KOSHA GUIDE

D - 16 - 2012

폭발억제장치의 설치에 관한 기술지침

2012. 7.

한 국 산 업 안 전 보 건 공 단

안전보건기술지침의 개요

- o 작성자 : 정 판 석
- o 개정자:
 - 이 하 연
 - 연구원 화학물질센터 한인수
- o 제·개정 경과
 - 1996년 4월 화학안전 분야별 기준제정위원회 심의
 - 1996년 4월 총괄기준제정위원회 심의
 - 2001년 11월 화학안전 기준제정위원회 심의
 - 2001년 11월 총괄기준제정위원회 심의
 - 2009년 6월 화학안전 기준제정위원회 심의
 - 2009년 8월 총괄기준제정위원회 심의
 - 2012년 7월 총괄제정위원회 심의(개정, 법규개정조항 반영)
- o 관련규격 및 자료
 - NFPA 69(Standard on explosion prevention systems, 1997 edition)
 - Guidelines for engineering design for process safety, 1993, CCPS, AIChE
 - The SFPE handbook of fire protection engineering, third edition, 2002, NFPA
 - Fire protection handbook, seventeenth edition, 1991, NFPA
- o 관련법규·규칙·고시 등
 - 「산업안전보건기준에 관한 규칙」 제243조(소화설비)
- o 코드적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
- o 공표일자 : 2012년 7월 18일
- 0 제 정 자 : 한국산업안전보건공단 이사장

폭발억제장치의 설치에 관한 기술지침

1. 목적

이 지침은 「산업안전보건기준에 관한 규칙」(이하 "안전보건규칙"이라 한다) 제 243조(소화설비)에 따라 폭발억제장치의 설치에 필요한 사항을 정하는데 그 목적이 있다.

2. 적용범위

- 이 지침은 폭발위험이 있는 가연성의 가스, 증기(Vapor), 미스트(Mist), 분진(Powder), 혼성혼합물(Hybrid mixture) 등(이하 "폭발위험물질"이라 한다)을 취급하는 다음과 같은 설비에 폭발억제장치를 설치하는 경우에 적용한다.
- (1) 반응기, 배합기(Blender), 혼합기(Mixer), 미분쇄기, 제분기, 건조기, 오븐, 여과기, 스크린, 집진기 등의 공정설비
- (2) 상압탱크, 저압탱크, 압력탱크, 이동식탱크, 호퍼, 사일로 등 저장설비
- (3) 공기식 컨베이어, 스크루 컨베이어, 버킷 엘리베이터 등의 분체이송설비
- (4) 후드, 글러브박스(Glove box), 시험셀(Test cell), 그 밖의 장비를 포함하는 실험실, 시험생산설비(Pilot plant) 등

3. 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "폭발억제장치(Explosion suppression system)"란 밀폐 또는 제한된 공간을 가지는 설비 내에서 발생된 화재를 조기에 감지하여 이를 초기단계에서 억제함으로 써 폭연(Deflagration)으로 인한 압력이 설비의 설계압력 이상으로 상승하는 것을 사전에 방지하여 설비 등의 파손을 예방하기 위하여 설치하는 장치를 말한다

- (나) "억제제(Suppressant)"란 공정용기내에서 폭발이 시작될 때 이를 초기에 소화하여 큰 폭발로 발전하지 않도록 하기위하여 고속방출 소화용기 내에 가압된 상태로 충전된 소화약제를 말한다.
- (다) "감지기"란 화재를 초기단계에서 감지하여 폭발억제장치의 전원장치에 작동신 호를 제공하는 장치를 말한다.
- (라) "제어기(Control unit)"란 감지기로부터 수신된 신호를 분석하여 해당 고속방출 소화용기에 장착된 전기기동장치를 작동시키는 장치를 말한다.
- (마) "고속방출소화용기(High rate discharge extinguisher)"란 억제제가 가압 충전된 용기로서 전기적 신호에 의해 억제제를 방출하는 용기를 말한다.
- (2) 그 밖에 이 지침에 사용하는 용어의 뜻은 이 지침에 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙이 정하는 바에 의한다.

4. 폭발억제장치의 구조 및 원리

(1) 폭발억제장치의 구조 폭발억제장치는 크게 감지부, 제어부, 소화약제부로 구분되며 개략적인 구조는 〈그림 1〉 과 같다.

〈그림 1〉 폭발억제장치의 개략도

(2) 폭발의 최고압력

가연성 가스류와 증기류, 분진류가 폭발할 때 발생하는 최대폭발압력은 <표 1>, <표 2>와 같다.

〈표 1〉 가연성 가스와 증기의 폭발압력

물질명	P _{max} (kPa)	물질명	P _{max} (kPa)
아세틸렌	1060	이소프로필알콜	780
암모니아	540	메탄	710
n-부탄	800	메탄올	750
디메틸에테르	810	n-펜탄	780
에탄	780	프로판	790
수소	680	톨루엔	780

〈표 2〉 가연성 분진

물질명	P _{max} (kPa)	물질명	P _{max} (kPa)
활성탄	880	나프탈렌	850
알루미늄	1120	페놀수지	930
역청탄	910	PVC	820
옥수수	980	고무	850
에폭시레진	790	설탕	830
우유	810	아연	670

(3) 폭발억제의 원리

최대 폭발압력은 폭발물질에 따라 차이가 있지만 〈그림 2〉의 예시에서와 같이 점화시간으로부터 약 200 ms(0.2 sec) 정도 경과되면 최고압력에 도달하게 된다. 따라서 점화 초기에 억제제를 분사하여 폭발물질의 산화반응을 제한함으로써 공정 중의 압력상승을 억제할 수 있는데 그 기본원리는 〈그림 3〉과 같다.

〈그림 2〉 폐쇄된 공간에서 분진 폭발시 시간에 따른 폭발압력의 변화

〈그림 3〉 폭발억제의 기본원리도

(4) 폭발억제 과정

폭연 발생 시 최고압력에 도달하기 이전에 억제제를 분사하여 억제된 압력이 보호대상기기의 설계압력을 초과하지 않도록 억제제의 분사시기를 적정하게 조절하는 것이 중요하다. 실제 실험을 통한 억제과정을 〈그림 4〉에 나타내었다.

〈그림 4〉 폭연의 억제과정(가연성가스는 1.9 % 프로판 + 1.7 % 부탄)

(5) 폭발 억제 결과

폭발억제는 폭발이 시작하는 시점의 압력에 비해 30 % 정도 상승된 압력 (절대압)에서 완료되며, 실제 실험의 결과에 대한 예시는 〈그림 5〉에 나타내었다.

5. 설계시 고려사항

- (1) 폭발억제장치의 설계에는 다음 사항을 포함하는 것이 원칙이다.
 - (가) 폭발위험물질의 폭발특성
 - (나) 방호되는 장치
 - (다) 감지기술
 - (라) 억제제의 종류
 - (마) 설치, 운전, 시험절차 등
- (2) 공정에 내재한 폭발위험의 형태와 정도를 결정하기 위해 철저한 위험 분석이 행해져야 한다. 즉 가연물의 형태, 가연물과 산화제 비율, 방호대상의 용적, 운전조건등과 같은 요소와 기타 폭발위험정도에 영향을 미칠 수 있는 요소 등을 상세히 검토한다.

(3) 폭발억제장치는 고속차단밸브, 또는 공기식 이송시스템 가동정지, 폭발 방산구 등과 같은 장치 또는 시스템이 연동되도록 설치한다. 〈그림 6〉은 고속차 단밸브에 대한 예시이다.

6. 설치시 고려사항

(1) 감지기

- (가) 감지기는 연소에 의하여 야기된 압력증가 또는 복사에너지 등을 감지함 으로써 폭연을 감지할 수 있는 것을 설치한다.
- (나) 대기에 개방된 설비에 설치하는 경우에는 복사에너지에 감응하는 감지 기를 사용한다.
- (다) 복사에너지 감응식 감지기는 감지기능이 방해받지 않도록 설치한다.
- (라) 감지기는 이물질에 의하여 감지기능이 저하되지 않도록 보호되도록 한다.

(2) 전기기동장치

D - 16 - 2012

- (가) 폭발억제장치의 억제제 방출은 전기적 신호에 의하여 작동하는 기동장치(이하 "전기기동장치"라 한다)가 고속방출소화용기의 방출노즐에 장착된 파열판을 파괴함으로써 억제제의 충전압력에 의하여 억제제의 방출이 일어나도록 설치한다.
- (나) 전기기동장치는 폭발억제장치가 설치될 설비의 최대운전온도에서도 기 능에 영향이 없도록 설치한다.
- (다) 전기기동장치는 제조회사의 작동 사양에서 벗어나지 않도록 적합한 전 원을 설치 사용한다.

(3) 전원장치

- (가) 모든 폭발억제장치의 전원장치에는 비상전력이 공급되어야 하며 비상전원 의 용량은 해당 전원장치에 연결된 폭발억제장치에 필요한 모든 전기기 동장치 및 경보기 등을 작동하기에 충분하여야 한다.
- (나) 전원장치는 사업장 방폭구조 전기기계·기구·배선 등의 선정·설치 및 보수 등에 관한 기준에 적합하여야 한다.

(4) 감시회로

- (가) 감지기, 전기기동장치 및 전원장치에는 회로의 개방 및 접지·지락이나 주전원 및 비상전원 등의 이상 시에 결함을 연속적으로 검출할 수 있는 감시회로를 설치한다.
- (나) 감시회로의 이상을 알릴 수 있는 경보기 및 표시등 등을 전원장치에 설치 한다.

(5) 억제제

- (가) 억제제는 폭발억제장치가 설치되는 설비 내에서 취급되는 폭발위험물질 에 대하여 물리화학적으로 안정한 것을 사용한다.
- (나) 억제제는 폭발억제장치가 설치되는 설비 내에서 예상되는 최대운전온도에 서도 제 성능을 갖는 것을 사용한다.

KOSHA GUIDE

D - 16 - 2012

(6) 설치작업

- (가) 폭발억제장치는 억제제가 효과적으로 분산될 수 있도록 폭발억제장치의 설계자 또는 공급자에 의해 규정된 위치 및 방법에 따라 설치한다.
- (나) 감지기와 억제제 방출노즐은 주위환경 또는 진동 등에 의해 결함이 야기되지 않도록 설치한다.
- (다) 억제제 방출노즐은 폭발억제장치가 설치되는 설비내의 부속장치나 구조물 등에 의하여 손상 또는 방해받지 않도록 설치한다.
- (라) 감지기 및 방출장치는 이물질의 축적 등에 의하여 그 기능이 저해되지 않도록 설치한다.
- (마) 폭발억제장치의 압착단자 및 모든 부품은 습기 및 기타 물질에 의해 부식 또는 오염되지 않도록 제작된 제품을 사용한다.
- (바) 폭발억제장치의 각 구성품은 각 구성품의 최대허용온도를 초과하지 않는 곳에 설치한다.

(7) 배선

- (가) 폭발억제장치와 구성요소 사이의 모든 전선은 차폐선(Shielding wire)을 사용하고 유도전류 등을 방지하기 위해 접지한다.
- (나) 전선관은 습기 및 기타 오염물 등이 침투하지 않도록 밀봉한다.

7. 보수작업자의 안전

- (1) 폭발억제장치가 설치된 설비를 보수할 경우에는 보수작업을 수행하기에 앞서 폭발억제장치의 기능을 정지시켜야 하며 또한 폭발억제장치가 설치된 설비의 제어장치와 폭발억제장치의 전원장치와는 연동시키어 작동이 되지 않게 한다.
- (2) 보수작업은 안전절차에 관하여 충분히 훈련된 보수 작업자에 의하여 실시한다.

8. 검사 및 유지보수

- (1) 폭발억제장치는 제조공급회사에서 훈련받은 자에 의해 철저히 검사되어야 하며 3개월 간격으로 시험하여야 한다. 고속방출 소화용기는 누설 및 억제 제의 양을 점검하고 재충전 가능한 용기의 용기 압력을 확인하여야 한다.
- (2) 고속방출 소화용기의 자체무게가 5 % 이상 감소된 경우에는 고속방출 소화용기를 교체하거나 재충전한다.
- (3) 고속방출 소화용기의 초기충전압력과 실제압력과의 차이가 10 % 이상 나는 경우에는 고속방출 소화용기를 교체하거나 재충전한다.
- (4) 폭발억제장치가 작동된 경우에는 모든 구성품을 재검사하고, 필요할 경우 해당 부품을 교체 또는 조정한다.
- (5) 폭발억제장치의 부품을 교체하거나 재조립한 경우에는 완전한 운전조건으로 그 기능을 복원하기 전에 시험을 실시하여 그 성능을 확인하여야 한다.