Bunka

October 11, 2021

Contents

truktúra bunky	3
bunky podľa štr	3
Tvar buniek	3
Chemické zloženie bunky	3
funkcie zlúčenín v bunke	3
anorganické látky v bunke	3
Voda	3
minerálne látky	3
Organické látky	4
Beilkoviny	4
Sacharidy	4
Tuky	5
Nukleové kyseliny	6
DNA	6
RNA	7
truktúra eukaryotickej bunky	7
Bunkové povrchy	8
Cytoplazmatická membrána	8
Bunková stena	8
	ç
Cytoplazma	ç
Bunkové organely	ç
Membránové organely	$\frac{9}{13}$
0 1	
	14
	14
	14
Prokaryotickej a eukaryotickej bunky	14
Príjem a výdaj látok v bunke	14
Pasívny transport látok	15

Difúzia .																	1	-
Osmóza																	1	ŗ

Štruktúra bunky

Podmienená dedične a funkciou a typom bunky.

bunky podľa štr

- prokarytická ZOPAKOVAŤ Z 1. ROČNÍKA
 - $-1 10 \mu m$
- eukaryotická
 - 10 100 µm

Tvar buniek

guľovitý, vajcovitý, vretenovitý, hviezdicovitý, kockovitý, polyhédrický, diskovitý, tyčinkovitý, \dots

Chemické zloženie bunky

- 1. H_2O a anorg. látky 60 90 %
- 2. cukry, tuky, bielkoviny, ...

funkcie zlúčenín v bunke

- stavebná / konštrukčná
- metabolická
- zásobná
- substrátová

anorganické látky v bunke

Voda

- substrát
- reaktant
- produkt v reakciách
- transport
- podmieňuje biologickú aktivitu mnohých org. látok.

minerálne látky

ovplyvňujú

- osmózu
- metabolizmus
- \bullet vodivosť
- stavebná funkcia

sodné, draselné, vápenaté, horečnaté, hydrogénuhličitanové anióny

Organické látky

Beilkoviny

- makromolekuly biopolyméry
 - stavajú sa z monomérov aminokyselín
- existuje 21 aminokyselín z ktorých môže byť bielkovina

```
R - CH - COOH - karboxylová
| skupina
NH2
| aminoskupina
```

- spájajú sa **peptidovou väzbou**
- môžu byť guľovité globulárne alebo vláknité fibrilárne

funkcie bielkovín

- stavebná
 - napr. keratín, kolagén, elastín
- v svaloch
 - aktín, myozín
- katalytická
 - enzýmy
 - urýchľujú metabolizmus
- transportná
- regulačná
 - hormóny
- informačná
- zdroj energie
 - ale nie vždy
- sú aj súčasťou cytoplazmatickej membrány

Sacharidy

- uhlík, vodík, kyslík
- $XC + XH_2O$

poznáme

- monosacharidy
- disacharidy
- polysacharidy

CUKRY - iba tie sladké SACHARIDY - aj polysacharidy

Monosacharidy

• 6 uhlíkov - HEXOZY - $C_6H_{12}O_6$

- glukóza
 - * hroznový cukor
- fruktóza
 - * ovoňý cukor
- galaktóza
 - * mozgový cukor
- 5 uhlíkov PENTÓZY
 - ribóza
 - deoxysilóza

Disacharidy dva monosacharidy spojené väzbou

SAcharóza

LAktóza

MAltóza

- SALAMA
 - sacharóza
 - repný cukor
 - trstinový cukor
 - laktóza
 - mliečny
 - maltóza

Polysacharidy

- zásobné
 - škrob (RASTLINY)
 - glykogén (HUBY, ŽIV)
- stavebné
 - celulóza (RASTLINY)
 - chitín (HUBY, ŽIV)

Funkcie sacharidov

- energetická
- stavebná
- zásobná

Tuky

- ~LIPIDY
- estéry vyšších mastných kyselín a trojsytného glycerolu

Funkcie tukov

- zdroje energie
- tepelnoizolačná funkcia

- zásoba energie
- stavebná funkcia
 - CP membrána
- rozpúšťajú vitamíny a hormóny
 - D, E, K, A
- pomáhajú prenášať nervové vzruchy

Nukleové kyseliny

- biomaktromolekulové látky
- základná štruktúrna jednotka **NUKLEOTID**
- funkcou nukl. kyselín je **ukladanie** genetických informácií a niekedy tvorba bielkovín

DNA

- deoxyribonukleová kyselina
- nukletid DEOXYRIBONUKLEOTID
 - -5C cukor = DEOXYRIBOZA cukrová zložka
 - -zvyšok ${\cal H}_3PO_4$ kyslá zložka
 - dusíkatá báza zásaditá zložka
 - * ADENÍN A
 - * GUANÍN G
 - * CYTOZÍN- C
 - * TYMÍN T

- pravotočivá dvoj závitnica
 - dva polynukleotidové reťazce

Vodíkové väzby medzi sebou tvoria dusíkaté bázy susedných reťazco na základe princípu **komplementarity**. A sa viaže dvojitou vodíkovou väzbou na T a G sa viaže na C trojitou vodíkovou väzbou. Napríklad:

- A T
- C G
- C G
- G C

T - A

RNA

štruktúrna jednotka RIBONUKLEOTID.

- cukorná zložka 5C sukor ribóza
- $\bullet\;$ zvyšok H_3PO_4 kyslá zložka
- dusíkaté bázy
 - ADENÍN A
 - GUANÍN G
 - CYTOZÍN- C
 - URACIL U

RNA je pravotočivá **jednozávitnica** - iba jeden polynukleotidový reťazec.

Existujú 3 funkčné typy RNA:

- 1. ribozómová RNA rRNA
 - jednou zo zložiek ribozómov, na ktorých prebieha tvorba bielkovín
- 2. transferová RNA tRNA
 - prináša aminokyseliny na ribozómy
- 3. mediátorová RNA mRNA
 - slúži ako vzor pre tvorbu bielkovín
 - vzniká na základe DNA prepisom (transkripciou)

vlastnosť	DNA	RNA
štruktúra	pravotočivá dvojzávitnica	pravotočivá jednozávitnica
sacharid	deoxyribóza	ribóza
dusíkaté bázy	A G C T	A G C U
funkcia	uchovanie gen. informácie	prenos gen. informácie
počet typov	1	3
výskyt	jadro bunky, mitochondrie a chloroplasty	ribozómy, cytoplazma

Štruktúra eukaryotickej bunky

- 1. bunkové povrchy
- 2. cytoplazma
- 3. organely
- membránové
- vláknité
- 4. inklúzie

Bunkové povrchy

- ochranná, krycia funkcia
- prechod látok

Cytoplazmatická membrána

- na každej bunke
- synonymum plazmaléma
- $\bullet\,$ polopriepustná semipermeabilná / selektívne priepustná
 - kanály a receptory na povrchu
 - * tok látok aj informácií

skladá sa z:

- dvojvrstvy fosfolipidov
- bielkovín

Bunková stena

- na povrchu rastlín, húb, prokaryotov
- ochranná a mechanická funkcia

- stály tvar
- $\bullet\,\,$ plne priepustná permeabilná

Cytoplazma

Cytoplazma je tekutý obsah bunky. Je to koloidný roztok rôznych org. aj anorganických látaok. Plní substrátovú funkciu.

Bunkové organely

Membránové organely

Jadro Riadiace, koordinačné a reprodukčné centrum bunky. Je to mikroskopická štruktúra.

skladá sa z:

Plastidy organely typické pre rastlinné bunky - chromoplasty, chloroplasty, leukoplasty

Chloroplast

- fotosyntéza
- semiautonómne
 - majú vlastnú DNA
 - dvojitá membrána
 - $-\,$ asi vznikli zo siníc čo sa vkradli do bunky
 - * endosymbiotická teória

chromoplasty xantofyly, karotenidy - sfarbujú kvety, plody, ... pomocné farbivá pri fotosyntéze

leukoplasty leukos - biely biele alebo bezfarebné

zásobná funkcia - ukladajú škrob alebo tuk

- amyloplasty škrob
- elaioplasty tuk

Mitochondrie

- respiračné a energetické centrá buniek
- tiež semiautonómne

- záhyby kristy
- výplň matrix /matriks/

Endoplazmatické retikulum

- dve formy
 - hladká málo ribozómov
 - * tuky a vitamín D
 - drsná, zrnitá veľa ribozómov
 - * rôzne bielkoviny

Golgiho aparát funkcie:

- syntetická
 - tovrba a úprava látok z endoplazmatického retikula
- sekrečná
 - neustálze sa z neho uvoľňujú **vezikuly** (mechúriky) s látkami
- tvorba lyzozómov tráviacich organel

Figure 1: endoplazmatické retikulum

Figure 2: golgiho aparát

Vakuoly

- u prvokov je veľa rôznych vakuol
- takisto aj v rastlinách
 - v dospelých rastlinných bunkách vypĺňa vakuola skoro celú bunku vtedy sa to volá centrálna vakuola
- iba jedna membrána tonoplast

funkcie:

- udržujú vnútorný tlak v bunke
 - bunková šťava
 - * org. kyseliny, soli, inklúzie
- zásobná
- hydrolitycké enzýmy
 - zabezpečujú rozklad látok pomocou vody

Lyzozómy

- ako vakuoly, iba v živočíšnych bunkách
 - tiež hydrolitycké enzýmy
- vznikajú z golgiho aparátu

Fibrilárne organely

- vždy zložené z bielkovín
 - bielkoviny, ktoré sa vedia sťahovať kontraktilné bielkoviny
- ti vlákna môžu byť rovnakého typu:
 - mikrotubuly najhrubšie, duté
 - mikrofilamenty tenké, plné
 - intermediárne filamenty niečo medzi čo sa hrúbky týka, plné

Cytoskelet

- dynamická bunková kostra
- drží bunku pokope

funkcia	filament	funkcia funkcie
$pohybov\'a$	áintermediárne filamenty mikrofilamenty, no aj mikrotubuly(bičík, brvy)	stála poloha organel pohyb cytoplazmy, meňavkovitý pohyb, pohyb vezikúl
$podporncute{a}$	kazdy	tvar buniek

Mitotický aparát

- · počas mitózy
- zabezpečuje, aby dcérske bunky mali roznaké chromozómy

• skladá sa z centriolov a deliacich vretienok z mikrotubulov

Chromozómy

• sa niekedy zaraďujú ako fibrilárne organely

Bunkové inklúzie

- neživé súčasti bunky
- buď sa vyskytujú v cytoplazme, alebo vo vakuole
- buď sú to nestráviteľné látky pohltené z vonku, alebo sú to prebytočné odpadové produkty metabolizmu
 - často to sú kryštály soli šťaveľan vápenatý
 - takisto kryštály beikovín
 - alebo SIO_2
- rôzne tvary
 - stiloidy
 - rafidy
 - drúzy

Porovnanie

rastlinnej a živočíšnej bunky

vlastnost	živočíšna	rastlinná
tvar	tvarovo variabilnejšia	
povrchy	len cytoplazmatická membrána	aj bunková stena
špeciálne organely	lyzozómy	plastidy, vakuoly

Prokaryotickej a eukaryotickej bunky

Eukaryotické bunky sú väčšie, majú membránové organely. V prokaryotickej je jedinou membránou cytoplazma. Jedinou membránovou organelou v prokaryotickej bunke môžu byť *tylakoidy*. Jadro prok. bunky je iba *nukleoid*, v prokaryotickej bunke sa môžu vyskytovať plazmidy. Prokaryotické bunky majú stenu z *mureínu*.

Príjem a výdaj látok v bunke

Môže sa diať:

- bez spotreby energie pasívny
- za spotreby energie aktívny

Energiu v bunke prenáša \mathbf{ATP} - anedozíntrifosfát - má stavbu podobnú nukleotidu

- adenín ribóza 3 krát zvyšok H_3PO_4
- Makroenergetické fosfátové väzby

Figure 3: ATP

Pasívny transport látok

• deje sa v membráne

Difúzia

Prenikanie molekúl jednej látky medzi molekuly inej látky v smere koncentračného spádu - z miesta s vyššou koncentráciou na miesto s nižšou koncentráciou. Takto prechádzajú napríklad:

- voda
- · oxid uhličitý
- etanol
- močovina
- ...

Niekedy sa na tej difúzii zúčasňujú aj membránové bielkoviny. V tomto prípade hovoríme o *ulahčenej difúzii*.

Osmóza

Pasívny transprt vody cez semipermeabilnú membránu kvôli vyrovnaniu koncentrácií mimobunkového a vnútrobunkového prostredia. Z hľadiska osmózy sa môže bunka nachádzať v troch osmotických prostrediach:

- izotonické
 - vyrovnané
 - osmózan't
 - fyziologický roztok NaCl 0.9%
- hypertonické
 - viac mimo bunky ako v bunke

- voda ide von z bunky
 - * ako keď posolíme uhorky alebo slimáka
 - * plazmolýza
- hypotonické
 - viac v bunke ako mimo
 - voda ide do bunky
 - * deplazmolýza
 - $\ast\,$ pri živočíšnych bunkách môže bunka aj prasknúť plazmoptýza
 - * praskanie ovocia po dažďoch