Assignment 4

1 O1

- 1. Assume H_a is not collision-resistant, then there must be a pair of collision (x, x') such that $H_a(x) = H_a(x')$, i.e., $H_1(x)||H_2(x) = H_1(x')||H_2(x')$, which means that both H_1 and H_2 are not collision-resistant, contradicting that H_1 and H_2 at least one is collision-resistant.
- 2. Assume H_a is not collision-resistant, then there must be a pair of collision (x, x') such that $H_a(x) = H_a(x')$, i.e.,

$$H_1(H_2(x)) = H_1(H_2(x'))$$

 $H_2(H_1(x)) = H_2(H_1(x'))$

If both H_1 and H_2 are collision-resistant, then from the above we can get

$$H_2(x) = H_2(x')$$

 $H_1(x) = H_1(x')$

which contradicts. If H_1 is collision-resistant while H_2 is not (the same when reversed), then from the above we can get

$$H_2(x) = H_2(x')$$

 $H_1(x) \neq H_1(x') \text{ or } H_1(x) = H_1(x')$

which satisfies the assumption. However, H_a is not necessarily collision-resistant.

3. Assume H_a is not collision-resistant, then there must be a pair of collision (x, x') such that $H_a(x) = H_a(x')$, i.e.,

$$H_1(H_2(x)||x) = H_1(H_2(x')||x')$$

 $H_2(H_1(x)||x) = H_2(H_1(x')||x')$

If both H_1 and H_2 are collision-resistant, then from the above we can get

$$H_2(x)||x = H_2(x')||x'$$

 $H_1(x)||x = H_1(x')||x'$

Since $x \neq x'$, the equations cannot be established. If H_1 is collision-resistant while H_2 is not (the same when reversed), then from the above we can get

$$H_2(x)||x = H_2(x')||x'$$

 $H_1(x)||x \neq H_1(x')||x' \text{ or } H_1(x)||x = H_1(x')||x'$

Since $x \neq x'$, the equations cannot be established. Therefore, H_a is not necessarily collision-resistant.

2 Q2

The attacker can query the MAC oracle with the messages $m_1 = x||y$ and $m_2 = x$, and get the corresponding tags t_1 and t_2 . By the construction of Merkle-Damgard, we can know that $t_1 = h(t_2, y)$. So the attacker can output $(m', t') = (t_2||y, t_1)$ which passes the verification.

3 Q3

- 1. To prove that the set of QRs is a subgroup of \mathbb{Z}_n^* , we need to show that 4 properties hold: closure, identity, inverse and associativity.
 - Closure:

Let y_1 and y_2 be two quadratic residues in \mathbb{Z}_n^* , then there exists $x_1, x_2 \in \mathbb{Z}_n^*$ such that $y_1 \equiv x_1^2 (mod\ n)$ and $y_2 \equiv x_2^2 (mod\ n)$. By the definition of quadratic residue, we have $y_1y_2 \equiv x_1^2x_2^2 (mod\ n) \equiv (x_1x_2)^2 (mod\ n)$. Thus, y_1y_2 is also a quadratic residue in \mathbb{Z}_n^* .

• Identity:

The identity element e in \mathbb{Z}_n^* is equal to 1. Since $1 \equiv 1^2 \pmod{n}$, we know that 1 is indeed a quadratic residue in \mathbb{Z}_n^* .

• Inverse:

Let y be a quadratic residue in \mathbb{Z}_n^* . Then $\exists x \in \mathbb{Z}_n^*$, $y \equiv x^2 \pmod{n}$. We want to show that the inverse of y, denoted as y^{-1} with $yy^{-1} \equiv 1 \pmod{n}$, is also a quadratic residue in \mathbb{Z}_n^* . If $\gcd(y,n) \neq 1$, then y does not have an inverse in \mathbb{Z}_n^* . Otherwise, by Bezout's identity, there exist $a,b \in \mathbb{Z}_n^*$ such that ay + bn = 1, yielding ay = 1 - bn, which means that $ay \equiv 1 \pmod{n} \equiv 1^2 \pmod{n}$ and thus ay is also a quadratic residue in \mathbb{Z}_n^* (since $1 \in \mathbb{Z}_n^*$). Therefore, $y^{-1} \equiv a^2 \pmod{n}$ is also a quadratic residue in \mathbb{Z}_n^* .

• Associativity:

Let y_1 , y_2 and y_3 be three quadratic residues in \mathbb{Z}_n^* , then there exists $x_1, x_2, x_3 \in \mathbb{Z}_n^*$ such that $y_1 \equiv x_1^2 \pmod{n}$, $y_2 \equiv x_2^2 \pmod{n}$, $y_3 \equiv x_3^2 \pmod{n}$. Then we have $(y_1y_2)y_3 \equiv (x_1x_2)^2 x_3^2 \pmod{n} \equiv x_1^2 (x_2x_3)^2 \pmod{n} \equiv y_1(y_2y_3) \pmod{n}$.

2. • "only if".

Suppose y is a QR in \mathbb{Z}_p^* , then $y=x^2$ for some $x\in\mathbb{Z}_p^*$. If x=1, then y=1 and thus $\log_g(y)=0$ is even. If x>1, then x is a generator of \mathbb{Z}_p^* since p is a prime, and thus $\exists i\geq 0, x^i\equiv y\equiv x^2 \pmod{p}$, i.e., $(x^{i/2}+x)(x^{i/2}-x)\equiv 0 \pmod{p}$. Since p is a prime, it is either $p|(x^{i/2}+x)$ or $p|(x^{i/2}-x)$. Therefore, i must be even so that i/2 is an integer. That is, $\log_g(y)$ is even.

• "if". Suppose $\log_g(y)$ is even, i.e., $\exists k \in \mathbb{Z}, \log_g(y) = 2k \implies y = g^{2k}$. Let $x = g^k \in \mathbb{Z}_p^*$, then $y = x^2$ is a QR in \mathbb{Z}_p^* .

4 **O**4

Suppose the generator of \mathbb{Z}_N is g, then for any $h \in \mathbb{Z}_N$, its discrete logarithm is x, i.e., $gx \equiv h \pmod{N}$. By the extended Euclidean algorithm, we can find the inverse of g module N, and the inverse is actually the discrete logarithm we need. Since the extended Euclidean algorithm is efficient, the discrete logarithm problem is easy under this situation.

5 Q5

1.

$$f(1) = 1$$
 $f(2) = 4$ $f(3) = 9$ $f(4) = 16$
 $f(5) = 8$ $f(6) = 2$ $f(7) = 15$ $f(8) = 13$
 $f(9) = 13$ $f(10) = 15$ $f(11) = 2$ $f(12) = 8$
 $f(13) = 16$ $f(14) = 9$ $f(15) = 4$ $f(16) = 1$

Hence $S = \{1, 2, 4, 8, 9, 13, 15, 16\}$ and its size is 8.

2. Since 17 is a prime, there are 16 generators in \mathbb{Z}_{17}^* .

3. For any generator g of \mathbb{Z}_{17}^* , $g^i(i \in \{0, ..., 16\})$ generates all elements in \mathbb{Z}_{17}^* and thus it can generate all elements in S since $S \subset \mathbb{Z}_{17}^*$. Since a, b are randomly chosen from $\{0, ..., 15\}$ (i.e., the multiplication ab has totally 16 + 15 + ... + 1 = 136 choices) and only $g^{ab} \in S$ satisfies the requirement (i.e., the multiplication ab has 8 choices), the probability is $\frac{8}{136} = \frac{1}{17}$.

6 **Q**6

We can construct A' as below:

- 1. Queries *A* for the square roots of the element $x \leftarrow_R \mathbb{Z}_N^*$. Continuing querying until no error returned.
- 2. Retrieves 4 square roots $\pm a$, $\pm b$. Suppose a, b are 2 non-trivial square roots, i.e., $a \not\equiv \pm b \pmod{N}$.
- 3. Computes $p = \gcd(N, a + b)$ and $q = \gcd(N, a b)$ by using Euclidean algorithm.
- 4. Outputs p, q as the factors of N.

We can validate it as below:

Since

$$a^2 \equiv b^2 \pmod{N}$$

 $a \not\equiv b \pmod{N}$
 $a \not\equiv -b \pmod{N}$

we have

$$pq \mid (a+b)(a-b)$$

$$pq \nmid (a-b)$$

$$pq \nmid (a+b)$$

Since both p and q are primes, (a + b)(a - b) has factors p and q. But neither a + b nor a - b contain the factors of both p and q. Hence a + b and a - b must each contain factors of exactly one of $\{p, q\}$. Thus, $\{\gcd(pq, a + b), \gcd(pq, a - b)\} = \{p, q\}$

7 Q7

The attacker can query the sign oracle with distinct messages m_1 and m_2 such that $m = (m_1 \cdot m_2) \mod N$, and then retrieve the signatures $\sigma_1 = m_1^d \mod N$ and $\sigma_2 = m_2^d \mod N$. Then the attacker outputs (m, σ) , where $\sigma = (\sigma_1 \cdot \sigma_2) \mod N$, which can pass the verification since

$$\sigma^e = (\sigma_1 \cdot \sigma_2)^e = m_1^{ed} \cdot m_2^{ed} = m_1 \cdot m_2 = m \mod N$$

8 Q8

For a fixed cyclic group G and its generator g, define $DH_g(h_1, h_2) = DH_g(g^x, g^y) = g^{xy}$.

- Discrete logarithm (DLog) problem: Given g, h, compute $\log_g h$.
- Computational Diffie-Hellman (CDH) problem: Given g, h_1 , h_2 , compute $DH_g(h_1, h_2)$.
- Decisional Diffie-Hellman (DDH) problem: Given g, h_1 , h_2 , distinguish $DH_g(h_1, h_2)$ from a uniform element of G.

DDH is stronger than CDH, and CDH is stronger than DLog.

9 Q9

- 1. In the experiment, the attacker can query the encryption oracle with plaintexts m_1 , m_2 and retrieve the corresponding ciphertexts c_1 , c_2 . Then the attacker outputs 2 messages $m'_1 = m_1$, $m'_2 = \alpha m_2$ for arbitrary α to the challenger and retrieves a ciphertext c. If $c = \alpha c_2$, then the attacker outputs 2; otherwise, outputs 1. At this time, the attacker will always succeed.
- 2. Suppose the hash function is H, then El Gamal signature on message m will be

$$\sigma = Sign_{sk}(m) = (r, s) = (g^k, k^{-1}(H(m) - rx) \mod (p-1))$$

If the hash function H is collision-resistant, then H(m) is indistinguishable with a random string r^* , and thus it is hard for the attacker to forge a message-signature pair to pass the verification.

3. We can select a message m' such that $m' \equiv m \pmod{p-1}$, then query signing oracle for its signature $\sigma' = (r', s')$. Then the forged signature of m is actually $\sigma = \sigma'$.