# Variant calling

#### Chris Miller

Some slides adapted from Dave Larson, Aaron Quinlan, Sam Peters, and Alex Paul

#### **Small Variant Calling**





# Mapping

#### Genome Reference Sequence



- Single-end reads can be longer, less unique depending on sequence context
- Paired-end reads can span repetitive regions, provide additional information
- Mapping has gotten quite fast, <24 hours for 120 Gbp of sequence</li>
- Split-read alignments are the norm (BWA mem)

## Duplication



## **Duplication**



## **Duplication**









#### Every aspect of this process is fraught with error

- Base calling is not perfect: 0.5% error on average
- Mapping is not perfect: the reads are short
- The reference sequence is not perfect

## We have a little help

- Some uncertainty is encapsulated in quality scores
  - the rate at which the data is expected to be wrong
- Each base call (ACTGN) comes with a quality
  - Phred-scaled (-10 \* log<sub>10</sub> of quality)
  - A base call with quality of 20 is wrong 1 out of every 100 times.
- Read mapping has quality too
  - These are also Phred-scaled

## Phred quality score calculation

$$Q = -10*log_{10}(P_{err})$$

| Error probability (P <sub>err</sub> ) | $log_{10}(P_{err})$ | Phred quality score |
|---------------------------------------|---------------------|---------------------|
| 1                                     | 0                   | 0                   |
| 0.1                                   | -1                  | 10                  |
| 0.01                                  | -2                  | 20                  |
| 0.001                                 | -3                  | 30                  |
| 0.0001                                | -4                  | 40                  |

#### Goals of a Variant Caller

- Sensitively detect mutations
- Precisely detect mutations
  - Confounded by the error we just talked about
  - FDR must be very low as we're looking across a very large space!

#### Goals of a Variant Caller

- Sensitively detect mutations
- Precisely detect mutations
  - Confounded by the error we just talked about
  - FDR must be very low as we're looking across a very large space!

- An FDR of 0.001 = 3.2 million false positives!

## Homozygous for the "C" allele

Improper (too far/too <u>close) pa</u>irs



#### Sequencing errors fall out as noise (most of the time)



# It is not always so easy



#### Random versus systematic error



Figure 1 Types of errors. A screenshot from the IGV browser [21] showing three types of error in reads from an Illumina sequencing experiment: (1) A random error likely due to the fact that the position is close to the end of the read. (2) Random error likely due to sequence specific error- in this case a sequence of Cs are probably inducing errors at the end of the low complexity repeat. (3) Systematic error: although it is likely that the GGT sequence motif and the GGC motifs before it created phasing problems leading to the errors, the extent of error is not explained by a random error model. In this case, all the base calls in one direction are wrong as revealed by the 11 overlapping mate-pairs. In particular, all differences from the reference genome are base-call errors, verified by the mate-pair reads, which do not differ from the reference. Given the background error rate, the probability of observing 11 error-pairs at a single location, given that 11 mate-pair reads overlap the location, is  $1.5 \times 10^{-26}$ . Moreover, given the presence of such errors at a single location, the probability that all of the errors occur on the same strand (i.e., on the forward mate pair) is  $\frac{1}{1024} = 0.00098$ . Note that the IGV browser made an incorrect SNP call at the systematic error site (colored bar in top panel).



#### Pileups of many differences from paralogy





RESEARCH ARTICLE OPEN ACCESS

#### FLAGS, frequently mutated genes in public exomes

Casper Shyr, Maja Tarailo-Graovac, Michael Gottlieb, Jessica JY Lee, Clara van Karnebeek and Wyeth W Wasserman 🕾

BMC Medical Genomics 2014 7:64 | D0I: 10.1186/s12920-014-0064-y | © Shyr et al.; licensee BioMed Central Ltd. 2014 Received: 16 June 2014 | Accepted: 24 October 2014 | Published: 3 December 2014

Open Peer Review reports



#### Calling INDELs is *much* harder than SNPs



# Exercise

Germline SNV and Indel Calling

#### Call Genotypes Using GATK HaplotypeCaller



#### Call Genotypes Using GATK HaplotypeCaller



#### Indel "realignment"



#### Call Genotypes Using GATK HaplotypeCaller



#### Main steps for Germline Single-Sample Data



#### Other Germline Variant callers

- Freebayes: lighter weight, faster
- DeepVariant: Neural-network based caller from Google ML



















Here are 3 examples that we would consider canonical easy-to-classify loci, and that DeepVariant calls confidently and correctly:



The variant above is a "2", which means both chromosomes match the variant allele, so this locus represents a homozygous alternate locus.



DeepVariant correctly classifies the variant above as a "1", which means that one of the two alleles matches the variant allele, i.e. it is heterozygous.



Somatic Mutation Calling

## Cancer is a disease of the genome

Cancer is caused by somatic mutations



### Cancer is a disease of the genome

- Cancer is caused by somatic mutations
- These mutations are introduced into the genome of a cell (errors in DNA copying, UV light, chemicals)
- Most cancers require around
  3 driver mutations



## **Germline Predisposition**



#### **Cancer Sequencing**

- In cancer, we have to (at least) double sequencing costs
- Uses both a tumor sample and a matched normal
- We compare them to find somatic mutations

#### What do somatic variants look like?



#### Indels



#### Germline vs Somatic







#### Tumors are often impure, heterogeneous, and aneuploid



Tumors are often impure (contain normal cells)



Tumors are often genetically diverse collections of cells



Tumors may be aneuploid

## How does purity influence VAF?

VAF = Variant reads / Total reads



## How does purity influence VAF?

VAF = Variant reads / Total reads





KRAS amplification in a metastatic breast cancer

## How does copy number influence VAF?



## How does clonality influence VAF?



- Subclones contain genetically diverse populations of cells
- Evolution occurs at the molecular and cellular levels
- The growth rates for subclones are often different

#### Clonal evolution in relapsed AML



#### Dominant clone vs. sub-clonal (and driver vs. passenger)



### Somatic variant calling is harder

 There are more factors to consider, a wider range of possibilities, and often, more sketchy samples

#### Somatic Variant detection callers

- Mutect
- Strelka
- Varscan
- Pindel
- Lancet
- Deep Somatic
- VarDict
- Seurat
- Shimmer
- more...

Lots of choices!

# Use of multiple variant callers can improve sensitivity and accuracy

#### Performance of caller Intersections

