EJERCICIOS: CONJUNTOS

Importante: la respuesta o resolución de cada ejercicio debe estar debidamente justificada.

1. Sea $A = \{1, 2, a, b, c\}$. Identifica cada cso como verdadero o falso.

(a) $2 \in A$

(c) $c \notin A$

(e) $\emptyset \notin A$

(b) $3 \in A$

(d) $\emptyset \in A$

(f) $A \in A$

Soluciones

(a) Verdadero, ya que 2 puede observarse como elemento de A en su definición.

(b) Falso, ya que 3 no puede observarse como elemento de A en su definición.

(c) Falso, ya que c puede observarse como elemento de A en su definición.

(d) Falso, ya que \emptyset puede observarse como elemento de A en su definición.

Nótese que si bien \emptyset no es un elemento de A, si es un subconjunto, es decir: $\emptyset \subseteq A$.

- (e) Verdadero, ya que \emptyset no puede observarse como elemento de A en su definición.
- (f) Falso, ya que A no puede observarse como elemento de A en su definición.

Nótese que si bien A no es un elemento de A, si es un subconjunto, es decir: $A \subseteq A$.

2. Sea $A = \{x/x \in \mathbb{R} \land x \leq 5\}$. Identifica cada caso como verdadero o falso.

(a) $3 \in A$

(c) $5 \notin A$ (e) $-8 \in A$

(b) $6 \in A$

(d) $8 \notin A$ (f) $3, 4 \notin A$

Soluciones

(a) Verdadero pues $3 \in \mathbb{R}$ y $3 \le 5$.

(b) Falso pues 6 > 5.

(c) Falso pues $5 \in A$, ya que $5 \in \mathbb{R}$ y $5 \le 5$.

(d) Verdadero pues 8 > 5.

(e) Verdadero pues $-8 \in \mathbb{R}$ y $-8 \le 5$.

(f) Falso pues $3, 4 \in A$, ya que $3, 4 \in \mathbb{R}$ y $3, 4 \le 5$.

3. Identifica cada caso como verdadero o falso.

(a) $2 \in \{2\}$

(d) $\{3\} \in \{1, 2, 3\}$

(b) $\{0\} \in \{\{0\}, \{1\}\}$

(c) $0 \in \{\{0\}, \{1\}\}$

(e) $0 \in \{0, \{1\}\}$

Soluciones

- (a) Verdadero, ya que 2 puede observarse como elemento de {2}.
- (b) Verdadero, ya que $\{0\}$ puede observarse como elemento de $\{\{0\}, \{1\}\}$.
- (c) Falso, ya que 0 no puede observarse como elemento de $\{\{0\}, \{1\}\}$.

Nótese que $0 \neq \{0\}$, pues el primero es un número y el segundo un conjunto.

(d) Falso, ya que {3} no puede observarse como elemento de {1, 2, 3}.

Nótese que $\{3\} \neq 3$, pues el primero es un conjunto y el segundo un número.

- (e) Verdadero, ya que 0 puede observarse como elemento de {0, {1}}.
- 4. Escribe por extensión los elementos de cada conjunto:
 - (a) $A = \{x/x \in \mathbb{Z}; x^2 \le 14\}$
 - (b) $B = \{x/x \in \mathbb{Z}^+ \land x = 4 \cdot n \land n < 3 \land n \in \mathbb{Z}^+\}$
 - (c) $C = \{x/x \in \mathbb{Z}; x^2 + 1 = 0\}$

- (a) $A = \{-3, -2, -1, 0, 1, 2, 3\}$, pues para cada uno de estos elementos se verifica que son enteros y además su cuadrado es menor o igual a 14.
- (b) $B = \{4, 8\}$, pues $4 = 4 \cdot 1$ y $8 = 4 \cdot 2$.
- (c) $C = \emptyset = \{\}$, pues no existen soluciónes enteras a la ecuación $x^2 + 1 = 0$.
- 5. Escribe por comprensión cada uno de los siguientes conjuntos:
 - (a) $A = \{2, 4, 6, 8, 10\}.$
 - (b) $B = \{1, 8, 27, 64, 125\}.$
 - (c) $C = \{-2, -1, 0, 1, 2\}.$
 - (d) $D = \{Brasil, Uruguay, Chile, Bolivia, Paraguay\}.$
 - (e) $E = \{a, e, i, o, u\}.$

Soluciones

(a) $A = \{x/x \in \mathbb{Z} \land 2 \le x \le 10 \land x \text{ es par}\}.$

También podría escrbirse $A=\{2\cdot x/x\in\mathbb{N} \land x\leq 5\}$. Aunque en el lenguaje matemático esto no solo es correcto sino que también usual, la cátedra no lo admite.

(b) $B = \{x/x = k^3 \land k \in \mathbb{N} \land k \le 5\}.$

Vale en este caso una nota similar a la anterior. El mismo conjunto puede escribirse como $B = \{x^3/x \in \mathbb{N} \land x \leq 5\}.$

- (c) $C = \{x/x \in \mathbb{Z} \land -2 \le x \le 2\}.$
- (d) $D = \{x/x \text{ es un país limitrofe de Argentina}\}.$
- (e) $E = \{x/x \text{ es una vocal}\}.$
- 6. Sea $A=\{1,2,3\},\ B=\{3,1,2\}$ y $C=\{x/x\in\mathbb{Z}^+\land 3\le x+2\le 5\}.$; Cómo están relacionados $A,\ B$ y C?

Solución Observemos que $C = \{x/x \in \mathbb{Z}^+ \land 1 \le x \le 3\} = \{1, 2, 3\}$; luego son todos los conjuntos iguales.

7. Para cada entero no negativo n, sea $U_n = \{n, -n\}$. Encuentra $U_1, U_2, y U_0$.

Solución

- $U_1 = \{1, -1\}.$
- $U_2 = \{2, -2\}.$
- $U_0 = \{0\}.$
- 8. Encuentra la cardinalidad de cada uno de los siguientes conjuntos:
 - (a) $X = \{2, 3, 4, 5\}$
 - (b) $Y = \{1, \{1\}, \{1, \{1\}\}\}\$
 - (c) $Z = \{x/x \in \mathbb{Z}^+; x = 3 \cdot n; n \in \mathbb{Z}^+; n \le 5\}$

- (a) |X| = 4.
- (b) |Y| = 3.
- (c) Observemos que $Z=\{3,6,9,12,15\}$, luego |Z|=5.
- 9. Analiza y justifica si es verdadero o falso cada caso:
 - (a) $\{0\} = \emptyset$
 - (b) $\{2\} \subseteq \{1, \{2\}, \{3\}\}$
 - (c) $\{1\} \subseteq \{1, 2\}$
 - (d) $\{1\} \subseteq \{1, \{2\}\}$
 - (e) $\{\{2\}\}\subseteq\{1,\{2\},\{3\}\}$

- (a) Falso, pues $0 \in \{0\}$ pero $0 \notin \emptyset$.
- (b) Falso, pues $2 \in \{2\}$ pero $2 \notin \{1, \{2\}, \{3\}\}$.
- (c) Verdadero pues $1 \in \{1\}$ y $1 \in \{1, 2\}$.
- (d) Verdadero pues $1 \in \{1\}$ y $1 \in \{1, \{2\}\}$.
- (e) Verdadero pues $\{2\} \in \{\{2\}\}\ y \ \{2\} \in \{1, \{2\}, \{3\}\}\$.
- 10. Dados los siguientes conjuntos, expresa mediante símbolos todas las inclusiones posibles:
 - $S = \{1, 2, 3, 4, 5, 6\}$
 - $T = \{x/x \in \mathbb{Z}^+, x = 3\}$
 - $P = \{2, 4, 5\}$
 - $G = \{1, 2, 3, 4, 5\}$

Solución Observemos que $T = \{3\}$, luego:

- $S \nsubseteq T$, pues $6 \in S$ pero $6 \notin T$.
- $S \nsubseteq P$, pues $1 \in S$ pero $1 \notin P$.
- $S \nsubseteq G$, pues $6 \in S$ pero $6 \notin G$.
- $T \nsubseteq P$, pues $3 \in T$ pero $3 \notin P$.
- $T \subseteq G$, pues $3 \in T$ y $3 \in G$.
- $T \subseteq S$, pues $3 \in T$ y $3 \in S$.
- $P \subseteq G$, pues para x = 2, 4, 5 resulta $x \in P$ y $x \in G$.
- $P \subseteq S$, pues para x = 2, 4, 5 resulta $x \in P$ y $x \in S$.
- $P \nsubseteq T$, pues $5 \in P$ y $5 \notin T$.
- 11. Dibuja un diagrama de Venn que represente por separado cada una de estas relaciones:
 - (a) $A \subseteq B$, $A \subseteq C$, $B \nsubseteq C$ y $C \nsubseteq B$.
 - (b) $x \in A$, $x \in B$, $x \notin C$, $y \in B$, $y \in C$, $y \notin A$.

- 12. Sea $A = \{c, d, f, g\}$, $B = \{f, j\}$ y $C = \{d, g\}$. Analiza la veracidad y falsedad de cada una d elas siguientes inclusiones, justifica tu respuesta:
 - (a) $B \subseteq A$.
- (b) $C \subseteq A$.
- (c) $C \subseteq C$.

Soluciones

- (a) Falso, pues $j \in B$ pero $j \notin A$.
- (b) Verdadero, pues para x = d, g resulta: $x \in C$ y $x \in A$.
- (c) Verdadero, pues para x = d, g resulta: $x \in C$ y $x \in C$.

Vale la pena notar que para cualquier conjunto X resulta $X\subseteq X.$

- 13. Sean los conjuntos:
 - $R = \{x/x \in \mathbb{Z}, x \text{ es divisible por } 2\}.$
 - $S = \{y/y \in \mathbb{Z}, y \text{ es divisible por } 3\}.$
 - $T = \{z/z \in \mathbb{Z}, z \text{ es divisible por } 6\}.$

Analiza la veracidad y falsedad de cada una de las siguientes inclusiones, justifica tu respuesta:

- (a) $R \subseteq T$
- (b) $T \subseteq R$
- (c) $T \subseteq S$

- (a) Falso, pues $2 \in R$ pero $2 \notin T$.
- (b) Verdadero. Sea $x \in T$, luego por definición de T resulta $x = 6 \cdot n = 2 \cdot 3 \cdot n$ para algún $n \in \mathbb{Z}$. Tomando $k = 3 \cdot n$ vemos que $x = 2 \cdot k$ por lo que $x \in R$.
- (c) Verdadero. Análogamente al caso anterior, pero tomando $k=2 \cdot n$ podemos observar que $x \in T \Rightarrow x \in S$.
- 14. Sea $A = \{1, 2, 5, 8, 11\}$. Identifica cada uno de los siguientes casos verdadero o falso:
 - (a) $\{5,1\} \subset A$
 - (b) $\{8,1\} \subseteq A$
 - (c) $\{1, 8, 2, 5, 11\} \nsubseteq A$

Soluciones

- (a) Verdadero, pues para x = 5, 1 resulta $x \in \{5, 1\}$ y $x \in A$.
- (b) Verdadero, pues para x = 8, 1 resulta $x \in \{8, 1\}$ y $x \in A$.
- (c) Falso, pues $\{1, 8, 2, 5, 11\} = A$.
- 15. Sea $U = \mathbb{Z}^+$ y sean los conjuntos A y B que se dan en cada apartado, analiza si son pares de conjuntos disjuntos.
 - (a) $A = \{x/x \in \mathbb{Z}^+ \land x \text{ es par}\} \text{ y } B = \{x/x \in \mathbb{Z}^+ \land x \text{ es impar}\}$
 - (b) $A = \{x/x \in \mathbb{Z}^+ \land 2x \text{ es par}\} \text{ y } B = \{x/x \in \mathbb{Z}^+ \land x \text{ es par}\}$
 - (c) $A = \{x/x \in \mathbb{Z}^+ \land x^2 4 = 0\}$ y $B = \{x/x \in \mathbb{Z}^+ \land x 4 = 0\}$

- (a) Verdadero. Supongamos lo contrario, es decir que existe $x/x \in A \land x \in B$, luego por definición de A y B x es par e impar. Absurdo.
- (b) Falso, pues $2 \in A$ y $2 \in B$.
- (c) Verdadero, pues $A = \{2\}$ y $B = \{4\}$.

16. Sea $A = \{a, b, c\}$ verifica si se cumplen los siguientes enunciados:

(a)
$$A \in \mathcal{P}(A)$$
.

(h)
$$\{\{a,b\}\}\subseteq \mathcal{P}(A)$$
.

(b)
$$\emptyset \in \mathcal{P}(A)$$
.

(i)
$$\{\{a,b\}\}\in\mathcal{P}(A)$$
.

(c)
$$\{a,b\} \in \mathcal{P}(A)$$
.

(j)
$$\{\mathcal{P}(A)\}\subseteq\mathcal{P}(A)$$
.

(d)
$$\{a, b\} \subseteq A$$
.

(k)
$$\{\emptyset\} \in \mathcal{P}(A)$$
.

(e)
$$\{\{a,b\},\{a,c\}\}\subseteq A$$
.

(1)
$$\mathcal{P}(A) \subseteq \mathcal{P}(A)$$
.

(f)
$$\{A, \{a\}, \{a, c\}\} \subseteq \mathcal{P}(A)$$
. (m) $A \subseteq \mathcal{P}(A)$.

(m)
$$A \subseteq \mathcal{P}(A)$$

(g)
$$\{\{a,b\},\{a,c\}\}\in A$$
.

(n)
$$\emptyset \subseteq \mathcal{P}(A)$$
.

- (o) La unión de todos los elementos de $\mathcal{P}(A)$ es A.
- (p) Dos subconjuntos cualesquiera de A son disjuntos.
- (q) Los elementos de $\mathcal{P}(A)$ son elementos de A.

Observemos primero que $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, A\}.$ Soluciones

- (a) Verdadero, pues A forma parte de la definición de $\mathcal{P}(A)$.
- (b) Verdadero, pues \emptyset forma parte de la definición de $\mathcal{P}(A)$.
- (c) Verdadero, pues $\{a,b\}$ forma parte de la definición de $\mathcal{P}(A)$.
- (d) Verdadero, pues para x = a, b resulta $x \in \{a, b\}$ y $x \in A$.
- (e) Falso pues para $\{a, b\} \in \{\{a, b\}, \{a, c\}\}\ \text{pero } \{a, b\} \notin A$.
- (f) Verdadero pues para $x = A, \{a\}, \{b, c\}$ resultan $x \in \{A, \{a\}, \{a, c\}\}$ $y x \in \mathcal{P}(A)$.
- (g) Falso pues $\{\{a,b\},\{a,c\}\}$ no puede observarse en la definición de A.
- (h) Verdadero, pues $\{a,b\} \in \{\{a,b\}\}\$ y $\{a,b\} \in \mathcal{P}(A)$.
- (i) Falso pues $\{\{a,b\}\}$ no puede observarse en la definición de $\mathcal{P}(A)$.
- (j) Falso pues $\mathcal{P}(A) \in \{\mathcal{P}(A)\}$ pero $\mathcal{P}(A) \notin \mathcal{P}(A)$.
- (k) Falso pues $\{\emptyset\}$ no puede observarse en la definición de $\mathcal{P}(A)$.
- (l) Verdadero, pues para cualquier conjunto X, si $x \in X$ entonces trivialmente $x \in X$.

- (m) Falso pues $a \in A$ pero $a \notin \mathcal{P}(A)$.
- (n) Verdadero. Supongamos lo contrario, luego existe $x \in \emptyset/x \notin \mathcal{P}(A)$. Absurdo.
- (o) Verdadero pues $\emptyset \cup \{a\} \cup \{b\} \cup \{c\} \cup \{a,b\} \cup \{b,c\} \cup A = A$.
- (p) Falso pues $A \cap \{a\} \neq \emptyset$.
- (q) Falso pues $\{a\} \in \mathcal{P}(A)$ pero $\{a\} \notin A$.
- 17. Analiza los siguientes casos y justifica tu respuesta.
 - (a) Si $A \cup B = A \cup C$, Es B = C?
 - (b) Si $A \cap B = A \cap C$, ¿Es B = C?

- (a) Falso. Basta notar que para $A = \{1, 2\}$, $B = \{1\}$ y $C = \{2\}$ se cumple $A \cup B = A \cup C$ pero $B \neq C$.
- (b) Falso. Basta notar que para $A = \{1\}$, $B = \{2\}$ y $C = \{3\}$ se cumple $A \cap B = A \cap C$ pero $B \neq C$.
- 18. Sean $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 4, 6, 8\}$, $B = \{2, 4, 5, 9\}$, $C = \{x/x \in \mathbb{Z}^+ \land x^2 \le 16\}$ y $D = \{7, 8\}$. Calcula:
 - (a) $A \cup B$
- (i) A B
- (q) $(A \cup B) \cup C$

- (b) $A \cup C$
- (j) B-A
- (r) $(A \cap B) \cap C$

- (c) $A \cup D$
- (k) C-D
- (s) $(B \cup C) \cap A$

- (d) $C \cup B$
- (l) \overline{C}

(t) $(B \cup A) \cap D$

- (e) $A \cap C$
- $(m) \overline{A}$

(u) $\overline{A \cup B}$

- (f) $A \cap D$
- (n) $A \oplus B$
- (v) $\overline{A \cap B}$

- (g) $C \cap B$
- (o) $C \oplus D$
- (w) $(B \cup C) \cup D$

- (h) $C \cap D$
- (p) $C \oplus B$
- (x) $(B \cap C) \cap D$

Soluciones Observemos que $C = \{1, 2, 3, 4\}.$

(a)
$$A \cup B = \{1, 2, 4, 6, 8, 5, 9\}.$$

(b)
$$A \cup C = \{1, 2, 4, 6, 8, 3\}.$$

(c)
$$A \cup D = \{1, 2, 4, 6, 8, 7\}.$$

(d)
$$C \cup B = \{1, 2, 3, 4, 5, 9\}.$$

(e)
$$A \cap C = \{1, 2, 4\}.$$

(f)
$$A \cap D = \{8\}.$$

(g)
$$C \cap B = \{2, 4\}.$$

(h)
$$C \cap D = \emptyset$$
.

(i)
$$A - B = \{1, 6, 8\}.$$

(j)
$$B - A = \{5, 9\}.$$

(k)
$$C - D = \{1, 2, 3, 4\}.$$

(1)
$$\overline{C} = \{5, 6, 7, 8, 9\}.$$

(m)
$$\overline{A} = \{3, 5, 7, 9\}.$$

(n)
$$A \oplus B = \{1, 6, 8, 5, 9\}.$$

(o)
$$C \oplus D = \{1, 2, 3, 4, 7, 8\}.$$

(p)
$$C \oplus B = \{1, 3, 5, 9\}.$$

(q)
$$(A \cup B) \cup C = \text{COMPLETAR}$$
.

(r)
$$(A \cap B) \cap C = \text{COMPLETAR}$$
.

(s)
$$(B \cup C) \cap A = \text{COMPLETAR}$$
.

(t)
$$(B \cup A) \cap D = \text{COMPLETAR}$$
.

(u)
$$\overline{A \cup B} = \text{COMPLETAR}.$$

(v)
$$\overline{A \cap B} = \text{COMPLETAR}.$$

(w)
$$(B \cup C) \cup D = \text{COMPLETAR}.$$

(x)
$$(B \cap C) \cap D = \text{COMPLETAR}$$
.

19. Sean $U = \mathbb{R}$, $A = \{x/x$ es una solución de $x^2 - 1 = 0\}$ y $B = \{-1, 4\}$. Calcula:

- (a) \overline{A}
- (b) \overline{B}
- (c) $\overline{A \cup B}$
- (d) $\overline{A \cap B}$

Soluciones Observemos que $A = \{1, -1\}.$

(a)
$$\overline{A} = \mathbb{R} - A = \mathbb{R} - \{1, -1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty).$$

(b)
$$\overline{B} = \mathbb{R} - B = \mathbb{R} - \{4, -1\} = (-\infty, -1) \cup (-1, 4) \cup (4, \infty).$$

(c)
$$\overline{A \cup B} = \overline{\{-1, 1, 4\}} = \mathbb{R} - \{-1, 1, 4\} = \overline{A} - \{4\}.$$

(d)
$$\overline{A \cap B} = \overline{\{-1\}} = \mathbb{R} - \{-1\} = (-\infty, -1) \cup (-1, \infty).$$

20. Demuestra cada uno de los siguientes enunciados:

- (a) Si A = B entonces $\overline{A} = \overline{B}$.
- (b) Si $A \subseteq B$ entonces $\overline{B} \subseteq \overline{A}$.
- (c) $A \subseteq B$ si y solo si $A \cup B = B$.
- (d) $A \subseteq B$ si y solo si $A \cap B = A$.
- (e) $(A \cap B) \cup (A \cap \overline{B}) = A$.
- (f) $A \cup (A \cap B) = A$ (ley de absorción).
- (g) Si $A \subseteq B$ entonces $A \cap C \subseteq B \cap C$.
- (h) Si $A \subseteq B$ y $A \subseteq C$ entonces $A \cap B \subseteq C$.
- (i) $(A \cap B) \cap (A \cap \overline{B}) = \emptyset$.
- (j) Si $A \subseteq B$ entonces $A \cap \overline{B} = \emptyset$.
- (k) $A B = A \cap \overline{B}$.

- (a) Por hipótesis sabemos que $A \subseteq B$ y $B \subseteq A$, veamos que $\overline{A} = \overline{B}$:
 - $\overline{A} \subseteq \overline{B}$: Sea $x \in \overline{A}$, luego por definición de complemento resulta $x \notin A$. Supongamos que $x \in B$, luego por hipótesis resulta $x \in A$ lo cual es una contradicción, por lo tanto $x \notin B$, es decir, $x \in \overline{B}$.

- $\overline{B} \subseteq \overline{A}$: Análogamente puede probarse la otra inclusión.
- (b) Por hipótesis sabemos que $A \subseteq B$, veamos que $\overline{B} \subseteq \overline{A}$. Sea $x \in \overline{B}$, luego por definición $x \notin B$. Supongamos que $x \in A$, entonces por hipótesis resulta $x \in B$ lo cual es una contradicción, por lo tanto $x \notin A$, es decir, $x \in \overline{A}$.

(c)

- $\bullet \quad A \subseteq B \Rightarrow A \cup B = B :$
 - $-A \cup B \subseteq B$: Sea $x \in A \cup B$, luego $x \in A$ o $x \in B$. Si $x \in A$, por hipótesis también resulta $x \in B$.
 - $-B \subseteq A \cup B$: Sea $x \in B$, luego por ampliación disyuntiva también resulta $x \in B \lor x \in A$ y por definición de unión $x \in A \cup B$.
- $A \cup B = B \Rightarrow A \subseteq B$: Sea $x \in A$, luego pojr ampliación disyintiva también resulta $x \in A \lor x \in B$ y por definición de unión $x \in A \cup B$. Finalmente por hipótesis tenemos $x \in B$.

(d)

- $A \subseteq B \Rightarrow A \cap B = A$: $A \cap B \subseteq A$: Sea $x \in A \cap B$ luego por definición $x \in A \land x \in A$ B; en particular $x \in A$.
 - $-A \subseteq A \cap B$: Sea $x \in A$, por hipótesis sabemos que $x \in B$, luego $x \in A \land x \in B$; es decir, $x \in A \cap B$.
- $A \cap B = A \Rightarrow A \subseteq B$: Sea $x \in A$, como por hipótesis sabe- $\overline{\text{mos que } A \subseteq A \cap B}$ resulta $x \in A \cap B$ y por definición $x \in A \land x \in B$; en particular $x \in B$.

(e)

- $(A \cap B) \cup (A \cap \overline{B}) \subseteq A$: Sea $x \in (A \cap B) \cup (A \cap \overline{B})$ luego por definición resulta $x \in A \cap B \lor x \in A \cap \overline{B}$.
 - Si $x \in A \cap B$ resulta $x \in A \land x \in B$; en particular $x \in A$.
 - Si $x \in A \cap \overline{B}$ resulta $x \in A \land x \in \overline{B}$; en particular $x \in A$.
- $A \subseteq (A \cap B) \cup (A \cap \overline{B})$: Sea $x \in A$, luego resulta trivial que $x \in A \land (x \in B \lor x \notin B)$ y por ley distributiva resulta $(x \in A \land x \in B) \lor (x \in A \land \notin B)$; de donde sigue por definiciones que $x \in (A \cap B) \cup (A \cap B)$.

- (f) COMPLETAR.
- (g) COMPLETAR.
- (h) COMPLETAR.
- (i) COMPLETAR.
- (j) COMPLETAR.
- (k) COMPLETAR.
- 21. Utiliza las propiedades de operaciones entre conjuntos (dadas en el Teorema 2 de la teoría) para analizar si las siguientes expresiones son equivalentes (justifica cada paso que realices con la propiedad empleada):
 - (a) $(A B) \cap (B A) = \emptyset$.
 - (b) $(A C) \cap (B C) \cap (A B) = \emptyset$.
 - (c) $(A \cup B) C = (A C) \cup (B C)$.
 - (d) $A (A \cap B) = A B$.
 - (e) $\overline{(A \cap B)} \cap A = A B$.

- (a) Verdadero: COMPLETAR.
- (b) Verdadero: COMPLETAR.
- (c) Verdadero: COMPLETAR.
- (d) Verdadero: COMPLETAR.
- (e) Verdadero: COMPLETAR.
- 22. Una empresa de turismo realiza una encuesta entre 100 personas: 40 quieren viajar a Mendoza, 25 desean viajar a Bariloche, 13 de los interrogados quieren ir a Mendoza y Bariloche.
 - (a) ¿Cuántas personas no realizan excursión?
 - (b) ¿Cuántas van a realizar solo 1 de las excursiones?
 - (c) ¿Cuántas viajarán solo a Mendoza?
 - (d) ¿Cuántas van por lo menos a 1 excursión?

- (a) COMPLETAR.
- (b) COMPLETAR.
- (c) COMPLETAR.
- (d) COMPLETAR.
- 23. 70 alumnos rindieron un examen de Matemática, Física e Inglés. Los resultados fueron: 20 alumnos rindieron bien las 3 asignaturas, 50 rindieron bien Matemática, 30 rindieron bien inglés, 35 rindieron bien Física, 10 alumnos sólo rindierion Matemática y Física, 8 solo rindieron bien Matemática e Inglés, 1 solamente rindió bien Inglés y Física. Si para ser promovidos deberían aprobar 2 materias por lo menos:
 - (a) ¿Cuántos alumnos se promovieron?
 - (b) ¿Cuántos alumnos no se promovieron por adedudar sólo 2 de las materias?
 - (c) ¿Cuántos alumnos rindieron mal las 3 materias?

- (a) COMPLETAR.
- (b) COMPLETAR.
- (c) COMPLETAR.