Model Predictive Control

Solving Nonlinear Model Predictive Control (NMPC) Problems

Colin Jones

Laboratoire d'Automatique

NMPC Theory - Quick and Dirty

Nonlinear Model Predictive Control - NMPC

$$u^{*}(x_{0}) = \operatorname{argmin} \sum_{i=0}^{N-1} l(x_{i}, u_{i}) + V_{f}(x_{N})$$
s.t. $x_{i+1} = f(x_{i}, u_{i}) \quad \forall i = 0, \dots, N-1$

$$g(x_{i}, u_{i}) \leq 0 \qquad \forall i = 0, \dots, N-1$$

$$h(x_{N}) \leq 0$$

where f, g and h are continuous.

Theory is the same as linear MPC

Feasibility Same assumptions on terminal constraint
Stability Same assumptions on stage cost and terminal cost

Nonlinear Model Predictive Control - NMPC

$$u^*(x_0) = \operatorname{argmin} \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N)$$

s.t. $x_{i+1} = f(x_i, u_i) \quad \forall i = 0, \dots, N-1$
 $g(x_i, u_i) \le 0 \quad \forall i = 0, \dots, N-1$
 $h(x_N) \le 0$

where f, g and h are continuous.

Theory is the same as linear MPC

Feasibility Same assumptions on terminal constraint
Stability Same assumptions on stage cost and terminal cost

What is much harder

Invariance Sets are harder to calculate... so we often drop terminal constraints (or take $x_{N}=0$)

Optimality May only obtain a local minimum, or there may be multiple optimal solutions. This leads to many difficulties.

Today: Forming and Solving NMPC Problems

$$\min \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N) \qquad \Rightarrow \qquad \min F(z)$$
s.t. $x_{i+1} = f(x_i, u_i) \quad \forall i = 0, \dots, N-1$

$$g(x_i, u_i) \le 0 \qquad \forall i = 0, \dots, N-1$$

$$h(x_N) \le 0$$

Two challenges:

Discretization The world is continuous - where do we get f from?

Gradients Optimization is based on gradients - how to compute?

Nonlinear Programming

Recall: Descent Methods

$$\min f(z)$$

$$z^{(k+1)} = z^{(k)} + t^{(k)} \Delta z^{(k)} \quad \text{with } f(z^{(k+1)}) < f(z^{(k)})$$

- Δz is the step or search direction
- ullet t is the step size or step length
- $f(z^{(k+1)}) < f(z^{(k)})$, i.e., Δz is a descent direction
- \bullet There exists a t>0 such that $f(z^{(k+1)}) < f(z^{(k)})$ if $\nabla f(z)^T \Delta z < 0$

4

Newton's Method

$$\Delta z_{nt} = -\nabla^2 f(z)^{-1} \nabla f(z)$$

• Interpretation: $z + \Delta z_{nt}$ minimizes second order approximation

$$\hat{f}(z+v) = f(z) + \nabla f(z)^T v + \frac{1}{2} v^T \nabla^2 f(z) v$$

Optimality condition: $\nabla \hat{f}(z+v^*)=0$

$$\nabla f(z) + \nabla^2 f(z)v^* = 0$$

$$\Rightarrow \nabla^2 f(z)v^* = -\nabla f(z)$$

(z, f(z)) $(z + \Delta z_{nt}, f(z + \Delta z_{nt}))$

• Decent direction:

$$\nabla f(z)^T \Delta z_{nt} = -\nabla f(z)^T \nabla^2 f(z)^{-1} \nabla f(z) < 0$$

f convex implies that $\nabla^2 f(z) \succeq 0$

• If z is close to optimum, $\|\nabla f(z)\|_2$ converges to zero quadratically (extremely quickly)

5

Gauss-Newton Method for NLPs

$$\min F(z) = \|R(z)\|^2$$
s.t. $G(z) \le 0$

$$H(z) = 0$$

¹Note that this is a little more complex than in the convex case

Gauss-Newton Method for NLPs

$$\min F(z) = ||R(z)||^2$$
s.t. $G(z) \le 0$

$$H(z) = 0$$

Compute quadratic approximation

$$\begin{split} & \min \ \|R(z^k) + \nabla R(z^k)^T \Delta z\|^2 \\ & \text{s.t.} \ \ G(z^k) + \nabla G(z^k)^T \Delta z \leq 0 \\ & \ \ H(z^k) + \nabla H(z^k)^T \Delta z = 0 \end{split}$$

We solve this quadratic program to get the search direction Δz , and then compute a step size via line search¹

¹Note that this is a little more complex than in the convex case

Newton's Method for NLPs - Sequential Quadratic Programming

This can also be done for general NLPs

$$\min F(z)$$
 s.t. $G(z) \le 0$
$$H(z) = 0$$

Compute quadratic approximation

$$\min \nabla F(z^k)^T \Delta z + \frac{1}{2} \Delta z^T A^k \Delta z$$
s.t.
$$G(z^k) + \nabla G(z^k)^T \Delta z \le 0$$

$$H(z^k) + \nabla H(z^k)^T \Delta z = 0$$

where A^k is the Hessian of the Lagrangian function.

Dual optimal solution of the QP also gives a search direction for the dual variables.

Many Methods to solve NLPs...

Interior-point Form the KKT optimality conditions and apply Newton's method to the set of equations.

Sequential Quadratic Programming Linearize the KKT conditions and solve.

Equivalent to (sort of) computing quadratic approximation of the original problem repeatedly.

Operator Splitting methods Divide the optimization problem into the sum of two "simple" parts

$$\min f(x) + g(z)$$
 s.t. $x = z$

Solve by alternating between minimizing f and minimizing g. Useful when solving f and g alone is very easy.

All of these methods require gradient calculations!

Discretization

Discretization of Nonlinear Systems

The world is continuous

$$\dot{x} = f(x, u)$$

How do we discretize?

$$x_{k+1} = \hat{f}(x_k, u_k)$$

For linear systems, this is easy and closed-form

For nonlinear is has to be done online

Example: Pendulum

Moment of inertia wrt. rotational axis: $m\ l^2$

Torque caused by external force: T_c

Torque caused by gravity: $m\,g\,l\sin(\theta)$

System equation: $m l^2 \ddot{\theta} = T_c - m g l \sin(\theta)$

Using
$$x_1 := \theta, x_2 := \dot{\theta} = \dot{x}_1, \ u := T_c/m l^2$$
 and $g/l = 10$

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -\frac{g}{l}\sin(x_1) + u \end{pmatrix} = \begin{pmatrix} x_2 \\ -10\sin(x_1) + u \end{pmatrix} = f(x, u)$$

Integration - The Simple Way

Try the most obvious thing - Euler approximation

$$x^+ = x + hf(x, u)$$

where h is the sample period.

$$x_{k+1} = x_k + h \begin{bmatrix} x_{2,k} \\ -10\sin(x_{1,k}) + u_k \end{bmatrix}$$

Integration - The Simple Way

Try the most obvious thing - Euler approximation

$$x^+ = x + hf(x, u)$$

where h is the sample period.

$$x_{k+1} = x_k + h \begin{bmatrix} x_{2,k} \\ -10\sin(x_{1,k}) + u_k \end{bmatrix}$$

Integration - The Simple Way

Try the most obvious thing - Euler approximation

$$x^+ = x + hf(x, u)$$

where h is the sample period.

$$x_{k+1} = x_k + h \begin{bmatrix} x_{2,k} \\ -10\sin(x_{1,k}) + u_k \end{bmatrix}$$

Two Methods of Integration

- 1. Direct integration
 - Use a integration algorithm to compute $x(k+1) = x(k) + \int_{t=T_s}^{T_s(k+1)} f(x,u) dt$
- 2. Collocation
 - Define the trajectory in terms of basis functions

$$x(t) = \sum_{i=0}^{q} w_i \beta_i(t)$$

Enforce that the dynamic equations are met at the collocation points

$$\dot{x}(t_k) = f(x_k, u_k) = \sum_{i=0}^q w_i \dot{\beta}_i(t_k)$$

Consider the ODE

$$\dot{x} = f(x)$$

Given $\boldsymbol{x} = \boldsymbol{x}(t)$, we want to compute $\boldsymbol{x}^+ = \boldsymbol{x}(t+h)$

Consider the ODE

$$\dot{x} = f(x)$$

Given x = x(t), we want to compute $x^+ = x(t+h)$

Compute a second-order Taylor series expansion

$$x^{+} = x + h\dot{x} + \frac{h^{2}}{2}\ddot{x} + \mathcal{O}(h^{3})$$

Consider the ODE

$$\dot{x} = f(x)$$

Given x = x(t), we want to compute $x^+ = x(t+h)$

Compute a second-order Taylor series expansion

$$x^{+} = x + h\dot{x} + \frac{h^{2}}{2}\ddot{x} + \mathcal{O}(h^{3})$$

Take Jacobian of f to compute \ddot{x}

$$\ddot{x} = J_f(x)\dot{x} = J_f(x)f(x)$$

Consider the ODE

$$\dot{x} = f(x)$$

Given x = x(t), we want to compute $x^+ = x(t+h)$

Compute a second-order Taylor series expansion

$$x^{+} = x + h\dot{x} + \frac{h^{2}}{2}\ddot{x} + \mathcal{O}(h^{3})$$

Take Jacobian of f to compute \ddot{x}

$$\ddot{x} = J_f(x)\dot{x} = J_f(x)f(x)$$

The Taylor series expansion is now

$$x^{+} = x + hf(x) + \frac{h^{2}}{2}J_{f}(x)f(x) + \mathcal{O}(h^{3})$$
$$= x + \frac{h}{2}f(x) + \frac{h}{2}(f(x) + hJ_{f}(x)f(x)) + \mathcal{O}(h^{3})$$

The Taylor series expansion is now

$$x^{+} = x + \frac{h}{2}f(x) + \frac{h}{2}(f(x) + hJ_{f}(x)f(x)) + \mathcal{O}(h^{3})$$

Consider the Taylor series expansion of the expression

$$f(x + hf(x)) = f(x) + hJ_f(x)f(x) + \mathcal{O}(h^2)$$

Therefore, we get

$$x^{+} \approx x + \frac{h}{2}f(x) + \frac{h}{2}f(x + hf(x))$$

= $x + h\left(\frac{1}{2}k_{1} + \frac{1}{2}k_{2}\right)$

where

$$k_1 = f(x)$$
$$k_2 = f(x + hk_1)$$

Runge-Kutta 4 - The Most Common Version

Consider the time dependent ODE

$$\dot{x} = f(t, x)$$

$$x_{k+1} = x_k + h\left(\frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6}\right)$$

where

$$k_1 = f(t_k, x_k)$$

$$k_2 = f(t_k + \frac{h}{2}, x_k + \frac{h}{2}k_1)$$

$$k_3 = f(t_k + \frac{h}{2}, x_k + \frac{h}{2}k_2)$$

$$k_4 = f(t_k + h, x_k + hk_3)$$

Note: There are **many** more ways to integrate, and different methods are appropriate depending on the properties of your system, and requirements of the optimization.

Pendulum equations are given by

$$\dot{x} = \begin{bmatrix} x_2 \\ -10\sin(x_1) + u \end{bmatrix}$$

Pendulum equations are given by

$$\dot{x} = \begin{bmatrix} x_2 \\ -10\sin(x_1) + u \end{bmatrix}$$

Pendulum equations are given by

$$\dot{x} = \begin{bmatrix} x_2 \\ -10\sin(x_1) + u \end{bmatrix}$$

Pendulum equations are given by

$$\dot{x} = \begin{bmatrix} x_2 \\ -10\sin(x_1) + u \end{bmatrix}$$

Two Methods of Integration

1. Direct integration

• Use a integration algorithm to compute $x(k+1) = x(k) + \int_{t=T_s}^{T_s(k+1)} f(x,u) dt$

2. Collocation

• Define the trajectory in terms of basis functions

$$x(t) = \sum_{i=0}^{q} w_i \beta_i(t)$$

Enforce that the dynamic equations are met at the collocation points

$$\dot{x}(t_k) = f(x_k, u_k) = \sum_{i=0}^q w_i \dot{\beta}_i(t_k)$$

Given the state $x_k=x(t_k)$ and the constant input $u(t)=u_k$ we want to compute the state $x_{k+1}=x(t_{k+1})$ for the system $\dot{x}=f(x,u)$.

Given the state $x_k = x(t_k)$ and the constant input $u(t) = u_k$ we want to compute the state $x_{k+1} = x(t_{k+1})$ for the system $\dot{x} = f(x, u)$.

Time grid

$$\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$$

Lagrange Polynomials

$$P_{k,i}(t) = \prod_{j=0, j \neq i}^{K} \frac{t - t_{k,j}}{t_{k,i} - t_{k,j}} \in \mathbb{R}$$

We have the property

$$P_{k,i}(t_{k,l}) = \begin{cases} 1 & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases}$$

Given the state $x_k = x(t_k)$ and the constant input $u(t) = u_k$ we want to compute the state $x_{k+1} = x(t_{k+1})$ for the system $\dot{x} = f(x, u)$.

Time grid

$$\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$$

Lagrange Polynomials

$$P_{k,i}(t) = \prod_{j=0, j \neq i}^{K} \frac{t - t_{k,j}}{t_{k,i} - t_{k,j}} \in \mathbb{R}$$

We have the property

$$P_{k,i}(t_{k,l}) = \begin{cases} 1 & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases}$$

Given the state $x_k = x(t_k)$ and the constant input $u(t) = u_k$ we want to compute the state $x_{k+1} = x(t_{k+1})$ for the system $\dot{x} = f(x, u)$.

Time grid

$$\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$$

Lagrange Polynomials

$$P_{k,i}(t) = \prod_{j=0, j \neq i}^{K} \frac{t - t_{k,j}}{t_{k,i} - t_{k,j}} \in \mathbb{R}$$

We have the property

$$P_{k,i}(t_{k,l}) = \begin{cases} 1 & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases}$$

Given the state $x_k = x(t_k)$ and the constant input $u(t) = u_k$ we want to compute the state $x_{k+1} = x(t_{k+1})$ for the system $\dot{x} = f(x, u)$.

Time grid

$$\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$$

Lagrange Polynomials

$$P_{k,i}(t) = \prod_{j=0, j \neq i}^{K} \frac{t - t_{k,j}}{t_{k,i} - t_{k,j}} \in \mathbb{R}$$

We have the property

$$P_{k,i}(t_{k,l}) = \begin{cases} 1 & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases}$$

Given the state $x_k = x(t_k)$ and the constant input $u(t) = u_k$ we want to compute the state $x_{k+1} = x(t_{k+1})$ for the system $\dot{x} = f(x, u)$.

Time grid

$$\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$$

Lagrange Polynomials

$$P_{k,i}(t) = \prod_{j=0, j \neq i}^{K} \frac{t - t_{k,j}}{t_{k,i} - t_{k,j}} \in \mathbb{R}$$

We have the property

$$P_{k,i}(t_{k,l}) = \begin{cases} 1 & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases}$$

Given the state $x_k = x(t_k)$ and the constant input $u(t) = u_k$ we want to compute the state $x_{k+1} = x(t_{k+1})$ for the system $\dot{x} = f(x, u)$.

Time grid

$$\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$$

Lagrange Polynomials

$$P_{k,i}(t) = \prod_{j=0, j \neq i}^{K} \frac{t - t_{k,j}}{t_{k,i} - t_{k,j}} \in \mathbb{R}$$

We have the property

$$P_{k,i}(t_{k,l}) = \begin{cases} 1 & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases}$$

Define the interpolating function

$$x(\theta_k, t) = \sum_{i=0}^K \underbrace{\theta_{k,i}}_{\text{parameters}} \cdot \underbrace{P_{k,i}(t)}_{\text{polynomials}}$$

Where we note that $x(\theta_k, t_{k,j}) = \theta_{k,j}$

Define the interpolating function

$$x(\theta_k, t) = \sum_{i=0}^K \underbrace{\theta_{k,i}}_{\text{parameters}} \cdot \underbrace{P_{k,i}(t)}_{\text{polynomials}}$$

Where we note that $x(\theta_k,t_{k,j})=\theta_{k,j}$

Define the interpolating function

$$x(\theta_k, t) = \sum_{i=0}^K \underbrace{\theta_{k,i}}_{\text{parameters}} \cdot \underbrace{P_{k,i}(t)}_{\text{polynomials}}$$

Where we note that $x(\theta_k,t_{k,j})=\theta_{k,j}$

Define the interpolating function

$$x(\theta_k, t) = \sum_{i=0}^K \underbrace{\theta_{k,i}}_{\text{parameters}} \cdot \underbrace{P_{k,i}(t)}_{\text{polynomials}}$$

Where we note that $x(\theta_k,t_{k,j})=\theta_{k,j}$

What we have:

- ullet State x_k at time t_k
- Constant input $u(t) = u_k$ over the time interval $[t_k, t_{k+1}]$
- \bullet Gradient of the state trajectory $\dot{x} = f(x,u)$

What we have:

- State x_k at time t_k
- Constant input $u(t) = u_k$ over the time interval $[t_k, t_{k+1}]$
- Gradient of the state trajectory $\dot{x} = f(x, u)$

Define a set of grid points $\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$ and a polynomial interpolation

$$x(\theta_k, t) := \sum_{j=0}^{K} \theta_{k,j} P_{k,j}(t) \qquad x(\theta_k, t_{k,j}) = \theta_{k,j}$$

What we have:

- State x_k at time t_k
- Constant input $u(t) = u_k$ over the time interval $[t_k, t_{k+1}]$
- Gradient of the state trajectory $\dot{x} = f(x, u)$

Define a set of grid points $\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$ and a polynomial interpolation

$$x(\theta_k, t) := \sum_{j=0}^{K} \theta_{k,j} P_{k,j}(t) \qquad x(\theta_k, t_{k,j}) = \theta_{k,j}$$

$$x(\theta_k,t_k)=x_k \qquad \qquad \text{Initial condition}$$

$$\frac{\partial}{\partial t}x(\theta_k,t_{k,j})=f(x(\theta_k,t_{k,j}),u_k) \qquad \qquad \text{Dynamics}$$

What we have:

- State x_k at time t_k
- Constant input $u(t) = u_k$ over the time interval $[t_k, t_{k+1}]$
- Gradient of the state trajectory $\dot{x} = f(x, u)$

Define a set of grid points $\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$ and a polynomial interpolation

$$x(\theta_k, t) := \sum_{j=0}^{K} \theta_{k,j} P_{k,j}(t) \qquad x(\theta_k, t_{k,j}) = \theta_{k,j}$$

$$heta_{k,0}=x_k$$
 Initial condition
$$\frac{\partial}{\partial t}x(\theta_k,t_{k,j})=f(x(\theta_k,t_{k,j}),u_k)$$
 Dynamics

What we have:

- State x_k at time t_k
- Constant input $u(t) = u_k$ over the time interval $[t_k, t_{k+1}]$
- Gradient of the state trajectory $\dot{x} = f(x, u)$

Define a set of grid points $\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$ and a polynomial interpolation

$$x(\theta_k, t) := \sum_{j=0}^{K} \theta_{k,j} P_{k,j}(t) \qquad x(\theta_k, t_{k,j}) = \theta_{k,j}$$

$$\theta_{k,0}=x_k \qquad \qquad \text{Initial condition}$$

$$\frac{\partial}{\partial t}\sum_{j=0}^K \theta_{k,j}P_{k,j}(t_{k,j})=f(x(\theta_k,t_{k,j}),u_k) \qquad \qquad \text{Dynamics}$$

What we have:

- State x_k at time t_k
- Constant input $u(t) = u_k$ over the time interval $[t_k, t_{k+1}]$
- Gradient of the state trajectory $\dot{x} = f(x, u)$

Define a set of grid points $\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$ and a polynomial interpolation

$$x(\theta_k, t) := \sum_{j=0}^{K} \theta_{k,j} P_{k,j}(t) \qquad x(\theta_k, t_{k,j}) = \theta_{k,j}$$

$$heta_{k,0} = x_k$$
 Initial condition

$$\sum_{k=0}^K heta_{k,j} \dot{P}_{k,j}(t_{k,j}) = f(x(heta_k,t_{k,j}),u_k)$$
 Dynamics

What we have:

- State x_k at time t_k
- Constant input $u(t) = u_k$ over the time interval $[t_k, t_{k+1}]$
- Gradient of the state trajectory $\dot{x} = f(x, u)$

Define a set of grid points $\{t_{k,0},\ldots,t_{k,K}\}\in[t_k,t_{k+1}]$ and a polynomial interpolation

$$x(\theta_k, t) := \sum_{j=0}^{K} \theta_{k,j} P_{k,j}(t) \qquad x(\theta_k, t_{k,j}) = \theta_{k,j}$$

$$heta_{k,0}=x_k$$
 Initial condition
$$\sum_{i=0}^K heta_{k,j} \dot{P}_{k,j}(t_{k,j})=f(heta_{k,j},u_k)$$
 Dynamics

Collocation Constraints

Collocation conditions:

$$heta_{k,0}=x_k$$
 Initial condition
$$\sum_{i=0}^K heta_{k,j} \dot{P}_{k,j}(t_{k,j})=f(heta_{k,j},u_k)$$
 Dynamics

Re-write this as

$$\theta_{k,0} = x_k$$

$$D\theta_k = f(\theta_k, u_k)$$

where the elements of the **derivative matrix** D are the constants $\dot{P}_{k,j}(t_{k,j})$ and $f(\theta_k,u_k)=\begin{bmatrix}f(\theta_{k,0},u_k)&\cdots&f(\theta_{k,K},u_k)\end{bmatrix}^T$

Quadrature Rules

How to compute the value function?

$$V = \int_0^T l(x, u)dt$$

Quadrature Rules

How to compute the value function?

$$V = \int_0^T l(x, u) dt$$

We note that this is equivalent to:

$$\dot{v} = l(x, u)$$
 $V = v(T)$

We can apply our discretization schemes to the ODE l(x, u).

Quadrature Rules

How to compute the value function?

$$V = \int_0^T l(x, u)dt$$

We note that this is equivalent to:

$$\dot{v} = l(x, u) V = v(T)$$

We can apply our discretization schemes to the ODE l(x,u). Consider the collocation method

$$D\theta^v = l(\theta^x, u)$$

where θ^v and θ^x are the values of v(t) and x(t) at the collocation points

$$\theta^v = D^{-1}l(\theta^x, u)$$

Note that we only want $v(T) = \theta^v(1) = wl(\theta^x, u)$, where w is the first row of D^{-1} .

Collocation - Optimization Problem

Putting it all together:

$$\min_{\{u_k\},\{\theta_k^x\}} \sum_{i=0}^N w^T l(\theta_i^x, u_i)$$
s.t.
$$D\theta_i^x = f(\theta_i^x, u_i)$$

$$\theta_i^x(end) = \theta_{i+1}^x(1)$$

$$x_i = \theta_i^x(1)$$

$$x_i \in X, u_i \in U$$

The size of this problem is

$$(\mathsf{horizion}) \times ((\mathsf{num\ inputs}) + (\mathsf{num\ states}) \times (\mathsf{num\ collocation\ points}))$$

This is quite large, but also quite sparse and structured.

Note that I've been a bit loose with the notation here in the translation from 1D to nD and the differentiation matrix here would be the Kronecker product $D \otimes I_n$.

Gradients

What is the Gradient of an Integral?

We now have

$$x_{k+1} = \hat{f}(x_k, u_k) \leftarrow \hat{f} = RK4$$

To solve the optimization problem, we need $\nabla \hat{f}$

How to compute the derivative of an algorithm?!

Symbolic / Manual Differentiation Sucks

Consider the simple system

$$\dot{x} = f(x) = x^2$$

Discretize with a sample period of h=1s using RK4

$$x^+ = \hat{f}(x)$$

The derivative of \hat{f} is

$$\frac{x}{3} + \frac{\left(2\left(\left(\frac{x^{2}}{2} + x\right)\left(x + 1\right) + 1\right)\left(x + \frac{\left(\frac{x^{2}}{2} + x\right)^{2}}{2}\right) + 1\right)\left(x + \left(x + \frac{\left(\frac{x^{2}}{2} + x\right)^{2}}{2}\right)^{2}\right)}{3} + \frac{2\left(\frac{x^{2}}{2} + x\right)\left(x + 1\right)}{3} + \frac{2\left(\left(\frac{x^{2}}{2} + x\right)\left(x + 1\right) + 1\right)\left(x + \frac{\left(\frac{x^{2}}{2} + x\right)^{2}}{2}\right) + 1}{3} + 1$$

$$y = \sin(a \times b) \times c$$

can be written via the computation graph of elementary operations

Sequence of elementary operations

- Each intrinsic $v = \phi(w, u)$ has local partials $\frac{\partial \phi}{\partial w}$, $\frac{\partial \phi}{\partial u}$
- e.g., $\sin(t_1)$ yields $p_1 = \cos(t_1)$

$$t_1 = a \times b$$

$$t_2 = \sin(t_1)$$

$$y = t_2 \times c$$

¹Slides on AD based on "Introduction to Algorithmic Differentiation" by J. Utke, Argonne National Laboratory Mathematics and Computer Science Division, 2013

$$y = \sin(a \times b) \times c$$

can be written via the computation graph of elementary operations

Sequence of elementary operations

- Each intrinsic $v = \phi(w, u)$ has local partials $\frac{\partial \phi}{\partial w}$, $\frac{\partial \phi}{\partial u}$
- e.g., $\sin(t_1)$ yields $p_1 = \cos(t_1)$

$$t_1 = a \times b$$

$$p_1 = \cos(t_1)$$

$$t_2 = \sin(t_1)$$

$$y = t_2 \times c$$

¹Slides on AD based on "Introduction to Algorithmic Differentiation" by J. Utke, Argonne National Laboratory Mathematics and Computer Science Division, 2013

- ullet associate each variable v with a derivative \dot{v}
- take a point (a_0, b_0, c_0) and a direction $(\dot{a}, \dot{b}, \dot{c})$
- for each $v=\phi(w,u)$ propagate forward in order $\dot{v}=\frac{\partial\phi}{w}\dot{w}+\frac{\partial\phi}{w}\dot{u}$

- Associate a derivative with each variable $[a, d_a]$
- Interleave computations

$$t_1 = a \times b$$

$$p_1 = \cos(t_1)$$

$$t_2 = \sin(t_1)$$

$$y = t_2 \times c$$

- ullet associate each variable v with a derivative \dot{v}
- take a point (a_0, b_0, c_0) and a direction $(\dot{a}, \dot{b}, \dot{c})$
- for each $v=\phi(w,u)$ propagate forward in order $\dot{v}=\frac{\partial\phi}{w}\dot{w}+\frac{\partial\phi}{w}\dot{u}$

- Associate a derivative with each variable $[a, d_a]$
- Interleave computations

$$t_1 = a \times b$$

$$d_{t_1} = d_a \times b + d_b \times a$$

$$p_1 = \cos(t_1)$$

$$t_2 = \sin(t_1)$$

$$d_{t_2} = d_{t_1} \times p_1$$

$$y = t_2 \times c$$

$$d_y = d_{t_2} \times c + d_c \times t_2$$

- What is returned: $\dot{y} = J\dot{x}$ computed at x_0
- Example: $(\dot{a},\dot{b},\dot{c})=(1,0,0)$ will compute the first column of J
- Can compute J by evaluating the function length(x) times
- ullet For optimization, we normally only need the product of J and a vector, which can be done in one computation

Example - Jacobian via Algorithmic Differentiation - CASADI

To MATLAB / CASADI : sym_example.m

NMPC

Example - NMPC - CASADI

To MATLAB / CASADI : pendulum.m

Summary

Theory Very similar to linear MPC (although many important details that we haven't covered for more complex problems)

Computation A lot more complex

Practical Many, many challenges not mentioned here arising from local optima, slow computations, numerical issues, etc

Many are working on tools to make NMPC as simple and practical as (linear) MPC.