Tipología y ciclo de vida de los datos

Práctica 2

Universitat Oberta de Catalunya

Javier Martínez Arellano

Enero 2019

Tipología y ciclo de vida de los datos

Práctica 2

Universitat Oberta de Catalunya

Javier Martínez Arellano

Índice

PRÁC	TICA 2	2
1.	Descripción del dataset	2
2.	Integración y selección de los datos de interés a analizar	3
3.	Limpieza de los datos	5
4.	Análisis de los datos	7
5.	Representación de los resultados a partir de tablas y gráficas	23
6.	Resolución del problema	23
7.	Código	24
Ref	ferencias	25

Javier Martínez Arellano

PRÁCTICA 2

Siguiendo las principales etapas de un proyecto analítico, las diferentes tareas a realizar (y justificar) son las siguientes:

1. Descripción del dataset.

¿Por qué es importante y qué pregunta/problema pretende responder?

El conjunto de datos que se usará este caso práctico, obtenido del siguiente enlace
https://www.kaggle.com/spscientist/students-performance-in-exams, recoge las notas de
distintas pruebas (matemáticas, lectura y escritura) de un total de 1000 personas, así
como información complementaria de cada individuo como género, raza/etnia, etc.

El dataset recoge datos de individuos que han realizado varios exámenes (matemáticas, lectura y escritura), así como las notas obtenidas. Se compone de las siguientes características:

Gender: Género (male/female)

race/ethnicity: raza o etnia (grupo a, grupo b, ...)

parental level of education: Nivel de estudios de los padres (high school, master's

degree,...)

lunch: si tienen costeada la comida (free/reduced, standard)

test preparation course: Si han realizado un test de preparación (completed/none)

math score: nota en la prueba de matemáticas.

reading score: nota en la prueba de lectura.

writing score: nota en la prueba escrita

Mediante el tratamiento de estos datos se pretende responder a si las mujeres obtienen mejores resultados en la prueba de matemáticas así como averiguar si la nota de esta prueba guarda alguna relación con la notas de alguna de las otras dos, intentando

Javier Martínez Arellano

encontrar un modelo para predecir la nota de matemáticas mediante las otras dos variables cuantitativas seleccionadas y las variables cualitativas.

Este tipo de información podría ser requerida por el centro que realiza las pruebas a modo de control de los estudiantes, de las materias examinadas y control de becas, por ejemplo.

2. Integración y selección de los datos de interés a analizar.

Usaremos este dataset como única fuente de datos. Comenzaremos con la lectura de los datos, pre-visualizando algunos valores de cada variable (columnas), comprobando el tipo de cada variable y pasaremos los enteros a numéricos.

```
datos <- read.csv("Students.csv")</pre>
   summary(datos)
   gender
            race.ethnicity
                               parental.level.of.education
                                                                     lunch
            group A: 89
female:518
                           associate's degree:222
                                                           free/reduced:355
                           bachelor's degree :118
male :482
            group B:190
                                                           standard
                                                                        :645
            group C:319
                           high school
                                              :196
            group D:262
                           master's degree
                                              : 59
            group E:140
                           some college
                                              :226
                           some high school
                                             :179
test.preparation.course math.score
                                        reading.score
                                                         writing.score
completed:358
                       Min.
                              : 0.00
                                        Min.
                                               : 17.00
                                                         Min.
                                                                : 10.00
                       1st Qu.: 57.00
none
        :642
                                        1st Qu.: 59.00
                                                         1st Qu.: 57.75
                                        Median : 70.00
                       Median : 66.00
                                                         Median : 69.00
                       Mean
                              : 66.09
                                        Mean
                                               : 69.17
                                                         Mean
                                                                 : 68.05
                       3rd Qu.: 77.00
                                        3rd Qu.: 79.00
                                                         3rd Qu.: 79.00
                       Max.
                               :100.00
                                        Max.
                                                :100.00
                                                         Max.
                                                                 :100.00
```

Con este resumen de los datos, vemos los distintos valores de las variables cualitativas y los valores mínimo y máximo de las cuantitativas. Así, sin profundizar, ya vemos un nota = 0 en la prueba de matemáticas que nos indica que tendremos que revisar este valor para ver qué significado tiene, y una posible actuación, si se realiza alguna, ya que no debería obtenerse esta nota si un individuo se presenta a la prueba.

Javier Martínez Arellano

```
> library(knitr)
> tipos <- sapply(datos, class)
> kable(data.frame(variables=names(tipos), clase=as.vector(tipos)))
```

```
|variables
                           |clase
|:-----
                           |:----
                            |factor
gender
|race.ethnicity
                            |factor
|parental.level.of.education |factor
                            |factor
test.preparation.course
                            |factor
|math.score
                            |integer
|reading.score
                            linteger
|writing.score
                            |integer |
```

- datos[6:8] <- lapply(datos[6:8], as.numeric)
 kable(data.frame(variables=names(tipos),clase=as.vector(tipos)))</pre>
- |variables |clase |:-----|:---gender |factor |race.ethnicity |factor |parental.level.of.education |factor |lunch |factor |test.preparation.course |factor |math.score |numeric |reading.score |numeric |writing.score |numeric |

A continuación, se eliminarán las variables que no se usarán en el análisis de los datos (*): Educación de los padres, comida costeada y realización del test de preparación

Objetivo Inicial en la eliminación de datos:

#Eliminación de datos irrelevantes

```
b datos <- datos[,-(3:5)]
b summary(datos)</pre>
```

```
gender
              race.ethnicity math.score
                                                 reading.score
                                                                    writing.score
              group A: 89 Min. : 0.00 Min. : 17.00 group B:190 1st Qu.: 57.00 1st Qu.: 59.00 group C:319 Median : 66.00 Median : 70.00
female:518
                                                                    Min. : 10.00
male :482
                                                                    1st Qu.: 57.75
                                                                     Median : 69.00
              group D:262
                              Mean : 66.09
                                                 Mean : 69.17
                                                                    Mean : 68.05
              group E:140
                               3rd Qu.: 77.00 3rd Qu.: 79.00
                                                                     3rd Qu.: 79.00
                               Max. :100.00 Max. :100.00
                                                                    Max. :100.00
```

Javier Martínez Arellano

(*)Correción del Obtetivo Inicial:

A priori, se iban a descartar varias variables cualitativas como comida costeada, educación de los padres y realización del test de preparación pero manteniendo dicha información se han mejorado los resultados de los modelos predictivos. De esta forma, mantenemos todas las variables del dataset.

3. Limpieza de los datos.

3.1. ¿Los datos contienen ceros o elementos vacíos? ¿Cómo gestionarías cada uno de estos casos?

Con este comando y como se ha visto previamente con la ayuda del comando Summary(datos), vemos que la muestra no contiene elementos vacíos, en cambio, sí contiene valores 0 en las pruebas que no se han realizado o no se ha informado la nota. Como se veía en la vista previa de los datos, existe algún registro en la prueba de matemáticas con valor 0.

En este caso, se procederá a eliminar estos registros ya que una nota no informada no es útil para este análisis.

```
#Borrar registros con resultado = 0 en alguna prueba
> nrow(datos)
[1] 1000
> datos <- datos[!datos$math.score==0,]
> nrow (datos)
[1] 999
```

Se ha eliminado 1 registro.

Javier Martínez Arellano

3.2. Identificación y tratamiento de valores extremos.

Los valores extremos son aquellos que se distancian mucho del resto dando a pensar que no se han obtenido de la misma manera que el resto o que pueden ser incorrectos. Vamos a analizar estos valores en las variables cuantitativas.

#OUTLIERS

- boxplot.stats(datos\$math.score)\$out
- [1] 18 22 24 26 19 23 8
- boxplot.stats(datos\$reading.score)\$out
- [1] 17 26 28 23 24 24
- boxplot.stats(datos\$writing.score)\$out
- [1] 10 22 19 15 23

Javier Martínez Arellano

Una vez revisado los valores 0 en los resultados de las notas, el resto de valores son perfectamente válidos aunque haya valores más distanciados de los más comunes, por lo que no se procederá a realizar ninguna acción sobre los mismos.

Después del tratamiento de los datos, antes del análisis, podemos guardar el conjunto resultante en el mismo formato que el dataset original.

```
write.csv(datos, file = "ResultadoNotas.csv" )
```

4. Análisis de los datos.

4.1. Selección de los grupos de datos que se quieren analizar/comparar (planificación de los análisis a aplicar).

Se procede a seleccionar los datos que pueden ser útiles en el análisis..

4.2. Comprobación de la normalidad y homogeneidad de la varianza.

A continuación se presentan los gráficos de histograma y quantile-quantile Plot de cada una de las pruebas.

Matemáticas:

```
hist(Mates,main = paste("Histograma de matemáticas"))
pqnorm(Mates,main = paste("Normal Q-Q Plot para matemáticas"))
pqline(Mates,col="red")
```

Javier Martínez Arellano

Lectura:

- hist(Lectura, main = paste("Histograma de Lectura"))
- qqnorm(Lectura,main = paste("Normal Q-Q Plot para Lectura"))
- p qqline(Lectura,col="red")

Escritura:

- > hist(Escritura, main = paste("Histograma de Escritura"))
 > qqnorm(Escritura, main = paste("Normal Q-Q Plot para Escritura"))
 > qqline(Escritura, col="red")

Javier Martínez Arellano

Para comprobar la normalidad de las variables cuantitativas, se usará el test de Shapiro Wilk con un alpha de 0.05, donde la hipótesis nula es que los valores siguen una distribución normal.

Según estos resultados, las 3 devuelve un p-value inferior a alpha con lo que no siguen una distribución normal.

Comparando las gráficas y los resultados del test de Shapiro wilk nos lleva a hacer alguna prueba más para confirmar los resultados. Estos resultados pueden deberse a que hay muchos valores que se repiten.

Vamos a analizar los resultados, separándolos por género:

Javier Martínez Arellano

Vemos que para las mujeres, sí sigue una distribución normal.

En este caso, es el grupo de los hombres el que sigue una distribución normal

Y es esta prueba, el grupo de los hombres el que sigue una distribución normal.

Es conocido que al haber muchos valores repetidos, en el test de Shapiro Wilk puede haber algunas imprecisiones, por ello, podemos comprobar estos datos con el test de Lillie:

Javier Martínez Arellano

En este caso nos indica que las notas de la prueba de matemáticas sí siguen una distribución normal.

A continuación se comprobará la homogeneidad de la varianza de las notas de la prueba de matemáticas por género.

```
fligner.test(Mates ~ Genero, data = datos)
```

Fligner-Killeen test of homogeneity of variances

```
data: Mates by Genero Fligner-Killeen:med chi-squared = 0.18773, df = 1, p-value = 0.6648
```

Con este resultado con un p-value mayor a 0.05, podemos aceptar la homogeneidad de ambas varianzas

Como extensión a esto, podemos realizar la misma comprobación para las otras dos pruebas.

Con un valor muy elevado de P-value, aceptaríamos la homogeneidad de varianzas

Javier Martínez Arellano

```
#Escritura
> fligner.test(Escritura ~ Genero, data = datos)

Fligner-Killeen test of homogeneity of variances

data: Escritura by Genero
Fligner-Killeen:med chi-squared = 0.028291, df = 1, p-value = 0.8664
```

Del mismo modo, aceptaríamos a la homogeneidad de varianzas.

4.3. Aplicación de pruebas estadísticas para comparar los grupos de datos. En función de los datos y el objetivo del estudio, aplicar pruebas de contraste de hipótesis, correlaciones, regresiones, etc.

Correlación de variables

Vamos a analizar qué variable influye más en la nota de la prueba de matemáticas, para ellos calculamos la correlación con el resto de las pruebas:

```
corr_matrix <- matrix(nc = 2, nr = 0)</pre>
   colnames(corr_matrix) <- c("Estimación", "p-value")</pre>
   for (i in 4:5) {
      spearman_test = cor.test(datos[,i],
                                 datos[,"math.score"],
method = "spearman")
      corr_coef = spearman_test$estimate
      p_val = spearman_test$p.value
      # incluiomos el valor en la matriz de correlaciones
      pair = matrix(ncol = 2, nrow = 1)
      pair[1][1] = corr_coef
      pair[2][1] = p_val
      corr_matrix <- rbind(corr_matrix, pair)</pre>
      rownames(corr_matrix)[nrow(corr_matrix)] <- colnames(datos)[i]</pre>
print(corr_matrix)
               Estimación
                                 p-value
reading.score 0.8034746 8.656027e-227
writing.score 0.7776720 3.459858e-203
```

Ambas variables tienen una correlación significativa con la prueba de matemáticas, siendo la prueba de lectura la que tiene valores más próximos a -1 o 1

Javier Martínez Arellano

¿Quién saca mejor nota media en la prueba de matemáticas: hombres o mujeres?

Para ello realizaremos un contraste de hipótesis, tomando un alpha de 0,05, usando la media de las dos poblaciones: hombres y mujeres.

$$H0: \mu 1 - \mu 2 \le 0$$

 $H1: \mu 1 - \mu 2 > 0$

Donde $\mu 1$ es la media de los hombres y $\mu 2$, la media de las mujeres. Como hipótesis nula se establece que las mujeres sacan mejores notas.

Como se cumplen las condiciones de normalidad y homogeneidad de la varianza para los test de matemáticas, procederemos a usar el t-test.

Con un p-value inferior al nivel de significación fijado, rechazamos la hipótesis nula. Podemos concluir, por tanto, que las notas de los hombres son mejores.

```
ggplot() + aes(x=Mates, fill=Genero) + geom_bar(position ='dodge')
```

Javier Martínez Arellano

Como extensión a las preguntas planteadas, comprobamos si pasaría lo mismo con las otras dos pruebas.

Javier Martínez Arellano

ggplot() + aes(x=Escritura,fill=Genero) + geom_bar(position='dodge')

Javier Martínez Arellano

Contrariamente a lo que pasa con la prueba de matemáticas y de forma muy significativa, en las pruebas de Lectura y Escritura, con un P-value = 1, no podríamos rechazar la hipótesis nula y aceptaríamos que las mujeres sacan, en ambas, mejores notas que los hombres.

Para cada caso se muestra una gráfica donde, visualmente, poder ver las diferencias entre las notas de hombres y mujeres mostrando en el eje X, las distintas notas y en el eje Y el número de individuos que obtuvieron esa nota.

Estimación de notas de matemáticas por medio de una regresión lineal

1- Elección de modelo basado en la bondad del ajuste

Regresores cuantitativos:

- Lectura
- Escritura

Regresores cualitativos:

- Género (G)
- Raza (R)
- Educación de los padres (P)

Javier Martínez Arellano

- Comida costeada (C)
- Realización del test de preparación (T)

Variable a predecir:

Mates

modeloLectura

```
modeloLectura <- lm(Mates ~ Lectura, data = datos)
  modeloEscritura <- lm(Mates ~ Escritura, data = datos)</pre>
                 <- lm(Mates ~ Lectura + Escritura, data = datos)
  modeloAmbas
 modeloLER
                <- lm(Mates ~ Lectura + Escritura + Raza, data = dato
  s)
  modeloLEG
                <- lm(Mates ~ Lectura + Escritura + Genero, data =dat
  os)
  modeloLEGR
                 <- lm(Mates ~ Lectura + Escritura + Genero + Raza, d
  ata = datos)
  modeloLEGRP
                  <- lm(Mates ~ Lectura + Escritura + Genero + Raza +
  Padres, data = datos)
                  <- lm(Mates ~ Lectura + Escritura + Genero + Raza +
modelolegrc
  Comida, data = datos)
                  <- lm(Mates ~ Lectura + Escritura + Genero + Raza +
modeloLEGRT
  TestPrep, data = datos)
                  <- lm(Mates ~ Lectura + Escritura + Genero + Raza +
  modeloLEGRPCT
  Padres + Comida + TestPrepestep, data = datos)
```

Adjunto captura con los comandos más estructurados (tabulados)

<- lm(Mates ~ Lectura, data = datos)

```
modeloEscritura <- \ lm(Mates \sim Escritura, \ data = \ datos)
              <- lm(Mates ~ Lectura + Escritura, data = datos)
modeloAmbas
modeloLER
              <- lm(Mates ~ Lectura + Escritura + Raza, data = datos)
modeloLEG
              <- lm(Mates ~ Lectura + Escritura + Genero, data = datos)
modeloLEGR
              <- lm(Mates ~ Lectura + Escritura + Genero + Raza, data = datos)
              <- lm(Mates ~ Lectura + Escritura + Genero + Raza + Padres, data = datos)
modeloLEGRP
              <- lm(Mates ~ Lectura + Escritura + Genero + Raza + Comida, data = datos)
modelol FGRC
modeloLEGRT
              <- lm(Mates ~ Lectura + Escritura + Genero + Raza + TestPrep, data = datos)
modeloLEGRPCT
              <- lm(Mates ~ Lectura + Escritura + Genero + Raza + Padres + Comida + TestPrep, data = datos)
    tablaCoef <- matrix(c(1 , summary(modeloLectura)$r.squared,
                               2 , summary(modeloEscritura)$r.squared,
+
                               3 , summary(modeloAmbas)$r.squared,
                               4 , summary(modeloLER)$r.squared,
                                 , summary(modeloLEG)$r.squared,
                                 , summary(modeloLEGR)$r.squared,
                                 , summary(modeloLEGRP)$r.squared,
                                 , summary(modeloLEGRC)$r.squared,
                                 , summary(modeloLEGRT)$r.squared,
                               10, summary(modeloleGRPCT)$r.squared
+ ), ncol = 2, byrow = TRUE)
colnames(tablaCoef) <- c("Modelo", "R^2")</pre>
tablaCoef
```

Javier Martínez Arellano

```
Modelo R^2
[1,] 1 0.6641399
[2,] 2 0.6390615
[3,] 3 0.6695021
[4,] 4 0.6867489
[5,] 5 0.8377030
[6,] 6 0.8496834
[7,] 7 0.8517593
[8,] 8 0.8632171
[9,] 9 0.8619210
[10,] 10 0.8743918
```

El modelo 10, modeloLEGRPCT, que usa las notas de las otras dos pruebas, el género, la raza/etnia, la educación de los padres, la comida costeada y el test de preparación, es el que tiene mayor coeficiente de determinación y con él intentaremos predecir el valor de la nota de matemáticas del registro que se eliminó al principio del tratamiento de datos porque no tenía informada la nota.

Si recuperamos los valores de este registro, antes de ser eliminado, sus valores son:

Vemos que tiene una nota en Lectura = 17 y en Escritura = 10, es mujer y del grupo c, con q ue lo que podemos intentar predecir el valor de la prueba de Matemáticas:

Al ser notas enteras, redondeamos obteniendo un valor de 4

Javier Martínez Arellano

2- Evaluación del modelo basado en predicciones.

Con el caso anterior, es difícil sacar conclusiones, de modo que vamos a dividir los datos en dos partes para entrenar un modelo con una de las partes y comprobar las estimaciones con la otra partición y poder contrastar las estimaciones y las notas obtenidas. La división la haremos con una probabilidad de reparto de 75%/25%

```
particion <- sample(2,nrow(datos),replace=TRUE, prob=c(0.75,0.25))
> TrainData <- datos[particion==1,]
> TestData <- datos[particion==2,]</pre>
```

El reparto obtenido es: para la partición de entrenamiento (training) 740 registros y para el de validación(Test) 259. Recordamos que el total de la muestra era 1000 menos uno que hemos eliminado, 999.

```
 nrow(TrainData)
[1] 740
```

modeloTrain <- lm(formula = math.score ~ reading.score + writing.sc ore + gender + race.ethnicity + parental.level.of.education + lunch + test.preparation.course, data=TrainData)

Revisemos el modelo:

summary(modeloTrain)

Javier Martínez Arellano

```
lm(formula = math.score ~ reading.score + writing.score + gender +
    race.ethnicity + parental.level.of.education + lunch + test.preparation.course,
    data = TrainData)
Residuals:
              1Q
                   Median
                                3Q
    Min
                                        Max
                   0.1234 3.5549 14.0417
-17.5850 -3.5231
Coefficients:
                                             Estimate Std. Error t value Pr(>|t|)
                                                         1.45873 -8.383 2.68e-16 ***
(Intercept)
                                             -12.22831
                                                                  5.434 7.55e-08 ***
reading.score
                                               0.26693
                                                         0.04913
                                              0.70470
                                                         0.05065 13.914 < 2e-16 ***
writing.score
gendermale
                                              13.27998
                                                          0.43115
                                                                   30.802 < 2e-16 ***
race.ethnicitygroup B
                                               0.73143
                                                         0.78294
                                                                   0.934
                                                                           0.3505
race.ethnicitygroup C
                                               0.43401
                                                         0.73466
                                                                   0.591
                                                                           0.5549
race.ethnicitygroup D
                                              0.23645
                                                         0.76765
                                                                   0.308
                                                                           0.7582
                                                                   5.605 2.96e-08 ***
race.ethnicitygroup E
                                              4.68540
                                                         0.83594
parental.level.of.educationbachelor's degree -1.28571
                                                         0.71411
                                                                  -1.800
                                                                           0.0722
                                                                   0.594
parental.level.of.educationhigh school
                                              0.37081
                                                         0.62464
                                                                           0.5529
parental.level.of.educationmaster's degree
                                              -1.39080
                                                          0.93272
                                                                   -1.491
                                                                           0.1364
parental.level.of.educationsome college
                                              0.09586
                                                         0.58777
                                                                   0.163
                                                                           0.8705
parental.level.of.educationsome high school
                                              0.76343
                                                          0.64230
                                                                   1.189
                                                                          0.2350
lunchstandard
                                               3.76111
                                                         0.42980
                                                                   8.751 < 2e-16 ***
                                                                   7.342 5.68e-13 ***
test.preparation.coursenone
                                               3.34464
                                                         0.45558
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.316 on 725 degrees of freedom
Multiple R-squared: 0.8787,
                               Adjusted R-squared: 0.8764
F-statistic: 375.2 on 14 and 725 DF, p-value: < 2.2e-16
```

El coeficiente R^2 es muy similar al obtenido en el modelo anterior.

A continuación vamos a comprobar la validez del modelo creado comparando los valores estimados con los reales en la partición de datos de Test.

A continuación guardamos los valores que acabamos de predecir porque se adjuntarán aquí sólo unos pocos, de ejemplo:

```
#Guardar datos estimados

➤ write.csv(TestResult, file = "NotasEstimadas.csv" )
```

Javier Martínez Arellano

Mostramos parte de estos valores. Se pueden consultar todos en el fichero que acabamos de crear, incluido en la carpeta data del repositorio.

kable(TestResult)

 :	Real	Predecido		•	Dif%Pos	DifPos
6	 71				2.4381202	,
	71					·
115	50			•	2.9863487	•
	73				0.6809670	•
•	97	-	-		-	•
38	50			•		
42	58			•	•	·
•	53			•	7.3521397	•
46	65				•	•
49	57				•	•
56	33				0.5078760	•
70	39				-	-
72	63				1.9407246	·
174	61		-		1.1930383	•
76	44				2.6121134	·
79	61			•	3.3184685	·
90	73	-	-	•	-	-
91	65				0.6044252	•
193	71			•		
95	79			•	5.6880694	
100	65			•	14.7627465	•
:	60			•	15.3648708	
107	87				4.4673596	-
1112	62					•
	91			•	3.4437860	•
	87		-	-	5.8130097	•
130					16.4485052	•
133				•	13.8906736	·
146	:		-		15.0534112	-
149	:			•	0.6111856	•
151	62		-		-	•
153	: :		-	•	2.6103902	·
156	70	77.83349	111.19070	-11.1907028	11.1907028	7.8334919
157	66	67.54771	102.34502	-2.3450151	2.3450151	1.5477100
161	82	74.75182	91.16076	8.8392431	8.8392431	7.2481793
170	67	57.65067	86.04578	13.9542186	13.9542186	9.3493265
181	62	71.09899	114.67580	-14.6757962	14.6757962	9.0989936
184	65	62.86142	96.70988	3.2901241	3.2901241	2.1385807
188	62	71.34998	115.08062	-15.0806176	15.0806176	9.3499829
190	77	78.82493	102.37003	-2.3700340	2.3700340	1.8249262
191	66	65.53794	99.29991	0.7000920	0.7000920	0.4620607
196	61	59.71970	97.90114	2.0988597		
199						
202	65					
203						
205						
210				5.6260656	5.6260656	3.2631180
218	34	30.61572	90.04622	9.9537789	9.9537789	
225	52	61.32507	117.93283	-17.9328293	17.9328293	9.3250713

Javier Martínez Arellano

232	46	49.66704	107.97183	-7.9718303	7.9718303	3.6670419
239	54	58.80504	108.89822	-8.8982189	8.8982189	4.8050382
241	73	66.32071	90.85029	9.1497118	9.1497118	6.6792896
242	80	78.92284	98 65355	1.3464452	1.3464452	1.0771562
243	56	48.12384	85.93543	14.0645692	14.0645692	7.8761587
245	75	77.53478	103.37971	-3.3797070	3.3797070	2.5347803
249	65	56.75492	87.31526	12.6847371	12.6847371	8.2450791
251	47	53.18633	113.16241	-13.1624071	13.1624071	6.1863313
253	60	61.04211	101.73685	-1.7368514	1.7368514	1.0421108
256	62	68.47396	110.44186	-10.4418642	10.4418642	6.4739558
267	63	71.12660	112.89936	-12.8993600	12.8993600	8.1265968
269	88	83.27379	94.62931	5.3706929	5.3706929	4.7262098
271	69	67.10933	97.25990	2.7401043	2.7401043	1.8906720
273	47	46.37296	98.66587	1.3341252	1.3341252	0.6270388
276	83	79.56974	95.86716	4.1328401	4.1328401	3.4302573
277	85	82.82537	97.44161	2.5583904	2.5583904	2.1746319
281	53	52.24267	98.57108	1.4289163	1.4289163	0.7573256
283	73	70.34976	96.36954	3.6304637	3.6304637	2.6502385
296	67	63.95971	95.46225	4.5377456	4.5377456	3.0402895
297	46	46.82266	101.78839	-1.7883877	1.7883877	0.8226583
302	56	56.45508	100.81264	-0.8126393	0.8126393	0.4550780
304	80	74.27668	92.84584	7.1541554	7.1541554	5.7233243
319	63	75.17983	119.33306	-19.3330583	19.3330583	12.1798267
320	56	53.09966	94.82081	5.1791867	5.1791867	2.9003445
323	71	73.40505	103.38740	-3.3874010		2.4050547
328	28	24.02097	85.78919	14.2108142	14.2108142	3.9790280
330		46.99341	114.61808	-14.6180803	•	5.9934129
335		85.79721	103.37014	-3.3701361	•	
•	61	56.60540	92.79574	7.2042608	•	
-	24	21.78158	90.75657	9.2434254		•
346		69.88955	97.06882	2.9311770	•	•
352	66	64.79837	98.17935	1.8206523	•	
-	63	69.25962	109.93590	-9.9359008		
-	63	67.42717	107.02725	-7.0272535		
	73	78.19937	107.12243	-7.1224264	•	
373		79.64889	107.63364	-7.6336374	•	
377		77.68685	97.10856	2.8914405	-	•
•	85	82.44619	96.99552	3.0044813		•
-	66	67.64696	102.49539	-2.4953875	2.4953875	
388		59.58614	104.53708	-4.5370822		•
391		65.96242	90.35947	9.6405251		
•	76	78.03824	102.68189	-2.6818937	2.6818937	•
394		59.12450	103.72719	-3.7271855		
399		66.63707	90.05009	9.9499076		
405	-	55.12285	102.07935	-2.0793452		•
409		43.05745 87.37128	82.80278	17.1972195		•
410		•	100.42676	-0.4267638		
414		71.40719	113.34474 100.89275	-13.3447430		
417 418		71.63386 75.29258		-0.8927539 -1.7467232		
418 419		67.93032	101.74672 99.89753	-1.7467232 0.1024689		
424 439	: _ : :	71.36169 59.85029	120.95202 85.50042	-20.9520212 14.4995810		•
443		59.99031	101.67849	-1.6784858	•	
449		51.13606	108.80014	-8.8001371		
	4/			-8.8001371		
999		66.94795	98.45286	1.5471375	1.5471375	

Javier Martínez Arellano

```
mean(TestResult$`Dif%Pos`)
[1] 7.072005
mean(TestResult$DifPos)
[1] 4.418292
```

Si sacamos la media de las diferencias porcentuales positivas, obtenemos 7 puntos porcentuales y en la diferencia positiva entre notas, obtenemos un 4. Cabría valorar si la predicción es bastante precisa teniendo en cuenta que las notas reales están entre 1 y 100.

Si intentamos predecir la nota de matemáticas del registro borrado, como en el caso anterior, obtenemos lo siguiente:

```
registroBorrado <- data.frame(
    reading.score = 17,
    writing.score = 10,
    gender = "female",
    race.ethnicity = "group C",
    parental.level.of.education = "some high school",
    lunch = "free/reduced",
    test.preparation.course = "none"
    redict(modeloTrain, registroBorrado)
    1
3.898638</pre>
```

Redondenado, 4. Como en la predicción previa.

5. Representación de los resultados a partir de tablas y gráficas.

Durante el tratamiento y el análisis de los datos se ha incluido apoyo gráfico y tablas que muestran los resultados obtenidos de los distintos comandos que se han ido ejecutando.

6. Resolución del problema.

A partir de los resultados obtenidos, ¿cuáles son las conclusiones? ¿Los resultados permiten responder al problema?

Tipología y ciclo de vida de los datos

Práctica 2

Universitat Oberta de Catalunya

Javier Martínez Arellano

En este caso práctico se ha realizado un tratamiento de los datos, pre-procesamiento, en el que se han comprobado los valores nulos, ceros y extremos. Una vez preparados los datos, se han exportado a un nuevo fichero csv, dando paso al análisis. En el cuál se ha orientado a responder a las preguntar fijadas al comienzo. Para ello se han realizado varias pruebas estadísticas.

Se ha mostrado la relación de las distintas variables cuantitativas con la nota de la prueba de matemáticas y, mediante contrastes de hipótesis, hemos podido comprobar si las mujeres obtenían mejores notas en esta prueba. Además, se añade esta prueba con las notas de lectura y escritura.

Al final, por medio de regresión lineal, hemos conseguido un modelo mediante el cual estimar el valor de la nota de la prueba de matemáticas usando, como ejemplo, un registro que fue descartado para el análisis por no disponer de esta información. Además se ha evaluado el modelo por medio de predicciones y se han comprobado las estimaciones con un subconjunto, Test, de valores reales.

7. Código

Hay que adjuntar el código, preferiblemente en R, con el que se ha realizado la limpieza, análisis y representación de los datos. Si lo preferís, también podéis trabajar en Python.

El código usado está en R y se ajunta el repositorio de Github, en la siguiente dirección: https://github.com/jmartinezare/TyCVD_Practica2/tree/master/code

Repositorio del caso práctico:

https://github.com/jmartinezare/TyCVD_Practica2/

Tipología y ciclo de vida de los datos

Práctica 2

Universitat Oberta de Catalunya

Javier Martínez Arellano

6. Referencias

Peter Dalgaard (2008). Introductory statistics with R. Springer Science & Business Media.

Squire, Megan (2015). Clean Data. Packt Publishing Ltd.

Jiawei Han, Micheine Kamber, Jian Pei (2012). Data mining: concepts and techniques. Morgan Kaufmann.