\mathbf{Index}

A Al II G	11 04
Abelian Groups	vol.1: p.24
Adjoint Operators	vol.1: pp.43 - 44,87,103
	vol.3: pp.134 - 135
Adjugate Matrix	vol.2: pp.120 - 121
Affine Spaces	vol.1: p.93
Algebraic Lyapunov Equation	vol.4: pp.80 - 82
Asymptotically Stable	vol.2:p.76
	vol.3: pp.82 - 84
	vol.4: pp.7, 61-62, 67-69, 75
Attracting Fixed Point	vol.2:p.76
	vol.3: pp.83 - 84
Attractiveness	vol.3:p.83
	vol.4:pp.61,99
Autonomous Systems	vol.1:p.7
B	
Basin Boundary	vol.2:p.89
Basin of Attraction	vol.2:p.89
Basis	vol.2: pp.125 - 127
Bendixson's Theorem	vol.4: pp.25-29
Bifurcation	vol.1: pp.11 - 12, 63 - 64
	vol.4: pp.12 - 13
Bifurcation (Fold)	vol.4: pp.12-13, 57
Bifurcation (Transcritical)	vol.4:pp.12-15
Bifurcation Diagram	vol.4: pp.12, 15-17
Body Velocity	vol.1:p.38
C	
Carrying Capacity	vol.4:p.9
Causal Systems	vol.2:p.152
	vol.3:pp.3-4
Cayley Hamilton Theorem	vol.2: pp.139 - 140
	vol.3: pp.121 - 122
Center Manifold Theory	vol.4: pp.39 - 45
Centers (Equilibrium Point)	vol.4:pp.22,26
Centroid of Area	vol.1: pp.4 - 6
Characteristic Equation	vol.2: pp.77, 138 - 139
•	vol.3:p.37
	vol.4:p.34
Class K (Comparison Functions)	vol.4: pp.93 - 97, 102 - 112
Class K L (Comparison Functions)	vol.4: pp.93 - 97, 102 - 112
Class K_{∞} (Comparison Functions)	vol.4: pp.93 - 96, 105
Column Space	vol.2: pp.133 - 134
Comparison Function	vol.4: pp.93 - 96, 102 - 103
Complex Conjugate Transpose	vol.3: pp.40 - 44
Condition Number (Of a Matrix)	vol.3: pp.40 - 44 vol.3: pp.61 - 62
Condition (of a main)	0000 · pp.01 02

Connection Vector Field	vol.1: pp.118 - 119
Conservative System	vol.2: pp.89 - 91, 103
Conservative Vector Fields	vol.1: pp.145 - 146
Conserved Quantity	vol.2: p.90
Constraint, Holonomic	vol.1: pp.76 - 77
Constraint, Nonholonomic	vol.1: pp.110 - 117, 135 - 136
Continuity w.r.t. Initial Conditions	vol.4: pp.53 - 55
Continuity w.r.t. Parameters	vol.4: pp.54 - 55
Continuously Differentiable	vol.4: pp.48 - 52
Contour	vol.2: pp.91 - 92
Controllability	vol.3: p.132
Controllability Gramian	vol.3: p.135
	vol.4: p.80
Convolution	vol.3: pp.2-4
Convolution (Discrete)	vol.3: pp.14, 17
Coordinate Transformation Matrix	vol.2: pp.128 - 129
	vol.4: pp.18, 20-41
Coordinate Vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51 - 54
Corank	vol.2: pp.51 - 54
Cotangent Bundle	vol.1:p.126
Cotangent Space	vol.1:p.126
Cotangent Vector	vol.1: pp.127 - 130
Cramer's Rule	vol.2: p.121
Cross Product	vol.1: pp.1-2
Curl (Vector)	vol.1:p.145
Curvature (Constraint)	vol.1: pp.144 - 145
D	
Dead Zone Nonlinearity	vol.2: p.151
Deficient Matrix	vol.2: pp.140 - 141
Degenerate Matrix	vol.2: p.139
Degrees of Freedom	vol.1:p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonal Coordinate Form	vol.3: pp.38 - 46
Diagonalization	vol.2: pp.142 - 144
	vol.3:p.46
	vol.4:p.79
Diffeomorphic	vol.1: p.20
Differentiable	vol.4: pp.51 - 52
Differential Algebraic Equations	vol.2: pp.41 - 44,47 - 48
Differential Algebraic Equations, Differentiation Index	vol.2: pp.47 - 48
Differential Algebraic Equations, Model Consistency	vol.2:p.44
Differential Algebraic Equations, Regularity	vol.2:p.45
Differential Algebraic Equations, Solution	vol.2:p.44
Differential Lyapunov Equation	vol.4: pp.121 - 122, 128
Dimension (Of a Vector Space)	vol.2: pp.125 - 126

Direct Product of Two Sets	vol.1:p.20
Direct Sum	vol.1:p.20
Direct Sum of Two Sets	vol.1:p.125
Directional Linearity	vol.1: p.106
Distribution (Allowable Velocities)	vol.1: p.100 vol.1: pp.112, 148 - 150
· · · · · · · · · · · · · · · · · · ·	
Divergence	vol.4: pp.25 - 29
Dot Product	vol.2: pp.134 - 135
	vol.3: p.41
E	_
Eigenspace	vol.2: p.140
Eigenvalue	vol.2: pp.77, 138 - 145
	vol.3: pp.36 - 45, 56 - 59
Eigenvector	vol.2: pp.76 - 77, 138 - 145
	vol.3: pp.36 - 45
Eigenvector (Left)	vol.3:pp.50-51
Elementary Row Operators	vol.2:p.107
Embedding	vol.1:p.96
Equilibrium Point	vol.3: pp.1, 5-10, 79-84
	vol.4:pp.3-4
Equivalent Vectors w.r.t. Functions	vol.1: pp.100 - 101
Estimation of Constant Parameters	vol.4: pp.130 - 149
Euler Lagrange Equation	vol.1: p.136
Existence And Uniqueness Theorem	vol.1: p.150 vol.1: pp.11, 13
Existence And Uniqueness Theorem	vol.2: p.82
E-martial Mar	vol.4: pp.46 - 52, 91
Exponential Map	vol.1: pp.48 - 51, 103 - 104
External Forces	vol.1:p.1
F	1.4
Finite Escape Time	vol.4: pp.9 - 10
Focus Node	vol.4: pp.22, 33
Fold Bifurcation	vol.4: pp.12 - 13,57
Force Couple	vol.1:p.2
Force Couple System	vol.1:p.3
Forward Euler Integration	vol.2: p.148
Forward Kinematics	vol.1: pp.78, 83 - 84
Frequency Response	vol.3:pp.98,105
Frobenius Norm	vol.3: pp.62, 102-117
Fundamental Vector Field (Infinitesimal Generators)	vol.1: pp.99 - 100
G	
Gait Generation	vol.1:p.124
Gaussian Elimination	vol.2:p.104
Generalized Coordinates	vol.1:p.78
Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
Geometric Series	vol.4: p.92
Globally Asymptotically Stable	vol.4: p.92 vol.3: p.93
Globally Tayinprotically beadle	vol.4: pp.62, 67
Gradient Vector Field	
Gradient vector ried	vol.1: pp.129 - 130

	10 107
Gram Schmidt Orthogonality Procedure	vol.2: p.137
Green's Theorem	vol.4: pp.25 - 27
Group	vol.1: pp.21, 94 - 95
Group Invariant Vectors	vol.1: p.100
Group, Left/right Action	vol.1: pp.24 - 29, 33, 80, 96, 137
Group, Symmetry	vol.1: pp.108 - 109, 137
H	
H_{∞} Norm	vol.3: pp.108 - 119
Hartman Grobman Theorem	vol.4: pp.23 - 24
Hermitian Matrix	vol.3: p.107
Heteroclinic Trajectory	vol.2:p.94
Holonomic Constraint	vol.1: pp.76-77
Homeomorphic	vol.1:p.19
	vol.2:p.88
	vol.4:p.23
Homogeneity	vol.3:p.1
Homogeneous Equations	vol.2:p.105
Hopf Bifurcation	vol.4: pp.35 - 38
Huber Function	vol.4:p.71
Hurwitz Matrix	vol.3: pp.94 - 96
	vol.4: pp.81 - 82
Hyperbolic Equilibrium Point	vol.4: pp.22 - 24
Hyperbolic Fixed Point	vol.2: pp.87 - 88
Hysteresis	vol.1: pp.66, 70 - 71
11,50010515	vol.2 : p.42
I	000.2 . p. 12
Idempotent	vol.2:p.37
Image (Algebra)	vol.1:p.124
Impulse Response	vol.3: pp.19 - 20, 29 - 30, 36
Index Theory	vol.2: pp.98 - 101
Index Theory	vol.4: p.35
Induced Norm	vol.3: pp.103 - 104
Infinity Norm	vol.3: pp.100 - 101
immity Norm	vol.4: p.61
Inner Product	vol.4 : p.01 vol.2 : pp.134 - 135
illier Froduct	
Internal Forms	vol.3 : p.41
Internal Forces	vol.1: p.1
Intersection (Spaces)	vol.2: pp.130 - 131
Invariance	vol.1: p.139
Invariant Manifold	vol.4: pp.42 - 45
Invariant Set	vol.4: pp.74-77
Isocline	vol.2:pp.74,84
Isomorphic	vol.1:p.22
J	
Jacobi Liouville Formula	vol.3:p.27
Jacobian	vol.1:pp.84-86
	vol.2:p.85

	vol.4: pp.56-58
Jordan Blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K	
K Step Observability Matrix	vol.3: pp.138 - 139
Kalman Rank Test	vol.3:p.136
Kernel	vol.1: pp.124 - 125
Kinematic Locomotion	vol.1: pp.105 - 107
L	
L1 Norm	vol.3: pp.100 - 101
	vol.4:p.61
L2 Induced Gain of a System	vol.3:p.108
L2 Norm	vol.3: pp.100 - 101
	vol.4:p.61
La Salle's Invariance Principle	vol.4: pp.74 - 77,85 - 87
Lagrangian	vol.2:p.45
Lagrangian Multipliers	vol.2: pp.45-46
	vol.3:p.126
Laplace Transform	vol.2:p.147
	vol.3: pp.29 - 33
Level Sets	vol.4:pp.66-69
Liapunov Fixed Point	vol.2:p.76
Lie Algebra	vol.1: pp.41, 98 - 100, 103, 151 - 152
Lie Bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie Groups	vol.1: pp.21, 96 - 99
Lifted Actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Limit Cycle	vol.3:p.82
	vol.4: pp.10 - 12, 33 - 38
Linear Combination	vol.2:p.124
Linear Equations	vol.2:p.104
Linear Independence	vol.2: pp.124 - 125
Linear Time Invariance	vol.2:p.152
	vol.3: pp.8 - 9, 17
Linear Transformation	vol.2: pp.131 - 133
Linearity	vol.3:p.15
Linearity (Mapping)	vol.1: pp.106 - 107
Linearity (Systems)	vol.2:p.152
	vol.3:p.1
Linearization at a Fixed Point	vol.1: pp.10 - 11
	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
	vol.4: pp.5 - 8, 23 - 24, 88
Lipschitz Continuous Function	vol.4: pp.49 - 55, 91
Local Connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locally Asymptotically Stable	vol.4: pp.61 - 62, 67 - 69
Locintia	vol.1: p.104
Logistic Equation	vol.4: p.9

T Att	
Lorenz Attractor	vol.4: p.12
Lotka Volterra Model of Competition	vol.2: p.88
Lyapunov Functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
I reason or Ctability	vol.4: pp.65 - 87
Lyapunov Stability M	vol.4: pp.59 - 69, 106 - 121
Manifolds	vol.1: pp.17-19,93
Manifolds, Accessible	vol.1: pp.76 - 78
Manifolds, C^k Differentiable	
Mannolds, C. Differentiable	$vol.1: p.20 \\ vol.4: pp.48 - 52$
Manifolds, Curvature	vol.4 : pp.46 - 32 vol.1 : p.93
Manifolds, Stable	vol.2 : p.89
Manifolds, Topology	vol.1: p.93
Marginally Stable	vol.3: pp.53, 56
Markov Parameters	vol.3 : p.20
Matrix Cofactor	vol.2: pp.111, 118 - 120
Matrix Determinant	vol.2: pp.115, 110 $vol.2: pp.115 - 119$
Matrix Exponentiation	vol.3: pp.26 - 27,36
Matrix Inverse	vol.2: pp.110 - 115
Matrix Minor	vol.2: p.111
Matrix Operations	vol.2: p.111
Matthew Equation	vol.3: p.27
Memoryless Systems	vol.2: p.152
	vol.3: p.4
Metzler Matrix	vol.4: p.31
Minimum Energy Input	vol.3: pp.127 - 129, 133 - 136
Modal Contributions of Initial Conditions	vol.3: pp.41 - 45, 51
Modal Decomposition	vol.3: pp.35 - 45, 51
Model Consistency	vol.2:p.44
Model Uncertainty	vol.3: pp.109 - 115
Modular Addition	vol.1:p.21
Momentum	vol.1: pp.138 - 140
Monotonic Function	vol.1:p.13
Multiplicative Calculus	vol.1: pp.34 - 38, 46 - 47
N	
Negative Semidefinite Function	vol.4:pp.67,74
Negative Semidefinite Matrix	vol.3:p.93
Nesterov Acceleration	vol.4:p.98
Neumann Series	vol.3:p.22
Neutrally Stable	vol.2:p.76
Nilpotent Matrix	vol.3:p.35
Node	vol.4:pp.21,33
Noether's Theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1:p.147
Nonconservativity	vol.1: pp.145 - 147
Nonholonomic Constraint	vol.1: pp.110 - 117, 135 - 136
Normal Matrix	vol.3: pp.36 - 46

Null	lcline	vol.2:p.84
Null	lity	vol.2:p.134
Null	Ispace	vol.2: pp.132 - 134
O	•	••
	ervability	vol.3: pp.136 - 139
Obb	or validities	vol.4: pp.86 - 87, 127, 130, 138 - 141
Ol	1:1:4 C:	
	ervability Gramian	vol.4: pp.80, 129
Obse	erver Based Controller	vol.3: pp.148 - 149
	_	vol.4: pp.135 - 136
	Form	vol.1: pp.125, 127 - 129
Opti	imal Frame	vol.1:p.83
Orth	hogonal Compliment	vol.2: pp.137 - 138
Orth	hogonal Set	vol.2:p.135
Orth	honormal	vol.2: pp.135 - 136
Orth	honormal Basis	vol.2:p.136
Oute	er Product	vol.2:p.136
Out	put Feedback Design	vol.3:p.147
	rdetermined System	vol.2:pp.19,41
P		· · · · · · · · · · · · · · · · · · ·
P No	orm	vol.3: pp.100 - 102
1 11	Offi	vol.4: p.61
Dore	allel Linkage Mechanisms	vol.3: pp.59 - 60
	Test	
		vol.3 : p.136
	dulum	vol.4: pp.7 - 8, 63 - 64, 72 - 77
	odic Orbits	vol.4: pp.25 - 34
	fian Constraint	vol.1: pp.111 - 117
	se (Angle)	vol.2:p.61
	se Coordinate Form	vol.3:p.6
Phas	se Drift	vol.2:p.68
Phas	se Lock	vol.2:p.67
Phas	se Portrait	vol.1: pp.7 - 9
		vol.2:pp.74,83
		vol.3:p.35
		vol.4: pp.5, 17-19
Pitc	hfork Bifurcation	vol.4: pp.12, 15-17
Poin	ncare Bendixson Criterion	vol.4: pp.32 - 34
Pole	es (Transfer Function)	vol.2: p.147
		vol.3: pp.58 - 59
Posi	ition Trajectory	vol.1: p.105
	itive Definite Function	vol.4: pp.65 - 66
	itive Definite Matrix	vol.3 : p.87
1 031	OTO DOMINO MARIA	vol.4: pp.78 - 79
Dac:	itivo Inverient Set	
	itive Invariant Set	vol.4: pp.21, 29 - 34, 69
	itive Semidefinite Matrix	vol.3 : p.125
	itive System	vol.4: p.31
	entials	vol.1: p.17
Pow	er Spectral Density	vol.3: pp.116 - 119

Predator/prey Model	vol.4: pp.30 - 31
Preimage (Algebra)	vol.1:p.124
Principally Kinematic System	vol.1:p.139
Principle Minors	vol.3:p.88
Principle of Least Action	vol.1: pp.131 - 133
Projection Operator	vol.2:p.37
Q	550. <u>2</u> 1 p.51
	vol.3: pp.125 - 126
Quadratic Programming	voi.5: pp.125 - 120
	19 00
Radially Unbounded	vol.3:p.89
	vol.4: pp.67 - 68, 105 - 107
Range (Matrix)	vol.2: pp.132 - 133
Range of Entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reachability	vol.3: pp.120 - 126, 130, 132
Reachability Gramian	vol.3: pp.124 - 129, 133 - 135
Reaction Force	vol.1:p.4
Realization Theory	vol.2: p.149
Reconstruction Equation	vol.1: pp.114 - 123, 138
Region of Attraction	vol.4: pp.15, 92 - 93
Regular Control Problem	vol.2: p.45
Resolvent	vol.3: pp.17 - 18, 30, 36
Resonance	vol.3:p.50
Reversible System	vol.2: pp.92 - 95
Rigid Body	vol.1:p.23
Rigid Body, Left Lifted Action	vol.1: pp.38-41
Rigid Body, Right Lifted Action	vol.1: pp.41 - 43
Routh Hurwitz Criterion	vol.3: pp.77 - 80
	vol.4: pp.34, 83
Row Echelon Form	vol.2: p.107
Row Space	vol.2: p.134
Runge Kutta Method	vol.2:p.83
	10 04
Saddle Connection	vol.2:p.94
Saddle Node	vol.4: pp.19 - 21
Sector Bounded Nonlinearities	vol.4:p.72
Semidirect Product of Two Sets	vol.1:p.24
Sensitivity Function	vol.4:pp.55-58
Separatrix	vol.2:p.89
Shape Trajectory	vol.1:p.105
Shift Operator	vol.3: pp.1 - 2
Signal Norms	vol.3: pp.96 - 104
Similar Matrices	vol.2: p.142
Singular Matrix	vol.2: pp.41 - 42, 51, 110, 122
Singular Value Decomposition	vol.3: pp.104 - 110, 128 - 129
Singular Vectors	vol.3: p.106
Sink Node	vol.4:pp.19,21

	10 100 114
Small Gain Theorem	vol.3: pp.109 - 114
Solution, Differential Algebraic Equations	vol.2:p.44
Source Node	vol.4:pp.19,21
Span	vol.2: pp.124 - 125
Spatial Velocity	vol.1:pp.43,85
Special Euclidean Group	vol.1: p.23
	vol.2: pp.1-2
Special Orthogonal Group, $so(N)$	vol.1:p.22
	vol.2: pp.1-2
Stability	vol.3: pp.80 - 84
	vol.4: pp.5, 98 - 103
Stability Via Linearization	vol.4: pp.88 - 90
Stabilizable	vol.3: pp.141 - 143, 149
Stable	vol.2:p.76
	vol.3: pp.53 - 59, 91 - 94
	vol.4: p.5
State Estimator Controller	vol.3: pp.144 - 147
State Feedback Controller	vol.3: pp.144 - 144 vol.3: pp.140 - 144
State Space Model	vol.2: pp.147 - 150
State Space Moder	
Chata Thanaitian Matrica	vol.3: p.5
State Transition Matrix	vol.3: pp.11 - 13
	vol.4: pp.105 - 106, 121 - 123
State Vector	vol.2: pp.147 - 149
a	vol.3:p.5
Strain Energy	vol.2:pp.5-7
Structural Stability	vol.2:p.88
Subcritical Hopf Bifurcation	vol.4: pp.37 - 38
Subcritical Pitchfork Bifurcation	vol.4:p.17
Subspace	vol.2: pp.129 - 130
Sum (Spaces)	vol.2: pp.130 - 131
Supercritical Hopf Bifurcation	vol.4: pp.35 - 37
Supercritical Pitchfork Bifurcation	vol.4:pp.15-16
Superposition	vol.3:pp.1,13
Supremum	vol.3:p.98
Symmetric Matrix	vol.2:p.144
	vol.3: pp.86 - 96
	vol.4:p.78
Symmetry	vol.1: pp.108 - 109, 131
System Norms	vol.3: pp.99 - 120
T	
Tangent Spaces	vol.1: pp.29 - 30
Taylor Series Expansion	vol.3: pp.7 - 8
Taylor borlos Elipanolor	vol.4: pp.6, 39 - 40, 44 - 45
Tensor Product	vol.1: p.20
Time Invariance	vol.2: p.152
THIC HIVEHENCE	vol.2: p.132 vol.3: pp.1-4
Time Reversal Symmetry	vol.3 : pp.1 - 4 vol.2 : pp.92 - 93
Time Reversal Symmetry	voi.2: pp.92 - 95

Toeplitx Matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Traction	vol.3: pp.60 - 61
Transcritical Bifurcation	vol.4: pp.12 - 15
Transfer Function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated Robotic Mechanisms	vol.3: pp.59 - 77
Underactuated System	vol.1:p.104
Underdetermined System	vol.2:pp.19,41
Uniform Observability	vol.4: pp.129 - 130, 138 - 143
Uniformly Asymptotically Stable	vol.4: pp.100 - 104, 107 - 116
Uniformly Exponentially Stable	vol.4: pp.103 - 104, 107, 116 - 123
Uniformly Stable	vol.4: pp.100 - 102, 104, 107 - 114
Unitary Diagonal Coordinate Transformation	vol.3: pp.38 - 43, 50
	vol.4:p.79
Unstable	vol.2:p.76
V	
Van Der Pol Oscillator	vol.4:pp.11-12
Variance Amplication	vol.3:p.117
Variations of Constants Formula	vol.3:pp.24,54
Varignon's Theorem	vol.1:p.1
Vector Field	vol.1: pp.30 - 31
	vol.2:p.74
Vector Mapping	vol.2:p.127
Vector Space	vol.2: pp.122 - 123
Vertical Space	vol.1:p.125
Virtual Work	vol.3: pp.63 - 64
W	
White in Time Gaussian Processes	vol.3: pp.115 - 119
Work (Mechanical)	vol.1:p.145
Z	
Z Transform	vol.3: pp.14-22
Zero Set	vol.1: pp.76, 110-111
Zeros (Transfer Function)	vol.2:p.147