

Julio-2018.pdf

DonExamen

Matemática Discreta I

1º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenieros Informáticos Universidad Politécnica de Madrid

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah.

12 de enero de 2018 Tiempo 2 h.

Nota:

Ya disponible para el móvil y la tablet.

Continúa do

405416 arts esce ues2016juny.pdf

Top de tu gi

0	Asig	ın

Matemática Discreta I Segundo parcial	1 ^{er} Apellido:
Dpto. Matematica Aplicada TIC ETS Ingenieros Informáticos	2° Apellido:Nombre:
Universidad Politécnica de Madrid	Número de matrícula:

Ejercicio 1 (20 puntos)

Sea D_{208} el conjunto de todos los divisores positivos de 208, y sea | la relación de divisibilidad; es decir, a|b significa que "a divide a b".

- a) Dibuja el diagrama de Hasse del conjunto ordenado $(D_{208}, |)$.
- b) Obtén las cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales, si los hay, del subconjunto $B = \{8, 26, 52, 104\}.$
 - c) Razona si 52 y 16 tienen complementario en D_{208} . En caso afirmativo obténlos.
 - d) Razona si $(D_{208}, |)$ es un Álgebra de Boole.

Solución:

a) $208 = 2^4 \cdot 13$, $D_{208} = \{1, 2, 4, 8, 13, 16, 26, 52, 104, 208\}.$

b) $B = \{8, 26, 52, 104\}$

- Cotas superiores: {104, 208}
- Cotas inferiores: $\{2,1\}$
- Supremo: {104}
- Ínfimo: 2
- Máximo: 104
- Minimo: ∅
- Maximales: {104}
- Minimales: {8, 26}
- c) El complementario de 16 es 13 puesto que $\inf(16, 13) = \gcd(16, 13) = 1$ y $\sup(16, 13) = \gcd(16, 13) = \gcd(16, 13)$ $2^4 \cdot 13 = 208$. El 52 no tiene complementario.
- d) Como 52 no tiene complementario en D_{208} se tiene que $(D_{208},|)$ no es retículo complementario y por tanto no es álgebra de Boole.

Ejercicio 2 (10 puntos)

a) Obtén una expresión booleana en forma de "mínima suma de productos" para la función booleana cuyo conjunto de verdad es $S(f) = \{1110, 1010, 1011, 1001, 0011, 0001\}$. Resuelve utilizando uno de los dos métodos estudiados: Quine McCluskey o mapa de Karnaugh.

Solución:

a)
$$xzt' + y't$$

	1110	1010	1011	1001	0011	0001
1-10	4	V				
101-		4	1			
-0-1			4	4	4	4

Ejercicio 3 (30 puntos)

- a) En \mathbb{Z}_{323} , calcula: $[3]^{2018} + [7]^{-1}[2]$.
- b) Razona si el siguiente sistema de congruencias tiene solución, y en caso afirmativo, resuélvelo.

$$\begin{cases} 6x \equiv 10 \pmod{16} \\ 7x \equiv 5 \pmod{12} \\ 2x \equiv 1 \pmod{33} \end{cases}$$

Solución:

a)
$$\phi(323) = \phi(17) \cdot \phi(19) = 288$$

$$[3]^{2018} = ([3]^{288})^7 \cdot [3]^2 = [3]^2 = [9]$$

$$[7]^{-1} = [277]$$

Finalmente,
$$[3]^{2018} + [7]^{-1}[2] = [9 + 277 \cdot 2] = [563] = [240]_{323}$$

b)
$$\begin{cases} 6x \equiv 10 \pmod{16} \\ 7x \equiv 5 \pmod{12} \\ 2x \equiv 1 \pmod{33} \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x \equiv 5 \pmod{8} \\ x \equiv 35 \pmod{12} \Leftrightarrow \\ x \equiv 17 \pmod{33} \end{cases} \Leftrightarrow \begin{cases} x \equiv 15 \pmod{8} \\ x \equiv 11 \pmod{12} \Leftrightarrow \\ x \equiv 17 \pmod{33} \end{cases} \Leftrightarrow \begin{cases} x \equiv 7 \pmod{2^3} \\ x \equiv 11 \pmod{2^2} \\ x \equiv 11 \pmod{3} \end{cases}$$

$$x \equiv 17 \pmod{3}$$

$$x \equiv 17 \pmod{3}$$

El sistema tiene solución puesto que $mcd(8,12)|15-11,\ mcd(8,33)|15-17,\ y\ mcd(12,33)|11-17.$

$$x = 7 \cdot (33) \cdot (33)_8^{-1} + 2 \cdot (88) \cdot (88)_3^{-1} + 6 \cdot (24) \cdot (24)_{11}^{-1} + 264t = 231 \cdot 1 + 176 \cdot 1 + 144 \cdot 6 + 264t = [215]_{264}$$

Ejercicio 4 (20 puntos)

María tiene 5 entradas para el cine, y quiere repartir 4 entre sus amigos: Luis, Juan, Ángel, Ricardo, Ana, Marta, Isabel, Andrea y Lorena.

- a) ¿De cuántas formas puede hacerlo?
- b) ¿Y si quiere ir con dos chicos y dos chicas?
- c) Sabe que Ricardo y Ana no se llevan bien, por lo que no pueden ir juntos. ¿De cuántas formas puede repartir las entradas de forma que no les dé a los dos?
- d) Siempre que va Juan al cine, va acompañado de Marta o de Lorena. ¿Cómo puede repartir entonces las entradas?

Finalmente, van al cine María, Luis, Ricardo, Isabel y Lorena.

- e) ¿De cuántas formas se pueden sentar en una fila de 10 butacas, de forma que estén seguidos?
- f) ¿De cuántas formas se pueden sentar un una fila de 5 butacas, de forma que Luis y Ricardo no estén juntos?

Solución:

a)
$$\binom{9}{4}$$

b)
$$\binom{4}{2} \binom{5}{2}$$

c)
$$\binom{9}{4} - \binom{7}{2}$$

d) Si no va Juan
$$\binom{8}{4}$$
, si va Juan, $\binom{7}{2} + \binom{7}{2} - \binom{6}{1}$. Por tanto $\binom{8}{4} + 2\binom{7}{2} - \binom{6}{1}$

- e) $6P_5$
- f) $CR_{3,2} \cdot 2! \cdot 3!$

Ejercicio 5 (20 puntos)

Resuelve la siguiente relación de recurrencia lineal no homogénea:

$$\begin{cases} a_n = 9a_{n-2} + 4(-3)^n, & \forall n \ge 2 \\ a_0 = 2, a_1 = 3 \end{cases}$$

Solución:

Solución homogénea: $S(n) = A \cdot 3^n + B \cdot (-3)^n$

Solución completa: $a_n = \frac{5}{2} \cdot 3^n - \frac{1}{2} \cdot (-3)^n + 2n(-3)^n$