- 1. Prove that any NFA can be converted to another NFA with a single accept state [Hint: Remember that on an ϵ transition, we do not consume any input; our transition is immediate.]
- 2. Draw NFAs for the following languages over $\Sigma = \{0, 1\}$:
 - (a) $\{s|\ s\in\Sigma^*, s \text{ has } 1 \text{ in every odd position}\}$ [Hint: Remember that every DFA is also an NFA]
 - (b) $\{0^n 1^m 0^p \mid n, m \ge 0 \land p > 1\}$ [Hint: Remember that NFAs have magical superpowers to know when portions of the string are "finished"]
 - (c) $\{\epsilon\}$
 - (d) $\{s \mid s \in \Sigma^*, \text{ contains an even number of 1s or an odd number of } 0s\}$ [Hint recall that we can create an NFA for a union of two languages by creating separate machines for each, creating a single start state and then connecting the two machines with a single ϵ transition]
- 3. Show that if L_1, L_2 , and L_3 are regular languages, then $L_2 \cap ((L_1 \cap L_2) \cup L_3)$ is also regular. [Hint you may assume that union, intersection and concatenation are closed under the set of regular languages].