Organização de Computadores

Memória Semicondutora

Prof. José Paulo G. de Oliveira Engenharia da Computação, UPE

Índice

- Célula de memória
 - Sinais de seleção e controle
 - Modelo operacional
- Tipos de memória (tecnologias)
 - RAM
 - SRAM
 - DRAM
 - ROM
 - OTP ROM ou PROM
 - EPROM
 - EEPROM
 - Flash

Memória Semicondutora

Operação da célula de memória

Operação da célula de memória

Controle e Seleção com Buffer Tri-state

Conjunto de células de memória

^{*} Linhas de controle implícitas

Conjunto de células de memória

Operação da célula de memória

Tipos de Memória Semicondutora

Tipo de memória	Categoria	Mecanismo de apagamento	Mecanismo de escrita	Volatilidade	
Memória de Acesso Aleatório (RAM)	Memória de Leitura e Escrita	Eletricamente - Nível de bytes	Eletricamente	Volátil	
Memória de Apenas Leitura (ROM)	Memória de Apenas	Nao é possível	Máscaras	Nao-volátil	
ROM Programável (PROM)	Leitura	Luz UV - Nível de pastilha			
PROM Apagável (EPROM)	Memória	Eletricamente - Nível de blocos	Eletricamente		
PROM Eletricamente Apagável	Principalmente Leitura	Eletricamente -Nível de bytes			

Tipos de Memória Semicondutora

RAM

- Random Access Memory
 - Memória de acesso aleatório
 - Leitura/Escrita
 - Volátil
 - Armazenamento temporário
 - Estática ou dinâmica

Tipos de Memória Semicondutora

Tipo de memória	Categoria	Mecanismo de apagamento	Mecanismo de escrita	Volatilidade	
Memória de Acesso Aleatório (RAM)	Memória de Leitura e Escrita	Eletricamente - Nível de bytes	Eletricamente	Volátil	
Memória de Apenas Leitura (ROM)	Memória de Apenas	Não é possível	Máscaras	Não-volátil	
ROM Programável (PROM)	Leitura	Luz UV - Nível de pastilha			
PROM Apagável (EPROM)	(EPROM) Memória	Eletricamente - Nível de blocos	Eletricamente		
Principalmente PROM Eletricamente Apagável Principalmente Leitura		Eletricamente -Nível de bytes			

RAM Dinâmica

- Os bits são armazenados como cargas em capacitores
 - Capacitores MOS
 - Movimentação de cargas elétricas
- Precisa de circuitos de refrescamento quando alimentadas
- Construção simples
- Menor tamanho por bit
- Menor custo de fabricação
- Mais lentas
- Aplicação: memória principal

Tecnologia MOS

Relembrando:

Estrutura da RAM dinâmica

Estrutura da RAM dinâmica

Refresh:

RAM Estática

- Os bits são armazenadas como chaves liga/desliga
- Não há relação direta entre as cargas elétricas e os bits
- Não necessita de circuitos de refrescamento quando alimentada
- Construção mais complexa
- Maior tamanho por bit
- Mais cara
- Mais rápida
- Aplicação: cache

Tecnologia CMOS

Tecnologia CMOS

Estrutura da RAM estática

Estrutura da RAM estática

Estrutura da RAM estática

SRAM versus DRAM

- Ambas voláteis
 - É preciso energia para preservar os dados
- Célula dinâmica:
 - Mais simples de construir, menor
 - Mais densa
 - Mais barata
 - Precisa de refresh
 - Maiores unidades de memória
 - Memória principal
- Estática:
 - Mais rápida
 - Mais cara
 - Cache

Read Only Memory - ROM

- Memória apenas de leitura
- Armazenamento permanente
- USO:
 - Microprogramação
 - Bibliotecas de subrotinas
 - Programas de sistemas
 - Basic Input/Output System BIOS
 - Tabelas de funções

Tipos de Memória Semicondutora

Tipo de memória	Categoria	Mecanismo de apagamento	Mecanismo de escrita	Volatilidade	
Memória de Acesso Aleatório (RAM)	Memória de Leitura e Escrita	Eletricamente - Nível de bytes	Eletricamente	Volátil	
Memória de Apenas Leitura (ROM)	Memória de Apenas	Não é possível	Máscaras	Não-volátil	
ROM Programável (PROM)	Leitura	Luz UV - Nível de pastilha			
PROM Apagável (EPROM)	Memória Deixeiro desente	Eletricamente - Nível de blocos	Eletricamente		
Principalmente PROM Leitura Eletricamente Apagável		Eletricamente -Nível de bytes			

Tipos de ROM

- Escrita durante fabricação
 - Muito cara para lotes pequenos
- Programável (uma única vez) OTP
 - PROM
 - Necessita de um equipamento gravador especial
- Programável (diversas vezes)
 - Erasable Programmable (EPROM)
 - Apagável por raios UV
 - Electrically Erasable (EEPROM)
 - O tempo de escrita é bem maior que o de leitura
 - Memória Flash
 - Blocos de memória são apagáveis eletricamente

Tipos de Memória Semicondutora

Tipo de memória	Categoria	Mecanismo de apagamento	Mecanismo de escrita	Volatilidade	
Memória de Acesso Aleatório (RAM)	Memória de Leitura e Escrita	Eletricamente - Nível de bytes	Eletricamente	Volátil	
Memória de Apenas Leitura (ROM)	Memória de Apenas	Não é possível	Máscaras	Não volótil	
ROM Programável (PROM)	Leitura	Luz UV - Nível de pastilha			
PROM Apagável (EPROM)	Memória Deixeiro desente	Eletricamente - Nível de blocos Eletricamente		Não-volátil	
Principalmer PROM Leitura Apagável		Eletricamente -Nível de bytes			

PROM – Programmable ROM

- Também chamadas de OTP ROM One Time Programmable ROM
- Programadas com um dispositivo especial ROM Programmer
 - Sinal elétrico usado para criar ou destruir de maneira permanente ligações internas

PROM – Programmable ROM

 Também chamadas de OTP ROM – One Time Programmable ROM

Programadas com um dispositivo especial – ROM

Programmer

 Sinal elétrico usado para ci permanente ligações interr

Tipos de Memória Semicondutora

Tipo de memória	Categoria	Mecanismo de apagamento	Mecanismo de escrita	Volatilidade	
Memória de Acesso Aleatório (RAM)	Memória de Leitura e Escrita	Eletricamente - Nível de bytes	Eletricamente	Volátil	
Memória de Apenas Leitura (ROM)	Memória de Apenas	Não é possível	Máscaras	Não-volátil	
ROM Programável (PROM)	Leitura	Luz UV - Nível de pastilha			
PROM Apagável (EPROM)	Memória	Eletricamente - Nível de blocos	Eletricamente		
PROM Eletricamente Apagável Principalmente Leitura Apagável		Eletricamente -Nível de bytes			

EPROM – Erasable Programmable ROM

- Pode ser apagada por meio de exposição a radiação ultravioleta
 - Totalmente
 - > 10 min tipicamente
- Vida útil > 1000 ciclos
- Possuem janela de exposição

EPROM – Erasable Programmable ROM

- Pode ser apagada por meio de exposição a radiação ultravioleta
 - Totalmente
 - > 10 min tipicament
- Vida útil > 1000 ciclé
- Possuem janela de

Tipos de Memória Semicondutora

Tipo de memória	Categoria	Mecanismo de apagamento	Mecanismo de escrita	Volatilidade	
Memória de Acesso Aleatório (RAM)	Memória de Leitura e Escrita	Eletricamente - Nível de bytes	Eletricamente	Volátil	
Memória de Apenas Leitura (ROM)	Memória de Apenas	Não é possível	Máscaras	Não-volátil	
ROM Programável (PROM)	Leitura	Luz UV - Nível de pastilha			
PROM Apagável (EPROM)	Memória Driveiro les antes	Eletricamente - Nível de blocos	Eletricamente		
PROM Eletricamente Apagável	Principalmente Leitura	Eletricamente - Nível de bytes			

EEPROM – Electrically Erasable Programmable ROM

- Estrutura semelhante a EPROM
- Pode ser apagada/escrita eletricamente
 - Parcial (blocos) ou totalmente
 - Evita retirada do chip do circuito
- Tempo de escrita muito mais lento que o de leitura
 - Escrita ms/bit
 - Leitura ns/bit (= leitura em RAM)

EAROM – Electrically Alterable ROM

- Similar a EEPROM
- Acesso a bit
 - Um bit pode ser apagado por vez
- Tempo de escrita muito mais lento que o de leitura

Flash

- Tipo de EEPROM inventada em 1984
- Acesso a blocos e não bits
- Apagamento e escrita muito mais rápidos
- Vida útil > 1.000.000 ciclos
- Tecnologia permite alta capacidade
 - > 128 Gbytes
- USB flash devices

Memória Flash

NAND-NOR Flash - estrutura

(a) NOR flash structure

Bit line

NAND-NOR Flash - densidade

32MBytes (256Mbits)
DiskOnChip Millennium Plus
(NAND-based)

16MBytes (126Mbits) NOR Flash

244% mais eficiente que a NOR Flash

NAND-NOR Flash

NOR flash:

- Eficiência volumétrica (cell size): 7 Mb/mm²
- Tipo de acesso: aleatório
- Aplicação: Execução de programa

NAND-NOR Flash

NAND flash:

- Eficiência volumétrica (cell size): 11 Mb/mm²
- Tipo de acesso de leitura: sequencial
- Aplicação: Armazenamento em massa

Kiviat Graphs - Flash

(a) NOR

(b) NAND

Exercício

A3 → 1		16 Vcc
$\overline{\text{CS}} \longrightarrow \boxed{2}$		15 □ ← A2
R/W → 3	Signetics	14] ← A1
D3 → [4	7489	13] ← A0
03 ← 5		12] ← D0
D2 → [6	16×4	11 → O0
02 ← 7	SRAM	10] ← D1
GND — 8		9 → 01

(a) Pin layout

Operating	Inputs			Outputs
Mode	CS	R/W	Dn	On
***	L	L	L	L
Write	L	L	Н	Н
Read	L	Н	X	Data
Inhibit	Н	L	L	Н
writing	Н	L	Н	L
Store - disable outputs	Н	Н	X	Н

H = high voltage level

L = low voltage level

X = don't care

Exercício

Exercício

Operating	Inputs			Outputs
Mode	CS	R/W	Dn	On
Write	L	L	L	L
write	L	L	Н	Н
Read	L	Н	X	Data
Inhibit	Н	L	L	Н
writing	Н	L	Н	L
Store - disable outputs	Н	Н	X	Н

