四、把下列线性规划问题化成标准形式:

1.
$$\min Z = 5x_1 - 2x_2$$

$$\begin{cases} x_1 + \frac{8}{3}x_2 \leqslant 4 \\ -x_1 + x_2 \leqslant -2 \\ 2x_2 \leqslant 3 \\ x_1, x_2 \geqslant 0 \end{cases}$$

$$\begin{cases} x_1 + \frac{8}{3}x_2 + x_3 = 4 \\ x_1 - x_2 - x_4 = 2 \\ 2x_2 + x_5 = 3 \\ x_i \geqslant 0 (j = 1, 2, 3, 4, 5) \end{cases}$$

 $2x_1-x_2+2x_3$

s. t.
$$\begin{cases} -x_1 + x_2 + x_3 = 4 \\ -x_1 + x_2 - x_3 \le 6 \\ x_1 \le 0, x_2 \ge 0, x_3$$
 无约束

$$x_1, x_3 \geqslant 0, x_2 \leqslant 0, x_4$$
 无约束 $x_1, x_3 \geqslant 0, x_2 \leqslant 0, x_4$ 无约束 $x_2 = -x_2', x_4' - x_4''$ 化为标准型 $maxZ' = 2x_1 - x_2' + 3x_3 + x_4' - x_4''$ $x_1 - x_2' + x_3 + x_4' - x_4'' + x_5 = 7$

$$\begin{cases} x_1 - x_2 + x_3 + x_4 - x_4 + x_5 = x_4 \\ -2x_1 - 3x_2' - 5x_3 = 8 \\ x_1 - 2x_3 + 2x_4' - 2x_4'' - x_6 = 1 \\ x_j \geqslant 0 \quad (j = 1, 2, \dots, 8) \end{cases}$$

五、按各题要求。建立线性规划数学模型

I、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

单位 产品 消耗 资源	A	В	С	资源限量
原材料	1.0	1.5	4.0	2000
机械台时	2.0	1.2	1.0	1000
单位利润	10	14	12	

月销售分别为250,280和120件。 问如何安排生产计划,使总利润最大。

五:1. 设 x_1, x_2, x_3 分别代表三种产品的产量,则线性规则模

型为

$$\max Z = 10x_1 + 14x_2 + 12x_3$$

$$x_1 + 1.5x_2 + 4x_3 \le 2000$$

$$2x_1 + 1.2x_2 + x_3 \le 1000$$

$$200 \le x_1 \le 250$$

$$250 \le x_2 \le 280$$

$$100 \le x_3 \le 120$$

$$x_1, x_2, x_3 \ge 0$$

- 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?
 - 2. 将 10 米长的钢筋截为 3 米长和 4 米长, 共有以下几种

下料方式:

	Ι.	П	Ш
3 米	0	2	3
4 米	2	1	0

设 x_1,x_2,x_3 分别表示采用 $I \setminus II \setminus II$ 种下料方式的钢筋

数,则线性规则模型可写成:

$$minZ = x_1 + x_2 + x_3$$

$$2x_2 + 3x_3 \ge 90$$

$$2x_1 + x_2 \ge 60$$

$$x_1, x_2, x_3 \ge 0$$

1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:

起运时间	服务员数
2—6	4
6-10	8
10-14	10
1418	7
1822	12
22-2	4

每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少? 3. 设在第 $_j$ 时段上班的人数为 x_j ($_j$ =1,2,···,6),则线性

规划模型为

$$minZ = \sum_{j=1}^{n} x_{j}$$

$$\begin{cases} x_{1} + x_{6} \geqslant 4 \\ x_{1} + x_{2} \geqslant 8 \\ x_{2} + x_{3} \geqslant 10 \\ x_{3} + x_{4} \geqslant 7 \\ x_{4} + x_{5} \geqslant 12 \\ x_{5} + x_{6} \geqslant 4 \\ x_{j} \geqslant 0 \ (j = 1, 2, \dots, 6) \end{cases}$$

五、分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形迭代的每一步相当于图解法可 行域中的哪一个顶点。

$$1 \cdot \max Z = 10x_1 + 5x_2 \qquad 2 \cdot \max Z = 2x_1 + x_2$$

$$s. t. \begin{cases} 3x_1 + 4x_2 \leqslant 9 \\ 5x_1 + 2x_2 \leqslant 8 \\ x_1, x_2 \geqslant 0 \end{cases} \qquad s. t. \begin{cases} 5x_1 \leqslant 15 \\ 6x_1 + 2x_2 \leqslant 24 \\ x_1 + x_2 \leqslant 5 \\ x_1, x_2 \geqslant 0 \end{cases}$$

最近当的A(1,分) 最份销为X*=(1,分) 表一对及 (3,0) 表二对版 (3,0) 表上 对版 (3,0)

C) 管備計算 (以外部部所列 2000年 ごのは、12×20×30×20 S.E. (30、14×15) 四月 (大、12×20 12×2

G;	10	5	0	55	
Ca the b	X,	Xe.	X	Xu.	
o. Xi 9	3	46	1	0	4
o Xy 8	(5)	2	0	1	Mr.
C:-Z1	10	5	ev	0	
0 X3 3/5	.0 (14/50	. /	-4/5	
10 X1 82	1	3/5	0	1/2	2
C; -Z;	0	×	0	~ 2	
5 Xx 14	0	1	5/4	- 3640	a)
10 X 1	- 2	0	-15	2/4	32
0-22	0	0	- 4/4	-29	a

マキールナ

最低缩的 X*=(3,2)^T表一对应 0点(0,0)^T製二对应 8点(3,0) 表二对应 8点(3,0)

一般分生为 A (3,2)

	在研究	
$m\omega \times Z$	-2×1+X2+	OX3+OXX
15×1	+X2	AT 15
+ VEXI	+X3 +3-X2 +X + X2 X2, X3, X1	يوحب عوا
7 20 4	+ ×2	+×c = 5

C;	2		- 2	100	0	-
Cath b	N.	Xx	3>	Xx	Xc	
0 X /	(5)	0	,	- 0	0	
0 X4 2	4 6	à.	0	6	0	老一
0 X5 3	7	,	0	0		
() -z;	12	1	0	0	0	
2 X1 3	1	60	14	67	- 65	
0 X4 6		2	- 64	- /	400	表 =
0 X5 2	0	(1)	-4	6	1	
C; -Z)	0	1	- 3/5	0	0	
2 X 3	1 /	0	24	0	0	
0 X4 2	10	0	- 43	- /	-2	九三
/ Xx 3	0	1	-15	0	/	
63-23	0	0	-1/5-	0	-1	

六、用单纯形法求解下列线性规划问题:

1.
$$\max Z = 3x_1 + 5x_2$$

 $x_1 \le 15$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$

 $|\mathbf{x}_1, \mathbf{x}_2| \ge 0$

$$s.t.\begin{cases} 3x_1+x_2+x_3\leqslant 60\\ x_1-x_2+2x_3\leqslant 10\\ x_1+x_2-x_3\leqslant 20\\ x_1,x_2,x_3\geqslant 0 \end{cases}$$

2. MinZ=-2m+m-m

五. / 解:

(代謝を持ち)

max 2=34,+5×2+0×3+0×4+0×6

54. 5×3 +×3 = 15

3x +×4 = 12

3x,+0×2 +×4=18

	**** ****		÷	Xx	√8 ×1 ≫0
C-3	3	5	D	0	0
C8 16 b	×.	×z.	×	Xin	Xs
0 33 15	2	5	7	129	0
0 72 12	52	رجي	63		9
0 X5 18	3.	-	5	O	-
G;-2;	3	5		0	0
0 X3 15	91	0	2.	6	0
5 32 6	e		0	25	
D X5 6	(3)	10	0	-/	1
(C) -Z)	3	0	0	-5/2	0
0 Xs /3	0	0	1	23	-15
5 X2 6	0	. 8	0	140	40
5 X2 6	1	9	0	-15	15
C7-Z7	0	67	0	- 35	-7

一般近解 X*=(2,6,13,0,0)

2. 144:

化物标准研究

max z'=2x,-x, 4x3 St. (3x,+x,+x,+x, = 60 x,-x,+x, +x, = 10 x,+x,-x, +x,=20 x, x, (3 =,..., 6)

- 6	2	-7	1	0	10	0
CEXE D	×.	X ₂	263	26	100	20
6 X4 50	35	. 1	- o.K.	. ,	0	160
O No 1"	61	1-1	2	0	16	0
0 76 20	-	1	-/	0	0	1
61-21	.2	-1	1.	12	retri	62
0 Xu 30	0	44	-5	1	-3	6
2 81 10	1	-/	-2	0	1	0.1
0 X6 10	0	(02)	-3	0	-/	1
9-21	0	1	-3	0	,2	0
2 X4 10	0	0	1	1	-1	-2
2 X1 15	1.	0	152	0	134	S
1 Xx 5	10	1	- 1/2	0 -	1/2	12
69-25	0	0 -	72	0 .	152	-35

2 -- -25

七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

1.
$$r_{\text{MRNZ}} = 4x_1 + 5x_2 + x_3$$

 $3x_1 + 2x_2 + x_3 \ge 18$
2 $x_1 + x_2 \le 4$
 $x_1 + x_2 - x_3 = 5$
 $x_1 \ge 0 (j = 1, 2, 3)$

 $2 \cdot \max Z = x_1 + 2x_2 + 3x_3 - x_4$ $x_1 + 2x_2 + 3x_3 = 15$ $2x_1 + x_2 + 5x_3 = 20$ $x_1 + 2x_2 + x_3 + x_4 = 10$ $x_2 \geqslant 0 (j = 1, \dots, 4)$

六·/·解·比为标准形式

	30	(1-1		7)			
C3	4	5	,	0	-×1	0	-1
CB XB b	7,	Xx	X3	×ω	75	X	×2_
-M X5 18	3	2	1	-1	,	0	0
-M X7 5	(2)	1	-1	00	00	6	0
C7-23	4144	3445	,	-M	0	0	0
-M X5 12	0	- 效	(1)	-/	,	-32	0
4 X1 2	1	12	0	0	0	1/2	0
-M ×7 3	0	13	/	0	0	-12	/_
Cj-zj	0	-M+3	1	-11	0	-24-3	20
1 X3 12	0	- 3/2	1	/	/	-3/2	0
4 X/ 2	/	1/2	0	0	0	1/2	0
79 15	0	- 1	0	1	/	- 2	/
63-25	0 -	M+4	0	-M+1	-/ -	245	0

所有850,和人工爱量X7仍在基度量中,所以此数无可行解。

六. 2.解: 代为标准形成

max
$$z_{-} = x_1 + 2x_2 + 3x_3 - x_{e} - Mx_5 - Mx_6$$

S.E. $(x_1 + 2x_2 + 3x_3 + x_1 = 15)$
 $(x_1 + 2x_2 + 5x_3 + x_6 = 20)$
 $(x_1 + 2x_2 + x_3 + x_6)$
 $(x_j^2 > 0)$ $(j = 1, \dots, 6)$

7	_	,				
C;	/	2	3	/	-M	-y
GB XB b	×,	X2	X3	×u	75	X6
-M X5 15	1	æ	3	0	,	0
-M X6 20	2	/	5	0	0	,
-1 X4 10	1	(2)	1	/	0	0
Cj - Zj	1M+1	5M+	2 94+3	0	0	0
-M X5 5	0	0	۵2	-1	1	0
-M X6 15	(3/2)	0	9/2	-1/2	0)
2 X2 5	1/2	/	Y2	1/2	D	0
C;-z;	是M	0	13M+2			0
-M Xr 5	0	00	(2)	-1	1	0
1 X1 10				-13	0	3/3
2 X2 0	0	/	/	2/3	0 .	-13
Cj - Zj	0	0 2	LM+2 -	M-2	0	-~1
3 X3 5/2	0	0	, -	1/2	1/2	0
1 X1 5/2	/	0	0	16	-3/2	3
2 ×2 5/2	D	/	D	1	1/2	-13
Cj -Zj	0	0	0 -	1/2 -	-M-1	-M
X*= (5 5	, 5	,0.0.	. O) T.	z*	= 15

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x,+3x,,约束形式为"≤",

X,,X,为松驰变量.表中解代入目标函数后得Z=10

3 4 4								
		X	X_2	X_3	X_4			
	10	b	-1	f	g			
X_3	2	С	О	1	1 / 5			
X_{l}	a	d	e	0	1			

- (1)求表中a~g的值 (2)表中给出的解是否为最优解?
- (1) a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论
- 五、写出下列线性规划问题的对偶问题
 - 1 . $minZ=2x_1+2x_2+4x_3$

六、已知线性规划问题

$$\max Z = 4x_1 + 7x_2 + 2x_3$$

$$s. t \begin{cases} x_1 + 2x_2 + x_3 \leq 10 \\ 2x_1 + 3x_2 + 3x_3 \leq 10 \\ x_1, x_2, x_3 \geq 0 \end{cases}$$

应用对偶理论证明该问题最优解的目标函数值不大于25

证明:原问题对偶问题为:

min W =
$$10 y_1 + 10 y_2$$

$$\begin{cases} y_1 + 2 y_2 \ge 4 \\ 2 y_1 + 3 y_2 \ge 7 \\ y_1 + 3 y_2 \ge 2 \\ y_1 + y_2 \ge 0 \end{cases}$$

相应的目标函数为 $\overline{W}=25$ 由对偶理论可得 $Z^*=W^* \leqslant \overline{W}=25$

七、已知线性规划问题

$$\max Z = 2x_1 + x_2 + 5x_3 + 6x_4$$

s.t
$$\begin{cases} 2x_1 + x_3 + x_4 \leq 8 \\ 2x_1 + 2x_2 + x_3 + 2x_4 \leq 12 \\ x_i \geq 0 (j = 1, 2, 3, 4) \end{cases}$$

其对偶问题的最优解为Y,*=4,Y,*=1,试应用对偶问题的性质求原问题的最优解。

解:原问数的4万%间壁的

七、用对偶单纯形法求解下列线性规划问题:

1. minZ =
$$x_1 + x_2$$

s. t $\begin{cases} 2x_1 + x_2 \geqslant 4 \\ x_1 + 7x_2 \geqslant 7 \\ x_1, x_2 \geqslant 0 \end{cases}$

2. minZ =
$$3x_1 + 2x_2 + x_3$$

s. t\{ x_1 + x_2 + x_3 \leq 6 \\ x_1 - x_3 \geq 4 \\ x_2 - x_3 \geq 4 \\ x_1, x_2, x_3 \geq 0 \}

.1. 福: MAX Z'=-X1-X2+0X3+0X4

$$C_1-z_1 = 9$$
, O O $-\frac{1}{2}$, $\frac{1}{2}$

$$\chi^{*_{\mathbf{a}}} \left(\frac{\partial J}{\partial J_{i}} \frac{\partial J}{\partial J} \right)^{7} \quad Z^{*_{\mathbf{a}}} = \frac{\partial J}{\partial J}$$

$$\begin{aligned} \max & Z = 2\,x_1 + 4\,x_2 + x_3 + x_4 \\ & \left\{ \begin{aligned} x_1 + 3\,x_2 + x_4 \leqslant 8 \\ 2\,x_1 + x_2 \leqslant 6 \\ x_2 + x_3 + x_4 \leqslant 6 \\ x_1 + x_2 + x_3 \leqslant 9 \\ x_1 \geqslant 0 \, (j = 1, 2, 3, 4) \end{aligned} \right. \end{aligned}$$

八、已知线性规划问题

		(~X)	+	83		er - 9.
		-	A	43	+	X4 = - 4
		%j>	0 (3	=6	, 6)	
C)	-3	-2	-f	0	0	0
Ca XB b	×	Xa	X3.	χ_{α}	$\times_{\mathcal{E}}$	×4
0 X2 6	1	1	1		0	0
0 X5 - K	(-1)	0	/	0	1	0
0 74-4	0	$\leftarrow f$	/	0	0	/
		-2	-/	0	0	0
0 X4 2	0	- /	2	- 7	- 7	· P
-3 X/ 4	1	0	-1	0	~/	0
5 X6 -4	0	(-11	1	0	0	/
Cj=Zj	0	-97	$-\mu$	٥	-3	0
0 X4 -2	0	¢.	3	- /	7	1
-3 X, 4	1	0	-1	p	$\sim f$	0
-2 ×2 4	ø	1	-/	0	Þ	~/
Cj-23	0	0	-7	0	-3	~2

26-37-2,天践总位,此题元融

(1) 写出其对偶问题 (2)已知原问题最优解为 $X*=(2,2,4,0)^{^{\mathsf{T}}}$,试根据对偶理论,直接求出对偶问题的最优解。

(L) 抽以*=(L, 2, 4, 0) T(人) 人產問題 有知

 $W^* = 16$

第七章 整数规划

一、填空题

- 1. 用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界。
- 2. 在分枝定界法中,若选X=4/3进行分支,则构造的约束条件应为 $X\leq 1$, $X\geq 2$ 。
- 3. 已知整数规划问题Pg,其相应的松驰问题记为Pg',若问题Pg'无可行解,则问题P。<u>无可行解</u>。
- 4. 在0-1整数规划中变量的取值可能是 0或1
- 5. 对于一个有n项任务需要有n个人去完成的分配问题,其 解中取值为1的变量数为n个。
- 6. 分枝定界法和割平面法的基础都是用 线性规划方法求解整数规划。
- 7. 若在对某整数规划问题的松驰问题进行求解时,得到最优单纯形表中,由X。所在行得X,+1/7x,+2/7x,=13

$$\frac{6}{7} = \frac{1}{7} \times \frac{2}{7} \times \frac{2}$$

/7,则以X 行为源行的割平面方程为 $7 - 7 X - 7 X \le 0$ 。

- 8. 在用割平面法求解整数规划问题时,要求全部变量必须都为整数。 9. 用割平面法求解整数规划问题时, 若某个约束条件中有不为整数的系数,则需在该约束两端扩大适当倍数, 将全部系数化为整数。
- 10. 求解纯整数规划的方法是<u>割平面法</u>。求解混合整数规划的方法是<u>分枝定界法</u>。 11. 求解0—1整数规划的方法是隐枚举法。求解分配问题的专门方法是匈牙利法。
- 12. 在应用匈牙利法求解分配问题时,最终求得的分配元应是独立零元素。
- 13.分枝定界法一般每次分枝数量为2个.
- 二、单诜题
- 1. 整数规划问题中,变量的取值可能是D。D
- A)整数B). 0或1C. 大于零的非整数D. 以上三种都可能
- 2. 在下列整数规划问题中,分枝定界法和割平面法都可以采用的是A。 A. 纯整数规划B. 混合整数规划♥. 0—1规划D. 线性规划
- 3. 下列方法中用于求解分配问题的是D
- A. 单纯形表B. 分枝定界法C. 表上作业法D. 匈牙利法
- 三、多项选择
- 1 下列说明不正确的是ABC。
 - A.求解整数规划可以采用求解其相应的松驰问题,然后对其非整数值的解四舍五入的方法得到整数解。B.用 分枝定界法求解一个极大化的整数规划问题,当得到多于一个可行解时,通常任取其中一个作为下界。C.用割平面 法求解整数规划时,构造的割平面可能割去一些不属于最优解的整数解。D.用割平面法求解整数规划问题时,必须 首先将原问题的非整数的约束系数及右端常数化为整数。
 - 2. 在求解整数规划问题时,可能出现的是<u>ABC。</u> A. 唯一最优解》,无可行解《 . 多重最佳解》,无穷多个最优解

3. 关于分配问题的下列说法正确的是 <u>ABD。</u> A. 分配问题是一个高度退化的运输问题B. 可以用表上作业法求解分配问题 从分配问题的效益矩阵中 逐行取其最小元素,可得到最优分配方数,匈牙利法所能求解的分配问题,要求规定一个人只能完成一件工作,同时 一件工作也只给一个人做。

4.整数规划类型包括(CDE)

★.对于某一整数规划可能涉及到的解题内容为(ABCDE)

A 求其松弛问题 B 在其松弛问题中增加一个约束方程 C 应用单形或图解法D 割去部分非整数解 E多次 切割

三、名词

- 1、纯整数规划:如果要求所有的决策变量都取整数,这样的问题成为纯整数规划问题。
- 2、0—1规划问题:在线性规划问题中,如果要求所有的决策变量只能取0或1,这样的问题称为0—1规划。
- 3、混合整数规划:在线性规划问题中,如果要求部分决策变量取整数,则称该问题为混合整数规划。
- 四、用分枝定界法求解下列整数规划问题:(提示:可采用图解法)

 $maxZ=40x_1+90x_2$

 $9x_1 + 7x_2 \le 56$

s. t $\sqrt{7x_1 + 20x_2} \le 70$ x1,x2≥0 且为整数

五、用割平面法求解

$$\max Z = x_1 + x_2$$
s. t $\begin{cases} 2x_1 + x_2 \leqslant 6 \\ 4x_1 + 5x_2 \leqslant 20 \\ x_1, x_2 \geqslant \mathbb{E}$ 为整数

C)		1.	427	400
Co Xa br	26.1	2500	203	26 se-
0 ×3 6	(24)			.0
e 26 24	Sec	. R"		1
63-23	31	16	0	425
7 30 3		松	45.	e.
O No. 8	10	(57	-42	1
6;-4;	-0	圪	$-J_{2}$	
/ 81 発	- 1		26	-36
1 ×2 93			-33	23
61-27	0	0	-32	-18

郑擎敏跟红解X-(达沙).

1/6 X2 行作物流行,引入 電子通過

3-1-X3-1-X4 SO

引入するを必食量の300. -さ×z-そ×n+5,--ぎ。

Gr.	1	,	0	0	0
Ca ×a b	90 c	78%	×>	25 mi	\leq_I
1 26 95	r	- 0	5%	72	100
1 No. 35	100		-33	23	0
0 51-39		D	(FJ&)	1-1/2	7
<> < > < < > < < > < < > < < > < < > < < < > < < < < > < < < > < < < < > < < < < > < < < < > < < < < < > < < < < < < < > < < < < < < > < < < < < > < < < < < > < < < < < > < < < < > < < < < < <	0	.0	-12	-36	
/ 161 10	2	- 62	0	/-	525
1 XX 4	1600	- /	0.1		-2
9 X3 0	0.	85	/	1	-3
61-21	- 01	0		to .	-20

X*=(0,4)7

六、下列整数规划问题

 $maxZ = 20x_1 + 10x_2 + 10x_3$

 $2x_1 + 20x_2 + 4x_3 \le 15$

s. $t < 6x_1 + 20x_2 + 4x_3 = 20$

x1,x2,x3≥0 且为整数

说明能否用先求解相应的线性规划问题然后四舍五入的办法来求得该整数规划的一个可行解。

答:不考虑整数约束,求解相应线性规划得最优解为 $x_1=10/3$, $x_2=x_3=0$,用四舍五人法时,令 $x_1=3$, $x_3=x_4=0$,其中第2个约束无法满足,故不可行。

七、若某钻井队要从以下10个可供选择的井位中确定5个钻井探油。使总的钻探费用为最小。若10个井位的代号为 S_1,S_2,\ldots , S_m 相应的钻探费用为 C_1,C_2,\ldots , 并且井位选择要满足下列限制条件:

(1)在 \mathbf{s}_1 , \mathbf{s}_2 , \mathbf{S}_4 中至多只能选择两个;(2)在 \mathbf{S}_3 , \mathbf{s}_6 中至少选择一个;(3)在 \mathbf{s}_3 , \mathbf{s}_6 , \mathbf{S}_7 , \mathbf{S}_8 中至少选择两个; 试建立这个问题的整数规划模型

设约(1=1,...,1/2)为钻井队在第1个中位探油 min z = 篇 c; x;

$$x_0 = x_0 = x_1 - x_1$$

 $x_1 = x_2 + x_4 = x_4$
 $x_1 + x_2 + x_4 = x_4$
 $x_2 + x_4 + x_5 + x_6 \ge 2$
 $x_1 = \begin{cases} 1, \text{ 选择钻探第 } S, \text{ 并位} \\ 0, \text{ 否则} \end{cases}$

八、有四项工作要甲、乙、丙、丁四个人去完成,每项工作只允许一人去完成。每个人只完成其中一项工作,已知每个人完成各项工作的时间如下表。问应指派每个人完成哪项工作,使总的消耗时间最少?

人工作人	/ /	II	=	IV
甲乙丙丁	15 19 6 19	23 7	21 22 16 23	24 18 19 17

第二章 线性规划问题的基本概念

3、本章典型例题分析

$$\max Z = 20x_1 + 15x_2$$
 用单纯形法求解

$$S \cdot t$$
. $2x_1 + 3x_2 \le 600$

$$2x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

解:先化为标准形式:
$$\max Z = 20x_1 + 15x_2$$

$$S \cdot t$$
. $2x_1 + 3x_2 + x_3 = 600$

$$2x_1 + x_2 + x_4 = 400$$

$$x_j \ge 0$$
 $(j = 1,2,3,4)$

把标准形的系数列成一个表

基	S	X_1	X_2	X_3	X_4	解
S	1	-20	-15	0	0	0
X_3	0	2	3	1	0	600
X_4	0	2	1	0	1	400

第一次迭代:调入x,,调出x,

I	基	S	X_1	X_2	X_3	X_4	解
	S	1	0	-5	0	10	4000
	X_3	0	0	2	1	-1	200

$$\begin{vmatrix} X_1 | 0 & 1 & 1/2 & 0 & 1/2 & 200 & 1/2 & 200 & 1/2 & 200 & 1/2 & 200 & 1/2 & 200 & 1/2 & 200 & 1/2 & 200 & 1/2 &$$

$$\begin{vmatrix} x_1 = 150 \\ x_2 = 100 \end{vmatrix} = 4500$$

4、本章作业

见本章练习题

3、本章典型例题分析

例:写出下列线性规划问题的对偶问题

$$\max Z = 3x_1 + x_2 + 4x_3$$

$$S \cdot t \cdot \begin{cases} 6x_1 + 3x_2 + 5x_3 \le 25 \\ 3x_1 + 4x_2 + 5x_3 \le 20 \\ x_j \ge 0 \quad (j = 1, 2, 3) \end{cases}$$

解:其对偶问题为:

$$\min \overline{W} = 25y_1 + 20y_2$$

$$S \cdot t \cdot \begin{cases} 6y_1 + 3y_2 \ge 3\\ 3y_1 + 4y_2 \ge 1\\ 5y_1 + 5y_2 \ge 4 \end{cases}$$

4、本章作业

见本章练习题

二、写出下列线性规划问题的对偶问题:

(1)
$$\max Z = 2x_1 + x_2 + 3x_3 + x_4$$

$$x_1 + x_2 + x_3 + x_4 \le 5$$

$$S_{1} + 3x_3 = -4$$

$$t_{1} - x_3 + x_4 \ge 1$$

$$x_1, x_3 \ge 0, x_2, x_4$$

$$\min Z = 2x_1 + 2x_2 + 4x_3$$

$$2x_1 + 3x_2 + 5x_3 \ge 2$$

$$S_{1} + 7x_3 \le 3$$

$$t_{21} - x_{22} + 6x_3 = 5$$

$$x_2 \le 0, x_3 \ge 0$$

管理运筹学复习

1、考虑下列线性规划(20分)
MaxZ=2X₁+3X₂
2X₁+2X₂+X₃=12
X₁+2X₂ +X₄=8
4X₁ +X₅=16
4X₂ +X₆=12
Xj≥0(j=1,2,...6)
其最优单纯形表如下:

基变量		X1	X2	X3	X4	X5	X6
X3	0	0	0	1	-1	-1/4	0
X1	4	1	0	0	0	1/4	0
X6	4	0	0	0	-2	1/2	1
X2	2	0	1	0	1/2	-1/8	0
σj		0	0	0	-3/2	-1/8	0

- 1) 当C2=5时, 求新的最优解
- 2) 当b3=4时,求新的最优解
- 3) 当增加一个约束条件 $2X_1 + X_2 \le 12$,问最优解是否发生变化,如果发生变化求新解?

解当C2=5时

 $\sigma_4 = -5/2$

σ=1/8>0所以最优解发生变化

3								
	基变量		X1	X2	X3	X4	X5	X6
0	X3	0	0	0	1	-1	-1/4	0
2	X1	4	1	0	0	0	1/4	0
0	X6	4	0	0	0	-2	1/2	1
5	X2	2	0	1	0	1/2	-1/8	0
σ	j		0	0	0	-5/2	1/8	0
0	X3	2	0	0	1	- 2	0	1/2
2	X1	2	1	0	0	1	0	-1/2
0	X5	8	0	0	0	-4	1	2
5	X2	3	0	1	0	0	0	1/4
σ	j		0	0	0	-2	0	-1/4

最优解为X1=2, X2=3,Z=19

2) 当b3=4时

	基变量		X1	X2	X3	X4	X5	X6
0	X3	3	0	0	1	-1	-1/4	0
2	X1	1	1	0	0	0	1/4	0
0	X6	-3	0	0	0	-2	1/2	1
3	X2	5/2	0	1	0	1/2	-1/8	0
σ	j		0	0	0	-3/2	-1/8	0
0	X3	9/2	0	0	1	0	-1/2	1
2	X1	1	1	0	0	0	1/4	0
0	X4	3/2	0	0	0	1	-1/4	-1/2
3	X2	7/4	0	1	0	0	0	1/4
σ	j		0	0	0	0	-1/2	-3/4

此时最优解为X1=1, X2=7/4,Z=29/4 3)增加一个约束条件

<u> 基変量 X1 X2 X3 X4 X5 X6 X7</u>												
	X1	X2	X3	X4	X5	X6	X7					
0	0	0	1	-1	-1/4	0	0					
4	1	0	0	0	1/4	0	0					
4	0	0	0	-2	1/2	1	0					
2	0	1	0	1/2	-1/8	0	0					
12	2	1	0	0	0	0	1					
	0	0	0	-3/2	-1/8	0	0					
0	0	0	1	-1	-1/4	0	0					
4	1	0	0	0	1/4	0	0					
4	0	0	0	-2	1/2	1	0					
2	0	1	0	1/2	-1/8	0	0					
2	0	0	0	- 1/2	- 3/8	0	1					
	0	0	0	-3/2	-1/8	0	0					
	4 4 2 12 0 4 4 2 2	0 0 4 1 4 0 2 0 12 2 0 0 0 4 1 4 0 2 0	0 0 0 0 4 1 0 4 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0	0 0 0 1 4 1 0 0 4 0 0 0 2 0 1 0 12 2 1 0 0 0 0 0 0 0 1 4 1 0 0 4 0 0 0 2 0 1 0	4 1 0 0 0 -2 4 0 0 0 -2 -2 -2 1 0 1/2 12 1 0 0 0 0 -3/2 0 0 0 -3/2 0 0 0 1 -1 4 1 0 0 0 0 -2 0 0 0 -2 2 0 1 0 1/2 2 0 0 0 -1/2 0 0 -1/2 0 0 0 -1/2 0 0 0 0 -1/2 0 0 0 0 -1/2 0	0 0 0 1 -1 -1/4 4 1 0 0 0 0 1/4 4 0 0 0 0 -2 1/2 2 0 1 0 1/2 -1/8 12 2 1 0 0 0 0 0 0 -3/2 -1/8 0 0 0 1 -1 -1/4 4 1 0 0 0 0 1/4 4 0 0 0 0 -2 1/2 2 0 1 0 1/2 -1/8 2 0 0 0 0 -1/2 -3/8	0 0 0 1 -1 -1/4 0 4 1 0 0 0 1/4 0 4 0 0 0 -2 1/2 1 2 0 1 0 1/2 -1/8 0 12 2 1 0 0 0 0 0 0 0 -3/2 -1/8 0 0 0 0 1 -1 -1/4 0 4 1 0 0 0 -2 1/2 1 2 0 1 0 1/2 -1/8 0 0 1/4 0 0 0 0 -2 1/2 1 2 0 1 0 1/2 -1/8 0 2 0 0 0 -1/2 -3/8 0					

由于X7=2大于0,所以最优解不变