- 1 Q1 (ISLR 3.4)
- 2 Q2 (ISLR 2.1)
- 3 Q3 (ISLR 2.1)
- 4 Q4 (ISLR 2.5)
- 5 Q5

This question should be answered using the Carseats data set in the ISLR package. You may use help(Carseats) to learn more about the data set.

5.0.1 a.

Split the data into a testing and training set.

5.0.2 b.

Train a linear regression model and evaluate on the test data.

5.0.3 c.

Fit a KNN regression on the training data and evaluate on the test data using K = 10.

5.0.4 d.

Use cross-validation to choose an appropriate value for *K*.

6 Q6

6.0.1 a.

Generate n = 1000 values X_1 and X_2 from a uniform distribution between -1 and 1. Generate $Y = X_1X_2 + \varepsilon$ where ε are i.i.d from a N(0, 1) distribution.

6.0.2 b.

Split the data into testing and training and fit a KNN regression model using K = 10. Calculate the predictions on the test data.

6.0.3 c.

Using the same split fit a linear regression model and calculate the predictions using the testing data

6.0.4 d.

Plot the true values for Y in the test set (on the x-axis) against the predictions for the two models (on the y-axis). Which model does better? Why?