Intelligent Systems - Final Exam (Block 2): Test (1.75 points)

ETSINF, Universitat Politècnica de València, December 19th, 2024

Group, surname(s) and name: 2,

Tick only one choice among the given options. Score: $\max(0, (\text{correct_answers-wrong_answers}/3) \cdot 1.75/9)$.

1 Given the following conditional probability distribution for the 3 random variables

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
$P(A, B \mid C)$	0.125	0.188	0.375	0.312	0.408	0.190	0.092	0.310

If P(C = 0) = 0.72, which is the value of P(A = 0 | B = 0, C = 1)?

A)
$$P(A=0 \mid B=0, C=1) \le 0.25$$

B)
$$0.25 < P(A=0 \mid B=0, C=1) \le 0.50$$

C)
$$0.50 < P(A=0 \mid B=0, C=1) \le 0.75$$

D)
$$0.75 < P(A=0 \mid B=0, C=1) \le 1.00$$

The figure on the right represents the decision boundary and the two regions of a binary classifier. Which of the following weight vectors (in homogeneous notation) defines a classifier equivalent to the one of the figure?

A)
$$\mathbf{w}_1 = (-0.5, 0, 0)^t$$
 and $\mathbf{w}_2 = (0, -1, 0)^t$.

B)
$$\mathbf{w}_1 = (0.5, 0, 0)^t$$
 and $\mathbf{w}_2 = (0, 1, 0)^t$.

C)
$$\mathbf{w}_1 = (0, 1, 0)^t$$
 and $\mathbf{w}_2 = (0.5, 0, 0)^t$.

D) All the above weight vectors define an equivalent classifier.

3	For a two-class classification problem of objects of type
	$\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, we have the probability distributions shown in
	the table. Show the interval of the probability of error ε of the clas-
	sifier $c(\mathbf{x})$ based on the discriminant function $g(\mathbf{x}) = 1.0 - x_1 + 0.5x_2$
	defined as

$$c(\mathbf{x}) = \begin{cases} 1 & \text{if } g(\mathbf{x}) < 0 \\ 2 & \text{otherwise} \end{cases}$$

A)	$\varepsilon <$	0.25.

B)
$$0.25 \le \varepsilon < 0.50$$
.

C)
$$0.50 \le \varepsilon < 0.75$$
.

D)
$$0.75 \le \varepsilon$$
.

x	$P(c \mid \mathbf{x})$	
$x_1 x_2$	$c = 1 \ c = 2$	$P(\mathbf{x})$
0 0	0.9 0.1	0
0 1	0.8 0.2	0.1
1 0	0.1 - 0.9	0.5
1 1	0.6 0.4	0.4

4 The figure below shows a partition of 4 two-dimensional points in 2 clusters, \bullet and \circ :

If point $(10,1)^t$ is transferred from one cluster to the other, a variation of the Sum of Square Errors (SSE) is produced, $\Delta J = J - J'$ (SSE after the transfer minus SSE before the transfer), such that:

- A) $\Delta J < -7$.
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.
- 5 Let $g(\mathbf{x})$ be a classifier. Which function does *not* define an equivalent classifier (or choose the last option if all three previous functions define an equivalent classifier)?
 - A) $f(g(\mathbf{x})) = ag(\mathbf{x}) + b$ a > 0
 - B) $f(g(\mathbf{x})) = a^{g(\mathbf{x})}$ a > 1
 - C) $f(g(\mathbf{x})) = ag(\mathbf{x})^3$ a > 0
 - D) All three previous functions define an equivalent classifier.
- 6 The figure below shows a partition of 4 two-dimensional points in 2 clusters, \bullet and \circ :

Indicate which of the following points is transferred from cluster to cluster when we apply the K-means algorithm by Duda and Hart, but not when we apply the conventional K-means algorithm:

- A) $(6,1)^t$
- B) $(4,0)^t$
- C) $(8,0)^t$
- D) $(5,0)^t$

7	Let's suppose that we are applying the Perceptron algorithm, with learning rate $\alpha = 1$ and margin $b = 0.1$, to
	a set of 3 bidimensional learning samples for a problem of 2 classes. After processing the first 2 samples, the
	weight vectors $\mathbf{w}_1 = (0, 1, -2)^t$, $\mathbf{w}_2 = (0, -1, 2)^t$ were obtained. Next, the last sample (\mathbf{x}_3, c_3) is processed
	and the same weight vectors are obtained, which of the following samples is that last sample?

- A) $((5,4)^t,1)$
- B) $((1,1)^t,2)$
- C) $((2,1)^t,1)$
- D) $((1,4)^t,1)$
- 8 Let us suppose that we have a box with 10 oranges containing 4 oranges Powell (P) and 6 Valencia (V) from which we draw two oranges, one after the other without replacement. Given the random variables:
 - O1: variety of the first drawn orange
 - O2: variety of the second drawn orange

Which of the following conditions is not true?

A)
$$P(O2 = P) < P(O2 = P \mid O1 = V)$$

B)
$$P(O1 = P, O2 = V) = P(O1 = V, O2 = P)$$

C)
$$P(O1 = V) = P(O1 = V \mid O2 = P)$$

D)
$$P(O2 = P) > P(O2 = P \mid O1 = P)$$

9 Let \mathbf{x} be a object that we want to classify in one among C classes. Which expression is *not* a minimum error (error risk) classifier (or choose the last option if none of the first three classifiers is of minimum error)?

A)
$$c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,min}} e^{p(\mathbf{x},c)}$$

B)
$$c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,max}} - \log p(\mathbf{x}, c)$$

C)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg \, min}} \log p(\mathbf{x}, c)$$

D) None of three classifiers is of minimum error.

Intelligent Systems - Final Exam (Block 2): Problem (2 points) ETSINF, Universitat Politècnica de València, December 19th, 2024

Group, surname(s) and name: 2,

Problem: Logistic regression

The following table shows per row a sample with 2 dimensions that belongs to one class:

In addition, the following table represents an initial weight matrix with the weights of each class per columns:

\mathbf{w}_1	\mathbf{w}_2
-0.5	0.5
-0.5	0.5
-0.5	0.5

Answer the following questions:

- 1. (0.25 points) Compute the vector of logits for the training sample.
- 2. (0.25 points) Apply the softmax function to the vector of logits for the training sample.
- 3. (0.25 points) Compute the neg-log-likelihood of the training sample with respect to the initial weight matrix.
- 4. (0.25 points) Classify the training sample. In case of a tie, choose any class.
- 5. (0.5 points) Compute the gradient of the function NLL at the point of the initial weight matrix.
- 6. (0.5 points) Update the initial weight matrix applying gradient descent with learning rate $\eta = 1.0$.