Linearization - Jacobian Analisys

Equilibrium points

Consider a nonlinear differential equation

$$\dot{x}(t) = f(x(t), u(t))$$

Where f is a function mapping Rn x Rm \rightarrow Rn . A point $\overline{x} \in R^n$ is called an **equilibrium point** if there is an specific $\overline{u} \in R^m$ (called the equilibrium input) such that:

$$f(\overline{x},\overline{u}) = 0_n$$

Suppose \overline{x} is an equilibrium point (with equilibrium input \overline{u}). Consider starting the system $\dot{x}(t) = f\left(x(t), u(t)\right)$ from initial condition $x(t_0) = \overline{x}$, and applying the input $u(t) \equiv \overline{u}$ for all t t_0 . The resulting solution x(t) satisfies:

$$x(t) = \overline{x}$$

For all $t = t_0$. That is why it is called an equilibrium point.