Lab 5 -Inference for numerical data

CUNY MSDA DATA 606

Duubar Villalobos Jimenez mydvtech@gmail.com April 2, 2017

North Carolina births

In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.

Exploratory analysis

Load the nc data set into our workspace.

load("more/nc.RData")

We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.

variable	description
fage	father's age in
	years.
mage	mother's age in
	years.
mature	maturity status
	of mother.
weeks	length of
	pregnancy in
	weeks.
premie	whether the birth
	was classified as
	premature
	(premie) or
	full-term.
visits	number of
	hospital visits
	during
	pregnancy.
marital	whether mother
	is married or
	${\tt not\ married\ } at$
	birth.
gained	weight gained by
	mother during
	pregnancy in
	pounds.

variable	description
weight	weight of the
	baby at birth in
	pounds.
lowbirthweight	whether baby
	was classified as
	low birthweight
	(low) or not (not
	low).
gender	gender of the
	baby, female or
	male.
habit	status of the
	mother as a
	nonsmoker or a
	smoker.
whitemom	whether mom is
	white or not
	white.
	-

1. What are the cases in this data set? How many cases are there in our sample?

As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:

summary(nc)

```
##
         fage
                           mage
                                            mature
                                                           weeks
##
    Min.
            :14.00
                     Min.
                             :13
                                   mature mom :133
                                                       Min.
                                                               :20.00
##
    1st Qu.:25.00
                     1st Qu.:22
                                   younger mom:867
                                                       1st Qu.:37.00
##
    Median :30.00
                     Median:27
                                                       Median :39.00
            :30.26
                                                               :38.33
##
    Mean
                     Mean
                             :27
                                                       Mean
##
    3rd Qu.:35.00
                     3rd Qu.:32
                                                       3rd Qu.:40.00
            :55.00
##
    Max.
                     Max.
                             :50
                                                       Max.
                                                               :45.00
##
    NA's
            :171
                                                       NA's
                                                               :2
##
          premie
                          visits
                                             marital
                                                              gained
##
    full term:846
                             : 0.0
                                                  :386
                                                         Min.
                                                                 : 0.00
                     Min.
                                     married
##
    premie
             :152
                     1st Qu.:10.0
                                      not married:613
                                                         1st Qu.:20.00
##
    NA's
              : 2
                     Median:12.0
                                     NA's
                                                         Median :30.00
##
                     Mean
                             :12.1
                                                         Mean
                                                                 :30.33
##
                     3rd Qu.:15.0
                                                         3rd Qu.:38.00
##
                     Max.
                             :30.0
                                                         Max.
                                                                 :85.00
##
                     NA's
                             :9
                                                         NA's
                                                                 :27
                                          gender
##
        weight
                      lowbirthweight
                                                           habit
##
    Min.
           : 1.000
                      low
                              :111
                                       female:503
                                                     nonsmoker:873
##
    1st Qu.: 6.380
                      not low:889
                                       male
                                            :497
                                                               :126
                                                     smoker
##
    Median : 7.310
                                                     NA's
##
    Mean
           : 7.101
    3rd Qu.: 8.060
##
##
    Max.
            :11.750
##
##
         whitemom
##
    not white:284
##
    white
              :714
```

```
## NA's : 2
##
##
##
##
```

As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren't sure or want to take a closer look at the data, make a graph.

Consider the possible relationship between a mother's smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.

2. Make a side-by-side boxplot of habit and weight. What does the plot highlight about the relationship between these two variables?

The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.

```
by(nc$weight, nc$habit, mean)

## nc$habit: nonsmoker

## [1] 7.144273

## ------

## nc$habit: smoker

## [1] 6.82873
```

There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test.

Inference

3. Check if the conditions necessary for inference are satisfied. Note that you will need to obtain sample sizes to check the conditions. You can compute the group size using the same by command above but replacing mean with length.

Answer:

```
by(nc$weight, nc$habit, length)

## nc$habit: nonsmoker

## [1] 873

## ------

## nc$habit: smoker

## [1] 126
```

Yes, the sample size conditions are satisfied since each group is over 30.

4. Write the hypotheses for testing if the average weights of babies born to smoking and non-smoking mothers are different.

Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.

Warning: package 'BHH2' was built under R version 3.3.3

```
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## HO: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
               8
10
\infty
9
4
                                 0
                                 0
                                 0
\sim
                                                                                0.32
                                                       -0.32
                                                                      0
          nonsmoker
                              smoker
                    nc$habit
```

Let's pause for a moment to go through the arguments of this custom function. The first argument is y, which is the response variable that we are interested in: nc\$weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc\$habit. The third argument, est, is the parameter we're interested in: "mean" (other options are "median", or "proportion".) Next we decide on the type of inference we want: a hypothesis test ("ht") or a confidence interval ("ci"). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be "less", "greater", or "twosided". Lastly, the method of inference can be "theoretical" or "simulation" based.

5. Change the type argument to "ci" to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.

By default the function reports an interval for $(\mu_{nonsmoker} - \mu_{smoker})$. We can easily change this order by

using the order argument:

```
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
          alternative = "twosided", method = "theoretical",
          order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
                                 8
10
\infty
9
                                 0
               0
               0
^{\circ}
               0
            smoker
                            nonsmoker
                    nc$habit
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
```

On your own

• Calculate a 95% confidence interval for the average length of pregnancies (weeks) and interpret it in context. Note that since you're doing inference on a single population parameter, there is no explanatory variable, so you can omit the x variable from the function.

```
inference(y = nc$weeks, est = "mean", type = "ci", null = 0, alternative = "twosided", method = "theore")
```

```
## Single mean
## Summary statistics:
```



```
## mean = 38.3347; sd = 2.9316; n = 998 ## Standard error = 0.0928 ## 95 % Confidence interval = ( 38.1528 , 38.5165 )
```

• Calculate a new confidence interval for the same parameter at the 90% confidence level. You can change the confidence level by adding a new argument to the function: conflevel = 0.90.

```
inference(y = nc$weeks, est = "mean", type = "ci", conflevel = 0.90, null = 0, alternative = "twosided"
## Single mean
## Summary statistics:
```



```
## mean = 38.3347; sd = 2.9316; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
```

• Conduct a hypothesis test evaluating whether the average weight gained by younger mothers is different than the average weight gained by mature mothers.

Since our **p-value is > 0.05** we accept our NULL hypothesis; that is that the average weight gained by mature women is not different that the average weight gained by younger mothers.

• Now, a non-inference task: Determine the age cutoff for younger and mature mothers. Use a method of your choice, and explain how your method works.

```
by(nc$mage, nc$mature, summary)
## nc$mature: mature mom
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
     35.00
             35.00
                      37.00
                              37.18
                                       38.00
                                               50.00
##
## nc$mature: younger mom
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
     13.00
             21.00
                      25.00
                              25.44
                                       30.00
                                               34.00
Boxplot
boxplot(nc$mage ~ nc$mature, col="lightgray")
```


Younger Mother's Age cutoff: from 13 years old to 34 years old.

Mature Mother's Age cutoff: from 35 years old to 50 years old.

The method employed was by using the function by(). It will return the desired data.

• Pick a pair of numerical and categorical variables and come up with a research question evaluating the relationship between these variables. Formulate the question in a way that it can be answered using a hypothesis test and/or a confidence interval. Answer your question using the inference function, report the statistical results, and also provide an explanation in plain language.

Answer:

Research Question: Do the mother's age has an incidence on low birth weight?

```
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_low = 111, mean_low = 26.964, sd_low = 6.7755
## n_not low = 889, mean_not low = 27.0045, sd_not low = 6.1439
## Observed difference between means (low-not low) = -0.0405
##
## HO: mu_low - mu_not low = 0
## HA: mu_low - mu_not low != 0
## Standard error = 0.675
## Test statistic: Z = -0.06
```


Since our **p-value is > 0.05** we accept our NULL hypothesis; that is that the average mother's age has no incidence in low birth weight.

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.