Problem set 2

Introduction to Econometrics

Due date: August 20 2024, 23:59 hrs

1 Problem 1

у І	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	-2.681508	1.393991		0.055	-5.424424	.0614073
x2	-3.702419		-24.04	0.000	-4.005491	-3.399348
x3	.1086104	.090719	1.20	0.232	0698947	.2871154
_cons	906.7392	28.26505	32.08	0.000	851.1228	962.3555

- Consider the regression output above.
- Compute the t-statistic for x_1
- Compute the standard error for $\hat{\beta}_2$
- What is the estimated model? (write down the formula)
- Is x_1 statistically significant at the 90% level?
- Analyze the statistically significance of the intercept.

2 Problem 2

Mark all the assumptions that are required to have an unbiased estimator in the linear model (**Justify your answer**):

- Orthogonality $E[x_i \epsilon_i] = 0$
- $\epsilon_i \sim N(0, \sigma^2)$ (Normality of errors)
- No multicollinearity
- Homoskedasticity: $V[\epsilon_i|x_i] = \sigma_i^2$

3 Problem 3

Explain in detail (mathematically) how to contrast the null hypothesis $\hat{\beta}_2 < -3$ using the t-statistic.