Metrische Räume

Norm

- **Definition**: Abbildung $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ sodass $\forall v, w \in V, \lambda \in \mathbb{R}$:
- \circ Definitheit: $||v|| = 0 \Leftrightarrow v = 0$
- Absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
- o Dreiecksungleichung: $||v+w|| \leq ||v|| + ||w||$ $(\mathbb{R}\text{-Vektorraum }V)$

Metrik

- Definition: $d: X \times X \to \mathbb{R}_{\geq 0}$ (Menge X) so dass $\forall x, y, z \in X$:
 - \circ Positivität: $d(x, y) = 0 \Leftrightarrow x = y$
 - Symmetrie: d(x, y) = d(y, x)
 - Dreiecksungleichung: $d(x, z) \le d(x, y) + d(y, z)$
- Wichtige Metriken:
 - $\circ \ \textit{Triviale Metrik:} \ d(x,y) \coloneqq \begin{cases} 0, & x=y \\ 1, & x\neq y \end{cases}$
 - Euklidische Metrik: $X = \mathbb{R}^n$, $d_e(x, y) \coloneqq \sqrt{\sum_{i=1}^n (x_i y_i)^2} = ||x y||$
 - $\quad \text{$\circ$ Induzierte Metrik: $d(v,w)\coloneqq \|v-w\|$ (Norm $\|\cdot\|)$}$
- Winkelmetrik: $d_W(x, y) := \arccos(\langle x, y \rangle)$
- Pseudometrik: Metrik, aber $d(x, y) = 0 \Rightarrow x = y$ gilt nicht
- Metrischer Raum: (X, d) (Menge X, Metrik d auf X)

Konstruktionen

- Einheitssphäre: $S_1^n\coloneqq\left\{x\in\mathbb{R}^{n+1}:\|x\|=1\right\}n$ -te Einheitssphäre Abgeschlossener Ball: abgeschlossener r-Ball um x

$$\overline{B_r(x)} \coloneqq \{ y \in X : d(x, y) \le r \}$$

• Offener Ball: offener r-Ball um x

$$B_r(x) \coloneqq \{ y \in X : d(x,y) < r \}$$

• Abstandserhaltende Abbildung: $f: X \to Y$ sodass $\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$

(metrische Räume (X, d_X), (Y, d_Y))

· Isometrie: bijektive abstandserhaltende Abbildung

 $\rightarrow X, Y \text{ isometrisch} \Leftrightarrow \exists \text{ Isometrie } f: (X, d_X) \rightarrow (Y, d_Y)$

Längenmetriken

Graphen

- Graph: G = (E, K)
- \circ Eckenmenge E
- \circ Kantenmenge $K \subseteq \{\{u, v\} : u \neq v \in E\}$
- Erreichbarkeit: $p, q \in E$ erreichbar $\iff \exists$ Kantenzug zwischen p und q
- $\rightarrow d(p,q)$ = kürzester Kantenzug zwischen p und q definiert Metrik

Euklidische Metrik

- Kurvenmenge: $\Omega_{pq}(X \subseteq \mathbb{R}^n)$ Menge der stetig db. Kurven zwischen p und q
- Euklidische Länge: $L_{\text{euk}}(c) = \int_a^b ||c'(t)|| dt (c \in \Omega_{pq}(\mathbb{R}^2))$
- o unabhängig von Kurvenparametrisierung
- o invariant unter Translationen, Drehungen, Spiegelungen
- Euklidische Metrik auf \mathbb{R}^2 -Kurven: $d_{\mathrm{euk}}(p,q)\coloneqq\inf L_{\mathrm{euk}}(c)$ $(p, q \in \mathbb{R}^2, c \in \text{Menge der stetig differenzierbaren Kurven zwischen } p \text{ und } q)$ $\rightarrow (\mathbb{R}^2, d_{\text{euk}}) = (\mathbb{R}^2, d_e)$

Sphärische Geometrie

- Sphärische Länge: $L_S(c) \coloneqq \int_a^b \|c'(t)\| dt = \int_a^b \sqrt{x'_1^2 + x'_2^2 + x'_3^2} dt$ (für $c : [a,b] \ni t \mapsto (x_1(t),x_2(t),x_3(t)) \in S_R^2 \subset \mathbb{R}^3$)
 invariant unter \mathbb{R}^2 -Rotationen
- **Großkreis**: Schnitt von S_R^2 und und 2-dimensionalen UVR des \mathbb{R}^2
- Sphärenmetrik: $d_S(p,q) \coloneqq \inf L_s(c) (c \in \Omega_{pq}(S_R^2))$
- (S_R^2, D_S) ist metrischer Raum und isometrisch zu $(S_R^2, R \cdot d_W)$

Grundbegriffe allg. Topologie

Topologische Räume

- Topologie: $\mathcal{O} \subseteq \mathcal{P}(X)$ (Menge X) sodass
- $\circ X, \emptyset \in \mathcal{O}$
- Topologischer Raum: (X, \mathcal{O})
- o Abgeschlossene Teilmengen $A \subset X \colon X \setminus A$ offen
- · Wichtige Topologien:
- $\circ \ \textit{Triviale Topologie} \colon \mathcal{O}_{\text{trivial}} \coloneqq \{X, \varnothing\}$
- \circ Diskrete Topologie: $\mathcal{O}_{diskret} := \mathcal{P}(X)$
- Standard-Topologie auf \mathbb{R} : $\mathcal{O}_s := \{I \in \mathbb{R} : I = \text{Vereinigung offener Intervalle}\}$
- ∘ *Zariski-Topologie*: $\mathcal{O}_Z := \{O \subset \mathbb{R} : O = \mathbb{R} \setminus E, E \subset \mathbb{R} \text{ endlich}\} \cup \{\emptyset\}$
- Induzierte Topologie (Metrik):
 - $-U \in X \text{ d-offen} \iff \forall p \in U \exists \varepsilon = \varepsilon(p) > 0 : B_{\varepsilon}(p) \in U$
 - d-offene Mengen bilden induzierte Topologie
- \circ Teilraum-Topologie: $\mathcal{O}_Y \coloneqq \{U \subseteq Y : \exists V \in \mathcal{O}_X : U = V \cap Y\}$ (Topologischer Raum (X, \mathcal{O}_X) , Teilmenge $Y \subseteq X$)
- o Produkttopologie: Topologische Räume (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) $W \subseteq X \times Y$ offen in Produkttopologie $\iff \forall (x,y) \in W \; \exists \; \text{Umgebung} \; U \; \text{von} \; x$ in X und V von y in Y, sodass $U \times V \subseteq W$
- Quotiententopologie: (X, \mathcal{O}) topologischer Raum, $\pi: X \ni x \mapsto [x] \in X/\sim$ kanonische Projektion
- $\rightarrow U \subset X / \sim \text{ ist offen} \iff \pi^{-1}(U) \text{ ist offen in } X.$
- Basis für Topologie $\mathcal{O} \colon \mathcal{B} \subset \mathcal{O}$ sodass für jede offene Menge Ø $\neq V \in \mathcal{O}$ gilt $V = \bigcup V_i, \quad V_i \in \mathcal{B}$
- Umgebung $U \subset X$ von $A \subset X$, falls $\exists \ O \in \mathcal{O} : A \subset O \subset U$ (Topologischer Raum (X, \mathcal{O}))
- Innerer, äußerer Punkt $p \in X$ von $A \subset X$, falls A (bzw. $X \setminus A$) Umgebung von $\{p\}$ ist
- \rightarrow Inneres von $A \subset X$: Menge \mathring{A} der inneren Punkte von A
- Abgeschlossene Hülle von A: Menge $\overline{A} \subset X$, die nicht äußere Punkte sind
- Triangulierbar: falls \exists Simplizialkomplex K und Homö $K \to X$
- $\circ \chi(X) \coloneqq \chi(K)$

Hausdorffsches Trennungsaxiom

- Hausdorffsch (top. Raum (X, \mathcal{O})): $\forall p \neq q \in X \exists U \ni p, V \ni q : U \cap V = \emptyset$ (Umgebungen U, V)
- · Hausdorffsche Räume:
- o Metrische Räume (über Dreiecks-Ugl.)
- $(\mathbb{R}, \mathcal{O}_s)$, weil \mathcal{O}_s von Metrik induziert wird
- o Teilraum von Hausdorff-Raum
- o Produkt von Hausdorff-Räumen bzgl. Produkttopologie

Stetigkeit

- Stetigkeit (zwischen top. Räumen (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y)): $f: X \to Y$ stetig falls Urbilder offener Mengen in Y offen sind in X
- Homöomorphismus (zw. top. Räumen): $f: X \to Y$ bijektiv mit f, f^{-1} stetig
- $\to X, Y$ homöomorph, falls \exists Homö $f: X \to Y$ (schreibe $X \cong Y$)
- o Homöomorphismengruppe: Identität, Verkettungen, Inverse von Homö sind Homö → Gruppe
- · Wichtige Homöomorphismen:
 - $\circ \ [0,1] \cong [a,b] (a < b \in \mathbb{R})$
- $\circ S^n \setminus \{(0, \dots, 0, 1)\} \cong \mathbb{R}^n \text{ (also } S^n \text{ ohne "Nordpol")}$

Zusammenhang

- **Definition**: (X,\mathcal{O}) zusammenhängend, falls \emptyset und X die einzigen offenabgeschlossenen Teilmengen sind
- ⇔ X ist nicht disjunkte Vereinigung von 2 offenen, nichtleeren Mengen
- · Eigenschaften:
- A zusammenhängend $\Rightarrow \overline{A}$ ist zusammenhängend
- o A,B zusammenhängend, $A\cap B\neq\varnothing\Rightarrow A\cup B$ zusammenhängend

Zusammenhangskomponente

- **Definition**: Z(x) = Vereinigung aller zusammenhängender Teilmengen, die xenthalten
- · Eigenschaften:
- $\circ Z(X) = \text{disjunkte Zerlegung von } X$
- Elemente von Z(X) = zusammenhängend

Weg-Zusammenhang

- **Definition**: (X, \mathcal{O}) weg-zusammenhängend $\Leftrightarrow \forall p, q \in X \exists \text{Weg } \alpha : [0, 1] \to X : \alpha(0) = p \land \alpha(1) = q$
- · Eigenschaften:
- o X weg-zusammenhängend $\Rightarrow X$ zusammenhängend
- o Stetige Bilder von (weg-)zusammenhängenden Räumen sind es auch
- o Ein (nicht) zusammenhängender Raum kann nur zu einem (nicht) zusammenhängenden Raum homöomorph sein

Kompaktheit

• **Definition**: (X, \mathcal{O}) kompakt \Leftrightarrow jede offene X-Überdeckung besitzt endliche

$$X = \bigcup_{i \in I} U_i, \ U_i \text{ offen } \Rightarrow \exists i_1, \dots, i_k \in I : X = U_{i_1} \cup \dots \cup U_{i_k}$$

- Lokal kompakt: Jeder Punkt von X besitzt kompakte Umgebung
- · Eigenschaften:
 - o Man kann von lokale auf globale Eigenschaften schließen
- $\to X$ kompakt, $f: X \to \mathbb{R}$ lokal beschränkt $\Rightarrow f$ beschränkt
- o Stetige Bilder kompakter Räume sind kompakt
- o Abgeschlossene Teilräume kompakter Räume sind kompakt
- o Produkte kompakter Räume sind kompakt
- o Kompakte Mengen in Hausdorff-Räumen sind abgeschlossen

Spezielle Topologien

Topologische Mannigfaltigkeit

- **Definition**: topologischer Raum M mit
- 1. lokal euklidisch: $\forall p \in M \exists$ offene Umgebung U von p und Homöomorphismus $\varphi: U \to \varphi(U) \subset \mathbb{R}^n$ mit festem n
 - \rightarrow Karte (φ, U)
 - \rightarrow Atlas $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) : \alpha \in A\} \text{ (mit } \bigcup_{\alpha \in A} U_{\alpha} = M)$
- 2. M ist hausdorffsch
- 3. M-Topologie besitzt abzählbare Basis
- · Eigenschaften:
- o Geschlecht der Mannigfaltigkeit = Anzahl
- o Offene Teilmengen einer Mannigfaltigkeit sind auch Mannigfaltigkeiten
- · Produkt-Mannigfaltigkeit: Produkt zweier MF ist auch MF
- o Dimension Produkt-MF = Summe der Dimensionen der beiden MF

Differenzierbare Mannigfaltigkeit

Kartenwechsel: Homöomorphismus

Kartenwechsel: Homoomorphis
$$\psi \circ \varphi^{-1} : \underbrace{\varphi(D)}_{\subset \mathbb{R}^n} \to \underbrace{\psi(D)}_{\subset \mathbb{R}^n}$$
(topologische MF $M, p \in M$)

- -Atlas ${\mathcal A}$ von M: alle möglichen Kartenwechsel sind C^{∞} -Abbildungen $({\mathbin{\mathbb R}}^n)$
- C^{∞} -Struktur: maximaler C^{∞} -Atlas für topologische MF
- Differenzierbare Mannigfaltigkeit: topologische MF mit \boldsymbol{C}^{∞} -Struktur
- o $\mathit{orientierbar},$ falls \exists Atlas S, sodass alle Kartenwechsel positive Funktionaldeter-
- Punkt-Differenzierbarkeit: $F: M^m \to N^n$ differenzierbar in $p \in M$, falls $\psi \circ F \circ \varphi^{-1} : \underbrace{\varphi(U)}_{\subset \mathbb{R}^m} \underbrace{\psi(V)}_{\subset \mathbb{R}^n} \text{ in } \varphi(p)$ $(M^m, N^n \text{ d-bare M}; F \text{ stetig; } (U, \varphi), (V, \psi) \text{ Karten um } p \text{ und } F(p))$

- Differenzierbarkeit: F differenzierbar, falls F in allen $p \in M$ d-bar ist
- **Diffeomorphismus** zwischen dMF: F bijektiv, F d-bar, F^{-1} d-bar
- Fläche: 2-dimensionale MF
- Produkt-Mannigfaltigkeit: M^m , N^n dMF-en $\rightarrow M \times N$ ist (m + n)dimensionale dMF
- Lie-Gruppe: Gruppe mit $\operatorname{C}^{\infty}$ -Mannigfaltigkeitsstruktur, sodass $G \times G \to G$, $(g,h) \mapsto gh^{-1}$ in C^{∞} ist
 - ${\color{gray} \bullet} \ \ Abgeschlossene \ Untergruppen \ von \ Lie-Gruppen \ sind \ auch \ Lie-Gruppen \\$

Simplizialkomplexe

• **Simplex** (k-dimensional): konvexe Hülle von k+1 Punkten in \mathbb{R}^n :

$$s(v_0,\ldots,v_k) = \left\{ \sum_{i=0}^n \lambda_i v_i : \forall \lambda_i \geq 0, \sum_{i=0}^k \lambda_i = 1 \right\}$$

$$(v_0-v_1,\ldots,v_0-v_k \text{ linear unabhängig})$$

• Teilsimplex, Seite: konvexe Hülle einer Teilmenge von $\{v_0, \dots, v_k\}$

- Simplizialkomplex: endliche Menge K von Simplices in \mathbb{R}^n , sodass
 - 1. Für jeden Simplex enthält K auch alle Teilsimplices
- 2. Durchschnitt zweier Simplices ist Ø oder gemeinsamer Teilsimplex
- o Dimension: maximale Dimension seiner Simplices
- Euler-Charakteristik: $\chi(K) = \sum_{i=0}^{k} (-1)^{i} \alpha_{i} (\alpha_{i} = \#i\text{-Simplices in } K)$
- Endlicher Graph: endlicher, 0- oder 1-dimensionaler Simplizialkomplex
 - o zusammenhängend: $\forall p,p' \in G \ \exists \ p=p_0,p_1,\ldots,p_n=p'$, sodass p_{i-1} und p_i durch Kante verbunden sind
 - *Baum*: zusammenhängender Graph T, sodass für jeden 1-Simplex $s \in T$: $T \setminus \mathring{s}$ ist nicht zusammenhängend (\mathring{s} = Kante ohne Endpunkte, offener 1-Simplex)
- Euler-Charakteristik: $\chi(G) = \#$ Ecken #Kanten
 - Baum: $\chi(T) = 1$
 - o Zusammenhängender Graph: $\chi(G) = 1 n$ (n = # Kanten, die man aus Gentfernen kann, sodass G zusammenhängend bleibt)
- Spannender Baum (von zusammenhängendem Graph): Komplement aller Kanten, die man entfernen kann, sodass ${\cal G}$ zusammenhängend bleibt
- **Ebener Graph**: realisiert durch Punkte und Geraden in \mathbb{R}^2 , sodass Kanten sich nicht schneiden
- Seiten: Zusammenhangskomponenten von $\mathbb{R}^2 \setminus G$
- Planarer Graph: Graph, der isomorph zu einem ebenen Graphen ist
- Euler-Formel: für zusammenhängende, ebene Graphen G gilt:

$$\chi(G) = e(G) - k(G) + s(G) = 2$$

- Polyeder: $P \subset \mathbb{R}^3$ mit
 - 1. P ist Durchschnitt endlich vieler affiner Halbräume von \mathbb{R}^3 (affine Halbräume gegeben durch $a_i x + b_i y + c_i z \ge d_i, i = 1, \dots, k$)
- 2. P ist beschränkt und nicht in einer Ebene enthalten
- o Rand: Gegeben durch (Seiten-)Flächen, Kanten und Ecken
- 1-Skelett: Menge der Ecken und Kanten, ist Graph in \mathbb{R}^3
- Schlegel-Diagramm: Projektion von Punkt nahe bei einem Seitenmittelpunkt auf geeignete Ebene; 1-Skelett → ebener Graph
- Eulersche Polyeder-Formel: e(P) k(P) s(P) = 2
- o regulär: falls
 - 1. alle Seitenflächen kongruente reguläre n-Ecke sind und
 - 2. in jeder Ecke m solcher n-Ecke zusammentreffen

Verkleben

• Verklebung: X, Y topologische Räume, $A \in X$ Teilraum, $f : A \to Y$. Äquivalenz
relation auf $X \cup Y$ via f:

$$x x' \stackrel{\text{Def}}{\rightleftharpoons} \begin{cases} x = x' \\ \text{oder} \quad f(x) = x' \quad (x \in A) \\ \text{oder} \quad f(x') = x \quad (x' \in A) \\ \text{oder} \quad f(x) = f(x') \quad (x, x' \in A) \end{cases}$$

 \Rightarrow Quotientenraum $X \cup_f Y = X \cup Y / \sim$ ist Verklebung von X an Y via f

• Selbstverklebung: Topologischer Raum X, Teilraum $A \subset X$, $f : A \rightarrow X$, $X_f \coloneqq X/\sim \operatorname{mit} \ddot{\operatorname{A}}$ quivalenz
relation wie oben

Flächengeometrie

Reguläre \mathbb{R}^3 -Flächen

• Reguläre Fläche: $S \subset \mathbb{R}^3$ (mit Teilraum-Topologie von \mathbb{R}^3), falls $\forall p \in S$ eine Umgebung V von p und eine Abbildung $F: \underset{\text{offen}}{U} \subset \mathbb{R}^2 \xrightarrow{} V \cap \underset{\text{offen}}{S} \subset \mathbb{R}^3$

$$F: \underset{\text{offen }}{U} \subset \mathbb{R}^2 \to \underset{\text{offen }}{V} \cap \underset{\text{TM von S}}{S} \subset \mathbb{R}^3$$
$$(u, v) \mapsto (x(u, v), y(u, v), z(u, v))$$

existiert, sodass

- 1. F ist differenzierbarer Homö
omorphismus
- 2. das Differenzial (Jacobi-Matrix) von ${\cal F}$, $dF_q: \mathbb{R}^2 \supseteq T_q U \to T_{F(q)} \mathbb{R}^3 \cong \mathbb{R}^3$

ist injektiv (hat Rang 2) ($\forall q \in U$)

- Lokale Parametrisierung von reg. Fläche $S \colon F$ von der regulären Fläche
- Vektorprodukt: $a \wedge b = (a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1)$
- \circ $(a \land b) \perp a$, $(a \land b) \perp b$
- $\circ \ \|a \wedge b\| = \|a\| \cdot \|b\| \cdot \sin \alpha$
- Tangential raum in $p\in\mathbb{R}^3$: affiner Unterraum $T_p\mathbb{R}^3=\{p\}\times\mathbb{R}^3$
- Tangentialebene für $p = x(u, v) \in S$ (reguläre Fläche):

$$T_p S = dx_{(u,v)}(T_{(u,v)}\mathbb{R}^2) = \{p\} \times [x_u(u,v), x_v(u,v)] \subset T_p \mathbb{R}^3$$

Erste Fundamentalform

• Erste Fundamentalform einer regulären Fläche S:

$$\begin{pmatrix} E(u,v) & F(u,v) \\ F(u,v) & G(u,v) \end{pmatrix}$$
 mit

$$\begin{split} E(u,v) &= \langle x_u(u,v), x_u(u,v) \rangle \\ F(u,v) &= \langle x_u(u,v), x_v(u,v) \rangle \end{split}$$

$$G(u,v) = \langle x_v(u,v), x_v(u,v) \rangle$$

• Längen: Flächenkurve
$$x : [\alpha, \beta] \ni t \mapsto x(u(t), v(t)) =: c(t) \in S$$
.
$$L(c) = \int_{\alpha}^{\beta} \sqrt{E(u, v)(u')^2 + F(u, v)2u'v' + G(u, v)(v')^2} dt$$

$$c_1: (-\varepsilon, \varepsilon) \ni t \mapsto (u_1(t), v_1(t)) \in S,$$

$$c_2: (-\varepsilon, \varepsilon) \ni t \mapsto (u_2(t), v_2(t)) \in S,$$

$$c_1(0) = c_2(0). \cos \measuredangle(c_1'(0), c_2'(0)) = \underbrace{Eu_1'u_2' + F(u_1'v_2' + v_1'u_2') + Gv_1'v_2'}_{\sqrt{Eu_1^{2'} + 2Fu_1'v_1' + Gv_1^{2'}}} \underbrace{\sqrt{Eu_2^{2'} + 2Fu_2'v_2' + Gv_2^{2'}}}_{\bullet \text{ Flächeninhalt}} \text{ von } x(U) \in S \in \mathbb{R}^2:$$

$$A(x(U)) = \iint_U \sqrt{\det \mathbf{I}} \, \mathrm{d}u \mathrm{d}v$$

$$A(x(U)) = \iint_{U} \sqrt{\det I} \, \mathrm{d}u \, \mathrm{d}v$$

(Lokale) Flächenisometrien

• Reguläre Fläche = metrischer Raum: Längenmetrik auf S durch

$$d_S(p,q) = \inf L(c)$$

• (Flächen-)Isometrie $f: S \to \widetilde{S}$, falls

1. f ist Diffeomorphismus und

2. $\forall (c: I \rightarrow S): L(f \circ c) = L(c)$ ("f ist längenerhaltend")

• Lokale Isometrie $f: S \to \tilde{S}$, falls $\forall p \in S \exists$ offene Umgebungen A von p und B von f(p), sodass f Isometrie von A nach B ist

• Kriterium lokale Isometrie: $x:U\to x(U)\subset S, \widetilde{x}:U\to \widetilde{x}(U)\subset \widetilde{S}$ sodass $\forall (u,v)\in U:\left(\begin{smallmatrix} E&F\\F&G\end{smallmatrix}\right)(u,v)=\left(\begin{smallmatrix} \widetilde{E}&\widetilde{F}\\\widetilde{F}&\widetilde{G}\end{smallmatrix}\right)(u,v),$ so sind x(U) und $\tilde{x}(U)$ isometrisch

Zweite Fundamentalform

• Normalenvektor: für Parametrisierung
$$x:U\ni(u,v)\mapsto x(u,v)\in S$$

$$n(p)=n(x(u,v))=n(u,v)=\frac{x_u(u,v)\land x_v(u,v)}{\|x_u(u,v)\land x_v(u,v)\|}$$
 ist Einheitsvektor senkrecht zu T_pS ($\forall p\in x(U)\in S$)

• Zweite Fundamental
form für Parametrisierung
$$x:U\to S$$
:
$$\begin{pmatrix} L(u,v) & M(u,v) \\ M(u,v) & N(u,v) \end{pmatrix} \coloneqq \begin{pmatrix} \langle x_{uu},n\rangle & \langle x_{uv},n\rangle \\ \langle x_{vu},n\rangle & \langle x_{vv},n\rangle \end{pmatrix}$$

Gauß-Krümmung

• Gauß-Krümmung: $K:S\ni p\mapsto K(p)=\frac{\det \mathrm{II}_p}{\det \mathrm{I}_p}$ • K ist Größe der inneren Geometrie von S

• Bertrand-Puiseux ($p \in S$): Für hinreichend kleine r > 0 ist

$$S_r(p) = \{ q \in S : d(p,q) = r \}$$

eine geschlossene, d-bare Kurve, Länge
$$L(S_r(p))$$
. Dann gilt:
$$K(p) = \lim_{r \to 0} \frac{3}{\pi r^3} (2\pi r - L(S_r(p)))$$

Gauß-Bonnet — lokal

• **Kovariante Ableitung** von *a* nach *u*:

$$D_u a = a_u - \langle n, a_u \rangle n \ (= a_u + \langle n_u, a \rangle n)$$

(lokale Parametrisierung $x: U \to S$, tangentiales Vektorfeld $a: U \to \mathbb{R}^3$ auf S)

 \Rightarrow Komponente von a_n in Tangentialrichtung

- Geodätische Krümmung $\kappa_q(s)$: Krümmung der in Tangentialebene projizierten

$$c''(s) = 0 \cdot c'(s) + \kappa_g(s)(n(s) \wedge c'(s)) + \alpha(s)n(s)$$
• Satz von Gauß-Bonnet — lokal:
$$\int_{\delta G} \kappa_g(s) \mathrm{d}s + \iint_G K \mathrm{d}A = 2\pi$$
mit

$$\int_{\delta G} \kappa_g(s) \mathrm{d}s + \iint_G K \mathrm{d}A = 2\pi$$

1. S reguläre Fläche

2. $x: U \to S$ lokale Parametrisierung

3. $G \subseteq x(U) \subset S$ einfach zusammenhängendes Gebiet mit d-barem Rand δG

4. $s \mapsto (u(s), v(s))$ beschreibe $x^{-1}(\delta G) \subset U$

- Geodätische: Flächenkurve mit $\kappa_g = 0$ ("Gerade" auf krummer Fläche)

Gauß-Bonnet — mit Ecken

$$\iint_{G} K dA + \int_{\delta G} \kappa_{g} ds = \pi (2 - m) + \sum_{i=1}^{m} \alpha_{i}$$
and must Innenwinkel α .)

Gauß-Bonnet — global

- Klassifikationssatz für 2-MF: Kompakte randlose 2-MF ist homöomorph zu
- 1. einer Sphäre S^2 oder
- 2. einer zusammenhängenden Summe von g Tori (falls M orientierbar) oder
- 3. einer zusammenhängenden Summe von g projektiven Ebenen (sonst)
- **Geschlecht**: *q* von oben
- Euler-Charakteristik von M-Triangulierung:

$$\chi_T(M) = \#\text{Ecken} - \#\text{Kanten} + \#\text{Flächen}$$

o
$$\chi(M) = \chi_T(M)$$
 unabhängig von Triangulierung

$$\circ \ \chi_T(M) = 2 - 2g$$

· Globaler Satz von Gauß-Bonnet:

$$\iint_{S} K dA = 2\pi \chi(S)$$

 $(S \subset \mathbb{R}^3 \text{ kompakte randlose orientierbare Fläche})$