1 (a) wyznacz dziedzinę funkcji $f(x)=\sqrt{\frac{1}{x+1}-\frac{2}{2x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x)=\frac{x^2-3x+1}{x-1}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: $\left(4x^5 - \frac{3}{x^4} + \frac{5}{x}\right)'$, $\left(\frac{\arctan x}{3^x}\right)'$, $(\sin(x^2) \ln \arcsin(2x))'$.

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = \frac{x^2 + 7}{x + 3}$.

Oblicz (a) $\int \left(\frac{3}{x^2} - \frac{2}{\sin^2 x} - 4\sqrt[3]{x^2}\right) dx,$ (b) $\int x^2 \cos(x^3) dx$, (c) $\int x \cos(7x+5) dx$.

5 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 4x - x^2 \text{ oraz } y = 2x - 3.$

6 Wyznacz ekstrema lokalne funkcji $x^3 - xy - x + y^2 + y$.

1 (a) wyznacz dziedzinę funkcji $f(x)=\sqrt{\frac{1}{x+1}-\frac{2}{2x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x)=\frac{x^2-3x+1}{x-1}$, zapisz

równania asymptot, naszkicuj wykres funkcji.

 $(\sin(x^2) \ln \arcsin(2x))'$.

2 Oblicz pochodne: $\left(4x^5 - \frac{3}{x^4} + \frac{5}{x}\right)'$, $\left(\frac{\arctan x}{3^x}\right)'$,

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = \frac{x^2 + 7}{x + 3}$.

Oblicz (a) $\int \left(\frac{3}{x^2} - \frac{2}{\sin^2 x} - 4\sqrt[3]{x^2}\right) dx,$ $\int x^2 \cos(x^3) dx$, (c) $\int x \cos(7x+5) dx$.

5 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 4x - x^2 \text{ oraz } y = 2x - 3.$

6 Wyznacz ekstrema lokalne funkcji $x^3 - xy - x + y^2 + y$.

 $\mathbf{1}$ (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x+1} - \frac{2}{2x-1}},$

(b) Wyznacz dziedzinę funkcji $f(x) = \frac{x^2-3x+1}{x-1}$, zapisz równania asymptot, naszkicuj wykres funkcji.

Oblicz pochodne: $\left(4x^5 - \frac{3}{x^4} + \frac{5}{x}\right)'$, $\left(\frac{\arctan x}{3^x}\right)'$, $(\sin(x^2) \ln \arcsin(2x))'$.

 ${\bf 3}$ Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y=\frac{x^2+7}{x+3}.$

Oblicz (a) $\int \left(\frac{3}{x^2} - \frac{2}{\sin^2 x} - 4\sqrt[3]{x^2}\right) dx,$ (b) $\int x^2 \cos(x^3) dx$, (c) $\int x \cos(7x+5) dx$.

5 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 4x - x^2 \text{ oraz } y = 2x - 3.$

 ${f 6}$ Wyznacz ekstrema lokalne funkcji z $x^3 - xy - x + y^2 + y$.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x-2} - \frac{1}{x+4}}$,

(b) Wyznacz dziedzinę funkcji $f(x) = \frac{3-x^2}{x+3}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: $\left(\frac{1}{x^7} + 3\operatorname{ctg} x - 2\sqrt[3]{x^2}\right)', \left(\frac{\sin x}{\arcsin x}\right)',$ $((2x+1)^4\cos(x^3))'$.

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = -3x^4 - 4x^3 + 6x^2 + 12x$.

4 Oblicz $\int \left(\frac{3}{x^2+1} - \frac{5}{x^3} + \frac{1}{\sqrt[3]{x^2}}\right) dx$, $\int \frac{x^4 dx}{(x^5+1)^{10}}$, $\int \frac{\ln x dx}{x^3}$. **5** Wyznacz pole obszaru zawartego pomiędzy liniami

 $y = x^2 - 2x + 1$ oraz y = 3x - 5.

6 Wyznacz ekstrema lokalne funkcji z $x^2y - x^2 - 2y^2 + 6xy$.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x-2} - \frac{1}{x+4}}$,

(b) Wyznacz dziedzinę funkcji $f(x) = \frac{3-x^2}{x+3}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: $\left(\frac{1}{x^7} + 3\operatorname{ctg} x - 2\sqrt[3]{x^2}\right)', \left(\frac{\sin x}{\arcsin x}\right)',$ $((2x+1)^4\cos(x^3))'$.

3 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=-3x^4-4x^3+6x^2+12x$. 4 Oblicz $\int \left(\frac{3}{x^2+1}-\frac{5}{x^3}+\frac{1}{\sqrt[3]{x^2}}\right)dx$, $\int \frac{x^4dx}{(x^5+1)^{10}}$, $\int \frac{\ln xdx}{x^3}$. 5 Wyznacz pole obszaru zawartego pomiędzy liniami

 $y = x^2 - 2x + 1$ oraz y = 3x - 5.

 $oldsymbol{6}$ Wyznacz ekstrema lokalne funkcji z $x^2y - x^2 - 2y^2 + 6xy.$

1 (a) wyznacz dziedzinę funkcji $f(x)=\sqrt{\frac{1}{x-2}-\frac{1}{x+4}}$, (b) Wyznacz dziedzinę funkcji $f(x)=\frac{3-x^2}{x+3}$, zapisz

równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: $\left(\frac{1}{x^7} + 3\operatorname{ctg} x - 2\sqrt[3]{x^2}\right)', \left(\frac{\sin x}{\arcsin x}\right)',$ $((2x+1)^4\cos(x^3))'$.

3 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=-3x^4-4x^3+6x^2+12x$. 4 Oblicz $\int \left(\frac{3}{x^2+1}-\frac{5}{x^3}+\frac{1}{\sqrt[3]{x^2}}\right)dx$, $\int \frac{x^4dx}{(x^5+1)^{10}}$, $\int \frac{\ln xdx}{x^3}$. 5 Wyznacz pole obszaru zawartego pomiędzy liniami

 $y = x^2 - 2x + 1$ oraz y = 3x - 5.

 ${\bf 6}$ Wyznacz ekstrema lokalne funkcji z $x^2y - x^2 - 2y^2 + 6xy.$

1 (a) wyznacz dziedzinę funkcji $f(x)=\sqrt{\frac{1}{x+1}-\frac{2}{2x-1}}$, (b) Wyznacz dziedzinę funkcji $f(x)=\frac{x^2-3x+1}{x-1}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: $\left(4x^5 - \frac{3}{x^4} + \frac{5}{x}\right)'$, $\left(\frac{\arctan x}{3^x}\right)'$, $(\sin(x^2) \ln \arcsin(2x))'$.

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = \frac{x^2 + 7}{x + 3}$.

Oblicz (a) $\int \left(\frac{3}{x^2} - \frac{2}{\sin^2 x} - 4\sqrt[3]{x^2}\right) dx,$ (b) $\int x^2 \cos(x^3) dx, \text{ (c) } \int x \cos(7x+5) dx.$

5 Wyznacz pole obszaru zawartego pomiędzy liniami $y = 4x - x^2$ oraz y = 2x - 3.

 ${\bf 6}$ Wyznacz ekstrema lokalne funkcji z $x^3 - xy - x + y^2 + y$.

1 (a) wyznacz dziedzinę funkcji $f(x) = \sqrt{\frac{1}{x-2} - \frac{1}{x+4}}$, (b) Wyznacz dziedzinę funkcji $f(x) = \frac{3-x^2}{x+3}$, zapisz równania asymptot, naszkicuj wykres funkcji.

2 Oblicz pochodne: $\left(\frac{1}{x^7} + 3\operatorname{ctg} x - 2\sqrt[3]{x^2}\right)', \left(\frac{\sin x}{\arcsin x}\right)',$ $((2x+1)^4\cos(x^3))'$.

3 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = -3x^4 - 4x^3 + 6x^2 + 12x$.

4 Oblicz $\int \left(\frac{3}{x^2+1} - \frac{5}{x^3} + \frac{1}{\sqrt[3]{x^2}}\right) dx$, $\int \frac{x^4 dx}{(x^5+1)^{10}}$, $\int \frac{\ln x dx}{x^3}$. 5 Wyznacz pole obszaru zawartego pomiędzy liniami

 $y = x^2 - 2x + 1$ oraz y = 3x - 5.

6 Wyznacz ekstrema lokalne funkcji z $x^2y - x^2 - 2y^2 + 6xy$.