WE CLAIM:

1. A compound of Formula I:

in which

n is selected from 0, 1, 2 and 3;

Z is selected from C and S(O); each

Y is independently selected from $-CR_4$ = and -N=; wherein R_4 is selected from hydrogen, cyano, hydroxyl, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl and halo-substituted- C_{1-6} alkoxy;

 R_1 is selected from halo, cyano, hydroxyl, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy and $-C(O)OR_4$; wherein R_4 is as described above;

R₂ is selected from C₆₋₁₀aryl, C₅₋₁₀heteroaryl, C₃₋₁₂cycloalkyl and C₃₋₈heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R₂ is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, - C(O)NR₅R₅, -OR₅, -OC(O)R₅, -NR₅R₆, -C(O)R₅ and -NR₅C(O)R₅; wherein R₅ and R₆ are independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, C₆₋₁₀aryl-C₀₋₄alkyl, C₃₋₈heteroaryl-C₀₋₄alkyl, C₃₋₁₂cycloalkyl-C₀₋₄alkyl and C₃₋₈heterocycloalkyl-C₀₋₄alkyl; or R₅ and R₆ together with the nitrogen atom to which R₅ and R₆ are attached form C₅₋₁₀heteroaryl or C₃₋₈heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R₅ or the combination of R₅ and R₆ is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, cyano, nitro, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl and halo-substituted-C₁₋₆alkoxy;

 R_3 is selected from C₆₋₁₀aryl, C₅₋₁₀heteroaryl, C₃₋₁₂cycloalkyl and C₃₋₁₂ 8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, C1-6alkoxy, halosubstituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, $-OXR_{7}$ -OXC(O)NR₇R₈. $_{2}R_{8}$, $_{O}XC(O)NR_{7}XNR_{7}C(O)R_{8}$, $_{O}XC(O)NR_{7}XC(O)XC(O)OR_{8}$, $_{O}XC(O)NR_{7}R_{9}$, $_{O}XC(O)NR_{7}R_{9}$ OXC(O)OR7, -OXOR₇, -OXR₉, -XR₉, $-OXC(O)R_9$ -OXS(O)0-2R9 OXC(O)NR7CR7[C(O)R8]2; wherein X is a selected from a bond and C1-6alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR₇, S(O)₂ and O; R₇ and R₈ are independently selected from hydrogen, cyano, C₁₋₆alkyl, halo-substituted- C_{1-6} alkyl, C_{2-6} alkenyl and C_{3-12} cycloalkyl- C_{0-4} alkyl; R_9 is selected from C_{6-1} 10aryl-C0-4alkyl, C₅₋₁₀heteroaryl-C₀₋₄alkyl, C₃₋₁₂cycloalkyl-C₀₋₄alkyl 8heterocycloalkyl-C₀₋₄alkyl; wherein any alkyl of R₉ can have a hydrogen replaced with -C(O)OR₁₀; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R₉ is optionally substituted with 1 to 4 radicals independently selected from halo, C1-6alkyl, C3-12cycloalkyl, halo-substituted-C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkoxy, $-XC(O)OR_{10}$ $XC(O)R_{10}$, $-XC(O)NR_{10}R_{10}$, $-XS(O)_{0-2}NR_{10}R_{10}$ and $-XS(O)_{0-2}R_{10}$; wherein R_{10} is independently selected from hydrogen and C1-6alkyl; and the pharmaceutically acceptable salts, hydrates, solvates and isomers thereof.

2. The compound of claim 1 of Formula Ia:

in which

n is selected from 1, 2 and 3;

Y is selected from -CH= and -N=;

 R_1 is selected from halo, C_{1-6} alkyl, and $-C(O)OR_4$; wherein R_4 is selected from hydrogen and C_{1-6} alkyl;

 R_2 is selected from C_{6-10} aryl, C_{5-10} heteroaryl, C_{3-12} cycloalkyl and C_{3-12} cycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl and $-OC(O)R_5$; wherein R_5 is selected from hydrogen and C_{1-6} alkyl; and

is selected from C₆₋₁₀aryl, C₅₋₁₀heteroaryl, C₃₋₁₂cycloalkyl and C₃. R_3 8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, hydroxyl, C1-6alkoxy, halosubstituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy. -OXC(O)NR7R8, $-OXR_{7}$ OXC(O)NR7XC(O)OR8, -OXC(O)NR7XOR8, -OXC(O)NR7XNR7R8, -OXC(O)NR7XS(O)0- $_2$ R₈, $_7$ OXC(O)NR $_7$ XNR $_7$ C(O)R₈, $_7$ OXC(O)NR $_7$ XC(O)XC(O)OR₈, $_7$ OXC(O)NR $_7$ R₉, $_7$ OXC(O)OR7, -OXOR7, -OXR9, -XR9, -OXC(O)R9 and -OXC(O)NR7CR7[C(O)R8]2; wherein X is a selected from a bond and C₁₋₆alkylene; R₇ and R₈ are independently selected from hydrogen, cyano, C₁₋₆alkyl, halo-substituted-C₁₋₆alkyl, C₂₋₆alkenyl and C₃₋₁₂cycloalkyl-C₀-4alkyl; R9 is selected from C6-10aryl-C0-4alkyl, C5-10heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3.8heterocycloalkyl-C0.4alkyl; wherein any alkyl of R9 can have a hydrogen replaced with -C(O)OR10; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from halo, C₁₋₆alkyl, C₃. halo-substituted-C₁₋₆alkyl, C₁₋₆alkoxy, 12cycloalkyl, halo-substituted-C₁₋₆alkoxy, $XC(O)OR_{10}$, $-XC(O)R_{10}$, $-CR_{10}(NR_{10}R_{10})=NOR_{10}$, $-XC(O)NR_{10}R_{10}$, $-XS(O)_{0.2}NR_{10}R_{10}$ and $-XS(O)_{0.2}NR_{10}R_{10}$ XS(O)₀₋₂R₁₀; wherein R₁₀ is independently selected from hydrogen and C₁₋₆alkyl.

3. The compound of claim 2 in which

R₁ is selected from fluoro, chloro, methyl and -C(O)OCH₃; and

R₂ is selected from phenyl, cyclohexyl, cyclopentyl, pyrrolyl, pyrazolyl, naphthyl, benzo[1,3]dioxolyl, thienyl, furanyl and pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R₂ is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethyl-amino, methoxy, trifluoromethyl, trifluoromethoxy and -OC(O)CH₃.

The compound of claim 3 in which R₃ is selected from phenyl, benzo[1,3]dioxolyl, pyridinyl, 2,2-difluoro-benzo[1,3]dioxol-5-yl and benzooxazolyl; wherein any aryl or heteroaryl of R₃ is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, $-OCH_2C(O)NH_2$, - $OCH_2C(O)OCH_3$, $-OCH_2C(O)NHCH_3$, $-OCH_2C(O)N(CH_3)_2$, $-R_9$, $-OR_9$, $-OCH_2R_9$, -OC $OCH_2C(O)R_9, -OCH_2C(O)NHR_9, -OCH_2C(O)N(CH_3)R_9, -OCH_2C(O)NHCH_2R_9, -OCH_2CN, \\$ -OCH₂C₂H₃, -OCH₂C₂H₄, $-O(CH_2)_2OH$ -OCH₂C(O)NH(CH₂)₂C(O)OC₂H₅, $OCH_2C(O)NH(CH_2)_2CH_2F, -OCH_2C(O)NHCH_2CH_2F, -OCH_2C(O)NH(CH_2)_2C(O)OH, -OCH_2C(O)OH, -OCH_2C$ OCH₂C(O)NHCH(CH₂R₉)C(O)OC₂H₅, -OCH₂C(O)NHC(O)(CH₂)₂C(O)OCH₃, $OCH_2C(O)NH(CH_2)_2NHC(O)CH_3$ -OCH2C(O)NHCH2C(O)C2H5, $OCH_2C(O)NH(CH_2)_2C(O)OC_4H_9$, -OCH₂C(O)NHCH₂C(O)OC₂H₅, $OCH_2C(O)NHCH[C(O)OC_2H_5]_2$, $-S(O)_2CH_3$, -OCH₂C(O)NHCH₂CF₃, OCH₂C(O)NHCH₂C(O)(CH₂)₂C(O)OCH₃, -OCH₂C(O)N(CH₃)CH₂C(O)OCH₃, $OCH_2C(O)NH(CH_2)_3OC_2H_5$, -OCH2C(O)NH(CH2)3OCH(CH3)2, OCH₂C(O)NH(CH₂)₂SCH₃, -OCH₂C(O)NHCH₂CH(CH₃)₂, OCH₂C(O)NHCH(CH₃)CH₂OH, -OCH₂C(O)NHCH₂CH(CH₃)C₂H₅, OCH₂C(O)NHCH(CH₃)C(O)OC₂H₅, -OCH₂C(O)NHCH₂CH(CH₃)₂ and OCH₂C(O)(CH₂)₃OCH(CH₃)₂;

wherein R₉ is phenyl, cyclopropyl-methyl, isoxazolyl, benzthiazolyl, furanyl, furanyl-methyl, tetrahydro-furanyl, pyridinyl, 4-oxo-4,5-dihydro-thiazol-2-yl, pyrazolyl, isothiazolyl, 1,3,4-thiadiazolyl, thiazolyl, phenethyl, morpholino, morpholino-propyl, isoxazolyl-methyl, pyrimidinyl, tetrahydro-pyranyl, 2-oxo-2,3-dihydro-pyrimidin-4-yl, piperazinyl, pyrrolyl, piperidinyl, pyrazinyl, imidazolyl, imidazolyl-propyl, benzo[1,3]dioxolyl, benzo[1,3]dioxolyl-propyl, 2-oxo-pyrrolidin-1-yl and 2-oxo-pyrrolidin-1-yl-propyl; wherein any alkyl of R₉ can have a hydrogen replaced with -C(O)OC₂H₅; wherein any aryl, heteroaryl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, - $OC(O)CH_3$, -COOH, $-S(O)_2NH_2$, $-CH(NH_2)=NOH$, $-C(O)OC_2H_5$, $-CH_2C(O)OH$, $-C(O)OC_2H_5$ CH₂C(O)OC₂H₅, -CH₂C(O)OCH₃, -C(O)OCH₃, -C(O)NH₂, -C(O)NHCH₃ and -C(O)CH₃.

5. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.

- 6. A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.
- 7. The method of claim 6 wherein the diseases or disorder are selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.
- 8. The use of a compound of claim 1 in the manufacture of a medicament for treating a disease or disorder in an animal in which LXR activity contributes to the pathology and/or symptomatology of the disease, said disease being selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.
- 9. A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.
- 10. The method of claim 9 further comprising administering a therapeutically effective amount of a compound of Claim 1 in combination with another therapeutically relevant agent.