

Energy-Efficient Home Analysis in NYS

Abdellah Ait Elmouden

DATA698 | Analytics Master's Research Project

CUNY School of Professional Studies

Research Question

- Do energy-efficient homes save energy?
- What are the primary factors for adoption of an energy-efficient program for energy and cost saving?

The Dataset

The model is based solely on publicly available data and comprises information available from one principle dataset: data from the New York State Energy Research and Development Authority (N' SERDA), hosted by the State of New York.

Data source : https://data.ny.gov/Energy-Environment/Residential-Existing-Homes-One-to-Four-Units-Energ/assk-vu73

The Dataset

Rows: 55,830

\$ Counties.2

\$ NYS.Municipal.Boundaries.2

```
Columns: 29
$ Reporting.Period
$ Home.Performance.Project.ID
$ Home.Performance.Site.ID
$ Project.County
$ Project.City
$ Project.Zip
$ Gas.Utility
$ Electric.Utility
$ Project.Completion.Date
$ Customer.Type
$ Low.Rise.or.Home.Performance.Indicator
$ Total.Project.Cost
$ Total.Incentives
$ Type.of.Program.Financing
$ Amount.Financed.Through.Program
$ Pre.Retrofit.Home.Heating.Fuel.Type
$ Year.Home.Built
$ Size.of.Home
$ Volume.of.Home
$ Number.of.Units
$ Measure.Type
$ Estimated.Annual.kWh.Savings
$ Estimated.Annual.MMBtu.Savings
$ First.Year.Energy.Savings...Estimate
$ Homeowner.Received.Green.Jobs.Green.NY.Free.Reduced.Cost.Audit..Y.N.
$ New.Georeferenced.Column
$ New.York.Zip.Codes.2
```

```
<chr> "2020-02-12T00:00:00.000", "20...
<chr> "483911", "486389", "483374", ...
<chr> "357221", "343438", "356880", ...
<chr> "Oneida", "Wayne", "Erie", "On...
<chr> "Barneveld", "Palmyra", "Buffa...
<int> 13304, 14522, 14215, 13440, 14...
<chr> "", "", "National Fuel Gas Dis...
<chr> "National Grid", "New York Sta...
<chr> "2021-01-16T00:00:00.000", "20...
<chr> "Assisted", "Assisted", "Assis...
<chr> "Home Performance", "Home Perf...
<int> 5900, 9980, 5000, 4200, 5890, ...
<int> 2950, 3250, 2500, 2088, 2945, ...
<int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
<chr> "", "Propane", "Natural Gas", ...
<int> 1947, 1966, 1928, 1971, 1984, ...
<int> 2398, 1092, 1616, 980, 940, 24...
<int> 19184, 8517, 20516, 7840, 7520...
<int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
<chr> "Building Shell", "Building Sh...
<int> 0, 309, 0, 0, 0, -30, 20, 0, -...
<int> 27, 3, 8, 28, 6, 13, 34, 3, 14...
<int> 474, 111, 61, 681, 146, 15, 28...
<chr> "Y", "Y", "Y", "Y", "Y", "Y", ...
<chr> "{'type': 'Point', 'coordinate...
<int> 764, 364, 71, 1366, 312, 239, ...
<int> 625, 631, 2041, 625, 2091, 213...
<int> 985, 631, 300, 989, 742, 811, ...
```

Rows: 55,830 Columns: 29

Missing Data

Methodology

Data Preparation:

- Data Cleaning
- Data Imputation
- Variable Classification (coding)

Data-driven prediction techniques:

- ANOVA Analysis
- Multiple linear regression
- Multilayer neural network

Methodology | Variable Categories

Gas Utility

- 1: NA
- 2: "Central Hudson Gas & Electric"
- 3: "Consolidated Edison"
- 4: "Corning Natural Gas"
- 5: "KeySpan Energy"
- 6: "Long Island Power Authority"
- 7: "Multiple Gas Providers"
- 8: "Municipal"
- 9: "National Fuel Gas Distribution"
- 10: "National Grid"
- 11: "New York State Electric & Gas"
- 12: "No Gas Provider"
- 13: "Orange & Rockland"
- 14: "Rochester Gas & Electric"
- 15: "Saint Lawrence Gas"

Electric Utility

- 1: "Central Hudson Gas & Electric"
- 2: "Consolidated Edison"
- 3: "Long Island Power Authority"
- 4: "Municipal (Not Qualified)"
- 5: "National Grid"
- 6: "New York State Electric & Gas"
- 7: "Orange & Rockland"
- 8: "Rochester Gas & Electric"

Fuel Type

- 1: NA
- 2: "Anthracite Coal"
- 3: "Bituminous Coal"
- 4: "Coal"
- 6: "Electricity"
- 7: "Kerosene"
- 9: "Natural Gas"
- 10: "Oil"
- 11: "Propane"
- 12: "Wood"
- 13: "Wood Pellets"

Customer Type

- 1: "Assisted"
- 2: "Market"

Measure Type

- 1: "Building Shell"
- 2: "Heating and Cooling"
- 3: "Water Heater"

HRGJ

- 2: "Y"
- 1: "N"

Table 1: Variables Summary Statistics (N = 55830)

	Mean		Variance	Skewness		Kurtosis	
	Statistic	Std. Error	Statistic	Statistic	Std. Error	Statistic	Std. Error
Gasutility	8.16	0.022	26.602	-0.399	0.01	-1.433	0.021
Elecutility	5.43	0.008	3.915	-0.273	0.01	-0.732	0.021
customertype	1.61	0.002	0.238	-0.453	0.01	-1.795	0.021
totalprojectcost	8572.8	23.628	31169565.735	2.063	0.01	8.209	0.021
totalincentive	1687.31	7.219	2909413.163	0.961	0.01	0.262	0.021
fueltype	9.04	0.005	1.393	-2.159	0.01	14.648	0.021
yearhomebuilt	1945.78	0.16	1436.601	-0.932	0.01	1.004	0.021
sizeofhome	1909.51	2.889	466074.787	0.772	0.01	0.12	0.021
masuretype	1.01	0	0.01	10.382	0.01	110.132	0.021
FYES	596.21	2.893	467243.075	2.395	0.01	7.425	0.021
HRGJ	1.85	0.002	0.127	-1.962	0.01	1.85	0.021

Categorical Variables

Numerical Variables

Cullen and Frey graph

Correlation

Table 2: Goodness-of-fit-statistics

Goodness-of-fit-statistics						
	1-mle-weibull	2-mle-gamma	3-mle-exp			
Kolmogorov-Smirnov-statistic	0.042	0.051	0.055			
Cramer-von-Mises-statistic	36.676	53.192	60.093			
Anderson-Darling-statistic	224.160	281.895	307.472			
Goodness-of-fit-criteria						
	1-mle-weibull	2-mle-gamma	3-mle-exp			
Akaike's-Information-Criterion	567029.00	567244.30	567262.60			
Bayesian-Information-Criterion	567046.90	567262.10	567271.50			

Histogram and theoretical densities

Model development | Correlation

Model development | ANOVA Analysis

Model development | Multiple Regression

```
Call:
lm(formula = eng imputed$FYES ~ eng imputed$Size.of.Home + eng imputed$Total.Incentives +
   Gas.Utility, data = eng imputed, subset = Electric.Utility +
   Fuel.Type, weights = Total.Project.Cost)
Weighted Residuals:
   Min
            10 Median
                           30
                                 Max
-105513 -51072 -3101 17456
                               84658
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        -1.309e+03 1.229e+01 -106.5 <2e-16 ***
eng imputed$Size.of.Home 9.723e-01 4.655e-03 208.9 <2e-16 ***
eng imputed$Total.Incentives -2.826e-02 2.125e-03 -13.3 <2e-16 ***
              2.842e+01 1.128e+00 25.2 <2e-16 ***
Gas.Utilitv
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 40940 on 55826 degrees of freedom
Multiple R-squared: 0.6168, Adjusted R-squared: 0.6168
F-statistic: 2.996e+04 on 3 and 55826 DF, p-value: < 2.2e-16
```


idden layer activation function: Hyperbolic tange Output layer activation function: Identity

Predictor		Predicted							
		Hidden Layer 1						Output Layer	
		H(1:1)	H(1:2)	H(1:3)	H(1:4)	H(1:5)	H(1:6)	H(1:7)	FYES
Input Layer	(Bias)	260	3.200	1.799	1.049	.566	005	049	
	Totalprojectcost	.254	542	.193	.208	.714	.109	235	
	Totalincentive	.068	321	074	319	149	392	168	
	sizeofhome	.166	149	162	143	228	.030	.281	
	Gasutility	.298	1.019	2.070	.321	.112	331	.072	
	Electricutility	-1.301	.199	824	313	.534	209	286	
	Fueltype	337	073	-1.323	.965	.220	009	346	
Hidden Layer 1	(Bias)								2.2
	H(1:1)								.6
	H(1:2)								-2.0
	H(1:3)								6
	H(1:4)								4
	H(1:5)								.8.
	H(1:6)								1
	H(1:7)								.3

Figure 10: Neural Network Parameter Estimates

Table 4: Independent Variable Importance

	Importance	Normalized Importance
Total Proje Cost	0.561	100.00%
Total Incentive	0.095	17.00%
Size of Home	0.044	7.80%
Gas Utility	0.116	20.70%
Electric Utility	0.065	11.70%
Fuel Type	0.119	21.10%

$$V_{0bias(7x1)} = \begin{bmatrix} -.26\\ 3.2\\ 1.8\\ 1\\ 0.57\\ -0.005\\ -0.049 \end{bmatrix} \text{ and } W_{bias(1x1)} = \begin{bmatrix} 2.24 \end{bmatrix} \text{ and } W_{6x1} = \begin{bmatrix} .643\\ -2\\ -.607\\ -.405\\ .821\\ -.189 \end{bmatrix}$$

$$V_{(6x7)} = \begin{bmatrix} .254 & -.542 & .193 & .208 & .714 & .109 & -.235 \\ .068 & -.321 & -.074 & -.319 & -.149 & -.392 & -.168 \\ .166 & -.149 & -.162 & -.143 & -.228 & .030 & .281 \\ .298 & 1.019 & 2.070 & .321 & .112 & -.331 & .072 \\ -1.3 & 0.2 & -.824 & -.313 & .534 & -.209 & -.286 \\ -.337 & -.073 & -1.323 & .965 & .220 & -.009 & -.346 \end{bmatrix}$$

$$FYES = [W_{bias(1x1)} + (W_{6x1})^T + \tanh[V_{0bias(7x1)} + (V_{(6x7)})^T * W_{6x1})] * Std_{FYES} + \overline{X}_{FYES}]$$

Conclusion

This work indicates that MNN models have significant potential for use in predicting efficient-home Energy Saving. the model proposed that Energy efficiency is known to be a cost-effective investment when projects cost are higher, but the actual amount of savings differs based on the upgrade in question, also Fuel switching type, and Gas Utility. Although MNN can help to show trends in total energy saving patterns, they cannot explain the various components that contribute to energy saving at the household level. For this type of analysis it is necessary to conduct investigations at the micro-level.

Bottom-up methods take a disaggregated approach and estimate energy demand and emissions using high resolution data using a combination of physical, social, behavioural and demographic properties for a household.

References

- Wokje Abrahamse and Linda Steg. How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings? Journal of Economic Psychology, 30(5):711-720, October 2009.
- Abdo Abdullah Ahmed Gassar, Geun Young Yun, and Sumin Kim. Data-driven approach to prediction of residential energy consumption at urban scales in London. Energy, 187:115973, November 2019.
- [3] Fiona Burlig, Christopher Knittel, David Rapson, UC Davis, Mar Reguant, and Catherine Wolfram. Machine Learning from Schools about Energy Efficiency. page 45.
- [4] Birgitta Gatersleben, Linda Steg, and Charles Vlek. Measurement and Determinants of Environmentally Significant Consumer Behavior. Environment and Behavior, 34(3):335–362, May 2002. Publisher: SAGE Publications Inc.
- [5] Andrea L. Hicks and Thomas L. Theis. Residential energy-efficient lighting adoption survey. Energy Efficiency, 7(2):323–333, April 2014.
- [6] Eunsil Lee, Nam-Kyu Park, and Ju Hyoung Han. Factors Affecting Environmentally Responsible Behaviors in the Use of Energy-efficient Lighting in the Home. Family and Consumer Sciences Research Journal, 41(4):413–425, June 2013. Publisher: John Wiley & Sons, Ltd.
- [7] Joe O'Doherty, Sean Lyons, and Richard S.J. Tol. Energy-using appliances and energy-saving features: Determinants of ownership in Ireland. Applied Energy, 85(7):650–662, July 2008.
- [8] Geoffrey K. F. Tso and Kelvin K. W. Yau. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy, 32(9):1761–1768, September 2007.
- [9] Sanna Tuomela, Mauricio de Castro Tomé, Netta Iivari, and Rauli Svento. Impacts of home energy management systems on electricity consumption. Applied Energy, 299:117310, October 2021.

Thank you!