Exercises: Artificial Intelligence

Version Spaces: Colors

Version Spaces: Colors

PROBLEM

Consider the following concept hierarchy

Apply the Version-Space algorithm on:

```
red: + purple: - blue: +
```

Version Spaces: Colors

PROBLEM OVERVIEW

Problem overview

Version Spaces: Colors

FIND-S ALGORITHM

Find-S Algorithm

Find-S Algorithm

Version Spaces: Colors

DUAL FIND-S ALGORITHM

Version Spaces: Colors

VERSION-SPACES ALGORITHM

Exercises: Artificial Intelligence

Version Spaces: Playing Cards

Version Spaces: Playing Cards

PROBLEM

• The concept hierarchies for *value*:

• The concept hierarchies for *kind*:

• Examples:

- 7 of Diamonds +
- Ace of Clubs
- Queen of Hearts –
- 9 of Hearts +
- 8 of Clubs –

Version Spaces: Playing Cards

PROBLEM OVERVIEW

Problem overview (Fragment)

Version Spaces: Playing Cards

FIND-S ALGORITHM

Find-S Algorithm

[7,D] + [A,C] -[Q,H] -[9,H] +

[?,?]

Find-S Algorithm

```
[7,D] +
[A,C] -
[Q,H] -
[9,H] +
[8,C] -
```

[?,?]

Version Spaces: Playing Cards

DUAL FIND-S ALGORITHM

Maintain 1 out of 4 choices

Maintain 1 out of 5 choices

Version Spaces: Playing Cards

VERSION-SPACES ALGORITHM

[?,?]

Redundant Hypotheses

Exercises: Artificial Intelligence

Version Spaces: Ex-exam

Version Spaces: Ex-exam

PROBLEM

- Searching for a new drummer.
 - Candidates hand in CV:
 - Hobby, Music preference, Age, Photo
 - 5 Profiles selected from 900
 - Evaluated: Accepted or Rejected
 - Learn Model, using Version Spaces
 - Conclude on 3 of the other 895 CVs using Model

 Hobby hierarchy: Cool (Co) Boring (Bo) Super-cool (SC) Fishing (Fi) Reading (Re) Dancing (Da) Music-Only (MO) Stage-Diving (SD)

Music hierarchy:

 ?
 Useful (Us)
 Not-Useful (NU)

 Hardrock (HR) New-Wave (NW) Jazz (Ja) Hiphop (HH)

Photo hierarchy:
 Respond to the second of the

• Examples:

Hobby	Music	Age	Photo	Selected?
Fishing	Hiphop	16	Handsome	No
Stage-diving	New-wave	18	Neutral	Yes
Dancing	Hardrock	32	Ugly	No
Music-only	Hardrock	25	Handsome	Yes
Stage-diving	Jazz	29	Ugly	No

Version Spaces: Ex-exam

VERSION-SPACES ALGORITHM

[?,?,?,?]

Version Spaces: Ex-exam

USING THE RESULT

Using the result

- [MO,HR,32,Ha]: **Maybe**
 - More Specific than [SC,Us,?,?]
 - Not more Specific than [SC,Us,Yo,?]
- [SD,HH,18,Ne]: NO
 - Not More Specific than [SC,Us,?,?]
 - Not More Specific than [?,Us,Yo,?]
- [Da,NW,22,Ug]: Maybe
 - More Specific than [?,Us,Yo,?]
 - Not more Specific than [SC,Us,Yo,?]

Exercises: Artificial Intelligence

Version Spaces: Computer Screen

Version Spaces: Computer Screen

PROBLEM

Problem

- Computer Screen 6x6 pixels
 - Only colored squares can be shown:
 - [((x,y),n),color]
 - (x,y): coordinates from bottom-left corner
 - n > 0: length of sides
 - Squares appear on the screen by examples
 - Give to the screen:
 - squares that should be lit
 - squares that shouldn't be lit
 - Which square is shown? Use Version Spaces.

Problem

Problem

• Examples:

Location	Color	Lit?
(0,1)	Red	No
(3,2)	Red	Yes
(1,4)	Green	Yes
(4,5)	Red	No
(4,0)	green	No

Version Spaces: Computer Screen

VERSION-SPACES ALGORITHM

```
S = \{\bot\}
```

G = {[((0,0),5),white]}

```
G = {[((0,0),5),white]}
S = \{\bot\}
              [(0,1),red] -
          1
                              4
```

```
G = {[((0,0),5),white]}
S = \{\bot\}
              [(0,1),red] -
5
4
3
0
          1
                        3
                               4
    0
                                      5
                     X
```

```
G = {[((0,0),5),white]}
S = \{\bot\}
               [(0,1),red] -
                                                   G = {
                                                               [((0,2),3), white],
5
                                                               [((1,0),4), white]
4
                                                   S = \{\bot\}
3
1
0
                   2
                          3
                                        5
    0
           1
                                 4
```

X

```
G = {[((0,0),5),white]}
```

$$S = \{\bot\}$$


```
G = \{
[((0,2),3),white],
[((1,0),4),white],
[((1,1),4),white]
\}
S = \{\bot\}
```

```
G = {[((0,0),5),white]}
```

$$S = \{\bot\}$$


```
G = {[((0,0),5),white]}
S = {\bot}
```



```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white],
           [((0,0),5),cyan]
Redundant:
           [((0,0),5),green]
           [((0,0),5),blue]
S = \{\bot\}
```

```
G = \{[((0,2),3),white],[((1,0),4),white],[((1,1),4),white],[((0,0),5),cyan]\} S = \{\bot\}
```



```
G = \{[((0,2),3),white],[((1,0),4),white],[((1,1),4),white],[((0,0),5),cyan]\} S = \{\bot\}
```



```
G = \{[((0,2),3),white],[((1,0),4),white],[((1,1),4),white],[((0,0),5),cyan]\} S = \{\bot\}
```



```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white],
           [((0,0),5),cyan]
S = {
           [((2,1),1),red],
           [((2,2),1),red]
```

```
G = \{[((0,2),3),white],[((1,0),4),white],[((1,1),4),white],[((0,0),5),cyan]\} S = \{\bot\}
```



```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white],
           [((0,0),5),cyan]
S = {
           [((2,1),1),red],
           [((2,2),1),red],
           [((3,1),1),red]
```

```
G = \{[((0,2),3),white],[((1,0),4),white],[((1,1),4),white],[((0,0),5),cyan]\} S = \{\bot\}
```



```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white],
           [((0,0),5),cyan]
S = {
           [((2,1),1),red],
           [((2,2),1),red],
           [((3,1),1),red],
           [((3,2),1),red]
```

 $G = \{[((0,2),3),white],[((1,0),4),white],[((1,1),4),white],[((0,0),5),cyan]\}$ $S = \{\bot\}$


```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white]
Removed:
           [((0,0),5),cyan]
S = {
           [((2,1),1),red],
           [((2,2),1),red],
           [((3,1),1),red],
           [((3,2),1),red]
```

```
G = {[((0,2),3),white],[((1,0),4),white],[((1,1),4),white]}
S = {[((2,1),1),red],[((2,2),1),red],[((3,1),1),red],[((3,2),1),red]}
```



```
G = {[((0,2),3),white],[((1,0),4),white],[((1,1),4),white]}
```

 $S = \{[((2,1),1),red],[((2,2),1),red],[((3,1),1),red],[((3,2),1),red]\}$


```
G = {[((0,2),3),white],[((1,0),4),white],[((1,1),4),white]}
```

 $S = \{[((2,1),1),red],[((2,2),1),red],[((3,1),1),red],[((3,2),1),red]\}$


```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white]
S = {
           [((1,2),2),yellow]
Redundant:
           [((0,1),3),yellow]
           [((1,1),3),yellow]
           [((1,2),3),yellow]
```

```
G = {[((0,2),3),white],[((1,0),4),white],[((1,1),4),white]}
S = {[((1,2),2),yellow]}
```



```
G = {[((0,2),3),white],[((1,0),4),white],[((1,1),4),white]}
S = {[((1,2),2),yellow]}
```



```
G = {
          [((0,2),3), white],
          [((1,0),4),white]
Redundant:
          [((1,1),3), white]
Others don't generalize S
S = {
          [((1,2),2),yellow]
```

```
G = {[((0,2),3),white],[((1,0),4),white]}
S = {[((1,2),2),yellow]}
```



```
G = {[((0,2),3),white],[((1,0),4),white]}
S = {[((1,2),2),yellow]}
```



```
G = {[((0,2),3),white],[((1,1),3),white]}
S = {[((1,2),2),yellow]}
```


Version Spaces: Ex-exam

USING THE RESULT

Using the Result

```
G = {[((0,2),3),white],[((1,1),3),white]}
S = {[((1,2),2),yellow]}
```

