Chapitre 9

Que faire avec des problèmes NP-complets?

(Programme de khôlles)

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

	[CHOTCHKIES RESTAURANT]	
	~ APPETIZERS ~	
	MIXED FRUIT	2.15
١	FRENCH FRIES	2.75
	SIDE SALAD	3.35
	HOT WINGS	3.55
	Mozzarella Sticks	4.20
	SAMPLER PLATE	5.80
	→ SANDWICHES →	
	RARRECUE	6 55

Groupes A, B & C (CCINP et Mines-Telecom)

- 1. Définition d'un algorithme probabiliste, d'un algorithme de type Las Vegas, de type Monte Carlo.
- 2. Pour $M \neq AB C$, on a $P_{X \hookrightarrow u(\{0,1\}^n)}(MX = 0_n) \le \frac{1}{2}$. (démo)
- 3. Définition d'un faux positif, faux négatif.
- 4. Sélection du k^e éléments dans un tableau : majoration du nombre d'étapes pour sélectionner dans un tableau de taille n. (démo)
- 5. Définition d'un problème de minimisation, de maximisation, du coefficient d'approximation dans les deux cas.
- 6. Approximation pour MINVC, SOMMEPARTIELLE. (démos)
- 7. Algorithme : Branch and bound (principe, différences et similitudes avec le backtracking, pseudo-code avec et sans élagage).

Groupes B & C (Mines, Centrale, X)

- 8. Théorème : Si X_n représente le nombre de comparaisons effectuées par le tri rapide randomisé sur un tableau de taille n, alors $E(X_n) \sim 2n \log(n)$. (démo)
- 9. Algorithme de MC associé au problème de Perfect Matching : P_R (faux alors alors qu'il existe CP) $\leq \frac{1}{2}$. (démo)
- 10. Algorithme: Mélange de Knuth principe et preuve de correction (l'invariant est à connaître!!!!).
- 11. Approximation pour MAXCUT, COUPLAGEPOIDSMAX. (démos)
- 12. Problème du voyageur de commerce (À connaître par coeur!!).
- 13. Algorithme de MC associé à MAXSAT, Théorème associé : En notant $E(\varphi)$ l'espérance du nombre de clauses satisfaites, tirer une valuation au hasard \implies de dire que $E(\varphi) \ge \frac{c}{2}$ avec c le nombre de clauses. (démo)
- 14. Théorème (toujours à propos du même algorithme) : Si φ est sous forme CNF alors la valuation calculée par cet algo satisfait au moins $E(\varphi)$ clauses. (démo)
- 15. Bien connaître la propriété sur l'heuristique d'un algo branch and bound, en fonction du type de problème (minimisation ou maximisation).

Groupe C (ENS)

16. Théorème : Soit $\varepsilon > 0$, si on dispose d'un algo polynomial qui résout le PVC avec erreur $(1 + \varepsilon)$ alors P = NP. (démo)

MPI* Prime 1 MPI* Faidherbe 2023-2025