ECN 6338 Cours 5

Résolution de systèmes d'équations non-linéaires

William McCausland

2025-02-10

Survol du cours 5

Le problème de la résolution de systèmes non-linéaires

- 1. Description des problèmes univariés et multivariés
- 2. Exemples illustratifs
- 3. Exemple économique : jeu du duopole

Méthodes pour problèmes univariés

- 1. Newton
- 2. Interpolation linéaire
- 3. Méthode de dichotomie
- Méthodes de type Dekker-Brent

Méthodes pour problèmes multivariés

- 1. Gauss-Seidel
- 2. Newton
- 3. Broyden

Systèmes d'équations en économie

- 1. Optimisation statique de l'individu (consommateurs, firmes, économètres)
 - conditions de premier ordre
 - contraintes (ressources)
- 2. Calcul des équilibres généraux
 - équations d'offre et de demande, en prix
 - conditions d'équilibre
- Calcul des équilibres de Nash (oligopoles, principal-agent)
 - meilleurs réponses de chaque joueur

Les problèmes univariés et multivariés

Problème univarié : trouvez $x \in \mathbb{R}$ qui vérifie

$$f(x)=0,$$

où $f: \mathbb{R} \to \mathbb{R}$.

Problème multivarié : trouvez $x \in \mathbb{R}^n$ qui vérifie

$$f(x)=0_n,$$

où $f: \mathbb{R}^n \to \mathbb{R}^n$.

Problème multivarié, écrit élément par élément : trouvez (x_1, \ldots, x_n) qui vérifie

$$f^{1}(x_{1},...,x_{n}) = 0$$

$$\vdots$$

$$f^{n}(x_{1},...,x_{n}) = 0$$

La résolution de systèmes d'équations et l'optimisation

Une solution x^* au problème d'optimisation libre

$$\max_{x\in\mathbb{R}^n}f(x),$$

où $f: \mathbb{R}^n \to \mathbb{R}$ et $f \in C^2$, est aussi une solution du système

$$\frac{\partial f(x)}{\partial x^{\top}} = 0_n.$$

Toutefois, la résolution du système g(x) = 0, où $g \in C^1$, est plus générale, car :

- ▶ la matrice jacobienne de g n'est pas forcément symmétrique et ▶ la matrice jacobienne de $\frac{\partial f(x)}{\partial x^{\top}}$ est la matrice hessienne
- ▶ la matrice jacobienne de $\frac{\partial f(x)}{\partial x^{\top}}$ est la matrice hessienne symmétrique de f.

Systèmes non-linéaires et le nombre de solutions

Dans le cas spécial f(x) = Ax - b = 0, où A est une matrice $n \times n$,

- si le rang de A est de n, il y a une solution unique ;
- \triangleright si le rang de A est inférieur à n, alors il n'existe pas de solution :

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

ou il y a un nombre infini de solutions :

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

Dans le cas général, il peut y avoir

- ▶ aucune solution, même pour les fonctions fⁱ très différentes,
- un nombre fini arbitraire de solutions,
- un nombre infini de solutions.

Exemple: absence d'une solution

$$f^1(x_1, x_2) = x_2 - (x_1 + 1)^2, \quad f^2(x_1, x_2) = x_2 - (x_1 - 1)^2.$$

Exemple: solutions multiples

Les racines de ce système sont (0,-1), $(\pm\sqrt{3/4},1/2)$:

$$f^1(x_1, x_2) = x_1^2 + x_2^2 - 1$$
, $f^2(x_1, x_2) = 2x_1^2 - x_2 - 1$.

Jeu du duopole (Judd, pages 162-3)

- ▶ Dans un duopole, la firme 1 produit un bien en quantité Y, et la firme 2 produit un bien en quantité Z.
- Les coûts de production sont linéaires

$$c_Y(Y) = C_Y Y, \quad c_Z(Z) = C_Z Z,$$

où $C_Y = 0.07$ et $C_Z = 0.08$.

La demande est celle d'un consommateur avec utilité

$$U(Y,Z) = u(Y,Z) + M = (1 + Y^{\alpha} + Z^{\alpha})^{\eta/\alpha} + M,$$

où $\alpha=$ 0.999, $\eta=$ 0.2 et M représente les dépenses pour d'autres biens.

► La demande pour Y, Z est donnée par les équations

$$p_Y = u_Y(Y, Z), \quad p_Z = u_Z(Y, Z),$$

où p_Y et p_Z sont les prix de Y et Z.

Jeu du duopole (suite)

- ▶ On cherche un équilibre de Nash (Y^*, Z^*) où
 - Y* maximise le profit de la firme 1, pour Z* donnée,
 Z* maximise le profit de la firme 2, pour Y* donnée.
- ► La meilleure réponse Y à Z maximise le profit :

$$\Pi^{Y}(Y,Z) = Yu_{Y}(Y,Z) - C_{Y}Y$$

$$= \eta(1 + Y^{\alpha} + Z^{\alpha})^{(\eta/\alpha)-1}Y^{\alpha} - C_{Y}Y$$

$$= \eta(1 + e^{\alpha y} + e^{\alpha z})^{(\eta/\alpha)-1}e^{\alpha y} - C_{Y}e^{y},$$

- où $y = \log Y$, $z = \log Z$.
- ▶ Une condition de première ordre nécessaire pour la firme 1 :

$$\Pi_1^Y(Y,Z) = \alpha \eta (\frac{\eta}{\alpha} - 1)(1 + e^{\alpha y} + e^{\alpha z})^{(\eta/\alpha) - 2} e^{2\alpha y}$$
$$+ \alpha \eta (1 + e^{\alpha y} + e^{\alpha z})^{(\eta/\alpha) - 1} e^{\alpha y} - C_Y e^y = 0.$$

La même démarche pour la firme 2 donne une expression analogue $\Pi_2^Z(Y,Z) = 0$.

Le problème de calcul pour le jeu du monopole

L'équilibre du jeu du monopole est

$$(Y^*, Z^*) = (e^{x_1^*}, e^{x_2^*}),$$

où $x^* = (x_1^*, x_2^*)$ est la solution du système f(x) = 0, où

$$f^1(x_1,x_2) = \Pi_1^Y(e^{x_1},e^{x_2}), \qquad f^2(x_1,x_2) = \Pi_2^Z(e^{x_1},e^{x_2}).$$

Illustration univariée I : méthode de Newton

Considérons la fonction f et sa dérivée, définie sur l'intervalle $\left[0,1\right]$:

$$f(x) = (1-x)^3 - \log(1+x), \quad f'(x) = -3(1-x)^2 - (1+x)^{-1}.$$

Si on prend le point initial $x_0=0$, la droite de tangente est

$$g(x) = f(x_0) + f'(x_0)(x - x_0) = f(0) + f'(0)(x - 0) = 1 - 4x,$$

et le point x_1 de l'itération de Newton est l'intersection de cette droite et l'axe des abscisses :

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{f(0)}{f'(0)} = -\frac{1}{-3-1} = \frac{1}{4}.$$

Un pas de Newton de plus donne

$$x_2 = x_1 - \frac{f(1/4)}{f'(1/4)} \approx 0.329892,$$

très près de la racine unique.

Illustration univariée II : échec de la méthode de Newton

- ▶ On peut commencer à $x_0 = 1$ plus loin de la racine et où la pente est moins raide.
- ▶ On évalue $f(x_0) = -\log 2$, $f'(x_0) = -\frac{1}{2}$ et on calcule

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \approx -0.3862944,$$

beaucoup plus loin de la racine et hors de l'intervalle [0,1].

À voir aussi : "Pathological Examples", page 153 de Judd.

Illustration univariée III : méthode d'intérpolation linéaire

- Note : fonction f(x) en bleu, droites de tangente en rouge, droite de sécante en vert.
- Pour la première itération, où on calcule x_1 , on n'a pas encore deux valeurs précédentes et on utilise la méthode de Newton.
- Une fois qu'on a x_0 et x_1 , on peut construire la droite de sécante entre $(x_0, f(x_0))$ et $(x_1, f(x_1))$:

$$h(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

Le point s de l'itération par interpolation linéaire est l'intersection de cette droite et l'axe des abscisses :

$$s = x_0 + \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} f(x_0) \approx 0.3120053,$$

un peu plus loin de la racine, mais trouvé sans évaluation de la dérivée $f'(x_0)$.

Illustration (Newton et interpolation linéaire)

Méthode de dichotomie

Intrants à l'itération k+1 : points $a_k,\ b_k,$ valeurs $f(a_k),\ f(b_k)$ tels que

- 1. $a_k < b_k$,
- 2. $f(a_k)f(b_k) < 0$. (signes opposés)

À l'itération k+1:

- 1. Calculer $m = \frac{1}{2}(a_k + b_k)$.
- 2. Évaluer f(m), si f(m) = 0, terminer avec la racine m.
- 3. Si f(m) a la même signe que a_k ,

$$a_{k+1}=m, \quad b_{k+1}=b_k.$$

sinon

$$a_{k+1} = a_k \quad b_{k+1} = m.$$

Si $b_{k+1} - a_{k+1} < \delta$, terminer avec $\frac{1}{2}(a_{k+1} + b_{k+1})$.

Quand la méthode de dichotomie marche relativement bien

```
x = seq(0, 1, by=0.0001)

plot(x, (2*x-1)^9 - 0.1, type='l')

abline(h=0)
```


Discussion, méthode de dichotomie

- On évalue seulement la fonction et non les dérivées.
- La fonction doit être continue, pas forcément différentiable.
- On gagne 1 bit de précision à chaque itération (pas beaucoup, mais sûr),
- On sait à l'avance combien d'itérations il faut pour atteindre ces deux conditions : $b_k a_k < \delta$, $[a_k, b_k]$ contient une racine.
- ► Considérez des jeux zéro-somme entre
 - joueur 1, qui choisit une fonction continue f(x) avec $f(a_0)f(b_0) < 0$, et veut maximiser le nombre d'itérations pour trouver un intervalle $[a, a + \delta]$ qui contient une racine ; et
 - joueur 2, qui choisit un algorithme pour trouver un intervalle $[a, a + \delta]$ contenant une racine.
- Conjecture : Si joueur 2 joue en premier, la méthode de dichotomie est optimale (minmax) pour lui.
- Mais la méthode de dichotomie est très sous-optimale pour les fonctions rencontrées en pratique.
- On veut accélérer la convergence et en même temps garantir un intervalle court en un nombre borné d'itérations.

Méthodes du type Dekker-Brent

Intrants à l'itération k+1: points a_k , b_k , b_{k-1} $(b_{-1}=a_0)$ et valeurs $f(a_k)$, $f(b_k)$ et $f(b_{k-1})$ tels que

- 1. $|f(a_k)| \ge |f(b_k)|$ (point b_k , contrepoint a_k)
- 2. $f(a_k)f(b_k) < 0$.

À l'itération k+1:

- 1. Calculer $m = \frac{1}{2}(a_k + b_k)$.
- 2. Calculer s comme fonction de a_k , b_k , $f(a_k)$, $f(b_k)$, b_{k-1} , $f(b_{k-1})$. (deux façons, détails à venir)
- 3. Choisir entre $b_{k+1} = s$ et $b_{k+1} = m$. (détails à venir)
- 4. Évaluer $f(b_{k+1})$, si $f(b_{k+1}) = 0$, terminer avec b_{k+1} .
- 5. Choisir entre $a_{k+1} = a_k$ et $a_{k+1} = b_k$ tel que $f(a_{k+1})f(b_{k+1}) < 0$. (Condition 2.)
- 6. Si $|f(a_{k+1})| < |f(b_{k+1})|$, échanger a_{k+1} , b_{k+1} . (Condition 1.)
- 7. Si $|a_{k+1} b_{k+1}| < \delta$, terminer avec b_{k+1} .

Une itération de Dekker-Brent

Figure 1: De (a_k, b_k, b_{k-1}) à (a_{k+1}, b_{k+1}, b_k)

Calculer s (étape 2) par interpolation linéaire (droite sécante)

$$s = b_k - \frac{b_k - b_{k-1}}{f(b_k) - f(b_{k-1})} f(b_k)$$

Notes:

- 1. Si $b_{k-1} = a_k$, l'interpolation linéaire est obligatoire.
- 2. s n'est pas une fonction de a_k .
- 3. Si on choisit s par interpolation linéaire, une condition nécessaire pour choisir $b_{k+1} = s$ (étape 3) est que s se trouve entre m et b_k .

Calculer s (étape 2) par interpolation inverse quadratique

- ▶ Supposez que $f(a_k)$, $f(b_k)$ et $f(b_{k-1})$ sont distinctes.
- Voici une fonction quadratique g(y) qui passe par les points $(f(a_k), a_k), (f(b_k), b_k)$ et $(f(b_{k-1}), b_{k-1})$:

$$g(y) = \frac{(y - f(a_k))(y - f(b_k))}{(f(b_{k-1}) - f(a_k))(f(b_{k-1} - f(b_k)))} b_{k-1}$$

$$+ \frac{(y - f(a_k))(y - f(b_{k-1}))}{(f(b_k) - f(a_k))(f(b_k) - f(b_{k-1}))} b_k$$

$$+ \frac{(y - f(b_{k-1}))(y - f(b_k))}{(f(a_k) - f(b_{k-1}))(f(a_k) - f(b_k))} a_k$$

- La fonction inverse $x = f^{-1}(y)$ passe par les mêmes points.
- ▶ On définit $s \equiv g(0)$, qui est un zéro de la fonction $g^{-1}(x)$

Calculer s par interpolation inverse quadratique (suite)

$$s = \frac{f(a_k)f(b_k)}{(f(b_{k-1}) - f(a_k))(f(b_{k-1} - f(b_k)))}b_{k-1} + \frac{f(a_k)f(b_{k-1})}{(f(b_k) - f(a_k))(f(b_k) - f(b_{k-1}))}b_k + \frac{f(b_{k-1})f(b_k)}{(f(a_k) - f(b_{k-1}))(f(a_k) - f(b_k))}a_k$$

Notes:

- 1. Habituellement, c'est une amélioration, mais on peut toujours utiliser l'interpolation linéaire quand k=1 où quand deux des valeurs $f(a_k)$, $f(b_k)$ et $f(b_{k-1})$ sont très près l'une à l'autre.
- 2. Si on choisit s par interpolation inverse quadratique, une condition nécessaire habituelle pour choisir $b_{k+1} = s$ (étape 3) est que s se trouve entre $\frac{3}{4}b_k + \frac{1}{4}a_k$ et b_k .

Choisir entre s et m (étape 3)

- ▶ $b_{k+1} = m$ est plus sûr que $b_{k+1} = s$, mais le deuxième est habituellement meilleur.
- On ajoute aux conditions nécessaires déjà mentionnées pour choisir s d'autres conditions :
 - Après un pas de bisection (pour b_k), on ajoute les conditions $|b_k b_{k-1}| > \delta$ et $\frac{1}{2}|b_k b_{k-1}| > |s b_k|$.
 - Après un pas d'interpolation, on ajoute les conditions $|b_{k-1} b_{k-2}| > \delta$ et $\frac{1}{2}|b_{k-1} b_{k-2}| > |s b_k|$.
- Avec ces conditions, le nombre maximal d'itérations est de M², où M est le nombre d'itérations nécessaires pour la méthode de dichotomie.

Méthode de Gauss-Seidel (exemple)

► Rappelons l'exemple avec trois racines :

$$f^1(x_1, x_2) = x_1^2 + x_2^2 - 1$$
, $f^2(x_1, x_2) = 2x_1^2 - x_2 - 1$.

Résoudre $f_i(x_1, x_2) = 0$ pour x_i , i = 1, 2, donne une mise à jour possible de Seidel :

$$x_1^{k+1} = \pm \sqrt{1 - (x_2^k)^2}, \qquad x_2^{k+1} = 2(x_1^{k+1})^2 - 1$$

La version linéaire (méthode de Newton) de Seidel donne

$$x_1^{k+1} = x_1^k - \frac{f^1(x_1^k, x_2^k)}{f_1^1(x_1^k, x_2^k)} = x_1^k - \frac{(x_1^k)^2 + (x_2^k)^2 - 1}{2x_1^k},$$

et x_2^{k+1} comme dans la version non-linéaire.

La Méthode de Gauss-Seidel avec une permutation

- L'ordre des variables et l'ordre des équations importent.
- Résoudre $f_1(x_1, x_2) = 0$ pour x_2 et $f_2(x_1, x_2) = 0$ pour x_1 donne une autre mise à jour de Seidel :

$$x_1^{k+1} = \pm \sqrt{\frac{1}{2}(1+x_2^k)}, \quad x_2^{k+1} = \pm \sqrt{1-(x_1^k)^2}.$$

- ▶ Quatre versions : ++, +-, -+, --.
- ► Le choix de permutation et des signes peut faire la différence entre
 - convergence ou non,
 - convergence rapide ou lente,
 - racines différentes.

Illustration Gauss-Seidel

```
x0 = c(0.6, -0.6); name = 'seidel'
source('cerc_parab.R')
```


Illustration Gauss-Seidel linéaire

```
x0 = c(0.6, -0.6); name = 'seidel_lin'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, +, +)

```
x0 = c(0.6, -0.6); name = 'perm_seidel'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, +,-)

```
x0 = c(0.6, -0.6); name = 'perm_seidel+-'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, -,+)

```
x0 = c(0.6, -0.6); name = 'perm_seidel-+'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, -, -)

```
x0 = c(0.6, -0.6); name = 'perm_seidel--'
source('cerc_parab.R')
```


Méthode de Newton

ightharpoonup L'expansion linéaire de Taylor autour du point actuel x^k est

$$g(x) = f(x^k) + J(x^k)(x - x^k).$$

ightharpoonup Si la matrice jacobienne est inversible, il y a un zéro de g à

$$\tilde{x}^* = x^k - J(x^k)^{-1} f(x^k).$$

▶ La mise à jour de Newton sans modification est $x^{k+1} = \tilde{x}^*$:

$$x^{k+1} = x^k - J(x^k)^{-1} f(x^k).$$

► La méthode converge rapidement (quadratiquement) d'un point local, mais elle n'est pas forcément globalement convergente.

Méthode de Broyden

▶ Comme la méthode BFGS (B pour Broyden) pour l'optimisation multivariée, la méthode de Broyden pour résoudre les systèmes non-linéaires multivariés utilise une approximation A_k de $J(x^k)$ pour donner un pas s^k :

$$s^k = -A_k^{-1}f(x^k), \quad x^{k+1} = x^k + s^k.$$

La mise à jour de A_k est de rang 1 :

$$A_{k+1} = A_k + \frac{(y_k - A_k s^k)(s^k)^\top}{(s^k)^\top s^k}$$
 où $y_k = f(x^{k+1}) - f(x^k)$.

- Notez que $A_{k+1}s^k = A_ks^k + (y_k A_ks^k) = y_k$, une condition de chorde.
- Cela permet la mise à jour simultanée de A_k^{-1} à A_{k+1}^{-1} en $O(n^2)$ opérations avec le formule Sherman-Morrison.

Illustration, méthodes de Newton et Broyden

```
• Code pour la fonction f(x_1, x_2) = (x_1^2 + x_2^2 - 1, 2x_1^2 - x_2 - 1)
library(pracma)
```

```
# La fonction
f <- function(x) {
  f1 \leftarrow x[1]^2 + x[2]^2 - 1
  f2 \leftarrow 2*x[1]^2 - x[2] - 1
```

```
c(f1, f2)
# Sa matrice jacobienne
J <- function(x) {</pre>
  J <- matrix(0, nrow=2, ncol=2)</pre>
```

 $J[1, 1] \leftarrow 2*x[1]; J[1, 2] \leftarrow 2*x[2];$ $J[2, 1] \leftarrow 4*x[1] : J[2, 2] \leftarrow -1:$

J

Illustration, méthode de Newton

```
x0 \leftarrow c(0.6, -0.6)
newtonsys(f, x0, Jfun=J)
## $zero
## [1] 7.573773e-09 -1.000000e+00
##
## $fnorm
## [1] 2.220446e-16
##
## $niter
## [1] 25
```

Illustration, méthode de Broyden

```
x0 \leftarrow c(0.6, -0.6)
broyden(f, x0, J0 = J(x0))
## $zero
## [1] 7.032333e-05 -1.000000e+00
##
## $fnorm
## [1] 1.043668e-08
##
## $niter
## [1] 20
```