# Defining RNN/LSTM Model in Current Software Framework

For making any training-run first we have to define the model architecture, which we train the dataset on. This documentation will provide a walkthrough of an example model to familiarize the structure of model creation. This example is based on the following script in the Github Repository present at:

HAhRD/GSOC18/models/model\_rnn\_definition.py

#### Step 1: Importing the Required library and RNN, CNN modules

First of all we will import the necessary CNN,RNN/LSTM modules to make the model for training.

```
import tensorflow as tf
import sys
import os

#Imprting the RNN and CNN utiltites from CNN Module
from CNN_Module.utils.conv2d_utils import *
from CNN_Module.utils.rnn_utils import *
```

Line 6,7: We import the 2D convolution, RNN, LSTM utilities for further building the graph.

### **Step 2.1: Model Overview**

The diagram below show the overall gist of the RNN/LSTM model. The processing steps are:

- 1. First of all we have a common-shared convolution layer, (all the parameters shared by each layer of detector hit-image).
- All the layers of hit-image of detector are passed through this convolutional layer which then produces a vector output (maybe ~1000 or more dimensional). This is kind of summary/information of each layer compressed by CNN Layer in a vector (termed vector encoding).
- 3. Now this "vector-encoding" (output vector of each layer is fed to the LSTM or RNN layer as input.
- 4. The RNN Module comprises of three hierarchy
  - a. **RNN/LSTM cell**: the smallest unit inside the LSTM/RNN layer which will take the individual input of each of the CNN output.
  - **b. RNN/LSTM layer:** this one layer of LSTM/RNN will comprise of the sequence of the RNN/LSTM cells which will carry the time information. We could compose

- any number of layer, but around **2 layers are practically recommended**, to protect the model from vanishing gradient problem.
- c. **RNN/LSTM block**: This is highest in the hierarchy of this module. It simply composed of multiple RNN/LSTM layers. (as could be seen in the diagram)
- 5. Now this RNN block is capable of producing one vector as final output or a full sequence of 40 vector as output.
- 6. (Optional) Taking all the 40 vector as output (from each "time") then concatenating them and then making final prediction has benefit that it helps in reducing the vanishing gradient problem.



## Step 2.9: Defining the shared-2D convolutional model

As we can see from the above diagram, we need to define a common 2D convolutional model. All the images of detector (in each layer) will be passed through this same model with the same parameters for all the detector-images.

Here the 2D convolution function is name as **\_conv2d\_function\_handle** with the following arguments:

- 1. **X\_img:** the full 3D image of the detector.
- 2. **is\_training:** this will specify whether we are in training mode or not. This is used internally by the CNN layers, so just pass it to the function as described below.
- 3. **iter\_i,reg\_loss,tensor\_arra...** Please don't worry about them, they are used internally by the RNN/LSTM module. So just let them be there.

Our main input is **X** img on which we will make all the CNN model.

```
conv2d function handle(X img,is training,iter i,iter end,reg loss,tensor array):
         DESCRIPTION: -
         USAGE: -
         bn decision=False
         lambd=0.00
         dropout rate=0.0
110
111
112
113
         X layer=tf.expand dims(X img[:,:,:,iter i],axis=-1,name='channel dim')
114
115
116
117
         A1=rectified conv2d(X layer,
118
                              name='conv2d1',
119
                              filter shape=(3,3),
120
                              output channel=10,
                              stride=(1,1),
122
                              padding type='VALID',
123
                              is training=is training,
124
                              dropout rate=dropout rate,
125
                              apply batchnorm=bn decision,
126
                              weight decay=lambd,
127
                              apply relu=True)
128
          A1Mp=max pooling2d(A1,
129
130
                              name='mpool1',
131
                              filter shape=(3,3),
132
                              stride=(2,2),
133
                              padding_type='VALID')
```

Now going line by line:

1. **bn\_decision (line 107)**: this will tell the CNN whether we want to use batch normalization or not. This is particularly helpful in training of deep CNN.

- 2. **lambd**: This is the hyperparameter to control the L2-regularization rate. This will be multiplied to the L2-regularization cost then will be added to the final cost.
- 3. **Dropout\_rate:** the rate of dropout in the layers of CNN. Its a number between 0 and 1.
- **4. Line 133:** Then we slice the a particular layer from full 3D image using iter\_i.(this iter\_i is internally called later,so don't worry about it) and then we add the channel dimension (like RGB but here it will be just 1) to the image.
- 5. Now, we are ready for the convolution process. The shape of image at this point of code is [batch\_size, resolution\_x, resolution\_y, 1]
- 6. Now using the different layer we will finally output a vector of any size (may be ~1000-10000 dimensional vector to pass it as input to the RNN/LSTM layer.)

Here in this screenshot the final layer of CNN has the output dimension of 1000 (line 238), which is a fully connected layer.

```
236
         Z7=simple fully connected(A6Mp,
237
                                      name='fc1',
238
                                      output dim=1000,
239
                                      is training=is training,
240
                                      dropout rate=dropout rate,
241
                                      apply batchnorm=bn decision,
242
                                      weight decay=lambd,
243
                                      flatten first=True,
244
                                      apply relu=False)
245
246
247
         det layer activation=Z7
248
249
250
251
252
253
         tensor array=tensor array.write(iter i,det layer activation)
254
255
256
         iter i=iter i+1
257
258
259
260
261
         reg loss list=tf.get collection('all losses',
262
                                  scope=tf.contrib.framework.get name scope())
263
264
         l2 reg loss conv=0.0
265
         if not len(reg loss list)==0:
              12 reg loss conv=tf.add n(reg loss list,name='l2 reg loss conv')
266
267
```

As you can see from line 250- till last of this function, you don't have to make changes.

This code is being used internally by LSTM/RNN Module to perform certain function which is not required to define a model.

I will make this simple later removing the last section of this code separate from the model. But right now this has to be included as it is.

### **Step 3: Defining the RNN/LSTM BLOCK:**

After we are done with the creation of the CNN function handle we may now proceed to define the RNN/LSTM block.

Remember one thing from the overview diagram of model. The RNN/LSTM layer currently supports vector/"vector\_encoding" as input. So the CNN Module will give 40 separate vector to the RNN BLOCK for processing.

Now as you can see in the screenshot below the defining RNN/LSTM block is quite easy. I will walk you through step-wise:

- 1. This will be the model we will be finally giving as input to the **training\_manager.py** script to initiate the training.
- 2. The model take two inputs:
  - a. **X\_img:** the full 3D image of the energy-hits in detector.
  - b. **is\_training:** this will be used internally to specify the model if we are in training mode or testing mode. (dont worry about it)
  - rnn\_lambd in line 291: This will be multiplied with the L2-regularization of parameters in RNN Module. So this is a hyperparameter to tune for preventing overfitting.
  - d. Now finally we will define the whole RNN/LSTM block in one single function. This will also take 2D convolution function handle as argument and do the convolution internally.
- 3. **simple\_vector\_rnn\_block**: line 295: This is the single function enough to wrap up the whole RNN/LSTM layer. It take the following arguments:
  - a. **X img:** the full 3D image of the detector
  - b. is training: the same training flag
  - c. \_conv2d\_function\_handle: the 2D convolution function handle we had defined above.
  - d. **sequence\_model\_type**: whether we want RNN or LSTM layer
  - e. **num\_of\_sequence\_layer:** the number of RNN/LSTM layers we want in the block. Each layer is stacked on top of other layer. (as shown in the diagram). Practically using around 2 layers are recommended.

- f. hidden\_state\_dim\_list: the dimension of the hidden state in the in each of the layers in the block. These state are responsible for carrying memory between different time of sequence.
- **g. output\_dimension\_list**: the dimension of the output of each layer in the block.
- h. **output\_type**: whether we want to output a single **vector** as output from the **whole** RNN/LSTM block, or we want to give a **sequence** of vector as output from each of the time. (give 'sequence'/"vector")
- i. **output\_norm\_list:** the type of normalization we want to apply to the output of each of the layer. (currently: "relu"/"tanh"/None supported)
- j. **num\_detector\_layer**: the number of layers in detector. (currently 40)
- **k. weight\_decay:** the weight decay parameter for the L2-Regularization in the RNN block.

```
277
     def model8(X img,is training):
278
279
         DESCRIPTION:
             In this model we will test the performance of the RNN module
280
281
             on the detector-hits.
282
         USAGE:
283
             INPUT:
284
                              : the complete 3d hit-image of the detector
                 X img
285
                 is training : the training flag which will be used by the
286
                                  batchnorm and dropout layers
287
             OUTPUT:
288
                  Z out
                              : the final unnormalized output of the model
289
290
291
         rnn lambd=0.0
292
293
294
295
         Z list=simple vector RNN block(X img,
296
                                          is training,
297
                                          conv2d function handle,
298
                                          sequence model type='LSTM',
299
                                          num of sequence layers=1,
300
                                          hidden state dim list=[1000],
301
                                          output_dimension list=[6],
302
                                          output type='vector',
                                          output norm list=[None],
304
                                          num detector layers=40,
305
                                          weight decay=rnn lambd)
306
307
308
         Z out=Z list[0]
309
         return Z_out
```

Currently, there is no support for the batch normalization and dropout in the RNN/LSTM block, but will be implemented later after proper literature survey.