Feuille de TD 3 : Algèbre linéaire

Espaces vectoriels

Exercice 1. Déterminer lesquels de ces ensembles sont des sous-espaces vectoriels de \mathbb{R}^3 .

Exercice 2.

- 1. Décrire les sous-espaces vectoriels de \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 .
- 2. Dans \mathbb{R}^2 donner un exemple de deux sous-espaces vectoriels dont l'union n'est pas un sous-espace vectoriel de \mathbb{R}^2 .

Exercice 3. Les vecteurs u suivants sont-ils combinaison linéaire des vecteurs u_i ?

- 1. dans \mathbb{R}^2 , u = (1, 2), $u_1 = (1, -2)$, $u_2 = (2, 3)$.
- 2. Dans \mathbb{R}^3 , u = (2,5,3), $u_1 = (1,3,2)$, $u_2 = (1,-1,4)$.
- 3. Dans \mathbb{R}^3 , u = (3, 1, m), $u_1 = (1, 3, 2)$, $u_2 = (1, -1, 4)$ (discuter suivant la valeur de m).

Exercice 4. Les familles suivantes sont-elles libres?

- 1. (u, v) avec u = (1, 2, 3) et v = (-1, 3, 5).
- 2. (X, X^2) dans $\mathbb{R}_2[X]$.

Exercice 5. Soient F et G les sous-espaces vectoriels de \mathbb{R}^3 définis par

$$F = \{(x, y, z) \in \mathbb{R}^3; x - 2y + z = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + 2z = 0\}.$$

- 1. Donner une base de F et une base de G et en déduire leur dimension respective.
- 2. Donner une base de $F \cap G$ et donner sa dimension.

Matrices

Exercice 1. Calculs élémentaires.

On considère les matrices suivantes.

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & -1 \\ -2 & 1 & 2 \\ 3 & 1 & 4 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix},$$

$$D = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, E = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 3 \end{pmatrix}, L = \begin{pmatrix} 1 & -1 \end{pmatrix}.$$

Calculer lorsque c'est possible :

- 1. $AB, BA, A^2, B^2, A^2 + 2AB + B^2, A + B$ et $(A + B)^2$. Que remarque-t-on?
- 2. LC, CL, AC.
- 3. A + E, AE, EA, $(E^t)A$,
- 4. AD, DA. Remarquer les effets de ces produits sur les lignes et les colonnes de A.

Exercice 2.

Soit

$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}, B = \begin{pmatrix} a & c \\ b & -5 \end{pmatrix}.$$

Déterminer les triplets (a, b, c) afin que A et B commutent, c'est-à-dire AB = BA.

Exercice 3. Calcul d'inverse.

Soient

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & -1 & 3 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 3 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}.$$

- 1. Utiliser la méthode de Gauss-Jordan pour montrer que A est inversible et pour calculer son inverse. Vérifier les calculs en effectuant par exemple le produit AA^{-1} .
- 2. Même question pour B.
- 3. En déduire par simple produit matriciel l'inverse du produit AB (on demande donc de ne pas inverser AB par la méthode de Gauss-Jordan).

Exercice 4. Calcul d'inverse.

Soit

$$M = \begin{pmatrix} 1 & 0 & 0 \\ b & a & 0 \\ 0 & b & a \end{pmatrix}, \text{ avec } a \neq 0.$$

Utiliser la méthode de Gauss-Jordan pour montrer que M est inversible et pour calculer son inverse. Vérifier les calculs en effectuant par exemple le produit MM^{-1} .

Exercice 5. Inverse et système linéaire.

Soit

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 3 \end{pmatrix}.$$

- 1. Utiliser la méthode de Gauss-Jordan pour montrer que A est inversible et pour calculer son inverse. Vérifier les calculs en effectuant par exemple le produit AA^{-1} .
- 2. En déduire alors la résolution du système

$$\begin{cases} x + y + 2z = a \\ 2x + y + z = b \\ 2x + y + 3z = c \end{cases}$$

pour (a, b, c) = (1, 2, 3) puis pour (a, b, c) = (-1, 4, 2).

Exercice 6. Application pratique.

Une entreprise de jouets fabrique chaque jour trois types de jouets différents A, B et C et utilise les quantités de matières premières données dans le tableau suivant :

	Jouet A	Jouet B	Jouet C
Bois en dm ³	1	3	2
Métal en kg	0,4	0,6	0,2
Plastique en kg	0,1	0,1	0,1

Un programme de production journalière s'exprime par un vecteur $X^t = (x_1, x_2, x_3)$, où x_1 , x_2 et x_3 désignent respectivement le nombre de jouets A, B et C fabriqués. Pour réaliser un programme de production, on utilise y_1 dm³ de bois, y_2 kg de métal et y_3 kg de plastique ce que l'on représente par le vecteur $Y^t = (y_1, y_2, y_3)$.

- 1. Ecrire la matrice M telle que MX = Y.
- 2. Déterminer les quantités de matières pour un programme de production $X^t = (10, 20, 30)$.
- 3. Déterminer la matrice qui permet d'obtenir la production journalière en fonction des quantités de matières premières.
- 4. En déduire les quantités de jouets de chaque type si on a utilisé $180~\rm dm^3$ de bois, $30~\rm kg$ de métal et 9 kg de plastique.

Exercice 7. Puissances de matrice.

Le but de cet exercice est de pouvoir calculer B^n où

$$B = \begin{pmatrix} 5 & 0 & 4 \\ -2 & 1 & -2 \\ -2 & 0 & -1 \end{pmatrix}.$$

On considère la suite (u_n) définie par $u_1 = 2$ et $u_{n+1} = 3u_n + 2$ et les matrices

$$A = \begin{pmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix} \text{ et } I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Déterminer u_n en fonction de n (on pourra montrer que la suite (v_n) définie par $v_n = u_n + 1$ est une suite géométrique, en déduire son expression en fonction de n puis conclure).
- 2. (a) Vérifier que B = 2A + I.

- (b) Calculer A^2
- (c) Montrer par récurrence qu'il existe une suite réelle (a_n) telle que pour tout $n \in \mathbb{N}^*$, $B^n = a_n A + I$. On donnera alors la relation entre a_{n+1} et a_n .
- 3. Déduire des questions précédentes l'expression de B^n en fonction de A, I et n.

Exercice 8 Matrice diagonale dominante

Soit $A \in M_n(\mathbb{R})$ une matrice diagonale dominante, i.e. pour tout $i \in \{1, ..., n\}$, on a $|a_{i,i}| > \sum_{j \neq i} |a_{i,j}|$. Montrer que la matrice A est inversible.

Exercice 9 Un sous-espace vectoriel de matrices

Soit E le sous-ensemble de $M_3(\mathbb{R})$ défini par

$$E = \{ M(a, b, c) = \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix}, \ a, b, c \in \mathbb{R} \}.$$

Montrer que E est un sous-espace vectoriel de $M_3(\mathbb{R})$ stable pour la multiplication des matrices. Calculer dim E.

Applications linaires

Exercice 1. Changement de bases.

On considère l'espace vectoriel $E = \mathbb{R}^3$. Soit $\mathcal{B}_c = (e_1, e_2, e_3)$ la base canonique de E.

- 1. Soit $u_1 = (1, 1, 0), u_2 = (1, 0, 1), u_3 = (1, 1, 1)$ trois vecteurs de E.
 - (a) Montrer que la famille (u_1, u_2, u_3) est une base de E, qu'on notera \mathcal{B} .
 - (b) Déterminer $P_{\mathcal{B}_c,\mathcal{B}}$ la matrice de changement de base de \mathcal{B}_c vers \mathcal{B} . Soit x le vecteur de E tel que les composantes de x dans \mathcal{B} soient $X_{\mathcal{B}} = (2,3,4)^t$. Exprimer x dans la base canonique \mathcal{B}_c .
 - (c) Calculer $P_{\mathcal{B},\mathcal{B}_c}$ de deux méthodes différentes :
 - i. première méthode : en exprimant les vecteurs e_1, e_2, e_3 en fonction des vecteurs u_1, u_2, u_3 ,
 - ii. deuxième méthode : en inversant la matrice $P_{\mathcal{B}_c,\mathcal{B}}$.
 - iii. Vérifier alors que $P_{\mathcal{B}_c,\mathcal{B}}P_{\mathcal{B},\mathcal{B}_c}=I_3$.
 - (d) Soit y = (1, 2, 3) un vecteur de E. Calculer les composantes de y dans la base \mathcal{B} .
- 2. Mêmes questions en changeant uniquement les vecteurs u_1, u_2, u_3 : $u_1 = (1, -1, -1), u_2 = (1, 2, 1)$ et $u_3 = (0, 1, 1).$

Exercice 2. Exemples d'applications linéaires ou non linéaires.

1. Les applications suivantes de \mathbb{R}^p dans \mathbb{R}^n (p et n à préciser) sont-elles linéaires ?

```
f_{1}: x \mapsto 2x^{2},
f_{2}: x \mapsto 4x - 3,
f_{3}: x \mapsto 4x,
f_{4}: x \mapsto \sqrt{x^{2}};
f_{5}: (x, y) \mapsto 3x + 5y,
f_{6}: (x, y) \mapsto 3x + 5y - 1,
f_{7}: (x, y, z) \mapsto (2x - 3y + z, x - y + \frac{z}{3}),
f_{8}: (x, y, z, t) \mapsto (2x, -t, 3y + t - 2x, z - 3x),
f_{9}: (x, y, z, t) \mapsto (-x, y + 3x + t, |z|).
```

2. Pour les applications précédentes qui sont **linéaires**, donner leur expression dans les bases canoniques de \mathbb{R}^p et \mathbb{R}^n (p et n sont à préciser).

Exercice 3. Matrices d'une application linéaire.

Soit $f:(x,y) \mapsto (x+y,2x-3y,3x-y,y)$ une application de \mathbb{R}^2 dans \mathbb{R}^4 . On note \mathcal{B}_c^2 et \mathcal{B}_c^4 les bases canoniques de \mathbb{R}^2 et \mathbb{R}^4 respectivement et $\mathcal{D}^2 = (u_1,u_2)$ où $u_1 = (1,1)$ et $u_2 = (0,2)$, $\mathcal{D}^4 = (v_1,v_2,v_3,v_4)$ où $v_1 = (1,0,0,0)$, $v_2 = (0,1,1,0)$, $v_3 = (0,1,0,1)$, et $v_4 = (1,1,1,1)$.

- 1. Montrer que \mathcal{D}^2 et \mathcal{D}^4 sont des bases de \mathbb{R}^2 et \mathbb{R}^4 respectivement (à faire à la maison).
- 2. Montrer que f est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^4 .
- 3. Déterminer la matrice $A = \operatorname{mat}_{\mathcal{B}_{c}^{2}}^{\mathcal{B}_{c}^{4}} f$ de f dans les bases canoniques de \mathbb{R}^{2} et \mathbb{R}^{4} respectivement.
- 4. Déterminer $P_{\mathcal{B}_c^2,\mathcal{D}^2}$ la matrice de changement de base de \mathcal{B}_c^2 vers \mathcal{D}^2 et $P_{\mathcal{B}_c^4,\mathcal{D}^4}$ la matrice de changement de base de \mathcal{B}_c^4 vers \mathcal{D}^4 .
- 5. En déduire la matrice $B = \text{mat}_{\mathcal{D}^2}^{\mathcal{D}^4} f$ de f dans les bases \mathcal{D}^2 et \mathcal{D}^4 respectivement.

Exercice 4 Application linéaire définie par une matrice.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$$

On considère $u_1 = (0, 1, 1), u_2 = (1, 0, 1)$ et $u_3 = (1, 1, 0)$ trois vecteurs de \mathbb{R}^3 .

- 1. Montrer que $\mathcal{B} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2. Soit f l'application linéaire définie par la donnée de sa matrice A la représentant dans la base \mathcal{B} de \mathbb{R}^3 et la base canonique de \mathbb{R}^2 .
 - (a) Donner la matrice de f dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .
 - (b) Calculer f(1, -2, 3).
 - (c) Pour $(x, y, z) \in \mathbb{R}^3$, expliciter f(x, y, z).

Exercice 5. Noyau, image et rang. Soit

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

et soit f l'application linéaire définie par la donnée de sa matrice A la représentant dans la base canonique de \mathbb{R}^4 .

- 1. Pour $(x, y, z, t) \in \mathbb{R}^4$, expliciter f(x, y, z, t).
- 2. Calculer le noyau de f et sa dimension.
- 3. En déduire le rang de f.

Exercice 6. Endomorphisme.

Dans tout l'exercice, f est un endomorphisme de \mathbb{R}^n tel que $f^2 = 0$ (on rappelle que $f^2 = f \circ f$).

- 1. Montrer que $Im(f) \subset Ker(f)$.
- 2. Montrer que $dim(Ker(f)) \geq \frac{n}{2}$ et $rang(f) \leq \frac{n}{2}$.
- 3. Donner une condition nécessaire et suffisante sur la dimension de Ker(f) pour que Ker(f) = Im(f).

Exercice 7. Somme directe, projecteur, symétrie.

Soient $P = \{(x, y, z) \in \mathbb{R}^3; 2x + y - z = 0\}$ et $D = \{(x, y, z) \in \mathbb{R}^3; 2x - 2y + z = 0, x - y - z = 0\}$. On désigne par \mathcal{B}_c la base canonique de \mathbb{R}^3 .

- 1. Donner une base (u_1, u_2) de P et une base (u_3) de D. Montrer que $\mathbb{R}^3 = P \oplus D$ puis que $\mathcal{B} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2. Soit p la projection de \mathbb{R}^3 sur P parallèlement à D. Déterminer $\mathrm{Mat}_{\mathcal{B}}(p)$ puis $A = \mathrm{Mat}_{\mathcal{B}_c}(p)$. Vérifier que $A^2 = A$.
- 3. Soit s la symétrie de \mathbb{R}^3 par rapport à P parallèlement à D. Déterminer $\mathrm{Mat}_{\mathcal{B}}(s)$ puis $B=\mathrm{Mat}_{\mathcal{B}_c}(s)$. Vérifier que $B^2=I,\ AB=A$ et BA=A.

Exercice 8. Isométrie vectorielle.

On considère l'application linéaire $f \in \mathcal{L}(\mathbb{R}^3)$ définie par $f(x,y,z) = \frac{1}{3}(-x-2y+2z,2x+y+2z,-2x+2y+z)$.

- 1. Déterminer la matrice A représentant f dans la base canonique de \mathbb{R}^3 .
- 2. Montrer que pour tout u de \mathbb{R}^3 , ||f(u)|| = ||u|| (norme euclidienne). On dit que f est une isométrie de l'espace.
- 3. Déterminer Ker(f-Id), c'est-à-dire le sous-espace vectoriel des vecteurs u tel que f(u) = u. De quelle dimension est cet espace ?
- 4. On donne $u_1 = \frac{\sqrt{2}}{2}(0,1,1), u_2 = (1,0,0)$ et $u_3 = \frac{\sqrt{2}}{2}(0,-1,1)$. Montrer que (u_1,u_2,u_3) est une base orthonormale de \mathbb{R}^3 .
- 5. Déterminer la matrice B représentant f dans la base (u_1, u_2, u_3) et montrer qu'on peut écrire la matrice B sous la forme :

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

où θ est un réel de $]-\pi;+\pi]$ dont on donnera une valeur approchée en radian.

6. Interpréter géométriquement l'application f.

Exercice 9 Formule du rang.

Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. Montrer que les assertions suivantes sont équivalentes :

- 1. Imf et Kerf sont supplémentaires dans E;
- 2. E = Imf + Kerf;
- 3. $Im f^2 = Im f$;
- 4. $Ker f^2 = Ker f$.