

Guía de ejercicios Nº 5 Vectores en el plano R² y en el espacio R³

Vectores en el plano

- (a) Representar en el plano cartesiano los puntos A(2,5), B(4,2), C(6,7). 1.
 - (b) Hallar los vectores \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{AC} , \overrightarrow{BC} , \overrightarrow{BA}
 - (c) Relacionar los vectores anteriores mediante operaciones o equivalencias.
- (a) Dado el punto inicial A(1,5) y el punto final B(2,-7), hallar el vector $\vec{v} = \overrightarrow{AB}$. 2.
- (b) Siendo O(0,0), hallar un punto D tal que $\overrightarrow{AB} = \overrightarrow{OD}$.
- Sean los vectores $\vec{a} = <5, -3>$ $\vec{b} = <3, 4>$ 3.
 - (a) Hallar $\vec{a} + \vec{b} + \vec{c}$ $3\vec{a} + 4\vec{b}$ $(3\vec{a} + 4\vec{b}) 2\vec{c}$ (b) Escribir todos los vectores anteriores en la forma $v_x \vec{i} + v_y \vec{j}$ y hallar el
 - módulo de cada uno de ellos.
- Hallar el producto escalar o producto punto $\vec{a} \cdot \vec{b}$ siendo \vec{a} y \vec{b} respectivamente 4. los siguientes vectores:
 - <2,3>y<3,4>(a)
 - (b) <1,-5> y <2,3>
 - <-3.4> v <8.6> ¿Qué se concluye en este caso? (c)
- 5. Hallar el ángulo que forman los vectores <7,0> y <3,3>.
- ¿Cuáles de los siguientes pares de vectores son perpendiculares? 6.
 - <3,2>y<-3,2>(a)
 - <2.1> v <-1,-2> (b)
 - (c) $< a.0 > v < 0.b > con a.b \ne 0 \in N$
- Dados $\vec{a} = 3\vec{i} + 4\vec{j}$ y $\vec{b} = -2\vec{i} + \vec{j}$, encontrar "k" e "y" para que 7. $\vec{c} = 3\vec{i} + y\vec{j} = k(\vec{a} - \vec{b})$
- Hallar una ecuación vectorial para la recta que pasa por los puntos A(1,3) y 8. B(2,4).
- Dada la recta de ecuación 3x 4y + 5 = 0, hallar k para el vector <-8, k> sea 9. perpendicular a ella.

- 10. ¿Qué valor debe tener k para que el vector $\vec{v} = <12k, -5k >$ sea unitario?
- 11. Dada la recta $r:(x,y)=(4,8)+\lambda < 3,4 >$
 - (a) Hallar la abscisa x de un punto $P \in r$ si se sabe que su ordenada y = 0.
 - (b) Escribir la ecuación de la recta r en su forma general, Ax + By + C = 0.
- 12. Hallar un vector que siendo colineal con el vector <3,-4> tenga módulo 20 y sentido opuesto.
- 13. Hallar un vector que siendo perpendicular al vector <2,-1> tenga módulo 5 (dos soluciones).

Vectores en el espacio

- 14. (a) Dada la recta $l:(x,y,z)=(4,8,-3)+\lambda < 2,3,4>$, decidir si los puntos A(12,20,13) y B(-1,5,-3) pertenecen a ella.
- 15. Hallar z para que los vectores $\vec{a} = 2\vec{i} + 3\vec{j} + 2\vec{k}$ y $\vec{b} = -3\vec{i} + 4\vec{j} + z\vec{k}$ sean perpendiculares.
- (a) Hallar el producto vectorial de los vectores <1,3,5> y <-2,3,-4>.(b) Comprobar que dicho resultado es un vector perpendicular a los dos vectores dados.
- 17. Siendo $\vec{a} = <1,0,0>$ y $\vec{b} = <\sqrt{3},1,0>$ comprobar que el módulo del producto vectorial $\vec{a} \times \vec{b}$ es igual numéricamente al área del paralelogramo que tiene a esos vectores como lados sobre el plano XY.
- 18. Recordando la definición del momento de una fuerza $\vec{M} = \vec{F} \times \vec{r}$, calcularlo en el caso de que $\vec{F} = 2\vec{i} + 3\vec{j} + 2\vec{k}$ y $\vec{r} = -\vec{i} + 4\vec{j} + \vec{k}$

