Source:

1 | eigenvalues

eigenvalue: multiplied by a scalar? a subspace that, when put through a linear map, only gets scaled.

$$Tv = \lambda v$$

Where $v \neq 0$. (we ignore it because its no fun to send zero to zero, and bc the span is empty).

T must be an operator! Otherwise the matrix sizes don't work out when subtracting λI .

where v is the eigenvector and λ is the eigenvalue. The equation is often rewritten as:

$$Tv - \lambda v = 0Tv - \lambda Iv = 0(T - \lambda I)v = 0$$

now this can be factored and roots can be found. also it's an operator.

1.1 | Axler 5.6 equivalent conditions

Only when V is finite dimensional!

1.1.1 $|T - \lambda I|$ is not injective, because both v, 0 are in the null space.

1.1.2 $|T - \lambda I|$ is also not surjective or invertible bc finite dim operator.

2 | an example

Given the matrix $\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$, find the eigenvalues and eigenvectors.

Now that we have that other fomulation, we can just subtract λI from T to get

$$\begin{pmatrix} 3 - \lambda & 1 \\ 0 & 2 - lambda \end{pmatrix}$$

Then, we just need to find whether it is non-invertible aka singular aka determinant.

$$(3 - \lambda)(2 - \lambda) = 0$$

The solutions are $\lambda=2$ or 3. These are the eigenvalues.

Now just plug in λ and find the null space using RREF. The null space for $\lambda=3$ has null space span(x,0), so we just pick one of those vectors (ex. (1,0)) to be the eigenvector.

Exr0n · 2020-2021 Page 1

2.1 | review of terms

- 2.1.1 |span(1,0)| is an invariant subspace. (also whatever you get for $\lambda=2$
- 2.1.2 | any vector in an invariant subspace is an eigenvector
- 2.1.3 | the eigenvalues are 2,3
- 2.2 | general idea

the point of eigenvectors is to figure out where other vectors go by looking at pieces that only get streched or shrunk.

3 | depends on

3.1 | finding roots is helpful

Exr0n · 2020-2021 Page 2