Infiltratie en Ventilatie

Tuesday, January 25, 2022 3:34 PM

Het doel van deze notitie is om een gevoel te krijgen bij de verschillende waarden van de infiltratie (ongewenste luchtlekken) en bij verschillende ventilatiesystemen en dan met name gericht op het energieverbruik.

Eisen en normen zijn vaak verschillend voor veschillende woningen en er wordt een wirwar aan demensies gebruikt. We beschouwen hier daarom slechts 1 woningtype en drukken alles uit in dezelfde dimensies, voor bijvoorbeeld flow wordt dat dus dm3/s (=l/s).

De woning die we beschouwen heeft een woonoppervlakte van 100 m2 en een volumne van 250 m3.

Een goede en praktische presentatie over luchtdicht bouwen, waarin zowel infiltratie als ventilatie en de daarmee gepaard gaande energieverliezen ter sprake komen:

https://www.nieman.nl/wp-content/uploads/2012/05/Luchtdicht-bouwen-Harry-Nieman.pdf

Situatie Infiltratie (ongewenste lekken)	luchtflow [l/s]	Verbruik [m3/jaar]	Verbruik [kWh/jaar]
Max Bouwbesluit (2021) NEN 2687, Basis	100	100	1000
NEN 2687, Goed	50	50	500
NEN2687, Uitstekend Passief Bouwen eis	15	15	150
Huis 1980 - 1990	200	200	2000
Huis voor 1970	300	300	3000
Ter vergelijking hier een aantal andere energeiverbruikers			
BENG-1 energiebehoefte gebouw (incl. ventilatie en infiltratie)		550	5500
Ventilatie bouwbesluit min. eis	90	90	900
Ventilatie system-C stand-1 100 m3/hr	28	28	280
Ventilatie system-C stand-2 200 m3/hr (aanbevolen)	56	56	560
Ventilatie system-C stand-3 300 m3/nr	74	74	740
Ventilatie Eigen woning, WTW CO2 900 gestuurd, 2 personen	15**	3	30

^{**} nog slechts enkele dagen gemeten

70000/3600=19.4444

75000/3600=20.8333 100000/3600=27.7778

Rekenvoorbeeld (hoge inschatting) https://www.warmtepomp-info.nl/boiler/ventilatie/
In Nederland heb je per constant afgezogen 1 m³ lucht van een woning met ventilatie type B of C c.a. 22,98 kWh nodig aan opwarmbehoefte per jaar .

Eisen samengevat: https://alphaventilatie.nl/ventilatie/bouwbesluit-en-ventilatie/

Interessant: https://dijkhuis.eco/kennisbank/gezonde-ventilatie/
Berekening: https://vasco.eu/nl-be/ventilatie/bereken-uw-ventilatie/

https://nl.codume.eu/wetgeving-ventilatie/verse-lucht

Hoeveel verse lucht is er nodig?

De lucht die we uitademen bevat 100 keer meer CO2 bevat dan de lucht die we inademen. Om in onze woning gezonde lucht te hebben, moeten we dus 100 liter verse lucht aanvoeren per liter uitgeademde lucht.

Aangezien een volwassene gemiddeld 0,5 liter lucht inademt aan een frequentie van 12 tot 15 keer per minuut (zittend, zonder inspanning), komen we tot volgende som:

0.5 * 12 * 60 = 360 liter per uur.

Het luchtvolume zou dan zijn:

360 * 100 = 36.000 l/u, of 36 m3 per uur per persoon

Uiteraard gaat het hierbij om een theoretische waarde.

Luchtdichtheidsklassen (NEN 2687)

Klasse	Woningvol	Woningvolume in m ³		q _{v;10} /m ²
	Groter dan	Tot en met	(dm³/s)	(dm³/s·m²)
	1-	250	100	1,0
1 Basis	250	500	150	1,0
Dusis	500	-	200	1,0
2	-	250	50	0,6
Goed	250	-	80	0,4
3	-	250	15	0,15
Uitstekend	250	-	30	0,15

In Nederland is de luchtdichtheid op basis van NEN 2687:1989 onderverdeeld in klassen

· Klasse 1 Basis qv;10 > 0,6 dm3/s.m2

Voldoet aan het Bouwbesluit geen bijzondere eisen

· Klasse 2 Goed qv;10 tussen 0,3 en 0,6 dm3/s.m2

Energiezuinig bouwen

· Klasse 3 Uitstekend qv;10 < 0,15 dm3/s.m2

Passief bouwen of andere vormen van zeer energiezuinig bouwen

 ${\bf Tabel~11.13-Bouwjaar correctie factor~voor~de~rekenwaar de~van~de~lucht door latendheid}$

Bouwjaar/renovatiejaar	$F_{\rm j}$
j	
j < 1970	3,0
1970 ≤ <i>j</i> < 1980	2,5
1980 ≤ <i>j</i> < 1990	2,0
1990 ≤ j < 2000	1,5
2000 ≤ <i>j</i> < 2010	1,0
<i>j</i> ≥ 2010	0,7

Gebouwtype	q v10;spec;calc	Uitvoeringsvariant	$f_{ m type}$
	dm ³ /(s×m ²) (bij een uniform drukverschil van 10 Pa)		
Grondgebonden gebouwen			
Eengezinswoningen met kap en enkellaagse utiliteitsbouw met kap		Tussenligging	1,0
	1,0	Kop-, eind- of hoekligging	1,2
		Vrijstaand gebouw, puntdak	1,4

Eisen luchtdichtheid

- Bouwbesluit 2012
 - artikel 5.4 ($q_{v:10}$ ≤ 0,2 m³/s), meting volgens NEN 2686
 - artikel 3.21 lid 4 ($q_{v;1}$ ≤ 20x10⁻⁶ m³/s per m²), meting volgens NEN 2690
 - artikel 5.2 (energieprestatiecoëfficiënt), bepaling volgens NEN 7120
- NEN 2687 Luchtdoorlatendheid woningen Eisen

Waarom luchtdicht bouwen?

Energieverlies per jaar (is berekend met formule uit NEN 7120)

0,3 m³/s infiltratie ⇒
 312 m³ aardgas/jaar

• 0,2 m 3 /s infiltratie \Rightarrow 208 m 3 aardgas/jaar

0,1 m³/s infiltratie ⇒
 104 m³ aardgas/jaar

Drukverschil wind en thermiek

