

3. Propriétés mécaniques

Résistance à la rupture des céramiques:

- → L'utilisation des céramiques est donc conditionnée par sa faible ténacité et par la longueur des microfissures qu'elles contiennent.
- → Les microfissures apparaissent de plusieurs manières: l'élaboration, les contraintes thermiques, la corrosion ou l'abrasion et la mise en charge.
- \rightarrow Dans un échantillon donné, si la plus longue microfissure a une longueur $2a_m$, alors la résistance à la traction est:

$$R_{mt} = \frac{K_{IC}}{\sqrt{\pi a_m}}$$

2. Composites à particules

Composites à grosses particules:

- → Les propriétés mécaniques s'améliorent proportionnellement à l'augmentation de la fraction volumique de la phase de renfort
- → Pour les composites à deux phases:

$$\sup E_c = E_m V_m + E_P V_P$$

$$\inf E_c = \frac{E_m E_P}{V_m E_P + V_P E_m}$$

→ Ces équations sont relevées de la règle des mélanges, elles indiquent la limite supérieure (sup) et la limite inférieure (inf) entre lesquelles le module d'élasticité se situe.

展用 - V.Ke

2.3. La longueur critique de fibre

Longueur critique des fibres:

→ La force agissant sur la fibre augmente depuis zéro à son extrémité, jusqu'à la valeur F à la distance x d'une extrémité.

$$F = \int_0^x \pi \, d\tau^m \, dx = \pi d\tau^m x$$

→ La force juste suffisante pour casser la fibre est:

$$F_c = \frac{\pi d^2}{4} R_m^f$$

 \rightarrow En égalant ces deux forces, nous trouvons que la fibre cassera à la distance x_c d'une extrémité.

$$x_c = \frac{d}{4} \frac{R_m^f}{\tau^m}$$

2.3. La longueur critique de fibre

Longueur critique des fibres:

- \rightarrow Si la fibre a une longueur inférieure à $2x_c$, elle ne casse pas, mais elle ne transmet pas non plus toute la charge qu'elle pourrait transmettre.
- \Rightarrow La résistance maximale est obtenue en découpant des fibres de longueur $2x_c$. La contrainte moyenne supportée par une fibre est $R_m^f/2$, et la contrainte maximale est:

$$\sigma_m = V_f \frac{R_m^f}{2} + \left(1 - V_f\right) R_e^m.$$

→ C'est le cas si toutes les fibres sont parallèles à la direction de sollicitation.

2.5. L'énergie de rupture

Energie de rupture:

 \Rightarrow La résistance au cisaillement de la matrice est τ^m , le travail effectué en déchaussant une fibre de la surface de rupture vaut approximativement:

$$\int_0^{1/2} F \cdot dx = \int_0^{1/2} \pi \cdot d \cdot \tau^m \cdot x \, dx = \pi \cdot d \cdot \tau^m \frac{l^2}{8}$$

- \Rightarrow Le nombre de fibres par unité de fissure est $4V_{\scriptscriptstyle F}/\pi d^2$.
- → Le travail absorbé par unité de surface lié à l'arrachement des fibres est:

$$G_c = \pi d\tau^m \frac{l^2}{8} \cdot \frac{4V_f}{\pi d^2} = \frac{V_f}{2d} \tau^m l^2$$

2.5. L'énergie de rupture

Energie de rupture:

- \rightarrow La formule précédente suppose que l est inférieure à la longueur critique $2x_c$. Si l dépasse $2x_c$, les fibres ne s'arracheront pas, mais elle casseront.
- \rightarrow L'énergie de rupture optimale est donc obtenue pour $l = 2x_c$:

$$G_{c} = \frac{2V_{f}}{d} \tau^{m} x_{c}^{2} = \frac{2V_{f}}{d} \tau^{m} \frac{d}{4} \left(\frac{R_{m}^{f}}{\tau^{m}} \right)^{2} = \frac{V_{f} d}{8} \frac{(R_{m}^{f})^{2}}{\tau^{m}}$$

→ Le mécanisme d'arrachement donne au PRFC et au PRFV une énergie de rupture (50 kJm⁻²) bien plus élevée que celle de la matrice (5 kJm⁻²) ou des fibres (0,1 kJm⁻²).

4.1. Solides cellulaires ou mousses

Propriétés mécaniques des mousses:

- → La simple théorie des poutres permet de calculer les déplacement.
- \Rightarrow De là, on obtient la raideur d'une cellule élémentaire, donc le module E de la mousse, en fonction de la longueur l et de l'épaisseur e des parois de cellules, qui sont directement reliées à la densité relative: $\rho/\rho_s = (e/l)^2$ pour des masses ouvertes, les plus courantes. Le module de la mousse:

$$E = E_s \left(\frac{\rho}{\rho_s} \right)$$

 \rightarrow L'expansion produit un grand intervalle de modules: ρ/ρ_s peut varier de 0,5 à 0,005, soit un facteur de 10², selon la méthode d'expansion, ce qui fait varier E d'un facteur 10⁴.

4.1. Solides cellulaires ou mousses

Propriétés mécaniques des mousses:

 \rightarrow A partir de résultats classiques de la théorie des poutres, on calcule la contrainte d'effondrement (倒塌) élastique σ_{el}^* en fonction de la densité relative ρ/ρ_s :

$$\sigma_{el}^* = 0.05 E_s \left(\frac{\rho}{\rho_s}\right)^2$$

→ C'est également la densité relative qui contrôle la résistance de la mousse, qui peut varier sur un large intervalle.