Optimization Cheatsheet

Hongyi Guo*

October 27, 2020

1 Linear Optimization

Definition 1 (Standard Form).

$$\min \quad c^{\top} x$$
s.t.
$$\sum_{j=1}^{n} a_j x_j = b$$

$$x \ge 0.$$

Definition 2 (Convex set). A set X is convex if $\forall x, y \in X$, $\lambda x + (1 - \lambda)y \in X$, $0 \le \lambda \le 1$.

Definition 3 (Convex cone). A convex cone C is a convex set s.t. $\forall x \in C, \lambda x \in C, \forall \lambda \geq 0$.

Definition 4 (Hyperplane, half-space). The set $\{x \in \mathbb{R}^n : a^\top x = b\}$ is called a Hyperplane. The set $\{x \in \mathbb{R}^n : a^\top x \geq b\}$ is called a half-space.

Definition 5 (Polyhedron). A polyhedron is a set that can be described as the intersection of finitely many inequalities (half spaces) and equalities (hyperplanes).

Definition 6 (Bounded). A set $S \in \mathbb{R}^n$ is bounded if there exists a finite constant K s.t. $\forall x \in S, |x_i| \leq K, i = 1, 2, ..., n$.

Definition 7 (Dimension). Given a polyhedron $P = \{x \in \mathbb{R}^n : Ax \geq b\}$, the dimension $\dim(P)$ is the smallest <u>affine</u> subspace that contains it. P is full dimensional if $\dim(P) = n$.

Theorem 8. Two approaches to get the dimension of a polyhedron $P = \{x \in \mathbb{R}^n : Ax \geq b\}$.

1. Let $A^{=}$ be the submatrix of A consisting of the rows a^{i} , the i-th row of A s.t. $a^{i}x = b_{i}$, $\forall x \in P$ for i = 1, ..., m. Then $\dim(P) = n - \operatorname{rank}(A^{=})$.

^{*}Northwestern University; hongyiguo2025@u.northwestern.edu

2. If the maximum number of affinely independent points in P is k, then $\dim(P) = k - 1$.

Remark 9. Normally, Theorem 8.1 gives us an upper bound of $\dim(P)$, while Theorem 8.2 gives us a lower bound of $\dim(P)$. By showing that they meet each other, we obtain the exact $\dim(P)$.

Definition 10. The definition of Linear, affine, conic, and convex combinations.

- (a). Linear combination span(S): $\bar{x} = \sum_{i=1}^{k} \lambda_i x^i$.
- (b). Affine combination aff(S): $\bar{x} = \sum_{i=1}^k \lambda_i x^i, \sum_{i=1}^k \lambda_i = 1$.
- (c). Conic combination cone(S): $\bar{x} = \sum_{i=1}^k \lambda_i x^i, \lambda_i \ge 0, \forall i$.
- (d). Convex combination conv(S): $\bar{x} = \sum_{i=1}^k \lambda_i x^i, \sum_{i=1}^k \lambda_i = 1, 0 \le \lambda \le 1, \forall i$.

Definition 11 (Linearly/affinely independent). The vectors x^1, x^2, \ldots, x^k are linearly independent if $\sum_{i=1}^k \lambda_i x^1 = 0$ has a unique solution $\lambda_i = 0, \forall i$. The vectors x^1, x^2, \ldots, x^k are affinely independent if $\sum_{i=1}^k \lambda_i x^1 = 0, \sum_{i=0}^k \lambda_i = 0$ has a unique solution $\lambda_i = 0, \forall i$.

Proposition 12. x^1, \ldots, x^k are affinely independent iff. $x^1 - x^k, \ldots, x^{k-1} - x^k$ are linearly independent.

Proposition 13. x^1, \ldots, x^k are affinely independent iff. $(1, x^1), \ldots, (1, x^{k-1})$ are linearly independent.

Theorem 14. The intersection of convex sets is convex.

Theorem 15. Every polyhedron is a convex set.

Theorem 16. A convex combination of a finite number of vectors in a convex set also belongs to that set.

Theorem 17. The convex hull of a finite number of vectors is a convex set.

Definition 18 (Ray). A ray is given by $x_0 + \lambda d$, $\lambda \ge 0$, for a given point x_0 and a direction vector $d \in \mathbb{R}^n$ s.t. $d \ne \mathbf{0}$.

Definition 19 (Recession direction). A direction $d \in \mathbb{R}^n$, $d \neq \mathbf{0}$ is called a recession direction of a convex set S, if $\forall x \in S$, we have that $x + \lambda d \in S$, $\forall \lambda \geq 0$.

Definition 20 (Extreme point). A point $x \in S$ is an extreme point of S, if it's not a <u>convex</u> combination of any $x^1, x^2 \in S, x^1 \neq x^2$.

Definition 21 (Extreme ray). A direction d is an extreme ray of S if it is not a <u>conical</u> combination of any $d^1 \neq d^2 \neq d$ that are rays of S.

Definition 22 (Active/binding/tight). Consider $P \in \mathbb{R}^n$ is defined by constraints that are inequalities and equalities. If a given point \bar{x} satisfies a constraint at equality, then the constraint is active/binding/tight at \bar{x} .

Definition 23 (Basic solution (b.s.) & basic feasible solution (b.f.s.)). Let $P \in \mathbb{R}^n$ be a polyhedron. The vector \bar{x} is a b.s. to P if all equality constraints are active at \bar{x} , and there are n linearly independent constraints active at \bar{x} . Furthermore, if $\bar{x} \in P$, then \bar{x} is also a b.f.s. to P.

Definition 24 (Degenerate). A b.s. \bar{x} is degenerate if there are more than n constrains active at \bar{x} .

Definition 25 (Adjacent). Two distinct b.s. \bar{x}, \bar{y} are adjacent if the n-1 linearly independent constraints active at \bar{x} and \bar{y} are common, and one active constraint is not common.

Theorem 26. Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}, P \ne \emptyset$. Then $\bar{x} \in P$ is an extreme point of P iff. \bar{x} is a b.f.s.

Definition 27 (Line). A polyhedron $P \subset \mathbb{R}^n$ contains a line, if there exists a vector $x \in P$ and direction $d \in \mathbb{R}^n$, $d \neq \mathbf{0}$ s.t. $x + \lambda d \in P, \forall \lambda \in \mathbb{R}$.

Theorem 28. Let $P \subset \mathbb{R}^n$ be a polyhedron and $P \neq \emptyset$. Then P does not contain a line iff. P has at least one extreme point.

Theorem 29. If there exists an optimal solution to an LP that has an extreme point (i.e., the LP is feasible and it has a bounded optimal solution), then there exists an optimal solution that is an extreme point.

Theorem 30. Consider $P = \{x \in \mathbb{R}^n : Ax = b, x_j \geq 0, j = 1, \dots, n\}$, where A is an $m \times n$ matrix with $m \leq n$ and rank(A) = m. Suppose $P \neq \emptyset$. We say that \bar{x} is a b.s. iff. $\underline{A\bar{x} = b}$ and there exists \underline{m} linearly independent columns $A^{B(1)}, \dots, A^{B(m)}$ of A, with $\underline{x}_j = 0, \forall j \notin \{B(1), \dots, B(m)\}$. The variables $x_j, j \in \{B(1), \dots, B(m)\}$ are called $\underline{\text{basic}}$ variables, and the other variables are called nonbasic.

Definition 31 (Convex). A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for every $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$, we have $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$.

Definition 32 (Convex optimization problems). Convex optimization problem is to minimize a <u>convex function</u> over a <u>convex set</u>.

Definition 33 (Local/global optima). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a <u>convex</u> function, and $S \subset \mathbb{R}^n$ be a convex set. A given point $x^* \in S$ is a local optimum for minimizing f(x) over $x \in S$ if $\exists \epsilon > 0$ s.t. $\forall x \in S$ with $||x^* - x|| \le \epsilon$, we have $f(x^*) \le f(x)$. The point x^* is also a global optimum if $f(x^*) \le f(x), \forall x \in S$.

Algorithm 1 Simplex Method

```
Input: A standard form LP: \min z = c^{\top}x s.t. Ax = b, x \ge 0. Initial b.f.s. x.
 1: while TRUE do
       Let x = (x_B, x_N), c = (c_B, c_N), d = (d_B, d_N), B = [A_{B(1)}, \dots, A_{B(m)}] be the basis matrix.
 2:
       Calculate the <u>reduced cost</u> of variable x_j: \bar{c}_j = c_j - c_B^{\top} B^{-1} A_j.
 3:
       Steepest descent rule: Choose the variable x_j with the smallest \bar{c}_j(<0).
 4:
       if \bar{c} \ge 0 then
 5:
          z^* \leftarrow c^\top x. // Optimal solution
 6:
 7:
          break.
       end if
 8:
       Calculate the <u>feasible direction</u>: d_B \leftarrow -B^{-1}A_i, d_N \leftarrow e_i.
 9:
       if d_B \geq 0 then
10:
          z^* = \leftarrow -\infty. // Unbounded
11:
          break.
12:
       end if
13:
       <u>Ratio test</u>: \theta^* = \min_{i=1,...,m:d_{B(i)} < 0} -x_{B(i)}/d_{B(i)}.
14:
        Update: x \leftarrow x + \theta^* d
15:
16: end while
Output: Optimal solution x if exists.
```

Definition 34 (Feasible direction). Let $x \in P$. A vector $d \in \mathbb{R}^n$, $d \neq \mathbf{0}$ is called a feasible direction at x if $\exists \theta > 0$ for which $x + \theta d \in P$.

Theorem 35 (Revised simplex). $[B_i^{-1}|u] \to [B_{i+1}^{-1}|\mathbf{e}_{\ell}]$, where $u = -d_B = B_i^{-1}A_{\ell}$, and ℓ is s.t. $x_{B(\ell)}$ leaves the basis. Perform row operations on B_i^{-1} , with the ℓ -th row as the pivot row, until we turn u into \mathbf{e}_{ℓ} . Notice that the order of variables in c_B must be the same as that of B^{-1} .

Remark 36 (Full Tableau Implementation of simplex). The tableau is in the following form.

-z	x_B	x_N
$-c_B^{T}B^{-1}b$	0	$c_N^{\top} - c_B^{\top} B^{-1} N$
$x_B = B^{-1}b$	I	$B^{-1}N$

Theorem 37. Assume that the LP is feasible, and every b.f.s. is nondegenerate. Then the simplex method stops after a finite number of iterations, with an optimal b.f.s. and a finite objective function value, or with a vector d s.t. $Ad = 0, d \ge 0$ and $c^{\top}d < 0$, and $-\infty$ as the optimal cost.

Definition 38 (Lexicographical larger (smaller)). A vector $u \in \mathbb{R}^n$ is said to be lexicographical larger (or smaller) than another vector $v \in \mathbb{R}^n$, if $v \neq u$ and the first nonzero component of u - v is positive (or negative, respectively). We denote this by $u >_L v$ (or $u <_L v$, respectively).