课程编号: MTH17004, MTH17006 北京理工大学 2010-2011 学年第二学期

工科数学分析期末试题(A卷)

班级	が ロ	州夕
セリナ グルク		U牛 公
ジェ ジス	.1 7	XL'U

(本试卷共6页,十一个大题,试卷后面空白纸撕下作草稿纸)

题号	_	1	111	四	五.	六	七	八	九	+	+ -	总分
得分												

- 一. 填空题 (每小题 2 分, 共 10 分)
- 1. 已知 $|\vec{a}|=3$, $|\vec{b}|=26$, $|\vec{a}\times\vec{b}|=72$,且 \vec{a} 与 \vec{b} 的夹角是钝角,则 $\vec{a}\cdot\vec{b}=$ _____。
- 2. 设 $u = x^2 y + ye^z + yz \ln x$,则 div(grad u)_(1.1,1) =_____。
- 3. 已知向量 \vec{a} , \vec{b} , \vec{c} 不共面,但向量 \vec{a} + $2\vec{b}$, \vec{b} + \vec{c} , $\lambda \vec{a}$ + \vec{c} 共面,则 λ = _______。
- 5. 变量替换 $u = x, v = \frac{y}{x}$ 可将微分方程 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$ 化成 _______。
- 二. (9 分) 交换积分次序并计算 $I = \int_0^1 dy \int_y^{\sqrt{y}} \frac{e^x}{x} dx$.

三. (9 分) 求函数 $f(x,y) = x^2y + \frac{1}{2}y^2 - y$ 的极值和极值点。

四. (9 分)设方程 $z^3-2xz+y=5$ 确定函数 z=z(x,y),求 $\frac{\partial^2 z}{\partial x \partial y}$ 。

六. (8分) 证明方程 $yx^{y-1}dx + x^y \ln xdy = 0$ 是全微分方程,并求出通解。

七. (10 分) 求幂级数 $\sum_{n=1}^{\infty} n(n+1)x^{n-1}$ 的收敛域及和函数。

八. (10 分) 设V 是球面 $x^2 + y^2 + (z-1)^2 = 1$ ($z \ge 1$) 与锥面 $z = \sqrt{x^2 + y^2}$ 所围的立体,其上 每点的密度与此点到原点的距离的平方成反比(比例系数为 1),求V 的质量及质心。

九.(9 分) 将 $f(x) = (x^2 + 1) \arctan x$ 展开成 x 的幂级数,并指出收敛域。

十.(9 分) 利用高斯公式计算 $I = \iint_S (y^2 - x) dy dz + (z^2 - y) dz dx + (x^2 - z) dx dy$,其中 S 是抛物面 $z = 2 - x^2 - y^2$ $(z \ge 1)$ 的上侧。

十一.(8 分) 设
$$a_n > 0$$
,且级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $b_n = 1 - \frac{\lambda \ln(1+a_n)}{a_n}$ (λ 是常数),判断级数 $\sum_{n=1}^{\infty} b_n$ 的收敛性。