Technologie sieciowe Lista II

Michał Kalina 250088

Na początku stworzyłem graf. Ścieżki są indeksowane poprzez indeksy dwóch punktów które łączą. Mniejszy indeks jest pierwszą cyfrą przy znakowaniu e Tabela natężeń:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
2	2		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	3	2		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	3	2		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1 5	1 1 5	3	2		1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1
6		1	1	3	2		1	1	1	1	1	1		1	1	1	1	1		1
7	1		1 1 5	1	3	2		1	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1		1 1 5	1	3	2		1	1	1	1	1	1	1	1	1	1	1	1
9	1 1 1	1	1		1	1	3	2 3		1	1	1	1	1	1	1	1	1	1	1
10		1	1	1 1	5	1	1	3	2		1	1	1	1	1	1	1	1	1	1
11	1	1	1		1	5	1 5	1	3	2		1	1	1	1	1	1	1	1	1
12	1	1	1	1	1	1		1 5	1	3	2		1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1		1 5	1	3	2 3		1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1		1	1		2		1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1	5	1 5	1 1 5	3	2		1	1	1	1	1
16	1	1	1	1	1	1	1	1	1	1		1	1		2		1	1	1	1
17	1	1	1	1	1	1	1	1	1	1	1		1	1	3	2		1	1	1
18	1	1	1	1	1	1	1	1	1	1	1	1	5	1	1	3	2		1	1
19	1	1	1	1	1	1	1	1	1	1	1	1	1	5	1	1	3	2		1
20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	5	1	1	3	2	

Topologia grafu:

Do przetestowania sprawności napisałem program w Pythonie

W programie zaimplementowałem funkcje znajdującą najkrótszą ścieżkę

Dla przedstawionych wyżej danych otrzymałem rezultaty:

- Średnie opóźnienie = 0.0034719035669292606
- Szacowana niezawodność = 0.6

Przy szacowaniu niezawodności użyłem metody monte carlo dla 1000 testów

Podpunkt 3

Przemnażam stopniowo macierz natężeń strumienia pakietów przez n:

n	niezawodność
1	0.60
1,1	0.551
1,2	0.42
1,3	0.11
1.4	0.07

Jak widać niezawodność maleje. Nie jest to zaskoczeniem. Zgodnie ze wzorem, gdy zwiększam macierz, rośnie a(e) . Wtedy T maleje, przez co, $Pr(T < T_{max})$ rośnie.

Podpunkt 4

Przemnażam stopniowo macierz natężeń strumienia pakietów przez c:

С	niezawodność
0.999	0.46
1	0,6
4	0.58
10	0.59
1000	0.58

Przy zwiększaniu przepustowości rośnie c(e). Wtedy T maleje,
przez co, Pr(T<T $_{max}$) rośnie. Przy C $\rightarrow \infty$ powinna dążyć do niezawodności z pustą tabel
ą natężeń. W moim przykładzie dąży do około 0.6

Podpunkt 5

Po dodaniu ścieżki {1, 5} o wielkości 14 pakietów, oraz p=0.7 wynik się poprawił do 0.63. Po dodaniu ścieżki {16, 20} wynik urósł do 0.66 Po dodaniu ścieżki {8, 20} wynik urósł do 0.68

Z każdą następną dodawaną krawędzią wynik się poprawiał, szacuję że w granicy osiągnie on 1. Problemem może być jedynie dodanie krawędzi o zbyt niskiej przepustowości