$\underline{\mathbf{Auteur}}$: Abdoulaye DABO

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Generalites sur les fonctions	2
2	Fonction injective, surjective, bijective	3
3	Fonctions réciproques	4
4	Parité et Périodicité	4
5	Variations	5
6	Fonction minorée, majorée, bornée	5

1 Generalites sur les fonctions

Dans cette section, I et J sont des parties de $\mathbb R$ ou sont égales à $\mathbb R$

Définition 1.1

Une fonction f est une relation qui associe un nombre réel x de I à un unique nombre réel y de J. On écrit :

$$f:I\to J$$

 $x \mapsto y$

On lie : « f est la fonction définie sur I à valeurs dans J qui à x associe y ».

Définition 1.2

- I est appelé ensemble de départ ou Source
- J est appelé ensemble de d'arrivée ou But
- x est appelé antécédent de y
- y est appelé image de x; on note : y = f(x)

Exemple

Soit f la fonction suivante :

$$f: \mathbb{R} \to \mathbb{R}_+$$
$$x \mapsto y = x^2$$

L'ensemble de départ est $\mathbb R$ et l'ensemble d'arrivée est $\mathbb R_+$

f lie 2 et 4. En effet : $2^2 = 4$

Ainsi 2 est l'antécédent de 4 et 4 l'image de 2.

Attention

f lie aussi -2 et 4. En effet : $(-2)^2 = 4$

Ainsi -2 est l'antécédent de 4 et 4 l'image de -2.

Un élément de l'ensemble d'arrivée peut avoir plusieurs antécédents, par contre pour un élément de l'ensemble de départ, il n'existe qu'une unique image dans l'ensemble d'arrivée.

Définition 1.3

L'ensemble définition d'une fonction f est l'ensemble des valeurs de la variable x pour lesquelles la fonction admet une image. On le note : D_f

Définition 1.4

Une application est une fonction dont le domaine de définition est égale à l'ensemble de départ.

Exemple

- 1. Si on prend la fonction f définie en haut, L'ensemble de définition $D_f = \mathbb{R}$. En effet pour tout x de \mathbb{R} , on peut calculer f(x). f est une application.
- 2. Considérons cette fois ci la fonction

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = \frac{1}{x}$$

 $D_f = \mathbb{R} - \{0\}$ car la division par 0 est impossible.

f n'est pas une application car $\mathbb{R} - (0) \neq \mathbb{R}$

2 Fonction injective, surjective, bijective

Définition 2.1

Soit f une fonction :

- 1. f est dite injective si et seulement si tout élément y de l'ensemble d'arrivée admet au plus un antécédent dans l'ensemble de départ. Autrement dit, il en possède soit un, soit aucun mais pas plus d'un.
- 2. f est surjective si et seulement si tout élément y de l'ensemble d'arrivée admet au moins un antécédent dans l'ensemble de départ. Autrement dit, tout les éléments de l'ensemble d'arrivée ont au moins un antécédent.
- 3. f est bijective si et seulement elle est à la fois injective et surjective. C'est à dire si tout élément y de l'ensemble d'arrivée admet exactement un et un seul antécédent dans l'ensemble de départ.

Définition 2.2 (Graphe)

Soit f une fonction et D_f son domaine de définition.

On appelle graphe ou courbe représentative de f notee C_f , l'ensemble des points des points de coordonnées (x, f(x)) ou $x \in D_f$.

Fonctions réciproques 3

Définition 3.1

Soit

$$f: I \to J$$
$$x \mapsto y$$

une fonction bijective.

1. On appelle fonctions réciproque de f, la fonction définie sur J à valeurs dans I qui à tout y associe x. On le note f^{-1} .

$$f^{-1}: I \to J$$
$$y \mapsto x$$

2. Les courbes des fonctions f et de sa réciproque f^{-1} sont symétriques par rapport à la première bissectrice (la droite d'équation y = x).

4 Parité et Périodicité

Définition 4.1

- 1. Une fonction f est paire si et seulement si : quel que soit le réel $x \in D_f$, $-x \in D_f$ et f() = f(-x). Le graphe (C_f) d'une fonction paire est symétrique par rapport a l'axe des ordonées (la droite d'équation x = 0) dans un repère orthogonal.
- 2. Une fonction f est impaire si et seulement si : quel que soit le réel $x \in D_f$, $-x \in D_f$ et f(-x) = -f(x). Le graphe (C_f) d'une fonction impaire est symétrique par à l'origine du repère.
- 3. Une fonction f définie sur \mathbb{R} est périodique si et seulement s'il existe un réel T>0 tel que, pour tout réel x: f(x+T) = f(x).

On dit que f est périodique de période T.

5 Variations

Définition 5.1

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

- 1. f est dite croissante sur I si pour tous x_1 et x_2 de l'intervalle I on a : si $x_1 \le x_2$ alors $f(x_1) \le f(x_2)$.
- 2. f est dite décroissante sur I si pour tous x_1 et x_2 de l'intervalle I on a : si $x_1 \le x_2$ alors $f(x_1) \ge f(x_2)$.
- 3. f est dite constante sur I si pour tous x_1 et x_2 de l'intervalle I on a : $f(x_1) = f(x_2)$.

6 Fonction minorée, majorée, bornée

Définition 6.1

Soit I un intervalle et soit f fonction définie sur I. On dit que :

- 1. f est majorée sur I lorsqu'il existe un réel M tel que : $f(x) \leq M$ pour tout $x \in I$.
- 2. f est minoree sur I lorsqu'il existe un réel m tel que : $m \le f(x)$ pour tout $x \in I$.
- 3. f est bornée sur I lorsqu'il existe dux réels M et m tel que : $m \le f(x) \le M$ pour tout $x \in I$.

Merci de signaler toutes erreurs via WhatsApp: +221777426690