

Mohammad Ali Jinnah University

Chartered by Government of Sindh - Recognized by HEC

Quiz 1

Name: Muhamad Fahad

Id: FA19-BSSE-0014

Subject: Linear Algebra (Fall 2020)

Section: AM

Teacher: Dr. Asmat Ara

Date: Monday, November 2, 2020

Q.1 Solve the following system by	y Gaussian Jordan method.
-----------------------------------	---------------------------

$$x + y + 2z = 9$$

$$x + y + 2z = 9
2x + 4y - 3z = 1$$

$$3x + 6y - 5z = 0$$

	M. Fahad	
	FAID-BOSE-	4,00
	Date:	_
11.4:		
accessor (Go	usain Josdan mathod.)	
	1 1 2 9	
	2 4 -3 1	
	3 6 -5 0	
	1 12 9	
	0 2 -7 -13 -28 + 80	
	0 3 -11 -27 -3R,+R3	
	2 11 1 3	
	1 1 2 9]	
	0 1 - 7/2 - 1/2 /2 R2	
	D 3 -11 -27	
	0 3 11 241	
	35/	
	0 1 -72 -132 -R2+R,	
	0 1 - 1/2 - 1/2	
	0 0 -1/2 -3/3 -3R2+R3	
	1 0 1/2 3/2	
	0 1 -73 -172 -2R	
	0 0 1 3	
	<u> </u>	
	1 2 2	
	1001 1/2 R3+R,	
	0 0 1 3 -1/2 R3 +R1	
CALEDANTIN	MIGHTY PAPER PRODUCT	

	X=1	1 Unique	Solution.
	72=3		
	$\mathcal{K}_3 = 3$	J	
Consistency	Crateri	a: (Uniqu	ue SOL)
IX	OUK (HD)	= KOUK(H) = No of Unknow
	3	= 3	- 3
		3	= 3

 $\ensuremath{\mathrm{Q.2}}$ Solve the following system by Gaussian Elimination method.

$$x - y + 2z = 5$$
$$2x - 2y + 4z = 10$$

$$3x - 3y + 6z = 15$$

30(11510	(Gausses Elimitation)
	1 -1 2 5 2 -2 4 10 3 -3 6 15
	$\begin{bmatrix} 1 & -1 & 2 & 5 & -2R_1 + R_2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3R_1 + R_3 \end{bmatrix}$
-	n + x + 2x = 5
Let	$x_2 = S$ and $x_3 = t$
16	
	$x_{2} = x_{2} - 2x_{3} + 5$ $x_{3} = S - 2t + 5$ $x_{4} = S$ $x_{5} = S$ $x_{6} = S$ $x_{7} = S$
C .	26 3 = +
Consistence	y Crateria: (Infinit sol)
E P	Rank(AD) = Rank(A) (No of unknow)
	Infinit Solo