Problème de Schumacher

Pierre Riedinger Ensem

10 février 2014

1 Modélisation du véhicule

FIGURE 1 – Description du véhicule

Un moteur-roue est un moteur électrique qui est incorporé dans la roue d'un véhicule et propulse celui-ci directement. On considère un véhicule doté de deux moteur-roues et d'une roue folle. On pilote la vitesse de chaque roue séparément en indiquant des consignes de vitesse. Chaque moteur répond suivant un premier ordre :

$$\dot{v} = av + bu \tag{1}$$

avec $v_{min} \leq v \leq v_{max}$. Les commandes u sont également saturées suivant $u_{min} \leq u \leq u_{max}$.

A.N. :
$$a = -0.5$$
, $b = 0.5$, $u_{min} = -8$, $v_{min} = 0$, $u_{max} = v_{max} = 8$.

On considère la vitesse linéaire v_l située dans l'axe de déplacement du véhicule et la vitesse angulaire v_{θ} correspondant à la vitesse de rotation du véhicule autour de son centre instantané de rotation.

La relation liant les vitesses droite v_d et gauche v_g du moteur aux vitesses v_l et v_θ sont donc déterminées par :

$$\begin{bmatrix} v_{\theta} \\ v_{l} \end{bmatrix} = \begin{pmatrix} \frac{-1}{\Delta} & \frac{1}{\Delta} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{bmatrix} v_{g} \\ v_{d} \end{bmatrix}$$
 (2)

où $\Delta = 10cm$ désigne la distance inter-roues.

On peut ainsi récupérer l'angle (direction) et la position du véhicule via les relations :

$$\dot{\theta} = v_{\theta} \tag{3}$$

$$\dot{x} = v_x = \cos(\theta)v_l \tag{4}$$

$$\dot{y} = v_y = \sin(\theta)v_l \tag{5}$$

2 Description de la piste

FIGURE 2 – Piste

On considère la courbe d'équation (voir figure (2)) :

$$y_p = \begin{cases} sin(x) \text{ si } x \le \pi \\ \pi - x \text{ si } \pi \le x \le 2\pi \\ -\pi - sin(x) \text{ si } 2\pi \le x \le 3\pi \end{cases}$$
 (6)

La piste est alors déterminée par l'ensemble $P=\{(x,y): \|y-y_p\|\leq \omega/2,\ 0\leq x\leq 3\pi\}.$

Le point de départ est (x, y)(0) = (0, 0) $v_l(0) = 0$ et $\theta(0) = 0$ et $\theta(0) = \pi/4$. Le point d'arrivée est situé sur la ligne d'arrivée.

3 Problème de Schumacher

Déterminer la trajectoire optimale du départ à l'arrivée en temps minimum et en respectant une contrainte d'adhérence sur le véhicule : $v_l^2/R < c*g$ où R désigne le rayon de courbure $(v_l = v_\theta R)$ et c le coefficient d'adhérence donné suivant les conditions météorologiques :

route sèche c=0.8; route mouillée c=0.5; route enneigée c=0.1.