Hobbs Algorithm in NLP

The **Hobbs** algorithm is used in **syntactic parsing** to handle **grammatical relations** in natural language processing (NLP), especially focusing on **resolution of pronouns** in the context of **anaphora resolution**. It is named after **Jerry Hobbs**, who proposed this algorithm in his 1979 paper titled "A Discourse Theory of Anaphora: A Study in Reference and Grammatical Form."

What is Anaphora Resolution?

Anaphora resolution is the process of determining what a pronoun or noun phrase refers to in a text. For example, in the sentence:

• "John went to the store. **He** bought some milk."

Here, the pronoun "He" refers to "John". The task of anaphora resolution is to find that link between "He" and John.

Hobbs Algorithm Overview

The Hobbs algorithm primarily deals with resolving **pronouns** (like "he", "she", "it", etc.) by determining the most likely **antecedent** (the noun phrase a pronoun refers to). The algorithm uses the **syntactic structure** of the sentence and **local discourse context** to make this determination.

Key Concepts of the Hobbs Algorithm

- Syntactic Parsing: The algorithm relies on syntactic information, i.e., the structure of the sentence to determine possible antecedents. It uses grammatical relations like subject, object, and possessive to find a likely antecedent.
- Distance Heuristic: Hobbs' algorithm prefers the closest possible antecedent to the pronoun, which is based on the distance between the pronoun and potential antecedents in the sentence.
- Grammar-Based Rules: The algorithm uses rules that align with standard syntactic relations:
 - o A pronoun typically refers to the most recent **subject** in the sentence.
 - o If the subject doesn't make sense (e.g., the subject is a plural noun but the pronoun is singular), the algorithm might consider other options.

How the Hobbs Algorithm Works

The algorithm can be summarized in the following steps:

- 1. **Identify Pronouns**: The first step is to identify the **pronouns** in the sentence or discourse that need an antecedent. These can be **subject pronouns**, **object pronouns**, **reflexive pronouns**, etc.
- 2. **Parse Sentence**: The sentence is parsed syntactically to identify the grammatical structure, focusing on subjects, objects, and possessives.

3. Search for Antecedent:

- The algorithm looks for the closest possible antecedent (noun phrase) in the local discourse context.
- o It checks the structure and rules for determining a likely match.
- 4. **Apply Heuristic**: The algorithm applies heuristics to narrow down which noun phrase is the correct antecedent:
 - For example, subjects are typically preferred over objects, and the most recent antecedent is preferred over earlier ones.
- 5. **Resolve Reference**: Once an antecedent is found, the pronoun is resolved by linking it to the noun phrase.

Example of Hobbs Algorithm in Action

Let's consider an example:

Sentence 1: "Sarah visited the library." Sentence 2: "She borrowed a book."

In **Sentence 2**, the pronoun **"She"** refers to **"Sarah"**. The Hobbs algorithm works as follows:

- 1. **Identify Pronoun**: The pronoun "She" is identified in Sentence 2.
- 2. **Parse the Sentence**: The grammatical structure of **Sentence 2** is parsed. It shows that "**She**" is a subject pronoun.
- 3. **Look for Antecedent**: The algorithm looks backward at the previous sentence. It finds "Sarah" as the closest antecedent (since "Sarah" is the subject in Sentence 1).
- 4. **Apply Heuristic**: Since **Sarah** is the most recent **subject** before the pronoun, the algorithm resolves **"She"** to **"Sarah"**.

Limitations of Hobbs Algorithm

While Hobbs' algorithm was an important step in **anaphora resolution**, it has its limitations:

- **Context Dependency**: The algorithm is highly dependent on the **local context** and doesn't always capture broader discourse relationships.
- **Ambiguity**: If there are multiple possible antecedents within the same local context, Hobbs' algorithm may struggle to pick the correct one.
- Lack of World Knowledge: The algorithm doesn't incorporate knowledge about the real world (i.e., it doesn't understand the entities beyond the sentence structure).

Conclusion

The **Hobbs** algorithm was one of the early models for **anaphora resolution** in NLP. While it's not commonly used in isolation today (with more advanced techniques like **machine learning** and **neural networks** becoming more prevalent), it laid the foundation for better understanding how to handle **pronoun reference** in text.

Ex:

Sentence 1: "Alice talked to Bob after the meeting." Sentence 2: "She asked him for help."

In this case, the pronouns "**She**" and "him" need to be resolved, and Hobbs' algorithm will help determine what they refer to.

Step-by-Step Application of the Hobbs Algorithm:

1. Identify Pronouns

In Sentence 2, we have the pronouns "She" and "him".

2. Parse the Sentences

Sentence 1:

"Alice talked to Bob after the meeting."

- o **Alice** is the subject (who is performing the action).
- Bob is the object (the recipient of the action).

Sentence 2:

"She asked him for help."

"She" is the subject, and "him" is the object.

3. Search for Antecedents for "She"

- The Hobbs algorithm will first search for an antecedent for "She" in Sentence 2. The algorithm will search backward for the most recent subject (since "She" is a subject pronoun).
- In **Sentence 1**, the **subject** is **"Alice"**.
- Since "Alice" is the most recent subject, the algorithm resolves "She" to "Alice".

So, "She" refers to "Alice".

4. Search for Antecedents for "him"

- Now, the Hobbs algorithm searches for an antecedent for "him".
- The algorithm looks backward and finds "Bob", who is the object in Sentence 1.
- Since "Bob" is the closest possible antecedent and is the most recent object, "him" refers to "Bob".

So, "him" refers to "Bob".

5. Resolution

The sentence "She asked him for help" resolves as:

"Alice asked Bob for help."

Key Points

- The **pronoun "She"** refers to **"Alice"** because **"Alice"** is the most recent **subject** in the discourse.
- The pronoun "him" refers to "Bob" because "Bob" is the closest object.

Conclusion

In this case, the **Hobbs algorithm** successfully resolves the pronouns based on syntactic relations:

- "She" refers to the closest subject, "Alice".
- "him" refers to the closest object, "Bob".