Devoir à la maison n° 09

À rendre le 17 décembre

I. Une suite récurrente

On considère la suite u définie par récurrence par $u_0 = 3$ et, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{3u_n - 4}{u_n - 1}.$$

- 1) Montrer que, pour tout $n \in \mathbb{N}$, u_n existe et $u_n > 2$.
- 2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite ℓ .
- 4) Redémontrons les résultats de la question 3. en utilisant une autre méthode.
 - a) Montrer que la suite de terme général $v_n = \frac{1}{u_n 2}$ est arithmétique et donner sa raison
 - b) Calculer, en fonction de n, le terme général de la suite v_n , puis celui de u_n .
 - c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite ℓ .
- 5) Montrer que la suite de terme général $w_n = n(u_n \ell)$ converge et donner sa limite.

II. Encore une autre suite récurrente

On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=1$ et, pour tout $n\in\mathbb{N}$,

$$u_{n+1} = u_n^2 + u_n.$$

- 1) Déterminer la nature de la suite $(u_n)_{n\in\mathbb{N}}$ et préciser, le cas échéant, sa limite.
- 2) Pour tout $n \in \mathbb{N}$, on pose,

$$v_n = \frac{1}{2^n} \ln u_n.$$

a) Prouver que pour tous $n, p \in \mathbb{N}$:

$$0 \leqslant v_{n+p+1} - v_{n+p} \leqslant \frac{1}{2^{n+p+1}} \ln \left(1 + \frac{1}{u_n} \right).$$

b) En déduire que pour tous $n, k \in \mathbb{N}$:

$$0 \leqslant v_{n+k+1} - v_n \leqslant \frac{1}{2^n} \ln \left(1 + \frac{1}{u_n} \right).$$

- c) En déduire la convergence de $(v_n)_{n\in\mathbb{N}}$ vers un réel, que l'on choisit d'écrire comme un logarithme, *i.e.* $\ln \alpha$ avec $\alpha > 0$.
- 3) a) Déterminer un encadrement de $\ln \alpha v_n$ pour tout $n \in \mathbb{N}$.
 - **b)** En déduire que, pour tout $n \in \mathbb{N}$:

$$u_n \leqslant \alpha^{2^n} \leqslant u_n + 1.$$

- c) En déduire la limite $\lim_{n\to+\infty} \frac{u_n}{\alpha^{2^n}}$.
- **d)** Comparer α et 1.
- **4)** Pour tout $n \in \mathbb{N}$ on pose $\delta_n = \alpha^{2^n} u_n$.
 - a) Montrer que la suite $(\delta_n)_{n\in\mathbb{N}}$ est bornée et que, pour tout $n\in\mathbb{N}$,

$$\delta_n = \frac{1}{2} + \frac{\delta_{n+1} + \delta_n^2 - \delta_n}{2} \alpha^{-2^n}.$$

- **b)** En déduire que, pour tout $n \in \mathbb{N}$, $\delta_n < 1$.
- c) En déduire que, pour tout $n \in \mathbb{N}$, $u_n = |\alpha^{2^n}|$.
- d) Montrer enfin que la suite $(\delta_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.

