Discrete Assignment 2

BM Corser

- 1. Difference equations
 - (a) Here, u_n is an inhomogeneous first order difference equation, of the general form

$$u_n = f(n)u_{n-1} + g(n) = U \cdot \prod_{i=1}^n f(i) + \sum_{i=1}^n \left(g(i) \cdot \prod_{j=i+1}^n f(j) \right)$$

where

$$U = 1$$

 $f(n) = 16^{n^3}$
 $g(i) = 2^{i^2(i+1)^2}$

and

$$\prod_{i=0}^{n} f(i) = \prod_{i=0}^{n} 16^{i^{3}}$$

$$= 16^{\sum_{i=0}^{n} i^{3}}$$

$$= 16^{\frac{1}{4}n^{2}(n+1)^{2}}$$

$$= (2^{4})^{\frac{1}{4}n^{2}(n+1)^{2}}$$

$$= 2^{n^{2}(n+1)^{2}}$$

$$= g(n)$$

hence

$$u_n = g(n) + \sum_{i=1}^n \left(g(i) \cdot \prod_{j=i+1}^n f(j) \right)$$

$$= g(n) + \sum_{i=1}^n \left(g(i) \cdot \frac{\prod_{j=1}^n f(j)}{\prod_{k=1}^i f(k)} \right)$$

$$= g(n) + \sum_{i=1}^n \left(g(i) \cdot \frac{g(n)}{g(i)} \right)$$

$$= (n+1) \cdot 2^{n^2(n+1)^2}$$

(b) Here, a_n is an inhomogeneous second order difference equation with constant coefficients. We know that $u_n = G(n) + P(n)$ where P(n) is a particular solution to the inhomogeneous difference equation and G(n) is a general solution to the homogeneous part of the inhomogeneous difference equation and G(n) + P(n) is a general solution to the inhomogeneous difference equation.

The homogeneous part of the inhomogeneous difference equation has characteristic polynomial $\lambda^2 - 4$ with distinct real zeros $w_1 = 2$ and $w_2 = -2$, so the general solution to the homogeneous part is

$$G(n) = A \cdot 2^n + B \cdot (-2)^n.$$

The inhomogeneous part has an f(n) part of the form $c\alpha^n$ where $\alpha = 3$ and α is not a zero of the characteristic polynomial, therefore we can try $u_n = M \cdot 3^n$ as a particular solution, hence

$$M \cdot 3^{n} = 4M \cdot 3^{n-2} + 10 \cdot 3^{n-2}$$

$$M \cdot 3^{2} = 4M + 10$$

$$9M = 4M + 10$$

$$5M = 10$$

$$M = 2$$

and our particular solution is $P(n) = 2 \cdot 3^n$. Now we can write a general solution for the inhomogeneous difference equation u_n as

$$u_n = G(n) + P(n)$$

= $A \cdot 2^n + B \cdot (-2)^n + 2 \cdot 3^n$.

The initial conditions $u_0 = 9$, $u_1 = 4$ imply that

$$A + B + 2 = 9$$
$$A = 7 - B$$

$$2A - 2B = -2$$

$$A - B = -1$$

$$(7 - B) - B = -1$$

$$B = 4 \Leftrightarrow A = 3$$

and therefore our general solution to the inhomogeneous difference equation is $u_n = 3 \cdot 2^n - 4 \cdot (-2)^n + 2 \cdot 3^n$.

(c) Here b_n is an inhomogeneous second order difference equation with constant coefficients. We will solve it using the same technique employed above. The homogeneous part of b_n has characteristic polynomial $\lambda^2 + 5 - 6\lambda = (\lambda - 3)^2 - 4$ with zeros $w_1 = 5$ and $w_2 = 1$ and as such the general solution to the homogeneous part $G(n) = A \cdot 5^n + B$. The inhomogeneous function is a polynomial of degree 1 in n and 1 is a zero of the characteristic polynomial (of multiplicity 1), so our particular solution will have the form $n(M_0 + nM_1) = n^2 M_1 + nM_0$. So

$$b_n = 6b_{n-1} - 5b_{n-2} + 120n - 33$$
$$b_n - 6b_{n-1} + 5b_{n-2} = 120n - 33$$

and

$$nM_0 + n^2M_1 - 6(n-1)M_0 - 6(n-1)^2M_1 + 5(n-2)M_0 + 5(n-2)^2M_1$$

$$= 120n - 33$$

$$nM_0 + n^2M_16nM_0 + 6M_0 - 6n^2M_1 + 12nM_1 - 6M_1 + 5nM_0 + 10M_0 + 5n^2M_1 - 20nM_1$$

$$= 120n - 33$$

$$n^2(M_1 - 6M_1 + 5M_1) + n(M_0 - 6M_0 + 12M_1 + 5M_1 - 20M_1) - 4M_0 + 14M_1$$

$$= 120n - 33$$

$$-8M_1 = 120$$

$$M_1 = -15$$

$$-4M_0 + 14M_1 = -33$$

$$M_0 = -\frac{177}{4}.$$

Then $G(n)+P(n)=A\cdot 5^n+B-15n-\frac{177}{4}n^2$ and (using our values for u_0 and u_1)

$$A = B - 9$$

$$30 = 5A + B - 15 - \frac{177}{4}$$

$$A = \frac{321}{16} \Leftrightarrow B = \frac{177}{16}$$

and

$$b_n = \left(\frac{321}{16}\right) \cdot 5^n - \frac{177}{16} - 15n^2 - \left(\frac{177}{4}\right)n$$

2. The reproduction of flora on planet Zod can be described as a homogeneous second order difference equation with constant coefficients

$$u_n - u_{n-1} - 6u_{n-2} = 0,$$

where $u_0 = u_1 = 1$. Let $g(x) = \sum_{i=0}^{\infty} u_i x^i$ be the generating function for the corresponding sequence $(u_i)_{i=0}^{\infty}$, then

$$N=0$$
 $N=1$ $N=2$

$$g(x) = u_0 + u_1 x + u_2 x^2 + \cdots -xg(x) = -u_0 x - u_1 x^2 + \cdots -6u_0 x^2 + \cdots$$

The sum of the left hand sides of the equations above is $(1-x-6x^2)g(x)$. Let the sum of the right hand sides of the equations above be G. We can see that for N>1, the parts of G making up the coefficient of x^N take the same form as the difference equation (repeated up to N), so the coefficient of x^N will be

$$u_N - u_{N-1} - 6u_{N-2} = 0$$

and we can therefore write

$$(1 - x - 6x^{2})g(x) = u_{0} - x(u_{1} - u_{0})$$
$$g(x) = \frac{1}{1 - x - 6x^{2}}$$
$$= -\frac{1}{(2x+1)(3x-1)}$$

and

$$\frac{1}{(2x+1)(3x-1)} = \frac{A}{2x+1} + \frac{B}{3x-1}$$
$$1 = A(3x-1) + B(2x+1)$$

so $A = -\frac{2}{5}$, $B = \frac{3}{5}$ and

$$g(x) = \frac{-\frac{2}{5}}{2x+1} + \frac{\frac{3}{5}}{3x-1}$$

$$= \frac{3}{5}(3x-1)^{-1} - \frac{2}{5}(2x+1)^{-1}$$

$$= \frac{3}{5}\sum_{i=0}^{\infty} (-3)^{i}x^{i} - \frac{2}{5}\sum_{i=0}^{\infty} (-2)^{i}x^{i}.$$

The number of plants that the intergalactic botanist will have after n years (from an initial crop of 3) will be the coefficient of x^n in $3 \cdot g(x) = 3 \cdot \left(\frac{3}{5}(-3)^n - \frac{2}{5}(-2)^n\right)$.

3. (a) When $u_0=0$, the sequence is constant $u_n=0$. Similarly, when $u_0=2,\,u_n=2.$

(b)

(c)