Last class

- TM Variants: Multitape TM, RAM TM
- All Python/C++ programs with time T(n) can be converted to a single-tape TM with time $O(T(n)^4)$
- (Strong) Church-Turing Thesis (Exception: Quantum Computing)

Def 3.13 Let $T:\mathbb{N}\to\mathbb{N}$. Language $L\subseteq\{0,1\}^*$ is in $DTIME(T(n))\Leftrightarrow\exists$ A (multitape) TM M that decides L in time O(T(n)).

Def 3.14 $P=\cup_{c\geq 1}DTIME(n^c)$

- $L \in DTIME(n^{100}) \Rightarrow L \in P$
- $All\ Languages \supseteq Decidable\ Languages \supseteq P \supseteq Regular\ Languages$

Computability

Universal TM

Encoding of a multitape TM

- Assume our encoding of the TMs satisfy the following properties:
 - 1. Every string $lpha \in \{0,1\}^*$ represents some TM. (On encoding lpha, M_lpha always rejects)
 - 2. Every TM is represented by infinitely many strings.
 - k-tape TM $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject})$
 - $\bullet \quad \Sigma = \{0,1\}. \ \delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R,S\}^k$

Encoding of TM M has size $O_M(1)$.

Thm 4.1(Universal TM) There exists a multitape TM U s.t. for all $x,\alpha\in\{0,1\}^*$, $U(x,\alpha)=M_\alpha(x)$. Moreover, if M_α halts on input x within T steps, then $U(x,\alpha)$ halts in $O_{M_\alpha}(T\log T)$ steps. (Weaker version: $O_{M_\alpha}(T^2)$)

Proof of the weaker version:

By Lem 3.9, every multitape TM can be converted to a single-tape TM M_{eta} with time $O_M(T^2)$.

- Input tape: *x*
- Work tapes:
 - \circ Simulation of single-tape M's work tape
 - $\circ \alpha(O_M(1))$
 - Current state of $M(O(\log_2 |Q|))$

For each step of M, our UTM U:

- 1. Reads the symbol a on the work tape of M
- 2. Reads the current state q_1 of M

- 3. Scans through the description of M to find $\delta(q_1,a)$
- 4. Updates the symbol (on the work tape of M), and moves the head if needed
- 5. Updates "the current state of M" from q_1 to q_2

In total, the above simulation (for one step) takes

$$O(1) + O_M(1) + O_M(1) + O(1) + O_M(1) = O_M(1)$$

- $f(n) = O(1) \Leftrightarrow (\exists c)(\exists N)(\forall n \geq N)(|f(n)| \leq c)$
- $f(n) = O_M(1) \Leftrightarrow (\forall M)(\exists c = c(M))(\exists N)(\forall n \geq N)(|f(n)| \leq c)$

Proof of Thm 4.1

Let k be the number of work tapes of M_{α} , and let Γ be its alphabet. Assume U uses alphabet Γ^k . U moves the tape, instead of moving the head.

eg.

•••	Ш	Ш	u	n	i	v	е	r	s	a	1	Ш	Ш	Ш	•••
	Ц	Ш	t	u	r	i	n	g	Ш	Ш	Ц	Ц	Ш	Ш	
	Ц	m	а	С	h	i	n	е	Ш	Ц	Ц	Ш	Ц	Ш	
					↑										

• ⊠: buffer symbol

However, the simulation takes $O_M(T^2)$ time.

For convenience, think of U's parallel tapes as infinite in both directions. We split each of U's parallel tapes into zones, denoted by $R_0, L_0, R_1, L_1, \ldots, R_{\lceil \log T \rceil}, L_{\lceil \log T \rceil}$ (The center cell is not in any of these zones), where

$$|R_i| = |L_i| = 2^{i+1}$$

We maintain the following invariants:

1. Each zone is empty, full or half-full.

eg.

Ш	Ш		\boxtimes	u	n	i		\boxtimes	v	е			r		s	\boxtimes	a	1	
L_1	L_1	L_1	L_1	L_0	L_0	0	R_0	R_0	R_1	R_1	R_1	R_1	R_2	R_2	R_2	R_2	R_2	R_2	

2. The number of oxtimes in $L_i \cup R_i$ is exactly 2^{i+1} .

That is, we have:

 \circ R_i is empty and L_i is full.

or

 \circ R_i is full and L_i is empty.

or

 $\circ \ R_i$ is half-full and L_i is half-full.

- Perform a left shift
 - 1. Find the smallest i_0 s.t. R_{i_0} is not empty. (Equivalently, it is the smallest i_0 s.t. L_{i_0} is not full)
 - 2. Put the leftmost non- \boxtimes symbol in R_{i_0} to location 0, and shift the remaining leftmost $(2^{i_0}-1)$ non- \boxtimes symbols from R_{i_0} into R_0,R_1,\ldots,R_{i_0-1} , filling up exactly half. ($\sum_{k=0}^{i_0-1} 2^{k+1}=2^{i_0+1}-2$)
 - 3. U performs the symmetric operation to the left. That is, let j be from i_0-1 down to 0, moving half of $|L_0|+\ldots+|L_{i-1}|$ plus one non- \boxtimes symbols to L_{i_0} .
 - 4. After our shift, $R_0, L_0, \ldots, R_{i_0-1}, L_{i_0-1}$ are half-full. R_{i_0} is either empty or half-full, L_{i_0} is either full or half-full.

Once we perform a shift with index i_0 , the next $2^{i_0}-1$ shifts will have index less than i_0 .

Thus, at most $\frac{1}{2^{i_0}}$ fraction of shifts have index i_0 .

• $index(i) \stackrel{def}{=}$ the index of i^{th} shift.

Total time complexity:

$$egin{aligned} k \cdot \sum_{i=1}^T O(2^{index(i)}) \ &= k \cdot \sum_{j=0}^{O(\log_2 T)} O(2^j) \cdot \#\{1 \leq i \leq T | index(i) = j\} \ &= k \cdot \sum_{j=0}^{O(\log_2 T)} O(2^j) \cdot rac{T}{2^j} \ &= k \cdot \sum_{j=0}^{O(\log T)} O(T) \ &= k \cdot O(T \log T) \ &= O_M(T \log T) \end{aligned}$$