- (1) (a) Вычислите $H\mathbb{Q}^*(KU)$.
 - (b) Докажите, что $\mathrm{KU}_\mathbb{Q} \cong \bigoplus_{n \in \mathbb{Z}} \mathrm{H}\mathbb{Q}[2n]$, где $\mathrm{KU}_\mathbb{Q}$ рационализация спектра KU , т.е. спектр, представляющий теорию когомологий $\mathrm{KU}^*(-) \otimes_\mathbb{Z} \mathbb{Q}$.
 - (c) Докажите, что KU $\ncong \bigoplus_{n \in \mathbb{Z}} \mathbb{H}\mathbb{Z}[2n]$ в стабильной гомотопической категории.
- (2) (a) Проверьте, что $H\mathbb{Z}^1(KU)$ не равно 0.
 - (b) Постройте фантомный морфизм $KU \to H\mathbb{Z} \wedge S^1$, т.е. ненулевой морфизм в стабильной гомотопической категории, который для любого топологического пространства с отмеченной точка X индуцирует нулевое отображение $KU^*(X) \to H\mathbb{Z}^{*+1}(X)$ на ассоциированных теориях когомологий.
- (3) Докажите, что $KU \wedge H\mathbb{Z}/2 = 0$.
- (4) (a) Пусть спектры A, B таковы, что $\pi_i(A) = \pi_i(B) = 0$ при i < 0. Докажите, что $\pi_i(A \wedge B) = 0$ при i < 0.
 - (b) Пусть для спектра A и некоторого $N \in \mathbb{Z}$ выполняется $\pi_i(A) = 0$ при i < N. Докажите, что тогда естественный морфизм $\pi_N(A) \to \pi_N(A \land H\mathbb{Z})$, индуцированный единичным морфизмом $\mathbb{S} \to H\mathbb{Z}$, изоморфизм.
 - (c) Пусть для спектров A, B и некоторого $N \in \mathbb{Z}$ выполняется $\pi_i(A) = \pi_i(B) = 0$ при i < N и пусть $f \colon A \to B$ морфизм, индуцирующий изоморфизмы $\pi_i(A \wedge H\mathbb{Z}) \xrightarrow{\simeq} \pi_i(B \wedge H\mathbb{Z})$ для всех $i \in \mathbb{Z}$. Докажите, что f изоморфизм в стабильной гомотопической категории.
 - (d) Приведите пример морфизма $f: A \to B$ в стабильной гомотопической категории, индуцирующего изоморфизмы $\pi_i(A \land H\mathbb{Z}) \xrightarrow{\cong} \pi_i(B \land H\mathbb{Z})$ для всех $i \in \mathbb{Z}$, но не являющегося изоморфизмом.
- (5) Докажите, что если $f: X \to Y$ морфизм между связными односвязными топологическими пространствами с отмеченной точкой такой, что $\Sigma^{\infty} f$ изоморфизм в стабильной гомотопической категории, то f слабая гомотопическая эквивалентность. Верно ли это утверждение без условия односвязности?
- (6) Докажите, что любой спектр изоморфен в стабильной гомотопической категории спектру, состоящему из
 - (а) связных пространств,
 - (b) CW-комплексов конечной размерности.

Можно ли добиться (a) или (b), если потребовать, чтобы получающийся спектр был Ω-спектром?

- (7) Пусть A коммутативный кольцевой спектр, X топологическое пространство.
 - (а) Проверьте, что кольцо $A^*(X_+)$ градуированно-коммутативно, т.е. для $\alpha \in A^p(X_+)$, $\beta \in A^q(X_+)$ выполняется $\alpha \cdot \beta = (-1)^{pq} \beta \cdot \alpha$.
 - (b) Для замкнутого подмножества $V\subseteq X$ определите структуру $A^*(X_+)$ -модулей на $A^*(V_+)$, $A_*(X/V)$, $A_*(V_+)$, $A_*(X/V)$ и проверьте, что если $V\subseteq X$ вложение под CW-комплекса, то морфизмы в длинных точных последовательностях гомологий и когомологий

$$\dots \to A^*(X/V) \to A^*(X_+) \to A^*(V_+) \to A^{*+1}(X/V) \to \dots$$
$$\dots \to A_*(V_+) \to A_*(X_+) \to A_*(X/V) \to A_{*-1}(V_+) \to \dots$$

являются гомоморфизмами $A^*(X_+)$ -модулей.

- (8) (a) Проверьте, что $\pi_i(MSO) = 0$ при i < 0 и $\pi_0(MSO) \cong \mathbb{Z}$.
 - (b) Постройте морфизм MSO \rightarrow HZ, индуцирующий изоморфизм на π_0 .
 - (c) По ориентированному вещественному векторному расслоению E ранга n над CW-комплексом X постройте тавтологический морфизм $\Sigma^{\infty} \text{Th}(E) \to \text{MSO}[n]$, соответствующий морфизму $X \to \text{Gr}_{\mathbb{R}}(n,\infty)$, классифицирующему E, и определите таким образом (применяя предыдущий пункт) класс $th(E) \in H^n(\text{Th}(E); \mathbb{Z})$.
 - (d) Проверьте, что для ориентированного вещественного векторного расслоения E ранга n над CW-комплексом X морфизм

$$H^*(X; \mathbb{Z}) \xrightarrow{\simeq} H^{*+n}(Th(E); \mathbb{Z}), \quad \alpha \mapsto \alpha \cdot th(E),$$

является изоморфизмом (проверьте это сначала для тривиального расслоения, а затем воспользуйтесь последовательностью Майера-Виеториса).

В задачах про (ко-)гомологии спектра KU можно пользоваться вычислениями, связанными с характеристическими классами. А именно, для комплексного векторного расслоения E ранга n над CW-комплексом X могут быть определены классы Черна $c_i(E) \in \mathrm{H}^{2i}(X;\mathbb{Z}), i=1,\ldots,n$, такие, что

- (1) для морфизма $f: Y \to X$ имеют место равенства $f^*(c_i(E)) = c_i(f^*E)$,
- (2) для комплексных векторных расслоений E, E' рангов n и m над X имеет место равенство $c_t(E_1 \oplus E_2) = c_t(E_1)c_t(E_2)$, где $c_t(E)$ полный класс Черна, задаваемый равенством $c_t(E) = 1 + c_1(E) + c_2(E) + \ldots$,
- (3) для комплексных Грассманнианов $\mathrm{Gr}_{\mathbb{C}}(n,m)$ имеют место изоморфизмы колец

$$\mathbb{Z}[c_1, c_2, \dots, c_n, c'_1, c'_2, \dots, c'_{m-n}] / ((1 + c_1 + c_2 + \dots + c_n)(1 + c'_1 + c'_2 + \dots + c'_{m-n}) - 1) \xrightarrow{\simeq} H^*(Gr_{\mathbb{C}}(n, m); \mathbb{Z}),$$

$$c_i \mapsto c_i(\tau_n), \quad c'_i \mapsto c_i(\tau'_n),$$

где τ_n – тавтологическое расслоение ранга n, а τ'_n – тавтологическое расслоение ранга m-n (его слой над точкой $V \leq \mathbb{C}^m$ – пространство \mathbb{C}^m/V).

Кроме того, имеет место принцип расщепления: для комплексного векторного расслоения E ранга n над CW-комплексом X найдётся отображение CW-комплексов $f\colon Y\to X$ и линейные расслоения L_1,\ldots,L_n над Y такие, что (1) $\mathrm{H}^*(Y;\mathbb{Z})$ – свободный модуль над $\mathrm{H}^*(X;\mathbb{Z})$; в частности, отображение $f^*\colon \mathrm{H}^*(X;\mathbb{Z})\to \mathrm{H}^*(Y;\mathbb{Z})$ инъективно, (2) $f^*E\cong L_1\oplus\ldots\oplus L_n$; в частности, $f^*c_i(E)=\sigma_i(c_1(L_1),\ldots,c_1(L_n))$ – элементарные симметрические многочлены от первых классов Черна линейных расслоений L_1,\ldots,L_n .