大连理工大学

课程名称: 计算方法 试卷: B 考试类型 闭卷

授课院(系): 数学系 考试日期: 2009年1月8日 试卷共2页

		=	111	四	五.	六	七	八	九	+	总分
标准分	34	15	15	10	10	10	6	1	1	1	100
得 分											

一、 填空, 每题 2 分, 共 34 分

1)1)已知近似值 a = 246.00 有 5 位有效数字,则 a 的绝对误差界为_______, a 的相对误差界为 :

2)于 $\left[0, \frac{\pi}{2}\right]$,用 y=a+bx 做 $f(x)=\sin x$ 最佳平方逼近,则法方程组为:______;

4) 为了减少运算次数,应将表达式. $\frac{x^4 + 16x^2 + 8x - 1}{16x^5 - 17x^4 + 18x^3 - 14x^2 - 13x - 1}$

改写为_____;

5)已知 f(0)=1, f(1)=3, f(2)=5则均差 $f[0,1,2]=_____, 对应于 <math>x_0=0$ 插值基函数 $l_0(x)=_____;$

6) 此数值求积公式 $\int_0^1 e^{-x^2} dx \approx \frac{1}{6} \left(1 + \frac{4}{\sqrt[4]{e}} + e^{-1} \right)$ 的代数精度为: ______;

7) 求解 $u' = -u + t - e^{-1}$ 的隐式 Euler 公式:

8) 用二分法求方程 $f(x) = 2x^3 - 5x - 1 = 0$ 在区间[1,3]内的根,进行一步后根所在区间为___。

9)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
 的 \mathbf{LL}^T 分解为: ______;

10) [0,1] 上以 $\rho(x) = \ln \frac{1}{x}$ 权函数的正交多项式 $\phi_0(x) = _____, \phi_1(x) = ______.$

11) x = 0 是 $f(x) = 1 - x - e^x = 0$ 的根,则具有平方收敛的迭代公式为:

0

订

12) 将向量
$$\mathbf{x} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$
 变换为向量 $\mathbf{y} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$ 的正交矩阵 \mathbf{H} 为______;

二、计算题

1. (15分) 如下求解初值问题 $u' = f(t,u), u(t_0) = u_0$ 的线性二步法

$$u_{n+2} = u_n + \frac{h}{2}(f_{n+1} + 3f_n)$$

- ①确定出它的阶p、局部截断误差主项和收敛性,求出其绝对稳定区间;
- ②给出上述方法求解方程: u' = -40u, u(0) = 1, 的步长h 的取值范围。

2. (15 分) 确定 x_0 , A_0 , x_1 , A_1 使得求积公式

$$\int_{-1}^{1} x^{2} f(x) dx \approx A_{0} f(x_{0}) + A_{1} f(x_{1})$$

的代数精度m达到最高,试问m是多少?取 $f(x)=e^{-x^2}$,利用所求得的公式计算出数值解。

3. (10分) 求下列矩阵的一个奇异值分解

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

4、(10分)已知线性方程组

$$\begin{pmatrix} 1 & a & 0 \\ a & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- (1) 给出求解上述方程组的 Gauss-Seidel 法分量形式迭代公式;
- (2) 确定a的值,得到 Gauss-Seidel 迭代法收敛的充要条件;

5. (10 分) 已知
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix}$$
, 求出 \mathbf{A} 的 \mathbf{Jardan} 标准型。

三、证明题(6 分)设 A 为 n 阶方阵,若 $\rho(\lambda)$ < 1,则在 $\mathbb{C}^{n\times n}$ 中存在一种矩阵范数 $\|\cdot\|$,使得 $\|A\|$ < 1。