

Capítulo 2: Espacios Vectoriales (cuarta parte)

Ejercicios

- Ejercicio 3
- Ejercicio 10
- Ejercicio 11
- Ejercicio 14
- Ejercicio 15
- Ejercicio 19
- Ejercicio 21

- Ejercicio 3.
- Ejercicio 10.
- Ejercicio 11.
- Ejercicio 14.
- Ejercicio 15.
- Ejercicio 19.
- Ejercicio 21.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

- 3) Sea $V=\left\{\sum\limits_{i=0}^{2}a_{i}x^{i} / a_{i} \in \mathbb{R}\right\}$ y $\mathcal{B}_{1}=\left\{1,x,x^{2}\right\}$ base estándar de V.
 - a) Probar que $\mathcal{B}_2 = \{x-1, 1, (x-1)^2\}$ es otra base de V.
 - b) Hallar la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .
 - c) Utilizar lo obtenido en el ítem anterior y determinar la coordenadas de p en la base \mathcal{B}_2 siendo $p(x)=2x^2-5x+6$. ; Cuáles son las coordenadas de p en la base
 - ¿Cuáles son las coordenadas de p en la base $\{1,(x-1)^2,x-1\}$?

a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Ejercicios

Ejercicio 3

Ejercicio 10

e.

Ethanista da

Ejercicio 15

Ejercicio 19 Ejercicio 21

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 *a*) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

$$a \cdot (x-1) + b \cdot 1 + c \cdot (x-1)^2 = 0$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

$$a \cdot (x-1) + b \cdot 1 + c \cdot (x-1)^2 = 0$$

Trabajando el lado izquierdo llegamos a:

$$(b+c-a) \cdot 1 + (a-2c) \cdot x + c \cdot x^2 = 0$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

$$a \cdot (x-1) + b \cdot 1 + c \cdot (x-1)^2 = 0$$

Trabajando el lado izquierdo llegamos a:

$$(b+c-a) \cdot 1 + (a-2c) \cdot x + c \cdot x^2 = 0$$

Como $\mathcal{B}_1 = \left\{ 1, x, x^2 \right\}$ es una base de V, los coeficientes tienen que ser 0:

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

$$a \cdot (x-1) + b \cdot 1 + c \cdot (x-1)^2 = 0$$

Trabajando el lado izquierdo llegamos a:

$$(b+c-a) \cdot 1 + (a-2c) \cdot x + c \cdot x^2 = 0$$

Como $\mathcal{B}_1 = \{1, x, x^2\}$ es una base de V, los coeficientes tienen que ser 0:

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

$$a \cdot (x-1) + b \cdot 1 + c \cdot (x-1)^2 = 0$$

Trabajando el lado izquierdo llegamos a:

$$(b+c-a) \cdot 1 + (a-2c) \cdot x + c \cdot x^2 = 0$$

Como $\mathcal{B}_1 = \{1, x, x^2\}$ es una base de V, los coeficientes tienen que ser 0:

Como a=b=c=0 es la única solución posible, resulta que los vectores $\mathcal{B}_2=\left\{x-1,1,(x-1)^2\right\}$ son linealmente independientes.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

$$a \cdot (x-1) + b \cdot 1 + c \cdot (x-1)^2 = 0$$

Trabajando el lado izquierdo llegamos a:

$$(b+c-a) \cdot 1 + (a-2c) \cdot x + c \cdot x^2 = 0$$

Como $\mathcal{B}_1 = \{1, x, x^2\}$ es una base de V, los coeficientes tienen que ser 0:

Como a=b=c=0 es la única solución posible, resulta que los vectores $\mathcal{B}_2=\left\{x-1,1,(x-1)^2\right\}$ son linealmente independientes. ¿Es base?

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 a) Veamos que los vectores de \mathcal{B}_2 son linealmente independientes.

Planteamos una combinación lineal igualada a 0:

$$a \cdot (x-1) + b \cdot 1 + c \cdot (x-1)^2 = 0$$

Trabajando el lado izquierdo llegamos a:

$$(b+c-a)\cdot \mathbf{1} + (a-2c)\cdot \mathbf{x} + c\cdot \mathbf{x^2} = 0$$

Como $\mathcal{B}_1 = \{1, x, x^2\}$ es una base de V, los coeficientes tienen que ser 0:

Como a=b=c=0 es la única solución posible, resulta que los vectores $\mathcal{B}_2=\left\{x-1,1,(x-1)^2\right\}$ son linealmente independientes. ¿Es base? (2a. adicional práctica anterior)

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Sea $p \in V$, planteamos la igualdad:

$$M[p]_{{\color{red}\mathcal{B}_1}}=[p]_{{\color{red}\mathcal{B}_2}}$$

donde M es la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Sea $p \in V$, planteamos la igualdad:

$$M[p]_{\mathcal{B}_1} = [p]_{\mathcal{B}_2}$$

donde M es la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .

Observación: la igualdad es de vectores en \mathbb{R}^3 .

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Sea $p \in V$, planteamos la igualdad:

$$M[p]_{{\color{red}\mathcal{B}_1}}=[p]_{{\color{red}\mathcal{B}_2}}$$

donde M es la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .

Observación: la igualdad es de vectores en \mathbb{R}^3 .

$$M[x-1]_{\mathcal{B}_1} = [x-1]_{\mathcal{B}_2}$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Sea $p \in V$, planteamos la igualdad:

$$M[p]_{{\color{red}\mathcal{B}_1}}=[p]_{{\color{red}\mathcal{B}_2}}$$

donde M es la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .

Observación: la igualdad es de vectores en \mathbb{R}^3 .

$$M [x-1]_{\mathcal{B}_1} = [x-1]_{\mathcal{B}_2}$$
$$M [-1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2}]_{\mathcal{B}_1} = [x-1]_{\mathcal{B}_2}$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Sea $p \in V$, planteamos la igualdad:

$$M[p]_{{\color{red}\mathcal{B}_1}}=[p]_{{\color{red}\mathcal{B}_2}}$$

donde M es la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .

Observación: la igualdad es de vectores en \mathbb{R}^3 .

$$M [x-1]_{\mathcal{B}_1} = [x-1]_{\mathcal{B}_2}$$

$$M [-1 \cdot 1 + 1 \cdot x + 0 \cdot x^2]_{\mathcal{B}_1} = [x-1]_{\mathcal{B}_2}$$

$$M (-1,1,0)^T =$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Sea $p \in V$, planteamos la igualdad:

$$M[p]_{{\color{red}\mathcal{B}_1}}=[p]_{{\color{red}\mathcal{B}_2}}$$

donde M es la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .

Observación: la igualdad es de vectores en \mathbb{R}^3 .

$$M [x-1]_{\mathcal{B}_{1}} = [x-1]_{\mathcal{B}_{2}}$$

$$M [-1 \cdot 1 + 1 \cdot x + 0 \cdot x^{2}]_{\mathcal{B}_{1}} = [x-1]_{\mathcal{B}_{2}}$$

$$M (-1, 1, 0)^{T} = (1, 0, 0)^{T}$$

$$\mathcal{B}_1 = \left\{1, x, x^2\right\}$$
, $\mathcal{B}_2 = \left\{x - 1, 1, (x - 1)^2\right\}$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Sea $p \in V$, planteamos la igualdad:

$$M[p]_{{\color{red}\mathcal{B}_1}}=[p]_{{\color{red}\mathcal{B}_2}}$$

donde M es la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .

Observación: la igualdad es de vectores en \mathbb{R}^3 .

Tomando p = x - 1:

$$M [x-1]_{\mathcal{B}_{1}} = [x-1]_{\mathcal{B}_{2}}$$

$$M [-1 \cdot 1 + 1 \cdot x + 0 \cdot x^{2}]_{\mathcal{B}_{1}} = [x-1]_{\mathcal{B}_{2}}$$

$$M (-1, 1, 0)^{T} = (1, 0, 0)^{T}$$

Similarmente, tomando p=1 y $p=(x-1)^2$ llegamos a

$$M (1, 0, 0)^T = (0, 1, 0)^T$$

 $M (1, -2, 1)^T = (0, 0, 1)^T$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Estas igualdades

$$M (-1, 1, 0)^T = (1, 0, 0)^T$$

 $M (1, 0, 0)^T = (0, 1, 0)^T$
 $M (1, -2, 1)^T = (0, 0, 1)^T$

se pueden ver matricialmente:

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ljerelelo 1-

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Estas igualdades

$$M (-1, 1, 0)^T = (1, 0, 0)^T$$

 $M (1, 0, 0)^T = (0, 1, 0)^T$
 $M (1, -2, 1)^T = (0, 0, 1)^T$

se pueden ver matricialmente:

$$M \left[\begin{array}{rrr} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Estas igualdades

$$M (-1, 1, 0)^T = (1, 0, 0)^T$$

 $M (1, 0, 0)^T = (0, 1, 0)^T$
 $M (1, -2, 1)^T = (0, 0, 1)^T$

se pueden ver matricialmente:

$$M \begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

_,-.----

Ejercicio 21

b) Aplicando Gauss-Jordan a la matriz

$$\left[\begin{array}{ccc} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{array}\right]$$

llegamos a que

$$M = \left[\begin{array}{rrr} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

$$\mathcal{B}_1 = \left\{1, x, x^2\right\}$$
, $\mathcal{B}_2 = \left\{x - 1, 1, (x - 1)^2\right\}$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Otra forma de llegar a lo mismo es usando el siguiente resultado de teoría:

La columna i-ésima de la matriz M es la representación del elemento i-ésimo de la base \mathcal{B}_1 en la base \mathcal{B}_2 .

Busquemos como ejemplo M^3 , que corresponde a la representación de $x^2 \in \mathcal{B}_1$ en la base \mathcal{B}_2 .

Para encontrar $[x^2]_{\mathcal{B}_2}$ planteamos la siguiente igualdad:

$$x^{2} = \alpha \cdot (x-1) + \beta \cdot 1 + \gamma \cdot (x-1)^{2}$$
$$= (\gamma + \beta - \alpha) \cdot 1 + (\alpha - 2\gamma) \cdot x + \gamma \cdot x^{2}$$

de donde resulta que $\gamma+\beta-\alpha=0$, $\alpha-2\gamma=0$, $\gamma=1$. Resolviendo el sistema llegamos a que

$$M^3 = (\alpha, \beta, \gamma)^T = (2, 1, 1)^T$$

$p(x) = 2x^2 - 5x + 6$

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Observamos que

$$[p]_{\mathcal{B}_1} = (6, -5, 2)^T.$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Observamos que

$$[p]_{\mathbf{B}_1} = (6, -5, 2)^T.$$

Luego,

$$[p]_{\mathcal{B}_2}=M[p]_{\mathcal{B}_1}$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 c) Observamos que

$$[p]_{\mathbf{B}_1} = (6, -5, 2)^T.$$

Luego,

$$[p]_{\mathcal{B}_2} = M[p]_{\mathcal{B}_1} = (-1, 3, 2)^T.$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 c) Observamos que

$$[p]_{\mathcal{B}_1} = (6, -5, 2)^T$$
.

Luego,

$$[p]_{\mathcal{B}_2} = M[p]_{\mathcal{B}_1} = (-1, 3, 2)^T.$$

Para corroborar que no cometimos errores, podemos constatar observando la siguiente igualdad de polinomios:

$$6 \cdot 1 - 5 \cdot x + 2 \cdot x^{2} = -1 \cdot (x - 1) + 3 \cdot 1 + 2 \cdot (x - 1)^{2}$$

$$p(x) = 2x^2 - 5x + 6$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Observamos que

$$[p]_{\mathcal{B}_1} = (6, -5, 2)^T$$
.

Luego,

$$[p]_{\mathcal{B}_2} = M[p]_{\mathcal{B}_1} = (-1, 3, 2)^T.$$

Para corroborar que no cometimos errores, podemos constatar observando la siguiente igualdad de polinomios:

$$6 \cdot 1 - 5 \cdot x + 2 \cdot x^{2} = -1 \cdot (x - 1) + 3 \cdot 1 + 2 \cdot (x - 1)^{2}$$

¿Cuáles son las coordenadas de p en la base $\{1,(x-1)^2,x-1\}$?

$$p(x) = 2x^2 - 5x + 6$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ljerelelo 1

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Observamos que

$$[p]_{\mathcal{B}_1} = (6, -5, 2)^T$$
.

Luego,

$$[p]_{\mathcal{B}_2} = M[p]_{\mathcal{B}_1} = (-1, 3, 2)^T.$$

Para corroborar que no cometimos errores, podemos constatar observando la siguiente igualdad de polinomios:

$$6 \cdot 1 - 5 \cdot x + 2 \cdot x^{2} = -1 \cdot (x - 1) + 3 \cdot 1 + 2 \cdot (x - 1)^{2}$$

¿Cuáles son las coordenadas de p en la base $\{1,(x-1)^2,x-1\}$?

Conmutando la expresión de la derecha, vemos claramente que las coordenadas de p en la base $\left\{1,(x-1)^2,x-1\right\}$ son $3,\ 2$ y -1 respectivamente.

$$p(x) = 2x^2 - 5x + 6$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Observamos que

$$[p]_{\mathcal{B}_1} = (6, -5, 2)^T.$$

Luego,

$$[p]_{\mathcal{B}_2} = M[p]_{\mathcal{B}_1} = (-1, 3, 2)^T.$$

Para corroborar que no cometimos errores, podemos constatar observando la siguiente igualdad de polinomios:

$$6 \cdot 1 - 5 \cdot x + 2 \cdot x^2 = -1 \cdot (x - 1) + 3 \cdot 1 + 2 \cdot (x - 1)^2$$

¿Cuáles son las coordenadas de p en la base $\{1, (x-1)^2, x-1\}$?

Conmutando la expresión de la derecha, vemos claramente que las coordenadas de p en la base $\left\{1,(x-1)^2,x-1\right\}$ son $3,\ 2$ y -1 respectivamente.

$$p(x) = 2x^2 - 5x + 6$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ljerelelo 1

Ejercicio 15

Ejercicio 19 Ejercicio 21 c) Observamos que

$$[p]_{\mathcal{B}_1} = (6, -5, 2)^T$$
.

Luego,

$$[p]_{\mathcal{B}_2} = M[p]_{\mathcal{B}_1} = (-1, 3, 2)^T.$$

Para corroborar que no cometimos errores, podemos constatar observando la siguiente igualdad de polinomios:

$$6 \cdot 1 - 5 \cdot x + 2 \cdot x^2 = -1 \cdot (x - 1) + 3 \cdot 1 + 2 \cdot (x - 1)^2$$

¿Cuáles son las coordenadas de p en la base $\{1,(x-1)^2,x-1\}$?

Conmutando la expresión de la derecha, vemos claramente que las coordenadas de p en la base $\{1,(x-1)^2,x-1\}$ son $3,\ 2$ y -1 respectivamente.

¿Cuál es la nueva matriz de cambio de base? $MP_{12}P_{23}$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

-

Ejercicio 21

10) Sean V y W espacios vectoriales sobre $\mathbb K$ y

$$\mathcal{L}(V,W) := \{T \colon V \to W : T \text{ transformación lineal}\}.$$

Probar que para $T_1, T_2 \in \mathcal{L}(V, W)$:

- a) $\{v \in V : T_1(v) = T_2(v)\} \subset V$.
- b) Si $V=\langle U\rangle$ y $T_1(u)=T_2(u)\ \forall u\in U$, entonces $T_1(v)=T_2(v)\ \forall v\in V$.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14 Ejercicio 15

Ejercicio 19

Ejercicio 21

- a) Llamamos $A = \{v \in V : T_1(v) = T_2(v)\}.$ Vamos a probar que $A \subset V.$
 - Es claro que $A \subseteq V$ (por definición de A).
 - $A \neq \emptyset$ pues $0 \in A$ ya que $0 \in V$ y $T_1(0) = 0 = T_2(0)$ $(T_1, T_2 \text{ transformaciones lineales}).$
 - Sean $u,v\in A$, $\natural u+v\in A$?

 Primero observemos que $u+v\in V$ ya que V es un espacio vectorial. Además, $T_1(u+v)\stackrel{\text{(1)}}{=} T_1(u) + T_1(v) \stackrel{\text{(2)}}{=} T_2(u) + T_2(v) \stackrel{\text{(1)}}{=} T_2(u+v).$ Por lo tanto, $u+v\in A$.
 - Sean $\alpha \in \mathbb{K}$ y $v \in A$, $i \alpha v \in A$?

 Por un lado, es claro que $\alpha v \in V$ ya que V es un espacio vectorial. Además,

 $T_1(\alpha v) \stackrel{\text{(1)}}{=} \alpha T_1(v) \stackrel{\text{(2)}}{=} \alpha T_2(u) \stackrel{\text{(1)}}{=} T_2(\alpha v).$ (1) T_1 y T_2 son transformaciones lineales.

(2) $u,v \in A$ entonces $T_1(u) = T_2(u)$ y $T_1(u) = T_2(v)$.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Ahora veamos que, si $V=\langle U\rangle$ y $T_1(u)=T_2(u)\ \forall u\in U$, entonces $T_1(v)=T_2(v)\ \forall v\in V$.

Consideramos $v \in V$.

Como $V=\langle U \rangle$ entonces $v=\sum\limits_{i=1}^n \alpha_i u^i$ con $\alpha_i \in \mathbb{K}$ y $u^i \in U$. Luego,

$$T_1(v) = T_1\left(\sum_{i=1}^n \alpha_i u^i\right) \stackrel{\text{(1)}}{=} \sum_{i=1}^n \alpha_i T_1(u^i)$$

$$\stackrel{\text{(2)}}{=} \sum_{i=1}^{n} \alpha_i T_2(u^i)$$

$$\stackrel{\text{(1)}}{=} T_2 \left(\sum_{i=1}^n \alpha_i u^i \right) = T_2(v)$$

- (1) T_1 y T_2 son transformaciones lineales.
- (2) $T_1(u) = T_2(u), \forall u \in U.$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

11) Consideramos la aplicación T definida por:

$$T: \quad \mathbb{R}^{2\times 2} \quad \to \quad \mathbb{R}_3[x]$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mapsto \quad T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 2dx^3 + (a+b)x^2 + (a-c)x + 2(c+d).$$

- a) Probar que T es lineal.
- b) Hallar una base para nul(T) y una para rec(T).
- c) Determinar si T es un isomorfismo.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ljercicio 1

Ejercicio 21

a) Vamos a probar que T es lineal.

Sean
$$A_1=\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, A_2=\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\in\mathbb{R}^{2 imes 2}$$
 y $\alpha\in\mathbb{R}.$

$$T(\alpha A_1 + A_2) = T \left(\begin{bmatrix} \alpha a_1 + a_2 & \alpha b_1 + b_2 \\ \alpha c_1 + c_2 & \alpha d_1 + d_2 \end{bmatrix} \right)$$

$$= \, 2(\alpha d_1 + d_2) x^3 + (\alpha a_1 + a_2 + \alpha b_1 + b_2) x^2 + (\alpha a_1 + a_2 - \alpha c_1 + c_2) x + 2(\alpha c_1 + c_2 + \alpha d_1 + d_2)$$

$$= \alpha [2d_1x^3 + (a_1+b_1)x^2 + (a_1-c_1)x + 2(c_1+d_1)] + [2d_2x^3 + (a_2+b_2)x^2 + (a_2-c_2)x + 2(c_2+d_2)]$$

$$= \alpha T(A_1) + T(A_2)$$

Por lo tanto T es una transformación lineal.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b),c) Primero hallamos una base para nul(T) y una para rec(T).

Comenzamos describiendo el espacio nulo asociado a la transformación lineal T:

$$nul(T) = \{ A \in \mathbb{R}^{2 \times 2} : T(A) = 0 \} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} : {}_{2dx^3 + (a+b)x^2 + (a-c)x + 2(c+d) = 0x^3 + 0x^2 + 0x + 0} \right\}.$$

Resolviendo el sistema 2d=0, a+b=0, a-c=0 y c+d=0 resulta que a=b=c=d=0. Luego,

$$nul(T) = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$$

Por lo tanto, la base de nul(T) es el conjunto \emptyset .

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b),c) Ahora bien, como $nul(T)=\{0\}$ y T es una transformación lineal, T es un monomorfismo.

Además, $\mathbb{R}^{2\times 2}$ y $\mathbb{R}_3[x]$ son espacios vectoriales isomorfos a \mathbb{R}^4 , entonces la matriz A asociada a la transformación lineal T es de tamaño 4×4 .

Como $dim\{nul(A)\}=dim\{nul(T)\}=0$ resulta que A es de rango completo.

Luego, $C(A)=\mathbb{R}^4$ y resulta que T es un epimorfismo, es decir, $rec(T)=\mathbb{R}_3[x].$

Por lo tanto, podemos concluir que T es un isomorfismo y una base para rec(T) es $\{1,x,x^2,x^3\}$.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

14) Sea $T:\mathbb{R}_n[x] \to \mathbb{R}_n[x]$ tal que

$$T(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1(x+1) + \dots + a_n(x+1)^n.$$

Probar que T es isomorfismo.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

14) Sea $T:\mathbb{R}_n[x] \to \mathbb{R}_n[x]$ tal que

$$T(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1(x+1) + \dots + a_n(x+1)^n.$$

Probar que T es isomorfismo.

Sean V y W espacios vectoriales tales que $\dim V = \dim W = n$ y T una transformación lineal de V a W. Entonces,

- ullet Si T es un monomorfismo entonces T es un isomorfismo.
- Si T es un epimorfismo entonces T es un isomorfismo.

Si consideramos $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ entonces (T(p))(x) = p(x+1).

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Si consideramos $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que T es una transformación lineal.

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11
Ejercicio 14

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

Si consideramos $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que ${\cal T}$ es una transformación lineal.

Sean $p, q \in \mathbb{R}_n[x]$ y sean $\alpha, \beta \in \mathbb{R}$,

- Ejercicios
- Ejercicio 3
- Ejercicio 10
- Ejercicio 11
- Ejercicio 14
- Ejercicio 15
- Ejercicio 19
- Ejercicio 21

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Si consideramos $p(x) = a_0 + a_1x + \cdots + a_nx^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que T es una transformación lineal.

Sean $p, q \in \mathbb{R}_n[x]$ y sean $\alpha, \beta \in \mathbb{R}$, queremos ver que

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Si consideramos $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que ${\cal T}$ es una transformación lineal.

Sean $p,q\in\mathbb{R}_n[x]$ y sean $\alpha,\beta\in\mathbb{R}$, queremos ver que

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q)$$

$$(T(\alpha p + \beta q))(x) =$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Si consideramos $p(x) = a_0 + a_1x + \cdots + a_nx^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que ${\cal T}$ es una transformación lineal.

Sean $p,q\in\mathbb{R}_n[x]$ y sean $\alpha,\beta\in\mathbb{R}$, queremos ver que

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q)$$

$$(T(\alpha p + \beta q))(x) = (\alpha p + \beta q)(x+1)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Si consideramos $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que ${\cal T}$ es una transformación lineal.

Sean $p,q\in\mathbb{R}_n[x]$ y sean $\alpha,\beta\in\mathbb{R}$, queremos ver que

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q)$$

$$(T(\alpha p + \beta q))(x) = (\alpha p + \beta q)(x+1)$$
$$= \alpha p(x+1) + \beta q(x+1)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Si consideramos $p(x) = a_0 + a_1x + \cdots + a_nx^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que ${\cal T}$ es una transformación lineal.

Sean $p,q\in\mathbb{R}_n[x]$ y sean $\alpha,\beta\in\mathbb{R}$, queremos ver que

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q)$$

$$(T(\alpha p + \beta q))(x) = (\alpha p + \beta q)(x+1)$$
$$= \alpha p(x+1) + \beta q(x+1)$$
$$= \alpha (T(p))(x) + \beta (T(q))(x)$$

Ejercicios Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 1

Ejercicio 15

Ejercicio 19

Ejercicio 21

Si consideramos $p(x) = a_0 + a_1x + \cdots + a_nx^n$ entonces

$$(T(p))(x) = p(x+1).$$

Usando esta expresión, veamos que ${\cal T}$ es una transformación lineal.

Sean $p,q\in\mathbb{R}_n[x]$ y sean $\alpha,\beta\in\mathbb{R}$, queremos ver que

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q)$$

Evaluando el polinomio $T(\alpha p + \beta q)$ en x:

$$(T(\alpha p + \beta q))(x) = (\alpha p + \beta q)(x+1)$$
$$= \alpha p(x+1) + \beta q(x+1)$$
$$= \alpha (T(p))(x) + \beta (T(q))(x)$$

Concluimos que T es una transformación lineal entre dos espacios de igual dimensión.

$\label{eq:Veamos} \mbox{ Veamos que } T \mbox{ es epimorfismo.}$

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Veamos que T es epimorfismo.

Sea $p \in \mathbb{R}_n[x]$ (codominio), construyamos $q \in \mathbb{R}_n[x]$ (dominio) tal que T(q) = p.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14
Ejercicio 15

Ejercicio 19

Ejercicio 21

Veamos que T es epimorfismo.

Sea $p \in \mathbb{R}_n[x]$ (codominio), construyamos $q \in \mathbb{R}_n[x]$ (dominio) tal que T(q) = p.

Si

$$p(x) = c_0 + c_1 x + \dots + c_n x^n$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Veamos que T es epimorfismo.

Sea $p \in \mathbb{R}_n[x]$ (codominio), construyamos $q \in \mathbb{R}_n[x]$ (dominio) tal que T(q) = p.

Si

$$p(x) = c_0 + c_1 x + \dots + c_n x^n$$

entonces definimos

$$q(x) := c_0 + c_1(x-1) + \dots + c_n(x-1)^n = p(x-1).$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Veamos que T es epimorfismo.

Sea $p \in \mathbb{R}_n[x]$ (codominio), construyamos $q \in \mathbb{R}_n[x]$ (dominio) tal que T(q) = p.

Si

$$p(x) = c_0 + c_1 x + \dots + c_n x^n$$

entonces definimos

$$q(x) := c_0 + c_1(x-1) + \dots + c_n(x-1)^n = p(x-1).$$

Dado que

$$(T(q))(x) = q(x+1) = p((x-1)+1) = p(x)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Veamos que T es epimorfismo.

Sea $p \in \mathbb{R}_n[x]$ (codominio), construyamos $q \in \mathbb{R}_n[x]$ (dominio) tal que T(q) = p.

Si

$$p(x) = c_0 + c_1 x + \dots + c_n x^n$$

entonces definimos

$$q(x) := c_0 + c_1(x-1) + \dots + c_n(x-1)^n = p(x-1).$$

Dado que

$$(T(q))(x) = q(x+1) = p((x-1)+1) = p(x)$$

resulta que T es un epimorfismo.

$\label{eq:Veamos} \mbox{ Veamos que } T \mbox{ es epimorfismo.}$

Sea $p \in \mathbb{R}_n[x]$ (codominio), construyamos $q \in \mathbb{R}_n[x]$ (dominio) tal que T(q) = p.

Si

$$p(x) = c_0 + c_1 x + \dots + c_n x^n$$

entonces definimos

$$q(x) := c_0 + c_1(x-1) + \dots + c_n(x-1)^n = p(x-1).$$

Dado que

$$(T(q))(x) = q(x+1) = p((x-1)+1) = p(x)$$

resulta que T es un epimorfismo.

Por corolario, T resulta un isomorfismo. \Box

Ejercicio 3 Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

18 / 36

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

15) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformación lineal tal que

$$T((0,0,1)^T) = (2, 3, 5)^T$$

 $T((0,1,1)^T) = (1, 0, 0)^T$
 $T((1,1,1)^T) = (0, 1,-1)^T$

- a) Probar que con esta información es posible obtener $T(v), \forall v \in \mathbb{R}^3.$
- b) Determinar, fijada la base canónica en \mathbb{R}^3 , la matriz de T.
- c) Utilizando el item anterior, obtener $\dim(nul(T))$ y $rg(T) = \dim(rec(T))$.
- d) Determinar si T es inversible.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

Ejercicio 19

a) De una manera similar al 3a) se demuestra que $\mathcal{B}_1:=\{(0,0,1),(0,1,1),(1,1,1)\} \text{ es base de } \mathbb{R}^3.$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 a) De una manera similar al 3a) se demuestra que $\mathcal{B}_1 := \{(0,0,1),(0,1,1),(1,1,1)\}$ es base de \mathbb{R}^3 .

Sea $v \in \mathbb{R}^3$, resulta que existen únicos $a,b,c \in \mathbb{R}$ tales que

$$a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1) = v.$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) De una manera similar al 3a) se demuestra que $\mathcal{B}_1 := \{(0,0,1),(0,1,1),(1,1,1)\}$ es base de \mathbb{R}^3 .

Sea $v \in \mathbb{R}^3$, resulta que existen únicos $a,b,c \in \mathbb{R}$ tales que

$$a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1) = v.$$

Valor de T(v)

$$T(v) = T(a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1))$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) De una manera similar al 3a) se demuestra que $\mathcal{B}_1 := \{(0,0,1),(0,1,1),(1,1,1)\}$ es base de \mathbb{R}^3 .

Sea $v \in \mathbb{R}^3$, resulta que existen únicos $a,b,c \in \mathbb{R}$ tales que

$$a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1) = v.$$

Valor de T(v)

$$T(v) = T(a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1))$$

= $a \cdot T((0,0,1)) + b \cdot T((0,1,1)) + c \cdot T((1,1,1))$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) De una manera similar al 3a) se demuestra que $\mathcal{B}_1 := \{(0,0,1),(0,1,1),(1,1,1)\}$ es base de \mathbb{R}^3 .

Sea $v \in \mathbb{R}^3$, resulta que existen únicos $a,b,c \in \mathbb{R}$ tales que

$$a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1) = v.$$

Valor de T(v)

$$\begin{split} T(v) &= T(a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)) \\ &= a \cdot T((0,0,1)) + b \cdot T((0,1,1)) + c \cdot T((1,1,1)) \\ &= a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1) \end{split}$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 a) De una manera similar al 3a) se demuestra que $\mathcal{B}_1 := \{(0,0,1),(0,1,1),(1,1,1)\}$ es base de \mathbb{R}^3 .

Sea $v \in \mathbb{R}^3$, resulta que existen únicos $a,b,c \in \mathbb{R}$ tales que

$$a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1) = v.$$

Valor de T(v)

$$T(v) = T(a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1))$$

$$= a \cdot T((0,0,1)) + b \cdot T((0,1,1)) + c \cdot T((1,1,1))$$

$$= a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$= (2a + b, 3a + c, 5a - c)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Fiercicio 1

Ejercicio 15

Ejercicio 19 Ejercicio 21 a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida, es decir, que sea función. (acá termina el apartado a!)

Ejercicio 3

Ejercicio 10

Ejercicio 11 Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida, es decir, que sea función. (acá termina el apartado a!)

Para ilustrar el problema de no tener una representación única, supongamos que agregamos al enunciado la hipótesis

$$T((1,2,3)) = (1,0,0)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11 Ejercicio 14

Ejercicio 15

Ejercicio 21

Ejercicio 19

a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida, es decir, que sea función. (acá termina el apartado a!)

Para ilustrar el problema de no tener una representación única, supongamos que agregamos al enunciado la hipótesis

$$T((1,2,3)) = (1,0,0)$$

El razonamiento de la parte roja sigue siendo válido pero nos dice que T((1,2,3))=(3,4,4),

Ejercicio 3

Ejercicio 10

Ejercicio 11 Ejercicio 14

_,____

Ejercicio 15

Ejercicio 19 Ejercicio 21

a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida, es decir, que sea función. (acá termina el apartado a!)

Para ilustrar el problema de no tener una representación única, supongamos que agregamos al enunciado la hipótesis

$$T((1,2,3)) = (1,0,0)$$

El razonamiento de la parte roja sigue siendo válido pero nos dice que T((1,2,3))=(3,4,4), contradiciendo la nueva información.

Ejercicio 3

Ejercicio 10

Ejercicio 11 Ejercicio 14

Ejercicio 15

Ejercicio 21

Ejercicio 19

a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida, es decir, que sea función. (acá termina el apartado a!)

Para ilustrar el problema de no tener una representación única, supongamos que agregamos al enunciado la hipótesis

$$T((1,2,3)) = (1,0,0)$$

El razonamiento de la parte roja sigue siendo válido pero nos dice que T((1,2,3))=(3,4,4), contradiciendo la nueva información.

Saber los valores sobre una base del dominio es la información justa y necesaria:

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida, es decir, que sea función. (acá termina el apartado a!)

Para ilustrar el problema de no tener una representación única, supongamos que agregamos al enunciado la hipótesis

$$T((1,2,3)) = (1,0,0)$$

El razonamiento de la parte roja sigue siendo válido pero nos dice que T((1,2,3))=(3,4,4), contradiciendo la nueva información.

Saber los valores sobre una base del dominio es la información justa y necesaria:

Con menos elementos tenemos problemas de existencia.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

a) Buena definición de T(v)

La unicidad de los coeficientes a,b,c me garantiza que T esté bien definida, es decir, que sea función. (acá termina el apartado a!)

Para ilustrar el problema de no tener una representación única, supongamos que agregamos al enunciado la hipótesis

$$T((1,2,3)) = (1,0,0)$$

El razonamiento de la parte roja sigue siendo válido pero nos dice que T((1,2,3))=(3,4,4), contradiciendo la nueva información.

Saber los valores sobre una base del dominio es la información justa y necesaria:

- Con menos elementos tenemos problemas de existencia.

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

b) IDEA

Ejercicios

Ejercicio 3

Ejercicio 10 Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

22/36

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

b) Idea

Vamos a usar este resultado:

Sea $T \colon U \to V$ transformación lineal.

Si fijamos las bases $\{u_1,u_2,\ldots,u_n\}$ de U y B de V, entonces la matriz asociada A de T es única y está determinada por $A^i=[T(u_i)]_B$, para $i=1,2,\ldots,n$., donde $[T(u_i)]_B$ es la representación de la imagen por T de u_i en la base B.

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

b) Idea

Vamos a usar este resultado:

Sea $T: U \to V$ transformación lineal.

Si fijamos las bases $\{u_1,u_2,\ldots,u_n\}$ de U y B de V, entonces la matriz asociada A de T es única y está determinada por $A^i=[T(u_i)]_B$, para $i=1,2,\ldots,n$., donde $[T(u_i)]_B$ es la representación de la imagen por T de u_i en la base B.

En este caso particular, dominio y codominio coinciden (\mathbb{R}^3) . Además, usamos para ambos espacios la base canónica.

Ejercicios Ejercicio 3 Ejercicio 10

Ejercicio 11 Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

b) Idea

Vamos a usar este resultado:

Sea $T: U \to V$ transformación lineal.

Si fijamos las bases $\{u_1,u_2,\ldots,u_n\}$ de U y B de V, entonces la matriz asociada A de T es única y está determinada por $A^i=[T(u_i)]_B$, para $i=1,2,\ldots,n$., donde $[T(u_i)]_B$ es la representación de la imagen por T de u_i en la base B.

En este caso particular, dominio y codominio coinciden (\mathbb{R}^3) . Además, usamos para ambos espacios la base canónica.

Con el objetivo de aplicar el resultado, debemos evaluar T en la base canónica y buscar las representaciones de dichas imágenes en la base canónica.

Ejercicio 3

Ejercicio 10

Ljercicio 1

Ejercicio 11 Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Solución

Sea
$$\mathcal{B} := \{(0,0,1)^T, (0,1,1)^T, (1,1,1)^T\}.$$

$$\begin{array}{l} T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1) \\ v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1) \end{array}$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

b) Solución

Sea $\mathcal{B} := \{(0,0,1)^T, (0,1,1)^T, (1,1,1)^T\}.$

Si notamos con (a_i, b_i, c_i) a los coeficientes del vector canónico e_i en la base \mathcal{B} , con i de 1 a 3

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

b) Solución

Sea
$$\mathcal{B} := \left\{ (0,0,1)^T, (0,1,1)^T, (1,1,1)^T \right\}.$$

Si notamos con (a_i, b_i, c_i) a los coeficientes del vector canónico e_i en la base \mathcal{B} , con i de 1 a 3, tenemos que:

$$T(e_i) = a_i \cdot (2,3,5)^T + b_i \cdot (1,0,0)^T + c_i \cdot (0,1,-1)^T$$

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Solución

Sea $\mathcal{B} := \{(0,0,1)^T, (0,1,1)^T, (1,1,1)^T\}.$

Si notamos con (a_i, b_i, c_i) a los coeficientes del vector canónico e_i en la base \mathcal{B} , con i de 1 a 3, tenemos que:

$$T(e_i) = a_i \cdot (2,3,5)^T + b_i \cdot (1,0,0)^T + c_i \cdot (0,1,-1)^T$$

Luego, si M es la matriz asociada a T respecto de la base canónica del dominio y codominio, entonces:

$$M = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

. ..

Sea $\mathcal{B} := \{(0,0,1)^T, (0,1,1)^T, (1,1,1)^T\}.$

b) Solución

Si notamos con (a_i, b_i, c_i) a los coeficientes del vector canónico e_i en la base \mathcal{B} , con i de 1 a 3, tenemos que:

$$T(e_i) = a_i \cdot (2,3,5)^T + b_i \cdot (1,0,0)^T + c_i \cdot (0,1,-1)^T$$

Luego, si M es la matriz asociada a T respecto de la base canónica del dominio y codominio, entonces:

$$M = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 1 & 0 \\ 3 & 0 & 1 \\ 5 & 0 & -1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

$$T(v) = a \cdot (2,3,5) + b \cdot (1,0,0) + c \cdot (0,1,-1)$$

$$v = a \cdot (0,0,1) + b \cdot (0,1,1) + c \cdot (1,1,1)$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

b) Solución

Sea $\mathcal{B} := \{(0,0,1)^T, (0,1,1)^T, (1,1,1)^T\}.$

Si notamos con (a_i, b_i, c_i) a los coeficientes del vector canónico e_i en la base \mathcal{B} , con i de 1 a 3, tenemos que:

$$T(e_i) = a_i \cdot (2,3,5)^T + b_i \cdot (1,0,0)^T + c_i \cdot (0,1,-1)^T$$

Luego, si M es la matriz asociada a T respecto de la base canónica del dominio y codominio, entonces:

$$M = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 & 0 \\ 3 & 0 & 1 \\ 5 & 0 & -1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

Para conocer M solo nos falta conocer a $\log (a_i, \underline{b}_i, c_i)$.

b) Como los (a_i, b_i, c_i) son los coeficientes de e_i en la base \mathcal{B} son solución del siguiente sistema:

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Como los (a_i, b_i, c_i) son los coeficientes de e_i en la base \mathcal{B} son solución del siguiente sistema:

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = e_i$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21 b) Como los (a_i, b_i, c_i) son los coeficientes de e_i en la base \mathcal{B} son solución del siguiente sistema:

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = e_i$$

Resolviendo cada uno de los tres sistemas por sustitución (despejar c_i , luego b_i y por último a_i) llegamos a que:

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Como los (a_i, b_i, c_i) son los coeficientes de e_i en la base \mathcal{B} son solución del siguiente sistema:

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = e_i$$

Resolviendo cada uno de los tres sistemas por sustitución (despejar c_i , luego b_i y por último a_i) llegamos a que:

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Reemplazando en la igualdad de la slide anterior:

$$M = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 0 & 1 \\ 5 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) Como los (a_i, b_i, c_i) son los coeficientes de e_i en la base \mathcal{B} son solución del siguiente sistema:

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = e_i$$

Resolviendo cada uno de los tres sistemas por sustitución (despejar c_i , luego b_i y por último a_i) llegamos a que:

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Reemplazando en la igualdad de la slide anterior:

$$M = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 0 & 1 \\ 5 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 2 \\ 1 & -3 & 3 \\ -1 & -5 & 5 \end{bmatrix}$$

Ejercicio 3

Ejercicio 10

_.

Fiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Teniendo M este ejercicio es fácil.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15
Ejercicio 19

Ejercicio 21

c) Teniendo M este ejercicio es fácil. Como la matriz M en su forma escalonada es

$$U := \left[\begin{array}{rrr} -1 & -1 & 2 \\ 0 & -4 & 5 \\ 0 & 0 & -2 \end{array} \right]$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15 Ejercicio 19

Ejercicio 21

c) Teniendo M este ejercicio es fácil. Como la matriz M en su forma escalonada es

$$U := \left[\begin{array}{rrr} -1 & -1 & 2 \\ 0 & -4 & 5 \\ 0 & 0 & -2 \end{array} \right]$$

resulta que:

• dim(nul(T))

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Teniendo M este ejercicio es fácil. Como la matriz M en su forma escalonada es

$$U := \left[\begin{array}{rrr} -1 & -1 & 2 \\ 0 & -4 & 5 \\ 0 & 0 & -2 \end{array} \right]$$

resulta que:

• dim(nul(T)) = dim(nul(M))

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Teniendo M este ejercicio es fácil. Como la matriz M en su forma escalonada es

$$U := \left[\begin{array}{rrr} -1 & -1 & 2 \\ 0 & -4 & 5 \\ 0 & 0 & -2 \end{array} \right]$$

resulta que:

 $\bullet \ \dim(nul(T)) = \dim(nul(M)) = \dim(nul(U))$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

C) Teniendo M este ejercicio es fácil.
 Como la matriz M en su forma escalonada es

$$U := \left[\begin{array}{rrr} -1 & -1 & 2 \\ 0 & -4 & 5 \\ 0 & 0 & -2 \end{array} \right]$$

resulta que:

 $\bullet \ dim(nul(T)) = dim(nul(M)) = dim(nul(U)) = 0$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Teniendo M este ejercicio es fácil. Como la matriz M en su forma escalonada es

$$U := \left[\begin{array}{rrr} -1 & -1 & 2 \\ 0 & -4 & 5 \\ 0 & 0 & -2 \end{array} \right]$$

resulta que:

- dim(nul(T)) = dim(nul(M)) = dim(nul(U)) = 0
- $\bullet \ rg(T) = dim(rec(T)) = dim(C(M)) = dim(C(U)) = 3$

Ejercicio 3

Ejercicio 10

F1....1.1. 44

Fiercicio 14

Ejercicio 15

Ejercicio 21

d) Veamos que T es inversible.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

d) Veamos que T es inversible.

Como dim(nul(T)) = 0 resulta que T es un monomorfismo.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

d) Veamos que T es inversible.

Como dim(nul(T))=0 resulta que T es un monomorfismo.

Como $dim(rec(T))=3=dim(\mathbb{R}^3)$ resulta que T es un epimorfismo.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

d) Veamos que T es inversible.

Como dim(nul(T)) = 0 resulta que T es un monomorfismo.

Como $dim(rec(T))=3=dim(\mathbb{R}^3)$ resulta que T es un epimorfismo.

Como T es un monomorfismo y epimorfismo resulta que T es un isomorfismo.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

d) Veamos que T es inversible.

Como dim(nul(T)) = 0 resulta que T es un monomorfismo.

Como $dim(rec(T))=3=dim(\mathbb{R}^3)$ resulta que T es un epimorfismo.

Como T es un monomorfismo y epimorfismo resulta que T es un isomorfismo. En particular, T es biyectiva.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

d) Veamos que T es inversible.

Como dim(nul(T)) = 0 resulta que T es un monomorfismo.

Como $dim(rec(T))=3=dim(\mathbb{R}^3)$ resulta que T es un epimorfismo.

Como T es un monomorfismo y epimorfismo resulta que T es un isomorfismo. En particular, T es biyectiva.

Como T es biyectiva resulta que T es inversible.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

19) Sean V y W dos espacios vectoriales de dimensión finita sobre \mathbb{K} . Probar que V y W son isomorfos si y solo si $\dim V = \dim W$.

Es uno de los lemas de las slides del capítulo 2 cuarta parte. Faltaba demostrar la vuelta.

Sean dos bases del mismo cardinal $\{v_1, \ldots, v_k\}$ y $\{w_1, \ldots, w_k\}$ de V y W, respectivamente.

Definimos a T como la transformación lineal $T\colon V\to W$ tal que $T(v_i)=w_i$ para i=1,...,k. Luego, para $v\in V$, si $v=\sum\limits_{i=1}^k\alpha_iv_i$ con $\alpha_1,\ldots,\alpha_k\in\mathbb{K}$ entonces

$$T(v) = T\left(\sum_{i=1}^k \alpha_i v_i\right) = \sum_{i=1}^k \alpha_i T(v_i) = \sum_{i=1}^k \alpha_i w_i$$

Veamos que T es un isomorfismo.

Sea
$$T(v)=0$$
 para algún $v=\sum\limits_{i=1}^k \alpha_i v_i \in V.$ Tenemos que

$$0 = T(v) = \sum_{i=1}^{k} \alpha_i w_i.$$

Como los w_i son linealmente independientes (por ser base), tenemos que $\alpha_1=\ldots=\alpha_k=0$. Por lo tanto, v=0 y resulta que T es un **monomorfismo**.

Sea
$$w \in W$$
 tal que $w = \sum_{i=1}^k \alpha_i w_i$ con $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$. Si definimos $v := \sum_{i=1}^k \alpha_i v_i$, entonces $T(v) = w$, por lo que T es un **epimorfismo**. Concluimos que T es un **isomorfismo**.

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19 Ejercicio 21

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- a) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B},\mathcal{B}')$.
- b) Si $\mathcal{B} = \{(1,0,-1),(1,1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$; Cuál es la matriz de T relativa al par $(\mathcal{B},\mathcal{B}')$?

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ljercicio 1s

Ejercicio 21

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- a) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$.
- b) Si $\mathcal{B} = \{(1,0,-1),(1,1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$; Cuál es la matriz de T relativa al par $(\mathcal{B},\mathcal{B}')$?
 - Aplicar T a los elementos de ${\cal B}$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- a) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$.
- b) Si $\mathcal{B} = \{(1,0,-1),(1,1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$ ¿Cuál es la matriz de T relativa al par $(\mathcal{B},\mathcal{B}')$?
 - Aplicar T a los elementos de ${\cal B}$
 - Encontrar la representación de las imágenes de los elementos de ${\cal B}$ en la base ${\cal B}'$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- a) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$.
- b) Si $\mathcal{B} = \{(1,0,-1),(1,1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$ ¿Cuál es la matriz de T relativa al par $(\mathcal{B},\mathcal{B}')$?
 - Aplicar T a los elementos de ${\cal B}$
 - Encontrar la representación de las imágenes de los elementos de ${\cal B}$ en la base ${\cal B}'$
 - Armar A_T poniendo como columnas las representaciones encontradas en el ítem anterior.

Prestar atención a los colores!

Los vectores rojos tienen 3 componentes y los azules tienen 2 componentes

a)

Aplicar T a los elementos de \mathcal{B} :

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Ejercicio 3 Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15
Ejercicio 19
Ejercicio 21

Prestar atención a los colores!

Los vectores rojos tienen 3 componentes y los azules tienen 2 componentes

a)

Aplicar T a los elementos de \mathcal{B} :

•
$$T(e_1) = T((1,0,0)) = (1,-1)$$

•
$$T(e_2) = T((0,1,0)) = (1,0)$$

•
$$T(e_3) = T((0,0,1)) = (0,2)$$

Ejercicio 3 Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15 Ejercicio 19

Ejercicio 21

Prestar atención a los colores!

Los vectores rojos tienen 3 componentes y los azules tienen 2 componentes

a)

Aplicar T a los elementos de \mathcal{B} :

•
$$T(e_1) = T((1,0,0)) = (1,-1)$$

•
$$T(e_2) = T((0,1,0)) = (1,0)$$

•
$$T(e_3) = T((0,0,1)) = (0,2)$$

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

Ejercicio 3 Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15 Ejercicio 19

Ejercicio 21

Prestar atención a los colores!

Los vectores rojos tienen 3 componentes y los azules tienen 2 componentes

a)

Aplicar T a los elementos de \mathcal{B} :

- $T(e_1) = T((1,0,0)) = (1,-1)$
- $T(e_2) = T((0,1,0)) = (1,0)$
- $T(e_3) = T((0,0,1)) = (0,2)$

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

- \bullet $(1,-1) = 1 \cdot e_1 + (-1) \cdot e_2$.
- \bullet $(1,0) = 1 \cdot e_1 + 0 \cdot e_2$.
- \bullet $(0,2) = 0 \cdot e_1 + 2 \cdot e_2$.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Cianalaia 17

Ejercicio 15

Ejercicio 19 Ejercicio 21

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

- \bullet $(1,-1) = 1 \cdot e_1 + (-1) \cdot e_2.$
- $(1,0) = 1 \cdot e_1 + 0 \cdot e_2$.
- \bullet $(0,2) = 0 \cdot e_1 + 2 \cdot e_2$.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

- $(1,-1) = 1 \cdot e_1 + (-1) \cdot e_2$.
- $(1,0) = 1 \cdot e_1 + 0 \cdot e_2$.
- $\bullet (0,2) = 0 \cdot e_1 + 2 \cdot e_2.$

$$A_T = [[T(e_1)]_{\mathcal{B}'} [T(e_2)]_{\mathcal{B}'} [T(e_3)]_{\mathcal{B}'}] =$$

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

- $(1,-1) = 1 \cdot e_1 + (-1) \cdot e_2$.
- $(1,0) = 1 \cdot e_1 + 0 \cdot e_2$.
- $\bullet (0,2) = 0 \cdot e_1 + 2 \cdot e_2.$

$$A_T = [[T(e_1)]_{\mathcal{B}'} \ [T(e_2)]_{\mathcal{B}'} \ [T(e_3)]_{\mathcal{B}'}] = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

b) (verificar que \mathcal{B} y \mathcal{B}' son bases)

_. . .

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Fiercicio 1

Ejercicio 21

Ejercicio 3

Ejercicio 10

Ejercicio 11

Fiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) (verificar que \mathcal{B} y \mathcal{B}' son bases)

Aplicar T a los elementos de \mathcal{B} :

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) (verificar que \mathcal{B} y \mathcal{B}' son bases)

Aplicar T a los elementos de \mathcal{B} :

- T((1,0,-1)) = (1,-3)
- T((1,1,1)) = (2,1)
- T((1,0,0)) = (1,-1)

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) (verificar que \mathcal{B} y \mathcal{B}' son bases)

Aplicar T a los elementos de \mathcal{B} :

- T((1,0,-1)) = (1,-3)
- T((1,1,1)) = (2,1)
- T((1,0,0)) = (1,-1)

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

b) (verificar que \mathcal{B} y \mathcal{B}' son bases)

Aplicar T a los elementos de \mathcal{B} :

- T((1,0,-1)) = (1,-3)
- T((1,1,1)) = (2,1)
- \bullet T((1,0,0)) = (1,-1)

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

- \bullet $(1,-3) = (-3) \cdot e_2 + 1 \cdot e_1$.
- \bullet $(2,1) = 1 \cdot e_2 + 2 \cdot e_1$.
- $(1,-1) = (-1) \cdot e_2 + 1 \cdot e_1$.

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

- \bullet $(1,-3) = -3 \cdot e_2 + 1 \cdot e_1$.
- $\bullet (2,1) = 1 \cdot e_2 + 2 \cdot e_1.$
- $\bullet (1,-1) = -1 \cdot e_2 + 1 \cdot e_1.$

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

,

Ejercicio 21

- \bullet $(1,-3) = -3 \cdot e_2 + 1 \cdot e_1.$
- $\bullet (2,1) = 1 \cdot e_2 + 2 \cdot e_1.$
- $(1,-1) = -1 \cdot e_2 + 1 \cdot e_1$.

$$A_T =$$

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

- \bullet $(1,-3) = -3 \cdot e_2 + 1 \cdot e_1$.
- \bullet $(2,1) = 1 \cdot e_2 + 2 \cdot e_1$.
- \bullet $(1,-1) = -1 \cdot e_2 + 1 \cdot e_1$.

$$A_T = \left[\begin{array}{rrr} -3 & 1 & -1 \\ 1 & 2 & 1 \end{array} \right]$$

Modificamos la base del codominio \mathcal{B}' en el apartado a)

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 1

Ejercicio 15 Ejercicio 19

Ejercicio 21

c) Si $\mathcal{B}=\{e_1,e_2,e_3\}$ y $\mathcal{B}'=\{v_1,v_2\}$ ¿Cuál es la matriz de T relativa al par $(\mathcal{B},\mathcal{B}')$?

Modificamos la base del codominio \mathcal{B}' en el apartado a)

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Si $\mathcal{B} = \{e_1, e_2, e_3\}$ y $\mathcal{B}' = \{v_1, v_2\}$ ¿Cuál es la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$?

c)

Aplicar T a los elementos de \mathcal{B} :

Modificamos la base del codominio \mathcal{B}' en el apartado a)

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Si $\mathcal{B} = \{e_1, e_2, e_3\}$ y $\mathcal{B}' = \{v_1, v_2\}$ ¿Cuál es la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$?

c)

Aplicar T a los elementos de \mathcal{B} :

- $T(e_1) = T((1,0,0)) = (1,-1)$
- $T(e_2) = T((0,1,0)) = (1,0)$
- $T(e_3) = T((0,0,1)) = (0,2)$

Modificamos la base del codominio \mathcal{B}' en el apartado a)

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Eiercicio 14

Ljercicio 1

Ejercicio 15

Ejercicio 19

Ejercicio 21

c) Si $\mathcal{B} = \{e_1, e_2, e_3\}$ y $\mathcal{B}' = \{v_1, v_2\}$ ¿Cuál es la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$?

c)

Aplicar T a los elementos de \mathcal{B} :

- $T(e_1) = T((1,0,0)) = (1,-1)$
- $T(e_2) = T((0,1,0)) = (1,0)$
- $T(e_3) = T((0,0,1)) = (0,2)$

La primer parte es igual que en a), porque no cambiamos la base del dominio.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 1

Ejercicio 15

Ejercicio 19

Ejercicio 21

c)

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c)

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

Como no es tan fácil ver cuáles son los coeficientes, colocamos incógnitas a_1,a_2,a_3,a_4,a_5,a_6

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c)

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

Como no es tan fácil ver cuáles son los coeficientes, colocamos incógnitas a_1,a_2,a_3,a_4,a_5,a_6

- \bullet $(1,-1) = a_1 \cdot v_1 + a_2 \cdot v_2$.
- \bullet $(1,0) = a_3 \cdot v_1 + a_4 \cdot v_2$.
- \bullet $(0,2) = a_5 \cdot v_1 + a_6 \cdot v_2$.

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c)

Encontrar la representación de las imágenes de los elementos de \mathcal{B} en la base \mathcal{B}' :

Como no es tan fácil ver cuáles son los coeficientes, colocamos incógnitas a_1,a_2,a_3,a_4,a_5,a_6

- \bullet $(1,-1) = a_1 \cdot v_1 + a_2 \cdot v_2$.
- \bullet $(1,0) = a_3 \cdot v_1 + a_4 \cdot v_2$.
- \bullet $(0,2) = a_5 \cdot v_1 + a_6 \cdot v_2$.

Si pensamos matricialmente...

c)

Si definimos $M:=[v_1\ v_2]$ entonces puedo reescribir lo de antes como:

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Fiercicio 14

Ejercicio 15

Ejercicio 21

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

c)

Si definimos $M:=[v_1\ v_2]$ entonces puedo reescribir lo de antes como:

•
$$(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T$$
.

c)

Si definimos $M:= [v_1 \ v_2]$ entonces puedo reescribir lo de antes como:

- $(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T$.
- $(1,0)^T = a_3 \cdot v_1 + a_4 \cdot v_2 = M(a_3, a_4)^T$.

- Ejercicios Ejercicio 3
- Ejercicio 10
- Ejercicio 11
- F:
- Ejercicio 14
- Ejercicio 15
- Ejercicio 19
- Ejercicio 21

c)

Si definimos $M:=[v_1\ v_2]$ entonces puedo reescribir lo de antes como:

- $(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T.$
- $(1,0)^T = a_3 \cdot v_1 + a_4 \cdot v_2 = M(a_3, a_4)^T$.
- $(0,2)^T = a_5 \cdot v_1 + a_6 \cdot v_2 = M(a_5, a_6)^T$.

Ejercicios Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21

Ejercicio 3

Ejercicio 10 Ejercicio 11

Ejercicio 14

Ejercicio 15 Ejercicio 19

Ejercicio 21

c)

Si definimos $M:= [v_1 \ v_2]$ entonces puedo reescribir lo de antes como:

- $(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T$.
- \bullet $(1,0)^T = a_3 \cdot v_1 + a_4 \cdot v_2 = M(a_3, a_4)^T$.
- \bullet $(0,2)^T = a_5 \cdot v_1 + a_6 \cdot v_2 = M(a_5, a_6)^T$.

Pensándolo matricialmente:

Ejercicio 3

Ejercicio 10 Ejercicio 11

Eiercicio 14

Ejercicio 15 Ejercicio 19

Ejercicio 21

c)

Si definimos $M:=[v_1\ v_2]$ entonces puedo reescribir lo de antes como:

- $(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T.$
- \bullet $(1,0)^T = a_3 \cdot v_1 + a_4 \cdot v_2 = M(a_3, a_4)^T$.
- $(0,2)^T = a_5 \cdot v_1 + a_6 \cdot v_2 = M(a_5, a_6)^T$.

Pensándolo matricialmente:

$$M \left[\begin{array}{ccc} a_1 & a_3 & a_5 \\ a_2 & a_4 & a_6 \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 0 \\ -1 & 0 & 2 \end{array} \right]$$

c)

Si definimos $M:= [v_1 \ v_2]$ entonces puedo reescribir lo de antes como:

- $(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T.$
- \bullet $(1,0)^T = a_3 \cdot v_1 + a_4 \cdot v_2 = M(a_3, a_4)^T$.
- $(0,2)^T = a_5 \cdot v_1 + a_6 \cdot v_2 = M(a_5, a_6)^T.$

Pensándolo matricialmente:

$$M \begin{bmatrix} a_1 & a_3 & a_5 \\ a_2 & a_4 & a_6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$
$$MA_T = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$

Ejercicio 10 Ejercicio 11

Ejercicios

Ejercicio 3

Ejercicio 3

Ejercicio 10 Ejercicio 11

Eiercicio 14

Ejercicio 15 Ejercicio 19

Ejercicio 21

c)

Si definimos $M:= [v_1 \ v_2]$ entonces puedo reescribir lo de antes como:

- \bullet $(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T$.
- \bullet $(1,0)^T = a_3 \cdot v_1 + a_4 \cdot v_2 = M(a_3, a_4)^T$.
- $(0,2)^T = a_5 \cdot v_1 + a_6 \cdot v_2 = M(a_5, a_6)^T$.

Pensándolo matricialmente:

$$M\begin{bmatrix} a_1 & a_3 & a_5 \\ a_2 & a_4 & a_6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$
$$MA_T = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$

Para obtener A_T basta escalonar M y resolver el sistema para tres lados derechos.

36 / 36

c)

Si definimos $M:= [v_1 \ v_2]$ entonces puedo reescribir lo de antes como:

- $(1,-1)^T = a_1 \cdot v_1 + a_2 \cdot v_2 = M(a_1, a_2)^T$.
- $(1,0)^T = a_3 \cdot v_1 + a_4 \cdot v_2 = M(a_3, a_4)^T .$
- $\bullet (0,2)^T = a_5 \cdot v_1 + a_6 \cdot v_2 = M(a_5, a_6)^T.$

Pensándolo matricialmente:

$$M\begin{bmatrix} a_1 & a_3 & a_5 \\ a_2 & a_4 & a_6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$
$$MA_T = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix}$$

Para obtener A_T basta escalonar M y resolver el sistema para tres lados derechos. Este apartado está para ilustrar cómo intervienen las dos bases involucradas.

Ejercicios

Ejercicio 3

Ejercicio 10

Ejercicio 11

Ejercicio 14

Ejercicio 15

Ejercicio 19

Ejercicio 21