

Aprendizaje Automático I

Milton Sarria-Paja, Ph.D.

Conceptos fundamentales

Milton Sarria-Paja, Ph.D.

Dependencia de Variables y Correlación en Machine Learning

Definición de dependencia de variables y correlación.

Importancia de estos conceptos en el análisis de datos y en la construcción de modelos de machine learning.

Dependencia de Variables

- •Explicación de la dependencia entre variables:
 - Una variable depende de otra si su valor está influenciado por la otra.
 - Ejemplo: La altura y el peso de una persona.
- •Diferencia entre dependencia funcional y estadística.

Dependencia de Variables

Dependencia Funcional: Se da cuando una variable determina completamente a la otra.

•Ejemplo: La temperatura en Fahrenheit (F) vs la temperatura en Celsius (C):

$$F=1.8C+32$$

Aquí, dado un valor de (C), el valor de (F) es completamente determinado.

Dependencia Estadística: Se da cuando una variable influye en otra, pero con cierta variabilidad.

•**Ejemplo**: A mayor nivel educativo, mayor suele ser el salario, pero no siempre ocurre exactamente así debido a otros factores como la experiencia laboral y la industria en la que trabaja una persona.

Covarianza vs. Correlación

Definición de covarianza:

 Indica si dos variables varían en la misma dirección (positiva) o en direcciones opuestas (negativa).

Diferencias clave:

- La covarianza proporciona la dirección de la relación, pero no la fuerza.
- La correlación estandariza la covarianza, proporcionando tanto dirección como fuerza de la relación.

Covarianza

La **covarianza** mide la tendencia de dos variables a aumentar o disminuir juntas.

$$\operatorname{Cov}(X,Y) = \frac{1}{n} \sum (X_i - \bar{X})(Y_i - \bar{Y})$$

Donde:

- X_i, Y_i son los valores de las variables.
- \bar{X}, \bar{Y} son las medias de X y Y.
- n es el número de observaciones.

La covarianza depende de la escala de las variables, lo que dificulta su interpretación.

Correlación

Medida estadística que indica la fuerza y dirección de una relación lineal entre dos variables.

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

La correlación **normaliza** la covarianza dividiéndola por las desviaciones estándar de las variables. Esto permite que el coeficiente de correlación esté **siempre entre -1 y 1**, facilitando su **interpretación**

Importancia en Machine Learning

- Selección de características:
 - Identificación de variables relevantes para mejorar la precisión del modelo.
- Detección de multicolinealidad:
 - Problemas que surgen cuando las variables predictoras están altamente correlacionadas entre sí.
 - Si en un dataset tenemos las variables **peso en kilogramos** y **peso en libras**, una de ellas puede eliminarse ya que aportan la misma información.

45

Métodos para Medir Dependencia y Correlación

Correlación de Pearson

Útil para medir relaciones lineales entre variables continuas.

Correlación de Spearman

Se basa en rangos en lugar de valores absolutos.

Se usa cuando la relación entre variables no es lineal.

Razón de Correlación

Se usa para evaluar la relación entre variables categóricas y numéricas.

Prueba de Chi-Cuadrado

Se usa para evaluar la relación entre variables categóricas.

Limitaciones de la Correlación

Correlación no implica causalidad

Ejemplo: Aumento de ventas de helados y número de ahogamientos en verano. No es que los helados causen los ahogamientos, sino que ambos están relacionados con el calor.

Sensibilidad a valores atípicos: Un valor extremo puede distorsionar la correlación.

Gracias!!