Ch3: Configuration Space and Workspace

Amin Fakhari, Fall 2025

Configuration Space

Configuration, DOF, and C-Space of a Robot

Configuration: A complete specification of the positions of all points of a robot/mechanism.

Since the robot's links are rigid and of a known shape/geometry, only a few numbers are needed to represent its configuration.

Configuration, DOF, and C-Space of a Robot

Degrees of Freedom (DOF): The minimum number n of real-valued coordinates needed to represent the **configuration** of a robot/mechanism.

Configuration Space (C-Space): The n-dimensional space containing all possible configurations of the robot/mechanism.

* The **configuration** of a robot is represented by a <u>point</u> in its **C-space**.

Degrees of Freedom (DOF)

DOFs of a Rigid Body in 2D Space

Example: Number of DOFs of a coin on a plane

C-Space

3 DOFs

A general rule for determining the number of DOFs of rigid bodies:

DOF = (number of variables) – (number of independent equations/constraints)

DOFs of a Rigid Body in 3D Space

Example: Number of DOFs of a coin in space

In summary, a **spatial rigid body**, has **six** degrees of freedom and a **planar rigid body** has **three** degrees of freedom.

DOFs of Robots: Typical Robot Joints

Degrees of Freedom

0000000

C-Space

		Constraints c	Constraints c
		between two	between two
Joint type	$\operatorname{dof} f$	planar	spatial
		rigid bodies	rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

Note: Every joint connects exactly two links.

of DOFs of a joint = (# of DOFs of a rigid body) – (# of constraints provided by a joint)

DOFs of Robots: Grübler's Formula

A general rule for determining the number of DOFs of mechanisms consist of rigid bodies:

DOF = (sum of freedoms of the bodies) – (number of <u>independent</u> constraints)

Grübler's Formula for the number of degrees of freedom of mechanisms/robots:

$$dof = \underbrace{m(N-1)}_{\text{rigid body freedoms}} - \underbrace{\sum_{i=1}^{J} c_i}_{\text{joint constraints}}$$

$$= m(N-1) - \sum_{i=1}^{J} (m - f_i)$$

$$= m(N-1-J) + \sum_{i=1}^{J} f_i.$$

N: number of links (including ground), J: number of joints, m: number of DOFs of a rigid body (m=3 for planar mechanisms and m=6 for spatial mechanisms), f_i : number of freedoms provided by joint i, c_i : number of constraints provided by joint i ($f_i+c_i=m$ for all i).

Note: This formula holds in "generic" cases, but it fails under certain configurations of the links and joints, such as when the joint constraints are not independent.

Degrees of Freedom

00000000

Watt six-bar linkage

C-Space

0000000

C-Space

0000000

Configuration Space Topology

Topologies of 1D C-Space

<u>System</u>

C-Space

(a) A point moving on a Circle

(or any closed loop):

(Example: A revolute joint without joint limit)

C-Space Topology

 S^1

(Example: A prismatic joint without joint limit)

 \longleftarrow \mathbb{E}^1 or \mathbb{R}^1

(c) A point moving on a Closed Interval of Line:

(Example: A revolute or prismatic joint with joint limit)

 $[a,b] \subset \mathbb{R}^1$

Two spaces are **topologically equivalent** if one can be continuously deformed into the other <u>without cutting or gluing</u>.

Topologies of 2D C-Space

System

C-Space

A point moving on a plane

Spherical pendulum

Rotating sliding robot

C-Space Topology

$$\mathbb{R}^1 \times \mathbb{R}^1 = \mathbb{R}^2$$

(or $\mathbb{E}^1 \times \mathbb{E}^1 = \mathbb{E}^2$)

$$S^2$$

$$S^1 \times S^1 = T^2$$

$$\mathbb{R}^1 \times S^1$$
 (or $\mathbb{E}^1 \times S^1$)

C-Space: More Examples

- A rigid body in the plane
- A PR robot arm

Degrees of Freedom

- A mobile robot with a 2R robot arm
- A rigid body in three dimensions

C-Space: More Examples

Hexrotor UAV with two 5-DOF arms (without and with arm joint limits)

Configuration Space Representation

0000

C-Space Representation

To perform computations, we must have a numerical representation of the space, consisting of a set of real numbers.

Note: The topology of a space is a fundamental property of the space itself and is independent of how we choose coordinates to represent points in the space.

Explicit & Implicit Representations

A choice of \underline{n} coordinates or parameters in Euclidian space to represent an \underline{n} -dimensional C-space is called an **explicit representation** of the C-space.

Disadvantage: Possibility of existence of **Representation Singularities**.

Explicit & Implicit Representations

To overcome the Singularities of Representation:

Use an implicit representation which views the n-dimensional C-space as embedded in a Euclidean space of more than n dimensions.

Configuration and Velocity Constraints

Configuration and Velocity Constraints

For robots containing one or more closed loops, usually an **implicit representation** is more easily obtained than an explicit parametrization.

C-Space: one-dimensional space

Joint Space (J-Space): three-dimensional space

Note: For open-loop mechanisms dimension of C-Space is the same as dimension of J-Space.

Holonomic Constraints

For general robots containing one or more closed loops:

- Implicit representation of C-space (which is J-Space): $\boldsymbol{\theta} = [\theta_1, ..., \theta_n]^T \in \mathbb{R}^n$
- Constraint (loop-closure equations): $\boldsymbol{g}(\boldsymbol{\theta}) = \begin{bmatrix} g_1(\theta_1, \dots, \theta_n) \\ \vdots \\ g_k(\theta_1, \dots, \theta_n) \end{bmatrix} = \boldsymbol{0} \qquad \boldsymbol{g} \colon \mathbb{R}^n \to \mathbb{R}^k$ (a set of k independent equations, with $k \leq n$)
 - Such constraints are known as holonomic constraints.
 - o These constraints reduce the dimension of implicit representation of C-space.

$$\Rightarrow$$
 DOF = $n - k$

The C-space can be viewed as a manifold of dimension n-k embedded in \mathbb{R}^n .

Pfaffian Constraints

Let's suppose that a closed-chain robot is in motion.

$$\frac{d\boldsymbol{g}(\boldsymbol{\theta})}{dt} = \mathbf{0}$$

$$\begin{bmatrix} \frac{\partial g_1(\boldsymbol{\theta})}{\partial \theta_1} & \cdots & \frac{\partial g_1(\boldsymbol{\theta})}{\partial \theta_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k(\boldsymbol{\theta})}{\partial \theta_1} & \cdots & \frac{\partial g_k(\boldsymbol{\theta})}{\partial \theta_n} \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{bmatrix} = \mathbf{0} \quad \Box \rangle \qquad \frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \dot{\boldsymbol{\theta}} = \mathbf{0} \qquad \Box \rangle \qquad A(\boldsymbol{\theta}) \in \mathbb{R}^{k \times n}$$

Velocity constraints of this form are called **Pfaffian Constraints**.

❖ If a Pfaffian constraint is integrable, the equivalent configuration constraints are **Holonomic Constraints**.

Nonholonomic Constraints

If a Pfaffian constraint of the form $A(\theta)\dot{\theta}=0$ is <u>nonintegrable</u> to equivalent configuration constraints, it is called a **Nonholonomic Constraint**.

Example: An upright coin of radius r rolling (without slipping) on a plane.

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = r\dot{\theta} \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix} \quad \text{(no-slip rolling constraint)}$$

- * Nonholonomic constraints reduce the dimension of the <u>feasible velocities</u> of the system but do not reduce the dimension of the C-space.
- * Holonomic constraints are constraints on *configuration*, nonholonomic constraints are constraints on *feasible velocity*.

Workspace and Task Space

Workspace and Task Space

The **Workspace** of a manipulator is the total volume (typically in Euclidian space \mathbb{R}^3) swept out by the <u>end-effector</u> as the manipulator executes all possible motions. The workspace is constrained by the geometry of the manipulator as well as mechanical constraints on the joints. Workspace is independent of the task.

Two types of workspace:

Degrees of Freedom

C-Space

- Reachable Workspace: the entire set of points in \mathbb{R}^3 reachable by the manipulator with at least one orientation.
- **Dexterous Workspace**: the entire set of points in \mathbb{R}^3 that the manipulator can reach with any arbitrary orientation of the end-effector.
 - The dexterous workspace is a subset of the reachable workspace.

Task Space (T-Space): The space of configurations of the **end-effector** as specified by the robot's task itself.

Examples:

- Task space of a robot plotting with a pen on a piece of paper:
- Task space of a robot manipulating a rigid body:
- Task space for operating a laser pointer:
- Task space for carrying a tray of glasses to keep them vertical:

Workspace of a Planar 2R Robot

If $l_1 \neq l_2$:

Reachable Workspace: $WS_1 = \{ p \in \mathbb{R}^2 : |l_1 - l_2| \le ||p|| \le l_1 + l_2 \} \subset \mathbb{R}^2$

Dexterous Workspac: $WS_2 = \emptyset$

If $l_1 = l_2 = l$:

Reachable Workspace: $WS_1 = \{ \boldsymbol{p} \in \mathbb{R}^2 : ||\boldsymbol{p}|| \le 2l \} \subset \mathbb{R}^2$

Dexterous Workspac: $WS_2 = \{ p = 0 \}$ (all feasible orientations at the origin!)

C-Space and Workspace

0000

C-Space

Configuration & Velocity Constraints

- Two mechanisms with different C-spaces may have the same workspace: (a), (b)
- Two mechanisms with the same C-space may also have different workspaces: (a), (c)

C-Space, Workspace, and Task Space: Some Examples

(SCARA Robot) (RRRP)

(A spray-painting robot) (6R)