STAT 123: Quantitative Finance, Spring 2022

Prof. Stephen Blyth

Section 10

Xin Zeng (xinzeng@fas.harvard.edu)

16th April 2022

Section: Monday 10 - 11AM

Office Hour: Monday 11AM - noon

1 Bermudan Swaptions

- Definition: A T_0 into $T_n T_0$ Bermudan payer swaption with strike K gives the buyer the option at times $T_0, T_1, ..., T_{n-1}$ to enter into a swap from that time until T_n , paying fixed rate K. If the buyer exercises at T_i , she is locked into a swap from T_i to T_n , with no further optionality. If the buyer does not exercise at T_i , she can decide again at T_{i+1} whether to exercise.
- Pricing a Bermudan swaption is complex, but we can still put bounds on the value of a swaption. Let $C_K(t, T_0, T_n)$ be the value at time t of a K-strike T_0 by T_n cap, $\Psi_K(t, T_i, T_n)$ be the value at time t of a K-strike T_j into $T_n T_j$ European payer swaption. Then, the bounds on price:
 - $B_K(t, T_0, T_n) \le C_K(t, T_0, T_n)$
 - $B_K(t, T_0, T_n) \ge \max_{0 \le i \le n-1} \Psi_K(t, T_i, T_n)$
 - $-B_K(t,T_0,T_n) \leq \sum_{i=0}^{n-1} \Psi_K(t,T_i,T_n)$
- If exercise, we get $(y_{T_i}[T_i, T_n] K)P_{T_i}[T_i, T_n]$, if not exercise, we get $B_K(T_j, T_{j+1}, T_n)$. However, $B_K(T_j, T_{j+1}, T_n)$ is unknown. The Do-Not-Exercise criteria:
 - Do not exercise at T_i if $y_{T_i}[T_i, T_n] < K$
 - Do not exercise at T_i if $(y_{T_i}[T_i, T_n] K)P_{T_i}[T_i, T_n] < \max_{i+1 \le j \le n+1} \Psi_K(T_i, T_j, T_n)$
 - Do not exercise at T_i if $y_{T_i}[T_i, T_j] < K$ for any $j : i + 1 \le j \le n$

2 Cancellable Swaps / Bermudan Cancellable Swaps

• European Cancellable Swap: the party is in a swap and pays fixed K and receives libor from $T = T_0$ to T_n , but at a single time T_j , the party has the option to cancel the swap. If the option is exercised, no more swap payments are made after T_j .

We can construct a European cancellable swap from a swap and a European swaption in several ways:

- 1) enter into swap paying K from T to T_n , plus long a T_j into $T_n T_j$ European receiver swaption
- 2) enter into swap paying K from T to T_j , plus long a T_j into $T_n T_j$ European payer swaption

- Bermudan Cancellable Swaps: A T_n noncall T_j Bernumdan cancellable swap is a swap from T_0 to T_n where the party who pays fixed has the right to cancel at $T_j, T_{j+1}, \dots, T_{n-1}$.
- Results
 - K{6nc2 Berm q} \geq K{5nc2 Berm q} \geq K{5nc2 Berm s/a } \geq K{ 5nc3 Berm s/a } \geq K{5nc3 Euro} \geq five-year swap rate
 - $K\{5nc3 Euro\} \ge three-year swap rate$
 - K{5nc2 Berm s/a } \geq K{5nc2 Euro} \geq two-year swap rate

3 Exercises

3.1 Bounds on Bermudan Swaption

Prove the given bounds on the value of a Bermudan swaption

- $B_K(t, T_0, T_n) < C_K(t, T_0, T_n)$
- $B_K(t, T_0, T_n) \ge \max_{0 \le i \le n-1} \Psi_K(t, T_i, T_n)$
- $B_K(t, T_0, T_n) \le \sum_{i=0}^{n-1} \Psi_K(t, T_i, T_n)$

3.2 Bermudan Cancellable Swaps

Rank the following portfolios. Assume annual exercises, annual cancellations, and annual payment dates throughout.

I 5-nc-2 European cancellable swap
II 5-nc-2 Bermudan cancellable swap
III swap from 0 to 3
IV swap from 0 to 5, plus 2-into-3 Bermudan receiver swaption
V swap from 0 to 2, plus 2-into-3 Bermudan payer swaption
VI 5-nc-4 Bermudan cancellable swap
VII 6-nc-4 Bermudan cancellable swap
I II
III II
VI II
VI VII
II IV
${ m I}\ { m V}$
Solution: