Exercise Sheet 1 - Introduction

Yixing Huang, Fabian Wagner, Andreas Maier April 28, 2022

The aim of the entire course is to implement a complete reconstruction pipeline by yourself. Each exercise will build upon the previous exercises. This exercise consists of two parts: in the first part, you should setup your development environment and get familiar with Python. In the second part, you start implementing your first class for the reconstruction pipeline: a grid class. Simply spoken, the grid class will represent an image with additional physical information.

- 1. **PyCharm Setup:** We recommend to use PyCharm as IDE.
 - Make sure that a python version 3.x is installed on your computer. It is recommended to use Python 3.7. Higher versions have compatibility problems with PyConrad.
 - Download and install PyCharm (community version, which is free to install): https://www.jetbrains.com/de-de/pycharm/. Start PyCharm, select "Create New Project", choose a location on your system and select your python 3.x interpreter.
 - Go to File Settings Project Interpreter and click on the plus symbol. Install the package pyconrad and confirm by clicking OK. PyConrad is a python wrapper for the Java reconstruction framework Conrad. We will use pyConrad for visualization with ImageJ, for the SheppLogan phantom creation, and for the cone-beam reconstruction exercise.
 - Copy the class flat_panel_project_utils.py provided in studOn to your project folder.
- 2. Utility class: Import the utility class and test if your interpreter works:
 - Create a new python file.
 - Add these 3 lines and execute your script. You should now see an image of the Shepp Logan phantom:

```
import flat_panel_project_utils as utils
phantom_test = utils.shepp_logan(512)
utils.show(phantom_test, "My_first_phantom")
```

- 3. **Grid class:** Create the grid class. This class should represent an image with physical properties.
 - Create your class Grid.
 - Create a constructor __init__(self, height, width, spacing) that initializes all non static class variables: height, width, spacing, and origin. Also initialize an empty buffer as 2D numpy array.
 - Add the following methods:
 - set_buffer/get_buffer
 - get_origin
 - get_spacing
 - get_size
 - index_to_physical_physical_to_index
 - set_at_index/get_at_index
 - get_at_physical (hint: you need to apply interpolation here. You find a already implemented interpolation method in the utils class.)

4. Use your grid class:

- Create a new python file.
- Now, create an instance of your Grid class and fill its content with the information of the Shepp Logan Phantom.
- Test your implemented methods on this phantom.