The listing of claims which follows replaces all previous versions.

1. (Original) A compound including resolved enantiomers, diasteriomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

wherein if R_1 is hydrogen or -OH then R_2 is AX, and if R_2 is hydrogen or -OH then R_1 is AX, and A may be absent or A may be any alkyl or aryl group where X is hydrogen, a phosphate group, a phosphonic acid derivative group, an alcohol group, a carboxylic acid group, an ether group, an ester group, a nitrile group, a sulfone group, a sulfide group, an amino acid derivative group, an amine group, and amide group, an aldehyde group, or an aromatic group.

- 2. (Original) The compound of claim 1, wherein said alcohol group is represented by $-R^3OH$, wherein R^3 is a straight chained or branched alkyl group having 1 to 5 carbon atoms.
- 3. (Original) The compound of claim 1, wherein said carboxylic acid group comprises -R⁴COOH wherein R⁴ is at least one saturated or unsaturated alkyl group, an aryl group an ester group, an ether group or a combination thereof.
- 4. (Original) The compound of claim 3, wherein R⁴ is an ester group represented by –R⁵COO-, wherein R⁵ is bonded to the carboxylic acid group and has 0 to 5 carbon atoms.

- 5. (Original) The compound of claim 3, wherein R⁴ is an ether group represented by R⁶-O-R⁷ wherein R⁶ and R⁷ are, independently, an alkyl or allyl group having 0 to 5 carbon atoms.
- 6. (Original) The compound of claim 1, wherein said aromatic group comprises Ar-(R⁸)_m, wherein Ar represents a benzene ring, and m is 1 or 2.
- 7. (Original) The compound of claim 6, wherein R^8 is $-CH=CH_2$, or -COOH.
- 8. (Original) The compound of claim 1, wherein the ester group is represented by $-CR^9$, where R^9 is an ester of nicotinic acid, an ester of isonicotinic acid, or the ester group is represented by $-CO(C=O)R^{9a}$, where R^{9a} is $Ph(CY_3)_o$, where o is 1 or 2, and Y may be, independently, H, F, Cl, Br, or I, or where R^{9a} is a substituted heterocyclohexane compound.
- 9. (Original) The compound of claim 1, wherein the phosphonic acid derivative group is represented by $-CO-P(R^{10})(O)OH$, where R^{10} is an alkyl group having 0 to 5 carbon atoms.
- 10. The compound of claim 1, wherein the phosphate group is COP(O)(OR¹¹)₂, where R¹¹ is an alkyl group having 0 to 5 carbon atoms, or a phenyl group.
- 11. (Original) The compound of claim 1, wherein the nitrile group is R¹²CN, where R¹² is an alkyl group having 0 to 5 carbon atoms.
- 12. (Original) The compound of claim 1, wherein the sulfone group is $-CS(=O)_2R^{13}$, wherein R^{13} is $-N(CH_3)_2$, $-OR^{14}$, or $-Ph-COOR^{14}$, where R^{14} is H, CH_3 , or $-CH(CH_3)_2$.
- 13. (Original) The compound of claim 1, wherein the sulfide group is CSR^{15} , where R^{15} is pyridine or –Ph-COOR¹⁶, where R^{16} is H or CH_3 .
- 14. (Original) The compound of claim 1, wherein the amino acid derivative group is $-COC(=O)CHR^{21}N(R^{17})_2$, where each R^{17} group is, independently, H or CH₃ and R^{21} is hydrogen or any other substituent.

- 15. (Original) The compound of claim 1, wherein the amine group is $CN(R^{18})_2$, where each R^{18} group is, independently, H, an alkyl group, or a phenyl group.
- 16. (Original) The compound of claim 1, wherein the ether group is C–O–CR¹⁹, where R¹⁹ is a substituted pyridine.
- 17. (Original) The compound of claim 1, wherein the amide group is $(C=O)N(R^{20})_2$, or $-CH_2(C=O)N(R^{20})_2$ where each R^{20} is, independently, H or $CH_2CH_2N(CH_3)_2$.
- 18. (Original) A compound including resolved enantiomers, diasteriomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

where D forms a heterocyclic ring having 3 to 5 atoms.

- 19. (Original) The compound of claim 18, wherein the heterocyclic ring is a 3-membered ring and one of the atoms in the ring is oxygen.
- 20. (Original) The compound of claim 18, wherein the heterocyclic ring is a 5-membered ring and two of the atoms in the ring are oxygen.
- 21. (Original) The compound of claim 20, wherein the heterocyclic ring is substituted with an oxygen atom.

- 22. (Original) The compound of claim 21, wherein another atom in the 5-membered ring is a sulfur or a phosporous atom.
- 23. (Original) The compound of claim 22, wherein the 5-membered ring is substituted with 1 or 2 oxygen atoms bonded to the sulfur atom.
- 24. (Original) A compound including resolved enantiomers, diasteriomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

where E is H, O, NR, CH₂ or S wherein R may be hydrogen, alkyl, aryl or any other substituent.

25. (Original) The compound of claim 1 wherein if R₁ is H or -OH then

 R_2 is $\text{and if } \mathsf{R}_2 \text{ is OH or H then } \mathsf{R}_1 \text{ is }$ OH

26. The compound of claim 1, wherein if R₁ is H or -OH then

 R_2 is OH or H then OH and if

$$R_1$$
 is O OH

$$\mathsf{R}_2 \text{ is } \mathsf{RO} \\ \mathsf{RO}$$

wherein R is hydrogen or a methyl group when n is 0 or 2.

- 28. (Original) The compound of claim 1, wherein if R_1 is H or -OH then R_2 is R— and if R_2 is -OH or H then R_1 is R— wherein R may be CH_2 =CH or COOH.
- 29. (Original) The compound of claim 1, wherein if R_1 is H or -OH then R_2 is $\stackrel{\frown}{\sim}$ and if R_2 is -OH or H then R_1 is
- 30. (Original) The compound of claim 1, wherein if R_1 is H or -OH then R_2 is OH and if R_2 is -OH or H then R_1 is OH
 - 31. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

R2 is
$$O$$
 and if R_2 is -OH or H then R_1 is O

$$R_2$$
 is $N \oplus \bigcirc$

and if R_2 is -OH or H then R_1 is

33. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

$$R_2$$
 is and if R_2 is -OH or H then R_1 is N_{+}

34. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

$$R_2$$
 is $\overset{O}{\sim}$ $\overset{O}{\sim}$ and if R_2 is -OH or H then R_1 is $\overset{O}{\sim}$ $\overset{O}{\sim$

- 36. (Currently amended) The compound of claim 1, wherein if R_1 is H then R_2 is -OH.
 - 37. The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2 \text{ is} \qquad \text{and if } R_2 \text{ is -OH or H then } R_1 \text{ is} \\ N \oplus \bigcirc$$

- 38. (Original) The compound of claim 1, wherein if R_1 is H then R_2 is carboxylic acid.
 - 39. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2$$
 is O and if R_2 is -OH or H then R_1 is O HO

40. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2$$
 is N and if R_2 is -OH or H then R_1 is N

42. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

43. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2 \text{ is} \overset{\longleftarrow}{\circ} \\ 0 \overset{\longleftarrow}{\circ} \\ 0 \overset{\longleftarrow}{\ominus} \\ 0 \overset{\longleftarrow}{\circ} \overset{\longleftarrow}{\circ} \\ 0 \overset{\longleftarrow}{\circ} \overset{\longleftarrow}{\circ} \\ 0 \overset{\longleftarrow}{\circ} \overset{\longleftarrow}{\hookrightarrow} \overset$$

44. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

45. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

$$R_2$$
 is O O OMe and if R_2 is -OH or H then R_1 is O OMe OMe

47. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$CF_3$$
 and if R_2 is -OH or H then R_1 is CF_3

48. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$\mathsf{R}_2 \text{ is} \overset{\mathsf{O}}{\longleftarrow} \mathsf{N} \qquad \text{and if } \mathsf{R}_2 \text{ is -OH or H then } \mathsf{R}_1 \text{ is} \overset{\mathsf{O}}{\longleftarrow} \mathsf{N}$$

49. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

$$R_2$$
 is O and if R_2 is -OH or H then R_1 is O

50. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2$$
 is O and if R_2 is -OH or H then R_1 is O OR

51. (Original) The compound of claim 50 wherein R is a methy or ethyl group.

$$R_2$$
 is $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line$

- 53. (Original) The compound of claim 52 wherein R is a methy group.
- 54. (Original) The compound of claim 52 wherein R is an iso-propyl group.
 - 55. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2$$
 is $\bigvee_{O_2S \longrightarrow NMe_2}$ and if R_2 is -OH or H then R_1 is $\bigvee_{O_2S \longrightarrow NMe_2}$.

56. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

$$\mathsf{R}_2$$
 is $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\l$

57. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

58. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2$$
 is $\stackrel{||}{=}$ and if R_2 is -OH or H then R_1 is $\stackrel{||}{=}$

59. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2$$
 is Q and if R_2 is -OH or H then R_1 is

61. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

62. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

63. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$\begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

64. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$\mathsf{R}_2$$
 is
$$\mathsf{R}_1$$
 is
$$\mathsf{N}_1$$
 and if R_2 is -OH or H then
$$\mathsf{N}_1$$

$$R_2$$
 is N and if R_2 is -OH or H then R_1 is N R'

- 66. (Original) The compound of claim 66 wherein each R' and R independently can be any amino acid of all possible stereochemistries and with any degree and choice of protecting group.
 - 67. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

if R
$$_2$$
 is -OH or H then R $_1$ is ${}^{\raisebox{-1pt}{$\sim$}}_{O_2}S$

68. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$O = \bigvee_{N} \bigcap_{N} \bigcap_{N}$$

69. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$O = \bigvee_{N \in \mathbb{N}} \bigvee_{N \in \mathbb{N}} N Me_2$$
 and if R_2 is -OH or H then R_1 is $\bigvee_{N \in \mathbb{N}} N Me_2$

70. (Original) The compound of claim 1, wherein if R_1 is H or -OH then

$$R_2 \text{ is } O = \bigvee_{NH_2}^{\searrow_{l_1}} \text{ and if } R_2 \text{ is -OH or H then } R_1 \text{ is } O = \bigvee_{NH_2}^{\searrow_{l_1}}$$

72. (Original) The compound of claim 1, wherein if R₁ is H or -OH then

$$R_2$$
 is $\stackrel{\text{?}}{\sim}$ and if R_2 is -OH or H then R_1 is $\stackrel{\text{?}}{\sim}$.
$$NH_2$$

73. (Original) The compound of claim 1, wherein if R_1 is H or -OH then R_2 is and if R_2 is -OH or H then R_1 is NH_2 .

74. (Original) The compound of claim 1, wherein if R_1 is H or -OH then R_2 is and if R_2 is -OH or H then R_1 is NRR'

- 75. (Original) The compound of claim 74, wherein R and R' are independently of each other hydrogen, alkyl, aryl, or allyl.
- 76. (Original) The compound of claim 19 wherein said heterocyclic ring is $\triangle_{\rm O}$.
- 77. (Original) The compound of claim 21 wherein said heterocyclic ring is

78. (Original) The compound of claim 22 wherein said heterocyclic ring is OS=O.

79. (Original) The compound of claim 21 wherein said heterocyclic ring is OPEO .

80. (Original) The compound of claim 22 wherein said heterocyclic ring is $\frac{1}{100}$.

81. (Original) A compound including resolved enantiomers, diasteriomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

\\\DE - 62776/0304 - 230350 v1

82. (Original) A compound including resolved enantiomers, diasteriomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

83. (Original) A compound including resolved enantiomers, diasteriomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

84. (Currently amended) A method of treating cancer, which comprises administering to a patient suffering from said cancer [[a]] the compound of claim 1. or combination of compounds of claims 1. 83.

- 85. (Original) A method according to claim 84 wherein said cancer is selected from the group of cancers consisting of leukemia, non-small cell lung cancer, colon cancer, central nervous system cancer, melanoma cancer, ovarian cancer, renal cancer, prostate cancer, and breast cancer.
- 86. (Currently amended) A method for treating malaria comprising administering administering an effective amount of [[a]] the compound of compounds of claims 1-83. of claim 1.