011696096

CPT_S 515 Advanced Algorithms HW#4

- 1. Step 1: For each walk α from initial to final. We use $\#_p(\alpha)$ to denote the number of pump instruction p on the α .
 - Step 2: For each $\#_p(\alpha)$ on the α , we can obtain a formula:

$$W_p(x_1, x_2, \dots, x_k, \#_p(\alpha))$$

Step 3: After running the entire α , the water levels (from 0's) satisfy:

 $\exists \; x_{1,p}, \dots, x_{k,p} \;, p \in pump \; instructions \; on \; M$

$$x_1 = \sum_p x_{1,p} \land$$

$$x_2 = \sum_{p} x_{2,p} \wedge$$

 $x_k = \sum_p x_{k,p} \wedge$

$$\forall p: W_p(x_{1,p}, x_{2,p}, ..., x_{k,p}, \#_p(\alpha))$$

Step 4: Denote the formula above as:

$$W_{\alpha}(x_1, x_2, \dots, x_k)$$

For each fixed α , W_{α} is a Boolean combination of linear constraints over real variables.

Step 5: Let Γ be the set of all α from initial to final. For each α , we have a formula for water levels:

$$W_{\alpha}(x_1, x_2, \dots, x_k)$$

Step 6: I use vector $\#(\alpha)$ to denote the number of different pump instructions on the α .

For all $\alpha \in \Gamma$, we obtain a set of vectors $V = \{\#(\alpha) : \alpha \in \Gamma\}$

Step 7: There is an integer linear constraints system Q(v), s.t.

$$\forall v, v \in V \ iff Q(v) \ holds$$

Now, for each $\alpha \in \Gamma$, we have $W_{\alpha}(x_1, x_2, ..., x_k)$.

For all α , we have $V = \{\#(\alpha) : \alpha \in \Gamma\}$, that is characterized by Q.

Step 8: Combine Q and $W_{\alpha}(x_1, x_2, ..., x_k)$, we get an integer linear constraints system:

$$W_{\alpha}(x_1, x_2, \dots, x_k, \#(\alpha)).$$

Step 9: If $\exists \alpha, s.t. W_{\alpha}(x_1, x_2, ..., x_k, \#(\alpha))$ and $Bad(x_1, x_2, ..., x_k)$ are satisfied, we can say M has a bad walk.

2. Step 1: If it is a fair dice, we expect the frequency of each number to be 1 / 6.

Step 2: Build a table to record all results of tossing as shown below:

Outcomes (number)	Occurrences (A_i)	Expectations (E_i)				
1	x_1	1000 / 6				
2	x_2	1000 / 6				
3	x_3	1000 / 6				
4	<i>X</i> ₄	1000 / 6				
5	<i>x</i> ₅	1000 / 6				
6	x_6	1000 / 6				

Step 3: Use Chi-Square test

$$\chi^2 = \sum_{i=1}^6 \frac{(A_i - E_i)^2}{E_i}$$

Step 4: Search the table of Chi-Square distribution. We look up the value of

$$df = k - 1 = 6 - 1 = 5$$

Degrees of freedom (df)	χ^2 value $^{[19]}$										
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.63	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.61	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.81	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
P value (Probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

Step 5: Usually we choose P value is 0.05, i.e. 95% confidence level.

In this case, if $\chi^2 \le 11.07$, we consider the dice is fair. If $\chi^2 > 11.07$, the dice is unfair, and when the value of χ^2 is bigger, we consider the dice is more "unfair".

- 3. Step 1: Encode each symbol from alphabet as a unique non-binary number. Assume there are m sequences in set S. Combine sequences in pairs, then we have $\frac{m^2}{2}$ pairs. Denote a variable P = 0 to store the number of i.i.d. pairs.
 - Step 2: We have a new set S', all sequences in set S' now are represented as number sequences. Calculate the average values for each sequence:

$$\bar{x}_1 = \frac{\sum_{i=1}^n x_{1,n}}{n}$$

...

$$\bar{x}_m = \frac{\sum_{i=1}^n x_{m,n}}{n}$$

Pick one pair in S'. Hypothesize those two sequences are identically distributed. Apply permutation test. Choose the threshold value p = 0.05. If the hypothesis is not true, repeat step 2, choose other sequences pairs. If the hypothesis in step 2 is true, hypothesize they are independent.

Step 3: Apply Chi-square test. If p-value is less than 0.05, hypothesis is not true, repeat step 2, choose other sequences pairs. If p-value is larger than 0.05, hypothesis is true. P = P + 1.

Step 4: After going through all pairs in S', the likelihood on the process being i.i.d. can by computed by:

$$likelihood = 2P/m^2$$

4. Step 1: Assume G_1 and G_2 are SCC's, respectively. Let M_1 be the adjacent matrix of G_1 and M_2 be the adjacency matrix of G_2 .

Step 2: We denote the largest eigenvalues of M_1 and M_2 are λ_1 and λ_2 , also known as the Perron number.

Step 3: M_1^n represents the total number of walks with length n in M_1 , which can be approximated by

$$M_1^n = \lambda_1^n * v_{\lambda_1} * u_{\lambda_1}^T$$

where λ_1 is the Perron number of M_1 , v_{λ_1} is the left eigenvector of λ_1 , u_{λ_1} is the right eigenvector of λ_1 .

Step 4: In G_1 , the total number of walks from node i to node j (in original question, they are v_1 and u_1) with length n, can be approximated by

$$M_1^n[i,j] = \frac{v_i * u_j}{||u||} * \lambda_1^n * v_{\lambda_1} * u_{\lambda_1}^T$$

where $||u|| = \sum_k u_k$, and v_i , u_j are the components in vectors v, u.

Step 5: Sum up all $M_1^n[i,j]$ for every length n, i to node j with the length less equal to n is S_1 ,

$$S_1 = \sum_{n=1}^{n} M_1^n[i,j]$$

Step 6: In the same way, we can get S_2 for the total number of walks from node a to node b with the length less equal to n in the G_2 .

Step 7: If $S_1 - S_2 > 0$, we can decide the number of paths from i to j in G_1 is "more than" the number of paths from node a to node b in G_2 with the length less equal to n.