(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 2. Mai 2002 (02.05.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/34854 A1

(51) Internationale Patentklassifikation⁷: C09J 7/02, 133/08, 133/02

22527 Hamburg (DE). **HUSEMANN**, **Marc** [DE/DE]; Strehlowweg 48, 22605 Hamburg (DE).

(21) Internationales Aktenzeichen: PCT/EP01/12168

(74) Gemeinsamer Vertreter: TESA AG; Quickbornstrasse 24, 20253 Hamburg (DE).

(22) Internationales Anmeldedatum:

22. Oktober 2001 (22.10.2001)

(81) Bestimmungsstaaten (national): AU, BR, CA, CN, HU, JP, KR, MX, PL, SG, US.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

100 52 955.0 25. Oktober 2000 (25.10.2000) DE

Veröffentlicht:

(T1) Asserted (C) H. D. Commission of Asserted

 mit internationalem Recherchenbericht
 vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): TESA AG [DE/DE]; Quickbornstrasse 24, 20253 Hamburg (DE).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): STORBECK, Reinhard [DE/DE]; Süntelstrasse 89L, 22457 Hamburg (DE). BARGMANN, Renke [DE/DE]; Hagenbeckstrasse 35,

(54) Title: USE OF SELF-ADHESIVE MATERIALS HAVING ANISOTROPIC PROPERTIES FOR PRODUCING STAMPING PRODUCTS

(54) Bezeichnung: VERWENDUNG VON HAFTKLEBEMASSEN MIT ANISOTROPEN EIGENSCHAFTEN FÜR STANZPRODUKTE

(57) Abstract: The invention relates to the use of a self-adhesive material having anisotropic properties for producing stamping products.

(57) Zusammenfassung: Verwendung einer Haftklebemasse, welche anisotrope Eigenschaften besitzt, für die Herstellung von Stanzprodukten.

5 Beschreibung

<u>Verwendung von Haftklebemassen mit anisotropen Eigenschaften für</u> <u>Stanzprodukte</u>

10

20

25

30

35

Die Erfindung betrifft die Verwendung von mit anisotropen Haftklebemassen bestrichenen Trägermaterialien zur Herstellung von Stanzprodukten sowie derart erhältliche Stanzprodukte.

Bei der Herstellung von Haftklebemassen wird aus Kosten- und Umweltgründen vermehrt von der Heißschmelz-Technologie (Hotmelt-Technologie) Gebrauch gemacht. Diese Technologie bietet zudem weitere verfahrenstechnische Vorteile.

Heißschmelz-Haftklebemassen (Hotmelts) zeichnen sich durch gute Eigenschaften bezüglich Transparenz und Witterungsbeständigkeit aus. Zudem sind sie in der Lage, hohen Anforderungen im Bereich der Scherfestigkeit gerecht zu werden. Diese Eigenschaften können in günstiger Weise für Polyacrylate mit hohem Molekulargewicht, hoher Polarität und anschließender effektiver Vernetzung erzielt werden.

Alle heute bekannten Haftklebemassen zeichnen sich aber durch ein mehr oder weniger ausgeprägtes Fließverhalten aus. Dieses Fließverhalten ist bei starker Ausprägung auch als kalter Fluß oder als Ausbluten eines Haftklebstoffes bekannt. Das inhärente Verhalten einer Haftklebemasse führt zu Problemen für die Verwendung für gestanzte Materialien; so sind die Lagerzeiten für die gestanzten Materialien begrenzt beziehungsweise werden besondere, in der Regel aufwendige Lagerbedingungen benötigt (beispielsweise eine Klimatisierung der Lagerräume).

Materialien können bei der Stanzung angestanzt oder durchgestanzt werden. Herkömmliche Haftklebemasse weisen für die Verwendung für Stanzmaterialien, insbesondere als Schicht aufgetragen auf ein Trägermaterial, in Hinblick auf beide Vorgehensweisen erhebliche Nachteile auf:

Die durchgestanzten Materialien lassen sich nur kurze Zeit nach dem Stanzvorgang voneinander trennen. Die Haftklebemassen fließen nach dem Stanzvorgang wieder zusammen. Das Zusammenfließen der Haftklebemasse tritt in vielerlei Produktformen auf: Sowohl Transferklebebänder (Haftklebemasse aufgetragen auf einem Trennmaterial), doppelseitig beschichtete Materialien (beidseitige Haftklebemasse auf einem Träger, z.B. auf Folie, Papier, Vlies, Gelege oder Schaum) als auch einseitig beschichtete Materialien (einseitig Haftklebemasse auf einem Träger wie z.B. Folie, Papier, Vlies, Gelege oder Schaum) zeigen den Effekt des Zusammenfließens der Haftklebemasse nach dem Stanzvorgang. Die Stanzlinge können nicht mehr zerstörungsfrei voneinander getrennt werden.

5

10

15

20

25

30

Insbesondere beim Anstanzen tritt, neben dem Zusammenfließen der Haftklebemasse, zusätzlich das nachfolgend beschriebene Problem auf. Beim Anstanzen von selbstklebenden Materialien wird das Trennmaterial mitangestanzt, d.h. die Stanzmesser dringen bis zu einer mehr oder weniger definierten Tiefe in das Substratmaterial (= Trennmaterial) ein. Dadurch wird immer die antiadhäsiv ausgerüstete Oberfläche des Trennmaterials (in den meisten Fällen sind die Trennmaterialien silikonisiert, gilt für alle beschriebenen Trennsysteme, Satas, 3.Auflage, Kapitel 26 und 27) zerstört. Der Kleber kann in das Substratmaterial des Trennmaterials (Papier, PET, PP, PE) hineinfließen und haften. Der Stanzling läßt sich nicht mehr problemlos vom silikonisierten Trennmaterial abziehen, da die Kanten des Stanzlings mit dem Substrat verklebt sind. In einem nachfolgenden Verarbeitungsschritt kann der Stanzling, oder das zu entfernende Matrixgitter um die Stanzlinge herum, beim Abziehen reißen. Diese Abrisse führen zu massiven Produktionsstörungen, da Anstanzprozesse hauptsächlich im kontinuierlichen rotativen Stanzverfahren durchgeführt werden.

Die beschriebenen Effekte gelten für alle Produktaufbauten wie Transferklebebänder sowie für einseitig und beidseitig beschichtete Substrate wie z.B. Folien, Vliese, Papiere, Gelege oder Schäume.

Aufgabe der Erfindung ist es daher, die Herstellung von Stanzprodukten zu verbessem, indem die geschilderten Nachteile des Standes der Technik vermieden oder aber zumindest erheblich vermindert werden.

Gelöst wird die Aufgabe überraschend und für den Fachmann in nicht vorhersehbarer Weise durch die Verwendung anisotroper Haftklebemassen, wie es im Hauptanspruch WO 02/34854

5

10

25

30

3

PCT/EP01/12168

dargestellt wird. Die Unteransprüche betreffen bevorzugte Weiterentwicklungen dieser Verwendung. Weiterhin betreffen die Ansprüche die derart erhältlichen Stanzlinge.

Demgemäß betrifft der Hauptanspruch die Verwendung einer Haftklebemasse, welche anisotrope Eigenschaften besitzt, zur Herstellung von Stanzprodukten.

Die Haftklebemasse ist dabei bevorzugt ein- oder beidseitig auf ein Trägermaterial aufgetragen. Als Trägermaterial sind prinzipiell Folien wie z.B. BOPP oder MOPP, PET, PVC oder Papiere oder Vliese (Basis: Cellulose oder Polymere) geeignet. Weiterhin kommen auch Schäume (z.B. PUR, PE, PE/EVA, EPDM, PP, PE, Silikon, usw.) oder Trennpapiere (Glassine Papiere, Kraft Papiere, polyolefinisch beschichtete Papiere) oder Trennfolien (PET, PP oder PE oder Kombinationen aus diesen Materialien) als Beschichtungssubstrate in Frage.

Während der Herstellung, der Weiterverarbeitung oder der späteren Beanspruchung von Polymeren beziehungsweise von Polymermassen kann es zur Ausbildung hoher Orientierungsgrade der Makromoleküle in bevorzugte Richtungen im gesamten Polymerverband kommen; durch diese Orientierung, die auch gezielt herbeigeführt werden kann, lassen sich die Eigenschaften der entsprechenden Polymere steuern und in Hinblick auf gewünschte Verwendungen verbessern. Anisotrop orientierte Haftklebemassen besitzen die Tendenz, sich nach einer Streckung in eine vorgegebene Richtung durch das "entropieelastische Verhalten" in den Ausgangszustand zurückzubewegen.

Für die erfinderische Verwendung sind prinzipiell alle Haftklebemassen geeignet, die eine Orientierung aufweisen, beispielsweise solche auf Basis von Natur- und Synthesekautschuken wie Butylkautschuk, Neopren, Butadien-Acrylnitril, Styrol-Butadien-Styrol- und Styrol-Isopren-Styrol-Copolymerisaten, ferner auf Basis von linearen Polyestern und Copolyestren, Polyurethanen, Polysiloxanelastomeren, auf Basis von Reiacrylaten, ganz besonders aber anisotrope Haftklebemassen auf Polyacrylatbasis.

Solche anisotrop orientierten Acrylathaftklebemasssen zeigen als Schicht nach Stanzund/oder Schneidvorgängen eine Rückstellung der Haftklebeschicht an der Schneid- und Stanzkante, welche erfinderisch für das Ausstanzen nicht wieder zusammenfließender Stanzformen genutzt wird. Diese Eigenschaft ist für keine der bisher zum Stand der Technik gehörigen Haftklebemassen bekannt.

25

30

Eine vorteilhafte Weiterentwickung verwendet in erfinderischem Sinne eine Haftklebemasse.

- welche durch eine radikalische Polymerisation erhältlich ist,
- welche zu mindestens Gew.-65 % auf zumindest einem acrylischen Monomer aus der
 Gruppe der Verbindungen der folgenden allgemeinen Formel basiert:

$$O$$
 R_2

wobei R_1 = H oder CH_3 ist und der Rest R_2 = H oder CH_3 ist oder gewählt wird aus der Gruppe der verzweigten oder unverzweigten, gesättigten Alkylgruppen mit 2 bis 20, bevorzugt mit 4 bis 9 Kohlenstoffatomen,

- bei welcher das mittlere Molekulargewicht der Haftklebemasse mindestens 650.000 beträgt,
- und welche, sofern sie auf einen Träger aufgetragen ist, eine Vorzugsrichtung besitzt,
 wobei der in Vorzugsrichtung gemessene Brechungsindex n_{MD} größer ist als der in einer Richtung senkrecht zur Vorzugsrichtung gemessene Brechungsindex n_{CD}, und wobei die Differenz Δn = n_{MD} n_{CD} mindestens 1•10⁻⁵ beträgt.

Die vorstehend geschilderte Haftklebemasse hat sich in besonders günstiger Weise als vorteilhaft für die erfinderische Verwendung erwiesen, so daß in Hinblick auf die gestellte Aufgabe hervorragende Ergebnisse erzielt werden konnten.

Als nicht ausschließliche Beispiele für Alkylgruppe, welche für den Rest R₂ in bevorzugter Weise Anwendung finden können, seien im folgenden genannt Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Isooctyl-, 2-Methylheptyl-, 2-Ethylhexyl-, Nonyl-, Decyl-, Dodecyl-, Lauryl-, oder Stearyl(meth)acrylat oder (Meth)acrylsäure.

Weiterhin verläuft das Stanzverfahren ausgezeichnet bei erfinderischer Verwendung einer Haftklebemasse, welche zu bis zu 35 Gew.-% auf Comonomere in Form von Vinylverbindungen basiert, insbesondere auf eine oder mehrere Vinylverbindungen gewählt aus der folgenden Gruppe:

Vinylester, Vinylhalogenide, Vinylidenhalogenide, Nitrile ethylenisch ungesättigter Kohlenwasserstoffe.

Im Sinne der erfinderischen Verwendung fallen auch Acrylverbindungen mit funktionellen Gruppen unter die Bezeichnung "Vinylverbindung". Solche funktionelle Gruppen enthaltenden Vinylverbindungen sind Maleinsäureanhydrid, Styrol, Styrol-Verbindungen, Vinylacetat, (Meth)acrylamide, N-substituierte (Meth)acrylamide, β-Acryloyloxypropionsäure, Vinylessigsäure, Fumarsäure, Crotonsäure, Aconitsäure, Dimethylacrylsäure, Trichloracrylsäure, Itaconsäure, Vinylacetat, Hydroxyalkyl(meth)acrylat, aminogruppenhaltige (Meth)acrylate, hydroxygruppenhaltige (Meth)acrylate, besonders bevorzugt 2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl-(meth)acrylat, und/oder 4-Hydroxybutyl(meth)acrylat und mit Doppelbindung funktionalisierte Photoinitiatoren; die vorstehende Aufzählung ist nur beispielhaft und nicht abschließend.

Für die Haftklebemassen ist es besonders vorteilhaft, wenn die Zusammensetzung der entsprechenden Monomere derart gewählt wird, daß die resultierenden Klebemassen entsprechend D. Satas [Handbook of Pressure Sensitive Adhesive Technology, 1989, Verlag VAN NOSTRAND REINHOLD, New York] haftklebende Eigenschaften besitzen. Hierfür sollte die Glasübergangstemperatur der Acrylathaftklebemasse zum Beispiel unterhalb 25 °C liegen.

20

30

35

5

10

15

Die für die erfinderische Verwendung herangezogenen Haftklebemassen, insbesondere die vorstehend als vorteilhaft ausgelobten Polyacrylathaftklebemassen, werden bevorzugt durch eine radikalisch initiierte Polymerisation hergestellt. Ein hierfür sehr geeignetes Verfahren zeichnet sich durch die folgenden Schritte aus:

- Polymerisation eines Gemisches enthaltend zumindest ein Monomer auf Vinyl-, Acryloder Methacrylbasis oder eine Kombination dieser Monomere, wobei das mittlere
 Molekulargewicht der entstehenden Polymere oberhalb von 650.000 liegt,
 - anschließender Extrusionsbeschichtung der Polymermasse,
 - anschließender Vernetzung der Polymermasse auf dem Träger durch Bestrahlung mit Elektronenstrahlen.

Die Extrusionsbeschichtung erfolgt dabei bevorzugt durch eine Extrusionsdüse. Die verwendeten Extrusionsdüsen können aus einer der drei folgenden Kategorien stammen: T-Düse, Fischschwanz-Düse und Bügel-Düse. Die einzelnen Typen unterscheiden sich durch die Gestalt ihres Fließkanals. Zur Herstellung von orientierten Acrylatahftklebe-

6

massen wird besonders bevorzugt mit einer Bügeldüse auf einen Träger beschichtet, und zwar derart, daß durch eine Relativbewegung von Düse zu Träger eine Polymerschicht auf dem Träger entsteht.

Die Zeitdauer zwischen der Beschichtung und der Vernetzung ist in günstiger Weise sehr gering, bevorzugt nicht größer als 10 s.

Durch die Ausformung des Acrylathotmelts in der Bügel-Düse sowie den Austritt aus der Düse mit einer bestimmten Filmdicke, durch die Reckung des Haftklebemassenfilms beim Übertrag auf das Trägermaterial auf eine dünnere Filmdicke und durch die anschließende Inline-Vernetzung wird die Orientierung erhalten.

10

15

20

25

Die freie radikalische Polymerisation kann in Gegenwart eines organischen Lösungsmittels oder in Gegenwart von Wasser oder in Gemischen aus organischen Lösungsmitteln und Wasser oder in Substanz durchgeführt werden. Bevorzugt wird so wenig Lösungsmittel wie möglich eingesetzt. Die Polymerisationszeit beträgt - je nach Umsatz und

Temperatur – zwischen 6 und 48 h.

Bei der Lösungsmittelpolymerisation werden als Lösemittel vorzugsweise Ester gesättigter Carbonsäuren (wie Ethylacetat), aliphatische Kohlenwasserstoffe (wie n-Hexan oder n-Heptan), Ketone (wie Aceton oder Methylethylketon), Siedegrenzbenzin oder Gemische dieser Lösungsmittel verwendet. Für die Polymerisation in wäßrigen Medien bzw. Gemischen aus organischen und wäßrigen Lösungsmitteln werden zur Polymerisation bevorzugt die dem Fachmann zu diesem Zwecke bekannten Emulgatoren und Stabilisatoren zugesetzt. Als Polymerisationsinitiatoren werden übliche radikalbildende Verbindungen wie beispielsweise Peroxide, Azoverbindungen und Peroxosulfate eingesetzt. Auch Initiatorgemische können verwendet werden. Bei der Polymerisation können weitere Regler zur Molekulargewichtssenkung und Verringerung der Polydispersität eingesetzt werden. Als sogenannte Polymerisationsregler können beispielsweise Alkohole und Ether verwendet werden. Das Molekulargewicht der Acrylathaftklebemassen liegt vorteilhaft zwischen 650.000 und 2.000.000 g/mol, mehr bevorzugt zwischen 700.000 und 1.000.000 g/mol.

30

In einer bevorzugten Vorgehensweise wird die Polymerisation in Polymerisationsreaktoren durchgeführt, die im allgemeinen mit einem Rührer, mehreren Zulaufgefäßen, Rückflußkühler, Heizung und Kühlung versehen sind und für das Arbeiten unter N2-Atmosphäre und Überdruck ausgerüstet sind.

WO 02/34854

Nach der Polymerisation in Lösemittel kann das Polymerisationsmedium unter vermindertem Druck entfernt werden, wobei dieser Vorgang bei erhöhten Temperaturen, beispielsweise im Bereich von 80 bis 150 °C durchgeführt wird. Die Polymere können dann in lösemittelfreiem Zustand, insbesondere als Schmelzhaftkleber, eingesetzt werden. In manchen Fällen ist es auch von Vorteil, die erfindungsgemäßen Polymere in Substanz herzustellen.

Zur Herstellung der Acrylathaftklebemassen können die Polymere in üblicher Weise modifiziert werden. Beispielsweise können klebrigmachende Harze, wie Terpen-, Terpenphenol-, C5-, C9-, C5/C9- Kohlenwasserstoff-, Pinen-, Inden- oder Kolophoniumharze auch in Kombination miteinander zugesetzt werden. Weiterhin können auch Weichmacher, verschiedene Füllstoffe (z.B. Fasern, Ruß, Zinkoxid, Titandioxid, Mikrovollkugeln, Voll- oder Hohlglaskugeln, Kieselsäure, Silikaten, Kreide, blockierungsfreie Isocyanate etc.), Alterungsschutzmittel, Lichtschutzmittel, Ozonschutzmittel, Fettsäuren, Weichmacher, Keimbildner, Blähmittel und/oder Beschleuniger als Zusätze verwendet werden. Zusätzlich können Vernetzer und Promotoren zur Vernetzung beigemischt werden. Geeignete Vernetzer für die Elektronenstrahlvernetzung sind beispielsweise bi- oder multifunktionelle Acrylate, bi- oder multifunktionelle Isocyanate oder bi- oder multifunktionelle Epoxide.

20

5

10

15

Die reinen oder abgemischten Acrylathotmelts werden durch eine Düse mit variabler Schlitzbreite auf das Trägermaterial beschichtet und anschließend auf dem Träger mit Elektronenstrahlen gehärtet. Die Vernetzung erfolgt im Inline-Betrieb unmittelbar nach dem Auftragen der Haftklebemasse auf den Träger.

25

30

35

Weiterhin ist Inhalt der Erfindung ein Stanzprodukt aus einem ein- oder beidseitig mit einer anisotropen Haftklebemasse beschichteten Trägermaterial.

Derartige Stanzlinge können als ein- oder doppelseitig klebende Etiketten, zum Verkleben im Haushalt und in der Industrie, besonders im Automobilbau, für alle Montagezwecke, im medizinischen Bereich (Pflaster, Wundabdeckungen) und dergleichen verwendet werden, um nur einige Anwendungsbeispiele zu nennen. Die Stanzlinge sind generell überall dort einsetzbar, wo Klebeetiketten und Klebefolien zur Verwendung kommen. Besonders geeignet sind die Stanzprodukte dort, wo auf einen sauberen, unbeschädigten Rand des Stanzlings Wert gelegt wird.

8

Experimente

Die Erfindung wird im folgenden durch Experimente beschrieben, ohne sich durch die 5 Wahl der untersuchten Proben unnötig beschränken zu wollen..

Folgende Testmethoden wurden angewendet, um die anisotropen Eigenschaften der hergestellten Haftklebemassen zu evaluieren.

10 <u>Testmethoden</u>

15

20

180° Klebkrafttest (Test A)

Ein 20 mm breiter Streifen einer auf einer Polyester oder silikonisiertem Trennpapier gecoateten Acrylathaftklebemasse wurde auf Stahlplatten aufgebracht. Es wurde – je nach Richtung und Reckung – Längs oder Quermuster auf der Stahlplatte verklebt. Der Haftklebestreifen wurde zweimal mit einem 2 kg Gewicht auf das Substrat aufgedrückt. Das Klebeband wurde anschließend sofort mit 30 mm/min und im 180° Winkel vom Substrat abgezogen. Die Stahlplatten wurden zweimal mit Aceton und einmal mit Isopropanol gewaschen. Die Messergebnisse sind in N/cm angegeben und sind gemittelt aus drei Messungen. Alle Messungen wurden bei Raumtemperatur unter klimatisierten Bedingungen durchgeführt.

Messung der Doppelbrechung (Test B)

Version 1

Ein Spektralphotometer Modell Uvikon 910 wurde im Probenstrahl mit zwei gekreuzten Polaroidfiltern versehen. Orientierte Acrylate wurden zwischen zwei Objekträgem fixiert. Die Schichtdicke der orientierten Probe wurde aus Vorversuchen mittels Dickentaster ermittelt. Die derart vorbereitete Probe wurde im Meßstrahl des Spektralphotometers derart plaziert, daß ihre Orientierungsrichtung um jeweils 45° von den optischen Achsen der beiden Polaroidfilter abwich. Mittels einer zeitaufgelösten Messung wurde dann die Transmission T über die Zeit verfolgt. Aus den Transmissionsdaten wurde dann die Doppelbrechung gemäß folgender Beziehung ermittelt:

 $T = sin^2(\pi x R)$, wobei R = Retardation.

Die Retardation R setzt sich wie folgt zusammen:

$$R = \frac{d}{\lambda} \Delta n$$
 , wobei d = Probendicke

Die Transmission setzt sich weiterhin aus $T = \frac{I_t}{I_0}$ zusammen. Somit ergibt sich letztendlich für die Doppelbrechung

$$\Delta n = \frac{\lambda}{\pi d} \arcsin \sqrt{T} \ .$$

10 Version 2

15

20

25

Die Messung der Doppelbrechung erfolgte mit einem Versuchsaufbau, wie er analog in der Encyclopedia of Polymer Science, John Wiley & Sons, Vol. 10, S. 505, 1987 als Circular-Polariskop beschrieben ist. Das ausgesendete Licht eines diodengepumpten Festkörperlasers mit der Wellenlänge λ = 532 nm wird zunächst durch ein Polaroidfilter linear polarisiert und dann unter Verwendung einer $\lambda/4$ -Platte mit $\lambda = 532$ nm zirkular polarisiert, Dieser derart polarisierte Laserstrahl wird sodann durch die orientierte Acrylatmasse geführt. Da Acrylatmassen hochtransparent sind, kann der Laserstrahl die Masse praktisch ungehindert passieren. Sind die Polymermoleküle der Acrylatmasse orientiert, so hat dies eine Änderung der Polarisierbarkeit der Acrylatmasse je nach Beobachtungswinkel zur Folge (Doppelbrechung). Der E-Vektor des zirkular polarisierten Laserstrahles erfährt durch diesen Effekt eine Drehung um die Fortschreitungsachse des Laserstrahles. Nach Verlassen der Probe wird der derart manipulierte Laserstrahl durch eine zweite λ/4-Platte mit λ = 532 nm geführt, deren optische Achse um 90° von der optischen Achse der ersten λ 4-Platte abweicht. Nach diesem Filter schließt sich ein zweiter Polaroidfilter an. der ebenfalls um 90° vom ersten Polaroidfilter abweicht. Schließlich wird die Intensität des Laserstrahles mit einem Photosensor vermessen und Δn wie unter Version 1 beschrieben bestimmt.

Bestimmung des Gelanteils (Test C)

30 Die sorgfältig getrockneten lösungsmittelfreien Klebstoffproben werden in ein Vliestütchen aus Polyethylen (Tyvek-Vlies) eingeschweißt. Aus der Differenz der ProbenWO 02/34854

15

20

25

gewichte vor der Extraktion und nach der Extraktion durch Toluol wird der Gelwert bestimmt.

Messung des Zug-/Dehnungsverhalten (Test D)

Streifen der Muster mit einer Breite von mindestens 30 mm und einer Länge von 50 mm wurden zu einem Probenkörper laminiert, um mindestens eine Dicke von 0,5 mm zu erreichen. Eventuelle Lufteinschlüsse sind dabei weitestgehend vermieden worden. Das erhaltene Laminat wurde auf eine Breite von exakt 20 mm geschnitten und die Streifenenden mit Papier verklebt. Die Länge des Probenstücks zwischen den Papierstreifenenden betrug dabei genau 25 cm. Die Dicke des Streifens wurde anschließend mittels eines Dickentasters auf 10 μm genau ermittelt.

Der so erhaltene Probenkörper wurde dann unter Zuhilfenahme einer Universalprüfmaschine (Fa. Frank) einer Zug-/Dehnungsmessung unterworfen. Die ermittelten Kräfte wurden jeweils auf den Ausgangsquerschnitt als Spannung angegeben. Die relativen Dehnungen beziehen sich auf die Ausgangslänge von 25 mm. Als Prüfgeschwindigkeiten wurden 100, 300 und 600 mm/min eingestellt.

Messung des Rückschrumpfes (Test E)

Parallel zur Beschichtungsrichtung des Hotmelts wurden Streifen von min. 20 mm Breite und 20 cm Länge geschnitten. Bei Masseaufträgen von 130 g/m² wurden je 3 Streifen, bei 100 g/m² wurden je 4 Streifen übereinander laminiert, bei 50 g/m² 8 Streifen übereinander laminiert, um vergleichbare Schichtdicken zu erhalten. Der derart erhaltene Körper wurde dann auf exakt 20 mm Breite geschnitten und an den jeweiligen Enden in einem Abstand von 15 cm mit Papierstreifen überklebt. Der auf diese Weise präparierte Prüfkörper wurde dann bei RT vertikal aufgehängt und die Änderung der Länge über die Zeit verfolgt, bis keine weitere Schrumpfung der Probe mehr festgestellt werden konnte. Die um den Endwert reduzierte Ausgangslänge wurde dann bezogen auf die Ausganglänge als Rückschrumpf in Prozent angegeben.

Für die Messung der Orientierung nach längerer Zeit wurden die beschichteten und orianschließend analysiert.

Herstellung und Untersuchung der Stanzlinge (Test F)

Es wurden Stanzlinge auf handelsüblichen Flach- oder Rotationsstanzen hergestellt. Für die rotativen Stanzversuche wurden Rotationsstanzzylinder von der Firma Rotometrics – Rotationsstanzwerkzeuge GmbH, Mainz-Kastel, eingesetzt.

5 Für intermetierendes Stanzen (Flach- oder Hubstanze) wurden Stanzwerkzeuge von der Firma Winck-Stanzwerkzeuge, Neuenhaus eingesetzt.

Der Rückschrumpf der Haftklebemasse wurde mikroskopisch beurteilt und quantitativ vermessen. Als Rückschrumpfstrecke L wurde der Abstand von der Folien- und Trennmaterialstanzkante bis zur rückgestellten Haftklebemassenschicht definiert.

10

Herstellung der Proben

Beispiel 1

15 Ein für radikalische Polymerisationen konventioneller 200 L-Reaktor wurde mit 2500 g Acrylsäure, 47,5 kg 2-Ethylhexylacrylat, und 30 kg Aceton/Isopropanol (97:3) befüllt. Nach 45 Minuten Durchleiten mit Stickstoffgas unter Rühren wurde der Reaktor auf 58 °C hochgeheizt und 20 g 2,2'-Azoisobuttersäurenitril (AIBN) hinzugegeben. Anschließend wurde das äußere Heizbad auf 75 °C erwärmt und die Reaktion konstant bei dieser 20 Außentemperatur durchgeführt. Nach 1 h Reaktionszeit wurde wiederum 20 g AIBN hinzugegeben. Nach 5 h und 10 h wurde mit jeweils 15 kg Aceton/Isopropanol (97:3) verdünnt. Die Reaktion wurde nach 48 h Reaktionszeit abgebrochen und auf Raumtemperatur abgekühlt. Zur Beschichtung aus Lösung auf einen mit Vorstrich versehenen Polyesterträger wurde mit einem Laborstreichbalken auf 130 g/m² ausgestrichen, für 10 25 Minuten bei 120 °C im Trockenschrank getrocknet, mit silikonisiertem Trennpapier abgedeckt und letztendlich mit Elektronenstrahlen einer Dosis von 40 kGy und einer Beschleunigungsspannung von 230 kV bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

Für die Hotmeltbeschichtungen wurde das Lösungsmittel in einem Aufkonzentrationsextruder entfernt.

Beispiel 2

30

35

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 5000 g Acrylsäure, 45 kg 2-Ethylhexylacrylat und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die

12

Muster wurden mit Elektronenstrahlen einer Dosis von 30 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

Beispiel 3

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3500 g Acrylsäure, 36,5 kg 2-Ethylhexylacrylat, 10 kg Methylacrylat und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die Muster wurden mit Elektronenstrahlen einer Dosis von 30 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

10

Beispiel 4

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3000 g Acrylsäure, 35,5 kg 2-Ethylhexylacrylat, 7,5 kg Methylacrylat, 4 kg N-tert.-Butylacrylamid und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die Muster wurden mit Elektronenstrahlen einer Dosis von 30 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

Beispiel 5a

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3500 g Acrylsäure, 20,75 kg 2-Ethylhexylacrylat, 20,75 kg Butylacrylat, 5 kg Methylacrylat, und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Im weiteren Verlauf wurden die identischen Lösungsmittel- und Initiatormengen verwendet. Die Muster wurden mit Elektronenstrahlen einer Dosis von 50 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

Beispiel 5b

Die Herstellung erfolgte analog Beispiel 1. Zur Polymerisation wurden 3500 g Acrylsäure, 20,75 kg 2-Ethylhexylacrylat, 20,75 kg Butylacrylat, 5 kg Methylacrylat, und 30 kg Aceton/Isopropanol (97:3) eingesetzt. Zusätzlich wurden 21,5 kg Foral 85 (Fa. Hercules, hydrierter Kolophoniumester) hinzugemischt. Um eine optimale Vernetzung zu erzielen wurden 2 Gewichts% SR 610 (Fa.Sartomer) hinzugemischt. Die Muster wurden mit Elektronenstrahlen einer Dosis von 75 kGy bestrahlt. Zur Analyse wurden die Testmethoden A, B und C durchgeführt.

30

5

10

15

20

30

35

Beispiel 6 (Reckung der Acrylathotmelts, Muster A - L)

Zur Erzeugung der Muster A - L wurde Beispiel 4 im Trocknungsextruder aufkonzentriert und durch eine Düse mit 300 µm (Muster A - F) und 780 µm Spaltbreite (G - L) auf einen silikonisierten Trennpapierträger mit 130 g/m² beschichtet

Die Bahngeschwindigkeit des Trägers betrug 80 m/min. Für die Muster A - C sowie G - I wurde der Trennpapierträger mit dem Haftklebefilm über eine Kühlwalze mit 25 °C geführt. Bei den Mustern D - F sowie J - L wurde diese Walze auf 90 °C hochgeheizt. Zur Untersuchung des Relaxationsverhaltens wurden die Muster A, D, G und J sofort nach der Beschichtung im Inline-Prozess mit Elektronenstrahlen einer Dosis von 30 kGy und einer Beschleunigungsspannung von 230 kV ESH vernetzt. Die Muster B, E, H, und K wurden nach der Beschichtung für eine Stunde bei Raumtemperatur gelagert und anschließend mit identischen Verfahrensparametern elektronenstrahlvernetzt. Die Muster C, F, I, und L wurden nach der Beschichtung für 48 Stunden bei Raumtemperatur gelagert und anschließend mit identischen Verfahrensparametern elektronenstrahlvernetzt. Zur Analyse wurden von allen Mustern die Testmethoden A, B und C durchgeführt.

Beispiel 7 (Muster 1#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 1 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillrolltemperatur von 25 °C (Außentemperatur der Stahlwalze, auf der das Trägermaterial beschichtet wird) der und einer Bahngeschwindigkeit von 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 40 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

25 Beispiel 8 (Muster 2#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 2 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillrolltemperatur von 25 °C und einer Bahngeschwindigkeit von 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 30 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

Beispiel 9 (Muster 3#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 3 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillrolltemperatur von 25 °C und einer Bahngeschwindigkeit von 80 m/min.

14

Es wurde mit Elektronenstrahlen einer Dosis von 30 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

Beispiel 10 (Muster 5#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit 130 g/m² Masseauftrag, einer Chillrolltemperatur von 25 °C und einer Bahngeschwindigkeit von 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 50 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

10

15

30

Beispiel 11 (Muster 6#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 4 eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit jeweils 100 g/m² Masseauftrag beidseitig auf eine 12 µm dicke PET-Folie. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chillrolltemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 50 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

Beispiel 12 (Muster 7#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5b eingesetzt. Die Beschichtung erfolgt durch eine 300 μm breite Düse mit jeweils 100 g/m² Masseauftrag beidseitig auf eine 12 μm dicke PET-Folie. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chillrolltemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 75 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

Beispiel 13 (Muster 8#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5b eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit jeweils 100 g/m² Masseauftrag beidseitig auf eine 50 µm dicke BOPP-Folie. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chillrolltemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 75 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

Beispiel 14 (Muster 9#)

Es wurde analog Beispiel 6 vorgegangen. Als Haftklebemasse wurde Beispiel 5b eingesetzt. Die Beschichtung erfolgt durch eine 300 µm breite Düse mit jeweils 100 g/m² Masseauftrag beidseitig auf eine 50 µm dicke BOPP-Folie. Die BOPP Folie wurde direkt vor der Beschichtung beidseitig inline Corona vorbehandelt. Die Oberflächenspannung betrug danach < 45 mN/m. Die Beschichtung erfolgte in 2 Arbeitsgängen. Die Chillrolltemperatur betrug 25 °C, die Bahngeschwindigkeit betrug 80 m/min. Es wurde mit Elektronenstrahlen einer Dosis von 75 kGy vernetzt und zur Analyse die Testmethoden A, B, C, D und E durchgeführt.

10

15

20

5

Resultate

Zur Untersuchung der Orientierung von Acrylathaftklebemassen und deren Vernetzbarkeit wurden zunächst verschiedene Acrylathaftklebemassen über freie radikalische Polymerisation hergestellt. Alle Klebemassen sind bezüglich Temperaturstabilität und Fließviskosität im Hotmelt-Prozess verarbeitbar. Die dargestellten Acrylathaftklebemassen
wurden in Lösung polymerisiert und anschließend im Trocknungsextruder aufkonzentriert. Die Comonomerzusammensetzung der einzelnen Klebemassen ist in Tabelle 1 aufgelistet.

Tabelle 1: Comonomerzusammensetzung der einzelnen Acrylathaftklebemassen

Tabelle 1					
Beispiel	2-EHA	BA	MA	NTBAM	AS
1	95	0	0	0	5
2	90	0	0	0	10
3	73	0	20	0	7
4	71	0	15	8	6
5 a/ b	41,5	41,5	10	0	7

2-EHA:

2-Ethylhexylacrylat

BA:

Butylacrylat

25 MA:

Methylacrylat

A C.

NTBAM: N-tert.-Butylacrylamid

AS:

Acrylsäure

Das mittlere Molekulargewicht der Beispiele 1 – 5a/5b betrug etwa 800.000 g/mol. Als Referenzmuster wurden die Beispiele 1 – 5a/5b aus Lösung auf eine mit einem Vorstrich (Primer) versehende Polyesterfolie mit 130 g/m² aufgetragen, bei 120 °C getrocknet, mit Elektronenstrahlung gehärtet und anschließend klebtechnisch ausgeprüft. Zur Beurteilung der Effizienz der Vernetzung wurde der Gelwert der Klebemassen gemessen. Der Gelwert gibt den unlöslichen Anteil der Haftklebemasse in Toluol wider. Ferner wurden die Sofortklebkräfte auf Stahl gemessen. Die Ergebnisse der Ausprüfungen sind in Tabelle 2 dargestellt.

10 Tabelle 2: Klebtechnische Ausprüfung der Referenzmuster

Beispiel	Elektronenstrahl	Gelwert	KK-Stahl
	-Dosis [kGy]	[%]	[N/cm]
1	40	65	6,5
2	30	55	6,0
3	30	56	5,9
4	30	59	6,1
5 a	50	72	6,5
5 b	75	67	9,5

KK: Klebkraft auf Stahl

5

15

20

25

Die Gelwerte variieren – je nach Comonomerzusammensetzung und Dosis zwischen 55 und 72 %.

Durch den relativ hohen Anteil polarer Monomere sind die harzfreien Klebemassen kohäsiv und besitzen daher relativ geringe Sofortklebkräfte auf Stahl von etwa 6 - 6,5 N/cm. Messungen in Quer- sowie Längsrichtung ergaben im Rahmen der Meßfehler nahezu die identischen Klebkräfte. Die Messung der Doppelbrechung zeigte keine Orientierung innerhalb der Klebemassen. Es wurden keine unterschiedlichen Polarisierbarkeiten in Längs- und Querrichtung festgestellt.

Zur Untersuchung des Orientierungseffektes wurden die Beispiele 1 – 5a/b im Trocknungsextruder zu 100%-Systemen aufkonzentriert und durch eine Düse mit unterschiedlicher Schlitzbreite beschichtet.

Zur Herstellung orientierter Acrylathotmelts wurde die Haftklebemasse durch den Fließvorgang innerhalb der Düse vororientiert. Anschließend wird der Klebefilm auf das Trä-

germaterial mit einer bestimmten Schichtdicke übertragen. Zur Einstellung der Schichtdicke ist ein bestimmtes Reckverhältnis zwischen Düsenbreite und Schichtdicke erforderlich. Dieser Effekt kann durch Erhöhung der Beschichtungsgeschwindigkeit (Bahngeschwindigkeit des aufnehmenden Trägermaterials) verstärkt werden. Durch das Verhältnis von Düsenspaltbreite und Schichtdicke der Klebemasse auf dem Trägermaterial kann das Maß der Orientierung der Polymerketten frei variiert werden.

Zur experimentellen Bestätigung wurden die Klebemassen mit unterschiedlichen Reckverhältnissen und weiteren Versuchsparametem beschichtet. Zur Minimierung der Relaxationszeit wurden die Haftklebemasse nach der Beschichtung im Inline-Prozess mit Elektronenstrahlen vernetzt. Die Relaxationszeiten lagen somit deutlich unterhalb 10 s. Ergänzende Versuche haben gezeigt, daß nach 48 h noch Orientierungen nachweisbar sind. Diese Experimente wurden mit Beispiel 4 durchgeführt und das optimale Reckverhältnis, die optimale Temperatur der Beschichtungswalze und der Zeitpunkt der Inline-Vernetzung ermittelt. Die Experimente sind in Tabelle 3 zusammengefaßt.

15

10

5

Tabelle 3: Versuchsparameter zur Orientierung der Klebemasse 4

Muster	Reckverhältnis	Temperatur der	Zeitpunkt der	∆n-Werte
		Walze [°C]	Vernetzung	
Α	1:2,3	25	2 s	9,3 • 10 ⁻⁵
В			1 h	4,2 • 10 ⁻⁵
С			48 h	6,6 • 10 ⁻⁶
D		90	2 s	3,4 • 10 ⁻⁵
Е			1 h	7,8 • 10 ⁻⁶
F	i ·		48 h	-
G	1:6	25	2 s	1,0 • 10-4
Н			1 h	5,6 • 10 ⁻⁵
I			48 h	8,3 • 10 ⁻⁶
J		90	2 s	7,4 • 10 ⁻⁵
К	1		1 h	9,7 • 10 ⁻⁶
L			48 h	-

 Δn -Werte: Differenz der Brechungsindizes n_{MD} in Richtung der Verstreckung und n_{CD} senkrecht hierzu.

Das Reckverhältnis wurde durch Variation der Düsenbreite eingestellt. Der Masseauftrag blieb konstant bei 130 g/m². Die Muster wurden jeweils mit einer Elektronenstrahl-Dosis von 30 kGy bestrahlt. Alle gereckten Muster sind alphabetisch aufgelistet.

Die Orientierung innerhalb der Acrylathaftklebemassen wurde durch Quantifizierung der Doppelbrechung bestimmt. Der Brechungsindex n eines Mediums ist gegeben über den Quotienten aus der Lichtgeschwindigkeit c_0 im Vakuum und der Lichtgeschwindigkeit c_0 in dem betrachteten Medium ($n=c_0/c$), n ist eine Funktion der Wellenlänge des jeweiligen Lichts. Als Maß für die Orientierung der Haftklebemasse dient die Differenz Δn des in eine Vorzugsrichtung (Verstreckungsrichtung, machine direction MD) gemessenen Brechungsindex n_{MD} und des in einer Richtung senkrecht zur Vorzugsrichtung (cross direction CD) gemessenen Brechungsindex n_{CD} , also $\Delta n = n_{MD} - n_{CD}$, dieser Wert ist durch die in Test B beschriebenen Messungen zugänglich.

Alle Muster zeigten eine Orientierung der Polymerketten. Die ermittelten Δn -Werte sind in Tabelle 3 aufgelistet, wobei die größte Orientierung für das Muster G gemessen wurde ($\Delta n = 1,0 \cdot 10^{-4}$). Für das weniger stark gereckte Muster A wurde ein Δn -Wert von 9,3 • 10^{-5} bestimmt.

Der entsprechende Δn -Wert ist abhängig von der Comonomerzusammensetzung und dem Verzweigungsgrad des Polymers. Für die hier dargestellten Polymere ist die Haft-klebemasse erfindungsgemäß orientiert, wenn der Δn -Wert > 1•10⁻⁵ beträgt.

Die Orientierung innerhalb der Acrylathaftklebemassen in dem oben angegebenen Grad konnte somit durch die Doppelbrechungsmessung für die vermessenen Proben nachgewiesen werden.

Die Auswirkungen auf die klebtechnischen Eigenschaften sind in Tabelle 4 dargestellt:

Tabelle 4					
Muster	Gelwert	KK-Stahl	KK-Stahl		
	[%]	MD	CD [N/cm]		
		[N/cm]			
Α	61	5,2	6,7		
В	59	5,8	6,4		
С	59	6,1	6,2		
D	59	6,3	6,6		
E	60	6,0	6,4		

5

10

15

25

19

F	56	6,1	6,0
G	63	4,9	6,9
Н	62	5,9	6,5
1	60	6,0	6,1
J	62	5,8	6,7
K	59	5,9	6,4
L	58	6,0	6,0

Masseauftrag 130 g/m²

KK: Klebkraft auf Stahl;

MD (maschine direction; Verstreckungsrichtung); CD (cross direction, Querrichtung)

5

10

Für die Muster A und G wurden bezugnehmend auf die Klebkräfte für MD (maschine direction; Verstreckungsrichtung (Längsrichtung, in der die Haftklebemasse gereckt wurde)) und für CD (cross direction, Querrichtung, senkrecht auf MD) nur relativ geringe Unterschiede in der Klebkraft gemessen, wobei für MD jeweils die niedrigen Werte gemessen wurden. Auch die Gelwerte nach der Elektronenstrahl-Vernetzung schwanken relativ wenig mit dem Grad der Orientierung. Die stärksten Orientierungen wurden mit kurzer Relaxationszeit und kalter Beschichtungsrolle erzielt.

15

Um die universelle Übertragbarkeit zu gewährleisten und zur Untersuchung des Rückstelleffektes bei selbstklebenden Stanzlingen, wurden weitere Acrylathotmelts mit unterschiedlichen Comonomerzusammensetzungen aus der Schmelze beschichtet.

WO 02/34854 PCT/EP01/12168

20

Die Ergebnisse der klebtechnischen Ausprüfung sind in Tabelle 5 dargestellt.

Tabelle 5					
Muster	Elektronenstrahl-	Gelwert	KK-Stahl	KK-Stahl	∆n-Werte
	Dosis [kGy]	[%]	MD [N/cm]	CD [N/cm]	
1#	40	72	5,8	6,8	1,5 • 10-4
2#	30	62	5,7	6,4	0,8 • 10-4
3#	30	61	5,5	6,2	1,2 • 10-4
5#	50	75	5,9	6,7	0,6 • 10-4
6#	50	73	9,6	9,8	0,5 • 10-4
7#	75	65	11,4	11,6	0,5 • 10-4
8#	75	64	13,5	14,1	0,6 • 10-4
9#	75	64	13,2	13,8	0,6 • 10-4

Masseauftrag 130 g/m² (Muster 1#, 2#, 3#,5#)

Masseauftrag 2 x 100g/m² auf PET, Dicke 12 μm (Muster 6#, 7#)

Masseauftrag 2 x 100g/m² auf BOPP, Dicke 50 μm (Muster 8#, 9#)

Gelwerte sind immer auf die vernetzte Reinacrylatmenge bezogen

KK: Klebkraft auf Stahl;

MD (maschine direction; Verstreckungsrichtung); CD (cross direction, Querrichtung)

 Δn -Werte: Differenz der Brechungsindizes n_{MD} in Verstreckungsrichtung und n_{CD} senkrecht hierzu.

10

15

20

25

5

Die Ausprüfungen der gereckten Muster zeigen, daß generell Acrylathaftklebemassen mit anisotropen Klebeeigenschaften erzeugt werden können, indem die Haftklebemasse in einer Extrusionsdüse ausgeformt wird, bei der Beschichtung stark gereckt wird und dieser Zustand anschließend mit Elektronenbestrahlung "eingefroren" wird. Die für Muster 1# bis 9# ermittelten Δn-Werte liegen in etwa auf dem Niveau desjenigen von Muster G. Für die Muster 1#, 2#, 3# und 5# bis 9# wurden nur relativ geringe Unterschiede in den Klebkräften für Längs- und Querrichtung gemessen. Wiederum werden in Verstreckungsrichtung (MD) niedrigere Klebkräfte gemessen.

Dagegen zeigen Zug/Dehnmessungen einen deutlichen Einfluß der Orientierung auf die physikalischen Eigenschaften der Haftklebemassen. In Abbildung 1 und 2 sind die Zug/Dehn-Diagramme der Muster 1#, 2#, 3# und 5# dargestellt.

Die Muster 1#, 2#, 3# und 5# zeigen nach der Orientierung in Verstreckungsrichtung (MD) eine bedeutend geringere Dehnung. Die Spannung steigt bereits auf einer sehr kurzen Strecke schnell an und die Muster reißen. In der Querrichtung (CD) lassen sich

Beispiele mit weit über 1000 % Dehnung weiter strecken und sind in dieser Richtung bedeutend weniger reißfest.

Für die vorteilhafte Anwendung der orientierten Haftklebemassen im Stanzbereich ist der Rückschrumpf ein entscheidender Faktor. Orientierte Klebemassen besitzen die Tendenz, sich nach der Streckung in eine vorgegebene Richtung durch das "entropieelastische Verhalten" in den Ausgangszustand zurückzubewegen. Zur analytischen Fassung dieser Problematik wurde der Rückschrumpf der orientierten Muster im freien Film bestimmt.

10 Die bei Raumtemperatur ermittelten Werte sind in Tabelle 6 aufgelistet:

Tabelle 6			
Muster	Rückschrumpf [%]		
1#	91		
2#	95		
3#	93		
5#	90		
6#	85		
7#	65		
8#	64		
9#	63		

- Muster 1#, 2#,3#,5#; Masseauftrag 130 g/m²

15

20

5

Die Werte wurden jeweils nach 1 Woche Lagerung ermittelt. Weiterhin verdeutlicht der starke Rückschrumpf aller orientierten Muster das Bestreben der Haftklebemasse, wieder in den ursprünglichen Zustand zurückzukehren. Durch die Elektronenstrahl-Vermetzung kann die Orientierung eingefroren werden. Alle Muster aus Tabelle 6 wurden in Tabelle 7 mit den dargestellten Elektronenstrahl-Dosen vernetzt, um dann nach 2-monatiger Lagerung wiederum den Rückschrumpf dieser Haftklebemassen zu ermitteln.

⁻ Muster 6# bis 9# Masseauftrag 100 g/m2

22

	Tabelle	7
Muster	Elektronenstrahl- Dosis [kGy]	Rückschrumpf [%]
1#	40	89
1#	0	-25
2#	30	94
2#	0	-5
3#	30	92
3#	0	0
5#	50	90
5#	0	-8
6#	50	83
6#	0	- 8
7#	75	59
7#	0	- 35
8#	75	57
8#	0	- 45
9#	75	61
9#	0	-48

⁻ Muster 1#, 2#,3#,5#: Masseauftrag 130 g/m²

5

10

Tabelle 7 belegt, daß durch die Elektronenstrahl-Vernetzung die Orientierung eingefroren werden und auch nach 2-monatiger Lagerung durch den Rückschrumpf für Produkt-anwendungen genutzt werden kann. Der Vergleich mit den jeweils unvernetzten Mustem verdeutlicht, daß die Haftklebemassen ohne Vernetzung relaxieren und somit der Rückschrumpf nicht mehr existent ist. Hier ist im Gegenteil bei einigen Proben sogar eine Ausdehnung der Proben während der Messung zu beobachten, welche auf die aufgehängten Proben einwirkende Schwerkraft zurückzuführen ist. Die harzabgemischten Haftklebemassen zeigen ein ausgeprägtes Fließverhalten.

2 Zur Beurteilung des Rückstellverhaltens der Haftklebemasse im Stanzling wurde aus den Mustern 5# bis 9# durch rotatives Stanzen ein Stanzling hergestellt. Abbildung 3a zeigt

⁻ Muster 6# bis 9# Masseauftrag 100 g/m²

5

10

15

die Stanzlingform, wobei der Pfeil die Verstreckungsrichtung angibt. Das Rückstellverhalten wurde an der Oberkante (Stanzkante verläuft parallel zur Verstreckungsrichtung) sowie an den Stegen (Stanzkante verläuft quer zur Verstreckungsrichtung) mikroskopisch untersucht. In Abbildung 3b sind die Rückschrumpfmeßstellen dargestellt, in Abbildung 3c in Vergrößerung die mikroskopille Aufnahme zur Beurteilung der Oberkante der Probe (quer zur Verstreckungsrichtung) und in Abbildung 3d diejenige zur Beurteilung des Steges (längs zur Verstreckungsrichtung).

In Tabelle 8 wird der beobachtete Rückschrumpf der Haftklebemasse in Abhängigkeit von der Zeit nach der Stanzung protokolliert.

		Tabelle 8		
		Rückschrumpf	strecke L (µm)	
	Distanz	der rückgestel	lte Haftklebema	asse zur
	F	olien/Trennma	terialstanzkant	е
Muster	Oberkante	Oberkante	Steg	Steg
	Rückstelllänge L	Rückstelllänge L	Rückstelllänge L	Rückstelllänge L
	nach 24 h, RT	nach 1	nach 24 h, RT	nach 1 Woche,
		Woche,RT		RT
5#	5	4	350	290
6#	3	3	180	171
7#	4	4	105	102
8#	3	4	95	92
9#	2	3	30	28

Bevorzugt besitzen die Haftklebemasssen für die erfinderische Verwendung ein Rückstellverhalten von 20 bis 800 μ m, insbesondere von 30 bis 100 μ m, gemessen in Verstreckungsrichtung.

Durch Temperaturanwendung läßt sich die Rückstellung deutlich beschleunigen. Man erreicht schon nach kurzer Zeit einen nahezu konstanten Endwert.

PCT/EP01/12168

In Tabelle 9 wurde der Rückschrumpf einiger Muster in Abhängigkeit von der Temperatur und der Zeit gemessen.

	Tabelle 9				
Muster	Zeit [h]/Temperatur [°C]	Rückschrumpf [%]			
1#	2/40	72			
1#	2/60	78			
2#	3/40	76			
2#	3/60	81			
3#	2/40	70			
3#	3/60	82			
5#	2/40	73			
5#	2/60	80			

Masseauftrag 130 g/m²

5

Durch die Temperaturbehandlung wird der Rückschrumpf wesentlich beschleunigt. Die Muster erreichen bei einer Temperierung von 60 °C schon nach relativ kurzer Zeit (3 h) einen Rückschrumpf von über 80 % und damit nahezu einen Wert, der sonst erst bei Lagerung von mehreren Tagen erzielt wird.

10

Die Proben der in Form von Schichten vorliegenden anisotrop orientierten Acrylathaftklebemassen zeigen nach Stanz- und Schneidvorgängen eine Rückstellung der Haftklebeschicht, die ein Zusammenfließen der Haftklebemassen verhindert.

15

20

In Abbildung 4 a ist der Schneidevorgang mit einem Stanzmesser 1 durch ein Transferklebeband mit einer einseitig aufgetragenen nicht anisotropen Haftkleberschicht 21 dargestellt, Abbildung 4b zeigt die erfinderische Verwendung einer anisotropen Haftklebemasse 22 für den Stanzvorgang, nämlich für die Stanzung eines Transferklebebandes mit einer anisotropen Haftklebemasse 22. Die Ziffer 3 bezeichnet ein antiadhäsives Trennmaterial, z.B. silikonisiertes Trennpapier. Im ersten Fall (Abbildung 4a, nicht anisotrope Haftklebemasse) fließt nach dem Schneidevorgang und dem Entfernen des Messers 1 der Haftkleber des Stanzling mit der Haftklebeschicht der umgebenden Schicht zusammen, die zusammengeflossenen Haftklebemasse wird durch 4 bezeichnet. Eine Entfernung des Stanzlings ist nicht, oder nicht zerstörungsfrei, möglich. So ist der Stanzling in diesen Fällen am Rande ausgefranst, und die Haftklebemasse zieht Fäden.

WO 02/34854

25

PCT/EP01/12168

Bei einem Stanzverfahren mit erfinderischer Verwendung der anisotropen Haftklebemasse 22 (Abbildung 4b) zieht sich die Haftklebeschicht nach dem Schnitt zurück (Rückschrumpf, Ziffer 7). Der Stanzling kann unbeschädigt vom Trennmaterial 3 abgezogen und mit sauberer Schnittkante auf einen Untergrund aufgeklebt werden.

5 Die Abbildungen 5a und 5b zeigt das Verhalten nach dem Schneidevorgang für doppelseitige Klebebänder (Aufgebaut aus Haftkleberschicht 21 bzw. 22, Träger 5 (Folie, Vlies oder dergleichen), Haftkleberschicht 21 bzw. 22, antiadhäsivem Trennmaterial 3). Abbildung 5a zeigt den Fall nicht anisotroper Haftklebemasse 21 auf einer Trennschicht 3: Nach dem Schneidevorgang (Position 4) fließt die Klebemasse 21 zusammen (Ziffer 4).
10 Bei dem Abziehen des Stanzlings vom Trennmaterial 3 wird der Stanzling beschädigt.

Bei dem Abziehen des Stanzlings vom Trennmaterial 3 wird der Stanzling beschädigt. Abbildung 5b zeigt denselben Schneidevorgang bei Verwendung anisotroper Haftklebemassen 22: Nach dem Schnitt mit dem Messser 1 zieht sich die Haftklebemasse 22 entsprechend des Rückschrumpfes 7 zurück, ein Zusammenfließen der Haftklebemasse des Stanzlings und des umgebenden Materials wird verhindert.

Entsprechend zeigen die Abbildungen 6a und 6b den herkömmlichen (6a, nicht anisotrope Klebemasse 21, Zusammenfließen 4 nach dem Schneidevorgang) und den erfinderischen (6b, anisotrope Klebemasse 22, kein Zusammenfließen 7) Stanzvorgang für die Anstanzung von Transferklebebändern mit einseitiger Haftklebeschicht 21 bzw. 22. Befindet sich zwischen zwei Schichten Trennmaterial 6 eine Trennschicht 3, so kann der Stanzling nun abgehoben werden und besitzt unversehrte Ränder. Die Abbildungen 7a und 7b zeigen demgemäß die Anstanzung von doppelseitigen Klebebändern auf Trennmaterial 3. (Abbildung 7a: nicht anisotrope Haftklebemasse 21, fließt nach dem Anstanzen wieder zusammen 4; Abbildung 7b, anisotrope Haftklebmasse 22, kein Zusammenfließen nach der Stanzung (Rückschrumpf 7), Schnitt bleibt erhalten).

25

30

35

20

15

Die Rückstellung ist besonders ausgeprägt in Verstreckungsrichtung (MD). Vorteilhafterweise werden Schnitte daher derart angebracht, daß der Winkel zwischen der Verstreckungsrichtung und dem Schnitt in einem Winkelbereich zwischen 0° (paralleler Verlauf) und 90° möglichst groß gewählt wird, wobei der Winkel bevorzugt 90° beträgt, der Schnitt also senkrecht zur Verstreckungsrichtung (somit in Querrichtung, CD) verläuft. Auch bei Schnitten in Verstreckungsrichtung kann aber ein deutlich reduziertes Fließverhalten, verglichen mit nicht anisotropen Haftklebemassen, festgestellt werden.

Das Rückstellverhalten der Haftklebeschicht bei Ein- oder Durchschnitten kann bei einseitig oder doppelseitig beschichteten Trägermaterialien auch über die Verankerung der

26

Haftklebeschicht auf dem Trägermaterial gezielt beeinflußt werden. Mit einer Coronaoder Flammvorbehandlung konnte auf BOPP- und PET-Trägerfolien eine deutliche Reduktion des Rückschrumpfes erreicht werden.

Entscheidende Parameter bei der Einstellung des Rückschrumpfverhaltens sind die Prozeßbedingungen der Extrusion. Hierzu zählen besonders die Temperatur der Beschichtungswalze, die Temperatur der Haftklebmassse während der Verarbeitung, die Zeit bis zur Vernetzung, das Verstreckungsverhältnis bei der Beschichtung und die Beschichtungsgeschwindigkeit.

5

10

Das Rückstellverhalten der Haftklebeschicht konnte sowohl bei harzfreien Acrylathotmelts wie auch bei harzabgemischten Acrylathotmelts beobachtet werden. Die Erfindung
ist insbesondere für harzabgemischte Acrylathotmelts bedeutend, da diese Systeme aufgrund ihrer inhärenten geringeren Viskosität, im Vergleich zu Reinacrylaten, ein deutlich
ausgeprägteres Fließverhalten aufweisen als Reinacrylate.

Auf diese Art lassen sich die positiven Eigenschaften von Hotmelthaftklebmassen für die Verwendung in Stanzprodukten nutzen, ohne daß sich das stärkere Fließverhalten nachteilig auf den Stanzvorgang oder die hergestellten Stanzprodukte auswirkt.

27

Patentansprüche

1. Verwendung einer Haftklebemasse, welche anisotrope Eigenschaften besitzt, für die Herstellung von Stanzprodukten.

5

- 2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß die Haftklebemasse ein- oder beidseitig auf ein Trägermaterial aufgetragen ist.
- 3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß10 die Haftklebemasse
 - durch eine radikalische Polymerisation erhältlich ist,
 - zu mindestens 65 Gew.-% auf zumindest einem acrylischen Monomer aus der Gruppe der Verbindungen der folgenden allgemeinen Formel basiert;

$$Q$$
 Q
 R_2

15

wobei R_1 = H oder CH_3 ist und der Rest R_2 = H oder CH_3 ist oder gewählt wird aus der Gruppe der verzweigten oder unverzweigten, gesättigten Alkylgruppen mit 2 bis 20, bevorzugt mit 4 bis 9 Kohlenstoffatomen,

das mittlere Molekulargewicht der Haftklebemasse mindestens 650.000 beträgt,

• die auf einen Träger aufgetragene Haftklebemasse eine Vorzugsrichtung besitzt, wobei der in Vorzugsrichtung gemessene Brechungsindex n_{MD} größer ist als der in einer Richtung senkrecht zur Vorzugsrichtung gemessene Brechungsindex n_{CD} , und wobei die Differenz $\Delta n = n_{MD} - n_{CD}$ mindestens $1 \cdot 10^{-5}$ beträgt.

25

30

- 4. Verwendung nach zumindest einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
 - die Haftklebemasse zu bis zu 35 Gew.-% auf Comonomere in Form von Vinylverbindungen basiert, insbesondere auf eine oder mehrere Vinylverbindungen gewählt aus der folgenden Gruppe:

28

Vinylester, Vinylhalogenide, Vinylidenhalogenide, Nitrile ethylenisch ungesättigter Kohlenwasserstoffe.

5. Stanzprodukt aus einem ein- oder beidseitig mit einer anisotropen Haftklebemasse
beschichteten Trägermaterial.

Abbildung 1

Zug/Dehn-Diagramme

Detaildarstellungen aus Figur 1

Abbildung 4a

5/11

Abbildung 4b

Abbildung 5a

Abbildung 6b

Abbildung 7a

11 / 11

INTERNATIONAL SEARCH REPORT

In onal Application No PCT/EP 01/12168

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C09J7/02 C09J C09J133/08 C09J133/02 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C09J Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Ε WO 02 02709 A (HUSEMANN MARC ; TESA AG 1-5 (DE); BARGMANN RENKE (DE); ZOELLNER STEPHAN) 10 January 2002 (2002-01-10) claims 1,2,7 X WO 97 23577 A (MINNESOTA MINING & MFG 1,2,4,5 ;HYDE PATRICK D (US); WONG ROY (US); KRUEGE) 3 July 1997 (1997-07-03) claims 1,18 examples 1,2 US 5 866 249 A (HYDE PATRICK D ET AL) X 1,2,4,5 2 February 1999 (1999-02-02) claims 1-3 -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the investigation. "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 21 March 2002 04/04/2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Schlicke, B Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

In onal Application No
PCT/EP 01/12168

		_ 	/12100
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	DATABASE WPI Section Ch, Week 198935 Derwent Publications Ltd., London, GB; Class A14, AN 1989-253446 XP002193748 & JP 01 185383 A (NITTO DENKO CORP), 24 July 1989 (1989-07-24) abstract		1,2,5
A	DE 33 18 600 A (BEIERSDORF AG) 22 December 1983 (1983-12-22) example 1		1-5

INTERNATIONAL SEARCH REPORT

PCT/EP 01/12168

					1/21 01/12100
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0202709	A	10-01-2002	DE	10034069 A	1 07-02-2002
0202, 03	,,	10 01 1001	WO	0202709 A	
WO 9723577	A	03-07-1997	AU	705376 B2	2 20-05-1999
			ΑU	6898596 A	17-07-1997
			BR	9612254 A	13-07-1999
			CA	2241032 A	
			EP	0868498 A	
			JP	2000502385 T	29-02-2000
			NZ	316689 A	29-04-1999
			MO	9723577 A	
			US	6063838 A	16-05-2000
			AU	4655896 A	04-09-1996
			BR	9607254 A	30-12-1997
			CA	2213243 A	
			CN	1174564 A	25-02-1998
			EP	0809681 A	
			JP	11501956 T	16-02-1999
			NO	973688 A	14-10-1997
			WO	9625469 A	l 22-08-1996
US 5866249	Α	02-02-1999	AU	709567 B2	2 02-09-1999
			ΑU	7611896 A	14-07-1997
			BR	9612027 A	29-06-1999
			CA	2238617 A	
			EP	0868494 A:	
			JP	2000502379 T	29-02-2000
			MO	9722675 A	
			US	5858150 A	12-01-1999
JP 1185383	Α	24-07-1989	JP	2663129 B2	2 15-10-1997
DE 3318600	Α	22-12-1983	DE	3318600 A	1 22-12-1983

INTERNATIONALER RECHERCHENBERICHT

ionales Aktenzeichen
PCT/EP 01/12168

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 C09J7/02 C09J133/08 C09J133/02 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C09J Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiele fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl., verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Ε WO 02 02709 A (HUSEMANN MARC ; TESA AG 1-5 (DE); BARGMANN RENKE (DE); ZOELLNER STEPHAN) 10. Januar 2002 (2002-01-10) Ansprüche 1,2,7 χ WO 97 23577 A (MINNESOTA MINING & MFG 1,2,4,5 ;HYDE PATRICK D (US); WONG ROY (US); KRUEGE) 3. Juli 1997 (1997-07-03) Ansprüche 1,18 Beispiele 1,2 χ US 5 866 249 A (HYDE PATRICK D ET AL) 1,2,4,5 2. Februar 1999 (1999-02-02) Ansprüche 1-3 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie ° Besondere Kategorien von angegebenen Veröffentlichungen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 21. März 2002 04/04/2002 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Schlicke, B

INTERNATIONALER RECHERCHENBERICHT

Ir lonales Aktenzeichen
PCT/EP 01/12168

	ING) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie®	Bezelchnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teite	Betr. Anspruch Nr.
Х	DATABASE WPI Section Ch, Week 198935 Derwent Publications Ltd., London, GB; Class A14, AN 1989-253446 XP002193748 & JP 01 185383 A (NITTO DENKO CORP), 24. Juli 1989 (1989-07-24) Zusammenfassung	1,2,5
A	DE 33 18 600 A (BEIERSDORF AG) 22. Dezember 1983 (1983-12-22) Beispiel 1	1-5

INTERNATIONALER RECHERCHENBERICHT

In onales Aktenzeichen
PCT/EP 01/12168

						/	
Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
MO	0202709	Α	10-01-2002	DE	10034069	A1	07-02-2002
	0202,05		20 01 2002	WO	0202709		10-01-2002
WO	9723577	Α	03-07-1997	ΑU	705376	B2	20-05-1999
				ΑU	6898596	Α	17-07-1997
				BR	9612254	Α	13-07-1999
				CA	2241032		03-07-1997
				EP	0868498		07-10-1998
				JP	2000502385		29-02-2000
				NZ	316689		29-04-1999
				WO	9723577		03-07-1997
				US	6063838		16-05-2000
				AU	4655896		04-09-1996
				BR	9607254		30-12-1997
				CA	2213243		22~08-1996
				CN	1174564		25-02-1998
				EP	0809681		03-12-1997
				JP	11501956		16-02-1999
				NO WO	973688 9625469		14~10~1997
		·	جہ ہے سے سے سے سے سے کہ جہ سے سے	WU	9025409		22-08-1996
US	5866249	Α	02-02-1999	AU	709567	В2	02-09-1999
				ΑU	7611896	Α	14-07-1997
				BR	9612027		29-06-1999
				CA	2238617		26-06-1997
				EP	0868494		07-10-1998
				JP		T	29-02-2000
				WO	9722675		26-06-1997
				US	5858150	Α	12-01-1999
JP	1185383	A	24-07-1989	JP	2663129	B2	15-10-1997
DE	3318600	 А	22-12-1983	DE	3318600	A1	22-12-1983