1 Точни 1-управляващи граматики

Дефиниция 1.1. Казваме, че 1-управляваща граматика $G = \langle \Sigma, \mathcal{N}, S, P, F, \# \rangle$ е точна за функция $f : \Sigma_0^* \to \Sigma_1^*$, ако G представя f и $\Sigma = \Sigma_0 \cup \Sigma_1$.

Да обърнем внимание, че с изключение на конструкцията SWITCH, в останалите конструкции и функции, които показахме, че са представими с 1-управляващи граматики използвахме допълнителни символи, които не бяха от азбуката на дефиниционната област на съответната функция. Следващият резултат показва, че до голяма степен това е било само за удобство.

Пема 1.1. Нека $\Sigma = \Sigma_0 \cup \Sigma_1$ има поне два елемента. Ако $f: \Sigma_0^* \to \Sigma_1^*$ е представима от 1-управляваща граматика G, то f се представя и точно от 1-управляваща граматика G'. Нещо повече, ако G е еднозначна, то и G' можсе да се избере еднозначна.

Идеята на доказателството е проста. Тъй като $|\Sigma| = |\Sigma_0 \cup \Sigma_1| \ge 2$, може да предполагаме, че $0,1 \in \Sigma$. Да допуснем, че $G = \langle \Sigma', \mathcal{N}, S, P, F, \# \rangle$ представя $f : \Sigma_0^* \to \Sigma_1^*$. Без ограничение на общността може да предполагаме, че $\Sigma \subseteq \Sigma'$ и тъй като Σ' е крайно, то $2^{d-1} \le |\Sigma'| < 2^d$ за някое $d \ge 2$.

Сега ако $\Sigma' = \{\sigma_1, \dots, \sigma_k\}$, то има естествена инекция $\kappa : \Sigma' \to \{0,1\}^d$, която съпоставя на σ_i двоичния запис на i в двоична бройна система. Разбира се, това поражда хомоморфизъм

$$\kappa_* : (\Sigma')^* \to \{0,1\}^*,$$

Тъй като $|\kappa(\sigma_i)| = d$, то $\kappa_*(a_1 \dots a_n) = \kappa(a_1) \dots \kappa(a_n)$ има дължина dn и оттук получаваме, че κ_* е инективен. Нека κ_*^{-1} е обратната на κ_* . Тогава, превеждайки хомоморфизма κ , лесно може да получим от G граматика $G_{0,1}$ с азбука $\{0,1\}$, която представя $f_*: \{0,1\}^* \to \{0,1\}^*$ със свойството:

$$f_*(\kappa_*(w)) = \kappa_*(f(w)), \text{ тоест } f(w) = \kappa_*^{-1}(f^*(\kappa_*(w)))$$
 за всяка дума $w \in \Sigma_0^*$.

Така ще остане да реализираме точно единствено κ_* и κ_*^{-1} и да предвидим композицията.

 \mathcal{A} оказателство. Нека $G = \langle \Sigma', \mathcal{N}, S, P, F, \# \rangle$ представя $f : \Sigma_0^* \to \Sigma_1^*$. Нека $\Sigma = \Sigma_0 \cup \Sigma_1 \subseteq \Sigma'$ и да разширим Σ' до $\Sigma'' = \Sigma' \cup \{ \triangleright, \triangleright', \triangleright'' \}$. Предполагаме, че $0, 1 \in \Sigma$ и $\triangleright, \triangleright', \triangleright'' \not\in \Sigma'_\#$.

Нека $2^{d-1} \leq |\Sigma''| < 2^d$ и $\kappa : \Sigma'' \to \{0,1\}^d$ е инекция, за която $\kappa(0) = 0^d$, $\kappa(1) = 0^{d-1}1$. От това, че $0,1, \triangleright', \triangleright'' \in \Sigma''$, d > 2.

Първо да разгледаме конструкцията:

Вход:
$$G = \langle \Sigma', \mathcal{N}, S, P, F, \# \rangle$$
, $\kappa : \Sigma'' \to \{0, 1\}^d$

$$P_{01} = \{ \kappa_*(\alpha) N \kappa_*(\beta) \to \kappa_*(\alpha_1) N \kappa_*(\beta_1) \mid \alpha N \beta \to \alpha_1 N_1 \beta_1 \in P \}$$

$$\cup \{ \kappa_*(\alpha) N \kappa_*(\beta) \# \to \kappa_*(\alpha_1) N \kappa_*(\beta_1) \# \mid \alpha N \beta \# \to \alpha_1 N_1 \beta_1 \# \in P \}$$

Изход: $G_{01} = \langle \{0,1\}, \mathcal{N}, S, P_{01}, F, \# \rangle$.

Тъй като κ_* е инекция, то непосредствено се проверява, че за всеки $x,y \in (\Sigma')^*$ следните са еквивалентни:

- 1. $xNy\# \Rightarrow_G x'N'y'\#$,
- 2. $\kappa_*(x)N\kappa_*(y)\# \Rightarrow_{G_{01}} \kappa_*(x')N'\kappa_*(y)\#.$

Нещо повече, тъй като $\triangleright, \triangleright', \triangleright'' \notin \Sigma$, то тези символи не се срещат в никой извод в граматиката G. Оттук и от горния инвариант, ако $w \in \Sigma^*$, и $S\kappa_*(w)\# \Rightarrow_{G_{01}}^* \kappa_*(x')N\kappa_*(y')\#$, то $\kappa(\triangleright), \kappa(\triangleright')$ и $\kappa(\triangleright'')$ не завършват в $\kappa_*(x')\kappa_*(y)$ на позиция кратна на d.

Нещо повече, понеже правилата на P_{01} са също в образа на κ_* , то, ако G е еднозначна, G_{01} също е еднозначна. Също така от горния инвариант непосредствено следва, че за всяка дума $w \in \Sigma_0^*$:

$$S\kappa_*(w)\# \Rightarrow_{G_{01}}^* Fv\#$$
 точно тогава, когато $v = f(\kappa_*(w))$.

Сега ще покажем как може да представим κ_* и κ_*^{-1} :

$$\mathsf{Bxog}: \kappa : \Sigma \to \{0,1\}^d$$

1.
$$\mathcal{N} = \{A, R, T, F\}$$

2. $P = \{A \to \kappa(\triangleright)R\} \cup P_{\text{replace}} \cup P_{\text{return}}$, където:

$$\begin{array}{lcl} P_{\rm replace} & = & \{R\sigma \to \kappa(\sigma)R \,|\, \sigma \in \Sigma\} \cup \{R\# \to T\#\} \\ P_{\rm return} & = & \{\kappa(\sigma)T \to T\kappa(\sigma) \,|\, \sigma \neq \trianglerighteq\} \cup \{\kappa(\trianglerighteq)T \to F\}. \end{array}$$

Изход: $G_{\kappa} = \langle \Sigma, \mathcal{N}, A, P, F, \# \rangle$.

Директно се проверява, че за нетерминала R, следните са еквивалентни:

1.
$$\kappa_*(x)R\sigma y\# \Rightarrow x'Ny'\#$$
 и $\sigma \in \Sigma$.

2.
$$x' = \kappa_*(x\sigma), y' = y \text{ if } N = R.$$

Структурата на P_{return} е позната. Така че за нея може да твърдим, че:

$$\kappa_*(x)T\kappa_*(y)\# \Rightarrow^* T\kappa_*(xy)\#$$

точно тогава, когато $x \in \Sigma^*$. Сега трябва да е ясно, че за $w \in \Sigma^*$:

$$Aw\# \Rightarrow_{G_{\kappa}}^* Fv\#$$
 точно тогава, когато $\kappa(\triangleright)Rw\# \Rightarrow_{G_{\kappa}}^* \kappa(\triangleright)Tv\#$.

Сега, както и преди, този извод се разделя на две части:

инв. за
$$R$$
 инв. за R $\kappa(\triangleright)Rw\# \Longrightarrow_{G_\kappa}^* \kappa_*(\triangleright w)R\# \Rightarrow \kappa_*(\triangleright w)T\# \Longrightarrow_{G_\kappa}^* \kappa(\triangleright)T\kappa_*(w)\#.$

Следователно $v = \kappa_*(w)$. Това, че ако $v = \kappa_*(w)$, то $Aw\# \Rightarrow_{G_\kappa}^* Fv\#$ трябва да е ясно. Следователно G_κ представя κ_* .

Оттук, ако приложим конструкцията за композиция за G_{κ} и G_{01} със символ $\kappa(\triangle')$ ще получим граматика над азбуката Σ , която представя $f_* \circ \kappa_* : \Sigma_0^* \to \{0,1\}^*$. Да обърнем внимание, че изобщо казано, G_{01} може и да не представя функция, но тя представя f_* над образа $\kappa_*(\Sigma_0^*)$. Дотук имаме 1-управляваща граматика, която представя:

$$f_* \circ \kappa_* : \Sigma_0^* \to \{0,1\}^*$$
, така че $f_*(\kappa_*(w)) = \kappa_*(f(w))$.

Остава да представим κ_*^{-1} . Това може да направим посредством следната конструкция:

Bход: $\kappa: \Sigma \to \{0,1\}^d$

1.
$$\mathcal{N} = \{A', R', T', F'\}$$

2. $P = \{A' \to \kappa(\triangleright)R'\} \cup P_{\text{replace}} \cup P_{\text{go}}$, където:

$$P_{\text{go}} = \{R'\sigma \to \sigma R' \mid \sigma \in \{0,1\}\} \cup \{R'\# \to T'\#\}$$

$$P_{\text{replace}} = \{\kappa(\sigma)T' \to \sigma T \mid \sigma \neq \triangleright\} \cup \{\kappa(\triangleright)T' \to F'\}.$$

Изход: $G'_{\kappa} = \langle \Sigma, \mathcal{N}, A', P, F', \# \rangle$.

Това, че G'_{κ} представя $\kappa_*^{-1}: \{0,1\}^* \to \Sigma^*$ става аналогично на G_{κ} .

Накрая композираме κ_*^{-1} с $f_* \circ \kappa_*$ като използваме $\kappa(\triangleright'')$ и получаваме представяне за:

$$\kappa_*^{-1} \circ f_* \circ \kappa_* : \Sigma_0^* \to \Sigma_1^*$$
, за което $(\kappa_*^{-1} \circ f_* \circ \kappa_*)(w) = f(w)$.

При това от, тъй като конструкцията за композиция е точна, то азбуката на тази 1-управляваща граматика е $\Sigma = \Sigma_0 \cup \Sigma_1$ тоест представянето е точно. Нещо повече, тъй като G_κ , G'_κ са еднозначни и правилата в конструкцията за композиция за еднозначни, то резултатната граматика също е еднозначна, ако G_{01} е еднозначна. В частност, ако G е еднозначна, то и полученото представяне на $\kappa_*^{-1} \circ f_* \circ \kappa_*$ е еднозначно.

2 Канонични 1-управляващи граматики. Еквивалентност с 1-лентнови машини на Тюринг

Дефиниция 2.1. Казваме, че 1-управляваща граматика $G = \langle \Sigma, \mathcal{N}, P, S, F, \# \rangle$ е канонична ако всяко правило $\alpha \to \beta \in P$ е от един от следните типове (тук $A, B \in \mathcal{N}, a, b \in \Sigma_{\#}$):

- 1. Rep: $Aa \rightarrow Bb$,
- 2. MVR: $Aa \rightarrow aB$,
- 3. MVL: $aA \rightarrow Ba$,
- 4. INS: $A \rightarrow Ba$,
- 5. DEL: $Aa \rightarrow B$,

Лема 2.1. За всяка 1-управляваща граматика $G = \langle \Sigma, \mathcal{N}, P, S, F, \# \rangle$ има еквивалентна на нея 1-управляваща граматика $G' = \langle \Sigma, \mathcal{N}', P', S, F, \# \rangle$ със свойството, че за всяко правило $\alpha \to \beta$, $|\alpha| \le 2$. Нещо повече, ако G е еднозначна, то и G' може да се избере еднозначна.

Доказателство. Нека $A \in \mathcal{N}$ с $P_A' = \{uAv \to \beta \in P \mid |u| + |v| \ge 2, |u| \ge 1\}, P_A'' = \{Av \to \beta \in P \mid |v| \ge 2\}.$ Достатъчно е да разгледаме $A \in \mathcal{N}$, за което $P_A' \cup P_A'' \ne \emptyset$ и да докажем, че може да модифицираме G така до еквивалентна граматика, като заменим правило в $P_A' \cup P_A''$ с по-къси от него и позволени правила.

1. $P_A' \neq \emptyset$. Нека (u',v) е такова, че $(|u'|,|v|) \in (\mathbb{N}^2, \prec_{lex})$ максимално със свойството, че има $a \in \Sigma$, за което $au'Av \to \beta \in P$.

$$\mathcal{N} = \mathcal{N} \cup \{A_{u',v}\}
P_{u',A,v} = \{u'Av \to A_{u',v}\} \cup \{bA_{u',v} \to \beta \mid bu'Av \to \beta \in P\}
P' = P \setminus \{bu'Av \to \beta \mid bu'Av \to \beta \in P\} \cup P_{u',A,v}
G' = \langle \Sigma, \mathcal{N}', P', S, F, \# \rangle.$$

Първо да забележим, че ако $xau'Avy \Rightarrow_G x\beta y$, то този преход може да се изрази като $xa(u'Av)y \Rightarrow_{G'} xaA_{u',v}y \Rightarrow_{G'} x\beta y$. Обратно, ако $xaA_{u',v}y \Rightarrow_{G'} x\beta y$, то $A_{u',v}$ е въведено от правилото $u'Av \rightarrow A_{u',v}$. Следователно в извода:

$$xau'Avy \Rightarrow_{G'} xaA_{u',v}y \Rightarrow_{G'} x\beta y$$

и освен това $au'Av \to \beta \in P$, защото иначе $aA_{u',v} \to \beta$ нямаше да е правило в P'. С това показахме, че G' и G са еквивалентни.

Сега да проверим, че ако G е еднозначна, то и G' е еднозначна. Достатъчно е да направим това за новите правила $P' \setminus P$.

Първо да разгледаме правилата $aA_{u',v} \to \beta$. Нека $xaA_{u',v}y \Rightarrow x\beta'y$ и $xaA_{u',v}y \Rightarrow x\beta''y$. Тогава в G има $au'Av \to \beta'$ и $au'Av \to \beta''$ и съответно $xau'Avy \Rightarrow x\beta'y$ и $xau'Avy \Rightarrow x\beta''y$ и ако G е еднозначна, то $\beta' = \beta''$.

Сега да допуснем, че $xu'Avy \Rightarrow_{G'} x\beta y$ с $\beta \neq A_{u',v}$. Оттук има правило $u''Av'' \rightarrow \beta \in P$, за което xu'Avy = x''u''Av''y''. Има два случая. Ако $|u''| \leq |u'|$, то тогава ако $a \in \Sigma$, за което $au'Av \rightarrow \beta' \in P$, получаваме, че към au'Avy може да се приложат две различни правила, тоест G не е еднозначна.

Ако |u''| > |u'|, то от избора на u' имаме, че |u''| = |u'| + 1 а от избора на v, знаем тогава, че $|v''| \le |v|$. Тъй като G е еднозначна и $|u''| = |u'| + 1 \ne 0$, то |v''| = |v'| = 0. Следователно $u''A \to \beta \notin P'$.

2. $P_A' = \emptyset$. Тогава разсъждаваме симетрично за $P_A'' \neq \emptyset$.

Лема 2.2. За всяка 1-управляваща граматика $G = \langle \Sigma, \mathcal{N}, P, S, F, \# \rangle$, в която има еквивалентна на нея 1-управляваща граматика $G' = \langle \Sigma, \mathcal{N}', P', S, F, \# \rangle$ със свойството, че за всяко правило $\alpha \to \beta$, $|\beta| \le 2$ и $|\alpha| \le 2$. Нещо повече, ако G е еднозначна, то и G' може да се избере еднозначна.

Доказателство. От предишната лема може да предполагаме, че левите страни на правилата от P са с дължина не по-голяма от 2. Сега, ако имаме с дясна страна $\alpha \to uBv$ с $|u|+|v|\geq 2$, то има два случая:

- 1. $|u| \geq 1$. Тогава u = au'. Заменяме $\alpha \to uBv$ с $\alpha \to aB'$ и $B' \to u'Bv$, където B' е нов нетерминал.
- 2. |u|=0. Тогава v=v'a. Заменяме $\alpha \to Bv$ с $\alpha \to B'a$ и $B'\to v'$, където B' е нов нетерминал.

Ясно е, че ако изходните правила са били еднозначни, то и новодобавените имат това свойство. Еквивалентността също е ясна. \Box

Лема 2.3. За всяка 1-управляваща граматика $G = \langle \Sigma, \mathcal{N}, P, S, F, \# \rangle$ има еквивалентна на нея 1-управляваща канонична граматика $G' = \langle \Sigma, \mathcal{N}', P', S, F, \# \rangle$.

Нещо повече G' може да се избере така, че за всяко $A \in \mathcal{N}'$, за което има MVLEFT правила да има <u>единствен</u> $A' \in \mathcal{N}'$, за който за всяко $a \in \Sigma$:

$$Aa \rightarrow aA' \in P'$$
.

При това, ако G е била еднозначна, то G' също е еднозначна.

Доказателство. Първо да отбележим, че ако G е канонична и $A \in \mathcal{N}$, за който има MVLEFT правила, то допълнителното условие за A може да бъде осигурено така:

- 1. $\mathcal{N}' = \mathcal{N} \cup \{A'\}$
- 2. $P' = P \setminus \{aA \rightarrow Ba \mid aA \rightarrow Ba \in P\} \cup \{aA \rightarrow A'a \mid a \in \Sigma\} \cup \{A'a \rightarrow Ba \mid aA \rightarrow Ba \in P\}$.
- 3. $G' = \langle \Sigma, \mathcal{N}', P', S, F, \# \rangle$.

Правилата за A' са от тип $A'a \to Ba$, тоест REP, а останалите добавени правила са от желания вид, за всяко $a \in \Sigma$, $aA \to A'a$.

Нещо повече, лесно се съобразява, че ако в G е направен едностъпкво извод: $xaAy \Rightarrow_G xBay$, то той може да се симулира като $xaAy \Rightarrow_{G'} xA'ay \Rightarrow_{G'} xBay$. Обратно, ако $xA'ay \Rightarrow_{G'} xBay$, то A' е породено от $xaAy \Rightarrow_{G'} xA'ay \Rightarrow_{G'} xBay$ и следователно $xaAy \Rightarrow_G xBay$. Оттук G и G' са еквивалентни и ако G е еднозначна, то и G' е еднозначна.

Сега ще установим първата част на лемата. От предишните две леми може да предполагаме, че за правилата $\alpha \to \beta \in P$ е в сила, че $|\alpha|, |\beta| \in \{1, 2\}.$

- 1. $|\alpha|=|\beta|=1$, заменяме $A\to B$ с $\{Aa\to Ba\,|\,a\in\Sigma_\#\}$, това са REP правила.
- 2. $|\alpha|=1, |\beta|=2$. Ако правилото е $A\to Ba$, то това е INS. Ако е $A\to aB$, то го заменяме с $A\to B'a$ и $B'a\to aB$, където B' е нов. Първото правило е INS, второто MVR.
- 3. $|\alpha|=2, |\beta|=1$. Ако правилото е $Aa\to B$, то това е DEL. Ако е $aA\to B$, то го заменяме с $aA\to A'a$ и $A'a\to B$, първото е MVL, а второто REP.
- 4. $|\alpha| = |\beta| = 2$.
 - (a) $Aa \rightarrow Bb$, то това е REP.
 - (б) $Aa \to bB$, то го заменяме с $Aa \to B'b$ и $B'b \to bB$, където B' е нов. Първото е правило е REP, а второто MVR.
 - (в) $aA \to \beta$, то го заменяме с $aA \to A'a$ и $A'a \to \beta$, където A' е нов. Първото правило е мVL, а второто е от един от горните два вида.

Лема 2.4. Всяка канонична 1-управляваща граматика е еквивалентна на 1-управляваща граматика със $\Sigma' = \Sigma \cup \{_\}$ и правила от типове REP, MVL, MVR u:

- 1. INSE: $A\# \to Ba\#$
- 2. Dele: $A \# \rightarrow B\#$.
- II 1. Нека $\rho = N \to N'a$ е от тип INS. Да забележим, че ако G е еднозначна, това е единственото правило с лява страна N. По същество идеята е следната: да маркираме позицията, на която трябва да се добави a, да изместим символите вдясно от тази позиция с 1 позиция вдясно; да се върнем на маркираната позиция и да поставим на нея a, преминавайки в нетерминала N'. За целта може да разгледаме следното множество от правила и нови нетерминали:

$$\mathcal{N}' = \mathcal{N} \cup \{C, R\} \cup \{T_{\sigma}, | \sigma \in \Sigma'_{\#}\}$$

$$P' = P \setminus \{N \to N'a\} \cup \{N\sigma \to _T_{\sigma} | \sigma \in \Sigma'\} \cup \{N\# \to C_\#, C_ \to aN'\}$$

$$\cup \{T_{\sigma}\sigma' \to \sigma T_{\sigma'} | \sigma' \in \Sigma'\} \cup \{T_{\sigma}\# \to R\sigma\#\}$$

$$\cup \{\sigma R \to R\sigma | \sigma \in \Sigma'\} \cup \{_R \to aN'\}.$$

Тази граматика има правила, $N\sigma \to _T_\sigma$ и $T_\sigma\sigma' \to \sigma T_{\sigma'}$, които не са от позволените. Но всяко едно такова правила изобщо казано е от вида $Xb \to cY$ и може да бъде симулирано чрез следните две правила:

$$Xb \to Z_{Y,c}c, \quad Z_{Y,c}c \to cY$$

където $Z_{Y,c}$ е нов нетерминал. Първото правило е от тип REP, а второто от тип MVR.

2. Нека $\rho = Na \to N'$, $a \in \Sigma'$. Отново идеята е интуитивна. Изтриването на a може да представим като: маркиране на позицията, на която е a; намирането на края на думата (#); изместването на символите вдясно от a с една позиция вляво. Когато се попълни маркираната позиция, преминаваме в нетерминала N'. За целта може да разгледаме следното множество от правила и нови нетерминали:

$$\begin{split} \mathcal{N}' &= \mathcal{N} \cup \{R,C\} \cup \{T_{\sigma} \,|\, \sigma \in \Sigma'\} \\ P' &= P \setminus \{Na \to N'\} \cup \{Na \to _R\} \\ & \cup \{R\sigma \to \sigma R \,|\, \sigma \in \Sigma'\} \cup \{\sigma R\# \to T_{\sigma}\# \,|\, \sigma \in \Sigma'\} \\ & \cup \{\sigma' T_{\sigma} \to T_{\sigma'}\sigma \,|\, \sigma' \in \Sigma'\} \cup \{_T_{\sigma} \to N'\sigma \,|\, \sigma \in \Sigma'\}. \end{split}$$

 $\it Забележка 2.1.$ Да забележим, че при новодобавените правила няма нетерминали $\it X$, които да имат едновременно правила $\it c$ лява страна $\it X$ и $\it X\#$.

Теорема 2.1. *Нека* $G = \langle \Sigma \cup \{_\}, \mathcal{N}, P, S, F, \# \rangle$ *има правила само от типове* REP, MVL, MVR, INDE u DELE. *Тогава* $\mathcal{M} = \langle \Sigma \cup \{ _ \} \cup \{ _ \}, \mathcal{N}, S, \Delta, \{F\}, \square \rangle$ c *преходи:*

$$\begin{array}{ll} \Delta &=& \{\langle (A,a),(B,b)\rangle \mid Aa \to Bb \in P \ e \ \mathrm{REP}\} \cup \{\langle (A\boxdot,B\boxdot)\rangle \mid A\# \to B\# \in P\} \\ && \cup \{\langle (A,a),(B,\leftarrow)\rangle \mid \exists b \in \Sigma(bA \to Bb \in P \ e \ \mathrm{MVL})\} \\ && \cup \{\langle (A,a),(B,\to)\rangle \mid Aa \to aB \in P \ \mathrm{E \ MVR}\} \\ && \cup \{\langle (A,\boxdot),(B,a)\rangle \mid A\# \to Ba\# \in P\} \\ && \cup \{\langle (A,_),(B,\boxdot)\rangle \mid A_\# \to B\# \in P\} \end{array}$$

има език $\mathcal{L}(M) = \mathcal{L}(G)$.

Доказателство. Ще казваме, че конфигурация κ съответства на uAv#, ако $\kappa=(A,uv\boxdot,|u|)$. Ясно е, че това съотвествие е взаимно еднозначно. Ще докажем, че $(A,uv\boxdot,|u|)\Rightarrow_M(B,u'v'\boxdot,|u'|)$ точно когато $uAv\#\Rightarrow_G u'Bv'\#$.

- 1. |v| = 0, |v'| = 0. Тогава, u' = u и $(A, u \square, |u|) \Rightarrow_M (B, u \square, |u|)$ тогава и само тогава, когато $A\# \to B\# \in P$, откъдето $uA\# \Rightarrow_G uB\#$. Обратното също е ясно (защото правилата са с лява страна 2).
- 2. $|v| = 0, \ |v'| = 1$. Тогава, u' = u и $(A, u \square, |u|) \Rightarrow_M (B, u a \square, |u|)$, което тогава и само тогава, когато $A\# \to Ba\# \in P$. Следотаветлно $uA\# \Rightarrow_G uBa\#$. Обратно, ако $uA\# \Rightarrow uBa\#$, то $A\# \to Ba\#$ и следователно $\langle (A\square), (B, a) \rangle \in \Delta$.
- 3. |v|=1, |v'|=0, |u'|=|u|. Тогава $(A,ua \square, |u|) \Rightarrow_M (B,u \square, |u|)$, което е възможно само ако направеният преход е $\langle (A,a), (B,\square) \rangle$. Следователно $a=_$ и $Aa\# \to B\# \in P$. Сега е ясно, че $uA_\# \Rightarrow_G uB\#$. Обратно, ако $uAa\# \Rightarrow_G uB\#$, то е приложено DELE, защото е намалял броят на символите и тогава обратната посока също е ясна.
- 4. |v| = 0, |v'| = 1, |u| = |u'| + 1. Тогава v' = a и u = u'a, тоест $(A, u'a \square, |u'a|) \Rightarrow_M (B, u'a \square, |u'|)$. Следователно има MVL $bA \to bB$ в G. Но тогава B е еднозначно определено и е за всички символи $x \in \Sigma$, в частност за a. Следователно $uaA\# \Rightarrow_G uBa\#$. Обратната посока е ясна.
- 5. |v| = |v'| 1 и |u| = |u'| + 1. Аналогично на горния случай.
- 6. |v|=|v'|+1 и |u|=|u'|-1. Тогава v=av' и u'=ua и се прави десен преход $(A,uav'\boxdot,|u|)\Rightarrow_M (B,uav'\boxdot,|u|+1)$, което е възможно само ако $Aa\to aB$ в G. Следователно $uAav'\#\Rightarrow_G uaBv'\#$. Обратното също е ясно.
- 7. |v| = |v'| > 0. Тогава |u'| = |u| и v = av'', v' = bv'' за някои $\{(A, a), (B, b)\} \in \Delta$, което е точно когато $Aa \to Bb$ е REP в G. И отново е ясно, че $uAav''\# \Rightarrow_G uBbv''\#$.

Сега с индукция по дължината на изпълнението/извода получаваме, че следните са еквивалентни:

- 1. $(S, w \square, 0) \Rightarrow_M (A, uv \square, |u|),$
- 2. $Sw\# \Rightarrow_G uAv\#$.

Следователно, в частност $Sw\# \Rightarrow_G uFv\#$ точно тогава, когато $(S,w \square,0)\Rightarrow_M (F,uv \square,|u|)$, тоест $w\in \mathcal{L}(G)$ точно тогава, когато $w\in \mathcal{L}(M)$.