

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen X

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco

Granada, 2024-2025

Asignatura Topología I.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Antonio Alarcón.

Descripción Primer Parcial.

Fecha 8 de noviembre de 2024.

Duración 1 hora y media.

Ejercicio 1 (2.5 puntos). Demuestra que un espacio topológico (X, \mathcal{T}) es T1 si y solo si el conjunto $\{x\}$ es cerrado en (X, \mathcal{T}) para todo $x \in X$.

Ejercicio 2 (7.5 puntos). En el conjunto \mathbb{R} de los números reales, denotamos por \mathcal{T}_u la topología usual y consideramos la familia de subconjuntos

$$\mathcal{T} = \{ U \cup V : U \in \mathcal{T}_u, V \subset (\mathbb{R} \setminus \mathbb{Q}) \cap [0, \pi] \}.$$

- 1. Demuestra que \mathcal{T} es una topología en \mathbb{R} y que es más fina que \mathcal{T}_u .
- 2. Determina qué propiedades de entre T1, T2, 1AN y 2AN cumple el espacio topológico (\mathbb{R}, \mathcal{T}).
- 3. Determina todos los intervalos de \mathbb{R} que son a la vez abiertos y cerrados en $(\mathbb{R}, \mathcal{T})$.
- 4. Calcula el interior y la adherencia de \mathbb{Q} y de $\mathbb{R} \setminus \mathbb{Q}$ en $(\mathbb{R}, \mathcal{T})$.
- 5. Calcula el interior y la adherencia de $[0, \sqrt{2}] \cup \{\sqrt{3}\}$ y $[2, \pi]$ en $([0, \pi], \mathcal{T}|_{[0, \pi]})$.