be non trivial and $\mu R(\mu)$ -invariant). The support projections of the $\psi_i^{(n)}$'s in M'' are orthogonal (since $\psi_i^{(n)} \leq \psi_i$) and different from zero. Let (z_v) be a net in M_1^+ such that

$$\sigma(M'',M')-\lim_{\gamma} z_{\gamma} = s(\psi_{1}^{(n)})$$
.

Then $\lim_{\gamma} \psi_1^{(n)}(z_{\gamma}) = 1$ whereas $\lim_{\gamma} \psi_2^{(n)}(z_{\gamma}) = 0$. Let z be a $\sigma(M,M_{\star})$ -accumulation point of (z_{γ}) in M_{+} . Since every $\psi_1^{(n)}$ is normal, $\psi_1^{(n)}(z) = 1$ whereas $\psi_2^{(n)}(z) = 0$. The first condition implies $z \neq 0$ whereas the second shows that $\psi_2^{(n)}$ cannot be faithful. Since this is a contradiction, it follows dim Fix(R') = 1 which proves (d).

The next corollary is an easy application of Theorem 4.4 and of D-III, Proposition 2.3.

<u>Corollary</u> 4.5. Let T be an identity preserving semigroup of Schwarz type on the predual of a W*-algebra M . Then the following assertions are equivalent:

- (a) T is uniformly ergodic with finite dimensional fixed space.
- (b) The adjoint weak*-semigroup is strongly ergodic with finite dimensional fixed space.
- (c) Every T''-invariant state is normal.

<u>Proof.</u> If (a) is fulfilled then the semigroup \mathcal{T} is strongly ergodic on M_{\bullet} . Since

$$\dim \operatorname{Fix}(T) = \dim \operatorname{Fix}(T') < \infty$$

there exist normal states ϕ_1,\ldots,ϕ_n in Fix(\mathcal{T}) and x_1,\ldots,x_k in Fix(\mathcal{T} ') such that $\phi_n(x_m)=\delta_{n,m}$ ($1\leq n,m\leq k$) and

$$P = \sum_{i=1}^{k} \phi_i \otimes x_i$$

is the associated ergodic projection. If $(C(s))_{s>0}$ is the family of Césaro means of T , then