Exercice 10

Soit o: Z -> IN, qui à n ∈ Z associe le nombre de diviseurs positifs de n.

a) Soit p un nombre premier et XENX.

Comme p est un nombre premier, alors les pliviseurs positifs le p sont : $1, p, p, --, p^{\alpha}$; avois $\sigma(p^{\alpha}) = \alpha + 1$.

b) Soient a, b \(\mathbb{Z} \) premiers entre eux et \(\tau^2 \), \(\div (a) \times \, \div (b) \) \(---- \rightarrow \, \div (ab) \) \(\delta^2 \) \(

Montrous que (2k) me bijection (26) (

(i) Soient (k1, l1) et (k2, l2) deux éléments de div(a) x div(b). 9(k1, h) = 9(k2, l2) => k1 l1 = k2 l2 or $a \wedge b = 1$ = D $\begin{cases} A_1 \wedge l_1 = 1 & \text{at } k_2 \wedge l_2 = 1 \\ k_2 \wedge l_1 = 1 & \text{at } k_2 \wedge l_2 = 1 \end{cases}$ donc } ky divise kz et le divise lz be divise ke et le divise le auria ky=kz et l=lz don (k1, l1) = (k2, l2) La conséquent Pest injective. (11) Soit c un diviseur de ab. Comme anb=1, alors c/a on c/b. (e) si c/a, alors c ne divise pas b = D ((C,1)=0 27 et (c,1) e du (a) x du (b). 27 Donc Gest surjective.

(00) Si C/b, alors C ne divise pas a =D ((4jc)=c et $(1/c) \in dw(a) \times dw(b)$. Amoi Cf set surjective. Dans tous les cos, l'est surjective. Dapres (i) et (ii), Pert pert une bjection. c) Déduisons une relation entre o (ab), o (a) et o (b) Si a et b sont premiers entre eux. Dapris la question b), si a et b sont premiers letre eux , alors q: div(a) x div(b) - div(ab) sot une bûjection j ainin Courd (div(a) x div(b)) = eard (ab)v(ab)) or courd (div (a) x div (b)) = courd (div(a)) x dard (div(b)) Card $(dw(a) \times dw(b)) = T(a) \circ (b)$ 28) at card $(dw(ab)) = \Gamma(ab)$. Alow $\Gamma(a)\Gamma(b) = \Gamma(ab)$.

d) Soit n'un entier naturel, par par la décomposition au nombre premiers de n.

Exprimons o (n) en fonction des «i Comme les pli sont premiers entre ens, alors $\mathcal{O}\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) = \prod_{i=1}^{r} \mathcal{T}\left(p_{i}^{\alpha_{i}}\right)$ or o(p,di) = xi+1 (d'aprè la questiona) donc $\sigma\left(\frac{1}{1} \rho^{i}\right) = \frac{1}{1} (\alpha_{i}+1)$

$$d'où \sigma(m) = \prod_{i=1}^{t} (d_i + 1)$$
.