Basic Mathematics, Fall 2020

Karen Keryan, ASDS, YSU

October 15, 2020

Definition

The trace of a square matrix $A \in \mathbb{R}^{n \times n}$ is given by

$$tr(A) := \sum_{i=1}^{n} a_{ii}$$

in other words, the trace is the sum of the diagonal elements of A.

Remark

For $A; B \in \mathbb{R}^{n \times n}$ the trace satisfies the following properties:

- 1. tr(A+B) = tr(A) + tr(B)
- 2. $tr(\alpha A) = \alpha tr(A)$
- 3. $tr(I_n) = n$
- 4. tr(AB) = tr(BA)

• In particular, for two vectors $x, y \in \mathbb{R}^n$

$$tr(\mathbf{x}\mathbf{y}^T) = tr(\mathbf{y}^T\mathbf{x}) = \mathbf{y}^T\mathbf{x} \in \mathbb{R}.$$

- If $A \sim B$ (i.e. $\exists \ Q$ s.t. $A = QBQ^{-1}$), then trA = trB
- All transformation matrices A_T of a linear mapping $T: V \to V$ have the same trace.

Definition

For $\lambda \in \mathbb{R}$ and a square matrix $A \in \mathbb{R}^{n \times n}$

$$p_A(\lambda) = \det(A - \lambda I) = c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{n-1} \lambda^{n-1} + (-1)^n \lambda^n$$

 $c_0, \ldots, c_{n-1} \in \mathbb{R}$, is the characteristic polynomial of A. In particular,

$$c_0 = \det(A), \quad c_{n-1} = (-1)^{n-1} tr(A).$$

Eigenvalues and Eigenvectors

Definition

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an eigenvalue of A and a nonzero $\mathbf{x} \in \mathbb{R}^n$ is the corresponding eigenvector of A if

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

Remark

If x is an eigenvector of A, then so is $c\mathbf{x}$, for any nonzero $c \in \mathbb{R}$.

Theorem

 $\lambda \in \mathbb{R}$ is eigenvalue of $A \in \mathbb{R}^{n \times n}$ if and only if λ is a root of the characteristic polynomial $p_A(\lambda)$ of A.

Definition

For $A \in \mathbb{R}^{n \times n}$ the set of all eigenvectors of A associated with an eigenvalue λ together with the zero vector is called **eigenspace of** A with respect to λ and is denoted by E_{λ} . The set of all eigenvalues of A is called **spectrum**, of A.

Example

Find the eigenvalues and eigenvectors of a 2×2 matrix

$$A = \begin{bmatrix} 5 & 8 \\ 2 & 5 \end{bmatrix}$$

Proposition

- If $A \sim B$, then eigenvalues of A and B are the same.
- A linear mapping T has eigenvalues that are independent of the choice of basis of its transformation matrix.

Proposition

- A matrix A and its transpose A^T have the same eigenvalues, but not necessarily the same eigenvectors.
- If S is a symmetric matrix, then all its eigenvalues are real.
- The eigenvalues of a symmetric positive definite matrix are positive (and real).
- The eigenvectors of symmetric matrices are always orthogonal to each other.

Theorem

For any matrix $A \in \mathbb{R}^{m \times n}$ the matrices A^TA and AA^T are symmetric and positive semi-definite.

Theorem

Any symmetric matrix $A = A^T \in \mathbb{R}^{n \times n}$ has n independent eigenvectors that form an orthogonal basis for \mathbb{R}^n .

Definition

Let a square matrix A have an eigenvalue λ algebraic . The algebraic multiplicity of λ is the number of times the root appears in the characteristic polynomial.

Definition

Let a square matrix A have an eigenvalue λ . The **geometric** multiplicity of λ is the total number of linearly independent eigenvectors associated with λ . In other words it is the dimension of the eigenspace E_{λ} spanned by the eigenvectors associated with λ .

Example

Find the geometric and algebraic multiplicity of the eigenvalue(s)

of the matrix
$$A=\begin{bmatrix}3&0&0\\-1&3&0\\0&0&2\end{bmatrix}$$

Theorem

The determinant of a matrix $A \in \mathbb{R}^{n \times n}$ is the product of its eigenvalues, i.e.,

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

where λ_i are (possibly repeated) eigenvalues of A.

Theorem

The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its eigenvalues, i.e.,

$$tr(A) = \sum_{i=1}^{n} \lambda_i$$

where λ_i are (possibly repeated) eigenvalues of A.

Cholesky Decomposition

A symmetric positive definite matrix A can be factorized into a product $A = LL^T$, where L is a lower triangular matrix with positive diagonal elements:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ l_{n1} & \dots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & \dots & l_{n1} \\ \vdots & \ddots & \vdots \\ 0 & \dots & l_{nn} \end{bmatrix}$$

and L is called the Cholesky factor of A.

Example

Find Cholesky decomposition of a general 2×2 symmetric matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}.$$

Applications of Cholesky decompozition

Simulation. Generating samples of multivariate normal distribution with covariance matrix A is hard, as it has a lot of dependencies, but generating sample points of $N(0,I_n)$ is easy, and using the relationship

$$N(0, A) = N(0, LL^T) = LN(0, I_n)$$

one can generate sample points of Gaussian distribution $N(0,I_n)$ and then transform them into points of Gaussian distribution N(0,A).

Applications of Cholesky decompozition

Simulation. Generating samples of multivariate normal distribution with covariance matrix A is hard, as it has a lot of dependencies, but generating sample points of $N(0,I_n)$ is easy, and using the relationship

$$N(0, A) = N(0, LL^T) = LN(0, I_n)$$

one can generate sample points of Gaussian distribution $N(0,I_n)$ and then transform them into points of Gaussian distribution N(0,A).

Linear equations. The Cholesky decomposition is mainly used for the numerical solution of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$. If A is symmetric and positive definite, then we can solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ by first computing the Cholesky decomposition $\mathbf{A} = \mathbf{L}\mathbf{L}^T$, then solving $\mathbf{L}\mathbf{y} = \mathbf{b}$ for y by forward substitution, and finally solving $\mathbf{L}^T\mathbf{x} = \mathbf{y}$ for x by back substitution.

If $A = LL^T$, then

 $\det A =$

If $A = LL^T$, then

$$\det A = (\det L)^2 =$$

If $A = LL^T$, then

$$\det A = (\det L)^2 = (l_{11} \cdot \ldots \cdot l_{nn})^2.$$

Moreover

$$A^{-1} = (L^{-1})^T (L^{-1}).$$

Eigendecomposition and Diagonalization

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e. there exists a matrix $P \in \mathbb{R}^{n \times n}$ so that

$$D = P^{-1}AP,$$

(equivalently AP = PD or $A = PDP^{-1}$) where

$$D = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$

Proposition

If $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then

$$AP = PD$$

if and only if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and the \mathbf{p}_i are the corresponding eigenvectors of A, where $P = [\mathbf{p}_1 \ldots \mathbf{p}_n]$.

Theorem

A symmetric matrix $S = S^T \in \mathbb{R}^{n \times n}$ can be diagonalized into

$$S = PDP^T$$

where P is matrix of n orthogonal eigenvectors,i.e. $P^T=P^{-1}$, and D is a diagonal matrix of its n eigenvalues.

Example

Compute the eigendecomposition of a (symmetric) matrix

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

Proposition

If
$$A = PDP^{-1}$$
, then $A^k = PD^kP^{-1}$ for any $k \in N$, and

$$D^k = \begin{bmatrix} \lambda_1^k & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n^k \end{bmatrix}$$

5) 0 (

