

Genera Description

概述

Specifically designed for Automotive applications, this SiC Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per unit area.

本产品是一款专为汽车应用设计的碳化硅功率MOSFET产品,采用了先进的工艺技术,产品的单位面积导通电阻非常低。

Features

特点

- High Speed Switching with Low Capacitances
 开关速度快,寄生电容小
- High Blocking Voltage with Low R_{DS(on)}
 阻断电压高,开通电阻低
- 100% avalanche tested100%通过雪崩测试
- Halogen Free and RoHS Compliant 无卤元素,符合 RoHS

- EV ChargingEV 充电
- DC-AC Inverters
 DC-AC 转换器
- High Voltage DC/DC Converters
 高压 DC/DC 变压器
- Power Factor Correction Modules
 功率因子矫正模块

Ordering Information

订货信息

Type	BV _{DSS} [V]	R _{DSon} [mΩ]	T _{jmax} [℃]	Marking	Packing
型号	漏极-源极电压	导通电阻	最高结温	标记	封装外形
BSN080S120	1200	80	175	BSN080S120	TO-247

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 1 of 8

Maximum Rated Values

最大额定参数

Parameter 参数	Symbol 符号	Value 数值	Unit 单位	
Drain-Source Voltage, Tj≥25℃ 漏-源电压, Tj≥25℃	$ m V_{DS}$	1200	V	
Drain Current(continuous)at T _C =25℃ 常温下漏极电流(持续)	T	36		
Drain Current(continuous)at T _C =100℃ T _C =100℃下漏极电流(持续)	I_{D}	25	A	
Pulsed Drain current, tp limited by Tj max 集电极脉冲电流,脉宽时间受 Tj max 限制	I_{DM}	60A		
Gate-Source Voltage(dynamic: AC>1Hz) 栅极-源极电压(瞬态: AC>1Hz)	$ m V_{GS}$	-15/+25		
Gate-Source Voltage 栅极-源极电压	$ m V_{GS}$	-10/+25	V	
Gate-Source Voltage (Recommended operational values) 栅极-源极电压(推荐工作电压)	$ m V_{GSop}$	-5/+20		
Power Dissipation $T_C = 25$ °C 常温耗散功率	P_{D}	238	W	
Storage Temperature Range 储存温度范围	$T_{ m J.Tstg}$	-55 to +175		
Solder Temperature (1.6mm from case for 10s) 焊接温度	T_{L}	260	°C	
Operating junction temperature Range 工作结温	$T_{\mathtt{J}}$	-55 to +175		
Mounting Torque 安装力矩	M_{d}	1 8.8	Nm Ibf-in	

Caution: These values must not be exceeded under any conditions.

注意: 任何条件下都不能超出上述值。

Thermal Resistance

热阻

Parameter 参数	Symbol 符号	Value 值	Unit 单位	
Thermal Resistance, Junction to Case, Max. 结-管壳热阻	$R_{ heta m JC}$	0.63	OC/NV	
Thermal Resistance, Junction to Ambient, Max. 结-环境热阻	$R_{ heta JA}$	40	°C/W	

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 2 of 8

Electrical Characteristic at $T_j = 25^{\circ}C$ (unless otherwise specified)

Tj=25℃时电学特性(除非特别声明)

Parameter	Symbol	Conditions	Value 值			Unit
参数	符号	条件	Min. 最小 值	Typ. 典型 值	Max. 最大 值	单位
Static Characteristic 静态特性						
Drain to Source Breakdown Voltage 漏极-源极电压击穿电压	$\mathrm{BV}_{\mathrm{DS}}$	V _{GS} =0V, I _D =100uA T _j =25°C	1200	-	-	V
Zero Gate Voltage Drain Current 栅源短路的漏极电流	I_{DSS}	V_{DS} =1200V, V_{GS} =0V, T_{j} =25°C	-	1	100	uA
Gate to Body Leakage Current 栅极-源极漏泄电流	I_{GSS}	V _{GS} =20V, V _{DS} =0V	-	20	100	nA
Static Drain-source On	D	V_{GS} =20V, I_{D} =20A, T_{J} =25 °C	-	80	100	mΩ
Resistance ^(Fig.4) 漏极-源极通态电阻	R _{DS(on)}	V_{GS} =20V, I_{D} =20A, T_{J} =175 °C	-	120	-	
Gate Threshold Voltage 栅极-源极阈值电压	V _{GS(th)}	$V_{DS}=V_{GS}, I_{DS}=5mA$ $T_{J}=25^{\circ}C$	2	-	4	V
Gate Resistance 栅极电阻	R_G	f=1MHz, V _{AC} =25mV	-	5	-	Ω
Dynamic Characteristic 动态特性						
Input Capacitance 输入电容	C _{iss}		-	2080	-	
Output Capacitance 输出电容	C_{oss}	V_{DS} =1000V, f=1MH _Z , V_{GS} =0V, V_{AC} =25mV	-	97	-	pF
Reverse Transfer Capacitance 反向传输电容	C _{rss}	· Ac Zom ·	-	22	-	1
Total Gate Charge 栅极总电荷	Q _{g(tot)}		-	85	-	
Gate-source Charge 栅-源电荷	Qgs	$\begin{array}{c} V_{DS}\!\!=\!\!800V \\ I_{D}\!\!=\!\!20A,V_{GS}\!\!=\!\!-5/20V \end{array}$	-	23	-	nC
Gate-Drain Charge 栅-漏电荷	Q_{gd}		-	26	-	

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 3 of 8

Switching Characteristic at T_j=25°C (Inductive Load)

Tj=25℃时开关特性(电感负载)

.		G 11.1	Value 值			
Parameter 参数	Symbol 符号	Conditions 条件	Min. 最小 值	Typ. 典型 值	Max. 最大 值	Unit 単位
MOSFET Characteristic MOSFET 特性						
Turn-on delay time 开通延迟时间	t _{d(on)}	V _{DS} =800V, V _{GS} =-5/20V,	-	23	-	ns
Rise time 上升时间	t _r	$I_D=20A$, $R_{G(ext)}=5\Omega$,	-	60	-	
Turn-off delay time 关断延迟时间	$t_{ m d(off)}$	$R_L=40\Omega$,	-	17	-	
Fall time 下降时间	t_{f}	Tj=25°C;	-	12	-	
Turn-on Switching Energy 开通损耗	Eon	V_{DS} =800V, V_{GS} =-5/20V, I_{D} =20A,	-	180	-	Ţ
Turn-off Switching Energy 关断损耗	Eoff	$R_{G(ext)}$ =5 Ω , Tj =25 $^{\circ}$ C, L =142 μ H;	-	70	-	μJ
SOURCE-DRAIN DIODE CHARA 源极-漏极二极管特性	ACTERISTIC	CS				
Source to Drain Diode Forward Voltage	N/	$I_{SD}=10A$, $V_{GS}=-5V$, $T_{j}=25^{\circ}C$;	-	3.5	-	V 7
源极-漏极正向电压	V _{SD}	$I_{SD}=10A$, $V_{GS}=-5V$, $T_{j}=175^{\circ}C$;	-	3.0	-	V
Reverse Recovery time 反向恢复时间	t _{rr}	V_{GS} =-5V, I_{SD} =20A, V_{R} =800V,		38		ns
Reverse Recovery Charge 反向恢复电荷	Qrr		-	207	-	nC
Peak Reverse Recovery Current 峰值反向恢复电流	I _{rrm}	dif/dt=1000A/us;	-	13	-	A

Notes

a: Repetitive Rating: Pulse width limited by maximum junction temperature

b: Pulse Test : Pulse width \leq 380 μ s

c: Essentially independent of operating temperature

注:

a: 重复范围: 脉冲宽度受限于最大结温

b: 脉冲测试: 脉冲宽度≤380µs

c: 本质上与工作温度无关

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 4 of 8

Electrical characteristics diagram 特性曲线

Figure 1. Output Characteristics $T_J = -55^{\circ}C$

Figure 2. Output Characteristics $T_J = 25^{\circ}C$

Figure 3. Output Characteristics $T_J = 175$ °C

Figure 4. On-Resistance vs. Junction Temperature

Figure 5. Transfer Characteristic for Various Junction Temperatures

Figure 6. On-Resistance For Various Gate Voltage

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 5 of 8

Figure 7. Body Diode Characteristics

Figure 8. Capacitances vs. Drain-Source Voltage

Figure 9. Gate Charge Characteristics

Figure 10. Maximum Power Dissipation Derating vs.

Case Temperature

Figure 11. Transient Thermal Impendance

12. BVDSS vs. Junction Temperature

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 6 of 8

TO-247 Packing Outline Dimensions: TO-247 封装外形尺寸

	Mechanical Dimensions					
Dim	/mm					
	MIN	NOM	MAX			
A	4.90	5.00	5.10			
A1	1.90	2.00	2.10			
A2	2.30	2.40	2.50			
В	1.10	1.20	1.30			
B1	3.05	3.15	3.25			
B2	2.00	2.10	2.20			
C	0.55	0.60	0.65			
D	20.90	21.00	21.10			
D1	16.35	16.55	16.75			
E	15.70	15.80	15.90			
E1	2.40	2.50	2.60			
F	9.80	10.00	10.20			
F1	5.10	5.20	5.30			
e	5.44 BSC					
L	19.72	19.92	20.12			
L1	3.90	4.10	4.30			
ФР	3.50	3.60	3.70			
Φ P1	2.40	2.50	2.60			
ФР2	7.10	7.20	7.30			
S	6.05	6.15	6.25			
M	0.45	_	0.95			
Q	5.40	5.50	5.60			

Packing 包装

Package 包装	Pcs/tube	Tube/ inner box	Inner box/ carton	Pcs/carton
	片/管	管/内盒	内盒/外箱	片/外箱
Tube 管	30	12	6	2160

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 7 of 8

STRICTIONS ON PRODUCT USE

产品使用注意事项

- The information contained herein is subject to change without notice.
- BYD Semiconductor Company Co., Ltd. exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that products are used within specified operating ranges as set forth in the most recent products specifications.
- The products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of products listed in this document shall be made at the customer's own risk.
- 本资料内容,随产品的改进,可能会有未经预告之修改,比亚迪半导体股份有限公司拥有优先修改权。
- 尽管本公司一向致力于提高产品质量和可靠性,但是半导体产品有可能按某种概率发生故障或错误工作,为防止因故障或错误工作而产生人身事故,火灾事故,社会性损害等,请充分留意冗余设计、火灾蔓延对策设计、防止错误动作设计等安全设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载及复制

Datasheet WI-D06F08-H-0375 Rev.A/0 Page 8 of 8