```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from warnings import filterwarnings
         filterwarnings(action='ignore')
In [2]:
         pd.set_option('display.max_columns',10,'display.width',1000)
         train = pd.read_csv("C:\\Users\\sanja\\Downloads\\train.csv")
         test = pd.read_csv("C:\\Users\\sanja\\Downloads\\test.csv")
         train.head()
            PassengerId Survived Pclass
                                                        Sex ... Parch
Out[2]:
                                                                           Ticket
                                              Name
                                                                                      Fare Cabi
                                             Braund,
                                                                              A/5
                      1
         0
                                0
                                        3
                                           Mr. Owen
                                                       male
                                                                     0
                                                                                    7.2500
                                                                                             Na
                                                                           21171
                                              Harris
                                            Cumings,
                                           Mrs. John
                                             Bradley
         1
                      2
                                                      female ...
                                1
                                                                     0 PC 17599 71.2833
                                                                                             C8
                                            (Florence
                                              Briggs
                                                Th...
                                           Heikkinen,
                                                                        STON/O2.
         2
                      3
                                1
                                       3
                                                                                    7.9250
                                               Miss.
                                                     female
                                                                                             Na
                                                                         3101282
                                               Laina
                                             Futrelle,
                                                Mrs.
                                             Jacques
         3
                      4
                                1
                                                      female ...
                                                                     0
                                                                          113803 53.1000
                                                                                            C12
                                              Heath
                                            (Lily May
                                               Peel)
                                           Allen, Mr.
                      5
                                0
         4
                                       3
                                             William
                                                                                    8.0500
                                                       male ...
                                                                     0
                                                                          373450
                                                                                             Na
                                              Henry
        5 rows × 12 columns
         train.shape
In [3]:
Out[3]:
         (891, 12)
In [4]:
         test.shape
Out[4]: (418, 11)
        train.isnull().sum()
In [5]:
```

Out[5]:	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Cabin	687
	Embarked	2
	dtype: int64	

In [6]: test.isnull().sum()

Out[6]: PassengerId 0 Pclass 0 Name 0 Sex 0 86 Age SibSp 0 Parch 0 Ticket 0 Fare 1 Cabin 327 Embarked 0 dtype: int64

In [7]: train.describe(include="all")

Out[7]: **PassengerId** Survived **Pclass** Name Sex **Parch Ticket** 891.000000 891.000000 891.000000 891 891 891.000000 891 89 count 891 681 unique NaN NaN NaN NaN Braund, Mr. NaN NaN NaN NaN 347082 top male Owen Harris 7 NaN NaN NaN 1 577 freq NaN 446.000000 NaN 0.383838 2.308642 0.381594 3 mean NaN NaN std 257.353842 0.486592 0.836071 NaN NaN 0.806057 NaN 4 1.000000 0.000000 1.000000 0.000000 NaN min NaN NaN **25**% 223.500000 2.000000 0.000000NaN NaN 0.000000 NaN **50**% 446.000000 0.000000 3.000000 0.000000 1، NaN NaN NaN **75**% 3 668.500000 1.000000 3.000000 NaN NaN 0.000000 NaN 891.000000 1.000000 3.000000 6.000000 51: NaN NaN NaN max

11 rows × 12 columns

```
import numpy as np
 In [8]:
         numeric_columns =train.select_dtypes (include=[np.number]).columns
         train[numeric_columns].groupby('Survived').mean()
 Out[8]:
                   PassengerId
                                  Pclass
                                              Age
                                                      SibSp
                                                                Parch
                                                                            Fare
          Survived
                0
                    447.016393 2.531876 30.626179 0.553734 0.329690
                                                                       22.117887
                    444.368421 1.950292 28.343690 0.473684 0.464912 48.395408
 In [9]: import numpy as np
         numeric_columns= train.select_dtypes (include=[np.number])
         correlation_matrix= numeric_columns.corr()
         correlation_matrix
 Out[9]:
                      PassengerId
                                   Survived
                                                Pclass
                                                            Age
                                                                     SibSp
                                                                               Parch
                                                                                           Fai
                         1.000000
                                   -0.005007
                                             -0.035144
                                                                            -0.001652
                                                                                       0.01265
          PassengerId
                                                        0.036847
                                                                 -0.057527
             Survived
                         -0.005007
                                    1.000000
                                             -0.338481
                                                       -0.077221
                                                                 -0.035322
                                                                            0.081629
                                                                                       0.25730
               Pclass
                         -0.035144
                                   -0.338481
                                              1.000000
                                                       -0.369226
                                                                  0.083081
                                                                            0.018443
                                                                                      -0.5495(
                 Age
                         0.036847 -0.077221
                                             -0.369226
                                                        1.000000
                                                                  -0.308247
                                                                            -0.189119
                                                                                       0.09606
               SibSp
                         -0.057527
                                   -0.035322
                                              0.083081
                                                       -0.308247
                                                                  1.000000
                                                                            0.414838
                                                                                       0.15965
                Parch
                         -0.001652
                                    0.081629
                                              0.018443
                                                       -0.189119
                                                                  0.414838
                                                                             1.000000
                                                                                       0.21622
                 Fare
                         0.096067
                                                                  0.159651
                                                                            0.216225
                                                                                       1.00000
In [10]: male_ind = len(train[train['Sex'] == 'male'])
         print("No of Males in Titanic:",male ind)
        No of Males in Titanic: 577
In [11]: female ind = len(train[train['Sex'] == 'female'])
         print("No of Females in Titanic:",female_ind)
        No of Females in Titanic: 314
In [12]: fig = plt.figure()
         ax = fig.add_axes([0,0,1,1])
         gender = ['Male', 'Female']
         index = [577,314]
         ax.bar(gender,index)
         plt.xlabel("Gender")
          plt.ylabel("No of people onboarding ship")
         plt.show()
```



```
In [13]: alive = len(train[train['Survived'] == 1])
    dead = len(train[train['Survived'] == 0])
```

In [14]: train.groupby('Sex')[['Survived']].mean()

Out[14]: Survived

Sex

female 0.742038

male 0.188908

```
In [15]: fig = plt.figure()
    ax = fig.add_axes([0,0,1,1])
    status = ['Survived','Dead']
    ind = [alive,dead]
    ax.bar(status,ind)
    plt.xlabel("Status")
    plt.show()
```


In [16]: plt.figure(1)
 train.loc[train['Survived'] == 1, 'Pclass'].value_counts().sort_index().plot.bar
 plt.title('Bar graph of people according to ticket class in which people survived

 plt.figure(2)
 train.loc[train['Survived'] == 0, 'Pclass'].value_counts().sort_index().plot.bar
 plt.title('Bar graph of people according to ticket class in which people couldn\'

Out[16]: Text(0.5, 1.0, "Bar graph of people according to ticket class in which people couldn't survive")

Bar graph of people accrding to ticket class in which people couldn't survive


```
In [17]: plt.figure(1)
    age = train.loc[train.Survived == 1, 'Age']
    plt.title('The histogram of the age groups of the people that had survived')
    plt.hist(age, np.arange(0,100,10))
    plt.xticks(np.arange(0,100,10))

plt.figure(2)
    age = train.loc[train.Survived == 0, 'Age']
```

```
plt.title('The histogram of the age groups of the people that coudn\'t survive')
plt.hist(age, np.arange(0,100,10))
plt.xticks(np.arange(0,100,10))
```

```
Out[17]: ([<matplotlib.axis.XTick at 0x202395ccb90>,
            <matplotlib.axis.XTick at 0x202395cb1d0>,
            <matplotlib.axis.XTick at 0x202395796d0>,
            <matplotlib.axis.XTick at 0x2023960ae50>,
            <matplotlib.axis.XTick at 0x2023960d010>,
            <matplotlib.axis.XTick at 0x2023960f310>,
            <matplotlib.axis.XTick at 0x20239615590>,
            <matplotlib.axis.XTick at 0x20239617790>,
            <matplotlib.axis.XTick at 0x2023960da50>,
            <matplotlib.axis.XTick at 0x2023961a0d0>],
           [Text(0, 0, '0'),
            Text(10, 0, '10'),
            Text(20, 0, '20'),
            Text(30, 0, '30'),
            Text(40, 0, '40'),
            Text(50, 0, '50'),
            Text(60, 0, '60'),
            Text(70, 0, '70'),
            Text(80, 0, '80'),
            Text(90, 0, '90')])
```

The histogram of the age groups of the people that had survived

In [18]: train[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_valu

Out[18]:		SibSp	Survived
	1	1	0.535885
	2	2	0.464286
	0	0	0.345395
	3	3	0.250000
	4	4	0.166667
	5	5	0.000000
	6	8	0.000000

In [19]: train[["Pclass", "Survived"]].groupby(['Pclass'], as_index=False).mean().sort_va

Out[19]:		Pclass	Survived
	0	1	0.629630
	1	2	0.472826
	2	3	0.242363

In [20]: train[["Age", "Survived"]].groupby(['Age'], as_index=False).mean().sort_values(b

Out[20]:		Age	Survived
	0	0.42	1.0
	1	0.67	1.0
	2	0.75	1.0
	3	0.83	1.0
	4	0.92	1.0
	•••		
	83	70.00	0.0
	84	70.50	0.0
	85	71.00	0.0
	86	74.00	0.0
	87	80.00	1.0

88 rows × 2 columns

0 C 0.553571
 1 Q 0.389610
 2 S 0.336957

```
In [22]: fig = plt.figure()
    ax = fig.add_axes([0,0,1,1])
    ax.axis('equal')
    l = ['C = Cherbourg', 'Q = Queenstown', 'S = Southampton']
    s = [0.553571,0.389610,0.336957]
    ax.pie(s, labels = l,autopct='%1.2f%%')
    plt.show()
```


]:		Passengerld	Pclass	Name	Sex	Age	•••	Parch	Ticket	
c	count	418.000000	418.000000	418	418	332.000000		418.000000	418	417.0
un	nique	NaN	NaN	418	2	NaN		NaN	363	
	top	NaN	NaN	Kelly, Mr. James	male	NaN		NaN	PC 17608	
	freq	NaN	NaN	1	266	NaN		NaN	5	
n	mean	1100.500000	2.265550	NaN	NaN	30.272590		0.392344	NaN	35.6
	std	120.810458	0.841838	NaN	NaN	14.181209		0.981429	NaN	55.9
	min	892.000000	1.000000	NaN	NaN	0.170000		0.000000	NaN	0.0
	25%	996.250000	1.000000	NaN	NaN	21.000000		0.000000	NaN	7.8
	50%	1100.500000	3.000000	NaN	NaN	27.000000		0.000000	NaN	14.4
	75 %	1204.750000	3.000000	NaN	NaN	39.000000		0.000000	NaN	31.5
	max	1309.000000	3.000000	NaN	NaN	76.000000		9.000000	NaN	512.3
11	rows >	< 11 columns								
4										

In [24]: train = train.drop(['Ticket'], axis = 1)

```
test = test.drop(['Ticket'], axis = 1)
In [25]: train = train.drop(['Cabin'], axis = 1)
         test = test.drop(['Cabin'], axis = 1)
In [26]: train = train.drop(['Name'], axis = 1)
         test = test.drop(['Name'], axis = 1)
In [27]:
        column_train=['Age','Pclass','SibSp','Parch','Fare','Sex','Embarked']
         #training values
         X=train[column_train]
         #target value
         Y=train['Survived']
In [28]: X['Age'].isnull().sum()
         X['Pclass'].isnull().sum()
         X['SibSp'].isnull().sum()
         X['Parch'].isnull().sum()
         X['Fare'].isnull().sum()
         X['Sex'].isnull().sum()
         X['Embarked'].isnull().sum()
Out[28]: 2
In [29]: X['Age']=X['Age'].fillna(X['Age'].median())
         X['Age'].isnull().sum()
Out[29]: 0
In [30]: X['Embarked'] = train['Embarked'].fillna(method ='pad')
         X['Embarked'].isnull().sum()
Out[30]: 0
In [31]: d={'male':0, 'female':1}
         X['Sex']=X['Sex'].apply(lambda x:d[x])
         X['Sex'].head()
Out[31]: 0
              0
              1
          1
          2
              1
          3
              1
         Name: Sex, dtype: int64
In [32]: e={'C':0, 'Q':1,'S':2}
         X['Embarked']=X['Embarked'].apply(lambda x:e[x])
         X['Embarked'].head()
Out[32]: 0
              2
              0
          2
              2
          3
               2
          Name: Embarked, dtype: int64
```

```
In [33]: from sklearn.model selection import train test split
         X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3,random_sta
In [34]: from sklearn.linear_model import LogisticRegression
         model = LogisticRegression()
         model.fit(X_train,Y_train)
         Y_pred = model.predict(X_test)
         from sklearn.metrics import accuracy_score
         print("Accuracy Score:",accuracy_score(Y_test,Y_pred))
        Accuracy Score: 0.7611940298507462
In [35]: from sklearn.metrics import accuracy_score,confusion_matrix
         confusion_mat = confusion_matrix(Y_test,Y_pred)
         print(confusion_mat)
        [[131 25]
         [ 39 73]]
In [36]: from sklearn.svm import SVC
         model1 = SVC()
         model1.fit(X_train,Y_train)
         pred_y = model1.predict(X_test)
         from sklearn.metrics import accuracy_score
         print("Acc=",accuracy_score(Y_test,pred_y))
        Acc= 0.6604477611940298
In [37]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_repor
         confusion_mat = confusion_matrix(Y_test,pred_y)
         print(confusion_mat)
         print(classification_report(Y_test,pred_y))
        [[149
                7]
         [ 84 28]]
                      precision recall f1-score
                                                     support
                           0.64
                                     0.96
                                               0.77
                                                          156
                   a
                   1
                           0.80
                                     0.25
                                               0.38
                                                          112
            accuracy
                                               0.66
                                                          268
           macro avg
                           0.72
                                     0.60
                                               0.57
                                                          268
                                     0.66
        weighted avg
                           0.71
                                               0.61
                                                          268
In [38]: from sklearn.neighbors import KNeighborsClassifier
         model2 = KNeighborsClassifier(n_neighbors=5)
         model2.fit(X_train,Y_train)
         y pred2 = model2.predict(X test)
         from sklearn.metrics import accuracy score
         print("Accuracy Score:",accuracy_score(Y_test,y_pred2))
        Accuracy Score: 0.6604477611940298
In [39]: | from sklearn.metrics import accuracy_score,confusion_matrix,classification_repor
         confusion_mat = confusion_matrix(Y_test,y_pred2)
```

```
print(confusion_mat)
         print(classification_report(Y_test,y_pred2))
        [[127 29]
         [ 62 50]]
                      precision recall f1-score
                                                      support
                   0
                           0.67
                                     0.81
                                               0.74
                                                          156
                   1
                           0.63
                                     0.45
                                               0.52
                                                          112
                                               0.66
                                                          268
            accuracy
                                               0.63
                                                          268
           macro avg
                           0.65
                                     0.63
        weighted avg
                           0.66
                                     0.66
                                               0.65
                                                          268
In [40]: from sklearn.naive_bayes import GaussianNB
         model3 = GaussianNB()
         model3.fit(X_train,Y_train)
         y_pred3 = model3.predict(X_test)
         from sklearn.metrics import accuracy_score
         print("Accuracy Score:",accuracy_score(Y_test,y_pred3))
        Accuracy Score: 0.7686567164179104
In [41]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_repor
         confusion_mat = confusion_matrix(Y_test,y_pred3)
         print(confusion_mat)
         print(classification_report(Y_test,y_pred3))
        [[129 27]
         [ 35 77]]
                      precision recall f1-score
                                                      support
                   0
                           0.79
                                     0.83
                                               0.81
                                                          156
                           0.74
                                     0.69
                   1
                                               0.71
                                                          112
                                               0.77
                                                          268
            accuracy
                                                          268
           macro avg
                           0.76
                                     0.76
                                               0.76
                           0.77
                                               0.77
        weighted avg
                                     0.77
                                                          268
In [42]: results = pd.DataFrame({
             'Model': ['Logistic Regression', 'Support Vector Machines', 'Naive Bayes', 'KN
              'Score': [0.75,0.66,0.76,0.66,0.74]})
         result_df = results.sort_values(by='Score', ascending=False)
         result_df = result_df.set_index('Score')
         result_df.head(9)
```

Out[42]	0	Model

Score	
0.76	Naive Bayes
0.75	Logistic Regression
0.74	Decision Tree
0.66	Support Vector Machines
0.66	KNN

In []: