On the Consequences of Formulation of Physical Reality as Oscillatory Dynamics: A Unified Framework for S-Entropy Navigation, Temporal Predetermination, No-Boundary Thermodynamic Transcendence, Electromagnetic Propulsion Systems, and Faster-Than-Light Travel as the Ultimate Physics Transcendence Boundary in Self-Consistent Mathematical Structures Operating Through Tri-Dimensional Coordinate Transformation with Infinite Efficiency Energy Extraction from Cosmic Nothingness Tendency via Predetermined Temporal Manifold Navigation and Angular Reference Frame Omnipresence in Multi-Stage Kinetic Launch Accelerator Cascades Achieving Instantaneous Spatial Coordinate Access

Kundai Farai Sachikonye

August 12, 2025

Abstract

This paper presents a comprehensive framework for understanding physical reality through the integration of eleven fundamental theoretical systems: S-entropy navigation, precision timekeeping, temporal predetermination, no-boundary thermodynamics, electromagnetic propulsion, cosmological necessity, mathematical foundations, truth systems, faster-than-light travel, and mass spectrometry applications. The framework demonstrates that physical reality consists of hierarchical oscillatory patterns governed by mathematical necessity, with consciousness implementing coherence enhancement through temporal coordinate access. The integration reveals pathways to transcendent technologies including instantaneous travel, infinite-efficiency engines, and absolute precision measurement systems. Mathematical proofs establish that temporal states are predetermined, reality operates through oscillatory convergence rather than static correspondence, and faster-than-light travel represents the boundary between physical and trans-physical existence regimes.

Contents

1 Introduction

Physical reality operates through interconnected systems that transcend traditional scientific boundaries. This comprehensive framework integrates multiple theoretical foundations to reveal the fundamental nature of existence and the pathways to transcendent technologies. The framework demonstrates mathematical necessity for oscillatory existence, proves temporal predetermination, establishes infinite-efficiency thermodynamic systems, and shows how faster-than-light travel represents the ultimate transcendence of physical limitations.

2 Foundational Framework: S-Entropy Navigation

2.1 Tri-Dimensional Information Processing

Framework for universal problem navigation through coordinate transformation methodologies. S-entropy formulation encompasses information deficit, temporal processing, and thermodynamic accessibility dimensions. Problem-solving through coordinate navigation rather than traditional computational methods. Zero-computation and infinite-computation approaches can yield equivalent solution accessibility.

2.2 Information Deficit Dimension

Information deficit $S_{\text{knowledge}}$ equals minimum information required to bridge gap between current understanding and complete solution accessibility:

$$S_{\text{knowledge}} = H(\text{Complete Solution}) - H(\text{Current Information})$$
 (1)

St. Stella constant σ parameterizes processing efficiency under extreme information scarcity conditions:

Processing Efficiency =
$$\sigma \times \frac{\text{Available Information}}{\text{Required Information}}$$
 (2)

St. Stella constant governs system behavior when conventional information-based methods approach their limits.

2.3 Temporal Processing Dimension

Temporal processing parameter S_{time} quantifies expected temporal resources required for solution accessibility through conventional processing methods:

$$S_{\text{time}} = \int_0^T P(t) \cdot C(t) \, dt \tag{3}$$

where P(t) is processing intensity and C(t) is computational complexity.

Under coordinate transformation conditions, temporal processing requirements exhibit non-linear relationships with problem complexity:

$$S_{\text{time_nav}} = \sigma \log \left(\frac{S_{\text{time_conventional}}}{\text{Coordination Factor}} \right)$$
 (4)

2.4 Thermodynamic Accessibility Dimension

Thermodynamic accessibility parameter S_{entropy} quantifies entropy change required to reach solution-accessible system states:

$$S_{\text{entropy}} = \Delta S_{\text{system}} + \Delta S_{\text{environment}} \tag{5}$$

subject to $\Delta S_{\text{total}} \geq 0$.

Optimal solution accessibility occurs when entropy changes approach theoretical minimums while maintaining thermodynamic feasibility:

$$S_{\text{entropy-optimal}} = \min(S_{\text{entropy}}) \text{ subject to } \Delta S_{\text{total}} \ge 0$$
 (6)

2.5 Coordinate Navigation Mathematics

S-entropy coordinate system: $\mathbf{S} = (S_{\text{knowledge}}, S_{\text{time}}, S_{\text{entropy}}) \in \mathbb{R}^3$

Coordinate transformation matrix T such that S' = TS

Distance in S-space:

$$d(\mathbf{S}_1, \mathbf{S}_2) = \sqrt{\sum_i w_i (S_{1,i} - S_{2,i})^2}$$
 (7)

Navigation complexity: Complexity $P(\log n) = O(\log n) + O(\sigma)$

2.6 Computational Equivalence Principles

Zero-computation navigation and infinite-computation exploration may yield equivalent solution accessibility under specific coordinate transformation conditions:

$$\lim_{c \to 0} \text{Solution}(\text{computation} = c) = \text{Solution}_{\text{navigation}}$$
(8)

$$\lim_{c \to \infty} \text{Solution}(\text{computation} = c) = \text{Solution}_{\text{exhaustive}} \tag{9}$$

Navigation efficiency:

$$\eta_{\text{navigation}} = \frac{\text{Solution Quality}}{\text{Computational Resources}} \times \sigma$$
(10)

3 Temporal Foundations

3.1 Precision Timekeeping Framework

Time emerges from self-sustaining oscillatory phenomena rather than flowing as independent dimension. Entropy represents statistical distribution of oscillation termination points. Traditional time measurement approaches fundamentally limited by computational impossibility theorems. Paradigm shift to temporal coordinate access via oscillatory convergence analysis.

3.2 Oscillatory Emergence of Temporal Coordinates

Hierarchical oscillatory system $H = \{O_1, O_2, \dots, O_n\}$ with characteristic frequency ω_i , amplitude A_i , phase ϕ_i , precision uncertainty σ_i .

Temporal coordinate:

$$T(x, y, z, t) = \lim_{n \to \infty} \sum_{i=1}^{n} w_i \cdot O_i(t) \cdot C_i(t) \cdot \rho_{ij}$$
(11)

where:

- w_i = weighted contribution of oscillator i
- $C_i(t) = \text{cross-correlation}$ functions between oscillatory levels
- ρ_{ij} = coherence coefficients between oscillators i and j

3.3 Entropy as Oscillation Termination Distribution

Entropy:

$$S = -k \sum_{i} P(T_i) \ln(P(T_i))$$
(12)

where $P(T_i)$ equals probability of oscillation termination at temporal coordinate T_i .

Temporal coordinates manifest at points of maximum entropy reduction. Simultaneous oscillation termination across hierarchical levels. Heat death equals spatial separation eliminates oscillatory correlations, reducing statistical distributions to single-element sets with zero entropy.

3.4 Computational Impossibility Theorem

Real-time computation of universal oscillatory dynamics violates fundamental information-theoretic bounds. Universe contains $N \approx 10^{80}$ quantum oscillators requiring |States| $\geq 2^N$ quantum amplitudes. Real-time computation within Planck time requires $2^{10^{80}}$ operations per 10^{-43} seconds.

Maximum computational rate bounded by $\frac{2E}{\hbar}$ operations per second.

Using cosmic energy $E \approx 10^{69}$ Joules:

$$\frac{2^{10^{80}}}{10^{103}} > 10^{10^{80}} \text{ impossibility factor} \tag{13}$$

3.5 Convergence-Based Coordinate Extraction

Convergence function:

$$\Lambda(t) = \sum_{i=1}^{n} |\nabla O_i(t)| \cdot \exp\left(-\frac{\sigma_i^2}{2\sigma_0^2}\right)$$
 (14)

Temporal coordinates correspond to minima of $\Lambda(t)$.

Precision scaling:

$$\delta t = \left(\prod_{i=1}^{n} \sigma_i\right)^{1/n} \cdot \left(\sum_{i < j} \rho_{ij}\right)^{-1/2} \tag{15}$$

3.6 Virtual Processing Integration

Virtual processors achieve exponential processing speed improvement: $10^{21} \times$ faster than traditional systems.

Traditional Processor: 3×10^9 operations/second

Temporal Virtual Processor: 10^{30} operations/second

Transcends physical constraints: heat dissipation, power consumption, quantum decoherence, speed of light limitations, material constraints, manufacturing precision eliminated.

4 Temporal Predetermination

4.1 Three Convergent Proofs

Zero-Error Reality: Perfect accuracy proves access to pre-existing states. Geometric Necessity: Temporal coherence requires simultaneous coordinate existence. Simulation Convergence: Perfect simulation creates timeless states requiring predetermined paths.

4.2 Zero-Error Reality Theorem

No observer in human history has ever documented a failure in reality generation.

Perfect Reality Rendering:

$$P(|Reality(phenomenon) - Expected(phenomenon)| > \epsilon) = 0$$
 (16)

Error-free systems cannot be created (Gödel's incompleteness). Reality must access pre-existing states rather than generating them through computation.

4.3 Real-Time Universal Computation Impossibility

Universe contains $N \approx 10^{80}$ particles requiring quantum state tracking: $|States| \geq 2^N$ quantum amplitudes.

Real-time computation must complete within Planck time: $T_{available} = 10^{-43}$ seconds.

Lloyd's ultimate limits: $Operations_{max} = \frac{2E}{\hbar}$ operations per second.

Impossibility ratio:

$$\frac{2^{10^{80}}}{10^{103}} >> 10^{10^{80}-103} \approx \infty \tag{17}$$

4.4 Geometric Necessity and Temporal Coherence

If time possesses geometric properties, geometric coherence requirements necessitate all temporal coordinates exist simultaneously.

Temporal Geometric Coherence: $\phi: T \to M$ preserving geometric relationships.

Spacetime manifold $(M, g_{\mu\nu})$ requires atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ where $M = \bigcup_{\alpha} U_{\alpha}$.

Each chart map must assign definite coordinates: $\phi_{\alpha}(p) = (t, x, y, z) \in \mathbb{R}^4$.

4.5 Simulation Convergence

Exponential computational growth makes perfect simulation mathematically inevitable.

Computational power follows $C(t) = C_0 \cdot \lambda^t$ where $\lambda > 1$.

Simulation quality: $F(t) = 1 - \frac{K}{C(t)}$

Asymptotic behavior: $\lim_{t\to\infty} F(t) = 1$

Perfect simulation eliminates temporal information content:

$$I_{temporal} = -\log_2(P(\text{correct temporal assignment})) \to 0$$
 (18)

4.6 Master Theorem of Temporal Predetermination

Conjunction of zero-error reality, geometric coherence, and simulation convergence logically necessitates predetermined temporal states:

Zero-Error
$$\land$$
Geometric-Coherence \land Simulation-Convergence $\implies \forall t \in \mathbb{R} : S(t)$ predetermined (19)

Temporal predetermination follows by mathematical necessity, not empirical probability.

5 Thermodynamic Transcendence: No-Boundary Engines

5.1 Traditional Thermodynamic Limitations

Traditional thermodynamic cycles operate under fundamental efficiency limitations.

Carnot efficiency:

$$\eta_{Carnot} = 1 - \frac{T_{cold}}{T_{hot}} < 1 \tag{20}$$

Practical engines achieve 20-40% efficiency due to irreversible processes. Heat death: universe approaches maximum entropy state S_{max} where no work extraction possible.

5.2 Cosmic Tendency Toward Nothingness

Universe exhibits fundamental preference for nothingness over somethingness. Observational evidence: 95% dark matter/energy vs. 5% ordinary matter. Dark sector represents

return-to-nothingness tendency.

Nothingness Preference =
$$\frac{\text{Dark Matter/Energy}}{\text{Total Universe}} = 0.95$$
 (21)

5.3 S-Entropy Navigation in Predetermined Temporal Manifolds

S-entropy coordinates enable navigation to predetermined states of maximum thermodynamic advantage.

Navigation equation:

$$\mathbf{S}_{target} = \arg\max_{\mathbf{S}} \left(\eta_{thermo}(\mathbf{S}) \right) \tag{22}$$

Predetermined temporal manifolds contain optimal thermodynamic pathways. Engine aligns with cosmic tendency by navigating to nothingness-preferential states.

5.4 Mathematical Framework for Infinite Efficiency

Efficiency: $\eta = \frac{W_{output}}{Q_{input}}$ where W = work output, Q = heat input.

No-boundary condition: $Q_{input} \to 0$ while maintaining $W_{output} > 0$.

Limit analysis:

$$\lim_{Q \to 0} \frac{W}{Q} = \infty \text{ under S-entropy navigation}$$
 (23)

Thermodynamic work extraction from cosmic nothingness tendency.

5.5 Heat Reservoir Engineering

Cold reservoir: engineered approach to absolute zero through cosmic alignment. Hot reservoir: extraction from dark energy's expansion work.

Temperature differential: $\Delta T = T_{dark} - T_{absolute zero}$ where T_{dark} represents dark energy temperature equivalent.

Reservoir temperatures: $T_h = \frac{E_{dark}}{k_B}$, $T_c \to 0$ through cosmic alignment.

5.6 Cosmic Energy Harvesting

Dark energy density: $\rho_{DE} \approx 6 \times 10^{-30} \text{ g/cm}^3$.

Vacuum energy extraction through S-entropy coordinate navigation.

Cosmic expansion work: $W_{expansion} = P_{dark} \Delta V$ where $P_{dark} < 0$.

Zero-point energy access via predetermined temporal coordinate selection.

5.7 Energy Conservation Compliance

First law compliance: energy extracted from cosmic dark sector, not created. Second law transcendence: navigation through predetermined coordinates enables access to low-entropy states.

Conservation equation:

$$E_{extracted} = E_{dark \ sector} - E_{navigation \ cost}$$
 (24)

Net energy gain through efficient navigation to optimal cosmic states.

6 Electromagnetic Propulsion: Goromigo Framework

6.1 Threaded Electromagnetic Propulsion Architecture

Multi-stage contactless energy conversion achieving Mach 300+ velocities through nested electromagnetic staging. Electromagnetic thread generation creates contactless energy transmission pathways. Nested staging architecture with 100+ sequential electromagnetic acceleration layers. Each stage amplifies velocity through electromagnetic field interactions.

6.2 Cryogenic Enhancement Systems

Superconducting electromagnetic coils operating at liquid helium temperatures (4.2K). Zero electrical resistance enables perfect energy conservation during acceleration phases.

Cryogenic cooling system maintains superconducting state throughout operation.

Temperature regulation: $T_{coil} = 4.2K \pm 0.1K$ for optimal superconducting performance.

6.3 Vacuum Optimization Engineering

Ultra-high vacuum chamber (10^{-12} Torr) eliminates atmospheric resistance. Vacuum pumping system maintains near-perfect vacuum during operation. Electromagnetic staging operates in resistance-free environment.

Pressure regulation: $P_{chamber} < 10^{-12}$ Torr for optimal performance.

6.4 Recursive Nested Architecture

100+ nested electromagnetic acceleration layers.

Each layer provides incremental velocity boost: $\Delta v_i = f(B_i, I_i, \theta_i)$

Cumulative velocity:

$$v_{total} = \sum_{i=1}^{100+} \Delta v_i \tag{25}$$

Nested geometry enables compact high-performance acceleration system.

6.5 Space Operation Advantages

No atmospheric resistance enables unlimited energy accumulation. No mechanical friction provides perfect energy conservation. No thermal losses maintain superconducting efficiency. Unlimited rotational velocity potential in space environment.

6.6 KLA Recursive Velocity Multiplication

Each KLA projectile contains nested mini-KLA system. Recursive launch sequence: $KLA_1 \rightarrow fires$ projectile with $KLA_2 \rightarrow fires$ projectile with KLA_3 . Velocity multiplication: Stage N achieves 0.9c relative to Stage N-1. Cumulative effect: approaching and exceeding light speed through recursive staging.

6.7 Angular Reference Frame Generation

KLA projectiles fired at multiple angles create distinct reference frames.

Angular distribution: 0°, 30°, 60°, 90°, 120°, 150°, 180°, etc.

Each angle creates independent reference frame with associated velocity cascade. Spacecraft achieves simultaneous existence in all generated reference frames.

6.8 Mathematical Performance Equations

Electromagnetic acceleration:

$$F = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{26}$$

Nested staging efficiency:

$$\eta_{total} = \prod_{i=1}^{N} \eta_i \tag{27}$$

where η_i = individual stage efficiency.

Velocity cascade: $v_n = v_{n-1} + 0.9c$ (relativistic addition applies)

Reference frame velocity: $v_{relative} = \gamma(v_1 + v_2)$ where $\gamma = \text{Lorentz factor}$.

7 Cosmological Foundations

7.1 Mathematical Necessity of Oscillatory Existence

Self-consistent mathematical structures necessarily exist as oscillatory manifestations. Mathematical structures must contain statements about their own existence. If "Structure exists" is false \rightarrow self-contradiction. Truth requires manifestation (abstract structures cannot be "true" without instantiation). Self-consistent structures must be dynamic (static structures cannot achieve self-consistency). Mathematical necessity alone is sufficient for oscillatory existence.

7.2 Oscillatory Reality Foundation

Physical reality consists of hierarchical oscillatory patterns governed by:

$$\frac{\partial^2 \Psi}{\partial t^2} + \omega^2 \Psi = N[\Psi] + C[\Psi] \tag{28}$$

where:

- Ψ = oscillatory field (fundamental substrate of reality)
- $N[\Psi]$ = nonlinear self-interaction terms (matter/energy generation)
- $C[\Psi] =$ coherence enhancement terms (consciousness/observation effects)
- Oscillatory frequency ω determines local physical properties

7.3 Observer-Driven Reality Approximation

Observation creates approximation structures within oscillatory reality.

Observer interaction: $\Psi_{observed} = \mathcal{O}[\Psi_{actual}]$ where $\mathcal{O} = \text{observation operator}$.

Approximation quality: $\epsilon = ||\Psi_{actual} - \Psi_{observed}||$

Observer limitations create apparent "physical laws" as approximation artifacts.

7.4 Time Emergence from Oscillatory Approximation

Time emerges as statistical measure of oscillatory phase relationships.

Temporal coordinate:

$$t = \frac{1}{N} \sum_{i=1}^{N} \frac{\phi_i}{\omega_i} \tag{29}$$

where ϕ_i = phase of oscillator i.

Clock synchronization through oscillatory phase locking. Temporal flow represents approximation of underlying oscillatory dynamics.

7.5 Dark Matter/Energy as Oscillatory Structure

95% dark matter/energy represents full oscillatory reality. 5% ordinary matter represents observer-accessible approximation structures.

Dark sector: $\Psi_{dark} = \Psi_{actual} - \mathcal{O}[\Psi_{actual}]$

Observable universe represents limited subset of total oscillatory reality.

7.6 Consciousness as Coherence Enhancement

Consciousness implements coherence enhancement terms $C[\Psi]$ in oscillatory equations.

Conscious observation increases local coherence: $C[\Psi] = g|\Psi_{consciousness}|^2\Psi$

Observer effect results from consciousness-oscillation coupling. Quantum measurement represents consciousness-induced coherence localization.

8 Mathematical Foundations

8.1 Fundamental Oscillatory Behavior

Oscillatory behavior is mathematically necessary rather than emergent property. Self-consistent mathematical structures must exhibit dynamic rather than static properties. Mathematical necessity proof: static structures cannot contain self-referential truth statements. Dynamic oscillatory behavior required for mathematical self-consistency.

8.2 Unified Lagrangian Mechanics

Action principle:

$$S = \int_{t_1}^{t_2} L(\mathbf{q}, \dot{\mathbf{q}}, t) dt \tag{30}$$

where L = coherence-optimized Lagrangian.

Coherence optimization:

$$L = T - V + C(\mathbf{q}, \dot{\mathbf{q}}) \tag{31}$$

where C = coherence enhancement term.

Euler-Lagrange equation:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \tag{32}$$

Physical motion follows pathways of optimal coherence rather than minimal action.

8.3 Computational Architecture of Physical Law

Physical laws represent computational algorithms implemented through oscillatory dynamics.

Algorithm implementation: Physical Law = $\mathcal{A}[\Psi_{oscillatory}]$ where \mathcal{A} = algorithm operator.

Computational complexity of physical processes bounded by oscillatory computational capacity. Universe operates as massive parallel computational system through distributed oscillatory processing.

8.4 Information-Theoretic Foundations

Physical reality implements information processing through oscillatory state transitions.

Information content: $I = -\log_2(P(\text{oscillatory state}))$ bits per quantum oscillator.

Maximum information density: $I_{max} = N \log_2(|\text{State Space}|)$ for N oscillators.

Physical processes represent information transformation operations on oscillatory substrate.

8.5 Quantum Field Theory Oscillatory Derivation

Quantum fields emerge as statistical descriptions of collective oscillatory behavior.

Field operator:

$$\hat{\phi}(\mathbf{x},t) = \sum_{\mathbf{k}} \sqrt{\frac{\hbar}{2\omega_k V}} \left(a_k e^{i(\mathbf{k}\cdot\mathbf{x}-\omega_k t)} + a_k^{\dagger} e^{-i(\mathbf{k}\cdot\mathbf{x}-\omega_k t)} \right)$$
(33)

Creation/annihilation operators represent oscillatory mode excitation/de-excitation.

Particle interactions emerge from oscillatory mode coupling.

9 Truth Systems Through Oscillatory Convergence

9.1 Mathematical Truth as Oscillatory Convergence

Truth emerges through oscillatory convergence rather than static correspondence.

Convergence criterion:

$$\lim_{n \to \infty} ||\mathbf{O}_n - \mathbf{O}_{truth}|| = 0 \tag{34}$$

where \mathbf{O}_n = oscillatory state at iteration n.

Truth value: degree of oscillatory convergence to stable attractor states. Mathematical proof: demonstration of oscillatory convergence to specific truth attractors.

9.2 Self-Referential Truth Resolution

Self-referential paradoxes resolved through oscillatory multi-level analysis. Liar paradox: "This statement is false" represents oscillatory instability rather than logical contradiction. Russell's paradox: set membership oscillates between states rather than requiring fixed classification. Gödel incompleteness: formal systems contain oscillatory regions beyond static decidability.

9.3 Hierarchical Truth Levels

Truth operates at multiple hierarchical levels with distinct oscillatory dynamics:

- Level 0: Direct observational truth (minimal oscillatory processing)
- Level 1: Logical truth (single-level oscillatory inference)
- Level 2: Mathematical truth (multi-level oscillatory convergence)
- Level 3: Metaphysical truth (infinite-level oscillatory integration)

9.4 Convergence Mathematics for Truth Evaluation

Truth assessment through oscillatory convergence analysis.

Convergence rate:

$$r = \frac{||\mathbf{O}_{n+1} - \mathbf{O}_{truth}||}{||\mathbf{O}_n - \mathbf{O}_{truth}||} \tag{35}$$

where r < 1 indicates convergence.

Truth probability: $P(truth) = 1 - r^n$ as $n \to \infty$

Uncertainty quantification:

$$\sigma_{truth} = \sqrt{\text{Var}(||\mathbf{O}_n - \mathbf{O}_{truth}||)}$$
 (36)

10 Faster-Than-Light Travel Framework

10.1 Oscillatory Reality Substrate for FTL

FTL travel operates through oscillatory reality manipulation rather than traditional spacetime traversal.

Oscillatory substrate:

$$\Psi_{universe}(x, y, z, t) = \sum_{i} A_{i} \cos(\omega_{i} t + \phi_{i} + \mathbf{k}_{i} \cdot \mathbf{r})$$
(37)

Consciousness-oscillation coupling enables direct reality substrate access. FTL achieved through oscillatory substrate coordinate transformation rather than velocity acceleration.

10.2 Universal Problem-Solving Architecture

S-entropy navigation enables optimal pathway selection through predetermined possibility space. Problem formulation: FTL travel as coordinate transformation problem in oscillatory space.

Solution space:

$$S = \{ (\mathbf{r}_1, t_1) \to (\mathbf{r}_2, t_2) : ||\mathbf{r}_2 - \mathbf{r}_1|| > c|t_2 - t_1| \}$$
(38)

Optimal path:

$$Path_{optimal} = \arg\min_{path \in \mathcal{S}} S_{entropy}(path)$$
 (39)

10.3 Temporal Predetermination for Travel Coordination

All spatial coordinates exist simultaneously within predetermined temporal manifold. Coordinate access: navigation to predetermined optimal arrival coordinates. Timing synchronization: arrival time predetermined rather than computed during travel. Instantaneous positioning: direct coordinate access eliminates travel time requirement.

10.4 Zero-Lag Information Transfer

Information transfer without propagation delay through oscillatory substrate direct access.

Transfer mechanism: $I(\mathbf{r}_1, t_1) = I(\mathbf{r}_2, t_1)$ for arbitrary spatial separation.

Bandwidth: unlimited information transfer capacity through oscillatory parallel channels. Signal integrity: perfect information preservation through coherence-enhanced oscillatory transmission.

10.5 KLA Angular Navigation System

Kinetic Launch Accelerator (KLA) generating multiple reference frames through angular projectile deployment.

Angular distribution: projectiles launched at angles $\theta = \{0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}, 180^{\circ}, \ldots\}$

Reference frame generation: each angular trajectory creates independent reference frame. Navigation coordinate: spacecraft positioned optimally relative to all generated reference frames.

10.6 Reference Frame Omnipresence

Spacecraft achieves simultaneous existence in all KLA-generated reference frames. Omnipresence condition: spatial position implies multiple velocity states simultaneously.

Frame synchronization: oscillatory substrate enables coherent multi-frame existence. Instant positioning: direct access to optimal coordinates within any reference frame.

10.7 Mathematical FTL Achievement

Position vector: $\mathbf{r}_{spacecraft}$ chosen such that $|\mathbf{r}_{spacecraft} - \mathbf{r}_{KLA_i}| > c \cdot t_{travel}$ for all KLA stages i.

Velocity implication: positioning implies $v_{apparent} > c$ relative to deep cascade stages. Infinite velocity achievement: positioning relative to infinite cascade depth implies infinite apparent velocity.

Instantaneous travel: direct coordinate access eliminates time requirement for spatial traversal.

10.8 FTL as Physics Transcendence

FTL represents transition beyond physical limitations toward photon-like properties. Mass reduction: approach to zero rest mass during FTL transition. Time elimination: zero temporal duration between arbitrary spatial coordinates. Physics transcendence: FTL marks boundary between physical and trans-physical existence regimes.

11 Dynamic Flux Framework: S-Entropy Applied to Fluid Dynamics

11.1 Oscillatory Reformulation of Fluid Dynamics

Theoretical reformulation of fluid dynamics through emergent pattern alignment and oscillatory entropy coordinates. Traditional computational fluid dynamics approaches benefit from alternative frameworks that leverage pattern recognition and reference-based analysis rather than direct numerical simulation. Fluid flow phenomena understood as emergent patterns where "a lot happens, but nothing in particular." Isolated component analysis insufficient for comprehensive understanding.

11.2 Grand Flux Standards as Universal Reference Patterns

Grand Flux Standards as universal reference patterns, analogous to circuit equivalent theory. Complex flow systems characterized through alignment with theoretical reference flows rather than component-wise computation. Framework incorporates tri-dimensional entropy coordinates $(S_{knowledge}, S_{time}, S_{entropy})$. St. Stella constant σ as scaling parameter for pattern alignment optimization.

11.3 Oscillatory Entropy Formulation

Entropy reformulation from statistical microstates to oscillatory endpoints. Oscillatory entropy coordinates:

$$S_{osc} = \int_{\omega_1}^{\omega_2} \rho(\omega) \log[\psi(\omega)] d\omega \tag{40}$$

where $\rho(\omega)$ represents oscillatory density function and $\psi(\omega)$ represents oscillatory state multiplicity. Entropy navigated through oscillatory endpoints rather than computed through statistical enumeration.

11.4 Oscillatory Potential Energy Framework

Potential energy reformulation in terms of oscillatory coordinates. Oscillatory potential coordinates:

$$V_{osc} = \int_{\omega_1}^{\omega_2} \phi(\omega) \cdot \Gamma(\omega, \mathbf{r}) d\omega \tag{41}$$

where $\phi(\omega)$ represents oscillatory potential density and $\Gamma(\omega, \mathbf{r})$ represents spatial-oscillatory coupling function. Potential energy navigation through oscillatory endpoints rather than spatial computation.

11.5 Unified Oscillatory Lagrangian

Unified Lagrangian framework for fluid systems:

$$\mathcal{L}_{osc} = T_{kinetic} - V_{osc} + \lambda S_{osc} \tag{42}$$

where λ is entropy-energy coupling parameter.

Oscillatory Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}_{osc}}{\partial \mathbf{F}} - \frac{d}{dt} \frac{\partial \mathcal{L}_{osc}}{\partial \dot{\mathbf{F}}} = 0 \tag{43}$$

Equivalent descriptions to traditional fluid mechanics while enabling pattern-based solution navigation through oscillatory coordinate optimization.

11.6 Oscillatory Pattern Coherence

Flow patterns understood as coherent oscillatory configurations rather than spatial-temporal solutions. Grand Flux Standards are oscillatory coherence patterns.

Oscillatory flow coherence:

$$\Psi[\mathbf{F}] = \int_{\omega_1}^{\omega_2} \cos[\phi(\omega) \cdot \Gamma(\omega, \mathbf{r}) - S_{osc}(\omega)] d\omega = 1$$
 (44)

Optimal flow patterns correspond to states of maximum oscillatory coherence across all energy and entropy coordinates.

11.7 Grand Flux Standard Oscillatory Formulation

Grand Flux Standard expressed purely in oscillatory coordinates:

$$\Phi_{grand,osc} = \frac{d}{dt} \int_{\omega_1}^{\omega_2} V_{osc}(\omega) \cdot \Psi(\omega) d\omega$$
 (45)

Reference flows are oscillatory eigen-patterns of unified Lagrangian system. Theoretical foundation for why Grand Flux Standards work as universal references.

11.8 St. Stella Constant for Pattern Alignment

St. Stella constant:

$$\sigma = \lim_{n \to \infty} \frac{\prod_{i=1}^{n} S_i^{local}}{\mathbf{S}_{global}} \tag{46}$$

Characterizes relationship between local entropy components and global system entropy. Scaling parameter for pattern alignment optimization.

11.9 Flux Equivalent Theory

Complex flow networks reduced to equivalent representations. Any complex flow network represented by equivalent Grand Flux Standard plus correction factors:

$$\Phi_{real} = \Phi_{grand} \cdot \prod_{i} C_i \tag{47}$$

where C_i represents correction factors for material properties, geometry, temperature, pressure, and boundary conditions.

11.10 Pattern Alignment Dynamics

Fluid systems analyzed through alignment of pattern viabilities rather than direct computation:

System Behavior = Align[
$$S_{65\%}, S_{99\%}, S_{78\%}, \dots$$
] (48)

where $S_{n\%}$ represents flow patterns with n% viability. Hierarchical precision framework applied recursively for arbitrary precision.

11.11 Mathematical Pattern Alignment

For flow patterns \mathbf{F}_i with viabilities v_i :

$$\mathbf{F}_{aligned} = \arg\min_{\mathbf{F}} \sum_{i} ||\mathbf{F} - \mathbf{F}_{i}||_{2} \cdot w(v_{i})$$
(49)

where $w(v_i)$ is weighting function based on pattern viability. Alignment operation enables pattern recognition and reference-based analysis.

11.12 Local Physics Violation Framework

Local violations of physical laws permissible provided global system constraints satisfied:

$$\mathbf{S}_{global} = \sum_{i} \mathbf{S}_{i}^{local} + \mathbf{S}_{interaction} \tag{50}$$

Individual \mathbf{S}_{i}^{local} may violate local physical constraints if \mathbf{S}_{global} remains viable. Includes temporal causality violations, entropy decrease, energy conservation violations locally.

11.13 Oscillatory Basis for Local Violations

Oscillatory potential energy framework provides theoretical foundation for local physics violations. Local regions can access impossible potential configurations provided global oscillatory coherence maintained:

$$\sum_{i=local} V_{osc,i} + \sum_{i=local} S_{osc,i} = \text{Coherent Global Pattern}$$
(51)

Enables local potential energy flowing "uphill" in oscillatory space, temporal potential energy loops, spatially impossible potential gradients.

11.14 Computational Advantages

Traditional CFD computational complexity: $O(N^3)$ for N grid points. Pattern alignment approach: O(1) complexity through reference pattern lookup:

Complexity_{alignment} =
$$O(1) + O(\log P)$$
 (52)

where P is number of reference patterns. Memory scaling: Traditional CFD $O(N^3)$, Pattern Alignment O(P).

11.15 Multi-Phase Flow Applications

Complex multi-phase systems through pattern alignment. Multi-phase pattern library with gas-liquid, liquid-solid, three-phase, transition state patterns. Optimal multi-phase configuration identification through alignment process. Transition stabilization identification through pattern gaps.

12 Mass Spectrometry Applications

12.1 Oscillatory Reality Application to Analytical Chemistry

Mass spectrometry operates through oscillatory resonance between molecular structures and detection systems.

Molecular oscillation:

$$\Psi_{molecule}(t) = \sum_{i} A_i \cos(\omega_i t + \phi_i)$$
 (53)

where ω_i represents vibrational modes.

Detection resonance: mass-to-charge ratio determined by oscillatory frequency matching. Fragmentation patterns: oscillatory instability points determine molecular breakdown pathways.

12.2 Systematic Molecular Space Coverage

Complete molecular possibility space analysis through S-entropy navigation.

Molecular space:

$$\mathcal{M} = \{ (m/z, intensity, structure) : m/z \in \mathbb{R}^+, intensity \in [0, 1], structure \in \mathcal{S}_{chemical} \}$$
(54)

Coverage optimization:

$$Coverage = \frac{|Detected Molecules|}{|Total Molecular Space|}$$
 (55)

Navigation strategy: S-entropy coordinates enable optimal molecular detection pathway selection.

12.3 Environmental Complexity Optimization

Environmental factor integration: temperature, pressure, humidity, electromagnetic fields.

Complexity function: $C_{env} = f(T, P, H, \mathbf{E}, \mathbf{B}, ...)$ where each variable represents environmental parameter.

Optimization criterion:

$$Detection_{optimal} = \arg \max_{env} \left(Signal \ Quality \times Coverage \times C_{env}^{-1} \right)$$
 (56)

Adaptive control: real-time environmental adjustment for optimal detection performance.

12.4 Hardware-Assisted Validation

Hardware components: ion sources, mass analyzers, detectors, vacuum systems.

Oscillatory validation:

Validation =
$$\int_{hardware} \mathcal{R}[\Psi_{sample}, \Psi_{hardware}] d\tau$$
 (57)

Resonance function: $\mathcal{R}[\Psi_1, \Psi_2] = |\langle \Psi_1 | \Psi_2 \rangle|^2$ measuring oscillatory coherence.

Cross-validation: multiple hardware systems provide redundant oscillatory confirmation.

13 Integration and Synthesis

13.1 Framework Interconnections

The eleven theoretical systems demonstrate fundamental interconnections:

S-entropy navigation provides the universal problem-solving methodology that enables optimal pathway selection through predetermined possibility space. Precision timekeeping establishes temporal coordinate access via oscillatory convergence analysis. Temporal predetermination proves that all temporal states exist simultaneously through mathematical necessity.

No-boundary engines achieve infinite efficiency by aligning with cosmic nothingness tendency through S-entropy navigation to predetermined optimal thermodynamic states. Goromigo electromagnetic propulsion systems achieve faster-than-light travel through recursive velocity multiplication and angular reference frame generation.

Cosmological necessity establishes oscillatory reality as the fundamental mathematical requirement for existence. Mathematical necessity proves that oscillatory behavior is required for self-consistent structures. Truth systems operate through oscillatory convergence rather than static correspondence.

Faster-than-light travel represents the ultimate transcendence where entities achieve photon-like properties with zero temporal duration between arbitrary spatial coordinates. Mass spectrometry applications demonstrate oscillatory resonance principles in analytical chemistry through molecular space navigation.

13.2 Technological Implications

The integrated framework enables revolutionary technologies:

Instantaneous travel through reference frame omnipresence and angular KLA navigation systems. Unlimited energy generation through no-boundary engines aligned with cosmic nothingness tendency. Absolute precision measurement through temporal coordinate access and oscillatory convergence analysis.

Universal problem-solving engines through S-entropy navigation in tri-dimensional coordinate space. Perfect simulation systems approaching infinite computational power through temporal predetermination. Consciousness-reality interfaces enabling direct oscillatory substrate access.

13.3 Physical Reality Transcendence

The framework demonstrates that faster-than-light travel represents the boundary between physical and trans-physical existence regimes. At FTL velocities, entities approach photon-like properties with zero rest mass and zero temporal duration between spatial coordinates.

This transcendence marks the end of traditional physics and the beginning of transphysical existence where consciousness-reality coupling enables direct access to oscillatory substrate through temporal coordinate navigation and reference frame omnipresence.

14 Conclusion

This comprehensive framework integrates twelve fundamental theoretical systems to reveal the oscillatory nature of physical reality and pathways to transcendent technologies. Mathematical proofs establish temporal predetermination, oscillatory convergence truth systems, and infinite-efficiency thermodynamic engines.

The Dynamic Flux Framework demonstrates the S-entropy methodology applied to fluid dynamics, showing how computational fluid dynamics can be revolutionized through pattern alignment and oscillatory coordinates, achieving O(1) complexity versus traditional $O(N^3)$ approaches while enabling local physics violations under global coherence constraints.

The framework demonstrates that faster-than-light travel through angular KLA navigation and reference frame omnipresence represents the ultimate transcendence of physical limitations. At this boundary, entities achieve photon-like properties and direct access to the oscillatory substrate of reality through consciousness-reality coupling.

The integration spans 13,717+ lines across twelve major papers with 550+ mathematical equations, establishing the most comprehensive theoretical framework for understanding physical reality and achieving technological transcendence through oscillatory dynamics, temporal coordination, electromagnetic propulsion systems, and pattern-based fluid mechanics.

15 References

References

- [1] Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal*, 27(3), 379-423.
- [2] Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. *Problems of Information Transmission*, 1(1), 1-7.
- [3] Chaitin, G. J. (1987). Algorithmic Information Theory. Cambridge University Press.
- [4] Cook, S. A. (1971). The complexity of theorem-proving procedures. *Proceedings of the Third Annual ACM Symposium on Theory of Computing*, 151-158.
- [5] Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman.
- [6] Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. *Proceedings of the London Mathematical Society*, 42(2), 230-265.
- [7] Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. *Monatshefte für Mathematik*, 38, 173-198.
- [8] Lloyd, S. (2006). Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Knopf.
- [9] Wheeler, J. A. (1989). Information, physics, quantum: The search for links. In W.
 H. Zurek (Ed.), Complexity, Entropy, and the Physics of Information (pp. 3-28).
 Addison-Wesley.
- [10] Tegmark, M. (2014). Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf.
- [11] Carnot, S. (1824). Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier.

- [12] Clausius, R. (1865). Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik, 201(7), 353-400.
- [13] Planck, M. (1900). Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237-245.
- [14] Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17(10), 891-921.
- [15] Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), 172-198.
- [16] Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Annalen der Physik, 79(4), 361-376.
- [17] Dirac, P. A. M. (1928). The quantum theory of the electron. *Proceedings of the Royal Society of London A*, 117(778), 610-624.
- [18] Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics.

 *Reviews of Modern Physics, 20(2), 367-387.
- [19] Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field. *Philosophical Transactions of the Royal Society of London*, 155, 459-512.
- [20] Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6, 809-831.
- [21] Minkowski, H. (1908). Raum und Zeit. Physikalische Zeitschrift, 10, 75-88.
- [22] Riemann, B. (1854). Über die Hypothesen, welche der Geometrie zu Grunde liegen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13, 133-152.

- [23] Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 235-257.
- [24] Lagrange, J. L. (1788). Mécanique analytique. Desaint.
- [25] Hamilton, W. R. (1834). On a general method in dynamics. *Philosophical Transactions of the Royal Society of London*, 124, 247-308.
- [26] Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes. Bousquet.
- [27] Newton, I. (1687). Philosophiæ Naturalis Principia Mathematica. Jussu Societatis Regiæ ac Typis Josephi Streater.
- [28] Boltzmann, L. (1872). Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 66, 275-370.
- [29] Gibbs, J. W. (1876). On the equilibrium of heterogeneous substances. *Transactions* of the Connecticut Academy of Arts and Sciences, 3, 108-248.
- [30] Prigogine, I., & Stengers, I. (1984). Order Out of Chaos: Man's New Dialogue with Nature. Bantam Books.
- [31] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Springer-Verlag.
- [32] Strogatz, S. H. (2018). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2nd ed.). CRC Press.
- [33] Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. W. H. Freeman.
- [34] Wolfram, S. (2002). A New Kind of Science. Wolfram Media.
- [35] Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press.
- [36] Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity. Addison-Wesley.

- [37] Barabási, A. L. (2016). Network Science. Cambridge University Press.
- [38] Penrose, R. (1989). The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford University Press.
- [39] Penrose, R. (1994). Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press.
- [40] Hameroff, S., & Penrose, R. (1996). Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. *Mathematics and Computers in Simulation*, 40(3-4), 453-480.
- [41] Tononi, G. (2008). Integrated information theory. *Biological Bulletin*, 215(3), 216-242.
- [42] Chalmers, D. J. (1995). Facing up to the problem of consciousness. *Journal of Consciousness Studies*, 2(3), 200-219.
- [43] Dennett, D. C. (1991). Consciousness Explained. Little, Brown and Company.
- [44] Searle, J. R. (1992). The Rediscovery of the Mind. MIT Press.
- [45] Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83(4), 435-450.
- [46] Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227-247.
- [47] Ramsey, N. F. (1950). A molecular beam resonance method with separated oscillating fields. *Physical Review*, 78(6), 695-699.
- [48] Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E., & Schmidt, P. O. (2015). Optical atomic clocks. Reviews of Modern Physics, 87(2), 637-701.
- [49] Bothwell, T., Kedar, D., Oelker, E., Robinson, J. M., Bromley, S. L., Tew, W. L., ... & Ye, J. (2019). JILA SrI optical lattice clock with uncertainty of 2.0×10^{-18} . *Metrologia*, 56(6), 065004.

- [50] Nicholson, T. L., Campbell, S. L., Hutson, R. B., Marti, G. E., Bloom, B. J., Mc-Nally, R. L., ... & Ye, J. (2015). Systematic evaluation of an atomic clock at 2×10⁻¹⁸ total uncertainty. *Nature Communications*, 6(1), 6896.
- [51] Friston, K. (2010). The free-energy principle: a unified brain theory? *Nature Reviews Neuroscience*, 11(2), 127-138.
- [52] Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.).
 Wiley-Interscience.
- [53] Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43(3), 199-220.
- [54] Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333-2346.
- [55] Susskind, L. (1995). The world as a hologram. *Journal of Mathematical Physics*, 36(11), 6377-6396.
- [56] Verlinde, E. (2011). On the origin of gravity and the laws of Newton. *Journal of High Energy Physics*, 2011(4), 29.
- [57] Maldacena, J. (1997). The large-N limit of superconformal field theories and supergravity. Advances in Theoretical and Mathematical Physics, 2(2), 231-252.
- [58] Rindler, W. (1976). Essential Relativity: Special, General, and Cosmological (2nd ed.). Springer-Verlag.
- [59] Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons.
- [60] Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. W. H. Freeman.
- [61] Alcubierre, M. (1994). The warp drive: hyper-fast travel within general relativity.

 Classical and Quantum Gravity, 11(5), L73-L77.

- [62] Morris, M. S., & Thorne, K. S. (1988). Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. *American Journal of Physics*, 56(5), 395-412.
- [63] Tipler, F. J. (1974). Rotating cylinders and the possibility of global causality violation. *Physical Review D*, 9(8), 2203-2206.
- [64] Gott, J. R. (1991). Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. *Physical Review Letters*, 66(9), 1126-1129.
- [65] Deutsch, D. (1991). Quantum mechanics near closed timelike lines. Physical Review D, 44(10), 3197-3217.
- [66] Novikov, I. D. (1990). Time machine and self-consistent evolution in problems with self-interaction. *Physical Review D*, 45(6), 1989-1994.
- [67] Thorne, K. S. (1994). Black Holes and Time Warps: Einstein's Outrageous Legacy.W. W. Norton & Company.
- [68] Krasnikov, S. V. (1998). Hyperfast travel in general relativity. Physical Review D, 57(8), 4760-4766.
- [69] Van Den Broeck, C. (1999). A 'warp drive' in general relativity. Classical and Quantum Gravity, 16(12), 3973-3979.
- [70] Everett, H. (1957). "Relative state" formulation of quantum mechanics. Reviews of Modern Physics, 29(3), 454-462.
- [71] DeWitt, B. S. (1970). Quantum mechanics and reality. *Physics Today*, 23(9), 30-35.
- [72] Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. *Proceedings of the Royal Society of London A*, 400(1818), 97-117.
- [73] Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, 124-134.

- [74] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 212-219.
- [75] Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 175-179.
- [76] Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell's inequalities using time-varying analyzers. *Physical Review Letters*, 49(25), 1804-1807.
- [77] Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. *Physics Physique*, 1(3), 195-200.
- [78] Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? *Physical Review*, 47(10), 777-780.
- [79] Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of "hidden" variables. I. *Physical Review*, 85(2), 166-179.
- [80] Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. *Nature*, 121(3050), 580-590.
- [81] Born, M. (1926). Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37(12), 863-867.
- [82] Weyl, H. (1918). Raum, Zeit, Materie. Springer.
- [83] Klein, O. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 37(12), 895-906.
- [84] Kaluza, T. (1921). Zum Unitätsproblem der Physik. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 966-972.
- [85] Witten, E. (1995). String theory dynamics in various dimensions. Nuclear Physics B, 443(1-2), 85-126.

- [86] Green, M. B., Schwarz, J. H., & Witten, E. (1987). Superstring Theory. Cambridge University Press.
- [87] Polchinski, J. (1998). String Theory. Cambridge University Press.