Zadanie nr 1 - Generacja sygnału i szumu

Cyfrowe Przetwarzanie Sygnałów

Paweł Purgat, 203975 Bartłomiej Ciach, 203860

24.03.2018

1 Cel zadania

Celem zadania było zapoznanie się z podstawowymi sygnałami, sposobami ich generacji, a także ich podstawowymi własnościami oraz sposobem ich obliczania.

2 Wstęp teoretyczny

Sygnały w zadaniu generowane są na podstawie wzorów opisujących wybrane funkcje. Wzory wszystkich funkcji, jak i sposób obliczania podstawowych parametrów funkcji (wartości średniej, bezwzględnej wartości średniej, wariancji, mocy średniej oraz wartości skutecznej) zostały przedstawione w instrukcji do zadania. W celu przedstawienia sygnałów na wykresie amplitudy od czasu, sygnały zostały poddane próbkowaniu. Wynikiem tej operacji jest zbiór punktów należących do wykresu sygnału, który pozwala stworzyć wykres.

3 Eksperymenty i wyniki

3.1 Eksperyment nr 1

3.1.1 Założenia

Eksperyment nr 1 polegał na generacji wykresów o zadanym typie i parametrach, a następnie przedstawieniu ich na wykresach wraz z ich histogramami.

3.1.2 Przebieg

Program generuje sygnały na podstawie zadanych parametrów.

3.1.3 Rezultat

Poniżej przedstawione zostały wykresy z wygenerowanymi przez program sygnałami.

Sygnały wygenerowane dla każdego typu sygnału są zgodne z przebiegiem funkcji danego typu.

Rysunek 1: Wykresy sygnału sinusoidalnego wyprostowanego dwupołówkowo oraz sygnału sinusoidalnego wyprostowanego jednopołówkowo.

Rysunek 2: Wykresy szumu impulsowego oraz delty Kroneckera.

Rysunek 3: Wykresy szumu o rozkładzie normalnym oraz szumu jednostajnego.

Rysunek 4: Wykresy sygnału sinusoidalnego oraz sygnału prostokątnego.

Rysunek 5: Wykresy symetrycznego sygnału prostokątnego oraz sygnału trójkątnego.

Rysunek 6: Wykres skoku jednostkowego.

Rysunek 7: Wykresy sygnałów, które zostały poddane operacjom.

3.2 Eksperyment nr 2

3.2.1 Założenia

Eksperyment nr 2 polegał na wykonaniu operacji z pewnego zbioru (dodawanie, odejmowanie, mnożenie, dzielenie) na wygenerowanych sygnałach.

3.2.2 Przebieg

Po wygenerowaniu sygnałów o określonych parametrach, wykonane zostały na nich określone operacje. Wynikiem danej operacji jest sygnał ciągły, jeżeli oba operandy były sygnałami ciągłymi, w przeciwnym wypadku jest to sygnał dyskretny.

3.2.3 Rezultat

Rezultatem eksperymentu są sygnały powstałe w wyniku wykonania określonej operacji na dwóch wygenerowanych sygnałach. Poniżej zostały przedstawione wyniki wszystkich operacji dla dwóch wybranych sygnałów.

Sygnały przedstawione na wykresach zgadzają się z oczekiwanymi przebiegami funkcji, która jest wynikiem wykonania określonej operacji na wyge-

Rysunek 8: Wynik operacji dodawania.

Rysunek 9: Różnica pierwszego i drugiego sygnału.

Rysunek 10: Różnica drugiego i pierwszego sygnału.

Rysunek 11: Iloczyn obu sygnałów.

Rysunek 12: Iloraz obu sygnałów.

nerowanych sygnałach. Dowodzi to poprawności zarówno wykonanych operacji, jak i samej generacji sygnałów.

3.3 Eksperyment nr 3

3.3.1 Założenia

Eksperyment nr 3 polegał na obliczeniu wybranych parametrów wygenerowanego sygnału.

3.3.2 Przebieg

Na podstawie zadanych parametrów generowany jest sygnał, następnie obliczane są parametry sygnału.

3.3.3 Rezultat

Tabela 1: Wyniki eksperymentu 3.

Parametr	Sinusoidalny	Kwadratowy
Wartość średnia	0,00	25,00
Bezwzględna wartość średnia	31,77	$25,\!00$
Moc średnia	1247,50	$1250,\!00$
Wariancja	$0,\!33$	$625,\!43$
Wartość skuteczna	$35,\!32$	$35,\!36$