Math

T. Monedero Natixis Fixed Income Department: quantitative analysis

March 11, 2020

Abstract

Contents

1 Mesure et Integration

1.1 Mesure

1.1.1 Espace Mesurable

Définition 1 (Classes Monotones) Soit X un sous-ensemble $\mathcal{N} \subset \mathcal{P}(X)$ appelé une classe monotone si:

- $X \in \mathcal{N}$.
- $Si\ A, B \in \mathcal{N}, \ et\ A \subset B \ alors\ B \setminus A \in \mathcal{N}$
- Si $A_n \in \mathcal{N}$, $\forall n \in \mathbb{N}$, et que $A_n \subset A_{n+1}$ alors $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{N}$.

Remarque 2 • Si $A \in \mathcal{N}$, alors $A^C = X \setminus A \in \mathcal{N}$

- Toute tribu est une classe monotone
- Une classe monotone est une tribu ssi elle est stable par intersection finie.
- Toute intersection de classe monotone est encore une classe monotone. Si F est une famille de parties de X, on peut définir

$$\mathcal{N}(F) = \bigcap_{classe\ monotone\ sur\ X,\ F \subset \mathcal{N}} \mathcal{N}$$

Alors, $\mathcal{N}(F)$ est une classe monotone sur X appelée la classe monotone engendrée par F. C'est la petite classe monotone sur X qui contient F.

Définition 3 Soit X un ensemble. On appelle tribu ou σ - algèbre sur X une famille \mathcal{M} de partie de X possédant les propriétés suivantes :

- $X \in \mathcal{M}$.
- $Si\ A \in \mathcal{M}$, alors $A^C \in \mathcal{M}$ (ou $A^C = X \setminus A$ est le complémentaire de A dans X).
- $Si \ A_n \in \mathcal{M}, \ \forall n \in \mathbb{N}, \ alors \ \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}.$

Les éléments de \mathcal{M} sont appelés les parties mesurables de X. On dit que (X,\mathcal{M}) est un espace mesurable.

 $\mathcal{M} = \{\varnothing, X\}$ est la plus petite tribu de X et $\mathcal{M} = \mathcal{P}(X)$ la plus grande. De plus, \mathcal{M} est stable par union ou intersection finie. En effet, si $A_n \in \mathcal{M}$, $\forall n \in \mathbb{N}$, alors $\bigcap_{n \in \mathbb{N}} A_n \in \mathcal{M}$ car $\left(\bigcap_{n \in \mathbb{N}} A_n\right)^C = \bigcup_{n \in \mathbb{N}} A_n^C$. Enfin, si A et B sont mesurables, alors la différence non symétrique $A \setminus B = A \cap B^C \in \mathcal{M}$.

Lemme 4 Soit $\{\mathcal{M}_i\}_{i\in I}$ une famille quelconque de tribus sur X. Alors $\mathcal{M} = \bigcap_{i\in I} \mathcal{M}_i$ est encore une tribu sur X.

Définition 5 Soit F une famille de parties de X et $\{\mathcal{M}_i^F\}_{i\in I}$ la famille de tribus sur X contenant F ($i.e \ \forall i \in I$, $F \subset \mathcal{M}_i^F$). On note

$$\sigma(F) = \bigcap_{i \in I} \mathcal{M}_i^F$$

la tribu engendrée par F sur X. C'est le plus petite tribu sur X qui contient F.

Lemme 6 Si $F \subset \mathcal{P}(X)$ est une famille de partie de X stable par intersections finies alors $\mathcal{N}(F) = \sigma(F)$.

Corollary 7 Soit (X, \mathcal{M}) un espace mesurable muni de deux mesures μ et v. Supposons qu'il existe une famille F de parties de \mathcal{M} telle que

- F est stable par intersection finie et $\sigma(F) = \mathcal{M}$
- $\mu(A) = \upsilon(A), \forall A \in F$

On suppose en outre que

- soit que $\mu(X) = v(X) < \infty$
- soit qu'il existeune famille $\{E_n\}_{n\in\mathbb{N}}$ d'éléments de F, telle que $E_n\subset E_{n+1}$, $\bigcup_{n\in\mathbb{N}}E_n=X$ et $\mu(E_n)=v(E_n)<\infty$ pour tout $n\in\mathbb{N}$ alors

$$\mu = v$$
, ie $\mu(A) = v(A)$, $\forall A \in \mathcal{M}$

Example 8 (Unicité de la mesure de Lebesgue) On prend $X = \mathbb{R}^d$, $\mathcal{M} = \mathcal{B}(\mathbb{R}^d)$, F la famille des pavés ouverts et $E_n =]-n, n[^d]$. En appliquan le b) du corrolaire ci dessus, on voit qu'une mesure borelienne sur \mathbb{R}^d finie sur les bornés est entierement déterminée par ses valeurs sur les pavés ouverts. Ceci montre donc l'unicité de la mesure de Lebesgue sur \mathbb{R}^d .

Définition 9 Unt topologie sur X est une famille \mathcal{T} de parties de X telles que :

- $\varnothing \in \mathcal{T}, X \in \mathcal{T}.$
- $Si\ O_1,...,O_n \in \mathcal{T},\ alors\ \bigcap_{i=1}^n O_i \in \mathcal{T}.$
- Si {O_i}_{i∈I} est une famille quelconque d'éléments de T alors ∪_{i∈I} O_i ∈ T.
 Les éléments de T s'appelent les ouverts de X. On dit que (X, T) est un espace topologique

Définition 10 Soit (X, \mathcal{T}) un espace topologique. On appelle tribu de Borel sur X la tribu engendrée par les ouverts de $X : \mathcal{M} = \sigma(\mathcal{T})$. La tribu $\mathcal{B}(\mathbb{R})$ est engendrée par les intervalles $|a, +\infty|$ pour $a \in \mathbb{R}$.

1.1.2 Mesure Positive

Définition 11 (Mesure Exterieure) Soit X un esemble quelconque. On appelle mesure extérieur sur X une application $\mu^* : \mathcal{P}(\mathbb{X}) \to [0, +\infty]$ telle que

- $\mu^*(\varnothing) = 0$
- μ^* est croissante : $\mu^*(A) = \mu^*(B)$ si $A \subset B$
- μ^* est sous additive : $si \{A_n\}_n$ est une famille de parties de X alors : $\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n\right) \leq \sum_{n \in \mathbb{N}} \mu^* (A_n)$

Définition 12 (Regularité) Soit X un ensemble muni d'une mesure extérieure μ^* . On dit qu'une partie $B \subset X$ est μ^* -régulière si pour toutes parties A de X on a

$$\mu^* (A) = \mu^* (A \cap B) + \mu^* (A \cap B^C)$$

On note $\mathcal{M}(\mu^*)$ l'ensemble des parties μ^* -régulière de X.

Définition 13 Soit (X, \mathcal{M}) un espace mesurable. On appelle mesure positive sur X une application $\mu : \mathcal{M} \to [0, +\infty[$ verifiant :

- $\mu(\varnothing) = 0$
- Additivité dénonbrable : si $\{A_n\}_{n\in\mathbb{N}}$ est une famille dénombrable d'ensembles mesurables deux a deux disjoints alors

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

On dit que (X, \mathcal{M}, μ) est un espace mesuré.

Proposition 14 Une mesure positive possède les propriètés suivantes :

- $Si\ A, B \in \mathcal{M}\ et\ A \subset B,\ alors\ \mu(A) \leqslant \mu(B)\ (Monotonie).$
- Si $A_n \in \mathcal{M}$, $\forall n \in \mathbb{N}$ alors $\mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) \leqslant \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$ (Sous additivité).
- $Si\ A_n \in \mathcal{M}, \ \forall n \in \mathbb{N} \ et\ si\ A_n \subset A_{n+1}, \forall n \in \mathbb{N} \ alors\ \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \lim_{n \to +\infty} \mu\left(A_n\right).$
- $Si\ A_n \in \mathcal{M}, \ \forall n \in \mathbb{N}\ et\ si\ A_n \supset A_{n+1}, \forall n \in \mathbb{N}\ avec\ \mu\left(A_0\right) < \infty\ alors\ \mu\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to +\infty} \mu\left(A_n\right).$

Proposition 15 $\mathcal{M}(\mu^*)$ est une tribu sur X contenant toutes les parties $B \subset X$ telles que $\mu^*(B) = 0$ et la restriction de μ^* à $\mathcal{M}(\mu^*)$ est une mesure.

1.1.3 Completion de Mesure

Définition 16 Soit (X, \mathcal{M}, μ) est un espace mesuré. On dit que

- $A \subset X$ est négligeable pour la mesure μ si $A \in \mathcal{M}$ et $\mu(A) = 0$.
- La mesure μ est complète si tout sous ensemble d'un ensemble négligéable est encore négligéable.

Proposition 17 Soit (X, \mathcal{M}, μ) est un espace mesuré. Soit \mathcal{M}^* l'ensemble de toutes les parties E de X telles qu'il existe $A, B \in \mathcal{M}$ avec $A \subset E \subset B$ et $\mu(B \setminus A) = 0$. On définit alors $\mu^*(E) = \mu(A)$. Ainsi, \mathcal{M}^* est une tribu sur X et μ^* une mesure complète \mathcal{M} sur qui prolonge μ .

1.1.4 Mesure de Lebesgue

Theorem 18 Il existe une unique mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, notée λ , telle que

$$\lambda(]a,b[) = b-a, \forall a,b \in \mathbb{R} \times \mathbb{R} \ \backslash \ a < b$$

 λ est appellée mesure de Lebesque sur \mathbb{R} . La mesure de Lebesque est diffuse : $\forall x \in \mathbb{R}$, $\lambda(\{x\}) = 0$. Par conséquent,

$$\lambda(]a,b[) = \lambda([a,b[) = \lambda(]a,b]) = \lambda([a,b]) = b-a, \ a \le b$$

Définition 19 On appelle tribu de Lebesque sur \mathbb{R} , et on note $\mathcal{L}(\mathbb{R})$, la tribu qui complète la tribu de Borel $\mathcal{B}(\mathbb{R})$ pour la mesure de Lebesgue λ . On appelle encore mesure de Lebesgue la mesure complétée λ : $\mathcal{L}(\mathbb{R}) \to [0, +\infty]$.

Définition 20 Un pavé P de \mathbb{R}^d est un produit dintervalles bornés $P = I_1 \times I_2 \times ... \times I_d$, $I_j \subset \mathbb{R}$ intervalle borné. La mesure du pavé P est notée

$$mes(P) = l(I_1) \cdot l(I_2) \cdot \dots \cdot l(I_d)$$

ou $l(I_i)$ est la longueur du segment I_i . Pour toute partie A de \mathbb{R}^d , on définit

$$\lambda^*(A) = \inf \left\{ \sum_{i \in \mathbb{N}} mes(P_i) \mid A \subset \bigcup_{i \in \mathbb{N}} P_i, P_i \text{ pav\'e ouvert de } \mathbb{R}^d \right\}$$

L'infimum est pris sur tous les recouvrements dénombrables de A par des pavées ouverts.

Theorem 21 On a les assertions suivantes :

- λ^* est une mesure exterieue sur \mathbb{R}^d
- La tribu $\mathcal{M}(\lambda^*)$ contient la tribu de Borel $\mathcal{B}(\mathbb{R}^d)$
- $\lambda^*(P) = mes(P)$, pour tout pavé $P \subset \mathbb{R}^d$

Définition 22 On appelle mesure de Lebesgue sur \mathbb{R}^d la restriction, notée λ , de la mesure exterieure λ^* à $\mathcal{B}(\mathbb{R}^d)$ ou à $\mathcal{M}(\lambda^*)$.

Lemme 23 Si $P, P_1, ..., P_N$ sont des pavés de \mathbb{R}^d avec $P \subset \bigcup_{i=1}^N Pi$ alors

$$mes(P) \le \sum_{i=1}^{N} mes(Pi)$$

Theorem 24 Il existe une unique mesure positive sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, notée λ , telle que pour tout pavé $P = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_d, b_d] \subset \mathbb{R}^d$, on ait

$$\lambda(P) = \prod_{i=1}^{d} (b_i - a_i)$$

Comme précedemment, on peut compléter la tribu $\mathcal{B}(\mathbb{R}^d)$ et étendre la mesure λ à $\mathcal{L}(\mathbb{R}^d)$. La mesure de Lebesgue (sur $\mathcal{B}(\mathbb{R}^d)$ ou $\mathcal{L}(\mathbb{R}^d)$) possède les priopriètés suivantes :

- ullet λ est invariante par translation et rotation
- λ est régulière, i.e $\forall E \subset \mathbb{R}^d$ mesurable on a :
 - $-\lambda(P) = \sup \{\lambda(K) \mid K \text{ compact, } K \subset E\} \text{ (regularité intérieure)}.$
 - $-\lambda(P) = \inf \{\lambda(V) \mid V \text{ ouvert, } V \supset E\}$ (regularité exterieure).

On sait que λ se prolonge en une mesure sur $\mathcal{L}(\mathbb{R}^d)$ avec $\mathcal{L}(\mathbb{R}^d) = \sigma(\mathcal{B}(\mathbb{R}^d), N)$ ou $N = \{A \subset \mathbb{R}^d \mid \exists B \in \mathcal{B}(\mathbb{R}^d) \text{ avec } A \subset b \text{ et } \lambda \in \mathbb{R}^d \mid \exists B \in \mathcal{B}(\mathbb{R}^d) \text{ avec } A \subset b \text{ et } \lambda \in \mathbb{R}^d \mid \exists B \in \mathcal{B}(\mathbb{R}^d) \text{ avec } A \subset b \text{ et } \lambda \in \mathbb{R}^d \in \mathbb{R}^d \}$

On sait aussi que λ se prolonge a la tribu $\mathcal{M}(\lambda^*) \supset \mathcal{B}(\mathbb{R}^d)$ avec $\mathcal{M}(\lambda^*) = \{B \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A \cap B^C), \ \forall A \subset \mathbb{R}^d \mid \lambda^*(A) = \lambda^*(A \cap B) + \lambda^*(A$

Proposition 25 • On a $\mathcal{M}(\lambda^*) = \mathcal{L}(\mathbb{R}^d)$.

- Soit $\mathcal{M} = \mathcal{B}(\mathbb{R}^d)$ ou $\mathcal{L}(\mathbb{R}^d)$. La mesure de Lebesgue est invariante par translation au sens ou pour tout $A \in \mathcal{M}$ et $x \in \mathbb{R}^d$, on $a \ x + A \in \mathcal{M}$ et $\lambda(x + A) = \lambda(A)$.
- $Si \ \mu : \mathcal{B}(\mathbb{R}^d) \to [0, +\infty]$ est une mesure invaiante par translation et finie sur les bornés alors il existe une constante $c \ge 0$ telle que $\mu = c\lambda$

Theorem 26 • $\forall A \subset \mathcal{L}(\mathbb{R}^d)$ on a:

- $-\lambda(A) = \sup \{\lambda(K) \mid K \text{ compact, } K \subset A\}$ (regularité intérieure).
- $-\lambda(A) = \inf \{\lambda(U) \mid U \text{ ouvert, } U \supset A\}$ (regularité exterieure).

1.1.5 Représentation de Riez et comparaison avec l'intégrale de Rieman

1.2 Théorie de l'intégration

1.2.1 Fonction Mesurable

Definitions

Définition 27 Soit $(X, \mathcal{M},)$ et (Y, \mathcal{N}) deux espaces mesurables. On dit qu'une application $f: X \to Y$ est mesurable pour les tribus \mathcal{M} et \mathcal{N} si

$$f^{-1}(B) \in \mathcal{M}, \ \forall \ B \in \mathcal{N}$$

Remarque 28 Etant donnée deux espaces topologiques (X, \mathcal{T}) et (Y, \mathcal{S}) , la definition d'application continue pour les topologies \mathcal{T} et \mathcal{S} est analogue à celle de mesurabilité, i.e

$$f^{-1}(B) \in \mathcal{T}, \ \forall \ B \in \mathcal{S}$$

Remarque 29 Si Y est un ensemble quelconque, $\mathcal{N} = \{\emptyset, Y\}$ est la plus petite tribu sur Y rendant f mesurable. La tribu image de \mathcal{M} par f

$$\mathcal{N}^* = \left\{ B \subset Y \mid f^{-1}(B) \in \mathcal{M} \right\}$$

est la plus grande tribu sur Y rendant f mesurable.

Remarque 30 Si X est un ensemble quelconque, $\mathcal{M} = \mathcal{P}(X)$ est la plus grande tribu sur X rendant f mesurable. La tribu engendrée par f

$$\mathcal{M}^* = \{ f^{-1}(B) | B \in \mathcal{N} \}$$

est la plus petite tribu sur X rendant f mesurable.

Stabilité

- Si $f:(X_1,\mathcal{M}_1)\to (X_2,\mathcal{M}_2)$ et $g:(X_2,\mathcal{M}_2)\to (X_3,\mathcal{M}_3)$ sont mesurables, alors $g\circ f:(X_1,\mathcal{M}_1)\to (X_3,\mathcal{M}_3)$ est mesurable.
- Soient (X, \mathcal{M}) un espace mesurable, (Y, T) un espace topologique, $f_1, f_2 : X \to \mathbb{R}$ des applications mesurables et $\Phi : \mathbb{R}^2 \to Y$ une application continue. Alors, $h : X \to Y$ definie par $\forall x \in X, h(x) = \Phi(f_1(x), f_2(x))$ est mesurable.
- Soient $f, g: X \to \mathbb{R}$ deux fonctions mesurables. Alors f + g, fg, $\min(f, g)$, $\max(f, g)$ sont mesurables.
- Si $f: X \to \mathbb{R}$ est mesurable, alors $f_+ = \max(f, 0), f_- = \min(f, 0)$ et $|f| = f_+ + f_-$ sont mesurables.
- Si $f: X \to \mathbb{R}$ est mesurable et si $\forall x \in X, f(x) \neq 0$, alors g définie par $g(x) = \frac{1}{f(x)}$ est mesurable.
- Soit $\bar{\mathbb{R}} = \mathbb{R} + \{-\infty, +\infty\}$. Les ouverts de $\bar{\mathbb{R}}$ sont les unions d'intervalles de la forme $[-\infty, a[\,,]a, b[\,,]b, +\infty]$, $\forall a, b \in \mathbb{R}$. Soit (X, \mathcal{M}) un espace mesurable et $\{f_n\}_n$ une suite de fonctions de X dnas $\bar{\mathbb{R}}$. Alors $\sup_n f_n$, $\inf_n f_n$, $\lim_{n \to \infty} \sup_n f_n$, $\lim_{n \to \infty} \sup_n f_n$, $\lim_{n \to \infty} \sup_n f_n$.

$$\left(\sup_{n} f_{n}\right)(x) = \sup_{n} f_{n}(x)$$

$$\left(\limsup_{n \to \infty} f_{n}\right)(x) = \limsup_{n \to \infty} f_{k}(x)$$

On definit de meme $\inf_n f_n$ et $\liminf_{n\to\infty} f_n$. En particulier, si $f(x) = \lim_{n\to\infty} f_n(x)$ existe $\forall x \in X$ alors $f: X \to \overline{\mathbb{R}}$ est mesurable. Plus generalement, l'ensemble $\{x \in X \mid \lim_{n\to\infty} f_n(x) \text{ existe}\}$ est mesurable.

1.2.2 Fonctions étagées

Définition 31 Soit (X, \mathcal{M}) est un espace mesurable. On dit qu'une application mesurable $f: X \to \mathbb{R}$ est étagée si f ne prend qu'une nombre fini de valeurs. Pour i = 1..n, on note α_i les valeurs de f et $A_i = f^{-1}(\alpha_i)$, alors

$$f = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}$$

Proposition 32 Soit $f:(X,\mathcal{M}) \to [0,+\infty]$ une fonction mesurable. Alors il existe une suite croissante de fonctions mesurables étagéees qui converge ponctuellement vers f.

On suppose à present que (X, \mathcal{M}, μ) est un espace mesuré.

Définition 33 On note ε_+ l'ensemble des fonctions mesurables étagées $f:(X,\mathcal{M},\mu)\to [0,+\infty[$. On appelle intégrale de f pour la mesure μ l'application $I:\varepsilon_+\to [0,+\infty]$ définie par

$$\int f d\mu = \sum_{i=1}^{n} \alpha_i \mu(A_i)$$

et possédant les propriètes suivantes :

- $\int (f+g)d\mu = \int fd\mu + \int gd\mu, \forall f,g \in \varepsilon_+ \ (Additivit\acute{e}).$
- $\int \lambda f d\mu = \lambda \int f d\mu \ \forall f \in \varepsilon_+, \ \forall \lambda \in \mathbb{R}_+ \ (Homogénéité).$
- Si f et $g \in \varepsilon_+$ et si $f \leq g$, alors $\int f d\mu \leq \int g d\mu$ (Monotonie).

1.2.3 Integration Fonction Mesurable Positive

Définition 34 Soit $f: X \to [0, +\infty]$ une fonction mesurable. On appelle intègrale de f sur X pour la mesure μ la quantité

$$\int f d\mu = \sup \left\{ \int h d\mu \mid h \in \varepsilon, \ h \le f \right\} \in [0, +\infty]$$

 $Si\ E \subset X\ est\ une\ partie\ mesurable,\ on\ note\ aussi\ \int_E f d\mu = \int f \mathbf{1}_E d\mu.$ Cette intègrale possède la proprièté de monotonie.

Theorem 35 (Convergence monotone)

Soit $f_n: X \to [0, +\infty]$ une suite croissante de fonctions mesurables positives et soit $f = \lim_{n \to \infty} f_n$ la limite ponctuelles des f_n . Alors f est mesurable et

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Cette intègrales possède les propriètés d'additivité et de monotonie.

Définition 36 Dans un espace mesuré (X, \mathcal{M}, μ) , on dit qu'une proproèté P(x), $x \in X$ est vrai presque partout (ou μ presque partout) si elle est vrai en dehors d'un ensemble négligéable (\iff de mesure μ nulle)

Proposition 37 Soit $f: X \to [0, +\infty]$ une fonction mesurable.

- $\forall a > 0, \ \mu\left(\left\{x \in X \mid f(x) \ge a\right\}\right) \le \frac{1}{a} \int f d\mu$
- $\int f d\mu = 0 \iff f = 0 \ \mu \ presque \ partout$
- $Si \int f d\mu < \infty$, alors $f < \infty$ μ presque partout
- Si f et $g: X \to [0, +\infty]$ sont mesurables alors $f = g \mu$ presque partout $\Longrightarrow \int f d\mu = \int g d\mu$

Lemme 38 (de Fatou) Soit $(f_n: X \to [0, +\infty])_n$ une suite de fonctions mesurables. Alors

$$\int \left(\liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int f_n d\mu$$

Définition 39 (Mesure a densité) Soit (X, \mathcal{M}, μ) un espace mesuré et $f: X \to [0, +\infty]$ une fonction mesurable. On définit une application $v: \mathcal{M} \to [0, +\infty]$ par

$$v(A) = \int_A f d\mu = \int f \mathbf{1}_A d\mu$$

Alors v est une mesure sur (X, \mathcal{M}) appelée mesure de densité f par rapport a μ . Si $A \in \mathcal{M}$ verifie que $\mu(A) = 0$ alors v(A) = 0, on dit que v est absolument continue par rapport a μ .

Définition 40 (Intégrabilité sur \mathbb{R}) Soit (X, \mathcal{M}, μ) un espace mesuré quelconque et $f: X \to \mathbb{R}$ une fonction mesurable. On dit que f est intégrable par rapport a si μ si $\int |f| d\mu < \infty$. Dans ce cas, on pose

$$\int f d\mu = \int f_+ d\mu + \int f_- d\mu$$

On note $\mathcal{L}^1(X, \mathcal{M}, \mu)$ l'espace des fonctions intégrables sur X.

Remarque 41 Comme $f_+, f_- \leq |f|$ alors les intégrales de f_+ et f_- sont finies et la décomposition à du sens.

Proposition 42 • $\mathcal{L}^1(X, \mathcal{M}, \mu)$ est un espace vectoriel sur \mathbb{R} et l'application $f \to \int f d\mu$ est linéaire

- $|\int f d\mu| \le \int |f| d\mu, \, \forall f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$
- $Si\ f,g\in\mathcal{L}^1(X,\mathcal{M},\mu)$ et $si\ f=g\ \mu$ presque partout alors $\int fd\mu=\int gd\mu$
- $Si\ f,g \in \mathcal{L}^1(X,\mathcal{M},\mu)\ et\ f \leq g\ alors\ \int f d\mu \leq \int g d\mu$

Définition 43 Remarque 44 Il est possible d'étendre la définition d'intégrabilité et ces propriétés (hormis la dernière) sur l'ensemble \mathbb{C} . Dans ce cas $|\cdot|$ est le module et on pose

$$\int f d\mu = \int \Re(f) d\mu + \int \Im(f) d\mu$$

On note $\mathcal{L}^1_{\mathbb{C}}(X,\mathcal{M},\mu)$ l'espace des fonctions intégrables sur X

Theorem 45 (de la convergence dominée) Soit (X, \mathcal{M}, μ) est un espace mesuré et $f_n : X \to \mathbb{C}$ une suite de fonctions mesurables. On suppose que :

- La limite $f(x) = \lim_{n \to \infty} f_n(x)$ existe $\forall x \in X$
- Il existe $g: X \to [0, +\infty[$ intégrable telle que $|f_n(x)| \le g(x), \forall n \in \mathbb{N}, \forall x \in X$

Alors $f: X \to \mathbb{C}$ est intégrable et on a :

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu \ et \lim_{n \to \infty} \int |f_n - f| d\mu = 0$$

Remarque 46 Il est possible de relaxer l'hypothèse $\forall x \in X$ par pour μ presque tout $x \in X$.

Corollary 47 Soit $f_n: X \to \mathbb{C}$ une suite de fonctions intégrables telles que $\sum_{n \in \mathbb{N}} \int f_n d\mu < \infty$. Alors la série $\sum_{n \in \mathbb{N}} f_n(x)$ converge absolument pour μ presque tout $x \in X$ vers une fonction f intégrable et on a

$$\int f d\mu = \sum_{n \in \mathbb{N}} \int f_n d\mu$$

1.2.4 Integrale dépendant d'un paramètre

Soit (X, \mathcal{M}, μ) est un espace mesuré et soit (Λ, d) un espace métrique (a définir). On considère une fonction

$$\begin{array}{ccc}
f & : & X \times \Lambda \to \mathbb{C} \\
(x,\lambda) & \longmapsto & f(x,\lambda)
\end{array}$$

intégrable sur X pour la mesure μ . On peut donc définir la fonction $F:\Lambda\to\mathbb{C}$ par

$$F(\lambda) = \int_{X} f(x, \lambda) d\mu_x \equiv \int_{X} f(x, \lambda) dx \ \forall \lambda \in \Lambda$$

Afin d'harmoniser les notations, on notera pour une fonction $g: X \to \mathbb{C}$ de facon equivalente

$$\int g d\mu = \int g(x) d\mu_x = \int g(x) dx$$

Theorem 48 (de continuité) On suppose

- $\forall \lambda \in \Lambda$, la fonction $x \longmapsto f(x,\lambda)$ est intégrable (mesurable suffisant car (3)) sur X.
- Pour μ -presque tout $x \in X$, la fonction $\lambda \longmapsto f(x,\lambda)$ est continue sur Λ
- Il existe $g: X \to \mathbb{R}_+$ intégrable telle que $\forall \lambda \in \Lambda$ on ait $|f(x,\lambda)| \leq g(x)$ pour μ -presque tout $x \in X$

Alors la fonction $F: \Lambda \to \mathbb{C}$ définie par $F(\lambda) = \int_X f(x,\lambda) dx$ est continue sur Λ .

Remarque 49 Si l'on suppose seulement que $\lambda \longmapsto f(x,\lambda)$ est continue en un point $\lambda_0 \in \Lambda$, on obtient que F est continue en λ_0 .

Theorem 50 (de dérivabilité) On suppose

- $\forall \lambda \in \Lambda$, la fonction $x \longmapsto f(x, \lambda)$ est intégrable sur X.
- Pour μ -presque tout $x \in X$, la fonction $\lambda \longmapsto f(x,\lambda)$ est dérivable sur Λ
- Il existe $g: X \to \mathbb{R}_+$ intégrable telle que pour μ -presque tout $x \in X$, on ait $|\partial_{\lambda} f(x,\lambda)| \leq g(x) \ \forall \lambda \in \Lambda$

Alors l'application $F:\Lambda\to\mathbb{C}$ définie par $F(\lambda)=\int_X f(x,\lambda)dx$ est dérivable sur Λ et

$$F'(\lambda) = \int_{Y} \partial_{\lambda} f(x, \lambda) dx$$

Remarque 51 • $\partial_{\lambda} f(x,\lambda)$ est définie presque partout en x et la ou elle ne l'est pas on lui met la valeur 0.

- $Si \Lambda = [a, b]$, "derivable $sur \Lambda$ " signifie: derivable sur [a, b[, derivable à droite en a et dérivable à gauch e en b.
- Meme si on souhaite la dérivabilité de F qu'en un point $\lambda_0 \in \Lambda$, il faut quand meme supposer (3) pour $\forall \lambda \in \Lambda$.