Московский государственный университет имени М.В.Ломоносова
Отчет
Параллельная программа на OpenMP, которая реализует
однокубитное квантовое преобразование.
однокуойтное квантовое преооразование.
Факультет: Вычислительной математики и кибернетики
Кафедра: Суперкомпьютеров и квантовой информатики
Группа: 323
Студент: Тыркалов Евгений Олегович
Москва, 2020

Задача:

- 1. Реализовать параллельную программу на C++ с использованием OpenMP, которая выполняет однокубитное квантовое преобразование над вектором состояний длины 2^n , где n количество кубитов, по указанному номеру кубита k.
- 2. Определить максимальное количеств кубитов, для которых возможна работа программы на системе Polus.
- 3. Протестировать программу на системе Polus, используя преобразование Адамара по номеру кубита.

Описание алгоритма:

Математическая постановка:

Имеется комплексный входной вектор (массив) размерности 2^n : $\{a_i\}$ = $\{a_0, a_1, \dots, a_{2^n-1}\}$; n — параметр задачи (число кубитов). Над такими векторами нам необходимо производить так называемые однокубитные операции. Обе эти операции переводят вектор в новый вектор такой же размерности (длины массива). Однокубитная операция задается двумя параметрами: комплексной матрицей размера 2x2 и числом от 1 до n (данный параметр обозначает номер кубита, по которому проводится операция). Итак, дана комплексная матрица:

$$U = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

и k - номер индекса от 1 до n (номер кубита).

Такая операция преобразует вектор $\{a_{i_1,i_2...i_n}\}$ в $\{b_{i_1,i_2,...i_n}\}$, где все 2^n элементов нового вектора вычисляются по следующей формуле:

$$b_{i_1,i_2,\dots i_k\dots i_n} = \sum_{j_k=0}^1 u_{i_k,i_k} a_{i_1,i_2,\dots i_k\dots i_n}$$

Преобразование Адамара задается следующей матрицей:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Результаты выполнения:

количество кубитов	количество процессоров	время работы программы (сек)			ускорение		
		1 кубит	10 кубит	последний кубит	1 кубит	10 кубит	последний кубит
20	1	0,096259	0,096132	0,09478	1	1	1
	2	0,052591	0,051892	0,051336	1,830332186	1,852539891	1,846267726
	4	0,032511	0,037334	0,028808	2,960813263	2,574918305	3,290058317
	8	0,017824	0,018232	0,018229	5,400527379	5,272707328	5,199407537
	160	0,008328	0,008299	0,008275	11,55752126	11,58279346	11,4525167
24	1	1,5372	1,53917	1,52544	1	1	1
	2	0,81086	0,81086	0,816698	1,89576499	1,89819451	1,867814051
	4	0,469848	0,475916	0,460665	3,271696378	3,234121147	3,3113868
	8	0,292084	0,315461	0,286755	5,262869585	4,879113424	5,319663127
	160	0,136483	0,143603	0,130185	11,26292357	10,71816802	11,71739864
28	1	24,2861	24,2628	24,3464	1	1	1
	2	13,0918	12,9786	12,9719	1,855061947	1,869446628	1,876856898
	4	7,42278	7,33705	7,33932	3,271833464	3,306887646	3,31725555
	8	4,54453	4,51497	4,5097	5,344028975	5,373856305	5,398673969
	160	2,12354	2,0553	2,04739	11,43661057	11,80499197	11,89143251
30	1	103,49	97,567	97,6294	1	1	1
	2	55,3426	52,5547	52,4574	1,869988038	1,856484767	1,861117783
	4	30,9996	29,4618	29,6792	3,338430173	3,311644231	3,289488935
	8	20,346	18,5931	18,0467	5,08650349	5,247484282	5,409820078
	160	9,12124	8,85191	8,8817	11,34604506	11,02214098	10,99219744

График ускорения для 30 кубитов при изменении 30го

