#### **GSFLOW Release Notes**

This file describes changes introduced into GSFLOW with each official release. These changes include enhancements and bug fixes that extend applicability of the software but may also affect simulation results.

NOTE: Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this software has been developed and used by the USGS, no warranty, expressed or implied, is made by the USGS or the U.S. Government as to its accuracy and functionality and related material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith.

#### CONTENTS

| Abstract                               | 2  |
|----------------------------------------|----|
| System Requirements                    | 3  |
| Input-File Instructions                | 3  |
| Documentation and Additional Resources |    |
| Functionality                          | 5  |
| Release History                        |    |
| Current Version                        | 7  |
| A. PRMS Modules                        | 8  |
| B. MODFLOW Packages                    | 18 |
| C. GSFLOW Modules                      | 19 |
| Previous Versions                      | 20 |

#### **ABSTRACT**

GSFLOW is a coupled Groundwater and Surface-Water Flow model based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS; Markstrom and others, 2015) and the U.S. Geological Survey Modular Groundwater Flow Model (MODFLOW-2005, Harbaugh, 2005; MODFLOW-NWT, Niswonger and others, 2011). In addition to the basic PRMS and MODFLOW simulation methods, several additional simulation methods were developed and existing PRMS modules and MODFLOW packages were modified to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs), between HRUs and the MODFLOW finite-difference cells, and between HRUs and streams and lakes. PRMS and MODFLOW have similar modular programming methods, which allow for their integration while retaining independence that permits substitution of, and extension with, additional PRMS modules and MODFLOW packages.

GSFLOW was developed to simulate coupled groundwater/surface-water flow in one or more watersheds by simultaneously simulating flow across the land surface, within subsurface saturated and unsaturated materials, and within streams and lakes. Climate data consisting of measured or estimated precipitation, air temperature, and solar radiation, as well as groundwater stresses (such as withdrawals) and boundary conditions are the driving factors for a GSFLOW simulation. GSFLOW can be used to evaluate the effects of such factors as land-use change, climate variability, and groundwater withdrawals on surface and subsurface flow. The model incorporates well documented methods for simulating runoff and infiltration from precipitation; balancing energy and mass budgets of the plant canopy, snowpack, and soil zone; and simulating the interaction of surface water with groundwater in watersheds that range from a few square kilometers to several thousand square kilometers, and for time periods that range from months to several decades. An important aspect of GSFLOW is its ability to conserve water mass and to provide comprehensive water budgets.

GSFLOW allows for three simulation modes—coupled (GSFLOW), PRMS-only, and MODFLOW-only. The capability of having PRMS-only and MODFLOW-only simulations in GSFLOW allows incremental model setup that provides flexibility in model calibration.

GSFLOW operates on a daily time step. In addition to the MODFLOW variable-length stress period used to specify changes in stress or boundary conditions, GSFLOW uses internal daily stress periods for adding recharge to the water table and calculating flows to streams and lakes. Only the first stress period specified in the MODFLOW input files can be designated as steady state for integrated simulations. No computations pertaining to PRMS are executed for an initial steady-state stress period.

There have been several applications of GSFLOW to real-world systems since the initial release of the software in 2008. Many of these applications are referenced on the USGS GSFLOW webpage (http://water.usgs.gov/ogw/gsflow/index.html).

### **SYSTEM REQUIREMENTS**

GSFLOW is written in the Fortran 90 and C programming languages. The code has been used on personal computers running various forms of the Microsoft Windows operating system and Linux based computers.

### INPUT-FILE INSTRUCTIONS

Instructions for preparing input files for GSFLOW were provided with the first release of GSFLOW as Appendix 1 in Markstrom and others (2008). Since that time, new functionality has been added to the software; parameters and variables have been added, modified, and deleted; and some of the original functionality has been removed. As a result, it has been necessary to update the original input instructions with each new release of GSFLOW.

Instructions for preparing input files for the current version of GSFLOW (version 1.2.0) can be found in three resources; users are encouraged to review these resources when developing a GSFLOW model:

**GSFLOW-specific instructions**: The file 'GSFLOW\_Input\_Instructions.pdf' is located in the 'doc' subdirectory of the GSFLOW release. This file includes descriptions and tables of the GSFLOW and PRMS modules and MODFLOW packages available in GSFLOW, as well as GSFLOW-specific input parameters and output variables. In addition, PRMS modules and MODFLOW packages that are not available in GSFLOW are identified. Input instructions provided in this file supersede some of the information found in Appendix 1 in Markstrom and others (2008), which provides a general discussion of the terminology, styles, and formats of GSFLOW inputs and the definitions of each of the GSFLOW input files.

PRMS Files: Up-to-date specifications for PRMS version 4.0.1 dimensions, parameters, and input and output variables, as well as a brief description of each PRMS module, are provided in several tables on the PRMS-IV software distribution page: <a href="mailto:ftp://brrftp.cr.usgs.gov/pub/mows/software/prms/4.0.1/PRMS">ftp://brrftp.cr.usgs.gov/pub/mows/software/prms/4.0.1/PRMS</a> tableUpdates 4.0.1.pdf In addition, documentation for the <a href="mailto:nhru\_summary">nhru\_summary</a>, <a href="mailto:map\_results">map\_results</a>, and <a href="mailto:climate\_hru">climate\_hru</a> modules can be found in the 'Related reports' subdirectory of the 'doc' directory of the GSFLOW distribution folder.

MODFLOW Files: Up-to-date descriptions of the input requirements for all MODFLOW-2005 and MODFLOW-NWT Packages and Processes are provided in the *Online Guide to MODFLOW-2005* (<a href="http://water.usgs.gov/ogw/modflow/MODFLOW-2005-Guide/">http://water.usgs.gov/ogw/modflow/MODFLOW-2005-Guide/</a>) and *Online Guide to MODFLOW-NWT* (<a href="http://water.usgs.gov/ogw/modflow-nwt/MODFLOW-NWT-Guide/">http://water.usgs.gov/ogw/modflow-nwt/MODFLOW-NWT-Guide/</a>).

#### DOCUMENTATION AND ADDITIONAL RESOURCES

**GSFLOW:** Documentation and additional resources for GSFLOW are available at <a href="http://water.usgs.gov/ogw/gsflow/index.html">http://water.usgs.gov/ogw/gsflow/index.html</a> and <a href="http://wwwbrr.cr.usgs.gov/projects/SW\_MoWS/GSFLOW.html">http://wwwbrr.cr.usgs.gov/projects/SW\_MoWS/GSFLOW.html</a>. PDFs of the three reports listed below are provided in the 'doc' subdirectory of the GSFLOW release folder.

Henson, W.R., Medina, R.L., Mayers, C.J., Niswonger, R.G., and Regan, R.S., 2013, CRT—Cascade routing tool to define and visualize flow paths for grid-based watershed models: U.S. Geological Survey Techniques and Methods, book 6, chap. D2, 28 p., http://pubs.usgs.gov/tm/tm6d2/.

Markstrom, S.L., Niswonger, R.G., Regan, R.S., Prudic, D.E., and Barlow, P.M., 2008, GSFLOW—Coupled ground-water and surface-water flow model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW–2005): U.S. Geological Survey Techniques and Methods, book 6, chap. D1, 240 p., http://pubs.usgs.gov/tm/tm6d1/.

Regan, R.S., Niswonger, R.G., Markstrom, S.L., and Barlow, P.M., 2015, Documentation of a restart option for the U.S. Geological Survey coupled groundwater and surfacewater flow (GSFLOW) model: U.S. Geological Survey Techniques and Methods, book 6, chap. D3, 19 p., http://dx.doi.org/10.3133/tm6D3/.

**PRMS and MODFLOW:** Documentation and additional resources for PRMS and MODFLOW are available at <a href="http://wwwbrr.cr.usgs.gov/projects/SW">http://wwwbrr.cr.usgs.gov/projects/SW</a> MoWS/PRMS.html and <a href="http://water.usgs.gov/ogw/modflow/">http://water.usgs.gov/ogw/modflow/</a>, respectively.

Harbaugh, A.W., 2005, MODFLOW-2005, the U.S. Geological Survey modular ground-water model--the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16, variously paginated.

Leavesley, G.H., Lichty, R.W, Troutman, B.M., and Saindon, L.G., 1983, Precipitation-runoff modeling system--User's manual: U.S. Geological Survey Water-Resources Investigations Report 83-4238, 207 p.

Leavesley, G.H., Restrepo, P.J., Markstrom, S.L., Dixon, M., and Stannard, L.G., 1996, The Modular Modeling System (MMS): User's manual: U.S. Geological Survey Open-File Report 96-151, 142 p.

Markstrom, S.L., Regan, R.S., Hay, L.E., Viger, R.J., Webb, R.M.T., Payn, R.A., and LaFontaine, J.H., 2015, PRMS-IV, the precipitation-runoff modeling system, version 4: U.S. Geological Survey Techniques and Methods, book 6, chap. B7, 158 p., <a href="http://dx.doi.org/10.3133/tm6B7">http://dx.doi.org/10.3133/tm6B7</a>.

Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu, 2011, MODFLOW-NWT, A Newton formulation for MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A37, 44 p.

Niswonger, R.G., Prudic, D.E., and Regan, R.S., 2006, Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A19, 62 p.

Niswonger, R.G., and Prudic, D.E., 2005, Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams—A modification to SFR1: U.S. Geological Survey Techniques and Methods 6-A13, 50 p.

Viger, R.J., Hay, L.E., Jones, J.W., and Buell, G.R., 2010, Effects of including surface depressions in the application of the Precipitation-Runoff Modeling System in the Upper Flint River Basin, Georgia: U.S. Geological Survey Scientific Investigations Report 2010-5062, 36 p.

### **FUNCTIONALITY, Version 1.2.0**

ccsolrad

**PRMS Modules and Utility Routines** (listed in computation order; new indicates 'new for version 1.2.0'; all are modules, unless noted; modules strmflow\_lake and prms\_summary, which are included with PRMS-IV are not included with GSFLOW)

| basin        | Basin Module                                                      |
|--------------|-------------------------------------------------------------------|
| cascade      | Cascading-Flow Module                                             |
| climateflow  | Climate and Flow Parameters and Variables Input (Utility Routine) |
| prms_time    | Time Variable Computation (Utility Routine) (new)                 |
| soltab       | Potential Solar-Radiation Module                                  |
| obs          | Observed-Data Module                                              |
| temp_1sta    | One-Station Air-Temperature-Distribution Module                   |
| temp_laps    | Lapse-Station Air-Temperature-Distribution Module                 |
| temp_dist2   | Inverse-Distance Air-Temperature-Distribution Module              |
| precip_1sta  | One-Station Precipitation-Distribution Module                     |
| precip_laps  | Lapse-Station Precipitation-Distribution Module                   |
| precip_dist2 | Inverse-Distance Precipitation-Distribution Module                |
| xyz_dist     | Multiple Linear Regression Precipitation and Temperature-         |
|              | Distribution Module                                               |
| ide_dist     | Inverse distance and elevation Precipitation and Temperature-     |
|              | Distribution Module ( <mark>new</mark> )                          |
| climate_hru  | Pre-computed and Distributed climate Module                       |
| frost_date   | Preprocess Spring and Fall Frost Module (new)                     |
| ddsolrad     | Degree-Day Solar-Radiation Distribution Module                    |

Cloud-Cover Solar-Radiation Distribution Module

potet\_jh Jensen-Haise Potential-Evapotranspiration Module potet hamon Potential-Evapotranspiration Module

potet pan Pan-Evaporation Potential-Evapotranspiration Module

potet hs Hargreaves and Samani Potential-Evapotranspiration Module

(new)

potet\_pt Priestly—Taylor Potential-Evapotranspiration Module (new)
potet\_pm Penman—Monteith Potential-Evapotranspiration Module (new)

transp frost Frost Based Active Transpiration Period Module (new)

transp\_tindex Temperature Index Based Active Transpiration Period Module

intcp Precipitation-Interception Module

snowcomp Snow Module

srunoff\_smidx Nonlinear source Area Surface-Runoff and Infiltration Module srunoff\_carea Linear Source Area Surface-Runoff and Infiltration Module

soilzone Soil-Zone Module

gwflow<sup>1</sup> Ground-Water Reservoir Module

subbasin Subbasin Module

routing<sup>1</sup> Stream Network Computations Routing (Utility Routine) (new)

strmflow<sup>1</sup> Streamflow Module

muskingum<sup>1</sup> Muskingum Streamflow Routing Module (new)

strmflow\_in\_out<sup>1</sup> Streamflow routing with inflow equals outflow for each segment

(<mark>new</mark>)

water\_balance Water Balance Debug (Utility Routine) (new)

nhru\_summary Nhru Based Summary Output Module basin\_sum¹ Watershed Flow-Summary Module

map\_results<sup>1</sup> Map Based Output Module

write climate hru Generate Climate-by-HRU Files(Preprocess Routine)

## **MODFLOW Packages**

BAS Basic Package

BCF Block-Centered Flow Package
UPW Upstream-Weighting Flow Package
LPF Layer-Property Flow Package
HUF Hydrogeologic-Unit Flow Package
HFB Horizontal Flow Barrier Package

WEL Well Package

GHB General Head Boundary Package FHB Flow and Head Boundary Package

<sup>&</sup>lt;sup>1</sup>This module is used for PRMS-only simulations.

<sup>&</sup>lt;sup>2</sup>Note that the names of PRMS modules are different than those shown in the GSFLOW manual (TM 6-D1) and in previous release notes. A warning message is printed if an old name is used, but the code is downward compatible so users do not need to change the old module names.

CHD Time-Variant Specified-Head Option
UZF Unsaturated-Zone Flow Package
SFR Streamflow-Routing Package

LAK Lake Package GAG Gage Package

MNW1 Version 1 of the Multi-Node Well Package
MNW2 Version 2 of the Multi-Node Well Package
SIP Strongly Implicit Procedure Package

DE4 Direct Solver Package

PCG Preconditioned-Conjugate Gradient Package

GMG Geometric Multi-Grid Solver Package

NWT Newton Solver Package

OBS Observation Process (only BAS, CHD, and GHB)

### **GSFLOW Modules**

gsflow\_prms Computational-Sequence Control for PRMS and GSFLOW gsflow\_modflow Computational-Sequence Control for MODFLOW Module

gsflow\_prms2mf PRMS to MODFLOW Integration Module gsflow\_mf2prms MODFLOW to PRMS Integration Module gsflow\_budget Watershed-Budget Summary Module gsflow\_sum Flow-Components Summary Module

## **RELEASE HISTORY**

## Current Version, 1.2.0 (August 1, 2015)

This version of GSFLOW is based on MODFLOW-NWT version 1.0.9, MODFLOW-2005 version 1.11.0, and PRMS version 4.0.1. Substantial enhancements were added for this version of the software, in particular the inclusion of a restart capability for GSFLOW (Regan and others, 2015) and the integration of several (but not all) of the new PRMS-IV modules documented by Markstrom and others (2015). The restart capability is fully documented in Regan and others (2015); no additional information about the capability is included in these release notes. Those PRMS-IV modules that have been included with this version of GSFLOW are identified above in the 'PRMS Modules' functionality list. All of the new modules are described in detail by Markstrom and others (2015). Some input and output options are not available in the current GSFLOW release, such as those related to the strmflow\_lake module.

In addition to the major enhancements, a number of bug fixes and slight modifications have been made to the software; those bug fixes and modifications that are more than simply cosmetic are described below, beginning with changes to the PRMS Modules and then progressing to changes to the MODFLOW Packages and GSFLOW Modules.

#### A. PRMS Modules

The PRMS version (4.0.1) included in GSFLOW version 1.2 is based on PRMS-IV as documented in Markstrom and others (2015), with the addition of the flexible-dimension option (described below) and new modules and parameters; minor bug fixes; additional checks for valid input values; and general code clean-up. Code clean-up was done with the following objectives: (a) to reduce mixed floating-point computations by changing some variables to double precision (and some to single precision) and using FORTRAN intrinsic functions to convert variables prior to mixed-precision computations—this change might produce slight changes to results for associated computations; (b) to reduce HRU based loops; and (c) to increase consistency of screen output. Note: for large models, users can reduce the size of the input Parameter Files by not including parameters for which the PRMS-assigned default values represent the needs of the application. A message is printed to the screen for each parameter that is used in a simulation at its default value and is not specified in the Parameter File. For example, if the default value of carea\_max, which is 0.6, is the value needed for all HRUs, that parameter does not need to be specified in the Parameter File.

Detailed descriptions of changes made for PRMS version 4.0.1 are described in the PRMS release notes included with the PRMS distribution (http://wwwbrr.cr.usgs.gov/projects/SW\_MoWS/PRMS.html). Changes in the specification of user inputs are reported as updates to tables in the Users' Manual (tables 2, 1-2, 1-3, and 1-5). The following sections highlight some of the more important changes.

### **General Updates and Enhancements**

Flexible dimension option: Previously, parameters had only one option for the number of values [that is, the dimension(s)] specified in the Parameter File. Now, many parameters can be specified using the original dimension(s) or using compatible dimensions up to a maximum number of values based on the specified dimension(s). For example, some parameters had a maximum dimension of nmonths and now have a maximum dimension of nhru,nmonths. Possible dimensions for a parameter with a maximum dimension of nhru,nmonths are one, nmonths, nsub, nsub, nmonths, nhru, and nhru,nmonths. Possible dimensions for a parameter with a maximum dimension of **nhru** are **one**, **nsub**, and **nhru**. Possible dimensions for a parameter with a maximum dimension of nssr are one, nsub, and nssr. Possible dimensions for a parameter with a maximum dimension of ngw are one, nsub, and ngw. GSFLOW will read the dimension and number of values and load the parameter array used in the model to the maximum dimension. Thus, the user has several options to specify the number of parameter values based on the spatial and temporal variability of the parameter, available data, or some other modeling purpose. As the number of HRUs is increased, the specified parameter values to the maximum dimension the amount of memory used for an execution will be greater by the memory difference between the original maximum number values

and new maximum number of values. The maximum number of values for most parameters has not changed. Maximum parameter dimensions are identified in PRMS-IV updated tables 1-1 and 1-3

(ftp://brrftp.cr.usgs.gov/pub/mows/software/prms/4.0.1/PRMS\_tableUpdates\_4.0. 1.pdf).

The flexible dimension option was added to accommodate simulation of large model domains that require increased spatial and/or temporal distribution of parameter values. Additionally, the number of lines in Parameter Files can be significantly reduced by specifying a single (dimension one) or nsub values for parameters that have a constant value for all HRUs or subbasins. This capability may change results when dimensions are specified to be greater than the original dimension(s). If the parameter dimensions are not changed, results should be the same. However, some computations in the ddsolrad and ccsolrad modules are based on variables for each HRU rather than basin-wide variables, so the potential solar radiation (variable swrad) can be significantly different than previous versions for large model domains.

An example of a parameter with a maximum number of values equal to **nhru** that might have the same value for all HRUs when specified as a regular grid is **hru\_area**. In this case, the area of each HRU can be specified as:

```
####
hru_area
1
one
2
90.0
```

- The short-hand method for specification of parameter values as described on pages 4-5 in the 'GSFLOW\_v1.1.3\_Updates.pdf' document included in the GSFLOW distribution is deprecated and no longer supported. While this option is available with this GSFLOW release, it is recommended that users do not use it and that they convert any existing models to use the flexible dimension option.
- <u>Surface-Depression Storage</u>: Simulation of surface-depression storage is supported with this version of GSFLOW. See Markstrom and others (2015) and Viger and others (2010) for a description of this option, as well as the updated PRMS-IV <u>tables 1-3 and 1-5</u>

(ftp://brrftp.cr.usgs.gov/pub/mows/software/prms/4.0.1/PRMS\_tableUpdates\_4.0. 1.pdf) for descriptions of all current surface-depression input and computed results.

 Restart option (or Use of Initial Conditions Files option): This option has been enhanced with bug fixes. Modules affected: potet\_pan, transp\_tindex, temp\_dist2, obs, gwflow, intcp, climateflow, temp\_1sta, temp\_laps,

- srunoff\_smidx, srunoff\_carea, snowcomp, soilzone, transp\_tindex,
  basin\_sum, and xyz\_dist. Restart code removed from subbasin module.
- <u>Solar Radiation and ET</u>: Modifications made to the solar-radiation modules described on page 15 may lead to noticeable changes in simulation results for areally extensive basins in which there are large contrasts in topographic relief throughout the basin.
   For example, the modifications led to changes in simulated results for the Sagehen GSFLOW model distributed with the release because of the large relief in the basin and presence of north- and south-facing slopes.

## **New Modules and Utility Routines**

- Several new PRMS modules have been added for this GSFLOW release
   (ide\_dist, potet\_hs, potet\_pt, potet\_pm, transp\_frost, frost\_date,
   muskingum, and strmflow\_in\_out). See the PRMS-IV documentation manual
   for complete descriptions of these modules and online table 2 for brief
   descriptions of each module (as well as table 1 in
   "GSFLOW Input Instructions.pdf").
- nhru\_summary module: Output CSV files of user-selected output variables (see 'nhru\_summary.pdf' in the 'doc\Related reports' subdirectory of the GSFLOW distribution file.
- routing: A utility routine to compute segment variables used with streamrouting modules muskingum and strmflow\_in\_out. Most code for this routine was originally in the muskingum module.
- prms\_time: A utility routine to set time-related variables for each time step that are used by most other modules. Most code was originally in the obs module.
- water\_balance: A utility routine to compute debug water budgets for the
  major hydrologic processes when control parameter print\_debug is specified
  equal to 1. Code for this utility was originally in modules intcp, soilzone,
  srunoff\_smidx, srunoff\_carea, snowcomp, and gwflow.

## **New Parameters**

## New Parameters Specified in the Control File

parameter\_check\_flag: A 0 value means perform parameter-range checks on a number of parameters, such as soil\_moist\_max, soil\_rechr\_max, smidx\_coef, smidx\_exp, covden\_win, covden\_sum, and hru\_aspect, and to treat some of those parameter-range checks as WARNINGs, as done for most parameters in previous versions; if specified as 1, these checks are treated as ERRORs; if specified as 2, the parameters are checked and then the simulation stops, even if no ERRORs are found; default value = 1. Modules affected: potet\_jh,

- precip\_dist2, precip\_laps, soilzone, soltab, srunoff\_smidx, and srunoff\_carea. It is recommended that a value of 1 be used for initial simulations so that possible parameter specifications are within valid ranges.
- cbh\_check\_flag: A 0 value means do not check values in CBH file; 1means to check for invalid values (for example, less than lower bound or greater than upper bound), reading past the end of file during a simulation, and non-sequential time series, such as not having the correct number of days in each year; default value = 1. Specifying cbh\_check\_flag equal to 0 should only be done after the CBH file(s) are verified using cbh\_check\_flag specified equal to 1. Setting cbh\_check\_flag equal to 0 can reduce execution time.
- **cbh\_binary\_flag**: A 0 value means all CBH Files are text files, the only option in previous versions; 1 means all CBH files are in binary format and generated using the same input order of values as would be done for a text CBH File.
- humidity\_cbh\_flag: Flag to specify to read a CBH File with humidity values (0=no; 1 =yes; default = 0).
- **humidity\_day:** File name of the humidity CBH file; this can be a full or relative path.
- windspeed\_cbh\_flag: Flag to specify to read a CBH file with wind-speed values (0=no; 1 =yes; default = 0).
- windspeed\_day: File name of the wind-speed CBH file; this can be a full or relative path.
- print\_debug: New option added: specifying a -1 value minimizes warning
  messages and other messages printed to the screen during a simulation, such as
  the current stress period and time step and when values of parameter
  soil\_rechr\_max is specified greater than soil\_moist\_max. This can reduce
  execution time.

# New Parameters and Dimensions Specified in the Parameter File(s)

- **potet\_cbh\_adj(nhru,nmonths)**: Calibration coefficient for values specified in a **potet day** CBH file; valid range 0.5 to 1.5; default value = 1.0.
- **snowpack\_init(nhru)**: Initial snowpack-water equivalent, in inches; valid range 0.0 to 500.0; default value = 0.0.
- tmax\_allrain\_sta(nrain,nmonths): Monthly (January to December) maximum air temperature when precipitation is assumed to be all rain; if the maximum air temperature at a precipitation-measurement station is greater than or equal to this value, then precipitation is assumed to be all rain; default value = 38.0. Parameter tmax\_allrain(nhru,nmonths) is used to determine the form of values distributed to HRUs. Specified for module ide\_dist.
- tmax\_allsnow\_sta(nrain,nmonths): Monthly (January to December) maximum air temperature when precipitation is assumed to be all snow; if the maximum air temperature at a precipitation-measurement station is less than or equal to this value, then precipitation is assumed to be all snow; default value = 32.0.

- Parameter **tmax\_allsnow(nhru,nmonths)** is used to determine the form of precipitation values distributed to HRUs. Specified for module ide\_dist.
- tmax\_allrain\_dist(nmonths): Maximum air temperature when parameter adjust\_snow(nhru,nmonths) is used precipitation adjustment assumed to be all rain; if the computed HRU maximum air temperature is greater than or equal to this value, precipitation is all rain, default = 38.0. Parameter tmax\_allrain(nhru,nmonths) is used to determine the form of precipitation values distributed to HRUs. For exiting models, users need to add parameter tmax\_allrain\_dist as a copy of the existing parameter tmax\_allrain. Both parameters are required for models using module xyz\_dist.
- tmax\_allsnow\_dist(nmonths): Maximum air temperature when precipitation is assumed to be all snow; if the computed HRU maximum air temperature is less than or equal to this value, precipitation is all snow, default = 32.0. Parameter tmax\_allsnow(nhru,nmonths): Maximum air temperature when precipitation is assumed to be all rain; is used to determine the form of values distributed to HRUs. Parameter tmax\_allsnow(nhru,nmonths) is used to determine the form of precipitation values distributed to HRUs. For existing models, users need to add parameter tmax\_allsnow\_dist as a copy of the existing parameter tmax\_allsnow. Both parameters are required for models using module xyz dist.

## **Parameters and Variables Removed**

See the PRMS-IV updated tables

(ftp://brrftp.cr.usgs.gov/pub/mows/software/prms/4.0.1/PRMS\_tableUpdates\_4.0.1.pd f) for descriptions of these parameters.

## Parameters Specified in the Control File

• soilzone\_module: Not needed because the soilzone module is always active.

# <u>Parameters and Dimensions Specified in Parameter Files</u>

- adj\_by\_hru, rain\_sub\_adj, and snow\_sub\_adj parameters that were specified for module climate\_hru are unnecessary because parameters rain\_adj and snow\_adj can have the dimensions (nsub,nmonths) due to the new flexible in the dimension capability; thus, when using climate\_hru for the precipitation distribution module use rain\_adj(nsub,nmonths) and snow\_adj(nsub,nmonths) to replace rain sub adj and snow sub adj.
- hru\_ssres, ssr\_gwres, and hru\_gwres parameters are not needed as nhru must equal nssr and ngw.
- basin\_area parameter is not needed as it is computed based on hru\_area.
- **nform**: this dimension removed as it is not used.
- *form\_data*: this input variable removed as it is not used.
- **snow**: input variable named changed to **snowdepth** to be more explicit about its meaning.

## Screen Output Changes

- Increased consistency of screen output for module descriptions, HRU identification numbers, and dates.
- When module climate\_hru is active for more than one type of CBH file, the module description is printed for each climate type. For example, if climate\_hru is used to input temperature and precipitation values, a line is printed with the climate\_hru version identification for the active Temperature Distribution and Precipitation Distribution modules. Previously, the identification was printed once no matter how many climate types were input using climate\_hru.

## **Changes by Process**

## Input Data

## climate\_hru module:

- Allows CBH Files to be input in binary format when control parameter
   cbh binary flag is specified equal to 1.
- Values for CHB Files are not checked for having valid values unless control
  parameter cbh\_check\_flag is specified equal to 1 (default value); setting this
  parameter to 0 can reduce execution time.
- Humidity and wind speed CBH Files can be input, which are needed for new module potet\_pm.
- Parameters to adjust precipitation by subbasin are no longer used because parameters snow\_cbh\_adj and rain\_cbh\_adj can be dimensioned (nsub,nmonths) using the flexible dimension option. Thus, models that used the subbasin specification need to be updated to remove parameters adj\_by\_hru and hru\_subbasin and names for parameters snow\_sub\_adj and rain\_sub\_adj changed to snow\_cbh\_adj and rain\_cbh\_adj, respectively.
- Values in potential evapotranspiration CBH Files can be adjusted using new parameter potet cbh adj.

#### obs module:

- Removed dimension **nform** and variable *form\_data* because they are not used, users need to remove both of these if they are specified in a Data File.
- Variable named *snow* changed to *snowdepth*. Users need to make this change if snow depth is specified in a Data File.
- Code related to time step moved to new prms\_time utility routines.
- Values in Data File no longer checked for NaN values. This can reduce execution time.

## Climate

- Parameters used in equations optionally can use two-dimensional arrays
   (nhru,nmonths) to add spatial variation for large models. However, this change
   is backward compatible with existing models. Modules affected: precip\_lsta,
   precip\_laps, precip\_dist2, xyz\_dist, and climate\_hru (parameters
   tmax\_allrain, tmax\_allsnow, adjmix\_rain); temp\_lsta, temp\_laps, and
   xyz\_dist (parameters tmax\_adj(nhru,nmonths), tmin\_adj(nhru,nmonths));
   temp\_lsta (parameters tmax\_lapse(nhru,nmonths)) and
   tmin\_lapse(nhru,nmonths)).
- Small values (< 1.0E-05) of input precipitation are not ignored. This was done
  because in some cases—such as with output from General Circulation Models—
  computed precipitation could include small values. Modules affected:
  precip\_lsta, precip\_laps, climate\_hru, and xyz\_dist.</li>
- Added error check for computed values of tmin > tmax when determining form
  of precipitation. Modules affected: climate\_hru, ide\_dist, precip\_1sta,
  precip\_laps, and xyz\_dist.
- Modules temp\_1sta and temp\_laps: the initial value used to replace a missing value was changed from 50.0 to the value of tmax\_allrain(start\_month); this only affects the first time step. Bug fix: if too many missing values (greater than parameter max\_missing) are found, an error message is printed and the execution stops, instead of continuing.
- Modules xyz\_dist and ide\_dist: values of measured precipitation as specified in the Data File were used in calculations that could change the original value; thus, if these values were output, they may not match the values specified in the Data File. Now the modules use new arrays that are originally set to the measured values and allowed to be modified in computations, but not affect input values.
- Module xyz\_dist: error check added to be sure that at least two climate stations are in the Data File.
  - Parameters adjust\_snow and adjust\_rain have maximum dimensions (nrain,nmonths) because the adjustments are applied to measured precipitation from the Data File instead of (nmonths). This change does not affect existing models.
  - Added parameters tmax\_allsnow\_dist and tmax\_allrain\_dist(nmonths); these are the used to determine the form of the measured precipitation specified in the Data File. For existing models, users need to add copies of tmax\_allsnow and tmax\_allrain to the Parameter File and then change the copies to have the parameter names tmax\_allsnow\_dist and tmax\_allrain\_dist. Thus, all four parameters must be specified. The tmax\_allsnow and tmax\_allrain parameters are used to determine the form of HRU distributed precipitation values and now have maximum dimensions (nhru,nmonths).

## Solar Radiation

# ccsolrad and ddsolrad modules:

- Some solar radiation equations were dependent on basin-area weighted average and monthly varying parameter values. All computations are now computed based on parameters for each HRU. This can lead to noticeable changes in results for larger basins. For example, in the ccsolrad module, a single cloud cover fraction was computed for the current month based on a basin value for minimum and maximum temperature and monthly cloud cover parameter values. Now, the cloud cover fraction is computed based on the HRU daily minimum and maximum temperature and values of the cloud-cover parameters that can be specified for each HRU and month. Similarly, in module ddsolrad the degree-day and radiation adjustment values are computed for each HRU instead of as basin-wide values.
- ddsolrad module: <u>Bug fix</u>: if the computed radiation-adjustment factor based on parameters **dday\_slope** and **dday\_intcp** is greater than the value of parameter **radmax**, it is set to **radmax** rather than as computed. The check was added as a precaution and to be consistent with module ccsolrad.
- <u>Bug fix</u>: modules incorrectly assumed that the simulation time period was always winter for Southern Hemisphere applications. This meant that solar radiation adjustment values as specified by parameter <u>radj\_wppt</u> were always used for models located in the Southern Hemisphere; thus, values for parameter <u>radj\_sppt</u> were not used.
- <u>Bug fix</u>: check added to be sure at least one value of parameter <u>hru\_solsta</u> is specified greater than 0 when dimension <u>nsol</u> is specified greater than 0. If all values of <u>hru\_solsta</u> were specified equal to 0, an array would be referenced beyond its memory limit, which could produce errant results or cause the simulation to abort.

## Potential Evapotranspiration

- Module potet\_pan: <u>Bug fix</u>: added check to be sure pan evaporation data are included in the Data File. Added check for values of parameter <u>hru\_pansta</u> specified greater than dimension <u>nevap</u> or equal to 0. If either condition or no pan evaporation data are in the Data File, an error message(s) is printed and execution stops.
- Module potet\_jh: Added check for values of parameter jh\_coef\_hru specified greater than 150 or less than -50 and values of jh\_coef specified greater than 10 or less than -1; if true, a warning message is printed when control parameter parameter\_check\_flag is specified equal to 0; else, an error message is printed and execution stops.

#### Canopy

• Module transp\_tindex: <u>Bug fix</u>: When the value of parameter **transp\_end** equals the current month and the current day is the first day of the month, transpiration is turned off (variable *transp\_on* is set to 0) and the related local

variables, transp\_check and tmax\_sum, are set to 0. After this check, if the current month equals the value of parameter transp\_beg, transp\_check and tmax\_sum are checked to determine if transpiration needs to be turned on if the value of tmax\_sum is greater than the value of parameter transp\_tmax. If true, variable transp\_on is set to 1, transp\_check is set to 1, and tmax\_sum is set to 0. Previously, the checks were reversed, which could keep transpiration on for a few days in a month, depending on the value of tmax\_sum when the values of transp\_beg and transp\_end were specified equal to each other.

- Parameters used in equations optionally can use two-dimensional arrays (nhru,nmonths) or one-dimensional arrays (nhru) to add spatial variation for large models. However, this change is backward compatible with existing models. Modules affected: intop (parameters epan\_coef(nhru,nmonths) and potet\_sublim(nhru)).
- Module intep: snow interception on an HRU is computed based on any
  precipitation on the HRU rather than also in the basin. Previously, snow
  interception in the canopy was not computed on HRUs if precipitation occurred
  anywhere in the basin. This could lead to noticeable change in results for large
  models, but, may not affect results for small basins.

## Cascades

- Code related to cascading flow in stream segments and lakes removed. Cascade variables related to groundwater cascades changed to double precision.
- Two groundwater cascade arrays were initialized **ngw** number of times instead of once. This fix slightly reduces execution time for PRMS-only simulations.
- Tolerance used to check for the fraction leaving an HRU or GWR adding up to exactly 1.0 was changed from 1.00001 to 1.001. If this check finds an issue, the cascade links are adjusted.

# Snow Dynamics (module snowcomp)

- Added check to be sure values of snowcov\_area are not equal to zero when a snowpack exists. This would be very rare and only possible when the first value of a snow-depletion curve was specified equal to zero.
- Checks were added to be sure pkwater\_equiv is set to 0.0 if it is computed as negative. For example, there was the possibility that the snowpack water equivalent was computed as a value < 0 when the amount of free water in the snowpack was less than the computed amount of free water that the snowpack could hold. Though this condition is likely very rare, it could have resulted in very slight differences in results in to the value of variables pkwater\_equiv, pk\_depth, and snowmelt.</li>
- <u>Bug fix</u>: Computation of snowpack density and snowpack depth are computed based on a finite-difference approximation, which produced slightly incorrect results for days when new snow falls when a snowpack does not exist. This bug

- could produce significant errors when the new snowfall is large compared to the existing snowpack.
- Canopy density on each HRU for each time step is used in computations instead
  of only values of parameter covden\_win. This could result in noticeable changes
  in results when snow falls on a day during the transpiration period (growing
  season) and the value of covden\_sum is significantly different that the value of
  covden\_win for an HRU.
- If values for parameters **den\_init** and/or **den\_max** are specified less than 1.0E-06, they are set to 1.0E-06 instead of 0.1 and 0.6, respectively.
- Bug fix: If values of cov\_type were specified equal to 4 (coniferous), the computed convection-condensation value that is based on parameter cecn\_coef was not reduced by half as it should for all tree types. Specifying cov\_type equal 4 is not fully implemented and is treated the same as cov\_type equal 3. Few models are believed to have used cov\_type equal 4; those that did could see differences in results related to the snowpack.

# Surface Runoff (modules srunoff\_smidx and srunoff\_carea)

- Added check for values of parameter carea\_max specified greater than 1.0; if true, an error message is printed and execution stops.
- Added check for the computation of the maximum contributing area for module srunoff\_smidx based on the values of parameters smidx\_coef, smidx\_exp, and soil\_moist\_max. If the maximum contributing area for any HRU is greater than 2.0, a warning message is printed if control parameter parameter\_check\_flag specified equal to 1. When this condition is true, it indicates that the values of smidx\_coef and smidx\_exp can be insensitive as compared to the values of carea\_max, thus increasing values of smidx\_coef or smidx\_exp could have no effect on computed results.

## Soilzone Processes (module soilzone)

- Error check added for interflow computation for the equation SQRT(coef\_lin\*\*2.0+4.0\*coef\_sq\*ssres\_in) = 0.0; if true, a divide by 0 would have occurred; this would have been a very rare condition if ever.
- <u>Bug fix</u>: Corrected setting of variable soil\_zone\_max to account for parameter soil\_moist\_max only being applicable to the pervious area of each HRU. This does not affect other soilzone computations, just the values of variables soil\_zone\_max and soil\_moist\_frac, which are computed results that are not used in other computations.
- Water-balance check when control parameter print\_debug = 1 was incorrect
  when swale HRUs are present because the computed evaporation from swale
  HRUs was not included in the water-balance equation.
- Added checks for computed infiltration less than 0.0 and computed interflow coefficient equal to 0.0; these conditions would not likely occur.

• Can remove from the Parameter File parameter **gvr\_hru\_id** when dimensions **nhru** equals **nhrucell**.

# Groundwater flow (module gwflow)

- Values of parameter **gwflow\_coef** that are specified greater than 1.0 are now allowed; a warning is issued in this case.
- Bug fix: Any water added due to specified values of parameter gwstor\_min was incorrectly added twice.
- Warning checks of some parameters used incorrect array index; thus, the value printed was incorrect.
- If any HRUs were specified as inactive, then the parameter values of all remaining HRUs were not checked for being valid values.

# Output Reports (modules basin\_sum and map\_results)

- Module basin\_sum: Water-balance computations did not include water in stream segments when using the muskingum module or surface-depression storage computations. Water-balance computations are only computed when control parameter print\_debug is set to 1.
- **Bug fix**: Previous versions used variable <code>basin\_stflow\_in</code> instead of <code>basin\_stflow\_out</code> to set the basin-outflow variable <code>basin\_cfs</code>; this bug only occurred when the <code>muskingum</code> module was active.
- Can remove from the Parameter File parameters gvr\_hru\_id, gvr\_cell\_id and gvr\_cell\_pct when dimensions nhru equals nhrucell.

### **B. MODFLOW Packages**

GSFLOW version 1.2.0 is based on MODFLOW-NWT version 1.0.9, as well as updates that have been made to MODFLOW-2005 version 1.11.0. Since the last GSFLOW release (version 1.1.6) there have been two MODFLOW-NWT releases (versions 1.0.8 and 1.0.9) and two MODFLOW-2005 releases (versions 1.10.00 and 1.11.0). Changes

made to MODFLOW-NWT and MODFLOW-2005 are described in the release notes for those codes; users are encouraged to review those release notes in addition to the notes provided below.

Specific notes on the MODFLOW Packages:

- 1. Although the current release versions of MODFLOW-NWT (1.0.9) and MODFLOW-2005 (1.11.0) include the Seawater Intrusion (SWI2) Package, GSFLOW version 1.2 does not. Other Packages that are distributed with MODFLOW-NWT and MODFLOW-2005 that are not a part of GSFLOW (as described in the original GSFLOW documentation by Markstrom and others, 2008) are the RCH, EVT, ETS, IBS, SUB, DRT, RIV, DRN, and RES Packages, as well as the STR, SWR (MODFLOW-NWT only), SWT, LMT, SWI, and HYDMOD Packages and capabilities. The PCGN Solution Package also was removed for this version of GSFLOW.
- 2. Changes made to MODFLOW-NWT since the version 1.0.9 release are the following: (a) a minor bug was fixed that relates to simulating unsaturated-zone flow beneath lakes; (b) some variables in the SFR2 Package were initialized; and (c) some variables in the UZF Package for calculating runoff were initialized.
- 3. Multi-Node Well (MNW2) Package: A bug was fixed to correct budget calculations when the UPW Package was used with MNW2.

### C. GSFLOW Modules

Changes to the GSFLOW Modules are:

1. Previous versions of GSFLOW required that a PRMS Parameter File be specified in the Control File for a MODFLOW-only simulation. The code has been updated so that the user no longer needs to specify a PRMS Parameter File for a MODFLOW-only simulation. Thus, for a MODFLOW-only simulation, the Control File could be as short as the following example for the Sagehen Creek GSFLOW model distributed with the software:

```
Control File for a MODFLOW-only simulation, Sagehen Creek Watershed
####
model_mode
1
4
MODFLOW
####
modflow_name
1
4
../input/modflow/sagehen.mf.nam
```

Note, however, that for restart simulations, the user also will need to specify control parameters **modflow\_time\_zero**, **start\_time**, and **end\_time**.

- 2. A bug was discovered in the conversion of time units from MODFLOW to GSFLOW units. Previous versions of the code assumed that all MODFLOW time units were in days. MODFLOW models that used units other than days resulted in incorrect GSFLOW results. The code was changed to allow time units other than days to be used for MODFLOW input, as defined through variable ITMUNI that is specified within the Discretization (DIS) file. The bug required modifications be made to the gsflow\_budget, gsflow sum, gsflow prms2mf, and gsflow mf2prms modules.
- 3. Another small change was made in the calculation of change in storage for all lakes used for printing the budget to the overall GSFLOW budget. This change had a small effect on values of lake-storage change printed to the CSV and GSFLOW budget files.
- 4. Code was added to the gsflow\_prms module to check for deprecated-module names. If these names are found, a warning message is printed. To maintain compatibility with previous versions of the software, the deprecated-module name is set to the current name.

#### **Previous Versions**

### Version 1.1.6 03/20/2013:

This version of GSFLOW is based on MODFLOW-2005 version 1.9.01, MODFLOW-NWT version 1.0.7, and PRMS version 3.0.5 A number of enhancements and bug fixes have been done for this release. All of the updates are described in file "GSFLOW\_v1.1.6\_Updates.pdf."

# Version 1.1.5 01/15/2012:

This version of GSFLOW is based on MODFLOW-2005 version 1.8, MODFLOW-NWT version 1.0.3, and PRMS version 3.4179. Several enhancements and bug fixes have been done for this release. Important enhancements include addition of the Newton Formulation for MODFLOW and the Map Results and Climate by HRU Distribution Modules for PRMS. All of the updates are described in the files "GSFLOW\_v1.1.5\_Updates.pdf," "Map\_results.pdf," "Climate\_hru.pdf," "Appendix1\_Tables\_v1.1.5.pdf," and "SFR2\_for\_GSFLOW\_v1.1.5.pdf."

## Version 1.1.4 06/01/2011:

This version of GSFLOW is based on MODFLOW-2005 version 1.8 and PRMS version 2.3116. Users are encouraged to review the release materials for MODFLOW-2005 for a full description of updates made for version 1.8.

A number of changes and bug fixes were made for this release. The modifications are grouped by PRMS modules and MODFLOW Packages.

#### PRMS Modules:

Potential Solar Radiation Module (soltab\_hru\_prms.f): The area-weighted mean basin latitude was computed incorrectly for models having inactive cells. This bug affected the computation of potential solar radiation on a horizontal plane for the basin latitude and snow computations involving solar radiation.

Cascading-Flow Module (cascade\_prms.f): The default values for **hru\_down\_id** and **gw\_down\_id** were changed from 1 to 0. If an HRU is determined to be a swale, an error message is issued and the simulation stops if the value of **hru\_type** is not specified with the value 3.

Ground-Water Reservoir Module (gwflow\_casc\_prms.f): Units for variables gw\_in\_ssr, gw\_in\_soil, and gwres\_in were computed in units of inches. They are now computed in units of acre-inches, as documented.

Surface-Runoff and Infiltration Modules (srunoff\_smidx\_casc.f and srunoff\_carea\_casc.f): Evaporation from impervious areas of HRUs is now computed at the potential evapotranspiration rate rather than at the rate of unsatisfied potential evapotranspiration. Also, a check was added to srunoff\_carea\_casc.f to be sure the computed contributing area used to compute surface runoff does not exceed 1.0. This check is made for each HRU for each time step.

Lapse-Station Temperature-Distribution Module (temp\_laps\_prms.f): If the altitudes of the temperature-measurement stations used to compute lapse rates are equal, the code sets the difference to 1.0 in units based on the value of **elev\_units**. This was done to avoid divide by zero.

Precipitation-Distribution Modules (precip\_prms.f, precip\_laps\_prms.f, precip\_dist2\_prms, xyz\_dist.f): If the computed maximum and minimum air temperatures are equal, the difference is set to 0.01 degrees Fahrenheit. Also, for module precip\_laps\_prms.f, if the altitudes of precipitation measurement stations used to compute lapse rates are equal, the code sets the difference to 1.0 in units based on the value of **elev\_units**. This was done to avoid divide by zero.

## **MODFLOW Packages:**

Lake Package (gwf2lak7.f): Corrected two bugs. The first caused the package to incorrectly set the uppermost active cell beneath a lake cell to **NLAY**. The second occurred in the calculation of outflow to a stream for specified outflow diversions; the lake stage was not being set correctly.

Unsaturated-Flow Package (gwf2uzf1.f and gwfuzfmodule.f): Added deallocate statements for the variables **CHECKTIME**, **MORE** and **LAYNUM**. The default value for the variable **SURFDEP** was changed from 1.0 to 1.0x10-6.

Streamflow-Routing Package (gwf2sfr7.f and gwfsfrmodule.f): Modifications were made to correct the effects of lakes inundating stream cells. Seepage in inundated stream cells was not being set to zero in the budget routine.

# Version 1.1.3 03/01/2011:

This version of GSFLOW is based on MODFLOW-2005 version 1.8. Users are encouraged to review the release materials for MODFLOW-2005 for a full description of updates made for version 1.8. This version of GSFLOW includes (1) the new Grid Report Module, (2) enhanced input options for the PRMS Parameter File, (3) a new option for the SFR2 Package to specify streamflows to simulated stream segments in tabular files that are external to the SFR2 main input file, and (4) several other smaller modifications and enhancements. All of the updates are described in the file 'GSFLOW\_v1.1.3\_Updates.pdf' provided in the .\doc\GSFLOW subdirectory. Revised input instructions for the SFR2 Package (for use with GSFLOW) are provided in file 'SFR2\_for\_GSFLOW\_v1.1.3.pdf' in the same directory. The Appendix 1 tables ('Appendix1\_Tables\_v1.1.3.pdf') also have been updated for the new Grid Report Module. Users are encouraged to review the updated documents.

### Version 1.1.2 07/23/2010:

This version of GSFLOW is based on MODFLOW-2005 version 1.8. Users are encouraged to review the release materials for MODFLOW-2005 for a full description of updates made for version 1.8.

## **Documentation Issues:**

- 1. A new version of PRMSmanual.pdf was added to the 'doc' subdirectory to replace the previous, corrupted version.
- 2. An updated version of Appendix1\_Tables\_v1.1.pdf has been added to the 'doc\GSFLOW' subdirectory with the following changes:

- a. Table A1-19 (Soil-Zone Module): parameters ssr2gw\_exp, ssr2gw\_rate, and ssstor\_init can only have the dimension nssr. Thus, delete "or nhrucell" from the dimension column. Also, parameter ssrmax\_coef is no longer used and should be removed from Parameter Files. (Table A1-18 in the GSFLOW manual, USGS TM6-D1 should also be updated.)
- b. Table A1-4: Dimensions one, nmonths, and ndays no longer need to be specified in a GSFLOW Parameter File. (Table A1-4 in USGS TM6-D1 should also be updated.)

Note on dimension parameters **nhru**, **nssr**, and **ngw**:

The three dimension parameters **nhru**, **nssr**, and **ngw**, which are specified in the dimensions section of the PRMS Parameter File, must all be equal when running GSFLOW in either PRMS-only or GSFLOW modes. If the three parameters are not equal, a message will be written to the user's screen and the parameters will be set equal to one another by the code.

Unsaturated-Zone Flow Package (gwf2uzf1.f):

- 1. An enhancement was done to increase the internal check made by UZF of the ratio of *ROOTDEPTH* to the thickness of the cell from 0.90 to 0.99.
- 2. Fixed memory out-of-bounds bug for array *BOTM* when **IUZFBND** was specified as less than zero. This problem was fixed by taking the absolute value of **IUZFBND** when used to access arrays.

Cascade Module (cascade\_prms.f):

Added check to ignore any cascade links that have invalid values specified for parameters **hru\_up\_id** or **gw\_up\_id**, such as less than 1 or greater than dimension **nhru**.

Subbasin Computation Module (subbasin prms.f):

If the code is executed in GSFLOW mode, subbasin streamflow variables will not be calculated.

Precipitation- and Temperature-Distribution Modules (precip dist2 prms.f and temp dist2 prms.f):

Added input-data check to be sure that at least one climate station has a valid value for both precipitation and air temperature for each time step (as specified in the Data File). If all values of precipitation and air temperature are invalid for a time step, such as might occur if all values are specified as missing, a message is printed to the user's screen and the simulation is terminated.

Soil-Zone Module (soilzone prms.f):

- 1. Added a variable that saves the current version-date of the module. This variable is written to the gsflow.log file.
- 2. Enhanced debug option: If print\_debug, which is specified in the GSFLOW Control File, is set to 7, messages related to inconsistencies in the soil-zone input parameters are

written to the new file soilzone\_prms.dbg in the user's current directory. Previously, these warning messages were written to the user's screen.

3. Added check to determine if swale HRUs are generating water storage (ponding on the surface) in excess of three times the specified value of parameter **sat\_threshold**. If this is the case, a message is written to the soilzone\_prms.dbg file if print\_debug has been specified as 7. It is recommended that users set **print\_debug** to 7 for initial GSFLOW simulations, and that the soilzone\_dbg file be examined to identify any parameter inconsistencies or potential problems with swale discretization prior to calibrating a model.

GSFLOW Computation-Control Module (gsflow prms.f):

Added a variable that saves the current version date of the module. This variable is written to the gsflow.log file.

GSFLOW Conversion Factors Module (gsflow setconv.f):

Bug fix: Fixed possible use of incorrect index for arrays Gwc\_row and Gwc\_col.

GSFLOW Integration Module (gsflow prms2mf.f):

- 1. Added input-data check to be sure that if an HRU is specified as a lake, the associated MODFLOW lake id is specified other than 0 for parameter **lake\_hru\_id**. If an error is detected, an error message is printed to the user's screen and model execution is terminated.
- 2. Corrected the computation of the number of soilzone computations per time step, which is printed in tabular form to the gsflow.log file.
- 3. Fixed a bug that caused the possible override of computed flows in transient GSFLOW simulations with flows specified in MODFLOW input files. Any specified flows in the MODFLOW input files are used in steady-state mode and ignored in transient mode of a GSFLOW simulation.

GSFLOW Summary Module (gsflow sum.f):

Fixed the values reported for total basin precipitation and evaporation to include lake precipitation and evaporation.

## Version 1.1.1 02/12/2010:

This version of GSFLOW is based on MODFLOW-2005 version 1.8, which includes the Multi-Node Well version 2 Package. Additional minor changes also were made to version 1.8 that are explained in the MODFLOW-2005 release documents.

Added module transp\_tindex\_prms: This module is used to determine the active period of plant transpiration. The module is based on code previously located in the potet\_jh\_prms, potet\_hamon\_hru\_prms, and potet\_pan\_prms modules. Therefore, those modules were changed as well.

# Module snowcomp\_prms:

1. A new output variable has been added: basin snowdepth, which is the basin area-weighted average snow depth.

## Module soilzone prms:

- 1. Three new ouput variables have been added:
- gw\_recharge\_day, which is the sum of soil\_to\_gw and ssr\_to\_gw for each HRU for each daily time step
- gw\_recharge\_tot, which is the sum of soil\_to\_gw and ssr\_to\_gw for each HRU for the total simulation time period
- basin\_gw\_recharge, which is the basin area-weighted sum of soil\_to\_gw and ssr\_to\_gw
- 2. Parameter **ssrmax\_coef**, which is the maximum amount of gravity drainage to a PRMS groundwater reservoir or MODFLOW finite-difference cell, was set to a value of 1.0, the default value. Previously, the variable could range to a maximum value of 20.0, which was incorrect.
- 3. Added consistency checks to be sure the following parameters are not specified to a value less than zero: soil\_moist\_max, soil\_moist\_init, soil\_rechr\_max, soil\_rechr\_init, ssstor\_init, and sat\_threshold.

## Module gsflow prms2mf:

1. Added parameter **mnsziter**, which is the minimum number of computations per time step that are computed by the Soil Zone Module. Computations within the Soil Zone Module include Dunnian runoff, interflow, changes in storage within the soil-zone reservoirs, components of evapotranspiration, and potential gravity drainage. The sequence of these computations is described in Table 9 of the GSFLOW documentation report (USGS Techniques and Methods 6-D1, p. 51). The following provides a more detailed explanation than is found in the GSFLOW manual of the conditions under which a GSFLOW time step concludes.

GSFLOW is based on an iterative-solution method in which convergence for each time step is ultimately dependent on whether or not changes in groundwater heads and flow rates meet closure criteria specified in the MODFLOW solver packages. If the MODFLOW convergence criteria are met, then GSFLOW continues to the next time step; if the convergence criteria are not met but the maximum number of MODFLOW iterations per time step is exceeded (as specified using variable MXITER or ITMX in the MODFLOW solver packages), then GSFLOW will print a warning message and continue to the next time step. Note that this differs from MODFLOW, in which MODFLOW stops if MXITER or ITMX are exceeded.

Convergence of groundwater heads and flow rates is dependent in part on the amount of gravity drainage that drains from the soil zone to the underlying unsaturated and

saturated zones. The amount of gravity drainage is dependent on the potential gravity drainage computed by the Soil Zone Module and the vertical hydraulic conductivity and heads within the MODFLOW finite-difference cells. In many cases, heads and groundwater flow rates may converge faster if the amount of gravity drainage from the soil zone is no longer changing, which means that the MODFLOW computations will no longer be dependent on feedback from the Soil Zone Module.

Three GSFLOW input parameters are provided to allow the user to stop the soil-zone computations prior to convergence of the groundwater heads and flow rates. These parameters are (1) szconverge, which is the maximum allowed change in gravity drainage from the soil zone for all HRUs between iterations required before the soilzone computations cease; (2) mnsziter, which is defined above; and (3) mxsziter, which is the maximum number of computations per time step that are computed by the Soil Zone Module. Parameters szconverge and mxsziter have been available since the initial release of GSFLOW (see Table A1-25 in USGS Techniques and Methods 6-D1). Computations within the soil zone cease under three conditions listed in order of precedence: (1) the MODFLOW closure criteria are met or MXITER or ITMX is reached; (2) the maximum number of soil-zone computations is reached, as specified by parameter mxsziter; or (3) the maximum change in gravity drainage from the soil zone for all HRUs between iterations is less than the value specified for parameter szconverge. When conditions 2 or 3 are met, all computations done by the Soil Zone Module are held constant for the remainder of the current time step until MODFLOWrelated convergence criteria are met (or MXITER or ITMX is exceeded). In addition, the amount of interflow and surface runoff to streams and lakes are held constant when soil-zone computations cease within a time step.

Previous versions of GSFLOW set the minimum number of soil-zone computations to 4, which is now the default value for mnsziter; mnsziter must be specified to be greater than 2. Specifying too small a value for mxsziter for complex GSFLOW models can stop soil-zone computations within a time step before the MODFLOW solution reaches a stable value; this may cause groundwater discharge from some finite-difference cells in subsequent iterations to be significantly different than that computed at the iteration in which the soil-zone computations ceased. In general, more complex models will require higher values of mnsziter and mxsziter than less complex models. Recent experience with GSFLOW indicates that (1) mnsziter and mxsziter should be set to values that equal the approximate average number and the maximum number, respectively, of MODFLOW iterations that are expected for any time step; and (2) that for some simulations, it may be advantageous to not limit the number of soil-zone computations by setting both mnsziter and mxsziter equal to MXITER or ITMX to allow for full feedback between PRMS and MODFLOW for each time step. The GSFLOW user may need to experiment with the values specified for szconverge, mnsziter, and mxsziter to be sure that the

GSFLOW calculations have converged to stable values.

For the convenience of the user, the number of MODFLOW iterations and soil-zone computations are printed to the screen for the first day of each month and for each time step in the gsflow.log file. Also, if the number of iterations for a time step exceeds 75, the date and time of this time step is printed to the screen. At the end of a simulation, a summary table is printed to the screen and to the gsflow.log file giving the total and average number of MODFLOW iterations and soil-zone computations, as well as the total time the simulation took.

2. Bug fix: corrected do loop index of arrays used to check whether or not soilzone states are oscillating.

# Module gsflow\_prms:

1. Module subbasin\_prms can now be called in both GSFLOW and PRMS-only modes. Previously, it could be called in PRMS-only mode. However, the user should be aware that some output variables written by the module are not relevant to a GSFLOW simulation, specifically those related to the PRMS groundwater module: <code>sub\_inq</code>, <code>sub\_cfs</code>, <code>sub\_cms</code>, <code>sub\_gwflow</code>, and <code>subinc\_gwflow</code>. The subbasin\_prms module is useful in GSFLOW mode for computation of several subbasin states and fluxes, such as <code>sub\_interflow</code>, <code>sub\_precip</code>, <code>sub\_pkweqv</code>, <code>subinc\_interflow</code>, <code>subinc\_sroff</code>, <code>subinc\_precip</code>, <code>subinc\_snowmelt</code>, <code>subinc\_pkweqv</code>, <code>subinc\_actet</code>, <code>sub\_actet</code>, <code>sub\_sroff</code>, <code>sub\_snowmelt</code>, and <code>subinc\_snowcov</code>.

## Version 1.1.00 11/18/2009:

This version of GSFLOW is based on MODFLOW-2005 version 1.7. Added ability to specify inactive and swale hydrologic response unit types and the ability to calculate streamflow at internal basin nodes (the latter for PRMS-only simulations). Several additional bug fixes and minor enhancements were made for this release. All of the changes are described in the file 'GSFLOW\_v1.1\_Updates.pdf' located in the \doc\GSFLOW directory. Updated input formats for the PRMS and GSFLOW modules, including several new input parameters, are provided in the file 'Appendix1\_Tables\_v1.1.pdf,' which is also included in the \doc\GSFLOW directory. Also made changes to the Sagehen sample problem by simplifying the MODFLOW Name File and making the MODFLOW transient stress period consistent with the total number of time steps simulated by GSFLOW; these changes did not affect the results of the sample problem.

## Version 1.0.00 03/05/2008:

This version is the initial release.