REUNIÓN TÉCNICA SISTEMA DE REFERENCIA GEOCÉNTRICO PARA LAS AMÉRICAS -**SIRGAS**INSTITUTO GEOGRÁFICO DE VENEZUELA "SIMÓN BOLÍVAR"

Marco Geocéntrico Nacional de Referencia MAGNA – SIRGAS, COLOMBIA Avances 2005

http://www.igac.gov.co

Instituto Geográfico Agustín Codazzi, Colombia WILLIAM MARTÍNEZ-DÍAZ, División de Geodesia

wamartin@igac.gov.co

Caracas, noviembre 17 - 18, 2005

Contenido

■ MAGNA-SIRGAS, datum oficial de Colombia

□ Red de estaciones continuas MAGNA-ECO

Hacia un nuevo datum vertical

- Actividades Complementarias
 - Semana Geomática; IGAC 70 años.
 - Colombia International Workshop on GNSS (Naciones Unidas OOSA)

MAGNA-SIRGAS, Datum Oficial de Colombia (I)

RESOLUCIÓN 068, ENERO 28 DE 2005

- □ Artículo 1°. Adóptase como único datum oficial de Colombia el Marco Geocéntrico Nacional de Referencia, también denominado: MAGNA-SIRGAS.
- (...) Parágrafo 2°. El modelo de geoide asociado al datum MAGNA-SIRGAS será el producto denominado: GEOCOL 2004, que se adopta oficialmente por esta Resolución.
- □ Parágrafo 3°. Mientras no se disponga técnica y oficialmente la actualización del Sistema de Referencia Vertical para Colombia se seguirá empleando el que tiene origen en el mareógrafo de Buenaventura.

MAGNA-SIRGAS, Datum Oficial de Colombia (II)

RESOLUCIÓN 068, ENERO 28 DE 2005

- Artículo 2°. Este Instituto mantendrá y actualizará MAGNA-SIRGAS, considerando las indicaciones sobre sistemas de referencia emanadas de las Asambleas del Proyecto SIRGAS, de la IAG, de la IUGG y del IPGH.
- Artículo 3º. La información producida por este Instituto será referenciada a MAGNA-SIRGAS y se certificaránúnicamente coordenadas de puntos vinculados a este datum (...)
- Artículo 4°. La presente resolución rige a partir de la fecha de su publicación en el *Diario Oficial* y sustituye la adopción del Datum Bogotá (Elipsoide Internacional o de Hayford), realizada en la Primera Edición de la Publicación Especial N° 1 "Resultados finales de las redes geodésicas establecidas entre Bogotá y Cartago, y entre Bogotá y Chiquinquirá" del Instituto Geográfico Militar y Catastral del año 1941.

MAGNA-SIRGAS, Datum Oficial de Colombia (III)

Documentación y soporte al usuario

- Adopción de MAGNA-SIRGAS
- Aspectos Prácticos
- Geocol 2004 (Definición, software, comparación con Geocol98)
- Metodología de migración para ArcGIS
- Parámetros de Transformación
- Nivelación GPS
- MAGNA en su entidad
- Procesamiento mediante el uso de velocidades
- Software MAGNA PRO
- Página Web
- Más de 30 conferencias en 2005

MAGNA-SIRGAS, Datum Oficial de Colombia (IV)

Figura 6.2 Regionalización de los parámetros de transformación en Colombia según el indice de planchar del IOAC (El archipóliago de San Andrés, Providencia y Santa Catalina corresponde a la Región VIII)

Figura 2.7 Modelo geoidal (cuari-geoidal) para Colombia (GEOCOL2004)

Red de Estaciones Continuas MAGNA-ECO (I)

OBJETIVOS PRÁCTICOS

- Mantener la capa de datos fundamentales Puntos de Control para La Infraestructura Colombiana de Datos Espaciales ICDE.
- Soportar los levantamientos de los Sistemas Globales de Navegación Satelital (GNSS) diferenciales estáticos o cinemáticos.
- Reducir costos y tiempos en los trabajos de campo.
- Mejorar la la calidad en los datos GNSS.
- Ofrecer información oportunamente para las mediciones GNSS

OBJETIVOS CIENTÍFICOS

- Densificar el Marco Geocéntrico Nacional de Referencia MAGNA-SIRGAS.
- Observar las variaciones de MAGNA-SIRGAS: cambio de las coordenadas en función del tiempo y mejoramiento del modelo de velocidades.
- Aportar nuevas mediciones para la comprensión del sistema Tierra.

Red de Estaciones Continuas MAGNA-ECO (II)

- Criterios de Selección Técnicos:
 - Generales
 - ☐ Cobertura (distribución sobre el territorio nacional)
 - ☐ Cantidad potencial de usuarios
 - Zonas de actividad (sismología, geodinámica, geología, población, etc.)
 - Específicos
 - Horizonte
 - Estabilidad
 - ☐ Fuentes de multicamino
 - Distancia a otras antenas
 - ☐ Tipo de monumento
 - ☐ Suministro de energía eléctrica
 - Conectividad
 - Espacio para receptor, pararrayos, PC y UPS
 - ☐ Distancia antena/receptor inferior a 60 m.
- □ Criterios de Selección Administrativos:
 - Entidad
 - Aspectos jurídicos (convenios decenales)
 - Contactos
 - Responsables
 - Seguridad, acceso y preservación (precio promedio unitario cercano a USD 30 0009
 - Beneficios mutuos

Red de Estaciones Continuas MAGNA-ECO (III)

EQUIPOS

- Antenas Choke Ring, según especificaciones del International GNSS Service (IGS)
- Receptores de doble frecuencia con mínimo de 12 canales
- Pararrayos
- Energía de reserva (UPS)
- Accesorios

Red de Estaciones Continuas MAGNA-ECO (IV)

PROYECTO SIRGAS

REUNIÓN TÉCNICA 2005

Red de Estaciones Continuas MAGNA-ECO (V)

Monumentación

Red de Estaciones Continuas MAGNA-ECO (VI)

PROCESAMIENTO ACTUAL

Datos procesados semanalmente en el Centro de Análisis Regional del IGS para América del Sur (RNAAC-SIR), DGFI- Munich, con las siguientes características:

- Bernese GPS Software, versión 5.0
- Rata de muestreo 30 segundos
- Elevación 10°
- Órbitas precisas del IGS
- Troposfera: se calculan retardos cada dos horas utilizando el modelo de Niell
- Ambiguedades se resuelven según la estrategia QIF (Quasi Ionosphere Free)
- Se tiene en cuenta el efecto de la carga oceánica
- Se calculan soluciones diarias en forma de redes libres, luego se genera una solución semanal
- Los datos son combinados con otras soluciones por el Massachusetts Institute of Technology (MIT)

Red de Estaciones Continuas MAGNA-ECO (VII)

MAGNA

33 Estaciones Continuas, orden 0

60 Estaciones pasivas, orden 1

Aprox. 2500 Estaciones, órdenes 2, 3 y 4

Red de Estaciones Continuas MAGNA-ECO (VIII)

Red de Estaciones Continuas MAGNA-ECO (IX)

Solución Informática

Hacia un Nuevo Datum Vertical (I)

METAS

- •Combinación precisa ($H^O = h N$; $H^N = h \zeta$) de las cantidades geométricas verticales [h] con las físicas [H^O , N] ó [H^N , z], o combinación de MAGNA-SIRGAS con el modelo GeoCol2004 y el nuevo sistema de alturas.
- •Garantizar la compatibilidad entre las alturas físicas existentes con cualquier país del área SIRGAS y el mundo.
- •Optimizar el intercambio de información geoespacial para la formulación de proyectos trasnacionales y la navegación, entree otros.
- •Continuar las actividades bajo la orientación Asociación Internacional de Geodesia (IAG), quien define los lineamientos científicos en los sistemas de referencia convencionales. A nivel suramericano, esta labor está siendo liderada por el Grupo de Trabajo III de SIRGAS (GTIII-SIRGAS): Datum vertical.

Hacia un Nuevo Datum Vertical (II)

ACTIVIDADES

- Componente geométrica del nuevo sistema de alturas: Resuelta mediante la definición de alturas elipsoidales dentro de MAGNA-SIRGAS..
- □ Componente física del nuevo sistema de alturas:
 - a) *Información gravimétrica*: El Sistema de Gravimétrico de Referencia *SIGNAR* cuenta con más de 80 000 puntos de gravedad provenientes de empresas geofísicas y de los países vecinos. Mediciones sobre nuevas líneas de nivelación.
 - b) Superficie de referencia vertical: El modelo GeoCol2004 (Sánchez 2003) ha sido calculado con el banco de datos gravimétricos más completo y de mejor calidad existente en el país. En el corto plazo no es necesario invertir esfuerzos adicionales para obtener un nuevo modelo cuasigeoidal en Colombia.

Hacia un Nuevo Datum Vertical (III)

ACTIVIDADES Cont.

c) Alturas normales:

- Puesta en formato digital de los desniveles medidos. Esta tarea se viene adelantando desde 2003, en este momento se cuenta con un 95% de los desniveles en formato digital y se avanza en el porcentaje restante.
- Ajuste de los números gepotenciales: Los inconvenientes pueden surgir si el ajuste en bloque de las líneas de nivelación colombianas muestra trayectos críticos que requieran de una nueva nivelación.

d) Marco de referencia vertical:

El marco de referencia continental corresponde con las estaciones *SIRGAS* ocupadas en 2000. El marco vertical colombiano serán las estaciones *MAGNA-ECO y las pasivas de orden 1*, susceptibles de nivelar.

Hacia un Nuevo Datum Vertical (IV)

ACTIVIDADES Cont.

- e) Vinculación del datum de alturas clásico con el nuevo sistema: Determinación del valor de potencial (W_i) del mareógrafo de referencia en Colombia y su relación con el valor de potencial global (W_0) derivado de la superficie media del mar sobre todo el planeta (ver Boletín *SIRGAS* No. 8).
- Integración de datos de altimetría satelital, registros mareográficos, nivelación geométrica y posicionamiento GPS repetitivo de los mareógrafos.
- Se han realizado tres campañas GPS en los principales mareógrafos de Colombia (Buenaventura, Tumaco y Cartagena), una en 1999, otra en 2000 y la última en 2004.

Actividades Complementarias

Colombia International Workshop on the Use and Applications of Global Navigation Satellite Systems (GNSS), Bogotá, Colombia, 26 -29 September 2005

> Ionospheric Modelling: Dr. Claudio Brunini/ Dr. Amalia Meza SIRGAS Project: William Martínez http://www.aerocivil.gov.co/seminario/gnss/

> > http://www.oosa.unvienna.org/SAP/gnss/index.html

Instituto Geográfico Agustín Codazzi Aniversario 70

Semana Geomática, Agosto 8 - 13 de 2005, Bogotá Ing. Napoleón Hernández; IGVSB: Red Geodésica de Venezuela Ing. William Martínez, Oscar Rodríguez, Laura Sánchez: Nuevo Sistema Vertical de Referencia para Colombia Red de Estaciones Continuas MAGNA-ECO www.igac.gov.co

Muchas Gracias

