MA 126 — Spring 2017 — Prof. Clontz — Readiness Quizzes

- Which of these is a definition of a^x for all positive numbers a and all real numbers x? (2017-01-11, 1.1, practice)
 - A. $\ln(x \cdot e^a)$
 - B. a multiplied by itself x times
 - C. the unique function for which $\frac{d}{dx}[a^x] = a^x$
 - D. $\exp(x \ln a)$
- Which of these statements is false? (2017-01-11, 1.1, practice)
 - A. $\ln(abc) = \ln(a) + \ln(b) + \ln(c)$
 - B. $\frac{d}{dx}[\ln x] = \frac{1}{|x|}$ for all nonzero numbers x
 - C. $y = \exp(x)$ if and only if $x = \ln(y)$
 - D. $e^x = \exp(x)$

- 1. The Substitution Rule is the opposite of which derivative rule? (2017-01-19, 2.1)
 - A. Chain Rule
 - B. Product Rule
 - C. Quotient Rule
 - D. Power Rule
- 2. What is incorrect about the following attempt at using the Substitution Rule?

$$\int_0^1 (3-2x)^5 dx = \int_0^1 u^5 \left(-\frac{1}{2}du\right)$$

(2017-01-19, 2.1)

- A. dx should have been replaced with $+\frac{1}{2} du$.
- B. u shouldn't be raised to the 5th power.
- C. dx should have been replaced with -2 du.
- D. The bounds are incorrect.

- 3. Which of these formulas would be most useful in finding $\int \sin^4 \theta \cos^2 \theta \, d\theta$? (2017-01-25, 2.2)
 - A. $\sin^2(\theta) = \frac{1}{2} + \frac{1}{2}\sin(2\theta)$
 - B. $\cos^2(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$
 - C. $\cos^2(\theta) = 1 \sin^2(\theta)$
 - D. $\sin^2(\theta) = 1 \cos^2(\theta)$
- 4. Which of these formulas would be most useful in finding $\int \sec^4(\theta) d\theta$? (2017-01-25, 2.2)
 - A. $\sec^2(\theta) = 1 + \tan^2(\theta)$
 - B. $\sec^2(\theta) = 1 \tan^2(\theta)$
 - C. $\tan^2(\theta) = 1 + \sec^2(\theta)$
 - D. $\tan^2(\theta) = 1 \sec^2(\theta)$

- 5. Which of these substitutions would be most useful in finding $\int \frac{1}{25x^2+9} dx$? (2017-01-27, 2.3)
 - A. Let $25x^2 + 9 = 25\sec^2\theta + 25$.
 - B. Let $25x^2 + 9 = 9\sin^2\theta + 9$.
 - C. Let $25x^2 + 9 = 9\tan^2\theta + 9$.
 - D. Let $25x^2 + 9 = 25\cos^2\theta + 25$.
- 6. Which of these substitutions would be most useful in finding $\int \frac{1}{x\sqrt{4-16x^2}} dx$? (2017-01-27, 2.3)
 - A. Let $4 16x^2 = 16 16\cos^2\theta$.
 - B. Let $4 16x^2 = 4 4\sin^2\theta$.
 - C. Let $4 16x^2 = 4 + 4\tan^2\theta$.
 - D. Let $4 16x^2 = 16 + 16\sec^2\theta$.
- 7. Which of these substitutions would be most useful in finding $\int_3^5 \frac{1}{\sqrt{x^2-9}} dx$? (2017-01-27, 2.3)
 - A. Let $x^2 9 = 9\sin^2\theta + 9$.
 - B. Let $x^2 9 = \tan^2 \theta 1$.
 - C. Let $x^2 9 = \cos^2 \theta + 1$.
 - D. Let $x^2 9 = 9\sec^2\theta 9$.

8. Which of these sums is the first step in expanding $\frac{4x^2+16x+17}{(x+2)^2(x^2+1)^2}$ into partial fractions? (2017-02-01, 2.4)

A.
$$\frac{A}{x+2} + \frac{Bx}{x+2} + \frac{C}{(x^2+1)^2}$$

B.
$$\frac{A}{x+2} + \frac{Bx}{(x+2)^2} + \frac{Cx+D}{(x^2+1)^2}$$

C.
$$\frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2}$$

D.
$$\frac{Ax+B}{(x+2)^2} + \frac{Cx+D}{(x^2+1)^2}$$

- 9. Why must $\frac{3+5x^5}{(x+1)(x+3)^2}$ first be simplifed using long polynomial division before using the method of partial fractions? (2017-02-01, 2.4)
 - A. It is a rational function of x.
 - B. The degree of its numerator is odd, while the degree of its demoninator is even.
 - C. The degree of its numerator is greater than or equal to the degree of its denominator.
 - D. It is an irrational function of x.