Linear Regression Assignment

Assignment-based Subjective Questions

- 1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? (3 marks)
 - The demand for bikes has seen an increase in 2019 as compared to 2018
 - There is most demand during the fall season and the least demand in the spring season.
 - From the months May through October we see the trend for maximum bike demand.
 - Bike demand is also high when the weather situation is Clear, Few clouds, Partly cloudy, Partly cloudy
 - Weekday or holiday does not cause a major difference in the demand for bikes.
- 2. Why is it important to use drop_first=True during dummy variable creation? (2 mark)
 - While creating dummy variables, we use k-1 variables for a variable with k values. The first variable becomes redundant and cause dummy variables to be highly correlated. Collinearity between dummy variables is also reduced by deleting the first variable using drop_first=True.
- 3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable? (1 mark)
 - The variables temp and temp have the highest correlation with the target variable.
- 4. How did you validate the assumptions of Linear Regression after building the model on the training set? (3 marks)
 - Residual analysis the distribution of residuals should be normal with a mean around zero. We use a distplot to visualise this
- 5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes? (2 marks)
 - Year (Positive correlation)
 - Light rain light snow (negative correlation)
 - Spring (negative correlation)

General Subjective Questions

- 1. Explain the linear regression algorithm in detail. (4 marks)
 - Linear Regression is a form of regression used when the target variable is a continuous variable. It is an interpolation technique to predict the influence of an independent variable on the dependent variable.
 - The equation used is: y=m1*x1 + m2*x2 + m3*x3....+mn*xn+c where y is the target variable and x1...xn are predictor or independent variables.
 - Post exploratory analysis, data is split into test and train. The train dataset is then checked for collinear variables, high VIF, high p-value and R-squared values with iteratively dropping variables or adding variables to come to a final model.
 - Checks to perform residual analysis the distplot of distribution of residuals should be normal with a mean around zero.
 - The test data is then tested on the final model and R-squared is checked.
- 2. Explain the Anscombe's quartet in detail. (3 marks)
 - Anscombe's quartet is a group of four datasets which seem very identical descriptive statistics and appear extremely different when graphed.
 - It highlights the importance of visualising data to confirm the validity of any data relationships.
- 3. What is Pearson's R? (3 marks)
 - Pearson's R is a measure of of how strong the correlation is between 2 variables.
 - The value lies between +1 and -1, with values closer to +1 indicating a positive linear correlation while values closer to -1 indicate a negative linear correlation.
- 4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (3 marks)
 - During data preprocessing we have a step to normalise data within an appropriate range. This is also used to speed up calculations. If scaling is not done, a dataset varying highly in magnitude will result in incorrect modelling as the algorithm will primarily take magnitude into account.
 - Normalisation or min-max scaling brings all data within the range of 0 to 1.
 - $X = x \min(x) / \max(x) \min(x)$
 - Standardisation Scaling replaces values with their Z scores.
 - X = x mean(x) / sd(x)
- 5. You might have observed that sometimes the value of VIF is infinite. Why does this happen? (3 marks)
 - VIF = $1/(1-R^2)$
 - If R^2 is high and close to 1, the denominator will become 0 making VIF infinite, denoting perfect correlation in variables.
- 6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression. (3 marks)
 - Q-Q or Quantile-Quantile plots, plot quintiles of a sample distribution against quantiles of a theoretical distribution. This helps in understanding how the variables are distributed with respect to another. This is useful specially to determine if the samples are from the same population.