Public Key Cryptography and RSA

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- shared by both sender and receiver
- if this key is disclosed communications are compromised
- also is symmetric, parties are equal
- hence does not protect sender from receiver forging a message & claiming is sent by sender

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public & a private key
- asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key crypto

Why Public-Key Cryptography?

- developed to address two key issues:
 - key distribution how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976
 - known earlier in classified community

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a related private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- infeasible to determine private key from public
- is asymmetric because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography

Symmetric vs Public-Key

Public-Key Encryption
Needed to Work:
One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.
The sender and receiver must each have one of the matched pair of keys (not the
same one).
Needed for Security:
 One of the two keys must be kept secret.
It must be impossible or at least impractical to decipher a message if no
other information is available.
 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other

Public-Key Cryptosystems

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Public-Key Requirements

- Public-Key algorithms rely on two keys where:
 - it is computationally infeasible to find decryption key knowing only algorithm & encryption key
 - it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption,
 with the other used for decryption (for some algorithms)
- these are formidable requirements which only a few algorithms have satisfied

Public-Key Requirements

- need a trapdoor one-way function
- one-way function has
 - □ Y = f(X) easy
 - $\supset X = f^{-1}(Y)$ infeasible
- a trap-door one-way function has
 - \neg Y = f_k(X) easy, if k and X are known
 - $= X = f_k^{-1}(Y)$ easy, if k and Y are known
 - $= X = f_k^{-1}(Y)$ infeasible, if Y known but k not known
- a practical public-key scheme depends on a suitable trap-door one-way function

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, but is made hard enough to be impractical to break
- requires the use of very large numbers
- hence is slow compared to private key schemes