Definition

Das Hauptziel der Wahrscheinlichkeitstheorie ist es, Ereignissen eine "Wahrscheinlichkeit" zuzuordnen.

Das bedeutet, dass wir eine Funktion P suchen mit

$$A \mapsto P(A) \in [0,1].$$

Ist zum Beispiel

$$P(A) = 0.3$$

dann sagen wir entweder, "A hat Wahrscheinlichkeit 0.3" oder "A hat 30% Wahrscheinlichkeit".

Logische und Technische Anforderungen

$$A \subset B \Longrightarrow P(A) \leq P(B)$$
.

- σ-Algebra
 - Klasse von Ereignissen A'
 - abgeschlosses Mengensystem bezüglich Mengenoperationen

Wahrscheinlichkeitsmaß

- Abbildung P: A' > [0, 1]
 - erfüllt folgende Voraussetzungen
 - * Normierung N
 - P(Ω)=1
 - * Additivität A

Sind $(A_i: i \ge 1)$ paarweise disjunkt, so gilt

$$P\left(\bigcup_{i\geq 1}A_i\right)=\sum_{i\geq 1}P(A_i).$$

- ◆ Summe aller Wahrscheinlichkeiten = Wahrscheinlichkeit, dass eines der Ereignisse eintritt
- Tripel (Ω, A', P) Wahrscheinlichkeitsraum
- Frequentistische Interpretation
 - Experiment wird unendlich oft wiederhold

$\frac{\text{Häufigkeit mit der } A \text{ eintritt}}{\text{Anzahl der Wiederholungen}} \rightarrow P(A).$

Axiome von Kolmogorov

Satz

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und seien A, B, A_1, A_2, \dots Ereignisse in \mathcal{A} . Dann gelten unter anderem:

- 1. $P(\emptyset) = 0$;
- 2. $P(A \cup B) + P(A \cap B) = P(A) + P(B)$;
- 3. $A \subset B \Longrightarrow P(A) \leq P(B)$;
- 4. $P(\bigcup_{i>1} A_i) \leq \sum_{i>1} P(A_i);$
- 5. $A_n \nearrow A \Longrightarrow P(A_n) \rightarrow P(A)$;
- 6. $A_n \searrow A \Longrightarrow P(A_n) \rightarrow P(A)$.
- ▶ 3. ist die Monotonie;
- 4. ist die σ-Subadditivität;
- ▶ 5. ist die Stetigkeit von unten;
- ▶ 6. ist die Stetigkeit von oben.