччя з умовою задачі.

Доведено!