UNIVERSIDAD LAICA ELOY ALFARO DE MANABI

CÁTEDRA DE SISTEMAS DISTRIBUIDOS

TEMA:

SISTEMAS DISTRIBUIDOS

INTEGRANTES:

- MUÑOZ CEDEÑO WELLINGTON
- NAVARRETE LUCAS RONALD

NIVEL: OCTAVO «A»

ING. CESAR SINCHIGUANO

Introducción a los Sistemas Distribuidos

Los sistemas distribuidos son arquitecturas informáticas compuestas por múltiples dispositivos autónomos conectados en red. Permiten compartir recursos, procesar datos y coordinar tareas de manera descentralizada, ofreciendo mayor escalabilidad, flexibilidad y tolerancia a fallos que los sistemas centralizados.

Definición de Sistemas Distribuidos

1 Interconexión

Múltiples computadoras o dispositivos conectados a través de una red de comunicación.

Autonomía

Cada componente es independiente y puede funcionar por sí mismo.

2 Coordinación

Los componentes del sistema trabajan juntos de manera coordinada para lograr un objetivo común.

4 Transparencia

Los usuarios perciben el sistema como una unidad integrada, sin necesidad de conocer su complejidad interna.

Ventajas de los Sistemas Distribuidos

Escalabilidad

Pueden crecer y adaptarse a medida que aumentan las necesidades sin comprometer el rendimiento.

Disponibilidad

La falla de un componente no afecta al sistema en su totalidad, aumentando la tolerancia a fallos.

Rendimiento

La carga de trabajo se distribuye entre múltiples dispositivos, mejorando el procesamiento paralelo.

Sistemas Centralizados

Arquitectura Jerárquica

Un único servidor o computadora central controla y procesa todas las operaciones.

Punto Único de Fallo

Si el servidor central falla, todo el sistema se ve afectado.

Escalabilidad Limitada

El servidor central tiene límites en cuanto a la cantidad de usuarios y recursos que puede manejar.

Dependencia

Los usuarios dependen completamente del servidor central para acceder a los datos y servicios.

Ventajas de los Sistemas Distribuidos Respecto a los Sistemas Centralizados

Mayor Confiabilidad

La falla de un componente no compromete todo el sistema.

2 ____ Mejor Rendimiento

La carga de trabajo se distribuye entre varios dispositivos.

Mayor Escalabilidad

Pueden crecer y adaptarse fácilmente a medida que aumentan las necesidades.

Computadoras Aisladas

Limitación de Recursos

Cada computadora tiene recursos limitados como procesamiento, almacenamiento y memoria.

Falta de Colaboración

Las computadoras aisladas no pueden compartir datos ni coordinar tareas de manera eficiente.

Vulnerabilidad

Si una computadora falla, la información y funcionalidad asociada a ella quedan inaccesibles.

Poca Escalabilidad

Es difícil agregar más computadoras y expandir el sistema de manera sencilla.

Ventajas de los Sistemas Distribuidos Respecto a las Computadoras Aisladas

1

2

3

Recursos Compartidos

Los sistemas distribuidos permiten compartir recursos como almacenamiento, procesamiento y memoria.

Colaboración Eficiente

Los componentes del sistema pueden coordinar y cooperar para lograr objetivos comunes.

Mayor Tolerancia a Fallos

La falla de un componente no afecta al funcionamiento del sistema en su conjunto.

Desventajas de los Sistemas Distribuidos

Complejidad

Los sistemas distribuidos tienen una arquitectura más compleja que los sistemas centralizados.

Seguridad

Al estar interconectados, los sistemas distribuidos son más vulnerables a amenazas de seguridad.

Coordinación

Coordinar y sincronizar las operaciones entre los diferentes componentes puede ser desafiante.

Costo

Implementar y mantener un sistema distribuido suele ser más costoso que un sistema centralizado.

Distintas Formas de Conectar Computadoras

LAN (Local Area Network)

Interconecta computadoras dentro de un área geográfica limitada, como un edificio o campus.

WAN (Wide Area Network)

Conecta computadoras separadas por una amplia distancia geográfica, como entre ciudades o países.

Internet

Red global que permite la comunicación y el intercambio de información entre computadoras en todo el mundo.

DISTINTAS FORMAS COMPUTADORAS

HICHE/ WV VILET INCLWOLK Сомницу Protolog overs of helvork sten gaper east acctond NCTOFY Derect Greciore a nalers ordid full the narve ctorpling pregation. Neres: Perack Fing roual: gretaln or lats Datects offere penticead compatty a tire plode. infor movelality steater. East Favetve weak anpolegts Star eat the nevents should Tom disconnable ocwaler tope-ignets. stack forte and yestside Cacary writing Anatimgs cucines for this asire metuous tinciss. Persistion a centing cate of the pampine Per youlans; and retoogver lecandes Firtuing sims derorts are ague sanamante the anois with wart lowint to deatry. the wing bes. Prevets the propuet nathensonemente

Topologías de Red

Los sistemas distribuidos pueden usar diferentes topologías de red como estrella, anillo o malla para conectar las computadoras.

CONECTAR

Nº

Equipos de Conexión

DE

Se utilizan dispositivos como routers y switches para interconectar las computadoras y facilitar la comunicación en el sistema distribuido.

ASPECTOS DE DISEÑOS DE LOS SISTEMAS DISTRIBUIDOS

Arquitectura

La arquitectura del sistema, como el uso de clientes y servidores o una estructura peer-to-peer, es fundamental para el diseño.

Tolerancia a Fallos

Estrategias como la replicación de datos y la recuperación ante fallos son importantes para garantizar la disponibilidad del sistema.

Comunicación

Los protocolos de comunicación, como TCP/IP, permiten que las computadoras se comuniquen de manera eficiente.

Seguridad

Implementar medidas de seguridad adecuadas, como autenticación y cifrado, es esencial para proteger el sistema.