1 Syntax

The minimal syntax, may extend someday.

```
letter
            ::=
                 a..z | A..Z
                 letter {letter}
ident
            ::=
term
                 forall binder {binder}, term
                 fun \{binder\} => term
                 fix fix_body
                 let ident \{binder\} : term := term in term
                 term \rightarrow term
                 term arg {arg}
                 match term with
                     { | equation}
                 end
                 sort
                 (term)
            ::=
                 term
arg
binder
                 name: term
            ::=
name
            ::=
                 ident
             Prop | Set | Type
sort
            ::=
fix_body
                 ident \{binder\} : term := term
            ::=
                 pattern = > term
equation
            ::=
pattern
                 ident {name}
            ::=
sentence
                 axiom
                 definition
                 inductive
                 fixpoint
                 assertion proof
axiom
                 Axiom ident: term.
definition
            ::=
                 Definition ident \{binder\} : term := term.
inductive
                 Inductive ident {binder}: term :=
            ::=
                    { | ident {binder} : term} .
                 Theorem ident {binder}: term.
assertion
            ::=
proof
            ::=
                 Proof . {tactic .} Qed .
```

tacticapplying ::= $context_managing$ case_analyzing rewriting computing equality ::=applying exact termapply term [in ident] intro [ident] context_managing ::=intros ::= ${\rm destruct}\ term$ case_analyzing induction termrewrite $\lceil <- \mid -> \rceil$ term \lceil in term \rceil rewriting ::=computing simpl::=equality reflexivity ::=symmetry helper printing ::=proof_handling Print ident . printing ::=Check term. proof_handling Undo . ::=

> Restart . Admitted . Abort .

2 Calculus

2.1 Term

- 1. Set, Prop are terms.
- 2. Variables x, y, etc., are terms.
- 3. Constants c, d, etc., are terms.
- 4. If x is a variable and T, U are terms, then $\forall x : T, U$ is a term.
- 5. If x is a variable and T, u are terms, then $\lambda x : T$. u is a term.
- 6. If x and u are terms, then (t u) is a term.
- 7. If x is a variable and t, T, u are terms, then let x := t : T in u is a term.

2.2 Typing Rule

2.2.1 Notation

- S: {Prop, Set}.
- \bullet E: global environment.
- Γ : local context.
- $u\{x/t\}$: substitute free occurrence of variable x to term t in term u.
- $\mathcal{WF}(E)[\Gamma]$: E is well-formed and Γ is valid in E.

2.2.2 Typing Rules

$$\frac{E[\Gamma] \vdash \forall \mathtt{x} : \mathtt{U}, \mathtt{T} \qquad E[\Gamma] \vdash \mathtt{u} : \mathtt{U}}{E[\Gamma] \vdash (\mathtt{t} \ \mathtt{u}) : \mathtt{T}\{\mathtt{x}/\mathtt{u}\}} \tag{T-App)}$$

$$\frac{E[\Gamma] \vdash \mathtt{t} : \mathtt{T} \qquad E[\Gamma :: (\mathtt{x} := \mathtt{t} : \mathtt{T})] \vdash \mathtt{u} : \mathtt{U}}{E[\Gamma] \vdash \mathtt{let} \quad \mathtt{x} := \mathtt{t} : \mathtt{T} \quad \mathtt{in} \quad \mathtt{u} : \mathtt{U}\{\mathtt{x}/\mathtt{t}\}} \tag{T-Let}$$

2.3 Conversion Rule

2.3.1 Notation

- $E[\Gamma] \vdash t \triangleright u : t$ reduces to u in E, Γ with one of the $\beta, \iota, \delta, \zeta$ reductions.
- $E[\Gamma] \vdash t \stackrel{*}{\triangleright} u : E[\Gamma] \vdash t \triangleright \cdots \triangleright u$.
- $u \equiv v : u$ and v are identical.

2.3.2 Conversion Rules

$$\frac{E[\Gamma] \vdash (\lambda \mathbf{x} : \mathsf{T. t}) \ u}{\mathsf{t}\{\mathbf{x}/\mathbf{u}\}} \tag{\beta-Conv}$$

$$\frac{\mathsf{case}((\mathsf{c_p}\ \mathsf{q_1}\ \cdots\ \mathsf{q_r}\ \mathsf{a_1}\ \cdots\ \mathsf{a_m}),\mathsf{P},\mathsf{f_1}|\cdots|\mathsf{f_n})}{f_i\ a_1\ \cdots\ a_m} \qquad (\iota\text{-Conv})$$

$$\frac{E[\Gamma] \vdash \mathbf{x} \qquad (\mathbf{x} := \mathbf{t} : \mathbf{T}) \in \Gamma}{\mathbf{t}}$$
 $(\delta\text{-Conv1})$

$$\frac{E[\Gamma] \vdash c \qquad (x := t : T) \in E}{t}$$
 $(\delta$ -Conv2)

$$\frac{E[\Gamma] \vdash c \quad (x := t : T) \in E}{t}$$

$$\frac{E[\Gamma] \vdash \text{let } x := u \text{ in } t}{t\{x/u\}}$$

$$(\delta\text{-Conv2})$$

$$\frac{E[\Gamma] \vdash \mathsf{t} : \forall \mathsf{x} : \mathsf{T}, \mathsf{U} \qquad \mathsf{x} \text{ fresh in } \mathsf{t}}{\lambda \mathsf{x} : \mathsf{T}. \ (\mathsf{t} \ \mathsf{x})} \tag{η-Exp}$$

Definition 1 (Convertibility). t_1 and t_2 are convertible iff there exists u_1 and u_2 such that $E[\Gamma] \vdash$ $\mathbf{t_1} \stackrel{*}{\triangleright} \mathbf{u_1}$ and $E[\Gamma] \vdash \mathbf{t_2} \stackrel{*}{\triangleright} \mathbf{u_2}$ and either $u_1 \equiv u_2$ or they are convertible up to η -expansion.

2.4 Inductive Definition

2.4.1 Notation

- $\operatorname{Ind}[p](\Gamma_I := \Gamma_C)$: inductive definition.
- Γ_I : names and types of inductive type.
- Γ_C : names and types of constructors of inductive type.
- p: the number of parameters of inductive type.
- Γ_P : the context of parameters.

2.4.2 Typing Rule

$$\frac{\mathcal{WF}(E)[\Gamma] \qquad \operatorname{Ind}[p](\Gamma_I := \Gamma_C) \in E \qquad (\mathtt{a} : \mathtt{A}) \in \Gamma_i}{E[\Gamma] \vdash \mathtt{a} : \mathtt{A}} \tag{T-Ind}$$

$$\frac{\mathcal{WF}(E)[\Gamma] \qquad \operatorname{Ind}[p](\Gamma_I := \Gamma_C) \in E \qquad (\mathtt{c} : \mathtt{C}) \in \Gamma_C}{E[\Gamma] \vdash \mathtt{c} : \mathtt{C}} \tag{T-Constr})$$

$$\frac{(E[\Gamma_P] \vdash \mathtt{A_j} : \mathtt{s'_j})_{j=1..k}}{\mathcal{WF}(E; \mathtt{Ind}[p](\Gamma_I := \Gamma_C))[\Gamma]} \vdash \mathtt{C_i} : \mathtt{s_{q_i}})_{i=1..n}} \tag{T-WF-IND}$$

2.4.3 Well-formed Requirement

To maintain the consistency of the system, we must restrict the inductive definitions to a syntactic criterion of **positivity**, which guarantees the *soundness and safety* of the system.

Definition 2 (Constructor). T is a type of constructor of I if

- $T \equiv (I t_1 \cdots t_n)$
- $T \equiv \forall x : U, T'$, where T' is a type of constructor of I

Definition 3 (Positivity). The type of constructor T satisfies the positivity condition for a constant X if

- $T \equiv (X t_1 \cdots t_n)$ and X does not occur free in t_i
- $T \equiv \forall x : U, V \text{ and } X \text{ occurs only } strictly \ positively \text{ in } U \text{ and } V \text{ satisfies } the \ positivity \ condition for } X$

Definition 4 (Strictly Positivity). The constant X occurs strictly positively in T if

- X does not occur in T
- $T \rhd^* (X t_1 \cdots t_n)$ and X does not occur in t_i
- $T \triangleright^* \forall x : U, V \text{ and } X \text{ does not occur in } U \text{ but occurs } strictly positively in } V$
- $T \rhd^* (I \ a_1 \ \cdots \ a_m \ t_1 \ \cdots \ t_p)$, where $Ind[m](I : A := c_1 : \forall p_1 : P_1, \ldots \forall p_m : P_m, C_1; \cdots ; c_n : \forall p_1 : P_1, \ldots, \forall p_m : P_m, C_n)$, and X does not occur in t_i , and the types of constructor $C_i\{p_j/a_j\}_{j=1..m}$ satisfies the nested positivity condition for X

Definition 5 (Nested Positivity). The type of constructor T satisfies the nested positivity condition for a constant X if

- $T \equiv (I \ b_1 \ \cdots \ b_m \ u_1 \ \cdots \ u_p)$, where I is an inductive definition with m parameters and X does not occur in u_i
- $T \equiv \forall x : U, V$ and X occurs strictly positively in U and V satisfies the nested positivity condition for X

3 Destructor

4 Fixpoint

References

 $[1]\$ The Coq Development Team. The Coq Proof Assistant Reference Manual, 8.7.2 edition, February 2018.