Getting Started with ML and Deep Learning Frameworks

Fatos Ismali

Agenda

Brief overview of Neural Networks

Getting hands-on with PyTorch

Getting hands-on with Keras and Tensorflow

What is a Neural Network?

Variants of Neural Networks

Common Architectures in Convolutional NNs

LeNET-5

AlexNet

VGG-16

Inception (GoogleNet)

ResNet

DenseNet

Different layers different semantic representation

[Erhan et al., Simonyan et al., Zhou et al.] (2015)

How does a NN propagate input values across layers?

How does backpropagation work?

From wave to spectrogram

Color = amplitude

Time

array([-0.02746582, -0.02560425, -0.02203369, -0.01846313, . . .])

Time

High-Level Solution – CNN Model

Link to hands-on workshop

Github:

https://github.com/thinkgradient/Getting-started-with-ml-dl

Resources

The most complete chart of Neural Networks explained:

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Understanding Neural Networks, from neuron to RNN, CNN, and Deep Learning

https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90

Deep Learning Specialization

https://www.deeplearning.ai/

Making neural nets uncool again

https://www.fast.ai/

CS231n: Convolutional Neural Networks for Visual Recognition (Stanford University)

http://cs231n.stanford.edu/

CS230 Deep Learning (Stanford University)

http://cs230.stanford.edu/syllabus/

Getting Started With ML and Deep Learning Frameworks

https://github.com/thinkgradient/Getting-started-with-ml-dl