2009.6.3 (担当:佐藤)

正弦 $\sin x$ の性質

- $\sin x$ の値は角度 x の変化にともなって単位円周上を反時計回りに運動する点 P の 縦軸の座標の値である.
 - -x が 0 から $\frac{\pi}{2}$ まで動くとき, $\sin x$ の値は増加 (0 から 1 へ)
 - -x が $\frac{\pi}{2}$ から π まで動くとき, $\sin x$ の値は減少(1 から 0 へ)
 - -x が π から $\frac{3\pi}{2}$ まで動くとき, $\sin x$ の値は減少(0 から -1 へ)
 - -x が $\frac{3\pi}{2}$ から 2π まで動くとき, $\sin x$ の値は増加(-1 から 0 へ)

以後,この増減を繰り返す $(\sin x)$ は周期 2π の周期関数).

- sin x の値は −1 から1までの範囲を動く.
- $\sin x = 0 \iff x = m\pi$ (m は整数)
- $\sin x = 1 \Longleftrightarrow x = \frac{\pi}{2} + 2m\pi$ (m は整数)
- $\sin x = -1 \iff x = -\frac{\pi}{2} + 2m\pi$ (m は整数)

以上のことを参考にすると、 $y = \sin x$ のグラフは以下のようになると考えられる.

問題 **1.** $y = \sin x$ と x 軸との交点の座標, $\sin x = \pm 1$ となるときの x の座標を上のグラフに書きなさい.

問題 2. $y = \cos x$ についても上と同様に性質を明らかにし、グラフの概形を描け、

問題 3. $f(x) = \sin(2x)$ について次の問いに答えよ.

- (1) f(x) = 0 を満たす x を求めよ.
- (2) f(x) = 1 を満たす x を求めよ.
- (3) f(x) = -1 を満たす x を求めよ.
- (4) y = f(x) のグラフの概形を描け.

2009.6.3 (担当:佐藤)

正接 $\tan x$ の性質

- $\tan x$ の値は角度 x の変化にともなって単位円周上を反時計回りに運動する点 P と 原点 O を通る直線の傾きに等しい.
 - -x が 0 から $\frac{\pi}{2}$ まで動くとき, $\tan x$ の値は 0 から増加していく. x が $\frac{\pi}{2}$ に近づくにつれて $\tan x$ の値はいくらでも大きくなる($+\infty$ に発散 まる)
 - $-\tan \frac{\pi}{2}$ の値は定まらない (定義できない).
 - -x が $\frac{\pi}{2}$ を過ぎた途端, $\tan x$ の値は $-\infty$ になってしまう.
 - -x が $\frac{\pi}{2}$ から π まで動くとき、 $\tan x$ の値は増加していき、0 に戻る.

以後, これを繰り返す $(\tan x)$ は周期 π の周期関数).

- $x = \frac{\pi}{2} + m\pi$ で $\tan x$ は定義できない.
- 上の定義できない点を除いて tan x は増加関数である.

以上を参考にすると、 $y = \tan x$ のグラフは次のようになると考えられる.

問題 **4.** $y = \tan x$ と x 軸との交点の座標, $\tan x$ の値が定義できない x の座標 (x 軸と破線の交点)を上のグラフに書き込め.