## Лабораторная работа 6

Модель «хищник-жертва»

Хамдамова Айжана, НФИбд-01-22

## Содержание

| Сг | писок литературы                                      | 18        |
|----|-------------------------------------------------------|-----------|
| 5  | Выводы                                                | 17        |
|    | 4.3 Упражнение                                        | <b>15</b> |
|    | 4.2 Реализация модели с помощью блока Modelica в xcos |           |
|    | 4.1 Реализация модели в xcos                          |           |
| 4  | Выполнение ЛР                                         | 8         |
| 3  | Пункты Задания                                        | 7         |
| 2  | Теоретическое введение                                | 6         |
| 1  | Цель работы                                           | 5         |

# Список иллюстраций

| 4.1  | Установка контекста                                                                    | 8         |
|------|----------------------------------------------------------------------------------------|-----------|
| 4.2  | Модель «хищник-жертва» в хсоз                                                          | 9         |
| 4.3  | Задание начальных значений в блоках интегрирования                                     | 9         |
| 4.4  | Задание параметров моделирования                                                       | <b>10</b> |
| 4.5  | Динамика изменения численности хищников и жертв модели                                 |           |
|      | Лотки-Вольтерры при $a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1$                             | <b>10</b> |
| 4.6  | Фазовый портрет модели Лотки-Вольтерры при $a=2, b=1, c=$                              |           |
|      | $0.3, d = 1, x(0) = 2, y(0) = 1 \dots$                                                 | 11        |
| 4.7  | Модель «хищник–жертва» в xcos с применением блока Modelica                             | <b>12</b> |
| 4.8  | Параметры блока Modelica                                                               | <b>12</b> |
| 4.9  | Параметры блока Modelica                                                               | 13        |
| 4.10 | Динамика изменения численности хищников и жертв модели                                 |           |
|      | Лотки-Вольтерры при $a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1$                             | <b>14</b> |
| 4.11 | . Фазовый портрет модели Лотки-Вольтерры при $a=2, b=1, c=1$                           |           |
|      | $0.3, d = 1, x(0) = 2, y(0) = 1 \dots$                                                 | <b>14</b> |
| 4.12 | ? Код в Open Modelica                                                                  | <b>15</b> |
| 4.13 | З Динамика изменения численности хищников и жертв модели                               |           |
|      | Лотки-Вольтерры при $a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1$                             | <b>15</b> |
| 4.14 | $oldsymbol{\Phi}$ Фазовый портрет модели Лотки-Вольтерры при $a=2,b=1,c=1$             |           |
|      | $0.3, d = 1, x(0) = 2, y(0) = 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$ | <b>16</b> |

## Список таблиц

## 1 Цель работы

Построить симуляцию модели "хищник-жертва" в xsoc и open modelica.

## 2 Теоретическое введение

Модель «хищник-жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции. В математической форме модель имеет вид:

$$\begin{cases} \dot{x} = ax - bxy \\ \dot{y} = cxy - dy, \end{cases}$$

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициенты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент рождения хищников; d — коэффициент убыли хищников.

## 3 Пункты Задания

- 1. Реализовать модель "хищник-жертва" в хсоз;
- 2. Реализовать модель "хищник-жертва" с помощью блока Modelica в xcos;
- 3. Реализовать модель "хищник-жертва" в OpenModelica

### 4 Выполнение ЛР

#### 4.1 Реализация модели в хсоѕ

Зафиксируем начальные данные:  $a=2,\ b=1,\ c=0.3,\ d=1,\ x(0)=2,\ y(0)=1.$  В меню Моделирование, Задать переменные окружения зададим значения коэффициентов  $a,\ b,\ c,\ d$  (рис. [4.1]).



Рис. 4.1: Установка контекста

Для реализации модели "хищник-жертва" в дополнение к блокам CLOCK\_c, CSCOPE, TEXT\_f, MUX, INTEGRAL\_m, GAINBLK\_f, SUMMATION, PROD\_f потребуется блок CSCOPXY — регистрирующее устройство для построения фазового портрета. Готовая модель «хищник—жертва» представлена на рис. [4.2].



Рис. 4.2: Модель «хищник-жертва» в хсоѕ

В параметрах блоков интегрирования необходимо задать начальные значения x(0)=2, y(0)=1 (рис. [4.3], [4.4]).



Рис. 4.3: Задание начальных значений в блоках интегрирования



Рис. 4.4: Задание параметров моделирования

В меню Моделирование, Установка необходимо задать конечное время интегрирования, равным времени моделирования: 30.

Результат моделирования представлен на рис. [4.5]. Черной линией обозначен график x(t) (динамика численности жертв), зеленая линия определяет y(t) — динамику численности хищников



Рис. 4.5: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1

На рис. [4.6] приведён фазовый портрет модели Лотки-Вольтерры.



Рис. 4.6: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

# 4.2 Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica потребуются следующие блоки xcos: CLOCK\_c, CSCOPE, CSCOPXY, TEXT\_f, MUX, CONST\_m и MBLOCK (Modelica generic). Как и ранее, задаём значения коэффициентов a,b,c,d (см. рис. [4.1]). Готовая модель «хищник-жертва» представлена на рис.[4.7]. Параметры блока Modelica представлены на рис. [4.8], [4.9] Переменные на входе ("а", "b", "c", "d") и выходе ("х", "у") блока заданы как внешние ("E").



Рис. 4.7: Модель «хищник-жертва» в хсоз с применением блока Modelica



Рис. 4.8: Параметры блока Modelica



Рис. 4.9: Параметры блока Modelica

В результате моделирования получаем следующие графики (рис. [4.10], [4.11]). Они идентичны построенным без блока Modelica.



Рис. 4.10: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1



Рис. 4.11: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

#### 4.3 Упражнение

Напишем скрипт для запуска симуляции в OpenModelica(рис. [4.12])

```
1
    class lab6 open modelica
      parameter Real a = 2.0;
2
3
      parameter Real b = 1.0;
4
      parameter Real c = 0.3;
5
      parameter Real d = 1.0;
      parameter Real x0 = 2.0;
6
7
      parameter Real y0 = 1.0;
8
      Real x(start = x0);
9
      Real y(start = y0);
10
    equation
      der(x) = a * x - b * x * y;
11
12
      der(y) = c * x * y - d * y;
13
    end lab6 open modelica;
14
```

Рис. 4.12: Код в Open Modelica

Реализуем модель «хищник – жертва» в OpenModelica. Построим графики изменения численности популяций и фазовый портрет.

Выполним симуляцию, поставим конечное время 30с. Получим график изменения численности хищников и жертв (рис. [4.13]), а также фазовый портрет (рис. [4.14]).



Рис. 4.13: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1



Рис. 4.14: Фазовый портрет модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

## 5 Выводы

В процессе выполнения данной лабораторной я научилась реализовывать модель "хищник-жертва" в xcos.

## Список литературы