Supplementary Material

Correlation of the Simulation Data

The simulation data for the thermal conductivity of the saturated liquid and the surface tension are correlated with the Matlab Curve Fitting Tool. The method used is Nonlinear Least Squares with a Trust-Region algorithm and the functional form chosen is the same as for the experimental correlations from DIPPR [1]. The data for the liquid thermal conductivity is gathered from Fernández et al. [2] and depends on the reduced liquid density ρ'^* . To get a data set which is dependent on the reduced temperature T^* an additional correlation $T^*(\rho'^*)$ is needed. The data set is taken from Lotfi et al. [3] and the following function is used:

$$T^*({\rho'}^*) = A({\rho'}^*)^2 + B{\rho'}^* + C \tag{1}$$

The coefficients are A = -2.513, B = 1.734 and C = 1.02 and the root-mean-square-error (RMSE) for the fit is 0.2%. The transferred data set for the liquid thermal conductivity in reduced units is fitted by:

$$\lambda'^*(T^*) = A(T^*)^2 + BT^* + C \tag{2}$$

The coefficients are A = -7.925, B = 6.995 and C = 5.764 with a RMSE of 29%. In Figure S.1 the data set (+) and the correlation (-) of the liquid thermal conductivity are plotted. In Figure S.2 the corresponding deviation plot can be found.

The data set for the surface tension in reduced units is from Grosfils et al. [4] and fitted by:

$$\gamma^*(T^*) = A \left(1 - \frac{T^*}{B}\right)^C \tag{3}$$

The coefficients are A = 2.982, B = 1.3126 and C = 1.338 with a RMSE of 0.4%. In Figure S.3 the data set (+) and the correlation (-) of the surface tension are plotted. In Figure S.4 the corresponding deviation plot can be found.

List of Tables

- Table S.1: Values referring to Figure 7. Only models for argon leading to relative mean deviations < 5% for the liquid density, saturated vapor pressure and enthalpy of vaporization are given.
- Table S.2: Values referring to Figure 8. Only models for methane leading to relative mean deviations < 5% for the liquid density, saturated vapor pressure and enthalpy of vaporization are given.

Table S.1

ID	$\frac{\epsilon}{k}$ / K	σ / Å	$\delta ho'/\%$	$\delta p^S/\%$	$\delta\Delta h_V/\%$	$\delta\eta^\prime/\%$	$\delta\lambda'/\%$	$\delta\gamma'/\%$
1	115.40	3.44	4.554	4.274	0.900	8.495	7.763	0.658
2	115.60	3.42	2.705	4.916	0.504	7.844	6.574	2.480
3	115.60	3.43	3.552	4.086	0.504	8.060	6.973	1.898
4	115.60	3.44	4.390	3.307	0.504	8.306	7.388	1.332
5	115.80	3.41	1.686	4.741	0.441	7.660	5.850	4.455
6	115.80	3.42	2.540	3.904	0.441	7.794	6.215	3.862
7	115.80	3.43	3.387	3.119	0.441	7.965	6.605	3.281
8	115.80	3.44	4.225	2.426	0.441	8.170	7.013	2.715
9	116.00	3.40	0.706	4.573	0.809	7.684	5.195	6.535
10	116.00	3.41	1.530	3.729	0.809	7.724	5.510	5.935
11	116.00	3.42	2.378	2.938	0.809	7.807	5.860	5.345
12	116.00	3.43	3.223	2.242	0.809	7.931	6.238	4.766
13	116.00	3.44	4.061	1.741	0.809	8.091	6.638	4.202
14	116.00	3.45	4.891	1.610	0.809	8.285	7.055	3.657
15	116.20	3.39	0.610	4.412	1.288	7.922	4.647	8.702
16	116.20	3.40	0.611	3.562	1.288	7.866	4.887	8.091
17	116.20	3.41	1.381	2.764	1.288	7.855	5.177	7.490
18	116.20	3.42	2.219	2.064	1.288	7.886	5.509	6.900
19	116.20	3.43	3.061	1.580	1.288	7.960	5.873	6.321
20	116.20	3.44	3.898	1.513	1.288	8.072	6.263	5.756
21	116.40	3.38	1.602	4.260	1.798	8.368	4.256	10.951
22	116.40	3.39	0.804	3.403	1.798	8.219	4.390	10.329
23	116.40	3.40	0.572	2.596	1.798	8.113	4.594	9.716
24	116.40	3.41	1.245	1.892	1.798	8.051	4.855	9.113
25	116.40	3.42	2.065	1.425	1.798	8.031	5.165	8.521
26	116.40	3.43	2.901	1.430	1.798	8.054	5.513	7.940
27	116.60	3.38	1.806	3.251	2.325	8.768	4.077	12.653
28	116.60	3.39	1.004	2.436	2.325	8.575	4.160	12.027

29	116.60	3.40	0.603	1.724	2.325	8.422	4.320	11.411
30	116.60	3.41	1.128	1.278	2.325	8.310	4.548	10.804
31	116.60	3.42	1.918	1.363	2.325	8.241	4.830	10.208
32	116.80	3.38	2.014	2.282	2.866	9.218	3.938	14.426
33	116.80	3.39	1.209	1.562	2.866	8.984	3.962	13.796
34	116.80	3.40	0.697	1.138	2.866	8.787	4.072	13.175
35	116.80	3.41	1.036	1.311	2.866	8.630	4.258	12.564
36	117.00	3.39	1.417	1.008	3.418	9.442	3.803	15.640
37	117.00	3.40	0.835	1.276	3.418	9.206	3.855	15.013
38	117.00	3.41	0.979	1.938	3.418	9.006	3.991	14.396
39	117.20	3.38	2.438	0.886	3.981	10.250	3.797	18.204
40	117.20	3.39	1.629	1.256	3.981	9.945	3.689	17.562
41	117.20	3.40	1.000	1.972	3.981	9.672	3.676	16.929
42	117.20	3.41	0.964	2.768	3.981	9.434	3.755	16.305
43	117.40	3.37	3.522	0.777	4.556	11.187	4.065	20.875
44	117.40	3.39	1.844	2.011	4.556	10.489	3.627	19.567
45	117.40	3.40	1.184	2.828	4.556	10.183	3.542	18.927
46	117.40	3.41	0.997	3.656	4.556	9.909	3.555	18.297
47	117.40	3.42	1.458	4.484	4.556	9.668	3.662	17.675

Table S.2

ID	$\frac{\epsilon}{k}$ / K	σ / Å	$\delta ho'/\%$	$\delta p^S/\%$	$\delta \Delta h_V/\%$	$\delta\eta'/\%$	$\delta \lambda'/\%$	$\delta\gamma'/\%$
1	147.25	3.77	3.885	4.793	1.407	19.280	4.839	5.963
2	147.25	3.78	4.646	4.102	1.407	18.658	5.293	6.374
3	147.50	3.76	2.997	4.466	1.118	20.549	4.111	4.853
4	147.50	3.77	3.766	3.782	1.118	19.918	4.552	5.239
5	147.50	3.78	4.528	3.170	1.118	19.293	5.002	5.642
6	147.75	3.74	1.315	4.878	0.883	22.480	3.037	3.529
7	147.75	3.75	2.100	4.147	0.883	21.835	3.422	3.820
8	147.75	3.76	2.877	3.469	0.883	21.195	3.835	4.153
9	147.75	3.77	3.647	2.875	0.883	20.560	4.268	4.519
10	147.75	3.78	4.410	2.417	0.883	19.931	4.713	4.908
11	148.00	3.73	0.427	4.563	0.757	23.791	2.500	2.836
12	148.00	3.74	1.197	3.835	0.757	23.137	2.806	2.974
13	148.00	3.75	1.980	3.165	0.757	22.488	3.167	3.195
14	148.00	3.76	2.758	2.592	0.757	21.844	3.566	3.479
15	148.00	3.77	3.528	2.181	0.757	21.206	3.988	3.811
16	148.00	3.78	4.291	2.024	0.757	20.573	4.427	4.178
17	148.25	3.72	0.590	4.256	0.797	25.119	2.171	2.664
18	148.25	3.73	0.343	3.530	0.797	24.455	2.333	2.551
19	148.25	3.74	1.082	2.869	0.797	23.797	2.594	2.549
20	148.25	3.75	1.861	2.321	0.797	23.144	2.925	2.656
21	148.25	3.76	2.638	1.970	0.797	22.497	3.304	2.857
22	148.25	3.77	3.409	1.915	0.797	21.855	3.713	3.132
23	148.25	3.78	4.172	2.170	0.797	21.218	4.143	3.462
24	148.25	3.79	4.928	2.639	0.797	20.587	4.587	3.831
25	148.50	3.72	0.724	3.232	0.988	25.791	2.113	2.787
26	148.50	3.73	0.297	2.582	0.988	25.123	2.202	2.513
27	148.50	3.74	0.970	2.066	0.988	24.461	2.407	2.337
28	148.50	3.75	1.744	1.788	0.988	23.804	2.700	2.279

29	148.50	3.76	2.519	1.849	0.988	23.153	3.052	2.343
30	148.50	3.77	3.290	2.212	0.988	22.508	3.445	2.518
31	148.50	3.78	4.054	2.752	0.988	21.868	3.864	2.781
32	148.50	3.79	4.810	3.381	0.988	21.233	4.300	3.108
33	148.75	3.72	0.859	2.305	1.264	26.466	2.105	3.141
34	148.75	3.73	0.307	1.828	1.264	25.795	2.113	2.744
35	148.75	3.74	0.863	1.643	1.264	25.129	2.251	2.410
36	148.75	3.75	1.628	1.829	1.264	24.469	2.495	2.164
37	148.75	3.76	2.401	2.288	1.264	23.814	2.815	2.036
38	148.75	3.77	3.171	2.887	1.264	23.165	3.186	2.043
39	148.75	3.78	3.935	3.549	1.264	22.521	3.591	2.182
40	148.75	3.79	4.691	4.242	1.264	21.883	4.018	2.427
41	149.00	3.73	0.371	1.541	1.584	26.470	2.074	3.197
42	149.00	3.75	1.513	2.394	1.584	25.137	2.318	2.365
43	149.00	3.76	2.283	3.038	1.584	24.478	2.595	2.047
44	149.00	3.77	3.052	3.728	1.584	23.826	2.939	1.837
45	149.00	3.78	3.816	4.437	1.584	23.178	3.325	1.768
46	149.25	3.71	1.921	1.424	1.928	28.513	2.511	4.847
47	149.25	3.72	1.132	1.486	1.928	27.828	2.243	4.318
48	149.25	3.74	0.678	2.523	1.928	26.476	2.063	3.302
49	149.25	3.77	2.934	4.635	1.928	24.490	2.706	2.000
50	149.50	3.70	2.875	1.271	2.287	29.898	3.094	6.152
51	149.50	3.74	0.610	3.376	2.287	27.156	2.044	3.974
52	149.75	3.69	3.845	1.164	2.656	31.301	3.804	7.535
53	150.00	3.68	4.829	1.110	3.033	32.721	4.588	8.974

List of Figures

- Figure S.1: Correlation function (-) for the liquid heat conductivity compared to simulation data (+) from Fernández et al. [2]
- Figure S.2: Deviation plot for the simulation data and the correlation function of the liquid heat conductivity
- Figure S.3: Correlation function (-) for the surface tension compared to simulation data (+) from Grosfils and Lutsko [4]
- Figure S.4: Deviation plot for the simulation data and the correlation function of the surface tension
- Figure S.5: Dependence of the mean relative deviations for six thermophysical properties of methane on the Lennard-Jones parameters σ and ϵ/k (k is Boltzmann's constant): liquid density ρ' , vapor pressure p^S , enthalpy of vaporization Δh_V , liquid viscosity η' , liquid thermal conductivity λ' and surface tension γ .
- Figure S.6: Results for Pareto optimization of methane with three objective functions: mean relative deviation of liquid density δρ', vapor pressure δp^S and enthalpy of vaporization δΔh_V. Left side: parameter space, right side: objective space. Mapping between both spaces indicated by colours.
 a) Brute force variation of the parameters and corresponding results. The Pareto set is marked black.
 b) Isolated Pareto set.
- Figure S.7: Results for Pareto optimization of methane with three objective functions: mean relative deviation of liquid viscosity δη', liquid thermal conductivity δλ' and surface tension δγ. Left side: parameter space, right side: objective space. Mapping between both spaces indicated by colours.
 a) Brute force variation of the parameters and corresponding results. The Pareto set is marked black.
 b) Isolated Pareto set.
- Figure S.8: Pareto optimal points of methane in objective space for six objective functions plotted against model ID: liquid density (+), vapor

- pressure (\circ), enthalpy of vaporization (*), liquid viscosity (\square), liquid thermal conductivity (\triangle) and surface tension (∇). Only models with relative mean deviations below 5% for the liquid density, vapor pressure and enthalpy of vaporization. For numerical data see Supplementary Material.
- Figure S.9: Pareto set in parameter space for six objective functions of methane: liquid density, vapor pressure, enthalpy of vaporization, liquid viscosity, liquid thermal conductivity and surface tension. Left side: Full investigated range. Right side: Zoom plus models found in literature: OPLS-UA [5] (○), Fischer et al. [6] (□), Shukla [7] (△), Vrabec and Fischer [8] (▽), TraPPE [9] (◊), Vrabec et al. [10] (*).
- Figure S.10: Pareto set in parameter space for three objective functions of methane: liquid density ρ' , vapor pressure p^S and enthalpy of vaporization Δh_V . Red dashed lines: path of lowest descent for properties. Red markers: Global minima of properties.
- Figure S.11: Pareto set in parameter space for six objective functions
 of methane: liquid density ρ', vapor pressure p^S, enthalpy of vaporization
 Δh_V, liquid viscosity η', liquid thermal conductivity λ' and surface tension
 γ. Red dashed lines: path of lowest descent for properties. Red markers:
 Global minima of properties.

References

- [1] Design Institute for Physical Properties Sponsored by AIChE, DIPPR Project 801 Full Version (2012).
- [2] G. A. Fernández, J. Vrabec, H. Hasse, Fluid Phase Equilib. 221 (2004) 157–163.
- [3] A. Lotfi, J. Vrabec, J. Fischer, Molecular Phys. 76 (1992) 1319–1333.
- [4] P. Grosfils, J. F. Lutsko, J. Chem. Phys. 130 (2009) 054703.
- [5] W. L. Jorgensen, J. D. Madura, C. J. Swenson, J. Am. Chem. Soc. 106 (1984) 6638–6646.
- [6] J. Fischer, R. Lustig, H. Breitenfelder-Manske, W. Lemming, Mol. Phys. 52 (1984) 485–497.
- [7] K. Shukla, Fluid Phase Equilib. 94 (1994) 19–49.
- [8] J. Vrabec, J. Fischer, Mol. Phys. 85 (1995) 781-792.
- $[9]\,$ M. G. Martin, J. I. Siepmann, J. Phys. Chem. B 102 (1998) 2569–2577.
- [10] J. Vrabec, J. Stoll, H. Hasse, J. Phys. Chem. B 105 (2001) 12126–12133.