

# AlzAware: Early Alzheimer's Detection

by: GROUP 12 PHASE 5

# INTRODUCTION

The AlzAware Project leverages predictive modeling and social determinants of health to detect early signs of Alzheimer's disease and related Dementias.



# PROBLEM STATEMENT

Addressing Cognitive Decline: Predictive Modeling of Alzheimer's Disease Through Social Determinants of Health.



## MAIN OBJECTIVE

 Develop a Predictive Model for Early Alzheimer's Detection Using Social Determinants.

### SPECIFIC OBJECTIVES

• Improved Detection: Predict AD/ADRD risk using non-clinical factors.

Bias Mitigation: Ensure accuracy across diverse groups.

• Enhanced Accessibility: Utilize widely available social health data.

Generalization Potential: Adaptable framework for global applications.

### DATA UNDERSTANDING

Source: Mexican Health and Aging Study (MHAS).

• Years: Data from 2003, 2012 (training), and 2016, 2021 (evaluation).

• Key Data: Demographics, socioeconomic factors, health metrics, lifestyle behaviors, and cognitive scores.



- Majority aged 60–69, mostly married/civil union.
- Urban residents slightly outnumber rural.
- Common education: 1–5 years;
  most have 3–4 children.
- Spouse gender nearly equal, slightly more women.



• The graph shows the distribution of the composite score, which aggregates various health and lifestyle domains.

• Analyzing this score can reveal patterns or trends in overall health across the population in your dataset.

### Health Insurance Coverage by Marital Status



### **Health Insurance by Marital Status:**

- Married or Civil Union: Majority have health insurance; few are uninsured.
- Widowed: Most have coverage, but uninsured rates are higher than married individuals.
- Separated/Divorced & Single: Lower overall counts, with insurance coverage less prevalent compared to married individuals.



### **Education and Performance:**

- Higher education leads to better scores.
- Low scores and high variability in no education group.
- Significant improvement with 6+ years of education.
- Outliers in higher education reflect other influencing factors like socio-economics.

# **Performance Overview**

- Best Model: Random Forest (RMSE: 37.8982)
- Linear Regression: RMSE of 41.5095, showing potential for improvement.
- Feature Selection: Improved RMSE to 37.4956, refining model focus.

ur Footer Here Date

# **Key Insights**

- Hyperparameter Tuning: Minimal improvement; baseline Random Forest performed best.
- Feature Selection: Improved model performance (R<sup>2</sup> = 0.5966).
- Dimensionality Reduction (PCA): Reduced accuracy (RMSE = 48.99,  $R^2 = 0.3113$ ).



P 12

# **Linear Regression Insights**

- Polynomial Features: RMSE 37.5991, R<sup>2</sup> = 0.6137.
- Ridge Regression: RMSE 22.4754, R<sup>2</sup> = 0.861 (explained ~86% variance).



# **Feature Importance Analysis**

- Key Predictors: Education-related variables (rameduc\_m, edu\_gru) and age.
- Education: Positive impact
- Age: Negative impact
- Simplification: Removing negligible features improves

accuracy.

OUP 12 13/11/2024

# **Modelling Conclusion**

- Random Forest and Ridge Regression demonstrate strong predictive performance.
- Feature selection and regularization improved accuracy and reduced complexity.



13/11/20

# Evaluation Evaluation





