

不揮発メモリ(NVM)の登場

- ▶ フラッシュ(NAND)
 - デバイスあたり数百GB~ 10TBの容量
 - フラッシュ技術のトレンド
 - ▶ 大容量化
 - ▶ GB単価コスト↓
 - ▶ 書き込み回数の減少
 - ▶ セルの多値化(SLC→MLC→3BPC)
 - 10万~100万IOPS, GB/s級の帯域幅
- ► その他の不揮発メモリ技術(PCM/MRAM/STT)
 - ▶ 現時点では開発中のメモリ技術

なぜフラッシュを使うのか?

- ► I/O特性がデータベース用途に 適している
 - 低レイテンシ、 QDの低いI/Oでも高性能
 - ワークロードの種類を問わず 性能が高い
 - ✓シーケンシャル ワークロード
 - √ランダム ワークロード
 - ✓様々なブロックサイズ

谷量	4TB	ЗТВ
IOPS	150	200,000

\$\$\$\$

► IO単価

¢¢¢¢

フラッシュの利用方法の遷移

フラッシュ + ディスク

ディスクとしてのフラッシュ

フラッシュとしてのフラッシュ

メモリとしてのフラッシュ

より低消費電力、低コストなトランザクションを実現

フラッシュの特性を意識した実装

ディスクとしてのフラッシュ: そのスピードにチューニング

- ▶ 過去数年間の取り組みにより 大幅な性能向上を達成
- データ配置の最適化、NOOPスケジューラ、シークなしメディアへの最適化、並列度の最適化
- ▶ ブロックI/Oサブシステムの 高速化
- 高速なファイルシステムの探求

マルチインスタンス MySQL: IOPS性能を絞り出す

フラッシュとしてのフラッシュ: ただのディスクとは違う

メトリック	ハードディスク	フラッシュメモリ
リード/ライト性能	リード/ライト、ほぼ対称	リード/ライト性能が非対称。 イレースという新たな操作が 登場
シーケンシャル/ランダムの 性能傾向	100倍の性能差。 ヘッドの動作を想定した I/Oスケジューリング	~10倍の性能差。 メモリ素子にはヘッド動作なし
ブロックのリマッピング、 バックグラウンドでの処理	極めて少ない	ログ構造のファイルシステムの ように、定常的に発生
書き込み量の限界	ほぼ無し	制限あり
秒間あたりのI/O回数(IOPS)	100回~1,000回/秒	10万回~100万回/秒
レイテンシー(応答遅延)	10ミリ秒台	10~100マイクロ秒台

"Flash-aware" API によるMySQLの強化

"Flash-aware" スタックの構成

MySQL - アトミックライト, and NVM コンプレッション

ファイルシステム(XFS, Ext4, Btrfs, NVMFS)

フラッシュストレージ –I/O と 新たなプリミティブ (アトミックライト、PTRIMなど)

ダブルライト/アトミックライトの比較

従来のMySQLのライト処理

- 1 | アプリケーション | がページA,B,Cを | 更新する
- MySQLは更新 されたページを バッファメモリに コピー
- MySQLはダブルライト バッファに書き込む
- ステップ3が完了してから、MySQLは 表領域に書き込みを開始する

アトミックライト対応版MySQL のライト処理

- アプリケーション がページA,B,Cを 更新する
- MySQLは更新 されたページを バッファメモリに コピー

MySQLはダブルライトを省略し、表領域に直接書き込み

データの整合性は 下位デバイスの機 能により担保される

MySQL + アトミックライトの利点

アトミックライトを利用する場合

- アトミックライトによりデバイス性能の99%を利用可能
- デバイスの書き込み耐用期間が2倍に

アトミックライト: トランザクションのレイテンシー改善

トランザクションのレイテンシーが 2分の1~4分の1まで短縮

Sysbench 99% Latency OLTP workload

NVM コンプレッション

- フラッシュデバイスが持つ、内部的な「シンプロビジョニング」動作を活用
- ► データファイル上の不要ブロックを TRIM(UMMAP)しホール(スパース)化
- ▶ フラッシュ処理のマルチスレッド化、アトミックライトによりレイテンシーを削減
- プラグイン式で置き換え可能な 圧縮アルゴリズム

NVMコンプレッションの性能オーバーヘッドはごく僅か

NVMコンプレッションの性能オーバーヘッドはごく僅か

TPC-C like workload 1,000 warehouses - 75GB DRAM

圧縮により書き込み減少→容量の有効利用、長寿命化

- 従来のInnoDBストレージ エンジンの行べース圧縮を 超える高圧縮率
- デバイスの耐用期間が アトミックライトと組み合わせで 最大4倍に

*For LinkBench with Iz77. Comparable results with Iz4.

ファイルシステムからのミドルウェア高速化

NVM コンプレッションは、POSIXインターフェイスで実現

POSIXインターフェイス	動作
fallocate(offset, len)	既存ファイル/テーブルスペースの容量追加、 プリアロケーション
fallocate(punch_hole)	アンマップ(Punch Hole)操作。 デバイスに対しPersistent TRIMコマンド発行
io_submit()	非同期I/Oで透過的にアトミックライトを実現

新ファイルシステム"NVMFS"がNVMコンプレッションを高速化

NVMFS — フラッシュメモリのためのファイルシステム

- ► Non Volatile Memory FileSystem (不揮発メモリ用ファイルシステム)
- ▶ Fusion-ioが開発した、POSIX準拠のファイルシステム

利点

- 大きなファイルのプリアロケーションを効率的に実現
- ・ファイルシステムを使い続けても、"断片化"は発生しない
- ファイルシステム経由でもデバイスのI/O性能が落ちづらい
- アトミックライトやファイル内TRIMなどの機能を利用可能に

https://opennvm.github.io

OpenNVM

Welcome to the open source project for creating new interfaces for non-volatile memory (like flash).

GNU Public License v2.0

http://www.opencompute.org/projects/storage

MySQL 5.7: InnoDB Compression

labs mysql.com

- Thank you, Fusion-io
- Transparent Page Level Compression
 - Happens transparently in background threads
 - Managed entirely within the IO layer
 - Uses sparse file and "hole punching" in OS kernels and File Systems
- Reduces IO
 - Improves performance
 - Reduces write cycles, thus increasing SSD lifespan
- Applies to all tables, including the system tablespace and UNDO logs

"Flash-aware MySQL" by Oracle

- ▶ アトミックライト対応
 - Oracle MySQL >= 5.7.4
- ▶ NVM コンプレッション対応
 - Oracle MySQL labs release (http://labs.mysql.com/)

▶ NVMFS のアーリーアクセスがスタート!(クローズドベータ)

