00_TG_What_is_a_PLC

Instructor Notes: Module 00 – What is a PLC?

Module Purpose

This module introduces students to the foundational concept of a Programmable Logic Controller (PLC) as a reliable, deterministic computing system used in industrial environments to automate and control physical processes.

The purpose of this module is to:

- Define what a PLC is and what it is not (compared to microcontrollers, desktop computers, etc.)
- Explain the core components of a PLC system, including the processor, I/O modules, power supply, and communication interfaces
- Ground students in the real-world relevance of PLCs by exploring where they are used (factories, elevators, HVAC, irrigation, etc.)
- Clarify the role of deterministic control and fail-safe logic in industrial systems
- Introduce IEC 61131-3 and the concept of standardized programming languages (Ladder Logic, ST, FBD, etc.)

This is a non-coding module focused on establishing conceptual clarity, preparing students to approach hands-on labs with context and purpose.

Where this is taught:

- Definitions and examples are covered in the Student Guide
- Instructor may present visuals or diagrams from the GitHub 03 assets/00 intro plc folder
- Reference: Arduino Explore PLC course, "What Is a PLC?" (source)

Objective

Introduce students to the purpose and importance of PLCs using relatable examples and light interaction. This sets the tone for the course and builds relevance before hands-on labs begin.

Linked Resources

- Student Guide: What is a PLC?
- Arduino PLC Course "What is a PLC?"

Opta Hardware Overview

"../../03_assets/00_what_is_a_plc/00_opta-characteristics.jpg" could not be found.

Make sure students have access to these materials during the lesson. The Arduino image can be displayed during the warm-up or demo.

Materials Required

- Slides or handout of the article
- Whiteboard or projector
- Arduino Opta demo unit (optional but helpful)

Pre-Class Setup

- Print or distribute digital copy of the "What is a PLC?" document
- Set up projector or display to show key diagrams (e.g., Opta photo, sensor examples)

Suggested Flow

- 1. Warm-Up Discussion (5 min)
 - "What runs traffic lights? Elevators? Amusement rides?"
 - Students brainstorm what might control those systems
- 2. Read-Aloud or Silent Reading (10 min)
 - Article walkthrough
 - Highlight bolded terms and answer quick Qs as needed
- 3. Group Challenge (10 min)
 - Assign or let groups choose a real-world PLC task
 - Have them describe inputs, logic, and outputs

- 4. Show and Tell (5 min)
 - Display the Opta hardware
 - Emphasize it's a real industrial controller, not a toy

Concept Delivery Map

Concept	Description	Source
PLC Definition	Introduce PLCs as digital controllers for industrial environments	Arduino "What is a PLC" course
PLC vs Microcontroller	Compare PLCs to Arduinos/Raspberry Pi with focus on I/O and real-time control	Instructor discussion
Real-World Use	Use traffic lights, elevators, and factory equipment as relatable examples	Instructor research
Role of Opta	Why Opta is used as a student platform	Arduino Opta documentation

Key Teaching Points

- PLCs are rugged, real-time computers
- They are everywhere in systems students depend on daily
- The Arduino Opta is industry-grade but classroom safe
- The "logic" part is what students will learn to write

Instructor Checklist

	ntro reading distributed and read
_ F	PLC examples discussed with student participation
	Opta demo shown and explained
	Students connect real-world tasks to PLC concepts

Completion Criteria

- Students explain the role of a PLC
- Students identify at least 3 PLC applications
- Students demonstrate awareness of sensor \rightarrow logic \rightarrow output flow

Instructor Checklist

Article distributed and read
PLC applications discussed in class
Scenario challenge completed by groups
Arduino Opta hardware shown and explained