EXERCICES: ESPACES VECTORIELS

1 Espaces vectoriels

1.1 Exemples d'espaces vectoriels

Les ensembles E suivants (munis des lois d'addition et de composition externe usuels) sont-ils des espaces vectoriels?

- 1. L'ensemble des suites réelles convergentes.
- 2. L'ensemble des suites réelles divergentes.
- 3. L'ensemble des fonctions croissantes.

1.2 Espace vectoriel engendré

Soit u, v et w trois vecteurs d'un \mathbb{K} -espace vectoriel E.

1. Montrer que Vect(u, v) = Vect(u, w) si et seulement si :

$$\exists \alpha, \beta, \gamma \in \mathbb{K} \quad \alpha u + \beta v + \gamma w = 0 \quad \text{et} \quad \beta \gamma \neq 0$$

2. Soit F un sous-espace vectoriel de E. Montrer que $F+\mathbb{K}v=F+\mathbb{K}w$ si et seulement si :

$$\exists u \in F \quad \exists \alpha, \beta \in \mathbb{K} \quad u + \alpha v + \beta w = 0 \quad \text{et} \quad \alpha \beta \neq 0$$

2 Applications linéaires

2.1 Calcul dans $\mathcal{L}(E)$

- 1. Soit $f \in \mathcal{L}(E)$ tel que $f^3 = f^2 + f + \text{Id}$. Montrer que f est un automorphisme.
- 2. Soit E un \mathbb{K} -espace vectoriel et f un endomorphisme de E. On suppose que f est nilpotent, c'est-à-dire qu'il existe $n \in \mathbb{N}$ tel que :

$$f^n = 0$$

Montrer que $\mathrm{Id}_E + f$ est un automorphisme et calculer son inverse.

3 Sommes

3.1 Exercice

Soit E un espace vectoriel et F,G et H trois sous-espaces vectoriels de E.

- 1. Montrer que $(F \cap G) + (F \cap H) \subset F \cap (G + H)$. Vérifiez sur un exemple qu'il est possible que cette inclusion soit stricte.
- 2. Établir que l'on a $(F \cap G) + (F \cap H) = F \cap [G + (F \cap H)].$

3.2 Exercice

E, F et G sont trois \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Montrer que :

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \iff \operatorname{Ker} g \cap \operatorname{Im} f = \{0\}$$

$$\operatorname{Im}(g \circ f) = \operatorname{Im} g \iff \operatorname{Ker} g + \operatorname{Im} f = F$$

3.3 Somme directe

Soit E le \mathbb{R} -espace vectoriel des fonctions réelles de classe \mathcal{C}^{∞} sur \mathbb{R} . On définit :

$$A = \{ f \in E : \exists a, b \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad f(x) = ax + b \}$$
$$B = \{ f \in E : f(0) = 0 \quad \text{et} \quad f'(0) = 0 \}$$

- 1. Montrer que A et B sont des sous-espaces vectoriels de E.
- 2. Montrer que $E = A \oplus B$.

3.4 Rendre directe une somme

Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E tels que F+G=E. On note F' un supplémentaire de $F\cap G$ dans F. Montrer que :

$$E = F' \oplus G$$

3.5 Supplémentaire

Soit E le $\mathbb R\text{-espace}$ vectoriel des fonctions continues de $\mathbb R$ dans $\mathbb R.$ On considère :

$$F = \left\{ f \in E : \int_0^1 f(t) \, dt = 0 \right\}$$

Montrer que F est un sous-espace vectoriel de E puis en donner deux supplémentaires.

4 Projecteurs

4.1 Commutant d'un projecteur

Soit E un \mathbb{K} -espace vectoriel et f_0 un endomorphisme de E. On note :

$$C(f_0) = \{ f \in \mathcal{L}(E) : f \circ f_0 = f_0 \circ f \}$$

- 1. Montrer que C(f) est une sous algèbre de L(E).
- 2. On suppose que f_0 est un projecteur. Montrer que f commute avec f_0 si et seulement si f laisse stable le noyau et l'image de f_0 .

4.2 Somme de deux projecteurs

Soit E un \mathbb{K} -espace vectoriel et $p, q \in \mathcal{L}(E)$ deux projecteurs.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. On suppose que p+q est un projecteur. Montrer que :

$$\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$$
 et $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$

4.3 Réduction d'une application linéaire

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que :

$$f^2 - 5f + 6\operatorname{Id}_E = 0$$

- 1. Montrer que $(f 2 \operatorname{Id}_E) \circ (f 3 \operatorname{Id}_E) = 0$.
- 2. En déduire que $E = \text{Ker}(f 2 \text{Id}_E) \oplus \text{Ker}(f 3 \text{Id}_E)$.