CS101 Algorithms and Data Structures

Shortest Path: Floyd-Warshall

Textbook Ch 24, 25

Outline

- Dijkstra's algorithm
- Floyd-Warshall algorithm

Dijkstra's algorithm

We will iterate |V| times:

- Find the unvisited vertex v that has a minimum distance to it
- Mark it as visited
- Consider its every adjacent vertex w that is unvisited:
 - Is the distance to v plus the weight of the edge (v, w) less than our currently known shortest distance to w?
 - If so, update the shortest distance to w and record v as the previous pointer

Continue iterating until all vertices are visited or all remaining vertices have a distance of infinity

Outline

- Dijkstra's algorithm
- Floyd-Warshall algorithm

Background

Dijkstra's algorithm finds the shortest path between two nodes

- Run time: $O(|E| \ln(|V|))$

If we wanted to find the shortest path between all pairs of nodes, we could apply Dijkstra's algorithm to each vertex:

- Run time: $O(|V| |E| \ln(|V|))$

Background

Now, Dijkstra's algorithm has the following run times:

– Best case:

If
$$|E| = \Theta(|V|)$$
, running Dijkstra for each vertex is $O(|V|^2 \ln(|V|))$

– Worst case:

If
$$|E| = \Theta(|V|^2)$$
, running Dijkstra for each vertex is $O(|V|^3 \ln(|V|))$

Problem

Question: for the worst case, can we find a $o(|V|^3 \ln |V|)$ algorithm?

We will look at the Floyd-Warshall algorithm

It works with positive or negative weights with no negative cycle

First, let's consider only edges that connect vertices directly:

$$d_{i,j}^{(0)} = \begin{cases} 0 & \text{If } i = j \\ w_{i,j} & \text{If there is an edge from } i \text{ to } j \\ \infty & \text{Otherwise} \end{cases}$$

Here, $w_{i,j}$ is the weight of the edge connecting vertices i and j

- Note, this can be a directed graph; *i.e.*, it may be that $d_{i,j}^{(0)} \neq d_{j,i}^{(0)}$

Consider this graph of seven vertices

– The edges defining the values $\,d_{_{5,3}}^{(0)}$ and $d_{_{6,7}}^{(0)}$ are highlighted

Suppose now, we want to see whether or not the path going through vertex v_1 is shorter than a direct edge?

- Is
$$d_{5,3}^{(0)} > d_{5,1}^{(0)} + d_{1,3}^{(0)}$$
?

Thus, for each pair of edges, we will define $d_{i,j}^{(1)}$ by calculating:

$$d_{i,j}^{(1)} = \min \left\{ d_{i,j}^{(0)}, d_{i,1}^{(0)} + d_{1,j}^{(0)} \right\}$$

We need just run the algorithm for each pair of vertices:

```
for ( int i = 0; i < num_vertices; ++i ) {
    for ( int j = 0; j < num_vertices; ++j ) {
        d[i][j] = std::min( d[i][j], d[i][0] + d[0][j] );
    }
}</pre>
```

Define $d_{i,j}^{(k-1)}$ as the shortest distance, but only allowing intermediate visits to vertices $v_1, v_2, ..., v_{k-1}$

Suppose we have an algorithm that has found these values for all pairs

How could we find $d_{i,j}^{(k)}$; that is, the shortest path allowing intermediate visits to vertices $v_1, v_2, ..., v_{k-1}, v_k$?

- Two possibilities: the shortest path includes or does not include v_k

If the shortest path includes v_k , then it must consist of:

- the shortest path from v_i to v_k
- and then the shortest path from v_k to v_j
- both only allowing intermediate visits to vertices $v_1, v_2, ..., v_{k-1}$

With $v_1, v_2, ..., v_{k-1}$ as intermediates, we already know the shortest paths from v_i to v_j , v_i to v_k and v_k to v_j

Thus, we calculate
$$d_{i,j}^{(k)} = \min \left\{ d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \right\}$$

Finding $d_{i,j}^{(k)}$ for all pairs of vertices gives us all shortest paths from v_i to v_j possibly going through vertices $v_1, v_2, ..., v_k$

The calculation is straight forward:

```
for ( int i = 0; i < num_vertices; ++i ) {</pre>
    for ( int j = 0; j < num\_vertices; ++j ) {
        d[i][j] = std::min(d[i][j], d[i][k-1] + d[k-1][j]);
```

The Floyd-Warshall Algorithm

```
// Initialize the matrix d
//
for ( int k = 0; k < num vertices; ++k ) {
    for ( int i = 0; i < num_vertices; ++i ) {</pre>
        for ( int j = 0; j < num_vertices; ++j ) {</pre>
             d[i][j] = std::min( d[i][j], d[i][k] + d[k][j] );
Run time? \Theta(|V|^3)
```

Consider this graph

The adjacency matrix is

This would define our matrix $\mathbf{D} = (d_{ij})$

With the first pass, k = 1, we attempt passing through vertex v_1

0	0.100	0.101	0.142	0.277
0.465	0	0.191	0.192	0.587
0.245	0.554	0	0.333	0.931
1.032	0.668	0.656	0	0.151
0.867	0.119	0.352	0.398	0

With the first pass, k = 1, we attempt passing through vertex v_1

We would start:

$$(2,3) \rightarrow (2,1,3)$$

 $0.191 \geqslant 0.465 + 0.101$

With the first pass, k = 1, we attempt passing through vertex v_1

We would start:

$$(2, 4) \rightarrow (2, 1, 4)$$

 $0.192 \gg 0.465 + 0.142$

With the first pass, k = 1, we attempt passing through vertex v_1

We would start:

$$(2,5) \rightarrow (2,1,5)$$

 $0.587 \gg 0.465 + 0.277$

With the first pass, k = 1, we attempt passing through vertex v_1

Here is a shorter path:

$$(3, 2) \rightarrow (3, 1, 2)$$

 $0.554 > 0.245 + 0.100 = 0.345$

With the first pass, k = 1, we attempt passing through vertex v_1

We update the table

$$(3,2) \to (3,1,2)$$

$$0.554 > 0.245 + 0.100 = 0.345$$

With the first pass, k = 1, we attempt passing through vertex v_1

And a second shorter path:

$$(3, 5) \rightarrow (3, 1, 5)$$

 $0.931 > 0.245 + 0.277 = 0.522$

With the first pass, k = 1, we attempt passing through vertex v_1

0	0.100	0.101	0.142	0.277
			0.192	
0.245	0.345	0	0.333	0.522
1.032	0.668	0.656	0	0.151
0.867	0.119	0.352	0.398	0

We update the table

With the first pass, k = 1, we attempt passing through vertex v_1

0	0.100	0.101	0.142	0.277
0.465	0	0.191	0.192	0.587
0.245	0.345	0	0.333	0.522
1.032	0.668	0.656	0	0.151
0.867	0.119	0.352	0.398	0

Continuing...

We find that no other shorter paths through vertex v_1 exist

With the next pass, k = 2, we attempt passing through vertex v_2

There are three shorter paths:

$$(5, 1) \rightarrow (5, 2, 1)$$

$$0.867 > 0.119 + 0.465 = 0.584$$

$$(5,3) \to (5,2,3)$$

$$0.352 > 0.119 + 0.191 = 0.310$$

$$(5,4) \rightarrow (5,2,4)$$

$$0.398 > 0.119 + 0.192 = 0.311$$

With the next pass, k = 2, we attempt passing through vertex v_2

0	0.100	0.101	0.142	0.277
0.465	0	0.191	0.192	0.587
0.245	0.345	0	0.333	0.522
1.032	0.668	0.656	0	0.151
0.584	0.119	0.310	0.311)0

We update the table

With the next pass, k = 3, we attempt passing through vertex v_3

With the next pass, k = 3, we attempt passing through vertex v_3

We update the table

With the next pass, k = 4, we attempt passing through vertex v_4

There are two shorter paths:

$$(2, 5) \rightarrow (2, 4, 5)$$

 $0.587 > 0.192 + 0.151$
 $(3, 5) \rightarrow (3, 4, 5)$
 $0.522 > 0.333 + 0.151$

With the next pass, k = 4, we attempt passing through vertex v_4

3
1)
),

We update the table

With the last pass, k = 5, we attempt passing through vertex v_5

With the last pass, k = 5, we attempt passing through vertex v_5

(0)	0.100	0.101	0.142	0.277
0.436	0	0.191	0.192	0.343
0.245	0.345	0	0.333	0.484
0.706	0.270	0.461	0	0.151
0.555	0.119	0.310	0.311	0

We update the table

Thus, we have a table of all shortest paths:

0	0.100	0.101	0.142	0.277
0.436	0	0.191	0.192	0.343
0.245	0.345	0	0.333	0.484
0.706	0.270	0.461	0	0.151
0.555	0.119	0.310	0.311	0

This algorithm finds the shortest distances, but what are the paths corresponding to those shortest distances?

- Recall that with Dijkstra's algorithm, we could find the shortest paths by recording the previous node
- Here we use a similar approach, but we choose to store the next node instead of the previous node

Suppose the shortest path from v_i to v_j is as follows:

Does this path consist of (v_i, v_5) and the shortest path from v_5 to v_i ?

Yes

– If there was a shorter path from v_5 to v_j , then we would also find a shorter path from v_i to v_j

Does this path consist of (v_i, v_5) and the shortest path from v_5 to v_i ?

To find the shortest path from v_i to v_j , we only need to know that v_5 is the next vertex in the path — the rest of the path would be recursively recovered as the shortest path from v_5 to v_i

Now, suppose we have the shortest path from v_i to v_j which passes through the vertices $v_1, v_2, ..., v_{k-1}$

- In this example, the next vertex in the path is v_5

What if we find a shorter path passing through v_k ?

- Now the next vertex in the new path should be the next vertex in the shortest path from v_i to v_k , which is v_4 in this example

Let us store the next vertex in the shortest path. Initially:

$$p_{i,j} = \begin{cases} \emptyset & \text{If } i = j \\ j & \text{If there is an edge from } i \text{ to } j \\ \emptyset & \text{Otherwise} \end{cases}$$

When we find a shorter path, update the next node:

$$p_{i,j} = p_{i,k}$$

In our original example, initially, the next node is exactly that:

$$\begin{pmatrix}
- & 2 & 3 & 4 & 5 \\
1 & - & 3 & 4 & 5 \\
1 & 2 & - & 4 & 5 \\
1 & 2 & 3 & - & 5 \\
1 & 2 & 3 & 4 & -
\end{pmatrix}$$

This would define our matrix $P = (p_{ij})$

With the first pass, k = 1, we attempt passing through vertex v_1

$$\begin{pmatrix}
-2 & 3 & 4 & 5 \\
1 & -3 & 4 & 5 \\
1 & 2 & -4 & 5 \\
1 & 2 & 3 & -5 \\
1 & 2 & 3 & 4 & -
\end{pmatrix}$$

There are two shorter paths:

$$(3, 2) \rightarrow (3, 1, 2)$$

 $0.554 > 0.245 + 0.100$
 $(3, 5) \rightarrow (3, 1, 5)$
 $0.931 > 0.245 + 0.277$

With the first pass, k = 1, we attempt passing through vertex v_1

$$\begin{pmatrix}
-2 & 3 & 4 & 5 \\
1 & -3 & 4 & 5 \\
1 & 1 & -4 & 1 \\
1 & 2 & 3 & -5 \\
1 & 2 & 3 & 4 & -
\end{pmatrix}$$

We update each of these

After all the steps, we end up with the matrix $P = (p_{i,j})$:

$$\begin{pmatrix}
-2 & 3 & 4 & 5 \\
3 & -3 & 4 & 4 \\
1 & 1 & -4 & 4 \\
5 & 5 & 5 & -5 \\
2 & 2 & 2 & 2 & -
\end{pmatrix}$$

These are all the adjacent edges that are still the shortest distance

$$\begin{pmatrix}
-2 & 3 & 4 & 5 \\
3 & -3 & 4 & 4 \\
1 & 1 & -4 & 4 \\
5 & 5 & 5 & -5 \\
2 & 2 & 2 & 2 & -
\end{pmatrix}$$

For each of these, $p_{i,j} = j$

In all cases, the shortest distance from vertex 1 is the direct edge

From vertex v_2 , $p_{2,3} = 3$ and $p_{2,4} = 4$; we go directly to vertices v_3 and v_4

Also, $p_{2,5} = 4$ and $p_{4,5} = 5$; the shortest path to v_5 is (2, 4, 5)

From vertex v_3 , $p_{3,1} = 1$ and $p_{3,4} = 4$; we go directly to vertices v_1 and v_4

$$\begin{pmatrix}
-2 & 3 & 4 & 5 \\
3 & -3 & 4 & 4 \\
1 & 1 & -4 & 4 \\
5 & 5 & 5 & -5 \\
2 & 2 & 2 & 2 & -
\end{pmatrix}$$

Also, $p_{3,5} = 4$ and $p_{4,5} = 5$; the shortest path to v_5 is (3, 4, 5)

From vertex v_4 , $p_{4,5} = 5$; we go directly to vertex v_5

$$\begin{pmatrix}
-2 & 3 & 4 & 5 \\
3 & -3 & 4 & 4 \\
1 & 1 & -4 & 4 \\
5 & 5 & 5 & -5 \\
2 & 2 & 2 & 2 & -
\end{pmatrix}$$

But $p_{4,1} = 5$, $p_{5,1} = 2$, $p_{2,1} = 3$, $p_{3,1} = 1$; the shortest path to v_1 is (4, 5, 2, 3, 1)

From vertex v_5 , $p_{5,2} = 2$; we go directly to vertex v_2

$$\begin{pmatrix}
- & 2 & 3 & 4 & 5 \\
3 & - & 3 & 4 & 4 \\
1 & 1 & - & 4 & 4 \\
5 & 5 & 5 & - & 5 \\
2 & 2 & 2 & 2 & -
\end{pmatrix}$$

But $p_{5,4} = 2$ and $p_{2,4} = 4$; the shortest path to v_4 is (5, 2, 4)

Which Vertices are Connected?

Finally, what if we only care if a connection exists?

- Recall that with Dijkstra's algorithm, we could find the shortest paths by recording the previous node
- In this case, can make the observation that:

A path from v_i to v_j exists if either:

A path exists through the vertices from v_1 to v_{k-1} , or

A path, through those same nodes, exists from v_i to v_k and a path exists from v_k to v_j

Which Vertices are Connected?

The *transitive closure* is a Boolean graph:

```
bool tc[num vertices][num vertices];
// Initialize the matrix tc: Theta(|V|^2)
//
// Run Floyd-Warshall
for ( int k = 0; k < num_vertices; ++k ) {
    for ( int i = 0; i < num_vertices; ++i ) {</pre>
        for ( int j = 0; j < num_vertices; ++j ) {</pre>
            tc[i][j] = tc[i][j] || (tc[i][k] && tc[k][j]);
```

Consider this directed graph

 Each pair has only one directed edge

Vertex v_1 is a source and
 v_4 is a sink

We will apply all three matrices

- Shortest distance
- Paths
- Transitive closure

We set up the three initial matrices

$$\begin{pmatrix} 0 & 11 & 7 & 9 & 8 & 1 & 5 \\ \infty & 0 & \infty & 5 & \infty & \infty & 5 \\ \infty & 9 & 0 & 7 & \infty & 2 & \infty \\ \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & 4 & 8 & 8 & 0 & 10 & 6 \\ \infty & 5 & \infty & 6 & \infty & 0 & 3 \\ \infty & \infty & 10 & 7 & \infty & \infty & 0 \end{pmatrix}$$

$$\begin{pmatrix}
- & T & T & T & T & T & T \\
F & - & F & T & F & F & T \\
F & T & - & T & F & T & F \\
F & F & F & - & F & F & F \\
F & T & T & T & - & T & T \\
F & F & F & T & F & F & - & T \\
F & F & T & T & F & F & - & T
\end{pmatrix}$$

At step 1, no path leads to v_1 , so no shorter paths could be found passing through v_1

$$\begin{pmatrix} 0 & 11 & 7 & 9 & 8 & 1 & 5 \\ \infty & 0 & \infty & 5 & \infty & \infty & 5 \\ \infty & 9 & 0 & 7 & \infty & 2 & \infty \\ \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & 4 & 8 & 8 & 0 & 10 & 6 \\ \infty & 5 & \infty & 6 & \infty & 0 & 3 \\ \infty & \infty & 10 & 7 & \infty & \infty & 0 \\ \end{pmatrix}$$

$$\begin{pmatrix} - & 2 & 3 & 4 & 5 & 6 & 7 \\ - & - & - & 4 & - & - & 7 \\ - & 2 & - & 4 & - & 6 & - \\ - & - & - & - & - & - & - \\ - & 2 & 3 & 4 & - & 6 & 7 \\ - & 2 & - & 4 & - & - & 7 \\ - & - & 3 & 4 & - & - & - \end{pmatrix}$$

$$\begin{pmatrix}
- & T & T & T & T & T & T \\
F & - & F & T & F & F & T \\
F & T & - & T & F & T & F \\
F & F & F & - & F & F & F \\
F & T & T & T & - & T & T \\
F & F & T & T & F & - & T \\
F & F & T & T & F & F & - & T
\end{pmatrix}$$

At step 2, we find:

- A path (3, 2, 7) of length 14

$$\begin{pmatrix} -2 & 3 & 4 & 5 & 6 & 7 \\ ---- & 4 & --- & 7 \\ -2 & --4 & --6 & -- \\ -2 & 3 & 4 & --6 & 7 \\ -2 & --4 & --7 \\ -3 & 4 & --- & --7 \\ -3 & 4 & --- & --7 \end{pmatrix}$$

$$\begin{pmatrix}
- & T & T & T & T & T & T \\
F & - & F & T & F & F & T \\
F & T & - & T & F & T & F \\
F & F & F & - & F & F & F \\
F & T & T & T & - & T & T \\
F & F & T & T & F & - & T \\
F & F & T & T & F & F & - & T
\end{pmatrix}$$

- A path (3, 2, 7) of length 14

We update

$$d_{3,7} = 14$$
, $p_{3,7} = 2$ and $c_{3,7} = T$

At step 3, we find:

- A path (7, 3, 2) of length 19
- A path (7, 3, 6) of length 12

$$\begin{bmatrix} -2 & 3 & 4 & 5 & 6 & 7 \\ --- & -4 & --- & 7 \\ -2 & -4 & -6 & 2 \\ --- & --- & --- \\ -2 & 3 & 4 & -6 & 7 \\ -2 & -4 & --- & 7 \\ -3 & 4 & -6 & 7 \end{bmatrix}$$

At step 3, we find:

- A path (7, 3, 2) of length 19
- A path (7, 3, 6) of length 12

We update

$$d_{7,2} = 19$$
, $p_{7,2} = 3$ and $c_{7,2} = T$
 $d_{7,6} = 12$, $p_{7,6} = 3$ and $c_{7,6} = T$

At step 4, there are no paths out of vertex v_4 , so we are finished

$$\begin{pmatrix} - & 2 & 3 & 4 & 5 & 6 & 7 \\ - & - & - & 4 & - & - & 7 \\ - & 2 & - & 4 & - & 6 & 2 \\ - & - & - & - & - & - & - \\ - & 2 & 3 & 4 & - & 6 & 7 \\ - & 2 & - & 4 & - & - & 7 \\ - & 3 & 3 & 4 & - & 3 & - \end{pmatrix}$$

At step 5, there is one incoming edge from v_1 to v_5 , and it doesn't make any paths out of vertex v_1 any shorter...

$$\begin{pmatrix} -2 & 3 & 4 & 5 & 6 & 7 \\ ---- & 4 & --- & 7 \\ -2 & -4 & --6 & 2 \\ ---- & ---- & --- \\ -2 & 3 & 4 & --6 & 7 \\ -2 & -4 & --- & 7 \\ -3 & 3 & 4 & -3 & -1 \end{pmatrix}$$

At step 6, we find:

- A path (1, 6, 2) of length 6
- A path (1, 6, 4) of length 7
- A path (1, 6, 7) of length 4
- A path (3, 6, 2) of length 7
- A path (3, 6, 7) of length 5
- A path (7, 3, 6, 2) of length 17

-1-1-

At step 6, we find:

- A path (1, 6, 2) of length 6
- A path (1, 6, 4) of length 7
- A path (1, 6, 7) of length 4
- A path (3, 6, 2) of length 7
- A path (3, 6, 7) of length 5
- A path (7, 3, 6, 2) of length 17

At step 7, we find:

- A path (2, 7, 3) of length 15
- A path (2, 7, 6) of length 17
- A path (6, 7, 3) of length 13

$$\begin{pmatrix}
- & T & T & T & T & T & T \\
F & - & F & T & F & F & T
\end{pmatrix}$$

$$F & T & - & T & F & T & T \\
F & F & F & - & F & F & F \\
F & T & T & T & - & T & T \\
F & T & F & T & F & - & T$$

$$F & T & F & T & F & T & -$$

Finally, at step 7, we find:

- A path (2, 7, 3) of length 15
- A path (2, 7, 6) of length 17
- A path (6, 7, 3) of length 13

Note that:

We could reinterpret this graph as follows:

- Vertices $\{v_2, v_3, v_6, v_7\}$ form a *strongly connected* subgraph
- You can get from any one vertex to any other
- With the transitive closure graph, it is much faster finding such strongly connected components

0	6	7	7	8	1	4)	
∞	0	15	5	∞	17	5	
∞	7	0	7	∞	2	5	
∞	∞	∞	0	∞	∞	∞	
∞	4	8	8	0	10	6	
∞	5	13	6	∞	0	3	
$\int \infty$	17	10	7	∞	12	0	

Summary

This topic:

- The concept of all-pairs shortest paths
- The Floyd-Warshall algorithm
- Finding the shortest paths
- Finding the transitive closure