3. Az integrált áramkörök gyártástechnológiája II. - A tisztatér felépítése

Szerző: Dr. Földváry-Bándy Enikő, Dr. Juhász László

3.1. Tisztatéri ismeretek

A félvezető technológiában a tisztaság szerepe kulcsfontosságú. Jó példa ennek szemléltetésére egy porszem, amely néhány µm átmérőjű, míg a mai korszerű VLSI technológiában a legkisebb csíkszélesség (Minimum Feature Size – MFS vagy Critical Dimension – CD) a 10 nm-es tartományba esik. Ha egy porszem rákerül az integrált áramköri hordozóra (szeletre), akkor az egy teljes chip tökremeneteléhez vezet. Az iparban alkalmazott tisztatereket – megfelelő szabvány szerint – különböző osztályokba sorolják a tisztaságuknak megfelelően (2. táblázat).

2. táblázat Félvezető iparban használt tisztatéri szabványok, tisztatéri osztályok

ISO 14644-1 ("új" szabvány) maximális lebegő részecskeszám/m³							FED STD 209E ("régi" szabvány)
Osztály (Class)	≥0,1 µm	≥0,2 µm	≥0,3 µm	≥0,5 µm	≥1 µm	≥5 μm	≥0,5 μm/köbláb Osztály (Class)
ISO 1	10 ¹	2					
ISO 2	10 ²	24	10	4			
ISO 3	10 ³	237	102	35	8		1
ISO 4	104	2 370	1 020	352	83		10
ISO 5	10 ⁵	23 700	10 200	3 520	832	29	100
ISO 6	106	237 000	102 000	35 200	8 320	293	1000
ISO 7	107	2 370 000	1 020 000	352 000	83 200	2 930	10 000
ISO 8				3 520 000	832 000	29 300	100 000
ISO 9				35 200 000	8 320 000	293 000	(szobalevegő)

Az US FED STD 209E (a "régi") szabványt 2001. november 29-ével visszavonták, de a félvezető ipari gyakorlatban még mindig ez az elterjedt. 1 ft³ (köbláb) $\approx 28,3$ 1 (liter); 1 m³ $_{\approx}$ 35,2 ft³, így a kiemelt sorok nagyjából megfelelnek egymásnak.

A táblázatban látható szabványok közül jelenleg a régi az elterjedtebb, amely alapján pl.: a 100-as tér (Class 100) azt jelenti, hogy 0,5µm-es részecskéből 100 darab lehet egy köbláb (~28,3 liter) levegőben. A normál utcai és szobalevegő nagyjából 10 000 000–1 000 000-s osztályba lenne sorolható.

Egy tisztatéri komplexum légtechnikai rendszerének általános elvi felépítése a 3-1. ábrán látható. A különféle részecske átbocsátó képességű légszűrőket különféle sűrűségű cikk-cakkos vonalak, a lamináris, ill. kevert áramlású tereket jellegzetes nyilak mutatják be. Lamináris térben a levegő részecskéi (beleértve a fennmaradó porszemeket is) egymással párhuzamosan mozognak, a kevert áramlásúban ilyen megkötés nincs. A porszemek kiszűrése általában három fokozatban történik (elő-, közép- és finomszűrő) a hatékonyság és a gazdaságos üzemeltetés érdekében. A szűrő fokozatok között kapnak helyet a fűtésre és hűtésre szolgáló hőcserélők, szükség esetén a páratartalom beállítására szolgáló berendezések.

A tiszta levegő áramlása minden esetben fentről lefelé történik, a külvilág és a különböző tisztaságú térrészek között kis mértékű túlnyomás uralkodik: mindig a tisztább térrész felől nagyobb a nyomás (tipikusan néhány, max. néhányszor 10 Pa a nyomáslépcső).

3-1. ábra Tisztatéri komplexum légtechnikai rendszerének általános elvi felépítése

Egy lamináris áramlású tér felépítését mutatja be a 3-2. ábra. A lamináris áramlást a rácsozatosan perforált ("lyukacsos") álmennyezetben kialakított befúvás, és a perforált

álpadlóban kialakított elszívás teszi lehetővé. A befúvott levegő utolsó, finomszűrő fokozataként használt HEPA szűrő (High Efficiency Particulate Air, nagy hatásfokú lebegő részecske: min. 99,97% @ 0,3 μm), vagy ULPA szűrő (Ultra-Low Penetration Air, ultraalacsony áthatoló képességű: min. 99,999% @ 0,12 μm) közvetlenül az álmennyezetben, vagy hely hiányában egy (minél rövidebb) megelőző légcsatorna szakaszban helyezkednek el.

3-2. ábra Példa tisztatér felépítésére: lamináris tisztatér

A félvezető technológiában a levegő minőségén kívül kulcsfontosságú szerepe van a felhasznált eszközök, vegyszerek, víz, gázok tisztaságának is. Mivel a legnagyobb szennyező forrás maga az ember, az ipari tisztaszobai környezetben csak speciális, antisztatikus védőruhában lehet dolgozni és be kell tartani a speciális mozgási szabályokat is a légáramlás minimális megzavarása érdekében.

A gyakorlat során a hallgatók megismerkednek a BME VIK EET tisztatéri laboratóriumban végzett műveletekkel, a tisztatér belső felépítésével és a kiszolgáló rendszer alapvető elemeivel. A Mikroelektronika tárgy keretei sajnos nem teszik lehetővé, hogy a hallgatók a tisztatéri laboratóriumban (3-3. ábra) demonstrációs vagy önálló mérésben vegyenek részt (erre a választható tárgyaink keretében, önálló laboratóriumi, szakdolgozat és diplomaterv készítési, valamint doktoranduszi témákhoz kapcsolódóan nyílik mód). A gyakorlaton a betekintő ablakok segítségével kaphatnak képet a laboratórium belső felépítéséről és az ott folyó munkáról. Emellett bejárhatják a külső, kiszolgáló rendszerekhez tartozó helyiségeket, ahol azok felépítését és működését ismertetjük.

3-3. ábra BME VIK EET tisztatéri képek gyakorlat közben: bal oldalt fotoreziszt lakk centrifugálás, jobb oldalt Si szeletek betolása a diffúziós csőbe

3.2. Feladatok:

3. Ismerje meg a BME VIK EET tisztatéri laboratórium felépítését, működését és a kiszolgáló rendszerének alapvető jellegzetességeit!