Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Currently amended). All apparatus for processing a officiary floating-point	
2	number having a sign bit, an exponent portion, and a mantissa, the mantissa having a fraction	
3	portion, the apparatus comprising:	
4	a fraction mask table configured to identify the fraction portion of the binary	
5	floating-point number based at least on the exponent portion of the binary floating-point number;	
6	and	
7	a multiplexer configured to receive the fraction portion identified in the function	
8	mask table and operative to replace each constituent bit of the fraction portion with the sign bit,	
9	thereby producing a floor of the binary floating-point number.	
1	2 (Original). The apparatus of claim 1 further comprising:	
1	2. (Original): The apparatus of claim 1, further comprising:	
2	a decrementer configured to decrement the binary floating-point number before	
3	replacing when the binary floating-point number is negative.	
1	3. (Original): The apparatus of claim 2, further comprising:	
2	a format converter configured to convert the floor to two's complement format.	
1	4. (Original): The apparatus of claim 3, wherein the format converter	
2	comprises:	
3	an exclusive-OR gate configured to perform an exclusive-OR operation between	
4	each bit of the floor and the sign bit, thereby producing a result of the exclusive-OR operation;	
5	and	
6	means for concatenating the sign bit and the result of the exclusive-OR operation,	
7	thereby producing a signed two's complement mantissa of the floor.	

1	5. (Original): The apparatus of claim 4, wherein the format converter further
2	comprises:
3	a signed-right-shift shifter configured to perform, upon the signed two's
4	complement mantissa of the floor, a signed-right-shift operation, thereby producing the floor of
5	the binary floating-point number in two's complement format.
1	6. (Original): The apparatus of claim 1, further comprising:
2	a format converter configured to convert the floor to floating-point format.
1	7. (Original): The apparatus of claim 6, wherein the format converter
2	comprises:
3	an incrementer configured to increment the floor when the binary floating-point
4	number is negative, and doing nothing otherwise, thereby producing an incremented value; and
5	means for replacing the most-significant bit (MSB) of the incremented value with
6	the exponent bits and the sign bit, such that the sign bit is the MSB, thereby producing a floor of
7	the binary floating-point number in floating-point format.
1	8. (Original): The apparatus of claim 7, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and
3	wherein the incrementer is configured to increment the floor when the binary floating-point
4	number is negative and the exponent is greater than, or equal to, the bias offset, thereby
5	producing an incremented value.
1	9. (Original): The apparatus of claim 8, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and
3	wherein the incrementer is further configured to:
4	replace the exponent bits with the offset when the binary floating-point number is
5	negative and the exponent is less than the offset; and
6	replace the exponent bits with zeros when the binary floating-point number is
7	positive and the exponent is less than the offset.

10.

1

3

4

5

6

.7

8

9

10

11

	· · ·
2	subtractor configured to take a floating-point difference between the binary floating-point
3	number and the floor of the binary floating-point number, thereby producing a fractional
4	remainder of the binary floating-point number.
1	11. (Original): The apparatus of claim 1, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and
3	wherein the multiplexer is further configured to replace each bit of the fraction portion with zero
4	("0") when the exponent is greater than, or equal to, the bias offset.
1	12. (Original): The apparatus of claim 2, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and
3	wherein the decrementer is further configured to decrement the binary floating-point number
4	before processing by the multiplexer when the binary floating-point number is negative unless
5	the exponent is less than the bias offset.

(Original): The apparatus of claim 1, further comprising a floating-point

- 1 13. (Currently amended): A apparatus for determining the floating-point floor of a floating-point number, the apparatus comprising:
 - means for identifying a binary floating-point number including a sign bit, exponent bits, and mantissa bits, wherein the binary floating-point number is negative when the sign bit is a one ("1");
 - means for concatenating an implicit bit and the mantissa bits, thereby producing a first binary number such that the implicit bit is the most significant bit (MSB) of the first binary number;
 - a decrementer configured to decrement the first binary number when the sign bit is a one ("1") and do nothing when the sign bit is a zero ("0"), thereby producing a second binary number;
- a fraction mask table configured to identify a fraction portion of the second binary
 number based upon a predetermined at least on the exponent bits bias;

14	a multiplexer operative to receive the fraction portion from the fraction mask table
15	and configured to replace each bit of the fraction portion with the sign bit thereby producing a
16	third binary number;
17	an exclusive-OR configured to perform an exclusive-OR operation between each
18	bit of the third binary number and the sign bit thereby producing a fourth binary number;
19	means for concatenating the sign bit, the fourth binary number, and a first
20	predetermined number of zeros, thereby producing a fifth binary number such that the sign bit is
21	the MSB of the fifth binary number, and the zeros are the least significant bits of the fifth binary
22	number; and
23	a signed-right-shift configured to perform, upon the fifth binary number, a signed-
24	right-shift operation by a number of bits equivalent to the difference between the exponent and a
25	second predetermined number, thereby producing the floor of the binary floating-point number
26	in integer format.
	14 (O in its 1). The insurantes of dains 12 footbase accomplision.
1	14. (Original): The apparatus of claim 13, further comprising:
2	means for subtracting one from the sum of the number of bits in the floating-point
3	floor and the number of bits in the third binary number, thereby producing the first
4	predetermined number.
1	15. (Original): The apparatus of claim 13, wherein the exponent differs from
2	an unbiased exponent of the floating-point number by a bias offset, further comprising:
3	means for summing the bias offset, the number of bits in the mantissa, and the
4	first predetermined number, thereby producing the second predetermined number.
1	16. (Original): The apparatus of claim 13, wherein the multiplexer is further
2	configured to:
3	accept a fraction mask corresponding to the exponent bits, the fraction mask
4	having a one for each bit belonging to the fraction portion and a zero for each bit belonging to
5	the integer portion; and
6	apply the fraction mask to the second binary number.

1	17. (Original). The apparatus of claim 13, wherein the implicit of is zero
2	("0") when the exponent bits are all zero ("0") and the implicit bit is one ("1") otherwise.
1	18. (Original): The apparatus of claim 13, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent of the floating-point
3	number by a bias offset, and wherein the multiplexer is further configured to:
4	replace each bit of the fraction portion with the sign bit when the exponent is
5	greater than, or equal to, the bias offset, thereby producing a third binary number.
1	19. (Original): The apparatus of claim 13, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent of the floating-point
3	number by a bias offset, and wherein the decrementer is further configured to:
4	decrement the first binary number when the sign bit is a one ("1") and doing
5	nothing when the sign bit is a zero ("0"), unless the exponent is less than the bias offset, thereby
6	producing a second binary number.
1	20. (Original): The apparatus of claim 13, further comprising:
2	means for replacing the MSB of the second binary number with the exponent bits
3	and the sign bit, thereby producing a sixth binary number, such that the sign bit is the MSB of
4	the sixth binary number;
5	means for replacing the MSB of the third binary number with the exponent bits
6	and the sign bit, thereby producing a seventh binary number, such that the sign bit is the MSB of
7	the seventh binary number; and
8	a floating-point subtractor configured to perform a floating-point subtraction with
9	the sixth binary number as the minuend and the seventh binary number as the subtrahend,
10	thereby producing a fractional remainder of the floating-point number.

1	21.	(Currently amended): A method for processing a binary floating-point
2	number having a sig	n bit, an exponent, and a mantissa, having the mantissa comprising a fraction
3	portion, the method	comprising:
4	ident	ifying the fraction portion of the binary floating-point number based at least
5	on the exponent; and	i
6	repla	cing each bit of the fraction portion with the sign bit, thereby producing a
7	floor of the binary f	loating-point number.
1	22.	(Original): The method of claim 21, further comprising:
2	decre	ementing the binary floating-point number before replacing when the binary
3	floating-point numb	er is negative.
1	23.	(Original): The method of claim 22, further comprising:
2	conv	erting the floor to two's complement format.
1	24.	(Original): The method of claim 23, wherein converting comprises:
2	perfo	rming an exclusive-OR operation between each bit of the floor and the sign
3	bit, thereby producing	ng a result of the exclusive-OR operation; and
4	conc	atenating the sign bit and the result of the exclusive-OR operation, thereby
5	producing a signed t	two's complement mantissa of the floor.
1	25.	(Original): The method of claim 24, wherein converting further
2	comprises:	
3	perfo	rming, upon the signed two's complement mantissa of the floor, a signed-
4		, thereby producing the floor of the binary floating-point number in two's
5	complement format.	
1	26.	(Currently amended): The method of claim 1, wherein converting
2	comprises:21, further	
3	•	erting the floor to floating-point format.

1	27. (Original): The method of claim 26, wherein converting comprises:
2	incrementing the floor when the binary floating-point number is negative, and
3	doing nothing otherwise, thereby producing an incremented value; and
4	replacing the most-significant bit (MSB) of the incremented value with the
5	exponent bits and the sign bit, such that the sign bit is the MSB, thereby producing a floor of the
6	binary floating-point number in floating-point format.
1	28. (Original): The method of claim 27, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and
3	wherein incrementing comprises:
4	incrementing the floor when the binary floating-point number is negative and the
5	exponent is greater than, or equal to, the bias offset, thereby producing an incremented value.
1	29. (Original): The method of claim 28, wherein the binary floating-point
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and
3	wherein incrementing further comprises:
4	replacing the exponent bits with the offset when the binary floating-point number
5	is negative and the exponent is less than the offset; and
6	replacing the exponent bits with zeros when the binary floating-point number is
7	positive and the exponent is less than the offset.
1	30. (Original): The method of claim 21, further comprising taking a floating-
	point difference between a value of the binary floating-point number before replacing and a
2	
3	value of the binary floating-point number after replacing, thereby producing a fractional
4	remainder of the binary floating-point number.

1	31. (Original): The method of claim 21, wherein the binary floating-point	
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and	
3	wherein replacing comprises:	
4	replacing each bit of the fraction portion with zero ("0") when the exponent is	
5	greater than, or equal to, the bias offset.	
1	32. (Original): The method of claim 22, wherein the binary floating-point	
2	number includes an exponent that differs from an unbiased exponent by a bias offset, and	
3	wherein decrementing comprises:	
4	decrementing the binary floating-point number before replacing when the binary	
5	floating-point number is negative unless the exponent is less than the bias offset.	
1	33. (Currently amended): A method for determining the floating-point floor	
2	of a floating-point number, the method comprising:	
3	identifying a binary floating-point number including a sign bit, exponent bits, and	
4	mantissa bits, wherein the binary floating-point number is negative when the sign bit is a one	
5	("1");	
6	concatenating an implicit bit and the mantissa bits, thereby producing a first	
7	binary number such that the implicit bit is the most significant bit (MSB) of the first binary	
8	number;	
9.	decrementing the first binary number when the sign bit is a one ("1") and doing	
10	nothing when the sign bit is a zero ("0"), thereby producing a second binary number;	
11	identifying a fraction portion of the second binary number based upon a	
12	predeterminedat least on the exponent bits-bias;	
13	replacing each bit of the fraction portion with the sign bit thereby producing a	
14	third binary number;	
15	performing an exclusive-OR operation between each bit of the third binary	
16	number and the sign bit thereby producing a fourth binary number;	

concatenating the sign bit, the fourth binary number, and a first predetermine	ed
number of zeros, thereby producing a fifth binary number such that the sign bit is the MSB	of the
fifth binary number, and the zeros are the least significant bits of the fifth binary number; a	nd
performing, upon the fifth binary number, a signed-right-shift operation by a	ì
number of bits equivalent to the difference between the exponent and a second predetermin	.ed
number, thereby producing the floor of the binary floating-point number in integer format.	
34. (Original): The method of claim 33, further comprising:	
subtracting one from the sum of the number of bits in the floating-point floo	r and
the number of bits in the third binary number, thereby producing the first predetermined nu	mber.
35. (Original): The method of claim 33, wherein the exponent differs from	om an
unbiased exponent of the floating-point number by a bias offset, further comprising:	
summing the bias offset, the number of bits in the mantissa, and the first	
predetermined number, thereby producing the second predetermined number.	
36. (Original): The method of claim 33, wherein replacing comprises:	
identifying a fraction mask corresponding to the exponent bits, the fraction r	nask
having a one for each bit belonging to the fraction portion and a zero for each bit belonging	; to
the integer portion; and	
applying the fraction mask to the second binary number.	
37. (Original): The method of claim 33, wherein the implicit bit is zero	("0")
when the exponent bits are all zero ("Oil) and the implicit bit is one ("1") otherwise.	
38. (Original): The method of claim 33, wherein the binary floating-point	nt
number includes an exponent that differs from an unbiased exponent of the floating-point	

greater than, or equal to, the bias offset, thereby producing a third binary number.

replacing each bit of the fraction portion with the sign bit when the exponent is

number by a bias offset, and wherein replacing comprises:

1	39. (Original): The method of claim 33, wherein the binary floating-point	
2	number includes an exponent that differs from an unbiased exponent of the floating-point	
3	number by a bias offset, and wherein decrementing comprises:	
4	decrementing the first binary number when the sign bit is a one ("1") and doing	
5	nothing when the sign bit is a zero ("0"), unless the exponent is less than the bias offset, thereby	
6	producing a second binary number.	
1	40. (Currently amended): The method of claim 33, further comprising:	
2	replacing the MSB of the second binary number with the exponent bits and the	
3	sign bit, thereby producing a sixth binary number, such that the sign bit is the MSB of the sixth	
4	binary number; replacing the MSB of the third binary number with the exponent bits and the sign	
5	bit, thereby producing a seventh binary number, such that the sign bit is the MSB of the seventh	
6	binary number; and	
7	performing a floating point subtraction with the sixth binary number as the	
8	minuend and the seventh binary number as the subtrahend, thereby producing a fractional	
9	remainder of the floating-point number.	
1	41. (Currently amended): A computer program product, tangibly stored on a	
2	computer-readable medium, for processing a binary floating-point number having a sign bit, an	
3	exponent, and a mantissa, having the mantissa comprising a fraction portion, the computer	
4	program product comprising instructions operable to cause a programmable processor to:	
5	identify the fraction portion of the binary floating-point number based at least on	
6	the exponent; and	
7	replace each bit of the fraction portion with the sign bit, thereby producing a floor	
8	of the binary floating-point number.	

1	42. (Original): The computer program product of claim 41, further	
2	comprising instructions operable to cause a programmable processor to:	
3	decrement the binary floating-point number before replacing when the binary	
4	floating-point number is negative.	
1	43. (Original): The computer program product of claim 42, further	
2	comprising instructions operable to cause a programmable processor to:	
3	convert the floor to two's complement format.	
1	44. (Original): The computer program product of claim 43, wherein	
2	instructions operable to cause a programmable processor to convert comprise instructions	
3	operable to cause a programmable processor to:	
4	perform an exclusive-OR operation between each bit of the floor and the sign bit,	
5	thereby producing a result of the exclusive-OR operation; and	
6	concatenate the sign bit and the result of the exclusive-OR operation, thereby	
7	producing a signed two's complement mantissa of the floor.	
1	45. (Original): The computer program product of claim 44, wherein	
2	instructions operable to cause a programmable processor to convert further comprise instructions	
3	operable to cause a programmable processor to:	
4	perform, upon the signed two's complement mantissa of the floor, a signed-right-	
5	shift operation, thereby producing the floor of the binary floating-point number in two's	
6	complement format.	
1	46. (Original): The computer program product of claim 41, further	
2	comprising instructions operable to cause a programmable processor to:	
3	convert the floor to floating-point format.	

1	47. (Original). The computer program product of claim 40, wherein
2	instructions operable to cause a programmable processor to convert comprise instructions
3.	operable to cause a programmable processor to:
4	increment the floor when the binary floating-point number is negative, and doing
5	nothing otherwise, thereby producing an incremented value; and
5	replace the most-significant bit (MSB) of the incremented value with the
7	exponent bits and the sign bit, such that the sign bit is the MSB, thereby producing a floor of the
3	binary floating-point number in floating-point format.
i	48. (Original): The computer program product of claim 47, wherein the
2	binary floating-point number includes an exponent that differs from an unbiased exponent by a
3	bias offset, and wherein instructions operable to cause a programmable processor to increment
4	comprise instructions operable to cause a programmable processor to:
5	increment the floor when the binary floating-point number is negative and the
5	exponent is greater than, or equal to, the bias offset, thereby producing an incremented value.
1	49. (Original): The computer program product of claim 48, wherein the
2	binary floating-point number includes an exponent that differs from an unbiased exponent by a
3	bias offset, and wherein instructions operable to cause a programmable processor to increment
1	further comprise instructions operable to cause a programmable processor to:
5	replace the exponent bits with the offset when the binary floating-point number is
6	negative and the exponent is less than the offset; and
7	replace the exponent bits with zeros when the binary floating-point number is
3	positive and the exponent is less than the offset.

1	50. (Original): The computer program product of claim 41, further
2	comprising instructions operable to cause a programmable processor to:
3	take a floating-point difference between a value of the binary floating-point
4	number before replacing and a value of the binary floating-point number after replacing, thereby
5	producing a fractional remainder of the binary floating-point number.
1	51. (Original): The computer program product of claim 41, wherein the
2	binary floating-point number includes an exponent that differs from an unbiased exponent by a
3	bias offset, and wherein instructions operable to cause a programmable processor to replace
4	comprise instructions operable to cause a programmable processor to:
5	replace each bit of the fraction portion with zero ("0") when the exponent is
6	greater than, or equal to, the bias offset.
1	52. (Original): The computer program product of claim 42, wherein the
2	binary floating-point number includes an exponent that differs from an unbiased exponent by a
3	bias offset, and wherein instructions operable to cause a programmable processor to decrement
4	comprise instructions operable to cause a programmable processor to:
5	decrement the binary floating-point number before replacing when the binary
6	floating-point number is negative unless the exponent is less than the bias offset.
1	53. (Currently amended): A computer program product, tangibly stored on a
2	computer-readable
3	medium, for determining the floating-point floor of a floating-point number,
4	comprising instructions operable to cause a programmable processor to:
5	identify a binary floating-point number including a sign bit, exponent bits, and
6	mantissa bits, wherein the binary floating-point number is negative when the sign bit is a one
7	("1");
8	concatenate an implicit bit and the mantissa bits, thereby producing a first binary
9	number such that the implicit bit is the most significant bit (MSB) of the first binary number;

10	decrement the first binary number when the sign bit is a one ("1") and doing
11	nothing when the sign bit is a zero ("0"), thereby producing a second binary number;
12	identify a fraction portion of the second binary number based upon a
13	predeterminedat least on the exponent bits bias;
14	replace each bit of the fraction portion with the sign bit thereby producing a third
15	binary number;
16	perform an exclusive-OR operation between each bit of the third binary number
17	and the sign bit thereby producing a four binary number;
18	concatenate the sign bit, the fourth binary number, and a first predetermined
19	number of zeros, thereby producing a fifth binary number such that the sign bit is the MSB of the
20	fifth binary number, and the zeros are the least significant bits of the fifth binary
21	number; and
22	perform, upon the fifth binary number, a signed-right-shift operation by à number
23	of bits equivalent to the difference between the exponent and a second predetermined number,
24	thereby producing the floor of the binary floating-point number in integer format.
1	54. (Original): The computer program product of claim 53, further
2	comprising:
3	subtracting one from the sum of the number of bits in the floating-point floor and
4	the number of bits in the third binary number, thereby producing the first predetermined number.
1	55. (Original): The computer program product of claim 53, wherein the
2	exponent differs from an unbiased exponent of the floating-point number by a bias offset, further
3	comprising instructions operable to cause a programmable processor to:
4	sum the bias offset, the number of bits in the mantissa, and the first predetermined
5	number, thereby producing the second predetermined number.

1	56. (Original): The computer program product of claim 53, wherein
2	instructions operable to cause a programmable processor to replace comprise instructions
3	operable to cause a programmable processor to:
4	identify a fraction mask corresponding to the exponent bits, the fraction mask
5	having a one for each bit belonging to the fraction portion and a zero for each bit belonging to
6	the integer portion; and
7	apply the fraction mask to the second binary number.
1	57. (Original): The computer program product of claim 53, wherein the
2	implicit bit is zero ("0") when the exponent bits are all zero ("0") and the implicit bit is one ("1")
3	otherwise.
1	58. (Original): The computer program product of claim 53, wherein the
2	binary floating-point number includes an exponent that differs from an unbiased exponent of the
3	floating-point number by a bias offset, and wherein instructions operable to cause a
4	programmable processor to replace comprise instructions operable to cause a programmable
5	processor to:
6	replace each bit of the fraction portion with the sign bit when the exponent is
7	greater than, or equal to, the bias offset, thereby producing a third binary number.
1	59. (Original): The computer program product of claim 53, wherein the
2	binary floating-point number includes an exponent that differs from an unbiased exponent of the
3	floating-point number by a bias offset, and wherein instructions operable to cause a
4	programmable processor to decrement comprise instructions operable to cause a programmable
5	processor to:
6	decrement the first binary number when the sign bit is a one ("1") and do nothing
7	when the sign bit is a zero ("0"), unless the exponent is less than the bias offset, thereby
8	producing a second binary number.

Appl. No. 09/925,136 Amdt. sent June 9, 2005 Reply to Office Action of March 14, 2005

1	60. (Original): The computer program product of claim 53, further
2	comprising instructions operable to cause a programmable processor to:
3	replace the MSB of the second binary number with the exponent bits and the sign
4	bit, thereby producing a sixth binary number, such that the sign bit is the MSB of the sixth binary
5	number;
6	replace the MSB of the third binary number with the exponent bits and the sign
7	bit, thereby producing a seventh binary number, such that the sign bit is the MSB of the seventh
8	binary number; and
9	perform a floating point subtraction with the sixth binary number as the minuend
10	and the seventh binary number as the subtrahend, thereby producing a fractional remainder of the
11	floating-point number.