Assignment 5 Advanced Algorithms & Data Structures PS

Christian Müller 1123410 Daniel Kocher, 0926293

April 19, 2016

Aufgabe 9Zu zeigen: Sei $m \le i$: x_i Vorfahre von $x_m \Leftrightarrow P_{min}(\{x_m, ..., x_i\}) = x_i$

Proof.

i) " ⇐ "

Annahme: $P_{min}(\{x_m, ..., x_i\}) = x_i$

Knoten werden nach Prioritäten in den Suchbaum eingefügt \Rightarrow aus der Menge $\{x_m, ..., x_i\}$ wird x_i als erster eingefügt.

Für die Knoten x_k mit Schlüsseln k die vor x_i eingefügt wurden haben die Eigenschaft: $k < key(x_m)$ oder $k > key(x_i)$.¹.

Wenn $x_j \in \{x_m, ..., x_{i-1}\}$ eingefügt wird durchläuft x_j denselben Pfad wie x_i^2 und wird im linken Unterbaum von x_i eingefügt. Es gilt daher: x_j ist Nachfahre von x_i und insbesonders x_m ist Nachfahre von $x_i \implies x_i$ ist Vorfahre von x_m

ii) " ⇒ "

Sei: $P_{min}(\{x_m, ..., x_i\}) = x_j$; Zeige: i = j

Annahme: x_i Vorfahre von x_m

Knoten werden nach Prioritäten in den Suchbaum eingefügt \Rightarrow aus der Menge $\{x_m, ..., x_i\}$ wird x_j als erster eingefügt.

Für die Knoten x_k mit Schlüssel k die vor x_i eingefügt wurden haben die Eigenschaft: $k < key(x_m)$ oder $k > key(x_i)$. Jeder Knoten x_l aus $\{x_m, ..., x_i\}$ mit $l \neq j$ muss beim Einfügen denselben Pfad durchlaufen wie x_j .

Falls $j \neq i, m$: x_m landet im linken Unterbaum von x_j und x_i im rechten Unterbaum von $x_j \implies x_i$ ist kein Vorfahr von x_m .

Falls j = m: x_i landet im rechten Unterbaum von $x_m \implies x_m$ ist Vorfahre von

$$\implies j = i$$

¹Würde $key(x_m) \le k \le key(x_i)$ gelten wäre der Knoten mit dem Schlüssel k Teil der Menge $\{x_m,...,x_i\}$ und würde wegen $P_{min}(\{x_m,...,x_i\}) = x_i$ nach x_i eingefügt werden

²Es gilt für alle sich im Baum befindlichen Schlüssel k $k < key(x_m) \le key(x_j) \le key(x_i)$ oder $k > key(x_i) \ge key(x_j) \ge key(x_m)$

Aufgabe 10

Zu zeigen: Sei m die Anzahl der Schlüssel, die kleiner als der gesuchte Schlüssel k sind. Die erwartete Anzahl von Knoten auf dem Suchpfad ist $H_m + H_{n-m}$.

Proof.

Sei x_k der Knoten mit Schlüssel k der ohne Berücksichtigung der Prioritäten in den gegebenen Suchbaum imaginär eingefügt wird.

Sei:

 $X_{k,i} = \left\{ \begin{array}{l} 1, \; x_i \text{ ist Vorfahr des neuen imaginaren Knotens} \; x_k \; \text{mit } key(x_k) = k \\ 0, \; \text{sonst} \end{array} \right.$

und:

Sei X_k die Anzahl der Knoten auf dem Pfad von der Wurzel nach dem Knoten x_k (ohne x_k)

$$X_k = \sum_{i < k} X_{k,i} + \sum_{i > k} X_{k,i} \tag{1}$$

$$E[X_k] = E[\sum_{i < k} X_{k,i}] + E[\sum_{i > k} X_{k,i}]$$
 (2)

$$E[X_k] = \sum_{i < k} E[X_{k,i}] + \sum_{i > k} E[X_{k,i}]$$
(3)

F1(i < k):

$$E[X_{k,i}] = Pr[P_{min}(\{x_1, ..., x_i\}) = x_i] = \frac{1}{i}$$
(4)

F2(i > k):

$$E[X_{k,i}] = Pr[P_{min}(\{x_i, ..., x_n\}) = x_i] = \frac{1}{n-i+1}$$
 (5)

Also:

$$E[X_k] = \sum_{i < k} E[X_{k,i}] + \sum_{i > k} E[X_{k,i}]$$
 (6)

$$E[X_k] = \sum_{i=1}^{m} \frac{1}{i} + \sum_{i=m+1}^{n} \frac{1}{n-i+1}$$
 (7)

$$E[X_k] = \left(1 + \frac{1}{2} + \dots + \frac{1}{m}\right) + \left(\frac{1}{n - (m+1) + 1} + \dots + \frac{1}{n - n + 1}\right) \tag{8}$$

$$E[X_k] = \left(1 + \frac{1}{2} + \dots + \frac{1}{m}\right) + \left(\frac{1}{n - m} + \dots + 1\right) \tag{9}$$

$$E[X_k] = H_m + H_{n-m} (10)$$