A Computational Approach to the Ordinal Numbers

Documents ordCalc_0.2

Paul Budnik Mountain Math Software

paul@mtnmath.com

Copyright © 2009, 2010 Mountain Math Software All Rights Reserved

Licensed for use and distribution under GNU General Public License Version 2.

Source code and documentation can be downloaded at www.mtnmath.com/ord and sourceforge.net/projects/ord.

Contents

1	Intr	roduction	4
	1.1	Intended audience	5
	1.2	The Ordinals	5
2	Ord	linal notations	6
	2.1	Ordinal functions and fixed points	7
	2.2	Beyond the recursive ordinals	8
	2.3	Uncountable ordinals	9
3	Pro	gram structure	10
	3.1	virtual functions and subclasses	10
	3.2	Ordinal normal forms	10
	3.3		11
4	Ord	inal base class	11
	4.1	Ordinal::normalForm and Ordinal::texNormalForm	12
	4.2	Ordinal::compare member function	12
	4.3		13
	4.4	Ordinal operators	14
		-	14
			15
		4.4.3 Ordinal exponentiation	15

5	The	Veblen hierarchy 1'
	5.1	The delta operator
	5.2	A finite function hierarchy
	5.3	The finite function normal form
	5.4	limitElement for finite functions
	5.5	An iterative functional hierarchy
6	Fini	teFuncOrdinal class 22
	6.1	FiniteFuncNormalElement::compare member function
	6.2	FiniteFuncNormalElement::limitElement member function 2
	6.3	FiniteFuncOrdinal::fixedPoint member function
	6.4	FiniteFuncOrdinal operators
		6.4.1 FiniteFuncOrdinal multiplication
		6.4.2 FiniteFuncOrdinal exponentiation
7	Iter	FuncOrdinal class
	7.1	<pre>IterFuncNormalElement::compare member function</pre>
	7.2	IterFuncNormalElement::limitElement member function
	7.3	<pre>IterFuncOrdinal::fixedPoint member function</pre>
	7.4	IterFuncOrdinal operators
8	Cou	ntable admissible ordinals 39
	8.1	Typed parameters and limitOrd
	8.2	Admissible level ordinal notations
	8.3	limitType of admissible level notations
	8.4	Ordinal collapsing
	8.5	Displaying Ordinals in Ψ format
	8.6	Admissible level ordinal collapsing
	8.7	Functional hierarchies and collapsing
9	Admi	sLevOrdinal class 50
	9.1	${\tt AdmisNormalElement::compare \ member \ function \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	9.2	AdmisNormalElement::limitElement member function 5
	9.3	AdmisNormalElement::limitType member function
	9.4	AdmisNormalElement::maxLimitType member function
	9.5	AdmisNormalElement::limitOrd member function 6
	9.6	AdmisLevOrdinal::fixedPoint member function 6
	9.7	AdmisLevOrdinal operators
10	Phi	osophical Issues 64
\mathbf{A}	Con	nmand line interface 68
	A.1	Introduction
	A.2	Command line options
	A.3	Help topics
		Ordinals

P	4.5	Predefined ordinals	7(
Α	4.6	Syntax	70
Α	1.7	Ordinal lists	71
A	A.8		71
		A.8.1 All commands	71
			7 ₂
Δ	1.9	1	73
Δ			73
			73
1.	1.11	•	74
		•	74
		1 1	74
			75 75
			75 76
			76
			77
		* *	78
		1	79
			79
		A.11.11List of descending trees	30
Inde	ex	8	33
Lis	st o	of Tables	
1		Ordinal C++ code examples	12
2	<u>}</u>		13
3	}	Ordinal::limitElement examples	13
4		Base class Ordinal operators	14
5			14
6	;	Ordinal multiply examples	16
7	,	- v	17
8	,		18
9		•	21
1	0		23
	1		24
	2		24
	3	-	26
	4	· · · · · · · · · · · · · · · · · · ·	26
	_	FiniteFuncOrdinal multiply examples	
_	5	- v	
1	5 6	FiniteFuncOrdinal exponential examples	31
	5 6 7	FiniteFuncOrdinal exponential examples	

18	IterFuncOrdinal multiply examples	37
19	IterFuncOrdinal exponential examples	38
20	Value of limitType	40
21	δ parameter examples	41
22	AdmisNormalElement::limitTypes	43
23	Ψ collapsing function with bounds	45
24	Ψ collapsing function at critical limits	46
25	Structure of $[[1]]\omega_1$	49
26	admisLevelFunctional C++ code examples	51
27	Symbols used in compare Table 28	53
28	AdmisNormalElement::compare summary	53
29	Symbols used in limitElement Tables 30 to 32 and limitOrd Table 39	54
30	AdmisNormalElement::limitElement cases	55
31	AdmisNormalElement::drillDownlimitElement cases	55
32	AdmisNormalElement::embedLimitElement cases	56
33	AdmisLevOrdinal::limitElement examples part 1	57
34	AdmisLevOrdinal::limitElement examples part 2	58
35	AdmisLevOrdinal::limitElement examples part 3	59
36	AdmisLevOrdinal limitType and maxLimitType examples part 1	60
37	AdmisLevOrdinal limitType and maxLimitType examples part 2	61
38	AdmisNormalElement::limitType description	62
39	AdmisNormalElement::limitOrd cases	63
40	AdmisLevOrdinal::limitOrd examples	63
41	AdmisLevOrdinal multiply examples	65
42	AdmisLevOrdinal exponential examples	66

1 Introduction

The ordinal calculator is a tool for learning about the ordinal hierarchy and ordinal notations. It is also a research tool. Its motivating goal is ultimately to expand the foundations of mathematics by using computer technology to manage the combinatorial explosion in complexity that comes with explicitly defining the recursive ordinals implicitly defined by the axioms of Zermelo Frankel set theory[4, 2]. The underlying philosophy focuses on what formal systems tell us about physically realizable combinatorial processes.[3].

Appendix A "Using the ordinal calculator" is the user's manual for the interactive mode of this program. It describes how to download the program and use it from the command line. It is available as a separate manual at: www.mtnmath.com/ord/ordCalc.pdf. This document is intended for those who want to understand the theory on which the program is based, understand the structure of the program or use and expand the program in C++.

All the source code and documentation (including this manual) is licensed for use and distribution under the GNU General Public License, version 2.

1.1 Intended audience

This document is targeted to mathematicians with limited experience in computer programming and computer scientists with limited knowledge of the foundations of mathematics. Thus it contains substantial tutorial material, often as footnotes. The ideas in this paper have been implemented in the C++ programming language. C++ keywords and constructs defined in this program are in teletype font. This paper is both a top level introduction to this computer code and a description of the theory that the code is based on. The C++ tutorial material in this paper is intended to make the paper self contained for someone not familiar with the language. However it is not intended as programming tutorial. Anyone unfamiliar with C++, who wants to modify the code in a significant way, should consult one of the many tutorial texts on the language. By using the command line interface described in Appendix A, one can use many of the facilities of the program interactively with no knowledge of C++.

1.2 The Ordinals

The ordinals are the backbone of mathematics. They generalize induction on the integers¹ in an open ended way. More powerful modes of induction are defined by defining larger ordinals and not by creating new laws of induction.

The smallest ordinals are the integers. Other ordinals are defined as infinite sets². The smallest infinite ordinal is the set of all integers. Infinite objects are not subject to computational manipulation. However the set of all integers can be represented by a computer program that lists the integers. This is an abstraction. Real programs cannot run forever error free. However the program itself is a finite object, a set of instructions, that a computer program can manipulate and transform. Ordinals at or beyond ω may or may not exist as infinite objects in some ideal abstract reality, but many of them can have their structure represented by a computer program. This does not extend to ordinals that are not countable, but it can extend beyond the recursive ordinals³.

¹Induction on the integers states that a property holds for every integer $n \ge 0$, if it is true of 0 and if, for any integer x, if it is true for x, it must be true for x + 1. $[p(0) \land \forall_{x \in N} p(x) \to p(x+1)] \to \forall_{x \in N} p(x)$

²In set theory 0 is the empty set. 1 is the set containing the empty set. 2 is the set containing 0 and 1. Each finite integer is the union of all smaller integers. Infinite ordinals are also constructed by taking the union of all smaller ones. There are three types of Ordinals. 0 or the empty set is the smallest ordinal and the only one not defined by operations on previously defined ordinals. The successor to an ordinal a is the union of a and the members of a. In addition to 0 and successor ordinals, there are limit ordinals. The smallest limit ordinal is the set of all integers or all finite successors of 0 called ω .

Ordinals are well ordered by the relation of set membership, \in . For any two ordinals a and b either $a \in b$, $b \in a$ or a = b.

A limit ordinal consists of an infinite collection of ordinals that has no maximal or largest element. For example there is no single largest integer. Adding one to the largest that has been defined creates a larger integer.

 $^{^{3}}$ The recursive ordinals are those whose structure can be fully enumerated by an ideal computer program that runs forever. For any recursive ordinal a there exists a computer program that can enumerate a unique symbol or notation for every ordinal less than a. For any two notations for ordinals less than a, there is recursive algorithm that can determine the relative ranking (less than, equal to or greater than) of the two ordinals. Larger countable ordinals cannot have their structure fully enumerated by a recursive process. but

Ordinal notations assign unique finite strings to a subset of the countable ordinals. Associated with a notation system is a recursive algorithm to rank ordinal notations (<, > and =). For recursive ordinals there is also an algorithm that, given an input notation for some ordinal α , enumerates notations of all smaller ordinals. This latter algorithm cannot exist for ordinals that are not recursive but an incomplete variant of it can be defined for countable ordinals.

The ultimate goal of this research is to construct notations for large recursive ordinals eventually leading to and beyond a recursive ordinal that captures the combinatorial strength of Zermelo-Frankel set theory (ZF⁴) and thus is strong enough to prove its consistency. Computers can help to deal with the inevitable complexity of strong systems of notations. They allow experiments to tests ones intuition. Thus a system of notations implemented in a computer program may be able to progress significantly beyond what is possible with pencil and paper alone.

2 Ordinal notations

The ordinals whose structure can be enumerated by an ideal computer program are called recursive. The smallest ordinal that is not recursive is the Church-Kleene ordinal ω_1^{CK} . For simplicity this is written as ω_1^5 . Here the focus is on notations for recursive ordinals. The set that defines a specific ordinal in set theory is unique, but there are many different computer programs that can enumerate the structure of the same recursive ordinal. A system of recursive representations or notations for recursive ordinals, must recursively determine the relative size of any two notations. This is best done with a unique notation or normal form for each ordinal represented. Thus an ordinal notation system should satisfy the following requirements:

- 1. There is a unique finite string of symbols that represents every ordinal within the system. These are ordinal notations.
- 2. There is an algorithm (or computer program) that can determine for every two ordinal notations a and b if a < b or a > b or $a = b^6$. One and only one of these three must hold for every pair of ordinal notations in the system.
- 3. There is an algorithm that, given an ordinal notation a as input, will output an infinite sequence of ordinal notations, $b_i < a$ for all integers i. These outputs must satisfy the

they can be defined as properties of recursive processes that operate on a partially enumerable domain. For more about this see Section 8.

⁴ ZF is the widely used Zermelo-Frankel formulation of set theory. It can be thought of as a one page computer program for enumerating theorems. See either of the references [4, 2] for these axioms. Writing programs that define notations for the recursive ordinals definable in ZF can be thought of as an attempt to make explicit the combinatorial structures implicitly defined in ZF.

 $^{^5}$ ω_1 is most commonly used to represent the ordinal of the countable ordinals (the smallest ordinal that is not countable). Since this paper does not deal with uncountable sets (accept indirectly in describing an existing approach to ordinal collapsing in Section 8.4) we can simplify the notation for ω_1^{CK} to ω_1 .

⁶ In set theory the relative size of two ordinals is determined by which is a member, \in , of the other. Because notations must be finite strings, this will not work in a computational approach. An explicit algorithm is used to rank the size of notations.

property that eventually every ordinal notation c < a will be output if we recursively apply this algorithm to a and to every notation the algorithm outputs either directly or indirectly.

4. Each ordinal notation must represent a unique ordinal as defined in set theory. The union of the ordinals represented by the notations output by the algorithm defined in the previous item must be equal to the ordinal represented by a.

By generalizing induction on the integers, the ordinals are central to the power of mathematics⁷. The larger the recursive ordinals that are provably definable within a system the more powerful it is, at least in terms of its ability to solve consistency questions.

Set theoretical approaches to the ordinals can mask the combinatorial structure that the ordinals implicitly define. This can be a big advantage in simplifying proofs, but it is only through the explicit development of that combinatorial structure that one can fully understand the ordinals. That understanding may be crucial to expanding the ordinal hierarchy. Beyond a certain point this is not possible without using computers as a research tool.

2.1 Ordinal functions and fixed points

Notations for ordinals are usually defined with strictly increasing ordinal functions on the countable ordinals. A fixed point of a function f is an ordinal a with f(a) = a. For example f(x) = n + x has every limit ordinal as a fixed point provided n is an integer. The Veblen hierarchy of ordinal notations is constructed by starting with the function ω^x . Using this function, new functions are defined as a sequence of fixed points of previous functions[15, 11, 6]. The first of these functions, $\varphi(1, \alpha)$ enumerates the fixed points of ω^{α} . $\varphi(1, \alpha) = \varepsilon_{\alpha}$.

The range and domain of these functions are an expandable collection of ordinal notations defined by C++ class, Ordinal. The computational analog of fixed points in set theory involves the extension of an existing notation system. A fixed point can be thought of as representing the union of all notations that can be obtained by finite combinations of existing operations on existing ordinal notations. To represent this fixed point ordinal, the notation system must be expanded to include a new symbol for this ordinal. In addition the algorithms that operate on notations must be expanded to handle the additional symbol. In particular the recursive process that satisfies item 3 on page 6 must be expanded. The goal is to do more than add a single new symbol for a single fixed point. The idea is to define powerful expansions that add a rich hierarchy of symbolic representations of larger ordinals.

The simplest example of a fixed point is ω the ordinal for the integers. It cannot be reached by any finite sequence of integer additions. Starting with a finite integer and adding

⁷ To prove a property is true for some ordinal, a, one must prove the following.

^{1.} It is true of 0.

^{2.} If it is true for any ordinal b < a it must be true of the successor of b or b + 1.

^{3.} If it is true for a sequence of ordinals c_i such that $\bigcup_i c_i = c$ and $c \leq a$, then it is true of c.

 ω to it cannot get past ω . $n + \omega = \omega$ for all finite integers n.⁸ The first fixed point for the function, ω^x , is the ordinal $\varepsilon_0 = \omega + \omega^\omega + \omega^{(\omega^\omega)} + \omega^{(\omega^{(\omega^\omega)})} + \dots$ (The parenthesis in this equation are included to make the order of the exponentiation operations clear. They will sometimes be omitted and assumed implicitly from now on.) ε_0 represents the union of the ordinals represented by notations that can be obtained from finite sequences of operations starting with notations for the ordinals 0 and ω and the ordinal notation operations of successor (+1), addition, multiplication and exponentiation.

2.2 Beyond the recursive ordinals

The class Ordinal is not restricted to notations for recursive ordinals. Admissible ordinals extend the concept of recursive ordinals by considering ordinal notations defined by Turing Machines (TM) with oracles⁹[9]. There is an alternative way to extend the idea of recursive notations for ordinals that does not involve the completed infinite set required to define an oracle. It is more appropriate for a computational approach to the ordinals. The recursive ordinals can be characterized by recursive processes that map integers to either processes like themselves or integers. That is a computer program that accepts an integer as input and outputs either a computer program like itself or an integer.

For such a computer program to represent the structure of an ordinal it must be well founded¹⁰. This means, if one applies any infinite sequence of integer inputs to the base program, it will terminate¹¹ Of course it must meet all the other requirements for a notation system.

A recursive process satisfying the requirements on page 6 is well founded and represents the structure of a recursive ordinal. It has been shown that the concept of recursive process well founded for infinite sequences of integers can fully characterize the recursive ordinals[13]. One can generalize this idea to recursive processes well founded for an infinite sequences of notations for recursive ordinals. And of course one can iterate this definition in simple and complex ways. In this way one can define countable ordinals $> \omega_1^{CK}$ as properties of recursive processes. In contrast to recursive ordinal notations, notations for larger ordinals cannot be associated with algorithms that fully enumerate the structure of the ordinal they represent. However it is possible to define a recursive function that in some ways serves as a substitute (see Section 8.1 on limitOrd).

⁸A fixed point for addition is called a *principal additive ordinal*. Any ordinal a > 0 such that a + b = b for all a < b is an additive principle ordinal.

⁹A TM oracle is an external device that a TM can query to answer questions that are recursively unsolvable like the computer halting problem. One can assume the existence of an infinite set (not recursive or recursively enumerable) that defines a notation system for all recursive ordinals and consider what further notations are definable by a recursive process with access to this oracle.

¹⁰In mathematics a well founded relationship is one with no infinite descending chains. Any collection of objects ordered by the relationship must have a minimal element.

¹¹The formulation of this property requires quantification over the reals and thus is considered impredicative. (Impredicative sets have definitions that assume their own existence. Some reals can only be defined by quantifying over the set of all reals and this makes them questionable for some mathematicians.) In a computational approach one need not assume there is a set of all objects satisfying the property. Instead one can regard it as a computationally useful property and build objects that satisfy it in an expanding hierarchy. Impredictivity is replaced with explicit incompleteness.

2.3 Uncountable ordinals

The ordinal of the countable ordinals, Ω , cannot have a computational interpretation in the sense that term is used here. Uncountable ordinals exist in a through the looking glass reality. It is consistent to argue about them because mathematics will always be incomplete. The reals *provably definable* within a formal system form a definite totality. The formulas that define them are recursively enumerable. They are uncountable *from within* the system that defines them but they are countable when viewed externally.

Building incompleteness into the system from the ground up in lieu of claiming cardinality has an absolute meaning will, I believe, lead to a more powerful and more understandable mathematics. That is part of the reason I suspect a computational approach may extend the ordinal hierarchy significantly beyond what is possible by conventional proofs. Writing programs that define ordinal notations and operations on them provides powerful tools to help deal with combinatorial complexity that may vastly exceed the limits of what can be pursued with unaided human intelligence. This is true in most scientific fields and there is no reason to think that the foundations of mathematics is an exception. The core of this paper is C++ code that defines a notation system for an initial fragment of the recursive ordinals and a subset of larger countable ordinals.

The development of this computational approach initially parallels the conventional approach through the Veblen hierarchy (described in Section 5). The C++ class Ordinal is incompletely specified. C++ subclasses and virtual functions allow a continued expansion of the class as described in the next section. The structure of the recursive ordinals defined in the process are fully specified. Ordinals $\geq \omega_1^{CK}$ are partially specified.

Mathematics is an inherently creative activity. God did not create the integers, they like every other infinite set, are a human conceptual creation designed to abstract and generalize the real finite operations that God, or at least the forces of nature, did create. The anthology, God Created the Integers[7], collects the major papers in the history of mathematics. From these and the commentary it becomes clear that accepting any infinite totalities easily leads one to something like ZF. If the integers are a completed totality, then the rationals are ordered pairs of integers with 1 as their only common denominator. Reals are partitions of the rationals into those less than a given real and those greater than that real. This is the Dedekind cut. With the acceptance of that, one is well on the way to the power set axiom and wondering about the continuum hypothesis¹². This mathematics is not false or even irrelevant, but it is only meaningful relative to a particular formal system. Thinking such questions are absolute leads one down a primrose path of pursuing as absolute what is not and cannot be objective truth beyond the confines of a particular formal system.

¹²The continuum hypothesis is the assertion that the reals have the smallest cardinality greater than the cardinality of the integers. This means there is no set that the integers cannot be mapped onto and that cannot be mapped onto the reals.

3 Program structure

The C++ programming language¹³ has two related features, subclasses and virtual functions that are useful in developing ordinal notations. The base class, Ordinal, is an open ended programming structure that can be expanded with subclasses. It does not represent a specific set of ordinals and it is not limited to notations for recursive ordinals. Any function that takes Ordinal as an argument must allow any subclass of Ordinal to be passed to it as an argument. The reverse does not hold.

3.1 virtual functions and subclasses

Virtual functions facilitate the expansion of the base class. For example there is a base class virtual member function compare that returns 1, 0, or -1 if its argument (which must be an element of class Ordinal) is less than, equal to or greater than the ordinal notation it is a member function of. The base class defines notations for ordinals less than ε_0 . As the base class is expanded, an extension of the compare virtual function must be written to take care of cases involving ordinals greater than ε_0 . Programs that call the compare function will continue to work properly. The correct version of compare will automatically be invoked depending on the type of the object (ordinal notation) from which compare is called. The original compare does not need to be changed but it does need to be written with the expansion in mind. If the argument to compare is not in the base class then the expanded function must be called. This can be done by calling compare recursively using the argument to the original call to compare as the class instance from which compare is called.

It may sound confusing to speak of subclasses as expanding a definition. The idea is that the base class is the broadest class including all subclasses defined now or that might be defined in the future. The subclass expands the objects in the base class by defining a limited subset of new base class objects that are the only members of the subclass (until and unless it gets expanded by its own subclasses). This is one way of dealing with the inherent incompleteness of a computational approach to the ordinals.

3.2 Ordinal normal forms

Crucial to developing ordinal notations is to construct a *unique* representation for every ordinal. The starting point for this is the Cantor normal form. Every ordinal, α , can be represented by an expression of the following form:

$$\alpha = \omega^{\alpha_1} n_1 + \omega^{\alpha_2} n_2 + \omega^{\alpha_3} n_3 + \dots + \omega^{\alpha_k} n_k \tag{1}$$

$$\alpha_1 > \alpha_2 > \alpha_3 > \dots > \alpha_k$$

¹³C++ is an object oriented language combining functions and data in a class definition. The data and code that form the class are referred to as class members. Calls to nonstatic member functions can only be made from an instance of the class. Data class members in a member function definition refer to the particular instance of the class from which the function is called.

Because $\varepsilon_0 = \omega^{\varepsilon_0}$ the Cantor normal form gives unique representation only for ordinals less than ε_0 . This is handled by requiring that the normal form notation for a fixed point ordinal be the simplest expression that represents the ordinal. For example, A notation for the Veblen hierarchy used in this paper (see Section 5) defines ε_0 as $\varphi(1,0)$. Thus the normal form for ε_0 would be $\varphi(1,0)^{14}$ not $\omega^{\varphi(1,0)}$. However $\varphi(1,0)^2$ is displayed as $\omega^{\varphi(1,0)\times 2}$.

The Ordinal base class represents an ordinal as a linked list of terms of the form $\omega^{\alpha_k} n_k$. This limits the unexpanded base class to ordinals of the form ω^{α} where α is a previously defined member of the base class. These are the ordinals less than ε_0 . The base class for each term of an Ordinal is CantorNormalElement.

3.3 Memory management

Most infinite Ordinals are constructed from previously defined Ordinals. Those constructions need to reference the ordinals used in defining them. The Ordinals used in the definition of another Ordinal must not be deleted while the object that uses them still exists. This often requires that Ordinals be created using the new C++ construct. Objects declared without using new are automatically deleted when the block in which they occur exits.

This program does not currently implement any garbage collection. Declaring many Ordinals using new will eventually exhaust available memory.

4 Ordinal base class

The base class Ordinal¹⁵ includes all ordinals notations defined now or in the future in this system. This class with no subclasses defines notations for the ordinals $< \varepsilon_0$. Sections 6, 7 and 9 describe three subclasses that extend the notation system to large recursive ordinals and to admissible countable ordinals.

The finite (integer) Ordinals and ω , the ordinal that contains all integers, are defined using the constructor¹⁶ for class Ordinal.¹⁷. Other base class ordinals are usually defined using expressions involving addition, multiplication and exponentiation (see Section 4.4) of previously defined Ordinals.

The Ordinal for 12 is written as "const Ordinal& twelve = * new Ordinal(12)" in C++. The Ordinals for zero, one and omega are defined in global name space ord 19 The

¹⁴In the ordinal calculator $\varphi(1,\alpha)$ is displayed as ε_{α} .

¹⁵ 'Ordinal' when capitalized and in tty font, refers to the expandable C++ class of ordinal notations.

¹⁶The constructor of a class object is a special member function that creates an instance of the class based on the parameters to the function.

¹⁷The integer ordinals are not defined in this program using the C++ int data type but a locally defined Int data type that uses the Gnu Multiple Precision Arithmetic Library to allow for arbitrarily large integers depending on the memory of the computer the program is run on.

¹⁸In the interactive ordinal calculator (see Appendix A) write "twelve = 12" or just use 12 in an expression.

¹⁹All global variables in this implementation are defined in the namespace ord. This simplifies integration with existing programs. Such variables must have the prefix 'ord::' prepended to them or occur in a file in which the statement "using namespace ord;" occurs before the variable is referenced.

C++ code	Ordinal
omega+12	$\omega + 12$
omega*3	ω 3
omega*3 + 12	$\omega 3 + 12$
omega^5	ω^5
omega^(omega^12)	$\omega^{\omega^{12}}$
(omega^(omega^12)*6) + (omega^omega)*8 +12	$\omega^{\omega^{12}6} + \omega^{\omega}8 + 12$

Table 1: Ordinal C++ code examples

Ordinals two through six are defined as members of class Ordinal²⁰.

The standard operations for ordinal arithmetic (+, * for \times and $\hat{}$ for exponentiation) are defined for all Ordinal instances. Expressions involving exponentiation must use parenthesis to indicate precedence because C++ gives lower precedence to $\hat{}$ then it does to addition and multiplication²¹. In C++ the standard use of $\hat{}$ is for the boolean operation exclusive or. Some examples of infinite Ordinals created by Ordinal expressions are shown in Table 1.

Ordinals that are a sum of terms are made up of a sequence of instances of the class CantorNormalElement each instance of this class contains an integer factor that multiplies the term and an Ordinal exponent of ω . For finite ordinals this exponent is 0.

4.1 Ordinal::normalForm and Ordinal::texNormalForm

Two Ordinal member functions, normalForm and texNormalForm, return a C++ string that can be output to display the value of an Ordinal in Cantor normal form or a variation of it defined here for ordinals $> \varepsilon_0$. normalForm creates a plain text format that is used for input and plain text output in the interactive mode of this program described in Appendix A. texNormalForm outputs a similar string in TEX math mode format. This string does not include the '\$' markers to enter and exit TEX math mode. These must be added when this output is included in a TEX document. There are examples of this output in Section A.11.3 on Display options. Many of the entries in the tables in this manual are generated using texNormalForm.

4.2 Ordinal::compare member function

The compare function has a single Ordinal as an argument. It compares the Ordinal instance it is a member of with its argument. It scans the terms of both Ordinals (see equation 1) in order of decreasing significance. The exponent, α_k and then the factor n_k are compared. If these are both equal the comparison proceeds to the next term of both ordinals. compare is called recursively to compare the exponents (which are Ordinals) until it resolves to comparing an integer with an infinite ordinal or another integer. It returns 1, 0 or -1 if the ordinal called from is greater than, equal to or less than its argument.

²⁰Reference to members of class Ordinal must include the prefix "Ordinal::" except in member functions of Ordinal

²¹The interactive mode of entering ordinal expressions (see Appendix A) has the desired precedence and does not require parenthesis to perform exponentiation before multiplication.

$\alpha = \sum_{m=0,1,\dots,k} \omega^{\alpha_m} n_m$ from equation 1		
$\gamma = \sum_{m=0,1,\dots,k-1} \omega^{\alpha_m} n_m + \omega^{\alpha_k} (n_k - 1)$		
Last Term $(\omega^{\alpha_k} n_k)$ Condition	$\alpha.\mathtt{limitElement}(\mathtt{i})$	
$\alpha_k = 0 \ (\alpha \text{ is not a limit})$	UNDEFINED ABORT	
$\alpha_k = 1$	$\gamma + i$	
$\alpha_k > 1 \wedge \alpha_k$ is a successor	$\gamma + \omega^{\alpha_k - 1} i$	
α_k is a limit	$\gamma + \omega^{(\alpha_k).\text{limitElement(i)}}$	

Table 2: Cases for computing Ordinal::limitElement

Ordinal			limitElement		
ω	1	2	10	100	786
$\omega 8$	$\omega 7 + 1$	$\omega 7 + 2$	$\omega 7 + 10$	$\omega 7 + 100$	$\omega 7 + 786$
ω^2	ω	$\omega 2$	$\omega 10$	$\omega 100$	$\omega 786$
ω^3	ω^2	$\omega^2 2$	$\omega^2 10$	$\omega^2 100$	ω^2786
ω^{ω}	ω	ω^2	ω^{10}	ω^{100}	ω^{786}
$\omega^{\omega+2}$	$\omega^{\omega+1}$	$\omega^{\omega+1}2$	$\omega^{\omega+1}10$	$\omega^{\omega+1}100$	$\omega^{\omega+1}786$
$\omega^{\omega^{\omega^{\omega}}}$	$\omega^{\omega^{\omega}}$	ω^{ω^2}	$\omega^{\omega^{\omega^{10}}}$	$\omega^{\omega^{0}}$	$\omega^{\omega^{786}}$

Table 3: Ordinal::limitElement examples.

Each term of an ordinal (from Equation 1) is represented by an instance of class CantorNormalElement and the bulk of the work of compare is done in member function CantorNormalElement::compare This function compares two terms of the Cantor normal form of an ordinal.

4.3 Ordinal::limitElement member function

Ordinal member function limitElement has a single integer parameter. It is only defined for notations of limit ordinals and will abort if called from a successor Ordinal. Larger values of this argument produce larger ordinal notations as output. The union of the ordinals represented by the outputs for all integer inputs is equal to the ordinal represented by the Ordinal instance limitElement is called from. This function satisfies requirement 3 on page 6.

In the following description mathematical notation is mixed with C++ code. Thus limitElement(i) called from an Ordinal class instance that represents ω^{α} is written as (ω^{α}) .limitElement(i).

The algorithm for limitElement uses the Cantor normal form in equation 1. The kernel processing is done in CantorNormalElement::limitElement. limitElement operates on the last or least significant term of the normal form. γ is used to represent all terms but the least significant. If the lest significant term is infinite and has a factor, the n_k in equation 1, greater than 1, γ will also include the term $\omega^{\alpha_k}(n_k-1)$. The outputs from limitElement are γ and a final term that varies according to the conditions in Table 2. Table 3 gives some examples.

Operation	Example	Description
addition	$\alpha + \beta$	add 1 to $\alpha \beta$ times
multiplication	$\alpha \times \beta$	add $\alpha \beta$ times
exponentiation	α^{β}	multiply $\alpha \beta$ times
nested exponentiation	$\alpha^{\beta^{\gamma}}$	multiply $\alpha \beta^{\gamma}$ times

Table 4: Base class Ordinal operators.

Expression	Cantor Normal Form	C++ code
$(\omega 4 + 12)\omega$	ω^2	(omega*4+12)*omega
$\omega(\omega 4 + 12)$	$\omega^2 4 + \omega 12$	omega*(omega*4+12)
$\omega^{\omega(\omega+3)}$	$\omega^{\omega^2+\omega^3}$	omega∧(omega*(omega+3))
$(\omega+4)(\omega+5)$	$\omega^2 + \omega 5 + 4$	(omega+4)*(omega+5)
$(\omega+2)^{(\omega+2)}$	$\omega^{\omega+2} + \omega^{\omega+1} + \omega^{\omega} = 2$	(omega+2)∧(omega+2)
	$\omega^{\omega+3} + \omega^{\omega+2}3+$	
$(\omega+3)^{(\omega+3)}$	$\omega^{\omega+1}3 + \omega^{\omega}3$	(omega+3)∧(omega+3)

Table 5: Ordinal arithmetic examples

4.4 Ordinal operators

The operators in the base class are built on the successor (or +1) operation and recursive iteration of that operation. These are shown in Table 4.

The operators are addition, multiplication and exponentiation. These are implemented as C++ overloaded operators: +, * and 22 Arithmetic on the ordinals is not commutative, $3 + \omega = \omega \neq \omega + 3$, For this and other reasons, caution is required in writing expressions in C++. Precedence and other rules used by the compiler are incorrect for ordinal arithmetic. It is safest to use parenthesis to completely specify the intended operation. Some examples are shown in Table 5.

4.4.1 Ordinal addition

In ordinal addition, all terms of the first operand that are at least a factor of ω smaller than the leading term of the second cam be ignored because of the following:

$$\alpha, \beta \ ordinals \ \land \alpha \ge \beta \to \beta + \alpha * \omega = \alpha * \omega$$
 (2)

Ordinal addition operates in sequence on the terms of both operands. It starts with the most significant terms. If they have the same exponents, their factors are added. Otherwise, if the second operand's exponent is larger than the first operand's exponent, the remainder of the first operand is ignored. Alternatively, if the second operands most significant exponent is less than the first operands most significant exponent, the leading term of the first operand

 $^{^{22}}$ ' is used for 'exclusive or' in C++ and has *lower* precedence than any arithmetic operator such as '+'. Thus C++ will evaluate x^y+1 as x^y+1 . Use parenthesis to override this as in $(x^y)+1$.

is added to the result. The remaining terms are compared in the way just described until all terms of both operands have been dealt with.

4.4.2 Ordinal multiplication

Multiplication of infinite ordinals is complicated by the way addition works. For example:

$$(\omega + 3) \times 2 = (\omega + 3) + (\omega + 3) = \omega \times 2 + 3$$
 (3)

Like addition, multiplication works with the leading (most significant) terms of each operand in sequence. The operation that takes the product of terms is a member function of base class CantorNormalElement. It can be overridden by subclasses without affecting the algorithm than scans the terms of the two operands. When a subclass of Ordinal is added a subclass of CantorNormalElement must also be added.

CantorNormalElement and each of its subclasses is assigned a codeLevel that grows with the depth of class nesting. codeLevel for a CantorNormalElement is cantorCodeLevel. Any Cantor normal form term that is of the form ω^{α} will be at this level regardless of the level of the terms of α . codeLevel determines when a higher level function needs to be invoked. For example if we multiply α at cantorCodeLevel by β at a higher level then a higher level routine must be used. This is accomplished by calling β .multiplyBy(α) which will invoke the virtual function multiplyBy in the subclass β is an instance of.

The routine that multiplies two terms or CantorNormalElements first tests the codeLevel of its operand and calls multiplyBy if necessary. If both operands are at cantorCodeLevel, the routine checks if both operands are finite and, if so, returns their integer product. If the first operand is finite and the second is infinite, the second operand is returned unchanged. All remaining cases are handled by adding the exponents of the two operands and multiplying their factors. The exponents are the α_i and the factors are the n_i in Equation 1. A CantorNormalElement with the computed exponent and factor is returned. If the exponents contain terms higher then cantorCodeLevel, this will be dealt with by the routine that does the addition of exponents.

The routine that multiplies single terms is called by a top level routine that scans the terms of the operands. If the second operand does not have a finite term, then only the most significant term of the first operand will affect the result by Equation 2. If the second operand does end in a finite term then all but the most significant term of the first operand, as illustrated by Equation 3, will be added to the result of multiplying the most significant term of the first operand by all terms of the second operand in succession. Some examples are shown in Table 6.

4.4.3 Ordinal exponentiation

Ordinal exponentiation first handles the cases when either argument is zero or one. It then checks if both arguments are finite and, if so, does an integer exponentiation²³. If the base is finite and the exponent is infinite, the product of the infinite terms in the exponent is

²³A large integer exponent can require more memory than is available to store the result and abort the program.

α	β	$\alpha \times \beta$
$\omega + 1$	$\omega + 1$	$\omega^2 + \omega + 1$
$\omega + 1$	$\omega + 2$	$\omega^2 + \omega^2 + 1$
$\omega + 1$	ω^3	ω^4
$\omega + 1$	$\omega^3 2 + 2$	$\omega^4 2 + \omega 2 + 1$
$\omega + 1$ $\omega + 1$	$\omega^4 + \omega^3 + \omega^7 + 3$	$\omega^5 + \omega^4 + \omega^2 + \omega^3 + 1$
$\omega + 1$	$\omega^{\omega}3$	$\omega^{\omega}3$
$\omega + 2$	$\omega + 1$	$\omega^2 + \omega + 2$
$\omega + 2$	$\omega + 2$	$\omega^2 + \omega^2 + 2$
$\omega + 2$	ω^3	ω^4
$\omega + 2$	$\omega^{3}2 + 2$	$\omega^4 2 + \omega 2 + 2$
$\omega + 2$	$\omega^4 + \omega^3 + \omega^7 + 3$	$\omega^5 + \omega^4 + \omega^2 7 + \omega 3 + 2$
$\omega + 2$	$\omega^{\omega}3$	$\omega^{\omega}3$
ω^3	$\omega + 1$	$\omega^4 + \omega^3$
ω^3	$\omega + 2$	$\omega^4 + \omega^3 2$
ω^3	ω^3	ω^6
ω^3	$\omega^{3}2 + 2$	$\omega^6 2 + \omega^3 2$
ω^3	$\omega^4 + \omega^3 + \omega^7 + \omega^3 + \omega^4 + \omega^4 + \omega^3 + \omega^4 $	$\omega^7 + \omega^6 + \omega^4 7 + \omega^3 3$
ω^3	$\omega^{\omega}3$	$\omega^{\omega}3$
$\omega^{3}2 + 2$	$\omega + 1$	$\omega^4 + \omega^3 2 + 2$
$\omega^{3}2 + 2$	$\omega + 2$	$\omega^4 + \omega^3 4 + 2$
$\omega^{3}2 + 2$	ω^3	ω^6
$\omega^3 2 + 2$	$\omega^{3}2 + 2$	$\omega^6 2 + \omega^3 4 + 2$
$\omega^3 2 + 2$	$\omega^4 + \omega^3 + \omega^7 + \omega^3 + \omega^4 + \omega^3 + \omega^4 + \omega^3 + \omega^4 + \omega^3 + \omega^4 $	$\omega^7 + \omega^6 + \omega^4 7 + \omega^3 6 + 2$
$\omega^3 2 + 2$	$\omega^{\omega}3$	$\omega^{\omega}3$
$\omega^4 + \omega^3 + \omega^7 + 3$	$\omega + 1$	$\omega^5 + \omega^4 + \omega^3 + \omega^7 + 3$
$\omega^4 + \omega^3 + \omega^7 + 3$	$\omega + 2$	$\omega^5 + \omega^4 2 + \omega^3 + \omega 7 + 3$
$\omega^4 + \omega^3 + \omega^7 + 3$	ω^3	ω^7
$\omega^4 + \omega^3 + \omega^7 + 3$		$\omega^{7}2 + \omega^{4}2 + \omega^{3} + \omega^{7} + 3$
1	1	$\omega^{8} + \omega^{7} + \omega^{5}7 + \omega^{4}3 + \omega^{3} + \omega^{7} + 3$
$\omega^4 + \omega^3 + \omega^7 + \omega^3 + \omega^4 + \omega^4 + \omega^3 + \omega^4 $		$\omega^{\omega}3$
$\omega^{\omega}3$	$\omega + 1$	$\omega^{\omega+1} + \omega^{\omega}3$
$\omega^{\omega}3$	$\omega + 2$	$\omega^{\omega+1} + \omega^{\omega}6$
$\omega^{\omega}3$	ω^3	$\omega^{\omega+3}$
$\omega^{\omega}3$	$\omega^3 2 + 2$	$\omega^{\omega+3}2 + \omega^{\omega}6$
$\omega^{\omega}3$	$\omega^4 + \omega^3 + \omega^7 + 3$	$\omega^{\omega+4} + \omega^{\omega+3} + \omega^{\omega+1}7 + \omega^{\omega}9$
$\omega^{\omega}3$	$\omega^{\omega}3$	$\omega^{\omega 2}3$

Table 6: Ordinal multiply examples

Expression	Cantor Normal Form	C++ code
		Ordinal four(4);
4^{ω^7+3}	ω^764	$four \land ((omega \land 7)+3)$
		five∧
$5^{\omega^7+\omega+3}$	$\omega^8 125$	$((omega \land 7) + omega + 3)$
$(\omega+1)^4$	$\omega^4 + \omega^3 + \omega^2 + \omega + 1$	(omega+1)∧4
	$\omega^{\omega^2 + \omega + 2} + \omega^{\omega^2 + \omega + 1} +$	$((omega \land 2) + omega + 3) \land$
$(\omega^2 + \omega + 3)^{\omega^2 + \omega + 1}$	$\omega^{\omega^2+\omega}$ 3	$((omega \land 2) + omega + 1)$
	$\omega^{\omega^2 + \omega + 4} + \omega^{\omega^2 + \omega + 3} +$	$((omega \land 2) + omega + 3) \land$
$(\omega^2 + \omega + 3)^{\omega^2 + \omega + 2}$	$\omega^{\omega^2 + \omega + 2} 3 + \omega^{\omega^2 + \omega + 1} + \omega^{\omega^2 + \omega} 3$	((omega∧2)+omega+2)

Table 7: C++ Ordinal exponentiation examples

computed. If the exponent has a finite term, this product is multiplied by the base taken to the power of this finite term. This product is the result.

If the base is infinite and the exponent is an integer, n, the base is multiplied by itself n times. To do this efficiently, all powers of two less than n are computed. The product of those powers of 2 necessary to generate the result is computed.

If both the base and exponent are infinite, then the infinite terms of the exponent are scanned in decreasing sequence. Each is is used as an exponent applied to the most significant term of the base. The sequence of exponentials is multiplied. If the exponent has a finite term then the entire base, not just the leading term, is raised to this finite power using the algorithm described above for a finite exponent and infinite base. That factor is then applied to the previous product of powers.

To compute the above result requires a routine for taking the exponential of a single infinite term of the Cantor normal form i. e. a CantorNormalElement (see Equation 1) by another infinite single term. (When Ordinal subclasses are defined this is the only routine that must be overridden.) The algorithm is to multiply the exponent of ω from the first operand (the base) by the second operand, That product is used as the exponent of ω in the term returned. Table 7 gives some examples with C++ code and some additional examples are shown in Table 8.

5 The Veblen hierarchy

This section gives a brief overview of the Veblen hierarchy and the Δ operator. See [15, 11, 6] for a more a complete treatment. This is followed by the development of a computational approach for constructing notations for these ordinals up to (but not including) the large Veblen ordinal. We go further in Sections 8 and 9.

The Veblen hierarchy extends the recursive ordinals beyond ε_0 . A Veblen hierarchy can be constructed from any strictly increasing continuous function²⁴ f, whose domain and range

²⁴A continuous function, f, on the ordinals must map limits to limits. Thus for every infinite limit ordinal y, $f(y) = \sup\{f(v) : v < y\}$. A continuous strictly increasing function on the ordinals is called a normal function.

α	β	$lpha^eta$
$\omega + 1$	$\omega + 1$	$\omega^{\omega+1} + \omega^{\omega}$
$\omega + 1$	$\omega + 2$	$\omega^{\omega+2} + \omega^{\omega+1} + \omega^{\omega}$
$\omega + 1$	ω^3	ω^{ω^3}
$\omega + 1$	$\omega^{3}2 + 2$	$\omega^{\omega^3 2 + 2} + \omega^{\omega^3 2 + 1} + \omega^{\omega^3 2}$
$\omega + 1$	$\omega^4 + 3$	$\omega^{\omega^4+3} + \omega^{\omega^4+2} + \omega^{\omega^4+1} + \omega^{\omega^4}$
$\omega + 1$	$\omega^{\omega}3$	$\omega^{\omega^{\omega}3}$
$\omega + 2$	$\omega + 1$	$\omega^{\omega+1} + \omega^{\omega}2$
$\omega + 2$	$\omega + 2$	$\omega^{\omega+2} + \omega^{\omega+1} + \omega^{\omega} 2$
$\omega + 2$	ω^3	ω^{ω^3}
$\omega + 2$	$\omega^{3}2 + 2$	$\omega^{\omega^{3}2+2} + \omega^{\omega^{3}2+1}2 + \omega^{\omega^{3}2}2$
$\omega + 2$	$\omega^4 + 3$	$\omega^{\omega^4+3} + \omega^{\omega^4+2} + \omega^{\omega^4+1} + \omega^{\omega^4} = 0$
$\omega + 2$	$\omega^{\omega}3$	$\omega^{\omega^{\omega}}$ 3
ω^3	$\omega + 1$	$\omega^{\omega+3}$
ω^3	$\omega + 2$	$\omega^{\omega+6}$
ω^3	ω^3	$\omega_{_{-}}^{\omega^{3}}$
ω^3	$\omega^{3}2 + 2$	ω^{ω^3} 2+6
ω^3	$\omega^4 + 3$	ω^{ω^4+9}
ω^3	$\omega^{\omega}3$	$\omega^{\omega^{\omega}3}$
$\omega^{3}2 + 2$	$\omega + 1$	$\omega^{\omega+3}2 + \omega^{\omega}2$
$\omega^{3}2 + 2$	$\omega + 2$	$\omega^{\omega+6}2 + \omega^{\omega+3}4 + \omega^{\omega}2$
$\omega^{3}2 + 2$	ω^3	ω^{ω^3}
$\omega^{3}2 + 2$	$\omega^{3}2 + 2$	$\omega^{\omega^3 2 + 6} 2 + \omega^{\omega^3 2 + 3} 4 + \omega^{\omega^3 2} 2$
$\omega^{3}2 + 2$	$\omega^4 + 3$	$\omega^{\omega^4+9} + \omega^{\omega^4+6} + \omega^{\omega^4+3} + \omega^{\omega^4} = 0$
$\omega^{3}2 + 2$	$\omega^{\omega}3$	$\omega^{\omega^{\omega}3}$
$\omega^4 + 3$	$\omega + 1$	$\omega^{\omega+4} + \omega^{\omega}3$
$\omega^4 + 3$	$\omega + 2$	$\omega^{\omega+8} + \omega^{\omega+4}3 + \omega^{\omega}3$
$\omega^4 + 3$	ω^3	ω^{ω^3}
$\omega^4 + 3$	$\omega^{3}2 + 2$	$\omega^{\omega^{3}2+8} + \omega^{\omega^{3}2+4}3 + \omega^{\omega^{3}2}3$
$\omega^4 + 3$	$\omega^4 + 3$	$\omega^{\omega^4 + 12} + \omega^{\omega^4 + 8} + \omega^{\omega^4 + 4} + \omega^{\omega^4} + \omega^{\omega^4} = 0$
$\omega^4 + 3$	$\omega^{\omega}3$	$\omega^{\omega^{\omega}3}$
$\omega^{\omega}3$	$\omega + 1$	$\omega^{\omega^2+\omega}3$
$\omega^{\omega}3$	$\omega + 2$	$\omega^{\omega^2+\omega^2}3$
$\omega^{\omega}3$	ω^3	ω^{ω^4}
$\omega^{\omega}3$	$\omega^{3}2 + 2$	$\omega^{\omega^4 2 + \omega^2} 3$
$\omega^{\omega}3$	$\omega^4 + 3$	$\omega^{\omega^5+\omega 3}3$
$\omega^{\omega}3$	$\omega^{\omega}3$	$\omega^{\omega^{\omega}3}$

Table 8: ${\tt Ordinal}$ exponential examples

are the countable ordinals such that f(0) > 0. $f(x) = \omega^x$ satisfies these conditions and is the starting point for constructing the standard Veblen hierarchy. One core idea is to define a new function from an existing one so that the new function enumerates the fixed points of the first one. A fixed point of f is a value v such that f(v) = v. Given an infinite sequence of such functions one can define a new function that enumerates the *common* fixed points of all functions in the sequence. In this way one can iterate the construction of a new function up to any countable ordinal. The Veblen hierarchy based on $f(x) = \omega^x$ is written as $\varphi(\alpha, \beta)$ and defined as follows.

```
\varphi(0,\beta) = \omega^{\beta}.

\varphi(\alpha+1,\beta) enumerates the fixed points of \varphi(\alpha,\beta).

\varphi(\alpha,\beta) for \alpha a limit ordinal, \alpha, enumerates the intersection of the fixed points of \varphi(\gamma,\beta) for \gamma less than \alpha.
```

From a full Veblen hierarchy one can define a diagonalization function $\varphi(x,0)$ from which a new Veblen hierarchy can be constructed. This can be iterated and the Δ operator does this in a powerful way.

5.1 The delta operator

The Δ operator is defined as follows[11, 6].

- $\Delta_0(\psi)$ enumerates the fixed points of the normal (continuous and strictly increasing) function on the ordinals ψ .
- $\Delta_{\alpha'}(\varphi) = \Delta_0(\varphi^{\alpha}(-,0))$. That is it enumerates the fixed points of the diagonalization of the Veblen hierarchy constructed from φ^{α} .
- $\Delta_{\alpha}(\varphi)$ for α a limit ordinal enumerates $\bigcap_{\gamma<\alpha}$ range $\Delta_{\gamma}(\varphi)$.
- $\bullet \ \varphi_0^{\alpha} = \varphi.$
- $\varphi_{\beta'}^{\alpha} = \Delta_{\alpha}(\varphi_{\beta}^{\alpha}).$
- φ^{α}_{β} for β a limit ordinal enumerates $\bigcap_{\gamma < \beta}$ range $\varphi^{\alpha}_{\gamma}$.

The function that enumerates the fixed points of a base function is a function on functions. The Veblen hierarchy is constructed by iterating this function on functions starting with ω^x . A generalized Veblen hierarchy is constructed by a similar iteration starting with any function on the countable ordinals, f(x), that is strictly increasing and continuous (see Note 24) with f(0) > 0. The Δ operator defines a higher level function. Starting with the function on functions used to define a general Veblen hierarchy, it defines a hierarchy of functions on functions. The Δ operator constructs a higher level function that builds and then diagonalizing a Veblen hierarchy.

In a computational approach, such functions can only be partially defined on objects in an always expandable computational framework. The **class**es in which the functions are defined and the functions themselves are designed to be extensible as future subclasses are added to the system.

5.2 A finite function hierarchy

An obvious extension called the Veblen function is to iterate the functional hierarchy any finite number of times. This can be represented as a function on ordinal notations,

$$\varphi(\alpha_1, \alpha_2, ..., \alpha_n). \tag{4}$$

Each of the parameters is an ordinal notation and the function evaluates to an ordinal notation. The first parameter is the most significant. It represents the iteration of the highest level function. Each successive ordinal²⁵ operand specifies the level of iteration of the next lowest level function. With a single parameter Equation 4 is the function ω^x ($\varphi(\alpha) = \omega^{\alpha}$). With two parameters, $\varphi(\alpha, \beta)$, it is the Veblen hierarchy constructed from the base function ω^x . With three parameters we have the Δ hierarchy built on this initial Veblen hierarchy. In particular the following holds.

$$\varphi(\alpha, \beta, x) = \Delta_{\alpha} \varphi_{\beta}^{\alpha}(x) \tag{5}$$

5.3 The finite function normal form

The Veblen function and its extension to a function with an arbitrary finite number of parameters requires the following extension to the Cantor Normal Form in Equation 1.

$$\alpha = \alpha_1 n_1 + \alpha_2 n_2 + \alpha_3 n_3 + \dots + \alpha_k n_k$$

$$\alpha_i = \varphi(\beta_{1,i}, \beta_{2,i}, \dots, \beta_{m_i,i})$$

$$k \ge 1, k \ge i \ge 1, m_i \ge 1, n_k \ge 1, \alpha_1 > \alpha_2 > \alpha_3 > \dots > \alpha_k$$

$$\alpha_i \text{ and } \beta_{i,j} \text{ are ordinals; } i, j, k, m_i, n_k \text{ are integers.}$$

$$(6)$$

Note that $\varphi(\beta) = \omega^{\beta}$ so the above includes the Cantor normal form terms. To obtain a unique representation for each ordinal the rule is adopted that all normal forms must be reduced to the simplest expression that represents the same ordinal. For example $\varphi(1,0) = \varepsilon_0 = \omega^{\varepsilon_0} = \varphi(\varphi(1,0))$. This requires that fixed points be detected and reduced as described in 6.3.

In this computational approach, the meaning of ordinal notations is defined by functions compare and limitElement. What compare does is determined by limitElement which defines each notation in terms of notations for smaller ordinals.

²⁵ All references to ordinals in the context of describing the computational approach refer to ordinal notations. The word notation will sometimes be omitted when it is obviously meant and would be tedious to keep repeating.

		$\alpha = 0$	$\varphi(\beta_1, \beta_2,, \beta_m)$ from Equation 6.
lp1	l, repl and	l rep2 abbr	eviate limPlus_1 replace1 and replace2.
Co	nditions on	the least	Routines rep1 and rep2 replace 1 or 2
sign	nificant non	zero	parameters in Equation 6. The index and value
par	ameters, le	eastOrd	to replace (one or two instances) are the parameters
(in	dex least)	and	to these routines. lp1() adds one to an ordinal with
nxt	cOrd (index	nxt)	$ exttt{psuedoCodeLevel} > exttt{cantorCodeLevel} \ (ext{see}$
			Section 6.3 on fixed points). ret is the result returned.
X	nxtOrd	leastOrd	$\mathtt{ret} = \alpha.\mathtt{limitElement}(\mathtt{i})$
A	ignore	limit^1	<pre>ret=rep1(least,leastOrd.limitElement(i).lp1());</pre>
В	ignore	successor ²	<pre>ret=rep2(least,leastOrd-1,least+1,1);</pre>
			for (int j=1; j <i; j++)<="" td=""></i;>
			<pre>ret= rep2(least,leastOrd-1,least+1,ret.lp1());</pre>
С	limit	successor ³	<pre>tmp=rep1(least,leastOrd-1).lp1();</pre>
			<pre>ret=rep2(nxt,nxt0rd.limitElement(i).lp1(),</pre>
			<pre>nxt+1,tmp);</pre>
D	successor	successor ³	ret=rep1(least,leastOrd-1).lp1();
			for (int j=1; j <i; j++)<="" td=""></i;>
			ret=rep2(nxt, nxt0rd-1, nxt+1,ret.lp1());

The 'X' column gives the exit code from limitElement (see Section 6.2).

- 1 least significant non zero parameter may or may not be least significant.
- 2 least significant non zero parameter is not least significant.
- 3 least significant non zero parameter is least significant.

Table 9: Cases for computing $\varphi(\beta_1, \beta_2, ..., \beta_m)$.limitElement(i)

5.4 limitElement for finite functions

The LimitElement member function for an ordinal notation ord defines ord by enumerating notations for smaller ordinals such that the union of the ordinals those notations represent is the ordinal represented by ord. As with base class Ordinal all but the least significant term is copied unchanged to each output of limitElement. Table 2 for Ordinal::limitElement specifies how terms, excluding the least significant and the factors (the n_i in Equation 1), are handled. This does not change for the extended normal form in Equation 6. Table 9 extends Table 2 by specifying how the least significant normal form term (if it is $\geq \varepsilon_0$) is handled in constructing limitElement(i). If the factor of this term is greater than 1 or there are other terms in the ordinal notation then the algorithms from Table 2 must also be used in computing the final output. The idea in defining how limitElement works on the least significant term is to construct an infinite sequence that is the the strongest possible iteration of allowed processes and notations.

Table 9 uses pseudo C++ code adapted from the implementation of limitElement. Variable names have been shortened to limit the size of the table and other simplifications have been made. However the code accurately describes the logic of the program. Variable ret is

the result or output of the subroutine. Different sequences are generated based on the two least significant non zero parameters of φ in Equation 4 and whether the least significant non zero term is the least significant term (including those that are zero). The idea is to construct an infinite sequence with a limit that is not reachable with a finite sequence of smaller notations.

5.5 An iterative functional hierarchy

A finite functional hierarchy with an arbitrarily large number of parameters can be expanded with a limit that is a sequence of finite functionals with an ever increasing number of parameters. Using this as the successor operation and taking the union of all hierarchies defined by a limit ordinal allows iteration of a functional hierarchy up to any recursive ordinal. The key to defining this iteration is the limitElement member function.

To support this expanded notation the normal form in Equation 6 is expanded as follows.

$$\alpha = \alpha_1 n_1 + \alpha_2 n_2 + \alpha_3 n_3 + \dots + \alpha_k n_k$$

$$\alpha_i = \varphi_{\gamma_i}(\beta_{1,i}, \beta_{2,i}, \dots, \beta_{m_i,i})$$

$$k \ge 1, k \ge i \ge 1, m_i \ge 1, n_k \ge 1, \alpha_1 > \alpha_2 > \alpha_3 > \dots > \alpha_k$$

$$\alpha_i \text{ and } \beta_{i,j} \text{ are ordinals; } i, j, k, m_i, n_k \text{ are integers.}$$

$$(7)$$

 γ_i , the subscript to φ , is the ordinal the functional hierarchy is iterated up to. $\varphi_0(\beta_1, \beta_2, ..., \beta_m) = \varphi(\beta_1, \beta_2, ..., \beta_n)$. $\varphi_1(0) = \varphi_1$ is the notation for an infinite union of the ordinals represented by finite functionals. Specifically it represents the union of ordinals with notations: $\varphi(1), \varphi(1,0).\varphi(1,0,0), ..., \varphi(1) = \omega, \varphi(1,0) = \varepsilon_0$ and $\varphi(1,0,0) = \Gamma_0$. $\varphi_0(\alpha) = \varphi(\alpha) = \omega^{\alpha}$ and $\varphi_{\gamma+1} = \varphi_{\gamma}(1) \cup \varphi_{\gamma}(1,0) \cup \varphi_{\gamma}(1,0,0), ...,$

The definition of limitElement for this hierarchy is shown in Table 10. This is an extension of Table 9. That table and the definition of compare (See Section 7.1) define the notations represented by Equation 7. The subclass FiniteFuncOrdinal (Section 6) defines finite functional notations for recursive ordinals. The subclass IterFuncOrdinal (Section 7) defines iterative functional notations for recursive ordinals.

6 FiniteFuncOrdinal class

FiniteFuncOrdinal class is derived from Ordinal base class. It implements ordinal notations for the normal form in Equation 6. Each term or $\alpha_i n_i$ is defined by an instance of class FiniteFuncNormalElement or CantorNormalElement. Any term that is a FiniteFuncNormalElement will have codeLevel set to finiteFuncCodeLevel.

The FiniteFuncOrdinal class should not be used directly to create ordinal notations. Instead use functions psi or finiteFunctional²⁶. psi constructs notations for the initial Veblen hierarchy. It requires exactly two parameters (for the single parameter case use $\varphi(\alpha) = \omega^{\alpha}$). finiteFunctional accepts 3 to 5 parameters. For more than 5 use a

²⁶In the interactive ordinal calculator the psi function can be use with any number of parameters to define a FiniteFuncOrdinal. See Section A.11.5 for some examples.

	$\alpha = \varphi_{\gamma}(\beta_1, \beta_2,, \beta_n)$	R_m) from Equation 7. For this table $m=1$.
\mathbf{X}	Condition	$\alpha.\mathtt{limitElement(i)}$
E	$\beta_1 = 0, \gamma \text{ limit}$	$arphi_{\gamma exttt{limitElement(i).lp1()}}(0)$
F	$\beta_1 = 0, \gamma \text{ successor}$	$\varphi_{\gamma-1}(\varphi_{\gamma-1}(0),0,0,,0)$ (i parameters)
G	β_1 limit	$arphi_{\gamma}(eta_1.\mathtt{limitElement(i).lp1()})$
Н	β_1 successor	$\varphi_{\gamma.\mathtt{limitElement(i).lp1()}}(\varphi_{\gamma}(\beta_1-1).\mathtt{lp1()},0,0,,0)$
	γ limit	(i parameters)
I	β_1 successor	$arphi_{\gamma-1}(arphi_{\gamma}(eta_1-1).\mathtt{lp1}(),0,0,,0)$
	γ successor	(i parameters)
J	m > 1	See Table 9 for more than one β_i parameter.

The 'X column gives the exit code from limitElement (see Section 6.2). If $\beta_1 = 0$, it is the only β_i . Leading zeros are normalized away.

Table 10: Cases for computing $\varphi_{\gamma}(\beta_1, \beta_2, ..., \beta_m)$.limitElement(i)

NULL terminated array of pointers to Ordinals or createParameters to create this array. createParameters can have 1 to 9 parameters all of which must be pointers to Ordinals.

Some examples are show in Table 11. The direct use of the FiniteFuncOrdinal constructor is shown in Table 12. The 'Ordinal' column of both tables is created using Ordinal:: texNormalForm which uses the standard notation for ε_{α} and Γ_{α} where appropriate. These functions reduce fixed points to their simplest expression and declare an Ordinal instead of a FiniteFuncOrdinal if appropriate. The first line of Table 11 is an example of this.

FiniteFuncOrdinal can be called with 3 or 4 parameters. For additional parameters, it can be called with a NULL terminated array of pointers to Ordinal notations. createParameters can be used to create this array as shown in the last line of Table 11²⁷.

6.1 FiniteFuncNormalElement::compare member function

Because of virtual functions, there is no need for FiniteFuncOrdinal::compare. The work of comparing the sequence of terms in Equation 6 is done by Ordinal::compare and routines it calls. FiniteFuncNormalElement::compare is automatically called for comparing individual terms in the normal form from Equation 6. It overrides CantorNormalElement::compare. It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argument term. The $\beta_{j,i}$ in Equation 6 are represented by the elements of array funcParameters in C++.

The FiniteFuncNormalElement object compare (or any class member function) is called from is 'this' in C++. The CantorNormalElement argument to compare is trm. If trm.codeLevel > finiteFuncCodeLevel²⁸ then -trm.compare(*this) is returned. This invokes the subclass member function associated with the subclass and codeLevel of trm.

CantorNormalElement::compare only needs to test the exponents and if those are equal the factors of the two normal form terms being compared. An arbitrarily large number

²⁷The '&' character in the last line in Table 11 is the C++ syntax that constructs a pointer to the object '&' precedes.

²⁸ finiteFuncCodeLevel is the codeLevel(see Section 4.4.2) of a FiniteFuncNormalElement.

C++ code	Ordinal
psi(zero,omega)	ω^{ω}
psi(one,zero)	$arepsilon_0$
psi(one,one)	$arepsilon_1$
psi(eps0,one)	$\varphi(\varepsilon_0,1)$
psi(one,Ordinal::two)	$arepsilon_2$
finiteFunctional(one,zero,zero)	Γ_0
finiteFunctional(one,zero,one)	$\varphi(1,0,1)$
<pre>finiteFunctional(one,zero,Ordinal::two)</pre>	$\varphi(1,0,2)$
finiteFunctional(one,Ordinal::two,zero)	Γ_2
finiteFunctional(one,zero,omega)	$\varphi(1,0,\omega)$
finiteFunctional(one,eps0,omega)	$\varphi(1,\varepsilon_0,\omega)$
finiteFunctional(one,zero,zero,zero)	$\varphi(1,0,0,0)$
finiteFunctional(createParameters(
&one,&zero,&zero,&zero))	$\varphi(1,0,0,0,0)$

Table 11: finiteFunctional C++ code examples

C++ code	Ordinal
<pre>const Ordinal * const params[] =</pre>	
{&Ordinal::one,&Ordinal::zero,0};	
<pre>const FiniteFuncOrdinal eps0(params);</pre>	$arepsilon_0$
Ordinal eps0_alt = psi(1,0);	$arepsilon_0$
<pre>const FiniteFuncOrdinal eps0_alt2(1,0);</pre>	$arepsilon_0$
<pre>const FiniteFuncOrdinal gamma0(1,0,0);</pre>	Γ_0
<pre>const FiniteFuncOrdinal gammaOmega(omega,0,0);</pre>	$\varphi(\omega,0,0)$
<pre>const FiniteFuncOrdinal gammax(gammaOmega,gammaO,omega);</pre>	$\varphi(\varphi(\omega,0,0),\Gamma_0,\omega)$
<pre>const FiniteFuncOrdinal big(1,0.0,0);</pre>	$\varphi(1,0,0,0)$

Table 12: FiniteFuncOrdinal C++ code examples

of Ordinal parameters are used to construct a FiniteFuncNormalElement. Thus a series of tests is required. This is facilitated by a member function CantorNormalElement:: getMaxParameter that returns the largest parameter used in constructing this normal form term²⁹. If trm.codeLevel < finiteFuncCodeLevel then trm > this only if the maximum parameter of trm is greater than this. However the value of factor for this must be ignored in making this comparison because trm $\geq \omega^{\text{trm.getMaxParameter}()}$ and this will swamp the effect of any finite factor.

The following describes FiniteFuncNormalElement::compare with a single CantorNormalElement parameter trm.

- 1. If trm.codeLevel < finiteFuncCodeLevel the first (and thus largest) term of the exponent of the argument is compared to this, ignoring the two factors. If the result is nonzero that result is returned. Otherwise -1 is returned.
- 2. If the first term of the maximum parameter of the ordinal notation compare is called from is, ignoring factors, ≥ trm, return 1.
- 3. If this \leq the maximum parameter of trm return -1.

If the above is not decisive FiniteFuncNormalElement::compareFiniteParams is called to compare in sequence the number of parameters and then the size of each parameter in succession starting with the most significant. If any difference is encountered that is returned as the result otherwise the result depends on the relative size of the two factors.

6.2 FiniteFuncNormalElement::limitElement member function

As with compare there is no need for FiniteFuncOrdinal::limitElement. The Ordinal member function is adequate. FiniteFuncNormalElement::limitElement overrides CantorNormalElement::limitElement described in Section 4.3. Thus it takes a single integer parameter. Increasing values for this argument yield larger ordinal notations as output. The union of the ordinals represented by the outputs for all integer inputs is equal to the ordinal represented by the FiniteFuncNormalElement class instance limitElement is called from. This will be referred to as the input term to limitElement.

Ordinal::limitElement copies all but the last term of the normal form of its input to the output it generates. For both Ordinals and FiniteFuncOrdinals this is actually done in OrdinalImpl::limitElement³⁰ The last term of the result is determined by a number of conditions on the last term of the input in FiniteFuncNormalElement::limitElement.

Tables 2 and 9 fully define FiniteFuncOrdinal::limitElement. The 'X' column in Table 9 connect each table entry to the section of code preceding RETURN1. This is a debugging macro which has a quoted letter as a parameter. This letter is an exit code that matches the X column in Table 9. The C++ pseudo code in the table uses shorter variable names and takes other shortcuts, but accurately reflects the logic in the source code.

Some examples are shown in Table 13.

²⁹For efficiency the constructor of a FiniteFuncNormalElement finds and saves the maximum parameter. For a CantorNormalElement the maximum parameter is the exponent as this is the only parameter that can be infinite. The case when the factor is larger than the exponent can be safely ignored.

³⁰OrdinalImpl is an internal implementation class that does most of the work for instances of an Ordinal.

FiniteFuncOrdinal		limit	limitElement
3	1	2	4
ε_0	3	ω_{ω}	$\omega^{\omega^{\omega}}$
$\varphi(2,0)$	$arepsilon_1$	$\varepsilon_{\varepsilon_1+1}$	$\varepsilon_{\varepsilon_{\varepsilon_{1}+1}+1}$
$\varphi(\omega,\omega)$	$arphi(\omega,1)$	$\varphi(\omega,2)$	$\varphi(\omega,4)$
Γ_0	ε_0	$\varphi(\varepsilon_0+1,0)$	$\varphi(\varphi(\varphi(\varepsilon_0+1,0)+1,0)+1,0)$
Γ_1	$\varphi(1,0,1)$	$\varphi(1,0,\varphi(1,0,1)+1)$	$\varphi(1,0,\varphi(1,0,\varphi(1,0,\varphi(1,0,1)+1)+1)+1)$
$\varphi(1,1,1)$	$\Gamma_1 + 1$	$arphi(1,0,\Gamma_1+1)$	$\varphi(1,0,\varphi(1,0,\varphi(1,0,\Gamma_1+1)+1)+1)$
$\varphi(2,0,0)$	Γ_1	Γ_{Γ_1+1}	$\Gamma_{\Gamma_{\Gamma_{1}+1}+1}$
$\varphi(3,0,0)$	$\varphi(2,1,0)$	$\varphi(2, \varphi(2, 1, 0) + 1, 0)$	$\varphi(2, \varphi(2, \varphi(2, \varphi(2, 1, 0) + 1, 0) + 1, 0) + 1, 0)$
$\varphi(\omega,0)$	ε_0	$\varphi(2,0)$	$\varphi(4,0)$
$\varphi(\omega,1)$	$\mathcal{E}_{arphi(\omega,0)+1}$	$\varphi(2,\varphi(\omega,0)+1)$	$\varphi(4,\varphi(\omega,0)+1)$
$\varphi(\omega,0,0)$	Γ_0	arphi(2,0,0)	$\varphi(4,0,0)$
$arphi(\omega,0,1)$	$\varphi(1,\varphi(\omega,0,0)+1,1)$	$\varphi(2,\varphi(\omega,0,0)+1,1)$	$\varphi(4,\varphi(\omega,0,0)+1,1)$
$\mid arphi(\omega,1,0) \mid$	$arphi(\omega,0,1)$	$arphi(\omega,0,arphi(\omega,0,1)+1)$	$\varphi(\omega,0,\varphi(\omega,0,\varphi(\omega,0,\varphi(\omega,0,\varphi(\omega,0,1)+1)+1)+1)$
$\varphi(\omega,1,1)$	$\varphi(\omega,1,0)+1$	$\varphi(\omega,0,\varphi(\omega,1,0)+1)$	$\varphi(\omega, 0, \varphi(\omega, 0, \varphi(\omega, 0, \varphi(\omega, 1, 0) + 1) + 1) + 1)$
$\varphi(1,0,0,0)$	Γ_0	$\varphi(\Gamma_0+1,0,0)$	$\varphi(\varphi(\varphi(\Gamma_0+1,0,0)+1,0,0)+1,0,0)$
$\varphi(2,0,0,0)$	$\varphi(1,1,0,0)$	$\varphi(1, \varphi(1, 1, 0, 0) + 1, 0, 0)$	$\varphi(1, \varphi(1, \varphi(1, \varphi(1, 1, 0, 0) + 1, 0, 0) + 1, 0, 0) + 1, 0, 0)$
$\varphi(2, 0, 2, 1)$	$\varphi(2,0,2,0)+1$	$\varphi(2,0,1,\varphi(2,0,2,0)+1)$	$\varphi(2,0,1,\varphi(2,0,1,\varphi(2,0,1,\varphi(2,0,2,0)+1)+1)+1)$
$[~\varphi(\omega,0,0,0)$	$\varphi(1,0,0,0)$	$\varphi(2,0,0,0)$	arphi(4,0,0,0)
$\Big[\;\varphi(2,\varphi(2,0),\varepsilon_0)$	$arphi(2,arphi(2,0),\omega)$	$\varphi(2,\varphi(2,0),\omega^\omega)$	$\varphi(2,\varphi(2,0),\omega^{\omega^\omega})$
$\left[\begin{array}{c}\varphi(3,\varphi(2,0),\varepsilon_0)\end{array}\right.$	$\varphi(3, \varphi(2, 0), \omega)$	$arphi(3,arphi(2,0),\omega^\omega)$	$arphi(3,arphi(2,0),\omega^{\omega^{\omega}})$
$\varphi(3, \varphi(2, 0, 0, 0), \omega)$	$\varphi(3, \varphi(2, 0, 0, 0), 1)$	$\varphi(3, \varphi(2, 0, 0, 0), 2)$	arphi(3,arphi(2,0,0,0),4)
$\varphi(3,\varphi(2,0,0,0),\varepsilon_0)$	$\varphi(3,\varphi(2,0,0,0),\omega)$	$\varphi(3,\varphi(2,0,0,0),\omega^\omega)$	$\varphi(3,\varphi(2,0,0,0),\omega^{\omega^{\omega^{\omega}}})$
$\left[\ \varphi(3,\varphi(2,0,0,0),\varepsilon_1) \right.$	$\varphi(3, \varphi(2, 0, 0, 0), \varepsilon_0 + 1)$	$\varphi(3, \varphi(2, 0, 0, 0), \omega^{\varepsilon_0 + 1})$	$\varphi(3,\varphi(2,0,0,0),\omega^{\omega^{\omega_{\varepsilon_0+1}}})$
$\varphi(\varphi(2,0),\Gamma_0,\varepsilon_0)$	$\varphi(\varphi(2,0),\Gamma_0,\omega)$	$arphi(arphi(2,0),\Gamma_0,\omega^\omega)$	$\varphi(\varphi(2,0),\Gamma_0,\omega^{\omega^\omega})$

Table 13: FiniteFuncOrdinal::limitElement examples.

6.3 FiniteFuncOrdinal::fixedPoint member function

FiniteFuncOrdinal::fixedPoint is used by finiteFunctional to create an instance of FiniteFuncOrdinal in a normal form (Equation 6) that is the simplest expression for the ordinal represented. The routine has an index and an array of pointers to Ordinal notations as input. This array of notations contains the parameters for the notation being constructed. This function determines if the parameter at the specified index is a fixed point for a FiniteFuncOrdinal created with these parameters. If it is, true is returned and otherwise false. The routine that calls this routine selects the largest parameter in the array of Ordinal pointers as the one to check (the value of the index parameter). It then checks to see if all less significant parameters are 0. If not this cannot be a fixed point. fixedPoint is only called if this condition is met.

Section 4.4.1 defines the codeLevel assigned to a CantorNormalElement. From this a psuedoCodeLevel for an Ordinal is obtained by calling Ordinal member function with that name. psuedoCodeLevel returns cantorCodeLevel unless the ordinal notation normal form has a single term or CantorNormalElement with a factor of 1. In that case the codeLevel of that term is returned. This is helpful in evaluating fixed points because a parameter with a psuedoCodeLevel at cantorCodeLevel cannot be a fixed point.

If the parameter selected has $psuedoCodeLevel \le cantorCodeLevel$, false is returned. If the maximum parameter psuedoCodeLevel > finiteFuncCodeLevel, true is returned. Otherwise a FiniteFuncOrdinal is constructed from all the parameters except that selected by the index which is set to $zero^{31}$. If this value is less than the maximum parameter, true is returned and otherwise false.

6.4 FiniteFuncOrdinal operators

FiniteFuncOrdinal operators are extensions of the Ordinal operators defined in Section 4.4. No new code is required for addition.

6.4.1 FiniteFuncOrdinal multiplication

The code that combines the terms of a product for class Ordinal can be used without change for FiniteFuncOrdinal. The only routines that need to be overridden are those that take the product of two terms, i. e. two CantorNormalElements with at least one of these also being a FiniteFuncNormalElement. The two routines overridden are multiply and multiplyBy. Overriding these insures that, if *either* operand is a FiniteFuncNormalElement subclass of CantorNormalElement, the higher level virtual function will be called.

The key to multiplying two terms of the normal form representation, at least one of which is at finiteFuncCodeLevel, is the observation that every normal form term at finiteFuncCodeLevel with a factor of 1 is a fixed point of ω^x , i. e. $a = \omega^a$. Thus the product of two such terms, a and b is ω^{a+b} . Further the product of term a at this level and $b = \omega^{\beta}$ for any term b at cantorCodeLevel is $\omega^{a+\beta}$. Note in all cases if the first term

³¹If there is only one nonzero parameter (which must be the most significant), then the parameter array is increased by 1 and the most significant parameter is set to one in the value to compare with the maximum parameter.

has a factor other than 1 it will be ignored. The second term's factor will be applied to the result.

Multiply is mostly implemented in FiniteFuncNormalElement::doMultiply which is a static function³² that takes both multiply arguments as operands. This routine is called by both multiply and multiplyBy. It first checks to insure that neither argument exceeds finiteFuncCodeLevel and that at least one argument is at finiteFuncCodeLevel. The two arguments are called op1 and op2.

Following are the steps taken in FiniteFuncNormalElement::doMultiply. s1 and s2 are temporary variables.

- 1. If op1 is finite return a copy of op2 with its factor multiplied by op1 and return that value.
- 2. If op1 is at cantorCodeLevel assign to s1 the exponent of op1 otherwise assign to s1 a copy of op1 with factor set to 1.
- 3. If op2 is at cantorCodeLevel assign to s2 the exponent of op2 otherwise assign to s2 a copy of op2 with factor set to 1.
- 4. Add s1 and s2 to create newExp.
- 5. If newExp has a single term and the codeLevel of that term is ≥ finiteFuncCodeLevel and the factor of that term is 1 then return the value of the single term of newExp.
- 6. Create and return a CantorNormalElement with exponent equal to newExp and factor equal to the factor or op2.

Some examples are shown in Table 14.

 $^{^{32}}$ A C++ static function is a member function of a class that is *not* associated with a particular instance of that class.

$\alpha \times \beta$	$\omega^{(\varepsilon_0 2)} + (\varepsilon_0 2) + 2$	$\varepsilon_1 + \omega^{(\varepsilon_0 2)} + (\varepsilon_0 2) + 2$	$\omega^{\omega^{(\varepsilon_0 2)}}$		$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	7	$\omega^{(\varepsilon_1 2)} + \omega^{\varepsilon_1 + \varepsilon_0} + (\varepsilon_1 2) + \varepsilon_0 + 2$	$\omega^{arepsilon_1+\omega^{(arepsilon_02)}}$	$\varphi(\omega^{\omega}, \omega + 3)$	$arphi(3,arepsilon_0,arphi(\omega^\omega,\omega+3))$	$\omega^{\omega^{(\varepsilon_0 2)} + \varepsilon_0} + \omega^{\omega^{(\varepsilon_0 2)}} 2$	$arepsilon_1 + \omega^{\omega^{(arepsilon_0 2)} + arepsilon_0} + \omega^{\omega^{(arepsilon_0 2)}} 2$	$^{(arepsilon_0^{(arepsilon_0^{(2)})}2}$	$\varphi(\omega^{\omega},\omega+3)$	$\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))$	$\omega^{\varphi(\omega^{\omega},\omega+3)+arepsilon_{0}}+(arphi(\omega^{\omega},\omega+3)2)$	$\omega^{\varphi(\omega^{\omega},\omega+3)+\varepsilon_{1}} + \omega^{\varphi(\omega^{\omega},\omega+3)+\varepsilon_{0}} + (\varphi(\omega^{\omega},\omega+3)2)$	$\omega_{\varphi(\omega^{\omega},\omega+3)+\omega^{(\varepsilon_02)}}$	$\omega^{(arphi(\omega^\omega,\omega+3)2)}$	$arphi(3,arepsilon_0,arphi(\omega^\omega,\omega+3))$	$\omega^{\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\varepsilon_0}+(\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))2)$	$\omega^{\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\varepsilon_1} + \omega^{\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\varepsilon_0} + (\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))2) \mid$	$\omega_{\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\omega^{(\varepsilon_02)}}$	$\omega_{\varphi(3,\varepsilon_0,\varphi(\omega^{\omega},\omega+3))+\varphi(\omega^{\omega},\omega+3)}$	$\omega^{(arphi(3,arepsilon_0,arphi(\omega^\omega,\omega+3))2)}$
β	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\omega^{\omega(arepsilon_0 2)}$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\omega^{\omega(arepsilon_0 2)}$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\omega^{\omega(\varepsilon_0 2)}$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\omega^{\omega(arepsilon_0 2)}$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\omega^{\omega(arepsilon_0 2)}$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$
α	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0 + 2$	$\omega^{\omega^{(\varepsilon_0 2)}}$	$\omega^{\omega(\varepsilon_0 2)}$	$\omega^{\omega^{(\varepsilon_0 2)}}$	$\omega^{(\varepsilon_0 2)}$	$\omega^{\omega(arepsilon_02)}$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$

Table 14: FiniteFuncOrdinal multiply examples

6.4.2 FiniteFuncOrdinal exponentiation

Exponentiation has a structure similar to multiplication. The only routines that need to be overridden involve a^b when both a and b are single terms in a normal form expansion. The routines overridden are toPower and powerOf. Most of the work is done by static member function FiniteFuncNormalElement::doToPower which takes both parameters as arguments. The two routines that call this only check if both operands are at cantorCodeLevel and if so call the corresponding CantorNormalElement member function.

The key to the algorithm is again the observation that every normal form term at finiteFuncCodeLevel with a factor of 1 is a fixed point of ω^x , i. e. $a=\omega^a$. The value of factor can be ignored in the base part of an exponential expression where the exponent is a limit ordinal. All infinite normal form terms are limit ordinals. Thus a^b where both a and b are at finiteFuncCodeLevel and $b \leq a$ is ω^{ab} or equivalently $\omega^{\omega^{a+b}}$ which is the normal form result. If the base, a, of the exponential is at cantorCodeLevel then $a=\omega^{\alpha}$ and the result is $\omega^{\alpha b}$.

Following is a more detailed summary of FiniteFuncNormalElement::doToPower. This summary describes how base expon is computed.

- If (base < expon) \land (expon.factor = 1) \land (expon.expTerm()³³ == true) then expon is returned.
- ullet p1 = base.codeLevel \geq finiteFuncCodeLevel ?base : base.exponent 34
- $newExp = p1 \times expon$
- If newExp has a single term with a factor of 1 and the codeLevel of that term is \geq finiteFuncCodeLevel then return newExp because it is a fixed point of ω^x .
- Otherwise return ω^{newExp} .

³³CantorNormalElement::expTerm returns true iff the term it is called from is at cantorCodeLevel, has a factor or 1, has an exponent with a single term and such that exponent.expTerm() returns true.

³⁴In C++ 'boolean expression? optionTrue : optionFalse' evaluates to 'optionTrue' if 'boolean expression' is true and 'optionFalse' otherwise

$lpha^{eta}$	$\omega^{\omega^{(\varepsilon_0 2)} + (\varepsilon_0 2)} + \omega^{\omega^{(\varepsilon_0 2)} + \varepsilon_0} 2 + \omega^{\omega^{(\varepsilon_0 2)}} 2$	$\omega^{arepsilon_1+\omega^{(arepsilon_02)}}$	$\omega^{\omega^{(\varepsilon_0 2)} + (\varepsilon_0 3)} + \omega^{\omega^{\omega^{(\varepsilon_0 2)}} + (\varepsilon_0 2)} 2 + \omega^{\omega^{\omega^{(\varepsilon_0 2)}} + \varepsilon_0} 2 + \omega^{\omega^{\omega^{(\varepsilon_0 2)}}} 2$	$\varphi(\omega^{\omega}, \omega + 3)$	$arphi(3,arepsilon_0,arphi(\omega^\omega,\omega+3))$	$\omega^{\omega^{\varepsilon_1+\varepsilon_0}+(\varepsilon_12)}+\omega^{\omega^{\varepsilon_1+\varepsilon_0}+\varepsilon_1+\varepsilon_0}$	$\omega^{\omega(\varepsilon_1 2) + \omega \varepsilon_1 + \varepsilon_0}$	$\omega^{\omega_{\varepsilon_1+\omega^{(\varepsilon_02)}}+(\varepsilon_13)}+\omega^{\omega_{\varepsilon_1+\omega^{(\varepsilon_02)}}+(\varepsilon_12)+\varepsilon_0}$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\omega^{\omega^{(\varepsilon_03)}+\omega^{(\varepsilon_02)}2}+\omega^{\omega^{(\varepsilon_03)}+\omega^{(\varepsilon_02)}}3+\omega^{\omega^{(\varepsilon_03)}}3$	$\omega^{\varepsilon_1+\omega^{(\varepsilon_03)}}$	$\omega^{\omega^{(\varepsilon_0 2)} + \omega^{(\varepsilon_0 2)}} + \omega^{\omega^{(\varepsilon_0 2)}} + \omega^{\omega^{(\varepsilon_0 2)} 2} + \omega^{\omega^{(\varepsilon_0 2)} + \omega^{(\varepsilon_0 2)}} + \omega^{\omega^{(\varepsilon_0 2)}} 3 + \omega^{\omega^{(\varepsilon_0 2)}} 3$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\omega^{\omega\varphi(\omega^\omega,\omega+3)+\varepsilon_0}+(\varphi(\omega^\omega,\omega+3)2)$	$\omega^{\omega_{\varphi}(\omega^{\omega},\omega+3)+\varepsilon_{1}}+\omega^{\varphi(\omega^{\omega},\omega+3)+\varepsilon_{0}}$	$\omega^{\varphi\varphi(\omega^\omega,\omega+3)+\omega^{(\varepsilon_02)}+(\varphi(\omega^\omega,\omega+3)3)}$	$\omega^{\omega(arphi(\omega^{\omega},\omega+3)2)}$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\omega^{\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\varepsilon_0+(\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))2)}$	$\omega^{\omega\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\varepsilon_1+\omega\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\varepsilon_0}$	$\omega^{\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))+\omega^{(\varepsilon_02)}}+(\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))3)$	$\omega_{\omega^{\varphi(3,\varepsilon_{0},\varphi(\omega^{\omega},\omega+3))+\varphi(\omega^{\omega},\omega+3)}}$	$\omega_{\omega^{(arphi(3,arepsilon_0, oldsymbol{\omega}^{(\omega^{\omega}, \omega+3))2})}$
β	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0$	$\omega^{\omega^{(\varepsilon_0 2)}} + 3$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0$	$\omega^{\omega^{(arepsilon_0} 2)} + 3$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0$	$\omega^{\omega^{(arepsilon_0} 2)} + 3$	$\varphi(\omega^{\omega},\omega+3)$	$\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0$	$\omega^{\omega^{(\varepsilon_0 2)}} + 3$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0$	$\omega^{\omega^{(\varepsilon_0 2)}} + 3$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))$
α	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_0 + 2$	$\varepsilon_1 + \varepsilon_0$	$\varepsilon_1 + \varepsilon_0$	$\varepsilon_1 + \varepsilon_0$	$\varepsilon_1 + \varepsilon_0$	$\varepsilon_1 + \varepsilon_0$	$\omega^{\omega^{(\varepsilon_0 2)}} + 3$	$\omega^{\omega^{(arepsilon_0 2)}} + 3$	$\omega^{\omega^{(\varepsilon_0 2)}} + 3$	$\omega^{\omega^{(\varepsilon_0 2)}} + 3$	$\omega^{\omega^{(arepsilon_0 2)}} + 3$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(\omega^{\omega}, \varepsilon + 3)$	$\varphi(\omega^{\omega},\omega+3)$	$\varphi(\omega^{\omega}, \omega + 3)$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varphi(3,\varepsilon_0,\varphi(\omega^{\omega},\omega+3))$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varphi(3, \varepsilon_0, \varphi(\omega^{\omega}, \omega + 3))$	$\varphi(3,\varepsilon_0,\varphi(\omega^\omega,\omega+3))$

Table 15: FiniteFuncOrdinal exponential examples

'cp' stands for function createParameters	
C++ code	Ordinal
iterativeFunctional(zero,cp(&one))	ω
<pre>iterativeFunctional(zero,cp(&one,&zero))</pre>	$arepsilon_0$
iterativeFunctional(zero,cp(&one,&one,&zero))	Γ_1
iterativeFunctional(one)	φ_1
<pre>iterativeFunctional(one,cp(&one))</pre>	$\varphi_1(1)$
<pre>iterativeFunctional(one,cp(&one,ω))</pre>	$\varphi_1(1,\omega)$
<pre>iterativeFunctional(one,cp(&one,ω,&zero,&zero))</pre>	$\varphi_1(1,\omega,0,0)$
<pre>iterativeFunctional(omega,cp(&one,ω,&zero,&zero))</pre>	$\varphi_{\omega}(1,\omega,0,0)$
iterativeFunctional(omega)	$arphi_{\omega}$
<pre>iterativeFunctional(one,cp(&iterativeFunctional(omega)))</pre>	$arphi_{\omega}$

Table 16: iterativeFunctional C++ code examples

7 IterFuncOrdinal class

C++ class IterFuncOrdinal is derived from class FiniteFuncOrdinal which in turn is derived from class Ordinal. It implements the iterative functional hierarchy described in Section 5.5. It uses the normal form in Equation 7. Each term of that normal form, each $\alpha_i n_i$, is represented by an instance of class IterFuncNormalElement or one of the classes this class is derived from. These are FiniteFuncNormalElement and CantorNormalElement. Terms that are IterFuncNormalElements have a codeLevel of iterFuncCodeLevel.

The IterFuncOrdinal class should not be used directly to create ordinal notations. Instead use function iterativeFunctional³⁵. This function takes two arguments. The first gives the level of iteration or the value of γ_i in Equation 7. The second gives a NULL terminated array of pointers to Ordinals which are the $\beta_{i,j}$ in Equation 7. This second parameter is optional and can be created with function createParameters described in Section 6. Some examples are shown in Table 16.

iterativeFunctional creates an Ordinal or FiniteFuncOrdinal instead of an IterFuncOrdinal if appropriate. The first three lines of Table 16 are examples. It also reduces fixed points to their simplest possible expression. The last line of the table is an example.

7.1 IterFuncNormalElement::compare member function

IterFuncNormalElement::compare supports one term in the extended normal form in Equation 7. IterFuncNormalElement::compare with a single CantorNormalElement argument overrides FiniteFuncNormalElement::compare with the same argument (see Section 6.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argument term.

³⁵The interactive ordinal calculator supports a TeX like syntax. To define $\varphi_a(b, c, d)$ write psi_{a}(b,c,d). Any number of parameters in parenthesis may be entered or the parenthesis may be omitted. See Section A.11.6 for examples.

The IterFuncNormalElement object compare (or any class member function) is called from is this in C++. The CantorNormalElement argument to compare is trm. If trm.codeLevel > iterFuncCodeLevel then -trm.compare(*this) is returned. This invokes the subclass member function associated with the codeLevel of trm.

This compare is similar to that for class FiniteFuncOrdinal described in Section 6.1. The main difference is additional tests on γ_i from Equation 7.

If trm.codeLevel < iterFuncCodeLevel then trm > this only if the maximum parameter of trm is greater than this. However the values of factor must be ignored in making this comparison because trm $\geq \omega^{\text{trm.getMaxParameter}()}$ and this will swamp the effect of any finite factor.

Following is an outline of IterFuncNormalElement::compare with a CantorNormalElement parameter trm.

- 1. If trm.codeLevel < iterFuncCodeLevel, this is compared with the first (largest) term of the maximum parameter of the argument (ignoring the two factors). If the result is ≤ 0 , -1 is returned. Otherwise 1 is returned.
- 2. this is compared to the maximum parameter of the argument. If the result is less than than or equal -1 is returned.
- 3. The maximum parameter of this is compared against the argument trm. If the result is greater or equal 1 is returned.
- 4. The function level (functionLevel) (γ_i from Equation 7) of this is compared to the functionLevel of trm. If the result is nonzero it is returned.

If no result is obtained IterFuncNormalElement::compareFiniteParams is called to compare in sequence the number of parameters of the two terms and then the size of each argument in succession starting with the most significant. If any difference is encountered that is returned as the result. If not the difference in the factors of the two terms is returned.

7.2 IterFuncNormalElement::limitElement member function

IterFuncNormalElement::limitElement overrides CantorNormalElement::limitElement described in Section 4.3 and FiniteFuncNormalElement::limitElement described in Section 6.2 This function takes a single integer parameter. Increasing values for this argument yield larger ordinal notations as output. The union of the ordinals represented by the outputs for all integer inputs is equal to the ordinal represented by the IterFuncNormalElement class instance limitElement is called from. This will be referred to as the input to limitElement.

Ordinal::limitElement processes all but the last term of the normal form of the result by copying it unchanged from the input Ordinal. The last term of the result is determined by a number of conditions on the last term of the input. This is what IterFuncNormalElement::limitElement does.

Tables 2, 9 and 10 fully define IterFuncOrdinal::limitElement.³⁶ The C++ pseudo code in the table uses shorter variable names and takes other shortcuts, but accurately reflects the logic in the source code. The IterFuncNormalElement version of this routine calls a portion of the FiniteFuncNormalElement version called limitElementCom. FiniteFuncNormalElement::limitElementCom always creates its return value with a virtual function createVirtualOrdImpl which is overrides when it is called from a subclass object. The rep1 and rep2³⁷ of tables 9 and 10 also always call this virtual function to create a result

Some examples are shown in Table 17.

 $^{^{36}}$ The 'X' column in Tables 9 and 10 connect each table entry to the section of code preceding RETURN1. This is a debugging macro which has a quoted string as a parameter. This string is an exit code that matches the X column in the tables. If debugging mode is enabled for compare these exit codes are displayed.

 $^{^{37}}$ The name of these functions in the C++ source are replace1 and replace2.

IterFuncOrdinal		limitElement	ent
3	1	2	3
$arphi_1$	3	ε_0	Γ_0
φ_3	$\varphi_2(\varphi_2+1)$	$\varphi_2(\varphi_2+1,0)$	$\varphi_2(\varphi_2 + 1, 0, 0)$
$arphi_1(1)$	ω_{arphi_1+1}	$\varphi(\varphi_1+1,0)$	$\varphi(\varphi_1+1,0,0)$
$\varphi_{\mathcal{E}}$	φ_1	42	43
$ert arphi_{\omega}(1)$	$\varphi_1(\varphi_\omega+1)$	$\varphi_2(\varphi_\omega+1)$	$\varphi_3(\varphi_\omega+1)$
$\varphi_1(2)$	$\omega_{arphi_1(1)+1}$	$\varphi(\varphi_1(1)+1,0)$	$\varphi(\varphi_1(1) + 1, 0, 0)$
$arphi_1(arepsilon_0)$	$arphi_1(\omega)$	$arphi_1(\omega^\omega)$	$arphi_1(\omega^{\omega^\omega})$
$arphi_1(1,0,0)$	$ert arphi_1(1,0)$	$\varphi_1(\varphi_1(1,0)+1,0)$	$\varphi_1(\varphi_1(\varphi_1(1,0)+1,0)+1,0)$
$arphi_3(1,0,0)$	$\varphi_3(1,0)$	$\varphi_3(\varphi_3(1,0)+1,0)$	$\varphi_3(\varphi_3(\varphi_3(1,0)+1,0)+1,0)$
$arphi_1(\omega,1)$	$\varphi_1(1,\varphi_1(\omega,0)+1)$	$\varphi_1(2,\varphi_1(\omega,0)+1)$	$\varphi_1(3, \varphi_1(\omega, 0) + 1)$
$arphi_1(\omega,1,0)$	$ert arphi_1(\omega,0,1)$	$\varphi_1(\omega,0,\varphi_1(\omega,0,1)+1)$	$\varphi_1(\omega,0,\varphi_1(\omega,0,\varphi_1(\omega,0,1)+1)+1)$
$arphi_2$	$\varphi_1(\varphi_1+1)$	$\varphi_1(\varphi_1+1,0)$	$\varphi_1(\varphi_1+1,0,0)$
$arphi_{arepsilon_0}$	$arphi_{\omega}$	$\varphi_{\omega^{\omega}}$	$arphi_{\omega^{\omega^{\omega}}}$
$arphi_{\Gamma_0}$	$\varphi_{\varepsilon_0+1}$	$\varphi_{arphi(arepsilon_0+1,0)+1}$	$arphi_{arphi}(arphi(arepsilon_0+1,0)+1,0)+1$
$arphi_{\Gamma_0}(1)$	$arphi_{arepsilon_0+1}(arphi_{\Gamma_0}+1)$	$arphi_{arphi(arepsilon_0+1,0)+1}(arphi_{\Gamma_0}+1)$	$arphi_{arphi(arphi(arepsilon_0+1,0)+1,0)+1}(arphi_{\Gamma_0}+1)$
$arphi_{\Gamma_0}(1,0)$	$arphi_{\Gamma_0}(1)$	$arphi_{\Gamma_0}(arphi_{\Gamma_0}(1)+1)$	$arphi_{\Gamma_0}(arphi_{\Gamma_0}(arphi_{\Gamma_0}(1)+1)+1)$
$arphi_{\Gamma_0}(arepsilon_0)$	$arphi_{\Gamma_0}(\omega)$	$arphi_{\Gamma_0}(\omega^\omega)$	$arphi_{\Gamma_0}(\omega^{\omega^\omega})$
$egin{aligned} arphi_{\Gamma_0}(arepsilon_0,0) \end{aligned}$	$ert arphi_{\Gamma_0}(\omega,0)$	$arphi_{\Gamma_0}(\omega^\omega,0)$	$\varphi_{\Gamma_0}(\omega^{\omega^{\omega}},0)$
$\varphi_{\Gamma_0}(\varepsilon_0,1)$	$\left \; arphi_{\Gamma_0}(\omega,arphi_{\Gamma_0}(arepsilon_0,0)+1) \; ight $	$+1)\left[arphi_{\Gamma_0}(\omega^\omega,arphi_{\Gamma_0}(arepsilon_0,0)+1) ight.$	$\varphi_{\Gamma_0}(\omega^{\omega^\omega},\varphi_{\Gamma_0}(\varepsilon_0,0)+1)$
$\varphi_{\Gamma_0}(\varepsilon_0,1,1)$	$arphi_{\Gamma_0}(arepsilon_0,1,0)+1$	$arphi_{\Gamma_0}(arepsilon_0,0,arphi_{\Gamma_0}(arepsilon_0,1,0)+1)$	$\varphi_{\Gamma_0}(\varepsilon_0,0,\varphi_{\Gamma_0}(\varepsilon_0,0,\varphi_{\Gamma_0}(\varepsilon_0,1,0)+1)+1)$
$arphi_{\Gamma_0}(arepsilon_0,1,1,2)$	$arphi_{\Gamma_0}(arepsilon_0,1,1,1)+1$	$\varphi_{\Gamma_0}(\varepsilon_0,1,0,arphi_{\Gamma_0}(\varepsilon_0,1,1,1)+1)$	$\varphi_{\Gamma_0}(\varepsilon_0,1,0,\varphi_{\Gamma_0}(\varepsilon_0,1,0,\varphi_{\Gamma_0}(\varepsilon_0,1,1,1)+1)+1)$

Table 17: IterFuncOrdinal::limitElement examples.

7.3 IterFuncOrdinal::fixedPoint member function

IterFuncOrdinal::fixedPoint is used by iterativeFunctional to create an instance of an IterFuncOrdinal in a normal form (Equation 7) that is the simplest expression for the ordinal represented. The routine has the following parameters for a single term in Equation 7.

- The function level, γ .
- An index specifying the largest parameter of the ordinal notation being constructed. If the largest parameter is the function level the index has the value iterMaxParam defined as -1 in an enum.
- The function parameters as an array of pointers to Ordinals. These are the β_j in a normal form term.

in Equation 7.

This function determines if the parameter at the specified index is a fixed point for an IterFuncOrdinal created with the specified parameters. If it is, true is returned and otherwise false. The routine that calls this routine selects the largest parameter from the function level (γ) and the array of Ordinal pointers (β_j) as the one to check and indicates this in the index parameter, The calling routine checks to see if all less significant parameters are 0. If not this cannot be a fixed point. Thus fixedPoint is called only if this condition is met.

Section 6.3 describes psuedoCodeLevel. If the psuedoCodeLevel of the selected parameter is less than or equal cantorCodeLevel, false is returned. If that level is greater than iterFuncCodeLevel, true is returned. The most significant parameter, the function level, cannot be a fixed point unless it has a psuedoCodeLevel > iterFuncCodeLevel. Thus, if the index selects the the function level, and the previous test was not passed false is returned. Finally an IterFuncOrdinal is constructed from all the parameters except that selected by the index. If this value is less than the selected parameter, true is returned and otherwise false.

7.4 IterFuncOrdinal operators

The multiply and exponential routines for FiniteFuncOrdinal and Ordinal and the classes for normal form terms CantorNormalElement and FiniteFuncNormalElement do not have functions that need to be overridden to support IterFuncOrdinal multiplication and exponentiation. The exceptions are utilities such as that used to create a copy of normal form term IterFuncNormalElement with a new value for factor.

Some multiply examples are shown in Table 18. Some exponential examples are shown in Table 19.

α	β	$\alpha \times \beta$
φ_1	φ_1	$\omega^{(\varphi_1 2)}$
φ_1	φ_3	$arphi_3$
φ_1	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$
φ_1	$\varphi_1(\omega,1)$	$\varphi_1(\omega,1)$
φ_1	$\varphi_1(\omega,1,0)+\varphi_1$	$\varphi_1(\omega,1,0) + \omega^{(\varphi_1 2)}$
φ_1	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \omega^{(\varphi_1 2)}$
$arphi_3$	$ \varphi_1 $	$\omega^{\varphi_3+\varphi_1}$
φ_3	φ_3	$\omega^{(arphi_32)}$
φ_3	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$
φ_3	$\varphi_1(\omega,1)$	$\omega^{\varphi_3+\varphi_1(\omega,1)}$
φ_3	$\varphi_1(\omega,1,0)+\varphi_1$	$\omega^{\varphi_3+\varphi_1(\omega,1,0)}+\omega^{\varphi_3+\varphi_1}$
φ_3	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_{\varepsilon_0} + \omega^{\varphi_3 + \varphi_1(\omega, 1, 0)} + \omega^{\varphi_3 + \varphi_1}$
$\varphi_3(1,0,0)$	$ \varphi_1 $	$\omega^{\varphi_3(1,0,0)+\varphi_1}$
$\varphi_3(1,0,0)$	φ_3	$\omega^{\varphi_3(1,0,0)+\varphi_3}$
$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$	$\omega^{(arphi_3(1,0,0)2)}$
$\varphi_3(1,0,0)$	$\varphi_1(\omega,1)$	$\omega^{\varphi_3(1,0,0)+\varphi_1(\omega,1)}$
$\varphi_3(1,0,0)$	$\varphi_1(\omega,1,0)+\varphi_1$	$\omega^{\varphi_3(1,0,0)+\varphi_1(\omega,1,0)} + \omega^{\varphi_3(1,0,0)+\varphi_1}$
$\varphi_3(1,0,0)$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_{\varepsilon_0} + \omega^{\varphi_3(1,0,0) + \varphi_1(\omega,1,0)} + \omega^{\varphi_3(1,0,0) + \varphi_1}$
$\varphi_1(\omega,1)$	φ_1	$\omega^{\varphi_1(\omega,1)+\varphi_1}$
$\varphi_1(\omega,1)$	φ_3	$arphi_3$
$\varphi_1(\omega,1)$	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$
$\varphi_1(\omega,1)$	$\varphi_1(\omega,1)$	$\omega^{(\widehat{arphi}_1(\omega,1)2)}$
$\varphi_1(\omega,1)$	$\varphi_1(\omega,1,0)+\varphi_1$	$\varphi_1(\omega, 1, 0) + \omega^{\varphi_1(\omega, 1) + \varphi_1}$
$\varphi_1(\omega,1)$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \omega^{\varphi_1(\omega, 1) + \varphi_1}$
$\varphi_1(\omega,1,0)+\varphi_1$	φ_1	$\omega^{\varphi_1(\omega,1,0)+\varphi_1}$
$\varphi_1(\omega,1,0)+\varphi_1$	φ_3	$arphi_3$
$\varphi_1(\omega,1,0)+\varphi_1$	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$
$\varphi_1(\omega,1,0)+\varphi_1$	$\varphi_1(\omega,1)$	$\omega^{\varphi_1(\omega,1,0)+\varphi_1(\omega,1)}$
$\varphi_1(\omega,1,0)+\varphi_1$	$\varphi_1(\omega,1,0) + \varphi_1$	$\omega^{(\varphi_1(\omega,1,0)2)} + \omega^{\varphi_1(\omega,1,0)+\varphi_1}$
$\varphi_1(\omega,1,0)+\varphi_1$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_{\varepsilon_0} + \omega^{(\varphi_1(\omega,1,0)2)} + \omega^{\varphi_1(\omega,1,0)+\varphi_1}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	φ_1	$\omega^{arphi_{arepsilon_0}+arphi_1}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$arphi_3$	$\omega^{arphi_{arepsilon_0} + arphi_3}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_3(1,0,0)$	$\omega^{\varphi_{\varepsilon_0}+\varphi_3(1,0,0)}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_1(\omega,1)$	$\omega^{\varphi_{\varepsilon_0} + \varphi_1(\omega, 1)}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_1(\omega,1,0)+\varphi_1$	$\omega^{\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0)} + \omega^{\varphi_{\varepsilon_0} + \varphi_1}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\omega^{(\varphi_{\varepsilon_0}2)} + \omega^{\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0)} + \omega^{\varphi_{\varepsilon_0} + \varphi_1}$

Table 18: IterFuncOrdinal multiply examples

α	β	α^{β}
φ_1	φ_1	$\omega^{\omega^{(\varphi_1 2)}}$
φ_1	$arphi_3$	φ_3
$arphi_1$	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$
$arphi_1$	$\varphi_1(\omega,1)$	$\varphi_1(\omega,1)$
$arphi_1$	$\varphi_1(\omega,1,0)+\varphi_1$	$\omega^{\varphi_1(\omega,1,0)+\omega^{(\varphi_12)}}$
$arphi_1$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\omega^{\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \omega^{(\varphi_1 2)}}$
$arphi_3$	$arphi_1$	$\omega^{\omega^{\varphi_3+\varphi_1}}$
$arphi_3$	$arphi_3$	$\omega^{\omega^{(\varphi_32)}}$
$arphi_3$	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$
$arphi_3$	$\varphi_1(\omega,1)$	$\omega^{\omega^{\varphi_3+\varphi_1(\omega,1)}}$
$arphi_3$	$\varphi_1(\omega,1,0)+\varphi_1$	$\omega^{\omega^{\varphi_3+\varphi_1(\omega,1,0)}+\omega^{\varphi_3+\varphi_1}}$
$arphi_3$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\omega^{\varphi_{\varepsilon_0} + \omega^{\varphi_3 + \varphi_1(\omega, 1, 0)} + \omega^{\varphi_3 + \varphi_1}}$
$\varphi_3(1,0,0)$	$arphi_1$	$\omega^{\omega^{\varphi_3(1,0,0)+\varphi_1}}$
$\varphi_3(1,0,0)$	$arphi_3$	$\omega^{\omega^{\varphi_3(1,0,0)+\varphi_3}}$
$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$	$\omega^{\omega^{(arphi_3(1,0,0)2)}}$
$\varphi_3(1,0,0)$	$\varphi_1(\omega,1)$	$\omega^{\omega\varphi_3(1,0,0)+\varphi_1(\omega,1)}$
$\varphi_3(1,0,0)$	$\varphi_1(\omega,1,0)+\varphi_1$	$\omega^{\omega\varphi_3(1,0,0)+\varphi_1(\omega,1,0)}+\omega^{\varphi_3(1,0,0)+\varphi_1}$
$\varphi_3(1,0,0)$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\varphi_1(\omega,1)$	$arphi_1$	$\omega^{\omega^{\varphi_1(\omega,1)+\varphi_1}}$
$\varphi_1(\omega,1)$	$arphi_3$	$arphi_3$
$\varphi_1(\omega,1)$	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0)$
$\varphi_1(\omega,1)$	$\varphi_1(\omega,1)$	$\omega^{(\varphi_1(\omega,1)2)}$
$\varphi_1(\omega,1)$	$\varphi_1(\omega,1,0) + \varphi_1$	$\omega^{\varphi_1(\omega,1,0)+\omega^{\varphi_1(\omega,1)+\varphi_1}}$
$\varphi_1(\omega,1)$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\omega^{\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \omega^{\varphi_1(\omega, 1) + \varphi_1}}$
$\varphi_1(\omega,1,0)+\varphi_1$	$arphi_1$	$\omega^{\omega^{arphi_1(\omega,1,0)+arphi_1}}$
$\varphi_1(\omega,1,0) + \varphi_1$	φ_3	φ_3
$\varphi_1(\omega,1,0) + \varphi_1$	$\varphi_3(1,0,0)$	$\varphi_3(1,0,0) \atop \omega^{\omega^{\varphi_1(\omega,1,0)+\varphi_1(\omega,1)}}$
$\varphi_1(\omega,1,0) + \varphi_1$	$\varphi_1(\omega,1)$	$\omega^{\omega^{(\varphi_1(\omega,1,0)2)}} + \omega^{\varphi_1(\omega,1,0)+\varphi_1}$
$\varphi_1(\omega,1,0) + \varphi_1$	$\varphi_1(\omega,1,0) + \varphi_1$	$\omega^{\omega^{(\varphi_1(\omega,1,0)2)} + \omega^{\varphi_1(\omega,1,0)+\varphi_1}}$ $\omega^{\varphi_{\varepsilon_0} + \omega^{(\varphi_1(\omega,1,0)2)} + \omega^{\varphi_1(\omega,1,0)+\varphi_1}}$
$\varphi_1(\omega,1,0)+\varphi_1$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\omega^{\varphi_{\varepsilon_0} + \omega^{(\varphi_1(\omega_1, \omega_2))} + \omega^{\varphi_1(\omega_1, \omega_2)} + \psi^{\varphi_1(\omega_1, \omega_2)}}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$arphi_1$	$\omega^{\omega^{\varphi_{\varepsilon_0}+\varphi_1}}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$arphi_3$	$\omega^{\varphi_{\varepsilon_0}+\varphi_3}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_3(1,0,0)$	$\omega^{\omega^{\varphi_{\varepsilon_0}+\varphi_3(1,0,0)}}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_1(\omega,1)$	$\omega^{\omega^{\varphi_{\varepsilon_0}+\varphi_1(\omega,1)}}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_1(\omega,1,0)+\varphi_1$	$\omega^{\omega^{\varphi_{\varepsilon_0}+\varphi_1(\omega,1,0)}+\omega^{\varphi_{\varepsilon_0}+\varphi_1}}$
$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\varphi_{\varepsilon_0} + \varphi_1(\omega, 1, 0) + \varphi_1$	$\omega^{\omega^{(\varphi_{\varepsilon_0}2)} + \omega^{\varphi_{\varepsilon_0} + \varphi_1(\omega,1,0)} + \omega^{\varphi_{\varepsilon_0} + \varphi_1}}$

Table 19: IterFuncOrdinal exponential examples

8 Countable admissible ordinals

The first admissible ordinal is ω . ω_1^{CK} (the Church-Kleene ordinal) is the second. This latter is the ordinal of the recursive ordinals. For simplicity it will be written as ω_1 (see note 5). Gerald Sacks proved that the countable admissible ordinals are those defined like ω_1 , but using Turing Machines with oracles (see Note 9)[14]. For example ω_2 is the set of all ordinals whose structure can be enumerated by a TM with an oracle that defines the structure of all recursive ordinals.

The completed infinite totality of a Turing Machine oracle can be avoided by generalizing the concept of a well founded recursive process. A first order well founded recursive process is one that accepts an indefinite number of integer inputs and halts for every possible sequence of these inputs. Recursive ordinals are the well orderings definable by such a process. This definition can be iterated by defining a process of type x + 1 to be well founded for all sequences of processes of type x. (Type 0 is the integers.) This can be iterated up to any countable ordinal. The admissible ordinals are a very sparse set of limit ordinals. In this document admissible level ordinals are all ordinals $\geq \omega_1^{CK}$, the ordinal of the recursive ordinals. The 'admissible index' refers to the κ index in ω_{κ} .

8.1 Typed parameters and limitOrd

Notations defined here give the structure of ordinals through the limitElement and compare functions. For admissible level ordinals compare is adequate, although it is now operating on an incomplete domain. However limitElement can no longer define how a limit ordinal is built up from smaller ordinals, because admissible level ordinal notations cannot always be defined as the limit of a recursive sequence of smaller notations.

As an adjunct to Ordinal::limitElement, Ordinal::limitOrd is defined. It accepts ordinal notations α less than ω_{β} where β is the limitType of the ordinal limitOrd is called from. The value of limitType is accessed with a member function of that name.

For example one can can define limitOrd for ω_1 to be the identity function that accepts any notation for a recursive ordinal as input and outputs its input. Then the union of the outputs for inputs satisfying this criteria is ω_1 , This is not the way limitOrd is defined. It is used to define new ordinals that help to fill the gaps between admissible levels, but this illustrates how limitOrd is able to partially provide the defining function that limitElement serves for recursive ordinal notations. limitElement is restricted to integer inputs. In contrast limitOrd has a complex set of rules to specify which parameters are legal in a given context.

Table 20 shows the maximum value of limitType over ranges of ordinal values. Note whenever the admissible index $(\alpha \text{ in } w_{\alpha})$ is a limit ordinal, the limitType of ω_{α} is defined to be the limitType of α . limitType is fully defined in Section 8.3. An additional function, $\alpha.\text{maxLimitType}()$, returns the maximum value of limitType for any ordinal $\beta \leq \alpha$. $\alpha.\text{limitOrd}(\beta)$ is defined iff $\beta.\text{maxLimitType}() < \alpha.\text{limitType}()$

The ordinal represented by a notation α is the union of $\alpha.limitOrd(\beta)$ for all β such that $\beta.maxLimitType() < \alpha.limitType()³⁸ In contrast to recursive ordinals, the notations$

³⁸The theory of admissible level ordinals is in some ways similar to the cardinals in set theory. In set

α	Maximum α .limitType() in range
0 or a successor ($<\omega_1$)	0 (nullLimitType)
recursive limit ordinal ($<\omega_1$)	1 (integerLimitType)
$\omega_1 \leq \alpha < \omega_2$	2 (recOrdLimitType)
$ \omega_n \leq \alpha < \omega_{n+1}$	n+1
$\alpha = \omega_{\omega}$	1 (integerLimitType)
$\omega_{\omega+5} \le \alpha < \omega_{\omega+6}$	$\omega + 5$
$\alpha = \omega_{\omega_1}$	2 (recOrdLimitType)
$\omega_{\omega_1+1} \le \alpha < \omega_{\omega_1+2}$	$\omega_1 + 1$

Table 20: Value of limitType

whose union is an admissible level ordinal ($\geq \omega_1$) are not recursively enumerable. However the operation that goes from some notation not1 to limitOrd(not1) is recursive for the domain of notations defined at any point in time.

The explicitly typed hierarchy in this document is a bit reminiscent of the explicitly typed hierarchy in Whitehead and Russell's *Principia Mathematica*[16].

8.2 Admissible level ordinal notations

Notation systems are expanded to represent larger ordinals than those represented already. At the admissible level they can be expanded to partially fill the gaps in a necessarily incomplete system. $\omega_{\alpha}.\mathtt{limitOrd}(\beta)$ is defined as $\omega_{\alpha}[\beta]$. The idea is that this new parameter starts by diagonalizing what is definable by previous defined notations. This begins with $\omega_1.\mathtt{limitOrd}(1)$ or $\omega_1[1]$. This is defined to be the limit of the recursive ordinals definable in the IterFuncOrdinal class. This is the sequence $\omega, \varphi_{\omega}, \varphi_{\varphi_{\omega}+1}, \varphi_{\varphi_{\omega}+1+1}, \ldots$ The union of that sequence is represented by $\omega_1[1]$. For an ordinal, $\beta, \omega_1[\beta+1]$ is defined as the union of the sequence

$$\omega_1[\beta], \varphi_{\omega_1[\beta]+1}, \varphi_{\varphi_{\omega_1[\beta]+1}+1}, \varphi_{\varphi_{\varphi_{\omega_1[\beta]+1}+1}+1}, \dots, .$$

For β a limit, $\omega_{\alpha}[\beta]$ is the union of $\omega_{\alpha}[\gamma]$ for $\gamma < \beta$. A complete description of the limitElement and limitOrd functions is given in Sections 9.2 and 9.5.

The normal form notation for one term of an admissible level ordinal adds a parameter of the admissible index (the most significant parameter) and a parameter in square brackets which signifies a *smaller* ordinal then the same term without an appended square bracketed parameter. There is a third option using double square brackets, [[]] to facilitate a form or collapsing described in Section 8.4.

The rest of the equation for one term in the normal form is the same as that for an IterFuncOrdinal shown in Equation 7. The C++ class for a single term of an admissible level ordinal notation is AdmisNormalElement and the class for an admissible level ordinal notation is AdmisLevOrdinal.

The AdmisNormalElement term of an AdmisLevOrdinal is one of the following forms.

theory there is a cardinal that is the union of finite iterations of the power set axiom. It is the union of a countable number of smaller sets. This contrasts with set of all reals which is not constructable from a smaller collection of smaller sets. Such sets are called regular cardinalss. (This definition requires the .)

Ordinal		${f LimitEle}$	ments
	1	2	3
$[[1]]\omega_1$	$\omega_1[\omega]$	$\omega_1[\omega_1[\omega]]$	$\omega_1[\omega_1[\omega_1[\omega]]]$
$[[1]]\omega_2$	$[[1]]\omega_1$	$[[1]]\omega_{1,[[1]]\omega_1+1}$	$[[1]]\omega_{1,[[1]]\omega_{1,[[1]]\omega_{1}+1}+1}$
$[[1]]\omega_3$	$[[1]]\omega_2$	$[[1]]\omega_{2,[[1]]\omega_2+1}$	$[[1]]\omega_{2,[[1]]\omega_{2,[[1]]\omega_{2}+1}+1}$
$[[2]]\omega_2$	$\omega_2[1]$	$\omega_2[2]$	$\omega_2[3]$
$[[2]]\omega_3$	$[[2]]\omega_3[1]$	$[[2]]\omega_3[2]$	$[[2]]\omega_3[3]$
$[[1]]\omega_{\omega}$	$[[1]]\omega_2$	$[[1]]\omega_3$	$[[1]]\omega_4$
$[[2]]\omega_{\omega}$	$[[2]]\omega_3$	$[[2]]\omega_4$	$[[2]]\omega_5$
$[[\omega]]\omega_{\omega}$	$[[1]]\omega_1$	$[[2]]\omega_2$	$[[3]]\omega_3$
$[[\omega^{\omega}]]\omega_{\omega^{\omega}}$	$[[\omega]]\omega_{\omega}$	$[[\omega^2]]\omega_{\omega^2}$	$[[\omega^3]]\omega_{\omega^3}$

Table 21: δ parameter examples

$$\omega_{\kappa,\gamma}(\beta_1,\beta_2,...,\beta_m) \tag{8}$$

$$\omega_{\kappa}[\eta]$$
 (9)

$$[[\delta]]\omega_{\kappa}[\eta] \tag{10}$$

$$[[\delta]]\omega_{\kappa,\gamma}(\beta_1,\beta_2,...,\beta_m) \tag{11}$$

The γ and β_i parameters are defined as they are in Equation 7. The existence of any of these parameters defines a larger ordinal then the same notation without them. In contrast to every parameter defined so far, the η parameter drops down to a lower level ordinal. For example, $\omega_1[\alpha]$ is a recursive ordinal necessarily smaller than ω_1 . The η parameter is only defined when γ and β_i are zero and κ is a successor.

The δ parameter, like the η parameter, defines a smaller ordinal than the same expression without this parameter. In particular it "collapses" the expression down to an ordinal $<\omega_{\delta}$. See Section 8.4 for a general description of collapsing. Table 21 gives some examples of how the δ parameter is defined.

The idea of the δ parameter is to collapse an arbitrarily large subset of the entire structure of countable ordinal notations as they are defined by a finite formal system at a specific stage in its development³⁹ at various points in the hierarchy. This is a bit like the Mandelbrot set[10] that embeds its entire structure within itself in an expanding infinite tree.

8.3 limitType of admissible level notations

The κ parameter in equations 8 to 11 determines the limitType of an admissible level notation with no other nonzero parameters. If κ is a limit then ω_{κ} .limitType() = κ .limitType(). If κ is a finite successor then ω_{κ} .limitType() = κ + 1. If $\kappa > \omega$ and κ is a successor then ω_{κ} .limitType() = κ .

³⁹The underlying philosophy is that a finite formal system is an intrinsically incomplete structure that can always be expanded.

If an admissible level ordinal, α , has parameters other than κ , the least significant parameter determines the limitType of α . If the least significant parameter, β , is a limit ordinal then the limitType of β is the the limitType of α . if the least significant parameter of the notation is a successor then the limitType of the notation is 1 (or integer). In this case the limit is an infinite sequence of nested expressions. These rules are summarized in Table 22.

The δ parameter in equation 11 modifies the definition of limitType. If all parameters except δ and κ are 0 and δ is a successor, then δ determines the limitType just as κ did in the above paragraph. A nonzero δ parameter puts an upper bound on the limitType of any ordinal no matter what other parameters it has. The complete rules for limitType are in Section 9.3 and those for maxLimitType are in Section 9.4.

8.4 Ordinal collapsing

Collapsing⁴⁰ expands recursive ordinal notations using ordinals of higher type (admissible level or uncountable) to expand the hierarchy of recursive ordinal notations[1, 12]. There is an element of collapsing with the η parameter in square brackets defined in Section 8.2 in that it diagonalizes the earlier definitions of recursive ordinals by referencing a higher level notation. Before describing collapsing with the δ parameter, we give a brief overview of an existing approach.

One can define a collapsing function, $\Psi(\alpha)$ on ordinals to countable ordinals⁴¹. $\Psi(\alpha)$ is defined using a function $C(\alpha)$, from ordinals to sets of ordinals. $C(\alpha)$ is defined inductively on the integers for each ordinal α using $\Psi(\beta)$ for $\beta < \alpha$.

- $C(\alpha)_0 = \{0, 1, \omega, \Omega\}$ (Ω , is the ordinal of the countable ordinals.)
- $C(\alpha)_{n+1} = C(\alpha)_n \cup \{\beta_1 + \beta_2, \beta_1\beta_2, \beta_1^{\beta_2} : \beta_1, \beta_2 \in C(\alpha)_n\} \cup \{\Psi(\beta) : \beta \in C(\alpha)_n \land \beta < \alpha\}.$
- $C(\alpha) = \bigcup_{n \in \omega} C(\alpha)_n$.
- $\Psi(\alpha)$ is defined as the *least* ordinal not in $C(\alpha)$.

 $\Psi(0) = \varepsilon_0$ because ε_0 is the least ordinal not in C(0). (ε_0 is the limit of $\omega, \omega^{\omega}\omega^{\omega^{\omega}}, ..., ...$) Similarly $\Psi(1) = \varepsilon_1$, because C(1) includes $\Psi(0)$ which is ε_0 . For a while $\Psi(\alpha) = \varepsilon_{\alpha}$. This stops at $\varphi(2,0)$ which is the first fixed point of $\alpha \mapsto \varepsilon_{\alpha}$. $\Psi(\varphi(2,0)) = \varphi(2,0)$ but $\Psi(\varphi(2,0)+1) = \varphi(2,0)$ also. The function remains static because $\varphi(2,0)$ is not in $C(\alpha)$ for $\alpha \leq \Omega$.

 $\Psi(\Omega) = \varphi(2,0)$, but Ω was defined to be in $C(\alpha)_0$ and thus $C(\Omega+1)$ includes $\Psi(\Omega)$ which is $\varphi(2,0)$. Thus $\Psi(\Omega+1) = \varepsilon_{\varphi(2,0)+1}$. $\Psi(\alpha)$ becomes static again at $\alpha = \varphi(2,1)$ the second fixed point of $\alpha \mapsto \varepsilon_{\alpha}$. However ordinals computed using Ω support getting past

⁴⁰Ordinal collapsing is also known as projection. I prefer the term collapsing, because I think the proofs have more to do with syntactical constructions of mathematical language than they do with an abstract projection in a domain the symbols refer to. Specifically I think cardinal numbers, on which projection is most often based, have only a relative meaning. See Section 10 for more about this philosophical approach

⁴¹This description is largely based on the Wikipedia article on "Ordinal collapsing function" as last modified on April 14, 2009 at 15:48. The notation is internally consistent in this document and differs slightly from the Wikipedia notation.

	Rules	8
	Case	limitType
1	$\alpha = \omega_{\kappa} \kappa \text{ a successor}$	κ is finite $\to \kappa + 1$ else κ
	least significant	
2	parameter, α , is limit	$\alpha.\mathtt{limitType}()$
	γ a successor	
3	and least significant	integerLimitType = 1
	2 least significant	
4	parameters are successors	integerLimitType = 1
	least significant parameter	
	is successor and next least,	
5	α , is a limit	lpha.limitType()

Examp	oles	
α	$\alpha.\mathtt{limitType}()$	Rule
ω_1	2	1
ω_2	3	1
ω_{2,ω^ω}	1	2
ω_{ω}	1	2
$\omega_{\omega_{\omega^{\omega},4}}$	1	2
$\omega_{\omega,5}(3)$	1	4
$\omega_{\omega,\omega_1}(4)$	2	5
$\omega_{\omega_{\omega}^{\omega}+1,5},5}$	1	3
$\omega_{\omega_4}(3)$	1	5
$\omega_{\omega+5}$	$\omega + 5$	1
$\omega_{\omega,\omega_{\omega+5}}$	$\omega + 5$	2
$\omega_{\omega_{\omega^{\omega(\omega_{1}2)}}+6}(3,5,\omega_{\omega^{\omega(\omega_{1}2)}+6})$	$\omega^{\omega^{(\omega_1 2)}} + 6$	2
$\omega_{\omega_5,3}$	1	3
$\omega_{\omega_{\omega^{\omega}}(\omega_{1}^{2})}{}_{+6}$	$\omega^{\omega^{(\omega_1 2)}} + 6$	2
$\omega_{\omega,\omega_{\omega}}_{\omega^{\omega}(\omega_1 2)}{}_{+6}$	$\omega^{\omega^{(\omega_1 2)}} + 6$	2
$\omega_{\omega,\omega_1+6}$	1	5

 $Table\ 22 \hbox{: } {\tt AdmisNormalElement::limitTypes}$

fixed points in the same way that Ω did. The first case like this is $\Psi(\Omega 2) = \varphi(2,1)$ and thus $\Psi(\Omega 2 + 1) = \varepsilon_{\varphi(2,1)+1}$.

Each addition of 1 advances to the next ε value until Ψ gets stuck at a fixed point. Each addition of Ω moves to the next fixed point of $\alpha \mapsto \varepsilon_{\alpha}$ so that $\Psi(\Omega(1+\alpha)) = \varphi(2,\alpha)$ for $\alpha < \varphi(3,0)$. Powers of Ω move further up the Veblen hierarchy: $\Psi(\Omega^2) = \varphi(3,0)$, $\Psi(\Omega^\beta) = \varphi(1+\beta,0)$ and $\Psi(\Omega^\beta(1+\alpha)) = \varphi(1+\beta,\alpha)$. Going further $\Psi(\Omega^\Omega) = \Gamma(0) = \varphi(1,0,0)$, $\Psi(\Omega^{\Omega(1+\alpha)}) = \varphi(\alpha,0,0)$ and $\Psi(\Omega^{\Omega^2}) = \varphi(1,0,0,0)$,

Collapsing, as defined here, connects basic ordinal arithmetic (addition, multiplication and exponentiation) to higher level ordinal functions. Ordinal arithmetic on Ω gets past fixed points in the definition of Ψ until we reach an ordinal that is not in $C(\alpha)$ either by definition or by basic ordinal arithmetic on ordinals in $C(\alpha)$. This is the ordinal $\varepsilon_{\Omega+1}^{42}$. $\Psi(\varepsilon_{\Omega+1}) = \Psi(\Omega) \cup \Psi(\Omega^{\Omega}) \cup \Psi(\Omega^{\Omega^{\Omega}}) \cup \Psi(\Omega^{\Omega^{\Omega}}) \cup ...$ This is the Bachmann-Howard ordinal[8]. It is the largest ordinal in the range of Ψ as defined above. $\Psi(\alpha)$ is a constant for $\alpha \geq \varepsilon_{\Omega+1}$ because there is no way to incorporate $\Psi(\varepsilon_{\Omega+1})$ into $C(\alpha)$.

⁴²Note $\varepsilon_{\Omega} = \Omega$.

	No	tation	
#	Ψ	φ ω	Bound
1	$\Psi(\alpha)$	$arepsilon_{lpha}$	$\alpha < \varphi(2,0)$
2	$\Psi(\Omega 13)$	$\varphi(2,12)$	
3	$\Psi(\Omega(1+\alpha))$	$\varphi(2,\alpha)$	$\alpha < \varphi(3,0)$
4	$\Psi(\Omega^2 6)$	$\varphi(3,5)$	
5	$\Psi(\Omega^2(1+\alpha))$	$\varphi(3,\alpha)$	$\alpha < \varphi(4,0)$
6	$\Psi(\Omega^{11}6)$	$\varphi(12,5)$	
7	$\Psi(\Omega^{\beta}(1+\alpha))$	$\varphi(1+\beta,\alpha)$	$\alpha < \varphi(1+\beta,0) \land \beta < \varphi(1,0,0)$
8	$\Psi(\Omega^{\Omega})$	$\varphi(1,0,0) = \Gamma_0$	
9	$\Psi(\Omega^{\Omega 2})$	$\varphi(2,0,0)$	
10	$\Psi(\Omega^{(\Omega^2+3)}6)$	$\varphi(2,3,5)$	
11	$\Psi(\Omega^{\Omega^2})$	$\varphi(1,0,0,0)$	
12	$\Psi(\Omega^{\Omega^n})$	$\varphi(1_1, 0_2,, 0_{n+2})$	
13	$\Psi(\Omega^{\Omega^n \alpha_1})$	$\varphi(\alpha_1, 0_2,, 0_{n+2})$	$\alpha_1 < \varphi(1_1, 0_2,, 0_{n+3})$
14	$\Psi(\Omega^{\Omega^{\omega}})$	φ_1	
15	$\Psi(\Omega^{\Omega^{\omega'5}})$	$\varphi_1(5)$	
16	$\Psi(\Omega^{\Omega^{\omega}(1+lpha)})$	$\varphi_1(\alpha)$	$\alpha < \varphi_1(1,0)$
17	$\Psi(\Omega^{(\Omega^{\omega}(\Omega 4+2))})$	$\varphi_1(4,2)$	
18	$\Psi(\Omega^{\Omega^{\omega^2}})$	$arphi_2$	
19	$\Psi(\Omega^{\Omega^{\omega^2}})$	$arphi_{\omega}$	
20	$\Psi(\Omega^{\Omega^{\omega^{\alpha}}})$	$arphi_{lpha}$	$\alpha < \omega_1[1]$
21	$\Psi(\Omega^{\Omega^{\Omega}})$	$\omega_1[1]$	
22	$\Psi(\Omega^{\Omega^{\Omega^{\Omega}}})$	$[[1]]\omega_1$	
23	$\Psi(\Omega^{\Omega^{\Omega^{\Omega^{\Omega}}}})$	$[[1]]\omega_2$	
24	$\Psi(arepsilon_{\Omega+1})$	$[[1]]\omega_{\omega}$	

Table 23: Ψ collapsing function with bounds

	Notation			limitElement	
#	$\Psi / \varphi \omega$	1	2	3	4
	$\Psi(\Omega)$	$\Psi(1)$	$\Psi(\Psi(1)+1)$	$\Psi(\Psi(\Psi(1)+1)+1)$	$\Psi(\Psi(\Psi(\Psi(1)+1)+1)+1)$
Н	$\varphi(2,0)$	$arepsilon_1$	$\varepsilon_{\varepsilon_1+1}$	$\varepsilon_{\varepsilon_1+1+1}$	$\varepsilon_{\varepsilon_{\varepsilon_1+1}+1}$
	$\Psi(\Omega^2)$	$\Psi(\Omega 2)$	$\Psi(\Omega(\Psi(\Omega2)+1))$	$\Psi(\Omega(\Psi(\Omega(\Psi(\Omega(1)+1))+1))$	$\Psi(\Omega(\Psi(\Omega(\Psi(\Omega(\Psi(\Omega2)+1))+1))+1))$
2	$\varphi(3,0)$	$\varphi(2,1)$	$\varphi(2,\varphi(2,1)+1)$	$\varphi(2, \varphi(2, \varphi(2, 1) + 1) + 1)$	$\varphi(2, \varphi(2, \varphi(2, \varphi(2, 1) + 1) + 1) + 1)$
	$\Psi(\Omega^\omega)$	$\Psi(0)$	$\Psi(\Omega)$	$\Psi(\Omega^2)$	$\Psi(\Omega^3)$
3	$\varphi(\omega,0)$	$arepsilon_0$	$\varphi(2,0)$	$\varphi(3,0)$	$\varphi(4,0)$
	$\Psi(\Omega^\Omega)$	$\Psi(0)$	$\Psi(\Omega^{\Psi(0)+1})$	$\Psi(\Omega^{\Psi(\Omega^{\Psi(0)+1})+1})$	$\Psi(\Omega^{\Psi(\Omega^{\Psi(\Omega)+1})+1})$
4	Γ_0	$arepsilon_0$	$\varphi(\varepsilon_0+1,0)$	$\varphi(\varphi(\varepsilon_0+1,0)+1,0)$	$\varphi(\varphi(\varphi(\varepsilon_0+1,0)+1,0)+1,0)$
	$\Psi(\Omega^{\Omega^2})$	$\Psi(\Omega^\Omega)$	$\Psi(\Omega^{\Omega\Psi(\Omega^\Omega)+1})$	$\Psi(\Omega^{\Omega\Psi(\Omega^{\Omega\Psi(\Omega^\Omega)+1})+1})$	$\Psi(\Omega^{\Omega\Psi}(\Omega^{\Omega\Psi}(\Omega^{\Omega\Psi}(\Omega^{\Omega})^{+1})^{+1})^{+1})$
ಒ	$\varphi(1,0,0,0)$	Γ_0	$arphi(\Gamma_0+1,0,0)$	$\varphi(\varphi(\Gamma_0+1,0,0)+1,0,0)$	$arphi(arphi(arphi(arphi(\Gamma_0+1,0,0)+1,0,0)+1,0,0))$
	$\Psi(\Omega^{\Omega^\omega})$	3	$\Psi(0)$	$\Psi(\Omega^{\Omega})$	$\Psi(\Omega^{\Omega^2})$
9	φ_1		$arepsilon_0$	Γ_0	$\varphi(1,0,0,0)$
	$\Psi(\Omega^{\Omega^{\omega^2}})$	$^{2^{\omega}})+1)$	$\Psiig(\Omega^{(\Omega^\omega(\Omega\Psi(\Omega^{\Omega^\omega})+1))}ig)$	$\Psi\big(\Omega^{(\Omega^\omega(\Omega^2 \Psi(\Omega^{\Omega^\omega})+1))}\big)$	$\Psi\big(\Omega^{(\Omega^\omega(\Omega^3\Psi(\Omega^{\Omega^\omega})+1))}\big)$
7	φ2		$\varphi_1(\varphi_1+1,0)$	$\varphi_1(\varphi_1+1,0,0)$	$\varphi_1(\varphi_1+1,0,0,0)$
	$\Psi(\Omega^{\Omega^{\omega^2}})$		$\Psi(\Omega^{\Omega^{\omega^2}})$	$\Psi(\Omega^{\Omega^{\omega 3}})$	$\Psi(\Omega^{\Omega^{\omega 4}})$
∞	φ_{ε}	$arphi_1$	φ_2	φ_3	φ_4
	$\Psi(\Omega^{\Omega^{\Omega}})$	\boldsymbol{arphi}	$\Psi(\Omega^{\Omega^{\omega^2}})$	$\Psi(\Omega^{\Omega^{\Psi(\Omega^{\Omega^{\omega^2}})+\omega}})$	$\Psi(\Omega^{\Omega^{\Psi(\Omega^{\Omega^{\omega^2}})+\omega})+\omega})$
6	$\omega_1[1]$	ε	φ_{ω}	$\varphi_{\varphi_{\omega}+1}$	$\varphi_{\varphi_{\varphi_{\omega}+1}+1}$
10	$\Psi(\Omega^{\Omega^{\Omega\omega}})$ $\omega_1[\omega]$	$\Psi(\Omega^{\Omega^{\Omega}}) \ \omega_{1}[1]$	$\Psi(\Omega^{\Omega^{\Omega^2}}) \ \omega_1[2]$	$\Psi(\Omega^{\Omega^{\Omega^{\Omega^3}}})$ $\omega_1[3]$	$\Psi(\Omega^{\Omega^{\Omega4}})$ $\omega_1[4]$
	$\Psi(\Omega\Omega^{\Omega^{\Omega}})$	$\Psi(\Omega\Omega^{\Omega\omega})$	$\Psi/\Omega\Omega^{\Omega\Psi(\Omega^{\Omega\omega})}$	$\Psi(\Omega^{\Omega^{\Omega\Psi}(\Omega^{\Omega^{\Omega\Psi}})})$	$\Psi(\Omega^{\Omega\Psi}(\Omega^{\Omega}\Omega^{\Omega\Psi}(\Omega^{\Omega}\Omega^{\Omega\Psi})))$
111	$[[1]]\omega_1$	$\omega_1[\omega]$		$\omega_1[\omega_1[\omega_1[\omega]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[\omega]]]]$
				$(\omega_{+}(\Omega_{\Omega}\Omega_{\Psi})^{\Omega})_{\Omega,\Omega}$	$\Omega^{\Psi(\Omega^{\Omega}\Omega^{\Omega}(\Omega\Omega^{\Psi}(\Omega^{\Omega^{\Omega}})+\omega)})+\omega)$
	$\Psi(\Omega^{\Omega^{\Omega^{\Omega^{\Omega}}}})$	$\Psi(\Omega^{\Omega^{\Omega^{\Omega}}})$	$\Psi(\Omega^{\Omega^{\Omega}(\Omega\Omega^{\Psi}(\Omega^{M^{2}})^{-1})+\omega})$	$\Psi(\Omega^{\Omega^{(\Omega\Omega\Psi(\Omega^{\Lambda^{-2}})}})$	$\Psi(\Omega^{\Omega^{\Omega}(\Omega\Omega^{\Psi(\Omega^{\Omega^{}})}})$
12	$[[1]]\omega_2$			$[[1]]\omega_{1,[[1]]\omega_{1,[[1]]\omega_{1}+1}+1}$	$[[1]]\omega_{1,[[1]]\omega_{1,[[1]]\omega_{1,[[1]]\omega_{1}+1}+1}$
	$\Psi(arepsilon_{\Omega+1})$	$\Psi(\Omega^{\Omega^{\Omega^{\Omega^{\Omega}}}})$		$\Psi(\Omega^{\Omega^{\Omega^{\Omega^{\Omega^{\Omega^{\Omega}}}}}})$	$\Psi(\Omega^{\Omega^{\Omega^{\Omega^{\Omega^{\Omega^{\Omega}}}}}})$
13				$[[1]]\omega_4$	$[[1]]\omega_5$

Table 24: Ψ collapsing function at critical limits

Table 23 connects the notations defined by the Ψ function to those defined with equations 8 to 11. Lines up to 12 follow from the above description. This line uses parameter subscripts to indicate the number of parameters. Otherwise it is straightforward. In line 14 φ_1 is the first fixed point not reachable from Veblen functions with a finite number of parameters. $\varphi_1 = \bigcup_{n \in \omega} \varphi(1_1, 0_2, 0_3..., 0_n)$. Lines 18, 19 and 20 illustrate how each increment of α by one in φ_{α} adds a factor of ω to the the highest order exponent in Ψ notation. This maps to the definition of φ_{α} in Section 5.5.

Table 24 provides additional detail to relate the Ψ notation to the notation in this document. It covers the range of the Ψ function at critical limits. For each entry the table gives the ordinal notation and first 4 elements in a limit sequence that converges to this ordinal. This same information is repeated in paired lines. The first is in Ψ notation and the second in the notation defined in this document. It illustrates the conditions in which the Ψ notation requires another level of exponentiation. This happens with limiting sequences that involve ever higher levels of exponentiation of the largest ordinals defined at that level in the Ψ notation. This occurs in lines 4, 9, 11 and 12 of the table corresponding to Ω raised to the second through fifth powers.

8.5 Displaying Ordinals in Ψ format

Function Ordinal::psiNormalForm provides a display option for the Ψ function format in addition to the display functions described in Section 4.1. It provides a limited display capability. Not all values can be converted. This is due in part to the erratic nature of Ψ as it gets stuck at various fixed points. The purpose is to provide an automated conversion that handles the primary cases throughout the Ψ hierarchy just defined. If a value is not displayable then the string 'not Ψ displayable' is output in TeX format. Many of the tables in this section use psiNormalForm. It is accessible in the interactive calculator as described in Section A.8.2 under the opts command.

8.6 Admissible level ordinal collapsing

For any two ordinals ω_{α} and $\omega_{\alpha+1}$ there is an unclosable gap into which one can, in a sense, fit any finite notation system that has been or ever will be developed. The only well orderings fully definable in a finitely axiomatizable system are, by definition, recursively enumerable. As mentioned before finite formulations of a fragment of the countable admissible level hierarchy are a bit like the Mandelbrot set where the entire structure is embedded again and again at many points in an infinite tree⁴³

The idea is to "freeze" the structure at some point in its development and then embed this frozen image in an unfrozen version of itself. It is a bit like taking recursion to a higher level of abstraction. This is accomplished with notations in the form of equations 10 ([[δ]] $\omega_{\kappa}[\eta]$) and 11 ([[δ]] $\omega_{\kappa,\gamma}(\beta_1,\beta_2,...,\beta_m)$). They both define a value $<\omega_{\delta}$. It is required that $\kappa \geq \delta^{44}$. The idea is to use notations up through any ω_{κ} definable in the frozen system to define ordinal notations $<\omega_{\delta}$ in the unfrozen system.

 $^{^{43}}$ Ordinal hierarchies have infinite ascending chains (for example the positive integers) but cannot have infinite descending chains (like the negative integers).

⁴⁴Note that any notation from equations 10 and 11 that starts with [[1]] must define a recursive ordinal.

This starts by diagonalizing what can be defined with $\omega_{\kappa}[\eta]$. See Table 25 for the definition of $[[1]]\omega_1$. The complete definition of δ (and the other parameters in equations 10 and 11) are in sections 9.2 and 9.5 that document the limitElement and limitOrd member functions.

8.7 Functional hierarchies and collapsing

In sections 2.2 and 8 ordinals were described in terms of well founded functional hierarchies. The idea is that one starts with processes well founded for arbitrary sequences of integers. Such processes are called type 1. Next consider processes well founded for arbitrary sequences of Gödel numbers of type 1 processes. This can be iterated up to any integer and iterated further up to any ordinal definable by this process. At limit ordinals one considers a process that is well founded for all lower type processes.

In constructing a functional hierarchy like this one makes it explicitly incomplete and general enough to be expandable to any level in the hierarchies outlined above. One can think of collapsing in this context as dropping down the hierarchy to lower levels using specific parameter sequences.

α		$\alpha.1i$	$\alpha.\mathtt{limitElement}(n)$	
n	1	2	3	4
$[[1]]\omega_1$	$\omega_1[\omega]$	$\omega_1[\omega_1[\omega]]$	$\omega_1[\omega_1[\omega_1[\omega]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[\omega]]]]$
$\omega_1[\omega]$	$\omega_1[1]$	$\omega_1[2]$	$\omega_1[3]$	$\omega_1[4]$
$\omega_1[\omega_1[\omega]]$	$\omega_1[\omega_1[1]]$	$\omega_1[\omega_1[2]]$	$\omega_1[\omega_1[3]]$	$\omega_1[\omega_1[4]]$
$\omega_1[\omega_1[\omega_1[\omega_1[\omega]]]$	$\omega_1[\omega_1[\omega_1[1]]]$	$\omega_1[\omega_1[\omega_1[2]]]$	$\omega_1[\omega_1[\omega_1[3]]]$	$\omega_1[\omega_1[\omega_1[4]]]$
$\left[\begin{array}{c}\omega_1[\omega_1[\omega_1[\omega_1[\omega_1[\omega]]]]\end{array}\right]$	$\mid \omega_1[\omega_1[\omega_1[\omega_1[\omega_1[1]]]] \mid$	$\omega_1[\omega_1[\omega_1[\omega_1[2]]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[\omega_1[3]]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[4]]]]$
$\omega_1[1]$	ω	$\varphi_{\mathcal{E}}$	$arphi_{arphi_{\omega}+1}$	$arphi_{arphiarphi_{\omega}+1+1}$
$\omega_1[2]$	$\omega_1[1]$	$arphi_{\omega_1[1]+1}$	$\varphi_{\varphi_{u_1[1]+1}+1}$	$\varphi_{\varphi_{\varphi_1[1]+1}+1}+1$
$\omega_1[3]$	$\omega_1[2]$	$arphi_{\omega_1[2]+1}$	$arphi_{arphi_{\omega_1[2]+1}+1}$	$\varphi_{\varphi\varphi_{\omega_1[2]+1}+1}+1$
$\omega_1[4]$	$\omega_1[3]$	$\varphi_{\omega_1[3]+1}$	$\varphi_{\varphi_{\omega_1[3]+1}+1}$	$\varphi_{\varphi_{\omega_1[3]+1}+1}$
$\omega_1[\omega_1[1]]$	$[\omega_1[\omega]]$	$\omega_1[arphi_\omega]$	$\omega_1[arphi_{arphi_\omega+1}]$	$\omega_1[arphi_{arphi_{arphi_{\omega_{+1}+1}+1}}]$
$\omega_1[\omega_1[2]]$	$\omega_1[\omega_1[1]]$	$\omega_1[arphi_{\omega_1[1]+1}]$	$\omega_1[arphi_{arphi_{\omega_1[1]+1}+1}]$	$\omega_1[arphi_{arphiarphi_{\omega_1[1]+1}+1}]$
$\omega_1[\omega_1[3]]$	$\omega_1[\omega_1[2]]$	$\omega_1[arphi_{\omega_1[2]+1}]$	$\omega_1[arphi_{arphi_{\omega_1[2]+1}+1}]$	$\omega_1[arphi_{arphiarphi_{\omega_1[2]+1}+1}]$
$\omega_1[\omega_1[4]]$	$\omega_1[\omega_1[3]]$	$\omega_1[arphi_{\omega_1[3]+1}]$	$\omega_1[arphi_{arphi_{\omega_1[3]+1}+1}]$	$\omega_1[arphi_{arphiarphi_{\omega_1[3]+1}+1+1}]$
$\omega_1[\omega_1[\omega_1[1]]]$	$\omega_1[\omega_1[\omega]]$	$\omega_1[\omega_1[arphi_\omega]]$	$\omega_1[\omega_1[arphi_{arphi_\omega+1}]]$	$\omega_1[\omega_1[arphi_{arphiarphi_{\omega_{\omega}+1}+1}]]$
$\omega_1[\omega_1[\omega_1[2]]]$	$\omega_1[\omega_1[\omega_1[1]]]$	$\omega_1[\omega_1[arphi_{\omega_1[1]+1}]]$	$\omega_1[\omega_1[arphi_{arphi_{\omega_1[1]+1}+1}]]$	$\omega_1[\omega_1[arphi_{arphi^{arphi_1}[1]+1}+1]]$
$\omega_1[\omega_1[\omega_1[3]]]$	$\omega_1[\omega_1[\omega_1[2]]]$	$\omega_1[\omega_1[arphi_{\omega_1[2]+1}]]$	$\omega_1[\omega_1[arphi_{arphi_{\omega_1[2]+1}+1}]]$	$\omega_1[\omega_1[arphi_{arphiarphi_{\omega_1[2]+1}+1}]]$
$\omega_1[\omega_1[\omega_1[4]]]$	$\omega_1[\omega_1[\omega_1[3]]]$	$\omega_1[\omega_1[arphi_{\omega_1[3]+1}]]$	$\omega_1[\omega_1[arphi_{arphi_{\omega_1[3]+1}+1}]]$	$\omega_1[\omega_1[arphi_{arphiarphi_{arphi_1}[3]+1}+1]]$
$\omega_1[\omega_1[\omega_1[\omega_1[1]]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[\omega]]]$	$\omega_1[\omega_1[\omega_1[arphi_{\omega}]]]$	$\omega_1[\omega_1[\omega_1[arphi_{arphi_{\omega}+1}]]]$	$\omega_1[\omega_1[\omega_1[arphi_{arphiarphi_{\omega}+1}+1]]]$
$\omega_1[\omega_1[\omega_1[\omega_1[2]]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[1]]]]$	$\omega_1[\omega_1[\omega_1[arphi_{n_1[1]+1}]]]$	$\omega_1[\omega_1[\omega_1[arphi_{arphi_{\omega_1[1]+1}+1}]]]$	$\omega_1[\omega_1[\omega_1[arphi_{arphi}[arphi_{arphi_{\omega_1[1]+1}+1}+1]]]]$
$\omega_1[\omega_1[\omega_1[\omega_1[\omega_1[3]]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[\omega_1[2]]]]$	$\omega_1[\omega_1[\omega_1[arphi_{n_1[2]+1}]]] \; \Big \;$	$\omega_1[\omega_1[\omega_1[arphi_{arphi_{\omega_1[2]+1}+1}]]]$	$\omega_1[\omega_1[\omega_1[arphi_{arphi arphi_{\omega_1[2]+1}+1+1}]]]$
$\omega_1[\omega_1[\omega_1[\omega_1[4]]]]$	$\omega_1[\omega_1[\omega_1[\omega_1[\omega_1[3]]]]$	$\omega_1[\omega_1[\omega_1[\varphi_{\omega_1[3]+1}]]]$	$\omega_1[\omega_1[\omega_1[arphi_{arphi_{\omega_1[3]+1}+1}]]]$	$\omega_1[\omega_1[\omega_1[arphi_{arphiarphi_{\omega_1[3]+1}+1}+1]]]$

Table 25: Structure of $[[1]]\omega_1$

9 AdmisLevOrdinal class

The AdmisLevOrdinal class goes beyond the recursive ordinals to construct notations for countable admissible ordinals beginning with the Church-Kleene or second admissible ordinal⁴⁵. This is the ordinal of the recursive ordinals. class AdmisLevOrdinal is derived from base classes starting with IterFuncOrdinal. The Ordinals it defines can be used in constructors for the Ordinal base classes it is derived from. However AdmisLevOrdinals are different from ordinals constructed with those base classes. For every recursive ordinal there is a finite notation system that can enumerate a notation for that ordinal and every ordinal less than it such that there is a recursive ordering of the notations isomorphic to the ordering of the ordinals they represent. This is not true for the ordinal of the recursive ordinals or any larger ordinal.

Three new member functions: limitOrd, limitType and maxLimitType are needed for this class to deal with the limitations that exist at this level of the ordinal hierarchy. These functions are outlined in Section 8 and described in detail in sections 9.3 (for limitType), 9.4 (for maxLimitType) and 9.5 (for limitOrd).

C++ class AdmisLevOrdinal is derived from class IterFuncOrdinal which in turn is derived from FiniteFuncOrdinal and Ordinal. It implements an iterative function hierarchy syntactically similar to that described in Section 5.5. It uses an expanded version of the normal form in Equation 7 given in equations 8 to 11. The class for a single term of an AdmisLevOrdinal is AdmisNormalElement. It is derived from IterFuncNormalElement and its base classes.

All parameters (except κ) can be zero. Omitted parameters are set to 0. To omit κ use the notation for an IterFuncOrdinal in Equation 7. κ is the admissible index, i. e. (the κ in ω_{κ}). ω_1 is the ordinal of the recursive ordinals or the smallest ordinal that is not recursive. The expanded notation at this level is specified in Section 8.2. Parameters γ and β_i have a definition similar to that in Table 10 and are explained in section 9.2 on AdmisNormalElement::limitElement and section 9.5 on AdmisNormalElement::limitOrd as are the new parameters in this class: κ , η and δ .

The AdmisLevOrdinal class should not be used directly to create ordinal notations. Instead use function admisLevelFunctional which checks for fixed points and creates unique notations for each ordinal⁴⁶. This function takes up to five arguments. The first two are required and the rest are optional. The first gives the admissible ordinal index, the κ in ω_{κ} . The second gives the level of iteration or the value of γ in equations 8 and 11. The third gives a NULL terminated array of pointers to Ordinals which are the β_i in equations 8 and 11. This parameter is optional and can be created with function createParameters described in Section 6. The fourth parameter is an ordinal reference that defaults to 0. It is the value of η in Equations 9 and 10. The fifth parameter is an Ordinal reference which defaults to zero. It is the value of δ in equations 10 and 11. Some examples are shown in Table 26.

⁴⁵The first admissible ordinal is the ordinal of the integers, ω .

⁴⁶ In the interactive ordinal calculator one can use notations like [[delta]] omega_{ kappa, lambda} (b1,b2,...,bn). For more examples see sections A.11.7, A.11.8 and A.11.9.

'cp' stands for createParameters and 'af' stands for admisLe	evelFunctional
C++ code examples	Ordinal
af(zero,zero,cp(&one))	ω
af(zero, one, cp(&one, &zero))	$\varphi_1(1,0)$
af(one,zero,cp(&one,&one,&zero))	$\omega_1(1,1,0)$
af(one,zero)	ω_1
af(one,zero,NULL,eps0)	$\omega_1[\varepsilon_0]$
af(one,zero,NULL,Ordinal::five)	$\omega_1[5]$
af(one,omega1CK,cp(&one))	$\omega_{1,\omega_1}(1)$
af(one,one,cp(&one,&omega1CK))	$\omega_{1,1}(1,\omega_1)$
af(one,Ordinal::two, cp(&one,ω,&zero))	$\omega_{1,2}(1,\omega,0)$
af(omega,omega,cp(&one,&omega1CK,&zero,&zero))	$\omega_{\omega,\omega}(1,\omega_1,0,0)$
af(omega1CK,omega)	$\omega_{\omega_1,\omega}$
af(one,omega,cp(&iterativeFunctional(omega)))	$\omega_{1,\omega}(\varphi_{\omega})$
af(af(one,zero)+1,zero,NULL,omega)	$\omega_{\omega_1+1}[\omega]$
af(Ordinal::two,zero,NULL,zero,Ordinal::two)	$[[2]]\omega_2$
af(Ordinal::omega,zero,NULL,zero,Ordinal::three)	$[[3]]\omega_{\omega}$
af(omega,zero,NULL,zero,omega)	$[[\omega]]\omega_{\omega}$
af(Ordinal::two,omega1CK,cp(&one),zero,Ordinal::two)	$[[2]]\omega_{2,\omega_1}(1)$
af(omega,omega,cp(&one,&omega1CK,&zero),zero,one)	$[[1]]\omega_{\omega,\omega}(1,\omega_1,0)$

Table 26: admisLevelFunctional C++ code examples

9.1 AdmisNormalElement::compare member function

AdmisNormalElement::compare supports one term in the normal form in Equation 7 expanded with terms in the form of equations 8 to 11. AdmisNormalElement::compare compares its CantorNormalElement parameter trm, against the AdmisNormalElement instance compare is called from. As with FiniteFuncOrdinals and IterFuncOrdinals, the work of comparing Ordinals with multiple terms is left to the Ordinal and OrdinalImpl base class functions which call the virtual functions that operate on a single term.

AdmisNormalElement::compare, with a CantorNormalElement and an ignore factor flag as arguments, overrides IterFuncNormalElement::compare with the same argument (see Section 7.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argument. There are two versions of AdmisNormalElement::compare the first has two arguments as described above. The second is for internal use only and has two additional 'context' arguments. the context for the base function and the context for the argument. The context is the value of the δ parameter in force at this stage of the compare. The three base classes on which AdmisNormalElement is built also support this context sensitive version of compare.

compare first checks if its argument's codeLevel is > admisCodeLevel. If so it calls a higher level routine by calling its argument's member function. The code level of the class object that AdmisNormalElement::compare is called from should always be admisCodeLevel.

The δ parameter makes comparisons context sensitive. The δ values of the base object and compare's parameter are relevant not just for comparing the two class instances but

also for all comparisons of internal parameters of those instances. Thus context sensitive compare passes the δ values to compares that are called recursively. For base classes that AdmisNormalElement is derived from, these additional arguments are only used to pass on to their internal compare calls. The δ values contexts only modify the meaning of ordinal notations for admissible level ordinals. The context sensitive version of the virtual function compare has four arguments.

- const OrdinalImpl& embdIx the context for the base class object from which this compare originated.
- const OrdinalImpl& termEmbdIx the context of the CantorNormalElement term at the start of the compare.
- const CantorNormalElement& trm the term to be compared at this point in the comparison tree.
- bool ignoreFactor an optional parameter that defaults to false and indicates that an integer factor is to be ignored in the comparison.

As with compare for FiniteFuncOrdinals and IterFuncOrdinals this function depends on the getMaxParameter() that returns the maximum value of all the parameters (except η and δ) in equations 8 and 11.

The logic of AdmisNormalElement::compare with the above four parameters is summarized in Table 28. The original version of compare, without the context arguments, calls the routine with context parameters.

9.2 AdmisNormalElement::limitElement member function

AdmisNormalElement::limitElement overrides IterFuncNormalElement::limitElement (see Section 6.2). It operates on a single term of the normal form expansion and does the bulk of the work, It takes a single integer parameter. Increasing values for the argument yield larger ordinal notations as output. In contrast to base class versions of this routine, in this version the union of the ordinals represented by the outputs for all integer inputs are not necessarily equal to the ordinal represented by the AdmisNormalElement class instance limitElement is called from. They are equal if the limitType of this instance of AdmisNormalElement is integerLimitType (see tables 20 and 38).

As usual Ordinal::limitElement does the work of operating on all but the last term of an Ordinal by copying all but the last term of the result unchanged from the input Ordinal. The last term is generated based on the last term of the Ordinal instance limitElement is called from. The three routines that implement AdmisNormalElement::limitElement are outlined in tables 30 to 32⁴⁷. Some examples are shown in Tables 33 to 35.

 $^{^{47}}$ Routine leUse is used when κ is a limit and the least significant parameter. One needs to take an element from a sequence whose union is κ but one must insure that this does not lead to a value less than δ . One also must insure that increasing inputs produce increasing outputs and the output is always less than the input. The algorithm used has the same kernel code for this problem in limitOrd. See Note 48 on page 62 for a description of the algorithm.

Symbol	Meaning
cmp	Gnu Multiple Precision Arithmetic comparison routine
compareFiniteParams	compares β_i in equations 8 and 11 in object it is
	called from and its argument
δ_{ef}	effective (context dependent) value of δ
diff	temporary value with compare result
effIndexCk	minimum of κ , δ if $\delta > 0$ otherwise κ
functionLevel	γ parameter in equations 8 and 11
ignoreFactor	parameter to ignore factor in comparison
(ignf)	ignore factor and all but the first term
maxParameter	largest parameter of class instance or trm
maxParamFirstTerm	first term of largest parameter of trm
isZ	isZero is value zero
parameterCompare	check largest parameter of self and argument
this	pointer to class instance called from
trm	parameter comparing against
termEffIndexCK	minimum of trm. κ , trm. δ if trm. $\delta > 0$ otherwise κ
X	exit code (see Note 36 on page 34)

Table 27: Symbols used in ${\tt compare}$ Table 28

	See Table 27 for symbol definitions.		
	Comparisons use δ context for both operands.		
	Value is ord.compare(trm) : -1, 0 or 1 if ord $<$,=, $>$ trm		
\mathbf{X}	Condition	Value	
	trm.codeLevel < admisCodeLevel		
A2	trm.maxParameter.isZ	1	
A3	$ exttt{maxParamFirstTerm} \geq exttt{*this} ext{ (ignf)}$	-1	
A4		1	
A5	$(diff = parameterCompare(trm)) \neq 0$	diff	
A1	trm.codeLevel > admisCodeLevel		
	diff=-trm.compare(*this)	diff	
В	$\delta_{ef} eq 0 \land trm.\delta_{ef} eq 0 \land ((diff = \delta_{ef}.compare(trm.\delta_{ef}) eq 0)$	diff	
B1	$(diff=effIndexCk.compare(termEffIndexCK)) \neq 0$	diff	
B1A	$(diff=indexCK.compare(trm.indexCK)) \neq 0$	diff	
	!drillDown.isZ && !trm.drillDown.isZ		
B2	$(exttt{diff=drillDown.compare(trm.drillDown)}) eq 0$	diff	
В3	!drillDown.isZ && trm.drillDown.isZ	-1	
B4	drillDown.isZ && !trm.drillDown.isZ	1	
A6	$(diff=functionLevel.compare(trm.functionLevel)) \neq 0$	diff	
R	$(diff=compareFiniteParams(trm)) \neq 0$	diff	
S	ignoreFactor	0	
S	(diff=cmp(factor,trm.factor) ∨ true	diff	

 $Table\ 28:\ {\tt AdmisNormalElement::compare}\ summary$

Symbol	Meaning
$\delta_{ t ck}$	if $\kappa = \delta$ use $\delta - 1$
ddLe	drillDownLimitElement (Table 31)
dRepl	copy ordinal called from replacing η parameter
embLe	embedLimitElement (Table 32)
info	LimitTypeInfo enum assigned to this limit
IFNE::leCom	IterFuncNormalElement::limitElementCom (Section 7.2)
isLm	isLimit
isSc	isSuccessor
indexCKtoLimitType	computes limitType from δ, κ, η
isZ	isZero is value zero
le	limitElement (Table 30)
lEmb(e)	limitMaxEmbed(limit) insure $\delta <$ limit by removing δ
$\alpha.leUse(n)$	Compute a safe value for le(n), see Note 47 on page 52
lme	limitMaxEmbed limit maximum $\delta < \text{global } \delta$
1Sg	value of least significant nonzero β_i
lsx	index of least significant nonzero β_i
lo	limitOrd (Table 39)
$\alpha.loUse(n)$	Computes a safe value for lo(ord), see Note 48 on page 62
lp1	limPlus_1(Section 6.3)
nlSg	value of next to least significant nonzero β_i
nlsx	index of next to least significant nonzero β_i
rep1	replace1, rep1(i,val) replaces β_i with val in ord see Table 9
rep2	replace2, a two parameter version of rep1 see Table 9
Rtn x	x is return value
SZ	number of β_i in equations 8 and 11
this	pointer to class instance called from
X	exit code (Note 36 on page 34)

Table 29: Symbols used in limitElement Tables 30 to 32 and limitOrd Table 39

$$lpha$$
 is a notation from one of equations 8 to 11. $lpha=\omega_{\kappa,\gamma}(eta_1,eta_2,...,eta_m)$ $lpha=\omega_{\kappa}[\eta]$ $lpha=[[\delta]]\omega_{\kappa}[\eta]$ $lpha=[[\delta]]\omega_{\kappa,\gamma}(eta_1,eta_2,...,eta_m)$ See Table 29 for symbol definitions.

X	Condition(s)	LimitTypeInfo	$\alpha.le(n)$
DDA	!η.isZ		ddLe(n)
LA	lSg.isLm	paramLimit	$\alpha. \texttt{rep1(i,} \beta_i. \texttt{le(n).lp1())}$
LB	$orall_ieta_i=0\wedge\gamma. ext{isLm}$	iterLimit	$[[\delta]]\omega_{\kappa,\gamma.\mathtt{le(n).lp1}}$
EDDC	$\kappa.\mathtt{isLm} \wedge \gamma.\mathtt{isZ} \wedge !\delta.\mathtt{isZ}$		embLe(n)
LC	$\kappa.\mathtt{isLm} \wedge \gamma.\mathtt{isZ} \wedge \delta.\mathtt{isZ}$	indexCKlimit	$\omega_{\kappa.\mathtt{le}(\mathtt{ne}).\mathtt{lp1}()}$
	$ extsf{sz}=1 \land \gamma. extsf{isZ} \land eta_1. extsf{isSc}$		$e=\kappa.le(n)$
CLLM	$\kappa.\mathtt{isLm}\wedge\kappa=\delta$	indexCKlimitParam	$[[\mathbf{e}]]\omega_{\mathbf{e},(\omega_{\kappa}((\beta_1-1).\mathtt{1Emb}(\mathbf{e}))).\mathtt{1p1}}$
CKLM	$\kappa.\mathtt{isLm} \wedge \kappa \neq \delta$	indexCKlimitParam	$[[\delta]]\omega_{ this-> ext{leUse(n)},\omega_{\kappa}(eta_1-1). ext{lp1}}$
	$\mathtt{sz} = 1 \wedge \gamma.\mathtt{isZ} \wedge$		b= $[[\delta]]\omega_{\kappa}(eta_1-1).$ lme
	$ig eta_1.$ isSc $\wedge\kappa.$ isSc		for(i=1;i <n;i++)< td=""></n;i++)<>
			$b=[[\delta_{\mathtt{ck}}]]\omega_{\kappa-1,\mathtt{b.lp1}}(\beta_1-1)$
CKSC		indexCKsuccParam	Rtn b
	$\gamma, \mathtt{isSc} \lor \mathtt{sz} > \mathtt{1} \lor$		
KA	$\big \;((\gamma>0)\wedge(\mathtt{sz}=1))$		IFNE::leCom(n)
	$orall_ieta_i=0 \wedge \ \gamma=0 \wedge \ \kappa.$ isSc		
KEA	$\kappa.$ isSc $\wedge \delta > 0$	indexCKsucc	embLe(n)
KE	$\kappa.$ isSc $\wedge \delta = 0$	indexCKsucc	$\omega_{\kappa}[n]$

Table 30: AdmisNormalElement::limitElement cases

α is a notation from equations 9 or 10.			
$\alpha = \omega_{\kappa}[\eta] \qquad \qquad \alpha = [[\delta]]\omega_{\kappa}[\eta]$			
The δ parameter is unchanged and not displayed below.			
See Table 29 for symbol definitions.			

X	Condition(s)	LimitTypeInfo	$\alpha.le(n)$
DDL	$\eta.\mathtt{isLm}$	drillDownLimit	$\omega_{\kappa}[\eta.\mathtt{limitElement}(\mathtt{n})]$
DDKO	$\eta.\mathtt{isOne} \wedge \kappa.\mathtt{isOne}$	drillDownSucc	$b=\omega$;for(i=1;i <n;i++)<math>b=\varphi_{b.lp1};Rtn b</n;i++)<math>
DDO	$\eta.\mathtt{isOne} \wedge \kappa > 1$	drillDownSucc	b= $\omega_{\kappa-1}$;for(i=1;i <n;i++)b=<math>\omega_{\kappa-1,\text{b.lp1}}</n;i++)b=<math>
	$\eta > 1 \wedge \kappa.$ isOne	drillDownSucc	$b=dRepl(\eta-1);$
DDGA		drillDownSucc	for(i=1;i <n;i++)b=<math>\varphi_{\mathtt{b.lp1}};Rtn b</n;i++)b=<math>
	$\eta > 1 \land \kappa > 1$	drillDownSucc	$b=dRepl(\eta-1);$
DDGB			for(i=1;i <n;i++)b=<math>\omega_{\kappa-1,\text{b.lp1}};Rtn b</n;i++)b=<math>

Table 31: AdmisNormalElement::drillDownlimitElement cases

$$lpha$$
 is a notation from equation 10 or 11. $lpha = [[\delta]]\omega_{\kappa}[\eta] \quad \alpha = [[\delta]]\omega_{\kappa,\gamma}(eta_1,eta_2,...,eta_m).$ See Table 29 for symbol definitions.

X	Condition(s)	$\alpha.le(n)$
EDEQ	$\delta.$ isLm \wedge $\kappa = \delta$	$\omega_{\kappa.\mathtt{le}(\mathtt{n})}[[\delta.\mathtt{le}(\mathtt{n})]]$
EDAB	δ .isLm \wedge κ .isLm \wedge $\delta \neq \kappa$	$\omega_{\mathtt{leUse}(\kappa.\mathtt{le}(\mathtt{n}),\delta).\mathtt{lp1}}[[\delta]]$
	$\kappa.$ isSc $\wedge\delta.$ isLm	$b extsf{=}[[\delta]]\omega_{[[\delta]](\omega_{\kappa-1}).\mathtt{lp1}}$
EDAC		$\texttt{for(i=1;i$
EDAD	$\delta.$ isSc \wedge $\kappa.$ isLm	$[[\delta]]\omega_{(\kappa.\mathtt{le}(\mathtt{n})+\delta).\mathtt{lp}\mathtt{1}}$
	$\delta = 1 \wedge \kappa = 1$	$b=[[1]]\omega_1$
EDEO		for(i=1;i <n;i++)b=<math>\omega_1[b];Rtn b</n;i++)b=<math>
	$\delta = \kappa \ \land \ \delta.$ isSc	$b=\omega_{\kappa}[\omega_{\kappa-1}]$
EDEE		for(i=1;i <n;i++)b=<math>\omega_{\kappa}[b];Rtn b</n;i++)b=<math>
	$\delta = 1 \wedge \ \kappa > 1 \wedge \ \kappa.$ isSc	$b=[[1]]\omega_{\kappa-1}$
EDEF		$\texttt{for(i=1;i$
	$\delta > \kappa \wedge \ \delta.$ isSc $\wedge \ \kappa.$ isSc	$b\text{=}[[\delta-1]]\omega_{\kappa-1,([[delta-1]]\omega_{\kappa}).\mathtt{lp1}}$
EDEG		$\texttt{for(i=1;i$

Table 32: AdmisNormalElement::embedLimitElement cases

AdmisLevOrdinal		limitElement	lent
3	1	2	3
ω_ω	ω_1	ω_2	ω_3
ω_1	$\omega_1[1]$	$\omega_1[2]$	$\omega_1[3]$
$\varphi(\omega_1,1,0,0)$	$arphi(\omega_1,0,1,0)$	$\varphi(\omega_1, 0, \varphi(\omega_1, 0, 1, 0) + 1, 0)$	$\varphi(\omega_1, 0, \varphi(\omega_1, 0, \varphi(\omega_1, 0, 1, 0) + 1, 0) + 1, 0)$
$\varphi(\omega_1+1,1)$	$\varphi(\omega_1 + 1, 0) + 1$	$\varphi(\omega_1,\varphi(\omega_1+1,0)+1)$	$\varphi(\omega_1,\varphi(\omega_1,\varphi(\omega_1+1,0)+1)+1)$
$[\ \omega_1[1]$	ω	$arphi_{\omega}$	$arphi_{arphi_{\omega}+1}$
$[\omega_1[2]$	$\mid \omega_1[1] \mid$	$arphi_{\omega_1[1]+1}$	$\varphi_{\varphi_{\omega_1[1]+1}+1}$
$\big[\omega_1[\omega]$	$\mid \omega_1[1] \mid$	$\omega_1[2]$	$\omega_1[3]$
$\omega_2[\omega_1]$	$\omega_2[\omega_1[1]]$	$\omega_2[\omega_1[2]]$	$\omega_2[\omega_1[3]]$
$\omega_2[\omega_1]$	$\omega_2[\omega_1[1]]$	$\omega_2[\omega_1[2]]$	$\omega_2[\omega_1[3]]$
$\left[\begin{array}{c}\omega_2[\omega_2[\omega_1]]\end{array}\right]$	$\mid \omega_2[\omega_2[\omega_1[1]]]$	$\omega_2[\omega_2[\omega_1[2]]]$	$\omega_2[\omega_2[\omega_1[3]]]$
$(\omega_1 4)$	$[\omega_1 3) + \omega_1 [1]$	$(\omega_1 3) + \omega_1 [2]$	$(\omega_13) + \omega_1[3]$
$\omega^{(\omega_1 2)}$	$\omega_{\omega_1+\omega_1[1]}$	$\omega^{\omega_1+\omega_1[2]}$	$\omega^{\omega_1+\omega_1[3]}$
$\omega_1(1)$	$arphi_{\omega_1+1}$	$\varphi_{\varphi_{\omega_1+1}+1}$	$\varphi_{\varphi_{\omega_1+1}+1}$
$\boxed{\omega_1(1,1)}$	$ \omega_1(1,0)+1 $	$\omega_1(\omega_1(1,0)+1)$	$[\omega_1(\omega_1(\omega_1(1,0)+1)+1)]$
$\ \ \left[\ \omega_1(1,0,1) \right.$	$\mid \omega_1(1,0,0) + 1$	$\omega_1(\omega_1(1,0,0)+1,1)$	$ \omega_1(\omega_1(\omega_1(1,0,0)+1,1)+1,1) $
$\ \ \left[\ \omega_1(1,1,0)\right.$	$\mid \omega_1(1,0,1) \mid$	$\omega_1(1,0,\omega_1(1,0,1)+1)$	$[\omega_1(1,0,\omega_1(1,0,\omega_1(1,0,1)+1)+1)]$
$[\ \omega_1(\varepsilon_0,0)$	$\mid \omega_1(\omega,0) \mid$	$\omega_1(\omega^\omega,0)$	$\omega_1(\omega^{\omega^\omega},0)$
$[\ \omega_1(\varepsilon_0,1,0)$	$\mid \omega_1(arepsilon_0,0,1)$	$\omega_1(arepsilon_0,0,\omega_1(arepsilon_0,0,1)+1)$	$\omega_1(\varepsilon_0,0,\omega_1(\varepsilon_0,0,\omega_1(\varepsilon_0,0,1)+1)+1)$
$\omega_1(arepsilon_0,1)$	$\omega_1(\omega,\omega_1(\varepsilon_0,0)+1)$	$\omega_1(\omega,\omega_1(\varepsilon_0,0)+1) \mid \omega_1(\omega^{\omega},\omega_1(\varepsilon_0,0)+1)$	$ \omega_1(\omega^{\omega^\omega},\omega_1(arepsilon_0,0)+1) $

Table 33: AdmisLevOrdinal::limitElement examples part 1.

AdmisLevOrdinal		limitElement	t
3	1	2	3
$\omega_{1,1}(1)$	$\omega_1(\omega_{1,1}+1)$	$\omega_1(\omega_{1,1}+1,0)$	$\omega_1(\omega_{1,1}+1,0,0)$
$\omega_{2,1}(1)$	$\omega_2(\omega_{2,1}+1)$	$\omega_2(\omega_{2,1}+1,0)$	$\omega_2(\omega_{2,1}+1,0,0)$
$\omega_{1,3}(1)$	$\omega_{1,2}(\omega_{1,3}+1)$	$\omega_{1,2}(\omega_{1,3}+1,0)$	$\omega_{1,2}(\omega_{1,3}+1,0,0)$
$\omega_{1,3}(5)$	$\omega_{1,2}(\omega_{1,3}(4)+1)$	$\omega_{1,2}(\omega_{1,3}(4)+1,0)$	$\omega_{1,2}(\omega_{1,3}(4)+1,0,0)$
$\boxed{ \omega_{1,1}(1,0) }$	$\mid \omega_{1,1}(1) \mid$	$\omega_{1,1}(\omega_{1,1}(1)+1)$	$\omega_{1,1}(\omega_{1,1}(\omega_{1,1}(1)+1)+1)$
$\ \ \left[\begin{array}{c} \omega_{1,3}(1,0) \end{array}\right.$	$\mid \omega_{1,3}(1) \mid$	$\omega_{1,3}(\omega_{1,3}(1)+1)$	$\omega_{1,3}(\omega_{1,3}(\omega_{1,3}(1)+1)+1)$
$\ \ \left(\begin{array}{c} \omega_{1,3}(5,0) \end{array}\right)$	$\mid \omega_{1,3}(4,1) \mid$	$\omega_{1,3}(4,\omega_{1,3}(4,1)+1)$	$\omega_{1,3}(4,\omega_{1,3}(4,\omega_{1,3}(4,1)+1)+1)$
$\ \ \left[\begin{array}{c} \omega_{1,1}(1,0,0) \end{array}\right.$	$\mid \omega_{1,1}(1,0) \mid$	$\omega_{1,1}(\omega_{1,1}(1,0)+1,0)$	$\omega_{1,1}(\omega_{1,1}(\omega_{1,1}(1,0)+1,0)+1,0)$
$\omega_{1,3}(1,0,0)$	$\omega_{1,3}(1,0)$	$\omega_{1,3}(\omega_{1,3}(1,0)+1,0)$	$\omega_{1,3}(\omega_{1,3}(\omega_{1,3}(1,0)+1,0)+1,0)$
$\sigma_{1,3}(2,0,0)$	$\mid \omega_{1,3}(1,1,0) \mid$	$\omega_{1,3}(1,\omega_{1,3}(1,1,0)+1,0)$	$\omega_{1,3}(1,\omega_{1,3}(1,\omega_{1,3}(1,1,0)+1,0)+1,0)$
$\omega_{1,\varepsilon_0}(1)$	$\mid \omega_{1,\omega}(\omega_{1,arepsilon_0}+1) \mid$	$\omega_{1,\omega^{\omega}}(\omega_{1,arepsilon_{0}}+1)$	$\omega_{1,\omega^{\omega^{\omega}}}(\omega_{1,arepsilon_{0}}+1)$
$\omega_{1,\varepsilon_0+1}(1)$	$ \omega_{1,arepsilon_0}(\omega_{1,arepsilon_0+1}+1) $	$\omega_{1,arepsilon_0}(\omega_{1,arepsilon_0+1}+1,0)$	$\omega_{1,arepsilon_0}(\omega_{1,arepsilon_0+1}+1,0,0)$
$\omega_{1,\varepsilon_0+\omega}(3)$	$\mid \omega_{1,\varepsilon_0+1}(\omega_{1,\varepsilon_0+\omega}(2)+1)\mid$	$\omega_{1,\varepsilon_0+2}(\omega_{1,\varepsilon_0+\omega}(2)+1)$	$\omega_{1,arepsilon_0+3}(\omega_{1,arepsilon_0+\omega}(2)+1)$
$\omega_{1,1}(1)$	$\mid \omega_1(\omega_{1,1}+1) \mid$	$\omega_1(\omega_{1,1}+1,0)$	$\omega_1(\omega_{1,1}+1,0,0)$
$\ \ [\ \omega_{1,\varepsilon_0}(1)$	$\mid \omega_{1,\omega}(\omega_{1,arepsilon_0}+1) \mid$	$\omega_{1,\omega^{\omega}}(\omega_{1,arepsilon_{0}}+1)$	$\omega_{1,\omega^{\omega^{\omega}}}(\omega_{1,arepsilon_{0}}+1)$
$\left[\begin{array}{c}\omega_{1,\varepsilon_{0}+\omega}(1)\end{array}\right.$	$\mid \omega_{1,arepsilon_0+1}(\omega_{1,arepsilon_0+\omega}+1) \mid$	$\omega_{1,arepsilon_0+2}(\omega_{1,arepsilon_0+\omega}+1)$	$\omega_{1,arepsilon_0+3}(\omega_{1,arepsilon_0+\omega}+1)$
$\omega_{1,\varepsilon_0}(5)$	$\mid \omega_{1,\omega}(\omega_{1,arepsilon_0}(4)+1) \mid$	$\omega_{1,\omega^\omega}(\omega_{1,arepsilon_0}(4)+1)$	$\omega_{1,\omega^{\omega^{\omega}}}(\omega_{1,arepsilon_0}(4)+1)$
$\omega_{1,\varepsilon_0+1}(5)$	$\mid \omega_{1,arepsilon_0}(\omega_{1,arepsilon_0+1}(4)+1) \mid$	$\omega_{1,arepsilon_0}(\omega_{1,arepsilon_0+1}(4)+1,0)$	$\omega_{1,arepsilon_0}(\omega_{1,arepsilon_0+1}(4)+1,0,0)$
$\ \ \left[\ \omega_{1,\varepsilon_0}(5) \right.$	$\mid \omega_{1,\omega}(\omega_{1,arepsilon_0}(4)+1) \mid$	$\omega_{1,\omega^\omega}(\omega_{1,arepsilon_0}(4)+1)$	$\omega_{1,\omega^{\omega^{\omega}}}(\omega_{1,arepsilon_0}(4)+1)$
$\omega_1(1,1)$	$\mid \omega_1(1,0)+1 \mid$	$\omega_1(\omega_1(1,0)+1)$	$\omega_1(\omega_1(\omega_1(1,0)+1)+1)$
$ \omega_1(2) $	$arphi_{\omega_1(1)+1}(1)$	$\varphi_{\varphi_{\omega_1(1)+1}(1)+1}(1)$	$\varphi_{\varphi_{\omega_1(1)+1}(1)+1}(1)$
$\omega_{1,1}$	$\omega_1(\omega_1+1)$	$\omega_1(\omega_1+1,0)$	$\omega_1(\omega_1+1,0,0)$
$\omega_{1,1}(1)$	$\mid \omega_1(\omega_{1,1}+1) \mid$	$\omega_1(\omega_{1,1}+1,0)$	$\omega_1(\omega_{1,1}+1,0,0)$
$\omega_{1,3}$	$ \omega_{1,2}(\omega_{1,2}+1) $	$\omega_{1,2}(\omega_{1,2}+1,0)$	$\omega_{1,2}(\omega_{1,2}+1,0,0)$
$\omega_{1,1}(\omega,1)$	$\omega_{1,1}(1,\omega_{1,1}(\omega,0)+1)$	$\omega_{1,1}(2,\omega_{1,1}(\omega,0)+1)$	$\omega_{1,1}(3,\omega_{1,1}(\omega,0)+1)$
$\omega_{1,\omega}(1)$	$\mid \omega_{1,1}(\omega_{1,\omega}+1) \mid$	$\omega_{1,2}(\omega_{1,\omega}+1)$	$\omega_{1,3}(\omega_{1,\omega}+1)$

Table 34: AdmisLevOrdinal::limitElement examples part 2.

AdmisLevOrdinal		limitElement	1t
$\boldsymbol{\beta}$	1	2	3
ω^{ω_1+1}	ω_1	$(\omega_1 2)$	$(\omega_1 3)$
$(\omega_1 2)$	$\omega_1 + \omega_1[1]$	$\omega_1 + \omega_1[2]$	$\omega_1 + \omega_1[3]$
$\omega_{arepsilon_0}(1)$	$\omega_{\omega,\omega_{\varepsilon_0}+1}$	$\omega_{\omega^\omega,\omega_{arepsilon_0}+1}$	$\omega_{\omega^{\omega_{\omega^{\omega}}},\omega_{arepsilon_0}+1}$
$\omega_{arepsilon_0}(2)$	$\omega_{\omega,\omega_{\varepsilon_0}(1)+1}$	$\omega_{\omega^\omega,\omega_{arepsilon_0}(1)+1}$	$\omega_{\omega^{\omega^{\omega}},\omega_{arepsilon_{0}}(1)+1}$
$\omega_{arepsilon_0}(\omega)$	$\omega_{arepsilon_0}(1)$	$\omega_{arepsilon_0}(2)$	$\omega_{arepsilon_0}(3)$
$ \omega_{arepsilon_0+1}(1) $	$\omega_{\varepsilon_0,\omega_{\varepsilon_0+1}+1}$	$\omega_{arepsilon_0,\omega_{arepsilon_0,\omega_{arepsilon_0+1}+1}+1}$	$\omega_{arepsilon_0,\omega_{arepsilon_0},\omega_{arepsilon_0},\omega_{arepsilon_0+1+1+1+1}}$
$\omega_{\varepsilon_0,\omega}+\omega^{\omega_1+1}$	$\omega_{\varepsilon_0,\omega} + \omega_1$	$\omega_{arepsilon_0,\omega} + (\omega_1 2)$	$\omega_{arepsilon_0,\omega}+(\omega_13)$
$\omega_{1,\omega}(1)$	$\omega_{1,1}(\omega_{1,\omega}+1)$	$\omega_{1,2}(\omega_{1,\omega}+1)$	$\omega_{1,3}(\omega_{1,\omega}+1)$
$ \;\omega_{1,\omega}(\omega)\;$	$\mid \omega_{1,\omega}(1) \mid$	$\omega_{1,\omega}(2)$	$\omega_{1,\omega}(3)$
$ \omega_{1,2}(\varepsilon_0) $	$ \omega_{1,2}(\omega) $	$\omega_{1,2}(\omega^\omega)$	$\omega_{1,2}(\omega^{\omega^{\omega}})$
$oxed{\omega_{1,1}(2)}$	$\mid \omega_1(\omega_{1,1}(1)+1)$	$\omega_1(\omega_{1,1}(1)+1,0)$	$\omega_1(\omega_{1,1}(1)+1,0,0)$
$\omega_{1,1}(\varepsilon_0)$	$\mid \omega_{1,1}(\omega) \mid$	$\omega_{1,1}(\omega^\omega)$	$\omega_{1,1}(\omega^{\omega^{\omega}})$
$\omega_{1,1}(1,0,0)$	$\omega_{1,1}(1,0)$	$\omega_{1,1}(\omega_{1,1}(1,0)+1,0)$	$\omega_{1,1}(\omega_{1,1}(\omega_{1,1}(1,0)+1,0)+1,0)$
$\omega_{1,3}(1,0,0)$	$\mid \omega_{1,3}(1,0) \mid$	$\omega_{1,3}(\omega_{1,3}(1,0)+1,0)$	$\omega_{1,3}(\omega_{1,3}(\omega_{1,3}(1,0)+1,0)+1,0)$
$\mid \omega_{1,1}(\omega,1)$	$\mid \omega_{1,1}(1,\omega_{1,1}(\omega,0)+1)$	$\omega_{1,1}(2,\omega_{1,1}(\omega,0)+1)$	$\omega_{1,1}(3,\omega_{1,1}(\omega,0)+1)$
$\omega_{1,1}(\omega,1,0)$	$\mid \omega_{1,1}(\omega,0,1)$	$\omega_{1,1}(\omega,0,\omega_{1,1}(\omega,0,1)+1)$	$\omega_{1,1}(\omega,0,\omega_{1,1}(\omega,0,\omega_{1,1}(\omega,0,1)+1)+1)$
ω_{1,ε_0}	$\omega_{1,\omega}$	ω_{1,ω^ω}	ω_{ω_0}
$\omega_{1,\Gamma_0}(1,0)$	$\mid \omega_{1,\Gamma_{0}}(1) \mid$	$\omega_{1,\Gamma_0}(\omega_{1,\Gamma_0}(1)+1)$	$\omega_{1,\Gamma_0}(\omega_{1,\Gamma_0}(\omega_{1,\Gamma_0}(1)+1)+1)$
$[\;\omega_{1,\Gamma_{0}}(\varepsilon_{0})\;$	$\mid \omega_{1,\Gamma_{0}}(\omega) \mid$	$\omega_{1,\Gamma_0}(\omega^\omega)$	$\omega_{1,\Gamma_0}(\omega^{\omega^\omega})$
$[\;\omega_{1,\Gamma_{0}}(\varepsilon_{0},0)\;$	$\mid \omega_{1,\Gamma_{0}}(\omega,0) \mid$	$\omega_{1,\Gamma_0}(\omega^\omega,0)$	$\omega_{1,\Gamma_0}(\omega^{\omega^\omega},0)$
$\omega_{1,\Gamma_0}(\varepsilon_0,1)$	$\mid \omega_{1,\Gamma_{0}}(\omega,\omega_{1,\Gamma_{0}}(arepsilon_{0},0)+1) \mid$	$\omega_{1,\Gamma_0}(\omega^\omega,\omega_{1,\Gamma_0}(arepsilon_0,0)+1)$	$\omega_{1,\Gamma_0}(\omega^{\omega^\omega},\omega_{1,\Gamma_0}(arepsilon_0,0)+1)$
$\omega_{1,\Gamma_0}(\varepsilon_0,1,1)$	$\mid \omega_{1,\Gamma_{0}}(arepsilon_{0},1,0)+1$	$\omega_{1,\Gamma_0}(arepsilon_0,0,\omega_{1,\Gamma_0}(arepsilon_0,1,0)+1)$	$\omega_{1,\Gamma_0}(\varepsilon_0,0,\omega_{1,\Gamma_0}(\varepsilon_0,0,\omega_{1,\Gamma_0}(\varepsilon_0,1,0)+1)+1) \]$
$\omega_{1,1}$	$\omega_1(\omega_1+1)$	$\omega_1(\omega_1+1,0)$	$\omega_1(\omega_1+1,0,0)$
$\omega_{1,3}$	$\omega_{1,2}(\omega_{1,2}+1)$	$\omega_{1,2}(\omega_{1,2}+1,0)$	$\omega_{1,2}(\omega_{1,2}+1,0,0)$
$\omega_{1,4}$	$ \omega_{1,3}(\omega_{1,3}+1) $	$\omega_{1,3}(\omega_{1,3}+1,0)$	$\omega_{1,3}(\omega_{1,3}+1,0,0)$

Table 35: AdmisLevOrdinal::limitElement examples part 3.

AdmisLevOrdinal	limitType	maxLimitType
ω_{ω}	integerLimitType (1)	ω
ω_1	recOrdLimitType (2)	recOrdLimitType (2)
$\varphi(\omega_1,1,0,0)$	recOrdLimitType (2)	recOrdLimitType (2)
$\varphi(\omega_1+1,1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_1[1]$	integerLimitType (1)	integerLimitType (1)
$\omega_1[2]$	integerLimitType (1)	integerLimitType (1)
$\omega_1[\omega]$	integerLimitType (1)	integerLimitType (1)
$\omega_2[\omega_1]$	recOrdLimitType (2)	recOrdLimitType (2)
$\omega_2[\omega_1]$	recOrdLimitType (2)	recOrdLimitType (2)
$\omega_2[\omega_2[\omega_1]]$	recOrdLimitType (2)	recOrdLimitType (2)
$(\omega_1 4)$	recOrdLimitType (2)	recOrdLimitType (2)
$\omega^{(\omega_1 2)}$	recOrdLimitType (2)	recOrdLimitType (2)
$\omega_1(1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_1(1,1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_1(1,0,1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_1(1,1,0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_1(\varepsilon_0,0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_1(\varepsilon_0,1,0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_1(\varepsilon_0,1)$	integerLimitType (1)	recOrdLimitType (2)

Table 36: AdmisLevOrdinal limitType and maxLimitType examples part 1.

9.3 AdmisNormalElement::limitType member function

For admissible level ordinals, limitElement must be supplemented with limitOrd that accepts an arbitrary Ordinal as input. See Section 8.1 for the reasons behind limitOrd and limitType. For a particular use of α .limitOrd(β), it must be true that β .maxLimitType < α .limitType. limitType and maxLimitType both return an OrdinalImpl. The routine that computes limitType also computes the enum LimitTypeInfo that labels limits and is used by limitElement and limitOrd.

The limitType of an ordinal is the limitType of the least significant term. Thus Ordinal::limitType calls the appropriate virtual function such as AdmisNormalElement::limitType to do the bulk of the work of limitType. Table 38 gives the algorithm used in AdmisNormalElement::limitType.

9.4 AdmisNormalElement::maxLimitType member function

maxLimitType is defined recursively. It is the maximum of of limitType and maxLimitType for the ordinal and every parameter used in defining the ordinal. This is the complete definition of maxLimitType for all base classes of AdmisLevOrdinal. The δ parameter puts a constraining context on the recursive evaluation and the η parameter can also modify it.

AdmisNormalElement::maxLimitTypes calls IterFuncNormalElement::maxLimitType for the maximum of all parameters except those unique to class AdmisLevOrdinal. Next, the type of ω_{κ} is computed and the maximum of these two values is taken. Finally, the effect

AdmisLevOrdinal	limitType	maxLimitType
ω^{ω_1+1}	integerLimitType (1)	recOrdLimitType (2)
$(\omega_1 2)$	recOrdLimitType (2)	recOrdLimitType (2)
$\omega_{\varepsilon_0}(1)$	integerLimitType (1)	$arepsilon_0$
$\omega_{\varepsilon_0}(2)$	integerLimitType (1)	$arepsilon_0$
$\omega_{\varepsilon_0}(\omega)$	integerLimitType (1)	$arepsilon_0$
$\omega_{\varepsilon_0+1}(1)$	integerLimitType (1)	$\varepsilon_0 + 1$
$\omega_{\varepsilon_0,\omega} + \omega^{\omega_1+1}$	integerLimitType (1)	$arepsilon_0$
$\omega_{1,\omega}(1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,\omega}(\omega)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,2}(\varepsilon_0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,1}(2)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,1}(\varepsilon_0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,1}(1,0,0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,3}(1,0,0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,1}(\omega,1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,1}(\omega,1,0)$	integerLimitType (1)	recOrdLimitType (2)
ω_{1,ε_0}	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,\Gamma_0}(1,0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,\Gamma_0}(\varepsilon_0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,\Gamma_0}(\varepsilon_0,0)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,\Gamma_0}(\varepsilon_0,1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,\Gamma_0}(\varepsilon_0,1,1)$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,1}$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,3}$	integerLimitType (1)	recOrdLimitType (2)
$\omega_{1,4}$	integerLimitType (1)	recOrdLimitType (2)

 $\label{thm:condition} Table \ 37: \ {\tt AdmisLevOrdinal \ limitType \ and \ maxLimitType \ examples \ part \ 2}.$

α is a not	ation from	one of equat	ions 8 to 11.		
$\alpha = \omega_{\kappa,\gamma}(\beta_1, \beta_2,, \beta_m) \alpha = \omega_{\kappa}[\eta] \alpha = [[\delta]]\omega_{\kappa}[\eta] \alpha = [[\delta]]\omega_{\kappa,\gamma}(\beta_1, \beta_2,, \beta_m)$					
See '	Table 29 fo	or symbol defi	nitions.		

Condition	LimitTypeInfo	limitType
$\eta.$ isLm	drillDownLimit	$\eta.\mathtt{limitType}$
$\eta.$ isSc	drillDownSuccLimit	integerLimitType
lSg.isLm	paramLimit	$eta_i.\mathtt{limitType}$
$orall_ieta_i=0\wedge\gamma.$ isLm	iterLimit	$\gamma.\mathtt{limitType}$
lSg.isSc ∧ nlSg.isLm	paramNxtLimit	nlSg.limitType
$ lSg.isSc \wedge (sz > 1) $	paramSuccLimit	integerLimitType
$sz=1 \land \beta_1.isSc \land \gamma.isLm$	iterLimit	$\gamma.\mathtt{limitType}$
$sz=1 \land \beta_1.isSc \land \gamma.isSc$	iterSucc	integerLimitType
$sz=1 \land \beta_1.isSc \land \gamma=0$	paramSucc	integerLimitType
$\forall_i \beta_i = 0 \land \gamma = 0 \land \kappa.$ isLm	indexCKlimit	$\kappa.\mathtt{limitType}$
$\forall_i \beta_i = 0 \land \gamma = 0 \land \kappa.$ isSc	indexCKsucc	$\verb"indexCKtoLimitType"$

Table 38: AdmisNormalElement::limitType description

of the δ and η parameters are taken into account. δ puts an upper bound on maxLimitType. A nonzero δ or η reduce the value of maxLimitType by 1 if it is a successor. If both are present the value is only reduced by 1.

9.5 AdmisNormalElement::limitOrd member function

AdmisNormalElement::limitOrd extends the idea of limitElement for limitTypes beyond the integers (integerLimitType). An Ordinal notation α represents the ordinal that is the union of all ordinals with notations ζ_x such that β_x .maxLimitType α .limitType α .limitType α .limitOrd(α).

limitOrd is defined for base classes down to Ordinal because instances of those classes with appropriate parameters can have limitTypes greater than integerLimitType. For example the expression $\omega^{\omega_1 \times 2}$ defines an Ordinal instance with limitType > integerLimitType.

Table 39 gives the logic of AdmisNormalElement::limitOrd. One complication with limitOrd occurs when κ is the least significant non zero parameter and δ is nonzero. If $\kappa = \delta$ then one can take limitOrd of both values (see the line in Table 39 with exit code LOEG). If not, one must be careful to make sure that the value returned by limitOrd does not have $\kappa > \delta$ this is done with routine loUse⁴⁸.

9.6 AdmisLevOrdinal::fixedPoint member function

AdmisLevOrdinal::fixedPoint is used by admisLevelFunctional to create an instance of

⁴⁸AdmisNormalElement::loUse has as its argument the argument to limitOrd. It computes le = κ .limitOrd(ord). It may then add terms from δ to insure that the value of le $\leq \delta$ and insure that limitOrd will have a larger output for a larger valid input. All terms in δ that are in le or less than terms in le excluding the last term in le are ignored. The remainder are added to le.

$\begin{array}{c} \alpha \text{ is a notation from equations 8 to 11.} \\ \alpha = \omega_{\kappa,\gamma}(\beta_1,\beta_2,...,\beta_m) \quad \alpha = \omega_{\kappa}[\eta] \quad \alpha = [[\delta]]\omega_{\kappa}[\eta] \quad \alpha = [[\delta]]\omega_{\kappa,\gamma}(\beta_1,\beta_2,...,\beta_m) \\ \text{See Table 29 for symbol definitions.} \end{array}$

X	Condition(s)	Info	$\alpha.\mathtt{limitOrd}(\zeta)$
LOD	$\eta.$ isLm	drillDownLimit	$\omega_{\kappa,\gamma}(eta_1,eta_2,,eta_n)[\eta. exttt{lo}(\zeta)]$
LOE	lSg.isLm	paramLimit	$\alpha.rep1(i,\beta_i.lo(\zeta))$
	lSg.isSc nlSg.isLm	paramNxtLimit	t=rep1(lsx,lSg-1)
			l=nlsig.lo(ζ).lp1
LOF			Rtn rep2(lsx,l.lsx+1,t)
	$\gamma.\mathtt{isLm} \land \mathtt{sz} = 1 \land \mathtt{lsig.isSc}$	iterNxtLimit	t =[[δ]] $\omega_{\kappa}(lsig-1)$
			$1=\gamma.\log(\zeta).\mathrm{lp}1$
LOED			Rtn $[[\delta]]\omega_{\kappa,1}(t)$
LOEE	$\forall_i \beta_i = 0 \land \gamma.$ isLm	iterLimit	$[[\delta]]\omega_{\kappa,\gamma.\mathtt{lo}(\zeta)}$
LOEF	$\forall_i \beta_i = 0 \land \gamma, \delta = 0 \land \kappa.$ isLm	indexCKlimit	$[[\delta]]\omega_{\kappa.\mathtt{lo}(\zeta)}$
	$\forall_i \beta_i = 0 \land \gamma = 0$		
LOEG	$\delta = \kappa \wedge \kappa.$ isLm	indexCKlimit	$[[\delta.lo(\zeta)]]\omega_{\kappa.lo(\zeta)}$
	$\forall_i \beta_i = 0 \land \gamma = 0$		
LOEH	$ \wedge \delta>0 \wedge \kappa.$ isLm	indexCKlimit	$[[\delta]]\omega_{\kappa.\mathtt{loUse}(\zeta)}$
LOI	$\forall_i \beta_i = 0 \wedge \gamma = 0 \wedge \kappa.$ isLm	indexCKSucc	$[[\delta]]\omega_{\kappa}[\zeta]$

Table 39: AdmisNormalElement::limitOrd cases

AdmisLevOrdinal	limitOrd			
parameter	ω	ε_0	ω_1	
ω_1	$\omega_1[\omega]$	$\omega_1[\varepsilon_0]$	limType too large	
ω_2	$\omega_2[\omega]$	$\omega_2[\varepsilon_0]$	$\omega_2[\omega_1]$	
$(\omega_1 4)$	$(\omega_1 3) + \omega_1 [\omega]$	$(\omega_1 3) + \omega_1 [\varepsilon_0]$	limType too large	
$\omega^{(\omega_1 2)}$	$\omega^{\omega_1+\omega_1[\omega]}$	$\omega^{\omega_1+\omega_1[\varepsilon_0]}$	limType too large	
$\omega_{\omega_{\omega_1+1}}(\omega_{\omega_1+1})$	$\omega_{\omega_{1}+1}(\omega_{\omega_{1}+1}[\omega])$	$\omega_{\omega_{1}+1}(\omega_{\omega_{1}+1}[\varepsilon_{0}])$	$\omega_{\omega_{1}+1}(\omega_{\omega_{1}+1}[\omega_{1}])$	
ω_{ω_1+1}	$\omega_{\omega_1+1}[\omega]$	$\omega_{\omega_1+1}[\varepsilon_0]$	$\omega_{\omega_1+1}[\omega_1]$	
ω_{1,ω_1}	$\omega_{1,\omega_1[\omega]}$	$\omega_{1,\omega_1[\varepsilon_0]}$	limType too large	
ω_{100}	$\omega_{100}[\omega]$	$\omega_{100}[\varepsilon_0]$	$\omega_{100}[\omega_1]$	
$\omega_{1,1}(\omega_1)$	$\omega_{1,1}(\omega_1[\omega])$	$\omega_{1,1}(\omega_1[\varepsilon_0])$	limType too large	
$\omega_{1,3}(\omega_1)$	$\omega_{1,3}(\omega_1[\omega])$	$\omega_{1,3}(\omega_1[\varepsilon_0])$	limType too large	
$\omega_{\varepsilon_0}(\omega_1)$	$\omega_{\varepsilon_0}(\omega_1[\omega])$	$\omega_{\varepsilon_0}(\omega_1[\varepsilon_0])$	limType too large	
$\omega_{\varepsilon_0+1}(1)$	limType too large	limType too large	limType too large	
$\omega_{\varepsilon_0,\omega} + \omega^{\omega_1+1}$	limType too large	limType too large	limType too large	

Table 40: AdmisLevOrdinal::limitOrd examples.

an AdmisLevOrdinal normal form (Equations 8 to 11) that is the simplest expression for the ordinal represented. The routine has the following parameters.

- The admissible ordinal index or κ from Equation 8.
- The function level or γ from the equation.
- An index specifying the largest parameter of the ordinal notation being constructed. If the largest parameter is the admissible ordinal index this index has the value indexCKmaxParam defined as -2 in an enum. If the largest parameter is the function level the index has the value iterMaxParam defined as -1.
- The function parameters (a NULL terminated array of pointers to Ordinals) or just NULL of there are none. These are the β_j from a term in Equation 7.

This function determines if the parameter, at the specified index, is a fixed point for an AdmisLevOrdinal created with the specified parameters. If so, true is returned and otherwise false. The routine that calls this routine selects the largest parameter from the admissible ordinal index (κ) , the function level (γ) and the array of Ordinal pointers (β_j) and indicates this in the index parameter, The calling routine checks to see if all less significant parameters are 0. If not, this cannot be a fixed point. Thus fixedPoint is called only if this condition is met.

Section 6.3 describes psuedoCodeLevel. If the psuedoCodeLevel of the selected parameter is less than or equal cantorCodeLevel, false is returned. If that level is greater than AdmisCodeLevel, true is returned. The most significant parameter, the admissible level index, cannot be a fixed point unless it has a psuedoCodeLevel > AdmisCodeLevel. Thus, if the index selects the the admissible level index, and the previous test was not passed false is returned. Finally an AdmisLevOrdinal is constructed from all the parameters except that selected by the index. If this value is less than the selected parameter, true is returned and otherwise false.

9.7 AdmisLevOrdinal operators

The multiplication and exponentiation. routines for FiniteFuncOrdinal, Ordinal and the associated classes for normal form terms do not need to be overridden except for some utilities such as that used to create a copy of an AdmisNormalElement normal form term with a new value for factor.

Some multiplication examples are shown in Table 41 Some exponentiation examples are shown in Table 42

10 Philosophical Issues

This approach to the ordinals has its roots in a philosophy of mathematical truth that rejects the Platonic ideal of completed infinite totalities[3, 2]. It replaces the impredictivity inherent in that philosophy with explicit incompleteness. It is a philosophy that interprets Cantor's proof that the reals are not countable as the first major incompleteness theorem. Cantor

α	β	$\alpha \times \beta$
ω_1	ω_1	$\omega^{(\omega_1 2)}$
ω_1	$arphi_3$	$\omega^{\omega_1+arphi_3}$
ω_1	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega^{(\omega_1 2)} + \omega^{\omega_1 + [[1]]\omega_{3,1}(1,0,1)}$
ω_1	$\omega_{1,\omega}(\omega,1)$	$\omega_{1,\omega}(\omega,1)$
ω_1	$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,arepsilon_0}(\omega,1,0)$
ω_1	$\omega_{arepsilon_0}$	$\omega_{arepsilon_0}$
φ_3	ω_1	ω_1
φ_3	φ_3	$\omega^{(arphi_3 2)}$
$arphi_3$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$
φ_3	$\omega_{1,\omega}(\omega,1)$	$\omega_{1,\omega}(\omega,1)$
φ_3	$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,arepsilon_0}(\omega,1,0)$
φ_3	$\omega_{arepsilon_0}$	ω_{ε_0}
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	ω_1	ω
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	φ_3	$\omega^{\omega_1 + \varphi_3} $ $\omega^{(\omega_1 2)} + \omega^{\omega_1 + [[1]]\omega_{3,1}(1,0,1)}$
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega_{1,\omega}(\omega,1)$	$\omega_{1,\omega}(\omega,1)$
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$
$\omega_1 + [[1]]\omega_{3,1}(1,0,1) \omega_{1,\omega}(\omega,1)$	$\omega_{arepsilon_0}$	$\omega_{arepsilon_0} \ \omega_{\omega_{1,\omega}(\omega,1)+\omega_1}$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	ω_1	$\omega^{-1,\omega}(\omega)+\varphi_3$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\omega^{\omega_{1,\omega}(\omega,1)+\omega_{1}} + \omega^{\omega_{1,\omega}(\omega,1)+[[1]]\omega_{3,1}(1,0,1)}$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$ $\omega_{1,\omega}(\omega,1)$	ω ,
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\varepsilon_0}(\omega,1,0)$	ω $\omega_{1,\varepsilon_0}(\omega,1,0)$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$ ω_{ε_0}	$\omega_{1,arepsilon_0}(\omega,1,0)$ $\omega_{arepsilon_0}$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	ω_1	$\omega_{1,\varepsilon_0}(\omega,1,0)+\omega_1$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	φ_3	$\omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+arphi_{3}}$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+\omega_{1}} + \omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+[[1]]\omega_{3,1}(1,0,1)}$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\omega}(\omega,1)$	$\omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+\omega_{1,\omega}(\omega,1)}$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega^{(\omega_{1,arepsilon_{0}}(\omega,1,0)2)}$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{arepsilon_0}$	$\omega_{arepsilon_0}$
$\omega_{arepsilon_0}$	ω_1	$\omega^{\omega_{arepsilon_0}+\omega_1}$
$\omega_{arepsilon_0}$	$arphi_3$	$\omega^{\omega_{arepsilon_0}+arphi_3}$
$\omega_{arepsilon_0}$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega^{\omega_{\varepsilon_0}+\omega_1}+\omega^{\omega_{\varepsilon_0}+[[1]]\omega_{3,1}(1,0,1)}$
$\omega_{arepsilon_0}$	$\omega_{1,\omega}(\omega,1)$	$\omega^{\omega_{\varepsilon_0} + \omega_{1,\omega}(\omega,1)}$
$\omega_{arepsilon_0}$	$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega^{\omega_{\varepsilon_0}+\omega_{1,\varepsilon_0}(\omega,1,0)}$
$\omega_{arepsilon_0}$	$\omega_{arepsilon_0}$	$\omega^{(\omega_{arepsilon_0}2)}$

Table 41: AdmisLevOrdinal multiply examples

α	β	$lpha^eta$
ω_1	ω_1	$\omega^{\omega^{(\omega_1 2)}}$
ω_1	$arphi_3$	$\omega^{\omega^{0}1+arphi_{3}}$
ω_1	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega^{\omega(\omega_{1}^{2})} + \omega^{\omega_{1} + [[1]]\omega_{3,1}(1,0,1)}$
ω_1	$\omega_{1,\omega}(\omega,1)$	$\omega_{1,\omega}(\omega,1)$
ω_1	$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$
ω_1	$\omega_{arepsilon_0}$	$\omega_{arepsilon_0}$
φ_3	ω_1	ω_1
φ_3	φ_3	$\omega^{\omega^{(\varphi_32)}}$
φ_3	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega^{\omega_1+[[1]]\omega_{3,1}(1,0,1)}$
φ_3	$\omega_{1,\omega}(\omega,1)$	$\omega_{1,\omega}(\omega,1)$
φ_3	$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$
φ_3	$\omega_{arepsilon_0}$	$\omega_{arepsilon_0} \ \omega^{\omega^{(\omega_1 2)}}$
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	ω_1	$\omega^{\omega_1+arphi_3}$
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	φ_3	$\omega^{\omega^{(\omega_1 2)} + \omega^{\omega_1 + [[1]]\omega_{3,1}(1,0,1)}}$
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\begin{array}{c c} \omega_1 + [[1]]\omega_{3,1}(1,0,1) \\ \omega_{1,\omega}(\omega,1) \end{array}$	ω^{-} $\omega_{1,\omega}(\omega,1)$
$\begin{array}{c} \omega_1 + [[1]]\omega_{3,1}(1,0,1) \\ \omega_1 + [[1]]\omega_{3,1}(1,0,1) \end{array}$	$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\varepsilon_0}(\omega,1,0)$
$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$ $\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$ ω_{ε_0}	7
$\omega_{1,\omega}(\omega,1)$	ω_1	ω_{ε_0} $\omega^{\omega_{1,\omega}(\omega,1)+\omega_1}$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	_	$\omega^{\omega_{1,\omega}(\omega,1)+\varphi_{3}}$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\omega^{\omega_{1,\omega}(\omega,1)+\omega_{1}}_{\omega^{\omega_{1,\omega}(\omega,1)+[[1]]\omega_{3,1}(1,0,1)}}$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$ $\omega_{1,\omega}(\omega,1)$	ω $\omega^{(\omega_{1,\omega}(\omega,1)2)}$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega \ \omega_{1,arepsilon_0}(\omega,1,0)$
$\omega_{1,\omega}(\omega,1)$ $\omega_{1,\omega}(\omega,1)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$ ω_{ε_0}	, , , , , , , , , , , , , , , , , , , ,
$\omega_{1,\varepsilon_0}(\omega,1,0)$	ω_1	$\omega_{arepsilon_0}$ ω_{ε_0} $\omega_{1,arepsilon_0}(\omega,1,0)+\omega_1$
$\omega_{1,\varepsilon_0}(\omega,1,0)$ $\omega_{1,\varepsilon_0}(\omega,1,0)$		$\omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+\varphi_{3}}$
	φ_3	$\left \begin{array}{c}\omega\\\omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+\omega_{1}}+\omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+[[1]]\omega_{3,1}(1,0,1)}\end{array}\right $
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega^{\omega_{1,\varepsilon_{0}}(\omega,1,0)+\omega_{1,\omega}(\omega,1)}$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\omega}(\omega,1)$	ω^{ω} $\omega^{\omega^{(\omega_{1,\varepsilon_{0}}(\omega,1,0)2)}}$
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{1,\varepsilon_0}(\omega,1,0)$	
$\omega_{1,\varepsilon_0}(\omega,1,0)$	$\omega_{arepsilon_0}$	ω_{ε_0} $\omega^{\omega_{\varepsilon_0}+\omega_1}$
$\omega_{arepsilon_0}$	ω_1	$\omega^{\omega^{\omega_{\epsilon_0}+arphi_3}}$
$\omega_{arepsilon_0}$	φ_3	$\omega^{\omega_{\varepsilon_0}+\omega_1}+\omega^{\omega_{\varepsilon_0}+[[1]]\omega_{3,1}(1,0,1)}$
$\omega_{arepsilon_0}$	$\omega_1 + [[1]]\omega_{3,1}(1,0,1)$	$\omega^{\omega^{\omega_{arepsilon_{0}}+\omega_{1,\omega}(\omega,1)}}$
$\omega_{arepsilon_0}$	$\omega_{1,\omega}(\omega,1)$	ω^{ω} $\omega^{\omega_{\varepsilon_0} + \omega_{1,\varepsilon_0}(\omega,1,0)}$
$\omega_{arepsilon_0}$	$\omega_{1,\varepsilon_0}(\omega,1,0)$	ω^{ω} ($\omega = 2$)
$\omega_{arepsilon_0}$	$\omega_{arepsilon_0}$	$\omega^{\omega^{(\omega_{\varepsilon_0}2)}}$

Table 42: ${\tt AdmisLevOrdinal} \ {\tt exponential} \ {\tt examples}$

proved that any formal system that meets certain minimal requirements must be incomplete, because it can always be expanded by consistently adding more real numbers to it. This can be done, from outside the system, by a Cantor diagonalization of the reals definable within the system.

Because of mathematics' inherent incompleteness, it can always be expanded. Thus it is consistent but, I suspect, incorrect to reason as if completed infinite totalities exist. This does not mean that an algebra of infinities or infinitesimals is not useful. As long as they get the same results is reasoning about the potentially infinite they may be of significant practical value.

The names of all the reals provably definable in any finite (or recursively enumerable) formal system must be recursively enumerable, as Löwenheim and Skolem observed in the theorem that bears their names. Thus one can consistently assume the reals in a consistent formal system that meets other requirements form a completed totality, albeit one that is not recursively enumerable within the system.

The current philosophical approach to mathematical truth has been enormously successful. This is the most powerful argument in support of it. However, I believe the approach, that was so successful in the past, is increasingly becoming a major obstacle to mathematical progress. If mathematics is about completed infinite totalities, then computer technology is of limited value in expanding the foundations. For computers are restricted to finite operations in contrast to the supposed human ability to transcend the finite through pure thought and mathematical intuition. Thus the foundations of mathematics is perhaps the only major scientific field where computers are not an essential tool for research. An ultimate goal of this research is to help to change that perspective and the practical reality of foundations research in mathematics.

Since all ordinals beyond the integers are infinite they do not correspond to anything in the physical world. Our idea of all integers comes from the idea that we can define what an integer is. The property of being an integer leads to the idea that there is a set of all objects satisfying the property. An alternative way to think of the integers is computationally. We can write a computer program that can in theory output every integer. Of course real programs do not run forever, error free, but that does not mean that such potentially infinite operations as a computer running forever lack physical significance. Our universe appears to be extraordinarily large, but finite. However, it might be potentially infinite. Cosmology is of necessity a speculative science. Thus the idea of a potentially infinite set of all integers, in contrast to that of completed infinite totalities, might have objective meaning in physical reality. Most of standard mathematics has an interpretation in an always finite but potentially infinite universe, but some questions, such as the continuum hypothesis do not. This meshes with increasing skepticism about whether the continuum hypothesis and other similar foundations questions are objectively true or false as Solomon Feferman and others have suggested[5].

A Command line interface

This appendix is a stand alone manual for a command line interface to most of the capabilities described in this document.

A.1 Introduction

The Ordinal Calculator is an interactive tool for understanding the hierarchies of recursive and countable ordinals[15, 11, 6]. It is also a research tool to help to expand these hierarchies. Its motivating goal is ultimately to expand the foundations of mathematics by using computer technology to manage the combinatorial explosion in complexity that comes with explicitly defining the recursive ordinals implicitly defined by the axioms of Zermelo-Frankel set theory[4, 2]. The underlying philosophy focuses on what formal systems tell us about physically realizable combinatorial processes[3].

The source code and documentation is licensed for use and and distribution under the Gnu General Public License, Version 2, June 1991. A copy of this license must be distributed with the program. It is also at: http://www.gnu.org/licenses/gpl-2.0.html. The ordinal calculator source code, documentation and some executables can be downloaded from: http://www.mtnmath.com/ord or https://sourceforge.net/projects/ord.

Most of this manual is automatically extracted from the online documentation.

This is a command line interactive interface to a program for exploring the ordinals. It supports recursive ordinals up to and beyond the Bachmann-Howard ordinal[8]. It defines notations for the Church-Kleene ordinal and some larger countable ordinals. We refer to these as admissible level ordinals. They are used in a form of ordinal collapsing to define large recursive ordinals.

A.2 Command line options

The standard name for the ordinal calculator is ord. Typing ord (or ./ord) ENTER will start ord in command line mode on most Unix or Linux based systems. The other command line options are mostly for validating or documenting ord. They are:

```
'cmd' — Read specified command file and enter command line mode.
```

^{&#}x27;version' — Print program version.

^{&#}x27;help' — Describe command line options.

^{&#}x27;cmdDoc' — Write manual for command line mode in TeX format.

^{&#}x27;tex' — Output TeX documentation files.

^{&#}x27;psi' — Do tests of Veblen hierarchy.

^{&#}x27;base' — Do tests of base class Ordinal.

^{&#}x27;try' — Do tests of class FiniteFuncOrdinal.

^{&#}x27;iter' — Do tests of class IterFuncOrdinal.

^{&#}x27;admis' — Do tests of class AdmisLevOrdinal.

```
'admis2' — Do additional tests of class AdmisLevOrdinal.
'play' — Do integrating tests.
'descend' — Test descending trees.
'collapse' — Ordinal collapsing tests.
'nested' — Ordinal nested collapsing tests.
'nested2' — Ordinal nested collapsing tests 2.
'nested3' — Ordinal nested collapsing tests 3.
'exitCode' — LimitElement exit code base test.
'exitCode2' — LimitElement exit code base test 2.
'limitEltExitCode' — Admissible level LimitElement exit code test 0.
'limitEltExitCode1' — Admissible level limitElement exit code test 1.
'limitEltExitCode2' — Admissible level limitElement exit code test 2.
'limitEltExitCode3' — Admissible level limitElement exit code test 3.
'limitOrdExitCode' — Admissible level limitOrd exit code test.
'limitOrdExitCode1' — Admissible level limitOrd exit code test.
'limitOrdExitCode2' — Admissible level limitOrd exit code test.
'limitOrdExitCode3' — Admissible level limitOrd exit code test.
'transition' — Admissible level transition test.
'cmpExitCode' — Admissible level compare exit code test.
'drillDownExitCode' — Admissible level compare exit code test.
'embedExitCode' — Admissible level compare exit code test.
'fixedPoint' — test fixed point detection.
'helpTex' — TeX document command line options.
```

A.3 Help topics

Following are topics you can get more information about by entering 'help topic'.

```
'cmds' — lists commands.

'defined' — list predefined ordinal variables.

'compare' — describes comparison operators.

'members' — describes member functions.

'ordinal' — describes available ordinal notations.

'ordlist' — describes ordinal lists and their use.

'purpose' — describes the purpose and philosophy of this project.

'syntax' — describes syntax.

'version' — displays program version.
```

This program supports GNU 'readline' input line editing. You can download the program and documentation at: Mountain Math Software or at SourceForge.net (http://www.mtnmath.com/ord or https://sourceforge.net/projects/ord).

A.4 Ordinals

Ordinals are displayed in TeX and plain text format. (Enter 'help opts' to control this.) The finite ordinals are the nonnegative integers. The ordinal operators are +, * and ^ for addition, multiplication and exponentiation. Exponentiation has the highest precedence. Parenthesis can be used to group subexpressions.

The ordinal of the integers, omega, is represented by the single lowercase letter: 'w'. The Veblen function is specified as 'psi(p1,p2,...,pn)' where n is any integer > 0. Special notations are displayed in some cases. Specifically psi(x) is displayed as w^x. psi(1,x) is displayed as epsilon(x). psi(1,x,0) is displayed as gamma(x). In all cases the displayed version can be used as input.

Larger ordinals are specified as psi_{px}(p1,p2,...,pn). The first parameter is enclosed in brackets not parenthesis. psi_{1} is defined as the union of w, epsilon(0), gamma(0), psi(1, 0, 0, 0), psi(1, 0, 0, 0, 0), psi(1, 0, 0, 0, 0), psi(1, 0, 0, 0, 0, 0), ... You can access the sequence whose union is a specific ordinal using member functions. Type help members to learn more about this. Larger notations beyond the recursive ordinals are also available in this implementation. See the documentation 'A Computational Approach to the Ordinal Numbers' to learn about 'Countable admissible ordinals'.

There are several predefined ordinals. 'w' and 'omega' can be be used interchangeably for the ordinal of the integers and in other contexts. 'eps0' and 'omega1CK' are also predefined. Type 'help defined' to learn more.

A.5 Predefined ordinals

The predefined ordinal variables are:

```
\begin{aligned} &\texttt{omega} = \omega \\ &\texttt{w} = \omega \\ &\texttt{omega1CK} = \omega_1 \\ &\texttt{w1} = \omega_1 \\ &\texttt{w1CK} = \omega_1 \\ &\texttt{eps0} = \varepsilon_0 \end{aligned}
```

A.6 Syntax

The syntax is that of restricted arithmetic expressions and assignment statements. The tokens are variable names, nonnegative integers and the operators: +, * and ^ (addition, multiplication and exponentiation). Comparison operators are also supported. Type 'help comparison' to learn about them. The letter 'w' is predefined as omega, the ordinal of the integers. Type 'help defined' for a list of all predefined variables. To learn more about ordinals type 'help ordinal'. C++ style member functions are supported with a '.' separating the variable name (or expression enclosed in parenthesis) from the member function

name. Enter 'help members' for the list of member functions.

An assignment statement or ordinal expression can be entered and it will be evaluated and displayed in normal form. Typing 'help opts' lists the display options. Assignment statements are stored. They can be listed (command 'list') and their value can be used in subsequent expressions. All statements end at the end of a line unless the last character is '\'. Lines can be continued indefinitely. Comments must be preceded by either '\',' or '\'/'.

Commands can be entered as one or more names separated by white space. File names should be enclosed in double quotes (") if they contain any non alphanumeric characters such as dot, '.'. Command names can be used as variables. Enter 'help cmds' to get a list of commands and their functions.

A.7 Ordinal lists

Lists are a sequence of ordinals. An assignment statement can name a single ordinal or a list of them separated by commas. In most circumstances only the first element in the list is used, but some functions (such as member function 'limitOrdLst') use the full list. Type 'help members' to learn more about 'limitOrdLst'.

A.8 Commands

A.8.1 All commands

```
The following commands are available:
```

^{&#}x27;cmpCheck' - toggle comparison checking for debugging.

^{&#}x27;examples' - shows examples.

^{&#}x27;exit' - exits the program.

^{&#}x27;exportTeX' – exports assignments statements in TeX format.

^{&#}x27;help' – displays information on various topics.

^{&#}x27;list' – lists assignment statements.

^{&#}x27;log' – writes a log file (ord.log default).

^{&#}x27;listTeX' - lists assignment statements in TeX format.

^{&#}x27;logopt' - controls the log file.

^{&#}x27;opts' – controls display format and other options.

^{&#}x27;prompt' - prompts for ENTER with optional string argument.

^{&#}x27;quit' – exits the program.

^{&#}x27;read' - read "input file" (ord_calc.ord default).

^{&#}x27;readall' - same as read but no 'wait for ENTER' prompt.

^{&#}x27;save' – saves assignment statements to a file (ord_calc.ord default).

^{&#}x27;setDbg' - set debugging options.

^{&#}x27;yydebug' – enables parser debugging (off option).

A.8.2 Commands with options

Following are the commands with options.

```
Command 'examples' - shows examples.
```

It has one parameter with the following options.

'arith' - demonstrates ordinal arithmetic.

'compare' – shows compare examples.

'display' – shows how display options work.

'member' - demonstrates member functions.

'VeblenFinite' – demonstrates Veblen functions of a finite number of ordinals.

'VeblenExtend' – demonstrates Veblen functions iterated up to a recursive ordinal.

'admissible' - demonstrates countable admissible level ordinal notations.

'admissibleDrillDown' - demonstrates admissible notations dropping down one level.

'admissibleContext' – demonstrates admissible ordinal context parameters.

'list' - shows how lists work.

'desLimitOrdLst' – shows how to construct a list of descending trees.

Command 'logopt' – controls the log file.

It has one parameter with the following options.

'flush' - flush log file.

'stop' - stop logging.

Command 'opts' – controls display format and other options.

It has one parameter with the following options.

'both' – display ordinals in both plain text and TeX formats.

'tex' - display ordinals in TeX format only.

'text' - display ordinals in plain text format only (default).

'psi' – additionally display ordinals in Psi format (turned off by the above options).

'promptLimit' – lines to display before pausing, < 4 disables pause.

Command 'setDbg' - set debugging options.

It has one parameter with the following options.

'all' – turn on all debugging.

'arith' - debug ordinal arithmetic.

'clear' - turn off all debugging.

'compare' - debug compare.

'exp' – debug exponential.

'limArith' - limited debugging of arithmetic.

'limit' - debug limit element functions.

'construct' – debug constructors.

A.9 Member functions

Every ordinal (except 0) is the union of smaller ordinals. Every limit ordinal is the union of an infinite sequence of smaller ordinals. Member functions allow access to to these smaller ordinals. One can specify how many elements of this sequence to display or get the value of a specific instance of the sequence. For a limit ordinal, the sequence displayed, were it extended to infinity and its union taken, that union would equal the original ordinal.

The syntax for a member function begins with either an ordinal name (from an assignment statement) or an ordinal expression enclosed in parenthesis. This is followed by a dot (.) and then the member function name and its parameters enclosed in parenthesis. The format is 'ordinal_name.memberFunction(p)' where p may be optional. Functions 'limitOrdLst' and 'desLimitOrdLst' return a list all other member functions return a scalar value. Unless specified otherwise, the returned value is that of the ordinal the function was called from.

The member functions are:

```
'descend' -(n,m) iteratively (up to m) take nth limit element.
```

A.10 Comparison operators

Any two ordinals or ordinal expressions can be compared using the operators: <, <=, >, >= and ==. The result of the comparison is the text either TRUE or FALSE. Comparison operators have lower precedence than ordinal operators.

A.11 Examples

In the examples a line that begins with the standard prompt 'ordCalc>' contains user input. All other lines contain program output

To select an examples type 'examples' followed by one of the following options.

^{&#}x27;descendFull' - (n,m,k) iteratively (up to m) take n limit elements with root k.

^{&#}x27;getCompareIx' - display admissible compare index.

^{&#}x27;limitElt' – evaluates to specified finite limit element.

^{&#}x27;limitElement' - an alias for 'limitElt'.

^{&#}x27;listLimitElts' – lists specified (default 10) limit elements.

^{&#}x27;listElts' - alias for listLimitElts.

^{&#}x27;limitOrd' – evaluates to specified (may be infinite) limit element.

^{&#}x27;limitType' - return limitType.

^{&#}x27;limitOrdLst' - apply each input from list to limitOrd and return that list.

^{&#}x27;desLimitOrdLst' - (depth, list) does limitOrdLst iteratively on all outputs depth times.

^{&#}x27;maxLimitType' - return maxLimitType.

^{&#}x27;maxParameter' - return maxParameter (for debugging).

^{&#}x27;arith' - demonstrates ordinal arithmetic.

^{&#}x27;compare' - shows compare examples.

```
'display' – shows how display options work.
```

A.11.1 Simple ordinal arithmetic

The following demonstrates ordinal arithmetic.

```
ordCalc> a=w^w
Assigning ( w^w ) to 'a'.
ordCalc> b=w*w
Assigning ( w^2 ) to 'b'.
ordCalc> c=a+b
Assigning ( w^w ) + ( w^2 ) to 'c'.
ordCalc> d=b+a
Assigning ( w^w ) to 'd'.
```

A.11.2 Comparison operators

The following shows compare examples.

```
ordCalc> psi(1,0,0) == gamma(0)
TRUE
ordCalc> psi(1,w) == epsilon(w)
TRUE
ordCalc> w^w < psi(1)
FALSE
ordCalc> psi(1)
Normal form: w
```

A.11.3 Display options

The following shows how display options work.

```
ordCalc> a=w^(w^w)
Assigning ( w^( w^w ) ) to 'a'.
ordCalc> b=epsilon(a)
```

^{&#}x27;member' – demonstrates member functions.

^{&#}x27;VeblenFinite' – demonstrates Veblen functions of a finite number of ordinals.

^{&#}x27;VeblenExtend' – demonstrates Veblen functions iterated up to a recursive ordinal.

^{&#}x27;admissible' – demonstrates countable admissible level ordinal notations.

^{&#}x27;admissibleDrillDown' - demonstrates admissible notations dropping down one level.

^{&#}x27;admissibleContext' – demonstrates admissible ordinal context parameters.

^{&#}x27;list' - shows how lists work.

^{&#}x27;desLimitOrdLst' - shows how to construct a list of descending trees.

```
Assigning epsilon( (w^(w^w))) to 'b'.
ordCalc> c=gamma(b)
Assigning gamma(epsilon((w^(w^w)))) to 'c'.
ordCalc> list
a = ( w^( w^w ) )
b = epsilon((w^(w^w)))
c = gamma(epsilon((w^(w^w))))
ordCalc> opts tex
ordCalc> list
a = \omega_{\gamma}^{\infty} 
b = \varepsilon_{\omega{}^{\omega{}}}}
c = \operatorname{varphi}(\operatorname{varepsilon}_{\operatorname{omega}}^{\operatorname{omega}}^{\operatorname{omega}}), 0, 0)
ordCalc> opts both
ordCalc> list
a = ( w^( w^w ) )
a = \omega_{\gamma}^{\infty} 
b = epsilon((w^(w^w)))
b = \varepsilon_{\omega{}^{\omega{}}^{\omega{}}}}
c = gamma(epsilon((w^(w^w))))
c = \operatorname{varphi}(\operatorname{varepsilon}_{\operatorname{omega}}^{\operatorname{omega}}^{\operatorname{omega}}), 0, 0)
```

A.11.4 Member functions

The following demonstrates member functions.

```
ordCalc> a=psi(1,0,0,0,0)
Assigning psi( 1, 0, 0, 0, 0 ) to 'a'.
ordCalc> a.listElts(3)

3 limitElements for psi( 1, 0, 0, 0 )
le(1) = psi( 1, 0, 0, 0 )
le(2) = psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 )
le(3) = psi( psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 )
End limitElements

Normal form: psi( 1, 0, 0, 0, 0 )
ordCalc> b=a.limitElt(6)
Assigning psi( psi( psi( psi( psi( psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) to 'b'.
```

A.11.5 Veblen function of N ordinals

The following demonstrates Veblen functions of a finite number of ordinals.

The Veblen function with a finite number of parameters, psi(x1,x2,...xn) is built up from the function omega^x. $psi(x) = omega^x$. psi(1,x) enumerates the fixed points of omega^x. This is psilon(x). Each additional variable diagonalizes the functions definable with existing variables. These functions can have any finite number of parameters.

```
ordCalc> a=psi(w,w)
Assigning psi(w, w) to 'a'.
ordCalc> b=psi(a,3,1)
Assigning psi(psi(w, w), 3, 1) to 'b'.
ordCalc> b.listElts(3)
3 limitElements for psi( psi( w, w ), 3, 1 )
le(1) = psi(psi(w, w), 3, 0) + 1
le(2) = psi(psi(w, w), 2, psi(psi(w, w), 3, 0) + 1)
le(3) = psi(psi(w, w), 2, psi(psi(w, w), 2, psi(psi(w, w), 3, 0) + 1)
) + 1 )
End limitElements
Normal form: psi(psi(w, w), 3, 1)
ordCalc> c=psi(a,a,b,1,3)
Assigning psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 3 ) to 'c'.
ordCalc> c.listElts(3)
3 limitElements for psi(psi(w, w), psi(w, w), psi(psi(w, w), 3, 1), 1,
3)
le(1) = psi(psi(w, w), psi(w, w), psi(psi(w, w), 3, 1), 1, 2) + 1
le(2) = psi(psi(w, w), psi(w, w), psi(psi(w, w), 3, 1), 0, psi(w, w), psi(w, w
w, w), psi(w, w), psi(psi(w, w), 3, 1), 1, 2) + 1)
w, w), psi(w, w), psi(psi(w, w), 3, 1), 0, psi(psi(w, w), psi(w, w
), psi(psi(w, w), 3, 1), 1, 2) + 1) + 1)
End limitElements
Normal form: psi(psi(w, w), psi(w, w), psi(psi(w, w), 3, 1), 1, 3)
```

A.11.6 Extended Veblen function

The following demonstrates Veblen functions iterated up to a recursive ordinal.

The extended Veblen function, $psi_{a}(x_{1},x_{2},...,x_{n})$, iterates the idea of the Veblen function up to any recursive ordinal. The first parameter is the recursive ordinal of this iteration.

```
ordCalc> a=psi_{1}(1)
Assigning psi_{1}(1) to 'a'.
ordCalc> a.listElts(4)
```

```
4 limitElements for psi_{ 1}(1)
le(1) = ( w^( psi_{1} + 1 ) )
le(2) = psi(psi_{1} + 1, 0)
le(3) = gamma(psi_{1} + 1)
le(4) = psi(psi_{-}\{1\} + 1, 0, 0, 0)
End limitElements
Normal form: psi_{ 1}(1)
ordCalc> b=psi_{w+1}(3)
Assigning psi_{ w + 1}(3) to 'b'.
ordCalc> b.listElts(4)
4 limitElements for psi_{ w + 1}(3)
le(1) = psi_{w}(psi_{w} + 1)(2) + 1)
le(2) = psi_{w} \{ psi_{w} + 1 \}(2) + 1, 0 \}
le(3) = psi_{w} \{ psi_{w} + 1 \}(2) + 1, 0, 0 \}
le(4) = psi_{w} \{ psi_{w} + 1 \}(2) + 1, 0, 0, 0 \}
End limitElements
Normal form: psi_{w} + 1(3)
```

A.11.7 Admissible countable ordinal notations

The following demonstrates countable admissible level ordinal notations.

Countable admissible level notations, omega_{k,g}(x1,x3,..,xn) extend the idea of recursive notation to larger countable ordinals. The first parameter is the admissible level. omega_{1} is the Church-Kleene ordinal. The remaining parameters are similar to those defined for smaller ordinal notations.

```
ordCalc> a=w_{1}(1)
Assigning omega_{1}(1) to 'a'.
ordCalc> a.listElts(4)

4 limitElements for omega_{1}(1)
le(1) = psi_{0mega_{1}}(1) + 1}
le(2) = psi_{0mega_{1}}(1) + 1} + 1}
le(3) = psi_{0mega_{1}}(1) + 1} + 1} + 1}
le(4) = psi_{0mega_{1}}(1) + 1} + 1} + 1} + 1}
le(4) = psi_{0mega_{1}}(1) + 1} + 1} + 1} + 1}
End limitElements
Normal form: omega_{1}(1)
```

A.11.8 Admissible notations drop down parameter

The following demonstrates admissible notations dropping down one level.

Admissible level ordinals have the a limit sequence defined in terms of lower levels. The lowest admissible level is that of recursive ordinals. To implement this definition of limit sequence, a trailing parameter in square brackets is used. This parameter (if present) defines an ordinal at one admissible level lower than indicated by other parameters.

```
ordCalc> a=w_{-}\{1\}[1]
Assigning omega_{ 1}[ 1] to 'a'.
ordCalc> a.listElts(4)
4 limitElements for omega_{ 1}[ 1]
le(1) = w
le(2) = psi_{w}
le(3) = psi_{psi_{w}} \{ psi_{w} \} + 1 \}
End limitElements
Normal form: omega_{ 1}[ 1]
ordCalc> b=w_{1}
Assigning omega_{1} to 'b'.
ordCalc> c=b.limitOrd(w^3)
Assigning omega_\{1\}[ ( w^3 )] to 'c'.
ordCalc> c.listElts(4)
4 limitElements for omega_{ 1}[ ( w^3 )]
le(1) = omega_{1}[(w^2)]
le(2) = omega_{1}[((w^{2})*2)]
le(3) = omega_{1}[((w^2)*3)]
le(4) = omega_{1}[((w^2)*4)]
End limitElements
Normal form: omega_{1} [ (w^3)]
ordCalc> d=w_{-}\{5,c\}(3,0)
Assigning omega_{ 5, omega_{ 1}[ (w^3)]}(3, 0) to 'd'.
ordCalc> d.listElts(4)
4 limitElements for omega_\{ 5, omega_\{ 1\}[ ( w^3 )]\}(3, 0)
le(1) = omega_{ } \{ 5, omega_{ } \{ 1 \} [ ( w^3 ) ] \} (2, 1)
le(2) = omega_{5}, omega_{1}[(w^3)](2, omega_{5}, omega_{1}[(w^3)])(2, omega_{1})
1) + 1)
le(3) = omega_{ } \{ 5, omega_{ } \{ 1\}[ (w^3)] \}(2, omega_{ } \{ 5, omega_{ } \{ 1\}[ (w^3)] \}(2, omega_{ } \{ 1\}[ (w
omega_{ 5, omega_{ 1}[ ( w^3 )]}(2, 1) + 1) + 1)
```

```
le(4) = omega_{ 5, omega_{ 1}[ ( w^3 )]}(2, 1) + 1) + 1) + 1)
End limitElements
Normal form: omega_{ 5, omega_{ 1}[ ( w^3 )]}(3, 0)
```

A.11.9 Admissible notations context parameter

The following demonstrates admissible ordinal context parameters.

The context parameter in admissible level ordinals allows one to use any notation at any admissible level to define notations at any lower admissible level or to define recursive ordinals.

```
ordCalc> a=[[1]]w_{1}
Assigning [[1]]omega_{1} to 'a'.
ordCalc> a.listElts(4)

4 limitElements for [[1]]omega_{1} 1}
le(1) = omega_{1} [ w]
le(2) = omega_{1} [ omega_{1} [ w]]
le(3) = omega_{1} [ omega_{1} [ omega_{1} [ w]]]
le(4) = omega_{1} [ omega_{1} [ omega_{1} [ w]]]
End limitElements

Normal form: [[1]]omega_{1}
```

A.11.10 Lists of ordinals

The following shows how lists work.

Lists are a sequence of ordinals (including integers). A list can be assigned to a variable just as a single ordinal can be. In most circumstances lists are evaluated as the first ordinal in the list. In 'limitOrdLst' all of the list entries are used. These member functions return a list with an input list

```
ordCalc> lst = 1, 12, w, gamma(w^w), w1
Assigning 1, 12, w, gamma( ( w^w ) ), omega_{ 1 } to 'lst'.
ordCalc> a=w1.limitOrdLst(lst)
( omega_{ 1 } ).limitOrd( 12 ) = omega_{ 1 } [ 12]
( omega_{ 1 } ).limitOrd( w ) = omega_{ 1 } [ w]
( omega_{ 1 } ).limitOrd( gamma( ( w^w ) ) ) = omega_{ 1 } [ gamma( ( w^w ) ) ]
Assigning omega_{ 1 } [ 12], omega_{ 1 } [ w], omega_{ 1 } [ gamma( ( w^w ) ) ] to 'a'.
ordCalc> bg = w_{w+33}
```

```
Assigning omega_{ w + 33} to 'bg'.

ordCalc> c=bg.limitOrdLst(lst)

( omega_{ w + 33} ).limitOrd( 12 ) = omega_{ w + 33}[ 12]

( omega_{ w + 33} ).limitOrd( w ) = omega_{ w + 33}[ w]

( omega_{ w + 33} ).limitOrd( gamma( ( w^w ) ) ) = omega_{ w + 33}[ gamma( ( w^w ) ) ]

( omega_{ w + 33} ).limitOrd( omega_{ 1} ) = omega_{ w + 33}[ omega_{ 1} ]

Assigning omega_{ w + 33}[ 12], omega_{ w + 33}[ w], omega_{ w + 33}[ gamma( ( w^w ) ) ], omega_{ w + 33}[ omega_{ 1} ] to 'c'.
```

A.11.11 List of descending trees

The following shows how to construct a list of descending trees.

'desLimitOrdLst' iterates 'limitOrdLst' to a specified 'depth'. The first parameter is the integer depth of iteration and the second is the list of parameters to be used. This routine first takes'limitOrd' of each element in the second parameter creating a list of outputs. It then takes this list and evaluates 'limitOrd' for each of these values at each entry in the original parameter list. All of these results are combined in a new list and the process is iterated 'depth' times. The number of results grows exponentially with 'depth'.

```
ordCalc > lst = 1, 5, w, psi(2,3)
Assigning 1, 5, w, psi(2, 3) to 'lst'.
ordCalc> bg = w_{-}{3}
Assigning omega_{ 3} to 'bg'.
ordCalc> d= bg.desLimitOrdLst(2,1st)
(omega_{3}).limitOrd(1) = omega_{3}[1]
(omega_{3}).limitOrd(5) = omega_{3}[5]
(\text{omega}_{\{3\}}).\text{limitOrd}(\text{w}) = \text{omega}_{\{3\}}[\text{w}]
( omega_{ 3} ).limitOrd( psi( 2, 3 ) ) = omega_{ 3}[ psi( 2, 3 )]
Descending to 1 for omega_{ 3}
(omega_{3}[1]).limitOrd(1) = omega_{2}
(\text{omega}_{3}[1]).limitOrd(5) = \text{omega}_{2}, \text{omega}_{2}, \text{omega}_{2}, \text{omega}_{2},
omega_{2} + 1 + 1 + 1 + 1 + 1
( omega_{3}[5] ).limitOrd(1) = omega_{3}[4]
( omega_{3}[5] ).limitOrd(5 ) = omega_{2}, omega_{2}, omega_{3} 2, omega_{4} 2, omega_{4} 2,
omega_\{3\}[4]+1\}+1\}+1\}+1\}
( omega_{ 3}[ w] ).limitOrd( 1 ) = omega_{ 3}[ 1]
(\text{omega}_{-} \{ 3 \} [w]).limitOrd(5) = \text{omega}_{-} \{ 3 \} [5]
( omega_{3}[ psi(2,3)] ).limitOrd(1) = omega_{3}[ psi(2,2) + 1]
(\text{omega}_{3}[\text{psi}(2,3)]).limitOrd(5) = \text{omega}_{3}[\text{epsilon}(\text{epsilon}(\text{epsilon}(
epsilon(psi(2, 2) + 1) + 1) + 1) + 1)]
Assigning omega_{3}[1], omega_{3}[5], omega_{3}[w], omega_{3}[psi(2, 3)]
)], omega_{ 2}, omega_{ 2}, omega_{ 2}, omega_{ 2}, omega_{ 2}, omega_{ 2} + 1} + 1}
```

```
+ 1} + 1}, omega_{ 3}[ 4], omega_{ 2}, omega_{ 2}, omega_{ 2}, omega_{ 2}, omega_{ 3}[ 4] + 1} + 1} + 1} + 1}, omega_{ 3}[ 1], omega_{ 3}[ 5], omega_{ 3}[ psi( 2, 2 ) + 1], omega_{ 3}[ epsilon( epsilon( epsilon( psi( 2, 2 ) + 1) + 1) + 1)] to 'd'.
```

References

- [1] W. Buchholz. A new system of proof-theoretic ordinal functions. Ann. Pure Appl. Logic, 32:195–207, 1986. 42
- [2] Paul Budnik. What is and what will be: Integrating spirituality and science. Mountain Math Software, Los Gatos, CA, 2006. 4, 6, 64, 68
- [3] Paul Budnik. What is Mathematics About? In Paul Ernest, Brian Greer, and Bharath Sriraman, editors, *Critical Issues in Mathematics Education*, pages 283–292. Information Age Publishing, Charlotte, North Carolina, 2009. 4, 64, 68
- [4] Paul J. Cohen. Set Theory and the Continuum Hypothesis. W. A. Benjamin Inc., New York, Amsterdam, 1966. 4, 6, 68
- [5] Solomon Feferman. Does mathematics need new axioms? American Mathematical Monthly, 106:99–111, 1999. 67
- [6] Jean H. Gallier. What's so Special About Kruskal's Theorem And The Ordinal Γ_0 ? A Survey Of Some Results In Proof Theory. Annals of Pure and Applied Logic, 53(2):199–260, 1991. 7, 17, 19, 68
- [7] Stephen Hawking. God Created the Integers: The Mathematical Breakthroughs that Changed History. Running Press, Philidelphia, PA, 2005. 9
- [8] W. A. Howard. A system of abstract constructive ordinals. The Journal of Symbolic Logic, 37(2):355–374, 1972. 44, 68
- [9] G. Kreisel and Gerald E. Sacks. Metarecursive sets. *The Journal of Symbolic Logic*, 30(3):318–338, 1965. 8
- [10] Benoît Mandelbrot. Fractal aspects of the iteration of $z \mapsto \lambda z(1-z)$ for complex λ and z. Annals of the New York Academy of Sciences, 357:49–259, 1980. 41
- [11] Larry W. Miller. Normal functions and constructive ordinal notations. *The Journal of Symbolic Logic*, 41(2):439–459, 1976. 7, 17, 19, 68
- [12] Michael Rathjen. How to develop Proof-Theoretic Ordinal Functions on the basis of admissible ordinals. *Mathematical Logic Quarterly*, 39:47–54, 2006. 42
- [13] Hartley Rogers Jr. Theory of Recursive Functions and Effective Computability. McGraw Hill, New York, 1967. 8
- [14] Gerald Sacks. Higher recursion theory. Springer Verlag, New York, 1990. 39
- [15] Oswald Veblen. Continuous increasing functions of finite and transfinite ordinals. *Transactions of the American Mathematical Society*, 9(3):280–292, 1908. 7, 17, 68
- [16] A. N. Whitehead and Russell Bertrand. *Principia Mathematica*, volume 1-3. Cambridge University Press, 1918. 40

Index

The defining reference for a phrase, if it exists, has the page *number* in *italics*.

This index is semiautomated with multiple entries created for some phrases and subitems automatically detected. Hand editing would improve things, but is not practical for a manual describing software and underlying theory both of which are evolving.

Symbols

```
< 73
<= 73
== 73
> 73
>= 73
                                                                                           60, 61
\Delta 17, 19
\Gamma_{\alpha} 23
\Omega 8, 42
\Psi(\alpha) 42
\Psi(\varepsilon_{\Omega+1}) 44
\delta_{\rm ck} 54
\omega 5, 7, 11, 17, 39
\omega_1 6, 39, 50
\omega_1^{CK} 6, 9, 39
\omega_2 39
\varepsilon_0 7, 10, 17, 20
\varepsilon_{\alpha} 23
\varphi(1,0) 10
\varphi(\alpha,\beta) 19
\varphi(1,0) \ 20
\varphi_1 22
\varphi_{\gamma} 22
& 23
* 11
^ 11, 14
* 70
                                                                                            78
~ 70
                                                                                    ordinal 39
+ 11, 70
```

A

addition, FiniteFuncOrdinal 27 Ordinal 14

```
AdmisLevOrdinal 40
AdmisLevOrdinal class 50
AdmisLevOrdinal exponential examples 66
   multiply examples 65
   operators 64
AdmisLevOrdinal::fixedPoint 62
AdmisLevOrdinal::limitElement examples
       57, 58, 59
AdmisLevOrdinal::limitOrd examples 63
AdmisLevOrdinal::limitType examples 60,
AdmisLevOrdinal::maxLimitType examples
AdmisNormalElement 40, 50
AdmisNormalElement::compare 51, 53
AdmisNormalElement::
       drillDownlimitElement 55
AdmisNormalElement::
       embedLimitElement 56
AdmisNormalElement::limitElement 52, 55
AdmisNormalElement::limitOrd 62, 63
AdmisNormalElement::limitType 60, 62
AdmisNormalElement::limitTypes 43
AdmisNormalElement::loUse 62
AdmisNormalElement::maxLimitType 60
admissible countable ordinal notations exam-
       ple 77
   index 39, 40, 50
   level ordinal 39
Admissible level ordinal collapsing 47
admissible level ordinal notations 40
   notations context parameter example 79
   notations drop down parameter example
admissible 72, 74
admissibleContext 72, 74
admissibleDrillDown 72, 74
all 72
arith 72, 73
assignment statement 70
axiom of choice 40
```

AdmisCodeLevel 64

admisLevelFunctional 50 C++ examples 51

В	commands, calculator 71
Bachmann-Howard ordinal 44	with options 72
base class 10	compare 10, 39, 69, 72, 73
beyond recursive ordinals 8	compareFiniteParams 53
both 72	comparison operators 73
	operators example 74
	completed infinite 64
\mathbf{C}	computational interpretation 8
	computer halting problem 8
C++ Ordinal code examples 12	construct 72
C++9	constructor 25
C++ tutorial material 5	class 11
calculator command options 72	continuous function 17
commands 71	continuum hypothesis 9, 67
examples 73	cosmology 67
list 79	countable 64
ordinal 4	admissible ordinal 39, 50
syntax 70	createParameters 23
Cantor diagonalization 67	cut, Dedekind 9
Georg 64	
normal form 10	D
Cantor's proof 64	D
$\verb cantorCodeLevel 27, 28, 30, 64 $	ddLe <i>54</i>
CantorNormalElement 12, 22, 28, 30	Dedekind cut 9
CantorNormalElement::compare 12, 23	defined 69
${\tt CantorNormalElement::expTerm}~30$	descend 73
CantorNormalElement::	descendFull 73
${ t getMaxParameter}\ 25$	deslimitOrdIst 72 73 74 80
${\tt CantorNormalElement::limitElement}\ 13,\ 25$	diagonalization, Cantor 67
cardinal 40	display options example 74
cardinals, regular 40	display 72, 74
Church, Alonzo 6, 39	displayable, not Ψ 47
Church-Kleene ordinal 6, 39, 50, 77	dRepl 54
class $9, 10$	drillDownLimit 62
constructor 11	drillDownSuccLimit 62
clear 72	
${\tt cmds}\ 69$	
cmp 53	\mathbf{E}
cmpCheck 71	_
code, source 4	effIndexCk 53
codeLevel 15, 23, 27	embedded index examples 41
collapsing 48	embLe 54
admissible level ordinal 47	enumerable, recursively 8
function 42	eps0 70
function, ordinal 45	epsilon(x) 70
ordinal 42	example of admissible countable ordinal no
command line options 68	tations 77

of admissible notations context parame-	F'
ter <i>79</i>	EALCE 79
of admissible notations drop down pa-	FALSE 73
rameter 78	Feferman, Solomon 67
of comparison operators 74	finite function hierarchy 20
of display options 74	function normal form 20
of extended Veblen function 76	functions limitElement 21
of list of descending trees 80	finiteFuncCodeLevel 22, 25, 28
of lists of ordinals 79	FiniteFuncNormalElement 22
of member functions 75	FiniteFuncNormalElement::compare 23, 32
of simple ordinal arithmetic 74	FiniteFuncNormalElement::
of Veblen function of N ordinals 75	compareFiniteParams ${\it 25}$
examples admisLevelFunctional C++ code	FiniteFuncNormalElement::doMultiply 28
51	FiniteFuncNormalElement::doToPower 30
AdmisLevOrdinal exponential 66	FiniteFuncNormalElement::
AdmisLevOrdinal multiply 65	limitElement~ 25
AdmisLevOrdinal::limitElement 57, 58,	${\tt FiniteFuncOrdinal}\ 23,\ 32,\ 50$
59	class 22
AdmisLevOrdinal::limitOrd 63	addition 27
AdmisLevOrdinal::limitType 60, 61	C++ examples 24
	constructor 23
AdmisLevOrdinal::maxLimitType 60, 61 FiniteFuncOrdinal C++ code 24	exponential examples 31
	exponentiation 30
FiniteFuncOrdinal exponential 31	multiplication 27
FiniteFuncOrdinal multiply 29 FiniteFuncOrdinal::limitElement 26	multiply examples 29
	operators 27
finiteFunctional C++ code 24	FiniteFuncOrdinal::compare 23
iterativeFunctional C++ code 32	FiniteFuncOrdinal::fixedPoint 27
IterFuncOrdinal exponential 38	FiniteFuncOrdinal::limitElement 25
IterFuncOrdinal multiply 37	examples 26
IterFuncOrdinal::limitElement 35	finiteFunctional 22, 24, 27
Ordinal exponential 18	C++ examples 24
Ordinal exponentiationC++ code 17	fixed point 19, 23, 30, 32
Ordinal multiply 16	points 7
Ordinal::limitElement 13	flush 72
calculator 73	form, normal 12, 40, 50
nested 49	funcParameters 23
examples 71, 72	function, collapsing 42
exit code from limitElement 21, 23	continuous 17
exit 71	member 39
exp 72	normal 17
explicit incompleteness 8, 64	Veblen 70
exponentiation, Ordinal 15	functional hierarchies 48
exportTeX 71	hierarchy, well founded 48
extended Veblen function example 76	functionLevel 53
	functions, member 9, 73
	ordinal 7

\mathbf{G}	isZ <i>53</i> , <i>54</i>
manma (x) 70	iterative functional hierarchy 22
gamma(x) 70	iterativeFunctional $\it 32$
getCompareIx 73	C++ examples 32
getMaxParameter() 52	iterFuncCodeLevel $\it 32$
GNU General Public License 4	${\tt IterFuncNormalElement::compare} \ \it 32, 51$
Gnu Multiple Precision Arithmetic 11, 53 God Created the Integers 9	$ \begin{array}{c} \textbf{IterFuncNormalElement::limitElement } 33 \\ 52 \end{array} $
	IterFuncNormalElement::maxLimitType 60
П	IterFuncOrdinal 40, 50
Н	class 32
help 71	exponential examples 38
hierarchies, functional 48	multiply examples 37
hierarchy, Veblen 7, 9, 10, 17	operators 36
Howard, Bachmann- ordinal 44	IterFuncOrdinal::fixedPoint 36
hypothesis, continuum 9, 67	<pre>IterFuncOrdinal::limitElement examples 35</pre>
	iterLimit $55,\ 62$
I	iterMaxParam $36,64$
	iterSucc 62
ideal, Platonic 64	
IFNE::leCom 54	
ignoreFactor 53	K
impredicative 8, 64	Klaana Stanban C 6 20
incompleteness, explicit 8, 64 theorem 64	Kleene, Stephen C. 6, 39
index, admissible 39, 40, 50	$\mathbf L$
indexCKlimit 62	L
indexCKmaxParam 64	Löwenheim, Leopold 67
indexCKsucc 62	Löwenheim-Skolem theorem 67
indexCKsuccParam 55	le <i>54</i>
indexCKtoLimitType 54, 62	lEmb(e) 54, 55
induction, integer 5	leUse <i>52</i> , <i>54</i>
ordinal 7	limArith 72
infinite, completed 64	limit ordinal 5
ordinals 67	limit 72
potentially 67	limitElement 39, 73
sets 5	exit code 21
Int data type 11	finite functions 21
integer induction 5	limitElt 73
integerLimitType 40, 52, 62	limitOrd $39, 50, 62, 73, 80$
integerLimitType = 1 43	for ω_1 39
integers, God created the 9	limitOrdLst 73, 79
interpretation, computational 8	${\tt limitType}\ 39,\ 40,\ 50,\ 62,\ 73$
isLimit 54	of admissible level notations 41
isLm 54	${\tt LimitTypeInfo}\ 55,\ 60,\ 62$
isSc 54	${\tt LimitTypeInfo~enum}~54$
isSuccessor 54	list, calculator 79

of descending trees example 80	function 17
list 71, 72, 74	${\tt normalForm}\ 12$
listElts 73	not Ψ displayable 47
listLimitElts 73	notation, ordinal 5, 7
lists of ordinals example 79	$\mathtt{nullLimitType}~40$
ordinal 71	
listTeX 71	
lme 54	O
lo 54	1
log 71	object oriented language 9
logopt 71, 72	omega 70
looking glass reality 9	omega w 70
loUse 54	omega1CK 70
lp1 54	operators, comparison 73
1Sg 54	opts 71, 72
lsx 54	oracle 8
'	TM 39
	ord namespace 11
\mathbf{M}	ordinal 5, 70
M. I	admissible 39
Machines, Turing 8	admissible level 39
management, memory 11	arithmetic examples 14
manual, user's 4	Bachmann-Howard 44
material, tutorial 5	calculator 4
Mathematica, Principia 40	Church-Kleene 6, 39, 50, 77
mathematics' inherent incompleteness 67	collapsing 42
maxLimitType 39, 50, 73	collapsing function 45
maxParameter 53, 73	functions 7
maxParamFirstTerm 53	induction γ
member function 39	limit 5
functions 9, 73	lists 71
functions example 75	normal form 10
member 72, 74	notation 5, 7
members 69	recursive 4, 5, 8, 17, 39
memory management 11	successor 5
multiple precision arithmetic 11	uncountable 8
multiplication, Ordinal 15	Ordinal 8, 9, 11, 50, 69
multiply 27, 28	addition 14
multiplyBy 15, 27, 28	base class 11
	exponential examples 18
NT	exponentiation 15
N	expressions 12
namespace ord 11	multiplication 15
nested examples 49	multiply examples 16
nlSg 54	operators 13
nlsx 54	Ordinal::compare 12, 23
normal form 12, 40, 50	Ordinal::limitElement 13, 21, 52
form, finite function 20	examples 13

 \mathbf{R} Ordinal::limitOrd 39 Ordinal::normalForm 12 read 71 Ordinal::psiNormalForm 47 readall 71 Ordinal::texNormalForm 12, 23 readline 69 OrdinalC++ code examples 12 reality, physical 67 OrdinalImpl 25 recOrdLimitType 40OrdinalImpl::limitElement 25 recursive 8 ordinals, infinite 67 ordinal 4, 5, 8, 17, 39 predefined 70 recursively enumerable 8 ordlist 69 regular cardinals 40 rep1 54 rep2 54 P replace1 54 parameterCompare 53 replace2 54 parameters, typed 39 Rtn x 54paramLimit 55, 62 Russell, Bertrand 40 paramSucc 62 paramSuccLimit 62S physical reality 67 significance 67 Sacks, Gerald 39 Platonic ideal 64 save 71 points, fixed 7 setDbg 71, 72potentially infinite 67 sets, infinite 5 power set axiom 40 significance, physical 67 precedence 73 simple ordinal arithmetic example 74 predefined ordinals 70Skolem, Thoralf 67 principal additive ordinal 7source code 4 Principia Mathematica 40 statement, assignment 70 prompt 71 static function 28 promptLimit 72 stop 72proof, Cantor's 64 subclass 9, 10, 15 psi 22successor ordinal 5 psiNormalForm 47 syntax, calculator 70 $psi_px(p1,p2,...,pn)$ 70 syntax 69 psi 70, 72sz 54, 62psi(1,x) 70psi(1,x,0) 70 psi(x) 70 \mathbf{T} psuedoCodeLevel 27, 36, 64 termEffIndexCK 53 purpose 69 tex 72 ${\tt texNormalForm}\ 12$ \mathbf{Q} text 72 theorem, incompleteness 64 quantification over the reals 8 this 33, 53, 54, 55 quit 71TM 8 oracle 39

```
TRUE 73
Turing Machines 8
    Machines with oracles 39
tutorial material 5
typed parameters 39
U
uncountable ordinal 8
user's manual 4
\mathbf{V}
Veblen function 70
    function of N ordinals example 75
    hierarchy 7, 9, 10, 17
VeblenExtend 72, 74
{\tt VeblenFinite}\ 72,\ 74
{\tt version}\ 69
virtual function 9, 10
\mathbf{W}
well founded 8, 39
    founded functional hierarchy 48
    ordered ordinals 5
w^x 70
w 70
w1 70
w1CK 70
Whitehead, Alfred North 40
\mathbf{Y}
yydebug 71
\mathbf{Z}
Zermelo Frankel set theory 4, 6
ZF 6
```

Formatted: January 17, 2010

89