

Architecture Réseaux Entreprises (ARES) Services réseau essentiels

Brice - Ekane (brice.ekane@univ-rennes.fr)

ISTIC Rennes - France 2025-2026

 $git\ clone\ https://github.com/bekane/ares-2025.git$

Plan du module

- 1 Objectifs du module
- 2 DHCP : Amorcer la communication
- 3 DNS: Nommer pour mieux communiquer

4 Conclusion

Outline for section 1

- Objectifs du module
- 2 DHCP : Amorcer la communication
- 3 DNS : Nommer pour mieux communiquer
- 4 Conclusion

Objectifs

► **Comprendre** : rôle fondamental de DHCP, DNS dans l'infrastructure.

Outline for section 2

- 1 Objectifs du module
- 2 DHCP : Amorcer la communication
- 3 DNS : Nommer pour mieux communiquer
- 4 Conclusion

Sans IP, pas de réseau

- ▶ **Problème** : une machine sans IP ne peut pas sortir de son segment local.
- ▶ Broadcast de découverte : 255.255.255.255 → seul moyen d'atteindre un serveur DHCP inconnu.
- ► DORA en 4 temps :
 - 1 Discover « Qui peut me donner une IP ? »
 - Offer « Je t'offre X.X.X.X »
 - 3 Request « Je veux X.X.X.X »
 - 4 Ack « C'est à toi »
- ▶ DHCP Relay : transmet le Discover d'un VLAN à un serveur central.

DHCP - DORA

©Dann Nanni

Implémentations de serveurs DHCP

Plusieurs solutions existent

- ► ISC DHCP : historique, très répandu, mais considéré comme legacy.
- ▶ **Dnsmasq** : léger, simple à configurer, combine **DNS** et **DHCP**.
- ► Kea (ISC) : successeur moderne d'ISC DHCP, modulaire, API REST.
- > systemd-networkd : service intégré au système.
- dhcpd intégré aux routeurs/box : version simplifiée, souvent propriétaire.
- **...**

dnsmasq

Qu'est-ce que dnsmasq?

- ► Service léger qui combine DNS cache et DHCP serveur.
- ► Utilisé dans les réseaux locaux, routeurs et environnements virtualisés.
- ► Facile à configurer.
 - Polyvalent : brique technique dans des environnements cloud, virtualisation et conteneurs.

dnsmasq - Installation (exemple Debian/Ubuntu)

sudo apt update sudo apt install dnsmasq

dnsmasq - Logs et supervision

- ► Journal système : sudo journalctl -u dnsmasq
- ► Ou dans /var/log/syslog selon la configuration.
- ► Messages typiques : attribution d'IP, requêtes DNS, erreurs.

dnsmasq - Exemple de configuration

```
# écouter sur l'interface lan eth0
interface=eth0
# Plage d'adresses et durée
dhcp-range=192.168.1.50,192.168.1.150,12h
# Masque de sous-réseau (option 1)
dhcp-option=1.255.255.255.0
# définir la passerelle par défaut
dhcp-option=3,192.168.1.1
# Broadcast address (option 28)
dhcp-option=28,192.168.1.255
# définir une option DNS
dhcp-option=6,8.8.8.8,8.8.4.4
```

Options DHCP courantes (dnsmasq)

Option	Nom	Exemple dnsmasq
1	Masque de sous-réseau	dhcp-option=1,255.255.25.0
3	Passerelle (routeur)	dhcp-option=3,192.168.1.1
6	DNS servers	dhcp-option=6,8.8.8.8,8.8.4.4
15	Nom de domaine	dhcp-option=15,example.com
28	Adresse de broadcast	dhcp-option=28,192.168.1.255
42	Serveur NTP	dhcp-option=42,192.168.1.100
51	Durée du bail (lease time)	dhcp-option=51,3600
66	Nom du serveur TFTP	dhcp-option=66,"tftp.local"
67	Fichier de boot (PXE)	dhcp-option=67,"pxelinux.0"
119	Domain search list	dhcp-option=119,corp.local
121	Routes statiques classless	dhcp-option=121,192.168.2.0/24,192.168.1.1

Attribuer des adresses IP statiques

Configuration des baux statiques

- Vous pouvez assigner une adresse IP fixe à un périphérique spécifique en fonction de son adresse MAC.
- ► Ajouter cette configuration dans le fichier dnsmasq.conf :
 - ▶ dhcp-host=00:11:22:33:44:55,192.168.1.10
- Cela associe l'adresse MAC 00:11:22:33:44:55 à l'adresse IP 192.168.1.10.

Sécuriser le service DHCP

Limitation de la portée du DHCP

- ► Limiter les interfaces sur lesquelles le service DHCP fonctionne :
 - ▶ interface=eth0
 - ► Vous pouvez spécifier plusieurs interfaces si nécessaire :
 - ▶ interface=eth0,eth1
 - Cette configuration empêche le DHCP de répondre sur des interfaces non autorisées.

DHCP authoritative

Deux modes possibles

- Authoritative :
 - Le serveur déclare être l'autorité unique sur le réseau.
 - ► Répond rapidement aux clients avec des baux corrects.
 - ► Force la réattribution si le client arrive avec une IP invalide.
- ▶ Non-authoritative :
 - Le serveur reste passif.
 - ► Si le client demande une IP douteuse, il peut attendre ou être ignoré.
 - ► Utile si plusieurs DHCP coexistent.

Exemple dnsmasq

dhcp-authoritative

DHCP Snooping et dnsmasq

- ▶ **DHCP Snooping** = fonction de sécurité d'un switch (L2).
- ▶ Permet de bloquer les **DHCP rogue** (faux serveurs DHCP).
- ▶ Maintient une table IP \leftrightarrow MAC \leftrightarrow Port.
- dnsmasq = serveur DHCP/DNS, il ne fait pas de snooping.

DHCP Snooping et dnsmasq

©Dann Nanni

PXE Boot avec dnsmasq

Principe

- ▶ PXE (Preboot eXecution Environment) permet de démarrer une machine via le réseau.
 - dnsmasq fournit un service léger combinant DHCP, TFTP.

PXE Boot - Étapes du PXE Boot

©Dann Nanni

PXE Boot avec dnsmasq

Exemple de configuration

tftp-root=/srv/tftp

```
dhcp-range=192.168.1.50,192.168.1.150,12h
dhcp-boot=pxelinux.0
enable-tftp
```

Outline for section 3

- 1 Objectifs du module
- 2 DHCP : Amorcer la communication
- 3 DNS: Nommer pour mieux communiquer
- 4 Conclusion

Hiérarchie et requêtes

- ► **Hiérarchie** : délégation par zones (., .com, google.com) → scalabilité.
- ► Requêtes :
 - ► *Récursive* : le serveur local fait tout.
 - ltérative : le client relance vers chaque serveur indiqué.
- ► Enregistrements clés : A, AAAA, CNAME, MX, PTR (résolution inversée).

Hiérarchie

DNS - Fonctionnement

©Dann Nanni

DNS - Récursive vs Itérative

Enregistrements DNS principaux

dnsmasq vs Bind9 : comparaison de la notation

Туре	dnsmasq	Bind9
А	address=/www.ex.com/192.0.2.10	www IN A 192.0.2.10
AAAA	address=/www.ex.com/2001:db8::10	www IN AAAA 2001:db8::10
CNAME	cname=blog.ex.com,www.ex.com	blog IN CNAME www
MX	mx-host=ex.com,mail.ex.com,10	@ IN MX 10 mail.ex.com.
PTR	ptr-record=10.2.0.192.in-addr.arpa,www.ex.com	10 IN PTR www.ex.com.
TXT	txt-record=ex.com,"v=spf1 -all"	@ IN TXT "v=spf1 -all"
SRV	srv-host=_siptcp.ex.com,sip1.ex.com,5060,10,60	_siptcp IN SRV 10 60 5060 sip1.ex.com.
NS	pas supporté nativement	@ IN NS ns1.ex.com.

dnsmasq = parfait comme résolveur/cache DNS + DHCP + services locaux vs. Bind9 = standard production

dnsmasq - exemples

```
interface=eth0
dhcp-range=192.168.1.50,192.168.1.150,12h
# Passerelle par défaut
dhcp-option=3,192,168,1,1
# DNS à annoncer aux clients
dhcp-option=6,192.168.1.1,8.8.8.8
# Activer le cache DNS
cache-size=1000
# Domaine local
domain=exemple.com
# Ne pas forwarder noms incomplets
domain-needed
bogus-priv
# DNS amont
server=8.8.8.8
# A & AAAA records
address=/www.exemple.com/192.0.2.10
address=/www.exemple.com/2001:db8::10
# CNAME (alias)
cname=blog.exemple.com,www.exemple.com
```

Dynamic DNS (DDNS)

- ightharpoonup Problème : IP attribuée dynamiquement ightarrow risque d'info obsolète dans DNS.
- ► **Solution**: DHCP informe DNS après attribution (mise à jour A et PTR).
- ► Implémentations :
 - ► dnsmasq : intègre DHCP + DNS.
 - ▶ isc-dhcp-server + Bind : mise à jour sécurisée via DDNS Update.

Dynamic DNS (DDNS)

from: https://www.dnsinsecurity.com/blog/ddns-update-security

Outline for section 4

- 1 Objectifs du module
- 2 DHCP : Amorcer la communication
- 3 DNS : Nommer pour mieux communiquer
- 4 Conclusion

Synthèse

- ightharpoonup DHCP, DNS, DDNS = fondations automatiques du réseau.
- ► Prochaine étape : sécuriser avec VPN (WireGuard).

Ressources

- ► Lire : RFC 1035 (DNS), RFC 2131 (DHCP), RFC 1027 (Proxy ARP).
- ► Préparer la prochaine séance : VPN et sécurité avec WireGuard.