

Institutt for datateknikk og informasjonsvitenskap

Eksamensoppgave i TDT4300 Datavarehus og datagruvedrift

Faglig kontakt under eksamen: Kjetil Nørv	/åg	
Tlf.: 73596755		
Eksamensdato: 12. august 2017		
Eksamenstid (fra-til): 09.00-13.00		
Hjelpemiddelkode/Tillatte hjelpemidler: D:	: Ingen trykte eller håndsl	krevne
	hjelpemiddel tillatt.	
	Bestemt, enkel kalkulate	or tillatt.
Annen informasjon:		
Målform/språk: Bokmål		
Antall sider (uten forside): 2		
Antall sider vedlegg: 0		
		Kontrollert av:
	17.07.2017	Jon Olav Hauglid
	Dato	Sign
Informasjon om trykking av eksamensoppgav	/e	-
Originalen er:		
1-sidig X 2-sidig □		
sort/hvit X farger □		

Oppgave 1 – Diverse – 20 % (alle deler teller likt)

- a) I kontekst av web-bruk-gruvedrift, hva er sesjonering? Hvorfor kan dette være vanskelig? Forklar to heuristikker som kan brukes til å utføre sesjonering.
- b) Forklar *støy* ("noise") og *outlier*.
- c) *Curse of Dimensionality* kan føre til problem når man skal utføre klynging eller klassifisering på høy-dimensjonale datasett. Forklar minst to data-preprosessering-metoder som kan redusere problemene.
- d) Forklar hvordan en likhetsmatrise ("similarity matrix") kan brukes til klyngingsvalidering.

Oppgave 2 – OLAP – 25 % (alle deler teller likt)

- a) Forklar hva som menes med termene som er understreket i følgende definisjon av datavarehus: "datawarehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data."
- b) Forklar begrepene OLTP ("Online Transaction Processing") og OLAP ("Online Analytical Processing"). Legg vekt på å få frem forskjeller mhp. egenskaper og bruk.
- c) Forklar stjerne-skjema og snøflak-skjema.
- d) Forklar bitmap-indeks. I hvilke tilfeller er en bitmap-indeks egnet?
- e) Forklar OLAP-operasjonene slice og dice.

Oppgave 3 – Klynging – 10 %

Forklar algoritmen for *DBSCAN*.

Oppgave 4 – Klassifisering – 15 % (5 % på a og 10 % på b)

- a) Forklar *kryss-validering* ("cross validation").
- b) Forklar *overtilpasning* ("overfitting"). Hva kan forårsake overtilpasning? Hva kan man gjøre for å redusere overtilpassing når man bruker beslutningstre?

Oppgave 5 – Assosiasjonsregler – 30 % (5 % på a, 10 % på b og 15 % på c)

- a) Definer maksimale ("maximal") og lukkede ("closed") frekvente elementsett.
- b) Anta handlekorg-data som er gitt under:

TransaksjonsID Element

T1	ACD
T2	BCE
T3	ABCE
T4	BE

- 1) Bruk *apriori-algoritmen* til å finne alle frekvente elementsett med minimum støtte på 50 % (dvs. *minimum support count* er 2). Bruk $F_{k-1} \times F_{k-1}$ -metoden for kandidat-generering.
- 2) Bruk apriori-algoritmen til å generere alle 3-elements assosiasjonsregler basert på resultatet i (1), gitt minimum konfidens på 100 %. Vis hvordan regler evt. kan "prunes".
- c) Anta handlekorg-data som er gitt under:

TransaksjonsID Element

T1	ABCD
T2	ABCD
T3	ABCEF
T4	ABEF
T5	ABDEFG
T6	AEF

Du skal nå bruke *FP-growth-algoritmen* til å finne alle frekvente elementsett med minimum støttetall (*minimum support count*) på 2.

- 1) Konstruer et FP-tre basert på datasettet.
- 2) Finn frekvente elementsett ved å bruke FP-growth-algoritmen. Bruk tabell-notasjon med følgende kolonner for å vise resultatet:
 - Element
 - "Conditional pattern base"
 - "Conditional FP-tree"
 - Frekvente elementsett

Forklar rekursivitet der dette er nødvendig.