

CRAb

Métodos Numéricos 1 (MN1)

Unidade 2: Raízes de Equações Parte 2: Método da Bisseção

Joaquim Bento Cavalcante Neto

joaquimb@lia.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

Departamento de Computação (DC)

Universidade Federal do Ceará (UFC)

- Seja uma função f(x) contínua no intervalo [a,b], sendo ξ a única raiz de f(x) = 0 neste intervalo
- O **método da bisseção** consiste em <u>reduzir a</u> <u>amplitude</u> do intervalo que contém a raiz [a,b] até que se <u>atinja uma precisão requerida: (b-a) < ε,</u> subdividindo o intervalo <u>ao meio</u> a cada iteração

Graficamente

Graficamente

Graficamente

Exemplo: $f(x) = x^2 - 1$

Sejam a = -0.25 e b = 1.25:

Iteração 1

$$\begin{cases} a_0 = a = -0.25 \\ b_0 = b = 1.25 \\ x_0 = \frac{-0.25 + 1.25}{2} = 0.5 \\ f(a_0) = f(-0.25) = -0.9375 < 0 \\ f(b_0) = f(1.25) = 0.5625 > 0 \\ f(x_0) = f(0.5) = -0.75 < 0 \end{cases}$$

Exemplo: $f(x) = x^2 - 1$

Iteração 2

$$\begin{cases} a_1 = x_0 = 0.5 \\ b_1 = b_0 = 1.25 \\ x_1 = \frac{0.5 + 1.25}{2} = 0.875 \\ f(a_1) = f(0.5) = -0.75 < 0 \\ f(b_1) = f(1.25) = 0.5625 > 0 \\ f(x_1) = f(0.875) = -0.234375 < 0 \end{cases}$$

E assim sucessivamente...

Algoritmo

```
Algoritmo: Bisseção
Entrada: a, b, ε, maxIter
Saída: raiz
 Fa \leftarrow f(a); Fb \leftarrow f(b)
 se Fa * Fb > 0 então
   escreva "Erro: função não muda de sinal entre a e b"
   sair()
 fimse
 intervX \leftarrow abs(b-a); k \leftarrow 0
 repita
   x \leftarrow (a+b)/2; Fx \leftarrow f(x)
   escreva k, a, Fa, b, Fb, x, Fx, intervX
    se intervX \le \epsilon ou k \ge iterMax então
       interrompa
    fim se
   se Fa * Fx > 0 então a \leftarrow x; Fa \leftarrow Fx
   senão b \leftarrow x; Fb \leftarrow Fx
   intervX \leftarrow intervX/2; k \leftarrow k+1
 fim repita
 raiz \leftarrow x
fim algoritmo
```

Obs.: O teste do módulo da função também pode ser adicionado como critério de parada: |f(x)| < ε

Exercício

$$f(x) = x^3-9x+3$$
, $a = 0$, $b = 1$, $\epsilon = 0.001$

k	а	fa	b	fb	X	fx	intervX
0	0.000000e+00	3.000000e+00	1.000000e+00	-5.000000e+00	5.000000e-01	-1.375000e+00	1.000000e+00
1	0.000000e+00	3.000000e+00	5.000000e-01	-1.375000e+00	2.500000e-01	7.656250e-01	5.000000e-01
2	2.500000e-01	7.656250e-01	5.000000e-01	-1.375000e+00	3.750000e-01	-3.222656e-01	2.500000e-01
3	2.500000e-01	7.656250e-01	3.750000e-01	-3.222656e-01	3.125000e-01	2.180176e-01	1.250000e-01
4	3.125000e-01	2.180176e-01	3.750000e-01	-3.222656e-01	3.437500e-01	-5.313110e-02	6.250000e-02
5	3.125000e-01	2.180176e-01	3.437500e-01	-5.313110e-02	3.281250e-01	8.220291e-02	3.125000e-02
6	3.281250e-01	8.220291e-02	3.437500e-01	-5.313110e-02	3.359375e-01	1.447439e-02	1.562500e-02
7	3.359375e-01	1.447439e-02	3.437500e-01	-5.313110e-02	3.398438e-01	-1.934391e-02	7.812500e-03
8	3.359375e-01	1.447439e-02	3.398438e-01	-1.934391e-02	3.378906e-01	-2.438627e-03	3.906250e-03
9	3.359375e-01	1.447439e-02	3.378906e-01	-2.438627e-03	3.369141e-01	6.016918e-03	1.953125e-03
10	3.369141e-01	6.016918e-03	3.378906e-01	-2.438627e-03	3.374023e-01	1.788904e-03	9.765625e-04
				1	H		1111

raiz = 3.374023e-01

Estudo da Convergência

- Convergência garantida_se:
 - f(x) é contínua no intervalo [a,b]
 - f(a) f(b) < 0 (teorema dos sinais) → {xk} converge para a raiz

- A demonstração baseia-se no uso das sequências {a_k}, {b_k}, {x_k} pelo método:
 - {a₀, a₁, a₂, ..., a_k}: sequência monotônica não decrescente (limitada por b₀)
 - {b₀, b₁, b₂, ..., b_k}: sequência monotônica não crescente (limitada por a₀)
 - {x₀, x₁, x₂, ..., x_k}: dada pela expressão ($x_k = \frac{a_k + b_k}{2}$) $(a_k < x_k < b_k, \forall k)$

Obs: Detalhes em [Ruggiero & Lopes, 2000]

Estimativa do número de iterações

 Dada uma precisão ε e um intervalo inicial [a, b], é possível saber, a priori, quantas iterações serão efetuadas até que (b_k-a_k)<ε:

$$b_k - a_k = \frac{b_0 - a_0}{2^k} \implies \frac{b_0 - a_0}{2^k} < \varepsilon \Rightarrow 2^k > \frac{b_0 - a_0}{\varepsilon}$$

$$\Rightarrow k \log(2) > \log(b_0 - a_0) - \log(\varepsilon)$$

$$k > \frac{\log(b_0 - a_0) - \log(\varepsilon)}{\log(2)}$$

Estimativa do número de iterações

 Exemplo: Calcular a estimativa do número de iterações de $f(x)=x^3-9x+3$, onde a=0, b=1, ϵ = 0.001

$$k > \frac{\log(b_0 - a_0) - \log(\varepsilon)}{\log(2)}$$

$$k > \frac{\log(b_0 - a_0) - \log(\varepsilon)}{\log(2)}$$

$$k > \frac{\log(1 - 0) - \log(10^{-3})}{\log(2)} = \frac{\log(1) + 3\log(10)}{\log(2)} = \frac{3}{0.3010} \approx 9.96$$

$$\Rightarrow k = 10$$

Exemplo: $f(x) = x^3-9x+3$

$$a = 0$$
, $b = 1$, epsilon = 0.001

	1	-CXXV	T	$M_{\rm c}$	\times ΛYYZ			
k	1.	а	fa	b	fb	X	fx	intervX
0	0	000000e+00	3.000000e+00	1.000000e+00	-5.000000e+00	5.000000e-01	-1.375000e+00	1.000000e+00
1	0	00000e+00	3.000000e+00	5.000000e-01	-1.375000e+00	2.500000e-01	7.656250e-01	5.000000e-01
2	2	00000e-01	7.656250e-01	5.000000e-01	-1.375000e+00	3.750000e-01	-3.222656e-01	2.500000e-01
3	2.	00000e-01	7.656250e-01	3.750000e-01	-3.222656e-01	3.125000e-01	2.180176e-01	1.250000e-01
4	3.	25000e-01	2.180176e-01	3.750000e-01	-3.222656e-01	3.437500e-01	-5.313110e-02	6.250000e-02
5	3.	25000e-01	2.180176e-01	3.437500e-01	-5.313110e-02	3.281250e-01	8.220291e-02	3.125000e-02
6	3.	281250e-01	8.220291e-02	3.437500e-01	-5.313110e-02	3.359375e-01	1.447439e-02	1.562500e-02
7	3.	359375e-01	1.447439e-02	3.437500e-01	-5.313110e-02	3.398438e-01	-1.934391e-02	7.812500e-03
8	3	359375e-01	1.447439e-02	3.398438e-01	-1.934391e-02	3.378906e-01	-2.438627e-03	3.906250e-03
9	3	359375e-01	1.447439e-02	3.378906e-01	-2.438627e-03	3.369141e-01	6.016918e-03	1.953125e-03
10	3	369141e-01	6.016918e-03	3.378906e-01	-2.438627e-03	3.374023e-01	1.788904e-03	9.765625e-04
M	M					H		11.11

raiz = 3.374023e-01

- Seja uma função f(x) contínua no intervalo [a,b], sendo ξ a única raiz de f(x) = 0 neste intervalo, o método da bisseção convergirá
 - Sempre é possível obter intervalo que contém a raiz da equação e que a amplitude do intervalo satisfaz a precisão requerida
- Se o teste do módulo da função for adicionado como critério de parada ao algoritmo, a estimativa do númerode iterações pode aumentar

Observações finais

- Vantagens: ☺
 - Tem convergência garantida
 - É método bastante robusto

- É possível, a priori, determinar o número de iterações necessárias para calcular a raiz com uma precisão ε

Observações finais

- Desvantagens: ⊗
 - Não é eficiente computacionalmente devido sua convergência lenta
 - f(x) não decresce monotonicamente
 - isso ocorre porque somente o sinal de f(x_{k-1}) é usado para o cálculo do próximo x_k, sem levar em consideração o seu valor
 - É necessário o isolamento prévio de cada raiz em um intervalo [a,b]
- O método da bisseção é mais usado para reduzir o intervalo antes de usar um outro método numérico que possua uma convergência que seja mais rápida