# Fundamental of Digital Design



Oleh: Ahmad Zaini

TE.141323 Rangkaian Digital

Teknik Multimedia dan Jaringan, Teknik Elektro

FTI - ITS

#### Active and Inactive States

ACTIVE – a descriptor denoting an action condition

INACTIVE – a descriptor denoting a condition which in NOT ACTIVE

#### Activation Level Indicators

(H) Meaning ACTIVE HIGH

(L) Meaning ACTIVE LOW

Ex : Reset (L) Load (H)

#### Positive and Negative Logic



#### Positive and Negative Logic



HV 
$$\longrightarrow$$
 1 (H) = 0 (L)

LV  $\longrightarrow$  0 (H) = 1 (L)

Implication

# Positive and Negative Logic



#### Logic Level Conversion – The Inverter



| X <sub>i</sub> | X <sub>o</sub> |
|----------------|----------------|
| 0              | VDD            |
| VDD            | 0              |

| X <sub>i</sub> | X <sub>o</sub> |
|----------------|----------------|
| LV             | HV             |
| HV             | LV             |

| X(H) | X(L) |
|------|------|
| 0    | 0    |
| 1    | 1    |

| X(H) | X(L) |
|------|------|
|      |      |

| X(L) | X(H) |
|------|------|
| 1    | 1    |
| 0    | 0    |



#### AND and OR



The outputs of a logic AND circuit is ACTIVE if, and only if, ALL inputs are ACTIVE

$$Y = A \cdot B \cdot C \cdot \dots \cdot Z$$



The outputs of a logic OR circuit is ACTIVE if, one or more of the inputs are ACTIVE

$$Y = A + B + C + \dots + Z$$

# NAND gate realization of AND and OR (1)



| X | Υ | Z |
|---|---|---|
| 0 | 0 | 5 |
| 0 | 5 | 5 |
| 5 | 0 | 5 |
| 5 | 5 | 0 |

| X  | Y  | Z  |
|----|----|----|
| LV | LV | HV |
| LV | HV | HV |
| HV | LV | HV |
| HV | HV | LV |

### NAND gate realization of AND and OR (2)

| X(H) | Y(H) | Z(L) |
|------|------|------|
| 0    | 0    | 0    |
| 0    | 1    | 0    |
| 1    | 0    | 0    |
| 1    | 1    | 1    |

| X  | Y  | Z  |
|----|----|----|
| LV | LV | HV |
| LV | HV | HV |
| HV | LV | HV |
| HV | HV | LV |

| X(L) | Y(L) | Z(H) |
|------|------|------|
| 1    | 1    | 1    |
| 1    | 0    | 1    |
| 0    | 1    | 1    |
| 0    | 0    | 0    |

$$X(H)$$
  $Y(H)$   $Y(L)$   $Y(L)$ 

# NOR gate realization of AND and OR (1)



| X | Υ | Z |
|---|---|---|
| 0 | 0 | 5 |
| 0 | 5 | 0 |
| 5 | 0 | 0 |
| 5 | 5 | 0 |

| X  | Υ  | Z  |
|----|----|----|
| LV | LV | HV |
| LV | HV | LV |
| HV | LV | LV |
| HV | HV | LV |

#### NOR gate realization of AND and OR (2)

| X(H) | Y(H) | Z(L) |
|------|------|------|
| 0    | 0    | 0    |
| 0    | 1    | 1    |
| 1    | 0    | 1    |
| 1    | 1    | 1    |

| X  | Y  | Z  |
|----|----|----|
| LV | LV | HV |
| LV | HV | LV |
| HV | LV | LV |
| HV | HV | LV |

| X(L) | Y(L) | Z(H) |
|------|------|------|
| 1    | 1    | 1    |
| 1    | 0    | 0    |
| 0    | 1    | 0    |
| 0    | 0    | 0    |

$$X(H)$$
  $Y(H)$   $Y(L)$   $Y(L)$ 

#### NAND and NOR Logic Level Conversion



# AND gate realization of AND and OR (1)



| X | Υ | Z |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 5 | 0 |
| 5 | 0 | 0 |
| 5 | 5 | 5 |

| X  | Υ  | Z  |
|----|----|----|
| LV | LV | LV |
| LV | HV | LV |
| HV | LV | LV |
| HV | HV | HV |

#### AND gate realization of AND and OR (2)

| X(H) | Y(H) | Z(H) |
|------|------|------|
| 0    | 0    | 0    |
| 0    | 1    | 0    |
| 1    | 0    | 0    |
| 1    | 1    | 1    |

| X  | Y  | Z  |
|----|----|----|
| LV | LV | LV |
| LV | HV | LV |
| HV | LV | LV |
| HV | HV | HV |

| X(L) | Y(L) | Z(L) |
|------|------|------|
| 1    | 1    | 1    |
| 1    | 0    | 1    |
| 0    | 1    | 1    |
| 0    | 0    | 0    |

$$X(H)$$
  $Y(H)$   $Y(L)$   $Y(L)$   $Y(L)$   $Y(L)$   $Y(L)$   $Y(L)$   $Y(L)$ 

# OR gate realization of AND and OR (1)



| X | Υ | Z |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 5 | 5 |
| 5 | 0 | 5 |
| 5 | 5 | 5 |

| X  | Υ  | Z  |
|----|----|----|
| LV | LV | LV |
| LV | HV | HV |
| HV | LV | HV |
| HV | HV | HV |

#### OR gate realization of AND and OR (2)

| X(H) | Y(H) | Z(H) |
|------|------|------|
| 0    | 0    | 0    |
| 0    | 1    | 1    |
| 1    | 0    | 1    |
| 1    | 1    | 1    |

| X  | Y  | Z  |
|----|----|----|
| LV | LV | LV |
| LV | HV | HV |
| HV | LV | HV |
| HV | HV | HV |

| X(L) | Y(L) | Z(L) |
|------|------|------|
| 1    | 1    | 1    |
| 1    | 0    | 0    |
| 0    | 1    | 0    |
| 0    | 0    | 0    |

$$X(H)$$
  $Y(H)$   $Y(L)$   $Y(L)$   $Y(L)$   $Y(L)$   $Y(L)$   $Y(L)$ 

### Logic Level Incompatibility

The input logic level doesn't meet with line input gate logic level

Place the incompatibility " $\nabla$ " flag on the line input gate to indicate incompatibility logic level

$$Z(L) = (X . \overline{Y})(L)$$

$$Y(L)$$

#### Complement

$$\alpha(L) = \overline{\alpha}(H)$$
  $\overline{\alpha}(L) = \alpha(H)$ 

$$Z(L) = (X . \overline{Y})(L)$$

$$Y(L)$$

#### Reading of Logic circuit

"Input to Output State "



# Construction of Logic circuit



"Output to Input State"

#### Function XOR and EQV

$$\bigoplus \rightarrow XOR$$



$$\odot \rightarrow EQV$$



The output of a logic XOR circuit symbol is ACTIVE if one or the other of two inputs is ACTIVE but not both ACTIVE or INACTIVE

The output of a logic EQV circuit symbol is ACTIVE if and only if both inputs are ACTIVE or if both inputs are INACTIVE

$$X = (\bar{A} \cdot B) + (A \cdot \bar{B}) = A \oplus B$$

$$X = (A \cdot B) + (\bar{A} \cdot \bar{B}) = A \odot B$$

#### XOR gate realization of XOR and EQV function (1)



| Х | Υ | Z |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 5 | 5 |
| 5 | 0 | 5 |
| 5 | 5 | 0 |

| X  | Υ  | Z  |
|----|----|----|
| LV | LV | LV |
| LV | HV | HV |
| HV | LV | HV |
| HV | HV | LV |

#### XOR gate realization of XOR and EQV function (2)

| X(H) | Y(H) | Z(H) |
|------|------|------|
| 0    | 0    | 0    |
| 0    | 1    | 1    |
| 1    | 0    | 1    |
| 1    | 1    | 0    |

| X  | Y  | Z  |
|----|----|----|
| LV | LV | LV |
| LV | HV | HV |
| HV | LV | HV |
| HV | HV | LV |

| X(H) | Y(H) | Z(L) |
|------|------|------|
| 0    | 0    | 1    |
| 0    | 1    | 0    |
| 1    | 0    | 0    |
| 1    | 1    | 1    |

$$Z(H)$$
  $Z(H) = (X \oplus Y)(H)$ 

$$Z(L) = (X \odot Y)(L)$$

$$Y(H)$$

### EQV gate realization of XOR and EQV function (1)



| X | Υ | Z |
|---|---|---|
| 0 | 0 | 5 |
| 0 | 5 | 0 |
| 5 | 0 | 0 |
| 5 | 5 | 5 |

| X  | Υ  | Z  |
|----|----|----|
| LV | LV | HV |
| LV | HV | LV |
| HV | LV | LV |
| HV | HV | HV |

#### EQV gate realization of XOR and EQV function (2)

| X(H) | Y(H) | Z(H) |
|------|------|------|
| 0    | 0    | 1    |
| 0    | 1    | 0    |
| 1    | 0    | 0    |
| 1    | 1    | 1    |

| X  | Y  | Z  |
|----|----|----|
| LV | LV | HV |
| LV | HV | LV |
| HV | LV | LV |
| HV | HV | HV |

| X(H) | Y(H) | Z(L) |
|------|------|------|
| 0    | 0    | 0    |
| 0    | 1    | 1    |
| 1    | 0    | 1    |
| 1    | 1    | 0    |

$$Z(H) = (X \odot Y)(H)$$

$$Y(H)$$

$$Z(L) = (X \oplus Y)(L)$$
 $Y(H)$ 

### Controlled Logic Level Conversion

| X(L) | Y(L) | Z(H) |
|------|------|------|
| 1    | 1    | 0    |
| 1    | 0    | 1    |
| 0    | 1    | 1    |
| 0    | 0    | 0    |





| X(H) | Y(H) | Z(L) |
|------|------|------|
| 0    | 0    | 1    |
| 0    | 1    | 0    |
| 1    | 0    | 0    |
| 1    | 1    | 1    |





Transfer