Analisi statica basica

Sommario

Traccia esercizio principale	2
Traccia esercizio facoltativo	
Requisiti	
Svolgimento esercizio principale	
Cosa sono le librerie e perché sono importanti?	4
Librerie del malware	4
Colonne della tabella	5
Analisi delle librerie	5
Analisi delle sezioni	6

Traccia esercizio principale

Rispondere ai seguenti quesiti, con riferimento al file eseguibile:

C:\Users\user\Desktop\Malware\calcolatriceinnovativa.exe

- Indicare le **librerie importate** dal malware, fornendo una **descrizione** per ognuna di esse tramite AI;
- Indicare le sezioni di cui si compone il malware, fornendo una descrizione per ognuna di essa tramite Al.

Suggerimento: ChatGPT (o altri LLM) possono ricevere in input degli screenshot da analizzare.

Traccia esercizio facoltativo

 Aggiungere una considerazione finale sul malware in analisi in base alle informazioni raccolte ed elaborate con Al.

Requisiti

Scaricare il Flare VM

https://drive.google.com/file/d/1qI2YsFS7Gildlp-U8bakTmuxVoyZk9IU/view?usp=sharing

Nella VM mettere in bridge e scaricare la repository

Riavviare in rete interna isolate

Svolgimento esercizio principale

Cosa sono le librerie e perché sono importanti?

Le librerie dinamiche (*Dynamic Link Libraries*, DLL) contengono funzioni che un programma può richiamare per eseguire operazioni specifiche. Ad esempio, una funzione in una DLL può servire per leggere un file, creare un processo, o effettuare una connessione di rete.

Quando un programma eseguibile (come calcolatriceinnovativa.exe) vuole utilizzare una funzione, importa la DLL che la contiene. Il fatto che un file importi determinate librerie e funzioni aiuta a capire cosa fa il programma e, nel caso di un malware, quali operazioni malevole potrebbe compiere.

Librerie del malware

Si è aperto il file incriminato con CFF explorer, sezione "Import Directory"

Colonne della tabella

1. Module Name:

 Nome della libreria (module) importata dal programma. Ogni riga rappresenta una libreria diversa.

2. Imports:

- o Numero di funzioni richiamate (*importate*) dalla libreria. Ad esempio:
 - SHELL32.dll ha 1 funzione importata.
 - USER32.dll ha 69 funzioni importate.

3. OFTs (Original First Thunks):

o Indirizzo di memoria che punta al nome della funzione importata. Questo valore è utile per il caricamento del file PE in memoria.

4. TimeDateStamp:

 Questo campo normalmente indica il timestamp della libreria. In molti malware, questo campo viene impostato a FFFFFFF per confondere o evadere i sistemi di analisi.

5. ForwarderChain:

Può contenere il riferimento a un'altra libreria che offre la stessa funzione (forwarding).
Anche qui, il valore FFFFFFF è un comportamento comune nei malware.

6. Name RVA:

o L'indirizzo relativo virtuale (RVA) in cui si trova il nome della libreria nel file.

7. **FTs (IAT)**:

 Entry nella tabella di importazione (*Import Address Table*), che viene utilizzata dal programma per richiamare effettivamente le funzioni.

Analisi delle librerie

Vediamo cosa significano le librerie mostrate:

1. SHELL32.dll:

- Questa libreria contiene funzioni per operazioni legate al sistema, come l'interazione con il file system (es. aprire file, copiare, eliminare).
- o Uso potenziale da parte di malware: manipolare file, eseguire comandi di sistema.

2. msvcrt.dll:

- È la libreria runtime di Microsoft C, che fornisce funzioni comuni come gestione di stringhe, operazioni matematiche e gestione della memoria.
- o Uso potenziale da parte di malware: attività generiche di supporto al codice malevolo.

3. **ADVAPI32.dll**:

- Contiene funzioni per l'accesso al registro di sistema e per la gestione della sicurezza (es. permessi, token di accesso).
- Uso potenziale da parte di malware: modificare chiavi di registro, cambiare permessi o creare utenti malevoli.

4. KERNEL32.dll:

- Una delle librerie fondamentali di Windows, contiene funzioni per la gestione di memoria, processi, file e sincronizzazione.
- Uso potenziale da parte di malware: creare nuovi processi/thread, leggere/scrivere file, allocare memoria per payload malevoli.

5. **GDI32.dll**:

- o Fornisce funzioni per la grafica, come il rendering di immagini e disegni.
- Uso potenziale da parte di malware: creare finestre false o modificare elementi visivi per ingannare l'utente.

6. **USER32.dll**:

- Contiene funzioni relative all'interfaccia utente, come la gestione di finestre, input da tastiera e mouse.
- Uso potenziale da parte di malware: spiare l'input dell'utente (keylogging), creare finestre per phishing.

Analisi Section Headers

L'analisi della sezione **Section Headers** di un file eseguibile fornisce informazioni sulle diverse parti del file e sul loro scopo. Ogni sezione ha caratteristiche specifiche che possono indicare come il file si comporta o cosa contiene.

Descrizione delle sezioni principali

Il file in analisi contiene tre sezioni principali:

1. **.text**:

- Contenuto: Questa sezione è dedicata al codice eseguibile del programma. È la parte che viene eseguita dalla CPU.
- o Dimensioni:
 - Virtual Size: 0x1F4 (500 byte in memoria).
 - Raw Size: 0x200 (512 byte nel file).
 - La differenza indica un allineamento dei dati.
- Caratteristiche: Il valore 60000020 indica che questa sezione è eseguibile e leggibile, ma non scrivibile.

2. .data:

- Contenuto: Contiene dati modificabili usati dal programma, come variabili globali o configurazioni necessarie durante l'esecuzione.
- o Dimensioni:
 - Virtual Size: 0x400 (1024 byte in memoria).
 - Raw Size: 0x200 (512 byte nel file).
 - La differenza indica che questa sezione utilizzerà più memoria rispetto allo spazio occupato nel file.
- Caratteristiche: Il valore C0000040 indica che questa sezione è leggibile e scrivibile, ma non eseguibile.

3. **.rsrc**:

- o Contenuto: Contiene risorse del programma, come icone, stringhe di testo o dati aggiuntivi.
- o Dimensioni:
 - Virtual Size: 0x1360 (4960 byte in memoria).
 - Raw Size: 0x1360 (4960 byte nel file).
 - Le dimensioni coincidono, indicando che questa sezione non ha dati aggiunti in memoria.
- Caratteristiche: Il valore 40000040 indica che questa sezione è leggibile, ma non eseguibile né scrivibile.

Valori chiave nella parte inferiore

1. Code Entry Point:

- o Valore: 0x11FB2
- Si tratta dell'indirizzo in memoria dove inizia l'esecuzione del codice. È il punto da cui il sistema operativo avvia il programma.

2. Import Address Table (IAT):

- o Posizione: 0x1000
- Questa tabella elenca le funzioni utilizzate dal file eseguibile, importate da librerie esterne (DLL). Esaminare questa tabella è essenziale per comprendere il comportamento del programma.

3. **Debug Directory**:

- o Posizione: 0x14200
- Questa directory contiene informazioni di supporto per il debugging. Se presente, può fornire dettagli utili per l'analisi.

Hex Dump

L'Hex Dump in basso mostra il contenuto binario della sezione selezionata (probabilmente .rsrc). A sinistra si trovano i byte in formato esadecimale, mentre a destra i dati leggibili in formato ASCII.

Elementi da cercare:

- Stringhe leggibili (colonna ASCII): Potrebbero includere URL, indirizzi IP, nomi di file o altri dati utili.
- Dati offuscati o crittografati: Se i byte non formano stringhe comprensibili, potrebbe trattarsi di dati codificati.

Svolgimento esercizio facoltativo

Mascheramento

- **Descrizione**: Il malware si presenta come un programma legittimo, in questo caso una "calcolatrice innovativa". Questa tecnica è comune nei malware per ingannare gli utenti e spingerli a eseguire il file senza sospetti.
- Scopo:
 - o Aumentare la probabilità che l'utente esegua il file.
 - Ridurre il rischio di essere identificato come malware da utenti meno esperti.

Tecniche di evasione

1. Codice compresso o crittografato

- o Indicazioni:
 - La presenza di codice compresso o crittografato è spesso un segno di offuscamento, una tecnica utilizzata per nascondere il reale comportamento del malware.
 - Il rapporto di compressione zlib < 0.3 suggerisce che il codice sia stato compresso per ridurre la leggibilità durante l'analisi.
- o Effetto:
 - Rende più difficile per gli analisti comprendere il comportamento del malware senza decomprimere o deoffuscare il codice.

2. Sezione .text eseguibile

- o Indicazioni:
 - Contiene codice che viene effettivamente eseguito.
 - Il possibile uso di compressione nella sezione .text può indicare ulteriori livelli di offuscamento del codice dannoso.
- o Effetto:
 - Nasconde il funzionamento del malware e aumenta la difficoltà dell'analisi statica.

3. Scarsa attività quando eseguito

- o Indicazioni:
 - Il malware potrebbe essere progettato per rimanere dormiente o inattivo se rileva un ambiente di analisi (es. sandbox o macchine virtuali).
- o Effetto:
 - Riduce la possibilità di essere rilevato durante l'analisi dinamica.

4. Rilevamento di macchine virtuali

- o Indicazioni:
 - I malware includono spesso tecniche per rilevare se vengono eseguiti in ambienti virtuali utilizzati per l'analisi (es. VirtualBox, VMware).
- Effetto:
 - Evitano di attivarsi in questi ambienti, ostacolando l'analisi da parte dei ricercatori.

Funzionalità di accesso remoto

- Descrizione:
 - La presenza di funzionalità di accesso remoto suggerisce che il malware potrebbe essere utilizzato come un RAT (Remote Access Trojan).
 - Questo tipo di malware consente a un attaccante di:
 - Controllare il computer della vittima.
 - Accedere a file, webcam, microfono o altre risorse.
- Indicazioni:

- o Il malware potrebbe utilizzare funzioni di rete per comunicare con un server di comando e controllo (C2).
- o Potrebbe essere in grado di eseguire comandi arbitrari sul sistema della vittima.

Cattura di input

Descrizione:

 L'uso di un oggetto DirectInput è tipico per catturare l'input da tastiera. Questa funzionalità è comunemente associata a keylogger.

Scopo:

- o Registrare tutto ciò che viene digitato sulla tastiera, inclusi:
 - Password.
 - Informazioni sensibili.
 - Credenziali di accesso.

• Effetto:

 Questo comportamento rappresenta una grave minaccia alla privacy e alla sicurezza degli utenti colpiti.

Conclusioni

Il malware analizzato presenta le seguenti caratteristiche principali:

1. Mascheramento:

o Si presenta come un'applicazione legittima per ingannare gli utenti.

2. Tecniche di evasione:

- Usa compressione o crittografia per nascondere il codice.
- o Adotta comportamenti dormienti per evitare il rilevamento in ambienti virtuali.

3. Funzionalità dannose:

- o Include funzionalità di accesso remoto che consentono il controllo del sistema della vittima.
- Implementa tecniche di cattura dell'input, suggerendo uno scopo di keylogging.