考试科目: <u>矩阵理论</u> 考试形式: <u>闭卷</u> 考试日期: <u>2017 年秋</u> 考试时长: <u>2 小时</u>	
一. 判断题(正确的打"√",错误的打"X",每题 3 分,共 15 分) 1. 矩阵序列 $\{A^{(k)}\}$ 收敛于 A 的充分必要条件是以任意范数 $\lim_{k\to\infty} A^{(k)} = A $ 2. 若 n 阶方阵 A 的存在某矩阵范数 $ \bullet $ 使得 $ A < 1$,则 A 为收敛矩阵. 3. 设 u 为 n 维单位列向量, E 为单位矩阵, $A = E - 2uu^H$:若 $Aa = b$,则 $ a _2 = b _2$, (a,b)	$(_{ })$ $(_{ })$ $(_{ })$ $() = (b, a).$ $(_{ })$
4. 若 $A = (a_{ij})$ 是 n 阶正定矩阵,则有 $\det(A) \leq a_{11}a_{22} \dots a_{nn}$.	()
5. A 为正规矩阵,则 $A^+A = AA^+$.	()
二. 选择题 (每题 3 分, 共 15 分)	
1. 设 A 为 n 阶可逆矩阵, $r(A)$ 是其谱半径, $ • $ 为自相容矩阵范数,则必有	()
2. 下列命题错误的是	()
3. 下列命题错误的是	()
A. 矩阵 A 的每个行盖尔圆盘不一定包含 A 的特征值. B. 严格对角占优的矩阵一定是可逆矩阵. C. 若 n 阶实矩阵 A 的 n 个圆盘两两互不相交,则 A 一定相似于对角矩阵. D. 若 A 为 $Hermite$ 矩阵,则 A 的特征值都为非负实数.	
4. 下列结论"错误"的是	()
5. 设 σ_i 为矩阵 A 的奇异值,下列结论" <u>正确</u> "的是	
A. $(AB)^+ = B^+A^+$ B. $ A^+ _F^2 = \sum_n^{i=1} \sigma_i^2$ C. $rank(A) = rank(A^+)$ D. $(A^-)^- = rank(A)$	A

三. 计算和证明题(共70分)

1. (10 分) 设 $||A||_a$ 是 $C^{n\times m}$ 上的矩阵范数,D 为 n 阶可逆矩阵,证明:对任意 $A\in C^{n\times n}$, $||A||_b=||D^{-1}AD||_a$ 为 $C^{n\times n}$ 上的矩阵范数.

.

2. (10 分) 设 $A \in C^{n \times n}$ 是单纯矩阵,则 A 可分解为一系列幂等矩阵 A_i 的加权和,即 $A = \sum_{i=1}^n \lambda_i A_i$,其中 $\lambda_i (i=1,2,\ldots,n)$ 是 A 的特征值.

3. (10 分) (Rayleigh-Ritz 定理) 设 $A \in C^{n \times n}$ 为 Hermite 矩阵,证明: A 的最小特征值 $\lambda_{\min} = \min_{x^H x = 1} x^H A x$.

4. (10 分) 设 $A = \begin{pmatrix} 1 & -2 \\ -8 & 1 \end{pmatrix}$, $B = \frac{1}{6}A$, 完成下列计算: $(1) \sum_{k=0}^{\infty} B^k$; $(2) \sin(At)$.

.

5. (15 分) 设矩阵 $A = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, (1) 求矩阵 <math>A$ 的最大秩分解;(2)求矩阵 A 的 M - P 逆 A^+ ;(3)判断方程组 Ax = b 是否有解;(4)求方程组 Ax = b 的通解及最小范数解或最小二乘解通解及其最佳逼近解(指出所求的是哪种解).

6. (9 分) 设 $A \in C^{n \times n}$ 为正规矩阵,(1)证明: A 的奇异值等于 A 的特征值的模;(2)证明: A^+ 为正规矩阵.

7. (6 分) 设 $A \in C_r^{m \times n}$, E 为 n 阶单位矩阵, 证明: $rank(E - A^+A) = n - r$.

PDF 制作人: Xovee, 个人网站: https://www.xovee.cn

uestc-course 仓库, 您可以在这里找到更多复习资源: https://github.com/Xovee/uestc-course