

微软亚洲研究院创研论坛

CVPR 2020 论文分享会

Towards High-Fidelity 3D Face Reconstruction from In-the-Wild Images Using Graph Convolutional Networks

Jiangke Lin, Yi Yuan, Tianjia Shao, Kun Zhou

还有哪些属性可以编辑?

- 脸形
- 发型
- 妆容

如: 眉型、眼妆、瞳色、睫毛、腮红、面纹等...

- Face-to-Parameter Translation for Game Character Auto-Creation (ICCV, 2019)
- Fast and Robust Face-to-Parameter Translation for Game Character Auto-creation (AAAI, 2020)
- Towards High-Fidelity 3D Face Reconstruction from In-the-Wild Images Using Graph Convolutional Networks (CVPR, 2020)

3DMMs

3D Morphable Model

Blanz, Volker, and Thomas Vetter. "A morphable model for the synthesis of 3D faces." 1999.

FLAME

Li, Tianye, et al. "Learning a model of facial shape and expression from 4D scans." 2017.

Basel Face Model 17

Gerig, Thomas, et al. "Morphable face models - an open framework." 2018.

Surrey Face Model

Huber, Patrik, et al. "A multiresolution 3d morphable face model and fitting framework." 2016.

Large Scale Facial Model

th

Booth, James, et al. "Large scale 3D morphable models." 2018.

Facewarehouse

Cao, Chen, et al. "Facewarehouse: A 3d facial expression database for visual computing." 2013.

In a 3DMM, given the identity coefficients c_i , expression coefficients c_e and texture coefficients c_t , the face shape S and the texture T can be represented as:

$$S = S_{mean} + c_i I_{base} + c_e E_{base}$$
$$T = T_{mean} + c_t T_{base}$$

where S_{mean} and T_{mean} are the mean face shape and texture, and I_{base} , E_{base} and T_{base} are the PCA bases of identity, expression and texture respectively.

CLASSICAL

NEURAL NETWORK

02 The Main Idea

Input Image

Face Shape and Coarse Texture

Fine Texture

Project to Image

03 The Overall Framework

Discriminator

03 The Overall Framework

Discriminator

04 Approach

th

The Overall Framework

04 Approach

03 The Overall Framework

Discriminator

04 Approach

Input Image

Albedo (generated by GCNs)

Shape

Renderer

th

Losses

Input Image

Albedo (generated by GCNs)

Rendered with Illuminations

Pixel-wise Loss
$$L_{pix}(x, x') = \frac{\sum M_{proj} M_{face} ||x - x'||_2}{\sum M_{proj} M_{face}}$$

th

Identity-Preserving Loss
$$L_{id}(x, x') = 1 - \frac{\langle F(x), F(x') \rangle}{\|F(x)\| \cdot \|F(x')\|}$$

Adversarial Loss
$$L_{adv} = \underset{x' \sim \mathbb{P}_{R'}}{\mathbb{E}} [D(x')] - \underset{x \sim \mathbb{P}_I}{\mathbb{E}} [D(x)] + \lambda \underset{\hat{x} \sim \mathbb{P}_{\hat{x}}}{\mathbb{E}} [(\|\nabla_{\hat{x}}D(\hat{x})\|_2 - 1)^2]$$

05 Losses

Coarse Texture *T*

th

$$L_{vert}(x, x') = \frac{1}{N} \sum_{i=1}^{N} ||x_i - x_i'||_2$$

Fine Texture *T'*

05 Losses

$$L_{vert}(x,x') = \sigma_1 \left[L_{pix}(I,R') + \sigma_2 L_{id}(I,R') + \sigma_3 L_{adv}(I,R') \right] + \sigma_4 \left[L_{vert}(T,T') + L_{vert}(T_p,\widetilde{T'}) \right]$$

Comparison

Inputs

Ours

Chen *et al.* [2]

Deng *et al.* [3]

Gecer et al. [4]

Genova et al. [5]

07 Ablation Study

Losses				PSNR	SSIM	LightCNN	evoLVe
L_{pix}	L_{id}	L_{adv}	L_{vert}	POINK	SSIIVI	LIGITICININ	evolve
				26.58	0.826	0.724	0.641
√	√			28.57	0.863	0.828	0.738
√	√	√		29.30	0.872	0.840	0.755
√	√	√	√	29.69	0.894	0.900	0.848

Input Images

Coarse Texture

w/o L_{adv} w/o L_{vert}

w/o L_{vert}

08 More Results

th

08 More Results

谢谢观看 ılı THANK YOU