INVESTIGACIÓN DE OPERACIONES

Examen Parcial # 1 Modelado Matemático Lenguaje Lingo

Nombre: CARLOS EDUARDO SANCHEZ TORRES Fecha: 3/09/2021

1. Una compañía fabrica 2 productos utilizando tres procesos secuenciales. La siguiente tabla resume los datos del problema:

Minutos por Unidad			Utilidad	
Producto	Proceso 1	Proceso 2	Proceso 3	Unitaria
1	10	6	8	2
2	5	20	10	3
Hrs. disp/día	6	8	7	

La compañía desea determinar las cantidades de cada producto que debe producir con el objeto de maximizar sus utilidades.

a) Construya un modelo matemático de Programación Lineal para este problema.

Variables de decisión:

 x_{ij} : unidades de producto i en el proceso j por día i = 1, 2; j = 1, 2, 3

$$i = 1, 2; j = 1, 2, 3$$

Maximización de utilidades (por 1 y 2):

$$M \dot{a} x Z = 2x_{11} + 3x_{21}$$

Restricciones de tiempo:

$$\begin{aligned} 10x_{11} + 5x_{21} &\leq 360 \\ 6x_{12} + 20x_{22} &\leq 480 \\ 8x_{13} + 10x_{23} &\leq 420 \\ x_{i,j} &\geq 0 \\ x_{i,j} &\in N \end{aligned}$$

Las unidades estan limitadas por ser una fabricación secuencial, es decir, el producto debe pasar por el proceso 1, 2 y 3 para ser una unidad. Entonces, debe procesarse las mismas unidades.

$$x_{1.1} = x_{1.2} = x_{1.3}$$
 (1)

$$x_{2,1} = x_{2,2} = x_{2,3}$$
 (2)

Objective value:

103.0588

Variable	Value	Reduced Cost
X11	28.23529	0.000000
X21	15.52941	0.000000
X12	28.23529	0.000000
X22	15.52941	0.000000
X13	28.23529	0.000000
X23	15.52941	0.000000

Pero, las unidades deben ser naturales, no se permite productos incompletos. Así:

Unidades a producir del producto 1 =28
Unidades a producir del producto 2 =15
$$Z = 2 * 28 + 3 * 15 = 101$$

b) Obtenga la solución óptima mediante un programa en Lingo:

LINGO no estructurado: 30 puntos

LINGO estructurado: +15 puntos

```
SETS:
PRODUCTO: UTILIDAD;
PROCESO: TIEMPO MAXIMO;
PRODUCCION (PRODUCTO, PROCESO): TIEMPO, UNIDADES;
DATA:
PRODUCTO = 1 2;
UTILIDAD = 2 3;
PROCESO = 1 2 3;
TIEMPO MAXIMO = 360 480 420;
TIEMPO = 10 6 8
         5 20 10;
ENDDATA
MAX = UTILIDAD(1) *UNIDADES(1,1) +UTILIDAD(2) *UNIDADES(2,1);
@FOR(PROCESO(j):
                     @SUM(PRODUCTO(i):
                                             TIEMPO(i,j)*UNIDADES(i,j))
TIEMPO_MAXIMO(j));
@FOR(PRODUCTO(j):
      @FOR(PROCESO(i):
            UNIDADES (j,1) = UNIDADES (j,i)
);
```

Objective value:

103.0588

Variable	Value	Reduced Cost
UNIDADES(1,1)	28.23529	0.000000
UNIDADES(1, 2)	28.23529	0.000000
UNIDADES(1,3)	28.23529	0.000000
UNIDADES(2, 1)	15.52941	0.000000
UNIDADES(2, 2)	15.52941	0.000000
UNIDADES(2,3)	15.52941	0.000000

^{*} Mismo razonamiento anterior.

2. Coalco explota carbón en tres minas y lo embarca para cuatro clientes. Los costos de producción por tonelada de carbón, la capacidad de producción (en toneladas) de cada mina se proporcionan en la tabla 1.

El costo (en dólares) para embarcar una tonelada de carbón desde una mina a cada cliente, así como la demanda de cada cliente se proporcionan en la tabla 2. Se requiere determinar cuánto carbón deberá ser enviado desde cada mina hasta cada cliente al costo total más bajo posible.

TABLA 1			
	COSTO DE PRODUCCIÓN	CAPACIDAD	
MINA	dólares/ton	tons.	
1	50	120	
2	55	100	
3	62	140	

TABLA 2				
COSTOS DE TRANSPORTACIÓN, dólares/ton				
	CLIENTES			
MINA	1	2	3	4
1	4	6	8	12
2	9	6	7	11
3	8	12	3	5
DEMANDA, tons	80	70	60	40

a) Construya un modelo matemático de Programación Lineal para este problema. x_{ij} : cantidad de toneladas de la mina i para el cliente j

$$i = 1, 2, 3; j = 1, 2, 3, 4$$

Minimización de costos:

$$MIN Z = 50 \sum_{j} x_{1j} + 55 \sum_{j} x_{2j} + 62 \sum_{j} x_{3j} + 4x_{11} + 9x_{21} + 8x_{31} + \dots + 5x_{34}$$

Restricciones de producción:

$$\sum_{j} x_{1j} <= 120$$

$$\sum_{i} x_{2j} <= 100$$

$$\sum_{j} x_{3j} <= 140$$

Restricciones de demanda:

$$\sum_{i} x_{i1} = 80$$

$$\sum_{i} x_{i2} = 70$$

$$\sum_{i} x_{i3} = 60$$

$$\sum_{i} x_{i4} = 40$$

b) Obtenga la solución óptima mediante un programa en Lingo:

Objective value:		14780.00
Variable	Value	Reduced Cost
TONELADAS(1,1)	80.00000	0.000000
TONELADAS(1,2)	40.00000	0.000000
TONELADAS(1,3)	0.000000	1.000000
TONELADAS(1,4)	0.000000	1.000000
TONELADAS(2,1)	0.000000	5.000000
TONELADAS(2,2)	30.00000	0.000000
TONELADAS(2,3)	60.00000	0.000000
TONELADAS(2,4)	10.00000	0.000000
TONELADAS(3, 1)	0.000000	10.00000
TONELADAS(3,2)	0.000000	12.00000
TONELADAS(3,3)	0.000000	2.000000
TONELADAS(3,4)	30.00000	0.000000

LINGO estructurado: +15 puntos

```
MINA: COSTO, CAPACIDAD;
 CLIENTE: DEMANDA;
 PRODUCCION (MINA, CLIENTE): COSTO DE TRANSPORTE, TONELADAS;
ENDSETS
DATA:
MINA = 1 2 3;
COSTO = 50 55 62;
CAPACIDAD = 120 100 140;
CLIENTE = 1 2 3 4;
DEMANDA = 80 70 60 40;
COSTO_DE_TRANSPORTE = 4 6 8 12
                 9 6 7 11
                     8 12 3 5;
ENDDATA
MIN = @SUM(MINA(i): COSTO(i) *@SUM(CLIENTE(j): TONELADAS(i,
j))))+@SUM(PRODUCCION: COSTO_DE_TRANSPORTE*TONELADAS);
```

```
@FOR(MINA(i): @SUM(CLIENTE(j): TONELADAS(i,j)) <= CAPACIDAD(i));
@FOR(CLIENTE(j): @SUM(MINA(i): TONELADAS(i,j)) = DEMANDA(j));</pre>
```

IMPORTANTE: AL MENOS UNO DE LOS PROBLEMAS DEBE SER RESUELTO USANDO LINGO ESTRUCTURADO.