Grothendieck's Galois Theory

Gabriele Rastello

October 5, 2020

1 Section 1

Definition 1.1. In a category \mathscr{C} an arrow $f\colon X\to Y$ is a **strict epimorphism** if it is the joint coequalizer of all the arrows it equalizes. This means that any arrow $g\colon X\to Z$ such that $g\circ x=g\circ y$ for any $x,y\colon C\to X$ such that $f\circ x=f\circ y$ there exists a unique arrow $h\colon Y\to Z$ such that $h\circ f=g$. Refer to Figure 1.1.

Figure 1.1

Remark 1.2. Strict epimorphisms are coequalizers, thus epimorphisms (as the name implies).

Remark 1.3. If an arrow is both a stric epimorphism and a monomorphism then it is an epimorphism.

Definition 1.4. Let H be a group, A an object of $\mathscr C$ and $G = \operatorname{Aut}(A)$ the group of automorphisms of A in $\mathscr C$ i.e. the group whose underlying set is the set of isomorphisms of type $A \to A$ of $\mathscr C$ and whose operation is composition in $\mathscr C$. An **action** of H on A is a group homomorphism $H \to G$.