Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3118	К работе допущен	-		
Студент	Шульга Артём Игоревич	Работа выполнена	_		
Преполаватель Куксова Полина Алексеевна. Отчет принят					

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

- 1. Цель работы.
 - 1. Провести многократные измерения скорости реакции у людей.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести экспериментальные замеры скорости реакций
 - 2. Обработать данные
 - 3. Построить гистограмму распределения
 - 4. Построить график распределения
- 3. Объект исследования.

Скорость реакции человека

4. Метод экспериментального исследования.

Для расчёта скорости был взят сайт для измерения скорости реакции - https://bit.ly/3sci8en

Участниками экспериментального исследования были люди возраста от 17 до 19 лет. Экспериментальные замеры были проведены в дневное время с одного и того же мобильного телефона с использованием сайта, указанного выше.

5. Рабочие формулы и исходные данные.

Будем пользоваться следующими формулами:

- Среднего выборочного (формулой среднего арифметического всех результатов), то есть формулой (1) $\langle t \rangle_N = \sum_{i=1}^N t_i$
- Выборочное среднеквадратичное отклонение формула (2)

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle \mathsf{t} \rangle_N)^2}$$

• Максимальная плотность распределения - формула (3)

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

• Плотность распределения – формула (4)

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} * e^{-\frac{(t-\langle t \rangle_N)^2}{2\sigma^2}}$$

• Формула доверительного интервала – формула (5)

$$\Delta t = t_{\alpha,N} * \sigma_{\langle t \rangle N}$$

• Формула среднеквадратичного отклонения среднего значения — формула (6)

$$\sigma_{\langle \mathsf{t} \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle \mathsf{t} \rangle_N)^2}$$

Исходные данные и подтверждения личности участников в таблице по адресу - https://bit.ly/33NHy8Q

6. Измерительные приборы.

Приборы с рассчитанной погрешностью отсутствуют.

7. Схема установки (перечень схем, которые составляют Приложение 1).

Установка отсутствует.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1 Результаты прямых измерений

Номер	Данные	t _i -⟨t⟩ _N , MC	$(t_i - \langle \mathbf{t} \rangle_N)^2$, \mathbf{mc}^2
измерения	t _i , MC		
1	176	-84,26	7099,75
2	310	49,74	2474,07
3	328	67,74	4588,71
4	307	46,74	2184,63
5	235	-25,26	638,07
6	300	39,74	1579,27
7	214	-46,26	2139,99
8	223	-37,26	1388,31
9	285	24,74	612,07
10	311	50,74	2574,55
11	325	64,74	4191,27
12	190	-70,26	4936,47
13	321	60,74	3689,35
14	238	-22,26	495,51
15	222	-38,26	1463,83
16	255	-5,26	27,67
17	322	61,74	3811,83
18	264	3,74	13,99
19	292	31,74	1007,43
20	324	63,74	4062,79
21	251	-9,26	85,75
22	274	13,74	188,79
23	286	25,74	662,55
24	297	36,74	1349,83
25	160	-100,26	10052,07
26	247	-13,26	175,83
27	295	34,74	1206,87
28	234	-26,26	689,59
29	289	28,74	825,99
30	160	-100,26	10052,07
31	296	35,74	1277,35
32	301	40,74	1659,75
33	246	-14,26	203,35
34	274	13,74	188,79
35	245	-15,26	232,87
36	277	16,74	280,23
37	234	-26,26	689,59
38	304	43,74	1913,19
39	222	-38,26	1463,83
40	264	3,74	13,99
41	253	-7,26	52,71
42	189	-71,26	5077,99

43	201	-59,26	3511,75
44	230	-30,26	915,67
45	289	28,74	825,99
46	193	-67,26	4523,91
47	243	-17,26	297,91
48	264	3,74	13,99
49	286	25,74	662,55
50	267	6,74	45,43
	$\langle t \rangle_{ m N} =$ 260,26 MC	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 5 * 10^{-13} MC$	$\sigma_N =$ 40 $ ho_{max} =$ 0,01 Mc $^{ ext{-}1}$

Воспользуемся формулой (2):

$$\sigma_N = \sqrt{\frac{1}{49} * 98119,62} \approx 40 \text{ MC}$$

Воспользуемся формулой (3):

$$ho_{max} = rac{1}{40 * \sqrt{2\pi}} pprox 0.01 \, \mathrm{mc^{-1}}$$

Таблица 2 Данные для построения гистограммы

Границы	ΔΝ	$\frac{\Delta N}{N\Delta t}$, MC ²	t, MC	$ ho$, Mc^{-1}
интервалов, с		$N\Delta t$		
160	3	0,0029	170,5	0,0008
181				
181	4	0,0038	191,5	0,0023
202				
202	4	0,0038	212,5	0,004
223	1			
223	6	0,006	233,5	0,008
244				
244	9	0,009	254,5	0,0098
265				
265	7	0,007	275,5	0,009
286				
286	10	0,01	296,5	0,007
307				
307	7	0,007	317,5	0,0036
328				

 $t_{min} = 160 \text{ MC}$

 $t_{max}\,{=}\,328~\text{mc}$

 $\Delta t = 21 \text{ MC}$

Для расчёта плотности распределения формулой (4) (пример для интервала 160-181 мс, все остальные вычисления аналогичны)

$$\rho(170,5) = \frac{1}{40*\sqrt{2\pi}}*e^{-\frac{(170,5-260,26)^2}{2*40^2}} = \frac{1}{40*\sqrt{2\pi}}*e^{-2,517768} = 0,0008~\text{mc}^{-1}$$

Таблица 3. Стандартные доверительные интервалы

	Интервал, мс		ΔΝ	ΔN	P
	ОТ	до		\overline{N}	
$\langle t \rangle_N \pm \sigma$	220,26	280,26	22	0,44	Меньше чем
					0,683
$\langle t \rangle_N \pm 2\sigma$	180,26	340,26	47	0,94	Незначительно
					меньше чем
					0,954
$\langle t \rangle_N \pm 3\sigma$	140,26	380,26	50	1	Незначительно
					больше чем
					0,997

Воспользуемся формулой (6):

$$\sigma_{(t)} = \sqrt{\frac{1}{50*49} * 10^5} = 6 \text{ mc}$$

Коэффициент Стьюдента для N = 50 и P = 0,95: $t_{\alpha,N}=2,01$ Воспользуемся формулой (5) и вычислим доверительный интервал: $\Delta t=2,01*6=12,06$ мс

Доверительная вероятность:

$$\propto = P (t \in [248,2; 272,32])$$

- 9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*). Косвенных измерений не проводилось.
- Расчет погрешностей измерений (для прямых и косвенных измерений).
 Погрешности отсутствуют.
- 11. Графики (перечень графиков, которые составляют Приложение 2).

Полученная гистограмма

Полученный график

График с наложением гистограммы

12. Окончательные результаты.

Скорость реакции человека, согласно расчётам и графическому представлению согласуется с нормальным распределением с незначительными отклонениями.

13. Выводы и анализ результатов работы.

В ходе данной лабораторной работы я научился работать с измеряемыми величинами, обрабатывать их и научился строить график нормального распределения, аналитически изучать распределение величин на схожесть с нормальным распределением. Эти знания помогут мне для дальнейшего прохождения курса и работе с данными.

#Было очень сложно разобраться со структурой лабораторной) И также с #построением графиков, гистограмм, так как было не особо очевидно как их #делать и нужных инструментов (например для ограничения области #аргументов функций) в интернете тяжело найти, пришлось прибегать к #хитростям. В целом было интересно, но эти трудности помешали.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).