Pell 方程

王尔卓

2022 年 11 月 22 日

1 解的结构

Definition 1. Pell 方程是指形如

$$x^2 - dy^2 = \pm 1$$

的不定方程,其中d > 1为正整数,而形如

$$x^2 - dy^2 = N$$

的不定方程一般称为广义 Pell 方程.

本文完全剖析了 Pell 方程的解的结构,并就实二次域类数为 1 的情况刻画了广义 Pell 方程解的结构,而给出这种刻画最犀利的工具自然是 Dirichlet 单位定理,因为其对一个数域 K 的代数整数环 O_K 的单位给出了一种精确的描述.

在本文的处理中,我们先假设 d 无平方因子,并且在最后我们会说明有平方因子的情况下解的结构。

Theorem 2 (Dirichlet 单位定理,[?]). 设 K 为 n 次代数数域, K 到 \mathbb{C} 有 r_1 个实嵌入, r_2 对复嵌入, $r_1 + 2r_2 = n$, 则 K 的代数整数环 O_K 的单位构成的乘法群 U_k 可以表为:

$$U_k = W_k \times V_k$$

其中 W_k 为数域 K 的单位根群,且为一个有限循环群, V_k 为秩为 $r_1 + r_2 - 1$ 的自由 Abel 群.

Dirichlet 单位定理的证明是比较复杂的,但其对 O_K 单位群 U_k 给出的描述是简单易懂的,该定理告诉我们可以在 U_k 中找到 $r=r_1+r_2-1$ 个元素 u_1,u_2,\ldots,u_r ,使得 U_k 中每个元素 u 可以表示为

$$u = w \prod_{i=1}^{r} u_i^{a_i}$$

且这种表法在相差一个单位根的意义下唯一,此时将这组单位 $\{u_1, \ldots, u_r\}$ 称为基本单位组,将每个 u_i 称为基本单位.

而我们知道,对于代数整数环 O_K 中的元素 $u,\ u\in U_k$ 等价于 $N_{K/\mathbb{Q}}(u)=\pm 1,$ 而且一个基本的事实是,对于实二次域 $K=\mathbb{Q}(\sqrt{d}),$ 其代数整数环

$$O_k = \begin{cases} k_1 + k_2 \sqrt{d} & k_1, k_2 \in \mathbb{Z} & \ \, \underline{\exists} d \equiv 2, 3 \pmod{4} \\ k_1 + k_2 \frac{1 + \sqrt{d}}{2} & k_1, k_2 \in \mathbb{Z} & \ \, \underline{\exists} d \equiv 1 \pmod{4} \end{cases}$$

1 解的结构 2

对于实二次域 $K = \mathbb{Q}(\sqrt{d})$,其只有两个实嵌入,没有复嵌入,且单位根群为 $\{1, -1\}$ 构成的乘法群,因此取其中一个基本单位 $\epsilon = a + b\omega$,则所有单位可以表示为

$$U_k = \{ \pm \epsilon^n : n \in \mathbb{Z} \} \tag{1}$$

其中

$$\omega = \begin{cases} \sqrt{d} & \exists d \equiv 2, 3 \pmod{4} \\ \frac{1+\sqrt{d}}{2} & \exists d \equiv 1 \pmod{4} \end{cases}$$

而对于 $d \equiv 2,3 \pmod{4}$ 的实二次域而言, $k_1 + k_2 \sqrt{d}$ 为单位等价于 k_1,k_2 为 Pell 方程 $x^2 - dy^2 = \pm 1$ 的解. 不难看出在 U_k 能作为基本单位的只有 $\pm \epsilon, \pm \epsilon^{-1}$,这四个数中有且仅有一个写成 $k_1 + k_2 \sqrt{d}$ 的形式后满足 $k_1, k_2 > 0$,此后对于 $d \equiv 2,3 \pmod{4}$ 的情况我们都取这样的元素作为基本单位,并不妨记为 ϵ ,不难验证这个基本单位 $\epsilon > 1$.

Theorem 3. 设 $K = \mathbb{Q}(\sqrt{d}), d > 0$ 且无平方因子, $d \equiv 2, 3 \pmod{4}, \epsilon = a + b\sqrt{d}$ 为基本单位, $\Rightarrow \epsilon^n = a_n + b_n\sqrt{d}$,则

- 1. 当 $N_{K/\mathbb{Q}}(\epsilon)=1$ 时,Pell 方程 $x^2-dy^2=-1$ 无整数解,Pell 方程 $x^2-dy^2=1$ 整数解解为 $\{(\pm a_n, \pm b_n): n\in \mathbb{Z}_{\geq 0}\}$
- 2. 当 $N_{K/\mathbb{Q}}(\epsilon) = -1$ 时,Pell 方程 $x^2 dy^2 = -1$ 整数解为 $\{(\pm a_{2n+1}, \pm b_{2n+1}) : n \in \mathbb{Z}_{\geq 0}\}$, Pell 方程 $x^2 dy^2 = 1$ 整数解为 $\{(\pm a_{2n}, \pm b_{2n}) : n \in \mathbb{Z}_{\geq 0}\}$

Proof: 由于 Pell 方程的解关于原点对称,我们只需求出所有非负整数解,则其所有解只差一对正负号. 注意到由(1)刻画的单位群 U_k 的结构,方程 $x^2 - dy^2 = \pm 1$ 的非负整数解为: $\{(a_n,b_n): n \in \mathbb{Z}_{\geq 0}\}$. 当 $N_{K/\mathbb{Q}}(\epsilon) = 1$ 时,所有 U_k 中元素的范数均为 1,化作不定方程的语言就是说: Pell 方程 $x^2 - dy^2 = -1$ 无非负整数解,Pell 方程 $x^2 - dy^2 = 1$ 非负整数解为 $\{(a_n,b_n): n \in \mathbb{Z}_{\geq 0}\}$,情况 1 证毕.

对于情况 2, $N_{K/\mathbb{Q}}(\epsilon) = -1$, 此时单位根群中元素的范数按奇偶呈正负交替的形式排列,从而 Pell 方程 $x^2 - dy^2 = -1$ 非负整数解为 $\{(a_{2n}, b_{2n}) : n \in \mathbb{Z}_{\geq 0}\}$, $x^2 - dy^2 = 1$ 非负整数解为 $\{(a_{2n+1}, b_{2n+1}) : n \in \mathbb{Z}_{\geq 0}\}$, 从而得到全体解的表达形式.

Theorem 4 (解的递推关系). $x^2 - dy^2 = \pm 1$ 的所有正整数解 $\{(a_n, b_n) : n \in \mathbb{Z}_{\geq 1}\}$ 可以由基本单位 $\epsilon = a + b\sqrt{d}$ 按递推关系:

$$\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} a & bd \\ b & a \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

得到,且序列 $\{a_n : n \in \mathbb{Z}_{>0}\}$, $\{b_n : n \in \mathbb{Z}_{>0}\}$ 均为严格单调递增的序列.

Proof: 注意到:

$$a_{n+1} + b_{n+1}\sqrt{d} = (a_n + b_n\sqrt{d})(a + b\sqrt{d}) = (aa_n + bdb_n) + (ba_n + ab_n)\sqrt{d}$$

从而

则

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \begin{bmatrix} a & bd \\ b & a \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix} = \dots = \begin{bmatrix} a & bd \\ b & a \end{bmatrix}^n \begin{bmatrix} a \\ b \end{bmatrix}$$

而序列的递增性可以由递推关系轻松得到,因而一种求取 Pell 方程基本单位的计算方法是依 次取 $y=1,2,\ldots$ 直到 $x^2-dy^2=\pm 1$ 对 x 有解,此时求出的 x 的正值解就得到了基本单位,也顺便得到了基本单位的范数.

下面我们讨论 $d \equiv 1 \pmod{4}$ 时解的结构,由于此时代数整数环里元素的范数并非与该形式 Pell 方程一一对应,因此我们需要对命题进行一定转化.

考虑 $K = \mathbb{Q}(\sqrt{d})$ 的代数整数环

$$O_k = \left\{ k_1 + k_2 \frac{1 + \sqrt{d}}{2} : k_1, k_2 \in \mathbb{Z} \right\}$$

中的元素 $u = a + b \frac{1 + \sqrt{d}}{2}$, u 为单位等价于 $N_{K/\mathbb{Q}}(u) = \pm 1$ 也就是

$$(2a+b)^2 - db^2 = \pm 4$$

容易验证集合

$$A = \{(x, y) \in \mathbb{Z}^2 : (2x + y)^2 - dy^2 = 4\}$$

和集合

$$B = \{(x, y) \in \mathbb{Z}^2 : x^2 - dy^2 = 4\}$$

通过映射

$$\varphi: A \to B \quad (x, y) \to (2x + y, y)$$
 (3)

建立一一对应.(单射显然,双射只需 (mod 4) 证明右边的解 (x,y) 同奇偶)

显然

$$C = \{(x,y) \in \mathbb{Z}^2 : (2x+y)^2 - dy^2 = -4\}$$

与

$$D = \{(x, y) \in \mathbb{Z}^2 : x^2 - dy^2 = -4\}$$

也有相同的对应关系.

现在设 $\epsilon=a+b\omega$ 为基本单位,则由 (1) 能作为基本单位的只有 $\pm\epsilon^{-1}$, $\pm\epsilon$, 这四者中存在唯一个 > 1,从而不妨设 $\epsilon=a+b\omega>1$, $\epsilon^n=a_n+b_n\omega$.

当 $N_{K/\mathbb{Q}}(\epsilon) = 1$ 时,方程 $(2x + y)^2 - dy^2 = 4$ 全部整数解为

$$\{(a_n, b_n) : n \in \mathbb{Z}\} \cup \{(-a_n, -b_n) : n \in \mathbb{Z}\}$$
 (4)

方程 $(2x+y)^2 - dy^2 = -4$ 无整数解. 由 (3) 我们得到: $x^2 - dy^2 = -4$ 无整数解. 为了表示 $x^2 - dy^2 = 4$ 的正整数解,我们引入一组新的序列

$$\{c_n = 2a_n + b_n : n \in \mathbb{Z}\}, \{d_n = b_n : n \in \mathbb{Z}\}$$

则 $x^2 - dy^2 = 4$ 的全体整数解可表示为

$$\{(c_n, d_n) : n \in \mathbb{Z}\} \cup \{(-c_n, -d_n) : n \in \mathbb{Z}\}$$
 (5)

1 解的结构 4

当 $N_{K/\mathbb{Q}}(\epsilon)=-1$ 时,类比 Theorem 3 我们得到,方程 $(2x+y)^2-dy^2=4$ 全部整数解为:

$$\{(a_{2n}, b_{2n}) : n \in \mathbb{Z}\} \cup \{(-a_{2n}, -b_{2n}) : n \in \mathbb{Z}\}$$
(6)

方程 $(2x+y)^2 - dy^2 = -4$ 全部整数解为:

$$\{(a_{2n-1}, b_{2n-1}) : n \in \mathbb{Z}\} \cup \{(-a_{2n-1}, -b_{2n-1}) : n \in \mathbb{Z}\}$$

$$(7)$$

从而 $x^2 - dy^2 = 4$ 的全体整数解可表示为

$$\{(c_{2n}, d_{2n}) : n \in \mathbb{Z}\} \cup \{(-c_{2n}, -d_{2n}) : n \in \mathbb{Z}\}$$
(8)

 $x^2 - dy^2 = -4$ 的全体整数解可表示为:

$$\{(c_{2n-1}, d_{2n-1}) : n \in \mathbb{Z}\} \cup \{(-c_{2n-1}, -d_{2n-1}) : n \in \mathbb{Z}\}$$

有了上述分析,我么可以刻画 $x^2-dy^2=\pm 1$ 的解的结构了,记 $m=c_1,n=d_1$,则定理表述如下:

Theorem 5. 当 $N_{K/\mathbb{Q}}(\epsilon) = 1$ 时,Pell 方程 $x^2 - dy^2 = -1$ 无整数解,Pell 方程 $x^2 - dy^2 = 1$ 分下列两种情况,

1. 当 $m \equiv n \equiv 0 \pmod{2}$ 时,全部整数解为

$$\left\{ (\frac{1}{2}c_n, \frac{1}{2}d_n) : n \in \mathbb{Z} \right\} \cup \left\{ (-\frac{1}{2}c_n, -\frac{1}{2}d_n) : n \in \mathbb{Z} \right\}$$

2. 当 $m \equiv n \equiv 1 \pmod{2}$ 时,全部整数解为

$$\left\{ \left(\frac{1}{2}c_{3n}, \frac{1}{2}d_{3n}\right) : n \in \mathbb{Z} \right\} \cup \left\{ \left(-\frac{1}{2}c_{3n}, -\frac{1}{2}d_{3n}\right) : n \in \mathbb{Z} \right\}$$

当 $N_{K/\mathbb{Q}}(\epsilon) = -1$ 时,Pell 方程 $x^2 - dy^2 = -1$ 分下列两种情况讨论:

1. 当 $m \equiv n \equiv 0 \pmod{2}$ 时,全部整数解为

$$\left\{ \left(\frac{1}{2}c_{2n+1}, \frac{1}{2}d_{2n+1}\right) : n \in \mathbb{Z} \right\} \cup \left\{ \left(-\frac{1}{2}c_{2n+1}, -\frac{1}{2}d_{2n+1}\right) : n \in \mathbb{Z} \right\}$$

2. 当 $m \equiv n \equiv 1 \pmod{2}$ 时,全部整数解为

$$\left\{ \left(\frac{1}{2}c_{6n+3}, \frac{1}{2}d_{6n+3}\right) : n \in \mathbb{Z} \right\} \cup \left\{ \left(-\frac{1}{2}c_{6n+3}, -\frac{1}{2}d_{6n+3}\right) : n \in \mathbb{Z} \right\}$$

Pell 方程 $x^2 - dy^2 = 1$ 分下列两种情况讨论:

1. 当 $m \equiv n \equiv 0 \pmod{2}$ 时,全部整数解为

$$\left\{ \left(\frac{1}{2}c_{2n}, \frac{1}{2}d_{2n}\right) : n \in \mathbb{Z} \right\} \cup \left\{ \left(-\frac{1}{2}c_{2n}, -\frac{1}{2}d_{2n}\right) : n \in \mathbb{Z} \right\}$$

1 解的结构 5

2. 当 $m \equiv n \equiv 1 \pmod{2}$ 时,全部整数解为

$$\left\{ \left(\frac{1}{2}c_{6n}, \frac{1}{2}d_{6n}\right) : n \in \mathbb{Z} \right\} \cup \left\{ \left(-\frac{1}{2}c_{6n}, -\frac{1}{2}d_{6n}\right) : n \in \mathbb{Z} \right\}$$

Proof: 显然这里方程的所有解就是前文分析的 $x^2 - dy^2 = \pm 4$ 解的两项皆为偶数的部分同时除以 2,所以我们只需判断何时 $\{c_n : n \in \mathbb{Z}\}$, $\{d_n : n \in \mathbb{Z}\}$ 同为奇数,何时同为偶数. 注意到:

$$\frac{c_{n+1}+d_{n+1}\sqrt{d}}{2}=a_{n+1}+b_{n+1}\frac{1+\sqrt{d}}{2}=(a_n+b_n\frac{1+\sqrt{d}}{2})(a+b\frac{1+\sqrt{d}}{2})=(\frac{c_n+d_n\sqrt{d}}{2})(\frac{m+n\sqrt{d}}{2})$$

从而:

$$\begin{bmatrix} c_{n+1} \\ d_{n+1} \end{bmatrix} = \begin{bmatrix} m/2 & nd/2 \\ n/2 & m/2 \end{bmatrix} \begin{bmatrix} c_n \\ d_n \end{bmatrix}$$
 (9)

对递推公式消去 $\{d_n\}$ 得到:

$$c_{n+2} = mc_{n+1} - c_n$$

该等式可以完全刻画 $c_n \pmod{2}$ 的周期性分布.

最后我们来处理 d 有平方因子的情况,注意到 d 可以写成 $d = n_0^2 d'$, 其中 d' 无平方因子,此时我们可以将方程

$$x^{2} - dy^{2} = \pm 1, x^{2} - dy^{2} = 1, x^{2} - dy^{2} = -1$$

的解与方程

$$x^{2} - d'y^{2} = \pm 1, x^{2} - d'y^{2} = 1, x^{2} - d'y^{2} = -1$$

满足 $n_0|y$ 的解——对应.

Lemma 6. 考虑初值:

$$x_1 = b_1, x_2 = b_2, \dots, x_k = b_k$$

均给定且为整数的递推数列:

$$x_{n+k} = a_1 x_n + a_2 x_{n+1} + \dots + a_k x_{n+k-1}$$

其中 a_i 也均为整数,则对任意 m 为正整数, x_n 在 (mod m) 下取值呈周期性。

Proof: 考虑数列 u_n 满足下列条件:

- 1. $1 \le u_n \le m$
- $2. \ u_n \equiv x_n (\operatorname{mod} m)$

易知这样的 u_n 存在且唯一,再考虑:

$$U_i = (u_{1+i}, u_{2+i}, \dots, u_{k+i}) \in \mathbb{Z}^k, i = 0, \dots, m^k$$

由抽屉原理必有 s,t 使得 $U_s = U_t$,从而有:

$$x_{s+1} \equiv x_{t+1} \pmod{m}, x_{s+2} \equiv x_{t+2} \pmod{m}, \dots, x_{s+k} \equiv x_{t+k} \pmod{m}$$

2 基本单位的判定 6

从而 s-t 是该数列 (mod m) 的一个周期.

由上述引理,结合 (9) 和 (2),将第一个变量消去得到第二个变量的递推式,在结合其 $(\text{mod } n_0)$ 的周期性即可得到方程

$$x^{2} - dy^{2} = \pm 1, x^{2} - dy^{2} = 1, x^{2} - dy^{2} = -1$$

的全部解

2 基本单位的判定

本节我们总结几个常用的基本单位的判定.

- **Proposition 7.** 1. $d \equiv 2,3 \pmod{4}$ 时,基本单位 $\epsilon = a + b\sqrt{d}$ 可以通过将 y = 1,2,... 依 次代入 $dy^2 \pm 1$ 看其是否为完全平方数,如果 $dy^2 1$ 为完全平方数 $x^2, x > 0$,则此时基本单位为 $x + y\sqrt{d}$,范数为 -1,如果 $dy^2 + 1$ 为完全平方数 $x^2, x > 0$,则此时基本单位为 $x + y\sqrt{d}$,范数为 1.
 - 2. $d \equiv 1 \pmod{4}$ 时,且 $d \neq 5$,基本单位 $\epsilon = a + b\omega = \frac{m + n\sqrt{d}}{2} > 1$,可以依次用 y = 1,2...,代入 $dy^2 \pm 4$ 看其是否为完全平方数,如果 $dy^2 4$ 为完全平方数 $x^2, x > 0$,则基本单位为 $\frac{x + y\sqrt{d}}{2}$,范数为 -1,如果 $dy^2 + 4$ 为完全平方数 $x^2, x > 0$,则基本单位为 $\frac{x + y\sqrt{d}}{2}$,范数为 1.
 - 3. d = 5 时,基本单位为 $\frac{1+\sqrt{5}}{2}$

Proof: 1 的证明已经在 Theorem 4 给出,只证明 2,3.

先证明 3,由于 $\epsilon > 1$,所以 ϵ 为 $\pm \epsilon^{-1}$, $\pm \epsilon$ 中最大者,因此 m > 0, n > 0,而 $\frac{1+\sqrt{5}}{2} > 1$,因此有 $\epsilon^k = \frac{1+\sqrt{5}}{2}, k > 0$,但是如果 k > 1,则有

$$\frac{m + n\sqrt{d}}{2} = \epsilon < \epsilon^k = \frac{1 + \sqrt{5}}{2}$$

与 m > 0, n > 0 矛盾, 因此 k = 1.

已经排除了第三种情况,所以 dy^2+4 , dy^2-4 不能同时为完全平方数,注意到 $x^2-dy^2=\pm 4$ 全体正整数解为 $\{(c_n,d_n): n\in\mathbb{Z}_{>0}\}$, 因此只需证明递推公式 (9) 中表示的序列 d_n 是递增的,如果 m>1 递增是显然的, m=1 时会回归到 2 情况,证毕.

上面一个性质是具体计算的角度,下面的性质都是理论的角度.

Proposition 8. 设 $p \equiv 1 \pmod{4}$ 为素数,则 $\mathbb{Q}(\sqrt{p})$ 的基本单位的范数为 -1.

Proof: 由 Theorem 5,等价于证明 $x^2 - dy^2 = -1$ 有整数解. 反证法,假设无整数解,则基本单位范数为 1,取 (x_0, y_0) 为 $x^2 - dy^2 = 1$ 的一组正整数解使得 x_0 最小,(mod 4) 知 $x_0 \equiv 1 \pmod{2}, y_0 \equiv 0 \pmod{2}$,这组解为 $(\frac{1}{2}c_1, \frac{1}{2}d_1)$ 或 $(\frac{1}{2}c_3, \frac{1}{2}d_3)$,则

$$x_0^2 - py_0^2 = 1 \Rightarrow py_0^2 = (x_0 - 1)(x_0 + 1) \Rightarrow p(\frac{y_0}{2})^2 = \frac{x_0 - 1}{2} \frac{x_0 + 1}{2}$$

3 广义 PELL 方程 7

从而由 $x_1 > 0, x_2 > 0$

$$x_1^2 = \frac{x_0 - 1}{2}, px_2^2 = \frac{x_0 + 1}{2}$$

或者

$$x_1^2 = \frac{x_0 + 1}{2}, px_2^2 = \frac{x_0 - 1}{2}$$

不论是哪种情况通过左式减右式都会矛盾,前者与方程无解矛盾,后者与最小性矛盾.

Proposition 9. $d \equiv 3 \pmod{4}$ 且无平方因子,则 $K = \mathbb{Q}(\sqrt{d})$ 基本单位范数为 1.

Proof: 由 Theorem 3,等价于证明 $x^2 - dy^2 = -1$ 无整数解. 反证法,假设有解,则两边 (mod 4) 得到矛盾.

Proposition 10. 设 $d = t^2 + 4$ 无平方因子,t > 0, 则 $\frac{t + \sqrt{d}}{2}$ 为实二次域 $\mathbb{Q}(\sqrt{d})$ 的基本单位.

Proof: t=1 时为 Proposition 7 的情况 3, t>1 时,由 Proposition 7 的情况 2, 可知 $\frac{t+\sqrt{d}}{2}$ 为实二次域的基本单位,且基本单位的范数为 -1.

Proposition 11. 设 $d = t^2 - 4$ 无平方因子, $t \ge 5$, 则 $\frac{t + \sqrt{d}}{2}$ 为实二次域 $\mathbb{Q}(\sqrt{d})$ 的基本单位.

Proof: 由 Proposition 7 的情况 2,可知 $\frac{t+\sqrt{d}}{2}$ 为实二次域的基本单位,且基本单位的范数为 1.

3 广义 Pell 方程

未完待续......

4 例题分析 8

4 例题分析

Exercise 12. 求所有三边长为连续自然数的三角形,其面积为正整数.

Proof: 设三边长分别为 n-1, n, n+1, 其面积由海伦公式为

$$m = \frac{\sqrt{3n(n-2)(n+2)}}{4}$$

所以只需求不定方程

$$16m^2 = 3(n-2)(n+2)n^2$$

的正整数解.

注意到 $n \equiv 0 \pmod{2}$, 设 n = 2x, 则原方程化为

$$3(x-1)(x+1)x^2 = m^2$$

注意到 $x^2|m^2$, 令 m=xk 有

$$3(x-1)(x+1) = k^2$$

注意到 3|k 再令 k=3t 得到

$$3(x-1)(x+1) = 9t^2$$

即 $x^2 - 3t^2 = 1$,由 Theorem 4 ,所有正整数解可以表示为:

$$\begin{bmatrix} x \\ t \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad n \in \mathbb{Z}_{>0}$$

从而原方程的解为 (3xt, 2x)

Exercise 13. 求 $5^a - 3^b = 2$ 的所有正整数解 (a, b).

Proof: 注意到 (a,b) = (1,1) 是一组解,下面证明 a,b 都大于 1 时该方程无解.

反证法,假设有解 (a,b),分别 $(\text{mod}\,3),(\text{mod}\,4)$ 知 a,b 均为奇数,一个很难注意到的等式是

$$15(3^{\frac{b-1}{2}}5^{\frac{a-1}{2}})^2 = (3^b + 1)^2 - 1$$

考虑 Pell 方程 $x^2 - 15y^2 = 1$, 其所有正整数解由由 Theorem 4 可表示为

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} 4 & 15 \\ 1 & 4 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad n \in \mathbb{Z}_{>0}$$

只需证明 y_n 中的素因子不能只出现 3,5, 由递推式 (mod 3) 知:

$$y_{n+1} \equiv y_n + 1 \pmod{3}$$

从而 $3|y_n \Leftrightarrow 3|n$,另一方面由于

$$y_{n+1} = x_n + 4y_n = 4x_{n-1} + 15y_{n-1} + 4y_n = 4y_n - 16y_{n-1} + 15y_{n-1} + 4y_n = 8y_n - y_{n-1}$$

将递推式 (mod 7) 知

$$y_{n+1} \equiv y_n - y_{n-1} \pmod{7}$$

因为 $y_1 \equiv y_2 \equiv 1 \pmod{7}$, 所以 $7|y_n \Leftrightarrow 3|n$, 因此 $3|n, \Leftrightarrow 21|y_n$, 这说明 y_n 的素因子不能只出现 3,5.