АСТРАДЬ

Содержание

1	1 Небесная механика													2	2															
	1.1	Законы Кеплера																											2)

1 Небесная механика

1.1 Законы Кеплера

І-ый закон: Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

ІІ-ой закон: Радиус-вектор планеты за равные промежутки времени заметает равные площади.

$$\frac{dS}{dt} = const\tag{1}$$

Рис. 1: Первый закон Кеплера

Рис. 2: Второй закон Кеплера

3-ий закон: Квадраты периодов обращения планет относятся, как кубы больших полуосей их орбит.

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3},\tag{2}$$

где a — большая полуось, T — период обращения. Обобщённый Ньютоном III-ий закон имеет следующий вид:

$$\frac{T_1^2(M_1 + m_1)}{T_2^2(M_2 + m_2)} = \frac{a_1^3}{a_2^3} \tag{3}$$

или, что эквивалентно,

$$\frac{T^2}{a^3} = \frac{4\pi^2}{G(M+m)},\tag{4}$$

где M_1 и M_2 — массы центральных тел, m_1 и m_2 — массы обращающихся вокруг них тел. Так как массы планет m много меньше массы звезды M, то $M+m\simeq M$.