ST2132

AY23/24 SEM 1

github/jovyntls

01. PROBABILITY

- probability of an event → the limiting relative frequency of its occurrence as the experiment is repeated many times
- the **realisation** x is a constant, and X is a generator
 - running r experiments gives us r realisations x_1,\ldots,x_r

Expectation

discrete: (mass function) $E(X) := \sum_{i=1}^{n} x_i p_i$

continuous:

(density function)
$$E(X) := \int_{-\infty}^{\infty} x f(x) dx$$

expectation of a function h(X)

$$E\{h(X)\} = \begin{cases} \sum_{i=1}^n h(x_i) p_i & X \text{ is discrete} \\ \int_{-\infty}^\infty h(x) f(x) \, dx & X \text{ is continuous} \end{cases}$$

Variance

variance,
$$\mathrm{var}(X) := E\{(X-\mu)^2\}$$
 standard deviation, $SD(X) := \sqrt{\mathrm{var}(X)}$

- $var(X) = E(X^2) E(X)^2$
- $E(X \mu) = 0$

Law of Large Numbers

mean and variance of r realisations:

$$\bar{x} := \frac{1}{r} \sum_{i=1}^{r} x_i$$
 $v := \frac{1}{r} \sum_{i=1}^{r} (x_i - \bar{x})^2$

LLN: for a function h, as $r \to \infty$.

$$\frac{1}{r} \sum_{i=1}^{r} h(x_i) \to E\{h(X)\}\$$

$$\bar{x} \to E(X), \quad v \to \text{var}(X)$$

Monte Carlo approximation

simulate x_1, \ldots, x_r from X. by LLN, as $r \to \infty$, the approximation becomes exact

$$E\{h(X)\} \approx \frac{1}{r} \sum_{i=1}^{r} h(x_i)$$

Joint Distribution

(discrete) mass function:

$$P(X = x_i, Y = y_j) = p_{ij}$$

(continuous) density function:

$$f: \mathbb{R}^2 \to [0, \infty), \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

(expectation) for $h: \mathbb{R}^2 \to \mathbb{R}$,

$$E\{h(X,Y)\} = \sum_{i=1}^{J} h(x_i, y_i) n_{i,i}$$

 $\begin{cases} \sum_{i=1}^{I} \sum_{j=1}^{J} h(x_i, y_j) p_{ij} & X \text{ is discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f(x, y) \, dx \, dy & Y \text{ is continuous} \end{cases}$

Algebra of RV's

let X, Y be RVs and a, b, c be constants

- Z = aX + bY + c is also an RV
 - z = ax + by + c is a realisation of Z
- linearity of expectation: E(Z) = aE(X) + bE(Y) + c
- · any theorem about a RV is true about a constant

Covariance

let $\mu_X = E(X), \mu_Y = E(Y)$.

covariance,
$$cov(X, Y) = E\{(X - \mu_X)(Y - \mu_Y)\}$$

- $cov(X, Y) = E(XY) \mu_X \mu_Y$
- cov(X, Y) = cov(Y, X)
- cov(X, X) = var(X)
- cov(W, aX + bY + c) = a cov(W, X) + b cov(W, Y)
- var(aX + bY + c) =
- $a^2 \operatorname{var}(X) + b^2 \operatorname{var}(Y) + 2ab \operatorname{cov}(X, Y)$
- $\operatorname{var}(\sum_{i=1}^{N} a_i X_i) = \sum_{i=1}^{N} a_i^2 \operatorname{var}(X_i) + 2 \sum_{1 \le i < j \le N} a_i a_j \operatorname{cov}(X_i, X_j)$

ioint = marginal \times conditional distributions

$$f(x,y) = f_X(x)f_Y(y|x)$$

= $f_Y(y)f_X(x|y), \quad x, y \in \mathbb{R}$

- f(x, y) is the joint density
- $f_X(x), f_Y(y)$ are the marginal densities
- $f_Y(\cdot|x)$ is the **conditional** density of Y given X=x
- $f_X(\cdot|y)$ is the **conditional** density of X given Y=y
- for discrete case, density \equiv probability, $x \equiv x_i, y \equiv y_i$

Independence

- X, Y are independent $\iff \forall x, y \in \mathbb{R}$,
 - 1. $f(x,y) = f_X(x) f_Y(y)$
 - 2. $f_Y(y|x) = f_Y(y)$
- 3. $f_X(x|y) = f_Y(x)$
- X, Y are independent \Rightarrow
 - E(XY) = E(X)E(Y)
 - cov(X, Y) = 0

(the converse does not hold)

Conditional expectation

discrete case

let $f_Y(\cdot|x_i)$ be the conditional pmf of Y given $X = x_i$.

$$E[Y|x_i] := \sum_{j=1}^J y_j f_Y(y_j|x_i)$$

$$var[Y|x_i] := \sum_{i=1}^{J} (y_j - E[Y|x_i])^2 f_Y(y_j|x_i)$$

 $E[Y|x_i]$ is like E(Y), with conditional distribution replacing marginal distribution $f_Y(\cdot)$. likewise, $var[Y|x_i]$ like var(Y).

continuous case

$$E[Y|x] := \int_{-\infty}^{\infty} y f_Y(y|x) \, dy$$

$$var[Y|x] := \int_{-\infty}^{\infty} (y - E[Y|x])^2 f_Y(y|x) \, dy$$
$$= E(Y^2|x) - \{E(Y|x)\}^2$$

Distributions

if X is iid with expectation μ , SD σ and $S_n = \sum_{i=1}^n X_i$,

- $E(S_n) = n\mu$
- $SD(S_n) = \sqrt{n}\sigma$
- · variance of sum = sum of variances $\operatorname{var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{var}(x_i)$

bernoulli

 $X \sim Bernoulli(p) \Rightarrow coin flip with probability p$

$$E(X_i) = p$$
 $\operatorname{var}(X_i) = p(1-p)$
 $E(S_n) = np$ $\operatorname{var}(S_n) = np(1-p)$

binomial

$$X \sim Bin(n, p) \Rightarrow X_i \stackrel{i.i.d.}{\sim} Bernoulli(p)$$

$$E(X) = np, \quad \text{var}(X) = np(1 - p)$$

$$E(X) = \sum_{k=1}^{n} k \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\text{cov}(X, n - X) = -\text{var}(X)$$

multinomial

 $X \sim Multinomial(n, \mathbf{p})$

• for k outcomes $E_1, \ldots, E_k, Pr(E_i) = p_i$. For some $1 \le i \le k$, E_i occurs X_i times in n runs.

 (X_1,\ldots,X_k) has the multinomial distribution:

$$Pr(X_1 = x_1, \dots, X_k = x_k) = \binom{n}{x_1, \dots, x_k} \prod_{i=1}^k p_i^{x_i}$$

- where $\binom{n}{x_1,\dots,x_k} = \frac{n!}{x_1!x_2!\dots x_k!}$
 - combinatorially, # of arrangements of x_1, \ldots, x_k
 - $\sum_{i=1}^n x_i = n, \quad x_i \geq 0$

$$E(X) = \begin{bmatrix} np_1 \\ np_2 \\ \vdots \\ np_k \end{bmatrix}, \quad var(X_i) = np_i(1 - p_i)$$

var(X) = covariance matrix M with

$$m_{ij} = \begin{cases} var(X_i) & \text{if } i = j \\ cov(X_i, X_j) & \text{if } i \neq j \end{cases}$$

- $cov(X_i, X_i) < 0$
- $X_i \sim Bin(n, p_i)$
- $X_i + X_i \sim Bin(n, p_i + p_j)$

02. PROBABILITY (2)

Mean Square Error (MSE)

$$MSE = E\{(Y - c)^2\}$$

predictina Y:

mean MSE

$$MSE = var(Y) + \{E(Y) - c\}^2$$

- $\min MSE = \text{var}(Y)$ when c = E(Y)
- Y and X are correlated:

$$MSE = var[Y|x] + \{E[Y|x] - c\}^{2}$$

$$MSE = E[(Y - c)^{2}|x] = E[\{Y - E(Y)\}^{2}|x]$$

• $\min MSE = \text{var}(Y|x)$ when c = E[Y|x]• if c = E(Y) instead of $E(Y|x) \Rightarrow$ the MSE increases

by $(E(Y|x) - E(Y))^2$

$$\frac{1}{n} \sum_{i=1}^{n} \text{var}[Y|x_i] \approx E\{\text{var}[Y|X]\}$$

random conditional expectations

let X, Y be r.v.s.

- E[Y|X] is a r.v. which takes value E[Y|x] with probability/density $f_X(x)$
- var[Y|X] is a r.v. which takes value var[Y|x] with probability/density $f_X(x)$

$$E(E[X_2|X_1]) = E(X_2)$$

$$var(E[X_2|X_1]) + E(var[X_2|X_1]) = var(X_2)$$

CDF (cumulative distribution function)

for r.v. X, let $F(x) = P(X \le x)$

• domain: \mathbb{R} ; codomain: [0,1]

$$F(x) = \int_{-\infty}^{\infty} f(x) \, dx$$

Standard Normal Distribution

$$Z \sim N(0,1)$$
 has density function $\phi(z) = rac{1}{\sqrt{2\pi}} \exp\{-rac{z^2}{2}\}, \quad -\infty < z < \infty$

$$E(Z) = 0$$
, $var(Z) = 1$

CDF,
$$\Phi(x) = P(Z \le x) = \int_{-\infty}^{x} \phi(z) dz$$

- $E(Z) = \int_{-\infty}^{\infty} z\phi(z) dz = 0$
 - $E(Z^2) = \int_{-\infty}^{\infty} z^2 \phi(z) dz = 1$
 - $E(Z^{2k+1}) = 0 \quad \forall k \in \mathbb{Z}_{\geq 0}$

general normal distribution

let $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\nu, \tau^2)$

standardisation: $\frac{X-\mu}{\sigma} \sim N(0,1)$

- · summations:
 - for constants $a, b \neq 0$.

$$a + bX \sim N(a + b\mu, b^2\sigma^2)$$

- $X + Y \sim N(\mu + \nu, \sigma^2 + \tau^2 + 2 \operatorname{cov}(X, Y))$
 - cov(X, Y) = 0, $\Rightarrow X \perp Y$
 - $X \perp Y \implies X + Y \sim N(\mu + \nu, \sigma^2 + \tau^2)$
- for W = a + bX,
 - density, $f_W(w) = \frac{d}{dw} F_W(w)$
 - CDF, $F_W(w) = P(X < \frac{w-a}{L}) = \Phi(\frac{w-a}{L})$

Central Limit Theorem

let X_1, \ldots, X_n be iid rv's with expectation μ and SD σ , with $S_n = \sum_{i=1}^n X_i$

as $n \to \infty$, the distribution of the standardised $S_n = \frac{S_n - n\mu}{\sqrt{n}\sigma}$ converges to N(0,1)

- $E(S_n) = n\mu$, $var(S_n) = n\sigma^2$
- for large n, approximately $S_n \sim N(n\mu, n\sigma^2)$

bernoulli

let $X_i \sim Bernoulli(p)$. then $S_n \sim Binom(n, p)$

- for large n, $S_n = N(np, np(1-p))$
- CLT: standardised $\frac{S_n-np}{\sqrt{n}\sqrt{p(1-p)}} \to N(0,1)$ as $n\to\infty$

Distributions

chi-square (χ^2)

let $Z \sim N(0,1)$. \Rightarrow then $Z^2 \sim \chi_1^2$

- Z^2 has χ^2 distribution with 1 degree of freedom
- degrees of freedom = number of RVs in the sum

$$E(Z^2) = 1, \quad E(Z^4) = 3$$

 $var(Z^2) = E(Z^4) - \{E(Z^2)\}^2 = 2$

let V_1,\ldots,V_n be iid χ_1^2 RVs and $V=\sum_{i=1}^n V_i$. then $V\sim\chi_n^2$ $E(V) = n \quad var(V) = 2n$

gamma

$$\begin{array}{l} \text{let } \alpha,\lambda>0. \text{ The } Gamma(\alpha,\lambda) \text{ density is} \\ \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x>0 \end{array}$$

where $\Gamma(\alpha)$ is a number that makes density integrate to 1

- $\chi_n^2 \text{ RV} \sim Gamma(\frac{n}{2}, \frac{1}{2})$

 - χ_n^2 is a special case of Gamma! density of χ_1^2 RV = $\frac{1}{\sqrt{2\pi}}v^{-1/2}e^{-v/2}, \quad v>0$
- $=Gamma(\frac{1}{2},\frac{1}{2})$ if $X_1\sim Gamma(\alpha_1,\lambda)$ and $X_2\sim Gamma(\alpha_2,\lambda)$ are independent, then $X_1 + X_2 \sim Gamma(\alpha_1 + \alpha_2, \lambda)$

t distribution

let $Z \sim N(0,1)$ and $V \sim \chi_n^2$ be independent.

$$\frac{Z}{\sqrt{V/n}} \sim t_n$$

has a t distribution with n degrees of freedom.

- t distribution is symmetric around 0
- $t_n \to Z$ as $n \to \infty$ (because $\stackrel{V}{=} \to 1$)

F distribution

let $V \sim \chi_m^2$ and $W \sim \chi_n^2$ be independent.

$$\frac{V/m}{W/n} \sim F_{m,n}$$

has an F distribution with (m, n) degrees of freedom.

- even if m=n, still two RVs V,W as they are independent
- for $T \sim t_n$, $T^2 = \frac{Z^2}{V/n} \sim F_{1,n}$

IID Random Variables

let X_1, \ldots, X_n be iid RVs with mean \bar{X} .

sample variance,
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$. $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. $\bar{X} \sim N(\mu, \frac{\sigma^2}{2})$

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{\sigma^2}{n}$$

more distributions:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

• \bar{X} and S^2 are independent

Multivariate Normal Distribution

let μ be a $k \times 1$ vector and Σ be a *positive-definite* symmetric $k \times k$ matrix.

the random vector $\mathbf{X} = (X_1, \dots, X_k)'$ has a multivariate normal distribution $N(\mu, \Sigma)$ if its density function is

$$\frac{1}{(2\pi)^{k/2}\sqrt{det}\boldsymbol{\Sigma}}\exp\left(-\frac{(\boldsymbol{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{2}\right)$$

- $E(X) = \mu$, $var(X) = \Sigma$
- for any non-zero $k \times 1$ vector \boldsymbol{a} ,

$$a'X \sim N(a'\mu, a'\Sigma a)$$

- $a'\Sigma a > 0$ because Σ is positive-definite
- the product a'X is a scalar (same for $a'\mu, a'\Sigma a$)
- two multinomial normal random vectors X_1 and X_2 . sizes h and k, are independent if $cov(\boldsymbol{X}_1, \boldsymbol{X}_2) = \boldsymbol{0}_{h \times k}$
- $(X_1 \bar{X}, \dots, X_n \bar{X})$ has a multivariate normal distribution; the covariance between \bar{X} and $(X_1 - \bar{X}, \dots, X_n - \bar{X})$ is 0, thus they are

03. POINT ESTIMATION

for a variable v in population N,

$$\mu = \frac{1}{N} \sum_{i=1}^{N} v_i$$
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (v_i - \mu)^2$

- μ , σ^2 are **parameters** (unknown constants)
- a simple random sample is used to estimate parameters: individuals drawn from the population at random without replacement

binary variable

for variable v with proportion p in the population,

$$\mu = p, \qquad \sigma^2 = p(1-p)$$

single random draw

for variable v (population of size N, mean μ , variance σ^2), let X be the chosen v-value.

$$E(X) = \mu, \quad \operatorname{var}(X) = \sigma^2$$

draws with replacement

let X_1, \ldots, X_n be random draws with replacement from a population of mean μ and variance σ^2 .

random sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

$$X_1, \dots, X_n$$
 are iid with $E(X_i) = \mu$, $\operatorname{var}(X_i) = \sigma^2$
$$E(\bar{X}) = \mu, \operatorname{var}(\bar{X}) = \frac{\sigma^2}{\pi}$$

let x_1, \ldots, x_n be realisations of n random draws with replacement from the population.

sample mean,
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- as $n \to \infty$, $\bar{x} \to \mu$ (LLN)
- sample distribution, x_i has the same distribution as X_i and the population distribution

representativeness

- X_1, \ldots, X_n is **representative** of the population
 - as n gets larger, \bar{X} gets closer to μ
- x_1, \ldots, x_n are *likely* representative of the population

estimating mean

given data x_1, \ldots, x_n ,

- sample mean, $\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i$ is an $\frac{\text{estimate}}{\text{estimate}}$ of μ the error in \bar{x} is $\mu-\bar{x}$; it cannot be estimated
- \bar{x} is a realisation of the **estimator** \bar{X}
 - this realisation is used to estimate μ

standard error

the size of error in estimate \bar{x} is roughly $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

the **standard error** (SE) in \bar{x} is $\frac{\sigma}{\sqrt{n}}$

• SE is a constant by definition: $SE = SD(\hat{X}) = \frac{\sigma}{\sqrt{2\pi}}$

estimating σ

intuitive estimate of σ^2 , $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ sample variance, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

nce,
$$s^2=rac{1}{n-1}\sum_{i=1}^n(x_i-ar{x})^2$$
 $E(s^2)=\sigma^2$

Point estimation of mean

a population (size N) has unknown mean μ , variance σ^2 . for random draws (without replacement) x_1, \ldots, x_n :

 \bar{x} is a realisation of \bar{X} , with $E(\bar{X}) = \mu$, $var(\bar{X}) = \frac{\sigma^2}{2}$

- μ is estimated as $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- error in \bar{x} is measured by the SE: $\frac{\sigma}{\sqrt{n}} = SD(\bar{X})$
- SE is estimated as $\frac{s}{\sqrt{n}}$ $\Rightarrow \mu$ is around \bar{x} , give or take $\frac{s}{\sqrt{z}}$

unbiased estimation

- since $E(\bar{X}) = \mu$, \bar{X} is an **unbiased** estimator of μ . \bar{x} is an unbiased estimate.
- S^2 is unbiased for σ^2 : $E(S^2) = \sigma^2$
- S is not unbiased for σ : $E(S) < \sigma$

Simple random sampling (SRS)

n random draws without replacement from a population of mean μ and variance σ^2 .

- for $i=1,\ldots,n, E(X_i)=\mu$ and $\operatorname{var}(X_i)=\sigma^2$
- for $i \neq j$, $cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$
- ullet if n/N is relatively large,
 - multiply SE by correction factor $\sqrt{\frac{N-n}{N-1}}$
 - standard error = $\frac{N-n}{N-1}$

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{N-n}{N-1} \frac{\sigma^2}{n}$$

• if $n \ll N$, then SRS is like sampling with replacement (treat the data as if they come from IID RVs X_1, \ldots, X_n)

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{\sigma^2}{n}$$

estimating proportion p

- in a 0-1 population, $\mu = p$, $\sigma^2 = p(1-p)$ • p is estimated as \bar{x} (sample proportion of 1's)
- $SE = \frac{\sqrt{p(1-p)}}{\sqrt{n}} = SD(\hat{p})$ estimated by replacing p with \bar{x}
- unbiased estimator \hat{p}

- $E(\hat{p}) = p$, $var(\hat{p}) = \frac{p(1-p)}{n}$, $SD(\hat{p}) = SE$
- the estimate of σ is $\hat{\sigma}$, not s
- e.g. if a SRS of size 100 has 78 white balls. $p \approx 0.78 \pm \frac{\sqrt{0.78 \times 0.22}}{\sqrt{100}}$

Gauss Model

Let x_i be a realisation of X_i . X_1, \ldots, X_{100} are random draws with replacement from an imaginary population with mean w and variance σ^2 . w and σ^2 are parameters (unknown constants).

- $E(X_i) = w$, $\operatorname{var} X_i = \sigma^2$ (since X_i is just 1 draw)
- $E(\bar{X}) = w$, $\operatorname{var} \bar{X} = \frac{\sigma^2}{100}$

04. ESTIMATION (SE. bias. MSE)

let x_1, \ldots, x_n be from random draws X_1, \ldots, X_n with replacement from a population of mean μ and variance σ^2 .

sample mean \bar{x} is an *unbiased estimate* of μ

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
SE = $\frac{\sigma}{\sqrt{n}} \approx \frac{s}{\sqrt{n}}$ tells us roughly how far \bar{x} is from μ sample variance, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

MSE and bias

suppose measurements were from a population with mean w+b where b is a constant: $x_i=w+b+\epsilon_i$

- $E(\bar{X}) = w + b$
- $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$
 - $SE = \frac{\bar{y}}{\sqrt{n}}$ measures how far \bar{x} is from w + b, not w
- if $b \neq 0$, then \bar{x} is a biased estimate for w

$$MSE = E\{(\bar{X} - w)^2\} = \frac{\sigma^2}{n} + b^2$$
$$MSE = SE^2 + bias^2$$

as $n \to \infty$. $MSE \to b^2$

conclusion

let θ be a parameter (constant) and $\hat{\theta}$ be an estimator (RV). $SE = SD(\hat{\theta})$, bias = $E(\hat{\theta}) - \theta$, $MSE = E\{(\hat{\theta} - \theta)^2 = SE^2 + bias^2\}$

05. INTERVAL ESTIMATION

let x_1, \ldots, x_n be realisations of IID RVs X_1, \ldots, X_n with unknown $\mu = E(X_i)$ and $\sigma^2 = \text{var}(X_i)$. sample mean, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ sample variance, $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$

standard error, $SE = \frac{s}{\sqrt{n}}$ **point estimation:** $\mu \approx \bar{x}$, give or take $\frac{s}{\sqrt{s}}$

interval estimation: interval contains μ with some confidence level

interval estimation works well if

- X_i has a normal distribution, for any n>1
- X_i has any other distribution but n is large

normal "upper-tail quantile" z_p

let $Z \sim N(0,1)$. for $0 , let <math>z_p$ be such that $p = \Pr(Z > z_n)$

- e.g. $z_{0.5} = 0$
- $z_p = (1-p)$ -quantile of Z
- for $0 , <math>\Pr(-z_p < Z < z_p) = 1 2p$

(case 1) normal distribution with known σ^2

assume X_1, \ldots, X_n are IID $\sim N(0,1)$ with known σ^2 . for $0 < \alpha < 1$, $\Pr(-z_{\frac{\alpha}{2}} \le Z \le z_{\frac{\alpha}{2}}) = 1 - \alpha$

confidence interval for μ : the random interval

$$\left(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right)$$
 contains μ with probability $1 - \alpha$,

and produces the realisation $(\bar{x} - z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}})$

- $1-\alpha$ is the confidence level
- Proof. since $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$,
 - $\Pr(-z_{\frac{\alpha}{2}} \leq \frac{\bar{X} \mu}{\sigma / \sqrt{n}} \leq z_{\frac{\alpha}{2}}) = 1 \alpha$
 - $\Pr(\bar{X} z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}}) \le \mu \le \bar{X} + z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}}) = 1 \alpha$

(case 2) normal distribution with unknown σ^2

assume X_1, \ldots, X_n are IID $\sim N(\mu, \sigma^2)$ with unknown σ^2 . replace σ with S:

for
$$0 , let $t_{p,n}$ be such that $\Pr(t_n > t_{p,n}) = p$$$

- $t_{p,n}$ is the upper p quartile of the t distribution with n degrees of freedom
 - e.g. $t_{0.1,5} = 1.48$ (using qt(0.9,5))
- as $n \to \infty$, $t_{n,p} \to z_p$
- $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$
- $\Pr(\bar{X} t_{\frac{\alpha}{2}, n-1}, \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{\frac{\alpha}{2}, n-1}, \frac{S}{\sqrt{n}})$

• data x_1, \ldots, x_n give realisations \bar{x} of \bar{X} and s of S, thus the random interval gives a $(1 - \alpha)$ -CI for μ :

$$\left(\bar{x} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}, \bar{x} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right)$$

(case 3) general distribution with unknown σ^2

IID X_1, \ldots, X_n with $E(X_i) = \mu$, $var(X_i) = \sigma^2$ unknown

- for large n, approximately $\frac{S_n n\mu}{\sqrt{n}\sigma} \sim N(0,1)$
- since $\frac{S_n n\mu}{\sqrt{n}\sigma} \sim N(0,1) = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$
 - $\Pr(-z_{\frac{\alpha}{2}} \leq \frac{\bar{X} \mu}{\sigma/\sqrt{\alpha}} \leq z_{\frac{\alpha}{2}}) \approx 1 \alpha$
 - $\Pr(\bar{X} z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{z}}) \le \mu \le \bar{X} + z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{z}}) \approx 1 \alpha$

for large n, the random interval

$$\left(\bar{X} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right)$$

contains μ with probability $\approx 1 - \alpha$

- data x_1, \ldots, x_n give realisations \bar{x} of \bar{X} and s of S.
- $(\bar{x} z_{\frac{\alpha}{2}}SE, \bar{x} + z_{\frac{\alpha}{2}}SE)$

is an approximate $(1-\alpha)$ -CI for μ .

- for SRS, multiply SE by correction factor $\sqrt{\frac{N-n}{N-1}}$ • contains μ with probability $< 1 - \alpha$
- probability $\rightarrow 1 \alpha$ as $n \rightarrow \infty$
- exception: for Bernoulli, $\sigma = \sqrt{p(1-p)}$ is not estimated by s, but by replacing p with the sample proportion

06. METHOD OF MOMENTS

modified notation of mass/density functions:

- bernoulli: $f(x|p) = p^x(1-p)^{1-x}, x = 0, 1$
- parameter space is (0, 1)
- poisson: $f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$ parameter space is R₊

parameter estimation

assuming data x_1, \ldots, x_n are realisations of IID RVs X_1, \ldots, X_n with mass/density function $f(x|\theta)$, where θ is unknown in parameter space Θ .

- 2 methods to estimate θ :
 - · method of moments (MOM)
 - · method of maximum likelihood (MLE)
- the estimate of θ is a realisation of an estimator $\hat{\theta}$
- SE is $SD(\hat{\theta})$
- bias is $E(\hat{\theta}) \theta$
- parameter space Θ : set of values that can be used to estimate the real parameter value θ

Moments of an RV

the k-th moment of an RV X is $\mu_k = E(X^k), \quad k = 1, 2, \dots$

estimating moments

let X_1, \ldots, X_n be IID with the same distribution as X.

the k-th sample moment is $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

- $E(\hat{\mu}_k) = \mu_k \implies$ unbiased estimator!
- $\hat{\mu}_k$ is an estimator of μ_k . For realisations x_1,\ldots,x_n , the realisation $\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k}$ is an *unbiased* estimate of μ_{k} .
- hat (^) means estimator (random variable)
 - note that this violates the uppercase=RV, lowercase=(fixed)realisation notation
 - $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

MOM: Poisson

assume x_1, \ldots, x_n are realisations of IID $Poisson(\lambda)$ RVs X_1, \ldots, X_n . Let λ be the mean number of emissions per 10 seconds (λ is a parameter).

- let $X \sim Poisson(\lambda)$. $\mu_1 = \lambda$. Estimate λ by estimating μ_1 using sample mean \bar{x} , which is an estimator of \bar{X} .
- the MOM estimator is $\lambda = \hat{\mu_1} = \bar{X}$
 - the random sample mean
- $\operatorname{var}(X) = \lambda$, $\operatorname{var}(\bar{X}) = \frac{\lambda}{n}$, SE = SD of estimator = $\sqrt{\frac{\lambda}{n}}$

$$\lambda \approx \bar{x} \pm \sqrt{\frac{\lambda}{n}}$$

MOM: Bernoulli

Assume X_1, \ldots, X_n are iid Bernoulli(p) RVs. Finding MOM estimator of p:

- let $X \sim Bernoulli(p)$. $\Rightarrow \mu_1 = p$
- MOM estimator, $\hat{p} = \hat{\mu_1} = \bar{X}$
- · random sample proportion of 1's
- SE = SD of estimator = $\sqrt{\operatorname{var}(\hat{p})} = \sqrt{\frac{p(1-p)}{p(1-p)}}$

MOM: Normal

let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$ with parameters μ, σ^2 for $X \sim N(\mu, \sigma^2)$: parameter space, $\Theta = \mathbb{R} \times \mathbb{R}_+$

1. $\mu_1 = \mu$, $\mu_2 = \sigma^2 + \mu^2$

2. express $\mu = \mu_1$; $\sigma^2 = \mu_2 - \mu_1^2$; then add hats

3. MOM estimators:

$$\hat{\mu} = \bar{X}$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$

(to construct CI for σ^2 : use $S^2 \Rightarrow \text{since } E(S^2) = \sigma^2$)

MOM: Geometric

let x_1, \ldots, x_n be realisations of IID Geometric(p) RVs X_1, \ldots, X_n with expectation 1/p.

- for $X \sim Geometric(p) \Rightarrow E(X) = \frac{1}{n}$
 - $\Pr(X = i) = p(1 p)^{i-1} \text{ for } i = 1, 2, \dots$ $E(X) = \sum_{i=1}^{\infty} ip(1 p)^{i-1} = \frac{1}{p}$
- $\mu_1 = \frac{1}{p} \quad \Rightarrow p = \frac{1}{\mu_1} \quad \Rightarrow \hat{p} = \frac{1}{X}$
- MOM estimator, $\hat{p} = \frac{1}{\hat{y}}$
 - then MOM estimate $=\frac{1}{2}$
- SE = $SD(1/\bar{X})$ ⇒ use monte carlo to approximate

MOM: Gamma

let X_1, \ldots, X_n be iid $Gamma(\alpha, \lambda)$ RVs with shape parameter $\alpha > 0$, rate parameter $\lambda > 0$

- $X \sim Gamma(\alpha, \lambda)$, $E(X) = \frac{\alpha}{\lambda}$, $E(X^2) = \frac{\alpha(\alpha+1)}{\lambda^2}$
- express parameters in terms of moments: $\mu_1 = \frac{\alpha}{\lambda}, \ \mu_2 - \mu_1^2 = \frac{\alpha}{\lambda^2} \quad \Rightarrow \lambda = \frac{\mu_1}{\mu_2 - \mu_1^2}, \alpha = \lambda \mu_1$
- MOM estimators: $\hat{\alpha} = \frac{\bar{X}^2}{\hat{\alpha}^2}, \ \hat{\lambda} = \frac{\bar{X}}{\hat{\alpha}^2}$

MOM estimators are consistent

let X_1, \ldots, X_n be iid with mass/density $f(x|\theta)$, where

Suppose $\theta = q(\mu_1)$ for some *continuous* function q. Then the MOM estimator is **consistent** (approaches θ with

- the MOM estimator is $\hat{\theta} = q(\hat{\mu}_1)$. as $n \to \infty$, $\hat{\mu}_1 \to \mu_1$
- since q is continuous, $\hat{\theta} \rightarrow q(\mu_1) = \theta$
- asymptotic unbiasedness: $E(\hat{\theta}) \rightarrow \theta$

07. MLE

MOM: works through estimating moments - if no formula is available for $SD(\hat{\theta})$ or $E(\hat{\theta})$, monte carlo can be used MLE: another estimation method

Likelihood function

let x_1, \ldots, x_n be realisations of iid rvs X_1, \ldots, X_n with density $f(x|\theta), \ \theta \in \Theta \subset \mathbb{R}^k$.

$$\begin{array}{l} \text{likelihood function } L:\Theta \to \mathbb{R}_+ \text{ is} \\ L(\theta) = f(x_1|\theta) \times \cdots \times f(x_n|\theta) = \prod_{i=1}^n f(x_i|\theta) \\ \text{loglikelihood function} \ \ell:\Theta \to \mathbb{R} \text{ is} \\ \ell(\theta) = \log L(\theta) = \sum_{i=1}^n \log f(x_i|\theta) \end{array}$$

Maximum Likelihood Estimation (MLE)

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$

- maximiser of $L \to \text{the maximum likelihood estimate of } \theta$ (a realisation of the MLEstimator $\hat{\theta}$)
- maximiser of loglikelihood $\ell = \log L$ over Θ

poisson (log)likelihood/MLE

 $Poisson(\lambda): f(x|\lambda) = \frac{\lambda^2 e^{-\lambda}}{x!}, \; x=0,1,2,\ldots$ • let x_1,\ldots,x_n be realisations of iid Poisson(λ) RVs X_1, \ldots, X_n the joint probability of data is

$$f(x_1|\lambda) \times \cdots \times f(x_n|\lambda) = \frac{\lambda \sum_{i=1}^n x_i e^{-n\lambda}}{x_1! \dots x_n!}$$
• likelihood: probability as a function of only λ

 $L(\lambda) = \frac{\lambda^{\sum_{i=1}^{n} x_i} e^{-n\lambda}}{n}$ • we can leave out constant factors:

- $L(\lambda) = \lambda \sum_{i=1}^{n} x_i e^{n\lambda}$
- · loalikelihood:

 $\begin{array}{l} \ell(\lambda) = (\sum_{i=1}^n x_i) \log \lambda - n\lambda - \sum_{i=1}^n \log(x_i!) \\ \bullet \text{ leaving out additive constants:} \end{array}$

$$\ell(\lambda) = (\sum_{i=1}^{n} x_i) \log \lambda - n\lambda$$

- MLE of $\lambda = \bar{x}$ (maximiser of $L(\lambda)$)
 - differentiate $\ell(\lambda)$: $\ell'(\lambda) = \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i} n$
 - $\ell'(\lambda) = 0 \Rightarrow \lambda = \bar{x}$
 - $\ell''(\lambda) < 0$ (thus max point)

normal (log)likelihood/MLE

 $N(\mu, \sigma^2)$: for $x \in \mathbb{R}$,

$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = (2\pi)^{\frac{1}{2}} \sigma^{-1} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• let x_1, \ldots, x_n be realisations of iid $N(\mu, \sigma)$ RVs

 X_1, \ldots, X_n . the joint probability of data is

 $f(x_1|\lambda) \times \cdots \times f(x_n|\lambda) = \frac{\lambda^{\sum_{i=1}^n x_i} e^{-n\lambda}}{x_1! \dots x_n!}$ • **likelihood** function: joint density as a function of (μ, σ)

$$L(\mu, \sigma) = f(x_1 | \mu, \sigma) \times \dots \times f(x_n | \mu, \sigma)$$
$$= (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\frac{1}{2}\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

· loglikelihood:

loglikelihood:
$$\ell(\mu,\sigma) = -\frac{n}{2}\log(2\pi) - n\log\sigma - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i - \mu)^2$$

· MLE:

- MLE of $\mu=\bar{x}$ • MLE of $\sigma = \hat{\sigma} = \sqrt{\frac{1}{\pi} \sum_{i=1}^{n} (x_i - \bar{x})^2}$

Gamma distribution

 $Gamma(\alpha, \lambda): f(x|\alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x > 0$

- log of density: $\alpha \log \lambda \log \Gamma(\alpha) + (\alpha 1) \log x \lambda x$
- · loglikelihood:

$$n\alpha \log \lambda - n \log \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \log x_i - \lambda \sum_{i=1}^{n} x_i$$

• if α is known, then $\ell(\lambda) = n\alpha \log \lambda - \lambda \sum_{i=1}^n x_i$ • differentiate \Rightarrow the ML estimates of (α, λ) satisfy

$$\log(\frac{\alpha}{\bar{x}}) - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \bar{y} = 0, \quad \lambda = \frac{\alpha}{\bar{x}} \quad \text{where}$$

$$\bar{y} = \frac{1}{\pi} \sum_{i=1}^{n} \log x_{i}$$

• the **ML estimators** $(\hat{\alpha}, \hat{\lambda})$ satisfy

$$\log(\frac{\alpha}{X}) - \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \bar{Y} = 0, \ \lambda = \frac{\alpha}{X}$$

$$\cdot \log(\frac{\hat{\alpha}}{X}) - \frac{\Gamma'(\hat{\alpha})}{\Gamma(\hat{\alpha})} + \bar{Y} = 0, \ \hat{\lambda} = \frac{\hat{\alpha}}{X}$$

ML vs MOM

- · MOM estimates can always be written in terms of the data (sample moments)
- ML uses *
- ML has better (smaller) SE and bias than MOM
- ML estimates are functions of \bar{x} and \bar{y} . MOM never uses \bar{y}

Kullback-Liebler divergence (KL)

let $\mathbf{q} = (q_1, \dots, q_k)$ and $\mathbf{p} = (p_1, \dots, p_k)$ be strictly positive probability vectors.

the **KL divergence** between q and p is

$$d_{KL}(\mathbf{q}, \mathbf{p}) = \sum_{i=1}^{k} q_i \log(\frac{q_i}{p_i})$$

- $d_{KL}(\mathbf{q}, \mathbf{p}) \ge 0$ (equality $\iff \mathbf{q} = \mathbf{p}$)
- $d_{KL}(\mathbf{q}, \mathbf{p}) \neq d_{KL}(\mathbf{p}, \mathbf{q})$

Multinomial

let (x_1, \ldots, x_n) be strictly positive realisations from $(X_1,\ldots,X_n) \sim Multinomial(n,\mathbf{p}).$

- $L(\mathbf{p}) = \Pr(X_1 = x_1, \dots, X_k = x_k) = cp_1^{x_1} \dots p_k^{x_k}$ $=p_1^{x_1}\dots p_k^{x_k}$ (simplified)
- $\ell(\mathbf{p}) = x_1 \log p_1 + \dots + x_k \log p_k$
- maximising ℓ via KL divergence
 - if x is from $X \sim Binom(n, p)$, the MOM and ML estimates are both $\hat{p} = \frac{x}{z}$
 - the MOM estimate of p_i is $q_i = \frac{x_i}{z_i}$.

$$\begin{array}{l} \text{for any } \mathbf{p}, \\ \ell(\mathbf{q}) - \ell(\mathbf{p}) = \sum_{i=1}^k x_i \log q_i - \sum_{i=1}^k x_i \log p_i \\ = n \, d_{KL}(\mathbf{q}, \mathbf{p}) \geq 0 \\ \bullet \, \ell(\mathbf{q}) - \ell(\mathbf{p}) = 0 \iff \mathbf{p} = \mathbf{q} \end{array}$$

Hardy-Weinberg equilibrium (HWE)

let θ be the proportion of a.

the population is in **HWE** if

$$f(aa) = \theta^2$$
, $f(aA) = 2\theta(1 - \theta)$, $f(AA) = (1 - \theta)^2$

- (e.g. genotypes) Under HWE, the number of a alleles in an individual has a $Binom(2, \theta)$ distribution
 - for n randomly chosen people, number of a alleles $(AA, Aa, aa) \sim Multinomial(n, \theta)$

Multinomial ML estimation

for
$$(X_1, X_2, X_3) \sim Multinomial(n, \mathbf{p})$$

where $p_1 = (1 - \theta)^2$, $p_2 = 2\theta(1 - \theta)$, $p_3 = \theta^2$
• $L(\theta) = (1 - \theta)^{2x_1} 2^{x_2} \theta^{x_2} (1 - \theta)^{x_2} \theta^{2x_3}$

- $=2^{x_2}(1-\theta)^{2x_1+x_2}\hat{\theta}^{x_2+2x_3}$
- $\ell(\theta) = x_2 \log 2 + (2x_1 + x_2) \log(1 \theta) + (x_2 + 2x_3) \log \theta$
- ML estimator: $\hat{\theta} = \frac{X_2 + 2X_3}{2}$
- SE estimation: $\sqrt{\frac{\theta(1-\theta)}{2n}}$
 - $X_2 + 2X_3$ is the number of a alleles: $Binom(2n, \theta)$ $\Rightarrow \operatorname{var}(\hat{\theta}) = \frac{\theta(1-\theta)}{2n}$

08. LARGE-SAMPLE DISTRIBUTION OF MLEs

let X_1, \ldots, X_n be iid Geometric(0.5) RVs, with mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

by CLT, \bar{X}_n and $\frac{1}{\bar{X}}$ have a normal distribution.

asymptotic normality of ML estimator

let $\hat{\theta}_n$ be the ML estimator of $\theta \in \Theta \subset \mathbb{R}$, based on iid RVs X_1, \ldots, X_n with density $f(x|\theta)$.

for large n, the distribution of $\hat{\theta}_n$ is approximately

 $N(\theta,\frac{\mathcal{I}(\theta)^{-1}}{n})$ where $\mathcal{I}(\theta)$ is the Fisher information derived from $f(x|\theta)$

- $\hat{\theta}_n$ is asymptotically unbiased (like MOM)
 - $E(\hat{\theta}_n) \neq \theta$ (biased)

Fisher Information

let X have density $f(x|\theta)$, $\theta \in \Theta \subset \mathbb{R}^p$.

the **Fisher information** is the $p \times p$ matrix

$$\mathcal{I}(\theta) = -E\left[\frac{d^2 \log f(X|\theta)}{d\theta^2}\right]$$

- $\mathcal{I}(\theta)$ is symmetric, with (ij)-entry $-E\left[\frac{\delta^2 \log f(X|\theta)}{\delta \theta_i \delta \theta_i}\right]$
- $\mathcal{I}(\theta)$ measures the information about θ in one sample X.

Asymptotic normality: Bernoulli

 $X \sim Bernoulli(p): f(x|p) = p^{x}(1-p)^{1-x}, x = 0, 1$

- Fisher information
- $\log f(X|p) = X \log p + (1-X) \log(1-p)$ differentiate $\frac{d}{dp}$: $\frac{X}{p} \frac{1-X}{1-p}$
- differentiate $\frac{d^2}{dp^2}$: $-\frac{X}{p^2} \frac{1-X}{(1-p)^2}$
- $\mathcal{I}(p) = -E(\frac{d^2 \log f(X|p)}{dp^2}) = \frac{1}{p(1-p)}$
 - minimised at p=0.5

Asymptotic normality

for X_1, \ldots, X_n iid Bernoulli(p) RVs, Fisher information in each X_i : $\mathcal{I}(p) = \frac{1}{n(1-n)}$

- ML estimator $\hat{p} = \bar{X}$
- for large $n, \hat{p} \approx N\left(p, \frac{p(1-p)}{r}\right)$
 - $E(\hat{p}) = p$, $var(\hat{p}) = \frac{p(1-p)}{p}$

Asymptotic normality: Geometric

 $X \sim Geometric(p): f(x|p) = p(1-p)^{1-x}$

Fisher information

- $\log f(X|p) = \log p + (X-1)\log(1-p)$ differentiate $\frac{d}{dp}$: $\frac{1}{p} \frac{X-1}{1-p}$
- differentiate $\frac{d^2}{dn^2}$: $-\frac{1}{n^2} \frac{X-1}{(1-n)^2}$
- $\mathcal{I}(p) = -E(\frac{d^2 \log f(X|p)}{dn^2}) = \frac{1}{p(1-p)} + \frac{1}{p^2} = \frac{1}{p^2(1-p)}$

Asymptotic normality

for X_1, \ldots, X_n iid Geometric(p) RVs,

Fisher information in each X_i , $\mathcal{I}(p) = \frac{1}{n^2(1-p)}$

- ML estimator $\hat{p} = \frac{1}{V}$
- for large $n, \hat{p} \approx N\left(p, \frac{p^2(1-p)}{n}\right)$
 - $E(\hat{p}) > p$ since $E(\hat{p}) = E(\frac{1}{X}) > \frac{1}{E(X)} = p$
 - likely $var(\hat{p}) \neq \frac{p^2(1-p)}{p^2}$

Asymptotic normality: Normal

Fisher information

$$X \sim N(\mu, \sigma^2), \theta = (\mu, \sigma).$$

$$f(x|p) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \quad x \in \mathbb{R}$$

•
$$\log f(X|p) = \frac{1}{2} \log 2\pi - \log \sigma - \frac{(x-\mu)^2}{2\sigma^2 n}$$

= $c - \log \sigma - \frac{(X-\mu)^2}{2\sigma^2 n}$

- differentiate $\frac{d}{dn}$: $\frac{\delta}{\delta u} = \frac{X \mu}{\sigma^2}$, $\frac{\delta}{\delta \sigma} = -\frac{1}{\sigma} + \frac{(X \mu)^2}{\sigma^3}$
- differentiate $\frac{d^2}{dp^2}$: $\begin{bmatrix} \frac{\delta^2}{\delta\mu^2} & \frac{\delta^2}{\delta\mu\delta\sigma} \\ \frac{\delta^2}{\delta\alpha\delta\mu} & \frac{\delta^2}{\delta\alpha\sigma^2} \end{bmatrix}$

• $\mathcal{I}(p) = -E(\frac{d^2 \log f(X|\theta)}{d\theta^2}) = \begin{bmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{2}{\sigma^2} \end{bmatrix}$

Asymptotic normality

for
$$X_1, \ldots, X_n$$
 iid $N(\mu, \sigma^2)$ RVs, $\theta = (\mu, \sigma)$,

Fisher information in each $X_i: \mathcal{I}(\theta) = \begin{bmatrix} \frac{1}{\sigma^2} \\ 0 \end{bmatrix}$

- ML estimator $\hat{\theta} = \begin{bmatrix} X \\ \hat{\sigma} \end{bmatrix}$
- for large $n, \, \hat{\theta} \approx N \left[\begin{bmatrix} 1 \\ \sigma \end{bmatrix}, \begin{bmatrix} \frac{\sigma^2}{n} & 0 \\ 0 & \frac{\sigma^2}{2n} \end{bmatrix} \right]$

are expectation and variance exact?

- · a random variable cannot be exactly normal! (cannot be negative)
 - $\bar{X} \sim N(\mu, \frac{\sigma^2}{2})$
- $\hat{\sigma} \sim N(\sigma, \frac{\sigma^2}{2n})$ approximately; $E(\hat{\sigma}) \neq \sigma$ normal data

for x_1, \ldots, x_n IID $N(\mu, \sigma^2)$ RVs with large n, ML estimates of μ and σ are $\bar{x} = \dots$ and $\hat{\sigma} = \dots$

• for approximate variance $\begin{bmatrix} \frac{\sigma^2}{n} \\ 0 \end{bmatrix}$

SEs of \bar{x} and $\hat{\sigma}$ are estimated as $\frac{\hat{\sigma}}{\sqrt{2\pi}}$ and $\frac{\hat{\sigma}}{\sqrt{2\pi}}$ • approximate $(1 - \alpha)$ -CI:

 $\mu:\left(\bar{x}-z_{\frac{\alpha}{2}},\frac{\hat{\sigma}}{\sqrt{x}},\bar{x}+z_{\frac{\alpha}{2}},\frac{\hat{\sigma}}{\sqrt{x}}\right)$ $\sigma:\left(\hat{\sigma}-z_{\frac{\alpha}{2}},\frac{\hat{\sigma}}{\sqrt{2n}},\hat{\sigma}+z_{\frac{\alpha}{2}},\frac{\hat{\sigma}}{\sqrt{2n}}\right)$

Gamma distribution

 $X \sim Gamma(\alpha, \lambda),$

$$f(x|\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \ x > 0$$
$$\log f(X) = \alpha \log \lambda - \log \Gamma(\alpha) + (\alpha - 1) \log X - \lambda X$$

let $\psi(\alpha) = \frac{d}{d\alpha} \log \Gamma(\alpha)$: $(\psi(\alpha) = \text{digamma function}, \psi'(\alpha) = \text{trigamma function})$

- $\frac{\delta \log f(X)}{\delta \alpha} = \log \lambda \psi(\alpha) + \log X$ $\frac{\delta \log f(X)}{\delta \lambda} = \frac{\alpha}{\lambda} X$

- $\frac{\delta^{2} \log f(X)}{\delta \alpha^{2}} = -\psi'(\alpha)$ $\frac{\delta^{2} \log f(X)}{\delta \lambda^{2}} = -\frac{\alpha}{\lambda^{2}}$ $\frac{\delta^{2} \log f(X)}{\delta \alpha \delta \lambda} = \frac{\delta^{2} \log f(X)}{\delta \lambda \delta \alpha} = \frac{1}{\lambda}$

$$\mathcal{I}(\alpha,\lambda) = \begin{bmatrix} \psi'(\alpha) & -\frac{1}{\lambda} \\ -\frac{1}{\lambda} & \frac{\alpha}{\lambda^2} \end{bmatrix}$$

Approximate CI with ML estimate

 $\hat{\theta}_n$ is the ML estimator of $\theta \in \Theta \subset \mathbb{R}$ based on iid RVs $X_1, \ldots, X_n, 0 < \alpha < 1$

• for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n})$.

 $1 - \alpha \approx \Pr\left(-z_{\frac{\alpha}{2}} \le \frac{\hat{\theta}_n - \theta}{\sqrt{\mathcal{I}(\theta)^{-1}/n}} \le z_{\frac{\alpha}{2}}\right)$ the random interv

- $\left(\hat{\theta}_n z_{\frac{\alpha}{2}}\sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}, \hat{\theta}_n + z_{\frac{\alpha}{2}}\sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}\right)$
- covers θ with probability $\approx 1 \alpha$ • MLE: ML estimate of θ , SE: $\sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}$ with θ replaced by
- approxiate $(1 \alpha) CI$ for θ is $(MLE - z_{\frac{\alpha}{2}}SE, MLE + z_{\frac{\alpha}{2}}SE)$

Scope of asymptotic normality of ML estimators

- for iid normal RVs, let $\hat{\sigma}$ be the ML estimator of σ , then $\hat{\sigma}^2$ is the ML estimator of σ^2
- both $\hat{\sigma}$ and $\hat{\sigma}^2$ are asymptotically normal
 - ½ is also asymptotically normal
- let $\hat{\theta}^n$ be the ML estimator of θ . For strictly increasing or strictly decreasing $h: \Theta \to \mathbb{R}, h(\hat{\theta}^n)$ is the ML estimator of $h(\theta)$.
 - for large $n, h(\hat{\theta}^n)$ is approximately normal

population mean vs parameter

for n random draws with replacement from a population with mean μ and variance σ^2 ,

Estimator	E	var	Distribution
random sample mean, $\hat{\mu}$	μ	$\frac{\sigma^2}{n}$	pprox normal
ML estimator, $\hat{ heta}_n$	$\approx \theta$	$pprox rac{\mathcal{I}(heta)^{-1}}{n}$	$\approx \text{normal}$

 $\hat{\theta}_n$ is not normal (but may approach normal for large n)

summarv

let X have density $f(x|\theta), \theta \in \Theta \subset \mathbb{R}^k$. The **Fisher information** at θ in X is the $k \times k$ matrix

let $\hat{\theta}_n$ be the ML estimator of θ based on iid RVs X_1, \ldots, X_n with density $f(x|\theta)$.

For large n, the distribution of θ_n is approximately $N\left(\theta, \frac{\mathcal{I}(\theta)^{-1}}{}\right)$

⇒ SE can be estimated without monte carlo ⇒ accurate CIs are available (skipped cos out of syllabus?)