Robótica aplicada con Arduino

ROBÓTICA APLICADA CON ARDUINO

15 JULIO 2013

Prueba de Rastreadores

Javier Pérez Alepuz Iván Perea Fuentes

Índice >*>

- Detección de marcas
- Métodos a implementar

DETECCIÓN DE MARCAS

Estado del robot

• Es necesario crear una maquina de estados que permita gestionar el comportamiento del robot.

Estado del robot

- Para gestionar los estados es recomendable utilizar un switch.
- Cada estado utiliza una función de ponderación o de calculo de centro diferente que garantice que el robot sigue el camino correspondiente.

Votaciones

- En función de las marcas leídas se va cambiando entre estados.
- Según la marca detectada se emite un voto hacia uno de los estados, y en función de la cantidad de votos se puede cambiar entre estados.
- Para detectar las marcas, se basa en número de cambios, número de blancos a la derecha y número de blancos a la izquierda.

Votaciones

Número de cambios

Votos

Votos izquierda:

Votos derecha:

• Votos al centro:

• Si se encuentra otra cosa (no decide).

Votos

- Se utilizan para determinar qué estado debe tener el robot.
- En cada ciclo de programa se decide si se deben realizar votos o no y, en caso afirmativo, a qué estado se vota.
- Esto se consigue estudiando el número de cambios de valores que hay en el array de sensores digitales.

MÉTODOS A IMPLEMENTAR

DetectaCambios()

 Calcula la cantidad de cambios detectados en el array de sensores digitales.

Blancos Derecha()

 Devuelve la cantidad de sensores digitales que detectan blanco por la derecha del robot.

Blancos Izquierdas()

 Devuelve la cantidad de sensores digitales que detectan blanco por la izquierda del robot.

GetMarca()

- Método que determina el estado del robot en función de los votos.
 - Las variables booleanas "d", "i" y "c" indicarán si se vota a un lado.
 - La cantidad de votos a un lado se almacenan en las variables "votosIzquierda", "votosDerecha" y "votosCentro". Se pueden utilizar como incrementos/decrementos de valor o para desplazamiento de bits. Si se elige este último se deben usar las variables "pilaIzquierda", "pilaCentro" y "pilaDerecha" cómo pilas de almacenamiento.

GetMarca()(2)

- Incremento/Decremento de valor:
 - Cada vez que se vota a un lado, incrementar en uno la cantidad de ese lado y decrementar en uno la cantidad de los lados restantes.
- Desplazamiento de bits:
 - Desplazar las pilas en un bit e introducir "1" si se ha votado o "0" si no se ha votado (máscaras).
 - Incrementar los votos si el bit "que sale" al desplazar es 0, decrementar en caso contrario.

MarcaEstado()

- Método que enciende los leds en función del estado del robot para indicar en cual se encuentra.
- Útil para depurar.

get_Center_Derecha()

- Devuelve el centro de la línea más a la derecha.
- Útil cuando el robot se encuentra en estado DERECHA para tomar las intersecciones.

get_Center_Izquierda()

- Devuelve el centro de la línea más a la izquierda.
- Útil cuando el robot se encuentra en estado IZQUIERDA para tomar las intersecciones.

Robótica aplicada con Arduino

ROBÓTICA APLICADA CON ARDUINO

15 JULIO 2013

Gestión de marcas

Javier Pérez Alepuz Iván Perea Fuentes