IDB Lecture 20: Normal Forms

Redundancy Principle don't repeat constrained information in a table. Every FD should define a key.

Boyce Codd Normal Form (BCNF)

"Problems with bad designs are caused by FDs $X \to Y$ where X is not a key."

A relation with FDs F is in **BCNF** if $\forall X \to Y \in F$

- 1. $Y \subseteq X$ (the FD is trivial), OR
- 2. X is a key (the closure contains all all attributes in the relation).
- a database is BCNF is all relations are BCNF

Decompositions

Given a set of attributes U and a set of FDs F, a **decomposition** of (U, F) is a set

$$(U_1, F_1), ..., (U_n, F_n)$$

such that $U = \bigcup_{i=1}^n U_i$ and F is a set of FDs over U_i

• dont really understand

Criteria for good decompositions

Lossnessness No information is lost

Dependency Preservation no constraints are lost

• formal definitions missed

Projections of FDs

The **projection** of F on $V \subseteq U$ is a subset of the closure containing only the attributes of V.

BCNF Decomposition Algorithm

Algorithm BCNF- $Decomposition(U: \{Attribute\}, F: \{\{FD\}\}\}) \rightarrow S: \{(\{Attribute\}, \{FD\})\}:$

- 1. $S := \{(U, F)\}$
- 2. while $\exists (U_i, F_i) \in S$ not BCNF:
- 3. $S[U_i, F_i] := decompose(U_i, F_i)$
- 4. **if** $\exists \{U_i \mid (U_i, F_i) \in S, U_i \subseteq U_j, (U_j, F_j) \in S\}$
- 5. remove $S[U_i, F_i]$
- 6. return S

Algorithm $Decompose(U_i : \{Attribute\}, F_i : \{FD\})) \rightarrow (\{U\}, \{F\}):$

- 1. find $(X \to Y) \in F$ not BCNF 2. $V, Z := C_F(X), U V$
- 3. return $(V, \pi_V(F))$ and $(XZ, \pi_{XZ}(F))$