最优化导论第一次作业题

- **1.** 设 $W = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$, 证明W是 \mathbb{R}^3 的线性子空间。
- **2.** 判断向量组 $\{(1,2,1),(2,1,3),(3,3,4)\}$ 在 \mathbb{R}^3 中是否线性相关,并说明理由。
- **3.** 证明:如果 $\sigma:V\to V'$ 是线性映射,那么 $\mathrm{Ker}(\sigma)$ 是V的子空间, $\mathrm{Im}(\sigma)$ 是V'的子空间。
- **4.** 给定线性映射 $T: \mathbb{R}^3 \to \mathbb{R}^2$,T(x,y,z) = (x+y,y+z),求 $\mathrm{Ker}(T)$ 和 $\mathrm{Im}(T)$ 。
- 5. 某工厂生产两种产品A和B,产品A每件利润30元,产品B每件利润50元,最大化利润。生产约束条件:
 - 生产A需要2小时加工时间, B需要4小时, 总加工时间不超过100小时
 - 生产A需要1单位原料, B需要2单位原料, 总原料不超过60单位
 - 产品A至少生产5件

请建立线性规划模型。

- 6. 某物流公司要在三个城市A、B、C之间分配运输任务,最小化运输成本。已知:
 - 从A到B的运输成本为5元/单位,从A到C为8元/单位
 - 从B到A为6元/单位,从B到C为4元/单位
 - 从C到A为7元/单位,从C到B为3元/单位
 - 城市A需求量100单位, B需求量150单位, C需求量200单位
 - 城市A供应量120单位, B供应量180单位, C供应量150单位

建立运输问题的线性规划模型。

- 7. 两个平行的超平面 $\{x\in\mathbb{R}^n|a^Tx=b_1\}$ 和 $\{x\in\mathbb{R}^n|a^Tx=b_2\}$ 之间的距离是多少?
- 8. 假设 V 和 V' 是线性空间,记所有从 V 到 V' 的线性映射组成集合为 $\mathcal{L}(V,V')$ 。则 $\mathcal{L}(V,V')$ 也是一个线性空间。其中,对于 $\forall \sigma, \tau \in \mathcal{L}(V,V')$,运算满足以下定义:

$$(\sigma+ au)(x)=\sigma(x)+ au(x), \quad orall x\in V$$

$$(\alpha\sigma)(x) = \alpha\sigma(x), \quad \forall x \in V, \forall \alpha \in F$$

- **9.** 如果 $S,T\subset V(F)$ 是子空间,证明: S+T 是子空间,其中: $S+T:=\{z|z=x+y,x\in S,y\in T\}$
- **10.** 设 V 是所有定义在 [0,1] 上的连续函数构成的线性空间, $W_1=\{f\in V:f(0)=f(1)\}$, $W_2=\{f\in V:\int_0^1f(x)dx=0\}$ 。
- (1) 证明 W_1 和 W_2 都是 V 的线性子空间。
- (2) 证明 $W_1 \cap W_2$ 是 V 的线性子空间。
- (3) 构造一个具体的函数 $f \in W_1 \cap W_2$ 且 $f \neq 0$ 。
- (4) 判断 $W_1+W_2=V$ 是否成立,并证明你的结论。
- **11.** 设 V 是所有从 \mathbb{R} 到 \mathbb{R} 的连续函数构成的线性空间。定义子集:
 - $W_1 = \{ f \in V : f(-x) = f(x), \forall x \in \mathbb{R} \}$ (偶函数)
 - $W_2 = \{ f \in V : f(-x) = -f(x), \forall x \in \mathbb{R} \}$ (奇函数)

- (1) 证明 W_1 和 W_2 都是 V 的线性子空间。 (2) 证明 $W_1\cap W_2=0$ 。
- **12.** 考虑 \mathbb{R}^2 中的序列 (x_n,y_n) ,其中 $x_n=rac{n}{n+1}$, $y_n=rac{(-1)^n}{n}$ 。
- (1) 证明该序列在欧几里得度量下收敛,并求其极限。
- (2) 定义集合 $S=\{(x_n,y_n):n\in\mathbb{N}\}\cup(1,0)$ 。证明 (1,0) 是 S 的聚点。
- (3) 判断 S 是否为闭集,并证明你的结论。