$$\begin{array}{c|c} n_{ij} & (n_{ij} - E_{ij})^2 \\ \hline n_{ij} - E_{ij} & E_{ij} \end{array}$$

1 B. Statistkik

- Qualitative Merkmale:
 - Variieren nach Beschaffenheit
 - Bspw. Geschlecht
- Quantitative Merkmale:
 - Variieren nach Wert/Zahlen
 - Bspw. Alter, Einkommen
- Diskrete Merkmale:
 - abgestufte Werte
 - Bspw. Einkommensklasse
- Stetige Merkmale:
- können im Intervall jeden reellen Wert annehmen
- Bspw. Körpergröße

Skalenniveaus

- Nominal
 - nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
 - stets qualitativ (Religion, Beruf etc.)
- Ordinal
 - natürliche oder festzulegende Rangfolge
- IQ, Schulnoten
- Kardinal
 - numerischer Art
- Ausprägung und Unterschied sind messbar
- verhältnisskaliert (Absoluter Nullpunkt vorhanden; Gewicht, Preis (Doppelt so viel.))
- intervallskaliert (Kein Nullpunkt, nur Differenzen; Temperatur (10 Grad wärmer als gestern))

Werte

• Arithmetisches Mittel \overline{x}

- $-\overline{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$ Summe aller Abweichungen vom Mittel
- Summe aller Abweichungen vom Mittel
 = 0
- Verschiebung um kostanten Wert a $a+\frac{\overline{x}}{x}$
- Multiplikation mit konstantem Wert $a \cdot \overline{x}$
- Median \widetilde{x}
 - Mittleres Element der geordneten Liste
 - Bei gerader Anzahl, Durchschnitt der mittleren Elemente
- Quartile (FEHLT)
 - Unteres Quartil $\widetilde{x}_{0,25}$
 - Oberes Quartil $\widetilde{x}_{0,75}$
- Varianz σ^2
- Populations Varianz σ^2 $\sum_{i=1}^{N} (x_i \mu)^2$

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

- Sample Varianz $S_{n-1}^2 = \frac{i=1}{n-1}$
- Altn. Formel $\sigma^2 = \overline{x^2} \overline{x}^2$
- Eigenschaften:
 - * Immer >= 0
 - $\ast\,$ Addition mit a, Varianz unverändert
 - * Multiplikation mit b, $Varianz * b^2$
- \bullet Standardabweichung σ
 - $-\sigma = \sqrt{\sigma^2}$
 - StichprobenSTD $S = \sqrt{S_{n-1}^2}$
- Quartilsabstand (FEHLT)

Zweidimensionale Häuffigkeitstabellen

- Statistische Variablen X und Y mit versch. Auspräungen
- $\bullet\,$ Spaltensummen sowie Zeilensummen = n
- Relative Häufigkeit $h_{ij} = \frac{n_{ij}}{n}$
- Randverteilung = Betrachtung einer

- einzigen Variable
- $Z = X + Y; \overline{z} = \overline{x} + \overline{y};$

Kovarianz

- Arithmetisches Mittel des Produkts der Abweichung der einzelnen Beobachtungen von ihrem Mittel
- $C_{XY} := \frac{1}{n} \sum_{j=1}^{n} (x_j \overline{x})(y_j \overline{y})$
- \bullet $C_{XY} = \overline{xy} \overline{x} * \overline{y}$
- $C_{XY} > 0$ "große X-Werte zu großen Y-Werten"
- $C_{XY} < 0$ "große Werte zu kleine Werten"
- Sind zwei Variablen statistisch unabhängig ist die Kovarianz = 0

Korrelation

- Normal (Pearson) $r_{XY} = \frac{C_{XY}}{\sigma_x * \sigma_y}$ - normiertes Maß für Strenge des lin-
 - normiertes Maß für Strenge des linearen statistischen Zusammenhangs
 - $-\ r_{XY}$ hat das gleiche Vorzeichen wie C_{XY}
 - Bleibt unverändert bei linearer Transformation
 - $-r_{XY}=r_{YX}$
- Rangkorrelation (Spearman) r_{XY}^{Sp} $r_{rg(X),rg(Y)}$
 - für ordinale Variablen
 - misst monotonen Anteil des stat Zusammenhangs
- Ränge müssen vorher berechnet werden
- Kovarianz und Korrelation bedeuten nicht zwangsweise eine kausale Beziehung!

Kontingenzkoeffizient

• beschreibt die Stärke des Zusammenhangs zweier Merkmale, nicht deren Richtung

- Chi-Quadrat $QK = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ji} E_{ij})^2}{E_{ij}}$
- $-E_{ij} = \frac{1}{n} * n_i * n_j = \frac{1}{n} n(x_i) * n(y_j)$
- Siehe Erweiterte Kontingeztabelle
- X und Y unabhängig: QK = 0
- Sonst QK > 0
- $\operatorname{F\"{u}r} 2x2 \operatorname{Matrix:} QK = \frac{n(ad-bc)^2}{(a+b)(a+c)(b+d)(c+d)}$
- a bis d sind Inhalte der Tabelle, Summen sind Randhäufigkeiten
- Kontingenzkoeffizient $K := \sqrt{\frac{QK}{QK+n}}$
- normiertes Maß
- X und Y unabhängig: K=0
- $-0 <= K <= K_{max} = \sqrt{\frac{m-1}{m}} < 1$
- m = Minimum von Zeilenzahl und Spaltenzahl
- Korrigierter K.-koeffizient $K^* := \frac{K}{K_{max}} = \sqrt{\frac{QK*m}{(QK+n)(m-1)}}$
- $\bullet 0 <= K^* <= 1$
 - Vergleichbar mit anderen K-Tabellen

2 Regression

- Lineare Regression y(x) = a + bx
- $b = \frac{c_{XY}}{s_Y^2}$ und $a = \overline{y} b\overline{x}$

3 S. Statistik

Hallo

4 Taschenrechner

Hallo