	Lecture 5 (Ch.1) Std. Normal
	Last time we learned about a few special dists (Bernoulli, Binon).
	There are a few (move) special distributions which arise
	frequently either because they have desirable mathematical
	properties, or because there are lots of data in The
	real world whose histograms look like these distributions.
1)	Exponential (family), $x = cont$.
	E.g. Radiated Heat (ic. energy of particles)
	-Ax fex) prop. of particles
	f(x) = { 10
	Note the payamenter mening
	7 No X
	Aso Later we will see That particles Lean be interpreted as a "mean!" coming out of uvarian.
	L' can be interpreted as a "mean!" coming out
	A nother example: (inter-)arrival time between indep. events.
	The they example: (Inter garrival time butween trace, events.
2)	Poisson, x= discrete
	$p(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, 2, \dots$
	tw. x1
70	ranter. 2.5. # of bombs dropped over London per block.
	7
	1 = avg. vato " " 1 >0

3) Binomial, x= discrete We'll derive its mass function, next time, but it's: $p(x) = \frac{n!}{x! (n-x)!}$ $p(x) = \frac{n!}{x! (n-x)!}$ $p(x) = \frac{n!}{x! (n-x)!}$ $p(x) = \frac{n!}{x! (n-x)!}$ Note it is a mass function; p(x) >0, \(\hat{\infty}\) p(x) =1 " it has parameters / meaning: N, 77. [n=integers, 0/7(1) Depending on the value of the povams, it can look like Again, note:

Isok like

hist, but

no data.

Small n

Large n

In Lab you'll see how these look for different 77 values. E.g. # of Heads out of n tosses. # of defective gates on a chip with n gates # of girls in a sample of size n E

Important: Resist the temptotion to call μ and or mean" and "standard deviation", at least for now. Otherwise you'll get very confused. They are simply parameters of the distribution.

	Recall given a distr., we can compute the proportion
	of times & will be between 2 values:
	(And also remember that proportions are important because
	They are measurable Things) For binomial $(n_1 \pi)$: $\sum_{n=a}^{b} \binom{n}{n} \pi^n (1-\pi)^{n-n}$
7	For binomial $(N_1 \pi)$: $\chi_{=a}$ (x) π $(1-\pi)$
7	For Mormal (M,0): $= \sqrt{2\pi\sigma^2}$ $= \sqrt{2\pi\sigma^2}$
	$\sqrt{2\pi\sigma^2}$
- >	For std. Normal: 1 e-2x dx
	For std. Normal: $\frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-\frac{1}{2}x^{2}} dx$ Note: Std. Normal = Normal ($\mu=0$, $\sigma=1$).
	= Novince(piss, dis).
	Unfortunately, integrals of this type can be done only
	numerically. Their values are tabulated in Table I. F.J.
	$\frac{-2.23}{f(x) dx} = 0.0129$
	$\int_{-\infty}^{-2.23} f(x) dx = 0.0129$
	2.23
	Note: Std. Normal is symmetric.
	In 390, Use Table I, HOT computers / calculators, except for problems That say "By R".
	except for problems That say "By R".

a)
$$\int_{0}^{\infty} 1e^{-\lambda x} dx = 1$$

b)
$$\frac{e^{-\lambda}}{x} = 1$$
 [Hint: use the Taylor series expansion for ext

b)
$$\frac{e^{-\lambda}}{x!} = 1$$
 [Hint: use the Taylor Series expansion for eta]

c) $\frac{e^{-\lambda}}{x!} = 1$ [use $\int_{-\infty}^{\infty} -\frac{1}{x^2} x^2 dx = \sqrt{2\pi}$]

- ∞

(hw- (ext 5-2)

Suppose the density function for a is given by The Normal dist. with parameters u, o. I.e.

$$f(x) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2}\left(\frac{x-M}{\sigma}\right)^2}$$

a) Compute The donsity function fiz), for z= x-M.

Hint: f(z) must satisfy $\int_{-\infty}^{z} f(z) dz = 1$.

and massage The expression until it becomes $\int_{-\infty}^{\infty} [---]dz = 1$. Then f(2) = [---].

Note: It is not necessary to perform any integrals.

b) From the form of f(z), read of f its u and of parameters. I.e. What are their values?

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.