

	WYPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę
		<i>πα πακι</i> ε <u></u> σκε

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

TERMIN: dodatkowy 2020 r. Czas pracy: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY			
Uprawnienia zdającego do:			
dostosowania kryteriów oceniania			
nieprzenoszenia zaznaczeń na kartę			

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 10. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 11. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-R1_**1**P-203

NOWA FORMULA

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Wielomian $W(x) = x^3 - x^2 - x - 2$ jest podzielny bez reszty przez wielomian

- A. x+2
- **B.** x+1
- **C.** x-1
- **D.** x-2

Zadanie 2. (0-1)

Granica $\lim_{x \to +\infty} \left(\frac{x^3 + 8}{x^2 - 4} - x \right)$ jest równa

- **A.** −∞
- **B.** +∞
- **C.** 0
- **D.** −2

Zadanie 3. (0–1)

Funkcja f jest określona wzorem $f(x) = \frac{3x+1}{x^2+1}$ dla wszystkich liczb rzeczywistych x.

Pochodna f' tej funkcji jest określona wzorem

A.
$$f'(x) = \frac{3}{2x}$$

B.
$$f'(x) = \frac{-3x^2 - 2x + 3}{2x}$$

C.
$$f'(x) = \frac{-3x^2 - 2x + 3}{(x^2 + 1)^2}$$

D.
$$f'(x) = \frac{9x^2 + 2x + 3}{(x^2 + 1)^2}$$

Zadanie 4. (0–1)

Wyrażenie $\frac{1}{\sqrt{3} + \sqrt{2} + 1}$ jest równe

A.
$$\sqrt{3} + \sqrt{2} - 1$$

B.
$$\frac{2+\sqrt{2}-\sqrt{6}}{4}$$

C.
$$\frac{1}{4}$$

D.
$$\frac{\sqrt{3} + \sqrt{2} - 1}{6}$$

BRUDNOPIS (nie podlega ocenie)

7 1	•	_	Λ	•
Lad	anie	5.	(U-	-2

Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n) , określonego dla $n \ge 1$, jest równa 2, a suma kwadratów wszystkich wyrazów tego ciągu jest równa 3. Oblicz iloraz ciągu (a_n) .

W kratki poniżej wpisz kolejno – od lewej do prawej – cyfrę jedności, części dziesiętnych i setnych otrzymanego wyniku.

Zadanie 6. (0-3)

Pierwszy wyraz ciągu (a_n) , określonego dla $n \ge 1$, jest równy 2. Wszystkie wyrazy tego ciągu spełniają warunek $a_n = 3 \cdot a_{n+1} + n^2$. Oblicz sumę $a_1 + a_2 + a_3$.

Odpowiedź:

Zadanie 7. (0–3)

Dany jest czworokąt wypukły, którego kolejnymi wierzchołkami są punkty A, B, C i D. Wykaż, że jeżeli $| \not ADB | = | \not ACB |$, to $| \not ABAC | = | \not ADC |$.

Zadanie 8. (0-3)

Wykaż, że dla każdej liczby nieparzystej n wyrażenie $n^5 - 3n^4 - n + 3$ jest podzielne przez 16.

Zadanie 9. (0–4)

Rozwiąż równanie $4\sin^3 x + \sin 2x = 2\sin^2 x \cdot (2\cos x + 1)$.

Zadanie 10. (0–4)

Dla pewnych liczb rzeczywistych a > 1, b > 1 i N > 1 jest spełniona równość

$$\log_{a^2b} N = \frac{3}{20} \cdot (\log_a N + \log_b N).$$

Wyznacz wszystkie wartości wyrażenia $\log_a b$.

Zadanie 11. (0-5)

Wyznacz wszystkie wartości parametru m, dla których nierówność

$$(m^2 + 4m - 5) \cdot x^2 + 2x > 2mx - 2$$

jest prawdziwa dla każdej liczby rzeczywistej x.

Zadanie 12. (0–6)

Punkt A = (-2,6) jest wierzchołkiem rombu ABCD o polu równym 82,5. Przekątna BD tego rombu zawiera się w prostej l o równaniu 2x - y - 5 = 0. Wyznacz współrzędne pozostałych wierzchołków tego rombu.

Odnoviodá		
Oupowiedz:	•••••••••••••••••••••••••••••••••	

Zadanie 13. (0–3)Oblicz, ile jest siedmiocyfrowych liczb naturalnych takich, że w zapisie dziesiętnym iloczyn wszystkich cyfr każdej z tych liczb jest równy 28.

Zadanie 14. (0-6)

Dany jest romb ABCD. Przez wierzchołki B i D poprowadzono dwie proste równoległe przecinające boki CD i AB – odpowiednio – w punktach M i N, tak, że podzieliły one ten romb na trzy figury AND, NBMD, BCM o równych polach. Ponadto wiadomo, że |MB| = |ND| = |BD| (zobacz rysunek). Oblicz cosinus kąta ostrego tego rombu.

Zadanie 15. (0-7)

Rozpatrujemy wszystkie ostrosłupy prawidłowe czworokątne, w których suma promienia okręgu opisanego na podstawie i długości krawędzi bocznej jest równa d. Wyznacz długość krawędzi podstawy tego z rozpatrywanych ostrosłupów, który ma największą objętość. Oblicz tę największą objętość.

BRUDNOPIS (nie podlega ocenie)

