Procesamiento Digital de Imágenes

Unidad IV: Restauración de imágenes

Departamento de Informática - FICH Universidad Nacional del Litoral

23 de abril de 2018

Temas a desarrollar

- Motivación.
- Estudio de los problemas posibles
 - Modelo de degradación.
 - Modelos de ruido.
- Filtrado espacial
- Ruido periódico y filtrado frecuencial
- Estudio de la degradación
 - Estimación de *H*
 - Filtrado inverso
- Filtrado de mínimos cuadrados
- Filtro generalizado de Wiener

Motivación

- El realce o mejoramiento de imágenes:
 - Objetivo: manipulación de la imagen para ajustarse a la psicofísica del sistema visual humano.
 - Aplicación de heurísticos.
 - Procesamiento subjetivo.
- La restauración:
 - Objetivo: recuperación de una imagen que sufrió una degradación por algún fenómeno. Ejemplo:
 - Contaminación por ruido
 - Problemas de enfoque
 - Distorsiones geométricas
 - Artefactos de movimiento
 - Aplicación de modelos que ajustan la degradación y procesos inversos para recuperar la imagen original.
 - Procesamiento objetivo.

Modelo de degradación

 La imagen original es afectada por una función de degradación más el aporte de ruido.

Dominio espacial
$$\rightarrow$$
 $g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$
Dominio frecuencial \rightarrow $G(u,v) = H(u,v) F(u,v) + N(u,v)$

- Abordaje del problema:
 - Asumimos H=1 y estudiamos el ruido.
 - Luego estudiamos H y la restauración en presencia de ambos componentes.

- Ruido: información no deseada que contamina la imagen.
- Fuentes de ruido:
 - Adquisición: defectos en los sensores, temperatura, ruido de línea en el sistema de captura, etc.
 - Transmisión: interferencias en el canal (ej: variación de condiciones atmosféricas en microondas).
- Asumimos que el ruido:
 - Es independiente de las coordenadas espaciales (salvo ruido periódico).
 - No está correlacionado con la imagen.
- El ruido queda descripto mediante variables estadísticas, en particular la PDF (función de densidad de probabilidad).

Ruido Impulsivo:

- Casos particulares:
 - Ruido Bipolar (de disparo o sal y pimienta): $P_a \approx P_b$
 - Ruido Unipolar: $P_a = 0$ ó $P_b = 0$
- Presente en defectos electrónicos de dispositivos CCD, errores en transmisión o ruido externo que contamina la conversión A/D.

Ruido Uniforme:

$$p(z) = \begin{cases} \frac{1}{b-a} & \text{si } a \le z \ge b \\ 0 & \text{otro} \end{cases}$$

$$\mu = \frac{a+b}{2}$$

$$\sigma^2 = \frac{(b-a)^2}{12}$$

Utilizado para simulación de valores aleatorios

Ruido Gaussiano:

$$p(z) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(z-\mu)^2/2\sigma^2}$$

- Generado por componentes electrónicos.
- Ampliamente utilizado por su versatilidad matemática, aún en situaciones donde no se ajusta a los principios físicos del ruido.

Ruido Rayleigh:

Presente en imágenes de radar.

• Ruido Gamma:

$$p(z) = \begin{cases} \frac{a^b z^{b-1}}{(b-1)!} e^{-az} & \text{para } z \ge 0\\ 0 & \text{para } z < 0 \end{cases}$$

$$\mu = \frac{b}{a}$$
$$\sigma^2 = \frac{b}{a^2}$$

Presente en imágenes generadas por laser.

Ruido Exponencial:

$$p(z) = \begin{cases} ae^{-az} & \text{para } z \ge 0\\ 0 & \text{para } z < 0 \end{cases}$$

$$\mu = \frac{1}{a}$$
$$\sigma^2 = \frac{1}{a^2}$$

- Caso particular de ruido gamma con b = 1.
- Presente en imágenes generadas por laser.

- Estimación de parámetros estadísticos del ruido:
 - Hoja de datos de sensores Dependencia con el sistema de adquisición.
 - Prueba con imágenes: utilización del histograma como estimador de la distribución del ruido.
 - Patrón de áreas de intensidad constante.
 - Recortes de áreas constantes en imágenes adquiridas.
- Cálculo de:
 - Media y varianza.
 - Parámetros a y b.
 - Patrón de gris medio constante para estimar ruido impulsivo.

Restauración mediante filtrado espacial

Cuando H = 1 sólo tenemos ruido aditivo:

$$g(x,y) = f(x,y) + \eta(x,y)$$
$$G(u,v) = F(u,v) + N(u,v)$$

- Generalmente (salvo en el ruido periódico), la forma de N no es conocida, por lo que la resta G-N no es posible.
- El método adecuado es el filtrado espacial:
 - Filtros de medias: promediado sobre una vecidad.
 - Filtros de orden: ordenamiento ascendente sobre una vecindad y reemplazo de grises.
 - Filtros adaptativos: adaptación del comportamiento acorde a las características de la vecindad.

Filtro de la media aritmética:

$$\widehat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

• Reduce el ruido por desenfoque, al convolucionar la imagen con una máscara de coeficientes 1/mn.

Filtro de la media aritmética:

$$\widehat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

- Reduce el ruido por desenfoque, al convolucionar la imagen con una máscara de coeficientes 1/mn.
- Filtro de la media geométrica:

$$\widehat{f}(x,y) = \left[\prod_{(s,t)\in S_{xy}} g(s,t)\right]^{\frac{1}{mn}}$$

- Suaviza la imagen con menor pérdida de detalles de la imagen.
- Bueno para ruido gaussiano, falla con ruido impulsivo.

Original

Ruido gaussiano

Media aritmética

Media geométrica

Filtro de la media armónica:

$$\widehat{f}(x,y) = \frac{mn}{\sum_{(s,t)} \frac{1}{g(s,t)}}$$

- Bueno para ruido sal, malo para ruido pimienta.
- Bien con ruido gaussiano, preservando detalles de la imagen.

Ruido sal

Media aritmética

Media armónica

Filtro de la media armónica:

$$\widehat{f}(x,y) = \frac{mn}{\sum_{(s,t)} \frac{1}{g(s,t)}}$$

- Bueno para ruido sal, malo para ruido pimienta.
- Bien con ruido gaussiano, preservando detalles de la imagen.

Ruido pimienta

Media armónica

Filtro de la media armónica:

$$\widehat{f}(x,y) = \frac{mn}{\sum_{(s,t)} \frac{1}{g(s,t)}}$$

- Bueno para ruido sal, malo para ruido pimienta.
- Bien con ruido gaussiano, preservando detalles de la imagen.
- Filtro de la media contra-armónica:

$$\widehat{f}(x,y) = \frac{\sum_{(s,t)} g(s,t)^{Q+1}}{\sum_{(s,t)} g(s,t)^{Q}}$$

- Q: orden del filtro.
- Bueno para ruido sal y pimienta. Q > 0: elimina pimienta, Q < 0: elimina sal.
- Q=0: media aritmética, Q=-1: media armónica.

Filtro contra-armónico con Q = -3 sobre imagen con ruido tipo sal:

Filtro contra-armónico con Q = 3 sobre imagen con ruido tipo pimienta:

Mala elección de Q en filtro contra-armónico:

Filtros de orden

Filtro de la mediana:

$$\widehat{f}(x,y) = \text{mediana}_{(s,t)} \{g(s,t)\}$$

- Elección del valor medio de la vecindad.
- Buena reducción de ruido impulsivo sin el desenfoque de un filtro lineal de la misma talla.

Ruido sal y pimienta

Media aritmética

Mediana

Filtros de orden

Filtro de la mediana:

$$\widehat{f}(x,y) = \text{mediana}_{(s,t)} \{g(s,t)\}$$

- Elección del valor medio de la vecindad.
- Buena reducción de ruido impulsivo sin el desenfoque de un filtro lineal de la misma talla.
- Filtro de la moda:

$$\widehat{f}(x,y) = \operatorname{moda}_{(s,t)} \{ g(s,t) \}$$

- Elección del valor más frecuente en la vecindad.
- Aplicación de un umbral para el conteo.
- Util en ruido impulsivo, malo para otros tipos.

Ejemplo de filtro de moda:

Filtros de orden

• Filtro de máxima:

$$\widehat{f}(x,y) = \max_{(s,t)} \{g(s,t)\}\$$

- Elección del valor máximo en la vecindad.
- Util para ruido tipo pimienta.

Filtros de orden

Filtro de máxima:

$$\widehat{f}(x,y) = \max_{(s,t)} \{g(s,t)\}\$$

- Elección del valor máximo en la vecindad.
- Util para ruido tipo pimienta.
- Filtro de mínima:

$$\widehat{f}(x,y) = \min_{(s,t)} \left\{ g(s,t) \right\}$$

- Elección del valor mínimo en la vecindad.
- Util para ruido tipo sal.

Ejemplo de filtro de mínima (línea superior) y máxima (línea inferior):

Filtros de orden

Filtro del punto medio:

$$\widehat{f}(x,y) = \frac{1}{2} \left[\min_{(s,t)} \{ g(s,t) \} + \max_{(s,t)} \{ g(s,t) \} \right]$$

- Elección del promedio entre el máximo y mínimo de la vecindad.
- Util para ruido tipo gaussiano o uniforme.

Filtros de orden

Filtro del punto medio:

$$\widehat{f}(x,y) = \frac{1}{2} \left[\min_{(s,t)} \{ g(s,t) \} + \max_{(s,t)} \{ g(s,t) \} \right]$$

- Elección del promedio entre el máximo y mínimo de la vecindad.
- Util para ruido tipo gaussiano o uniforme.
- Filtro de la media alfa-recortado:

$$\widehat{f}(x,y) = \frac{1}{mn - d} \sum_{(s,t)} g_t(s,t)$$

- Cálculo del promedio entre valores de la vecindad, con exclusión de d puntos: d/2 más bajos y d/2 más altos.
- Comportamiento situado entre la media aritmética y la mediana, dependiendo del valor de d.
- Util para combinaciones de ruido gaussiano y sal y pimienta.

Comparación:

Filtros adaptativos

- Hasta ahora: los filtros se aplicaban teniendo en cuenta características estadísticas globales de la imagen.
- Los filtros adaptativos cambian su comportamiento según la estadística de la imagen dentro de la ventana bajo análisis.
- Desempeño superior a los filtros vistos anteriormente.
- Aumento en la complejidad del filtro.
- Dos filtros básicos:
 - Filtro adaptativo de reducción local del ruido.
 - Filtro adaptativo de mediana (OPTATIVO).

Filtros adaptativos

- Filtro de reducción local del ruido:
 - Las medidas más simples de una variable aleatoria son la media y la varianza.
 - Ante ruido nulo (caso trivial), el filtro debe retornar el valor de la imagen original.
 - Ante variaciones locales (σ_L^2) cercanas a la varianza del ruido (σ_η^2) , el filtro debe devolver la media (m_L) .
 - Ante variaciones locales mucho mayores que el ruido, el filtro debe devolver un valor cercano a la imagen original (varianza local alta asociada a bordes y detalles).

$$\widehat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} \left[g(x,y) - m_L \right]$$

Filtros adaptativos

- Se asume que $\sigma_{\eta}^2 \leq \sigma_L^2$.
- Debe conocerse la varianza del ruido.
- Algunas veces no se conoce σ_n^2 , por lo que hay que estimarla:
 - Si la estimación es baja: el algoritmo devuelve un resultado satisfactorio porque los cambios son pequeños.
 - Si la estimación es alta: se fija la relación a 1 y el algoritmo devuelve la media.
 - Introducción de no linealidad en el algoritmo por la comprobación de la relación entre varianzas, que previene resultados sin sentido.

Modelos de ruido: ejemplos

Comparación:

Modelos de ruido

Ruido Periódico

- Presente como interferencia eléctrica o electromecánica durante la adquisición.
- Dependencia espacial en la imagen.
- Componentes claramente visibles en el dominio frecuencial:

Modelos de ruido

Ruido Periódico

- Estimación de parámetros estadísticos:
 - Inspección del espectro de Fourier.
 - Inferencia directa sobre la imagen (en casos muy simples).
 - Métodos automáticos.
- Reducción mediante filtrado en el dominio frecuencial:
 - Filtros pasa-banda.
 - Filtros rechaza-banda.
 - Filtros notch.

- Filtro rechaza-banda: elimina o atenúa una banda de frecuencias alrededor del origen del espectro.
- Ideal:

$$H(u,v) = \begin{cases} 1 & \text{si } D(u,v) < D_0 - \frac{W}{2} \\ 0 & \text{si } D_0 - \frac{W}{2} \le D(u,v) \le D_0 + \frac{W}{2} \\ 1 & \text{si } D(u,v) > D_0 + \frac{W}{2} \end{cases}$$

con $D(u,v) = \sqrt{u^2 + v^2}$, W: ancho del filtro, D_0 =centro radial.

• Butterworth:

$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)W}{D^2(u,v) - D_0^2}\right]^{2n}}$$

Gaussiano:

$$H(u,v) = 1 - e^{-\frac{1}{2} \left[\frac{D^2(u,v) - D_0^2}{D(u,v)W} \right]^2}$$

- Filtro pasa-banda: acción opuesta al rechaza-banda
- Se obtiene a partir de la especificación de la función de transferencia del filtro rechaza-banda:

$$H_{PB}(u,v) = 1 - H_{RB}(u,v)$$

 Util para aislar las componentes de ruido y estudiar las propiedades de la imagen que está interfiriendo con la adquirida.

- Filtro notch:
 - Rechaza frecuencias alrededor de una frecuencia central.
 - Los picos aparecen de a pares conjugados (salvo en el origen).
 - Diferentes configuraciones: número de pares, tamaño del área notch.

• Ideal:

$$H(u,v) = \begin{cases} 0 & \text{si } D_1(u,v) \le D_0 \text{ o } D_2(u,v) \le D_0 \\ 1 & \text{otro} \end{cases}$$

con
$$D_1(u,v) = D_2(u,v) = [(u-M/2-u_0)^2 + (v-M/2-v_0)^2]^{1/2}$$

• Butterworth:

$$H(u,v) = \frac{1}{1 + \left[\frac{D_0^2}{D_1(u,v)D_2(u,v)}\right]^n}$$

Gaussiano:

$$H(u, v) = 1 - e^{-\frac{1}{2} \left[\frac{D_1(u, v) D_2(u, v)}{D_0^2} \right]}$$

• Filtros notch pasantes: opuestos a los anteriores, con $H_{PN}(u,v) = 1 - H_{RN}(u,v)$

Modelo de degradación

 La imagen original es afectada por una función de degradación más el aporte de ruido.

Dominio espacial
$$\rightarrow$$
 $g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$
Dominio frecuencial \rightarrow $G(u,v) = H(u,v) F(u,v) + N(u,v)$

- Abordaje del problema:
 - Asumimos H=1 y estudiamos el ruido.
 - Luego estudiamos H y la restauración en presencia de ambos componentes.

Introducción

- Estudio anterior: efecto del ruido con degradación nula.
- Ahora: efecto de la función de degradación con ruido nulo

$$g(x,y) = h(x,y) * f(x,y)$$
$$G(u,v) = H(u,v) F(u,v)$$

- Estudiaremos: degradaciones que pueden ser modeladas mediante procesos lineales e invariantes a la posición.
 - Los filtros utilizados reciben el nombre de filtros de deconvolución.
 - El proceso de restauración se denomina filtrado inverso.
- Abordaje del problema:
 - Estimación de la función de degradación: tres maneras.
 - Planteo de algoritmos de filtrado.

- Estimación por observación de la imagen:
 - Utilizado cuando se dispone solamente de imágenes adquiridas, no del sistema de adquisición.
 - En áreas de alto contenido de señal podemos copiar grises y generar una subimagen "limpia" $\hat{f}_s(x,y)$ basada en las estructuras de la imagen.
 - Inferencia de características de H mediante:

$$H_{s}(u,v) = \frac{G_{s}(u,v)}{\hat{F}_{s}(u,v)}$$

• Generación de H(u,v) mediante escalado (la invariancia al desplazamiento permite hacerlo).

- Estimación por experimentación:
 - Utilizado cuando se dispone del sistema de adquisición.
 - Obtención de la respuesta al impulso del sistema adquiriendo un patrón puntual de luz.
 - Estimación de la función de degradación mediante:

$$H(u,v) = \frac{G(u,v)}{A}$$

- Estimación por modelización:
 - A menudo se emplea un modelo físico para obtener la respuesta al impulso del sistema degradante. Ej: modelo de turbulencia atmosférica (desenfoque aprox. gaussiano)

$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

- Estimación por modelización:
 - En caso de conocer el motivo de la degradación, se puede plantear y ajustar un modelo matemático. Ej: desenfoque debido a movimiento uniforme en la imagen

$$H(u,v) = \frac{T}{\pi(ua+vb)} \sin[\pi(ua+vb)]e^{-j\pi(ua+vb)}$$

Filtrado inverso

 En la ausencia de ruido, y conocida (o estimada) la función H, la manera más simple de restaurar la imagen es:

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = R(u,v) G(u,v)$$

donde el filtro inverso está dado por 1/H(u,v).

• En la presencia de ruido, la ecuación del sistema queda:

$$\hat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

- Analizando la ecuación:
 - Aunque se conozca H, no se puede recuperar la imagen original.
 - En valores pequeños de H, el ruido se amplifica desmesuradamente.
- En la práctica pueden ser difíciles de construir ya que son inestables.

Filtrado inverso

Solución #1: utilizar filtros pseudo-inversos:

$$R(u,v) = \begin{cases} \frac{1}{H(u,v)}, & |H(u,v)| > \varepsilon \\ 0, & \text{resto} \end{cases}$$

• Solución #2: suavizar la relación G/H con filtros pasa-bajos:

- Aproximación que maneja la estadística del ruido y la función de degradación conjuntamente.
- El método considera a la imagen y al ruido como procesos aleatorios, y aplica estadística (correlación) entre la imagen y el ruido.
- Filtro paramétrico de Wiener: función que minimiza la relación ruido/señal.
 La restauración en el dominio frecuencial queda dada por:

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \gamma \frac{S_{\eta}(u,v)}{S_f(u,v)}} \right] G(u,v)$$

 γ : parámetro del filtro.

 $S_{\eta}(u,v) = |N(u,v)|^2$: espectro de potencia del ruido.

 $S_f(u,v) = |F(u,v)|^2$: espectro de potencia de la imagen original.

- Casos particulares:
 - $\gamma = 0$: filtro inverso.
 - $\gamma = 1$: filtro de Wiener.
 - $\gamma \neq 0,1$: filtro paramétrico de Wiener.
- La elección de $\gamma = 1$ conduce a una función que minimiza el error cuadrático medio (óptimo estadísticamente):

$$e^2 = E\{(f - \hat{f})^2\}$$

• La implementación requiere conocer los espectros de potencia de la imagen y del ruido, o bien la relación señal/ruido $\rho = S_f(u,v)/S_{\eta}(u,v)$:

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \frac{\gamma}{\rho}}\right] G(u,v)$$

Notar que cuando $\eta \to 0$, el filtro paramétrico tiende al filtro inverso.

 Cuando no se conocen (o no se pueden estimar) los espectros de potencia se emplea la siguiente aproximación:

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] G(u,v)$$

Desenfoque+ruido

F. inverso

F. Wiener

• Efecto del parámetro γ en el filtro paramétrico:

- Valores pequeños de γ : mejor remoción de la degradación H (ej: desenfoque), y pobre filtrado del ruido (ej: ruido gaussiano).
- Valores altos de γ : pobre restauración de la degradación H y mejor filtrado del ruido.

Filtro de la media geométrica

Generalización del filtro de Wiener:

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2}\right]^{\alpha} \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \beta \frac{S_{\eta}(u,v)}{S_f(u,v)}}\right]^{1-\alpha} G(u,v)$$

con α , $\beta \in \Re \geq 0$

- Familia de filtros según los parámetros:
 - $\alpha = 1$: filtro inverso.
 - $\alpha = 0$: filtro paramétrico de Wiener. $\beta = 1$: filtro de Wiener.
 - $\alpha = 1/2$: media geométrica entre el f. inverso y el f. de Wiener.
 - $\alpha = 1/2$ y $\beta = 1$: filtro de ecualización del espectro de potencia.
 - Combinaciones.

Fin de teoría

Próxima teoría: Unidad V - Segmentación