4.7.3 Remarques seur la régularité de la solution.
Rappel la solution du problème est des Ho(D), donc dans Ho(D) (comme en dimension I On avait vu qu'un élement de Hi admet un représentant continu, ce qui est faix e dimension 2. Nous allons en dire un peu plu seu la régularité de la solution.
hérieme Soit mEN, on suppose que relet donc son bord I) est de classe E m+2 On suppose de plu que f EHM(R). Plou la solution u est dans HM+2 (R), de plus HUH _{HM+2} (R) où la constante Condépend que de r.
Theorems Soit m EN et soit $\Omega \in \mathbb{R}^d$ ouver borné de close C^m . Y $k \in \mathbb{N}$ tel que $m > \frac{d}{2} + k$, on a $H^m(\Omega) \in C^k(\Omega)$
Remarque: pour d=I, k-Oetm=I on retrouve lefait que H [±] CC en dimension Y et ceci me fondior ne pas pour d=t, k=Oet m=1.
L'inégalité étant viair pour m-2, k-oet d= Lou 3, on en dédut que: H'(N) CE (N) pour 2 ouvert de Rd (d-Lou 3) de classe E?
Es deux héorèmes permettent de montrer que 5; N est de classe E^∞ et que fer E^∞ sur N , alors la solution n'est de classe E^∞ .

Le principe va être le même qu'en dimension I définir un sous espace V CVEHO(I) avec V, de dimension finie, et chercher y EV, tel que a (u, v) = l(v) VV, EV,

4. Mise en place d'une méthode d'élements finis

427 Principe & Haillage

Progrété P. L. La forme une bax des
Progriété: $f_1, f_2,, f_p$ forme une base dev_h En effet, $V(a_1,, a_p) \in \mathbb{R}^p$, $\exists ! v_h \in V_h$ tel que $v_h(S) = a_i$ Il est clair que $v_h = a_1 f_1 + + a_p f_p$ où $v_h(P_i) = a_i$, et que celte décomposition est unique.
Il est clair que V=a L+ +a L, où V (P) = a, et que cette décomposition est unique.
Y est donc un espece vectored de dimension p, où p est le mombre de sommets de Th
:ntérieur à D