Foundations of Machine Learning

Brett Bernstein

August 22, 2018

Lab 1: Gradients and Directional Derivatives

Multivariate Differentiation

Learning Objectives

- 1. Define the directional derivative, and use it to find a linear approximation to $f(\mathbf{x}+h\mathbf{u})$.
- 2. Define partial derivative and the gradient. Show how to compute an arbitrary directional derivative using the gradient.
- 3. For a differentiable function, give a linear approximation near a point \mathbf{x} using the gradient.
- 4. Show that the gradient gives the direction of steepest ascent, and the negative gradient gives the direction of steepest descent.

Concept Check Questions

- 1. If f'(x; u) < 0 show that f(x + hu) < f(x) for sufficiently small h > 0.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable, and assume that $\nabla f(x) \neq 0$. Prove

$$\underset{\|u\|_2=1}{\arg\max} f'(x;u) = \frac{\nabla f(x)}{\|\nabla f(x)\|_2} \quad \text{and} \quad \underset{\|u\|_2=1}{\arg\min} f'(x;u) = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}.$$

Computing Gradients

Learning Objectives

- 1. Find the gradient of a function by computing each partial derivative separately.
- 2. Use the chain rule to perform gradient computations.
- 3. Compute the gradient of a differentiable function by determining the form of a general directional derivative.

Concept Check Questions

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = x^2 + 4xy + 3y^2$. Compute the gradient $\nabla f(x,y)$.
- 2. Compute the gradient of $f: \mathbb{R}^n \to \mathbb{R}$ where $f(x) = x^T A x$ and $A \in \mathbb{R}^{n \times n}$ is any matrix.
- 3. Compute the gradient of the quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = b + c^T x + x^T A x,$$

where $b \in \mathbb{R}$, $c \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$.

- 4. Fix $s \in \mathbb{R}^n$ and consider $f(x) = (x s)^T A(x s)$ where $A \in \mathbb{R}^{n \times n}$. Compute the gradient of f.
- 5. Consider the ridge regression objective function

$$f(w) = ||Aw - y||_2^2 + \lambda ||w||_2^2,$$

where $w \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, and $\lambda \in \mathbb{R}_{\geq 0}$.

- (a) Compute the gradient of f.
- (b) Express f in the form $f(w) = \|Bw z\|_2^2$ for some choice of B, z. What do you notice about B?
- (c) Using either of the parts above, compute

$$\arg\min_{w\in\mathbb{R}^n}f(w).$$

6. Compute the gradient of

$$f(\theta) = \lambda \|\theta\|_2^2 + \sum_{i=1}^n \log(1 + \exp(-y_i \theta^T x_i)),$$

where $y_i \in \mathbb{R}$ and $\theta \in \mathbb{R}^m$ and $x_i \in \mathbb{R}^m$ for i = 1, ..., n.