EECS 595

Natural Language Processing

Lecture 1: Introduction

Instructor: Joyce Chai

Logistics

- Instructor: Joyce Chai
- In-person lecture: mask mandate
 - Remote session is accommodated
- Office Hours: **Zoom only.** Wednesday 10:45-12:15 or by appointment,
- TA:
 - Peter Yu (kpyu@umich.edu)
 - Shane Storks (sstorks@umich.edu)
- CANVAS
 - Syllabus, lecture notes, lecture videos, assignments
- Piazza for discussions

Structure of the class

- A graduate-level introductory course with three goals:
 - Learn the basic principles and theoretical issues underlying natural language processing
 - Learn techniques and tools used to develop practical, robust systems
 - Gain insight into many open research problems in natural language
- A mixture of lectures, reading, hands-on experience
 - Fundamental problems and approaches, and recent research advances
 - 20 lectures + 6 sessions on recent advances

Textbook and Lecture Notes

• Speech and Language Processing, an introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, third edition (draft) by Daniel Jurafsky and James Martin, Prentice Hall.

• Optional: Neural Network Methods for Natural Language Processing, Yoav Goldberg, Synthesis Lectures on Human Language Technologies

Programming Requirements

- Proficiency in Python Programming
 - https://pythonprogramming.net/
- NLP toolkit: NLTK
 - https://www.nltk.org/
 - A good tutorial on NLTK: NLTK with Python
 3 for Natural Language Processing

Grading

- Four homework assignments: 60%
 - A written portion and a programming portion
 - Written portion: use Latex.
 - Submission through CANVAS
- Final project (40%):
 - 1-2 people
 - You can choose your own topic
 - A list of default topics will be available to you.
 - The scope of the project should be proportional to the effort.

What is NLP?

Dave Bowman: Open the pod bay doors, HAL.

What is NLP?

Dave Bowman: Open the pod bay doors, HAL.

HAL: I'm sorry Dave. I'm afraid I can't do that.

What is NLP

- The study of human languages and how they can be represented computationally and analyzed and generated algorithmically
 - The dog likes bacon. --> like (dog, bacon)
 - like (dog, bacon) --> The dog likes bacon
- Studying NLP involves studying natural language, formal representations, and algorithms for their manipulation
- Applications
 - information extraction, question answering, machine translation, conversational systems

Multidisciplinary

- Linguistics: how words, phrases, and sentences are formed.
- **Psycholinguistics**: how people understand and communicate using human language
- Philosophy: relates to the semantics of language; notation of meaning. NLP requires considerable knowledge about the world

Multidisciplinary

- Computer Science: deals with model formation and implementation
- Mathematics and Statistics: deals with probabilities, statistical distribution and hypothesis testing of language phenomena
- Artificial Intelligence: relates to knowledge representation and reasoning

Language Ambiguities

I made her duck.

- How many different interpretations does the above sentence have?
- How can each ambiguous piece be resolved?

Language Ambiguities

• Lexical ambiguity: when a word has more than one part of speech

Rice flies like sand.

• Structural ambiguity:

John saw the boy with a telescope

John saw the boy with a telescope

Basic levels of language processing

- Phonetics: how words are related to the sounds that realize them.
- Morphology: how words are constructed. beauty, beautiful
- Syntax: how words can be put together to form correct sentences, and the role of each plays in the sentence. *John likes Mary*

Basic levels of language processing

- Semantics: the meaning of words and sentences bass fishing, bass playing
- Discourse: how the meaning of words and sentences is affected by the surrounding text or utterances

Mary bought a new computer yesterday. She likes it very much. (pronoun resolution)

• Pragmatics: how sentences are used in different situations (contexts)

Mary grabbed her umbrella

- A) It is a cloudy day
- B) She was afraid of dogs

Goal: Deep Understanding

 Requires context, linguistic structure, meanings...

Reality: Shallow Matching

- Requires robustness and scale
- Amazing successes, but fundamental limitations

(slide from Dan Klein, Taylor Berg-Kirkpatrick)

Exciting Time for NLP!

- Large data sets and computational resources have become available to build more powerful models.
- Many tools have become available to make real-world applications possible.
 - Play an important role in curbing information explosion on the internet
 - Used for building natural interfaces to databases, machine translations, chatbots
- NLP still remains a challenging problem despite of recent excitement

New AI Model Exceeds Human Performance at Question Answering

(BecomingHuman.ai)

(The Machine)

AI, ML & DATA ENGINEERING

InfoQ Live (June 22nd) - Overcome Cloud and Serverless Security Challenges

Al Models from Google and Microsoft Exceed Human Performance on Language Understanding Benchmark

Leaderboard Ranking

S. Storks, Q. Gao, and J.Y. Chai. Recent advances in natural language inference: a survey of benchmarks, resources, and approaches, arXiv preprint arXiv:1904.01172, 2019.

Benchmarks saturate faster than ever

Kiela et al. 2021

Association for Computational Linguistics

ACL Submissions by Year

5 tracks with over 200 submissions! (ACL 2020)

Topics covered in this class

- Three major parts:
 - Linguistic, mathematical, and computational background
 - Levels of linguistic processing: morphology, syntax, semantics, and discourse
 - Applications: sentiment analysis, information extraction, question answering, machine translation, dialogue systems

Today

- Review some of the simple representations and ask ourselves how we might use them to do interesting and useful things
 - Regular Expressions
 - Minimum editing distance

Regular expressions

- A formula in a special language that is used for specifying simple classes of strings
 - A string is a sequence of symbols
 - For text-based search, a string is a sequence of alphanumeric characters (letters, numbers, spaces, tabs, and punctuation)
- Can be used to specify search strings and define a language in a formal way.

Basic Regular Expression Patterns

All modern language have similar library packages for regular expressions

- Case sensitive
- Disjunctions [abc]
- Ranges [A-Z]
- Negations [^Ss]
- Optional characters ?, +, and *
- Wild cards .
- Anchors ^ and \$, also \b and \B
- Disjunction, grouping, and precedence

Regular expressions

- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

• Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

• Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

- Negations [^Ss]
 - Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	Oyfn pripetchik
[^Ss]	Neither 'S' nor 's'	<pre>I have no exquisite reason"</pre>
[^e^]	Neither e nor ^	e <u>a</u> rs
a^b	The pattern a carat b	Look up a^b now

Regular Expressions: More Disjunction • Woodchucks is another name for groundhog!

- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]ood chuck	

Regular Expressions: ?

Kleene *, Kleene +

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	1 or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa
beg.n		begin begun beg3n

Regular Expressions: Anchors ^ \$

- ^ beginning of the string
- \$ end of the string

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<pre>1 "Hello"</pre>
\.\$	The end.
.\$	The end? The end!

RE	Expansion	Match	First Matches
\d	[0-9]	any digit	Party_of_ <u>5</u>
\D	[^0-9]	any non-digit	<u>B</u> lue∟moon
\W	[a-zA-Z0-9_]	any alphanumeric/underscore	<u>D</u> aiyu
$\backslash W$	[^\w]	a non-alphanumeric	<u>!</u> !!!
\s	[whitespace (space, tab)	
\S	[^\s]	Non-whitespace	<u>i</u> n_Concord

Figure 2.7 Aliases for common sets of characters.

RE	Match
*	zero or more occurrences of the previous char or expression
+	one or more occurrences of the previous char or expression
?	exactly zero or one occurrence of the previous char or expression
{n}	n occurrences of the previous char or expression
{n,m}	from n to m occurrences of the previous char or expression
{n,}	at least <i>n</i> occurrences of the previous char or expression
{ , m}	up to m occurrences of the previous char or expression

Figure 2.8 Regular expression operators for counting.

Python reg exp. package

- >>> import re
- Basic functions:
 - re.search: search looks for a pattern anywhere in a string
 - re.match: match looks for a match staring at the beginning
 - re.split: split a string into several parts based on a pattern
 - re.sub: substitutes one string for a pattern
 - re.findall: find all from a string that matches a pattern
 - And others you may find useful.

Example

• Find me all instances of the word "the" in a text.

```
/the/ Misses capitalized examples
/[tT]he/ Incorrectly returns other or
theology
```

```
/[^a-zA-Z][tT]he[^a-zA-Z]
/\b[tT]he\b/
```

Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

Errors cont.

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

A more complex example

• Exercise: Write a regular expression that will match "any PC with more than 500MHz and 32 Gb of disk space for less than \$1000":

```
/$[0-9]+/
/$[0-9]+\.[0-9][0-9]/
/\b$[0-9]+(\.[0-9][0-9])?\b/
/\b[0-9]+ *(MHz|[Mm]egahertz|Ghz|
       [Gg]igahertz)\b/
/\b[0-9]+ *(Mb|[Mm]egabytes?)\b/
/\b[0-9](\.[0-9]+) *(Gb|[Gg]igabytes?)\b/
```

Another example used in earlier chat bots

Eliza [Weizenbaum, 1966]

Eliza: http://www.manifestation.com/neurotoys/eliza.php3

User: Men are all alike

ELIZA: IN WHAT WAY

User: They're always bugging us about something or other

ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE?

User: Well, my boyfriend made me come here

ELIZA: YOUR BOYFRIEND MADE YOU COME HERE

User: He says I'm depressed much of the time

ELIZA: I AM SORRY TO HEAR THAT YOU ARE DEPRESSED

Substitutions and memory

• Substitutions (Transduction)

s/colour/color/

• Memory (\1, \2, etc. refer back to matches)

35 boxes => <35> boxes:

```
s/regexp1/pattern/
s/I am feeling (.+)/You are feeling \1?/
s/I gave (.+) to (.+)/Why would you give \2 \1?/
```

Eliza-style regular expressions

Step 1: replace first person references with second person references

Step 2: use additional regular expressions to generate replies

Step 3: rank possible transformations

```
s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO
   HEAR YOU ARE \1/
s/.* YOU ARE (depressed|sad) .*/WHY DO YOU
   THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC
   EXAMPLE/
```

Uses of Regular Expressions in NLP

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Minimum Edit Distance

- Much of NLP concern with how similar two strings are
 - Spell checking and correction
 - Word Error Rate for speech recognition
 - machine translation, etc.
- MED s the minimum number of editing operations needed to transform one into the other
 - Insertion
 - Deletion
 - Substitution

Minimum Edit Distance

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

Minimum Edit Distance

One possible path

There can be many different paths

The problem becomes the search problem to find the path with
minimum cost

Defining Min Edit Distance

- For two strings S_1 of len n, S_2 of len m
 - distance(i,j) or D(i,j)
 - means the edit distance of $S_1[1..i]$ and $S_2[1..j]$
 - i.e., the minimum number of edit operations need to transform the first i characters of S_1 into the first j characters of S_2
 - The edit distance of S_1 , S_2 is D(n,m)
- We compute D(n,m) by computing D(i,j) for all i $(0 \le i \le n)$ and j $(0 \le j \le m)$
- Note the index associated with the source/target string: first is source and second is the target

Defining Min Edit Distance

• Base conditions:

$$-D(i,0) = i$$
 /* deletion cost*/
 $-D(0,j) = j$ /* insertion cost*/

- Recurrence Relation:

$$-D(i,j) = \min \begin{cases} D(i-1,j) + 1 & /* \text{ cost for deletion*/} \\ D(i,j-1) + 1 & /* \text{ cost for insertion*/} \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$
 /* cost for substitution */

Dynamic Programming

- A tabular computation of D(n,m)
- Bottom-up
 - Compute D(i,j) for smaller i,j
 - Increase i, j to computer D(i,j) using previously computed values based on smaller indexes.

	2
)
7	
≥	_
7	2
5	ر
	D

N	9										
O	8										
I	7				ו ∫D(i-1	l ,j) +	1				
T	6	$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S \\ 0; & \text{if } S_1(i) = S \end{cases}$									
N	5				D(i-1,j-1) +			2; if $S_1(i) \neq S_2(j)$			
Е	4	,					ر 	, 11 3) ₁ (1) = 	ا 	
Т	3										
N	2										
I	1										
#	0	1	2	3	4	5	6	7	8	9	
	#	E	X	Е	C	U	T	Ι	O	N	

target