

FORMALE SYSTEME

ÜBUNG 5

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 19. November 2021

Aufgabe 1:

NFA o RegExp

NFA ightarrow REGEXP: ERSETZUNGSMETHODE

Gegeben: NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$

Gesucht: regulärer Ausdruck α mit $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M})$

Idee:

Für jeden Zustand $q \in Q$, berechne einen regulären Ausdruck α_q für die Sprache $\mathbf{L}(\alpha_q) = \mathbf{L}(\mathcal{M}_q)$ mit $\mathcal{M}_q = \langle Q, \Sigma, \delta, \{q\}, F \rangle$

Für Startzustände $Q_0 = \{q_1, q_2, \dots, q_n\}$ gilt dann

$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \mathbf{L}(\alpha_q) = \mathbf{L}(\alpha_{q_1} \mid \alpha_{q_2} \mid \dots \mid \alpha_{q_n})$$

- (1) **Vereinfache den Automaten** (entferne offensichtlich unnötige Zustände)
- (2) Bestimme das Gleichungssystem

Intuition: Beschreibe α_q in Abhängigkeit von Folgezuständen

- ho Für jeden Zustand $q \in Q \setminus F$: $\alpha_q \equiv \sum_{\mathbf{a} \in \Sigma} \sum_{p \in \delta(q, \mathbf{a})} \mathbf{a} \alpha_p$
- ightharpoonup Für jeden Zustand $q \in F$: $\alpha_q \equiv \varepsilon \mid \sum_{\mathbf{a} \in \Sigma} \sum_{p \in \delta(q,\mathbf{a})} \mathbf{a} \alpha_p$
- (3) Löse das Gleichungssystem durch Einsetzen und

Regel von Arden: Aus $\alpha \equiv \beta \alpha \mid \gamma \text{ mit } \varepsilon \notin \mathbf{L}(\beta) \text{ folgt } \alpha \equiv \beta^* \gamma.$

(4) Gib den Ausdruck für die Sprache des NFA an

Für
$$Q_0 = \{q_1, q_2, \dots, q_n\}$$
 gilt dann
$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \mathbf{L}(\alpha_q) = \mathbf{L}(\alpha_{q_1} \mid \alpha_{q_2} \mid \dots \mid \alpha_{q_n})$$

AUFGABE 1

Gegeben ist der DFA $\mathcal{M} = \langle \{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_0\} \rangle$ mit δ :

Geben Sie einen regulären Ausdruck α an, der die von \mathcal{M} akzeptierte Sprache repräsentiert, d.h. es gilt $L(\alpha) = L(\mathcal{M})$.

Hinweis: Zur Lösung können Sie die Ersetzungsmethode verwenden: geben Sie hierzu für jeden Zustand q_i des Automaten eine Gleichung $\alpha_i=\dots$ an. Lösen Sie anschließend das Gleichungssystem mithilfe des *Arden-Lemmas*.

Wir beschreiben die Sprache eines jeden Zustands in Abhängigkeit der Folgezustände:

$$\alpha_0 \equiv a\alpha_0 \mid b\alpha_1 \mid \varepsilon$$

$$\alpha_1 \equiv a\alpha_0 \mid b\alpha_2$$

$$\alpha_2 \equiv b\alpha_0 \mid a\alpha_2$$

Lösen wir dieses Gleichungssystem:

Löse α_2 :

 $\alpha_2 \equiv a^*b\alpha_0$

Der gesuchte reguläre Ausdruck ist die Veroderung "|" aller zu Startzuständen gehörenden α_i , d.h. hier ist $\alpha := \alpha_0$. Per Konstruktion gilt dann $L(\alpha) = L(\mathcal{M})$.

Minimierung von Automaten

Aufgabe 2:

ÄQUIVALENZ VON ZUSTÄNDEN & QUOTIENTENAUTOMAT

$$\mathsf{DFA}\ \mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle \leadsto \mathsf{DFA}\ \mathcal{M}_q = \langle Q, \Sigma, \delta, q, F \rangle$$

Quotientenautomat: Verschmelzen von äquivalenten Zuständen

Für einen DFA $\mathcal{M}=\langle Q,\Sigma,\delta,q_0,F\rangle$ mit totaler Übergangsfunktion ist der Quotientenautomat $\mathcal{M}/_{\!\!\sim}=\langle Q/_{\!\!\sim},\Sigma,\delta_{\sim},[q_0]_{\sim_{\mathcal{M}}},F/_{\!\!\sim}\rangle$ gegeben durch

- $\blacktriangleright F/_{\sim} = \{ [q]_{\sim} \mid q \in F \}$

Bestimmung von \sim :

- ▶ Initialisiere $\% := \emptyset$
- ▶ **Regel 1**: Für jedes Paar von Zuständen $\langle q, p \rangle \in Q \times Q$: falls $q \in F$ und $p \notin F$, dann "speichere $q \nsim p$ "
- ▶ **Regel 2**: Für jedes Paar $\langle q, p \rangle \in Q \times Q \setminus \mathscr{P}$ und jedes $\mathbf{a} \in \Sigma$: falls $\delta(q, \mathbf{a}) \not\sim \delta(p, \mathbf{a})$ dann "speichere $q \not\sim p$ "
- ► Wiederhole Regel 2 bis keine Änderungen mehr auftreten
- ▶ Das Ergebnis ist (Q × Q) \ \phi

Beispiel: Für einen DFA mit Zuständen $Q = \{A, B, C, D, E\}$ genügt eine Tabelle mit zehn Feldern (statt $5^2 = 25$).

(dazu reihen wir Zustände vertikal in umgekehrter Reihenfolge)

AUFGABE 2

Gegeben ist der ε -NFA

$$\mathcal{M} = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \Delta, \{q_0\}, \{q_2\}) \text{ mit } \Delta$$
:

- a) Konstruieren Sie einen zu ${\mathcal M}$ äquivalenten DFA ${\mathcal M}'.$
- b) Geben Sie den zu \mathcal{M}' reduzierten DFA \mathcal{M}'_r an.

Nerode-Rechtskongruenz

Aufgabe 3:

NERODE-RECHTSKONGRUENZ

```
Nerode-Rechtskongruenz \simeq_{\mathbf{L}} \subseteq \Sigma^* \times \Sigma^*: u \simeq_{\mathbf{L}} v falls uw \in \mathbf{L} \Leftrightarrow vw \in \mathbf{L} \quad \forall w \in \Sigma^*
```

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

Myhill-Nerode-Minimalautomat $\mathcal{M}_{\mathbf{L}} = \langle Q, \Sigma, \delta, q_0, F \rangle$ mit:

- $\blacktriangleright \ \ Q = \{[w]_{\simeq} \mid w \in \Sigma^*\}$
- ▶ $q_0 = [\varepsilon]_{\simeq}$
- ▶ $F = \{[w]_{\simeq} \mid w \in \mathbf{L}\}$

AUFGABE 3

Gegeben ist der reguläre Ausdruck $\alpha = (bb)^*a$.

- 1. Geben Sie für α die *Nerode*-Rechtskongruenz $\simeq_{L(\alpha)}$ an.
- 2. Geben Sie einen minimalen DFA \mathcal{M} an mit $L(\mathcal{M}) = L(\alpha)$.

Für $\alpha = (bb)^*a$ gilt offensichtlich $L := L(\alpha) = \{b^{2n}a : n \ge 0\}.$

▶ $\varepsilon \simeq v$ gdw. $\varepsilon w \in L \Leftrightarrow vw \in L$

 $\Rightarrow [\varepsilon]_{\simeq} = \{b^{2n} : n \geq 0\}$

- ► $a \simeq v$ gdw. $\underbrace{aw \in L}_{w=\varepsilon} \Leftrightarrow \underbrace{vw \in L}_{v \in L}$
 - $\Rightarrow [a]_{\simeq} = L = \{b^{2n}a : n \geq 0\}$
- ▶ $b \simeq v$ gdw. $\underbrace{bw \in L}_{w=b^{2n+1}a} \Leftrightarrow \underbrace{vw \in L}_{v=b^{2n+1}}$ $\Rightarrow [v]_{\sim} = L = \{b^{2n+1} : n \geq 0\}$
- ▶ $ab \simeq v$ gdw. $\underbrace{aw \in L}_{\text{nie erfüllt}} \Leftrightarrow \underbrace{vw \in L}_{v \in L \cdot \{a,b\}^+}$ $v \in \{b\} \cdot L \{a,b\}^*$ $\Rightarrow [ab]_{\sim} = L \cdot \{a,b\}^+ \cup \{b\} \cdot L \{a,b\}^*$

Man kann nun leicht prüfen, dass diese Klassen tatsächlich disjunkt sind und ihre Vereinigung ganz Σ^* ergibt. Damit haben wir alle Klassen gefunden.

Äquivalenzklassen: $[arepsilon]_{\simeq}, [a]_{\simeq}, [b]_{\simeq}, [ab]_{\simeq}$

Myhill-Nerode-Minimalautomat $\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle$ mit

- $ightharpoonup q_0 := [\varepsilon]_{\simeq}$
- $\blacktriangleright \ F := \{[a]_{\simeq}\}$
- δ:

Beweis von Nichtregularität

Aufgabe 4

BEWEIS VON NICHTREGULARITÄT

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

BEWEIS VON NICHTREGULARITÄT

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

Satz: Wenn L_1 und L_2 regulär sind, dann auch $L_1 \cap L_2$, $L_1 \cup L_2$, L_1^* und \overline{L}_1 .

BEWEIS VON NICHTREGULARITÄT

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

Satz: Wenn L_1 und L_2 regulär sind, dann auch $L_1 \cap L_2$, $L_1 \cup L_2$, L_1^* und \overline{L}_1 .

Satz (Pumping-Lemma): Für jede reguläre Sprache **L** gibt es eine Zahl $n \geq 0$, so dass gilt: für jedes Wort $x \in \mathbf{L}$ mit $|x| \geq n$ gibt es eine Zerlegung x = uvw mit $|v| \geq 1$ und $|uv| \leq n$, so dass: für jede Zahl $k \geq 0$ gilt: $uv^k w \in \mathbf{L}$

AUFGABE 4

```
a) L_a = \{ww^R : w \in \{0, 1\}^*\}
b) L_b = \{\mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0\}
c) L_c = \{w \in \{0, 1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar}\}
d) L_d = \{w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1}\}
e) L_e = \{\mathbf{0}^{n^2} : n \ge 0\}
f) L_f = \{\mathbf{0}^m \mathbf{1}^n \mathbf{0}^{n+m} : n, m \ge 1\}
```

- a) $L_{\alpha} = \{ww^{R} : w \in \{0, 1\}^{*}\}$ irregulär (z.B. mit Myhill-Nerode oder Pumping-Lemma)
- b) $L_b = \{ \mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0 \}$
- c) $L_c = \{ w \in \{0, 1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar} \}$
- d) $L_d = \{ w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1} \}$
- e) $L_e = \{0^{n^2} : n \ge 0\}$
- f) $L_f = \{0^m 1^n 0^{n+m} : n, m \ge 1\}$

- a) $L_a = \{ww^R : w \in \{0, 1\}^*\}$ irregulär (z.B. mit Myhill-Nerode oder Pumping-Lemma)
- b) $L_b = \{\mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0\}$ irregulär (z.B. Schnitt mit $\{a\}^* \{b\}^*$)
- c) $L_c = \{ w \in \{0, 1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar} \}$
- d) $L_d = \{ w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1} \}$
- e) $L_e = \{0^{n^2} : n \ge 0\}$
- f) $L_f = \{0^m 1^n 0^{n+m} : n, m \ge 1\}$

- a) $L_a = \{ww^R : w \in \{0, 1\}^*\}$ irregulär (z.B. mit Myhill-Nerode oder Pumping-Lemma)
- b) $L_b = \{\mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0\}$ irregulär (z.B. Schnitt mit $\{a\}^* \{b\}^*$)
- c) $L_c = \{w \in \{0, 1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar}\}$ regulär (konstruiere endlichen Automaten)
- d) $L_d = \{ w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1} \}$
- e) $L_e = \{0^{n^2} : n \ge 0\}$
- f) $L_f = \{0^m 1^n 0^{n+m} : n, m \ge 1\}$

- a) $L_a = \{ww^R : w \in \{0, 1\}^*\}$ irregulär (z.B. mit Myhill-Nerode oder Pumping-Lemma)
- b) $L_b = \{\mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0\}$ irregulär (z.B. Schnitt mit $\{a\}^* \{b\}^*$)
- c) $L_c = \{w \in \{0, 1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar}\}$ regulär (konstruiere endlichen Automaten)
- d) $L_d = \{w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1}\}$ regulär (konstruiere endlichen Automaten)
- e) $L_e = \left\{ 0^{n^2} : n \ge 0 \right\}$ f) $L_f = \left\{ 0^m 1^n 0^{n+m} : n, m \ge 1 \right\}$

- a) $L_a = \{ww^R : w \in \{0, 1\}^*\}$ irregulär (z.B. mit Myhill-Nerode oder Pumping-Lemma)
- b) $L_b = \{\mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0\}$ irregulär (z.B. Schnitt mit $\{a\}^* \{b\}^*$)
- c) $L_c = \{w \in \{0,1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar}\}$ regulär (konstruiere endlichen Automaten)
- d) $L_d = \{w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1}\}$ regulär (konstruiere endlichen Automaten)
- e) $L_e = \left\{ 0^{n^2} : n \ge 0 \right\}$ irregulär (z.B. via Pumping-Lemma)
- f) $L_f = \{ 0^m 1^n 0^{n+m} : n, m \ge 1 \}$

- a) $L_a = \{ww^R : w \in \{0, 1\}^*\}$ irregulär (z.B. mit Myhill-Nerode oder Pumping-Lemma)
- b) $L_b = \{\mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0\}$ irregulär (z.B. Schnitt mit $\{a\}^* \{b\}^*$)
- c) $L_c = \{w \in \{0, 1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar}\}$ regulär (konstruiere endlichen Automaten)
- d) $L_d = \{w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1}\}$ regulär (konstruiere endlichen Automaten)
- e) $L_e = \left\{ 0^{n^2} : n \ge 0 \right\}$ irregulär (z.B. via Pumping-Lemma)
- f) $L_f = \{0^m 1^n 0^{n+m} : n, m \ge 1\}$ irregulär (z.B. via Pumping-Lemma)