Analízis I. vizsgatételek

Vághy Mihály

Tartalomjegyzék

1.	Téte	el	7
	1.1.	Természetes számok	7
	1.2.	Teljes indukció	7
	1.3.	Valós számok bevezetése, axiómák	7
		1.3.1. Műveletek alaptulajdonságai	7
		1.3.2. Rendezési reláció tulajdonságai	7
		1.3.3. Archimédészi axióma	7
		1.3.4. Cantor-féle axióma	8
	1 /		
		Cantor-féle közöspont tétel	8
		Halmaz korlátossága	8
	1.6.	Infimum	8
		1.6.1. Tétel	8
	1.7.	Szuprémum	8
		1.7.1. Tétel	8
_			_
2.	Tét		9
	2.1.	Háromszög egyenlőtlenség általános eset	9
	2.2.	Bernoulli egyenlőtlenség	9
	2.3.	Számtani és mértani közép, kapcsolatuk	9
	2.4.	Belső pont	10
	2.5.	Külső pont	10
	2.6.	Határpont	10
	2.7.	Számsorozat	11
	2.8.		11
			11
		2.9.1. Típusai	11
	2.10	. Konvergencia és korlátosság	
3.	Téte		12
	3.1.	Konvergens sorozatok tulajdonságai	12
	3.2.		12
		3.2.1. Konvergenciája	12
	3.3.	Rész-sorozat	12
		3.3.1. Csúcselem	12
		3.3.2. Monoton rész-sorozat	13
	3.4.	Nullsorozat	13
	0.4.	3.4.1. Tulajdonságok	13
	3.5.		13
	5.5.	Torlódási pont	10
4.	Téte	el	14
		Bolzano-Weierstrass tétel	14
	1.1.	4.1.1. Csúcselem	14
		4.1.2. Lemma	14
	4.9	Számtani-átlag-sorozat határértéke	14
	4.5.	Az e szám értelmezése, kétféle előállítása	14
		4.3.1. Sorozat határértéke	14
		4.3.2. Sor összege	15
5	Téte		16
J.			16
		Határérték monotonitása	
	5.2.	Rendőrelv sorozatokra	16
		Nevezetes sorozat határértékek	16
	5.4.	Végtelen sor	17 17

		5.4.2. Szükséges feltétel konvergenciára	17
	5.5.	Divergencia-teszt	
6.	Téte		18
	6.1.	Végtelen mértani sor	18
		6.1.1. Konvergencia feltétele, sor összege	18
	6.2.	Cauchy kritérium sorokra	18
	6.3.	Összehasonlító kritériumok végtelen sorokra	18
	6.4.	Abszolút konvergens sor	18
		6.4.1. Kapcsolat konvergenciával	19
_			
7.	Téte		20
	7.1.	Hányadoskritérium	20
		7.1.1. Gyengített változat	
	7.2.		20
		7.2.1. Gyengített változat	21
	7.3.	Feltételesen konvergens sor	21
		7.3.1. Példa	21
		Riemann tétel	21
	7.5.	Függvény definíció, alaptulajdonságok	21
		7.5.1. Értelmezési tartomány	21
		7.5.2. Értékkészlet	21
		7.5.3. Injektív függvény	21
		7.5.4. Szürjektív függvény	21
		7.5.5. Bijektív függvény	21
		7.5.6. Páros függvény	21
		7.5.7. Páratlan függvény	21
		7.5.8. Monoton növő függvény	22
		7.5.9. Monoton csökkenő függvény	22
	- 0	7.5.10. Periodikus függvény	22
	7.6.		22
		7.6.1. Inverz függvény létezése	22
Q	Téte		23
0.		Leibniz-sor	
	0.1.	8.1.1. Konvergenciája	
	8 2	Folytonosság adott pontban	
	0.2.	8.2.1. Geometriai jelentés	$\frac{23}{23}$
	8.3.	Sorozatfolytonosság	23
	0.0.	8.3.1. Kapcsolat folytonossággal	24
	8.4.	Folytonos függvény tulajdonságai	24
	0.1.	8.4.1. Folytonosság intervallumon	
	8.5.	Határérték és folytonosság	
	0.0.	Tractar of the control of the contro	
9.	Téte	el	25
		Bolzano tétel	25
		9.1.1. Következmények	25
	9.2.	Függvény határértéke véges pontban	25
	9.3.	Egyoldali határértékek	$\frac{1}{25}$
		Szakadási helyek osztályozása	26
		9.4.1. Példák	26
	9.5.	Határértékek tulajdonságai	26
		Nevezetes függvény határértékek	27
		→ v	

10.Tétel	28
10.1. Határérték-fogalom kiterjesztése	. 28
10.2. Átviteli elv határérték kiszámítására	
10.3. $[a, b]$ -n értelmezett folytonos függvények	. 28
10.3.1. Bolzano tétel	. 28
10.3.2. Weierstrass tétel	
10.3.3. Heine tétel	. 28
10.4. Weierstrass 1-2. tétele	. 28
11.Tétel	30
11.1. Egyenletes folytonosság	
11.1.1. Példa	
11.2. Lipschitz folytonosság	
11.2.1. Példa	
11.3. Heine tétel	
11.4. Differenciahányados	
11.5. Differenciálhányados	. 30
11.5.1. Geometriai és fizikai jelentés	. 30
11.6. Folytonosság-differenciálhatóság kapcsolata	. 31
11.7. Elemi függvények deriváltja	. 31
12.Tétel	32
12.1. Differenciálási szabályok	
12.2. Érintő egyenes egyenlete	. 33
12.3. Rolle középérték tétel	. 33
12.4. Láncszabály	. 33
13. Tétel	3 4
13.1. Inverz függvény deriváltja	
13.1.1. Szemléletes jelentése	
13.2. Lagrange féle középérték tétel	
13.3. Monoton differenciálható függvények jellemzése	
13.4. Integrálszámítás I. alaptétele	
13.4.1. Lemma	. 35
and many 1	
14. Tétel	36
14.1. Cauchy féle középérték tétel	
14.2. L'Hospital-szabály	
14.2.1. Általános esetek	
14.3. Lokális szélsőérték létezésének szükséges feltétele	. 36
15.Tétel	95
15.1. Magasabb rendű deriváltak	37
15.2. Konvex és konkáv függvények	
15.2.1. Jellemzés differenciálható függvények esetén	
15.3. Inflexió	
15.3.1. Kapcsolat a deriválttal	
15.4. Taylor-polinom	
15.4.1. Tulajdonságok	
15.5. Lagrange-féle maradéktag	
15.5.1. Tétel	. 38

16.Tétel	39
16.1. Lokális szélsőérték létezésének elégséges feltétele	
16.2. Primitív függvény	
16.3. Határozatlan integrál alaptulajdonságai	
16.4. Riemann integrál	
16.4.1. Szemléletes jelentés	
10.4.1. Dzeimeietes jeiemes	55
17.Tétel	40
17.1. Integrál közelítő összegek	
17.1.1. Alsó közelítő összeg	
17.1.2. Felső közelítő összeg	
17.1.3. Tulajdonságok	
17.2. Nem integrálható függvényre példa	
17.3. Integrálhatóság elégséges feltételei	
17.3.1. Tétel	
17.3.2. Tétel	
17.3.3. Tétel	
17.4. Integrálközép	
17.4.1. Integrál középérték tétel	
Title integral hozopotvek teteri i i i i i i i i i i i i i i i i i i	
18.Tétel	43
18.1. Newton-Leibniz-formula	43
18.2. Integrálfüggvény	43
18.3. Integrálszámítás II. alaptétele	
18.4. Függvény gráf	
18.4.1. Ívhossz	
18.5. Forgástest térfogata	
19. Tétel	45
19.1. Helyettesítés integrálban, határozott alak	45
19.2. Improprius integrál	45
19.2.1. Tulajdonságok	45
19.3. Hatványfüggvény integrálja a $(0,1]$ intervallumon	45
20. Tétel	46
20.1. Parciális integrálás	
20.1.1. Alapesetek	
20.2. Hatványfüggvény integrálja az $[1,\infty)$ intervallumon	
20.3. Majoráns és minoráns kritériumok	
20.4. Elégséges feltételek a hatványfüggvényhez kapcsolódóan	47
01 774 1	40
21.Tétel	48
21.1. Differenciálegyenlet értelmezése, megoldása	
21.2. Cauchy-feladat	
21.3. Fizikai példák	
21.3.1. Növekedési folyamat	
21.3.2. Robbanás egyenlete	
21.4. Szeparábilis differenciálegyenlet	
21.4.1. Megoldása	48
22. Tétel	49
22.1 etel 22.1. Homogén lineáris DE általános megoldása	
22.1. Holliogen linearis DE altalanos megoldasa	
99.9.1. Inhomogén LDH mogoldégok atmilitúré ig	
22.2.1. Inhomogén LDE, megoldások struktúrája	
22.2.1. Inhomogén LDE, megoldások struktúrája	49

23. Tétel	51
23.1. Hatványsor	51
23.2. Konvergenciahalmaz	51
23.2.1. Jellemzés	51
23.3. Konvergenciasugár	52
23.4. Összegfüggvény tulajdonságai	52
23.4.1. Összegfüggvény folytonossága	52
23.4.2. Összefüggvény integrálhatósága	52
23.4.3. Összegfüggvény deriválhatósága	52
23.5. Függvény előállítása hatványsorként	52
23.6. Taylor sor	53
23.6.1. Konvergencia feltétele	53
23.7. Speciális függvények Taylor sora	53

Analízis I. 1. TÉTEL

1. Tétel

1.1. Természetes számok

A természetes számok halmazán (\mathbb{N}) két művelet, az összeadás és a szorzás van értelmezve. Ezen felül egy \leq rendezési relációt is értelmezünk a halmazon. Két fontos tulajdonsága a halmaznak, hogy van legkisebb elem (1) és minden elem után van közvetlenül következő.

1.2. Teljes indukció

Adottak az A_1, \ldots, A_n, \ldots állítások. A bizonyítási elv:

- 1. Belátjuk, hogy A_1 teljesül.
- 2. Belátjuk, hogy ha A_n teljesül valamilyen $n \in \mathbb{N}$ esetén, akkor A_{n+1} is.

Ezzel bebizonyítottuk az A_n állításokat.

1.3. Valós számok bevezetése, axiómák

A valós számok halmazán (\mathbb{R}) két művelet, az összeadás és a szorzás van értelmezve. Ezen felül egy \leq rendezési relációt is értelmezünk a halmazon.

1.3.1. Műveletek alaptulajdonságai

- 1. Az összeadás asszociatív.
- 2. Az összeadásnak van egysége (0).
- 3. Minden elemnek van az összeadásra nézve inverze, ez a szám ellentettje.
- 4. Az összeadás kommutatív.
- 5. A szorzás asszociatív.
- 6. A szorzásnak van egysége (1).
- 7. Minden elemnek, kivéve a nullának van a szorzásra nézve inverze, ez a szám reciproka.
- 8. A szorzás kommutatív.
- 9. A szorzás disztributív az összeadásra nézve.

1.3.2. Rendezési reláció tulajdonságai

- 1. A reláció antiszimmetrikus.
- 2. A reláció tranzitív.
- 3. A reláció reflexív.
- 4. Ha $x \leq y$ akkor $\forall z \in \mathbb{R}$ esetén $x + z \leq y + z$.
- 5. Ha $x \le y$ és $0 \le z$, akkor $xz \le yz$.

1.3.3. Archimédészi axióma

A valós számok halmazában nincs legnagyobb elem.

Analízis I. 1. TÉTEL

1.3.4. Cantor-féle axióma

Adottak az $I_1, I_2, \ldots, I_n, \ldots \subset \mathbb{R}$ egymásba skatulyázott, zárt intervallumok, melyekre

$$I_{n+1} \subset I_n$$
.

Ekkor $\exists x \in \mathbb{R}$ amire $x \in I_n \forall n$ esetén.

1.4. Cantor-féle közöspont tétel

Adottak az $I_1, I_2, \ldots, I_n, \ldots \subset \mathbb{R}$ egymásba skatulyázott, zárt intervallumok, melyekre

$$I_n \subset I_{n+1}$$
.

Ha $\lim_{n\to\infty} |I_n| = 0$, akkor $\exists ! x \in \mathbb{R}$ amire $x \in I_n \forall n$ esetén.

Bizonyítás

Indirekten bizonyítunk. Tegyük fel ugyanis, hogy két ilyen szám van, azaz legyen $x,y \in I_n \ \forall n$ esetén. Legyen $x-y=\delta$. Mivel $\lim_{n\to\infty}|I_n|=0$ ezért $|I_n|<\delta$ tud teljesülni. Ez viszont ellentmond azzal, hogy $x,y\in I_n \ \forall n$ esetén.

1.5. Halmaz korlátossága

Adott H halmaz korlátos, ha $\exists K \in \mathbb{R}$, amire

$$K \ge |x| \quad \forall x \in H.$$

1.6. Infimum

Adott H alulról korlátos halmaz. Ekkor a legnagyobb alsó korlát a halmaz infimuma, $\inf(H)$.

1.6.1. Tétel

Adott H alulról korlátos halmaznak létezik infimuma.

Bizonyítás

Legyen a_1 az alsó korlát. Ha $a_1 \in H$ akkor kész vagyunk. Tehát legyen $a_1 \notin H$, és legyen $b_1 \in H$ egy tetszőleges elem, ahol $b_1 > a_1$. Legyen $I_1 = [a_1, b_1]$ és definiáljuk a $c_1 := \frac{a_1 + b_1}{2}$ számot.

Ha c_1 alsó korlát, akkor legyen $a_2 := c_1$ és $b_2 := b_1$. Ha c_1 nem alsó korlát, akkor legyen $a_2 := a_1$ és $b_2 := c_1$. Legyen továbbá $I_2 = [a_2, b_2]$.

Ezt a lépést a végtelenségig ismételve egy egymásba skatulyázott, zárt intervallumrendszert kapunk, melyre $\lim_{n\to\infty}|I_n|=0$, hiszen minden lépésben feleződik az intervallum hossza. Tehát a Cantor-féle közöspont tétel miatt létezik egy darab közös pont. Ez a közös pont kisebb vagy egyenlő, mint a b_k számok, tehát biztosan alsó korlát. Továbbá nagyobb vagy egyenlő az összes a_k számnál, így nincs nála nagyobb alsó korlát. Tehát valóban létezik infimum.

1.7. Szuprémum

Adott H felülről korlátos halmaz. Ekkor a legkisebb felső korlát a halmaz szuprémuma, $\sup(H)$.

1.7.1. Tétel

Adott H felülről korlátos halmaznak létezik szuprémuma.

Bizonyítás

Az infimum analógiájára.

Analízis I. 2. TÉTEL

2. Tétel

2.1. Háromszög egyenlőtlenség általános eset

Legyen $a_1, a_2, \ldots, a_n \in \mathbb{R}$, ekkor

$$\left| \sum_{k=1}^{n} a_k \right| \le \sum_{k=1}^{n} |a_k|.$$

Egyenlőség, ha $\forall i, j \quad a_i = a_j$.

Bizonyítás

Teljes indukcióval könnyen látható. Ugyanis n=2-re triviális, hiszen

$$\pm a_1 \le |a_1| \qquad \pm a_2 \le |a_2|$$

így ezeket összegezve

$$\pm (a_1 + a_2) \le |a_1| + |a_2|$$

amiből $|a_1 + a_2| \le |a_1| + |a_2|$.

Tegyük fel, hogy valamilyen n-re teljesül az állítás! Kéne, hogy n+1-re is teljesüljön.

$$\sum_{k=1}^{n+1} |a_k| = \sum_{k=1}^{n} |a_k| + |a_{n+1}| \ge \left| \sum_{k=1}^{n} a_k \right| + |a_{n+1}| \ge \left| \sum_{k=1}^{n} a_k + a_{n+1} \right| = \left| \sum_{k=1}^{n+1} a_k \right|$$

Ezzel beláttuk az állítást.

2.2. Bernoulli egyenlőtlenség

Legyen $n \in \mathbb{N}$ és $h \in \mathbb{R}$, ekkor

$$(1+h)^n \ge 1 + hn.$$

Egyenlőség, ha $h=0,\,n=0$ vagy n=1.

2.3. Számtani és mértani közép, kapcsolatuk

Legyen $a_1, a_2, \ldots, a_n \geq 0 \in \mathbb{R}$, ekkor

$$\sqrt[n]{\prod_{k=1}^{n} a_k} \le \frac{\sum_{k=1}^{n} a_k}{n}.$$

Egyenlőség, ha $\forall i, j \quad a_i = a_j$.

Bizonyítás

Először egy gyengébb állítást fogunk bebizonyítani.

Legyen $n \geq 2 \in \mathbb{N}$, és legyenek az $x_k \geq 0 \in \mathbb{R}$ olyan számok, amelyek között van legalább kettő különböző és

$$\frac{\sum_{k=1}^{n} x_k}{n} = 1.$$

Ekkor

$$\prod_{k=1}^{n} x_k < 1.$$

Alkalmazzunk teljes indukciót! n=2 esetén az állítás triviális. Tegyük fel, hogy valamilyen n-re teljesül az állítás! Kéne, hogy n+1-re is teljesüljön.

Tekintsük az x_k számokat, ahol $k=1,2,\ldots,n+1$ és legyen $x_k:=1+t_k$. Legyen továbbá az x_k számok számtani közepe 1. Ez azt jelenti, hogy $\sum_{k=1}^{n+1}t_k=0$, azaz van köztük pozitív és negatív is, hiszen nem mind egyforma. Az általánosság sérülése nélkül feltehetjük, hogy $t_n<0< t_{n+1}$. Legyen ekkor $x_n^*=1+t_n+t_{n+1}>$

Analízis I. 2. TÉTEL

 $1 + t_n + t_{n+1} + t_n t_{n+1} = x_n \cdot x_{n+1}$. Ekkor azt látjuk, hogy

$$x_1 + x_2 + \dots + x_{n-1} + x_n^* = \sum_{k=1}^{n-1} (1 + t_i) + 1 + t_n + t_{n+1} = n + \sum_{k=1}^{n+1} t_k = n$$

azaz az $x_1, x_2, \dots, x_{n-1}, x_n^*$ számtani átlaga 1 és nem mind egyforma. Ekkor az indukciós feltevés miatt a szorzatuk valóban kisebb, mint 1.

Könnyen látható, hogyha az összes x_k szám egyenlő, akkor $x_k = 1$, így a szorzatuk is 1. Tehát megfogalmazhatjuk, hogy tetszőleges $x_k \ge 0$ számokra ahol $k = 1, 2, \ldots, n$, és

$$\frac{\sum_{k=1}^{n} x_k}{n} = 1$$

teljesül, akkor

$$\prod_{k=1}^{n} x_k \le 1.$$

Legyenek adottak az a_k számok, ahol k = 1, 2, ..., n. Legyen továbbá

$$A = \frac{\sum_{k=1}^{n} a_k}{n}$$

és legyenek $x_k = \frac{a_k}{A}.$ Ekkor az x_k számok számtani közepe 1, így

$$\prod_{k=1}^{n} x_k = \frac{\prod_{k=1}^{n} a_k}{A^n} \le 1$$

azaz

$$\prod_{k=1}^{n} a_k \le A^n = \left(\frac{\sum_{k=1}^{n} a_k}{n}\right)^n$$

amiből kapjuk is a bizonyítandót.

2.4. Belső pont

Adott H halmaz belső pontja $x_0 \in \mathbb{R}$, ha $\exists \varepsilon > 0$ amire

$$(x_0 - \varepsilon, x_0 + \varepsilon) \subset H$$
.

A belső pontok halmaza int(H).

2.5. Külső pont

Adott H halmaz külső pontja x_0 , ha $\exists \varepsilon > 0$ amire

$$(x_0 - \varepsilon, x_0 + \varepsilon) \cap H = \emptyset.$$

A külső pontok halmaza ext(H).

2.6. Határpont

Adott H halmaz határpontja x_0 , ha $\forall \varepsilon > 0$

$$(x_0 - \varepsilon, x_0 + \varepsilon) \cap H \neq \emptyset$$

és

$$(x_0 - \varepsilon, x_0 + \varepsilon) \cap H^C \neq \emptyset$$

ahol H^C a H halmaz komplementere. A határpontok halmaza ∂H .

Analízis I. 2. TÉTEL

2.7. Számsorozat

Számsorozat egy olyan $\mathbb{N} \to \mathbb{R}$ hozzárendelés, mely $\forall n \in \mathbb{N}$ -hez hozzárendel egy $a_n \in \mathbb{R}$ számot. Ekkor a sorozatot (a_n) -el jelöljük.

2.8. Határérték

Azt mondjuk, hogy az (a_n) sorozat konvergens, és

$$\lim_{n \to \infty} a_n = A$$

ha $\forall \varepsilon > 0$ -hoz $\exists n_0$ küszöbindex, melyre $\forall n > n_0$ esetén

$$|a_n - A| < \varepsilon$$
.

Ekkor

$$\lim_{n \to \infty} a_n = A$$

egyértelmű.

2.9. Divergencia

Ha (a_n) nem konvergens, akkor divergens.

2.9.1. Típusai

1. Azt mondjuk, hogy

$$\lim_{n \to \infty} a_n = \pm \infty$$

ha $\forall K \in \mathbb{R}$ -hez ($\forall k \in \mathbb{R}$ -hez) $\exists n_0$ küszöbindex, melyre $\forall n > n_0$ esetén $a_n > K$ ($a_n < k$).

2. Divergens az olyan (a_n) sorozat, melynek több torlódási pontja van (de adott esetben korlátos lehet a sorozat). Ilyen például az $a_n = (-1)^n$ sorozat.

2.10. Konvergencia és korlátosság

Konvergens sorozat korlátos.

Bizonyítás

Rögzítsünk egy ε -t, és a hozzátartozó n_0 küszöbindexet. Legyen továbbá $\lim_{n\to\infty} a_n = A$. Ekkor az (a_n) sorozatnak az $(A - \varepsilon, A + \varepsilon)$ intervallumon kívül véges sok eleme van, így ennek a véges sok elemnek létezik minimuma és maximuma, tehát létezik

$$m := \min\{a_n | n < n_0\}$$
 $M := \max\{a_n | n < n_0\}.$

Ekkor felső korlátnak jó lesz $\max(M, A + \varepsilon)$, alsó korlátnak pedig $\min(m, A - \varepsilon)$.

Analízis I. 3. TÉTEL

3. Tétel

3.1. Konvergens sorozatok tulajdonságai

- 1. Konvergens sorozat korlátos.
- 2. Ha egy sorozat monoton és korlátos, akkor konvergens.

3.2. Cauchy sorozat

Azt mondjuk, hogy az (a_n) Cauchy sorozat, vagy teljesíti a Cauchy kritériumot, hogyha $\forall \varepsilon > 0$ -hoz $\exists n_0$ küszöbindex, melyre $\forall n, m > n_0$ esetén

$$|a_n - a_m| < \varepsilon$$

teljesül.

3.2.1. Konvergenciája

Az (a_n) sorozat akkor és csak akkor konvergens, hogyha teljesíti a Cauchy kritériumot.

Bizonyítás

Legyen (a_n) konvergens. Azt fogjuk belátni, hogy ekkor Cauchy sorozat.

Tudjuk, hogy valamilyen küszbindex után

$$|a_n - A| < \frac{\varepsilon}{2}$$
 $|a_m - A| < \frac{\varepsilon}{2}$.

Ekkor

$$|a_n - a_m| = |a_n - A + A - a_m| \le |a_n - A| + |a_m - A| < \varepsilon.$$

Legyen (a_n) Cauchy sorozat. Azt fogjuk belátni, hogy ekkor konvergens.

Először lássuk be, hogy egy Cauchy sorozat korlátos!

Tudjuk, hogy valamilyen n_0 küszöbindex után $|a_n - a_m| < \varepsilon$, azaz $a_n \in (a_m - \varepsilon, a_m + \varepsilon)$. Ekkor ezen az invertvallumon kívül csak véges sok eleme van a sorozatnak, azaz

$$K := \max \left\{ (|a_m| + \varepsilon) \cup \{|a_k| \big| k < n_0 \right\} \right\}$$

jó korlát. Tehát az (a_n) Cauchy sorozat korlátos, emiatt van konvergens részsorozata.

Legyen a részsorozat (a_{n_k}) ahol $\lim_{\infty} a_{n_k} = A$.

Tudjuk, hogy valamilyen küszöbindex után

$$|a_n - a_m| < \frac{\varepsilon}{2} \qquad |a_{n_k} - A| < \frac{\varepsilon}{2}$$

teljesül. Ekkor

$$|a_n - A| = |a_n - a_{nk} + a_{nk} - A| = |a_n - a_{nk}| + |a_{nk} - A| < \varepsilon.$$

3.3. Rész-sorozat

Adott az (a_n) sorozat, és az (n_k) végtelen index-sorozat, ahol $\forall k \in \mathbb{N}$ esetén $n_k \in \mathbb{N}$ teljesül, és $\forall k < j$ esetén $n_k < n_j$. Ekkor az (a_{n_k}) az (a_n) részsorozata.

3.3.1. Csúcselem

Adott (a_n) sorozatban a_m csúcselem, ha $\forall n > m$ esetén $a_n \leq a_m$.

Analízis I. 3. TÉTEL

3.3.2. Monoton rész-sorozat

Minden sorozatnak van monoton részsorozata.

Bizonyítás

Legyen először az (a_n) sorozatnak végtelen sok csúcseleme. Ekkor legyen e csúcselemek indexe n_k ahol $n_i < n_j$ ha i < j. Ekkor az (a_{n_k}) sorozat monoton fogyó.

Tegyük fel, hogy az (a_n) sorozatnak csak véges sok csúcseleme van. Legyen ekkor az utolsó csúcs indexe n, és legyen $n_1 := n + 1$. Mivel a_{n_1} már nem lehet csúcs, ezért létezik nála nagyobb elem, legyen ez a_{n_2} . Mivel a_{n_2} sem csúcs, ennél is létezik nagyobb elem. Ezt a végtelenségig folytatva tudunk konstruálni egy (a_{n_k}) monoton növő sorozatot.

3.4. Nullsorozat

Az (a_n) sorozat nullsorozat, ha

$$\lim_{n \to \infty} a_n = 0.$$

3.4.1. Tulajdonságok

- 1. Látható, hogy (a_n) nullsorozat akkor és csak akkor, hogyha $(|a_n|)$ nullsorozat.
- 2. Azt mondjuk, hogy

$$\lim_{n \to \infty} a_n = A$$

ha az $(a_n - A)$ sorozat nullsorozat.

- 3. Legyen (a_n) nullsorozat, és (b_n) korlátos sorozat. Ekkor $(a_n \cdot b_n)$ is nullsorozat.
- 4. Legyen (a_n) és (b_n) nullsorozat, ekkor $(a_n \pm b_n)$ is nullsorozat. Legyen továbbá $c \in \mathbb{R}$, ekkor $(c \cdot a_n)$ is nullsorozat.
- 5. Legyen $\lim_{n\to\infty} a_n = \infty$ és

$$b_n := \begin{cases} \frac{1}{a_n}, & \text{ha } a_n > 0\\ 0, & \text{ha } a_n \le 0. \end{cases}$$

Ekkor $\lim_{n\to\infty} b_n = 0$, azaz (b_n) nullsorozat.

6. Legyen $\lim_{n\to\infty} a_n = \infty$ és (b_n) alulról korlátos sorozat. Ekkor

$$\lim_{n \to \infty} a_n \cdot b_n = \infty.$$

Hasonlóan, ha $\lim_{n\to\infty}a_n=-\infty$ és (b_n) felülről korlátos sorozat, akkor

$$\lim_{n \to \infty} a_n \cdot b_n = -\infty.$$

7. Legyen $\lim_{n\to\infty} a_n = 0$ és $\lim_{n\to\infty} b_n = \infty$. Ekkor $\lim_{n\to\infty} a_n \cdot b_n$ lehet 0, konstans, vagy $\pm\infty$.

3.5. Torlódási pont

Az adott (a_n) sorozatban $t \in \mathbb{R}$ torlódási pont, ha $\forall \varepsilon > 0$ -ra a $(t - \varepsilon, t + \varepsilon)$ intervallum végtelen sok elemét tartalmazza az (a_n) sorozatnak.

Analízis I. 4. TÉTEL

4. Tétel

4.1. Bolzano-Weierstrass tétel

Minden korlátos sorozatnak van konvergens részsorozata.

4.1.1. Csúcselem

Adott (a_n) sorozatban a_m csúcselem, ha $\forall n > m$ esetén $a_n \leq a_m$.

4.1.2. Lemma

Minden sorozatnak van monoton részsorozata.

Bizonyítás

Legyen először az (a_n) sorozatnak végtelen sok csúcseleme. Ekkor legyen e csúcselemek indexe n_k ahol $n_i < n_j$ ha i < j. Ekkor az (a_{n_k}) sorozat monoton fogyó.

Tegyük fel, hogy az (a_n) sorozatnak csak véges sok csúcseleme van. Legyen ekkor az utolsó csúcs indexe n, és legyen $n_1 := n + 1$. Mivel a_{n_1} már nem lehet csúcs, ezért létezik nála nagyobb elem, legyen ez a_{n_2} . Mivel a_{n_2} sem csúcs, ennél is létezik nagyobb elem. Ezt a végtelenségig folytatva tudunk konstruálni egy (a_{n_k}) monoton növő sorozatot.

Bizonyítás

Beláttuk, hogy korlátos sorozatnak létezik monoton részsorozata. Mivel ez a részsorozat korlátos és monoton, konvergens is.

4.2. Számtani-átlag-sorozat határértéke

Ha (a_n) konvergens, akkor (A_n) is konvergens, és

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} A_n.$$

Bizonyítás

Legyen $\lim_{n\to\infty} a_n = A$.

A háromszög-egyenlőtlenség miatt

$$|A_n - A| = \frac{1}{n} \left| \sum_{k=1}^n a_k - nA \right| \le \frac{1}{n} \sum_{k=1}^n |a_k - A|.$$

Legyen az (a_n) sorozatnál az $\frac{\varepsilon}{2}$ számhoz tartozó küszöbindex n_1 . Legyen továbbá a $n_2 = \frac{2n_1K}{\varepsilon}$ ahol $|a_n - A| \le K$. Világos, hogy létezik ilyen K, hiszen a sorozat konvergens. Ekkor

$$|A_n - A| \le \frac{1}{n} \sum_{k=1}^n |a_k - A| = \frac{1}{n} \sum_{k=1}^{n_1} |a_k - A| + \frac{1}{n} \sum_{k=n_1+1}^n |a_k - A| \le \frac{n_1}{n} \cdot K + \frac{\varepsilon}{2} \cdot \frac{n - n_1}{n} < \frac{n_1}{n} \cdot K + \frac{\varepsilon}{2}.$$

Világos, hogy $n \ge \max(n_1, n_2) = \max\left(n_1, \frac{2n_1K}{\varepsilon}\right)$ esetén

$$|A_n - A| < \frac{n_1}{n} \cdot K + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

4.3. Az e szám értelmezése, kétféle előállítása

4.3.1. Sorozat határértéke

Az e szám az alábbi sorozat határértéke

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Analízis I. 4. TÉTEL

${\bf 4.3.2.~Sor~\ddot{o}sszege}$

Az \boldsymbol{e} szám az alábbi sor összege

$$\sum_{n=1}^{\infty} \frac{1}{n!}.$$

Analízis I. 5. TÉTEL

5. Tétel

5.1. Határérték monotonitása

Legyen $a_n < b_n$ valamilyen küszöbindex után. Ekkor (ha léteznek a határértékek)

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n.$$

5.2. Rendőrelv sorozatokra

Legyen $a_n < b_n < c_n$ valamilyen küszöbindex után. Legyen továbbá

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n.$$

Ekkor (ha léteznek a határértékek)

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n.$$

Bizonvítás

Legyen $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=B$. Ekkor a határérték definíciójából valamilyen küszöbindex után

$$B - \varepsilon < a_n < b_n < c_n < B + \varepsilon.$$

5.3. Nevezetes sorozat határértékek

1.

$$\lim_{n \to \infty} n^{\alpha} = \begin{cases} \infty, & \alpha > 0 \\ 1, & \alpha = 0 \\ 0, & \alpha < 0 \end{cases}$$

2.

$$\lim_{n \to \infty} a^n = \begin{cases} \infty, & a > 1 \\ 1, & a = 1 \\ 0, & |a| < 1 \\ \frac{\pi}{2}, & a \le -1 \end{cases}$$

3.

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \quad a > 0$$

4.

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

5.

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$

6.

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{m} a_k n^k}{\sum_{k=1}^{l} b_k n^k} = \begin{cases} \infty, & m > l, a_m b_l > 0 \\ \frac{a_m}{b_l}, & m = l \\ 0, & m < l \\ -\infty, & m > l, a_m b_l < 0 \end{cases}$$

Analízis I. 5. TÉTEL

5.4. Végtelen sor

Adott egy (a_n) sorozat, ekkor

$$\sum_{n=1}^{\infty} a_n$$

egy végtelen sor.

5.4.1. Konvergencia

Egy végtelen sor n-edik részletösszege

$$s_n = \sum_{k=1}^n a_k$$

ahol

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \sum_{n=1}^\infty a_n.$$

Ekkor a $(\sum a_n)$ sorozat konvergens, ha $\exists \lim_{n\to\infty} s_n = S$. Azt mondjuk, hogy S a $\sum_{n=1}^{\infty} a_n$ sor összege. Ha (s_n) divergens, akkor azt mondjuk, hogy a $\sum_{n=1}^{\infty} a_n$ végtelen sor divergens.

5.4.2. Szükséges feltétel konvergenciára

Ha $(\sum a_n)$ konvergens, akkor (a_n) nullsorozat.

5.5. Divergencia-teszt

Ha (a_n) nem nullsorozat, akkor $(\sum a_n)$ divergens.

Bizonyítás

Mivel $(\sum a_n)$ konvergenciájának szükséges feltétele az, hogy (a_n) nullsorozat legyen, kapjuk is a bizonyítandót.

Analízis I. 6. TÉTEL

6. Tétel

6.1. Végtelen mértani sor

Legyen $a_n = aq^{n-1}$, ekkor $(\sum a_n)$ egy mértani sor.

6.1.1. Konvergencia feltétele, sor összege

Adott $a_n = aq^{n-1}$ mértani sor. Ekkor |q| < 1 esetén

$$\sum_{n=1}^{\infty} aq^{n-1} = \frac{a}{1-q}.$$

Bizonyítás

Tudjuk, hogy

$$\sum_{k=1}^{n} aq^{n-1} = \frac{a(1-q^n)}{1-q}.$$

Ekkor

$$\lim_{n \to \infty} \sum_{k=1}^{n} aq^{n-1} = \lim_{n \to \infty} \frac{a(1-q^n)}{1-q} = \frac{a(1-\lim_{n \to \infty} q^n)}{1-q} = \frac{a}{1-q}.$$

6.2. Cauchy kritérium sorokra

Azt mondjuk, hogy a $(\sum a_n)$ végtelen sor teljesíti a Cauchy kritériumot, hogyha $\forall \varepsilon > 0$ -hoz $\exists n_0$ küszöbindex, melyre $\forall n > m \geq n_0$ esetén

$$\left| s_n - s_m \right| = \left| \sum_{k=m+1}^n a_k \right| < \varepsilon.$$

6.3. Összehasonlító kritériumok végtelen sorokra

- 1. Majoráns kritérium Adott két sor, melyekre $0 \le b_n \le a_n$ teljesül $\forall n \in \mathbb{N}$ esetén. Tegyük fel, hogy $(\sum a_n)$ konvergens. Ekkor $(\sum b_n)$ is konvergens.
- 2. Minoráns kritérium Adott két sor melyekre $a_n \leq b_n$ teljesül $\forall n \in \mathbb{N}$ esetén. Tegyük fel, hogy

$$\sum_{n=1}^{\infty} a_n = \infty.$$

Ekkor $\sum_{n=1}^{\infty} b_n = \infty$.

6.4. Abszolút konvergens sor

Azt mondjuk, hogy a $(\sum a_n)$ sor abszolút konvergens, ha $(\sum |a_n|)$ konvergens.

Analízis I. 6. TÉTEL

6.4.1. Kapcsolat konvergenciával

Ha a $\left(\sum a_n\right)$ abszolút konvergens, akkor konvergens is.

Bizonyítás

A háromszög-egyenlőtlenség miatt

$$\left| \sum_{k=1}^{n} a_k - \sum_{k=m}^{n} a_k \right| = \left| \sum_{k=m+1}^{n} a_k \right| \le \sum_{k=m+1}^{n} |a_k|.$$

Mivel $(\sum a_n)$ abszolút konvergens,

$$\left| \sum_{k=1}^{n} |a_k| - \sum_{k=m}^{n} |a_k| \right| < \varepsilon$$

azaz

$$\left| \sum_{k=1}^{n} a_k - \sum_{k=m}^{n} a_k \right| < \varepsilon$$

tehát $(\sum a_n)$ konvergens.

Analízis I. 7. TÉTEL

7. Tétel

7.1. Hányadoskritérium

1. Tegyük fel, hogy $\exists q < 1$, amire

$$\left| \frac{a_{n+1}}{a_n} \right| \le q < 1$$

teljesül $\forall n \in \mathbb{N}$ esetén. Ekkor a sor abszolút konvergens.

2. Tegyük fel, hogy

$$\left| \frac{a_{n+1}}{a_n} \right| \ge 1$$

teljesül $\forall n \in \mathbb{N}$ esetén. Ekkor a sor divergens.

Bizonyítás

1. Tudjuk, hogy

$$\left| \frac{a_2}{a_1} \right| \le q \quad \left| \frac{a_3}{a_2} \right| \le q \quad \dots \quad \left| \frac{a_{n+1}}{a_n} \right| \le q.$$

Ezeket összeszorozva kapjuk, hogy

$$\left|\frac{a_{n+1}}{a_1}\right| \le q^n \implies |a_{n+1}| \le q^n |a_1|.$$

Ez azt jelenti, hogy a sort majorálhatjuk egy 1-nél kisebb kvóciensű mértani sorral, ami nyilván konvergens.

2. A divergencia-teszt miatt egyből kapjuk a bizonyítandót.

7.1.1. Gyengített változat

Tegyük fel, hogy létezik a

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = A$$

határérték. Ekkor

- 1. haA<1,akkor a sor abszolút konvergens
- 2. ha A > 1, akkor a sor divergens
- 3. ha A=1, akkor a sor lehet konvergens és divergens is.

7.2. Gyökkritérium

- 1. Tegyük fel, hogy $\exists 0 < q < 1 \in \mathbb{R}$, melyre $\sqrt[n]{|a_n|} \le q$ teljesül $\forall n \in \mathbb{N}$ esetén. Ekkor a $(\sum a_n)$ sor abszolút konvergens.
- 2. Tegyük fel, hogy $\sqrt[n]{|a_n|} \ge 1$ teljesül $\forall n \in \mathbb{N}$. Ekkor a $(\sum a_n)$ sor divergens.

Bizonyítás

1. Tudjuk, hogy

$$|a_n| \le q^n < 1$$

azaz a sort majorálhatjuk egy 1-nél kisebb kvóciensű mértani sorral, ami nyilván konvergens.

2. A divergencia-teszt miatt egyből kapjuk a bizonyítandót.

Analízis I. 7. TÉTEL

7.2.1. Gyengített változat

Tegyük fel, hogy létezik a

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = A$$

határérték. Ekkor

- 1. ha A < 1, akkor a $(\sum a_n)$ sor abszolút konvergens
- 2. ha A > 1, akkor a $(\sum a_n)$ sor divergens
- 3. ha A=1, akkor a sor lehet konvergens és divergens is.

7.3. Feltételesen konvergens sor

Azt mondjuk, hogy a $(\sum a_n)$ feltételesen konvergens, ha konvergens, de nem abszolút konvergens.

7.3.1. Példa

 $\text{Adott } \textstyle \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \text{ végtelen sor. Ez egy Leibniz-sor, így konvergens, azonban } \textstyle \sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| \text{ nem konvergens.}$

7.4. Riemann tétel

Ha a $(\sum a_n)$ feltételesen konvergens, akkor $\forall c \in \mathbb{R}$ -hez létezik olyan átrendezés, amikor a sor összege c-vel egyenlő.

7.5. Függvény definíció, alaptulajdonságok

Adott az $f:X\mapsto Y$ leképezés, mely során $\forall x\in X$ elemhez hozzárendelünk egy $y\in Y$ elemet. Ekkor ezt a leképezést függvénynek nevezzük.

7.5.1. Értelmezési tartomány

Egy függvény értelmezési tartományát D_f -el jelöljük, azon X-beli elemeket tartalmazza, melyekhez hozzárendel a függvény.

7.5.2. Értékkészlet

Egy függvény értékkészletét R_f -el jelöljük, azon Y-beli elemeket tartalmazza, melyek előállnak képként.

7.5.3. Injektív függvény

Adott f függvény injektív, ha $\forall x_1 \neq x_2 \in D_f$ esetén $f(x_1) \neq f(x_2)$ teljesül.

7.5.4. Szürjektív függvény

Adott f függvény szürjektív, ha $\forall y \in R_f$ -hez $\exists x \in X$, amire f(x) = y.

7.5.5. Bijektív függvény

Adott f függvény bijektív, ha injektív és szürjektív.

7.5.6. Páros függvény

Adott f függvény páros, ha $\forall x \in D_f$ esetén f(-x) = f(x) teljesül.

7.5.7. Páratlan függvény

Adott f függvény páratlan, ha $\forall x \in D_f$ esetén f(-x) = -f(x) teljesül.

Analízis I. 7. TÉTEL

7.5.8. Monoton növő függvény

Adott f függvény monoton növő függvény, ha $\forall x_1 \leq x_2 \in D_f$ esetén $f(x_1) \leq f(x_2)$ teljesül.

7.5.9. Monoton csökkenő függvény

Adott f függvény monoton csökkenő függvény, ha $\forall x_1 \leq x_2 \in D_f$ esetén $f(x_1) \geq f(x_2)$ teljesül.

7.5.10. Periodikus függvény

Adott f függvény periodikus p prediódussal, ha $\forall x, x + p \in D_f$ esetén f(x) = f(x + p) teljesül.

7.6. Inverz függvény

Adott egy $f:X\mapsto Y$ bijekció. Ekkor az f függvény inverze egy olyan $f^{-1}:Y\mapsto X$ bijekció, melyre $f^{-1}\big(f(x)\big)=x.$

7.6.1. Inverz függvény létezése

finvertálható akkor és csak akkor, ha szigorúan monoton.

2018. január 8. 20:06 22 Vághy Mihály

Analízis I. 8. TÉTEL

8. Tétel

8.1. Leibniz-sor

Azt mondjuk, hogy $(\sum a_n)$ Leibniz-típusú sor, ha az (a_n) sorozat

- 1. oszcilláló sorozat, azaz $a_n \cdot a_{n+1} < 0$ teljesül $\forall n \in \mathbb{N}$ esetén
- 2. $(|a_n|)$ monoton fogyó
- 3. (a_n) nullsorozat.

8.1.1. Konvergenciája

A Leibniz-típusú sorok konvergensek.

Bizonyítás

Legyen $a_1 > 0$. Ekkor a páratlan indexű tagok pozitívak, a páros indexú tagok pedig negatívak. Legyen továbbá

$$\alpha_k := \sum_{k=1}^{2k} a_k$$

$$\beta_k := \sum_{k=1}^{2k-1} a_k$$

$$I_k := [\alpha_k, \beta_k].$$

Ekkor az I_k intervallumsorozat teljesíti a Cantor-féle közöspont tétel feltételeit, így létezik egy közös pont, azaz

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = \sum_{n=1}^{\infty} a_n.$$

8.2. Folytonosság adott pontban

Adott $f: X \mapsto \mathbb{R}$ folytonos az $x_0 \in D_f$ pontban, ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall |x - x_0| < \delta$ esetén

$$|f(x) - f(x_0)| < \varepsilon.$$

8.2.1. Geometriai jelentés

Tekintsünk $f(x_0)$ körül egy $(f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ között vízszintes sávot. Ekkor létezik x_0 körül egy $(x_0 - \delta, x_0 + \delta)$ függőleges sáv, melyre a függvény gráfja az $(x_0 - \delta, x_0 + \delta) \times (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ téglalapban van.

8.3. Sorozatfolytonosság

Adott $f: X \mapsto \mathbb{R}$ folytonos az $x_0 \in D_f$ pontban, ha $\forall (x_n) \subset X$ sorozatra, melyre $\lim_{n \to \infty} x_n = x_0$,

$$\lim_{n \to \infty} f(x_n) = f(x_0)$$

teljesül.

Analízis I. 8. TÉTEL

8.3.1. Kapcsolat folytonossággal

Adott $f: X \mapsto \mathbb{R}$ folytonos az $x_0 \in D_f$ pontban akkor és csak akkor, ha f sorozatfolytonos az $x_0 \in D_f$ pontban.

Bizonyítás

Tegyük fel, hogy f folytonos az x_0 pontban. Legyen továbbá $(x_n) \subset D_f$ egy olyan sorozat, amelyre $\lim_{n\to\infty} x_n = x_0$. Ekkor $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall |x - x_0| < \delta$ esetén

$$|f(x) - f(x_0)| < \varepsilon.$$

Mivel $x_n \to x_0$, valamilyen küszöbindex után

$$|x_n - x_0| < \delta \implies |f(x_n) - f(x_0)| < \varepsilon.$$

Tehát valóban $\lim_{x\to\infty} f(x_n) = f(x_0)$.

Most tegyük fel, hogy f sorozatfolytonos az x_0 pontban, azonban nem folytonos, tehát $\exists \varepsilon > 0$, melyre $\forall \delta > 0$ hoz $\exists x$, melyre $|x - x_0| < \delta$, de $|f(x) - f(x_0)| \ge \varepsilon$. Ez azt jelenti, hogy $\delta = \frac{1}{n}$ -hez is $\exists x_n$, melyre $|x_n - x_0| < \delta$,
mégis $|f(x_n) - f(x_0)| \ge \varepsilon$. Ekkor erre az (x_n) sorozatra $x_n \to x_0$, de $\lim_{n \to \infty} f(x_n) \ne f(x_0)$, ami ellentmondás,
hiszen f sorozatfolytonos x_0 -ban. Tehát f folytonos is x_0 -ban.

8.4. Folytonos függvény tulajdonságai

8.4.1. Folytonosság intervallumon

Azt mondjuk, hogy az $f: X \mapsto \mathbb{R}$ adott $Y \subset D_f$ intervallumon folytonos, ha $\forall x_0 \in Y$ pontban folytonos. Ha $D_f = [a, b]$, akkor f folytonos D_f -en, ha $\forall x_0 \in (a, b)$ pontban folytonos, és

$$\lim_{x\to a+}=f(a) \qquad \lim_{x\to b-}=f(b).$$

8.5. Határérték és folytonosság

Ha f folytonos $x_0 \in int(D)$ -ben, akkor

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Analízis I. 9. TÉTEL

9. Tétel

9.1. Bolzano tétel

Legyen $f:[a,b] \mapsto \mathbb{R}$ folytonos függvény, ahol f(a) < f(b). Ekkor $\forall c \in (f(a), f(b))$ -hez $\exists \xi \in (a,b)$, amire $f(\xi) = c$.

Bizonyítás

Legyen $c_1 := \frac{a+b}{2}$. Legyen továbbá

$$a_2 := a_1 \qquad b_2 := c_1$$

ha $f(c_1) > c$, és

$$a_2 := c_1 \qquad b_2 := b_1$$

ha $f(c_1) < c$. Hasonlóan konstruáljuk az $I_k := [a_k, b_k]$ intervallumsorozatot. Nyilván az I_k invervallumsorozat teljesíti a Cantor-féle közöspont tétel feltételeit, így létezik egy közös pont, azaz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$$

tehát

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = f(\xi).$$

Tehát $f(\xi) \le c \le f(\xi)$. Emiatt nyilván $f(\xi) = c$.

9.1.1. Következmények

- 1. Ha f folytonos függvény és felvesz pozitív és negatív értékeket is, akkor van zérushelye.
- 2. Páratlan fokú polinomnak van legalább egy valós gyöke.

9.2. Függvény határértéke véges pontban

Adott $f: D \mapsto \mathbb{R}$ függvény és tegyük fel, hogy $\exists x_0$ olyan $U_{x_0} = (x_0 - r, x_0 + r)$ környezete, amire

$$U_{x_0} \setminus \{x_0\} \subset D$$

teljesül. Ekkor $\lim_{x\to x_0} f(x) = \alpha$ ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall x \in D$, $0 < |x-x_0| < \delta$ esetén

$$|f(x) - \alpha| < \varepsilon$$

teljesül.

9.3. Egyoldali határértékek

Adott az $f: D \mapsto \mathbb{R}$ függvény és tegyük fel, hogy $\exists U_{x_0} = (x_0 - r, x_0) \subset D \ (\exists U_{x_0} = (x_0, x_0 + r) \subset D)$. Ekkor f baloldali (jobboldali) határértéke az x_0 pontban α , azaz

$$\lim_{x \to x_0 -} f(x) = \alpha$$

$$\left(\lim_{x \to x_0 +} f(x) = \alpha\right)$$

ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall x \in (x_0 - \delta, x_0) \ (\forall x \in (x_0, x_0 + \delta))$ esetén

$$|f(x) - \alpha| < \varepsilon$$

teljesül.

Analízis I. 9. TÉTEL

9.4. Szakadási helyek osztályozása

1. Az f függvénynek elsőfajú szakadása van x_0 -ban, ha léteznek a

$$\lim_{x \to x_0 +} f(x) < \infty \qquad \lim_{x \to x_0 -} f(x) < \infty$$

határértékek. Ha

$$\lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x)$$

akkor megszüntethető a szakadás.

2. Az f függvénynek másodfajú szakadása van x_0 -ban, ha nem elsőfajú a szakadás.

9.4.1. Példák

Elsőfajú szakadásra jó példa az sgn(x) függvény 0-ban. Ez nem megszüntethető szakadás. Másodfajú szakadásra jó példa az $\frac{1}{x}$ függvény 0-ban.

9.5. Határértékek tulajdonságai

1. Linearitás

$$\lim_{x \to x_0} \left(\alpha \cdot f(x) + \beta g(x) \right) = \alpha \cdot \lim_{x \to x_0} f(x) + \beta \cdot \lim_{x \to x_0} g(x)$$

2.

$$\lim_{x \to x_0} f \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Tegyük fel, hogy $\lim_{x\to x_0} g(x) \neq 0$. Ekkor

$$\lim_{x \to x_0} \frac{f}{g}(x) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

3. Kompozíció határértéke

Legyen $\lim_{x\to x_0} f(x) = \alpha$ és $\lim_{x\to \alpha} g(x) = \beta$. Ekkor

$$\lim_{x \to x_0} g \circ f(x) = \beta.$$

4. Monotonitás

Legyen $f(x) < g(x) \ \forall x \neq x_0$ -ra. Ekkor (ha léteznek a határértékek)

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x).$$

5. Rendőr-elv

Legyen $f: D_f \mapsto \mathbb{R}, g: D_g \mapsto \mathbb{R}$ és $h: D_h \mapsto \mathbb{R}$. Tegyük fel, hogy $\exists U_{x_0}$, amire $\forall x \neq x_0 \in U_{x_0}$ esetén

$$f(x) < g(x) < h(x).$$

Ekkor ha

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x)$$

akkor

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x).$$

Analízis I. 9. TÉTEL

6. Monoton függvények határértéke

Legyen $f: D \mapsto \mathbb{R}$ olyan függvény, amire tegyük fel, hogy $\exists U_{x_0}$ környezet, ahol a függvény monoton nő (csökken), azaz $\forall x_1 < x_2 \in U_{x_0}$, ahol $x_1 \neq x_0$ és $x_2 \neq x_0$ esetén $f(x_1) \leq f(x_2)$ ($f(x_1) \geq f(x_2)$). Ekkor $\exists f(x_0 - 0), f(x_0 + 0)$, ahol

$$\lim_{x \to x_0 +} f(x) = \inf \{ f(x) | x > x_0 \}$$

$$\lim_{x \to x_0 -} f(x) = \sup \left\{ f(x) \middle| x < x_0 \right\}$$

(illetve

$$\lim_{x \to x_0 +} f(x) = \sup \{ f(x) | x > x_0 \}$$

$$\lim_{x \to x_0 -} f(x) = \inf \{ f(x) | x < x_0 \}.$$

9.6. Nevezetes függvény határértékek

1.

$$\lim_{x \to 0} x^x = 1$$

2.

$$\lim_{x \to \infty} x^{\frac{1}{x}} = 1$$

3.

$$\lim_{x\to\infty}\frac{\log x}{x}=0$$

Megjegyzés: A logaritmus alapja itt nem releváns.

4.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

5.

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

6.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

7.

$$\lim_{x\to 0} x \sin\frac{1}{x} = 0$$

8.

$$\lim_{x \to \infty} x \sin \frac{1}{x} = 1$$

Analízis I. 10. TÉTEL

10. Tétel

10.1. Határérték-fogalom kiterjesztése

Adott $f: D \mapsto \mathbb{R}$ függvény.

- 1. $\lim_{x \to \pm \infty} f(x) = \alpha$ ha $\forall \varepsilon > 0$ -hoz $\exists K \in \mathbb{R}$, melyre $\forall x > K \in D \ (\forall x < K \in D)$ esetén $|f(x) \alpha| < \varepsilon$ teljesül.
- 2. $\lim_{x\to x_0} = \pm \infty$, ha $\forall K \in \mathbb{R}$ -hez $\exists \delta > 0$, melyre $\forall 0 < |x x_0| < \delta$ esetén f(x) > K (f(x) < K) teljesül.
- 3. $\lim_{x\to\infty} f(x) = \pm \infty$ ha $\forall K \in \mathbb{R}$ -hez $\exists L \in \mathbb{R}$, melyre $\forall x > L \in D$ esetén f(x) > K (f(x) < K).

10.2. Átviteli elv határérték kiszámítására

Adott $f: D \mapsto \mathbb{R}$ függvény.

1. $\lim_{x\to x_0} f(x) = \alpha$ akkor és csak akkor teljesül, ha $\forall (x_n) \subset D$ sorozatra $\lim_{n\to\infty} x_n = x_0 \ (x_n \neq x_0)$ esetén

$$\lim_{n \to \infty} f(x_n) = \alpha.$$

2. $\lim_{x\to x_0+} f(x) = \alpha$ akkor és csak akkor teljesül, ha $\forall (x_n) \subset D$ sorozatra $\lim_{n\to\infty} x_n = x_0, \, x_n > x_0$ esetén

$$\lim_{n \to \infty} f(x_n) = \alpha.$$

3. $\lim_{x\to x_0-} f(x) = \alpha$ akkor és csak akkor teljesül, ha $\forall (x_n) \subset D$ sorozatra $\lim_{n\to\infty} x_n = x_0, x_n < x_0$ esetén

$$\lim_{n \to \infty} f(x_n) = \alpha.$$

10.3. [a, b]-n értelmezett folytonos függvények

10.3.1. Bolzano tétel

Legyen $f:[a,b] \mapsto \mathbb{R}$ folytonos függvény, ahol f(a) < f(b). Ekkor $\forall c \in (f(a), f(b))$ -hez $\exists \xi \in (a,b)$, amire $f(\xi) = c$.

10.3.2. Weierstrass tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ folytonos függvény. Ekkor R_f korlátos és zárt.

10.3.3. Heine tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ folytonos függvény. Ekkor f egyenletesen folytonos.

10.4. Weierstrass 1-2. tétele

Adott $f:[a,b]\mapsto \mathbb{R}$ folytonos függvény. Ekkor R_f korlátos és zárt.

Bizonyítás

Tegyük fel, hogy f felülről nem korlátos. Ekkor $\forall n$ -hez $\exists x_n \in [a,b]$, melyre $f(x_n) > n$. Ez az (x_n) sorozat korlátos, hiszen $a \le x_n \le b$, így a Bolzano-Weierstrass tétel miatt $\exists (x_{n_k})$ konvergens részsorozata, melyre

$$\lim_{n_k \to \infty} x_{n_k} = \xi$$

ahol $\xi \in [a, b]$. Mivel a függvény folytonos, sorozatfolytonos is, tehát

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(\xi).$$

Analízis I. 10. TÉTEL

Azonban ez ellentmondás, hiszen $f(x_{n_k}) > n_k$. Tehát valóban korlátos. Legyen $\beta = \sup\big\{f(x)\big|x\in[a,b]\big\}$. Ekkor nyilván $\forall n$ -hez $\exists x_n\in[a,b]$, melyre

$$\beta - \frac{1}{n} < f(x_n) \le \beta$$

azaz

$$\lim_{n \to \infty} f(x_n) = \beta.$$

Azonban a Bolzano-Weierstrass tétel miatt $\exists (x_{n_k})$ konvergens részsorozat, amelyre

$$\lim_{n_k \to \infty} x_{n_k} = \xi$$

ahol $\xi \in [a, b]$. Azonban a sorozatfolytonosság miatt

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(\xi).$$

Tehát $\beta = f(\xi)$, azaz $\beta = \max \{f(x) | x \in [a, b]\}$.

2018. január 8. 20:06 29 Vághy Mihály

Analízis I. 11. TÉTEL

11. Tétel

11.1. Egyenletes folytonosság

Adott $f:D\mapsto\mathbb{R}$ egyenletesen folytonos D-ben, ha $\forall \varepsilon>0$ -hoz $\exists \delta$, ami ε -ra jellemző, melyre $\forall x_1,x_2\in D$ -re $|x_1-x_2|<\delta$ esetén

$$|f(x_1) - f(x_2)| < \varepsilon$$

teljesül.

11.1.1. Példa

Legyen $f(x) = x^2$ és az értelmezési tartomány legyen [0,1]. Ekkor

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |(x - x_0)(x + x_0)| \le 2|x - x_0|$$

azaz tetszőleges ε -hoz $\delta = \frac{\varepsilon}{2}$ megfelelő.

11.2. Lipschitz folytonosság

Adott f Lipschitz-folytonos D_f -en, ha $\exists L > 0$, amire $\forall x_1, x_2 \in D_f$ esetén

$$|f(x_1) - f(x_2)| \le L \cdot |x_1 - x_2|$$

teljesül.

11.2.1. Példa

Legyen $f(x) = x^2$ és az értelmezési tartomány legyen [0, 1]. Ekkor

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |(x - x_0)(x + x_0)| \le 2|x - x_0|.$$

11.3. Heine tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ folytonos függvény. Ekkor f egyenletesen folytonos.

11.4. Differenciahányados

Adott $f: D \to \mathbb{R}$ függvény és $x_0 \in int(D)$. Ekkor az $x \in D_f$ ponthoz tartozó differenciahányados

$$\frac{f(x) - f(x_0)}{x - x_0}.$$

11.5. Differenciálhányados

Azt mondjuk f differenciálható x_0 -ban, ha létezik

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

azaz létezik és véges a differenciálhányados.

11.5.1. Geometriai és fizikai jelentés

A differenciálhányados a függvény grafikonjának adott $(x_0, f(x_0))$ pontjához tartozó érintő meredekségét adja meg.

Legyen adott s(t) útfüggvény. Ekkor t_0 időpillanatban a pillanatnyi sebesség $v(t_0) = \dot{s}(t_0)$.

Analízis I. 11. TÉTEL

11.6. Folytonosság-differenciálhatóság kapcsolata

Ha f differenciálható x_0 -ban, akkor folytonos x_0 -ban.

Bizonyítás

f differenciálhatósága azt jelenti, hogy

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

azaz $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $|x - x_0| < \delta$ esetén

$$f'(x_0) - \varepsilon \le \frac{f(x) - f(x_0)}{x - x_0} \le f'(x_0) + \varepsilon.$$

Ekkor

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le K$$

ahol

$$K = \max (|f'(x_0) - \varepsilon|, |f'(x_0) + \varepsilon|).$$

Ekkor nyilván

$$|f(x) - f(x_0)| \le K|x - x_0|.$$

Ez azt jelenti, hogy $\delta = \frac{\varepsilon}{K}$ esetén

$$|f(x) - f(x_0)| \le K|x - x_0| < K \cdot \frac{\varepsilon}{K} = \varepsilon$$

tehát valóban folytonos.

11.7. Elemi függvények deriváltja

1. f(x) = c

$$f'(x_0) = \lim_{x \to x_0} \frac{c - c}{r - r_0} = 0$$

2. $f(x) = x^n$

$$f'(x_0) = \lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0) \left(\sum_{k=0}^{n-1} x^k x_0^{n-1-k}\right)}{x - x_0} = \lim_{x \to x_0} \sum_{k=0}^{n-1} x^k x_0^{n-1-k} = n x_0^{n-1}$$

3. $f(x) = \sqrt[n]{x}$

$$f'(x_0) = \lim_{x \to x_0} \frac{\sqrt[n]{x} - \sqrt[n]{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\sqrt[n]{x} - \sqrt[n]{x_0}}{\left(\sqrt[n]{x} - \sqrt[n]{x_0}\right)\left(\sum_{k=0}^{n-1} \sqrt[n]{x}^k \sqrt[n]{x_0}^{n-1-k}\right)} = \frac{1}{n} x_0^{\frac{1-n}{n}}$$

4. $f(x) = \sin x$

$$f'(x_0) = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2\cos\left(\frac{x + x_0}{2}\right)\sin\left(\frac{x - x_0}{2}\right)}{x - x_0} = \lim_{x \to x_0} \cos\left(\frac{x + x_0}{2}\right) = \cos x_0$$

5. $f(x) = \cos x$

$$f'(x_0) = \lim_{x \to x_0} \frac{\cos x - \cos x_0}{x - x_0} = \lim_{x \to x_0} \frac{-2\sin\left(\frac{x + x_0}{2}\right)\sin\left(\frac{x - x_0}{2}\right)}{x - x_0} = -\sin x_0$$

6. $f(x) = c^x$

$$f'(x) = (c^x)' = (e^{x \ln c})' = \ln c e^{x \ln c} = c^x \ln c$$

7. $f(x) = \log_c x$

$$f'(x) = \left(\log_c x\right)' = \left(\frac{\ln x}{\ln c}\right)' = \frac{1}{x \ln c}$$

Analízis I. 12. TÉTEL

12. Tétel

12.1. Differenciálási szabályok

Legyenek f és g differenciálható függvények.

1. Linearitás

$$(\alpha f + \beta g)'(x) = \alpha f'(x) + \beta g'(x)$$

2. Szorzat deriváltja

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

3. Reciprok deriváltja Legyen $g(x) \neq 0$.

$$\left(\frac{1}{g(x)}\right)' = -\frac{g'(x)}{g^2(x)}$$

4. Hányados deriváltja Legyen $g(x) \neq 0$.

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

5. Inverz deriváltja Legyen f szigorúan monoton, és legyen $f'(x) \neq 0$.

$$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$

Bizonyítás

1. A határérték tulajdonságaiból következik.

2.

$$\lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0) + f(x)g(x_0) - f(x)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} f(x) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} + g(x_0) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

3.

$$\lim_{x \to x_0} \frac{\frac{1}{f(x)} - \frac{1}{f(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x_0) - f(x)}{(x - x_0)f(x)f(x_0)} =$$

$$= \lim_{x \to x_0} \frac{1}{f(x)f(x_0)} \lim_{x \to x_0} \frac{f(x_0) - f(x)}{x - x_0} = -\frac{f'(x_0)}{f^2(x_0)}$$

4. Az előző kettő tulajdonságból tirivális.

5.

$$\Big(f\big(f^{-1}(x)\big)\Big)' = f'\big(f^{-1}(x)\big)\big(f^{-1}(x)\big)' = 1 \implies \big(f^{-1}(x)\big)' = \frac{1}{f'\big(f^{-1}(x)\big)}$$

Analízis I. 12. TÉTEL

12.2. Érintő egyenes egyenlete

Adott f függvény gráfjának $(x_0, f(x_0))$ pontjában az érintő egyenes egyenlete

$$y = f(x) + f'(x_0)(x - x_0).$$

12.3. Rolle középérték tétel

Legyen $f:[a,b]\mapsto\mathbb{R}$ folytonos, (a,b)-n differenciálható függvény, ahol f(a)=f(b). Ekkor $\exists\xi\in(a,b)$ amire

$$f'(\xi) = 0.$$

Bizonyítás

A Weierstrass tételek miatt f-nek létezik szélsőértéke. Ha f(a)=f(b) szélsőérték, akkor konstans a függvény, így $f'(\xi)\equiv 0$.

Ha f(a) és f(b) nem szélsőérték, akkor $\exists \xi \in (a,b)$ amire $f(\xi)$ szélsőérték, ami miatt azonban $f'(\xi) = 0$.

12.4. Láncszabály

Adottak f, g függvények. Legyen f differenciálható g(x)-ben. Ekkor

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

Bizonyítás

$$\lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} \cdot \frac{g(x) - g(x_0)}{g(x) - g(x_0)} =$$

$$= \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(g(x_0))g'(x_0)$$

Analízis I. 13. TÉTEL

13. Tétel

13.1. Inverz függvény deriváltja

Legyen f szigorúan monoton függvény és legyen $f'(x) \neq 0$. Ekkor

$$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}.$$

Bizonyítás

$$\left(f(f^{-1}(x))\right)' = f'(f^{-1}(x))(f^{-1}(x))' = 1 \implies (f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$

13.1.1. Szemléletes jelentése

Legyen adott f függvény és $x_0 \in R_f$ tetszőleges pont. Ekkor f^{-1} érintő egyenesét az x_0 pontban megkaphatjuk úgy, hogy az f függvény $f^{-1}(x_0)$ ponthoz tartozó érintő egyenesét tükrözzük a síkfelezőre.

13.2. Lagrange féle középérték tétel

Legyen $f:[a,b]\mapsto \mathbb{R}$ folytonos, (a,b)-n differenciálható függvény. Ekkor $\exists \xi\in(a,b)$ amire

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Bizonyítás

Legyen

$$h(x) := \frac{f(b) - f(a)}{b - a} \cdot (x - a) + f(a).$$

Ekkor h(a) = f(a) és h(b) = f(b). Emiatt a

$$g(x) := f(x) - h(x)$$

függvényhez a Rolle-tétel miatt $\exists \xi \in (a, b)$, amire

$$g'(\xi) = f'(\xi) - h'(\xi) = 0 \implies f'(\xi) = h'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

13.3. Monoton differenciálható függvények jellemzése

Adott $f: D \mapsto \mathbb{R}$ függvény.

- 1. fmonoton növő akkor és csak akkor, ha $f'(x) \geq 0$ teljesül $\forall x \in D$ esetén.
- 2. f monoton fogyó akkor és csak akkor, ha $f'(x) \leq 0$ teljesül $\forall x \in D$ esetén.

Bizonyítás

Analízis I. 13. TÉTEL

1. Először tegyük fel, hogy f(x) monoton nő. Ekkor nyilván

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

teljesül $\forall x_0 \in I$ esetén.

Most tegyük fel, hogy $f'(x) \ge 0$. Ekkor legyen $x_1 < x_2 \in I$. A Lagrange-féle középérték-tétel miatt $\exists \xi \in (x_1, x_2)$ amire

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) \ge 0$$

így nyilván $f(x_1) \leq f(x_2)$.

2. Az előzőhöz analóg módon.

13.4. Integrálszámítás I. alaptétele

Adottak $g, f : [a, b] \to \mathbb{R}$ differenciálható függvények, melyekre $f'(x) = g'(x) \ \forall x \in (a, b)$ esetén. Ekkor

$$f(x) = g(x) + c.$$

13.4.1. Lemma

Legyen $f:[a,b]\mapsto\mathbb{R}$ olyan differenciálható függvény, melyre $f'(x)=0\ \forall x\in(a,b)$ esetén. Ekkor f(x) konstans függvény.

Bizonyítás

Legyen $f:[x_1,x_2]\mapsto\mathbb{R}$ megszorítása f-nek. Ekkor a Lagrange-féle középérték-tétel miatt $\exists \xi\in(x_1,x_2)$ amire

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0 \implies f(x_2) = f(x_1).$$

Bizonyítás

A h(x) = f(x) - g(x) függvény deriváltja h'(x) = f'(x) - g'(x) = 0, így h(x) = c. Ebből azonnal kapjuk a bizonyítandót.

Analízis I. 14. TÉTEL

14. Tétel

14.1. Cauchy féle középérték tétel

Legyen $f, g : [a, b] \mapsto \mathbb{R}$ folytonos, (a, b)-n differenciálható függvények. Tegyük fel, hogy $g(a) \neq g(b)$ és $g'(x) \neq 0$. Ekkor $\exists \xi \in (a, b)$ amire

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

14.2. L'Hospital-szabály

Adott $g, f: I \mapsto \mathbb{R}$ differenciálhatóak az $x_0 \in int(I)$ pont egy U_{x_0} környezetében. Tegyük fel, hogy

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \qquad (\text{vagy } \pm \infty).$$

Ekkor ha létezik a

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

határérték, akkor

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Bizonyítás

Legyen $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$. Ekkor

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)}.$$

A Cauchy-féle középérték-tétel miatt $\exists \xi \ x$ és x_0 között, amire

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{\xi \to x_0} \frac{f'(\xi)}{g'(\xi)}.$$

Így valóban

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

14.2.1. Általános esetek

- 1. A szabály akkor is alkalmazható, ha a függvények határértéke az adott pontban $\pm\infty$.
- 2. A szabály akkor is alkalmazható, ha $x_0 = \pm \infty$.
- 3. A szabály többször is alkalmazható.

14.3. Lokális szélsőérték létezésének szükséges feltétele

Ha f-nek lokális szélsőértéke van $x_0 \in int(D_f)$ -ben, akkor

$$f'(x_0) = 0.$$

Bizonvítás

Tegyük fel, hogy x_0 -ban lokális minimuma van a függvénynek. Ez azt jelenti, hogy $\exists U_{x_0}$ környezet, melyre $f(x_0) \leq f(x)$ teljesül $\forall x \in U_{x_0}$ esetén. Világos, hogy ekkor $x < x_0$ esetén

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$$

Azonban $x > x_0$ esetén

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Ekkor $0 \le f'(x_0) \le 0$, amiből $f'(x_0) = 0$.

Analízis I. 15. TÉTEL

15. Tétel

15.1. Magasabb rendű deriváltak

Ha f' deriválható x_0 -ban akkor a függvény második deriváltja

$$f''(x_0) = \frac{f'(x) - f'(x_0)}{x - x_0}.$$

Hasonlóan

$$f^{(n)}(x_0) = \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}.$$

15.2. Konvex és konkáv függvények

Egy $f: D \mapsto \mathbb{R}$ függvény $(a, b) \subset D$ -ben konvex (konkáv), ha $\forall a \leq x_1 < x_2 \leq b$ és $\forall t \in [0, 1]$ esetén

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

teljesül. Egy f függvény konkáv, ha -f konvex.

15.2.1. Jellemzés differenciálható függvények esetén

Egy $f: D \mapsto \mathbb{R}$ függvény $(a, b) \subset D$ -ben konvex (konkáv), ha $\forall a \leq x_1 < x_2 \leq b$ és $\forall t \in [0, 1]$ esetén

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

teljesül. Egy f függvény konkáv, ha -f konvex.

15.3. Inflexió

Az $x_0 \in D_f$ inflexiós pont, ha itt a függvény konvexből konkávba, vagy konkávból konvexbe vált.

15.3.1. Kapcsolat a deriválttal

Legyen $f: D \to \mathbb{R}$ háromszor differenciálható, és legyen $f''(x_0) = 0$ valamilyen x_0 -ra. Ekkor x_0 inflexiós pont, ha $f'''(x_0) \neq 0$.

Ha $f''(x_0) = 0$ és f''(x) előjelet vált x_0 -ban, akkor x_0 inflexiós pont.

15.4. Taylor-polinom

Tegyük fel, hogy az f függvény n-szer differenciálható az $x_0 \in D_f$ pontban. Ekkor

$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

az f függvény $x_0\operatorname{-hoz}$ tartozó $n\operatorname{-edik}$ Taylor-polinomja.

15.4.1. Tulajdonságok

Pontosan egy olyan $P_n(x)$ polinom létezik, amire

$$P_n^{(k)}(x_0) = f^{(k)}(x_0)$$

ha $k \leq n$ és

$$P_n^{(n+1)}(x_0) = 0$$

ez a polinom pedig $T_n(x)$.

Bizonyítás

Könnyen látható, hogy

$$T_n^{(k)}(x_0) = f^{(k)}(x_0).$$

Az egyértelműség azonnal következik abból, hogyha két azonos fokszámú polinom minden deriváltja megegyezik, akkor az együtthatóik páronként megegyeznek, így a két polinom azonos.

Analízis I. 15. TÉTEL

15.5. Lagrange-féle maradéktag

Az $L_n(x) := f(x) - T_n(x)$ a Lagrange-féle maradéktag.

15.5.1. Tétel

Legyen f (n+1)-szer differenciálható x_0 egy U_{x_0} környezetében. Ekkor $\forall x \in U_{x_0}$ -hoz $\exists \xi \ x$ és x_0 között, amire

$$L_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Analízis I. 16. TÉTEL

16. Tétel

16.1. Lokális szélsőérték létezésének elégséges feltétele

Legyen $f: D \to \mathbb{R}$ kétszer differenciálható, és legyen $f'(x_0) = 0$ valamilyen x_0 -ra. Ekkor x_0 lokális szélsőérték, ha $f''(x_0) \neq 0$. Továbbá x_0 lokális maximum (minimum), ha $f''(x_0) < 0$ ($f''(x_0) > 0$). Ha $f'(x_0) = 0$ és f'(x) előjelet vált x_0 -ban, akkor x_0 lokális szélsőérték.

Bizonyítás

Legyen $f''(x_0) > 0$. Ekkor $\exists U_{x_0}$ környezet, amire $\forall x \in U_{x_0}$ esetén f''(x) > 0. Ez azt jelenti, hogy f' szigorúan monoton nő U_{x_0} -ban, ami miatt $x < x_0$ esetén f(x) csökken, és $x_0 < x$ esetén f(x) nő. Tehát x_0 -ban valóban minimum van.

16.2. Primitív függvény

Adott egy $f:I\mapsto\mathbb{R}$ függvény, ahol $I\subset\mathbb{R}$. Ekkor az $F:I\mapsto\mathbb{R}$ differenciálható függvény az f primitív függvénye, ha $\forall x\in I$ esetén

$$F'(x) = f(x)$$

teljesül.

16.3. Határozatlan integrál alaptulajdonságai

1. $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$

2. $\int f'(\varphi(x)) \cdot \varphi'(x) dx = f(\varphi(x)) + c$

3. $\int f(\varphi(x)) \cdot \varphi'(x) dx = \int f(t) dt \Big|_{t=\varphi(x)}$

4. $\int f(x)^{\alpha} \cdot f'(x) dx = \frac{f(x)^{\alpha+1}}{\alpha+1} + c \qquad \alpha \neq -1$

5. $\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c \left(= \begin{cases} \ln(f(x)) + c, & \text{ha } f(x) > 0 \\ \ln(-f(x)) + c, & \text{ha } f(x) < 0 \end{cases} \right)$

6. $\int e^{f(x)} \cdot f'(x) \, \mathrm{d}x = e^{f(x)} + c$

16.4. Riemann integrál

Adott $f:[a,b]\mapsto\mathbb{R}$ korlátos függvény. Azt mondjuk, hogy f Riemann-integrálható az [a,b] intervallumon, ha

$$\sup \left\{ s(\mathcal{F}) \middle| \mathcal{F} \in \mathbb{F} \right\} = \inf \left\{ S(\mathcal{F}) \middle| \mathcal{F} \in \mathbb{F} \right\}.$$

Ekkor

$$\int_{a}^{b} f(x) dx = \sup \left\{ s(\mathcal{F}) \middle| \mathcal{F} \in \mathbb{F} \right\} = \inf \left\{ S(\mathcal{F}) \middle| \mathcal{F} \in \mathbb{F} \right\}.$$

16.4.1. Szemléletes jelentés

A Riemann integrál a görbe alatti területet adja meg.

Analízis I. 17. TÉTEL

17. Tétel

17.1. Integrál közelítő összegek

17.1.1. Alsó közelítő összeg

Adott $f:[a,b]\mapsto\mathbb{R}$ korlátos függvény. Legyen \mathcal{F} az [a,b] intervallum egy felosztása, és legyen

$$m_k = \inf \{ f(x) | x \in [x_{k-1}, x_k] \}.$$

Ekkor a felosztáshoz tartozó alsó közelítő összeg

$$s(\mathcal{F}) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}) = \sum_{k=1}^{n} m_k \Delta x_k.$$

17.1.2. Felső közelítő összeg

Adott $f:[a,b]\mapsto\mathbb{R}$ korlátos függvény. Legyen \mathcal{F} az [a,b] intervallum egy felosztása, és legyen

$$M_k = \sup \{ f(x) | x \in [x_{k-1}, x_k] \}.$$

Ekkor a felosztáshoz tartozó felső közelítő összeg

$$S(\mathcal{F}) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = \sum_{k=1}^{n} M_k \Delta x_k.$$

17.1.3. Tulajdonságok

1. Tetszőleges $\mathcal F$ felosztás esetén

$$s(\mathcal{F}) \leq S(\mathcal{F}).$$

2. Új osztópont felvételekor az alsó közelítő összeg nem csökken, a felső közelítő összeg pedig nem nő. Legyen tehát az \mathcal{F} felosztásból egy osztópont felvételével képzett felosztás \mathcal{F}' . Ekkor

$$s(\mathcal{F}) < s(\mathcal{F}') < S(\mathcal{F}') < S(\mathcal{F}).$$

3. Legyen \mathcal{F} és \mathcal{F}' két felosztás. Ekkor

$$s(\mathcal{F}) \leq S(\mathcal{F}').$$

Bizonyítás

1. Mivel minden

$$\inf \{ f(x) | x \in [x_{k-1}, x_k] \} \le \sup \{ f(x) | x \in [x_{k-1}, x_k] \}$$

így egyből apjuk a bizonyítandót.

2. Tegyük fel, hogy az új osztópontra $x_{k-1} < x* < x_k$. Ekkor legyen

$$m_1 = \inf \{ f(x) | x \in [x_{k-1}, x^*] \}$$

és

$$m_2 = \inf \{ f(x) | x \in [x^*, x_k] \}.$$

Ekkor

$$s(\mathcal{F}') - s(\mathcal{F}) = m_1(x^* - x_{k-1} + m_2(x_k - x^*) - m_k(x_k - x_{k-1}) =$$

= $(m_1 - m_k)(x^* - x_{k-1}) + (m_2 - m_k)(x_k - x^*) \ge 0.$

Tehát $s(\mathcal{F}') \geq s(\mathcal{F})$. Hasonlóan belátható a felső közelítő összegekre vonatkozó állítás.

3. Az első két állításból azonnal következik.

Analízis I. 17. TÉTEL

17.2. Nem integrálható függvényre példa

Jó példa a Dirichlet függvény.

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

17.3. Integrálhatóság elégséges feltételei

17.3.1. Tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ korlátos és monoton függvény integrálható.

Bizonyítás

Tegyük fel, hogy f monoton növő. Ekkor $\forall \varepsilon > 0$ esetén

$$o(\mathcal{F}) = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \Delta x_k \le \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \delta(\mathcal{F}) = (f(b) - f(a)) \delta(\mathcal{F}).$$

Ekkor $\delta(\mathcal{F}) < \frac{\varepsilon}{f(b) - f(a)}$ esetén $o(\mathcal{F}) < \varepsilon$.

17.3.2. Tétel

Adott $f:[a,b] \mapsto \mathbb{R}$ folytonos függvény integrálható.

Bizonyítás

A Heine-tétel miatt a függvény egyenletesen is folytonos. Ekkor $\forall \frac{\varepsilon}{b-a} > 0$ esetén $\exists \delta$, melyre $\forall |x_k - x_{k-1}| < \delta$ esetén $|f(x_k) - f(x_{k-1})| < \frac{\varepsilon}{b-a}$. Ekkor

$$o(\mathcal{F}) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k \le \frac{\varepsilon}{b-a} \sum_{k=1}^{n} (x_k - x_{k-1}) = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

17.3.3. Tétel

Adott $f:[a,b]\mapsto\mathbb{R}$ korlátos, és véges sok szakadási helytől eltekintve folytonos függvény integrálható.

Bizonyítás

Legyen szakadási pont $x^* \in [a, b]$. Legyen továbbá

$$[a,b] = I_1 \cup I_2 \cup I_3 = [a, x^* - \delta] \cup (x^* - \delta, x^* + \delta) \cup [x^* + \delta, b].$$

Ekkor f folytonos az I_1 és I_3 intervallumokon, azaz $\exists \mathcal{F}_1$ felosztás, melyre $o(\mathcal{F}_1) < \frac{\varepsilon}{3}$, illetve $\exists \mathcal{F}_3$, melyre $o(\mathcal{F}_3) < \frac{\varepsilon}{3}$. Ekkor az I_2 intervallumon egy \mathcal{F}_2 felosztásra

$$o(\mathcal{F}_2) = (M-m)2\delta < 4K\delta$$

ahol $M:=\sup\big\{f(x)\big|x\in(x^*-\delta,x^*+\delta)\big\},\ m:=\inf\big\{f(x)\big|x\in(x^*-\delta,x^*+\delta\big\},\ \text{\'es}\ |f(x)|\leq K.$ Ekkor $\delta<\frac{\varepsilon}{12K}$ esetén $o(\mathcal{F}_2)<\frac{\varepsilon}{3}$. Ekkor

$$o(\mathcal{F}) = o(\mathcal{F}_1) + o(\mathcal{F}_2) + o(\mathcal{F}_3) < \varepsilon.$$

17.4. Integrálközép

Adott $f:[a,b]\mapsto \mathbb{R}$ integrálható függvény integrálközepe

$$\kappa = \frac{\int_a^b f(x) \, \mathrm{d}x}{\int_a^b \, \mathrm{d}x} = \frac{\int_a^b f(x) \, \mathrm{d}x}{b-a}.$$

Analízis I. 17. TÉTEL

17.4.1. Integrál középérték tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ integrálható, folytonos függvény. Ekkor $\exists \xi\in[a,b],$ melyre

$$f(\xi) = \kappa = \frac{\int_a^b f(x) dx}{b - a}.$$

Bizonyítás

A Weierstrass-tétel miatt tudjuk, hogy $\exists \xi_1, \xi_2 \in [a,b],$ melyre

$$m = f(\xi_1) \quad M = f(\xi_2).$$

Ekkor a Bolzano-tétel miatt $\exists \xi \in (\xi_1, \xi_2),$ melyre

$$f(\xi) = \kappa.$$

Analízis I. 18. TÉTEL

18. Tétel

18.1. Newton-Leibniz-formula

Adott $f:[a,b]\mapsto \mathbb{R}$ integrálható függvény. Legyen f egy primitív függvénye F. Ekkor

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a) = \left[F(x) \right]_{a}^{b} = F(x) \Big|_{a}^{b}$$

Bizonyítás

Legyen \mathcal{F}_n egy felosztása [a,b]-nek. Ekkor f primitív függvényének megszorítása a részintervallumokon F: $[x_{k-1},x_k]\mapsto\mathbb{R}$ differenciálható. Ekkor a Lagrange-féle középérték-tétel miatt $\exists \xi_k\in(x_{k-1},x_k)$, melyre

$$F'(\xi_k) = \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} = f(\xi_k).$$

Ekkor írjuk fel azt a Riemann-összeget, melyben ezeket a ξ_k számokat választjuk ki. Ekkor

$$\sigma(\mathcal{F}_n) = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^n F'(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^n (F(x_k) - F(x_{k-1})) = F(b) - F(a).$$

Világos, hogy ekkor

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sigma(\mathcal{F}_n) = F(b) - F(a).$$

18.2. Integrálfüggvény

Adott $f:[a,b]\mapsto\mathbb{R}$ integrálható függvény. Ekkor az f integrálfüggvénye $F:[a,b]\mapsto\mathbb{R}$

$$F(x) = \int_{a}^{x} f(t) dt.$$

18.3. Integrálszámítás II. alaptétele

Adott függvény integrálfüggvénye folytonos. Ha f folytonos x_0 egy környezetében, akkor F differenciálható, és

$$F'(x_0) = f(x_0).$$

Bizonyítás

Tudjuk, hogy f korlátos, így legyen $|f(x)| \leq K$. Ekkor

$$|F(x) - F(x_0)| = \left| \int_{x_0}^x f(t) dt \right| \le K|x - x_0|$$

tehát F Lipschitz-folytonos, így folytonos is.

Legyen továbbá x_0 rögzített. Ekkor

$$F'(x_0) = \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\int_{x_0}^x f(t) dt}{x - x_0} = \lim_{\substack{x \to x_0 \\ \xi \in (x, x_0)}} f(\xi) = f(x_0).$$

18.4. Függvény gráf

Adott f függvény gráfja a $\{(x, f(x))|x \in D_f\}$ ponthalmaz.

Analízis I. 18. TÉTEL

18.4.1. Ívhossz

Adott $f:[a,b]\mapsto \mathbb{R}$ differenciálható függvény gráfjának hossza az [a,b] intervallumon

$$\int_a^b \sqrt{1 + \left(f'(t)\right)^2} \, \mathrm{d}t.$$

Bizonyítás

Vegyünk egy $\mathcal F$ felosztást. Ekkor az $[x_{k-1},x_k]$ intervallumokban becsülhetjük az ívhosszt , mint

$$s_k = \sqrt{(x_k - x_{k-1})^2 + (f(x_k) - f(x_{k-1}))^2}.$$

Továbbá a Lagrange-féle középérték-tétel miatt $\exists \xi_k \in (x_{k-1}, x_k)$, melyre

$$f(x_k) - f(x_{k-1}) = f'(\xi_k)(x_k - x_{k-1}).$$

Ekkor

$$s_k = \Delta x_k \sqrt{1 + \left(f'(\xi_k)\right)^2}.$$

Ekkor az ívhossz

$$S = \lim_{n \to \infty} \sum_{k=1}^{n} \Delta x_k \sqrt{1 + \left(f'(\xi_k)\right)^2} = \int_a^b \sqrt{1 + \left(f'(t)\right)^2} \, \mathrm{d}t.$$

18.5. Forgástest térfogata

Adott $f:[a,b]\mapsto\mathbb{R}^+$ differenciálható függvény x-tengely körüli megforgatásával nyert forgástest térfogata

$$\pi \int_a^b f^2(t) \, \mathrm{d}t \, .$$

Analízis I. 19. TÉTEL

19. Tétel

19.1. Helyettesítés integrálban, határozott alak

Adott $f:[a,b]\mapsto \mathbb{R}$ integrálható függvény, és $\varphi:[\alpha,\beta]\mapsto \mathbb{R}$ szigorúan monoton, differenciálható függvény, melyre

$$\varphi(\alpha) = a \qquad \varphi(\beta) = b.$$

Ekkor

$$\int f(\varphi(x))\varphi'(x) dx = \int f(t) dt \Big|_{t=\varphi(x)}$$
$$\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(t))\varphi'(t) dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t))\varphi'(t) dt.$$

19.2. Improprius integrál

Az $f \in \mathcal{R}^{loc}(I)$ függvény impr
prius értelemben integrálható, ha

$$\lim_{\substack{a \to \alpha \\ b \to \beta}} \int_a^b f(x) \, \mathrm{d}x = \int_\alpha^\beta f(x) \, \mathrm{d}x$$

határérték létezik, és véges.

19.2.1. Tulajdonságok

Az improprius integrál tulajdonságai megegyeznek a határozott integrál tulajdonságaival.

19.3. Hatványfüggvény integrálja a (0,1] intervallumon

Tudjuk, hogy a hatványfüggvény primitív függvénye

$$\int \frac{\mathrm{d}x}{x^{\alpha}} = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1. \end{cases}$$

1. $\alpha = 1$ esetén

$$\int_0^1 \frac{\mathrm{d}x}{x^\alpha} = \ln|x| \bigg|_0^1 = \infty.$$

2. $\alpha \neq 1$ esetén

$$\int_0^1 \frac{dx}{x^{\alpha}} = \frac{x^{1-\alpha}}{1-\alpha} \bigg|_0^1 = \begin{cases} \frac{1}{1-\alpha}, & 1-\alpha > 0\\ \infty, & 1-\alpha < 0. \end{cases}$$

Azt kaptuk tehát, hogy

$$\int_0^1 \frac{\mathrm{d}x}{x^\alpha} = \begin{cases} \frac{1}{1-\alpha}, & \alpha < 1\\ \infty, & \alpha \ge 1. \end{cases}$$

Analízis I. 20. TÉTEL

20. Tétel

20.1. Parciális integrálás

Adottak $f,g:[a,b]\mapsto\mathbb{R}$ differenciálható függvények. Ekkor

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

$$\int_a^b f'(x)g(x) dx = f(x)g(x) \bigg|_a^b - \int_a^b f(x)g'(x) dx.$$

20.1.1. Alapesetek

1.

$$\int \text{polinom} \cdot e^x \, \mathrm{d}x$$

Ekkor legyen $f'(x) = e^x$ és g(x) = polinom.

2.

$$\int \text{polinom} \cdot \begin{Bmatrix} \sin x \\ \cos x \\ \sin x \\ \cot x \end{Bmatrix} dx$$

Ekkor legyen f'(x) a trigonometrikus függvény és g(x) a polinom.

3.

$$\int e^x \cdot \begin{Bmatrix} \sin x \\ \cos x \end{Bmatrix} \mathrm{d}x$$

Ekkor legyen $f'(x) = e^x$ és $g(x) = \begin{cases} \sin x \\ \cos x \end{cases}$.

20.2. Hatványfüggvény integrálja az $[1,\infty)$ intervallumon

Tudjuk, hogy a hatványfüggvény primitív függvénye

$$\int \frac{\mathrm{d}x}{x^{\alpha}} = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1. \end{cases}$$

1. $\alpha = 1$ esetén

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \ln|x| \bigg|_{1}^{\infty} = \infty.$$

2. $\alpha \neq 1$ esetén

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{1}^{\infty} = \begin{cases} \infty, & 1-\alpha > 0\\ \frac{1}{\alpha-1}, & 1-\alpha < 0. \end{cases}$$

Azt kaptuk tehát, hogy

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \begin{cases} \infty, & \alpha \le 1\\ \frac{1}{\alpha - 1}, & \alpha > 1. \end{cases}$$

Analízis I. 20. TÉTEL

20.3. Majoráns és minoráns kritériumok

1. Minoráns kritérium

Adottak $f,g:I\mapsto \mathbb{R}$ függvények, melyekre

$$|g(x)| \le |f(x)|$$

teljesül $\forall x \in I$ esetén. Ekkor ha

$$\int_{I} g(x) \, \mathrm{d}x = \infty$$

akkor $\int_I f(x) dx$ végtelen.

2. Majoráns kritérium

Adottak $f,g:I\mapsto \mathbb{R}$ függvények, melyekre

$$0 \le |f(x)| \le g(x)$$

teljesül $\forall x \in I$ esetén. Ekkor ha

$$\int_{I} g(x) \, \mathrm{d}x < \infty$$

akkor $\int_I f(x) dx < \infty$.

20.4. Elégséges feltételek a hatványfüggvényhez kapcsolódóan

Adott $f:[a,\infty)\mapsto\mathbb{R}$ ahol a>0. Tegyük fel, hogy $\exists\alpha>1,c\in\mathbb{R}$, melyre

$$|f(x)| \le cx^{-\alpha}$$

teljesül $\forall x \geq a$ esetén. Ekkor $\int_a^\infty f(x) \, \mathrm{d}x$ létezik.

Analízis I. 21. TÉTEL

21. Tétel

21.1. Differenciálegyenlet értelmezése, megoldása

Azt mondjuk, hogy egy egyenlet differenciálegyenlet, ha az ismeretlen egy függvény, és az egyenletben szerepel ennek az ismeretlen függvénynek valamely deriváltja is. Tehát elsőrendű esetben egy y' = f(x, y) egyenlet y megoldását keressük.

21.2. Cauchy-feladat

Cauchy feladat, vagy kezdetiérték feladat során a differenciálegyenletnek azt a megoldását keressük, melyre

$$y(x_0) = y_0$$

ahol x_0 és y_0 adottak.

21.3. Fizikai példák

21.3.1. Növekedési folyamat

Tegyük fel, hogy y egy populáció nagysága, legyen továbbá a növekedés a populációval arányos, azaz y' = ay. Ekkor $y = ce^{ax}$, ahol x az időt jelöli. Ha adott kezdeti populáció $y(x_0) = y_0$, akkor $y = ce^{a(x-x_0)}$.

21.3.2. Robbanás egyenlete

Tegyük fel, hogy a növekedés arányos a populáció négyzetével, azaz $y'=ay^2$. Ekkor $y=\frac{1}{c-ax}$.

21.4. Szeparábilis differenciálegyenlet

Egy differenciálegyenlet szeparábilis, ha a jobboldala

$$f(x,y) = h(x)g(y)$$

vagy

$$f(x,y) = \frac{\alpha(x)}{\beta(y)}$$

alakú, azaz

$$y' = h(x)g(y)$$

vagy

$$y' = \frac{\alpha(x)}{\beta(y)}.$$

21.4.1. Megoldása

Legyen $y' = \frac{\alpha(x)}{\beta(y)}$, ebből $\beta(y)y' = \alpha(x)$, illetve $\int \beta(y) dy = \int \alpha(x) dx$. Legyen $B(y) = \int \beta(y) dy$ és $A(x) = \int \alpha(x) dx$. Azt kapjuk, hogy B(y) = A(x) + c, amiből y már meghatározható.

Analízis I. 22. TÉTEL

22. Tétel

22.1. Homogén lineáris DE általános megoldása

Legyen

y' = a(x)y

és legyen

 $A(x) = \int a(x) \, \mathrm{d}x.$

Ekkor

$$y(x) = ce^{A(x)}$$

valamilyen $c \in \mathbb{R}$ konstanssal.

Cauchy feladat esetén legyen

 $A(x) = \int_{x_0}^x a(t) \, \mathrm{d}t$

ebből

 $A(x_0) = 0.$

Így

$$y(x_0) = ce^{A(x_0)} = c \implies c = y_0.$$

Ekkor

$$y(x) = y_0 e^{\int_{x_0}^x a(t) dt}.$$

Bizonyítás

Formálisan felírhatjuk, hogy

$$\frac{y'}{y} = a(x) \implies \int \frac{\mathrm{d}y}{y} = \ln|y| = \int a(x) \,\mathrm{d}x = A(x) + c.$$

Ebből azonnal kapjuk, hogy

$$|y| = e^{A(x) + c}$$

azaz $y = ce^{A(x)}$.

22.2. Állandó együtthatós inhomogén LDE

Az inhomogén LDE y' = a(x)y + b(x) alakú. Állandó együtthatós inhomogén LDE esetén az a(x), b(x) függvények konstansok. Ekkor a megoldás $y = ce^{ax} - \frac{b}{a}$.

22.2.1. Inhomogén LDE, megoldások struktúrája

Adott y' = a(x)y + b(x) inhomogén LDE. Ha y_1, y_2 megoldások, akkor $y = y_1 - y_2$ megoldása az y' = a(x)y homogén LDE-nek. Ha y_1 megoldása a homogén LDE-nek és y_2 megoldása az inhomogén LDE-nek, akkor $y = y_1 + y_2$ megoldása az inhomogén LDE-nek.

22.2.2. Általános és partikuláris megoldás

Az előző alapján az inhomogén LDE általános megoldása előáll $y=y_h+y_p$ alakban, ahol $y_h=ce^{A(x)}$ az y'=a(x)y homogén LDE általános megoldása, y_p pedig az inhomogén LDE partikuláris megoldása.

Analízis I. 22. TÉTEL

22.3. Állandók variálása

Adott y'=a(x)y+b(x) inhomogén LDE és legyen $y_h=ce^{A(x)}$ a homogén megoldás. Keressük a partikuláris megoldást $y_p=u(x)e^{A(x)}$ alakban! Ekkor

$$u'(x)e^{A(x)} + u(x)a(x)e^{A(x)} = a(x)u(x)e^{A(x)} + b(x)$$

amiből $u'(x)e^{A(x)}=b(x)$, azaz $u(x)=\int b(x)e^{-A(x)}\,\mathrm{d}x$. Tehát az inhomogén LDE általános megoldása

$$y = ce^{A(x)} + e^{A(x)} \int b(x)e^{-A(x)} dx$$
.

2018. január 8. 20:06 Vághy Mihály

Analízis I. 23. TÉTEL

23. Tétel

23.1. Hatványsor

Hatványsoron egy

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

sort értünk, ahol x_0 rögzített valós szám.

23.2. Konvergenciahalmaz

Adott

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

hatványsor. Ennek konvergenciahalmaza

$$\mathcal{H} = \left\{ x \in \mathbb{R} \middle| \sum_{n=0}^{\infty} c_n (x - x_0)^n < \infty \right\}.$$

23.2.1. Jellemzés

- 1. $x_0 \in \mathcal{H}$.
- 2. Ha $\xi \in \mathcal{H},$ akkor $\forall x,$ melyre $|x-x_0|<|\xi|,\, x \in \mathcal{H}$ teljesül.
- 3. Ha $\eta\notin\mathcal{H},$ akkor $\forall x,$ melyre $|x-x_0|>|\eta|,\,x\notin\mathcal{H}$ teljesül.

Bizonyítás

- 1. Triviális.
- 2. Tudjuk, hogy $\sum_{n=0}^{\infty} c_n (\xi x_0)^n < \infty$. Ekkor a számsorok konvergenciájára vonatkozó szükséges feltétel miatt $\left(c_n (\xi x_0)^n\right)$ nullsorozat, azaz $\exists K$, melyre $\forall n \in \mathbb{N}$ esetén

$$\left| c_n (x - x_0)^n \right| < K.$$

Tudjuk továbbá, hogy $|x - x_0| < |\xi - x_0|$, azaz

$$\left| \frac{x - x_0}{\xi - x_0} \right| < 0.$$

Ekkor

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n = \sum_{n=0}^{\infty} c_n (\xi - x_0)^n \left(\frac{x - x_0}{\xi - x_0} \right)^n$$

így

$$\left| \sum_{n=0}^{\infty} c_n (\xi - x_0)^n \left(\frac{x - x_0}{\xi - x_0} \right)^n \right| \le \sum_{n=0}^{\infty} \left| c_n (\xi - x_0)^n \right| \left| \frac{x - x_0}{\xi - x_0} \right|^n < K \sum_{n=0}^{\infty} \left| \frac{x - x_0}{\xi - x_0} \right|^n.$$

Egy olyan végtelen mértani sort kaptunk, amelynek a kvóciensének abszolútértéke kisebb, mint 1. Emiatt a sor nyilván konvergens.

3. Tegyük fel, hogy $x \in \mathcal{H}$. Ekkor az előző tétel miatt $\eta \in \mathcal{H}$, azonban ez ellentmondás.

Analízis I. 23. TÉTEL

23.3. Konvergenciasugár

Adott hatványsor konvergenciasugara

$$\varrho := \sup \{|x - x_0| | x \in \mathcal{H} \}.$$

Ha $\mathcal{H} = \{x_0\}$, akkor $\varrho := 0$. Ha $\mathcal{H} = \mathbb{R}$, akkor $\varrho := \infty$.

23.4. Összegfüggvény tulajdonságai

23.4.1. Összegfüggvény folytonossága

Tegyük fel, hogy az $f_n:[a,b]\mapsto \mathbb{R}$ függvények folytonosak, továbbá a

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

egyenletesen konvergens. Ekkor $f:[a,b]\mapsto \mathbb{R}$ is folytonos.

23.4.2. Összefüggvény integrálhatósága

Tegyük fel, hogy az $f_n:[a,b]\mapsto\mathbb{R}$ függvényekre $f_n\in\mathcal{R}[\alpha,\beta]$, ahol $[\alpha,\beta]\subset[a,b]$, továbbá a

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

egyenletesn konvergens. Ekkor

$$\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\beta} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} f_n(x) dx.$$

23.4.3. Összegfüggvény deriválhatósága

Tegyük fel, hogy az $f_n:[a,b]\mapsto\mathbb{R}$ függvények differenciálhatóak, továbbá az

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

és

$$\sum_{n=1}^{\infty} f'_n(x) = g(x)$$

egyenletesen konvergensek. Ekkor g(x) = f'(x), azaz

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

23.5. Függvény előállítása hatványsorként

- 1. Tegyük fel, hogy f egy hatványsor összegeként reprezentálható. Ekkor az előállítás egyértelmű.
- 2. Ha

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

akkor

$$c_n = \frac{f^{(n)}(x_0)}{n!}.$$

Analízis I. 23. TÉTEL

23.6. Taylor sor

Legyen adott $f:[a,b]\mapsto \mathbb{R}$ függvény, mely egy $x_0\in (a,b)$ pontban végtelen sokszor differenciálható. Ekkor az f függvény x_0 körüli Taylor sora

$$T(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

23.6.1. Konvergencia feltétele

Tegyük fel, hogy az $f:(x_0-\varepsilon,x_0+\varepsilon)\mapsto \mathbb{R}$ függvény végtelen sokszor differenciálható függvény. Tegyük fel, hogy $\exists K$, melyre $\forall k$ és $\forall x\in(x_0-\varepsilon,x_0+\varepsilon)$ esetén

$$\left| f^{(k)}(x) \right| \le K$$

teljesül. Ekkor

$$f(x) = T(x)$$

teljesül $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ esetén.

Bizonyítás

Legyen

$$T(x) = \lim_{n \to \infty} \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Ekkor a Lagrange-féle maradéktagot használva

$$f(x) - T(x) = \lim_{n \to \infty} \left(f(x) - \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right) = \lim_{n \to \infty} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

ahol ξ x és x_0 között van. Ekkor azonban

$$\lim_{n \to \infty} \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right| = \lim_{n \to \infty} \left| f^{(n+1)}(\xi) \right| \frac{|x - x_0|^{n+1}}{(n+1)!} \le K \lim_{n \to \infty} \frac{r^{n+1}}{(n+1)!} = 0.$$

Ez azt jelenti, hogy T(x) egyenletesen konvergál f(x)-hez.

23.7. Speciális függvények Taylor sora

1.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

2.

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

3.

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$