Specification of Thermoelectric Module

TEC1-12706

Description

The 127 couples, 40 mm × 40 mm size single stage module is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C requirement. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- High effective cooling and efficiency.
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- Photonic and medical systems

Peformance Specification Sheet

Th(℃)	27	50	Hot side temperature at environment: dry air, N ₂	
$\mathrm{DT}_{\mathrm{max}}(\mathfrak{C})$	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	16.0	17.2	Voltage applied to the module at DT _{max}	
I _{max(} amps)	6.1	6.1	DC current through the modules at DT _{max}	
$Q_{Cmax}(Watts)$	61.4	66.7	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	2.0	2.2	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)		
	(mm)	Parallelism (mm)	Standard/Optional length		
TF	0:3.8±0.1	0:0.035/0.035	125±3/Specify		
TF	1:3.8±0.05	1:0.025/0.025	125±3/Specify		
TF	2:3.8±0.03	2:0.015/0.015	125±3/Specify		
Eg. TF01: Thickness 3.8 ± 0.1 (mm) and Flatness $0.025 / 0.025$ (mm)					

Sealing Option

A. Solder:

1. T100: BiSn (Tmelt = 138 °C)

B. Sealant:

1. NS: No sealing (Standard)

2. SS: Silicone sealant

3. EPS: Epoxy sealant

4. Customer specify sealing

other than above

C. Ceramics:

1. Alumina (Al₂O₃, white 96%)

2. Aluminum Nitride (AlN)

D. Ceramics Surface Options:

1. Blank ceramics (not metallized)

2. Metallized (Au plating)

AlO: Alumina white 96%

Naming for the Module

T100:BiSn (Tmelt=138°C)

NS: No sealing

TF01: Thickness ± 0.1 (mm) and Flatness/Parallelism 0.025/0.025(mm)

Specification of Thermoelectric Module

TEC1-12706

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph Qc= f(DT)

Standard Performance Graph $V= f(\Delta T)$

Standard Performance Graph Qc = f(V)

Specification of Thermoelectric Module

TEC1-12706

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Cold side of the module sticked on the object being cooled
- Hot side of the module mounted on a heat radiator
- Operation or storage module below 100 °C
- Operation below Imax or Vmax
- Work under DC