Метод Монте-Карло для интегральных уравнений финансовой математики

Абдрахманов Риваль Инирович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., Ю.Н. Каштанов Рецензент: к.ф.-м.н., А.А. Гормин

Санкт-Петербург 2015г.

Введение

- Решается задача финансовой математики: определение цены Европейского опциона в модели локальной волатильности;
- Данная задача решалась в дипломной работе [Егорова, 2011], связанная задача моделирования для решения задачи Коши для параболических уравнений обсуждалась в статье [Сипин, 2011];
- Были исследованы предыдущие оценки и построены новые;
- Проведены расчеты со сравнением точности оценок.

Постановка задачи

Рассматриваем стандартный (B,S)-рынок:

- B_t банковский счет,
- S_t акция.

Модель с локальной волатильностью:

$$dB_t/B_t = rdt,$$

$$dS_t/S_t = rdt + \sigma(S_t)dW_t.$$

Рассматриваем стандартный Европейский опцион, построенный на акциях. Платежная функция:

$$f(S_T) = (S_T - K)^+ = \max(0, S_T - K).$$

Основная задача — найти справедливую цену опциона.

$$C(S_0, T) = \mathsf{E}e^{-rT} f(S_T).$$

Дискретизация по времени

Схема Эйлера для моделирования процесса, удовлетворяющего стохастическому дифференциальному уравнению.

$$\hat{S}_{i+1} = \hat{S}_i + rh + \sigma(\hat{S}_i)z_i\sqrt{h} - \frac{1}{2}\sigma^2(\hat{S}_i)h,$$

 z_i — независимые реализация стандартного нормального распределения.

По этой схеме вычислим среднее значение величины $S_T.$

Параболическое дифференциальное уравнение

Возможно перейти от СДУ к задаче Коши [Bjork, 2010]:

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{1}{2}S^2\sigma^2(S)\frac{\partial^2 u}{\partial S^2} + rS\frac{\partial u}{\partial S} - ru = 0, \\ u(x,T) = f(x). \end{cases}$$

Сделаем замену $x = \ln(S)$ и положим r = 0.

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{1}{2}\sigma^2(x)\frac{\partial^2 u}{\partial x^2} - \frac{1}{2}\sigma^2(x)\frac{\partial u}{\partial x} = 0, \\ u(x,T) = f(x). \end{cases}$$

Интегральное уравнение

Решение задачи Коши методом параметрикса [Friedman, 1964].

$$\begin{split} Z(x,t,y,s) &= \frac{1}{(a(y)(s-t)2\pi)^{1/2}} \exp\left(-\frac{(y-x)^2}{2a(y)(s-t)}\right), \\ \Gamma(x,t,y,s) &= Z(x,t,y,s) + \int_t^s \int_D Z(x,t,\xi,\tau) \Phi(\xi,\tau,y,s) d\xi d\tau, \\ \Phi(x,t,y,s) + \int_t^s \int_D K(x,t,\xi,\tau) \Phi(\xi,\tau,y,s) d\xi d\tau + K(x,t,y,s) &= 0, \\ K(x,t,y,s) &= \frac{1}{2} [a(x)-a(y)] \frac{\partial^2 Z(x,t,y,s)}{\partial x^2} \ + \ b(x) \frac{\partial Z(x,t,y,s)}{\partial x}. \end{split}$$

Тогда решение можно представить в виде

$$u(x,t) = \int_D \Gamma(x,t,y,T) f(y) dy.$$

Интегральное уравнение

Рассмотрим интегральное уравнение второго рода

$$\phi(x) = \int_{\mathfrak{X}} k(x, y)\phi(y)dy + f(x).$$

Решение представляется в виде ряда Неймана

$$\phi(x) = \sum_{m=0}^{\infty} K^m f(x) = \sum_{m=0}^{\infty} \int_{\mathfrak{X}} k(x, x_1) dx_1 \dots$$
$$\dots \int_{\mathfrak{X}} k(x_{m-1}, x_m) \int_{\mathfrak{X}} f(x_m) dx_m.$$

Строим оценку функционала (h,ϕ) [Ермаков, 1975]

$$J = \sum_{m=0}^{\infty} \frac{h(x_0)k(x_0, x_1) \dots k(x_{m-1}, x_m)f(x_m)}{\pi(x_0)p(x_0, x_1) \dots p(x_{m-1}, x_m)}.$$

Прямая схема

Переходная плотность по времени на промежутке [0,s]:

$$p_s(t) = \frac{1}{s}.$$

Введем плотности:

$$\begin{split} P_{1}(z,s) &= \sqrt{\frac{1}{2\pi s \sigma_{M}^{2}}} \exp\left(-\frac{z^{2}}{2s \sigma_{M}^{2}}\right), \\ P_{2}(z,s) &= \frac{1}{2s \sigma_{M}^{2}} |z| \exp\left(-\frac{z^{2}}{2s \sigma_{M}^{2}}\right), \\ P_{3}(z,s) &= \frac{1}{2s^{2} \sigma_{M}^{4}} |z|^{3} \exp\left(-\frac{z^{2}}{2s \sigma_{M}^{2}}\right). \end{split}$$

Начальная и переходная плотности по переменной x:

$$\pi(x, t, y, s) = P_1(y - x, s - t),$$

$$p(x, t, y, s) = \alpha P_2(y - x, s - t) + (1 - \alpha)P_3(y - x, s - t), 0 < \alpha < 1.$$

Прямая схема

Соответственно оценка решения задачи будет иметь следующий вид:

$$\begin{split} \hat{C}(x,t) &= \frac{Z(x,t,y,T)}{P_1(y-x,T-t)} f(y) + \frac{Z(x,t,x_0,t_0)}{\pi(x,t,x_0,t_0)p_T(t_0)} \times \\ &\times \sum_{m=1}^M \frac{K(x_0,t_0,x_1,t_1)}{p(x_0,t_0,x_1,t_1)p_{T-t_0}(t_1)} \cdots \frac{K(x_{m-1},t_{m-1},x_m,t_m)}{p(x_{m-1},t_{m-1},x_m,t_m)p_{T-t_{m-1}}(t_m)} \times \\ &\times \frac{K(x_m,t_m,y,T)f(y)}{p(x_m,t_m,y,T)}. \end{split}$$

Обратная схема

Оценка по обратной схеме выглядит следующим образом:

$$\begin{split} \hat{C}(x,t) &= \frac{Z(x,t,y,T)}{P_1(y-x,T-t)} f(y) + \frac{K(x_0,t_0,y,T) f(y)}{\pi(x,t,x_0,t_0) p_T(t_0)} \times \\ &\times \sum_{m=1}^M \frac{K(x_0,t_0,x_1,t_1)}{p(x_0,t_0,x_1,t_1) p_{T-t_0}(t_1)} \cdots \frac{K(x_{m-1},t_{m-1},x_m,t_m)}{p(x_{m-1},t_{m-1},x_m,t_m) p_{T-t_{m-1}}(t_m)} \times \\ &\times \frac{Z(x,t,x_m,t_m)}{p(x_m,t_m,y,T)}. \end{split}$$

Сопряженный оператор

Пользуемся тем, что переходная плотность p(t,x,y) удовлетворяет сопряженном уравнению

$$\frac{1}{2}a(y)\frac{\partial^2 p}{\partial y^2} + b^*(y)\frac{\partial p}{\partial y} + c^*(y)p - \frac{\partial p}{\partial t} = 0,$$

в котором

$$b^*(y) = -b(y) + \frac{\partial a(y)}{\partial y},$$

$$c^*(y) = -\frac{\partial b(y)}{\partial y} + \frac{1}{2} \frac{\partial^2 a(y)}{\partial y^2}.$$

Аналогично предыдущему получаем представление

$$u(x,t) = \int f(y)\Gamma^*(t,y,x)dy,$$

где Γ^* — фундаментальное решение, построенное по методу параметрикса.

Сопряженный оператор

В схеме изменяется параметрикс и ядро интегрального уравнения, сама оценка остается, как и в прямой схеме.

$$Z^*(x,t,y,s) = \frac{1}{(a(x)(t-s)2\pi)^{1/2}} \exp\left(-\frac{(x-y)^2}{2a(x)(t-s)}\right),$$

$$K^*(x,t,y,s) = \frac{1}{2}[a(y) - a(x)] \frac{\partial^2 Z(x,t,y,s)}{\partial x^2} + b^*(x) \frac{\partial Z(x,t,y,s)}{\partial x} + c^*(x)Z(x,t,y,s).$$

Измененная прямая схема

Данный метод был представлен в статье [Сипин, 2011].

$$u(x,t) = u_1(x,t) + u_2(x,t) = \int_D Z(x,t,y,T)f(y)dy + \int_D \left(\int_0^T \int_D Z(x,t,\xi,\tau)\Phi(\xi,\tau,y,T)d\xi d\tau\right)f(y)dy.$$

Представим $u_2(x,t)$ в следующем виде:

$$u_2(x,t) = -\int_t^T d\tau \int_D Z(x,t,\xi,\tau) \int_D K(\xi,\tau,y,T) f(y) dy d\xi + u_3(x,t),$$

$$u_3(x,t) = \int_t^T \int_D Z(x,t,\xi,\tau) v_3(\xi,\tau) d\xi d\tau,$$

$$v_3(x,t) + \int_0^t d\tau \int_D K(x,t,\xi,\tau) v_3(\xi,\tau) d\xi -$$

$$-\int_t^T d\tau \int_D K(x,t,\xi,\tau) \int_D K(x,t,y,T) f(y) dy d\xi = 0.$$

Измененная прямая схема

Функцию $u_3(x,t)$ оцениваем на траекториях цепи Маркова. Случайная величина β имеет бета-распределение с параметрами (1/2,1/2)

$$\tau_m = t_m + (T - t_m)\beta,$$

переходная плотность по переменной x:

$$Z_2(x,t,y,s) = \frac{C}{\sqrt{\pi(t-s)}} \exp\left(-C\frac{|x-y|^2}{t-s}\right).$$

Фундаментальное уравнение с измененным параметриксом

Рассмотрим новый параметрикс:

$$Z(x,t,y,s) = \frac{1}{(a(y)(s-t)2\pi)^{1/2}} \exp\left(-\frac{(y-x)^2}{2a(y)(s-t)} - \frac{\lambda(s-t)^\beta}{a(y)}\right).$$

В работе доказано, что в этом случае ядро имеет вид:

$$K(x,t,y,s) = \frac{1}{a(y)(s-t)^{1-\beta}} \left[\frac{a(x) - a(y)}{2(s-t)^{1/2}} \left(\frac{(y-x)^2}{a(y)(s-t)} - 1 \right) \times (s-t)^{1/2-\beta} + b(x) \left(\frac{y-x}{(s-t)^{\beta}} \right) + \lambda \beta \right] Z(x,t,y,s).$$

В качестве переходной плотности по времени возьмем

$$p_t(s) = \frac{\beta}{(T-t)^{\beta}(s-t)^{1-\beta}}.$$

В остальном оценка остается аналогичной прямой схеме

Результаты. Пример с постоянной волатильностью

Цена опциона в случае постоянной волатильности.

K	Ф. Б-Ш	Дискр.	Пр. сх.	Изм. сх.	Обр. сх.	Сопр.оп-р	Изм. п-с
80	22.2655	22.2665	22.2215	22.3075	22.2712	22.2722	22.1509
82	20.7385	20.7383	20.6913	20.7799	20.7421	20.7427	20.6366
84	19.2736	19.2725	19.2244	19.3157	19.2757	19.2754	19.1839
114	5.0633	5.0618	5.0203	5.0967	5.0609	5.0701	5.0561
116	4.5693	4.5685	4.5269	4.5997	4.5669	4.5757	4.5641
118	4.1177	4.1176	4.0761	4.1456	4.1157	4.1238	4.1144

Результаты. Пример с постоянной волатильностью

Результаты. Пример с локальной волатильностью

Рассмотрим следующую модель с локальной волатильностью:

$$dS_t/S_t = rdt + \sigma(S_t)dw_t,$$

где $\sigma(S)$ — убывающая функция, изменяющаяся от 0.1 до 0.6.

Результаты. Пример с локальной волатильностью

Цена опциона в случае локальной волатильности.

K	Дискр.	Пр. сх.	Изм. сх.	Обр. сх.	Сопр.оп-р	Изм. п-с
80	23.1571	23.2106	22.7888	22.773	23.1588	23.1654
82	21.5922	21.6407	21.2492	21.2193	21.5755	21.5892
84	20.0729	20.1206	19.7548	19.7131	20.039	20.061
114	4.1873	4.2154	4.1613	4.0549	4.2687	4.0858
116	3.6257	3.6528	3.6060	3.5054	3.7136	3.5264
118	3.1222	3.1480	3.1034	3.0123	3.2139	3.0235

Результаты. Пример с локальной волатильностью

Результаты

- Были исследованы оценки, рассмотренные в литературе;
- Создана и теоретически обоснована новая оценка;
- Проведено сравнение точностей на конкретных примерах.