CAU

배송기사 GPS 정보를 활용한 팔레트 공습 서비스 센터 위치 선정 최적화

'아무것도 물류' 팀 유희선, 이지민, 이화정, 전주현

목차

3

4

1 GPS Data 분석 과정

: 주어진 운송기사 데이터 정보를 분석

2 물류센터 위치 선정

: 물류센터의 위치 선정 시 고려 요인 탐색

물류센터 위치 2차 후보 선정

: 고려 요인을 통해 2차 후보 선정

물류센터 입지 범위 선정

: 물류센터 후보들의 위치 입지 범위를 선정

물류센터 부지 최종 선정

: 물류센터 부지 파악 및 최종 선정

신규 물류센터 이점

: 교통 편의성 및 사업장 안전성

7 물류센터 형태 제언

: 신규 물류센터의 형태 제언

8 결론

2

1. GPS Data 분석 과정

주어진 운송기사 데이터 정보 분석

1 GPS Data 분석 과정 ; Python

```
동해시
df = pd.read_excel(file_path)
                                                                                                                                                                     전라북도
                                                                                                                                                                       정읍시
                                                                                                                                                                                 순천시
```

운송기사 A~O까지 각각 운송 경로를 다른 색으로 시각화하기 위해 랜덤 색상 리스트를 지도에 원(점)을 표시함

- ❖로지스올 홈페이지의 국내 네트워크 위치 데이터를 정리한 파일을 활용
- ❖KCP물류센터/KPP물류센터/공동물류센터의 위치를 분석 결과, 겹치는 데이터가 있음을 파악함
- ❖해당 엑셀파일 형식을 csv파일 형식으로 변경하여 원활히 분석하도록 만듦

```
#물류센터 위치 파악하기
KCP물류센터 = read.csv('KCP 물류센터.csv', fileEncoding = 'euc-kr')
KPP물류센터 = read.csv('kpp 물류센터.csv', fileEncoding = 'euc-kr')
공동물류센터 = read.csv('공동물류센터.csv', fileEncoding = 'euc-kr')
#KPP, kCP, 공동 물류 센터 중 겹치는 데이터 정제
물류센터데이터 <- bind_rows KPP물류센터, KCP물류센터, 공동물류센터)
```

물류센터데이터 <- distinct (결합된데이터, Latitude, Longitude)

❖ bind-rows를 이용해서 물류센터 데이터의 값을 다 합쳤으며 합친 데이터 중 위도와 경도와 겹치는 값을 제거하기 위해 distinct 함수를 사용.

```
#운송기사 GPS에 해당하는 범위에 들어있는 물류센터 데이터 필터
물류센터데이터 <- 물류센터 %>%
filter(Latitude < 38.2 & Latitude > 35.12) %>%
filter(Longitude < 129.35 & Longitude > 126.8)
```

❖ 주어진 운송기사 A~ O의 GPS는 위도 35.12~38.2, 경도 126.8~129.35 범위에 해당하기 때문에 물류센터GPS 값도 이에 해당하는 범위를 추출

```
#물류 센터 위치 시각화
ggplot() +
geom_path(data = 전체데이터, aes(x = 이동.X좌표, y = 이동.Y좌표, color = 운송기사.코드)) +
geom_point(data = 물류센터데이터, aes(x = Longitude, y = Latitude), size = 4, shape = 17) +
ggtitle("물류센터 위치") +
xlab("이동x좌표") +
ylab("이동x좌표") +
scale_color_manual(values = 색깔)
```

ggplot2 사용

• 이는 운송기사 B와 운송기사 I가 물류센터에서 많이 정차하였음을 추측할 수 있음

정차 시간이 단순히 휴식시간만 존재하는
 것이 아닌 물류센터 정차 후 작업 시간도
 있음을 추측할 수 있음

7

1 GPS Data 분석 과정 ; Excel

🍑 엑셀 함수를 이용한 운송기사 A~O의 정차시간 데이터 생성

	А	В	C		D	Е	F			
1	Time1	Longitud	Latitude 🔻	Spee	d 🔽	휴식시간▼	*			
2	2023-05-03 0:00	127.926	37.395		0		0			
3	2023-05-03 0:08	127.926	37.3949		0	0:08	정차			
4	2023-05-03 0:11	127.9259	37.3949		0	0:03	0			
5					0	0:14	정차			
6					2	0:09	정차			
7	=IF(OR(AN	D(위도A	=위도B		0	0:06	정차			
8	• •	=IF(OR(AND(위도A=위도B, 경도A=경도B, 속도A=0),								
9	_	성도A=성도B, 목도A=0), 시간차>5분), " 정차 " ,0)								
10	시한시/5분/									
11					0	0:01	0			
12	2023-03-03 0.30	161.3630	4دود. ا د		0	0:02	0			
13	2023-05-03 0:55	127.9236	37.3953		0	0:05	정차			
14	2023-05-03 1:59	127.9235	37.3952		8	1:04	정차			
15	2023-05-03 2:00	127.9235	37.3963		2	0:01	0			
16	2023-05-03 2:01	127.9239	37.3965		0	0:01	정차			
17	2023-05-03 2:49	127.9239	37.3965		7	0:48	정차			
18	2023-05-03 2:50	127.9238	37.396		0	0:01	0			

1 정차시간 구하기

- 1) 특정 Time의 GPS 위도, 경도가 직후 Time의 GPS 위도, 경도와 같고 Speed=0
- 2) 특정 Time과 바로 직후 Time의 차이가 5분 이상

만족 → 정차

만족 X → 0

1 GPS Data 분석 과정 ; Excel

💜 엑셀 함수를 이용한 운송기사 A~O의 정차시간 데이터 생성

2 정차시간이 5분 이하인 데이터를 삭제

5분 이하의 정차시간이면서 속도가 0인 데이터

해당 구간에서 신호에 걸렸거나 교통체증이 있었음을 추측할 수 있음

❖ K-mean clustering을 통한 물류센터 위치 추정

• 사용목적 – 데이터를 유사한 패턴, 그룹으로 묶어서 그룹 간의 차이를 이해하기 위함

```
#k-mean을 통해 물류센터 위치 추정
#NA 값 제거
휴식시간 <- na.omit(휴식시간)
# 시간을 분 단위로 변환
휴식시간$휴식시간 <- as.POSIXct(휴식시간$휴식시간, format = "%H:%M")
휴식시간$휴식시간 <- hour (휴식시간$휴식시간) * 60 + minute(휴식시간$휴식시간)
#운송기사코드를 숫자로 표시
효식시간 <- 효식시간 %>%
 mutate(Category_numeric = as.numeric(factor(운송기사.코드, levels = unique(운송기사.코드))))
# 숫자형 열만 선택
numeric_columns <- sapply(휴식시간, is.numeric)
numeric_GPS <- 휴식시간[, numeric_columns]
numeric GPS <- na.omit(numeric GPS)
```

❖ 1차적으로 최적의 물류센터 후보 10개를 선정하기 위해, 클러스터 수를 10개로 설정

```
# 클러스터 수 설정
num_clusters <- 10
# kmeans 클러스터링
kmeans_result <- kmeans(numeric_GPS, centers = num_clusters)</pre>
# 클러스터 중심 좌표
cluster_centers <- as.data.frame(kmeans_result$centers)
#시 각화
aaplot() +
 geom_point(data = numeric_GPS, aes(x = Longitude, y = Latitude),
            color = "blue") +
 qeom_point(data = cluster_centers, aes(x = Longitude, y = Latitude),
            color = "red", size = 3, shape = 4) +
 qqtitle("운송 기사 위치 및 물류 센터 예상 위치") +
 xlab("Longitude") +
 ylab("Latitude") +
 theme_minimal()
```

centers:

리스트

- 클러스터의 개수를 나타내는 매개변수로서 클러스터의 개수 지정에 사용
- kmean_result :

 K-mean의 함수를 클러스터링 수행 후 그 결과를 나타낸

○ Kmean_result로 클러스터의 각 특성의 평균값을 나타내어 클러스터의 중심좌표 표현

❖클러스터링 수행 후 중심좌표 표현 결과

	Latitude	Longitude
1	37.47599	127.8771
2	37.39880	127.9497
3	37.29447	127.9018
4	37.39644	128.2913
5	37.43049	127.8914
6	37.42215	127.8281
7	37.16545	127.9740
8	37.36962	128.2095
9	37.24565	128.3956
10	37.37383	127.9914

해당 클러스터들의 각 특성의 평균값을 나타내어 표현한 클러스터의 중심좌표들을 운송기사의 운송경로와 함께 시각화하고 해당 좌표는 다음과 같음

물류센터 위치 선정

물류센터의 위치 선정 시 고려 요인 탐색

물류센터 위치 선정

<입지가능 지역>

- 1) 교통의 편의성
 - -> 고속도로 IC로부터 5km이내 지역
- 2) 사업장의 안전성
 - -> 좌표상 가장 가까운 소방시설과의 거리 고려

- 1) 주거, 상업, 학교건물 반경 200m이내
- 2) 산악 지역
- 3) 도시지역
- 4) 문화재 보호구역
- 5) 개발제한구역
- 6) 하천, 호수, 저수지(지반 경도 문제)

물류센터 위치 2차 후보

고려 요인을 통해 2차 후보 선정

물류센터 위치 2차 후보 선정

3

1차 후보 -	좌표 🔻	산악지역	주거지역, 학교, 상업지역 200m 이내 🕝	고속도로 IC가 5km 이내
1	37.47599, 127.8771	0	0	X
2	37.39880, 127.9497	X	X	О
3	37.29447, 127.9018	О	0	터널 한복판
4	37.39644, 128.2913	O	캠핑장에 위치	X
5	37.43049, 127.8914	Χ	X	0
6	37.42215, 127.8281	O	0	0
7	37.16545, 127.9740	X	X	X
8	37.36962, 128.2095	O	X	X
9	37.24565, 128.3956	Χ	0	X
10	37.37383, 127.9914	X	X	0

- 1차 후보 10개 지역을 [입지제한 지역]의 고려요소에 따라 입지제한 요소가 존재하는지 여부를 O,X로 표시 → 입지제한 요소 'O' 지역 제외
- 1차 후보 10개 지역 중 [입지가능 지역] 요소인 '고속도로 IC로부터 5km 이내 지역 ' 인지 여부를 O,X로 표시 → 입지가능 요소 'X' 지역들을 제외

물류센터 위치 2차 후보 선정

• 위 슬라이드에서 설명된 과정을 통해 뽑은 후보 3개 지역은 다음과 같음

37.39880, 127.9497 강원특별자치도 원주시 태장동 2068

37.43049, 127.8914 강원특별자치도 원주시 호저면 산현리 423

37.37383, 127.9914 강원특별자치도 원주시 소초면 흥양리 1139-2

4.

물류센터 입지 범위 선정

물류센터 후보들의 위치 입지 범위를 선정

물류센터 입지 범위 선정

```
import folium
from geopy.distance import geodesic
closest_target = None
   for target_name, target_coordinate in targets.items():
       distance = geodesic( "args: coordinate, target_coordinate).meters
       if distance < min_distance:
           min distance = distance
           closest_coordinate = coordinate
 rint(f*가장 가까운 좌표: {closest_coordinate}*)
```



```
map_object = folium.Map(location=map_center, zoom_start=12)
for coordinate in gps_coordinates:
                       fill_opacity=0.7, popup="GPS 卧표").add_to(map_object)
for target_name, target_coordinate in targets.items():
   folium.CircleMarker(location=target_coordinate, radius=5, color='blue', fill=True, fill_color='blue',
folium.CircleMarker(location=closest_coordinate, radius=5, color='red', fill=True, fill_color='red',
for coordinate in gps_coordinates:
   if coordinate != closest_coordinate:
                           fill_opacity=0.7, popup="다른 좌표").add_to(map_object)
```

Python을 이용해 이전 슬라이드의 3개 물류센터 위치 후보들 중, 고속도로IC와 가장 가까운 물류센터 위치를 선정함

물류센터 입지 범위 선정

• 최종 선정 입지 범위의 좌표: (37.3988, 127.9497)

파란색 점: 주변 고속도로 IC 좌표

회색 점: 직전 슬라이드의 3개 후보군 중 최종 선정되지 않은 나머지 2곳의 좌표

빨간색 점: 표시된 위치가 가장 고속도로 IC와 가까운 좌표로 최종 선정된 위치 의미

5.

물류센터 부지 최종 선정

물류센터 부지 파악 및 최종 선정

부지 넓이: 4,573m^2 / 1,3833.33평 → (c)와 비교하여 <mark>물류센터 건설 상 제약</mark> 판단

최종 부지에서 제외

한국도로공사 건물과 인접 → 물류센터 <mark>건설에 제약</mark> 발생 가능성

최종 부지에서 제외

부지 넓이: 19,127m^2 / 5,785.92평

최종 선택

6. 신규 물류센터의 이점

교통 편의성 및 사업장 안전성

신규 물류센터의 이점 – 교통 편의성

```
import folium
                    운송기사 GPS 지도에서 출발지
                            좌표 추출
```

운송기사(A~O)의 출발지 좌표 및 경로를 동시에 시각화

신규 물류센터의 이점 – 교통 편의성

네이버지도, 4층 이상 특수화물차, 평일 오후 3시 기준

_		_ 1, 0	1-, 10 10 11-1	네이비시크					
Ħ	신규 물류센터 근접	로지스올 근접	신규 물류센터	로지스을 원주물류센터 (KPP파렛트 강원영업소)	출발지 주소	출발지 좌표	운송 기사명		
-		0:08	0:45	0:37	충청북도 충주시 충원대로 862	37.003,127.91757			
-		0:08	0:50	0:42	충청북도 충주시 앙성면 사미품무골길 66-7	37.105491,127.775102	А		
_		-							
	0:2	-	0:56	1:22	강원도 춘천시 동면 만천리 340-36	37.88867, 127.77675	В		
19	0:1		0:54	1:13	경기도 성남시 중원구 성남동 1668	37.431823,127.12693			
16	0:1	-	1:50	2:06	 강원도 속초시 교동 737-6	38.20190. 128.57387			
_	0:2	-	1:32	1:56	강원도 양양군 손양면 간리 1-4	38.06623, 128.64148	C		
-		-							
_	0:1	-	0:06	0:20	강원도 원주시 우산공단길 23	37.3731,127.9414	D		
18	0:1	-	0:53	1:11	강원도 평창군 봉평면 기풍로 92	37.61081, 128.37833			
-		-			 강원도 원주시 소초면 북원로 2955	37.40918, 127.95219			
19	0:1	-	1:58	2:17	서울특별시 마포구 상암동 1756-3	37.58816, 37.58816	Е		
-		-				ļ			
-		0:08	0:48	0:40	충청북도 충주시 칠금동 41-7	36.9813,127.9129	F		
-		0:09	0:20	0:11	강원도 원주시 흥업면 대안리 400	37.313505,127.889191	F		
10	0:1		0:34	0:44	충청북도 제천시 청풍호로10길 31	37.1197.128.1988			
-	0.1	-	0.34	0.44	강원도 원주시 흥업면 사제리 911-2	37.31466. 127.88853	G		
-		-			822 214 882 444 311 2	37.31400, 127.00033			
13	0:1	-	0:10	0:23	강원도 원주시 치악로 2033	37.36165,127.95944	Н		
-		-							
-	0:0	-	1:17	1:23	경기도 화성시 팔탄면 율암리 98-31	37.17477, 126.88601			
	0:0		0:47	0:55	강원도 춘천시 동산면 군자리 1011-4	37.75084, 127.72980			
	0:2	_	3:30	3:55	경상남도 창원시 진해구 웅동1동 623	35.11993, 128.80148	1		
	0:1	-	3:12	3:26	울산광역시 울주군 온산읍 화산리 1006-5	35.43989, 129.33277			
-		-							
-		0:04	0:18	0:14	강원도 원주시 흥업면 사제리 1330-4	37.34064, 127.88061	J		
16	0:1	-	2:03	2:19	경상북도 구미시 옥계동 807	36.13828,128.426928			
4		0:03	0:15	0:12	 강원도 원주시 문막읍 동건길 9-7	37.3221,127.8377			
4		0:07	0:18	0:11	강원도 원주시 흥업면 매지리 1202-2	37.271882.127.905586	L		
Ξ		-							
)9	0:0	-	0:53	1:02	강원도 춘천시 춘주로 174	37.8573,127.7281	N		
4		0:07	0:18	0:11	강원도 원주시 흥업면 매지리 1202-2	37.271882,127.905586	IV		
-	0:0	-	0:48	0:57	강원도 홍천군 북방면 성동로 879-5	37.77166, 127.87410			
	0:2		1:00	1:22	강원도 홍천군 내촌면 도관리 465-1	37.81555, 128.08864			
	0:0	-	0:55	1:03	강원도 홍천군 두촌면 자은리 816-4	37.86851, 128.01962	0		
~	0.0	-	0.55	1.03	강원도 원주시 흥업면 사제리 911-2	37.31466, 127.88853			

기존 물류센터와 신규 위치(원주IC)를 목적지로 선정 후 소요시간 산정

신규 물류센터(원주IC)와 근접하여 소요시간이 적은 곳을 <mark>파란색</mark>으로 표시

> 기존 물류센터와 근접하여 소요시간이 적은 곳을 <mark>노란색</mark>으로 표시

출발지 좌표가 기존물류센터,원주IC인 곳은 제외

신규 물류센터의 이점 – 사업장 안전성

안전한 사업장 구현

근로자의 안전보건활동에 대한 참여를 유도하고, 안전 및 보건에 관한 임직원 의견을 청취하고 개선조치하여 안전한 사업장을 만든다.

내외부 위험요인으로부터 임직원 및 지역주민 보호를 위해 재해 대비 및 대응체계를 구축하여 운영한다.

▼국가화재정보시스템, 2018/12/01~2023/12/01 창고시설 화재 발생 통계

구분		화재건수	사망	부상	인명피해 계	부동산피해(천원)	동산피해(천원)	재산피해(천원)	재산피해/건당(천원)
합계		6965	68	253	321	372009273	673285576	1045294849	150078
	소계	6965	68	253	321	372009273	673285576	1045294849	150078
	냉장 냉동창고	440	46	39	85	41382970	60220524	101603494	230917
창고시설	창고 물품저장소	4354	13	159	172	310954650	591008967	901963617	207157
	하역장	18	0	3	3	633569	1766853	2400422	133357
	기타 창고	2153	9	52	61	19038084	20289232	39327316	18266

표쓰저널 - 2021.06.17.

쿠팡 덕평물류센터 **화재** 악화 건물 전소...소방관 1명 실종

포쓰저널 문기수 기자 17일 오후 경기도 이천시 마장면 쿠팡 덕평물류센 터 모습./연합17일 오전 1차 **화재** 발생 직후 **덕평**물류센터 모습./연합 17 일 밤 경기도 이천시 마장면 **쿠팡 덕평**물류센터 **화재** 현장에서 소방관...

◈ 안전한 사업장을 운영하고자 하는 로지스올의 <mark>경영이념</mark> 고려

◈ 통계 및 실제사례 → 물류현장의 빈번한 화재 발생

◈ 화재의 초기진압은 막대한 물적/인적 피해 방지를 위해 매우 중요

◈ 소방시설이 물류센터 인근에 있으면 사업장의 안전한 관리에 이점 ↑

따라서, 기존 물류센터와 신규 물류센터 중 소방시설과 더 가까운 곳을 Python을 통해 구하고자 함

신규 물류센터의 이점 – 사업장 안전성

기 관 명	구주소				Latitude	Longitude
학성 119안전센터	강원도 원주시	학성동	학성길 122		37.3536864	127.9448591
우산119안전센터	강원도 원주시	우산동	우산공단길	9	37.3741155	127.9418168
원주소방서-흥업-119 안전센터	강원도 원주시	귀래면	북원로 53-5	5	37.1660345	127.884201
원주소방서-문막-119 안전센터	강원도 원주시	문막읍	문막사장1길	90	37.3034438	127.8144975
원주소방서-원주_신림-119 안전센터	강원도 원주시	신림면	치악로 27		37.2297912	128.0789601
원주소방서-현장대응과(명륜)-119 안	강원도 원주시	남원로	487		37.3284147	127.9442919
원주소방서-단구-119 안전센터	강원도 원주시	강변로	255 단구119	9안전센터	37.2297349	128.0790113
원 주 소 방 서	강원도 원주시	남원로	487		37.3284147	127.9442919
태장119안전센터	강원도 원주시	태장동	태장공단길	4 원주소방서태장11	37.4014894	127.9525462

1. 원주시 내 소방시설 9개의 좌표(위도, 경도)를 파악한다.

2. 기존 물류센터와 신규 물류센터 각각에 대해 가장 가까운 소방시설과의 거리를 계산한다.

```
from math import radians, sin, cos, sort, atan2
def haversine(lat1, lon1, lat2, lon2):
    R = 6371.0 # 지구 반지름 (단위: km)
    lat1. lon1. lat2. lon2 = map(radians. [lat1. lon1. lat2. lon2])
    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = \sin(dlat / 2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon / 2)**2
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    distance = R * c # 거리 (단위: km)
    return distance
 def find_closest_fire_station(logistics_center, fire_station_locations):
    closest_location = None
    min_distance = float('inf')
    for location in fire_station_locations:
        lat, lon = location
        distance = haversine(logistics center[0], logistics center[1], lat. lon)
        if distance < min distance:
            min_distance = distance
            closest location = location
    return closest_location, min_distance
# 물류센터와 소방시설 좌표
 logistics_center = (37.3988, 127.9497)
existing logistics center = (37.313272, 127.890398)
fire_station_locations = [
     (37.3536864, 127.9448591)
    (37.3284147, 127.9442919)
    (37.4014894, 127.9525462)
```

신규 물류센터의 이점 – 사업장 안전성

중복된 좌표 제거

fire_station_locations = list(set(fire_station_locations))

가장 가까운 소방시설 찾기

closest_existing_fire_station, distance_existing = find_closest_fire_station(existing_logistics_center, fire_station_locations)
closest_new_fire_station, distance_new = find_closest_fire_station(logistics_center, fire_station_locations)

결과 출력

print("기존 물류센터와 가장 가까운 소방시설:", closest_existing_fire_station) print("거리:", distance existing, "km")

print("\muk로운 물류센터와 가장 가까운 소방시설:", closest_new_fire_station) print("거리:", distance_new, "km")

8177

if distance_existing < distance_new: print("빠기존 물류센터가 더 가까워요.")

elif distance_existing > distance_new: print("빠/새로운 물류센터가 더 가까워요.")

else

print("\n두 물류센터와의 거리가 같아요.")

3. 두 거리를 비교하여, 기존과 신규 중 어느 쪽이 더 소방시설과 가까운 지 결과값을 도출한다.

4. 결과를 확인한다.

Python 3.10.4 (tags/v3.10.4:9d38120, Mar 23 2022, 23:13:41) [MSC v.1929 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license()" for more information.

====== RESTART: C:#Users#82109#Downloads#가장 가까운 소방시설과 물류센터 간의 거리.py ========

기존 물류센터와 가장 가까운 소방시설: (37.3284147, 127.9442919)

거리: 5.054441869666674 km

새로운 물류센터와 가장 가까운 소방시설: (37.4014894, 127.9525462)

거리: 0.3906924856170558 km

|새로운 불류센터가 더 가까워요.

신규 물류센터의 이점 – 사업장 안전성

Python 3.10.4 (tags/v3.10.4:9d38120, Mar 23 2022, 23:13:41) [MSC v.1929 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license()" for more information.

====== RESTART: C:\Users\82109\Downloads\가장 가까운 소방시설과 물류센터 간의 거리.py ========

기존 물류센터와 가장 가까운 소방시설: (37.3284147, 127.9442919) 거리: 5.054441869666674 km

새로운 물류센터와 가장 가까운 소방시설: (37.4014894, 127.9525462)

거리: 0.3906924856170558 km

|새로운 물류센터가 더 가까워요.

[결과값 해석]

- * <mark>기존</mark> 물류센터와 가장 가까운 소방시설 [거리] : 원주소방서-현장대응과(명륜)-119안전센터 <u>[5.054441869666674 km]</u>
- * 신규 물류센터와 가장 가까운 소방시설[거리]: 태장 119안전센터 [거리: 0.3906924856170558 km]
- \rightarrow <mark>신규 물류센터는</mark> 기존 물류센터보다 소방시설과의 거리가 4.663749384 km <mark>더 가까워</mark>, 화재 발생 시 빠른 초기 진압으로 피해 규모 최소화 가능

물류센터 형태 제언

신규 물류센터의 형태 제언

물류센터 형태 제언 – 경사지 활용

▷ 경기 이천시 부발읍에 위치한 L사 통합물류센터

- → 경사지에 지어 지하층을 효율적으로 활용
- → 화주맞춤형 설계방식으로 비용과 공사기간도 크게 줄임

원주시 도시계획 조례 별표16 (자연녹지지역 안에서 건축할 수 있는 건축물)

2. 우리 시 조례에 의하여 건축할 수 있는 건축물(4층 이하의 건축물에 한한다)

카. 「건축법 시행령」별표 1 제18호가목의 창고(농업・임업・축산업・수산업용으로 쓰는 것은 제외한다) 및 같은 호 라목의 집배송 시설

「건축법 시행령」별표 1 제18호. 창고시설(위험물 저장 및 처리 시설 또는 그 부속용도에 해당하는 것은 제외한다)

가. 창고(물품저장시설로서 「물류정책기본법」에 따른 일반창고와 냉장 및 냉동 창고를 포함한다) 라. 집배송 시설 물류센터를 지을때, 원주시의 도시계획 조례에 따라 '4층 이하의 창고 또는 집배송시설 건설 가능.

- ▶ 부지 개발 시 <mark>경사지를 이용하면</mark> 평지일 때보다 더 효율적이며, 경사지를 이용하여 지하층 건설 가능
- ▶지하층으로 인정되면 건폐율과 용적률에 산입되지 않음 (대한민국 건축관계법)
- ▶ 따라서, 최대 건폐율과 용적률 이상의 실제 연면적을 만드는 물류센터가 개발 가능함

건폐율: 대지 면적에 대한 건물의 바닥 면적 비율, 건축 밀도를 나타낸다 용적률: 전체 대지면적에서 건물 각층의 면적을 합한 연면적이 차지하는 비율, 건축물에 의한 토지의 이용도를 보여준다

최종 결론

8 최종 결론

[위치 선정 이유]

- ▶ 제한 조건(산악 지역, 주거&상업 지역/도심/학교와의 근접성, 고속도로 IC 근접성)에 영향을 받지 않음
 - ▶ 주변 도로와의 접근성, 교통의 용이성, 사업장 안전성 그리고 입지의 가용성이 가장 우수함
 - ▶ 경사지를 이용하여 지하층을 건설하여 경제성을 높이는 방안을 구상함

[물류센터 형태 제언]

- ▶ 물류센터 건설 시 경제성을 위해 부지의 경사지를 이용할 것을 제언함.
 - ▶약 5700평 규모의 지상층과 지하층을 가진 건물로 짓도록 제언함.

Thanks!

Any questions?

