Activity 2

Problem 1:

a)
$$T(n) = T(n-2) + C$$

b)
$$T(n) = T(n-2) + C$$

 $= T(n-4) + C + C$
 $= T(n-6) + C + C + C$
 $= \frac{1}{T}(n-2K) + KC$
Stop when $K = n/2$
 $T(n) = T(0) + \frac{n}{2} \cdot C$
 $T(n) = \frac{cn}{2} = \Theta(n)$

Problem 2:

Solve using the Master theorem

Solve using the Master theorem

b)
$$a=2$$
, $b=4$ $f(n)=cn^2$
 $10g_ba=10g_42=\frac{1}{2}$
 $f(n)=\Omega(n^2)$
 $T(n)=\Theta(n^2)$

Problem 3

Activity 2

a)
$$T_0(n) = 3T_0(\frac{\pi}{2}) + c\eta/4$$

Solve using Master theorem
b) $\alpha = 3$, $b = 2$, $f(n) = \frac{c\eta}{4}$
 $\log_2 3 = \log_3 3$
 $f(n) = O(n^{\log_3})$
 $T_0(n) = O(n^{\log_3})$
 $T_0(n) = O(n^{\log_3})$

Extra Credit
$$T_c(n) = 2T_c(\frac{n}{2}) + \Theta(n^{1/2})$$

Solve using Master theorem
$$\alpha = 2, b = 2 \frac{\log_2 z}{\log_2 z} = 1$$

$$f(n) = \Omega(n')$$

1.
$$T(n) = G(n^{193})$$