Machine M999, le processeur débranché

Philippe BODDAERT

Machine M999

1. Contexte

Un ordinateur est une machine :

- dotée de composants électroniques,
- exécute des programmes, stockés dans sa mémoire,
- les calculs sont réalisés par un processeur,
- interaction avec l'utilisateur par le biais de dispositifs d'entrées/sorties,

L'activité a pour objet l'utilisation et la programmation d'une machine **papier** : **M999**.

Cette machine est issue des travaux de Philippe Marquet et Martin Quinson github.com/InfoSansOrdi/M999, enseignants chercheurs en informatique.

2. Description

Figure 1: Machine M999

2.1 Composants

La machine M999 comporte :

- une mémoire :
 - 100 cases mémoires, numérotées de 00 à 99,
 - Chaque case peut contenir un mot mémoire à 3 chiffres, correspondant à une instruction ou valeur selon le jeu d'instructions.
- un jeu d'instructions : Table qui associe à un mot mémoire une instruction à réaliser.
- des registres (R, A, B): case mémoire contenant les valeurs d'opérandes, manipulées par les opérations,
- un compteur d'instruction (PC) : contient l'adresse de l'instruction courante.

2.2. Jeu d'instructions

	op1	
op0	op2	instruction à réaliser
0	addr	copie le mot mémoire d'adresse <i>addr</i> dans le registre A
1	addr	copie le mot mémoire d'adresse <i>addr</i> dans le registre B
2	addr	copie le contenu du registre R dans le mot mémoire d'adresse <i>addr</i>
4	rs rd	copie la valeur du registre source <i>rs</i> dans le registre destination <i>rd</i>
5	addr	branche en <i>addr</i> (PC reçoit la valeur <i>addr</i>)

Les registres (rs, rd) sont désignés par les valeurs suivantes :

valeur registre

2.3. Exemple

Un exemple de machine M999 chargée avec un programme en mémoire :

Figure 2: Exemple de machine M999

2.3. Fonctionnement

- Démarrage : la machine démarre avec la valeur 0 comme pointeur d'instruction (PC)
- La machine charge l'instruction depuis la mémoire pointée par PC
- La machine incrémente la valeur de PC
- La machine décode l'instruction : à partir des 3 chiffres codant l'instruction, elle identifie l'opération à réaliser et les opérandes,
- La machine exécute l'instruction.
- Arrêt : La machine stoppe si PC vaut 99
- Entrées / Sorties :
 - Ècrire une valeur dans le mot mémoire 99 l'affiche sur le terminal,
 - Les valeurs saisies sur le terminal sont lues dans le mot mémoire 99.

2.4. À Faire

- En fonction du jeu d'instructions et de l'état de la mémoire donnés, exécutez la machine M999,
- Que fait cette machine ?

3. Exercices

Écrire un programme en langage machine M999 consiste à décrire les valeurs de la mémoire qui permettent de réaliser le calcul.

Écrire les programmes en langage machine M999 suivants :

- Ajouter 1 à un entier donné,
- Calculer le minimum de 2 entiers donnés 'a' et 'b',
- Calculer la parité d'un entier donné, (Pair, on affiche 1 dans le Terminal, Impair, on affiche 0)
- Calculer la taille d'un entier donné,
- 6 Calculer le produit de 2 entiers
 - Par additions successives,
 - Par méthode paysanne russe.

4. Pour aller plus loin

Nous allons nous intéresser au coût en nombre d'opérations des programmes de la machine M999.

4.1. Rappel sur la notion de cycle

- Un cycle processeur se décompose en 3 étapes :
 - Charger: charge l'instruction courante,
 - Décoder : détermine l'opération et les opérandes,
 - Exécuter : réalise l'opération.
- Horloge d'un processeur = Nombre de cycles par secondes, s'exprime en Hertz. (Exemple : un processeur doté d'une fréquence d'horloge de 3,2 GHz, exécute 3,2 milliards de cycles par seconde)
- Pour trouver le nombre d'instructions par seconde, on multiplie la fréquence d'horloge par l'IPC (nombre d'instructions par cycle).

4.2. Calcul du nombre de cycles

- Pour la M999, l'IPC est égal à 1 (une instruction par cycle),
- Déterminer l'horloge de la M999 est difficile car l'unité de commande et l'UAL correspondent à des actions humaines,
- On peut se poser la question Combien de cycles sont nécessaires pour exécuter les programmes de la M999 ?
- Travail à réaliser : Modifier les exercices pour que la machine renvoie le nombre de cycles exécutés pour effectuer les calculs.