Deformation Quantization With an Application to Quantum Field Theory

Dion Mann

Honors Thesis Presentation

11 April 2023

Mathematical Foundations of Physics (1/5)

What makes a physical system?

Key Ingredients

- Phase spaces: consists of pure states.
- Observables: experimentally measurable properties of pure states (e.g. momentum of particle).
- Dynamics: governs the temporal evolution of system.

Mathematical Foundations of Physics (2/5)

Classical Physical System

- Classical Phase Space: A real symplectic \mathscr{C}^{∞} -manifold (W, ω) .
- Classical Observables: The set $\mathscr{C}^{\infty}(W)$ of smooth functions on W.
- Dynamics: Hamilton's equations $\frac{df_t}{dt} = \{f_t, H\}$, where H is the Hamiltonian (function).

A \mathscr{C}^{∞} -manifold W is said to be symplectic if there exists a nondegenerate closed smooth 2-form $\omega \in \Omega^2(W)$ on W.

Mathematical Foundations of Physics (3/5)

The study of classical mechanics is most generally rooted in Poisson geometry.

Def (Poisson Manifolds and Algebras)

Let $\mathscr A$ be an algebra over a commutative ring. Then $\mathscr A$ is said to be a Poisson algebra if it admits a Lie bracket $\{\cdot,\cdot\}$ such that $\{x,\cdot\}:\mathscr A\to\mathscr A$ is a derivation for each $x\in\mathscr A$.

A \mathscr{C}^{∞} -manifold is a Poisson manifold if $\mathscr{C}^{\infty}(M)$ admits a Poisson algebra structure.

Poisson brackets on $\mathscr{C}^{\infty}(M)$ are determined by certain bivector fields $\pi \in \Gamma(\bigwedge^2 TM)$ in a bijective way: say (M, π) is a Poisson manifold.

Mathematical Foundations of Physics (4/5)

Quantum Physical System

- Quantum Phase Space: the set $\mathbb{P}\mathscr{H}$ of rays in a complex Hilbert space \mathscr{H} .
- Quantum Observables: self-adjoint operators $\mathcal{H} \to \mathcal{H}$.
- Quantum Dynamics: governed by $i\hbar \frac{d\hat{A}_t}{dt} = [\hat{A}_t, \hat{H}]$ where \hat{H} is the Hamiltonian (operator).

Mathematical Foundations of Physics (5/5)

Typically one takes $\mathscr{H}=L^2(\mathbb{R})$.

Define position resp. momentum operators \hat{x} resp. \hat{p} on e.g. Schwartz space by

$$\hat{x}\psi = (x \mapsto x\psi(x))$$
 and $\hat{p}\psi = -i\hbar \frac{d\psi}{dx}$.

Canonical commutation relation: $[\hat{x}, \hat{p}] = i\hbar$.

What is Quantization?

Quantization is a "recipe" for translating classical systems to quantum systems.

- Difficulty: an ambiguous definition.
- Difficulty: mathematics of classical & quantum mechanics are disjoint.
- Difficulty: seems to depend on physical situation at hand.

Quantization à la Dirac

Let $\mathfrak{S}(\mathcal{H})$ be a set of self-adjoint linear operators $\mathcal{H} \to \mathcal{H}$.

• Lie bracket: $\frac{i}{\hbar}[\cdot,\cdot]$, where $[\cdot,\cdot]$ is the commutator.

Def (Dirac's Quantization)

Let $A \subseteq \mathscr{C}^{\infty}(W)$ resp. $B \subseteq \mathfrak{S}(\mathscr{H})$ be Poisson resp. Lie subalgebras. A quantization is a Lie algebra morphism $\varrho : A \to B$.

In particular ϱ satisfies:

- 1. Linearity.
- 2. $\varrho(1) = 1$ (identity operator).
- 3. $[\varrho(f), \varrho(g)] = -i\hbar\varrho(\{f,g\})$ for all $f, g \in \mathscr{C}^{\infty}(W)$.

An Unfortunate Obstruction

There can be no quantization in the sense of Dirac.

Theorem (Groenewold–Van Hove, weak version) [Hall(2013)]

Let \mathscr{P}_k denote homogenous polynomials of degree $\leq k$, and $\mathfrak{D}(\mathbb{R}^n)$ the differential operators on \mathbb{R}^n with polynomial coefficients. There is no linear map $\varrho: \mathscr{P}_4 \to \mathfrak{D}(\mathbb{R}^n)$ with $\varrho(x) = \hat{x}$ and $\varrho(p) = \hat{p}$ that satisfies Dirac's quantization conditions.

A Relaxation for Quantization

One solution: satisfy the correspondence principle asymptotically as $\hbar \to 0.$

$$[\varrho(f),\varrho(g)] = -i\hbar\varrho(\{f,g\}) + \mathcal{O}(\hbar^2)$$

This idea motivates the deformation approach to quantization.

An Example: Elementary Star-Products (1/4)

Let $W=T^*\mathbb{R}\cong\mathbb{R}^2$ with coordinates (q,p) and take $\mathscr{H}=L^2(\mathbb{R})$.

Define $\varrho: \mathscr{C}^{\infty}(W) \supseteq \mathbb{C}[q, p] \to \mathfrak{D}(\mathbb{R}) \subseteq \mathfrak{L}(\mathscr{H}, \mathscr{H})$ by $\varrho(x^n) = \hat{x}^n$ and $\varrho(p^m) = \hat{p}^m$ and...

- Various ways to order mixed monomials $x^n p^m$.
- One way: do standard ordering and put $\varrho(x^np^m) = \hat{x}^n\hat{p}^m$. Call this map $\varrho = \varrho_S$.

Extend C-linearly.

 ϱ_S is a linear isomorphism, but in general $\varrho_S(f)$ is not self-adjoint.

• e.g., $\varrho_S(qp) = \hat{q}\hat{p}$ is not even symmetric.

An Example: Elementary Star-Products (2/4)

Another way to order mixed monomials: completely symmetrize with Weyl–Moyal ordering.

Define $T:\mathbb{C}[q,p] o \mathbb{C}[q,p]$ by

$$Tf = \exp\left(\frac{\hbar}{2i}\frac{\partial^2}{\partial q\partial p}\right)f = f + \frac{1}{1!}\frac{\hbar}{2i}\frac{\partial^2 f}{\partial q\partial p} + \cdots$$

which is a linear isomorphism.

Put $\varrho_W(f) = \varrho_S(Tf)$, which defines linear isomorphism $\mathbb{C}[q,p] \to \mathfrak{D}(\mathbb{R})$. We have e.g.

$$\varrho_{W}(qp) = \varrho_{S}\left(qp + \frac{\hbar}{2i}\right) = \frac{1}{2}(\hat{q}\hat{p} + \hat{p}\hat{q})$$

An Example: Elementary Star-Products (3/4)

Does ϱ_W define a quantization of $\mathbb{C}[q,p]$?

Compute $[\varrho_W(f), \varrho_W(g)]$ indirectly by working within $\mathbb{C}[q, p]$ instead.

Proposition [Bordemann(2008)]

Define an \mathbb{C} -bilinear map $\star: \mathbb{C}[q,p] imes \mathbb{C}[q,p] o \mathbb{C}[q,p]$ by

$$(f,g)\mapsto f\star g=\varrho_W^{-1}(\varrho_W(f)\varrho_W(g)).$$

Then \star defines a noncommutative associative product on $\mathbb{C}[q,p]$ Furthermore, the following equality holds:

$$f \star g = \sum_{n=0}^{\infty} \frac{(i\hbar/2)^n}{n!} \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \frac{\partial^n f}{\partial q^k \partial p^{n-k}} \frac{\partial^n g}{\partial q^{n-k} \partial p^k}$$

An Example: Elementary Star-Products (4/4)

Form a star-commutator

$$[f,g]_{\star}:=f\star g-g\star f=(fg-gf)+rac{i\hbar}{2}(\{g,f\}-\{f,g\})+\mathscr{O}(\hbar^2)$$

which is equivalent to $[\varrho_W(f), \varrho_W(g)] = -i\hbar\varrho_W(\{f,g\}) + \mathcal{O}(\hbar^2)$. Therefore ϱ_W quantizes $\mathbb{C}[q,p]$.

The Motivation

Interestingly, \star can be viewed as a deformation of \cdot in the direction of $\{\cdot,\cdot\}$. Deformation quantization is an abstraction of this idea.

Deformations of Associative Algebras (1/6)

The main framework lies in Gerstenhaber's deformation theory.

Let (\mathscr{A}, μ_0) be an algebra over a commutative ring R. Recall the linear space $\mathscr{A}\llbracket\hbar\rrbracket$ of formal power series

$$a(\hbar) = \sum_{n=0}^{\infty} \hbar^n a_n, \qquad a_n \in \mathscr{A}.$$

If $\mathscr{A} = R$ is a ring, so is $R[\![\hbar]\!]$ under

$$a(\hbar)b(\hbar) = \sum_{n=0}^{\infty} \hbar^n \sum_{r=0}^n a_r b_{n-r}.$$

Deformations of Associative Algebras (2/6)

Definition

A (formal associative) deformation of (\mathscr{A}, μ_0) is a sequence $(\mu_n)_{n=0}^{\infty}$ of R-bilinear maps $\mu_n : \mathscr{A} \times \mathscr{A} \to \mathscr{A}$ such that for all $x, y, z \in \mathscr{A}$,

- 1. $\sum_{s=0}^{r} (\mu_r(\mu_{r-s}(x,y),z) \mu_r(x,\mu_{r-s}(y,z))) = 0$ for all $r \ge 0$.
- 2. $\mu_r(1,x) = 0 = \mu_r(x,1)$ for all $r \ge 1$.

Gives a deformed product $\mu_{\hbar}: \mathscr{A} \to \mathscr{A}\llbracket \hbar \rrbracket$ defined by

$$\mu_{\hbar}(x,y) = \sum_{n=0}^{\infty} \hbar^n \mu_n(x,y) = xy + \sum_{n=1}^{\infty} \hbar^n \mu_n(x,y)$$

Extends $R[\![\hbar]\!]$ -linearly to $\mathscr{A}[\![\hbar]\!]$, giving an $R[\![\hbar]\!]$ -structure on $\mathscr{A}[\![\hbar]\!]$.

Deformations of Associative Algebras (3/6)

When does an algebra admit a (nontrivial) formal deformation?

Hochschild Cohomology

Any (associative) algebra $\mathscr A$ gives rise to Hochschild cochain complex $(C^{\bullet}(\mathscr A),\beta)$:

- $C^n(\mathscr{A}) = \{\text{n-multilinear maps } \mathscr{A}^n \to \mathscr{A}\}, \ n \geq 0.$
- If $c \in C^n(\mathscr{A})$, then $\beta c \in C^{n+1}(\mathscr{A})$ is the map given by

$$\beta c(x_1, \dots, x_{n+1}) = x_1 c(x_2, \dots, x_{n+1})$$

$$+ \sum_{r=1}^{n} (-1)^r c(x_1, \dots, x_{r-1}, x_r x_{r+1}, \dots, x_{n+1})$$

$$+ (-1)^{n+1} c(x_1, \dots, x_n) x_{n+1},$$

• The associated cohomology theory is denoted $HH^{\bullet}(\mathscr{A})$.

Deformations of Associative Algebras (4/6)

Hochschild cohomology is a measure of "how associative" deformations can be.

Lemma

Let $(\mu_n)_{n=0}^{\infty}$ be a deformation of (\mathscr{A}, μ_0) . Then condition (1) of definition 3.1 is equivalent to:

$$\beta \mu_r(x, y, z) = \sum_{\substack{s+t=r\\s,t>0}} (\mu_s(\mu_t(x, y), z) - \mu_s(x, \mu_t(y, z)).$$

This implies that if $\mu_1 \in C^2(\mathscr{A})$ is a cocycle, then $\mu = \mu_0 + \hbar \mu_1$ is a deformation up to linear order.

Deformations of Associative Algebras (5/6)

In general, given 2-cochains μ_1,\ldots,μ_{n-1} , the cochain on the RHS of the preceding lemma

$$\sum_{\substack{s+t=n\\s,t>0}} (\mu_s(\mu_t(x,y),z) - \mu_s(x,\mu_t(y,z))$$

is a 3-cocycle, and the deformation $\mu=\mu_0+\hbar\mu_1+\cdots+\hbar^{n-1}\mu_{n-1}$ can be extended to order n if and only if the above is a 3-coboundary $\beta\mu_n$. In other words:

Theorem

The obstructions to formal deformations of an algebra \mathscr{A} lie in $HH^3(\mathscr{A})$.

Deformations of Associative Algebras (6/6)

Definition

Let μ and $\tilde{\mu}$ be two deformations of an algebra \mathscr{A} . A morphism of formal deformations from μ to $\tilde{\mu}$ is a formal power series $T = \sum_{n=0}^{\infty} \hbar^n T_n$ of 1-cochains $T_n : \mathscr{A} \to \mathscr{A}$ such that $T\mu = \tilde{\mu} T^2$.

Furthermore T is called an isomorphism if $T_0=1$ and μ is said to be c-equivalent to $\tilde{\mu}$. In this case μ has the form

$$\mu(x,y) = T^{-1}\tilde{\mu}(Tx, Ty).$$

Quantization as a Theory of Deformation (1/5)

Definition

Let (M,π) be a Poisson manifold. A deformation quantization of M is a formal associative deformation $(\mu_n)_{n=0}^{\infty}$ of $\mathscr{C}^{\infty}(M)$ such that the μ_n are bi-differential operators for $n \geq 1$ satisfying the so-called classical limit:

$$\mu_1(f,g) - \mu_1(g,f) = i\pi(df,dg)$$
 for all $f,g \in \mathscr{C}^{\infty}(M)$.

The deformed product is called a (differential) star-product on M and is denoted by \star , i.e.

$$f \star g = fg + \hbar \mu_1(f,g) + \mathcal{O}(\hbar^2), \qquad f,g \in \mathscr{C}^{\infty}(M).$$

Quantization as a Theory of Deformation (2/5)

The associated star-commutator deforms the Poisson bracket on $\mathscr{C}^{\infty}(M)$ essentially by definition:

$$[f,g]_{\star}=\hbar(\mu_1(f,g)-\mu_1(g,f))+\mathscr{O}(\hbar^2)=i\hbar\{f,g\}+\mathscr{O}(\hbar^2).$$

One can go further:

Theorem

Let $\tilde{\star} = \sum_{n=0}^{\infty} \hbar^n \tilde{\mu}_n$ be a star-product on M. Then $\tilde{\star}$ is c-equivalent to a star-product $\star = \sum_{n=0}^{\infty} \hbar^n \mu_n$ with μ_1 a Poisson bracket on $\mathscr{C}^{\infty}(M)$.

Quantization as a Theory of Deformation (3/5)

The idea is to replace cochains via a c-equivalence operator. This is a key ingredient in the deformation quantization of fields, as we will see later.

Lemma

Let $\tilde{\star} = \sum_{n=0}^{\infty} \tilde{\mu}_n$ be a star-product. Then:

- 1. The bracket $\{f,g\} = \tilde{\mu}_1(f,g) \tilde{\mu}_1(g,f)$ is a Lie bracket.
- 2. If $\tilde{\mu}_1$ is skew-symmetric, then $\tilde{\mu}_1$ satisfies the Leibniz identity.

Proof.

- 1. Jacobi identity is a direct computation.
- 2. Follows from $\beta \tilde{\mu}_1(f,g,h) \beta \tilde{\mu}_1(g,h,f) = 0$ and $\beta \tilde{\mu}_1(h,f,g) \beta \tilde{\mu}_1(g,h,f) = 0$.

Quantization as a Theory of Deformation (4/5)

Proof (of theorem).

Decompose $ilde{\mu}_1 = ilde{\mu}_1^- + ilde{\mu}_1^+$ where

$$ilde{\mu}_1^\pm(f,g) = rac{1}{2}ig(ilde{\mu}_1(f,g)\pm ilde{\mu}_1(g,f)ig)$$

Since $\tilde{\mu}_1^+$ is symmetric, it is zero in $HH^2(\mathscr{C}^{\infty}(M))$, hence $\tilde{\mu}_1^+ = \beta T_1$ for some 1-cochain T_1 . Put $T = \sum_{n=0}^{\infty} \hbar^n T_n$, where $T_n = 1$ for $n \neq 1$, and define $f \star g = T^{-1}(Tf \tilde{\star} Tg)$. The \hbar -term of $\tilde{\star}$ transforms under T as

$$\mu_1(f,g) = \tilde{\mu}_1(f,g) + T_1(fg) - fT_1(g) - T_1(f)g$$

Thus $\mu_1 = \tilde{\mu}_1^-$ is a Poisson bracket on $\mathscr{C}^{\infty}(M)$.

Quantization as a Theory of Deformation (5/5)

Example: The Moyal Product

Let V be a real vector space with dim V=m. For each $1 \leq i,j \leq m$ let $\Lambda^{ij}=-\Lambda^{ji}\in\mathbb{R}$. Then $\Lambda=\frac{1}{2}\Lambda^{ij}\partial_i\wedge\partial_j$ defines a (constant) Poisson structure on V.

For $f,g \in \mathscr{C}^{\infty}(V)$, define the Moyal (star-)product by

$$(f \star g)(z) = \exp\left(\frac{i\hbar}{2}\Lambda\right) f(x)g(y)\Big|_{x=y=z}$$

If m=2 and $\Lambda=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, recover "elementary" star-product on $\mathbb{C}[q,p]$ from Weyl-Moyal ordering.

Deformation Quantization of Fields (1/6)

Main focus: G. Dito's star-product approach to QFT [Dito(1990)].

- An active area of research: deformation quantization of infinite-dimensional manifolds is not well-understood.
- Relevant formulation is perturbative field theory.
- This means one should consider a space of functionals in place of \mathscr{C}^{∞} -functions.

The initial data (φ, π) of solutions to the equation $(\Box + m^2)\Phi = 0$, i.e. $\varphi(x) = \Phi(x, 0)$ and $\pi(x) = \partial_t \Phi(x, 0)$, are elements of $E_{\infty} := \mathscr{S}(\mathbb{R}^3, \mathbb{R}) \oplus \mathscr{S}(\mathbb{R}^3, \mathbb{R})$.

Let $\mathscr{M} \subseteq E_{\infty}$ be the phase space of such initial data.

Deformation Quantization of Fields (2/6)

Let $(\varphi,\pi)\in\mathscr{M}$. Decompose into Fourier modes (a^*,a) by

$$\begin{split} \varphi(x) &= \int \left(\frac{a^*(k)e^{-i\langle k,x\rangle} + a(k)e^{i\langle k,x\rangle}}{2(2\pi)^{3/2}\omega_k}\right) \ dk \\ \pi(x) &= \int \left(\frac{a^*(k)e^{-i\langle k,x\rangle} + a(k)e^{i\langle k,x\rangle}}{2(2\pi)^{3/2}}\right) \ dk \end{split}$$

where $\omega_k = (\|k\|^2 + m^2)^{1/2}, m > 0$. The free scalar Hamiltonian is given by

$$H = \int \left(\omega_k a^*(k)a(k)\right) dk$$

Deformation Quantization of Fields (3/6)

Some notation

Put $a_1(k) = a(k)$, $a_2(k) = a^*(k)$ and

$$\begin{split} & \langle \delta_{i_1 \cdots i_n} \Psi_1, \delta_{j_1 \cdots j_n} \Psi_2 \rangle := \\ & \int \left(\frac{\delta^n \Psi_1}{\delta a_{i_1}(k_1) \cdots \delta a_{i_n}(k_n)} \frac{\delta^n \Psi_2}{\delta (a_{j_1})^*(k_1) \cdots \delta (a_{j_n})^*(k_n)} \right) \, dk, \end{split}$$

and
$$\Lambda^{ij} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

There is a Poisson structure Λ on scalar-valued functionals given by

$$\{\Psi_1, \Psi_2\} = \Lambda^{ij} \langle \delta_i \Psi_1, \delta_j \Psi_2 \rangle.$$

Deformation Quantization of Fields (4/6)

Can attempt to define Moyal product on a certain space of functionals...

$$\Psi_1 \star_M \Psi_2 := \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i\hbar}{2} \right)^n \Lambda^{i_1 j_1} \cdots \Lambda^{i_n j_n} \langle \delta_{i_1 \cdots i_n} \Psi_1, \delta_{j_1 \cdots j_n} \Psi_2 \rangle.$$

...but Moyal-Weyl ordering is not suitable for QFT.

This is reflected in the fact that $H \star_M H$ diverges, i.e. $\operatorname{Exp}_{\star}(tH/i\hbar)$ does not exist.

Deformation Quantization of Fields (5/6)

The solution presented by G. Dito is to "renormalize" using cohomology, i.e. cohomological renormalization.

For the series

$$T = \exp \left(rac{\hbar}{2} \int rac{\delta^2}{\delta a(k) \delta a^*(k)} \ dk
ight)$$

define a normal ordered star-product by $\Psi_1 \star_N \Psi_2 = T^{-1} (T \Psi_1 \star_M T \Psi_2)$. It has an explicit form given by

$$(\Psi_1 \star_N \Psi_2)(a^*,a) = \int_{\mathscr{S}' \oplus \mathscr{S}'} \left(\Psi_1(a^*,a+\xi) \Psi_2(a^*+\xi^*,a) \right) d\mu(\xi^*,\xi),$$

where μ is the unique (Gaussian) measure on $\mathscr{S}' \oplus \mathscr{S}'$ given by the characteristic function $\exp(-\frac{1}{\hbar} \int a^*(k) a(k) \ dk)$.

Deformation Quantization of Fields (6/6)

It turns out that this normal ordered star-product ensures $\operatorname{Exp}_{\star}(tH/i\hbar)$ exists.

This means that one can derive the energy levels using the star-exponential.

References

Deformation quantization: a survey.

Journal of Physics: Conference Series, 103(1):012002, feb 2008. doi: 10.1088/1742-6596/103/1/012002.

Joseph Dito.

Star-product approach to quantum field theory: The free scalar field.

Letters in Mathematical Physics, 20:125 - 134, 1990.

B.C. Hall.

Quantum Theory for Mathematicians.

Graduate Texts in Mathematics. Springer New York, 2013. ISBN 9781461471165.