vlsm_200.200.100.0.md 2025-10-02

vlsm 200.200.100.0 24

Requerimiento

Dada la siguiente topología y la dirección IP 200.200.100.0/24, se nos pide que por medio de subnateo con VLSM obtengamos direccionamiento IP para los hosts de las 3 subredes. Estan son:

• IP LAN:

Red estudiantes: 100 hostsRed profesores: 30 hostsRed invitados: 24 hosts

• Red inter router: 2 hosts

• 4 router (conexiones punto a punto serial entre ellos)

Análisis y solución

Ordeno redes de mayor hosts a menor cantidad

Cálculo Red estudiantes

- hosts_por_subred = 2^(bits_host) 2 = (2^7) 2 = 126
- bits_host = 7 (bits de porcion de host)
- bits_prestados = 1 (ya que 8 7)
- nueva_máscara = bits_prestados + máscara_original = 1 + 24
- salto = $2^bits_bs = 2^7 = 128$

red	IP LAN	host min	host max	broadcast
estudiantes	200.200.100.0/25	200.200.100.1	200.200.100.126	200.200.100.127

Cálculo Red profesores

- hosts_por_subred = 2^(bits_host) 2 = (2^5) 2 = 30
- bits_host = 5 (bits de porcion de host)
- bits_prestados = 3 (ya que 8 5)
- nueva_máscara = bits_prestados + máscara_original = 3 + 24
- salto = 2\bits_host = 2\bits_ = 32

red	IP LAN	host min	host max	broadcast
profesores	200,200,100,128/27	200.200.129	200.200.158	200,200,100,159

Cálculo Red invitados

- hosts_por_subred = $2^{(bits_host)} 2 = (2^5) 2 = 30$
- bits_host = 5 (bits de porcion de host)
- bits_prestados = 3 (ya que 8 5)
- nueva_máscara = bits_prestados + máscara_original = 3 + 24

vlsm_200.200.100.0.md 2025-10-02

• salto = $2^bits_bost = 2^ = 32$

red	IP LAN	host min	host max	broadcast
invitados	200.200.100.160/27	200.200.100.161	200.200.100.190	200.200.100.191

Cálculo Redes inter router

- hosts_por_subred = 2^(bits_host) 2 = (2^2) 2 = 2
- bits_host = 2 (bits de porcion de host)
- bits_prestados = 6 (ya que 8 2)
- nueva_máscara = bits_prestados + máscara_original = 30 + 24
- salto = 2^bits_host = 2^ = 4

red	IP LAN	host min	host max	broadcast
r2-r1	200.200.100.192/30	200.200.100.193	200.200.100.194	200.200.100.195
r3-r1	200.200.100.196/30	200.200.100.197	200.200.100.198	200.200.100.199
r4-r1	200.200.100.200/30	200.200.100.201	200.200.100.202	200.200.100.203

Solución

Anexo / referencias

Documentación consultada

· Documento PDF, profesor Rúben

Formulas útiles y/o utilizadas

```
subredes = 2^(bits_prestados)
hosts_por_subred = 2^(bits_host) - 2
bits_prestados = nueva_máscara - máscara_original
bits_host = 32 - nueva_máscara
salto = 2^bits_host
```