Chapter 6 Understanding Process Conditions

Chemical Engineering Department West Virginia University

Heuristics

Temperature

< 40°C	> 250°C	> 400°C
Require	Require	Special
Refrigeration	Fired Heater	M.O.C

Pressure

< 1 atm	> 10 atm
need Vacuum	Thick Walls - \$

- $T < 40^{\circ} C Refrigeration$
 - Use as much cooling water as Possible

- Operating Costs (Table 8.3)
 - Cooling Water (30-40°C) \$0.354/GJ
 - Refrigerated Water (5-15°C) \$4.43/GJ

Copyright - R.Turton and J. Shaeiwitz 2012

- $T > 250^{\circ}\text{C} \text{hp steam} @ 260^{\circ}\text{C} (600 \text{ psig})$
 - Need a molten salt / Dowtherm loop
 - Fired Heaters are very expensive
 - Compare vaporizer

$$Q = 10,000 \text{ kW}$$

 $U = 1000 \text{ W/m}^2 \text{K}$
 $\Delta T = 30^{\circ} C$
 $A = \frac{(10 \times 10^6)}{(10^3 \times 30)} = 333 \text{ m}^2$

- $-C_{BM}$
 - Heat Exchanger = $$1.70x10^5$
 - Fired Heater = $$1.81 \times 10^6$
- $T > 400^{\circ}$ C
 - M.O.C. is very Important

Why not use High-Pressure Steam?

P _{sat} (bar)		T _{sat} (°C)
15.2		200
39.7		250
46.9		260
64.2		280
86.0		300
74.5		290
80.1		295
98.8		310
113.0 320		320

Graph of Saturated Steam vs. Pressure

Why not use High-Pressure Steam?

Pressure

- Vacuum
 - Slightly Higher Cost due to Stiffening Rings
 - Large Equipment
 - Air Leaks
- High Pressure
 - Thick Walls \$
 - H₂ Embrittlement
 - Safety

Minimum Wall Thickness

$$t = \frac{PR}{SE - 0.6P} + CA$$

Wall thickness, t = m, design pressure, P = bar, vessel radius, R = m

S = Design Stress (Max Allowable Working Pressure, bar) this is a function of material and temperature

 $E = \text{Weld Efficiency}(\sim 0.9)$

CA = Corrosion Allowance (0.00315 to 0.00625 m)

Minimum Wall Thickness

Look at 36 inch Diameter Vessel with a CA of ¼ in made of CS with S = 13,700 psi

<u> </u>	<u>t (m)</u>	t /CA
14.7 = 1 barg	0.0069	1.09
58.8 = 4 barg	0.0085	1.34
147 = 10 barg	0.0118	1.86

• As *P* > 10 then *t* >*CA*

What About S vs. T?

- Look at Several Steels in Graph
- For CS $S \downarrow as T > 400$ °C
- Must use Stainless Steel and \$1
- For a given Pressure

$$-t \mid as T \mid$$

Figure 5.5: Maximum Allowable Stresses for Materials of Construction as a Function of Operating Temperature (Data from Perry et al. [3], Chapter 10 and Ref [15])

Material of Construction

1 m Diameter Vessel made of SA285 - Grade A Carbon Steel

Material of Construction

- Carbon Steel
 - Cheap
- Stainless Steel
 - Expensive
 - Better Chemical/Thermal Resistance
- What About $T = 700-900^{\circ}$ C?
 - Insulate inside of Pipe
 - Metal Refraction Lining

Conclusions

- $T < 40^{\circ}C Refrigeration$
- $T > 250^{\circ}\text{C}$ Fired Heater or Furnace
- $T > 400^{\circ}C M.O.C.$ Issues
- P < 1 atm Vacuum and Large Equipment
- P > 10 atm Cost

Operating Conditions

Do we ever operate outside these limits?

- Tables 6.1 6.3
 - Reactors and Separators
- Table 6.4
 - Other Equipment

Examples

- Example 1 Acrylic Acid
 - Appendix B.9
 - Why does T-305 Operate with the top pressure at 0.07 bar?
 - Feed 86.6 kmol/h Acrylic Acid nbp =140°C
 - 6.1 kmol/h Acetic Acid nbp = 118°C

Table 6.2 – Reasons for using P < 1 atm

- 1. Obtain a gas phase for VLE
- 2. Temperature sensitive materials

Examples

- Example 2 Separation of Propane
 - Typical depropanizer operates at 220 psig (16 bar)
 - why?
 - Table 6.2 reasons for using P > 10 bar
 - 1. Obtain a liquid phase for VLE