



# Time Series Analysis Trends

#### **Trends**

# **Contents**

#### Contents

- Deterministic vs. Stochastic Trends
- Time Series Decomposition
- Estimation of a Constant Mean
- Reliability and Efficiency of Regression Estimates
- Interpreting Regression Output
- Residual Analysis

#### **Trends**

# Deterministic vs. Stochastic Trends

#### Deterministic vs. stochastic trends

#### **Trends:**

- Mean function over time.
- However, no (widely accepted) precise definition.
- Elusive, may depend on point of view.

#### **Example:**

- Random walk, e.g., rwalk.
- May be seen as having a trend, however, generated with zero mean.
- Hence, sometimes labeled stochastic trend.

#### **Further examples:**

- Deterministic trend, i.e., pattern continuing forever, e.g., linear or polynomial trend.
- Seasonal/cyclical patterns recurring regularly, e.g., every first quarter or every January etc.

#### **Trends**

**Idea:** Time series can be additively decomposed into a (smooth) trend  $T_t$ , seasonal/cyclical pattern  $S_t$  and error/remainder  $E_t$ :

$$Y_t = T_t + S_t + E_t.$$

**Alternatively:** In case of a multiplicative model  $Y_t = T_t \cdot S_t \cdot E_t$ , taking logs yields the additive model.

#### **Example:**

```
R> data("AirPassengers", package = "datasets")
R> plot(AirPassengers)
R> plot(AirPassengers, log = "y")
R> plot(log(AirPassengers))
```







**Method 1:** Estimate  $T_t$  and  $S_t$  by OLS in a linear regression.

#### **Examples:**

- Linear trend:  $T_t = \beta_1 + \beta_2 t$ . (Corresponds to exponential trend in multiplicative model.)
- Polynomial trend of order p:  $T_t = \beta_1 + \beta_2 t + \cdots + \beta_{p+1} t^p$ .
- Seasonal "dummies":  $S_t = \beta_1 I_{Jan}(t) + \cdots + \beta_{12} I_{Dec}(t)$ .
- Harmonic pattern:  $S_t = \beta_1 \cos(2\pi t) + \beta_2 \sin(2\pi t)$ .

**In R:** Straightforward estimation via lm().

**Furthermore:** Convenience functionality for time series regression in dynlm() from dynlm.

- Time series properties retained, e.g., in residuals.
- Functions in formula like season() for season dummies.
- Also: d() (for differences) and L() (for lags), details later.

**Illustration:** Linear trend plus month dummies.

$$\log(\text{AirPassengers})_t = \beta_1 + \beta_2 \cdot \tilde{t} + \beta_3 \cdot I_{\text{Feb}}(t) + \dots + \beta_{13} \cdot I_{\text{Dec}}(t) + E_t,$$

where  $\tilde{t} = t/12$  is the time in years.

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                      0.01889 250.18 < 2e-16
(Intercept)
             4.72678
trend(ap)
             0.12083
                      0.00143 84.40 < 2e-16
season(ap)Feb -0.02205 0.02421 -0.91 0.3640
season(ap)Mar 0.10817 0.02421 4.47 1.7e-05
season(ap)Apr
            0.07690 0.02421
                                3.18 0.0019
season(ap)May
             0.07453
                      0.02422
                                3.08 0.0025
season(ap)Jun 0.19668
                      0.02422 8.12
                                      3.0e-13
season(ap)Jul
            0.30062
                      0.02422 12.41 < 2e-16
season(ap)Aug
            0.29132
                      0.02422 12.03 < 2e-16
season(ap)Sep 0.14669
                      0.02423 6.05 1.4e-08
season(ap)Oct 0.00853
                      0.02423 0.35 0.7254
season(ap)Nov -0.13519
                      0.02424
                               -5.58 1.3e-07
season(ap)Dec -0.02132
                       0.02425
                               -0.88 0.3808
```

Residual standard error: 0.0593 on 131 degrees of freedom Multiple R-squared: 0.983, Adjusted R-squared: 0.982 F-statistic: 649 on 12 and 131 DF, p-value: <2e-16

Method 2: Linear filtering.

$$\{\tilde{Y}_t\} = \left\{\sum_{j=-k}^{\ell} a_j Y_{t-j}\right\},$$

where  $a_j, j = -k, \dots, \ell$  are the filter weights. Appropriate choice of  $a_j$  can eliminate certain components, e.g., trend or season.

**Example:** Moving average of order q

$$\{\tilde{Y}_t\} = \left\{\frac{1}{2q+1}\sum_{j=-q}^q Y_{t-j}\right\}.$$

**Refinement:** Weighted moving average for removing seasonality, e.g., a = (1/8, 1/4, 1/4, 1/4, 1/8) for quarterly series.

**More generally:** Time series decomposition of seasonal series with frequency *s* via linear filters.

- **1** Estimate trend component  $T_t$  by weighted moving average with s+1 weights  $a=(0.5,1,\ldots,1,0.5)/s$ .
- 2 Compute detrended series  $Y_t T_t$  and estimate seasonality figure by taking averages over common periods, e.g., all detrended January observations etc.

In R: decompose() for regular "ts" series.

#### Illustration:

```
R> ap_dec <- decompose(ap)
R> plot(ap_dec)
```

#### Decomposition of additive time series









#### **Comparison:**

- In case of stable linear trend and stable additive seasonality, both methods lead to similar results. Then, linear regression is more efficient.
- Decomposition with linear filters can also deal with nonlinear trends. Seasonality has to be stable, though.
- Improved version of decomposition uses LOESS smoothing (instead of ordinary moving averages) both for trend and season component and can thus also deal with variations in the seasonality figure.

**Further filters:** In economics many filters are popular, e.g., X11, X12, X13, Hodrick-Prescott, Baxter-King, ... Choosing appropriate filters is an important topic in the time series literature in engineering.

#### In R:

- stl() for STL (season-trend decomposition via LOESS).
   For regular "ts" series.
- filter() for moving and recursive filters with arbitrary weights. For regular "ts" series or plain vectors.
- rollapply() in package zoo for applying arbitrary rolling functions, e.g., mean(), median(), sd(), etc. Generic function with methods for "ts", "zoo", and default (essentially numeric vectors).

**Question:** What are the theoretical properties of these estimation/decomposition/smoothing methods?

**Answer:** More difficult than in cross-section data with uncorrelated observations. Hence, consider simple cases first.

#### **Trends**

# Estimation of a Constant Mean

Consider: Assume

$$Y_t = \mu + X_t$$

where  $E(X_t) = 0$  for all t.

**Clear:** Unbiased estimate for  $\mu$  is empirical mean

$$\bar{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t.$$

**Question:** What is the precision of  $\bar{Y}$ ?

**Answer:** Further assumptions necessary. Assume that  $\{Y_t\}$  (or equivalently  $\{X_t\}$ ) is stationary with autocorrelation function  $\varrho_k$ .

#### Then:

$$\operatorname{Var}(\bar{Y}) = \frac{\gamma_0}{n} \left[ \sum_{k=-n+1}^{n-1} \left( 1 - \frac{|k|}{n} \right) \varrho_k \right]$$
$$= \frac{\gamma_0}{n} \left[ 1 + 2 \sum_{k=1}^{n-1} \left( 1 - \frac{k}{n} \right) \varrho_k \right].$$

**Example:**  $\{X_t\}$  white noise. Then all  $\varrho_k = 0$  for k > 0 and  $Var(\bar{Y}) = \gamma_0/n$ .

**Example:**  $\{X_t\}$  stationary moving average  $X_t = e_t - 0.5e_{t-1}$ . Then  $\varrho_1 = -0.4$  and  $\varrho_k = 0$  for all k > 1.

#### This yields

$$Var(\bar{Y}) = \frac{\gamma_0}{n} \left[ 1 + 2\left(1 - \frac{1}{n}\right)(-0.4) \right]$$
$$= \frac{\gamma_0}{n} \left[ 1 - 0.8\left(1 - \frac{1}{n}\right) \right]$$
$$\approx 0.2 \frac{\gamma_0}{n}$$

for large n.

#### Remarks:

- Negative correlation leads to higher precision.
- Conversely, positive correlation makes estimation more difficult.
- Mixed positive and negative correlations can have different net effects.

**Typically:** Autocorrelation function is assumed to decay quickly enough

$$\sum_{k=0}^{\infty} |\varrho_k| < \infty.$$

Then, for large n

$$\operatorname{Var}(\bar{Y}) \approx \frac{\gamma_0}{n} \left[ \sum_{k=-\infty}^{\infty} \varrho_k \right].$$

**Example:** Assume  $\varrho_k = \phi^{|k|}$  for all k with  $-1 < \phi < 1$ . Then

$$\operatorname{Var}(\bar{Y}) \ pprox \ rac{1+\phi}{1-\phi} \ rac{\gamma_0}{n}.$$

**Example:**  $\{X_t\}$  random walk  $X_t = \sum_{i=1}^t e_i$ . Then

$$\begin{aligned} \operatorname{Var}(\bar{Y}) &= \frac{1}{n^2} \operatorname{Var}\left(\sum_{i=1}^n Y_i\right) \\ &= \frac{1}{n^2} \operatorname{Var}\left(\sum_{i=1}^n \sum_{j=1}^i e_j\right) \\ &= \frac{1}{n^2} \operatorname{Var}(e_n + 2e_{n-1} + \dots + ne_1) \\ &= \frac{\sigma_e^2}{n^2} \sum_{k=1}^n k^2 = \sigma_e^2 \left(2n+1\right) \frac{n+1}{6n}, \end{aligned}$$

which increases with n.

**Hence:** Different estimation technique required for nonstationary series.

#### **Trends**

# Reliability and Efficiency of Regression Estimates

**Now:** Assume that  $\{Y_t\}$  has a deterministic trend  $\mu_t$  with

$$Y_t = \mu_t + X_t,$$

where  $\{X_t\}$  is a zero-mean stationary process with autocovariance  $\gamma_k$  and autocorrelation  $\varrho_k$ .

**Estimation:** Given a parametrization of  $\mu_t = \mu(t, \beta)$  (e.g., linear, polynomial, seasonal, . . . ), the parameter  $\beta$  are estimated by OLS.

**Question:** What are the properties of  $\hat{\beta}$ ?

**Example:** Seasonal means  $\mu(t, \beta) = \sum_{j=1}^{s} \beta_j \cdot I_j(t)$ . OLS estimates are simply seasonal averages

$$\hat{\beta}_j = \frac{1}{N} \sum_{i=0}^{N-1} Y_{j+s \cdot i},$$

where  $j=1,\ldots,s$  is the number of seasonal means (e.g., months) and N is the number of periods (e.g., years). Hence, assuming we only observe full periods,  $n=N\cdot s$  is the number of observations.

Then: Analogous to the constant mean case

$$\operatorname{Var}(\hat{eta}_j) \ = \ rac{\gamma_0}{N} \left[ 1 + 2 \sum_{k=1}^{N-1} \left( 1 - rac{k}{N} 
ight) arrho_{s \cdot k} 
ight].$$

Note that only the seasonal autocorrelations  $\varrho_{s \cdot k}$  enter.

**Example:** Linear time trend  $\mu(t, \beta) = \beta_1 + \beta_2 \cdot t$ . OLS estimate of slope is

$$\hat{\beta}_2 = \frac{\sum_{t=1}^{n} (t - \bar{t}) Y_t}{\sum_{t=1}^{n} (t - \bar{t})^2}.$$

**Then:** As  $\hat{\beta}_2$  is a linear combination of the  $Y_t$ 

$$\begin{aligned} \text{Var}(\hat{\beta}_2) &= \frac{12 \; \gamma_0}{n \; (n^2 - 1)} \left[ 1 + \frac{24}{n \; (n^2 - 1)} \sum_{s=2}^n \sum_{t=1}^{s-1} (t - \overline{t}) (s - \overline{t}) \varrho_{s-t} \right], \\ \text{using } \sum_{t=1}^n (t - \overline{t})^2 &= n \; (n^2 - 1)/12. \end{aligned}$$

**Special case:** Assume  $\varrho_k = 0$  for k > 1, then

$$\operatorname{Var}(\hat{\beta}_{2}) = \frac{12 \gamma_{0}}{n (n^{2} - 1)} \left[ 1 + 2\varrho_{1} \left( 1 - \frac{3}{n} \right) \right]$$

$$\approx \frac{12 \gamma_{0} (1 + 2\varrho_{1})}{n (n^{2} - 1)},$$

if n is "large".

**Again:** Variance is increased/reduced by positive/negative correlation in the disturbances (compared to the uncorrelated case).

**Comparison:** Ordinary least squares (OLS) vs. generalized least squares (GLS).

- GLS estimates are BLUE (best linear unbiased estimates).
- GLS requires full knowledge of covariance for  $\{X_t\}$ .
- BLUE can be approximated by iteratively estimating  $\mu_t$  and covariance matrix of  $\{X_t\}$ .
- For deterministic trends (e.g., combinations of polynomial, seasonal, harmonic) and wide class of stochastic processes  $\{X_t\}$ , OLS is asymptotically as efficient as BLUE.
- However, OLS estimation of Y<sub>t</sub> = βZ<sub>t</sub> + X<sub>t</sub> may be inefficient or biased, even if n is large, if Z<sub>t</sub> is also stochastic.

# Interpreting regression output

**Clear:** If  $\mu_t$  is correctly specified and  $\{X_t\}$  is (Gaussian) white noise, then regression output can be interpreted "as usual".

**Remarks:** For more general  $\{X_t\}$  caution may be necessary.

• If  $\{X_t\}$  has constant variance it can be estimated via

$$\hat{\gamma}_0 = \frac{1}{n-p} \sum_{t=1}^{n} (Y_t - \hat{\mu}_t)^2,$$

where  $\hat{\mu}_t = \mu(t, \hat{\beta})$  and  $\beta$  is p-dimensional.

- Standard errors of  $\hat{\beta}$  are only consistent if  $\{X_t\}$  is white noise. Heteroskedasticity and autocorrelation consistent (HAC) standard errors may sometimes be used instead.
- Associated t statistics only have  $t_{n-p}$  distribution if  $\{X_t\}$  is Gaussian white noise. Otherwise, normality may hold asymptotically (given consistent scaling).

#### **Trends**

# **Residual Analysis**

# Residual analysis

**Idea:** If trend  $\mu_t$  is correctly specified (and consistently estimated), then the residuals

$$\hat{X}_t = Y_t - \hat{\mu}_t$$

should behave approximately like the stochastic component  $\{X_t\}$ .

**Hence:** Check assumptions about  $\{X_t\}$  by assessing  $\{\hat{X}_t\}$ .

**Furthermore:** Consider scaled versions, e.g., standardized residuals  $\hat{X}_t/\sqrt{\hat{\gamma}_0}$ . R provides rstudent() for computing studentized residuals, i.e., scaled by leave-one-out standard deviations and hat values.

**Question:** Is the trend  $\mu_t$  correctly specified? Or, equivalently, does  $\{X_t\}$  have a zero mean?

Clear: 
$$\sum_{t=1}^{n} \hat{X}_t = 0$$
.

**But:** Are are there local deviations, i.e., remaining time trends?

**Solution:** Time series of (studentized) residuals with smoothed trend. Or scatter plot of residuals  $\hat{X}_t$  against fitted values  $\hat{\mu}_t$ .

**Illustration:** Linear regression with season and trend for airline data.

```
R> plot(residuals(ap_lm))
R> plot(rstudent(ap_lm))
R> lines(rollapply(rstudent(ap_lm), 36, mean), col = 2)
R> plot(ap_lm, which = 1)
```









**Question:** Is  $\{X_t\}$  (approximately) normal?

#### **Answer:**

- Histogram of (standardized) residuals.
- QQ plot of empirical quantiles from residuals agings theoretical quantiles from standard normal distribution.
- Significance tests for normality, e.g., Shapiro-Wilk or Anderson-Darling test etc. Caveat: Normality is "only" null hypothesis.

#### Illustration:

#### Histogram of rstudent(ap\_lm)





**Question:** Is  $\{X_t\}$  white noise? Are the  $X_t$  uncorrelated?

**Answer:** Explore empirical autocorrelations in residuals.

- Visualize empirical autocorrelation function.
- Test hypothesis that selected  $\varrho_k = 0$  (typically for k = 1), e.g., Durbin-Watson test or Breusch-Godfrey test, among many others.

#### If answer is no:

- Leave correlation unspecified but correct inference, e.g., using HAC standard errors (Newey-West or Andrews' kernel HAC standard errors).
- Employ different model, e.g., GLS instead of OLS.

**Definition:** The sample autocorrelation function of a series  $\{Y_t\}$  is

$$r_k = \frac{\sum_{t=k+1}^{n} (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{n} (Y_t - \bar{Y})^2}.$$

#### Remarks:

- Assumes stationarity.
- Hence, "grand mean"  $\bar{Y}$  and "grand sum of squares" are employed both for  $Y_t$  and lagged  $Y_{t-k}$ .
- Denominator contains n terms while numerator only has n-k.
- Approximate standard error for  $r_k$  from white noise series is  $1/\sqrt{n}$ .
- Plot of r<sub>k</sub> vs. k is called *correlogram*. Often complemented with pointwise confidence intervals.

#### Series residuals(ap\_lm)



# R> coeftest(ap\_lm) t test of coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                        0.01889
                                 250.18 < 2e-16
(Intercept)
              4.72678
trend(ap)
                        0.00143 84.40 < 2e-16
              0.12083
                                 -0.91 0.3640
season(ap)Feb -0.02205
                        0.02421
season(ap)Mar
             0.10817
                        0.02421
                                  4.47 1.7e-05
season(ap)Apr
                        0.02421
                                  3.18 0.0019
             0.07690
season(ap)May
             0.07453
                        0.02422
                                  3.08 0.0025
season(ap)Jun
             0.19668
                        0.02422
                                  8.12
                                        3.0e-13
season(ap)Jul
             0.30062
                        0.02422
                                 12.41
                                        < 2e-16
season(ap)Aug
             0.29132
                        0.02422
                                 12.03
                                        < 2e-16
season(ap)Sep
             0.14669
                        0.02423
                                  6.05
                                        1.4e - 08
season(ap)Oct
              0.00853
                        0.02423
                                  0.35 0.7254
season(ap)Nov -0.13519
                        0.02424
                                 -5.58
                                        1.3e-07
season(ap)Dec -0.02132
                        0.02425
                                 -0.88
                                        0.3808
```

```
R> coeftest(ap_lm, vcov = kernHAC)
t test of coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
                        0.02847 166.04 < 2e-16
(Intercept)
             4.72678
trend(ap)
                        0.00474 25.48 < 2e-16
             0.12083
season(ap)Feb -0.02205
                        0.01678 - 1.31
                                       0.19104
season(ap)Mar
             0.10817
                        0.01967 5.50 1.9e-07
season(ap)Apr
                        0.01721
                                  4.47 1.7e-05
             0.07690
season(ap)May
             0.07453
                        0.01991
                                  3.74
                                       0.00027
season(ap)Jun
             0.19668
                        0.01865 10.55
                                       < 2e-16
season(ap)Jul
             0.30062
                        0.01915 15.70
                                       < 2e-16
season(ap)Aug
             0.29132
                        0.01866 15.61 < 2e-16
season(ap)Sep
                                       < 2e-16
             0.14669
                        0.01344 10.92
season(ap)Oct
             0.00853
                        0.01316
                                  0.65
                                       0.51805
season(ap)Nov -0.13519
                        0.01262
                                -10.71
                                       < 2e-16
season(ap)Dec -0.02132
                        0.00684
                                 -3.12
                                       0.00226
```

```
R> coeftest(ap_lm, vcov = NeweyWest)
t test of coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
                                164.31
(Intercept)
             4.72678
                        0.02877
                                       < 2e-16
trend(ap)
                        0.00473 25.54 < 2e-16
             0.12083
season(ap)Feb -0.02205
                        0.01615 - 1.37 0.1745
season(ap)Mar
             0.10817
                        0.01860 5.82
                                       4.4e-08
season(ap)Apr
                                  5.14
             0.07690
                        0.01497
                                       9.9e-07
season(ap)May
             0.07453
                        0.01746
                                  4.27
                                       3.8e-05
season(ap)Jun
             0.19668
                        0.01660 11.85
                                       < 2e-16
season(ap)Jul
             0.30062
                        0.01840 16.34
                                       < 2e-16
season(ap)Aug
             0.29132
                        0.01784 16.33 < 2e-16
season(ap)Sep
                        0.01148 12.78
             0.14669
                                       < 2e-16
season(ap)Oct
             0.00853
                        0.01245
                                  0.69 0.4944
season(ap)Nov -0.13519
                        0.01190
                                -11.36
                                       < 2e-16
season(ap)Dec -0.02132
                        0.00643
                                 -3.32 0.0012
```