

Facultad de Informática de Madrid LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 1ª EVALUACIÓN (13 de enero de 2015)

Apellidos:

SOLUCION

Nombre:

Ejercicio 1:

Dada la gramática de Tipo 0:

$$G = \{ \Sigma_T = \{ 0, 1, 2 \}, \Sigma_N = \{ S, A \}, S, \mathcal{P} \}$$

con las producciones ${\cal 9}$:

S::= S10

1A0::=2

A1::=1S

Obtener una gramática G´, en forma de estructura de frases, tal que L(G) = L(G´)

25 minutos

Se introduce B == 0 que dant la producciones C: =1 D: = 2 5:1=5cB y Ac:= cs no estain CAB :: = D en former de extractions de ficis AC: = CS B: =0 CAB: = 0 resubiture por CAB:= CA CA:= C Cist D::=2 AC! = CS re untitury pro | AC: = AX AX! = YX YX: = YS. ance dand 6' 1 6'=6 61=(2-=10,1,24,5w=15,A,B,C,D1,5,P') 8: = SCB CAB :: = CA 4x:=45 45::= 45 B? = 0 C: =1

0;;= 2

Facultad de Informática de Madrid LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL - 1ª EVALUACIÓN (13 de enero de 2015)

Apellidos:

SOLUCION

Nombre:

Ejercicio 2:

Construir autómatas finitos deterministas que reconozcan los siguientes lenguajes:

- a) $L_1 = \{ a^m b^n / m, n > 0 \}$
- b) $L_2 = \{ x \in \{ a, b \}^* / N_a(x) \text{ es par } \}$, siendo $N_a(x) = n$ úmero de a´s de x.
- c) $L_3 = \{ x \in \{ 0, 1 \}^* / \text{ en } x \text{ aparece el 1 dos ó tres veces, la primera y la segunda aparición no son consecutivas } \}$

25 minutos

Facultad de Informática de Madrid LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD FINAL – 2ª EVALUACIÓN (13 de enero de 2015)

Apellidos:

SOLUCION

Nombre:

Ejercicio 1:

Sea el Autómata, AP1 = { Σ , Γ , Q, q₀, A₀, f, \varnothing } que acepta por VACIADO DE PILA, con Σ = { 0, 1 }, Γ = { A₀, A }, Q = { q₀, q₁ } y f definida mediante los 6 movimientos siguientes:

- 1) $f(q_0 \ 0 \ A_0) = (q_0 \ AA_0)$
- 2) $f(q_0 \ 0 \ A) = (q_0 AA)$
- 3) $f(q_0 \ 1 \ A) = (q_1 \ \lambda)$
- 4) $f(q_1 \ 1 \ A) = (q_1 \ \lambda)$
- 5) $f(q_1 \lambda A) = (q_1 \lambda)$
- 6) $f(q_1 \ \lambda \ A_0) = (q_1 \ \lambda)$
- a) Construir, utilizando el algoritmo correspondiente, un AP2 que acepte por ESTADOS FINALES el mismo lenguaje que acepta AP1. Siendo AP2 = { Σ , $\Gamma \cup \{A_0'\}$, Q $\cup \{q_0',q_F\}$, q_0' , A_0' , f', F }, donde F = { q_F } (7 puntos).
- b) Comprobar la aceptación de las palabras 00011 y 00111 en ambos (2 puntos).
- c) Describir el lenguaje que reconocen ambos autómatas (1 punto).

25 minutos

a) Construir AP2 que acepte por ESTADOS FINALES:

AP1 = { { 0, 1 }, { A, A₀ }, { q₀, q₁ }, q₀, A₀, f, \varnothing }, AP2 = { { 0, 1 }, { A, A₀, A₀'}, { q₀, q₁, q₀', q_F }, q₀', A₀', f', { q_F } }, f' se define:

1) $f'(q_0' \lambda A_0') = (q_0' A_0 A_0')$ 2) $f'(q_0 0 A_0) = (q_0 A A_0)$

3) $f'(q_0 \cup A_0) = (q_0 \land A_0)$

4) $f'(q_0 \ 1 \ A) = (q_1 \ \lambda)$

5) $f'(q_1 \ 1 \ A) = (q_1 \ \lambda)$ 6) $f'(q_1 \ \lambda \ A) = (q_1 \ \lambda)$

7) $f'(q_1 \lambda A_0) = (q_1 \lambda)$

8) $f'(q_1 \lambda A_0') = (q_F \lambda)$

PASO 1 del algoritmo: $f'(q_0' \lambda A_0') = (q_0' A_0 A_0')$ AP2 accede a la descripción instantánea inicial de AP1. Comienza a emular a AP1

PASO 2 del algoritmo: f'(q a A) = f(q a A)AP2 realiza mismos movimientos que AP1

PASO 3 del algoritmo: ($q_F \lambda$) \in f' ($q_1 \lambda A_0'$) AP2 alcanza el estado final q_F mediante un Lambda movimiento. Acepta $x \in L$.

b) aceptación de las palabras 00011 y 00111:

ACEPTACIÓN por AP1 de la palabra 00011: $(q_0 \ 00011 \ A_0) \models (q_0 \ 0011 \ AA_0) \models (q_0 \ 011 \ AAA_0) \models (q_0 \ 11 \ AAA_0) \models (q_1 \ \lambda \ AA_0) \models (q_1 \ \lambda \ A_0) \models (q_1 \ \lambda \ A_0) \models (q_1 \ \lambda \ A_0) \mid ACEPTA 00011 \in L$

ACEPTACIÓN por AP2 de la palabra 00011: $(q_0'\ 00011\ A_0')$ |— $(q_0\ 00011\ A_0A_0')$ |— $(q_0\ 0011\ AA_0A_0')$ |— $(q_0\ 11\ AAAA_0A_0')$ |— $(q_1\ 1\ AAAA_0A_0')$ |— $(q_1\ 1\ AAA_0A_0')$ |— $(q_1\ 1\ AAA_0A_0')$ |— $(q_1\ 1\ AAAA_0A_0')$ |— $(q_1\ 1\ AAA_0A_0')$ |— $(q_1\ 1\ AAA_0A_0')$ |— $(q_1\ 1\ AAAA_0A_0')$ |— $(q_1\ 1\ AAAA_0A_0A_0')$ |— $(q_1\ 1\ AAA$

ACEPTACIÓN por AP1 de la palabra 00111: $(q_0 \ 00111 \ A_0) \ | - (q_0 \ 0111 \ AA_0) \ | - (q_0 \ 111 \ AAA_0) \ | - (q_1 \ 11 \ AAA_0) \ | - ($

ACEPTACIÓN por AP2 de la palabra 00111: $(q_0'\ 00111\ A_0')$ |— $(q_0\ 00111\ A_0A_0')$ |— $(q_0\ 0111\ AA_0A_0')$ |— $(q_1\ 11\ AA_0A_0A_0')$ |— $(q_1\ 11\$

c) El lenguaje aceptado por los autómatas a pila AP1 y AP2 es el siguiente: L = $\{0^n 1^m / n \ge m \ge 1\}$

Facultad de Informática de Madrid
LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD

FINAL – 2ª EVALUACIÓN (13 de enero de 2015)

Apellidos:

SOLUCION

Nombre:

Ejercicio 2:

Sea la Máquina de Turing M definida según el siguiente grafo:

Y cuya configuración inicial es la siguiente:

Donde x e y son dos números enteros positivos codificados en unario. M inicialmente está en el estado q_0 leyendo el último 1 de y.

a) ¿Qué función aritmética sobre x e y calcula M? Escribir (y describir brevemente) el contenido inicial de la cinta de la Máquina de Turing Universal (MTU) cuando simula a la máquina M y ésta recibe como entrada:

Config. Inicial:

(2 puntos)

b) Escribir (y describir brevemente) el contenido final de la cinta de la MTU cuando se para después de simular a la máquina M con la entrada del apartado a). Utilicen la siguiente codificación binaria

$$q_0 \equiv 00; \ q_1 \equiv 01; \ q_2 \equiv 10$$

Desplazamiento a la izqua. $I \equiv 1$; Desplazamiento a la dcha. $D \equiv 0$ (2 puntos)

- c) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de la ejecución del módulo localizador cuando la MTU está simulando el primer movimiento de M con la entrada del apartado a). (2 puntos)
- d) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de la ejecución del módulo transcriptor cuando la MTU está simulando el primer movimiento de M con la entrada del apartado a). (2 puntos)
- e) Escribir (y describir brevemente) el contenido de la cinta de la MTU después de simular el primer movimiento que realiza M con la entrada del apartado a).

(2 puntos)

NOTA: Todos los apartados se responderán en la carilla de atrás.

Continuación ejercicio 2. RESPUESTAS. SOLUCIONES Apartado a) [X+Y+2] fo 1: Estado inicial de H, símbolo pue lee M (en la colda con *)
#00110*+001*0010011*
OIIOIII # 0 1 0 1 0 1 1 = #
Apartado b)
#*\\\\
M re perz en q (10) levendo un # No hay ninpún repistro que empiece El módulo localizador merce y rechezes por 100 todos los repistros. El primer símbol del REG. inicial quede mercedo con una B
Apartado c) (es suficiente con escribir sólo la parte de la cinta que cambia) ‡ A A B ‡ A A B O O I I ‡ El repistro bozhizzo en el pue comienza por la necuencia 001 que entre en el Repistro inicial. Para detectar dicha necuencia de modulo borhizzo ha ciclos de hispueda/comparación en los que morca los numbos comparado. con A (n on 05) o con B (n on 15).
Apartado d) (es suficiente con escribir sólo la parte de la cinta que cambia) ‡00
Apartado e) (es suficiente con escribir sólo la parte de la cinta que cambia) # 0 0 1. 1 * ‡ 0 0 0 ‡ 0 0 ‡ 0 0 ‡ 0 0 ‡ El * 20 desplaza una celaz a la izpoe. En la celaz donde estabe * 20 escribe l El aímbolo (0) que esta en la celaz abrade se recodora el * 20 parada en le Ultima celaz del REG. inicial. Se restavan a 0 s y 1 s los REG. marcados