Multiple Regressions

Data-Based Economics

Year 2022-2023

The problem

Remember dataset from last time

type	income	education		prestige	
accountant	prof	62	86	5	82
pilot	prof	72	76	76	
architect	prof	75	92	2	90
author	prof	55	90)	76
chemist	prof	64	86	5	90

Last week we "ran" a linear regression: $y = \alpha + \beta x$. Result:

Should we have looked at "prestige" instead ?

income = xx + 0.83prestige

income = xx + 0.72education

▶ Which one is better?

Prestige or Education

- if the goal is to predict: the one with higher explained variance
 - restige has higher R^2 (0.832)
- unless we are interested in the effect of education

Multiple regression

- ▶ What about using both?
 - 2 variables model:

income =
$$\alpha + \beta_1$$
 education + β_2 prestige

- will *probably* improve prediction power (explained variance)
- \triangleright β_1 might not be meaningful on its own anymore (education and prestige are correlated)

Fitting a model

Now we are trying to fit a plane to a cloud of points.

Minimization Criterium

- Take all observations: (income_n, education_n, prestige_n)_ $n \in [0, N]$
- Objective: sum of squares

$$L(\alpha,\beta_1,\beta_2) = \sum_i \Big(\underbrace{\alpha + \beta_1 \text{education}_n + \beta_2 \text{prestige}_n - \text{income}_n}_e_n = \text{prediction}$$

- \blacktriangleright Minimize loss function in α , β_1 , β_2
- Again, we can perform numerical optimization (machine learning approach)
- ... but there is an explicit formula

Ordinary Least Square

$$Y = \begin{bmatrix} \mathsf{income}_1 \\ \vdots \\ \mathsf{income}_N \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & \mathsf{education}_1 & \mathsf{prestige}_1 \\ \vdots & \vdots & \vdots \\ 1 & \mathsf{education}_N & \mathsf{prestige}_N \end{bmatrix}$$

Matrix Version (look for $B = (\alpha, \beta_1, \beta_2)$):

$$Y = XB + E$$

- Note that constant can be interpreted as a "variable"
- interpreted as a "variable"Loss function

$$L(A,B) = (Y - XB)'(Y - XB)$$
Result of minimization

Result of minimization $\min_{(A,B)} L(A,B)$:

$$\begin{bmatrix} \alpha & \beta_1 & \beta_2 \end{bmatrix} = (X'X)^{-1}X'Y$$

Solution

Result:

income = $10.43 + 0.03 \times \text{education} + 0.62 \times \text{prestige}$

Explained Variance