

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CERTIFICATION TEST REPORT

FOR

WLAN PHONE
MODEL NUMBER: IP3NA-8WV
FCC ID: UI3-8WV
IC: 140L-8WV

REPORT NUMBER: 07J11507-1 ISSUE DATE: March 11, 2008

Prepared for

NEC INFRONTIA INC. 6365 NORTH STATE HIGHWAY 161 IRVING, TEXAS 75039-2402, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	3/11/08	Initial Issue	T. Chan

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	6
4	1 .1.	MEASURING INSTRUMENT CALIBRATION	6
2	1.2.	MEASUREMENT UNCERTAINTY	6
5.	EQU	JIPMENT UNDER TEST	7
į	5.1.	DESCRIPTION OF EUT	7
	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.4.	SOFTWARE AND FIRMWARE	7
	5.5.	WORST-CASE CONFIGURATION AND MODE	7
	5.6.	DESCRIPTION OF TEST SETUP	8
6.	TES	T AND MEASUREMENT EQUIPMENT	11
7.	ANT	ENNA PORT TEST RESULTS	12
7	7.1.	802.11b MODE IN THE 2.4 GHz BAND	12
	7.1.1	1. 6 dB BANDWIDTH	12
	7.1.2	2. 99% BANDWIDTH	16
	7.1.3	3. OUTPUT POWER	20
	7.1.4	4. AVERAGE POWER	24
	7.1.5	5. POWER SPECTRAL DENSITY	25
	7.1.6	6. CONDUCTED SPURIOUS EMISSIONS	29
7	7.2.	802.11g MODE IN THE 2.4 GHz BAND	36
	7.2.1	1. 6 dB BANDWIDTH	36
	7.2.2	2. 99% BANDWIDTH	40
	7.2.3	3. OUTPUT POWER	44
	7.2.4	4. AVERAGE POWER	48
	7.2.5	5. POWER SPECTRAL DENSITY	49
	7.2.6	6. CONDUCTED SPURIOUS EMISSIONS	53
8.	RAD	DIATED TEST RESULTS	60
8	3.1.	LIMITS AND PROCEDURE	
8	3.2.	TRANSMITTER ABOVE 1 GHz	62

10	SETU	PHOTOS	97
	9.1.2.	EUT WITH CRADLE CHARGER AND AC ADAPTER	94
		EUT WITH AC ADAPTER ONLY	
9.	AC POW	ER LINE CONDUCTED EMISSIONS	90
		EUT WITH CRADLE CHARGER AND AC ADAPTER	
		EUT WITH AC ADAPTER ONLY	
C			
۶	2.4 WO	RST-CASE BELOW 1 GHz	82
	8.3.1.	RECEIVER ABOVE 1 GHz	80
8	3.3. REC	CEIVER ABOVE 1 GHz	80
	8.2.2.	TRANSMITTER ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND	71
	8.2.1.	TRANSMITTER ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND	62

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: NEC INFRONTIA INC.

6365 NORTH STATE HIGHWAY 161 IRVING, TEXAS 75039-2402, USA

EUT DESCRIPTION: WLAN PHONE

MODEL: IP3NA-8WV

SERIAL NUMBER: 2B3A15THY00172

DATE TESTED: JANUARY 28 – March 5, 2008

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

No Non-Compliance Noted

RSS-210 Issue 7 Annex 8 and RSS-GEN Issue 2

No Non-Compliance Noted

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

THANH NGUYEN EMC ENGINEER

Moulton guym

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a WLAN phone manufactured by NEC Infrontia Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	19.48	88.72
2412 - 2462	802.11g	22.89	194.54

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Whip antenna, with a maximum gain of 1.7 dBi for Main and -1.3 dBi for Inverted antenna.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was TetraTerm, rev. UTF- 8.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst case position was EUT sit on the cradle position, based on the pre-scan investigations as follow, the EUT standard alone with X/ Y/ Z position and also EUT on the cradle position has been examined and determine the worst orientation of the EUT.

The worst case is 1Mb/s @ 11b mode & 6Mb/s @ 11g mode.

The worst-case channel is determined as the channel with the highest output power.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
Cradle charger	NEC	IP3NA-8WVCHG	2090	N/A			
AC Adaptor	NEC	TA05-10	2105	N/A			
Ear and Speaker phone	N/A	N/A	N/A	N/A			

I/O CABLES

	I/O CABLE LIST							
Cable	Port	Port # of Connector Cable Cable Remarks						
No.		Identica	Type	Type	Length			
		Ports						
1	DC	1	DC Plug	Un-shielded	1.5m	No		
2	Audio	1	Line in	Shielded	.1m	NEC extender Adapter		
3	Audio	1	Line in	Un-shielded	1m	N/A		

TEST SETUP

Two types of setups took place:

- 1. A continuous transmit mode headset attached EUT was directly connected to an AC adapter.
- 2. A continuous transmit mode headset attached EUT was sited on a Cradle Charger. And AC adapter was connected to the Cradle Charger.

SETUP DIAGRAM FOR TESTS - EUT WITH AC ADAPTER ONLY

SETUP DIAGRAM FOR TESTS - EUT WITH CRADLE CHARGER AND AC ADAPTER

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Antenna, Bilog, 2 GHz	Sund Sciences	JB1	CO1011	9/28/2007	9/28/2008	
Preamp, 1000MHz	Sonoma	310N	0	1/20/2007	1/20/2008	
1-18G-1zHbm Antenna	ETS	3117	C01005	4/15/2007	4/15/2008	
Preamplifier, 26.5 GHz	Agilent/HP	8449B	C00749	8/3/2007	9/27/2008	
Spectrum Analyzer, 40 GHz	Agilent/HP	8564E	C00951	9/5/2007	12/5/2008	
EM Receiver, 29 GHz	Agilent/HP	8542E	CCCC957	2/6/2007	6/12/2008	
RF Filter Section, 29 GHz	Agilent/HP	85420E	C00958	2/6/2007	6/12/2008	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/25/2007	10/25/2008	
USN, 10 kHz~30 MHz	Sdar	8012-50-R-24-BNC	N02481	10/25/2007	10/25/2008	
Peak Power Meter	Agilent/HP	E4416A	000963	12/4/2007	12/4/2009	
Peak / Average Power Sensor	Agilent	E9327A	C00964	12/7/2007	12/7/2009	
Spectrum Analyzer, 44 CHz	Agilent/HP	E4446A	C01012	12/3/2007	3/3/2009	
Spectrum Analyzer, 26.5 GHz	Agilent/HP	E4407B	CO1101	10/22/2007	1/22/2009	

TEST EQUIPMENT LIST								
Description	Description Manufacturer Model Asset Cal Date Cal Due							
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	9/28/2007	9/28/2008			
Preamp, 1000MHz	Sonoma	310N	0	1/20/2007	1/20/2008			
EMI Receiver, 2.9 GHz	Agilent / HP	8542E	C00957	2/6/2007	6/12/2008			
RF Filter Section, 2.9 GHz	Agilent / HP	85420E	C00958	2/6/2007	6/12/2008			
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/25/2007	10/25/2008			
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	10/25/2007	10/25/2008			
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	2/6/2008	8/6/2009			

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

7.1.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	10.17	0.5
Middle	2437	10.25	0.5
High	2462	10.17	0.5

6 dB BANDWIDTH

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	12.5338
Middle	2437	12.5252
High	2462	12.5898

99% BANDWIDTH

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the spectrum analyzer's internal channel power integration function. Power is integrated over a bandwidth greater than or equal to the 99% bandwidth.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	19.48	30	-10.52
Middle	2437	18.68	30	-11.32
High	2462	19.27	30	-10.73

OUTPUT POWER

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and .5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency Power	
	(MHz)	(dBm)
Low	2412	15.01
Middle	2437	15.05
High	2462	15.00

7.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-5.96	8	-13.96
Middle	2437	-6.65	8	-14.65
High	2462	-5.92	8	-13.92

POWER SPECTRAL DENSITY

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.2. 802.11g MODE IN THE 2.4 GHz BAND

7.2.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.25	0.5
Middle	2437	15.5	0.5
High	2462	16.08	0.5

6 dB BANDWIDTH

7.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	2412	16.152	
Middle	2437	16.1432	
High	2462	16.2919	

99% BANDWIDTH

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the spectrum analyzer's internal channel power integration function. Power is integrated over a bandwidth greater than or equal to the 99% bandwidth.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	22.56	30	-7.44
Middle	2437	22.51	30	-7.49
High	2462	22.89	30	-7.11

OUTPUT POWER

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and .5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	13.50	
Middle	2437	13.19	
High	2462	13.16	

7.2.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-8.91	8	-16.91
Middle	2437	-7.94	8	-15.94
High	2462	-8.52	8	-16.52

POWER SPECTRAL DENSITY

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

Page 60 of 101

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TRANSMITTER ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

8.2.2. TRANSMITTER ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

8.3. RECEIVER ABOVE 1 GHz

8.3.1. RECEIVER ABOVE 1 GHz

8.4. WORST-CASE BELOW 1 GHz

8.4.1. EUT WITH AC ADAPTER ONLY

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZONTAL DATA									
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBuV	db	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB			
1	30.970	30.23	-9.67	20.56	40.00	-19.44	Peak		
2	68.800	44.33	-23.12	21.21	40.00	-18.79	Peak		
3	103.720	47.00	-20.27	26.73	43.50	-16.77	Peak		
4	217.210	44.50	-19.37	25.13	46.00	-20.87	Peak		
5	238.550	43.50	-18.63	24.87	46.00	-21.13	Peak		
6	467.470	42.50	-12.65	29.85	46.00	-16.15	Peak		
7	547.010	37.33	-11.34	26.00	46.00	-20.00	Peak		
8	624.610	35.17	-10.35	24.82	46.00	-21.18	Peak		

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL DATA									
	Freq	Read Level	Factor	Level	Limit Line		Remark		
	MHz	dBuV	dB	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB			
1	30.000	34.50	-9.67	24.83	40.00	-15.17	Peak		
2	64.920	47.17	-23.33	23.84	40.00	-16.16	Peak		
3	148.340	39.24	-17.67	21.57	43.50	-21.93	Peak		
4	389.870	40.33	-14.28	26.06	46.00	-19.94	Peak		
5	467.470	45.83	-12.65	33.18	46.00	-12.82	Peak		
6	624.610	35.83	-10.35	25.49	46.00	-20.51	Peak		

8.4.2. EUT WITH CRADLE CHARGER AND AC ADAPTER

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZONTAL DATA									
	Freq	Factor	Level	Over Limit	Remark				
	MHz	dBuV	dB	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB			
1	64.920	47.00	-23.33	23.67	40.00	-16.33	Peak		
2	176.470	45.00	-18.91	26.10	43.50	-17.41	Peak		
3	251.160	42.33	-18.21	24.13	46.00	-21.87	Peak		
4	312.270	46.17	-16.08	30.08	46.00	-15.92	Peak		
5	389.870	38.67	-14.28	24.39	46.00	-21.61	Peak		
6	416.060	39.67	-13.60	26.07	46.00	-19.93	Peak		

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL DATA									
		Read			Limit	Over			
	Freq	Freq Level		Level	Line	Limit	Remark		
	MHz	dBu∇	dB	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB			
1	30.000	34.00	-9.67	24.33	40.00	-15.67	Peak		
2	64.920	45.33	-23.33	22.01	40.00	-17.99	Peak		
3	129.910	39.50	-17.05	22.45	43.50	-21.05	Peak		
4	389.870	39.00	-14.28	24.72	46.00	-21.28	Peak		
5	467.470	40.83	-12.65	28.18	46.00	-17.82	Peak		
6	519.850	37.83	-11.65	26.19	46.00	-19.81	Peak		
7	624.610	38.83	-10.35	28.49	46.00	-17.51	Peak		

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

9.1.1. EUT WITH AC ADAPTER ONLY

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.	Reading			Closs	Limit	EN_B	Margin		Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2		
0.22	42.19		36.73	0.00	62.93	52.93	-20.74	-16.20	L1		
0.77	40.71		36.68	0.00	56.00	46.00	-15.29	-9.32	L1		
21.49	48.20		32.26	0.00	60.00	50.00	-11.80	-17.74	L1		
0.77	38.12		31.48	0.00	56.00	46.00	-17.88	-14.52	L2		
2.40	36.65		28.25	0.00	56.00	46.00	-19.35	-17.75	L2		
21.49	49.05		34.03	0.00	60.00	50.00	-10.95	-15.97	L2		
6 Worst l	6 Worst Data										

EUT WITH AC ADAPTER ONLY

LINE 1 RESULTS

LINE 2 RESULTS

9.1.2. EUT WITH CRADLE CHARGER AND AC ADAPTER

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.	Reading			Closs	Limit	EN_B	Margin		Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2		
0.47	40.99		21.32	0.00	56.50	46.50	-15.51	-25.18	L1		
0.69	41.57		28.71	0.00	56.00	46.00	-14.43	-17.29	L1		
21.49	43.72		30.14	0.00	60.00	50.00	-16.28	-19.86	L1		
0.28	38.39		24.51	0.00	60.85	50.85	-22.46	-26.34	L2		
2.37	37.10		21.99	0.00	56.00	46.00	-18.90	-24.01	L2		
21.49	50.84		36.32	0.00	60.00	50.00	-9.16	-13.68	L2		
6 Worst l	21.49 30.84 36. 6 Worst Data										

LINE 1 RESULTS

LINE 2 RESULTS

10. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

RADIATED RF MEASUREMENT SETUP - EUT WITH AC ADAPTER ONLY

Back

RADIATED RF MEASUREMENT SETUP - EUT WITH CRADLE CHARGER AND AC ADAPTER

Front

Back

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

EUT WITH AC ADAPTER ONLY

EUT WITH CRADLE CHARGER AND AC ADAPTER

END OF REPORT