Lecture 2

Supervised Learning
Part 1

TAS

Ajinkya Deogade

Amrita Singh

Diptodip Deb

Nils Eckstein

Virginia Rutten

Srini Turaga turagas @ janelia. hhmi org

- data 'x", "y"

 prediction, function $\hat{y} = f(x, 0) \lambda(y, \hat{y})$ loss function / training algorithm

 regularizer (optimal) R(0)
- 2. Linear regression
- 3. Classification as generalized linear modeling
- 4. Loss functions can be derived from probilistic interpretations

The what and why of supervised learning

f(x,0) parameters

9

number

category

vector

image

sequence

vector

image

seguen ce

all of the above

Black-box vs Interpretable

The what and how

of supervised learning

- $y_i = f(x_i, \theta)$

prediction function

- 3. L(y;, ŷ;)
 swing/objective/loss function
- 4. R(0)

 regularization

 function

 (optional)
- 5. min $\sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i) + \mathcal{R}(\theta)$ = min $\sum_{i=1}^{N} \mathcal{L}(y_i, f(x_i, \theta)) + \mathcal{R}(\theta)$ optimization algorithm

Generalized Linear Models

$$u = w^{T}x + b$$
 — linear $\theta = \{w, b\}$
 $\hat{y} = f(u)$ — nonlinear

Technical note:

Equivalently
$$\hat{y} = f(w^Tx + b)$$
 — $f(u)$: nonlinearity $f^{-1}(\hat{y}) = w^Tx + b$ — $f'(y)$: Link function

Logistic regression binary classification

logistic signoid

Loss function:
$$-\sum_{i} y_{i} \log \hat{y}_{i} + (-y_{i}) \log (-\hat{y}_{i})$$

= $-\log p(y_{i}|\hat{y}_{i} = f(w^{T}x + b))$

Poisson regression

firing rate of a neuron at time t
$$\hat{y}(t) = f(w^{T}x(t) + b) \qquad non-negative$$
 filter stimulus

actual spikes are non-negative integers

$$y(t) \sim Poisson (\hat{y}(t))$$

Loss function:
$$\sum_{i} \hat{y}_{i} - y_{i} \log \hat{y}_{i}$$

$$= -\log P(y_{i} | \hat{y}_{i} = f(w^{T}x + b))$$

Sparse regression

how to find informative features

$$\hat{y} = W^T X + b$$

= $W_1 X_1 + W_2 X_2 + \cdots + b$

Optimize:
$$\sum_{i} \mathcal{L}(y_{i}, \hat{y}_{i}) + \lambda.R(w)$$
 penalty
= $\frac{1}{2} \sum_{i} (y_{i} - \hat{y}_{i})^{2} + \lambda.R(w)$ features

Trade off between R(w) & L(y, g)

Standard choice: R(w) = [] | wj| = ||w||_1

Lasso: Sparse L1 regularized regression

The what and why of supervised learning

 $f(x,\theta)$ parameters

Ś

number

cottegory

vector

image

Seguence

vector

image

seguen ce

all of the above

Black-box vs Interpretable

The what and how

of supervised learning

- 2. $\hat{y}_i = f(x_i, \theta)$

<u>Prediction function</u>

- 3. L(yi, ŷi)
 swring/objective/loss function
- 4. R(0)

 regularization

 function

 (optional)
- 5. min $\sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i) + \mathcal{R}(\theta)$ = min $\sum_{i=1}^{N} \mathcal{L}(y_i, f(x_i, \theta)) + \mathcal{R}(\theta)$ optimization algorithm