Álgebra homológica, día 13

Alexey Beshenov (cadadr@gmail.com)

24 de agosto de 2016

1. Anillos y módulos graduados

Para cada R-módulo M se pueden construir de manera canónica ciertas R-álgebras graduadas T(M) y $\Lambda(M)$, llamadas el **álgebra tensorial** y **álgebra exterior** de M. Primero recordemos las definiciones de álgebras graduadas.

1.1. Definición. Un R-álgebra (asociativa) es un R-módulo con multiplicación bilineal

$$\cdot : A \times A \to A$$

que tiene una identidad $1 \in A$ tal que para cada $x \in A$

$$1 \cdot x = x \cdot 1 = x$$

y que es asociativa:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
.

Un **morfismo** de *R*-álgebras es una aplicación $\phi: A \to B$ que es *R*-lineal y un homomorfismo de anillos:

$$\phi(r \cdot x) = r \cdot \phi(x),$$

$$\phi(x + y) = \phi(x) + \phi(y),$$

$$\phi(x \cdot y) = \phi(x) \cdot \phi(y),$$

$$\phi(1_A) = 1_B.$$

Nuestras álgebras no son conmutativas.

1.2. Definición. Se dice que *A* es una *R*-álgebra **graduada** si tenemos una descomposición en suma directa de *R*-módulos

$$A=\bigoplus_{n\in\mathbb{Z}}A_n,$$

que satisface $R \cdot A_n \subseteq A_n$ y $A_m \cdot A_n \subseteq A_{m+n}$.

Un **morfismo** de álgebras graduadas $\phi: A \to B$ es un morfismo de álgebras que satisface $\phi(A_n) \subseteq B_n$ para cada $n \in \mathbb{Z}$.

Si tenemos $x \in A_n$ para algún $n \in \mathbb{Z}$, se dice que x es un elemento de grado deg x = n y que x es **homogéneo**. Los elementos de A son sumas finitas de elementos homogéneos. Las álgebras graduadas sobre R forman una categoría que vamos a denotar por R-ÁlgGr.

1.3. Ejemplo. El anillo de polinomios $A := R[X_1, \dots, X_n]$ es una R-álgebra graduada por R-módulos libres

$$A_d := R \left\langle \text{monomios } X^{i_1} \cdots X^{i_n} \text{ de grado total } d = i_1 + \cdots + i_n \right\rangle.$$

 \blacktriangle

2. Álgebra tensorial y exterior

2.1. Definición. Para un R-módulo M su **álgebra tensorial** es la R-álgebra graduada

$$T(M) := \bigoplus_{n>0} M^{\otimes n},$$

donde

$$M^{\otimes 0} := R$$
 y $M^{\otimes n} := \underbrace{M \otimes_R \cdots \otimes_R M}_n$ para $n > 0$.

y la multiplicación es inducida por

$$M^{\otimes m} \times M^{\otimes n} \to M^{\otimes (m+n)},$$
$$((x_1 \otimes \cdots \otimes x_m), (y_1 \otimes \cdots \otimes y_n)) \mapsto x_1 \otimes \cdots \otimes x_m \otimes y_1 \otimes \cdots \otimes y_n.$$

(se ve que es una aplicación R-bilineal que se extiende a la multiplicación sobre T(M)).

2.2. Observación. T(-) es un funtor R-**Mód** $\to R$ -**ÁlgGr**. A saber, para un morfismo de R-módulos $\phi \colon M \to N$ existe un único morfismo de R-álgebras graduadas $T(\phi) \colon T(M) \to T(N)$ que coincide con ϕ en grado 1:

$$M \xrightarrow{\phi} N \downarrow \qquad \downarrow \\ T(M) \xrightarrow{T(\phi)} T(N)$$

Este funtor es adjunto por la izquierda al funtor olvidadizo

$$R$$
-ÁlgGr $\rightarrow R$ -Mód, $A \mapsto A_1$.

Es decir, existe una biyección natural

$$\operatorname{Hom}_{\mathbf{R}\text{-}\mathbf{\acute{A}lgGr}}(T(M),A) \cong \operatorname{Hom}_{R\text{-}\mathbf{M\acute{o}d}}(M,A_1).$$

Demostración. Cada elemento del álgebra T(M) es una suma de elementos de la forma $x_1 \otimes \cdots \otimes x_n$, es decir, productos de elementos de grado 1, por lo que cada morfismo de álgebras graduadas $T(M) \to A$ queda definido de modo único por su restricción al morfismo correspondiente de R-módulos $\phi: M \to A_1$:

$$M^{\otimes n} \to A_n$$
, $x_1 \otimes \cdots \otimes x_n \mapsto \phi(x_1) \cdots \phi(x_n)$.

En particular, un morfismo de R-módulos, $\phi \colon M \to N$ induce un morfismo de R-álgebras graduadas $T(\phi) \colon T(M) \to T(N)$ definido en cada grado por

$$M^{\otimes n} \to N^{\otimes n}$$
, $x_1 \otimes \cdots \otimes x_n \mapsto \phi(x_1) \otimes \cdots \otimes \phi(x_n)$.

Está claro que $\phi \rightsquigarrow T(\phi)$ es un funtor.

2.3. Definición. Para un R-módulo su álgebra exterior es

$$\Lambda(M) := T(M)/I,$$

donde I es el ideal bilátero de T(M) generado por elementos $x \otimes x$ para $x \in M$. Es un ideal homogéneo (generado por elementos de grado 2), y entonces se ve que $\Lambda(M)$ es también una R-álgebra graduada con la graduación inducida por la graduación de M:

$$\Lambda(M) = \bigoplus_{n \ge 0} \Lambda^n(M).$$

La multiplicación en $\Lambda(M)$ se denota por \wedge . La imagen de $x_1 \otimes \cdots \otimes x_n \in M^{\otimes n}$ en $\Lambda^n(M)$ es $x_1 \wedge \cdots \wedge x_n$.

Cada elemento homogéneo $x \in \Lambda^n(M)$ es una suma de elementos de la forma $x_1 \wedge \cdots \wedge x_n$ para algunos $x_i \in M$. Por la definición de $\Lambda(M)$, tenemos $x \wedge x = 0$ para cada $x \in M$. Esto implica también que

- 1) para cada $x, y \in M$ tenemos $x \wedge y = -y \wedge x$ (de hecho, $0 = (x + y) \wedge (x + y) = x \wedge y + y \wedge x$);
- 2) para cada elemento de la forma $x = x_1 \wedge \cdots \wedge x_n$ tenemos $x \wedge x = 0$.
- **2.4.** Ejercicio. Deduzca que en general,
 - 1) si x e y son elementos homogéneos en $\Lambda(M)$, entonces

$$x \wedge y = (-1)^{\deg x \cdot \deg y} y \wedge x;$$

2) si x es un elemento homogéneo en $\Lambda(M)$, entonces

$$x \wedge x = 0$$
 si deg x es impar.

Todo esto quiere decir que el álgebra $\Lambda(M)$ es conmutativa salvo signos \pm que dependen del grado de elementos.

- **2.5. Definición.** Se dice que una *R*-álgebra graduada *A* es **conmutativa*** si
 - 1) si x y y son elementos homogéneos en A, entonces

$$x \cdot y = (-1)^{\deg x \cdot \deg y} y \wedge x;$$

2) si *x* es un elemento homogéneo en *A*, entonces

$$x \cdot x = 0$$
 si deg x es impar.

Vamos a denotar por *R*-ÁlgGrConm la categoría de *R*-álgebras graduadas conmutativas en el sentido de arriba.

2.6. Observación. $\Lambda(-)$ es un funtor R-**Mód** $\to R$ -**ÁlgGrConm**. A saber, para un morfismo de R-módulos $\phi \colon M \to N$ existe un único morfismo de R-álgebras graduadas conmutativas $\Lambda(\phi) \colon \Lambda(M) \to \Lambda(N)$ que coincide con ϕ en grado 1:

^{*}En inglés, también se dice "skew-commutative", "graded-commutative" o "supercommutative", pero es la única noción de conmutatividad de las álgebras graduadas que vamos a ocupar, así que voy a decir simplemente que A es conmutativa.

$$M \xrightarrow{\phi} N \\ \downarrow \qquad \qquad \downarrow \\ \Lambda(M) \xrightarrow{\Lambda(\phi)} \Lambda(N)$$

Este funtor es adjunto por la izquierda al funtor olvidadizo

$$R$$
-ÁlgGrConm $\rightarrow R$ -Mód,
 $A \mapsto A_1$.

Es decir, existe una biyección natural

$$\operatorname{Hom}_{\mathbf{R}\text{-}\mathbf{\acute{A}lgGrConm}}(\Lambda(M),A)\cong \operatorname{Hom}_{R\text{-}\mathbf{M\acute{o}d}}(M,A_1).$$

Demostración. Un morfismo de R-módulos, $\phi \colon M \to N$ induce un morfismo de R-álgebras graduadas conmutativas $\Lambda(\phi) \colon \Lambda(M) \to \Lambda(N)$ definido en cada grado por

$$\Lambda^{n}(M) \to \Lambda^{n}(M),$$

 $x_1 \wedge \cdots \wedge x_n \mapsto \phi(x_1) \wedge \cdots \wedge \phi(x_n).$

Está claro que $\phi \rightsquigarrow \Lambda(\phi)$ es un funtor.

En general, si A es un álgebra graduada conmutativa, entonces cada morfismo de R-módulos $M \to A_1$ se extiende de modo único a un morfismo de R-álgebras $\phi \colon T(M) \to A$. Luego, A es graduada conmutativa, de donde $\phi(x)^2 = 0$ para cada $x \in T^1(M)$ y en consecuencia ϕ induce un único morfismo $\phi \colon \Lambda(M) \to A$.

2.7. Ejercicio. Sean A y B dos R-álgebras graduadas conmutativas. Sea $A \otimes_R B$ su producto tensorial como R-módulos. Es graduado de modo natural:

$$(A \otimes_R B)_n = \bigoplus_{p+q=n} A_p \otimes_R B_q.$$

Definamos un producto sobre $A \otimes_R B$ por la fórmula

$$(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) := (-1)^{\deg a_2 \cdot \deg b_1} (a_1 \cdot a_2) \otimes (b_1 \cdot b_2).$$

- 1) Con este producto, $A \otimes_R B$ es también un R-álgebra graduada conmutativa.
- 2) $A \otimes_R B$ satisface la propiedad universal de coproductos en la categoría R-ÁlgGrConm.

Cada funtor adjunto por la izquierda preserva coproductos. Entonces tenemos

2.8. Corolario. Para R-módulos M y N hay isomorfismo natural de álgebras graduadas conmutativas

$$\Lambda(M \oplus N) \cong \Lambda(M) \otimes_R \Lambda(N).$$

En particular,

$$\Lambda^n(M \oplus N) \cong \bigoplus_{p+q=n} \Lambda^p(M) \otimes_R \Lambda^q(N).$$

- **2.9. Ejercicio.** 1) Sea M un R-módulo libre de rango n, es decir $M \cong R^{\oplus n}$. Entonces $\Lambda^k(M)$ es un R-módulo libre de rango $\binom{n}{k}$. En particular, $\Lambda^k(M) = 0$ para k > n.
 - 2) Deduzca la identidad combinatoria

$$\binom{n+m}{k} = \sum_{p+q=k} \binom{n}{p} \binom{m}{q}.$$

3. Complejos de Koszul y homología de Koszul

3.1. Definición. Sea F un R-módulo (libre para nuestros objetivos) y $f: F \to R$ un morfismo R-lineal. El **complejo de Koszul** $K_{\bullet}(f)$ es el complejo (con numeración homológica) definido por

$$K_{\bullet}(f): \cdots \to \Lambda^{4}(F) \to \Lambda^{3}(F) \to \Lambda^{2}(F) \to F \xrightarrow{f} R \to 0$$

con diferenciales

$$d_k \colon \Lambda^k(F) \to \Lambda^{k-1}(F),$$

$$x_1 \wedge \dots \wedge x_k \mapsto \sum_{1 \leq i \leq k} (-1)^{i+1} f(x_i) x_1 \wedge \dots \wedge \widehat{x}_i \wedge \dots \wedge x_k.$$

Aquí \hat{x}_i significa que x_i se omite del producto exterior $x_1 \wedge \cdots \wedge x_k$. Si M es un R-módulo, la **homología de Koszul** correspondiente está definida por

$$H_n(f;M) := H_n(K_{\bullet}(f) \otimes_R M).$$

Antes de todo, se ve que la fórmula de arriba define un morfismo de R-módulos $d_n \colon \Lambda^k(F) \to \Lambda^{k-1}(F)$. Tenemos que ver que $K_{\bullet}(f)$ es de verdad un complejo:

3.2. Observación. Tenemos $d_{k-1} \circ d_k = 0$ para cada k.

Demostración. Podemos escribir

$$d_k = \sum_{1 \le i \le k} (-1)^{i+1} \, \partial_i,$$

donde ∂_i es la aplicación

$$x_1 \wedge \cdots \wedge x_k \mapsto f(x_i) x_1 \wedge \cdots \wedge \widehat{x_i} \wedge \cdots \wedge x_k$$

Tenemos

$$d_{k-1} \circ d_k = \sum_{\substack{1 \leq i \leq k-1 \\ 1 < j < k}} (-1)^{i+j} \, \partial_i \circ \partial_j = \sum_{1 \leq i < j \leq k} (-1)^{i+j} \, \partial_i \circ \partial_j + \sum_{1 \leq j \leq i \leq k-1} (-1)^{i+j} \, \partial_i \circ \partial_j.$$

Observamos que

$$\partial_i \circ \partial_i = \partial_{i-1} \circ \partial_i$$
 para $i < j$.

Entonces

$$d_{k-1} \circ d_k = \sum_{1 \le i < j \le k} (-1)^{i+j} \, \partial_{j-1} \circ \partial_i + \sum_{1 \le j \le i \le k-1} (-1)^{i+j} \, \partial_i \circ \partial_j.$$

Cambiando el índice de la primera suma por j-1, obtenemos

$$-\sum_{1\leq i\leq j\leq k-1}(-1)^{i+j}\,\partial_j\circ\partial_i+\sum_{1\leq j\leq i\leq k-1}(-1)^{i+j}\,\partial_i\circ\partial_j=0.$$

Hemos demostrado que en general, si ∂_i son algunos morfismos $C_n \to C_{n-1}$ que satisfacen la identidad

(*)
$$\partial_i \circ \partial_j = \partial_{j-1} \circ \partial_i$$
 para $i < j$,

entonces la fórmula $\sum_{1 \le i \le k} (-1)^{i+1} \partial_i$ define el diferencial del complejo C_{\bullet} . En topología algebraica todos los diferenciales que se construyen de modo explícito tienen esta forma (por ejemplo el complejo singular, complejo de Čech, etc.). La identidad (*) es una de las **identidades simpliciales**.

JEAN-LOUIS KOSZUL (1921–) es un matemático francés, estudiante de Henri Cartan, conocido por sus contribuciones en álgebra y geometría. Varios conceptos en el álgebra homológica tienen su nombre: álgebras de Koszul, dualidad de Koszul, cohomología de Koszul, etc. Sin embargo, los complejos de Koszul no fueron descubiertos por Koszul; ya habían aparecido en trabajos de Cayley (1821–1895) y Hilbert (1862–1943) antes de que Koszul naciera.

3.3. Observación. La construcción del complejo de Koszul es funtorial. A saber, si tenemos dos R-módulos F_1 y F_2 con aplicaciones R-lineales $f_1: F_1 \to R$ y $f_2: F_2 \to R$ y morfismo de R-módulos $\phi: F_1 \to F_2$ que conmuta con f_1 y $f_2:$

entonces ϕ induce de modo funtorial un morfismo de complejos de Koszul $K_{\bullet}(f_1) \to K_{\bullet}(f_2)$.

Demostración. Las álgebras exteriores $\Lambda^k(-)$ son funtoriales, de donde en cada grado tenemos morfismos $\Lambda^k(\phi) \colon \Lambda^k(F_1) \to \Lambda^k(F_2)$. Solo tenemos que ver que es un morfismo de complejos:

$$\Lambda^{k}(F_{1}) \xrightarrow{d_{k}^{1}} \Lambda^{k-1}(F_{1})$$

$$\Lambda^{k}(\phi) \downarrow \qquad \qquad \downarrow \Lambda^{k-1}(\phi)$$

$$\Lambda^{k}(F_{2}) \xrightarrow{d_{k}^{2}} \Lambda^{k-1}(F_{2})$$

y de hecho,

$$\Lambda^{k-1}(\phi) \circ d_k^1(x_1 \wedge \dots \wedge x_k) = \sum_{1 \leq i \leq k} (-1)^{i+1} f_1(x_i) \phi(x_1) \wedge \dots \wedge \widehat{\phi(x_i)} \wedge \dots \wedge \phi(x_k)$$

$$= \sum_{1 \leq i \leq k} (-1)^{i+1} f_2 \circ \phi(x_i) \phi(x_1) \wedge \dots \wedge \widehat{\phi(x_i)} \wedge \dots \wedge \phi(x_k)$$

$$= d_k^2 \circ \Lambda^k(\phi)(x_1 \wedge \dots \wedge x_k).$$