DURET Guillaume GEDEON Benjamin

TRAITEMENT DU SIGNAL ALEATOIRE Estimation de densités de probabilité

Il manque les codes de -synthèse - calc_histo

```
clear all, close all;

N=1000;% nombre de points
B=100;% fréquence maximale
m3=2;%moyenne
sigma3=2;% écart-type
fs=1000;% fréquence d'échantillonnage
M=20;% nombre d'intervalles imposés

[x1,x2,x3,Az,Bz]=synthese(N,B,m3, sigma3);% synthese des signaux ainsi que des coefficients pour calculer le gain complexe
[h,f]=freqz(Bz,Az,1024,fs);% gain complexe
```

affichage des signaux x1, x2 et x3 et de leur ddp ainsi que le module du gain complexe

```
figure (1)
subplot(2,4,1)
plot(x1)
title('signal x1')
xlabel('temps')
subplot(2,4,2)
plot(x2)
title('signal x2')
xlabel('temps')
subplot(2,4,3)
plot(x3)
title('signal x3')
xlabel('temps')
subplot(2,4,4)
plot(f,abs(h))
xlabel('freq')
ylabel('|H(f)|')
title('module du gain complexe du filtre')
subplot(2,4,5)
hold on;
[ddp1,centres1]=calc histo(x1);% calcule et affiche l'histogramme de x1
```

```
plot(centres1,(1/(sqrt(2*pi)))*exp(-((centres1).^2)/2))% affiche la densité de probabi-
lité théorique de x1
subplot(2,4,6)
hold on;
[ddp2,centres2]=calc histo(x2);
\verb|plot(centres2, (1/(sqrt(2*pi)*std(x2)))*exp(-((centres2-mean(x2)).^2)/(2*(std(x2)).^2)))| \\
subplot(2,4,7)
hold on;
[ddp3,centres3]=calc_histo(x3);
plot(centres3, (1/(sqrt(2*pi)*std(x3)))*exp(-((centres3-mean(x3)).^2)/(2*(std(x3)).^2)))
% estimation moyenne et \tilde{A}Ocart-type avec la fonction mean ()
mean(x1);
mean(x2);
mean(x3);
s1=std(x1);
s2=std(x2);
s3=std(x3);
```


Figure 1: représentation des signaux ainsi que la ddp associée empirique et théorique

legende?

influence de N

```
figure (2)
for i=4:11
   N2=2^i;
   subplot(2,4,i-3)
   hold on;
   [x1, x2, x3, Az, Bz] = synthese(N2, B, m3, sigma3);
   [ddp,centres] = calc_histo(x1,M);
   gauss=(1/(sqrt(2*pi)))*exp(-((centres).^2)/2);
   deltax=centres(2)-centres(1);
   plot(centres, gauss)
   intervallemin = gauss - sqrt(gauss.*((1/deltax)-gauss))/N2;%%% bornes pour l'inter-
valle de précision
   intervallemax = gauss + sqrt(gauss.*((1/deltax)-gauss))/N2;
   plot(centres,intervallemin,'g')
   plot(centres,intervallemax,'y')
end
```


Figure 2: représentation des ddp empirique et théoriques du signal x1 en variant N

légende?

influence de delta x

```
figure (3)
for i=0:6
  N=1000;
  M2=2+i*998/6;
   [x1, x2, x3, Az, Bz] = synthese(N, B, m3, sigma3);
   subplot(2,4,i+1)
   hold on;
  [ddp,centresM] = calc histo(x1,M2);
   ylabel(['Pour M =', num2str(M2),'.'])
   deltax=centresM(2) -centresM(1);
   gauss=(1/(sqrt(2*pi)))*exp(-((centresM).^2)/2);
   intervallemin = gauss - sqrt(gauss.*((1/deltax)-gauss))/N;
   intervallemax = gauss + sqrt(gauss.*((1/deltax)-gauss))/N;
   plot(centresM, intervallemin, 'g')
   plot(centresM, intervallemax, 'y')
   plot(centresM, gauss)
end
subplot(2,4,8)
hold on;
[x1, x2, x3, Az, Bz] = synthese(N, B, m3, sigma3);
[ddp, centresM] = calc histo(x1, M2);
deltax=3.49 * std(x1) * N^{(-1/3)};
gauss=(1/(sqrt(2*pi)))*exp(-((centresM).^2)/2);
intervallemin = gauss - sqrt(gauss.*((1/deltax)-gauss))/N;
intervallemax = gauss + sqrt(gauss.*((1/deltax)-gauss))/N;
plot(centresM,intervallemin,'g')
plot(centresM, intervallemax, 'y')
plot(centresM, gauss)
```


Figure 3 : représentation des ddp empirique et théoriques du signal x1 en variant M

on ne voit pas la valeur

influence de B

```
figure(4)
N=1000;
B=5000;
[x1,x2,x3,Az,Bz]=synthese(N,B,m3, sigma3);
[H,freq]=freqz(Bz,Az,1024,fs);
hold off;
[ddp2,centresB]=calc_histo(x2);
gaussB=1/(sqrt(2*pi)*std(x2))*exp(-((centresB-mean(x2)).^2)/(2*(std(x2)).^2));
deltax=3.49 * std(x1)* N^(-1/3);
subplot(1,3,1)
hold on
plot(freq,abs(H))
```


Jorte corrélation Il fant plus d'échantillons pour respecter la propriété d'ergodicité

Traitement des Signaux Aléatoires Estimation de densités de probabilité 4 ETI – CPE Lyon

Travaux Pratiques TSA

2018-2019

Noms, Prénoms: GEDEON Benjanin, DURET Guillame

Groupe: D

Date : 8/10/19011

2 Bruit gaussien filtré, échantillonné

On souhaite générer un bruit gaussien $x_3(t)$ blanc dans la bande [-B,B], de moyenne m_3 non nulle et d'écart-type $\sigma_3 > 1$. Pour cela, on applique la procédure décrite dans la préparation (Question 3) et schématisée ci-dessous :

où $x_1(t)$ est un bruit blanc gaussien, centré, d'écart-type $\sigma_1=1.$

2.1 Programmation

Programmer deux fonctions Matlab distinctes dont vous reproduirez les codes en annexe.

2.1.1 Fonction synthèse des signaux aléatoires

- · Paramètres d'entrée :
 - le nombre N d'échantillons à générer
 - la largeur de bande B du filtre passe-bas
 - la moyenne m3 et l'écart-type σ3 du bruit x3(t).
- · Traitements à effectuer dans la fonction :
- génération d'une séquence $x_1(t)$ de bruit gaussien échantillonné (à la fréquence F_s), centré et d'écart-type $\sigma_1=1$
- synthèse d'un filtre de Butterworth de type passe-bas, de fréquence de coupure f_c correspondant à la largeur de bande B et d'ordre m=8
- filtrage du bruit $x_1(t)$ par le filtre passe-bas pour obtenir le bruit filtré $x_2(t)$
- transformation de x₂(t) pour obtenir x₃(t) de valeur moyenne m₃ et d'écart-type σ₃.
- · Variables de sortie :
 - les vecteurs des échantillons de x_1, x_2 et x_3
 - les coefficients de la fonction de transfert du filtre passe-bas (coefficients des polynômes A(z) et B(z)).

2.2 Expérimentation

2.2.1 Cas général

On supposera que le signal est échantillonné à la fréquence $F_s = 1\,KHz$. Ce choix est il important ? Pourquoi ?

Réponse:

Co choix est important car il pernet d'appliquer correctement le Bévoire de Shannon

à 2B < Fe B: Sréquence navinale

Fe: Bréquence d'écharch lomage

Ceci pernet d'éviter les éventuels recourrements due à l'échantilmage.

Dans les conditions suivantes :

N = 1000 échantillons de signal

Filtre passe-bas avec B = 100 Hz (ordre m = 8)

+ 0 et \(\sigma > 1\) (choix libres que l'on précisere clairement de l'on

Dans l'absolu, le choix de t_5 n'est pas important car en numérique, on travaille systématiquement en fréquence réduite $f \in [0,1]$.

a) la conformité entre moyennes mesurées et théoriques

Décrire une lère méthode de mesure de la moyenne	On mesure to forction mean	mograne à Pail	de de la
Mesure de la moyenne par la méthode l	-0,0151	-0,0 1 91	-1
Décrire une 2ème méthode de mesure de la moyenne	On mesure maximum Pabscisse du	la mayenne en de la ganssienn max.	n cheschart le e. On priend
Mesure de la moyenne par la méthode 2	-0, 11.13	-0,03806	0,662

b) idem pour les écart-type (avec <u>au moins deux méthodes</u> de mesure distinctes que l'on détaillera)

	6	65	63
Décrire une lère méthode de mesure de l'écart-type	Avac la fonc	han std ()	de Hatlab
Mesure de l'ecart- type par la mé- thode I		0,3080	
Décrire une 2ème méthode de mesure de l'écart-type	1	centres inta 109	seene DR(ci)- Jag
Mesure de l'écart- type par la mé- thode 2	1,02	0,315	0,68
Décrire une 3ème méthode de mesure de l'écart-type		125.6	
Mesure de l'écart- type par la mé- thode 3		(2, 35 0	
Décrire une 4ème méthode de mesure de l'écart-type		66	<u></u>
Mesure de l'écart- type par la mé- thode 4			

Lesquelles de ces méthodes vous paraissent les plus précises? Pourquoi?

les néthodes std est la plus precis on on prend en compte plus de vateur. - on prend en compte directement les données, sons passer par l'estimation de la ddp.

2.2.2 Influence de N

On ne considère ici que le signal aléatoire $x_1(t)$, le nombre d'intervalles pour le calcul des histogrammes

- a) Sur une même figure, afficher dans différents sous-graphes (pour une meilleure lisibilité des courbes, on pourra utiliser la commande stem.m en lieu et place de la commande bar.m), les densités de probabilité de $x_1(t)$ estimées pour plusieurs valeurs du nombre d'échantillons : pour cela faire varier dans une boucle for . . . end, le nombre N de 2^4 à 2^{11} . Superposer systématiquement les densités théoriques ainsi que les intervalles de précision théoriques $\mathbb{E}\{\widehat{p_{\mathbf{x}}}(x)\} \pm \operatorname{std}(\widehat{p_{\mathbf{x}}}(x))$ calculés en TD. Donner en annexe le code Matlab de calcul de ces intervalles de confiance. Veiller à commenter précisément chaque figure (légendes, labels, $\ldots)$
- b) Qualitativement, expliquez à partir de ces tracés, l'évolution de la variance (ou de l'écart-type) d'es-

Réponse: on renarque que dos Naugneute, - Comportenents en accord

c) Peut on conclure sur le biais d'estimation à partir de cette seule expérience? Expliquez.

son le hiais. Or ne peut donc par conclure sur le hiais
L'extinution à partir de cette seule expérience Vows votes

> d) Quelle expérience faudrait il mener pour caractériser empiriquement et précisément le biais et la variance d'estimation?

Réponse: ou bien B nire plusieurs fois l'expérience avec des

2.2.3 Influence de Δx

Et la suite?