1.Introduction Some Basic Concepts

1. What is a fluid?

A SUBSTANCE THAT CANNOT REMAIN STATIONARY IN THE PRESENCE OF SHEAR FORCE

2. What Properties Do Fluids Have?

- Density , S , kglm³
- , p, N/m², Pa Pressure
- Temperature
- $M(dynamic) kg/mle i <math>V(kinematic) m^2/s (v = M/g)$ Viscosity
- · Compressibility

Fourier's Law of Heat Conduction

$$q_{V} = -k \frac{\partial T}{\partial R}$$

WEAT FOUX
PER AREA

Newton's Law of Viscosity

$$\mathcal{T} = \mu \frac{\partial U}{\partial y}$$
Shear
STRESS

3. What Constrains Fluid Motion?

Vanguard Class Submarine

- > CONSTITUTIVE RELATIONS
- > BOUNDARY CONDMONS
- > CONSERVATION LAWS
 - . CONS. OF MASS
 - CONS. OF MOMENTUM
 - · CONS OF ENERGY

Two Important Parameters

Rate of change of momentum (inertial force)

Sum of pressure forces, viscous forces and body forces

3a. Ideal Flow

Viscous and compressible effects small (large Re, low M). Flow is a balance between inertia and pressure forces, i.e. acceleration vector balances the pressure gradient vector

Streamline: A UNE EVERYWERHERE TANGENT TO THE VELOCITY

3b. Viscous Flow

Importance of viscous effects governed by
$$Re = \frac{VL}{V}$$

Boundary layer: THIN REGION ADJACENT TO A SOULD SURFACE WHERE FRICTION SLOWS THE FLOW

What is the pressure gradient across a boundary layer?

No-slip condition: FLUID ADTACENT TO A SURFACE DOESNOT MOVE RELATIVE TO IT

Varying angle of attack

3b Viscous Flow

Viscous region not always confined to a thin layer

Separation: Large region of viscous flow produced when the boundary layer leaves a surface because of an adverse pressure gradient, or a sharp corner

3b Viscous Flow

Turbulence: Chaotic motion and mixing on many scales initiated by viscous instability

Laminar Flow: Flow moves in ordered layers mixing only on a molecular scale

mpressibility Importance of compressibility effects governed by $M = \frac{V}{c}$ (speed of Sound)

Flow Past a Circular Cylinder

Re = 10,000 and Mach approximately zero

Re = 110,000 and Mach = 0.45

Re = 1.35 M and Mach = 0.64

Pictures are from "An Album of Fluid Motion" by Van Dyke

Flow Past a Circular Cylinder

Flow Past a Sphere

Mach = 1.53

Mach = 4.01

Pictures are from "An Album of Fluid Motion" by Van Dyke

Importance of compressibility effects governed by $M = \frac{V}{C}$

- Incompressible Regime M<0.3
 - Negligible compressibility effects
- Subsonic Regime 0.3<M<0.7
 - Quantitative effects, no qualitative effects
- Transonic Regime 0.7<M<1.3
 - Large regions of subsonic and supersonic flow. Large qualitative effects.
- Supersonic Regime M>1.3
 - Almost entirely supersonic flow. Large qualitative effects

Some Qualitative Effects

Shock wave: Very strong, thin wave, propagating supersonically, producing almost instantaneous compression of the flow, and increase in pressure and temperature.

Hypersonic vehicle re-entry NASA Image Library

Some Qualitative Effects

 Expansion or isentropic compression wave: Finite wave (often focused on a corner), moving at the sound speed, producing gradual compression or expansion of a flow (and raising or lowering of the temperature and pressure).

Cone-cylinder in supersonic free flight, Mach = 1.84.
Picture from "An Album of Fluid Motion" by Van Dyke.