

Shylaja S S

Department of Computer Science & Engineering

Divide and Conquer: Binary Search

Major Slides Content: Anany Levitin

Shylaja S S

Department of Computer Science & Engineering

Divide and Conquer – Idea

- Divide and Conquer is one of the most well known algorithm design strategies
- The principle underlying Divide and Conquer strategy can be stated as follows:
 - Divide the given instance of the problem into two or more smaller instances
 - Solve the smaller instances recursively
 - Combine the solutions of the smaller instances and obtain the solution for the original instance

Divide and Conquer – Idea

Divide and Conquer

General Divide and Conquer

Recurrence

- In the most typical cases of Divide and Conquer, a problem's instance of size n can be divided into b instances of size n/b, with a of them needing to be solved
- Here a and b are constants; a >= 1 and b >= 1
- Assuming that size n is a power of b, we get the following recurrence for the running time:

$$T(n) = a * T(n/b) + f(n)$$

• f(n) is a function that accounts for the time spent on dividing the problem and combining the solutions

Master Theorem

Recurrence

For the recurrence:

$$T(n) = a * T(n/b) + f(n)$$

- If $f(n) \in \Theta(n^d)$, where $d \ge 0$ in the recurrence relation, then:
 - If a < b^d, $T(n) \in \Theta(n^d)$
 - If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
 - If $a > b^d$, $T(n) \in \Theta(n^{\log_b a})$
- Analogous results hold for O and Ω as well!

Binary Search - Idea

- Binary Search is a remarkably efficient algorithm for searching in a sorted array
- It works by comparing the search key K with the array's middle element A[m]
- If they match, the algorithm stops
- Otherwise, the same operation is repeated recursively for the first half of the array if K < A[m] and for the second half if K > A[m]

Binary Search - Algorithm

```
ALGORITHM BinarySearch(A[0..n -1], K)
// Implements non recursive binary search
// Input: An array A[0 .. n - 1] sorted in ascending order and a
// search key K
// Output: An index of the array's element that is equal to K or
// -1 if there is no such element
l \leftarrow 0; r \leftarrow n-1
while 1 \le r do
  m \leftarrow |(l+r)/2|
  if K = A[m] return m
  else if K < A[m] r \leftarrow m-1
  else l←m+1
return -1
```


Binary Search - Example

Search Key K = 70

Binary Search Vs Linear Search

Binary search steps: 0

Sequential search steps: 0

www.penjee.com

Binary Search - Analysis: Worst Case

The basic operation is the comparison of the search key with an element of the array

The number of comparisons made are given by the following recurrence:

$$C_{worst}(n) = C_{worst}(\lfloor n/2 \rfloor) + 1$$
 for $n > 1$, $C_{worst}(1) = 1$

For the initial condition $C_{worst}(1) = 1$, we obtain:

$$C_{worst}(2^k) = k + 1 = \log_2 n + 1$$

For any arbitrary positive integer, n:

$$C_{worst}(n) = \lfloor \log_2 n \rfloor + 1$$

Binary Search - Analysis: Average Case

$$C_{avg} \approx \log_2 n$$

THANK YOU

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu