UNIVERSIDAD DE COSTA RICA

ESCUELA DE ESTADÍSTICA

XS-3010 DEMOGRAFIA APLICADA

Profesor: Arodys Robles

Cohorte hipotética

Edad exacta x	Sobrevivient es a la edad exacta x	Número de muertes entre edades x y x+n	de morir entre las	Probabilidad de	vividos entre edades x y	Número de años persona vividos después de la edad x	Esperanza de vida a la edad x	Tasa de mortalidad de la cohorte entre edades x y x+n	Número promedio de años persona vividos entre x y x+n por aquellos que mueren entre x y x+n
0		1	0.100	0.900	9.07	445.86	44.586		0.07
1	9	1	0.111	0.889	32.22	436.79	48.532	0.0310	0.22
5	8	0	0.000	1.000	40.00	404.57	50.571	0.0250	
10	8	1	0.125	0.875	76.41	364.57	45.571	0.0131	6.41
20	7	1	0.143	0.857	62.12	288.16	41.166	0.0161	2.12
30	6	0	0.000	1.000	60.00	226.04	37.673	0.0167	
40	6	0	0.000	1.000	60.00	166.04	27.673	0.0167	
50	6	1	0.167	0.833	59.60	106.04	17.673	0.0168	9.6
60	5	2	0.400	0.600	36.96	46.44	9.288	0.0271	3.48
70	3	3	1.000	0.000	9.48	9.48	3.160	0.1055	3.16
80	0	0							

Edades exactas de muerte de 8 personas

Edades de		Eded	Sobreviviente	entre	de morir entre		Número o	de años		Esperanza de	Tasa de mortalidad de la cohorte	Número promedio de años persona vividos entre x y x+n por aquellos
muerte de 8	_	Edad			las edades x y		•		después de la			que mueren entre
personas:	n	exacta x	ехаста х	x+n	x+n	la edad x+n	edades >	cyx+n	edad x	edad x	y x+n	x y x+n
0,07		C	8	1	0,125	0,88	7+.07	7,07	392,37	49,0463	0,1414	0,07
1,5		1	. 7	1	0,143	0,86	6*4+.5	24,50	385,30	55,0429	0,0408	0,50
22,3		5	6	0	0,000	1,00	6*15	90,00	360,80	60,1333	0,0000	0,00
54,9		20	6	1	0,167	0,83	5*20+2.3	102,30	270,80	45,1333	0,0098	2,30
67,8		40	5	1	0,200	0,80	4*20+14.9	94,90	168,50	33,7000	0,0105	14,90
78,9		60	4	2	0,500	0,50	2*20+7.8+18.9	66,70	73,60	18,4000	0,0300	13,35
81,2		80	2	2	1,000	0,00	1.2+5.7	6,90	6,90	3,4500	0,2899	3,45
85,7		90	C									

Construcción de una tabla de vida

La información con que se cuenta para medir la mortalidad son las tasas de mortalidad por edad $\binom{n}{n}$. Esta información tiene el problema de que el denominador y el numerador incluye personas de distintas cohortes de nacimientos. Tal como se puede ver en el siguiente diagrama:

Por ejemplo en la tasa M_{to} el

Por ejemplo en la tasa ₁M₁, el numerador incluye muertes de dos cohortes, y el denominador incluye una estimación de la población de las dos cohortes vivas a mitad del año. Esta estimación es sesgada y sobreestima las probabilidades de morir. Además no sabemos la composición por cohortes ni del numerador ni del denominador.

Muertes ocurridas a personas de 1 año de edad en 1997 nacidas en 1995 y 1996

32+7

Personas de 1 año de edad nacidas en el año 1996 Personas de 1 año de edad nacidas en 1995 (687-98-34) (778-112-39-11)

	Número de	Muertes	Número de	Número de	
	personas vivas al		personas vivas al		
	inicio del año	según cohorte	inicio del año	llegan con vida a	Probabilidades
	calendario	de nacimiento	calendario	la edad x	de muerte
				440	
40	500	60 60	500	650	.120 .092
30	700	50 35	700	570	.071 .061
20	600	30 40	600	860	.050 .047
10	900	40 60	900	750	.044 .080
O	800	50 150	800		.062 0.167
				900	
0 =lineas d	de vida que cru	zan el segmen	to 750=	800-50	.062=50/800
	-				.552 55/555
muertes (os	ocurridas a la co	onorte entre 0		900-40	.167=150/900
			570-	600-30	.080=60/750
			370-	000 30	
					.044=40/900

.167 proporción que disminuye la cohorte desde el nacimiento hasta el primer año calendario .062 proporción que disminuye la cohorte desde el primer año calendario hasta los 10 años

781=1000-((1000*.167)+(833*.062))

Funciones de la tabla de vida

Edad exacta x	X
Sobrevivientes a la edad exacta x	l_x
Número de muertes entre edades x y x+n	$_{n}d_{x}$
Probabilidad de morir entre las edades x y x+n	$_{n}q_{x} = \frac{_{n}d_{x}}{l_{x}}$
Probabilidad de sobrevivir de la edad x a la edad x+n	$_{n}p_{x}=\frac{l_{x+n}}{l_{x}}$
Número de años persona vividos entre edades x y x+n	$_{n}L_{x}$
Número de años persona vividos después de la edad x	T_x
Esperanza de vida a la edad x	e_x
Tasa de mortalidad de la cohorte entre edades x y x+n	$_{n}m_{x}$
Número promedio de años persona vividos entre x y x+n por aquellos que mueren entre x y x+n	$_{n}a_{x}$

Tabla de vida

Para la construcción de la tabla utilizamos las tasas de mortalidad por sexo y edad de la población. nMx

Necesitamos convertirlas a probabilidades de muerte.

Por que necesitamos calcular probabilidades de muerte en vez de tasas:

En las tasas de mortalidad por edad el denominador incluye personas de distintas cohortes de nacimientos. Por ejemplo las personas de 10 años a mitad del año 2011 incluye personas nacidas en el 2000 y en el 2001.

Lo mismo ocurre con el numerador

El denominador de las tasas es una estimación de las personas vivas a mitad del intervalo. Es una estimación sesgada ya que excluye a aquellos que se murieron en la primera mitad del año. Generalmente sobreestiman las probabilidades de morir en el período.

funciones de la tabla

Paso de tasas de mortalidad a probabilidad de morir en el intervalo x a x+n. $_n M_x$ es la tasa de mortalidad de tabla de vida, para convertir las tasas de mortalidad observadas a probabilidades de muerte, suponemos que las tasas de mortalidad observadas son equivalentes a las tasas de la tabla de vida: $_n M_x \approx _n M_x$

$$_{n}q_{x} = \frac{n *_{n}m_{x}}{1 + (n - _{n}a_{x}) *_{n}m_{x}}$$

Además de las tasas de mortalidad observadas, la otra información necesaria es ${}_{n}\mathcal{A}_{x}$, el número de años que en promedio viven los que se mueren en el intervalo. En ausencia de información la mejor aproximación es suponer ${}_{n}a_{x}=\frac{n}{2}$. Tal como se muestra en el gráfico siguiente el supuesto no funciona bien para las primeras edades.

funciones de la tabla

En el caso de la estimación de 190 se puede obtener de tres formas:

1. directamente de la información de nacimientos clasificados según

año de nacimiento y defunción:

Año de m	Año de muerte de los nacidos en el año 2011								
2011	2012	Total							
573	84	657							
Nacimientos (del año 2011	73269							
	1q0	0,00897							

2. Estimando los factores de separación con las defunciones clasificadas según edad en meses o días.

$${}_{1}q_{0}^{z} = \frac{(1 - f_{0}^{z}) * D_{0}^{z} + f_{0}^{z+1} * D_{0}^{z+1}}{B^{z}}$$

La forma de estimación se muestra en el siguiente cuadro:

Cálculo de 1q0 por medio de factores de separación

								Estimación de las	Estimación do los	
								Estimación de las defunciones del 2011	Estimación de las	
								correspondientes a	correspondientes a	
Defunciones	clasific	adas						·	nacimientos del año	
según edad	de mu	erte						anterior	anterior	
Meses	2011 2	2012	Limite	e inferior Amplitu		litud	Proporción (fi)	Muertes 2011	Muertes 2012	
0	476	475	0	0	1/12	0,08333333	0,0417	19,83	19,79	
1	47	46	1/12	0,0833	1/12	0,08333333	0,1250	5,88	5,75	
2	25	28	2/12	0,1667	1/12	0,08333333	0,2083	5,21	5,83	
3	20	20	3/12	0,2500	1/12	0,08333333	0,2917	5,83	5,83	
4	18	11	4/12	0,3333	1/12	0,08333333	0,3750	6,75	4,13	
5	15	19	5/12	0,4167	1/12	0,08333333	0,4583	6,88	8,71	
6	16	11	6/12	0,5000	1/12	0,08333333	0,5417	8,67	5,96	
7	6	8	7/12	0,5833	1/12	0,08333333	0,6250	3,75	5,00	
8	5	6	8/12	0,6667	1/12	0,08333333	0,7083	3,54	4,25	
9	6	4	9/12	0,7500	1/12	0,08333333	0,7917	4,75	3,17	
10	8	4	10/12	0,8333	1/12	0,08333333	0,8750	7,00	3,50	
11	5	2	11/12	0,9167	1/12	0,08333333	0,9583	4,79	1,92	
Total	647	634	Muertes que	ocurren al año	siguiente del	año de nacim	niento:	82,88	73,83	
				2011	2012		f=	82,88/647	73,83/634	
		1	f	0,12809119	•					
			1-f	0,87190881	0,88354364					
		:	1q0	564,125	73,8333333	637,958333	0,0087071			
				Estimación de	Estimación					
				las muertes de	de las					
				los nacidos el						
				2011 ocurridas el mismo añoy	el 2011					
				registradas el						
				2011	el 2012 y					
					registradas					
					el 2012					

3. Obteniendo $_{n}a_{x}$ Por medio de la información de tablas modelo Si solo se tiene información del total de defunciones, entonces los valores de $_{n}a_{x}$ se pueden obtener por medio de la siguiente tabla que resume los resultados observados en un conjunto amplio de tablas de mortalidad:

				_n a _x		_n a _x cuando nmx=.007057
		₁ a ₀	Hombres		Mujeres	
₁ m ₀	>=	0,107	0,330		0,35	
₁ m ₀	<	0,107	.045+2.684*1m0		.053+2.8*1m0	.06394
		$_4$ a $_1$				
₁ m ₀	>=	0,107	1,352		1,361	
₁ m ₀	<	0,107	1.651-2.816*1m0		1.522-1.518*1m0	1.6311

$$_{1}a_{0} = .06394 = .045 + 2.684(.007057)$$

$$a_1 = 1.6311 = 1.651 - 2.816(.007057)$$

M_x edades 0 a 5 en 1973 y 2012

Edad	Defund	ciones	Pobla	ación	Tasas de n	nortalidad	
Eudu	1973	2012	1973	2012	Mx 1973	Mx2012	Mx1973/Mx 2012
0	2369	634	54914	72742	0,04314	0,00872	4,9
1	327	48	53256	69796	0,00614	0,00069	8,9
2	146	21	54133	73665	0,00270	0,00029	9,5
3	95	15	55128	75379	0,00172	0,00020	8,7
4	53	18	56899	74304	0,00093	0,00024	3,8
5	44	8	57897	72075	0,00076	0,00011	6,8

Sobrevivientes a la edad exacta x . Hombres 1950 y 2010

Esperanza de vida. Hombres 1950 y 2010

Defunciones de la tabla de vida. Hombres 1950 y 2010

Esperanza de vida y edades de muerte. Hombres 1950 y 2010

Tabla de vida Costa Rica mujeres 2010

Edad	q(x)	d(x)	m(x)	l(x)	L(x)	S(x)	T(x)	e(x)
0	0.00785	785	0.00790	100000	99295	0.99295	8171009	81.71
1	0.00128	127	0.00032	99215	396555	0.99170	8071714	81.36
5	0.00085	84	0.00017	99089	495233	0.99875	7675159	77.46
10	0.00099	98	0.00020	99004	494776	0.99908	7179926	72.52
15	0.00145	143	0.00029	98906	494174	0.99878	6685150	67.59
20	0.00223	220	0.00045	98763	493266	0.99816	6190976	62.69
25	0.00230	226	0.00046	98543	492151	0.99774	5697710	57.82
30	0.00318	313	0.00064	98317	490803	0.99726	5205559	52.9
35	0.00432	423	0.00087	98004	488962	0.99625	4714756	48.1
40	0.00592	577	0.00119	97581	486460	0.99488	4225794	43.31
45	0.00908	881	0.00182	97003	482815	0.99251	3739333	38.5
50	0.01391	1337	0.00280	96123	477269	0.98851	3256518	33.88
55	0.02357	2234	0.00477	94785	468339	0.98129	2779249	29.32
60	0.03435	3179	0.00699	92551	454805	0.97110	2310909	24.97
65	0.05505	4920	0.01132	89372	434559	0.95548	1856104	20.77
70	0.09243	7806	0.01938	84452	402746	0.92679	1421545	16.83
75	0.14756	11310	0.03186	76646	354958	0.88134	1018799	13.29
80	0.23497	15352	0.05325	65337	288304	0.81222	663841	10.16
85	0.39365	19676	0.09802	49985	200733	0.69625	375538	7.5 :
90	0.52425	15889	0.14210	30308	111818	0.55705	174805	5.77
95	0.73386	10582	0.23184	14419	45641	0.40817	62986	4.37
100	1.00000	3837	0.22124	3837	17345	0.27538	17345	4.52

Uso de las funciones de la tabla (utilizando la tabla de mujeres del año 2010)

La probabilidad de sobrevivir desde los hasta los 5 hasta los 15 años.

$$_{10} p_5 = \frac{l_{15}}{l_5} = \frac{98906}{99089}$$

El número de años que en promedio pueden esperar vivir las mujeres entre los 15 y los 65 años.

$$\frac{T15 - T65}{l_{15}} = \frac{6686150 - 1856104}{98906}$$

La edad a la que puede esperar morirse una mujer que cumple 35 años.

$$35+e_{35}=35+48.11$$

Población estacionaria

3 condiciones demográficas:

 $_{n}M_{x}$ es constante en el tiempo

El <u>número</u> de nacimientos es constante en el tiempo

La población es cerrada

Si l_0 representa el número de nacimientos anuales, entonces

 l_x es el número de personas que alcanzan la edad exacta x

 $_{\scriptscriptstyle n}L_{\scriptscriptstyle x}$ es el número de personas vivas de edades x a x+n en un momento determinado

 T_x es el número de personas vivas de edad x y más en un momento determinado

Ejemplo población estacionaria

edad en días	Probabilidad de sobrevivir				Población	viva el			
x	xq0	01-ene	02-ene	03-ene	04-ene	05-ene	06-ene	,,,	31-dic
	1,000	1000	1000	1000	1000	1000	1000	,,,	1000
	1 0,970		970	970	970	970	970	,,,	970
	2 0,950			950	950	950	950	,,,	950
	3 0,946				946	946	946	,,,	946
	0,942					942	942	,,,	942
,,,								,,,	
36	4 0,900							"	900

365000 nacimientos anuales

1000 nacimientos cada día

xq0 probbilidad de sobrevivir desde el nacimiento hasta un día x

El número de años persona vividos el primer año por la cohorte anual de nacimientos es igual al número de cohortes diarias (365)por los años persona vividos por cada cohorte diaria

Cada cohorte diaria vive 1000(1/365) el 1 de enero, 970(1/365) el 2 de enero

1L0 = 365*(1000/365+970/365+950/365+...+900/365

1N0= 1000+970+950+946+942+...+900

Población estacionaria

Proceso de decremento simple

Los individuos solo tienen una forma de salida del estado en que están. Podemos medir la duración en que cada individuo permanece en el estado.

Si hay más de una salida se llama procesos de decremento multiple. estos se pueden unificar en uno solo (mortalidad: causas de muerte, salidas de la fuerza de trabajo).

Generalmente tenemos historias de vida de una colectividad. cuando tenemos información retrospectiva de un conjunto de entrevistados las salidas por mortalidad son 0.

información sobre edad al casarse

edad	mujeres	casadas
0	500	0
5		0
10		100
12		225
15		90
18		40
20		25
22		13
25		7
30		

X	n	lx	ndx	nqx
0	5	500	0	0,0000
5	5	500	0	0,0000
10	2	500	100	0,2000
12	3	400	225	0,5625
15	3	175	90	0,5143
18	2	85	40	0,4706
20	2	45	25	0,5556
22	3	20	13	0,6500
25	5	7	7	1,0000
30		0		

Un supermercado recibe 1000 cajas de chocolate. En la primera semana vende 20%, en la segunda semana 45% de las que quedaron, en la tercera semana 50% de las que quedaron, y en la cuarta semana 65% de las que quedaron de la semana anterior. Al final de la quinta semana no queda ninguna caja de chocolate.

En promedio cuánto tiempo va a estar una caja de chocolate en el estante sin venderse.

х	semanas	lx	qx	dx	Lx	Тх	ex
0	1	1000	0,20	200	900	2037	2,04
1	2	800	0,45	360	620	1137	1,42
2	3	440	<u>0,50</u>	220	330	517	1,18
3	4	220	0,65	143	148,5	187	0,85
4	5	77	1,00	77	38,5	38,5	0,50