Duração: 1 hora 50 minutos

P2 de Álgebra Linear I -2006.1

Data: 10 de maio de 2006

Nome:	Matrícula:	
Assinatura:	Turma:	

Questão	Valor	Nota	Revis.
1a	1.0		
1b	0.5		
1c	0.5		
1d	1.0		
2a	1.0		
2b	1.0		
2c	0.5		
2d	1.0		
3a	1.0		
3b	1.0		
3c	0.5		
4	2.0		
Total	11.0		

Instruções

- Não é permitido usar calculadora. Mantenha o celular desligado.
- $\bullet\,$ É proibido desgrampear o caderno de prova.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Respostas a caneta. Escreva de forma clara e legível.
- Justifique de forma clara, ordenada e completa suas respostas. Respostas sem justificativas não serão consideradas.

1) Considere as transformações lineares

$$T, L: \mathbb{R}^3 \to \mathbb{R}^3$$

cujas matrizes na base canônica são

$$[T] = \begin{pmatrix} 0 & 1 & -1 \\ -2 & 4 & -2 \\ 2 & -5 & 3 \end{pmatrix} \quad e \quad [L] = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 5 & -1 \\ 2 & -5 & 3 \end{pmatrix},$$

respectivamente.

- (a) Determine a equação cartesiana da imagem de T.
- (b) Determine uma base da imagem de T.
- (c) Determine o conjunto de vetores v tais que $T(v) = \bar{0}$.
- (d) Determine um vetor não nulo w tal que L(w) = T(w).

2) Considere o conjunto de vetores

$$\mathcal{E} = \{(1,1,1), (2,2,2), (1,0,1), (0,1,0), (2,1,2)\}.$$

- (a) Considere o subespaço vetorial \mathbb{W} de \mathbb{R}^3 gerado pelos vetores de \mathcal{E} . Determine uma base β de \mathbb{W} formada por vetores de \mathcal{E} .
- (b) Determine as coordenadas do vetor (4, 2, 4) na base β .
- (c) Determine uma base γ de \mathbb{R}^3 formada pelos vetores da base β do item (a) e um vetor do conjunto

$$\mathcal{F} = \{(3,3,3), (5,0,5), (8,3,8), (0,1,1)\}.$$

(d) Seja $\alpha = \{u_1, u_2, u_3\}$ uma base de \mathbb{R}^3 . Considere a nova base de \mathbb{R}^3

$$\delta = \{u_1 + u_2, u_2 - u_3, u_3 - u_1\}.$$

Sabendo que as coordenadas do vetor w na base α são

$$(w)_{\alpha} = (1, 1, 1),$$

determine as coordenadas $(w)_{\delta}$ de w na base δ .

3) Considere as retas

$$r: (t, 2t, t), t \in \mathbb{R}$$
 e $s: (t + 1, 2t, t - 5), t \in \mathbb{R}$

e o plano

$$\pi$$
: $x + y + z = 0$.

- (a) Determine a matriz (na base canônica) da transformação linear T projeção no plano π na direção da reta r.
- (b) Determine a matriz (na base canônica) da transformação linear L projeção na reta r na direção do plano π .
- (c) Determine a forma matricial (na base canônica) da transformação afim A projeção na reta s na direção do plano π .
- 4) Determine a inversa da matriz

(prova A)
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$
, (prova B) $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$,

(prova C)
$$C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
, (prova D) $D = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.