Homework 2

Kai Qu kq4ff

October 10, 2019

1 Let $w_T(y_T) = \sum_{y' \in Y^T} exp(\theta^T f(x, y'))$, where Y^T is the set of all possible POS squares with length T. Given $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^T \mathbf{f}_i(x_i, y_i, y_{i-1}) + f_{T+!}(y_{T+1}, y_T)$, We can rewrite the above equation as following:

$$w_{T}(y_{T}) = \sum_{y' \in Y^{T-1}} exp(\theta^{T} f(x, y'))$$

$$= \sum_{y' \in Y^{T-1}} exp(\theta^{T} \sum_{i=1}^{T} [\mathbf{f}_{i}(x_{i}, y'_{i}, y'_{i-1}) + f_{T+!}(y_{T+1}, y_{T})])$$

$$= \sum_{y' \in Y^{T-1}} exp(\theta^{T}) \prod_{i=1}^{T} exp(\mathbf{f}_{i}(x_{i}, y'_{i}, y'_{i-1}) + f_{T+!}(y_{T+1}, y_{T}))$$

$$= \sum_{y_{T-1} \in Y} exp(\theta^{T}) exp(f_{T}(x_{T}, y_{T}, y_{T-1}) + f_{T+!}(y_{T+1}, y_{T})) \cdot$$

$$\sum_{y' \in Y^{T-2}} exp(\theta^{T}) \prod_{i=1}^{T-1} exp(\mathbf{f}_{i}(x_{i}, y'_{i}, y'_{i-1}) + f_{T+!}(y_{T+1}, y_{T}))$$

$$= \sum_{y_{T-1} \in Y} exp(\theta^{T}) exp(f_{T}(x_{T}, y_{T}, y_{T-1}) + f_{T+!}(y_{T+1}, y_{T})) w_{T-1}(y_{T-1})$$

With the above recurrent relationship, we can design the following algorithm:

for
$$n \in \{0 : K\}$$
:
 $w_1(y_n) = exp(\theta^T)exp(f_1(x_1, y_n, \square) + f_{T+!}(y_{T+1}, y_T))$
for $m \in \{2 : T\}$:
for $m \in \{0 : K\}$:
 $w_m(y_m) = \sum_{y_{m-1} \in Y} exp(\theta^T)exp(f_1(x_m, y_n, y_{n-1}) + f_{T+!}(y_{T+1}, y_T))$
return $\sum_{y_T \in Y} w_T(y_T)$

The time complexity of the algorithm is $T * K^2$ because the time complexity of calculating the first for loop is K. This is because we iterate the loop K times, within each

loop we have to calculate the sum, which has the time complexity of K. In the second loop, we iterate the outer loop T-1 times and iterate the inner loop K times. Within each loop, we have to calculate the sum, which has the time complexity of K. Thus, the total time complexity is $K^2 + (T-1) * K^2 = T * K^2$.

- **2** (d) With $\alpha = 1$ and $\beta = 1$, I have the dev accuracy as 0.947451.
- (e) With $\alpha = 100$ and $\beta = 0.1$, I have the best accuracy (among the parameters I tried so far) as 0.956281.
- (f) With $\alpha = 100$ and $\beta = 0.1$ obtained in (e), I have the test accuracy as 0.958287.