

Symbolic Music Generation with Diffusion Models

Gautam Mittal¹, Jesse Engel², Curtis (Fjord) Hawthorne², Ian Simon²

¹UC Berkeley, ²Google Research

de

Suppleme

Motivation

Many deep generative models have been used for symbolic music generation

Denoising diffusion probabilistic models (DDPMs) have produced high-quality results when used to model images, audio, point clouds, etc.

We explore their use for modeling symbolic music data

Model

Key idea: extend DDPMs to music by parameterizing discrete sequences as continuous latent vectors

Diffusion Models

Non-autoregressive generation

Latents x_0, x_1, \dots, x_N are the same dimensionality as the data, allowing parallel generation

Flexible sampling

Iterative refinement steerable generation (e.g. infilling) from a model trained unconditionally

Extension to discrete data

DDPMs assume a continuous distribution while note sequences are from a discrete distribution

Post-hoc Conditional Infilling

Since DDPM sampling uses iterative refinement that is non-autoregressive, we can modify sampling to support infilling without retraining.

We present a note sequence with the middle 32 measures infilled. Our unconditionally trained model produces a plausible result based on the surrounding context.

Future work may explore other ways of modifying sampling for different creative applications.

Evaluation

$$OA(k, k+1) = 1 - erf\left(\frac{c - \mu_1}{\sqrt{2}\sigma_1^2}\right) + erf\left(\frac{c - \mu_2}{\sqrt{2}\sigma_2^2}\right)$$

Framewise self-similarity metrics

$$Consistency = \max(0, 1 - \frac{|\mu_{\text{OA}} - \mu_{GT}|}{\mu_{GT}})$$

$$Variance = \max(0, 1 - \frac{|\sigma_{\text{OA}}^2 - \sigma_{GT}^2|}{\sigma_{GT}^2})$$

Setting	Unconditional				Infilling			
Quantity	Pitch		Duration		Pitch		Duration	
Metric	С	Var	С	Var	С	Var	С	Var
Train Data	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Test Data	1.00	0.96	1.00	0.91	1.00	0.96	1.00	0.91
Diffusion	0.99	0.90	0.96	0.92	0.97	0.87	0.97	0.80
Autoregression	0.93	0.68	0.93	0.76	-	-	-	-
Interpolation	0.85	0.23	0.91	0.34	0.94	0.78	0.96	0.80
$\mathcal{N}(0,I)$ Prior	0.84	0.19	0.90	0.67	0.89	0.19	0.94	0.54

Takeaway: DDPMs are promising non-autoregressive models for symbolic music generation and infilling