Информационная безопасность. Отчет по лабораторной работе №1

Установка и конфигурация операционной системы на виртуальную машину

Терентьев Егор Дмитриевич 1032192875

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы 2.1 Домашнее задание	6 26
3	Выводы	30
4	Список литературы	31

List of Figures

2.1	Окно «Имя машины и тип ОС»	7
2.2	Окно «Размер основной памяти»	8
2.3	Окно подключения или создания жёсткого диска на виртуальной	
	машине	9
2.4	Окно определения типа подключения виртуального жёсткого диска	10
2.5	Окно определения формата виртуального жёсткого диска	11
2.6	Окно определения размера виртуального динамического жёстко-	
	го диска и его расположения	12
2.7	Окно «Носители» виртуальной машины: подключение образа оп-	
	тического диска	13
2.8	Запуск виртуальной машины	14
2.9	Установка языка интерфейса OC	15
2.10	Окно настройки установки образа ОС	16
2.11	Окно настройки установки: выбор программ	17
2.12	Окно настройки установки: отключение KDUMP	18
	Окно настройки установки: место установки	19
2.14	Окно настройки установки: сеть и имя узла	20
2.15	Установка пароля для root	21
2.16	Установка пароля для пользователя с правами администратора .	22
	Подключение образа диска дополнений гостевой ОС	23
	Запуск образа диска дополнений гостевой ОС	24
2.19	Запуск образа диска дополнений гостевой ОС	25
2.20	Запуск образа диска дополнений гостевой ОС	26
2.21	Последовательность загрузки ОС	27
2.22	Версия ядра Linux	28
2.23	Частота процессора	28
	Модель процессора	28
2.25	Объем доступной оперативной памяти	28
	Тип обнаруженного гипервизора	28
2.27	Тип файловой системы корневого раздела	28
2.28	Последовательность монтирования файловых систем	29

List of Tables

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

Создайте новую виртуальную машину. Для этого в VirtualBox выберите "Машина->Создать". Укажите имя виртуальной машины (ваш логин в дисплейном классе - edterentjev), тип операционной системы — Linux, RedHat fig. 2.1.

Figure 2.1: Окно «Имя машины и тип ОС»

Укажите размер основной памяти виртуальной машины (fig. 2.2) — $4096~\rm MБ$ (или большее число, кратное $1024~\rm MБ$, если позволяют технические характеристики вашего компьютера).

Figure 2.2: Окно «Размер основной памяти»

Задайте конфигурацию жёсткого диска— загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск fig. 2.3-fig. 2.5.

Figure 2.3: Окно подключения или создания жёсткого диска на виртуальной машине

Figure 2.4: Окно определения типа подключения виртуального жёсткого диска

Figure 2.5: Окно определения формата виртуального жёсткого диска

Задайте размер диска — $40 \, \Gamma \text{B}$ fig. 2.6.

Figure 2.6: Окно определения размера виртуального динамического жёсткого диска и его расположения

Выберите в VirtualBox для Вашей виртуальной машины "Настройки -> Носители". Добавьте новый привод оптических дисков и выберите образ операционной системы, скачанный с официального сайта fig. 2.7.

Figure 2.7: Окно «Носители» виртуальной машины: подключение образа оптического диска

Запустите виртуальную машину fig. 2.8, выберите язык интерфейса fig. 2.9 и перейдите к настройкам установки операционной системы fig. 2.10.

Figure 2.8: Запуск виртуальной машины

Figure 2.9: Установка языка интерфейса ОС

Figure 2.10: Окно настройки установки образа ОС

В разделе выбора программ укажите в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools fig. 2.11.

Figure 2.11: Окно настройки установки: выбор программ

Отключите KDUMP (fig. 2.12.

Figure 2.12: Окно настройки установки: отключение KDUMP

Место установки ОС оставьте без изменения fig. 2.13.

Figure 2.13: Окно настройки установки: место установки

Включите сетевое соединение и в качестве имени узла указываю edterentjev.localdomain fig. 2.14

Figure 2.14: Окно настройки установки: сеть и имя узла

Установите пароль для root fig. 2.15 и пользователя с правами администратора fig. 2.16.

Figure 2.15: Установка пароля для root

Figure 2.16: Установка пароля для пользователя с правами администратора

Войдите в ОС под заданной вами при установке учётной записью. В меню Устройства виртуальной машины подключите образ диска дополнений гостевой ОС fig. 2.17, при необходимости введите пароль пользователя гоотвашей виртуальной ОС.

Figure 2.17: Подключение образа диска дополнений гостевой ОС

Figure 2.18: Запуск образа диска дополнений гостевой ОС

После загрузки дополнений нажмите Return или Enter и корректно перезагрузите виртуальную машину.

Проверка Hostname на корректность

```
User@edterentjev ~]$ hostnamectl
Static hostname: edterentjev.localdomain

Icon name: computer • vm
Chassis: vm []]

Machine ID: 8757bbd009df4f03a6f7ddf06ce67db4
Boot ID: 4d9511d867954b2aac693d4d6fe17f16

Virtualization: oracle
Operating System: Rocky Linux 9.0 (Blue Onyx)

CPE OS Name: cpe:/o:rocky:rocky:9::baseos
Kernel: Linux 5.14.0•70.22.1.el9_0.x86_64

Architecture: x86·64

Hardware Vendor: innotek GmbH
Hardware Model: VirtualBox
[user@edterentjev ~]$
```

Figure 2.19: Запуск образа диска дополнений гостевой ОС

Добавление user

Figure 2.20: Запуск образа диска дополнений гостевой ОС

2.1 Домашнее задание

Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы, выполнив команду dmesg.fig. 2.21.

```
▣
                                                                   Ξ
                              root@edterentjev:~
[root@edterentjev ~]# dmesq
    0.000000] Linux version 5.14.0-70.22.1.el9 0.x86 64 (mockbuild@dal1-prod-bu
ilder001.bld.equ.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9),
GNU ld version 2.35.2-17.el9) #1 SMP PREEMPT Tue Aug 9 19:45:51 UTC 2022
    0.000000] The list of certified hardware and cloud instances for Red Hat En
terprise Linux 9 can be viewed at the Red Hat Ecosystem Catalog, https://catalog
.redhat.com.
    0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-70.22.1.el9
0.x86 64 root=/dev/mapper/rl·root ro resume=/dev/mapper/rl·swap rd.lvm.lv=rl/roo
 rd.lvm.lv=rl/swap rhgb quiet
    0.000000] [Firmware Bug]: TSC doesn't count with P0 frequency!
    0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point regi
sters'
    0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
    0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
    0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
    0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes,
using 'standard' format.
    0.000000] signal: max sigframe size: 1776
0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000000dffeffff] usable
```

Figure 2.21: Последовательность загрузки ОС

Можно использовать поиск с помощью grep: dmesg | grep -i "то, что ищем". Получите следующую информацию.

- 1. Версия ядра Linux (Linux version) fig. 2.22.
- 2. Частота процессора (Detected Mhz processor) fig. 2.23.
- 3. Модель процессора (CPU0) fig. 2.24.
- 4. Объем доступной оперативной памяти (Memory available) fig. 2.25.
- 5. Тип обнаруженного гипервизора (Hypervisor detected) fig. 2.26.
- 6. Тип файловой системы корневого раздела fig. 2.27.
- 7. Последовательность монтирования файловых систем fig. 2.28.

```
[root@edterentjev ~]# dmesg | grep ·i Linux
[ 0.000000] Lim[k version 5.14.0·70.22.1.el9_0.x86_64 (mockbuild@dall·prod·builder001.bld.equ.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1·9), GNU ld version 2.35.2·17.el9) #1 SMP PREEMPT Tue Aug 9 19:45:51 UTC 2022
[ 0.000000] The list of certified hardware and cloud instances for Red Hat Enterprise Linux 9 can be viewed at the Red Hat Ecosystem Catalog, https://catalog.redhat.com.
[ 0.064227] SELinux: Initializing.
```

Figure 2.22: Версия ядра Linux

```
[root@edterentjev ~]# dmesg | grep -i Detected
[ 0.000000] Hypervisor detected: KVM
[ 0.000013] tsc: Detected 3593.254 MHz processor
```

Figure 2.23: Частота процессора

```
[root@edterentjev ~]# dmesg | grep ·i CPU0

[ 0.064476] CPU0: Hyper-Threading is disabled

[ 0.168391] smpboot: CPU0: AMD Ryzen 5 3600 6-Core Processor (family: 0x17, m

odel: 0x71, stepping: 0x0)
```

Figure 2.24: Модель процессора

```
ffff]
[ 0.044329] Memory: 3637064K/4193848K available (14345K kernel code, 5949K rw data, 9056K rodata, 2548K init 5452K bss, 244416K reserved, 0K cma-reserved)
```

Figure 2.25: Объем доступной оперативной памяти

```
[root@edterentjev ~]# dmesg | grep -i Hypervisor
[ 0.000000] Hypervisor detected: KVM
```

Figure 2.26: Тип обнаруженного гипервизора

```
[root@edterentjev ~]# dmesg | ¶rep ·i filesystem
[ 2.384744] XFS (dm·0): Mounting V5 Filesystem
[ 15.298217] XFS (sda1): Mounting V5 Filesystem
```

Figure 2.27: Тип файловой системы корневого раздела

```
[root@edterentjev ~]# dmesg | grep ·i mount
        0.064266] Moi
                              nt-cache hash table entries: 8192 (order: 4, 65536 bytes, line
ar)
        0.064272] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes,
 linear)
       2.384744] XFS (dm·0): Mounting V5 Filesystem
      11.589460] systemd[1]: Set up automount Arbitrary Executable File Formats Fi
le System Automount Point.
[ 11.634504] systemd[1]:
[ 11.635296] systemd[1]:
      11.634504] systemd[1]: Mounting Huge Pages File System...
11.635296] systemd[1]: Mounting POSIX Message Queue File System...
11.636042] systemd[1]: Mounting Kernel Debug File System...
11.637300] systemd[1]: Mounting Kernel Trace File System...
                                                                   mt Root and Kernel File Systems...
      11.859205] systemd[1]: Starting Rem
      11.862780] systemd[1]: Mounted Huge Pages File System.
11.863127] systemd[1]: Mounted POSIX Message Queue File System.
      11.863127] systemd[1]: Mounted Mosix Message Queue File
11.863278] systemd[1]: Mounted Kernel Debug File System.
11.863420] systemd[1]: Mounted Kernel Trace File System.
      12.017803] systemd[1]: Finished Remount Root and Kernel File Systems.
12.017972] systemd[1]: OSTree Remount OS/ Bind Mounts was skipped because of
    failed condition check (ConditionKernelCommandLine=ostree).
```

Figure 2.28: Последовательность монтирования файловых систем

3 Выводы

Приобретены практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

4 Список литературы

1. Методические материалы курса