Лекция 3

17 сентября 2024

Формула оценивания (всего 2 KP и 1 коллоквиум): 0.15(KP1) + 0.15(KP2) + 0.15(Коллоквиум) + 0.1(Активность)+ 0.45 (оценка за экзамен).

1 Модуль вещественного числа

Определение 1 – Модуль вещественного числа

Если дано вещественное число x, то |x| определяется следующим образом: $|x| = \begin{cases} x & \text{если } x > 0 \\ 0 & \text{если } x = 0 \\ -x & \text{если } x < 0 \end{cases}$

Определение 2

Расстоянием между действительными числами x и y называется |x-y|.

Утверждение 1

 $\forall x,\ y,\ z\in\mathbb{R}$ справедливо, что $|x-y|\leq |y-z|+|z-x|.$

<u>Замечание</u>: равенство выполняется только когда все три числа либо неотрицательны, либо неположительны.

Утверждение 2

 $\forall x, y \in \mathbb{R}$ справедливо, что $|x+y| \leq |x| + |y|$.

Доказательство.

1.
$$\begin{cases} 0 \le y \\ 0 \le x \end{cases} \implies \begin{cases} |x+y| = x+y \\ |x| = x \end{cases} \implies |x+y| = x+y = |x| + |y|.$$

$$2. \begin{cases} x \le 0 \\ y \le 0 \end{cases} \implies \begin{cases} |x+y| = -(x+y) = (-x) + (-y) \\ |x| = -x \\ |y| = -y \end{cases} \implies |x+y| = (-x) + (-y) = |x| + |y|.$$

$$3. \begin{cases} y > 0 \\ x < 0 \end{cases} \implies \begin{bmatrix} x < x + y \le 0 \implies |x+y| < |x| \\ 0 \le x + y < y \implies |x+y| < |y| \implies |x+y| < |x| + |y|.$$

$$3. \begin{cases} y > 0 \\ x < 0 \end{cases} \implies \begin{bmatrix} x < x + y \le 0 \implies |x + y| < |x| \\ 0 \le x + y < y \implies |x + y| < |y| \implies |x + y| < |x| + |y|.$$

Замечание: для n произвольных действительных чисел имеет место равенство $|x_1+x_2+\cdots+x_n| \leq |x_1|+|x_2|+\cdots+|x_n|$ (доказывается по индукции).

1

2 Предел функции

Определение 3

Пусть X и Y — некоторые числовые множества. Если $\forall x \in X \mapsto !y \in Y$ (то есть каждому x из X ставится в соответствие единственный у из Y), то говорят, что на множестве X определена числовая функция y = y(x).

- Множество X называется областью определения функции (обозначается как D(f)).
- Переменная x называется аргументом функции.
- Число y, соответствующее данному x, называется частным значением функции.
- Совокупность $\{y\}$ всех частных значений функции называется областю значений (обозначается как E(f)).

Определение 4

График функции — это множество вида $\{M(x, f(x)), x \in X\}$ (в прямоугольной системе координат).

<u>Замечание</u>: \exists функции, графики которых нельзя изобразить: $D(x) = \begin{cases} 1, & \text{если } x \in \mathbb{Q} \\ 0, & \text{если } x \in \mathbb{I} \end{cases}$ (функция Дирихле).

Определение 5

Функция f(x) называется ограниченной сверху (снизу) на множестве K, если $\exists M \in K \ (m \in K) : \forall x \in X \ f(x) \leq M \ (f(x) \geq m)$. При этом число M называется верхней гранью (а число m — нижней гранью) функции f(x) на множестве K.

Определение 6 - Ограниченность I

Функция f(x) называется ограниченной на множестве K, если $\exists M, m \in K : \forall x \in X : m \leq f(x) \leq M$.

Определение 7 - Ограниченность II

Функция f(x) называется ограниченной на множестве K, если $\exists A \in K > 0 : \forall x \in X | f(x) | \leq A$.

Домашнее задание: доказать, что определение 7 эквивалентно определению 6.

Определение 8

Наименьшая из верхних граней, ограничивающих сверху функцию f(x), называется ее точной верхней гранью (обозначается как $\sup_X f(x)$). Можно сказать, что $\sup_X f(x) = \sup_X \{y\}$.

Замечание: можно дать аналогичное определение для точней нижней грани.

Утверждение 3

Число $M = \sup_X f(x)$, если

- 1. $\forall x \in X : f(x) \leq M$ (то есть число M это одна из верхних граней).
- $2. \ \forall \widetilde{M} < M \ \exists \widetilde{x} \in X : f(\widetilde{x}) > \widetilde{M}$ (то есть число M наименьшая из верхних граней).

Домашнее задание 1: сформулировать аналогичное определение для точной нижней грани.

Домашнее задание 2: пользуясь правилом построения отрицаний сформулировать определение

- 1. неограниченной сверху функции.
- 2. неограниченной снизу функции.
- 3. неограниченной функции.

Замечание: ограниченная функция может не принимать значение, равное какой-либо её точной грани.

Пример: $y = \sin x$. Возьмем $D(y) = \{x : 0 < x \le \frac{\pi}{2}\} \implies \sup\{\sin x\} = 1 \in \{y\}$. $\inf\{\sin x\} = 0 \notin \{y\}$.

3 Определение предела функции

Определение 9

Число A называется предельной точкой некоторого числового множества X, если в любой (сколь угодно малой) проколотой ε -окрестности точки A содержатся точки из множества X.

Пример 1: $X = \{x : a < x < b\}$, любая точка такого интервала (а также точки a и b) является предельной точкой

Пример 2: Множество $\mathbb N$ не имеет ни одной предельной точки.

Пусть функция y = f(x) определена на множестве X. Пусть A — предельная точка множества X.

Определение 10 – Определение предела по Коши

Число B называется пределом функции f(x) в точке a (при $x \to a$), если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in D(f) : 0 < |x - a| < \delta \implies |f(x) - B| < \varepsilon$$

3амечание 1: выражение <предел функции f(x) в точке a равен B> обозначается как $\lim_{x\to a}f(x)=B$.

Замечание 2: $|f(x) - B| < \varepsilon \iff b - \varepsilon < f(x) < b + \varepsilon$.

Утверждение 4

 Φ ункция в данной точке может иметь не более одного предела.

Утверждение 5

Если функция f(x) имеет в данной точке предел, то она ограничена в некоторой окрестности этой точки.

Доказательство.

Следует непосредственно из определения предела.

Пример 1: Докажем, что если $\forall x \in \mathbb{R} \ f(x) = c = const,$ то $\forall a \in \mathbb{R} \lim_{x \to a} f(x) = c.$ $\forall \varepsilon > 0$ возьмем любое $\delta > 0$, тогда $|f(x) - c| \equiv 0 < \varepsilon$.

Пример 2:
$$f(x) = \begin{cases} b & \text{если } x \neq a \\ c \neq b & \text{если } x = a \end{cases} \implies \lim_{x \to a} f(x) = b$$

Пример 2:
$$f(x) = \begin{cases} b & \text{если } x \neq a \\ c \neq b & \text{если } x = a \end{cases} \implies \lim_{x \to a} f(x) = b.$$
Пример 3: $f(x) = \begin{cases} b & \text{если } x \neq a \\ \text{не определена} & \text{если } x = a \end{cases} \implies \lim_{x \to a} f(x) = b.$

Замечание 1: во всех примерах $\forall \varepsilon > 0$ можно взять любое δ (то есть δ не зависит от ε).

Замечание 2: если в определении предела убрать неравенство $0 < |x-a| < \delta$, то есть потребовать выполнение неравенства $|f(x) - B| < \varepsilon$ для всех значений аргумента из δ -окрестности точки a (включая саму точку a, при условии, что она принадлежит области определения функции), то

- \bullet ответ в примере 3 не изменится, поскольку x=a не является значением аргумента функици.
- ответ в примере 2 изменится. А именно, предел у функции f(x) не будет существовать, так как при x=a неравенство $|f(x)-B| < \varepsilon$ принимает вид $|c-b| < \varepsilon$. Данное неравенство не выполняется, если взять $\varepsilon < |c-b|$.

Пример 4: докажем, что если f(x) = x, то $\forall a \in \mathbb{R} \lim_{x \to a} f(x) = a$. $\forall \varepsilon > 0 \ \exists \delta = \varepsilon : \forall x \in \mathbb{R} : 0 < |x - a| < \delta = \varepsilon \implies |f(x) - a| = |x - a| < \varepsilon$.

Пример 5: Докажем, что $f(x) = \sin \frac{1}{x}$ не имеет предела в точке 0 (x = 0 — предельная точка области определения, поэтому вопрос о существовании предела является корректным).

- 1. Предположим, что $\lim_{x\to 0} \sin \frac{1}{x} = b$.
- 2. Возьмем $\varepsilon=1 \implies \exists \delta>0: \left|\sin\frac{1}{x}-b\right|<1$ при $0<|x|<\delta.$
- 3. Возьмем $x_1 = \frac{1}{\frac{\pi}{2} + 2\pi n}, \ x_2 = \frac{1}{\frac{-\pi}{2} + 2\pi n} \ (0 < |x_1|, |x_2| < \delta).$
- 4. Заметим, что $\left|\sin\frac{1}{x_1}-b\right|=|1-b|<1,\; \left|\sin\frac{1}{x_2}-b\right|=|-1-b|<1$ и система $\begin{cases} |1-b|<1\\ |-1-b|=|1+b|<1 \end{cases}$ неразрешима в действительных числах $\implies f(x)=\sin\frac{1}{x}$ не имеет предела в точке 0.