ÁLGEBRA LINEAR :: LISTA DE EXERCÍCIOS 00

Notação.

- Denote por \mathbb{R} o conjunto dos números reais.
- Para cada n > 0, denote por $I_n \in M_n(\mathbb{R})$ a matriz identidade de ordem $n \times n$, ou seja, a matriz $I_n = (a_{ij})$ dada por $a_{ij} = 1$ se i = j, e $a_{ij} = 0$ se $i \neq j$.
- Para cada n > 0, denote por $GL_n(\mathbb{R})$ o conjunto formado pelas matrizes invertíveis de ordem $n \times n$.

Exercício 1. Considere as seguintes relações

$$f: M_2(\mathbb{R}) \longrightarrow \mathbb{R}$$
 $d: M_2(\mathbb{R}) \longrightarrow \mathbb{R}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto (\sqrt{ad - bc})$ e $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto ad - bc$.

- (a) Explique por que f não é uma função.
- (b) Mostre que d(AB) = d(A)d(B) para quaisquer $A, B \in M_2(\mathbb{R})$.
- (c) Mostre que $d(I_2) = 1$. Usando o item (b), conclua que, se $A \in M_2(\mathbb{R})$ for invertível, então $d(A) \neq 0$ e $d(A^{-1}) = 1/d(A)$.
- (d) Encontre matrizes $A, B \in M_2(\mathbb{A})$ tais que $d(A+B) \neq d(A) + d(B)$.

Exercício 2. Para cada $a \in \mathbb{R}$, classifique os sistemas lineares:

(a)
$$\begin{cases} x + y - az = 0 \\ ax + y - z = 2 - a \\ x + ay - z = -a \end{cases}$$
(b)
$$\begin{cases} ax + 2y = 6 \\ 3x - y = -2 \\ x + y = 0 \end{cases}$$

Exercício 3. Considere os seguintes sistemas de equações

$$S_1: \begin{cases} \sqrt{-1}x + e^2z = \sqrt{17} \\ \sqrt{-1}x + \pi y = 0 \end{cases}$$
 e
$$S_2: \begin{cases} x + 2y + z = 0 \\ y + 2z^2 = 0 \\ z = 0 \end{cases}$$

- (a): Determine qual dos sistemas $(S_1 \text{ ou } S_2)$ é linear. Justifique por que um é linear e o outro não é linear usando a definição de sistema linear.
- (b): Denote por S o sistema linear escolhido no item (a), e determine uma solução para S. Justifique sua resposta usando a definição de solução de um sistema linear.

Exercício 4. Resolva os sistemas lineares homogêneos:

(a)
$$\begin{cases} 3x - y + 2z - w = 0 \\ 3x + y + 3z + w = 0 \\ x - y - z - 5w = 0 \end{cases}$$

(b)
$$\begin{cases} x + y + z + w - t = 0 \\ x - y - z + 2w - t = 0 \end{cases}$$

Exercício 5. Considere o seguinte sistema linear

$$\sigma: \begin{cases} 2y + z = 5 \\ 3x + y = 6 \\ 4x + 2y + z = 7 \end{cases}$$

- (a): Escreva a equação matricial Ax = b associada ao sistema σ .
- (b): Encontre matrizes elementares $E_1, E_2, \dots, E_p \in M_3(\mathbb{R})$ (p > 0), tais que $E_p \cdots E_2 E_1 A$ é uma matriz escalonada.
- (c): Classifique o sistema σ em: incompatível, compatível determinado, ou compatível indeterminado. Justifique.
- (d): A matriz A é invertível ou singular? Se for invertível, determine todas as suas inversas, mostrando que são inversas de A. Se for singular, justifique.
- (e): Determine o conjunto formado por todos os $x \in \mathbb{R}^3$ que satisfazem $Ax = O \in M_{3,1}(\mathbb{R})$. Justifique.

Exercício 6. Mostre que:

- (a) Para quaisquer números inteiros m, n, p > 0 e matrizes $A \in M_{m,n}(\mathbb{R}), B \in M_{n,p}(\mathbb{R}),$ temos que $(AB)^t = B^t A^t \in M_{p,m}(\mathbb{R}).$
- (b) Para quaisquer número inteiro n > 0 e matrizes $A, B \in M_n(\mathbb{R})$, temos que

$$(A - B)^2 = A^2 - AB - BA + B^2.$$

(c) Para quaisquer número inteiro n > 0 e matrizes $A, B \in M_n(\mathbb{R})$, temos que

$$(A - B)(A + B) = A^2 + AB - BA - B^2.$$

Exercício 7. Dê exemplos de:

- (a) Matrizes A, B tais que $AB \neq BA$.
- (b) Uma matriz $A \neq O$ para a qual não existe matriz B tal que AB é igual a identidade.
- (c) Matrizes $A \neq O$ e $B \neq O$ tais que AB = O.
- (d) Matrizes A, B tais que $(AB)^t \neq A^t B^t$.
- (e) Matrizes inversíveis A e B tais que $(AB)^{-1} \neq A^{-1}B^{-1}$.

Exercício 8. Verifique se a matriz dada é inversível ou singular. Se for inversível, determine a sua inversa.

(a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 0 & 2 & 0 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 8 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 9 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Exercício 9. Determine $\lambda \in \mathbb{R}$, tal que o sistema

$$\begin{cases} x - y + z = 2 \\ x + 2z = 1 \\ x + 2y + \lambda z = 0 \end{cases}$$

seja compatível determinado. Usando o λ obtido, resolva o sistema.

Exercício 10. Determine se as seguintes afirmativas são verdadeiras ou falsas. Em seguida demonstre as que forem verdadeiras, e encontre contra-exemplos para as que forem falsas.

- (a): Se $A \notin GL_n(\mathbb{R})$ e n > 0, então $BA \notin GL_n(\mathbb{R})$ para toda $B \in GL_n(\mathbb{R})$.
- (b): Se $A = (a_{ij}) \in M_n(\mathbb{R})$, n > 2 e existem $p \neq q$, $1 \leq p, q \leq n$, tais que $a_{ip} = a_{iq}$ para todo $i = 1, \ldots, n$, então $A \notin GL_n(\mathbb{R})$.
- (c): Se $A, B \in GL_n(\mathbb{R})$ e n > 0, então $(AB)^{-1} = A^{-1}B^{-1}$.