

Linguagens formais, automâtos e computabilidade *Autômatos finitos*

Marco Aurélio Graciotto Silva

Março de 2015

Agenda

LFAC

UTFPR-CN

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômato finitos

Exercícios

- Autômatos finitos não determinísticos
- 2 Equivalência entre AFD e AFND
- 3 Propriedades de autômatos finitos
 - Equivalência
 - Minimização
- 4 Exercícios

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercícios

Definição

Um autômato finito não determinístico AFND é uma quíntupla $A = < \Sigma, S, S_0, \delta, F >$ em que:

- \bullet Σ é o alfabeto de entrada,
- *S* é o conjunto finito de estados,
- S_0 é o conjunto de estados iniciais, tal que $S_0 \subseteq S$,
- δ é a função de transição de estados, tal que $\delta: S \times \Sigma_{\epsilon} \to 2^{S}$.
- F é o conjunto de estados finais, tal que $F \subseteq S$.

Diferenças com relação a AFD

- Agora é um conjunto de estados iniciais.
- Função de transição de estados, para um mesmo símbolo, pode resultar em vários estados.
- Função de transição de estados pode ser para ϵ .

I FAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercícios

AFND - Exemplo

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercícios

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercícios

Transições ϵ

Transição que ocorre sem que nenhum símbolo de entrada seja processado (ou, melhor, é processado o símbolo ϵ).

Exemplo: $L = \{(x^n y^m z^o)^p \in \{a, b, c\}^* \mid x, z \in \{a, c\} \land y = bc\} \land p > 0$

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercícios

Closure (fecho)

O fecho (*closure*) de um estado $s \in S$ é o conjunto de estados que podem ser alcançados a partir de transições ϵ .

Exemplo: $L = \{a^n x^m b^o \in \{a, b, c\}^* \mid a, b \in \{a, c\} \land x = bc\}$

- $CL(A) = \{A\}$
- $CL(B) = \{B\}$
- $CL(C) = \{C, A\}$

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercícios

Função de transição estendida

Dado o AFND $A=<\Sigma, S, S_0, \delta, F>$, a Função de Transição Estendida $\overline{\delta}$ é definida como $\overline{\delta}:S\times\Sigma^*\to S$, tal que:

- $\forall s \in S, \overline{\delta}(s, \epsilon) = CL(s)$
- $(\forall s \in S) \land (\forall a \in \Sigma), \overline{\delta}(s, a) = CL(\delta(s, a))$
- $(\forall s \in S) \land (\forall a \in \Sigma) \land (\forall x \in \Sigma^*), \overline{\delta}(s, ax) = \overline{\delta}(\delta(s, a), x)$

Autômatos finitos não determinísticos

Construa um AFND para cada uma das seguintes linguagens:

- $\{xa \in \{0,1\}^* \mid a = 00\}$ (usar apenas três estados)
 - Tradução: Palavras no alfabeto $\{0,1\}^*$ que terminam com 00.
- 0*1*0⁺ (usar apenas três estados)
- $\{x \in \{0,1\}^* \mid 1011 \text{ ou } 111 \text{ são subpalavras de } x\}$

Conversão de um AFND com transições ϵ em um AFND

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercício:

Substituição das transições ϵ

- Gerar nova função de transição δ_N a partir da δ_E :
 - Calcule o fecho de cada estado q do AFND: CL(q).
 - Para cada estado q do AFND, calcule a nova função de transição δ_N para incluir as transições para cada símbolo do alfabeto $a \in \Sigma$ considerando os estados $p \in CL(q)$.
 - Assim temos que $\delta_N(q,a) = \bigcup_{p \in CL(q)} \delta_E(p,a)$

Conversão de um AFND com transições ϵ em um AFND

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercícios

Cálculo da nova função de transição

Considerar o fecho CL(s) e definir função de transição em função da união dos estados resultantes da aplicação da função antiga para cada estado contido no fecho.

UTFPR-CN

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercícios

$\begin{array}{c|ccccc} AFND-\epsilon \\ \hline & & 0 & 1 & \epsilon \\ \{A\} & \{E\} & \{B\} & \emptyset \\ \{B\} & \emptyset & \{C\} & \{D\} \\ \{C\} & \emptyset & \{D\} & \emptyset \\ * \{D\} & \emptyset & \emptyset & \emptyset \\ \{E\} & \{F\} & \emptyset & \{B,C\} \\ \{F\} & \{D\} & \emptyset & \emptyset \end{array}$

Closures

- $CL(A) = \{A\}$
- $CL(B) = \{B, D\}$
- $CL(C) = \{C\}$
- $CL(D) = \{D\}$
- CL(E) =
- ${E, B, C} = {E, B, D, C}$
- $CL(F) = \{F\}$

Cálculo da nova função de transição

Considerar o fecho CL(s) e definir função de transição em função da união dos estados resultantes da aplicação da função antiga para cada estado contido no fecho.

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercício

$\mathsf{AFND}\text{-}\epsilon$

AFND

$ \begin{cases} D \\ F \end{cases} \emptyset \emptyset \\ F C, D \\ F D \emptyset $	₹ <i>E</i> }	F	C, D
---	--------------	---	------

Closures

- $CL(B) = \{B, D\}$
- $CL(E) = \{E, B, C\} = \{E, B, D, C\}$

Conversão de um AFND com transições ϵ em um AFND

LFAC

UTFPR-CN

Autômatos finitos não d terminísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercícios

AFND- ϵ

AFND

	U	I
{ <i>A</i> }	Ε	В
* { <i>B</i> }	Ø	C
{ <i>C</i> }	Ø	D
* {D}	Ø	Ø
* { <i>E</i> }	F	C, D
{ <i>F</i> }	D	Ø

Ajuste dos estados finais

Se o fecho do estado inclui um estado que era final, então o estado também é final.

Closures

- $CL(B) = \{B, D\}$
- $CL(E) = \{E, B, C\} = \{E, B, D, C\}$

LFAC

UTFPR-CN

Autômatos finitos não d terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercício

Tabuleiro

Considere um tabuleiro de 3x3. Cada quadrado do tabuleiro é um estado e a cor de cada posição (vermelho/*red* ou preto/*black*) é o alfabeto de entrada. A posição inicial é a do canto superior esquerdo do tabuleiro. O estado final é a posição inferior direita do tabuleiro.

Movimentos possíveis:

- Sair do estado atual para um estado adjacente vermelho (r)
- Sair do estado atual para um estado adjacente preto (b)

5

5

5, 7, 9

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercícios

Tabu	leiro	
	r	b
1	2, 4	5
2	4, 6	1, 3, 5
3	2, 6	5
4	2, 8	1, 5, 7
5	2, 4, 6, 8	1, 3, 7,
6	2, 8	3, 5, 9

4, 8

4, 6 6, 8

8 * 9

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômato finitos

Exercício

	r	b
1	2, 4	5
2	4, 6	1, 3, 5
3	2, 6	5
4	2, 8	1, 5, 7
5	2, 4, 6, 8	1, 3, 7, 9
6	2, 8	3, 5, 9 Tabuleiro AFD
7	4, 8	5 r b
8	4, 6	5, 7, 9 1 2, 4 5
* 9	6, 8	5 1 2, 4 5

LFAC

UTFPR-CN

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercício

Para cada classe de equivalência que consta na tabela, vamos definir a função em relação aos símbolos de entrada.

5

5

5, 7, 9

LFAC

UTFPR-CN

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

7

8

***** 9

de autômatos finitos

Exercício

```
b
       r
       2, 4
                     5
       4, 6
                     1, 3, 5
3
       2, 6
                     5
4
       2, 8
                     1, 5, 7
5
       2, 4, 6, 8
                     1, 3, 7, 9
6
       2, 8
                     3, 5, 9
```

4, 8

4, 6

6, 8

	r	D
{1}	{2, 4}	{5}
{2, 4}	{2, 4, 6, 8}	{1, 3, 5, 7
{5}	{2, 4, 6, 8}	{1, 3, 7, 9

5, 7, 9

5

LFAC

Equivalência entre AFD e **AFND**

8 * 9

4, 6

6, 8

```
b
       r
       2, 4
                     5
       4, 6
                     1, 3, 5
3
       2, 6
                     5
4
       2, 8
                     1, 5, 7
5
       2, 4, 6, 8
                     1, 3, 7, 9
6
       2, 8
                     3, 5, 9
7
                     5
       4, 8
```

Tabuleiro AFD

{1}

{5}

 $\{2, 4\}$

5, 7, 9

5

LFAC

UTFPR-CN

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos 8

***** 9

Exercício

```
b
       r
       2, 4
                     5
2
       4, 6
                     1, 3, 5
3
       2, 6
                     5
4
       2, 8
                     1, 5, 7
5
       2, 4, 6, 8
                     1, 3, 7, 9
6
       2, 8
                     3, 5, 9
7
                     5
       4, 8
```

4, 6

6, 8

	r	D
{1}	{2, 4}	{5}
{2, 4}	{2, 4, 6, 8}	{1, 3, 5, 7}
{5}	{2, 4, 6, 8}	{1, 3, 7, 9}
{2, 4, 6, 8}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}
$\{1, 3, 5, 7\}$	{2, 4, 6, 8}	{1, 3, 5, 7, 9}

5

5

5, 7, 9

LFAC

Equivalência entre AFD e AFND

```
b
       r
       2, 4
                     5
       4, 6
                     1, 3, 5
3
       2, 6
                     5
4
       2, 8
                     1, 5, 7
5
       2, 4, 6, 8
                     1, 3, 7, 9
6
       2, 8
                     3, 5, 9
```

4, 8

4, 6

6, 8

8

***** 9

	r	b
{1}	{2, 4}	{5}
{2, 4}	{2, 4, 6, 8}	{1, 3, 5, 7}
{5}	{2, 4, 6, 8}	{1, 3, 7, 9}
{2, 4, 6, 8}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}
{1, 3, 5, 7}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}
{1, 3, 7, 9}		
{1, 3, 5, 7, 9}		

b

5, 7, 9

5

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercício

```
2, 4
                     5
2
       4, 6
                     1, 3, 5
3
       2, 6
                     5
4
       2, 8
                     1, 5, 7
5
       2, 4, 6, 8
                     1, 3, 7, 9
6
       2, 8
                     3, 5, 9
7
                     5
       4, 8
```

r

4, 6

6, 8

8

***** 9

	r	b
{1}	{2, 4}	{5}
{2, 4}	{2, 4, 6, 8}	{1, 3, 5, 7}
{5}	{2, 4, 6, 8}	{1, 3, 7, 9}
{2, 4, 6, 8}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}
{1, 3, 5, 7}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}
{1, 3, 7, 9}	{2, 4, 6, 8}	{5}
$\{1, 3, 5, 7, 9\}$	{2, 4, 6, 8}	{1, 3, 5, 7, 9}

b 5

1, 3, 5

1, 5, 7

3, 5, 9

5, 7, 9

5

1, 3, 7, 9

4, 6

2, 6 2, 8

2, 8

4.8

4, 6

2, 4, 6, 8

5

8

UTFPR-CI

Autômatos finitos não d

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercíci

6, 8 5 $\{2, 4\}$ {2, 4, 6, 8} $\{1, 3, 5, 7\}$ {5} $\{2, 4, 6, 8\} \mid \{1, 3, 7, 9\}$ $\{2, 4, 6, 8\} \mid \{1, 3, 5, 7, 9\}$ {2, 4, 6, 8} $\{1, 3, 5, 7\}$ {2, 4, 6, 8} {1, 3, 5, 7, 9} * {1, 3, 7, 9} {2, 4, 6, 8} {5} * {1, 3, 5, 7, 9} | {2, 4, 6, 8} {1, 3, 5, 7, 9} Estados finais Toda classe de equivalência que possui um estado que pertence

Tabuleiro AFD

 $\{1\}$

b

Toda classe de equivalência que possui um estado que pertence ao conjunto original de estados finais também é um estado final.

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos

Exercícios

$$\delta(a,s)=\emptyset$$

E quando a transição aponta para o estado vazio, o que fazemos?

AF com transição para o \emptyset

	0	1
Α	{ <i>E</i> }	{ <i>B</i> }
* B	Ø	{C}
C	Ø	$\{D\}$
* D	Ø	Ø
* E	{ <i>F</i> }	{ <i>C</i> }
F	$\{D\}$	Ò

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercícios

AFD

	0	1
{ <i>A</i> }	{ <i>E</i> }	{ <i>B</i> }
* {B}	{ <i>T</i> }	{C}
{C}	$\{T\}$	$\{D\}$
* {D}	{ <i>T</i> }	{ <i>T</i> }
* { <i>E</i> }	{ F }	{C}

$\delta(a,s)=\emptyset$

Adicionar trap state (estado armadilha).

- Todas as transições originalmente para o ∅ vão para ele.
- O *trap state* define que, para qualquer símbolo do alfabeto, a transição é feita para ele mesmo.
- Obviamente, o trap state não é um estado final.

Equivalência de AFD

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercícios

Dados dois autômatos finitos determinísticos (AFD) A e B, dizemos que A é equivalente a B se e somente se L(A) = L(B).

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos

Equivalência Minimização

Exercício

Condições

- Para que dois autômatos sejam equivalentes, é necessário que cada estado s do autômato A seja equivalente a um conjunto de estados S' do autômato B.
- Além disso, o comportamento dos autômatos devem ser idênticos (considerando esta relação).

Definição

Dados dois AFDs $A=<\Sigma, S_A, S_{0A}, \delta_A, F_A>$ e $B=<\Sigma, S_B, S_{0B}, \delta_B, F_B>$, deve existir uma função $\mu:S_A\to S_B$ tal que:

- $\mu(S_{0A}) = S_{0B}$
- $(\forall s \in S_A), s \in F_A \Leftrightarrow \mu(s) \in F_B$
- $(\forall s \in S_A)(\forall a \in \Sigma), \mu(\delta_A(s, a)) = \delta_B(\mu(s), a)$

Equivalência Exemplo trivial 1

LFAC

UTFFK-CI

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercício

Explicação

A função μ apenas renomeia os estados S_0 para Q_1 e S_1 para Q_0 .

Equivalência Exemplo trivial 2 (estado inalcançável)

LFAC

UTFPR-CN

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

de autômatos finitos

Equivalência Minimização

Exercício

Equivalência Estado inalcançável

LFAC

UTFPR-CI

Autômatos finitos não d terminísticos

Equivalência entre AFD o AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercíci

Definição

Dado o AFD $A=<\Sigma, S, S_0, \delta, F>$, diz-se que um estado $S_r\in S$ é alcancável se e somente se $\exists x\in \Sigma^*\mid \overline{\delta}(S_0,x)=S_r$.

Caso contrário, dizemos que o estado S_r é inalcançável.

Um AFD no qual todos os estados são alcançáveis é chamado de conexo.

Algoritmo para determinar equivalência

- 1. Faça o produto dos autômatos finitos determinísticos. Para cada par de estados $\{[q,r] \mid q \in S_A \land r \in S_B\}$, temos, para cada símbolo $a \in \Sigma$:
 - $\delta([q,r],a) = [\delta_A(q,a),\delta_B(r,a)]$
- 2. Estado inicial será o par de estados tal que seus elementos sejam estados iniciais no AFD original.
- 3. Estados finais serão os pares de estados em que apenas um de seus elementos seja um estado final no AFD original.
- 4. L = M sse $L \times M = \emptyset$.

Equivalência Exemplo

LFAC

UTFPR-CN

Autômatos finitos não d terminísticos

Equivalência entre AFD e AFND

Propriedades de autômato finitos

Equivalência

Europaísia

Equivalência Exemplo

0

LFAC

UTFPR-CN

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos

Equivalência Minimização

Exercício

O estado [B, D] é inalcançável e pode ser retirado.

 $L(A \times B) \neq \emptyset$, logo A e B não são equivalentes.

I FAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercício

Algoritmo ingênuo para determinar equivalência

- 1. Minimize os autômatos.
- 2. Se após a minimização eles não tiverem a mesma quantidade de estados, eles não são equivalentes.
- 3. Caso tenham a mesma quantidade de estados, deve existir uma função μ que defina o homomorfismo entre os autômatos.

UTFPR-CN

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômato finitos Equivalência Minimização

Exercício

Definição

Um AFD $A=<\Sigma,S,S_0,\delta,F>$ é dito minimal se para qualquer AFD $B=<\Sigma,S_B,S_{0B},\delta_B,F_B>$ tal que $A\equiv B$, temos que $|S|\leq |S_B|$.

Em outras palavras

- Autômatos precisam ter o mesmo comportamento (reconhecer a mesma linguagem).
- A quantidade de estados do autômato minimal é menor ou igual à quantidade de estados de qualquer outro autômato equivalente.

Minimização de AFD

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Minimização

Exercício:

- 1. Transformar o AF em um AFD.
- 2. Retirar estados inalcançáveis.
- 3. Identificar e unir estados equivalentes.

Minimização de AFD Identificação de estados inalcançáveis

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos Equivalência

Minimização

- 1. Defina o conjunto S_c de estados alcançáveis.
- 2. Por definição, o estado inicial S_0 sempre é alcançável. Assim, inclua-o em S_c .
- 3. Aplique a função de transição δ do AFD para os estados alcançáveis. O estado obtido deve ser incluído em S_c .
- 4. Repita o passo anterior até que nenhum estado seja adicionado em S_c .

Minimização de AFD Identificação de estados inalcançáveis

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Minimização de AFD Identificação de estados inalcançáveis

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercícios

Estados equivalentes

Um estado é equivalente a outro estado se ambos desempenham o mesmo comportamento para o reconhecimento de uma string.

LFAC

UTFPR-CN

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercício

Estados S_1 e S_3 são equilvantes: não tem como diferenciá-los externamente: tudo o que for reconhecido a partir de S_1 também será reconhecido a partir de S_3 e vice-versa.

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercíci

Definição

Dado o AFD $A=<\Sigma, S, S_0, \delta, F>$, diz-se que dois estados $s,t\in S$ são equivalentes se e somente se $\forall x\in \Sigma^*, \overline{\delta}(s,x)\in F\Leftrightarrow \overline{\delta}(t,x)\in F$.

Classe de equivalência

Estados que são equivalentes formam uma classe de equivalência.

LFAC

UTFPR-CN

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômatos finitos

Equivalência Minimização

Exercício

AFD reduzido

Um AFD é dito reduzido quando a cardinalidade de suas classes de equivalência é 1.

Transformar um AFD em AFD reduzido

- 1. Identifique as classes de equivalência.
- 2. Transforme cada classe de equivalência em um estado.
 - Classe de equivalência que possui o estado inicial é o estado inicial do AFD.
 - Classes de equivalência que possuem quaisquer dos estados finais é estado final do AFD.
- 3. Defina δ de modo que $\delta([S_{eq}],a)=\delta(s,a)$, para $s\in[S_{eq}].$

Minimização de AFD

Exemplo: Identificação de estados equivalentes

LFAC

UTFPR-CN

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

	5	5 5	S_4	<i>S</i> ₃	S_2	S_1
$\frac{S_0}{S_1}$						
						_
S_2					-	_
$\frac{S_3}{S_4}$				_	-	_
S_4			_	_	_	_

LFAC

UTFPR-CM

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

Propriedades de autômato finitos Equivalência

Minimização Exercícios

	S_5	S ₄	<i>S</i> ₃	S_2	S_1
S_0	0			0	
S_1	0			0	_
S_2		0	0	-	_
S_3	0		_	_	_
<i>S</i> ₄	0	_	_	_	_

Distinguir com ϵ

- O primeiro passo é distinguir os pares de estados em relação ao ϵ .
- Na tabela estão marcados com 0 aqueles que foram distinguidos por nesta primeira tentativa:
 - Pares em que **um** (e apenas um!) dos estados é um estado de aceitação.

LFAC

UTFPR-CN

Autômatos finitos não de terminísticos

Equivalência entre AFD e AFND

de autômato
finitos
Equivalência
Minimização

Evercício

	S_5	S ₄	<i>S</i> ₃	S_2	S_1
S_0	0	1_a	1_c	0	1_a
S_1	0		1_a	0	_
S_2		0	0	-	_
S_3	0	1 _a	_	_	_
S_4	0	_	_	_	_

Distinguir com palavra de tamanho 1

- O segundo passo é distinguir os pares de estados em relação a palavras de tamanho 1.
- Na tabela estão marcados com 1 aqueles que foram distinguidos por palavras de tamanho 1, seguido do símbolo utilizado para distinguir.

Minimização de AFD

Exemplo: Identificação de estados equivalentes

LFAC

UTFPR-C

Autômatos finitos não d terminísticos

Equivalência entre AFD e AFND

de autômato finitos Equivalência

Exercíci

	S_5	<i>S</i> ₄	<i>S</i> ₃	S_2	S_1
$\overline{S_0}$	0	1 _a	1_c	0	1 _a
S_1	0		1 _a	0	_
S_2		0	0	-	_
S_3	0	1 _a	_	_	_
<i>S</i> ₄	0	_	_	_	_

Estados indistinguíveis

Os estados S_2 e S_5 são indistinguíveis. Observe as transições:

- $\delta([S_2, S_5], a) = [S_2, S_5]$
- $\delta([S_2, S_5], b) = [S_2, S_5]$
- $\delta([S_2, S_5], c) = [S_2, S_5]$
- $\delta([S_2, S_5], d) = [S_2, S_5]$

Em todos os casos, eles vão para o mesmo estado, não sendo possível obter uma decisão distinta para quaisquer palavras.

Minimização de AFD

Exemplo: Identificação de estados equivalentes

LFAC

UTFPR-CI

Autômatos finitos não d terminísticos

Equivalência entre AFD e AFND

de autômato finitos Equivalência Minimização

Evercíci

	S_5	<i>S</i> ₄	<i>S</i> ₃	S_2	S_1
S_0	0	1 _a	1_c	0	1_a
S_1	0		1 _a	0	_
S_2		0	0	ı	_
S_3	0	1_a	_	-	_
S_4	0	_	_	_	_

Estados indistinguíveis

Os estados S_1 e S_4 são indistinguíveis. Observe as transições:

- $\delta([S_1, S_4], a) = [S_2, S_5]$
- $\delta([S_1, S_4], b) = [S_3, S_3]$
- $\delta([S_1, S_4], c) = [S_0, S_0]$
- $\delta([S_1, S_4], d) = [S_0, S_0]$

Em todos os casos, ou eles vão para o mesmo estado ou vão para estados que não conseguimos distinguir (no caso, $[S_2, S_5]$).

Exemplo: Identificação de estados equivalentes

LFAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Equivalência Minimização

Exercícios

Exemplo

Estados equivantes:

- $[S_0] = \{S_0\}$
- $[S_1] = [S_4] = \{S_1, S_4\}$
- $[S_3] = \{S_3\}$

Exercícios

 $AFD \overline{A = \{ba^nba | n \ge 0\}}$

LFAC

UTFPR-CN

imatos os não d inísticos

Equivalência entre AFD e AFND

de autômatos finitos

I FAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

AFD $A = \{a^m b^n | m, n \ge 0 \land (m+n) \mod 2 == 0\}$

LFAC

UTFPR-CM

Autômatos finitos não c terminísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

I FAC

UTFPR-CM

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

I FAC

Exercícios

Desafio

Considere o jogo a seguir. Uma bola de gude é solta na abertura A ou B. As alavancas x, y e z directionam a bola para a esquerda ou para a direita e, sempre após uma bola passar pela alavanca, a alavanca mude de estado. Em outras palavras, se a bola foi desviada para a esquerda no momento t_i , no momento t_{i+1} a bola será desviada para a direita.

Desafio

Modele este jogo com um autômato finito determinístico. Considere que uma bola de gude que passa por A como o valor 0 na entrada e uma bola de gude que passa por B como o valor 1. A palavra (seguência de bolas de gude) será aceita se a última bola de gude sair pela abertura D.

Exercícios

Desafio

LFAC

UTFPR-CN

Autômatos finitos não determinísticos

Equivalência entre AFD e AFND

Propriedades de autômatos finitos

Exercícios Exercícios da aula passada

LFA(

UTFPR-C

lutomatos initos não (erminístico

entre AFD e

Propriedades de autômato: finitos