

KomAn

2023/2024

Opgavesæt B

Besvarelsen afleveres via Absalon inden deadline! Husk navn og KU-brugernavn. Besvarelsen godkendes hvis mindst 70 % er rigtigt besvaret.

Opgave 1 (45%) Lad

$$f(z) = \frac{e^z}{z^2 + 4}.$$

- (a) Bestem konvergensradius ρ for Taylorrækken for f med centrum i 0.
- (b) Vis, at Taylorrækken for *f* med centrum i 0 er givet ved

$$f(z) = \sum_{k=0}^{\infty} a_k z^k,$$

hvor $a_0 = a_1 = 1/4$ og

$$a_k = 1/(4k!) - a_{k-2}/4$$
, for $k = 2, 3, ...$

Bestem herved værdien af $f^{(5)}(0)$.

(c) Udregn værdien af kurveintegralet

$$\frac{1}{2\pi i} \int_{\partial K(1/2,1)} \frac{e^z}{z^8 + 4z^6} \, dz,$$

idet kurven gennemløbes én gang mod uret.

Opgave 2 (20%) Om en hel funktion f vides, at uligheden $|f(z)| \le (\ln |z|)^{2023}$ gælder for alle $|z| \ge 10$. Vis, at f må være konstant.

Opgave 3 (20%) Lad u være en harmonisk funktion i et område Ω .

(a) Vis, at der for hvert $z_0 \in \Omega$ findes et $r_0 > 0$ så der gælder

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt$$

for $0 \le r < r_0$.

(b) Antag, at den harmoniske funktion u har et lokalt maksimum i et punkt z_0 . Vis, at u må være konstant i en (lille) kugle omkring z_0 .

(Bemærk: der gælder faktisk, at u er konstant i hele området Ω , men beviset for det må vente lidt endnu.)

Opgave 4 (15%) Vis at funktionen $u(z) = \frac{1-|z|^2}{|1-z|^2}$ er harmonisk i K(0,1) og bestem de harmonisk konjugerede til u.

1

Supplerende opgave

Du er velkommen til at prøve kræfter med nedenstående supplerende opgave. Besvarelsen kan afleveres via Absalon (Assigment: "Supplerende opgaver") og så vil jeg rette den. Opgaven tæller ikke med i bedømmelsen af Opgavesæt B.

Supplerende B Lad $\phi : \partial K(0,1) \to \mathbb{R}$ være kontinuert.

(a) Vis, at

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \phi(e^{i\theta}) d\theta$$

er holomorf i K(0,1) og vis herved, at

$$P(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2} \phi(e^{i\theta}) d\theta$$

er harmonisk i K(0,1).

(b) Vis, at

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2} d\theta = 1.$$

(c) Lad $\xi_0 \in \partial K(0,1)$. Vis, at der gælder $P(z) \to \phi(\xi_0)$ for $z \to \xi_0$, med $z \in K(0,1)$.

En vilkårlig reel kontinuert funktion ϕ defineret på randen af enhedscirklen har altså en harmonisk udvidelse P til det indre af enhedscirklen!

Vink til opgaverne

- Opgave 1: I (b) kan det *ikke* anbefales differentiere f(z) direkte; prøv i stedet at gange med $z^2 + 4$.
- Opgave 2: Søg inspiration i beviset for Liouville's sætning.
- Opgave 3: Benyt Korollar 3.9 i (a) og identiteten

$$\frac{1}{2\pi} \int_0^{2\pi} (u(z_0) - u(z_0 + re^{it})) dt = 0$$

for alle $r < r_0$ i (b).

• Opgave 4: Hvis man vil undgå at udregne Δu kan man prøve at bestemme reelle tal a og b så

$$u(z) = \Re\left(\frac{az+b}{1-z}\right).$$

• Supplerende B: I (b) kan man bruge Cauchy's integralformel til at udregne

$$\frac{1}{2\pi i} \int_{\partial K(0,1)} \frac{w+z}{w-z} \, \frac{dw}{w}.$$

I (c) kan man starte med at vise

$$\sup_{\{\theta \mid |e^{i\theta}-\xi_0|\geq \delta\}}\frac{1-|z|^2}{|e^{i\theta}-z|^2}\rightarrow 0$$

for $z \to \xi_0$ for vilkårligt givet $\delta > 0$.