

1989 SHORTFORM CATALOG

SGS-THOMSON MICROELECTRONICS

CONTENTS

INDEX BY PRODUCT FAMILIES	3
ALPHANUMERICAL INDEX	8
TELECOM AND DATA COMMUNICATIONS	37
DATA PROCESSING	57
CONSUMER	69
AUTOMOTIVE	81
GENERAL PURPOSE & INDUSTRIAL	89
MODULES & BOARDS	195
MILITARY AND AEROSPACE	201
COMPONENTS FOR SMART CARDS & SURFACE MOUNT DEVICES	215
ANALOG CELLS AND ARRAYS	257
SEMICUSTOM PRODUCTS	261
ADDRESSES	267

Use in life support must be expressly authorized

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of SGS-THOMSON Microelectronics.

As used here in:

- 1 Life support devices or systems are devices or systems which, are intended for surgical implant into the body or support to sustain life, and whose failure to perform, when property used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2 A critical component is any component of a life support device or system whose failure to perform can be reasonally expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

INDEX BY PRODUCT FAMILIES

TELECOM AND DATA COMMUNICATIONS	37
MODEMS DIGITAL SIGNAL PROCESSORS	
SWITCHING CONNECTION AND CONCENTRATION	39
ANALOG CROSS POINTS DIGITAL CROSS POINTS	
SPECIAL FUNCTIONS	
SUBSCRIBER BOARD	40
SUBSCRIBER LINE INTERFACE CIRCUITS	
TRANSIENT PROTECTION (TRISIL)	40
COMBOS	
TELEPHONE SET	
SPEECH CIRCUITS	
MICROPHONE PREAMPLIFIERS	
LINE INTERFACES	
LOUDSPEAKER AMPLIFIERS	
HANDS FREE CIRCUITS	41
DTMF DIALERS	
TONE/PULSE DIALERS	
SPECIAL FUNCTIONS TRANSIENT PROTECTION (TRANSIL/TRISIL)	
RF & MICROWAVE TRANSISTORS (SEE NOTE ON PAGE 6)	
SOLID STATE RELAYS/THYRISTORS/TRIACS	
NETWORKS	55/68
ETHERNET	55/68
STARLAN	,
PACKET SWITCHING X.25	55/68
MEMORIES	59
NMOS EPROMS	59
CMOS EPROMS	59
CMOS OTP ROMS	
NMOS EEPROMS	
CMOS EEPROMS	
NON-VOLATILE STATIC RAMS (ZEROPOWER AND TIMEKEEPER)	
CMOS FIFOS	
MICROS & PERIPHERALS	62
4 BIT MICROCONTROLLERS	62
9400 FAMILY	
8 BIT MICROCONTROLLERS	
6804/ 68HC04 FAMILY	
6805 FAMILY	
3870 FAMILY	
Z8 FAMILY	

ST6 FAMILY	
ST8 FAMILY	
ST9 FAMILY	
8 BIT MICROPROCESSORS & PERIPHERALS	34
6800 FAMILY	34
Z80 FAMILY	
Z80 CMOS FAMILY	34
16 BIT MICROPROCESSORS & PERIPHERALS	
68000 FAMILY	
Z8000 FAMILY	
Z8500 FAMILY	
Z8500 UNIVERSAL PERIPHERALS	
DIGITAL SIGNAL PROCESSORS	
GRAPHICS PROCESSORS	
SERIAL COMMUNICATIONS CONTROLLERS	
ETHERNET/STARLAN	
PACKET SWITCHING	
PACKET SWITCHING	აგ
CONSUMER 69)
HIGH SPEED DATA CONVERSION	
TV, MONITOR AND VCR	71
DEFLECTION ICS	71
DEFLECTION DISCRETES	72
CHROMA	74
VIDEO IF CIRCUITS	74
SOUND CHANNELS	74
AUDIO AMPLIFIERS	
VIDEO AND SOUND SWITCHES	
REMOTE CONTROL	
VOLTAGE SYNTHESIS TUNING SYSTEMS	
FREQUENCY TUNING SYSTEMS	
VIDEO RECORDER CIRCUITS	
SWITCH MODE POWER SUPPLIES	_
DISPLAY CIRCUITS	
VOLTAGE REGULATORS	
RADIO AND AUDIO	
AUDIO AMPLIFIERS FOR CAR RADIO	
HI-FI POWER AMPLIFIERS	77
GENERAL PURPOSE AMPLIFIERS	
AUDIO-PREAMPLIFIERS AND AUDIO PROCESSORS	
MOTOR REGULATORS	
MUSIC	
RADIO CIRCUITS	78
AUTOMOTIVE 83	}
INTEGRATED CIRCUITS	
IGNITION CONTROL	
FUEL INJECTION CONTROL	
ALTERNATOR REGULATORS	
POWER ACTUATORS	
SPECIAL FUNCTIONS	
VOLTAGE REGULATORS	_
OPERATIONAL AMPLIFIERS	34
COMPARATORS	34

MEMORIES	
POWER TRANSISTORS	
PROTECTION DEVICES	
AUDIO AMPLIFIERS FOR CAR RADIO	/ /
DISCRETES	89
RF & MICROWAVE TRANSISTORS (SEE NOTE ON PAGE 6)	44
POWER BIPOLAR TRANSISTORS	
POWER MOS TRANSISTORS	
HIMOS/IGBT	
POWER MODULES/ISOLATED PACKAGES	
SMALL SIGNAL TRANSISTORS	
GLASS SCHOTTKY DIODES	
ZENER DIODES	
TRANSIENT VOLTAGE SUPPRESSORS	
THYRISTORS & TRIACS <100 A	
THYRISTORS	
TRIACS	
ALTERNISTORS	
TRIGGER DIODES (DIACS)	. 157
INDUSTRIAL LINEAR PRODUCTS	166
THE CONTRACT LINEAR THE CONTRACT CONTRA	100
OPERATIONAL AMPLIFIERS	
COMPARATORS	
VOLTAGE REGULATORS	
SWITCH MODE POWER SUPPLIES/RECTIFIERS	
POWER CONTROLLERS/DRIVERS/TRIACS	
SOLENOID/HAMMER/NEEDLE/RELAY	
UNIPOLAR STEPPER MOTORS	
BIPOLAR STEPPER MOTORS 182	/197
BRUSHLESS MOTORS	. 183
DC MOTORS	,
DISPLAYS	
RC ENCODER/DECODERS	
DEDICATED FUNCTIONS	
TIMERS	
VOLTAGE REFERENCES	
SUPPLY VOLTAGE SUPERVISORS	
TEMPERATURE SENSORS	
PROXIMITY DETECTORS	. 185
LAMP BALLAST	
TRIACS POWER TRANSISTORS 79	/146
STD LOGIC & PROGRAMMABLE LOGIC	186
CMOS 4000B	186
HSCMOS 54HC/74HC	
LPS 54LS/74LS	
GALS (GENERIC ARRAY LOGIC)	

MODULES & BOARDS	195
POWER SUPPLIES DC/DC CONVERTORS STEPPER MOTOR CONTROLLERS MOTION CONTROL BOARDS	197 197
MILITARY	201
MEMORIES	209
SURFACE MOUNT DEVICES	215
SMART CARDS TELECOM MEMORIES MICROS & PERIPHERALS DISPLAY & GRAPHIC PROCESSING DATACOM - PACKET SWITCHING CONSUMER AUTOMOTIVE SCHOTTKY DIODES ZENER DIODES TRANSIENT SUPPRESSORS TRANSISTORS VOLTAGE REGULATOR DIODES LINEAR LOGIC SEMICUSTOM	
SEMICUSTOM - DIGITAL & MIXED TECHNOLOGIES	257
LINEAR BIPOLAR ARRAYS BIPOLAR ANALOG & DIGITAL ARRAYS MASK PROGRAMMABLE FILTERS CHANNEL ARRAYS SEA OF GATES STANDARD CELLS	

NOTE: RF & Microwave Transistors - for all information including technical data, pricing, delivery and order entry, please contact:

SGS-THOMSON Microelectronics, Inc.

211 Commerce Drive

Montgomeryville, PA 18936

Tel. (215) 362-8500 FAX (215) 362-1293

or a regional office (see addresses on page 269).

Туре	Page
1N 248 B,(R) 1N 249 B,(R) 1N 250 B,(R) 1N 821 1N 821 1N 823 1N 823 1N 823 1N 825 1N 825 1N 825 1N 827 1N 827 1N 829 1N 829 1N 829 1N 829 1N 839 A 1N 1183,(R) 1N 1184,(R) 1N 1184,(R) 1N 1184,(R) 1N 1189,(R) 1N 1190,(R) 1N 1190,(R) 1N 1197 A,(R) 1N 1197 A,(R) 1N 1194 B,(R) 1N 1341 B,(R) 1N 1342 B,(R) 1N 1344 B,(R) 1N 1344 B,(R) 1N 1345 B,(R) 1N 1345 B,(R) 1N 1346 B,(R) 1N 1346 B,(R) 1N 1347 B,(R) 1N 1348 B,(R) 1N 3016 B 1N 3017 B 1N 3018 B 1N 3019 B 1N 3020 B IN 3039 B 1N 3040 B IN 3051 B 1N 3154 IN 388,(R) 1N 3889,(R) 1N 3889,(R) 1N 3889,(R) 1N 3889,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3890,(R) 1N 3899,(R) 1N 3890,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3899,(R) 1N 3890,(R) 1N 3890,(R) 1N 3890,(R) 1N 3899,(R) 1N 3890,(R) 1N 3900,(R) 1N 3900,(R) 1N 3900,(R) 1N 3900,(R)	144 144 144 144 144 147 127 127/213 127 127/213 127 127/213 127 127/213 127 127/213 144 144/214 144/214 144/214 144/214 144 144/214 144 144 144 144 144 144 144 144 144
1N 3913,(R) 1N 3988,(R)	143 144

Туре	Page		
1N 3990,(R)	144		
1N 4099	114		
1N 4135	144		
1N 4187 B	120		
↓ 1N 4193 B 1N 4565 1N 4565 A 1N 4566 A 1N 4566 A 1N 4567 1N 4567 A 1N 4568 1N 4568 A 1N 4569 1N 4569 A 1N 4575	↓ 120 127 127/213 127 127/213 127 127/213 127 127/213 127 127/213 127 127/213 127 127/213		
1N 4575 A 1N 4576 1N 4576 A 1N 4577 A 1N 4577 A 1N 4578 1N 4578 A 1N 4579 A 1N 4614	127 127/213 127 127/213 127 127/213 127 127/213 127 127/213		
↓ 1N 4627 1N 4728 A	114 120/213		
1N 4759 A	120/213		
1N 4760 A	120		
1N 4764 A	120		
1N 5221 B	119		
1N 5222 B	119		
1N 5223 B	119/213		
↓	↓		
1N 5265 B	119/213		
1N 5266 B	119		
1N 5281 B	119		
1N 5333 B	125		
1N 5388 B 1N 5634 1N 5634 A 1N 5635 1N 5635 1N 5635 A 1N 5636 1N 5636 1N 5637 1N 5637 1N 5638 1N 5638 1N 5639 1N 5639 1N 5640 1N 5640 1N 5641 1N 5641 1N 5641 A 1N 5642 1N 5642	125 42/133 42/133/213 42/133 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213 42/133/213		

,	
Туре	Page
1N 5643	42/133
1N 5643 A 1N 5644	42/133/213 42/133
1N 5644 A	42/133/213
1N 5645	42/133
1N 5645 A	42/133/213
1N 5646	42/133
1N 5646 A	42/133/213
1N 5647 1N 5647 A	42/133 42/133/213
1N 5648	42/134
1N 5648 A	42/134/213
1N 5649	42/134
1N 5649 A	42/134/213
1N 5650	42/134
1N 5650 A 1N 5651	42/134/213 42/134
1N 5651 A	42/134/213
1N 5652	42/134
1N 5652 A	42/134/213
1N 5653	42/134
1N 5653 A	42/134/213
1N 5654 1N 5654 A	42/134 42/134/213
1N 5655	42/134/213
1N 5655 A	42/134/213
1N 5656	42/134
1N 5656 A	42/134/213
1N 5657	42/134
1N 5657 A	42/134/213
1N 5658 1N 5658 A	42/134 42/134/213
1N 5659	42/134
1N 5659 A	42/134/213
1N 5660	42/134
1N 5660 A	42/134/213
1N 5661 1N 5661 A	42/134 42/134/213
1N 5662	42/134
1N 5662 A	42/134/213
1N 5663	42/134
1N 5663 A	42/134/213
1N 5664 1N 5664 A	42/134 42/134/213
1N 5665	42/134
1N 5665 A	42/134/213
1N 5711	113
1N 5712	113
1N 5817 1N 5818	113
1N 5819	113/213
1N 5908	42/136
1N 6040	42/134
1N 6040 A	42/134/213
1N 6041	42/134
1N 6041 A 1N 6042	42/134/213 42/134
1N 6042 A	42/134/213
1N 6043	42/134
1N 6043 A	42/134/213
1N 6044	42/134
1N 6044 A 1N 6045	42/134/213 42/134
1N 6045 A	42/134/213
1N 6046	42/134
1N 6046 A	42/134/213
1N 6047	42/134
1N 6047 A 1N 6048	42/134/213 42/134
1N 6048 A	42/134/213
1N 6049	42/134
1N 6049 A	42/134/213
1N 6050	42/134
1N 6050 A	42/134/213

1N 6051 1N 6051 A 1N 6051 A 1N 6052 1N 6052 1N 6053 1N 6053 1N 6053 1N 6053 1N 6054 1N 6055 1N 6055 1N 6055 1N 6055 1N 6055 1N 6056 1N 6056 1N 6057 1N 6057 1N 6058 1N 6058 1N 6059 1N 6059 A 1N 6069 1N 6060 1N 6061 1N 6061 1N 6062 1N 6063 1N 6063 1N 6064 1N 6064 1N 6065 1N 6066 1N 6066 1N 6067 1N 6067 1N 6068 1N 6069 1N 6069 1N 6069 1N 6060 1N 6070 1N 6070 1N 6070 1N 6070 1N 6070 1N 6071 1N 6071 1N 6071 1N 6071 1N 6072 1N 6071 1N 6072 1N 6071 1N 6072 1N 6071 1N 6072	Туре	Page
1N 6052 1N 6052 1N 6053 1N 6053 1N 6053 1N 6053 1N 6054 1N 6054 1N 6055 1N 6055 1N 6055 1N 6056 1N 6056 1N 6056 1N 6057 1N 6057 1N 6057 1N 6058 1N 6058 1N 6059 1N 6059 1N 6060 1N 6060 1N 6061 1N 6061 1N 6061 1N 6063 1N 6063 1N 6063 1N 6063 1N 6064 1N 6063 1N 6065 1N 6066 1N 6060 1N 6060 1N 6060 1N 6060 1N 6061 1N 6061 1N 6061 1N 6061 1N 6061 1N 6063 1N 6063 1N 6064 1N 6064 1N 6065 1N 6065 1N 6066 1N 6066 1N 6067 1N 6067 1N 6068 1N 6068 1N 6069 1N 6069 1N 6069 1N 6060 1N 6060 1N 6061 1N 6070 1N 6070 1N 6070 1N 6071 1N 6071 1N 6071 1N 6072 1N 6072 1N 6072 1N 6072 1N 6072 1N 6074 1N 6075 1N 6070 1N 6070 1N 6070 1N 6070 1N 6071 1N 6071 1N 6071 1N 6071 1N 6072 1N 6072 1N 6072 1N 6072 1N 6074 1N 6075 1N 6070 1N 6070 1N 6070 1N 6070 1N 6070 1N 6070 1N 6071 1N 6071 1N 6071 1N 6071 1N 6072 1N 6072 1N 6072 1N 6072 1N 6072 1N 6074 1N 6075 1N 6070 1N 6071 1N 6071 1N 6071 1N 6071 1N 6072 1N 6074 1N 6075 1N 6076 1N 607	1N 6051	42/135
1N 6052 A		
1N 6053 1N 6054 1N 6054 1N 6055 1N 6055 1N 6055 1N 6055 1N 6056 1N 6056 1N 6057 1N 6057 1N 6057 1N 6058 1N 6058 1N 6058 1N 6059 1N 6059 1N 6069 1N 6060 1N 6060 1N 6061 1N 6061 1N 6062 1N 6062 1N 6063 1N 6063 1N 6064 1N 6064 1N 6065 1N 6066 1N 6066 1N 6067 1N 6068 1N 6068 1N 6069 1N 6069 1N 6069 1N 6069 1N 6060 1N 6060 1N 6061 1N 6061 1N 6061 1N 6062 1N 6062 1N 6063 1N 6063 1N 6064 1N 6065 1N 6066 1N 6066 1N 6067 1N 6068 1N 6068 1N 6067 1N 6069 1N 6069 1N 6069 1N 6069 1N 6069 1N 6069 1N 6070 1N 6071 1N 6071 1N 6071 1N 6071 1N 6072 1N 6074 1N 6075 1N 6075 1N 6070 1N 6070 1N 6071 1N 6071 1N 6071 1N 6071 1N 6071 1N 6071 1N 6072 1N 6074 1N 6075 1N 6075 1N 6076 1N 607		
1N 6053 A 1N 6054 A 1N 6054 A 1N 6055 A 1N 6055 A 1N 6055 A 1N 6056 A 1N 6056 A 1N 6057 A 1N 6057 A 1N 6058 A 1N 6058 A 1N 6058 A 1N 6059 A 1N 6060 A 1N 6060 A 1N 6061 A 1N 6061 A 1N 6062 A 1N 6062 A 1N 6063 A 1N 6063 A 1N 6064 A 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6068 A 1N 6069 A 1N 6069 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6074 A 1N 6075 A 1N 6070 A 1N 6070 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6074 A 1N 6075 A 1N 6075 A 1N 6070 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6073 A 1N 6074 A 1N 6075 A 1N 6075 A 1N 6075 A 1N 6070 A 1N 6071 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6073 A 1N 6074 A 1N 6075 A 1N 6075 A 1N 6075 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6073 A 1N 6074 A 1N 6075 A 1N 6075 A 1N 6075 A 1N 6070 A 1N 6071 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6073 A 1N 6074 A 1N 6075 A 1N 6075 A 1N 6075 A 1N 6076 A 1N 6070 A 1N 607		
1N 6054 1N 6055 1N 6055 1N 6055 1N 6056 1N 6056 1N 6056 1N 6057 1N 6057 1N 6057 1N 6058 1N 6058 1N 6058 1N 6059 1N 6059 1N 6069 1N 6060 1N 6060 1N 6060 1N 6061 1N 6061 1N 6062 1N 6062 1N 6063 1N 6063 1N 6063 1N 6064 1N 6065 1N 6066 1N 6066 1N 6066 1N 6066 1N 6067 1N 6067 1N 6067 1N 6071 1N 6068 1N 6069 1N 6067 1N 6067 1N 6067 1N 6068 1N 6068 1N 6069 1N 6069 1N 6069 1N 6070 1N 6071 1N 6072 1N 6072 1N 6071 1N 6072 1N 6070 12/135 1N 6070 12/135 1N 6070 12/135 1N 6071		
1N 6055 1N 6055 A 1N 6056 A 1N 6056 A 1N 6056 A 1N 6057 1N 6057 A 1N 6057 A 1N 6058 A 1N 6058 A 1N 6058 A 1N 6059 A 1N 6059 A 1N 6060 A 1N 6061 A 1N 6061 A 1N 6062 A 1N 6062 A 1N 6063 A 1N 6063 A 1N 6063 A 1N 6063 A 1N 6064 A 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6068 A 1N 6068 A 1N 6067 A 1N 6068 A 1N 6068 A 1N 6067 A 1N 6068 A 1N 6069 A 1N 6069 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A		
1N 6055 A 1N 6056 A 1N 6056 A 1N 6056 A 1N 6057 A 1N 6057 A 1N 6058 A 22/135/213 22/135 213 A 22/135 21 A 2		
1N 6056 1N 6056 A 1N 6057 A 1N 6057 A 1N 6058 1N 6058 1N 6058 1N 6059 A 1N 6060 1N 6060 1N 6061 A 1N 6061 1N 6062 1N 6062 A 1N 6063 A 1N 6063 1N 6063 A 1N 6063 1N 6064 A 1N 6065 A 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6068 1N 6068 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6082 A 1N 6084 A 1N 6070 A 1N 6070 A 1N 6070 A 1N 6070 A 1N 6072 A 1N 6070 A 1N 6072 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6070 A 1N 6070 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6073 A 1N 6074 A 2/135 2N 708 112 2N 930 110 2N 956 2N 1613 109/212 2N 930 109/212 2N 1770 149 ▶ 149 109/212 109 109 109 109 109 109 109 109 109 109		
1N 6056 A 1N 6057 1N 6057 A 1N 6058 1N 6058 1N 6058 A 22/135/213 22/135 213 24/135 24/135 213 24/135 24		
1N 6057 A 42/135 1N 6058 A 42/135/213 1N 6059 A 42/135 1N 6060 A 42/135/213 1N 6061 A 42/135 1N 6062 A 42/135/213 1N 6063 A 42/135/213 1N 6063 A 42/135/213 1N 6063 A 42/135/213 1N 6063 A 42/135/213 1N 6064 A 42/135/213 1N 6065 A 42/135/213 1N 6066 A 42/135/213 1N 6066 A 42/135/213 1N 6067 A 42/135/213 1N 6068 A 42/135/213 1N 6069 A 42/135/213 1N 6069 A 42/135/213 1N 6070 A 42/135/213 1N 6071 A 42/135/213 1N 6072 A 42/135/213		
1N 6057 A 1N 6058 1N 6058 A 1N 6059 1N 6059 A 1N 6060 1N 6060 A 1N 6061 1N 6061 1N 6062 1N 6062 1N 6063 A 1N 6063 1N 6063 A 1N 6063 1N 6063 A 1N 6064 1N 6065 A 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6067 1N 6067 A 1N 6068 1N 6068 1N 6068 1N 6069 A 1N 6069 A 1N 6070 1N 6070 A 1N 6071 1N 6072 A 1N 6063 1N 6063 1N 6064 1N 6070 A 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 692 2N 708 2N 718 A 2N 720 A 2N 914 2N 1770 10 2N 956 2N 1613 2N 1770 149 2N 1778 149 2N 1893 2N 2102 109 109 109 109 109 109 109 109 109 109		
1N 6058 A 1N 6059 1N 6059 A 1N 6059 A 1N 6060 1N 6060 A 1N 6061 1N 6061 A 1N 6061 1N 6062 A 1N 6063 A 1N 6063 1N 6063 A 1N 6064 1N 6065 A 1N 6065 A 1N 6066 A 1N 6067 1N 6067 A 1N 6068 A 1N 6069 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6073 A 1N 6074 A 1N 6075 A 1N 6075 A 1N 6070 A 1N 6070 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6073 A 2/135 13/213 13/213 13/213 13/213 13/213 13/213 13/213 13/213 13/213 113/213		
1N 6059 A 42/135 1N 6060 A 42/135 1N 6060 A 42/135 1N 6061 A 42/135 1N 6061 A 42/135 1N 6062 A 42/135 1N 6062 A 42/135 1N 6063 A 42/135 1N 6063 A 42/135 1N 6063 A 42/135 1N 6064 A 42/135 1N 6065 A 42/135 1N 6066 A 42/135 1N 6066 A 42/135 1N 6066 A 42/135 1N 6067 A 42/135 1N 6068 A 42/135 1N 6069 A 42/135 1N 6070 A 42/135 1N 6071 A 42/135 1N 6072 A 42/135 1N 6072 A 42/135 1N 6072 A 42/135 1N 6068 1 5 KE 120A,CA,CP,P 42/132 1 5 KE 130A,CA,CP,P 42/132 2N 708 112 2N 930 110 2N 956 108 2N 1613 109/212 2N 1770 149 2N 1778 1893 2N 2102 109		1
1N 6059 A 1N 6060 1N 6060 A 1N 6060 A 1N 6061 1N 6061 A 1N 6061 1N 6062 1N 6062 A 1N 6062 1N 6063 A 1N 6063 A 1N 6064 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6067 1N 6067 A 1N 6068 1N 6068 A 1N 6069 1N 6069 A 1N 6070 1N 6071 1N 6071 1N 6071 1N 6072 A 1N 6072 1N 6072 A 1N 6072 1N 6072 A 1N 6072 1N 6263 1N 6263 1N 6263 1N 6263 1N 6072 A 1N 6263 1N 62		
1N 6060 1N 6060 A 1N 6061 A 1N 6061 A 1N 6061 A 1N 6062 1N 6062 A 1N 6063 A 1N 6063 A 1N 6063 A 1N 6064 A 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6068 A 1N 6069 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A		
1N 6060 A 1N 6061 A 1N 6061 A 1N 6061 A 1N 6062 1N 6062 A 1N 6063 1N 6063 A 1N 6063 1N 6064 A 1N 6065 1N 6065 A 1N 6065 1N 6066 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6067 1N 6068 A 1N 6068 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6074 A 12/135/213 1N 6074 A 12/		
1N 6061 1N 6061 A 1N 6062 A 1N 6062 A 1N 6063 A 1N 6063 A 1N 6063 A 1N 6064 1N 6064 A 1N 6065 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6068 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 130A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 708 112 2N 718 A 2N 720 A 2N 1918 55/212 2N 930 110 2N 956 108 2N 1613 109/212 2N 1778 1893 109/212 2N 1778 2N 893 109/212 2N 1778 1893 109/212		
1N 6062 1N 6062 A 1N 6063 A 1N 6063 A 1N 6063 A 1N 6064 A 1N 6064 A 1N 6065 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6068 A 1N 6068 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6263 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 692 2N 708 2N 718 A 2N 930 2N 916 2N 1613 2N 1770 4P 2N 1778 2N 1893 2N 2102 109 42/135 142/135 142/135 142/135 143 149 149 149 149 149 149 149 149 149 149		
1N 6062 A 1N 6063 1N 6063 1N 6063 1N 6064 1N 6064 1N 6064 1N 6065 1N 6065 1N 6065 1N 6066 1N 6066 1N 6066 1N 6066 1N 6067 1N 6067 1N 6067 1N 6068 1N 6069 1N 6069 1N 6070 1N 6071 1N 6071 1N 6071 1N 6072 110 108 109/212 109 109/212 109	1N 6061 A	42/135/213
1N 6063 1N 6063 A 1N 6064 A 1N 6064 A 1N 6064 A 1N 6065 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6067 1N 6068 A 1N 6068 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 2N 692 2N 708 2N 718 A 2N 930 2N 956 2N 1613 2N 1770 4P 2N 1778 2N 1893 2N 2102 149 1.5 KE 149 1.5 KE 1893 2N 2102 109 149 159 169 169 1778 149 149 149 149 149 149 149 149 149 149		
1N 6063 A 1N 6064 1N 6064 A 1N 6064 A 1N 6065 1N 6065 1N 6065 A 1N 6066 1N 6066 A 1N 6066 1N 6067 1N 6067 A 1N 6068 1N 6068 A 1N 6069 A 1N 6070 1N 6070 A 1N 6071 1N 6071 1N 6071 1N 6072 1N 6072 1N 6072 A 1N 6072 1D 1001 1001 1001 1001 1001 1001 1001 1		
1N 6064 1N 6064 A 1N 6065 A 1N 6065 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6066 A 1N 6067 A 1N 6067 A 1N 6068 A 1N 6068 A 1N 6069 A 1N 6070 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6263 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 1.5 KE 440A,CA,CP,P 2N 681 2N 708 2N 718 A 2N 720 A 2N 1711 2N 1770 2N 1893 2N 2102 1.5 KE 1393 2N 2102 1.5 KE 1393 2N 2102 1.7 8072 2N 1778 2N 1893 2N 2102 1.9 149 2N 1778 2N 1893 2N 2102 1.9 149 21 149		
1N 6064 A 1N 6065 1N 6065 1N 6065 1N 6066 A 1N 6066 1N 6066 A 1N 6066 1N 6066 A 1N 6067 1N 6067 1N 6067 1N 6068 1N 6068 1N 6069 A 1N 6070 1N 6070 1N 6071 1N 6071 1N 6071 1N 6071 2//135 2//13		
1N 6065 A 1N 6066 1N 6066 A 1N 6066 1N 6066 A 1N 6067 1N 6067 1N 6067 1N 6068 1N 6068 1N 6069 1N 6069 A 1N 6070 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 1N 6072 A 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 130A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 2N 692 2N 708 2N 718 A 2N 930 2N 956 2N 1613 2N 1770 2N 1778 2N 1893 2N 2102 1 42/135 142/135/213 142/135 142/135 142/135 143/213 143/213 149 155/212 109		
1N 6066 1N 6066 A 1N 6067 A 1N 6067 A 1N 6068 A 1N 6068 A 1N 6068 A 1N 6069 A 1N 6069 A 1N 6070 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 2N 681 1.5 KE 440A,CA,CP,P 2N 681 1.5 KE 440A,CA,CP,P 2N 681 1.5 KE 440A,CA,CP,P 2N 681 1.5 KE 408 A 2N 720 A 2N 914 2N 930 2N 956 2N 1613 2N 1770 4P 2N 1778 2N 1893 2N 2102 1.9 149 1.		
1N 6066 A 1N 6067 1N 6067 1N 6067 A 1N 6068 1N 6068 1N 6068 A 1N 6069 1N 6069 A 1N 6070 1N 6070 1N 6071 1N 6071 1N 6071 1N 6072 1N 6072 A 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 2N 708 2N 718 A 2N 720 A 2N 918 2N 930 2N 956 2N 1613 2N 1770 2N 1893 2N 2102 1 42/135 142/135 142/135 142/135 143/135		
1N 6067 1N 6067 A 1N 6068 A 1N 6068 A 1N 6069 A 1N 6070 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 2N 681 A 1.5 KE 440A,CA,CP,P 2N 682 A 2N 708 A 2N 720 A 2N 914 A 2N 956 A 2N 1613 D 2N 956 A 2N 1770 A 2N 1893 A 2N 1992 2N 1893 A 2N 1912 2N 1893 A 2N 1912 2N 1893 A 2N 108 A 2N 11893 A 2N 108 A 2N 1183 A 2N 1190 A 2N 119		
1N 6067 A 1N 6068 1N 6068 1N 6069 1N 6069 1N 6070 1N 6070 1N 6071 1N 6071 A 1N 6072 1N 6072 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 2N 681 2N 692 2N 708 2N 720 A 2N 930 2N 956 2N 1613 2N 1770 2N 1693 2N 1778 2N 1893 2N 2102 1 42/135/213 142/135/213 142/135/213 113/213 1213 12213 12213 1232 124/132 125/213 1332 149 149 155/212 110 108 108 109/212 149 109/212 109		
1N 6068 1N 6068 A 1N 6069 A 1N 6069 A 1N 6070 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 2N 692 2N 708 2N 718 A 2N 720 A 2N 914 2N 918 2N 918 2N 918 2N 918 2N 918 2N 1613 2N 1770 4P 149 2N 1778 2N 1893 2N 2102 1 42/135 42/135/213 113/21		
1N 6069 1N 6069 A 1N 6070 1N 6070 1N 6070 A 2/135 1N 6071 1N 6071 A 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/135/213 2/132/213 2/132/213 2/132 2/132 2/2132 2/2133 2/21		
1N 6069 A 1N 6070 1N 6070 A 1N 6070 A 1N 6071 1N 6071 1N 6071 1N 6072 1N 6072 A 1N 6072 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P ↓ 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 ↓ 2N 708 2N 708 2N 718 A 2N 720 A 2N 918 2N 918 2N 918 2N 918 2N 918 2N 1711 2N 1770 ↓ 2N 1778 2N 1893 2N 2102 149 109/212 109	1N 6068 A	
1N 6070 1N 6070 A 1N 6071 A 1N 6071 A 1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 8263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 2N 692 2N 708 2N 718 A 2N 720 A 2N 914 2N 918 2N 930 2N 956 2N 1613 2N 1770 2N 1770 2N 1778 2N 1893 2N 2102 149 149 149 149 155/212 149 159/212 149 109/212 149 109 109/212 109		
1N 6070 A 1N 6071 1N 6071 1N 6071 1N 6072 1N 6073 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 1.5 KE 440A,CA,CP,P 2N 681 2N 708 2N 708 2N 718 A 2N 720 A 2N 914 2N 930 2N 956 2N 1613 2N 956 2N 1613 2N 1770 2N 1770 2N 1778 2N 1778 2N 1893 2N 2102 109		
1N 6071 1N 6071 A 1N 6071 A 1N 6072 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 2N 708 2N 718 A 2N 720 A 2N 914 2N 930 2N 956 2N 1613 2N 1770 2N 1770 2N 1778 2N 1893 2N 2102 2N 1893 2N 2102 42/135 42/132 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/133 42/132 42/133 42/132 42/133 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/133 42/132 42/132 42/133 42/132 42/132 42/133 42/132 42/133 42/132 42/132 42/133 42/132 42/133 42/132 42/132 42/133 42/132 42/132 42/133 42/132 42/132 42/132 42/133 42/132 42/132 42/132 42/133 42/132 42/132 42/132 42/132 42/133 42/132 42/132 42/132 42/132 42/133 42/132 42/133 42/132 42/132 42/132 42/132 42/133 42/132 42/132 42/132 42/132 42/132 42/133 42/132 42/132 42/133 42/132 42/132 42/133 42/132		
1N 6071 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6072 A 1N 6263 1.5 KE 6V8A,CA,CP,P		
1N 6072 1N 6072 1N 6072 1N 6072 1N 6263 1.5 KE 6V8A,CA,CP,P ↓ 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 2N 681 ↓ 2N 692 2N 708 2N 718 A 2N 720 A 2N 918 2N 918 2N 918 2N 918 2N 918 2N 918 2N 108 2N 918 2N 108 2N 918 2N 108 2N 108 2N 109 2N 956 2N 1613 2N 1711 2N 1770 ↓ 2N 1778 2N 1778 2N 1788 2N 1893 2N 2102 109		
1N 6263 1.5 KE 6V8A,CA,CP,P 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 1.5 KE 440A,CA,CP,P 2N 681 2N 708 2N 708 2N 718 A 2N 720 A 2N 914 2N 914 2N 918 2N 914 2N 918 2N 9198 2N 910 2N 956 2N 1613 2N 1711 2N 1770 4 2N 1778 2N 1778 2N 1893 2N 2102 109		
1.5 KE 6V8A,CA,CP,P ↓ 1.5 KE 120A,CA,CP,P 1.5 KE 130A,CA,CP,P 1.5 KE 440A,CA,CP,P 2N 681 ↓ 1.5 KE 440A,CA,CP,P 2N 692 2N 708 2N 718 A 2N 720 A 2N 914 2N 914 2N 914 2N 916 2N 930 110 2N 956 2N 1613 2N 1711 2N 1770 ↓ 2N 1770 ↓ 2N 1778 2N 1893 2N 2102 109		
1.5 KE 130A,CA,CP,P		
1.5 KE 130A,CA,CP,P	1	1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		42/132
2N 681	1.5 KE 130A,CA,CP,P	42/133
2N 681		
2N 681	1 5 KE 1100 CA CP P	10/122
2N 692 2N 708 2N 708 2N 718 A 108 2N 720 A 108 2N 914 112 2N 918 2N 930 110 2N 956 2N 1613 2N 1711 2N 1770 4 2N 1778 2N 1893 2N 2102 109		
2N 708	1	
2N 708	↓	1
2N 718 A 2N 720 A 108 108 2N 914 112 2N 918 2N 930 110 2N 956 108 2N 1613 109/212 2N 1771 2N 1770 4 2N 1778 2N 1893 2N 2102 108 108 109/212 149 149 149 109/212	2N 692	
2N 720 A 2N 914 2N 914 2N 918 2N 930 110 2N 956 2N 1613 2N 1711 2N 1770 149 V 2N 1778 2N 1893 2N 2102 108 110 109/212 149 149 149 109/212 109/212		
2N 914 2N 918 2N 918 2N 930 110 2N 956 108 2N 1613 2N 1711 2N 1770 149 LAMP		
2N 918 55/212 2N 930 110 2N 956 108 2N 1613 109/212 2N 1771 109/212 2N 1770 149 ∠N 1778 149 2N 1893 109/212 2N 2102 109		
2N 930		
2N 1613		
2N 1711 109/212 149 149 149 149 149 149 149 109/212 2N 1778 2N 1893 109/212 109 109		
2N 1770		
2N 1778 149 109/212 2N 2102 109		
2N 1893 109/212 2N 2102 109	2N 1770	149
2N 1893 109/212 2N 2102 109	1	
2N 1893 109/212 2N 2102 109	▼ 2N 1778	149
2N 2102 109		
2N 2218,A 109/212		
	2N 2218,A	109/212

Туре	Page
2N 2219,A 2N 2221,A 2N 2222,A 2N 2268 2N 2368 2N 2369,A 2N 2484 2N 2619 2N 2845 2N 2857 2N 2894 2N 2904,A 2N 2906,A 2N 2906,A 2N 2907,A 2N 2920 A 2N 3013 2N 3014 2N 3019 2N 3020 2N 3053 2N 3055 2N 3107	109/212 108/212 108/212 212 112/212 110/212 149 112 108/212 110/212 110/212 110/212 110/212 109/212 109/212 212 112 112 1109 109 109 109 93/211 109
2N 3110 2N 3114 2N 3137 2N 3209 2N 3250 2N 3251 2N 3302 2N 3375 2N 3439 2N 3440 2N 3504 2N 3505 2N 3553 2N 3632 2N 3649	109 1111 555 112 109 109 108 48 211 211 109 109 46 46 150
2N 3658 2N 3700 2N 3715 2N 3716 2N 3725 2N 3733 2N 3771 2N 3772 2N 3791 2N 3792 2N 3810 2N 3880 2N 3866 2N 3924 2N 3926 2N 3927 2N 3931 2N 3962 2N 3963 2N 3964 2N 3965 2N 4013 2N 4030 2N 4031 2N 4030 2N 4031 2N 4032 2N 4033 2N 4035 2N 4035 2N 4037 2N 4398 2N 4399 2N 4427	150 108/212 93 93 93 112 48 93 93 93/211 212 108 48/108 46 46 111 111 111 111 111 111

	Туре	Page
2N 4428		52
1		1 1
2N 4431		52
2N 4440		48
2N 4918		92
1		1
v 2N 4923		92
2N 5004		211
2N 5005		211
2N 5016		48
2N 5038		211
2N 5090 2N 5109		48 54/55
2N 5109 2N 5153		211
2N 5154		211
2N 5179		108
2N 5190		93
1		1
v 2N 5195		93
2N 5204		149
1		
1		1
2N 5207		149
2N 5301 2N 5302		93
2N 5302 2N 5303		93
2N 5320		109
2N 5321		109
2N 5322		110
2N 5323		110
2N 5415 2N 5416		111/211
2N 5428		211
2N 5589		46
2N 5590		46
2N 5591		46
2N 5629 2N 5635		93
2N 5636		48
2N 5637		48
2N 5641		46
2N 5642		46
2N 5643 2N 5672		46
2N 5672 2N 5745		93
2N 5875		93
2N 5876		93
2N 5877		93
2N 5878		93
2N 5883		93
ļ		↓
2N 5886		93
2N 5944		47
2N 5945 2N 5946		47 47
2N 5946 2N 6029		93
2N 6032		211
2N 6033		211
2N 6034		94
1		1
v 2N 6039		94
2N 6040		94
2N 6041		95
2N 6042		95
2N 6043		94
2N 6044 2N 6045		95

Туре	Page
2N 6080	46
2N 6084 2N 6107 2N 6109 2N 61111 2N 6121 2N 6126 2N 6282 2N 6283 2N 6284	↓ 46 93 93 93 93 93 ↓ 93 95 86/95 95
2N 6285 2N 6286 2N 6287 2N 6288 2N 6290 2N 6292 2N 6386 2N 6387 2N 6388 2N 6486	95 86/95 95 93 93 93 86/94 86/95 95
2N 6491 2N 6671	93 97
2N 6678 \ 2N 6928	97 97
2N 6935 2SD1429FI 2SD1430FI 2SD1431FI 2SD1431FI 2SD1432FI 2SD1455 2SD1577FI 2SD1730 2ST2000 2ST2000FI 2ST3460 2ST3485FI 2ST3552 2ST3552 2ST3642 AM 6012, A	97 72 72 72 72 72 72 72 72 72 72 72 72 72

Туре	Page
BC 108 BC 109 BC 140 BC 141 BC 160 BC 161 BC 177 BC 178 BC 178 BC 179 BC 377 BC 378 BC 393 BC 393 BC 394 BC 440 BC 441 BC 460 BC 461 BC 477 BC 478 BC 479 BC 807-16 BC 807-25 BC 808-40 BC 808-16 BC 808-25 BC 808-40 BC 817-16 BC 817-25 BC 817-40 BC 818-16 BC 818-25 BC 818-40 BC 846 A,B BC 847 A,B,C BC 848 A,B,C BC 859 A,B,C BC 859 A,B,C BC 859 A,B,C BC 850 A,B BCF 33 BCF 33 BCF 33 BCF 34 BCF 30 BCF 33 BCF 34 BCF 36 BCF 37 BCF 36 BCF 37 BCF 37 BCF 38 BCF 30 BCF 33 BCF 36 BCF 36 BCF 37 BCF 37 BCF 38 BCF 30 BCF 33 BCF 36 BCF 36 BCF 37 BCF 38 BCF 30 BCF 38 BCF 30 BCF 33 BCF 36 BCF 36 BCF 37 BCF 38 BCF 30 BCF 31 BCF 30 BCF 31 BCF 31 BCF 31 BCF 32 BCF 31 BCF 31 BCF 31 BCF 32 BCF 31 BCF 32 BCF 31 BCF 31 BCF 32 BCF 31 BCF 31 BCF 32 BCF 32 BCF 31 BCF 32 BCF 32 BCF 31 BCF 32 BCF 32 BCF 32 BCF 31 BCF 32 BCF 3	110 110 110 109 109 110 110 111 111 111

Туре	Page
BCY 58 BCY 59 BCY 59-VIII BCY 59-IX BCY 70 BCY 71 BCY 72 BCY 78 BCY 79 BD 175-6 BD 175-16 BD 175-16 BD 176-10 BD 176-10 BD 176-10 BD 177-6 BD 178-6 BD 178-10 BD 178-6 BD 178-10 BD 178-6 BD 178-10 BD 179-6 BD 179-10 BD 179 BD 179-6 BD 179-10 BD 180-6 BD 180-10 BD 233	110 110 212 212 212 109 109 109 111 111 111 92 92 92 92 92 92 92 92 92 92 92 92 92
BD 238 BD 239,A,B,C BD 240,A,B,C BD 241,A BD 241 B,C BD 242,A BD 242,B,C BD 243,A,B,C BD 243,A,B,C BD 331	92 92 92 92 93 93 92 93 93 93 93 86/94
BD 336	86/94
BD 433	93
BD 442	93
BD 533	93
BD 538	93
BD 675,A	94
BD 680,A	94
BD 681	94
BD 682	94
BD 705	93
BD 712	93
BD 905	93
BD 912	93
BDV 64,A,B	95
BDV 65,A,B	95
BDW 23,A,B,C	94
BDW 24,A,B,C	94
BDW 51,A,B,C	93
BDW 52,A,B,C	93

Type Page BDW 91 94 BDW 92 94 BDW 93,A 95 BDW 93,B,C 86/95 BDW 94,A 95 BDW 94 B,C 86/95 BDW 94 CFI 95 BDX 18 211 BDX 33,A,B,C 95 BDX 53 94 BDX 53 94 BDX 53 B,C 86/95 BDX 53 B,C 86/95 BDX 53 E,F,S 94 BDX 54 A 94 BDX 54 E,F,S 94 BDX 54 B,C 86/95 BDX 54 E,F,S 94 BDX 85,A 95 BDX 85,B 95/211 BDX 86 B 95/211 BDX 86 C 95 BDX 86 A 95 BDX 87,A,B,C 95 BDX 88,A,B,C 95 BDX 88,A,B,C 95 BF 458 111 BF 459 111 BFN 22 235 BFN 23				
BDW 92 BDW 93,A BDW 93,B,C BDW 93,B,C BDW 93 CFI BDW 94,A BDW 94,A BDW 94,B,C BDW 94 B,C BDW 94 CFI BDX 18 BDX 33,A,B,C BDX 33,A,B,C BDX 53 B,C BDX 53 B,C BDX 53 B,C BDX 54 A BDX 54 A BDX 54 B,C BDX 54 E,F,S BDX 55 B,C B	Туре		Page	
BFR 38 BFR 92 (R) BFR 92 A (R) BFR 93 A (R) BFR 93 A (R) BFR 99 A BFR 99 A BFS 17 (R) BFS 18 (R) BFS 19 (R) BFS 20 (R) BFS 20 (R) BFS 20 (R) BFW 44 BFW 44 BFW 47 BFW 44 BFW 47 BFW 48 BFW 48 BFW 49 BFW 49 BFW 49 BFW 40 BFW 40 BFW 40 BFW 40 BFW 40 BFW 40 BFW 41 BFW 41 BFW 41 BFW 42 BFW 43 BFW 44 BFW 44 BFW 45 BFW 46 BFW 47 BFW 48 BFW 49 BFW 40 BFW 41 BFW 40 BFW 50 B	BDW 91 BDW 92 BDW 93,A BDW 93,B,C BDW 93,B,C BDW 93,B,C BDW 94,A BDW 94 A,A BDW 94 CFI BDX 18 BDX 33,A,B,C BDX 53 B,C BDX 53 B,C BDX 53 B,C BDX 53 E,F,S BDX 54 A BDX 54 B,C BDX 55 B,A BDX 56 B,A BDX 85 C BDX 85,A BDX 85 C BDX 86,A BDX 86 C BDX 87,A,B,C BF 173 BF 258 BF 272 A BF 458 BF 459 BFN 22 BFN 22 BFN 22 BFN 23 BFR 17 BFR 18 BFR 36 BFR 38 BFR 92 (R) BFR 93 A (R) BFR 93 A (R) BFR 93 A (R) BFR 99 A BFS 17 (R) BFS 19 (R) BFR 99 A BFS 17 (R) BFS 19 (R) BFR 99 A BFX 17 A BFX 34 BFX 37 BFX 38 BFX 39 BFX 40 BFX 77 BFX 38 BFX 37 BFX 38 BFX 39 BFX 40 BFX 77 BFX 38 BFX 37 BFX 38 BFX 39 BFX 40 BFX 77 BFX 38 BFX 37 BFX 38 BFX 39 BFX 40 BFX 77 BFX 38 BFX 37 BFX 38 BFX 39 BFX 40 BFX 77 BFX 38 BFX 37 BFX 38 BFX 39 BFX 40 BFX 50 BFX 51 BFY 50 BFY 51 BFY 50 BFY 51 BFY 50 BFX 51 BFY 50 BFX 51 BFY 50 BFX 51 BFY 50 BFX 51 BFX 55 BSA 45 BSA 55		94 94 95 86/95 95 86/95 95 2111 95 95 94 94 94 94 94 94 94 94 95 95 95/211 95 95/211 95 95 95/211 108 111 111 108 111 111 108 111 111	

Туре	Page
BSR 14 BSR 15 BSR 16 BSR 25 BSR 35 BSR 45 BSR 55	234 235 235 165 165 165 165
BSS 44 BSS 63 BSS 64 BSS 72 S BSS 75 S BST 25 BST 35 BST 35 BST 45	211 233 232 111 111 165 165 165
BSV 52 BSX 20 BSX 26 BSX 28 BSX 29 BSX 32 BSX 33 BSX 33 BSX 39 BSX 46-10	234 112 112 112 112 112 112 108 112 212
BTA 04-200 A,D BTA 04-800 A,D BTA 04-200 GP	152 ↓ 152 155 ↓
BTA 04-600 GP BTA 04-200 S,T	155 152
BTA 04-800 S,T BTA 06-200 A	152 152 ↓ 152
BTA 06-200 AW BTA 06-800 AW	151 ↓ 151
BTA 06-200 B BTA 06-800 B BTA 06-200 BW	153 ↓ 153 151
BTA 06-800 BW BTA 06-200 C	151 153
BTA 06-800 C BTA 06-200 CW	153 151
BTA 06-800 CW BTA 06-200 D	151 152 ↓
BTA 06-800 D BTA 06-200 GP BTA 06-600 GP	152 155 ↓ 155
BTA 06-200 S BTA 06-800 S	152 ↓ 152

	Туре	Page
	BTA 06-200 SW	150
~	BTA 06-800 SW BTA 06-200 T	150 152
	BTA 06-800 T BTA 06-200 TW	152 150
	BTA 06-800 TW BTA 08-200 A	150 152
	BTA 08-800 A BTA 08-200 AW	152 151
	BTA 08-800 AW BTA 08-200 B	151 153
	BTA 08-800 B BTA 08-200 BW	153 151
	BTA 08-800 BW BTA 08-200 C	151 153
	BTA 08-800 C BTA 08-200 CW	153 151
	BTA 08-800 CW BTA 08-200 S	151 152
	BTA 08-800 S BTA 08-200 SW,TW	152 150
	BTA 08-800 SW,TW BTA 10-200 AW	150 151
	BTA 10-800 AW BTA 10-200 B	151 153
	BTA 10-800 B BTA 10-200 BW	153 151
	↓ BTA 10-800 BW BTA 10-200 C	↓ 151 153
	↓ BTA 10-800 C BTA 10-200 CW	153 151
	↓ BTA 10-800 CW BTA 12-200 AW	↓ 151 151 -
	↓ BTA 12-800 AW BTA 12-200 B	↓ 151 153
	↓ BTA 12-800 B	153

Туре	Page
BTA 12-200 BW	151
BTA 12-800 BW	151
BTA 12-200 C	153
BTA 12-800 C	153
BTA 12-200 CW	151
BTA 12-800 CW	151
BTA 13-200 B	153
BTA 13-800 B	153
BTA 16-200 AW	152
BTA 16-800 AW	152
BTA 16-200 B	154
BTA 16-800 B	154
BTA 16-200 BW,CW	152
BTA 16-800 BW,CW	152
BTA 25-200 A,B	154
BTA 25-800 A,B	154
BTA 26-200 A,B	154
BTA 26-800 A,B	154
BTA 40-200 A,B	154
BTA 40-800 A,B	154
BTA 41-200 A,B	154
BTA 41-800 A,B	154
BTB 04-200 A,D,S,T	152
BTB 04-800 A,D,S,T	152
BTB 06-200 A	152
BTB 06-800 A	152
BTB 06-200 AW	151
BTB 06-800 AW	151
BTB 06-200 B	153
BTB 06-800 B	153
BTB 06-200 BW	151
BTB 06-800 BW	151
BTB 06-200 C	153
BTB 06-800 C	153
BTB 06-200 CW	151
BTB 06-800 CW	151

Туре	Page
BTB 06-200 D,S	152
BTB 06-800 D,S	152
BTB 06-200 SW	150
BTB 06-800 SW	150
BTB 06-200 T	152
BTB 06-800 T	152
BTB 06-200 TW	150
BTB 06-800 TW	150
BTB 08-200 A	152
BTB 08-800 A	152
BTB 08-200 AW	151
↓ BTB 08-800 AW BTB 08-200 B	151 153
↓ BTB 08-800 B BTB 08-200 BW	153 151
BTB 08-800 BW	151
BTB 08-200 C	153
BTB 08-800 C	153
BTB 08-200 CW	151
BTB 08-800 CW	151
BTB 08-200 S	152
BTB 08-800 S	152
BTB 08-200 SW,TW	150
BTB 08-800 SW,TW	150
BTB 10-200 AW	151
BTB 10-800 AW	151
BTB 10-200 B	153
BTB 10-800 B	153
BTB 10-200 BW	151
BTB 10-800 BW	151
BTB 10-200 C	153
BTB 10-800 C	153
BTB 10-200 CW	151
BTB 10-800 CW	151
BTB 12-200 AW	151
↓ BTB 12-800 AW	151

Туре	Page
BTB 12-200 B	153
BTB 12-800 B	153
BTB 12-200 BW	151
BTB 12-800 BW	151
BTB 12-200 C	153
↓ BTB 12-800 C BTB 12-200 CW	153 151
BTB 12-800 CW	151
BTB 13-200 B	153
BTB 13-800 B	153
BTB 15-200 B	153
BTB 15-800 B BTB 16-200 AW	153 152
BTB 16-800 AW	152
BTB 16-200 B	154
BTB 16-800 B	154
BTB 16-200 BW,CW	152
BTB 16-800 BW,CW	152
BTB 24-200 B	154
BTB 24-800 B	154
BTB 26-200 A,B	154
↓ BTB 26-800 A,B BTB 41-200 A,B	154 154
BTB 41-800 A,B	154
BTW 30-600	150
BTW 30-1200	150
BTW 39-50	149
BTW 39-1200	149
BTW 48-200	149
BTW 48-1200	149
BTW 50-100	149
BTW 50-1200	149
BTW 66-200	148
BTW 66-1200	148
BTW 67-200	148
BTW 67-1200	148

Туре	Page
BTW 68-200,N	148
♦	♦
BTW 68-1200,N	148
BTW 69-200,N	148
↓ BTW 69-1200,N	148
BTW 70-200,N ↓	148 ↓
BTW 70-600,N	148
BU 104 DP,P	73
BU 109 DP,P	73
BU 208,A,D	72
BU 326,A	98
BU 326 AP,P	73
BU 406,D	73
BU 407,D	73
BU 408,D	73
BU 426,A	73
BU 508,A	72
BU 508AFI	72
BU 508D BU 508DFI BU 508FI	72 72 72 72
BU 806 BU 807 BU 810	73 73 73 73
BU 911	85
BU 912	85
BU 921	85
BU 921 P BU 921PFI	85 85 85
BU 921 T BU 921TFI BU 922	85 85
BU 922 P	85
BU 922PFI	85
BU 922 T	85
BU 931 R	85
BU 931 RP	85
BU 931RPFI	85
BU 931 Z	85
BU 931 ZP	85
BU 931ZPFI	85
BU 932 R	85
BU 932 RP	85
BU 932RPFI	85
BUD 46,A	98
BUD 47	98
BUD 48,A,Al	98
BUD 48DI	97
BUD 48I	98
BUD 98,I	98
BUF 405,A	99
BUF 410,A,AI,I	99
BUF 420,A,AI,I	99
BUF 460AV,V	105
BUR 10	211
BUR 14	211
BUR 15	211
BUR 50	211
BUR 50 S	96
BUR 51	96
BUR 52	97
BUT 11,A,AFI,FI	98
BUT 30 V	105
BUT 32 V	105
BUT 60	96
BUT 62	97
BUT 70,I	96
BUT 71,I	96

Туре	Page
BUT 72,I BUT 90 BUT 91 BUT 92,A BUT 100 BUT 102 BUV 18 BUV 19 BUV 20 BUV 21 BUV 22 BUV 26 BUV 27 BUV 28 BUV 28 BUV 40 BUV 41 BUV 42 BUV 42 BUV 44 BUV 42 BUV 45 BUV 46 BUV 46 BUV 47,A,AFI,AI,FI,I BUV 48,A,AFI,AI BUV 48 FI,I BUV 50 BUV 51 BUV 52 BUV 56 BUV 51 BUV 52 BUV 66,A BUV 60 BUV 61 BUV 62 BUV 63 BUV 64 BUV 69 BUV 69 BUV 69 BUV 69 BUV 69 BUW 49 BUW 50 BUW 51 BUW 52,I BUW 62,I BUW 62,I BUW 62,I BUW 62,I BUW 62,I BUW 92 BUW 90 BUW 91 BUW 92 BUW 92 BUW 92 BUW 92 BUW 93 BUW 94 BUW 94 BUW 95 BUW 91 BUW 92 BUW 92 BUW 92 BUW 94 BUW 95 BUW 91 BUW 92 BUW 92 BUW 91 BUW 92 BUW 92 BUW 93 BUW 94 BUW 94 BUW 95 BUW 95 BUW 91 BUW 92 BUW 92 BUW 94 BUW 95 BUW 96 BUW 97 BUW 98 BUW 99 BUW 99 BUW 91 BUW 92 BUW 92 BUW 94 BUW 95 BUW 94 BUW 95 BUW 96 BUW 97 BUW 98 BUW 99 BUW 91 BUW 92 BUW 92 BUW 94 BUW 94 BUW 94 BUW 95 BUW 94 BUW 95 BUW 96 BUW 97 BUW 98 BUW 99 BUW 99 BUW 91 BUW 92 BUW 94 BUW 94 BUW 94 BUW 94 BUW 95 BUW 96 BUW 97 BUW 98 BUW 99 BUW 99 BUW 91 BUW 94 BUW 94 BUW 94 BUW 94 BUW 94 BUW 95 BUW 96 BUW 97 BUW 98 BUW 99 BUW 99 BUW 99 BUW 91 BUW 94 BUW	97 96 96 97 96 97 96 97 96/211 96 96 96 96 96 96 96 96 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98

Туре	Page
BUX 51 BUX 77 BUX 78 BUX 78 BUX 84 BUX 85 BUX 98 BUX 98 A BUX 98 C BUX 348 BUX 348 A BUY 47 BUY 48 BUZ 10 BUZ 10 A BUZ 11 BUZ 11 S2 BUZ 11 S2FI BUZ 20 BUZ 21 BUZ 21 BUZ 25 BUZ 32 BUZ 41 A BUZ 42 BUZ 42 BUZ 45,A BUZ 60 BUZ 60 BUZ 60 BUZ 60 BUZ 71 BUZ 71 BUZ 71 BUZ 71 BUZ 71 BUZ 72 BUZ 74 BUZ 74 BUZ 74 BUZ 76 BUZ 76 BUZ 353 BUZ 354 BY 214-50	211 211 211 211 211 98 98 211 98/211 98 98 211 211 86/100 100 86/100 86/100 100 86/101 101 101 101 101 101 102 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103 73/103
BY 214-1000 BY 233-200A BY 233-200A BY 233-400A BY 233-600A BY 239-200A BY 239-800A BY 01-200 BYT 01-200 BYT 01-300 BYT 03-200 BYT 03-200 BYT 03-400 BYT 08P-200 A BYT 08P-800 BYT 08P-800 BYT 08P-800 BYT 08P-1000 BYT 108P-1000 BYT 11-600 BYT 11-600 BYT 11-600 BYT 11-600 BYT 11-200 (R) BYT 12-200 (R)	↓ 144 142 142 142 144 ↓ 144 ↓ 144 139 139 139 139 139 139 139

Туре	Page
BYT 12-400 (R) BYT 12-600 BYT 12-600 BYT 12-800 BYT 12-1000 BYT 12P-600 A BYT 12P-600 A BYT 12P-1000 A BYT 12P-1000 BYT 12P-1000 BYT 12P-1000 BYT 13-600 BYT 13-600 BYT 13-600 BYT 13-600 BYT 13-7000 BYT 13-7000 BYT 16P-200 BYT 16P-300 BYT 30-300 (R) BYT 30-400 (R) BYT 30-600 BYT 30-600 BYT 30P-200 BYT 30P-400 BYT 30P-200 BYT 30P-400 BYT 30P-1000 BYT 60-300 (R) BYT 60-400 BYT 60-200 BYT 60-200 BYT 60P-200 BYT 71-100 A	139 140 140 141 140 141 140 141 140 141 140 141 142 142 142 142 139 139 139 139 139 140 140 141 139 139 139 139 139 140 140 141 139 139 139 139 140 140 141 139 139 139 139 140 140 141 139 139 139 139 140 140 141 139 139 139 139 140 140 141 139 139 139 139 140 140 141 139 139 139 139 140 140 141 139 139 139 139 140 140 141 139 139 139 139 139 140 140 141 139 139 139 139 139 139 139 139 139 13
BYT 71-800 A BYT 230 PI(V)-200 BYT 230 PI(V)-300 BYT 230 PI(V)-400 BYT 230 PI(V)-600 BYT 230 PI(V)-1000 BYT 230 PI(V)-1000 BYT 231 PI(V)-1200 BYT 261 PI(V)-1200 BYT 261 PI(V)-400 BYT 261 PI(V)-600 BYT 261 PI(V)-1000 BYT 261 PI(V)-1000 BYT 10-20 BYV 10-20 BYV 10-20 A BYV 10-30 BYV 10-40 BYV 10-60 BYV 52-50 BYV 52-50 BYV 52-1200 BYV 52-1200 BYV 52-1200	142 139 139 139 140 140 141 141 139 140 140 141 113/213 113 113/213 113 138

Туре	Page
BYV 54(V)-50	138
BYV 54(V)-200 BYV 255(V)-50	138 138
BYV 255(V)-200 BYW 08-50, (R)	138 138
BYW 08-200, (R) BYW 29-50 A	138 137
BYW 29-200 A BYW 51-50 A BYW 51-100 A BYW 51-150 A BYW 51-200 A BYW 77-50 (R) BYW 77-150 (R) BYW 77-200 (R) BYW 77-200 (R) BYW 77-50	137 138 138 138 138/214 138 138/214 138/214 138/214
BYW 77P-200 BYW 77PI-50	138 138
BYW 77PI-200 BYW 78-50 (R) BYW 78-100 (R) BYW 78-150 (R) BYW 78-200 (R) BYW 80-50 A	138 138 138 138/214 138/214 137
↓ BYW 80-200 A BYW 80PI-50	137 137
BYW 80PI-200 BYW 81-50 (R) BYW 81-100 (R) BYW 81-150 (R) BYW 81-200 (R) BYW 81P-50 A	137 137 137/214 137/214 137/214
BYW 81P-200 A BYW 81PI-50	137 137
BYW 81PI-200 BYW 88-50 (R) BYW 88-100 (R) BYW 88-200 (R) BYW 88-300 (R) BYW 88-400 (R) BYW 88-500 (R)	137 144 144/214 144/214 144/214 144/214
BYW 88-1000 (R) BYW 92-50 (R) BYW 92-100 (R) BYW 92-150 (R) BYW 92-200 (R) BYW 98-50	144 138 138 138/214 138/214 137
BYW 98-200	137

Туре	Page
BYW 99 P-50	138
BYW 99 P-200	138
BYW 99 PI-50	138
BYW 99 PI-200 BYW 100-50	↓ 138 137
BYW 100-200 BYX 61-50 (R) BYX 61-50 (R) BYX 61-100 (R) BYX 61-200 (R) BYX 61-300 (R) BYX 61-400 (R) BYX 62-600 (R) BYX 63-600 (R) BYX 63-600 (R) BYX 65-50 (R) BYX 65-100 (R) BYX 65-200 (R) BYX 65-300 (R) BYX 65-300 (R) BYX 65-400 (R) BYX 65-400 (R) BYX 65-400 (R) BYX 65-400 (R)	137 143 143/214 143/214 143/214 143/214 143/214 143/214 143 143 143 143 143/214 143 143/214
BZM 85C 200	228
BZV 37	127
BZV 47 C 3V3	124
BZV 47 C 200	124
BZV 55 C 0V8	225
BZV 55 C 200	225
BZV 58 C 3V3	126
BZV 58 C 200	126
BZW 04-5V8,B	42/128
BZW 04-7V8,B	42/128
BZW 04-8V5,B	42/129
BZW 04-128,B BZW 04-136,B	↓ 42/129 42/130
BZW 04-376,B	42/130
BZW 04-376 BT	128
BZW 04 P 5V8,B	42/128
BZW 04 P 7V8,B	42/128
BZW 04 P 8V5,B	42/129
BZW 04 P 128,B	42/129
BZW 04 P 136,B	42/130
BZW 04 P 376,B	42/130
BZW 50-10,B	42/135
BZW 50-180,B	42/135
BZX 55 C 0V8	116
BZX 55 C 2V4	116

Туре	Page
BZX 55 C 2V7 CECCL	116/213
BZX 55 C 62 CECCL	116/213
BZX 55 C 68	116
BZX 55 C 200	116
BZX 79 C 2V7 CECCL	117
BZX 79 C 62 CECCL	117
BZX 83 C 2V4	118
BZX 83 C 75	118
BZX 84 C 2V4	236
BZX 84 C 75	236
BZX 85 C 2V7 CECCL	122/213
BZX 85 C 62 CECCL	122/213
BZX 85 C 68	122
BZX 85 C 200	122
BZY 97 C 3V3	123
BZY 97 C 200 CB200 series	123 210/255/256/ 264/266
CB300 series	210/255/256/ 264/266
CV 9507 CV 9543 CV 9936 D44Q1 D44Q3 D44Q5 DAC0806 DAC0806D DAC0807 DAC0807 DAC0808 DAC0808D DB3 DB3 DB4 DC 34 DC 34 DC 38 DC 42 DF 051 16	212 212 212 96 96 96 184 244 184 244 157 157 157 157
DF 051 25	159
DF 054 20	159
DF 054 35 DF 055 35	↓ 159 159
DF 055 45	159
DF 252 02	159
DF 252 14	159
DF 451 01	159
DF 451 14	159

Туре	Page
DF 452 02	159
DF 452 15	159
DF 453 16	159
DF 453 30	159
DF 652 02	159
DF 652 25	159
DF 654 20	159
DF 654 34	159
DF 752 02	159
DF 752 20	159
DF 754 20	159
DF 754 35	159
DFB 51 16	159
DFB 51 25	159
DFB 54 20	159
DFB 54 35	159
DFS 252 08	159
DFS 252 20	159
DFS 452 08	159
DFS 452 20	159
DFS 454 02	159
DFS 454 25	159
DK 1001 F	161
DK 1020 F	161
DK 1101 F	161
DK 1114 F	161
DK 1301 F	161
DK 1312 F DK 2401 F	161 161
DK 2420 F	161
DK 2501 F	161
DK 2514 F	161
DK 2701 F	161
DK 2710 F	161
DN 064 25	158
DN 064 35	158

Туре	Page
DN 065 35	158
DN 065 45 DN 262 02	158 158
DN 262 20 DN 462 02	158 158
DN 462 20 DN 662 02	158 158 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DN 662 25 DN 664 20	↓ 158 158
DN 664 36 DN 761 20	158 158 158
DN 761 35 DN 762 02	158 158 158
DN 762 20 DN 961 02	† 158 158
DN 961 25 DNB 61 16	† 158 158
DNB 61 25 DNB 64 25	† 158 158 I
DNB 64 35 DRA 402	↑ 158 144
DRA 410 EF 68A02 EF 68A02FN EF 68A03FN EF 68A03U4 EF 68A03U4FN EF 68A09 EF 68A09E EF 68A09FN EF 68A09FN EF 68A09FN EF 68A09FN EF 68A21 EF 68A21FN EF 68A21FN EF 68A40 EF 68A40FN EF 68A40FN EF 68A50FN EF 68A50FN EF 68B01U4 EF 68B01U4 EF 68B01U4 EF 68B01U4 EF 68B01U4FN EF 68B02 EF 68B02 EF 68B03 EF 68B03 EF 68B03 EF 68B03 EF 68B09 EF 68B09	\$\\ 144 64 220 64 220 64 220 64 220 64 220 64 220 64 220 64 220 64 220 64 220 63 220 63 220 64 220 64 220 63 220 64 220 64 220 64 64 64 64

Туре		Page
FE CODCOFEN		200
EF 68B09EFN EF 68B09FN		220
EF 68B21		64
EF 68B21FN		220
EF 68B40		64
EF 68B40FN		220
EF 68B50		64
EF 68B50FN		220
EF 68B54		64
EF 68B54FN		220
EF 68HC04P3		62
EF 68HC04P3FN		219
EF 68HC05E2		209
EF 4442		209
EF 6800		209
EF 6801		63
EF 6801FN EF 6801U4FN		220 220
EF 6801-U4		63
EF 6802		64/209
EF 6802FN		220
EF 6803		64/209
EF 6803FN		220
EF 6803U4		64
EF 6803U4FN		220
EF 6804J2		62
EF 6804J2FP		219
EF 6804P2		62
EF 6804P2FN		219
EF 6805P2		63
EF 6805P2FN		219
EF 6805P6 EF 6805P6FN		63
EF 6805R2		63
EF 6805R2FN		219
EF 6805R3		63
EF 6805R3FN		219
EF 6805U2		63
EF 6805U2FN		219
EF 6805U3		63
EF 6805U3FN		219
EF 6809 EF 6809E		64/209 64/209
EF 6809EFN		220
EF 6809FN		220
EF 6810		209
EF 6821		64/209
EF 6821FN		220
EF 6840		64/209
EF 6840FN		220
EF 6850		64/209
EF 6850FN		220
EF 6852		209
EF 6854		64/209
EF 6854FN EF 7333		220 39
EF 7910		39
EF 9345		68/76
EF 9345FN		223
EF 9367		68/76
EF 9369		68/76
EF 9369FN		223
EF 73321		39
EFG 7189		42
EFG 71891		42
EFRMAFE		39
EFT-MUP4		65
EFT-MUP5		65 143
ESM 243-50,(R)		
↓		↓
ESM 243-300,(R)		143
ESM 243-400,(R)	. 4	143/214

Туре	Page
ESM 244-50,(R)	143
ESM 244-500,(R) ESM 244-600,(R) ESM 738 T ESM 765-100 A	143 143/214 91 142
ESM 765-800 A ESM 765-800 ESM 765PI-800 ESM 765PI-800 ESM 1000 T ESM 1600 B ESM 1600 BFP ESM 1602 B ESM 1602 BFP ESM 2012 DV ESM 2030 DV ESM 2060 T ESM 3000	142 143 143 91 184 244 184 244 105 105 91
ESM 3007 ESM 3030 DV ESM 3045 AV ESM 3045 DV ESM 4011 ESM 4014	91 105 105 105 91 91
ESM 4017 ESM 4019 ESM 4020 ESM 4045 AV ESM 4045 DV ESM 4116-200	91 91 91 105 105 159
ESM 4116-600 ESM 4120-600	159 159
ESM 4120-1000 ESM 5000 ESM 5001 ESM 5004	159 91 91 91
ESM 5009 ESM 5045 DV ESM 6045 AV ESM 6045 DV ESM 7004	91 105 105 105 91
ESM 7009 ET 2147H-1 ET 2147H-2 ET 2147H-3 ET 2716 ET 2716-1 ET 9420 ET 9421 ET 9422 ETC 50864 ETC 50867 ETC 2716 ETC 2732 ETC 5040 ETC 5040FN ETC 5040-X ETC 5054	91 60 60 60 59/209 59 62/219 62/219 62/219 40 40 209 209 40 218 40 40

Туре	Page
ETC 5054FN	218
ETC 5054-X	40
ETC 5056	40
ETC 5057	40
ETC 5057FN	218
ETC 5057-X	40
ETC 5064	40
ETC 5064FN	218
ETC 5067	40
ETC 5067FN	218
ETC 9410	62/219
ETC 9411	62/219
ETC 9413	62/219
ETC 9420	62/219
ETC 9421	62/219
ETC 9422	62/219
ETC 9444	62/219
ETC 9445	62/219
ETL 2147 H	60
ETL 2147 H-3	60
ETL 9410	62/219
ETL 9411	62/219
ETL 9413	62/219
ETL 9420	62/219
ETL 9421	62/219
ETL 9422	62/219
ETL 9444	62/219
ETL 9445	62/219
GAL 16V8-20HB1	193
GAL 16V8-25HB1	193
GAL 20V8-20HB1	193
GAL 20V8-25HB1	193
GS-C200	197
GS-D050	197
GS-D200,S	197
GS-D550	197
GS-DC200,S	197
GS-125-0500	197
GS-10509	197
GS-1555	197
GS-I1209	197
GS-I51212	197
GS-I51515	197
GS-R400V	197
GS-R400V-HV	197
GS-R400VB	197
GS-R405	197
GS-R405/2	197
GS-R405-HV	197
	107
GS-R405S	197
GS-R412	197
GS-R412/2	197
GS-R412-HV	197
GS-R415	197
GS-R424	197
GS-R51212	197
HCC 4000B	186/204
HCC 4001B	186/204
HCC 4002B	186/204
HCC 4006B	186/204
HCC 4007UB	186/204
HCC 4008B	186/204
HCC 4009UB	186
HCC 4010B	186
HCC 4011B	186/204
1	
1	
HCC 400ED	
HCC 4035B	186/204
HCC 4038B	186/204
HCC 4040B	186/204
HCC 4041B	204

Туре	Page
HCC 4042B	186/204
HCC 4048B HCC 4049UB HCC 4050B HCC 4051B HCC 4052B HCC 4053B HCC 4055B HCC 4056B HCC 4066B HCC 4060B HCC 4066B HCC 4066B HCC 4066B HCC 4066B HCC 4066B HCC 4066B HCC 4066B HCC 4066B HCC 4067B HCC 4068B HCC 4069UB HCC 4069UB	186/204 186/204 186/204 186/204 186/205 186/205 187/205 187/205 187/205 187/205 187/205 187/205 187/205 187/205
HCC 4073B HCC 4075B	187/205 187/205
HCC 4078B HCC 4081B HCC 4082B HCC 4085B HCC 4086B HCC 4089B HCC 4093B	187/205 187/205 187/205 187/205 187/205 187/205 187/205
HCC 4099B HCC 4502B HCC 4503B HCC 4508B HCC 4510B HCC 4511B HCC 4511B HCC 4514B	187/205 187/205 187/205 187/205 187/205 187/205 187/205 187/205
HCC 4518B HCC 4520B HCC 4527B HCC 4532B HCC 4536B HCC 4538B HCC 4541B HCC 4555B HCC 4556B HCC 4556B HCC 4585B HCC 4724B HCC 4724B	187/205 187/205 187/205 187/205 187/205 187/205 187/205 187/205 187/205 187/204
↓ HCC 40110B HCC 40160B	187/204 187/204
HCC 40163B HCC 40174B HCC 40181B HCC 40182B HCC 40192B HCC 40193B HCC 40194B HCC 40257B HCC 40257B HCF 4000B	187/204 187/204 187/204 187/204 187/204 187/204 187/204 187/204 187/204 187/204 186 245

Туре	Page
HCF 4001B	186
HCF 4001BM1	245
HCF 4002B	186
HCF 4002BM1	245
HCF 4006B	186
HCF 4006BM1	245
HCF 4007UB	186
HCF 4007UBM1	245
HCF 4008B	186
HCF 4008BM1	245
HCF 4009UB	186
HCF 4009UBM1	245
HCF 4010B	186
HCF 4010BM1 HCF 4011B	245 186
HCF 4011BM1	245
HCF 4012B	186
HCF 4012BM1	245
HCF 4013B	186
HCF 4013BM1	245
HCF 4014B	186
HCF 4014BM1	245
HCF 4015B	186
HCF 4015BM1	245
HCF 4016B	186
HCF 4016BM1	245
HCF 4017B	186
HCF 4017BM1	245
HCF 4018B	186
HCF 4018BM1	245
HCF 4019B	186
HCF 4019BM1	245
HCF 4020B	186
HCF 4020BM1	245
HCF 4021B	186
HCF 4021BM1	245
HCF 4022B	186
HCF 4022BM1	245
HCF 4023B	186
HCF 4023BM1 HCF 4024B	245
HCF 4024BM1	186 245
HCF 4025B	186
HCF 4025BM1	245
HCF 4026B	186
HCF 4026BM1	245
HCF 4027B	186
HCF 4027BM1	245
HCF 4028B	186
HCF 4028BM1	245
HCF 4029B	186
HCF 4029BM1	245
HCF 4030B	186
HCF 4030BM1	245
HCF 4031B	186
HCF 4032B	186
HCF 4032BM1	245
HCF 4033B	186
HCF 4034B	186
HCF 4034BM1	245
HCF 4035B	186
HCF 4035BM1	245
HCF 4038B	186
HCF 4038BM1 HCF 4040B	245
HCF 4040BM1	186
HCF 4040BMT	186
HCF 4041UBM1	245
HCF 4042B	186
HCF 4042BM1	245
HCF 4043B	186
	245
HCF 4043BM1	

Туре	Page
HCF 4044BM1	246
HCF 4045B	186
HCF 4045BM1	246
HCF 4046B	186
HCF 4047B	186
HCF 4047BM1	246
HCF 4048B	186
HCF 4048BM1	246
HCF 4049UB	186
HCF 4049UBM1	246
HCF 4050B HCF 4050BM1	186
HCF 4051B	186
HCF 4051BM1	246
HCF 4052B	186
HCF 4052BM1	246
HCF 4053B	186
HCF 4053BM1	246
HCF 4054B	186
HCF 4054BM1	246
HCF 4055B	187
HCF 4055BM1	246
HCF 4056B	187
HCF 4056BM1	246
HCF 4060B HCF 4060BM1	187
HCF 4063B	187
HCF 4063BM1	246
HCF 4066B	187
HCF 4066BM1	246
HCF 4067B	187
HCF 4067BM1	246
HCF 4068B	187
HCF 4068BM1	246
HCF 4069UB	187
HCF 4069UBM1	246
HCF 4070B	187
HCF 4070BM1	246
HCF 4071B HCF 4071BM1	187
HCF 4072B	187
HCF 4072BM1	246
HCF 4073B	187
HCF 4073BM1	246
HCF 4075B	187
HCF 4075BM1	246
HCF 4076B	187
HCF 4076BM1	246
HCF 4077B	187
HCF 4077BM1	246
HCF 4078B	187
HCF 4078BM1	246
HCF 4081B HCF 4081BM1	187
HCF 4082B	187
HCF 4082BM1	246
HCF 4085B	187
HCF 4085BM1	246
HCF 4086B	187
HCF 4086BM1	246
HCF 4089B	187
HCF 4093B	187
HCF 4093BM1	246
HCF 4094B	187
HCF 4094BM1	246
HCF 4095B	187
HCF 4095BM1	246
HCF 4096B HCF 4096BM1	187
HCF 4097B	187
HCF 4097BM1	246
HCF 4098B	187
HCF 4098BM1	246

Туре	Page
HCF 4099B HCF 4099BM1 HCF 4502B HCF 4502BM1 HCF 4503B HCF 4503BM1 HCF 4508B HCF 4508BM1 HCF 4510B HCF 4511BM1 HCF 4511B HCF 4512B HCF 4512BM1 HCF 4514BM1 HCF 4514BM1 HCF 4514BM1 HCF 4515B HCF 4515BM1 HCF 4516BM1 HCF 4518BM1 HCF 4518BM1 HCF 4518BM1 HCF 4518BM1 HCF 4520B HCF 4532BM1 HCF 4520BM1 HCF 4520BM1 HCF 4532BM1 HCF 4532BM1 HCF 4532BM1 HCF 4536BM1 HCF 4536BM1 HCF 4536BM1 HCF 4536BM1 HCF 4555BM1 HCF 4585BM1 HCF 4724B HCF 40100BM1	187 246 187 246
HCF 40101B HCF 40101BM1 HCF 40102B	187 246 187 ↓ 187 246

Туре	Page
HCF 40208B HCF 40208BM1 HCF 40257B HCF 40257BM1 HSG3000 series HSG3020 HSG3030 HSG3030 HSG3100 HSG3110 HSG3110 HSG3210 HSG3250 HSG7080 HSG7080 HSG7220 HSG7320 HSG7320 HSG7420 HSG7420 HSG7420 HSG7420 HSG75600 HSG7450 HSG71000 I2CFC01025625 IRF 140 IRF 141 IRF 142 IRF 152 IRF 153 IRF 150 IRF 151 IRF 520,FI IRF 520,FI IRF 521,FI IRF 522,FI IRF 531,FI IRF 531,FI IRF 532,FI IRF 531,FI IRF 544,FI IRF 544,FI IRF 542,FI IRF 543,FI IRF 543,FI IRF 543,FI IRF 541,FI IRF 542,FI IRF 543,FI IRF 520,FI IRF 531,FI IRF 520,FI IRF 531,FI IRF 521,FI IRF 522,FI IRF 531,FI IRF 531,FI IRF 532,FI IRF 531,FI IRF 531,FI IRF 532,FI IRF 531,FI IRF 532,FI IRF 531,FI IRF 532,FI IRF 531,FI IRF 532,FI IRF 531,FI IR	Page 187 246 187 246 210 254/255/263/265 254/255/263/265 254/255/263/265 254/255/263/265 254/255/263/265 254/255/263/265 254/255/263/265 254/255/263/265 254/255/263/265 254/255/263/265 254/256/263/265 254/256/263/265 254/256/263/265 254/256/263/265 254/256/263/265 254/256/263/265 254/256/263/265 254/256/263/265 254/256/263/265 217 101 101 101 101 101 101 101 101 101 1
IRF 822,FI IRF 823,FI IRF 830,FI	103 102 73/103

Туре	Page		
IRF 831,FI IRF 832,FI IRF 833,FI IRF 840,FI IRF 841,FI IRF 842,FI IRF 842,FI IRF 150,FI IRFP 150,FI IRFP 155,FI IRFP 153,FI IRFP 530,FI IRFP 450,FI IRFP 451,FI IRFP 451,FI IRFP 451,FI IRFP 452,FI IRFZ 20,FI IRFZ 20,FI IRFZ 20,FI IRFZ 20,FI IRFZ 3000 series ISB 9003 ISB 9003 ISB 9003 ISB 9005 ISB 9015 ISB 9023 ISB 9015 ISB 9023 ISB 9015 ISB 9015 ISB 9023 ISB 9015 ISB 12011 ISB 12015 ISB 12011 ISB 12015 ISB 12011 ISB 12016 ISB 12026 ISB 12038 ISB 12054 ISB 12056 ISB 1206 ISB 1206 ISB 1206 ISB 1206 ISB 1206 ISB 1206 ISB 120	103 102 73/103 103 103 103 87/102 86/101 87/101 86/101 73 73/103 103 103 100 100 100 254/256/263/266 254/256/263/266 254/256/263/266 254/256/263/266 254/256/263/266 254/256/263/266 254/256/263/266 254/256/263/266 254/256/263/266 254/256/263/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 255/256/264/266 275/256/2		

Туре	Page
L78M24ABV L78M24CV L78M24CS L78M24CS L78M24CX L78S05CT L78S05CV L78S09CT L78S09CV L78S10CT L78S10CV L78S12CT L78S12CV L78S15CT L78S15CT L78S15CT L78S15CV L78S18CT L78S24CT L78S24CT L78S24CV L78S75CT L78S75CV L149 L165 L200 L272 L272D L272M L290 L291 L292 L293 L293C L293D L293C L293D L293E L294 L295 L296,P L297 L297 L297 L297 L297 L297 L298N L387 A L482 L482P L484 L484P L497 L497P L530 L530P L584	178 178/244 178 178 178 178 178 178 178 178
L293D L293E L294 L295 L296,P L297 L297 A L298N L387 A L482 L482P L484 L484P L497 L497P L530 L530P L584	182/183 182/183 182 182 181 182/203 182 182 182 84 83 223 83 223 83 223 83 223 83
L702 L2720 L2722 L2724 L2726 L3000 L3010 L3030 L3090 L3100B1 L3101B L3121B L3240 L3240 L3280 L3654S L3845 L4620 L4901A L4902A	182 78 78 78 78/223 40 40 40/218 40 40/43 40/43 40 41 41 182/183 41 83 180 180

Туре	Page	
L4903	180	
L4904A	180	
L4905	180	
L4915 L4916	180	
L4918	180	
L4920	84	
↓	1	
L4923	84	
L4926	84	
L4940-5 L4940-10	180	
L4940-12	180	
L4940-85	180	
L4941 L4945	180	
L4947	84	
L4960	181	
L4962	181	
L4963 L4964	181	
L4970	181	
L5832	182	
L6114 L6115	182	
L6122	182	
L6123	182	
L6201 L6202	182/183/244 182/183/203	
L6203	182/183/203	
L6210	182	
L6212 L6217,A	182 182/244	
L6220	182	
L6221A,N	182	
L6222 L6230	182	
L6231	183	
L6235 L6236	183/218/244 183/223/244	
L6503	182	
L6504	182	
L6506 L6570A,B	182	
L6604	244	
L7150 L7152	182	
L7180	182 182	
L7182	182	
L7805ABV L7805ACV	178 178	
L7805CT	178	
L7805CV	178	
L7805T L7806ABV	178 178	
L7806ACV	178	
L7806CT	178	
L7806CV L7806T	178 178	
L7808ABV	178	
L7808ACV	178	
L7808CT L7808CV	178	
L7808T	178	
L7885CT L7885CV	178 178	
L7812ABV	178	
L7812ACV	178	
L7812CT L7812CV	178 179	
L7812T	179	
L7815ABV	179	

	Туре	Page	
L7815ACV		179	
L7815CT		179	
L7815CV		179	
L7815T		179	
L7818ABV		179	
L7818ACV		179	
L7818CT L7818CV		179 179	
L7818T		179	
L7820ABV		179	
L7820ACV		179	
L7820CT		179	
L7820CV L7820T		179	
L7824ABV		179 179	
L7824ACV		179	
L7824CT		179	
L7824CV		179	
L7824T		179	
L7905ACV		179	
L7905CT		179	
L7905CV L7906CT		179	
L7906CV		179	
L7908ACV		179	
L7908CT		179	
L7908CV		179	
L7912ACV		179	
L7912CT		179	
L7912CV L7915ACV		179 179	
L7915CT		179	
L7915CV		179	
L7918ACV		179	
L7918CT		179	
L7918CV		179	
L7920ACV L7920CT		179 179	
L7920CV		179	
L7922CT		179	
L7922CV		179	
L7924ACV		179	
L7924CT L7924CV		179 179	
L79524CV		179	
L7952CT		179	
L7952CV		179	
L9222		83	
L9305		83	
L9306		83	
L9307 L9308		83 83	
L9309		83	
L9324		83	
L9335		83	
L9336		83	
L9350		83	
L9480VB L9610		83	
L9610C		223	
L9611	2	83	
L9686		83	
L9701		223	
L9801		83	
LB1006		41	
LB1011 LB1013		40	
LB1013		42	
LB1021		42	
LB1026		41/42	
LF155		203	
LF155A		203	
LF156		203	

Туре	Page	
LF156A	203	
LF157	203	
LF157A	203	
LF251D	168/238	
LF251DT LF251N	168/238 168	
LF251N	170/239	
LF253DT	170/239	
LF253N	170	
LF255D	168/238	
LF255DT	168/238	
LF255N LF256D	168 168/238	
LF256DT	168/238	
LF256N	168	
LF257D	168/238	
LF257DT	168/238	
LF257N	168	
LF351D	168/238	
LF351DT LF351N	168/238 168	
LF353D	170/239	
LF353DT	170/239	
LF353N	170	
LF355D	168/238	
LF355DT	168/238	
LF355N LF356D	168 168/238	
LF356DT	168/238	
LF356N	168	
LF357D	168/238	
LF357DT	168/238	
LF357N	168	
LH1028 LH1056	41 55	
LH1030	55	
LM101,A	203	
LM101AD	172/241	
LM101ADT	172/241	
LM101AH	203	
LM105 LM108,A	203	
LM108AH	203	
LM109K	179	
LM111	203	
LM111D	176/243	
LM111DT	176/243	
LM111H LM117	203	
LM117K	180	
LM123K	179	
LM124	203	
LM124AJ	174	
LM124D	174/242	
LM124DT LM124J	174/242 174	
LM1240	174	
LM134Z	185	
LM135Z	185	
LM137	203	
LM137K LM138	180	
LM138 LM138K	203	
LM139	203	
LM139A	203	
LM139AJ	177	
LM139J	177	
LM139N	177	
LM148 LM148D	203	
LM148DT	174/242	
LM148N	174	
LM158	203	

Туре	Page	
LM158AJ	174	
LM158J	174	
LM193	203	
LM193A	203	
LM193AJ LM193J	176 176	
LM193N	176	
LM201AD	172/241	
LM201ADT	172/241	
LM201AJ	172	
LM201AN LM208AD	172 172/241	
LM208ADT	172/241	
LM208AN	172	
LM208D	172/241	
LM208DT	172/241	
LM208N LM209K	172 179	
LM211D	176/243	
LM211DT	176/243	
LM211N	176	
LM217K,SP	180	
LM218D	172/241	
LM218DT LM218N	172/241 172	
LM219D	176/243	
LM219DT	176/243	
LM219N	176	
LM223K	179	
LM224ADT	174/242 174/242	
LM224AJ	174/242	
LM224AN	174	
LM224D	174/242	
LM224DT	175/242	
LM224J LM224N	175 175	
LM234Z	185	
LM235Z	185	
LM236AD	185/245	
LM236ADT	185/245	
LM236AZ	185	
LM236D LM236DT	185/245 185/245	
LM236Z	185	
LM237K	180	
LM238K	180	
LM239AD	177/243	
LM239ADT LM239AJ	177/243 177	
LM239AN	177	
LM239D	177/243	
LM239DT	177/243	
LM239J	177	
LM239N LM246D	177 175/242	
LM246DT	175/242	
LM246N	175	
LM248D	175/242	
LM248DT	175/242	
LM248J LM248N	175 175	
LM258AJ	174	
LM258D	174/242	
LM258DT	174/242	
LM258J	174 174	
LM258N LM293AJ	176	
LM293D	176/243	
LM293DT	176/243	
LM293J	176	
LM293N LM301AD	176	
LIVIOUTAD	172/241	

Туре	Page		
LM301ADT LM301AJ LM301AN LM308AD LM308AD LM308AN LM308AN LM308D LM308DT LM308N LM309K LM311D LM311DT LM311DT LM311T LM311T LM311T LM311T LM31T LM31BD LM318D LM318D LM318D LM318D	173/241 173 173 173/241 173/241 173/241 173/242 173 173/242 173 179 176/243 176/243 176 180 180 180 180 180 173/242 173/242 173/242 173/242 173/242		
LM319DT LM319DT LM319N LM323K LM324AD LM324ADT LM324AJ LM324AU LM324AU LM324D LM324DT LM324D LM334DT LM335AD LM335AD LM335ADT LM335DT LM335DT LM335DT LM336BD LM336BD LM336BD LM336BD LM336BT LM336DT	176/243 176 176 179 175/242 175/243 175 175 175 175 175 175 175 185 185 185/245 185/245 185/245 185/245 185/245 185/245 185/245 185/245		
LM3362 LM337K LM337SP LM338K LM339AD LM339AD LM339AJ LM339AN LM339D LM339DT LM339D LM339D LM339D LM346D LM346D LM346D LM346D LM346D LM348D LM348D LM348D LM348D LM358AD LM358AD LM358AD LM358AD LM358AD LM358AN LM358AN LM358AD LM358AD	185 180 180 177/243 177/243 177 177 177 177 177 177 175/243 175/243 175/243 175 175/243 175 175/243 175 175/243 175 175/243 175 175/243 175 175/243 175 175/243 175/243 175 175/243 174/242 174/242 174/242		

Туре	Page			
LM358J	174			
LM358N	174			
LM393AD	176/243			
LM393ADT	176/243			
LM393AJ	176			
LM393AN	176			
LM393D	176/243			
LM393DT	176/243			
LM393J	176			
LM393N LM723CD1	176			
LM723CH	180/244 180			
LM723CJ	180			
LM723CN	180			
LM723H	180			
LM723J	180			
LM1558	203			
LM1837	77			
LM2901D	84/177/223/243			
LM2901DT	84/177/223/243			
LM2901J LM2901N	177 84/177			
LM2902D	84/175/223/242			
LM2902DT	84/175/223/242			
LM2902J	175			
LM2902N	84/175			
LM2903D	84/176/223/243			
LM2903DT	84/176/223/243			
LM2903J	176			
LM2903N	84/176			
LM2904D	84/174/223/242			
LM2904DT	84/174/223/242			
LM2904J LM2904N	174 84/174			
LM2930A	84			
LM2931A	84			
LM3302D	243			
LM3302DT	243			
LS025	42			
LS156	41/218			
LS188	41			
LS204	42			
LS204CM	218			
LS204M	218 41			
LS285 LS356	41			
LS404	42			
LS404CM	218			
LS404M	218			
LS588	41			
LS656	41/218			
LS1240	41/218			
LS1240A	41/218			
LS1241	41/218			
LS5018B	43			
LS5060B LS5120B1	43			
LS5120B1 M28SB74	43 75			
M38AD72	63			
M38AD72C	220			
M38AD74	63			
M38AD74C	220			
M38P74	63			
M38P78	63			
M38PAD74	63			
M38SB74	75 75			
M38SB78	75			
M38SH74	63			
M38SH74C M044	220 39			
M54HC00	188/207			
M54HC02	188/207			
M54HC03	188/207			

Туре	Page	
M54HC04 M54HC08 M54HC10 M54HC11 M54HC14 M54HC20 M54HC21 M54HC27 M54HC30 M54HC32 M54HC32 M54HC42 M54HC42 M54HC51 M54HC73	188/207 188/207 188/207 188/207 188/207 188/207 188/207 188/208 188/208 188/208 188/208 188/208 188/208	
M54HC77 M54HC85 M54HC86 M54HC107 M54HC109 M54HC112 M54HC113 M54HC123 M54HC125 M54HC126 M54HC131 M54HC132 M54HC131 M54HC132 M54HC137 M54HC138 M54HC139 M54HC139 M54HC147 M54HC148 M54HC151 M54HC151 M54HC155 M54HC153 M54HC155 M54HC155 M54HC155 M54HC156 M54HC157 M54HC158 M54HC158 M54HC158 M54HC158 M54HC158 M54HC158 M54HC158 M54HC158 M54HC158	188/209 188/209 188/209 188/209 188/207 189/207	
M54HC166 M54HC173 M54HC174 M54HC175 M54HC181 M54HC182 M54HC190	189/207 189/207 189/207 189/207 189/207 189/207 189/207	
M54HC195 M54HC221 M54HC237 M54HC238 M54HC240 M54HC241	189/207 189/207 189/207 189/207 189/207 189/208	
M54HC245 M54HC251 M54HC251 M54HC257 M54HC258 M54HC259 M54HC273 M54HC273 M54HC280 M54HC283 M54HC283 M54HC292 M54HC292 M54HC299	189/208 189/208 189/208 189/208 189/208 189/208 189/208 189/208 189/208 189/208 189/208 189/208 189/208	

Туре	Page	
M54HC323 M54HC352 M54HC353 M54HC355 M54HC356 M54HC366 M54HC365 M54HC368 M54HC373 M54HC373 M54HC375 M54HC377 M54HC386 M54HC390 M54HC390 M54HC393 M54HC423 M54HC533 M54HC534 M54HC540 M54HC541 M54HC564 M54HC564 M54HC573 M54HC573 M54HC573 M54HC573 M54HC573 M54HC595 M54HC592 M54HC592 M54HC593 M54HC595 M54HC595 M54HC693 M54HC697 M54HC623 M54HC623 M54HC623 M54HC623 M54HC623	Page 189/208 189 189 189 189/208 189/208 189/208 189/208 189/208 190/209 190/209 190/209 190/209 190/209	
M54HC620 M54HC623	190/209 190/209	

Туре	Page	Туре	Page	Туре	Page
M54HC4543	190/208	M74HC107	188	M74HC193M1	247
M54HC7266	190/208	M74HC107M1	247	M74HC194	189
M54HC7292	190/208	M74HC109	189	M74HC194M1	247
M54HC7294	190/208	M74HC109M1	247	M74HC195	189
M54HC40102	190/208	M74HC112	189	M74HC195M1	247
M54HC40103	190/208	M74HC112M1	247	M74HC221	189
M54HCT04	188/207	M74HC113	189	M74HC221M1	247
M54HCT137	189/207	M74HC113M1	247	M74HC237	189
M54HCT138	189/207	M74HC123	189	M74HC237M1	247
M54HCT240	189/207	M74HC123M1	247	M74HC238	189
M54HCT241	189/207	M74HC125	189	M74HC238M1	247
M54HCT244	189/207	M74HC125M1	247	M74HC240	189
M54HCT245	189/207	M74HC126	189	M74HC240M1	248
M54HCT373	189/207	M74HC126M1	247	M74HC241	189
M54HCT374	190/207	M74HC131	189	M74HC241M1	248
M54HCT540	190/207	M74HC131M1	247	M74HC242	189
M54HCT541	190/207	M74HC132	189	M74HC242M1	248
M54HCT563	190/207	M74HC132M1	247	M74HC243	189
M54HCT564	190/207	M74HC133	189	M74HC243M1	248
M54HCT573	190/207	M74HC133M1	247	M74HC244	189
M54HCT574	190/207	M74HC137	189	M74HC244M1	248
M54HCT640	190/207	M74HC137M1	247	M74HC245	189
M54HCT643	190/207	M74HC138	189	M74HC245M1	248
M54HCT646	190/207	M74HC138M1	247	M74HC251	189
M54HCT648 M54HCT651	190/207	M74HC139 M74HC139M1	189 247	M74HC251M1 M74HC253	248 189
M54HCT652	190/207	M74HC139W1	189	M74HC253M1	248
M54HCT7007	190/207 190/207	M74HC147	247	M74HC257	189
M54HCU04	188/207	M74HC147W1	189	M74HC257M1	248
M74HC00	188	M74HC148M1	247	M74HC258	189
M74HC00M1	247	M74HC151	189	M74HC258M1	248
M74HC02	188	M74HC151M1	247	M74HC259	189
M74HC02M1	247	M74HC153	189	M74HC259M1	248
M74HC03	188	M74HC153M1	247	M74HC273	189
M74HC03M1	247	M74HC154	189	M74HC273M1	248
M74HC04	188	M74HC154M1	247	M74HC279	189
M74HC04M1	247	M74HC155	189	M74HC279M1	248
M74HC08	188	M74HC155M1	247	M74HC280	189
M74HC08M1	247	M74HC157	189	M74HC280M1	248
M74HC10	188	M74HC157M1	247	M74HC283	189
M74HC10M1	247	M74HC158	189	M74HC283M1	248
M74HC11	188	M74HC158M1	247	M74HC292	189
M74HC11M1	247	M74HC160	189	M74HC294	189
M74HC14	188	M74HC160M1	247	M74HC298	189
M74HC14M1	247	M74HC161	189	M74HC298M1	248
M74HC20	188	M74HC161M1	247	M74HC299	189
M74HC20M1	247	M74HC162	189	M74HC299M1	248
M74HC21	188	M74HC162M1	247	M74HC323	189
M74HC21M1	247	M74HC163	189	M74HC323M1	248
M74HC27 M74HC27M1	188 247	M74HC163M1	247	M74HC352 M74HC352M1	189
M74HC27M1 M74HC30	188	M74HC164 M74HC164M1	189 247	M74HC352M1 M74HC353	248
M74HC30M1	247	M74HC164M1	189	M74HC353 M74HC353M1	189
M74HC32	188	M74HC165M1	247	M74HC353M1	189
M74HC32M1	247	M74HC166	189	M74HC354M1	248
M74HC42	188	M74HC166M1	247	M74HC356	189
M74HC42M1	247	M74HC173	189	M74HC356M1	248
M74HC51	188	M74HC173M1	247	M74HC365	189
M74HC51M1	247	M74HC174	189	M74HC365M1	248
M74HC73	188	M74HC174M1	247	M74HC366	189
M74HC73M1	247	M74HC175	189	M74HC366M1	248
M74HC74	188	M74HC175M1	247	M74HC367	189
M74HC74M1	247	M74HC181	189	M74HC367M1	248
M74HC75	188	M74HC181M1	247	M74HC368	189
M74HC75M1	247	M74HC182	189	M74HC368M1	248
M74HC76	188	M74HC182M1	247	M74HC373	189
M74HC76M1	247	M74HC190	189	M74HC373M1	248
M74HC77	188	M74HC190M1	247	M74HC374	189
M74HC77M1	247	M74HC191	189	M74HC374M1	248
M74HC85	188	M74HC191M1	247	M74HC375	190
M74HC85M1	247	M74HC192	189	M74HC375M1	248
M74HC86	188	M74HC192M1	247	M74HC377	190
M74HC86M1	247	M74HC193	189	M74HC377M1	248

M74HC386	Туре		ą.	Page
M74HC386M1 248 M74HC390 190 M74HC393M1 248 M74HC393M1 248 M74HC423 190 M74HC423M1 248 M74HC533M1 248 M74HC533 190 M74HC534 190 M74HC534M1 248 M74HC54U 190 M74HC54 190 M74HC563 190 M74HC563 190 M74HC563M1 248 M74HC573 190 M74HC574M1 248 M74HC574M1 248 M74HC597 190 M74HC599 190 M74HC599 190 M74HC597M1 248 M74HC620 190 M74HC620 <t< th=""><th>M74HC386</th><th>-</th><th>190</th><th></th></t<>	M74HC386	-	190	
M74HC390 190 M74HC393M1 248 M74HC393M1 248 M74HC423M1 248 M74HC423M1 248 M74HC533 190 M74HC533M1 248 M74HC534M1 248 M74HC534M1 248 M74HC540M1 248 M74HC540M1 248 M74HC541M1 248 M74HC563 190 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC564 190 M74HC564M1 248 M74HC573 190 M74HC573 190 M74HC573 190 M74HC574 190 M74HC597 190 M74HC597 190 M74HC597 190 M74HC620 190 M74HC623 190 M74HC623M1 248 M74HC643 190 M74HC644 190 M74HC643				
M74HC390M1 248 M74HC393M1 248 M74HC393M1 248 M74HC423M1 248 M74HC533M1 248 M74HC533M1 248 M74HC534M1 248 M74HC540M1 248 M74HC540M1 248 M74HC541 190 M74HC563 190 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC573 190 M74HC573 190 M74HC574 190 M74HC574 190 M74HC590 190 M74HC591 190 M74HC597 190 M74HC620M1 248 M74HC623 190 M74HC623 190 M74HC640M1 248 M74HC643M1 248 M74HC				
M74HC393 190 M74HC393M1 248 M74HC423 190 M74HC423M1 248 M74HC533M1 248 M74HC534 190 M74HC534M1 248 M74HC540 190 M74HC541 190 M74HC541 190 M74HC541 190 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC563M1 248 M74HC564 190 M74HC573 190 M74HC573 190 M74HC573 190 M74HC573 190 M74HC574 190 M74HC597 190 M74HC595 190 M74HC597 190 M74HC620 190 M74HC620 190 M74HC623M1 248 M74HC623M1 248 M74HC640M1 248 M74HC644			1	
M74HC393M1 248 M74HC423M1 190 M74HC423M1 248 M74HC533 190 M74HC533M1 248 M74HC534M1 248 M74HC540M1 248 M74HC541 190 M74HC541 190 M74HC541 190 M74HC541 190 M74HC541 190 M74HC563 190 M74HC563 190 M74HC563 190 M74HC564 190 M74HC563 190 M74HC564 190 M74HC564 190 M74HC573 190 M74HC573 190 M74HC574 190 M74HC574 190 M74HC590 190 M74HC591 190 M74HC597 190 M74HC629 190 M74HC623 190 M74HC623 190 M74HC623M1 248 M74HC643M1 2				
M74HC423M1 248 M74HC533M1 248 M74HC533M1 248 M74HC534M1 248 M74HC534M1 248 M74HC540 190 M74HC540M1 248 M74HC541 190 M74HC563 190 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC573M1 248 M74HC573M1 248 M74HC574M1 248 M74HC597 190 M74HC599 190 M74HC597 190 M74HC690 190 M74HC620M1 248 M74HC623 190 M74HC623M1 248 M74HC623M1 248 M74HC623M1 248 M74HC643M1 248 M74HC640M1 248 M74HC643M1 248 M74HC648 190 M74HC648 190 M74HC651M1 248 M74				
M74HC423M1 248 M74HC533M1 248 M74HC533M1 248 M74HC534M1 190 M74HC534M1 248 M74HC540M1 248 M74HC541 190 M74HC561 190 M74HC563 190 M74HC564 190 M74HC573 190 M74HC573M1 248 M74HC574 190 M74HC595 190 M74HC595 190 M74HC597 190 M74HC629 190 M74HC620 190 M74HC623 190 M74HC6623M1 248 M74HC6640M1 248 M74HC664M1 248 M74HC664M1 248 M74HC664M1			l .	
M74HC533 190 M74HC5334M1 248 M74HC534M1 248 M74HC540 190 M74HC541 190 M74HC541 190 M74HC541M1 248 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC564M1 248 M74HC564M1 248 M74HC573 190 M74HC573M1 248 M74HC574M1 248 M74HC574M1 248 M74HC574M1 248 M74HC590 190 M74HC597 190 M74HC597 190 M74HC697 190 M74HC690 190 M74HC623 190 M74HC6620M1 248 M74HC6620M1 248 M74HC6620M1 248 M74HC663M1 248 M74HC6644 190 M74HC6648 190 M74HC6648 190 M74H				
M74HC533M1 248 M74HC534M1 190 M74HC534M1 248 M74HC540M1 190 M74HC541M1 248 M74HC563M1 190 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC573 190 M74HC573M1 248 M74HC574M1 248 M74HC574M1 248 M74HC590 190 M74HC590 190 M74HC597 190 M74HC6297 190 M74HC620 190 M74HC620 190 M74HC620 190 M74HC623 190 M74HC620 190 M74HC640 190 M74HC640 190 M74HC640 190 M74HC643 190 M74HC644 190 M74HC654 190 M74HC664 190 M74HC664 190 M74HC651			l .	
M74HC534 190 M74HC534M1 248 M74HC540 190 M74HC541M1 248 M74HC561M1 248 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC564M1 248 M74HC573M1 248 M74HC573M1 248 M74HC574M1 248 M74HC574M1 248 M74HC595 190 M74HC597 190 M74HC597 190 M74HC697 190 M74HC620 190 M74HC623 190 M74HC623 190 M74HC623 190 M74HC623M1 248 M74HC623M1 248 M74HC643M1 248 M74HC644 190 M74HC643M1 248 M74HC644 190 M74HC648 190 M74HC648 190 M74HC6646 190 M74HC6651M1<				
M74HC534M1 248 M74HC540M1 190 M74HC541M1 190 M74HC5611 190 M74HC563 190 M74HC563M1 248 M74HC564M1 248 M74HC564M1 248 M74HC5673 190 M74HC573M1 248 M74HC574M1 248 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597 190 M74HC597 190 M74HC620 190 M74HC623 190 M74HC623 190 M74HC623 190 M74HC623 190 M74HC623 190 M74HC623 190 M74HC643 190 M74HC644 190 M74HC643 190 M74HC644 190 M74HC648 190 M74HC648 190 M74HC6648 190 M74HC6651M1				
M74HC540 190 M74HC540M1 248 M74HC541 190 M74HC561M1 248 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC573 190 M74HC573M1 248 M74HC574M1 248 M74HC590 190 M74HC590 190 M74HC597 190 M74HC597 190 M74HC620 190 M74HC623 190 M74HC640 190 M74HC640 190 M74HC640 190 M74HC648 190 M74HC648 190 M74HC648 190				
M74HC540M1 248 M74HC541M1 190 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC564M1 248 M74HC573M1 248 M74HC574M1 248 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597 190 M74HC597 190 M74HC597 190 M74HC620 190 M74HC620 190 M74HC623 190 M74HC663 190 M74HC6640 190 M74HC6643 190 M74HC6644 190 M74HC6648 190 M74HC6648 190 M74HC6651 190 M74HC6652				
M74HC541 190 M74HC563HM1 248 M74HC563M1 248 M74HC563M1 248 M74HC564M1 248 M74HC563M1 248 M74HC573 190 M74HC574M1 248 M74HC594M1 248 M74HC5990 190 M74HC595 190 M74HC597 190 M74HC597 190 M74HC597 190 M74HC597 190 M74HC620 190 M74HC620 190 M74HC623 190 M74HC623M1 248 M74HC623M1 248 M74HC640 190 M74HC643M1 248 M74HC644 190 M74HC643M1 248 M74HC646 190 M74HC646 190 M74HC651M1 248 M74HC651M1 248 M74HC652M1 248 M74HC688 190 M74HC688				
M74HC541M1 248 M74HC563 190 M74HC563M1 248 M74HC564M1 248 M74HC563M1 248 M74HC573M1 248 M74HC574M1 248 M74HC574M1 248 M74HC590 190 M74HC597 190 M74HC597M1 248 M74HC620 190 M74HC620 190 M74HC620 190 M74HC620 190 M74HC620 190 M74HC620 190 M74HC623 190 M74HC623 190 M74HC623 190 M74HC640 190 M74HC643 190 M74HC644 190 M74HC643 190 M74HC644 190 M74HC648 190 M74HC648 190 M74HC6648 190 M74HC655 190 M74HC6651M1 248 M74HC668 <				
M74HC563 190 M74HC563M1 248 M74HC564M1 248 M74HC564M1 248 M74HC573M1 248 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597 190 M74HC597 190 M74HC620 190 M74HC620 190 M74HC623 190 M74HC640 190 M74HC643 190 M74HC644 190 M74HC643 190 M74HC644 190 M74HC648 190 M74HC648 190 M74HC6646 190 M74HC6651M1 248 M74HC652 190 M74HC668 190 M74HC690 190				
M74HC563M1 248 M74HC564 190 M74HC564M1 248 M74HC573 190 M74HC574 190 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597 190 M74HC697 190 M74HC6297 190 M74HC6297 190 M74HC629 190 M74HC620 190 M74HC623 190 M74HC664 190 M74HC643 190 M74HC644 190 M74HC648 190 M74HC648 190 M74HC651 190 M74HC651 190 M74HC652 190 M74HC688 190 M74HC689 190				
M74HC564 190 M74HC564M1 248 M74HC573M1 248 M74HC573M1 248 M74HC574M1 190 M74HC590 190 M74HC595 190 M74HC597 190 M74HC597M1 248 M74HC620 190 M74HC623 190 M74HC623 190 M74HC623M1 248 M74HC623M1 248 M74HC643 190 M74HC643 190 M74HC643 190 M74HC643 190 M74HC643 190 M74HC643 190 M74HC644 190 M74HC648 190 M74HC648 190 M74HC651 190 M74HC651 190 M74HC652 190 M74HC682 190 M74HC688 190 M74HC688 190 M74HC699 190 M74HC691 124				
M74HC564M1 248 M74HC573 190 M74HC573M1 248 M74HC574M1 190 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597M1 248 M74HC697M1 248 M74HC620M1 248 M74HC623M1 248 M74HC623M1 248 M74HC640M1 248 M74HC643M1 248 M74HC643M1 248 M74HC646 190 M74HC648 190 M74HC648 190 M74HC651 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC668 190 M74HC669 190 M74HC690 190 M74HC690 190 M74HC691 190 M74HC692				
M74HC573 190 M74HC573M1 248 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597 190 M74HC597M1 248 M74HC620 190 M74HC620M1 248 M74HC623 190 M74HC623M1 248 M74HC640 190 M74HC643M1 248 M74HC643M1 248 M74HC643M1 248 M74HC648 190 M74HC648 190 M74HC648 190 M74HC651M1 248 M74HC651M1 248 M74HC651 190 M74HC652 190 M74HC6670 190 M74HC688 190 M74HC688 190 M74HC690 190 M74HC691M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697				
M74HC573M1 248 M74HC574 190 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597 190 M74HC620 190 M74HC620 190 M74HC623 190 M74HC623M1 248 M74HC640M1 248 M74HC643M1 248 M74HC643M1 248 M74HC643M1 248 M74HC648 190 M74HC648 190 M74HC651 190 M74HC651 190 M74HC651M1 248 M74HC652 190 M74HC652M1 248 M74HC667 190 M74HC688 190 M74HC690 190 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697M1 249 M74HC699M1 249 M74HC				
M74HC574 190 M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597 190 M74HC597M1 248 M74HC620 190 M74HC623 190 M74HC623M1 248 M74HC623M1 248 M74HC640M1 248 M74HC643 190 M74HC643 190 M74HC643 190 M74HC643 190 M74HC644 190 M74HC648 190 M74HC654 190 M74HC651 190 M74HC651 190 M74HC651 248 M74HC651 248 M74HC651 190 M74HC652 190 M74HC663 190 M74HC688 190 M74HC688 190 M74HC689 190 M74HC691 249 M74HC692 190 M74HC693M1 249 </td <td></td> <td></td> <td></td> <td></td>				
M74HC574M1 248 M74HC590 190 M74HC595 190 M74HC597M1 248 M74HC597M1 248 M74HC620 190 M74HC623M1 248 M74HC623M1 248 M74HC623M1 248 M74HC640 190 M74HC643M1 248 M74HC643M1 248 M74HC643M1 248 M74HC646 190 M74HC648 190 M74HC651M1 248 M74HC651M1 248 M74HC652 190 M74HC652M1 248 M74HC652M1 248 M74HC688 190 M74HC688 190 M74HC688 190 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 190 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697				
M74HC590 190 M74HC597 190 M74HC597M1 248 M74HC620 190 M74HC620M1 248 M74HC623M1 248 M74HC640M1 248 M74HC640M1 248 M74HC643M1 248 M74HC643M1 248 M74HC646 190 M74HC646 190 M74HC6648 190 M74HC6651 190 M74HC651 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC652 190 M74HC683 190 M74HC688 190 M74HC688 190 M74HC690 190 M74HC691 190 M74HC692 190 M74HC693 190 M74HC696 190 M74HC697M1 249 M74HC699M1 249 M74HC699M1 249 M74HC699M			190	
M74HC595 190 M74HC597 190 M74HC597M1 248 M74HC620 190 M74HC620M1 248 M74HC623 190 M74HC623M1 248 M74HC640 190 M74HC643 190 M74HC643M1 248 M74HC648 190 M74HC648 190 M74HC648 190 M74HC651M1 248 M74HC652 190 M74HC652M1 248 M74HC652M1 248 M74HC6670 190 M74HC688 190 M74HC689 190 M74HC690M1 249 M74HC691M1 249 M74HC692M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697M1 249 M74HC699M1 249 M74HC699M1 249 M74HC699M1 249 M74HC699M1 249 M74HC699M1 249	M74HC574M1		248	
M74HC597 190 M74HC597M1 248 M74HC620 190 M74HC620M1 248 M74HC623 190 M74HC623M1 248 M74HC640M1 248 M74HC643M1 248 M74HC643M1 248 M74HC648 190 M74HC648 190 M74HC651 190 M74HC651 190 M74HC651 190 M74HC651 190 M74HC651 190 M74HC651 190 M74HC652 190 M74HC653 190 M74HC654 190 M74HC669 190 M74HC688 190 M74HC689 190 M74HC691 190 M74HC691 249 M74HC692 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 </td <td>M74HC590</td> <td></td> <td>190</td> <td></td>	M74HC590		190	
M74HC597M1 248 M74HC620 190 M74HC623M1 248 M74HC623M1 248 M74HC623M1 248 M74HC640 190 M74HC643M1 248 M74HC643M1 248 M74HC646 190 M74HC648 190 M74HC651 190 M74HC651 190 M74HC651 190 M74HC651 190 M74HC652 190 M74HC652 190 M74HC652M1 248 M74HC662 190 M74HC688 190 M74HC688 190 M74HC688 190 M74HC690 190 M74HC691 190 M74HC691 249 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697M1 249 M74HC698M1 249 M74HC699M1 249 M74HC	M74HC595		190	
M74HC620 190 M74HC620M1 248 M74HC623 190 M74HC623M1 248 M74HC6240M1 190 M74HC640M1 248 M74HC643 190 M74HC643M1 248 M74HC648 190 M74HC648 190 M74HC648M1 248 M74HC651M1 248 M74HC651 190 M74HC652 190 M74HC652M1 248 M74HC652 190 M74HC652M1 248 M74HC668 190 M74HC688 190 M74HC689 190 M74HC690 190 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC698 190 M74HC699 <t< td=""><td></td><td></td><td>190</td><td></td></t<>			190	
M74HC620M1 248 M74HC623 190 M74HC623M1 248 M74HC640 190 M74HC640M1 248 M74HC643 190 M74HC646 190 M74HC648 190 M74HC648M1 248 M74HC651 190 M74HC651 190 M74HC652 190 M74HC688 190 M74HC688 190 M74HC690 190 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC698 190	M74HC597M1		248	
M74HC623 190 M74HC623M1 248 M74HC640 190 M74HC640M1 248 M74HC643M1 248 M74HC648M1 248 M74HC648 190 M74HC654BM1 248 M74HC651M1 248 M74HC652M1 248 M74HC652M1 248 M74HC6670 190 M74HC688 190 M74HC680 190 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 190 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC699M1 <	M74HC620		190	
M74HC623M1 248 M74HC640M1 190 M74HC643M1 248 M74HC643M1 248 M74HC643M1 248 M74HC646 190 M74HC648 190 M74HC651 190 M74HC651M1 248 M74HC652M1 248 M74HC652M1 248 M74HC670 190 M74HC688 190 M74HC688 190 M74HC689 190 M74HC690M1 249 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697M1 249 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC699M1 249 M74HC699M1 249 M74HC699M1 249 M74HC	M74HC620M1		248	
M74HC640 190 M74HC640M1 248 M74HC643 190 M74HC6464 190 M74HC648 190 M74HC651 190 M74HC651 190 M74HC651 190 M74HC652 190 M74HC652M1 248 M74HC652M1 248 M74HC652 190 M74HC688 190 M74HC688 190 M74HC688 190 M74HC688 190 M74HC688 190 M74HC688 190 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 249 M74HC692 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190	M74HC623		190	
M74HC640M1 248 M74HC643 190 M74HC643M1 248 M74HC646 190 M74HC648 190 M74HC651 190 M74HC651M1 248 M74HC652M1 248 M74HC652M1 248 M74HC652M1 248 M74HC652M1 249 M74HC688 190 M74HC688 190 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693 190 M74HC692 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC699M1 249 M74HC4002M1 249 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC40	M74HC623M1		248	
M74HC643 190 M74HC643M1 248 M74HC648 190 M74HC648M1 248 M74HC651M1 248 M74HC652M1 248 M74HC652M1 248 M74HC652M1 248 M74HC652M1 248 M74HC650M1 248 M74HC688 190 M74HC688M1 249 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697M1 249 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC4002M1 249 M74HC4017M1 249 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024M1 249 M74HC4024M1 249	M74HC640		190	
M74HC643 190 M74HC643M1 248 M74HC648 190 M74HC648M1 248 M74HC651M1 248 M74HC652M1 248 M74HC652M1 248 M74HC652M1 248 M74HC652M1 248 M74HC650M1 248 M74HC688 190 M74HC688M1 249 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 190 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697M1 249 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC4002M1 249 M74HC4017M1 249 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024M1 249 M74HC4024M1 249	M74HC640M1		248	
M74HC643M1 248 M74HC648 190 M74HC648M1 248 M74HC651 190 M74HC651M1 248 M74HC652M1 248 M74HC652M1 248 M74HC6670 190 M74HC688 190 M74HC688M1 249 M74HC690 190 M74HC691 249 M74HC692 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC699 190 M74HC699M1 249 M74HC4002M1 249 M74HC4017M1			190	
M74HC646 190 M74HC648 190 M74HC648M1 248 M74HC651 190 M74HC651M1 248 M74HC652 190 M74HC652M1 248 M74HC670 190 M74HC688 190 M74HC688M1 249 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 249 M74HC691 249 M74HC692 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC693M1 249 M74HC696 190 M74HC697 190 M74HC697 190 M74HC698M1 249 M74HC698M1 249 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC402OM1 249 M74HC402OM1 249 M74HC402AM1 249 M74HC402AM1 249 <td></td> <td></td> <td></td> <td></td>				
M74HC648 190 M74HC654M1 248 M74HC651M1 248 M74HC652M1 248 M74HC652M1 248 M74HC652M1 248 M74HC688 190 M74HC688 190 M74HC690 190 M74HC690 190 M74HC690 190 M74HC691 190 M74HC691 249 M74HC692 190 M74HC692 190 M74HC693 190 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC4002M1 249 M74HC4017M1 249 M74HC402OM1 249 M74HC402OM1 249 M74HC402CM1 249 M74HC402A 190 M74HC402A 190 M74HC402A 190 M74				
M74HC648M1 248 M74HC651 190 M74HC651M1 248 M74HC652 190 M74HC652M1 248 M74HC652M1 248 M74HC652M1 248 M74HC6688 190 M74HC688M1 249 M74HC690 190 M74HC691 190 M74HC691 190 M74HC691 249 M74HC692 190 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC4002 190 M74HC4002M1 249 M74HC4017M1 249 M74HC402OM1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024 190 <td></td> <td></td> <td></td> <td></td>				
M74HC651 190 M74HC651M1 248 M74HC652 190 M74HC652M1 248 M74HC652M1 248 M74HC6670 190 M74HC688 190 M74HC690 190 M74HC690M1 249 M74HC691M1 249 M74HC692M1 249 M74HC693M1 249 M74HC693M1 249 M74HC693 190 M74HC696 190 M74HC697 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC699 190 M74HC4002 190 M74HC4002M1 249 M74HC402OM1 249 M74HC402OM1 249 M74HC402C 190 M74HC402A 190 M74HC402C 190 M74HC402C 190 M74HC402C 190 M74HC402C 190 <t< td=""><td></td><td></td><td></td><td></td></t<>				
M74HC651M1 248 M74HC652 190 M74HC652M1 248 M74HC668M1 249 M74HC688M1 249 M74HC690 190 M74HC691 190 M74HC691M1 249 M74HC692M1 249 M74HC693M1 249 M74HC693 190 M74HC693 190 M74HC696 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC699M1 249 M74HC699M1 249 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC402OM1 249 M74HC402W1 249 M74HC402W1 249 M74HC402W1 249 M74HC402W1 249 M74HC402W1 249 M74HC402W1 249				
M74HC652 190 M74HC652M1 248 M74HC670 190 M74HC688 190 M74HC689M1 249 M74HC690M1 249 M74HC691M1 249 M74HC692 190 M74HC692M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697 190 M74HC697 190 M74HC698M1 249 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC652M1 248 M74HC670 190 M74HC688 190 M74HC689M1 249 M74HC690M1 249 M74HC691 190 M74HC691 190 M74HC692 190 M74HC692 190 M74HC693 190 M74HC693M1 249 M74HC696 190 M74HC696 190 M74HC697 190 M74HC698 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC4002M1 249 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC670 190 M74HC688 190 M74HC688M1 249 M74HC690 190 M74HC690M1 249 M74HC691M1 249 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC698M1 249 M74HC699 190 M74HC699 190 M74HC4002 190 M74HC4002M1 249 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC4020 190 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190				
M74HC688 190 M74HC688M1 249 M74HC690 190 M74HC690M1 249 M74HC691M1 249 M74HC692M1 249 M74HC693M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697M1 249 M74HC697 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC402OM1 249 M74HC402OM1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190				
M74HC688M1 249 M74HC690 190 M74HC690M1 249 M74HC691 190 M74HC691M1 249 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC698 190 M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017M1 249 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249			20.00	
M74HC690 190 M74HC690M1 249 M74HC691M1 249 M74HC692M1 249 M74HC692M1 249 M74HC693M1 249 M74HC696 190 M74HC696 190 M74HC697 190 M74HC697M1 249 M74HC698 190 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190				
M74HC690M1 249 M74HC691 190 M74HC691M1 249 M74HC692 190 M74HC692M1 249 M74HC693M1 249 M74HC6966 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC698 190 M74HC699 190 M74HC699 190 M74HC699M1 249 M74HC4002M1 249 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC691 190 M74HC691M1 249 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC6966 190 M74HC697 190 M74HC697 190 M74HC697M1 249 M74HC698 190 M74HC698M1 249 M74HC699 190 M74HC699M1 249 M74HC4002M1 249 M74HC4017M1 190 M74HC4020 190 M74HC4020 190 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC691M1 249 M74HC692 190 M74HC693M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC697 190 M74HC697M1 249 M74HC698M1 249 M74HC698 190 M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017M1 190 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC692 190 M74HC692M1 249 M74HC693M1 249 M74HC693M1 249 M74HC696 190 M74HC696M1 249 M74HC697M1 249 M74HC698 190 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249				
M74HC692M1 249 M74HC693 190 M74HC693M1 249 M74HC696 190 M74HC696M1 249 M74HC697 190 M74HC698M1 249 M74HC698M1 249 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4020 190 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC693 190 M74HC693M1 249 M74HC6966 190 M74HC697 190 M74HC697 190 M74HC697 190 M74HC698 190 M74HC699 190 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4002N1 249 M74HC4017 190 M74HC4017 190 M74HC4020 190 M74HC4020 190 M74HC4020 190 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC693M1 249 M74HC6966 190 M74HC697 190 M74HC697 190 M74HC697M1 249 M74HC698 190 M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC40177 190 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249 M74HC4024M1 249				
M74HC696 190 M74HC696M1 249 M74HC697 190 M74HC697M1 249 M74HC698 190 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC696M1 249 M74HC697 190 M74HC697M1 249 M74HC698 190 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC697 190 M74HC697M1 249 M74HC698 190 M74HC699M1 249 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC697M1 249 M74HC698 190 M74HC698M1 249 M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020 190 M74HC4020 190 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC698 190 M74HC698M1 249 M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC698M1 249 M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC699 190 M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249				
M74HC699M1 249 M74HC4002 190 M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024M1 249 M74HC4024M1 249				
M74HC4002 190 M74HC4002M1 249 M74HC40177 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024 190 M74HC4024M1 249				
M74HC4002M1 249 M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249				
M74HC4017 190 M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249				
M74HC4017M1 249 M74HC4020 190 M74HC4020M1 249 M74HC4022M1 249 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249				
M74HC4020 190 M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249	M74HC4017		190	
M74HC4020M1 249 M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249	M74HC4017M1		249	
M74HC4022 190 M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249	M74HC4020		190	
M74HC4022M1 249 M74HC4024 190 M74HC4024M1 249	M74HC4020M1		249	
M74HC4024 190 M74HC4024M1 249	M74HC4022		190	
M74HC4024M1 249	M74HC4022M1		249	
	M74HC4024		190	
	M74HC4024M1		249	
M74HC4028 190	M74HC4028		190	

	Туре		Page
M74HC40 M74HC45 M74HC72 M74HC72 M74HC72 M74HC71 M74HC7	40 40M1 49BM1 49BM1 50B 50BM1 52 52M1 53 53M1 60 66M1 66 66M1 72 72M1 75 75M1 78 78M1 94 94M1 16 16M1 11 11 11 11 11 11 11 11 15 11 18 18M1 20 20M1 38 38M1 43 43M1 66 66M1 66 66M1 92 94 4 4M1 37 37M1 38 38M1 43 43M1 44 44M1 45 45M1 73 73M1 74 74M1 40 40M1 41 41 41 41 41 41 41 41 41 41 41 41 41	249 190 249 19	

Туре			Page
M74HCT574		190	
M74HCT574M1		248	
M74HCT640		190	
M74HCT640M1	2	248	
M74HCT643		190	
M74HCT643M1		248	
M74HCT646		190	
M74HCT646M1 M74HCT648		248 190	
M74HCT648M1		248	
M74HCT651		190	
M74HCT651M1		248	
M74HCT652		190	
M74HCT652M1		248	
M74HCT7007 M74HCT7007M1		190	
M74HCU04		249 188	
M74HCU04M1		247	
M079		39	
M082,A		78	
M083,A		78	
M086,A		78	
M088 M089	7	39	
M093		39 39	
M105		75	
M108		78	
M112		78	
M114A,S		78	
M116 M192B1		39	
M206		183 75	
M208		78	
M293		75	
M490BB1		75	
M491BB1		75	
M494B1 M708AB1		75 75	
M708B1		75	
M708LB1		75	
M709AB1		75	
M709B1		75	
M710AB1		75	
M710B1 M761		75 42	
M764		41	
M2316H		59	
M2333		59	
M2365		59	
M2716		59	
M2716-1 M2732A		59 59	
M2732A-2		59	
M2732A-3		59	
M2732A-4		59	
M2764A		59	
M2764A-1 M2764A-2		59 59	
M2764A-3		59	
M2764A-4		59	
M2764A-15		59	
M2764A-20		59	
M2764A-25		59	
M2764A-30 M2764A-45		59 59	
M2870		63	
M2874		63	
M3004B1		75	
M3004M1		223	
M3005B1	1	75	
M3005M1 M3493		223 39	
M3494		39	

Туре	Page
M3561 M3870 M3870C M3874 M3874C M3876 M3876C M3878C M5116 M5156 M5450B7 M5451B7 M5481B7 M5482B7 M5481B7 M5482B7 M5913 M5914 M5917 M8438A M8438AC M8439 M8716A M8716B1 M8719 M8911 M9306 M9346 M22100 M22101 M22102 M27128A-2 M27128A-2 M27128A-3 M27128A-2 M27128A-3 M27128A-4 M27128A-4 M27128A-4 M27128A-5 M27128A-30 M27128A-4 M27128A-5 M27128A-30 M27128A-35 M27128A-30 M27128A-3	## Page ## 42 ## 63 ## 220 ## 63 ## 220 ## 63 ## 220 ## 63 ## 220 ## 63 ## 220 ## 63 ## 220 ## 64 ## 64 ## 63 ## 66 ## 63 ## 60/79/84/ ## 218/223 ## 60/79/84/ ## 188 #

Туре	Page
<u> </u>	
MC3302N	177
MC3303D	175/243
MC3303DT	175/243
MC3303J	175
MC3303N	175
MC3403D	175/243
MC3403DT	175/243
MC3403J	175 175
MC3403N MC3479C	182
MC3503J	175
MC4558	203
MC4558CD	174/242
MC4558CDT	174/242
MC4558CJ	174
MC4558CN	174
MC4558ID	174/242
MC4558IDT	174/242
MC4558IN	174
MC33001AD	168/238
MC33001ADT	168/239
MC33001AN	168
MC33001BD	168/239
MC33001BDT	168/239
MC33001BN	168
MC33001D	168/239
MC33001DT	168/239
MC33001N	168
MC33002AD	170/239
MC33002ADT	170/239
MC33002AN	170
MC33002BD	170/239
MC33002BDT	170/240
MC33002BN	170
MC33002D	170/240
MC33002DT MC33002N	170/240
MC33004AD	171/240
MC33004ADT	171/240
MC33004AD1	1717
MC33004BD	171/240
MC33004BDT	171/240
MC33004BN	171
MC33004D	171/240
MC33004DT	171/240
MC33004N	171
MC34001AD	168/239
· MC34001ADT	168/239
MC34001AN	168
MC34001BD	169/239
MC34001BDT	169/239
MC34001BN	169
MC34001D	169/239
MC34001DT	169/239
MC34001N	169
MC34002AD	170/240
MC34002ADT	170/240
MC34002AN MC34002BD	170 170/240
MC34002BDT	170/240
MC34002BD1	170/240
MC34002BN	170/240
MC34002DT	170/240
MC34002N	170/240
MC34004AD	171/240
MC34004ADT	171/240
MC34004AN	171
MC34004BD	171/240
MC34004BDT	171/241
MC34004BN	171
MC34004D	171/241
MC34004DT	171/241
MC34004N	171
	1

Туре	Page
MDF653 01	159
MDF653 14 MDF656 02	159 159
MDF656 06	159
MDF657 06	159° 159 93 95 95 95 95 95 95 95 95 95
MJ4030 ↓ MJ4035 MJ4502 MJ1011	95 ↓ 95 93 86/95
MJ11014 MJ11015 MJ11016 MJE200 MJE210 MJE370 MJE371 MJE520 MJE521 MJE700	86/95 95 95 93 93 92 93 92 93 94
↓ MJE703 MJE800	94 94
MJE803 MJE2955T MJE3055T MJE3005A MJE13006 MJE13006 MJE13007 MJE13007 MJE13008 MJE13009,A MK213009,A MK41H66-20 MK41H66-25 MK41H66-25 MK41H67-25 MK41H67-25 MK41H68-20 MK41H68-25 MK41H69-25 MK41H79-25 MK41H79-25 MK41H78-35 MK41H78-35 MK41H78-35 MK41H78-35	94 93 93 93 97 79/98 98 97 79/98 98 97 79/98 98 63 60 60 60 60 60 60 60 60 60 60 60 60 60

Туре	Page
MK41H79-35	61
MK41H80-20	61
MK41H80-22	61
MK41H80-25	61
MK41H80-35	61
MK48C02A-15	61/219
MK48C02A-13	1
MK48C02A-25	61/219
MK48T02-12	61/219
	61
MK48T02-15 MK48T02-20	61
MK48T02-25	61
MK48T12-15	61
MK48T12-20	61
MK48T12-25	61
MK48Z02-12	61
MK48Z02-15	61
	,
MK48Z02-20 MK48Z02-25	61
MK48Z02-25 MK48Z08-10	61
MK48Z08-10 MK48Z08-12	61
MK48Z08-12 MK48Z08-15	61
MK48Z08-15 MK48Z08-20	61
MK48Z09-10	61
MK48Z09-10	61
MK48Z09-15	61
MK48Z09-20	61
MK48Z12-12	61
MK48Z12-15	61
MK48Z12-20	61
MK48Z12-25	61
MK48Z18-10	61
MK48Z18-12	61
MK48Z18-15	61
MK48Z18-20	61
MK48Z19-10	61
MK48Z19-12	61
MK48Z19-15	61
MK48Z19-20	61
MK2870	63
MK3801	64
MK3870	63
MK3873	63
MK3875	63
MK4501-10	61/219
MK4501-12	61/219
MK4501-15	61/219
MK4501-20	61/219
MK4501-65	61/219
MK4501-80	61/219
MK4503-10	62
MK4503-12	62
MK4503-15	62
MK4503-20	62
MK4503-65 MK4503-80	62
MK4503-80 MK4505M-25	62
MK4505M-33	62
MK4505M-50	62
MK4505S-25	62
MK4505S-33	62
MK4505S-50	62
MK5025	55/68/218/223
MK5030	55/68
MK5032	55/68
MK5033	55/68
MK5035	55/68
MK5370	42
MK5371	42
MK5375	42
MK5376	42
MK6116-15	61

Туре	Page		
MV6116.05	61		
MK6116-25 MK45264N-55	61 62		
MK45264N-70	62		
MK45265N-55	62		
MK45265N-70	62		
MK50351	55/68		
MK53721	42		
MK53731	42		
MK53761 MK53762	42		
MK68230	42 65		
MK68230Q8	221		
MK68564	65		
MK68564Q4	221		
MK68564Q5	221		
MK68592	55/68		
MK68901	65		
MK68901Q4	221		
MK68901Q5	221		
MKB45H64	209		
MKB/J4501	209		
MKI48Z02-12	61		
MKI48Z02-15	61		
MKI48Z02-20	61		
MKI48Z02-25	61		
MKI48Z12-12	61		
MKI48Z12-15	61		
MKI48Z12-20	61		
MKI48Z12-25	61		
MKJ45H64	209		
ML8204	41		
ML8205	41		
MPQ2222	107		
MPQ2907	107		
MTA723 04	162		
1	↓		
MTA723 14	162		
MTH6N60FI	73/103		
MTH40N06	86/101		
MTH40N06FI	86/101		
MTP3N60	73/103		
MTP3N60FI	73/103		
MTP6N60	73/103		
MTP15N05L	100		
MTP15N05LFI	100		
MTP15N06L	100		
MTP15N06LFI	100		
MTP3055A	86/100		
MTP3055AFI	86/101		
NE555D	184/244		
NE555DT	184/244		
NE555J NE555N	184		
NE556D	184/244		
NE556DT	184/244		
NE556J	184		
NE556N	184		
P039	212		
P6KE 6V8A,CA,CP,P	42/130		
1	 		
P6KE 39A,CA,CP,P	42/130		
P6KE 43A,CA,CP,P	42/131		
ļ	+		
P6KE 440A,CA,CP,P	42/131		
P7T-10,B	42/131		
♦	40/101		
P7T-110,B	42/131		
PBL3717A PBL3726 series	182		
1 012/20 20162	41		

	1	Гуре			Page	
	PFR 305				142	
	PFR 310 PFR 850				142 142	
	1				1	
	PFR 856				142	
	PL 360D PLE 0.7				128 127	
	PLE 1.5 PLQ 08				127 142	
	PLQ 1				142	
	RN 820 (R) RN 1120 (R)				144 144	
	S2000FI SA555D				72/76 184/244	
	SA555DT SA555J				184/244 184	
	SA555N SA556D				184	
	SA556DT				184/244 184/244	
	SA556J SA556N				184 184	
	SAA1094 SD 1005				41 54	
	SD 1006 SD 1012				54 46	
	SD 1012-3				46	
	SD 1012-4 SD 1013				46 45	
	SD 1013-3 SD 1014-2				45 46	
	SD 1014-6 SD 1015				46 45	
	SD 1018 SD 1018-6				^ 46 46	
	SD 1018-15			-	46	
	SD 1019 SD 1021				45 46	
	SD 1022 SD 1037-1				46 48	
	SD 1037-4 SD 1040-6				48 54	
	SD 1050 SD 1060				48 48	
	SD 1062 SD 1064				46 46	
	SD 1065				46	
	SD 1070 SD 1072				46 46	
	SD 1075 SD 1080-2				48 46	
	SD 1080-6 SD 1080-7				47 47	
	SD 1090 SD 1098				48 47	
	SD 1115-2				46/47	
	SD 1127 SD 1132-4				46 47	
	SD 1132-5 SD 1133				47 46	
	SD 1134 SD 1134-5				. 47 . 46	
	SD 1135 SD 1135-3				47 46	
	SD 1136				47	
	SD 1143 SD 1143-1				46 46	
	SD 1144 SD 1145				47 47	
	SD 1146 SD 1150			1	47 47	
	SD 1150-3 SD 1170				47 52	
1						

Туре	Page
CD 1171	E0
SD 1171 SD 1175	52 52
SD 1176	52
SD 1212-2	46
SD 1214-12 SD 1216	46
SD 1219	45
SD 1219-5	45
SD 1220	46
SD 1220-1 SD 1222-5	45 45
SD 1222-6	45
SD 1222-10	46
SD 1224 SD 1224-2	46 45
SD 1224-2 SD 1224-10	44
SD 1229-1	46
SD 1229-7	46
SD 1229-8 SD 1240	46 48
SD 1240 SD 1242	48
SD 1244-7	48
SD 1272	46
SD 1272-2 SD 1273	46
SD 1274	46
SD 1274-1	46
SD 1275 SD 1275-1	46 46
SD 1278	46
SD 1285	44
SD 1290	44
SD 1316 SD 1317	54
SD 1399	47
SD 1400	47
SD 1400-2 SD 1400-3	47 47
SD 1400-3 SD 1402	47
SD 1403	44
SD 1405	44
SD 1406 SD 1407	44
SD 1407-8	44
SD 1409	47
SD 1410 SD 1410-1	47 47
SD 1410-1 SD 1410-3	47
SD 1411	44
SD 1412	47
SD 1412-3 SD 1414	47 47
SD 1418	47
SD 1421	47
SD 1422	47
SD 1423 SD 1424	47 47
SD 1426	47
SD 1428	46
SD 1429 SD 1429-3	47 47
SD 1429-3 SD 1430	45
SD 1433	47
SD 1434	47
SD 1438-2 SD 1441	45 46
SD 1444	47
SD 1446	44
SD 1448 SD 1451	49
SD 1451	48
SD 1456-2	48
SD 1457	45

Туре	Page
SD 1552 SD 1556 SD 1557 SD 1563 SD 1564 SD 1565 SD 1724-1 SD 1726	51 51 51 49 49 49 44
SD 1731 SD 1732 SD 1732 SD 1733 SD 1801 SD 1803 SD 1805 SD 1810 SD 1812 SD 1812 SD 1814 SD 1817 SD 1830 SD 1831 SD 1831 SD 1835 SD 1835 SD 1835 SD 1835 SD 1835 SD 1842 SD 1842 SD 1844 SD 1845 SD 1845 SD 1845 SD 1850 SD 1851 SD 1850 SD 1851 SD 1855 SD 1866 SD 1855 SD 1866 SD 1866 SD 1868 SD 1869 SD 1870 SD 1872	44 49 444 52 52 52 52 52 52 52 52 52 52 52 52 52
SD 1876 SD 1879 SD 1883 SD 1885 SD 1886 SD 1887 SD 1900 SD 1900-1 SD 1902-1 SD 1902-1 SD 1904 SD 1904-1 SD 1904 SD 1906-1 SD 1905 SD 1906-1 SD 1907 SD 1908-1 SD 1912 SD 1912 SD 1912 SD 1920 SE555 SE555J SE556 SE556J SG1525A SG2524 SG2524P SG25255A	53 53 53 53 53 53 53 45 45 45 45 45 45 45 45 45 45 45 45 45

Туре	Page
SG2525AP SG2527A SG2527AP SG3524 SG3524 SG3524 SG3525A SG3525A SG3525A SG3527A SG3527A SG3527A SG3527A SG3527A SG3527AP SG825DB070D SGS25DB070D SGS30DA060D SGS30DA060D SGS30DB045D SGS30DB045D SGS30MA050D1 SGS35DB070D SGS35DB070D SGS35DB070D SGS35DB070D SGS35DB070D SGS35DB070D SGS35DB070D SGS35DB070D SGS35DB00D SGS35MA050D1 SGS40TA045D SGS50DA045D SGS60DA060D SGS60DA060D SGS60DA070D SGS80DA00D SGS100MA010D1 SGS111 SGS112 SGS115 SGS116 SGS117 SGS112 SGS116 SGS117 SGS122 SGS125 SGS136 SGS137 SGS130 SGS131 SGS132 SGS131 SGS132 SGS135 SGS136 SGS137 SGS150MA010D1 SGS911 SGS911 SGS911 SGS912 SGS3055 SGS6386 SGS037 SGS6388 SGSD00020 SGS938 SGSD00020 SGSP321 SGSP323 SGSP324 SGSF324 SGSF422 SGSF422 SGSF422 SGSF422 SGSF422 SGSF422	244 181 244 181 244 181 244 181 244 104 104 104 104 104 104 104 104 104 1

Тур	е	Page
SCSE441		00
SGSF441 SGSF443		99 99
SGSF444		72/99
SGSF445		72/99
SGSF461		99
SGSF463		99
SGSF464		72/99
SGSF465		72/99
SGSF541 SGSF543		99 99
SGSF544		99
SGSF545		99
SGSF561		99
SGSF563		99
SGSF564		72/99
SGSF565	-	72/99
SGSF661 SGSF664		99 72/99
SGSF665		72/99
SGSIF321		99
SGSIF323		99
SGSIF324		72/99
SGSIF325		99
SGSIF341		99
SGSIF343		99
SGSIF344 SGSIF345		72/99 99
SGSIF421		99
SGSIF423		99
SGSIF424		72/99
SGSIF425		72/99
SGSIF441		99
SGSIF443		99
SGSIF444 SGSIF445		99 72/99
SGSIF461		99
SGSIF463		99
SGSIF464		72/99
SGSIF465		72/99
SGSP201		86/101
SGSP222 SGSP230		87/100 102
SGSP239		103
SGSP301		101
SGSP311		101
SGSP316		102
SGSP317		102
SGSP319 SGSP321		73/103 101
SGSP322		100
SGSP330		102
SGSP341		102
SGSP351		101
SGSP358		100
SGSP361		87/101
SGSP362 SGSP363		101 102
SGSP364		73/103
SGSP367		102
SGSP369		73/103
SGSP381		101
SGSP382		100
SGSP461 SGSP462		87/101 101
SGSP462 SGSP471		101
SGSP472		101
SGSP474		73/103
SGSP475		73/102
SGSP477		102
SGSP479 SGSP481		73/103 101
SGSP481 SGSP482		100
SGSP491		101

Туре	Page
SGSP492 SGSP574 SGSP575 SGSP577 SGSP579 SGSP591 SGSP592 SM4T 6V8,A,C,CA	86/100 103 102 102 103 101 100 229
\$M4T 200,A,C,CA \$M4T 220,A \$M6T 6V8,A,C,CA	229 229 230
SM6T 200A,C,CA SM6T 220,A SM15T 6V8,A,C,CA	230 230 231
SM15T 200,A,C,CA SM15T 220,A SO517 SO642 SO692 SO918 SO930 SO1711 SO1893 SO2221,A SO2222,A SO2221,A SO2222,A SO2369,A SO2907,A SO2907,A SO3903 SO3904 SO3905 SO3906 SO4401 SO4401 SO4403 SO5550 SO5551 SOA 06 SOA 55 SOA 56 ST24C02 ST27C256-25FN ST27C256-20FN ST27C256-20FN ST27C256-20FN ST27C256-20FN ST27C256-20FN ST27C256-20FN ST27C256-20FN ST27C256-20FN ST27C256-20FN ST27C256-20F	231 231 231 231 231 235 235 235 238 234 234 234 234 235 235 235 235 235 235 235 235 235 235
ST2764A-20P ST2764A-25P ST6010B6	60 60 66

Туре	Page
\$T6011B6 \$T6012B6 \$T6031B6 \$T6031M6 \$T6040B6 \$T6040C6 \$T6050C6 \$T60552B6 \$T6124C6 \$T6154Q8 \$T8108B6 \$T8108C6 \$T9020B6 \$T9020B6 \$T9021B6 \$T9023C6 \$T9031B6 \$T9031B6 \$THV102 \$THV102 \$THV102 \$THV102 \$THV102 \$THV102 \$THV102 \$THV1050,FI \$TLT19 \$TLT19 \$TLT19 \$TLT19 \$TLT20 \$T	66 66 66 66 66/222 66 66/222 66 66/222 66 66/222 67 67 67/222 67 73/103 103 103 103 100 100 101 101 100 101
\$V 1025 R \$V 1108 F (R)	158 159
↓ SV 1120 F (R) SV 1502 F (R) ↓ SV 1515 F (R) SV 2002 (R)	159 159 159 159 159
SV 2020 (R) T54LS00 T54LS01 T54LS02 T54LS03 T54LS03 T54LS04 T54LS05 T54LS05 T54LS08 T54LS09 T54LS10 T54LS11 T54LS12 T54LS13 T54LS14 T54LS2 T54LS20 T54LS20 T54LS20 T54LS21 T54LS21 T54LS21 T54LS21 T54LS21 T54LS22 T54LS26A T54LS27 T54LS28 T54LS30 T54LS30 T54LS33 T54LS33 T54LS37 T54LS38	158 191/206 191 191/206 206 191 191/206 206 191 191/206

Туре	Page
T54LS40	191/206
T54LS42	191/206
T54LS51	191
T54LS54	191/206
T54LS55 T54LS74A	191/206 191/206
T54LS75	191/200
T54LS83A	191/206
T54LS86	191
T54LS90	191
T54LS93 T54LS95B	191/206 191
T54LS109A	191
T54LS112A	191
T54LS113A	191
T54LS125A	191/206
T54LS126A T54LS132	191
T54LS133	191
T54LS136	191/206
T54LS138	191/206
T54LS139	191/206
T54LS148 T54LS151	191 192/206
T54LS152	192/200
T54LS153	192/206
T54LS155	192/206
T54LS156	192/206
T54LS157	192/206
T54LS158 T54LS164	192/206 192/206
T54LS166	192
T54LS168	192
T54LS169	192
T54LS170	192/206
T54LS174 T54LS175	192/206 192/206
T54LS181	192
T54LS190	192
T54LS191	192
T54LS192 T54LS193	192/206 192/206
T54LS194A	192/206
T54LS195A	192/206
T54LS196	192
T54LS197	192
T54LS240 T54LS241	192/206 192/206
T54LS244	192
T54LS245	192
T54LS248	192
T54LS251 T54LS253	192
T54LS256	192
T54LS257A	192
T54LS258A	192/206
T54LS259	192/206
T54LS260 T54LS266	192
T54LS273	192/206
T54LS279	192/206
T54LS280	192/206
T54LS283	192/206
T54LS293 T54LS295A	192/206 192
T54LS298	192/206
T54LS352	192/206
T54LS353	192/206
T54LS365A	192/206
T54LS366A T54LS367A	192/206 192/206
T54LS368A	192/206
T54LS373	192

Туре	Page
T54LS374	192/206
T54LS377	192/206
T54LS378	192/206
T54LS379	192/206
T54LS390	192
T54LS393	192/206
T54LS395	192
T54LS395A T54LS399	206
T54LS490	192
T54LS533	192
T54LS534	192
T54LS540	192
T54LS541	192/206
T54LS645	192 192/206
T54LS670 T74LS00	191
T74LS00M1	249
T74LS01	191
T74LS01M1	249
T74LS02	191
T74LS02M1	249
T74LS03A T74LS03AM1	191 249
T74LS04	191
T74LS04M1	249
T74LS05A	191
T74LS05AM1	249
T74LS08 T74LS08M1	191
T74LS09	191
T74LS09M1	249
T74LS10	191
T74LS10M1	249
T74LS11	191
T74LS11M1 T74LS12	249 191
T74LS12M1	249
T74LS13	191
T74LS13M1	249
T74LS14	191 249
T74LS14M1 T74LS15	191
T74LS15M1	249
T74LS20	191
T74LS20M1	249
T74LS21	191
T74LS21M1 T74LS22	249 191
T74LS22M1	249
T74LS26A	191
T74LS26AM1	249
T74LS27	191
T74LS27M1 T74LS28	250 191
T74LS28M1	250
T74LS30	191
. T74LS30M1	250
T74LS32	191
T74LS32M1 T74LS33	250 191
T74LS33M1	250
T74LS37	191
T74LS37M1	250
T74LS38 T74LS38M1	191
T74LS38MT	250 191
T74LS40M1	250
T74LS42	191
T74LS42M1	250
T74LS51 T74LS51M1	191 250
T74LS54	191

Type Page T74LS54M1 250 T74LS55 191 T74LS74A 191 T74LS74A 191 T74LS75 191 T74LS83A 191 T74LS83A 191 T74LS83A 191 T74LS86 191 T74LS86M1 250 T74LS90 191 T74LS90 191 T74LS93 191 T74LS93M1 250 T74LS93M1 250 T74LS93M1 250 T74LS93M1 250 T74LS93BM1 250 T74LS95BM1 250 T74LS109A 191 T74LS109AM1 250 T74LS112A 191 T74LS113A 191 T74LS113A 191 T74LS113A 191 T74LS125A 191 T74LS126AM1 250 T74LS132 191 T74LS133 191 T74LS133M1 2			
T74LS55 191 T74LS75M1 250 T74LS74A 191 T74LS75 191 T74LS75M1 250 T74LS83A 191 T74LS86 191 T74LS86M1 250 T74LS90 191 T74LS93 191 T74LS93M1 250 T74LS93M1 250 T74LS93BM1© 250 T74LS95BM1© 250 T74LS109A 191 T74LS109AM1 250 T74LS112A 191 T74LS113AM1 250 T74LS113AM1 250 T74LS125AM1 250 T74LS126A 191 T74LS126A 191 T74LS132BM1 250 T74LS132BM1 250 T74LS133 191 T74LS133M1 250 T74LS136M1 250 T74LS138M1 250 T74LS138M1 250 T74LS138 191 T74LS138M1 250 T74LS138M1 250	Туре	, , ,	Page
174LS153 192 T74LS155M1 250 T74LS155M1 250 T74LS156 192 T74LS156 192 T74LS157 192 T74LS157 192 T74LS158 192 T74LS158 192 T74LS158M1 250 T74LS164 192 T74LS166 192 T74LS166 192 T74LS168 192 T74LS169 192 T74LS169 192 T74LS169M1 250 T74LS170 192 T74LS174M1 250 T74LS174M1 192 T74LS175 192 T74LS175M1 250 T74LS181 192 T74LS181M1 250 T74LS190 192 T74LS190M1 250	T74LS54M1 T74LS55 T74LS55M1 T74LS75AM1 T74LS75AM1 T74LS75 T74LS75M1 T74LS83A T74LS83AM1 T74LS86 T74LS86M1 T74LS90 T74LS90M1 T74LS93 T74LS93M1 T74LS93M1 T74LS93M1 T74LS93M1 T74LS95BM1 ◎ T74LS109A T74LS109A T74LS112AM1 T74LS112A T74LS112AM1 T74LS112A T74LS112AM1 T74LS113A T74LS113AM1 T74LS125A T74LS125AM1 T74LS125AM1 T74LS126A T74LS126AM1 T74LS126A T74LS126AM1 T74LS138M1 T74LS155 T74LS155M1 T74LS155 T74LS155M1 T74LS155 T74LS155M1 T74LS155 T74LS155M1 T74LS156 T74LS156M1 T74LS156 T74LS156M1 T74LS157 T74LS156M1 T74LS156 T74LS156M1 T74LS157 T74LS156M1 T74LS156 T74LS156M1 T74LS156 T74LS156M1 T74LS157 T74LS156M1 T74LS156 T74LS156M1 T74LS156 T74LS156M1 T74LS157 T74LS156M1 T74LS156 T74LS156M1 T74LS157 T74LS156M1 T74LS156 T74LS156M1 T74LS157 T74LS157M1 T74LS157 T74LS157M1 T74LS168 T74LS169M1 T74LS169M1 T74LS169M1 T74LS170M1 T74LS177	191 250 192 250 192	Page

Туре	Page
T74LS192 T74LS192M1 T74LS193M1 T74LS194A T74LS194A T74LS195A T74LS195AM1 T74LS195A T74LS195AM1 T74LS196 T74LS196M1 T74LS196 T74LS197M1 T74LS240 T74LS241M1 T74LS241M1 T74LS244 T74LS244M1 T74LS245 T74LS245M1 T74LS245 T74LS255M1 T74LS255 T74LS255M1 T74LS253M1 T74LS253M1 T74LS253M1 T74LS259M1 T74LS259M1 T74LS258A T74LS259M1 T74LS253M1 T74LS253M1 T74LS259M1 T74LS25SAM1 T74LS29SAM1 T74LS29SAM1 T74LS29SAM1 T74LS29SAM1 T74LS29SAM1 T74LS353 T74LS353M1 T74LS353 T74LS353M1 T74LS365AM1 T74LS365AM1 T74LS365AM1 T74LS365AM1 T74LS366AM1 T74LS366AM1 T74LS366AM1 T74LS368AM1	192 250 192 251 192 250 192 251
T74LS368A T74LS368AM1	192 251

Туре	Page
T74LS379M1 T74LS390 T74LS390M1 T74LS393 T74LS393M1 T74LS395 T74LS395M1 T74LS399 T74LS399M1 T74LS490 T74LS490 T74LS490M1 T74LS533 T74LS533M1 T74LS533M1 T74LS541 T74LS541M1 T74LS541M1 T74LS645 T74LS645M1 T74LS670 T74LS670 T74LS670M1 TA 329 04 TA 329 14 TA 449 04 W TA 449 14 W	251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 192 251 162
TA 649 04 X TA 649 14 X TA 925 12	162 162 162 162
TA 925 25 TBA 820 M TCA830SM TCA3089 TCC 0105-100 TCC 0204-125 TCC 20 L 08 TCC 20 L 15 TCC 20 L 25 TCC 598 TCC 1417-25 TCC 1720-3 TCC 1720-6 TCC 1720-10 TCC 1720-10 TCC 1720-25 TCC 1922-18 TCC 2001 TCC 2003 TCC 2005 TCC 2010 TCC 2023-6	↓ 162 77 74 78 48/78 48/78 48 53 53 53 49 53 53 53 53 53 53 53 53 53 53 53 53 53
TCC 2023-16 TCC 2100 TCC 2223-3 TCC 2223-10 TCC 2223-18 TCC 2301 TCC 2302 TCC 2304 TCC 2307 TCC 2327-15 TCC 3000	53 53 53 53 53 52 52 52 52 52 52 52 52

Туре	Page
TCC 3001 TCC 3003 TCC 3005 TCC 3100 TDA0159ADP TDA0159AFP TDA0161CM TDA0161PP TDA0161FP TDA1151 TDA1154 TDA1170D TDA1170N TDA1170S TDA1180P TDA1190Z TDA1220B TDA1220L TDA1220L TDA1670A TDA1770A TDA1872A TDA1904 TDA1905 TDA1908 TDA1900 TDA2002	52 52 52 48 185 185/245 185 185/245 78 78 71 71 71 71 71 74 78 78 78 71 71 71 74/77 74/77 74/77 77 74/77 74/77 77 74/77 74/77 74 77 74 77 74 74 74 74 74 74 74 74 7

Туре	Page
TEA2031A TEA2037A TEA2164 TEA3717 TEA3718.S TEA5031D TEA5040 TEA5049 TEA5101A TEA5110 TEA5114A TEA5115 TEA5116 TEA5170 TEA5620 TEA5630 TEA5640B TEA5640B TEA5640B TEA7031 TEA7031 TEA7031 TEA7031 TEA7037 TEA7050 TEA7050 TEA7655 TEA7655 TEA7655 TEA7665 TEA7665 TEA7610 TEA7630 TEA7630 TEA7630 TEA7531 TEA7531FP TEA7532 TEA7532 TEA7685 TEA7685 TEA7685 TEA7685 TEA7685 TEA76830 TEB1033D TEB1033D TEB1033D TEB1033D TEB1033D TEB1033D TEB1033D TEB1033D TEB4033D TEB4033D TEB4033D TEB4033D TEF1033D	71 71 76/181 182 182 74 74 75 75 75 75 75 75 76/180 74 74 74 74 74 74 74 74 74 74 74 74 74
TF 219 20	161
TF 223 01	161
TF 223 14	161
TF 225 01	161
TF 225 12	161
TF 440 01	161
TF 440 20	161
TF 444 01	161
TF 444 14	161

Туре	Page
TF 447 01	161
TF 447 10	161
TF 666 01	161
TF 666 14	161
TF 708 12	161
TF 708 20	161
TF 709 01	161
TF 709 14	161
TF 913 12	161
TF 913 20	161
TF 915 01	161
TF 915 14	161
TF 944 20	161
TF 944 35	161
TGAL 602	155
TGAL 610	155
TGDV 601	156
↓ TGDV 612 TGF 148-600 B	156 150
TGF 148-1200 B	150
TGF 149-100 A	150
TGF 149-600 A TH6P04T6V5CL TH6P04T25CL TH 208 TH 416 TH 430 TH 513 TH 560 TH 562 THA 15 THBT 200 D THDT 58 D THDT 58 D THDG 224 S 04	150 136 136 44 44 44 44 44 44 44 40 163
THDG 224 S 12	163
THDG 225 S 10	163
THDG 225 S 16	163
THDG 304 S 04	163
THDG 304 S 12	163
THDG 305 S 10	163
↓ THDG 305 S 18	163

Туре	Page
THDG 515 S 10	163
THDG 515 S 16 THDG 516 C 16	163 163
THDG 516 C 25 THDGT 224 S 04	163 163
THDGT 224 S 12 THDGT 304 S 04	↓ 163 163
THDGT 304 S 12 THDGT 305 S 10	163 163
THDGT 305 S 18 THX 15 TIP29,A,B,C TIP30,A,B,C TIP30,A,B,C TIP31,A TIP31B,C TIP32B,C TIP35A,B,C TIP35A,B,C TIP41,A,B,C TIP42,A,B,C TIP42,A,B,C TIP100 TIP101 TIP110 TIP110 TIP110 TIP110 TIP110 TIP112 TIP112 TIP115 TIP116 TIP117 TIP112 TIP122 TIP125 TIP126 TIP127 TIP120 TIP121 TIP122 TIP135 TIP130 TIP131 TIP132 TIP135 TIP140 TIP131 TIP132 TIP135 TIP146 TIP147 TIP145 TIP146 TIP147 TIP2955 TIP146 TIP147 TIP2955 TIP146 TIP147 TIP2955 TIP146 TIP147 TIP2955 TIR140 TK 1220 TK 1401	↓ 163 44 92 92 92 92 93 93 93 93 93 93 93 94 86/95 86/95 94 94 94 94 94 94 94 94 94 94 95 86/95 86/95 86/95 86/95 86/95 86/95 95 86/95 95 86/95 96 86/95 97 86/95 98 86/95 91 86/95 95 86/95 96 86/95 96 86/95 97 86/95 98 86/95 96 86/95 97 86/95 98 86/95 98 86/95

Туре	Page
TK 1801	160
TK 1814	160
TK 2601	160
TK 2620	160
TK 3001	160
TK 3016	160
TK 3601	160
TK 3612	160
TKAL 110	164
TKAL 180	164
TKAL 210	164
TKAL 280 TKAL 1100 TKAL 1120 TKAL 1120 TKAL 2100 TKAL 2120 TL061 TL061ACD TL061ACD TL061ACD TL061AID TL061AID TL061AID TL061AID TL061BID TL061BCD TL061BCD TL061BID TL061BID TL061BID TL061BID TL061BIN TL061CD TL061CD TL061CD TL061CD TL061CD TL062ACD TL062ACD TL062ACD TL062ACD TL062BCD TL062BCD TL062BCD TL062BCD TL062BCD TL062BID TL062BID TL062BID TL062BID TL062BID TL062BID TL062CD TL064ACD TL064ACD TL064AID TL064AID TL064AID TL064AID TL064AID TL064AID TL064AID TL064AID TL064AID	164 164 164 164 164 164 164 164 164 164

Туре	Page
TL081ACD TL081ACDT TL081ACN TL081AID TL081AID TL081AIN TL081BCD TL081BCD TL081BCD TL081BID TL081BID TL081BID TL081BID TL081BID TL081CD TL081CD TL081CD TL081CD TL081CD TL081CD TL082CD TL082ACD TL082ACD TL082ACD TL082ACD TL082AID TL082BID TL084BID TL084ACD TL084BID TL084BID TL084BID TL084BID TL084BCD TL084BCD TL084BCD TL084BID	169/239 169/239 169 169/239 169 169/239 169 169/239 169 169/239 169 169/239 169 169/239 169 169/239 169 203 170/240 170/240 170/240 170/240 170/240 170/240 171/240 171/240 171/240 171/240 171/240 171/240 171 171/240 171/240 171 171/240 171/240 171 172/241 172 172/241 172 172/241 172 172/241 172 172/241 172 172/241 172
TL084BID TL084BIDT TL084BIN TL084CD TL084CDT	172/241 172/241 172 172/241 172/241
TL084CJ TL084CN TL084ID TL084IDT TL084IJ TL084IN TL 1006	172 172 172/241 172/241 172 172 146
TL 2006 TL 4006 TL 6006 TL 7700ACD TL 7700ACP TL 7700AID TL 7700AIP	146 146 146 185/245 185 185/245
TL 8006 TLC 111 A TLC 111 B TLC 111 D,S,T TLC 116 A	146 152 153 152 152

Туре	Page
TLC 116 B TLC 116 D,S,T TLC 221 A TLC 221 B TLC 221 D,S,T TLC 226 A TLC 226 B TLC 226 D,S,T TLC 331 A TLC 331 B TLC 331 D,S,T TLC 336 A TLC 336 B TLC 381 B TLC 386 D,S,T TLS 106-05	153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 153 152 154
TLS 106-6 TLS 107-05	146 146
TLS 107-6 T-LVA 47A T-LVA 47A T-LVA 51A T-LVA 56A T-LVA 68A T-LVA 68A T-LVA 91A T-LVA 100A T-LVA 347A T-LVA 351A T-LVA 356A T-LVA 368A T-LVA 368A T-LVA 368A T-LVA 375A T-LVA 382A T-LVA 456A T-LVA 456A T-LVA 450A T-LVA 456A T-LVA 456A T-LVA 456A T-LVA 456A T-LVA 456A T-LVA 468A T-LVA 471A T-LVA 471A T-LVA 477A T-LVA 480A T-LVA 489A T-LVA 499A T-LVA 499A T-LVA 498A T-LVA 3100A TM 4187 B	146 115 115 115 115 115 115 115 115 115 11
↓ TM 4193 B TM 4728 A ↓ TM 4764 A TM BAT 49 TM BYV 10-20,A	227 227 227 ↓ 227 224 224

Туре	Page
TM BYV 10-30	224
TM BYV 10-40	224
TM BYV 10-60	224
TMM 5221 B	226
TMM 5281 B TMM 5711 TMM 5712 TMM 6263 TMM BAR 10 TMM BAR 11 TMM BAR 19 TMM BAR 28 TMM BAT 19 TMM BAT 29 TMM BAT 29 TMM BAT 29 TMM BAT 22 TMM BAT 41 TMM BAT 42 TMM BAT 42 TMM BAT 43 TMM BAT 43	226 224 224 224 224 224 224 224 224 224
↓ TMM BAT 48 TMM DB 3 TN 232 01	224 157/228 160
TN 232 16	160
TN 431 01	160
TN 431 20	160
TN 432 01	160
TN 432 16	160
TN 433 01	160
TN 433 12	160
TN 631 12	160
TN 631 24	160
TN 632 01	160
TN 632 20	160
TN 633 01	160
TN 633 14	160
TN 731 12	160
TN 731 22	160
TN 733 01	160
TN 733 14	160
TN 931 12	160
TN 931 25	160
TN 933 01	160
TN 933 14 TN 934 20	↓ 160 160 I
TN 934 35	160
TODV 125	156

Туре	Page
TODV 140 TODV 225 TODV 240 TODV 240 TODV 240 TODV 425 TODV 440 TODV 625 TODV 640 TODV 825 TODV 840 TODV 1025 TODV 1040 TODV 1225 TODV 1240 TPA 62 A 12 or 18 TPA 100 A-12 or 18 TPA 100 A-12 or 18 TPA 110 A-12 or 18 TPA 120 A-12 or 18 TPA 120 A-12 or 18 TPA 130 A-12 or 18 TPA 200 A-12 or 18 TPA 100 B-12 or 18 TPA 130 A-12 or 18 TPA 130 A-12 or 18 TPA 120 A-12 or 18 TPA 120 A-12 or 18 TPA 200 B-12 or 18 TPA 200 B-12 or 18 TPA 210 B-12 or 18 TPA 270 B-12 or 18 TPA 270 B-12 or 18 TPB 100 A-12 or 18 TPB 100 B-12 or 18 TPB 100 B-12 or 18 TPB 110 B-12 or 18 TPB 120 B-12 or 18 TPB 130 B-12 or 18 TPB 120 B-12 or 18 TPB 130 B-12 or 18 TPB 240 B-13 or 18 TPB 240	156 156 156 156 156 156 156 156 156 156

Туре		Page
TS27C64A-20FN		60/218
TS27C64A-20P		60
TS27C64A-25		59
TS27C64A-25FN		60/218
TS27C64A-25P		60
TS27C64A-30		59
TS27C64A-35P		60
TS27C256 TS27C256-20		209 59
TS27C256-25		59
TS27C256-30	-	59
TS27L2ACD		166/237
TS27L2ACDT		166/237
TS27L2ACN		166
TS27L2AID		166/237
TS27L2AIDT TS27L2AIN		166/237
TS27L2BCD		166 166/237
TS27L2BCDT		166/237
TS27L2BCN		166
TS27L2BID		166/237
TS27L2BIDT		166/237
TS27L2BIN		160
TS27L2CD		166/237
TS27L2CDT TS27L2CN		166/237 166
TS27L2ID		166/237
TS27L2IDT		166/237
TS27L2IN		166
TS27L4ACD		167/238
TS27L4ACDT		167/238
TS27L4ACN TS27L4AID		167 167/238
TS27L4AIDT		167/238
TS27L4AIN		167
TS27L4BCD		167/238
TS27L4BCDT		167/238
TS27L4BCN TS27L4BID		167 167/238
TS27L4BIDT		167/238
TS27L4BIN		167
TS27L4CD		167/238
TS27L4CDT		167/238
TS27L4CN		167
TS27L4ID TS27L4IDT		167/238 167/238
TS27L4IN		167
TS27M2AC		166/237
TS27M2ACDT	×	166/237
TS27M2ACN		166
TS27M2AID TS27M2AIDT		166/237
TS27M2AID1		166/237 166
TS27M2BCD		166/237
TS27M2BCDT		166/237
TS27M2BCN		166
TS27M2BID		166/237
TS27M2BIDT TS27M2BIN		166/237 166
TS27M2CD		166/237
TS27M2CDT		166/237
TS27M2CN		166
TS27M2ID		166/237
TS27M2IDT		166/237
TS27M2IN TS27M4ACD		166 167/238
TS27M4ACDT		167/238
TS27M4ACN		167
TS27M4AID		167/238
TS27M4AIDT		167/238
TS27M4AIN TS27M4BCD		167 167/238
TS27M4BCDT		167/238

Туре	Page	Туре	Page	Туре	Page
TS27M4BCN	167	TS2901B	209	TSFD series	210
	167/238	TS2901C	209	TSFK09	210
TS27M4BID				TSFK series	251/259
TS27M4BIDT	167/238	TS2902A	209		
TS27M4BIN	167	TS2909A	209	TSFL series	210
TS27M4CD	167/238	TS2910	209	TSFJ series	210
TS27M4CDT	167/238	TS2911A	209	TSFJ04	210/252/259
TS27M4CN	167	TS2914	209	TSFJ06	252/259
TS27M4ID	167/238	TS2915A	209	TSFJ09	252/259
TS27M4IDT	167/238	TS2917A	209	TSFJ13	252/259
TS27M4IN	167	TS2918	209	TSFJ23	252/259
TS59C11	60/79/84	TS2919	209	TSG8510	252/260
TS68HC901	65/209	TS5070	40		1
TS68HC901FN	221	TS5070FN	218		ļ +
TS93C46	60/79/84	TS5071	40	TSG8514	252/260
TS271ACD	166/237	TS5076	40	TSG8530	252/260
TS271ACDT	166/237	TS7513	39	TSG8531	252/260
TS271ACN	166	TS7514	39	TSG8532	252/260
TS271AID	166/237	TS7514CFN	218	TSG8540	252/260
TS271AIDT	166/237	TS7515	39	TSG8550	252/260
TS271AIN	166	TS7515EVA	39	TSG8551	252/260
TS271BCD	166/237	TS7513EVA	39	TSG8670	252/260
TS271BCDT	166/237	TS7532	39	TSG8751	252/260
TS271BCD1 TS271BCN		TS7532	93	TSG8852	
TS271BCN TS271BID	166 166/237	TS7542 TS7542CFN	218	TSGB series	253/260 210
TS271BIDT	166/237	TS8318	71	TSGC series	210
TS271BIN	166	TS8348	71	TSGF04	252/260
TS271CD	166/237	TS8408	71	TSGF08	252/260
TS271CDT	166/237	TS8428	71	TSGF12	252/260
TS271CN	166	TS9370	68/76	TSGF88 series	253/260
TS271ID	166/237	TS9370FN	223	TSGF series	210
TS271IDT	166/237	TS68000	209	TSGSM series	210/252/259
TS271IN	166	TS68000-8	65	TSP 225	149
TS272ACD	167/237	TS68000-10	65	TSP 525	149
TS272ACDT	167/237	TS68000-12	65	TSP 1025	149
TS272ACN	167	TS68000-16	65	TST-IN48	65
TS272AID	167/237	TS68000FN8	221	TV 1708F (R)	159
TS272AIDT	167/237	TS68000FN10	221		
TS272AIN	167	TS68000FN12	221		
TS272BCD	167/237	TS68000FN16	221	TV 1720F (R)	159
TS272BCDT	167/237	TS68008	209	TV 1820F (R)	159
TS272BCN	167	TS68008-8	65	1	1
TS272BID	167/237	TS68008-10	65		1 1
TS272BIDT	167/237	TS68008-12	65	TV 1825F (R)	159
TS272BIN	167	TS68008FN8	221	TV 2202F (R)	159
TS272CD	167/237	TS68008FN10	221	1 7 22021 (11)	139
TS272CDT	167/237	TS68230	209	1 1 1	1 1
TS272CN	167	TS68483	65/76/68/209	TV 2215F (R)	159
TS272ID	167/237	TS68483CFN15	221/223		158
				TV 3002 (R)	150
TS272IDT	167/237	TS68483CFN18 TS68494	221/223		
TS272IN	167		65/68/76	TV 2020 (D)	150
TS274ACD	168/238	TS68494CFN	221/223	TV 3020 (R)	158
TS274ACDT TS274ACN	168/238	TS68564	209	TXDV 208	156
	168	TS68901	209	TXDV 212	156
TS274AID	168/238	TS68930	39/65	TXDV 408	156
TS274AIDT	168/238	TS68930EMU	39	TXDV 412	156
TS274AIN	168	TS68930EPROM-V	39	TXDV 608	156
TS274BCD	168/238	TS68930HDS	39	TXDV 612	156
TS274BCDT	168/238	TS68930SP-PC	39	TXDV 808	156
TS274BCN	168	TS68931	39/65/209	TXDV 812	156
TS274BID	168/238	TS68950	39	TXN 054	147
TS274BIDT	168/238	TS68951	39	TXN 056	147
TS274BIN	168	TS68952	39	TXN 058,G,K	147
TS274CD	168/238	TS75320	39	TXN 0510	147
TS274CDT	168/238	TSBC03 series	210	TXN 0512	147
TS274CN	168	TSD4M150V	102/106	TXN 104	147
TS274ID	168/238	TSD4M250V	102/106	TXN 106	147
TS274IDT	168/238	TSD4M350V	102/106	TXN 108,G,K	147
TS274IN	168	TSD4M351V	102/106	TXN 110	147
TS1200	217	TSD4M450V	103/106	TXN 112	147
TS1300	217	TSD4M451V	103/106	TXN 204	147
TS1301	217	TSD5MG40V	103/106	TXN 206	147
TS1821	217	TSFA04	251/259	TXN 208,G,K	147
TS1834	217	TSFA08	251/259	TXN 210	147
				I IMIN Z IU	1 14/

Туре	Page		
TXN 212	147		
TXN 404	147		
TXN 406	147		
TXN 408,G,K TXN 410	147 147		
TXN 412	147		
TXN 604	147		
TXN 606	147		
TXN 608,G,K TXN 610	147		
TXN 612	147		
TXN 804	147		
TXN 806	147		
TXN 808,G,K TXN 810	147 147		
TXN 812	147		
TXN 1004	147		
TXN 1006	147		
TXN 1008,G,K TXN 1010	147 147		
TXN 1010	147		
TYN 054	147		
TYN 056	147		
TYN 058,G,K TYN 0510	147 147		
TYN 0512	147		
TYN 0516	147		
TYN 104	147		
TYN 106 TYN 108,G,K	147 147		
TYN 110	147		
TYN 112	147		
TYN 116	147		
TYN 204 TYN 206	147		
TYN 208,G,K	147		
TYN 210	147		
TYN 212 TYN 216	147		
TYN 225	147		
TYN 404	147		
TYN 406	147		
TYN 408,G,K TYN 410	. 147 147		
TYN 412	147		
TYN 416	147		
TYN 425	147		
TYN 604 TYN 606	147		
TYN 608,G,K	147		
TYN 610	147		
TYN 612	147		
TYN 616 TYN 625	147		
TYN 682	147		
TYN 683	147		
TYN 685 TYN 688	147		
TYN 690	147		
TYN 692	147		
TYN 804	147		
TYN 806 TYN 808.G.K	147		
TYN 810	147		
TYN 812	147		
TYN 816 TYN 825	147		
TYN 1004	147		
TYN 1006	147		
TYN 1008,G,K TYN 1010	147		
TYN 1010 TYN 1012	147		
TYN 1025	147		

Туре	Page
TYN 1225 TYP 212	147 149
TYP 2012 TYS 406-05	149 146
TYS 406-8 TYS 407-05	146 146
TYS 407-8 TYS 606-05	146 146
TYS 606-8 TYS 607-05	146 146
TYS 607-8 UA723 UA723M UA741 UA741AH UA741CD UA741CD UA741CH UA741CN UA741CN UA741CN UA741EN UA741ID UA741ID UA741ID UA741IN UA741IN UA741IM UA741MN UA741MN UA741MN UA745CD UA748CD UA748CD UA748CD UA748CD UA748ID UA748IN UA748MJ UA748MH UA748MJ UA76CD UA776CD UA776CD UA776CD UA776CD UA776CD UA776CH UA776ID UA776ID UA776IN UA76MJ UA7905 UA7805 UA7805 UA7805 UA7805 UA7912 UA7915 UAA7905 UA7915 UAA9000,S UAA40000,S UAA40000	146 203 203 203 203 173 173 173/242 173/242 173 173 173 173 173 173 173 173 173 173

	Туре	Page
	UAA4003	181/183
	UAA4006B UAA4009	.181 75
	UAB4718	182
	UAF1780	182
	UAF1781	182
	UAF1782	182
	UAF4718	182
	UC2524A	181
	UC2524AD	244
	UC2840	181
	UC2842	181
	UC2842D	244
	UC2843	181
	UC2843D	244
	UC2844	181
	UC2844D	244
	UC2845 UC2845D	181
	UC3524A	244 181
	UC3524AD	244
	UC3840	1 81
	UC3842	181
	UC3842D	244
	UC3843	181
	UC3843D	244
	UC3844	181
	UC3844D	244
	UC3845	181
	UC3845D	244
	UCN 4801A	183
	UEB 4732	183
	ULN2001A	182
	ULN2001D	244
	ULN2002A ULN2002D	182 244
	ULN2002D ULN2003A	182
	ULN2003A ULN2003D	244
	ULN2004A	182
	ULN2004D	244
	ULN2064B	182
	1	1
	↓	↓
	ULN2071B	182
	ULN2074B	182
	1	
	+	+
	ULN2077B	182
	ULN2801A	182/183
	1 II N1300E V	100/100
	ULN2805A ULQ2001R	182/183 182/183
	o E G 2 O O I I I	102/103
	↓	↓ ↓
1	ULQ2004R	182/183
	VB100	182
	Z8E-KIT-BOARD	65
	Z84C00	64
	Z84C00C	221
	Z84C10	64
	Z84C10C	221
	Z84C20	64
	Z84C20C	221
	Z84C30	64
	Z84C30C	221
	Z84C40 Z84C41	64 64
	Z84C42	64
	Z84C44 Z84C44	64
	Z84C44C	221
	Z86E11	63
	Z86E21	63

ALPHANUMERICAL INDEX

Туре	Page	Туре	Page	Туре	Page
Z86R81	63				
Z86R81C Z8001	220 65/209				
Z8001A	209				
Z8001B	209				
Z8001K	221				
Z8002 Z8002A	65/209 209				
Z8002B	209				
Z8002C,K	221				
Z8010	65/209				
Z8010A Z8010B	209				
Z8010K	209				
Z8030	65/209				
Z8030A	209				
Z8030C,K Z8031	221 65				
Z8036	65/209				
Z8036A	209				
Z8036C,K Z8038	221 65/209				
Z8038A	209				
Z8038C,K	221				
Z8060	65/209				
Z8060K Z8400	221 64/209				
Z8400A	209				
Z8400C,K	221	,			
Z8410	64/209		,		
Z8410A Z8410C,K	209 221				
Z8420	64/209				
Z8420A	209				
Z8420C,K Z8430	221 64/209				
Z8430A	209				
Z8430C,K	221				
Z8440	64/209				
Z8440A Z8441	209 64/209				
Z8441A	209				
Z8442	64/209				
Z8442A Z8444	209				
Z8444A	64/209 209				
Z8444C,K	221				
Z8470	64				
Z8530 Z8530A	65/209 209				
Z8530C,K	222	, , ,			
Z8531	65				
Z8536 Z8536A	65/209 209				
Z8536C,K	209				
Z8600	63				
Z8601	63				
Z8601C Z8610	220 63				
Z8611	63	2			,
Z8611C	220				
Z8620 Z8621	63				
Z8621C	63 220				
Z8671	63				
Z8671C	220				
Z8681 Z8681C	63 220				
200010					

TELECOM AND DATA COMMUNICATIONS

MODEMS	39
DIGITAL SIGNAL PROCESSORS	39
SWITCHING CONNECTION AND CONCENTRATION	39
SUBSCRIBER BOARD	40
TELEPHONE SET	41
RF & MICROWAVE TRANSISTORS	44
SMALL SIGNAL TRANSISTORS	55
SOLID STATE RELAYS	55
LOCAL AREA NETWORK	55
PACKET SWITCHING	55
FILTERS	55

MODEMS

Туре	Description	Package
EF7910	Monochip FSK modem, V. 23, V. 21, Bell 103, Bell 202	DIP28
EFRMAFE	Modem analog front end, evaluation board	
TS7515EVA	V. 22 and Bell 212 modem evaluation board	
TEA 7868	Line interface (DAA)	DIP8
TS68950	Modem analog front end, transmitter	DIP24
TS68951	Modem analog front end, receiver	DIP28
TS68952	Modem analog front end, clock generator	DIP28
TS7513	Monochip FSK modem, V. 23	DIP22
TS7514	Monochip FSK modem, V. 23, DTMF	DIP28, PLCC28
TS7515	Monochip DPSK, FSK, V. 22, Bell 212, Bell 103	DIP28
TS7524	Chip set modem, V. 22 bis, V. 22, V. 23, V. 21, Bell 212, Bell 103	DIP24, DIP28, DIP48
TS7532	Chip set modem, V. 32	DIP24, DIP28, DIP48
TS75320	Digital echo canceller for V. 32 modems	DIP48
TS7542	Monochip analog front end	DIP40, PLCC44

DIGITAL SIGNAL PROCESSORS

Туре	Description	Package
		B 1
TS68930HDS TS68930EPROM - V TS68930EMU TS68930SP - PC TS68930 TS68931	Multi - processor development station (1 to 4 DSP) Vertical EPROM emulator for TS68930 Evaluation and emulation board Software package for TS 68930DSP 16 / 32 bit DSP - 6.25 MIPS - 1.2K x 32 program ROM 16 / 32 bit DSP - 6.25 MIPS - External ROM (64K)	DIP48 PGA84

SWITCHING CONNECTION AND CONCENTRATION

ANALOGUE CROSS POINTS

Туре	Description	Package
MO79 MO89 MO93 M3493 M3494	2x2x2 cross point 2x8 cross point matrix 12x8 cross point matrix 12x8 cross point matrix 12x8 cross point matrix 16x8 cross point matrix	DIP14 DIP/CERDIP16 DIP40 DIP40 DIP40

DIGITAL CROSS POINTS

Туре	 Description	Package
MO44	128x128 digital switching matrix	CERDIP28
MO88	256x256 digital switching matrix	CERDIP40

SPECIAL FUNCTIONS

Туре	Description	Package
EF73321 EF7333 M116	PCM clock recovery PCM communication terminal PCM conference circuit	DIP16 DIP28 CERDIP24

SUBSCRIBER BOARD

SUBSCRIBER LINE-INTERFACE CIRCUITS

Туре	Description	Package
L3000	Line interface	FLEXIWATT 15
L3010	Control unit with serial interface	CERDIP 28
L3030	Control unit with parallel / serial interface	CERDIP 28, PLCC44
L3090	Control unit with parallel interface	CERDIP 28
L3100B1 (1)	Unidirectional programmable voltage and current suppressor	MINIDIP
L3101B (1)	Unidirectional programmable voltage and current suppressor	MINIDIP
LB1011	Telephone line battery feed	MINIDIP
LB1013	85 V dual op - amp	MULTIWATT 15
TDB7711	Slic control unit	CERDIP 28
TDB7722	Line interface	MULTIWATT 15
TPA series (1)	Trisil	F126
TPB series (1)	Trisil	CB-429

TRISIL

Type	IRM @		V _(BR) @) I _R	V _(BO) max	@ I _{(B}	,	I _H min	V _T typ	Package
.,,,	(μ A)	(V)	(V)	(mA)	(V)	nom	max	(mA)	(V)	
L3121B (1) THBT 200D THDT 58D	5/8 10 10	60/90 180 56	100 200 58	1 1 1	180 290 80	200 — —	500 1000 1000	150 150 150	2 3 3	SIP 4 TO 220 TO 220
(1) Bidirectionn	(1) Bidirectionnal programmable voltage and current suppressor.									

CODEC / FILTER

Туре	Description	Package
ETC5040 ETC5040-X M5116 M5156 MK5151	PCM filter PCM filter - Extended temperature range Mu-law serial output CODEC A-law serial output CODEC Mu-law serial output CODEC	CERDIP16, PLCC20 CERDIP16 CERDIP16 CERDIP16 CERDIP24

COMBO

Туре	Description	Package
ETC50S64 ETC50S67 ETC5054 ETC5054 · X ETC5056 ETC5057 ETC5057 · X ETC5064 ETC5067 M5913	Mu-law synchronous serial COMBO with power amplifiers A-law synchronous serial COMBO with power amplifiers Mu-law serial output COMBO Mu-law serial output COMBO, extended temperature A-law parallel output COMBO A-law serial output COMBO A-law serial output COMBO, extended temperature Mu-law serial COMBO with power amplifiers A-law serial COMBO with power amplifiers Universal synchronous COMBO	DIP16 DIP16 CERDIP16, PLCC20 CERDIP16 CERDIP20 CERDIP16, PLCC20 CERDIP16 CERDIP16, PLCC20 CERDIP16, PLCC20 CERDIP16, PLCC20 CERDIP16, PLCC20 CERDIP16, PLCC20
M5914 M5917 TS5070 TS5071 TS5076	Universal asynchronous COMBO with signalling A-law serial output COMBO, low power Universal programmable COMBO II Universal programmable COMBO II ISDN / Digital phone programmable COMBO II	CERDIP24 CERDIP16 CERDIP28, PLCC28 CERDIP / DIP20 DIP20

TELEPHONE SET

SPEECH CIRCUITS

Туре	Description	Package		
L3280	Very low drop speech circuit	DIP14		
LS156	Speech circuit with MF interface (for piezoceramic transducers)	DIP16, SO20L		
LS285	Speech circuit	DIP14		
LS356	Speech circuit with MF interface (for dynamic transducers)	DIP16		
LS588	Speech circuit with programmable gains and power down	DIP16		
LS656	Low drop speech circuit with MF interface (for dynamic transducers)	DIP16, SO20L		
PBL3726 Series	Mask programmable speech circuits	DIP16/18		
TEA7037	Monochip speech and tone dialers	DIP28		
TEA7050	Speech for high range sets	DIP28		
TEA7051	Speech for medium range sets	DIP24		
TEA7053	Speech for low range sets	DIP20		
TEA7062	Speech for low range sets	DIP18		

TONE RINGERS/RINGING DETECTORS

Туре	Description	Package		
L3240 LB1006 LS1240 LS1240A LS1241 M764 ML8204 ML8205 SAA1094	Two tone ringer with push - pull output Telephone ringing detector Two tone ringer Two tone ringer Two tone ringer Two tone ringer Programmable three tone ringer Two tone ringer Two tone ringer True tone ringer Three tone ringer	MINIDIP MINIDIP MINIDIP / SO8 MINIDIP / SO8 MINIDIP / SO8 DIP16 MINIDIP MINIDIP DIP14		

MICROPHONE PREAMPLIFIER

Туре	Description	Package		
LS188	Microphone preamplifier (dynamic and piezoceramic transducers)	MINIDIP		

LINE INTERFACE

Туре	Description	Package
L3845	Trunk interface	MINIDIP
LH1028	Telephone interface circuit	MINIDIP

LOUDSPEAKING

Туре	Description	Package		
TEA7031	Electronic telephone : ring + monitor amplifier	DIP28		
TEA7531	Monitor amplifier with anti - howling	DIP16 / SO16		
TEA7532	Monitor amplifier with anti - howling	DIP16 / SO16		

TELEPHONE SET

HANDS FREE

Туре	Description	Package	
TEA7540	Hands free circuit for all range sets	DIP28	

DTMF DIALER/ GENERATOR

Туре	Description	Package		
EFG7189	Parallel input programmable tone generator	DIP14		
EFG71891	Serial input programmable tone generator	DIP8		
M761	MF tone generator	DIP18		

TonePulseTM DIALERS

Туре	Description	Package
M3561	Pulse dialer	DIP16
MK5370	TonePulse TM dialer with last number redial	DIP18
MK5371	TonePulse [™] dialer with BCD input	DIP18
MK53721	World dialer™ TonePulse™ - 16 country options selectable	DIP20
MK53731	TonePulse [™] dialer with redial	DIP18
MK5375	TonePulse [™] dialer with 10 number memory	DIP18
MK5376	Full feature TonePulse™ repertory dialer	DIP24
MK53761	TonePulse™ repertory dialer continuous tone	DIP18
MK53762	TonePulse TM repertory dialer w/single button recall	DIP20

SPECIAL FUNCTIONS

Туре	Description	Package		
LB1020 LB1021 LB1026 LS025 LS204 LS404 TEB1033 TEB4033	Speakerphone kit Speakerphone kit Voice frequency level expender Balanced modulator Dual operational amplifier Quad operational amplifier Dual operational amplifier Quad operational amplifier Quad operational amplifier	DIP24 DIP18 MINIDIP TO100, DIP14 MINIDIP / SO8 DIP14 / SO14 MINIDIP / SO8 DIP14 / SO14		

TRANSIL

Туре	Description	Package
BZW 04 series	400 W / 1 ms expo - Uni and Bidirectional devices	F 126
BZW 50 series	1500 W / 1 ms expo - Uni and Bidirectional devices	AG
P6KE series	600 W / 1 ms expo - Uni and Bidirectional devices	CB-417
P7T series	700 W / 1 ms expo - Uni and Bidirectional devices	CB-417
1N 5634 series	1500 W / 1 ms expo - Unidirectional devices	DO 13
1N 5908	1500 W / 1 ms expo - Unidirectional device	CB-429
1N 6040 series	1500 W / 1 ms expo - Bidirectional devices	DO 13
1.5 KE series	1500 W / 1 ms expo - Uni and Bidirectional devices	CB-429

TELEPHONE SET

TRISIL: TELEPHONE PROTECTION

Didirectional tune	I _{RM} max	@ V _{RM}	V _(BR) min	@ I _R	V _(BO) max	I _(BO) max	I _H min	
Bidirectional type	(μA)	(V)	(V)	(mA)	(V)	(mA)	(mA)	Package
$_{\rm op}$ = 100 A (8-20 μ s ϵ	expo.)	-			1			
TPA 62A - 12 or 18	2	56	62	1	82	300		
TPA 68A - 12 or 18	2	61	68	1	90 -	300		
P TPA 100A - 12 or 18	2	90	100	1	133	300		
TPA 100B - 12 or 18	2	90	100	1	121	300		
TPA 110A - 12 or 15	2	99	110	1	147	300		
TPA 110B - 12 or 18	2	99	110	1	133	300	12 suffix	
P TPA 120A - 12 or 18	2	108	120	1	160	300	for 120 mA	
TPA 120B - 12 or 18	2	108	120	1	145	300		
P TPA 130A - 12 or 18	2	117	130	1	173	300		F 100
TPA 130B - 12 or 18	2	117	130	1	157	300		F 126
TPA 200A - 12 or 18	2	180	200	1 1	267	300		
TPA 200B - 12 or 18	2	180	200	. 1	241	300	18 suffix	
P TPA 220A - 12 or 18	2	198	220	1	293	300	for 180 mA	
TPA 220B - 12 or 18	2	198	220	1	265	300		
P TPA 240A - 12 or 18	2	216	240	1	320	300		
TPA 240B - 12 or 18	2	216	240	1	289	300		
P TPA 270A - 12 or 18	2	243	270	1	360	300		
TPA 270B - 12 or 18	2	243	270	1	325	300		
$pp = 150 \text{ A } (8-20 \ \mu\text{s } \epsilon)$	expo.)		-	•		-		
TPB 62A - 12 or 18	2	56	62	1	82	300		
TPB 68A - 12 or 18	2	61	68	1	90	300		
P TPB 100A - 12 or 18	2	90	100	1	133	300		

						4		
TPB 62A - 12 or 18	2	56	62	1	82	300		
TPB 68A - 12 or 18	2	61	68	1	90	300		
P TPB 100A - 12 or 18	2	90	100	1	133	300	1.00	
TPB 100B - 12 or 18	2	90	100	1	121	300		
TPB 110A - 12 or 18	2	99	110	1	147	300		
TPB 110B - 12 or 18	2	99	110	1	133	300	12 suffix	
P TPB 120A - 12 or 18	2	108	120	1	160	300	for 120 mA	
TPB 120B - 12 or 18	2	108	120	1	145	300		
P TPB 130A - 12 or 18	2	117	130	1	173	300		OD 400
TPB 130B - 12 or 18	2	117	130	1	157	300		CB-429
TPB 200A - 12 or 18	2	180	200	1	267	300		
TPB 200B - 12 or 18	2	180	200	1	241	300	18 suffix	
P TPB 220A - 12 or 18	2	198	220	1	293	300	for 180 mA	
TPB 220B - 12 or 18	2	198	220	1	265	300		
P TPB 240A - 12 or 18	2	216	240	1	320	300		
TPB 240B - 12 or 18	2	216	240	1	289	300	*	
P TPB 270A - 12 or 18	2	243	270	1	360	300		
TPB 270B - 12 or 18	2	243	270	. 1	325	300	* *	

P : Preferred device.

Other voltage on request (75V - 82V - 91V - 150V - 180V).

PROTECTION CIRCUITS

Type	I _{RM} @	V _{RM}	V _(BR) @	[®] I _R	V _(BO) max	@	l _(BO) (mA)		I _H min	V _T typ	Package
7,1	(μΑ)	(V)	(V)	(mA)	(V)	min	nom	max	(mA)	(V)	
L3100B1	6/40	60/250	255	1	350	200	_	500	210	2	MINIDIP
L3101B	5/8	60/90	100	1	180		200	500	150	2	MINIDIP
LS5018B	- 5	16	17	1	22		1300		200	2	MINIDIP
LS5060B	10	50	60	1	85		1000		200	2	MINIDIP
LS5120B1	20	100	120	1	180	500	_	1250	250	2	MINIDIP

2 - 30 MHz LINEAR SSB APPLICATIONS

Ту	oe	Package	Config.	V _{CC}	Pout (PEP)	f _o (MHz)	P _{in}	G _P min (dB)	IMD max (dB)
P/N	SD #		,	(*)	(**)	(111112)	(**)	(42)	(45)
SD 1285 SD 1451 SD 1405 SD 1487		.380 4LFL .500 4LFL .500 4LFL .500 4LFL	CE CE CE	12.5 12.5 12.5 12.5	20 50 75 100	30 30 30 30	0.63 1.6 3.8 6.3	15 15 13 12	30 26 30 30
SD 1224-10 TH 208 SD 1407 TH 416 TH 560	SD 1724-1 SD 1729 SD 1730	.380 4LFL .500 4LFL .500 4LFL .500 4LFL .500 4LFL	CE CE CE CE	28 28 28 28 28	30 65 100 130 220	30 30 30 30 30	0.475 0.25 3.15 8.2 9.5	18 18 15 12	28 30 30 30 30
TH 513 THA 15 THX 15 SD 1411 TH 562 TH 430	SD 1733 SD 1726 SD 1727 SD 1731 SD 1728	.380 4L STUD .500 4LFL .550 4L STUD .400 × .425 6LFL .500 4LFL	CE CE CE CE CE	50 50 50 40 50 50	75 150 150 200 220 250	30 30 30 30 30 30	3 6 6 5 12 10	14 14 14 16 13 14.5	—30 —30 —30 —30 —30 —30

27 ... 88 MHz CLASS C, FM OPERATION

Ту	ре	Package	Config.	v _{CC}	Pout	fo	Pin	Gp min
P/N	SD #			(V)	(W)	(MHz)	(W)	(dB)
SD 1290 SD 1451		.500 4L STUD .500 4LFL	CE CE	12.5 12.5	40 55	50 50	4 5.5	10 10
SD 1451 SD 1446		.380 4LFL	CE	12.5	70	50	7	10
SD 1405		.500 4LFL	CE	12.5	100	50	20	7
SD 1407-8		.500 6LFL	CE	28	100	80	11	9.5
SD 1403		.500 4LFL	CE	45	45	80	3.5	11
TH 513	SD 1733	.380 4L STUD	CE	50	75	70	7	10
SD 1406		.500 4LFL	CE	40	150	80	15	10
THA 15	SD 1726	.500 4LFL	CE	50	150	70	19	9
THX 15	SD 1727	.550 4L STUD	CE	50	150	70	19	9
TH 430	SD 1728	.550 4LFL	CE	50	250	70	25	10

55 ... 108 MHz CLASS C FOR FM TRANSMITTERS

Туре	Package	Config.	V _{CC} (V)	P _{out} (W)	f _O (MHz)	P _{in} (W)	G _P (dB)	ηc (%)
SD 1476* (1)	.2 × .450 SQ 4LFL	CE	28	240	55-88	20	11	50
SD 1457	.500 4LFL	CE	28	75	108	7.5	10	75
SD 1460	.500 4LFL	CE	28	160	108	20	9	75
SD 1483 (1)	.2 × .450 SQ 4LFL	CE	28	250	108	25	10	55

108 ... 152 MHz CLASS C FOR AIRCRAFT COMMUNICATIONS

Туре	Package	Config.	Vcc (V)	P _{out} min (W)	^f o (MHz)	P _{in} · (W)	Gp min (dB)
SD 1478 SD 1479 SD 1430	.380 4L STUD .380 4L STUD .380 4L STUD	CE CE CE	6.5 6.5 6.5	3.2 5 10	136 136 136	0.2 1 2	8.1 7 7
SD 1220-1 SD 1013-3 SD 1013-3 SD 1222-6 SD 1222-5 SD 1015 SD 1224-2 SD 1219-5 SD 1219 SD 1019 SD 1438-2 SD 1480*	.380 4L FL .380 4L STUD .380 4L STUD .380 4L STUD .380 4L STUD .380 4L STUD .380 4L STUD .380 4L STUD .500 4L STUD .380 4L FL	CE C	28 28 28 28 28 28 28 28 28 28 28 28	7 10 10 15 20 30 40 50 60 80 100	136 150 150 136 136 150 175 136 150 136 136	1 1 1 2.3 3 7 5 12 10 16 12	8.4 10 10 11 8.2 10 7.6 10 7 9 7

2 ... 400 MHz MOS FIELD EFFECT, N CHANNEL BROADBAND LARGE SIGNAL APPLICATIONS

Туре	Package	Config.	V _{DD} (V)	I _{DQ} (mA)	Pout (W)	f _O (MHz)	P _{in} (W)	G _p (dB)
SD 1900	.380 4LFL	CS	28	50	5	400	0.25	13
SD 1900-1	.280 4L STUD (B)	CS	28	50	5	400	0.25	13
SD 1902	.380 4LFL	CS	28	50	15	400	1.5	10
SD 1902-1	.280 4L STUD (B)	CS	28	50	15	400	1.5	10
SD 1904	.380 4LFL	CS	28	50	30	400	3.75	9
SD 1904-1	.280 4L STUD (B)	CS	28	50	30	400	3.75	9
SD 1905	.380 4LFL	CS	28	50	45	225	2.25	13
SD 1906-1	.500 4LFL	CS	28	300	60	225	3.0	13
SD 1907	.500 4LFL	CS	28	50	80	225	8.0	10
SD 1908-1	.500 4LFL	CS	28	500	120	225	12.0	10
SD 1912	.500 4LFL	CS	28	250	150	225	37.5	6
SD 1920	.500 4LFL	CS	50	250	150	225	18.75	9

.380 4LFL

.280 4LSL (B)

.380 4L STUD

.380 NARROW 4L STUD

TO 60

XO-72 SL

TO-117 SL

130 ... 230 MHz CLASS C FOR FM MOBILE APPLICATIONS

Ту	rpe	Package	Config.	v _{CC}	P _{out} min	fo	Pin	G _P min	η_{c} min
P/N	SD #			(V)	(W)	(MHz)	(W)	(dB)	(%)
SD 1134-5 SD 1080-2 SD 1115-2 SD 1012-4 SD 1135-3		.280 4LSL (B) XO-72 SL TO-117 SL .280 4LSL (B) .280 4LSL (B)	CE CE CE CE	7.5 7.5 7.5 7.5 7.5	0.5 0.75 2 2.5 2.5	150 175 175 175 175	0.1 0.1 0.25 0.79 0.22	7 8 8 5 11	
2N 4427 SD 1127 2N 6080 SD 1012-3 SD 1133 SD 1143 SD 1143-1 2N 6081 SD 1014-6 2N 6082 SD 1229-1 SD 1272 SD 1272-2 SD 1274-1 2N 6083 2N 6084 SD 1018-15 SD 1018-15 SD 1278 SD 1275-1 SD 1275-1 SD 1428* SD 1477* SD 1441*	SD 1484 SD 1012 SD 1014-2 SD 1229-7 SD 1229-8 SD 1018	TO-39 TO-39 .380 4L STUD .380 4LFL .380 4L STUD .380 4L STUD .380 4LFL .380 4L STUD .380 4LFL .380 4L STUD .380 4LFL .380 4L STUD .380 4LFL .500 6LFL .500 6LFL	CE CE CE CE CE CE CE CE CE CE CE CE CE C	12 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	1 4 4 6 10 10 10 15 15 25 25 25 25 25 30 30 30 40 40 40 40 40 40 40 150 150	175 175 175 175 175 175 175 175 175 175	0.1 0.4 0.25 0.75 1 1 3.5 3.5 6 7.9 3 3 8.1 14 14 12 10 5 10 25 40	10 10 12 9 10 10 10 6.3 6.3 6.2 5 9.2 9.2 10 10 5.7 4.5 4.5 4.5 6 9 6.5 6	60
SD 1021 SD 1022		.380 4L STUD .380 4L STUD	CE CE	12.5 12.5	5.5 30	230 230	1.3 5.5	6.2 7.4	60 60
2N 5589 2N 3924 2N 3926 2N 5590 2N 3927 2N 5591 SD 1273	SD 1212-2 SD 1064 SD 1062 SD 1214-12 SD 1072 SD 1216	.380 NARROW 4L STUD TO-39 TO-60 .380 4L STUD TO-60 .380 4L STUD .380 4L STUD	CE CE CE CE CE CE	13.6 13.6 13.6 13.6 13.6 13.6	3 4 7 10 12 25 40	175 175 175 175 175 175 175	0.2 1 1.7 2.3 4 8.3 5	8.2 6 5.4 5.2 4.8 4.4 9	50 70 70 50 80 50 55
2N 3553 2N 5641 2N 3632 2N 5642 2N 5643	SD 1065 SD 1220 SD 1070 SD 1222-10 SD 1224	TO-39 .380 NARROW 4L STUD TO-60 .380 4L STUD .380 4L STUD	CE CE CE CE	28 28 28 28 28	2.5 7 13.5 20 40	175 175 175 175 175	0.25 0.45 3.5 1.4 6.6	10 8.4 5.8 8.2 7.6	60

^{*} Internally input matched.

SD # is the code used in our invoicing system.

450 ... 512 MHz CLASS C FOR MOBILE APPLICATIONS

Тур	pe	Package	Config.	V _{CC}	P _{out}	fo	Pin	G _P
P/N	SD #			(V)	(W)	(MHz)	(W)	(dB)
SD 1132-4 SD 1115-2 SD 1482		XO-72 SL TO-117 SL .280 4L STUD (B)	CE CE CE	7.5 7.5 7.5	0.25 0.8§ 3	470 470 470	0.02 0.2 0.475	11 6 8
SD 1080-6 SD 1080-7 SD 1080-7 SD 1132-5 SD 1444 2N 5944 SD 1134 2N 5945 SD 1150-3 SD 1150-3 SD 1135 SD 1433 2N 5946 SD 1136 SD 1410-1 SD 1429* SD 1429-3* SD 1429-3* SD 1428* SD 1434* SD 1434* SD 1499-1*	SD 1144 SD 1145 SD 1146	XO-72 SL XO-72 TO-39 .280 4L STUD (B) .280 4L STUD (B) .380 6LFL .500 6LFL .500 6LFL .500 6LFL .500 6LFL	CE CE CE CE CE CE CE CE CE CE CE CE CE C	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0.5 0.5 0.6 2 2 2 4 4 4 5 10 10 10 10 12 15 25 38 45 65	470 470 470 470 470 470 470 470 470 470	0.05 0.05 0.03 0.32 0.25 0.2 0.65 0.635 0.635 0.6 1.3 2.5 2.5 2.5 2.7 6 9	10 10 13 8 9 10 8 8 8.5 8 6 6 6 7.5 6.2 5.8 5.4,7
* Internally i	nput matched.		SD # is the	code used in ou	r invoicing syste	em.		* 1

836 ... 960 MHz CLASS C FOR LAND MOBILE APPLICATIONS

Туре	Package	Config.	V _{CC}	P _{out} min (W)	f _O (MHz)	P _{in} (W)	Gp min (dB)
SD 1402 SD 1409 SD 1410* SD 1410-3* SD 1418* SD 1412* SD 1412-3* SD 1421* SD 1098* SD 1414*	XO-72 SL XO-72 .380 6LFL .230 6LFL .230 6LFL .230 6LFL .230 6LFL .380 6LFL .380 6LFL .230 6LFL	CB CB CB CCB CCB CCB CCB CCB CCB CCB CC	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0.3 2 6 7 15 18 18 25 25	870 870 836 836 836 836 836 836 836 836 836	0.048 0.35 0.95 0.95 4.5 4.5 4.5 7 7 7	8 8 8 7.5 5.2 6 6 5.5 5 4.5
SD 1399 SD 1400* SD 1400-2 SD 1400-3 SD 1423** SD 1424** SD 1495-3* SD 1495-3* SD 1496-3 SD 1496* SD 1426**	XO-72 .230 6LFL .230 6LFL .230 6LFL .250 6LFL .250 6LFL .230 6LFL .230 6LFL .230 6LFL .230 6LFL .230 6LFL	CE CB	24 24 24 24 24 24 24 24 24 24 24	2 9 14 15 30 30 30 35 55 60 60	900 875 900 960 960 960 900 960 870 960 900	0.25 1 1.5 1.4 2.4 5.3 3.75 6 6 10 12.5	9 9.5 9.7 9.5 8 7.5 7.8 7 7.6 7.4 7.5 7
* Internally input matched.		** Internally i	nput/output matc	hed.			

TO-39

.380 NARROW 4L STUD

.500 4L STUD

.280 4L STUD (B)

.550 4L STUD

.380 4L STUD

400 BAL FL

WIDEBAND VHF - UHF CLASS C FOR ECM AND RADIO LINKS APPLICATIONS

Ту	ре	Package	Config.	V _{CC}	P _{out} min (W)	Frequency range (MHz)	P _{in}	Gp min (dB)	ης min (%)	C _{22b}	Rth (j-c)
P/N	SD #			(*)	(00)	(IVIT12)	(40)	(GB)	(/0)	(pF)	(*C/W)
2N 3866	SD 1037-1	TO-39	CE	28	1	400	0.1	10	_	_	_
2N 5090	SD 1037-4	TO-60	CE	28	1.2	400	0.2	7.8	45	3.5	35
2N 5635	SD 1240	.380 NARROW 4L STUD	CE	28	2.5	400	0.6	6.2	50	10	23.3
2N 3375	SD 1050	TO-60	CE	28	3	400	1	4.7		10	15
2N 4440	SD 1060	TO-60	CE	28	5	400	1.7	4.7	45	10	15.1
2N 5636	SD 1242	.380 NARROW 4L STUD	CE	28	7.5	400	2	5.7	50	20	11.7
SD 1475		.280 4L STUD (B)	CE	28	10	400	0.9	10.5	50	15	6.4
2N 3733	SD 1075	TO-60	CE	28	10	400	4	4	-	20	7.6
2N 5016	SD 1090	TO-60	CE	28	15	400	4	5.7	50	25	5.8
2N 5637	SD 1244-7	.380 4L STUD	CE	28	20	400	6.9	4.6	60	30	5.8
SD 1462*		.500 6LFL	CE	28	70	225 - 400	8.8	9.0	_	70	0.8
SD 1468*		.500 6LFL	CE	28	70	225 - 400	10	8.4	60 §	75	1.25
SD 1470*		.500 6LFL	CE	28	100	225 - 400	18	7	_	_	0.7
TCC 0105-100*	SD 1464	.400 BAL FL	CE	28	100	100 - 500	17.8	7.5	_	_	0.67
TCC 0204-125*	SD 1463	.400 BAL FL	CE	28	125	225 - 400	25	7		_	0.65
* Internally i	input matched.		SD #	is the code	used in o	ur invoicina	system				

^{*} Internally input matched. § : Typical value.

LINEAR TRANSISTORS FOR TV APPLICATIONS, BAND III

Туре)	Package	Config.	BIAS V ₁ /I ₁	P _{out} min	fo	Pin	G _P	(3 tones)	C _{22b} max	R _{th} (j-c)
P/N	SD #			(V) (mA)	(W)	(MHz)	(W)	(dB)	(dB)	(pF)	(°C/W)
SD 1455		.500 4L STUD	CE	28/2500	14	225	1.75	9	55	80	1.5
SD 1458*		.500 6LFL	CE	28/2500	14	225	0.6	14	—53	80	1.5
SD 1459		.550 4L STUD	CE	28/3500	30	225	5.3	7.5	53	150	1.2
TCC 3100*	SD 1456	.400 BAL FL	CE	28/2×100	100	225	10	11		80	1.2
SD 1485**		2 × .450 SQ 4LFL	CE	28/2 × 250	200	230	25	11			0.7

^{*} Internally input matched.

SD # is the code used in our invoicing system.

SD # is the code used in our invoicing system.

.400 × .500 4LFLB HERM

 $.400 \times .425$ 4LFLB HERM

.438 4L BAL FLG

2 × .450 SQ 4LFL

.250 × .320 4LFL

.250 SQ 2LFL HERM

.280 4L STUD (C)

LINEAR TRANSISTORS FOR TV APPLICATIONS, BANDS IV AND V

Ту	pe	Package	Config.	BIAS V ₁ /I ₁	P _{out}	fo	Pin	G _P	IMD (3 tones)	C _{22b}	Rth (j-c)
P/N	SD #			(V) (mA)	(W)	(MHz)	(W)	(dB)	(dB)	(pF)	(°C/W)
TCC 598*	SD 1448	.280 4L STUD (C)	CE	25/850	4	860	0.8	7	58	20	5.5
TDS 595*	SD 1732	.250 × .320 4LFL	CE	25/2 × 900	14	860	1.2	8.5	47	17.5 §	2.5
SD 1490*	_	.438 4L BAL FLG	CE	28/2 × 1500	25	860	1.9	9.0	45	30 §	1.3
SD 1489**		.438 4L BAL FLG	CE	28/2 × 150	50	860	10.5	6.5		40	1.0
SD 1492**	x 20	2×450 SQ 4LFL	CE	28/2 × 500	150	860	30	7.0	,		0.55
											f.ls.

^{*} Class A

200 ... 500 MHz UHF PULSE POWER TRANSISTORS

Туре	Package	Config.	V _{CC}	P _{out}	P _{in} (W)	Frequency range (MHz)	Gp min (dB)	T _p / δ (μs / %)
SD 1511-8	.250 SQ 2LFL HERM	CE	28	10	1.2	425	9.2	CW
SD 1474	.400 SQ 2LFL HERM	CE	28	48	10	425	6.8	CW
SD 1563	.400 SQ 2LFL HERM	CB	40	300	30	400-500	9.5	250/10
SD 1564	.400 × .425 4LFLB HERM	CE	40	400	70	400-450	7.5	60/2
SD 1565	.400 × .500 4LFLB HERM	CB	40	500	50	400-500	9.7	250/10

^{**} Class AB.

^{§:} Typical value.

SD # is the code used in our invoicing system.

.400 SQ 2LFL

.400 SQ 2WL FL HERM

.250 2LFL HERM

.280 4LSL (A)

.375 4LSL (A)

960 ... 1220 MHz CLASS C PULSE FOR DME / IFF / TACAN

Туре	Package	Config.	V _{CC}	Pout typ (W)	P _{in}	Frequency range (MHz)	G _P typ (dB)	T _p / δ
			(V)	1	0.09	1030-1090	10.5	(μ s 7 %)
SD 1520-3*	.280 4LSL (A)	CE	28	1 min 0.75	0.100 0.100	1025-1150 960-1215	10 min 8.8	10/ 1 10/10
SD 1520-8*	.250 2LFL HERM	CE	28	0.10 0.10 min 0.75	0.025 0.025 0.025	1030-1090 1025-1150 960-1215	10.5 10 min 8.8	10/ 1 10/ 1 10/10
SD 1522-9	.250 2LFL HERM	СВ	35	1.7 1.5 min 1.2	0.325 0.325 0.325	1030-1090 1025-1150 960-1215	9.3 8.75 min 8	10/ 1 10/ 1 10/10
SD 1522-3	.280 4LSL (A)	СВ	35	1.7 1.5 min 1.25	0.200 0.200 0.200	1030-1090 1025-1150 960-1215	9.3 8.75 min 8.0	10/ 1 10/ 1 10/10
SD 1524-1	.280 4LSL (A)	СВ	28	3 . 2.7 min 2.3	0.300 0.280 0.250	1030-1096 1025-1150 960-1215	10 9.8 min 9.6	10/ 1 10/ 1 10/10
SD 1526-1	.280 4LSL (A)	СВ	28	6 5 min 4	0.700 0.560 0.500	1030-1090 1025-1150 960-1215	9.3 9.5 min 9	10/ 1 10/ 1 10/10
SD 1527-8	.250 2LFL HERM	СВ	50 28 28	5 min 4 4	0.350 0.500 0.640	1030-1090 1030-1090 960-1215	11.5 min 9 8	10/ 1 10/ 1 10/10
SD 1528-6 SD 1528-8	.280 4LSL (A) .250 2LFL HERM	СВ	50	20 15 min 12	1.5 1.5 1.5	1030-1090 1025-1150 960-1215	11.2 10 min 9	10/ 1 10/ 1 10/10
SD 1530-1 SD 1530-8	.280 4LSL (A) .250 2LFL HERM	CB	50	40 35 min 25	5.00 4.95 3.50	1030-1090 1025-1150 960-1215	9 8.5 min 8.5	10/ 1 10/ 1 10/10
SD 1534-1 SD 1534-8	.280 4LSL (A) .250 2LFL HERM	CB	50	80 75 min 50	12.7 13.3 10	1030-1090 1025-1150 960-1215	8 7.5 min 7	10/ 1 10/ 1 10/10
SD 1536-3 SD 1536-8	.280 4LSL (A) .250 2LFL HERM	СВ	50	100 90 min 80	13 13 13	1030-1090 1025-1150 960-1215	8.9 8.4 min 8.4	10/ 1 10/ 1 10/10
SD 1538-2 SD 1538-8	.400 SQ 2LFL .400 SQ 2WL FL HERM	СВ	50	200 150 min 140	30 25 25	1030-1090 1025-1150 960-1215	7.6 7.8 min 7.0	10/ 1 10/ 1 10/10
SD 1540 SD 1540-8	.400 SQ 2LFL .400 SQ 2WL FL HERM	СВ	50	350 300 min 290	70 70 70	1030-1090 1025-1150 960-1215	7 6.3 min 6.1	10/ 1 10/ 1 10/10
SD 1540-3	.375 4LSL (A)	СВ	50	325 min 280 200	70 70 70	1030-1090 1025-1150 960-1215	6.6 min 6 4.6	10/ 1 10/ 1 10/10
SD 1541	.400 SQ 2LFL	СВ	50	450 min 400 min	90 90	1030-1090 1025-1150	7 min 6.5 min	10/ 1 10/ 1

2×.400 .500 4LFLB HERM

.400 × .500 2LFL HERM

.400 SQ 2WL FL HERM

.280 4LSL (A)

.250 2LFL/FLM

.250 2LFL HERM

.280 2LFL (A)

.250 SQ 2LFL

960 ... 1220 MHz CLASS C PULSE FOR DME / IFF / TACAN

Туре	Package	Config.	V _{CC}	Pout typ (W)	Pin (W)	Frequency range (MHz)	G _P typ (dB)	T _p / δ (μs / %)
SD 1541-1	.400 × .500 2LFL HERM	СВ	50	400 min	90	1025-1150	6.5 min	10/ 1
SD 1541-9	.400 × .500 2LFL HERM	CB	50	450 min	90	1030-1090	7 min	10/ 1
SD 1542	.400 × .500 2LFL HERM	СВ	50	600 550 min	150 150	1030-1090 1025-1150	6 5.6 min	10/ 1 10/ 1
SD 1542-4	.400 × .500 2LFL HERM	СВ	50	600 min	150	1030-1090	6 min	10/ 1
SD 1543-2	2 × .400 .500 4LFLB HERM	СВ	50	1000 min	300	1030-1090	6 min	10/ 1
SD 1546-1 SD 1546-2	.280 4LSL (A) .280 2LFL (A)	СВ	50	60 min	_	1030-1090	(oscillator)	10/ 1
SD 1512	.250 2LFL	СВ	30	5 min	1	960-1220	7 min	400/20
SD 1513	.400 SQ 2WL FL HERM	CB	42	30 min	6.5	960-1220	6.6 min	400/20
SD 1514	.400 SQ 2WL FL HERM	СВ	50	100 min	25	960-1220	6 min	400/20
SD 1550	.250 2LFL HERM	СВ	35	15 min	1.5	960-1215	10 min	20/10
SD 1550-1	.250 SQ 2LFL	СВ	35	15 min	1.5	960-1215	10 min	20/10
SD 1551	.400 SQ 2WL FL HERM	СВ	50	80 min	12	960-1215	7.5 min	20/10
SD 1552	.400 × .500 2LFL HERM	CB	50	285 min	64	960-1215	6.5 min	20/10
SD 1556	.400 × .500 2LFL HERM	СВ	50	350	62	1090	7.5	(1)
SD 1557	.400 × .500 2LFL HERM	СВ	50	250	56	1030	6.5	(2)
(1) Mode S MARK XV t	ransponder.	(2) Mode S	MARK XV int	errogator.	-	•	1 1 1 1 1 1	

1.2 ... 1.4 GHz CLASS C PULSE FOR RADAR APPLICATIONS

Туре	Package	Config.	VCC	P _{out}	Pin	Frequency range	G _P min	T _p / δ
			(V)	(W)	(W)	(MHz)	(dB)	(μs / %)
SD 1500	.250 2LFL	СВ	28	5	1.0	1200-1400	7.0	400/20
SD 1501	.400 SQ 2L FL HERM	СВ	35	30	6.0	1200-1400	7.0	400/20
SD 1504	.400 SQ 2L FL HERM	СВ	45	50	8.3	1200-1400	7.8	300/10
SD 1502	.400 SQ 2L FL HERM	СВ	50	100	25	1200-1400	6.0	400/20
SD 1505	.400 × .500 2LFL HERM	СВ	50	150	30	1200-1400	7.0	300/10
SD 1507	.400 × .500 2LFL HERM	СВ	50	285	65	1200-1400	6.4	150/5

0.50 ... 3.0 GHz MICROWAVE TRANSISTORS FOR CLASS C OPERATION

Т	/ре	Package	Config.	V _{CC}	Pout min (W)	f _o (GHz)	P _{in}	Gp min (dB)	ηc min (%)	C _{22b} max (pF)	R _{th} (j-c)
P/N	SD #			()	. ,		` ′	, í	. ,		
2N 4428	SD 1175	TO-39	CE	28	0.75	0.5	0.075	5.0	35	3.5	50
2N 4429	SD 1176	TO-117	CE	28	1.0	1.0	0.3	5.0	35	3.5	35
2N 4430	SD 1170	TO-129	CE	28	2.5	1.0	0.75	5.0	35	5.0	17.5
2N 4431	SD 1171	TO-129	CE	28	5.0	1.0	1.57	5.0	35	10.0	9.7
SD 1544		.320 4L STUD HERM	CE	28	1.0	2.0	0.315	5.0		2.5	30.2
SD 1545		.320 4L STUD HERM	CE	28	2.5	2.0	0.8	5.0	_	5.0	10.9
TCC 2001	SD 1801	.230 2LFL	СВ	28	1.0	2.0	0.2	7.0	35	3.2	25
TCC 2003	SD 1803	.230 2LFL	СВ	28	3.0	2.0	0.5	7.8	35	4.0	15
TCC 2005	SD 1805	.230 2LFL	CB	28	5.0	2.0	1.0	7.0	30	8.0	8.5
TCC 2010	SD 1810	.230 2LFL	CB	28	10.0	2.0	1.25	9.0	35	16.0	5.5
TCC 2301	SD 1813	.230 2LFL	CB	22	1.0	2.3	0.1	10	40	3.0	25
TCC 2302	SD 1812	.230 2LFL	СВ	20	2.0	2.3	0.25	9.0	40	4.0	20
TCC 2304	SD 1814	.230 2LFL	CB	20	4.0	2.3	0.5	9.0	40	8.0	8.5
TCC 2307	SD 1817	.230 2LFL	CB	22	7.0	2.3	1.1	8.0	35	16.0	4.5
TCC 3000	SD 1830	.230 2LFL	СВ	28	0.5	3.0	0.1	7.0	30	3.0	45
TCC 3001	SD 1831	.230 2LFL	СВ	28	1.0	3.0	0.2	7.0	35	3.0	35
TCC 3003	SD 1833	.230 2LFL	СВ	28	3.0	3.0	0.75	6.0	30	4.0	15
TCC 3005	SD 1835	.230 2LFL	СВ	28	5.0	3.0	1.58	5.0	30	8.0	8.5
SD # is the code used in our invoicing system.											

TO 215 AA

.400 MAT FL

2 ... 4 GHz microwave transistors for class A operation

Тур	e	Package	Config.	BIAS V ₁ /I ₁	Out O		P _{in}	Gp min	Rth (j-c)
P/N	SD #	1000		(V) (mA)	(W)	(GHz)	(mW)	(dB)	(°C/W)
TCC 2100	SD 1851-4	.230 2LFL	CE	20/70	0.316	1	28	10.5	35
TCC 20 L 08	SD 1851	.230 2LFL	CE	20/120	0.8	2	125	8	30
TCC 20 L 15	SD 1853	.230 2LFL	CE	20/220	1.5	2	300	7	17
TCC 20 L 25	SD 1855	.230 2LFL	CE	20/440	2.5	2	625	6	8.5
SD 1850		.230 2LFL	CE	15/80	0.2	2.3	16	11	45

0.7 ... 2.5 GHz MICROWAVE TRANSISTORS FOR OSCILLATORS

Туре	Package	Config.	v _{cc}	Pout	Frequency	η_{c}	IC	Rth (j-c)
			(V)	(W)	range (GHz)	(%)	(mA)	(°C/W)
SD 1845	.230 2LFL	CC	20	0.5	2.3	25	90	45
SD 1846	.230 2LFL	CC	20	1	2.3	35	180	30
SD 1847	.230 2LFL	CC	24	1.5	2.3	30	250	17
SD 1837	.230 2LFL	CC	20	3	2.3	25	400	_
SD 1838	.230 2LFL	CC	20	3	2.3	30	500	_
SD 1840	TO 215 AA	CE	20	1	2	28	_	25
SD 1842	TO 215 AA	CE	21	1.2	2.3		_	_
SD 1843	TO 215 AA	CE	28	1.3	2	_	_	_

1.4 ... 2.7 GHz MATCHED MICROWAVE TRANSISTORS FOR TELECOMMUNICATIONS

Тур	ре	Package	Config.	VCC	Pout	Frequency range	P _{in}	G _P min	ηc min	Rth (j-c)
P/N	SD #			(V)	(W)	(GHz)	(W)	(dB)	(%)	(°C/W)
TCC 1417-12	SD 1869	.400 MAT FL	СВ	24	12	1.4 1.7	2.0	7.8	40	5.5
TCC 1417-25	SD 1866	.400 MAT FL	СВ	24	25	1.4 1.7	4.5	7.5	40	3.0
SD 1868		.400 MAT FL	CB	28	30	1.6 1.65	4.0	8.7	40	5.5
TCC 1720-3	SD 1876	.400 MAT FL	CB	24	3	1.7 2.0	0.4	8.8	40	_
TCC 1720-6	SD 1885	.400 MAT FL	СВ	24	6	1.7 2.0	1.0	7.8	45	9.5
TCC 1720-10	SD 1860	.400 MAT FL	СВ	24	10	1.7 2.0	2.0	7.0	45	8.0
TCC 1720-13	SD 1883	.400 MAT FL	СВ	24	13	1.7 2.0	2.2	7.7	45	4.5
TCC 1720-20	SD 1873	.400 MAT FL	СВ	24	20	1.7 2.0	3.5	7.5	40	3.5
TCC 1720-25	SD 1874	.400 MAT FL	CB	24	25	1.7 2.0	4.5	7.4	40	3.0
TCC 1922-18	SD 1872	.400 MAT FL	CB	24	18	1.9 2.2	4.5	6.0	40	3.0
TCC 2023-6	SD 1886	.400 MAT FL	CB	24	6	2.0 2.3	1.0	7.8	40	6.5
TCC 2023-16	SD 1887	.400 MAT FL	CB	24	16	2.0 2.3	4.0	6.0	40	3.0
TCC 2223-3	SD 1879	.400 MAT FL	СВ	24	2.8	2.2 2.3	0.4	8.4	40	_
TCC 2223-10	SD 1862	.400 MAT FL	СВ	24	10	2.2 2.3	2.0	7.0	40	4.5
TCC 2223-18	SD 1870	.400 MAT FL	СВ	24	18	2.2 2.3	4.0	6.5	40	3.0
TCC 2327-15	SD 1875	.400 MAT FL	CB	24	15	2.3 2.7	6.0	4.0	30	3.0

TO 117

40 ... 900 MHz CLASS A LINEAR FOR CATV/MATV APPLICATIONS

Ту	ре		Package	V _(BR) CEO	f _T @	Ic	C _{12e} C _{22b*}	NF @	lc	/ f	V _{out} @	I _{ND}	/ CMD
P/N	SD #			(V)	(MHz)	(mA)	(pF)	(dB)	(mA)	(MHz)	(mV)	(dB)	(dB)
2N 5109	SD 1040-6	N	TO-39	20	1200	50	3.5	3 (1)	10	200			
SD 1006		Ν	TO-39	30	1500	50	3.5 *	8 (2)	50	216 ·	180	- 57 (3)	- 57 (4)
SD 1316		N	TO-39	20	4000	50	1.5	2	20	200	315	-51 (3)	- 60 (5)
SD 1005		N	TO-117	30	1500	70	4.0 *	9 (2)	70	216	315	- 50 (3)	- 50 (4)
SD 1317		Ν	TO-117	20	4000	90	1.2	2.1	40	500			

- (1) Narrow band.
- (2) Broad band.
- (3) Second order IM: Chan. 2 + Chan. R, IM on Chan. 13 (FCC Channels).
- (4) NCTA Cross Modulation (12 channels).
- (5) Cross Modulation: Chan 2-4-5-7-9-11 100 % AM mod., XM on unmod. Chan 13 (FCC channels).
- SD # is the code used in our invoicing system.

SMALL SIGNAL TRANSISTORS

		Max ratings		Characteristics					
Polar.	V _{CEO}	I _C	P _{tot}	Туре	f _T	f _T and		@	Package
	(V)	(mA)	(mW)		(MHz)	NF (dB)	P _G (dB)	f (MHz)	
NPN	15	25	200	BFY90	1400	4.5	8	800	TO-72
NPN	15	50	200	2N918	900	3.5	22	200	TO-72
NPN	15	50	200	BFX73	900	6	-	60	TO-72
PNP	25	50	225	BFR99A	2300	3.5	8	800	TO-72
NPN	20	200	600	2N3137	750	-	7	250	TO-39
NPN	30	200	800	BFR36	1000	4	16	200	TO-39
NPN	20	400	1000	2N5109	1400	3	14	200	TO-39

SOLID STATE RELAYS

Туре	Description	Package
LH1056 LH1061	Optically coupled high voltage solid state AC/DC relay Optically coupled high voltage solid state AC/DC relay	6-LEAD MINIDIP SPECIAL MINIDIP

LOCAL AREA NETWORK

Туре	Description	Package
MK5030 MK5032 MK5033 MK5035	Starlan HUB Local Area Network Controller for Ethernet (LANCE) and Starlan Manchester encoder/decoder Starlan Station	DIP48 DIP48 DIP28 DIP20
MK50351 MK68592	Starlan Station compatible with MK5032 Serial Interface Adapter/Manchester encoder/decoder for Ethernet (300 mil)	DIP20 DIP24

PACKET SWITCHING

Туре	Description	Package
MK5025	X.25 LAPB/ISDN LAPD/HDLC CMOS Hi-speed link level controller with DMA	DIP48, PLCC52

FILTERS

DATA PROCESSING

MEMORIES		59
MICROS & PER	IPHERALS	62
NEW FAMILIES		66
	ST6 - 8-BIT HCMOS MICROCONTROLLER FAMILY	66
	ST8 - HIGH SPEED 8-BIT HCMOS MICROCONTROLLER FAMILY	66
	ST9 - HIGH SPEED 8/16-BIT HCMOS MICROCOMPUTER FAMILY	67
DISPLAY CIRCU	JITS AND GRAPHIC PROCESSORS	68
DATA COMMUI	NICATION CIRCUITS	68

NMOS EPROMs

Туре	Description	Package
ET2716 / M2716	2K×8, 450 ns access time, consumption 100/25 mA	DIP24
ET2716-1 / M2716-1	2K × 8, 350 ns access time, consumption 100/25 mA	DIP24
M2732A	4K × 8, 250 ns access time	DIP24
M2732A-2	4K × 8, 200 ns access time, consumption 125 mA	DIP24
M2732A-3	4K × 8, 300 ns access time, consumption 125 mA	DIP24
M2732A-4	4K × 8, 450 ns access time, consumption 125 mA	DIP24
M2764A	8K × 8, 250 ns access time, consumption 75 mA	DIP28
M2764A-2	8K × 8, 200 ns access time, consumption 60 mA	DIP28
M2764A-3	8K × 8, 300 ns access time, consumption 75 mA	DIP28
M2764A-4	8K × 8, 450 ns access time, consumption 75 mA	DIP28
M2764A-20	8K × 8, 200 ns access time, consumption 60 mA	DIP28
M2764A-25	8K × 8, 250 ns access time, consumption 75 mA	DIP28
M2764A-30	8K×8, 300 ns access time, consumption 75 mA	DIP28
M2764A-45	$8K \times 8$, 450 ns access time, consumption 75 mA	DIP28
M27128A	16K × 8, 250 ns access time, consumption 85 mA	DIP28
M27128A-2	16K × 8, 200 ns access time, consumption 85 mA	DIP28
M27128A-3	16K × 8, 300 ns access time, consumption 85 mA	DIP28
M27128A-4	16K × 8, 450 ns access time, consumption 85 mA	DIP28
M27128A-20	16K × 8, 200 ns access time, consumption 85 mA	DIP28
M27128A-25	16K × 8, 250 ns access time, consumption 85 mA	DIP28
M27128A-30	16K × 8, 300 ns access time, consumption 85 mA	DIP28
M27128A-45	16K × 8, 450 ns access time, consumption 85 mA	DIP28
M27256	32K × 8, 250 ns access time, consumption 100 mA	DIP28
M27256-2	32K × 8, 200 ns access time, consumption 100 mA	DIP28
M27256-3	32K × 8, 300 ns access time, consumption 100 mA	DIP28
M27256-4	32K × 8, 450 ns access time, consumption 100 mA	DIP28
M27256-20	32K × 8, 200 ns access time, consumption 100 mA	DIP28
M27256-25	32K × 8, 250 ns access time, consumption 100 mA	DIP28
M27256-30	32K × 8, 300 ns access time, consumption 100 mA	DIP28
M27256-45	32K × 8, 450 ns access time, consumption 100 mA	DIP28
M27512	64K × 8, 250 ns access time, consumption 125 mA	DIP28
M27512-2	64K × 8, 200 ns access time, consumption 125 mA	DIP28
M27512-3	64K × 8, 300 ns access time, consumption 125 mA	DIP28
M27512-4	64K × 8, 450 ns access time, consumption 125 mA	DIP28
M27512-20	64K × 8, 200 ns access time, consumption 125 mA	DIP28
M27512-25	64K × 8, 250 ns access time, consumption 125 mA	DIP28
M27512-30	64K × 8, 300 ns access time, consumption 125 mA	DIP28
M27512-45	64K × 8, 450 ns access time, consumption 125 mA	DIP28

NMOS ROMs

Туре	Description	Package
M2316H M2333 M2365	$2K \times 8$, 300 ns access time, consumption 100 mA $4K \times 8$, 250 ns access time, consumption 100 mA $8K \times 8$, 250 ns access time, consumption 80 mA	DIP24 DIP24 DIP28

CMOS EPROMs

Туре	Description	Package
TS27C64A-20 TS27C64A-25 TS27C64A-30 TS27C256-20 TS27C256-25 TS27C256-30	8K × 8, 200 ns access time, consumption 30/1 mA 8K × 8, 250 ns access time, consumption 30/1 mA 8K × 8, 300 ns access time, consumption 30/1 mA 32K × 8, 200 ns access time, consumption 30/1 mA 32K × 8, 250 ns access time, consumption 30/1 mA 32K × 8, 300 ns access time, consumption 30/1 mA	DIP28 DIP28 DIP28 DIP28 DIP28 DIP28 DIP28

CMOS OTP ROMs

Туре	Description	Package
ST27C256-20FN ST27C256-20P ST27C256-25FN ST27C256-25P TS27C64A-20FN TS27C64A-20P TS27C64A-25FN TS27C64A-25P TS27C64A-35P	$32K \times 8$, 200 ns access time, consumption 30/1 mA/100 μ A $32K \times 8$, 200 ns access time, consumption 30/1 mA/100 μ A $32K \times 8$, 250 ns access time, consumption 30/1 mA/100 μ A $32K \times 8$, 250 ns access time, consumption 30/1 mA/100 μ A $8K \times 8$, 200 ns access time, consumption 30/1 mA/100 μ A $8K \times 8$, 200 ns access time, consumption 30/1 mA/100 μ A $8K \times 8$, 250 ns access time, consumption 30/1 mA/100 μ A $8K \times 8$, 250 ns access time, consumption 30/1 mA/100 μ A $8K \times 8$, 250 ns access time, consumption 30/1 mA/100 μ A $8K \times 8$, 350 ns access time, consumption 30/1 mA/100 μ A	PLCC32 DIP28 PLCC32 DIP28 PLCC32 DIP28 PLCC32 DIP28 PLCC32 DIP28 DIP28

NMOS OTP ROMs

Туре	Description	Package
ST2764A-20P ST2764A-25P	$8K \times 8$, 200 ns access time, consumption 75 / 35 mA $8K \times 8$, 250 ns access time, consumption 75 / 35 mA	DIP28 DIP28

CMOS EEPROMs

Туре	Description	Package
ST24C02 TS59C11 TS93C46	256×8 , clock frequency 100 kHz, I2C compatible 128 \times 8, clock frequency 250 kHz, consumption 3/0.1 mA 64 \times 16, clock frequency 250 kHz, consumption 3/0.1 mA	DIP8, SO8 DIP8 DIP8

NMOS EEPROMs

Туре	Description	Package
M9306	16×16, clock frequency 250 kHz	DIP8, SO8
M9346	64×16, clock frequency 250 kHz	DIP8, SO14

STATIC RAMs

Туре	Description	Package
ETL2147H ETL2147H-3 ET2147H-1 ET2147H-2 ET2147H-3 MK41H66-20 MK41H66-25 MK41H66-35 MK41H67-20 MK41H67-25 MK41H67-35 MK41H68-20 MK41H68-25 MK41H68-35 MK41H68-35 MK41H68-35 MK41H69-30 MK41H69-35 MK41H78-25 MK41H78-35	4K × 1, 70 ns access time, NMOS FSRAM (Low power) 4K × 1, 55 ns access time, NMOS FSRAM (Low power) 4K × 1, 35 ns access time, NMOS FSRAM 4K × 1, 45 ns access time, NMOS FSRAM 4K × 1, 55 ns access time, NMOS FSRAM 16K × 1, 20 ns access time, CMOS VFSRAM (Fast CS) 16K × 1, 25 ns access time, CMOS VFSRAM (Fast CS) 16K × 1, 35 ns access time, CMOS VFSRAM (CE power down) 16K × 1, 20 ns access time, CMOS VFSRAM (CE power down) 16K × 1, 25 ns access time, CMOS VFSRAM (CE power down) 16K × 1, 35 ns access time, CMOS VFSRAM (CE power down) 4K × 4, 20 ns access time, CMOS VFSRAM (CE power down) 4K × 4, 25 ns access time, CMOS VFSRAM (CE power down) 4K × 4, 25 ns access time, CMOS VFSRAM (CE power down) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS) 4K × 4, 25 ns access time, CMOS VFSRAM (Fast CS)	CERDIP18 CERDIP18 CERDIP18 CERDIP18 CERDIP18 DIP20

ZEROPOWERTM AND TIMEKEEPERTM SRAMs (integrated lithium battery for data retention in absence of power - U.L. recognized version available on request)

Туре	Description	Package
MK41H79-25	4K × 4, 25 ns access time, CMOS VFSRAM (\$\overline{CE}\$ / \$\overline{OE}\$ and flash CLR)	DIP22
MK41H79-35	4K × 4, 35 ns access time, CMOS VFSRAM (CE / OE and flash CLR)	DIP22
MK41H80-20	4K × 4, 20 ns access time, CMOS VFSRAM (TAGRAM TM)	DIP22
MK41H80-22	4K × 4, 22 ns access time, CMOS VFSRAM (TAGRAM TM)	DIP22
MK41H80-25	4K × 4, 25 ns access time, CMOS VFSRAM (TAGRAM TM)	DIP22
MK41H80-35	4K × 4, 35 ns access time, CMOS VFSRAM (TAGRAM TM)	DIP22
MK6116-15	2K x 8, 150 ns access time, CMOS SRAM	DIP24
MK6116-20	2K × 8, 200 ns access time, CMOS SRAM	DIP24
MK6116-25	2K × 8, 250 ns access time, CMOS SRAM	DIP24
MK48T02-12	2K × 8, 120 ns access time, TIMEKEEPER TM SRAM	DIP24
MK48T02-15	2K × 8, 150 ns access time, TIMEKEEPER SRAM	DIP24
MK48T02-20	2K × 8, 200 ns access time, TIMEKEEPER TM SRAM	DIP24
MK48T02-25	2K × 8, 250 ns access time. TIMEKEEPER TM SRAM	DIP24
MK48T12-15	2K × 8, 150 ns access time, TIMEKEEPER M SRAM (V _{CC} ± 10%)	DIP24
MK48T12-20	2K × 8, 200 ns access time, TIMEKEEPER SRAM (V _{CC} ± 10%)	DIP24
MK48T12-25	2K × 8, 250 ns access time, TIMEKEEPER TM SRAM (V _{CC} ± 10%)	DIP24
MK48Z02-12*	2K × 8, 120 ns access time, ZEROPOWER TM SRAM	DIP24
MK48Z02-15*	2K × 8, 150 ns access time, ZEROPOWER TM SRAM	DIP24
MK48Z02-20*	2K × 8, 200 ns access time, ZEROPOWER TM SRAM	DIP24
MK48Z02-25*	2K × 8, 250 ns access time, ZEROPOWER M SRAM	DIP24
MK48Z08-10	8K × 8, 100 ns access time, ZEROPOWER TM SRAM	DIP28
MK48Z08-12	8K × 8, 120 ns access time, ZEROPOWER [™] SRAM	DIP28
MK48Z08-15	8K × 8, 150 ns access time, ZEROPOWER ^{1M} SRAM	DIP28
MK48Z08-20	8K × 8, 200 ns access time, ZEROPOWER SRAM	DIP28
MK48Z09-10	8K × 8 100 ps access time ZEROPOWER TM SBAM (power fail int.)	DIP28
MK48Z09-12	8K × 8, 120 ns access time, ZEROPOWER SRAM (power fail int.)	DIP28
MK48Z09-15	8K × 8, 150 ns access time, ZEROPOWER SRAM (power fail int.)	DIP28
MK48Z09-20	8K×8, 150 ns access time, ZEROPOWER TM SRAM (power fail int.) 8K×8, 200 ns access time, ZEROPOWER TM SRAM (power fail int.)	DIP28
MK48Z12-12*	2K × 8, 120 ns access time, ZEROPOWER M SRAM (V _{CC} ± 10%)	DIP24
MK48Z12-15*	2K × 8, 150 ns access time, ZEROPOWER TM SRAM (V _{CC} ± 10%)	DIP24
MK48Z12-20*	2K × 8, 200 ns access time, ZEROPOWER SRAM (V _{CC} ± 10%)	DIP24
MK48Z12-25*	2K × 8, 250 ns access time, ZEROPOWER SRAM (V _{CC} ± 10%)	DIP24
MK48Z18-10	$2K \times 8$, 250 ns access time, ZEROPOWER TM SRAM ($V_{CC} \pm 10\%$) $8K \times 8$, 100 ns access time, ZEROPOWER TM SRAM ($V_{CC} \pm 10\%$)	DIP28
MK48Z18-12	8K × 8, 120 ns access time, ZEROPOWER TM SRAM (Voc ± 10%)	DIP28
MK48Z18-15	8K × 8, 150 ns access time, ZEROPOWER SRAM (V _{CC} ± 10%)	DIP28
MK48Z18-20	8K × 8 200 ns access time ZEROPOWER ^{IM} SRAM (Vcc. ± 10%)	DIP28
MK48Z19-10	8K \times 8, 100 ns access time, ZEROPOWER TM SRAM (power fail int $V_{CC} \pm 10\%$) 8K \times 8, 120 ns access time, ZEROPOWER TM SRAM (power fail int $V_{CC} \pm 10\%$)	DIP28
MK48Z19-12	8K × 8, 120 ns access time, ZEROPOWER SRAM (power fail int VCC ± 10%)	DIP28
MK48Z19-15	8K x 8, 150 ns access time, ZEROPOWER [™] SRAM (power fail int V _{CC} ± 10%)	DIP28
MK48Z19-20	8K × 8, 200 ns access time, ZEROPOWER TM SRAM (power fail int V _{CC} ± 10%)	DIP28

BATTERY BACK-UP SRAMs

Туре	Description	Package
MK48C02A-15 MK48C02A-20 MK48C02A-25	$2K \times 8$, 150 ns access time, battery back-up SRAM $2K \times 8$, 200 ns access time, battery back-up SRAM $2K \times 8$, 250 ns access time, battery back-up SRAM	DIP28, PLCC 32 DIP28, PLCC 32 DIP28, PLCC 32

BIPORT TM DEVICES

Туре	Description	Package
MK4501-65 MK4501-80 MK4501-10 MK4501-12 MK4501-15 MK4501-20	512 × 9, 65 ns access time, BiPORT™ FIFO 512 × 9, 80 ns access time, BiPORT™ FIFO 512 × 9, 100 ns access time, BiPORT™ FIFO 512 × 9, 120 ns access time, BiPORT™ FIFO 512 × 9, 150 ns access time, BiPORT™ FIFO 512 × 9, 200 ns access time, BiPORT™ FIFO	DIP28, PLCC32 DIP28, PLCC32 DIP28, PLCC32 DIP28, PLCC32 DIP28, PLCC32 DIP28, PLCC32

BIPORT TM DEVICES (Continued)

Туре	Description	Package
MK4503-65	2048 × 9, 65 ns access time, BiPORT TM FIFO	DIP28
MK4503-80	2048 × 9, 80 ns access time, BiPORTTM FIFO	DIP28
MK4503-10	2048 × 9, 100 ns access time, BiPORTTM FIFO	DIP28
MK4503-12	2048 × 9, 120 ns access time, BiPORTTM FIFO	DIP28
MK4503-15	2048 × 9, 150 ns access time, BiPORTTM FIFO	DIP28
MK4503-20	2048 × 9, 200 ns access time, BiPORT TM FIFO	DIP28
MK4505M-25	1024 × 5, 15 ns access time, clocked FIFO (MASTER)	DIP24 (300 mil)
MK4505M-33	1024 × 5, 20 ns access time, clocked FIFO (MASTER)	DIP24 (300 mil)
MK4505M-50	1024 × 5, 25 ns access time, clocked FIFO (MASTER)	DIP24 (300 mil)
MK4505S-25	1024 × 5, 15 ns access time, clocked FIFO (SLAVE)	DIP20 (300 mil)
MK4505S-33	1024 × 5, 20 ns access time, clocked FIFO (SLAVE)	DIP20 (300 mil)
MK4505S-50	1024 × 5, 25 ns access time, clocked FIFO (SLAVE)	DIP20 (300 mil)
MK45264N-55	$64 \times 5 \times 2$, 55 ns access time bidirectional FIFO	DIP24 (300 mil)
MK45264N-70	64 × 5 × 2, 70 ns access time bidirectional FIFO	DIP24 (300 mil)
MK45265N-55	64 × 5 × 2, 55 ns access time bidirectional FIFO	DIP24 (300 mil)
MK45265N-70	$64 \times 5 \times 2$, 70 ns access time bidirectional FIFO	DIP24 (300 mil)

MICROS & PERIPHERALS

4-BIT MICROCONTROLLERS

9400 FAMILY

Туре	Description	Package
ET9420/21/22	NMOS 1 K ROM, 15-23 I/O	DIP20, 24, 28 SO20, 24, 28 PLCC28
ETC9410/11/13	CMOS 0,5K ROM, 15-19 I/O	DIP20, 24
ETC9420/21/22	CMOS 1 K ROM, 15-23 I/O	SO20, 24 DIP20, 24, 28 SO20, 24, 28
ETC9444/45	CMOS 2 K ROM, 19-23 I/O	PLCC28 DIP24, 28 SO 24/28
ETL9410/11/13	NMOS Low power 1/2 K ROM, 15-19 I/O	PLCC28 DIP20, 24
ETL9420/21/22	NMOS low power 1 K ROM, 15-23 I/O	SO20, 24 DIP20, 24, 28 SO20, 24, 28
ETL9444/45	NMOS low power, 2 K ROM, 19-23 I/O	PLCC28 DIP24, 28 SO 24/28 PLCC28

8-BIT MICROCONTROLLERS

6804 FAMILY

Туре	Description	Package
EF68HC04P3	HCMOS, 2 K ROM, 20 I/O, 8 - bit timer	DIP28, PLCC28
EF6804J2	HMOS, 1 K ROM, 12 I/O, 8 - bit timer	DIP/SO20
EF6804P2	HMOS, 1 K ROM, 20 I/O, 8 - bit timer	DIP28, PLCC28

MICROS & PERIPHERALS

8-BIT MICROCONTROLLERS (Continued)

6805 FAMILY

Туре	Description	Package
EF6805P2 EF6805P6 EF6805R2 EF6805R3 EF6805U2 EF6805U3	HMOS, 1 K ROM, 20 I/O, 8 - bit timer HMOS, 1.8 K ROM, 20 I/O, 8 - bit timer HMOS, 2 K ROM, 32 I/O, A/D converter HMOS, 3.7 K ROM, 32 I/O, A/D converter HMOS, 2 K ROM, 32 I/O HMOS, 3.7 K ROM, 32 I/O	DIP28, PLCC28 DIP28, PLCC28 DIP40, PLCC44 DIP40, PLCC44 DIP40, PLCC44 DIP40, PLCC44

3870 FAMILY

Туре	Description	Package
MK38P70 MK2870 MK3870 MK3873 MK3873 MK3875 M2870 M2874 M38P74 M38P78 M3870 M3870 M3874 M3876 M3876 M3878 M38AD72 M38AD74 M38PAD74 M38PAD74 M38SH74	NMOS, piggy back MCU, up to 64 K external ROM, 32 I/O lines NMOS, 1 K ROM MCU, 20 I/O lines NMOS, 2 K ROM or 4 K ROM MCU, 32 I/O lines NMOS, 2 K ROM MCU, 29 I/O lines, serial I/O NMOS, 4 K ROM MCU, 30 I/O lines, stand-by RAM NMOS, 2 K ROM MCU, 20 I/O lines NMOS, 4 K ROM MCU, 20 I/O lines NMOS, piggy back MCU, 2 K or 4 K external ROM NMOS, piggy back MCU, 6 K or 8 K external ROM NMOS, piggy back MCU, 6 K or 8 K external ROM NMOS, 2 K ROM MCU, 32 I/O lines NMOS, 4 K ROM MCU, 32 I/O lines NMOS, 4 K ROM MCU, 32 I/O lines NMOS, 8 K ROM MCU, 32 I/O lines NMOS, 8 K ROM MCU, A/D converter, 25 I/O lines NMOS, 4 K ROM MCU, A/D converter, 25 I/O lines NMOS, 4 K ROM MCU, A/D converter, 25 I/O lines NMOS, 4 K ROM MCU, 64 bytes N.V. shadow RAM, 31 I/O lines NMOS, 4 K ROM MCU, 64 bytes N.V. shadow RAM, 31 I/O lines	DIP40, Piggy back DIP28 DIP40, Piggy back DIP40 DIP40, Piggy back DIP28 DIP28 DIP28 DIP40, Piggy back DIP40, Piggy back DIP40, PLCC44

6801 FAMILY

Туре	Description	Package
EF68B01	HMOS, 2 K ROM, 31 I/O, SCI, TIMER, STANDBY RAM, 2 MHz	DIP40, PLCC44
EF68B01U4	HMOS, 4 K ROM, 31 I/O, Enhanced SCI and TIMER, STANDBY RAM, 2 MHz	DIP40, PLCC44
EF6801	HMOS, 2 K ROM, 31 I/O, SCI, TIMER, STANDBY RAM, 1 MHz	DIP40, PLCC44
EF6801-U4	HMOS, 4 K ROM, 31 I/O, Enhanced SCI and TIMER, STANDBY RAM, 1 MHz	DIP40, PLCC44

Z8 FAMILY

Туре	Description	Package
Z86E11	NMOS 4 K on chip EPROM MCU	DIP40 Glass Lews
Z86E21	NMOS 4 K on chip EPROM MCU	DIP40 Glass Lews
Z86R81	Z8681 with 240 RAM	DIP40, PLCC44
Z8600	NMOS 2 K ROM MCU with 144 bytes RAM	DIP28
Z8601	NMOS 2 K ROM MCU with 144 bytes RAM	DIP40, PLCC44
Z8610	NMOS 4 K ROM MCU with 144 bytes RAM	DIP28
Z8611	NMOS 4 K ROM MCU with 144 bytes RAM	DIP40, PLCC44
Z8620	NMOS 8 K ROM MCU with 256 bytes RAM	DIP28
Z8621	NMOS 8 K ROM MCU with 256 bytes RAM	DIP40, PLCC44
Z8671	NMOS MCU with BASIC/debug Interpreter	DIP40, PLCC44
Z8681	ROMIess MCU with up to 64K extend addressable ROM/RAM	DIP40, PLCC44

MICROS & PERIPHERALS

8-BIT MICROPROCESSORS

6800 FAMILY

Туре	Description	Package
EF68A02 EF68A03 EF68A03U4 EF38A09 EF68A09E EF68B02 EF68B09 EF68B09 EF68B09 EF6802 EF6803 EF6803U4 EF6809 EF6809E	NMOS 8 bits MPU with RAM & clock, 1.5 MHz NMOS ROMless MCU, 1.5 MHz 6803 with 192 bits RAM, 1.5 MHz High performance 8-bit MPU, 1.5 MHz 6809 CPU with external clock, 1.5 MHz NMOS 8 bits MPU with RAM & clock, 2 MHz NMOS ROMless MCU, 2 MHz High performance 8-bit MPU, 2 MHz 6809 CPU with external clock, 2 MHz NMOS 8 bits MPU with RAM & clock, 1 MHz NMOS ROMless MCU, 1 MHz 6803 with 192 bits RAM, 1 MHz High performance 8-bit MPU, 1 MHz 6809 CPU with external clock 1 MHz	DIP40, PLCC44 DIP/CERDIP40, PLCC44 DIP/CERDIP40, PLCC44 DIP/CERDIP40, PLCC44 DIP/CERDIP40, PLCC44 DIP40, PLCC44 DIP/CERDIP40, PLCC44

8-BIT PERIPHERALS

6800 FAMILY

Туре	Description	Package
EF68A21 EF68A40 EF68A50 EF68A54 EF68B21 EF68B40 EF68B50 EF68B54 EF6821 EF6840 EF6850 EF6854	Peripheral Interface Adapter, 1.5 MHz Programmable Timer, 1.5 MHz Asynchronous Communication Interface Adapter, 1.5 MHz Advanced Data Link Controller, 1.5 MHz Peripheral Interface Adapter, 2 MHz Programmable Timer, 2 MHz Asynchronous Communication Interface Adapter, 2 MHz Advanced Data Link Controller, 2 MHz Peripheral Interface Adapter, 1 MHz Programmable Timer, 1 MHz Asynchronous Communication Interface Adapter, 1 MHz Advanced Data Link Controller, 1 MHz	DIP/CERDIP40, PLCC44 DIP/CERDIP28, PLCC28 DIP/CERDIP24, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP24, PLCC28 DIP/CERDIP24, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP24, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP28, PLCC28 DIP/CERDIP28, PLCC28

Z80 FAMILY

Туре	Description	Package
MK3801 Z8400 Z8410 Z8420 Z8430 Z8440/1/2/4 Z8470	Serial timer interrupt (STI) Z80 CPU with up to 8 MHz clock frequency Z80 DMA with up to 4 MHz clock frequency Z80 PIO with up to 6 MHz clock frequency Z80 CTC with up to 6 MHz clock frequency Z80 SIO with up to 6 MHz clock frequency Z80 DART with up to 6 MHz clock frequency	DIP40 DIP40, PLCC/LCCC44 DIP40, PLCC/LCCC44 DIP40, PLCC/LCCC44 DIP28, PLCC/LCCC44 DIP40, PLCC/LCCC44 DIP40, PLCC/LCCC44

Z80 CMOS FAMILY

Туре	Description	Package
M8719 Z84C00 Z84C10 Z84C20 Z84C30 Z84C40/1/2/4	Clock generator for micro with up to 16 MHz clock frequency Z80 CMO CPU with up to 8 MHz clock frequency DMA with up to 6 MHz clock frequency PIO with up to 6 MHz clock frequency CTC with up to 6 MHz clock frequency Z80 CMOS SIO with up to 6 MHz clock frequency	DIP16 DIP40, PLCC44 DIP40, PLCC44 DIP40, PLCC44 DIP28, PLCC44 DIP40, PLCC44

MICROS & PERIPHERALS

16-BIT MICROPROCESSORS

68000 FAMILY

Туре	Description	Package
TS68000-8 TS68000-10 TS68000-12 TS68000-16 TS68008-8 TS68008-10 TS68008-12	8 MHz clock freq. with 32-bit internal structure 10 MHz clock freq. with 32-bit internal structure 12.5 MHz clock freq. with 32-bit internal structure 16 MHz clock freq. with 32-bit internal structure 8 MHz clock freq, TS68000 8-bit bus version 10 MHz clock freq, TS68000 8-bit bus version 12.5 MHz clock freq, TS68000 8-bit bus version	DIP64, PLCC68, PGA68 DIP48, PLCC52 DIP48, PLCC52 DIP48

Z8000 FAMILY

Туре	Description	Package
Z8001	16-bit segmented CPU, 8 Mbyte, up to 10 MHz clock frequency	DIP48, LCCC52
Z8002	16-bit non segmented CPU, 64 Kbyte, up to 10 MHz clock frequency	DIP40, PLCC/LCCC44
Z8010	MMU for Z8001 SEG CPU, up to 10 MHz clock frequency	DIP48, LCCC52
Z8030	SCC (dual), up to 6 MHz clock frequency	DIP40, PLCC/LCCC44
Z8031	ASCC up to 6 MHz clock frequency	DIP40
Z8036	CIO counter/timer and parallel I/O, up to 6 MHz clock frequency	DIP40, PLCC/LCCC44
Z8038	FIFO I/O interface, up to 6 MHz clock frequency	DIP40, PLCC/LCCC44
Z8060	FIFO buffer unit (and Z8038 expander), up to 4 MHz clock frequency	DIP28, LCCC44

16-BIT PERIPHERALS 68000 FAMILY

Туре	Description	Package
MK68230 MK68564 MK68901 TS68HC901 TS68483 TS68494 TS68930	Parallel interface timer, 8 MHz Serial I/O, 4-5 MHz Multifunction peripheral, 4-5 MHz CMOS multifunction peripheral, 4-5-8 MHz High performance graphic processor - 2048 × 2048 Colour palette: 256/4096 16/32 bit DSP - 6.25 MIPS - 1.2 K × 32 program ROM 16/32 bit DSP - 6.25 MIPS - External ROM (64 K)	DIP48, PLCC52 DIP48, PLCC52 DIP48, PLCC52 DIP48 - PLCC52 DIP64, PLCC68 DIP48, PLCC44 DIP48 LCCC84, PGA 84

Z8500 UNIVERSAL PERIPHERALS

Туре	Description	Package
Z8530	SCC (dual), up to 6 MHz clock frequency	DIP40, PLCC/LCCC44
Z8531	ASCC, up to 6 MHz clock frequency	DIP40
Z8536	CIO counter/timer and parallel I/O, up to 6 MHz clock frequency	DIP40, PLCC/LCCC44

8-BIT DEVELOPMENT AND EMULATION

Туре	Description
EFT-MUP4 EFT-MUP5	EF6804P2/J2, EF68HC04P3 emulator EF6805P2/P4/P6, EF6805R2/U2, EF6805R3/U3 emulator
TE-Z8	Total emulator for Z8 family
TST-IN48	Hardware development station
Z8E-KIT-BOARD	Programming module for Z8 EPROM MCU's

NEW FAMILIES

ST6 - 8-BIT HCMOS MICROCONTROLLER FAMILY

This new family of HCMOS single-chip microcontrollers is dedicated to the low cost applications. All ST6 devices are based on a building block approach, a common core is surrounded by a combination of dedicated on-chip peripherals (megacells), e.g.: A/D converter, Timers, LCD Drivers, Watchdog function, Operational Amplifiers, PLL, etc. The Program ROM, Data RAM/ROM are of variable sizes to meet different application complexities. The instruction set is designed for byte-efficient program storage and includes bit manipulation and conditional jump instructions.

ST6 HCMOS FAMILY

Туре	Description	Package
ST60P1XD6 ST6010B6 ST6011B6 ST6012B6	HCMOS Piggyback MCU (emulation of ST6010/11/12) HCMOS 2K ROM MCU, A/D Converter, 6 I/O Lines HCMOS 2K ROM MCU, A/D Converter, 7 I/O Lines HCMOS 2K ROM MCU, A/D Converter, 7 I/O Lines	PIGGYB-40 PDIP-20 PDIP-20 PDIP-28
ST6093XD6 ST6031B6 ST6031M6	HCMOS Piggyback MCU (emulation of ST6031) HCMOS 4K ROM MCU, PRE-AMP, Pulse Detector, 16 I/O Lines HCMOS 4K ROM MCU, PRE-AMP, Pulse Detector, 16 I/O Lines	PIGGYB-40 PDIP-28 SO28
ST60R4XC6, ST60R4XK6 ST6040C6 ST6041B6	HCMOS Romless MCU (emulation of ST6040/41) HCMOS 4K ROM MCU, A/D Converter, LCD Drivers, 15 I/O Lines HCMOS 4K ROM MCU, A/D Converter, LCD Drivers, 16 I/O Lines	PLCC84, LCCC84 PLCC44 PDIP-48
ST60R5XC6, ST60R5XK6 ST6050C6 ST6051B6 ST6052B6	HCMOS Romless MCU (emulation of ST6050/51/52) HCMOS 4K ROM MCU, A/D Converter, PRE-AMP, 30 I/O Lines HCMOS 4K ROM MCU, A/D Converter, PRE-AMP, 33 I/O Lines HCMOS 4K ROM MCU, A/D Converter, PRE-AMP, 27 I/O Lines	PLCC84, LCCC84 PLCC44 PDIP-48 PDIP-40
ST61E24K6 ST6124C6	HCMOS EPROM MCU (emulation of ST6124) HCMOS 2.5K ROM MCU, LCD Drivers, Power Supply Supervisor, 16 I/O Lines	LCCC44-W PLCC44
ST61E54K8 ST6154Q8	HCMOS EPROM MCU (emulation of ST6154) HCMOS 3.6K ROM MCU, LCD Drivers, PLL, 16 I/O Lines	LCCC52-W QFP52

ST8 - HIGH SPEED 8-BIT HCMOS MICROCONTROLLER FAMILY

This new family of HCMOS high speed single-chip microcontrollers is aimed at medium-range applications mainly for Telecom, Computer, Consumer and Automotive markets. As in all SGS-THOMSON new HCMOS MCU families, ST8 devices are based on a modular approach, a common powerful and fast core (250 ns machine cycle) is surrounded by a combination of dedicated on-chip peripherals (megacells), e.g.: A/D converter, Timers, Synchronous and Asynchronous serial interfaces, Watchdog function, Pulse width modulation counter, etc. The Program ROM, and Data RAM are of variable sizes to meet different application complexities. EPROM and EEPROM versions are also available. The instruction set is designed for powerful and byte-efficient operation and includes bit manipulation and fast multiply instruction. After those described in the following table many others ST8 devices will come soon.

ST8 HCMOS FAMILY

Туре	Description	Package
ST8108C6	HCMOS 8K ROM MCU, 176 Bytes RAM, Timer, Synch. & Asynch. Serial Interfaces, 24 I/O lines	PLCC44
ST8108B6	HCMOS 8K ROM MCU, 176 Bytes RAM, Timer, Synch. & Asynch. Serial Interfaces, 24 I/O lines	PDIP-40
ST81E08L6 ST81E08D6	HCMOS EPROM MCU (emulation of ST8108C6) HCMOS EPROM MCU (emulation of ST8108B6)	CLCC44-W CDIP-40-W

NEW FAMILIES

ST9 - HIGH SPEED 8/16-BIT HCMOS MICROCOMPUTER FAMILY

ST9 Family components allow you to design application-specific CMOS single chip microcomputers through its flexible architecture. The modular concept is based on a powerful core with megacells expansion.

The core includes an 8/16-bit ALU, a 256-byte register file, a programmable interrupt controller, a multichannel DMA controller and an MSPI and / or I2CBUS serial interface. Megacells like Timers, Serial Interface, I/O Ports, A/D Converter etc. are standard available in a library. They allow on-chip customization through more than 4000 possible combinations of megacells and memory options.

The processor can address as much as 128K bytes of address space. The use of 1.5 μ CMOS Technology allows full compatibility with EPROM and EEPROM memories and the operating with an external clock frequency as high as 24 MHz.

Software tools available are: high level macro assembler, linker/loader, emulator debugger, software simulator and C-compiler.

ST9 devices are particularly tailored to real-time single chip application foreseen for use in Consumer, Industrial, Automotive and Telecom markets.

_		
Туре	Description	Package
ST90E20D6	HCMOS high end core, 8K EPROM, 256 reg. file, 1 × 16-bit watchdog timer, 1 serial communication controller, 1 × 16 bit multifunction timer, MSPI and I2CBUS serial interface, 40 I/O lines	CDIP-48-W
ST90E23L6	HCMOS high end core, 8K EPROM, 256 reg. file, 1 × 16-bit watchdog timer, 1 serial communication controller, 1 × 16 bit multifunction timer, MSPI and I2CBUS serial interface, 36 I/O lines	CLCC44-W
ST90E21D6	HCMOS high end core, 8K EPROM, 256 reg. file, 1 × 16-bit watchdog timer, 1 serial communication controller, 1 × 16 bit multifunction timer, MSPI and I2CBUS serial interface, 32 I/O lines	CDIP-40-W
ST9020B6	HCMOS high end core, 8K ROM, 256 reg. file, 1 × 16-bit watchdog timer, 1 serial communication controller, 1 × 16 bit multifunction timer, MSPI and I2CBUS serial interface, 40 I/O lines	PDIP-48
ST9023C6	HCMOS high end core, 8K ROM, 256 reg. file, 1 × 16-bit watchdog timer, 1 serial communication controller, 1 × 16 bit multifunction timer, MSPI and I2CBUS serial interface, 36 I/O lines	PLCC44
ST9021B6	HCMOS high end core, 8K ROM, 256 reg. file, 1 × 16-bit watchdog timer, 1 serial communication controller, 1 × 16 bit multifunction timer, MSPI and I2CBUS serial interface, 32 I/O lines	PDIP-40
ST90E30L6	HCMOS high end core, 8K EPROM, 256 reg. file, 1×16-bit watchdog timer, MSPI and I2CBUS serial interface, 1 serial communication controller, 2×16 bit multifunction timers, 8 channels by 8 bit analog to digital converter, 56 I/O lines	CLCC68-W
ST90E31D6	HCMOS high end core, 8K EPROM, 256 reg. file, 1 × 16-bit watchdog timer, MSPI and I2CBUS serial interface, 1 serial communication controller, 2 × 16 bit multifunction timers, 6 channels by 8 bit analog to digital converter, 40 I/O lines	CDIP-48-W
ST9030C6	HCMOS high end core, 8K ROM, 256 reg. file, 1×16-bit watchdog timer, MSPI and I2CBUS serial interface, 1 serial communication controller, 2×16 bit multifunction timers, 8 channels by 8 bit analog to digital converter, 56 I/O lines	PLCC68
ST9031B6	HCMOS high end core, 8K ROM, 256 reg. file, 1×16-bit watchdog timer, MSPI and I2CBUS serial interface, 1 serial communication controller, 2×16 bit multifunction timers, 6 channels by 8 bit analog to digital converter, 40 I/O lines	PDIP-48

DISPLAY CIRCUITS AND GRAPHIC PROCESSORS

Туре	Description	Package
EF9345 EF9367	Single chip alphanumeric and semigraphic display processor Graphic display processor - 512 × 1024	DIP40, PLCC44 DIP40
EF9369	Colour palette: 16/4096	DIP28, PLCC28
TS68483	High performance graphic processor - 2048 × 2048	DIP64, PLCC68
TS68494	Colour palette: 256/4096	DIP48, PLCC44
TS9370	Same as EF9369 with linear law	DIP28, PLCC28

DATA COMMUNICATION CIRCUITS

LOCAL AREA NETWORKS

Туре	Description	Package
MK5030	StarLAN HUB	DIP48
MK5032	Local Area Network Controller for Ethernet (LANCE) and Starlan	DIP48
MK5033	Manchester encoder/decoder	DIP28
MK5035	StarLAN Station	DIP20
MK50351	Starlan station compatible with MK 5032	DIP20
MK68592	Serial Interface Adapter/Manchester encoder/decoder for Ethernet (300 mil)	DIP24

PACKET SWITCHING

Туре	Description	Package
MK5025	X.25 LAPB / ISDN LAPD / HDLC CMOS Hi-speed link level controller with DMA	DIP48, PLCC52

CONSUMER

HIGH SPEED D	HIGH SPEED DATA CONVERSION	
TV, MONITORS	AND VCR CIRCUITS	71
	DEFLECTION - ICs	71
	DEFLECTION - DISCRETES	72
	CHROMA	74
	VIDEO IF CIRCUITS	74
	SOUND CHANNELS	74
	AUDIO AMPLIFIERS	74
	VIDEO AND SOUND SWITCHES	75
	REMOTE CONTROL	75
	VOLTAGE SYNTHESIS TUNING SYSTEMS	75
	FREQUENCY TUNING SYSTEMS	75
	VIDEO RECORDER CIRCUITS	75
	SWITCH MODE POWER SUPPLY	76
	DISPLAY CIRCUITS VOLTAGE REGULATORS	76 76
RADIO AND AU	JDIO	77
	AUDIO AMPLIFIERS FOR CAR RADIO	77
	Hi-Fi POWER AMPLIFIERS	77
	GENERAL PURPOSE AUDIO AMPLIFIERS	77
	AUDIO PREAMPLIFIERS AND AUDIO PROCESSORS	77
	MOTOR REGULATORS	78
	MUSIC	78
	RADIO CIRCUITS	78
	MEMORIES	79
LAMP BALLAST	-	79
	BIPOLAR POWER TRANSISTORS	79

HIGH SPEED DATA CONVERSION

Туре	Description	Package
TS8318 TS8348 TS8408 TS8428 UA. 1005	8-bit flash ADC, 20 MHz sampling rate 8-bit flash ADC (min. version of TS8318), 20 MHz sampling rate 8-bit voltage output DAC, 25 MHz sampling rate 8-bit voltage output DAC, 5 MHz sampling rate 4-bit flash ADC, 30 MHz sampling rate	DIP 24 DIP 20 DIP 16 DIP 16 DIP 24

TV, MONITORS AND VCR CIRCUITS

DEFLECTION - ICs VERTICAL DEFLECTION

Туре	Description	Package
TDA1170D TDA1170N TDA1170S TDA1670A TDA1770A TDA1872A TDA2170 TDA2270 TDA8170 TDA8172 TDA8173 TDA8173	Complete system for VDU and B & W TV Complete system for VDU, B & W and colour TV Complete system for VDU, B & W and colour TV Complete system for VDU and colour TV Complete system for VDU and B & W TV Complete system for AUTO 50/60 Hz Power output for colour TV Power output for B & W TV Power output for colour TV Power output for colour TV Power output for Colour TV Power output for B & W TV Power output for Colour TV Power output for Colour TV	DIP 16 FINDIP FINDIP MULTIWATT15 DIP20 MULTIWATT15 MULTIWATT11 DIP16 HEPTAWATT HEPTAWATT DIP16 HEPTAWATT

EAST/WEST CORRECTION

Туре	Description	Package
TDA4950 TDA8145 TEA2031A	E/W parabolic and keystone correction E/W parabolic for square CRT E/W parabolic and Keystone correction	MINIDIP MINIDIP MINIDIP

HORIZONTAL DRIVERS

Туре	Description	Package
TDA8140 TDA8143	Deflection power transistor driver Deflection power transistor driver	POWER DIP8 + 8 SIP9

H/V DEFLECTION SIGNAL PROCESSOR

Туре	Description	Package
TDA1180P TDA2593 TDA8100 TDA 8181 TDA 8185 TEA2017 TEA2028B TEA2029C TEA2037A	Horizontal processor for monitors, colour + B & W TV Horizontal processor for colour TV Complete deflection for low cost monitors + B & W TV H/V processor for colour TV H/V processor for colour TV H/V deflection for colour monitors + B & W TV Deflection + SMPS processor Deflection + SMPS processor H/V Deflection circuit for low cost monitors, B & W TV	DIP16 DIP16 BATWING DIP 20 DIP 20 DIP 24 MULTIWATT15 DIP28 DIP 28 BATWING DIP16

HIGH DEFINITION COLOUR MONITORS HORIZONTAL DEFLECTION

These NPN transistors feature very fast switching times typically 3 to 5 times faster than 1500 V products designed several years ago.

I _C	V _{CES}	V _{CEO}	P _{tot}	Package	Туре	V _{CE(sat)} @	IC	(A)
(A)	(V)	(V)	(W)			(V)	h _{FE} = 5	h _{FE} = 7
4.00 4.00 4.00 4.00 4.00 7.00 7.00 7.00	1200 1200 1200 1200 1300 1300 1200 1200	600 600 600 600 600 600 600 600 600 600	70 45 35 80 45 80 85 35 95 55 95 65 150 125 250	TO 220 ISOWATT 218 ISOWATT 220 SOT 93 ISOWATT 218 SOT 93 TO 220 ISOWATT 220 SOT 93 ISOWATT 218 SOT 93 ISOWATT 218 TO 3 SOT 93 ISOWATT 218 TO 3 SOT 93 TO 3 TO 3 TO 3 TO 3	SGSF 324 SGSIF 424 SGSIF 324 SGSIF 324 SGSF 425 SGSF 425 SGSF 344 SGSIF 344 SGSIF 344 SGSIF 445 SGSF 445 SGSF 446 SGSF 464 SGSF 565 SGSF 465 SGSF 465 SGSF 665	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	1.75 1.75 1.75 1.75 1.25 1.25 3.50 3.50 3.50 3.00 6.00 6.00 6.00 5.00 5.00 12.00	1.25 1.25 1.25 1.25 1.00 1.00 2.50 2.50 2.50 2.00 3.50 3.50 3.50 3.00 3.00 7.00 6.00

The ISOWATT 218 isolated power package gives a simple solution to device mounting problems. It offers one hole mounting, may be easily paralleled and with 2500 V AC isolation and long creepage distances makes it easy to achieve the standards required by VDE, UL, IEC etc. The power dissipation is equivalent to a non isolated SOT 93 (TO 218) device mounted with external electrical isolation.

COLOUR TV HORIZONTAL DEFLECTION

IC	VCBO	V _{CEO}	P _{tot}	Package	Туре	V _{CE(sat)} @	IC	/ I _B
(A)	(V)	(V)	(W)			(V)	(A)	(A)
2.5.5 4 5 5 5 5 6 6 6 7 7.7.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1500 1500 1500 1500 1500 1500 1500 1500	600 600 700 600 700 700 700 700 700 700	45 • 55 — 60 — 50 60 — 60 50 50 50 50 50 125 125 125 150 150	ISOWATT 218 ISOWATT 218 SOT 93 ISOWATT 218 SOT 93 SOT 93 ISOWATT 218 SOT 93 ISOWATT 218 SOT 93 ISOWATT 218 SOT 93 ISOWATT 218	2SD 1429 FI 2SD 1430 FI 2SD 1431 FI 2SD 1730 2SD 1730 2SD 1577 FI 2SD 1577 FI 2SD 1432 FI 2ST 3460 2ST 2000 FI 2ST 2000 FI 2ST 2000 FI BU 508 FI BU 508 AFI BU 508 DFI* BU 508 BU 508A BU 508A BU 208A BU 208A BU 208A	8 8 1 5 8 5 2 5 2 1 1 5 5 1 1 5 5 1 1 5 1 1 5 1 1 1 5 1	23344555 3445553445554555554555555555555	0.6 0.8 1 0.8 1 1.2 2 1 0.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

^{*} Transistors with integral damper diode

BIPOLAR POWER TRANSISTORS AND DARLINGTONS FOR MONOCHROME DEFLECTION

IC	V _{CBO}	V _{CEO}	P _{tot}	Package	Type NPN	h _{FE} @	Ic	/ V _{CE}	V _{CE(sat)}	IC	/ I _B
(A)	(V)	(V)	(W)				(A)	(V)	(V)	(A)	(A)
6	800	375	110	SOT 93	BU 326 P	5	2.5	1.5	1.5	2.5	0.5
6	800	375	114	SOT 93	BU 426	5	2.5	1.5	1.5	2.5	0.5
6	900	400	110	SOT 93	BU 326 AP	5	2.5	1.5	1.5	2.5	0.5
6	900	400	114	SOT 93	BU 426 A	5	2.5	1.5	1.5	2.5	0.5
7	330	150	60	TO 220	BU 407	10	5	1	1 1	5	0.5
7	330	150	60	TO 220	BU 407 D*	8	5	1	1 1	5	0.65
7	400	150	50	TO 220	BU 104 P	7	7	2	2	7	1
7	400	150	50	TO 220	BU 104 DP*	7	7	2	2	7	1
7	400	200	60	TO 220	BU 406	10	5	1	1	5	0.5
7	400	200	60	TO 220	BU 406 D*	8	5	1	1	5	0.5
7	400	200	60	TO 220	BU 408	10	5	1	1 1	6	1.2
7	400	200	60	TO 220	BU 408 D*	8	5	1	1 1	6	1.2
7	600	400	75	TO 220	BU 810**	100	2	2	2.5	4	0.2
8	330	150	60	TO 220	BU 807**	100	5	2	1.5	5	0.05
8	400	200	60	TO 220	BU 806**	100	5	2	1.5	5	0.05
10	330	120	50	TO 220	BU 109 P	7	7	2	2	7	1
10	330	120	50	TO 220	BU 109 DP*	7	7	2	2	7	1

^{*} Transistors with integral damper diode.

POWER MOS TRANSISTORS

V _{(BR)DSS}	R _{DS(on)}	@ I _D	Package	Туре	I _D	P _{tot}	9fs min	C _{iss} max
(V)	(Ω)	(A)		32	(A)	(W)	(mho)	(pF)
400	1	3	TO 220	IRF 730	5.5	74	2.9	800
400	0.55	5.2	TO 218	IRF 740	10	125	4	1600
400	0.55	5	TO 218	SGSP 475	10	150	6	2100
400	0.8	8	ISOWATT 218	IRFP 350 FI	10	70	8	3000
450	1.5	2.5	TO 220	SGSP 364	5	100	3	1000
450	0.7	4.5	TO 218	SGSP 474	9	150	6	2100
500	4	1.2	TO 220	BUZ 74 A	2	40	0.8	500
500	3.8	1.4	TO 220	SGSP 319	2.8	75	0.8	380
500	3	1.2	TO 220	BUZ 74	2.4	40	0.8	500
500	3	1.4	TO 220	IRF 820	2.5	50	1 -	400
500	3	1.4	ISOWATT 220	IRF 820 FI	2	30	1	400
500	2	2.5	TO 220	BUZ 42	4	75	1.5	2000
500	1.5	2.5	TO 220	BUZ 41 A	4.5	75	1.5	2000
500	1.5	2.5	TO 220	IRF 830	4.5	74	2.7	800
500	1.5	2.5	ISOWATT 220	IRF 830 FI	3	35	2.7	800
500	1.5	2.5	TO 220	SGSP 369	5	100	3	1000
600	0.85	4.4	TO 220	IRF 840	8	125	4.9	1600
500	0.85	4.4	ISOWATT 220	IRF 840 FI	4.5	40	4.9	1600
500	0.8	5.5	TO 218	BUZ 354	8	125	2.7	4900
500	0.8	5	TO 3	BUZ 45 A	8.3	125	2.7	4900
500	0.7	4.5	TO 218	SGSP 479	9	150	5	1900
500	0.6	5.5	TO 218	BUZ 353	9.5	125	2.7	4900
500	0.6	5	TO 3	BUZ 45	9.6	125	2.7	4900
500	0.4	7.9	TO 218	IRFP 450	14	180	9.3	3000
500	0.4	7.9	ISOWATT 218	IRFP 450 FI	9	70	9.3	3000
600	2.5	1.5	TO 220	MTP3N60	3	75		1000
600	2.5	1.5	ISOWATT 220	MTP3N60 FI	2.5	35	1.5	1000
600	1.2	3	ISOWATT 218	MTH6N60 FI	3.5	40	3	1800
600	1.2	3	TO 220	MTP6N60	6	125	2	1800
800	2	2	TO 218	STHV 82	5.5	125	2	1000
1000	3.5	2	TO 218	STHV 102	4.2	125	2	1200
					1	I	I .	I .

^{**} Fast switching monolithic Darlingtons with integral speed up and damper diodes.

CHROMA

CHROMA VIDEO CIRCUIT

Туре	Description	Package
TDA3562A TEA5031D TEA5040 TEA5620 TEA5630 TEA5640C TEA5640B	Complete PAL·NTSC decoder Video processor for low cost multistandard TV sets Wide band video processor Complete PAL decoding system Complete SECAM decoding system Complete PAL / SECAM / NTSC - 1 & 2 decoding system Complete PAL / SECAM decoding system	DIP28 DIP28 DIP40 DIP18 DIP24 DIP28 DIP28

RGB HIGH VOLTAGE OUTPUT STAGE

Туре	Description	Package
TDA8153	Low cost, direct drive of RGB cathodes	MULTIWATT 15
TEA5101A	RGB high voltage video amplifier	MULTIWATT 15

VIDEO IF CIRCUITS

Туре	Description	Package
TDA2540	Video IF system with AFC-for NPN tuner	DIP16
TDA2541	Video IF system with AFC-for PNP tuner	DIP16
TDA2542	Video IF system with AFC-french standard	DIP16
TDA4426	Video IF system with very stable IF amplifier-AFC for PNP tuner	DJP18
TDA4427	Video IF system with very stable IF amplifier-inverted AFC	DIP18
TDA4443	Multistd video IF system with AGC capabilities	DIP16
TDA4445A	Multistd sound IF system with quasi parallel sound processing	DIP16
TDA4445B	Same as TDA 4445A with AM demodulator	DIP16
TDA8120	Multistd video IF system with multistd. AGC + QSS + STD L sound detector	DIP24

SOUND CHANNELS,

Туре	Description	Package
TDA1190Z TDA3190 TDA4190A TDA8190	IF amplifier-FM detector-AF preamp. and out. stage IF amplifier-FM detector-AF preamp. and out. stage TV sound IF - DC control Complete channel with DC controls	FINDIP DIP16 16+2+2 16+2+2

AUDIO AMPLIFIERS

Туре	Description	Package
TCA830SM	2W low cost	MINIDIP
TDA1904	4W low cost	POWERDIP8 + 8
TDA1905	5W with muting	POWERDIP8 + 8
TDA1910	10W with muting	MULTIWATT11
TDA2006	12W with muting	PENTAWATT
TDA2007	6+6W stereo	SIP9
TDA2009/A	10 + 10W stereo	MULTIWATT11
TDA2030	14W HI FI	PENTAWATT
TDA2030/A	18W HI FI	PENTAWATT
TDA2040	20W HI FI	PENTAWATT
TDA7250	60W HI FI dual audio driver	DIP20
TEA2025B	1 + 1W stereo	BATWING DIP16

VIDEO AND SOUND SWITCHES

Туре	Description	Package
TDA8196 TEA1014 TEA2014A TEA5114A TEA5115 TEA5116	Audio switch with DC volume control Video and sound switch for monosound TV sets Video switch for low cost solution 3 channels switching (R.G.B.) 5 switches for video and RGB selection 5 switches for video and RGB selection	MINIDIP DIP14 MINIDIP DIP16 DIP18 DIP18

REMOTE CONTROL

Туре	Description	Package
M105	PCM receiver	DIP24
M145026B7	RC encoder	DIP16
M145027B7	RC decoder	DIP16
M145028B7	RC decoder	DIP16
M3004B1	RC Transmitter 64 commands	DIP20
M3005B1	RC Transmitter 64 commands CMDS (use with TEA 5049)	DIP20
M708B1	PCM transmitter 30 commands	DIP20
M708AB1	PCM transmitter 30 commands	DIP20
M708LB1	PCM transmitter 30 commands	DIP20
M709B1	PCM transmitter 40 commands	DIP24
M709AB1	PCM transmitter 40 commands	DIP24
M710B1	PCM transmitter 64 commands	DIP28
M710AB1	PCM transmitter 64 commands	DIP28
TDA8160	Flash mode infrared receiver	MINIDIP
TDA8162	Flash and carrier infrared receiver	DIP14
TEA5049	PCM 400 kHz word recognition	DIP14
UAA4000,S	PCM transmitter	DIP18
UAA4009	PCM receiver-12 channels - 1 analog control - MUTE (use with UAA4000)	DIP18

VOLTAGE SYNTHESIS TUNING SYSTEMS

Туре	Description	Package
M293 M490BB1 M491BB1 M494B1 TDA4433	EPM for 32 stations Voltage synthesis tuning Voltage synthesis tuning Voltage tuning with μP interface Identification circuit	DIP28 DIP40 DIP40 DIP40 DIP14

FREQUENCY SYNTHESIS TUNING SYSTEMS

Туре	Description	Package
M206 M28SB74 M38SB74 M38SB78	PLL TV μ P interface to use with M708-709-710 4K/8K ROM μ P microcomputer with serial bus 4K/8K ROM μ P microcomputer with serial bus 4K/8K ROM μ P microcomputer with serial bus	DIP28 DIP28 DIP40 DIP40

VIDEO RECORDER CIRCUITS

Туре	Description	Package
M8716B1	Clock calendar with serial I2C bus	DIP8
TDA8114A	VCR processor interface	DIP20
TDA8115	Dual motor driver	HEPTAWATT
TDA8116	μP converter - tachometer	DIP16
TEA5701	Video head amplifier	SO20

SWITCH MODE POWER SUPPLY BIPOLAR TRANSISTORS

IC	VCEV	V _{CEO}	P _{tot}	Package	Type NPN	h _{FE} @	Ic	/ V _{CE}	V _{CE(sat)} max	IC	/ I _B
(A)	(V)	(V)	(W)				(A)	(V)	(V)	(A)	(A)
5	1500	700	60	ISOWATT 218	2ST 3485 FI	100			5	4	1
6	1200	600	_	SOT 93	2ST 3642				5	4	0.8
7	1500	700	60	ISOWATT 218	2ST 2000 FI				1	4	2
7.5	1500	700	_	SOT 93	2ST 2000				1	4	2
7.5	1500	700	60	ISOWATT 218	S 2000 FI				5	4.5	2
12	1200	600	_	SOT 93	2ST 3552				2	6	1.2

INTEGRATED CIRCUITS

Туре	Description	Package
TDA4601/B	Free running frequency controller	SIP9, DIP18
TEA2018A	Current mode PWM controller	DIP8
TEA2019	Current mode PWM controller with PLL sync.	DIP14
TEA2164	Master-slave : primary switching circuit	BATWING DIP16
TEA5170	Master-slave : secondary controller	DIP 8

DISPLAY CIRCUITS GRAPHIC PROCESSORS

Туре	Description	Package
EF9345	Single chip alphanumeric and semigraphic display processor	DIP40, PLCC44
EF9367	Graphic display processor - 512 × 1024	DIP40
EF9369	Colour palette: 16/4096	DIP28, PLCC28
TS68483	High performance graphic processor - 2048 × 2048	DIP64, PLCC68
TS68494	Colour palette: 256/4096	DIP48, PLCC44
TS9370	Same as EF9369 with linear law	DIP28, PLCC28

LED DISPLAY DRIVERS

Туре	Description	Package
M5450B7 M5451B7 M5480B7 M5481B7 M5482B7 M5486B7 TDA4092	34 outputs/15mA sync + enable 35 outputs/15mA sync 3.5 digit (23 segments) TTL10 2 digit (14 segments) TTL10 2 digit (15 segments) TTL10 33 outputs/15mA sync Decoder driver 2 digit - 7 segments	DIP40 DIP40 DIP28 DIP28 DIP20 DIP20 DIP20

VOLTAGE REGULATORS

Туре	Description	Package
TDA8134 TDA8135 TDA8136 TEA5110 TEA7105 TEA7605SP TEA7610SP TEA7685SP	Dual 5V + 12V regulator with disable Dual voltage regulator with disable Dual 12V regulator with disable 5V (DUAL) - 0.1A 5V - 100mA - Watch dog - Reset Low drop-out - 5V - 500mA - Load dump protection 10V regulator 8.5V regulator	HEPTAWATT HEPTAWATT HEPTAWATT BATWING DIP16 BATWING DIP16 TO220 TO220 TO220

RADIO AND AUDIO

AUDIO AMPLIFIERS FOR CAR RADIO

Туре	Description	Package
TDA2002 TDA2003 TDA2004 TDA2005 TDA7240A TDA7241 TDA7256	8W amplifier 10W amplifier 10+10W amplifier 20W bridge amplifier 20W bridge amplifier 20W bridge amplifier 20W bridge amplifier 22W bridge amplifier	PENTAWATT PENTAWATT MULTIWATT 11 MULTIWATT 11 HEPTAWATT HEPTAWATT MULTIWATT 11
TDA7260 TDA7350 TDA7360	PWM audio driver (25W) 22W bridge / stereo amplifier 2 × 12W amplifier with clipping detector	DIP20 MULTIWATT 11 MULTIWATT 11

Hi-Fi POWER AMPLIFIERS

Туре	Description	Package
TDA2030 TDA2030A TDA2040 TDA7250	14W amplifier (4 Ω) 18W amplifier (4 Ω) - 12W amplifier (8 Ω) - 32W with 2 devices in bridge config. 22W amplifier (4 Ω) 15 to 80W stereo drivers	PENTAWATT PENTAWATT PENTAWATT DIP20

GENERAL PURPOSE AUDIO AMPLIFIERS

Туре	Description	Package
TBA820M TDA1904 TDA1905 TDA1908 TDA1910 TDA2006 TDA2007 TDA2008 TDA2009/A TDA2822 TDA2822M	1W amplifier $4W$ amplifier (4Ω) $6W$ amplifier (4Ω) with muting $8W$ amplifier (8Ω) $10W$ amplifier (8Ω) $12W$ amplifier (4Ω) $6+6W$ amplifier (4Ω) $10W$ amplifier (4Ω) $10W$ amplifier (4Ω) $10W$ amplifier (4Ω) $10W$ amplifier (4Ω) $10+10W$ amplifier (4Ω) amplifier (4Ω) and (4Ω) amplifier (4Ω) amplifi	MINIDIP POWERDIP (8 + 8) POWERDIP (8 + 8) FINDIP MULTIWATT 11 PENTAWATT SIP9 PENTAWATT MULTIWATT 11 DIP16 MINIDIP
TDA2824S	1.8 + 1.8W stereo amplifier (low SVR) 1.6W amplifier, low voltage	SIP9 MINIDIP (4 + 4)
TDA7231 TDA7233	1.6w amplifier, low voltage 1W amplifier with mute, low voltage	MINIDIP (4 + 4)

AUDIO-PREAMPLIFIERS AND AUDIO PROCESSORS

Туре	Description	Package
LM1837 TDA2320A TDA3410 TDA3420 TDA7232 TDA7282 TDA7300 TDA7302	Dual low - noise preamplifier with autoreverse Stereo preamplifier Dual low - noise preamplifier with autoreverse Dual low - noise preamplifier Preamplifier/compressor Stereo preamplifier (low voltage) Digital controlled stereo audio processor Digital controlled stereo audio processor	DIP16 MINIDIP DIP16 DIP16 DIP20 MINIDIP DIP28 DIP28

RADIO AND AUDIO

MOTOR REGULATORS

Туре	Description	Package
L272 L272M L2720 L2722 L2724 L2726 TDA1151 TDA1154 TDA7270S TDA7272 TDA7274 TDA7275A TDA7276	Dual power op. amp. Dual power op. amp. Low drop dual power op. amp. O.4A speed regulator DC motor speed regulator Multifunction system for tape players 1A autoreverse speed regulator Low voltage speed regulator 1.5A Motor speed regulator 1A Motor speed regulator	8+8 MINIDIP 8+8 MINIDIP SIP9 SO20 SOT32 MINIDIP POWERDIP (8+8) DIP20 MINIDIP 4+4 4+4

MUSIC

Туре	Description	Package
M082/A M083/A M086/A M108/208 M112 M114S/A	Tone generator Tone generator Tone generator Tone generator Single chip organ Polyphonic sound generator Digital sound generator	DIP16 DIP16 DIP16 DIP40 DIP40 DIP40, DIP48

RADIO CIRCUITS

RADIO AND AUDIO

MEMORIES CMOS EEPROMS

Туре	Description	Package
ST24C02 TS59C11 TS93C46	256 \times 8, clock frequency 100 kHz, I2C compatible 128 \times 8, clock frequency 250 kHz, consumption 3/0.1 mA 64 \times 16, clock frequency 250 kHz, consumption 3/0.1 mA	DIP8, SO8 DIP8 DIP8

NMOS EEPROMS

Туре	Description	Package
M9306	16 × 16, clock frequency 250 kHz	DIP8, SO8
M9346	64 × 16, clock frequency 250 kHz	DIP8, SO8

CMOS OTP ROMs - NMOS OTP ROMs

See chapter «DATA PROCESSING»

LAMP BALLAST

Our Multiepitaxial Mesa devices offer cost effective devices for fluorescent electronic lamp ballasts. The FASTSWITCH technology offers easier driving and faster switching. For use in applications such as transportation or emergency lighting running from low voltage DC the power transistors for DC-DC converters will be suitable.

BIPOLAR POWER TRANSISTORS

IC	V _{СВО}	VCEO	P _{tot}	Package	Туре	V _{CE (sat)}	@ I _C	/ I _B	ts	tf
(A)	(V)	(V)	(W)			(V)	(A)	(mA)	(μ s)	(μs)
4	700	400	75	TO 220	MJE 13005	1	4	1000	4	0.9
5	850	400	70	TO 220	SGSF 321 (1)	1.5	3.5	700	2.5	0.3
5	850	400	70	TO 220	BUV 46	1.5	2.5	300	3	0.8
7	400	200	60	TO 220	BU 406	1	5	500	0.9 §	0.3 §
8	700	400	80	TO 220	MJE 13007	1.5	5	1000	3	0.7
10	850	400	85	TO 220	SGSF 341	1.5	6	1200	2.5	0.3
(1) FAST	TWITCH tech	nology.		•	§ : Typical va	lue.	-			

AUTOMOTIVE

INTEGRATE	NTEGRATED CIRCUITS	
	IGNITION CONTROL	83
	FUEL INJECTION CONTROL	83
	ALTERNATOR REGULATORS	83
	POWER ACTUATORS	83
	SPECIAL FUNCTIONS	83
	VOLTAGE REGULATORS	84
	OPERATIONAL AMPLIFIERS	84
	COMPARATORS	84
	MEMORIES	84
POWER TRA	ANSISTORS	85

INTEGRATED CIRCUITS

IGNITION CONTROL

Туре	Description	Package
L482 L484 L497 L530	Controller (hall effect pickup) Controller (magnetic pickup) Controller (hall effect pickup)	DIP16 DIP16 DIP16 DIP16

FUEL INJECTION CONTROL

Туре	Description	Package
L584	Injector driver	DIP16
L9335	Solenoid driver	PENTAWATT
L9336	Solenoid driver	PENTAWATT

ALTERNATOR REGULATORS

Туре	Description	Package
L585	Voltage regulator	DIP16
L9480VB	One chip regulator	TO220

POWER ACTUATORS

Туре	Description	Package
L9222 L9305/7/9 L9306/8 L9324 L9350 L9801	Quad transistor switch Dual 1A power actuators Dual 0.3A power actuators Window lift controller Power driver Multipower BCD high side driver	DIP16 DIP16 MINIDIP DIP20 PENTAWATT PENTAWATT

SPECIAL FUNCTIONS

Туре	Description	Package
L4620 L9610/11 L9686	Liquid level alarm PWM power-MOS controller Direction indicator driver	MINIDIP SO16/DIP16 MINIDIP

INTEGRATED CIRCUITS

VOLTAGE REGULATORS

Туре	Description	Package
LM2930A	5V - 0.4A	TO220
LM2931A	5V - 0.4A	TO220
L26XX	5/8.5/10V - 0.5A	TO220
L387A	5V - 0.5A - with reset	PENTAWATT
L47XX	5/8.5/10V - 0.5A	TO220
L48XX	5/8.5/10/12V - 0.5A	TO220
L4920	Variable - 0.4A	PENTAWATT
L4921	Variable - 0.4A	MINIDIP
L4922	5V - 1A	HEPTAWATT
L4923	5V - 1A	PENTAWATT
L4926	Multifunction voltage regulator	MULTIWATT11
L4945	5V - 0.5A	TO220
L4947	5V - 0.5A - with reset	PENTAWATT

OPERATIONAL AMPLIFIERS

Туре	Description	Package
LM2902D LM2902DT	Quad - Low power - Single power supply Quad - Low power - Single power supply	SO14 SO14 tape
LM2902N	Quad - Low power - Single power supply	DIP14
LM2904D	Dual - Low power - Single power supply	SO8
LM2904DT	Dual - Low power - Single power supply	SO8 tape
LM2904N	Dual - Low power - Single power supply	DIP8

COMPARATORS

Туре	Description	Package
LM2901D LM2901DT LM2901N LM2903D LM2903DT LM2903N	Quad - Low power - Low offset voltage Quad - Low power - Low offset voltage Quad - Low power - Low offset voltage Dual - Low power - Low offset voltage	SO14 SO14 tape DIP14 SO8 SO8 tape DIP8

MEMORIES CMOS EEPROMS

Туре	Description	Package
ST24C02 TS59C11 TS93C46	256×8 , clock frequency 100 kHz, I 2 C compatible 128 \times 8, clock frequency 250 kHz, consumption 3/0.1 mA 64 \times 16, clock frequency 250 kHz, consumption 3/0.1 mA	DIP8, SO8 DIP8 DIP8

NMOS EEPROMS

Туре	Description	Package
M9306 M9346	16 \times 16, clock frequency 250 kHz 64 \times 16, clock frequency 250 kHz	DIP8, SO8 DIP8, SO8

CMOS OTP ROMs - NMOS OTP ROMS See chapter «DATA PROCESSING»

POWER TRANSISTORS

ELECTRONIC IGNITION DARLINGTONS

Ic	V _{CBO}	V _{CEO}	P _{tot}	Package	Type NPN	h _{FE}	Ic @/	VCE	V _{CEsat}	@ I _C	/ I _B
(A)	(V)	(V)	(W)			"""	(A)	(V)	(V)	(A)	(mA)
6	450	400	60	SOT 82	SGS 911	20	4	1.8	1.8	2.5	50
6	450	400	60	TO 220	BU 911	20	4	1.8	1.8	2.5	50
6	500	450	60	SOT 82	SGS 912	20	4	1.8	1.8	2.0	50
6	500	450	60	TO 220	BU 912	20	4	1.8	1.8	2.0	50
8	650	400	70	TO 220	SGSD 00020** (1)	7000	1	5.0	4.0	3.0	3
10	450	400	40	ISOWATT 220	BU 921 TFI	50	7	1.8	1.8	5.0	50
10	450	400	60	ISOWATT 218	BU 921 PFI	50	7	1.8	1.8	5.0	50
10	450	400	105	TO 220	BU 921 T	50	7	1.8	1.8	5.0	50
10	450	400	105	SOT 93	BU 921 P	50	7	1.8	1.8	5.0	50
10	-450	400	125	TO 3	BU 921	50	7	1.8	1.8	5.0	50
10	500	450	60	ISOWATT 218	BU 922 PFI	50	7	1.8	1.8	5.0	50
10	500	450	105	TO 220	BU 922 T	50	7	1.8	1.8	5.0	50
10	500	450	105	SOT 93	BU 922 P	50	7	1.8	1.8	5.0	50
10	500	450	125	TO 3	BU 922	50	7	1.8	1.8	5.0	50
15	350*	350	60	ISOWATT 218	BU 931 ZPFI (2)	100	7	1.6	1.8	8	100
15	350*	350	150	SOT 93	BU 931 ZP (2)	100	7	1.6	1.8	8	100
15	350*	350	175	TO 3	BU 931 Z (2)	100	7	1.6	1.8	8	100
15	450	400	60	ISOWATT 218	BU 931 RPFI	40	10	1.8	1.8	8	100
15	450	400	105	SOT 93	BU 931 RP	40	10	1.8	1.8	8	100
15	450	400	175	TO 3	BU 931 R	40	10	1.8	1.8	8	100
15	500	450	60	ISOWATT 218	BU 932 RPFI	40	10	1.8	1.8	8	100
15	500	450	105	SOT 93	BU 932 RP	53	8	1.8	1.8	8	150
15	500	450	175	TO 3	BU 932 R	53	8	1.8	1.8	8	150

 $^{^{\}star}~\rm V_{CBO} = \rm V_{CEO}$ due to the action of the integrated zener clamp.

Internal schematic diagrams

(1)

(2)

^{**} TRILINTON device.

POWER TRANSISTORS

HIGH GAIN BIPOLAR DARLINGTONS

IC	VCBO	VCEO	Ptot	Package	1	Гуре	hFE (@ IC	VCE	V _{CEsat} @	⊕ I _C	/ I _B
(A)	(V)	(V)	(W)		NPN	PNP		(A)	(V)	(V)	(A)	(mA
2	60	60	50	SOT 82 (1)	SGS 110	SGS 115	1000	1	4	2.5	2	8
2	80	80	50	SOT 82 (1)	SGS 111	SGS 116	1000	1	4	2.5	2	8
2	100	100	50	SOT 82 (1)	SGS 112	SGS 117	1000	1	4	2.5	2	8
5	60	60	65	SOT 82 (1)	SGS 120	SGS 125	1000	3	3	2	3	12
5	80	80	65	SOT 82 (1)	SGS 121	SGS 126	1000	3	3	2	3	12
5	100	100	65	SOT 82 (1)	SGS 122	SGS 127	1000	3	3	2	3	12
6	60	60	60	SOT 82 (1)	BD 331	BB 332	750	3	3	2	3	. 12
6	80	80	60	SOT 82 (1)	BD 333	BD 334	750	3	3	2	3	12
6	100	100	60	SOT 82 (1)	BD 335	BD 336	750	3	3	2	3	. 12
8	40	40	65	SOT 82 (1)	SGS 6386		1000	3	3	2	3	(
8	60	60	65	SOT 82 (1)	SGS 130	SGS 135	1000	4	4	2	4	16
8	80	80	60	TO 220	BDX 53 B	BDX 54 B	750	3	3	2	.3	12
8	80	80	65	SOT 82 (1)	SGS 131	SGS 136	1000	4	4	2	4	10
8	80	80	70	TO 220	TIP 131	TIP 136	1000	4	4	2	4	1
8	80	80	80	TO 220	TIP 101	TIP 106	1000	3	4	2	3	1
8	100	100	60	TO 220	BDX 53 C	BDX 54 C	750	3	3	2	3	1
8	100	100	65	SOT 82 (1)	SGS 132	SGS 137	1000	4	4	2	4	1
8	100	100	70	TO 220	TIP 132	TIP 137	1000	4	4	2	4	1
8	100	100	80	TO 220	TIP 102	TIP 107	1000	3	4	2	3	
10	60	60	65	SOT 82	SGS 6387	111 101	1000	5	3	2	5	1
10	60	60	65	TO 220	2N 6387		1000	5	3	2	5	1
10	80	80	65	SOT 82	SGS 6388		1000	5	3	2	5	1
10	80	80	65	TO 220	2N 6388		1000	5	3	2	5	1
10	80	80	125	SOT 93	TIP 141	TIP 146	1000	5	4	3	10	4
10	100	100	125	SOT 93	TIP 142	TIP 147	1000	5	4	3	10	4
12	80	80	80	TO 220	BDW 93 B	BDW 94 B	750	5	3	2	5	2
12	100	100	80	TO 220	BDW 93 C	BDW 94 C	750	5	3	2	5	2
12	160	140	80	TO 220	SGSD 93E	DDW 34 0	1000	3	3	2	10	2
12	180	160	80	TO 220	SGSD 93E		1000	3	3	2	10	2
12	200	180	80	TO 220	SGSD 93F		1000	3	3	2	10	2
20	80	80	160	TO 3	2N 6283	2N 6286	750	10	3	3	20	20
25	80	80	130	SOT 93	SGSD 100	SGSD 200	300	20	3	1.75	10	40
30	60 90	60 90	200	TO 3	MJ 11012 MJ 11014	MJ 11011 MJ 11013	1000	20 20	5 5	4 4	30 30	30

⁽¹⁾ Also available in SOT 194 package for SMD.

MOSFET TRANSISTORS FOR AUTOMOTIVE APPLICATIONS

V _(BR) DSS	R _{DS} (on)	@ I _D	Package	Туре	ID	P _{tot}	9fs	C _{iss}
(V)	max (Ω)	(A)			max (A)	(W)	min (mho)	max (pF)
50	0.13	5	SOT 194	SGSP222*	10	50	3	550
50	0.10	9	TO 220	BUZ71	14	40	3	650
50	0.10	9	ISOWATT 220	BUZ71 F I	12	30	3	650
50	0.08	13	TO 220	BUZ10	20	70	8	700 §
50	0.04	15	TO 220	BUZ11	30	75	4	2000
50	0.04	15	ISOWATT 220	BUZ11 F I	20	35	4	2000
50	0.033	20	TO 218	SGSP492	40	150	10	2800
60	0.15	6	TO 220	MTP3055A	12	40	4.5	500
60	0.15	6	ISOWATT 220	MTP3055A F I	10	30	4.5	500
60	0.08	22	TO 218	IRFP153	34	150	13	3000
60	0.08	22	ISOWATT 218	IRFP153 F I	21	65	13	3000
60	0.055	22	TO 218	IRFP151	40	150	13	3000
60	0.055	22	ISOWATT 218	IRFP151 F I	26	65	13	3000
60	0.04	15	TO 220	BUZ11S2	30	75	4	2000
60	0.04	15	ISOWATT 220	BUZ11S2 F I	20	35	4	2000
60	0.028	20	TO 218	MTH40N06	40	150	10	5000
60	0.028	20	ISOWATT 218	MTH40N06 F I	26	65	10	5000

^{§:} Typical value.

NOTE: For internal schematic diagrams see following page.

⁽¹⁾ Also available in SOT 194 package for SMD.

POWER TRANSISTORS

MOSFET TRANSISTORS FOR AUTOMOTIVE APPLICATIONS (Continued)

V(BR) DSS	R _{DS} (on) max	@ I _D	Package	Туре	I _D max	Ptot	9fs min	C _{iss} max
(V)	(Ω)	(A)			(A)	(W)	(mho)	(pF)
80	0.36	5.6	TO 220	IRF523	8	60	2.7	600
80	0.36	5.6	ISOWATT 220	IRF523FI	6	30	2.7	600
80	0.27	5.6	TO 220	IRF521	9.2	60	2.7	600
80	0.27	5.6	ISOWATT 220	IRF521FI	7	30	2.7	600
80	0.23	8.3	TO 220	IRF533	12	79	5.1	800
80	0.23	8.3	ISOWATT 220	IRF533FI	8	35	5.1	.800
80	0.16	8.3	TO 220	IRF531	14	79	5.1	800
80	0.16	8.3	ISOWATT 220	IRF531FI	9	35	5.1	800
80	0.10	17	TO 220	IRF543	25	125	8.7	1600
80	0.10	17	ISOWATT 220	IRF543FI	14	40	8.7	1600
80	0.077	17	TO 220	IRF541	28	125	8.7	1600
80	0.077	17	ISOWATT 220	IRF541FI	15	40	8.7	1600
100	1.40	1.2	SOT 82	SGSP201*	2	18	0.5	125
100	0.36	5.6	TO 220	IRF522	8	60	2.7	600
100	0.36	5.6	ISOWATT 220	IRF522FI	6	30	2.7	600
100	0.27	5.6	TO 220	IRF520	9	60	2.7	600
100	0.27	5.6	ISOWATT 220	IRF520FI	7	30	2.7	600
100	0.25	5	TO 220	BUZ72A	9	40	2.7	600
100	0.23	8.3	TO 220	IRF532	12	79	5.1	800
100	0.23	8.3	ISOWATT 220	IRF532FI	8	35	5.1	800
100	0.16	8.3	TO 220	IRF530	14	79	5.1	800
100	0.16	8.3	ISOWATT 220	IRF530FI	9	35	5.1	800
100	0.15	9	TO 220	SGSP361	18	100	4.5	1200
100	0.15	10	TO 218	SGSP461	20	125	4.5	1200
100	0.10	17	TO 220	IRF542	25	125	8.7	1600
100	0.10	17	ISOWATT 220	IRF542FI	14	40	8.7	1600
100	0.08	22	TO 218	IRFP152	34	150	13	3000
100	0.08	22	ISOWATT 218	IRFP152FI	21	65	13	3000
100	0.077	17	TO 220	IRF540	28	125	8.7	1600
100	0.077	17	ISOWATT 220	IRF540FI	15	40	8.7	1600
100	0.055	22	TO 218	IRFP150	40	150	13	3000
100	0.055	22	ISOWATT 218	IRFP150FI	26	65	13	3000

Internal schematic diagrams

For SGSD 93E / 93F / 93G only

GENERAL PURPOSE & INDUSTRIAL

POWER BIPOLAR	91
POWER MOS	100
POWER MODULES	104
SMALL SIGNAL TRANSISTORS	107
GLASS SCHOTTKY DIODES	113
ZENER DIODES	114
PROTECTION	128
RECTIFIER DIODES	137
MEDIUM POWER THYRISTORS & TRIACS < 100 A	145
CMOS - J-FET & BIPOLAR OP-AMPs	166
COMPARATORS	176
VOLTAGE REGULATORS	178
OFF-LINE SWITCHING	181
SWITCH MODE POWER SUPPLY (POUT ≤ 200 W)	181
POWER CONTROLLERS - DRIVERS	182
BIPOLAR TIMERS	184
DEDICATED FUNCTIONS	185
STANDARD LOGIC	186

This page intentionally left blank.

EPITAXIAL BASE TRANSISTORS

Ic	V _{СВО}	V _{CEO}	P _{tot}	Package	Ty NPN	pe PNP	h _{FE} @	0 lc /	V _{CE}	V _{CEsat}	@ I _C	/ I _B
(A)	(V)	(V)	(W)				min	(A)	(V)	(V)	(A)	(mA)
1 1 1 1 1 1 1 1	40 40 60 60 80 80	40 40 60 60 80 80	30 30 30 30 30 30 30 30	TO 126 TO 220 TO 126 TO 220 TO 126 TO 220	2N 4921 TIP 29 2N 4922 TIP 29 A 2N 4923 TIP 29 B	2N 4918 TIP 30 2N 4919 TIP 30 A 2N 4920 TIP 30 B	30 15 30 15 30 15	0.5 1 0.5 1 0.5 1	1 4 1 4 1 4	0.6 0.7 0.6 0.7 0.6 0.7	1 1 1 1 1	100 125 100 125 100 125
2 2 2 2 2 2 2 2	45 55 60 70 90 100 115	45 45 60 60 80 80	25 30 25 30 30 30 25 30	TO 220 TO 126 TO 220 TO 126 TO 220 TO 126 TO 220 TO 126 TO 220	TIP 29 C BD 233 BD 239 BD 235 BD 239 A BD 239 B BD 237 BD 239 C	TIP 30 C BD 234 BD 240 BD 236 BD 240 A BD 240 B BD 238 BD 240 C	25 15 25 15 15 15 25	1 1 1 1 1 1 1	2 4 2 4 4 2 4	0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7	1 1 1 1 1 1 1 1	125 100 200 100 200 200 200 100 200
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	30 40 45 45 45 45 55 60 60 60 70 80 80	30 40 45 45 45 45 45 60 60 60 60 80	25 40 30 30 30 30 40 30 30 40 40 30 30 30	TO 126 TO 220 TO 126 TO 220 TO 126	MJE 520 TIP 31 BD 175 BD 175-10 BD 175-16 BD 175-6 BD 241 BD 177 BD 177-10 BD 177-6 TIP 31 A BD 241 A BD 179 BD 179-10	MJE 370 TIP 32 BD 176 BD 176-10 BD 176-16 BD 176-6 BD 242 BD 178 BD 178-10 BD 178-6 TIP 32 A BD 242 A BD 180 BD 180-10	25 25 40 63 100 40 25 40 63 40 25 25 40 63	1 1 0.15 0.15 0.15 0.15 1 0.15 0.15 1 1 0.15 0.15	1 4 2 2 2 2 2 4 2 2 2 4 2 2 2 4 4 2		3 1 1 1 1 3 1 1 1 3 3 1 1 1 1 1 1 1 1 1	375 100 100 100 100 100 600 100 100 100 375 600 100

EPITAXIAL BASE TRANSISTORS (Continued)

IC	V _{СВО}	V _{CEO}	P _{tot}	Package	Ty NPN	pe PNP	h _{FE} (@ I _C /	V _{CE}	V _{CEsat}	@ IC	/ I _B
(A)	(V)	(V)	(W)				min	(A)	(V)	(V)	(A)	(mA)
3 3 3 3	80 80 90 100 115	80 80 80 100 100	30 40 40 40 40	TO 126 TO 220 TO 220 TO 220 TO 220 TO 220	BD 179-6 TIP 31 B BD 241 B TIP 31 C BD 241 C	BD 180-6 TIP 32 B BD 242 B TIP 32 C BD 242 C	40 25 25 25 25 25	0.15 1 1 1 1	2 4 4 4 4	0.8 1.2 1.2 1.2 1.2	1 3 3 3	100 375 600 375 600
4 4 4 4 4 4 4 4 4 4 4 4	22 32 40 40 45 45 60 60 80 80	22 32 40 40 45 45 60 60 80 80 80	36 36 40 40 36 40 36 40 40 36 40	TO 126 TO 220 TO 126 TO 220 TO 126 TO 220	BD 433 BD 435 MJE 521 2N 5190 BD 437 2N 6121 BD 439 2N 5191 2N 6122 BD 441 2N 5192 2N 6123	BD 434 BD 436 MJE 371 2N 5193 BD 438 2N 6124 BD 440 2N 5194 2N 6125 BD 442 2N 5195 2N 6126	50 50 40 25 40 25 25 25 25 25 25 20	2 2 1 1.5 2 1 2 1.5 1.5 2 1.5 2 1.5	1 1 1 2 1 2 1 2 1 2 2 1 2 2 2 2	0.5 0.5 0.6 0.6 0.6 0.8 0.6 0.8 0.6 0.8	2 2 1.5 2 1.5 2 1.5 1.5 2 1.5 1.5	200 200 — 150 200 150 200 150 150 200 150 150
5 6 6 6 6 6 6 6	40 45 60 60 80 80 100	25 40 45 60 60 80 80 100	15 65 65 65 65 65 65 65 65	TO 126 TO 220	MJE 200 TIP 41 BD 243 BD 243 A TIP 41 A BD 243 B TIP 41 B BD 243 C TIP 41 C	MJE 210 TIP 42 BD 244 BD 244 A TIP 42 A BD 244 B TIP 42 B BD 244 C TIP 42 C	70 15 15 15 15 15 15 15	0.5 3 3 3 3 3 3 3	1 4 4 4 4 4 4 4	0.3 1.5 1.5 1.5 1.5 1.5 1.5	0.5 6 6 6 6 6 6 6	50 600 1000 1000 600 1000 600 1000 600
7 7 7	40 60 80	30 50 70	40 40 40	TO 220 TO 220 TO 220 TO 220	2N 6288 2N 6290 2N 6292	2N 6111 2N 6109 2N 6107	30 30 30	4 4 4	3 2.5 2	1.5	3 2.5 2	300 250 200
8 8 8	45 60 80	45 60 80	50 50 50	TO 220 TO 220 TO 220	BD 533 BD 535 BD 537	BD 534 BD 536 BD 538	25 25 15	2 2 2	2 2 2	0.8 0.8 0.8	2 2 2	200 200 200
10 10 10 10 10	60 70 80 80 100	60 60 60 80 80	150 75 150 150 150	TO 3 TO 220 TO 3 TO 3 TO 3	2N 5877 MJE 3055T 2N 3715 2N 5878 2N 3716	2N 5875 MJE 2955T 2N 3791 2N 5876 2N 3792	20 20 30 20 30	4 4 3 4 3	4 2 4 2	1 1.1 0.8 1 0.8	5 4 5 5 5	500 400 500 500 500
12 12 12 12	45 60 80 100	45 60 80 100	75 75 75 75	TO 220 TO 220 TO 220 TO 220	BD 705 BD 707 BD 709 BD 711	BD 706 BD 708 BD 710 BD 712	20 15 15 15	4 4 4 4	4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4	400 400 400 400
15 15 15 15 15 15 15 15 15 15 15 15 15 1	50 45 45 50 60 60 70 100 100 70 80 80 90 100 100	40 45 45 50 60 60 60 60 70 80 80 90 100 100 100 80 60 60	150 90 125 75 100 125 90 115 150 75 90 125 75 90 125 200 200	TO 3 TO-220 TO 3 TO 220 TO 220 TO 3 SOT 93 TO 3 TO 3 TO 220 TO 3 TO 220 TO 220 TO 220 TO 3 TO 220 TO 220 TO 3 TO 220 TO 3 TO 220 TO 3 TO 3 TO 3 TO 3	2N 3771 BD 905 BDW 51 2N 6486 BD 907 BDW 51 A TIP 3055 2N 3055 2N 3055 2N 3055 2N 6487 BD 909 BDW 51 B 2N 6488 BD 911 BDW 51 C 2N 5629 2N 5303 TIP 35 A 2N 5885	BD 906 BDW 52 2N 6489 BD 908 BDW 52 A TIP 2955 MJ 2955 2N 6490 BD 910 BDW 52 B 2N 6491 BD 912 BDW 52 C 2N 6029 2N 5745 TIP 36 A 2N 5883	15 15 20 20 15 20 20 20 15 20 20 15 20 25 40	15 5 5 5 5 5 5 4 4 10 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.4 1 1.3 1 1.1 1.1 2 1 1.3 1 1.3 1 1.3 1 1 1.3 1 1 1.3 1 1 1.3 1 1 1.3 1 1 1.3 1 1 1.3 1 1 1.3 1 1 1 1	10 5 5 5 5 5 5 4 4 4 15 5 5 5 5 5 5 5 5 5	1000 500 500 500 500 500 400 400
25 25 25 25 25 25 30 30	80 80 80 100 40 60	80 80 80 100 40 60 90	200 125 130 200 125 200 200 200	SOT 93 SOT 93 SOT 93 TO 3 SOT 93 TO 3 TO 3	ZN 5865 TIP 35 B SGSD 110 2N 5886 TIP 35 C 2N 5301 2N 5302 MJ 802	ZN 3683 TIP 36 B SGSD 210 2N 5884 TIP 36 C 2N 4398 2N 4399 MJ 4502	25 15 35 25 40 40 25	1.5 5 3 1.5 1 1 7.5	4 4 4 4 4 2 2 2 2 2	1.8 1.5 1 1.8 0.75 0.75 0.8	15 16 15 15 15 10 10 7.5	1500 1500 2000 1500 1500 1000 1000 750

EPITAXIAL BASE HIGH GAIN DARLINGTONS

IC	V _{CBO}	VCEO	P _{tot}	Package	Ty NPN	pe PNP	h _{FE} @	@ Ic /	v_{CE}	V _{CEsat}	@ Ic /	IB
(A)	(V)	(V)	(W)		141.14		min	(A)	(V)	(V)	(A)	(mA)
2 2 2 2 2 2 2 2	45 60 60 80 80 100	45 60 60 80 80 100	40 50 50 50 50 50 50	TO 126 SOT 82 (1) TO 220 SOT 82 (1) TO 220 SOT 82 (1) TO 220	BD 675 SGS 110 TIP 110 SGS 111 TIP 111 SGS 112 TIP 112	BD 676 SGS 115 TIP 115 SGS 116 TIP 116 SGS 117 TIP 117	750 1000 1000 1000 1000 1000 1000	1.5 1 1 1 1 1	3 4 4 4 4 4	2.5 2.5 2.5 2.5 2.5 2.5 2.5	1.5 2 2 2 2 2 2 2	30 8 8 8 8 8
4 4 4 4 4 4 4 4 4 4 4 4 4 4	40 45 60 60 60 60 80 80 80 80 80 100	40 45 60 60 60 60 80 80 80 80 80 100	40 40 40 40 40 40 40 40 40 40 40 40 40 10	TO 126 TO 126	2N 6037 BD 675 A 2N 6038 BD 677 BD 677 A MJE 800 MJE 801 2N 6039 BD 679 BD 679 A MJE 802 MJE 803 BD 681 BDW 91	2N 6034 BD 676 A 2N 6035 BD 678 BD 678 A MJE 700 MJE 701 2N 6036 BD 680 BD 680 BD 680 A MJE 702 MJE 703 BD 682 BD 682 BDW 92	500 750 500 750 750 100 100 500 750 750 100 750 1000	0.5 2 0.5 1.5 2 4 4 0.5 1.5 2 4 4 1.5	3 3 3 3 3 3 3 3 3 3 3 3 5 5	2 2.8 2 2.5 2.8 3 3 2 2.5 2.8 3 3 2.5 2.8	2 2 2 1.5 2 4 4 2 1.5 2 4 4 4 2 1.5 2	8 40 8 30 40 40 40 8 30 40 40 40 40 40 40
5 5 5 5 5 5	60 60 80 80 100	60 60 80 80 100	65 65 65 65 65 65	SOT 82 (1) TO 220 SOT 82 (1) TO 220 SOT 82 (1) TO 220	SGS 120 TIP 120 SGS 121 TIP 121 SGS 122 TIP 122	SGS 125 TIP 125 SGS 126 TIP 126 SGS 127 TIP 127	1000 1000 1000 1000 1000 1000	3 3 3 3 3 3	3 3 3 3 3	2 2 2 2 2 2	3 3 3 3 3 3	12 12 12 12 12 12
6 6 6 6 6 6 6 6 6 6	45 60 60 80 80 100 100 140 150 160	45 60 60 80 80 100 100 140 150	50 50 60 50 60 50 60 60 15 60	TO 220 TO 220 SOT 82 (1) TO 220 SOT 82 (1) TO 220 SOT 82 (1) TO 220 TO 39 TO 220	BDW 23 BDW 23 A BD 331 BDW 23 B BD 333 BDW 23 C BD 335 BDX 53 E BDX 53 S BDX 53 F	BDW 24 BDW 24 A BD 332 BDW 24 B BD 334 BDW 24 C BD 336 BDX 54 E BDX 54 S BDX 54 S	750 750 750 750 750 750 750 750 500 500	2 3 2 3 2 3 2 3 2 2 2 2	3 3 3 3 3 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 3 2 3 2 3 2 2 2 2 2	8 8 12 8 12 8 12 10 8
8 8 8 8 8 8	40 40 45 60 60 60 60	40 40 45 60 60 60 60	65 65 60 60 65 70 75 80	TO 220 SOT 82 (1) TO 220 TO 220 SOT 82 (1) TO 220 TO 220 TO 220 TO 220	2N 6386 SGS 6386 BDX 53 BDX 53 A SGS 130 TIP 130 2N 6043 TIP 100	BDX 54 BDX 54 A SGS 135 TIP 135 2N 6040 TIP 105	1000 1000 750 750 1000 1000 1000	3 3 3 3 4 4 4 4 3	3 3 3 4 4 4 4	2 2 2 2 2 2 2 2 2	3 3 3 4 4 4 4 3	6 6 12 12 16 16 16 16

EPITAXIAL BASE HIGH GAIN DARLINGTONS (Continued)

IC	V _{CBO}	V _{CEO}	P _{tot}	Package	NPN Ty	pe PNP	hFE	@ I _C	/ V _{CE}	V _{CEsat}	@ I _C	/ I _B
(A)	(V)	(V)	(W)				min	(A)	(V)	(V)	(A)	(mA)
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 80 80 80 80 80 100 100 100 100	60 80 80 80 80 80 100 100 100 100	90 60 65 70 75 80 90 60 65 70 75 80	TO 3 TO 220 SOT 82 (1) TO 220 TO 220 TO 220 TO 3 TO 220 SOT 82 (1) TO 220 TO 20 TO 20 TO 220 TO 220 TO 220	MJ 1000 BDX 53 B SGS 131 TIP 131 2N 6044 TIP 101 MJ 1001 BDX 53 C SGS 132 TIP 132 2N 6045 TIP 102	MJ 900 BDX 54 B SGS 136 TIP 136 2N 6041 TIP 106 MJ 901 BDX 54 C SGS 137 TIP 137 2N 6042 TIP 107	1000 750 1000 1000 1000 1000 1000 750 1000 100	3 3 4 4 4 3 3 3 4 4 3 3	3 3 4 4 4 4 3 3 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 4 4 4 3 3 3 4 4 4 3 3 3	12 12 16 16 6 12 12 16 16 16
10 10 10 10 10 10 10 10 10 10 10 10 10 1	45 45 60 60 60 60 80 80 80 80 100 100	45 45 60 60 60 60 60 80 80 80 80 100 100	70 100 65 65 70 100 125 150 100 65 65 70 125 150 70	TO 220 TO 3 TO 220 SOT 82 (1) TO 220 TO 3 SOT 93 TO 3 TO 3 TO 220 SOT 82 (1) TO 220 SOT 82 (1) TO 220 SOT 93 TO 3 TO 3 TO 220 SOT 93 TO 3 TO 220 SOT 93 TO 3 SOT 93	BDX 33 BDX 85 2N 6387 SGS 6387 BDX 33 A BDX 85 A TIP 140 MJ 3000 BDX 85 B 2N 6388 SGS 6388 BDX 33 B TIP 141 MJ 3001 BDX 33 C BDX 85 C TIP 142	BDX 34 A BDX 86 BDX 34 A BDX 86 A TIP 145 MJ 2500 BDX 86 B BDX 34 B TIP 146 MJ 2501 BDX 34 C BDX 34 C BDX 86 C TIP 147	750 1000 1000 1000 750 1000 1000 1000 10	4 3 5 5 4 3 5 5 5 3 5 5 3 3 5 5 3 3 5 5	3 3 3 3 3 4 3 3 3 3 4 3 3 3 4 3 3 3	2.5 2 2 2 2.5 2 3 2 2 2 2 2 2.5 3 2 2 2 2 2 3 2 2 2 3 2 2 3 2 2 3 3 2 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 2 3 3 2 3 3 2 3 2 3 2 3 3 2 2 3 2 3 2 2 3 2 2 3 2 2 2 3 2 2 2 2 3 2	4 4 5 5 4 10 5 4 5 3 10 5 3 4 10	8 16 10 10 8 8 16 40 20 16 10 10 6 40 20 6 40
12 12 12 12 12 12 12 12 12 12 12 12 12 1	45 45 60 60 80 80 80 100 100 100 100 180	45 45 60 60 80 80 80 100 100 100 100	80 120 80 120 125 80 120 125 40 80 120 125 40	TO 220 TO 3 TO 220 TO 3 SOT 93 TO 220 TO 3 SOT 93 ISOWATT 220 TO 220 TO 3 SOT 93 ISOWATT 220 TO 3 SOT 93 ISOWATT 220	BDW 93 BDX 87 BDW 93 A BDX 87 A BDV 65 BDW 93 B BDX 87 B BDV 65 A BDW 93 CFI BDW 93 C BDX 87 C BDX 87 C BDX 65 B SGSD 93 FFI	BDW 94 BDX 88 BDW 94 A BDW 94 A BDW 94 B BDW 94 B BDX 88 B BDV 64 A BDW 94 CFI BDW 94 C BDX 88 C BDV 64 B	750 1000 750 1000 1000 1000 750 1000 750 750 1000 100	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3 3 4 3 4 3 3 4 3 3 3 4 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 6 5 6 5 5 6 5 5 6 5 6 5 6 5 6 5	20 24 20 24 20 20 24 20 20 20 20 24 20 20
16 16 16 20 20	80 100 60 80	80 100 60 80	150 150 150 160	TO 3 TO 3 TO 3	MJ 4033 MJ 4034 MJ 4035 2N 6282 2N 6283	MJ 4030 MJ 4031 MJ 4032 2N 6285 2N 6286	1000 1000 1000 750 750	10 10 10 10	3 3 3 3	3 3	16 16 16 20 20	80 80 80 200 200
20 20	100	100	160	TO 3 SOT 93	2N 6283 2N 6284 SGSD 100	2N 6287 SGSD 200	750 750 300	10	3	3 1.75	20	200
30 30 30	60 90 120	60 90 120	200 200 200	TO 3 TO 3 TO 3 ge for SMD.	MJ 11012 MJ 11014 MJ 11016	MJ 11011 MJ 11013 MJ 11015	1000 1000 1000	20 20 20 20	5 5 5	4 4 4	30 30 30	300 300 300 300

FAST SWITCHING TRANSISTORS AND DARLINGTONS

Internal schematic diagrams

Bipolar transistors

120 / 300 V VCBO RANGE

IC	V _{CBO}	V _{CEO}	P _{tot}	Package	Type NPN	V _{CE} (sat)@	IC	IB	t _r	t _{si}	t _{fi}
(A)	(V)	(V)	(W)			max (V)	(A)	(A)	(1) max (μs)	max (μs)	max (μs)
4	200	125	31	TO 220	D44 Q1	1	2	0.2	0.4	2 * (1)	1.7 * (1)
4	250	175	31	TO 220	D44 Q3		2	0.2	0.4	2 * (1)	1.7 * (1)
4	300	225	31	TO 220	D44 Q5	1-	2	0.2	0.4	2 * (1)	1.7 * (1)
10	160	125	106	SOT 93	BUX 10 P	0.6	10	0.4	1.5 0.8*	1.2 * (1)	0.3 * (1)
12	240	120	85	TO 220	BUV 27	0.7					0.15*
14	180	90	85	TO 220	BUV 26	1.5	12	1.2	0.6*		0.15* (1)
15 15	200 300	125 200	125 120	TO 220 TO 3	BUT 60 BUV 41	1.2	24 8	2.4	0.5	1.5	0.2 0.3
15	300	200	125	SOT 93	BUW 91	0.9	6	0.6	0.5	2	0.3
20	220	160	150	TO 3	BUX 11 N	0.6	8	0.8	1.5	1.5 * (1)	0.5 * (1)
20	250	125	120	TO 3	BUV 40	1.2	15	1.9	1	1.7	0.3
20	250	125	125	SOT 93	BUW 90	0.9	11	1.1	1	1.7	0.3
20	250	200	150	TO 3	BUX 11	0.6	6	0.6	1	1.8 * (1)	0.4 * (1)
20 20	300 300	200 200	150 150	SOT 93 TO 3	BUW 51 BUV 51	0.9	10 14	1 1.75	0.6	2 2	0.3
20	300	250	150	TO 3	BUX 12	1 1 1	5	0.5	1	2 * (1)	0.5 * (1)
25	160	90	120	TO 3	BUV 39	1.2	20	2.5	1.1	1.7	0.3
25	160	90	125	SOT 93	BUW 89	0.9	15	1.5	1.1	1.7	0.3
25	160	125	150	TO 3	BUX 10	0.6	10	1	1.5	1.2 * (1)	0.3 * (1)
25	250	125	150	SOT 93	BUW 50	0.9	20	2	0.6	1.7	0.3
25	250	125	150	TO 3	BUV 50	1.2	24	3	0.6	1.7	0.3
30	120	60	150 150	SOT 93 TO 3	BUW 48 BUW 38	1.4	40 40	4	1.5* 1.5*	1.65* 1.65*	0.5 * 0.5 *
30 30	120 160	80	150	SOT 93	BUW 49	1.4	30	4	1.2*	1.65*	0.5 *
30	160	80	150	TO 3	BUW 39	1.2	30	3	1.2*	1.65*	0.5 *
40	200	125	115	TOP 3 I	BUT 70 I	0.9	70	7	_	1.8	0.2
40	200	125	200	SOT 93	BUT 70	0.9	70	7	_	1.8	0.2
40	250	125	100	TOP 3 I	BUW 60 I	0.9	50	5	_	1.5	0.25
40	250 250	125	175 250	SOT 93	BUW 60	0.9	50	5	1.2*	1.5	0.25
40 40	250	200	250	TO 3	BUV 21 BUX 21	0.6	12 25	1.2	1.2*	1.8 * (1)	0.4 * (1)
40	300	200	100	TOP 3 I	BUW 61 I	0.9	25	2.5	1.2	2.4	0.4 (1)
40	300	200	100	TOP 3 I	BUT 71 I	0.9	40	4	_	2.4	0.25
40	300	200	175	SOT 93	BUT 71	0.9	40	4	_	2.4	0.25
40	300	200	175	SOT 93	BUW 61	0.9	25	2.5		2.4	0.25
40 40	300 300	250 250	250 350	TO 3	BUV 22 BUX 22	0.6	25 20	2.5	1.3 1.3*	2 * (1) 2 * (1)	0.5 * (1) 0.5 * (1)
47	120	60	250	TO 3	BUV 18	1.5	80	8	1.5*	1.7 *	0.5 *
47	160	80	250	TO 3	BUV 19	1.2	60	6	1.3*	1.7 *	0.5 *
50	160	125	250	TO 3	BUV 20	0.6	25	2.5	1.5	1.2 * (1)	0.3 * (1)
50	160	125	350	TO 3	BUX 20	1.2	50	5	1.5*	1.2 * (1)	0.3 * (1)
50	200	125	250	TO 3	BUT 90	0.9	70	7	1.2*	2 (1)	0.3 (1)
50	200 250	125	300	TO 3	BUT 100	0.9	100	10	_	2	0.2
50 50	300	125 200	250 250	TO 3	BUV 60 BUV 61	1.2	60 40	7.5 5	0.8 0.7	1.5 2.4	0.25 0.25
50	300	200	250	TO 3	BUT 91	1.2	40	4	0.7	1.5 *	0.25
60	300	200	350	TO 3	BUR 51	1	30	2	1	2 * (1)	0.6 * (1)
70	200	125	350	TO 3	BUR 50 S	1	35	2	1.2	2 * (1)	0.5 * (1)
				wise specified	1				T: = 25°C	_ ('/	1.5 (1)

For switching times, $T_{j} = 100$ °C, unless otherwise specified.

(1) $T_j = 25$ °C

350 / 650 V VCBO RANGE

IC	VCBO	VCEO	P _{tot}	Package	Type NPN	V _{CE} (sat)	[®] I _C	/ I _B	t _r	t _{si}	t _{fi}
(A)	(V)	(V)	(W)			max (V)	(A)	(A)	(1) max (μs)	max (μs)	max (μs)
4	600	300	75	TO 220	MJE 13004	1	4	1	0.7	3.5* (1)	0.9 * (1)
8 8 8 8 8	450 450 550 550 600 650	300 300 350 350 300 400	100 150 100 150 80 100	TO 220 TO 3 TO 220 TO 3 TO 220 TO 220	2N 6928 2N 6671 2N 6929 2N 6672 MJE 13006	1 2 1 2 1.5	8 8 8 8 5	1.6 4 1.6 4	0.5 0.5 0.5 0.5 1	3.5 4 * 3.5 4 * 3 * (1)	0.4 0.8 * 0.4 0.8 * 0.7 * (1)
8	650	400	150	TO 3	2N 6930 2N 6673	1 1	8 5	1.6	0.5 0.5	3.5 4 *	0.4
10 10	450 650	300 400	150 150	SOT 93 SOT 93	2N 6931 2N 6932	1 1	10	2 2	0.7	3.5 3.5	0.4
12 12 12 12 12 12	350 350 350 400 400 600	250 250 250 300 200 300	75 120 125 120 85 100	TOP 3 I TO 3 SOT 93 TO 3 TO 220 TO 220	BUW 92 I- BUV 42 BUW 92 BUV 42 A BUV 28 MJE 13008	0.9 1.2 0.9 0.9 1.5	5 6 5 4 6 8	0.5 0.75 0.5 0.4 0.6 1.6	0.4 0.4 0.4 — 1 *	2.4 2.4 2.4 3 1.5* (1) 3 * (1)	0.4 0.4 0.4 0.4 0.25* (1) 0.7 * (1)
15 15 15 15 15 15 15 15	350 400 400 450 450 450 550 650	300 300 350 300 300 400 350 400 400	175 125 175 175 175 175 175 175 175	SOT 93 TO 220 SOT 93 TO 3 TO 3 SOT 93 TO 3 TO 3 TO 3	2N 6933 BUT 62 2N 6934 2N 6674 2N 6676 2N 6935 2N 6677 2N 6675 2N 6678	0.9 1 5 1 1 1 5	15 10 15 15 15 15 15 15	3 1 3 5 3 3 3 3 5 3	0.7 	3.5 2.2 3.5 4.* 4.* 3.5 4.* 4.* 4.*	0.4 0.4 0.4 1 * 1 * 0.4 1 *
16	600	400	90	TOP 3 I	BUD 48 DI (2)	1.6	10	0.5	_	3.6	0.4
20 20 20 20 20 20	350 350 350 400 450	250 250 250 300 400	50 150 150 150 350	ISOWATT 218 SOT 93 TO 3 TO 3 TO 3	BUW 52 FI BUW 52 BUV 52 BUV 52 A BUX 24	0.9 0.9 1.2 0.9	8 8 12 7 12	0.8 0.8 1.5 0.7 2.4	0.6 0.6 0.6 — 1.6*	2.4 2.4 2.4 3 3 * (1)	0.4 0.4 0.4 0.4 1.4 * (1)
30	400	325	350	TO 3	BUX 23	1 -	16	3.2	1.3*	2.5* (1)	1.2 * (1)
40 40 40 40 40 40	350 400 400 400 400 400	250 300 300 300 300 300	250 250 100 115 175 200	TO 3 TO 3 TOP 3 I TOP 3 I SOT 93 SOT 93	BUV 62 BUV 62 A BUW 62 I BUT 72 I BUW 62 BUT 72	1.2 0.9 0.9 0.9 0.9 0.9	24 15 15 30 15 30	3 1.5 1.5 3 1.5 3	0.6 — — — —	2.5 3 3 3 3	0.4 0.4 0.4 0.4 0.4 0.4
45	450	850	300	TO 3	BUX 348	0.9	30	6		4.5	0.4
50 50 50	350 400 400	250 300 300	250 250 300	TO 3 TO 3 TO 3	BUT 92 BUT 92 A BUT 102	1.2 0.9 0.9	35 30 40	3 5 3 4	——————————————————————————————————————	3 3 3	0.4 0.4 0.4
60	350	250	350	TO 3	BUR 52	1.8	25	2	1	2 * (1)	0.6 * (1)

For switching times, $T_j = 100$ °C unless otherwise specified.

⁽¹⁾ $T_j = 25$ °C. (2) Darlingtons.

700 / 1000 V V_{CBO} RANGE

IC	V _{СВО}	V _{CEO}	P _{tot}	Package	Type NPN	V _{CE} (sat)@	lc /	IB	t _d + t _r *	tsi ts*	t _{fi} t _f *
(A)	(V)	(V)	(W)			max (V)	(A)	(A)	(1) max (μs)	max (μs)	max (μs)
2	800	400	50	TO 220	BUX 84	1	1	0.2	0.5*	3.5* (1)	1.4* (1)
2	1000	450	50	TO 220	BUX 85	1	1	0.2	0.5*	3.5* (1)	1.4* (1)
4	700	400	75	TO 220	MJE 13005	1	4	1	0:7	3.5* (1)	0.9* (1)
4	850	400	75	TO 220	MJE 13005 A	1 1	4	1	0.7	3.5* (1)	0.9* (1)
4	850	400	70	TO 220 TO 220	BUD 46 (2) BUD 46 A (2)	1.6 1.6	2.5 2.5	0.12 0.12	_	2.8 2.8	0.4
4	1000 850	450	70	TO 220	BUV 46	1.5	2.5	0.12		3	0.8
5 5	850	400	30	ISOWATT 220	BUV 46 FI	1.5	2.5	0.5	_	3	0.8
5	850	400	83	TO 220	BUT 11	1.5	3	0.6		4	0.8
5	850	400	35	ISOWATT 220	BUT 11 FI	1.5	3	0.6	_	4	0.8
5	1000	450	70	TO 220	BUV 46 A	1.5	2	0.4	_	3	0.8
5 5	1000	450 450	30 83	ISOWATT 220 TO 220	BUV 46 AFI BUT 11 A	1.5 1.5	2 2.5	0.4 0.5		3 4	0.8
5	1000	450	35	ISOWATT 220	BUT 11 AFI	1.5	2.5	0.5	<u> </u>	4	0.8
6	800	375	75	TO 3	BU 326	3	4	1.25	0.5	3.5* (1)	0.5* (1)
6	900	400	75	TO 3	BU 326 A	3	4	1.25	0.5	3.5* (1)	0.5* (1)
7	1000	450	70	TO 220	BUV 56 A	1.2	4	0.8		3 * (1)	0.4* (1)
8	700 850	400 400	80 80	TO 220 TO 220	MJE 13007 MJE 13007 A	1.5 1.5	5 5	1	1 1	3 * (1) 3 * (1)	0.7* (1) 0.7* (1)
8	850	400	100	TO 220	BUD 47 (2)	1.6	5	0.25	-	3.2	0.7 (1)
9	850	400	125	TO 3	BUX 47	1.5	6	1.2	1	4 *	0.4*
9	850	450	50	ISOWATT 218	BUV 47 FI	1.5	5	1	1 *	4 *	0.4*
9	850	450	75	TOP 3I	BUV 471	1.5	5	1	1 *	4 *	0.4*
9	850 1000	450 450	120 50	SOT 93 ISOWATT 218	BUV 47 BUV 47 AFI	1.5 1.5	5 5	1	1 *	4 *	0.4*
9	1000	450	125	TO 3	BUX 47 A	1.5	5	1	1 1	4 *	0.4*
9	1000	450	75	TOP 3I	BUV 47 AI	1.5	5	1	1 *	4 *	0.4*
9	1000	450	120	SOT 93	BUV 47 A	1.5	5	1	1 *	4 *	0.4*
12	700	400	100	TO 220	MJE 13009	1.5	8	1.6	1	3 * (1)	0.7* (1)
12 12	850 850	400 450	100 100	TO 220 TO 220	MJE 13009 A BUV 66 A	1.5 1.2	8 6.5	1.6 1.3	1	3 * (1)	0.7* (1)
15	850	400	50	ISOWATT 218	BUV 48 FI	1.5	10	2	1	5	0.4
15	850	400	125	SOT 93	BUV 48	1.5	10	2	1 1	5	0.4
15	850	400	175	TO 3	BUX 48	1.5	10	2	1	5	0.4
15	850	450	100	TO 220	BUV 66	1.2	8	1.6		3	0.4
15 15	850 1000	450 450	100 50	TOP 3I ISOWATT 218	BUV 48 I BUV 48 AFI	1.5 1.5	10 8	2 1.6	1 1	5 * 5	0.4*
15	1000	450	100	TOP 3I	BUV 48 AI	1.5	8	1.6	1	5	0.4
15	1000	450	125	SOT 93	BUV 48 A	1.5	10	2	i	5	0.4
15	1000	450	175	TOP 3	BUX 48 A	1.5	10	2	1	5	0.4
16	850	400	90	TOP 3I	BUD 48 I (2)	1.6	10	0.5	_	3.6	0.4
16	850	400	150	SOT 93	BUD 48 (2)	1.6	10	0.5	_	3.6	0.4
16 16	1000 1000	450 450	90 150	TOP 3I SOT 93	BUD 48 AI (2) BUD 48 A (2)	1.6 1.6	10 7.5	0.5 0.5	_	3.6 3.6	0.4
24	1000	450	115	TOP 3 I	BUX 98 API	1.2	16	3.2	 	4.5	0.4
24	1000	450	200	SOT 93	BUX 98 AP	1.2	16	3.2	_	4.5	0.4
30	1000	450	250	TO 3	BUX 98 A	1.5	16	3.2	1	4.5	0.4
32	850	400	110	TOP 3 I	BUD 98 I (2)	1.6	20	1	_	3.8	0.4
32 35	850 1000	400 450	250 300	SOT 93	BUD 98 (2) BUX 348 A	1.6	20	4.8		3.8 4.5	0.4
					DUA 348 A	1.2	24		T 0500	4.5	0.4
For swite	cning times,	ı _j = 100°¢, ι	uniess other	wise specified.					$T_j = 25$ °C		
								(2)	Darlingtons.		

1200 V VCBO RANGE

IC	V _{CBO}	V _{CEO}	P _{tot}	Package	Туре	V _{CE (sat)@}	IC	1	ΙB	t _r (1)	t _{si}	t _{fi}
(A)	(V)	(V)	(W)			max (V)	(A)		(A)	max (μs)	max (μs)	max (μs)
15	1200	700	50	ISOWATT 218	BUV 48 CFI	1.5	6		1.5	1	6	0.6
15	1200	700	100	TOP 3 I	BUV 48 CI	1.5	6		1.5	1	6	0.6
15	1200	700	120	SOT 93	BUV 48 C	1.5	6		1.5	1	6	0.6
15	1200	700	175	TO 3	BUX 48 C	1.5	6		1.5	1	6	0.6
30	1200	700	250	TO 3	BUX 98 C	1.5	12		3	1	6	0.6
For swite	ching times,					(1)	$T_j = 25$ °C.					

«FASTSWITCH» SERIES (Hollow Emitter, E.T.D.)

Ic	VCBO	V _{CEO}	Ptot	Package	Type NPN	V _{CE} (sat)@	I _C	I _B	t _r	t	10
0	VCEV*	CLO	101		, , , , , , , , , , , , , , , , , , ,	max		ъ	t _d + t _r * (1) max	t _{si} t _s *	t _{fi} t _f *
(A)	(V)	(V)	(W)			(V)	(A)	(A)	(μs)	(μs)	(μs)
4	1200	600	70	TO 220	SGSF324	1.5	1.75	0.35	1 *	4.5* (1)	0.35* (1)
4	1200	600	35	ISOWATT 220	SGSIF324	1.5	1.75	0.35	1 *	4.5* (1)	0.35* (1)
4 4	1200 1200	600 600	45 80	ISOWATT 218 SOT 93	SGSIF424	1.5	1.75	0.35	1 *	4.5* (1)	0.35* (1)
4	1300	600	45	ISOWATT 218	SGSF424 SGSIF425	1.5 1.5	1.75 1.75	0.35 0.35	1 *	4.5* (1) 4.5* (1)	0.35* (1)
4	1300	600	80	SOT 93	SGSF425	1.5	1.25	0.35	1 *	4.5*(1)	0.35* (1) 0.35* (1)
4	1300	600	35	ISOWATT 220	SGSIF325	1.5	1.25	0.25	1 *	4.5* (1)	0.35* (1)
5	850	400	45	ISOWATT 218	SGSIF421	1.5	3.5	0.7	1 *	2.5* (1)	0.3 * (1)
5	850	400	70	TO 220	SGSF321	1.5	3.5	0.7	1 *	2.5* (1)	0.3 * (1)
5 5	850 850	400 400	35 80	ISOWATT 220 SOT 93	SGSIF321 SGSF421	1.5 1.5	3.5	0.7 0.7	1 *	2.5* (1)	0.3 * (1)
5	1000	450	45	ISOWATT 218	SGSIF421	1.5	2.5	0.7	1 *	2.5* (1) 2.5* (1)	0.3 * (1) 0.3 * (1)
5	1000	450	35	ISOWATT 220	SGSIF323	1.5	2.5	0.5	1 *	2.5* (1)	0.3 * (1)
5	850	450	70	TO 220	SGSF323	1.5	2.5	0.5	1 *	2.5* (1)	0.3 * (1)
5	1000	450	80	SOT 93	SGSF423	1.5	2.5	0.5	1 *	2.5* (1)	0.3 * (1)
7	1200	600	55	ISOWATT 218	SGSIF444	1.5	3.5	0.7	1.2*	3.5* (1)	0.3 * (1)
7 7	1200 1200	600 600	40 85	ISOWATT 220 TO 220	SGSIF344 SGSF344	1.5 1.5	3.5 3.5	0.7 0.7	1.2* 1.2*	3.5* (1)	0.3 * (1)
7	1200	600	115	TO 3	SGSF544	1.5	3.5	0.7	1.2*	3.5* (1) 3.5* (1)	0.3 * (1)
7	1200	600	95	SOT 93	SGSF444	1.5	3.5	0.7	1.2*	3.5* (1)	0.3 * (1)
7	1300	600	55	ISOWATT 218	SGSIF445	1.5	3	0.6	1.2*	3.5* (1)	0.3 * (1)
7	1300	600	40	ISOWATT 220	SGSIF345	1.5	3	0.6	1.2*	3.5* (1)	0.3 * (1)
7	1300	600	125	TO 3	SGSF545	1.5	3	0.6	1.2*	3.5* (1)	0.3 * (1)
7	1300	600	95	SOT 93	SGSF445	1.5	3	0.6	1.2*	3.5* (1)	0.3 * (1)
7.5 7.5	850* 1000*	450 450	80 80	TO 220 TO 220	BUF 405 BUF 405 A	2 2	5 5	1 1	_	1.8 1.8	0.1
8	1000	400	40	ISOWATT 220	SGSIF343	1.5	4.5	0.9	1 *	2.5* (1)	0.35* (1)
8	1000	450	55	ISOWATT 218	SGSIF443	1.5	4.5	0.9	1 *	2.5* (1)	0.35* (1)
8	1000 1000	450 450	85 115	TO 220 TO 3	SGSF343 SGSF543	1.5 1.5	4.5 4.5	0.9 0.9	1 *,	2.5* (1) 2.5* (1)	0.35* (1) 0.35* (1)
8	1000	450	95	SOT 93	SGSF443	1.5	4.5	0.9	1 *	2.5* (1)	0.35* (1)
10	850	400	40	ISOWATT 220	SGSIF341	1.5	6	1.2	1 *	2.5* (1)	0.35* (1)
10	850	400	55	ISOWATT 218	SGSIF441	1.5	6	1.2	1 *	2.5* (1)	0.35* (1)
10	850	400	85	TO 220	SGSF341	1.5	6	1.2	1 *	2.5* (1)	0.35* (1)
10	850	400	115	TO 3	SGSF541	1.5	6	1.2	1 1 1	2.5* (1)	0.35* (1)
10 10	850 1200	400 600	85 65	SOT 93 ISOWATT 218	SGSF441 SGSIF464	1.5 1.5	6	1.2 1.2	1 * 1.2*	2.5* (1) 3.5* (1)	0.35* (1) 0.4 * (1)
10	1200	600	150	TO 3	SGSF564	1.5	6	1.2	1.2*	3.5* (1)	0.4 * (1)
10	1200	600	125	SOT 93	SGSF464	1.5	6	1.2	1.2*	3.5* (1)	0.4 * (1)
10	1300	600	65	ISOWATT 218	SGSIF465	1.5	5	1	1.2*	3.5* (1)	0.4 * (1)
10	1300	600	150	TO 3	SGSF565	1.5	5	1	1.2*	3.5* (1)	0.4 * (1)
10	1300	600	125	SOT 93	SGSF465	1.5	7		1.2*	3.5* (1)	0.4 * (1)
12 12	1000 1000	450 450	65 150	ISOWATT 218 TO 3	SGSIF463 SGSF563	1.5 1.5	7	1.4 1.4	1.7* 1.7*	2.3* (1) 2.3* (1)	0.5 * (1)
12	1000	450	125	SOT 93	SGSF463	1.5	7	1.4	1.7*	2.3* (1)	0.5 * (1)
15	850	350	65	ISOWATT 218	SGSIF461	1.5	10	2	1.7*	2.3* (1)	0.5 * (1)
15	850	350	150	TO 3	SGSF561	1.5	10	2	1.7*	2.3* (1)	0.5 * (1)
15	850	350	125	SOT 93	SGSF461	1.5	10	2	1.7*	2.3* (1)	0.5 * (1)
15	850*	450	85	TOP 3I	BUF 410 I (2)	0.5	10	2	_	1.8	0.1
15 15	850* 1000*	450 450	125 85	SOT 93 TOP 3I	BUF 410 (2) BUF 410 AI (2)	0.5	10 10	2		1.8 1.8	0.1
15	1000*	450	125	SOT 93	BUF 410 A (2)	0.5	10	2	_	1.8	0.1
20	1200	600	250	TO 3	SGSF664	1.5	12	2.4	1.2*	3.5* (1)	0.4 * (1)
20	1300	600	250 250	TO 3	SGSF665 SGSF663	1.5	10	2.8	1.2*	3.5* (1) 2.3* (1)	0.4 * (1)
24	1000	450	250	TO 3	SGSF661	1.5	20	4	- 1.7	2.3 (1)	0.5 (1)
30 30	850 850*	400 450	115	TOP 31	BUF 420 I (2)	0.5	20	4		2	0.1
30	850*	450	200	SOT 93	BUF 420 (2)	0.5	20	4	_	2	0.1
30	1000*	450	115	TOP 3I	BUF 420 AI (2)	0.5	20	4	_	2	0.1
30	1000*	450	200	SOT 93	BUF 420 A (2)	0.5	20	4		2	0.1

For switching times, $T_j = 100$ °C unless otherwise specified.

(1) $T_{j} = 25$ °C.

(2) E.T.D.: Easy to drive.

V(BR) DSS	R _{DS} (on) max	@ I _D	Package	Туре	I _D	P _{tot}	9fs min	C _{iss} max
(V)	(Ω)	(A)			(A)	(VV)	(mho)	(pF)
50	0.3	3.5	TO 220	SGSP358	7	50	1.5	270
50	0.15	7.5	TO 220	MTP15N05L	15	75	5	900
50	0.15	7.5	ISOWATT 220	MTP15N05LFI	10	30	5	900
50	0.15	7.5	TO 220	STLT19**	15	75	5	480
50	0.15	7.5	ISOWATT 220	STLT19FI**	10	30	5	480
50	0.13	5	SOT 82	SGSP222*	10	50	3	550
50	0.13	8	TO 220	SGSP322	16	75	3	550
50	0.12	10	TO 220	BUZ10A	17	75	3	2000
50	0.12	9	TO 220	BUZ71A	13	40	3	650
50	0.12	9	TO 220	IRFZ22	14	40	5	850
50	0.12	9	ISOWATT 220	IRFZ22FI	12	30	5	850
50	0.1	9	TO 220	BUZ71	14	40	3	650
50	0.1	9	ISOWATT 220	BUZ71FI	12	30	3	650
50	0.1	9	TO 220	IRFZ20	15	40	5	850
50	0.1	9	ISOWATT 220	IRFZ20FI	12.5	30	5	850
50	0.08	13	TO 220	BUZ10	20	70	8	700 typ
50	0.08	12.5	TO 220	STLT29**	25	100	9	1200
50	0.06	15	TO 220	BUZ11A	25	75	4	2000
50	0.06	14	TO 220	SGSP382	28	100	5	1400
50	0.06	15	TO 218	SGSP482	30	125	5	1400
50	0.04	15	TO 220	BUZ11	30	75	4	2000
50	0.04	15	ISOWATT 220	BUZ11FI	20	35	4	2000
50	0.035	29	TO 220	IRFZ42	35	125	17	3000
50	0.033	20	TO 218	SGSP492	40	150	10	2800
50	0.033	20	TO 3	SGSP592	40	150	10	2800
50	0.028	29	TO 220	IRFZ40	35	125	` 17	3000
50	0.023	30	TO 220	STVHD90	52	125	30	3000
60	0.15	7.5	TO 220	MTP15N06L	15	75	5	900
60	0.15	7.5	ISOWATT 220	MTP15N06LFI	10	30	5	900
60	0.15	6	TO 220	MTP3055A	12	40	4.5	500

^{*} Also available in SOT 194 package for SMD.

^{**} Logic level V_{GS} threshold.

V(BR) DSS	R _{DS} (on)	@ I _D	Package	Туре	ID	P _{tot}	9fs	C _{iss}
(V)	max (Ω)	(A)			max (A)	(W)	min (mho)	max (pF)
60	0.15	6	ISOWATT 220	MTP3055AFI			<u> </u>	
60	0.15	7.5	TO 220	STLT20**	10	30 75	4.5	500
60	0.15	7.5	ISOWATT 220	STLT20FI**	10	30	5 5	480 480
60	0.13	8	TO 220	SGSP321	16	75	3	550
60	0.08	20	TO 3	IRF153	33	150	9	3000
60	0.08	22	T0 218	IRFP153	34	150	13	3000
60	0.08	22	ISOWATT 218	IRFP153FI	21	65	13	3000
60	0.08	12.5	TO 220	STLT30**	25	100	9	1200
60	0.06	14	TO 220	SGSP381	28	100	5	1400
60	0.05	. 15	TO 218	SGSP481	30	125	5	1400
60	0.055	20	TO 3	IRF151	40	150	9	3000
60	0.055	22	TO 218	IRFP151	40	150	13	3000
60	0.055	22	ISOWATT 218	IRFP151FI	26	65	13	3000
60	0.04	15	TO 220	BUZ11S2	30	75	4	2000
60	0.04	15	ISOWATT 220	BUZ11S2FI	20	35	4	2000
60	0.033	20	TO 218	SGSP491	40	150	10	2800
60	0.033	20	TO 3	SGSP591	40	150	10	2800
60 60	0.028	20 20	TO 218 ISOWATT218	MTH40N06 MTH40N06FI	40	150	10	5000
80	0.028	5.6	TO 220	IRF523	26 8	65 60	10	5000 600
		+	+					
80 80	0.36 0.27	5.6 5.6	ISOWATT 220 TO 220	IRF523FI IRF521	6 9.2	30 60	2.7 2.7	600 600
80	0.27	5.6	ISOWATT 220	IRF521FI	7	30	2.7	600
80	0.23	8.3	TO 220	IRF533	12	79	5.1	800
80	0.23	8.3	ISOWATT 220	IRF533FI	8	35	5.1	800
80	0.16	8.3	TO 220	IRF531	14	79	5.1	800
80	0.16	8.3	ISOWATT220	IRF531FI	9	35	5.1	800
80	0.1	17	TO 3	IRF143	25	125	8.7	1600
80	0.1	17	TO 220	IRF543	25	125	8.7	1600
80	0.1	17	ISOWATT 220	IRF543FI	14	40	8.7	1600
80	0.1	11	TO 220	SGSP362	22	100	4.5	1200
80	0.1	12.5	TO 218	SGSP462	25	125	4.5	1200
80	0.077	17	TO 3	IRF141	28	125	8.7	1600
80	0.077	17	TO 220	IRF541	28	125 40	8.7	1600
80	0.077	17.5	TO 218	IRF541FI SGSP472	15 35	150	8.7 9	1600 2200
100	1.4	1.2	SOT 82	SGSP472 SGSP201*	2	18	0.5	125
100	1.4	1.2	TO 220	SGSP301	2	18	0.5	125
100	0.6	3	TO 220	SGSP351	6	50	1	250
100	0.36	5.6	TO 220	IRF522	8	60	2.7	600
100	0.36 .	5.6	ISOWATT 220	IRF522FI	6	30	2.7	600
100	0.3	5.5	TO 220	SGSP311	11	75	2	480
100	0.27	5.6	TO 220	IRF520	9.2	60	2.7	600
100	0.27	5.6	ISOWATT 220	IRF520FI	7	30	2.7	600
100	0.25	5	TO 220	BUZ72A	9	40	2.7	600
100	0.23	8.3	TO 220	IRF532	12	79	5.1	800
100	0.23	8.3	ISOWATT 220	IRF532FI	8	35 75	5.1	800
100	0.2 0.16	6 8.3	TO 220 TO 220	BUZ20 IRF530	12 14	75 79	2.7 5.1	2000 800
100 100	0.16	8.3	ISOWATT 220	IRF530FI	9	35	5.1	800
100	0.15	9	TO 220	SGSP361	18	100	4.5	1200
100	0.15	10	TO 218	SGSP461	20	125	4.5	1200
100	0.1	9	TO 220	BUZ21	19	75	4	2000
100	0.1	9	TO 3	BUZ25	19	78	4	2000
100	0.1	17	TO 3	IRF142	25	125	8.7	1600
100	0.1	17	TO 220	IRF542	25	125	8.7	1600
100	0.1	17,	ISOWATT 220	IRF542FI	14	40	8.7	1600
100	0.08	20	TO 3	IRF152	33	150	9	3000
100	0.08	22	TO 218 ISOWATT 218	IRFP152 IRFP152FI	34 21	150 65	13 13	3000 3000
100	0.08	17	TO 3	IRF140	28	125	8.7	1600
100	0.077	17	TO 220	IRF540	28	125	8.7	1600
100	0.077	17	ISOWATT 220	IRF540FI	15	40	8.7	1600
100	0.075	15	TO 218	SGSP471	30	150	9	2200
100	0.055	20	TO 3	IRF150	40	150	9	3000

(BR) DSS	RDS (on) ·	@ I _D	Package	Туре	I _D max	P _{tot}	9fs min	C _{iss} max
(V)	(Ω)	(A)			(A)	(W)	(mho)	(pF)
100	0.055	22	TO 218	IRFP150	40	150	13	3000
100	0.055	22	ISOWATT 218	IRFP150FI	26	65	13	3000
100	0.014	50	TO 240	SGS100MA010D1	120 135	400 500	20	11200 11200
100 100	0.014 0.009	60 75	ISOTOP TO 240	TSD4M150V SGS150MA010D1	150	400	20	14000
150	1.2	2.5	TO 220	IRF623	4	40	1.3	600
150	1.2	2.5	ISOWATT 220	IRF623FI	3.5	30	1.3	600
150	0.8	2.5	TO 220	IRF621	5	40	1.3	600
150	0.8	2.5	ISOWATT 220	IRF621FI	4	30	1.3 1.3	600
200 200	1.2 1.2	2.5 2.5	TO 220 ISOWATT 220	IRF622 IRF622FI	3.5	30	1.3	600
200	0.8	2.5	TO 220	IRF620	5	40	1.3	600
200	0.8	2.5	ISOWATT 220	IRF620FI	4	30	1.3	600
200	0.75	3	TO 220	SGSP317	6	75	1.5	500
200	0.4	4.5	TO 220	BUZ32	9.5	75	2.2	2000
200	0.33	6	TO 220	SGSP367	12	100	3	1200
200 200	0.17 0.17	10	TO 218	SGSP477 SGSP577	20 20	150 150	8 8	2200 2200
200	0.021	60	ISOTOP	TSD4M250V	110	500	28	12000
250	1.2	2.5	TO 220	SGSP316	5	75	1.5	500
250	0.45	5	TO 220	SGSP363	10	100	3	1200
350	2.5	1.8	TO 220	IRF723	2.8	50	1	800
350 350	2.5 1.8	1.8	ISOWATT 220 TO 220	IRF723FI IRF721	3.3	30 50	1	600 600
350	1.8	1.8	ISOWATT 220	IRF721FI	2.5	30	1 1	600
350	1.5	3	TO 220	IRF733	4.5	74	2.9	800
350	1.5	3	ISOWATT 220	IRF733FI	3	35	2.9	800
350	1	3	TO 220	IRF731	5.5	74	2.9	800
350	1	3	ISOWATT 220	IRF731FI	3.5	35	2.9	800
350 350	0.8	5.2 5.2	TO 220 ISOWATT 220	IRF743 IRF743FI	8.3 4.5	125 40	4 4	1600 1600
350	0.55	5.2	TO 220	IRF741	10	125	4	1600
350	0.55	5.2	ISOWATT 220	IRF741FI	5.5	40	4	1600
350	0.075	30	ISOTOP	TSD4M351V	50	500	28	12000
400	20	0.3	TO 220	SGSP341	0.8	18	0.1	105
400 400	2.5 2.5	1.5	TO 220 TO 220	BUZ76A IRF722	2 2.8	40 50	0.8	600 600
400	2.5	1.8	ISOWATT 220	IRF722FI	2	30	i	600
400	1.8	1.5	TO 220	BUZ76	3	40	0.8	500
400	1.8	1.8	TO 220	IRF720	3.3	50	1	600
400 400	1.8 1.5	1.8 2.5	ISOWATT 220 TO 220	IRF720FI BUZ60B	2.5 4.5	30 75	1 1.7	2000
400	1.5	3	TO 220	IRF732	4.5	74	2.9	800
400	1.5	3	ISOWATT 220	IRF732FI	3	35	2.9	800
400	1	2.5	TO 220	BUZ60	5.5	75	1.7	2000
400	1	3	TO 220 ISOWATT 220	IRF730	5.5	74	2.9	800
400 400	1 0.8	3 5.2	TO 220	IRF730FI IRF742	3.5 8.3	35 125	2.9 4	800 1600
400	0.8	5.2	ISOWATT 220	IRF742FI	4.5	40	4	1600
400	0.55	5.2	TO 220	IRF740	10	125	4	1600
400	0.55	5.2	ISOWATT 220	IRF740FI	5.5	40	4	1600
400 400	0.55 0.55	5 •	TO 218	SGSP475 SGSP575	10	150 150	6	2100 2100
400	0.3	8	TO 3	IRF350	15	150	8	3000
400	0.3	8	ISOWATT 218	IRFP350FI	10	70	8	3000
400	0.075	30	ISOTOP	TSD4M350V	50	500	28	12000
450	4	1.4	TO 220	IRF823	2.2	50	. 1	400
450 450	4 3	1.4	ISOWATT 220 TO 220	IRF823FI IRF821	1.5 2.5	30 50	1	400 400
450	3	1.4	ISOWATT 220	IRF821FI	2	30	1	400
450	3	1.2	SOT 82	SGSP230*	2.5	50	0.8	450
450	3	1.5	TO 220	SGSP330	3	75	0.8	450
450	2	2.5	TO 220	IRF833	4	74	. 2.7	800
450	2	2.5	ISOWATT 220	IRF833FI	2.5	35	2.7	800

^{*} Also available in SOT 194 package for SMD.

V _(BR) DSS	R _{DS} (on) max (Ω)	@ I _D	Package	Туре	I _D max (A)	P _{tot}	9fs min	C _{iss} max
450 450 450 450 450 450	1.5 1.5 1.5 1.1 1.1	2.5 2.5 2.5 4.4 4.4	TO 220 ISOWATT 220 TO 220 TO 220 ISOWATT 220	IRF831 IRF831FI SGSP364 IRF843 IRF843FI	4.5 3 5 7	74 35 100 125 40	(mho) 2.7 2.7 3 4.9 4.9	800 800 1000 1600
450 450 450 450 450 450	0.85 0.85 0.7 0.7 0.5	4.4 4.4 4.5 4.5 7	TO 220 ISOWATT 220 TO 218 TO 3 TO 3	IRF841 IRF841FI SGSP474 SGSP574 IRF453	8 4.5 9 9	125 40 150 150	4.9 4.9 4.9 6 6 8.7	1600 1600 1600 2100 2100 3000
450 450 450 450 450 450	0.5 0.5 0.4 0.4 0.4 0.1	7.9 7.9 7.2 7.9 7.9 28	TO 218 ISOWATT 218 TO 3 TO 218 ISOWATT 218 ISOTOP	IRFP453 IRFP453FI IRF451 IRFP451 IRFP451FI TSD4M451V	12 8 13 14 9 45	180 70 150 180 70 500	9.3 9.3 8.7 9.3 9.3	3000 3000 3000 3000 3000 3000 12000
500 500 500 500 500	8.5 4 4 4 3.8	0.6 1.2 1.4 1.4	SOT 82 TO 220 TO 220 ISOWATT 220 TO 220	SGSP239* BUZ74A* IRF822 IRF822FI SGSP319	1.2 2 2.2 1.5 2.8	40 40 50 30 75	0.65 0.8 1 1 0.8	300 500 400 400 380
500 500 500 500 500	3 3 3 2 2	1.2 1.4 1.4 2.5 2.5	TO 220 TO 220 ISOWATT 220 TO 220 TO 220	BUZ74 IRF820 IRF820FI BUZ42 IRF832	2.4 2.5 2 4 4	40 50 30 75 74	0.8 1 1 1.5 2.7	500 400 400 2000 \$ 800
500 500 500 500 500	2 1.5 1.5 1.5 1.5	2.5 2.5 2.5 2.5 2.5 2.5	ISOWATT 220 TO 220 TO 220 ISOWATT 220 TO 220	IRF832FI BUZ41A IRF830 IRF830FI SGSP369	2.5 4.5 4.5 3 5	35 75 74 35 100	2.7 1.5 2.7 2.7 3	800 2000 800 800 1000
500 500 500 500 500	1.1 1.1 0.85 0.85 0.8	4.4 4.4 4.4 4.4 5.5	TO 220 ISOWATT 220 TO 220 ISOWATT 220 TO 218	IRF842 IRF842FI IRF 840 IRF840FI BUZ354	7 4 8 4.5 8	125 40 125 40 125	4.9 4.9 4.9 4.9 2.7	1600 1600 1600 1600 4900
500 500 500 500 500	0.8 0.7 0.7 0.6 0.6	5 4.5 4.5 5.5 5	TO 3 TO 218 TO 3 TO 218 TO 3	BUZ45A SGSP479 SGSP579 BUZ353 BUZ45	8.3 9 9 9.5 9.6	125 150 150 125 125	2.7 5 5 2.7 2.7	4900 1900 1900 4900 4900
500 500 500 500 500	0.5 0.5 0.5 0.4 0.4	7.2 7.9 7.9 7.2 7.9	TO 3 TO 218 ISOWATT 218 TO 3 TO 218	IRF452 IRFP452 IRFP452FI IRF450 IRFP450	11 12 8 13 14	150 180 70 150 180	8.7 9.3 9.3 8.7 9.3	3000 3000 3000 3000 3000
500 500 500 500 600 600	0.4 0.2 0.16 0.1 2.5 2.5	7.9 15 17.5 28 1.5 1.5	ISOWATT 218 TO 240 TO 240 ISOTOP TO 220 ISOWATT 220	IRFP450FI SGS30MA050D1 SGS35MA050D1 TSD4M450V MTP3N60 MTP3N60FI	9 30 35 45 3 2.5	70 400 400 500 75 35	9.3 15 15 28 1.5 1.5	3000 9100 12000 12000 1000 1000
600 600 800 1000 1000	1.2 1.2 2 3.5 0.7	3 3 2 2 9	ISOWATT 218 TO 220 TO 218 TO 218 ISOTOP	MTH6N60FI MTP6N60 STHV82 STHV102 TSD5MG40V	3.5 6 5.5 4.2	40 125 125 125 500	2 2 2 2 5	1800 1800 1000 1200 6000

HIMOS (IGBT)

V _(BR) DSS	V _{DS} (on)	@ I _D	Package	Туре	I _D	P _{tot}	9fs min	C _{iss} max
(V)	(Ω)	(A)			(A)	(W)	(mho)	(pF)
500 500 500 500	2.7 2.7 2.7 2.7	7 7 10 10	TO 220 ISOWATT 220 TO 220 ISOWATT 220	STHI07N50FI STHI07N50 STHI10N50 STHI10N50FI	7 7 10 10	100 35 100 35	2.5 2.5 2.5 2.5	950 950 950 950

POWER MODULES

BIPOLAR IN TO 240

Internal schematic diagrams

(2)

QUARTER BRIDGE TRANSISTOR QUARTER BRIDGE TRANSISTOR QUARTER BRIDGE DARLINGTON plus freewheel diode plus freewheel diode (3)

HALF BRIDGE DARLINGTON plus freewheel diode (4)

IC	V _{CBO}	V _{CEO}	Ptot	Package	Туре	Internal schematic	V _{CE} (sat)	@ I _C	IB	t _r	t _s *	t _f *
(A)	(V)	(V)	(W)			diagram	(V)	(A)	(mA)	max (μs)	max (μs)	max (μs)
37	1000	700	300	TO 240	SGS 25 DB 070 D	4	3	25	2.5		5	1.5
37	1200	800	300	TO 240	SGS 25 DB 080 D	4	3	25	2.5		5	1.5
45	500	400	300	TO 240	SGS 30 DB 040 D	4	3	30	2		3	0.7
45	600	450	300	TO 240	SGS 30 DB 045 D	4	3	30	2		3	0.7
45	1000	600	300	TO 240	SGS 30 DA 060 D	3	2.5	30	1.5		6	0.7
45	1200	700	300	TO 240	SGS 30 DA 070 D	3	2.5	30	1.5		6	0.8
50	1000	700	_	TO 240	SGS 35 DB 070 D	4	3	35	2		1.9	0.35 §
50	1200	800		TO 240	SGS 35 DB 080 D	4	3	35	2		1.9	0.35 §
60	850	450	300	TO 240	SGS 40 TA 045	1	2	40	8		5	0.55
60	850	450	300	TO 240	SGS 40 TA 045 D	2	2	40	8		5	0.5
75	500	400	300	TO 240	SGS 50 DB 040 D	4	3	50	5		3	0.5
75	600	450	300	TO 240	SGS 50 DB 045 D	4	3	50	5		3	0.7
75	850	450	300	TO 240	SGS 50 DA 045 D	3	2.5	50	2		5	0.7
90	1000	600		TO 240	SGS 60 DA 060 D	3	3	60	2		2.2	1
90	1200	700	_	TO 240	SGS 60 DA 070 D	3	3	60	2		2.2	0.4 §
120	300	200	30.0	TO 240	SGS 80 DA 020 D	3	2	80	1		4	0.4 §
150	300	250	300	TO 240	SGS 100 DA 025 D	3	2	100	1		4	0.6
* T _j =	125°C.	§ : Ty	pical value					. 30			4	0.0

ISOTOP: Faston version

POWER MODULES

BIPOLAR IN ISOTOP

ISOTOP: Standard version

Bipolar transistors

Darlingtons

Bipolar transistors

Darlingtons

Internal schematic diagrams

BIPOLAR TRANSISTORS
(1)

BIPOLAR TRANSISTORS (2)

DARLINGTONS (3)

DARLINGTONS plus freewheel diode (4)

IC	V _{CBO}	VCEO	P _{tot}	Type See NOTE	Internal schematic diagram	VCE (sat)	@ I _C	/ I _B	t _d + t _r	t _{si} t _s *	t _{fi} t _f *
(A)	(V)	(V)	(W)			(V)	(A)	(A)	(μs)	(μs)	(μ s)
22	1000	450	125	ESM 3045 AV	3	1.3 typ	18	0.72		4.5	0.5
24	600	450	125	• ESM 3045 DV	4	1.4 typ	20	1.2	-	4	0.4
30 30 30	1000 1200 1200	450 600 700	150 150 150	BUV 98 AV BUV 98 BV BUV 98 CV	1 1 1	1.5 2.5 3	16 30 20	3.2 1 8	1 1 1	5 * . 6	0.4* 0.6 0.6
36	1000	450	150	• ESM 4045 AV	3	1.3 typ	30	1.2	_	5	0.6
42	600	450	150	• ESM 4045 DV	4	1.4 typ	35	2	_	4.5	0.5
60 60	600 1000	450 450	175 250	• ESM 5045 DV BUV 298 AV	4	1.4 typ 1.2	50 32	2.8 6.4	_	5 4.5	0.5 0.4
67	400	300 .	150	• ESM 2030 DV	4	1.5 typ	56	1.6		3	0.6
72	1000	450	250	• ESM 6045 AV	3	1.3 typ	60	2.4	_	6	0.6
80	400	300	250	BUT 32 V	1	0.9	40	4		3	0.4
90 90	850* 1000*	450 450	300 300	BUF 460 V BUF 460 AV	1	0.5 typ 0.5 typ	30 30	3 3	_	2 * 2 *	0.1* 0.1*
94	600	450	250	• ESM 6045 DV	4	1.35 typ	70	4	_	5.5	0.5
100 100	200 400	125 300	250 225	BUT 30 V • ESM 3030 DV	1 4	0.9 1.5 typ	100 85	10 2.4		2 3.5	0.2 0.6
120	150	125	175	• ESM 2012 DV	4	1.5 typ	100	1		2	0.3

For switching times, $T_{\parallel} = 100$ °C.

• Darlingtons.

NOTE: FASTON VERSION · Without final «V» in the sales type.

POWER MODULES

Internal schematic diagram

POWER MOS IN TO 240

V _(BR) DSS	R _{DS} (on) @ max (Ω)	(A)	Туре	I _D max (A)	P _{tot}	⁹ fs min (mho)	C _{iss} max (pF)
100	0.014	50	SGS100MA010D1	120	400	20	11200
100	0.009	75	SGS150MA010D1	150	400	20	14000
500	0.20	15	SGS30MA050D1	30	400	15	9100
500	0.16	17.5	SGS35MA050D1	35	400	15	12000

POWER MOS «ISOFET» IN ISOTOP

V _{(BR) DSS}	R _{DS} (on) @	ı _D	Type See NOTE	I _D	P _{tot}	9fs min	Ciss		
(V)	(Ω)	(A)	See NOTE	(A)	(W)	(mho)	max (pF)		
100	0.014	70	TSD4M150V	135	500	20	11200		
200	0.021	60	TSD4M250V	110	500	28	12000		
350	0.075	30	TSD4M351V	50	500	28	12000		
400	0.075	30	TSD4M350V	50	500	28	12000		
450	0.1	28	TSD4M451V	45	500	28	12000		
500	0.1	28	TSD4M450V	45	500	28	12000		
1000	0.7	9	TSD5MG40V	17	500	5	6000		
NOTE : FASTON VERSION - Without final «V» in the sales type.									

SMALL SIGNAL TRANSISTORS

We have a range of small signal silicon transistors to cover a wide variety of applications demanded by the industrial, instrumentation, telecommunication as well as military and space markets.

For more details see chapter «TELECOM AND DATA COMMUNICATIONS».

QUAD SMALL SIGNAL TRANSISTORS

These devices offer all the performance of discrete small signal transistors in a package which is compatible with automatic insertion equipment. The may be used as effective input buffers, level shifters and current boosters to drive high fan out loads, LEDs, relays and other peripheral loads from boards of logic circuitry.

QUAD SILICON TRANSISTORS IN DUAL IN LINE PLASTIC PACKAGE

						and @						
Туре	Polarity	PD	VCBO	VCEO	IC	h _{FE}	V _{CEsat}	IC	f _T min	Package	Connections	
		(W)	(V)	(V)	(mA)		(V)	(mA)	(MHz)			
MPQ2222	NPN	1.9	60	40	500	100	0.4	150	200	DIP-14	(A)	
MPQ2907	PNP	1.9	60	40	600	100	0.4	150	200	DIP-14	(B)	

TRANSISTORS FOR RADIO FREQUENCY APPLICATIONS

	N	lax ratir	ngs	,	4	Trans.	Freq.	N	loise figur	e	Ga	ain	
Polar.	V _{CEO}	Ic	P _{tot}	Туре	Main function	f _T @	IC	NF @	⊕ I _C	/ f	P _G @	@ f	Package
	(V)	(mA)	(mW)			(MHz)	(mA)	(dB)	(mA)	(MHz)	(dB)	(MHz)	
PNP	35	20		BFR 38	VHF/UHF amplifier	1000	3	3.5	3	800	14	800	TO 72
PNP	35	20	200	BF 272A	UHF amp.	850	3	3.5	3	800	15	800	TO 72
NPN	25	25	175	BF 173	Video IF amp	1000 typ	5	_		_	25 typ	35	TO 72
NPN	15	40	200	2N 2857	VHF/UHF amplifier/osc	1200	5	3.8	1.5	450	16	450	TO 72
NPN	15	40	200	2N 3839	VHF/UHF amplifier/osc	1400	5	3	1.5	450	17	450	TO 72
NPN	12	50	200	2N 5179	VHF amplifier/osc	1400	5	3	1.5	200	21	200	TO 72
NPN	15	50	200	BFX 89	UHF amplifier	1200	25	5	2	500	12	500	TO 72
PNP	25	50	225	BFR 99A	UHF amplifier	1400	10	5	3	800	10	800	TO 72
PNP	25	50	225	BFR 99	UHF amplifier	2000	10	3.5	3	800	12	800	TO 72
NPN	25	150	700	BFW 16A	CATV-MATV amplifier	1200	150	6	30	200	6.5	800	TO 39
NPN	25	150	700	BFX 17A	CATV-MATV amplifier	1100	150	-		_	16	200	TO 39
NPN	20	500	3500	2N 4427	VHF power amp.	500	50	_	_	_	10	175	TO 39
NPN	30	500	3500	2N 3866	UHF/VHF power amp.	500	50	_	_	_	10	400	TO 39

NPN GENERAL PURPOSE TRANSISTORS - TO 18

V _{CEO} V _{CER*}	h _{FE} (@ Ic	Туре	V _{CE(sat)}	@ I _C	f _T min	t _S	P _{tot}	Also available
(V)		(mA)		(V)	(mA)	(MHz)	(ns)	(mW)	
55	50/—	50	BSX 33	0.3	150	60	800	500	
25 40	75/260 75/260	100	BC 377 BC 378	0.7	500 500	300 typ. 300 typ.	_	375 375	
30 40	100/300 100/300	150 150	2N 2222 2N 2222A	1.6 1	500 500	250 250	225 225	500 500	2N 2221 2N 2221A
50* 55	100/300 60/180	150 150	2N 956 BFR 18	1.5 0.25	150 150	70 60	_	500 500	2N 718A
80 80	40/— 100/300	150 150	2N 720A 2N 3700	5 0.5	150 500	50 100 typ.		500 500	2N 3302

NPN GENERAL PURPOSE TRANSISTORS - TO 39

V _{CEO} V _{CER*} (V)	hFE min/max	@ I _C	Туре	V _{CE(sat)} max (V)	@ I _C (mA)	f _T min (MHz)	t _s t _{off*} (ns)	P _{tot}	Also available
40	40/250	100	BC 140	0.35 typ.	500	50	850*	800	h _{FE} groups
60	40/250	100	BC 141	0.35 typ.	500	50	850*	800	-6, -10, -16
30	40/	150	BFY 51	0.35	150	50	160 typ.	800	BFY 52
30	100/300	150	2N 2219	1.6	500	250	225	800	2N 2218
35	30/—	150	BFY 50	0.2	150	60	140 typ.	800	
40	50/250	150	2N 3053	1.4	150	100 typ.	_	800	,
40	100/300	150	2N 2219A	1	500	250	225	800	2N 2218A
50*	40/120	150	2N 1613	1.5	150	60	_	800	
50*	100/300	150	2N 1711	1.5	150	70	_	800	,
55	40/120	150	BFY 56A	0.25	150	60	800*	800	BFY 56
60	40/120	150	2N 3108	1.4	150	100 typ.	_	800	2N 3110
60	100/300	150	2N 3107	1.4	150	100 typ.	_	800	2N 3109
65	40/120	150	2N 2102	0.5	150	60	30*	1000	
80	40/120	150	2N 1893	5	150	50	_	800	
80	40/120	150	2N 3020	0.5	500	80 typ.	_	800	
80	100/300	150	2N 3019	0.5	500	100 typ.		800	
40	40/240	500	BC 440	1	1000	50	_	1000	
50	40/250	500	2N 5321	0.8	500	50	800*	1000	
60	40/240	500	BC 441	1	1000	50	_	1000	
75	30/130	500	2N 5320	0.5	500	50	800*	1000	

PNP GENERAL PURPOSE TRANSISTORS - TO 18

V _{CEO}	h _{FE} (@ Ic	Туре	max	@ Ic	f _T min	t _s	P _{tot}	Also available
(V)		(mA)		(V)	(mA)	(MHz)	(ns)	(mW)	
30	90/—	10	BFX 48	0.3	50/5	400	160*	360	
40	50/—	10	BCY 70	0.5	50/5	250	350	350	
40	100/300	10	2N 3251	0.5	50/5	300	200	360	2N 3250
40	150/300	10	2N 4035	0.3	50/5	450	150*	360	
45	100/600	10	BCY 71	0.5	50/5	200	_	350	BCY 72
40	100/300	150	2N 2907	0.4	150/15	200	80	400	
45	100/300	150	2N 3504	0.4	150/15	200	40	400	2N 3505
60	40/120	150	2N 2906A	0.4	150/15	200	80	400	2N 2906
60	100/300	150	2N 2907A	0.4	150/15	200	80	400	

PNP GENERAL PURPOSE TRANSISTORS - TO 39

V _{CEO}	h _{FE} @min/max	[©] IC (mA)	Туре	V _{CE(sat)} max	@ I _C /I _B	fT min (MHz)	t _s toff* (ns)	P _{tot}	Also available
55 75 75 80	85/— 40/— 85/— 100/300	100 100 100 100	BFX 38 BFX 41 BFX 40 2N 4033	0.5 0.5 0.5 0.5	500/50 500/50 500/50 500/50	100 100 100 150	350 350 350 350	800 800 800 800	BFX 39 2N 4031/2
40	50/250	150	2N 4037	0.3	150/15	100	110	700	2N 2904
40	100/230	150	2N 2905	0.4	150/15	200	80	600	
60	40/120	150	2N 2904A	0.4	150/15	200	80	600	
60	100/300	150	2N 2905A	0.4	150/15	200	80	600	
65	40/140	150	2N 4036	0.65	150/15	200	700*	1000	
40	40/250	500	BC 460	1	1000/100	50		1000	2N 5323
60	40/250	500	BC 461	1	1000/100	50		1000	
75	30/130	500	2N 5322	0.7	500/50	50	1000*	1000	
60	40/120	100	2N 4030	0.5	500/50	100	350	800	
40	40/250	100	BC 160	0.35 typ.	500/50	50	600*	650	
60	40/250	100	BC 161	0.35 typ.	500/50	50	600*	650	

NPN TRANSISTORS FOR LOW LEVEL, LOW NOISE APPLICATIONS - TO 18

VCEO	h _{FE} (@ Ic	Туре	V _{CE(sat)}	@ IC/IB	f _T	NF	P _{tot}	Also available
(V)		(mA)		(V)	(mA)	(MHz)	(dB)	(mW)	
45	100/500	0.01	2N 930	1	10/0.5	30	3	300	
60	100/500	0.01	2N 2484	0.35	1/0.1	60	3	360	2N 2483
60	130/—	0.01	BFR 17	0.35	1/0.1	70	3	360	
60	150/300	1	BFY 76	0.35	1/0.1	100	3	360	7
20	110/800 (1)	2	BC 108	0.6	100/5	100	10	300	
20	200/800 (1)	2	BC 109	0.6	100/5	100	4	300	
45	110/450 (1)	2	BC 107	0.6	100/5	100	10	300	
45	120/630	2	BCY 59	0.7	100/2.5	100	6	360	BCY 58

⁽¹⁾ h_{FE} @ KHz.

PNP TRANSISTORS FOR LOW LEVEL, LOW NOISE APPLICATIONS - TO 18

V _{CEO}	h _{FE} (@ I _C	Туре	V _{CE(sat)}	@ IC/IB	f _T	NF	P _{tot}	Also available
(V)		(mA)		(V)	(mA)	(MHz)	(dB)	(mW)	avallable
45	250/500	0.01	2N 3964	0.25	10/0.5	50	2	360	2N 3965
80	70/230	0.01	BFX 37	0.4	50/5	40	3.5	360	
80	100/300	0.01	2N 3963	0.25	10/0.5	40	3	360	2N 3962
25	125/500 (1)	2	BC 178	0.25	50/5	200 typ.	10	300	BC 179
45	120/460	2	BCY 79	0.8	100/2.5	180 typ.	6	390	BCY 78
45	125/500 (1)	2	BC 177	0.25	50/5	200 typ.	10	300	
50	110/450	2	BC 478	0.25	50/5	150 typ.	6	360	BC 479
80	110/250	2	BC 477	0.25	50/5	150 typ.	10	360	

(1) h_{FE} @ 1KHz

HIGH VOLTAGE TRANSISTORS

Polarity	V _{CEO} (V)	h _{FE} (min/max	@ I _C (mA)	Туре	VCE(sat) max (V)	@ I _C /I _B	f _T min (MHz)	P _{tot} (mW)	Package
PNP NPN PNP	150 180 180	40/— 30/— 50/—	10 10 10	BFW 43 BC 394 BC 393	0.5 0.3 0.3	10/1 10/1 10/1	60 50 50	400 400 400	TO 18
NPN PNP	200 200	40/— 40/250	30 30	BSS 72S BSS 75S	0.5 0.4	50/5 30/3	200 200	500 500	
PNP PNP PNP PNP	150 180 180 200	40/— 80/300 80/300 30/150	10 10 10 10	BFW 44 BFX 91 2N 3931 2N 5415	0.5 0.25 0.25 2.5	10/1 10/1 10/1 10/1 50/5	60 40 60 15	700 700 700 1000	TO 39
NPN NPN	250 150	25/— 30/—	30 30	BF 258 2N 3114	1 1	30/6 50/5	90 typ. 40	1000 800	
NPN NPN	250 300	30/— 30/—	30 30	BF 458 BF 459	1	50/10 50/10	90 typ. 90 typ.	1250 1250	TO 126

NPN TRANSISTORS FOR FAST AND ULTRA FAST SWITCHING

V _{CEO}	h _{FE} ((mA)	Туре	V _{CE(sat)} max (V)	@ I _C /I _B	fT min (MHz)	t _S toff* (ns)	P _{tot}	Package
12	30/120	10	BSX 28	0.25 0.4	30/3	400 300	13 75*	360 360	
15 15 15 15 15	30/120 30/120 40/120 40/120 40/120	10 10 10 10	2N 708 2N 914 BSX 20 2N 2369 2N 2369A	0.4 0.7 0.6 0.25 0.2	10/1 200/20 100/10 10/1 10/1	300 300 450 500	20 13 13	360 360 360 360	
15 20 20	30/120 30/120 40/120	30 30 30	BSX 26 2N 3014 BSX 39	0.5 0.18 0.28	300/30 100/10 100/10	350 350 350	18 18 18	360 360 360	TO 18
15 30	25/— 60/150	100 100	2N 3013 2N 4013	0.5 0.20	300/30 100/10	350 300	18 60*	360 500	
30	30/120	150	2N 2845	0.4	150/15	350	40*	360	
40 50	60/150 60/150	100 100	BSX 32 2N 3725	0.5 0.52	500/50 500/50	300 300	60* 60*	800	TO 39

PNP TRANSISTORS FOR FAST AND ULTRA FAST SWITCHING

1	CEO	h _{FE} (@ I _C	Туре	VCE(sat) @ IC/IB		f _T min	toff	P _{tot}	Package
	(V)		(mA)		(V)	(mA)	(MHz)	(ns)	(mW)	
	12	30/120	30	BSX 29	0.2	30/3	400	90	360	
	12	40/120	30	2N 2894	0.2	100/10	400	90	360	TO 18
	20	30/120	30	2N 3209	0.2	30/3	400	90	360	

GLASS SCHOTTKY DIODES

Туре	V _{RRM}	I _F	I _R (1) max	VR	V _F (1) / max	IF	C max	/ V _R	Dynamic parameters	Package
	(V)	(mA)	(μA)	(V)	(V)	(mA)	(pF)	(V)		
UHF and ultra fa	st swit	ching		Tamb	= 25°	С				7
BAR 19 BAT 29 BAT 19 BAT 45	4 5 10 15	30 30 30 30	0.25 0.05 0.1 0.1	3 1 5 6	0.6 0.55 0.4 0.5	10 10 1 1	1 1 1.2 1.1	1 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DO 35
BAR 10 (1N 5712) BAR 11	20 15	35 20	0.1 0.1	15 8	0.41 0.41	1 1	1.2 1.2	0	au < 100 ps / 5 mA $ au$ < 100 ps / 5 mA	DO 33
BAR 28 (1N 5711) 1N 6263	70 60	15 15	0.2 0.2	50 50	0.41 0.41	1 1	2 2.2	0	au < 100 ps / 5 mA $ au$ < 100 ps / 5 mA	
general purpose	•			Tamb	= 25°0	С				
BAT 42	30	200	0.5	25	0.4 0.65	10 50 200	7 §	1	t _{rr} < 5 ns /10 mA	
BAT 43	30	200	0.5	25	0.45	15 200 0.1	7 §	1	η > 80 % /45 MHz	
BAT 47	20	350	4	10	0.4	10 300	12 §	1	t _{rr} < 10 ns /10 mA	DO 35
BAT 48	40	350	2	10	0.25 0.4 0.9	0.1 10 500	12 §	1	t _{rr} < 10 ns /10 mA	
BAT 41	100	100	0.1	50	0.45	1 200 0.1	2 §	1		
BAT 46	100	150	2	50	0.45	10 250	6 §	1		
BAT 49	80	1000	200	80	0.32 0.42	10 100 1000	120 §	0	, ,	
BYV 10-20A (1N 5817)	20	1000*	300	20	{ 0.45 0.75	1000 3000	330 §	0		
BYV 10-20	20	1000*	500	20	{ 0.55 0.85	1000 3000	220 §	0		DO 41
BYV 10-30 (1N 5818) BYV 10-40	30	1000*	500	30	0.55 0.85 0.55	1000 3000 1000	220 §	0		DO 41
(1N 5819)	40	1000*	500	40	0.85	3000	220 §	0		
BYV 10-60	60	1000*	500	60	1 1	3000	150 §	0		

F: Mixer noise figure.

Q_S: Stored charges (B-line).

 $[\]eta$: Detection efficiency.

au: Minority carrier life time (Krakauer method).

⁽¹⁾ Pulse test $t_p \leqslant 300~\mu s$ $\delta < 2\%$.

[§] Typical value.

LOW LEAKAGE, LOW IMPEDANCE, LOW NOISE ZENER DIODES

Туре	V _{ZT} / I _{ZT}	I _{ZT}	r _{ZT} / l _{ZT}	IR	/ V	R	Noise Density @ 250 μA	I _{ZM} .	Package
	nom (V) (1)	(μ Α)	(Ω) (2)	(μA)	(V	7)	max (μV/ √Hz)	(mA)	

250 mW	1	Tamb	=	25°C	T_i	max	=	200°C
--------	---	------	---	------	-------	-----	---	-------

٧ı	= <	1	٧	(Tamb	=	25°C,	l _F	=	0.2A)
----	-----	---	---	-------	---	-------	----------------	---	-------

		+	+	+			 	
1N 4614 1N 4615 P 1N 4616 1N 4617 1N 4618 1N 4619 P 1N 4620 P 1N 4621 P 1N 4622 P 1N 4623 P 1N 4625 1N 4626 1N 4626 1N 4627 1N 4099 1N 4100 1N 4101 1N 4102 1N 4103 1N 4104 1N 4105 1N 4106 1N 4107 1N 4108 1N 4109 1N 4110 1N 4111 1N 4112 1N 4113 1N 4114 1N 4115 1N 4116 1N 4117 1N 4118 1N 4117 1N 4118 1N 4119 1N 4120 1N 4121 1N 4122 1N 4123 1N 4124 1N 4125 1N 4128 1N 4129 1N 4128 1N 4129 1N 4120 1N 4121 1N 4122 1N 4123 1N 4124 1N 4125 1N 4126 1N 4127 1N 4128 1N 4129 1N 4130 1N 4131 1N 4131 1N 4131 1N 4133 1N 4134 1N 4133	1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.2 8.7 9.1 10 11 12 13 14 15 16 17 18 19 20 22 24 25 27 28 30 33 36 39 47 51 51 51 51 51 51 51 51 51 51 51 51 51	250 250 250 250 250 250 250 250 250 250	1200 1250 1300 1400 1500 1600 1650 1700 1650 1600 1550 1500 1400 200 200 200 200 200 200 200 200 200	7.5 5.0 4.0 2.0 1.0 0.8 7.5 7.5 7.5 5.0 4.0 10 10 10 10 10 10 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 2.0 2.0 2.0 3.0 3.0 4.0 5.2 5.7 6.3 6.7 7.6 8.5 9.2 9.9 10.7 11.4 12.2 13.0 13.7 14.5 15.2 16.8 18.3 19.0 20.5 21.3 22.8 25.1 27.4 29.7 35.8 38.8 45.6 47.1 51.7 57.0 62.4 66.2 69.2 76.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	120 110 100 95 90 85 80 75 70 65 60 55 50 45 31.8 29.0 27.4 26.2 24.8 21.6 20.4 19.0 17.5 16.3 15.4 14.5 13.2 12.5 11.9 9.5 8.8 8.5 7.9 7.2 6.6 6.1 5.5 5.1 4.0 8.3 7.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	DO 35

⁽¹⁾ Tolerance on nominal V_{ZT} value : \pm 5%.

⁽²⁾ Measured @ DC test current with 10% AC superimposed (50 Hz).

P : Preferred voltages.

LOW VOLTAGE AVALANCHE ZENER DIODES $400 \text{ mW} / T_{\text{amb}} = 25^{\circ}\text{C}$ $T_{\text{i}} \text{ max} = 175^{\circ}\text{C}$

general purpose series

Туре	V _{ZT} / I _{ZT}	^I ZT	r _{ZT} / l _{ZT}	I _R	V _R	Noise Density @ 250 μA	Package
	nom (V) (1) (2) (4)	(mA)	(Ω) (5)	(μ A)	1 (V)	max (μV/ √Hz) (7)	
T-LVA 47A	4.7	10	15	4.0	2.0	4	1
T-LVA 51A	5.1	5	15	0.1	2.0	4	
P T-LVA 56A	5.6	1	40	0.05	3.0	4	
P T-LVA 62A	6.2	1	50	0.05	4.0	4	
P T-LVA 68A	6.8	1	50	0.05	5.0	4	DO 35
T-LVA 75A	7.5	. 1	100	0.01	6.0	4	5000
P T-LVA 82A	8.2	1	100	0.01	6.5	4	
T-LVA 91A	9.1	. 1	100	0.01	8.0	4	
T-LVA 100A	10.0	1	100	0.01	9.0	4	

high performance series

Туре	V _{ZT} / I _{ZT}	IZT	r _{ZT} / I _{ZT}	I _R	v _R	Noise Density @ 250 μA	Maximum	Regulation - I _{ZL}	Package
	nom (V) (1) (2) (4)	(mA)	(Ω) (5)	(μA)	(V)	max (μV/ √Hz) (7)	△V _Z (V)	I _{ZL} (mA)	
T-LVA 347A T-LVA 351A T-LVA 356A T-LVA 362A T-LVA 368A T-LVA 375A T-LVA 382A T-LVA 391A T-LVA 3100A	4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10.0	10 5 1 1 1 1 1	10 10 40 45 50 50 60 60	2.0 2.0 2.0 0.5 0.05 0.01 0.01 0.01	2.0 3.0 4.5 5.6 6.2 6.8 7.5 8.2 9.1	1 1 1 1 1 1 1 2 2	0.50 0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.1	1.0 0.25 0.05 0.01 0.01 0.01 0.01 0.01 0.01	DO 35

high performance, low current series

Туре	V _{ZT}	rZT	θv_{Z}	IR	Maxir	num Regu	lation	Noise	Турі	cal Paramet	ters	Package
	@ 250 μA nom (V) (1) (3) (4)	@ 250 μA max (Ω)	@ 250 μA nom (mV/°C) (6)	@ 80 % V _Z max (μA)	△V _Z	I _{LO}	lHi (mA)	Density @ 250 μA max (μV/ √ Hz) (7)	V _Z @ 10 μA (V)	IR @ 50 % V _Z (nA)	IR @ 90 % V _Z (nA)	
P T-LVA 450A P T-LVA 453A P T-LVA 453A P T-LVA 456A T-LVA 465A P T-LVA 465A P T-LVA 468A T-LVA 471A T-LVA 477A T-LVA 480A T-LVA 480A T-LVA 489A T-LVA 499A T-LVA 495A P T-LVA 498A	5.0 5.3 5.6 5.9 6.2 6.5 6.8 7.1 7.4 7.7 8.0 8.3 8.6 8.9 9.2 9.5 9.8	700 250 100 100 100 100 100 175 175 175 175 175 175 175 175	0.75 1.33 1.96 2.30 3.06 3.40 3.76 4.07 4.47 4.80 5.15 5.50 5.87 6.16 6.46 6.86	10.0 5.0 1.0 0.5 0.1 0.05 0.01 0.01 0.01	0.40 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	100 100 50 10 10 10 10 10 10 10 10 10 10 10 10 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 1 1 1 1 1 1 1 1 1 2 2 2 2	4.15 4.9 5.45 5.85 6.2 6.5 6.8 7.1 7.4 7.7 8.0 8.3 8.6 8.9 9.2 9.5 9.8	70 35 15 2.5 0.8 0.15 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	15000 7000 3000 1000 130 25 9.0 5.5 3.0 2.5 1.8 1.2 0.9 0.6 0.5 0.5	DO 35

- (1) For other voltages, consult the manufacturer.
- (2) Tolerance on nominal V_{ZT} value : \pm 5 %.
- (3) Tolerance on nominal V_{ZT} value : \pm 0.2 V.
- (4) For other tolerances, consult the manufacturer.
- (5) Measured @ DC test current with 10 % AC superimposed (50 Hz).
- (6) Tolerance : \pm 0.5 mV/°C, 0 to 100°C, at V_{ZT} nominal only.
- (7) Noise measured at 1000 Hz with a Diode Noise Analyser «Quan-tech» Model 327 Bandpass 1000 Hz.
- P: Preferred voltages.

STANDARD ZENER DIODES

PREFERRED SERIES PRO-ELECTRON SERIES CECC APPROVAL

Туре	V _{ZT} / I _{ZT} *	r _{ZT} / I _{ZT} *	I _{ZT} *	rzĸ / lzĸ	αVZ	I _R / V _R	٧R	IzM	Izsm	Package
		1 2 2				lamb lamb 25°C 150°C				
	min max (V)	max (Ω)	(mA)	max (Ω) (mA)	min max (10 ⁻⁴ /°C)	max max (μA)	(V)	(mA)	(mA)	
						124				

 $500 \text{ mW} / \text{T}_{amb} = 25^{\circ}\text{C} \text{ T}_{j} \text{ max} = 175^{\circ}\text{C}$

 $V_F \leqslant 1.5 \text{ V } (T_{amb} = 25^{\circ}\text{C}, I_F = 0.2\text{A})$

coomity / family = =		,										anno		
BZX 55 C 0V8 (1)	0.73	0.83	8	5	600	1								
P BZX 55 C 2V4	2.28	2.56	85	5	600	1	-8	- 6	50	100	1	155	1720	
P • BZX 55 C 2V7 CECCL	2.5	2.9	85	5	600	1	-8	- 6	10	50	1	135	1600	
• BZX 55 C 3V0 CECCL	2.8	3.2	85	5	600	1	-8	- 6	4	40	1	125	1500	
P • BZX 55 C 3V0 CECCL	3.1	3.5	85	5	600	1	-8	- 5	2	40	1	115	1400	
			85	5	600	1	-8	- 4	2	40	1 1	105	1330	
P • BZX 55 C 3V6 CECCL	3.4	3.8		1	1		-7	- 3	2	40	1	95	1270	
P • BZX 55 C 3V9 CECCL	3.7	4.1	85	5	600	1	-4	- 3 - 1	1	20		90	1220	
P • BZX 55 C 4V3 CECCL	4.0	4.6	75	5	600	1	1			10		85		
P • BZX 55 C 4V7 CECCL	4.4	5.0	60	5	600	1	-3	1 5	0.5	2	1	80	1160 1100	
P • BZX 55 C 5V1 CECCL	4.8	5.4	35	5	550	1	_							
P • BZX 55 C 5V6 CECCL	5.2	6.0	25	5	450	1	-1	6	0.1	2	1	70	1040	
P • BZX 55 C 6V2 CECCL	5.8	6.6	10	5	200	1	0	7	0.1	2	2	64	980	
P • BZX 55 C 6V8 CECCL	6.4	7.2	8	5	150	1	1	8	0.1	2	3	58	900	
P • BZX 55 C 7V5 CECCL	7.0	7.9	7	5	50	1	1	9	0.1	2	5	53	810	
P • BZX 55 C 8V2 CECCL	7.7	8.7	7	5	50	1	1	9	0.1	2	6.2	47	760	
P • BZX 55 C 9V1 CECCL	8.5	9.6	10	5	50	1	2	10	0.1	2	6.8	43	670	
P • BZX 55 C 10 CECCL	9.4	10.6	15	5	70	1	3	11	0.1	2	7.5	40	600	
BZX 55 C 11 CECCL	10.4	11.6	20	5	70	1	3	11	0.1	2	8.2	36	550	
P • BZX 55 C 12 CECCL	11.4	12.7	20	5	90	1	3	11	0.1	2	9.1	32	500	
 BZX 55 C 13 CECCL 	12.4	14.1	26	5	110	1	3	11	0.1	2	10	29	450	, , , ,
P • BZX 55 C 15 CECCL	13.8	15.6	30	5	110	1	3	11	0.1	2	11	27	380	
 BZX 55 C 16 CECCL 	15.3	17.1.	40	5	170	1	3	11	0.1	2	12	24	350	
P • BZX 55 C 18 CECCL	16.8	19.1	50	5	170	1	3	11	0.1	2	13	21	300	
P • BZX 55 C 20 CECCL	18.8	21.2	55	5	220	1	3	11	0.1	2	15	20	270	
P • BZX 55 C 22 CECCL	20.8	23.3	55	5	220	1	3	11	0.1	2	16	18	250	DO 35
P • BZX 55 C 24 CECCL	22.8	25.6	80	5	220	1	4	12	0.1	2	18	16	225	
P • BZX 55 C 27 CECCL	25.1	28.9	80	5	220	1	4	12	0.1	2	20	14	200	
BZX 55 C 30 CECCL	28	32	80	5	220	1	4	12	0.1	2	22	13	190	
P • BZX 55 C 33 CECCL	31	35	80	5	220	1	4	12	0.1	2	24	12	175	
• BZX 55 C 36 CECCL	34	38	80	5	220	1	4	12	0.1	2	27	11	160	
• BZX 55 C 39 CECCL	37	41	90	2.5	500	0.5	4	12	0.1	5	30	10	148	
• BZX 55 C 43 CECCL	40	46	90	2.5	600	0.5	4	12	0.1	5	33	9.2	135	
• BZX 55 C 47 CECCL	44	50	110	2.5	700	0.5	4	12	0.1	5	36	8.5	123	
• BZX 55 C 47 CECCL	48	54	125	2.5	700	0.5	4	12	0.1	10	39	7.8	113	
• BZX 55 C 51 CECCL	52	60	135	2.5	1000	0.5	4	12	0.1	10	43	7.0	104	
	58	66		2.5			4	12	0.1		43	1	93	
• BZX 55 C 62 CECCL	64	72	150 200	2.5	1000	0.5	4	12		10	1	6.4 5.9	87	
• BZX 55 C 68					1000	0.5	4 4		0.1	10	51			
P • BZX 55 C 75	70	80	250	2.5	1500	0.5		12	0.1	10	56	5.3	79	
P • BZX 55 C 82	77	87	300	2.5	2000	0.5	4	12	0.1	10	62	4.8	72	
• BZX 55 C 91	85	96	450	1	5000	0.1	4	12	0.1	10	68	4.4	65	
BZX 55 C 100	94	106	450	1	5000	0.1	4	12	0.1	10	75	4.0	59	
BZX 55 C 110	104	116	600	1	5000	0.1	4	12	0.1	10	82	3.6	54	
BZX 55 C 120	114	127	800	1	5000	0.1	4	12	0.1	10	91	3.3	49	
BZX 55 C 130	124	141	1000	1	5000	0.1	4	12	0.1	10	100	3.0	45	
BZX 55 C 150	138	156	1200	1	5000	0.1	4	12	0.1	10	110	2.6	39	
BZX 55 C 160	153	171	1500	1	5000	0.1	4	12	0.1	10	120	2.5	37	
BZX 55 C 180	168	191	1800	1	5000	0.1	4	12	0.1	10	130	2.2	33	
BZX 55 C 200	188	212	2000	1	5000	0.1	4	12	0.1	10	150	2.0	30	

^{*}Pulse test 20 ms \leq t_p \leq 50 ms δ < 2%.

The regulation voltages are defined according to the E 24 series.

P: Preferred voltages.

Tight tolerances on preferred voltages:

BZX 55 B: ± 2%. BZX 55 A: ± 1%.

[•] ESA qualified product.

⁽¹⁾ BZX 55 C 0V8 is to be used with forward bias.

STANDARD ZENER DIODES

Туре	V _{ZT} / I _{ZT} *	r _{ZT} / I _{ZT}	I _{ZT}	r _{ZK} /	I _{ZK}	α VZ	I _R / V _R T _{amb} 25°C 150°C	ν _R	IZM	Package
	min max (V)	max (Ω)	(mA)	max (Ω)	(mA)	min max (mV/°C)	max max (μA)	(V)	(mA)	
500 mW / $T_{amb} = 25^{\circ}C$ T_{j} max = 175°C $V_{F} \le 1 \text{ V } (T_{amb} = 25^{\circ}C, I_{F} = 50 \text{ mA})$										

$500 \text{ mW} / T_{\text{amb}} =$	25°C	ij ma	ax = 1	75°C					٧F	≤ 1 V (T _a	amb =	25°C, I _F	= 50 mA
P BZX 79 C 2V7 CECCL	2.5	2.9	85	5	600	1	- 3.5	0	10	50	e 1	135	
BZX 79 C 3V0 CECCL	2.8	3.2	85	5	600	1	- 3.5	0	4	40	1	125	
P BZX 79 C 3V3 CECCL	3.1	3.5	85	5	600	1	- 3.5	0	2	40	1	115	
P BZX 79 C 3V6 CECCL	3.4	3.8	85	5	600	1	- 3.5	0	2	40	1	105	
P BZX 79 C 3V9 CECCL	3.7	4.1	85	5	600	1	- 3.5	0	2	40	1	95	
P BZX 79 C 4V3 CECCL	4.0	4.6	75	5	600	1	- 3.5	0	1	20	1	90	
P BZX 79 C 4V7 CECCL	4.4	5.0	60	5	500	1	- 3.5	+ 0.2	3	10	2	85	
P BZX 79 C 5V1 CECCL	4.8	5.4	35	5	480	1 -	- 2.7	+ 1.2	2	10	2	80	
P BZX 79 C 5V6 CECCL	5.2	6.0	25	5	400	1	- 2.0	+ 2.5	1	10	2	70	
P BZX 79 C 6V2 CECCL	5.8	6.6	10	5	150	1	0.4	3.7	3	10	4	64	
P BZX 79 C 6V8 CECCL	6.4	7.2	8	5	80	1	1.2	4.5	2	5	4	58	
P BZX 79 C 7V5 CECCL	7.0	7.9	7	5	50	1	2.5	5.3	0.1	5	5	53	
BZX 79 C 8V2 CECCL	7.7	8.7	7	5	50	1	3.2	6.2	0.1	2	5	47	
P BZX 79 C 9V1 CECCL	8.5	9.6	10	5	50	1	3.8	7.0	0.1	2	6	43	
P BZX 79 C 10 CECCL	9.4	10.6	15	5	70	1	4.5	8.0	0.1	2	7	40	
BZX 79 C 11 CECCL	10.4	11.6	20	5	70	1	5.4	9.0	0.1	2	8	36	
P BZX 79 C 12 CECCL	11.4	12.7	20	5	90	1	6.0	10.0	0.1	2	8	32	DO 35
BZX 79 C 13 CECCL	12.4	14.1	26	5	110	1	7.0	11.0	0.1	2	8	29	20 00
P BZX 79 C 15 CECCL	13.8	15.6	30	5	110	1	9.2	13.0	0.1	2	10	27	
BZX 79 C 16 CECCL	15.3	17.1	40	5	170	1	10.4	14.0	0.1	2	11	24	
P BZX 79 C 18 CECCL	16.8	19.1	45	5	170	1	12.4	16.0	0.1	2	13	21	-
P BZX 79 C 20 CECCL	18.8	21.2	55	5	220	1	14.4	18.0	0.1	2	14	20	
P BZX 79 C 22 CECCL	20.8	23.3	55	5	220	1	16.4	20.0	0.1	2	15	18	
P BZX 79 C 24 CECCL	22.8	25.6	70	5	220	1	18.4	22.0	0.1	2	17	16	
P BZX 79 C 27 CECCL	25.1	28.9	80	2	300	0.5	21.4	25.3	0.1	2	19	14	
BZX 79 C 30 CECCL	28	32	80	2	300	0.5	24.4	29.4	0.1	2	21	13	
P BZX 79 C 33 CECCL	31	35	80	2	325	0.5	27.4	33.4	0.1	2	23	12	
BZX 79 C 36 CECCL	34	38	90	2	350	0.5	30.4	37.4	0.1	2	25	11	
BZX 79 C 39 CECCL	37	41	130	2	350	0.5	33.4	41.2	0.1	2	27	10	
BZX 79 C 43 CECCL	40	46	150	2	375	0.5	37.6	46.6	0.1	2	30	9.2	
BZX 79 C 47 CECCL	44	50	170	2	375	0.5	42.0	51.8	0.1	2	33	8.5	
BZX 79 C 51 CECCL	48	54	180	2	400	0.5	46.6	57.2	0.1	2	36	7.8	
BZX 79 C 56 CECCL	52	60	200	2	425	0.5	52.2	63.8	0.1	2	39	7.0	
BZX 79 C 62 CECCL	58	66	215	2	450	0.5	58.8	71.6	0.1	2	43	6.4	

^{*} Pulse test

The regulation voltages are defined according to the E 24 series.

P : Preferred voltages.

t_p ≤ 300 μs

 $[\]delta < 2\%$.

STANDARD ZENER DIODES

Туре	V _{ZT} / I _{ZT} *	r _{ZT} / I _{ZT} *	I _{ZT} *	r _{ZK} /	IZK	αVZ	I _R / V _R	v _R	I _{ZM}	Package
	<i>27</i>						25°C			
	min max	max		max		typ	max			
	(V)	(Ω)	(mA)	(Ω)	(mA)	(10 ⁻⁴ /°C)	(μA)	(V)	(mA)	
								7, 741	,	

500 mW / T_{amb} = 25°C T_{j} max = 175°C

$V_F \leqslant 1 V (T_{amb} :$	= 25°C, I _F	= 50 mA
--------------------------------	------------------------	---------

									-		
-											-
P BZX 83 C 2V4	2.28	2.56	90	5	600	1	-7	120	1	155	
P BZX 83 C 2V7	2.5	2.9	90	5	600	1	-7	100	1	135	
BZX 83 C 3V0	2.8	3.2	90	5	600	1 1	-7	60	1	125	
P BZX 83 C 3V3	3.1	3.5	90	5	600	1	-6	30	1	115	
P BZX 83 C 3V6	3.4	3.8	90	5	600	1	-6	20	1	105	
P BZX 83 C 3V9	3.7	4.1	90	5	600	1	-5	10	1	95	
P BZX 83 C 4V3	4.0	4.6	80	5	600	1	-3	5	1	90	
P BZX 83 C 4V7	4.4	5.0	80	5	600	1	-1	2	1	85	
P BZX 83 C 5V1	4.8	5.4	60	5	550	1	1	. 1	1	75	
P BZX 83 C 5V6	5.2	6.0	40	5	450	1	3	1	1	70	
P BZX 83 C 6V2	5.8	6.6	10	5	200	1	4	- 1	2	64	
P BZX 83 C 6V8	6.4	7.2	8	5	150	1	5	1	3	58	
P BZX 83 C 7V5	7.0	7.9	7	5	50	1	5	1	3.5	53	
P BZX 83 C 8V2	7.7	8.7	7	5	50	1	6	1	4	47	~
P BZX 83 C 9V1	8.5	9.6	10	5	50	1	6	1	5	43	
P BZX 83 C 10	9.4	10.6	15	5	70	1	7	1	6	40	
P BZX 83 C 11	10.4	11.6	20	5	70	1	. 7	1	8.2	36	
P BZX 83 C 12	11.4	12.7	20	5	90	1	7	1	9.1	32	
BZX 83 C 13	12.4	14.1	25	5	110	1	7	1	10	29	DO 35
P BZX 83 C 15	13.8	15.6	30	5	110	1	8	1	11	27	
BZX 83 C 16	15.3	17.1	40	5	170	1	8	1	12	24	
P BZX 83 C 18	16.8	19.1	55	5	170	1	8	1	13	21	
P BZX 83 C 20	18.8	21.2	55	5	220	1	8	1	15	20	
P BZX 83 C 22	20.8	23.3	58	5	220	1	8	1	16	18	
P BZX 83 C 24	22.8	25.6	80	5	220	1	8	1	18	16	
P BZX 83 C 27	25.1	28.9	80	5	250	1	9	1	20	14	
P BZX 83 C 30	28	32	90	5	250	1	9	1	22	13	
P BZX 83 C 33	31	35	90	5	250	1	9	- 1	24	12	
BZX 83 C 36	34	38	90	5	250	1	9	1	27	11	
BZX 83 C 39	37	41	100	2.5	600	0.5	9	1	30	10	
BZX 83 C 43	40	46	100	2.5	700	0.5	9	1	33	9.2	
BZX 83 C 47	44	50	120	2.5	1000	0.5	9	1	36	8.5	
BZX 83 C 51	48	54	135	2.5	1000	0.5	9	1	39	7.8	
BZX 83 C 56	52	60	150	2.5	1500	0.5	9	1	43	7.0	
BZX 83 C 62	58	66	170	2.5	1500	0.5	9	1	47	6.4	
BZX 83 C 68	64	72	215	2.5	2000	0.5	9	1	51	5.9	
BZX 83 C 75	70	80	250	2.5	2000	0.5	9	1	56	5.3	

^{*} Pulse test

 $^{20 \}text{ ms} \leqslant t_p \leqslant 50 \text{ms}$ $\delta < 2\%$.

The regulation voltages are defined according to the E 24 series.

P: Preferred voltages.

PREFERRED SERIES **JEDEC SERIES**

STANDARD ZENER DIODES

Туре	V _{ZT} / I _{ZT} *	r _{ZT} / I _{ZT} *	I _{ZT} *	rzĸ	^{/ I} ZK	α VZ	I _R / V _R	v _R	I _{ZM}	Package
							25°C		75°C	
	nom	max		max		max	max			
	(V)	(Ω)	(mA)	(Ω)	(mA)	(10 ⁻⁴ /°C)	(μA)	(V)	(mA)	

500 mW / Tomb = 75°C T: max - 200°C

500 mW / T _{amb} =	: 75°C 1j	max = 20	0°C				V _F ≤ 1.	1 V (T _{amb}	= 25°C,	$I_F = 0.2A$
P 1N 5221 B 1N 5223 B 1N 5224 B 1N 5223 B 1N 5224 B 1N 5225 B P 1N 5226 B P 1N 5226 B P 1N 5228 B P 1N 5228 B P 1N 5230 B P 1N 5231 B P 1N 5232 B 1N 5233 B P 1N 5233 B P 1N 5233 B P 1N 5234 B P 1N 5235 B P 1N 5236 B P 1N 5236 B P 1N 5237 B 1N 5238 B P 1N 5240 B P 1N 5240 B P 1N 5241 B P 1N 5242 B P 1N 5244 B P 1N 5245 B P 1N 5245 B P 1N 5245 B P 1N 5246 B 1N 5247 B P 1N 5256 B 1N 5266 B 1N 5266 B 1N 5267 B 1N 5268 B 1N 5268 B 1N 5268 B 1N 5268 B 1N 5269 B 1N 5269 B 1N 5268 B 1N 5269 B 1N 5268 B 1N 5269 B 1N 5269 B 1N 5277 B 1N 5278 B 1N 5277 B 1N 5278 B 1N 5278 B 1N 5277 B 1N 5278 B 1N 5278 B 1N 5277 B 1N 5278 B 1N 5278 B 1N 5277 B 1N 5278 B 1N 5279 B 1N 5280 B 1N 5280 B 1N 5281 B	2.4 2.5 2.7 2.8 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.0 6.2 6.8 7.5 8.2 8.7 9.1 10 11 12 13 14 15 16 17 18 19 20 22 24 25 27 28 30 33 36 39 43 47 51 10 11 11 12 13 14 15 16 16 17 18 19 20 22 24 25 27 28 30 33 36 39 43 47 51 10 11 11 12 13 31 47 51 51 60 60 60 60 60 60 60 60 60 60	30 30 30 30 30 30 29 28 24 23 22 19 17 11 7.0 7.0 5.0 6.0 8.0 8.0 10 17 22 30 13 15 16 17 19 21 23 25 29 33 35 41 44 49 58 70 80 93 105 125 125 125 126 127 128 129 120 120 121 121 123 125 126 127 127 128 129 120 120 120 120 120 120 120 120	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1200 1250 1300 1400 1600 1600 1700 1900 1600 1600 1600 1600 600 600 600 600 6	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	- 8.5 - 8.0 - 8.0 - 7.5 - 7.0 - 6.5 - 4.5 - 5.5 ± 3.0 ± 3.0 ± 3.8 + 4.5 + 5.8 + 6.2 + 6.5 + 6.8 + 7.7 + 7.9 + 8.2 + 8.3 + 8.4 + 8.5 + 8.6 + 8.7 + 8.8 + 9.0 + 9.1 + 9.1 + 9.2 + 9.3 + 9.5 + 9.5 + 9.6 + 9.7 + 9.7 + 9.8 + 9.9 + 11.0 + 11.0	100 100 75 75 50 25 15 10 5 5 5 5 5 5 5 5 5 5 5 5 5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 3.5 4.0 5.0 6.5 7.0 8.4 9.1 9.9 10 11 12 13 14 14 15 17 18 19 21 22 27 30 33 33 36 36 37 37 38 48 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40	191 182 168 162 151 138 126 115 106 97 89 81 76 73 67 61 55 52 50 45 41 38 35 32 30 28 27 25 24 23 21 19.6 19.6 19.7 89 19.7 89.7 89.7 89.7 89.7 89.7 89.7 89.7 8	DO 35

^{*} Measure under thermal equilibrium and DC current test conditions (T_{amb} 25°C). Tolerance on nominal V_{ZT} value : \pm 5%

Tight tolerances on prefered voltages : 1N 52.. C : \pm 2%. 1N 52.. D : \pm 1%.

P: Preferred voltages.

STANDARD ZENER DIODES

PREFERRED SERIES JEDEC SERIES

Туре	V _{ZT} / I _{ZT} *	rZT / IZT*	I _{ZT} *	rzk ^{/ l} zk	α VZ	I _R / V _R T _{amb} 25°C	v _R	I _{ZM} T _{amb} 50°C	Package
	nom (V)	max (Ω)	(mA)	max (Ω) (mA)	typ (10 ⁻⁴ /°C)	max (μA)	(V)	(mA)	,

1 W / $T_{amb} = 50$ °C T_{j} max = 200°C

 $V_{\mbox{\scriptsize F}} \leqslant$ 1.2 V ($T_{\mbox{\scriptsize amb}}$ = 25°C, $I_{\mbox{\scriptsize F}}$ = 0.2A)

aiiib	J									
P 1N 4728 A	3.3	10	76	400	1	- 6	100	1.0	276	
1N 4729 A	3.6	10	69	400	1	- 6	100	1.0	252	
P 1N 4730 A	3.9	9	64	400	1	- 5	50	1.0	234	
1N 4731 A	4.3	9	58	400	1	- 3	10	1.0	217	
P 1N 4732 A	4.7	8	53	500	1	- 1	10	1.0	193	
P 1N 4733 A	5.1	7	49	550	1	1	10	1.0	178	100
P 1N 4734 A	5.6	5	45	600	1	3	10 .	2.0	162	
P 1N 4735 A	6.2	2	41	700	1	4	10	3.0	146	
P 1N 4736 A	6.8	3.5	37	700	1	5	10	4.0	133	
P 1N 4737 A	7.5	4	34	700	0.5	5	10	5.0	121	
P 1N 4738 A	8.2	4.5	31	700	0.5	6	10	6.0	110	
P 1N 4739 A	9.1	5	28	700	0.5	6	10	7.0	100	
P 1N 4740 A	10	7	25	700	0.25	7	10	7.6	91	
1N 4741 A	11	8	23	700	0.25	7	5	8.4	83	
P 1N 4742 A	12	9	21	700	0.25	7	5	9.1	76	
P 1N 4743 A	13	10	19	700	0.25	7	5	9.9	69	
P 1N 4744 A	15	14	17	700	0.25	8	5	11.4	61	
P 1N 4745 A	16	16	15.5	700	0.25	8	5	12.2	57	
P 1N 4746 A	18	20	14	750	0.25	8	5	13.7	50	
P 1N 4747 A	20	22	12.5	750	0.25	8	5	15.2	45	
P 1N 4748 A	22	23	11.5	750	0.25	8	5	16.7	41	A
P 1N 4749 A	24	25	10.5	750	0.25	8	5	18.2	38	
P 1N 4750 A	27	35	9.5	750	0.25	9	5	20.6	34	DO 41
P 1N 4751 A	30	40	8.5	1000	0.25	9	5	22.8	30	
P 1N 4752 A	33	45	7.5	1000	0.25	9	5	25.1	27	
P 1N 4753 A	36	50	7.0	1000	0.25	9	5	27.4	25	
1N 4754 A	39	60	6.5	1000	0.25	9	5	29.7	23	
1N 4755 A	43	70	6.0	1500	0.25	9	5	32.7	22	
P 1N 4756 A	47	80	5.5	1500	0.25	9	5	35.8	19	1
P 1N 4757 A	51	95	5.0	1500	0.25	9	5	38.8	18	
1N 4758 A	56	110		2000	0.25	9	5	42.6	16	
P 1N 4759 A	62	125	4.5	2000	0.25	9	5	47.1	14	
P 1N 4760 A	68	150	3.7	2000	0.25	9	5		1	
1N 4760 A	75	175	3.7		0.25	9	5	51.7 56	13 12	
P 1N 4762 A	82	200	3.3	2000 3000	0.25	9	5	62.2	11	
							5		1	
1N 4763 A	91	250	2.8	3000	0.25	9		69.2	10	
1N 4764 A	100	350	2.5	3000	0.25	9	5 5	76	9	
1N 4187 B	110	450	2.3	4000	0.25	10		83.6	8.6	
1N 4188 B	120	550	2.0	4500	0.25	10	5	91.2	7.8	
1N 4189 B	130	700	1.9	5000	0.25	10	5	98.8	7	
1N 4190 B	150	1000	1.7	6000	0.25	10	5 5	1114	6.4	
1N 4191 B	160	1100	1.6	6500	0.25	10		121.6	5.8	
1N 4192 B	180	1200	1.4	7000	0.25	10	5 5	136.8	5.2	
1N 4193 B	200	1500	- 1.2	8000	0.25	10	5	152	4.7	
	1	1	I	1		1	1	I	I	1

^{*} Measure under thermal equilibrium and DC current test conditions (T_{amb} 25°C).

Tolerance on nominal V_{ZT} value : \pm 5%.

P: Preferred voltages.

Tight tolerances on preferred voltages : 1N 47.. C : \pm 2%. 1N 47.. D : \pm 1%.

STANDARD ZENER DIODES

Туре	V _{ZT} / I _{ZT} *	r _{ZT} / I _{ZT} *	I _{ZT} *	rzK / IzK	αVZ	I _R / V _R	v _R	IZM	Package
						¹amb 25°C	,		
	min nom max	max		max	typ	max			
2	(V)	(Ω)	(mA)	(Ω) (mA)	(10 ⁻⁴ /°C)	(μA)	(V)	(mA)	

1 W / $T_{amb} = 50$ °C T_{j} max = 175°C

W -	-	4 5	1/	/T		OFOO	1	OOAL
VE	5	1.5	v	(T _{amb}	=	25°C.		U.ZAI
				allib		,		,

					†					1		
1N 3016 B	6.4	6.8	7.2	3.5	37	700	1.0	4	150	5.2	140	
1N 3017 B	7.0	7.5	7.9	4	34	700	0.5	4.5	100	5.7	130	
1N 3018 B	7.7	8.2	8.7	4.5	31	700	0.5	4.8	50	6.2	110	
1N 3019 B	8.5	9.1	9.6	5	28	700	0.5	5.1	25	6.9	100	
1N 3020 B	9.4	10	10.6	7	25	700	0.25	5.5	25	7.6	94	
1N 3021 B	10.4	11	11.6	8	23	700	0.25	6	5	8.4	86	
1N 3022 B	11.4	12	12.7	9	21	700	0.25	6.5	5	9.1	79	
1N 3023 B	12.4	13	14.1	10	19	700	0.25	6.5	5	9.9	71	
1N 3024 B	13.8	15	15.6	14	17	700	0.25	7	5	11.4	64	
1N 3025 B	15.3	16	17.1	16	15.5	700	0.25	7	5	12.2	59	
1N 3026 B	16.8	18	19.1	20	14	750	0.25	7.5	5	13.7	52	
1N 3027 B	18.8	20	21.2	22	12.5	750	0.25	7.5	. 5	15.2	47	
1N 3028 B	20.8	22	23.3	23	11.5	750	0.25	8	5	16.7	43	
1N 3029 B	22.8	24	25.6	25	10.5	750	0.25	8	5	18.2	39	
1N 3030 B	25.1	27	28.9	35	9.5	750	0.25	8.5	5	20.6	35	
1N 3031 B	28	30	32	40	8.5	1000	0.25	8.5	5	22.8	31	
1N 3032 B	31	33	35	45	7.5	1000	0.25	8.5	5	25.1	29	
1N 3033 B	34	36	38	50	7	1000	0.25	8.5	5	27.4	26	DO 4
1N 3034 B	37	39	41	60	6.5	1000	0.25	9	5	29.7	24	DO 1
1N 3035 B	40	43	46	70	6	1500	0.25	9	5	32.7	22	
1N 3036 B	44	47	50	80	5.5	1500	0.25	9	5	35.8	20	
1N 3037 B	48	51	54	95	5	1500	0.25	9	5	38.8	19	
1N 3038 B	52	56	60	110	4.5	2000	0.25	9	5	42.6	17	
1N 3039 B	58	62	66	125	4	2000	0.25	9	5	47.1	15	
1N 3040 B	64	68	72	150	3.7 ·	2000	0.25	9	5	51.7	14	
1N 3041 B	70	75	79	175	3.3	2000	0.25	9	5	56	13	
1N 3042 B	77	82	87	200	3	3000	0.25	9	5	62.2	12	
1N 3043 B	85	91	96	250	2.8	3000	0.25	9	5	69.2	10	
1N 3044 B	94	100	106	350	2.5	3000	0.25	9	5	76	9.4	
1N 3045 B	104	110	116	450	2.3	4000	0.25	9.5	5	83.6	8.6	
1N 3046 B	114	120	127	550	2	4500	0.25	9.5	5	91.2	7.8	
1N 3047 B	124	130	141	700	1.9	5000	0.25	9.5	5	98.8	7.0	
1N 3048 B	138	150	156	1000	1.7	6000	0.25	9.5	5	114	6.4	
1N 3049 B	153	160	171	1100	1.6	6500	0.25	9.5	5	121.6	5.8	
1N 3050 B	168	180	191	1200	1.4	7000	0.25	9.5	5	136.8	5.2	
1N 3051 B	188	200	212	1500	.1.2	8000	0.25	10	5	152	4.7	

^{*} Measure under thermal equilibrium and DC current test conditions (T_{amb} 25°C).

STANDARD ZENER DIODES

PREFERRED SERIES **PRO-ELECTRON SERIES CECC APPROVAL**

Туре	V _{ZT} / I _{ZT} *	r _{ZT} / I _{ZT} *	I _{ZT} *	r _{ZK} / I _{ZK}	αVZ	I _R / V _R T _{amb} T _{amb} 25°C 150°C	٧R	IZM	IZSM	Package
	min max (V)	max (Ω)	(mA)	max (Ω) (mA)	min max (10 ⁻⁴ /°C)	max max (μA)	(V)	(mA)	(mA)	

1.3 W / $T_{amb} = 25$ °C T_{j} max = 175°C

 $V_F \leqslant 1 V (T_{amb} = 25^{\circ}C, I_F = 0.2 A)$

											-			
D71/ 05 0 01/7 05001	0.5	0.0	00	00	400		-8	- 5	150	300	1	370	3200	
BZX 85 C 2V7 CECCL	2.5	2.9	20	80	400	1	-8	- 5	100	300	1 1	340	3000	
BZX 85 C 3V0 CECCL	2.8	3.2	20	80	400	. 1	1 -		40	200	1 1	320	2800	
P BZX 85 C 3V3 CECCL	3.1	3.5	20	80	400	1	-8	- 5						
P BZX 85 C 3V6 CECCL	3.4	3.8	20	70	500	1	-8	- 5	20	50	1	290	2660	10.
P BZX 85 C 3V9 CECCL	3.7	4.1	15	60	500	1	-7	- 2	10	20	1	280	2540	
P BZX 85 C 4V3 CECCL	4.0	4.6	13	50	500	1	-5	1	3	10	1	250	2440	
P BZX 85 C 4V7 CECCL	4.4	5.0	13	45	500	1	-3	4	3	10	1	215	2320	
P BZX 85 C 5V1 CECCL	4.8	5.4	10	45	500	1	-1	4	1	10	1.5	200	2200	
P BZX 85 C 5V6 CECCL	5.2	6.0	7	45	400	1	0	4.5	1	10	2	190	2080	
P BZX 85 C 6V2 CECCL	5.8	6.6	4	35	300	1	1	5.5	1	10	3	170	1960	
P BZX 85 C 6V8 CECCL	6.4	7.2	3.5	35	300	1	1.5	6	1	10	4	155	1800	
P BZX 85 C 7V5 CECCL	7.0	7.9	3	35	200	0.5	2	6.5	1	10	4.5	140	1620	
P BZX 85 C 8V2 CECCL	7.7	8.7	5	25	200	0.5	3	7	1	10	6.2	130	1520	
P BZX 85 C 9V1 CECCL	8.5	9.6	5	25	200	0.5	3.5	7.5	1	10	6.8	120	1340	
P BZX 85 C 10 CECCL	9.4	10.6	7	25	200	0.5	4	8	0.5	10	7.5	105	1200	
BZX 85 C 11 CECCL	10.4	11.6	8	20	300	0.5	4.5	8	0.5	10	8.2	97	1100	
P BZX 85 C 12 CECCL	11.4	12.7	9	20	350	0.5	4.5	8.5	0.5	10	9.1	88	1000	
BZX 85 C 13 CECCL	12.4	14.1	10	20	400	0.5	5	8.5	0.5	10	10	79	900	
P BZX 85 C 15 CECCL	13.8	15.6	15	15	500	0.5	5.5	9	0.5	10	11	71	760	
P BZX 85 C 16 CECCL	15.3	17.1	15	15	500	0.5	5.5	9	0.5	10	12	66	700	
P BZX 85 C 18 CECCL	16.8	19.1	20	15	500	0.5	6	9	0.5	10	13	62	600	
P BZX 85 C 20 CECCL	18.8	21.2	24	10	600	0.5	6	9	0.5	10	15	56	540	
P BZX 85 C 22 CECCL	20.8	23.3	25	10	600	0.5	6	9.5	0.5	10	16	52	500	DO 41
P BZX 85 C 24 CECCL	22.8	25.6	25	10	600	0.5	6	9.5	0.5	10	18	47	490	0041
P BZX 85 C 27 CECCL	25.1	28.9	30	8	750	0.25	6	9.5	0.5	10	20	41	400	
P BZX 85 C 30 CECCL	28	32	30	8	1000	0.25	6	9.5	0.5	10	22	36	380	
P BZX 85 C 33 CECCL	31	35	35	8	1000	0.25	6	9.5	0.5	10	24	33	350	
P BZX 85 C 36 CECCL	34	38	40	8	1000	0.25	6	9.5	0.5	10	27	30	320	
P BZX 85 C 39 CECCL	37	41	50	6	1000	0.25	6	9.5	0.5	10	30	28	296	
BZX 85 C 43 CECCL	40	46	50	6	1000	0.25	6	9.5	0.5	10	33	26	270	
BZX 85 C 47 CECCL	44	50	90	4	1500	0.25	6	9.5	0.5	10	36	23	246	
BZX 85 C 51 CECCL	48	54	115	4	1500	0.25	6	9.5	0.5	10	39	21	226	
BZX 85 C 56 CECCL	52	60	120	4	2000 .	0.25	6	9.5	0.5	10	43	19	208	
P BZX 85 C 62 CECCL	58	66	125	4	2000	0.25	6	9.5	0.5	10	47	16	186	
P BZX 85 C 68	64	72	130	4	2000	0.25	6	9.5	0.5	10	51	15	171	
BZX 85 C 75	70	80	135	4	2000	0.25	6	9.5	0.5	10	56	14	161	
BZX 85 C 82	77	87	200	2.7	3000	0.25	7	12	0.5	10	62	12	141	
BZX 85 C 91	85	96	250	2.7	3000	0.25	7	12	0.5	10	68	10	127	
P BZX 85 C 100	94	106	350	2.7	3000	0.25	7	12	0.5	10	75	9.4	116	
BZX 85 C 110	104	116	450	2.7	4000	0.25	7	12	0.5	10	82	8.6	105	
BZX 85 C 120	114	127	550	2	4500	0.25	7	12	0.5	10	91	7.8	96	
BZX 85 C 130	124	141	700	2	5000	0.25	7	12	0.5	10	100	7.0	89	
BZX 85 C 150	138	156	1000	2	6000	0.25	7	12	0.5	10	110	6.4	77	
BZX 85 C 160	153	171	1100	1.5	6500	0.25	7	12	0.5	10	120	5.8	72	
BZX 85 C 180	168	191	1200	1.5	7000	0.25	7	12	0.5	10	130	5.2	64	
BZX 85 C 200	180	212	1500	1.5	8000	0.25	7	12	0.5	10	150	4.7	58	

 $20 \text{ ms} \leqslant t_p \leqslant 50 \text{ ms}$

The regulation voltages are defined according to the E 24 series.

P: Preferred voltages.

Tight tolerances on preferred voltages : BZX 85 B : \pm 2%. BZX 85 A : \pm 1%.

STANDARD ZENER DIODES

Туре	V _{ZT} / I _{ZT} * min max (V)	r _{ZT} / I _{ZT} * max (Ω)	I _{ZT} *	min max (10 ⁻⁴ /°C)	I _R / V _R max (μA)	△V _R (V)	I _{ZM}	Package
1.5 W / T _{amb} = 50	°C T _j max =	150°C		P _S (10 ms) = 40	0 W V _F ≤ 1	.2 V (T _{amb}	= 25°C,	F = 0.2 A)
BZY 97 C 3V3 BZY 97 C 3V6 BZY 97 C 3V9 BZY 97 C 4V3 BZY 97 C 4V7 PBZY 97 C 5V1 PBZY 97 C 5V6 PBZY 97 C 6V2 PBZY 97 C 6V8 BZY 97 C 7V5 BZY 97 C 9V1 BZY 97 C 10 BZY 97 C 11 PBZY 97 C 12 PBZY 97 C 15 BZY 97 C 15 BZY 97 C 16 PBZY 97 C 15 BZY 97 C 16 PBZY 97 C 18 PBZY 97 C 18 PBZY 97 C 20 PBZY 97 C 20 PBZY 97 C 20 PBZY 97 C 27 PBZY 97 C 33 PBZY 97 C 33 PBZY 97 C 36 BZY 97 C 36 BZY 97 C 37 PBZY 97 C 38 PBZY 97 C 47 BZY 97 C 38 PBZY 97 C 47 BZY 97 C 56 PBZY 97 C 62 PBZY 97 C 100 BZY 97 C 100 BZY 97 C 110 BZY 97 C 150 BZY 97 C 160	3.1 3.5 3.4 3.8 3.7 4.1 4.0 4.6 4.4 5.0 4.8 5.4 5.2 6.0 5.8 6.6 6.4 7.2 7.0 7.9 7.7 8.7 8.5 9.6 9.4 10.6 10.4 11.6 11.4 12.7 12.4 14.1 13.8 15.6 15.3 17.1 16.8 19.1 18.8 21.2 20.8 23.3 22.8 25.6 25.1 28.9 28 32 31 35 34 38 37 41 40 46 44 50 48 54 50 66 64 72 70 79 77 87 85 96 94 106 10.4 11.6 11.4 12.7 12.4 14.1 13.8 35 36 25.1 28.9 27 30 40 46 48 54 50 66 61 72 70 79 77 87 87 87 89 96 94 106 104 116 114 127 124 141 138 156 153 171 168 191 168 191 170 168 191 171 168 191	10 10 7 7 7 7 5 2 2 2 2 2 2 2 4 4 4 7 7 7 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	100 100 100 100 100 100 100 100 100 100	-10 2 -8 2 -7 2 -7 3 -7 4 -6 5 -3 5 -1 6 0 7 0 7 3 8 3 8 5 9 5 10 5 10 5 10 5 10 5 10 6 11 6 11 6 11 6 11 6 11 6 11 6 11 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7	1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 2 3.5 3.5 5 7 7 10 10 10 10 11 12 12 14 14 17 17 20 20 24 28 28 34 34 34 41 41 50 60 60 60 60 75 75 90 90 90 90 90 90 90 90 90 90 90 90 90	429 395 366 327 300 278 250 227 208 190 172 156 142 129 118 106 96 88 79 71 64 59 52 47 43 40 37 33 30 28 25 27 27 20 20 20 20 20 20 20 20 20 20	F 126

^{*} Pulse test

 $t_{p} \leqslant 50 \ \mu s$

 $[\]delta < 2\%$.

The regulation voltages are defined according to the E 24 series.

P : Preferred voltages.

STANDARD ZENER DIODES

Туре	V _{ZT} /I _{ZT} *	r _{ZT} /I _{ZT} *	I _{ZT} *	α VZ -	I _R /V _R	V _R	IZM T _{amb} 70°C	Package
	min max (V)	max (Ω)	(mA)	typ (10 ⁻⁴ /°C)	max (μA)	(V)	(mA)	

$2 \text{ W} / \text{T}_{amb} = 70^{\circ}\text{C} \text{ T}_{i} \text{ max} =$	= 175°C	max =		70°C	=	Tamb	1	W	2
---	---------	-------	--	------	---	------	---	---	---

P.	(10 ms)	=	60 W	٧c	< 1	.2 V	(Tamb	=	25°C.	le	=	0.5	A)
	(10 1113)	_	00 44	4 h-		- An V	\'amn	_	_ ,		_	0.0	-

2 W / Tamb - /	$W / I_{amb} = 70^{\circ}C I_{j} max = 175^{\circ}C$						$V_F \le 1.2 \text{ V } (T_{amb} = 25^{\circ}\text{C}, T_F = 0.5 \text{ A})$			
			= -							
BZV 47 C 3V3	3.1	3.5	10 -	100	-6.0			570		
BZV 47 C 3V6	3.4	3.8	10	100	-5.5			525		
BZV 47 C 3V9	3.7	4.1	7	100	-5.0			485		
BZV 47 C 4V3	4.0	4.6	7	100	-4.0			435		
BZV 47 C 4V7	4.4	5.0	7	100	-2.0			400		
P BZV 47 C 5V1	4.8	5.4	5	100	1.0			370		
P BZV 47 C 5V6	5.2	6.0	2	100	2.5	5	1	330		
P BZV 47 C 6V2	5.8	6.6	2	100	3.2	5	1	300		
P BZV 47 C 6V8	6.4	7.2	2	100	4.0	5	1	275		
BZV 47 C 7V5	7.0	7.9	2	100	4.5	5	2	250		
BZV 47 C 8V2	7.7	8.7	2	100	4.8	5	3.5	230		
BZV 47 C 9V1	8.5	9.6	4	50	5.1	5	3.5	205		
BZV 47 C 9V I	9.4	10.6	4	50	5.5	5	7.6	185		
BZV 47 C 10	10.4	11.6	7	50	6.0	1	8.3	170		
P BZV 47 C 12	11.4	12.7	7	50	6.5	1	9.1	155		
P BZV 47 C 12 P BZV 47 C 13	12.4	14.1	10	50	6.5	1	9.9	140		
P BZV 47 C 15	13.8	15.6	10	50	7.0	1	11.4	130		
BZV 47 C 15	15.3	17.1	15	25	7.0	0.5	12.2	115		
P BZV 47 C 18	16.8	19.1	15	25	7.5	0.5	13.7	105		
P BZV 47 C 10	18.8	21.2	15	25	7.5	0.5		94		
P BZV 47 C 20 P BZV 47 C 22	20.8	23.3	15	25	8.0	0.5	15.2			
P BZV 47 C 24	22.8	25.6	15	25	8.0	0.5	16.7 18.2	86 78		
P BZV 47 C 24 P BZV 47 C 27	25.1	28.9	15	25	8.5	0.5	20.5	69	F 126	
P BZV 47 C 27 P BZV 47 C 30										
BZV 47 C 30	28	32	15	25	8.5 8.5	0.5	22.8	62		
P BZV 47 C 36	31	35	15	25			25	57		
	34	38	40	10	8.5	0.5	27.4	52		
BZV 47 C 39	37	41	40	10	9.0	0.5	29.6	48		
BZV 47 C 43	40 44	46	45	10	9.0	0.5	32.7	43		
P BZV 47 C 47		50	45	10	9.0	0.5	35.7	40		
BZV 47 C 51	48	54	60	10	9.0	0.5	38.8	37		
BZV 47 C 56 P BZV 47 C 62	52	60	60	10	9.0	0.5	42.5	33		
	58 64	66	80	10	9.0	0.5	47.1	30		
P BZV 47 C 68		72	80	10	9.0	0.5	51.7	27		
BZV 47 C 75	70	79	100	10	9.0	0.5	57	25		
BZV 47 C 82	77	87	100	10	9.0	0.5	62.4	23		
BZV 47 C 91	85	96	200	5	9.0	0.5	69.2	20		
P BZV 47 C 100	94	106	200	5	9.0	0.5	76	18		
BZV 47 C 110	104	116	250	. 5	9.5	0.5	83.5	17		
BZV 47 C 120	114	127	250	5	9.5	0.5	91.2	15		
P BZV 47 C 130	124	141	300	5	9.5	0.5	98.2	14		
P BZV 47 C 150	138	156	300	5	9.5	0.5	114	12.8		
BZV 47 C 160	153	171	350	5	9.5	0.5	122	11.7		
BZV 47 C 180	168	191	350	5	9.5	0.5	137	10.5		
P BZV 47 C 200	188	212	350	5	9.5	0.5	152	9.4		
			7							

^{*} Pulse test $t_p \leqslant 50 \text{ms} \qquad \delta < 2\%$.

The regulation voltages are defined according to the E 24 series.

P : Preferred voltages.

STANDARD ZENER DIODES

Туре	V _{ZT} / I _{ZT} *	I _{ZT} *	r _{ZT} / I _{ZT} *	r _{ZK} / l _{ZK} 1.0 mA	I _R /	٧R	α V Z	IZM T _{amb} 75°C	VZ	Package
	nom. (V)	(mA)	max. (Ω)	(Ω)	max. (μ A)	(V)	typ. (10 ⁻⁴ /°C)	max. (mA)	max. (V)	
		, ,		,	(,,,,,		(*** ** **)	(,	**	

$5 \text{ W} / \text{T}_{\text{amb}} = 7$	5°C T _j ma	ax = 20	00°C	P _S (10 ms	s) = 150 W	1	V	F ≤ 1.2 V (Γ _{amb} = 25°	C, IF = 1 A
1N 5333 B	3.3	380	3.0	400	300	1.0	- 6	1440	0.85	
1N 5334 B	3.6	350	2.5	500	150	1.0	- 5.5	1320	0.80	
1N 5335 B	3.9	320	2.0	500	50	1.0	- 5	1220	0.54	
1N 5336 B	4.3	290	2.0	500	10	1.0	- 4	1100	0.49	
1N 5337 B	4.7	260	2.0	450	5.0	1.0	- 2	1010	0.44	
P 1N 5338 B	5.1	240	1.5	400	1.0	1.0	1	930	0.39	
P 1N 5339 B	5.6	220	1.0	400	1.0	2.0	2.5	865	0.25	, -
1N 5340 B	6.0	200	1.0	300	1.0	3.0	2.8	790	0.19	
P 1N 5341 B	6.2	200	1.0	200	1.0	3.0	3.2	765	0.10	
P 1N 5342 B	6.8	175	1.0	200	10	5.2	4	700	0.15	
1N 5343 B	7.5	175	1.5	200	10	5.7	4.5	630	0.15	
1N 5344 B	8.2	150	1.5	200	10	6.2	4.8	580	0.20	
1N 5345 B	8.7	150	2.0	200	10	6.6	4.9	545	0.20	
1N 5346 B	9.1	150	2.0	150	7.5	6.9	5.1	520	0.22	
1N 5347 B	10	125	2.0	125	5.0	7.6	5.5	475	0.22	
1N 5348 B	11	125	2.5	125	5.0	8.4	6	430	0.25	
P 1N 5349 B	12	100	2.5	125	2.0	9.1	6.5	395	0.25	
1N 5350 B	13	100	2.5	100	1.0	9.9	6.5	365	0.25	
	14	100	2.5	75	1.0	10.6	7	340	0.25	
1N 5351 B	15	75	2.5	75	1.0	11.5	7	315	0.25	
P 1N 5352 B	1	75	2.5	75	1.0	12.2	7	295	0.30	
P 1N 5353 B	16				1		7	280		
1N 5354 B	17	70	2.5	75 75	0.5	12.9	7.5		0.35 0.40	
P 1N 5355 B	18	65	2.5	75	0.5	13.7	7.5	264		
1N 5356 B	19	65	3.0	75	0.5	14.4		250	0.40	
1N 5357 B	20	65	3.0	75	0.5	15.2	7.5	237	0.40	
P 1N 5358 B	22	50	3.5	75	0.5	16.7	8	216	0.45	
P 1N 5359 B	24	50	3.5	100	0.5	18.2	8	198	0.55	1 1 ×
1N 5360 B	25	50	4.0	110	0.5	19.0	8	190	0.55	CB-417
P 1N 5361 B	27	50	5.0	120	0.5	20.6	8.5	176	0.60	
1N 5362 B	28	50	6.0	130	0.5	21.2	8.5	170	0.60	
P 1N 5363 B	30	40	8.0	140	0.5	22.8	8.5	158	0.60	
1N 5364 B	33	40	10	150	0.5	25.1	8.5	144	0.60	
P 1N 5365 B	36	30	11	160	0.5	27.4	9	132	0.65	
1N 5366 B	39	30	14	170	0.5	29.7	9 9	122 110	0.65	
1N 5367 B	43	30	20	190	0.5	32.7	9	1	0.70	
1N 5368 B	47	25	25	210	0.5	35.8	I	100	0.80	= 2.4%
1N 5369 B	51	25	27	230	0.5	38.8	9	93	0.90	
1N 5370 B	56	20	35	280	0.5	42.6	9	86 79	1.00	
1N 5371 B	60	20	40	350	0.5	45.5		79	1.20	
P 1N 5372 B	62	20	42	400	0.5	47.1	9	70	1.35 1.50	
1N 5373 B	68	20	44	500	0.5	51.7		63		
1N 5374 B	75	20	45	620	0.5	56.0	9	58	1.60	
1N 5375 B	82	15	65	720	0.5	62.2				
1N 5376 B	87	15	75	760	0.5	66.0	9	54.5	2.00	
1N 5377 B	91	15	75	760	0.5	69.2	9 9.5	52,5 47.5	2.20 2.50	
P 1N 5378 B	100	12	90	800	0.5	76.0	9.5	1	2.50	
1N 5379 B	110	12	125	1000	0.5 0.5	83.6	9.5	43 39.5	2.50	
1N 5380 B	120	10	170	1150		91.2		1	2.50	
1N 5381 B	130	10	190	1250	0.5	98.8	9.5	36.5	2.50	
1N 5382 B	140	8.0	230	1500	0.5	106	9.5	34	1	
P 1N 5383 B	150	8.0	330	1500	0.5	114	9.5	31.6	3.00	
1N 5384 B	160	8.0	350	1650	0.5	122	9.5	29.4	3.00	
1N 5385 B	170	8.0	380	1750	0.5	129	9.5	28	3.00	
P 1N 5386 B	180	5.0	430	1750	0.5	137	9.5	26.4	4.00	
1N 5387 B	190	5.0	450	1850	0.5	144	9.5	25	5.00	
P 1N 5388 B	200	5.0	480	1850	0.5	152	10	23.6	5.00	

Tolerance on nominal V_{ZT} value : \pm 5%.

P : Preferred voltages.

^{*} Pulse test $t_p \leqslant$ 50ms $\delta <$ 2%. ** Measured between 10% and 50% of I_{ZM}.

STANDARD ZENER DIODES

Туре	V _{ZT} / I _{ZT} *	r _{ZT} / I _{ZT} *	I _{ZT} *	α VZ	I _{R.} /V _R	V _R	IZM T _{amb} 50°C	Package
	min max	max (Ω)	(mA)	typ (10 ⁻⁴ /°C)	max (μA)	(V)	(mA)	

5 W / $T_{amb} = 50 ^{\circ}\text{C}$ $T_{i} \text{ max} = 175 ^{\circ}\text{C}$

3 W / Tamb = 30	0 1, 1110	AX — 11			1 5 (10 1110	/ - 200 II VF	··· ·· an	1D - 20 0,	
BZV 58 C 3V3	3.1	3.5	3	380	- 6.0	* .		1430	
BZV 58 C 3V3 BZV 58 C 3V6	3.1	3.5	2.5	350	— 5.5			1310	
BZV 58 C 3V6	3.7	4.1	2.3	320	— 5.0			1220	
	1		2	290	— 5.0 — 4.0			1090	
BZV 58 C 4V3	4.0	4.6				,			
BZV 58 C 4V7	4.4	5.0	2	260	- 2.0			1000	100
P BZV 58 C 5V1	4.8	5.4	1.5	240	1.0	0.0		925	
P BZV 58 C 5V6	5.2	6.0	1	220	2.5	20	1	830	
P BZV 58 C 6V2	5.8	6.6	1	200	3.2	10	1	750	
P BZV 58 C 6V8	6.4	7.2	1	175	4.0	10	2	690	
BZV 58 C 7V5	7.0	7.9	1.5	175	4.5	10	2	630	
BZV 58 C 8V2	7.7	8.7	1.5	150	4.8	10	3	570	
BZV 58 C 9V1	8.5	9.6	2	150	5.1	10	6.6	520	
BZV 58 C 10	9.4	10.6	2	125	5.5	10	7.6	470	
BZV 58 C 11	10.4	11.6	2.5	125	6.0	5	8.3	430	
P BZV 58 C 12	11.4	12.7	2.5	100	6.5	2	9.1	390	
BZV 58 C 13	12.4	14.1	2.5	100	6.5	1	9.9	350	
P BZV 58 C 15	13.8	15.6	2.5	75	7.0	1	11.4	320	
P BZV 58 C 16	15.3	17.1	2.5	75	7.0	0.5	12.2	290	
P BZV 58 C 18	16.8	19.1	2.5	65	7.5	0.5	13.7	260	
BZV 58 C 20	18.8	21.2	3	65	7.5	0.5	15.2	235	
P BZV 58 C 22	20.8	23.3	3.5	50	8.0	0.5	16.7	215	
P BZV 58 C 24	22.8	25.6	3.5	50	8.0	0.5	18.2	195	
P BZV 58 C 27	25.1	28.9	5	50	8.5	0.5	20.5	170	CB-417
P BZV 58 C 30	28	32	8	40	8.5	0.5	22.8	155	
BZV 58 C 33	31	35	10	40	8.5	0.5	25	140	
P BZV 58 C 36	34	38	11						
	37			30	8.5	0.5	27.4	130	
BZV 58 C 39		41	14	30	9.0	0.5	29.6	120	
BZV 58 C 43	40	46	20	30	9.0	0.5	32.7	110	
BZV 58 C 47	44	50	25	25	9.0	0.5	35.7	100	
BZV 58 C 51	48	54	27	25	9.0	0.5	38.8	92	
BZV 58 C 56	52	60	35	20	9.0	0.5	42.5	83	
P BZV 58 C 62	58	66	42	20	9.0	0.5	47.1	75	
BZV 58 C 68	64	72	44	20	9.0	0.5	51.7	69	
BZV 58 C 75	70	79	45	20	9.0	0.5	57	63	
BZV 58 C 82	77	87	65	15	9.0	0.5	62.4	57	
BZV 58 C 91	. 85	96	75	15	9.0	0.5	69.2	52	
P BZV 58 C 100	94	106	90	12	9.0	0.5	76	47	
BZV 58 C 110	104	116	125	12	9.5	0.5	83.5	43	
BZV 58 C 120	114	127	170	10	9.5	0.5	91.2	39	
BZV 58 C 130	124	141	190	10	9.5	0.5	98.8	35	
P BZV 58 C 150	138	156	330	8	9.5	0.5	114	32	
BZV 58 C 160	153	171	350	8	9.5	0.5	122	29	
P BZV 58 C 180	168	191	430	5	9.5	0.5	137	26	
P BZV 58 C 200	188	212	480	5	10	0.5	152	23	
	1					0.0	102	20	
								1	

^{*} Pulse test $t_p \leqslant 50 \text{ms}$ $\delta < 2 \%$.

The regulation voltages are defined according to the E 24 series.

P : Preferred voltages.

SYMMETRICAL ZENER DIODE

Туре		/ I _{ZT}	IZT	r _{ZT} / I _{ZT}		@ I _{pp}		V _(CL) @ I _{pp} 8-20 μs expo.		V _R	C typ V _R = 0 F = 1 MHz	Package
	min.	max.	(mA)	(Ω)	(V)	(A)	(V)	(A)	(μΑ)	(V)	(pF)	
BZV 37	6.2	6.8	5	20	15	2	25	7	1 10	2 4	90	DO 35

TEMPERATURE COMPENSATED ZENER DIODES

Туре	V _{ZT} * typ (V)	r _{ZT} * max (Ω)	I _{ZT}	Test temperatures (°C)				△V _Z max (mV)	αVZ max (10 ⁻⁶ /°C)	Package	
$V_{ZT} = 6.2 V$											
1N 821 • 1N 821 A 1N 823 • 1N 823 A 1N 825 • 1N 825 A 1N 827 • 1N 827 A 1N 829 A	6.2	15 without suffix 10 with suffix A	7.5	- 55	0	25	75	100	96 48 19 9 5	100 50 20 10 5	DO 35
$V_{ZT} = 6.4 \text{ V}$											
1N 4565 1N 4566 1N 4567 1N 4568 1N 4569	6.4	200	0.5		0	25	75		48 24 10 5 2	100 50 20 10 5	-
1N 4575 1N 4576 1N 4577 1N 4578 1N 4579	6.4	50	2		0	25	75		48 24 10 5 2	100 50 20 10 5	DO 35
1N 4565 A1N 4566 A1N 4567 A1N 4568 A1N 4569 A	6.4	200	0.5	- 55	0	25	75	100	99 50 20 10 5	100 50 20 10 5	DO 35
1N 4575 A 1N 4576 A 1N 4577 A 1N 4578 A 1N 4579 A	6.4	200	0.5	– 55	0	25	75	100	99 50 20 10 5	100 50 20 10 5	
$V_{ZT} = 8.4 V$											
1N 3154 1N 3155 1N 3156 1N 3157	8.4	15	10	- 55	0	25	75	100	130 65 26 13	100 50 20 10	DO 35
$V_{ZT} = 6.2 V$											
1N 935 A 1N 936 A 1N 937 A 1N 938 A 1N 939 A	9	20	7.5	- 55	0	25	75	100	139 69 27 13 7	100 50 20 10 5	DO 35
* T _{amb} = 25°C. • ESA qualified product.		То	lerance on no	ominal V _{ZT}	value :	± 5%.			*	,	

REFERENCE DIODES

		$I_F = 5 \text{ mA}$			
Туре	V _F	(V)	r (Ω)		
	min	max	max		
PLE 0.7 PLE 1.5	0.65 1.35	0.75 1.55	10 20	F 126	

TRANSIENT VOLTAGE SUPPRESSOR «TRANSIL» FOR TRIAC PROTECTION

Type bidirectional	I _{RM} @	V _{RM}	V _{BR}	@ I _R p.)	V _{CL} 0 ma 8/20 μs	ax.	α T max	Package
	(μ A)	(V)	(V)	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
BZW 04-376 BT	5	376	480	1	600	1	11	F 126

TRANSIENT VOLTAGE SUPPRESSOR «TRANSIL» FOR IGNITION AUTOMOTIVE PROTECTION

Type unidirectional	I _{RM} @		(1	BR V) = 25°C	(\	BR /) 120°C	I _R	α T typ.	^I ZM	Package
	(μA)	(V)	min	max	min	max	(mA)	(10 ⁻⁴ /°C)	(mA)	
PL 360 D	0.35	270	330	370	358	416	2	11	3.5	F 126

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

Ту	/ре		^{⊉ V} RM ax		V _(BR) *	@	IR	m	@ I _{pp} ax expo	α _T max	Package
Unidirec- tional	Bidirec- tional	(μA)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	

400 W / 1 ms expo.

IFSM = 50 A · 10 ms for unidirectional

P BZW04P5V8 BZW04-5V8 BZW04-6V4 BZW04-6V4 BZW04-7V0 BZW04P7V8 BZW04P7V8 BZW04P7V8 BZW04-7V8 BZW04-7V8	1000 5.8 1000 5.8 500 6.4 500 6.4 200 7.02 200 7.02 50 7.78 50 7.78	6.45 6.8 6.45 6.8 7.13 7.5 7.13 7.5 7.79 8.2 7.79 8.2 8.65 9.1 8.65 9.1	7.48 10 7.14 10 8.25 10 7.88 10 9.02 10 8.61 10 10.0 1 9.55 1	10.5 38 10.5 38 11.3 35.4 11.3 35.4 12.1 33 12.1 33 13.4 30 13.4 30		F 126
---	--	--	--	--	--	-------

^{*} Pulse test $t_p \leqslant 50 \text{ ms} \quad \delta < 2\%.$

P: Preferred device.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

	Туре		^{@ V} RM nax		V _(BR) *	@	I _R	m	^{@ l} pp ax expo	α T max	Package
Unidirec- tional	Bidirec- tional	(μA)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
400 W / 1 m	ns expo.						IFSM =	50 A -	10 ms f	or unidir	ectiona
BZW04P8V5	BZW04P8V5B	10	8.55	9.50	10	11.0	1	14.5	27.6	7.3	
BZW04-8V5	BZW04-8V5B	10	8.55	9.50	10	10.50	1	14.5	27.6	7.3	
PBZW04P9V4	P BZW04P9V4B	5	9.4	10.5	11	12.1	1	15.6	25.7	7.5	
BZW04-9V4	BZW04-9V4B	5	9.4	10.5	11	11.6	1	15.6	25.7	7.5	
BZW04P10	BZW04P10B	5	10.2	11.4	12	13.2	1 ,	16.7	24	7.8	
BZW04-10	BZW04-10B	5	10.2	11.4	12	12.6	1	16.7	24	7.8	
P BZW04P11	P BZW04P11B	5	11.1	12.4	13	14.3	1	18.2	22	8.1	
BZW04-11	BZW04-11B	5	11.1	12.4	13	13.7	1	18.2	22	8.1	
P BZW04P13	P BZW04P13B	5 5	12.8	14.3	15 15	16.5 15.8		21.2	19 19	8.4 8.4	
BZW04-13 P BZW04P14	BZW04-13B P BZW04P14B	5	12.8	15.2	16	17.6	1	21.2	17.8		
BZW04-14 BZW04-14	BZW04-14B	5	13.6	15.2	16	16.8		22.5	17.8	8.6 8.6	
P BZW04P15	P BZW04P15B	5	15.3	17.1	18	19.8	1	25.2	16	8.8	
BZW04-15	BZW04-15B	5	15.3	17.1	18	18.9	1	25.2	16	8.8	
BZW04P17	BZW04P17B	5	17.1	19	20	22	1	27.7	14.5	9.0	
BZW04-17	BZW04-17B	5	17.1	19	20	21	1	27.7	14.5	9.0	
BZW04P19	BZW04P19B	5	18.8	20.9	22	24.2	1	30.6	13	9.2	
BZW04-19	BZW04-19B	5	18.8	20.9	22	23.1	1	30.6	13	9.2	
BZW04P20	P BZW04P20B	5	20.5	22.8	24	26.4	1	33.2	12	9.4	1.5.25
BZW04-20	BZW04-20B	5	20.5	22.8	24	25.2	1	33.2	12	9.4	
P BZW04P23	BZW04P23B	5	23.1	25.7	27	29.7	1	37.5	10.7	9.6	
BZW04-23	BZW04-23B	5	23.1	25.7	27	28.4	1	37.5	10.7	9.6	
P BZW04P26	P BZW04P26B	5	25.6	28.5	30	33	1	41.5	9.6	9.7	
BZW04-26	BZW04-26B	5	25.6	28.5	30	31.5	1	41.5	9.6	9.7	- W 25
BZW04P28	P BZW04P28B	5	28.2	31.4	33	36.3	1	45.7	8.8	9.8	
BZW04-28	BZW04-28B	5	28.2	31.4	33	34.7	1	45.7	8.8	9.8	
P BZW04P31	P BZW04P31B	5	30.8	34.2	36	39.6	1	49.9	- 8	9.9	V
BZW04-31	BZW04-31B	5	30.8	34.2	36	37.8	1	49.9	8	9.9	0.00
P BZW04P33	BZW04P33B	5	33.3	37.1	39 39	42.9 41	1	53.9 53.9	7.4 7.4	10.0	F 126
BZW04-33	BZW04-33B	5	33.3 36.8	37.1 40.9	43	47.3	1	59.3	6.7	10.0	
BZW04P37 BZW04-37	P BZW04P37B BZW04-37B	5	36.8	40.9	43	45.2		59.3	6.7	10.1	
BZW04-37 BZW04P40	BZW04-37B BZW04P40B	5	40.2	44.7	47	51.7		64.8	6.2	10.1	
BZW04-40	BZW04-40B	5	40.2	44.7	47	49.4	1	64.8	6.2	10.1	11
BZW04P44	BZW04P44B	5	43.6	48.5	51	56.1	1	70.1	5.7	10.2	
BZW04-44	BZW04-44B	5	43.6	48.5	51	53.6	1	70.1	5.7	10.2	
BZW04P48	BZW04P48B	5	47.8	53.2	56	61.6	1	77	5.2	10.3	
BZW04-48	BZW04-48B	5	47.8	53.2	56	58.8	1	77	5.2	10.3	
BZW04P53	BZW04P53B	5	53	58.9	62	68.2	1	85	4.7	10.4	
BZW04-53	BZW04-53B	5	53	58.9	62	65.1	1	85	4.7	10.4	
BZW04P58	BZW04P58B	5	58.1	64.6	68	74.8	1	92	4.3	10.4	
BZW04-58	BZW04-58B	5	58.1	64.6	68	71.4	1	92	4.3	10.4	
BZW04P64	BZW04P64B	5	64.1	71.3	75	82.5	1	103	3.9	10.5	1.0
BZW04-64	BZW04-64B	5	64.1	71.3	75	78.8	1	103	3.9	10.5	
BZW04P70	P BZW04P70B	5	70.1	77.9	82	90.2	1	113	3.5	10.5	
BZW04-70	BZW04-70B	5	70.1	77.9	82	86.1	1	113	3.5	10.5 10.6	
BZW04P78	BZW04P78B	5 5	77.8 77.8	86.5 86.5	91	100 95.5	1 1	125 125	3.2	10.6	
BZW04-78	BZW04-78B BZW04P85B	5	85.5	95	100	110	1	137	2.9	10.6	
P BZW04P85	BZW04P85B BZW04-85B	5	85.5	95	100	105	1	137	2.9	10.6	
BZW04-85 BZW04P94	BZW04-85B BZW04P94B	5	94	105	110	121	1	152	2.6	10.7	-1
BZW04P94 BZW04-94	BZW04P94B	5	94	105	110	116	1	152	2.6	10.7	
BZW04-94 BZW04P102	BZW04-94B BZW04P102B	5	102	114	120	132	1	165	2.4	10.7	
BZW04-102	BZW04-102B	5	102	114	120	126	1	165	2.4	10.7	
P BZW04P111	BZW04P111B	5	111	104	130	143	1	179	2.2	10.7	
BZW04-111	BZW04-111B	5	111	124	130	137	1	179	2.2	10.7	
P BZW04P128	P BZW04P128B	5	128	143	150	165	1	207	2.0	10.8	

165

158

150

150

P BZW04P128B

BZW04-128B

128

128

5

5

143

143

P BZW04P128

BZW04-128

2.0

2.0

10.8

10.8

207

207

1

^{*} Pulse test $t_p \leqslant$ 50 ms $\delta < 2\%$.

P: Preferred device.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

IRANSIENI	VULTAGE SUP	THE SOC	INO «IF	MINOIL	,))						
	Туре		^{@ V} RM nax		V _(BR) *	@	I _R	m	@ I _{pp} ax expo	α _T max	Package
Unidirec- tional	Bidirec- tional	(μ A)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
400 W / 1 m	s expo.					I	FSM =	50 A -	10 ms fo	or unidir	ectiona
P BZW04P136 BZW04-136 P BZW04P145 BZW04P154	P BZW04P136B BZW04-136B BZW04P145B BZW04P145B BZW04P154B	5 5 5 5 5	136 136 145 145	152 152 161 161 171	160 160 170 170	176 168 187 179	1 1 1 1 1	219 219 234 234 246	1.8 1.8 1.7 1.7	10.8 10.8 10.8 10.8	

BZW04P154	BZW04P154B	5	154	171	180	198	1	246	1.6	10.8	
BZW04-154	BZW04-154B	5	154	171	: 180	189	- 1	246	1.6	10.8	
BZW04P171	BZW04P171B	5	171	190	200	220	1	274	1.5	10.8	
BZW04-171	BZW04-171B	5	171	190	200	210	1	274	1.5	10.8	
BZW04P188	P BZW04P188B	5	188	209	220	242	1	301	1.4	10.8	
BZW04-188	BZW04-188B	5	188	209	220	231	1	301	1.4	10.8	
P BZW04P213	BZW04P213B	5	213	237	250	275	1	344	1.5	11	
BZW04-213	BZW04-213B	5	213	237	250	263	1	344	1.5	11	F 126
P BZW04P239	BZW04P239B	5	239	266	280	308	1	384	1.5	11 .	F 120
BZW04-239	BZW04-239B	5	239	266	280	294	1	384	1.5	11	
BZW04P256	BZW04P256B	5	256	285	300	330	1	414	1.2	11	
BZW04-256	BZW04-256B	5	256	285	300	315	1	414	1.2	11	
BZW04P273	BZW04P273B	5	273	304	320	352	1	438	1.2	11	
BZW04-273	BZW04-273B	5	273	304	320	336	1	438	1.2	11	
P BZW04P299	BZW04P299B	5	299	332	350	385	1	482	0.9	11	
BZW04-299	BZW04-299B	5	299	332	350	368	1	482	0.9	11	
BZW04P342	BZW04P342B	5	342	380	400	440	1	548	0.9	11	
BZW04-342	BZW04-342B	5	342	380	400	420	1	548	0.9	11	
BZW04P376	BZW04P376B	5	376	418	440	484	1	603	0.8	11	
BZW04-376	BZW04-376B	5	376	418	440	462	1	603	0.8	11	

600 W / 1 ms expo.

IFSM = 100 A · 10 ms for unidirectional

P P6KE 6V8P P6KE 6V8A P P6KE 7V5P P6KE 7V5A P P6KE 8V2P P6KE 8V2P P6KE 9V1P P6KE 10P P6KE 10P P6KE 11A P P6KE 12A P P6KE 13A P P6KE 13A P P6KE 15A P6KE 15A P6KE 15A P6KE 16A P6KE 16A P6KE 16B P6KE 20P P6KE 20P P6KE 20P P6KE 22P P6KE 22P P6KE 24A P P6KE 27A P P6KE 33A P P6KE 30P P6KE 30A P P6KE 30P P6KE 30A P P6KE 30A P P6KE 30P P6KE 30A P P6KE 30P P6KE 30P P6KE 36A P P6KE 36A	P P6KE 6V8CP P6KE 6V8CA P P6KE 6V8CA P P6KE 7V5CA P6KE 8V2CP P6KE 8V2CP P6KE 8V1CA P6KE 9V1CA P6KE 10CP P6KE 10CA P6KE 11CA P P6KE 12CA P P6KE 12CA P P6KE 12CA P P6KE 12CA P P6KE 13CA P P6KE 15CA P6KE 15CA P6KE 16CP P6KE 16CA P P6KE 18CA P6KE 16CP P6KE 20CA P P6KE 20CP P6KE 20CA P P6KE 33CA P P6KE 20CP P6KE 24CA P6KE 24CA P6KE 24CA P6KE 24CA P6KE 27CA P6KE 27CA P6KE 30CP P6KE 30CA P P6KE 30CA	1000 \$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$ 200 200 50 200 50 50 50 50 50 50 50 50 50	5.8 5.8 6.4 6.4 7.02 7.78 7.78 8.55 9.4 10.2 11.1 11.2 12.8 13.6 15.3 17.1 17.1 18.8 18.8 20.5 23.1 23.1 25.6 28.2 30.8 33.3 33.3 33.3	6.45 6.45 7.13 7.13 7.79 8.65 8.65 9.5 10.5 10.5 11.4 12.4 12.4 12.4 12.4 12.5 15.2 17.1 17.1 19 19 20.9 20.9 22.8 25.7 25.7 25.7 28.5 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4	6.8 6.8 7.5 7.5 8.2 9.1 9.1 10 10 11 11 12 13 13 13 15 16 16 18 20 22 22 22 24 24 27 27 27 30 33 33 36 36 39 39 39	7.48 7.14 8.25 7.88 9.02 8.61 10 9.55 11 10.5 12.1 11.6 13.2 12.6 14.3 13.7 16.5 15.8 17.6 16.8 19.8 18.9 22 21 24.2 23.1 26.4 25.2 29.7 28.4 33 31.5 36.3 34.7 39.6 37.8 42.9 41	10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1	10.5 10.5 11.3 11.3 12.1 13.4 13.4 14.5 15.6 15.6 16.7 18.2 21.2 22.5 22.5 22.5 22.5 22.5 22.7,7 30.6 30.6 33.2 37.5 37.5 41.5 41.5 45.7 49.9 49.9 53.9	57 57 53 53 50 45 45 41 41 38 38 36 33 32 28 27 24 24 22 20 20 18 16 16 16 14.5 13.1 13.1 12.1 11.1	5.7 5.7 6.1 6.1 6.5 6.8 6.8 7.3 7.5 7.5 7.8 8.1 8.1 8.4 8.6 8.8 9.0 9.2 9.2 9.4 9.6 9.7 9.8 9.9 9.9 9.9 10.0	CB-417

^{*} Pulse test $t_p \leqslant$ 50 ms $\delta <$ 2%.

 $[\]S$ For bidirectional types P6KE 6V8CP \longrightarrow P6KE 11 CA, I $_{RM}$ must be double that specified for unidirectional types.

P: Preferred device.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

	Туре	1	[®] V _{RM}	12 A	V _(BR) * (V)	@	ı _R	m	^{@ l} pp nax expo	α T max	Package
Unidirec- tional	Bidirec- tional	(μΑ)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
600 W / 1 m	is expo.					I	SM =	100 A -	10 ms fo	or unidir	ectional
P6KE 43P P6KE 43A P6KE 47P P6KE 47P P6KE 47P P6KE 51P P6KE 51P P6KE 56P P6KE 56A P6KE 62P P6KE 62P P6KE 68A P6KE 68P P6KE 75P P6KE 75P P6KE 75P P6KE 75P P6KE 100P P6KE 100P P6KE 100P P6KE 100P P6KE 110P P6KE 110P P6KE 110P P6KE 150P P6KE 160P P6KE 170P P6KE 170P P6KE 180P P6KE 180P P6KE 180P P6KE 180P P6KE 200P P6KE 300P P6KE 300P P6KE 350P P6KE 440P P6KE 440P P6KE 440P	P6KE 43CP P6KE 43CA P P6KE 47CP P6KE 47CA P6KE 51CP P6KE 51CP P6KE 56CA P6KE 56CA P6KE 62CP P6KE 68CA P6KE 68CA P6KE 75CA P6KE 75CA P6KE 82CP P6KE 82CA P6KE 91CA P6KE 100CP P6KE 110CA P6KE 110CA P6KE 110CA P6KE 110CA P6KE 110CA P6KE 110CA P6KE 170CA P6KE 120CP P6KE 150CA P6KE 120CP P6KE 150CA P6KE 120CP P6KE 120CP P6KE 150CA P6KE 200CA P6KE 200CA P6KE 200CA P6KE 200CA P6KE 250CA P6KE 250CA P6KE 350CA P6KE 350CA P6KE 350CA P6KE 40CCP P6KE 440CP P6KE 440CP	555555555555555555555555555555555555555	36.8 36.8 40.2 40.2 43.6 47.8 47.8 53 58.1 64.1 64.1 70.1 77.8 77.8 85.5 85.5 94 94 102 102 111 111 128 128 136 136 145 145 154 171 171 188 188 213 213 239 239 256 256 273 273 299 342 342 376 376	40.9 40.9 40.9 44.7 44.7 48.5 53.2 58.9 64.6 64.6 71.3 77.9 77.9 86.5 86.5 95 105 105 114 114 124 143 143 152 161 171 171 190 190 209 237 237 266 266 285 285 304 304 332 332 380 380 380 380 380 418 418	43 43 43 47 47 51 51 56 62 62 62 68 68 75 75 82 82 91 91 100 100 110 110 110 110	47.3 45.2 51.7 49.4 56.1 58.8 68.2 65.1 74.8 71.4 82.5 78.8 90.2 86.1 100 95.5 110 105 121 116 132 126 143 137 165 158 176 168 187 179 198 189 220 210 242 231 275 263 308 294 330 315 368 440 420 484 462		59.3 59.3 64.8 64.8 70.1 77 77 77 85 85 92 92 103 103 113 113 125 125 137 137 152 165 165 165 179 179 207 207 219 219 234 246 246 274 274 301 301 344 344 344 344 344 414 414 414 418 438 482 482 548 603 603 603	10.1 10.1 19.3 9.3 8.6 7.8 7.1 7.1 6.5 6.5 5.8 5.3 4.8 4.4 4.4 3.9 3.6 3.6 3.4 2.9 2.7 2.7 2.6 2.4 2.2 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.1 10.1 10.1 10.1 10.1 10.1 10.2 10.2	CB-417

700 W / 1 ms expo.

IFSM = 120 A · 10 ms for unidirectional

P7T-110 P7T-110B 5 110 130 160 200 5 235 3 10.8		P7T-10 P7T-27 P7T-43 P7T-110	P7T-10B P7T-27B P7T-43B P7T-110B	5 5 5 5	10 27 43 110	13 29.6 50 130	16 36 62 160	20 43.5 75 200	5 5 5 5	25 53 90 235	30 13 8	8.4 9.8 10.3 10.8	CB-417	
---	--	---------------------------------------	---	------------------	-----------------------	-------------------------	-----------------------	-------------------------	------------------	-----------------------	---------------	----------------------------	--------	--

^{*} Pulse test $t_p \leqslant 50 \text{ ms}$ $\delta < 2\%$.

P : Preferred device.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

Ту	ре		V _{RM}		V _(BR) *	@	IR	m	@ I _{pp} ax expo	α _T max	Package
Unidirec- tional	Bidirec- tional	(μA)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	

1.5 kW / 1 ms expo.

IFSM = 250 A · 10 ms for unidirectional

1.5 kW / 1 ms	expo.					- 1	SM =	250 A -	io ms ic	or unitair	ectional
P 1.5 KE 6V8 P 1.5 KE 6V8 A P 1.5 KE 7V5 P 1.5 KE 8V2 P 1.5 KE 8V2 P 1.5 KE 8V1 P 1.5 KE 9V1 A P 1.5 KE 10 P 1.5 KE 10 P 1.5 KE 11 A P 1.5 KE 12 A P 1.5 KE 12 A P 1.5 KE 13 P 1.5 KE 15 A P 1.5 KE 16 P 1.5 KE 16 P 1.5 KE 18 A P 1.5 KE 18 A P 1.5 KE 20 P 1.5 KE 18 A P 1.5 KE 20 P 1.5 KE 30 P 1.5 KE 47 P 1.5 KE 56 P 1.5 KE 62 P 1.5 KE 62 P 1.5 KE 62 P 1.5 KE 62 P 1.5 KE 82 P 1.5 KE 82 P 1.5 KE 82 P 1.5 KE 82 P 1.5 KE 91 A 1.5 KE 100 P 1.5 KE 110 A 1.5 KE 110 P 1.5 KE 110 P	P 1.5 KE 6V8 CP 1.5 KE 6V8 CA 1.5 KE 7V5 CP 1.5 KE 7V5 CA 1.5 KE 8V2 CP 1.5 KE 8V2 CA 1.5 KE 9V1 CP 1.5 KE 9V1 CA 1.5 KE 10 CP 1.5 KE 10 CA 1.5 KE 11 CA P 1.5 KE 12 CA 1.5 KE 12 CA 1.5 KE 13 CA 1.5 KE 15 CA 1.5 KE 16 CA P 1.5 KE 16 CA P 1.5 KE 18 CA P 1.5 KE 20 CP 1.5 KE 20 CA 1.5 KE 30 CP 1.5 KE 30 CP 1.5 KE 30 CP 1.5 KE 30 CP 1.5 KE 30 CA P 1.5 KE 30 CP 1.5 KE 30 CA P 1.5 KE 30 CP 1.5 KE 30 CA P 1.5 KE 30 CP 1.5 KE 30 CP 1.5 KE 30 CP 1.5 KE 30 CA P 1.5 KE 30 CP 1.5 KE 47 CA 1.5 KE 47 CA 1.5 KE 56 CA 1.5 KE 62 CA P 1.5 KE 82 CP 1.5 KE 91 CA 1.5 KE 91 CA 1.5 KE 91 CA 1.5 KE 100 CP 1.5 KE 110 CP	8\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$555555555555555555	5.8 5.8 6.4 6.4 7.02 7.02 7.78 7.78 8.55 8.55 9.4 10.2 10.2 11.1 12.8 13.6 15.3 17.1 17.1 18.8 20.5 20.5 23.1 25.6 28.2 28.2 28.2 30.8	6.45 6.45 7.13 7.79 7.79 8.65 8.65 9.5 10.5 10.5 11.4 11.4 12.4 14.3 14.3 15.2 17.1 17.1 19 20.9 20.9 22.8 22.8 25.7 25.7 28.5 28.5 31.4 34.2 34.2 37.1 37.1 37.1 40.9 40.9 44.7 48.5 53.2 58.9 64.6 64.6 71.3 77.9 77.9 86.5 86.5 95 105 114 114	6.8 6.8 7.5 7.5 8.2 9.1 9.1 10 10 11 11 12 13 15 16 16 18 20 20 22 24 24 27 27 30 30 33 33 36 36 39 43 47 47 47 51 56 62 62 68 68 68 75 75 82 82 91 91 100 110 110 110 110 110 110 110 1	7.48 7.14 8.25 7.88 9.02 8.61 10 9.55 11 10.5 12.1 11.6 13.2 12.6 14.3 13.7 16.5 15.8 17.6 16.8 19.8 18.9 22 21 24.2 23.1 26.4 25.2 29.7 28.4 33 31.5 36.3 34.7 39.6 37.8 42.9 41 47.3 45.2 51.7 49.4 56.1 53.6 61.6 58.8 68.2 65.1 74.8 90.2 86.1 100 105 121 116 132 126	10 10 10 10 10 10 11 1 1 1 1 1 1 1 1 1	10.5 10.5 11.3 11.3 12.1 12.1 13.4 13.4 14.5 15.6 15.6 15.6 15.6 15.6 22.1 22.5 25.2 27.7 27.7 30.6 33.2 33.2 33.2 37.5 41.5 45.7 49.9 49.9 53.9 59.3 64.8 64.8 70.1 77 77 85 85 92 103 113 113 115 125 137 137 152 152 165 165	143 143 143 143 143 132 124 124 124 112 103 103 96 90 90 82 82 71 71 67 67 65 59.5 54 49 49 45 45 40 40 36 36 33 30 28 28 25.3 23.2 21.4 21.4 19.5 19.5 17.7 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	5.7 5.7 6.1 6.1 6.5 6.8 6.8 7.3 7.5 7.8 7.8 8.1 8.4 8.6 8.8 8.8 9 9.2 9.4 9.6 9.7 9.8 9.9 9.9 10 10.1 10.1 10.1 10.1 10.2 10.3 10.3 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.6 10.7 10.7 10.7 10.7	CB-429

^{*} Pulse test $t_p \leqslant 50 \text{ ms}$ $\delta < 2 \%$.

[§] For bidirectional types 1.5 KE 6V8 CP \rightarrow 1.5 KE 11 CA, I $_{RM}$ must be double that specified for unidirectional types.

P: Preferred device.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

	Туре		^{® V} RM lax	V(BR)* @ I _R (V)			V(CL) @ I _{pp} α _T max max 1 ms expo			Package	
Unidirec- tional	Bidirec- tional	(μA)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
1.5 kW / 1 m	is expo.					I	FSM = 2	250 A - 1	10 ms fc	r unidir	ectional
1.5 KE 130 P 1.5 KE 130 A 1.5 KE 150 P 1.5 KE 150 A	P 1.5 KE 130 CP 1.5 KE 130 CA 1.5 KE 150 CP 1.5 KE 150 CA	5 5 5 5	111 111 128 128	124 124 143 143	130 130 150 150	143 137 165 158	1 1 1 1	179 179 207 207	8.4 8.4 7.2 7.2	10.7 10.7 10.8 10.8	
1.5 KE 160 P 1.5 KE 160 A P 1.5 KE 170 P 1.5 KE 170 A	1.5 KE 160 CP 1.5 KE 160 CA 1.5 KE 170 CP 1.5 KE 170 CA	5 5 5 5	136 136 145 145	152 152 161 161	160 160 170 170	176 168 187 179	1 1 1	219 219 234 234	6.8 6.8 6.4 6.4	10.8 10.8 10.8 10.8	
P 1.5 KE 180 P 1.5 KE 180 A P 1.5 KE 200 P 1.5 KE 200 A	P 1.5 KE 180 CP 1.5 KE 180 CA P 1.5 KE 200 CP 1.5 KE 200 CA	5 5 5 5	154 154 171	171 171 190 190	180 180 200 200	198 189 220 210	1 1 1 1	246 246 274 274	6.1 6.1 5.5 5.5	10.8 10.8 10.8 10.8	

1.5 KE 220 P P 1.5 KE 220 CP 4.6 10.8 1.5 KE 220 A 1.5 KE 220 CA 4.6 10.8 CB-429 P 1.5 KE 250 P P 1.5 KE 250 CP 5.0 1.5 KE 250 A 5 5 5 1.5 KE 250 CA 5.0 y 1.5 KE 280 P 1.5 KE 280 CP 5.0 1.5 KE 280 A 1.5 KE 280 CA 5.0 P 1.5 KE 300 P P 1.5 KE 300 CP 5.0 1.5 KE 300 A 1.5 KE 300 CA 5.0 1.5 KE 320 P 1.5 KE 320 CP 4.5 1.5 KE 320 A 1.5 KE 320 CA 4.5 **P** 1.5 KE 350 P P 1.5 KE 350 CP 4.0 1.5 KE 350 A 1.5 KE 350 CA 4.0 P 1.5 KE 400 P P 1.5 KE 400 CP 4.0 1.5 KE 400 A 4.0 1.5 KE 400 CA P 1.5 KE 440 P P 1.5 KE 440 CP 3.5

1.5 kW / 1 ms expo.

1.5 KE 440 A

1.5 KE 440 CA

$IFSM = 250 A \cdot 10 ms$

3.5

	+	 									
1N 5634		5	8.92	9.9	11	12.1	1	16.2	93	7.5	
1N 5634 A		5	9.4	10.5	11	11.6	1	15.6	96	7.5	
1N 5635		5	9.72	10.8	12	13.2	. 1	17.3	87	7.8	1
1N 5635 A		5	10.2	11.4	12	12.6	1	16.7	90	7.8	1
1N 5636		5	10.5	11.7	13	14.3	1	19	79	8.1	
1N 5636 A		5	11.1	12.4	13	13.7	1	18.2	82	8.1	
1N 5637		5	12.1	13.5	15	16.5	1	22	68	8.4	
1N 5637 A		5	12.8	14.3	15	15.8	1	21.2	71	8.4	1
1N 5638		5	12.9	14.4	16	17.6	1	23.5	64	8.6	
1N 5638 A		5	13.6	15.2	16	16.8	1 .	22.5	67	8.6	
1N 5639		5	14.5	16.2	18	19.8	1	26.5	56.5	8.8	
1N 5639 A		5	15.3	17.1	18	18.9	1	25.2	59.5	8.8	
1N 5640		5	16.2	18	20	22	1	29.1	51.5	9	
1N 5640 A		5	17.1	19	20	21	1	27.7	54	9	DO 13
1N 5641		- 5	17.8	19.8	22	24.2	1	31.9	47	9.2	DO 13
1N 5641 A		5	18.8	20.9	22	23.1	1	30.6	49	9.2	
1N 5642		5	19.4	21.6	24	26.4	1	34.7	43	9.4	
1N 5642 A		5	20.5	22.8	24	25.2	1	33.2	45	9.4	
1N 5643		5	21.8	24.3	27	29.7	- 1	39.1	38.5	9.6	
1N 5643 A		5	23.1	25.7	27	28.4	1	37.5	40	9.6	
1N 5644		5	24.3	27	30	33	1	43.5	34.5	9.7	
1N 5644 A		5	25.6	28.5	30	31.5	1	41.4	36	9.7	
1N 5645		5	26.8	29.7	33	36.3	1	47.7	31.5	9.8	
1N 5645 A		5	28.2	31.4	33	34.7	1	45.7	33	9.8	
1N 5646		5	29.1	32.4	36	39.6	1	52	29	9.9	1
1N 5646 A		5	30.8	34.2	36	37.8	1	49.9	30	9.9	
1N 5647		5 -	31.6	35.1	39	42.9	1	56.4	26.5	10	
1N 5647 A		5	33.3	37.1	39	41	1	53.9	28	10	
					L		L		L	L	L

^{*} Pulse test $t_p \leqslant$ 50 ms $\delta < 2\%$.

P: Preferred device.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

7, 1184	Туре	1	^{® V} RM ax		V _(BR) *	@ I _R		V _(CL) @ I _{pp} max 1 ms expo		α _T max	Package
Unidirec- tional			(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	

1.5 kW / 1 ms expo.

IFSM = 250 A · 10 ms for unidirectional

1N 5648 1N 5648 A							1	1	I		
		_	040	00.7	40	47.0		01.0	- 04	10.1	
		5	34.8	38.7	43	47.3	1	61.9	24	10.1	
		5	36.8	40.9	43	45.2	1	59.3	25.3	10.1	
1N 5649		5	38.1	42.3	47	51.7	1	67.8	22.2	10.1	
1N 5649 A		5	40.2	44.7	47	49.4	1	64.8	23.2	10.1	
1N 5650		5	41.3	45.9	51	56.1	1	73.5	20.4	10.2	7.0
1N 5650 A		5	43.6	48.5	51	53.6	1	70.1	21.4	10.2	
1N 5651		5 5	45.4	50.4	56	61.6	1	80.5	18.6	10.3	
1N 5651 A			47.8	53.2	56	58.8]	77	19.5	10.3	
1N 5652		5	50.2	55.8	62	68.2		89	16.9	10.4	
1N 5652 A		5	53	58.9	62	65.1		85	17.7	10.4	2.0
1N 5653		5	55.1	61.2	68	74.8		98	15.3	10.4	
1N 5653 A		5	58.1	64.6	68	71.4	1	92	16.3	10.4	
1N 5654		5	60.7	67.5	75	82.5	1	108	13.9	10.5	
1N 5654 A		5	64.1	71.3	75	78.8	1	103	14.6	10.5	
1N 5655		5	66.4	73.8	82	90.2	1	118	12.7	10.5	
1N 5655 A		5	70.1	77.9	82	86.1	1	113	13.3	10.5	
1N 5656		5	73.7	81.9	91	100	1	131	11.4	10.6	, I
1N 5656 A		5	77.8	86.5	91	95.5	1	125	12	10.6	DO 13
1N 5657		5	81	90	100	110	1 -	144	10.4	10.6	00 10
1N 5657 A	-	5	85.5	95	100	105	1	137	11	10.6	
1N 5658		5	89.2	99	110	121	1	158	9.5	10.7	
1N 5658 A		5	94	105	110	116	1	152	9.9	10.7	
1N 5659		5	97.2	108	120	132	1 .	173	8.7	10.7	
1N 5659 A		5	102	114	120	126	1	165	9.1	10.7	
1N 5660		5	105	117	130	143	1	187	8	10.7	
1N 5660 A		5	111	124	130	137	1	179	8.4	10.7	
1N 5661		5	121	135	150	165	1	215	7	10.8	
1N 5661 A		5	128	143	150	158	1 .	207	7.2	10.8	
1N 5662		5	130	144	160	176	1	230	6.5	10.8	
1N 5662 A		5	136	152	160	168	1	219	6.8	10.8	
1N 5663		5	138	153	170	187	1.	244	6.2	10.8	
1N 5663 A		5	145	161	170	179	1	234	6.4	10.8	
1N 5664	,	5	146	162	180	198	- 1	258	5.8	10.8	
1N 5664 A		5	154	171	180	189	1	246	6.1	10.8	
1N 5665		5	162	180	200	220	1	287	5.2	10.8	
1N 5665 A		5	171	190	200	210	1	274	5.5	10.8	

1.5 kW / 1 ms expo.

1N 6040	10	8.5	9.9	11	12.1	1	16.2	93	7.5	
1N 6040 A	10	9.0	10.5	11	11.6	1	15.6	96	7.5	1
1N 6041	5	9.0	10.8	12	13.2	1	17.3	87	7.8	1
1N 6041 A	5	10.0	11.4	12	12.6	1	16.7	90	7.8	1
1N 6042	5	10.0	11.7	13	14.3	1	19	79	8.1	
1N 6042 A	5	11.0	12.4	13	13.7	1 :	18.2	82	8.1	
1N 6043	5	11.0	13.5	15	16.7	1	22	68	8.4	
1N 6043 A	5	12.0	14.3	15	15.8	1	21.2	71	8.4	1
1N 6044	5	12.0	14.4	16	17.6	1	23.5	64	8.6	
1N 6044 A	5	13.0	15.2	16	16.8	1 :	22.5	67	8.6	
1N 6045	5	14.0	16.2	18	19.8	1	26.5	56.5	8.8	DO 10
1N 6045 A	5	15.0	17.1	18	18.9	1	25.2	59.5	8.8	DO 13
1N 6046	5	16,0	18	20	22	1	29.1	51.5	9	
1N 6046 A	5	17.0	19	20	21	1	27.7	54	9	
1N 6047	5	17.0	19.8	22	24.2	1	31.9	47	9.2	
1N 6047 A	5	18.0	20.9	22	23.1	1	30.6	49	9.2	
1N 6048	5	19.0	21.6	24	26.4	1	34.7	43	9.4	
1N 6048 A	5	20.0	22.8	24	25.2	1	33.2	45	9.4	
1N 6049	5	21.0	24.3	27	29.7	1	39.1	⋅38.5	9.6	
1N 6049 A	5	22.0	25.7	27	28.4	1	37.5	40	9.6	
1N 6050	5	24.0	27	30	33	1	43.5	34.5	9.7	
1N 6050 A	5	25.0	28.5	30	31.5	1	41.4	36	9.7	

^{*} Pulse test $t_p \leqslant 50 \text{ ms} \qquad \delta < 2\%.$

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

Ту	Туре		I _{RM} @ V _{RM} max		V _(BR) * (V)			V _(CL) @ I _{pp} max 1 ms expo		α _T max	Package
Unidirec- tional			(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	

1.5 kW / 1 ms expo.

1.5 KW / 1	ms expo.										
	1N 6051	5	26.0	29.7	33	36.3	1	47.7	31.5	9.8	
8.11.59	1N 6051 A	5	28.0	31.4	33	34.7	1	45.7	33	9.8	
	1N 6052	5	29.0	32.4	36	39.6	1	52	29	9.9	
	1N 6052 A	5	30.0	34.2	36	37.8	1	49.9	30	9.9	
	1N 6053	5	31.0	35.1	39	42.9	1	56.4	26.5	10	
	1N 6053 A	5	33.0	37.1	39	41	1	53.9	28	10	
	1N 6054	5	34.0	38.7	43	47.3	1	61.9	24	10.1	
	1N 6054 A	5	36.0	40.9	43	45.2	1	59.3	25.3	10.1	
	1N 6055	5	38.0	42.3	47	51.7	1	67.8	22.2	10.1	
	1N 6055 A	5	40.0	44.7	47	49.4	1	64.8	23.2	10.1	
	1N 6056	5	41.0	45.9	51	56.1	1 .	73.5	20.4	10.2	
	1N 6056 A		43.0	48.5	51	53.6	1	70.1	21.4	10.2	
	1N 6057	5	45.0	50.4	56	61.6	1	80.5	18.6	10.3	
	1N 6057 A	5	47.0	53.2	56	58.8	1	77	19.5	10.3	
	1N 6058	5	48.0	55.8	62	68.2	1	89	16.9	10.4	
	1N 6058 A	5	53.0	58.9	62	65.1	1	85	17.7	10.4	
	1N 6059	5	55.0	61.2	68	74.8	1	98	15.3	10.4 9	
	1N 6059 A	5	58.0	64.6	68	71.4	1	, 92	16.3	10.4	
	1N 6060	5	60,0	67,5	75	82,5	1	108	13.9	10.5	
	1N 6060 A	5	64,0	71,3	75	78,8	1	103	14.6	10.5	
	1N 6061	5	66,0	73,8	82	90,2	1	118	12.7	10.5	
	1N 6061 A	5	70,0	77,9 81,9	82	86,1	1 1	113	13.3	10.5	DO 13
	1N 6062	5 5	73,0		91	100,1		131 125	11.4	10.6	2000
	1N 6062 A 1N 6063	5	75,0 81,0	86,5 90	91 100	95,5 110	1	144	12 10.4	10.6	
	1N 6063 A	5	82,0	95	100	105	1			10.6	
	1N 6064	5	90,0	99	110	121	1	137 158	11 9.5	10.6 10.7	
	1N 6064 A	5	94,0	105	110	116	1	152	9.5	10.7	
	1N 6065	5	95.0	108	120	132	1	176	8.5	10.7	
	1N 6065 A	5	100	114	120	126	1	168	8.9	10.7	
	1N 6066	5	105	117	130	143	1	191	7.8	10.7	
	1N 6066 A	5	110	124	130	137	l i	182	8.2	10.7	
	1N 6067	5	121	135	150	165	l i	223	6.7	10.8	
	1N 6067 A	5	128	143	150	158	1 1	213	7.0	10.8	
	1N 6068	5	137	153	170	187	1	258	5.8	10.8	
	1N 6068 A	5	145	162	170	179	1 1	245	6.1	10.8	1
	1N 6069	5	145	162	180	198	1	274	5.5	10.8	
	1N 6069 A	5	150	171	180	189	1	261	5.7	10.8	
	1N 6070	5	155	171	190	210	1	292	5.1	10.8	
	1N 6070 A	5	160	181	190	200	1	278	5.4	10.8	
	1N 6071	5	165	180	200	220	1	308	4.9	10.8	
	1N 6071 A	5	170	190	200	210	1	294	5.1	10.8	
	1N 6072	5	175	198	220	242	1	344	4.3	10.8	
	1N 6072 A	5	185	209	220	231	1	328	4.6	10.8	

5 kW / 1 ms expo.

IFSM = 500 A · 10 ms for unidirectional

^{*} Pulse test $t_p \leqslant 50 \; \text{ms} \qquad \delta < 2\%.$

5 VOLT TRANSIENT VOLTAGE SUPPRESSOR «TRANSIL» FOR MICROPROCESSOR, INTEGRATED CIRCUIT C-MOS, MOS PROTECTION

Unidirectional type	IRM @ VRM max			V _(BR) * @ I _R min		V _(CL) @ I _{pp} max 1 ms expo		V _(CL) @ I _{pp} max 1 ms expo		@ I _{pp} ax expo	α _T max	Package
	(μA)	(V)	(V)	(mA)	(V)	(A)	(V)	(A)	(V)	(A)	(10 ⁻⁴ /°C)	

1.5 KW / 1 ms expo.

IFSM =	250	Α -	10	ms
--------	-----	-----	----	----

P 1N 5908 300 5 6.0 1 7.6 30	8.0 60 8.5	120 5.7 CB-429

^{*} Pulse test $t_p \leqslant$ 50 ms $\delta < 2\%$.

TRANSIL ARRAY

Туре	I _{RM} @		V _{BR} @ I _R min		V _{CL} @ I _{pp} max 8-20 μs expo		ESD expo (1)	C max (2)	Package
	(μ A)	(V)	(V)	(mA)	(V)	(A)	(kV)	(pF)	
TH6P04T6V5CL TH6P04T25CL	50	6 24	6.5 25	1 1	12 38	40 40	25 25	500 300	20 pin DILP

⁽¹⁾ MIL STD 883C — Method 3015-2.

P : Preferred device.

⁽²⁾ Input capacitance: Input pin to ground at 5V bias.

HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES

VRRM	175,000 1	50,	100,	150,	200 V	trr	max	35	ns

Туре	Io	V _{RRM}	IFSM 10 ms	V _F	IF 00°C	I _R /V _{RRM} T _j 100°C max	t _{rr} (1) max	Package
	(A)	(V)	(A)	(V)	(A)	(mA)	(ns)	
BYW 100- 50 BYW 100-100 BYW 100-150 BYW 100-200	1.5	50 100 150 200	50	0.85	1.5	0.5	35 See note 1	F 126
BYW 98- 50 BYW 98-100 BYW 98-150 BYW 98-200	3	50 100 150 200	70	0.85	3	1	35 See note 1	DO 27 A
BYW 29- 50 A BYW 29-100 A BYW 29-150 A BYW 29-200 A	8	50 100 150 200	80	0.85	5	0.6	35	DO 220
BYW 80- 50 A BYW 80-100 A BYW 80-150 A BYW 80-200 A	8	50 100 150 200	100	0.85	7	1	35	DO 220
BYW 80PI- 50 BYW 80PI-100 BYW 80PI-150 BYW 80PI-200	8	50 100 150 200	100	0.85	7	1	35	DO 220 I
BYW 81- 50, (R) BYW 81-100, (R) BYW 81-150, (R) BYW 81-200, (R)	15	50 100 150 200	200	0.85	12	1.5	35	DO 4 (2)
BYW 81P- 50 A BYW 81P-100 A BYW 81P-150 A BYW 81P-200 A	15	50 100 150 200	200	0.85	12	1.5	35	DO 220
BYW 81PI- 50 BYW 81PI-100 BYW 81PI-150 BYW 81PI-200	15	50 100 150 200	200	0.85	12	1.5	35	DO 2201

⁽¹⁾ $I_F = 1 \text{ A} \quad V_R = 30 \text{ V} \quad di_F/dt = -50 \text{A/}\mu\text{s} \quad I_{rr} = 0.2 I_{RM}$

Type number: cathode to case.

Type number + suffix R: anode to case.

Note 1 : $t_{\Gamma\Gamma} = 25 \text{ ns @ } I_{F} = 0.5 \text{ A} \quad di_{F}/dt = 100 \text{ A}/\mu\text{s}$ $I_{R} = 1 \text{ A} \quad I_{\Gamma\Gamma} = 0.25 \text{ A}.$

^{(2) 10-32} UNF - M5 thread available on request \rightarrow Type number + suffix M.

HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES (Continued)

 $V_{RRM} = 50, 100, 150, 200 V$

t_{rr} max 35...80 ns

Туре	I _O	V _{RRM}	IFSM 10 ms	V _F / T _j 10 m:	00°C	IR/VRRM T _j 100°C max (mA)	t _{rr} (1) max (ns)	Package
BYW 51- 50 A BYW 51-100 A BYW 51-150 A BYW 51-200 A	20 (2 × 10)	50 100 150 200	100	0.89	8	1	35	TO 220
BYW 77- 50, (R) BYW 77-100, (R) BYW 77-150, (R) BYW 77-200, (R)	25	50 100 150 200	500	0.85	20	2.5	50	DO 4 (2)
BYW 77P- 50 BYW 77P-100 BYW 77P-150 BYW 77P-200	25	50 100 150 200	500	0.85	20	2.5	50	DOP 3
BYW 77PI- 50 BYW 77PI-100 BYW 77PI-150 BYW 77PI-200	25	50 100 150 200	500	0.85	20	2.5	50	DOP 3I
BYW 99P- 50 BYW 99P-100 BYW 99P-150 BYW 99P-200	30 (2 × 15)	50 100 150 200	200	0.85	12	1.5	35	TOP 3
BYW 99PI- 50 BYW 99PI-100 BYW 99PI-150 BYW 99PI-200	30 (2 × 15)	50 100 150 200	200	0.85	12	1.5	35	TOP 3I
BYW 92- 50, (R) BYW 92-100, (R) BYW 92-150, (R) BYW 92-200, (R)	35	50 100 150 200	500	0.92	35	5	50	DO 5 (3)
BYW 78- 50, (R) BYW 78-100, (R) BYW 78-150, (R) BYW 78-200, (R)	50	50 100 150 200	1500	0.85	50	5	60	DO 5 (3)
BYV 52 PI- 50 BYV 52 PI-100 BYV 52 PI-150 BYV 52 PI-200	60 (2 × 30)	50 100 150 200	500	0.9	30	2.5	50	TOP 3I
BYV 52- 50 BYV 52-100 BYV 52-150 BYV 52-200	60 (2 × 30)	50 100 150 200	500	0.9	30	2.5	50	TOP 3
BYW 08- 50, (R) BYW 08-100, (R) BYW 08-150, (R) BYW 08-200, (R)	80	50 100 150 200	1500	0.92	80	5	60	DO 5 (3)
BYV 54(V)- 50 BYV 54(V)-100 BYV 54(V)-150 BYV 54(V)-200	100 (2 × 50)	50 100 150 200	800	0.85	50	5	60	ISOTOP See note 1
BYV 255(V)- 50 BYV 255(V)-100 BYV 255(V)-150 BYV 255(V)-200	200 (2 × 100)	50 100 150 200	1600	0.75 0.85 1.40	50 100 500	10	80	ISOTOP See note 1

Type number + suffix R: anode to case.

⁽¹⁾ $I_F = 1 \text{ A} \quad V_R = 30 \text{ V} \quad \text{dig/dt} = -50 \text{ A/}\mu\text{s} \quad I_{rr} = 0.2 I_{RM}.$

^{(2) 10-32} UNF - M5 thread available on request \rightarrow Type number + suffix M.

^{(3) 1/4&}quot;-28 UNF - M6 thread available on request → Type number + suffix M. Type number: cathode to case.

Note 1 : BYV 54 → ISOTOP (Faston version).

BYV 54V → ISOTOP V (Screw version).

«SUPERSWITCH 2» ULTRA-FAST RECOVERY RECTIFIER DIODES < 100 A

VRRM = 200, 300, 400 V t_{rr} max 25...50 ns

Туре	I _O	V _{RRM}	IFSM 10 ms		/ I _F	I _R /V _{RRM} $T_{j} = 100^{\circ}C$ max (mA)	t _{rr} (1) max (ns)	tIRM T _j = 100°C max (ns)	I _{RM} T _j = 100°C max (A)	Package
BYT 01-200 BYT 01-300 BYT 01-400	, 1	200 300 400	30	1.5	1	0.5	25	50	2	F 126
BYT 03-200 BYT 03-300 BYT 03-400	3	200 300 400	60	1.5	3	0.5	25	50	2	DO 27 A
BYT 08P-200 A BYT 08P-300 A BYT 08P-400 A	8	200 300 400	100	1.5	8	2.5	35	75	2.2	DO 220
BYT 08PI-200 BYT 08PI-300 BYT 08PI-400	8	200 300 400	100	1.5	8	2.5	35	75	2.2	DO 220 I
BYT 12-200, (R) BYT 12-300, (R) BYT 12-400, (R)	12	200 300 400	200	1.5	12	2.5	50	75	3.75	DO 4 (2)
BYT 16P-200 BYT 16P-300 BYT 16P-400	16 (2 × 8)	200 300 400	100	1.5	8	2.5	35	75	2.2	TO 220
BYT 30PI-200 BYT 30PI-300 BYT 30PI-400	. 30	200 300 400	350	1.5	30	6	50	75	9	DOP 31
BYT 30P-200 BYT 30P-300 BYT 30P-400	30	200 300 400	350	1.5	30	6	50	75	9	DOP 3
BYT 30-200, (R) BYT 30-300, (R) BYT 30-400, (R)	30	200 300 400	500	1.5	30	6	50	75	9	DO 5 (3)
BYT 230PI(V)-200 BYT 230PI(V)-300 BYT 230PI(V)-400	60 (2 × 30)	200 300 400	350	1.5	30	6	50 -	75	9	ISOTOP See note 1
BYT 60P-200 BYT 60P-300 BYT 60P-400	60	200 300 400	550	1.5	60	10	50	75	18	DOP 3
BYT 60-200, (R) BYT 60-300, (R) BYT 60-400, (R)	60	200 300 400	800	1.5	60	10	50	75	18	DO 5 (3)
BYT 261PI(V)-400	120 (2 × 60)	400	600	1.4	60	6	50	75	18	ISOTOP See note 1

⁽¹⁾ $I_{\mbox{\scriptsize F}}=0.5~\mbox{\scriptsize A}~~I_{\mbox{\scriptsize R}}=1~\mbox{\scriptsize A}~~I_{\mbox{\scriptsize rr}}=0.25~\mbox{\scriptsize A}.$

Type number : cathode to case. Type number + suffix R : anode to case.

^{(2) 10-32} UNF : M5 thread available on request \longrightarrow Type number + suffix M.

^{(3) 1/4&}quot;-28 UNF: M6 thread available on request → Type number + suffix M.

Note 1 : BYT 230PI → ISOTOP (Faston version).
BYT 230PIV→ISOTOP V (Screw version).

«SUPERSWITCH 2» ULTRA-FAST RECOVERY RECTIFIER DIODES < 100 A

 $V_{RRM} = 600,800 V \qquad t_{rr} \leqslant 65 \text{ ns}$

	Туре	Io	V _{RRM}	IFSM 10 ms	V _F /	-	I _R /V _{RRM} T _j = 100°C	t _{rr} (1)	t _{IRM} T _j = 100°C	I _{RM} T _j = 100°C	Package
		(A)	(V)	(A)	(V)	(A)	max (mA)	max (ns)	max (ns)	max (A)	
N N	BYT 08P-600 BYT 08P-800	8	600 800	50	1.8	8	2	50	160	4	DO 220
N N	BYT 08PI-600 BYT 08PI-800	8	600 800	50	1.8	8	2	50	160	4	DO 220 I
	BYT 12PI-600 BYT 12PI-800	12	600 800	75	1.9	12	2.5	50	160	6	DO 220 I
	BYT 12P-600 A BYT 12P-800 A	12	600 800	75	1.9	12	2.5	50	160	6	DO 220
	BYT 12-600 BYT 12-800	12	600 800	75	1.9	12	2.5	50	160	6	DO 4 (2)
	BYT 30P-600 BYT 30P-800	30	600 800	200	1.9	30	5	55	160	15	DOP 3
	BYT 30PI-600 BYT 30PI-800	30	600 800	200	1.9	30	5	55	160	15	DOP 3I
	BYT 30-600 BYT 30-800	30	600 800	200	1.9	30	5	55	160	.15	DO 5 (3)
N N	BYT 60-600 BYT 60-800	60	600 800	400	1.8	60	6	65	160	30	DO 5 (3)
	BYT 230PI(V)-600 BYT 230PI(V)-800	60 2 × 30	600 800	200	1.9	30	5	55	160	15	ISOTOP See note 1
N	BYT 261PI(V)-600 BYT 261PI(V)-800	120 (2 × 60)	600 800	400	1.8	60	6	65	160	30	ISOTOP See note 1

⁽¹⁾ $I_F = 0.5 \, A$ $I_R = 1 \, A$ $I_{rr} = 0.25 \, A$.

Note 1 : BYT 230PI → ISOTOP (Faston version).
BYT 230PIV → ISOTOP V (Screw version).

^{(2) 10-32} UNF - M5 thread available on request \rightarrow Type number + suffix M.

⁽³⁾ 1/4''-28 UNF - M6 thread available on request \rightarrow Type number + suffix M.

«SUPERSWITCH 2» ULTRA-FAST RECOVERY RECTIFIER DIODES < 100 A

 $V_{RRM} = 1000, 1200 \text{ V}$ $t_{rr} \leqslant 70 \text{ ns}$

	Туре	IO	V _{RRM}	IFSM 10 ms	V _F /		I _R /V _{RRM} T _j = 100°C max	t _{rr} (1)	tIRM T _j = 100°C max	T _j = 100°C	Package
	*	(A)	(V)	(A)	(V)	(A)	(mA)	(ns)	(ns)	(A)	
N	BYT 08P-1000	8	1000	50	1.8	8	2	65	200	5.2	DO 220
N	BYT 08PI-1000	8	1000	50	1.8	8	2	65	200	5.2	DO 220 I
	BYT 12-1000	12	1000	75	1.9	12	2.5	65	200	7.8	DO 4 (2)
	BYT 12P-1000 A	12	1000	75	1.9	12	2.5	65	200	7.8	DO 220
	BYT 12PI-1000	12	1000	75	1.9	12	2.5	65	200	7.8	DO 220 I
	BYT 30-1000	30	1000	200	1.9	30	5	70	200	19.5	DO 5 (3)
	BYT 30P-1000	30	1000	200	1.9	30	5	70	200	19.5	DOP 3
	BYT 30PI-1000	30	1000	200	1.9	30	5	70	200	19.5	DOP 3I
N	BYT 60-1000	60	1000	400	1.8	60	6	70	290	40	DO 5
	BYT 230PI(V)-1000	60 (2 × 30)	1000	200	1.9	30	5	70	200	19.5	ISOTOP See note 1
N	BYT 230PI(V)-1200	60 (2 × 30)	1200	200	1.8	30	5	70	200	20	ISOTOP See note 1
N	BYT 261PI(V)-1000	120 (2 × 60)	1000	400	1.8	60	6	70	200	40	ISOTOP See note 1

⁽¹⁾ $I_F = 0.5 A$ $I_R = 1 A$ $I_{rr} = 0.25 A$.

Note 1 : BYT 230PI → ISOTOP (Faston version).
BYT 230PIV → ISOTOP V (Screw version).

^{(2) 10-32} UNF - M5 thread available on request → Type number + suffix M.

^{(3) 1/4&}quot;-28 UNF - M6 thread available on request → Type number + suffix M.

FAST RECOVERY RECTIFIER DIODES < 100 A

Туре	I _O	V _{RRM}	IFSM 10 ms	V _F m (V)	/ I _F	I _R /V _{RRM} max (mA)	t _{rr} max (ns)	t _{rr} @ I _F = 0.5 A I _R = 1 A (ns)	Package
PLQ 08 PLQ 1	1	80 100	20	1.1	í	0.5 T _{amb} = 100°C	50 (1)	35	F 126
BYT 11-600 BYT 11-800 BYT 11-1000	1	600 800 1000	35	1.3	1	0.02	_	100	F 126
PFR 305 PFR 310	3	50 100	135	1.0	3	0.01	_	50	DO 27 A
PFR 850 PFR 851 PFR 852 PFR 854 PFR 856	3	50 100 200 400 600	150	1.25	3	0.01	150 (2) 150 (2) 150 (2) 150 (2) 200 (2)	75	DO 27 A
BYT 13-600 BYT 13-800 BYT 13-1000	3	600 800 1000	100	1.3	3	0.02	150 (3)	150	DO 27 A

⁽¹⁾ $I_F = 1 \text{ A} - V_R = 30 \text{ V} - \text{dig/dt} = -50 \text{ A/µs} - I_{ff} = 0.2 I_{RM}$. (2) $I_F = 1 \text{ A} - V_R = 30 \text{ V} - \text{dig/dt} = -25 \text{ A/µs} - I_{ff} = 0.2 I_{RM}$.

⁽³⁾ $I_F = 0.5 A - I_R = 1 A - I_{rr} = 0.25 A$.

Туре	I _O	V _{RRM}	IFSM 10 ms (A)	V _F	/ I _F max (A)	IR/VRRM T _j = 100°C max (mA)	t _{rr} (1) max (ns)	Package
BYT 71-100 A BYT 71-400 A BYT 71-600 A BYT 71-800 A	6	100 400 600 800	90	1.4	6	1	300	DO 220
1N 3879, (R) 1N 3880, (R) 1N 3881, (R) 1N 3882, (R) 1N 3883, (R)	6	50 100 200 300 400	150	1.4	6	1	200	DO 4*
BY 233-200 A BY 233-400 A BY 233-600 A	8	200 400 600	100	1.5	8	1	150	DO 220
ESM 765-100 A ESM 765-200 A ESM 765-400 A ESM 765-600 A ESM 765-800 A	10	100 200 400 600 800	120	1,4	10	1	300	DO 220

⁽¹⁾ $I_F = 1 \text{ A V}_R = 30 \text{ V di}_F/\text{dt} = -15 \text{ A}/\mu\text{s} - I_{rr} = 0.2 I_{RM}$

Type number: cathode to case.

Type number + suffix R: anode to case.

^{* 10-32} UNF - M5 thread available on request \longrightarrow Type number + suffix M.

FAST RECOVERY RECTIFIER DIODES < 100 A (Continued)

Туре	I _O	V _{RRM}	IFSM 10 ms	.,	/ I _F nax (A)	IR/VRRM T _j = 100°C max (mA)	t _{rr} (1) max (ns)	Package
ESM 765PI-600 ESM 765PI-800	10	600 800	120	1.4	10	1	300	DO 220 I
BYX 61- 50, (R) BYX 61-100, (R) BYX 61-200, (R) BYX 61-300, (R) BYX 61-400, (R)	12	50 100 200 300 400	150	1.5	12	3	100	DO 4*
1N 3889, (R) 1N 3890, (R) 1N 3891, (R) 1N 3891, (R) 1N 3892, (R) 1N 3893, (R) BYX 62-600, (R)	12	50 100 200 300 400 600	150	1.4	12	. 3	200	DO 4*
1N 3899, (R) 1N 3900, (R) 1N 3901, (R) 1N 3902, (R) 1N 3903, (R) BYX 63-600, (R)	20	50 100 200 300 400 600	225	1.4	20	6	200	DO 5**
BYX 65- 50, (R) BYX 65-100, (R) BYX 65-200, (R) BYX 65-300, (R) BYX 65-400, (R)	30	50 100 200 300 400	300	1.5	30	10	100	DO 5**
1N 3909, (R) 1N 3910, (R) 1N 3911, (R) 1N 3912, (R) 1N 3913, (R) BYX 64-600, (R)	30	50 100 200 300 400 600	300	1.4	30	6	200	DO 5**
ESM 243- 50, (R) ESM 243-100, (R) ESM 243-200, (R) ESM 243-300, (R) ESM 243-400, (R)	60	50 100 200 300 400	800	1.5	60	10	100	DO 5***
ESM 244- 50, (R) ESM 244-100, (R) ESM 244-200, (R) ESM 244-300, (R) ESM 244-400, (R) ESM 244-500, (R) ESM 244-600, (R)	60	50 100 200 300 400 500 600	800	1.5	60	6	200	DO 5***

⁽¹⁾ $I_F = 1 \text{ A V}_R = 30 \text{ V di}_F/\text{dt} = -15 \text{ A}/\mu\text{s} - I_{rr} = 0.2 I_{RM}$

Type number : cathode to case.

Type number + suffix R: anode to case.

 ^{* 10-32} UNF - M5 thread available on request → Type number + suffix M.
 ** 1/4"-28 UNF - M6 thread available on request → Type number + suffix M.

^{***} M6 thread.

RECTIFIER DIODES

RECTIFIER DIODES < 100 A

Туре	10	V _{RRM}	FSM 10 ms	V _F	/ I _F	I _R @ V _{RRM} max	/ T _{amb}	Package
	(A)	(V)	(A)	(V)	(A)	(mA)	(°C)	*\\
BY 214- 50 BY 214-100 BY 214-200 BY 214-400 BY 214-600 BY 214-800 (1) BY 214-1000 (1)	6	50 100 200 400 600 800 1000	400	1.2	20	0.25	100	AG
1N 1341 B, (R) 1N 1342 B, (R) 1N 1344 B, (R) 1N 1345 B, (R) 1N 1346 B, (R) 1N 1347 B, (R) 1N 1348 B, (R) 1N 3988, (R) 1N 3990, (R)	6	50 100 200 300 400 500 600 800 1000	200	1.2	20	0.5	150	DO 4*
BY 239-200 A BY 239-400 A BY 239-600 A BY 239-800 A	10	200 400 600 800	140	1.45	30	0.5	125	DO 220
BYW 88- 50, (R) BYW 88- 100, (R) BYW 88- 200, (R) BYW 88- 300, (R) BYW 88- 400, (R) BYW 88- 500, (R) BYW 88- 600, (R) BYW 88- 800, (R) BYW 88- 800, (R)	12	50 100 200 300 400 500 600 800 1000	230	1.25	35	3	125	DO 4*
1N 248 B, (R) 1N 249 B, (R) 1N 250 B, (R) 1N 1195 A, (R) 1N 1196 A, (R) 1N 1197 A, (R) 1N 1198 A, (R) RN 820, (R) RN 1120, (R)	20	50 100 200 300 400 500 600 800 1000	450	1.5	70	5	150	DO 5**
1N 1183, (R) 1N 1184, (R) 1N 1186, (R) 1N 1187, (R) 1N 1189, (R) 1N 1189, (R) 1N 1190, (R) 1N 3766, (R) 1N 3768, (R)	40	50 100 200 300 400 500 600 800 1000	700	1.5	110	5	150	DO 5**
DRA 402 DRA 404 DRA 406 DRA 408 DRA 410	40	200 400 600 800 1000	800	1.5	120	- 1	125	CB-414

^{* 10-32} UNF - M5 thread available on request \longrightarrow Type number + suffix M.

Type number + cathode to case.

Type number + suffix R: anode to case.

^{** 1/4&#}x27;'-28 UNF - M6 thread available on request \longrightarrow Type number + suffix M.

^{(1) 800} V / 1000 V : on request.

UL HOMOLOGATION PRODUCTS

Case			
e	TO 220 AB	TOP 3	RD 91
THYRISTORS	TXN 054 → 1004 TXN 056 → 1006 TXN 058 → 1008,G,K TXN 0510 → 1010 TXN 0512 → 1012	BTW 68-200 → 1200 BTW 69-200 → 1200	BTW 66-200 → 1200 BTW 67-200 → 1200
		Logic level triacs	
	BTA 06-200→800 SW BTA 06-200→800 TW BTA 08-200→800 SW BTA 08-200→800 TW		
		Snubberless triacs	
	BTA 06-200→800 AW,BW,CW ★ BTA 08-200→800 AW,BW,CW ★ BTA 10-200→800 AW,BW,CW BTA 12-200→800 AW,BW,CW BTA 16-200→800 AW,BW,CW		
		Sensitive gate triacs	
TRIACS	BTA 04-200 → 800 A,D,S,T BTA 06-200 → 800 A,D,S,T BTA 08-200 → 800 A,S		
		Standard triacs	
	BTA 06-200 → 800 B,C BTA 08-200 → 800 B,C BTA 10-200 → 800 B,C BTA 12-200 → 800 B,C BTA 13-200 → 800 B BTA 16-200 → 800 B	BTA 26·200→800 A,B BTA 41·200→800 A,B	BTA 25-200 → 800 A,B BTA 40-200 → 800 A,B
		Special triacs for light dimmers	
	BTA 04-200→600 GP BTA 06-200→600 GP		
		Alternistors	
	TXDV 208→808 TXDV 212→812	TPDV 125 → 1225 TPDV 140 → 1240	TODV 125 → 1225 TODV 140 → 1240

THYRISTORS

PLASTIC SENSITIVE GATE THYRISTORS

A see					4	Tan	nb = 2	5°C				
Type See NOTE	I _O (A)	V _{RRM} = V _{DRM} (V)	ITSM (A)	IRM @ VRRM* IDM @ VDRM Tj max max (mA)	WGT max (V)	max (mA)	I _H *	Max (V)	/ I _{TM}	dv/dt* @ 67% VDRM T _j max typ (V/μs)	di/dt max (A/μs)	Package
Arms / T _{connex} . = 25	5°C	T _j = 110°	c									
TLS 106-05→6 TLS 107-05→6	2.5	50→600	35	0.3	1.5	0.2 (1) 0.5 (2)	5	1.9	4	10	100	TL
4 Arms / T _{case} = 75°C		$T_j = 110^{\circ}$	°C								ADE I	
TYS 406-05 → 8 TYS 407-05 → 8	2.5	50→800	50	0.5	1.5	0.2 (1) 0.5 (2)	6	1.6	8	5	50	TO 220 AB
6 Arms / T _{case} = 75°C		$T_{j} = 110^{\circ}$	°C								5,00	
TYS 606-05→8 TYS 607-05→8	3.8	50→800	50	0.5	1.5	0.2 (1) 0.5 (2)	6	1.89	12	5	50	TO 220 AB
* $R_{GK} = 1 \text{ k}\Omega$. (1) TLS 100 NOTE: V_{DRM} : 50 - 100 - 200 ORDERING INFORMATION -	400 - 6		for TYS		- 607 s	series.	M* 1.4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

STANDARD THYRISTORS PLASTIC CASE

						Tan	nb = 2	5°C						
Туре	I _O (A)	V _{RRM} = V _{DRM} (V)	ITSM (A)	IRM @ VRRM IDM @ VDRM T _j max max (mA)	V _{GT}	max (mA)	typ (mA)	W _{TM} / I _{TM} max (V) (A)	dv/dt @ 67% VDRM T _j max min (V/μs)	di/dt max (A/μs)	Package			
Arms / $T_{connex.} = 50^{\circ}C$ $T_{j} = 110^{\circ}C$ $I^{2} t = 24.5 A^{2} s$														
TL 1006 TL 2006 TL 4006 TL 6006 TL 8006	2	100 200 400 600 800	70	0.75	1.5	15	20	1.9 6	200	100	TL			

STANDARD THYRISTORS PLASTIC CASE

			1			T _{amb}	= 25°	С				
Type See NOTE	(A)	V _{RRM} = V _{DRM} (V)	I _{TSM}	IRM @ VRRM IDM @ VDRM T _j max max (mA)	V _{GT}	max (mA)	max (mA)	V _{TM}		dv/dt @ $67\% \text{ V}_{DRM}$ $T_j \text{ max}$ \min $(V/\mu s)$	di/dt max (A/μs)	Package
4 Arms / T _{case} = 90°	СТј	= 110°C	l ² t	$= 24.5 A^2 s$)() - 1		J 1			2.0	
TXN / TYN 054 → 1004	2.5	50→1000	70	1	1.5	15	30	1.8	8	200	50	TO 220 AB
6 Arms / T _{case} = 80°	СТј	= 110°C	l ² t	$= 32 A^2 s$	1			×4 *		. 2	Çu	4 . 5 * 2 * *
TXN / TYN 056 → 1006	3.8	50 → 1000	80	1	1.5	15	30	1.6	12	200 ,	50	TO 220 AB
8 Arms / T _{case} = 75°	СТј	= 110°C	l ² t	$= 32 A^2 s$	· 3.					7 1 28	14.	1 1 m 1 m 1 m 1
TXN / TYN 058→1008*	5	50 → 1000	80	1	1.5	Without suffix: 15 suffix G: 25	30 45	1.6	16	Without suffix: 200 suffix G: 500	50	TO 220 AB
		, , , , , , ,				suffix K:	60			suffix K: 750		
10 Arms / T _{case} = 75°	C T _i	= 110°C	l ² t	$= 50 \text{ A}^2 \text{ s}$								
TXN / TYN 0510→1010	6.4	50 →1000		1	1.5	15	30	1.6	20	200	50	TO 220 AB
12 Arms / T _{case} = 80°	C T _j	= 125°C	l ² t	$= 72 A^2 s$	L		L					
TXN / TYN 0512→1012	8	50 →1000	120	2 (1) 3 (2)	1.5	15	30	1.6	24	200	100	TO 220 AB
16 Arms / T _{case} = 90°	СТј	= 125°C	l ² t	$= 128 A^2 s$						*		
TYN 0516→816	10	50 → 800	160	2	1.5	25	40	1.6	32	500	100	TO 220 AB
20 Arms / T _{case} = 85°	СТј	= 125°C	l ² t	$= 200 \text{ A}^2 \text{ s}$								
TYN 682 TYN 683 TYN 685 TYN 688 TYN 690 TYN 692	13	50 100 200 400 600 800	200	2	1.5	25	40	,1.4	50	500	100	TO 220 AB
25 Arms / T _{case} = 90°	СТј	= 125°C	l ² t	= 450 (1) - 3	10 (2)	A ² s						
TYN 225 → 1225	16	200 →1200	300 (1) 250 (2)	2.5 (1) 5 (2)	1.5	40	50	1.6	50	500 (1) 250 (2)	100	TO 220 AB
★ With suffixes G, K. (1) V _{DRM} ≤ 800 V. (2) V _{DF} NOTE: TXN insulated (insulating tyn uninsulated. ORDERING INFORMATION - E)	ng voltaç	ge = 2500 V _R		v.			- (36.9k) - (36.9k)		3			

STANDARD THYRISTORS PLASTIC CASE

				7.		Tan	nb = 2	5°C				
Туре	lo	V _{RRM} = V _{DRM}	ITSM	I _{RM} @ V _{RRM} I _{DM} @ V _{DRM} T _i max	V _{GT}	IGT	ΙН	V _{TM}	ITM	dv/dt @ 67% V _{DRM} T _i max	di/dt	Package
See NOTE	(A)	(V)	(A)	max (mA)	max (V)	max (mA)	max (mA)	max (V)	(A)	min (V/μs)	max (A/μs)	
30 Arms / T _{case} = 75°	СТ	= 125°C	l ² t	= 800 (1) - 4	50 (2)	A ² s						9
BTW 68-200 → 1200	16	200 →1200	400 (1) 300 (2)		1.5	50	75	2.1	60	500 (1) 250 (2)	100	TOP 3
30 Arms / T _{case} = 65°	C T _j	= 110°C	l ² t	$= 800 \text{ A}^2 \text{ s}$		l						
BTW 66-200 → 1200	20	200→1200	400	3	1.5	50	75	2.2	60	500 (1) 250 (2)	100	RD 91
35 Arms / T _{case} = 75°	C T _j	= 125°C	l ² t	= 800 (1) - 4	50 (2)	A^2 s						
BTW 68-200 N →1200 N	22	200 →1200	400 (1) 300 (2)		1.5	50	7 <mark>6</mark>	2.25	70	500 (1) 250 (2)	100	TOP 3
40 Arms / T _{case} = 65°	СТ	= 110°C	l ² t	$= 1250 A^2$	S	1	1			1	1 1	
BTW 67-200 →1200	25	200 → 1200	500.	6	1.5	80	150	2	80	500 (1) 250 (2)	100	RD 91
50 Arms / T _{case} = 70°	C T _j	= 125°C	l ² t	= 1250 (1) -	800 (2	$\mathbf{A}^2 \mathbf{S}$						
BTW 69-200 → 1200	32	200 →1200	500 (1) 400 (2)	6	1.5	80	150	1.9	100	500 (1) 250 (2)	100	TOP 3
55 Arms / T _{case} = 70°	СТ	= 125°C	l ² t	= 1250 (1) -	800 (2	A S						
BTW 69-200 N → 1200 N	35	200 →1200	500 (1) 400 (2)	6	1.5	80	150	2	110	500 (1) 250 (2)	100	TOP 3
70 Arms / T _{case} = 70°	СТ	= 125°C	l ² t	= 2450 A ² s	S					,		
BTW 70-200 N→600 N	45	200→600	700	3	1.5	80	150	2.2	140	500	100	TOP 3
(1) V _{DRM} ≤ 800 V. (2) V _[NOTE: BTW insulated (insul BTW + suffix N unir V _{DRM} : 200 · 400 · 60 ORDERING INFORMATION	sulated. 0 - 800 -	tage = 2500 \ 1000 · 1200.	111110		Ų.					3 2		# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STANDARD THYRISTORS METAL CASE

						Tan	nb = 2	5°C				
Туре	10	V _{RRM} = V _{DRM}	ITSM	I _{DM} @ V _{DRM} T _j max	V _{GT}	IGT	I _H	V _{TM}	/ ITM	dv/dt @ 67% V _{DRM} T _j max	di/dt	Package
See NOTE	(A)	(V)	(A)	max (mA)	max (V)	max (mA)	max (mA)	max (V)	(A)	min (V/μs)	max (A/μs)	
7.4 Arms / T _{case} = 90	°C	$T_{j} = 125$	°C	$I^2 t = 32 A^2$	S							
2N 1770 → 2N 1778 2N 2619	4.7	25 → 500 600	80	2	1.5	15	30	1.85	15	200	50	TO 64*
25 Arms / T _{case} = 75	°C	$T_j = 125$	°C	$i^2 t = 200 A^2$	s							
BTW 39-50 → 1200	16	50 →1200	200	5	1.5	80	20 §	2.2	50	200	100	TO 48**
25 Arms / T _{case} = 70	°C	$T_{j} = 125$	°C	$I^2 t = 200 A^2$	s							
2N 681 2N 682 2N 683 2N 685 2N 687 2N 688 2N 689 2N 690 2N 691 2N 692	16	25 50 100 200 300 400 500 600 700 800	200	3	1.5	40	20 §	2	50	200	20	TO 48**
35 Arms / T _{case} = 75	°C	$T_j = 125$	°C	$I^2 t = 545 A^2$	s					11.		
2N 5204→2N 5207	22.5	600 → 1200	330	3.3	1.5	40	100	2.3	70	200	100	TO 48**
50 Arms / T _{case} = 85	°C	$T_j = 125$	°C	$I^2 t = 1250 A$	A^2 s							
BTW 48-200 →1200	32	200 →1200	500	5	1.5	60	30 §	1.8	100	200	100	TO 48**
63 Arms / T _{case} = 10	5°C	$T_{j} = 125$	°C	$I^2 t = 4150 A$	A ² s							
BTW 50-100 →1200	40	100 → 1200	910	12	1.5	150	50 §	3	500	200	100	TO 65***
NOTE: ORDERING INFORMA §: Typical value.	TION -			or 800 V. **			- M6 thr	ead ava	ilable o	n request → Typ	oe number	+ suffix M.

PLASTIC AND METAL CASE THYRISTORS FOR OVERVOLTAGE PROTECTION

Туре	Io	V _{RRM}	ITSM	I _{RM} * @ V _{RRM}			T _{amb}	= 25°C				Dankana
Турс	.0	V _{DRM}	,12M	IDM* @ VRRM	V _{GT}	I _{GT}	I _H	V _{TM} /	ITM	di/dt max	dv/dt* @ VDRM min	Package
	(A)	(V)	(A)	(mA)	(V)	(mA)	(mA)	(V)	(A)	(A /μ s)	(V/μs)	
12 Arms / T _{case}	= 75	°C Tj	= 125°C	C I ² t (10 ms./	∠) = 4	450 A ²	6					5 - 5 - 5 - 5 - 5
TYP 212 TYP 512 TYP 1012 TYP 2012	8	25 50 100 200	300 10ms 750 1ms expo	2	1.5	30	50	1.5	50	100	200	TO 220 AB
25 Arms / T _{case}	= 75	°C Tj	= 125°C	C I ² t (10 ms./	∿) =	2450 A	² s					
TSP 225 TSP 525 TSP 1025	16	25 50 100	700 10 ms 🔨 145 250ms 几	10	1.5	50	50	1.5	140	100	200	TO 48**
* @ T _j max.		** 1/4	''-28 UNF - N	M6 thread available o	n request	→ Туре	number +	- suffix M.				

METAL CASE FAST SWITCHING THYRISTORS

			,		Т	amb =	25°C			dv/dt* @ 67%	I _{RM} *		
Туре	Io	V _{RRM}	ITSM	V _{TM} /	I _{TM}	V _{GT}	I _{GT}	I _H	di/dt	V _{DRM}	VRRM IDM*	tq*	Package
See NOTE	(A)	V _{DRM}	(A)	max (V)	(A)	max (V)	max (mA)	max (mA)	max (A/μs)	min (V/μs)	V _{DRM} max (mA)	max (μs)	-
25 Arms / T _{case} = 60	°C T	j = 125°	C I ² t	= 200	A^2 s		120				1	I _T = 10 A	
BTW 30-600 →1200	16	600 →1200	200	3	50	1.5	200	70 §	200	200	6 **	12 (2)	TO 48 (4)
35 Arms / T _{case} = 40	°C T	j = 120°	C I ² t	= 200	A^2 s							I _T = 10 A	
2N 3654→2N 3658	22.5	50 → 400	200	2.05	25	1.5	180	70 §	400	200	6	10	TO 48 (4)
35 Arms / T _{case} = 40	°C T	j = 120°	C I ² t	= 200	A^2 s				×			I _T = 10 A	
2N 3649→2N 3653	22.5	50 400	200	2.05	25	1.5	180	70 §	400	200	6	15	TO 48 (4)
63 Arms / T _{case} = 65	°C T	j = 125°	C I ² t	= 423	0 A ² s	6						I _T = 150 A	
TGF 149-100 A → 600 A	40	100 600	920	3	500	1.5	150	200	200	200	× 12 ·	A = 20 (1)	TO 65 (5)
63 Arms / T _{case} = 65	°C T	j = 125°	C I ² t	= 224	5 A ² s	6						I _T = 150 A	
TGF 148-600 B → 1200 B	40	600 → 1200	670	4	500	1.5	150	200	200	200	12	B = 40 (1)	TO 65 (5)
* @ T_j max. ** @ $T_j = 100$ °C. NOTE: ORDERING INFORI	MATION	— EXAMPLE		9-300 A, for 200 V		(2) For E (3) For E	BTW 30-6 BTW 30-1	It us for lo 00, BTW : 000, BTW M6 threa	30-800. / 30-1200		est → Tvpe	e number + s	suffix M.

§ : Typical value.

TRIACS

LOGIC LEVEL TRIACS

Туре	V _{DRM} ±	ITSM	IDRM @ VDRM	Suffix	Ic	aT (m	A) ma	ıx	lн	V _{TM}	/ I _{TM}	(di/	dt) _C	dv/dt @ 67%	Package
See NOTE 1	(V)	(A)	@ T _j max max (mA)		++	+-		IV -+	max (mA)	max (V)	(A)	@ T _j	max	V _{DRM} @ T _j max min (V/μs)	
6 Arms / T _{case} =	80°C T	j = 1	10°C I	2t = 3	6 A ² s	5			1			0.1 V/μs	See Note 2		* ## (F)
BTA / BTB 06	200→800	85	0.5	TW SW	5 10	5 10	5 10		15 25	1.75	8.5	2.7 3.5	1.3 2.7	20 50	TO 220 AB
8 Arms / T _{case} =	80°C T	j = 1	10°C I	2t = 3	6 A ² s	5						0.1 V/μs	See Note 2	,	
BTA / BTB 08	200→800	85	0.5	TW SW	5 10	5 10	5 10		15 25	1.75	. 11	3.5 4.5	1.8 3.5	20 50	TO 220 AB
NOTE 1 : BTA insulate V _{DRM} : 200 ORDERING INFORMA	- 400 - 600 - 70	008 - 00	٧.	1110	3 unins	ulated		NOTE	2 : With	n suffix 7	$\Gamma W = 2$	0 V/μs. W	ith suffix	SW = 50 V	//μs.

^{(5) 1/4&#}x27;'-28 UNF.

SNUBBERLESS TRIACS

Туре	V _{DRM}	ITSM	IDRM @ VDRM	Suffix	ار	GT (m	A) ma	IV	IH.	V _{TM}	/ I _{TM}	(di/dt) _C without snubber	dv/dt @ 67% V _{DRM}	Package
See NOTE	(V)	(A)	@ T _j max max (mA)		++	+		-+	max (mA)	max (V)	(A)	@ T _j max min (A/ms)	@ T _j max min (V/μs)	. :7
6 Arms / T _{case} =	= 95°C	Tj =	125°C	I2t =	18	A ² s	I					. j	2.15	l po com
BTA 06-200 BTA 06-400 BTA 06-600 BTA 06-700 BTA 06-800	200 400 600 700 800	60	2	AW BW CW	75 50 35	75 50 35	75 50 35		75 50 35	1.75	8.5	8 5 3.5	750 500 250	TO 220 AB
6 Arms / T _{case} =	= 100°C	T _j =	125°C	I2t =	18	42s								
BTB 06-200 BTB 06-400 BTB 06-600 BTB 06-700 BTB 06-800	200 400 600 700 800	60	2	AW BW CW	75 50 35	75 50 35	75 50 35		75 50 35	1.75	8.5	8 5 3.5	750 500 250	TO 220 AB
8 Arms / T _{case} =	= 90°C	T _j =	125°C	I2t =	32	42s								
BTA 08-200 BTA 08-400 BTA 08-600 BTA 08-700 BTA 08-800	200 400 600 700 800	80	2	AW BW CW	75 50 35	75 50 35	75 50 35		75 50 35	1.75	11	10 7 4.5	750 500 250	TO 220 AB
8 Arms / T _{case} =	95°C	Tj =	125°C	2t =	32 /	42s						. (5.6) - 1		1
BTB 08-200 BTB 08-400 BTB 08-600 BTB 08-700 BTB 08-800	200 400 600 700 800	80	2	AW BW CW	75 50 35	75 50 35	75 50 35	-1	75 50 35	1.75	11	10 7 4.5	750 500 250	TO 220 AB
10 Arms / Tcase =	= 90°C	Tj =	125°C	2t =	50 /	A 2s		100						
BTA 10-200 BTA 10-400 BTA 10-600 BTA 10-700 BTA 10-800	200 400 600 700 800	100	2	AW BW CW	75 50 35	75 50 35	75 50 35		75 50 35	1.65	14	12 9 5.5	750 500 250	TO 220 AB
10 Arms / T _{case} =	= 100°C	T _j =	125°C	I2t =	50 /	42s								
BTB 10-200 BTB 10-400 BTB 10-600 BTB 10-700 BTB 10-800	200 400 600 700 800	100	2	AW BW CW	75 50 35	75 50 35	75 50 35		75 50 35	1.65	14	12 9 5.5	750 500 250	TO 220 AB
12 Arms / T _{case} =	= 85°C	Tj =	125°C	I2t =	72	42s								
BTA 12-200 BTA 12-400 BTA 12-600 BTA 12-700 BTA 12-800	200 400 600 700 800	120	2	AW BW CW	75 50 35	75 50 35	75 50 35	;	75 50 35	1.6	17	16 12 6.5	750 500 250	TO 220 AB
12 Arms / T _{case} =	= 90°C	Tj =	125°C	2t =	72	A ² s								
BTB 12-200 BTB 12-400 BTB 12-600 BTB 12-700 BTB 12-800	200 400 600 700 800	120	2	AW BW CW	75 50 35	75 50 35	75 50 35	,1	75 50 35	1.6	17	16 12 6.5	750 500 250	TO 220 AB
NOTE : BTA insulated BTB uninsula		voltage	= 2500 V _{RI}	MS).										

SNUBBERLESS TRIACS (Continued)

Туре	V _{DRM} ±	ITSM	IDRM	Suffix	10	aT (m	A) ma	ıx	I _H	V _{TM}	/ I _{TM}	(di/dt) _C	dv/dt	Package
See NOTE	7	(0)	@ V _{DRM} @ T _j max max		1,	II	III	IV	max	max (V)	(A)	snubber @ T _j max min (A/ms)	@ 67% VDRM @ T _j max min	
See NOTE	(V)	(A)	(mA)		++	+		-+	(mA)	(V)	(A)	(Allis)	(VIμs)	
16 Arms / Tcase =	= 80°C	Tj =	125°C	l ² t =	112 /	1 2s	3 3							
BTA 16-200 BTA 16-400 BTA 16-600 BTA 16-700 BTA 16-800	200 400 600 700 800	150	2	AW BW CW	75 50 35	75 50 35	75 50 35		75 50 35	1.5	22.5	21 14 8.5	7 ⁵ 50 500 250	TO 220 AB
16 Arms / T _{case} =	= 90°C	Tj =	125°C	l ² t =	112 /	1 2s			75.7	*		176	9-7	- 10 M
BTB 16-200 BTB 16-400 BTB 16-600 BTB 16-700 BTB 16-800	200 400 600 700 800	150	2	AW BW CW	75 50 35	75 50 35	75 50 35		75 50 35	1.5	22.5	21 14 8.5	750 500 250	TO 220 AB
NOTE : BTA insulated BTB uninsulat	-	oltage :	= 2500 V _{RM}	S).										

PLASTIC CASE SENSITIVE GATE TRIACS

Туре	V _{DRM}	ITSM	I _{DRM} *	Suffix	Ic	aT (m	A) ma	IX	lн	V _{TM}	/ I _{TM}	(dv/dt) _C *	dv/dt* @ 67%	Package
See NOTE	(V)	(A)	WDRM max (mA)		l ++	 		IV —+	max (mA)	max (V)	(A)	typ (V/μs)	V _{DRM} typ (V/μs)	
1 Arms / T _{connex}	. = 40°C	T _j =	= 110°C										T 4155	**
TLC 111 T,D,S,A TLC 221 T,D,S,A TLC 331 T,D,S,A TLC 381 T,D,S,A	200 400 600 700	15	0.75	T D S A	5 5 10 10	5 5 10 10	5 5 10 10	5 10 10 25	15 15 25 25	1.8	1.4	1 1 5 5	10 10 20 20	TL
3 Arms / T _{connex}	. = 40°C	Tj =	= 110°C											
TLC 116 T,D,S,A TLC 226 T,D,S,A TLC 336 T,D,S,A TLC 386 T,D,S,A	200 400 600 700	30	0.75	T D S A	5 5 10 10	5 5 10 10	5 5 10 10	10 10 25	15 - 15 25 25	1.85	4	1 1 5 5	10 10 20 20	TL
4 Arms / T _{case} =	75°C	Tj =	= 110°C				,							
BTA / BTB 04	200→800	50	0.75	T D S A	5 5 10 10	5 5 10 10	5 5 10 10	5 10 10 25	15 15 25 25	1.65	5.5	1 "	10 10 10 min 10 min	TO 220 AB
6 Arms / T _{case} =	75°C	Tj =	= 110°C	* ,										· x
BTA / BTB 06	200→800	60	0.75	T D S A	5 5 10 10	5 5 10 10	5 5 10 10	5 10 10 25	15 15 25 25	1.65	8.5	1	10 10 10 min 10 min	TO 220 AB
8 Arms / T _{case} =	75°C	Tj =	= 110°C										1	
BTA / BTB 08	200-800	80	0.5	S A	10 10	10 10	10	10 25	25	1.75	11	1	10 min	TO 220 AB
* @ T _j = 110°C.	NOTE : BTA i	/I: 200 ·	400 - 600 - 7	00 - 800	V.			unins	sulated.					

PLASTIC CASE STANDARD TRIACS

Туре	V _{DRM}	ITSM	IDRM*	Suffix	ار	aT (m	A) m	ax	lн	V _{TM}	/ I _{TM}	(dv/dt) _C *	dv/dt* @ 67%	Package
See NOTE	(V)	(A)	V _{DRM} max (mA)		++	+-		IV —+	max (mA)	max (V)	(A)	min (V/μs)	V _{DRM} min (V/μs)	535
1 Arms / T _{conne}	ex. = 40°0	СТј	= 110°0	C I ² t	= 1	.125	A^2 s							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TLC 111 B TLC 221 B TLC 331 B TLC 381 B	200 400 600 700	15	0.75	В	25	25	25	50	8 typ	1.8	1.4	5	20	TL
3 Arms / T _{conne}	ex. = 40°0	СТј	= 110°(C I ² t	= 4	.5 A ²	s						***	
TLC 116 B TLC 226 B TLC 336 B TLC 386 B	200 400 600 700	30	0.75	В	25	25	25	50	8 typ	1.85	4	5	20	TL
6 Arms / T _{case}	= 75°C	Tj	= 110°(C I ² t	= 1	8 A ²	S							
BTA / BTB 06	200→800	60	0.5	B C	50 25	50 25	50 25	100 50	50 25	1.65	8.5	10 5	250 100	TO 220 AB
8 Arms / T _{case}	= 75°C	Tj	= 110°0	C I ² t	= 3	2 A ²	s			-				*
BTA / BTB 08	200→800	80	0.5	ВС	50 25	50 25	50 25	100 50	50 25	1.75	11	10 5	250 100	TO 220 AB
10 Arms / T _{case}	= 75°C	Tj	= 110°(C I ² t	= 5	0 A ²	S							78
BTA / BTB 10	200→800	100	0.5	B C	50 25	50 25	50 25	100 50	50 25	1.5	14	10 5	250 100	TO 220 AB
12 Arms / T _{case}	= 75°C	Тј	= 110°0	C I ² t	= 7	2 A ²	S							
BTA / BTB 12	200→800	120	0.5	ВС	50 25	50 25	50 25	100 50	50 25	1.5	17	10	250 100	TO 220 AB
12 Arms / Tcase	= 90°C	Tj	= 125°(C I ² t	= 1	12.5	A ² s					* **	*.	
BTA 13 B	200→800	150	2	В	50	50	50	75	50	1.4	17	10	500	TO 220 AB
12 Arms / T _{case}	= 100°C	Tj	= 125°(C I ² t	= 1	12.5	A ² s					-		
BTB 13 B	200→800	150	2	В	50	50	50	75	50	1.4	17	10	500	TO 220 AB
15 Arms / T _{case}	= 90°C	Tj	= 125°(C I ² t	= 1	12.5	A ² s							
BTB 15 B	200→800	150	2	В	50	50	50	75	50	1.5	21	10	250	TO 220 AB
* @ T _j max.							I	L				-		

NOTE : BTA insulated (insulating voltage $= 2500 \text{ V}_{RMS}$).

BTB uninsulated.

V_{DRM}: 200 · 400 · 600 · 700 · 800 V.

ORDERING INFORMATION - EXAMPLE : BTA 06-400 B.

PLASTIC CASE STANDARD TRIACS

(a)			11 (111	A) ma	IX	1H	VTM	/ ITM	(dv/dt) _C *	dv/dt* @ 67%	Package
V _{DRM} max (mA)		1 + +	II +-		IV +	max (mA)	max (V)	(A)	min (VIμs)	VDRM min (VIμs)	
125°C	$l^2 t =$	128	A^2 s				/*T				13.7
0.5	В	50	50	50	100	50	1.6	22.5	10	250	TO 220 AE
125°C	$I^2 t =$	128	A ² s			,					
0.5	В	50	50	50	100	50	1.6	22.5	10	250	TO 220 AE
125°C	$I^2 t =$	200	A ² s				7, 7				
1	В	50	50	50	100	50	1.8	35	10	250	TO 220 AB
125°C	$l^2 t =$	312.	5 A ² s	S							
6	В	50 100	50 100	50 100	100 150	80 100	1.7	35	5 10	250	TOP 3
125°C	$l^2 t =$	312.	5 A ² s	S						7	
6	B A	50 100	50	50 100	100 150	80 100	1.7	35	5 10	250	TOP 3
125°C	$l^2 t =$	312.	5 A ² s	S	,						
6	B A	50	50 100	50 100	100 150	80 100	1.8	42	5 10	250	RD 91
125°C	$I^2 t =$	450	A ² s								
6	B A	50 100	50 100	50 100	100 150	80 100	1.8	60	5 10	250	RD 91
125°C	$I^2 t =$	450	A ² s								
6	В	50 100	50	50 100	100 150	80 100	1.8	60	5 10	250	TOP 3
125°C	$l^2 t =$	450	A ² s		,				1 2		
6	В	.50 100	50 100	50 100	100 150	80 100	1.8	60	5 10	250	TOP 3
	125°C	125°C I ² t =	125°C $I^2 t = 450 A$ $A = 100$ $A = 450 A$ $A = 450 A$	125°C $I^2 t = 450 A^2 s$ 6 $B = 50 50 100$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125°C $I^2 t = 450 A^2 s$ 6 B 50 50 50 100 150 A 100 100 150	125°C $I^2 t = 450 A^2 s$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125°C $I^2 t = 450 A^2 s$ 6 $B = 50 50 50 100 150 100 1.8$ 6 $B = 100 100 100 150 100 80 1.8$	125°C $I^2 t = 450 A^2 s$ 6 B A 100 100 100 150 100 1.8 60 6 B A 100 100 100 150 100 80 1.8 60	125°C $I^2 t = 450 A^2 s$ 6 B 50 50 50 100 150 100 1.8 60 10 6 B A 100 100 100 150 100 80 1.8 60 5 10	125°C $I^2 t = 450 A^2 s$ 6 B A 100 100 100 150 100 1.8 60 10 250 6 B A 100 100 100 150 100 80 1.8 60 5 10 250

NOTE: BTA insulated (insulating voltage = 2500 V_{RMS}).

BTB uninsulated.

 $V_{\mbox{DRM}}: 200 \cdot 400 \cdot 600 \cdot 700 \cdot 800 \mbox{ V}.$ ORDERING INFORMATION - EXAMPLE : BTA 16-400 B.

METAL CASE STANDARD TRIACS

Туре	VDRM	ITSM	IDRM*	Ic	aT (m	A) ma	ах	I _H	V _{TM}	/J _{TM}	(dv/dt) _C *	dv/dt*	Package
	(V)	(A)	V _{DRM} max (mA)	l ++	+-	III 	IV —+	max (mA)	max (V)	(A)	min (VIμs)	V _{DRM} min (VIμs)	v
25 Arms / T _{case} =	= 60°C	Tj =	100°C I ² 1	= 3	12.5	A^2 s							
TRAL 1125 D TRAL 2225 D TRAL 3325 D TRAL 3825 D	200 400 600 700	250	3	100	100	100	150	100	2	35	10	250	TO 48**
35 Arms / T _{case} =	= 60°C	Tj =	110°C I ² 1	= 4	50 A ²	s						N a 1º	
TRAL 1135 D TRAL 2235 D TRAL 3335 D TRAL 3835 D	200 400 600 700	300	4	100	150	100	150	100	2	53	10	250	TO 48**
60 Arms / T _{case} =	= 75°C	Tj =	125°C 2 1	= 1	250 A	A ² s					- XV	- 2 - 2	1 m d 112
TGAL 602 TGAL 604 TGAL 606 TGAL 608 TGAL 610	200 400 600 800 1000	500	10	100	150	100	150	100	2	100	10	250	TO 65***
* @ T _j max.	** 1/4''· *** 1/4''·		- M6 thread avai	lable cn	reques	t → Ty	pe numl	per + suffix	М.				

SPECIAL TRIACS FOR LIGHT DIMMERS

Туре	V _{DRM}	ITSM	I _{DRM} *	Suffix	Ic	aT (m	A) ma	ax	lн	V _{TM}	/ I _{TM}	(dv/dt) _C *	dv/dt* @ 67%	Package
See NOTE	(V)	(A)	VDRM max (mA)		++	 	III 	IV -+	max (mA)	max (V)	(A)	typ (VIμs)	V _{DRM} min (V/μs)	
Arms / T _{case} =	: 75°C T	j = 1	10°C I	t = 1	2.5	A ² s			•					5
BTA 04	200→600	50	0.5	GP	50 `	50	50	75	13	1.65	5.5	1	10	TO 220 AE
Arms / T _{case} =	85°C T	j = 1	10°C I²	t = 5	50 A ²	s						43		
BTA 06	200→600	100	0.5	GP	50	50	50	75	13	1.4	8.5	10	30	TO 220 AB
* T _j max. NOTE: BTA insulate V _{DRM} : 200 - ORDERING INFORM	400 - 600.							1						

«ALTERNISTORS» - BIDIRECTIONAL DEVICES FOR REACTIVE CIRCUITS AND FREQUENCIES UP TO 400 Hz

Туре	V _{DRM} ±	ITSM	IDRM @				A) ma		IH	V _{TM}	/ I _{TM}	(di/d @ (dr	it) _C * v/dt) _C	dv/dt* @ 67%	Package
	(V)	(A)	V _{DRI} max (mA)		++	+-		-+	typ (mA)	max (V)	(A)		in ms)	V _{DRM} min (V/μs)	
8 Arms / Tcase =	= 75°C	Tj =	110°C	l ² t	= 4	$0 \mathbf{A}^2$	s					200 V/μs	10 V/μs		
TXDV 208 TXDV 408 TXDV 608 TXDV 808	200 400 600 800	80	2		100	100	100		100 max	1.8	11	7	28	500	TO 220 AB
12 Arms / T _{case} =	= 75°C	$T_j =$	110°C	l ² t	= 4	0 A ²	S					200 V/μs	10 V/μs		
TXDV 212 TXDV 412 TXDV 612 TXDV 812	200 400 600 800	120	2	~	100	100	100		100 max	1.95	17	10	42.5	500	TO 220 AB
25 Arms / T _{case} =	= 75°C	T _j =	125°C	l ² t	= 2	65 A	² s					200 V/μs	10 V/μs		
TPDV 125 TPDV 225 TPDV 425 TPDV 625 TPDV 825 TPDV 1025 TPDV 1225	100 200 400 600 800 1000 1200	230	8		150	150	150		50	1.8	35	20	88	500 (1) 250 (2)	TOP 3
25 Arms / T _{case} =	= 80°C	T _j =	125°C	l ² t	= 2	65 A	² S					200 V/μs	10 V/μs		
TODV 125 TODV 225 TODV 425 TODV 625 TODV 825 TODV 1025 TODV 1225	100 200 400 600 800 1000 1200	230	8		150	150	150		50	1.8	35	20	88	500 (1) 250 (2)	RD 91
40 Arms / T _{case} =	= 75°C	$T_j =$	125°C	l ² t	= 6	10 A	² s					200 V/μs	10 V/μs		
TODV 140 TODV 240 TODV 440 TODV 640 TODV 840 TODV 1040 TODV 1240	100 200 400 600 800 1000 1200	350	8		200	200	200		50	1.8	60	35	142	500 (1) 250 (2)	RD 91
40 Arms / T _{case} =	= 75°C	Tj =	125°C	l ² t	= 6	10 A	² s					200 V/μs	10 V/μs		
TPDV 140 TPDV 240 TPDV 440 TPDV 640 TPDV 840 TPDV 1040 TPDV 1240	100 200 400 600 800 1000 1200	350	8		200	200	200		50	1.8	60	35	142	500 (1) 250 (2)	TOP 3
60 Arms / T _{case} =	= 75°C	T _j =	125°C	l ² t	= 1	250 /	A ² s					200 V/μs	10 V/μs	-	
TGDV 601 TGDV 602 TGDV 604 TGDV 606 TGDV 608 TGDV 610 TGDV 612	100 200 400 600 800 1000 1200	500	5**		200	200	200		50	2	85	50	213	500 (1) 250 (2)	« TO 65***
·	(1) V _{DRM} ≤ (2) V _{DRM} ≥		*	** 1/4	'-28 UI	NF.									

TRIGGER DIODES (DIACS)

Туре	Bre	Breakover voltage (V)		Breakover voltage symmetry	Breakover current	Δ V between 0 and 10 mA min.	Package
Турс	min	nom	max	∆V max. (V)	I _R max. (μA)	(V)	,*
DB 3 DB 4	28 35	32 40	36 45	± 3 ± 3	100 100	5 5	DO 35
DC 34 DC 38 DC 42	30 35 39	34 38 42	38 42 45	± 3 ± 3 ± 3	50 50 50	5 5 5	DO 35
TMM DB 3	28	32	36	± 3	100	5	MINIMELF

Pages 158 through 165 have been removed from this edition.

CMOS-SINGLE*

Туре	Description	Temperature range (°C)	Package
TS271ACD TS271ACDT TS271ACN TS271ACN TS271AID TS271AID TS271AIN TS271BCD TS271BCD TS271BCN TS271BID TS271BID TS271BIN TS271CD TS271CN TS271CN TS271ID TS271ID TS271ID TS271ID TS271ID TS271ID TS271ID TS271ID	Programmable supply current - Low offset voltage Programmable supply current - Very low offset voltage Programmable supply current - Low cost	0 to 70 0 to 70 0 to 70 - 40 to 105	SO 8 SO 8 TAPE MINIDIP

CMOS-DUAL*

Туре	Description	Temperature range (°C)	Package
TS27L2ACD	Low supply current - Low offset voltage	0 to 70	SO 8
TS27L2ACDT	Low supply current - Low offset voltage	0 to 70	SO 8 TAPE
TS27L2ACN	Low supply current - Low offset voltage	0 to 70	MINIDIP
TS27L2AID	Low supply current - Low offset voltage	- 40 to 105	SO 8
TS27L2AIDT	Low supply current - Low offset voltage	- 40 to 105	SO 8 TAPE
TS27L2AIN	Low supply current - Low offset voltage	- 40 to 105	MINIDIP
TS27L2BCD	Low supply current - Very low offset voltage	0 to 70	SO 8
TS27L2BCDT	Low supply current - Very low offset voltage	0 to 70	SO 8 TAPE
TS27L2BCN	Low supply current - Very low offset voltage	0 to 70	MINIDIP
TS27L2BID	Low supply current - Very low offset voltage	- 40 to 105	SO 8
TS27L2BIDT	Low supply current - Very low offset voltage	- 40 to 105	SO 8 TAPE
TS27L2BIN	Low supply current - Very low offset voltage	- 40 to 105	MINIDIP
TS27L2CD	Low supply current - Low cost	0 to 70	SO 8
TS27L2CDT	Low supply current - Low cost	0 to 70	SO 8 TAPE
TS27L2CN	Low supply current - Low cost	0 to 70	MINIDIP
TS27L2ID	Low supply current - Low cost	- 40 to 105	SO 8
TS27L2IDT	Low supply current - Low cost	- 40 to 105	SO 8 TAPE
TS27L2IN	Low supply current - Low cost	- 40 to 105	MINIDIP
TS27M2ACD	Medium supply current - Low offset voltage	0 to 70	SO 8
TS27M2ACDT	Medium supply current - Low offset voltage	0 to 70	SO 8 TAPE
TS27M2ACN	Medium supply current - Low offset voltage	0 to 70	MINIDIP
TS27M2AID	Medium supply current - Low offset voltage	-40 to 105	SO 8
TS27M2AIDT	Medium supply current - Low offset voltage	- 40 to 105	SO 8 TAPE
TS27M2AIN	Medium supply current - Low offset voltage	- 40 to 105	MINIDIP
TS27M2BCD	Medium supply current - Very low offset voltage	0 to 70	SO 8
TS27M2BCDT	Medium supply current - Very low offset voltage	0 to 70	SO 8 TAPE
TS27M2BCN	Medium supply current - Very low offset voltage	0 to 70	MINIDIP
TS27M2BID	Medium supply current - Very low offset voltage	- 40 to 105	SO 8
TS27M2BIDT	Medium supply current - Very low offset voltage	- 40 to 105	SO 8 TAPE
TS27M2BIN	Medium supply current - Very low offset voltage	- 40 to 105	MINIDIP
TS27M2CD	Medium supply current - Low cost	0 to 70	SO 8
TS27M2CDT	Medium supply current - Low cost	0 to 70	SO 8 TAPE
TS27M2CN	Medium supply current - Low cost	0 to 70	MINIDIP
TS27M2ID	Medium supply current - Low cost	-40 to 105	SO 8
TS27M2IDT	Medium supply current - Low cost	-40 to 105	SO 8 TAPE
TS27M2IN	Medium supply current - Low cost	-40 to 105	MINIDIP

All our CMOS operational amplifiers are designed to operate with single or dual supplies.
 All are low consumption, high speed and ultra stable behaviour.

CMOS-DUAL* (Continued)

Туре	Description	Temperature range (°C)	Package
TS272ACD TS272ACDT TS272ACN TS272AID TS272AID TS272AIN TS272BCD TS272BCDT TS272BCDT TS272BCN TS272BCN TS272BID TS272BID TS272BIN	High speed - Low offset voltage High speed - Very low offset voltage	0 to 70 0 to 70 0 to 70 - 40 to 105 - 40 to 105 - 40 to 105 0 to 70 0 to 70 0 to 70 - 40 to 105 - 40 to 105 - 40 to 105 - 40 to 105	SO 8 SO 8 TAPE MINIDIP
TS272CD TS272CDT TS272CN TS272ID TS272IDT TS272IN	High speed - Low cost	0 to 70 0 to 70 0 to 70 - 40 to 105 - 40 to 105 - 40 to 105	SO 8 SO 8 TAPE MINIDIP SO 8 SO 8 TAPE MINIDIP

CMOS-QUAD*

Туре	Description	Temperature range (°C)	Package
TS27L4ACD	Low supply current - Low offset voltage	0 to 70	SO 14
TS27L4ACDT	Low supply current - Low offset voltage	0 to 70	SO 14 TAPE
TS27L4ACN	Low supply current - Low offset voltage	0 to 70	DIP 14
TS27L4AID	Low supply current - Low offset voltage	- 40 to 105	SO 14
TS27L4AIDT	Low supply current - Low offset voltage	- 40 to 105	SO 14 TAPE
TS27L4AIN	Low supply current - Low offset voltage	- 40 to 105	DIP 14
TS27L4BCD	Low supply current - Very low offset voltage	0 to 70	SO 14
TS27L4BCDT	Low supply current - Very low offset voltage	0 to 70	SO 14 TAPE
TS27L4BCN	Low supply current - Very low offset voltage	0 to 70	DIP 14
TS27L4BID	Low supply current - Very low offset voltage	- 40 to 105	SO 14
TS27L4BIDT	Low supply current - Very low offset voltage	- 40 to 105	SO 14 TAPE
TS27L4BIN	Low supply current - Very low offset voltage	- 40 to 105	DIP 14
TS27L4CD	Low supply current - Low cost	0 to 70	SO 14
TS27L4CDT	Low supply current - Low cost	0 to 70	SO 14 TAPE
TS27L4CN	Low supply current - Low cost	0 to 70	DIP 14
TS27L4ID	Low supply current - Low cost	- 40 to 105	SO 14
TS27L4IDT	Low supply current - Low cost	- 40 to 105	SO 14 TAPE
TS27L4IN	Low supply current - Low cost	- 40 to 105	DIP 14
TS27M4ACD	Medium supply current - Low offset voltage	0 to 70	SO14
TS27M4ACDT	Medium supply current - Low offset voltage	0 to 70	SO 14 TAPE
TS27M4ACN	Medium supply current - Low offset voltage	0 to 70	DIP 14
TS27M4AID	Medium supply current - Low offset voltage	- 40 to 105	SO 14
TS27M4AIDT	Medium supply current - Low offset voltage	- 40 to 105	SO 14 TAPE
TS27M4AIN	Medium supply current - Low offset voltage	- 40 to 105	DIP 14
TS27M4BCD	Medium supply current - Very low offset voltage	0 to 70	SO 14
TS27M4BCDT	Medium supply current - Very low offset voltage	0 to 70	SO 14 TAPE
TS27M4BCN	Medium supply current - Very low offset voltage	0 to 70	DIP 14
TS27M4BID	Medium supply current - Very low offset voltage	- 40 to 105	SO 14
TS27M4BIDT	Medium supply current - Very low offset voltage	- 40 to 105	SO 14 TAPE
TS27M4BIN	Medium supply current - Very low offset voltage	- 40 to 105	DIP 14
TS27M4CD	Medium supply current - Low cost	0 to 70	SO 14
TS27M4CDT	Medium supply current - Low cost	0 to 70	SO 14 TAPE
TS27M4CN	Medium supply current - Low cost	0 to 70	DIP 14
TS27M4ID	Medium supply current - Low cost	- 40 to 105	SO 14
TS27M4IDT	Medium supply current - Low cost	- 40 to 105	SO 14 TAPE
TS27M4IN	Medium supply current - Low cost	- 40 to 105	DIP 14

^{*} All our CMOS operational amplifiers are designed to operate with single or dual supplies. All are low consumption, high speed and ultra stable behaviour.

CMOS-QUAD* (Continued)

Туре	Description Description	Temperature range (°C)	Package
TS274ACD	 High speed - Low offset voltage	0 to 70	SO 14
TS274ACDT	High speed - Low offset voltage	0 to 70	SO 14 TAPE
TS274ACN	High speed - Low offset voltage	0 to 70	DIP 14
TS274AID	High speed - Low offset voltage	- 40 to 105	SO 14
TS274AIDT	High speed - Low offset voltage	- 40 to 105	SO 14 TAPE
TS274AIN	High speed - Low offset voltage	- 40 to 105	DIP 14
TS274BCD	High speed - Very low offset voltage	0 to 70	SO 14
TS274BCDT	High speed - Very low offset voltage	0 to 70	SO 14 TAPE
TS274BCN	High speed - Very low offset voltage	0 to 70	DIP 14
TS274BID	High speed - Very low offset voltage	- 40 to 105	SO 14
TS274BIDT	High speed - Very low offset voltage	- 40 to 105	SO 14 TAPE
TS274BIN	High speed - Very low offset voltage	- 40 to 105	DIP 14
TS274CD	High speed - Low cost	0 to 70	SO 14
TS274CDT	High speed - Low cost	0 to 70	SO 14 TAPE
TS274CN	High speed - Low cost	0 to 70	DIP 14
TS274ID	High speed - Low cost	- 40 to 105	SO 14
TS274IDT	High speed - Low cost	- 40 to 105	SO 14 TAPE
TS274IN	High speed - Low cost	- 40 to 105	DIP 14

^{*} All our CMOS operational amplifiers are designed to operate with single or dual supplies. All are low consumption, high speed and ultra stable behaviour.

J-FET-SINGLE

Туре	Description	Temperature range (°C)	Package
LF251D	Wide bandwidth	- 40 to 105	SO 8
LF251DT	Wide bandwidth	- 40 to 105	SO 8 TAPE
LF251N	Wide bandwidth	- 40 to 105	MINIDIP
LF255D	High performance - Low supply current	- 40 to 105	SO 8
LF255DT	High performance - Low supply current	- 40 to 105	SO 8 TAPE
_F255N	High performance - Low supply current	- 40 to 105	MINIDIP
_F256D	High performance - Wide band	- 40 to 105	SO 8
_F256DT	High performance - Wide band	- 40 to 105	SO 8 TAPE
LF256N	High performance - Wide band	- 40 to 105	MINIDIP
LF257D	High performance - Wide band decompensated	- 40 to 105	SO 8
LF257DT	High performance - Wide band decompensated	- 40 to 105	SO 8 TAPE
LF257N	High performance - Wide band decompensated	- 40 to 105	MINIDIP
LF351D	Wide bandwidth	0 to 70	SO 8
LF351DT	Wide bandwidth	0 to 70	SO 8 TAPE
LF351N	Wide bandwidth	0 to 70	MINIDIP
LF355D	High performance - Low supply current	0 to 70	SO 8
LF355DT	High performance - Low supply current	0 to 70	SO 8 TAPE
LF355N	High performance - Low supply current	0 to 70	MINIDIP
LF356D	High performance - Wide band	0 to 70	SO 8
LF356DT	High performance - Wide band	0 to 70	SO 8 TAPE
LF356N	High performance - Wide band	0 to 70	MINIDIP
_F357D	High performance - Wide band decompensated	0 to 70	SO 8
LF357DT	High performance - Wide band decompensated	0 to 70	SO 8 TAPE
LF357N	High performance - Wide band decompensated	0 to 70	MINIDIP
MC33001AD	General purpose - Very low input offset voltage	- 40 to 105	SO 8
MC33001ADT	General purpose - Very low input offset voltage	- 40 to 105	SO 8 TAPE
MC33001AN	General purpose - Very low input offset voltage	- 40 to 105	MINIDIP
MC33001BD	General purpose - Low input offset voltage	- 40 to 105	SO 8
MC33001BDT	General purpose - Low input offset voltage	- 40 to 105	SO 8 TAPE
MC33001BN	General purpose - Low input offset voltage	- 40 to 105	MINIDIP
MC33001D	General purpose	- 40 to 105	SO 8
MC33001DT	General purpose	- 40 to 105	SO 8 TAPE
MC33001N	General purpose	-40 to 105	MINIDIP
MC34001AD	General purpose - Very low input offset voltage	0 to 70	SO 8
MC34001ADT	General purpose - Very low input offset voltage	0 to 70	SO 8 TAPE
MC34001AN	General purpose - Very low input offset voltage	O to 70	MINIDIP

J-FET-SINGLE (Continued)

Туре	Description	Temperature range (°C)	Package
MC34001BD	General purpose - Low input offset voltage	0 to 70	SO 8
MC34001BDT	General purpose - Low input offset voltage	0 to 70	SO 8 TAPE
MC34001BN	General purpose - Low input offset voltage	0 to 70	MINIDIP
MC34001D	General purpose	0 to 70	SO 8
AC34001DT	General purpose	0 to 70	SO 8 TAPE
IC34001N	General purpose	0 to 70	MINIDIP
L061ACD	Low power - Low input offset voltage	0 to 70	SO 8
L061ACDT	Low power - Low input offset voltage	0 to 70	SO 8 TAPE
L061ACN	Low power - Low input offset voltage	0 to 70	MINIDIP
L.061AID	Low power - Low input offset voltage	- 40 to 105	SO 8
L061AIDT	Low power - Low input offset voltage	- 40 to 105	SO 8 TAPE
_061AIN	Low power - Low input offset voltage	- 40 to 105	MINIDIP
_061BCD	Low power - Low input offset voltage	0 to 70	SO 8
		0 to 70	
L061BCDT	Low power - Very low input offset voltage		SO 8 TAPE
L061BCN	Low power - Very low input offset voltage	0 to 70	MINIDIP
_061BID	Low power - Very low input offset voltage	- 40 to 105	SO 8
.061BIDT	Low power - Very low input offset voltage	- 40 to 105	SO 8 TAPE
_061BIN	Low power - Very low input offset voltage	- 40 to 105	MINIDIP
061CD	Low power	0 to 70	SO 8
_061CDT	Low power	0 to 70	SO 8 TAPE
_061CN	Low power	0 to 70	MINIBIP
_061ID	Low power	- 40 to 105	SO 8
_061IDT	Low power	- 40 to 105	SO 8 TAPE
_061IN	Low power	- 40 to 105	MINIDIP
_071ACD	Low noise - Low input offset voltage	0 to 70	SO 8
_071ACDT	Low noise - Low input offset voltage	0 to 70	SO 8 TAPE
_071ACN	Low noise - Low input offset voltage	0 to 70	MINIDIP
_071AID	Low noise - Low input offset voitage	- 40 to 105	SO 8
L071AIDT	Low noise - Low input offset voltage	- 40 to 105	SO 8 TAPE
L071AIN	Low noise - Low input offset voltage	- 40 to 105	MINIDIP
L071BCD	Low noise - Very low input offset voltage	0 to 70	SO 8
L071BCDT	Low noise - Very low input offset voltage	0 to 70	SO 8 TAPE
L071BCN	Low noise - Very low input offset voltage	0 to 70	MINIDIP
_071BID	Low noise - Very low input offset voltage	- 40 to 105	SO 8
_071BIDT	Low noise - Very low input offset voltage	- 40 to 105	SO 8 TAPE
_071BIN	Low noise - Very low input offset voltage	- 40 to 105	MINIDIP
_071CD	Low noise	0 to 70	SO 8
.071CDT	Low noise	0 to 70	SO 8 TAPE
		0 to 70	MINIDIP
.071CN	Low noise	- 40 to 105	SO 8
.071ID	Low noise		
.071IDT	Low noise	- 40 to 105	SO 8 TAPE
.071IN	Low noise	- 40 to 105	MINIDIP
.081ACD	General purpose - Low input offset voltage	0 to 70	SO 8
.081ACDT	General purpose - Low input offset voltage	0 to 70	SO 8 TAPE
.081ACN	General purpose - Low input offset voltage	0 to 70	MINIDIP
.081AID	General purpose - Low input offset voltage	- 40 to 105	SO 8
.081AIDT	General purpose - Low input offset voltage	- 40 to 105	SO 8 TAPE
.081AIN	General purpose - Low input offset voltage	- 40 to 105	MINIDIP
.081BCD	General purpose - Very low input offset voltage	0 to 70	SO 8
.081BCDT	General purpose - Very low input offset voltage	0 to 70	SO 8 TAPE
081BCN	General purpose - Very low input offset voltage	0 to 70	MINIDIP
.081BID	General purpose - Very low input offset voltage	- 40 to 105	SO 8
_081BIDT	General purpose - Very low input offset voltage	- 40 to 105	SO 8 TAPE
_081BIN	General purpose - Very low input offset voltage	- 40 to 105	MINIDIP
_081CD	General purpose	0 to 70	SO 8
_081CDT	General purpose	0 to 70	SO 8 TAPE
.081CN	General purpose	0 to 70	MINIDIP
_081ID	General purpose	- 40 to 105	SO 8
_081IDT	General purpose	- 40 to 105	SO 8 TAPE
	General purpose	-40 to 105	MINIDIP

J-FET-DUAL

Туре	Description	Temperature range (°C)	Package
LF253D	Wide bandwidth	- 40 to 105	SO 8
LF253DT	Wide bandwidth	- 40 to 105	SO 8 TAPE
LF253N	Wide bandwidth	- 40 to 105	MINIDIP
LF353D	Wide bandwidth	0 to 70	SO 8
LF353DT	Wide bandwidth	0 to 70	SO 8 TAPE
LF353N	Wide bandwidth	0 to 70	MINIDIP
MC33002AD	General purpose - Very low input offset voltage	- 40 to 105	SO 8
		- 40 to 105	SO 8 TAPE
MC33002ADT	General purpose - Very low input offset voltage		
MC33002AN	General purpose - Very low input offset voltage	- 40 to 105	MINIDIP
MC33002BD	General purpose - Low input offset voltage	- 40 to 105	SO 8
MC33002BDT	General purpose - Low input offset voltage	- 40 to 105	SO 8 TAPE
MC33002BN	General purpose - Low input offset voltage	- 40 to 105	MINIDIP
MC33002D	General purpose	- 40 to 105	SO 8
MC33002DT	General purpose	- 40 to 105	SO 8 TAPE
MC33002N	General purpose	- 40 to 105	MINIDIP
MC34002AD	General purpose - Very low input offset voltage	0 to 70	SO 8
MC34002ADT	General purpose - Very low input offset voltage	0 to 70	SO 8 TAPE
		0 to 70	MINIDIP
MC34002AN	General purpose - Very low input offset voltage		
MC34002BD	General purpose - Low input offset voltage	0 to 70	SO 8
MC34002BDT	General purpose - Low input offset voltage	0 to 70	SO 8 TAPE
MC34002BN	General purpose - Low input offset voltage	0 to 70	MINIDIP
MC34002D	General purpose	0 to 70	SO 8
MC34002DT	General purpose	0 to 70	SO 8 TAPE
MC34002N	General purpose	0 to 70	MINIDIP
TL062ACD	Low power - Low input offset voltage	0 to 70	SO 8
TL062ACDT	Low power - Low input offset voltage	0 to 70	SO 8 TAPE
TL062ACN	Low power - Low input offset voltage	0 to 70	MINIDIP
TL062AID	Low power - Low input offset voltage	- 40 to 105	SO 8
		-40 to 105	SO 8 TAPE
TL062AIDT	Low power - Low input offset voltage	- 40 to 105	
TL062AIN	Low power - Low input offset voltage		MINIDIP
TL062BCD	Low power - Very low input offset voltage	0 to 70	SO 8
TL062BCDT	Low power - Very low input offset voltage	0 to 70	SO 8 TAPE
TL062BCN	Low power - Very low input offset voltage	0 to 70	MINIDIP
TL062BID	Low power - Very low input offset voltage	- 40 to 105	SO 8
TL062BIDT	Low power - Very low input offset voltage	- 40 to 105	SO 8 TAPE
TL062BIN	Low power - Very low input offset voltage	- 40 to 105	MINIDIP
TL062CD	Low power	0 to 70	SO 8
TL062CDT	Low power	0 to 70	SO 8 TAPE
TL062CN	Low power	0 to 70	MINIDIP
TL062ID	Low power	- 40 to 105	SO 8
TL062IDT	Low power	-40 to 105	SO 8 TAPE
			l .
TL062IN	Low power	- 40 to 105	MINIDIP
TL072ACD	Low noise - Low input offset voltage	0 to 70	SO 8
TL072ACDT	Low noise - Low input offset voltage	0 to 70	SO 8 TAPE
TL072ACN	Low noise - Low input offset voltage	0 to 70	MINIDIP
TL072AID	Low noise - Low input offset voltage	- 40 to 105	SO 8
TL072AIDT	Low noise - Low input offset voltage	- 40 to 105	SO 8 TAPE
TL072AIN	Low noise - Low input offset voltage	- 40 to 105	MINIDIP
TL072BCD	Low noise - Very low input offset voltage	0 to 70	SO 8
TL072BCDT	Low noise - Very low input offset voltage	0 to 70	SO 8 TAPE
TL072BCN	Low noise - Very low input offset voltage	0 to 70	MINIDIP
TL072BID	Low noise - Very low input offset voltage	- 40 to 105	SO 8
TL072BIDT	Low noise - Very low input offset voltage	- 40 to 105	SO 8 TAPE
		- 40 to 105	
TL072BIN	Low noise - Very low input offset voltage		MINIDIP
TL072CD	Low noise	0 to 70	SO 8
TL072CDT	Low noise	0 to 70	SO 8 TAPE
TL072CN	Low noise	0 to 70	MINIDIP
TL072ID	Low noise	- 40 to 105	SO 8
TL072IDT	Low noise	- 40 to 105	SO 8 TAPE
TL072IN	Low noise	- 40 to 105	MINIDIP
TL082ACD	General purpose - Low input offset voltage	0 to 70	SO 8
TL082ACDT	General purpose - Low input offset voltage	0 to 70	SO 8 TAPE
TL082ACN	General purpose - Low input offset voltage	0 to 70	MINIDIP
TL082AID	General purpose - Low input offset voltage	-40 to 105	SO 8
TL082AIDT	General purpose - Low input offset voltage	-40 to 105	SO 8 TAPE
TL082AIN	General purpose - Low input offset voltage	- 40 to 105	MINIDIP

J-FET-DUAL (Continued)

Туре	Description	Temperature range (°C)	Package
TL082BCD	General purpose - Very low input offset voltage	0 to 70	SO 8
TL082BCDT	General purpose - Very low input offset voltage	0 to 70	SO 8 TAPE
TL082BCN	General purpose - Very low input offset voltage	0 to 70	MINIDIP
TL082BID	General purpose - Very low input offset voltage	- 40 to 105	SO 8
TL082BIDT	General purpose - Very low input offset voltage General purpose - Very low input offset voltage	- 40 to 105	SO 8 TAPE
TL082BIN		- 40 to 105	MINIDIP
TL082CD TL082CDT	General purpose General purpose	0 to 70	SO 8 SO 8 TAPE
TL082CN	General purpose	0 to 70	MINIDIP
TL082ID	General purpose General purpose General purpose	- 40 to 105	SO 8
TL082IDT		- 40 to 105	SO 8 TAPE
TL082IN		- 40 to 105	MINIDIP

J-FET-QUAD

Туре	Description	Temperature range (°C)	P ^r ackage
MC33004AD	General purpose - Very low input offset voltage	-40 to 105	SO 14
MC33004ADT	General purpose - Very low input offset voltage	- 40 to 105	SO 14 TAPE
MC33004AN	General purpose - Very low input offset voltage	- 40 to 105	DIP 14
MC33004BD	General purpose - Low input offset voltage	- 40 to 105	SO 14
MC33004BDT	General purpose - Low input offset voltage	- 40 to 105	SO 14 TAPE
MC33004BN	General purpose - Low input offset voltage	- 40 to 105	DIP 14
MC33004D	General purpose	- 40 to 105	SO 14
MC33004DT	General purpose	- 40 to 105	SO 14 TAPE
MC33004N	General purpose	- 40 to 105	DIP 14
MC34004AD	General purpose - Very low input offset voltage	0 to 70	SO 14
MC34004ADT	General purpose - Very low input offset voltage	0 to 70	SO 14 TAPE
MC34004AN	General purpose - Very low input offset voltage	0 to 70	DIP 14
MC34004BD	General purpose - Low input offset voltage	0 to 70	SO 14
MC34004BDT	General purpose - Low input offset voltage	0 to 70	SO 14 TAPE
MC34004BN	General purpose - Low input offset voltage	0 to 70	DIP 14
MC34004D	General purpose	0 to 70	SO 14
MC34004DT	General purpose	0 to 70	SO 14 TAPE
MC34004N	General purpose	0 to 70	DIP 14
TL064ACD	Low power - Low input offset voltage	0 to 70	SO 14
TL064ACDT	Low power - Low input offset voltage	0 to 70	SO 14 TAPE
TL064ACN	Low power - Low input offset voltage	0 to 70	DIP 14
TL064AID	Low power - Low input offset voltage	- 40 to 105	SO 14
TL064AIDT	Low power - Low input offset voltage	- 40 to 105	SO 14 TAPE
TL064AIN	Low power - Low input offset voltage	- 40 to 105	DIP 14
TL064BCD	Low power - Very low input offset voltage	0 to 70	SO 14
TL064BCDT	Low power - Very low input offset voltage	0 to 70	SO 14 TAPE
TL064BCN	Low power - Very low input offset voltage	0 to 70	DIP 14
TL064BID	Low power - Very low input offset voltage	- 40 to 105	SO 14
TL064BIDT	Low power - Very low input offset voltage	- 40 to 105	SO 14 TAPE
TL064BIN	Low power - Very low input offset voltage	- 40 to 105	DIP 14
TL064CD	Low power	0 to 70	SO 14
TL064CDT	Low power	0 to 70	SO 14 TAPE
TL064CJ	Low power	0 to 70	CERDIP 14
TL064CN	Low power	0 to 70	DIP 14
TL064ID	Low power	- 40 to 105	SO 14
TL064IDT	Low power	- 40 to 105	SO 14 TAPE
TL064IJ	Low power	- 40 to 105	CERDIP 14
TL064IN	Low power	- 40 to 105	DIP 14
TL074ACD	Low noise - Low input offset voltage	0 to 70	SO 14
TL074ACDT	Low noise - Low input offset voltage	0 to 70	SO 14 TAPE
TL074ACN	Low noise - Low input offset voltage	0 to 70	DIP 14
TL074AID	Low noise - Low input offset voltage	-40 to 105	SO 14

J-FET-QUAD (Continued)

Туре	Description	Temperature range (°C)	Package
TL074AIDT	Low noise - Low input offset voltage	- 40 to 105	SO 14 TAPE
TL074AIN	Low noise - Low input offset voltage	- 40 to 105	DIP 14
TL074BCD	Low noise - Very low input offset voltage	0 to 70	SO 14
TL074BCDT	Low noise - Very low input offset voltage	0 to 70	SO 14 TAPE
TL074BCN	Low noise - Very low input offset voltage	0 to 70	DIP 14
TL074BID	Low noise - Very low input offset voltage	- 40 to 105	SO 14
TL074BIDT	Low noise - Very low input offset voltage	- 40 to 105	SO 14 TAPE
TL074BIN	Low noise - Very low input offset voltage	- 40 to 105	DIP 14
TL074CD	Low noise	0 to 70	SO 14
TL074CDT	Low noise	0 to 70	SO 14 TAPE
TL074CJ	Low noise	0 to 70	CERDIP 14
TL074CN	Low noise	0 to 70	DIP 14
TL074ID	Low noise	- 40 to 105	SO 14
TL074IDT	Low noise	- 40 to 105	SO 14 TAPE
TL074IN	Low noise	- 40 to 105	DIP 14
TL084ACD	General purpose - Low input offset voltage	0 to 70	SO 14
TL084ACDT	General purpose - Low input offset voltage	0 to 70	SO 14 TAPE
TL084ACJ	General purpose - Low input offset voltage	0 to 70	CERDIP 14
TL084ACN	General purpose - Low input offset voltage	0 to 70	DIP 14
TL084AID	General purpose - Low input offset voltage	- 40 to 105	SO 14
TL084AIDT	General purpose - Low input offset voltage	- 40 to 105	SO 14 TAPE
TL084AIN	General purpose - Low input offset voltage	-40 to 105	DIP 14
TL084BCD	General purpose - Very low input offset voltage	0 to 70	SO 14
TL084BCDT	General purpose - Very low input offset voltage	0 to 70	SO 14 TAPE
TL084BCJ	General purpose - Very low input offset voltage	0 to 70	CERDIP 14
TL084BCN	General purpose - Very low input offset voltage	0 to 70	DIP 14
TL084BID	General purpose - Very low input offset voltage	-40 to 105	SO 14
TL084BIDT	General purpose - Very low input offset voltage	- 40 to 105	SO 14 TAPE
TL084BIN	General purpose - Very low input offset voltage	- 40 to 105	DIP 14
TL084CD	General purpose	0 to 70	SO 14
TL084CDT	General purpose	0 to 70	SO 14 TAPE
TL084CJ	General purpose	0 to 70	CERDIP 14
TL084CN	General purpose	0 to 70	DIP 14
TL084ID	General purpose	- 40 to 105	SO 14
TL084IDT	General purpose	-40 to 105	SO 14 TAPE
TL084IJ	General purpose	-40 to 105	CERDIP 14
TL084IN	General purpose	-40 to 105	DIP 14

BIPOLAR-SINGLE

Туре	Description	Temperature range (°C)	Package
LM101AD	Low offset - External frequency compensation	- 55 to 125	SO 8
LM101ADT	Low offset - External frequency compensation	- 55 to 125	SO 8 TAPE
LM201AD	Low offset - External frequency compensation	- 40 to 105	SO 8
LM201ADT	Low offset - External frequency compensation	- 40 to 105	SO 8 TAPE
LM201AJ	Low offset - External frequency compensation	-40 to 105	MINICERDIP
LM201AN	Low offset - External frequency compensation	- 40 to 105	MINIDIP
LM208AD	Precision - Low input current - Very low input offset voltage	- 40 to 105	SO 8
LM208ADT	Precision - Low input current - Very low input offset voltage	- 40 to 105	SO 8 TAPE
LM208AN	Precision - Low input current - Very low input offset voltage	40 to 105	MINIDIP
LM208D	Precision - Low input current	- 40 to 105	SO 8
LM208DT	Precision - Low input current	- 40 to 105	SO 8 TAPE
LM208N	Precision - Low input current	- 40 to 105	MINIDIP
LM218D	High speed - wide bandwidth - high slew rate	- 40 to 105	SO 8
LM218DT	High speed - wide bandwidth - high slew rate	-40 to 105	SO 8 TAPE
LM218N	High speed - wide bandwidth - high slew rate	-40 to 105	MINIDIP
LM301AD	Low offset - External frequency compensation	0 to 70	SO 8

BIPOLAR-SINGLE (Continued)

Type Description		Temperature range (°C)	Package
LM301ADT	Low offset - External frequency compensation	0 to 70	SO 8 TAPE
LM301AJ	Low offset - External frequency compensation	0 to 70	MINICERDIP
LM301AN	Low offset - External frequency compensation	0 to 70	MINIDIP
LM308AD	Precision - Low input current - Very low input offset voltage	0 to 70	SO 8
LM308ADT	Precision - Low input current - Very low input offset voltage	0 to 70	SO 8 TAPE
LM308AJ	Precision - Low input current - Very low input offset voltage	0 to 70	MINICERDIP
LM308AN	Precision - Low input current - Very low input offset voltage	0 to 70	MINIDIP
LM308D	Precision - Low input current	0 to 70	SO 8
LM308DT	Precision - Low input current	0 to 70	SO 8 TAPE
LM308J	Precision - Low input current	0 to 70	MINICERDIP
LM308N	Precision - Low input current	0 to 70	MINIDIP
LM318D	High speed · Wide bandwidth - High slew rate	0 to 70	SO 8
LM318DT	High speed - Wide bandwidth - High slew rate	0 to 70	SO 8 TAPE
LM318N	High speed - Wide bandwidth - High slew rate	0 to 70	MINIDIP
TDB7910N	Power - 500 mA output stage	0 to 70	DIP 16
UA741AH	General purpose - Internal frequency compensation	- 55 to 125	METAL CAN
UA741CD	General purpose - Internal frequency compensation	0 to 70	SO 8
UA741CDT	General purpose - Internal frequency compensation	0 to 70	SO 8 TAPE
UA741CH	General purpose - Internal frequency compensation	0 to 70	METAL CAN
UA741CJ	General purpose - Internal frequency compensation	0 to 70	MINICERDIP
UA741CN	General purpose - Internal frequency compensation	0 to 70	MINIDIP
UA741CN14	General purpose - Internal frequency compensation	0 to 70	DIP 14
UA741EN	General purpose - Internal frequency compensation	0 to 70	MINIDIP
UA741ID	General purpose - Internal frequency compensation	- 40 to 105	SO 8
UA741IDT	General purpose - Internal frequency compensation	- 40 to 105	SO 8 TAPE
UA741IJ	General purpose - Internal frequency compensation	- 40 to 105	MINICERDIP
UA741IN	General purpose - Internal frequency compensation	- 40 to 105	MINIDIP
UA741IN14	General purpose - Internal frequency compensation	- 40 to 105	DIP 14
UA741MH	General purpose - Internal frequency compensation	- 55 to 125	METAL CAN
UA741MJ	General purpose - Internal frequency compensation	- 55 to 125	MINICERDIP
UA741MN	General purpose - Internal frequency compensation	- 55 to 125	MINIDIP
UA741MN14	General purpose - Internal frequency compensation	- 55 to 125	DIP 14
UA748AH	Precision - Low offset	-55 to 125	METAL CAN SO 8
UA748CD	Precision - Low offset	0 to 70 0 to 70	SO 8 TAPE
UA748CDT	Precision - Low offset		
UA748CH	Precision - Low offset	0 to 70 0 to 70	METAL CAN MINICERDIP
UA748CJ	Precision - Low offset	0 to 70	MINIDIP
UA748CN	Precision - Low offset	- 40 to 105	SO 8
UA748ID	Precision - Low offset	- 40 to 105 - 40 to 105	SO 8 TAPE
UA748IDT UA748IN	Precision - Low offset Precision - Low offset	- 40 to 105	MINIDIP
	Precision - Low offset	- 55 to 125	METAL CAN
UA748MH	Precision - Low offset	- 55 to 125	MINICERDIP
UA748MJ UA776CD	Programmable - High input impedance	0 to 70	SO 8
UA776CDT	Programmable - High input impedance	0 to 70	SO 8 TAPE
UA776CH	Programmable - High input impedance Programmable - High input impedance	0 to 70	METAL CAN
UA776CJ	Programmable - High input impedance	0 to 70	MINICERDIP
UA776CN	Programmable - High input impedance Programmable - High input impedance	0 to 70	MINIDIP
UA776ID	Programmable - High input impedance	- 40 to 105	SO 8
UA776IDT	Programmable - High input impedance Programmable - High input impedance	- 40 to 105	SO 8 TAPE
UA776IN	Programmable - High input impedance Programmable - High input impedance	-40 to 105	MINIDIP
UA776MH	Programmable - High input impedance	-55 to 125	METAL CAN
UA776MJ	Programmable - High input impedance	-55 to 125	MINICERDIP

BIPOLAR-DUAL

,,,,,	Type Description		Package	
LM158AJ	Low power - Single power supply - Low input offset voltage	- 55 to 125	MINICERDIP	
LM158J	Low power - Single power supply	- 55 to 125	MINICERDIP	
LM258AJ	Low power - Single power supply - Low input offset voltage	- 40 to 105	MINICERDIP	
LM258D	Low power - Single power supply	- 40 to 105	SO 8	
LM258DT	Low power - Single power supply	- 40 to 105	SO 8 TAPE	
LM258J	Low power - Single power supply	- 40 to 105	MINICERDIP	
LM258N	Low power - Single power supply	- 40 to 105	MINIDIP	
LM2904D	Low power - Single power supply - Automotive	- 40 to 105	SO 8	
LM2904DT	Low power - Single power supply - Automotive	- 40 to 105	SO 8 TAPE	
LM2904J	Low power - Single power supply - Automotive	- 40 to 105	MINICERDIP	
LM2904N	Low power - Single power supply - Automotive	- 40 to 105	MINIDIP	
LM358AD	Low power - Single power supply - Low input offset voltage	0 to 70	SO 8	
LM358ADT	Low power - Single power supply - Low input offset voltage	0 to 70	SO 8 TAPE	
LM358AJ	Low power - Single power supply - Low input offset voltage	0 to 70	MINICERDIP	
LM358AN	Low power - Single power supply - Low input offset voltage	0 to 70	MINIDIP	
LM358D	Low power - Single power supply	0 to 70	SO 8	
LM358DT	Low power - Single power supply	0 to 70	SO 8 TAPE	
LM358J	Low power - Single power supply	0 to 70	MINICERDIP	
LM358N	Low power - Single power supply	0 to 70	MINIDIP	
MC1458D	General purpose - Internal frequency compensation	0 to 70	SO 8	
MC1458DT	General purpose - Internal frequency compensation	0 to 70	SO 8 TAPE	
MC1458ID	General purpose - Internal frequency compensation	- 40 to 105	SO 8	
MC1458IDT	General purpose - Internal frequency compensation	- 40 to 105	SO 8 TAPE	
MC1458IN	General purpose - Internal frequency compensation	- 40 to 105	MINIDIP	
MC1458J	General purpose - Internal frequency compensation	0 to 70	MINICERDIP	
MC1458N	General purpose - Internal frequency compensation	0 to 70	MINIDIP	
MC1558J	General purpose - Internal frequency compensation	- 55 to 125	MINICERDIP	
MC1558N	General purpose - Internal frequency compensation	- 55 to 125	MINIDIP	
MC4558CD	Wideband - Low power	0 to 70	SO 8	
MC4558CDT	Wideband - Low power	0 to 70	SO 8 TAPE	
MC4558CJ	Wideband - Low power	0 to 70	MINICERDIP	
MC4558CN	Wideband - Low power	0 to 70	MINIDIP	
MC4558ID	Wideband - Low power	- 40 to 105	SO 8	
MC4558IDT	Wideband - Low power	- 40 to 105	SO 8 TAPE	
MC4558IN	Wideband - Low power	-40 to 105	MINIDIP	
TEB1033D	Low distorsion & noise - High channel separation	0 to 70	SO 8	
TEB1033DT	Low distorsion & noise - High channel separation	0 to 70	SO 8 TAPE	
TEB1033N	Low distorsion & noise - High channel separation	0 to 70	MINIDIP	
TEF1033D	Low distorsion & noise - High channel separation	-40 to 105	SO 8	
TEF1033DT	Low distorsion & noise - High channel separation	-40 to 105	SO 8 TAPE	
TEF1033N	Low distorsion & noise - High channel separation	-40 to 105	MINIDIP	

BIPOLAR-QUAD

Туре	Description	Temperature range (°C)	Package
LM124AJ	General purpose - Single power supply - Low input offset voltage	- 55 to 125	CERDIP 14
LM124D	General purpose - Single power supply	- 55 to 125	SO 14
LM124DT	General purpose - Single power supply	- 55 to 125	SO 14 TAPE
LM124J	General purpose - Single power supply	- 55 to 125	CERDIP 14
LM124N	General purpose - Single power supply	- 55 to 125	DIP 14
LM148D	Quad 741 - Low supply current drain	- 55 to 125	SO 14
LM148DT	Quad 741 - Low supply current drain	- 55 to 125	SO 14 TAPE
LM148N	Quad 741 - Low supply current drain	− 55 to 125	DIP 14
LM224AD	General purpose - Single power supply - Low input offset voltage	- 40 to 105	SO 14
LM224ADT	General purpose - Single power supply - Low input offset voltage	- 40 to 105	SO 14 TAPE
LM224AJ	General purpose - Single power supply - Low input offset voltage	- 40 to 105	CERDIP 14
LM224AN	General purpose - Single power supply - Low input offset voltage	-40 to 105	DIP 14
LM224D	General purpose - Single power supply	-40 to 105	SO 14

BIPOLAR-QUAD (Continued)

Туре	Description	Temperature range (°C)	Package	
LM224DT	General purpose - Single power supply	- 40 to 105	SO 14 TAPE	
LM224J	General purpose - Single power supply	- 40 to 105	CERDIP 14	
LM224N	General purpose - Single power supply	- 40 to 105	DIP 14	
LM246D	Programmable - Wide power supply range	- 40 to 105	SO 16	
LM246DT	Programmable - Wide power supply range	- 40 to 105	SO 16 TAPE	
LM246N	Programmable - Wide power supply range	- 40 to 105	DIP 16	
LM248D	Quad 741 - Low supply current drain	- 40 to 105	SO 14	
LM248DT	Quad 741 - Low supply current drain	- 40 to 105	SO 14 TAPE	
LM248J	Quad 741 - Low supply current drain	- 40 to 105	CERDIP 14	
LM248N	Quad 741 - Low supply current drain	- 40 to 105	DIP 14	
LM2902D	Low power - Single power supply - Automotive	- 40 to 105	SO 14	
LM2902DT	Low power - Single power supply - Automotive	- 40 to 105	SO 14 TAPE	
LM2902J	Low power - Single power supply - Automotive	- 40 to 105	CERDIP 14	
LM2902N	Low power - Single power supply - Automotive	- 40 to 105	DIP 14	
LM324AD	General purpose - Single power supply - Low input offset voltage	0 to 70	SO 14	
LM324ADT	General purpose - Single power supply - Low input offset voltage	0 to 70	SO 14 TAPE	
LM324AJ	General purpose - Single power supply - Low input offset voltage	0 to 70	CERDIP 14	
LM324AN	General purpose - Single power supply - Low input offset voltage	0 to 70	DIP 14	
LM324D	General purpose - Single power supply	0 to 70	SO 14	
LM324DT	General purpose - Single power supply	0 to 70	SO 14 TAPE	
LM324J	General purpose - Single power supply	0 to 70	CERDIP 14	
LM324N	General purpose - Single power supply	0 to 70	DIP 14	
LM346D	Programmable - Wide power supply range	0 to 70	SO 16	
LM346DT	Programmable - Wide power supply range	0 to 70	SO 16 TAPE	
LM346J	Programmable - Wide power supply range	0 to 70	CERDIP 16	
LM346N	Programmable - Wide power supply range	0 to 70	DIP 16	
LM348D	Quad 741 - Low supply current drain	0 to 70	SO 14	
		0 to 70	SO 14 TAPE	
LM348DT	Quad 741 - Low supply current drain		CERDIP 14	
LM348J	Quad 741 - Low supply current drain	0 to 70	DIP 14	
LM348N	Quad 741 - Low supply current drain	0 to 70		
MC3303D	Single power supply - Class AB output stage	- 40 to 105	SO 14	
MC3303DT	Single power supply - Class AB output stage	- 40 to 105	SO 14 TAPE	
MC3303J	Single power supply - Class AB output stage	- 40 to 105	CERDIP 14	
MC3303N	Single power supply - Class AB output stage	- 40 to 105	DIP 14	
MC3403D	Single power supply - Class AB output stage	0 to 70	SO 14	
MC3403DT	Single power supply - Class AB output stage	0 to 70	SO 14 TAPE	
MC3403J	Single power supply - Class AB output stage	0 to 70	CERDIP 14	
MC3403N	Single power supply - Class AB output stage	0 to 70	DIP 14	
MC3503J	Single power supply - Class AB output stage	- 55 to 125	CERDIP 14	
TEB4033D	Low distorsion & noise - High channel separation	0 to 70	SO 14	
TEB4033DT	Low distorsion & noise - High channel separation	0 to 70	SO 14 TAPE	
TEB4033N	Low distorsion & noise - High channel separation	0 to 70	DIP 14	
TEF4033D	Low distorsion & noise - High channel separation	-40 to 105	SO 14	
TEF4033DT	Low distorsion & noise - High channel separation	- 40 to 105	SO 14 TAPE	
TEF4033N	Low distorsion & noise - High channel separation	-40 to 105	DIP 14	

COMPARATORS

SINGLE

Туре	Description	-V	Temperature range (°C)	Package
LM111D LM111DT LM211D LM211DT LM211N LM311D LM311DT LM311J LM311J	Low input current - Single power supply voltage		- 55 to 125 - 55 to 125 - 40 to 105 - 40 to 105 - 40 to 105 0 to 70 0 to 70 0 to 70 0 to 70	SO 8 SO 8 TAPE SO 8 SO 8 TAPE MINIDIP SO 8 SO 8 TAPE MINICERDIP MINIDIP

DUAL

Туре	Description	Temperature range (°C)	Package
LM193AJ	Low power - Very low offset voltage	-55 to 125	MINICERDIP
LM193J	Low power - Low offset voltage	- 55 to 125	MINICERDIP
LM193N	Low power - Low offset voltage	- 55 to 125	MINIDIP
LM219D	High speed - Single supply operation	- 40 to 105	SO 14
LM219DT	High speed - Single supply operation	- 40 to 105	SO 14 TAPE
LM219N	High speed - Single supply operation	- 40 to 105	DIP 14
LM2903D	Low power - Low offset voltage - Automotive	- 40 to 105	SO 8
LM2903DT	Low power - Low offset voltage - Automotive	- 40 to 105	SO 8 TAPE
LM2903J	Low power - Low offset voltage - Automotive	- 4C to 105	MINICERDIP
LM2903N	Low power - Low offset voltage - Automotive	- 40 to 105	MINIDIP
LM293AJ	Low power - Very low offset voltage	- 40 to 105	MINICERDIP
LM293D	Low power - Low offset voltage	-40 to 105	SO 8
LM293DT	Low power - Low offset voltage	- 40 to 105	SO 8 TAPE
LM293J	Low power - Low offset voltage	- 40 to 105	MINICERDIP
LM293N	Low power - Low offset voltage	- 40 to 105	MINIDIP
LM319D	High speed - Single supply operation	0 to 70	SO 14
LM319DT	High speed - Single supply operation	0 to 70	SO 14 TAPE
LM319J	High speed - Single supply operation	0 to 70	CERDIP 14
LM319N	High speed - Single supply operation	0 to 70	DIP 14
LM393AD	Low power - Very low offset voltage	0 to 70	SO 8
LM393ADT	Low power - Very low offset voltage	0 to 70	SO 8 TAPE
LM393AJ	Low power - Very low offset voltage	0 to 70	MINICERDIP
LM393AN	Low power - Very low offset voltage	0 to 70	MINIDIP
LM393D	Low power - Low offset voltage	0 to 70	SO 8
LM393DT	Low power - Low offset voltage	0 to 70	SO 8 TAPE
LM393J	Low power - Low offset voltage	0 to 70	MINICERDIP
LM393N	Low power - Low offset voltage	0 to 70	MINIDIP

COMPARATORS

QUAD

Туре	Description	Temperature range (°C)	Package
LM139AJ	Very low power - Very low offset voltage	- 55 to 125	CERDIP 14
LM139J	Low power - Low offset voltage	- 55 to 125	CERDIP 14
LM139N	Low power - Low offset voltage	- 55 to 125	DIP 14
LM239AD	Very low power - Very low offset voltage	- 40 to 105	SO 14
LM239ADT	Very low power - Very low offset voltage	-40 to 105	SO 14 TAPE
LM239AJ	Very low power - Very low offset voltage	-40 to 105	CERDIP 14
LM239AN	Very low power - Very low offset voltage	-40 to 105	DIP 14
LM239D	Low power - Low offset voltage	- 40 to 105	SO 14
LM239DT	Low power - Low offset voltage	- 40 to 105	SO 14 TAPE
LM239J	Low power - Low offset voltage	- 40 to 105	CERDIP 14
LM239N	Low power - Low offset voltage	- 40 to 105	DIP 14
LM2901D	Low power - Low offset voltage - Automotive	- 40 to 105	SO 14
LM2901DT	Low power - Low offset voltage - Automotive	-40 to 105	SO 14 TAPE
LM2901J	Low power - Low offset voltage - Automotive	- 40 to 105	CERDIP 14
LM2901N	Low power - Low offset voltage - Automotive	- 40 to 105	DIP 14
LM339AD	Very low power - Very low offset voltage	0 to 70	SO 14
LM339ADT	Very low power - Very low offset voltage	0 to 70	SO 14 TAPE
LM339AJ	Very low power - Very low offset voltage	0 to 70	CERDIP 14
LM339AN	Very low power - Very low offset voltage	0 to 70	DIP 14
LM339D	Low power - Low offset voltage	0 to 70	SO 14
LM339DT	Low power - Low offset voltage	0 to 70	SO 14 TAPE
LM339J	Low power - Low offset voltage	0 to 70	CERDIP 14
LM339N	Low power - Low offset voltage	0 to 70	DIP 14
MC3302D	Low power - Low offset voltage	- 40 to 105	SO 14
MC3302DT	Low power - Low offset voltage	- 40 to 105	SO 14 TAPE
MC3302J	Low power - Low offset voltage	- 40 to 105	CERDIP 14
MC3302N	Low power - Low offset voltage	-40 to 105	DIP 14

POSITIVE

Туре	Description	Temperature range (°C)	Package
L78M05ABV	5 V, 0.5 A regulator 2 %	- 40 to 125	TO 220
L78M05CV	5 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M05CS	5 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M05CX	5 V, 0.5 A regulator 4 %	0 to 125	SOT 82
L78M06ABV	6 V, 0.5 A regulator 2 %	- 40 to 125	TO 220
L78M06CV	6 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M06CS	6 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M06CX	6 V. 0.5 A regulator 4 %	0 to 125	SOT 82
L78M08ABV	8 V, 0.5 A regulator 2 %	- 40 to 125	TO 220
L78M08CV	8 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M08CS	8 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M08CX	8 V, 0.5 A regulator 4 %	0 to 125	SOT 82
L78M12ABV	12 V, 0.5 A regulator 2 %	- 40 to 125	TO 220
L78M12CV	12 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M12CS	12 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M12CX	12 V, 0.5 A regulator 4 %	0 to 125	SOT 82
L78M15ABV	15 V, 0.5 A regulator 2 %	- 40 to 125	TO 220
L78M15CV	15 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M15CS	15 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M15CX	15 V, 0.5 A regulator 4 %	0 to 125	SOT 82
L78M18ABV	18 V. 0.5 A regulator 2 %	-40 to 125	TO 220
L78M18CV	18 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M18CS	18 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M18CX	18 V, 0.5 A regulator 4 %	0 to 125	SOT 82
L78M20ABV	20 V, 0.5 A regulator 2 %	- 40 to 125	TO 220
L78M20CV	20 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M20CS	20 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M20CX	20 V, 0.5 A regulator 4 %	0 to 125	SOT 82
L78M24ABV	24 V, 0.5 A regulator 2 %	- 40 to 125	TO 220
L78M24CV	24 V, 0.5 A regulator 4 %	0 to 125	TO 220
L78M24CS	24 V, 0.5 A regulator 4 %	0 to 125	SOT 194
L78M24CX	24 V, 0.5 A regulator 4 %	.0 to 125	SOT 82
L78S05CT	5 V, 2 A regulator 4 %	0 to 125	TO 3
L78S05CV	5 V, 2 A regulator 4 %	0 to 125	TO 220
L78S09CT	9 V, 2 A regulator 4 %	0 to 125	TO 3
L78S09CV	9 V, 2 A regulator 4 %	0 to 125	TO 220
L78S10CT	10 V, 2 A regulator 4 %	0 to 125	TO 3
L78S10CV	10 V, 2 A regulator 4 %	0 to 125	TO 220
L78S12CT	12 V, 2 A regulator 4 %	0 to 125	TO 3
L78S12CV	12 V, 2 A regulator 4 %	0 to 125	TO 220
L78S15CT	15 V, 2 A regulator 4 %	0 to 125	TO 3
L78S15CV	15 V, 2 A regulator 4 %	0 to 125	TO 220
L78S18CT	18 V, 2 A regulator 4 %	0 to 125	TO 3
L78S18CV	18 V, 2 A regulator 4 %	0 to 125	TO 220
L78S24CT	24 V, 2 A regulator 4 %	0 to 125	TO 3
L78S24CV	24 V, 2 A regulator 4 %	0 to 125	TO 220
L78S75CT	7.5 V, 2 A regulator 4 %	0 to 125	TO 3
_78S75CV	7.5 V, 2 A regulator 4 %	0 to 125	TO 220
_7805ACV	5 V, 1.5 A regulator 2 %	0 to 125	TO 220
_7805ABV	5 V. 1.5 A regulator 2 %	- 40 to 125	TO 220
L7805ABV	5 V, 1.5 A regulator 2 %		
		0 to 125	TO 3
_7805CV	5 V, 1.5 A regulator 4 %	0 to 125	TO 220
_7805T	5 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
_7806ACV	6 V, 1.5 A regulator 2 %	0 to 125	TO 220
_7806ABV	6 V, 1.5 A regulator 2 %	- 40 to 125	TO 220
_7806CT	6 V, 1.5 A regulator 4 %	0 to 125	TO 3
_7806CV	6 V, 1.5 A regulator 4 %	0 to 125	TO 220
_7806T	6 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
_7808ACV	8 V, 1.5 A regulator 2 %	0 to 125	TO 220
_7808ABV	8 V, 1.5 A regulator 2 %	- 40 to 125	TO 220
_7808CT	8 V, 1.5 A regulator 4 %	0 to 125	TO 3
_7808CV	8 V, 1.5 A regulator 4 %	0 to 125	TO 220
_7808T	8 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
_7885CT			
	8.5 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7885CV	8.5 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7812ACV	12 V, 1.5 A regulator 2 %	0 to 125	TO 220
_7812ABV	12 V, 1.5 A regulator 2 %	- 40 to 125	TO 220
L7812CT	12 V, 1.5 A regulator 4 %	0 to 125	TO 3

POSITIVE (Continued)

Туре	Description	Temperature range (°C)	Package
L7812CV	12 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7812T	12 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
L7815ACV	15 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7815ABV	15 V, 1.5 A regulator 2 %	40 to 125	TO 220
L7815CT	15 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7815CV	15 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7815T	15 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
L7818ACV	18 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7818ABV	18 V, 1.5 A regulator 2 %	- 40 to 125	TO 220
L7818CT	18 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7818CV	18 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7818T	18 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
L7820ACV	20 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7820ABV	20 V, 1.5 A regulator 2 %	- 40 to 125	TO 220
L7820CT	20 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7820CV	20 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7820T	20 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
L7824ACV	24 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7824ABV	24 V, 1.5 A regulator 2 %	- 40 to 125	TO 220
L7824CT	24 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7824CV	24 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7824T	24 V, 1.5 A regulator 4 %	- 55 to 150	TO 3
LM109K	5 V, 1 A regulator 6 %	- 55 to 150	TO 3
LM123K	5 V, 3 A regulator 6 %	- 55 to 150	TO 3
LM209K	5 V, 1 A regulator 6 %	- 25 to 150	TO 3
LM223K	5 V, 3 A regulator 6 %	- 25 to 150	TO 3
LM309K	5 V, 1 A regulator 4 %	0 to 125	TO 3
LM323K	5 V, 3 A regulator 4 %	0 to 125	TO 3

NEGATIVE

Туре	Description	Temperature range (°C)	Package
L7905ACV	5 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7905CT	5 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7905CV	5 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7906CT	6 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7906CV	6 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7908ACV	8 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7908CT	8 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7908CV	8 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7912ACV	12 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7912CT	12 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7912CV	12 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7915ACV	15 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7915CT	15 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7915CV	15 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7918ACV	18 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7918CT	18 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7918CV	18 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7920ACV	20 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7920CT	20 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7920CV	20 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7922CT	22 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7922CV	22 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7924ACV	24 V, 1.5 A regulator 2 %	0 to 125	TO 220
L7924CT	24 V, 1.5 A regulator 4 %	0 to 125	TO 3
L7924CV	24 V, 1.5 A regulator 4 %	0 to 125	TO 220
L7952ACV	5.2 V, 1 A regulator 2 %	0 to 125	TO 220
L7952CT	5.2 V, 1 A regulator 4 %	0 to 125	TO 3
L7952CV	5.2 V, 1 A regulator 4 %	0 to 125	TO 220

ADJUSTABLE

Туре	Description	Temperature range (°C)	Package
LM117K	1.2 - 37 V, 1.5 A positive regulator	- 55 to 150	TO 3
LM138K	1.2 - 32 V, 5 A positive regulator	- 55 to 150	TO 3
LM217K	1.2 - 37 V, 1.5 A positive regulator	- 25 to 150	TO 3
LM217SP	1.2 - 37 V, 1.5 A positive regulator	- 25 to 150	TO 220
LM238K	1.2 - 32 V, 5 A positive regulator	- 25 to 150	TO 3
LM317K	1.2 - 37 V, 1.5 A positive regulator	0 to 125	TO 3
LM317T	1.2 - 37 V, 1.5 A positive regulator	0 to 125	TO 220
LM317ISP	1.2 - 37 V, 1.5 A positive regulator	- 40 to 150	TO 220
LM338K	1.2 - 32 V, 5 A positive regulator	0 to 125	TO 3
LM723CD1	3 - 37 V precision positive regulator	0 to 70	SO 14
LM723CH	3 - 37 V precision positive regulator	0 to 70	TO 100
LM723CJ	3 - 37 V precision positive regulator	0 to 70	CERDIP 14
LM723CN	3 - 37 V precision positive regulator	0 to 70	DIP 14
LM723H	3 - 37 V precision positive regulator	- 55 to 150	TO 100
LM723J	3 - 37 V precision positive regulator	- 55 to 150	CERDIP 14
LM137K	1.2 - 37 V, 1.5 A negative regulator	- 55 to 150	TO 3
LM237K	1.2 - 37 V, 1.5 A negative regulator	- 25 to 150	TO 3
LM337K	1.2 - 37 V, 1.5 A negative regulator	0 to 125	TO 3
LM337SP	1.2 - 37 V, 1.5 A negative regulator	0 to 125	TO 220

DEDICATED FUNCTIONS

Туре	Description	Package
L200 L4901A L4902A L4903 L4904A L4905 L4915 L4916 L4918 L4940-5 L4940-10 L4940-12 L4940-85	2 A adjustable regulator Dual 5 V regulator with reset Dual 5 V regulator with reset/disable Dual 5 V regulator with reset/disable Dual 5 V regulator with reset Dual 5 V regulator with reset Adjustable voltage regulator plus filter Voltage regulator plus filter Voltage regulator plus filter 1.5 A, 5 V low drop regulator 1.5 A, 10 V low drop regulator 1.5 A, 12 V low drop regulator	PENTAWATT, TO 3 (4 lead) HEPTAWATT HEPTAWATT MINIDIP MINIDIP HEPTAWATT 4 + 4 4 + 4 PENTAWATT TO 220 TO 220 TO 220
L4940-85 L4941 TDA8134 TDA8135 TDA8136 TEA5110 TEA7034 TEA7105 TEA7605SP TEA7610 TEA7685	1.5 A, 8.5 V low drop regulator 1 A, 5 V low drop regulator Dual 5 V + 12 V with disable Dual 5 V with disable Dual 12 V with disable Dual 5 V Low drop - out - 5 V - 500 mA - Load dump - Reset Microprocessor dedicated - Watch dog - Reset - 5 V Low drop - out - 5 V - 500 mA - load dump protection Low drop - out -10 V Low drop - out -8.5 V	TO 220 TO 220 HEPTAWATT HEPTAWATT HEPTAWATT BATWING DIP 16 PENTAWATT DIP 16 TO 220 TO 220 TO 220

HIGH CURRENT SWITCHING

Туре	Description	Package
L296/P	4 A Switching regulator	MULTIWATT 15
L4960	2.5 A Power switching regulator	HEPTAWATT
L4962	1.5 A Power switching regulator	HEPTAWATT, 12 + 2 + 2
L4963	1.5 A Power switching regulator	12 + 3 + 3
L4964	4 A Switching regulator	MULTIWATT 15
L4970	High current switching regulator	MULTIWATT 15
UAA4006B	Fixed frequency 3 A SMPS control circuit	DIP 16, MULTIWATT 15

OFF-LINE SWITCHING

PWM CONTROLLERS

Туре	Description	Package
SG2524	Regulating pulse width modulator (from -25° to +85°C)	DIP 16
SG2525A	Regulating pulse width modulator (from -25° to +85°C)	DIP 16
SG2527A	Regulating pulse width modulator (from -25° to +85°C)	DIP 16
SG3524	Regulating pulse width modulator (from 0 to +70°C)	DIP 16
SG3525A	Regulating pulse width modulator (from 0 to +70°C)	DIP 16
SG3527A	Regulating pulse width modulator (from 0 to +70°C)	DIP 16
UAA4002	Power transistor driver	DIP 16
UAA4003	Switch mode regulator for DC motors	DIP 16
UC2524A	Regulating pulse width modulator (from -25° to +85°C)	DIP 16
UC2840	Regulating pulse width modulator (from -25° to +85°C)	DIP 18
UC2842/3/4/5	Regulating pulse width modulator (from -25° to +85°C)	DIP 14, MINIDIP
UC3524A	Regulating pulse width modulator (from 0 to +70°C)	DIP 16
UC3840	Regulating pulse width modulator (from 0 to +70°C)	DIP 18
UC3842/3/4/5	Regulating pulse width modulator (from 0 to +70°C)	DIP 14, MINIDIP

SWITCH MODE POWER SUPPLY (POUT \leqslant 200 W)

Туре	Description	Package
TDA4601/B TEA2018A TEA2164 TEA5170	Free running frequency controller Current mode PWM controller Master slave : Primary switching circuit Master slave : Secondary controller	DIP 18 DIP 8 DIP 16 DIP 8

POWER CONTROLLERS - DRIVERS

SOLENOID / HAMMER / NEEDLE / RELAY

Туре	Description	Package
L294 L295 L3654S L5832 L601/2/3/4 L6114 L6115 L6122/3 L6212 L6220 L6221A/N L6222 L6503 L6504 L702 L7150/52/80/82 TDE1607 TDE1647 TDE1737 TDE1747 TDE1767, A TDE1767, A TDE1787, A TDE1798 TDE3207 TDF1778 TDF1779 A UAF1780/1/2 ULN2001A/2A/3A/4A ULN2064B to ULN2077B ULN2801A/2A/3A/4A/5A ULN2801A/2A/3A/4A/5A ULN2801A/2A/3A/4A	Switch-mode solenoid driver Dual switch-mode solenoid driver Printer solenoid driver Solenoid controller Darlington arrays Quad DMOS switch with TTL input and enable Quad DMOS switch with TTL input and enable 100 V DMOS switch High current solenoid driver Quad darlington switch Quad darlington switches Quad transistor switch Hammer solenoid controller Solenoid controller 2 A quad darlington switches Intelligent power switch · V _{CC} = 36 V, I _{OUT} = 0.3 A Intelligent power switch · V _{CC} = 45 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 45 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 45 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 45 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 45 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 45 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 36 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 36 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 36 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 36 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 35 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 35 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 35 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 35 V, I _{OUT} = 0.5 A Intelligent power switch · V _{CC} = 35 V, I _{OUT} = 2.5 A (DUAL) Intelligent power switch · V _{CC} = 35 V, I _{OUT} = 2.5 A (DUAL) Intelligent power switch · V _{CC} = 35 V, I _{OUT} = 2.5 A (DUAL) Seven darlington arrays Quad darlington switches Eight darlington arrays Seven darlington arrays Seven darlington arrays High voltage intelligent power switch	MULTIWATT 11 MULTIWATT 15 DIP 16 12 + 2 + 2 DIP 18 14 + 3 + 3 MULTIWATT 15 14 + 3 + 3, MULTIWATT 15 MULTIWATT 15 MULTIWATT 15/12 + 2 + 2 MULTIWATT 15/12 + 2 + 2 12 + 2 + 2 DIP 20 DIP 14 MULTIWATT 11, DIP 16 MULTIWATT 15 MINIDIP MI

UNIPOLAR STEPPER MOTORS

Туре	Description	Package
L297/A L6114 L6115 L6506 L702 L7150/52/80/82 ULN2064B to ULN2071B ULN2074B to ULN2077B	Stepper motor controllers Quad DMOS switch with TTL input and enable Quad DMOS switch with TTL input and enable Current controller for stepping motors 2 A quad darlington switch Quad darlington switches Quad darlington switches Quad darlington switches Quad darlington switches	DIP 20 14 + 3 + 3 MULTIWATT 15 DIP 18 MULTIWATT 11, DIP16 MULTIWATT 15 12 + 2 + 2 12 + 2 + 2

BIPOLAR STEPPER MOTORS

Туре	Description	Package
L293E L293C L297/A L298N L6201 L6202 L6203 L6210 L6217/A L6506 MC3479C PBL3717A TEA3717 TEA3718 UAB/UAF4718	Push-pull four channel drivers Push-pull four channel / dual H-bridge driver Push-pull four channel driver with diodes Stepper motor controllers Dual full bridge driver 0.3 Ω DMOS full bridge driver Dual schottky diode bridge Stepper motor driver Current controller for stepping motors Stepper motor driver Stepper motor driver Stepper motor driver Stepper motor driver - thermal protection Stepper motor driver - soft thermal protection Stepper motor driver	DIP 16, 16 + 2 + 2 16 + 2 + 2 16 + 2 + 2 DIP 20 MULTIWATT 15 SO 20 12 + 3 + 3 MULTIWATT 15 12 + 2 + 2 PLCC44 DIP 18 12 + 2 + 2 BATWING DIP 16 DIP 16, MULTIWATT 15 MULTIWATT 15 MULTIWATT 15

POWER CONTROLLERS - DRIVERS

BRUSHLESS MOTORS

Туре	Description	Package
L6230	Bidirectional three-phase brushless DC motor driver	MULTIWATT 15
L6231	Three-phase brushless DC motor driver	MULTIWATT 15
L6235	R-DAT brushless DC motor driver	PLCC20
L6236	Bidirectional R-DAT brushless DC motor driver	PLCC20

DC MOTORS

Туре	Description	Package
L149	4 A linear driver	PENTAWATT
L165	3 A power operational amplifier	PENTAWATT
L290 L291	Tachometer converter 5 bit D/A converter and position amplifier	DIP 16 DIP 16
L292	Switch-mode driver for DC motors	MULTIWATT 15
L293/E	Push-pull four channel drivers	DIP 16, 16 + 2 + 2
L293C	Push-pull four channel / dual H-bridge driver	16 + 2 + 2
L293D	Push-pull four channel driver with diodes	12 + 2 + 2
L298N	Dual full bridge driver	MULTIWATT 15
L6201	0.3 Ω DMOS full bridge driver	SO 20
L6202	0.3 Ω DMOS full bridge driver	12 + 3 + 3
L6203	0.3 Ω DMOS full bridge driver	MULTIWATT 15
UAA4003	Switch mode regulator DC motors	DIP 16

DISPLAYS

Туре	Description	Package
L3654S	Printer solenoid driver	DIP 16
L601/2/3/4	Darlington arrays	DIP 18
M192B1	7 segment LED driver	DIP 16
M5450B7	34 segment LED driver	DIP 40
M5451B7	35 segment LED driver	DIP 40
M5480B7	23 segment LED driver - 3.5 digit	DIP 28
M5481B7	14 segment LED driver - 2 digit	DIP 28
M5482B7	15 segment LED driver - 2 digit	DIP 20
M5486B2	33 segment LED driver	DIP 20
M8438A	32 segment static LCD driver	DIP 40, PLCC 44
M8439	32 segment static LCD driver	DIP 40
TDA4092	Decoder driver - 7 segment - 2 digit	DIP 24
UCN4801A	General purpose octal latch driver	DIP 24
UEB4732	AC plasma panel driver	DIP 40
ULN2001A/2A/3A/4A	Seven darlington arrays	DIP 16
ULQ2001R/2R/3R/4R	Seven darlington arrays	DIP 16 CERAMIC

ENCODERS / DECODERS

Туре	Description	Package
M145026	RC encoder	DIP 16
M145027	RC decoder	DIP 16
M145028	RC decoder	DIP 16

POWER CONTROLLERS - DRIVERS

DEDICATED FUNCTIONS

Туре	Description	Package
AM6012/A DAC0806/7/8 ESM 1600B ESM 1602B L6570A/B MC1488 MC1489/A	12-bit high speed multiplying D/A converters 8-bit D/A converters Industrial line driver Industrial line driver 2-channel floppy disk read/write circuits RS232C quad line driver Quad line receiver	DIP 20 DIP 16 DIP 16 DIP 16 DIP 14/DIP 16 DIP 28 DIP 14 DIP 14

BIPOLAR TIMERS

SINGLE

Туре	Description	Temperature range (°C)	Package
NE555D NE555DT NE555J NE555N SA555D SA555DT SA555J SA555N SE555J	Astable or monostable operation	0 to 70 0 to 70 0 to 70 0 to 70 0 to 70 - 40 to 105 - 40 to 105 - 40 to 105 - 40 to 105 - 55 to 125	SO 8 SO 8 tape MINICERDIP MINIDIP SO 8 SO 8 tape MINICERDIP MINIDIP MINIDIP

DUAL

Туре	Description	Temperature range (°C)	Package
NE556D NE556DT NE556J NE556N SA556D SA556DT SA556J SA556N SE556J	Two independant 555 timing circuits	0 to 70 0 to 70 0 to 70 0 to 70 0 to 70 - 40 to 105 - 40 to 105 - 40 to 105 - 40 to 105 - 55 to 125	SO 14 SO 14 tape CERDIP 14 DIP 14 SO 14 SO 14 tape CERDIP 14 DIP 14 CERDIP 14 CERDIP 14

DEDICATED FUNCTION

Туре	Description	Package
M8716A	Clock / calendar	DIP 8

DEDICATED FUNCTIONS

Туре	Description	Temperature range (°C)	Package
LM134Z	Adjustable current source	- 55 to 125	TO 92
LM135Z	Precision temperature sensor	- 55 to 125	TO 92
LM234Z	Adjustable current source	- 25 to 85	TO 92
LM235Z	Precision temperature sensor	- 25 to 85	TO 92
LM236AD	2.5 V voltage reference - precision	- 25 to 85	SO 8
LM236ADT	2.5 V voltage reference - precision	-25 to 85	SO 8 tape
LM236AZ	2.5 V voltage reference - precision	-25 to 85	TO 92
LM236D	2.5 V voltage reference	25 to 85	SO 8
LM236DT	2.5 V voltage reference	-25 to 85	SO 8 tape
LM236Z	2.5 V voltage reference	-25 to 85	TO 92
LM334Z	Adjustable current source	0 to 70	TO 92
LM335AZ	Precision temperature sensor - high accuracy	0 to 70	TO 92
LM335AD	Precision temperature sensor - high accuracy	0 to 70	SO 8
LM335ADT	Precision temperature sensor - high accuracy	0 to 70	SO 8 tape
LM335D	Precision temperature sensor	0 to 70	SO 8
LM335DT	Precision temperature sensor	0 to 70	SO 8 tape
LM335Z	Precision temperature sensor	0 to 70	TO 92
LM336BD	2.5 V voltage reference - precision	0 to 70	SO 8
LM336BDT	2.5 V voltage reference - precision	0 to 70	SO 8 tape
LM336BZ	2.5 V voltage reference - precision	0 to 70	TO 92
LM336D	2.5 V voltage reference	0 to 70	SO 8
LM336DT	2.5 V voltage reference	0 to 70	SO 8 tape
LM336Z	2.5 V voltage reference	0 to 70	TO 92
TDA0159ADP	Proximity detector	0 to 70	MINIDIP
TDA0159AFP	Proximity detector	0 to 70	SO 8
TDA0161CM	Proximity detector	-40 to 140	TO 99
TDA0161DP	Proximity detector	- 40 to 100	MINIDIP
TDA0161FP	Proximity detector	40 to 100	SO 8
TDE0160DP	Proximity detector	-25 to 85	DIP 14
TDE0160FP	Proximity detector	-25 to 85	SO 14
TL7700ACD	Supply voltage supervisor	0 to 70	SO 8
TL7700ACP	Supply voltage supervisor	0 to 70	MINIDIP
TL7700AID	Supply voltage supervisor	-25 to 85	SO 8
TL7700AIP	Supply voltage supervisor	-25 to 85	MINIDIP

STANDARD LOGIC

CMOS 4000B SERIES RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	3 to 18	V 1
V _I	Input voltage	0 to V _{DD}	V
Top	Operating temperature (HCF series)	-40 to 85	°C
Top	Operating temperature (HCC series)	-55 to 125	°C

HCC / HCF 4000B / 4500B / 40100B STANDARD SERIES

Туре		Description	Package
4000B	Н	Dual 3-Input NOR Gate plus inverter	DIP 14
4001B	СН	Quad 2-Input NOR Gate	DIP 14
4002B	CH	Dual 4-Input NOR Gate	DIP 14
4006B	CH	18-stage static shift register	DIP 14
4007UB	CH	Dual complementary pair plus inverter	DIP 14
4008B	CH	4-bit full adder	DIP 16
4009UB	011	Hex buffer/converter inverting	DIP 16
4010B		Hex buffer/converter non inverting	DIP 16
4010B	СН		DIP 16
		Quad 2-input NAND gate	DIP 14
4012B	CH	Dual 4-input NAND gate	
4013B	CH	Dual D flip-flop	DIP 14
4014B	4 CH	8-stage static syncr. shift register	.DIP 16
4015B	CH	Dual 4-stage static shift register	DIP 16
4016B	CH	Quad bilateral switch	DIP 14
4017B	CH	Decade counter/divider	DIP 16
4018B	CH	Presettable divide-by «N» counter	DIP 16
4019B	Н	Quad AND/OR select gate	DIP 16
4020B	CH	14-stage binary/ripple counter	DIP 16
4021B	CH	8-stage static shift register	DIP 16
4022B	CH	Divide-by-8 counter/divider	DIP 16
4023B	CH	Triple 3-input NAND gate	DIP 14.
4024B	CH	7-stage binary/ripple counter	DIP 14
4025B	CH	Tripple 3-input NOR gate	DIP 14
4026B	Н	Decade coun./div. 7-segm. display driver	DIP 16
4027B	CH	Dual J-K master-slave flip-flop	DIP 16
4028B	CH	BCD- to decimal decoder	DIP 16
4029B	CH	Presettable up/down counter	DIP 16
4030B	CH	Quad exclusive OR gate	DIP 14
4031B	Н	64-stage static shift register	DIP 16
4032B	C	Triple serial adder	DIP 16
4033B		Decade coun./div. 7-segm. display driver	DIP 16
4033B 4034B	СН		DIP 24
		8-stage static bidirectional bus register	
4035B	CH	4-stage parallel I/O shift register	DIP 16
4038B	C	Triple serial adder	DIP 16
4040B	CH	12-stage binary/ripple counter	DIP 16
4041UB	H	Quad true/complement buffer	DIP 14
4042B	CH	Quad clocked D latch	DIP 16
4043B	CH	Quad 3-state NOR R/S latch	DIP 16
4044B	CH	Quad 3-state NAND R/S latch	DIP 16
4045B		21-stage counter	DIP 16
4046B	CH	Micropower phase locker loop	DIP 16
4047B	CH	Monostable/astable multivibrator	DIP 14
4048B	Н	Multifunction expandable 8-input gate	DIP 16
4049UB	CH	Hex inverting buffer/converter	DIP 16
4050B	CH	Hex non inverting buffer/converter	DIP 16
4051B	CH	Single 8-channel analog multipl./demult.	DIP 16
4052B	C	Different. 4 channel analog multipl./dem.	DIP 16
4053B	CH	Triple 2-channel analog multiplexer/dem.	DIP 16
4054B		4-segment display driver	DIP 16

STANDARD LOGIC

HCC / HCF 4000B / 4500B / 40100B STANDARD SERIES (Continued)

Туре		Description	Package
4055B		BCD to 7-segment decoder/driver	DIP 16
4056B		BCD to 7-segment decoder/driver	DIP 16
4060B	CH	14-stage counter/divider AND oscillator	DIP 16
4063B	H	4-bit magnitude comparator	DIP 16
4066B	CH	Quad bilateral switch	DIP 14 DIP 24
4067B	H	Single 16-channel analog multiplexer/dem.	DIP 14
4068B 4069UB	CH CH	8-input NAND/AND gate Hex inverter	DIP 14
4070B	CH	Quad ex-OR gate	DIP 14
4071B	CH	Quad 2-input OR gate	DIP 14
4071B 4072B	CH	Dual 4-input OR gate	DIP 14
4073B	CH	Triple 3-input AND gate	DIP 14
4075B	CH	Triple 3-input OR gate	DIP 14
4076B	CH	4-bit D-type register	DIP 16
4077B	CH	Quad ex-NOR gate	DIP 14
4078B	CH	8-input NOR/OR gate	DIP 14
4081B	CH	Quad 2-input AND gate	DIP 14
4082B	CH	Dual 4-input AND gate	DIP 14
4085B	CH	Dual 2-wide 2-input AND-OR-inverter gate	DIP 14
4086B	H	Expand. 4-wide 2-input AND-OR-inverter gate	DIP 14
4089B	l H	Binary rate multiplexer	DIP 16
4093B	CH	Quad 2-input NAND schmitt trigger	DIP 14
4094B	CH	8-stage shift-AND-store bus register	DIP 16
4095B	"	Gated J-K master-slave flip-flop	DIP 14
4096B		Gated J-K master-slave flip-flop	DIP 14
1097B		Different. 8-channel analog multipl./dem.	DIP 24
1098B	CH	Dual monostable multivibrator	DIP 16
1099B	CH	8-bit addressable latch	DIP 16
1502B	CH	Strobed hex inverter/buffer	DIP 16
1503B	CH	Hex buffer (3-state non-inverter)	DIP 16
1508B	CH	Dual 4-bit latch (3-state outputs)	DIP 24
1510B	CH	Presettable 4-bit BCD up/down counter	DIP 16
1511B	C	BCD to 7 segment latch-decoder/driver	DIP 16
4512B	CH	8-channel data selec.with 3-state output	DIP 16
4514B	CH	4-bit latch/4-to-16 line dec. (out. high)	DIP 24
4515B	CH	4-bit latch/4-to-16 line dec. (out. low)	DIP 24
4516B	CH	Presettable 4-bit binary up/down counter	DIP 16
4517B	C	Dual 64-stage static shift register	DIP 16
4518B	CH	Dual BCD up counter	DIP 16
4520B	CH	Dual binary up counter	DIP 16
4527B	CH	BCD rate multiplier	DIP 16
4532B	CH	8-input priority encoder	DIP 16
1536B	C	Programmable timer	DIP 16
1538B		Dual precision monostable multivibrator	DIP 16
1541B		Programmable timer	DIP 14
1555B	CH	Dual 1-of-4 decoder/demultipl. (out. high)	DIP 16
1556B	CH	Dual 1-of-4 decoder/demultipl. (out. low)	DIP 16
1585B	C	4-bit magnitude comparator	DIP 16
10100B	"	32-stage static left/right shift register	DIP 16
0101B	н	9-bit parity generator/checker	DIP 14
0102B	''	Presettable 2-decade BCD down counter	DIP 16
0102B	Н	Presettable 8-bit binary down counter	DIP 16
0104B	H	4-bit bidirectional universal shift register	DIP 16
0105B	H	4-bit × 16 word	DIP 16
0106B	H	Hex schmitt trigger	DIP 14
0107B	l H	Dual 2-input NAND buffer/driver	DIP 8
0107B	H	4 × 4 multiport register	DIP 24
0109B	H	Quad low-to-high voltage level shifter	DIP 16
0110B	''	Decade up down counter/dec./latch/driver	DIP 16
0160B	Н	Decade counter/asynchronous clear	DIP 16
0161B	H	Binary counter/asynchronous clear	DIP 16
0162B	''	Decade counter/synchronous clear	DIP 16
0163B		Binary counter/synchronous clear	DIP 16
0174B	н	Hex «D»	DIP 16
.0174B .0181B	H	4-bit arithmetic logic unit	DIP 24
10182B	H	Look-ahead carry generator	DIP 16
10192B	"	Presettable 4-bit BCD up/down counter	DIP 16
	H	Presettable 4-bit binary up/down counter	DIP 16
10193B 10194B	H	4-bit bidirectional universal shift register	DIP 16
.0208B	H	4×4 multiport register	DIP 24
	H	Quad 2-line-to-1-line data selector/mult.	DIP 16
10257B	"	8-bit addressable latch	DIP 16
724B	1	o bit addicessable laten	1 2" 10

CROSSPOINT

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	3 to 18	V
V _I	Input voltage	0 to V _{DD}	V
Top	Operating temperature (Plastic pack)	-40 to 85	°C
Top	Operating temperature (Ceramic pack)	-55 to 125	°C

Туре	Description	Package
M22100 M22101 M22102	4×4 crosspoint switches with contr. memory $4\times4\times2$ crosspoint switches with contr. memory $4\times4\times2$ crosspoint switches with contr. memory	DIP 16 DIP 24 DIP 24

HS-C²MOS M54HC / 74HC SERIES-LSTTL SPEED CMOS LOW POWER RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	2 to 6	V
VI	Input voltage	0 to V _{CC}	V
TA	Operating temperature (74 series)	-40 to 85	°C
TA	Operating temperature (54 series)	- 55 to 125	°C

M54 / 74HC SERIES

Туре		Description	Package
HC00	С	Quad 2-Input NAND Gate	DIP 14
HC02	С	Quad 2-Input NOR Gate	DIP 14
HC03	C	Quad 2-Input NAND (open drain)	DIP 14
HC04	C	Hex inverter	DIP 14
HCT04	C	Hex inverter	DIP 14
HCU04	C	Hex inverter (single stage)	DIP 14
HC08	C	Quad 2-input AND gate	DIP 14
HC10	C	Triple 3-input NAND gate	DIP 14
HC11	C	Triple 3-input AND gate	DIP 14
HC14	C	Hex schmitt inverter	DIP 14
HC20	C	Dual 4-input NAND gate	DIP 14
HC21	C	Dual 4-input AND gate	DIP 14
HC27	C	Triple 3-input NOR gate	DIP 14
HC30	C	8-input NAND gate	DIP 14
HC32	C	Quad 2-input OR gate	DIP 14
HC42	C	BCD to decimal decoder	DIP 16
HC51	C	Dual 2-wide 2-inp/3-inp.AND-OR inv.gate	DIP 14
HC73	C	Dual J-K flip-flop with clear	DIP 14
HC74	C	Dual D-type flip-flop with preset and clear	DIP 14
HC75	C	4-bit D-type latch	DIP 16
HC76	C	Dual J-K flip-flop with preset and clear	DIP 16
HC77	C	4-bit D-type latch	DIP 14
HC85	C	4-bit magnitude comparator	DIP 16
HC86	C	Quad exclusive OR gate	DIP 14
HC107	C	Dual J-K flip-flop with clear	DIP 14

M54 / 74HC SERIES (Continued)

M54 / 74HC SERIES (Continued)

Туре		Description	Package
HCT374	С	Octal D-type flip-flop (3-state)	DIP 20
HC375 HC377	C	Quad D-type latch Octal D-type flip-flop	DIP 16 DIP 20
HC386	C	Quad exclusive OR gate	DIP 14
HC390		Dual decade counter	DIP 16
1C393	C	Dual binary counter	DIP 14 DIP 16
HC423 HC533	C	Dual monostable multivibrator with clear Octal D-type latch (3-state/inv)	DIP 16
IC534	C	Octal D-type flip-flop (3-state/inv.)	DIP 20
C540	C	Octal bus buffer (3-state/inv.)	DIP 20
CT540	C	Octal bus buffer (3-state/inv.)	DIP 20
C541 CT541	C	Octal bus buffer (3-state) Octal bus buffer (3-state)	DIP 20 DIP 20
C563	CC	Octal D-type latch (3-state/inv.)	DIP 20
CT563	C	Octal D-type latch (3-state/inv.)	DIP 20
C564	C	Octal D-type flip-flop (3-state/inv.)	DIP 20
CT564 C573	C	Octal D-type flip-flop (3-state/inv.) Octal D-type latch (3-state)	DIP 20 DIP 20
CT573	C	Octal D-type latch (3-state)	DIP 20
C574	C	Octal D-type flip-flop (3-state)	DIP 20
CT574	C	Octal D-type flip-flop (3-state)	DIP 20
C590 C595	C	8 bit binary counter register (3-state) 8 bit shift register output latch (3-state)	DIP 16 DIP 16
C597		8 bit latch shift register	DIP 16
C620	C	Octal bus transceiver (3-state/inv)	DIP 20
C623	C	Octal bus transceiver (3-state)	DIP 20 DIP 20
C640 CT640	C	Octal bus transceiver (3-state/inv) Octal bus transceiver (3-state/inv)	DIP 20
C643	C	Octal bus transceiver (3-state)	DIP 20
CT643	C	Octal bus transceiver (3-state)	DIP 20
C646	C	Octal bus transceiver register (3-state)	DIP 24
CT646 C648	C	Octal bus transceiver register (3-state) Octal bus transceiver register (3-state/inv.)	DIP 24 DIP 24
CT648	C C	Octal bus transceiver register (3-state/inv.)	DIP 24
C651	' C	Octal bus transceiver register (3-state/inv.)	DIP 24
CT651	C	Octal bus transceiver register (3-state/inv.)	DIP 24
IC652 ICT652	C	Octal bus transceiver register Octal bus transceiver register	DIP 24 DIP 24
IC670	l č l	4 word × 4 bit register file (3-state)	DIP 16
C688	1 0 1	8 bit equality comparator	DIP 20
IC690 IC691	CC	Decade counter register (3-state)	DIP 20 DIP 20
C692	C	4 bit binary counter register (3-state) Decade counter register (3-state)	DIP 20
C693	C	4 bit binary counter register (3-state)	DIP 20
C696	C	U/D decade counter register (3-state)	DIP 20
C697 C698	C	U/D 4-bit binary counter/register (3-state) U/D decade counter register (3-state)	DIP 20 DIP 20
C699	I č I	U/D 4-bit binary counter/register (3-state)	DIP 20
C4002	CC	Dual 4-input NOR gate	DIP 14
C4017 C4020	C	Decade counter/divider	DIP 16
C4020 C4022	C	14-stage binary counter Octal counter/divider	DIP 16
C4024	C	7-stage binary counter	DIP 14
C4028	C	BCD to decimal decoder	DIP 16
C4040 C4049B	C	12-stage binary counter	DIP 16 DIP 16
C4049B C4050B		Hex buffer/converter (inv.) Hex buffer/converter	DIP 16
C4052		Dual 4-channel analog multiplexer/demultiplexer	DIP 16
C4053		Triple 4-channel analog multiplexer/demultiplexer	DIP 16
C4060 C4066	CC	14-stage binary counter/oscillator Quad bilateral switch	DIP 16 DIP 14
C4072		Dual 4-input OR gate	DIP 14
C4075	C	Triple 3-input OR gate	DIP 14
C4078	C	8-input NOR/OR gate	DIP 14
C4094 C40102	C	8 bit SIPO shift register latch (3-state) Dual BCD programmable down counter	DIP 16 DIP 16
C40103	6	8 bit binary programmable down counter	DIP 16
C4316		Quad bilateral switches	DIP 16
C4511 C4514	C	BCD to 7-segment L/D/D (LED) 4 to 16 line decoder latch	DIP 16 DIP 24
C4514 C4515	CC	4 to 16 line decoder latch 4 to 16 line decoder latch (inv.)	DIP 24
C4518	C	Dual decade counter	DIP 16
C4520	C	Dual 4 bit binary counter	DIP 16
C4538 C4543	CC	Dual monostable multivibrator BCD to 7-segment L/D/D (LCD)	DIP 16 DIP 16
CT7007	C	Hex buffer	DIP 16
C7266	C	Quad exclusive NOR gate	DIP 14
C7292	C	Programmable divider/timer	DIP 16
C7294	C	Programmable divider/timer	DIP 16

190

LOW POWER SCHOTTKY - TTL - T54/T74LS SERIES GUARANTEED OPERATING RANGES

Туре		Supply voltage			Unit
Турс	Min.	Тур.	Max.		
T54LSXXXD2 T74LSXXXYY	4.5 4.75	5.0 5.0	5.5 5.25	-55 to +125 0 to 70	°C

YY = package type

TTL - T54 / T74LS SERIES

Туре		Description	Package
 LS00	С	Quad 2-Input NAND Gate	DIP 14
LS01	1	Quad 2-Input NAND Gate (open collector)	DIP 14
LS02	C	Quad 2-Input NOR Gate	DIP 14
_S03A		Quad 2-Input NAND (open collector)	DIP 14
_S04	C	Hex inverter	DIP 14
S05A	C	Hex inverter (open collector)	DIP 14
S08	C	Quad 2-input AND gate	DIP 14
S09	C	Quad 2-input AND gate (open collector)	DIP 14
S10	C	Triple 3-input NAND gate	DIP 14
S11	C	Triple 3-input AND gate	DIP 14
S12		Triple 3-input NAND gate (open collector)	DIP 14
S13		Dual 4-input NAND schmitt trigger	DIP 14
.S14	C	Hex schmitt trigger inverter	DIP 14
S15	C	Triple 3-input AND gate (open collector)	DIP 14
S20	C	Dual 4-input NAND gate	DIP 14
S21		Dual 4-input AND gate	DIP 14
S22	l c l	Dual 4-input NAND gate (open collector)	DIP 14
S26A		Quad 2-Input NAND buffer (open collector)	DIP 14
.S27	l c l	Triple 3-input NOR gate	DIP 14
S28	C	Quad 2-input NOR buffer	DIP 14
S30	C	8-input NAND gate	DIP 14
S32	C	Quad 2-input OR gate	DIP 14
S33	C	Quad 2-input On gate Quad 2-input NOR buffer (open collector)	DIP 14
S37	C	Quad 2-input NAND buffer Quad 2-input NAND buffer	DIP 14
S38	C	Quad 2-input NAND buffer (open collector)	DIP 14
.S40	C	Dual 4-input NAND buffer	DIP 14
S42	C	1-of 10 decoder	DIP 16
.S51		Dual 2-wide 2-inp/3-inp.AND-OR INV. gate	DIP 14
.S54	C	2-3-3-2 input AND-OR-INVERT gate	DIP 14
.S55	C	2-vide 4-input AND-OR-INVERT gate	DIP 14
555 S74A	C	Dual D-type posit, edge-trigg, flip-flop	DIP 14
	0	71 1 0 00 1 1	DIP 16
S75	C	4-bit D latch 4-bit full adder with fast carry	DIP 16
S83A		,	DIP 14
S86		Quad 2-input exclusive OR gate	DIP 14
S90	C	Decade counter	DIP 14
S93		4-bit binary counter	DIP 14
S95B		4-bit shift register	DIP 14
S109A S112A		Dual JK positive edge-trigger, flip-flop	DIP 16
		Dual JK negative edge-trigger, flip-flop	DIP 14
S113A		Dual JK negative edge-trigger. flip-flop	DIP 14
S125A	C	Quad 3-state buffer (LOW enable)	DIP 14
S126A		Quad 3-state buffer (HIGH enable)	DIP 14
S132	C	Quad 2-input schmitt trigger NAND gate	DIP 14
S133	_	13-input NAND gate	DIP 16
S136	C	Quad 2-input exclus. OR gate (open coll.)	DIP 14
.S138		1-of-8 decoder/demultiplexer	DIP 16
S139		Dual 1-of-4 decoder/demultiplexer	
S148		8-input to 3-line priority encoder	DIP 16

TTL - T54 / T74LS SERIES (Continued)

Туре		Description	Package
_S151	С	8-input multiplexer	DIP 16
_S152		8-input multiplexer	DIP 14
_S153		Dual 4-input multiplexer	DIP 16
S155	C	Dual 1-of-4 decoder/demultiplexer	DIP 16
.S156	С	Dual 1-of-4 decoder/demultiplexer (open coll.)	DIP 16
S157	C	Quad 2-input multiplexer (non inverting)	DIP 16
S158	C	Quad 2-input multiplexer (inverting)	DIP 16
S164	C	8 bit schift register (serial-in parout)	DIP 14
S166		8 bit schift register (par. in serial-out)	DIP 16
S168		Up/Down decade counter	DIP 16
S169		Up/Down binary counter	DIP 16
S170	c		
		4 × 4 register file (open collector)	DIP 16
S174	C	Hex D-type flip-flop with clear	DIP 16
S175	C	Quad D-type flip-flop with clear	DIP 16
S181		4-bit ALU	DIP 24
S190		Presettable BCD/decade up/down counter	DIP 16
S191		Presettable 4-bit binary up/down counter	DIP 16
S192	C	Presettable BCD/decade up/down counter	DIP 16
S193	C	Presettable 4-bit binary up/down counter	DIP 16
	C		
S194A		4-bit right/left shift register	DIP 16
S195A	C	4-bit shift register	DIP 16
S196		Decade counter	DIP 14
S197		4-bit binary counter	DIP 14
S240	С	Octal inverting bus/line driver (3-state)	DIP 20
S241		Octal bus line driver (3-state)	DIP 20
S244		Octal non inverting driver (3-state)	DIP 20
S245		Octal non inverting bus transceiver (3-state)	DIP 20
S248	1.2	BCD to 7-segment dec./driv. with full-ups	DIP 16
S251	1 1		1
		8-input multiplexer (3-state)	DIP 16
S253		Dual 4-input multiplexer (3-state)	DIP 16
S256		Dual 4-bit addressable latch	DIP 16
S257A		Quad 2-input multiplexer (3-state)	DIP 16
S258A		Quad 2-input multiplexer (3-state)	DIP 16
S259		8-bit addressable latch	DIP 16
S260		Dual 5-input NOR gate	DIP 14
S266		Quad 2-input exclus. NOR gate (open coll.)	DIP 14
S273	C		
	1 1	Octal D-type flip-flop with master reset	DIP 20
S279	C	Quad set-reset latch	DIP 16
S280	C	9-bit odd/even parity generator/checker	DIP 14
5283	C	4-bit binary full adder (rotated LS83A)	DIP 16
5293	C	4-bit binary counter	DIP 14
S295A		4-bit shift register (3-state)	DIP 14
6298	C	Quad 2-input multiplexer with output lat.	DIP 16
6352	C	Dual 4-input multiplexer (inver.LS153)	DIP 16
3353	C	Dual 4-input multiplexer (invertication) Dual 4-input multiplexer (3-state LS352)	DIP 16
S365A	"		
		Hex buffer with common enable (3-state)	DIP 16
S366A		Hex inverting buffer with common enable (3-state)	DIP 16
S367A	C	Hex buffer, 4-bit and 3-bit(3-state)	DIP 16
S368A		Hex inverting buffer,4-bit and 2-bit (3-state)	DIP 16
S373		Octal transparent latch (3-state)	DIP 20
6374	c	Octal D-type flip-flop (3-state)	DIP 20
6377	С	Octal D-type flip-flop with common enable	DIP 20
3378	C	Hex D-type flip-flop with enable	DIP 16
6379	C	4-bit D-type flip-flop with enable	DIP 16
6390		Dual decade counter	
6393	c		DIP 16
		Dual 4-bit binary counter	DIP 14
395	C	4-bit shift register (3-state)	DIP 16
6399		Quad 2-input multiplexer with output reg.	DIP 16
6490		Dual decade counter	DIP 16
S533		Octal transparent latch (3-state)	DIP 20
S534		Octal D-type flip-flop (3-state)	DIP 20
6540		Octal inverting buffer/line driver (3-state)	DIP 20
S541		Octal buffer/line driver (3-state)	DIP 20
3645		Octal non inverting bus tranceiver (3-state)	1
	C		DIP 20
6670		4 × 4 register file (3-state)	DIP 16

192

PROGRAMMABLE LOGIC DEVICES (PLD)

GAL® - E²CMOSTM SERIES (1)

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	4.65 to 5.25	V
TA	Operating temperature	0 to 70	°C

Туре	Description	Package
GAL16V8-20HB1	Generic array logic - 20 nsec/16 PT	DIP 20
GAL16V8-25HB1	Generic array logic - 25 nsec/16 PT	DIP 20
GAL20V8-20HB1	Generic array logic - 20 nsec/20 PT	DIP 24
GAL20V8-25HB1	Generic array logic - 25 nsec/20 PT	DIP 24

⁽¹⁾ GAL is a registered trade mark of LATTICE SEMICONDUCTORS CORPORATION. E²CMOS is a trade mark of LATTICE SEMICONDUCTORS CORPORATION.

MODULES & BOARDS

SWITCHING VOLTAGE REGULATORS	197
DC / DC CONVERTERS	197
STEPPER MOTOR DRIVERS AND CONTROLLERS	197
MOTION CONTROL BOARDS	197
MECHANICAL DATA	198

SWITCHING VOLTAGE REGULATORS

Туре	Description	Package
GS-R400V	Adjustable 4 A, 5.1 to 40 V output ; V _{in} up to 46 V	Α^
GS-R400VB	Like GS-R400V with adjustable current, syncr, module	A
GS-R400V-HV	Adjustable 4 A, 5.1 to 40 V output; V _{in} up to 72 V	A
GS-R405	5 V/4 A Fixed output; V _{in} up to 46 V	A
GS-R405-HV	5 V/4 A Fixed output; V _{in} up to 72 V	A
GS-R405S	5 V/4 A Fixed output with reset; Vin up to 46 V	A
GS-R405/2	5 V/4 A Fixed output. V _{in} up to 40 V; small size	В
GS-R412	12 V/4 A Fixed output; V _{in} up to 46 V	A
GS-R412-HV	12 V/4 A Fixed output; V _{in} up to 72 V	A
GS-R412/2	12 V/4 A Fixed output. V _{in} up to 40 V ; small size	
GS-R415	15 V/4 A Fixed output; V _{in} up to 46 V	A
GS-R424	24 V/4 A Fixed output; V _{in} up to 46 V	A
GS-R51212	Triple output voltages; 5 V/3.5 A, \pm 12 V/0.1 A isolated outputs	A

DC / DC CONVERTERS

Туре	Description	Package
GS-I0509 GS-I555 GS-I51212 GS-I51515* GS-I1209 GS-I25-0500**	5 V input; 9 V/250 mA output 5 V input; ± 5 V/200 mA output 5 V input; ± 12 V/100 mA output 24 V input; 5 V/250 mA, ± 15 V/125 mA output 12 V input; 9 V/250 mA output 36÷72 V input; 5 V/5 A output	C C C D C

Common feature : input/output isolation.

* Triple outputs; remote ON/OFF control.

STEPPER MOTOR DRIVERS AND CONTROLLERS

Туре	Description	Package
GS-C200	Programmable intelligent stepper motor controller	F
GS-D050	0.5 A chopped bipolar stepper motor driver	В
GS-D200	2 A chopped bipolar stepper motor driver	A
GS-D200S*	2.5 A chopped bipolar stepper motor driver	A
* Fully protected outputs.		

MOTION CONTROL BOARDS

Туре	Description	Package
GS-DC200	Board with a GS-C200 controller and a GS-D200 driver	G
GS-DC200S	Board with a GS-C200 controller and a GS-D200S driver	G
GS-D550	5 phases and 2 phases stepper motor board	G

^{**} Output overvoltage protection, remote ON/OFF control, remote sense compensation, six-sided continuous shield.

MECHANICAL DATA

MECHANICAL DATA

MILITARY AND AEROSPACE

INTEGRATED	CIRCUITS	203
	LINEAR ICs CMOS 4000 B LOW POWER SCHOTTKY HS-C ² MOS LOGIC MEMORIES MICROPROCESSORS AND PERIPHERALS ASIC's	203 204 206 207 209 209 210
	They can be offered: • in various temperature range including -55°C to +125°C • according to several quality assurance levels: - CECC 90000 - MIL STD 883 class B revision C and JAN - ESA/SCC 9000 • in various hermetic packages and die form	
DISCRETE DE	EVICES	211
	BIPOLAR POWER TRANSISTORS RF & MICROWAVE TRANSISTORS SMALL SIGNAL TRANSISTORS SMALL SIGNAL SCHOTTKY DIODES ZENER DIODES TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL» RECTIFIER DIODES	211 212 212 213 213 213 214
	They can be offered: • processed according to or qualified to CECC 50000 sequence A or B	

• processed according to or qualified to ESA/SCC 5000 level B or C

TO THE STATE OF TH

ng 1920 ng 1930 ng 193 Significant ng 1930 ng

LINEAR ICs

Description		Туре	Detail specification	
			CECC	ESA
J-FET OP AMPs	Single	LF155 LF155A LF156 LF156A LF157 LF157A TL061 TL071 TL081	90202/005 90202/006 90202/007 90202/008 90202/009 90202/010	
	Dual	TL062 TL072 TL082	90202/035 90202/038	
	Quad	TL064 TL074 TL084	90202/035 90202/038	
BIPOLAR OP-AMPs	Single	LM101 LM101A LM101AH LM108 LM108A LM108AH UA741 UA746 UA748	90202/018 90202/015 90202/014 90201/022	9101/001 9101/006
	Dual	LM158 LM1588 MC4558	90202/031 90202/023	
	Quad	LM124 LM148	90202/029 90202/033	
COMPARATORS	Single	LM111 LM111 H	(1)	9103/002
OOM ANATONO	Dual	LM193,A	(1)	
	Quad	LM139,A	(1)	
ADJUSTABLE VOLTAGE REGULATORS	Positive	LM105 LM117 (3) LM138	90201/005	9102/002
	Negative	LM137 (3) UA723M	90201/007 90201/002	
	Positive low drop out	TEC 7605 (2) (3)		
FIXED VOLTAGE REGULATORS	Positive	UA7805 (3) UA7812 (3) UA7815 (3)	90201/011 90201/013 90201/015	
	Negative	UA7905 (3) UA7912 (3) UA7915 (3)	90201/021 90201/023 90201/017	
TIMERS		SE555 SE556		
REGULATING PULSE WIDTH MODULATOR		SG1525A (2)		
POWER CONTROLLERS		L297 (2) L6202 (2) L6203 (2)		

CMOS 4000B

Tyres	Description	Detail specification	
Туре	Description	CECC	ESA/SCC
CC4000B	Dual 3-input NOR gate plus inverter		9201/040
ICC4001B	Quad 2-input NOR gate	90 104-105	9201/041
HCC4002B	Dual 4-input NOR gate	90 104-106	9201/042
HCC4006B	18 stage static shift register	90 104-107	9306/013
HCC4007UB	Dual complementary pair plus inverter	90 104-108	9202/038
1CC4008B	4-bit full adder	90 104-109	9202/039
HCC40100B	32-stage static left/right shift register		*
HCC40101B	9-bit parity generator checker		9208/003
CC40102B			*
	8-stage down counter		
HCC40103B	8-stage down counter		9204/036
HCC40104B	4-bit shift register		9306/040
HCC40105B	Fifo register		9306/033
1CC40106B	Hex schmitt trigger		9409/005
HCC40107B	Dual 2-input NAND buffer/driver		9401/013
HCC40108B	4x4 multiport register		9306/034
HCC40109B	Quad low-to-high voltage level shifter		9407/003
HCC4011B	Quad 2-input NAND gate	90 104-110	9301/043
HCC40110B	Decade up down counter/decoder/latch/driver		*
		00 104 111	0001/044
HCC4012B	Dual 4-input NAND gate	90 104-111	9201/044
HCC4013B	Dual D flip-flop	90 104-112	9203/023
HCC4014B	8-stage static sync shift register	90 104-113	9306/014
HCC4015B			
	Dual 4 stage static shift register	90 104-114	9306/015
HCC4016B	Quad bilateral switch	90 104-115	9202/050
HCC40160B	Programmable decade counter	90 104-189	9204/047
HCC40161B	Programmable binary counter	90 104-190	
			9204/054
HCC40162B	Programmable decade counter	90 104-191	*
HCC40163B	Programmable binary counter	90 104-192	*
HCC4017B	Decade counter/divider	90 104-170	0204/020
			9204/020
HCC40174B	Hex D type flip-flop	90 104-193	9203/038
HCC4018B	Presettable divide by N counter	90 104-171	9204/021
HCC40181B	4-bit alu		9202/063
HCC40182B	Look ahead carry generator		9202/069
HCC4019B	Quad AND/OR select gate	90 104-172	9202/051
HCC40192B	Presettable up/down BCD counter		*
HCC40193B	Presettable up/down binary counter		9204/041
HCC40194B	4-bit shift register		9306/032
HCC4020B	14-stage binary/ripple counter	90 104-116	9204/022
		30 104-110	
HCC40208B	4x4 multiport register		9301/009
HCC4021B	8-stage static shift register	90 104-117	9306/016
HCC4022B	Divide by 8 counter/divider	90 104-118	9204/023
HCC4023B			
	Triple 3-input NAND gate	90 104-119	9201/045
HCC4024B	7-stage binary/ripple counter	90 104-120	9204/024
HCC4025B	Triple 3-input NOR gate	90 104-121	9201/046
HCC40257B		00 101 121	
	Quad 2-line to 1 data selector/multiplexer		9408/017
HCC4026B	Decade counter/divider 7-segment display driver		9406/001
HCC4027B	Dual J-K master slave flip-flop	90 104-122	9203/022
HCC4028B	BCD to-decimal decoder	90 104-123	9205/010
HCC4029B	Presettable up/down counter	90 104-124	9204/025
HCC4030B	Quad ex-or gate	90 104-125	9201/047
HCC4031B	64-stage static shift register		9306/017
		00.101.100	3300/01/
HCC4032B	Triple serial adder	90 104-126	*
HCC4033B	Decade counter/divider 7-segment display driver		*
HCC4034B	8-stage static bidirectional bus register	90 104-127	9306/025
HCC4035B	4-stage parallel I/O shift register	90 104-128	9306/018
HCC4038B	Triple senal adder	90 104-129	*
HCC4040B	12-stage binary/ripple counter	90 104-130	9204/026
HCC4041B	Quad true/complement buffer	30 104-100	
			9202/040
HCC4042B	Quad clocked D latch	90 104-185	9202/041
HCC4043B	Quad 3-state NOR R/S latch	90 104-186	9202/042
HCC4044B			
	Quad 3-state NAND R/S latch	90 104-132	9202/043
HCC4045B	21-stage counter		*
HCC4046B	Micropower phase locked loop	90 104-212	9202/026
HCC4047B			
	Monostable/astable multivibrator	90 104-225	9207/003
HCC4048B	Multifunction expandable 8-input gate		9201/054
HCC4049UB	Hex inverting buffer/converter	90 104-133	9202/045
HCC4050B	Hex non-inverting buffer/converter	90 104-134	9202/046
HCC4051B	Single 8-channel analog multiplexer/demultiplexer	90 104-135	9202/047
ICC4052B	Differential 4-channel analog multiplexer/demultiplexer	90 104-136	*

CMOS 4000B

T	Description	Detail	specification
Туре	Description	CECC	ESA/SCC
HCC4053B	Triple 2-channel analog multiplexer/demultiplexer	90 104-137	9202/049
HCC4054B	4-segment display driver		*
HCC4055B	BCD to 7-segment decoder/driver		*
HCC4056B	BCD to 7-segment decoder/driver		*
HCC4060B	14-stage counter/divider and oscillator	90 104-213	9204/052
HCC4063B	4-bit magnitude comparator	33 131 213	9209/001
HCC4066B	Quad bilateral switch	90 104-138	9408/005
HCC4067B	Single 16-channel analog multiplexer/demultiplexer		9408/009
HCC4068B	8-input NAND/AND gate	90 104-139	9201/061
HCC4069UB	Hex inverter	90 104-140	9401/010
HCC40090B	Quad EX-OR gate	90 104-140	9201/048
HCC4071B	Quad 2-input OR gate	90 104-141	9201/065
HCC4071B	Dual 4-input OR gate	90 104-142	9201/082
HCC4073B	Triple 3-input AND gate	90 104-143	9201/064
HCC4075B	Triple 3-input AND gate Triple 3-input OR gate	90 104-144	9201/065
	4-bit D-type register	90 104-144	9306/022
HCC4076B HCC4077B	Quad EX-NOR gate	90 104-146	9201/055
HCC4077B	8-input NOR/OR gate	90 104-147	9201/055
		90 104-147	9201/062
HCC4081B	Quad 2-input AND gate	90 104-148	9201/052
HCC4082B	Dual 4-input AND gate	90 104-149	
HCC4085B	Dual 2-wide 2-input AND-OR inverter gate	90 104-226	9201/067
HCC4086B	Expandable 4-wide 2-input AND-OR inverter gate		9201/068
HCC4089B	Binary rate multiplier	00.404.044	9202/060
HCC4093B	Quad 2-input NAND schmitt trigger	90 104-214	9409/002
HCC4094B	8-stage shift AND store bus register	90 104-188	9306/026
HCC4095B	Gated J-K master slave flip-flop	i	1
HCC4096B	Gated J-K master slave flip-flop		
HCC4097B	Differential 8-channel analog multiplexer/demultiplexer		
HCC4C98B	Dual monostable multivibrator	90 104-224	9206/003
HCC4099B	8-bit addressable latch	90 104-150	9202/058
HCC4502B	Strobe hex inverter/buffer	90 104-152	9401/006
HCC4503B	Hex 3-state buffer	90 104-175	9401/030
HCC4508B	Dual 4-bit latch	90 104-155	9202/063
HCC4510B	Presettable up/down counter	90 104-156	9204/053
HCC4511B	BCD to 7-segment latch/decoder/driver	90 104-157	*
HCC4512B	B-channel data selector	90 104-158	9408/006
HCC4514B	4-bit latch/4 to 16 line decoder	90 104-159	9408/012
HCC4515B	4-bit latch/4 to 16 line decoder	90 104-160	9205/011
HCC4516B	Presettable up/down counter	90 104-161	9204/045
HCC4517B	Dual 64-stage static shift register	90 104-162	
HCC4518B	Dual BCD up-counter	90 104-163	9204/013
HCC4520B	Dual binary up-counter	90 104-165	9204/028
HCC4527B	BCD rate multiplier	90 104-168	9408/026
HCC4532B	8-bit priority encoder	90 104-178	9402/013
HCC4536B	Programmable timer	90 104-218	
HCC4538B	Dual monostable multivibrator	90 104-179	
HCC4555B	Dual binary to 1 of 4 decoder/demultiplexer	90 104-199	9408/011
HCC4556B	Dual binary to 1 of 4 decoder/demultiplexer	90 104-181	9408/025
HCC4585B	4-bit magnitude comparator	90 104-203	*

^{*} No SCC specification yet

LOW POWER SCHOTTKY

Туре		Description	CECC Spec. N BS UTE
T54LS00	A	Quad 2-input NAND gate	90103 - 001/183
T54LS02	A	Quad 2-input NOR gate Quad 2-input NOR gate	90103 - 003/188
T54LS03	В	Quad 2-input NAND gate (open collector)	90103 - 004/186
T54LS04	A	Hex inverter	90103 - 005/183
54LS05	A	Hex inverter (open collector)	90103 - 006/186
54LS08	A	Quad 2-input AND gate	90103 - 007/226
54LS09	A	Quad 2-input AND gate (open collector)	90103 - 008/227
54LS10	A	Triple 3-input NAND gate	90103 - 009/183
54LS11	A	Triple 3-input AND gate	90103 - 010/226
54LS125A	A	Quad 3-state buffer (low enable)	90103 - 053/201
54LS136	A	Quad 2-input exclusive OR gate (open collector)	90103 - 056/265
54LS138	A	1 of 8 decoder / demultiplexer	90103 - 057/209
54LS139	A	Dual 1 of 4 decoder / demultiplexer	90103 - 058/309
54LS14	A	Hex schmitt trigger inverter	90103 - 013/225
54LS15	A	Triple 3-input AND gate (open collector)	90103 - 013/223
	A	B input multiplexer	1
54LS151 54LS153	A		90103 - 062/193 90103 - 063/194
		Dual 1 input multiplexer	90103 - 063/194
54LS155	A	Dual 1 of 4 decoder / demultiplexer	
54LS156	A	Dual 1 of 4 decoder / demultiplexer (open collector)	90103 - 064/273
54LS157	A	Quad 2-input multiplexer (non inverting)	90103 - 065/195
54LS158	A	Quad 2-input multiplexer (inverting)	90103 - 066/231
54LS164	A	8-bit shift register (serial in parallel out)	90103 - 071/207
54LS170	A	4 × 4 register file (open collector)	90103 - 075/261
54LS174	A	Hex D-type flip-flop with clear	90103 - 077/202
54LS175	A	Quad D-type flip-flop with clear	90103 - 138/205
54LS192	Α	Presettable BCD / decade up / down counter	90103 - 081/245
54LS193	Α	Presettable 4-bit binary up / down counter	90103 - 083/214
54LS194A	Α	4-bit right/left shift register	90103 - 033/206
54LS195A	Α	4-bit shift register	90103 - 084/232
54LS20	Α	Dual 4-input NAND gate	90103 - 015/183
54LS21	Α	Dual 4-input AND gate	90103 - 016/226
54LS22	Α	Dual 4-input NAND gate (open collector)	90103 - 017/186
54LS240	Α	Octal inverting bus / line driver (3-state)	90103 - 087/217
Г54LS241	Α	Octal bus line driver (3-state)	90103 - 088/276
T54LS258A	Α	Quad 2-input multiplexer (3-state)	90103 - 099/257
T54LS259	Α	8-bit addressable latch	90103 - 100/203
T54LS266	Α	Quad 2-input exclusive NOR gate (open collector)	90103 - 182/291
Γ54LS27	Α	Triple 3-input NOR gate	90103 - 019/188
Γ54LS273	Α	Octal D-type flip-flop with master reset	90103 - 102/249
Γ54LS279	Α	Quad set-reset latch	90103 - 104/238
Γ54LS28	Α	Quad 2-input NOR buffer	90103 - 020/218
54LS280	Α	9-bit odd / even parity generator / checked	90103 - 105/221
54LS283	A	4-bit binary full adder (rotated LS83A)	90103 - 106/204
54LS293	A	4-bit binary counter	90103 - 108/242
54LS298	Α	Quad 2-input multiplexer with output latches	90103 - 109/239
54LS30	A	8-input NAND gate	90103 - 021/184
54LS32	A	Quad 2-input OR gate	90103 - 022/208
54LS33	A	Quad 2-input NOR buffer (open collector)	90103 - 023/236
54LS352	A	Dual 4-input multiplexer (inverting LS153)	90103 - 118/301
54LS353	A	Dual 4-input multiplexer (3-state LS352)	90103 - 119/302
54LS365A	A	Hex buffer with common enable (3-state)	90103 - 143/272
54LS366A	A	Hex inverter buffer with common enable (3-state)	90103 - 120/262
54LS367A	A	Hex buffer 4-bit and 2-bit (3-state)	90103 - 121/235
54LS367A 54LS368A	A	Hex inverter buffer 4-bit and 2-bit (3-state)	90103 - 121/233
54LS37	A	Quad 2-input NAND buffer	90103 - 144/240
54LS37 54LS374	A	Octal Datype flip-flop (3-state)	90103 - 024/185
54LS374 54LS377	A	Octal D-type flip-flop (3-state) Octal D-type flip-flop with common enable	90103 - 123/224
54LS377 54LS378	A	Hex D type flip-flop with enable	90103 - 124/292
54LS378 54LS379		4-bit D-type flip-flop with enable	90103 - 125/293
54LS38	A A		
		Quad 2-input NAND buffer (open collector)	90103 - 025/187
54LS393	A	Dual 4-bit binary counter 4 bit chift register (3 state)	90103 - 129/264
54LS395A	A	4-bit shift register (3-state)	90103 - 172/246
54LS40	A	Dual 4-input NAND buffer	90103 - 026/185
54LS42	A	1 of 10 decoder	90103 - 027/198
54LS54	A	2-3-3-2-input AND-OR-INVERT gate	90103 - 031/189
54LS541	A	Octal buffer / line driver (3-state)	90103 - 147/300
54LS55	A	2-wide 4-input AND-OR-INVERT gate	90103 - 032/229
54LS670	A	4 × 4 register file (3-state)	90103 - 174/192
54LS74A	A	Dual D-type posit. edge trigg. flip-flop	90103 - 034/196
54LS83A	Α	4-bit full adder with fast carry	90103 - 038/204
54LS93	A	4-bit binary counter	90103 - 044/242

HS - C2MOS LOGIC

Туре	Description	Detail specification CECC
M54HCT04	Hex inverter	90109 - 706
M54HCT137	3 to 8 line decoder latch (inv.)	
M54HCT138	3 to 8 line decoder (inv.)	90109 - 777
M54HCT240	Octal buffer (3-state inv.)	90109 - 688
M54HCT241	Octal bus buffer (3-state)	90109 - 689
M54HCT244	Octal buffer (3-state)	90109 - 690
M54HCT245	Octal bus transceiver (3-state)	90109 - 691
M54HCT373	Octal D-type latch (3-state)	90109 - 695
M54HCT374	Octal D-type flip-flop (3-state)	90109 - 704
№ 54HCT540	Octal bus buffer (3-state/inv.)	90109 - 759
//54HCT541	Octal bus buffer (3-state/inv.)	90109 - 760
154HCT563	Octal D-latch (3-state/inv.)	90109 - 863
//54HCT564	Octal D-flip-flop (3-state/inv.)	90109 - 864
154HCT573	Octal D-latch (3-state)	90109 - 865
//54HCT574	Octal D-flip-flop (3-state)	90109 - 866
154HCT640	Octal bus transceiver (3-state/inv)	90109 - 692
154HCT643	Octal bus transceiver (3-state)	90109 - 693
154HCT646	Octal bus transceiver (3-state)	90109 - 889
154HCT648	Octal bus transceiver (3-state/inv.)	90109 - 890
//54HCT651	Octal bus transceiver (3-state/inv.)	90109 - 883
154HCT652	Octal bus transceiver (3-state)	90109 - 884
154HCT7007	Hex buffer	90109 - 733
154HCU04	Hex inverter (single stage)	90109 - 736
154HC00	Quad 2-input NAND gate	90109 - 601
154HC02	Quad 2-input NOR gate	90109 - 617
154HC03	Quad 2 NAND (open drain)	90109 - 654
154HC04	Hex inverter	90109 - 633
154HC08	Quad 2-input AND gate	90109 - 605
M54HC10	Triple 3-input NAND gate	90109 - 602
154HC107	Dual J-K flip-flop	90109 - 637
154HC109	Dual J-K flip-flop with preset and clear	90109 - 627
154HC11	Triple 3-input AND gate	90109 - 622
M54HC112	Dual J-K flip-flop with preset and clear	90109 - 638
154HC113	Dual J-K flip-flop	90109 - 639
M54HC123	Dual monostable multivibrator with clear	90109 - 699
154HC125	Quad bus buffer (3-state)	90109 - 665
154HC126	Quad bus buffer (3-state)	90109 - 666
154HC131	3 to 8 line decoder latch	90109 - 731
154HC132	Quad 2-input schmitt NAND	90109 - 623
//54HC133	13-input NAND gate	90109 - 661
154HC137	3 to 8 line decoder latch (inv.)	90109 - 680
154HC138	3 to 8 line decoder (inv.)	90109 - 608
154HC139	Quad 2 to 4 line decoder/demultiplexer	90109 - 681
154HC14	Hex schmitt inverter	90109 - 640
154HC147	10 to 4 line priority encoder	90109 - 650
154HC148	8 to 3 line priority encoder	90109 - 651
154HC151	8-channel multiplexer 16	90109 - 641
154HC153	Dual 4-channel multiplexer	90109 - 642
154HC154	4 to 6 decoder/demultiplexer	90109 - 667
154HC155	Dual 2 to 4 line decoder	90109 - 804
154HC157	Quad 2-channel multiplexer	90109 - 643
154HC158	Quad 2-channel multiplexer (inv.)	90109 - 644
154HC160	Sync decade counter with async clear	90109 - 630
154HC161	Sync binary counter with async clear	90109 - 631
154HC162	Sync decade counter with sync clear	90109 - 645
154HC163	Sync binary counter with sync clear	90109 - 646
154HC164	8-bit SIPO shift register	90109 - 621
154HC165	8-bit PISO shift register	90109 - 682
154HC166	8-bit PISO shift register	90109 - 799
154HC173	Quad D-type register (3-state)	90109 - 711
154HC174	Hex D-type flip-flop with clear	90109 - 609
154HC175	Quad D-type flip-flop with clear	90109 - 624
154HC181	Arithmetic logic unit	90109 - 832
154HC182	Look ahead carry generator	90109 - 833
154HC190	BCD sync up/down counter	90109 - 752
154HC191	4-bit sync binary up/down counter	90109 - 727
154HC192	Sync. up/down decade counter	90109 - 728
154HC193	Sync. up/down binary counter	90109 - 729
154HC194	4-bit PIPO shift register	90109 - 615
154HC195	4-bit PIPO shift register	90109 - 632
154HC20	Dual 4-input NAND gate	90109 - 603
154HC21	Dual 4-input AND gate	90109 - 658
154HC221	Dual monostable multivibrator	90109 - 700
154HC237	3 to 8 line decoder latch	90109 - 738
154HC238	3 to 8 line decoder	90109 - 735
IN THINKUU	Octal bus buffer (3-state/inv.)	90109 - 616

HS - C2MOS LOGIC

Туре	Description	Detail specification CECC
M54HC241	Octal bus buffer (3-state)	90109 - 647
M54HC242	Quad bus transceiver (3-state/inv.)	90109 - 648
M54HC243	Quad bus transceiver (3-state)	90109 - 649
M54HC244	Octal bus buffer (3-state)	90109 - 610
M54HC245	Octal bus transceiver (3-state)	90109 - 611
M54HC251	8-channel multiplexer (3-state)	90109 - 683
M54HC253	Dual 4-channel multiplexer (3-state)	90109 - 724
M54HC257	Quad 2-channel multiplexer	90109 - 628
M54HC258	Quad 2-channel multiplexer	90109 - 754
M54HC259	8-bit addressable latch	90109 - 684
M54HC27	Triple 3-input NOR gate	90109 - 618
M54HC273	Octal D-type flip-flop with clear	90109 - 625
M54HC279	Quad S-R latch	90109 - 878
M54HC280	9-bit parity generator	90109 - 612
M54HC283	4-bit binary full generator	90109 - 807
M54HC292	Programmable divider/timer	90109 - 852
M54HC294	Programmable divider/timer	90109 - 853
M54HC298	Quad 2-channel multiplexer register	90109 - 714
M54HC299	8-bit PIPO shift register (3-state)	90109 - 801
M54HC39	8-input NAND gate	90109 - 604
M54HC30	Quad 2-input OR gate	90109 - 619
M54HC323	8-bit PIPO shift register (3-state)	90109 - 879
M54HC323		90109 - 879
M54HC354 M54HC356	8-channel multiplexer/register (3-state)	
	8-channel multiplexer/register (3-state)	90109 - 713
M54HC365	Hex bus buffer Hex bus buffer (inv.)	90109 - 668
M54HC366		90109 - 669
M54HC367	Hex bus buffer (3-state)	90109 - 670
M54HC368	Hex bus buffer (3-state/inv.)	90109 - 671
M54HC373	Octal D-type latch (3-state)	90109 - 626
M54HC374	Octal D-type flip-flop (3-state)	90109 - 613
M54HC375	Quad D-type latch	90109 - 880
M54HC377	Octat D-type flip-flop	90109 - 685
M54HC386	Quad exclusive OR gate	90109 - 717
M54HC390	Dual decade counter	90109 - 730
M54HC393	Dual binary counter	90109 - 686
M54HC4002	Dual 4-input NOR gate	90109 - 662
M54HC40102	Dual BCD programmed down counter	90109 - 885
M54HC40103	8-bit binary programmed down counter	90109 - 886
M54HC4017	Decade counter/divider	90109 - 634
M54HC4020	14-stage binary counter	90109 - 629
M54HC4022	Octal counter/divider	90109 - 800
M54HC4024	7-stage binary counter	90109 - 655
M54HC4028	BCD to decimal decoder	90109 - 834
M54HC4040	12-stage binary counter	90109 - 656
M54HC4049B	Hex buffer/converter (inv.)	90109 - 718
M54HC4050B	Hex buffer/converter	90109 - 719
M54HC4051	8-channel analog multiplexer	
M54HC4052	Dual 4-channel analog multiplexer	
M54HC4053	Triple 2-channel analog multiplexer	
M54HC4060	14-stage binary counter/osc.	90109 - 657
M54HC4066	Quad bilateral switch	
M54HC4072	Dual 4-input OR gate	90109 - 835
M54HC4075	Triple 3-input OR gate	90109 - 663
M54HC4078	8-input NOR/OR gate	90109 - 664
M54HC4094	8-bit SIPO shift register latch (3-state)	90109 - 855
M54HC42	BCD to decimal decoder	90109 - 672
M54HC423	Dual monostable multivibrator with clear	90109 - 701
M54HC4511	BCD to 7-segment L/D/D (LED)	90109 - 755
M54HC4514	4 to 16 line decoder latch	90109 - 721
M54HC4515	4 to 16 line decoder latch (inv.)	90109 - 722
M54HC4518	Dual decade counter	90109 - 815
M54HC4520	Dual 4-bit binary counter	90109 - 816
M54HC4538	Dual monostable multivibrator	90109 - 756
И54HC4543	BCD to 7-segment L/D/D (LCD)	90109 - 720
M54HC51	Dual 2W 21 AND/OR inverter gate	90109 - 660
M54HC533	Octal D-type latch (3-state/inv.)	90109 - 675
M54HC534	Octal D-type flip-flop (3-state/inv.)	90109 - 614
M54HC540	Octal bus buffer (3-state/inv.)	90109 - 757
M54HC541	Octal bus buffer (3-state)	90109 - 758
M54HC563	Octal Duspelatch (3-state/inv)	90109 - 673
M54HC564	Octal D-type flip-flop (3-state/inv.)	90109 - 073
M54HC573	Octal D-type latch (3-state)	90109 - 723
M54HC574	Octal D-type filip-flop (3-state)	90109 - 726
M54HC590	8-bit binary counter register (3-state)	90109 - 726
M54HC590 M54HC592	8-bit register binary counter (3-state)	30103 - 004
	O Dit register biriary counter	
M54HC593	8-bit register binary counter (3-state)	

HS - C2MOS LOGIC

Туре	Description	Detail specification CECC
M54HC595	8-bit shift register latch (3-state)	90109 - 802
M54HC597	8-bit latch shift register	90109 - 803
M54HC620	Octal bus transceiver (3-state/inv.)	90109 - 746
M54HC623	Octal bus transceiver (3-state)	90109 - 747
M54HC640	Octal bus transceiver (3-state/inv.)	90109 - 652
M54HC643	Octal bus transceiver (3-state)	90109 - 653
M54HC646	Octal bus transceiver (3-state)	90109 - 702
M54HC648	Octal bus transceiver (3-state/inv.)	90109 - 703
M54HC651	Octal bus transceiver (3-state/inv.)	90109 - 881
M54HC652	Octal bus transceiver (3-state)	90109 - 882
M54HC670	4 word × 4 bit file (3-state)	90109 - 737
M54HC688	8-bit equality comparator	90109 - 687
M54HC690	Decade counter (3-state)	90109 - 836
M54HC691	4-bit binary counter (3-state)	90109 - 837
M54HC692	Decade counter (3-state)	90109 - 808
M54HC693	4-bit binary counter (3-state)	90109 - 809
M54HC696	U/D decade counter (3-state)	90109 - 848
M54HC697	U/D 4 bit binary counter (3-state)	90109 - 849
M54HC698	U/D decade counter (3-state)	
M54HC699	U/D 4-bit binary counter (3-state)	
M54HC7266	Quad exclusive NOR gate	90109 - 723
M54HC7292	Programmable divider/timer	90109 - 838
M54HC7294	Programmable divider/timer	90109 - 839
M54HC73	Dual J-K flip-flop with clear	90109 - 635
M54HC74	Dual D-type flip-flop with preset and clear	90109 - 606
M54HC75	4-bit D-type latch	90109 - 678
M54HC76	Dual J-K flip-flop with preset and clear	90109 - 636
M54HC77	Qual D-type latch	90109 - 806
M54HC85	8-bit magnitude comparator	90109 - 607
M54HC86	Quad exclusive OR gate	90109 - 620

MEMORIES

Type	Description	Detail JAN specification
ET 2716 ETC 2716	2K×8, NMOS EPROM 2K×8, CMOS EPROM	
ETC 2732 MKB45H64	4K×8, CMOS EPROM 64K×1, DRAM	MIL-M38510/244
MKB/J4501 MKJ45H64	512×9, FIFO 64×1, DRAM	MIL-M38510/250 MIL-M38510/244
TS 27C64 TS 27C256	$8K \times 8$, CMOS EPROM $32K \times 8$, CMOS EPROM	

MICROPROCESSORS AND PERIPHERALS

Туре	Description
EF4442	RTA ARINC
EF68HC05E2	8-bit CMOS
EF6800 - EF6802 - EF6803 - EF6809 - EF6809E - EF6810 - EF6821 - EF6840 - EF6850 - EF6852 - EF6854	8-bit NMOS
TS2901B/C - TS2902A - TS2909A - TS2910 - TS2911A - TS2914 - TS2915A - TS2917A - TS2918 - TS2919	4-bit slices
TS68000 (CECC detail specification : 90110/001 - DESC drawing 82021) TS68008 - TS68230 - TS68483 - TS68564 - TS68901 TS68HC901	16-bit HMOS 16-bit HMOS 16-bit CMOS
TS68931	DSP
Z8001 - Z8001A - Z8001B - Z8002 - Z8002A - Z8002B - Z8010 - Z8010A - Z8010B Z8030 - Z8030A - Z8036 - Z8036A - Z8038 - Z8038A - Z8060 - Z8530 - Z8530A Z8536 - Z8536A	16-bit NMOS 16-bit NMOS 16-bit NMOS
Z8400 - Z8400A - Z8410 - Z8410A - Z8420 - Z8420A - Z8430 - Z8430A - Z8440 - Z8440A - Z8441 - Z8441A Z8442 - Z8442A - Z8444 - Z8444A	8-bit NMOS 8-bit NMOS

ASIC's

BIPOLAR LINEAR AND MIXED ANALOGUE DIGITAL «POLYUSE» ARRAYS

Туре		Description	
TSFK series (1) TSFL series (2) TSFJ series (1)	900 components · F _T = 3 GHz 600, 1200, 1900 components · F _T = 3 GHz 300 to 2300 components digital and linear		

HCMOS MIXED ANALOGUE DIGITAL STANDARD CELLS

Туре	Description	
TSGSM series (1)	$3.5~\mu$ - 2 POLY - 1 metal layer digital standard cell + analogue cell library	

«GATE ARRAY» FILTERS

Туре	Description
TSGF series (1)	3.5 μ - 2 POLY - 1 metal layer 4th, 8th 12th order filter

HCMOS GATE ARRAYS

Туре	Description
HSG3000 series (3) TSGB series (2) HSG7000 series (3) TSGC series (2)	HCMOS - $3.5~\mu$ - 1 metal layer - 300 to 2500 gates HCMOS - $2~\mu$ - 2 metal layers - 1000 to 10000 gates HCMOS - $2~\mu$ - 2 metal layers - 900 to 10000 gates HCMOS - $2~\mu$ (1.2 $~\mu$ gate schrink) - 2 metal layers - 1000 to 10000 gates

HCMOS SEA OF GATES

Туре	Description
ISB 9000 series (3) ISB 12000 series (3)	HCMOS - 1.5 μ - 2 metal layers - 3500 to 21000 gates - 24 mA output drive HCMOS - 1.2 μ - 2 metal layers - 8000 to 128000 gates

HCMOS DIGITAL LIBRARY

Туре	Description
CB200 series (3) CB300 series (3) TSBC3 series (2)	HCMOS - 1.5 μ - Standard cells and macrocells HCMOS - 1.5 μ - Standard cells and macrocells HCMOS - 1.2 μ - Compiled function library (RAM, ROM, FIFO, PLA, MULTIPLIER, ALU, DATA PATH generators)

ECL GATE ARRAYS

Туре	Description	
TSFD series (2)	Bipolar 1.2 μ - 3 metal layers - 3500 gates - toggle frequency 800 MHz	

(1) SGS-THOMSON Microelectronics Products

(2) TMS Products

(3) IST Products

These military and space product ranges manufactured by SGS-THOMSON Microelectronics, THOMSON COMPOSANTS MILITAIRES ET SPATIAUX and Innovative Silicon Technology «IST» are commercialized by SGS-THOMSON Microelectronics.

BIPOLAR POWER TRANSISTORS

Туре	Processed according to CECC 50000	Detail specification ESA
BDX18	X	
BDX85B	X	
BDX86B	X	
BFX34	X	F004 00F
BFX40	X	5201-005
BSS44	X	
BUR10	^	5203-015
BUR14		
BUR15	2	5203-030 5204-013
BUR50	V	5204-013
BUV18	X	
	X	
BUV41	X	
BUV42	X	
BUV42A	X	
BUV51	X	
BUV52	X	
BUV60	X	
BUV62	X	
BUX10	X	
BUX11	X	
BUX12	X	
BUX20	X	
BUX21	X	
BUX22	X	
BUX23	X	
BUX24	X	
BUX40	X	
BUX41	X	
BUX42	X	
BUX44	X	
BUX47	X	
BUX48	X	
BUX49	X	
BUX51	X	
BUX77	X	
BUX78	X	
BUX98	X	
BUX98A	X	
BUY47	X	
BUY48	X	
2N3055	X	
2N3439	X	5203-011
2N3440	X	5203-011
2N3792	X	
2N5004		5203-013
2N5005		5204-005
2N5038	X	5203-009
2N5153	X	5204-002
2N5154	X	5203-010
2N5415	X	
2N5416	X	
2N5428		5203-018
2N5672		5203-004
2N6032		5203-021
2N6033		5203-026

These military and space product ranges manufactured by SGS-THOMSON Microelectronics and THOMSON COMPOSANTS MILITAIRES ET SPATIAUX are commercialized by SGS-THOMSON Microelectronics.

RF & MICROWAVE TRANSISTORS

We have a range of RF & Microwave Transistors to cover a wide variety of applications demanded by the telecommunication as well as military markets.

For more details see chapter «TELECOM AND DATA COMMUNICATIONS».

SMALL SIGNAL TRANSISTORS

Туре	Detail specification CECC 50000	Detail specification ESA
BCY59 - VIII	50002-031	
BCY59 - IX	50002-031	
BSX46 - 10	50002-174	
CV9507	50004-050	
CV9543	50004-067	
CV9936	50004-099	
P039	50002-170	
2N1613	50002-104	
2N1711	50002-104	
2N1893	50002-104	
2N2218/2N2218A	50002-100	
2N2219	50002-100	
2N2219A	50002-100	5207-003
2N2221/2221A	50002-101	
2N2222	50002-101	
2N2222A	50002-101	5201-002
2N2368	50004-022/023	
2N2369	50004-022/023	
2N2369A	50004-022/023	5201-006
2N2484	50002-129	5201-001
2N2857		5201-014
2N2894	50004-022/023	5202-004
2N2904/2904A	50002-102	
2N2905	50002-102	
2N2905A	50002-102	5202-002
2N2906/2906A	50002-103	
2N2907	50002-103	
2N2907A	50002-103	5202-001
2N2920A		5207-002
2N3700		5201-004
2N3810		5207-005
2N918		5201-009

SMALL SIGNAL SCHOTTKY DIODES

Туре	Processed according to CECC 50000	Processed according to ESA
BAR10	X	
BAT19	X	
BAT41	X	
BAT42	X	
BAT45	X	
BAT46	X	
BAT48	X	
BYV10-20	X	
BYV10-30 (1N5818)	X	
BYV10-40 (1N5819)	X	
1N6263	X	

ZENER DIODES

ZENER DIODES

Туре	Type Processed according to CECC 50000				
BZX55C2V7 to BZX55C62 BZX85C2V7 to BZX85C62 1N3020B to 1N3039B 1N4728A to 1N4759A 1N5223B to 1N5265B	X X X X	5102/002 Processed according to ESA			

TEMPERATURE COMPENSATED ZENER DIODES

Туре	Processed according to CECC 50000 Processed according to ESA				
1N3154 to 1N3157 1N4565A to 1N4569A 1N4575 to 1N4579 1N821A to 1N829A 1N935A to 1N939A	X X X X	X X X			

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

Туре	Processed according to CECC 50000	Processed according to ESA		
1N5635A to 1N5665A 1N6041A to 1N6072A	X	X		

RECTIFIER DIODES

STANDARD RECTIFIER DIODES

Туре	Processed according to CECC 50000	Processed according to ESA
BYW88-100R	X	
BYW88-200	X	
BYW88-300R	X	
BYW88-400	X	
1N1184	X	
1N1186	X	
1N1187	X	
1N1190	X	
1N1196A	X	

FAST RECOVERY RECTIFIER DIODES

Туре	Processed according to CECC 50000	Processed according to ESA
BYX61-100	X	
BYX61-200	X	
BYX61-400 (R)	X	
BYX62-600 (R)	X	
BYX63-600 (R)	X	
BYX65-200 (R)	X	- *
BYX65-400	X	
ESM243-400	X	
ESM244-600R	X	
1N3880	X	
1N3881	X	
1N3883 (R)	X	
1N3890	X	
1N3891 (R)	X	
1N3903	X	

HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES

Туре	Processed according to CECC 50000	Processed according to ESA
BYW77-150(R) BYW77-200(R) BYW78-150 BYW78-200(R) BYW81-100 BYW81-150 BYW81-200 BYW92-150 BYW92-200	X X X X X X X	

TO 220 METAL DOUBLE RECTIFIER DIODES

Туре	Description
BYW51-200A BYT16P-400 (1)	$2 \times 10 \text{ A} \cdot 200 \text{ V} \cdot \text{t}_{rr} = 35 \text{ ns}$ $2 \times 8 \text{ A} \cdot 400 \text{ V} \cdot \text{t}_{rr} = 35 \text{ ns}$
(1) To be introduced.	

COMPONENTS FOR SMART CARDS & SURFACE MOUNT DEVICES

CHIP CARRYING CARDS	217
TELECOM AND DATA COMMUNICATIONS	218
DATA PROCESSING	218
CONSUMER	223
AUTOMOTIVE	223
GENERAL PURPOSE & INDUSTRIAL	224
MILITARY AND AEROSPACE	251
ANALOGUE CELLS AND ARRAYS	251
SEMICUSTOM PRODUCTS	254

CHIP CARRYING CARDS

Туре	Description	Pins
IC2FC01025625	256 K OTP CMOS EPROM	45
TS1200	256 bit one time program EPROM	7
TS1300	1 Kbit CMOS EEPROM, 5 V program voltage	6
TS1301	Secured 416-bit EEPROM	8
TS1821	Secured 8-bit CPU, 1K byte EPROM	6
TS1834	Secured 8-bit CPU, 4K byte EPROM	6

TELECOM AND DATA COMMUNICATIONS

INTEGRATED CIRCUITS

Туре	Description	Package
ETC5040FN	PCM filter	PLCC20
ETC5054FN	Mu-law serial output COMBO	PLCC20
ETC5057FN	A-law serial output COMBO	PLCC20
ETC5064FN	Mu-law serial COMBO with power amplifiers	PLCC20
ETC5067FN	A-law serial COMBO with power amplifiers	PLCC20
L3030	SLIC control unit	PLCC44
LS1240	Two tone ringer	SO8
LS1240A	Two tone ringer	SO8
LS1241	Two tone ringer	SO8
LS156	Speech circuit with MF interface (for piezoceramic transducers)	SO20L
LS204CM,M	High performance dual operational amplifier	SO8
LS404CM,M	High performance quad operational amplifier	SO14
LS656	Low drop speech circuit with MF interface (for dynamic transducers)	SO20L
MK5025	X.25 LAPB / ISDN LAPD / HDLC CMOS Hi-speed link level controller with DMA	PLCC52
TEA7531FP	Monitor amplifier with anti-howling (telephone set)	SO16
TEA7532FP	Monitor amplifier with anti-howling (telephone set)	SO16
TEB1033D	High performance dual bipolar operational amplifier	SO8.
TEB1033DT	High performance dual bipolar operational amplifier	SO8 tape
TEB4033D	High performance quad bipolar operational amplifier	SO14
TEB4033DT	High performance quad bipolar operational amplifier	SO14 tape
TS5070FN	Universal programmable COMBO II	PLCC28
TS7514CFN	Monochip FSK modem, V.23, DTMF	PLCC28
TS7542CFN	Monochip analog front end	PLCC44

NPN HIGH FREQUENCY TRANSISTORS - SOT 23

Туре	V _{CBO}	VCEO	IC	P _{tot}	h _{FE} (⊕ I _C	/ V _{CE}	V _{CE (sat)}	@ I _C	/ I _B	f _T typ min *	Mar	king
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BFR 92	20	15	25	250	25/	14	10	_	_	_	5000	P1	P4
BFR 92A	20	15	25	250	40/	14	10				5000	P2	P5
BFR 93	15	12	35	250	25/	30	5	_		_	5000	R1	R4
BFR 93A	15	12	35	250	40/	30	5	_	_	_	5000	R2	R5
BFS 17	25	15	25	250	20/	25	1	_	_	_	1300 *	E1	E4
BFS 18	30	20	30	250	35/125	1	10	_		_	250	F1	F4
BFS 19	30	20	30	250	65/225	1	10	_	_	_	300	F2	F5
BFS 20	30	20	25	250	40/	7	10	_			550	G1	G4
SO 918	30	15	50	250	20/	3	1	400	10	1	600 *	N10	O10

DATA PROCESSING

MEMORIES

Туре	Type Description					
ST27C256-20FN ST27C256-25FN TS27C64A-20FN TS27C64A-25FN	32 K \times 8, 200 ns access time, consumption 30/1 mA/100 μ A, CMOS OTP ROM 32 K \times 8, 250 ns access time, consumption 30/1 mA/100 μ A, CMOS OTP ROM 8 K \times 8, 200 ns access time, consumption 30/1 mA/100 μ A, CMOS OTP ROM 8 K \times 8, 250 ns access time, consumption 30/1 mA/100 μ A, CMOS OTP ROM	PLCC32 PLCC32 PLCC32 PLCC32				
M9306 M9346	16 × 16, clock frequency 250 kHz, NMOS EEPROM 64 × 16, clock frequency 250 kHz, NMOS EEPROM	SO8 SO14				

218

MEMORIES

Туре	Description	Package
ST24C02	256×8, clock frequency 100 KHz, I2C compatible, CMOS EEPROM	SO8
MK48C02A-15 MK48C02A-20 MK48C02A-25	2K × 8, 150 ns access time, battery back-up SRAM 2K × 8, 200 ns access time, battery back-up SRAM 2K × 8, 250 ns access time, battery back-up SRAM	PLCC32 PLCC32 PLCC32
MK4501-65 MK4501-80 MK4501-10 MK4501-12 MK4501-15 MK4501-20	512 × 9, 65 ns access time, BIPORT [™] FIFO 512 × 9, 80 ns access time, BIPORT [™] FIFO 512 × 9, 100 ns access time, BIPORT [™] FIFO 512 × 9, 120 ns access time, BIPORT [™] FIFO 512 × 9, 150 ns access time, BIPORT [™] FIFO 512 × 9, 200 ns access time, BIPORT [™] FIFO	PLCC32 PLCC32 PLCC32 PLCC32 PLCC32 PLCC32

MICROS & PERIPHERALS

4-BIT MCU - 9400 FAMILY

Туре	Description	Package
ET9420 ET9421 ET9422 ETC9410 ETC9411 ETC9413 ETC9420 ETC9421 ETC9422 ETC9444 ETC9445 ETL9410 ETL9411 ETL9413 ETL9413 ETL9420 ETL9414 ETL9445	NMOS, 1K ROM, 15-23 I/O NMOS, 1K ROM, 15-23 I/O NMOS, 1K ROM, 15-23 I/O CMOS, 1/2K ROM, 15-19 I/O CMOS, 1/2K ROM, 15-19 I/O CMOS, 1/2K ROM, 15-19 I/O CMOS, 1K ROM, 15-23 I/O CMOS, 1K ROM, 15-23 I/O CMOS, 1K ROM, 15-23 I/O CMOS, 1K ROM, 19-23 I/O CMOS, 2K ROM, 19-23 I/O CMOS, 2K ROM, 19-23 I/O CMOS, 2K ROM, 19-23 I/O NMOS low power, 1/2K ROM, 15-19 I/O NMOS low power, 1K ROM, 15-23 I/O NMOS low power, 1K ROM, 15-23 I/O NMOS low power, 1K ROM, 15-23 I/O NMOS low power, 2K ROM, 19-23 I/O	SO28, PLCC28 SO24 SO20 SO24 SO20 SO20 SO28, PLCC28 SO24 SO20 SO28, PLCC28 SO24 SO20 SO20 SO20 SO20 SO20 SO20 SO20 SO20

8-BIT MCU - 6804 FAMILY

Туре	Description	Package
EF68HC04P3FN	HCMOS, 2K ROM, 20 I/O, 8-bit timer	PLCC28
EF6804J2FP	HMOS, 1K ROM, 12 I/O, 8-bit timer	SO20
EF6804P2FN	HMOS, 1K ROM, 20 I/O, 8-bit timer	PLCC28

8-BIT MCU - 6805 FAMILY

Туре	Description	Package
EF6805P2FN EF6805P6FN EF6805R2FN EF6805R3FN EF6805U2FN EF6805U3FN	HMOS, 1K ROM, 20 I/O, 8-bit timer HMOS, 1.8K ROM, 20 I/O, 8-bit timer HMOS, 2K ROM, 32 I/O, A/D converter HMOS, 3.7K ROM, 32 I/O, A/D converter HMOS, 2K ROM, 32 I/O HMOS, 3.7K ROM, 32 I/O	PLCC28 PLCC28 PLCC44 PLCC44 PLCC44 PLCC44

MICROS & PERIPHERALS

8-BIT MCU - 3870 FAMILY

Туре	Description	Package
M38AD72C	NMOS, 2K ROM MCU, A/D converter, 25 I/O lines	PLCC44
M38AD74C	NMOS, 4K ROM MCU, A/D converter, 25 I/O lines	PLCC44
M38SH74C	NMOS, 4K ROM MCU, 64 bytes N.V. shadow RAM, 31 I/O lines	PLCC44
M3870C	NMOS, 2K ROM MCU, 32 I/O lines	PLCC44
M3874C	NMOS, 4K ROM MCU, 32 I/O lines	PLCC44
M3876C	NMOS, 6K ROM MCU, 32 I/O lines	PLCC44
M3878C	NMOS, 6K ROM MCU, 32 I/O lines	PLCC44

8-BIT MCU - 6801 FAMILY

Туре	Description	Package
EF68B01FN	HMOS, 2K ROM, 31 I/O, SCI, timer, standby RAM, 2 MHz	PLCC44
EF68B01U4FN	HMOS, 4K ROM, 31 I/O, enhanced SCI, timer, standby RAM, 2 MHz	PLCC44
EF6801FN	HMOS, 2K ROM, 31 I/O, SCI, timer, standby RAM, 1 MHz	PLCC44
EF6801U4FN	HMOS, 4K ROM, 31 I/O, enhanced SCI, timer, standby RAM, 1 MHz	PLCC44

8-BIT MCU - Z8 FAMILY

Туре	Description	Package
Z86R81C Z8601C Z8611C Z8621C Z8671C Z8681C	Z8681C with 240 RAM NMOS, 2K ROM MCU with 144 bytes RAM NMOS, 4K ROM MCU with 144 bytes RAM NMOS, 8K ROM MCU with 256 bytes RAM NMOS, MCU with BASIC/debug interpreter ROMless MCU with up to 64K extend adressable ROM/RAM	PLCC44 PLCC44 PLCC44 PLCC44 PLCC44 PLCC44

8-BIT MICROPROCESSORS - 6800 FAMILY

Туре	Description	Package
EF68A02FN EF68A03FN EF68A03UFN EF68A09EFN EF68A09FN EF68B02FN EF68B03FN EF68B09FN EF68B09FN EF6803FN EF6803FN EF6803FN EF6803FN EF6803FN EF6809FN	NMOS 8-bit MPU with RAM & clock, 1.5 MHz NMOS ROMIess MCU, 1.5 MHz EF6803 with 192 b RAM, 1.5 MHz 6809 CPU with external clock, 1.5 MHz High performance 8-bit MPU, 1.5 MHz NMOS 8-bit MPU with RAM & clock, 2 MHz NMOS ROMIess MCU, 2 MHz 6809 CPU with external clock, 2 MHz High performance 8-bit MPU, 2 MHz NMOS 8-bit MPU with RAM & clock, 1 MHz NMOS ROMIess MCU, 1 MHz EF6803 with 192 b RAM, 1 MHz 6809 CPU with external clock, 1 MHz High performance 8-bit MPU, 1 MHz	PLCC44

8-BIT PERIPHERALS - 6800 FAMILY

Туре	Description	Package
EF68A21FN EF68A50FN EF68A50FN EF68B454FN EF68B21FN EF68B50FN EF68B50FN EF68B54FN EF6821FN EF6840FN EF6840FN EF6850FN EF6850FN	Peripheral Interface Adapter, 1.5 MHz Programmable Timer, 1.5 MHz Asynchronous Communication Interface Adapter, 1.5 MHz Advanced Data Link Controller, 1.5 MHz Peripheral Interface Adapter, 2 MHz Programmable Timer, 2 MHz Asynchronous Communication Interface Adapter, 2 MHz Advanced Data Link Controller, 2 MHz Peripheral Interface Adapter, 1 MHz Programmable Timer, 1 MHz Asynchronous Communication Interface Adapter, 1 MHz Advanced Data Link Controller, 1 MHz	PLCC44 PLCC28 PLCC28 PLCC28 PLCC44 PLCC28 PLCC28 PLCC28 PLCC28 PLCC28 PLCC44 PLCC28 PLCC44 PLCC28 PLCC44 PLCC28

MICROS & PERIPHERALS 8-BIT PERIPHERALS - Z80 FAMILY

Туре	Description	Package
Z8400C,K Z8410C,K Z8420C,K Z8430C,K Z8444C,K	CPU with up to 8 MHz clock frequency DMA with up to 4 MHz clock frequency PIO with up to 6 MHz clock frequency CIC with up to 6 MHz clock frequency SIO with up to 6 MHz clock frequency	PLOC/LCCC44 PLOC/LCCC44 PLOC/LCCC44 PLCC/LCCC44 PLCC/LCCC44

8-BIT PERIPHERALS - Z80 CMOS FAMILY

Туре	Description	Package
Z84C00C Z84C10C Z84C20C Z84C30C Z84C44C	CMOS CPU with up to 8 MHz clock frequency DMA with up to 6 MHz clock frequency PIO with up to 6 MHz clock frequency CTC with up to 6 MHz clock frequency CMOS SIO with up to 6 MHz clock frequency	PLCC44 PLCC44 PLCC44 PLCC44 PLCC44

16-BIT MICROPROCESSORS - 68000 FAMILY

Туре	Description	Package
TS68000FN8 TS68000FN10 TS68000FN12 TS68000FN16 TS68008FN8 TS68008FN10	8 MHz clock frequency with 32-bit internal structure 10 MHz clock frequency with 32-bit internal structure 12.5 MHz clock frequency with 32-bit internal structure 16 MHz clock frequency with 32-bit internal structure 8 MHz clock frequency, TS68000 8-bit bus version 10 MHz clock frequency, TS68000 8-bit bus version	PLCC68 PLCC68 PLCC68 PLCC68 PLCC52 PLCC52

16-BIT MICROPROCESSORS - Z8000 FAMILY

Туре	Description	Package
Z8001K Z8002C,K Z8010K Z8030C,K Z8036C,K Z8038C,K Z8060K	16-bit segmented CPU, 8M byte, up to 10 MHz clock frequency 16-bit non segmented CPU, 64K byte, up to 10 MHz clock frequency MMU for Z8001 SEG CPU, up to 10 MHz clock frequency SSC (dual), up to 6 MHz clock frequency CIO counter/timer and parallel I/O, up to 6 MHz clock frequency FIFO I/O interface, up to 6 MHz clock frequency FIFO buffer unit (and Z8038 expander) up to 4 MHz clock frequency	LCCC52 PLCC/LCCC44 LCCC52 PLCC/LCCC44 PLCC/LCCC44 PLCC/LCCC44 LCCC44

16-BIT PERIPHERALS - 68000 FAMILY

Туре	Description	Package
MK68230Q8 MK68564Q4 MK68564Q5 MK68901Q4 MK68901Q5 TS68HC901FN TS68483CFN15	Parallel interface timer, 8 MHz Serial I/O, 4 MHz Serial I/O, 5 MHz Multifunction peripheral, 4 MHz Multifunction peripheral, 5 MHz CMOS multifunction peripheral, 4 MHz High performance graphic processor, 2048 × 2048, 15 MHz	PLCC52 PLCC52 PLCC52 PLCC52 PLCC52 PLCC52 PLCC52 PLCC68
TS68483CFN18 TS68494CFN15	High performance graphic processor, 2048 × 2048, 18 MHz Colour palette: 256 / 4096	PLCC68 PLCC44

MICROS & PERIPHERALS

16-BIT PERIPHERALS - Z8500 UNIVERSAL PERIPHERALS

Туре	Description	Package
Z8530C,K	SCC (dual), up to 6 MHz clock frequency	PLCC/LCCC44
Z8536C,K	CIO counter/timer and parallel I/O, up to 6 MHz clock frequency	PLCC/LCCC44

NEW FAMILIES

ST6 - 8-BIT HCMOS MICROCONTROLLER FAMILY

Туре	Description	Package
ST6031M6 ST60R4XC6, ST60R4XK6 ST6040C6 ST60R5XC6, ST60R5XK6 ST6050C6 ST61E24K6 ST6124C6 ST61E54K8 ST6154Q8	HCMOS 4K ROM MCU, Pre-amp, Pulse detector, 16 I/O lines HCMOS ROMIess MCU (emulation of ST6040/41) HCMOS 4K ROM MCU, A/D converter, LCD driver, 15 I/O lines HCMOS ROMIess MCU (emulation of ST6050/51/52) HCMOS 4K ROM MCU, A/D converter, Pre-amp, 30 I/O lines HCMOS EPROM MCU (emulation of ST6124) HCMOS 2.5K ROM MCU, LCD driver, power supply supervisor, 16 I/O lines HCMOS EPROM MCU (emulation of ST6154) HCMOS 3.6K ROM MCU, LCD driver, PLL, 16 I/O lines	SO28 PLCC84, LCCC84 PLCC44 PLCC84, LCCC84 PLCC44 LCCC44-W PLCC44 LCCC52-W QFP52

ST8 - HIGH SPEED 8-BIT HCMOS MICROCONTROLLER FAMILY

Туре	Description	Package
ST8108C6	HCMOS 8K ROM MCU, 176 Bytes RAM, Timer, Synch. & asynch. serial interfaces, 24 I/O lines	PLCC44
ST81E08L6	HCMOS EPROM MCU (emulation of ST8108C6)	CLCC44-W

ST9 - HIGH SPEED 8/16-BIT HCMOS MICROCOMPUTER FAMILY

Туре	Description	Package
ST90E23K6	HCMOS high end core, 8K EPROM, 256 Reg. file, 1×16 Bit watch dog timer, 1 serial communication controller, 1×16 Bit multifunction timer, MSPI and I2CBUS serial interface, 36 I/O lines	CLCC44-W
ST9023C6	HCMOS high end core, 8K ROM, 256 Reg. file, 1 × 16 Bit watch dog timer, 1 serial communication controller, 1 × 16 Bit multifunction timer, MSPI and I2CBUS serial interface, 36 I/O lines	PLCC44
ST90E30K6	HCMOS high end core, 8K EPROM, 256 Reg. file, 1 × 16 Bit watch dog timer, 1 serial communication controller, 2 × 16 Bit multifunction timers, MSPI and I2CBUS serial interface, 8 channels by 8-Bit analog to digital converter, 56 I/O lines	CLCC68-W
ST9030C6	HCMOS high end core, 8K ROM, 256 Reg. file, 1×16 Bit watch dog timer, MSPI and I2CBUS serial interface, 1 serial communication controller, 2×16 Bit multifunction timers, 8 channels by 8-Bit analog to digital converter, 56 I/O lines	PLCC68

DISPLAY CIRCUITS AND GRAPHIC PROCESSORS

Туре	Description	Package
EF9345FN	Single chip alphanumeric and semigraphic display processor	PLCC44
EF9369FN	Colour palette : 16/4096	PLCC28
TS68483CFN15	High performance graphic processor, 2048 × 2048, 15 MHz	PLCC68
TS68483CFN18	High performance graphic processor, 2048 × 2048, 18 MHz	PLCC68
TS68494CFN15	Colour palette : 256/4096	PLCC44
TS9370FN	Same as EF9369 with linear law	PLCC28

DATA COMMUNICATION CIRCUIT - PACKET SWITCHING

Туре	Description	Package
MK5025	X.25 LAPB / ISDN LAPD / HDLC CMOS Hi-speed link level controller with DMA	PLCC52

CONSUMER

Туре	Description	Package
EF9345FN EF9369FN L272D L2726 L6235 L6236 M3004M1 M3005M1 M8438AC M9306 TDA3410D TDA3420D TDA7211D TDA7220D TDA7233D TDA7236D TDA7236D TDA7236D TDA7282D TDA7300D TDA7361D TEA5701 TS68483CFN15	Single chip alphanumeric and semigraphic display processor Colour palette: 16/4096 Dual power op-amp Low drop dual power op-amp R-Dat brushless DC motor driver Bidirectionnal R-Dat brushless DC motor driver RC transmitter - 64 commands RC transmitter - 64 commands CMDS (use with UAA4009) 32 segment static LCD driver 16×16, clock frequency 250 kHz, NMOS EEPROM Dual low-noise preamplifier with autoreverse Dual very low-noise preamplifier Low voltage FM tuner front end AF-FM receiver 1W amplifier with mute, low voltage Very low voltage audio-bridge Stereo preamplifier (low voltage) Digital controlled stereo audio processor Narrow band FM-IF demodulator for cordless Video head amplifier High performance graphic processor, 2048 × 2048, 15 MHz	PLCC44 PLCC28 S016 S020 PLCC20 PLCC20 S020 S020 PLCC44 S08 S016 S016 S016 S08 S016 S08 S016 S08 S016 S08
TS68483CFN18 TS68494CFN15 TS9370FN	High performance graphic processor, 2048 × 2048, 18 MHz Colour palette: 256/4096 Same as EF9369 with linear law	PLCC68 PLCC44 PLCC28

AUTOMOTIVE

Туре	Description	Package
L482P L484P L497P L530P L9610C L9701 LM2901D LM2901DT LM2902D LM2902DT LM2903D LM2903DT LM2903DT LM2904D LM2904DT M9306	Electronic ignition controller (hall effect pick-up) Electronic ignition controller (magnetic pick-up) Electronic ignition controller (hall effect pick-up) Electronic ignition interface for microprocessor (hall magnetic) PWM powermos controller Octal ground contact monitoring circuit Low power - low offset voltage - quad comparator Low power - low offset voltage - quad comparator Low power - single power supply - quad bipolar op-amp Low power - single power supply - quad bipolar op-amp Low power - low offset voltage - dual comparator Low power - low offset voltage - dual comparator Low power - single power supply - dual bipolar op-amp Low power - single power supply - dual bipolar op-amp Low power - single power supply - dual bipolar op-amp 16 × 16, clock frequency 250 kHz, NMOS EEPROM	SO16 SO16 SO16 SO16 SO20 SO14 SO14 tape SO14 SO14 tape SO8 SO8 tape SO8 SO8 tape SO8

MINIMELF / MELF

MELF

SCHOTTKY DIODES

Туре	V _{RRM}	I _F I _O * (mA)	i _R (1) max (μA)	/ V _R (V)	V _F (1) max (V)	(mA)	C max (pF)	/ V _R	Dynamic parameters	Package
UHF and ultra fas	st switch	ning	T _{amb} =	= 25°C						
TMM BAR 19 TMM BAT 29 TMM BAT 19 TMM BAT 45	4 5 10 15	30 30 30 30	0.25 0.05 0.1 0.1	3 1 5 6	0.6 0.55 0.4 0.5	10 10 1	1 1 1.2 1.1	1 0 0	$F = 6 dB / 1 GHz \\ Q_S < 3 pC / 10 mA \\ \tau < 100 ps / 20 mA \\ t_{rr} < 1 ns / 3 mA$	MINIMELF
TMM BAR 10 / TMM 5712 TMM BAR 11	20 15	35 20	0.1 0.1	15	0.41 0.41	1	1.2 1.2	0	au < 100 ps/ 5 mA $ au$ < 100 ps/ 5 mA	IVIIIVILLI
TMM BAR 28 / TMM 5711 TMM 6263	70 60	15 15	0.2 0.2	50 50	0.41 0.41	1	2 2.2	0	au < 100 ps/ 5 mA $ au$ < 100 ps/ 5 mA	
general purpose			T _{amb} =	= 25°C						1
TMM BAT 42	30	200	0.5	25	{ 0.4 0.65 1	10 50 200	7 §	1	t _{rr} < 5 ns /10 mA	
TMM BAT 43	30	200	0.5	25	{ 0.45 1 (0.25	15 200 0.1	7 §	1	η > 80 % /45 MHz	
TMM BAT 47	20	350	4	10	0.4	10 300	12 §	1.	t _{rr} < 10 ns /10 mA	MINIMELF
TMM BAT 48	40	350	2	10	0.25 0.4 0.9	0.1 10 500	12 §	1	t _{rr} < 10 ns /10 mA	
TMM BAT 41	100	100	0.1	50	{ 0.45 1 (0.25	1 200 0.1	2 §	1		
TMM BAT 46	100	150	2	50	0.45	10 250	6 §	1		
TM BAT 49	80	1000	200	80	{ 0.32	10 100 1000	120 §	0		
TM BYV 10-20A	20	1000*	300	20	{ 0.45 0.75	1000 3000	330 §	0		
TM BYV 10-20	20	1000*	500	20	{ 0.55 0.85	1000 3000	220 §	0		MELF
TM BYV 10-30	30	1000*	500	30	{ 0.55 0.85	1000 3000	220 §	0		
TM BYV 10-40	40	1000*	500	40	{ 0,55 0,85	1000 3000	220 §	0		
TM BYV 10-60	60	1000*	500	60	{ 0,70 1	1000 3000	150 §	0	,	

F: Mixer noise figure.

Q_S: Stored charges (B-line).

 $[\]eta$: Detection efficiency.

au : Minority carrier life time (Krakauer method).

⁽¹⁾ Pulse test $t_p \leqslant 300 \ \mu s \quad \delta < 2\%$.

[§] Typical value.

ZENER DIODES

Туре	V _{ZT} /I _{ZT} *	rZT/IZT*	IZT*	rzK/IzK	α VZ	I _R / V _R	v _R	I _{ZM}	IZSM	Package
						T _{amb} T _{amb} 25°C 150°C				
	min max (V)	max (Ω)	(mA)	max (Ω) (mA)	min max (10 ⁻⁴ /°C)	max max (μ A)	(V)	(mA)	(mA)	
										1 1 16/4

$500 \text{ mW} / T_{amb} = 25^{\circ}\text{C} T_{j} \text{ max} = 175^{\circ}\text{C}$

 $V_{\mbox{\scriptsize F}} \leqslant$ 1.5 V (T $_{\mbox{\scriptsize amb}}$ = 25°C, I $_{\mbox{\scriptsize F}}$ = 0.2 A)

anib			,								-			
			-	·										
BZV 55 C 0V8 (1)	0.73	0.83	8	5	600	1			27					
	2.28		85	5	600	1	-8	- 6	50	100	1	155	1720	
P BZV 55 C 2V4			85	5	600	1	-8	- 6	10	50	1	135	1600	
P BZV 55 C 2V7	2.5	2.9	85	5	600	1	-8	- 6	4	40	1	125	1500	
BZV 55 C 3V0	2.8	3.2				1	-8	- 5	2	40	1	115	1400	
P BZV 55 C 3V3	3.1	3.5	85	5	600				2	40	1	105	1330	2 1 11 5
P BZV 55 C 3V6	3.4	3.8	85	5	600	1	-8 -7	- 4	2	40	1	95	1270	× /
P BZV 55 C 3V9	3.7	4.1	85	5	600	1		- 3	_		1	90		
P BZV 55 C 4V3	4.0	4.6	75	5	600	1	-4	- 1	1	20			1220	
P BZV 55 C 4V7	4.4	5.0	60	5	600	1	-3	1	0.5	10	1	85	1.160	
P BZV 55 C 5V1	4.8	5.4	35	5	550	1	-2	5	0.1	2	1	80	1100	
P BZV 55 C 5V6	5.2	6.0	25	5	450	1	-1	6	0.1	2	1	70	1040	. *
P BZV 55 C 6V2	5.8	6.6	10	5	200	1	0	7	0.1	2	2	64	980	
P BZV 55 C 6V8	6.4	7.2	8	5	150	1	1	8	0.1	2	3	58	900	. 20
P BZV 55 C 7V5	7.0	7.9	7	5	50	1	1	9	0.1	2	5	53	810	
P BZV 55 C 8V2	7.7	8.7	7	5	50	1	1	9	0.1	2	6.2	47	760	
P BZV 55 C 9V1	8.5	9.6	10	5	50	1	2	10	0.1	2	6.8	43	670	
P BZV 55 C 10	9.4	10.6	15	5	70	1	3	11	0.1	2	7.5	40	600	
P BZV 55 C 11	10.4	11.6	20	5	70	1	3	11	0.1	2	8.2	36	550	
P BZV 55 C 12	11.4	12.7	20	5	90	1	3	11	0.1	2	9.1	32	500	
BZV 55 C 13	12.4	14.1	26	5	110	1	3	11	0.1	2	10	29	450	
P BZV 55 C 15	13.8	15.6	30	5	110	1	3	11	0.1	2	11	27	380	
BZV 55 C 16	15.3	17.1	40	5	170	1	3	11	0.1	2	12	24	350	
BZV 55 C 18	16.8	19.1	50	5	170	1	3	11	0.1	2	. 13	21	300	
BZV 55 C 20	18.8	21.2	55	5	220	1	3	11	0.1	2	15	20	270	MINIMELF
BZV 55 C 22	20.8	23.3	55	5	220	1	3	11	0.1	2	1.6	18	250	IVIIIAIIVIEEI
BZV 55 C 24	22.8	25.6	80	5	220	1	4	12	0.1	2	18	16	225	7.7
BZV 55 C 27	25.1	28.9	80	- 5	220	1	4	12	0.1	2	20	14	200	
BZV 55 C 30	28	32	80	5	220	1	4	12	0.1	2	22	13	190	
BZV 55 C 33	31	35	80	5	220	1	4	12	0.1	2	24	12	175	
BZV 55 C 36	34	38	80	5	220	1	4	12	0.1	2	27	11	160	
BZV 55 C 39	37	41	90	2.5	500	0.5	4	12	0.1	5	30	10	148	\$
BZV 55 C 43	40	46	90	2.5	600	0.5	4	12	0.1	5	33	9.2	135	· .
BZV 55 C 47	44	50	110	2.5	700	0.5	4	12	0.1	5	36	8.5	123	
BZV 55 C 51	48	54	125	2.5	700	0.5	4	12	0.1	10	39	7.8	113	
BZV 55 C 56	52	60	135	2.5	1000	0.5	4	12	0.1	10	43	7.0	104	
BZV 55 C 62	58	66	150	2.5	1000	0.5	4	12	0.1	10	47	6.4	93	
BZV 55 C 68	64	72	200	2.5	1000	0.5	4	12	0.1	10	51	5.9	87	, ,
BZV 55 C 75	70	80	250	2.5	1500	0.5	4	12	0.1	10	56	5.3	79	
BZV 55 C 82	77	87	300	2.5	2000	0.5	4	12	0.1	10	62	4.8	72	
BZV 55 C 91	85	96	450	1	5000	0.1	4	12	0.1	10	68	4.4	65	
BZV 55 C 100	94	106	450	1	5000	0.1	4	12	0.1	10	75	4.0	59	
BZV 55 C 110	104	116	600	1	5000	0.1	4	12	0.1	10	82	3.6	54	
BZV 55 C 120	114	127	800	1	5000	0.1	4	12	0.1	10	91	3.3	49	2
BZV 55 C 130	124	141	1000	1	5000	0.1	4	12	0.1	10	100	3.0	45	
BZV 55 C 150	138	156	1200	1	5000	0.1	4	12	0.1	10	110	2.6	39	
BZV 55 C 160	153	171	1500	1	5000	0.1	4	12	0.1	10	120	2.5	37	
BZV 55 C 180	168	191	1800	1	5000	0.1	4	12	0.1	10	130	2.2	33	
BZV 55 C 200	188	212	2000	1	5000	0.1	4	12	0.1	10	150	2.0	30	
22 33 0 200	1.00	_ 14		i '		0.,								
	1		I	L			1							1

^{*}Pulse test 20 ms \leq t_p \leq 50 ms δ < 2%

The regulation voltages are defined according to the E 24 series.

P : Preferred voltages.

⁽¹⁾ BZV 55 C 0V8 is to be used with forward bias.

ZENER DIODES

Туре	V _{ZT} /I _{ZT} *	r _{ZT} /I _{ZT} *	I _{ZT} *	rzĸ	/I _{ZK}	αVZ	I _R /V _R T _{amb} 25°C	VR	I _{ZM} T _{amb} 75°C	Package
	nom (V)	max (Ω)	(mA)	max (Ω)	(mA)	max (10 ⁻⁴ /°C)	max (μA)	(V)	(mA)	

500 mW / Tamb	= 75°C T _j max	= 200°C				V _F ≤ 1.1 V	$T_{amb} = 25^{\circ}$	$C, I_F = 0.2 A$
P TMM 5221 B TMM 5222 B P TMM 5223 B TMM 5224 B TMM 5225 B P TMM 5226 B P TMM 5226 B P TMM 5227 B P TMM 5228 B P TMM 5228 B P TMM 5230 B P TMM 5231 B P TMM 5231 B P TMM 5233 B P TMM 5236 B P TMM 5238 B P TMM 5240 B TMM 5240 B TMM 5241 B P TMM 5244 B P TMM 5245 B TMM 5245 B TMM 5245 B TMM 5246 B TMM 5247 B TMM 5248 B TMM 5248 B TMM 5258 B TMM 5250 B TMM 5251 B TMM 5250 B TMM 5251 B TMM 5252 B TMM 5253 B TMM 5253 B TMM 5254 B TMM 5254 B TMM 5256 B TMM 5256 B TMM 5257 B TMM 5258 B TMM 5258 B TMM 5258 B TMM 5258 B TMM 5259 B TMM 5260 B TMM 5261 B TMM 5261 B TMM 5262 B TMM 5263 B TMM 5263 B TMM 5264 B TMM 5265 B TMM 5266 B TMM 5267 B TMM 5268 B TMM 5268 B TMM 5269 B TMM 5269 B TMM 5260 B TMM 5261 B TMM 5263 B TMM 5263 B TMM 5264 B TMM 5265 B TMM 5266 B TMM 5267 B TMM 5268 B TMM 5268 B TMM 5269 B TMM 5271 B TMM 5271 B TMM 5273 B TMM 5274 B TMM 5278 B TMM 5278 B TMM 5279 B TMM 5280 B	2.4 30 2.5 30 2.7 30 2.8 30 3.0 29 3.3 28 3.6 24 3.9 23 4.3 22 4.7 19 5.1 17 5.6 11 6.0 7,6 6.2 7,6 8.2 8,8 7.5 6,8 8.2 8,8 8.7 8,9 9.1 10 10 17 11 22 12 30 13 13 14 15 15 16 16 17 17 19 18 21 19 23 20 25 22 29 24 83 20 25 27 41 28 44 30 49 33 58 36 70 39 80 43 93 47 105 51 125 56 150 60 170 62 185 68 230 75 270 82 330 87 370 91 400 100 500 110 750 120 900 130 1100 150 1500 160 1770 170 1990 180 2200 190 2400 200 2500	20 20 20 20 20 20 20 20	1200	25	100 100 100 75 75 50 25 15 10 5 5 5 5 5 5 5 5 5 5 5 5 5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	191 182 168 162 151 138 126 115 106 97 89 81 76 67 61 55 52 50 45 41 38 35 32 30 28 27 25 24 23 21 19.1 18.2 16.8 11.5 10.6 9.7 8.1 11.5 10.6 11.5 10.6 11.5 10.6 11.5 10.6 10.7 10.7 10.7 10.6 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	MINIMELF

 $^{^{\}star}$ Measure under thermal equilibrium and DC current test conditions (T $_{\mbox{amb}}$ 25 $^{\circ}\mbox{C}).$

P : Preferred voltages

Tolerance on nominal V_{ZT} value : \pm 5%.

ZENER DIODES

Туре	V _{ZT} /I _{ZT} *	r _{ZT} /I _{ZT} *	I _{ZT} *	rzK/IzK	α VZ	I _R /V _R T _{amb} 25°C	V _R	I _{ZM} T _{amb} 50°C	Package
	nom (V)	max (Ω)	(mA)	max (Ω) (mA)	typ (10 ⁻⁴ /°C)	max (μA)	(V)	(mA)	

V _E ≤ 1.2 V	T	25°C	le =	0 2 4)
V F ≥ 1.2 V I	lamb -	25 0, 1		U.2 MI

$1 \text{ W } / \text{T}_{\text{amb}} = 50$	0°C T _j m	ax = 200	°C					$V_{ extsf{F}} \leqslant$ 1.2 V ($T_{amb} = 25^{\circ}$	$C, I_F = 0.2 A)$
P TM 4728 A	3.3	10	76	400	1	- 6	100	1.0	276	
TM 4729 A	3.6	10	69	400	1	- 6	100	1.0	252	
P TM 4730 A	3.9	9	64	400	1	- 5	50	1.0	234	
TM 4731 A	4.3	9	58	400	1	- 3	10	1.0	217	
P TM 4732 A	4.7	8	53	500	1	- 1	10	1.0	193	
P TM 4733 A	5.1	7	49	550	1	1	10	1.0	178	
P TM 4734 A	5.6	5	45	600	1	3	10	2.0	162	
P TM 4735 A	6.2	2	41	700	.1	4	10	3.0	146	
P TM 4736 A	6.8	3.5	37	700	1	5	10	4.0	133	
P TM 4737 A	7.5	4	34	700	0.5	5	10	5.0	121	
P TM 4738 A	8.2	4.5	31	700	0.5	6	10	6.0	110	,
P TM 4739 A	9.1	5	28	700	0.5	6	10	7.0	100	
P TM 4740 A	10	7	25	700	0.25	7	10	7.6	91	
TM 4741 A	11	8	23	700	0.25	7	5	8.4	83	ye.
P TM 4742 A	12	9	21	700	0.25	7	5	9.1	76	
P TM 4743 A	13	10	19	700	0.25	7	5	9.9	69	
P TM 4744 A	15	14	17	700	0.25	8	5	11.4	61	
TM 4745 A	16	16	15.5	700	0.25	8	5	12.2	57	
TM 4746 A	18	20	14	750	0.25	8	5	13.7	50	
TM 4747 A	20	22	12.5	750	0.25	8	5	15.2	45	12
TM 4748 A	22	23	11.5	750	0.25	8	5	16.7	41	17
TM 4749 A	24	25	10.5	750	0.25	8	5	18.2	38	MELE
TM 4750 A	27	35	9.5	750	0.25	9	5	20.6	34	MELF
TM 4751 A	30	40	8.5	1000	0.25	9	5	22.8	30	
TM 4752 A	33	45	7.5	1000	0.25	9	5	25.1	27	
TM 4753 A	36	50	7.0	1000	0.25	9	5	27.4	25	
TM 4754 A	39	60	6.5	1000	0.25	9	5	29.7	23	
TM 4755 A	43	70	6.0	1500	0.25	9	5	32.7	22	× .
TM 4756 A	47	80	5.5	1500	0.25	9	5	35.8	19	
TM 4757 A	51	95	5.0	1500	0.25	9	5	38.8	18	
TM 4758 A	56	110	4.5	2000	0.25	9	5	42.6	16	
TM 4759 A	62	125	4.0	2000	0.25	9	5	47.1	14	
TM 4760 A	68	150	3.7	2000	0.25	9	5	51.7	13	
TM 4761 A	75	175	3.3	2000	0.25	9	5	56	12	
TM 4762 A	82	200	3.0	3000	0.25	9	5	62.2	11	
TM 4763 A	91	250	2.8	3000	0.25	9	5	69.2	10	
TM 4764 A	100	350	2.5	3000	0.25	9	5	76	9	
TM 4187 B	110	450	2.3	4000	0.25	10	5	83.6	8.6	
TM 4188 B	120	550	2.0	4500	0.25	10	5	91.2	. 7.8	
TM 4189 B	130	700	1.9	5000	0.25	10	5	98.8	7	
TM 4190 B	150	1000	1.7	6000	0.25	10	5	114	6.4	
TM 4191 B	160	1100	1.6	6500	0.25	10	5	121.6	5.8	
TM 4192 B	180	1200	1.4	7000	0.25	10	5	136.8	5.2	
TM 4193 B	200	1500	1.2	8000	0.25	10	5	152	4.7	
			1				1			

^{*} Measure under thermal equilibrium and DC current test conditions (T_{amb} 25°C).

Tolerance on nominal V_{ZT} value : \pm 5%.

P : Preferred voltages.

ZENER DIODES

Туре	V _{ZT} /I _{ZT} *	rZT/IZT*	I _{ZT} *	rzK/lzK	αVZ	I _R / V _R	٧R	IZM	IZSM	Package
						T _{amb} T _{amb}				
	min max	max		max	min max	25°C 150°C max max				
	(V)	(Ω)	(mA)	(Ω) (mA)	(10 ⁻⁴ /°C)	(μ A)	(V)	(mA)	(mA)	

1.3 W / Tamb = 25°C T_i max = 175°C

 $V_{ extsf{F}} \leqslant$ 1 V ($T_{ extsf{amb}}$ = 25°C, $I_{ extsf{F}}$.= 0.2 A)

"allib		. ,										· · (·aiiii		1
BZM 85 C 2V7	2.5	2.9	20	80	400	1	-8	- 5	150	300	1	370	3200	
BZM 85 C 3V0	2.8	3.2	20	80	400	1	-8	- 5	100	300	1	340	3000	
P BZM 85 C 3V3	3.1	3.5	20	80 ·	400	1	-8	- 5	40	200	1	320	2800	
P BZM 85 C 3V6	3.4	3.8	20	70	500	1	-8	- 5	20	50	1	290	2660	
P BZM 85 C 3V9	3.7	4.1	15	60	500	1	-7	- 2	10	20	1	280	2540	
P BZM 85 C 4V3	4.0	4.6	13	50	500	1	-5	1	3	10	1	250	2440	
P BZM 85 C 4V7	4.4	5.0	13	45	500	1	-3	4	3	10	1	215	2320	
P BZM 85 C 5V1	4.8	5.4	10	45	500	1	-1	4	1	10	1.5	200	2200	2
P BZM 85 C 5V6	5.2	6.0	7	45	400	1	Ö	4.5	1	10	2	190	2080	
P BZM 85 C 6V2	5.8	6.6	4	35	300	1	1	5.5	1	10	3	170	1960	
P BZM 85 C 6V8	6.4	7.2	3.5	35	300	1	1.5	6	1	10	- 4	155	1800	
P BZM 85 C 7V5	7.0	7.2	3.3	35	200	0.5	2	6.5	1	10	4.5	140	1620	
P BZM 85 C 8V2	7.0	8.7	5	25	200	0.5	3	7	1	10	6.2	130	1520	
	8.5			25	200	0.5	3.5	7.5	1	10	6.8	120	1340	
P BZM 85 C 9V1		9.6	5											
P BZM 85 C 10	9.4	10.6	7	25	200	0.5	4	8	0.5	10	7.5	105	1200	
BZM 85 C 11	10.4	11.6	8	20	300	0.5	4.5	8	0.5	10	8.2	97	1100	
P BZM 85 C 12	11.4	12.7	9	20	350	0.5	4.5	8.5	0.5	10	9.1	88	1000	
BZM 85 C 13	12.4	14.1	10	20	400	0.5	5	8.5	0.5	10	10	79	900	
P BZM 85 C 15	13.8	15.6	15	15	500	0.5	5.5	9	0.5	10	11	71	760	
BZM 85 C 16	15.3	17.1	15	15	500	0.5	5.5	9	0.5	10	12	66	700	
BZM 85 C 18	16.8	19.1	20	15	500	0.5	6	9	0.5	10	13	62	600	
BZM 85 C 20	18.8	21.2	24	10	600	0.5	6	9	0.5	10	15	56	540	
BZM 85 C 22	20.8	23.3	25	10	600	0.5	6	9.5	0.5	10	16	52	500	MELF
BZM 85 C 24	22.8	25.6	25	10	600	0.5	6	9.5	0.5	10	1.8	47	490	IVILLI
BZM 85 C 27	25.1	28.9	30	8	750	0.25	6	9.5	0.5	10	20	41	400	
BZM 85 C 30	28	32	30	8	1000	0.25	6	9.5	0.5	10	22	36	380	
BZM 85 C 33	31	35	35	8	1000	0.25	6	9.5	0.5	10	24	33	350	-
BZM 85 C 36	34	38	40	8	1000	0.25	6	9.5	0.5	10	27	30	320	
BZM 85 C 39	37	41	50	6	1000	0.25	6	9.5	0.5	10	30	28	296	
BZM 85 C 43	40	46	50	6	1000	0.25	6	9.5	0.5	10	33	26	270	
BZM 85 C 47	44	50	90	4	1500	0.25	6	9.5	0.5	10	36	23	246	
BZM 85 C 51	48	54	115	4	1500	0.25	6	9.5	0.5	10	39	21	226	
BZM 85 C 56	52	60	120	4	2000	0.25	6	9.5	0.5	10	43	19	208	
BZM 85 C 62	58	66	125	4	2000	0.25	6	9.5	0.5	10	47	16	186	2
BZM 85 C 68	64	72	130	4	2000	0.25	6	9.5	0.5	10	51	15	171	
BZM 85 C 75	70	80	135	4	2000	0.25	6	9.5	0.5	10	56	14	161	
BZM 85 C 82	7.7	87	200	2.7	3000	0.25	7	12	0.5	10	62	12	141	
BZM 85 C 91	85	96	250	2.7	3000	0.25	7	12	0.5	10	68	10	127	,
BZM 85 C 100	94	106	350	2.7	3000	0.25	7	12	0.5	10	75	9.4	116	
BZM 85 C 110	104	116	450	2.7	4000	0.25	7	12	0.5	10	82	8.6	105	1
BZM 85 C 120	114	127	550	2.7	4500	0.25	7	12	0.5	10	91	7.8	96	
BZM 85 C 130	124	141	700	2	5000	0.25	7	12	0.5	10	100	7.0	89	
BZM 85 C 150	138	156	1000	2	6000	0.25	7	12	0.5	10	110	6.4	77	
BZM 85 C 160	153	171	1100	1.5	6500	0.25	7	12	0.5	10	120	5.8	72	
	168				7000	0.25	7	12	0.5	10	130	5.8	64	
BZM 85 C 180 BZM 85 C 200	180	191 212	1200 1500	1.5 1.5	8000	0.25	7	12	0.5	10	150	4.7	58	
DZIVI 03 C ZUU	100	212	1500	1.5	0000	0.25	- /	12	0.5	10	150	4.7	20	

^{*} Pulse test

The regulation voltages are defined according to the E 24 series.

TRIGGER DIODES (DIACS)

Туре	Bre	eakover volta (V)	ige	Breakover voltage symmetry △V max	Breakover current	Δ V between 0 and 10 mA min.	Package
,	min	nom	max	(V)	I _R max. (μA)	(V)	
TMM DB 3	28	32	36	± 3	100	5	MINIMELF

²⁰ ms \leq t_p \leq 50 ms δ < 2%.

P : Preferred devices.

SOD 6 / SOD 15

SOD 6

SOD 15

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

1	Гуре	Mai	king		@ V _{RM}		V _(BR) * (V)	@	IR		@ I _{pp} expo max	α Ţ max	Package
Unidirec- tional	Bidirec- tional	Unidirec- tional	Bidirec- tional	(μA)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
400 W /	1 ms expo.							IF	SM =	50 A -	10 ms	for unidir	ectiona
SM4T 6V8	SM4T 6V8C	QD	VD	1000	5.5	6.12	6.8	7.48	10	10.8	37	5.7	
SM4T 6V8A	SM4T 6V8CA	QE	VE	1000	5.8	6.45	6.8	7.14	10	10.5	38	5.7	
SM4T 7V5	SM4T 7V5C	QF	VF	500	6.05	6.75	7.5	8.25	10	11.7	34	6.1	
SM4T 7V5A	SM4T 7V5CA	QG	VG	500	6.4	7.13	7.5	7.88	10	11.3	35.4	6.1	
SM4T 10	SM4T 10C	QN	VN	10	8.1	9	10	11	1	15	27	7.3	
SM4T 10A	SM4T 10CA	QP	VP	10	8.55	9.5	10	10.5	1	14.5	27.6	7.3	
SM4T 12	SM4T 12C	QS	VS	5	9.72	10.8	12	13.2	1	17.3	23.1	7.8	
SM4T 12A	SM4T 12CA	QT	VT	5	10.2	11.4	12	12.6	1	16.7	24	7.8	
SM4T 15	SM4T 15C	QW	VW	5	12.1	13.5	15	16.5	1	22	18.2	8.4	
SM4T 15A	SM4T 15CA	QX	l vx	5	12.8	14.3	15	15.8	1	21.2	19	8.4	
SM4T 18	SM4T 18C	RD	UD	5	14.5	16.2	18	19.8	1	26.5	15.1	8.8	
SM4T 18A	SM4T 18CA	RE	UE	5	15.3	17.1	18	18.9	1	25.2	16	8.8	
SM4T 22	SM4T 22C	RH	UH	5	17.8	19.8	22	24.2	1	31.9	12.5	9.2	
SM4T 22A	SM4T 22CA	RK	UK	5	18.8	20.9	22	23.1	1	30.6	13	9.2	
SM4T 24	SM4T 24C	RL	UL	5	19.4	21.6	24	26.4	1	34.7	11.5	9.4	
SM4T 24A	SM4T 24CA	RM	UM	5	20.5	22.8	24	25.2	1	33.2	12	9.4	
SM4T 27	SM4T 27C	RN	UN	5	21.8	24.3	27	29.7	1	39.1	10.2	9.6	
SM4T 27A	SM4T 27CA	RP	UP	5	23.1	25.7	27	28.4	1	37.5	10.7	9.6	
SM4T 30	SM4T 30C	RQ	UQ	5	24.3	27	30	33	1	43.5	9.2	9.7	SOD 6
SM4T 30A	SM4T 30CA	RR	UR	5	25.6	28.5	30	31.5	1	41.5	9.6	9.7	
SM4T 33	SM4T 33C	RS	US	5	26.8	29.7	33	36.3	1	47.7	8.4	9.8	-
SM4T 33A	SM4T 33CA	RT	UT	5	28.2	31.4	33	34.7	1	45.7	8.8	9.8	
SM4T 36	SM4T 36C	RU	UU	5	29.1	32.4	36	39.6	1	52	7.7	9.9	
SM4T 36A	SM4T 36CA	RV	UV	5	30.8	34.2	36	37.8	1	49.9	8	9.9	
SM4T 39	SM4T 39C	RW	UW	5	31.6	35.1	39	42.9	1	56.4	7.1	10.0	
SM4T 39A	SM4T 39CA	RX	UX	5	33.3	37.1	39	41	1	53.9	7.4	10.0	
SM4T 68	SM4T 68C	SN	WN	5	55.1	61.2	68	74.8	1	98	4.1	10.4	
SM4T 68A	SM4T 68CA	SP	WP	5	58.1	64.6	68	71.4	1	92	4.3	10.4	
SM4T 100	SM4T 100C	SW	WW	5	81	90	100	110	1	144	2.8	10.4	
	SM4T 100CA	SX	WX	5	85.5	95	100	105	1	137	2.8	10.6	
SM4T 100A SM4T 150	SM4T 150CA	TH	XH	5	121	135	150	165	1	215	1.9	10.8	
SM4T 150 SM4T 150A	SM4T 150CA	TK	XH	5	121	143	150	158	1	207	2	10.8	
			XX	5				,	'	207			
SM4T 200	SM4T 200C	TS		1	162	180	200	220	1		1.4	10.8	
SM4T 200A	SM4T 200CA	T	XT	5	171	190	200	210		274	1.5	10.8	
SM4T 220		TU		5	178	198	220	242	1	315	1.3	10.8	
SM4T 220A		TV		5	188	209	220	231	ı	301	1.4	10.8	

^{*} Pulse test $t_p \leqslant$ 50 ms $\delta <$ 2%.

For other voltages, please contact our sales offices.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

	Туре	Mai	king		@ V _{RM}		V _(BR) *	@	IR	, ,	@ I _{pp} expo max	α T max	Package
Unidirec- tional	Bidirec- tional	Unidirec- tional	Bidirec- tional	(μA)	(V)	. min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
600 W /	1 ms expo.							IF	SM =	50 A -	10 ms	for unidir	ectiona
SM6T 6V8	SM6T 6V8C	DD	LD	1000	5.5	6.12	6.8	7.48	10	10.8	55	5.7	
SM6T 6V8A	SM6T 6V8CA	DE	LE	1000	5.8	6.45	6.8	7.14	10	10.5	57	5.7	
SM6T 7V5	SM6T 7V5C	DF	LF	500	6.05	6.75	7.5	8.25	10	11.7	51	6.1	
SM6T 7V5A	SM6T 7V5CA	DG	LG	500	6.4	7.13	7.5	7.88	10	11.3	53	6.1	
SM6T 10	SM6T 10C	DN	LN	10	8.1	9.0	10	11	1	15	40	7.3	
SM6T 10A	SM6T 10CA	DP	LP	10	8.55	9.5	10	10.5	1	14.5	41	7.3	
SM6T 15	SM6T 15C	DW	LW	5	12.1	13.5	15	16.5	1	22	27.5	8.4	
SM6T 15A	SM6T 15CA	DX	LX	5	12.8	14.3	15	15.8	1	21.2	28	8.4	
SM6T 18	SM6T 18C	ED	MD	5	14.5	16.2	18	19.8	1	26.5	22.5	8.8	
SM6T 18A	SM6T 18CA	EE	ME	5	15.3	17.1	18	18.9	1	25.2	24	8.8	
SM6T 22	SM6T 22C	EH	МН	5	17.8	19.8	22	24.2	1	31.9	18.5	9.2	
SM6T 22A	SM6T 22CA	EK	MK	5	18.8	20.9	22	23.1	1	30.6	20	9.2	
SM6T 24	SM6T 24C	EL	ML	5	19.4	21.6	24	26.4	1	34.7	17.5	9.4	
SM6T 24A	SM6T 24CA	EM	MM	5	20.5	22.8	24	25.2	1	33.2	18	9.4	
SM6T 27	SM6T 27C	EN	MN	5	21.8	24.3	27	29.7	1	39.1	15.5	9.6	
SM6T 27A	SM6T 27CA	EP	MP	5	23.1	25.7	27	28.4	1	37.5	16	9.6	
SM6T 30	SM6T 30C	EQ	MQ	5	24.3	27	30	33	1	43.5	13.5	9.7	
SM6T 30A	SM6T 30CA	ER	MR	5	25.6	28.5	30	31.5	1	41.4	14.5	9.7	SOD 6
SM6T 33	SM6T 33C	ES	MS	5	26.8	29.7	33	36.3	1	47.7	12.5	9.8	
SM6T 33A	SM6T 33CA	ET	MT	5	28.2	31.4	33	34.7	1	45.7	13.1	9.8	
SM6T 36	SM6T 36C	EU	MU	5	29.1	32.4	36	39.6	1	52	11.5	9.9	
SM6T 36A	SM6T 36CA	EV	MV	5	30.8	34.2	36	37.8	1	49.9	12	9.9	
SM6T 39	SM6T 39C	EW	MW	5	31.6	35.1	39	42.9	1	56.4	10.6	10.0	
SM6T 39A	SM6T 39CA	EX	MX	5	33.3	37.1	39	41		53.9	11.1	10.0	
SM6T 68	SM6T 68C	FP FP	NP NP	5	55.1	61.2	68	74.8	1	98	6.1	10.4	
SM6T 68A	SM6T 68CA	FQ	NQ	5	58.1	64.6	68	71.4	1	92	6.5	10.4	
SM6T 100	SM6T 100C	FX	NTX	5	81	90	100	110		144	4.2	10.4	
SM6T 100A	SM6T 100CA	FY	NY	5	85.5	95	100	105	1	137	4.4	10.6	
SM6T 100A SM6T 150			1	5			150	165	1	215	2.8		
	SM6T 150C	GK	OK	5	121 128	135		158	1	207	2.8	10.8	
SM6T 150A	SM6T 150CA	GL	OL			143	150		-			10.8	
SM6T 200	SM6T 200C	GT	OT	5	162	180	200	220	1	287	2.1	10.8	
SM6T 200A	SM6T 200CA	GU	OU	5	171	190	200	210	1	274	2.2	10.8	
SM6T 220		GV		5	178	198	220	242	1	316	1.9	10.8	
SM6T 220A		GW		5	188	209	220	231	1	301	2	10.8	

^{*} Pulse test $t_p \leqslant 50 \text{ ms} \quad \delta < 2\%$.

For other voltages, please contact our sales offices.

TRANSIENT VOLTAGE SUPPRESSORS «TRANSIL»

	Туре	Mai	rking		@ V _{RM}		V _(BR) *	@	I _R	, ,	@ I _{pp} s expo max	α _T max	Package
Unidirec- tional	Bidirec- tional	Unidirec- tional	Bidirec- tional	(μA)	(V)	min	nom	max	(mA)	(V)	(A)	(10 ⁻⁴ /°C)	
1.5 KW /	1 ms expo.							IFS	sm =	150 A -	10 ms	for unidir	ectional
SM15T 6V8	SM15T 6V8C	MDD	BDD	1000	5.5	6.12	6.8	7.48	10	10.8	139	5.7	7 7 7
SM15T 6V8A	SM15T 6V8CA	MDE	BDE	1000	5.8	6.45	6.8	7.14	10	10.5	143	5.7	
SM15T 7V5	SM15T 7V5C	MDF	BDF	1000	6.05	6.75	7.5	8.25	10	11.7	128	6.1	
SM15T 7V5A	SM15T 7V5CA	MDG	BDG	1000	6.4	7.13	7.5	7.88	10	11.3	132	6.1	
SM15T 10	SM15T 10C	MDN	BDN	10	8.1	9.0	10	11	1	15	100	7.3	
SM15T 10A	SM15T 10CA	MDP	BDP	10	8.55	9.5	10	10.5	1	14.5	103	7.3	
SM15T 12	SM15T 12C	MDS	BDS	5	9.72	10.8	12	13.2	1	17.3	87	7.8	
SM15T 12A	SM15T 12CA	MDT	BDT	5	10.2	11.4	12	12.6	1	16.7	90	7.8	
SM15T 15	SM15T 15C	MDW	BDW	5	12.1	13.5	15	16.5	1	22	68	8.4	
SM15T 15A	SM15T 15CA	MDX	BDX	5	12.8	14.3	15	15.8	1	21.2	71	8.4	
SM15T 18	SM15T 18C	MED	BED	5	14.5	16.2	18	19.8	1	26.5	56.5	8.8	
SM15T 18A	SM15T 18CA	MEE	BEE	5	15.3	17.1	18	18.9	1	25.2	59.5	8.8	
SM15T 22	SM15T 22C	МЕН	BEH	5	17.8	19.8	22	24.2	1	31.9	47	9.2	Q.1
SM15T 22A	SM15T 22CA	MEK	BEK	5	18.8	20.9	22	23.1	1	30.6	49	9.2	
SM15T 24	SM15T 24C	MEL	BEL	5	19.4	21.6	24	26.4	1	34.7	43	9.4	
SM15T 24A	SM15T 24CA	MEM	BEM	5	20.5	22.8	24	25.2	1	33.2	45	9.4	
SM15T 27	SM15T 27C	MEN	BEN	5	21.8	24.3	27	29.7	1	39.1	38.5	9.6	
SM15T 27A	SM15T 27CA	MEP	BEP	5	23.1	25.7	27	28.4	1	37.5	40	9.6	
SM15T 30	SM15T 30C	MEQ	BEQ	5	24.3	27	30	33	1	43.5	34.5	9.7	SOD 15
SM15T 30A	SM15T 30CA	MER	BER	5	25.6	28.5	30	31.5	1	41.4	36	9.7	
SM15T 33	SM15T 33C	MES	BES	5	26.8	29.7	33	36.3	1	47.7	31.5	9.8	. , .
SM15T 33A	SM15T 33CA	MET	BET	5	28.2	31.4	33	34.7	1	45.7	33	9.8	1 1
SM15T 36	SM15T 36C	MEU	BEU	5	29.1	32.4	36	39.6	1	52	29	9.9	5
SM15T 36A	SM15T 36CA	MEV	BEV	5	30.8	34.2	36	37.8	1	49.9	30	9.9	
SM15T 39	SM15T 39C	MEW	BEW	5	31.6	35.1	39	42.9	1	56.4	26.5	10.0	~
SM15T 39A	SM15T 39CA	MEX	BEX	5	33.3	37.1	39	41	1	53.9	28	10.0	
SM15T 68	SM15T 68C	MFN	BFN	5	55.1	61.2	68	74.8	1	98	15.3	10.4	
SM15T 68A	SM15T 68CA	MFP	BFP	5	58.1	64.6	68	71.4	1	92	16.3	10.4	
SM15T 00A SM15T 100	SM15T 00CA SM15T 100C	MFW	BFW	5	81	90	100	110	1	144	10.3	10.4	
SM15T 100A	SM15T 100CA	MFX	BFX	5	85.5	95	100	105	1	137	11	10.6	
SM15T 100A SM15T 150	SM15T 100CA SM15T 150C	MGH	BGH	5	121	135	150	165	1	215	7	10.8	
SM15T 150A	SM15T 150C SM15T 150CA	MGK	BGK	5	128	143	150	158	1	207	7.2	10.8	
SM15T 150A SM15T 200	SM15T 200C	MGU	BGU	5	162	180	200	220	1 1	287	5.2	10.8	
		MGV		5	171	190	200	210	1	274	5.5	10.8	
SM15T 200A	SM15T 200CA	MGW	BGV	5	175	190	220	242	1	344	4.3	10.8	
SM15T 220				5	185	209	220	242	1	328	4.3	10.8	
SM15T 220A	4	MGX		7	182	209	220	231		320	4.0	10.6	

^{*} Pulse test $t_p \leqslant$ 50 ms $\delta <$ 2%.

For other voltages, please contact our sales offices.

SOT 23

NPN GENERAL PURPOSE TRANSISTORS

Туре	V _{CBO}	V _{CEO}	Ic	P _{tot}	h _{FE} @	ı lc	/ V _{CE}	V _{CE} (sat)	@ I _C	/ I _B	f _T typ	Mar	king
	V _{CES} *							max	ı		min *		
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BC 817-16	50*	45	500	350	100/250	100	1	700	500	50	200	6A	
BC 817-25	50*	45	500	350	160/400	100	1	700	500	50	200	6B	_
BC 817-40	50*	45	500	350	250/630	100	1	700	500	50	200	6C	
BC 818-16	30*	25	500	350	100/250	100	1	700	500	50	200	6E	
BC 818-25	30*	25	500	350	160/400	100	1	700	500	50	200	6F	_
BC 818-40	30*	25	500	350	250/630	100	1	700	500	50	200	6G	_
BC 846 A	80	80	100	310	110/220	2	5	600	100	5	300	1A	1AR
BC 846 B	80	80	100	310	200/450	2	5	600	100	5	300	1B	1BR
BC 847 A	50	50	100	310	110/220	2	5	600	100	5	300	1E	1ER
BC 847 B	50	50	100	310	200/450	2	5	600	100	5	300	1F	1FR
BC 847 C	50	50	100	310	420/800	2	5	600	100	5	300	1G	1GR
BC 848 A	30	30	100	310	110/220	2	5	600	100	5	300	1J	1JR
BC 848 B	30	30	100	310	200/450	2	5	600	100	5	300	1K	1KR
BC 848 C	30	30	100	310	420/800	2	5	600	100	5	300	1L	1LR
BC 849 B	30	30	100	310	200/450	2	5	600	100	5	300	2B	2BR
BC 849 C	30	30	100	310	420/800	2	5	600	100	5	300	2C	2CR
BC 850 B	50	50	100	310	200/450	2	5	600	100	5	300	2F	2FR
BC 850 C	50	50	100	310	420/800	2	5	600	100	5	300	2G	2GR
BCF 33	32	32	100	300	420/800	2	5	250	10	5	300	D8	_
BCV 71	60	60	100	200	110/220	2	5	250	10	0.5	300	K7	K71
	60	60	100	200	200/450	2	5	250	10	0.5	300	K8	K81
BCV 72	30	20	100	200	110/220	2	5	250	10	0.5	300	D1	D4
BCW 31	30	20	100	200	200/450	2	5	250	10	0.5	300	D2	D5
BCW 32	1			1	1	2	5					D3	
BCW 33	30	20	100	200	420/800			250	10	0.5	300	1	D6
BCW 60 A	32*	32	200	310	120/220	2	5	550	50	1.25	125*	AA	AO
BCW 60 B	32*	32	200	310	180/310	2	5	550	50	1.25	125*	AB	AP
BCW 60 C	32*	32	200	310	250/460	2	5	550	50	1.25	125*	AC	AR
BCW 60 D	32*	32	200	310	380/630	2	5	550	50	1.25	125*	AD	AS
BCW 65 A	60*	32	800	360	100/250	100	1	700	500	50	100*	EA	ET
BCW 65 B	60*	32	800	360	160/400	100	1	700	500	50	100*	EB	EU
BCW 65 C	60*	32	800	360	250/600	100	1	700	500	50	100*	EC	EW
BCW 66 F	75*	45	800	360	100/250	100	1	700	500	50	100*	EF	EX
BCW 66 G	75*	45	800	360	160/400	100	1	700	500	50	100*	EG	EY
BCW 66 H	75*	45	800	360	250/600	100	1	700	500	50	100*	EH	EZ
BCW 71	50	45	100	200	110/220	2	5	250	10	0.5	300	K1	K4
BCW 72	50	45	100	200	200/450	2	5	250	10	0.5	300	K2	K5
BCW 81	50	45	100	200	420/800	2	5	250	10	0.5	300	K3	K31
BCX 19	50*	45	500	310	100/600	100	1	620	500	50	200	U1	U4
BCX 20	30*	25	500	310	100/600	100	1	620	500	50	200	U2	U5
BCX 70G	45*	45	200	310	120/220	2	5	550	50	1.25	125*	AG	AU
BCX 70H	45*	45	200	310	180/310	2	5	550	50	1.25	125*	AH	AW
BCX 70J	45*	45	200	310	250/460	2	5	550	50	1.25	125*	AJ	AX
BCX 70K	45*	45	200	310	380/630	2	5	550	50	1.25	125*	AK	AY
BSS 64	120	80	100	200	20/—	4	1	200	50	15	60*	U3	U6
SOA 05	60	60	500	350	50/—	100	1	250	100	10	100*	1HT	_
SOA 06	80	80	500	350	50/	100	1	250	100	10	100*	1GT	_

PNP GENERAL PURPOSE TRANSISTORS

Туре	V _{CBO}	V _{CEO}	lc	Ptot	hFE @	ı lc	/ V _{CE}	V _{CE} (sat)	@ lc	/ I _B	f _T typ	Mar	king
	V _{CES} *					ı		max	ı		min *		ı
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BC 807-16	50*	45	500	350	100/250	100	1	700	500	50	200	5A	_
BC 807-25	50*	45	500	350	160/400	100	1	700	500	50	200	5B	
BC 807-40	50*	45	500	350	250/630	100	1	700	500	50	200	5C	-
BC 808-16	30*	25	500	350	100/250	100	1	700	500	50	200	5E	
BC 808-25	30*	25	500	350	160/400	100	1	700	500	50	200	5F	
BC 808-40	30*	25	500	350	250/630	100	1	700	500	50	200	5G	
BC 856 A	80	80	100	310	110/220	2	5	650	50	5	150	3A	3AR
BC 856 B	80	80	100	310	200/450	2	5	650	50	5	150	3B	3BR
BC 857 A	50	50	100	310	110/220	2	5	650	50	5	150	3E	3ER
BC 857 B	50	50	100	310	200/450	2	5	650	50	5	150	3F	3FR
BC 858 A	30	30	100	310	110/220	2	5	650	50	5	150	3J	3JR
BC 858 B	30	30	100	310	200/450	2	5	650	50	5	150	3K	3KR
BC 858 C	30	30	100	310	420/800	2	5	650	50	5	150	3L	3LR
BC 859 A	30	30	100	310 .	110/220	2	5	650	50	5	150	4A	4AR
BC 859 B	30	30	100	310	200/450	2	5	650	50	5	150	4B	4BR
BC 859 C	30	30	100	310	420/800	2	5	650	50	5	150	4C	4CR
BC 860 A	50	50	100	310	110/220	2	5	650	50	5	150	4E	4ER
BC 860 B	50	50	100	310	200/450	2	5	650	50	5	150	4F	4FR
BCF 30	32	32	100	300	120/260	2	5	300	10	0.5	150	C8.	
BCW29	30	20	100	200	120/260	2	5	300	10	0.5	150	C2	C5
BCW30	30	20	100	200	215/600	2	5	300	10	0.5	150	D1	D4
BCW 61 A	32*	32	200	310	120/220	2	5	550	50	1.25	180	BA	BO
BCW 61 B	32*	32	200	310	180/310	2	5	550	50	1.25	180	BB	BP
BCW 61 C	32*	32	200	310	250/460	2	5	550	50	1.25	180	BC	BR
BCW 61 D	32*	32	200	310	380/630	2	5	550	50	1.25	180	BD	BS
BCW 67 A	45*	32	800	360	100/250	100	1	700	500	50	100*	DA	DT
		32				100	1	700	500	50	100*	DB	DU
BCW 67 B	45*		800	360	160/400	100	1	700	500	50	100*	DC	DW
BCW 67 C	45*	32	800	360	250/630				1		1	DE	
BCW 68 F	60*	45	800	360	100/250	100	1	700	500	50	100*		DX
BCW 68 G	60*	45	800	360	160/400	100	1	700	500	50	100*	DG	DY
BCW 68 H	60*	45	800	360	250/630	100	1	700	500	50	100*	DH	DZ
BCW 69	50	45	100	200	120/260	2	5	300	10	0.5	150	H1	H4
BCW 70	50	45	100	200	215/500	2	5	300	10	0.5	150	H2	H5
BCW 89	60	60	100	200	120/260	2	5	300	10	0.5	150	H3	H31
BCX 17	50*	45	100	310	100/600	100	1	620	500	50	100	T1	T4
BCX 18	30*	25	100	310	100/600	100	1	620	500	50	100	T2	T5
BCX 71G	45*	45	200	310	120/220	2	5	550	50	1.25	180	BG	BU
BCX 71H	45*	45	200	310	180/310	2	5	550	50	1.25	180	BH	BW
BCX 71J	45*	· 45	200	310	250/460	2	5	550	50	1.25	180	BJ	BX
BCX 71K	45*	45	200	310	380/630	2	5	550	50	1.25	180	BK	BY
BSS 63	110	100	100	200	30/	25	1	900	75	7.5	50	T3	T6
SOA 55	60	60	500	350	50/	100	1	250	100	10	50*	2HT	
SOA 56	80	80	500	350	50/	100	1	250	100	10	50*	2GT	

PNP DARLINGTONS

Туре	V _{CBO}	VCEO	IC	P _{tot}	hFE @	ı lc	/ V _{CE}	VCE (sat)	@ IC	/ I _B	f _T typ	Mar	king
	,					ı		max	ı				
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BCV 26	40	30	500 500	350 350	4000/	500 500	5	1000	100 100	0.1	200	FD	

NPN DARLINGTONS

Туре	V _{CBO}	VCEO	IC	P _{tot}	h _{FE} @) IC	/ V _{CE}	V _{CE} (sat)	@ Ic	/ IB	f _T typ	Mar	king
				2"				max				×	ı
t the second second	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BCV 27 BCV 47 SO 517	40 80 40	30 60 30	500 500 400	350 350 350	4000/— 2000/— 30000/—	500 500 20	5 5 2	1000 1000 1000	100 100 100	0.1 0.1 0.1	200 200 220	FF FG N94	

PNP SWITCHING TRANSISTORS

Туре	V _{CBO}	V _{CEO}	IC	P _{tot}	h _{FE} @	ıC	/ V _{CE}	V _{CE (sat)}	@ I _C	/ I _B	f _T typ	Mar	king
								max					ı
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
SO 2894 SO 3905 SO 3906	12 40 40	12 40 40	200 200 200	300 300 300	40/150 50/150 100/300	30 10 10	0.5 1 1	200 400 400	30 50 50	3 5 5	400 200 250	P06 P26 P25	

NPN SWITCHING TRANSISTORS

Туре	V _{CBO}	VCEO	Ic	P _{tot}	h _{FE} @	ı lc	/ V _{CE}	V _{CE} (sat)	@ I _C	/ I _B	f _T min	Mar	king
				,	· .			max	1		¥ **.		1
7 2 2 3	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BSV 52	20	12	200	200	40/120	10	1	400	50	5	400	B2	B4
SO 2369	40	15	200	200	40/120	10	1	250	30	3	400	N11	011
SO 2369 A	40	15	200	200	40/120	10	0.35	500	100	10	500	N81	081
SO 3903	60	40	200	300	50/150	10	1	300	50	5	250	N72	_
SO 3904	60	40	200	300	100/300	10	1	300	50	5	300	N71	

NPN MEDIUM CURRENT SWITCHING AND LOW FREQUENCY APPLICATION TRANSISTORS

Туре	V _{СВО}	V _{CEO}	IC	P _{tot}	hFE @	ı lc	/ V _{CE}	V _{CE (sat)}	@ I _C	/ IB	f _T typ	Mar	king
						ı		max	ı		min *		ı
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BSR 13	60	30	800	310	100/300	150	10	1600	500	50	250	U7	U71
BSR 14	75	40	800	310	100/300	150	10	1000	500	50	300	U8	U81
SO 1711	75	30	800	310	35/—	100	10	1500	150	15	70	N18	_
SO 1893	120	80	800	310	40/120	150	10	5000	150	15	50	N27	027
SO 2221	60	30,	800	310	40/120	150	10	400	150	15	250	N12	012
SO 2221 A	75	40	800	310	40/120	150	10	300	150	15	250	N54	054
SO 2222	60	30	800	310	100/300	150	10	400	150	15	250	N13	013
SO 2222 A	75	40	800	310	100/300	150	10	300	150	15	250	N20	O20
SO 4401	60	40	600	350	100/300	150	1	400	150	15	250*	2X	_

PNP MEDIUM CURRENT SWITCHING AND LOW FREQUENCY APPLICATION TRANSISTORS

Туре	V _{СВО}	VCEO	Ic	P _{tot}	h _{FE} (2 Ic	/ V _{CE}	V _{CE} (sat)	@ I _C	/ I _B	f _T typ	Mar	king
			2,,					max			min *		ı
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BSR 15	60	. 40	600	310	100/300	150	10	1600	500	50	200	T7	T71
BSR 16	60	60	600	310	100/300	150	10	1000	500	50	200	T8	T81
SO 2906	60	40	800	310	40/120	150	10	400	150	15	200	P01	J01
SO 2906 A	60	60	800	310	40/120	150	10	400	150	15	200	P12	J12
SO 2907	60	40	800	310	100/300	150	10	400	150	15	200	P05	J05
SO 2907 A	60	60	800	310	100/300	150	10	400	150	15	200	P03	J03
SO 4403	40	40	600	350	100/300	150	2	400	150	15	250*	2T	_

NPN HIGH VOLTAGE TRANSISTORS

Туре	V _{CBO}	VCEO	IC	P _{tot}	h _{FE} @	ı _C	/ V _{CE}	V _{CE} (sat)	@ I _C	/ I _B	f _T typ	Mar	king
				2 22				max	I				I
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BFN 22	250	250	20	310	50/—	25	20	500	10	1	60	НВ	_
SO 642	300	300	100	310	40/—	30	10	500	20	2	50	N91	O91
SO 5550	160	140	600	200	60/250	10	5	250	50	5	100	N79	079
SO 5551	180	160	600	200	80/250	10	5	200	50	5	100	N80	O80

PNP HIGH VOLTAGE TRANSISTORS

Туре	V _{CBO}	V _{CEO}	Ic	P _{tot}	hFE @) I _C	/ V _{CE}	V _{CE} (sat)	@ I _C	/ I _B	f _T typ	Mar	king
								max	I				1
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
BFN 23 SO 692 SO 5400 SO 5401	250 300 130 160	250 300 120 150	20 100 600 600	310 310 200 200	50/— 40/— 40/180 60/240	25 10 10 10	20 10 5 5	500 500 500 500	10 20 50 50	1 2 5 5	60 50 100 100	HC P39 P32 P33	— J39 J32 J33

NPN LOW NOISE PREAMPLIFIER TRANSISTORS

Туре	V _{СВО}	V _{CEO}	Ic	P _{tot}	h _{FE} @	② I _C	/ V _{CE}	V _{CE (sat)}	@ I _C	/ I _B	f _T typ	Mar	king
						ı		max	i j		min *		
	(V)	(V)	(mA)	(mW)	min/max	(mA)	(V)	(mV)	(mA)	(mA)	(MHz)	Standard	Reverse
SO 930 SO 2484	45 60	45 60	30 50	200 200	—/600 —/800	10 10	5 5	1000 350	10 1	0.5 0.1	200 200	N08 N05	O08 O05

SCHOTTKY DIODES

Туре	Config.	Maximu	m ratings			* ×	C	haracte	ristics	at 25°	°C		
		V _{RM}	I _F	I _R @ max (μA)	(V)	min	F @ max V)	I _F	C @ max (pF)	② V _R	Dynamic parameters	Marking	Package
BAT 17 BAR 18 BAR 42 ★ BAR 43	1 1 1	4 70 30 30	30 30 100 100	0.25 0.2 0.5 0.5	3 50 25 25	0.26	0.6 0.41 0.4 0.33	10 1 10 2	1 2 7 § 7 §	0 0 1 1	F < 7dB @ 1000MHz(1) $\tau < 100ps @ 5mA(2)$ $t_{rr} < 5ns @ 10mA$ $t_{rr} < 5ns @ 10mA$	A3 D76 D94 D95	
BAS 70-06 ★ BAR 43 A	2 2	70 30	30 100	0.2 0.5	50 25	0.26	0.41 0.33	1 2	2 7§	0	au < 100ps @ 5mA(2) t _{rr} < 5ns @ 10mA	D98 DB1	SOT 23
BAS 70-05 ★ BAR 43 C	3 3	70 30	80 100	0.2 0.5	50 25	0.26	0.41 0.33	1 2	2 7§	0	au < 100ps @ 5mA(2) t _{rr} < 5ns @ 10mA	D97 DB2	
BAT 17 DS BAS 70-04 ★ BAR 43 S	4 4 4	4 70 30	30 30 100	0.25 0.2 0.5	3 50 25	0.26	0.6 0.41 0.33	10 1 2	1 2 7§	0 0 1	$F < 7 dB \ @ \ 1000 MHz(1)$ $\tau < 100 ps \ @ \ 5 mA(2)$ $t_{rr} < 5 ns \ @ \ 10 mA$	D85 D96 DA5	
(1) Mixer noise fi	igure. (2)	Minority ca	arrier lifetime	e (Kraka	uer m	ethod).	§ Ty	pical val	ue.	★ F	Preferred device.	-	

VOLTAGE REGULATOR DIODES

Type (1)	Config.	P _(tot)		ZT		@ I _{ZT}	r _{ZK}	@ I _{ZK}	α v _z		@ V _R	Marking	Package
			min	max	max		max		typ	max			
		(mW)	(V)	(Ω)	(mA)	(Ω)	(mA)	(%/°C)	(μA)	(V)		
BZX 84 C 2V4 BZX 84 C 2V7 BZX 84 C 3V7 BZX 84 C 3V8 P BZX 84 C 3V6 P BZX 84 C 3V9 P BZX 84 C 4V7 P BZX 84 C 4V7 P BZX 84 C 5V1 P BZX 84 C 5V1 P BZX 84 C 6V2 P BZX 84 C 10 BZX 84 C 10 BZX 84 C 11 P BZX 84 C 11 P BZX 84 C 11 P BZX 84 C 10 BZX 84 C 11 P BZX 84 C 10 BZX 84 C 13 P BZX 84 C 16 BZX 84 C 15 BZX 84 C 16 BZX 84 C 18 BZX 84 C 18 BZX 84 C 30 BZX 84 C 30 BZX 84 C 30 BZX 84 C 33 BZX 84 C 36 BZX 84 C 47 BZX 84 C 47 BZX 84 C 51 BZX 84 C 62 BZX 84 C 62 BZX 84 C 62 BZX 84 C 66 BZX 84 C 675	es.	350 350 350 350 350 350 350 350 350 350	2.28 2.5 2.8 3.1 3.4 3.7 4.0 4.8 5.2 5.8 6.4 7.0 7.7 8.5 9.4 10.4 11.4 12.8 13.8 16.8 18.8 22.8 25.1 28.0 31.0 37.0 44.0 44.0 48.0 52.0 58.0 64.0 70.0	2.56 2.9 3.2 3.5 3.8 4.1 4.6 5.0 6.6 7.2 7.9 8.7 9.6 10.6 11.6 12.1 14.1 15.6 17.1 19.1 21.2 3.3 25.6 28.9 32.0 41.0 46.0 66.0 66.0 68.0 68.0 68.0 68.0 68.0 6	85 85 85 85 85 80 60 40 10 15 15 15 20 25 30 40 45 55 55 70 80 80 80 90 130 170 180 202 215 220 220 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	555555555555555555555555555555555555555	600 600 600 600 600 600 500 480 400 150 150 150 150 225 225 225 225 250 300 300 300 325 350 375 400 425 450	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 0.06 - 0.06 - 0.06 - 0.06 - 0.06 - 0.06 - 0.05 - 0.03 + 0.02 + 0.03 + 0.05 + 0.06 + 0.07 + 0.07 + 0.07 + 0.08 + 0.08 + 0.08 + 0.08 + 0.09	50 10 4 2 2 2 1 3 2 1 0.7 0.5 0.2 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.	1 1 1 1 1 1 1 1 1 1 2 2 2 4 4 5 5 6 7 8 8 8 0.7VZT	W 3 W 4 W 5 W 6 W 7 W 8 W 9 Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 Z 8 Z 9 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8 Y 9 Y 10 Y 11 Y 12 Y 13 Y 14 Y 15 Y 16 Y 17 Y 18 Y 19 Y 20 Y 21	SOT 23

Configuration

CMOS OP-AMPs*
SINGLE

Туре	Description	Temperature range °C	Package
TS271ACD TS271ACDT TS271AID TS271AIDT TS271BCD TS271BCDT TS271BID TS271BID TS271BIDT TS271CD TS271CDT TS271CDT TS271ID TS271ID	Programmable supply current - low offset voltage Programmable supply current - very low offset voltage Programmable supply current - low cost	0 to 70 0 to 70 - 40 to 105 - 40 to 105 0 to 70 0 to 70 - 40 to 105 - 40 to 105 0 to 70 0 to 70 0 to 70 - 40 to 105 - 40 to 105 - 40 to 105 - 40 to 105	SO8 SO8 tape

DUAL

Туре	Description	Temperature range °C	Package
TS27L2ACD	Low supply current - low offset voltage	0 to 70	SO8
TS27L2ACDT	Low supply current - low offset voltage	0 to 70	SO8 tape
TS27L2AID	Low supply current - low offset voltage	- 40 to 105	SO8
TS27L2AIDT	Low supply current - low offset voltage	- 40 to 105	SO8 tape
TS27L2BCD	Low supply current - very low offset voltage	0 to 70	SO8
TS27L2BCDT	Low supply current - very low offset voltage	0 to 70	SO8 tape
TS27L2BID	Low supply current - very low offset voltage	- 40 to 105	SO8
TS27L2BIDT	Low supply current - very low offset voltage	- 40 to 105	SO8 tape
TS27L2CD	Low supply current - low cost	0 to 70	SO8
TS27L2CDT	Low supply current - low cost	0 to 70	SO8 tape
TS27L2ID	Low supply current - low cost	- 40 to 105	SO8
TS27L2IDT	Low supply current - low cost	- 40 to 105	SO8 tape
TS27M2ACD	Medium supply current - low offset voltage	0 to 70	SO8
TS27M2ACDT	Medium supply current - low offset voltage	0 to 70	SO8 tape
TS27M2AID	Medium supply current - low offset voltage	- 40 to 105	SO8
TS27M2AIDT	Medium supply current - low offset voltage	- 40 to 105	SO8 tape
TS27M2BCD	Medium supply current - very low offset voltage	0 to 70	SO8
TS27M2BCDT	Medium supply current - very low offset voltage	0 to 70	SO8 tape
TS27M2BID	Medium supply current - very low offset voltage	- 40 to 105	SO8
TS27M2BIDT	Medium supply current - very low offset voltage	- 40 to 105	SO8 tape
TS27M2CD	Medium supply current - low cost	0 to 70	SO8
TS27M2CDT	Medium supply current - low cost	0 to 70	SO8 tape
TS27M2LD	Medium supply current - low cost	- 40 to 105	SO8
TS27M2IDT	Medium supply current - low cost	- 40 to 105	SO8 tape
TS272ACD	High speed - low offset voltage	0 to 70	SO8
TS272ACDT	High speed - low offset voltage	0 to 70	SO8 tape
TS272AID	High speed - low offset voltage	- 40 to 105	SO8
TS272AIDT	High speed - low offset voltage	- 40 to 105	SO8 tape
TS272BCD	High speed - very low offset voltage	0 to 70	SO8
TS272BCDT	High speed - very low offset voltage	0 to 70	SO8 tape
TS272BID	High speed - very low offset voltage	- 40 to 105	SO8
TS272BIDT	High speed - very low offset voltage	- 40 to 105	SO8 tape
TS272CD	High speed - low cost	0 to 70	SO8
TS272CDT	High speed - low cost	0 to 70	SO8 tape
TS272ID	High speed - low cost	-40 to 105	SO8
TS272IDT	High speed - low cost	-40 to 105	SO8 tape

^{*} All our CMOS operational amplifiers are designed to operate with single or dual supplies.

All are low consumption, high speed and ultra-stable behaviour.

CMOS OP-AMPs*.

Туре	Description	Temperature range °C	Package
T\$27L4ACD	Low supply current - low offset voltage	0 to 70	SO14
TS27L4ACDT	Low supply current - low offset voltage	0 to 70	SO14 tape
TS27L4AID	Low supply current - low offset voltage	- 40 to 105	SO14
TS27L4AIDT	Low supply current - low offset voltage	- 40 to 105	SO14 tape
TS27L4BCD	Low supply current - very low offset voltage	0 to 70	SO14
TS27L4BCDT	Low supply current - very low offset voltage	0 to 70	SO14 tape
TS27L4BID	Low supply current - very low offset voltage	- 40 to 105	SO14
TS27L4BIDT	Low supply current - very low offset voltage	- 40 to 105	SO14 tape
TS27L4CD	Low supply current - low cost	0 to 70	SO14
TS27L4CDT	Low supply current - low cost	0 to 70	SO14 tape
TS27L4ID	Low supply current - low cost	- 40 to 105	SO14
TS27L4IDT	Low supply current - low cost	- 40 to 105	SO14 tape
TS27M4ACD	Medium supply current - low offset voltage	0 to 70	SO14
TS27M4ACDT	Medium supply current - low offset voltage	0 to 70	SO14 tape
TS27M4AID	Medium supply current - low offset voltage	- 40 to 105	SO14
TS27M4AIDT	Medium supply current - low offset voltage	- 40 to 105	SO14 tape
TS27M4BCD	Medium supply current - very low offset voltage	0 to 70	SO14
TS27M4BCDT	Medium supply current - very low offset voltage	0 to 70	SO14 tape
TS27M4BID	Medium supply current - very low offset voltage	- 40 to 105	SO14
TS27M4BIDT	Medium supply current - very low offset voltage	- 40 to 105	SO14 tape
TS27M4CD	Medium supply current - low cost	0 to 70	SO14
TS27M4CDT	Medium supply current - low cost	0 to 70	SO14 tape
TS27M4ID	Medium supply current - low cost	- 40 to 105	SO14
TS27M4IDT	Medium supply current - low cost	- 40 to 105	SO14 tape
TS274ACD	High speed - low offset voltage	0 to 70	SO14
TS274ACDT	High speed - low offset voltage	0 to 70	SO14 tape
TS274AID	High speed - low offset voltage	- 40 to 105	SO14
TS274AIDT	High speed - low offset voltage	- 40 to 105	SO14 tape
TS274BCD	High speed - very low offset voltage	0 to 70	SO14
TS274BCDT	High speed - very low offset voltage	0 to 70	SO14 tape
TS274BID	High speed - very low offset voltage	- 40 to 105	SO14
TS274BIDT	High speed - very low offset voltage	- 40 to 105	SO14 tape
TS274CD	High speed - low cost	0 to 70	SO14
TS274CDT	High speed - low cost	0 to 70	SO14 tape
TS274ID	High speed - low cost	-40 to 105	SO14
TS274IDT	High speed - low cost	-40 to 105	SO14 tape

^{*} All our CMOS operational amplifiers are designed to operate with single or dual supplies. All are low consumption, high speed and ultra-stable behaviour.

J-FET OP-AMPs SINGLE

Туре	Description	Temperature range °C	Package
LF251D	Wide bandwidth	- 40 to 105	SO8
LF251DT	Wide bandwidth	- 40 to 105	SO8 tape
LF255D	High performance - low suply current	- 40 to 105	SO8
LF255DT	High performance - low suply current	- 40 to 105	SO8 tape
LF256D	High performance - wide band	- 40 to 105	SO8
LF256DT	High performance - wide band	- 40 to 105	SO8 tape
LF257D	High performance - wide band decompensated	- 40 to 105	SO8
LF257DT	High performance - wide band decompensated	-40 to 105	SO8 tape
LF351D	Wide bandwidth	0 to 70	SO8
LF351DT	Wide bandwidth	0 to 70	SO8 tape
LF355D	High performance - low supply current	0 to 70	SO8
LF355DT	High performance - low supply current	0°to 70	SO8 tape
LF356D	High performance - wide band	0 to 70	SO8
LF356DT	High performance - wide band	0 to 70	SO8 tape
LF357D	High performance - wide band decompensated	0 to 70	SO8
LF357DT	High performance - wide band decompensated	0 to 70	SO8 tape
MC33001AD	General purpose - very low input offset voltage	- 40 to 105	SO8

J-FET OP-AMPs SINGLE (Continued)

Туре	Description	Temperature range °C	Package
MC33001ADT	General purpose - very low input offset voltage	- 40 to 105	SO8 tape
MC33001BD	General purpose - low input offset voltage	- 40 to 105	SO8
MC33001BDT	General purpose - low input offset voltage	- 40 to 105	SO8 tape
MC33001D	General purpose	- 40 to 105	SO8
MC33001DT	General purpose	- 40 to 105	SO8 tape
MC34001AD	General purpose - very low input offset voltage	0 to 70	SO8
/C34001ADT	General purpose - very low input offset voltage	0 to 70	SO8 tape
/IC34001BD	General purpose - low input offset voltage	0 to 70	SO8
MC34001BDT	General purpose - low input offset voltage	0 to 70	SO8 tape
MC34001D	General purpose	0 to 70	SO8
MC34001DT	General purpose	0 to 70	SO8 tape
L061ACD	Low power - low input offset voltage	0 to 70	SO8
TL061ACDT	Low power - low input offset voltage	0 to 70	SO8 tape
TL061AID	Low power - low input offset voltage	- 40 to 105	SO8
L061AIDT	Low power - low input offset voltage	- 40 to 105	SO8 tape
ΓL061BCD	Low power - very low input offset voltage	0 to 70	SO8
TL061BCDT	Low power - very low input offset voltage	0 to 70	SO8 tape
TL061BID	Low power - very low input offset voltage	- 40 to 105	SO8
L061BIDT	Low power - very low input offset voltage	- 40 to 105	SQ8 tape
L061CD	Low power	0 to 70	SO8
L061CDT	Low power	0 to 70	SO8 tape
L061ID	Low power	- 40 to 105	SO8
LO61IDT	Low power	- 40 to 105	SO8 tape
LO71ACD	Low noise - low input offset voltage	0 to 70	SO8 tape
LO71ACDT	Low noise - low input offset voltage	0 to 70	SO8 tape
LO71ACD1	Low noise - low input offset voltage	- 40 to 105	SO8 tape
LO71AIDT	Low noise - low input offset voltage	- 40 to 105	SO8 tape
L071BCD	Low noise - very low input offset voltage	0 to 70	SO8 tape
L071BCDT	Low noise - very low input offset voltage	0 to 70	SO8 tape
L071BID	Low noise - very low input offset voltage	- 40 to 105	SO8 tape
L071BIDT	Low noise - very low input offset voltage	- 40 to 105	SO8 tape
L071CD	Low noise	0 to 70	SO8 tape
L071CDT	Low noise	0 to 70	SO8 tape
L071CD1	Low noise	- 40 to 105	SO8 tape
LO71IDT	Low noise	- 40 to 105	SO8 tape
LO81ACD	General purpose - low input offset voltage	0 to 70	SO8 tape
LO81ACDT	General purpose - low input offset voltage	0 to 70	SO8 tape
L081AID	General purpose - low input offset voltage	- 40 to 105	SO8 tape
L081AIDT	General purpose - low input offset voltage General purpose - low input offset voltage	- 40 to 105	SO8 tape
LO81BCD	General purpose - low input offset voltage General purpose - very low input offset voltage	0 to 70	SO8 tape
L081BCDT	General purpose - very low input offset voltage General purpose - very low input offset voltage	0 to 70	SO8 tape
	General purpose - very low input offset voltage General purpose - very low input offset voltage	- 40 to 105	SO8 tape
TL081BID TL081BIDT	General purpose - very low input offset voltage General purpose - very low input offset voltage	- 40 to 105 - 40 to 105	
			SO8 tape SO8
LO81CD	General purpose	0 to 70	
L081CDT	General purpose	0 to 70 - 40 to 105	SO8 tape SO8
LO81ID	General purpose	- 40 to 105 - 40 to 105	
L081IDT	General purpose	- 40 (0 105	SO8 tape

DUAL

Туре	Description	Temperature range °C	Package
LF253D LF253DT LF353D LF353DT MC33002AD MC33002ADT MC33002BD	Wide bandwidth Wide bandwidth Wide bandwidth Wide bandwidth Wide bandwidth General purpose - very low input offset voltage General purpose - very low input offset voltage General purpose - low input offset voltage	- 40 to 105 - 40 to 105 0 to 70 0 to 070 - 40 to 105 - 40 to 105 - 40 to 105	SO8 SO8 tape SO8 SO8 tape SO8 SO8 tape SO8

J-FET OP-AMPs
DUAL (Continued)

Туре	Description	Température range °C	Package
MC33002BDT	General purpose - low input offset voltage	- 40 to 105	SO8 tape
MC33002D	General purpose	- 40 to 105	SO8
MC33002DT	General purpose	-40 to 105	SO8 tape
MC34002AD	General purpose - very low input offset voltage	0 to 70	SO8
MC34002ADT	General purpose - very low input offset voltage	0 to 70	SO8 tape
MC34002BD	General purpose - low input offset voltage	0 to 70	SO8
MC34002BDT	General purpose - low input offset voltage	0 to 70	SO8 tape
MC34002D	General purpose	0 to 70	SO8
MC34002DT	General purpose	0 to 70	SO8 tape
TL062ACD	Low power - low input offset voltage	0 to 70	SO8
TL062ACDT	Low power - low input offset voltage	0 to 70	SO8 tape
TL062AID	Low power - low input offset voltage	- 40 to 105	SO8
TL062AIDT	Low power - low input offset voltage	- 40 to 105	SO8 tape
TL062BCD	Low power - very low input offset voltage	0 to 70	SO8
TL062BCDT	Low power - very low input offset voltage	0 to 70	SO8 tape
TL062BID	Low power - very low input offset voltage	- 40 to 105	SO8
TL062BIDT	Low power - very low input offset voltage	- 40 to 105	SO8 tape
TL062CD	Low power	0 to 70	SO8
TL062CDT	Low power	0 to 70	SO8 tape
TL062ID	Low power	- 40 to 105	SO8
TL062IDT	Low power	- 40 to 105	SO8 tape
TL072ACD	Low noise - low input offset voltage	0 to 70	SO8
TL072ACDT	Low noise - low input offset voltage	0 to 70	SO8 tape
TL072AID	Low noise - low input offset voltage	- 40 to 105	SO8
TL072AIDT	Low noise - low input offset voltage	- 40 to 105	SO8 tape
TL072BCD	Low noise - very low input offset voltage	0 to 70	SO8
TL072BCDT	Low noise - very low input offset voltage	0 to 70	SO8 tape
TL072BID	Low noise - very low input offset voltage	- 40 to 105	SO8
TL072BIDT	Low noise - very low input offset voltage	- 40 to 105	SO8 tape
TL072CD	Low noise	0 to 70	SO8
TL072CDT	Low noise	0 to 70	SO8 tape
TL072ID	Low noise	- 40 to 105	SO8
TL072IDT	Low noise	- 40 to 105	SO8 tape
TL082ACD	General purpose - low input offset voltage	0 to 70	SO8
TL082ACDT	General purpose - low input offset voltage	0 to 70	SO8 tape
TL082AID	General purpose - low input offset voltage	- 40 to 105	SO8
TL082AIDT	General purpose - low input offset voltage	- 40 to 105	SO8 tape
TL082BCD	General purpose - very low input offset voltage	0 to 70	SO8
TL082BCDT	General purpose - very low input offset voltage	0 to 70	SO8 tape
TL082BID	General purpose - very low input offset voltage	- 40 to 105	SO8
TL082BIDT	General purpose - very low input offset voltage	- 40 to 105	SO8 tape
TL082CD	General purpose	0 to 70	SO8
TL082CDT	General purpose	0 to 70	SO8 tape
TL082ID	General purpose	- 40 to 105	SO8
TL082IDT	General purpose	-40 to 105	SO8 tape

QUAD

Туре	Description	Temperature range °C	Package
MC33004AD MC33004ADT MC33004BD MC33004BDT MC33004D MC33004DT	General purpose - very low input offset voltage General purpose - very low input offset voltage General purpose - low input offset voltage General purpose - low input offset voltage General purpose General purpose	- 40 to 105 - 40 to 105	SO14 SO14 tape SO14 SO14 tape SO14 SO14 tape
MC34004AD MC34004ADT MC34004BD	General purpose - very low input offset voltage General purpose - very low input offset voltage General purpose - low input offset voltage	0 to 70 0 to 70 0 to 70	SO14 SO14 tape SO14

J-FET OP-AMPs QUAD (Continued)

Туре	Description	Temperature range °C	Package
MC34004BDT	General purpose - low input offset voltage	0 to 70	SO14 tape
MC34004D	General purpose	0 to 70	SO14
MC34004DT	General purpose	0 to 70	SO14 tape
TL064ACD	Low power - low input offset voltage	0 to 70	SO14
TL064ACDT	Low power - low input offset voltage	0 to 70	SO14 tape
TL064AID	Low power - low input offset voltage	- 40 to 105	SO14
TL064AIDT	Low power - low input offset voltage	- 40 to 105	SO14 tape
TL064BCD	Low power - very low input offset voltage	0 to 70	SO14
TL064BCDT	Low power - very low input offset voltage	0 to 70	SO14 tape
TL064BID	Low power - very low input offset voltage	- 40 to 105	SO14
TL064BIDT	Low power - very low input offset voltage	- 40 to 105	SO14 tape
TL064CD	Low power	0 to 70	SO14
TL064CDT	Low power	0 to 70	SO14 tape
TL064ID	Low power	- 40 to 105	SO14
TL064IDT	Low power	- 40 to 105	SO14 tape
TL074ACD	Low noise - low input offset voltage	0 to 70	SO14
TL074ACDT	Low noise - low input offset voltage	0 to 70	SO14 tape
TL074AID	Low noise - low input offset voltage	- 40 to 105	SO14
TL074AIDT	Low noise - low input offset voltage	- 40 to 105	SO14 tape
TL074BCD	Low noise - very low input offset voltage	0 to 70	SO14
TL074BCDT	Low noise - very low input offset voltage	0 to 70	SO14 tape
TL074BID	Low noise - very low input offset voltage	- 40 to 105	SO14
TL074BIDT	Low noise - very low input offset voltage	- 40 to 105	SO14 tape
TL074CD	Low noise	0 to 70	SO14
TL074CDT	Low noise	0 to 70	SO14 tape
TL074ID	Low noise	- 40 to 105	SO14
TL074IDT	Low noise	- 40 to 105	SO14 tape
TL084ACD	General purpose - low input offset voltage	0 to 70	SO14
TL084ACDT	General purpose - low input offset voltage	0 to 70	SO14 tape
TL084AID	General purpose - low input offset voltage	- 40 to 105	SO14
TL084AIDT	General purpose - low input offset voltage	- 40 to 105	SO14 tape
TL084BCD	General purpose - very low input offset voltage	0 to 70	SO14
TL084BCDT	General purpose - very low input offset voltage	0 to 70	SO14 tape
TL084BID	General purpose - very low input offset voltage	- 40 to 105	SO14
TL084BIDT	General purpose - very low input offset voltage	- 40 to 105	SO14 tape
TL084CD	General purpose	0 to 70	SO14
TL084CDT	General purpose	0 to 70	SO14 tape
TL084ID	General purpose	-40 to 105	SO14
TL084IDT	General purpose	-40 to 105	SO14 tape

BIPOLAR OP-AMPs SINGLE

Туре	Description	Temperature range °C	Package
LM101AD LM101ADT LM201AD. LM201ADT LM208AD LM208ADT LM208ADT LM208DT LM208DT LM218D LM218DT	Low offset - external frequency compensation Precision - low input current - low input offset voltage Precision - low input current - low input offset voltage Precision - low input current Precision - low input current High speed - wide bandwidth - high slew rate High speed - wide bandwidth - high slew rate	- 55 to 125 - 55 to 125 - 40 to 105	SO8 SO8 tape
LM301AD LM301ADT LM308AD LM308ADT LM308D	Low offset - external frequency compensation Low offset - external frequency compensation Precision - low input current - low input offset voltage Precision - low input current - low input offset voltage Precision - low input current	0 to 70 0 to 70 0 to 70 0 to 70 0 to 70 0 to 70	SO8 SO8 tape SO8 SO8 tape SO8

BIPOLAR OP-AMPs

SINGLE (Continued)

Туре	Description	Temperature range °C	Package
LM308DT LM318D LM318DT UA741CD1 UA741CD1 UA741ID UA741IDT UA748CD UA748CDT UA748ID UA748IDT UA776CD UA776CDT UA776CDT UA776ID UA776IDT	Precision - low input current High speed - wide bandwidth - high slew rate High speed - wide bandwidth - high slew rate General purpose - internal frequency compensation Precision - low offset Precision - low offset Precision - low offset Precision - low offset Pregrammable - high input impedance Programmable - high input impedance Programmable - high input impedance Programmable - high input impedance	0 to 70 - 40 to 105	SO8 tape SO8 SO8 tape

DUAL

Туре	Description	Temperature range °C	Package
LM258D	Low power - single power supply	- 40 to 105	SO8
LM258DT	Low power - single power supply	- 40 to 105	SO8 tape
LM2904D	Low power - single power supply - automotive	- 40 to 105	SO8
LM2904DT	Low power - single power supply - automotive	- 40 to 105	SO8 tape
LM358AD	Low power - single power supply - low input offset voltage	0 to 70	SO8
LM358ADT	Low power - single power supply - low input offset voltage	0 to 70	SO8 tape
LM358D	Low power - single power supply	0 to 70	SO8
LM358DT	Low power - single power supply	0 to 70	SO8 tape
MC1458D	General purpose - internal frequency compensation	0 to 70	SO8
MC1458DT	General purpose - internal frequency compensation	0 to 70	SO8 tape
MC1458ID	General purpose - internal frequency compensation	- 40 to 105	SO8
MC1458IDT	General purpose - internal frequency compensation	- 40 to 105	SO8 tape
MC4558CD	Wideband - low power	0 to 70	SO8
MC4558CDT	Wideband - low power	0 to 70	SO8 tape
MC4558ID	Wideband - low power	-40 to 105	SO8
MC4558IDT	Wideband - low power	-40 to 105	SO8 tape
TEB1033D	Low distorsion & noise - high channel separation	0 to 70	SO8
TEB1033DT	Low distorsion & noise - high channel separation	0 to 70	SO8 tape
TEF1033D	Low distorsion & noise - high channel separation	-40 to 105	SO8
TEF1033DT	Low distorsion & noise - high channel separation	-40 to 105	SO8 tape

QUAD

Туре	Description	Temperature range °C	Package
LM124D LM124DT	General purpose - single power supply General purpose - single power supply	- 55 to 125	SO14
LM148D	Quad 741 - low supply current drain	- 55 to 125 - 55 to 125	SO14 tape SO14
LM148DT	Quad 741 - low supply current drain	- 55 to 125	SO14 SO14 tape
LM224AD	General purpose - single power supply - low input offset voltage	- 40 to 105	SO14
LM224ADT	General purpose - single power supply - low input offset voltage	- 40 to 105	SO14 tape
LM224D	General purpose - single power supply	- 40 to 105	SO14
LM224DT	General purpose - single power supply	-40 to 105	SO14 tape
LM246D	Programmable - wide power supply range	- 40 to 105	SO16
LM246DT	Programmable - wide power supply range	- 40 to 105	SO16 tape
LM248D	Quad 741 - low supply current drain	- 40 to 105	SO14
LM248DT	Quad 741 - low supply current drain	- 40 to 105	SO14 tape
LM2902D	Low power - single power supply - automotive	- 40 to 105	SO14
LM2902DT	Low power - single power supply - automotive	-40 to 105	SO14 tape
LM324AD	General purpose - single power supply - low input offset voltage	0 to 70	SO14

BIPOLAR OP-AMPs

QUAD (Continued)

Туре	Description	Temperature range °C	Package
LM324ADT LM324D LM324DT LM346D LM346DT LM348DT LM348DT MC3303D MC3303DT MC3403DT MC3403DT	General purpose - single power supply - low input offset voltage General purpose - single power supply General purpose - single power supply Programmable - wide power supply range Programmable - wide power supply range Quad 741 - low supply current drain Quad 741 - low supply current drain Single power supply - class AB output stage	0 to 70 0 to 70 - 40 to 105 - 40 to 105 0 to 70 0 to 70	SO14 tape SO14 SO14 tape SO16 SO16 tape SO14 SO14 tape SO14 SO14 tape SO14 SO14 tape
TEB4033D TEB4033DT TEF4033D TEF4033DT	Low distorsion & noise - high channel separation	0 to 70 0 to 70 - 40 to 105 - 40 to 105	SO14 SO14 tape SO14 SO14 tape

COMPARATORS

SINGLE

Туре	Description	Temperature range °C	Package
LM111D	Low input current - single power supply voltage	- 55 to 125	SO8
LM111DT		- 55 to 125	SO8 tape
LM211D		- 40 to 105	SO8
LM211DT		- 40 to 105	SO8 tape
LM311D		0 to 70	SO8
LM311DT		0 to 70	SO8 tape

DUAL

Туре	Description	Temperature range °C	Package
LM219D LM219DT	High speed - single supply operation High speed - single supply operation	- 40 to 105 - 40 to 105	SO14 SO14 tape
LM2903D LM2903DT	Low power - low offset voltage - automotive Low power - low offset voltage - automotive	- 40 to 105 - 40 to 105	SO8 SO8 tape
LM293D LM293DT	Low power - low offset voltage Low power - low offset voltage	- 40 to 105 - 40 to 105	SO8 SO8 tape SO14
LM319D LM319DT LM393AD	High speed - single supply operation High speed - single supply operation Low power - low offset voltage	0 to 70 0 to 70 0 to 70	SO14 SO14 tape SO8
LM393ADT LM393D	Low power - low offset voltage Low power - low offset voltage	0 to 70 0 to 70 0 to 70	SO8 tape SO8
LM393DT	Low power - low offset voltage	0 to 70	SO8 tape

QUAD

Туре	Description	Temperature range °C	Package
LM239AD LM239ADT LM239D LM239DT LM2901D LM2901DT LM339AD LM339ADT LM339ADT LM339D	Low power - low offset voltage - automotive Low power - low offset voltage - automotive Low power - low offset voltage	- 40 to 105 - 40 to 105 0 to 70 0 to 70 0 to 70	SO14 SO14 tape SO14 SO14 tape SO14 SO14 tape SO14 SO14 tape SO14
LM339DT LM3302D LM3302DT	Low power - low offset voltage Low power - low offset voltage Low power - low offset voltage	0 to 70 - 40 to 105 - 40 to 105	SO14 tape SO14 SO14 tape

VOLTAGE REGULATORS

Туре	Description	Temperature range °C	Package
LM723CD1 L78M05CS L78M06CS L78M08CS L78M12CS L78M15CS L78M18CS L78M20CS L78M24CS	Adjustable - 3 - 37 V precision positive regulator Positive - 5 V - 0.5 A - regulator 4 % Positive - 6 V - 0.5 A - regulator 4 % Positive - 8 V - 0.5 A - regulator 4 % Positive - 12 V - 0.5 A - regulator 4 % Positive - 15 V - 0.5 A - regulator 4 % Positive - 18 V - 0.5 A - regulator 4 % Positive - 20 V - 0.5 A - regulator 4 % Positive - 20 V - 0.5 A - regulator 4 % Positive - 24 V - 0.5 A - regulator 4 %	0 to 70 0 to 125 0 to 125	SO14 SOT194 SOT194 SOT194 SOT194 SOT194 SOT194 SOT194 SOT194 SOT194

OFF-LINE SWITCHING

Туре	Description	Package
SG2524P SG2525AP SG2527AP SG3524P SG3525AP SG3527AP UC2524AD UC2842D UC2843D UC2844D UC2845D UC3524AD UC3842D UC3845D UC3844D UC3843D UC3844D UC3843D	Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from $0 \text{ to } +70^{\circ}\text{C}$) Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from -25°C to $+85^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$) Regulating pulse with modulator (from 0 to $+70^{\circ}\text{C}$)	S016 S016 S016 S016 S016 S016 S016 S08/14 S08/14 S08/14 S08/14 S08/14 S08/14 S08/14 S08/14

POWER CONTROLLERS - DRIVERS

Туре	Description	Package
AM6012AD,D DAC0806/07/08D ESM1600BFP ESM1602BFP L6201 L6217/A L6235 L6236 L6604 M8438AC MC1488D MC1488D,D TDE1607FP TDE1647FP TDE1737FP TDE1747FP TDF1737 ULN2001D ULN2002D ULN2003D ULN2004D	12-bit high speed multiplying D/A converters 8-bit D/A converters Industrial line driver Industrial line driver O.3 \(\Omega \text{ DMOS full bridge driver} \) Stepper motor driver R-DAT brushless DC motor driver Bidirectional R-DAT brushless DC motor driver Memory card interface 32 segment static LCD driver RS232C quad line receiver Quad line receivers Intelligent power switch \(\cdot \text{VCC} = 36 \text{ V, IOUT} = 0.3 \text{ A} \) Intelligent power switch \(\cdot \text{VCC} = 45 \text{ V, IOUT} = 0.5 \text{ A} \) Intelligent power switch \(\cdot \text{VCC} = -45 \text{ V, IOUT} = 0.5 \text{ A} \) Intelligent power switch \(\cdot \text{VCC} = -45 \text{ V, IOUT} = 0.5 \text{ A} \) Relay and lamp driver Seven darlington arrays Seven darlington arrays Seven darlington arrays Seven darlington arrays	SO20 SO16 SO16 SO16 SO20 PLCC44 PLCC20 PLCC28 PLCC44 SO14 SO14 SO14 SO14 SO14 SO14 SO14 SO

BIPOLAR TIMERS

Туре	Description	Temperature range °C	Package
NE555D NE555DT NE556D NE556DT SA555D SA555DT SA556D SA556D SA556DT	Single - Astable or monostable operation Single - Astable or monostable operation Dual - Two independant 555 timing circuits Dual - Two independant 555 timing circuits Single - Astable or monostable operation Single - Astable or monostable operation Dual - Two independant 555 timing circuits Dual - Two independant 555 timing circuits	0 to 70 0 to 70 0 to 70 0 to 70 0 to 70 -40 to 105 -40 to 105 -40 to 105 -40 to 105	SO8 SO8 tape SO14 SO14 tape SO8 SO8 tape SO14 SO14 tape

DEDICATED FUNCTIONS

Туре	Description	Temperature range °C	Package
LM236AD	2.5 V voltage reference - precision	-25 to 85	SO8
LM236ADT	2.5 V voltage reference - precision	- 25 to 85	SO8 tape
LM236D	2.5 V voltage reference	-25 to 85	SO8
LM236DT	2.5 V voltage reference	-25 to 85	SO8 tape
LM335AD	Precision temperature sensor - high accuracy	0 to 70	SO8
LM335ADT	Precision temperature sensor - high accuracy	0 to 70	SO8 tape
LM335D	Precision temperature sensor	0 to 70	SO8
LM335DT	Precision temperature sensor	0 to 70	SO8 tape
LM336BD	2.5 V voltage reference - precision	0 to 70	SO8
LM336BDT	2.5 V voltage reference - precision	0 to 70	SO8 tape
LM336D	2.5 V voltage reference	0 to 70	SO8
LM336DT	2.5 V voltage reference	0 to 70	SO8 tape
TDA0159AFP	Proximity detector	0 to 70	SO8
TDA0161FP	Proximity detector	- 40 to 100	SO8
TDE0160FP	Proximity detector	-25 to 85	SO14
TL7700ACD	Supply voltage supervisor	0 to 70	SO8
TL7700AID	Supply voltage supervisor	-25 to 85	SO8

STANDARD LOGIC CMOS 4000B SERIES

Туре	Description	Package
HCF4000BM1	Dual 3-input NOR gate plus inverter	SO14
HCF4001BM1	Quad 2-input NOR gate	SO14
HCF4002BM1	Dual 4-input NOR gate	SO14
HCF4006BM1	18-stage static shift register	SO14
HCF4007UBM1	Dual complementary pair plus inverter	SO14
HCF4008BM1	4 bit full adder	SO16
HCF4009UBM1	Hex buffer/converters inverting	SO16
HCF4010BM1	Hex buffer/converters non inverting	SO16
HCF4011BM1	Quad 2-input NAND gate	SO14
HCF4012BM1	Dual 4-input NAND gate	SO14
HCF4013BM1	Dual D flip-flop	SO14
HCF4014BM1	8-stage static syncr. shift register	SO16
HCF4015BM1	Dual 4-stage static shift register	SO16
HCF4016BM1	Quad Bilateral Switch	SO14
HCF4017BM1	Decade Counter/Divider	SO16
HCF4018BM1	Presettable Divide-by-«N» Counter	SO16
HCF4019BM1	Quad AND/OR Select Gate	SO16
HCF4020BM1	14-Stage Binary/Ripple Counter	SO16
HCF4021BM1	8-Stage Static Shift Register	SO16
HCF4022BM1	Divide-by-8 Counter/Divider	SO16
HCF4023BM1	Triple 3-Input NAND Gate	SO14
HCF4024BM1	7-Stage Binary/Ripple Counter	SO14
HCF4025BM1	Triple 3-Input NOR Gate	SO14
HCF4026BM1	Decade Coun./Div. 7-Segm. Display Driv.	SO16
HCF4027BM1	Dual J-K Master-Slave Flip-Flop	SO16
HCF4028BM1	BCD-to Decimal Decoder	SO16
HCF4029BM1	Presettable Up/Down Counter	SO16
HCF4030BM1	Quad Exclusive OR Gate	SO14
HCF4032BM1	Triple Serial Adder	SO16
HCF4033BM1	Decade Coun./Div. 7-Segm. Display Driv.	SO16
HCF4034BM1	8-Stage Static Bidirectional Bus Register	SO24
HCF4035BM1	4-Stage Parallel I/O Shift Register	SO16
HCF4038BM1	Triple Serial Adder	SO16
HCF4040BM1	12-Stage Binary/Ripple Counter	SO16
HCF4041UBM1	Quad True/Complement Buffer	SO14
HCF4042BM1	Quad Clocked D Latch	SO16
HCF4043BM1	Quad 3-State NOR R/S Latch	SO16

STANDARD LOGIC

CMOS 4000B SERIES (Continued)

	Description	Package
HCF4044BM1	Quad 3-State NAND R/S Latch	SO16
HCF4045BM1	21-Stage Counter	SO16
HCF4047BM1		SO14
	Monostable/Astable Multivibrator	SO14 SO16
HCF4048BM1	Multifunction Expandable 8-Input Gate	
HCF4049UBM1	Hex Inverting Buffer/Converter	SO16
HCF4050BM1	Hex Non Inverting Buffer/Converter	SO16
HCF4051BM1	Single 8-Channel Analog Multipl./Demult.	SO16
HCF4052BM1	Different. 4-Channel Analog Multipl./Dem	SO16
HCF4053BM1	Triple 2-Channel Analog Multiplexer/Dem.	SO16
HCF4054BM1	4-Segment Display Driver	SO16
HCF4055BM1	BCD to 7-Segment Decoder/Driver	SO16
HCF4056BM1	BCD to 7-Segment Decoder/Driver	SO16
HCF4060BM1	14-Stage Counter/Divider AND Oscillator	SO16
HCF4063BM1	4-Bit Magnitude Comparator	SO16
HCF4066BM1	Quad Bilateral Switch	SO14
HCF4067BM1	Single 16-Channel Analog Multiplexer/Dem.	SO24
HCF4068BM1	8-Input NAND/AND Gate	SO14
HCF4069UBM1	Hex Inverter	SO14
	Quad Ex-Or Gate	SO14
HCF4070BM1		
HCF4071BM1	Quad 2-Input OR Gate	SO14
HCF4072BM1	Dual 4-Input OR Gate	SO14
HCF4073BM1	Triple 3-Input AND Gate	SO14
HCF4075BM1	Triple 3-Input OR Gate	SO14
HCF4076BM1	4-Bit D-Type Register	SO16
HCF4077BM1	Quad Ex-NOR Gate	SO14
HCF4078BM1	8-Input NOR/OR Gate	SO14
HCF4081BM1	· ·	SO14
	Quad 2-Input AND Gate	
HCF4082BM1	Dual 4-Input AND Gate	SO14
HCF4085BM1	Dual 2-Wide 2-Input AND-OR- Inverter Gate	SO14
HCF4086BM1	Expand. 4-Wide 2-Input AND-OR- Inver. Gate	SO14
HCF4093BM1	Quad 2-Input NAND Schmitt Trigger	SO14
HCF4094BM1	8-Stage Shift-AND-Store Bus Register	SO16
HCF4095BM1	Gated J-K Master-Slave Flip-Flop	SO14
!HCF4096BM1	Gated J-K Master-Slave Flip-Flop	SO14
HCF4097BM1	Different. 8-Channel Analog Multipl./Dem.	SO24
HCF4098BM1	Dual Monostable multivibrator	SO16
HCF4099BM1	8-Bit Addressable Latch	SO16
HCF4502BM1	Strobed Hex Inverter/Buffer	SO16
HCF4503BM1	Hex Buffer (3-State non-Inverter)	SO16
HCF4508BM1	Dual 4-Bit Latch (3-State Outputs)	SO24
HCF4511BM1	BCD to 7 Segment Latch-Decoder/Driver	SO16
HCF4512BM1	8-Channel Data Selec. With 3-State Output	SO16
HCF4514BM1		SO24
	4-Bit Latch/4-to-16 Line Dec. (Out. High)	
HCF4515BM1	4-Bit Latch/4-to-16 Line Dec. (Out. Low)	SO24
HCF4516BM1	Presettable 4-Bit Binary Up/Down Counter	SO16
HCF4518BM1	Dual BCD Up Counter	SO16
HCF4520BM1	Dual Binary Up Counter	SO16
HCF4532BM1	8-Input Priority Encoder	SO16
HCF4538BM1	Dual Precision Monostable Multivibrator	SO16
HCF4541BM1	Programmable Timer	SO14
	3	
HCF4555BM1	Dual 1-of-4 Decoder/Demultipl. (Out. High)	SO16
HCF4556BM1	Dual 1-of-4 Decoder/Demultipl. (Out. Low)	SO16
HCF4585BM1	4-Bit Magnitude Comparator	SO16
HCF40100BM1	32-Stage Static Left/Right Shift Register	SO16
HCF40101BM1	9-Bit Parity Generator/Checker	SO14
HCF40106BM1	Hex Schmitt Trigger	SO14
HCF40107BM1	Dual 2-Input NAND Buffer/Driver	SO 8
HCF40108BM1	4 × 4 Multiport Register	SO24
HCF40109BM1	Quad Low-to-High Voltage Level Shifter	SO16
HCF40160BM1	Decade Counter/Asynchronous Clear	SO16
HCF40161BM1	Binary Counter/Asynchronous Clear	SO16
HCF40162BM1	Decade Counter/Synchronous Clear	SO16
HCF40163BM1	Binary Counter/Synchronous Clear	SO16
HCF40174BM1	Hex «D» Type Flip-Flop	SO16
HCF40181BM1	4-Bit Arithmetic Logic Unit	SO24
HCF40182BM1	Look-Ahead Carry Generator	SO16
HCF40192BM1	Presettable 4-Bit BCD Up/Down Counter	SO16
HCF40193BM1	Presettable 4-Bit Binary Up/Down Counter	SO16
HCF40208BM1	4 × 4 Multiport Register	SO24
HCF40257BM1	Quad 2-line-to-1-Line Data Selector/Mult.	SO16

STANDARD LOGIC HS - C²MOS LOGIC - M74HC SERIES

Туре	Description	Package
M74HC00M1	Quad 2-Input NAND Gate	SO14
M74HC02M1	Quad 2-Input NOR Gate	SO14
M74HC03M1	Quad 2-Input NAND (open drain)	SO14
174HC04M1	Hex Inverter	SO14
174HCT04M1	Hex Inverter	SO14
174HCU04M1	Hex Inverter (Single stage)	SO14
174HC08M1	Quad 2-Input AND Gate	SO14
174HC10M1	Triple 3-Input NAND Gate	SO14
174HC11M1	Triple 3-Input AND Gate	SO14
174HC14M1	Hex schmitt inverter	SO14
174HC20M1	Dual 4-Input NAND Gate	SO14
174HC21M1	Dual 4-Input AND Gate	SO14
174HC27M1	Triple 3-Input NOR Gate	SO14
174HC30M1	8-Input NAND Gate	SO14
174HC32M1	Quad 2-Input OR Gate	SO14
174HC42M1	BCD to Decimal Decoder	SO16
		SO14
174HC5,1M1	Dual 2-Wide 2-Inp/3-Inp. AND-OR Inv.Gate	
174HC73M1	Dual J-K Flip-Flop with clear	SO14
174HC74M1	Dual D-type Flip-Flop with preset and clear	SO14
174HC75M1	4-Bit D-type latch	SO16
174HC76M1	Dual J-K Flip-Flop with preset and Clear	SO16
174HC77M1	4-Bit D-type latch	SO14
174HC85M1	4-Bit magnitude comparator	SO16
174HC86M1	Quad exclusive OR Gate	SO14
174HC107M1	Dual J-K Flip-Flop with clear	SO14
174HC109M1	Dual J-K Flip-Flop with Preset and Clear	SO16
174HC112M1	Dual J-K Flip-Flop with Preset and Clear	SO16
74HC113M1	Dual J-K Flip-Flop with Preset	SO14
174HC123M1	Dual Retrigg, monost, mult, with clear	SO16
174HC125M1	Quad bus buffer (3-State)	SO14
174HC126M1	Quad bus buffer (3-State)	SO14
174HC131M1	3 to 8 line decoder latch	SO16
174HC131M1	Quad 2-Input schmitt NAND gate	SO14
174HC132M1	13 Input NAND Gate	SO16
174HC133M1	3 to 8 line decoder latch (Inv.)	SO16
	1	SO16
174HCT137M1	3 to 8 line decoder latch (Inv.)	l l
174HC138M1	3 to 8 line decoder (Inv.)	SO16
174HCT138M1	3 to 8 line decoder (Inv.)	SO16
174HC139M1	Dual 2 to 4 line decoder/demultiplexer	SO16
174HC147M1	10 to 4 line priority encoder	SO16
74HC148M1	8 to 3 line priority encoder	SO16
174HC151M1	8-Channel multiplexer	SO16
174HC153M1	Dual 4-Channel multiplexer	SO16
174HC154M1	4 to 16 line decoder/demultiplexer	SO24
74HC155M1	Dual 2 to 4 line dec./ 3 to 8 line dec.	SO16
74HC157M1	Quad 2-Channel multiplexer	SO16
174HC158M1	Quad 2-Channel multiplexer (Inv.)	SO16
74HC160M1	Sync. decade counter with async. clear	SO16
74HC161M1	Sync. binary counter with async. clear	SO16
74HC162M1	Sync. decade counter with sync. clear	SO16
174HC163M1	Sync. binary counter with sync. clear	SO16
74HC164M1	8 bit SIPO shift register	SO14
174HC165M1	8 bit PISO shift register	SO16
74HC166M1	8 bit PISO shift register	SO16
74HC173M1	Quad D-type register (3-state)	SO16
74HC173M1 74HC174M1	Hex D-type Flip-Flop with clear	SO16
	Quad D-type Flip-Flop with clear	SO16
174HC175M1		SO24
74HC181M1	Arithmetic logic unit function generator	
74HC182M1	Function Look ahead carry generator	SO16
174HC190M1	BCD synchronous up/down counter	SO16
174HC191M1	4 bit synchronous binary up/down counter	SO16
174HC192M1	Synchronous up/down decade counter	SO16
I74HC193M1	Synchronous up/down binary counter	SO16
74HC194M1	4 bit PIPO shift register	SO16
74HC195M1	4 bit PIPO shift register	SO16
74HC221M1	Dual monostable multivibrator	SO16
74HC237M1	3 to 8 line decoder latch	SO16
74HC238M1	3 to 8 line decoder	SO16

STANDARD LOGIC

HS - C²MOS LOGIC - M74HC SERIES (Continued)

Туре	Description	Package
 И74HC240M1	Octal bus buffer (3-State/Inv.)	SO20
и74HCT240М1	Octal bus buffer (3-State/Inv.)	SO20
M74HC241M1	Octal bus buffer (3-State)	SO20
M74HCT241M1	Octal bus buffer (3-State)	SO20
И74HC242M1	Quad bus transceiver (3-State/Inv.)	SO14
M74HC243M1	Quad bus transceiver (3-State)	SO14
174HC244M1	Octal bus buffer (3-State)	SO20
		SO20
174HCT244M1	Octal bus buffer (3-state)	
174HC245M1	Octal bus transceiver (3-state)	SO20
174HCT245M1	Octal bus transceiver (3-state)	SO20
174HC251M1	8-Channel multiplexer (3-state)	SO16
174HC253M1	Dual 4-Channel multiplexer (3-state)	SO16
174HC257M1	Quad 2-Channel multiplexer (3-state)	SO16
174HC258M1	Quad 2-Channel multiplexer (3-state/Inv.)	SO16
174HC259M1	8 bit addressable latch	SO16
74HC273M1	Octal D-type Flip-Flop with clear	SO20
174HC279M1	Quad S-R latch	SO16
174HC280M1	9 bit parity generator	SO14
74HC283M1	4 bit binary full adder	SO16
174HC298M1	Quad 2-Channel multiplexer register	SO16
174HC299M1	8 bit PIPO shift register (3-state)	SO20
174HC323M1	8 bit PIPO shift register (3-state)	SO20
74HC352M1	Dual 4-Channel multiplexer (Inv.)	SO16
174HC353M1	Dual 4-Channel multiplexer (3-state/Inv.)	SO16
174HC354M1	8 Channel multiplexer/register (3-state)	SO20
174HÇ356M1	8 Channel multiplexer/register (3-state)	SO20
174HC365M1	Hex bus buffer (3-state)	SO16
174HC366M1	Hex bus buffer (3-state/Inv.)	SO16
174HC367M1	Hex bus buffer (3-state)	SO16
		SO16
174HC368M1	Hex bus buffer (3-state/Inv.)	
174HC373M1	Octal D-type latch (3-state)	SO20
174HCT373M1	Octal D-type latch (3-state)	SO20
174HC374M1	Octal D-type Flip-Flop (3-state)	SO20
174HCT374M1	Octal D-type Flip-Flop (3-state)	SO20
174HC375M1	Quad D-type latch	SO16
174HC377M1	Octal D-type Flip-Flop	SO20
174HC386M1	Quad exclusive OR Gate	SO14
174HC390M1	Dual decade counter	SO16
174HC393M1	Dual binary counter	SO14
174HC423M1	Dual monostable multivibrator with clear	SO16
174HC533M1	Octal D-type latch (3-state/Inv.)	SO20
174HC534M1	Octal D-type Flip-Flop (3-state/Inv.)	SO20
174HC540M1	Octal bus buffer (3-state/Inv.)	SO20
74HCT540M1	Octal bus buffer (3-state/Inv.)	SO20
74HC541M1	Octal bus buffer (3-state)	SO20
74HCT541M1	Octal bus buffer (3-state)	SO20
74HC563M1	Octal D-type latch (3-state/Inv.)	SO20
74HCT563M1	Octal D-type latch (3-state/Inv.)	SO20
74HC564M1	Octal D-type Flip-Flop (3-state/Inv.)	SO20
74HCT564M1	Octal D-type Flip-Flop (3-state/Inv.)	SO20
74HC573M1	Octal D-type latch (3-state)	SO20
74HCT573M1	Octal D-type latch (3-state)	SO20
74HC574M1	Octal D-type Flip-Flop (3-state)	SO20
74HCT574M1	Octal D-type Flip-Flop (3-state)	SO20
74HC597M1	8 bit latch shift register	SO16
74HC620M1	Octal bus transceiver (3-state/Inv.)	SO20
74HC623M1	Octal bus transceiver (3-state)	SO20
74HC640M1	Octal bus transceiver (3-state/Inv.)	SO20
74HCT640M1	Octal bus transceiver (3-state/Inv.)	SO20
74HC643M1		
	Octal bus transceiver (3-state)	SO20
74HCT643M1	Octal bus transceiver (3-state)	SO20
74HC646M1	Octal bus transceiver register (3-state)	SO24
74HCT646M1	Octal bus transceiver register (3-state)	SO24
74HC648M1	Octal bus transceiver register (3-state/Inv.)	SO24
74HCT648M1	Octal bus transceiver register (3-state/Inv)	SO24
74HC651M1	Octal bus transceiver register (3-state/Inv)	SO24
74HCT651M1	Octal bus transceiver register (3-state/Inv.)	SO24
74HC652M1	Octal bus transceiver register	SO24
74HCT652M1	Octal bus transceiver register	SO24

STANDARD LOGIC

HS - C²MOS LOGIC - M74HC SERIES (Continued)

Туре	Description	Package
M74HC688M1	8 bit equality comparator	SO20
M74HC690M1	Decade counter register (3-state)	SO20
M74HC691M1	4 bit binary counter register (3-state)	SO20
M74HC692M1	Decade counter register (3-state)	SO20
M74HC693M1	4 bit binary counter register (3-state)	SO20
M74HC696M1	U/D decade counter register (3-state)	SO20
M74HC697M1	U/D 4-bit binary counter/register (3-state)	SO20
M74HC698M1	U/D decade counter register (3-state)	SO20
M74HC699M1	U/D 4-bit binary counter/register (3-state)	SO20
M74HC4002M1	Dual 4-Input NOR Gate	SO14
M74HC4017M1	Decade counter/divider	SO16
M74HC4020M1	14-stage binary counter	SO16
M74HC4022M1	Octal counter/divider	SO16
M74HC4024M1	7-stage binary counter	SO14
M74HC4028M1	BCD to decimal decoder	SO16
M74HC4040M1	12-stage binary counter	SO16
M74HC4049BM1	Hex buffer/converter (Inv.)	SO16
M74HC4050BM1	Hex buffer/converter	SO16
M74HC4052M1	Dual 4-Channel analog multipl./demulti.	SO16
M74HC4053M1	Triple 2-Channel analog multipl./demult.	SO16
M74HC4060M1	14-stage binary counter/oscillator	SO16
M74HC4066M1	Quad bilateral switch	SO14
M74HC4072M1	Dual 4 input OR Gate	SO14
M74HC4075M1	Triple 3-input OR Gate	SO14
M74HC4078M1	8-input NOR/OR Gate	SO14
M74HC4094M1	8 bit SIPO shift register latch (3-state)	SO16
M74HC4316M1	Quad bilateral switches	SO16
M74HC4511M1	BCD to 7-segment L/D/D (LED)	SO16
M74HC4514M1	4 to 16 line decoder latch	SO24
M74HC4515M1	4 to 16 line decoder latch (Inv.)	SO24
M74HC4518M1	Dual decade counter	SO16
M74HC4520M1	Dual 4 bit binary counter	SO16
M74HC4538M1	Dual monostable multivibrator	SO16
M74HC4543M1	BCD to 7-segment L/D/D (LCD)	SO16
M74HCT7007M1	Hex buffer	SO14
M74HC7266M1	Quad exclusive NOR Gate	SO14

LOW POWER SCHOTTKY - T74LS SERIES

Туре	Description	Package
T74LS00M1	Quad 2-Input NAND Gate	SO14
T74LS01M1	Quad 2-Input NAND Gate (Open Collector)	SO14
T74LS02M1	Quad 2-Input NOR Gate	SO14
T74LS03AM1	Quad 2-Input NAND Gate (Open Collector)	SO14
T74LS04M1	Hex Inverter	SO14
T74LS05AM1	Hex Inverter (Open Collector)	SO14
T74LS08M1	Quad 2-Input AND Gate	SO14
T74LS09M1	Quad 2-Input AND Gate (Open Collector)	SO14
T74LS10M1	Triple 3-Input NAND Gate	SO14
T74LS11M1	Triple 3-Input AND Gate	SO14
T74LS12M1	Triple 3-Input NAND Gate (Open Collector)	SO14
T74LS13M1	Dual 4-Input NAND Schmitt Trigger	SO14
T74LS14M1	Hex Schmitt Trigger Inverter	SO14
T74LS15M1	Triple 3-Input AND Gate (Open Collector)	SO14
T74LS20M1	Dual 4-Input NAND Gate	SO14
T74LS21M1	Dual 4-Input AND Gate	SO14
T74LS22M1	Dual 4-Input NAND Gate (Open Collector)	SO14
T74LS26AM1	Quad 2-Input NAND Buffer (Open Collector)	SO14

STANDARD LOGIC

LOW POWER SCHOTTKY - T74LS SERIES (Continued)

Туре	Description	Package
T74LS27M1	Triple 3-Input NOR Gate	SO14 SO14
T74LS28M1	Quad 2-Input NOR Buffer	SO14 SO14
T74LS30M1 T74LS32M1	8-Input NAND Gate Quad 2-Input OR Gate	SO14
T74LS33M1	Quad 2-Input NOR Buffer (Open Collector)	SO14
T74LS37M1	Quad 2-Input NAND Buffer	SO14
T74LS38M1	Quad 2-Input NAND Buffer (Open Collector)	SO14
T74LS40M1	Dual 4-Input NAND Buffer	SO14
T74LS42M1	1-of-10 Decoder	SO16
T74LS51M1	Dual 2-Wide 2-Inp./3-Inp. AND-OR-INV. Gate	SO14
T74LS54M1	2-3-3-2-Input AND-OR-INVERT Gate	SO14 SO14
T74LS55M1	2-Wide 4-Input AND-OR-INVERT Gate Dual D-Type Posit. Edge-Trigg. Flip-Flop	SO14 SO14
T74LS74AM1 T74LS75M1	4-Bit D Latch	SO14
T74LS83AM1	4-Bit Full Adder with Fast Carry	SO16
T74LS86M1	Quad 2-Input Exclusive OR Gate	SO14
T74LS90M1	Decade Counter	SO14
T74LS93M1	4-Bit Binary Counter	SO14
T74LS95BM1	4-Bit Shift Register	SO14
T74LS109AM1	Dual JK Positive edge-Trigger. Flip-Flop	SO16
T74LS112AM1	Dual JK Negative edge-Trigger. Flip-Flop	SO16
T74LS113AM1	Dual JK Negative edge-Trigger. Flip-Flop	SO14
T74LS125AM1	Quad 3-State Buffer (Low Enable)	SO14
T74LS126AM1	Quad 3-State Buffer (High Enable)	SO14
T74LS132M1	Quad 2-Input Schmitt Trigger NAND Gate	SO14
T74LS133M1	13-Input NAND Gate	SO16
T74LS136M1	Quad 2-Input Exclus. OR Gate (Open Coll.)	SO14
T74LS138M1	1-of-8 Decoder/Demultiplexer	SO16
T74LS139M1	Dual 1-of-4 Decoder/Demultiplexer	SO16
T74LS148M1	8-Input to 3-Line Priority Encoder	SO16
T74LS151M1	8-Input Multiplexer	SO16
T74LS152M1	8-Input Multiplexer	SO14
T74LS153M1	Dual 4-Input Multiplexer	SO16
T74LS155M1	Dual 1-of-4 Decoder/Demultiplexer	SO16
T74LS156M1	Dual 1-of-4 Decoder/Demultiplexer (Open Coll.)	SO16
T74LS157M1	Quad 2-Input Multiplexer (Non inverting)	SO16 SO16
T74LS158M1	Quad 2-Input Multiplexer (Inverting)	SO16 SO14
T74LS164M1	8-Bit Shift Register (Serial-In ParOut)	SO14 SO16
T74LS166M1 T74LS168M1	8-Bit Shift Register (ParIn Serial-Out) Up/Down Decade Counter	SO16
T74LS169M1	Up/Down Binary Counter	SO16
T74LS170M1	4 × 4 Register File (Open Collector)	SO16
T74LS174M1	Hex D-Type Flip-Flop with Clear	SO16
T74LS175M1	Quad D-Type Flip-Flop with Clear	SO16
T74LS181M1	4-Bit ALU	SO24
T74LS190M1	Presettable BCD/Decade Up/Down Counter	SO16
T74LS191M1	Presettable 4-Bit Binary Up-Down Counter	SO16
T74LS192M1	Presettable BCD/Decade Up/Down Counter	SO16
T74LS193M1	Presettable 4-Bit Binary Up/Down Counter	SO16
T74LS194AM1	4-Bit Right/Left Shift Register	SO16
T74LS195AM1	4-Bit Shift Register	SO16
T74LS196M1	Decade Counter	SO14
T74LS197M1	4-Bit Binary Counter	SO14
T74LS240M1	Octal Inverting Bus/Line Driver (3-State)	SO20
T74LS241M1	Octal Bus Line Driver (3-State)	SO20
T74LS244M1	Octal Non Inverting Driver (3-State)	SO20
T74LS245M1	Octal Non Inverting Bus Transceiver (3-State)	SO20
T74LS248M1	BCD to 7-Segment Dec./Driv. with Pull-Ups	SO16
T74LS251M1	8-Input Multiplexer (3-State)	SO16
T74LS253M1	Dual 4-Input Multiplexer (3-State)	SO16
T74LS256M1	Dual 4-Bit Addressable Latch	SO16
T74LS257AM1	Quad 2-Input Multiplexer (3-State)	SO16
T74LS258AM1	Quad 2-Input Multiplexer (3-State)	SO16
T74LS259M1	8-Bit Addressable Latch	SO16
T74LS260M1	Dual 5-Input NOR Gate Ouad 3-Input Evalua NOR Gate (Open Cell.)	SO14
T74LS266M1 T74LS273M1	Quad 2- Input Exclus. NOR Gate (Open Coll.) Octal D-Type Flip-Flop with Master Reset.	SO14 SO20
T74LS273M1 T74LS279M1	Quad Set-Reset Latch	SO20 SO16
T74LS280M1	9-Bit Odd/Even Parity Generator/Checker	SO14
T74LS283M1	4-Bit Binary Full Adder (Rotated LS83A)	SO14 SO16

STANDARD LOGIC

LOW POWER SCHOTTKY - T74LS SERIES (Continued)

Туре	Description	Package
T74LS293M1	4-Bit Binary Counter	SO14
T74LS295AM1	4-Bit Shift Register (3-State)	SO14
T74LS298M1	Quad 2-Input Multiplexer with Output Lat.	SO16
T74LS352M1	Dual 4-Input Multiplexer (Inver. LS153)	SO16
T74LS353M1	Dual 4-Input Multiplexer (3-State LS352)	SO16
T74LS365AM1	Hex Buffer with Common Enable (3-State)	SO16
T74LS366AM1	Hex Inv. Buffer with Common Enable (3-State)	SO16
T74LS367AM1	Hex Buffer, 4-Bit and 2-Bit (3-State)	SO16
T74LS368AM1	Hex Inver. Buffer, 4-Bit and 2-Bit (3-State)	SO16
T74LS373M1	Octal Transparent Latch (3-State)	SO20
T74LS374M1	Octal D-Type Flip-Flop (3-State)	SO20
T74LS377M1	Octal D-Type Flip-Flop with Common Enable	SO20
T74LS378M1	Hex D-Type Flip-Flop with Enable	SO16
T74LS379M1	4-Bit D-Type Flip-Flop with Enable	SO16
T74LS390M1	Dual Decade Counter	SO16
T74LS393M1	Dual 4-Bit Binary Counter	SO14
T74LS395M1	4-Bit Shift Register (3-State)	SO16
T74LS399M1	Quad 2-Input Multiplexer with Output Register	SO16
T74LS490M1	Dual Decade Counter	SO16
T74LS533M1	Octal Transparent Latch (3-State)	SO20
T74LS534M1	Octal D-Type Flip-Flop (3-State)	SO20
T74LS540M1	Octal Inverting Buffer/Line Driver (3-State)	SO20
T74LS541M1	Octal Buffer/Line Driver (3-State)	SO20
T74LS645M1	Octal Non Inverting Bus Tranceiver (3-State)	SO20
T74LS670M1	4 × 4 Register File (3-State)	SO16

MILITARY AND AEROSPACE

J-FET and bipolar op-amps, bipolar comparators, EF 6800 / 280 / TS 68000 / 28000 families, EPROM, CMOS 4000B and HS-C²MOS series, analogue cells and arrays, semicustom products could be encapsulated in leadless chip carrier, tested and screened according to any military and space procedures, in our plants specialized for military assemblies.

ANALOGUE CELLS AND ARRAYS

LINEAR BIPOLAR «POLYUSE»

Туре	Description	Package
TSFAxx	1 customization level, 20V, 500MHz	
TSFA04 TSFA08	46 standard NPN, 32 PNP, 300 resistors 92 standard NPN, 60 PNP, 600 resistors	SO16/18/20/24 Wide - PLCC28 SO18/24/28 Wide - PLCC28/44
TSFK09	रैं customization level, 15V, 3000MHz, 188 NPN, 28 PNP, 686 resistors	SO16/18/20/24/28 Wide - PLCC28

ANALOGUE CELLS AND ARRAYS

BIPOLAR MIXED ANALOGUE DIGITAL ARRAYS

Туре	Description	Package
TSFJ series	2 metal layer - 15V - 3GHZ Linear, Power, ECL, I2L, Built-in functions (Bandgap, Oscillator, Regulator, R-2R ladder)	
TSFJ04 TSFJ06	6 Linear*, 2 Power* tiles, 54 I2L operators 8 Linear*, 4 Power* tiles, 135 I2L operators	SO8/14/16 Narrow - SO16 Wide SO16 Narrow - SO16/18/20 Wide - PLCC28
TSFJ09	10 Linear*, 4 Power*, 8 ECL* tiles, 162 I2L operators	SO16 Narrow - PLCC28 SO16/18/20/24 Wide
TSFJ13 TSFJ23	14 Linear*, 4 Power*, 8 ECL* tiles, 324 I2L operators 24 Linear*, 8 Power*, 10 ECL* tiles, 486 I2L operators	SO16/18/20/24/28 Wide - PLCC28 SO20/24/28 Wide - PLCC28/44

^{* 1} Linear tile is equivalent to 1 op-amp (as 124).

HCMOS MIXED ANALOGUE DIGITAL STANDARD CELLS

Туре	Description		Package
TSGSM series	Integration of high level analogue and digital functions. Analogue library: 80 cells (ADC - DAC - Filters - Comparators - Amplifiers - Reference voltage) Digital library: 110 hard macros + soft macros.	F	SO8/14/16 Narrow - SO16/18/20/24/28 Wide PLCC28/44/68 - QFP40

HCMOS MASK PROGRAMMABLE FILTERS (MPF) STANDARD ANALOGUE SWITCHED CAPACITOR FILTERS (MPF)

Туре	Description	Package
TSG8510	5th order Cauer (elliptic) - Low pass (33 dB stopband)	SO16 Wide
TSG8511	7th order Cauer (elliptic) - Low pass (55 dB stopband)	SO16 Wide
TSG8512	7th order Cauer (elliptic) - Low pass (85 dB stopband)	SO16 Wide
TSG8513	8th order Chebychev - Low pass (0.15 dB ripple)	SO16 Wide
TSG8514	8th order Butterworth - Low pass (Max. flat)	SO16 Wide
TSG8530	3rd order Cauer - High pass	SO16 Wide
TSG8531	6th order Cauer - High pass	SO16 Wide
TSG8532	6th order Chebychev - High pass	SO16 Wide
TSG8540	6th order rejector (Notch)	SO16 Wide
TSG8550	6th order Cauer - Band pass (Q = 8)	SO16 Wide
TSG8551	8th order - High selectivity - Band pass (Q = 35)	SO16 Wide
TSG8670	Voice grade Dual filter for telephone line interface	SO18 Wide
TSG8751	4th order - High selectivity - Band pass (Q = 25)	SO16 Wide

«GATE ARRAY» FILTERS

Туре	Description	Package
TSGF04 TSGF08 TSGF12	Up to 4th order filter array + 1 uncommitted Op-Amp Up to 8th order filter array + 2 uncommitted Op-Amps Up to 12th order filter array + 2 uncommitted Op-Amps (either 1 or 2 filters on chip)	SO16 Wide SO16 Wide SO18/24 Wide

¹ Power tile allows to drive up to 200 mA. 2 ECL tiles are equivalent to 1 D Flip-Flop.

ANALOGUE CELLS AND ARRAYS

HCMOS MASK PROGRAMMABLE FREQUENCY DETECTORS

Туре	Description	Package
TSGF88 series	Serial or parallel interfaces for direct control of the filter frequency by a microprocessor - 2nd to 8th order switched capacitor filter included. Antialiasing filter integrated	SO24 Wide
TSG8852	Butterworth 8th order band pass filter included	SO24 Wide

SEMICUSTOM PRODUCTS

CHANNELLED ARRAYS

HSG 3000 SERIES - 3.5 micron HCMOS technology Typical delay 5.0 ns for 2-input NAND gate

Туре	Gate complexity*	Max I/O Pads	V _{DD} Pads	V _{SS} Pads	Max Pads
HSG3020	272	32	1	3	36
HSG3030	342	36	1	3	40
HSG3040	420	40	1	3	44
HSG3060	600	48	1	3	52
HSG3080	812	56	1	3	60
HSG3110	1056	64	1	3	68
HSG3130	1332	72	1	3	76
HSG3170	1722	82	1	3	86
HSG3210	2162	92	1	3	. 96
HSG3250	2550	100	1	3	104

^{* 1} gate = 2 pairs of N & P transistors (equivalent to 2 input NAND).

HSG 7000 SERIES - 2 micron HCMOS technology
Typical delay 1.4 ns for 2-input NAND gate

		Max Pads		Max I/O Pads	
Туре	Gate Complexity*	Plastic or Ceramic	Ceramic	Plastic or Ceramic	Ceramic
HSG7080	880	52	68	44	60
HSG7140	1443	66	86	58	78
HSG7220	2224	78	106	70	98
HSG7320	3192	96	126	80	112
HSG7420	4242	114	150	98	134
HSG7600	6072	138	186	122	170
HSG7840	8370	166	222	150	206
HSG71000	10013	174	232	158	216

 $^{^{\}star}$ 1 gate = 2 pairs of N & P transistors (equivalent to 2 input NAND).

SEA OF GATES - CHANNELLESS ARRAYS

ISB 9000 SERIES - 1.5 micron HCMOS technology

Typical delay 0.7 ns for 2-input NAND gate

Туре	Total sites*	Usable sites*	Max Pads**
ISB9003	204	184	28
ISB9008	572	486	44
ISB9015	1036	829	58
ISB9023	1564	1173	72
ISB9038	2530	1897	88
ISB9055	3696	2587	108
ISB9085	5644	3950	132
ISB9122	7980	5187	158
ISB9165	10848	7051	184
ISB9201	13090	7749	200

^{* 1} site = 3 pairs of N & P transistors.

^{**} The number of max pads includes power pads, V_{SS} , V_{DD} .

SEMICUSTOM PRODUCTS

SEA OF GATE - «CONTINUOUS ARRAYS» TM (1)
ISB 12000 SERIES - 1.2 micron HCMOS technology
Typical delay 0.3 ns for 2-input NAND gate

Туре	Total gates	Usable gates	Max Pads	Max I/O Pads
ISB12008	8000	3000	88	76
ISB12011	11520	4500	104	92
ISB12015	15680	6000	120	104
ISB12020	20480	8000	136	120
ISB12025	25920	10000	152	136
ISB12038	38720	15000	184	164
ISB12054	54080	20000	216	200
ISB12076*	76880	30000	256	232
ISB12103*	103680	40000	296	256**
ISB12128*	128000	50000	328	256**

^{*} This type of die size does not permit surface mount technology.

STANDARD CELLS

CB200 SERIES - 1.5 micron HCMOS technology Typical delay 0.7 ns for 2-input NAND gate *

Type	Description	9 (A)
	,	in the second of
CB200 series	Macrocell library plus RAM, ROM, Adder, ALU and Multiplier Megacells	

^{* 1} gate = 2 pairs of N & P transistors.

CB300 SERIES - 1.5 micron HCMOS technology Typical delay 0.7 ns for 2-input NAND gate *

Туре	Description		
CB300 series	Macrocell library plus RAM, ROM, Adder, ALU, Multiplier Megacells and Analogue cells (comparators, operational amplifers, voltage reference)		

^{* 1} gate = 2 pairs of N & P transistors.

PACKAGE RANGE

HSG 3000 SERIES

Туре	Package type	Pin count availability
HSG3020	PLCC LLCC SO	20/28/44 28 16/20/24/28
HSG3030	PLCC LLCC CLCC SO	20/28/44 28/44 44 16/20/24/28
HSG3040	PLCC LLCC CLCC SO	20/28/44 28/44 44 16/18/20/24/28
HSG3060	PLCC LLCC CLCC SO	20/28/44/68 28/44 44 16/18/20/24/28
HSG3080	PLCC LLCC CLCC SO	20/28/44/68 28/44/52 44 18

Туре	Package type	Pin count availability
HSG3110	PLCC LLCC CLCC SO	20/28/44/68 28/44/52 44 18
HSG3130	PLCC LLCC CLCC	20/28/44/68/84 44/52/84 44/84
HSG3170	PLCC LLCC CLCC PQFP	28/44/68/84 44/52/68/84 44/68/84 64/80/100
HSG3210	PLCC LLCC CLCC PQFP	44/68/84 52/68/84 68/84 64/80/100
HSG3250	PLCC LLCC CLCC PQFP	44/68/84 52/68/84 68/84 64/80/100

^{**} I/O signals currently limited to 256 by tester constraints.

⁽¹⁾ CONTINUOUS ARRAY is a trademark of INNOVATIVE SILICON TECHNOLOGY SpA.

SEMICUSTOM PRODUCTS

PACKAGE RANGE

HSG 7000 SERIES

Туре	Package type	Pin count availability
HSG7080	PLCC LLCC CLCC SO	20/28/44 28/44 44 16/18/20/24/28
HSG7140	PLCC LLCC CLCC SO	20/28/44/68 28/44/52 44 18
HSG7220	PLCC LLCC CLCC	28/44/68/84 44/52 44/68/84
HSG7320	PLCC LLCC CLCC PQFP	28/44/68/84 52/68/84 44/68/84 64/80/100

Туре		Package type	Pin count availability	
HSG7420	2 ° ;-	PLCC LLCC CLCC PQFP	44/68/84 52/68/84 68/84 64/80/100	
HSG7600		PLCC LLCC CLCC PQFP	68/84 68/84 68/84 100/128	
HSG7840	<u>s</u> • ·	PLCC LLCC CLCC PQFP	68/84 84 68/84 128	
HSG71000		PLCC LLCC CLCC PQFP	68/84 84 68/84 128/160	

ISB 9000 SERIES

Туре	Package type	Pin count availability
ISB9003	PLCC LLCC SO	20/28 28 16/20/24/28
ISB9008	PLCC LLCC SO	20/28 28 16/18/20/24/28
ISB9015	PLCC LLCC CLCC SO	20/28/44 28/44 44 18/24/28
ISB9023	PLCC LLCC CLCC SO	20/28/44/68 28/44 44 18
ISB9038	PLCC LLCC CLCC	28/44/68 44/52 44

Туре	Package type	Pin count availability
ISB9055	PLCC LLCC CLCC PQFP	28/44/68/84 52/68/84 68/84 64/80/100
ISB9085	PLCC LLCC CLCC PQFP	44/68/84 52/68/84 68/84 64/80/100
ISB9122	PLCC LLCC CLCC PQFP	84 68/84 68/84 100/128
ISB9165	PLCC LLCC CLCC PQFP	68/84 84 84 128
ISB9201	PLCC LLCC CLCC PQFP	68/84 84 84 128/160

ISB 12000 SERIES

Туре	Package type	Pin count availability
ISB12008	PLCC	28/44/68/84
ISB12011	PLCC PQFP	44/68/84 100
ISB12015	PLCC PQFP	68/84 100/144
ISB12020	PLCC PQFP	68/84 100/144

Туре	Package type	Pin count availability
ISB12025	PLCC PQFP	68/84 144/160
ISB12038	PQFP	144/160
ISB12054	PQFP	160/196

ISB12076, ISB12103 and ISB12128 die sizes do not permit surface mount technology.

CB200 AND CB300 SERIES

Туре	Package type	Pin count availability
CB200 and CB300	PLCC LLCC CLCC PQFP SO	20/28/44/68/84 20/28/44/52/68/84 28/44/68/84 64/80/100/128/160 16/18/20/24/28

Innovative Silicon Technology is a member of the SGS-THOMSON Microelectronics group.

ANALOGUE CELLS AND ARRAYS

LINEAR BIPOLAR «POLYUSE»	259
BIPOLAR MIXED ANALOGUE DIGITAL ARRAYS	259
HCMOS MIXED ANALOGUE DIGITAL STANDARD CELLS	259
HCMOS MASK PROGRAMMABLE FILTERS (MPF)	260
HCMOS MASK PROGRAMMABLE FREQUENCY DETECTORS	260

- A complete range of Digital, Analogue and mixed Analogue and Digital products either in HCMOS, Bipolar and BICMOS technologies.
- Cell libraries supported
 - 1 on in-house developed CAD tools (VAX, IBM, SUN hardwares) available in regional design centers.
 - 2 on most popular Engineering workstations : Mentor Graphics, Daisy Systems, Valid, PC, UNIX based stations.
- An international network of regional Design Centers installed to technically support customer circuit designs :

Americas : Dallas

Phœnix

Santa Clara

Asia / Pacific : Hong Kong

Seoul

Singapore

Taïwan

Europe :

: London (Marlow)

Milano

Münich

Paris (Gentilly)
Stockholm (Kista)

LINEAR BIPOLAR «POLYUSE»

Ту	уре	Description	Package
TSFAxx		1 customization level, 20V, 500MHz	v 12
TSFA04		46 standard NPN, 32 PNP, 300 resistors	DIP8/14/16/18/20/24 SO16/18/20/24 Wide - PLCC28
TSFA08		92 standard NPN, 60 PNP, 600 resistors	DIP24/28/40 SO18/24/28 Wide - PLCC28/44
TSFK09		1 customization level, 15V, 3GHz, 188 NPN, 28 PNP, 686 resistors	DIP8/14/16/18/20/24/28 SO16/18/20/24/28 Wide - PLCC28

BIPOLAR MIXED ANALOGUE DIGITAL ARRAYS

Туре	Description	Package
TSFJ series	2 metal layer - 15V - 3GHZ Linear, Power, ECL, I2L, Built-in functions (Bandgap, Oscillator, Regulator, R-2R ladder)	
TSFJ04	6 Linear*, 2 Power* tiles, 54 I2L operators	DIP8/14/16 SO8/14/16 Narrow - SO16 Wide
TSFJ06	8 Linear*, 4 Power* tiles, 135 I2L operators	DIP8/14/16/18/20 SO16 Narrow - SO16/18/20 Wide / PLCC28
TSFJ09	10 Linear*, 4 Power*, 8 ECL* tiles, 162 I2L operators	DIP8/14/16/18/20 - SO16 Narrow SO16/18/20/24 Wide - PLCC28
TSFJ13	14 Linear*, 4 Power*, 8 ECL* tiles, 324 I2L operators	DIP14/16/18/20/24/28 SO16/18/20/24/28 Wide - PLCC28
TSFJ23	24 Linear*, 8 Power*, 10 ECL* tiles, 486 I2L operators	DIP20/24/28/40 SO20/24/28 Wide / PLCC28/44

 ¹ Linear tile is equivalent to 1 op.amp (as 124).
 1 Power tile allows to drive up to 200 mA.
 2 ECL tiles are equivalent to 1 D Flip-Flop.

HCMOS MIXED ANALOGUE DIGITAL STANDARD CELLS

Туре	Description	Package
TSGSM series	Integration of high level analogue and digital functions. Analogue library: 80 cells (ADC - DAC - Filters - Comparators - Amplifiers - Reference voltage) Digital library: 110 hard macros + soft macros.	DIP8/14/16/18/20/24/28/40 SO8/14/16 Narrow SO16/18/20/24/28 Wide PLCC28/44/68 - QFP40

HCMOS MASK PROGRAMMABLE FILTERS (MPF)

STANDARD ANALOGUE SWITCHED CAPACITOR FILTERS

Туре	Description	Package
TSG8510	5th order Cauer (elliptic) - Low pass (33 dB stopband)	DIP16, SO16 Wide
.TSG8511	7th order Cauer (elliptic) - Low pass (55 dB stopband)	DIP16, SO16 Wide
TSG8512	7th order Cauer (elliptic) - Low pass (85 dB stopband)	DIP16, SO16 Wide
TSG8513	8th order Chebychev - Low pass (0.15 dB ripple)	DIP16, SO16 Wide
TSG8514	8th order Butterworth - Low pass (Max. flat)	DIP16, SO16 Wide
TSG8530	3rd order Cauer - High pass	DIP16, SO16 Wide
TSG8531	6th order Cauer - High pass	DIP16, SO16 Wide
TSG8532	6th order Chebychev - High pass	DIP16, SO16 Wide
TSG8540	6th order rejector (Notch)	DIP16, SO16 Wide
TSG8550	6th order Cauer - Band pass (Q = 8)	DIP16, SO16 Wide
TSG8551	8th order - High selectivity - Band pass (Q = 35)	DIP16, SO16 Wide
TSG8670	Voice grade Dual filter for telephone line interface	DIP18, SO18 Wide
TSG8751	4th order - High selectivity - Band pass (Q = 25)	DIP14, SO16 Wide

«GATE ARRAY» FILTERS

Туре	Description	Package
TSGF04 TSGF08 TSGF12	Up to 4th order filter array + 1 uncommitted Op-Amp Up to 8th order filter array + 2 uncommitted Op-Amps Up to 12th order filter array + 2 uncommitted Op-Amps (either 1 or 2 filters on chip)	DIP14, SO16 Wide DIP16, SO16 Wide DIP16/18/20, SO18/24 Wide

HCMOS MASK PROGRAMMABLE FREQUENCY DETECTORS

Туре	Description	Package
TSGF88 series	Serial or parallel interfaces for direct control of the filter frequency by a microprocessor - 2nd to 8th order switched capacitor filter included. Antialiasing filter integrated	DIP24, SO24 Wide
TSG8852	Butterworth 8th order band pass filter included	DIP24, SO24 Wide

SEMICUSTOM PRODUCTS

CHANNELLED ARRAYS	263
SEA OF GATES - CHANNELLESS ARRAYS	263
SEA OF GATES - «CONTINUOUS ARRAYS» ™	264
STANDARD CELLS	264
PACKAGE RANGE	264

- Integration of random logic :
 - Channelled arrays
 - Sea of gates Channelless arrays
- Integration of random logic and megafunctions (RAM, ROM, ALU, Multiplier...):
 - Sea of gates «CONTINUOUS ARRAYS» TM
 - Standard cells

- A complete range of Digital, Analogue and mixed Analogue and Digital products either in HCMOS, Bipolar and BICMOS technologies.
- Cell libraries supported
 - 1 on in-house developed CAD tools (VAX, IBM, SUN hardwares) available in regional design centers.
 - 2 on most popular Engineering workstations : Mentor Graphics, Daisy Systems, Valid, PC, UNIX based stations.

• An international network of regional Design Centers installed to technically support customer circuit designs :

Americas : Dallas

Phœnix

Santa Clara

Asia / Pacific: Hong Kong

Seoul

Singapore Taïwan

Europe

: London (Marlow)

Milano Münich

Paris (Gentilly)
Stockholm (Kista)

CHANNELLED ARRAYS

HSG 3000 SERIES - 3.5 micron HCMOS technology Typical delay 5.0 ns for 2-input NAND gate

Туре	Gate complexity*	Max I/O Pads	V _{DD} Pads	V _{SS} Pads	Max Pads
HSG3020	272	32	1	3	36
HSG3030	342	36	1	3	40
HSG3040	420	40	1	3	44
HSG3060	600	.48	1	3	52
HSG3080	812	56	1	3	60
HSG3110	1056	64	1	3	68
HSG3130	1332	72	1	3	76
HSG3170	1722	82	1	3	86
HSG3210	2162	92	1	3	96
HSG3250	2550	100	1	3	104

^{* 1} gate = 2 pairs of N & P transistors (equivalent to 2 input NAND).

HSG 7000 SERIES - 2 micron HCMOS technology Typical delay 1.4 ns for 2-input NAND gate

		Max	Pads	Max I/C) Pads
Туре	Gate complexity*	Plastic or Ceramic	Ceramic	Plastic or Ceramic	Ceramic
HSG7080	880	52	68	44	60
HSG7140	1443	66	86	58	78
HSG7220	2224	78	106	70	98
HSG7320	3192	96	126	80	112
HSG7420	4242	114	150	98	134
HSG7600	6072	138	186	122	170
HSG7840	8370	166	222	150	206
HSG71000	10013	174	232	158	216

^{* 1} gate = 2 pairs of N & P transistors (equivalent to 2 input NAND).

SEA OF GATES - CHANNELLESS ARRAYS

ISB 9000 SERIES - 1.5 micron HCMOS technology Typical delay 0.7 ns for 2-input NAND gate

Туре	Total sites*	Usable sites*	Max Pads**
ISB9003	204	184	28
ISB9008	572	486	44
ISB9015	1036	829	58
ISB9023	1564	1173	72
ISB9038	2530	1897	88
ISB9055	3696	2587	108
ISB9085	5644	3950	132
ISB9122	7980	5187	158
ISB9165	10848	7051	184
ISB9201	13090	7749	200

^{* 1} site = 3 pairs of N & P transistors.

^{**} The number of max pads includes power pads, V_{SS} , V_{DD} .

SEA OF GATES - «CONTINUOUS ARRAYS» TM (1)

ISB 12000 SERIES - 1.2 micron HCMOS technology
Typical delay 0.3 ns for 2-input NAND gate

Туре	Total gates	Usable gates	Max Pads	Max I/O Pads
ISB12008	8000	3000	88	76
ISB12011	11520	4500	104	92
ISB12015	15680	6000	120	104
ISB12020	20480	8000	136	120
ISB12025	25920	10000	152	136
ISB12038	38720	15000	184	164
ISB12054	54080	20000	216	200
ISB12076	76880	30000	256	232
ISB12103	103680	40000	296	256 *
ISB12128	128000	50000	328	256 *

^{*} I/O signals currently limited to 256 by tester constraints.

STANDARD CELLS

CB200 SERIES - 1.5 micron HCMOS technology

Typical delay 0.7 ns for 2-input NAND gate *

Туре	Description	
CB200 series	Macrocell library plus RAM, ROM, Adder, ALU and Multiplier Megacells	

^{* 1} gate = 2 pairs of N & P transistors.

CB300 SERIES - 1.5 micron HCMOS technology

Typical delay 0.7 ns for 2-input NAND gate *

Туре	Description
CB300 series	Macrocell library plus RAM, ROM, Adder, ALU, Multiplier Megacells and Analogue cells (comparators, operational amplifers, voltage reference)

^{* 1} gate = 2 pairs of N & P transistors.

PACKAGE RANGE

IST Semicustom production circuits are offered within an extended package product range:

PDIP : Plastic Dual-in-line package
CDIP : Ceramic Dual-in-line package
PPGA : Plastic Pin Grid Array
CPGA : Ceramic Pin Grid Array
PLCC : Plastic Leaded Chip Carrier
LLCC : Leadless Ceramic Chip Carrier
CLCC : Ceramic Leaded Chip Carrier
PQFP : Plastic Quad Flat Pack
SO : Plastic Small Outline

The prototype parts are delivered only in ceramic packages, which are in most of cases mechanically compatible with the production package, i.e.:

Prototype Production
CLCC PLCC
CDIL PDIP, SO
CQFP PQFP
CPGA PPGA

⁽¹⁾ CONTINUOUS ARRAY is a trademark of INNOVATIVE SILICON TECHNOLOGY SpA.

PACKAGE RANGE

HSG 3000 SERIES

Туре	Package type	Pin count availability
HSG3020	PDIP PLCC LLCC CDIP SO	16/18/20/22/24/28/40/48 20/28/44 28 16/18/20/24/28/40 16/20/24/28
HSG3030	PDIP PLCC LLCC CLCC CDIP CPGA SO	16/18/20/22/24/28/40/48 20/28/44 28/44 44 16/18/20/24/28/40 64 16/20/24/28
HSG3040	PDIP PLCC LLCC CLCC CDIP CPGA SO	16/18/20/22/24/28/40/48 20/28/44 28/44 44 16/18/20/24/28/40 64 16/18/20/24/28
HSG3060	PDIP PLCC LLCC CLCC CDIP CPGA SO	18/20/22/24/28/40/48/64 20/28/44/68 28/44 44 16/18/24/28/40 64 16/18/20/24/28
HSG3080	PDIP PLCC LLCC CLCC CDIP CPGA SO	22/24/28/40/48/64 20/28/44/68 28/44/52 44 24/28/40/48 64 18

Туре	Package type	Pin count availability
HSG3110	PDIP PLCC LLCC CLCC CDIP CPGA SO	22/24/28/40/48/64 20/28/44/68 28/44/52 44 24/28/40/68 64 18
HSG3130	PDIP PLCC LLCC CLCC CDIP CPGA	24/28/40/48/64 20/28/44/68/84 44/52/84 44/84 24/28/40/48 64
HSG3170	PDIP PLCC LLCC CLCC CDIP CPGA PQFP	24/28/40/48/64 28/44/68/84 44/52/68/84 44/68/84 24/28/40/48 64/68/84 64/80/100
HSG3210	PDIP PLCC LLCC CLCC CDIP CPGA PQFP	28/40/48/64 44/68/84 52/68/84 68/84 24/40/48 64/68/84/100/120 64/80/100
HSG3250	PDIP PLCC LLCC CLCC CDIP CPGA PQFP	28/40/48/64 44/68/84 52/68/84 68/84 40/48 64/68/84/100/120 64/80/100

HSG 7000 SERIES

Туре	Package type	Pin count availability
HSG7080	P DIP PLCC LLCC CLCC CDIP CPGA SO	22/24/28/40/48/64 20/28/44 28/44 44 24/28/40 64 16/18/20/24/28
HSG7140	P DIP PLCC LLCC CLCC CDIP CPGA SO	22/24/28/40/48/64 20/28/44/68 28/44/52 44 24/28/40/48 64 18
HSG7220	P DIP PLCC LLCC CLCC CDIP CPGA	24/28/40/48/64 28/44/68/84 44/52 44/68/84 24/40/48 64/68/84
HSG7320	P DIP PLCC LLCC CLCC CDIP CPGA PQFP	28/40/48/64 28/44/68/84 52/68/84 44/68/84 24/40/48 64/68/84 64/80/100

Туре	Package type	Pin count availability
HSG7420	P DIP PLCC LLCC CLCC CDIP CPGA PQFP	28/40/48/64 44/68/84 52/68/84 68/84 48 64/68/84/100 64/80/100
HSG7600	P DIP PLCC LLCC CLCC CPGA PQFP	48 68/84 68/84 68/84 68/84/100/120/144/180 100/128
HSG7840	PLCC LLCC CLCC CPGA PQFP	68/84 84 68/84 100/120/144/180 128
HSG71000	PLCC LLCC CLCC CPGA PQFP	68/84 84 68/84 100/120/144/180 128/160

PACKAGE RANGE

ISB 9000 SERIES

Туре	Package type	Pin count availability
ISB9003	PDIP PLCC LLCC CDIP SO	16/18/20/22/24/28/40 20/28 28 24/28/40 16/20/24/28
ISB9008	PDIP PLCC LLCC CDIP SO	16/18/20/22/24/28/40/48 20/28 28 24/28/40 16/18/20/24/28
ISB9015	PDIP PLCC LLCC CLCC CDIP CPGA SO	22/24/28/40/48 20/28/44 28/44 44 24/28/40 64 18/24/28
ISB9023	PDIP PLCC LLCC CLCC CDIP CPGA SO	22/24/28/40/48/64 20/28/44/68 28/44 44 24/28/40 64 18
ISB9038	PDIP PLCC LLCC CLCC CDIP CPGA	24/28/40/48/64 28/44/68 44/52 44 24/40/48

Туре	Package type	Pin count availability
ISB9055	PDIP PLCC LLCC CLCC CDIP CPGA PQFP	28/40/48/64 28/44/68/84 52/68/84 68/84 40/48 64 64/80/100
ISB9085	PDIP PLCC LLCC CLCC CPGA PQFP	28/40/48/64 44/68/84 52/68/84 68/84 68/84 64/80/100
ISB9122	PLCC LLCC CLCC CPGA PQFP	84 68/84 68/84 68/84/100/120 100/128
ISB9165	PLCC LLCC CLCC CPGA PQFP	68/84 84 84 100/120/144/180 128
ISB9201	PLCC LLCC CLCC CPGA PQFP	68/84 84 84 100/120/144/180 128/160

ISB 12000 SERIES

Туре	Package type	Pin count availability
ISB12008	PLCC PPGA CPGA	28 <u>/</u> 44/68/84 68 68/84
ISB12011	PLCC PPGA CPGA PQFP	44/68/84 84 68/84/100 100
ISB12015	PLCC PPGA CPGA PQFP	68/84 84/120 68/84/100/120 100/144
ISB12020	PLCC PPGA CPGA PQFP	68/84 84/120/180 84/100/120/144/180 100/144

Туре	Package type	Pin count availability
ISB12025	PLCC PPGA CPGA PQFP	68/84 120/180 100/120/144/180 144/160
ISB12038	PPGA CPGA PQFP	120/180 120/144/180 144/160
ISB12054	PPGA PQFP	180/224 160/196
ISB12076	PPGA	180/224
ISB12103	PPGA	224/296
ISB12128	PPGA	224/296

CB200 AND CB300 SERIES

Туре	Package type	Pin count availability
CB200 and CB300	PDIP PLOC LLCC CLCC CDIP CPGA PPGA POFP SO	16/18/20/22/24/28/40/48/64 20/28/44/68/84 20/28/44/52/68/84 28/44/68/84 16/18/20/24/28/40/48 64/68/84/100/120/144/180 64/68/84/100/120/144 64/80/100/128/160 16/18/20/24/28

Innovative Silicon Technology is a member of the SGS-THOMSON Microelectronics group.

SALES OFFICES

NORTH & SOUTH AMERICAN MARKETING HEADQUARTERS

SGS-THOMSON Microelectronics, Inc.

1000 East Bell Road Phoenix, AZ 85022 (602)867-6100

SALES OFFICES

ALABAMA

Huntsville - (205)533-5995

ARIZONA

Phoenix - (602)867-6340

CALIFORNIA

Irvine - (714)250-0455 San Jose - (408)452-8585

COLORADO

Boulder - (303)449-9505

ILLINOIS

Schaumburg - (312)517-1890

REPRESENTATIVES

ALABAMA

Huntsville - (205)881-9270

CALIFORNIA

Fountain Valley - (714)545-3255 Los Angeles - (213)879-0770 San Diego - (619)693-1111 Santa Clara - (408)727-3406

FLORIDA

Ft. Lauderdale - (305) 978-0120 Melbourne - (407) 255-0352 Orlando - (407) 423-3682 St. Petersburg - (813) 894-3989

GEORGIA

Tucker - (404)938-4358

268

MASSACHUSETTS

Waltham - (617)890-6688

NEW JERSEY

Voorhees - (609)772-6222

OREGON

Tigard - (503)620-5517

TEXAS

Austin - (512)339-4191 Carrollton - (214)466-8844

WASHINGTON

Seattle - (206)524-6421

INDIANA

Fort Wayne - (219)436-3023 Greenwood - (317)881-0110

IOWA

Cedar Rapids - (319)393-0075

MARYLAND

Glen Burnie - (301)761-6000

MICHIGAN

Southfield - (313)358-4151 Brighton - (313)227-3598

MINNESOTA

Bloomington - (612)884-6515

MISSOURI

Florissant - (314)839-0033 Kansas City - (816)436-6445

NEW YORK

Jericho - (516)935-3200 Pittsford - (716)381-3186

NORTH CAROLINA

Charlotte - (704)563-5554 Morrisville - (919)469-9997

OHIO

Chagrin Falls - (216)338-5103 Dayton - (513)866-6699

OREGON

Beaverton - (503)627-0838

PENNSYLVANIA

Horsham - (215)441-4300

TENNESSEE

Jefferson City - (615)475-9012

WASHINGTON

Bellevue - (206)451-3500

WISCONSIN

Hartland - (414)367-1133

CANADA

Mississauga - (416)673-0011 Nepean - (613)825-0545 Quebec - (514)337-5022 Vancouver - (604)873-1112 Winnipeg - (204)949-1877

SOUTH AMERICA

SALES OFFICE

BRAZIL

Sao Paulo - (55)11-883-5455

REPRESENTATIVES

ARGENTINA

Buenos Aires - (1)795-0669

COLOMBIA

Bogota - 57-1-257-8824

MEXICO

Mexico City -(905)577-1883

PUERTO RICO

Rio Piedras - (809)754-7730

URUGUAY

Montevideo - 598-2-594-888

For RF and Microwave Power Transistors, contact the following regional offices in the U.S.

CALIFORNIA

Hawthorne - (213)675-0742

NEW JERSEY

TOTOWA - (201)890-0884

PENNSYLVANIA

Montgomeryville - (215)362-8500

TEXAS

Carrollton - (214)466-8844

DISTRIBUTORS

	THOUSAND 041/0
ALABAMA HUNTSVILLE	THOUSAND OAKS BELL INDUSTRIES805-499-6821
ARROW ELECTRONICS	TORRANCE SCHWEBER ELECTRONICS213-320-8090
PIONEER ELECTRONICS205-837-9300 SCHWEBER ELECTRONICS205-895-0480	TUSTIN ARROW ELECTRONICS714-838-5422
ARIZONA PHOENIX	YORBA LINDA ZEUS COMPONENTS714-921-9000
ARROW ELECTRONICS602-437-0750 MARSHALL INDUSTRIES602-496-0290 STERLING ELECTRONICS602-268-2121	COLORADO ENGLEWOOD
TEMPE BELL INDUSTRIES	ARROW ELECTRONICS303-790-4444 SCHWEBER ELECTRONICS303-799-0258
CALIFORNIA	THORNTON MARSHALL INDUSTRIES303-451-8383
ANAHEIM PACESETTER ELECTRONICS714-779-5855	WHEATRIDGE BELL INDUSTRIES303-424-1985
CALABASAS SCHWEBER ELECTRONICS818-880-9686	CONNECTICUT MILFORD MILGRAY302-878-5538
CHATSWORTH ARROW ELECTRONICS818-701-7500 MARSHALL INDUSTRIES818-407-4122	NORWALK PIONEER ELECTRONICS203-853-1515
CYPRESS BELL INDUSTRIES714-895-7801	OXFORD SCHWEBER ELECTRONICS203-264-4700
EL MONTE MARSHALL INDUSTRIES818-459-5500	WALLINGFORD ARROW ELECTRONICS203-265-7741
GARDENA BELL INDUSTRIES213-515-1800	MARSHALL INDUSTRIES203-265-3822
IRVINE MARSHALL INDUSTRIES714-458-5305 SCHWEBER ELECTRONICS714-863-0256	FLORIDA ALTAMONTE SPRINGS MARSHALL INDUSTRIES
LOS ANGELES BELL INDUSTRIES213-826-6778	DEERFIELD BEACH
MILPITAS MARSHALL INDUSTRIES408-942-4654	ARROW ELECTRONICS305-429-8200 PIONEER ELECTRONICS305-428-8877
RANCHO CORDOVA MARSHALL INDUSTRIES916-635-9700	FT LAUDERDALE MARSHALL INDUSTRIES305-977-4880
ROCKIN BELL INDUSTRIES916-635-9700	LAKE MARY ARROW ELECTRONICS407-323-0252
SACRAMENTO SCHWEBER ELECTRONICS916-364-0222	OVIEDO ZEUS COMPONENTS305-365-3000
SAN DIEGO	POMPANO BEACH SCHWEBER ELECTRONICS305-977-7511
ARROW ELECTRONICS619-565-4800 MARSHALL INDUSTRIES619-578-9600 SCHWEBER ELECTRONICS619-450-0454	ST.PETERSBURG MARSHALL INDUSTRIES813-576-1399
SAN JOSE PACESETTER ELECTRONICS408-436-8822 SCHWEBER ELECTRONICS408-432-7153	TAMPA REPTRON ELECTRONICS813-855-4656 REPTRON ELECTRONICS813-854-2351
SANTA FE SPRINGS BELL INDUSTRIES213-826-6778	GEORGIA NORCROSS
SUNNYVALE ARROW ELECTRONICS408-745-6600 BELL INDUSTRIES408-734-8570	ARROW ELECTRONICS

IOWA CEDAR RAPIDS ARROW ELECTRONICS	MICHIGAN GRAND RAPIDS ARROW ELECTRONICS
ELK GROVE VILLAGE BELL INDUSTRIES312-640-1910 SCHWEBER ELECTRONICS312-364-3765	MINNESOTA EDEN PRAIRIE PIONEER ELECTRONICS
ITASCA ARROW ELECTRONICS312-250-0500 SCHAUMBURG MARSHALL INDUSTRIES312-490-0155	ARROW ELECTRONICS612-830-1800 SCHWEBER ELECTRONICS612-941-5280
INDIANA FT. WAYNE	PLYMOUTH MARSHALL INDUSTRIES612-559-2211
BELL INDUSTRIES219-423-3422 INDIANAPOLIS	MISSOURI BRIDGETON MARSHALL INDUSTRIES314-291-8554
ARROW ELECTRONICS	EARTH CITY SCHWEBER ELECTRONICS314-739-0526
KANSAS LENEXA	ST. LOUIS ARROW ELECTRONICS314-567-6888
ARROW ELECTRONICS913-541-9542 MARSHALL INDUSTRIES913-492-3121	NORTH CAROLINA RALEIGH ARROW ELECTRONICS919-876-3132
OVERLAND PARK MILGRAY ELECTRONICS913-236-8800 SCHWEBER ELECTRONICS913-492-2922	MARSHALL INDUSTRIES919-878-9882 SCHWEBER ELECTRONICS919-876-0000
MASSACHUSETTS BEDFORD SCHWEBER ELECTRONICS617-275-5100	NEW HAMPSHIRE MANCHESTER ARROW ELECTRONICS
DANVERS NU-HORIZONS ELECTRONICS508-777-8800	NEW JERSEY FAIRFIELD
LEXINGTON ZEUS COMPONENTS617-863-8800	MARSHALL INDUSTRIES
NEWTON GREENE-SHAW617-969-8900	MARLTON ARROW ELECTRONICS
WILMINGTON ARROW ELECTRONICS617-658-0900 MARSHALL INDUSTRIES508-658-0810 MILGRAY ELECTRONICS508-657-5900	MOUNT LAUREL MARSHALL INDUSTRIES609-234-9100 PARSIPPANY
MARYLAND	ARROW ELECTRONICS201-575-6750
COLUMBIA ARROW ELECTRONICS301-995-6002 ZEUS COMPONENTS301-997-1118	PINE BROOK PIONEER ELECTRONICS201-575-3510 NU-HORIZONS ELECTRONICS201-882-8300
GAITHERSBURG PIONEER ELECTRONICS301-921-0660 SCHWEBER ELECTRONICS301-840-5900	NEW MEXICO ALBUQUERQUE ARROW ELECTRONICS505-243-4566
SILVER SPRINGS MARSHALL INDUSTRIES301-622-1118	BELL INDUSTRIES

NEW YORK BINGHAMTON	LAKE OSWEGO BELL INDUSTRIES503-635-6500
PIONEER ELECTRONICS607-722-9300 E. ROCHESTER NU-HORIZONS ELECTRONICS716-248-5980	PENNSYLVANIA HORSHAM PIONEER ELECTRONICS215-674-4000
FAIRPORT PIONEER ELECTRONICS716-381-7070	SCHWEBER ELECTRONICS215-441-0600 PITTSBURGH
FARMINGDALE MILGRAY ELECTRONICS516-420-9800	MARSHALL INDUSTRIES412-963-0441 PIONEER ELECTRONICS412-782-2300 SCHWEBER ELECTRONICS412-782-1600
HAUPPAUGE ARROW ELECTRONICS516-231-1000 MARSHALL INDUSTRIES516-273-2424 JOHNSON CITY	TEXAS AUSTIN ARROW ELECTRONICS
MARSHALL INDUSTRIES607-798-1611	PIONEER ELECTRONICS512-835-4000 SCHWEBER ELECTRONICS512-339-0088
MELVILLE ARROW ELECTRONICS516-391-1320 ARROW ELECTRONICS516-391-1600	CARROLLTON ARROW ELECTRONICS214-380-6464 MARSHALL INDUSTRIES214-770-0602
NO. AMITYVILLE NU-HORIZONS ELECTRONICS516-226-6000 PORT CHESTER	DALLAS PIONEER ELECTRONICS214-386-7300 SCHWEBER ELECTRONICS214-661-5010
ZEUS COMPONENTS914-937-7400 ROCHESTER ARROW ELECTRONICS716-427-0300 MARSHALL INDUSTRIES716-235-7620	HOUSTON ARROW ELECTRONICS
MILGRAY ELECTRONICS716-235-0830 SCHWEBER ELECTRONICS716-424-2222 WESTBURY	MANSFIELD MOUSER ELECTRONICS817-483-0165
SCHWEBER ELECTRONICS516-334-7474	UTAH
OHIO BEACHWOOD	MIDVALE BELL INDUSTRIES801-255-9611
SCHWEBER ELECTRONICS216-464-2970 CENTERVILLE ARROW ELECTRONICS513-435-5563	SALT LAKE CITY ARROW ELECTRONICS801-973-6913 MARSHALL INDUSTRIES801-485-1551
CLEVELAND MILGRAY ELECTRONICS216-447-1520 PIONEER ELECTRONICS216-587-3600 PIONEER ELECTRONICS216-587-3906	VIRGINIA REDMOND BELL INDUSTRIES206-885-9963
DAYTON BELL INDUSTRIES	WASHINGTON BELLEVUE ALMAC ELECTRONICS206-643-9992 BOTHELL MARSHALL INDUSTRIES206-486-5747
SOLON ARROW ELECTRONICS216-248-3990 MARSHALL INDUSTRIES216-248-1788	KENT ARROW ELECTRONICS206-575-4420 SPOKANE
OKLAHOMA TULSA	ALMAC ELECTRONICS509-924-9500
ARROW ELECTRONICS918-252-7537 SCHWEBER ELECTRONICS918-622-8000	WISCONSIN BROOKFIELD ARROW ELECTRONICS414-792-0150
OREGON BEAVERTON ALMAC ELECTRONICS	NEW BERLIN SCHWEBER ELECTRONICS414-784-9020 WAUKESHA BELL INDUSTRIES

CANADA BRAMPTON, ONT. ZENTRONICS416-451-9600	
BURNABY, B.C. ITT/RAE604-291-8866	
CALGARY, ALBERTA FUTURE ELECTRONICS403-235-5325 ZENTRONICS403-295-8838	
CONCORD, ONT. ITT/RAE416-736-1048	
DOWNSVIEW, ONT. FUTURE ELECTRONICS416-638-4771	
EDMONTON, ALBERTA FUTURE ELECTRONICS403-438-2858 ITT/RAE604-291-8866	
NEPEAN ITT/RAE613-226-7406	

	TAWA, ONT. TURE ELECTRONICS	613-820-8313
RI	CHMOND, B.C. ZENTRONICS	604-273-5575
SA	ASKATCHEWAN ITT/RAE	306-933-2888
ST	. LAURENT, P.Q.	604-291-8866
VA	NCOUVER, B.C. FUTURE ELECTRONICS .	604-294-1166
VII	LE ST.LAURENT ITT/RAE ZENTRONICS	514-335-7697 514-737-9700
WI	NNIPEG, MANITOBA ITT/RAE FUTURE ELECTRONICS . ZENTRONICS	204-786-8470 514-694-7710 204-694-1957

© 1988 SGS-THOMSON Microelectronics — All Rights Reserved

Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied.

- ® MULTIWATT and PENTAWATT are registered trademarks of companies belonging to the SGS-THOMSON Microelectronics group.
- ™ BIPORT, ISOWATT218, ISOWATT220, TAGRAM, TIMEKEEPER, TonePulse, ZEROPOWER and CONTINUOUS ARRAY are trademarks of companies belonging to the SGS-THOMSON Microelectronics group.
- ® Z8 and Z80 are registered trademarks of Zilog Inc. GAL is a registered trademark of LATTICE SEMICONDUCTORS Corp.
- TM Z8000 is a trademark of Zilog Inc. HS-C²MOS is a trademark of TOSHIBA Corp. E²CMOS is a trademark of LATTICE SEMICONDUCTORS Corp.

