Pàg. 35, exercici 21

El treball val

$$W_{1\to 2} = p(V_2 - V_1) = 6 \cdot 10^5 \cdot (4-1) \cdot 10^{-3} = 1, 8 \cdot 10^3 J$$

Podem representar el procés com

Pàg. 35, exercici 22

El primer procés consisteix en una transformació isocora (a volum constant), on no es produeix treball. De tota manera necessitem calcular la temperatura T_2 ja que en l'expansió isotèrmica que seguirà, si que es produirà treball i aquest depèn d'aquesta temperatura. Podem escriure l'equació d'estat pels punts 1 i 2 i tenim

$$\begin{cases} p_1 V_1 = nRT_1 \\ p_2 V_1 = nRT_2 \end{cases}$$

d'on dividint les equacions

$$\frac{p_1 V_1}{p_2 V_1} = \frac{nRT_1}{nRT_2}$$

llavors

$$T_2 = T_1 \frac{p_2}{p_1} = (20 + 273) \cdot \frac{4}{2} = 586 \, K$$

on hem posat la pressió en *bar* perquè apareixen dividint i per tant, no cal passar-les al Sistema Internacional.

Ara calculem el nombre de mols de gas que tenim al recipient

$$p_1V_1 = nRT_1 \rightarrow n = \frac{p_1V_1}{RT_1} = \frac{2 \cdot 10^5 \cdot 3,927 \cdot 10^{-4}}{8,31 \cdot 293} = 0,03226 \, mol$$

On s'ha calculat el volum V_1 com

$$V_1 = \pi r^2 h = \pi \cdot \left(\frac{100 \cdot 10^{-3}}{2}\right)^2 \cdot 50 \cdot 10^{-3} = 3,927 \cdot 10^{-4} \, m^3$$

El diagrama corresponent al procés seguit pel gas és

On s'ha calculat el volum V_3 com

$$V_3 = \pi r^2 h' = \pi \cdot \left(\frac{100 \cdot 10^{-3}}{2}\right)^2 \cdot 150 \cdot 10^{-3} = 1,178 \cdot 10^{-3} \, m^3$$

Ara, el treball que es fa en l'expansió isotèrmica

$$W_{1\to 2} = nRT_2 \ln \frac{V_3}{V_2} = 0,03226 \cdot 8,31 \cdot 586 \cdot \ln \frac{1,178 \cdot 10^{-3}}{3,927 \cdot 10^{-4}} = 172,57 J$$

Pàg. 35, exercici 23

A partir del primer principi

$$\Delta U = \Delta Q + \Delta W$$

$$\Delta Q = \Delta U + \Delta W = 1000 - 500 + 172, 57 = 672, 57 \, J$$

Pàg. 35, exercici 24

a) Calculem el volum inicial a partir de l'equació d'estat

$$p_1V_1 = nRT_1 \to V_1 = \frac{nRT_1}{p_1} = \frac{1 \cdot 8,31 \cdot (273+5)}{1 \cdot 10^6} = 2,3 \cdot 10^{-3} \, m^3$$

De l'equació que governa les transformacions adiabàtiques

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$$

d'on

$$V_2 = \sqrt[\gamma]{V_1^{\gamma} \frac{p_1}{p_2}} = V_1 \cdot \sqrt[\gamma]{\frac{p_1}{p_2}} = 2, 3 \cdot 10^{-3} \cdot \sqrt[1.5]{\frac{1}{0,3}} = 5, 13 \cdot 10^{-3} \, m^3$$

b) Fent servir l'equació d'estat novament (ara per l'estat 2)

$$p_2V_2 = nRT_2 \to T_2 = \frac{p_2V_2}{nR} = \frac{3 \cdot 10^5 \cdot 5, 13 \cdot 10^{-3}}{1 \cdot 8, 31} = 185, 2 \, K$$

c) El treball en l'expansió es calcula com

$$W_{1\to 2} = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1} = \frac{1 \cdot 10^6 \cdot 2, 3 \cdot 10^{-3} - 3 \cdot 10^5 \cdot 5, 13 \cdot 10^{-3}}{1, 5 - 1} = 1522 J$$

Pàg. 37, exercici 6

Per calcular el treball involucrat en el procés isotèrmic volem usar

$$W_{1\to 2} = nRT \ln \frac{V_2}{V_1}$$

però no tenim el número de mols ni la temperatura, llavors, a podem fer servir l'equació d'estat

$$pV = nrT$$

per escriure

$$W_{1\to 2} = p_1 V_1 \ln \frac{V_2}{V_1} = 1 \cdot 10^5 \cdot 10 \cdot 10^{-3} \ln \frac{1}{10} = -2302, 6 J$$

Ara, segons el primer principi

$$\Delta U = \Delta Q - \Delta W$$

i com el procés és isotèrmic $\Delta U=0$ llavors

$$0 = \Delta Q - \Delta W \rightarrow \Delta Q = \Delta W = -2302, 6 J$$

Pàg. 37, exercici 7

a) A partir del primer principi

$$\Delta U = \Delta Q - \Delta W = -10 \cdot 10^3 - (-25 \cdot 10^3) = 15 \cdot 10^3 J$$

b) L'energia útil que escalfarà l'alcohol és ΔU calculat abans, llavors

$$\Delta U = mC_e \Delta T \to \Delta T = \frac{\Delta U}{mC_e} = \frac{15 \cdot 10^3}{0, 5 \cdot 2400} = 12, 5^{\circ} C$$

per tant, la temperatura final serà

$$T_f = 18^\circ + 12, 5^\circ = 30, 5^\circ C$$