Прикладная алгебра и теория чисел

Оглавление

1	Вво	одная информация	3
	1.1	Группы	3
	1.2	Поля и кольца	4
2	Пом	мехоустойчивое кодирование	5
	2.1	Метрика Хэмминга	
	2.2	Примеры кодов	(
		2.2.1 С проверкой на четность	(
		2.2.2 Дублирующий код	7
	2.3	Код Хэмминга	7
	2.4	Оптимальность	8
	2.5	Групповые и линейные коды	8

Глава 1

Вводная информация

Эта глава содержит определения, утверждения и теоремы о группах, кольцах и полях. Эта информация понадобится для понимания дальнейшего материала.

1.1 Группы

Определение 1 (Группа). Γ p y n n o \ddot{u} \mathfrak{G} называется четверка $(G, *^{(2)}, e^{(0)}, -1^{(1)}), \ \epsilon \partial e$

$$\begin{cases} x * (y * z) = (x * y) * z, \\ x * e = x, \\ x * x^{-1} = e \end{cases}$$

Определение 2 (Абелева группа). *А* белевой группа ой называется группа, в которой * коммутативна (x * y = y * x).

Определение 3 (Порядок). Π о p я ∂ о κ ϵ p y n n ω , ord \mathfrak{G} — количество элементов.

Определение 4 (Циклическая группа). $G = \{e, x^1, x^2, x^3, \dots, x^{-1}, x^{-2}, x^{-3}, \dots\}$

Определение 5 (Подгруппа). \mathfrak{G} - группа (G, *, e, -1). U множество $H \subseteq G$. Тогда \mathfrak{H} называется n о d r p y n n о \mathring{u} , если замкнута относительно операци \mathring{u} *, e, -1.

Продолжение следует...

1.2 Поля и кольца

Будет написано...

Глава 2

Помехоустойчивое кодирование

2.1 Метрика Хэмминга

Рисунок

Определение 6 (Метрика Хэмминга). Σ - алфавит, n - длина слова. Слова $u, v \in \Sigma^n$. Тогда метрика Хэмминга, $\rho(u, v)$ — количество позиций в словах u, v, s которых они различаются.

Теорема 1. ρ — метрика.

Доказательство. Проверим все свойства метрик:

- $\bullet \rho(u,v) = 0 \Leftrightarrow u = v$
- $\bullet \ \rho(u,v) = \rho(v,u)$
- $\rho(u,v) \geq 0$

Отрезки

 $\Sigma^m \xrightarrow{f} \Sigma^n \leadsto \Sigma^n \xrightarrow{g} \Sigma^m$

c — кодовое слово

c' — слово с ошибками

Окружности

Теорема 2. Код обнаруживает n ошибок $\Leftrightarrow \rho(c_1, c_2) > n$ для любых кодовых слов c_1, c_2 .

Доказательство. (\Rightarrow) Допустим $\rho(c_1, c_2) \leq n$. c_1 и c_2 отличаются не более чем в n позициях. Можно в c_1 сделать n ошибок и получить c_2 .

 $(\Leftarrow)\ \rho(c_1,c_2)>n.$ Слово c' содержит не больше n ошибок, c — исходное слово. Следовательно, если $c\neq c'$ — ошибки были.

Определение 7 (Наименьшее расстояние). *Наименьшее расстояние меже-* ду кодовыми словами (м и н и м а л ь н о е р а а с т о я н и е к о д а) — число измененных символов, необходимое для перехода одного кодового слова в другое.

Минимальное расстояние кода является главной характеристикой кода.

Теорема 3. Код может исправить $\leq n$ ошибок \Leftrightarrow минимальное расстояние этого кода > 2n.

Доказательство. (\Rightarrow) Допустим, минимальное расстояние $\leq 2n$.

$$\rho(c_1, c_2) \le 2n$$

Существует c': $\rho(c', c_1) \leq n$ и $\rho(c', c_2) \leq n$.

 c^\prime — принятое сообщение. Исправление невозможно.

$$(\Leftarrow) \rho(c_1, c_2) > 2n.$$

c' — слово с не более чем n ошибками. Существует единственное кодовое слово c, для которого $\rho(c,c') \leq n$. Следовательно, c — единствено возможный результат декодирования.

2.2 Примеры кодов

2.2.1 С проверкой на четность

Алфавит $\Sigma = \{0,1\}, \, m$ — длина слов. Тогда f — кодирующая функция:

$$f(u) = u\Big(\sum_{i=1}^{m} u\Big),\,$$

где $u \in \Sigma^m$.

Минимальное расстояние этого кода = 2. Следовательно, он может обнаружить 1 ошибку, но ни одной не может исправить.

2.2.2 Дублирующий код

Кодирующая функция f:

$$f(u) = \underbrace{uu \dots u}_{\text{k pa3}},$$

где $u \in \Sigma^m$, $k \in \omega$.

Минимальное расстояние дублируещего кода равен количеству повторений (k). Следовательно, он может обнаружить k-1 ошибку, а исправить $\left[\frac{k-1}{2}\right]$. Основным минусом этого кода является то, что он порождает слишком длинные кодовые слова.

2.3 Код Хэмминга

 $r \in \mathbb{Z}^+$. Числа $\neq 0$ с двоичной записью длины $\leq r$. Матрица $r \times (2^r - 1)$. Пусть r = 3, получается матрица 3×8 :

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

u — исходное слово, $|u|=2^r-1-r.\ v$ — проверочная часть, |v|=r. Тогда кодовое слово - uv. Получаем $(2^r-1-r,\,2^r-1)$ -код.

 v_i : i-й столбец, просуммировать u отмеченные 1.

$$v_i = \sum_{u} u_j \times a_{ij}$$

Минимальное расстояние: 3.

Добавить пояснение

2.4 Оптимальность

d > 2

Рисунок

$$(m, n)$$
-код. $2^m (1+n) \le 2^n$

Определение 8 (Совершенный код). $C \circ s e p u e h h u i k o d - «шары» полностью закрывают пространство: <math>2^m(1+n) = 2^n$.

Для кода Хэмминга:
$$2^{2^r-1-r}(1+2^r-1)=2^{2^r-1}$$
.

2.5 Групповые и линейные коды

Следствие 1. Если поле \mathfrak{F} простое, то линейный и групповой код совпадают.

Доказательство. (\Leftarrow) $u, a \in \mathfrak{F}$

$$a = 1 + \ldots + 1, \ a \times u = u + \ldots + u$$

 $\rho(c_1, c_2) = \rho(c_1 - c_1, c_2 - c_1) = \rho(0, c_2 - c_1) = w(c_2 - c_1).$

Количество ненулевых элементов в u — вес u. Обозначение: w(u).

Следствие 2. Минимальное расстояние группового кода = w(c) — кодовое слово наименьшего веса.

 Σ^m — исходные вектора. $\Sigma^n\supseteq L$ — множество кодовых слов. $|L|=|\Sigma^m|, \dim L=m.$

$$\{u_1,\ldots,u_m\} = \begin{cases} (10\ldots0)\\ (0\ldots01) \end{cases}$$

Определение 10 (Системный код). $Cucmem n n u \ddot{u} \kappa o \partial - линейный код <math>c$ матрицей $eu\partial a$