On the set \mathbb{B} , the following are defined:

- 1. A binary operation $(x, y) \rightarrow x \land y$ (and).
- 2. A binary operation $(x, y) \rightarrow x \lor y$ (or).
- 3. A unary operation $x \to \neg x$ (negation).
- 4. A relation \Rightarrow .

These are subject to the following axioms:

The Distributive Lattice Axioms

Idempotence

A1: For all $x \in \mathbb{B}$, $x \wedge x = x$.

O1: For all $x \in \mathbb{B}$, $x \vee x = x$.

Commutativity

A2: For all x, $y \in \mathbb{B}$, $x \wedge y = y \wedge x$.

O2: For all $x, y \in \mathbb{B}$, $x \vee y = y \vee x$.

Associativity

A3: For all x, y, $z \in \mathbb{B}$, $(x \land y) \land z = x \land (y \land z)$. O3: For all x, y, $z \in \mathbb{B}$, $(x \lor y) \lor z = x \lor (y \lor z)$.

Absorption

A4: For all x, $y \in \mathbb{B}$, $x \vee (x \wedge y) = x$.

O4: For all x, $y \in \mathbb{B}$, $x \wedge (x \vee y) = x$.

Distributivity

D1: For all x, y, $z \in \mathbb{B}$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and $(y \vee z) \wedge x = (y \wedge x) \vee (z \wedge x)$.

D2: For all x, y, $z \in \mathbb{B}$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ and $(y \wedge z) \vee x = (y \vee x) \wedge (z \vee x)$.

The Boundary Axioms

Universal Complement

U1: \neg T = F.

U2: $\neg F = T$.

Identity

A5: For all $x \in \mathbb{B}$, $x \wedge T = x$ and $T \wedge x = x$.

O5: For all $x \in \mathbb{B}$, $x \vee F = x$ and $F \vee x = x$.

Complementation

A6: For all $x \in \mathbb{B}$, $x \wedge (\neg x) = F$ and $\neg x \wedge x = F$.

O6: For all $x \in \mathbb{B}$, $x \vee (\neg x) = T$ and $\neg x \vee x = T$.

Annihilator

A7: For all $x \in \mathbb{B}$, $x \wedge F = F$ and $F \wedge x = F$.

O7: For all $x \in \mathbb{B}$, $x \vee T = T$ and $T \vee x = T$.

DeMorgan's Laws

DM1: For all x, $y \in \mathbb{B}$, $\neg (x \land y) = \neg x \lor \neg y$.

DM2: For all $x, y \in \mathbb{B}$, $\neg (x \lor y) = \neg x \land \neg y$.

The Order Axioms

Reflexivity

I1: For all $x \in \mathbb{B}$, $x \Rightarrow x$.

Antisymmetry

I2: For all x, $y \in \mathbb{B}$, if $x \Rightarrow y$ and $y \Rightarrow x$, then x = y.

Transitivity

I3: For all x, y, $z \in \mathbb{B}$, if $x \Rightarrow y$ and $y \Rightarrow z$, then $x \Rightarrow z$.

Consistency

I4: For all x, y, $z \in \mathbb{B}$, $x \Rightarrow x \lor y$ and $x \land y \Rightarrow x$.

Order Preservation

I5: For all x, y, $z \in \mathbb{B}$, if $x \Rightarrow y$, then $x \land z \Rightarrow y \land z$ and $x \lor z \Rightarrow y \lor z$.