UC Berkeley

Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 12

Fall 2021

1. Hypothesis Testing for Bernoulli Random Variables

Assume that

- If X = 0, then $Y \sim \text{Bernoulli}(1/4)$.
- If X = 1, then $Y \sim \text{Bernoulli}(3/4)$.

Using the Neyman-Pearson formulation of hypothesis testing, find the optimal randomized decision rule $r: \{0,1\} \to \{0,1\}$ with respect to the criterion

$$\min_{\text{randomized }r:\{0,1\}\rightarrow\{0,1\}}P\big(r(Y)=0 \bigm| X=1\big)$$

s.t.
$$P(r(Y) = 1 \mid X = 0) \le \beta$$
,

where $\beta \in [0,1]$ is a given upper bound on the false positive probability.

Solution:

Here, the likelihood ratio is

$$\frac{f_{Y|X}(y \mid 1)}{f_{Y|X}(y \mid 0)} = \begin{cases} 3, & \text{if } y = 1\\ \frac{1}{3}, & \text{if } y = 0 \end{cases}$$

If $\beta \leq P(Y=1|X=0)$, then the optimal decision rule is to have r(0)=0 and have r(1)=1 with probability $\gamma = \frac{\beta}{1/4}$. Otherwise, the optimal decision rule is r(1)=1 and have r(0)=1 with probability γ , chosen to make $P(r(Y)=1 \mid X=0)=\beta$. Then,

$$\frac{1}{4} + \frac{3}{4}\gamma = \beta$$

so
$$\gamma = \frac{4}{3}\beta - \frac{1}{3}$$
.

2. Joint Gaussian Probability

Let $X \sim \mathcal{N}(1,1)$ and $Y \sim \mathcal{N}(0,1)$ be jointly Gaussian with covariance ρ . What is P(X > Y)?

Solution:

Let
$$\bar{X} = X - 1$$
.

We can write $Y = \rho \bar{X} + \sqrt{1 - \rho^2} Z$, where $Z \sim \mathcal{N}(0,1)$ is independent of \bar{X} . (To check that this is correct, observe that $\text{cov}(\bar{X}, \rho \bar{X} + \sqrt{1 - \rho^2} Z) = \rho$ and also $\text{var}(\rho \bar{X} + \sqrt{1 - \rho^2} Z) = \rho^2 + (1 - \rho^2) = 1$ as required.)

So,
$$P(X > Y) = P(\bar{X} > Y - 1) = P((1 - \rho)\bar{X} - \sqrt{1 - \rho^2}Z > -1)$$
. But

$$(1 - \rho)\bar{X} - \sqrt{1 - \rho^2}Z \sim \mathcal{N}(0, (1 - \rho)^2 + 1 - \rho^2) = \mathcal{N}(0, 2(1 - \rho))$$

by independence so

$$P(X > Y) = P\left(\mathcal{N}(0, 1) > -\frac{1}{\sqrt{2(1-\rho)}}\right) = \Phi\left(\frac{1}{\sqrt{2(1-\rho)}}\right).$$

1