	AU Chamistry, Ingraphic Chamistry	Traf	fic Li	ght
	AH Chemistry: Inorganic Chemistry Soction 13: Flostromagnetic Radiation & Atomic Spectra	red	amber	green
1 2 4	Section 1a: Electromagnetic Radiation & Atomic Spectra Electromagnetic radiation are waves that have both wavelength and frequency Wavelength λ : (visible light wavelengths are usually given in nanometres) the distance between wave crest to wave crest Frequency f: (frequency is measured in Hertz) the number of waves per second Speed c: All electromagnetic waves travel at $3x10^8$ m s ⁻¹ The equation $c = f \lambda$ shows the relationship between wavelength and frequency. $c = f \times \lambda$ $f = \frac{C}{\lambda}$ $\lambda = \frac{C}{f}$	3	(i)	3
3	The radiation types of electromagnetic spectrum can be put in order of wavelength. EM Radiation	8	:	©
5	Electromagnetic radiation has a dual nature. It can be described as a wave with wavelength and frequency a particle	(3)	<u></u>	©
6 7 9	 Electromagnetic radiation can be absorbed or emitted by matter the radiation is behaving as a stream of particles called photons photons have quantised energy proportional to the frequency of the radiation higher the frequency the higher the energy (lower the wavelength the higher the energy) photons in high frequency radiation can transfer greater amounts of energy than photons in low frequency radiation. 	8	•	(3)
13 14	When a photon is absorbed, energy is gained by electrons being promoted to higher energy levels. When a photon is emitted, energy is lost by an excited electron moving from higher energy level to a lower energy level	8	⊕	©
	The energy associated by a single photon is: $E = h \times f$ or $E = \frac{hc}{\lambda}$ As energy is often given in the unit kJ mol ⁻¹ The energy associated by a one mole of photon is: $E = L \times h \times f$ or $E = \frac{Lhc}{\lambda}$ Symbol Quantity Units E Energy kJ mol ⁻¹ L Avogadro's Constant 6.02 x 10 ²³ mol ⁻¹ h Plank's Constant 6.63 x 10 ⁻³⁴ J s f Frequency Hz or s ⁻¹ λ Wavelength m	3	(1)	(3)
15 16	Light energy emitted by an atom produces a spectrum that is made up of a series of lines at discrete (quantised) energy levels. • this provides direct evidence for the existence of these energy levels. • each element in sample produces characteristic absorption & emission spectra. • These spectra can be used to identify and quantify the element.	8	<u></u>	©
17 18	 In absorption spectroscopy, electromagnetic radiation is directed at an atomised sample. radiation is absorbed as electrons are promoted to higher energy levels. an absorption spectrum is produced by measuring how the intensity of absorbed light varies with wavelength. 	8	⊕	©
19 20	 In emission spectroscopy, high temperature is used to excite the electrons within atoms. As the electrons drop to lower energy levels, photons are emitted. emission spectrum of a sample is produced by measuring the intensity of light emitted at different wavelengths. 	©	⊕	©
	In atomic spectroscopy, the concentration of an element within a sample is related to the intensity of light emitted or absorbed.	8	<u></u>	\odot

	AH Chamistry: Ingraphic Chamistry	L	Traf	fic Li	ght
	AH Chemistry: Inorganic Chemistry Section 1b: Atomic Orbitals and Electronic Configurations Chem		red	amber	green
22 23 24	Discrete lines observed in atomic spectra can be explained if electrons, like photons, also display the properties of both particles and waves. • electrons behave as standing (stationary) waves in an atom and these are waves that vibrate in time but do not move in space. • different sizes and shapes of standing wave possible around the nucleus, known as orbitals.		8	①	3
25	Orbitals can hold a maximum of two electrons.		(3)	<u> </u>	\odot
	There are four different shapes of orbitals, identified as s, p, d and f				
	S orbital 1s 2s 3s s orbitals are circular and increase in size as value of n increases.				
26	p orbital		8	<u>(1)</u>	(i)
	d orbital Not required to know f orbitals shapes for AH Chemistry.				
27			(3)	<u>:</u>	\odot
27	Electrons within atoms have fixed amounts of energy called quanta. The principal quantum number (n) is the shell number of an energy level.	+	0		
28a	the higher the value of n the larger the size of the s-orbital. Electron Shell		8		\odot
28b	The angular momentum quantum numbers (l) describes the type of subshell within an electron shell. • The values of l for each shell go from 0 up to n-1 Subshell Type s p d f Angular Momentum Number l=0 l=1 l=2 l=3		8	<u>:</u>	©
	The magnetic quantum numbers (m _I) describes the orientation of the orbitals within a				
28c	subshell. • values of each orbital go from −l through 0 up to +l Subshell Values of Magnetic Quantum Number (m₁)		3	⊕	(3)
28d	The spin magnetic quantum number (m _s) determines the spin direction of an electron		(3)	<u>:</u>	\odot
29a	and has values +½ or -½. The aufbau principle states that electron orbitals fill up in order of increasing energy: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s		8	(i)	3
29b	Hund's rule states that electrons fill up orbitals singly first to maximise the number of parallel spins but filling each orbital with a second electron. e.g. iron atoms have 26 electrons and has an electronic configuration of 1s² 2s² 2p6 3s² 3p6 3d6 4s² Ist five d-electrons fill up singly 6th d electrons doubles up.		(3)	(E)	(3)

29c	• tw	exclusion princip o electrons in the o orbital can hold	ne same a	atom cannot h		ne same fou	ur quan	tum numbers	3	8	<u></u>	©
30		atoms, orbitals				enerate (ed	qual in e	energy)		8	<u> </u>	\odot
31		sent the relative						mmatically fo	r	(3)	<u></u>	\odot
		ur shells of a mu onfiguration of th						scopic notati	on			
	can be writ	tten.		Electronic Co	onfigurati	on			_			
	Element	Spectroscopic Notation			Orbita	l Box Notation						
32	Scandium 1s	² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ²	1s 2s	1 1 1 1 1 1 1 1 2p	↑↓	1 1 1 1 1 1 1 3p	1	3d 4	<u></u>	8	<u></u>	(i)
	Vanadium 1s	² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²	↑↓ 1s 2s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	↑ ↓		↑ ↑	3d 4	<u> </u>			
	Cobalt 1s	² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	1s 2s	1 1 1 1 1 1 1 1 2p	↑ ↓	1 1 1 1 1 1 1 3p	† † † †	3d 1 1 4	<u></u>			
33	electronic o	ic table is subdiviconfigurations of	f the elen	nents within th			•		ter	8	(i)	\odot
		lock p blos 1→2 Groups		d block Transition Meta	als	Actinide	f block s and La	nthanides.				
	for the first	n 1 st , 2 nd and sub 36 elements is ons and this pro Electron Config	due to the	e relative stab dence for thes	ility o	f different s ctronic conf Removing a	ubshell figuration electro	electronic				
	Lithium	1s ² 2s ¹		ΔH = +526 kJ m				e energy to rem			(i) (ii) (iii) (ii	
	Beryllium	1s ² 2s ²		ΔH = +905 kJ m	nol ⁻¹	<u>†</u>	† ↓					(i)
		1s ² 2s ² 2p) ¹	 ΔH = +807 kJ m	nol ⁻¹	Boron has 2	2s 2p ¹ and re	^{2p} emoving an elect p shell and leave	ron			
34 35	Carbon	1s ² 2s ² 2p		\H = +1090 kJ r	nol ⁻¹	behind the n					(a)	
36	Element	Electron Config	uration 1	st Ionisation En	ergy	Nitrogen is h	harder to	remove an electively stable half-	ron			\bigcirc
	Carbon	1s ² 2s ² 2p	Δl	H = +1090 kJ m	ol ⁻¹		ell with pa	rallel sins on the				
	Nitrogen	1s² 2s² 2p	ο ³ ΔΙ	H = +1410kJ mo	ol ⁻¹	1s [↑↓	† †	↑ I			
	Oxygen	1s² 2s² 2p	ρ ⁴ ΔΙ	H = +1320 kJ m	ol ⁻¹	Oxygen is ea		emove an electr				
	Fluorine	1s² 2s² 2p	ο ⁵ ΔΙ	H = +1690 kJ m	ol ⁻¹	1s	↑ ↓	↑↓ ↑	<u>†</u>			
	• the	in ionisation ener ere is a special s	stability as	ssociated with	half-	filled and fu	ıll subsł	nells	ıs.			
		e more stable the alence shell elec										
37	molecules	and polyatomic	ions.	,	•	·		·			_	
38	The number	er of electron pa		-6 -14		m is calcula per of bonds	-			(3)	⊕	\odot
	E	electron pairs =	_ around o	central atom T	2		5 - (<u> </u>				
		airs are negative		•								
									nn l			
	 electron pairs are arranged to minimise repulsion and maximise both lone pairs and bonding pairs take part in deciding the shap pairs around the central atom. 	·										
20	2 electron	pairs 3 electron	on pairs	4 electron pai	rs	5 electron pa	airs	6 electron pairs	5	8	<u></u>	\odot
39 40	F — Be	_F					-					
	Linea	ar Trigona	al Planar	Tetrahedra	1 1	rigonal Pyra	amidal	Octahedral				

	AH Chamistry Inorganic Chamistry	Tra	ffic Li	ght
	AH Chemistry: Inorganic Chemistry Section 1s: Transition Metals	red	amber	green
<u>T</u>	Section 1c. Transition Metals		an	g
44	Metals with an incomplete d subshell in at least one of their ions are called d-block transition metals	8	\odot	\odot
45	The aufbau principle states that orbitals of the lowest energy fill up first with electrons Exceptions to aufbau rule include: Element Electronic Configuration according to aufbau principle Chromium 1s² 2s² 2p6 3s² 3p6 3d⁴ 4s² 1s² 2s² 2p6 3s² 3p6 3d⁵ 4s¹ Half-filled 3d⁵ The aufbau principle states that orbitals of the lowest energy fill up first with electrons Actual Electronic configuration Reason Reason Half-filled 3d⁵ The aufbau principle states that orbitals of the lowest energy fill up first with electrons Exceptions to aufbau rule include: Element Electronic Configuration Reason Reason	8	(1)	☺
	Copper 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ 4s ² 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ preferred to full 4s ²			
46	Electrons are lost from the outer electrons shell first, regardless of the order they fill up in according to the aufbau principle. In transition metals, 4s electrons are removed before 3d electrons when metal ions are formed.	8	<u>:</u>	©
47 48	An element is in a particular oxidation state when it has a specific oxidation number. oxidation number in a free or uncombined element in zero for single atoms ions, the oxidation number is the same as the charge on the ion hydrogen usually has a oxidation number of +1 (except in hydrides) oxygen usually has an oxidation number of -2 (except in peroxides) The algebraic sum of all the oxidation numbers in a molecule must be zero e.g. In SO ₃ , three O atoms give 3x oxidation state of -2 and combine to equal -6 therefore the sulphur must have the oxidation numbers in a polyatomic ion must be equal to the charge on the ion e.g. In SO ₄ ² , four O atoms give 4x oxidation state of -2 and combine to equal -8 therefore the sulphur must have the oxidation state of +6 to allow the overall charge to equal -2.	8	①	©
49 50	Transition metals can have different oxidation states in its compounds. • compounds of the same transition metal in different oxidation states may have different colours e.g. Ion	8	(1)	©
51 52	Oxidation occurs when the oxidation number of a species increases Reduction occurs when the oxidation number of a species decreases	8	<u>:</u>	\odot
53	Compounds containing metals in high oxidation states are often oxidising agents. Oxidising agents are reduced themselves which reduces the oxidation number Compounds with metals in low oxidation states are often reducing agents. Reducing agents are oxidised themselves which increases the oxidation number	8	⊕	©
54 55	A ligand is defined as a molecule or ion electron donor which bonds to the metal ion by the donation of one or more electron pairs to unfilled metal ion orbitals. Type of Ligand	8	<u>:</u>	©
57	The total number of bonds of the ligand(s) to the central transition metal ion is called the co-ordination number • EDTA has a co-ordination number of 6 • hexaaquacopper(II) [Cu(OH ₂) ₆] ²⁺ has a co-ordination number of 6 as the central Cu ²⁺ ion is surrounded by 6 water molecules • tetrachloridocuprate(II) [CuCl ₄] ²⁻ has a co-ordination number of 4 as the central Cu ²⁺ ion is surrounded by 4 negative chloride ions	8	①	©

	Naming of Complexes from Formula				
	 Ligands listed alphabetically followed by the name of the central metal ion 				
	Naming of ligands follow the following rules				
	Neutral Ligand Naming Charged Ligands Naming				
	Wateraqua-ide ending ligand e.g. chloridechloridoAmmoniaammine-ate ending ligand e.g. oxalateoxalato				
	Carbon monoxide carbonyl -ite ending ligand e.g. oxalate oxalato				
	Mono, di, tri, tetra, penta, prefixes are used for multiple ligands of the same type				
	 If complex ion is overall a negative ion, the suffix –ate is added to the metal 				
	o nickel becomes nickelate(II)				
	iron becomes ferrate(III) [not ironate]				
EG	 copper becomes cuprate(II) [not copperate] 			_	_
56 58	• If complex ion is overall a positive ion, the metal does not have the suffix –ate		\odot	\odot	\odot
00	The oxidation state of the metal is written after the metal (roman numerals in				
	brackets)				
	e.g. $[Co[NH_3)_6]^{2+}$ is hexaamminecobalt(II) $[Fe(O_4C_2)_3)_6]^{3-}$ is trioxalatoferrate(III)				
	Writing Formula from Names of Complexes.				
	formula of complex ions are written in square brackets				
	metal symbol comes first				
	ligands are listed alphabetically irrespective of being charged or neutral of the start in ligand which depotes pair of electrons written first a.m. Old, or O.C. 2. On the start is a second within the depotes pair of electrons written first a.m. Old, or O.C. 2. On the start is a second within the depotes pair of electrons written first a.m. Old, or O.C. 2. On the start is a second within the depotes pair of electrons written first a.m. Old, or O.C. 2. On the start is a second within the depotes pair of electrons within the electrons within the electrons within the electrons within the electron within the electrons within the electrons within the electron within the electrons within the electron within the electrons within the electrons within the electrons within the ele				
	 atom in ligand which donates pair of electrons written first e.g. OH₂ or O₄C₂²⁻ overall charge on complex ion written after square brackets 				
	e.g. tetrachloridocuprate(II) is written as [CuCl ₄] ²⁻				
	hexaaquacopper(II) is written as [Cu(H ₂ O) ₆] ²⁺				
	In a complex of a transition metal, the d orbitals are no longer degenerate (equal in energy)				
59	 splitting of d orbitals to higher and lower energies occurs when the electrons 				
60	present in approaching ligands cause the electrons in the orbitals lying along the		\odot	<u>:</u>	\odot
61	axes to be repelled.		\mathcal{O})	9
	weak field and strong field ligands affect energy differences between subsets of d weak field and strong field ligands affect energy differences between subsets of d				
	orbitals. Ligands can be placed in a spectrochemical series based on their ability to split d orbitals.				
62			\odot	\odot	\odot
	$I^- < Br^- < Cl^- < F^- < H_2O < NH_3 < CN^-$				
	The colour of transition metal complexes can be explained in terms of d-d transitions.				
	 dx²-y² and dz² orbitals are raised to a higher energy level due to electrostatic 				
	repulsion from the ligands in the complex transition metals can absorb light because photons (at a particular wavelength)				
	excite electrons in the lower d-orbitals (ground state) up to a higher energy d-				
63	orbital (excited state)				
64			\odot	\odot	\odot
65					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	 light of one colour is absorbed, then the complementary colour will be observed. electrons transition to higher energy levels when energy corresponding to the 				
	ultraviolet or visible regions of the electromagnetic spectrum is absorbed.				
	Transition metals can act as catalysts as they can form a variable number of bonds due				
CC	to the availability of unoccupied and half-filled d-orbitals				
66 67	 allows the easier formation of intermediate complexes 		(3)	<u>:</u>	\odot
68	 provides reaction pathways of lower energy to proceed 		0)	9
	variability of oxidation state of transition metals is important factor.				
	transition metal reverts to original oxidation state once the reaction is complete		(
69a	Homogeneous catalysts are in the <u>same</u> state as the reactants.		(3)	\odot	\odot
	Heterogeneous catalysts are in the <u>different</u> state as the reactants.				
	Heterogeneous catalysts work by the adsorption of reactant molecules				
69b					
70	$ \hspace{.06cm} \hspace{.08cm} \hspace{.08cm} \hspace{.08cm} \hspace{.08cm} \hspace{.08cm} $		\odot	\odot	\odot
	(catalyst	ļ ļ			

	$\Lambda \sqcup Cho$	mistry: Physical Chemistry		Tra	ffic Li	ight
		ection 2a: Chemical Equilibrium	JAB chem	red	amber	green
		is in equilibrium when the composition of the reactants a	nd products		10	
71 72	remains constant ir	ndefinitely.		\odot	\odot	\odot
		constant (K) characterises the equilibrium composition of the rea	ction mixture			
	For the general reaction:	$aA + bB \longrightarrow cC + dD$				
73	The equilibrium expression is:	$K = \frac{[A]^a [B]^b}{[C]^c [D]^d}$		(3)	<u></u>	(
		[A], [B], [C] & [D] are the equilibrium concentrations of A,	B, C and D			
	where:	a, b, c & d are the stoichiometric coefficients in the balance				
	•	orium constant can be calculated: ium constant has no units.				
		gen and 1.5mol of hydrogen react by the Haber Process ince ammonia with an equilibrium concentration of 0.4mol.	n a one litre			
	Equation:	N_2 + $3H_2$ \Longrightarrow 2	NH_3			
74 76	Mole ratio	1 mol 3mol	2mol	\odot		\odot
	(Reactants Left) (0	0.2mol 0.6mol (.6mol leftover) (0.9mol leftover)).4mol			
		litre volume, the number of moles is equal to concentration	n in mol l ⁻¹			
	, A	$= \frac{[NH_3]^2}{[N_2][H_3]^3} = \frac{[0.4]^2}{[0.6] \times [0.9]^3} = 0.366$				
		uilibrium constant K indicates the position of equilibrium.		0		
75		value of K (well above 1) indicated equilibrium far to the livalue of K (well below 1) indicated equilibrium far to the Li		\odot	\odot	\odot
77	Concentrations of p	oure solids and pure liquids at equilibrium are taken as corn the equilibrium expression.		(3)	<u></u>	\odot
78	The numerical valu	e of the equilibrium constant depends on the reaction tem	perature	(3)	<u>(i)</u>	\odot
	and is independent For endothermic re	of concentration and/or pressure. eactions For exothermic reactions))	9
79		ure causes an increase in K • a rise in temperature causes a dec	crease in K	(3)	<u>(i)</u>	\odot
80	The presence of a	catalyst does not affect the value of the equilibrium consta	ınt.	\odot	\odot	\odot
81	hydroxide ions. Thi	bus solutions, water molecules form an equilibrium with hybrid is ionisation of water can be represented by: $H_2O(l) = H_3O^+(aq) + O(l)$ water molecule hydronium ion		(3)	<u> </u>	©
82	Hydronium ion has represented by the	the formula $H_3O^+(aq)$ and is a hydrated proton and is often shorthand $H^+(aq)$	-	(3)	\odot	\odot
83	•	as amphoteric as it can act as an acid or a base.		(3)	<u>:</u>	\odot
	The dissociation co	nstant K _w for the ionisation of water is known as the ionic	product:			
84 85		$K_w = [H_3O^+][OH^-]$ varies with temperature		(3)	<u>(1)</u>	(
		eximately 1 x 10 ⁻¹⁴ at 25°C.	von hv			
86	·	tween pH and the hydronium H ₃ O+ ion concentration is gi	ven by.	\odot	<u></u>	\odot
		$H = -log_{10}[H_3O^+]$ $[H_3O^+] = 10^{-pH}$ bus solutions with a pH value of 7, the concentrations of H:	Ot(on) and			_
87	OH-(aq) are both equ	ual to 10 ⁻⁷ mol l ⁻¹ at 25°C.		(3)	①	\odot
88	be calculated using e.g. Calculate the [of $H_3O^+(aq)$ or $OH^-(aq)$ is known, the concentration of the ot the ionic product K_w (or by using pH + pOH = 14.) OH^- if $[H_3O^+] = 0.025$ mol I^{-1}	her ion can	(3)	<u>(i)</u>	©
	[$OH^{-}] = \frac{K_W}{[H_3O^{+}]} = \frac{1x10^{-14}}{0.025} = 4x10^{-13} \text{ mol } l^{-1}$				

	The Brønsted-Lowry definition of acids and bases are:			
	Acid Loses a proton (H+) to form	the conjugate base		
	Base Gains a proton (H+) to form			
89	Conjugate Acid Formed when the base gain	, ,		
90	Conjugate Base Formed when the acid loses		(\odot
91	For example:	a proteir (i i)		9
01	·	00		
	$CH_3COOH_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3C_{(l)}$	$OO^{-}(aq) + H3O^{-}(aq)$		
	acid base conjuga	te base conjugate acid		
	Strong acids fully dissociate into their ions			
	e.g. HCl(g) + H ₂ O(l) H ₃ O ⁺ (aq) + Cl ⁻ (aq)		_	
92				\odot
	Weak acids partially dissociate into their ions	11.01.		
	e.g. $CH_3COOH(l) + H_2O(l) \rightleftharpoons CH_3COO(aq) +$	H ₃ O ⁺ (aq)		
	Examples of strong and weak acids & alkalis include:			
93	Strong Acid Weak Acid Strong		<u></u>	\odot
94	hydrochloric acid ethanoic acid Sodium h sulphuric Acid carbonic acid Potassium			\odot
	nitric Acid sulphurous acid Lithium h	,		
	Carboxylic acids (and other weak acids) partially dissociate into ior			
		n Equation		
0.5	<u> </u>			
95	T			\odot
		$2H_3O^+(aq) + SO_4^{2^-(aq)}$		
	Carbon Dioxide solution $CO_{2(g)} + 2H_2O(l)$	\Rightarrow 2H ₃ O ⁺ (aq) + CO ₃ ²⁻ (aq)		
	Ammonia, and amines, only partially dissociate into ions a	and mainly stays as molecules		
		n Equation		
96	Ammonia solution $NH_{3(aq)} + H_2O(l)$			\odot
	1-aminomethane solution $CH_3NH_2(aq) + H_2O(l)$			
	Equimolar solutions of weak and strong acids/bases have Property Strong Acid Weak Acid Property	Strong Base Weak Base		
97	pH Value lower Higher (Nearer pH=7) pH Value	higher Lower (nearer pH=7)		\odot
	Conductivity Higher Lower Conductivity	Higher Lower		
	Reaction Rate Higher Lower Reaction Rate	Higher Lower		
	The acid dissociation constant or the equation HA + H ₂	O \longleftrightarrow H ₃ O ⁺ + A ⁻ is:		
98	[H ₃ O ⁺] [A ⁻]	I/	<u></u>	\odot
	$K_a = \frac{[H_3O^+][A^-]}{[HA]} \qquad \therefore pK_a = -1$	D9 10 N a		
	NB AS H ₂ O is both a reactant and the solvent, [H ₂ O] is given the value = 1 and cancels out of e	quation.		
	The approximate pH of a weak acid can be calculated using: $pH = \frac{1}{2}pK_a$	- 1 10010C		
	can be calculated doing.			
	e.g. calculate the pH of 0.25mol I ⁻¹ solution of ethanoic ac	id (p $K_a = 4.76$)		
00	$pH = \frac{1}{2}pK_a - \frac{1}{2}log_{10}c$			
99	$pH = \frac{1}{2}x4.76 - \frac{1}{2}x \log_{10}(0.2)$	25)		\odot
	$pH = 2.38 - \frac{1}{2}x(-0.60)$	/		
	pH = 2.38 - (-0.30)			
	pH = 2.68			
		Calable Calt tarress at		
		Soluble Salt formed		
100		al solution		\odot
		ne solution		
	<u> </u>	Solution		
	The names of salts are worked out from the individual aci			
101	Acid Used Base Used Name of Salt Acid Used hydrochloric acid sodium hydroxide sodium chloride ethanoic acid	Base Used Name of Salt magnesium hydroxide magnesium ethanoate	(2)	\odot
	sulphuric acid Potassium hydroxide potassium sulphate sulphurous acid	calcium hydroxide calcium sulphite		
	nitric acid lithium hydroxide lithium nitrate carbonic acid	ammonia solution ammonium carbonate		
	Salt solutions can have different concentrations of H ₃ O ⁺ (at			
	. •	hloride solution has pH less than 7		
		solid fully dissociates into ions on dissolving. de with hydroxide ions to form molecules of NH ₃		
102	$CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)} \iff CH_3COOH_{(aq)} + H_2O_{(l)} \qquad NH_4^{+}_{(aq)} + H_3O^{+}_{(aq)} + H_3O^{+}_{(a$	$OH^{-}_{(aq)} \rightleftharpoons NH_{3(aq)} + H_2O_{(l)}$		\odot
	H ₃ O ⁺ (aq) ions removed from solution as they join up with CH ₃ COO ⁻ (aq) ions. OH ⁻ (aq) ions removed	from solution as they join up with NH ₄ ⁺ (eq) ions.		
		shifts to RIGHT to replace missing $OH_{(aq)}^{-}$ ions. $H_2O_{(1)} \rightleftharpoons H_3O_{(aq)}^{+} + OH_{(aq)}^{-}$		
	$H_2O_{(1)}$ + $H_2O_{(0)}$ \Longrightarrow $H_3O^+(a_0)$ + $OH^-(a_0)$ $H_2O_{(1)}$ + water water $H_2O_{(1)}$ + $H_2O_{(1)}$ + $H_3O^+(a_0)$ ions are removed and $OH^-(a_0)$ build up $[H_3O^+] > [OH^-]$ as	water hydronium ion hydroxide ion		
		OFF (aq) TOTIS are removed and FI3O (aq) build up	<u> </u>	
	Buffer solutions have a pH which remains approximately	constant when small amounts		
103		an anomanamound	<u></u>	\odot
'00	Large amounts of acid or base will overpower the	buffer solution		🖱
	Large amounts of dold of base will overpower the	Sanor Coldion.		

	Loop describe what an exidic and a basic buffer consists of				
104	I can describe what an acidic and a basic buffer consists of. Type	(3)	⊕	0	
104	Buffer dissolved in a weak acid dissolved in ethanoic acid Basic salt of weak base ammonium chloride Buffer dissolved in a weak base dissolved in ammonia solution	0	<u> </u>	(
	Acidic buffers and basic buffers work by the following mechanism:				
105	Acid Buffer e.g. sodium ethanoate dissolved in ethanoic acid solution. large concentration from weak acid CH ₃ COOH _(aq) + H ₂ O _(i) CH ₃ COO ⁻ (aq) + H ₃ O ⁺ (aq) ethanoic acid molecule water When acid is added to buffer: Equilibrium shifts to LEFT as added H ₃ O ⁺ (aq) ions are neutralised by the alkali and ethanoic acid molecules dissociate into ions to replace H ₃ O ⁺ (aq) ions. Basic Buffer e.g. ammonium chloride dissolved in ammonia solution. large concentration from weak acid NH ₃ (aq) H ₂ O _(i) NH ₄ ⁺ (aq) H ₂ O _(i) MH ₄ ⁺ (aq) + OH (aq) ammonia molecule water When acid is added to buffer: Equilibrium shifts to RIGHT as OH (aq) ions are neutralised by the acid and ammonia NH ₃ molecules dissociate into ions to replace H ₃ O ⁺ (aq) ions. When alkali is added to buffer: Equilibrium shifts to LEFT as added OH (aq) in added alkali join up with ammonium NH ₄ ⁺ ions and form ammonia molecules.	(3)	:	(1)	
	The approximate pH of a buffer solution is calculated using: $pH = pK_a - log_{10} \frac{[acid]}{[salt]}$ e.g. Calculate the pH of a buffer where 3.74g of sodium ethanoate (CH ₃ COONa) is				
	dissolved 0.20mol l-1 ethanoic acid and the final volume of the buffer is 100cm ³ .			i	
106	gfm CH ₃ COONa = $(2x12)+(3x1)+(2x16)+(1x23) = 24+3+32+23 = 82g \text{ mol}^{-1}$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{3.74}{82} = 0.0456 \text{ mol}$	(3)	⊕	\odot	
	concentration $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.0456 \text{ mol}}{0.1 \text{ litres}} = 0.456 \text{ mol } l^{-1}$))	
	pH = pK _a - log ₁₀ $\frac{[acid]}{[salt]}$ = 4.76 - log ₁₀ $\frac{0.2}{0.456}$ = 4.76 - log ₁₀ (0.439) = 4.76 - (-0.358)				
	= 5.12				
107	Indicators are weak acids in which the dissociation can be represented as:	(3)		\odot	
	$HIn(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + In^-(aq)$ The dissociation constant K_{ln} for an acid indicator is:				
108		(3)	<u></u>	\odot	
100	$K_{In} = \frac{[H_3O^+][In^-]}{[HIn]}$	0	\bigcirc	0	
	The colour of an acid indicator is distinctly different from that of its conjugate base.				
109	 the colour of an indicator is determined by the ratio of [HIn] to [In-] 			i	
110 111	• the theoretical point at which colour changes is when $[H_3O^+] = K_{In}$	(3)	\odot	\odot	
112	 the colour change is assumed to be distinguished when [HIn] and [In-] differ by a factor of 10 	0	\odot		
113	 the pH range over which a colour change occurs can be estimated by the 			i	
	expression: $pH = pK_a \pm 1$ Suitable indicators can be selected from pH data or titration curves.				
	Which of the following indicators should be Which indicator would be best in the following titration			1	
	used in the titration of aqueous potassium hydroxide and sodium hydroxide?			i	
	acid A. Phenolphthalein (pH range 8.3-10.0)			1	
	A. Phenolphthalein (pH range 8.3-10.0) B. Bromothymol blue (pH range 6.0-7.6) C. Methyl Red (pH range 4.2-6.3)			i	
	C. Methyl Red (pH range 4.2-6.3) D. Methyl Orange (pH range 3.1-4.4) D. Phenol Red(pH range 6.8-8.4)			1	
114	5. mounty Grange (prinainge s. r. r. r)	(3)	<u>:</u>	\odot	
	3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Volume of alkali odded (cm ¹⁰⁰) Answer: Answer:			ı	
	Potassium hydroxide reacting with ethanoic acid The titration curve clearly shows the neutralisation point to			ı	
	alkaline region of the pH scale. 4.0-6.0 would be best used.			1	
	Phenolphthalein is the only listed indicator where the colour change pH range is entirely in Wethyl Red is the only list indicator which is close to this pH range.			1	
	the alkaline region of the pH scale.				

	All Charaistan Dhyaigal Charaistan		Traf	fic L	ight
	AH Chemistry: Physical Chemistry		red	amber	green
T	Section 2b: Reaction Feasibility chem		re	am	gre
115	The standard enthalpy of formation, ΔH°_{f} is defined as the enthalpy change for the formation of one mole of a substance from its elements in their natural state. e.g. Enthalpy of combustion of ethanol: $2C(s) + 3H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow C_{2}H_{5}OH_{(l)}$		3		©
116	Standard state of a substance is its most stable state at a pressure of 1 atmosphere and		\odot	<u></u>	\odot
	a specified temperature (usually 298K). I can calculate the standard enthalpy change of a reaction using:		_		
117	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		©	=	©
118 119 120 121	 Entropy (S) is a measure of the degree of disorder of a system the greater the degree of disorder, the greater the entropy solids have lower values of entropy than gases. entropy increases as temperature increases there is a large change in entropy at a substance's melting and boiling point no change in temperature as state changes but large increase in entropy/disorder as solids turn into liquids or liquids turn into gas 		(3)	<u></u>	©
122	Second law of thermodynamics states that the total entropy of a reaction system and its surroundings always increases for a spontaneous process.		3	\odot	\odot
123 124	When heat is released by a reaction system to the surroundings there is an increase in the entropy (disorder) of the surroundings. • when heat is absorbed by a reaction system to the surroundings there is a decrease in the entropy (disorder) of the surroundings.		(3)	<u></u>	©
125	Third law of thermodynamics states that the entropy of a perfect crystal at 0 K is zero.		\odot	<u>:</u>	\odot
126	The standard entropy of a substance is the entropy content of one mole of a substance at 1atm pressure and 298K	t	3	<u></u>	©
127	I can calculate the change in standard enthalpy of a reaction using: $\Delta S^\circ = \sum \Delta S^\circ (\text{products}) - \sum \Delta S^\circ (\text{reactants})$ e.g. calculate ΔS° for the following reaction: $2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$ $Substance \Delta S^\circ (J \text{ K}^{-1} \text{ mol}^{-1}) = \Sigma S^\circ (\text{products}) - \Sigma \Delta H^\circ f_\text{ (reactants)} = (2x44) + (2x248) - (2x-206) + (3x0)$ $= 88 + 496 - (-412 - 0)$ $= 88 + 496 - (-412 - 0)$ $= 584 - (-412)$ $= -147 \text{ J K}^{-1} \text{ mol}^{-1}$		$\bigcirc \bigcirc$:	©
128	I know that the change in free energy for a reaction is related to the enthalpy and entropy changes by:		(3)	:	3
129	When the change in free energy (ΔG°) between reactants and products is negative , a reaction may occur and the reaction is said to be feasible .		\odot	<u></u>	\odot
130	A feasible reaction is one that tends towards the products rather than the reactants. This does not give any indication of the rate of the reaction.		3	<u></u>	\odot
131	The standard free energy change for a reaction can be calculated using: $\Delta G^{\circ} = \sum \Delta G^{\circ} \text{(products)} - \sum \Delta G^{\circ} \text{(reactants)}$		(3)	<u></u>	©

400	The feasibility of a chemical recalculated value of the change		ons can be predicted from the).			
132 135	When ΔG° < 0 Reaction is feasible	When $\Delta G^{\circ} = 0$	When $\Delta G^{o.1234567} > 0$ Reaction is not feasible	8		\odot
	Reaction is leasible	Reaction is just feasible (reaction is in equilibrium)	Reaction is not leasible			
133	I can estimate the temperature range of values of T for which e.g. calculate the temperature $2ZnS(\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0$	when the reaction becomes for $30_2(g) \rightarrow 22n0(s) + 2$	easible: SO ₂ (g)	8	(2)	(3)
134	Any reaction is feasible if ΔG	s negative, even under non-st	andard conditions	8	(2)	\odot
136	A reversible reaction will proce $\Delta G = 0$.	eed spontaneously until the co	mposition is reached where	8	(2)	\odot

	All Chamistry, Dhysical Chamistry	Т	raf	fic Li	ight
	AH Chemistry: Physical Chemistry		red	amber	green
T	Section 2c: Kinetics chem		ā	am	gre
137	Chemical reactions normally depend on the concentration of reactants	(3	\odot	\odot
138 139	The order of reaction with respect to each reactant can be determined by changing the concentration of each reactant individually. • The order of reaction relates each reacting species to the rate of reaction. For the reaction: • Each reactant is varied one at a time and the reaction rate is measured:	((()	(i)
140 141 142	The rate equation for a reaction can be written using the individual orders for each reactant.	(3)	<u></u>	©
143	The overall rate of a reaction can be determined from the rate equation. Overall Order = $1 + 0 + 2 = 3$	(3	<u>:</u>	\odot
144		(3	<u> </u>	\odot
145	Using the rate equation and data of initial rate in the results table, the value of the rate constant and units of the rate constant can be calculated. • reactants can be zero, first, second or third order Rate = k [A] x [C]^2 2.0 mol l^{-1} s ⁻¹ = k [1.0mol l^{-1}] x [1.0mol l^{-1}] 2 $k = \frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol } l^{-1} \text{ s}^{-1}}$ $k = \frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1.0 \text{mol}^3 l^{-3}}$ $k = 2.0 l^2 \text{ mol}^{-2} \text{ s}^{-1}$	Q.		⊕	(1)
	Reactions usually occur by a series of steps called a reaction mechanism. The rate of	0	3	<u> </u>	\odot
	the reaction is dependent on the slowest step called the rate determining step. Reaction mechanisms can be worked out from experimentally determined rate equations For reaction: $CH_3CH_2Br + OH^- \rightarrow CH_3CH_2OH + Br$ Experiments show reactants have order $[OH^-]^1$ and $[CH_3CH_2Br]^1$ HO- + CH ₃ Both reactants are first order so one molecule of each takes part in the slow rate determining step For the reaction: $CH_3C(CH_3)_2Br + OH^- \rightarrow CH_3C(CH_3)_2OH + Br$ Experiments show reactants have order $[OH^-]^0$ and $[CH_3C(CH_3)_2Br]^1$ CH_3			<u> </u>	9 9

	AH Chemistry: Organic Chemistry JAB	<u> </u>		Light
	Section 3a: Molecular Orbitals		amher	green
	I know that VSEPR cannot explain the bonding in all compounds and that molecular theory can provide an explanation for more complex molecules. I know that molecular orbits form when atomic orbitals combine and the number of molecular orbitals formed is equal to the number of atomic orbitals that combine.	E	3 @	9 9
151 152	I know that the combination of two atomic orbitals results in the formation of a bonding molecular orbital and an antibonding orbital. I know that the bonding molecular orbital encompasses both nuclei.	(?	9 @	0
153 154	I know that the attraction of the positively charged nuclei and the negatively charged electrons in the bonding molecular orbital is the basis of bonding between atoms. I know that each molecular orbital can hold a maximum of two electrons.	(E	9 @	
155 156 157	I know that in a non-polar covalent bond, the bonding molecular orbital is symmetrical about the midpoint between two atoms. I know that polar covalent bonds result from bonding molecular orbitals that are asymmetric about the midpoint between two atoms. I know that the atom with the greater value for electronegativity has the greater share of the bonding electrons.	(e	3 @	
158	I know that ionic compounds are an extreme case of asymmetry, with the bonding molecular orbitals being almost entirely located around just one atom, resulting in the formation of ions.	(8	3 @	0 0
159	l can describe sigma (σ) molecular orbitals or sigma bonds.	(2	9 (3	0 0
160	l can describe pi (π) molecular orbitals or pi bonds.	(2	9 (3) (3)
161	I know that the electronic configuration of an isolated carbon atom cannot explain the number of bonds formed by carbon atoms in molecules and that the bonding and shape of molecules of carbon can be explained by hybridisation.	(?	9 @	9 0
	I can describe sp ³ hybridisation. I know that bonding in alkanes can be described in terms of sp ³ hybridisation.	(?	3 (0
162a 164 165	I can describe sp ² hybridisation. I know that bonding in alkenes can be described in terms of sp ² hybridisation. I know that bonding in benzene and other aromatics can be described in terms of sp ² hybridisation.	6	3 @	
166	I know that bonding in alkynes can be described in terms of sp hybridisation.	(2	9 (3) (3)
167	I can describe the bonding in alkanes, alkenes, aromatics and alkynes in terms of sigma (σ) and pi bonds (π) .	(2		
	I know that molecular orbital theory can be used to explain why organic molecules are colourless or coloured. I know that electrons fill bonding molecular orbitals, leaving higher energy antibonding orbitals unfilled.	(2)	3 @	
170	I know that the highest bonding molecular orbital containing electrons is called the highest occupied molecular orbital (HOMO) and the lowest antibonding molecular orbital is called the lowest unoccupied molecular orbital (LUMO).	(8	3 @	9 0
	I know that absorption of electromagnetic energy can cause electrons to be promoted from HOMO to LUMO. I can explain why most organic molecules are colourless in terms of the energy difference between the HOMO and LUMO.	(3 @	
173	I know that a chromophore is a group of atoms within a molecule that is responsible for absorption of light in the visible region of the spectrum.	(3 (3	9 0
173 174 175	I know that a chromophore is a group of atoms within a molecule that is responsible for absorption of light in the visible region of the spectrum. I know that chromophores exist in molecules with a conjugated system and that a conjugated system is a system of adjacent unhybridised p orbitals that overlap side-on to form a molecular orbital across a number of carbon atoms where electrons are delocalised.	(8	3 @	
176	I can explain the colours of compounds in terms of energy gap between the HOMO and LUMO, and the wavelength of light absorbed.	(?	3 (3	9 0

	AU Chamistry, Organic Chamistry			Tra	ffic Li	ight
	AH Chemistry: Organic Chemistry	JAB chem		red	amber	green
	Section 3b: Synthesis In organic reactions, bonds in the reactant molecules are broken and bonds i				aı	50
177 178	molecules are formed.	a.o produot		(3)	\odot	\odot
	 the process of bond breaking is known as bond fission Homolytic fission has a covalent bond splitting with one electrons going to eit 	her end of the				
	bond to form free radicals (each with a unpaired electron)					
179	fish-hook style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents the movement of one electron from the style arrow represents t	the bond		(3)	<u>(i)</u>	\odot
182a	H ÷ CI. → H. + CI.)	
	Heterolytic fission has a covalent bond splitting with both electrons going to o bond to form a positive ion and negative ion.	ne end of the				
	Full arrow represents the movement of a pair of electrons in a bond					
180 182b	H H I + Br⁻			(3)	<u>:</u>	\odot
1020	$H - \stackrel{\uparrow}{C} \stackrel{\downarrow}{-} Br \longrightarrow H - \stackrel{\uparrow}{C} \oplus$					
	Reactions involving heterolytic fission tend to result in far fewer products than	reactions				
181	 involving homolytic fission heterolytic fission is better suited for organic synthesis as a result. 			(3)	<u>(i)</u>	\odot
183	 in reactions involving heterolytic bond fission, attacking groups are cl 	assified as)	
	nucleophiles or electrophiles. Nucleophiles are attracted towards atoms bearing a partial (δ +) or full positive	e charge.				
184	 nucleophiles that are capable of donating an electron pair can form a 	•			(
185 186	OH- CN- NH ₃ O in H ₂ O	R-		(3)	(1)	\odot
100	Negatively charged ions Negatively charged ions Molecules with lone pairs Negatively polarised centres	carbanion				
407	Electrophiles are attracted towards atoms bearing a partial $(\delta$ -) or full negative	-				
187 188	 electrophiles that are capable of accepting an electron pair can form covalent bond. 		(3)	<u>:</u>	\odot	
189	H ₃ O ⁺ SO ₃ H in H ₂ O	R ⁺				
	Positively charged ions Positively polarised centres There are different chemical reaction types shown in the following a chemical	equations:				
	 a) substitution: reaction with one atom/group replacing another atom/g 	•				
	$CH_4 + CI_2 \longrightarrow CH_3CI + H_0$	Cl				
	b) addition: molecule adding across a C=C double bond or C≡C triple b	ond				
	$C_2H_4 + Br_2 \longrightarrow C_2H_4Br_2$					
	c) elimination : molecule removed leaving behind a C=C double bond C2H5OH C2H4 + H					
	02113011	1 ₂ O				
	d) condensation : 2 molecules join together and a small molecule remo CH ₃ OH + CH ₃ COOH → CH ₃ OCOCH ₃	-				
	methanol ethanoic acid methyl ethanoate	water			(
190	e) hydrolysis: molecules splits into 2 molecules with small molecule ad			(3)	\odot	\odot
	CH ₃ OCOCH ₃ + H ₂ O	13COOH				
	f) oxidation : increase in oxygen: hydrogen ratio with a loss of electron					
	4	H_2O				
	methanol methanoic acid					
	g) reduction: decrease in oxygen : hydrogen ratio with a gain of electro	_				
	$CH_3COCH_3 + H_2O \longrightarrow CH_3CH(OH)CH_3$	$+ \frac{1}{2}O_2$			ı	
	propanone propan-2-ol h) neutralisation : acid and base reaction to form water and a salt					
	·	I ₂ O				
i e	1144007 1144004 1 1	·_ _	1	1		i

191						an be devised with up to 3 steps: bic acid → methylbutanoate		(3)	<u></u>	\odot
191			$\Theta \rightarrow DU$		oxidation	condensation		0		9
	Ske	eletal formulae Structural F			on to structure f	formula and molecular formula. Molecular Formula	,			
		H OH	-	OH						
192 193			OII		C ₅ H ₁₂ O		\otimes	<u></u>	\odot	
133		Нн-С-н	ī			Shortened Structural Formula				
		Н				CH ₃ C(CH ₃)(OH)CH ₂ CH ₃				
						rawn for examples up to 8 carbons	-			
	ŀ	Homologous Series	Function Group		General Formula	Example				
	a)	Alkanes	 - (C- i conds)	CnH2n+2	H H− C−H H methane CH₄				
	b)	Alkenes	— C = ($C_{n}H_{2n}$	H-C=C-H H H ethene C ₂ H ₄				
	c)	Alcohols	OH Hydroxyl gi		C _n H _{2n+1} OH	H H H H—C—C—C—H H OHH propan-2-ol C ₃ H ₇ OH				
	d)	Carboxylic Acids	0 444 0							
194 196	e)	Aldehydes	-c// ₀	н	$C_nH_{2n}O$	н н-с-с-с-с н-с-к-н н-с-н н н-с-н н н-с-н н		3	:	©
			Aldehyde G	Group		3,3-dimethylbutanal C ₆ H ₁₂ O				
	f)	Ketones	O -C — C — Ketone Gr	· Ċ-	C _n H _{2n} O	H O H H H H				
	g)	Haloalkanes	- C — X Halogen G	roup	$C_nH_{2n+1}X$	HH-C+HH H H-C-C-C-C-H H H Br H 2-bromo-3-methylbutane C₅H₁₁Br				
	h)	Ethers	(where X is F, Cl	ċ –	C _n H _{2n+2} O	H H H H-C-C-O-C-H H H H Methoxyethane				
			ematic naming	g of strai		d chain structures of the above	1			
		_				nbered where appropriate named straight or branched chain				
		structure	-							

202 206	 I know that a monohaloalkane can take part in nucleophilic substitution reactions by one of two different mechanisms. Tertiary haloalkanes tend to react via S_N1 reactions due to steric hindrance of the side groups in the tertiary haloalkane blocking the attack of the nucleophile for the δ+ on the carbon atom in the carbon to halogen bond. Groups off this carbon provide inductive stabilisation of the carbocation intermediate. Primary and Secondary haloalkanes tend to react via S_N2 reactions 	©	<u>:</u>	©
203 205a	The mechanism of S _N 1 nucleophilic substitution is: HO CH3 H3C CH3 H3C CH4 (fast) H3C CH3 H3C CH3 H3C CH4 H3C CH5 H3C CH7 Curly arrows show movement of pair of electrons	3	\odot	©
204 205b	The mechanism of S _N 2 nucleophilic reactions is: Rate Determining Step (slow) (slow) Curly arrows show movement of pair of electrons The mechanism of S _N 2 nucleophilic reactions is: HO WITH CH3 (fast) HO H	©	①	©
207	Alcohols are substituted alkanes in which one or more of the hydrogen atoms is replaced with a hydroxyl functional group, –OH group.	(3)	<u>:</u>	\odot
	Alcohols can be prepared from haloalkanes by nucleophilic substitution H H H			
208a	$H - C - C - Br \longrightarrow H - C - C - OH$ $H + H + Br^{-}$	8	\odot	①
208c	Alcohols can be prepared from aldehydes and ketones by reduction using a reducing agent such as lithium aluminium hydride $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	①	©
209	Alcohols can be dehydrated to form alkenes using one of: aluminium concentrated concentrated phosphoric acid H	©	(1)	(i)

	Alkenes react with water using an acid catalyst to form alcohols by electrophilic addition				
	reaction:				
208b 223d 226b 227b	Intermediate carbocation $H \longrightarrow H \longrightarrow H \longrightarrow C \longrightarrow C \longrightarrow H \longrightarrow H \longrightarrow C \longrightarrow C \longrightarrow H \longrightarrow H$	((3)	①	©
	Markovikov's rule predicts major and minor products formed during the addition of water to				
224b	 hydrogen atom in water adds to the C of the C=C double bonds which already has the most hydrogens attached to it. Hydroxyl -OH group ads to other carbon in C=C H H H H H H OH Propan-2-ol (major product) H H H H H H H H H H H H H H OH Propan-1-ol 	((3)	①	©
	H - C - C = C - H H H H + H - C - C - C - H OH H OH propan-1-ol (minor product)				
228	 I know that carboxylic acids can be prepared by: a) oxidising primary alcohols using acidified permanganate, acidified dichromate and hot copper(II) oxide b) oxidising aldehydes using acidified permanganate, acidified dichromate, Fehling's solution and Tollens' reagent 	(බ	①	©
	c) hydrolysing nitriles, esters or amides Carboxylic acids react with metals or bases to form salts.				
229	2CH ₃ COOH + Mg → Mg(CH ₃ COO) ₂ + H ₂ CH ₃ COOH + NaOH → NaCH ₃ COO + H ₂ O HCOOH + CaO → Ca(HCOO) ₂ + H ₂ O 2C ₂ H ₅ COOH + K ₂ CO ₃ → 2KC ₂ H ₅ COO + H ₂ O + CO ₂	(3	☺	(
	Carboxylic acids react with alcohols to form esters in a condensation reaction.				
230	concentrated sulfuric or concentrated phosphoric acid present as a catalyst Alcohol + Carboxylic Acid	(3	①	©
	Carboxylic acids react with amines to form alkylammonium salts that form amides when heated. e.g. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	((3)	①	☺
232	Carboxylic acids can be reduced with lithium aluminium hydride to form primary alcohols. e.g. butanoic acid lithium aluminium hydride butan-1-ol		33	①	©

233	Amines are organic derivatives of ammonia in which one or more hydrogen atoms of ammonia has been replaced by an alkyl group.	((3)	<u></u>	\odot
234	Amines can be classified as primary, secondary or tertiary according to the number of alkyl groups attached to the nitrogen atom. Primary Amines Secondary Amines Tertiary Amines R' A lalkyl groups attached to the N atom 2 alkyl groups attached to the N atom 3 alkyl groups attached to the N atom		©	:	©
235	I know that amines react with acids to form salts e.g. CH ₃ NH ₂ + HCI CH ₃ NH ₃ +CI	((3)		\odot
236 237	Primary and secondary amines display hydrogen bonding as they contain N–H bonds. Tertiary amines do not display hydrogen bonding as they lack the N–H bond. • primary and secondary amines have higher boiling points than isomeric tertiary amines • shorter chain length amines are more soluble in water due to hydrogen bonding Amine CH ₃ CH ₂ CH ₂ NH ₂ C ₂ H ₅ NHCH ₃ (CH ₃) ₃ N Type Primary Amine Secondary Amine Tertiary Amine Mass of 1mol 59g 59g 59g Boiling Point 49°C 36°C 3°C	(©	(2)	(i)
238	Amines are weak bases and dissociate to a slight extent in aqueous solution and that the nitrogen atom has a lone pair of electrons which can accept a proton (H+) from water, producing hydroxide ions. e.g. NH ₃ + H ₂ O NH ₄ + + OH CH ₃ CH ₂ NH ₂ + H ₂ O CH ₃ CH ₂ NH ₃ + + OH ethylamine + water ethylammonium ion + hydroxide ion	(©	•	(i)
239 240 241	Benzene (C ₆ H ₆) is the simplest member of the class of aromatic hydrocarbons. • benzene ring has a distinctive structural formula and the stability of the benzene ring is due to the delocalisation of electrons in the conjugated system • benzene does not take part in addition reactions as there are no C=C double bonds in the structure due to the 6 delocalised electrons	(©	<u></u>	©
242	The structure of benzene can be described in terms of sp² hybridiation, sigma bonds, pi bonds and electron delocalisation: Benzene's ring structure contains sp² hybridisation 6 electrons not involved in sigma bonds are found in remaining six unhybridised p-orbitals 6 electrons are described as delocalised 6 electrons form 2 electron rings 120° angle between carbons and hydrogens 120° angle betwe		(3)	•	©

243	A phenyl group is a benzene ring in which one hydrogen atom has been substituted by another group e.g. phenol C ₆ H ₅ OH, methylbenzene (toluene) C ₆ H ₅ CH ₃ • the phenyl group has the formula –C ₆ H ₅ .	\odot	(:)	©
244	Benzene can take part in electrophilic substitution reactions. • delocalised electrons are attractive to electrophiles for substitution reactions	(3)	(:)	\odot
	Benzene can undergo halogenation by reaction of a halogen • aluminium chloride or iron (III) chloride is the catalyst for chlorination where the normally non-polar Cl ₂ is polarised under the influence of catalyst: Cl			
245	• aluminium bromide or iron (III) bromide is the catalyst for bromination $ \begin{array}{c} Br & Br & AlBr_3 \end{array} $	©	(1)	3
	• mechanism for the electrophilic substitution reaction is: Br H + Br + H+Br			
246	 Benzene can undergo alkylation by reaction of a haloalkane aluminium chloride is the catalyst for this electrophilic substitution AlCl₃ catalyst causes heterolytic fission in haloalkane forming a positive electrophilic species: CH₃CH₂CI MICl₃ CH₃CH₂+ CH₃CH₂+ Mechanism for the electrophilic substitution reaction is: CH₂CH₃ 	©	①	©
247	Benzene can undergo nitration by electrophilic substitution • concentrated sulphuric acid and concentrated nitric acid react to form the electrophile nitronium NO ₂ + ion HNO ₃ + H ₂ SO ₄	$\bigcirc\!$	(1)	(i)
248	Benzene can undergo sulfonation using concentrated sulphuric acid. • SO ₃ is a powerful electrophile provided by sulphuric acid + H ₂ SO ₄ + H ₂ O	©	①	©

	All Charaistan Ouza			Traffic Lig		ht	
	AH Chemistry: Orga	nic Chemistry	JAB			er	'n
7	Section 3c: Stereog	chemistry	chem	,	3 .	amber	green
	Isomers are molecules with the same molecules	•	al formulae.				
249 250	structural isomers occur when atoms			(8)) (\odot
250	each isomer.						
251	Stereoisomers occur when the order of the b		but the	6			
252	spatial arrangement of the atoms is different				3 6) (\odot
	There are two types of stereoisomer: a) geo Geometric isomers occur when there is restr		ble bond				
	two different groups attached to each						
		s are on the SAME side of C=C					
253a	 TRANS isomer if both group 	s are on the SAME side of C=C					
254a	trans-but-2-ene	cis -but-2-ene		(3) (\exists	\odot
255a	H₃C H	H ₃ C, CH ₃					
	C = C	C = C					
	H CH₃	H H					
	Geometric isomers occur when there is restr	icted rotation around a carbon-c	arbon single			\dashv	\neg
	bond in a cyclic compound.		_				
	two different groups attached to each						
	 CIS isomer as both grou bond in the ring structure 	ps are on the SAME side of rest	ricted C-C				
0501		ips are on the SAME side of rest	ricted C-C				
253b 254b	bond in the ring structure	•		(3 6	<u> </u>	\odot
255b	trans-1.2-dibromocyclopropane	cis-1,2-dibromocyclopropane				7 `	۳
	н н	н н					
	Br C H	Br C Br					
	C - C	В					
	H Br						
	Geometric isomers have differences in physi	cal properties e.g. melting and b	oilina points				
	Geometric Isomer Melting	9					
		39 +4		6		<u> </u>	
256		trans-but-2-ene -106 +1					۳
	Geometric isomers and can have differences e.g. cis-but-2-enedioic acid undergoes dehyc		enedioic				
	acid as in the trans isomer the carboxyl grou						
257	Optical isomers occur in compounds which h		ed)	
259	tetrahedrally around a central carbon atom (optical isomers can be described as				3) 6	9 (\odot
	Optical isomers are asymmetric, non-superir		other.				
	Non-superimposable Mirror Images	Non-superimposable Mirror I					
	Images shown are direct mirror images of each	The following are optical isomers as					
	other and are therefore are optical isomers (enantiomers)	and X are in the same position but G Z are in different position.	roups y and				
	W	\ \ /	W				
258	l ï	"	VV	()) (\odot
	Cus –	Čr. –	Commen				
	$X \sim Z \times Z \sim X$	x Cinz x	Cuny				
			_				
	у у т	, y	Z				
	Optical isomers have identical physical properties of light	erties except for their effect on pl	ane-				
260	polarised light.optical isomers are optically active a	s they rotate plane-polarised ligh	nt hy the		$\left \cdot \right $	\setminus $ $	
261	same amount but in opposite direction		it by tile	[6	3) (3	\exists	\odot
262	Optical isomers have identical chemical prop	erties, except when in a chiral e					
	such as that found in biological systems whe				_	_	_
263	A racemic mixture is when optical isomers are rotational effect of the plane-polarised		-	(8) () (\odot

	AH Chemistry: Inorganic Chemistry JAB		Traf	ffic Li	ght
	Section 3d: Experimental Determination of Structure		red	amber	green
264 265	I know that elemental microanalysis is used to determine the masses of C, H, O, S and N in a sample of an organic compound in order to determine its empirical formula. I know that an empirical formula shows the simplest ratio of the elements in a molecule.	(3	<u>(i)</u>	©
266 267	I can determine an empirical formula from elemental microanalysis data. I know that elemental microanalysis can be determined from: combustion product masses percentage product by mass	(\odot	(1)	(i)
268	I know that mass spectrometry can be used to determine the accurate gram formula mass (GFM) and structural features of an organic compound.	(3	<u>(i)</u>	\odot
269 270	I know in mass spectrometry, a small sample of an organic compound is bombarded by high-energy electrons and this removes electrons from the organic molecule generating positively charged molecular ions known as parent ions. I know that the molecular ions then break into smaller positively charged ion fragments and a mass spectrum is obtained showing a plot of the relative abundance of the ions detected against the mass-to-charge (m/z) ratio.		(3)	(1)	©
281 282	I can use mass-to-charge ratio of the parent ion to determine the GFM of the molecular ion, and determine a molecular formula using the empirical formula. I know that the fragmentation data from mass spectrometry can be interpreted to gain structural information.		(3)	(:)	③
283 284	, ,		\odot	<u>(i)</u>	©
285 286 287	I know that in infrared spectroscopy, infrared radiation is passed through a sample of the organic compound and then into a detector that measures the intensity of the transmitted radiation at different wavelengths.		$\langle 0 \rangle$	()	(3)
288	I can interpret infrared spectra.	(3	<u>:</u>	\odot
289	I know that proton nuclear magnetic resonance spectroscopy (proton NMR or ¹ H NMR) can give information about the different chemical environments of hydrogen atoms (protons or ¹ H) in an organic molecule, and about how many hydrogen atoms there are in each of these environments. I can explain how ¹ H nuclei emit radiation that can be plotted on a spectrum		(3)	①	3
291 292 293 294	I know that In a ^1H NMR spectrum the chemical shift, δ , (peak position) is related to the environment of the ^1H atom and is measured in parts per million (ppm). I know that chemical shift values for ^1H in different chemical environments are given in the data booklet I know that the area under the peak is related to the number of ^1H atoms in that environment and is often given by an integration curve on a spectrum. I know that the height of an integration curve is proportional to the number of ^1H atoms in that environment, and so a ratio of ^1H atoms in each environment can be determined.	1	(3)	①	©
295	I know that the standard reference substance used in ¹ H NMR spectroscopy is tetramethylsilane (TMS), which is assigned a chemical shift value equal to zero.	(\odot	\bigcirc	\odot
296 297	I know that ¹ H NMR spectra can be obtained using low-resolution or high-resolution NMR. I know that high-resolution ¹ H NMR uses higher radio frequencies than those used in low-resolution ¹ H NMR and provides more detailed spectra.	(3	(1)	©
298 299	I know that in a high-resolution ¹ H NMR an interaction with ¹ H atoms on neighbouring carbon atoms can result in the splitting of peaks into multiplets. I know that the number of ¹ H atoms on neighbouring carbon atoms will determine the number of peaks within a multiplet and can be determined using the n+1 rule, where n is the number of ¹ H atoms on the neighbouring carbon atom.		3	①	3
300	I can analyse low- and high-resolution ¹ H NMR spectra, and can sketch low-resolution ¹ H NMR spectra for any given compound.	(3	<u></u>	\odot

	AH Chemistry: Researching Chemistry JAB							ight
		•		Practical Work	chem	red	amber	green
313a 313b 313c	Data can be tabulat Data can be repres	ed using app ented as a so line of best f	ropriate headi atter graph wi	ngs and units of measurth suitable scales and later to represent the trend	⊗	ar e	8 (3)	
313d 313e	• Rogue poin Titration Start Volum (cm³) 1 0.0 2 11.4 3 21.7 4 36.2	ugh) titre sho ts should be Final Volum (cm³) 11.4 21.7 36.2 46.7	e Change in Vo. (cm³) 11.4 10.3 14.5	ed from the calculation eliminated from calcula lume Average Volume = 10.3	tion of the averages $\frac{+10.5}{2} = \frac{20.8}{2} = 10.4 \text{cm}^3$	8	①	©
313f	The relative accuracy Beaker Beakers are of little use in measuring the volume of liqu accurately and only provide rough guide to the volume.	Measuring 0 ds used to mea the accuracy the smaller	ring Cylinder Cylinders have often ssuring volumes and v is ±0.5cm³ (i.e. half est division on the uring cylinder)	Pipette Pipette Pipettes (used with a pipette filler) give much more accurate volumes than measuring cylinders with accuracy like ±0.06cm³ typical in a 25cm³ pipette.	Pipettes (used with a pipette filler) give much more accurate volumes than measuring cylinders with accuracy like ±0.06cm³ typical in a		(i)	③
313g	Ac		ere measurem Not Accurate Precise		an be commented on: Accurate Precise	8	①	©
313h	Quantitative stoichiometric calculations can be performed: no. of mol thiosulphate = volume x concentration = $0.0205 \times 0.10 = 0.00205 \text{ mol}$ $2S_2O_3^{2^-} + I_2 \longrightarrow 2I^- + S_4O_6^{2^-}$ $\stackrel{1\text{mol}}{0.00205\text{mol}} \stackrel{1\text{mol}}{0.001025\text{mol}}$ $CIO^- + 2I^- + 2H^+ \longrightarrow I_2 + CI^- + H_2O$ $\stackrel{1\text{mol}}{0.001025\text{mol}} \stackrel{1\text{mol}}{0.001025\text{mol}}$ no. of mol of CIO ions in 25cm^3 of solution = 0.001025mol no. of mol of CIO ions in 250cm^3 of solution = 0.01025mol no. of mol of CIO ions in 250cm^3 of solution = 0.01025mol $\text{concentration} = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.01025\text{ mol}}{0.010\text{ litres}} = 1.025\text{mol} I^-1$					8	<u>(i)</u>	©
313i	Spectral data can b Mass Spectrometry (Section 3d Outcomes 269-2	IR Sp	or: Dectroscopy Outcomes 283-288)	Proton NMR Spectroscopy (Section 3d Outcomes 289-300)	Absorption Spectroscopy (Section 1a Outcomes 17-18)	(3)	<u>:</u>	\odot
313j	A control experimer accurate. e.g. In the quantitat the accuractusing a pure repeat the p	it can be con ive analysis or y of the mea e vitamin C s practical to ch	npleted in a property of vitamin C in surement of violution known neck the conce	actical validate a techni	que or procedure as	8	<u>:</u>	3

	AU Chamistry, Basaarshing Chamistry	Tra	ffic Li	ight
	AH Chemistry: Researching Chemistry Section 3c: Stoichiometric Calculations Chem	red	amber	green
T	Section 3c. Stoicilionieth Calculations		au	g
314 315	Stoichiometry is the study of mole relationships involved in chemical reactions. Chemical equations can be written and balanced State symbols used for solid (s), liquid (l), gas (g) and aqueous (aq) Mole ratios can be used to work out quantities of other reactants or products CaCO ₃ (s) + 2HCI _(aq) CaCI ₂ (aq) + H ₂ O _(l) + CO ₂ (g) 1mol 2mol 0.1mol 0.2mol	3	(1)	③
316b 316c 316d 320d	For solutions, the number of moles, the volume of solution or the concentration of a solution can be calculated from the other quantities. Calculate the number of moles of solute dissolved in 200cm³ of 0.1 mol l^{-1} solution. $ \begin{array}{c} $	3	①	©
	Gram formula mass (GFM) is calculated from the formula and Relative Atomic Mass: e.g.: Calculate the gfm of calcium nitrate: gfm $Ca(NO_3)_2 = (1x40.1) + (2x14) + (6x16) = 40.1 + 28 + 96 = 164.1 g mol^{-1}$	(3)	<u></u>	©
320b 320c	Calculations turning masses into number of moles (and vice versa) require the gfm: Calculate the number of moles in 0.328g of calcium nitrate? gfm Ca(NO ₃) ₂ = 164.1g mol ⁻¹ no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.328}{164.1}$ = 0.002mol calculate the mass of 0.05mol of calcium nitrate? gfm Ca(NO ₃) ₂ = 164.1g mol ⁻¹ mass = no. of mol x gfm = 0.05 x 164.1 = 8.21g	(3)	(1)	©
316a	The mass of solute in solutions can be calculated. e.g. calculate the mass of sodium oxide dissolved in 200cm^3 or $0.025\text{mol}\ l^{-1}$ solution. gfm Na ₂ O = $(2x23) + (1x16)$ = $46 + 16$ = $62g\ \text{mol}^{-1}$ $= 62g\ \text{mol}^{-1}$ $= 0.05\ \text{mol}$ m = mass (g) n= number of moles (mol) n = gfm $= gfm$ $= 0.025\text{mol}\ l^{-1}$ $= 0.05\ \text{mol}\ r$ m = r n = $0.5\text{mol}\ r$ gfm $= 0.05\ \text{mol}\ r$ $= 0.05\ \text{mol}\ r$ $= 3.1g$	(3)	①	(i)
317	 Percentage by mass is the mass of solute made up to 100 cm³ of solution. a 1% starch indicator solution contains 1g of starch dissolved deionised water and the solution made up to 100cm³ with deionised water. 	(3)	<u></u>	©
318	Percentage by volume is the number of cm³ of solute made up to 100 cm³ of solution. • A 10% ethanol solution contains 10cm³ of ethanol and the solution made up to 100cm³ with deionised water.	3	<u></u>	©
319	The unit ppm stands for parts per million and refers to 1 mg per kg or 1 mg per litre. The steel from a sword blade of mass 1300 g was found to have a vanadium concentration of 71 ppm. Calculate the total mass of vanadium present in the sword blade. Total mass of vanadium present in the sword blade. Total mass of vanadium present in the sword blade. Total mass of vanadium present in the sword blade. Total mass of vanadium present in the sword blade. Total mass of vanadium present in the sword blade. Total mass of vanadium, in mg, delivered in one dose. Total mass of vanadium, in mg, delivered in one d	(3)	<u>:</u>	3
320e	Calculate the final volume and composition when 10cm^3 of butane gas is completely burned in 100cm^3 of oxygen. All measurements made at the same temperature and pressure. C4H10(g) + $6\frac{1}{2}$ O2(g) \rightarrow 4CO2(g) + 5H2O(l) 1mol 6.5mol 4mol 5mol 1vol 6.5vol 4vol negligible vol 10cm³ 65cm³ 40cm³ - (+35\text{cm}^3) [leftover] (+35\text{cm}^3) [leftover] (+35\text{cm}^3) (40\text{cm}^3 CO_2 + 35\text{cm}^3 O_2) Final Volume = 75cm^3 (40cm^3 CO ₂ + 35cm^3 O ₂) Calculate the volume of carbon dioxide formed when 2g of calcium carbonate is reacted with excess hydrochloric acid. Molar volume = 24litres 9fm CaCO ₃ = $(1x40.1) + (1x12) + (3x16) = 100.1g$ 9fm CaCO ₃ = $(1x40.1) + (1x12) + (3x16) = 100.1g$ 9fm CaCO ₃ + 2HCl 9CaCO CaCO ₃ 9CaCO	③	①	(1)

320f	0.060mol of CaCO₃ need available ∴ HCl is CaCos of the control of	ant which is the lin bonate reacts with $x12$)+ $(3x16)$ = 100.1 $\frac{6}{100.1}$ = 0.060 mol $\frac{2}{100}$ mol \frac	niting factor a 50cm³ of 0.5 g HCl → CaCl ₂ + Cl to fully rea and CaCO ₃ is Alternately → CaCl ₂ + O ₃ to fully rea in excess.	and which read and which read and l-1 hydrono. of mol = v_0 = 0.0 + $H_2O + CO$ act but only 0.5 in excess. H ₂ O + CO act. 0.060 mol	ochloric acid. Folume x concentration OSitres x 0.5 mol I-1 O25mol (available) O25mol CaCO ₃ is CaCO ₃ is available	©	÷	(3)
320h	 Mass of hydroge 	rical formula when ng 11-89 g of CO ₂ n CO ₂ = 12 / ₄₄ x 11.89 n in H ₂ O = 2 / ₁₈ x 6.08 = 5g - (3.243+0.676)	5.00 g of an and 6.08 g of g = 3.243g g = 0.676g	organic com of H₂O as the	pound was burned	(3)	(1)	©
320g 321	Percentage Yield can be.g. Calculate the percereacting with excess nit	e calculated from a	g of ammonia	2NH _{3(g)} 2mol 34g 68g	om 12kg of hydrogen	(3)	(1)	(3)
322	The percentage yield at mass transfer or mechanical losses	ctually achieved in purification of product		reduced by: reactions	equilibrium position	8	<u>:</u>	©

	AH Chemistry: Researching Chemistry	Tra	ffic L	ight
	Section 4d: Gravimetric Analysis	red	amber	green
323 324	 Gravimetric analysis can determine the mass of an element or compound in a substance an accurate electronic balance can be used to determine the mass of substance the tare function on the balance allows the balance to be set to zero when an object is on top of the balance pan weighing boats are used to measure substances on a balance without contamination weighing by difference is used to accurately measure the mass of substance. The mass of an empty weighing bottle and stopper is measured and the chemical is added to the bottle and reweighed. The difference is the mas of the substance in the bottle. 'weighing accurately approximately' is the term used to measure the exact mass of a substance on a balance but the mass is close to a specific mass stated Weigh accurately approximately 2g of substance should mean that a mass was added close to 2.00g and was accurately measured to be 2.02g. heating to constant mass is used to remove all moisture from a substance which would increase the mass of the substance The substance is heated to remove moisture from the substance. The substance has its mass measured on the balance once cooled. Repeating the steps of heating, cooling and weighing until constant mass is obtained on the balance. 	3	①	3
325a 326	Conversion of the substance can occur when the substance undergoes a precipitation reaction to allow isolation and purification. • The precipitate is separated from the filtrate • the filtrate tested to ensure the reaction has gone to completion. • the precipitate is washed, dried to constant mass and then weighed.	3	(2)	©
	Conversion of the substance can also be achieved by volatilisation to allow isolation an purification. • the substance is heated and any volatile products (often water) are evaporated the substance is heated to constant mass and the final mass recorded.	3	(1)	©

	AH Chemistry: Researching Chemistry		Т	Traffic Li		ght		
	•		ieiiiisti y	JAB chem		D =	amber	green
		e: Volumetric Analysis	s including:	CHEM			ar	<u> </u>
328	I am familiar with use of the technique of volumetric analysis, including: • preparing a standard solution • accurate dilution • standardising solutions to determine accurate concentration • titrating to obtain concordancy using burettes, pipettes and volumetric flasks • choosing an appropriate indicator			(6	3	⊕	③	
329	A standard solution is a solution	on of accurately known conce	ntration.		(3	<u>(i)</u>	\odot
330	Standard solutions can be prepared by: • weighing a primary standard accurately • dissolving in a small volume of solvent (usually deionised/distilled water) in a beaker • transferring the solution and rinsings into a volumetric flask • making up to the graduation mark with solvent stoppering and inverting			(3	☺	©	
331	Standard solutions can be prepared by accurate dilution • pipette an appropriate volume of a standard solution into a volumetric flask • make up to the graduation mark with solvent (water), stoppering and inverting.			(3	<u></u>	③	
332	Primary standards must have high state of purity stable		uble reasonably h	igh GFM	(3	⊕	3
333	sodium carbonate Na ₂ CO ₃ silver nitrate AgNO ₃	hydrated oxalic acid $H_2C_2O_4 \cdot 2H_2O$ potassium iodate KIO_3	potassium hydrog $KH(C_8H_1)$ potassium dic $K_2Cr_2($	4 O 4) hromate	(3)	(2)	©
334 335	a relatively low GFM unsta Sodium hydroxide solution m	able as a solid (absorbs moisture			(3	⊕	③
336	Acid-base titrations are used f e.g. Calculate the number of moles		n acids and base $.7$ cm ³ of 0.5 mol l^{-1} Na mol $l^{-1} = 0.00735$ mol	S.	(3	☺	©
337	n o. of mol = v olume >	rolumetric analysis between of ethanol which reacts with 22.4cm³ concentration = 0.0224 litres x 0.020 + 16H ⁺ → 3CH ₃ COO	of 0.02 mol l^{-1} dichrommol $l^{-1} = 0.000448$ mol	nate solution.	(3)	⊕	©
338			e concentration of 01 mol l^{-1} E.D.T.A mol l^{-1} = 0.0002305mc	metal ions.	(3)	(1)	(3)
339 340 341	Back titrations are used to find excess volume of a reactant of an excess of a known unknown reactant (e.g. • The unreacted leftover another chemical (e.g. moles of known reacta • The number of moles of the unknown chemical number of moles at the start. • The initial number of moles of the calculated using starts.	f known concentration. reactant (e.g. standardised hyd calcium carbonate) and allowe reactant (e.g. hydrochloric acid standardised sodium hydroxide	rochloric acid) is and to fully react. If is then titrated age to calculate the resultance of the coloric acid) which resultance by subtraction ochloric acid from the cells.	dded to the gainst number of eacted with ing the the number ponate) is		3	(2)	9

	All Charaistan Daga and in a Charaistan		Tra	ffic Li	ight
	AH Chemistry: Researching Chemistry JAB		р)er	en
7	Section 4f: Practical Skills & Techniques		red	amber	green
342	Colorimetry can be used to measure the concentration of a species based on its absorbance of a particular wavelength of light. It involves: • preparing a series of standard solutions of an appropriate concentration • choosing an appropriate colour or wavelength of filter complementary to the colour of the species being tested using a blank • preparing a calibration graph			(1)	(3)
343 344 345 346	Colorimetry uses the relationship between colour intensity of a solution and the concentration of the coloured species present. • The higher the concentration of the species the higher the absorbance of light • colorimeter (spectrophotometer) measures the absorbance of light of a series of standard solutions • absorbance data is used to plot a calibration graph against concentration • solutions with unknown concentration are tested the absorbance obtained can determine the concentration of the species on the calibration curve. • the solution of unknown concentration must have an absorbance that must lie in the straight line section of the calibration graph.		(3)	①	(3)
347 348 349	Distillation is used for identification and purification of organic compounds the boiling point of a compound can be determined by distillation boiling point is one of the physical properties which can identify compounds the more volatile compound (with the lower boiling point) is separated from the less volatile compound and can purify the more volatile compound.		(3)	<u></u>	(3)
350 351 352	Heating under reflux allows heat energy to be applied to a chemical reaction mixture over an extended period of time without volatile substances escaping. • reaction mixture is placed in a round-bottomed flask with anti-bumping granules • flask is fitted with a condenser (water goes in end of condenser nearest round bottom flask) • flask is heated using appropriate source of heat. (heating mantle for flammable liquids)		(3)	①	(3)
353 354 355	Vacuum filtration involves carrying out a filtration under reduced pressure and provides a faster means of separating a precipitate from a filtrate. • The following can be used for vacuum filtration using a suction pump to help speed up the time taken for the filtration to take place.: Büchner funnel Hirsch funnel Sintered glass funnel		(3)	(E)	(3)
356 357 364	dissolving an impure solid include: dissolving an impure solid gently in a minimum volume of a hot solvent solvent used for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures. The solvent used should be: immiscible with the liquid mixture or solution (usually water) The steps of recrystallisation is purify an impure solid include: cooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impurities dissolved in the solvent pure crystals to be obtained by evaporation of the solvent unreactive with the solute solute unreactive with the solute value.		©	①	9
358 359 362	Solvent extraction involves isolating a solute from a liquid mixture or solution by extraction using a different immiscible solvent in which the solute is also soluble. • the lower layer is run off into a container and the upper layer is poured into a			①	(3)
360 361	 In solvent extraction, two immiscible solvents form two layers in the separating funnel. solute dissolves in both solvents and an equilibrium establishes between the two layers. the ratio of solute dissolved in each layer is determined by the equilibrium constant K 		3	<u>:</u>	(3)

				-	
363	I know that the quantity of solute extracted is greater if a number of extractions using smaller volumes of solvent are carried out rather than a single extraction using a large volume of solvent.		3	<u></u>	(
365a 366 367	 The technique of melting point determination is important using melting point apparatus the melting point of a substance is the temperature range over which the solid first starts to melt, to when all of the solid has melted. the identity of a pure compound can be confirmed by melting point analysis and a comparison of the experimentally determined melting point with a literature or known melting point value. 		3	<u>:</u>	(3)
368	 The determination of the melting point of a compound can give an indication of the purity of a compound the presence of impurities in the compound lowers the melting point and broadens its melting temperature range this is caused by disruption in intermolecular bonding in the crystal lattice. 		3	(])	(3)
365b 369	The determination of a mixed melting point involves mixing a small quantity of the product mixed with some of the pure compound. • the melting point value and the range of the melting temperature can be used to determine if the product and the pure compound are the same substance.	(3	<u>(i)</u>	(3)
370 371 372	Chromatography is used to separate the components present within a mixture substances are separated due to differences in polarity or molecular size. Thin-layer chromatography (TLC) causes separation by the distribution between the stationary phase (solid) and the mobile phase (liquid). different compounds will have different solubilities and adsorption to the two phases between which they are to be partitioned. TLC involves spotting the sample to be analysed near one end of a sheet of glass or plastic that is coated with a thin layer of an adsorbent. Plate is placed on end in a covered jar containing a shallow layer of solvent. solvent rises by capillary action up through the adsorbent and differential partitioning occurs between the components of the mixture the more strongly a given component of a mixture is adsorbed onto the stationary phase, the less time it will spend in the mobile phase and the more slowly it will migrate up the plate.			①	9
373 374	 How far the compounds are carried on a TLC plate depends on how soluble the compounds are in the chosen solvent how well they adhere to the plate. a developing agent or ultraviolet light is normally required to visualise the spots on a TLC chromatogram. 	(3	<u></u>	(3)
375 376	I can calculate R_f values using: $R_f = \frac{Distance \ travelled \ by \ the \ sample}{Distance \ travelled \ by \ the \ solvent}$ • a compound always has the same R_f value (within experimental error) under the same conditions (temperature, solvent, and saturation levels)			<u>:</u>	③
377	I know that the identity of a compound can be confirmed by: comparing the experimentally determined Rf values with a literature or known value determined under the same conditions making a direct comparison on a TLC plate between the compound being tested and the pure substance where a co-spot could be used	(3	<u>:</u>	(3)
378	TLC is used to assess the purity of substances a pure substance should appear as a single spot (when spotted and developed on a TLC plate) the presence of more than one spot shows that impurities are present. (although some impurities may not be visible by TLC analysis).	(3	<u></u>	(i)

AU Chamistry Ingrapic Chamistry		Tra	Traffic Light			
AH Chemistry: Inorganic Chemistry Section 1a: Electromagnetic Radiation & Atomic Spectra	JAB chem	red	amber	green		
	<u> </u>	8	<u></u>	\odot		
		8	(2)	\odot		
		8	(2)	\odot		
		8	(2)	\odot		
		8	<u></u>	\odot		
		8	<u>:</u>	\odot		
		(3)	<u>:</u>	\odot		
		8	<u>:</u>	\odot		
		8	(2)	\odot		
		8	(2)	\odot		
		8	(:)	\odot		
		8	<u> </u>	\odot		
		8	\odot	\odot		
		8		\odot		
		8	_	\odot		
		8		\odot		
		8	(2)	\odot		
		8	<u> </u>	<u></u>		
		8	(2)	\odot		
		8	<u> </u>	<u></u>		
		8	<u> </u>	<u></u>		
		8	_	(i)		
		8	<u> </u>	<u>©</u>		
		8	<u> </u>	<u> </u>		
		8	<u> </u>	<u>©</u>		
		8	<u> </u>	<u>©</u>		
		8	<u> </u>	<u>©</u>		
		8	<u> </u>	<u>©</u>		
		8	<u> </u>	<u></u>		
		8	<u> </u>	©		
		8	<u> </u>	© 0		
		8	<u> </u>	<u></u>		
		8	<u> </u>	<u>©</u>		
		8	<u> </u>	<u>©</u>		
		8	<u>:</u>	\odot		