HOMEWORK PROBLEMS

LECTURER: LIN CHEN TA: WENHAN DAI

HOMEWORK 2 (DUE ON APRIL 1)

Problem 2.1 (Lecture 4, Exercise 9). Let $\mathfrak{g} = \mathfrak{sl}_2$ and e, h, f be the standard basis. Consider

$$\Omega := ef + fe + \frac{1}{2}h^2 \in U(\mathfrak{sl}_2).$$

Calculate its image in $\operatorname{Sym}(\mathfrak{t}) = k[h]$ under the k-linear surjection $U(\mathfrak{g}) \twoheadrightarrow \operatorname{Sym}(\mathfrak{t})$ (see equation (2.1) of Lecture 4).

Solution. Using PBW theorem, the prescribed map can be reinterpreted as

$$U(\mathfrak{g}) \xrightarrow{\sim} U(\mathfrak{n}^-) \otimes_k U(\mathfrak{t}) \otimes_k U(\mathfrak{n}) \longrightarrow U(\mathfrak{t}) \xrightarrow{\sim} \operatorname{Sym}(\mathfrak{t}) = k[h].$$

Recall that the elements of the standard PBW basis of $U(\mathfrak{n}^-) \otimes_k U(\mathfrak{t}) \otimes_k U(\mathfrak{n})$ are of form $f^a \otimes h^b \otimes e^c$ with $a, b, c \in \mathbb{Z}_{\geqslant 0}$, which is the image of $f^a h^b e^c \in U(\mathfrak{g})$ along the first isomorphism above. Motivated by this, we write

$$\Omega = ef + fe + \frac{1}{2}h^2 = [e, f] + 2fe + \frac{1}{2}h^2 = 2fe + h + \frac{1}{2}h^2.$$

On the other hand, note that $f \otimes 1 \otimes e$ and $1 \otimes h \otimes 1$ are respectively sent to 0 and h in Sym(\mathfrak{t}). Thus,

$$U(\mathfrak{sl}_2) \longrightarrow \operatorname{Sym}(\mathfrak{t}) = k[h]$$
 $ef \longmapsto 0$
 $h \longmapsto h$

It follows that the image of Ω is $h + \frac{1}{2}h^2$.

Problem 2.2 (Lecture 4, Exercise 14). Let $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to k$ be any nondegenerate symmetric invariant bilinear form on \mathfrak{g} . For any basis x_1, \ldots, x_n of \mathfrak{g} and its dual basis x_1^*, \ldots, x_n^* with respect to the form κ^1 , consider the Casimir element

$$\Omega_{\kappa} = \sum_{i=1}^{n} x_i \cdot x_i^* \in U(\mathfrak{g}).$$

- (1) Prove: the Casimir element Ω_{κ} does not depend on the choice of the basis, and is contained in the center $Z(\mathfrak{g})$.
- (2) For $\mathfrak{g} = \mathfrak{sl}_2$, $\kappa = \mathsf{Kil}$, and the canonical basis e, h, f, find Ω_{Kil} and prove it is not contained in $\mathrm{Sym}(\mathfrak{t}) \subset U(\mathfrak{g})$.

Solution. (1) Note that the nondegenerate symmetric pairing κ is specialized from the map $\mathfrak{g}\otimes\mathfrak{g}\to k$, and it uniquely corresponds to an isomorphism $\phi\colon\mathfrak{g}\to\mathfrak{g}^*$, whose inverse is written as $\phi^{-1}\colon\mathfrak{g}^*\to\mathfrak{g}$. Since ϕ^{-1} is again an isomorphism, there is a unique nondegenerate symmetric pairing $\kappa^\vee\colon k\to\mathfrak{g}\otimes\mathfrak{g}$ determined by ϕ^{-1} . Consider its composite with the natural embedding map $\mathfrak{g}\otimes\mathfrak{g}\to U(\mathfrak{g})$; we claim that

¹By definition, this means $\kappa(x_i, x_i^*)_{i,j}$ is the unit matrix.

$$k \xrightarrow{\kappa^{\vee}} \mathfrak{g} \otimes \mathfrak{g} \longrightarrow U(\mathfrak{g})$$

$$1 \longmapsto \Omega_{\kappa},$$

i.e. the Casimir element is the image of $1 \in k$. Indeed, as x_1, \ldots, x_n is a basis of \mathfrak{g} , its dual basis of \mathfrak{g}^* with respect to κ is given by x_1^*, \ldots, x_n^* with $x_i^* = \phi(x_i)$. So the image of $1 \in k$ in $U(\mathfrak{g})$ is given by that of $(\sum_i x_i) \otimes (\sum_i \phi^{-1}(x_i^*))$. With the isomorphism ϕ^{-1} we are able to identify $\phi^{-1}(x_i^*)$ with x_i^* by abuse of notation, and hence the image is the same as $\sum_i x_i \otimes x_i^*$, which further maps to $\sum_i x_i \cdot x_i^* = \Omega_{\kappa} \in U(\mathfrak{g})$. This proves the claim. To conclude, we see Ω_{κ} is only determined by $1 \in k$ and the choice of κ^{\vee} , so it is independent of the choice of x_1, \ldots, x_n .

We then check $\Omega_{\kappa} \in Z(\mathfrak{g})$. For any $V \in \mathfrak{g}\text{-mod}$, there is a \mathfrak{g} -mod structure on V^* given by $(x \cdot f)(v) = f(-x \cdot v)^2$ for $f \in V^*$ and $x \in \mathfrak{g}$. With this \mathfrak{g} -action on $V = \mathfrak{g}$ and $V^* = \mathfrak{g}^*$, all prescribed maps $\phi, \phi^{-1}, \kappa, \kappa^{\vee}$ are \mathfrak{g} -linear. It follows that the preimage of Ω_{κ} in $\mathfrak{g} \otimes \mathfrak{g}$ is already \mathfrak{g} -invariant with respect to the diagonal \mathfrak{g} -action. By definition, this diagonal action is $x \cdot (u \otimes v) = [x, u] \otimes v + u \otimes [x, v]$, and its image in $U(\mathfrak{g})$ is xuv - uxv + uxv - uvx = xuv - uvx. Hence any \mathfrak{g} -invariant element in $\mathfrak{g} \otimes \mathfrak{g}$ is sent to $Z(\mathfrak{g})$, which implies $\Omega_{\kappa} \in Z(\mathfrak{g})$. (Formally, the argument above means the tensor \mathfrak{g} -module structure of $T(\mathfrak{g}) = \bigoplus_{n \geqslant 0} \mathfrak{g}^{\otimes n}$ is \mathfrak{g} -linearly compatible with the adjoint \mathfrak{g} -module structure of $U(\mathfrak{g})$. So the \mathfrak{g} -invariant elements of $\mathfrak{g} \otimes \mathfrak{g}$ is mapped to the \mathfrak{g} -invariant elements of $U(\mathfrak{g})$, namely $Z(\mathfrak{g})$.)

(2) Using the relations [e, f] = h, [h, e] = 2e, and [h, f] = -2f, we compute the matrices of ad_e , ad_f , and ad_h under the ordered basis $B = \{e, f, h\}$ as

$$[\mathrm{ad}_e]_{\mathtt{B}} = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad [\mathrm{ad}_f]_{\mathtt{B}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}, \quad [\mathrm{ad}_h]_{\mathtt{B}} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

From the definition,

$$\mathsf{Kil}(x,y) = \mathrm{tr}(\mathrm{ad}_x \circ \mathrm{ad}_y) = \mathrm{tr}([\mathrm{ad}_x]_{\mathtt{B}}[\mathrm{ad}_y]_{\mathtt{B}}).$$

So we deduce

$$Kil(e, f) = Kil(f, e) = 4$$
, $Kil(h, h) = 8$.

Then, with respect to the Killing form, the ordered dual basis of B is given by

$$\mathbf{B}^* = \left\{ e^* = \frac{f}{4}, \ f^* = \frac{e}{4}, \ h^* = \frac{h}{8} \right\}.$$

Therefore,

$$\Omega_{\mathsf{Kil}} = \frac{1}{4}ef + \frac{1}{4}fe + \frac{1}{8}h^2 = \frac{1}{2}fe + \frac{1}{4}h + \frac{1}{8}h^2.$$

Here the right-hand side is written as a linear combination of elements in standard PBW basis. Note that $fe \notin k[h]$, and hence $\Omega_{Kil} \notin \operatorname{Sym}(\mathfrak{t}) = k[h]$.

Alternative Solution. (1) Let y_1, \ldots, y_n be another basis of \mathfrak{g} and y_1^*, \ldots, y_n^* be its dual basis. Then there are invertible matrices $A = (a_{ij}), B = (b_{ij}) \in \mathcal{M}_n(k)$ such that

$$x_i = \sum_{j=1}^n a_{ij} y_j, \quad x_i^* = \sum_{j=1}^n b_{ij} y_j^*.$$

Since κ is a bilinear form, $\kappa(x_i, x_j^*) = \kappa(\sum_k a_{ik}y_k, \sum_l b_{jl}y_l^*) = \sum_{k,l} a_{ik}b_{jl} \cdot \kappa(y_k, y_l^*)$. On the other hand, by definition we have $\kappa(x_i, x_j^*) = \kappa(y_i, y_j^*) = \delta_{ij}$, where δ_{ij} is the Kronecker symbol.

²Here the negative sign has various explanation: from the point of view of lie algebra, $\exp(-x) = \exp(x)^{-1}$; from the isomorphism $\mathfrak{gl}(V) = \mathfrak{gl}(V^*)^{\mathrm{op}}$; it is the unique action such that $k \to V \otimes V^*$ and $V \otimes V^* \to k$ are \mathfrak{g} -linear, where k is the trivial \mathfrak{g} -module.

It follows that $\delta_{ij} = \sum_{k,l} a_{ik} b_{jl} \cdot \delta_{kl} = \sum_{k} a_{ik} b_{jk}$. Changing the indices of the sum, this is equivalent to

$$\delta_{kl} = \sum_{i=1}^{n} a_{ik} b_{il}.$$

Therefore, to show the independence of the choice of basis, we have

$$\sum_{i=1}^{n} x_i \cdot x_i^* = \sum_{1 \le i, k, l \le n} a_{ik} y_k \cdot b_{il} y_l^* = \sum_{1 \le k, l \le n} \delta_{kl} (y_k \cdot y_l^*) = \sum_{k=1}^{n} y_k \cdot y_k^*.$$

Now it remains to check $\Omega_{\kappa} \in Z(\mathfrak{g})$, and it suffices to show Ω_{κ} commutes with any element in $U(\mathfrak{g})$. By definition of the universal enveloping algebra, it further suffices to show Ω_{κ} commutes with any $y \in \mathfrak{g}$. For this, as x_1, \ldots, x_n is a chosen basis of \mathfrak{g} , we may assume $y = x_i$ and compute

$$x_{i}\Omega_{\kappa} - \Omega_{\kappa}x_{i} = \sum_{j=1}^{n} x_{i}(x_{j} \cdot x_{j}^{*}) - (x_{j} \cdot x_{j}^{*})x_{i}$$
$$= \sum_{j=1}^{n} [x_{i}, x_{j}] \cdot x_{j}^{*} + x_{j} \cdot [x_{i}, x_{j}^{*}].$$

For this to be 0, from the assumption on κ we have that $\kappa([x_i, x_j], x_i^*) + \kappa(x_j, [x_i, x_j^*]) = 0$. So the desired result follows.

(2) The same as in the first solution.

Problem 2.3 (Lecture 4, Exercise 31). Let $\mathfrak{g} = \mathfrak{sl}_2$. Prove $Z(\mathfrak{sl}_2) \simeq k[\Omega_{\mathsf{Kil}}]$ where Ω_{Kil} is the Casimir element. (You can use [Lecture 4, Theorem 26] for this exercise.)

Solution. In Problem 2.2(2) we have proved that $\Omega_{\mathsf{Kil}} \notin \mathrm{Sym}(\mathfrak{t})$. However, in this problem Ω_{Kil} denotes (by abuse of notation) the image of $\Omega_{\mathsf{Kil}} \in Z(\mathfrak{sl}_2)$ in Problem 2.2(2) along the map $U(\mathfrak{sl}_2) \twoheadrightarrow \mathrm{Sym}(\mathfrak{t})$ in Problem 2.1 restricted to $Z(\mathfrak{sl}_2)$. Thus, combining the results before we deduce $k[\Omega_{\mathsf{Kil}}] = k[(h+h^2/2)/4] = k[2h+h^2]$. Also recall the Harish-Chandra isomorphism

$$Z(\mathfrak{g}) \simeq \operatorname{Sym}(\mathfrak{t})^{W_{\bullet}}.$$

It together with the fact that $\operatorname{Sym}(\mathfrak{t})=k[h]$ for $\mathfrak{g}=\mathfrak{sl}_2$ reduces the proof to showing the set-theoretical equality

$$k[2h + h^2] = k[h]^{W_{\bullet}}.$$

We know the W_{\bullet} -action on k[h] is given by $h \mapsto -h-2$. It follows for $f(h) \in k[h]$ that if $f(h) \in k[h]^{W_{\bullet}}$ then f(h) = f(-h-2), and in particular f(0) = f(-2), implying that f is generated by a polynomial in h that simultaneously vanishes at 0 and -2, namely $2h + h^2$; therefore, $k[h]^{W_{\bullet}} \subset k[2h + h^2]$. Finally, the converse inclusion $k[h]^{W_{\bullet}} \supset k[2h + h^2]$ is clear because $2h + h^2 = 2(-h-2) + (-h-2)^2$. This completes the proof.

Problem 2.4 (Lecture 5, Exercise 13). Prove: the adjoint \mathfrak{g} -action on $U(\mathfrak{g})$, i.e.,

$$\mathfrak{g} \times U(\mathfrak{g}) \longrightarrow U(\mathfrak{g}), \quad (x, u) \longmapsto \mathrm{ad}_x(u) = [x, u],$$

preserves each $\mathsf{F}^{\leqslant n}U(\mathfrak{g})$, and the induced \mathfrak{g} -action on $\operatorname{gr}^{\bullet}(U(\mathfrak{g})) \simeq \operatorname{Sym}(\mathfrak{g})$ is the adjoint action in [Lecture 5, Construction 11].

Solution. Since $U(\mathfrak{g})$ is the quotient of $\bigoplus_{n\geqslant 0}\mathfrak{g}^{\otimes n}$, each $\mathsf{F}^{\leqslant n}U(\mathfrak{g})$ contains elements generated by elements in \mathfrak{g} of degree at most n; namely, each $u\in \mathsf{F}^{\leqslant n}U(\mathfrak{g})$ is of form $u=\sum_i a_i\cdot u_{i1}\cdots u_{in_i}$ for some $1\leqslant n_i\leqslant n$. Without loss of generality we may assume $u=u_1\cdots u_m\in \mathsf{F}^{\leqslant n}U(\mathfrak{g})$ for

some $1 \leq m \leq n$ with $u_i \in \mathfrak{g}$. Then for $x \in \mathfrak{g}$,

$$\operatorname{ad}_{x}(u) = x \cdot u - \sum_{i=1}^{m-1} u_{1} \cdots u_{i} \cdot x \cdot u_{i+1} \cdots u_{m} + \sum_{i=1}^{m-1} u_{1} \cdots u_{i} \cdot x \cdot u_{i+1} \cdots u_{m} - u \cdot x$$
$$= \sum_{i=1}^{m} u_{1} \cdots u_{i-1} \cdot [x, u_{i}] \cdot u_{i+1} \cdots u_{m}.$$

Given this, note that for $u_i \in \mathfrak{g}$ we have $[x, u_i] \in \mathfrak{g}$; it then follows that $\mathrm{ad}_x(u) \in \mathsf{F}^{\leq n}U(\mathfrak{g})$. Thus the filtration of $U(\mathfrak{g})$ is preserved by the adjoint \mathfrak{g} -action.

By PBW theorem the image of $u_1 \cdots u_m \in U(\mathfrak{g})$ in $\operatorname{gr}^{\bullet} U(\mathfrak{g})$ is $u_1 \otimes \cdots \otimes u_m$. From the formula of $\operatorname{ad}_x(u)$ above, we see under the induced \mathfrak{g} -action by $x \in \mathfrak{g}$ on $\operatorname{Sym}(\mathfrak{g})$, we have

$$(x, u_1 \otimes \cdots \otimes u_m) \longmapsto \sum_{i=1}^m u_1 \otimes \cdots \otimes u_{i-1} \otimes (x \cdot u_i) \otimes u_{i+1} \otimes \cdots u_m.$$

This is the same as [Lecture 5, Construction 11].

Problem 2.5 (Lecture 5, Exercise 23). Let $\lambda \in P^+$ be a dominant integral weight and $n \ge 0$. Prove there exist scalars $c_{\lambda'} \in k$, $\lambda' \prec \lambda$, such that

$$\phi_{\rm cl}(a_{\lambda,n}) = a_{\lambda,n}|_{\mathfrak{t}} = \frac{1}{\#{\rm Stab}_W(\lambda)} b_{\lambda,n} + \sum_{\lambda' \prec \lambda} c_{\lambda'} b_{\lambda',n},$$

where $\operatorname{Stab}_W(\lambda) \subset W$ is the stabilizer of the W-action at λ .

Solution. Let L_{λ} be the unique finite-dimensional irreducible \mathfrak{g} -module with highest weight λ . Denote by $\operatorname{wt}(L_{\lambda})$ the set of all weights of L_{λ} . For any $x \in \mathfrak{t}$, from the definition we have

$$a_{\lambda,n}(x) = \operatorname{tr}(x^n; L_{\lambda}) = \sum_{\mu \in \operatorname{wt}(L_{\lambda})} \dim(L_{\lambda})_{\mu} \cdot \mu^n(x).$$

Consider the group action of W on $\operatorname{wt}(L_{\lambda})^3$ with finitely many orbits $W\lambda_0, W\lambda_1, \ldots, W\lambda_s$, where $\lambda_0 = \lambda$. Since λ is dominant, each $\lambda' \in \operatorname{wt}(L_{\lambda})$ satisfies $\lambda' \prec \lambda$. Thus,

$$\alpha_{\lambda,n}(x) = \sum_{\mu \in \text{wt}(L_{\lambda})} \dim(L_{\lambda})_{\mu} \cdot \mu^{n}(x)$$

$$= \sum_{i=0}^{s} \sum_{\mu \in W\lambda_{i}} \dim(L_{\lambda})_{\lambda_{i}} \cdot \mu^{n}(x)$$

$$= \sum_{i=0}^{s} \frac{1}{\# \text{Stab}_{W}(\lambda_{i})} \sum_{w \in W} \dim(L_{\lambda})_{\lambda_{i}} \cdot (w\lambda_{i})^{n}(x)$$

$$= \frac{1}{\# \text{Stab}_{W}(\lambda)} b_{\lambda,n}(x) + \sum_{\lambda' \in \lambda} c_{\lambda'} b_{\lambda',n}(x)$$

for some scalars $c_{\lambda'} \in k$. Here $b_{\lambda,n} := \sum_{w \in W} w(\lambda^n)$, and the last equality is because $w\lambda_i \prec \lambda$ for $\lambda_i \neq \lambda$ and each $\lambda' \prec \lambda$ has the form $w\lambda_i$ for some w and some i > 0.

³The action of W on $\operatorname{wt}(L_{\lambda})$ can be realized as follows. As a \mathfrak{g} -module, L is G_{sc} -integrable as it is finite-dimensional (in our case $G = G_{\operatorname{sc}}$); this induces the action of $N_T(G)$ on L. On the other hand, corresponding to the action of t, the action of T on L preserves all weight spaces, and in particular preserves the highest weight space L_{λ} . It follows that $W := N_T(G)/T$ acts on $\operatorname{wt}(L)$, and thus on $\operatorname{wt}(L_{\lambda})$.