Math 1710 Tutorial 8.

Inverse Trigonometric Functions and their Derivatives

Problem 1. Simplify the following expressions provided the expression is well-defined:

(a) $\cos^{-1}\left(\cos\left(\frac{\pi}{11}\right)\right)$;

(b) $\cos^{-1}\left(\cos\left(\frac{43\pi}{11}\right)\right)$;

(c) $\sin^{-1}\left(\tan\left(\frac{\pi}{3}\right)\right)$;

(d) $\cos\left(\cot^{-1}\left(-\frac{12}{5}\right)\right)$;

(e) $\tan\left(\sin^{-1}\left(-\frac{15}{17}\right)\right)$;

(f) $\cos\left(2\sin^{-1}\left(\frac{3}{5}\right)\right)$;

(g) $\sec\left(\csc^{-1}\left(-\frac{25}{7}\right)\right)$;

(h) $\cot \left(\sin^{-1} \left(\frac{1}{2} \csc \left(-\frac{11\pi}{4} \right) \right) \right)$.

Problem 2. Using derivatives of inverse trigonometric functions show that for any x,

$$\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}.$$

Problem 3. Find $\frac{dy}{dx}$ (simplify the expressions as much as possible):

(a)
$$y = \sin^{-1}\left(\frac{x^2}{x^2 + 1}\right);$$

(b)
$$y = x \tan^{-1}(e^x)$$
;

(c)
$$y = 4^{3\cos^{-1}(x)}$$
;

(d)
$$y = \sin(\cos^{-1}(x^2));$$

(e)
$$y = x^{\cot^{-1}(x)}$$
;

(f)
$$y = \frac{[\sin^{-1}(x)]^{10}}{x^3}$$
;

(g)
$$y = \ln(\sec^{-1}(3x))$$
.

Problem 4. Find the equation of the tangent line to the curve given by

$$2y \cot^{-1}(x) = \pi(1+xy)$$

at the point corresponding to x = 1.