

What is claimed is:

1 1. A packet communication method for a network having a
2 plurality of bus systems interconnected by at least one bus bridge, wherein at
3 least one node is attached to each of said bus systems, wherein said bus
4 systems, said bridge and said node are in compliance to a serial bus standard,
5 characterized in that said bus bridge establishes a connection between a first
6 channel used in a first bus system of said plurality of bus systems for
7 transmission of packets to a first multicast address and a second channel used
8 in a second bus system of said plurality of bus systems for transmission of
9 packets to a second multicast address if said first and second multicast
10 addresses are equal to each other.

1 2. A packet communication method for a network having a
2 plurality of bus systems interconnected by at least one bus bridge, wherein at
3 least one node is attached to each of said bus systems, wherein said bus
4 systems, said bridge and said node are in compliance to a serial bus standard,
5 characterized in that:
6 said at least one node attached to each of said plurality of bus systems,
7 when initiating a multicast packet transmission to a multicast group of the
8 bus system, acquires a channel to be used for said multicast packet
9 transmission and broadcasts a message pertaining to said channel; and
10 said at least one bus bridge establishes a connection between channels
11 acquired for different bus systems when said message is received from each
12 of said different bus systems.

1 3. A packet communication method for a network having an
2 intermediate bus system connected between first and second bus systems by
3 first and second bus bridges, wherein at least one node is attached to each of
4 said bus systems, and wherein said bus systems, said bridge and said node
5 are in compliance to a serial bus standard, characterized in that:

6 said at least one node attached to each of said bus systems acquires a
7 channel to be used for multicast packet transmission and broadcasts a
8 message pertaining to said channel and a multicast group when initiating a
9 multicast packet transmission to said multicast group;

10 said first bus bridge acquires an interconnection channel if there is no
11 node in said intermediate bus system participating in said multicast group
12 and if two of said message having an identical multicast address are received,
13 one from said first bus system and the other from said second bus system,
14 broadcasts a message pertaining to said interconnection channel and said
15 multicast group and connects a first end of the interconnection channel to the
16 channel acquired for said first bus system; and

17 said second bus bridge connects a second end of the interconnection
18 channel to the channel acquired for the second bus system when said
19 message is received from said first bus bridge.

1 4. A packet communication method for a network having a
2 plurality of bus systems interconnected by at least one bus bridge, wherein at
3 least one node is attached to each of said bus systems, and wherein said bus
4 systems, said bridge and said node are in compliance to a serial bus standard,
5 characterized in that:

6 said at least one node attached to each of said plurality of bus systems

7 acquires a first channel to be used for multicast packet transmission and
8 broadcasts a first message containing information pertaining to said first
9 channel and a multicast group when initiating a multicast packet
10 transmission to said multicast group;

11 said at least one node on each of said bus systems when operating as a
12 receive-only node acquires a second channel if said first message is received
13 when the bus system of the receive-only node has no node responsible for
14 channel acquisition, and broadcasts a second message pertaining to said
15 second channel and said multicast group; and

16 said at least one bus bridge establishes an inter-channel connection
17 between said first and second channels when said first and second messages
18 are received.

1 5. The packet communication method of claim 3, wherein said first
2 bus bridge is determined as a bridge responsible for acquisition of said
3 interconnection channel depending on relative values of identifiers assigned
4 to said first and second bus bridges.

1 6. The packet communication method of claim 3, wherein said first
2 bus bridge is determined as a bridge responsible for acquisition of said
3 interconnection channel depending on a random number.

1 7. A packet communication method for a network comprising a
2 plurality of nodes, first and second bus systems to which said nodes are
3 attached, and a bus bridge for performing a transfer of packets between said
4 first and second bus systems, the method comprising the steps of:

5 a) acquiring, at a first node attached to said first bus system, a first
6 channel for transmission of packets to a first multicast address and
7 broadcasting a first message pertaining to said first channel and said first
8 multicast address;

9 b) acquiring, at a second node attached to the second bus system, a
10 second channel for transmission of packets to a second multicast address and
11 broadcasting a second message pertaining to said second channel and said
12 second multicast address; and

13 c) receiving, at said bus bridge, the first and second messages and
14 establishing a connection between two channels respectively identified by the
15 received messages if the multicast addresses contained therein are equal to
16 each other.

1 8. A packet communication method for a network comprising first
2 and second bus systems and an intermediate bus system between said first
3 and second bus systems, a plurality of nodes attached to said first, second
4 and intermediate bus systems, and a first bus bridge for performing a transfer
5 of packets between said first and intermediate bus systems, and a second bus
6 bridge for performing a transfer of packets between said intermediate and
7 second bus systems, the method comprising the steps of:

8 a) acquiring, at a first node attached to said first bus system, a first
9 channel for transmission of packets to a first multicast address and
10 broadcasting a first message pertaining to said first channel and said first
11 multicast address;

12 b) acquiring, at a second node attached to said second bus system,
13 a second channel for transmission of packets to a second multicast address

14 and broadcasting a second message pertaining to said second channel and
15 said second multicast address;

16 c) receiving, at said first bus bridge, the first and second messages
17 and acquiring a third channel for transfer of packets on said intermediate bus
18 system if the received first and second messages indicate that the multicast
19 addresses contained therein are equal to each other, establishing a connection
20 between a channel identified by the received first message and the acquired
21 third channel, and broadcasting from said first bus bridge a third message
22 pertaining to said third channel;

23 d) receiving, at said second bus bridge, the first and second
24 messages from said first and second nodes and subsequently receiving said
25 third message from said first bus bridge if the received first and second
26 messages indicate that the multicast addresses contained therein are equal to
27 each other, and establishing a connection between two channels respectively
28 identified by the second and third messages.

1 9. A packet communication method for a network comprising a
2 plurality of nodes, first and second bus systems to which said nodes are
3 attached, and a bus bridge for performing a transfer of packets between
4 adjacent said first and second bus systems, the method comprising the steps
5 of:

6 a) acquiring, at a first node attached to said first bus system, a first
7 channel for transmission of packets to a multicast address and broadcasting a
8 first message pertaining to said first channel and said multicast address;

9 b) acquiring, at a second, receive-only node attached to said bus
10 system, a second channel for reception of packets from the first node in

11 response to receipt of said first message and broadcasting a second message
12 pertaining to said second channel and said multicast address;

13 c) receiving, at said bus bridge, the first and second messages and
14 establishing a connection between two channels respectively identified by the
15 received first and second messages if multicast addresses contained therein
16 are equal to each other.

1 10. The packet communication method of claim 7 or 9, wherein the
2 step (c) comprises establishing said connection by converting a channel
3 identifier contained in a multicast packet received on said first channel to a
4 channel identifier identifying said second channel and converting a channel
5 identifier contained in a multicast packet received on said second channel to a
6 channel identifier identifying said first channel.

1 11. The packet communication method of claim 7 or 9, wherein said
2 first and second messages further contain first and second bus identifiers
3 respectively identifying said first and second bus systems, and wherein said
4 bus bridge has first and second ports respectively connected to said first and
5 second bus systems, and wherein the step (c) comprises establishing said
6 connection if the bus bridge receives said first message through said first port
7 and said second message through said second port and if said first and
8 second bus identifiers respectively contained in said first and second
9 messages indicate that said bus bridge is directly connected to said adjacent
10 bus systems.

1 12. The packet communication method of claim 8, wherein the step

2 (c) comprises:

3 establishing said connection, at said first bus bridge, by converting a
4 channel identifier contained in a multicast packet received on said first
5 channel to a channel identifier identifying said third channel and converting
6 a channel identifier contained in a multicast packet received on said third
7 channel to a channel identifier identifying said first channel, and

8 establishing said connection, at said second bus bridge, by converting
9 a channel identifier contained in a multicast packet received on said second
10 channel to a channel identifier identifying said third channel and converting
11 a channel identifier contained in a multicast packet received on said third
12 channel to a channel identifier identifying said second channel.

1 13. The packet communication method of claim 8, wherein said first
2 and second messages further contain first and second bus identifiers
3 respectively identifying said first and second bus systems, and wherein said
4 first bus bridge has first and second ports respectively connected to said first
5 and intermediate bus systems, and said second bus bridge has first and
6 second ports respectively connected to said intermediate and second bus
7 systems, wherein the step (c) comprises:

8 establishing said connection, at said first bus bridge, if the first bus
9 bridge receives said first message through said first port and said second
10 message through said second port and if said first and second bus identifiers
11 respectively contained in said first and second messages indicate that the first
12 bus bridge is directly connected to said first bus system, and

13 establishing said connection, at said second bus bridge, if the second
14 bus bridge receives said first message through said first port and said second

15 message through said second port and if said first and second bus identifiers
16 respectively contained in said first and second messages indicate that the
17 second bus bridge is directly connected to said second bus system.

1 14. The packet communication method of claim 8, wherein said first
2 bus bridge is determined as a bridge responsible for acquisition of said third
3 channel depending on relative values of identifiers assigned to said first and
4 second bus bridges.

1 15. The packet communication method of claim 8, wherein said first
2 bus bridge is determined as a bridge responsible for acquisition of said third
3 channel depending on a random number.

1 16. A bus bridge for interconnecting a plurality of bus systems of a
2 packet communication network, each of said bus systems including at least
3 one node, wherein said bus systems, said bridge and said node are in
4 compliance to a serial bus standard, characterized in that said bus bridge
5 establishes a connection between a first channel used in a first bus system of
6 said plurality of bus systems for transmission of packets to a first multicast
7 address and a second channel used in a second bus system of said plurality of
8 bus systems for transmission of packets to a second multicast address if said
9 first and second multicast addresses are equal to each other and said first and
10 second channels have different channel identifiers from each other.

1 17. A packet communication network comprising a plurality of bus
2 systems interconnected by at least one bus bridge, wherein at least one node

3 is attached to each of said bus systems, and wherein said bus systems, said
4 bridge and said node are in compliance to a serial bus standard, characterized
5 in that:

6 said at least one node attached to each of said plurality of bus systems,
7 when initiating a multicast packet transmission to a multicast group of the
8 bus system, acquires a channel to be used for said multicast packet
9 transmission and broadcasts a message containing information pertaining to
10 said channel; and

11 said at least one bus bridge establishes a connection between channels
12 acquired for different bus systems when said message is received from each
13 of said different bus systems.

1 18. A packet communication network comprising an intermediate
2 bus system connected between first and second bus systems by first and
3 second bus bridges, wherein at least one node is attached to each of said bus
4 systems, and wherein said bus systems, said bridge and said node are in
5 compliance to a serial bus standard, characterized in that:

6 said at least one node attached to each of said bus systems is
7 responsible for acquisition of a channel to be used for multicast packet
8 transmission and broadcasts a message containing information pertaining to
9 said channel and a multicast group when initiating a multicast packet
10 transmission to said multicast group;

11 said first bus bridge acquires an interconnection channel if there is no
12 node in said intermediate bus system participating in said multicast group
13 and if two of said message having an identical multicast address are received,
14 one from said first bus system and the other from said second bus system,

15 broadcasts a message pertaining to said interconnection channel and said
16 multicast group and connects a first end of the interconnection channel to the
17 channel acquired for said first bus system; and
18 said second bus bridge connects a second end of the interconnection
19 channel to the channel acquired for the second bus system when said
20 message is received from said first bus bridge.

1 19. A packet communication network comprising a plurality of bus
2 systems interconnected by at least one bus bridge, wherein at least one node
3 is attached to each of said bus systems, and wherein said bus systems, said
4 bridge and said node are in compliance to a serial bus standard, characterized
5 in that:

6 said at least one node attached to each of said plurality of bus systems
7 acquires a first channel to be used for multicast packet transmission and
8 broadcasts a first message containing information pertaining to said first
9 channel and a multicast group when initiating a multicast packet
10 transmission to said multicast group;

11 said at least one node on each of said bus systems when operating as a
12 receive-only node acquires a second channel if said first message is received
13 when the bus system of the receive-only node has no node responsible for
14 channel acquisition, and broadcasts a second message pertaining to said
15 second channel and said multicast group; and

16 said at least one bus bridge establishes an inter-channel connection
17 between said first and second channels when said first and second messages
18 are received.

1 20. The packet communication network of claim 19, wherein said
2 first bus bridge is determined as a bridge responsible for acquisition of said
3 interconnection channel depending on relative values of identifiers assigned
4 to said first and second bus bridges.

1 21. The packet communication network of claim 19, wherein said
2 first bus bridge is determined as a bridge responsible for acquisition of said
3 interconnection channel depending on a random number.

1 22. A packet communication network comprising:
2 a plurality of nodes;
3 first and second bus systems to which said nodes are attached; and
4 a bus bridge for performing a transfer of packets between said first
5 and second bus systems;
6 a first node attached to said first bus system acquiring a first channel
7 for transmission of packets to a first multicast address and broadcasting a
8 first message pertaining to said first channel and said first multicast address;
9 a second node attached to the second bus system acquiring a second
10 channel for transmission of packets to a second multicast address and
11 broadcasting a second message pertaining to said second channel and said
12 second multicast address,
13 said bus bridge receiving the first and second messages and
14 establishing a connection between two channels respectively identified by the
15 received messages if the multicast addresses contained therein are equal to
16 each other.

1 23. A packet communication network comprising:
2 first and second bus systems and an intermediate bus system between
3 said first and second bus systems;
4 a plurality of nodes attached to said first, second and intermediate bus
5 systems;
6 a first bus bridge for performing a transfer of packets between said
7 first and intermediate bus systems;
8 a second bus bridge for performing a transfer of packets between said
9 intermediate and second bus systems;
10 a first node attached to said first bus system acquiring a first channel
11 for transmission of packets to a first multicast address and broadcasting a
12 first message pertaining to said first channel and said first multicast address,
13 a second node attached to said second bus system acquiring a second
14 channel for transmission of packets to a second multicast address and
15 broadcasting a second message pertaining to said second channel and said
16 second multicast address,
17 said first bus bridge receiving the first and second messages, acquiring
18 a third channel for transfer of packets on said intermediate bus system if the
19 received messages indicate that the multicast addresses contained therein are
20 equal to each other, establishing a connection between a channel identified by
21 the received first message and the acquired third channel, and broadcasting a
22 third message pertaining to said third channel,
23 said second bus bridge receiving the first and second messages, and
24 subsequently receiving said third message if the received first and second
25 messages indicate that the multicast addresses contained therein are equal to
26 each other, and establishing a connection between two channels respectively

27 identified by the second and third messages.

1 24. A packet communication network comprising:
2 a plurality of nodes;
3 first and second bus systems to which said nodes are attached; and
4 a bus bridge for performing a transfer of packets between adjacent said
5 first and second bus systems,
6 a first node attached to said first bus system acquiring a first channel
7 for transmission of packets to a multicast address and broadcasting a first
8 message pertaining to said first channel and said multicast address,
9 a second, receive-only node attached to said bus system acquiring a
10 second channel for reception of packets from the first node in response to
11 receipt of said first message and broadcasting a second message pertaining to
12 said second channel and said multicast address,
13 said bus bridge receiving the first and second messages and
14 establishing a connection between two channels respectively identified by the
15 received first and second messages if multicast addresses contained therein
16 are equal to each other.

1 25. The packet communication network of claim 22 or 24, wherein
2 said bus bridge establishes said connection by converting a channel identifier
3 contained in a multicast packet received on said first channel to a channel
4 identifier identifying said second channel and converting a channel identifier
5 contained in a multicast packet received on said second channel to a channel
6 identifier identifying said first channel.

1 26. The packet communication network of claim 22 or 24, wherein
2 said first and second messages further contain first and second bus identifiers
3 respectively identifying said first and second bus systems, and wherein said
4 bus bridge has first and second ports respectively connected to said first and
5 second bus systems and establishes said connection if the bus bridge receives
6 said first message through said first port and said second message through
7 said second port, and if said first and second bus identifiers respectively
8 contained in said first and second messages indicate that said bus bridge is
9 directly connected to said adjacent bus systems.

1 27. The packet communication network of claim 23, wherein said
2 first bus bridge establishes said connection by converting a channel identifier
3 contained in a multicast packet received on said first channel to a channel
4 identifier identifying said third channel and converting a channel identifier
5 contained in a multicast packet received on said third channel to a channel
6 identifier identifying said first channel, and
7 wherein said second bus bridge establishes said connection by
8 converting a channel identifier contained in a multicast packet received on
9 said second channel to a channel identifier identifying said third channel and
10 converting a channel identifier contained in a multicast packet received on
11 said third channel to a channel identifier identifying said second channel.

1 28. The packet communication network of claim 23, wherein said
2 first and second messages further contain first and second bus identifiers
3 respectively identifying said first and second bus systems, and wherein said
4 first bus bridge has first and second ports respectively connected to said first

5 and intermediate bus systems, and said second bus bridge has first and
6 second ports respectively connected to said intermediate and second bus
7 systems,

8 wherein each of said first and second bus bridges establishes said
9 connection if the bus bridge receives said first message through said first port
10 and said second message through said second port, and if said first and
11 second bus identifiers respectively contained in said first and second
12 messages indicate that the first and second bus bridges are directly connected
13 to said first and second bus systems, respectively

1 29. The packet communication network of claim 23, wherein said
2 first bus bridge is determined as a bridge responsible for acquisition of said
3 third channel depending on relative values of identifiers assigned to said first
4 and second bus bridges.

1 30. The packet communication network of claim 23, wherein said
2 first bus bridge is determined as a bridge responsible for acquisition of said
3 third channel depending on a random number.