suggested solutions to A3

1.

2.

3.

4. Proof. $(a) \Rightarrow (b)$: trivial.

 $(b) \Rightarrow (a)$: Suppose the MFCQ holds at \bar{x} , that is to say, $\exists d$ such that

$$d^{T}\nabla g_{i}\left(\bar{x}\right) < 0, \ \forall i \in I\left(\bar{x}\right).$$

Then for any $i \in I(\bar{x})$, $\exists \alpha_i > 0$ such that $g_i(\bar{x} + \alpha d) < g_i(\bar{x}) = 0$ for any $0 < \alpha \le \alpha_i$. On the other hand, for any $i \notin I(\bar{x})$, $\exists \beta_i > 0$ such that for any $x \in \mathbb{B}(\bar{x}, \beta_i) |g_i(x) - g_i(\bar{x})| < \left|\frac{g_i(\bar{x})}{2}\right|$ (and so $g_i(x) < \frac{g_i(\bar{x})}{2} < 0$) holds.

Let
$$\varepsilon = \min \left\{ \min_{i \in I(\bar{x})} \left\{ \alpha_i \right\}, \min_{i \notin I(\bar{x})} \left\{ \frac{\beta_i}{\|d\|} \right\} \right\}$$
. Then $g_i(\bar{x} + \varepsilon d) < 0$ for all $i = 1, 2, \dots, p$.

5. Proof. Let \mathcal{F} be the feasible region. Recall that \bar{x} minimizes $L(\cdot, \lambda)$ over \mathbb{R}^n and $\bar{x} \in \mathcal{F}$, then \bar{x} minimizes $L(\cdot, \lambda)$ over \mathcal{F} (think of why). Hence for any $x \in \mathcal{F}$,

$$f(\bar{x}) = L(\bar{x}, \lambda) \le L(x, \lambda) \le f(x),$$

where the last inequality holds since $\lambda \geq 0$ and $g(x) \leq 0$.

6. Proof. (a) for the auxiliary problem, the objective is continuous and the feasible region is compact, then the global optimal solutions set X_k is nonempty. Next we show that pick any $x^k \in X_k$, we have $x^k \to x^*$.

Notice that $x^k \in \mathbb{B}(x^*, \varepsilon)$, that is to say, $\{x^k\}_{k\geq 1}$ is bounded, so there exists at least one limit point. WLOG, let $x^k \to \bar{x}$. Observe the fact that

$$0 \le \frac{k}{2} \left[\sum_{i=1}^{p} \left[h_i(x^k) \right]^2 + \sum_{j=1}^{q} \left[g_j^+(x^k) \right]^2 \right] \le f(x^*) - f(x^k) - \frac{1}{2} \|x^k - x^*\|^2,$$

and

$$0 \le f(x^*) - f(x^k) - \frac{1}{2} \|x^k - x^*\|^2 \to f(x^*) - f(\bar{x}) - \frac{1}{2} \|\bar{x} - x^*\|^2.$$

Then the sequence

$$\frac{k}{2} \left[\sum_{i=1}^{p} \left[h_i(x^k) \right]^2 + \sum_{j=1}^{q} \left[g_j^+(x^k) \right]^2 \right]$$

is bounded and so $h_i(\bar{x})=0$ for $i=1,2,\cdots,p$ and $g_j(\bar{x})\leq 0$ for $j=1,2,\cdots,q$. (think of why). That is to say \bar{x} is feasible. Recall that

$$0 \le f(x^*) - f(\bar{x}) - \frac{1}{2} \|\bar{x} - x^*\|^2,$$

 $\bar{x} \in \mathcal{F} \cap \mathbb{B}(x^*, \varepsilon)$ and $f(x) \geq f(x^*)$ for any $x \in \mathcal{F} \cap \mathbb{B}(x^*, \varepsilon)$. We have $\bar{x} = x^*$.

(b) It's sufficient to show

$$\nabla \left[g_j^+(\cdot) \right]^2 = 2g_j^+(\cdot) \nabla g_j(\cdot).$$

(think of why)

- (c) Notice that all $\{\lambda_{k,0}, \lambda_{k,1}, \cdots, \lambda_{k,p}, \mu_{k,1}, \cdots, \mu_{k,q}\}_{k\geq 1} \subseteq \mathbb{R}^{1+p+q}$ are located on the unit sphere.
- (d) Recall that

$$0 = \nabla f(x^{k}) + k \sum_{i=1}^{p} h_{i}(x^{k}) \nabla h_{i}(x^{k}) + k \sum_{j=1}^{q} g_{j}^{+}(x^{k}) \nabla g_{j}(x^{k}) + (x^{k} - x^{*})$$
$$= \nabla f(x^{k}) + \sum_{i=1}^{p} s_{k} \lambda_{k,i} \nabla h_{i}(x^{k}) + \sum_{j=1}^{q} s_{k} \mu_{k,j} \nabla g_{j}(x^{k}) + (x^{k} - x^{*}).$$

Then

$$0 = \lambda_{k,0} \nabla f(x^k) + \sum_{i=1}^p \lambda_{k,i} \nabla h_i(x^k) + \sum_{j=1}^q \mu_{k,j} \nabla g_j(x^k) + \frac{x^k - x^*}{s_k}$$
$$\rightarrow \lambda_0 \nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla h(x^*) + \sum_{j=1}^q \mu_j \nabla g(x^*).$$

On the other hand, $\mu_{k,j} \geq 0$ implies that $\mu_k \geq 0$. Finally, for any $j = 1, 2, \dots, p$, if $g_j(x^*) = 0$, then $\mu_j g_j(x^*) = 0$; otherwise we have $g_j(x^k) < 0$ for k sufficiently large, which implies that $\mu_{k,j} = 0$ for k sufficiently large, and so $\mu_j = 0$ and $\mu_j g_j(x^*) = 0$.

- (e) Recall that MFCQ \Leftrightarrow NNAMCQ.
- 7. **Proof** (2). The KKT conditions for this problem are

$$\begin{cases} Px^* + q + & A^T\lambda^* = 0, \\ & Ax^* = b. \end{cases}$$

We derive

$$\begin{cases} x^* = -P^{-1}A^T\lambda^* - P^{-1}q, \\ \lambda^* = -(AP^{-1}A^T)^{-1}(AP^{-1}q + b). \end{cases}$$

8. **Proof:** Rewrite the problem as

$$\min_{x,r} \frac{1}{2} \|r\|_2^2 + \mu \|x\|_1,$$

s.t. $Ax - b = r$.

The Lagrange function is

$$L(x,r,\lambda) = \frac{1}{2} \|r\|_2^2 + \mu \|x\|_1 - \langle \lambda, Ax - b - r \rangle$$

$$= \frac{1}{2} \|r\|_2^2 + \lambda^T r + \mu \|x\|_1 - (A^T \lambda)^T x + b^T \lambda.$$

$$g(\lambda) = \inf_{x,r} L(x,r,\lambda) = \begin{cases} b^T \lambda - \frac{1}{2} \|\lambda\|_2^2 & \text{if } \|A^T \lambda\|_{\infty} \leq \mu, \\ -\infty & \text{otherwise.} \end{cases}$$

Hence, the dual problem is

$$\max_{\lambda} b^{T} \lambda - \frac{1}{2} \|\lambda\|_{2}^{2}$$

s.t.
$$\|A^{T} \lambda\|_{\infty} \leq \mu.$$

9. **Proof (ii):** Notice that

$$\begin{split} x \in \bar{C} \Rightarrow & x^T A x + b^T x + c \leq 0 \text{ and } g^T x + \beta = 0 \\ \Rightarrow & x^T A x + b^T x + c \leq 0 \text{ and } \lambda x^T g g^T x + \lambda \beta g^T x = 0 \\ \Rightarrow & x^T (A + \lambda g g^T) x + (b + \lambda \beta g)^T x \leq c. \end{split}$$

By the positive semidefiniteness of $A + \lambda gg^T$, we have $x_1, x_2 \in \bar{C}$ implies that $\alpha x_1 + (1 - \alpha)x_2 \in \bar{C}$ for $\alpha \in [0, 1]$. Then

$$(\alpha x_1 + (1 - \alpha)x_2)^T (A + \lambda gg^T) (\alpha x_1 + (1 - \alpha)x_2) + (b + \lambda \beta g)^T (\alpha x_1 + (1 - \alpha)x_2) \le c,$$

or equivalently,

$$(\alpha x_1 + (1 - \alpha)x_2)^T A (\alpha x_1 + (1 - \alpha)x_2) + b^T (\alpha x_1 + (1 - \alpha)x_2) + g^T (\alpha x_1 + (1 - \alpha)x_2) (g^T (\alpha x_1 + (1 - \alpha)x_2) + \beta) \le c,$$

Moreover, we have

$$x_1, x_2 \in \bar{C} \Rightarrow g^T x_1 + \beta = 0 \text{ and } g^T x_2 + \beta = 0$$

 $\Rightarrow g^T (\alpha x_1 + (1 - \alpha)x_2) + \beta = 0.$

Hence

$$(\alpha x_1 + (1 - \alpha)x_2)^T A (\alpha x_1 + (1 - \alpha)x_2) + b^T (\alpha x_1 + (1 - \alpha)x_2) \le c,$$

i.e., $(\alpha x_1 + (1 - \alpha)x_2) \in C$.

Hence, $(\alpha x_1 + (1 - \alpha)x_2) \in \bar{C}$.

10. Proof

- (a) Obviously, $\theta(\mu) \in \mathbb{R}$ is nondecreasing on μ , so either $\lim_{\mu} \theta(\mu)$ exists or equals to infinity. Moreover, $\lim_{\mu} \theta(\mu) = \sup_{\mu} \theta(\mu)$.
- (b) Let x^* be a local minimum, then $x^* \in X$ and for any μ ,

$$\theta(\mu) = \min_{x \in X} f(x) + \mu \left(\sum_{i=1}^{p} h_i^2(x) + \sum_{j=1}^{q} \max\{0, g_j(x)\}^2 \right)$$

$$\leq f(x^*) + \mu \left(\sum_{i=1}^{p} h_i^2(x^*) + \sum_{j=1}^{q} \max\{0, g_j(x)\}^2 \right)$$

$$= f(x^*) = f^*.$$

So $\sup_{\mu} \theta(\mu) \leq f^*$.

(c) See that for any $\mu \geq 0$, we have $x_{\mu} \in X$ and

$$\theta(\mu) = f(x_{\mu}) + \mu \left(\sum_{i=1}^{p} h_i^2(x_{\mu}) + \sum_{j=1}^{q} \max\{0, g_j(x_{\mu})\}^2 \right).$$

Let $0 \le \mu_1 < \mu_2$, and define

$$P(x) = \sum_{i=1}^{p} h_i^2(x_\mu) + \sum_{j=1}^{q} \max\{0, g_j(x_\mu)\}^2.$$

Then we have

$$f(x_{\mu_1}) + \mu_1 P(x_{\mu_1}) = \theta(x_{\mu_1}) \le f(x_{\mu_2}) + \mu_1 P(x_{\mu_2})$$

$$f(x_{\mu_2}) + \mu_2 P(x_{\mu_2}) = \theta(x_{\mu_1}) \le f(x_{\mu_1}) + \mu_2 P(x_{\mu_1})$$

Summing the above inequality,

$$(\mu_1 - \mu_2) [P(x_{\mu_1}) - P(x_{\mu_2})] \le 0.$$

Notice that $\mu_1 < \mu_2$, so $P(x_{\mu_1}) - P(x_{\mu_2}) \ge 0$. Then recall the first inequality,

$$f(x_{\mu_1}) - f(x_{\mu_2}) \le \mu_1 [P(x_{\mu_2}) - P(x_{\mu_1})] \le 0.$$