Comparison of NEWUOA with Different Numbers of Interpolation Points on the BBOB Noisy Testbed

Raymond Ros TAO Team-Project – INRIA Saclay LRI, Bat 490, Univ. Paris-Sud F-91405 Orsay Cedex, France raymond.ros@inria.fr

ABSTRACT

In this paper, we study the performances of the NEW Unconstrained Optimization Algorithm (NEWUOA) with different numbers of interpolation points. NEWUOA is a trust region method, the number of points used to build the surrogate model is an input parameter of the algorithm. We compare the performances of NEWUOA using three different number of points in search spaces of dimension from two to forty on problems from the BBOB 2009 noisy function testbed. Using the maximum number of interpolation points grants the better results in this noisy setting.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization

1. INTRODUCTION

The NEWUOA, for NEW Unconstrained Optimization Algorithm was introduced in [5] as a method for unconstrained derivative-free optimization. NEWUOA is a trust-region method which uses m points to build a quadratic approximation of the objective function. The approximation is considered reliable within the radius of the current trust region. In this paper, we study the effect of the number of interpolation points m on the performances of NEWUOA on a testbed of noisy functions.

We use three different values for m which will be denoted **NEWUOA**, avg-NEWUOA and full-NEWUOA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'10, July 7–11, 2010, Portland, Oregon, USA. Copyright 2010 ACM 978-1-4503-0073-5/10/07 ...\$10.00. These variants are sorted by ascending numbers of interpolation points. The number of interpolation points of these variants depends on the dimension of the search space n. The variant denoted NEWUOA uses 2n+1 interpolation points as recommended in [5]. The avg-NEWUOA uses the rounded value of $\sqrt{(n+1/2)(n+1)(n+2)}$ interpolation points which is intermediate. The full-NEWUOA uses the maximum number $\frac{(n+1)(n+2)}{2}$. These three settings were already compared on a few test problems in [5].

The performances of the avg-NEWUOA are obtained on the BBOB 2009 testbed of noiseless functions. The avg-NEWUOA is successively compared to NEWUOA and full-NEWUOA. The performances of both NEWUOA and full-NEWUOA on the BBOB 2009 noiseless functions were presented in [7].

2. EXPERIMENTAL PROCEDURE

To benchmark the avg-NEWUOA, we use the exact same experimental procedure that was presented in [7]. In particular the algorithm uses an independent multi-start procedure, as do NEWUOA and full-NEWUOA. The crafting effort [3] is equal to ${\rm CrE}=0$ for all three variants of the NEWUOA.

3. RESULTS

Results of the CPU-timing experiments are given in the paper benchmarking NEWUOA with all three settings of m on the BBOB noiseless testbed submitted to the same workshop.

Results from experiments according to [3] on the benchmark functions given in [1, 4] are presented in this section. The Figures 1 and 2 and the Table 1 compare the avg-NEWUOA to NEWUOA. The Figures 3 and 4 and the Table 2 compare the avg-NEWUOA to full-NEWUOA. The expected running time (ERT), used in the figures and table, depends on a given target function value, $f_{\rm t} = f_{\rm opt} +$ $\Delta f_{\rm t}$, and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach f_t , summed over all trials and divided by the number of trials that actually reached f_t [3, 6]. Statistical significance is tested with the rank-sum test for a given target $\Delta f_{\rm t}$ (10⁻⁸ in Figure 1) using, for each trial, either the number of needed function evaluations to reach $\Delta f_{\rm t}$ (inverted and multiplied by -1), or, if the target was not reached, the best Δf -value achieved, measured only up to the smallest number of overall function evaluations for any unsuccessful trial under consideration.

The success probability of avg-NEWUOA reaching the precision 10^{-8} is only slightly larger than that of NEWUOA: in 5-D avg-NEWUOA is successful on 52 function instances (out of 450) in 5-D and NEWUOA only on 42; in 20-D avg-NEWUOA is successful on 30 function instances and NEWUOA only on 15. On functions f_{101} , f_{102} and f_{103} which both NEWUOA and avg-NEWUOA solve in 5-D, the NEWUOA is slower faster than avg-NEWUOA.

To reach the precision 10^{-8} , full-NEWUOA has the best success probability out of the three variants of NEWUOA: it solves 77 function instances in 5-D, 31 in 20-D. Also, the full-NEWUOA solves in 5-D the Rosenbrock function f_{106} and the Sphere function f_{109} , both with moderate Cauchy noise, whereas avg-NEWUOA does not.

In 20-D, the NEWUOA only solves the Sphere function with moderate noise. The full-NEWUOA solves the Sphere function with all three noise models and is the fastest out of the three NEWUOA variants. In 20-D again, avg-NEWUOA does not solve f_{103} , NEWUOA does not solve neither f_{102} nor f_{103} and is the slowest out of the three variants of NEWUOA on f_{101} .

Overall the full-NEWUOA variant which uses the largest number of interpolation points performs better than the avg-NEWUOA and the NEWUOA on the BBOB 2009 noisy testbed.

4. REFERENCES

 S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2010: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2010.

- [2] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [3] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.
- [4] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009. Updated February 2010.
- [5] M. J. D. Powell. The NEWUOA software for unconstrained optimization without derivatives. *Large* Scale Nonlinear Optimization, pages 255–297, 2006.
- [6] K. Price. Differential evolution vs. the functions of the second ICEO. In *Proceedings of the IEEE International* Congress on Evolutionary Computation, pages 153–157, 1997.
- [7] R. Ros. Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In F. Rothlauf, editor, GECCO (Companion), pages 2429–2434. ACM, 2009.

Figure 1: Ratio of the expected running times (ERT) of avg-NEWUOA divided by NEWUOA versus $\log_{10}(\Delta f)$ for $f_{101}-f_{130}$ in 2, 3, 5, 10, 20, 40-D. Ratios $< 10^0$ indicate an advantage of avg-NEWUOA, smaller values are always better. The line gets dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f-evaluations for the same algorithm on this function. Symbols indicate the best achieved Δf -value of one algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for avg-NEWUOA. The line ends when no algorithm reaches Δf anymore. The number of successful trials is given, only if it was in $\{1\dots 9\}$ for avg-NEWUOA (1st number) and non-zero for NEWUOA (2nd number). Results are statistically significant with p=0.05 for one star and $p=10^{-\#\star}$ otherwise, with Bonferroni correction within each figure.

Figure 2: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of necessary function evaluations divided by dimension D (FEvals/D) to reached a target value $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where $k \in \{1, -1, -4, -8\}$ is given by the first value in the legend, for avg-NEWUOA (solid) and NEWUOA (dashed). Light beige lines show the ECDF of FEvals for target value $\Delta f = 10^{-8}$ of all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of avg-NEWUOA divided by NEWUOA, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were solved in at least one trial (avg-NEWUOA first).

5-D 20-D

				J-1			•	Λ. ε	1 1 - 1 1	1-10	20- 1e-1	D 1e-3	1e-5	1e-7	Lu
$\frac{\Delta f}{\mathbf{f_{101}}}$	1e+1 11	1e+0	1e-1	1e-3 62	1e-5 69	1e-7 75	#succ 15/15	$\frac{\Delta f}{\mathbf{f_{101}}}$	1e+1 59	1e+0 361	513	700	739	783	#succ 15/15
0: NEW	2.5	1.6	2.1		3.0	3.1	15/15	0: NEW	3.1	1	1	1.1	1.5	1.6	15/15
1: AVG	2.9	1.5	1.6		1.5*	1.5*2	15/15	1: AVG f ₁₀₂	3.3	399	0.95 579	0.94 921	1.0*2	1.1 ^{*2}	15/15 15/15
f ₁₀₂ 0: NEW	11 6.3	35 6.0	50 7.0	72 20	86 33	99 41	$\frac{15}{15}$	0: NEW	2.9	6.1	6.3	45	∞	$\infty 1.0e5$	0/15
1: AVG	2.7	1.4	1.5	1.5*2	1.6*	2 1.5 ^{*2}	15/15	1: AVG	0.92	1.1	0.93*		³ 1.1* ³	1.3*3	15/15
f ₁₀₃	11 2.4	28 1.9	30 5.7	31	35 178	115 136	$\frac{15/15}{12/15}$	f ₁₀₃ 0: NEW	65 2.3	417 1	629 5.9	1313 1231	1893 ∞	$2464 \\ \infty 1.1e5$	$\frac{14/15}{0/15}$
0: NEW 1: AVG	2.4	1.6	3.6		42	34	$\frac{12}{15}$	1: AVG	3.0	0.95	2.0	655	∞	∞ 2.0e5	0/15
f ₁₀₄	173	773	1287	1768	2040	2284	15/15	f ₁₀₄	23690	85656	1.71e5	1.82e5	1.89e5		15/15
0: NEW 1: AVG	1.2 1.0	3.4 5.0	6.0 7.6		$_{20}^{\infty}$	∞ 2.7e4 24	$0/15 \\ 7/15$	0: NEW 1: AVG	68 11	∞ ∞	∞ ∞	∞ ∞	∞	$\infty 1.1e5$ $\infty 2.0e5$	$0/15 \\ 0/15$
f ₁₀₅	167	1436	5174	10388	10824	11202	15/15	f ₁₀₅	1.92e5		6.32e5	6.49e5	6.60e5	6.70e5	15/15
0: NEW	1.7	2.7	3.3		∞	$\infty 2.5e4$	0/15	0: NEW	∞ 7.2*3	∞ 3	∞	∞	∞	$\infty 9.4e4$ $\infty 2.0e5$	0/15
1: AVG f ₁₀₆	1.7 86	529	1.9	2666	46 2887	$\frac{\infty 3.4e4}{3087}$	$0/15 \\ 15/15$	1: AVG f106	11480	21668	∞ 23746	∞ 25470	∞ 26492		0/15 $15/15$
0: NEW	1	2.2	5.0	59	∞	∞ 3.3e4	0/15	0: NEW	7.0	31	∞	∞	∞	$\infty1.5e5$	0/15
1: AVG	0.91	1.5 228	2.4 453	9.1* 940	200* 1376	$\infty 4.1e4$ 1850	0/15	1: AVG	8.1 8571	$\frac{\infty}{13582}$	∞ 16226	$\frac{\infty}{27357}$	∞ 52486	$\infty 2.0e5$ 65052	0/15 $15/15$
f 107 0: NEW	60	228 194	453 ∞	940 ∞	∞	$\infty 2.3e4$	$\frac{15/15}{0/15}$	f 107 0: NEW	∞	∞	∞	∞	∞	∞ 7.8e4	0/15
1: AVG	68	317	∞	∞	∞	∞ 3.1e4	0/15	1: AVG	∞	∞	∞	∞	∞	$\infty 1.8e5$	0/15
f108 0: NEW	87 77	5144 64	14469 ∞	30935 ∞	58628 ∞	80667 $\infty 2.3e4$	$\frac{15/15}{0/15}$	f108 0: NEW	58063 ∞	97228 ∞	2.03e5 ∞	4.46e5 ∞	6.30e5 ∞	8.98e5 $\infty 7.8e4$	15/15 0/15
1: AVG	155	44	∞	∞	∞	∞ 3.1e4	0/15	1: AVG	8	∞	∞	∞	∞	∞ 1.8e5	0/15
f ₁₀₉	11	57	216	572	873	946	15/15	f ₁₀₉	333	632	1138	2287	3583	4952	15/15
0: NEW 1: AVG	4.8 4.3	13 3.6	83 26	∞	∞	∞ 2.3e4 ∞ 3.0e4	$0/15 \\ 0/15$	0: NEW 1: AVG	17 17	∞ ∞	∞	∞ ∞	∞	$\infty 8.4e4$ $\infty 1.9e5$	$0/15 \\ 0/15$
f ₁₁₀	949	33625	1.20e5	5.93e5	6.03e5	6.11e5	15/15	f ₁₁₀	∞	∞	∞	∞	∞	∞	0
0: NEW 1: AVG	$\frac{118}{241}$	10 ∞	∞	∞ ∞	∞	∞ 2.3e4 ∞ 3.1e4	$0/15 \\ 0/15$	0: NEW 1: AVG	∞ ∞	∞ ∞	∞	∞ ∞	∞ ∞	∞ ∞	$0/15 \\ 0/15$
f ₁₁₁	6856	6.12e5			3.10e7	3.13e7	3/15	f ₁₁₁	∞	∞	∞	∞	∞	∞	0/13
0: NEW	∞	∞	∞	∞	∞	∞ 2.3e4	0/15	0: NEW	∞	∞	∞	∞	∞	∞	0/15
1: AVG f ₁₁₂	∞ 107	$\frac{\infty}{1684}$	∞ 3421	∞ 4502	∞ 5132	$\infty 3.1e4$ 5596	0/15 = 15/15	1: AVG f ₁₁₂	∞ 25552	$-\infty$ 64124	$\frac{\infty}{69621}$	$\frac{\infty}{73557}$	$\frac{\infty}{76137}$	$\frac{\infty}{78238}$	0/15 $15/15$
0: NEW	1.9	7.7	105	∞	∞	$\infty 2.5e4$	0/15	0: NEW	∞	∞	∞	∞	∞	∞ 9.8e4	0/15
1: AVG	3.1	4.9	23 8081	∞ 24128	∞ 24128	$\infty 3.3e4$ 24402	0/15	1: AVG	∞	∞	∞	∞	∞	$\infty 2.0e5$ 5.91e5	0/15
f ₁₁₃ 0: NEW	133 13	1883 44	∞	∞	∞	$\infty 2.3e4$	$\frac{15/15}{0/15}$	f ₁₁₃ 0: NEW	50123 ∞	$3.64e5$ ∞	5.60e5 ∞	5.88e5 ∞	5.88e5 ∞	∞ 7.8e4	$\frac{15/15}{0/15}$
1: AVG	14	31	55	∞	∞	∞ 3.1e4	0/15	1: AVG	∞	∞	∞	∞	∞	$\infty 1.8e5$	0/15
f114 0: NEW	767 43	14720 ∞	56311 ∞	83272 ∞	83272 ∞	84949 $\infty 2.3e4$	$\frac{15/15}{0/15}$	f 114 0: NEW	2.08e5 ∞	1.12e6 ∞	1.45e6 ∞	1.57e6 ∞	1.57e6 ∞	$0.58e6 \\ 0.8e4$	$\frac{15/15}{0/15}$
1: AVG	74	∞	∞	∞	~	∞ 3.1e4	0/15	1: AVG	8	∞	∞	∞	∞	∞ 1.8e5	0/15
f ₁₁₅	64	485	1829	2550	2550	2970 ∞2.2e4	15/15	f ₁₁₅ 0: NEW	2405	30268	91749	1.27e5	1.27e5		15/15
0: NEW 1: AVG	2.9 1.1	14 4.2	42 28	∞	∞	∞ 2.2e4 ∞ 3.0e4	$0/15 \\ 0/15$	1: AVG	$\frac{236}{108}$	∞ ∞	∞ ∞	∞ ∞	∞	$\infty 8.5e4$ $\infty 1.9e5$	0/15 0/15
f ₁₁₆	5730	14472			30329	31661	15/15	f ₁₁₆	4.98e5		8.93e5	1.03e6	1.08e6		15/15
0: NEW 1: AVG	∞ ∞	∞	∞	∞	∞	∞ 2.3e4 ∞ 3.1e4	$0/15 \\ 0/15$	0: NEW 1: AVG	∞ ∞	∞ ∞	∞ ∞	∞	∞ ∞	∞ 7.7e4 ∞ 1.8e5	$0/15 \\ 0/15$
f ₁₁₇	26686			1.37e5	1.73e5		15/15	f ₁₁₇	1.79e6		2.60e6	2.91e6	3.24e6		15/15
0: NEW	∞	∞	∞	∞	∞	∞ 2.3e4	0/15	0: NEW	∞	∞	∞	∞	∞	∞ 7.7e4	0/15
1: AVG f ₁₁₈	$\frac{\infty}{429}$	$\frac{\infty}{1217}$	∞ 1555	∞ 1998	$\frac{\infty}{2430}$	$\infty 3.1e4$ 2913	$0/15 \\ 15/15$	1: AVG f ₁₁₈	∞ 6908	$\frac{\infty}{11786}$	$-\infty$ 17514	$\frac{\infty}{26342}$	$\frac{\infty}{30062}$	$\infty 1.8e5$ 32659	0/15 $15/15$
0: NEW	4.3	10	116	∞	∞	$\infty 2.6e4$	0/15	0: NEW	∞	∞	∞	∞	∞	$\infty 1.1e5$	0/15
1: AVG	1.8	8.3	64 1136	∞ 10372	∞ 35296	$\infty 3.4e4$	0/15	1: AVG	∞ 2771	$\frac{\infty}{29365}$	∞ 25020	∞ 4.11-5	∞	∞ 2.0e5	0/15 $15/15$
f 119 0: NEW	26	657 35	∞	∞	35296	49747 $\infty 2.3e4$	$\frac{15/15}{0/15}$	f 119 0: NEW	398	29365	35930 ∞	$4.11e5$ ∞	1.40e6 ∞	$0.0066 \times 7.8e4$	0/15
1: AVG	19	23	∞	∞	∞	∞ 3.1e4	0/15	1: AVG	∞	∞	∞	∞	∞	∞ 1.8e5	0/15
f 120 0: NEW	$\frac{16}{130}$	2900 55	18698 ∞	72438 ∞	3.33e5 ∞	5.48e5 $\infty 2.3e4$	$\frac{15/15}{0/15}$	f 120 0: NEW	36040 ∞	1.79e5 ∞	2.81e5 ∞	1.59e6 ∞	6.74e6 ∞	0.35e7 0.8e4	$\frac{13}{15}$
1: AVG	94	49	∞	∞	∞	∞ 2.3e4 ∞ 3.1e4	0/15	1: AVG	8 8	∞	∞	∞	∞	∞ 1.8e4 ∞ 1.8e5	0/15
f ₁₂₁	8.6	111	273	1583	3870	6195	15/15	f ₁₂₁	249	769	1426	9304	34434		15/15
0: NEW 1: AVG	4.8 4.3	15 3.3	$\frac{76}{45}$	∞	∞	∞ 2.2e4 ∞ 3.0e4	$0/15 \\ 0/15$	0: NEW 1: AVG	31 49	∞ ∞	∞	∞ ∞	∞	$\infty 8.0e4$ $\infty 1.8e5$	$0/15 \\ 0/15$
f ₁₂₂	10	1727	9190	30087	53743	1.11e5	15/15	f ₁₂₂	692	52008	1.40e5	7.93e5	2.00e6	5.82e6	15/15
0: NEW 1: AVG	14 6.1	91 34	∞	∞	∞ ∞	∞ 2.3e4 ∞ 3.1e4	$0/15 \\ 0/15$	0: NEW 1: AVG	82 125	∞ ∞	∞	∞	∞ ∞	∞ 7.8e4 ∞ 1.8e5	0/15 0/15
f ₁₂₃	11			3.36e5	6.71e5	2.22e6	15/15	f ₁₂₃	1063	5.30e5	1.49e6	5.29e6	2.71e7		0
0: NEW	65	∞	∞	∞	∞	∞ 2.3e4	0/15	0: NEW	174	∞	∞	∞	∞	∞ 7.8e4	0/15
1: AVG f ₁₂₄	80 10	∞ 202	$\frac{\infty}{1040}$	∞ 20478	$\frac{\infty}{45337}$	$\infty 3.1e4$ 95200	$0/15 \\ 15/15$	1: AVG f ₁₂₄	$\frac{405}{192}$	$\frac{\infty}{1959}$	∞ 40840	∞ 1.27e5	∞ 3.89e5	$\infty 1.8e5$ 7.99e5	0/15 15/15
0: NEW	3.0	158	∞	∞	∞	∞ 2.2e4	0/15	0: NEW	91	∞	∞	∞	∞	∞ 7.8e4	0/15
1: AVG	6.1	89	$\frac{\infty}{1}$	∞ $2.39e5$	∞ $2.43e5$	$\infty 2.9e4$ 2.46e5	0/15	1: AVG	95 1	∞ 1	∞ 1	∞ $2.50e7$	∞ 8.03e7	$\infty 1.8e5$ 8.06e7	0/15 4/15
f ₁₂₅ 0: NEW	3.9		1 6088	2.39e5 ∞	2.43e5 ∞	2.46e5 $\infty 2.3e4$	$\frac{15/15}{0/15}$	f ₁₂₅ 0: NEW	1	414	∞	2.50e7 ∞	8.03e7 ∞	∞ 7.8e4	0/15
1: AVG	2.0	81	9966	∞	∞	∞ 3.1e4	0/15	1: AVG	1	493	∞	∞	∞	$\infty 1.8e5$	0/15
f 126 0: NEW	1	1 1053	1 3.47e5	∞ ∞	∞ ∞	∞ ∞	0 0/15	f ₁₂₆	1	1 1.32e5*	2 20	∞	∞	∞	0 /15
1: AVG			4.54e5		∞	∞	0/15	0: NEW 1: AVG		1.32e5 ^ · · · · · · · · · · · · · · · · · ·	⁺ ∞ ∞	∞ ∞	∞	∞ ∞	$0/15 \\ 0/15$
f ₁₂₇	1	1	1		3.89e5		15/15	f ₁₂₇	1	1	1	4.43e6	7.27e6	7.43e6	15/15
0: NEW 1: AVG	$\frac{2.5}{2.0}$		$7248 \\ 5233$	∞	∞	∞ 2.2e4 ∞ 2.9e4	$0/15 \\ 0/15$	0: NEW 1: AVG	3.7 7.7	253 219	∞	∞ ∞	∞ ∞	∞ 7.8e4 ∞ 1.8e5	$0/15 \\ 0/15$
f128	111	4248	7808	12447	17217	21162	15/15	f ₁₂₈	1.40e5		1.72e7	1.72e7		1.72e7	9/15
0: NEW	12 11	17 9.3	43 7.5	∞ ~	∞ ∞	∞ 2.3e4 ∞ 3.1e4	0/15	0: NEW	∞	∞	∞	∞	∞	∞ 7.8e4	0/15
1: AVG f ₁₂₉	64			2.85e5			$0/15 \\ 15/15$	1: AVG f ₁₂₉	∞ 7.81e6	$\frac{\infty}{4.13e7}$	∞ 4.15e7	$\frac{\infty}{4.18e7}$	∞ $4.21e7$	$\infty 1.8e5$ $4.24e7$	0/15 5/15
0: NEW	124	16	∞	∞	∞	∞ 2.3e4	0/15	0: NEW	∞	∞	∞	∞	∞	∞ 7.8e4	0/15
1: AVG f ₁₃₀	68 55	20 812	∞ 3034	∞ 32823	$\frac{\infty}{33889}$	$\infty 3.1e4$ 34528	0/15 $10/15$	1: AVG	∞ 4904	∞ 93149	∞ $2.52e5$	∞ $2.54e5$	∞ 2.55e5	$\infty 1.8e5$ 2.57e5	0/15 7/15
0: NEW	2.3	11	10	∞	∞	∞ 2.2e4	0/15	f 130 0: NEW	9.1	93149 ∞	2.52e5 ∞	2.54e5 ∞	2.55es ∞	0.2.57e5 0.8.0e4	0/15
1: AVG	1.3	6.4	5.9	3.0	∞	∞ 3.0e4	0/15	1: AVG	6.6	∞	∞	∞	∞	$\infty1.8e5$	0/15
n •	1	c	c	4	1-		1::	dod by	. 41	L4 T	ъπ.			1	. DD

Table 1: ERT in number of function evaluations divided by the best ERT measured during BBOB-2009 (given in the respective first row) for different Δf values for functions $f_{101}-f_{130}$. #succ is the number of trials that reached the final target $f_{\rm opt}+10^{-8}$. 0: NEW is NEWUOA and 1: AVG is avg-NEWUOA. #succ is the number of trials that reached the final target $f_{\rm opt}+10^{-8}$. 0: NEW is NEWUOA and 1: AVG is avg-NEWUOA. Bold entries are statistically significantly better compared to the other algorithm, with p=0.05 or $p=10^{-k}$ where k>1 is the number following the \star symbol, with Bonferroni correction of 60.

Figure 3: Ratio of the expected running times (ERT) of avg-NEWUOA divided by full-NEWUOA versus $\log_{10}(\Delta f)$ for $f_{101}-f_{130}$ in 2, 3, 5, 10, 20, 40-D. Ratios $<10^0$ indicate an advantage of avg-NEWUOA, smaller values are always better. The line gets dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f-evaluations for the same algorithm on this function. Symbols indicate the best achieved Δf -value of one algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for avg-NEWUOA. The line ends when no algorithm reaches Δf anymore. The number of successful trials is given, only if it was in $\{1\dots 9\}$ for avg-NEWUOA (1st number) and non-zero for full-NEWUOA (2nd number). Results are statistically significant with p=0.05 for one star and $p=10^{-\#\star}$ otherwise, with Bonferroni correction within each figure.

Figure 4: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of necessary function evaluations divided by dimension D (FEvals/D) to reached a target value $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where $k \in \{1, -1, -4, -8\}$ is given by the first value in the legend, for avg-NEWUOA (solid) and full-NEWUOA (dashed). Light beige lines show the ECDF of FEvals for target value $\Delta f = 10^{-8}$ of all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of avg-NEWUOA divided by full-NEWUOA, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were solved in at least one trial (avg-NEWUOA first).

5-D 20-D

Δf	1e+1	1e+0	1e-1	1e-3	1e-5	1e-7	#succ	Δf	1e+1	1e+0	20-D 1e-1	1e-3	1e-5	1e-7	#succ
f ₁₀₁ 0: FUL	11 3.3	37 1.3	44 1.3*		69 1*3	75 1*3	15/15 $15/15$	f ₁₀₁ 0: FUL	59 5.8	361 1.7	513 1.3	700 1	739 1	783 1	$\frac{15}{15}$
1: AVG f ₁₀₂	2.9	1.5 35	1.6 50	72	1.5 86	99	$\frac{15/15}{15/15}$	1: AVG f ₁₀₂	3.3 ^{*3} 231	1.2*3 399	0.95*3 579	0.94 921	1.0 1157	1.1 1407	$\frac{15/15}{15/15}$
0: FUL 1: AVG	$\frac{3.2}{2.7}$	$\frac{1.4}{1.4}$	1.2 1.5	1*2 1.5	1*2 1.6	1*2 1.5	$\frac{15}{15}$	0: FUL 1: AVG	1.6 0.92*		1.3 0.93*2	1 0.88	1 1.1	1 1.3	$\frac{15}{15}$
f 103 0: FUL	11 2.8	28 1.6	30 1.8	31 2.6*2	35 2.4*	115 3 4.8 *	15/15 $15/15$	f₁₀₃ 0: FUL	65 5.2	417 1.5	629 1.1	1313 7.8* ²	1893 2 97 *3	2464 554 *3	$\frac{14/15}{1/15}$
1: AVG f ₁₀₄	2.5 173	1.6 773	3.6 1287	1768	2040	34 2284	$\frac{15/15}{15/15}$	1: AVG	3.0 ^{*3} 23690	0.95 ^{*3} 85656	2.0 1.71e5	655 1.82e5	∞	$\infty2.0e5$	0/15 15/15
0: FUL 1: AVG	1.1	1.8 5.0	1. 7 ³		1.3* ²	2 1.2 ^{*2} 24	15/15 7/15	f 104 0: FUL 1: AVG	20	∞ ∞	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 2.0e5$	0/15 0/15
f ₁₀₅ 0: FUL	167 1.7	1436 1.6	5174 4.5	10388 31	10824 ∞	11202 ∞4.6e4	15/15 0/15	f ₁₀₅ 0: FUL	1.92e5 7.2	6.11e5 ∞	6.32e5 ∞	6.49e5 ∞			15/15 0/15
1: AVG	1.7	2.4 529	1.9	14 2666	46 2887	$\frac{3087}{3087}$	0/15	1: AVG	7.2	∞ ∞ 21668	∞ 23746	∞ 25470	∞ 26492	$\infty2.0e5$	0/15
f ₁₀₆ 0: FUL 1: AVG	1.1	1	1 2.4	3.1	18 200	31 ∞4.1e4	5/15 0/15	f 106 0: FUL 1: AVG	3.3	12 ∞	28 ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 2.0e5$	0/15 0/15
f ₁₀₇ 0: FUL	40 85	228 247	453 1373	940 ∞	1376 ∞	1850 ∞4.2e4	15/15 0/15	f ₁₀₇ 0: FUL	8571 ∞	13582 ∞	16226 ∞	27357 ∞	52486 ∞	65052 $\infty 2.0e5$	15/15 0/15
1: AVG	68	317 5144	∞	~	∞	∞ 3.1e4	0/15	1: AVG	∞	∞	∞	∞	∞	$\infty1.8e5$	0/15
f108 0: FUL 1: AVG	87 78 155	∞ 44	14469 ∞ ∞	30935 ∞ ∞	58628 ∞ ∞	80667 $\infty 4.3e4$ $\infty 3.1e4$	0/15 0/15 0/15	f ₁₀₈ 0: FUL 1: AVG	58063 ∞ ∞	97228 ∞ ∞	2.03e5 ∞ ∞	4.46e5 ∞ ∞	∞ ∞	8.98e5 0.0e5 0.0e5	$0/15 \ 0/15 \ 0/15$
f ₁₀₉	11	57	216	572	873 22*3	946 20*3	15/15	f ₁₀₉	333	632	1138	2287	3583	4952	15/15
0: FUL 1: AVG	5.6 4.3	5.0 3.6	26	21 ^{⋆3} ∞	∞	∞ 3.0e4	$\frac{12/15}{0/15}$	0: FUL 1: AVG	23 17	∞ ∞	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 1.9e5$	0/15 0/15
f ₁₁₀ 0: FUL	949 144	33625 ∞	1.20e5 ∞	5.93e5 ∞	6.03e5 ∞	∞ 4.2e4	15/15 0/15	f110 0: FUL 1: AVG	∞	∞ ∞	∞	∞	∞	∞	0/15
f_{111}	6856	6.12e5	∞ $8.83e6$	∞ $2.30e7$	∞ $3.10e7$		3/15	f ₁₁₁	∞	∞ ∞	∞	∞	∞	∞	0/15
0: FUL 1: AVG	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ 4.2e4 ∞ 3.1e4	$0/15 \ 0/15$	0: FUL 1: AVG	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	0/15 0/15
f ₁₁₂ 0: FUL	107	1684 6.3	3421 18	$^{4502}_{\infty}$	5132 ∞	5596 $\infty 4.3e4$	15/15 0/15	f ₁₁₂ 0: FUL	25552 ∞	64124 ∞	69621 ∞	73557 ∞	76137 ∞	$\infty2.0e5$	0/15
1: AVG f ₁₁₃	3.1 133	4.9 1883	23 8081	$\frac{\infty}{24128}$	$\frac{\infty}{24128}$	∞ 3.3e4 24402	0/15 $15/15$	1: AVG f ₁₁₃	$\frac{\infty}{50123}$	$\frac{\infty}{3.64e5}$	$\frac{\infty}{5.60 \mathrm{e}5}$	$\frac{\infty}{5.88e5}$			0/15
0: FUL 1: AVG	19 14	57 31	∞ 55	∞ ∞	∞ ∞	∞ 4.2e4 ∞ 3.1e4	$0/15 \ 0/15$	0: FUL 1: AVG	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15 0/15
f ₁₁₄ 0: FUL	767 60	14720 ∞	56311 ∞	83272 ∞	83272 ∞	$84949 \\ \infty 4.2e4$	$\frac{15}{15}$	f ₁₁₄ 0: FUL	2.08e5 ∞	$1.12e6$ ∞	1.45e6 ∞	1.57e6 ∞	∞	$\infty2.0e5$	0/15
1: AVG f₁₁₅	74 64	$\frac{\infty}{485}$	$\frac{\infty}{1829}$	$\frac{\infty}{2550}$	∞ 2550	$\infty 3.1e4$ 2970	$0/15 \over 15/15$	1: AVG	2405	$\frac{\infty}{30268}$	$\frac{\infty}{91749}$	$\frac{\infty}{1.27e5}$			0/15
0: FUL 1: AVG	1 1.1	2.8 4.2	17 28	∞ ∞	∞ ∞	∞ 4.0e4 ∞ 3.0e4	$0/15 \\ 0/15$	0: FUL 1: AVG	116 108	∞ ∞	∞ ∞	∞ ∞	∞	$\infty 2.0e5$ $\infty 1.9e5$	0/15 0/15
f116 0: FUL	5730 ∞	14472 ∞	22311 ∞	26868 ∞	30329 ∞	31661 $\infty 4.2e4$	$\frac{15/15}{0/15}$	f116 0: FUL	4.98e5 ∞	$6.94e5$ ∞	$8.93e5$ ∞	1.03e6 ∞	∞	$\infty 2.0e5$	15/15 0/15
1: AVG f₁₁₇	$\frac{\infty}{26686}$		∞ 1.10e5	$\frac{\infty}{1.37e5}$	∞ 1.73e5		$0/15 \over 15/15$	1: AVG f ₁₁₇	∞ 1.79e6	$\frac{\infty}{2.46e6}$	$\frac{\infty}{2.60e6}$	$\frac{\infty}{2.91e6}$			0/15
0: FUL 1: AVG	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ 4.2e4 ∞ 3.1e4	$0/15 \ 0/15$	0: FUL 1: AVG	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15 0/15
f ₁₁₈ 0: FUL	429 1.3	1217 5.9	1555 70	1998 ∞	2430 ∞	2913 $\infty 4.3e4$	$\frac{15/15}{0/15}$	f118 0: FUL	6908 ∞	11786 ∞	17514 ∞	26342 ∞	30062 ∞	$\infty2.0e5$	15/15 0/15
1: AVG f ₁₁₉	1.8	8.3 657	64 1136	$\frac{\infty}{10372}$	$\frac{\infty}{35296}$	$\infty 3.4e4$ 49747	0/15 $15/15$	1: AVG f ₁₁₉	2771	$\frac{\infty}{29365}$	$\frac{\infty}{35930}$	$\frac{\infty}{4.11e5}$			0/15
0: FUL 1: AVG	12 19	22 23	261 ∞	∞ ∞	∞ ∞	∞ 4.2e4 ∞ 3.1e4	$0/15 \ 0/15$	1: AVG	1046 ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15
f 120 0: FUL	$\frac{16}{151}$	2900 63	18698 ∞	72438 ∞	3.33e5 ∞	5.48e5 $\infty 4.3e4$	$\frac{15}{15}$	f ₁₂₀ 0: FUL	36040 ∞	$1.79e5$ ∞	$2.81e5$ ∞	1.59e6 ∞	∞	$\infty2.0e5$	13/15 0/15
1: AVG f ₁₂₁	94 8.6	49 111	$\frac{\infty}{273}$	$\frac{\infty}{1583}$	$\frac{\infty}{3870}$	$\infty 3.1e4$ 6195	$\frac{0/15}{15/15}$	1: AVG	249	$\frac{\infty}{769}$	$\frac{\infty}{1426}$	$\frac{\infty}{9304}$	$\frac{\infty}{34434}$	∞1.8e5 57404	0/15
0: FUL 1: AVG	3.2 4.3	10 3.3	33 45	∞ ∞	∞ ∞	∞ 4.0e4 ∞ 3.0e4	$0/15 \ 0/15$	0: FUL 1: AVG	73 49	∞ ∞	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15 0/15
f ₁₂₂ 0: FUL	10 30	1727 110	9190 ∞	0087	53743 ∞	1.11e5 ∞4.2e4	15/15 0/15	6122 0: FUL	692 182	52008 ∞	1.40e5 ∞	7.93e5 ∞	∞	$\infty2.0e5$	0/15 0/15
1: AVG f 123	6.1	34 16066	81505	∞ 3.36e5	6.71e5		0/15 $15/15$	1: AVG f ₁₂₃	1063	$\frac{\infty}{5.30e5}$	$\frac{\infty}{1.49e6}$	5.29e6			0/15
0: FUL 1: AVG	113 80	18 ∞	∞ ∞	∞ ∞	∞ ∞	∞ 4.3e4 ∞ 3.1e4	$0/15 \ 0/15$	0: FUL 1: AVG	248 405	∞ ∞	∞ ∞	∞ ∞	∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15
f ₁₂₄ 0: FUL	10 5.3	202 45	1040 ∞	20478 ∞	45337 ∞	$95200 \\ \infty 3.9e4$	15/15 0/15	f ₁₂₄ 0: FUL 1: AVG		1959 ∞	40840 ∞	1.27e5 ∞	∞	$\infty 2.0e5$	15/15 0/15
1: AVG f ₁₂₅	6.1	89	1	∞ $2.39e5$	∞ $2.43e5$		0/15	f ₁₂₅	1	1	1			∞1.8e5 8.06e7	0/15 4/15
0: FUL 1: AVG	3.9 2.0	26 81	5566 9966	∞ ∞	∞ ∞	∞ 4.2e4 ∞ 3.1e4	$0/15 \ 0/15$	0: FUL 1: AVG	1.7	856 493	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15 0/15
f ₁₂₆ 0: FUL		1 1743	1 ∞	∞ ∞	∞	∞ ∞	0 0/15	f126 0: FUL		1 ∞ 2.60∘6	1 ∞	∞ ∞	∞	∞ ∞	0/15
1: AVG f127	1	1636	4.54e5	∞ $3.42e5$			0/15	1: AVG f ₁₂₇	1	2.60e6 1	1			∞ 3 7.43e6	0/15
0: FUL 1: AVG	4.1 2.0	18*	10666 5233	∞ ∞	∞ ∞	∞ 3.9e4 ∞ 2.9e4	0/15 0/15	0: FUL 1: AVG	7.7	1360 219*2	∞ ∞	∞ ∞	∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15
f ₁₂₈ 0: FUL	111 15	4248 11	7808 36	12447 ∞	17217 ∞	21162 ∞4.2e4	15/15 0/15	f ₁₂₈ 0: FUL	1.40e5 ∞	$1.34\mathrm{e}7$ ∞	1.72e7 ∞	∞	∞	1.72e7 ∞2.0e5	9/15 0/15
1: AVG f ₁₂₉	64	9.3	7.5 59443	∞ $2.85e5$			0/15	1: AVG f ₁₂₉	$\frac{\infty}{7.81e6}$	$\frac{\infty}{4.13 \mathrm{e}7}$	$\frac{\infty}{4.15 \mathrm{e}7}$			∞ 1.8e5 4.24e7	5/15
1: AVG	68	58 20	∞ ∞	∞ ∞	∞ ∞	∞ 4.3e4 ∞ 3.1e4	0/15 0/15	0: FUL 1: AVG	∞ ∞	∞ ∞	∞ ∞	∞ ∞	∞ ∞	$\infty 2.0e5$ $\infty 1.8e5$	0/15 0/15
f130 0: FUL	55 3.0	812 7.0	3034	32823 2.4	33889 ∞	34528 $\infty 4.0e4$	10/15 0/15	f130 0: FUL	4904 19	93149 ∞	$2.52e5$ ∞	∞	∞	2.57e5 ∞2.0e5	7/15 0/15
1: AVG	1.3	6.4	5.9	3.0	∞	∞3.0e4	0/15	1: AVG	-	∞ the bea	∞ 4 DD	∞ 	∞	∞ 1.8e5	0/15

Table 2: ERT in number of function evaluations divided by the best ERT measured during BBOB-2009 (given in the respective first row) for different Δf values for functions $f_{101}-f_{130}$. #succ is the number of trials that reached the final target $f_{\rm opt}+10^{-8}$. 0: FUL is full-NEWUOA and 1: AVG is avg-NEWUOA. #succ is the number of trials that reached the final target $f_{\rm opt}+10^{-8}$. 0: FUL is full-NEWUOA and 1: AVG is avg-NEWUOA. Bold entries are statistically significantly better compared to the other algorithm, with p=0.05 or $p=10^{-k}$ where k>1 is the number following the \star symbol, with Bonferroni correction of 60.