Characterization of NSLS2 Storage Ring Beam Orbit Stability

Weixing Cheng*, Kiman Ha, Joe Mead, Boris Podobedov, Om Singh, Yuke Tian, Li-hua Yu NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA

Outline

- NSLS2 BPM system introduction and its performance
 - Types of button BPM and sensitivity
 - BPM electronics data flow
 - Resolution measurement
 - RF attenuator dependency and calibration
 - Current and fill pattern dependency
- Beam orbit spectrum
 - Compare with mechanical vibrations
 - FOFB ON/OFF
 - Compare with xBPM spectrum
- Long term stability
- Summary

NSLS2 storage ring main parameters

Beam sizes in one super period calculated using ε_x = 0.9 nm.rad, ε_y = 8 pm.rad; Δ E/E = 0.09%

Source point	Long ID	Short ID	3PW	вмв
σ_{x} [um]	135.0	40.3	153.0	133.1
თ _y [um]	5.2	3.0	12.4	12.5

Orbit stability requirements:

< 10% of beam size and divergence

Energy	3.0 GeV	
Circumference	792 m	
Number of Periods	30 DBA	
Length Long Straights	6.6 & 9.3m	
Emittance (h,v)	<1nm, 0.008nm	
Momentum Compaction	0.00037	
Dipole Bend Radius	25m	
Energy Loss per Turn	<2MeV	
Energy Spread	0.094%	
RF Frequency	499.68 MHz	
Harmonic Number	1320	
RF Bucket Height	>2.5%	
RMS Bunch Length	15ps-30ps	
Average Current	500mA	
Current per Bunch	0.5mA	
Charge per Bunch	1.3nC	
Touschek Lifetime	>3hrs	
Top-Off Injection	1/min	

- Types of NSLS2 button BPM:
 - SR Large Aperture BPM
 - SR Large Aperture BPM, 64-deg rotated
 - SR Small Aperture BPM DW, 60-deg rotated
 - SR Small Aperture BPM EPU, 60-deg rotated
 - Special injection straight BPMs
 - LINAC BPM
 - LtB/BtS BPM round type
 - LtB/BtS BPM elliptical type
 - Booster BPM Type-I
 - Booster BPM Type-II
- Button BPM sensitivity nonlinearity 1D fitting
- Button BPM sensitivity nonlinearity 2D fitting

Button diameter – 7mm Button center distance – 16mm Gap between button and body – 250 μ m Button thickness – 2mm

Button diameter = 4.7mm Button gap = 250μ m Button thickness = 2mm

BPM signal flow

Digital BPM data type (NSLS2 ring)

Frf = 499.68 MHz, harNum = 1320, Frev = 378.55kHz

F adc = 117.349MHz = 310 * Frev

F_if = Frf - 4* F_adc = 1320*Frev - 4*310*Frev = 80* Frev. The 499.68MHz beam signal is in the 9th Nyquist zone with sampling rate of 117.349MHz.

BPM Resolution vs. ADC counts (after BPF)

BPM electronics resolution is determined by ADC average counts. It depends on beam current, button sensitivity, attenuator settings etc.

BPM Sum signal could be useful for total current/lifetime measurement. More studies needed as SUM signal may depends on bunch length, fill pattern, beam position, RF attenuator settings etc.

With the new static gain calibration LUT, most of the BPMs has RF attenuator dependency less than 10um, while attenuator varied from 0 to 20dB in 1 dB steps. Note that the LUT was generated in Nov 2014 and it's still working in months, with different current and fill pattern.

Glitches while change the BPM attenuator settings

First observed on BPM TbT data, verified with FA data

Vary Att 0 to 3 dB during the period. It's clear that when Att was changed, there was a glitch on FA position readings. The glitch last for ~32 FA samples.

Note the position reading is not changing at 0dB and 3dB, which is because of good RF attenuator calibration.

Turn AGC OFF for user operation, especially when FOFB turned ON

Current and Fill Pattern Dependency

Three different fills to the same total beam current of 10mA distributed in 100, 200 and 350 bunches. Pretty small fill pattern dependency.

Knock out the bunches in steps to have different fill patterns.

BPMs near RF cavity section see larger current dependency, due to leaked noises at Frf. The issue is dominant for single bunch studies when Ib < 0.2mA. Typically not a problem when the beam current is high.

Beam motion spectrum together with mechanical vibrations

BPM and its mounting

Green – C30 BPM 6, sensor mounted on chamber surface near the BPM

BPM FA data collected during beamline commissioning (4.6mA, multi-bunch fill)
Blue - C30 BPM6
Red - C28 SBPM1 (combiner/splitter)

Beam spectrum with FOFB ON/OFF

Exclude dispersive BPMs from the averaged spectrum calculation

RMS Motions Along the ring

Comparison of PSD spectrum (calculated from ID BPMs vs. pBPM measurement)

Looks like pBPM electronics has less noise, especially for >1kHz range.

Long term stability at ID source point

Long term stability @ C03 pBPM

CO3 ID gap fixed at 5.92mm

150mA user operation, beam current in 110 – 150mA range. Refill every 3 hours

xBPM position can be calculated from two ID BPMs on ends of the IVU, compared to xBPM direct measurement.

Tune/Orbit history with SOFB and FOFB

Orbit history data during 150mA user run (Jul 9-13, 2015)

Beam decay to ~20mA due to a booster dipole PS failure.

6 BPMs X/Y positions from C30 were plotted

Dispersive BPMs (BPM 3,4) saw clear daily drift pattern. Not weather or tunnel temperature related.

Max. drift \sim 50 um at BPM #3 with dispersion \sim 0.424m. This gives energy mis-match Δ E/E = 1.18e-4, which is corresponding to ring circumference change of 34 um (Δ Frf = 21 Hz)

Drift valleys seems agrees with the nearby harbors high tides. One valley observed but there should have two high tides daily. Continue investigating ...

C30 six BPMs X/Y positions for two days

Vertical offset adjusted to see the drift pattern easier

Averaged COD drift, take first COD as reference, check the COD drifting for two days.

X/Y are vectors including 180 BPMs readings

Summary

- In-house developed NSLS2 BPM performs well during machine commissioning and operations.
- Beam orbit spectrum has been characterized with BPM FA data. Without FOFB, beam RMS motion was ~20% of vertical beam sizes. Once FOFB commissioned, the RMS motion is suppressed to ~5% of beam sizes.
- Beam stability at ID source point has been analyzed using two ID BPMs, and compared to xBPM direct measurement.
- Excellent long term stability (8 hours) was observed at ID center (9 center (9