

Section 2.3

Section Summary

- Definition of a Function.
 - Domain, Codomain
 - Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling, Factorial
- Partial Functions (optional)

Definition: Let A and B be nonempty sets. A *function* f from A to B, denoted $f: A \to B$ is an assignment of each element of A to exactly one element of B. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Functions are sometimes called mappings or transformations.

- A function $f: A \to B$ can also be defined as a subset of $A \times B$ (a relation). This subset is restricted to be a relation where **no two elements of the relation have the same first element**.
- Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

and

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

$$\forall x, y_1, y_2[[(x, y_1) \in f \land (x, y_2) \in f] \to y_1 = y_2]$$

Given a function $f: A \to B$:

- We say f maps A to B or
 f is a mapping from A to B.
- A is called the **domain** of f.
- B is called the **codomain** of f.
- If f(a) = b,
 - then b is called the image of a under f.
 - a is called the preimage of b.
- The range of f is the set of all images of points in A under f. We denote it by f(A).
- Two functions are *equal* when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Representing Functions

- Functions may be specified in different ways:
 - An explicit statement of the assignment.

Students and grades example.

- A formula.

$$f(x) = x + 1$$

- A computer program.
 - A Java program that when given an integer *n*, produces the *n*th Fibonacci Number (covered in the next section and also in Chapter 5).

$$f(a) = ?$$
 Z

The image of d is? z

The domain of f is? A

The codomain of f is ? B

The preimage of y is? b

$$f(A) = ?$$

$${y,z}$$

The preimage(s) of z is (are)?

 ${a,c,d}$

Question on Functions and Sets

• If $f:A\to B$ and S is a subset of A, then

$$f(S) = \{f(s) | s \in S\}$$

Injections

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Surjections

Definition: A function f from A to B is called *onto* or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a surjection if it is onto.

Bijections

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

Showing that f is one-to-one or onto

Example 1: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Solution: Yes, f is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to $\{1,2,3,4\}$, f would not be onto.

Example 2: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

Solution: No, f is not onto because there is no integer x with $x^2 = -1$, for example.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the inverse of f, denoted f^{-1} , is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y No inverse exists unless f is a bijection. Why?

Inverse Functions

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^1 reverses the correspondence given by f, so $f^1(1) = c$, $f^1(2) = a$, and $f^1(3) = b$.

Example 2: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence so $f^{-1}(y) = y - 1$.

Example 3: Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?

Solution: The function f is not invertible because it is not one-to-one.

Composition

• **Definition**: Let $f: B \to C$, $g: A \to B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

Composition

Composition

Example 1: If
$$f(x)=x^2$$
 and $g(x)=2x+1$, then
$$f(g(x))=(2x+1)^2$$
 and
$$g(f(x))=2x^2+1$$

Composition Questions

Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the composition of g and f.

Solution: The composition *fog* is defined by

$$f \circ g(a) = f(g(a)) = f(b) = 2.$$

$$f \circ g(b) = f(g(b)) = f(c) = 1.$$

$$f \circ g(c) = f(g(c)) = f(a) = 3.$$

Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Composition Questions

Example 2: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of f and g, and also the composition of g and f?

Solution:

$$f \circ g(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7$$

 $g \circ f(x) = g(f(x)) = g(2x+3) = 3(2x+3) + 2 = 6x + 11$

Graphs of Functions

• Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Graph of
$$f(n) = 2n + 1$$
 from Z to Z

Graph of
$$f(x) = x^2$$
 from Z to Z

Some Important Functions

• The *floor* function, denoted

$$f(x) = \lfloor x \rfloor$$

is the largest integer less than or equal to x.

The ceiling function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x

Example:

$$\begin{bmatrix} 3.5 \end{bmatrix} = 4 \qquad \begin{bmatrix} 3.5 \end{bmatrix} = 3$$
$$\begin{bmatrix} -1.5 \end{bmatrix} = -1 \qquad |-1.5| = -2$$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Proving Properties of Functions

Example: Prove that x is a real number, then

$$[2x] = [x] + [x + 1/2]$$

Solution: Let $x = n + \varepsilon$, where *n* is an integer and $0 \le \varepsilon < 1$.

Case 1: $\varepsilon < \frac{1}{2}$

- $-2x=2n+2\varepsilon$ and |2x|=2n, since $0 \le 2\varepsilon < 1$.
- |x+1/2| = n, since $x + \frac{1}{2} = n + (\frac{1}{2} + \epsilon)$ and $0 \le \frac{1}{2} + \epsilon < 1$.
- Hence, |2x| = 2n and |x| + |x + 1/2| = n + n = 2n.

Case 2: $\epsilon \geq \frac{1}{2}$

- $2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$ and [2x] = 2n + 1, since $0 \le 2\varepsilon 1 < 1$.
- $[x+1/2] = [n+(1/2+\varepsilon)] = [n+1+(\varepsilon-1/2)] = n+1$ since $0 \le \varepsilon -1/2 < 1$.
- Hence, [2x] = 2n + 1 and [x] + [x + 1/2] = n + (n + 1) = 2n + 1.

Factorial Function

Definition: $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first n positive integers when n is a nonnegative integer.

$$f(n) = 1 \cdot 2 \cdots (n-1) \cdot n, \qquad f(0) = 0! = 1$$

Examples:

$$f(1) = 1! = 1$$

 $f(2) = 2! = 1 \cdot 2 = 2$
 $f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$

$$f(20) = 2,432,902,008,176,640,000.$$

Stirling's Formula:

$$n! \sim \sqrt{2\pi n} (n/e)^n$$
$$f(n) \sim g(n) \doteq \lim_{n \to \infty} f(n)/g(n) = 1$$

Partial Functions (optional)

Definition: A partial function f from a set A to a set B is an assignment to each element a in a subset of A, called the domain of definition of f, of a unique element b in B.

- The sets A and B are called the *domain* and *codomain* of f, respectively.
- We day that f is *undefined* for elements in A that are not in the domain of definition of f.
- When the domain of definition of f equals A, we say that f is a total function.

Example: $f: \mathbb{N} \to \mathbb{R}$ where $f(n) = \sqrt{n}$ is a partial function from \mathbb{Z} to \mathbb{R} where the domain of definition is the set of nonnegative integers. Note that f is undefined for negative integers.

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=I}^{\infty} x = ?$$

$$\forall_{x}(\Re/x) = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$
 $1-1+1-1+1....=?$

$$1-1+1-1+1....=2$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$