1. Sean $a,b\in\mathbb{R}^n$ fijos. ¿Qué número real t hace que $\ a-tb\ _2$ sea mínimo?	
$\ a-tb\ _{z} = \ tb-a\ _{z}$	
Ecuaciones normales	
$\min_{x \in \mathbb{R}^n} \ Ax - b \ _2^2 \qquad \longrightarrow \qquad A^T A x = A^T b$	
En este caso tenemos las letras invertidas y A es un vect vez de una matriz. Buscamos t e IR en vez de x e IRº.	or en
min $ tb-a _2^2 \longrightarrow t \in \mathbb{R} / b = b^T a$ $t \in \mathbb{R}$ Si $b = 0$ cualquier $t \in \mathbb{R}$ minimiza.	
ζ; b≠ σ :	
$b^{T}bt = b^{T}a \qquad \Longleftrightarrow \qquad t = b^{T}a = b^{T}a$ $b^{T}b \qquad b _{2}^{2}$	