

HALO: Using CM SAF's MAGICSOL method to retrieve global and direct surface radiation from historical geosynchronous observations

R.W. Mueller German Weather Service

D. Lee University of Marburg

Global solar data sets: Requirements

Essential climate variables:

- Relevant base variable
- Long-term record
- High quality measurements

Global solar data sets: Available data

Comparable data sets:

- Helio-Clim
- ERA-Interim
- GEWEX SRB
- ISCCP FD
- FLASHFlux
- CLARA

Global solar data sets: Available data

Comparable data sets:

- Helio-Clim
- ERA-Interim
- GEWEX SRB
- ISCCP FD
- FLASHFlux
- CLARA

Data needed with:

- Robust data requirements
- Long time series available
- High resolution
- Differentiation in diffuse/beam radiation
- Free to use/distribute
- Global spatial extent

Global solar data sets: MAGICSOL

Advantages:

- Robust and well tested
- Low data requirements
- Self-calibration high data availability
- Computation of direct and diffuse radiation
- Relatively low computational costs
- Best validation among comparable data sets
- Open source verifiable, modifiable, freely usable

Historical solar Analysis from Long-term geosynchronous Orbit

Year	GOES-W (-135°)	GOES-E (-74°)	MSAT-Prime (0°)	MSAT-IODC (57.5°)	GMS (155°)
	GOES-2				
1978 – 1980	GOES-3		Meteosat-1		GMS
1981 – 1985	GOES-4	GOES-5			GMS-2
1981			Meteosat-2		
1986 – 1990					GMS-3
986			Meteosat-3		
Ä			Meteosat-4		
1991 – 1995			Meteosat 5		GMS-4
1996 – 2000	GOES-9	GOES-8	Meteosat 6		
					GMS-5
90					
2001 – 2005	GOES-10		Meteosat 7	Meteosat 5	GOES-++
		GOES-12			
2006 - 2010	GOES-11			Meteosat 7	
2011 - 2012		GOES-13			
20	GOES-15				

Year	GOES-W (-135°)	GOES-E (-74°)	MSAT-Prime (0°)	MSAT-IODC (57.5°)	GMS (155°)
	GOES-2	ì		`	
1978 – 1980	GOES-3		Meteosat-1		GMS
1981 – 1985	GOES-4	GOES-5	<u>Meteosa</u> t 2		GMS-2
1986 – 1990			<u>Meteosa</u> t 3		GMS-3
1991 – 1995			Meteosat 4 Meteosat 5		GMS-4
1996 – 2000	GOES-9	GOES-8	Meteosat-6		
05 1996					GMS-5
2001 – 20	GOES-10		Meteosat 7	Meteosat 5	GOES-++
-		GOES-12			
2006 – 2010	GOES-11			Meteosat 7	
2011	GOES-15	GOES-13			

Year	GOES-W (-135°)	GOES-E (-74°)	MSAT-Prime (0°)	MSAT-IODC (57.5°)	GMS (155°)
_ 0	GOES-2		Meteosat-1		
1978 1980	GOES-3		20000000-		GMS
1985	GOES-4	GOES-5			
1981 – 1985			Meteosat-2		GMS-2
	-				
1986 – 1990					GMS-3
986			Meteosat-3		
1 2			Meteosat-4		
1991 – 1995			Meteosat 5		GMS-4
1996 – 2000	GOES-9	GOES-8	Meteosat 6		
-					GMS-5
2 05	005040				
2001 – 2	GOES-10		<u>Meteosa</u> t-7	<u>Meteosa</u> t 5	GOES-++
2					
9		GOES-12			
20					
2006 – 2010	GOES-11			<u>-</u>	
				Meteosat-7	
2011 - 2012	6056.15	GOES-13			
2 2	GOES-15				

1 month = \sim 3 TB

Chosen test month: June 2003

