

IIC2413 2019-1 — Bases de Datos

Ayudantía 1 - Álgebra Relacional y SQL

Constanza Gaínza (cmgainza@uc.cl) - Isidora Vizcaya (isvizcaya@uc.cl)

Operadores Relacionales

- Proyección: $\pi_{a_1,...,a_n}(R)$ Deja solo a los atributos $a_1,...,a_n$ de R.
- Selección: $\sigma_{cond}(R)$ Deja solo a las tuplas que satisfacen la condición.
- Unión: R₁ ∪ R₂
 R₁ y R₂ deben tener la misma cantidad de atributos y del mismo tipo. El resultado contiene la unión de las tuplas de R₁ y R₂.
- Renombrar atributos: $\rho((nombre_antiguo1 \rightarrow nuevo_nombre1, nombre_antiguo2 \rightarrow nuevo_nombre2), R)$
- Renombrar relaciones: $\rho(nuevo_nombre, R)$
- Producto Cruz: R₁ × R₂
 Realiza el producto cartesiano de las dos relaciones.
- Join: $R_1 \bowtie_{cond} R_2 = \sigma_{cond}(R_1 \times R_2)$
- Diferencia: $R_1 R_2$ Contiene la diferencia de conjuntos entre las tuplas de ambas relaciones. R_1 y R_2 deben tener los mismos atributos.

Consultas Monótonas

Sea E una expresión de álgebra relacional sobre un esquema S, E es monótona si para toda instancia I, J sobre S, $I \subseteq J$ entonces se tiene $E(I) \subseteq E(J)$. Si aumenta el tamaño de mi instancia entonces el resultado de la consulta no disminuye.

Teorema: Toda consulta usando los operadores $\rho, \times, \sigma, \pi, \cup$ es monótona.

Problema 1

Queremos definir dentro de los operadores de álgebra relacional, dos operadores adicionales.

a) Semijoin (⋉)

Dadas dos relaciones R y S se define $R \ltimes_{atr} S$ como todas las tuplas en R tal que existe una tupla en S cuyo atributo atr tiene el mismo valor.

b) Producto Natural (| |)

Dado una relación R con atributos a_1 y a_2 se define $a_1|R|a_2$ como las tuplas en las que se cumple que $a_1 = a_2$, pero sin el atributo a_2 .

Ejemplo:

A	\boldsymbol{x}	y	z
	a	1	5
	b	2	2
	c	3	9
	d	4	4

B	y	w
	1	t
	3	\mathbf{v}

$A \ltimes_y B$	\boldsymbol{x}	y	z
	a	1	5
	c	3	9

y A z	x	y
	b	2
	d	4

Para cada operador conteste:

- 1. ¿Cumple el operador con ser monótono?
- 2. Defina el operador usando los operadores relacionales $(\pi, \sigma, \cup, \bowtie, \times)$ (puede agregar el operador "—" si es que no cumple con ser monótono)

Problema 2

Se tiene el siguiente esquema de un banco y una instancia de éste. Se tienen las relaciones para las sucursales del banco, las cuentas de los clientes y para los datos de éstos últimos.

Cuenta(n_cuenta, nombre_sucursal, saldo)
Sucursal(nombre_sucursal, ciudad)
Cliente(cid, nombre_cliente, dirección, ciudad, edad)
CuentaCliente(cid, n_cuenta)

Cuenta n_cuenta		nombre_sucursal	saldo
	76	Las Condes	100
	88	El Volcan	17
	56	El Volcan	80
	79	Talca	20
	52	Bulnes	80
	67	Santiago Centro	90

Sucursal	nombre_sucursal	ciudad	
	Las Condes	Santiago	
	El Volcán	Villarrica	
	Bulnes	Iquique	
	Talca	Talca	
	Santiago Centro	Santiago	

CuentaCliente	cid	n_cuenta
	498	76
	819	88
	568	56
	544	52
	568	79
	544	67

Cliente	cid	nombre_cliente	dirección	ciudad	edad
	498	Pablo	Calle 9 N°32	Santiago	36
	819	Sofía	Calle 15 N°102	Villarica	19
	544	Pedro	Calle 2 N°95	Iquique	26
	568	Fernanda	Calle 1 N°55	Curico	78

Parte I: Álgebra Relacional

- 1. Encuentre los nombres de todos los clientes con cuenta en Villarrica.
- 2. Encuentre los nombre y RUT de los clientes que tienen más de una cuenta en el banco.
- 3. Encuentre los nombres de sucursales que tienen clientes mayores de 65 años y que no tengan una cuenta con más de \$50 de saldo.
- 4. Encuentre los nombres y la ciudad de los clientes que tienen cuenta en la misma ciudad donde viven.

Parte II: SQL

Con el esquema e instancia anterior,

- 1. Cargar la base de datos banco.db
- 2. Crear tabla Sucursal
- 3. Poblar la tabla Sucursal de acuerdo a la instancia entregada.
- 4. Realizar las consultas de la Parte I en SQL.