

TECHNISCHE UNIVERSITÄT DRESDEN

FAKULTÄT MASCHINENWESEN
INSTITUT FÜR LUFT- UND RAUMFAHRTTECHNIK
PROFESSUR FÜR LUFTFAHRZEUGTECHNIK
PROF. DR. J. MARKMILLER

FiPPS

Programmdokumentation

10. Februar 2025

(FiPPS-Version 2.0.0 Rev. 474)

Autor: Andreas Hauffe Florian Dexl

Martin Rädel

andreas.hauffe@tu-dresden.de florian.dexl@tu-dresden.de

Inhaltsverzeichnis

1	Allg		e Hinweise	1
	1.1		lemente der Steifigkeitsmatrix	1
	1.2	linear	statische Rechnung	1
	1.3		echnung	1
	1.4		Strukturkopplung	1
	1.5	Berech	nnung der Gesamtdehnungsenergie	2
2	Elen	nentfor	rmulierungen	3
	2.1	Quad8	3 - Acht-Knoten-Viereckselement	3
		2.1.1	Elementskizze	3
		2.1.2	Elementsteifigkeiten	3
		2.1.3	Elementsteifigkeiten	3
		2.1.4	Koordinatensystem	3
		2.1.5	Koordinatensystem	4
		2.1.6	Einschränkungen in FiPPS	4
	2.2	Beam2	2ss - 2 Knoten 3D-Balken zur Aufnahme von Normalkraft, Biegemomen-	
		ten un	nd Torsion	4
		2.2.1	Steifigkeitsmatrix	4
		2.2.2	Geometrische Steifigkeitsmatrix	6
		2.2.3	Transformationsbeziehungen	11
		2.2.4	Knotenkopplung	13
		2.2.5	Einschränkungen in FiPPS	13
	2.3	Lsolid	20 - 20 Knoten Volumenelement mit geschichteter Formulierung	14
		2.3.1	Knoten- und Flächennummerierung	14
		2.3.2	Steifigkeitsmatrix	14
		2.3.3	Geometrische Steifigkeitsmatrix	15
		2.3.4	Definition der Koordinatensysteme	16
		2.3.5	Integrationsschema	17
	2.4	Benöti	igtes Vorgehen bei Hinzufügen eines neuen Elements	18
		2.4.1	Eintragen in Globale Variablen	18
		2.4.2	Berücksichtigung im Einlesen der Kontrolldatei	18
		2.4.3	Einbau des Einlesens des Elements	18
		2.4.4	Berücksichtigung in Elementanzahl	18
		2.4.5	Einbau in der statischen Lösung	18
		2.4.6	Einbau in der Beullösung	18
		2.4.7	Einfügen des Object-Files in die Makefile-Datei	18
3	Ben	utzerde	efinierte Ergebnisausgabe über libuseroutput.so	19

4		-	-Optionen	21
	4.1	Ausgal	be von Werten	21
		4.1.1	Herausschreiben einer quadratischen Matrix	21
		4.1.2	Grafische Ausgabe der Gesamtsteifigkeitsmatrix	21
	4.2	Verglei	ich mit ANSYS	21
		4.2.1	Herausschreiben der Elementsteifigkeitsmatrizen	21
			Herausschreiben des Lastvektors	21
5	Inpu	ıt-Karte	en	23
	5.1	Einleit	ung	23
		5.1.1	Beschreibung der Dateieinträge	26
		5.1.2	Beschreibung der Einstellungsparameter	28
	5.2		1	29
			Nodes	29
	5.3		nte	30
		5.3.1	Beam2	30
		5.3.2	Tria3	31
		5.3.3	Quad8	32
		5.3.4	Lsolid20	33
	54		ungen	34
	Э.Т			34
		5.4.2	Load	35
		5.4.3	Moment	36
		5.4.4	Moment	37
		5.4.4	P2load	
			P3load	38
		5.4.6	P8load	39
		5.4.7	P20load	41
		5.4.8	Aeroload2D	42
		5.4.9	Aeroload3D	43
		5.4.10	Temperature	44
		5.4.11	Beam2temp	45
		5.4.12	Quad8temp	46
		5.4.13	Lsolid20temp	47
	5.5	Materi	almodelle	48
		5.5.1	Mat1	48
		5.5.2	Mat8	50
		5.5.3	Mat20	52
		5.5.4	Lam8	54
		5.5.5	Lam20	55
	5.6		keits- bzw. Versagenskriterien	57
		_	Failure	57
	5.7		ties	70
	J.,		PShell	70
		5.7.2	PComp	72
		5.7.3	PBeam	74
			PLsolid	76
		J. / . T	ILDUIN	/ 1 /

	5.8	Randbedingungen	78
		5.8.1 Coupling	78
		5.8.2 Spcadd	79
		5.8.3 Spc1	80
		5.8.4 Spcd	82
		5.8.5 Mpcadd	83
		5.8.6 Mpc	84
	5.9	Kontakte	86
		5.9.1 Knoten-Beam2-Kontakt	86
		5.9.2 Knoten-Quad8-Kontakt	87
		5.9.3 Knoten-Lsolid20-Kontakt	88
	5.10	Koordinatensysteme	89
		5.10.1 Coords	89
	5.11	Subcases	91
		5.11.1 Subcase	91
6	Ausg	abe	93
7	Hinv	veise zu Fehlermeldungen	98
	7.1	MUMPS Fehler	98
		7.1.1 $INFOG(1) = -9 \dots$	98
		7.1.2 $INFOG(1) = -10 \dots$	98
8	Aufg	efallene Schwächen in der Programmierung	100
9	Offe	ne Punkte	101
Lit	teratu	rverzeichnis	102

1 Allgemeine Hinweise

FiPPS² ist grundsätzlich für den Gebrauch in automatischen Prozessen entwickelt worden. Aus diesem Grund sind die Eingabeformate stark für das Einlesen mit Fortranprogrammen optimiert, was Einschränkungen bei der Menschenlesbarkeit zur Folge hat. Dabei ist der Input auch stark mit der Vernetzungsbibliothek "FEModeller" verbunden. Diese kann alle aktuellen Fähigkeiten von FiPPS² ansprechen und stellt somit die einfachste Art dar, um die FiPPS²-Eingabedateien zu erstellen.

1.1 Pivotelemente der Steifigkeitsmatrix

Um Elemente mit rotatorischen Freiheitsgraden (Beam2, Quad8) mit Elementen ohne rotatische Freiheitsgrade (Lsolid20) korrekt verbinden zu können, wird vor dem Lösen des Gleichungssystems die Elementsteifigkeitsmatrix auf Nulleinträge der Pivotelemente geprüft. Vorhandene Nulleinträge werden durch die Norm der Elementsteifigkeitsmatrix ersetzt, sodass ein lösbares Gleichungssystem erhalten wird. Eine Prüfung auf eventuell vorhandene freie Knoten erfolgt dabei nicht. Die Prüfung und das Ersetzen der Pivotelemente erfolgt in MUMPS über die Option *ICNTL(24)*.

1.2 linear statische Rechnung

1.3 Beulrechnung

1.4 Fluid-Strukturkopplung

In FiPPS² sind aktuell zwei Arten der Fluid-Strukturkopplung implementiert, eine 2D-Kopplung (xfoil, Panel2D) für Berechnungen an Profilen und eine 3D-Kopplung (APAME) für Flügelsimulationen. In beiden Fällen werden die aerodynamischen Rechnungen auf Basis der Potentialtheorie ausschließlich dafür genutzt, um aerodynamische Lasten auf die Struktur zur generieren. Die sich daraus ergebende Strukturverformungen beeinflussen das Strömungsverhalten. Es handelt sich bei diesen Rechnungen infolgedessen um iterative numerische Methoden.

Da es sich im Sinne der Struktursimulation um reine Lasten handelt, wird die FluidStruktur-kopplung über eine Lastkarte (aeroload2ds oder aeroload3ds) in den entsprechenden Dateien definiert und aktiviert. Die Iteration wird über mehrere Lastfälle (Subcases) umgesetzt, wobei die Srömungslösereingaben nicht neu eingelesen werden (siehe 5.11).

Die Strömungslöser können und müssen weiterhin als eigenständige Programme bzw. Programmteile betrachtet werden, die sie ihre eigene Eingabedateien benutzen, die somit auch

zur Verfügung stehen müssen. Es werden programmintern nur Verschiebungen und Drücke ausgetauscht nicht aber das Modell. Dafür müssen zusätzliche FiPPS²-Dateien angelegt werden, die definieren, welcher Druckwert einerseits auf welches Element übertragen wird und welche Verschiebung andererseits auf welchen Knoten.

Für die aerodynamischen Lasten kann auch ein Lastfaktor angegeben werden. Mit diesem Faktor werden die Drücke mutlipliziert. Um die FluidStrukturkopplung dabei weiter nutzen zu können, werden die Verschiebungen intern und auschließlich für die Kopplung wieder durch den Lastfaktor geteilt. Als Beispiel kann hier der Lastfaktor 1,5 für Ultimate Load gesehen werden. Intern wird bei Limit Load (Lastfaktor 1,0) gerechnet, während alle Ergebnisse mit dem Faktor 1,5 multipliziert sind und somit Ultimate Load entsprechen.

1.5 Berechnung der Gesamtdehnungsenergie

FiPPS 2 erlaubt die Berechnung der Gesamtdehnungsenergie (Total Strain Energy - TSE) W. Diese ergibt sich aus dem Verschiebungsvektor $\mathbf u$ und der Gesamtsteifigkeitsmatrix $\mathbf K$ wie folgt:

$$W = \frac{1}{2} \cdot \mathbf{u}^\mathsf{T} \mathbf{K} \mathbf{u} . \tag{1.1}$$

Vor der Implementierung erfolgte die Prüfung, ob die in FiPPS 2 vorhandene Steifigkeitsmatrix ohne gesperrte Freiheiten ausreichend ist. Dies ist der Fall, da ein Nulleintrag $u_i=0$ des Verschiebungsvektors dazu führt, dass bei der Berechnung von W weder Einträge der Zeile i noch der Spalte i der Steifigkeitsmatrix \mathbf{K} herangezogen werden.

Die Prüfung der Berechnung der Gesamtdehnungsenergie erfolgt an dem Beispiel eines Balkens unter Zuglast. Hierzu wird ein einseitig fest eingespannter Balken der Länge l mit einer Zugkraft F betrachtet. Der Balken besitzt die Querschnittsfläche A und den Elastizitätsmodul E. Die in diesem Fall herrschende Gesamtdehnungsenergie kann analytisch berechnet werden:

$$W_{analytisch} = \frac{F^2 \cdot l}{2 \cdot A \cdot E} . \tag{1.2}$$

Die nachfolgende Tabelle stellt für zwei unterschiedliche Balkengeometrien die analytisch ermittelte Gesamtdehnungsenergie $W_{analytisch}$ und die in FiPPS² berechnete Gesamtdehnungsenergie W_{FEM} (Modellierung mit Balkenelement beam2) gegenüber. Es ist keine Abweichung festzustellen.

Wert	Variante 1	Variante 2
Länge l / mm	1000	800
Querschnittsfläche A / mm ²	100	200
Elastitzitätsmodul E / MPa	72400	72400
Zugkraft F / kN	10	2
Gesamtdehnungsenergie analytisch $W_{analytisch}$ / N \cdot mm	6906	110,497
Gesamtdehnungsenergie FiPPS 2 W_{FEM} / N \cdot mm	6906	110,497

2 Elementformulierungen

2.1 Quad8 - Acht-Knoten-Viereckselement

2.1.1 Elementskizze

2.1.2 Elementsteifigkeiten

Die Berechnung der Steifigkeitsmatrizen basiert für den isotropen Fall auf SHELL93 aus AN-SYS und für den geschichteten Fall auf SHELL99. Die Steifigkeitsmatrix stimmt zwischen FiPPS und ANSYS im Rahmen von Rechenungenauigkeiten überein. Dies konnte nur erreicht werden, in dem die Normalenvektoren an jedem Knoten um 0,001 in natürlichen Koordinaten nach Innen verrückt wurden. Geschieht dies nicht, erhält man gerade für doppeltgekrümmte Element erhebliche Abweichungen. Der Hintergrund ist nicht bekannt.

Zu beachten ist das im Falle von SHELL93 (isotrop) mit einer 2-Punkt-Gaussintegration über die Dicke integriert wird und im Falle von SHELL91 mit einer 3-Punkt-Simpsonregel pro Lage in Dickenrichtung integriert wird. Nur dann lassen sich die Ergebnisse direkt vergleichen. Dies wird in FiPPS automatisch umgesetzt.

2.1.3 Penaltysteifigkeit

Die Urspünglich in Ansys umgesetzte, ist die aus der Auflage von 1977, wobei die Berechnung des Hauptdiagonalelements über

$$\sum_{i} \frac{1}{3} \left(E_{11,i} + E_{22,i} + E_{33,i} \right) \frac{1}{100000} t_i A$$

erfolgt. In dieser Gleichung ist i ein Laufindex über die Anzahl der Lagen, $E_{XX,i}$ die Steifigkeiten in die drei Raumrichtungen (für isotrop sind alle drei gleich, für orthotrop gilt $E_{33,i}=E_{11,i},\,t_i$ die Dicke einer Lage und A die Fläche des Elements. Zusätzlich müssen die Nebendiagonalelemente der Penaltysteifigkeiten (-1/7 des oben berechneten Wertes) mit einem Faktor von 0,99999 multipliziert werden. Nur dann stimmen die Werte mit ANSYS vollständig überein. Der Hintergrund ist nicht bekannt.

2.1.4 Koordinatensystem

Die x-Achse des Elementkoordinatensystems verläuft auf der Verbindungslinie von Knoten 1 zu Knoten 2 (die ersten beiden Eckknoten). Die z-Achse entspricht dem Normalenvektor auf der Elementmittelfläche. Die y-Achse ist dann die senkrechte zu beiden Koordinatenachsen, sodass ein Rechtssystem entsteht. Winkel bei orthotropen Materialien wird bezüglich der x-Achse des Elements betrachtet.

2.1.5 Annahmen

Es gelten die selbsen Annahmen, wie für SHELL91 und SHELL93.

- Normalen auf der Mittelflächen bleiben geraden aber nicht zwangweise senkrecht.
- Für alle Integrationspunkte in Dickenrichtung an einer Stelle der Elementmittelfläche wird das gleiche Koordinatensystem angenommen.
- Es wird nur ein Hilfsteifigkeit für eine Rotation um die Normalenachse verwendet (siehe Penaltysteifigkeit).

2.1.6 Einschränkungen in FiPPS

Im Falle von Temperaturlasten sind noch Abweichungen zwischen dem isotropen Quad8-Element und SHELL93 in ANSYS vorhanden. Dies muss noch genauer untersucht werden. Das geschichtete Quad8-Element stimmt mit SHELL91 aber vollsändig überein.

Eine Multistepanalyse ist mit diesem Element bisher nicht möglich, da die Spannungsübertragen von einem Schritt zum nächsten noch nicht implementiert ist.

2.2 Beam2ss - 2 Knoten 3D-Balken zur Aufnahme von Normalkraft, Biegemomenten und Torsion

2.2.1 Steifigkeitsmatrix

2.2.1.1 mit Berücksichtigung der Schubverformung

nach [5] S. 79

die darin auftauchende Länge des Elements lässt sich aus den Knotenkoordinaten der 2 Knoten des Elements berechnen

$$l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Die folgenden Matrizen sind symmetrisch, daher wird nur die untere Dreiecksmatrix aufgeschrieben.

2.2.1.2 ohne Berücksichtigung der Schubverformung

aus [5] S. 80 mit $\Phi_y=\Phi_z=0$ oder [3]

$$\mathbf{K^e} = \begin{bmatrix} \frac{EA}{l} \\ 0 & \frac{12EI_z}{l^3} \\ 0 & 0 & \frac{12EI_y}{l^3} \\ 0 & 0 & \frac{GJ}{l} \\ 0 & 0 & \frac{4EI_y}{l^2} \\ 0 & \frac{6EI_z}{l^2} & 0 & 0 & \frac{4EI_z}{l} \\ \frac{-EA}{l} & 0 & 0 & 0 & 0 & \frac{EA}{l} \\ 0 & \frac{-12EI_z}{l^3} & 0 & 0 & 0 & \frac{-6EI_z}{l^2} & 0 & \frac{12EI_z}{l^3} \\ 0 & 0 & \frac{-12EI_y}{l^3} & 0 & \frac{6EI_y}{l^2} & 0 & 0 & 0 & \frac{12EI_y}{l^3} \\ 0 & 0 & 0 & \frac{-GJ}{l} & 0 & 0 & 0 & 0 & \frac{GJ}{l} \\ 0 & 0 & \frac{-6EI_y}{l^2} & 0 & \frac{2EI_y}{l} & 0 & 0 & 0 & \frac{6EI_y}{l^2} & 0 & \frac{4EI_y}{l^2} \\ 0 & \frac{6EI_z}{l^2} & 0 & 0 & 0 & \frac{2EI_z}{l} & 0 & 0 & 0 & \frac{6EI_y}{l^2} & 0 & \frac{4EI_y}{l} \end{bmatrix}$$

2.2.2 Geometrische Steifigkeitsmatrix

2.2.2.1 2D

aus [5] S. 391

$$\mathbf{K_g^e} = \frac{F}{l} \begin{bmatrix} 0 & & & & \\ 0 & \frac{6}{5} & & & \\ 0 & \frac{l}{10} & \frac{2l^2}{15} & & \\ 0 & 0 & 0 & 0 & \\ 0 & \frac{-6}{5} & \frac{-l}{10} & 0 & \frac{6}{5} & \\ 0 & \frac{l}{10} & \frac{-l^2}{30} & 0 & \frac{-l}{10} & \frac{2l^2}{15} \end{bmatrix}$$

$$(2.1)$$

2.2.2.2 3D

aus: Matthew Panning, MT 244 - University of Michigan, Derivative of the Element Geometric Stiffness Matrix, 20. Februar 2006

Die Zahl nach dem Komma im Index eines Wertes kennzeichnet die Knotennummer

mit Anpassungen, sodass Übereinstimmung mit geometrischer Steifigkeitsmatrix des Elements Beam4 aus ANSYS gegeben ist:

mit:

$$M_{y,1} = 0 (2.2)$$

$$M_{y,2} = 0$$
 (2.3)

$$M_{z,1} = 0$$
 (2.4)

$$M_{z,2} = 0$$
 (2.5)

$$F_x = \frac{EA}{I} \left(u_{x,2} - u_{x,1} \right) \tag{2.6}$$

$$F_y = \frac{EI_z}{l^3} \left[-12 \left(v_2 - v_1 \right) + 6l\theta_{z,1} + 6l\theta_{z,2} \right]$$

$$= -\frac{1}{l} \left(M_{z,2} + M_{z,1} \right) \tag{2.7}$$

$$F_z = \frac{EI_z}{l^3} \left[12 \left(w_2 - w_1 \right) + 6l\theta_{y,1} + 6l\theta_{y,2} \right]$$

$$= \frac{1}{l} \left(M_{y,2} + M_{y,1} \right)$$
(2.8)

Zur Herleitung:

Die Normalkraft F_x und die Biegemomente um die y- Achse M_y und die z-Achse M_z lassen sich durch das Werkstoffgesetz aus den Verzerrungen bestimmen:

$$F_x = EA \frac{\partial u}{\partial x} \tag{2.9}$$

$$M_y = EI_y \frac{\partial \theta_y}{\partial x} \tag{2.10}$$

$$M_z = EI_z \frac{\partial \theta_z}{\partial x}$$
 , (2.11)

wobei die Rotationen um die Normalen zur Stabachse θ_y und θ_z im Bernoulli-Modell des Balkens aus den Ableitungen der Verschiebungen bestimmt werden können:

$$\theta_y = -\frac{\partial w}{\partial x} \tag{2.12}$$

$$\theta_z = \frac{\partial v}{\partial x} \tag{2.13}$$

Aus der Herleitung des Balkenelements ergeben sich die Verschiebungen aus den berechneten Knotenwerten in die drei Raumrichtungen mit der dimensionslosen Längenkoordinate $\eta = \frac{x}{l}$:

$$u(x) = (1 - \eta)u_1 + \eta u_2 \tag{2.14}$$

$$v(x) = (1 - 3\eta^2 + 2\eta^3) v_1 + (\eta - 2\eta^2 + \eta^3) l\theta_{z,1} + (3\eta^2 - 2\eta^3) v_2 + (-\eta^2 + \eta^3) l\theta_{z,2}$$
(2.15)

$$w(x) = (1 - 3\eta^2 + 2\eta^3) w_1 + (-\eta + 2\eta^2 - \eta^3) l\theta_{y,1} + (3\eta^2 - 2\eta^3) w_2 + (\eta^2 - \eta^3) l\theta_{y,2}$$
(2.16)

Die Normalkraft und Biegemomente ergeben sich zu:

$$F_x = \frac{EA}{l} (u_2 - u_1) \tag{2.17}$$

$$M_y = \frac{EI_y}{l^2} \left[(12\eta - 6)(w_2 - w_1) + (6\eta - 4)l\theta_{y,1} + (6\eta - 2)l\theta_{y,2} \right]$$
 (2.18)

$$M_z = \frac{EI_z}{l^2} \left[(6 - 12\eta) (v_2 - v_1) + (6\eta - 4) l\theta_{z,1} + (6\eta - 2) l\theta_{z,2} \right]$$
 (2.19)

Da die Biegemomente linear von der x-Koordinate abhängen, kann ihr Verlauf durch die Knotenwerte M_1 und M_2 und folgenden Zusammenhängen angegeben werden:

$$M_{v} = \eta M_{v,2} - (1 - \eta) M_{v,1}$$
(2.20)

$$M_z = \eta M_{z,2} - (1 - \eta) M_{z,1} \tag{2.21}$$

Die Knotenmomente können damit aus den Beziehungen (2.18) und (2.19) berechnet werden zu:

$$M_{y,1} = -M_y (\eta = 0) = \frac{EI_y}{l^2} [6(w_2 - w_1) + 4l\theta_{y,1} + 2l\theta_{y,2}]$$

$$M_{y,2} = M_y (\eta = 1) = \frac{EI_y}{l^2} [6(w_2 - w_1) + 2l\theta_{y,1} + 4l\theta_{y,2}]$$

$$M_{z,1} = -M_z (\eta = 0) = \frac{EI_z}{l^2} [-6(v_2 - v_1) + 4l\theta_{z,1} + 2l\theta_{z,2}]$$

$$M_{z,2} = M_z (\eta = 1) = \frac{EI_z}{l^2} [-6(v_2 - v_1) + 2l\theta_{z,1} + 4l\theta_{z,2}] ,$$

$$(2.22)$$

$$= \frac{EI_z}{l^2} [-6(v_2 - v_1) + 2l\theta_{z,1} + 4l\theta_{z,2}] ,$$

$$(2.23)$$

$$M_{y,2} = M_y (\eta = 1)$$

$$= \frac{EI_y}{72} [6(w_2 - w_1) + 2l\theta_{y,1} + 4l\theta_{y,2}]$$
 (2.23)

$$M_{z,1} = -M_z (\eta = 0)$$

$$= \frac{EI_z}{l^2} [-6(v_2 - v_1) + 4l\theta_{z,1} + 2l\theta_{z,2}]$$
 (2.24)

$$M_{z,2} = M_z (\eta = 1)$$

$$= \frac{EI_z}{I^2} \left[-6 (v_2 - v_1) + 2l\theta_{z,1} + 4l\theta_{z,2} \right] , \qquad (2.25)$$

wobei für die Übereinstimmung mit der geometrischen Steifigkeitsmatrix des Beam4-Elements aus ANSYS die Momente $M_{y,1}$, $M_{y,2}$, $M_{z,1}$, $M_{z,2}$ zu Null gesetzt werden.

2.2.3 Transformationsbeziehungen

2.2.3.1 Transformation nach NASTRAN

2.2.3.2 Transformation nach ANSYS

Das lokale Elementkoordinatensystem lässt sich mit dem globalen Koordinatensystem bezüglich der Freiheitsgrade koppeln über

$$\mathbf{u}_l = \mathbf{T}_R \mathbf{u} \qquad , \tag{2.26}$$

wobei \mathbf{u}_l der Elementverschiebungsvektor im lokalen und \mathbf{u} der im globalen System ist. Die Transformations matrix T_R ist definiert durch

(2.37)

$$\mathbf{T}_{R} = \begin{bmatrix} \mathbf{T} & 0 & 0 & 0 \\ 0 & \mathbf{T} & 0 & 0 \\ 0 & 0 & \mathbf{T} & 0 \\ 0 & 0 & 0 & \mathbf{T} \end{bmatrix} . \tag{2.27}$$

Dabei ist die Transformationsmatrix der Translations- oer Rotationsfreiheitsgrade eines Knotens ${f T}$

$$\mathbf{T} = \begin{bmatrix} C_1 C_2 & S_1 C_2 & S_2 \\ -C_1 S_2 S_3 - S_1 C_3 & -S_1 S_2 S_3 + C_1 C_3 & S_3 C_2 \\ -C_1 S_2 C_3 - S_1 S_3 & -S_1 S_2 C_3 - C_1 S_3 & C_3 C_2 \end{bmatrix} , \qquad (2.28)$$

wobei

 $d = 0.001 \cdot l$

$$S_1 = \begin{cases} \frac{y_2 - y_1}{l_{xy}} & \text{wenn } l_{xy} > d\\ 0 & \text{wenn } l_{xy} < d \end{cases}$$

$$(2.29)$$

$$S_2 = \frac{z_2 - z_1}{l} \tag{2.30}$$

$$S_3 = \sin \theta \tag{2.31}$$

$$(2.32)$$

$$C_{1} = \begin{cases} \frac{x_{2} - x_{1}}{l_{xy}} & \text{wenn } l_{xy} > d\\ 1 & \text{wenn } l_{xy} < d \end{cases}$$
 (2.33)

$$C_2 = \frac{l_{xy}}{l} \tag{2.34}$$

$$C_3 = \cos \theta \tag{2.35}$$

Darin ist die projezierte Länge des Vektors AB (im 3D) zwischen den beiden Knoten auf die x-y-Ebene:

$$l_{xy} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (2.38)

Der Winkel θ wird vom Benutzer in der *PBeam*-Karte angegeben. Ist dies nicht der Fall, existiert nach [1] die Möglichkeit die Orientierung des Balkens über einen zusätzlichen dritten Orientierungsknoten vorzugeben. Diese Möglichkeit ist in FiPPS zwar prinzipiell implementiert, jedoch zur Zeit nicht in der Berechnung verfügbar und ist noch zu prüfen.

2.2.4 Knotenkopplung

Für die Interpolation der Freiheitsgrade $\mathbf{u}\left(\eta\right)$ über der normierten Lauflänge des Balkenelements werden die beschriebenen kubischen Ansatzfunktionen für Durchbiegung in y- und z-Richtung verwendet. Die Verschiebung in Richtung x und die Rotation um x werden auf Basis der linearen Ansatzfunktion bestimmt, die Verdrehungen um die y- und z-Achse aus der Bernoulli-Hypothese. Damit ergibt sich in den Elementkoordinaten folgender Zusammenhang zwischen den interpolierten Freiheitsgraden $\mathbf{u}\left(\eta\right)$ und den Freiheitsgraden \mathbf{u}_i der beiden Elementknoten i=1 und i=2:

$$\begin{bmatrix} u\left(\eta\right) \\ v\left(\eta\right) \\ w\left(\eta\right) \\ \theta_{x}\left(\eta\right) \\ \theta_{y}\left(\eta\right) \\ \theta_{z}\left(\eta\right) \end{bmatrix} = \begin{bmatrix} N_{l1} & 0 & 0 & 0 & 0 & 0 & N_{l2} & 0 & 0 & 0 & 0 & 0 \\ 0 & N_{k11} & 0 & 0 & 0 & N_{k21} & 0 & N_{k12} & 0 & 0 & 0 & N_{k22} \\ 0 & 0 & N_{k11} & 0 & -N_{k21} & 0 & 0 & 0 & N_{k12} & 0 & -N_{k22} & 0 \\ 0 & 0 & 0 & N_{l1} & 0 & 0 & 0 & 0 & 0 & N_{l2} & 0 & 0 \\ 0 & 0 & -\frac{dN_{k11}}{dx} & 0 & \frac{dN_{k21}}{dx} & 0 & 0 & 0 & -\frac{dN_{k12}}{dx} & 0 & \frac{dN_{k22}}{dx} & 0 \\ 0 & 0 & \frac{dN_{k11}}{dx} & 0 & 0 & 0 & \frac{dN_{k21}}{dx} & 0 & \frac{dN_{k12}}{dx} & 0 & 0 & 0 & \frac{dN_{k22}}{dx} \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ w_1 \\ \theta_{x,1} \\ \theta_{y,1} \\ \theta_{z,1} \\ u_2 \\ v_2 \\ w_2 \\ \theta_{x,2} \\ \theta_{y,2} \\ \theta_{z,2} \end{bmatrix}$$

mit

$$N_{l1}(\eta) = 1 - \eta$$
, (2.39)

$$N_{l2}\left(\eta\right) = \eta \,\,, \tag{2.40}$$

$$N_{k11}(\eta) = 2\eta^3 - 3\eta^2 + 1, \qquad (2.41)$$

$$N_{k12}(\eta) = -2\eta^3 + 3\eta^2, \tag{2.42}$$

$$N_{k21}(\eta) = (\eta^3 - 2\eta^2 + \eta) l,$$
 (2.43)

$$N_{k22}(\eta) = (\eta^3 - \eta^2) l. (2.44)$$

2.2.5 Einschränkungen in FiPPS

Die ausgebenen Ergebnisse für das Balkenelement sind für den Fall von Temperaturlasten noch nicht vollständig untersucht. Die Verschiebungen stimmen.

Eine Multistepanalyse ist mit diesem Element bisher nicht möglich.

2.3 Lsolid20 - 20 Knoten Volumenelement mit geschichteter Formulierung

2.3.1 Knoten- und Flächennummerierung

Die Knotennummerierung des Lsolid20-Elements ist in Abbildung 2.1 dargestellt.

Abbildung 2.1: Knotennummerierung des Lsolid20-Elements.

Oberflächenkräfte werden durch Angabe der entsprechenden Elementseitenfläche definiert. Abbildung 2.2 zeigt die verwendete Nummerierung der Elementseitenflächen.

Abbildung 2.2: Flächennummerierung des Lsolid20-Elements.

2.3.2 Steifigkeitsmatrix

Die Elementsteifigkeitsmatrix **K** wird durch lagenweise Integration nach [4] wie folgt berechnet:

$$\mathbf{K} = \sum_{k=1}^{n_L} \int_{-1}^{1} \int_{-1}^{1} \mathbf{B}^{\mathsf{T}} \mathbf{C}_k \mathbf{B} \det \mathbf{J} \cdot \frac{h_k}{t_L} d\xi d\eta d\zeta_k$$

$$\text{mit } \mathbf{B} = \mathbf{B}(\xi, \eta, \zeta), \ \mathbf{J} = \mathbf{J}(\xi, \eta, \zeta) \ .$$
(2.45)

Dabei bezeichnet \mathbf{C}_k die Materialsteifigkeitsmatrix der k-ten Laminatlage, transformiert in das Bezugskoordinatensystem. Zur Berechnung der Verzerrungs-Verschiebungs-Matrix \mathbf{B} und der Jacobi-Matrix \mathbf{J} ist ζ_k durch die natürliche Elementkoordinate ζ zu substituieren:

$$\zeta = -1 + \frac{2\sum_{i=1}^{k} (h_i) - h_k (1 - \zeta_k)}{t_L} , \qquad (2.46)$$

wobei h_i die Dicke der Laminatlage i ist und $t_L = \sum_{i=1}^{n_L} h_i$ die Gesamtdicke des aus n_L Einzellagen bestehenden Laminats bezeichnet.

Anzumerken ist, dass die Gesamtdicke t_L des Laminats nicht notwendigerweise der tatsächlichen Elementdicke entsprechen muss. Bedingt durch die von ζ_k und dem einheitlichen Definitionsbereich von $\{(\zeta,\zeta_k)\in\mathbb{R}|-1\leq (\zeta,\zeta_k)\leq 1\}$ der Dickenkoordinaten ζ und ζ_k über die Element- beziehungsweise Laminatlagendicke, wird der Lagenaufbau stets auf die tatsächliche Elementdicke skaliert. Bei der späteren Definition eines Laminats in dem FE-Programm sind demnach nur die Dickenverhältnisse h_k/t_L der Einzellagen entscheidend; die tatsächliche Lagendicke ist durch die Geometrie des FE-Modells vorgegeben.

2.3.3 Geometrische Steifigkeitsmatrix

Die Elementsteifigkeitsmatrix $\mathbf{K_g}$ wird durch lagenweise Integration nach [4], analog zur Steifigkeitsmatrix \mathbf{K} , wie folgt berechnet:

$$\mathbf{K}_{\mathbf{g}} = \sum_{k=1}^{n_L} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \mathbf{G}^{\mathsf{T}} \mathbf{S}_k \mathbf{G} \det \mathbf{J} \cdot \frac{h_k}{t_L} \mathrm{d}\xi \mathrm{d}\eta \mathrm{d}\zeta_k , \qquad (2.47)$$

mit

$$\mathbf{G} = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & 0 & \frac{\partial N_2}{\partial x} & 0 & 0 & \cdots & \frac{\partial N_{20}}{\partial x} & 0 & 0 \\ \frac{\partial N_1}{\partial y} & 0 & 0 & \frac{\partial N_2}{\partial y} & 0 & 0 & \cdots & \frac{\partial N_{20}}{\partial y} & 0 & 0 \\ \frac{\partial N_1}{\partial z} & 0 & 0 & \frac{\partial N_2}{\partial z} & 0 & 0 & \cdots & \frac{\partial N_{20}}{\partial z} & 0 & 0 \\ 0 & \frac{\partial N_1}{\partial x} & 0 & 0 & \frac{\partial N_2}{\partial x} & 0 & \cdots & 0 & \frac{\partial N_{20}}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & 0 & 0 & \frac{\partial N_2}{\partial y} & 0 & \cdots & 0 & \frac{\partial N_{20}}{\partial y} & 0 \\ 0 & \frac{\partial N_1}{\partial z} & 0 & 0 & \frac{\partial N_2}{\partial z} & 0 & \cdots & 0 & \frac{\partial N_{20}}{\partial z} & 0 \\ 0 & 0 & \frac{\partial N_1}{\partial z} & 0 & 0 & \frac{\partial N_2}{\partial z} & 0 & \cdots & 0 & 0 & \frac{\partial N_{20}}{\partial z} \\ 0 & 0 & \frac{\partial N_1}{\partial y} & 0 & 0 & \frac{\partial N_2}{\partial y} & \cdots & 0 & 0 & \frac{\partial N_{20}}{\partial y} \\ 0 & 0 & \frac{\partial N_1}{\partial y} & 0 & 0 & \frac{\partial N_2}{\partial y} & \cdots & 0 & 0 & \frac{\partial N_{20}}{\partial y} \\ 0 & 0 & \frac{\partial N_1}{\partial z} & 0 & 0 & \frac{\partial N_2}{\partial z} & \cdots & 0 & 0 & \frac{\partial N_{20}}{\partial z} \end{bmatrix}$$

und

2.3.4 Definition der Koordinatensysteme

Die Gesamtsteifigkeitsmatrix ${\bf K}$, der Lastvektor ${\bf f}$ sowie der Vektor der diskreten Knotenkräfte ${\bf r}$ werden im globalen kartesischen Koordinatensystem (x,y,z) aufgestellt. Weiterhin werden folgende Koordinatensysteme definiert:

- Natürliches Koordinatensystem (ξ, η, ζ) ,
- Orthonormales Elementkoordinatensystem $(\bar{x}, \bar{y}, \bar{z})$,
- Materialkoordinatensystem (1, 2, 3),
- Lokales Knotenkoordinatensystem $(\hat{x}, \hat{y}, \hat{z})$.

Die Koordinatensysteme sind entsprechend Abbildung 2.3 definiert.

Das natürliche Elementkoordinatensystem folgt als gekrümmtes Koordinatensystem der Elementkrümmung. Die ξ - η -Ebene mit $\zeta=0$ bildet somit stets die Mittenebene des Elements.

Das orthonormale Elementkoordinatensystem $(\bar x, \bar y, \bar z)$ ist lokal an dem jeweiligen Punkt P innerhalb des Volumenelements definiert. Die $\bar z$ -Achse des Elementkoordinatensystems folgt stets der Dickenrichtung ζ des Elements, die $\bar x$ -Achse gibt die Fasernullrichtung $\varphi=0^{\rm o}$ vor, sodass das Elementkoordinatensystem die Referenz für das relativ dazu rotierte Materialkoordinatensystem bildet. Im Allgemeinen ist die $\bar x$ -Achse des Elementkoordinatensystems entlang der ξ -Koordinate des natürlichen Koordinatensystems ausgerichtet. Davon abweichend kann die Orientierung der $\bar x$ -Achse durch einen benutzerdefinierten Vektor ${\bf v}$ vorgegeben werden. In diesem Fall ist die $\bar x$ -Achse entlang der lokalen Projektion des Vektors ${\bf v}$ in die ξ - η -Mittenebene des Elements ausgerichtet.

Abbildung 2.3: Globales Koordinatensystem (x,y,z), natürliches Koordinatensystem (ξ,η,ζ) , orthonormales Elementkoordinatensystem $(\bar x,\bar y,\bar z)$ und lokales Knotenkoordinatensystem $(\hat x,\hat y,\hat z)$.

An Knoten, an denen der Benutzer kein Knotenkoordinatensystem definiert, ist dieses automatisch entlang des globalen kartesischen Koordinatensystems ausgerichtet. Alternativ ist die Vorgabe des Knotenkoordinatensystems für jeden Knoten individuell durch den Nutzer möglich.

2.3.5 Integrationsschema

In den Lagenebenen erfolgt die Integration über eine reduzierte 2×2 -Gauss-Integration, in Dickenrichtung wird die SIMPSON-Regel mit einem, drei, fünf, sieben oder neun Integrationspunkten je Laminatlage verwendet. Die Anzahl der Integrationspunkte je Lagendicke kann für jede Laminatlage separat definiert werden und die Werte 1, 2, 3, 5, 7 oder 9 annehmen. Die Gesamtanzahl der Integrationspunkte n_{ges} je Finitem Element ist somit direkt proportional zur Anzahl der Laminatlagen n_L :

$$n_{ges} = 4 \cdot \sum_{k=1}^{n_L} n_{IP,k} . {(2.50)}$$

2.4 Benötigtes Vorgehen bei Hinzufügen eines neuen Elements

2.4.1 Eintragen in Globale Variablen

Folgende Einträge sind in der Datei globale Variablen.f90 vorzunehmen:

- Eintragen des logischen Werts is_Element
- Anlegen des Typs Element type
- Anlegen des Elements vom Typ Element type

2.4.2 Berücksichtigung im Einlesen der Kontrolldatei

Folgende Einträge sind in der Datei input process line.f90 vorzunehmen:

• Einbau des Wortes des Elements in der Kontrolldatei

2.4.3 Einbau des Einlesens des Elements

Folgende Einträge sind in der Datei *input tf.f90* vorzunehmen:

• Einbau des Einlesevorgangs entsprechend des angelegten Typs

2.4.4 Berücksichtigung in Elementanzahl

Folgende Einträge sind in der Datei init values.f90 vorzunehmen:

• Berücksichtigung der Anzahl des neuen Elements in der Größe num elements

2.4.5 Einbau in der statischen Lösung

• Kontroll- bzw. Elementroutine in get_stiffness_matrices.f90 eintragen

2.4.6 Einbau in der Beullösung

Kontroll- bzw. Elementroutine in get geometric stiffness matrix.f90 eintragen

2.4.7 Einfügen des Object-Files in die Makefile-Datei

Folgende Einträge sind in der Datei MakeFile im Ordner /source vorzunehmen:

• Hinzufügen der Object-Files der Routinen für das neue Element

3 Benutzerdefinierte Ergebnisausgabe über *libuseroutput.so*

Es besteht die Möglichkeit der Implementierung einer nutzerspezifischen Ergebnisausgabe in der benutzerdefinierten dynamischen Bibliothek *libuseroutput.so*. Auf die Erstellung und Einbindung einer benutzerdefinierten dynamischen Bibliothek wird im Folgenden näher eingegangen.

Für die Erstellung der benutzerdefinierten Bibliothek werden die in Abbildung 3.1 dargestellten Dateien und Ordner aus dem FiPPS²-Repository benötigt.

Abbildung 3.1: Verzeichnisstruktur der benötigten Dateien zur Erstellung einer dynamischen Bibliothek zur benutzerdefinierten Ergebnisausgabe.

Der Ordner *outputLibrary* beinhaltet die notwendigen Vorlagen der Subroutinen für die benutzerdefinierte Ergebnisausgabe und das entsprechende *Makefile*. Hierbei ist zu beachten, dass die Subroutine sol1_output_vtk() bei Setzen des Keywords *outputvtk* in *control.fipps* (vergleiche Abschnitt 5.1.2) zur Ausgabe der Ergebnisse der statischen Lösung als VTK-Datei dient. Durch benutzerdefinierte Modifikation der Subroutine kann Einfluss auf die VTK-Ausgabe genommen werden. Weiterhin dient die Subroutine als Muster für die Erstellung einer benutzerdefinierten Ergebnisausgabe.

Für die benutzerdefinierte Ergebnisausgabe steht die Subroutine sol1_output_user() zur Verfügung. Diese wird bei Setzen des Keywords *outputuser* in *control.fipps* (vergleiche Abschnitt 5.1.2) nach der statischen Lösung aufgerufen. Hierbei ist zu beachten, dass sich die Argumente der Subroutine von sol1_output_vtk() unterscheiden. Neben den Basisdaten zum FE-Modell fesim, dem Verschiebungsvektor Utot und der Nummer des aktuellen Subcase scloop stehen folgende Argumente zur Verfügung:

• Fout: Vollständig besetzter Kraftvektor mit allen externen Lasten,

- cdi: Beiwert des induzierten Widerstands aus einer gegebenenfalls definierten dreidimensionalen Fluid-Strukturkopplung mittels APAME (vergleiche Abschnitt 1.4),
- aeroConverged: Boolean-Flag über die Konvergenz einer gegebenenfalls definierten zwei- oder dreidimensionalen Fluid-Strukturkopplung im aktuellen Subcase scloop (vergleiche Abschnitt 1.4; .True.: konvergiert, .False.: nicht konvergiert).

Es ist zu beachten, dass die Nutzung der benutzerdefinierten Ausgabe soll_output_user() durch Setzen des Keywords *outputuser* zu einem geringfügig erhöhten Speicherbedarf von FiPPS² führen kann, da der vollständig besetzte Lastvektor über das Lösen des Gleichungssystems für die statische Lösung behalten wird.

Analog zu den Subroutinen soll_output_vtk() und soll_output_user() zur Ausgabe der Ergebnisse der statischen Strukturlösung dienen die Subroutinen soll_output_vtk() und soll_output_user() zur Ausgabe der Lösungen der linearen Stabilitätsanalyse. Der Aufruf der Subroutinen ist ebenfalls an das jeweilige Keyword *outputvtk* und *outputuser* in *control.fipps* gebunden.

Nach Kompilieren der benutzerdefinierten Bibliothek ist der Pfad zu der erzeugten dynamischen Bibliothek *libuseroutput.so* der Umgebungsvariablen LD_LIBRARY_PATH hinzuzufügen. Liegt die kompilierte dynamische Bibliothek exemplarisch im Verzeichnis

/home/user/outputLibrary/libuseroutput.so

kann die Ergänzung der Umgebungsvariablen durch folgenden Befehl vorgenommen werden:

export LD_LIBRARY_PATH=/home/user/outputLibrary:\$LD_LIBRARY_PATH

wodurch der Pfad zu den bereits definierten Suchpfaden dynamischer Bibliotheken hinzugefügt wird. Durch obigen Befehl wird der Pfad als erster Suchpfad in LD_LIBRARY_PATH gesetzt, sodass die benutzerdefinierte Bibliothek anstelle der Standardbibliothek in FiPPS² genutzt wird.

4 Debugging-Optionen

4.1 Ausgabe von Werten

4.1.1 Herausschreiben einer quadratischen Matrix

Über die Subroutine write quad Matrix

4.1.2 Grafische Ausgabe der Gesamtsteifigkeitsmatrix

mit PETSc über die Option -draw_pause <pause>, wobei <pause> die länge der Pause in Sekunden darstellt. Um die Matrix bis zum manuellen schließen des Fensters anzuzeigen kann der Wert <pause>=-1 genutzt werden.

4.2 Vergleich mit ANSYS

4.2.1 Herausschreiben der Elementsteifigkeitsmatrizen

Mit dem undokumentierten Befehl / DEBUG können für alle Elemente die Steifigkeitsmatrizen (und auch geometrischen Steifigkeitmatrizen) ausgegeben werden.

Listing 4.1: Eingabe zur Ausgabe der Elementsteifigkeitsmatrix in ANSYS

gefunden unter: http://www.cadfem.de/fileadmin/files/9_service_newsletter/200 3/0308/Newsletter_08_2003.pdf

4.2.2 Herausschreiben des Lastvektors

Der Lastvektor einer statischen Lösung lässt sich über den Umweg einer Substructure-Analyse erlangen. Die nötigen Eingaben lauten:

Listing 4.2: Eingabe zur Ausgabe des Lastvektors in ANSYS

gefunden unter: http://www.scribd.com/doc/8120884/ANSYS-Stiffness-Matrix-v8p1.

5 Input-Karten

5.1 Einleitung

Sämtliche Input-Karten sind dem Löser als einzelne Dateien zur Verfügung zu stellen. Welche Dateien im Modell berücksichtigt werden, muss in einer Datei mit dem Namen control.fipps spezifiziert werden. In dieser wird zusätzlich die gewünschte Lösungsart angegeben. Über den Parameter sol kann eine ausschließlich statische Lösung (sol=1) oder eine linearisierte Beulanalyse (sol=2) gewählt werden. Wird die Beulanalyse gewählt, ist zusätzlich die Anzahl der gesuchten kleinsten Eigenwerte über den Parameter numEigVal anzugeben. Die Reihenfolge der Angabe in der Datei control.fipps ist egal. Lediglich in der ersten Zeile muss als I10-Wert die Anzahl der Zeilen in der Kontrolldatei angegeben werden.

In der control.fipps wird zudem die Ausgabe gesteuert.

24 coord load force beam2 quad8 mat1 mat8 lam8 pbeam pcomp spcadd spc1 subcase node coupling temperature failure sol=2numEigVal=4 shellResPos=1 outputvtk outputshort outputelemcoord outputboundcond

Listing 5.1: Beispiel einer control.fipps-Datei

Jede Inputdatei ist in dem Format vorzugeben, dass die einzelnen Karten vorgeben. In der ersten Zeile einer jeden Datei muss die Anzahl der zu berücksichtigenden Einträge (also Zeilen) stehen. Die erste Zeile, in der die Zeilenanzahl steht, wird hierbei nicht berücksichtigt.

5.1.1 Beschreibung der Dateieinträge

Eintrag	Dateiname	Inhalt
aeroload2d	aeroload2ds.fipps	Definition einer zweidimensiona- len aerodynamischen Last, berech- net über die integrierte Fluid- Struktur-Kopplung
aeroload3d	aeroload3ds.fipps	Definition einer dreidimensionalen aerodynamischen Last, berechnet über die integrierte Fluid-Struktur- Kopplung
beam2	beam2.fipps	Definition von 2-Konten-Balkenele- mente
beam2temp	beam2temps.fipps	Definition von thermomechani- schen Lasten auf Beam2-Elemente
contact_node_beam2	contact_node_beam2.fipps	Knoten-Beam2-Element-Kontakt-definition
contact_node_quad8	contact_node_quad8.fipps	Knoten-Quad8-Element-Kontakt- definition
contact_node_lsolid20	contact_node_lsolid20.fipps	Knoten-Lsolid20-Element-Kontakt-definition
coord	coord.fipps	Defintion von Koordinatensyste- men
coupling	couplings.fipps	Defintion der Kopplung von Freiheiten
force lam8	forces.fipps lam8.fipps	Definition von Kräften Definition von Laminaten
lam20	lam20.fipps	Definition von Laminaten für das Lsolid20-Element
load	loads.fipps	Definition einer Last aus Kräften und Momenten
lsolid20	lsolid20.fipps	Definition des 20-Knoten Layered Solid-Elements Lsolid20
lsolid20temp	lsolid20temps.fipps	Definition von thermomecha- nischen Lasten auf Lsolid20- Elemente
failure	failure.fipps	Definition von Festigkeits- / Versagenskriterien
mat1	mat1.fipps	Definition von isotropen Materiali- en
mat8	mat8.fipps	Definition von orthotropen Materialien
mat20	mat20.fipps	Definition von orthotropen Materialien nach dem dreidimensionalen Elastizitätsgesetz
moment	moments.fipps	Definition von Momenten
mpc	mpc.fipps	Definition von Multi Point Constraints

Eintrag	Dateiname	Inhalt
mpcadd	mpcadd.fipps	Definition von Multi Point Constraint Sets
multistep	multistep.fipps	Definition einer mehrschrittigen FE-Analyse
node	nodes.fipps	Definition von Knoten
p2load	p2loads.fipps	Definition von Linienlasten auf Beam2-Elemente
p3load	p3loads.fipps	Definition von Drucklasten auf Tria3-Elemente
p8load	p8loads.fipps	Definition von Drucklasten auf Quad8-Elemente
p20load	p20loads.fipps	Definition von Oberflächenkräften auf Lsolid20-Ele-
		mente
pbeam	pbeam.fipps	Definition von Balkenelementeigenschaften
pcomp	pcomp.fipps	Definition von Schalenelementeigenschaften (ge-
		schichteter Aufbau)
plsolid	plsolid.fipps	Definition von Eigenschaften des Lsolid20-Elements
pshell	pshell.fipps	Definition von Schalenelementeigenschaften (isotrop,
		ungeschichtet)
quad4	quad4.fipps	Definition von 4-Knoten-Schalenelementen
quad8	quad8.fipps	Definition von 8-Knoten-Schalenelementen
quad8temp	quad8temps.fipps	Definition von thermomechanischen Lasten auf
		Quad8-Elemente
spc1	spc1.fipps	Definition von gesperrten Freiheiten
spcadd	spcadd.fipps	Definition von Set gesperrter Freiheiten
subcase	subcase.fipps	Lastfalldefinition
temperature	temperatures.fipps	Definition von thermomechanischen Lasten auf Knoten
tria3	tria3.fipps	Definition von 3-Knoten-Dreiseckelementen

5.1.2 Beschreibung der Einstellungsparameter

Eintrag	Inhalt
sol	Einstellung der gewünschten Lösungsart
	1 - statische Rechnung
	2 - Beulrechnung (mit vorheriger statischer Rechnung)
numEigVal	Anzahl der gewünschten Eigenwerte im Falle einer Beulrechnung (sol = 2). Es handelt sich dabei um die Mindestenanzahl an Eigenwerten, die das Konvergenzkriterium erfüllen müssen.
blocksize	Dieser Parameter ist für eine verbesserte Abschätzung der Nichtnullelement in den Steifigkeitsmatrizen notwendig. Dabei werden jeweils "blocksize"-Werte einer Matrixzeile zusammengefasst und für dieser die Anzahl der Nichtnullelemente statt für die Elemente der gesamten Zeile bestimmt. Sinnvolle Werte liegen bei 500 bis 1000. Bei zu kleinen Werten kehrt sich der Effekt um, da dann für die Abschätzung schon zuviel Speicher benötigt wird. Im Falle von blocksize = 1 wird zur Abschätzung Speicher in der Größenordnung der Größe der Steifigkeitsmatrizen als dense verwendet. Dafür erhält man die beste Abschätzung. Dieser Parameter muss nicht vorhanden werden. Wenn eine Vielzahl vom MPCs oder Kontakten im Modell vorhanden sind, sollte
shellResPos	dieser Wert aber gesetzt werden. Schalter, an welcher Stelle die Dehnungen von Schalenelementen berechnet und ausgegeben werden sollen (0 - MID, 1 - TOP, 2 -
outputuser	BOT). Der Standardwert ist 0. Es werden die Ausgaberoutinen soll_user_output() und soll_user_output() aus der benutzerdefinierten dynamischen Bibliothek <i>libuseroutput.so</i> aufgerufen (siehe Kapitel 3).
outputvtk	Die Ergebnisse werden als VTK-Dateien ausgegeben.
outputshort	Es wird eine output_FEM.txt Datei herausgeschrieben, in der pro Lastfall die wichtigsten Informationen stehen.
outputelemcoord	Es werden die Elementkoordinatensystem in die VTK-Datei ausgeben. Diese Option wird nur berücksichtigt, wenn outputvtk aktiv ist.
outputboundcond	Es werden die Randbedingungen in die VTK-Datei ausgeben. Diese Option wird nur berücksichtigt, wenn outputvtk aktiv ist.
aeroDisplEps	Dieser Parameter definiert das Abbruchkriterium für die Fluid- Strukturkopplung. Bei relativen Verschiebungsänderungen kleiner als dieser Wert, bricht die Iteration ab.
calculatetse	Es erfolgt die Berechnung der Gesamtdehnungsenergie (Total Strain Energy - TSE).
calculateelementaltse	Es erfolgt die Berechnung der elementweisen Gesamtdehnungs- energie (Total Strain Energy - TSE).

5.2 Knoten

5.2.1 Nodes

5.2.1.1 Beschreibung

Die Karte definiert die Knoten.

5.2.1.2 Input-Karte

Alle Karten müssen zeilenweise ausgefüllt werden. Die Datei muss den Namen *nodes.fipps* haben.

Karte 1	1	2	3	4	5	6	7	8
Variable	cid	coord1	coord2	coord3	=	=	=	=
Тур	I>0	R	R	R	-	-	-	-
Standard	-	-	-	-	<u> -</u> >	-	-	-
Hinweis	1	-	-	- [-	-	-
aktuell genutzt	✓	\checkmark	✓	√	-	-	-	-

5.2.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
cid	Koordinatensystem-ID (siehe Hinweis 1)	Integer > 0	I10
coordi	Koordinaten der Knoten (x,y,z)	Real	3E24.16

5.2.1.4 Hinweise

1. Knoten können in beliebigen Koordinatensystemen definiert sein. Zur Zeit stehen nur kartesische Rechtssysteme zur Verfügung.

5.3 Elemente

5.3.1 Beam2

5.3.1.1 Beschreibung

Die Karte definiert ein 2-Knoten-Balkenelement mit linearem Verschiebungsansatz. Das Element kann Zug/Druck, Biegung und Torsion übertragen. Es ist definiert nach [5]. Die Datei muss den Namen *beam2.fipps* haben.

5.3.1.2 Input-Karte

Alle Karten müssen zeilenweise ausgefüllt werden

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	nid1	nid2	x1	x2	х3	n0	-
Тур	I>0	I>0	I>0	R	R	R	I>0	-
Standard	-	=	=	-		-	=	-
Hinweis	-	=	=	1	1	1	2	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	4	V	√	-	-

5.3.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	I10
nidi	Knoten-ID	Integer > 0	2I10
xi	Komponenten des Orientierungsvektors des Balken-	Real	3E23.16
	hauptachsenkoordinatensystems am Knoten 1 in loka-		
	len Koordinaten. Der Vektor muss nicht normiert sein.		
	(siehe Hinweis 1)		
n0	Knoten für Orientierungsvektor des Balkenhauptach-	Integer > 0	I10
	senkoordinatensystems am Knoten 1 (siehe Hinweis 2)		

5.3.1.4 Hinweise

- 1. Wird kein Wert oder 0.0 für x1, x2, x3 angegeben, wird das lokale Koordinatensystem nach dem Prinzip des Beam4 aus Ansys bestimmt.
- 2. In der aktuellen Version nicht implementiert, intern gelöst

5.3.2 Tria3

Dieses Element wird derzeit nicht unterstützt.

5.3.2.1 Beschreibung

Dieses Element ist in die aktuellen Version nicht mehr funktionsfähig. Bei Bedarf bitte an die Entwickler wenden.

Die Karte definiert ein 3-Knoten-Dreieckselement mit linearem Verschiebungsansatz. Die Datei muss den Namen *tria3.fipps* haben.

5.3.2.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	nid1	nid2	nid3	theta	atype	offset	-
Тур	I>0	I>0	I>0	I>0	R	C	R	-
Standard	-	-	-	-		-	=	-
Hinweis	-	-	-	-	1	2	2	-
aktuell genutzt	\checkmark	\checkmark	\checkmark		V	-	-	-
genutzt								

5.3.2.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	I10
nidi	Knoten-ID	Integer > 0	3I10
theta	Angle between element and material coordinate System	Real	E23.16
	(siehe Hinweis 1)		
atype	Angle type, 'deg' or 'rad'	Character	A3
offset	material coordinate offset from FE reference plane	Real	E23.16
	(thickness direction)		

5.3.2.4 Hinweise

- 1. Der Winkel zwischen Material und Elementkoordinatensystem ...
- 2. Diese größen werden in aktuellen FiPPS-Version automatisch auf 'rad' bzw. 0.0 gesetzt.

5.3.3 Quad8

5.3.3.1 Beschreibung

Die Karte definiert ein 8-Knoten-Viereckselement mit biquadratischem Verschiebungsansatz (Serendipity-Typ). Das Element kann doppeltgekrümmt sein. Die Datei muss den Namen *quad8.fipps* haben.

5.3.3.2 Input-KarteAlle Karten müssen zeilenweise ausgefüllt werden

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	nid1	nid2	nid3	nid4	nid5	nid6	nid7
Тур	I>0	I>0	I>0	I>0	I>0	I>0	I>0	I>0
Standard	-	-	-	-	-	-	-	-
Hinweis	-	-	-	-		-	-	-
aktuell genutzt	\checkmark	✓	\checkmark	1		√	\checkmark	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable	nid8	theta	atype	offset	-	-	-	=
Тур	I>0	R	C	R	-	-	-	-
Standard	-	-		-	-	-	-	-
Hinweis	-	1	-	_	-	-	-	-
aktuell genutzt	✓	√	√	√	-	-	_	-

5.3.3.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	I10
nidi	Knoten-ID	Integer > 0	8I10
theta	Angle between element and material coordinate System	Real	E23.16
	(siehe Hinweis 1)		
atype	Angle type, 'deg' or 'rad'	Character	3A
offset	material coordinate offset from FE reference plane	Real	E23.16
	(thickness direction)		

5.3.3.4 Hinweise

1. Der Winkel zwischen Material und Elementkoordinatensystem ...

5.3.4 Lsolid20

5.3.4.1 Beschreibung

Die Eingabekarte definiert ein Lsolid20-Element. Das Element ist als Layered Solid-Element mit 20 Knoten ausgeführt. Der Laminataufbau kann aus einer beliebigen Anzahl orthotroper Einzellagen bestehen. Abbildung 2.1 stellt die verwendete Knotennummerierung dar. Die Datei muss den Namen *lsolid20.fipps* haben.

5.3.4.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	nid1	nid2	nid3	nid4	nid5	nid6	nid7
Тур	I>0	I>0	I>0	I>0	I>0	I>0	I>0	I>0
Standard	-	-	=	=	-	=	=	-
Hinweis	-	-	-	-	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	√	V	✓	\checkmark	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable	nid8	nid9	nid10	nid11	nid12	nid13	nid14	nid15
Тур	I>0	I>0	I>0	I>0	I>0	I>0	I>0	I>0
Standard	-	-	^	-	-	-	-	-
Hinweis	-	-	-		-	-	-	-
aktuell genutzt	✓	1	✓	√	✓	✓	✓	\checkmark
IZ 0	17	10	10	20	0.1	00	00	0.4
Karte 3	17	18	19	20	21	22	23	24
Variable	nid16	nid17	nid18	nid19	nid20	-	-	-
Тур	I>0	I>0	I>0	I>0	I>0	-	-	-
Standard	-	-	-	-	-	-	-	-
Hinweis	-	-	-	-	-	-	-	-
aktuell genutzt	✓	✓	✓	✓	✓	-	-	-

5.3.4.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	
nidi	Knoten-ID	Integer > 0	

5.4 Belastungen

5.4.1 Load

5.4.1.1 Beschreibung

Diese Karte definiert ein Lastenset aus Einzellasten. Diese können einzeln skaliert werden. Die Datei muss den Namen *loads.fipps* haben. Diese Karte muss erstellt werden, sobald das Modell belastet werden soll.

5.4.1.2 Input-Karte

-								
Karte 1	1	2	3	4	5	6	7	8
Variable	lcid	sfaci	lidi	-	-	-	-	-
Typ	I>0	R	I>0	=	-	-	-	=
Standard	-	=	=	-	-	-	-	=
Hinweis	1	-	-	- 6		-	-	-
aktuell genutzt	\checkmark	✓	\checkmark	-	(-)	-	-	-

5.4.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
lcid	LoadCase-ID	Integer > 0	I10
sfaci	Skalierungsfaktor für die Einzellast	Real	E23.16
lidi	Load-ID der Einzellast	Integer > 0	I10

5.4.1.4 Hinweise

- 1. Mehrere Einzellasten können zu einem Set zusammengefasst werden, indem sie die gleiche LoadCaseID (lcid) erhalten.
- 2. Der Faktor sfac muss für alle Einzellasten eines Lastensets (jede Zeile) identisch sein. Er kann in der aktuellen Version nicht gesetzt werden, sondern hat automatisch den Wert eins.

5.4.2 Force

5.4.2.1 Beschreibung

Diese Karte definiert eine diskrete Einzelkraft auf einen Knoten. Die Datei muss den Namen *forces.fipps* haben.

5.4.2.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	nid	fac	n1	n2	n3	-	-
Тур	I>0	I>0	R	R	R	R	-	-
Standard	=	-	-	-	-	-	-	-
Hinweis	=	-	-	2	2	2	-	-
aktuell genutzt	\checkmark	✓	\checkmark	✓	√	\checkmark	-	-

5.4.2.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
nid	Node-ID des Knotens an dem die Kraft wirkt	Integer > 0	I10
fac	Skalierungsfaktor	Real	E23.16
ni	Komponenten des Vektors der Kraft (Translationen),	Real	3E23.16
	gemessen in dem Koordinatensystem, dass durch cid		
	spezifiziert ist.		

5.4.2.4 Hinweise

1. Das Koordinatensystem der Kraftkomponenten richtet sich nach dem Knotenkoordinatensystem. Ist für den entsprechenden Knoten kein Koordinatensystem angegeben, wird das globale verwendet.

5.4.3 Moment

5.4.3.1 Beschreibung

Diese Karte definiert ein diskretes Einzelmoment auf einen Knoten. Die Datei muss den Namen *moments.fipps* haben.

5.4.3.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	nid	fac	n1	n2	n3	-	-
Тур	I>0	I>0	R	R	R	R	=	=
Standard	-	-	-	=	=	-	-	-
Hinweis	-	-	-	2	2	2	-	-
aktuell genutzt	✓	\checkmark	\checkmark	✓	√	\checkmark	-	-

5.4.3.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
nid	Node-ID des Knotens an dem die Kraft wirkt	Integer > 0	I10
fac	Skalierungsfaktor	Real	E23.16
ni	Komponenten des Vektors des Moments (Rotationen),	Real	3E23.16
	im Knotenkoordinatensystem		

5.4.3.4 Hinweise

1. Das Koordinatensystem der Komponenten des Momentenvektors richtet sich nach dem Knotenkoordinatensystem. Ist für den entsprechenden Knoten kein Koordinatensystem angegeben, wird das globale verwendet.

5.4.4 P2load

5.4.4.1 Beschreibung

Diese Karte definiert eine Linienlast auf ein Balkenelement vom Typ Beam2. Die Datei muss den Namen *p2loads.fipps* haben.

5.4.4.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	eid1	dir	p1	p2	thru	eid2	-
Тур	I>0	I>0	I>0	R	R	L	I>0	-
Standard	-	=	-	-	=	-	-	-
Hinweis	-	=	1	2	2	-	-	-
aktuell genutzt	✓	\checkmark	\checkmark	\checkmark	-	\checkmark	✓	-

5.4.4.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
eid1	Element-ID des Elements auf das die Linienlast wirkt	Integer > 0	I10
dir	Richtungs-ID der Richtung, in der die Linienlast wirkt	Integer > 0	I10
pi	Linienlast an den Knoten des Beam2-Elements in der	Real	2E23.16
	Richtung, die durch dir spezifiziert ist.		
thru	Logischer Operator, wenn true dann wird der Druck	Logical	L1
	auf Elemente von eid1 bis eid2 aufgebracht, wenn false		
	wirkt der Druck nur auf dem Element mit eid1.		
eid2	Wenn thru = true, Element-ID des Elements, bis zu	Integer > 0	I10
	dem der Druck aufgebracht wird (einschließlich eid2).		

5.4.4.4 Hinweise

- 1. Zulässig sind die Werte 1 (in Richtung der negativen z-Achse des Elementkoordinatensystems) und 2 (in Richtung der negativen y-Achse des Elementkoordinatensystems).
- 2. In der aktuellen Version ist nur die Berücksichtigung einer konstanten Linienlast über das Element implementiert.

5.4.5 P3load

5.4.5.1 Beschreibung

Diese Karte definiert eine Flächenlast auf ein Dreieckselement vom Typ Tria3. Die Datei muss den Namen *p3loads.fipps* haben.

5.4.5.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	eid1	cid	p1	p2	р3	thru	eid2
Тур	I>0	I>0	I>0	R	R	R	L	I>0
Standard	-	=	0	-	=p1	=p1	-	-
Hinweis	-	-	1	2	2	2	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	\checkmark	\checkmark

5.4.5.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
eid1	Element-ID des Elements auf dem der Druck wirkt	Integer > 0	I10
cid	CoordinateSytem-ID	Integer > 0	I10
pi	Druck an den Knoten des Tria3-Elements im Koordina-	Real	3E23.16
thru	tensystem, dass durch cid spezifiziert ist. Logischer Operator, wenn <i>true</i> dann wird der Druck	Logical	L1
eid2	auf Elemente von eid1 bis eid2 aufgebracht, wenn <i>false</i> wirkt der Druck nur auf dem Element mit eid1. Wenn thru= <i>true</i> Element-ID des Elements bis zu dem der Druck aufgebracht wird.	Integer > 0	I10

5.4.5.4 Hinweise

1. In der aktuellen Version ist nur die Berücksichtigung eines konstanten Drucks über der Elementfläche implementiert.

5.4.5.5 To-Do-Liste am Eintrag

• Eintrag fac zur Skalierung erstellen

5.4.6 P8load

5.4.6.1 Beschreibung

Diese Karte definiert eine Flächenlast auf ein Viereckselement vom Typ Quad8. Die Datei muss den Namen *p8loads.fipps* haben.

5.4.6.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	eid1	cid	p1	p2	р3	p4	thru
Тур	I>0	I>0	I>0	R	R	R	R	L
Standard	-	-	0	-	=p1	=p1	=p1	-
Hinweis	-	=	1	2,3	2,3	2,3	2,3	-
aktuell genutzt	✓	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable	eid2	-	=	-	-	_	-	-
Typ	I>0	_	-	-	-	-	-	-
Standard	-	-	-	(-)		-	-	-
Hinweis	-	-	-	P - (7 -	-	-	-
aktuell genutzt	\checkmark	-	\sim		-	-	-	-

5.4.6.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
eid1	Element-ID des Elements auf dem der Druck wirkt	Integer > 0	I10
cid	CoordinateSytem-ID	Integer > 0	I10
pi	Druck an den Eckknoten des Quad8-Elements normal	Real	4E23.16
41	zu Elementmittelfläche an den Knoten.	T: 1	т 1
thru	Logischer Operator, wenn <i>true</i> dann wird der Druck auf Elemente von eid1 bis eid2 aufgebracht, wenn <i>false</i>	Logical	L1
	wirkt der Druck nur auf dem Element mit eid1.		
eid2	Wenn thru=true Element-ID des Elements bis zu dem	Integer > 0	I10
	der Druck aufgebracht wird.		

5.4.6.4 Hinweise

1. Wird ein nutzerdefiniertes Koordinatensystem angegeben, erfolgt die Orientierung des Kraftvektors in Richtung der z-Achse des nutzerdefinierten Koordinatensystems. Ist kein

Koordinatensystem angegeben, erfolgt die Orientierung in Richtung der z-Achse des Elementkoordinatensystems. Bei Vorgabe negativer Werte erfolgt die Orientierung entlang einer Achse des globalen Koordinatensystems (-1: globale x-Achse, -2: globale y-Achse, -3: globale z-Achse).

- 2. In der aktuellen Version ist nur die Berücksichtigung eines konstanten Drucks über der Elementfläche implementiert.
- 3. Positive Werte erzeugten Kräfte in die positive Richtung der z-Achse des Elements beziehungsweise des vorgegebenen Koordinatensystems (vergleiche Hinweis 1).
- 4. Die Tests (Vergleichsrechnungen) wurden gegen Ansys und den OptiStruct-Solver durchgeführt, da NASTRAN offenbar nur für ebene quadratische Elemente die korrekten Werte liefert (Es werden feste Faktoren verwendet und keine Integration über die Ansatzfunktionen durchgeführt.).

5.4.6.5 To-Do-Liste am Eintrag

• Eintrag fac zur Skalierung erstellen

5.4.7 P20load

5.4.7.1 Beschreibung

Die Eingabekarte definiert eine Oberflächenlast auf das Lsolid20-Element. Die Oberflächenlast ist konstant über der jeweiligen Elementseitenfläche. Die Datei muss den Namen *p20loads.fipps* haben.

5.4.7.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	eid1	p	surf	thru	eid2	-	-
Тур	I>0	I>0	R	I>0	L	I>0	-	-
Standard	-	=	=	=	-	=	-	=
Hinweis	-	-	1	2	-	-	-	-
aktuell genutzt	✓	\checkmark	✓	\	\(\checkmark	-	-

5.4.7.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
eid1	Element-ID des Elements auf das der Druck wirkt	Integer > 0	I10
p	Druck auf Elementseitenfläche	Real	E23.16
surf	Flächen-ID der Seitenfläche des Elements, auf das der	Integer > 0	I10
.1	Druck wirkt	T 1	T 1
thru	Logischer Operator; wenn <i>true</i> , dann wird Druck auf Elemente von eid1 bis eid2 aufgebracht; wenn <i>false</i> , wirkt	Logical	L1
	der Druck nur auf das Element mit eid1.		
eid2		Integer > 0	I10
eluz	Wenn thru = <i>true</i> , Element-ID des Elements, bis zu dem der Druck aufgebracht wird (einschließlich eid2).	Integer > 0	110
	dei Didek aufgebracht wha (emschileshen eidz).		

5.4.7.4 Hinweise

- 1. Positive Werte erzeugen Druckkräfte in Richtung des Elementinneren.
- 2. Zulässig sind die Werte 1 bis 6, entsprechend den sechs Seitenflächen des Volumenelements Lsolid20 (siehe Abbildung 2.2).

5.4.8 Aeroload2D

5.4.8.1 Beschreibung

Die Eingabekarte definiert eine zweidimensionale aerodynamische Last, berechnet über die integerierte Fluid-Struktur-Kopplung.

Die Datei muss den Namen aeroload2ds.fipps haben.

Die Dateien *aeroelem2structnode2d.fipps* und *structelem2aeronode2d.fipps* werden darüber hinaus benötigt zur Definition der Netzkopplung zwischen aerodynamischem und strukturellem Netz.

5.4.8.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	mthd	dfac	-	-	-	-	-
Тур	I>0	I>0	R>0	-	-	-	-	-
Standard	-	-	-	- 6		-	-	-
Hinweis	-	1	-	-		_	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark			-	-	-

5.4.8.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
mthd	Zu verwendende Methode für die aerodynamische Be-	Integer > 0	I10
	rechnung		
dfac	. 1 0	Real > 0	E23.16
	Übertragung der Verschiebung auf das Strömungsmo-		
	dell im Falle einer FluidStrukturkopplung		

5.4.8.4 Hinweise

1. Zulässig sind die Werte 1 (PANEL2D), 2 (Xfoil) und 3 (Xfoil mit erzwungener nichtviskoser Berechnung) zur Definition der Methode für die aerodynamische Berechnung in 2D.

5.4.9 Aeroload3D

5.4.9.1 Beschreibung

Die Eingabekarte definiert eine dreidimensionale aerodynamische Last, berechnet über die integerierte Fluid-Struktur-Kopplung.

Die Datei muss den Namen aeroload3ds.fipps haben.

Die Dateien *aeroelem2structnode3d.fipps* und *structelem2aeronode3d.fipps* werden darüber hinaus benötigt zur Definition der Netzkopplung zwischen aerodynamischem und strukturellem Netz.

5.4.9.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	mthd	dfac	-	-	-	-	-
Тур	I>0	I>0	R>0	-	-	-	-	-
Standard	-	-	-	- 6		-	-	-
Hinweis	-	1	-	-		_	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark			-	-	-

5.4.9.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
mthd	Zu verwendende Methode für die aerodynamische Be-	Integer > 0	I10
	rechnung		
dfac	. 1 0	Real > 0	E23.16
	Übertragung der Verschiebung auf das Strömungsmo-		
	dell im Falle einer FluidStrukturkopplung		

5.4.9.4 Hinweise

1. Zulässig ist der Wert 1 (APAME) zur Definition der Methode für die aerodynamische Berechnung in 3D.

5.4.10 Temperature

5.4.10.1 Beschreibung

Die Eingabekarte definiert Knotentemperaturen zur Berücksichtigung thermomechanischer Lasten.

Die Datei muss den Namen temperatures.fipps haben.

5.4.10.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	nid	temp	-	-	-	-	-
Typ	I>0	$I \geq 0$	R	-	-	=	-	=
Standard	-	-	-	-	-	-	-	-
Hinweis	=	1	-	-	=	=	-	=
aktuell genutzt	\checkmark	\checkmark	✓	-	-	-	-	-

5.4.10.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
nid	Node-ID des Knotens an dem Temperatur definiert wird	Integer ≥ 0	I10
temp	Knotentemperatur	Real	E23.16

5.4.10.4 Hinweise

- 1. Durch Definition eines Temperaturwerts mit nid = 0 kann eine Referenztemperatur gesetzt werden. Diese gilt einheitlich an allen Knoten und ist standardmäßig gleich Null.
- 2. Die gleichzeitige Definition von Knotentemperaturen (*temperature*) und Elementtemperaturen (*beam2temp*, *quad8temp*, *lsolid20temp*) in einem Modell wird derzeit nicht unterstützt.

5.4.11 Beam2temp

5.4.11.1 Beschreibung

Die Eingabekarte definiert Elementtemperaturen zur Berücksichtigung thermomechanischer Lasten auf Beam2-Elementen.

Die Datei muss den Namen beam2temps.fipps haben.

5.4.11.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	eid	temp	-	-	-	-	-
Typ	I>0	$I \geq 0$	R	-	=	=	-	=
Standard	-	-	-	-	-	-	-	-
Hinweis	-	1	-	-	=	-	-	-
aktuell genutzt	✓	✓	\checkmark	- 6	-	-	-	-

5.4.11.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
eid	Element-ID des Beam2-Elements an dem Temperatur de-	Integer ≥ 0	I10
temp	finiert wird Elementtemperatur	Real	E23.16

5.4.11.4 Hinweise

- 1. Durch Definition eines Temperaturwerts mit eid = 0 kann eine Referenztemperatur gesetzt werden. Diese gilt einheitlich an allen Knoten und ist standardmäßig gleich Null.
- 2. Die gleichzeitige Definition von Knotentemperaturen (*temperature*) und Elementtemperaturen (*beam2temp*, *quad8temp*, *lsolid20temp*) in einem Modell wird derzeit nicht unterstützt.

5.4.12 Quad8temp

5.4.12.1 Beschreibung

Die Eingabekarte definiert Elementtemperaturen zur Berücksichtigung thermomechanischer Lasten auf Quad8-Elementen.

Die Datei muss den Namen quad8temps.fipps haben.

5.4.12.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	eid	temp	-	-	-	-	-
Typ	I>0	$I \geq 0$	R	-	=	=	-	-
Standard	=	=	-	-	=	=	-	-
Hinweis	-	1	-	-	-	=	-	-
aktuell genutzt	✓	✓	\checkmark	-	V	-	-	-

5.4.12.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
eid	Element-ID des Quad8-Elements an dem Temperatur de-	$Integer \geq 0$	I10
	finiert wird		
temp	Elementtemperatur	Real	E23.16

5.4.12.4 Hinweise

- 1. Durch Definition eines Temperaturwerts mit eid = 0 kann eine Referenztemperatur gesetzt werden. Diese gilt einheitlich an allen Knoten und ist standardmäßig gleich Null.
- 2. Die gleichzeitige Definition von Knotentemperaturen (*temperature*) und Elementtemperaturen (*beam2temp*, *quad8temp*, *lsolid20temp*) in einem Modell wird derzeit nicht unterstützt.

5.4.13 Lsolid20temp

5.4.13.1 Beschreibung

Die Eingabekarte definiert Elementtemperaturen zur Berücksichtigung thermomechanischer Lasten auf Lsolid20-Elementen.

Die Datei muss den Namen lsolid20temps.fipps haben.

5.4.13.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lid	eid	temp	-	-	-	-	-
Тур	I>0	$I \geq 0$	R	-	-	-	-	-
Standard	=	=	-	-	=	-	-	-
Hinweis	=	1	-	=	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	-	-	-	-	-

5.4.13.3 Beschreibung

Variable	Beschreibung	Тур	Format
lid	Load-ID	Integer > 0	I10
eid	Element-ID des Lsolid20-Elements an dem Temperatur	Integer ≥ 0	I10
	definiert wird		
temp	Elementtemperatur	Real	E23.16

5.4.13.4 Hinweise

- 1. Durch Definition eines Temperaturwerts mit eid = 0 kann eine Referenztemperatur gesetzt werden. Diese gilt einheitlich an allen Knoten und ist standardmäßig gleich Null.
- 2. Die gleichzeitige Definition von Knotentemperaturen (*temperature*) und Elementtemperaturen (*beam2temp*, *quad8temp*, *lsolid20temp*) in einem Modell wird derzeit nicht unterstützt.

5.5 Materialmodelle

5.5.1 Mat1

5.5.1.1 Beschreibung

Diese Karte definiert ein isotropes Materialmodell. Die Datei muss den Namen *mat1.fipps* haben.

5.5.1.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	mid	ym	sm	nu	rho	ath	tref	ge
Тур	I>0	R≥0.0	R≥0.0	-1≤R≤0.5	R≥0.0	R	R	R
Standard	-	-	-	-	-	-	-	-
Hinweis	1	2,3	2,3	2,3	4	4	4	4
aktuell genutzt	\checkmark	\checkmark	\checkmark	√ C.	X	\checkmark	-	-
Karte 2	9	10	11	12	13	14	15	16
Variable	fid1	fid2	fid3	fid4	-	-	-	-
Тур	I>0	I>0	I>0	I>0	-	-	-	-
Standard	-	-	-		-	-	-	-
Hinweis	5	5	5	5	-	-	-	-
aktuell genutzt	✓	√	√	1	-	-	-	-

5.5.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
mid	Material-ID	Integer > 0	I10
ym	Elastizitätsmodul	Real ≥ 0.0	E23.16
sm	Schubmodul	Real ≥ 0.0	E23.16
nu	Querkontraktionszahl	-1≤R≤0.5	E23.16
rho	Dichte	Real ≥ 0.0	E23.16
ath	Wärmeausdehnungskoeffizient	Real	E23.16
tref	Referenztemperatur zur Berechnung von Temperaturlas-	Real	E23.16
	ten oder einem temperaturabhängigen Wärmeausdeh-		
	nungskoeffizienten		
ge	Strukturdämpfungskoeffizient	Real ≥ 0.0	E23.16
fid1	Versagenskriterium 1	Integer > 0	I10
fid2	Versagenskriterium 2	Integer > 0	I10
fid3	Versagenskriterium 3	Integer > 0	I10
fid4	Versagenskriterium 4	Integer > 0	I10

5.5.1.4 Hinweise

- 1. Die Material-ID's (mid) dürfen für die gesamte Anzahl an verwendeten Materialmodellen nur einmalig genutzt werden. Demzufolge darf es keine Mat1-ID 1 und Mat8-ID 1 oder Mat20-ID 1 in einem Modell gleichzeitig geben.
- 2. Es müssen nur zwei der drei Größen ym, sm und nu definiert werden. Ist für eine der Größen kein Wert angegeben wird dieser aus $ym = 2(1 + nu) \cdot sm$ berechnet.
- 3. Werden alle drei Größen ym, sm und nu angegeben, sollte sichergestellt werden, dass die Werte die Ungleichung $|sm-ym/(2(1+nu))| \le 0.01$ erfüllen.
- 4. Die entsprechenden Einträge lassen sich definieren, werden jedoch in der derzeitigen Version nicht in der Berechnung genutzt.
- 5. Die Dehn-/Streckgrenzen dienen als Festigkeitsgröße für die Versagenskriterien. Wird nur eine Vergleichspannung benötigt, wird er Zugwert verwendet.
- 6. Hier können bis zu vier verschiedene Festigkeits- bzw. Versagenskriterien gesetzt werden, die zur Berechnung des Reservefaktors angewendet werden. Dabei wird der minimale Reserverfaktor ausgegeben. Dafür muss die in der Failurekarte verwendete fid angegeben werden.

5.5.1.5 To-Do-Liste am Eintrag

•

5.5.2 Mat8

5.5.2.1 Beschreibung

Diese Karte definiert ein orthotropes Materialmodell für zweidimensionales Elastizitätsgesetz. Die Datei muss den Namen *mat8.fipps* haben.

Karte 1	1	2	3	4	5	6	7	8
Variable	mid	ym11	ym22	nu12	sm12	sm13	sm23	rho
Тур	I>0	$R \ge 0.0$	R≥0.0	-	R≥0.0	R≥0.0	R≥0.0	R
				1≤R≤0	5			
Standard	-	-	-	-	-	-	-	-
Hinweis	1	-	=	2	=	-	-	3
aktuell genutzt	\checkmark	\checkmark	✓	✓	✓	√	\checkmark	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable	ath11	ath22	tref	ge	fid1	fid2	fid3	fid4
Тур	R	R	R	R	I>0	I>0	I>0	I>0
Standard	-	-	-	-	-	-	-	-
Hinweis	3	3	3	3	4	4	4	4
aktuell genutzt	✓	✓	-	-	✓	✓	✓	✓

5.5.2.3 Beschreibung

Variable	Beschreibung	Тур	Format
mid	Material-ID	Integer > 0	
ym11	Elastizitätsmodul in 11-Richtung	Real ≥ 0.0	E23.16
ym22	Elastizitätsmodul in 22-Richtung	Real ≥ 0.0	E23.16
nu12	Querkontraktionszahl	-1≤R≤0.5	E23.16
sm12	Schubmodul der 12-Ebene	Real ≥ 0.0	E23.16
sm13	transversaler Schubmodul der 13-Ebene	Real ≥ 0.0	E23.16
sm23	transversaler Schubmodul der 23-Ebene	Real ≥ 0.0	E23.16
rho	Dichte	Real ≥ 0.0	E23.16
ath11	Wärmeausdehnungskoeffizient in 11-Richtung	Real	E23.16
ath22	Wärmeausdehnungskoeffizient in 22-Richtung	Real	E23.16
tref	Referenztemperatur zur Berechnung von Temperaturlas-	Real ≥ 0.0	E23.16
	ten oder temperaturabhängigen Wärmeausdehnungsko-		
	effizienten		
ge	Strukturdämpfungskoeffizient	Real ≥ 0.0	E23.16
fid1	Versagenskriterium 1	Integer > 0	I10
fid2	Versagenskriterium 2	Integer > 0	I10
fid3	Versagenskriterium 3	Integer > 0	I10
fid4	Versagenskriterium 4	Integer > 0	I10

5.5.2.4 Hinweise

- 1. Die Material-ID's (mid) dürfen für die gesamte Anzahl an verwendeten Materialmodellen nur einmalig genutzt werden. Demzufolge darf es keine Mat8-ID 1 und Mat1-ID 1 oder Mat20-ID 1 in einem Modell gleichzeitig geben.
- 2. Der erste Index der Querkontraktionszahl gibt die Richtung der Verformung an, welche durch eine Belastung in die Richtung des zweiten Index entsteht.
- 3. Die entsprechenden Einträge lassen sich definieren, werden jedoch in der derzeitigen Version nicht in der Berechnung genutzt.
- 4. Hier können bis zu vier verschiedene Festigkeits- bzw. Versagenskriterien gesetzt werden, die zur Berechnung des Reservefaktors angewendet werden. Dabei wird der minimale Reserverfaktor ausgegeben. Dafür muss die in der Failurekarte verwendete fid angegeben werden.

5.5.2.5 To-Do-Liste am Eintrag

5.5.3 Mat20

5.5.3.1 Beschreibung

Die Eingabekarte definiert ein orthotropes Material nach dem vollständigen dreidimensionalen Elastizitätsgesetz.

Die Datei muss den Namen mat20.fipps haben.

5.5.3.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	mid	ym11	ym22	ym33	nu12	nu13	nu23	sm12
Тур	I > 0	$R \geq 0$	$R \ge 0$	$R \ge 0$	$R \geq 0$	$R \geq 0$	$R \geq 0$	$R \geq 0$
Standard	-	-	-	-	-	-	-	-
Hinweis	-	-	-)	-	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	V	✓	\checkmark	\checkmark	\checkmark	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable	sm13	sm23	ath11	ath22	ath33	rho	fid1	fid2
Тур	$R \geq 0$	$R \geq 0$	R	R	R	$R \geq 0$	I > 0	I > 0
Standard	-	-	-	-	-	-	-	-
Hinweis	-	-	-	-	-	3	4	4
aktuell genutzt	\checkmark	✓	\checkmark	✓	\checkmark	-	\checkmark	✓
Karte 3	17	18	19	20	21	22	23	24
Variable	fid3	fid4	-	-	-	-	-	-
Typ	I > 0	I > 0	-	-	-	-	=	-
Standard	-	-	-	-	-	-	-	-
Hinweis	4	4	-	-	-	=	=	-
aktuell genutzt	✓	✓	-	-	-	-	-	-

5.5.3.3 Beschreibung

Variable	Beschreibung	Тур	Format
mid	Material-ID	Integer > 0	
ym11	Elastizitätsmodul in 11-Richtung	Real \geq 0,0	E23.16
ym22	Elastizitätsmodul in 22-Richtung	Real \geq 0,0	E23.16
ym33	Elastizitätsmodul in 33-Richtung	Real \geq 0,0	E23.16
nu12	Querkontraktionszahl 12	Real \geq 0,0	E23.16
nu13	Querkontraktionszahl 13	Real \geq 0,0	E23.16
nu23	Querkontraktionszahl 23	Real \geq 0,0	E23.16
sm12	Schubmodul der 12-Ebene	Real \geq 0,0	E23.16
sm13	Schubmodul der 13-Ebene	Real \geq 0,0	E23.16
sm23	Schubmodul der 23-Ebene	Real \geq 0,0	E23.16
ath11	Wärmeausdehnungskoeffizient in 11-Richtung	Real	E23.16
ath22	Wärmeausdehnungskoeffizient in 22-Richtung	Real	E23.16
ath33	Wärmeausdehnungskoeffizient in 33-Richtung	Real	E23.16
rho	Dichte	Real \geq 0,0	E23.16
fid1	Versagenskriterium 1	Integer > 0	I10
fid2	Versagenskriterium 2	Integer > 0	I10
fid3	Versagenskriterium 3	Integer > 0	I10
fid4	Versagenskriterium 4	Integer > 0	I10

5.5.3.4 Hinweise

- 1. Die Material-ID's (mid) dürfen für die gesamte Anzahl an verwendeten Materialmodellen nur einmalig genutzt werden. Demzufolge darf es keine Mat20-ID 1 und Mat1-ID 1 oder Mat8-ID 1 in einem Modell gleichzeitig geben.
- 2. Der erste Index der Querkontraktionszahl gibt die Richtung der Verformung an, welche durch eine Belastung in die Richtung des zweiten Index entsteht.
- 3. Die entsprechenden Einträge lassen sich definieren, werden jedoch in der derzeitigen Version nicht in der Berechnung genutzt.
- 4. Hier können bis zu vier verschiedene Festigkeits- bzw. Versagenskriterien gesetzt werden, die zur Berechnung des Reservefaktors angewendet werden. Dabei wird der minimale Reserverfaktor ausgegeben. Dafür muss die in der Failurekarte verwendete fid angegeben werden.

5.5.4 Lam8

5.5.4.1 Beschreibung

Diese Karte definiert einen Laminataufbau. Die Datei muss den Namen *lam8.fipps* haben.

5.5.4.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lamid	plyid	mat8id	th	angle	atype	-	-
Тур	I>0	I>0	I>0	R≥0.0	R≥0.0	С	-	-
Standard	-	-	-	-	-	-	=	=
Hinweis	1	-	-	-	-	-	=	=
aktuell genutzt	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	-	-

5.5.4.3 Beschreibung

Variable	Beschreibung	Тур	Format
lamid	Laminat-ID	Integer > 0	I10
plyid	Lagen-ID	Integer > 0	I10
mat8id	Material-ID des orthotropen Materialmodells der Ein-	Integer > 0	I10
	zelschicht		
th	Dicke der Einzelschicht	Real ≥ 0.0	E23.16
angle	Lagenwinkel der Einzellage	Real	E23.16
atype	Winkeltyp, 'deg' or 'rad'	3xCharacter	3A

5.5.4.4 Hinweise

1. Mehrere Einzelschichten können zu einem Laminat zusammengefasst werden, indem sie die gleiche Laminat-ID (lamid) erhalten.

5.5.4.5 To-Do-Liste am Eintrag

- Auch mat1-Einträge für Laminataufbau nutzbar machen
- Standard-Wert für atype einbauen

5.5.5 Lam20

5.5.5.1 Beschreibung

Die Eingabekarte definiert einen Laminataufbau orthotroper Einzellagen für das Layered Solid-Element Lsolid20. Weiterhin wird die Anzahl der Integrationspunkte über der Dicke der jeweiligen Einzellage festgelegt.

Die Datei muss den Namen lam 20. fipps haben.

5.5.5.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	lamid	plyid	mid	th	angle	atype	nip	mid2
Тур	I>0	I>0	I>0	$R \geq 0$	R	C	I>0	I>0
Standard	-	-	-			-	-	-
Hinweis	1	-	-	-		-	2	3
aktuell genutzt	\checkmark	-	\checkmark	√	1	1	✓	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable					/			
Тур								
Standard								
Hinweis	3							
aktuell genutzt	\checkmark							

5.5.5.3 Beschreibung

Variable	Beschreibung	Тур	Format
lamid	Laminat-ID	Integer > 0	I10
plyid	Lagen-ID	Integer > 0	I10
mid	Material-ID der Einzellage	Integer > 0	I10
th	Dicke der Einzellage	Real \geq 0,0	E23.16
angle	Lagenwinkel der Einzellage	Real	E23.16
atype	Winkeltyp, 'deg' or 'rad'	3xCharacter	3A
nip	Anzahl an Integrationspunkten über Dicke der Einzella-	Integer > 0	I10
midi	ge Material-ID der Einzellage für i-te FE-Analyse bei multi- step-Rechnung	Integer > 0	I10

5.5.5.4 Hinweise

- 1. Mehrere Einzellagen können zu einem Laminat zusammengefasst werden, indem sie die gleiche Laminat-ID (lamid) erhalten.
- 2. Zulässig sind die Werte 1, 3, 5, 7, und 9. Die Verteilung der Integrationspunkte über die Lagendicke erfolgt bei nip > 1 nach der zusammengesetzten Simpson-Regel mit jeweils einem Integrationspunkt an der Lagenober- und -unterseite, die verbleibenden Integrationspunkte sind dazwischen äquidistant verteilt. Bei nip = 1 liegt der Integrationspunkt in der Mitte der Lagendicke.
- 3. Einträge midi werden nur benötigt, wenn eine mehrschrittige FE-Analyse über multistep definiert ist. In diesem Fall muss midi für nms Schritte (nms-1)-mal vorhanden sein.

5.6 Festigkeits- bzw. Versagenskriterien

5.6.1 Failure

5.6.1.1 Beschreibung

Diese Karte definiert ein Festigkeits- oder Versagenskriterium. Diese können dann in den Materialmodellen referenziert werden. Zu beachten ist, dass die Inputkarten in Abhängigkeit vom Festigkeits- oder Versagenskriterium unterschriedlich sind und somit eine unterschiedliche Art und Anzahl von Parametern haben.

Die Datei muss den Namen failure.fipps haben.

5.6.1.2 Input-Karte (maximale Hauptspannungen)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	ys	ysC	-	-	-	-
Тур	I>0	С	R≥0.0	R≥0.0	\	-	-	-
Standard	=	=	=	-	-	<u>-</u>	-	-
Hinweis	1	2	=	-	-	-	-	=
aktuell genutzt	\checkmark	\checkmark	\checkmark			-	-	-

5.6.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Kriterien-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
ys	Dehn-/Streckgrenze unter Zug	Real ≥ 0.0	E23.16
ysC	Dehn-/Streckgrenze unter Druck	Real ≥ 0.0	E23.16

5.6.1.4 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das maximale Hauptspannungenkriterium muss hier "maxpstress" gesetzt werden.

5.6.1.5 To-Do-Liste am Eintrag

5.6.1.6 Input-Karte (Tresca)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	ys	-	-	-	-	-
Тур	I>0	C	R≥0.0	-	-	-	-	-
Standard	-	=	-	-	-	-	-	=
Hinweis	1	2	-	-	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	-	-	-	-	-

5.6.1.7 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Kriterien-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
ys	Dehn-/Streckgrenze unter Zug	$\text{Real} \geq 0.0$	E23.16

5.6.1.8 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das Tresca-Kriterium muss hier "tresca" gesetzt werden.

5.6.1.9 To-Do-Liste am Eintrag

•

5.6.1.10 Input-Karte (von Mises)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	ys	-	-	-	-	-
Typ	I>0	C	R≥0.0	-	-	-	-	-
Standard	-	=	-	-	=	-	-	-
Hinweis	1	2	-	-	=	-	=	=
aktuell genutzt	\checkmark	\checkmark	\checkmark	-	-	-	-	-

5.6.1.11 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Kriterien-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
ys	Dehn-/Streckgrenze unter Zug	$\text{Real} \geq 0.0$	E23.16

5.6.1.12 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das von-Mises-Kriterium muss hier "mises" gesetzt werden.

5.6.1.13 To-Do-Liste am Eintrag

5.6.1.14 Input-Karte (Puck)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	RParTen	RParCom	RNorTen	RNorCor	n RShear	pspd
Тур	I>0	C	$R \ge 0.0$	R≥0.0	$R \ge 0.0$	R≥0.0	R≥0.0	R
Standard	-	-	-	-	-	-	-	-
Hinweis	1	2	-	-	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable	pspz	a_0	λ_{min} -	=	=	-	=	
Тур	R	R≥0.0	$R \ge 0.0$	-	-	-	-	-
Standard	-	-	-	-	-	-	-	-
Hinweis	-	-	-	-	-	-	-	-
aktuell genutzt	✓	✓	✓		_	-	-	-

5.6.1.15 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
RParTen	Festigkeit parallel zur Faser - Zug	Real ≥ 0.0	E23.16
RParCom	Festigkeit parallel zur Faser - Druck	$\text{Real} \geq 0.0$	E23.16
RNorTen	Festigkeit senkrecht zur Faser - Zug	Real ≥ 0.0	E23.16
RNorCom	Festigkeit senkrecht zur Faser - Druck	Real ≥ 0.0	E23.16
RShear	Schubfestigkeit	Real ≥ 0.0	E23.16
pspd	Neigungsparameter senkrecht/parallel Druck (Puck)	Real ≥ 0.0	E23.16
pspz	Neigungsparameter senkrecht/parallel Zug (Puck)	Real ≥ 0.0	E23.16
a_0	Schwächungsparameter (Puck - s)	$0 \le R \le 1$	E23.16
λ_{min}	Schwächungsparameter (Puck - m)	$0 \le R \le 1$	E23.16

5.6.1.16 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das Puck-Kriterium muss hier "puck" gesetzt werden.

5.6.1.17 To-Do-Liste am Eintrag

5.6.1.18 Input-Karte (Hill)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	RParTen	RParCom	RNorTen	RNorCon	n RShear	F_{12}^{*}
Typ	I>0	C	$R \ge 0.0$	R≥0.0	R≥0.0	$R \ge 0.0$	R≥0.0	R
Standard	-	-	-	-	-	-	-	-
Hinweis	1	2	-	-	-	-	-	-
aktuell genutzt	✓	\checkmark						

5.6.1.19 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
RParTen	Festigkeit parallel zur Faser - Zug	$\text{Real} \geq 0.0$	E23.16
RParCom	Festigkeit parallel zur Faser - Druck	Real ≥ 0.0	E23.16
RNorTen	Festigkeit senkrecht zur Faser - Zug	Real ≥ 0.0	E23.16
RNorCom	Festigkeit senkrecht zur Faser - Druck	Real ≥ 0.0	E23.16
RShear	Schubfestigkeit	Real ≥ 0.0	E23.16
F_{12}^{*}	Parameter des Hill-Kriteriums, der den Drehterm ska-	Real	E23.16
	liert		

5.6.1.20 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das Hill-Kriterium muss hier "hill" gesetzt werden.

5.6.1.21 To-Do-Liste am Eintrag

5.6.1.22 Input-Karte (Norris)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	RPar	RNor	RShear	-	-	-
Тур	I>0	C	$R \ge 0.0$	R≥0.0	$R \ge 0.0$	=	-	-
Standard	-	-	=	-	=	=	-	-
Hinweis	1	2	-	-	=	-	-	-
aktuell genutzt	\checkmark	\checkmark	✓	✓	\checkmark	-	-	-

5.6.1.23 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
RParTen	Festigkeit parallel zur Faser	$\text{Real} \geq 0.0$	E23.16
RNorCom	Festigkeit senkrecht zur Faser	$\text{Real} \geq 0.0$	E23.16
RShear	Schubfestigkeit	$\text{Real} \geq 0.0$	E23.16

5.6.1.24 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das Norris-Kriterium muss hier "norris" gesetzt werden.

5.6.1.25 To-Do-Liste am Eintrag

•

5.6.1.26 Input-Karte (Faserbruch)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	RParTen	RParCom	-	-	-	-
Тур	I>0	C	$R \ge 0.0$	R≥0.0	=	-	-	-
Standard	-	-	-	-	=	-	-	-
Hinweis	1	2	-	-	=	-	-	-
aktuell genutzt	✓	\checkmark	✓	\checkmark	-	-	-	-

5.6.1.27 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
RParTen	Festigkeit parallel zur Faser - Zug	Real \geq 0.0	E23.16
RParCom	Festigkeit parallel zur Faser - Druck	$\text{Real} \geq 0.0$	E23.16

5.6.1.28 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das Faserbruch-Kriterium muss hier "fibre" gesetzt werden.

5.6.1.29 To-Do-Liste am Eintrag

•

5.6.1.30 Input-Karte (Maximale Dehnung)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	eps- ParTen	epsPar- Com	eps- NorTen	eps- Nor- Com	eps- Shear	use- GlobStr
Typ	I>0	С	R≥0.0	R≥0.0	R≥0.0	R≥0.0	R≥0.0	L
Standard	-	-	-	-	-	-	-	-
Hinweis	1	2	=	-	-	=	-	3
aktuell genutzt	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark

5.6.1.31 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
epsParTen	Grenzdehnung parallel zur Faser - Zug	Real ≥ 0.0	E23.16
epsParCom	Grenzdehnung parallel zur Faser - Druck	Real ≥ 0.0	E23.16
epsNorTen	Grenzdehnung senkrecht zur Faser - Zug	Real ≥ 0.0	E23.16
epsNorCom	Grenzdehnung senkrecht zur Faser - Druck	Real ≥ 0.0	E23.16
epsShear	Grenzdehnung für Schub	Real ≥ 0.0	E23.16
useGlobStr	Flag, ob die Dehnung im globalen bzw. Elementko-	Logical	L1
	ordinatensystem verwendet werden soll		

5.6.1.32 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das Maximaldehnungskriterium muss hier "maxstrain" gesetzt werden.
- 3. Grundsätzlich wird für jedes Element im Lagenkoordinatensystem das maximale Dehnungskriterium angewendet. Dieses Kriterium wird aber häufig auch auf Laminatebene eingesetzt. Dafür kann mit dem Flag "useGlobStr" die Verwendung der globalen Dehnungen bzw. Elementdehnungen pro Schicht eingestellt werden. Dies entspricht einer Prüfung auf Laminatebene. Sollen die globalen Dehnungen verwendet werden, muss dieser Wert auf "true" gesetzt werden.

5.6.1.33 To-Do-Liste am Eintrag

5.6.1.34 Input-Karte (Cuntze)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	RParTen	RParCom	RNorTen	RNorCor	n RShear	muNorPa
Тур	I>0	C	R≥0.0	R≥0.0	R≥0.0	R≥0.0	$R \ge 0.0$	R
Standard	-	-	-	-	-	-	-	-
Hinweis	1	2	-	_	-	-	_	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓
Karte 2	9	10	11	12	13	14	15	16
Variable	m	-	-	-	-	-	-	-
Тур	R	-	=	-	-	=	=	-
Standard	-	-	-	=	-	-	=	-
Hinweis	-	-	-	-	-	-	-	-
aktuell genutzt	✓	-	-	-	_	-	-	-

5.6.1.35 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
RParTen	Festigkeit parallel zur Faser - Zug	Real ≥ 0.0	E23.16
RParCom	Festigkeit parallel zur Faser - Druck	$\text{Real} \geq 0.0$	E23.16
RNorTen	Festigkeit senkrecht zur Faser - Zug	$\text{Real} \geq 0.0$	E23.16
RNorCom	Festigkeit senkrecht zur Faser - Druck	$\text{Real} \geq 0.0$	E23.16
RShear	Schubfestigkeit	$\text{Real} \geq 0.0$	E23.16
muNorPar	Neigungsparameter (Cuntze)	Real ≥ 0.0	E23.16
m	Exponent (Cuntze)	$\text{Real} \geq 0.0$	E23.16

5.6.1.36 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das Cuntze-Kriterium muss hier "cuntze" gesetzt werden.

5.6.1.37 To-Do-Liste am Eintrag

5.6.1.38 Input-Karte (Maximale Dehnung 3D)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	eps11-	eps11-	eps22-	eps22-	eps33-	eps33-
			Ten	Com	Ten	Com	Ten	Com
Typ	I>0	C	$R \ge 0.0$	$R \ge 0.0$	R≥0.0	R≥0.0	R≥0.0	R≥0.0
Standard	-	-	-	=	=	-	=	=
Hinweis	1	2	-	-	-	-	-	-
aktuell	(((_	/	/	(
genutzt	V	V	V	V	V	•	V	V
Karte 2	9	10	11	12	13	14	15	16
Variable	eps12-	eps13-	eps23-	use-	=	-	-	=
	Shear	Shear	Shear	GlobStr				
Typ	R≥0.0	$R \ge 0.0$	$R \ge 0.0$	L	-	-	-	-
Standard	-	=	-	=	=	-	=	=
Hinweis	-	=	=	3	-	=	=	=
aktuell	(((1				
genutzt	V	V	V	V		_	-	-

5.6.1.39 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
eps11Ten	Grenzdehnung in 11-Richtung - Zug	Real ≥ 0.0	E23.16
eps11Com	Grenzdehnung in 11-Richtung - Druck	Real ≥ 0.0	E23.16
eps22Ten	Grenzdehnung in 22-Richtung - Zug	Real ≥ 0.0	E23.16
eps22Com	Grenzdehnung in 22-Richtung - Druck	$\text{Real} \geq 0.0$	E23.16
eps33Ten	Grenzdehnung in 33-Richtung - Zug	Real ≥ 0.0	E23.16
eps33Com	Grenzdehnung in 33-Richtung - Druck	Real ≥ 0.0	E23.16
eps12Shear	Grenzdehnung in 12-Ebene - Schub	Real ≥ 0.0	E23.16
eps13Shear	Grenzdehnung in 13-Ebene - Schub	Real ≥ 0.0	E23.16
eps23Shear	Grenzdehnung in 23-Ebene - Schub	Real ≥ 0.0	E23.16
useGlobStr	Flag, ob die Dehnung im globalen bzw. Elementko-	Logical	L1
	ordinatensystem verwendet werden soll		

5.6.1.40 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das dreidimensionale Maximaldehnungskriterium muss hier "maxstrain3" gesetzt werden.

3. Grundsätzlich wird für jedes Element im Lagenkoordinatensystem das maximale Dehnungskriterium angewendet. Dieses Kriterium wird aber häufig auch auf Laminatebene eingesetzt. Dafür kann mit dem Flag "useGlobStr" die Verwendung der globalen Dehnungen bzw. Elementdehnungen pro Schicht eingestellt werden. Dies entspricht einer Prüfung auf Laminatebene. Sollen die globalen Dehnungen verwendet werden, muss dieser Wert auf "true" gesetzt werden.

5.6.1.41 To-Do-Liste am Eintrag

5.6.1.42 Input-Karte (Tsai-Wu 3D)

Karte 1	1	2	3	4	5	6	7	8
Variable	fid	type	R11Ten	R11Com	R22Ten	R22Com	R33Ten	R33Com
Тур	I>0	C	$R \ge 0.0$	R≥0.0	R≥0.0	R≥0.0	$R \ge 0.0$	R≥0.0
Standard	-	-	-	-	-	-	-	-
Hinweis	1	2	-	-	-	-	-	-
aktuell genutzt	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓
Karte 2	9	10	11	12	13	14	15	16
Variable	R12-	R13-	R23-	coupl12	coupl13	coupl23	=	-
	Shear	Shear	Shear	•	•	•		
Тур	R≥0.0	R≥0.0	R≥0.0	R	R	R	-	=
Standard	-	_	_	-	-	-	-	-
Hinweis	-	-	-	-	-	-	-	-
aktuell genutzt	✓	✓	✓	1		√	-	-

5.6.1.43 Beschreibung

Variable	Beschreibung	Тур	Format
fid	Material-ID	Integer > 0	I10
type	Festigkeits- oder Versagenskriteriumstyp	Character	A10
R11Ten	Grenzdehnung in 11-Richtung - Zug	$\text{Real} \geq 0.0$	E23.16
R11Com	Grenzdehnung in 11-Richtung - Druck	$\text{Real} \geq 0.0$	E23.16
R22Ten	Grenzdehnung in 22-Richtung - Zug	$\text{Real} \geq 0.0$	E23.16
R22Com	Grenzdehnung in 22-Richtung - Druck	$\text{Real} \geq 0.0$	E23.16
R33Ten	Grenzdehnung in 33-Richtung - Zug	$\text{Real} \geq 0.0$	E23.16
R33Com	Grenzdehnung in 33-Richtung - Druck	Real ≥ 0.0	E23.16
R12Shear	Grenzdehnung in 12-Ebene - Schub	$\text{Real} \geq 0.0$	E23.16
R13Shear	Grenzdehnung in 13-Ebene - Schub	$\text{Real} \geq 0.0$	E23.16
R23Shear	Grenzdehnung in 23-Ebene - Schub	$\text{Real} \geq 0.0$	E23.16
coupl12	Interaktionskoeffizient F_{12}^*	Real	E23.16
coupl13	Interaktionskoeffizient F_{13}^*	Real	E23.16
coupl23	Interaktionskoeffizient F_{23}^*	Real	E23.16

5.6.1.44 Hinweise

- 1. Die Kriterien-ID's (fid) dürfen für die gesamte Anzahl an verwendeten Festigkeits- oder Versagenskriterien nur einmalig genutzt werden.
- 2. Für das dreidimensionale Tsai-Wu-Kriterium muss hier "tsaiwu3d" gesetzt werden.

5.6.1.45 To-Do-Liste am Eintrag

• ...

5.7 Properties

5.7.1 PShell

5.7.1.1 Beschreibung

Diese Karte definiert die Eigenschaften eines Schalenelements mit isotropem Materialmodell. Die Datei muss den Namen *pshell.fipps* haben.

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	mid1	mt	mid2	bmr	mid3	tst	nsm
Typ	I>0	I>0	R≥0.0	I>0	R≥0.0	I>0	R≥0.0	R≥0.0
Standard	-	-	-	-	1.0	=	5/6	=
Hinweis	1	2	-	2	-	2	<i>-</i>	3
aktuell genutzt	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark
Karte 2	9	10	11	12	13	14	15	16
Variable	z1	z2	mid4	-	-	-	=	-
Тур	R	R	I>0	-	-	-	-	-
Standard	-mt/2	mt/2	-	-	-	-	-	-
Hinweis	3	3	2	-	-	-	-	-
aktuell genutzt	✓	✓	✓	-	-	-	-	-

5.7.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	
mid1	Material-ID für die Membransteifigkeit	Integer > 0	I10
mt	Membrandicke	$\text{Real} \geq 0.0$	E23.16
mid2	Material-ID für die Biegesteifigkeit	Integer > 0	I10
bmr	bending moment of inertia ratio $12I/t^3$ – ratio of the	Real ≥ 0.0	E23.16
	actual bending moment inertia of the shell I to the ben-		
	ding moment of inertia of a homogeneous shell		
mid3	Material-ID für die transversale Schubsteifigkeit	Integer > 0	I10
tst	transverse shear thickness ratio ts/mt – ratio of the	$\text{Real} \geq 0.0$	E23.16
	shear thickness ts to the actual (membrane) thickness		
	$\it mt$ – shear correction factor, default value for homoge-		
	neous shell		
nsm	Non-structural mass per unit area	Real ≥ 0.0	E23.16
z1,z2	Fibre distances for stress calculations. The positive di-	Real	2E23.16
	rection is determined by the right-hand-rule and the		
	order in which the grid points are listed on the connec-		
	tion entry		
mid4	Material-ID für Membran-Biege-Koppelsteifigkeit	Integer > 0	I10

5.7.1.4 Hinweise

- 1. Die Property-ID's (pid) dürfen für die gesamte Anzahl an verwendeten Properties nur einmalig genutzt werden. Demzufolge darf es keine PShell-ID 1 und PComp-ID 1 in einem Modell gleichzeitig geben.
- 2. Die gewählten Materialkarten-ID's müssen auf Mat1-Karten verweisen.
- 3. Die entsprechenden Einträge lassen sich definieren, werden jedoch in der derzeitigen Version nicht in der Berechnung genutzt.

5.7.1.5 To-Do-Liste am Eintrag

• Standard-Werte für mid2, mid3 und mid4 einführen, dass das mid1 ist, wenn nix angegeben

5.7.2 PComp

5.7.2.1 Beschreibung

Diese Karte definiert die Eigenschaften eines Schalenelements mit orthotropem Materialmodell.

Die Datei muss den Namen pcomp.fipps haben.

5.7.2.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	lamid	offset	nsm	sb	ft	-	=
Тур	I>0	I>0	$R \ge 0.0$	$R \ge 0.0$	R≥0.0	C	-	=
Standard	-	-	-	-	-	-	-	=
Hinweis	1	=	2	3	3	3	-	=
aktuell genutzt	✓	\checkmark	✓	- (X	-	-	-

5.7.2.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	I10
lamid	Laminat-ID (Lam8-Karte)	Integer > 0	I10
offset	Abstand von der Referenzebene des finitem Elements	Real	E23.16
	zur Ebene des Materialkoordinatensystem (z=0)		
nsm	Non-structural mass per unit area	Real ≥ 0.0	E23.16
sb	Ertragbare interlaminare Schubfestigkeit des Verbin-	$\text{Real} \geq 0.0$	E23.16
	dungsmaterials		
ft	Versagenstheorie	Character	A2

5.7.2.4 Hinweise

- 1. Die Property-ID's (pid) dürfen für die gesamte Anzahl an verwendeten Properties nur einmalig genutzt werden. Demzufolge darf es keine PShell-ID 1 und PComp-ID 1 in einem Modell gleichzeitig geben.
- 2. Der Offset entspricht der Entfernung zwischen den komplanaren Ebenen des lokalen Koordinatensystems des finiten Elements und der 12-Ebene des Materialkoordinatensystems. In der Abbildung ist der Offset mit *s* bezeichnet.
- 3. Die entsprechenden Einträge lassen sich definieren, werden jedoch in der derzeitigen Version nicht in der Berechnung genutzt.

Abbildung 5.1: Verschiebung von Material- und Elementreferenzebene nach [2]

5.7.2.5 To-Do-Liste am Eintrag

• ..

5.7.3 PBeam

5.7.3.1 Beschreibung

Diese Karte definiert die Eigenschaften eines Balkenelements mit isotropem Materialmodell. Die Datei muss den Namen *pbeam.fipps* haben.

5.7.3.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	mid	AA	I11	I22	I12	It	t1
Type	I>0	I>0	R≥0.0	R≥0.0	R≥0.0	R≥0.0	R≥0.0	$R \ge 0.0$
Default	-	-	-	-	-	-	Ip	-
Remark	1	-	-	-	-	2	3	4
aktuell genutzt	\checkmark							
Karte 2	9	10	11	12	13	14	15	16
Variable	t2	angle	atype	nsm	-	_	-	-
Type	R≥0.0	R	C	R≥0.0		-	-	-
Default	-	-	-	. 6 /	-	-	-	-
Remark	4	-	-	5	/ -	-	-	-
aktuell genutzt	✓	✓		-	-	-	-	-

5.7.3.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	I10
mid	Material-ID (Mat1-Karte)	Integer > 0	I10
AA	Fläche des Balkenquerschnitts	Real ≥ 0.0	E23.16
I11	Flächenträgheitsmoment des Querschnitts um z-	Real ≥ 0.0	E23.16
	Hauptachse (=Izz)		
I22	Flächenträgheitsmoment des Querschnitts um y-	Real ≥ 0.0	E23.16
	Hauptachse (=Iyy)		
I12	Deviationsmoment des Querschnitts (=Izy)	$\text{Real} \geq 0.0$	E23.16
It	Torsionsflächenträgheitsmoment des Querschnitts	$\text{Real} \geq 0.0$	E23.16
t1	Dicke in z-Richtung	Real ≥ 0.0	E23.16
t2	Dicke in y-Richtung	Real ≥ 0.0	E23.16
angle	Winkel zwischen Hauptachsensystem und lokalem kar-	Real	E23.16
	tesischen Koordinatensystem des Balkens		
atype	Winkeltyp, 'deg' or 'rad'	Character	3A
nsm	Non-structural mass per unit area	$\text{Real} \geq 0.0$	E23.16

5.7.3.4 Hinweise

- 1. Die Property-ID's (pid) dürfen für die gesamte Anzahl an verwendeten Properties nur einmalig genutzt werden. Demzufolge darf es keine PShell-ID 1 und PComp-ID 1 in einem Modell gleichzeitig geben.
- 2. Es sind alle Werte zulässig, die die Ungleichung $I11 \cdot I22 I12^2 > 0,0$ erfüllen.
- 3. Wird kein Torsionsflächenträgheitsmoment angegeben, wird für die Berechnungen das polare Flächenträgheitsmoment genutzt (Ip=I11+I22).
- 4. Die angegebenen Dicken werden zur Berechnung der maximal im Querschnitt auftretenden Spannungen benötigt und geben die maximalen Abstände des Querschnitts von dessen Schwerpunkt an. Sie gehen nicht in die Berechnung der Steifigkeitsmatrizen der Elemente ein.
- 5. Die entsprechenden Einträge lassen sich definieren, werden jedoch in der derzeitigen Version nicht in der Berechnung genutzt.

5.7.3.5 To-Do-Liste am Eintrag

•

5.7.4 PLsolid

5.7.4.1 Beschreibung

Die Eingabekarte definiert die Eigenschaften des Layered Solid-Elements Lsolid20 für mehrschichtige Laminate orthotroper Einzellagen.

Die Datei muss den Namen plsolid.fipps haben.

5.7.4.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	pid	lamid	cid	resLay	glob- Out	-	-	-
Тур	I>0	I>0	$I \ge -1$	$I \geq 0$	L	-	_	-
Standard	-	-	0	0	F	-	-	-
Hinweis	-	-	1	2	3	-	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	< C		-	-	-

5.7.4.3 Beschreibung

Variable	Beschreibung	Тур	Format
pid	Property-ID	Integer > 0	I10
lamid	Laminat-ID	Integer > 0	I10
cid	Koordinatensystem-ID	Integer ≥ -1	I10
resLay	Lagennummer, für die Spannungen und Dehnungen	Integer ≥ 0	I10
	ausgegeben werden		
globOut	Optionale Ausgabe im globalen Koordinatensystem	Logical	L1

5.7.4.4 Hinweise

- 1. Die x-Achse des Koordinatensystems gibt die Orientierung der x-Achse und damit der Fasernullrichtung des Elementkoordinatensystems vor. Hierzu wird die x-Achse des Koordinatensystems in die Elementmittenebene projiziert. Mit dem Standardwert cid = 0 erfolgt die Orientierung des Elementkoordinatensystems nur nach der Elementorientierung, sodass die x-Achse der ξ -Koordinate folgt. Mit cid = -1 wird die x-Achse des globalen Koordinatensystems zur Orientierung genutzt.
- 2. Gibt die Nummer der Lage an, für die die Spannungen und Verzerrungen ausgegeben werden. Ist resLay = 0, erfolgt die Ausgabe an der Oberseite der obersten Lage und an der Unterseite der untersten Lage im Elementkoordinatensystem. Andernfalls werden die Werte an der Ober- und Unterseite der jeweiligen Lage im entsprechenden Materialkoordinatensystem ausgegeben. Ist nur ein Integrationspunkt über der Lagendicke vorhanden, erfolgt die Darstellung der Werte in der Lagenmitte.

3. Ist der Schalter globOut auf *true* gesetzt, erfolgt die Ausgabe der Spannungen und Verzerrungen im globalen Koordinatensystem. Ist der Schalter auf *false* gesetzt, erfolgt die Ausgabe im Element- oder Materialkoordinatensystem (vergleiche Hinweis 2). Ohne Eintrag erfolgt die Ausgabe standardmäßig im Elementkoordinatensystem.

5.8 Randbedingungen

5.8.1 Coupling

5.8.1.1 Beschreibung

Diese Karte definiert Sets von Knoten, für die Freiheiten miteinander gekoppelt werden. Die Datei muss den Namen *couplings.fipps* haben.

5.8.1.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	cpsid	dof	nid	-	-	-	-	-
Тур	I>0	I>0	I>0	-	-	-	-	-
Standard	-	-	-	-	-	-	-	-
Hinweis	1	2	-	-	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	- (X	<u>-</u>	-	-

5.8.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
cpsid	Coupling-Set-ID	Integer > 0	I10
dof	zu koppelnder Freiheitsgrad	Integer > 0	I10
nid	Knoten-ID	Integer > 0	I10

5.8.1.4 Hinweise

- 1. Für alle Freiheiten, die miteinander gekoppelt werden sollen, muss die Coupling-Set-ID (cpsid) gleich sein.
- 2. Es darf immer nur ein Freiheitsgrad angegeben werden.

5.8.1.5 To-Do-Liste am Eintrag

• ...

5.8.2 Spcadd

5.8.2.1 Beschreibung

Diese Karte definiert Set von Randbedingungen. Die Datei muss den Namen *spcadd.fipps* haben.

5.8.2.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	scid	sid	-	-	=	=	=	-
Тур	I>0	I>0	-	-	-	-	-	-
Standard	-	-	-	-	-	-	-	-
Hinweis	1	-	-	-	-	-	-	-
aktuell	(_	_	_			
genutzt	V	v	_	<u>-</u>	-	-	-	

5.8.2.3 Beschreibung

Variable	Beschreibung	Тур	Format
scid	Spc-Set-ID	Integer > 0	I10
sid	Spc-ID	Integer > 0	I10

5.8.2.4 Hinweise

1. ...

5.8.2.5 To-Do-Liste am Eintrag

• Über Bezeichungen Scid und Sid nachdenken (Sid könnte auch set-id sein)

5.8.3 Spc1

5.8.3.1 Beschreibung

Diese Karte definiert eine homogene Verschiebungsrandbedingung im globalen Koordinatensystem.

Die Datei muss den Namen spc1.fipps haben.

5.8.3.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	sid	dof	n1	thru	nn	inc	-	-
Typ	I>0	I>0	I>0	L	I>0	I>0	-	=
Standard	-	-	-	-	-	1	-	-
Hinweis	1	-	-	- 6		2	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	✓		-	-	-

5.8.3.3 Beschreibung

Variable	Beschreibung	Тур	Format
sid	Spc-ID	Integer > 0	I10
dof	Gesperrte Freiheitsgrade. Jede Kombination der Werte	Integer > 0	I10
	1 bis 6 ohne Leerzeichen und doppelte Zahlen. Die Rei-		
	henfolge der Werte spielt keine Rolle. Zur Sperrung aller		
	Translationen muss somit die Kombination 123 einge-		
	tragen werden. Zur Sperrung von allen statischen Frei-		
	heitsgraden eines Knotens (drei Translationen und drei		
	Rotationen) muss die Kombination 123456 eingetragen werden.		
" 1		Integer > 0	110
n1	Knoten-ID des ersten Knotens an dem die Randbedingung wirken soll	Integer > 0	I10
thru	Logischer Operator, wenn true dann wird die Randbe-	Logical	L1
	dingung auf die Knoten von n1 bis n2 aufgebracht, wenn		
	false wirkt die Randbedingung nur auf dem Knoten mit		
	n1.		74.0
nn	Wenn thru=true Knoten-ID des Knotens bis zu dem die	Integer > 0	I10
	Randbedingung aufgebracht werden soll.		110
inc	Inkrement der Knotennummern zwischen n1 und nn auf	integer > 0	I10
	dem die Randbedingung aufgebracht werden soll.		

5.8.3.4 Hinweise

- 1. Die Spc-ID's (sid) dürfen für die gesamte Anzahl an verwendeten Randbedingungen nur einmalig genutzt werden. Demzufolge darf es keine Spc1-ID 1 und Spcd-ID 1 in einem Modell gleichzeitig geben.
- 2. Dieser Wert wird in der aktuellen Version in der Berechnung nicht berücksichtigt.

5.8.3.5 To-Do-Liste am Eintrag

- Die Bezeichnung n1 und nn in nid1 und nid2 ändern entsprechend Bezeichnung bei thru wie in p3load.
- inc implementieren.

5.8.4 Spcd

5.8.4.1 Beschreibung

Diese Karte ist derzeit nicht implementiert.

Diese Karte definiert eine inhomogene Verschiebungsrandbedingung im globalen Koordinatensystem.

Die Datei muss den Namen spcd.fipps haben.

5.8.4.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	sid	nid	dof	val	-	-	-	-
Тур	I>0	I>0	1≤I≤6	R	-	-	-	-
Standard	-	-	-	-	-	-	-	-
Hinweis	1	-	-	-	-	-	=	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	✓		<u>-</u>	-	-

5.8.4.3 Beschreibung

Variable	Beschreibung	Тур	Format
sid	Spc-ID	Integer > 0	I10
nid	Knoten-ID des Knotens auf den die inhomogene Ver-	Integer > 0	I10
	schiebungsrandbedingung aufgebracht werden soll.		
dof	Freiheitsgrad mit vorgeschriebenem Wert. Zahl von	$1 \leq Integer \leq 6$	I10
	1 bis 6.		
val	Größe der vorgeschriebenen Bewegung	Real	E23.16

5.8.4.4 Hinweise

1. Die Spc-ID's (sid) dürfen für die gesamte Anzahl an verwendeten Randbedingungen nur einmalig genutzt werden. Demzufolge darf es keine Spc1-ID 1 und Spcd-ID 1 in einem Modell gleichzeitig geben.

5.8.4.5 To-Do-Liste am Eintrag

• ...

5.8.5 Mpcadd

5.8.5.1 Beschreibung

Diese Karte definiert Set von Multi Point Constraints. Die Datei muss den Namen *mpcadd.fipps* haben.

5.8.5.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	scid	sid	-	-	-	-	-	-
Тур	I>0	I>0	-	-	-	-	-	-
Standard	-	-	-	-	-	-	-	-
Hinweis	-	-	-	-	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	-	-	-	-	-	-

5.8.5.3 Beschreibung

Variable	Beschreibung	Тур	Format
scid	Mpc-Set-ID	Integer > 0	I10
sid	Mpc-ID	Integer > 0	I10

5.8.5.4 Hinweise

1. ...

5.8.5.5 To-Do-Liste am Eintrag

• Über Bezeichungen Scid und Sid nachdenken (Sid könnte auch set-id sein)

5.8.6 Mpc

5.8.6.1 Beschreibung

Diese Karte definiert ein Multi Point Constraint der Form

$$0 = fac^s u^s + \sum_i fac_i^m u_i^m \tag{5.1}$$

im Knotenkoordinatensystem.

Die Datei muss den Namen mpc.fipps haben.

Achtung!!: Im Gegensatz zu allen anderen Karten ist diese zweizeilig pro Eintrag.

5.8.6.2 Input-Karte

Zeile 1	1	2	3	4	5	6	7	8
Variable	nmdof	snid	sdof	sfac		-	_	-
Тур	I>0	I>0	I>0	R		_	-	-
Standard	-	-	-	-		-	-	-
Hinweis	-	-	1		-	-	-	-
aktuell	/	/	/					
genutzt	V	V	V		-	-	-	-
Zeile 2	1	2	3	4	5	6	•••	
Variable	mnid1	mdof1	mfac1	mnid2	mdof2	mfac2	•••	
Тур	I>0	I>0	R	I>0	I>0	R	•••	
Standard	-	-	_	-	-	-	•••	
Hinweis	-	1	-	-	-	-	2	
aktuell	/	/	/		/	/	/	
genutzt	V	V	√	√	v	√	√	

5.8.6.3 Beschreibung

Variable	Beschreibung	Тур	Format
nmdof	Anzahl der unabhängigen Freiheiten (entsprechend viele Einträge müssen in der zweiten Zeile erfolgen)	Integer > 0	I10
snid	Knoten-ID des abhängigen Knotens	Integer > 0	I10
sdof	zu koppelnde Freiheit des abhängigen Knotens	Integer > 0	I10
sfac	Faktor für die Freiheit des abhängigen Knotens	Real	E23.16
mnidi	Knoten-ID des i-ten unabhängigen Knotens	Integer > 0	I10
mdofi	zu koppelnde Freiheit des i-ten unabhängigen Knotens	Integer > 0	I10
mfaci	Faktor für die Freiheit des i-ten unabhängigen Knotens	Real	E23.16

5.8.6.4 Hinweise

- 1. Es darf immer nur ein Freiheitsgrad angegeben werden.
- 2. Die Einträge mnid, mdof und mfac müssen nmdof-mal vorhanden sein.

5.8.6.5 To-Do-Liste am Eintrag

• ...

5.9 Kontakte

5.9.1 Knoten-Beam2-Kontakt

5.9.1.1 Beschreibung

Diese Karte definiert einen starren Kontakt zwischen einem Knoten und einem Beam2-Element. Dabei wird der Knoten auf die Elementachse, unter Berücksichtigung der vorzugebenden Elementkoordinate, verschoben. Der Knoten ist anschließend starr mit der Elementachse verbunden und bewegt sich mit dieser. Der Kontakt wird über die Ansatzfunktion des Beam2-Elements und interne MPCs realisiert.

Die Translationen und Rotationen des abhängigen Knoten werden jeweils über die Ansatz-funktion des Beam2-Elements aus den Freiheiten der unabhängigen Knoten gemittelt. Hierbei ist zu beachten, dass dem Balkenelement ein kubischer Ansatz für die Durchbiegung in Richtung der y- und z-Achse des Elementkoordinatensystems zugrunde liegt. Daher kann der Knoten bei der Darstellung des Balkens als lineares Element deutlich außerhalb des verformten Elements dargestellt werden.

Die Datei muss den Namen contact node beam2.fipps haben.

5.9.1.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	eid	nid	xi	-(-	-	-	-
Typ	I>0	I>0	R	-	-	-	-	-
Standard	-	-	-		-	-	-	-
Hinweis	-	1	-	-	-	-	-	-
aktuell								
genutzt	V	V		-	-	-	=	-

5.9.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
eid	Element-ID des Beam2-Elements	Integer > 0	I10
nid	Knoten-ID	Integer > 0	I10
xi	Knotenposition in Elementkoordinaten	Real	E23.16

5.9.1.4 Hinweise

1. Derzeit darf diesem Knoten keine weitere Randbedingung (Verschiebung, Kräfte) zugeordnet sein.

5.9.1.5 To-Do-Liste am Eintrag

• Klären, was mit weiteren Randbedingungen auf die Knoten passiert.

5.9.2 Knoten-Quad8-Kontakt

5.9.2.1 Beschreibung

Diese Karte definiert einen starren Kontakt zwischen einem Knoten und einem Quad8-Element. Dabei wird zunächst die Normale auf der Elementmittelfläche bestimmt, die durch den Knoten verläuft. Anschließend wird der Knoten auf die Elementmittelfläche verschoben. Der Knoten ist abschließend starr mit der Elementmittelfläche verbunden und bewegt sich mit dieser. Der Kontakt wird über die Ansatzfunktionen des Quad8-Elements und interne MPCs realisiert.

Es werden die Translationen und Rotationen des abhängigen Knoten jeweils über die Ansatzfunktionen des Quad8-Elements aus den Freiheiten der unabhängigen Knoten gemittelt. Die Datei muss den Namen *contact node quad8.fipps* haben.

5.9.2.2 Input-Karte

Karte 1	1	2	3	4 5	6	7	8
Variable	eid	nid	-	-	=	-	-
Тур	I>0	I>0	=	- X -	-	-	-
Standard	-	-	-	-	-	-	-
Hinweis	-	1	=		-	-	-
aktuell	/	_		P ()			
genutzt	V	V	· ^		_	_	_

5.9.2.3 Beschreibung

Variable	Beschreibung	Тур	Format
eid	Element-ID des Quad8-Elements	Integer > 0	I10
nid	Knoten-ID	Integer > 0	I10

5.9.2.4 Hinweise

1. Derzeit darf diesem Knoten keine weitere Randbedingung (Verschiebung, Kräfte) zugeordnet sein.

5.9.2.5 To-Do-Liste am Eintrag

• Klären, was mit weiteren Randbedingungen auf die Knoten passiert.

5.9.3 Knoten-Lsolid20-Kontakt

5.9.3.1 Beschreibung

Diese Karte definiert einen starren Kontakt zwischen einem Knoten und einem Lsolid20-Element. Dabei werden zunächst die natürlichen Elementkoordinaten des zu koppelnden Knotens ermittelt. Dieser kann auch außerhalb des Elements liegen und wird nicht verschoben. Liegt der zu koppelnde Knoten außerhalb des Elements, erfolgt die Ausgabe eines Warnhinweises. Anschließend erfolgt die Realisierung des Kontakts über die Ansatzfunktionen des Lsolid20-Elements und interne MPCs.

Die Translationen des abhängigen Knoten werden damit jeweils über die Ansatzfunktionen des Lsolid20-Elements aus den Translationen der unabhängigen Knoten gemittelt. Es werden keine Abhängigkeiten für die Rotationen des abhängigen Knotens generiert. Diese sind daher separat zu sperren, sofern der kontaktierte Knoten nicht Teil eines Lsolid20-Elements ist. Die Datei muss den Namen *contact node lsolid20.fipps* haben.

5.9.3.2 Input-Karte

Karte 1	1	2	3	4 5	6	7	8
Variable	eid	nid	-	-	<u>-</u>	-	-
Typ	I>0	I>0	-	- }-	-	-	-
Standard	-	-	-	P - / 7 -	-	-	-
Hinweis	-	1	-	V - V -	-	-	-
aktuell genutzt	\checkmark	√		-	-	-	-

5.9.3.3 Beschreibung

Variable	Beschreibung	Тур	Format
eid	Element-ID des Lsolid20-Elements	Integer > 0	I10
nid	Knoten-ID	Integer > 0	I10

5.9.3.4 Hinweise

1. Derzeit darf diesem Knoten keine weitere Randbedingung (Verschiebung, Kräfte) zugeordnet sein.

5.9.3.5 To-Do-Liste am Eintrag

• Klären, was mit weiteren Randbedingungen auf die Knoten passiert.

5.10 Koordinatensysteme

5.10.1 Coords

5.10.1.1 Beschreibung

Diese Karte definiert ein lokales kartesisches Koordinatensystem. Die Datei muss den Namen *coord.fipps* haben.

5.10.1.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	cid	xAxisVec1	xAxisVec	2xAxisVec	3yAxisVec	1 yAxisVec	2yAxisVec	3zAxisVec1
Typ	I>0	R	R	R	R	R	R	-
Standard	-	-	-	-	-	-	-	-
Hinweis	1	1	1	1	1	1	1	1
aktuell genutzt	\checkmark	\checkmark	\checkmark	✓		√	✓	✓
Karte 1	9	10	11	12	13	14	15	16
Variable	zAxisVe	c2zAxisVec3	-	- (-	=	-	-
Тур	R	R	\Lambda		-	-	-	-
Standard	-	-	-		-	-	-	-
Hinweis	1	1	-	_	-	-	-	-
aktuell genutzt	✓	√	-	-	-	-	-	-

5.10.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
cid	Koordinatensystem-ID	Integer > 0	I10
xAxisVeci	Vektor-Komponenten der x-Achse des lokalen Koordinatensystems (Hinweis 1 beachten)	Real	3E23.16
yAxisVeci	Vektor-Komponenten der y-Achse des lokalen Koordinatensystems (Hinweis 1 beachten)	Real	3E23.16
zAxisVeci	Vektor-Komponenten der z-Achse des lokalen Koordinatensystems (Hinweis 1 beachten)	Real	3E23.16

5.10.1.4 Hinweise

1. Die drei Vektoren müssen normiert sein.

5.10.1.5 To-Do-Liste am Eintrag

• ...

5.11 Subcases

5.11.1 Subcase

5.11.1.1 Beschreibung

Diese Karte definiert einen Subcase - die Kombination von Lastfall und Lagerung. Die Datei muss den Namen *subcase.fipps* haben.

5.11.1.2 Input-Karte

Karte 1	1	2	3	4	5	6	7	8
Variable	scid	spcaddid	loadid	mpcaddid	skip- Buck- ling	upgeom	upstress	output
Тур	I>0	I>0	I>0	I>0	L	L	L	L
Standard	-	-	-	-	-	=	-	-
Hinweis	-	-	-	-	-	-	-	-
aktuell genutzt	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-
Karte 2	9	10	11	12	13	14	15	16
Variable	read- Apa- meIn- put	-	-	-	-	-	-	-
Тур	L	-	-	-	-	-	-	-
Standard	-	-	-	-	-	-	-	-
Hinweis	=	-	-	-	=	-	=	-
aktuell genutzt	✓	✓	-	-	-	-	-	-

5.11.1.3 Beschreibung

Variable	Beschreibung	Тур	Format
scid	Subcase-ID	Integer > 0	
spcaddid	ID des Lagerungsfallsets	Integer > 0	I10
loadid	ID des Belastungssets	Integer > 0	I10
mpcaddid	ID des MPC-Sets	Integer > 0	I10
skipBuckling	falls bereits Versagen bei der statischen Rechnung eintritt, wird die Beulrechnung nicht durchgeführt	Logical	L1
upgeom	Berücksichtigung der Verschiebungen des vorhergehenden Einzelschritts als Anfangsverschiebungen	Logical	L1
upstress	Berücksichtigung der Spannungen des vorher- gehenden Einzelschritts als Anfangsspannun- gen	Logical	L1
output	Ergebnisausgabe nach aktuellem Einzelschritt als .vtk-Datei	Logical	L1
readApameInput	neu Einlesen das APAME-Inputs	Logical	L1

5.11.1.4 Hinweise

1. ...

5.11.1.5 To-Do-Liste am Eintrag

• scid ist schon spcadd-id - Bezeichnung bei spcadd ändern

6 Ausgabe

Alle Ausgaben erfolgen standardmäßig über eine VTK-Datei. Diese beinhaltet aktuell alle Ausgaben, die möglich sind, was gerade im Falle von geschichteten Elementen sehr umfangreich werden kann. Im Rahmen von automatisierten Prozesses sollte die Ausgabe deshalb im Quellcode angepasst werden und sich ein problemspezifisches Excecutable erstellt werden.

Pro Lastfall (Subcase) wird eine VTK-Datei (output_sc_XXXX.vtk) als Ausgabe erstellt. Die VTK-Dateien sind durchnummeriert, sodass diese anschließend in Paraview gemeinsam geöffnet werden können. Auf diese Weise ist in Paraview ein durchblättern der Lastfälle möglich.

Die Anzahl der ausgegebenen Eigenwerte in der VTK-Datei können von der geforderten Anzahl an Eigenwerten in der *control.fipps* abweichen. In der *control.fipps* wird die Mindestenanzahl an Eigenwerten definiert, die das Konvergenzkriterium erfüllen müssen. Erfüllen nach dem letzten Iterationsschritt mehr Eigenwerte das Kriterium, werden diese mit ausgegeben.

Bezeichnung	Bedeutung
b2_str_dir	Axialspannung, die sich aus der Längskraft ergibt (entspricht SDIR des BE-AM4 von ANSYS)
b2_str_bndy	Biegespannung um die Y-Achse, die sich aus dem entsprechenden Biegemoment ergibt (entpricht SBYT des BEAM4 von ANSYS)
b2_str_bndz	Biegespannung um die Z-Achse, die sich aus dem entsprechenden Biegemoment ergibt (entpricht SBZT des BEAM4 von ANSYS)
b2_str_max	Maximale Spannung aus der Summe von Axial- und Biegespannung (entspricht SMAX des BEAM4 von ANSYS)
b2_str_min	Minimale Spannung aus der Summe von Axial- und Biegespannung (entspricht SMIN des BEAM4 von ANSYS)

Bezeichnung	Bedeutung
q8_ReserveFactor	minimaler Reservefaktor im Element (über alle Schichten jeweils Ober- und Unterseite) (für Quad8-Elemente)
q8_LayerNumber	Lagennummer in der der minimale Reservefaktor gefunden wurde (für Quad8-Elemente)
q8_FailureType	Versagenstyp der eingetreten ist (für Quad8-Elemente)
q8_strain_x	Dehnung in x-Richtung des Elementskoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8- Elemente)
q8_strain_y	Dehnung in y-Richtung des Elementskoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8- Elemente)
q8_strain_xy	Schubdehnung im Elementskoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8-Elemente)
q8_strain_1	maximale Hauptdehnung an der in "control" definierten Position in Dickenrichtung (für Quad8-Elemente)
q8_strain_2	minimale Hauptdehnung an der in "control" definierten Position in Dickenrichtung (für Quad8-Elemente)
q8_strain_int	Dehnungsintensität an der in "control" definierten Position in Dickenrichtung (äquivalent zu ANSYS) (für Quad8-Elemente)
q8_stress_x	Spannung in x-Richtung des Elementkoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8-Elemente)
q8_stress_y	Spannung in y-Richtung des Elementkoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8-Elemente)
q8_stress_xy	Schubspannung im Elementkoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8-Elemente)
q8_stress_1	maximale Hauptspannung im Elementkoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8- Elemente)
q8_stress_2	minimale Hauptspannung im Elementkoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8- Elemente)
q8_stress_vMises	von-Mises-Vergleichspannung im Elementkoordinatensystems an der in "control" definierten Position in Dickenrichtung (für Quad8-Elemente)
q8_sig_p_LayXX_Top	Spannung in 0°-Richtung des Lagenkoordinatensystems der Lage XX auf der Oberseite der Lage (für Quad8-Elemente)
q8_sig_s_LayXX_Top	Spannung in 90°-Richtung des Lagenkoordinatensystems der Lage XX auf der Oberseite der Lage (für Quad8-Elemente)
q8_sig_ps_LayXX_Top	Schubspannung im Lagenkoordinatensystems der Lage XX auf der Oberseite der Lage (für Quad8-Elemente)
q8_sig_p_LayXX_Bot	Spannung in 0°-Richtung des Lagenkoordinatensystems der Lage XX auf der Unterseite der Lage (für Quad8-Elemente)
q8_sig_s_LayXX_Bot	Spannung in 90°-Richtung des Lagenkoordinatensystems der Lage XX auf der Unterseite der Lage (für Quad8-Elemente)
q8_sig_ps_LayXX_Bot	Schubspannung im Lagenkoordinatensystems der Lage XX auf der Unterseite der Lage (für Quad8-Elemente)

Bezeichnung	Bedeutung
120_me_strain_x	mechanische Dehnung in x-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_me_strain_y	mechanische Dehnung in y-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_me_strain_z	mechanische Dehnung in z-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_me_strain_yz	mechanische Schubdehnung in der yz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_me_strain_xz	mechanische Schubdehnung in der xz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_me_strain_xy	mechanische Schubdehnung in der xy-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_me_strain_1	1. mechanische Hauptdehnung (für lSolid20-Elemente)
l20_me_strain_2	2. mechanische Hauptdehnung (für lSolid20-Elemente)
l20_me_strain_3	3. mechanische Hauptdehnung (für lSolid20-Elemente)
l20_me_strain_Int	mechanische Dehnungsintensität (für lSolid20-Elemente)
l20_tt_strain_x	Gesamtdehnung in x-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_tt_strain_y	Gesamtdehnung in y-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_tt_strain_z	Gesamtdehnung in z-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_tt_strain_yz	Gesamtschubdehnung in der yz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_tt_strain_xz	Gesamtschubdehnung in der xz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_tt_strain_xy	Gesamtschubdehnung in der xy-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_th_strain_x	thermische Dehnung in x-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_th_strain_y	thermische Dehnung in y-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_th_strain_z	thermische Dehnung in z-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_th_strain_yz	thermische Schubdehnung in der yz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_th_strain_xz	thermische Schubdehnung in der xz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_th_strain_xy	thermische Schubdehnung in der xy-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)

Bezeichnung	Bedeutung				
l20_stress_x	Spannung in x-Richtung des Elementskoordinatensystems (für				
	lSolid20-Elemente)				
l20_stress_y	Spannung in y-Richtung des Elementskoordinatensystems (für				
	lSolid20-Elemente)				
l20_stress_z	Spannung in z-Richtung des Elementskoordinatensystems (für				
	lSolid20-Elemente)				
120_stress_yz	Schubspannung in der yz-Ebene des Elementskoordinatensystems (für				
	lSolid20-Elemente)				
120_stress_xz	Schubspannung in der xz-Ebene des Elementskoordinatensystems (für				
	lSolid20-Elemente)				
120_stress_xy	Schubspannung in der xy-Ebene des Elementskoordinatensystems (für				
	lSolid20-Elemente)				
120_stress_1	1. Hauptspannung (für lSolid20-Elemente)				
120_stress_2	2. Hauptspannung (für lSolid20-Elemente)				
120_stress_3	3. Hauptspannung (für lSolid20-Elemente)				
120_stress_vM	von-Mises-Vergleichsspannung (für lSolid20-Elemente)				
120_ReserveFactor	minimaler Reservefaktor im Element (über alle Schichten jeweils				
	Ober- und Unterseite) (für lSolid20-Elemente)				
l20_LayerNumber	Lagennummer in der der minimale Reservefaktor gefunden wurde				
	(für lSolid20-Elemente)				
l20_FailureType	Versagenstyp der eingetreten ist (für lSolid20-Elemente)				

Bezeichnung	Bedeutung
l20_stress_x	Spannung in x-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_stress_y	Spannung in y-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_stress_z	Spannung in z-Richtung des Elementskoordinatensystems (für lSolid20-Elemente)
l20_stress_yz	Schubspannung in der yz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_stress_xz	Schubspannung in der xz-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
l20_stress_xy	Schubspannung in der xy-Ebene des Elementskoordinatensystems (für lSolid20-Elemente)
120 stress 1	1. Hauptspannung (für lSolid20-Elemente)
120 stress 2	2. Hauptspannung (für lSolid20-Elemente)
120_stress_3	3. Hauptspannung (für lSolid20-Elemente)
120_stress_vM	von-Mises-Vergleichsspannung (für lSolid20-Elemente)
120_ReserveFactor	minimaler Reservefaktor im Element (über alle Schichten jeweils Ober- und Unterseite) (für lSolid20-Elemente)
l20_LayerNumber	Lagennummer in der der minimale Reservefaktor gefunden wurde (für lSolid20-Elemente)
l20_FailureType	Versagenstyp der eingetreten ist (für lSolid20-Elemente)

Bezeichnung	Bedeutung
Eigenvektor_XX	Eigenform Eigenwert (alle Elemente haben als größe den Eigenwert der Struktur)

7 Hinweise zu Fehlermeldungen

7.1 MUMPS Fehler

7.1.1 INFOG(1)=-9

7.1.1.1 Hintergrund

Die Fehlermeldung sieht vollständig folgendermaßen aus:

INFOG(1)=-9, INFO(2)=31575

. Diese Fehlermeldung zeigt, dass der interne Speichergröße mit den Standardeinstellungen für MUMPS nicht ausreicht.

7.1.1.2 Problemlösung

Der interne Speicher, der MUMPS zur Verfügung steht, kann durch eine Option beim FiPPS²-Start erhöht werden. Dafür muss FiPPS² folgendermaßen aufgerufen werden:

Listing 7.2: Aufruf von FiPPS² um INFOG(1)=-9 zu verhindern

fipps2 -mat_mumps_icntl_14 50

Dies führt dazu, dass der interne Speicher um 50 % erhöht wird. Der Standardwert entspricht dem in MUMPS gesetzten Standardwert von 20. Nähere Informationen sind im MUMPS-Userguide unter http://mumps.enseeiht.fr/index.php?page=doc zu finden.

7.1.2 INFOG(1)=-10

7.1.2.1 Hintergrund

Die Fehlermeldung sieht vollständig folgendermaßen aus:

```
Listing 7.3: Fehlermeldung für INFOG(1)=-10
```

Error reported by MUMPS in numerical factorization phase: \N INFOG(1)=-10, INFO(2)=25788

. Diese Fehlermeldung zeigt, dass die Gesamtsteifigkeitsmatrix numerisch singulär ist.

7.1.2.2 Problemlösung

Im Normalfall handelt es sich um eine nicht ausreichend gelagerte Struktur, sodass Starrkörpertranslationen oder -rotationen möglich sind. Es müssen die Lagerbedingungen angepasst werden.

8 Aufgefallene Schwächen in der Programmierung

- Durch die Programmierung in der quad8_stiff_control.f90 Routine müssen die Property-ID's von PShell und PComp durchgängig die Werte 1 bis n haben, es dürfen keine Lücken auftreten, oder ?
- Generelles Konzept zum Umgang mit Ausgaben. Derzeit wird immer alles rausgeschrieben und man muss sich entsprechende Dinge direkt im Quellcode anpassen.
- Die Ausgaben sollten als dynamische Bibliothek bereitsgestellt werden, sodass sie auch von Nutzern angepasst werden können, ohne den gesamten FiPPS²-Quellcode zur Verfügung haben zu müssen.
- Einzelne Ausgaben sollten abgeschaltet werden können.

9 Offene Punkte

- Aufgrund der derzeitigen Programmierung ist keine Berechnung von Verschiebungsrandbedingungen mehr möglich, dies ist zu ändern
- Klären was transform_nodal_coords.f90 macht und in Routinenbeschreibung eintragen.
- tria3 geostiff.f90 löschen.
- Tria3-Routinen überarbeiten um sie an die Programmierung ala Quad8 anzupassen.
- Klären was nzKaas cp ist.
- Load-Karte/Datei in Loadcase umbenennen. Dies kann zu Verwirrung führen, da die Load-Karte eine Loadcase-ID hat, die Belastungskarten, wie Force, Moment aber eine LoadID.
- Doku der PxLoad-Karten muss überarbeitet werden.

Literaturverzeichnis

- [1] ANSYS, Inc.: Theory Reference. ANSYS, Inc., 2009. ANSYS Release 11
- [2] GEIER, B.: Simple Finite Elements for Laminated Composite Shells Part1: Fundamental Equations and Procedures to Create Finite Element Stiffness Matrices. 1999. DLR
- [3] MEYERS, V.J.: *Matrix Analysis of Structures*. 1. Auflage. New York, USA: Harper & Row, Publishers, 1983. ISBN 0-06-044438-X
- [4] PANDA, S.; NATARAJAN, R.: Analysis of laminated composite shell structures by finite element method. In: *Computers & Structures* 14 (1981), Nr. 3–4, S. 225–330
- [5] Przemieniecki, J.S.: *Theory of Matrix Structural Analysis*. 1. Auflage. New York, USA: McGraw-Hill, 1968. ISBN 978–0486649481