## Tsinghua-Berkeley Shenzhen Institute Information Theory and Statistical Learning Fall 2020

## Problem Set 4

**Issued:** Monday 16<sup>th</sup> November, 2020 **Due:** Monday 30<sup>th</sup> November, 2020

**Notations**: We use x, y, w and  $\underline{x}, y, \underline{w}$  to denote random variables and random vectors.

- 4.1. Please review Chapter 12 in Cover's book, then you can get some ideas on how to find the K-L divergence in Sanov's Theorem. Let  $x_i$  be i.i.d.  $\sim \mathcal{N}(0, \sigma^2)$ :
  - (a) Find the behavior of  $-\frac{1}{n}\log \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}\mathsf{x}_{i}^{2}\geq\alpha^{2}\right)$ . This can be done from the first principles (since the normal distribution is nice) or by using Sanov's theorem.
  - (b) What does the data look like if  $\frac{1}{n}\sum_{i=1}^{n}\mathsf{x}_{i}^{2}\geq\alpha^{2}$ . That is, what is the distribution that minimizes the K-L divergence in the Sanov's theorem.
- 4.2. We hope to derive an asymptotic value of  $\binom{n}{k}$ .
  - (a) Firstly, let's prove the lemma about Stirling's approximation of factorials, which we have used before.  $\left(\frac{n}{e}\right)^n \leq n! \leq n \left(\frac{n}{e}\right)^n$

Please justify the following steps:

$$\ln(n!) = \sum_{i=2}^{n-1} \ln i + \ln n \le \cdots$$

$$\ln(n!) = \sum_{i=1}^{n} \ln i \ge \cdots$$

(b) If  $0 , and <math>k = \lfloor np \rfloor$ , i.e., k is the largest integer less than or equal to np, then please find

$$\lim_{n \to \infty} \frac{1}{n} \log \binom{n}{k}$$

Could you explain it without Stirling's Approximation?

Now let  $p_i$ 's be a probability distribution on m symbols. Guess what is

$$\lim_{n \to \infty} \frac{1}{n} \log \left( \lfloor np_1 \rfloor \lfloor np_2 \rfloor \cdots \lfloor np_{m-1} \rfloor \left( n - \sum_{i=1}^{m-1} \lfloor np_i \rfloor \right) \right)$$

4.3. Consider the set of distributions on  $\Omega = \{0, 1, 2\}$  and note that they lie on the 2-simplex

$${p = (p_0, p_1, p_2) : p_0 + p_1 + p_2 = 1, p_0 \ge 0, p_1 \ge 0, p_2 \ge 0}$$

represented by the triangular figure. Let y be a random variable such that  $p_{y}(i) = p_{i}, i \in \{0, 1, 2\}$ . Let q = (1/6, 1/6, 2/3) be a particular probability mass function.



- (a) Draw on the simplex the linear family corresponding to the expectation  $\mathbb{E}[y] = 0$ , i.e. draw  $\mathcal{L}_0 = \{p : \mathbb{E}_p[y] = 0\}$ .
- (b) Draw  $\mathcal{L}_{1/2} = \{p : \mathbb{E}_p[y] = 1/2\}$
- (c) Specify the exponential family  $\mathcal{E}$  that passes through q and is orthogonal to  $\mathcal{L}_{1/2}$ , and draw the entire family on the 2-simplex.

Hint: Remember we introduced two versions of the exponential family, which are Lagrange-Multiplier induced one and parameterized one. You might be confused when you are facing cardinality-3 distributions, especially the Lagrange-Multiplier induced one. It is good if you can think about the equivalency of the two versions. Let's do the problem firstly under the parameterized version.

That is  $\mathcal{E} = \{\tilde{q} : \tilde{q} = qe^{sf(y)-\alpha(s)}\}$ . Following the definition above, f(y) = y.

- (d) Calculate the I-projection  $p^*$  of q onto  $\mathcal{L}_{1/2}$  and mark it on the simplex.
- (e) Draw  $\mathcal{P} = \{p : \mathbb{E}_p[\mathsf{y}] \le 1/2\}.$
- (f) Calculate the I-projection  $p^*$  of q onto  $\mathcal{P}$  and mark it. Hint:  $D(\cdot||q)$  is convex in its first argument.
- 4.4. Let q(y) > 0  $(y = 0, 1, \cdots)$  be a probability mass function for a random variable y and let  $\mathcal{P}$  be the set of all PMFs defined over  $\{0, \cdots, M-1\}$  for a known constant  $\underline{M}$ :

$$\mathcal{P} \triangleq \{ p : p(y) = 0, \ \forall y \ge M \}.$$

We can represent each element p of  $\mathcal{P}$  as a M-dimensional vector  $[p_0, \cdots, p_{M-1}]^{\mathrm{T}}$  that lies on a (M-1)-dimensional simplex, i.e.,  $\sum_{m=0}^{M-1} p_m = 1$ .

- (a) Show that, for all  $p \in \mathcal{P}$ ,  $D(q||p) = \infty$
- (b) Show that, for all  $p \in \mathcal{P}$ ,  $D(p||q) < \infty$
- (c) Find the I-projection of q onto  $\mathcal{P}$ ,  $p^* = \arg\min_{p \in \mathcal{P}} D(p||q)$ , and the corresponding divergence  $D(p^*||q)$  in terms of  $Q(y) \triangleq \mathbb{P}(\mathsf{y} \leq y)$ , the CDF of the random variable  $\mathsf{y}$ .

Let  $\mathcal{P}_{\epsilon}$  be the space of all PMFs with weight of  $\epsilon$  on values M and above:

$$\mathcal{P}_{\epsilon} \triangleq \left\{ p : \sum_{y=M}^{\infty} p(y) = \epsilon \right\}$$

We can think of  $\mathcal{P}_{\epsilon}$  as an extension of  $\mathcal{P}$  to the distributions defined for all integers that only allows limited weight to be allocated to the values outside  $\{0, \dots, M-1\}$ .

- (d) Find the I-projection of q onto  $\mathcal{P}_{\epsilon}$ ,  $p_{\epsilon}^{\star} = \arg\min_{p \in \mathcal{P}_{\epsilon}} D(p||q)$  and the corresponding divergence  $D(p_{\epsilon}^{\star}||q)$  in terms of Q(y). Show that  $\lim_{\epsilon \to 0} D(p_{\epsilon}^{\star}||q) = D(p^{\star}||q)$ .
- (e) Show that  $\mathcal{P}_{\epsilon}$  can be represented as a linear family of PMFs.
- (f) Show that  $p_{\epsilon}^{\star}$  belongs to an exponential family through q and find the value of the parameter that corresponds to  $p_{\epsilon}^{\star}$ .
- 4.5. Joint Gaussian Distribution. Suppose  $\underline{x} = (x_1, x_2)^T$  is a Gaussian random vector with  $\underline{\mathbb{E}}[x_1] = \underline{\mathbb{E}}[x_2] = 0$ ,  $var(x_1) = var(x_2) = \sigma^2$ , and  $\rho_x \triangleq \rho(x_1, x_2)$  denoting the correlation coefficient between  $x_1$  and  $x_2$ . Let  $\underline{y} = (y_1, y_2)^T \triangleq \mathbf{A}\underline{x}$ , where

$$\mathbf{A} = \left[ \begin{array}{cc} 1 & -\rho_{\mathsf{x}} \\ 0 & 1 \end{array} \right].$$

Then, y is also a Gaussian random vector, since it is a linear transformation of  $\underline{\mathbf{x}}$ .

- (a) Calculate  $\mathbf{K}_{\mathsf{x}} \triangleq \operatorname{cov}(\underline{\mathsf{x}})$  and  $\mathbf{K}_{\mathsf{y}} \triangleq \operatorname{cov}(\mathsf{y})$ .
- (b) Prove that  $\rho(y_1, g(y_2)) = 0$ , for all functions  $g(\cdot)$ . Hint: First prove that  $y_1 \perp y_2$ .
- (c) Prove that  $\mathbb{E}[(\mathsf{x}_1 \rho_\mathsf{x} \mathsf{x}_2)^2] \leq \mathbb{E}[(\mathsf{x}_1 g(\mathsf{x}_2))^2]$ , for all functions  $g \colon \mathbb{R} \to \mathbb{R}$ . Hint: Rewrite the inequality using  $\mathsf{y}_1$  and  $\mathsf{y}_2$ .
- 4.6. Mathematical expectation and variance in estimation. Suppose we want to estimate the value of y using an estimator  $\hat{y}$ , and using its MSE (Mean Square Error) to evaluate the goodness of estimate, defined as

$$MSE(\hat{y}) \triangleq \mathbb{E}[(y - \hat{y})^2].$$

The estimator  $\hat{y}$  could be chosen from a set  $\mathcal{A}$ , and our goal is to find the best estimator in  $\mathcal{A}$  which achieves the least MSE. Then the best estimator is called the MMSE (Minimum Mean Square Error) estimator.

- (a) Assume we want to use a real number to estimate y, i.e.,  $A = \mathbb{R}$ .
  - i. Prove that  $\mathbb{E}[y]$  is the MMSE estimator:

$$\mathbb{E}[\mathbf{y}] = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}} \mathbb{E}[(\mathbf{y} - \alpha)^2].$$

- ii. Evaluate this estimator's MSE.
- (b) Now you are allowed to use a function of x to estimate y, i.e.,  $\mathcal{A} = \{f(\cdot) : \mathcal{X} \mapsto \mathbb{R}\}$ . Prove that:
  - i.  $\mathbb{E}[y|x]$  is the MMSE estimator:

$$\mathbb{E}[\mathbf{y}|\mathbf{x}] = \mathop{\arg\min}_{f: \ \mathfrak{X} \mapsto \mathbb{R}} \mathbb{E}[(\mathbf{y} - f(\mathbf{x}))^2],$$

<sup>&</sup>lt;sup>1</sup>Strictly speaking,  $g(\cdot)$  is required to be measurable.

ii. The MSE of estimator  $\mathbb{E}[y|x]$  is

$$MSE(\mathbb{E}[y|x]) = \mathbb{E}[var(y|x)].$$

(c) Compare these two estimators. First, prove that

$$x \perp y \implies MSE(\mathbb{E}[y]) = MSE(\mathbb{E}[y|x]) \implies \forall f, \ \rho(f(x), y) = 0,$$

where  $\rho(\cdot, \cdot)$  is the Pearson correlation coefficient. In general, which one of these two estimators would have less MSE than the other?

4.7. Consider the estimation of one-hot encoded vectors, where the settings are similar to those of Problem 3.3. In particular, suppose y takes values from  $\mathcal{Y} = \{1, 2, \dots, k\}$ , then its one hot encoding is a k-dimensional vector defined as  $\underline{y} \triangleq (\mathbb{1}_{y=1}, \mathbb{1}_{y=2}, \dots, \mathbb{1}_{y=k})^T$ , i.e., y is the i-th vector of the standard basis if y = i.

Now, we would use  $\hat{\underline{y}}$  to estimate  $\underline{y}$ , and use its MSE to evaluate the goodness of estimate. The MSE is defined similarly as the scalar case, except that the scalar quadratic operator is replaced by the  $\ell_2$  norm squared:

$$MSE(\hat{\underline{y}}) \triangleq \mathbb{E}[\|\underline{\underline{y}} - \hat{\underline{y}}\|_2^2].$$

Again, the estimator  $\hat{y}$  could be chosen from a set A.

(a) Suppose we want to use a vector to estimate  $\underline{y}$ , i.e.,  $\mathcal{A} = \mathbb{R}^k$ . Prove that  $\underline{P}_{y}(\cdot)$  is the MMSE estimator:

$$\underline{P}_{\mathsf{y}}(\cdot) = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^k} \mathbb{E}[\|\underline{\mathsf{y}} - \underline{\alpha}\|_2^2],$$

where  $\underline{P}_{\mathsf{y}}(\cdot) \triangleq [P_{\mathsf{y}}(1), P_{\mathsf{y}}(2), \cdots, P_{\mathsf{y}}(k)]^{\mathrm{T}}.$ 

(b) Now you are allowed to use a multivariant function of x to estimate  $\underline{y}$ , i.e.,  $\mathcal{A} = \{\underline{f}: \mathcal{X} \mapsto \mathbb{R}^k\}$ . Prove that the MMSE estimator is  $\underline{P}_{y|x}(\cdot|x)$ :

$$\underline{P}_{\mathsf{y}|\mathsf{x}}(\cdot|\mathsf{x}) = \underset{\underline{f}: \ \mathfrak{X} \mapsto \mathbb{R}^k}{\arg\min} \mathbb{E}[\|\underline{\mathsf{y}} - \underline{f}(\mathsf{x})\|_2^2],$$

where 
$$\underline{P}_{\mathsf{y}|\mathsf{x}}(\cdot|\mathsf{x}) \triangleq [P_{\mathsf{y}|\mathsf{x}}(1|\mathsf{x}), P_{\mathsf{y}|\mathsf{x}}(2|\mathsf{x}), \cdots, P_{\mathsf{y}|\mathsf{x}}(k|\mathsf{x})]^{\mathrm{T}}.$$

4.8. The data  $x[n] = ar^n + w[n]$  for  $n = 0, \dots, N-1$  are observed. The random variables  $w[0], \dots, w[N-1]$  are i.i.d. Gaussian random variables with zero mean and variance  $\sigma^2$ . r is a non-zero constant. Find the Cramér-Rao bound for a. Does an efficient estimator exist? If so, what is it and what is its variance?