Sequence Listing

- <110> Goddard, Audrey
 Godowski, Paul J.
 Gurney, Austin L.
 Hillan, Kenneth J.
 Polakis, Paul
 Smith, Victoria
 Wood, William I.
 Wu, Thomas D.
 Zhang, Zemin
- <120> COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF TUMOR
- <130> P5002R1
- <140> US 09/888,257
- <141> 2001-06-22
- <150> US 60/063,540
- <151> 1997-10-28
- <150> US 60/089,653
 - <151> 1998-06-17
 - <150> US 60/099,792
 - <151> 1998-09-10
 - <150> US 60/103,678
 - <151> 1998-10-08
 - <150> US 60/235,451
 - <151> 2000-09-26
 - <150> PCT/US99/12252
 - <151> 1999-06-02
 - <150> PCT/US99/20111
 - <151> 1999-09-01
 - <150> PCT/US00/04342 ·
 - <151> 2000-02-18
 - <150> PCT/US00/05841
 - <151> 2000-03-02
 - <150> PCT/US00/08439
 - <151> 2000-03-30
 - <150> PCT/US00/23328
 - <151> 2000-08-24
 - <150> PCT/US00/32678
 - <151> 2000-12-01
 - <150> PCT/US01/06520
 - <151> 2001-02-28
 - <150> PCT/US01/06666
 - <151> 2001-03-01
 - <160> 10

<210> 1 <211> 1475 <212> DNA <213> Homo Sapien

<400> 1 gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50 tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100 gettetactg agaggtetge catggeetet ettggeetee aacttgtggg 150 ctacatccta ggccttctgg ggcttttggg cacactggtt gccatgctgc 200 tececagety gaaaacaagt tettatgteg gtgecageat tgtgacagea 250. gttggcttct ccaagggcct ctggatggaa tgtgccacac acagcacagg 300 catcacccag tgtgacatct atagcaccct tctgggcctg cccgctgaca 350 tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcctccctg 400 gcctgcatta tctctgtggt gggcatgaga tgcacagtct tctgccagga 450 atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500 ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550 ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600 tggagaggct ctttacttgg gcattatttc ttccctgttc tccctgatag 650 ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700 tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750 gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800 cagggtatgt gtgaagaacc aggggccaga gctggggggt ggctgggtct 850 gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900 actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950 ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000 attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050 gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100 agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150 ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200 ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250 gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaagcttc 1300 cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350 actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400 tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450

gcagcctggg acatttaaaa aaata 1475

<210> 2 <211> 2063 <212> DNA <213> Homo Sapien

<400> 2 gagagaggca gcagcttgct cagcggacaa ggatgctggg cgtgagggac 50 caaggeetge cetgeacteg ggeeteetee agecagtget gaccagggae 100 ttctgacctg ctggccagcc aggacctgtg tggggaggcc ctcctgctgc 150 cttggggtga caatctcagc tccaggctac agggagaccg ggaggatcac 200 agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250 cgatgtcaaa cccctgcgca aaccccgtat ccccatggag accttcagaa 300 aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350 attgtggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400 cgggcagcct ctccacttca tcccgaggaa gcagctgtgt gacggagagc 450 tggactgtcc cttgggggag gacgaggagc actgtgtcaa gagcttcccc 500 . gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550 ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttcgacaact 600° tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650 gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700 aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750 gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800 ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850 ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900 acccccactg ggtcctcacg gcagcccact gcttcaggaa acataccgat 950 gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000 atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050 ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100 tcaggcacag tcaggcccat ctgtctgccc ttctttgatg aggagctcac 1150 tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 1200 gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250 agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350 acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400

ategttaget ggggetatgg etgeggggge eegageacee eaggagtata 1450 caccaaggte teagectate teaactggat etacaatgte tggaaggetg 1500 agetgtaatg etgetgeeee tttgeagtge tgggageege tteetteetg 1550 eeetgeeeae etggggatee eeeaagtea gacacagage aagagteeee 1600 ttggggtaeae eeetetgeee acageeteag eatteettgg ageageaaag 1650 ggeeteaatt eetgtaagag acceteggag eeeaagagge eeeaagggag 1700 gteageagee etagetegge eacaettggt geteecaagea teecagggag 1750 agacacaggee eactgaaeaa ggteteaggg gtattgetaa geeaagaagg 1800 aactteeea eactactgaa tggaageagg etgtetgta aaageeeaga 1850 teaetgtgg etggaagga gaaggaaagg gtetgegeea geeetgteeg 1900 teeteaceea teeceaagee taetagaea egtaeeeae tgttaetaa 1950 aatgeactge eetactgttg gtatgaetae egttaeetae tgttgteat 2000 gttattaeag etatggeeae tattattaaa gagetgtgta acaetetetgg 2050 caaaaaaaaaa aaa 2063

<210> 3 <211> 1658 <212> DNA

<213> Homo Sapien

<400> 3 ggaaggcagc ggcagctcca ctcagccagt acccagatac gctgggaacc 50 ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100 gcatcatcat tattctggct ggagcaattg cactcatcat tggctttggt 150 atttcaggga gacactccat cacagtcact actgtcgcct cagctgggaa 200 cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250 tttctgatat cgtgatacaa tggctgaagg aaggtgtttt aggcttggtc 300 catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350 cagaggccgg acagcagtgt ttgctgatca agtgatagtt ggcaatgcct 400 ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450 tatatcatca cttctaaagg caaggggaat gctaaccttg agtataaaac 500 tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550 agacettgeg gtgtgagget eeeegatggt teeeceagee cacagtggte 600 tgggcatccc aagttgacca gggagccaac ttctcggaag tctccaatac 650 cagetttgag etgaactetg agaatgtgae catgaaggtt gtgtetgtge 700 tctacaatgt tacgatcaac aacacatact cctgtatgat tgaaaatgac 750

attgccaaag caacagggga tatcaaagtg acagaatcgg agatcaaaag 800 gcggagtcac ctacagctgc taaactcaaa ggcttctctg tgtgtctctt 850 ctttctttgc catcagctgg gcacttctgc ctctcagccc ttacctgatg 900 ctaaaataat gtgccttggc cacaaaaaag catgcaaagt cattgttaca 950 acagggatct acagaactat ttcaccacca gatatgacct agttttatat 1000 ttctgggagg aaatgaattc atatctagaa gtctggagtg agcaaacaag 1050 agcaagaaac aaaaagaagc caaaagcaga aggctccaat atgaacaaga 1100 taaatctatc ttcaaagaca tattagaagt tgggaaaata attcatgtga 1150 actagacaag tgtgttaaga gtgataagta aaatgcacgt ggagacaagt 1200 gcatccccag atctcaggga cctccccctg cctgtcacct ggggagtgag 1250 aggacaggat agtgcatgtt ctttgtctct gaatttttag ttatatgtgc 1300 tgtaatgttg ctctgaggaa gcccctggaa agtctatccc aacatatcca 1350 catcttatat tccacaaatt aagctgtagt atgtacccta agacgctgct 1400 aattgactgc cacttegcaa cteaggggeg getgeatttt agtaatgggt 1450 caaatgattc actttttatg atgcttccaa aggtgccttg gcttctcttc 1500 ccaactgaca aatgccaaag ttgagaaaaa tgatcataat tttagcataa 1550 acagagcagt cggggacacc gattttataa ataaactgag caccttcttt 1600 aaaaaaaa 1658

<210> 4

<211> 1788

<212> DNA

<213> Homo Sapien

tecactegte tgeceetgga etecegtete etecacetge etecteggge 50

tecactegte tgeceetgga etecegtete etectgteet eeggetteee 100

agageteeet eettatggea geagetteee gegteteegg egeagettet 150

cageggaega eceteteget eeggggetga geecagteee tggatgttge 200

tgaaactete gagateatge gegggtttgg etgetgette eeggegggt 250

geeactgeea eeggeege etetgetgee geegteegeg ggatgeteag 300

tageeegetg eeeggeeeee gegateetgt gtteetegga ageegtttge 350

tgetgeagag ttgeacgaae tagteatggt getgtggag teeeeggge 400

agtgeageag etggaeaett tgegaggget tttgetgget getgetget 450

ceegteatge taeteategt ageegeeeg gtgaageteg etgettteee 500

tacctcctta agtgactgcc aaacgcccac cggctggaat tgctctggtt 550 atgatgacag agaaaatgat ctcttcctct gtgacaccaa cacctgtaaa 600 tttgatgggg aatgtttaag aattggagac actgtgactt gcgtctgtca 650 gttcaagtgc aacaatgact atgtgcctgt gtgtggctcc aatggggaga 700 gctaccagaa tgagtgttac ctgcgacagg ctgcatgcaa acagcagagt 750 gagatacttg tggtgtcaga aggatcatgt gccacagatg caggatcagg 800 atctggagat ggagtccatg aaggctctgg agaaactagt caaaaggaga 850 catccacctg tgatatttgc cagtttggtg cagaatgtga cgaagatgcc 900 gaggatgtct ggtgtgtgt taatattgac tgttctcaaa ccaacttcaa 950 tcccctctgc gcttctgatg ggaaatctta tgataatgca tgccaaatca 1000 aagaagcatc gtgtcagaaa caggagaaaa ttgaagtcat gtctttgggt 1050 cgatgtcaag ataacacaac tacaactact aagtctgaag atgggcatta 1100 tgcaagaaca gattatgcag agaatgctaa caaattagaa gaaagtgcca 1150 gagaacacca cataccttgt ccggaacatt acaatggctt ctgcatgcat 1200 gggaagtgtg agcattctat caatatgcag gagccatctt gcaggtgtga 1250 tgctggttat actggacaac actgtgaaaa aaaggactac agtgttctat 1300 acgttgttcc cggtcctgta cgatttcagt atgtcttaat cgcagctgtg 1350 attggaacaa ttcagattgc tgtcatctgt gtggtggtcc tctgcatcac 1400 aaggaaatgc cccagaagca acagaattca cagacagaag caaaatacag 1450 ggcactacag ttcagacaat acaacaagag cgtccacgag gttaatctaa 1500 agggagcatg tttcacagtg gctggactac cgagagcttg gactacacaa 1550 tacagtatta tagacaaaag aataagacaa gagatctaca catgttgcct 1600 tgcatttgtg gtaatctaca ccaatgaaaa catgtactac agctatattt 1650 gattatgtat ggatatattt gaaatagtat acattgtctt gatgtttttt 1700 ctgtaatgta aataaactat ttatatcaca caatatagtt ttttctttcc 1750 catgtattig ttatatataa taaatactca gtgatgag 1788

cgtggaaaag gggaaagaac tgcatgcata ttattcagcg tcctatattc 150

<210> 5

<211> 2283

<212> DNA

<213> Homo Sapien

<400> 5
ttctgctata gagatggaac agtatatgga aagctcccaa gaaagtgaag 50
agaggaaatt ggaaaattgt gagtggacct tctgatactg ctcctccttg 100

aaaggatatt cttggtgatc ttggaagtgt ccgtatcatg gaatcaatct 200 ctatgatggg aagccctaag agccttagtg aaacttgttt acctaatggc 250 ataaatggta tcaaagatgc aaggaaggtc actgtaggtg tgattggaag 300 tggagatttt gccaaatcct tgaccattcg acttattaga tgcggctatc 350 atgtggtcat aggaagtaga aatcctaagt ttgcttctga attttttcct 400 catgtggtag atgtcactca tcatgaagat gctctcacaa aaacaaatat 450 aatatttgtt gctatacaca gagaacatta tacctccctg tgggacctga 500 gacatctgct tgtgggtaaa atcctgattg atgtgagcaa taacatgagg 550 ataaaccagt acccagaatc caatgctgaa tatttggctt cattattccc 600 agattetttg attgteaaag gatttaatgt tgteteaget tgggeaette 650 agttaggacc taaggatgcc agccggcagg tttatatatg cagcaacaat 700 attcaagege gacaacaggt tattgaactt geeegeeagt tgaatttcat 750 tcccattgac ttgggatcct tatcatcagc cagagagatt gaaaatttac 800 ccctacgact ctttactctc tggagagggc cagtggtggt agctataagc 850 ttggccacat ttttttcct ttattccttt gtcagagatg tgattcatcc 900 atatgctaga aaccaacaga gtgactttta caaaattcct atagagattg 950 tgaataaaac cttacctata gttgccatta ctttgctctc cctagtatac 1000 cttgcaggtc ttctggcagc tgcttatcaa ctttattacg gcaccaagta 1050 taggagattt ccaccttggt tggaaacctg gttacagtgt agaaaacagc 1100 ttggattact aagttttttc ttcgctatgg tccatgttgc ctacagcctc 1150 tgcttaccga tgagaaggtc agagagatat ttgtttctca acatggctta 1200 tcagcaggtt catgcaaata ttgaaaactc ttggaatgag gaagaagttt 1250 ggagaattga aatgtatate teetttggea taatgageet tggettaett 1300 tccctcctgg cagtcacttc tatcccttca gtgagcaatg ctttaaactg 1350 gagagaattc agttttattc agtctacact tggatatgtc gctctgctca 1400 taagtacttt ccatgtttta atttatggat ggaaacgagc ttttgaggaa 1450 gagtactaca gattttatac accaccaaac tttgttcttg ctcttgtttt 1500 gccctcaatt gtaattetgg atettttgca gctttgcaga tacccagact 1550 gagetggaac tggaatttgt ettectattg actetaette tttaaaageg 1600 gctgcccatt acattcctca gctgtccttg cagttaggtg tacatgtgac 1650 tgagtgttgg ccagtgagat gaagtctcct caaaggaagg cagcatgtgt 1700 cctttttcat cccttcatct tgctgctggg attgtggata taacaggagc 1750 cctggcagct gtctccagag gatcaaagcc acacccaaag agtaaggcag 1800 attagagace agaaagacet tgactactte cetaetteea etgettttte 1850 ctgcatttaa gccattgtaa atctgggtgt gttacatgaa gtgaaaatta 1900 attetttetg ccetteagtt etttateetg ataceattta acaetgtetg 1950 aattaactag actgcaataa ttctttcttt tgaaagcttt taaaggataa 2000 tgtgcaattc acattaaaat tgattttcca ttgtcaatta gttatactca 2050 ttttcctgcc ttgatctttc attagatatt ttgtatctgc ttggaatata 2100 ttatcttctt tttaactgtg taattggtaa ttactaaaac tctgtaatct 2150 ccaaaatatt gctatcaaat tacacaccat gttttctatc attctcatag 2200 atctgcctta taaacattta aataaaaagt actatttaat gatttaactt 2250 ctgttttgaa aaaaaaaaa aaaaaaaaa aaa 2283

```
<210> 6
<211> 230
<212> PRT
<213> Homo Sapien
```

(213) HOMO Sapien														
<400: Met 1		Ser	Leu	Gly 5	Leu	Gln	Leu	Val	Gly 10	Tyr	Ile	Leu	Gly	Leu 15
Leu	Gly	Leu	Leu	Gly 20	Thr	Leu	Val	Ala	Met 25	Leu	Leu	Pro	Ser	Trp 30
Lys	Thr	Ser	Ser	Tyr 35	Val	Gly	Ala	Ser	Ile 40	Val	Thr	Ala	Val	Gly 45
Phe	Ser	Lys	Gly	Leu 50	Trp	Met	Glu	Cys	Ala 55	Thr	His	Ser	Thr	Gly 60
Ile	Thr	Gln	Cys	Asp 65	Ile	Tyr	Ser	Thr	Leu 70	Leu	Gly	Leu	Pro	Ala 75
Asp	Ile	Gln	Ala	Ala 80	Gln	Ala	Met	Met	Val 85	Thr	Ser	Ser	Ala	Ile 90
Ser	Ser	Leu	Ala	Cys 95	Ile	.Ile	Ser	<u>V</u> al	Val 100	Gly	Met	Arg	Cys	Thr 105
Val	Phe	Cys	Gln	Glu 110	Ser	Arg	Ala	Lys	Asp 115	Arg	Val	Ala	Val	Ala 120
Gly	Gly	Val	Phe	Phe 125	Ile	Leu	Gly	Gly	Leu 130	Leu	Gly	Phe	Ile	Pro 135
Val	Ala	Trp	Asn	Leu 140	His	Gly	Ile	Leu	Arg 145	Asp	Phe	Tyr	Ser	Pro 150
Leu	Val	Pro	Asp	Ser 155	Met	Lys	Phe	Glu	Ile 160	Gly	Glu	Ala	Leu	Tyr 165
Leu	Gly	Ile	Ile	Ser 170	Ser	Leu	Phe	Ser	Leu 175	Ile	Ala	Gly	Ile	Ile 180

Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr 185 Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg 205 200 Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser Leu Thr Gly Tyr Val 230 <210> 7 <211> 432 <212> PRT <213> Homo Sapien <400> 7 Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Ile Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Gln Pro Leu His Phe Ile Pro Arg Lys Gln Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr 110 Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu 125 130 Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn 155 Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser Gly Ser Leu Val Ser Leu His Cys Leu Ala Cys Gly Lys Ser Leu 185 190 Lys Thr Pro Arg Val Val Gly Glu Glu Ala Ser Val Asp Ser 200 205 210 Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys Gln His Val Cys Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr Ala Ala His

				230					235					240
Cys	Phe	Arg	Lys	His 245	Thr	Asp	Val	Phe	Asn 250	Trp	Lys	Val	Arg	Ala 255
Gly	Ser	Asp	Lys	Leu 260	Gly	Ser	Phe	Pro	Ser 265	Leu	Ala	Val	Ala	Lys 270
Ile	Ile	Ile	Ile	Glu 275	Phe	Asn	Pro	Met	Tyr 280	Pro	Lys	Asp	Asn	Asp 285
Ile	Ala	Leu	Met	Lys 290	Leu	Gln	Phe	Pro	Leu 295	Thr	Phe	Ser	Gly	Thr 300
Val	Arg	Pro	Ile	Cys 305	Leu	Pro	Phe	Phe	Asp 310	Glu	Glu	Leu	Thr	Pro 315
Ala	Thr	Pro	Leu	Trp 320	Ile	Ile	Gly	Trp	Gly 325	Phe	Thr	Lys	Gln	Asn 330
Gly	Gly	Lys	Met	Ser 335	Asp	Ile	Leu	Leu	Gln 340	Ala	Ser	Val	Gln	Val 345
Ile	Asp	Ser	Thr	Arg 350	Cys	Asn	Ala	Asp	Asp 355	Ala	Tyr	Gln	Gly	Glu 360
Val	Thr	Glu	Lys	Met 365	Met	Cys	Ala	Gly	Ile 370	Pro	Glu	Gly	Gly	Val 375
Asp	Thr	Cys	Gln	Gly 380	Asp	Ser	Gly	Gly	Pro 385	Leu	Met	Tyr	Gln	Ser 390
Asp	Gln	Trp	His	Val 395	Val	Gly	Ile	Val	Ser 400	Trp	Gly	Tyr	Gly	Cys 405
Gly	Gly	Pro	Ser	Thr 410	Pro	Gly	Val	Tyr	Thr 415	Lys	Val	Ser	Ala	Tyr 420
Leu	Asn	Trp	Ile	Tyr 425	Asn	Val	Trp	Lys	Ala 430	Glu	Leu			
<210: <211: <212: <213:	> 282 > PRT	ľ	apier	ı										
<400		_	_			=	_						_	
Met 1	Ala	ser	Leu	G1y 5	GIn	TTE	Leu	Pne	Trp 10	ser	iie	iie	Ser	11e 15
Ile	Ile	Ile	Leu	Ala 20	Gly	Ala	Ile	Ala	Leu 25	Ile	Ile	Gly	Phe	Gly 30
Ile	Ser	Gly	Arg	His 35	Ser	Ile	Thr	Val	Thr 40	Thr	Val	Ala	Ser	Ala 45
Gly	Asn	Ile	Gly	Glu 50	Asp	Gly	Ile	Leu	Ser 55	Cys	Thr	Phe	Glu	Pro 60
Asp	Ile	Lys	Leu	Ser 65	Asp	Ile	Val	Ile	Gln 70	Trp	Leu	Lys	Glu	Gly 75
Val	Leu	Gly	Leu	Val 80	His	Glu	Phe	Lys	Glu 85	Gly	Lys	Asp	Glu	Leu 90

Ser	Glu	Gln	Asp	Glu 95	Met	Phe	Arg	Gly	Arg 100	Thr	Ala	Val	Phe	Ala 105
Asp	Gln	Val	Ile	Val 110	Gly	Asn	Ala	Ser	Leu 115	Arg	Leu	Lys	Asn	Val 120
Gln	Leu	Thr	qaA	Ala 125	Gly	Thr	Tyr	Lys	Cys 130	Tyr	Ile	Ile	Thr	Ser 135
Lys	Gly	Lys	Gly	Asn 140	Ala	Asn	Leu	Glu	Tyr 145	Lys	Thr	Gly	Ala	Phe 150
Ser	Met	Pro	Glu	Val 155	Asn	Val	Asp	Tyr	Asn 160	Ala	Ser	Ser	Glu	Thr 165
Leu	Arg	Cys	Glu	Ala 170	Pro	Arg	Trp	Phe	Pro 175	Gln	Pro	Thr	Val	Val 180
Trp	Ala	Ser	Gln	Val 185	Asp	Gln	Gly	Ala	Asn 190	Phe	Ser	Glu	Val	Ser 195
Asn	Thr	Ser	Phe	Glu 200	Leu	Asn	Ser	Glu	Asn 205	Val	Thr	Met	Lys	Val 210
Val	Ser	Val	Leu	Tyr 215	Asn	Val	Thr	Ile	Asn 220	Asn	Thr	Tyr	Ser	Cys 225
Met	Ile	Glu	Asn	Asp 230	Ile	Ala	Lys	Ala	Thr 235	Gly	Asp	Ile	Lys	Val 240
Thr	Glu	Ser	Gľu	Ile 245	Lys	Arg	Arg	Ser	His 250	Leu	Gln	Leu	Leu	Asn 255
Ser	Lys	Ala	Ser	Leu 260	Cys	Val	Ser	Ser	Phe 265	Phe	Ala	Ile	Ser	Trp 270
Ala	Leu	Leu	Pro	Leu 275	Ser	Pro	Tyr	Leu	Met 280	Leu	Lys			
<210 <211 <212 <213	> 37 > PR'	Г	apie	n										
<400 Met 1	> 9 Val	Leu	Trp	Glu 5	Ser	Pro	Arg	Gln	Cys 10	Ser	Ser	Trp	Thr	Leu 15
Cys	Glu	Gly	Phe	Cys 20	Trp	Leu	Leu	Leu	Leu 25	Pro	Val	Met	Leu	Leu 30
Ile	Val	Ala	Arg	Pro 35	Val	Lys	Leu	Ala	Ala 40	Phe	Pro	Thr	Ser	Leu 45
Ser	Asp	Cys	Gln	Thr 50	Pro	Thr	Gly	Trp	Asn 55	Cys	Ser	Gly	Tyr	Asp 60
Asp	Arg	Glu	Asn	Asp 65	Leu	Phe	Leu	Cys	Asp 70	Thr	Asn	Thr	Cys	Lys 75
Phe	Asp	Gly	Glu	Cys 80	Leu	Arg	Ile	Gly	Asp 85	Thr	Val	Thr	Cys	Val 90

Cys	Gln	Phe	Lys	Cys 95	Asn	Asn	Asp	Tyr	Val 100	Pro	Val	Cys	Gly	Ser 105
Asn	Gly	Glu	Ser	Tyr 110	Gln	Asn	Glu	Cys	Tyr 115	Leu	Arg	Gln	Ala	Ala 120
Cys	Lys	Gln	Gln	Ser 125	Glu	Ile	Leu	Val	Val 130	Ser	Glu	Gly	Ser	Cys 135
Ala	Thr	Asp	Ala	Gly 140	Ser	Gly	Ser	Gly	Asp 145	Gly	Val	His	Glu	Gly 150
Ser	Gly	Glu	Thr	Ser 155	Gln	Lys	Glu	Thr	Ser 160	Thr	Cys	Asp	Ile	Cys 165
Gln	Phe	Gly	Ala	Glu 170	Cys	Asp	Glu	Asp	Ala 175	Glu	Asp	Val	Trp	Cys 180
Val	Суз	Asn	Ile	Asp 185	Cys	Ser	Gln	Thr	Asn 190	Phe	Asn	Pro	Leu	Cys 195
Ala	Ser	Asp	Gly	Lys 200	Ser	Tyr	Asp	Asn	Ala 205	Cys	Gln	Ile	Lys	Glu 210
Ala	Ser	Cys	Gln	Lys 215	Gln	Glu	Lys	Ile	Glu 220	Val	Met	Ser	Leu	Gly 225
Arg	Cys	Gln	Asp	Asn 230		Thr	Thr	Thr	Thr 235	Lys	Ser	Glu	Asp	Gly 240
His	Tyr	Ala	Arg	Thr 245	Asp	Tyr	Ala	Glu	Asn 250	Ala	Asn	Lys	Leu	Glu 255
Glu	Ser	Ala	Arg	Glu 260	His	His	Ile	Pro	Cys 265	Pro	Glu	His	Tyr	Asn 270
Gly	Phe	Cys	Met	His 275	Gly	Lys	Cys	Glu	His 280	Ser	Ile	Asn	Met	Gln 285
Glu	Pro	Ser	Cys	Arg 290	Cys	Asp	Ala	Gly	Tyr 295	Thr	Gly	Gln	His	Cys 300
Glu	Lys	Lys	Asp	Tyr 305	Ser	Val	Leu	Tyr	Val 310	Val	Pro	Gly	Pro	Val 315
Arg	Phe	Gln	Tyr	Val 320	Leu	Ile	Ala	Ala	Val 325	Ile	Gly	Thr	Ile	Gln 330
Ile	Ala	Val	Ile	Cys 335	Val	Val	Val	Leu	Cys 340	Ile	Thr	Arg	Lys	Cys 345
Pro	Arg	Ser	Asn	Arg 350	Ile	His	Arg	Gln	Lys 355	Gln	Asn	Thr	Gly	His 360
Tyr	Ser	Ser	Asp	Asn 365	Thr	Thr	Arg	Ala	Ser 370	Thr	Arg	Leu	Ile	
<210: <211: <212: <213:	454 PRI	:	ıpier	1										

<400> 10 Met Glu Ser Ile Ser Met Met Gly Ser Pro Lys Ser Leu Ser Glu

1				5					10					15
Thr	Cys	Leu	Pro	Asn 20	Gly	Ile	Asn	Gly	Ile 25	Lys	Asp	Ala	Arg	Lys 30
Val	Thr	Val	Gly	Val 35	Ile	Gly	Ser	Gly	Asp 40	Phe	Ala	Lys	Ser	Leu 45
Thr	Ile	Arg	Leu	Ile 50	Arg	Суѕ	Gly	Tyr	His 55	Val	Val	Ile	Gly	Ser 60
Arg	Asn	Pro	Lys	Phe 65	Ala	Ser	Glu	Phe	Phe 70	Pro	His	Val	Val	Asp 75
Val	Thr	His	His	Glu 80	Asp	Ala	Leu	Thr	Lys 85	Thr	Asn	Ile	Ile	Phe 90
Val	Ala	Ile	His	Arg 95	Glu	His	Tyr	Thr	Ser 100	Leu	Trp	Asp	Leu	Arg 105
His	Leu	Leu	Val	Gly 110	Lys	Ile	Leu	Ile	Asp 115	Val	Ser	Asn	Asn	Met 120
Arg	Ile	Asn	Gln	Tyr 125	Pro	Glu	Ser	Asn	Ala 130	Glu	Tyr	Leu	Ala	Ser 135
Leu	Phe	Pro	Asp	Ser 140	Leu	Ile	Val	Lys	Gly 145	Phe	Asn	Val	Val	Ser 150
Ala	Trp	Ala	Leu	Gln 155	Leu	Gly	Pro	Lys	Asp 160	Ala	Ser	Arg	Gln	Val 165
Tyr	Ile	Cys	Ser	Asn 170	Asn	Ile	Gln	Ala	Arg 175	Gln	Gln	Val	Ile	Glu 180
Leu	Ala	Arg	Gln	Leu 185	Asn	Phe	Ile	Pro	Ile 190	Asp	Leu	Gly	Ser	Leu 195
Ser	Ser	Ala	Arg	Glu 200	Ile	Glu	Asn	Leu	Pro 205	Leu	Arg	Leu	Phe	Thr 210
Leu	Trp	Arg	Gly	Pro 215	Val	Val	Val	Ala	Ile 220	Ser	Leu	Ala	Thr	Phe 225
Phe	Phe	Leu	Tyr	Ser 230	Phe	Val	Arg	Asp	Val 235	Ile	His	Pro	Tyr	Ala 240
Arg	Asn	Gln	Gln	Ser 245	Asp	Phe	Tyr	Lys	0 - 0	Pro	Ile	Glu	Ile	Val 255
Asn	Lys	Thr	Leu	Pro 260	Ile	Val	Ala	Ile	Thr 265	Leu	Leu	Ser	Leu	Val 270
Tyr	Leu	Ala	Gly	Leu 275	Leu	Ala	Ala	Ala	Tyr 280	Gln	Leu	Tyr	Tyr	Gly 285
Thr	Lys	Tyr	Arg	Arg 290	Phe	Pro	Pro	Trp	Leu 295	Glu	Thr	Trp	Leu	Gln 300
Cys	Arg	Lys	Gln	Leu 305	Gly	Leu	Leu	Ser	Phe 310	Phe	Phe	Ala	Met	Val 315
His	Val	Ala	Tyr	Ser 320	Leu	Cys	Leu	Pro	Met 325	Arg	Arg	Ser	Glu	Arg 330

Tyr Leu Phe Leu Asn Met Ala Tyr Gln Gln Val His Ala Asn Ile 335 . Glu Asn Ser Trp Asn Glu Glu Glu Val Trp Arg Ile Glu Met Tyr 350 Ile Ser Phe Gly Ile Met Ser Leu Gly Leu Leu Ser Leu Leu Ala 370 365 Val Thr Ser Ile Pro Ser Val Ser Asn Ala Leu Asn Trp Arg Glu Phe Ser Phe Ile Gln Ser Thr Leu Gly Tyr Val Ala Leu Leu Ile 395 400 Ser Thr Phe His Val Leu Ile Tyr Gly Trp Lys Arg Ala Phe Glu 410 415 Glu Glu Tyr Tyr Arg Phe Tyr Thr Pro Pro Asn Phe Val Leu Ala Leu Val Leu Pro Ser Ile Val Ile Leu Asp Leu Leu Gln Leu Cys 445 Arg Tyr Pro Asp