Molecular Dynamics & Polymer Physics

Mathias Fleisch

24.06.2016

Aim: Statistical properties of polymers in a double-well potential

Overview

- Molecular Dynamics
- Multi-Core Implementation
- Polymer Dynamics

Molecular Dynamics

Langevin equation:

$$m_i\ddot{\vec{x}}_i = \vec{F}(\vec{x}_i(t)) - \underbrace{\gamma_i m_i \dot{\vec{x}}_i}_{\text{friction}} + \underbrace{\vec{R}_i}_{\text{stochastic term}}$$

$$\langle \vec{R}_i(t)\vec{R}_j(t')\rangle = 2m_lk_BT\gamma_l\delta_{i,j}\delta(t-t') \Rightarrow \text{white noise}$$

Lennard-Jones-Potential:

$$U_{LJ} = \begin{cases} 4\epsilon \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right) & r_{ij} < r_{c} \\ 0 & r_{ij} \ge r_{c} \end{cases}$$

Self-guided Langevin Dynamics¹:

Kinetic energy from high frequency motions to low frequency motions to accelerate conformational searching

¹Xiongwu Wu, Milan Hodoscek and Bernard R. Brooks: Replica exchanging self-guided Langevin dynamics for efficient and accurate conformational sampling

Implementation details:

- Second order integrator¹
- Periodic boundary conditions²
- Neighborlist³
 - \bullet $r_v = r_c + \Delta r$
 - $\Delta r < n\tilde{v}\Delta t$

Implementation details:

- Second order integrator¹
- Periodic boundary conditions²
- Neighborlist³
 - \bullet $r_n = r_c + \Delta r$
 - $\Delta r < n\tilde{v}\Delta t$

²D.C. Rapaport: The Art of Molecular Dynamics Simulation

Implementation details:

- Second order integrator¹
- Periodic boundary conditions²
- Neighborlist³
 - $r_v = r_c + \Delta r$
 - $\Delta r \leq n\tilde{v}\Delta t$

³Loup Verlet: Computer "Experiments" on Classical Fluids

Molecular Dynamics: Results

Molecular Dynamics: Results

Energy conservation (no stochastic term and friction):

Temperature:

Red: $\gamma=0$, Blue: $\gamma=5$, Green: Initial Temperature

Polymer Physics

Rouse-Model:

Potential:

$$U_{ij} = \frac{1}{2}k(\vec{x}_i - \vec{x}_j)^2$$

 $k = \frac{3k_BT}{b^2}$, b ... mean segment length

$$\Rightarrow$$
 Gaussian chain where $\psi(\vec{x}) = \left(\frac{3}{2\pi b^2}\right)^{\frac{3}{2}} \exp\left(-\frac{3\vec{x}^2}{2b^2}\right)$

$$\Rightarrow$$
 End-to-end-distance: $\langle \vec{R}^2 \rangle = \langle (\vec{x}_N - \vec{x}_1)^2 \rangle \propto N - 1$

Excluded volume effect¹:

Include Lennard-Jones-Potential ⇒ Excluded volume effect

$$\Rightarrow$$
 End-to-end-distance: $\langle \vec{R}^2 \rangle \propto (N-1)^{\frac{6}{5}}$

¹M. Doi, S. F. Edwards: The Theory of Polymer Dynamics

Polymer Physics - Results

Distribution of x-component between two particles:

Not-excluded volume vs. excluded volume:

Todo:

- Implement external double well potential
- Run (long-time) simulations