CURSUL 5: SEMIGRUPURI. MONOIZI. GRUPURI

SAI

1. Semigrupuri

Definiția 1. Fie S o mulțime nevidă și \cdot o lege de compoziție pe S. Perechea (S, \cdot) se numește **semigrup** dacă \cdot este asociativă. Dacă în plus \cdot este și comutativă, semigrupul (S, \cdot) se numește **comutativ**.

Observația 2. Dacă legea de compoziție · este subînțeleasă în context, vom spune frecvent "semigrupul S" în loc de "semigrupul (S,\cdot) ". De asemenea, în loc de " (S,\cdot) este semigrup" vom spune frecvent "S are o structură de semigrup în raport cu ·".

1.1. Reguli de calcul în semigrupuri.

Propoziția 3. Fie (S, \cdot) un semigrup, $x, y \in S$ și $m, n \in \mathbb{N}^*$. Atunci: a) $x^{m+n} = x^m \cdot x^n$.

- b) $(x^m)^n = x^{mn}$.
- c) Dacă x și y comută, atunci $(xy)^m = x^m y^m$.

Demonstrație: Relația de la a) reiese din asociativitatea generalizată. Punctul b) se probează prin inducție după n, iar c), prin inducție după m. Lăsăm detaliile în grija cititorului.

1.2. Morfisme de semigrupuri.

Definiția 4. Fie S și S' două semigrupuri (în notație multiplicativă). O functie $f: S \to S'$ se numeste morfism de semigrupuri dacă

$$\forall x, y \in S \ f(xy) = f(x)f(y).$$

Propoziția 5. Dacă $f: S \to S'$ și $g: S' \to S''$ sunt morfisme de semigrupuri, atunci $q \circ f$ este morfism de semigrupuri.

Demonstrație: Fie
$$x, y \in S$$
. Atunci avem: $(g \circ f)(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) = (g \circ f)(x)(g \circ f)(y)$. \square

Definiția 6. Fie S și S' două semigrupuri (în notație multiplicativă). Un morfism de semigrupuri $f: S \to S'$ se numeste **izomorfism** dacă există un morfism de semigrupuri $q:S'\to S$ cu proprietatea că

$$f \circ g = \mathrm{id}_{S'}$$
 şi $g \circ f = \mathrm{id}_S$.

Exemplul 7. Pentru orice semigrup S, funcția identică a lui S este izomorfism de semigrupuri.

Exemplul 8. Pentru orice izomorfism f de semigrupuri, f^{-1} este izomorfism de semigrupuri.

Propoziția 9. $f: S \to S'$ este izomorfism de semigrupuri dacă și numai dacă f este morfism bijectiv de semigrupuri.

Demonstrație: " \Rightarrow ": Evident.

"
$$\Leftarrow$$
": Fie $x', y' \in S'$. Punem $x = f^{-1}(x')$ și $y = f^{-1}(y')$. Atunci $f^{-1}(x'y') = f^{-1}(f(x)f(y)) = f^{-1}(f(xy)) = xy = f^{-1}(x')f^{-1}(y')$

2. Monoizi

2.1. Monoizi.

Definiția 10. Fie M o mulțime nevidă și \cdot o lege de compoziție pe M. Perechea (M, \cdot) se numește **monoid** dacă \cdot este asociativă și admite element neutru. Dacă în plus \cdot este și comutativă, monoidul (M, \cdot) se numește **comutativ**.

Observația 11. Dacă legea de compoziție \cdot este subînțeleasă în context, vom spune frecvent "monoidul M" în loc de "monoidul (M, \cdot) ". De asemenea, în loc de " (M, \cdot) este monoid" vom spune frecvent "M are o structură de monoid în raport cu \cdot ".

2.2. Reguli de calcul în monoizi. Fie (M, \cdot) un monoid şi $x \in M$. Notăm $x^0 \stackrel{\text{def}}{=} 1$.

Propoziția 12. Fie (M,\cdot) un monoid, $x,y\in M$ și $m,n\in\mathbb{N}.$ Atunci:

- a) $x^{m+n} = x^m \cdot x^n$.
- b) $(x^m)^n = x^{mn}$
- c) Dacă x și y comută, atunci $(xy)^m = x^m y^m$.

Demonstrație: Pentru $mn \neq 0$ se aplică propoziția 3, iar pentru mn = 0 relațiile din enunț sunt imediate. \square

2.3. Morfisme de monoizi.

Definiția 13. Fie M și M' doi monoizi (în notație multiplicativă). O funcție $f: M \to M'$ se numește **morfism de monoizi** dacă:

- a) $\forall x, y \in M \quad f(xy) = f(x)f(y)$.
- b) $f(1_M) = 1_{M'}$ (1_M şi $1_{M'}$ desemnând aici elementele neutre ale celor doi monoizi).

Propoziția 14. Dacă $f: M \to M'$ și $g: M' \to M''$ sunt morfisme de monoizi, atunci $g \circ f$ este morfism de monoizi.

Demonstrație: Fie $x, y \in M$. Atunci avem: $(g \circ f)(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) = (g \circ f)(x)(g \circ f)(y)$ și $(g \circ f)(1_M) = g(f(1_M)) = g(1_{M'}) = 1_{M''}$. \square

Definiția 15. Fie M și M' doi monoizi (în notație multiplicativă). Un morfism de monoizi $f: M \to M'$ se numește **izomorfism** dacă există un morfism de monoizi $g: M' \to M$ cu proprietatea că $f \circ g = \mathrm{id}_{M'}$ și $g \circ f = \mathrm{id}_{M}$.

Exemplul 16. Pentru orice monoid M, funcția identică a lui M este morfism de monoizi.

Exemplul 17. Pentru orice izomorfism f de monoizi, f^{-1} este izomorfism de monoizi.

Propoziția 18. $f: M \to M'$ este izomorfism de monoizi dacă și numai dacă f este morfism bijectiv de monoizi.

 $Demonstrație: "\Rightarrow": Evident.$

"
$$\Leftarrow$$
": Fie $x', y' \in M'$. Punem $x = f^{-1}(x')$ și $y = f^{-1}(y')$. Atunci $f^{-1}(x'y') = f^{-1}(f(x)f(y)) = f^{-1}(f(xy)) = xy = f^{-1}(x')f^{-1}(y')$. Pe de altă parte, $f^{-1}(1_{M'}) = f^{-1}(f(1_M)) = 1_M$. \square

2.4. Monoidul liber generat de o mulţime. Fie A o mulţime nevidă. Pe mulţimea înşiruirilor finite de elemente ale lui A definim legea de compoziţie $a_1a_2 \ldots a_m \star a'_1a'_2 \ldots a'_t \stackrel{\text{def}}{=} a_1a_2 \ldots a_m a'_1a'_2 \ldots a'_t$.

Definiția 19. Înșiruirile de k elemente din A se numesc cuvinte de lungime k peste A, iar operația \star se numește concatenare.

Este util să considerăm și un cuvânt peste A ce "nu conține niciun simbol":

Definiția 20. Dată fiind o mulțime nevidă A, considerăm că există un (unic) cuvânt de lungime zero peste A. El se numește **cuvântul vid** peste A.

Vom nota cuvântul vid cu

Propoziția 21. Mulțimea cuvintelor peste A are în raport cu operația de concatenare o structură de monoid, al cărei element neutru este \bot .

Temă: Demonstrați propoziția 21!

Definiția 22. Monoidul la care se face referire în propoziția 21 se numește **monoidul liber generat de mulțimea** A.

Notația uzuală pentru monoidul liber generat de mulțimea A este FM(A).

Propoziția 23. Considerăm o mulțime nevidă A, un monoid M și o funcție $f: A \to M$. Atunci funcția $\tilde{f}: FM(A) \to M$, $\tilde{f}(a_1 a_2 \dots a_n) = f(a_1)f(a_2)\dots f(a_n)$, $f(\omega) = e$, este un morfism de monoizi.

Temă: Demonstrați propoziția 23!

3. Grupuri

Definiția 24. Fie G o mulțime nevidă și "·" o lege de compoziție pe G. Perechea (G, \cdot) se numește **grup** dacă:

A: "·" este asociativă

EN: "·" admite element neutru

TES: Toate elementele lui G sunt simetrizabile în raport cu "·".

Dacă în plus "·" este și comutativă, grupul (G, \cdot) se numește **comutativ** sau **abelian**.

Observația 25. Dacă legea de compoziție "·" este subînțeleasă în context, vom spune frecvent "grupul G" în loc de "grupul (G, \cdot) ". De asemenea, în loc de " (G, \cdot) este grup" vom spune frecvent "G are o structură de grup în raport cu "·"".

Observația 26. Când ne vom referi la grupuri neprecizate vom folosi notația multiplicativă, pentru elementul neutru vom folosi notația e, iar simetricul unui element x va fi desemnat prin x'. Dacă există însă o notație consacrată în context, vom face apel la aceasta.

4. Exemple de grupuri

Exemplul 27. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ şi $(\mathbb{C}, +)$ sunt grupuri abeliene.

Exemplul 28. Monoizii comutativi (\mathbb{N}, \cdot) , (\mathbb{Z}, \cdot) , (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) şi (\mathbb{C}, \cdot) nu sunt grupuri, deoarece elementul 0 nu este simetrizabil în niciunul dintre aceștia.

Observația 29. Datorită faptelor evidențiate în exemplele 27 și 28, ne vom permite uneori să facem referire la "grupul \mathbb{Z} ", "grupul \mathbb{Q} ", "grupul \mathbb{R} " sau "grupul \mathbb{C} " subînțelegând considerarea pe acestea a structurii aditive. Dacă dorim să ne referim la o altă structură de grup pe aceste mulțimi, trebuie să o precizăm explicit.

Exemplul 30. $(\mathcal{M}_{m,n}(\mathbb{C}),+)$ este grup abelian.

Exemplul 31. \mathbb{Z}_n este grup abelian în raport cu adunarea modulo n.

Exemplul 32. \mathbb{Z}_n este, conform cursului 4, monoid comutativ în raport cu înmulţirea modulo n. Acest monoid nu este grup, întrucât elementul $\widehat{0}$ nu este simetrizabil.

Observația 33. Având în vedere exemplele 31 și 32, ne vom permite uneori să facem referire la "grupul \mathbb{Z}_n " subînțelegând considerarea pe acesta a structurii aditive. Dacă dorim să ne referim la o altă structură de grup pe \mathbb{Z}_n , trebuie să o precizăm explicit.

Exemplul 34. Dacă G este un grup (abelian) iar A o mulțime nevidă, atunci G^A are o structură de grup (abelian) în raport cu legea de compoziție definită la exemplul 6 din cursul 4.

Exemplul 35. Fie $(G_i)_{i \in I}$ este o familie de grupuri (în notație multiplicativă). Pe $G \stackrel{\text{def}}{=} \prod_{i \in I} G_i$ introducem legea de compoziție $(a_i)_i \cdot (b_i)_i = (a_ib_i)_i.$

$$(a_i)_i \cdot (b_i)_i = (a_i b_i)_i.$$

Propoziția 36. Mulțimea G din exemplul 35 are în raport cu operația introdusă acolo o structură de grup. Acest grup este abelian dacă şi numai dacă toate grupurile G_i sunt abeliene.

Temă: Demonstrați afirmațiile de la exemplele 28, 30, 31, 32, 34 și propoziția 36!

Definiția 37. Grupul de la exemplul 35 se numește produsul direct al familiei de grupuri $(G_i)_{i \in I}$.

Vom folosi frecvent pentru produsul direct al unei familii de grupuri $(G_i)_{i\in I}$ indexate după mulțimea finită $I=\{i_1,i_2,\ldots,i_n\}$ notațiile $\prod_{k=1}^n G_{i_k} \text{ sau } G_{i_1} \times G_{i_2} \times \ldots \times G_{i_n}.$

Definiția 38. Grupul $\mathbb{Z}_2 \times \mathbb{Z}_2$ se numește grupul lui Klein.

5. Grupul elementelor simetrizabile dintr-un monoid

Fie (M,\cdot) un monoid. Notăm cu U(M) mulțimea elementelor simetrizabile ale lui M.

Propoziția 39. a) U(M) este parte stabilă a lui M în raport cu "·". b) U(M) are o structură de grup în raport cu operația indusă de "·".

Demonstrație: a) Fie $x, y \in U(M)$. Atunci $(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = e$ și $(y^{-1}x^{-1})(xy) = y^{-1}(x^{-1}x)y = e$, deci $y^{-1}x^{-1} = (xy)^{-1}$, de unde $xy \in U(M)$.

b) Evident.

Corolarul 40. Dacă x și y sunt elemente simetrizabile ale unui monoid (M, \cdot) , atunci $(xy)^{-1} = y^{-1}x^{-1}$.

Aceste considerații ne permit să dăm o nouă serie de exemple de grupuri:

Exemplul 41. (\mathbb{Q}^*,\cdot) , (\mathbb{R}^*,\cdot) și (\mathbb{C}^*,\cdot) sunt grupuri abeliene.

Exemplul 42. $(\{-1,1\},\cdot)$ este grup abelian.

Exemplul 43. $(U(\mathbb{Z}_n),\cdot)$ este grup abelian.

Vom folosi notația $U(\mathbb{Z}_n)$ pentru a desemna grupul elementelor din \mathbb{Z}_n simetrizabile în raport cu înmulțirea modulo n.

Propoziția 44. $U(\mathbb{Z}_n) = \{ \widehat{a} \in \mathbb{Z}_n : (a, n) = 1 \}.$

Temă: Demonstrați propoziția 44!

Observația 45. Fie A o mulțime nevidă. Elementele simetrizabile ale monoidului (A^A, \circ) sunt exact funcțiile bijective.

Vom folosi notația $S(A) \stackrel{\text{not}}{=} \{ f \in A^A : f \text{ este bijectivă} \}.$

Exemplul 46. $(S(A), \circ)$ este grup.

Observația 47. Vom face frecvent referire la $S(\{1, 2, ..., n\})$; pentru acest grup vom folosi notația S_n .

Observația 48. Elementele simetrizabile ale monoidului $(\mathcal{M}_n(\mathbb{C}), \cdot)$ sunt exact matricile inversabile.

Vom folosi notaţia $GL_n(\mathbb{C}) \stackrel{\text{not}}{=} \{A \in \mathcal{M}_n(\mathbb{C}) : A \text{ este inversabilă}\}.$

Exemplul 49. $(GL_n(\mathbb{C}), \cdot)$ este grup.

6. Reguli de calcul în grupuri

Fie (G,\cdot) un grup, $x\in G$ și $n\in\mathbb{N}^*$. Vom nota cu x^{-n} elementul $(x^n)'$.

Propoziția 50. Fie (G,\cdot) un grup, $x,y\in G$ și $m,n\in\mathbb{Z}$. Atunci:

- a) $x^{m+n} = x^m \cdot x^n$.
- $(x^m)^n = x^{mn}$.
- c) Dacă x și y comută, atunci $(xy)^m = x^m y^m$.

Demonstrație: Se procedează ca în demonstrația propoziției similare din cursul 4, analizând suplimentar cazurile în care m sau n sunt negative. Lăsăm detaliile în grija cititorului. \square

Observația 51. Dacă operația grupului G este notată aditiv, atunci relațiile din propoziția 50 devin:

- a) (m+n)x = mx + nx.
- b) n(mx) = (nm)x.
- c) Dacă x și y comută, atunci m(x+y) = mx + my.

7. Subgrupuri

Definiția 52. Fie G un grup și H o submulțime nevidă a sa. Spunem că H este **subgrup** al lui G dacă:

- i) $\forall x, y \in H \quad xy \in H$.
- ii) $\forall x \in H \quad x' \in H$.

Observația 53. Dacă H este subgrup al lui G, atunci H conține elementul neutru al lui G.

Observația 54. Dacă H este subgrup al lui G, atunci H este grup în raport cu operația indusă.

Vom folosi notația $H \leq G$ pentru a desemna faptul că H este subgrup al lui G.

Propoziția 55. Fie G un grup și H o submulțime nevidă a lui G. Următoarele afirmații sunt echivalente:

- i) $H \leq G$
- ii) $\forall x, y \in H \quad xy' \in H$.

Exemplul 56. G şi $\{e\}$ sunt subgrupuri ale lui G (ele se numesc **subgrupul impropriu**, respectiv **subgrupul trivial** al lui G).

Exemplul 57.
$$(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +) \leq (\mathbb{C}, +)$$
.

Propoziția 58. Fie H o submulțime nevidă a lui \mathbb{Z} . H este subgrup al lui \mathbb{Z} dacă și numai dacă există $n \in \mathbb{N}$ astfel încât $H = n\mathbb{Z}$.

Demonstrație: "
 —": Se aplică propoziția 55.

" \Rightarrow ": Dacă $H = \{0\}$, alegem n = 0.

Dacă $H \neq \{0\}$, există $a \in H \setminus \{0\}$. Atunci $|a| \in H \cap \mathbb{N}^*$. Deci $H \cap \mathbb{N}^* \neq \emptyset$. Atunci $H \cap \mathbb{N}^*$ are un cel mai mic element; notăm acest element cu n. Cum $H \leq \mathbb{Z}$, este imediat că $n\mathbb{Z} \subset H$. Fie acum $x \in H$. Conform teoremei de împărțire cu rest, există $q, r \in \mathbb{Z}$, $0 \leq r < n$, așa încât x = nq + r. De aici se obține $r = x - nq \in H$, de unde, conform definiției lui n, r = 0. Prin urmare, $x = nq \in n\mathbb{Z}$, deci $H \subset n\mathbb{Z}$. \square

8. Morfisme de grupuri

Definiția 59. Fie G și Γ două grupuri (în notație multiplicativă). O funcție $f: G \to \Gamma$ se numește **morfism de grupuri** dacă: $\forall x, y \in G \ f(xy) = f(x)f(y)$.

Vom nota cu $\operatorname{Hom}_{\operatorname{Grp}}(G,\Gamma)$ mulţimea morfismelor de grupuri de la G la Γ . În cazul în care este subînţeles faptul că ne referim la structuri de grup vom scrie, pe scurt, $\operatorname{Hom}(G,\Gamma)$.

Propoziția 60. Fie $f: G \to \Gamma$ un morfism de grupuri. Atunci:

- a) $f(e_{G}) = e_{\Gamma}$.
- b) $\forall x \in G \ f(x') = f(x)'$.
- c) $\forall x \in G \ \forall n \in \mathbb{Z} \quad f(x^n) = f(x)^n$.

Temă: Demonstrați propoziția 60!

Exemplul 61. Pentru orice grup G, funcția identică a lui G este morfism de grupuri.

Exemplul 62. Pentru orice două grupuri G şi Γ , funcția $u: G \to \Gamma$, $u(x) = e_{\Gamma}$ este morfism de grupuri.

Exemplul 63. Dacă $H \leq G$, funcția $j: H \rightarrow G$, j(x) = x este morfism de grupuri.

Temă: Demonstrați afirmațiile de la exemplele 61, 62 și 63!

Definiția 64. Morfismul din exemplul 63 se numește injecția canonică a lui H în G.

Propoziția 65. Dacă $f: G \to \Gamma$ şi $g: \Gamma \to \Delta$ sunt morfisme de grupuri, atunci $g \circ f$ este morfism de grupuri.

Temă: Demonstrați propoziția 60!

Definiția 66. Fie G și Γ două grupuri. Un morfism de grupuri f: $G \to \Gamma$ se numește **izomorfism** dacă există un morfism de grupuri $g: \Gamma \to G$ cu proprietatea că $f \circ g = \operatorname{id}_{\Gamma}$ și $g \circ f = \operatorname{id}_{G}$.

Exemplul 67. Pentru orice grup G, funcția identică a lui G este izomorfism de grupuri.

Exemplul 68. Pentru orice izomorfism f de grupuri, f^{-1} este izomorfism de grupuri.

Propoziția 69. $f: G \to \Gamma$ este izomorfism de grupuri dacă și numai dacă f este morfism bijectiv de grupuri.

 $Demonstrație: "\Rightarrow": Evident.$

" \Leftarrow ": Fie $z,t\in\Gamma$. Punem $x=f^{-1}(z)$ și $y=f^{-1}(t)$. Atunci $f^{-1}(zt)=f^{-1}(f(x)f(y))=f^{-1}(f(xy))=xy=f^{-1}(z)f^{-1}(t)$. \square

Definiția 70. Un morfism de grupuri $f:G\to G$ se numește **endomorfism** al lui G.

Vom nota cu $\operatorname{End}_{\operatorname{Grp}}(G)$ mulţimea endomorfismelor de grup ale lui G. În cazul în care este subînţeles faptul că ne referim la structura de grup a lui G vom scrie, pe scurt, $\operatorname{End}(G)$.

Observația 71. $\operatorname{End}_{\operatorname{Grp}}(G) = \operatorname{Hom}_{\operatorname{Grp}}(G, G)$.

Definiția 72. Un izomorfism de grupuri $f: G \to G$ se numește **automorfism** al lui G.

Vom nota cu $\operatorname{Aut}_{\operatorname{Grp}}(G)$ mulţimea automorfismelor de grup ale lui G. În cazul în care este subînţeles faptul că ne referim la structura de grup a lui G vom scrie, pe scurt, $\operatorname{Aut}(G)$.

BIBLIOGRAFIE

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebră, Ed. Didactică și Pedagogică, București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.