PROTOTYPING

TUJUAN PEMBELAJARAN

- Diharapkan mahasiswa:
 - Dapat mengerti dan mampu menjelaskan konsep rapid prototyping.
 - Dapat mengerti dan mampu menjelaskan dimensi prototyping
 - Dapat mengerti dan mampu menjelaskan terminology prototyping
 - Mahasiswa mampu menyebutkan dan menerangkan beberapa metode rapid prototyping
 - Dapat mengerti dan mampu menjelaskan deskripsi desain
 - Dapat mengerti dan mampu membedakan bentuk prototyping sketsa, storyboard, dan scenario
 - Dapat menyebutkan dan menerangkan beberapa teknik prototyping lainnya
 - Dapat menyebutkan beberapa prototyping tools yang dapat digunakan.

PENDAHULUAN

- Prototipe merupakan simulasi atau animasi dari bakal sistem.
- Prototipe merupakan suatu metode daalm pengembangan sistem yang menggunakan pendekatan untuk membuat suatu program dengan cepat & bertahap sehingga segera dapat dievaluasi oleh pemakai
- Prototipe ini memang benar-benar cocok untuk user yang awam IT.
- Dalam pembuatan prototipe kita dapat menerapkan UCD (User Centered Design).

TAHAPAN PROTOTYPING

KARAKTERISTIK DLM PROSES UCD

- Memahami user dan kebutuhannya.
- Fokus pada user pada tahap awal desain dan mengevaluasi hasil desain.
- Mengidentifikasi, membuat dokumentasi dan menyetujui kegunaan dan tujuan pengalaman user.
- Perulangan hampir dapat dipastikan. Para perancang tidak pernah berhasil hanya dalam satu kali proses.

KEUNGGULAN PROTOTYPE

- 1. Adanya komunikasi yang baik antara pengembang dan pelanggan
- Pengembang dapat bekerja lebih baik dalam menentukan kebutuhan pelanggan
- 3. Pelanggan berperan aktif dalam pengembangan sistem
- 4. Lebih menghemat waktu dalam pengembangan sistem
- 5. Penerapan menjadi lebih mudah karena pemakai mengetahui apa yang diharapkannya.

KELEMAHAN PROTOTYPE

- Pelanggan kadang tidak melihat atau menyadari bahwa perangkat lunak yang ada belum mencantumkan kualitas perangkat lunak secara keseluruhan dan juga belum memikirkan kemampuan pemeliharaan untuk jangka waktu lama
- 2. Pengembang biasanya ingin cepat menyelesaikan proyek. Sehingga menggunakan algoritma dan bahasa pemrograman yang sederhana untuk membuat prototyping lebih cepat selesai tanpa memikirkan lebih lanjut bahwa program tersebut hanya merupakan cetak biru sistem .
- 3. Hubungan pelanggan dengan komputer yang disediakan mungkin tidak mencerminkan teknik perancangan yang baik

MENGAPA MENGGUNAKAN PROTOTYPE

- Evaluasi dan feedback pada rancangan interaktif.
- Stakeholder (dalam hal ini user) dapat melihat, menyentuh, berinteraksi dengan prototype.
- Anggota tim dapat berkomunikasi secara efektif.
- Para perancang dapat mengeluarkan ide-idenya.
- Memunculkan ide-ide secara visual dan mengembangkannya.
- Dapat menjawab pertanyaan → membantu pemilihan di antara alternatif-alternatif.

DIMENSI PROTOTYPE

1. Penyajian

- Bagaimana desain dilukiskan atau diwakili?
- Dapat berupa uraian tekstual atau dapat visual dan diagram.

2. Lingkup

– Apakah hanya interface atau apakah mencakup komponen komputasi?

DIMENSI PROTOTYPE

3. Executability (Dapat dijalankan)

- Dapatkah prototype tersebut dijalankan?
- Jika dikodekan, akan ada periode saat prototype tidak dapat dijalankan.

4. Maturation (Pematangan)

Apakah tahapan-tahapan produk ini mengikuti?

- Revolusioner: mengganti yang lama.
- Evolusioner : terus melakukan perubahan pada perancangan yang sebelumnya.

METODE PEMBUATAN PROTOTYPE DENGAN CEPAT

Non-Computer

(biasanya dikerjakan lebih awal dalam proses pembuatan)

VS

Computer-Based

(biasanya dikerjakan kemudian)

Tujuan

Ingin menyatakan gagasan desain dan mendapatkan dengan mudah dan cepat pendapat atas sistem.

Deskripsi Desain

Dapat berupa deskripsi tekstual dari suatu desain sistem.

- Kelemahan yang nyata adalah seberapa jauh dari sistem yang sebenarnya.
- Tidak dapat melakukan suatu pekerjaan yang mewakili aspek dari interface.

Sketsa, Mock-ups

- Paper-Based "menggambarkan" interface.
- Baik untuk mengungkapkan pendapat.
- Difokuskan pada orang dengan desain tingkat tinggi.
- Tidak terlalu baik untuk menggambarkan alur dan rinciannya.
- Murah dan cepat → umpan balik sangat menolong.

Storyboarding

Pensil dan simulasi catatan atau walkthrough dari

kemampuan dan tampilan sistem.

- Menggunakan urutan diagram/gambar.
- Menunjukkan kunci snap shots.
- Cepat dan mudah.

Contoh:

Skenario

Hipotesis atau imajinasi penggunaan.

- Biasanya menyertakan beberapa orang, peristiwa, lingkungan dan situasi.
- Menyediakan konteks operasi.
- Terkadang dalam format naratif, tetapi juga dapat berupa sketsa atau bahkan video.

Utilitas Skenario

- Menjanjikan dan menarik.
- Mengijinkan perancang untuk melihat masalah dari pandangan orang lain.
- Memudahkan umpan balik dan pendapat.
- Dapat sangat kreatif dan modern.

Teknik Lain Tutorial dan Manual

- Mungkin menuliskannya lebih berguna daripada disimpan dalam kepala.
- Memaksa perancang untuk membuat keputusan dengan tegas.
- Menulis/meletakkannya di atas kertas jauh lebih berharga.

METODE COMPUTER-BASED

- Menirukan lebih banyak kemampuan sistem.
 - Pada umumnya hanya baru beberapa aspek atau fitur
 - Dapat berpusat pada lebih banyak detail
 - Bahaya: Para pemakai jadi lebih segan untuk menyarankan perubahan sekali ketika mereka melihat prototype yang lebih realistis.

1. Prototype Horisontal

Sangat luas, mengerjakan atau menunjukkan sebagian besar interface, tetapi tidak mendalam.

2. Prototype Vertikal

Lebih sedikit aspek atau fitur dari interface yang disimulasikan, tetapi dilaksanakan dengan rincian yang sangat baik.

- 3. Early Prototyping (prototipe cepat)
- 4. Late Prototyping (prototipe lambat)
- **5. Low-fidelity Prototyping** (prototype dengan tingkat ketepatan yang rendah) Contoh (1) storyboard:
- Digunakan di awal desain.
- Biasanya digunakan dengan skenario, lebih terinci, dan dapat diputar ulang.
- Kumpulan dari sketsa/frame individual.
- menyajikan urutan inti cerita.
- menunjukkan bagaimana kemungkinan user dapat mengalami peningkatan melalui setiap aktifitas.

- Contoh (2) sketsa:
 - Sketsa sangat penting untuk low-fidelity prototyping.
 - Jangan takut dengan kemampuan menggambar.
 - Menyajikan "tampilan" cepat dari interface, konsep desain, dll.
 - Contoh (3) "wizard-of-oz":
 - Digunakan tampilan maket dan berinteraksi dengan pemakai
 - Baik untuk mensimulasikan sistem yang sulit dibuat

- 7. High-fidelity prototyping (prototype dengan tingkat ketepatan yang tinggi)
- Hi-fi prototype seperti sistem akhir.
- Menggunakan bahan baku yang sama seperti produk akhir.
- Tools umum yang digunakan: Macromedia Director, Visual Basic, Flash.

1. Draw/Paint Program

contoh: Photoshop, Coreldraw

- Menggambar setiap layar, baik untuk dilihat.
- Prototype horisontal, tipis.
- Adobe Photoshop.

2. Scripted Simulations/Slide Show

contoh: Powerpoint, Hypercard, Macromedia Director, HTML.

- Letakkan tampilan seperti storyboard dengan (animasi) perubahan diantaranya.
- Dapat memberikan user catatan yang sangat spesifik.
- Macromedia Director.

3. Interface Builders

contoh: Visual Basic, Delphi.

 Tools untuk menampilkan jendela, kendali, dan lain-lain dari interface.

KELEBIHAN

- Mudah dikembangkan dan memodifikasi layar.
- Mendukung jenis interface yang dikembangkan.
- Mendukung berbagai macam device Input/Output.
- Mudah untuk memodifikasi dan menghubungkan layar.
- Mengijinkan memanggil prosedur eksternal dan program.
- Mengijinkan mengimpor teks, grafik, media lain.
- Mudah untuk dipelajari dan digunakan.
- Dukungan yang baik dari vendor.

PEMODELAN

REFERENSI

- Surbakti, Irfan; Interaksi Manusia Dan Komputer, Edisi Jurusan Teknik Informatika-ITS, 2006
- Balubita, Hasan, Interaksi Manusia Dan Komputer