Matemática III / Microeconomía I

Elementos Básicos de Optimización

Santiago Foguet

Versión 0.7: 2024-08-16

Instituto de Investigaciones Económicas

Facultad de Ciencias Económicas Universidad Nacional de Tucumán

Tabla de Contenido

- 1. Formas Cuadráticas y Matrices definidas
- 2. Funciones Reales de n variables
- 3. Funciones Cóncavas y Convexas
- 4. Optimización sin restricciones
- 5. Optimización con restricciones
- 6. Bibliografía

Formas Cuadráticas y Matrices definidas

Formas cuadráticas

Una forma cuadrática en \mathbb{R}^n es una función real de la forma:

$$Q(x_1, \dots, x_n) = \sum_{i \le j} a_{ij} x_i x_j$$

donde cada término de la función es un monomio de grado 2 de la forma $a_{ij}x_ix_j$

Importante

Toda forma cuadrática puede representarse en forma matricial usando una matriz simétrica A de tal manera que:

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

donde $\mathbf{x}^T = (x_1, x_2, \dots, x_n)$ es un vector fila y los elementos de la matriz A son los coeficientes a_{ij} de la forma cuadrática. Cada forma cuadrática está asociada a una única matriz simétrica.

Formas cuadráticas

Ejemplo

La forma cuadrática de dimensión 3:

$$Q(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$$

puede ser representada en forma matricial como:

$$Q(x_1, x_2, x_3) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \frac{1}{2}a_{13} \\ \frac{1}{2}a_{12} & a_{22} & \frac{1}{2}a_{23} \\ \frac{1}{2}a_{13} & \frac{1}{2}a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Para escribir la matriz los coeficientes correspondientes a los monomios con dos variables distintas se multiplican por 1/2 para poder obtener la matriz simétrica.

Formas cuadráticas y matrices definidas

Una forma cuadrática y su matriz simétrica asociada (A) de orden $n \times n$ serán:

- (a) definidas positivas si $\mathbf{x}^T A \mathbf{x} > 0$ para todo $\mathbf{x} \neq 0$ en \mathbb{R}^n .
- (b) semidefinidas positivas si $\mathbf{x}^T A \mathbf{x} \ge 0$ para todo $\mathbf{x} \ne 0$ en \mathbb{R}^n .
- (c) definidas negativas si $\mathbf{x}^T A \mathbf{x} < 0$ para todo $\mathbf{x} \neq 0$ en \mathbb{R}^n .
- (d) semidefinidas negativas si $\mathbf{x}^T A \mathbf{x} \leq 0$ para todo $\mathbf{x} \neq 0$ en \mathbb{R}^n .
- (e) indefinidas si $\mathbf{x}^T A \mathbf{x} > 0$ para algún \mathbf{x} en \mathbb{R}^n y $\mathbf{x}^T A \mathbf{x} < 0$ para algún otro \mathbf{x} en \mathbb{R}^n .

Menores principales de una matriz

Definición

Sea A una matriz simétrica de orden $n \times n$. La submatriz de orden $k \times k$ obtenida a partir de A al eliminar n-k columnas y las mismas n-k filas de A se llama submatriz principal de orden k de la matriz A. El determinante de la submatriz principal se llama menor principal de orden k de la matriz A y se los representa con el simbolo Δ_k con $k=1,2,\ldots,n$.

Una matriz de orden 3×3 tiene los siguientes menores principales:

- de orden k= 1: $|a_{11}|$; $|a_{22}|$; $|a_{33}|$ que corresponden a los elementos de la diagonal principal de la matriz
- de orden k = 2: $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$; $\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}$; $\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$
- lacksquare de orden k= 3: coincide con el determinante de la matriz |A|

Menores principales directores

Definición

Sea A una matriz simétrica de orden $n \times n$. La submatriz principal de orden k que se obtiene al eliminar las últimas n-k filas y columnas de A se llama submatriz principal directora de orden k de la matriz A.

El determinante asociado a la submatriz principal directora de orden k se llama menor principal director de orden k de la matriz A.

Los menores principales directores se representaran indistitamente con los símbolos D_k o $|A_k|$ con $k=1,2,\ldots,n$

Una matriz de orden $n \times n$ tiene exactamente n menores principales directores.

Condiciones para matrices definidas positivas, negativas e indefinidas

Teorema

Sea A una matriz simétrica de orden $n \times n$. Entonces:

- (a) A es definida positiva si y solo si todos los menores principales directores son positivos. Es decir, $D_k > 0$ para todo $k = 1, \ldots, n$.
- (b) A es definida negativa si y solo si los menores principales directores alternan de signo. $(-1)^k D_k > 0$ para $k = 1, \ldots, n$. Los menores principales directores con número impar de filas y columnas deberán ser negativos y los pares tener signo positivo.
- (c) Si algún menor principal director D_k (o algún conjunto de ellos) es no nulo pero no se ajustan a ninguno de los patrones de signos anteriores entonces la matriz A será indefinida.

Condiciones para matrices semidefinidas positivas y negativas

Teorema

Sea A una matriz simétrica de orden $n \times n$. Entonces:

- (a) A es semidefinida positiva si y solo si $\Delta_k \geq 0$ para todo menor principal de orden $k=1,\ldots,n$.
- (b) A es semidefinida negativa si y solo si $(-1)^k \Delta_k \geq 0$ para todo menor principal de orden $k=1,\ldots,n$.

Funciones Reales de n variables

Función Real

Definición

 $f:D\to R$ es una función real si D es cualquier conjunto y $R\subset\mathbb{R}$.

Cuando el dominio de la función sea un subjunto de \mathbb{R}^n respresentaremos a la función como:

$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$$

En el caso que necesitemos indicar un punto particular del dominio de f los representaremos como \mathbf{x}^0

Funciones crecientes y decrecientes

Funciones crecientes, estrictamente crecientes y fuertemente crecientes

Sea $f:D\to\mathbb{R}$, donde D es un subconjunto de \mathbb{R}^n . Entonces:

- (a) f será creciente si $f(\mathbf{x}^0) \geq f(\mathbf{x}^1)$ cuando $\mathbf{x}^0 \geq \mathbf{x}^1$.
- (b) f será estrictamente creciente si $f(\mathbf{x}^0) > f(\mathbf{x}^1)$ cuando $\mathbf{x}^0 \gg \mathbf{x}^1$.
- (c) f será fuertemente creciente si $f(\mathbf{x}^0) > f(\mathbf{x}^1)$ cuando $\mathbf{x}^0 \ge \mathbf{x}^1$.

Funciones decrecientes, estrictamente decrecientes y fuertemente decrecientes

Sea $f:D\to\mathbb{R}$, donde D es un subconjunto de \mathbb{R}^n . Entonces:

- (a) f será decreciente si $f(\mathbf{x}^0) \leq f(\mathbf{x}^1)$ cuando $\mathbf{x}^0 \geq \mathbf{x}^1$.
- (b) f será estrictamente creciente si $f(\mathbf{x}^0) < f(\mathbf{x}^1)$ cuando $\mathbf{x}^0 \gg \mathbf{x}^1$.
- (c) f será fuertemente creciente si $f(\mathbf{x}^0) < f(\mathbf{x}^1)$ cuando $\mathbf{x}^0 \geq \mathbf{x}^1$.

Conjuntos de Nivel de una Función Real

Definición

 $L(y^0)$ es un **conjunto de nivel** de la función real $f:D\to\mathbb{R}$ si y solo si

$$L(y^0) = \left\{ \mathbf{x} \mid \mathbf{x} \in D, f(\mathbf{x}) = y^0 \right\}$$

donde $y^0 \in \mathbb{R}$.

Como se puede construir un conjunto para cada valor del rango de la función se puede representar completamente la misma a través de estos conjuntos.

En el caso de funciones de dos variables independientes la representación gráfica de esto conjuntos se denomina **curvas de nivel**.

En el caso de funciones de tres variables independientes la representación gráfica de esto conjuntos se denomina **superficies de nivel**.

Otras definiciones

Conjunto de nivel relativo a un punto

 $\mathcal{L}(\mathbf{x}^0)$ es un **conjunto de nivel** de la función real $f:D\to\mathbb{R}$ relativo a un punto \mathbf{x}^0 si y solo si

$$\mathcal{L}(\mathbf{x}^0) = \left\{ \mathbf{x} \mid \mathbf{x} \in D, f(\mathbf{x}) = f(\mathbf{x}^0) \right\}$$

Conjuntos superiores e inferiores

- (a) $S(y^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in D, f(\mathbf{x}) \geq y^0\}$ se llama conjunto superior para la curva de nivel y^0 .
- (b) $I(y^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in D, f(\mathbf{x}) \leq y^0\}$ se llama conjunto inferior para la curva de nivel y^0 .
- (c) $S'(y^0) \equiv \{ \mathbf{x} \mid \mathbf{x} \in D, f(\mathbf{x}) > y^0 \}$ se llama conjunto estrictamente superior para la curva de nivel y^0 .
- (d) $I'(y^0) \equiv \{ \mathbf{x} \mid \mathbf{x} \in D, f(\mathbf{x}) < y^0 \}$ se llama conjunto estrictamente inferior para la curva de nivel y^0 .

Funciones Reales sobre Conjuntos Convexos

Supuesto sobre el dominio de una función

Para la función real $f:D\to\mathbb{R}$ vamos a suponer que su dominio es $D\subset\mathbb{R}^n$ es un conjunto convexo.

Combinación Convexa

Sean \mathbf{x}^1 y \mathbf{x}^2 dos elementos del conjunto convexo $D\supset \mathbb{R}^n$, el elemento definido por

$$\mathbf{x}^t = t\mathbf{x}^1 + (1-t)\mathbf{x}^2$$

con $t \in [0,1]$ se llamará combinación convexa y $\mathbf{x}^t \in D$.

Funciones Cóncavas y Convexas

Función cóncava y estrictamente cóncava

Función Cóncava

 $f:D\to\mathbb{R}$ es una funcón cóncava si para todo $\mathbf{x}^1,\mathbf{x}^2\in D$,

$$f(\mathbf{x}^t) \ge t f(\mathbf{x}^1) + (1-t)f(\mathbf{x}^2) \quad \forall t \in [0,1]$$

Función Estrictamente Cóncava

 $f:D \to \mathbb{R}$ es una funcón estrictamente cóncava si para todo $\mathbf{x}^1
eq \mathbf{x}^2 \in D$,

$$f(\mathbf{x}^t) > tf(\mathbf{x}^1) + (1-t)f(\mathbf{x}^2) \quad \forall t \in (0,1)$$

Función convexa y estrictamente convexa

Función Convexa

 $f:D\to\mathbb{R}$ es una funcón cóncava si para todo $\mathbf{x}^1,\mathbf{x}^2\in D$,

$$f(\mathbf{x}^t) \le t f(\mathbf{x}^1) + (1-t)f(\mathbf{x}^2) \quad \forall t \in [0,1]$$

Función Estrictamente Convexa

 $f:D\to\mathbb{R}$ es una funcón estrictamente convexa si para todo $\mathbf{x}^1\neq\mathbf{x}^2\in D$,

$$f(\mathbf{x}^t) < tf(\mathbf{x}^1) + (1-t)f(\mathbf{x}^2) \quad \forall t \in (0,1)$$

Representación gráfica de funciones cóncavas y convexas

Puntos sobre o debajo de funciones cóncavas

Sea $A \equiv \{(\mathbf{x},y) \mid \mathbf{x} \in D, f(\mathbf{x}) \geq y\}$ el conjunto de puntos "sobre o debajo" de la gráfica de $f: D \to \mathbb{R}$, donde $D \subset \mathbb{R}^n$ es un conjunto convexo. Entonces

f es una función cóncava $\Longleftrightarrow A$ es un conjunto convexo

Puntos sobre o arriba de funciones convexas

Sea $A^* \equiv \{(\mathbf{x},y) \mid \mathbf{x} \in D, f(\mathbf{x}) \leq y\}$ el conjunto de puntos "sobre o por arriba" de la gráfica de $f: D \to \mathbb{R}$, donde $D \subset \mathbb{R}^n$ es un conjunto convexo. Entonces

f es una función convexa \iff A^* es un conjunto convexo

Relación entre funciones cóncavas y convexas

Teorema

 $f(\mathbf{x})$ es una función (estrictamente) cóncava si y solo si $-f(\mathbf{x})$ es una función (estrictamente) convexa.

Demostración

```
Si f(\mathbf{x}) es cóncava entonces por definición: f(\mathbf{x}^t) \geq tf(\mathbf{x}^1) + (1-t)f(\mathbf{x}^2) ahora si multiplicamos por -1 obtenemos -f(\mathbf{x}^t) \leq t(-f(\mathbf{x}^1)) + (1-t)(-f(\mathbf{x}^2)) por lo tanto por definición: -f(\mathbf{x}) es convexa.
```

¿Cómo determinar la concavidad/convexidad de una función

Por lo general, aplicar la definición de concavidad o convexidad resulta poco práctico a la hora de determinar si una función es cóncava o convexa. Para lograr esto utilizaremos distintos criterios. Para ello recordemos el caso sencillo de una función de una variable. Si el $d^2f < 0$ la función era cóncava y si $d^2f > 0$ la función era convexa. Este mismo criterio se utilizará para funciones de 2 o más variables reconociendo que el diferencial segundo de una función de n variables es una forma cuadrática cuya matriz asociada en la matriz hessiana donde los elementos de esta matriz son las derivadas segundas de la función.

Diferencial de segundo orden de una función

Sea $f(\mathbf{x})$ una función de clase C^2 (con derivadas de segundo orden continuas) definida en un conjunto abierto S de \mathbb{R}^n el diferencial de segundo orden de la función f esta definido por:

$$d^2 f(\mathbf{x}) = d\mathbf{x}^T H f(\mathbf{x}) d\mathbf{x}$$

donde los elementos de $d\mathbf{x}^T$ no todos simultaneamente nulos y $Hf(\mathbf{x})$ es la matriz hessiana simétrica

$$Hf(\mathbf{x}) = \begin{bmatrix} f_{11} & f_{12} & f_{13} & \cdots & f_{1n} \\ f_{21} & f_{22} & f_{23} & \cdots & f_{2n} \\ f_{31} & f_{32} & f_{33} & \cdots & f_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & f_{n3} & \cdots & f_{nn} \end{bmatrix}, \quad \text{con} \quad f_{ij} = \frac{\partial f(\mathbf{x})}{\partial x_i \partial x_j} \quad \mathbf{y} \quad f_{ij} = f_{ji}$$

Condiciones para la Concavidad y Convexidad

Teorema

Sea $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$ una función de clase C^2 definida en un conjunto abierto y convexo S de \mathbb{R}^n entonces:

- (a) d^2f es semidefinida negativa es $S \iff f(\mathbf{x})$ es cóncava es S.
- (b) d^2f es semidefinida positiva es $S \iff f(\mathbf{x})$ es convexa es S.
- (c) d^2f es definida negativa es $S \Longrightarrow f(\mathbf{x})$ es estrictamente cóncava es S.
- (d) d^2f es definida positiva es $S \Longrightarrow f(\mathbf{x})$ es estrictamente convexa es S.

Condiciones para la Concavidad y Convexidad

Teorema

Sea $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$ una función de clase C^2 definida en un conjunto abierto y convexo S de \mathbb{R}^n . Sean $D_r(\mathbf{x})$ y $\Delta_r(\mathbf{x})$ los menores principales directores y los menores principales de orden r, con $r = 1, 2, \dots, n$ de la matriz hessiana entonces:

- (a) $f(\mathbf{x})$ es cóncava es $S \Longleftrightarrow (-1)^r \Delta_r(\mathbf{x}) \ge 0 \ \forall \mathbf{x}$ y para todo $\Delta_r(\mathbf{x}), \quad r = 1, 2, \dots, n$.
- (b) $f(\mathbf{x})$ es convexa es $S \Longleftrightarrow \Delta_r(\mathbf{x}) \geq 0 \ \forall \mathbf{x}$ y para todo $\Delta_r(\mathbf{x}), \quad r = 1, 2, \dots, n$.
- (c) Si $(-1)^r D_r(\mathbf{x}) > 0 \,\forall \mathbf{x} \, y \, r = 1, 2, \dots, n \Longrightarrow f(\mathbf{x})$ es estrictamente cóncava es S.
- (d) Si $D_r(\mathbf{x}) > 0 \, \forall \mathbf{x} \, y \, r = 1, 2, \dots, n \Longrightarrow f(\mathbf{x})$ es estrictamente convexa es S.

Optimización sin restricciones

Planteo del Problema de Optimización no Restringido

$$\begin{aligned} & \underset{x_1,x_2,\ldots,x_n}{\operatorname{Maximizar}} & f(\mathbf{x};\pmb{\alpha}) = f(x_1,x_2,\ldots,x_n;\alpha_1,\alpha_2,\ldots,\alpha_m) \\ & \text{o} \\ & \underset{x_1,x_2,\ldots,x_n}{\operatorname{Minimizar}} & f(\mathbf{x};\pmb{\alpha}) = f(x_1,x_2,\ldots,x_n;\alpha_1,\alpha_2,\ldots,\alpha_m) \\ & \text{donde } \pmb{\alpha} = (\alpha_1,\alpha_2,\ldots,\alpha_m) \in \mathbb{R}^m. \end{aligned}$$

- 1. La función f se llama función objetivo del modelo.
- 2. Las variables x_1, x_2, \ldots, x_n se denominan variables de decisión del modelo.
- 3. Las variables $\alpha_1, \alpha_2, \dots, \alpha_m$ se denominan parámetros del modelo.

Condiciones de Primer Orden (CPO)

Condición necesaria. Sea $f: S \to \mathbb{R}$ una función C^1 (con primeras derivadas parciales contínuas) definida en $S \in \mathbb{R}^n$. Si $\mathbf{x}^*(\alpha)$ es un máximo o mínimo local de f en S y si $\mathbf{x}^*(\alpha)$ es un punto interior de S, entonces:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$$
 for $i = 1, 2, \dots, n$

Condiciones de Segundo Orden (CSO)

Condición suficiente. Sea $f: S \to \mathbb{R}$ una función C^2 (con segundas derivadas parciales contínuas) definida en $S \in \mathbb{R}^n$. Suponga que $\mathbf{x}^*(\boldsymbol{\alpha})$ es un punto crítico de f que satisface las CPO.

- 1. Si la matriz hessiana $Hf(\mathbf{x}^*)$ es negativa definida entonces $\mathbf{x}^*(\pmb{\alpha})$ es un máximo local de f.
- 2. Si la matriz hessiana $Hf(\mathbf{x}^*)$ es positiva definida entonces $\mathbf{x}^*(\pmb{\alpha})$ es un máximo local de f.
- 3. Si la matriz hessiana $Hf(\mathbf{x}^*)$ es indefinida entonces $\mathbf{x}^*(\pmb{\alpha})$ no es ni un máximo ni un mínimo local de f.

Máximos de una Función

Sea $f:S \to \mathbb{R}$ una función C^2 definida en $S \in \mathbb{R}^n$. Suponga que

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0 \quad \text{for } i = 1, 2, \dots, n$$

y que los n menores principales directores de la matriz hessiana $(Hf(\mathbf{x}^*))$ alternan de signo

$$|f_{11}| < 0,$$
 $\begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} > 0,$ $\begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix} < 0, \dots$

en el punto $\mathbf{x}^*(\boldsymbol{\alpha})$. Entonces, el punto $\mathbf{x}^*(\boldsymbol{\alpha})$ es un máximo local de f.

Mínimos de una Función

Sea $f:S \to \mathbb{R}$ una función C^2 definida en $S \in \mathbb{R}^n$. Suponga que

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0 \quad \text{for } i = 1, 2, \dots, n$$

y que los n menores principales directores de la matriz hessiana $(Hf(\mathbf{x}^*))$ son todos positivos,

$$|f_{11}| > 0$$
, $\begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} > 0$, $\begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix} > 0$, ...

en el punto $\mathbf{x}^*(\boldsymbol{\alpha})$. Entonces, el punto $\mathbf{x}^*(\boldsymbol{\alpha})$ es un mínimo local de f.

Función de Valor Máximo (Mínimo)

Al resolver un problema de maximización (minimización) encontramos que el valor óptimo de las variables de decisión van a depender de los parámetros del modelo: $\mathbf{x}^*(\boldsymbol{\alpha})$. Cuando reemplazamos estos valores óptimos en la función objetivo encontramos el valor máximo (mínimo) de la función que denotaremos como f^* y la llamaremos función de valor máximo (mínimo).

Función de Valor Máximo (Mínimo)

$$\begin{split} f^* &= \max_{\mathbf{x}} \left(\min_{\mathbf{y}} \right) f(\mathbf{x}, \boldsymbol{\alpha}) \\ f^* &= f(x_1^*(\boldsymbol{\alpha}), x_2^*(\boldsymbol{\alpha}), \dots, x_n^*(\boldsymbol{\alpha})) \end{split}$$

Teorema de la Envolvente

Sea $f(\mathbf{x}; \boldsymbol{\alpha})$ un función C^1 con $\mathbf{x} \in \mathbb{R}^n$ y $\boldsymbol{\alpha} \in \mathbb{R}^m$. Para cada elección del vector de parámetros $\boldsymbol{\alpha}$, consideremos el problema de maximización sin restricción

Maximizar
$$f(\mathbf{x}; \boldsymbol{\alpha})$$
 con respecto a \mathbf{x}

Sea $\mathbf{x}^*(\boldsymbol{\alpha})$ una solución del problema y supongamos que $\mathbf{x}^*(\boldsymbol{\alpha})$ es una función C^1 de $\boldsymbol{\alpha}$, entonces:

$$\frac{\partial f^*(\boldsymbol{\alpha})}{\partial \alpha_i} = \left. \frac{\partial f(\mathbf{x}; \boldsymbol{\alpha})}{\partial \alpha_i} \right]_{\mathbf{x} = \mathbf{x}^*(\boldsymbol{\alpha})}$$

Optimización con restricciones

Planteo del Problema de Optimización Restrigida

$$\max_{x_1, x_2, \dots, x_n} (\min) \quad f(\mathbf{x}; \boldsymbol{\alpha}) \quad \text{ sujeto a } \begin{cases} g_1(x_1, x_2, \dots, x_n; \alpha_1, \alpha_2, \dots, \alpha_m) = b_1 \\ \dots \\ g_r(x_1, x_2, \dots, x_n; \alpha_1, \alpha_2, \dots, \alpha_m) = b_r \end{cases}$$

donde $\mathbf{x} \in \mathbb{R}^n$, $\boldsymbol{\alpha} = \in \mathbb{R}^m$, $b_j \in \mathbb{R}$ con $j = 1, 2, \dots, r$.

- 1. La función f se llama función objetivo del modelo.
- 2. Las funciones g_j se denominan restricciones del modelo.
- 3. Las variables x_1, x_2, \ldots, x_n se denominan variables de decisión del modelo.
- 4. Las variables $\alpha_1, \alpha_2, \dots, \alpha_m; b_1, \dots, b_r$ se denominan parámetros del modelo.

Función de Lagrange o Lagrangiano

Dos formas alternativas de definir la función de Lagrange:

$$\mathcal{L} = f(\mathbf{x}; \boldsymbol{\alpha}) - \lambda_1 [g_1(\mathbf{x}; \boldsymbol{\alpha}) - b_1] - \dots - \lambda_r [g_r(\mathbf{x}; \boldsymbol{\alpha}) - b_r]$$

0

$$\mathcal{L} = f(\mathbf{x}; \boldsymbol{\alpha}) + \lambda_1 [b_1 - g_1(\mathbf{x}; \boldsymbol{\alpha})] - \dots - \lambda_r [b_r - g_r(\mathbf{x}; \boldsymbol{\alpha})]$$

donde $\lambda_1,\lambda_2,\ldots,\lambda_r$ se llaman $\,$ multiplicadores de Lagrange .

Condiciones de Primer Orden

Dado el problema de máximización (minimización) con restricciones donde $f(\mathbf{x}; \boldsymbol{\alpha})$ y $g_j(\mathbf{x}; \boldsymbol{\alpha})$ con $j=1,2,\ldots,r$ son funciones en C^1 . Suponga que $\mathbf{x}^*(\boldsymbol{\alpha},\mathbf{b})$ pertenece al conjunto restricción y además es un máximo (mínimo) local de f en el conjunto restricción. Entonces existen $\lambda_1^*,\ldots,\lambda_r^*$ tal que $(\mathbf{x}^*,\boldsymbol{\lambda}^*)$ es un punto crítico de la función de Lagrange. Es decir:

$$\frac{\partial \mathcal{L}}{\partial x_1}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0, \dots, \frac{\partial \mathcal{L}}{\partial x_n}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda_1}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0, \dots, \frac{\partial \mathcal{L}}{\partial \lambda_r}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

Condiciones de Segundo Orden

Sean $f(\mathbf{x}; \boldsymbol{\alpha})$ y $g_j(\mathbf{x}; \boldsymbol{\alpha})$ con $j=1,2,\ldots,r$ son funciones en C^2 . Considere el problema de maximización (minimización) de f sujeto a las restricciones $g_j(\mathbf{x}; \boldsymbol{\alpha}) = b_j$ con $j=1,2,\ldots,r$. Suponga que

- (a) \mathbf{x}^* cumple con las restricciones,
- (b) existen $\lambda_1^*, \dots, \lambda_r^*$ tal $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ es punto crítico de \mathcal{L} ,
- (c) la matriz hessiana de $\mathcal L$ es negativa (positiva) definida en el conjunto restricción.

Entonces $\mathbf{x}^*(\boldsymbol{\alpha}, \mathbf{b})$ es un máximo (mínimo) restringido de la función f en el conjunto restricción.

Función de Valor Máximo (Mínimo)

Al resolver un problema de maximización (minimización) encontramos que el valor óptimo de las variables de decisión van a depender de los parámetros del modelo: $\mathbf{x}^*(\boldsymbol{\alpha}, \mathbf{b})$. Cuando reemplazamos estos valores óptimos en la función objetivo encontramos el valor máximo (mínimo) de la función que denotaremos como f^* y la llamaremos función de valor máximo (mínimo).

Función de Valor Máximo (Mínimo)

$$f^* = \max_{\mathbf{x}} \left(\min_{\mathbf{x}} \right) f(\mathbf{x}, \pmb{\alpha}) \text{ sujeto a } g_j(x_1, x_2, \dots, x_n; \alpha_1, \alpha_2, \dots, \alpha_m) = b_j \text{ con } j = 1, 2, \dots, r.$$

$$f^* = f[x_1^*(\boldsymbol{\alpha}, \mathbf{b}), x_2^*(\boldsymbol{\alpha}, \mathbf{b}), \dots, x_n^*(\boldsymbol{\alpha}, \mathbf{b})]$$

Teorema de la Envolvente

Sean $f(\mathbf{x}; \boldsymbol{\alpha})$ y $g_j(\mathbf{x}; \boldsymbol{\alpha}) = b_j$ con j = 1, ..., r funciones en C^1 con $\mathbf{x} \in \mathbb{R}^n$, $\boldsymbol{\alpha} \in \mathbb{R}^m$ y $b_j \in \mathbb{R}$ con j = 1, ..., r. Para cada elección de los parámetros $\boldsymbol{\alpha}$, $\mathbf{b} = (b_1, b_2, ..., b_r)$, consideremos el problema de maximización (minimización) restringido

$$\max_{x_1,x_2,\ldots,x_n} (\min) \quad f(\mathbf{x}; \boldsymbol{\alpha}) \quad \text{ sujeto a } g_j(x_1,x_2,\ldots,x_n; \alpha_1,\alpha_2,\ldots,\alpha_m) = b_j \text{ con } j = 1,2,\ldots,r.$$

Sea $\mathbf{x}^*(\boldsymbol{\alpha}, \mathbf{b})$ una solución del problema y supongamos que $\mathbf{x}^*(\boldsymbol{\alpha}, \mathbf{b})$ es una función C^1 de $\boldsymbol{\alpha}$ y , \mathbf{b} , entonces:

$$\frac{\partial f^*(\boldsymbol{\alpha}, \mathbf{b})}{\partial \alpha_i} = \frac{\partial \mathcal{L}(\mathbf{x}; \boldsymbol{\alpha}, \mathbf{b})}{\partial \alpha_i} \bigg]_{\mathbf{x} = \mathbf{x}^*(\boldsymbol{\alpha}, \mathbf{b})} \text{ con } i = 1, 2, \dots, m.$$

$$\frac{\partial f^*(\boldsymbol{\alpha},\mathbf{b})}{\partial b_j} = \left. \frac{\partial \mathcal{L}(\mathbf{x};\boldsymbol{\alpha},\mathbf{b})}{\partial b_j} \right]_{\mathbf{x} = \mathbf{x}^*(\boldsymbol{\alpha},\mathbf{b})} = \lambda_j^*(\boldsymbol{\alpha},\mathbf{b}) \text{ con } j = 1,2,\ldots,r.$$

Bibliografía

Bibliografía i

Chiang, A. C. and K. Wainwright (2006).

Métodos fundamentales de economía matemática.

McGraw-Hill Interamericana.

Dixit, A. K. (2009).

Optimization in economic theory (2. ed., reprint. ed.).

Oxford [u.a.]: Oxford Univ. Pr.

Intriligator, M. D. (2002).

Mathematical optimization and economic theory.
Philadelphia: SIAM.

Jehle, G. A. and P. J. Reny (2011).

Advanced microeconomic theory (Third edition ed.).

Harlow: Pearson.

Bibliografía ii

Silberberg, E. (1993).

The structure of economics (2. ed. ed.).

New York: McGraw-Hill.

Simon, C. P. and L. E. Blume (1994).

Mathematics for economists (First edition ed.).

New York: W. W. Norton.

Sydsaeter, K., P. J. Hammond, and A. Strom (2011).

Further mathematics for economic analysis (2. ed. ed.).

Harlow: FT Prentice Hall.

Sydsaeter, K., P. J. Hammond, A. Strom, and A. Carvajal (2016). Essential mathematics for economic analysis (Fifth edition ed.).

Harlow, England: Pearson.

This presentation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.

