Examen parcial de Física - ELECTRÒNICA 1 de desembre de 2016

Model A

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) En quin dels circuits següents obtindrem corrent rectificat d'ona sencera a través de la resistència?

T2) Quant val $V_{\rm A} - V_{\rm B}$ en el circuit de la figura?

- a) -10 V.
- b) 8 V.
- c) 10 V.
- d) -8 V.

- T3) Es dissenya un circuit amb un transistor NMOS perquè actuï com a inversor. Quan la sortida està en l'estat lògic 1 el transistor treballa en la zona:
 - a) Tall.

- b) Òhmica.
- c) Òhmica o tall, indiferentment.
- d) Saturació.
- **T4)** En el circuit de la figura hi circula una intensitat de 2 mA, i els paràmetres del transistor són $V_T = -1$ V i $\beta = 1$ mA/V². Aleshores, el valor de V_o és:
 - a) 1 V.
 - b) 11 V.
 - c) 7 V.
 - d) 0 V.

- **T5)** Si les entrades d'aquesta porta CMOS són $V_A = 0$ V i $V_B = V_{DD}$, els transistors que estan en TALL (OFF) són:
 - a) T_1 i T_2 .
 - b) T_1 i T_4 .
 - c) T_3 i T_4 .
 - d) T_2 i T_3 .

Cognoms i Nom:

Codi:

Examen parcial de Física - ELECTRÒNICA 1 de desembre de 2016

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) En quin dels circuits següents obtindrem corrent rectificat d'ona sencera a través de la resistència?

- **T2)** En el circuit de la figura hi circula una intensitat de 2 mA, i els paràmetres del transistor són $V_T = -1$ V i $\beta = 1$ mA/V². Aleshores, el valor de V_o és:
 - a) 11 V.
 - b) 0 V.
 - c) 1 V.
 - d) 7 V.

- **T3)** Si les entrades d'aquesta porta CMOS són $V_A = 0$ V i $V_B = V_{DD}$, els transistors que estan en TALL (OFF) són:
 - a) T₂ i T₃.
 - b) T₁ i T₄.
 - c) T_1 i T_2 .
 - d) T_3 i T_4 .

- **T4)** Quant val $V_{\rm A} V_{\rm B}$ en el circuit de la figura?
 - a) 8 V.
 - b) 10 V.
 - c) -10 V.
 - d) -8 V.

- **T5)** Es dissenya un circuit amb un transistor NMOS perquè actuï com a inversor. Quan la sortida està en l'estat lògic 1 el transistor treballa en la zona:
 - a) Tall.

b) Òhmica o tall, indiferentment.

c) Saturació.

d) Òhmica.

Cognoms i Nom:

Codi:

Examen parcial de Física - ELECTRÒNICA 1 de desembre de 2016

Problema: 50% de l'examen

El transistor NMOS de la figura té els paràmetres característics $\beta=2\text{mA/V}^2$ i $V_T=0.8$ V. Sabent que $R_D=2$ k $\Omega,~V_0=4.5$ V i $V_{DD}=10$ V, calculeu:

- a) Els valors de V_{DS} , I_D i el règim de treball del transistor. (6 punts)
- b) El valor mímim de R_D per que el transistor funcioni en zona òhmica per als valors de V_0 i V_{DD} indicats a la figura. (2 punts)
- c) Suposant $R_D = 2 \text{ k}\Omega$, quin valor mínim hauria de tenir V_{DD} per tal que el transistor estigués en règim de saturació. (2 punts)

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	c	b
T2)	d	d
T3)	a	a
T4)	c	d
T5)	d	a

Resolució del Model A

- T1) Circularà una intensitat de dreta a esquerra a través de la resistència en el muntatge (c).
- **T2)** Si suposem que està en tall, llavors tindrem I=20/5000=4 mA. La tensió en aquest cas seria $V_{\rm A}-V_{\rm B}=-I\cdot R_2=-8$ V, que satisfà la condició $-V_Z< V_{\rm A}-V_{\rm B}< V_{\gamma}$. Per tant el díode treballa efectivament a la zona de tall i la tensió que es demana és -8 V.
- T3) El circuit de polarització d'un transistor NMOS que implementa un inversor es dissenya perquè treballi en les zones de tall i òhmica. Quan a l'entrada tenim tensió zero, el transistor es troba en tall i per tant a la sortida tenim un 1 lògic perquè el corrent de drenador és zero.
- T4) Com $V_G = V_D$ i $V_T < 0$, tindrem que $V_{DS} < V_{GS} V_T$, i per tant està en saturació. Tindrem doncs per la intensitat $I_D = \frac{\beta}{2} \left[V_G V_S V_T \right]^2$, i substituint les dades del problema $2 \cdot 10^{-3} = \frac{10^{-3}}{2} \left[V_G 9 \right]^2$, d'on resulta l'equació $V_G^2 18V_G + 77 = 0$, que té per solucions $V_{G_1} = 7$, $V_{G_2} = 11$ V. Sols la primera compleix $V_G V_S < V_T$ i per tant és la solució que es busca.
- **T5**) Els NMOS estan en tall quan la seva entrada és 0, mentre que els PMOS estan en tall quan la seva entrada és V_{DD} , així doncs els transistors T_2 i T_3 estan en tall.

Resolució del Problema

a) En primer lloc calculem $V_{GS} = V_O = 4.5V$. Donat que és $V_{GS} \geq V_T$ el transistor està en ON $(I_D \neq 0)$. Suposarem que el transistor treballa en règim de saturació. En aquest cas, el corrent és

$$I_D = \frac{\beta}{2}(V_{GS} - V_T)^2 = \frac{1}{2}2(3.7)^2 = 13.7 \text{ mA}$$

Amb aquest valor de I_D calculem la diferència de potencial V_{DS} , serà $V_{DS} = V_{DD} - R_D I_D = 10 - 2 \times 13.7 = -17.4$ V, la qual cosa indica que la hipòtesi de saturació és falsa perquè ha de ser $V_{DS} \geq 0$. Així doncs, el transistor està en règim òhmic, llavors la intensitat vindrà donada per

$$I_D = \beta \left[(V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} \right] = 2 \left[3.7V_{DS} - \frac{V_{DS}^2}{2} \right]$$

Per altra banda, ha de ser

$$I_D = \frac{V_{DD} - V_{DS}}{R_D} = \frac{10 - V_{DS}}{2}$$

Igualant les dues expressions, trobem la següent equació de segon grau

$$2V_{DS}^2 - 15.8V_{DS} + 10 = 0$$

que té dues solucions $V_{DS}=7.2$ V i $V_{DS}=0.7$ V. La que compleix la condició de zona òhmica $0 \le V_{DS} \le V_{GS} - V_T$ és la segona, per tant és $V_{DS}=0.7$ V. Finalment calculem la intensitat

$$I_D = \frac{10 - V_{DS}}{2} = \frac{10 - 0.7}{2} = 4.65 \text{ mA}$$

b) En zona òhmica, ha de ser $V_{DS} \leq V_{GS} - V_T = 3.7$ V. Per altra banda,també ha de ser $V_{DS} = 10 - R_D I_D$, per tant

$$10 - R_D I_D \le 3.7 \Rightarrow R_D \ge \frac{6.3}{I_D}$$

Trobarem el valor mínim de R_D substituïm en aquesta expressió el valor de I_D = 13.7 mA trobat a l'apartat a) a partir del qual començaria la zona de saturació. És a dir

$$R_D \ge \frac{6.3}{13.7} \Rightarrow R_D \ge 0.46 \text{ k}\Omega$$

c) En saturació és $V_{DS} \geq V_{GS} - V_T = 3.7 \text{ V, llavors serà}$

$$V_{DD} = R_D I_D + V_{DS} \ge 2I_D + 3.7V$$

Com en el cas de l'apartat anterior, trobarem el valor mínim prenent $I_D = 13.7$ mA. És a dir

$$V_{DD} \ge (2)(13.7) + 3.7 \Rightarrow V_{DD} \ge 31.1 \text{ V}$$