Gegeben seien die folgenden finiten Automaten (der Startzustand s ist durch "Start" gekennzeichnet, die akzeptierenden Zustände durch die doppelte Einrahmung). Geben Sie reguläre Ausdrücke zur

Konstruieren Sie mittels der Potenzautomatenkonstruktion äquivalente, vollständige, deterministische finite Automaten zu den folgenden Automaten

X E [(X)

(b/8/ag b) (a/a a b) 8

Kommentieren Sie Ihre Vorgehensweise.

$$\alpha_n = (a|b|c)^* ab (a|b|c)^* | (a|b|c)^* cb (a|b|c)^*$$

$$L(\alpha_n) = L(M_n)$$

$$\alpha_2 = (a|b|c)^* (ab|cb) (a|b|c)^*$$

$$L(\alpha_2) = L(M_n)$$

Lemma 5: DEA → **Regulärer Ausdruck**

Beweis. Verwandle den DEA schrittweise in einen Automaten. von dem man die RegEx direkt ablesen kann.

- **1** Neuer Zustand Z_e ; ε-Übergänge von jedem $Z ∈ Z_{end}$ nach Z_e ; neues $\mathcal{Z}_{end} := \{Z_e\}$. \Rightarrow **ein** Anfangszustand (Z_s) und ein Endzustand; lese Übergangsbeschriftung als RegEx.
- Solange $\exists Z \in \mathcal{Z} \setminus \{Z_s, Z_e\}$:

Seien $\mathcal{Z}_{in}/\mathcal{Z}_{out}$ die Zustände ($\neq Z$) mit Überg. nach/von Z.

- For jedes Paar $(Z_i, Z_o) \in \mathcal{Z}_{in} \times \mathcal{Z}_{out}$: Seien E_i, E_Z, E_o, E_{io} die RegEx an den /Übergängen $Z_i
 ightarrow Z$, Z
 ightarrow Z, $Z
 ightarrow Z_o$, $Z_i \rightarrow Z_o$ (so sie \exists).
- ► Setze $E_{io} := E_{io}|E_i(E_Z)^*E_o$. Entferne Z.
- 3 Z_e bekommt nie eine ausgehende Kante!

Aufgabe 13

Gegeben seien die folgenden finiten Automaten (der Startzustand s ist durch "Start" gekennzeichnet, die akzeptierenden Zustände durch die doppelte Einrahmung). Geben Sie reguläre Ausdrücke zur erkannten Sprache an.

Konstruieren Sie mittels der Potenzautomatenkonstruktion äquivalente, vollständige, deterministische finite Automaten zu den folgenden Automaten.

te, vollständige, deterministische

Aufgabe 13

Gegeben seien die folgenden finiten Automaten (der Startzustand s ist durch "Start" gekennzeichnet, die akzeptierenden Zustände durch die doppelte Einrahmung).Geben Sie reguläre Ausdrücke zur erkannten Sprache an.

Konstruieren Sie mittels der Potenzautomatenkonstruktion äquivalente, vollständige, deterministische finite Automaten zu den folgenden Automaten.

Kommentieren Sie Ihre Vorgehensweise.

