Université Mohammed V Faculté des Sciences Département d'Informatique

Cours M6 pour SMIA Introduction à l'Informatique

M. El Marraki

N. El Khattabi

2020 - 2021

Cours N°8

Sommaire

- I. La Filière SMIA (SMI / SMA)
- II. Histoire de l'informatique et Structure des ordinateurs
- III. Histoires des Langages de programmation
- IV. Algèbre de Boole

v. Le codage

- Introduction
- Système de numération décimale, binaire, octale et hexadécimale
- Codage des nombres entiers
- Codage des nombres réels
- Codage des caractères
- Codages des images et du son
- VI. Le langage HTML

V. Le codage

Introduction
Système d'énumération
Codage des nombres entiers

Les formats de représentations des nombres réels sont :

- Format virgule fixe
 - utilisé par les premières machines
 - possède une partie « entière » et une partie « décimal » séparés par une virgule. La position de la virgule est fixe d'où le nom.
 - Exemples : $54,25_{(10)}$; $10,001_{(2)}$; $A1,F0B_{(16)}$

Format virgule flottante (utilisé actuellement sur machine)

```
défini par : ± m . b e

✓ un signe + ou -

✓ une mantisse m (en virgule fixe)

✓ un exposant e (un entier relative)

✓ une base b (2, 8, 10, 16, ...)

✓ Exemple : 0,5425 . 10 2 (10) ; 10,1 . 2 1 (2) ;

A0,B4.16 2 (10)
```


Etant donné une base b

- > un nombre x est représenté par :
 - $\mathbf{x} = \mathbf{a}_{\text{n-1}} \mathbf{a}_{\text{n-2}} \dots \mathbf{a}_{1} \mathbf{a}_{0}, \ \mathbf{a}_{-1} \mathbf{a}_{-2} \dots \mathbf{a}_{-p \text{ (b)}}$
 - a_{n-1} est le chiffre de <u>poids fort</u>
 - a_{-p} est le chiffre de <u>poids faible</u>
 - n est le nombre de chiffre avant la virgule
 - p est le nombre de chiffre après la virgule
 - La valeur de x en base 10 est : $x = \sum_{-p}^{n-1} a_i b^i$ (10)
 - Exemple :

$$101,01_{(2)} = 1.2^2 + 0.2^1 + 1.2^0 + 0.2^{-1} + 1.2^{-2} = 5,25_{(10)}$$

Codage en Virgule Fixe Changement de base 10→2

Le passage de la base 10 à la base 2 est défini par :

- Partie entière est codée sur p bits (division successive par 2)
- Partie décimale est codée sur q bits en multipliant par 2 successivement jusqu'à ce que la partie décimale soit nulle ou le nombre de bits q est atteint.
- Exemple: $4,25_{(10)} = ?_{(2)}$ format virgule fixe $\sqrt{4_{(10)}} = 100_{(2)}$ $0,25 \times 2 = 0,5 \rightarrow 0$ $0,5 \times 2 = 1,0 \rightarrow 1$ $\sqrt{4_{(10)}} = 100,01_{(2)} = 2^2 + 2^{-2}$

Exercice: Coder 7,875₍₁₀₎ et 5,3₍₁₀₎ avec p = 8 et q = 8

Codage en Virgule Fixe Changement de base 10→2

Coder: $7,875_{(10)} = ?_{(2)}$ format virgule fixe p=q=8

$$√7_{(10)} = 111_{(2)}$$
0,875 x 2= 1,75 $→ 1$
0,75 x 2 = 1,5 $→ 1$
0,5 x 2 = 1,0 $→ 1$

✓ Donc 7,875₍₁₀₎ = 111,111₍₂₎ (=
$$2^2+2^1+2^0+2^{-1}+2^{-2}$$
)

$$x = \pm M \cdot 2^{E}$$

où M est la mantisse (virgule fixe) et E l'exposant (signé).

Le codage en base 2, format virgule flottante, revient à coder le signe, la mantisse et l'exposant.

Exemple: Codage en base 2, format virgule flottante, de (3,25)

$$3,25_{(10)} = 11,01_{(2)}$$
 (en virgule fixe)
= $1,101 \cdot 2^{1}_{(2)}$
= $110,1 \cdot 2^{-1}_{(2)}$

Pb: différentes manières de représenter E et M

→ Normalisation

Codage en Virgule Flottante - Normalisation -

$$x = \pm 1, M \cdot 2^{Eb}$$

Le signe (SM) est codé sur 1 bit ayant le poids fort :

- le signe : bit 1
- Le signe +: bit 0

Exposant biaisé (Eb)

- •placé avant la mantisse pour simplifier la comparaison
- •Codé sur p bits et biaisé pour être positif (ajout de 2^{p-1}-1)

Mantisse normalisé(M)

- •Normalisé : virgule est placé après le bit à 1 ayant le poids fort
- •M est codé sur q bits
- •Exemple: 11,01 \rightarrow 1,101 donc M = 101

SM	Eb	M
1bit	p bits	g bits

Simple précision sur 32 bits :

1 bit de signe de la mantisse8 bits pour l'exposant23 bits pour la mantisse

SM	E	M
1bit	8 bits	23 bits

Double précision sur 64 bits :

1 bit de <u>signe</u> de la mantisse11 bits pour l'exposant52 bits pour la mantisse

SM	E	M
1bit	11 bits	52 bits

Conversion décimale - IEEE754 (Codage d'un réel)


```
35,5<sub>(10)</sub> = ?<sub>(IEEE 754 simple précision)</sub>
```

Nombre positif, donc SM = 0

$$35,5_{(10)} = 100011,1_{(2)}$$
 (virgule fixe)
= 1,000111.2 $^{5}_{(2)}$ (virgule flottante)

Exposant = Eb-127 = 5, donc Eb = 132 1,M = 1,000111 donc M = 00011100...

Conversion décimale - IEEE754 (Codage d'un réel)

$$-240.125_{(10)} = ?_{(SP)}$$

Nombre négatif, donc SM = 1

-
$$240,125_{(10)} = -11110000,001_{(2)}$$
 (virgule fixe)
= $1,1110000001 \cdot 2^{7}_{(2)}$ (virgule flottante)

Exposant :
$$E_b = 127+7 = 134 = 128 + 6$$

= 10000110_2 .

1 10000110 111000000100...0

Conversion IEEE754 - décimale (Évaluation d'un réel)

Conversion IEEE754 - décimale (Évaluation d'un réel)


```
SM
110000101 100111110000000000000000000<sub>(SP)</sub>
```

0 10000001 111000000000000000000000

$$E_b$$
= 10000101₂=128+5=133,
donc E=133-127=6
x=-1,10011111 x 2⁶ = - 1100111,11
1100111₂ = 103 et 0,11₂ = 0,75
donc x = -103,75

1. Évaluer le nombre réel en format IEEE 754 simples précisions :

1 10000101 10011111100000000000000000

$$E_b = 10000101_2 = 128 + 5 = 133,$$

$$x=-1,\frac{100111111}{1111} \times 2^6 = -1100111,111$$

$$1100111_2 = 103$$
 et $0,11_2 = 0,75$

$$x = -103,75$$

1. Convertir le nombre réel -240.125 dans le format IEEE 754 simples précisions.

$$240 = 120 \times 2 = 11110000_2$$
.

$$0,125 = 0,001_2.$$

$$-240,125 = -11110000,001$$

= $-1,1110000001 \times 2^{7}$.

$$E_b = 127 + 7 = 134 = 128 + 6$$

= 10000110_2 .

1 10000110 111000000100...0

Caractéristiques des nombres flottants au standard IEEE

	Simple précision	Double précision
Bit de signe	1	1
Bit d'exposant	8	11
Bit de mantisse	23	52
Nombre total de bits	32	64
Codage de 1'exposant	Excédant 127	Excédant 1023
Variation de 1'exposant	-126 à +127	-1022 à +1023
Plus petit nombre normalisé	2-126	2-1022
Plus grand nombre normalisé	Environ 2 ⁺¹²⁸	Environ 2 ⁺¹⁰²⁴
Echelle des nombre décimaux	Environ 10 ⁻³⁸ à 10 ⁺³⁸	Environ 10 ⁻³⁰⁸ à 10 ⁺³⁰⁸
Plus petit nombre dénormalisé	Environ 10 ⁻⁴⁵	Environ 10 ⁻³²⁴

Sommaire

- I. La Filière SMIA (SMI / SMA)
- II. Histoire de l'informatique et Structure des ordinateurs
- III. Histoires des Langages de programmation
- IV. Algèbre de Boole

v. Le codage

- Introduction
- Système de numération décimale, binaire, octale et hexadécimale
- Codage des nombres entiers
- Codage des nombres réels
- Codage des caractères
- Codages des images et du son
- VI. Le langage HTML

V. Le codage

Introduction
Système d'énumération
Codage des nombres réels
Codage des caractères

Caractères : Alphabétique (A-Z, a-z), numérique (0,..., 9), ponctuation, spéciaux (&, \$, %,...) ... etc.

Données non numérique (addition n'a pas de sens)

Comparaison ou tri → très utile

Codage revient à créer une Table de correspondance entre les caractères et des nombres.

Codage des caractères Les standards

Code (ou Table) **ASCII** (American Standard Code for Information Interchange)

- 7 bits pour représenter 128 caractères (0 à 127)
- 48 à 57 : chiffres dans l'ordre (0,1,...,9)
- 65 à 90 : les alphabets majuscules (A ,..., Z)
- 97 à 122 : les alphabets minuscule (a ,..., z)

Codage des caractères Les standards

Table ASCII Etendu

- 8 bits pour représenter 256 caractères (0 à 255)
- Code les caractères accentués : à, è,...etc.
- Compatible avec ASCII

Code Unicode (mis au point en 1991)

- 16 bits pour représenter 65 536 caractères (0 à 65 535)
- Compatible avec ASCII
- Code la plupart des alphabets : Arabe, Chinois,
- On en a défini environ 50 000 caractères pour l'instant

Code ASCII Etendu

OF CIMAL VALUE	•	0	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240
-	DE CIMAL VALUE	0	ı	2	3	4	5	6	7	8	9	А	В	C	D	E	F
0	0	BLANK	-	SP	0	@	P	٤	p	Ç	É	á				∞	=
l	1		1		1	A	Q	a	q	ü	8	í				β	土
2	2	•	1	11	2	\mathbf{B}	R	b	r	é	Æ	ó	***		П	Ι,	\geq
3	3	*	!!	#	3	C	S	С	S	â	ŶO	ú				π	\leq
4	4	♦	TP	\$	4	D	T	d	t	ä	:0	ñ				Σ	
5	5	*	8	%	5	E	U	e	u	à	ò	Ñ			F	σ	\mathcal{J}
6	6	^	-	&	6	F	V	f	V	å	û	<u>a</u>			П	Դ	÷
7	7	BEL	1	,	7	G	W	g	w	Ų	ù	Ō	П			τ	\approx
8	8	BS	1	(8	H	X	h	x	ê	ÿ	ં				Φ	. O
9	9	НТ	Ţ)	9	I	Y	i	У	ë	Ö					Ө	•
10	Α	LF		*	• •	J	Z	j	Z	è	Ü	_				Ω	•
11	В	VT	•	+	•	K	[k	{	1	¢	1/2				δ	7
12	C	FF	FS	,	\ \	L	/	1	1	î	£	1/4				8	n
13	D	CR	GS		=	M]	m	}	ì	¥	i				φ	2
14	Ε	47	RS	•	>	7	^	n	7	Ä	R	~ <				\in	
1.5	F	ф	US	/	?	O		O	Δ	Å	£	>>				\cap	91 AWK

Unicode

پ 0800	<u>د</u> ۵۰۰۰	ع لے در م 86 لے در م	S	\$ 0500	ې ‱	.∱ 0680	06F0
خ 881	ر د 069	و 06A1	وَ §	4 0601	دي 661	े 06E1	\ 06F1
<u>ځ</u>	ز 0892) 86A2	گ ************************************	; 8602	<u>ح</u> 0602	් 06EZ	₹ 06FZ

E 0404	Д	Ф 0424	Д 0434	ф	€ 0454	Е	V 0474
S 0405	E 0415	X 0425	e 0435	X 0445	S 0455	Æ 9405	V 0475
I 0406	Ж 0416	Щ 0426	Ж	Щ 0445	i 0456	A 0466	V 0476

** 2600	2610	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2630	Q	X 2650	\$ 2660
•	S	Z	Ш	O +	Ŋ	ß
2001	2611	2521	2531	2641	2651	2551
•	x	€	≡	ď	m m	\Diamond
2602	2612	2622	2632	2642	2652	2662

Ce ne sont que des bits !!!

Caractères codés en ASCII Etendu (8 bits)

INFORMATIQUE

Ce ne sont que des bits !!!

Entiers codés en binaire pur sur 1 octets

```
73; 78; 70; 79; 82; 77; 65; 84; 73; 81; 85; 69 (base 10)
```


Entiers codés en binaire pur sur 2 octets

```
18766; 17999; 21069; 16724; 18769; 21829 (base 10)
```


Entiers codés en binaire pur sur 4 octets

```
1 229 866 575;
1 380 794 708;
1 230 067 013 (base 10)
```


Ce ne sont que des bits !!!

Nombres en flottant simple précision (32 bits)

01000001 01010100 01001001 01010001 01010101 01000101

```
+(1,10011100100011001001111).2^{19};
+(1,10011010100000101010100).2^{37};
+(1,1010001010101010101010101).2^{19};
      844 900,9375;
       220 391 079 936;
      857 428,3125 (base 10)
```


Fin du cours