Théorie des langages : TD nº 1

Devan SOHIER

Exercice 1

On considère un alphabet Σ . Quelle est la valeur de Σ^0 , de Σ^1 , de Σ^2 ? Peut-on dire que $\Sigma^1 = \Sigma$?

Exercice 2

Quelle est la concaténation de :

- aabab et babba;
- toto et titi;
- ubu et roi?

La cocnaténation est-elle associative? Est-elle commutative? Vous démontrerez vos réponses.

Exercice 3

On définit la longueur $|\omega|$ d'un mot $\omega \in \Sigma^*$ de la façon suivante :

- $|\varepsilon| = 0;$
- pour $\alpha \in \Sigma$ et $\omega \in \Sigma^*$, $|\alpha \omega| = |\omega| + 1$.

Démontrez que $\forall \omega, \omega' \in \Sigma^*, |\omega.\omega'| = |\omega| + |\omega'|$.

Exercice 4

Démontrez le lemme de Lévy :

$$\forall \omega_1, \omega_2, \omega_1', \omega_2' \in \Sigma^*, \omega_1.\omega_2 = \omega_1'.\omega_2' \Rightarrow$$

$$\exists \omega \in \Sigma^*, (\omega_1 = \omega_1'.\omega \wedge \omega_2' = \omega.\omega_2) \vee (\omega_1' = \omega_1.\omega \wedge \omega_2 = \omega.\omega_2')$$

Exercice 5

Déduisez du lemme de Lévy que si deux mots commutent, alors ils sont puissance d'un même mot :

$$\omega.\omega' = \omega'.\omega \Rightarrow \exists \psi, \omega \in \psi^*, \omega' \in \psi^*$$

Exercice 6

On considère un alphabet $\Sigma.$ Soit ω un mot sur Σ tel qu'il existe α et β de Σ tels que

$$\alpha\omega = \omega\beta$$

Montrer que $\alpha = \beta$ et $\omega \in \alpha^*$.