General Physics II 磁性材料基本特性的研究

刘思昀 SLST 2022522011

Wednesday 10th April, 2024

1 测绘基本磁化曲线

1.1 基本磁化曲线

将不同 Vpp 下测得的坐标点绘制在同一张图上并连线,得到如下样品的基本磁化曲线:

图 1: 样品的基本磁化曲线

其中 Vpp=0V 时,由于无法将信号源直接调至 0V,故直接将信号源关闭得到结果。由于讲义中的磁化曲线横纵坐标分别为 H 和 B,故另外绘制以磁场强度 H 为横坐标,磁感应强度 B 为纵坐标的图像:

其中 H, B 的计算方法详见下文。

图 2: 样品的基本磁化曲线

1.2 $\mu - H$ 关系曲线

已知常量:

- $D_{inside} = 15mm$
- $D_{outside} = 25.5mm$
- h = 10mm
- $C = 4.7 \mu F$
- $N_1 = N_2 = 120$
- $R_1 = 100\Omega$

测得的横坐标记为 U_{R1} ,单位为 mV;测得的纵坐标记为 U_C ,单位为 mV;测得滑动变阻器 $R_2=0.33154k\Omega$ 。

 μ , B, H 的计算方法如下:

$$B = \frac{R_2 \cdot C \cdot U_C}{N_2 S}$$

$$H = \frac{N_1 U_{R1}}{R_1 L}$$

$$\mu = \frac{B}{H}$$

其中:

$$L = \frac{\pi(D_{inside} + D_{outside})}{2}$$

$$= \frac{3.14 \times (25.5 \times 10^{-3} + 15 \times 10^{-3})}{2}$$

$$= 0.0636m$$

$$S = \frac{h(D_{outside} - D_{inside})}{2}$$

$$= \frac{10 \times 10^{-3} \times (25.5 \times 10^{-3} - 15 \times 10^{-3})}{2}$$

$$= 5.25 \times 10^{-5}m^{2}$$

计算结果如下:

Vpp (V)	正顶点横坐标 (mV	E顶点纵坐标 (mV	磁感应强度B (T)	磁场强度H(A/m)	磁导率µ (N/A^2)
0	0	0	0.000	0.00	0.0000
1	60	70	0.017	1.13	0.0153
2	100	134	0.033	1.89	0.0176
3	140	200	0.049	2.64	0.0187
4	200	266	0.066	3.77	0.0174
5	240	344	0.085	4.53	0.0188
6	280	404	0.100	5.28	0.0189
7	320	468	0.116	6.04	0.0192
8	360	536	0.133	6.79	0.0195
9	400	604	0.149	7.55	0.0198
10	440	672	0.166	8.30	0.0200
11	520	740	0.183	9.81	0.0187
12	560	808	0.200	10.57	0.0189
13	640	872	0.216	12.08	0.0179
14	800	940	0.232	15.09	0.0154
15	880	1008	0.249	16.60	0.0150
16	1000	1068	0.264	18.87	0.0140
17	1240	1144	0.283	23.40	0.0121
18	1600	1204	0.298	30.19	0.0099
19	1920	1264	0.313	36.23	0.0086
20	2440	1324	0.327	46.04	0.0071

图 3: 测量数据及磁导率、磁场强度计算结果

绘制 $\mu - H$ 曲线:

图 4: 磁导率 μ -磁场强度 H 关系曲线

2 测绘磁滞回线

利用同样的方法,根据测得的横纵坐标计算磁感应强度 B 和磁场强度 H,计算结果如下:

共取了 20 个坐标点, 其中坐标 1, 2, 7, 16, 19, 20 (已标红) 为特殊点坐标, 分别对应 (-Hs,-Bs),(-Hc,0),(0,Br),(0,-Br),(Hc,0),(Hs,Bs) 绘制 B-H 曲线:

	坐标1	坐标2	坐标3	坐标4	坐标5
xi (mV)	-2460	-2000	-1500	-1000	-500
yi (mV)	-1328	0	440	680	848
Hi (A/m)	-46.42	-37.74	-28.30	-18.87	-9.43
Bi (T)	-0.328	0.000	0.109	0.168	0.210
	坐标6	坐标7	坐标8	坐标9	坐标10
xi (mV)	0	400	800	1140	1600
yi (mV)	960	1040	1112	1160	1216
Hi (A/m)	0.00	7.55	15.09	21.51	30.19
Bi (T)	0.237	0.257	0.275	0.287	0.301
	坐标11	坐标12	坐标13	坐标14	坐标15
xi (mV)	-1600	-1140	-800	-400	0
yi (mV)	-1200	-1144	-1096	-1032	-940
Hi (A/m)	-30.19	-21.51	-15.09	-7.55	0.00
Bi (T)	-0.297	-0.283	-0.271	-0.255	-0.232
	坐标16	坐标17	坐标18	坐标19	坐标20
xi (mV)	500	1000	1500	1960	2440
yi (mV)	-848	-664	-416	0	1320
Hi (A/m)	9.43	18.87	28.30	36.98	46.04
Bi (T)	-0.210	-0.164	-0.103	0.000	0.326

图 5: 测量数据及磁感应强度、磁场强度计算结果

图 6: 样品的磁滞回线

3 思考题

3.1 除了讲义中给出的方法,还有什么办法可以实现样品的完全退磁?

- 将磁性材料加热到其居里温度以上,然后在无外部磁场的环境下缓慢冷却。居里温度是铁磁材料从铁磁性转变为顺磁性的温度,加热至此温度会破坏材料内部的磁畴结构,使其失去磁性。缓慢冷却确保不会因冷却过程中的外部磁场重新磁化。
- 通过交变磁场影响磁畴的取向,逐步使其随机分布,达到退磁的目的。首先,应用一个足够大的交变磁场,使材料达到饱和磁化状态。然后,逐渐减小磁场的强度,并同时改变其方向,直到磁场的强度降低到零。
- 使用特制的退磁线圈,其通过线圈产生一个强大且方向不断变化的交变磁场。通过将磁性材料置于这样的磁场中,并逐渐减小磁场强度至零,可以有效地实现退磁。

3.2 可否用直流电的办法测量出磁滞回线?请简要设计一个测量方案。

直流电不能直接产生交变磁场,但可以通过改变直流电的大小和方向来模拟磁场的变化。

从 0 开始,逐渐增加通过线圈的直流电流。每次增加一定量的电流,用霍尔效应传感器测量样品的磁感应强度 B。记录下每一步的电流值和相应的 B 值。

当电流增加到足以饱和样品的磁化时,逐渐减小电流直到零,再改变电流方向,重复增加电流的步骤,直到再次饱和样品的磁化。这一过程中,继续记录下电流值和相应的 *B* 值。在达到饱和磁化后,再次减少电流直到零,然后逆向增加电流,重复以上步骤。

利用记录的电流值,可以计算出对应的磁场强度 H 和磁感应强度 B 值,绘制出磁滞回线图。

4 分析与讨论

- 连接电路时,需要区分待测样品的接入端和接出端
- 通过将待测点移到原点的方式,读取李萨如图像中关键点的坐标,注意区分正负
- 测绘基本磁化曲线时,可以通过调整示波器的 scale,调整到细长的形状,从而更清晰的观察到正顶点,但是这样会让测量精确度有所下降
- 测绘磁滞回线时,对于两条曲线都均匀的取点读取坐标,可以设定一系列横坐标点值 然后找到对应纵坐标