证明级数不等式的放缩法

兰琦

2014年12月8日

目录

1	引言		3												
2	分析	分析通项法													
	2.1	分析通项法	3												
	2.2	对数函数不等式	4												
	2.3	习题	7												
	2.4	习题参考答案	8												
3	等比	等比放缩法													
	3.1	等比放缩法	9												
	3.2	交错级数的处理思路	11												
	3.3	进阶篇													
	3.4	习题	13												
	3.5	习题参考答案													
4	裂项	i 放缩法	16												
	4.1		16												
	4.2	一些常用的裂项	17												
	4.3	进阶篇													
	4.4	习题													
	4.5	习题参考答案													
5	不动点裂项														
	5.1	选代函数													
	5.2	不动点裂项													
	5.3	习题													
	5.4	习题参考答案													
6	和分	积分放缩法													
J	6.1	积分放缩法	37 37												
	6.2	习题													
	6.3														
	0.0	- * * PC グ リロ / P、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	TI												

目录

7	其他	其他放缩法														44				
	7.1	整体放缩法																		 44
	7.2	并项放缩法																		 45
	7.3	倒序放缩法																		 47
	7.4	切线放缩法																		 48
	7.5	二项式放缩剂	去																	 50

1 引言 3

引言

形如 $\sum_{k=1}^{n} a_k < T_n$ ($n \in \mathbb{N}^*$, $n \ge N_0$) 的不等式称为级数不等式,这类不等式在高考压 轴题及自主招生考试压轴题中频繁出现,在这里对这种类型的级数不等式的证明方法作一个 系统的阐述.

考虑到
$$T_n = T_1 + \sum_{k=1}^{n-1} (T_{k+1} - T_k)$$
,而 $\sum_{k=1}^n a_k = a_1 + \sum_{k=1}^{n-1} a_{k+1}$,于是级数不等式

$$\sum_{k=1}^{n} a_k < T_n$$

可以改写为

$$a_1 + \sum_{k=1}^{n} a_{k+1} < T_1 + \sum_{k=1}^{n} (T_{k+1} - T_k)$$

即

$$\sum_{k=1}^{n} \left[a_{k+1} - (T_{k+1} - T_k) \right] < T_1 - a_1$$

因此所有级数不等式可以改写为 $\sum_{k=1}^{n} a_k < C$ 的形式.

级数不等式的证明最为困难的一点就是 $\sum\limits_{k=1}^{n}a_{k}$ 难以求和,因此利用各种放缩的手段将其 放缩为可以求和的形式至关重要,常用的处理方式有分析通项法、等比放缩法、裂(错)项 放缩法、积分放缩法以及整体(并项)放缩法.

分析诵项法 $\mathbf{2}$

2.1 分析通项法

对于级数不等式 $\sum\limits_{k=1}^n a_k < C$,若通项 a_n 从某项(a_N)后 1 满足 $a_n < 0$,那么 $\sum\limits_{k=1}^n a_k < 0$ $C \Leftrightarrow \sum_{k=1}^{N} a_k < C$ 这种级数不等式是较为简单的,这种证明 2 方法称为分析通项法 3 .

例题 **2.1** 已知 $f\left(x\right)=\frac{2}{3}x+\frac{1}{2}$, $h\left(x\right)=\sqrt{x}$, 试比较 $f\left(100\right)h\left(100\right)-\sum\limits_{k=1}^{100}h\left(k\right)$ 与 $\frac{1}{6}$ 的大小 关系.

$$S_1 = \left(\frac{2}{3} + \frac{1}{2}\right) \cdot 1 - 1 = \frac{1}{6}$$

 $^{^1}$ 这种想法称为"后移放缩起点",是可以配合所有放缩法使用的调整方式。 2 可以用分析通项法证明的级数不等式一定可以利用数学归纳法证明,其本质相同。 3 在实际应用时,对 $\sum_{k=1}^n a_k < T_k$ 类型的级数不等式,我们可以直接去探索 $a_{n+1} < T_{n+1} - T_n$ 而无需先行改写。

事实上,

$$S_2 = \left(\frac{2}{3} \cdot 2 + \frac{1}{2}\right) \cdot \sqrt{2} - 1 - \sqrt{2} = \frac{5\sqrt{2}}{6} - 1 > \frac{7}{6} - 1 = \frac{1}{6}$$

考虑证明 S_n 单调递增.

$$S_{n+1} - S_n = \left[\frac{2}{3} (n+1) + \frac{1}{2} \right] \sqrt{n+1} - \sum_{k=1}^{n+1} \sqrt{k} - \left(\frac{2}{3} n + \frac{1}{2} \right) \sqrt{n} + \sum_{k=1}^{n} \sqrt{k}$$

$$= \left(\frac{2}{3} n + \frac{1}{6} \right) \sqrt{n+1} - \left(\frac{2}{3} n + \frac{1}{2} \right) \sqrt{n}$$

$$= \frac{1}{6} \left[(4n+1) \sqrt{n+1} - (4n+3) \sqrt{n} \right]$$

$$= \frac{1}{6} \left(\sqrt{16n^3 + 24n^2 + 9n + 1} - \sqrt{16n^3 + 24n^2 + 9n} \right)$$

$$> 0$$

因此当 $n \geqslant 2$ 时, $S_n > S_1 = \frac{1}{6}$.

例题 2.2 求证:
$$\prod_{k=1}^{n} \left(1 + \frac{1}{2^k}\right) \leqslant 3\left(1 - \frac{1}{2^n}\right)$$
.

对于这种题目,我们可以延续分析通项的思想1,先计算

$$\frac{3\left(1-\frac{1}{2^n}\right)}{3\left(1-\frac{1}{2^{n-1}}\right)} = \frac{2^n-1}{2^n-2} = 1 + \frac{1}{2^n-2}$$

而通项

$$1 + \frac{1}{2^n} < 1 + \frac{1}{2^n - 2}$$

显然成立. 因此原不等式成立.

2.2 对数函数不等式

首先回顾对 $f(x) = \ln x$ 的常用放缩²: 在 $(-1,0) \cup (0,+\infty)$ 上,

$$\frac{x}{1+x} < \ln\left(1+x\right) < x.$$

这个放缩有其优点: ①简单; ②在x = 0左右两边均成立; 但也有明显的缺点,那就是太过宽松.

接下来我们探索对于对数函数 $f(x) = \ln x$ 在 x = 1 附近一种重要放缩 $\frac{c(x-1)}{ax+b}$.

2
事实上,有更好的 $2 - \frac{2}{\sqrt{1+x}} < \ln{(1+x)} < x$

 $^{1 \}prod a_k \leqslant T_k$ 类型的不等式的本质也是级数不等式,可以利用作商代替作差

首先计算1阶导数:

$$(\ln x)'\Big|_{x=1} = x^{-1}\Big|_{x=1} = 1$$

$$\left(\frac{c(x-1)}{ax+b}\right)'\Big|_{x=1} = \frac{c(a+b)}{(ax+b)^2}\Big|_{x=1} = \frac{c}{a+b}$$

为了保证二者在x=1处相切,令 $\frac{c}{a+b}=1$,即c=a+b. 此时

$$\frac{c\left(x-1\right)}{ax+b} = \frac{\left(a+b\right)\left(x-1\right)}{ax+b} = \frac{\left(1+\frac{b}{a}\right)\left(x-1\right)}{x+\frac{b}{a}},$$

记 $\lambda = \frac{b}{a}$,则 $g_{\lambda}(x) = \frac{1+\lambda}{x+\lambda}(x-1)$, 考虑函数 $F(x) = \ln x - \frac{1+\lambda}{x+\lambda}(x-1)$ 有

$$F'(x) = \frac{1}{x} - \frac{(1+\lambda)^2}{(x+\lambda)^2} = \frac{(x-1)(x-\lambda^2)}{x(x+\lambda)^2}.$$

第一种情形,当 $\lambda = 1$ 时F(x)单调递增,而F(1) = 0,于是在(0,1)上, $\ln x < \frac{2}{x+1}(x-1)$;在 $(1,+\infty)$ 上, $\ln x > \frac{2}{x+1}(x-1)$.由于此时 $g_{\lambda}(x)$ 与 $f(x) = \ln x$ 在x = 1处的二阶导数相同,所以这是一个很好的近似.但是它有个明显的缺点,那就是不等号的方向是不可控的.我们接下来研究 $\lambda \neq 1$ 的情形.

第二种情形,当 $\lambda > 1$ 时 F(x) 在 (0,1) 上单调递增,在 $(1,\lambda^2)$ 上单调递减,在 $(\lambda^2,+\infty)$ 上单调递增,而 F(1)=0,于是

在(0,1)上¹,

$$\ln x < \frac{1+\lambda}{x+\lambda} (x-1);$$

在 $(1,\lambda^2)$ 上,

$$\ln x < \frac{1+\lambda}{x+\lambda} (x-1);$$

这点相当重要,因为相当于给出了对 $f(x) = \ln x$ 在 1 右侧的很好估计,配合第一种情形中的结论有: 在 $(1,\lambda^2)$ 上, $\frac{2}{x+1}(x-1) < \ln x < \frac{1+\lambda}{x+\lambda}(x-1)$.

例如取 $\lambda = 2$,就有在(1,4)上。

$$\frac{2}{x+1}(x-1) < \ln x < \frac{3}{x+2}(x-1).$$

并且不难知道, λ 越小,上界越精确,但放缩范围也随之减小.

需要注意的是在 $(\lambda^2, +\infty)$ 上, $f(x) = \ln x$ 的图象将逐步追上 $g_{\lambda}(x) = \frac{1+\lambda}{x+\lambda}(x-1)$ 的图象并位于其他上方.

¹这点无价值,因为
$$\frac{1+\lambda}{x+\lambda}(x-1) > \frac{2}{x+1}(x-1)$$

第三种情形, 当 λ <1时与 λ >1情况类似, 我们有重要结论: 在(λ ²,1)上,

$$\frac{1+\lambda}{x+\lambda}\left(x-1\right) < \ln x < \frac{2}{x+1}\left(x-1\right)$$

至此,我们就得到了对数函数 $\ln x$ 在 x=1 附近的可调整松紧的放缩:

•
$$\div$$
 $(1,\lambda^2)$ \perp , $\frac{2}{x+1}(x-1) < \ln x < \frac{1+\lambda}{x+\lambda}(x-1)$;

•
$$\stackrel{\bullet}{x}$$
 $(\lambda^2, 1)$ $\stackrel{}{\perp}$, $\frac{1+\lambda}{x+\lambda}$ $(x-1) < \ln x < \frac{2}{x+1}$ $(x-1)$.

此外还有不含参的更紧的其他形式的放缩,如下:

•
$$\text{\'et}(1,+\infty)$$
 \'et , $\frac{2}{x+1}(x-1) < \ln x < \frac{1}{\sqrt{x}}(x-1)$,

例题 **2.3** 求证: $n+1 < e \cdot \sqrt[n]{n!}$.

原不等式即

$$\ln(n+1) < \frac{\sum\limits_{k=1}^{n} \ln k}{n} + 1 (利用取对数下放指数)$$

也即

$$n\left[\ln{(n+1)} - 1\right] < \sum_{k=1}^{n} \ln{k}$$

分析通项,尝试证明

$$n\left[\ln\left(n+1\right)-1\right]-\left(n-1\right)\left(\ln n-1\right)<\ln n\Leftrightarrow\ln\left(1+\frac{1}{n}\right)<\frac{1}{n}$$

于是1原命题得证.

例题 2.4 求证:
$$\frac{n^2}{2} + \frac{3n}{8} < \sum_{k=1}^n \frac{1}{\ln \frac{2k+1}{2k-1}} < \frac{n^2}{2} + \frac{n}{2}$$
.

分析通项,只需要证明

$$\frac{n^2}{2} + \frac{3n}{8} - \frac{(n-1)^2}{2} - \frac{3(n-1)}{8} < \frac{1}{\ln \frac{2n+1}{2n-1}} < \frac{n^2}{2} + \frac{n}{2} - \frac{(n-1)^2}{2} - \frac{n-1}{2}$$

即

$$\frac{1}{n} < \ln\left(1 + \frac{1}{n - \frac{1}{2}}\right) < \frac{1}{n - \frac{1}{8}}$$

 $[\]frac{x}{x+1}$ 在实际应用中,往往需要利用函数不等式进行放缩,例如当 x>-1 时 $\frac{x}{x+1}<\ln{(1+x)}< x$. 若 x 的正负已知,有更精细的当 x>0 时, $\frac{2x}{x+2}<\ln{(1+x)}<\frac{x}{\sqrt{x+1}}$,当 x<0 时 $\frac{x}{\sqrt{x+1}}<\ln{(1+x)}<\frac{2x}{x+2}$.

令
$$\frac{1}{n-\frac{1}{2}} = x$$
 ,则 $n = \frac{1}{x} + \frac{1}{2}$,只需要证明

$$\frac{2x}{x+2} < \ln(1+x) < \frac{8x}{3x+8}$$

在 (0,2) 上恒成立¹即可.

例题 2.5 已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_{n+1}=a_n+\frac{1}{a_n}$.

(1) 求证:
$$\sqrt{2n-1} < a_n < \sqrt{3n-2}$$
 ($n \ge 2$);

(2)求证:
$$\sum_{k=1}^{n} \frac{1}{a_k} \leq \sqrt{2n-1}$$
.

(1)只需要证明

$$2n - 1 < a_n^2 < 3n - 2,$$

尝试分析通项证明

$$2 < a_{n+1}^2 - a_n^2 < 3.$$

事实上,

$$a_{n+1}^{2} = \left(a_n + \frac{1}{a_n}\right)^2 = a_n^2 + \frac{1}{a_n^2} + 2.$$

不难证明 $0 < \frac{1}{a_n^2} < 1$,于是原不等式得证.

(2)尝试分析通项证明

$$\frac{1}{a_n} \leqslant \sqrt{2n-1} - \sqrt{2n-3} = \frac{2}{\sqrt{2n-1} + \sqrt{2n-3}}$$

事实上 $a_n \geqslant \sqrt{2n-1}$,于是

$$\frac{1}{a_n} \leqslant \frac{1}{\sqrt{2n-1}} < \frac{2}{\sqrt{2n-1}+\sqrt{2n-3}}$$

原不等式得证.

2.3 习题

习题 2.1 求证:
$$\frac{n^2+n}{2} < \sum_{k=1}^n \sqrt{k(k+1)} < \frac{n^2+2n}{2}$$
.

习题 2.2 证明下列不等式:
$$(1)求证: \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} < \frac{1}{\sqrt{2n+1}};$$
$$(2)求证: \frac{1}{2} + \frac{1 \cdot 3}{2 \cdot 4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} + \dots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} < \sqrt{2n+1} - 1.$$

 $^{^{-1}}$ 这是对数函数在 x=1 附近的含参估计: 在 $(0,\lambda(\lambda-2))$ 上 $(\lambda>2)$ $\frac{2x}{x+2}<\ln(1+x)<\frac{\lambda x}{x+\lambda}$; 在 $(\lambda(\lambda-2),0)$ 上 $(\lambda<2)$ $\frac{\lambda x}{x+\lambda}<\ln(1+x)<\frac{2x}{x+2}$

习题 2.3 已知 $n, m \in N^*$, 求证: $n^{m+1} < (m+1) \sum_{k=1}^n k^m < (n+1)^{m+1} - 1$.

习题 2.4 求证:
$$\sum_{k=1}^{n} \frac{1}{\sqrt[4]{(2k-1)(2k+1)}} > \sqrt{2} \left(\sqrt{n+1} - 1 \right)$$
.

习题 2.5 求证:
$$\sum_{k=2}^{n} \frac{\ln k}{k+1} < \frac{n(n-1)}{4}$$
 $(n \ge 2)$.

习题 2.6 已知
$$\alpha\geqslant 2$$
,求证: $\frac{\ln 2^{\alpha}}{2^{\alpha}}+\frac{\ln 3^{\alpha}}{3^{\alpha}}+\cdots+\frac{\ln n^{\alpha}}{n^{\alpha}}<\frac{2n^2-n-1}{2(n+1)}$.

2.4 习题参考答案

习题 2.1 我们先来计算一下

$$\frac{n^2 + 2n}{2} - \frac{(n-1)^2 + 2(n-1)}{2} = \frac{2n+1}{2},$$
$$\frac{n^2 + n}{2} - \frac{(n-1)^2 + (n-1)}{2} = n,$$

而通项 $n < \sqrt{n(n+1)} < \frac{2n+1}{2}$,显然成立(A-G不等式). 因此原不等式成立.

习题 2.2 (1)分析通项,尝试证明

$$\frac{2n-1}{2n}<\frac{\frac{1}{\sqrt{2n+1}}}{\frac{1}{\sqrt{2n-1}}}\Leftrightarrow 2n>\sqrt{4n^2-1}$$

于是原不等式得证.

(2)分析通项,尝试证明

$$\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} < \left(\sqrt{2n+1} - 1\right) - \left(\sqrt{2n-1} - 1\right) = \frac{2}{\sqrt{2n+1} + \sqrt{2n-1}}$$

根据(1),

$$\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} < \frac{1}{\sqrt{2n+1}}$$

于是原不等式得证.

习题 2.3 分析通项,尝试证明

$$n^{m+1} - (n-1)^{m+1} < (m+1) \cdot n^m < (n+1)^{m+1} - n^{m+1}$$

即

$$1 - \left(1 - \frac{1}{n}\right)^{m+1} < \frac{m+1}{n} < \left(1 + \frac{1}{n}\right)^{m+1} - 1$$

也即

$$\begin{cases} \left(1 - \frac{1}{n}\right)^{m+1} > 1 - (m+1) \cdot \frac{1}{n} \\ \left(1 + \frac{1}{n}\right)^{m+1} > 1 + (m+1) \cdot \frac{1}{n} \end{cases}$$

此即伯努利不等式1,因此原不等式得证.

习题 2.4 分析通项,尝试证明

$$\frac{1}{\sqrt[4]{(2n-1)\left(2n+1\right)}} > \sqrt{2}\left(\sqrt{n+1} - \sqrt{n}\right).$$

事实上,

$$\frac{1}{\sqrt[4]{(2n-1)\,(2n+1)}} = \frac{1}{\sqrt[4]{4n^2-1}} > \frac{1}{\sqrt{2n}} = \frac{\sqrt{2}}{2\sqrt{n}} > \frac{\sqrt{2}}{\sqrt{n+1}+\sqrt{n}} = \sqrt{2}\left(\sqrt{n+1}-\sqrt{n}\right)$$

因此原不等式得证.

习题 2.5 证明
$$\frac{\ln n}{n+1} < \frac{n-1}{2}$$
 即可.

习题 2.6 分析通项,尝试证明

$$\frac{\ln n^{\alpha}}{n^{\alpha}} < \frac{2n^2 - n - 1}{2(n+1)} - \frac{2(n-1)^2 - (n-1) - 1}{2n} = 1 - \frac{1}{n(n+1)}$$

事实上,

$$\begin{split} \frac{\ln n^{\alpha}}{n^{\alpha}} &\leqslant \frac{\ln n^2}{n^2} \ (y = \frac{\ln x}{x} \div (1, +\infty) \bot \dot{\mu}$$
 调递减)
$$&\leqslant 1 - \frac{1}{n^2} \ (\ln x < x - 1, \ \ \mathcal{E} \frac{\ln x}{x} < 1 - \frac{1}{x}) \\ &< 1 - \frac{1}{n(n+1)} \end{split}$$

因此原不等式得证.

3 等比放缩法

3.1 等比放缩法

当通项 a_n 从某项起恒小于 0 并不成立时,级数不等式 $\sum\limits_{k=1}^n a_k < C$ 的成立依赖于对 n 趋于

¹伯努利不等式: 当 x > -1 时 $(1+x)^n \ge 1 + nx$

无穷大时的考查. 形如 $\sum_{k=1}^{\infty} a_k$ 的级数称为无穷级数; 对于级数 $\sum_{n=1}^{\infty} a_n$, 其中 $a_n > 0$, 那么称 其为正项级数;对于级数 $\sum_{n=0}^{\infty} (-1)^n a_n$,其中 $a_n > 0$,那么称其为交错级数.可以看到,这 种级数不等式的证明过程实际上就是对收敛的无穷级数 $\sum_{n=1}^{\infty} a_n$ 1的上界的探索过程.

无穷递缩等比数列(公比q满足|q|<1的无穷等比数列 $\{b_n\}$)可以提供一种重要的收敛 无穷级数2:

$$\sum b_1 q^n = \frac{b_1}{1 - q}$$

特别的, 若0 < q < 1, 则

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} b_1 q^{n-1} = \frac{b_1}{1-q}$$

对正项级数 $\sum\limits_{n=1}^{\infty}a_n$ 若满足: 当 $n\geqslant N$ 时, $a_n\leqslant a_Nq^{n-N}$ 或 $\frac{a_{n+1}}{a_n}\leqslant q$,其中 $0< q<1^3$ 那么就有

$$\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{N-1} a_k + \sum_{n=N}^{\infty} a_n \leqslant \sum_{k=1}^{N-1} a_k + \sum_{n=N}^{\infty} a_N q^{n-N} = \sum_{k=1}^{N-1} a_k + \frac{a_N}{1-q}$$

这种将级数放缩为等比级数的放缩方法称为等比放缩法.

例题 3.1 已知
$$a \in \left(0, \frac{1}{2}\right]$$
, 比较 $\left|\sum_{k=1}^{n} \frac{1+a^k}{1-a^k} - n\right|$ 与 4 的大小.

先去绝对值符号,显然 $\frac{1+a^n}{1-a^n} > 1$,于是

$$\left| \sum_{k=1}^{n} \frac{1+a^k}{1-a^k} - n \right| = \sum_{k=1}^{n} \left(\frac{1+a^k}{1-a^k} - 1 \right) = 2 \sum_{k=1}^{n} \frac{a^k}{1-a^k}$$

而

$$\frac{a-a^n}{1-a^n} < a \Leftrightarrow a-a^n < a-a^{n+1} \Leftrightarrow a < 1,$$

因此可以选定 q = a. 这样就有

$$\sum_{k=1}^{n} \frac{a^k}{1 - a^k} < \frac{\frac{a}{1 - a}}{1 - a} = \frac{a}{(1 - a)^2} = \frac{1}{a + \frac{1}{a} - 2} \le 2$$

因此
$$\left| \sum_{k=1}^{n} \frac{1+a^k}{1-a^k} - n \right| \leqslant 4$$
.

¹此时 $\lim_{n \to \infty} a_n = 0$; 通常记这种无穷级数的极限 $\lim_{n \to \infty} \sum_{k=1}^n a_k = \sum a_n$. 例如 $\sum \frac{1}{2^n} = 1$, $\sum \frac{1}{n} = +\infty$. $\sum_{n=1}^{\infty} \frac{1}{n}$ 称

 $[\]sum_{n=1}^{\infty} \frac{1}{z^n}$ 称为等比级数或几何级数. $\frac{a_{n+1}}{a_n}$ 探索恰当的公比

3.2 交错级数的处理思路

处理交错的级数时,我们常常有以下三种处理方式:(1)直接放缩掉负项;(2)分为两个子列;(3)将交错项分别合并.

例题 3.2 求证:
$$\sum_{k=1}^{n} \frac{1}{2^k - (-1)^k} < \frac{11}{12}$$
.

此时不能直接令 $q = \frac{1}{2}$ 进行等比放缩,而需要对交错项进行恰当的处理。 处理方式一(直接放缩掉负项)

$$\sum_{k=1}^{n} \frac{1}{2^{k} - (-1)^{k}} < \frac{1}{2^{1} + 1} + \frac{1}{2^{2} - 1} + \frac{1}{2^{3} + 1} + \sum_{k=4}^{n} \frac{1}{2^{k} - 1}^{1} < \frac{7}{9} + \frac{\frac{1}{2^{4} - 1}}{1 - \frac{1}{2}} = \frac{41}{45} < \frac{11}{12}$$

处理方式二(分为两个子列)

$$\sum_{k=1}^{2n} \frac{1}{2^k - (-1)^k} = \sum_{k=1}^n \frac{1}{4^k - 1} + \sum_{k=1}^n \frac{1}{2 \cdot 4^{k-1} + 1}.$$

其中

$$\sum_{k=1}^{n} \frac{1}{4^k - 1} = \frac{1}{4^1 - 1} + \sum_{k=2}^{n} \frac{1}{4^k - 1} < \frac{1}{3} + \frac{\frac{1}{4^2 - 1}}{1 - \frac{1}{4}} = \frac{19}{45}$$

$$\sum_{k=1}^{n} \frac{1}{2 \cdot 4^{k-1} + 1} < \frac{1}{3} + \frac{1}{9} + \sum_{k=3}^{n} \frac{1}{2 \cdot 4^{k-1}} < \frac{4}{9} + \frac{\frac{1}{32}}{1 - \frac{1}{4}} = \frac{35}{72}$$

此时 $\frac{19}{45} + \frac{35}{72} < \frac{11}{12}$,因此原命题得证.

$$\sum_{k=1}^{2n} \frac{1}{2^k - \left(-1\right)^k} = \sum_{k=1}^n \left(\frac{1}{4^k - 1} + \frac{1}{2 \cdot 4^{k-1} + 1}\right) = \sum_{k=1}^n \frac{3 \cdot 4^k}{(4^k - 1)(4^k + 2)}.$$

可以放缩为等比数列

$$\sum_{k=1}^{n} \frac{3 \cdot 4^{k}}{\left(4^{k} - 1\right)\left(4^{k} + 2\right)} = 3 \cdot \sum_{k=1}^{n} \frac{1}{4^{k} - \frac{2}{4^{k}} + 1} < 3 \cdot \left(\frac{1}{4 - \frac{2}{4} + 1} + \sum_{k=2}^{n} \frac{1}{4^{k}}\right) < 3\left(\frac{2}{9} + \frac{\frac{1}{16}}{1 - \frac{1}{4}}\right) = \frac{11}{12}$$

3.3 进阶篇

例题 3.3 已知数列 $\{a_n\}$ 中 $a_1=3$, $a_{n+1}=a_n^2-na_n-2$, 求证: $\sum_{k=1}^n\frac{1}{a_k}<1$.

¹其中后移放缩起点的过程不再赘述

先观察数列,

$$a_1 = 3;$$

 $a_2 = a_1^2 - a_1 - 2 = 4;$
 $a_3 = a_2^2 - 2a_2 - 2 = 6;$
 $a_4 = a_3^2 - 3 \cdot a_3 - 2 = 16;$

.

可以想象, 当n较大时,

$$\frac{a_{n+1}}{a_n} = a_n - n - \frac{2}{a_n} > c$$
,其中 c 为常数.

可以尝试证明 1 当 $_n \geqslant 3$ 时, $\frac{a_{n+1}}{a_n} > 2$.

这样就有

$$\sum_{k=1}^{n} \frac{1}{a_k} = \frac{1}{3} + \frac{1}{4} + \sum_{k=3}^{n} \frac{1}{a_k} < \frac{7}{12} + \frac{\frac{1}{6}}{1 - \frac{1}{2}} = \frac{7}{12} + \frac{1}{3} = \frac{11}{12} < 1.$$

例题 3.4 (2008年浙江)已知数列 $\{a_n\}$, $a_n\geqslant 0$, $a_1=0$, $a_{n+1}{}^2+a_{n+1}-1=a_n{}^2$. 记 $S_n=\sum\limits_{k=1}^n a_k$, $T_n=\frac{1}{1+a_1}+\frac{1}{(1+a_1)\left(1+a_2\right)}+\cdots+\frac{1}{(1+a_1)\left(1+a_2\right)\cdots\left(1+a_n\right)}$.

- (1) 水址: $a_n < a_{n+1}$;
- (2)求证: $S_n > n-2$;
- (3)**求证:** $T_n < 3$.
- (1)根据题意

$$\begin{cases} a_{n+1}^2 + a_{n+1} - 1 = a_n^2 \\ a_{n+2}^2 + a_{n+2} - 1 = a_{n+1}^2 \end{cases}$$

于是

$$(a_{n+2}-a_{n+1})(a_{n+2}+a_{n+1}+1) = (a_{n+1}-a_n)(a_{n+1}+a_n)$$

因此 $a_{n+2}-a_{n+1}$ 与 $a_{n+1}-a_n$ 同正负. 而 $a_2^2+a_2-1=a_1^2$,解得

$$a_2 = \frac{-1 + \sqrt{5}}{2} > 0,$$

于是 $a_{n+1} > a_n$.

$$(2) a_{n+1} - 1 = a_n^2 - a_{n+1}^2$$
, 于是

$$\sum_{k=1}^{n} (a_k - 1) = a_1 - 1 + a_1^2 - a_n^2 = -(1 + a_n^2)$$

 $^{^{1}}$ 只需要证明 $a_{n} \ge n+3$ 而这利用数学归纳法容易证明.

因此只需要证明
$$a_n < 1$$
, 这很容易由数学归纳法证明. (3)设 $b_n = \frac{1}{(1+a_1)(1+a_2)\cdots(1+a_n)}$, 于是 当 $n \ge 2$ 时, 有 1

$$\frac{b_n}{b_{n-1}} = \frac{1}{1+a_n} < \frac{1}{1+a_2} = \frac{1}{1+\frac{\sqrt{5}-1}{2}} = \frac{\sqrt{5}-1}{2},$$

因此

$$\sum_{k=1}^{n} b_k = b_1 + \sum_{k=2}^{n} b_k < 1 + \frac{\frac{1}{1 + \frac{\sqrt{5} - 1}{2}}}{1 - \frac{\sqrt{5} - 1}{2}} = \frac{3 + \sqrt{5}}{2} < 3$$

因此 $T_n < 3$ 得证.

另法2

根据题意

$$a_{n+1}^2 + a_{n+1} = 1 + a_n^2 > 2a_n,$$

于是

$$\frac{1}{1+a_{n+1}} < \frac{a_{n+1}}{2a_n}.$$

进而当 $n \ge 3$ 时,

$$b_n < \frac{1}{1+a_1} \cdot \frac{1}{1+a_2} \cdot \frac{a_3}{2a_2} \cdot \frac{a_4}{2a_3} \cdot \dots \cdot \frac{a_n}{2a_{n-1}} = \frac{a_n}{2^{n-2}} < \frac{1}{2^{n-2}}$$

因此

$$\sum_{k=1}^{n} b_k < b_1 + b_2 + \sum_{k=3}^{n} \frac{1}{2^{k-2}} < 1 + \frac{1}{1 + \frac{\sqrt{5} - 1}{2}} + \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{3 + \sqrt{5}}{2} < 3$$

3.4 习题

习题 3.1 求证:
$$\sum_{k=1}^{n} \frac{2}{3 \cdot 2^k + 2} < \frac{4}{7}$$
.

习题 3.2 求证:
$$\sum_{k=1}^{n} \frac{2^k - 1}{2^{k+1} - 1} > \frac{n}{2} - \frac{1}{3}$$
.

习题 3.3 求证:
$$\sum_{k=1}^{n} \frac{1}{3^k + (-2)^k} < \frac{7}{6}$$
.

 $^{^{1}}$ 这里适当后移了放缩起点,否则得到公比为 $\frac{1}{1+a_{1}}=1$ 无法进行放缩 2 这里用到了错项放缩的想法,相应的技巧性也较强

14

习题 3.4 已知
$$a_1 = \frac{1}{3}$$
, $a_2 = \frac{7}{9}$, $a_{n+2} = \frac{4}{3}a_{n+1} - \frac{1}{3}a_n$. 求证:

$$\frac{3}{4}a_{n+1} - \frac{1}{12} \leqslant \sum_{k=1}^{n} \frac{1 - a_k}{1 + a_k} < \frac{3}{4}a_{n+1}.$$

习题 3.5 已知数列 $\{a_n\}$ 的前 n 项和 S_n 满足 $S_n = 2a_n + (-1)^n$. 证明:对任意的整数 m > 4,有 $\frac{1}{a_4} + \frac{1}{a_5} + \cdots + \frac{1}{a_m} < \frac{7}{8}$.

习题 3.6 设数列 $\{a_n\}$ 满足 $a_{n+1}=a_n^2-na_n+1$, $a_1\geqslant 3$.

(1)求证:
$$a_n \ge n+2$$
;
(2)求证: $\frac{1}{1+a_1} + \frac{1}{1+a_2} + \dots + \frac{1}{1+a_n} \le \frac{1}{2}$.

习题参考答案 3.5

习题 3.1
$$\sum_{k=1}^{n} \frac{2}{3 \cdot 2^k + 2} < \frac{1}{4} + \frac{1}{7} + \sum_{k=3}^{n} \frac{2}{3 \cdot 2^k} < \frac{1}{4} + \frac{1}{7} + \frac{\frac{2}{3 \cdot 2^3}}{1 - \frac{1}{2}} = \frac{47}{84} < \frac{4}{7}$$
.

习题 3.2 将其转化为 $\sum\limits_{k=1}^{n}a_{k}< C$ 类型的,原不等式即

$$\sum_{k=1}^{n} \left(\frac{1}{2} - \frac{2^k - 1}{2^{k+1} - 1} \right) < \frac{1}{3} \Leftrightarrow \sum_{k=1}^{n} \frac{1}{2 \left(2^{k+1} - 1 \right)} < \frac{1}{3} \Leftrightarrow \sum_{k=1}^{n} \frac{1}{2^{k+1} - 1} < \frac{2}{3}$$

而容易证明

$$\frac{2^n - 1}{2^{n+1} - 1} < \frac{1}{2},$$

于是选定 $q = \frac{1}{2}$. 这样就有

$$\sum_{k=1}^{n} \frac{1}{2^{k+1} - 1} < \frac{\frac{1}{2^2 - 1}}{1 - \frac{1}{2}} = \frac{2}{3},$$

原命题得证.

习题 3.3 注意到

$$\frac{\frac{1}{3^{n+1}-2^{n+1}}}{\frac{1}{3^n-2^n}} < \frac{1}{3},$$

15

考虑用等比放缩.

$$\sum_{k=1}^{n} \frac{1}{3^k + (-2)^k} = \frac{1}{3 + (-2)} + \frac{1}{3^2 + (-2)^2} + \sum_{k=3}^{n} \frac{1}{3^k - (-2)^k}$$

$$< 1 + \frac{1}{13} + \sum_{k=3}^{n} \frac{1}{3^k - 2^k}$$

$$< 1 + \frac{1}{13} + \frac{\frac{1}{3^3 - 2^3}}{1 - \frac{1}{3}}$$

$$= 1 + \frac{1}{13} + \frac{1}{19} \cdot \frac{3}{2}$$

$$< \frac{7}{6}$$

于是原不等式得证.

习题 3.4 根据题意有

$$a_n = \frac{2}{3} \left[2^{n-2} + (-1)^{n-1} \right],$$

于是需要证明

$$\sum_{k=2}^{n} \frac{1}{2^k - (-1)^k} < \frac{7}{12}.$$

参考例题证明即可.

习题 3.5 容易求得 $a_n = 1 - \frac{2}{3^n}$. 于是原不等式即¹

$$\frac{2}{3} - \frac{1}{2} \cdot \frac{1}{3^n} \leqslant \sum_{k=1}^n \frac{1}{3^k - 1} < \frac{3}{4} - \frac{1}{2} \cdot \frac{1}{3^n} \Leftrightarrow \frac{1}{6} \leqslant \sum_{k=1}^n \frac{1}{3^{2k} - 3^k} < \frac{1}{4}$$

左边不等式显然成立.

考虑右边,由于

$$\frac{\frac{1}{3^{2(n+1)} - 3^{n+1}}}{\frac{1}{3^{2n} - 3^n}} = \frac{3^n - 1}{3^{n+2} - 3} < \frac{1}{9} (n \ge 1)$$

于是

$$\sum_{k=1}^{n} \frac{1}{3^{2k} - 3^k} < \frac{\frac{1}{3^2 - 3}}{1 - \frac{1}{9}} = \frac{9}{48} < \frac{1}{4}.$$

因此原不等式得证.

习题 3.6 (1)利用数学归纳法容易证明.

¹改写为标准级数不等式

(2)根据题意

$$a_{n+1} + 1 = a_n^2 - na_n + 2 \ge (n+2)a_n - na_n + 2 = 2(a_n + 1)$$

于是

$$\frac{1}{1+a_1} + \frac{1}{1+a_2} + \dots + \frac{1}{1+a_n} \leqslant \frac{\frac{1}{1+a_1}}{1-\frac{1}{2}} \leqslant \frac{1}{2}.$$

4 裂项放缩法

4.1 裂项放缩法

形如 $\sum_{n=1}^{\infty} (b_n - b_{n+1})$ 的级数称为裂项级数, 当 $\lim_{n \to \infty} b_n = 0$ 时,裂项级数收敛:

$$\sum (b_n - b_{n+1}) = b_1$$

因此对于级数 $\sum\limits_{n=1}^{\infty}a_n$, 若当 $n\geqslant N$ 时, $a_n\leqslant b_n-b_{n+1}$, 其中 $b_n>0$, 则

$$\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{N-1} a_k + \sum_{n=N}^{\infty} a_n \leqslant \sum_{k=1}^{N-1} a_k + \sum_{n=N}^{\infty} (b_n - b_{n+1}) = \sum_{k=1}^{N-1} a_k + b_N$$

这种将级数放缩为裂项级数的放缩方法称为裂项放缩法.

例题 4.1 求证:
$$\sum_{k=1}^{n} \left(\frac{3^k}{3^k+1} + \frac{3^k}{3^k-\frac{1}{3}} \right) > 2n - \frac{1}{4}$$
.

原不等式即

$$\sum_{k=1}^{n} \left(\frac{1}{3^k + 1} - \frac{\frac{1}{3}}{3^k - \frac{1}{3}} \right) < \frac{1}{4} \Leftrightarrow \sum_{k=1}^{n} \left(\frac{1}{3^k + 1} - \frac{1}{3^{k+1} - 1} \right) < \frac{1}{4}$$

而

$$\begin{split} \sum_{k=1}^{n} \left(\frac{1}{3^k + 1} - \frac{1}{3^{k+1} - 1} \right) &< \frac{1}{3+1} - \frac{1}{3^2 - 1} + \sum_{k=2}^{n} \left(\frac{1}{3^k - 1} - \frac{1}{3^{k+1} - 1} \right) \\ &= \frac{1}{4} - \frac{1}{8} + \frac{1}{8} - \frac{1}{3^{n+1} - 1} \\ &< \frac{1}{4} \end{split}$$

因此原不等式成立.

例题 4.2 求证:
$$\sum_{k=1}^{n} \frac{1}{n+k} < \frac{25}{36}$$
.

首先 $\sum_{k=1}^{n} \frac{1}{n+k}$ 并非标准级数形式,需要改写题目.

设
$$S_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
,则

$$S_{n+1} - S_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{(2n+1)(2n+2)}$$

于是问题即证明

$$\sum_{k=1}^{n} \frac{1}{2k \cdot (2k-1)} < \frac{25}{36},$$

也即

$$\sum_{k=1}^{n} \frac{1}{k \cdot \left(k - \frac{1}{2}\right)} < \frac{25}{9}.$$

由于1

$$\frac{1}{k\left(k - \frac{1}{2}\right)} < \frac{1}{\left(k + \frac{1}{4}\right)\left(k - \frac{3}{4}\right)} = \frac{1}{k - \frac{3}{4}} - \frac{1}{k + \frac{1}{4}}$$

于是

$$\sum_{k=1}^n \frac{1}{k\left(k-\frac{1}{2}\right)} < \frac{1}{1\cdot\frac{1}{2}} + \frac{1}{2\cdot\frac{3}{2}} + \frac{1}{3-\frac{3}{4}} - \frac{1}{n+\frac{1}{4}} = \frac{25}{9} - \frac{1}{n+\frac{1}{4}} < \frac{25}{9}$$

因此原不等式成立.

4.2 一些常用的裂项

1. 基本公式

$$\bullet \begin{cases}
\frac{1}{a(a+b)} = \frac{1}{b} \left(\frac{1}{a} - \frac{1}{a+b} \right) \\
\frac{1}{a(b-a)} = \frac{1}{b} \left(\frac{1}{a} + \frac{1}{b-a} \right)
\end{cases}$$

•
$$\begin{cases} \frac{b}{a+m} < \frac{b}{a} < \frac{b+m}{a+m} \\ \frac{b-m}{a-m} < \frac{b}{a} < \frac{b}{a-m} \end{cases} (0 < b < a, 0 < m < a)^{3}$$

$$\bullet \ \frac{1}{a\left(a+b\right)} < \frac{1}{\left(a+b-1\right)\left(a+b\right)} < \frac{1}{\left(a+\frac{b-1}{2}\right)\left(a+\frac{b+1}{2}\right)} \ (\ 0 < b < 1\)^{-4}$$

 $^{^1}$ 这里使用的裂项是最为精细的,若使用裂项 $\frac{1}{k\left(k-rac{1}{a}
ight)}<rac{1}{k-1}-rac{1}{k}$ 则无论如何后移起点都无法得到 $rac{25}{36}$ 这么好的结果

²基本分式展开 ³糖水原理,这种方式的放缩也称为分式放缩

⁴常用裂项公式,关键在于和一定时,差越大积越小

2.
$$p-$$
级数¹

•
$$p=1$$
 Fi, $\ln{(n+1)}-\ln{n}<\frac{1}{n}<\ln{n}-\ln{(n-1)}$ ($n\geqslant 2$);

•
$$p = 2 \, \mathbb{N}$$
, $\frac{1}{n} - \frac{1}{n+1} < \frac{1}{n^2} < \frac{1}{n-1} - \frac{1}{n} \quad (n \ge 2)$

•
$$p = \frac{1}{2}$$
 H, $2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - \sqrt{n-1})$ $(n \ge 1)$;

$$\bullet \ \ p = \frac{3}{2} \ \mathbb{H}, \quad 2 \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) < \frac{1}{\sqrt{n^3}} < 2 \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}} \right) \ \ (\ n \geqslant 2 \);$$

更精细的放缩

•
$$p=1$$
 时, $\frac{1}{n}<\ln\left(n+\frac{1}{2}\right)-\ln\left(n-\frac{1}{2}\right)$ ($n\geqslant 1$);

•
$$p = 2$$
 时, $\frac{1}{n^2} < \frac{1}{n - \frac{1}{2}} - \frac{1}{n + \frac{1}{2}}$ ($n \ge 2$)

•
$$p = \frac{1}{2} \text{ H}, \quad \frac{1}{\sqrt{n}} < 2\left(\sqrt{n + \frac{1}{2}} - \sqrt{n - \frac{1}{2}}\right) \quad (n \geqslant 1);$$

•
$$p = \frac{3}{2} \text{ Hz}$$
, $\frac{1}{\sqrt{n^3}} < 2 \left(\frac{1}{\sqrt{n - \frac{1}{2}}} - \frac{1}{\sqrt{n + \frac{1}{2}}} \right) \quad (n \geqslant 1);$

3. 其他裂项

•
$$C_n^r \cdot \frac{1}{n^r} = \frac{n!}{r! (n-r)!} \cdot \frac{1}{n^r} < \frac{1}{r!} < \frac{r-1}{r!} = \frac{1}{(r-1)!} - \frac{1}{r!} \quad (r \ge 2);$$

•
$$\frac{n+2}{n!+(n+1)!+(n+2)!} = \frac{1}{(n+1)!} - \frac{1}{(n+2)!}$$
;

•
$$\frac{q^n}{(q^n-1)^2} < \frac{q^n}{(q^n-1)(q^n-q)} = \frac{1}{q-1} \left(\frac{1}{q^{n-1}-1} - \frac{1}{q^n-1} \right) \ (q>1).$$

例题 4.3 对 p- 级数当 p=3 , $p=4^2$ 时进行裂项.

2
如证明: $\sum_{k=1}^{n} \frac{1}{k^{4}} < \frac{11}{10}$

 $^{^{1}}$ 形如 $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ 的级数称为 p- 级数, 当 p>1 时, p- 级数收敛; 当 0 时, <math>p 级数发散.

$$p=3$$
时,

$$\frac{1}{n^3} < \frac{1}{(n+1)n(n-1)} = \frac{1}{2} \left[\frac{1}{n(n-1)} - \frac{1}{n(n+1)} \right]$$

$$p = 4 \, \mathbb{H}^1$$
,

$$\frac{1}{n^4} < \frac{1}{\left(n - \frac{3}{2}\right)\left(n - \frac{1}{2}\right)\left(n + \frac{1}{2}\right)\left(n + \frac{3}{2}\right)}$$

$$= \frac{1}{3} \left[\frac{1}{\left(n - \frac{3}{2}\right)\left(n - \frac{1}{2}\right)\left(n + \frac{1}{2}\right)} - \frac{1}{\left(n - \frac{1}{2}\right)\left(n + \frac{1}{2}\right)\left(n + \frac{3}{2}\right)} \right].$$

例题 4.4 利用裂项法估计 $\sum_{k=1}^{n} \left[\left(1 + \frac{1}{k} \right) \ln \left(1 + \frac{1}{k} \right) - \frac{1}{k} \right]$ 的上界.

可以利用 $\ln(1+x)$ 的含参估计:

$$\ln(1+x) < \frac{\lambda x}{x+\lambda} (0 < x < (\lambda - 1)^2 - 1).$$

取
$$\lambda = \frac{5}{2}$$
,则²

$$\ln\left(1 + \frac{1}{n}\right) < \frac{\frac{5}{2n}}{\frac{1}{n} + \frac{5}{2}} = \frac{1}{n + \frac{2}{5}}$$

于是

$$\left(1 + \frac{1}{n}\right) \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n} = \frac{\frac{3}{5}}{n\left(n + \frac{2}{5}\right)} < \frac{\frac{3}{5}}{\left(n - \frac{3}{10}\right)\left(n + \frac{7}{10}\right)}$$
$$= \frac{3}{5} \left(\frac{1}{n - \frac{3}{10}} - \frac{1}{n + \frac{7}{10}}\right)$$

因此

$$\sum_{k=1}^{n} \left[\left(1 + \frac{1}{k} \right) \ln \left(1 + \frac{1}{k} \right) - \frac{1}{k} \right] < \frac{3}{5} \cdot \frac{1}{1 - \frac{3}{10}} = \frac{6}{7}.$$

例题 4.5 (1)求证: $\prod_{1=0}^{\infty} \left(1 - \frac{1}{4^n}\right) > \frac{2}{3}$; (2)求证: $\prod_{1=0}^{n} \left(1 + \frac{1}{9^k}\right) < 2$.

对于 $\prod\limits_{n=1}^{\infty}a_n$, $\lim\limits_{n\to\infty}a_n=1$ 类型的级数的上下界估计. 思路1: 可以用错项放缩法:

 $^{^{1}}$ 方法有很多也可以利用当 $n\geqslant N$ 时 $\frac{1}{n^{4}}\leqslant \frac{1}{n^{2}\cdot N^{2}}$ 等等 2 取更小的 λ 可以得到更为精细的结果,但此时应当适当后移放缩起点

若
$$n\geqslant N$$
 时,有 $\frac{b_n}{b_{n+1}}< a_n<\frac{c_n}{c_{n+1}}$ (其中 $\lim_{n\to\infty}b_n=1,\lim_{n\to\infty}c_n=1$),那么

$$\prod_{n=1}^{N-1} a_n \cdot b_N = \prod_{n=1}^{N-1} a_n \cdot \prod_{n=N}^{\infty} \frac{b_n}{b_{n+1}} < \prod_{n=1}^{\infty} a_n$$

$$= \prod_{n=1}^{N-1} a_n \cdot \prod_{n=N}^{\infty} a_n < \prod_{n=1}^{N-1} a_n \cdot \prod_{n=N}^{\infty} \frac{c_n}{c_{n+1}}$$

$$= \prod_{n=1}^{N-1} a_n \cdot c_N$$

对
$$a_n = 1 + \frac{1}{p^n}$$
 , 我们可以尝试证明 $a_n < \frac{1 - \frac{1}{p^n}}{1 - \frac{1}{p^{n-1}}}$ 或 $a_n > \frac{1 + \frac{1}{p^{n-1}}}{1 + \frac{1}{p^n}}$ 等等.
对 $a_n = 1 - \frac{1}{q^n}$, 我们可以尝试证明 $a_n > \frac{1 - \frac{1}{q^{n-1}}}{1 - \frac{1}{a^n}}$ 或 $a_n > \frac{1 + \frac{1}{p^n}}{1 + \frac{1}{q^{n-1}}}$ 等等.

思路2: 可以利用对数函数不等式

$$\frac{x}{x+1} < \ln(1+x) < x(x > -1)$$

$$\frac{2x}{1+x} < \ln(1+x) < \frac{x}{\sqrt{1+x}}(x > 0)$$

$$\frac{x}{\sqrt{1+x}} < \ln(1+x) < \frac{2x}{1+x}(x < 0)$$

进行放缩.

思路3: 可以利用不等式

$$\prod_{k=1}^{n} (1+b_k) > 1 + \sum_{k=1}^{n} b_k (\sharp + b_k) > -1, k = 1, 2, \dots, n)$$

第(1)小题题解:

思路1:

考虑错项放缩:

$$1 - \frac{1}{4^n} > \frac{1 - \frac{1}{4^{n-1}}}{1 - \frac{1}{4^n}} (n \ge 1)$$

恰当后移放缩起点:

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{4^n} \right) > \prod_{n=1}^{3} \left(1 - \frac{1}{4^n} \right) \cdot \left(1 - \frac{1}{4^3} \right) > \frac{2}{3}$$

考虑错项放缩:

$$1 - \frac{1}{4^n} > \frac{1 + \frac{1}{4^n}}{1 + \frac{1}{4^{n-1}}} (n \ge 1)$$

恰当后移放缩起点:

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{4^n}\right) > \prod_{n=1}^{3} \left(1 - \frac{1}{4^n}\right) \cdot \frac{1}{1 + \frac{1}{4^3}} > \frac{2}{3}$$

思路2:

$$\ln \prod_{n=1}^{\infty} \left(1 - \frac{1}{4^n} \right) = \sum_{n=1}^{\infty} \ln \left(1 - \frac{1}{4^n} \right) = \ln \frac{3}{4} + \sum_{n=2}^{\infty} \ln \left(1 - \frac{1}{4^n} \right)$$

$$> \ln \frac{3}{4} + \sum_{n=2}^{\infty} \frac{-\frac{1}{4^n}}{1 - \frac{1}{4^n}} = \ln \frac{3}{4} - \sum_{n=2}^{\infty} \frac{1}{4^n - 1}$$

$$> \ln \frac{3}{4} - \frac{\frac{1}{4^2 - 1}}{1 - \frac{1}{4}} = \ln \frac{3}{4} - \frac{1}{20} > \ln \frac{2}{3}$$

思路31:

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{4^n} \right) > 1 - \sum_{n=1}^{\infty} \frac{1}{4^n} > 1 - \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{2}{3}.$$

第(2)小题题解:

思路1:

考虑错项放缩:

$$1 + \frac{1}{9^n} < \frac{1 + \frac{1}{9^{n-1}}}{1 + \frac{1}{9^n}} (n \geqslant 1)$$

于是

$$\prod_{k=1}^{n} \left(1 + \frac{1}{9^k} \right) < \frac{1 + \frac{1}{9^{1-1}}}{1 + \frac{1}{9^n}} < 2$$

考虑错项放缩:

$$1 + \frac{1}{9^n} < \frac{1 - \frac{1}{9^n}}{1 - \frac{1}{9^{n-1}}} (n \ge 1)$$

于是

$$\prod_{k=1}^{n} \left(1 + \frac{1}{9^k} \right) < \left(1 + \frac{1}{9} \right) \cdot \frac{1 - \frac{1}{9^n}}{1 - \frac{1}{0^{2-1}}} < \frac{5}{4}.$$

¹里用到了等比放缩法

思路2:

$$\ln \prod_{k=1}^{n} \left(1 + \frac{1}{9^k} \right) = \sum_{k=1}^{n} \ln \left(1 + \frac{1}{9^k} \right)$$

$$< \sum_{k=1}^{n} \frac{\frac{1}{9^k}}{1 + \frac{1}{9^k}} = \sum_{k=1}^{n} \frac{1}{9^k + 1}$$

$$< \frac{\frac{1}{9^1 + 1}}{1 - \frac{1}{9}} = \frac{9}{80} < \ln 2$$

思路3:

$$\frac{1}{\prod_{k=1}^{n} \left(1 + \frac{1}{9^k}\right)} = \prod_{k=1}^{n} \frac{1}{1 + \frac{1}{9^k}} = \prod_{k=1}^{n} \left(1 - \frac{1}{9^k + 1}\right)$$

$$> 1 - \sum_{k=1}^{n} \frac{1}{9^k + 1} > 1 - \sum_{k=1}^{n} \frac{1}{9^k}$$

$$> 1 - \frac{\frac{1}{9}}{1 - \frac{1}{9}} = \frac{7}{8}$$

于是
$$\prod_{k=1}^{n} \left(1 + \frac{1}{9^k}\right) < \frac{8}{7} < 2$$
.

例题 4.6 求证¹:
$$\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot 8 \cdot \dots \cdot 2n} < \frac{1}{\sqrt{2n+1}}$$
.

法1

$$\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot 8 \cdot \dots \cdot 2n} = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \dots \cdot \frac{2n-1}{2n}$$

$$< \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \frac{8}{9} \cdot \dots \cdot \frac{2n}{2n+1}$$

$$= \frac{2}{1} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdot \frac{8}{7} \cdot \dots \cdot \frac{2n}{2n-1} \cdot \frac{1}{2n+1}$$

于是

$$\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot 8 \cdot \dots \cdot 2n} < \frac{1}{\sqrt{2n+1}}.$$

法2

原不等式即

$$\ln \frac{2 \cdot 4 \cdot 6 \cdot 8 \cdot \dots \cdot 2n}{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)} > \ln \sqrt{2n+1}$$

¹此题可以直接用分析通项法处理,这里给出分式放缩的解法

也即

$$\ln 2 + \sum_{k=2}^{n} \ln \left(1 + \frac{1}{2k-1} \right) > \frac{1}{2} \left[\ln 2 + \ln \left(n + \frac{1}{2} \right) \right]$$

考虑到

$$\ln\left(1 + \frac{1}{2n-1}\right) > \frac{\frac{1}{2n-1}}{1 + \frac{1}{2n-1}} = \frac{1}{2n},$$

于是1

$$\ln 2 + \sum_{k=2}^{n} \ln \left(1 + \frac{1}{2k-1} \right) > \ln 2 + \frac{1}{2} \sum_{k=2}^{n} \frac{1}{n} > \ln 2 + \frac{1}{2} \int_{2}^{n+1} \frac{1}{x} dx$$

$$= \ln 2 + \frac{1}{2} \ln x \Big|_{2}^{n+1}$$

$$= \frac{1}{2} \ln 2 + \frac{1}{2} \ln (n+1)$$

$$> \frac{1}{2} \left[\ln 2 + \ln \left(n + \frac{1}{2} \right) \right]$$

于是原不等式得证.

4.3 进阶篇

例题 4.7 数列 $\{a_n\}$ 中 $a_1=2$, $a_{n+1}=a_n{}^2-a_n+1$. 求证:

$$1 - \frac{1}{2014^{2014}} < \sum_{k=1}^{2014} \frac{1}{a_k} < 1.$$

根据题意

$$a_{n+1} - 1 = a_n (a_n - 1)$$

$$\Rightarrow \frac{1}{a_{n+1} - 1} = \frac{1}{a_n - 1} - \frac{1}{a_n}$$

$$\Rightarrow \sum_{k=1}^n \frac{1}{a_k} = \sum_{k=1}^n \left(\frac{1}{a_k - 1} - \frac{1}{a_{k+1} - 1} \right) = \frac{1}{a_1 - 1} - \frac{1}{a_{n+1} - 1} = 1 - \frac{1}{a_{n+1} - 1}$$

于是原不等式即

$$a_{2015} - 1 > 2014^{2014}$$

考虑用数学归纳法,若 $a_{n+1}-1 > n^n$,则

$$a_{n+2} - 1 = a_{n+1} (a_{n+1} - 1) > n^n (n^n - 1)$$

¹这里用到了积分放缩

24

于是只需要证明

$$n^{n}(n^{n}-1) > (n+1)^{n+1},$$

即

$$\frac{n^n - 1}{n + 1} > \left(1 + \frac{1}{n}\right)^n.$$

将 $\frac{n^n-1}{n+1}$ 放缩至

$$\frac{n^3 - 1}{n + 1} = n^2 - n + 1 (n \ge 3) \ge 7 > 3 > \left(1 + \frac{1}{n}\right)^n$$

因此选择归纳起点为n=3时即可.

事实上, $a_2 = 3$, $a_3 = 7$,于是 $a_3 - 1 > 2^2$ 成立.

例题 4.8 已知
$$a_1=1$$
, $a_{n+1}=\left(1+rac{1}{2^n}
ight)a_n+rac{1}{n^2}$, 求证: $a_n<\mathrm{e}^{\frac{11}{4}}$.

不难证明 a_n 单调递增,于是 $a_n \ge 1$,进而

$$\ln \frac{a_{n+1}}{a_n} = \ln \left(1 + \frac{1}{2^n} + \frac{1}{n^2} \cdot \frac{1}{a_n} \right) \leqslant \ln \left(1 + \frac{1}{2^n} + \frac{1}{n^2} \right) < \frac{1}{2^n} + \frac{1}{n^2}$$

于是

$$\ln a_{n+1} = \sum_{k=1}^{n} \ln \frac{a_{k+1}}{a_k} < \sum_{k=1}^{n} \left(\frac{1}{2^n} + \frac{1}{n^2}\right)$$

$$< \frac{\frac{1}{2}}{1 - \frac{1}{2}} + \frac{1}{1^2} + \frac{1}{2^2} + \sum_{k=3}^{n} \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$< 1 + 1 + \frac{1}{4} + \frac{1}{2} = \frac{11}{4}$$

例题 **4.9** 设 a_n 是函数 $f(x) = x^3 + n^2x - 1$ 的零点.

(1)求证: $0 < a_n < 1$;

(2)求证:
$$\frac{n}{n+1} < \sum_{k=1}^{n} a_k < \frac{3}{2}$$
.

(1)显然 f(x) 在 (0,1) 上连续且单调递增,而 f(0) < 0 , f(1) > 0 . 于是 $a_n \in (0,1)$.

(2)对左边的不等式,尝试使用分析通项.只需要证明

$$a_n > \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}$$

事实上,

$$f\left(\frac{1}{n(n+1)}\right) = \frac{1}{n^3(n+1)^3} + n^2 \cdot \frac{1}{n(n+1)} - 1 = \frac{1}{n^3(n+1)^3} - \frac{1}{n+1} < 0$$

于是

$$a_n \in \left(\frac{1}{n(n+1)}, 1\right),$$

因此左边的不等式成立. 对于右边的不等式, 不适合分析通项法.

先估计 a_n 的上界,考虑到

$$f\left(\frac{1}{n^2}\right) = \frac{1}{n^6} > 0,$$

于是

$$a_n < \frac{1}{n^2}.$$

因此(稍微后移起点,仍然较大)

$$\sum_{k=1}^{n} a_k < \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{1} + \frac{1}{4} + \sum_{k=3}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) < 1 + \frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{3}{2}$$

对 a_1 进行更精细的估计,我们的目标是试图证明 $a_1 \leqslant \frac{3}{4}$.

事实上当
$$n=1$$
 时, $f\left(\frac{3}{4}\right)=\frac{11}{64}>0$,于是 $a_1<\frac{3}{4}$. 这样就有

$$\sum_{k=1}^{n} a_k < \frac{3}{4} + \sum_{k=2}^{n} \frac{1}{k^2} < \frac{3}{4} + \frac{1}{4} + \sum_{k=3}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) < \frac{3}{4} + \frac{1}{4} + \frac{1}{2} = \frac{3}{2}$$

因此原不等式得证.

例题 4.10 已知数列 $\{a_n\}$ 满足 $a_0=\frac{1}{2}$, $a_n=a_{n-1}+\frac{1}{n^2}\cdot a_{n-1}{}^2$, 求证: $\frac{n+1}{n+2}< a_n< n$.

注意到 $\left\{\frac{1}{a_{s}}\right\}$ 单调递减趋于0,将递推式改写为

$$\frac{1}{a_{n-1}} - \frac{1}{a_n} = \frac{1}{a_{n-1}} - \frac{1}{a_{n-1} + \frac{1}{n^2} \cdot a_{n-1}^2} = \frac{1}{n^2 + a_{n-1}}$$

欲证不等式为

$$\frac{1}{n} < \frac{1}{a_n} < \frac{n+2}{n+1},$$

也即

$$\frac{n}{n+1} < \frac{1}{a_0} - \frac{1}{a_n} < 2 - \frac{1}{n}.$$

由 $a_{n-1} > 0$ 得²

$$\frac{1}{a_{n-1}} - \frac{1}{a_n} < \frac{1}{n^2}$$

 $^{^1}$ 这种利用单调性配合极限改写数列递推式的思考方式在不动点法中的体现更加明显,后面会单独讲解不动点裂项 2 用下界去估计上界

于是1

$$\frac{1}{a_0} - \frac{1}{a_n} = \sum_{k=1}^n \left(\frac{1}{a_{k-1}} - \frac{1}{a_k} \right) < \sum_{k=1}^n \frac{1}{k^2} < 1 + \sum_{k=2}^n \frac{1}{(k-1)k} = 2 - \frac{1}{n}$$

此时 $a_n < n$,于是

$$\frac{1}{a_{n-1}} - \frac{1}{a_n} = \frac{1}{n^2 + a_{n-1}} > \frac{1}{n^2 + n - 1} > \frac{1}{n} - \frac{1}{n+1}$$

进而2

$$\frac{1}{a_0} - \frac{1}{a_n} = \sum_{k=1}^n \left(\frac{1}{a_{k-1}} - \frac{1}{a_k} \right) > \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1} \right) = \frac{n}{n+1}.$$

因此原不等式成立.

4.4 习题

习题 4.1 已知
$$a_n=4^n-2^n$$
, $T_n=\frac{2^n}{a_1+a_2+\cdots+a_n}$. 求证: $\sum\limits_{k=1}^n T_k<rac{3}{2}$.

习题 **4.2** (1)求证:
$$\sum_{k=1}^{n} \frac{1}{k^2} < 2 - \frac{1}{n^2}$$
 ($n \ge 2$).

(2) 求证:
$$\sum_{k=1}^{n} \frac{1}{k^2} < \frac{5}{3}$$
.

(3) 求证:
$$\sum_{k=1}^{n} \sin \frac{1}{(k+1)^2} < \ln 2$$
.

习题 4.3 求证:
$$\sum_{k=1}^{n} \frac{1}{(k+1)(2k+1)} < \frac{5}{12}$$
.

习题 4.4 求证:
$$\sum_{k=1}^{n} \frac{1}{(2k-1)^2} > \frac{7}{6} - \frac{1}{2(2n-1)}$$
 ($n \ge 2$).

习题 4.5 求证:
$$2(\sqrt{n+1}-1) < \sum_{k=1}^{n} \frac{1}{\sqrt{k}} < \sqrt{2}(\sqrt{2n+1}-1)$$
.

习题 4.6 求证:
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \frac{\ln 4^2}{4^2} + \dots + \frac{\ln n^2}{n^2} > \frac{n-1}{2n(n+1)}$$
 ($n \geqslant 2$).

习题 4.7 求证:
$$\prod_{k=2}^{n} \left(1 + \frac{1}{k!}\right) < e$$
.

习题 4.8 求证:
$$\prod_{k=1}^{n} \left(1 + \frac{1}{3k-2}\right) > \sqrt[3]{3n+1}^3$$
.

习题 4.9 已知数列
$$\{a_n\}$$
 单调递增, $a_1=2$, $\frac{a_{2n}}{a_n}\leqslant 1+\frac{1}{n}$,求证: $a_n\leqslant 12$.

习题 4.10 若
$$a_1 = 1$$
, $a_{n+1} \cdot a_n = n+1$, 求证: $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \geqslant 2\left(\sqrt{n+1} - 1\right)$.

¹ 这就意味着本题一定可以由数学归纳法证出 2又用对上界的估计去重新估计下界,这是常用的手段

³提示: 利用两次糖水原理进行放缩即可

习题 4.11 已知数列 $\{a_n\}$ 中, $a_1=\frac{1}{2}$, $a_{n+1}=\frac{{a_n}^2}{{a_n}^2-a_n+1}$,求证: $\sum\limits_{k=1}^n a_k<1$.

习题 4.12 已知
$$a_1=1$$
, $a_{n+1}=\left(1+\frac{1}{n^2+n}\right)a_n+\frac{1}{2^n}$, 求证: $a_n<\mathrm{e}^2$.

4.5 习题参考答案

习题 4.1 经计算

$$T_n = \frac{3 \cdot 2^n}{4 \cdot 2^{2n} - 6 \cdot 2^n + 2} = \frac{3}{2} \cdot \frac{2^n}{(2^{n+1} - 1)(2^n - 1)} = \frac{3}{2} \left(\frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1} \right)$$

从而

$$\sum_{k=1}^{n} T_k = \frac{3}{2} \sum_{k=1}^{n} \left(\frac{1}{2^k - 1} - \frac{1}{2^{k+1} - 1} \right) = \frac{3}{2} \left(\frac{1}{2 - 1} - \frac{1}{2^{n+1} - 1} \right) < \frac{3}{2}.$$

习题 **4.2** (1)
$$\sum_{k=1}^{n} \frac{1}{k^2} < 1 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) = 2 - \frac{1}{n}$$
.

$$(2)\sum_{k=1}^{n} \frac{1}{k^2} < 1 + \sum_{k=2}^{n} \left(\frac{1}{k - \frac{1}{2}} - \frac{1}{k + \frac{1}{2}} \right) = 1 + \frac{1}{2 - \frac{1}{2}} - \frac{1}{n + \frac{1}{2}} < \frac{5}{3}.$$

$$(3) \sum_{k=1}^{n} \sin \frac{1}{(k+1)^2} < \sum_{k=1}^{n} \frac{1}{(k+1)^2} < \frac{1}{4} + \frac{1}{9} + \sum_{k=3}^{n} \frac{1}{(k+\frac{1}{2})(k+\frac{3}{2})} < \ln 2.$$

习题 4.3 放缩裂项

$$\sum_{k=1}^{n} \frac{1}{(k+1)(2k+1)} < \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

或

$$\sum_{k=1}^{n} \frac{1}{\left(k+1\right)\left(2k+1\right)} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{\left(k+1\right)\left(k+\frac{1}{2}\right)} < \frac{1}{2} \sum_{k=1}^{n} \frac{1}{\left(k+\frac{5}{4}\right)\left(k+\frac{1}{4}\right)}.$$

习题 4.4
$$\sum\limits_{k=1}^{n}rac{1}{\left(2k-1
ight)^{2}}>1+rac{1}{2}\sum\limits_{k=2}^{n}\left(rac{1}{2k-1}-rac{1}{2k+1}
ight)=rac{7}{6}-rac{1}{2\left(2n+1
ight)}$$
 .

习题 4.5 利用
$$2\left(\sqrt{n+1}-\sqrt{n}\right)<\frac{1}{\sqrt{n}}<2\left(\sqrt{n+\frac{1}{2}}-\sqrt{n-\frac{1}{2}}\right)$$
 即得.

习题 4.6 放缩裂项

$$\begin{split} \sum_{k=2}^{n} \frac{\ln k^2}{k^2} &> \ln 4 \cdot \sum_{k=2}^{n} \frac{1}{k^2} > \ln 4 \cdot \sum_{k=2}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) \\ &= \ln 4 \left(\frac{1}{2} - \frac{1}{n+1} \right) = \frac{n-1}{2(n+1)} \cdot \ln 4 \\ &> \frac{n-1}{2(n+1)} \cdot \frac{1}{n} \end{split}$$

习题 4.7 参见相关例题.

习题 4.8 参见相关例题.

习题 4.9 根据题意

$$\frac{a_{2n}}{a_n} \leqslant 1 + \frac{1}{n} = \frac{n+1}{n},$$

于是

$$a_{2^n} = a_1 \cdot \prod_{k=1}^n \frac{a_{2^k}}{a_{2^{k-1}}} \leqslant a_1 \cdot \prod_{k=1}^n \frac{2^{k-1}+1}{2^{k-1}} = 2a_1 \cdot \prod_{k=1}^{n-1} \frac{2^k+1}{2^k}$$

可以利用分析通项法证明

$$\prod_{k=1}^{n} \left(1 + \frac{1}{2^k}\right) \leqslant 3\left(1 - \frac{1}{2^n}\right)$$

这样我们就证明了 $a_{2^n} \leq 12$, 因此 $a_n \leq 12$.

习题 4.10 根据题意

$$\begin{cases} a_{n+1} \cdot a_n = n+1 \\ a_{n+2} \cdot a_{n+1} = n+2 \end{cases} \Rightarrow a_{n+1} \left(a_{n+2} - a_n \right) = 1 \Rightarrow \frac{1}{a_{n+1}} = a_{n+2} - a_n$$

于是

$$\sum_{k=1}^{n} \frac{1}{a_k} = \frac{1}{a_1} + (a_3 - a_1) + (a_4 - a_2) + \dots + (a_{n+1} - a_{n-1})$$

$$= \frac{1}{a_1} + a_n + a_{n+1} - a_1 - a_2$$

$$\geqslant 1 - 1 - 2 + 2\sqrt{a_n a_{n+1}} (a_1 = 1, a_2 = 2, A - G \overrightarrow{\wedge} \overrightarrow{\div} \overrightarrow{\wedge})$$

$$= 2\left(\sqrt{n+1} - 1\right)$$

于是原不等式成立.

习题 4.11 参见相关例题.

习题 4.12 参见相关例题.

5 不动点裂项

5.1 迭代函数

对于一阶递推式 $a_{n+1} = f(a_n)$ 而言, f(x) 称为数列 $\{a_n\}$ 的迭代函数, a_1 称为迭代初值. 利用迭代函数 y = f(x) 与直线 y = x 的图象可以方便的研究递推数列的单调性. 可以发现迭代函数的图象与直线 y = x 的交点在判断中起着重要的作用,我们称其横坐标为(数列的,或迭代函数的)不动点. 下面给出典型的几种迭代函数的图象与对应的单调性判断.

例题 5.1 已知数列 $\{a_n\}$ 满足 $a_1=a+2$ ($a\geqslant 0$), $a_{n+1}=\sqrt{\frac{a_n+a}{2}}$ ($n\in {\bf N}^*$).

- (1)若 a=0, 求数列 $\{a_n\}$ 的通项公式;
- (2)设 $b_n = |a_{n+1} a_n|$,数列 $\{b_n\}$ 的前 n 项和为 S_n , 求证: $S_n < a_1$.

$$(1) a = 0$$
时,

$$a_1 = 2, a_{n+1} = \sqrt{\frac{a_n}{2}},$$

于是

$$2a_{n+1} = (2a_n)^{\frac{1}{2}} \Rightarrow 2a_n = (2a_1)^{\frac{1}{2^{n-1}}},$$

进而

$$a_n = 2^{\frac{1}{2^{n-2}} - 1}.$$

(2)令 $f(x)=\sqrt{rac{x+a}{2}}$. 其不动点方程为 $x=\sqrt{rac{x+a}{2}}$,即 $2x^2-x-a=0$. 容易判断出初值 在不动点右侧,因此数列 $\{a_n\}$ 递减.

因此

$$S_n = \sum_{i=1}^n |a_{i+1} - a_i| = \sum_{i=1}^n (a_i - a_{i+1}) = a_1 - a_{n+1} < a_1.$$

另法

$$\begin{cases} 2a_{n+1}^2 = a_n + a \\ 2a_{n+2}^2 = a_{n+1} + a \end{cases} \Rightarrow 2(a_{n+2} - a_{n+1})(a_{n+2} + a_{n+1}) = a_{n+1} - a_n$$

因此 $a_{n+1} - a_n$ 的符号与 $a_2 - a_1$ 的符号相同.

例题 5.2 (2012年安徽理)数列 $\{x_n\}$ 满足 $x_1=0$, $x_{n+1}=-x_n^{\ 2}+x_n+c$ ($n\in {f N}^*$).

- (1)证明: $\{x_n\}$ 是递减数列的充分必要条件是 c < 0;
- (2)求 c 的取值范围,使 $\{x_n\}$ 是递增数列.
- (1)充分性: c < 0时,

$$\Delta x_n = x_{n+1} - x_n = -x_n^2 + c < 0,$$

于是 $\{x_n\}$ 是递减数列.

必要性: $x_1 = 0$, $x_2 = c$, $\{x_n\}$ 递减时一定有 c < 0.

综上,原命题得证.

(2)不难证明0 < c < 1.

考虑到函数 $f(x) = -x^2 + x + c$ 的对称轴为 $x = \frac{1}{2}$,不动点为 $\pm \sqrt{c}$,因此有两种情况.

第一种情况, $\sqrt{c} \leqslant \frac{1}{2}$.

此时函数图象如左图,容易证明 $x_n \in [-\sqrt{c}, \sqrt{c}]$,于是 $f(x_n) > x_n$ 即 $x_{n+1} > x_n$,即数列 $\{x_n\}$ 单调递增.

第二种情况, $\sqrt{c} > \frac{1}{2}$.

此时函数图象如右图,此时 $\{x_n\}$ 应为摆动数列,考虑用反证法.

只需要证明数列中存在某项 $x_k \in \left(\frac{1}{2}, \sqrt{c}\right)$ 即可(这样 $x_{k+1} > \sqrt{c}$, $x_{k+2} < \sqrt{c}$ 也就是说只需要证明若 $\{x_n\}$ 单调递增,则 $\{x_n\}$ 的极限为 \sqrt{c} ,就可以推出矛盾. 事实上¹,

$$\sqrt{c} - x_{n+1} = (\sqrt{c} - x_n) (1 - \sqrt{c} - x_n) < (1 - \sqrt{c}) (\sqrt{c} - x_n) (\because x_n > 0)$$

于是

$$\sqrt{c} - x_{n+1} < (1 - \sqrt{c})^n (\sqrt{c} - x_1) = \sqrt{c} \cdot (1 - \sqrt{c})^n$$

因此 $\{x_n\}$ 的极限为 \sqrt{c} .

综上, c的取值范围为 $\left(0,\frac{1}{4}\right)$.

例题 5.3 (2008年全国I卷)设函数 $f(x)=x-x\ln x$. 数列 $\{a_n\}$ 满足: $0< a_1<1$, $a_{n+1}=f(a_n)$. 设 $b\in(a_1,1)$,整数 $k\geqslant \frac{a_1-b}{a_1\ln b}$. 证明: $a_{k+1}>b$.

由不动点法容易分析出数列 $\{a_n\}$ 单调递增,极限为 1.

由于 $a_1 < b < 1$,于是存在正整数N,使得 $a_N \leq b < a_{N+1}$,题意即需要我们去证明 $N \leq k$.

由

$$a_{n+1} = a_n - a_n \ln a_n$$

得

$$a_{n+1} - a_n = -a_n \ln a_n.$$

 $^{^1}$ 注意这里利用不动点构造裂项形式

于是

$$a_{k+1} = a_1 + \sum_{m=1}^{k} (a_{m+1} - a_m)$$

$$= a_1 + \sum_{m=1}^{k} (-a_m \ln a_m)$$

$$> a_1 + \sum_{m=1}^{k} (-a_1 \ln b)$$

$$= a_1 + k (-a_1 \ln b)$$

$$\geqslant a_1 + \frac{b - a_1}{-a_1 \ln b} \cdot (-a_1 \ln b)$$

$$= b$$

5.2 不动点裂项

对于一阶递推式 $a_{n+1}=f(a_n)$,若 f(x) 为多项式函数 (或分式多项式函数),且 α 为 f(x) 的不动点,那么 $f(a_n)-\alpha$ 一定有因式 $a_n-\alpha$. 设

$$f(a_n) - \alpha = (a_n - \alpha) \cdot A,$$

则有

$$\frac{a_{n+1} - \alpha}{a_n - \alpha} = A,$$

这种改写递推式为裂项形式的方法称为不动点裂项. 不动点裂项是改造递推式从而尝试求通项的重要方法, 也是得到数列的裂项放缩方式的重要手段.

例题 5.4 已知递推求不动点裂项

(1)
$$a_{n+1} = 2a_n + 1$$
; (2) $a_{n+1} = \frac{3a_n + 5}{5a_n + 3}$; (3) $a_{n+1} = a_n^2 - 2a_n + 2$; (4) $a_{n+1} = \frac{a_n^2 + 4}{2a_n}$.

解:
$$(1) a_{n+1} + 1 = 2 (a_n + 1)$$
; $(2) \frac{a_{n+1} + 1}{a_{n+1} - 1} = 4 \cdot \frac{a_n + 1}{a_n - 1}$;

(3)
$$a_{n+1} - 1 = (a_n - 1)^2$$
; (4) $\frac{a_{n+1} + 2}{a_{n+1} - 2} = \left(\frac{a_n + 2}{a_n - 2}\right)^2$.

例题 5.5 数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$.

(1)若
$$a_1 = 1$$
, 求证: $\frac{2}{\sqrt{a_n^2 - 2}}$ ($n \ge 2$) 均为整数;

(2)若
$$a_1 = 2$$
,求证: $1 < a_n < \frac{3}{2} + \frac{1}{n}$.

$$(1)$$
令 $b_n = \frac{2}{\sqrt{{a_n}^2 - 2}}$,则

$$b_{n+1}^2 = b_n^2 (4 + 2b_n^2) = b_n^2 [4 + 2b_{n-1}^2 (4 + 2b_{n-1}^2)] = b_n^2 \cdot (2b_{n-1}^2 + 2)^2$$

而 $a_2 = \frac{3}{2}$,于是 $b_2 = 4$,进而 b_n ($n \ge 3$)均为整数. (2)如图.

用不动点裂项

$$\frac{a_{n+1} - \sqrt{2}}{a_n - \sqrt{2}} = \frac{a_n - \sqrt{2}}{2a_n}$$

于是由 $a_1 = 2 > \sqrt{2}$, 容易知道 $a_n > \sqrt{2}$.

$$\frac{a_{n+1} - \sqrt{2}}{a_n - \sqrt{2}} = \frac{a_n - \sqrt{2}}{2a_n} = \frac{1}{2} - \frac{1}{\sqrt{2}a_n} < \frac{1}{2}$$

于是 1 当 $n \ge 2$ 时

$$a_n - \sqrt{2} \leqslant \left(\frac{1}{2}\right)^{n-2} \left(a_2 - \sqrt{2}\right) = \frac{6 - 4\sqrt{2}}{2^n} < \frac{1}{2^n} < \frac{1}{1 + C_n^1} = \frac{1}{n+1}$$

而 n=1 时,右边不等式显然成立.

综上,原命题得证.

5.3 习题

习题 5.1 利用迭代函数处理下面的问题:

- (1)已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=\frac{1+2a_n}{1+a_n}$, 求证: $a_n<\frac{1+\sqrt{5}}{2}$.
- (2)已知数列 $\{a_n\}$ 满足 $a_1 = a$ (0 < a < 1), $a_{n+1} = a^{a_n}$,试比较 a_{20}, a_{25}, a_{30} 三者的大小关系.

(3)已知数列
$$\{a_n\}$$
 满足 $a_1 = 1 + a$ (0 < a < 1), $a_{n+1} = \frac{1}{a_n} + a$, 求证: $a_n > 1$.

习题 5.2 已知
$$x_{n+1} = \frac{x_n+4}{x_n+1}$$
, $x_1 = 1$, 求证: 当 $n \geqslant 2$ 时, $\sum_{i=1}^n |x_i-2| \leqslant 2 - 2^{1-n}$.

习题 5.3 (2010年全国卷I) 已知数列 $\{a_n\}$ 中, $a_1=1$, $a_{n+1}=c-\frac{1}{a_n}$.

(1)设
$$c = \frac{5}{2}$$
, $b_n = \frac{1}{a_{n-2}}$, 求数列 $\{b_n\}$ 的通项公式;

(2)求使不等式 $a_n < a_{n+1} < 3$ 恒成立的 c 的取值范围.

习题 5.4 已知数列
$$\{a_n\}$$
 中, $a_1=\frac{1}{2}$, $a_{n+1}=\sin\left(\frac{\pi}{2}a_n\right)$, 求证: $\frac{1-a_{n+1}}{1-a_n}<\frac{\pi}{4}$.

¹这里用到了二项式放缩

34

习题 5.5 己知 $a_1 = e$, $a_{n+1} = a_n - \ln a_n$.

(1)求证: $1 < a_{n+1} < a_n \leqslant e$;

(2) \Rightarrow i.
$$0 < \sum_{k=1}^{n} \frac{a_k - a_{k+1}}{a_k \sqrt{a_k}} < 1$$
.

习题参考答案 5.4

(1)如图,不动点为 $\frac{1+\sqrt{5}}{2}$,可以加强命题为

$$1 < a_n < \frac{1+\sqrt{5}}{2}.$$

(2)可以认为初值为 $a_0 = 1$, 迭代函数 $f(x) = a^x$, 由于 0 < a < 1. 如图,设不动点为 α ,易知

$$a_{25} < \alpha < a_{30} < a_{20}.$$

(3)如图,可以加强命题为 $1 < a_n < \frac{1}{1-a}$.

习题 5.1 利用不动点法容易知道数列 $\{x_n\}$ 为摆动数列,且极限为 2.

利用不动点2,构造裂项

$$\frac{x_{n+1}-2}{x_n-2} = -\frac{1}{x_n+1}$$

于是

$$\left| \frac{x_{n+1} - 2}{x_n - 2} \right| = \left| \frac{1}{x_n + 1} \right| \leqslant \frac{1}{2} \Phi x_n \geqslant 1 \Psi$$

因此由等比放缩法,

$$\sum_{i=1}^{n} |x_i - 2| \leqslant \frac{|x_1 - 2| \left(1 - \frac{1}{2^n}\right)}{1 - \frac{1}{2}} = 2 - \frac{1}{2^{n-1}}.$$

习题 **5.2** (1)
$$b_n = -\frac{1}{3} \cdot 4^{n-1} - \frac{2}{3}$$
;

(2)因为

$$a_{n+2} + \frac{1}{a_{n+1}} = a_{n+1} + \frac{1}{a_n} = c,$$

所以

$$a_{n+2} - a_{n+1} = \frac{a_{n+1} - a_n}{a_n a_{n+1}}$$

于是

$$a_n < a_{n+1} \Leftrightarrow a_{n+1} - a_n > 0 \Leftrightarrow a_2 - a_1 > 0 \Leftrightarrow c > 2.$$

由于数列递增且有上界,于是 a_n 存在不大于3的极限:

$$c \leqslant \lim_{n \to \infty} a_n + \frac{1}{\lim_{n \to \infty} a_n} \leqslant 3 + \frac{1}{3} = \frac{10}{3}.$$

因此 $2 < c \leqslant \frac{10}{3}$.

第一种情况,当 $c \leqslant \frac{10}{3}$ 时,不等式恒成立. 用数学归纳法证明如下:

当 n=1 时, $a_1=1<3$;

假设当
$$n=k$$
时, $a_k < 3$,则 $a_{k+1} = c - \frac{1}{a_k} < \frac{10}{3} - \frac{1}{3} = 3$.

因此, $a_n < 3$ 恒成立.

第二种情况,当 $c > \frac{10}{3}$ 时,不等式不恒成立. 用反证法证明如下:

假设不等式 $a_n < a_{n+1} < 3$ 恒成立.

设
$$c = A + \frac{1}{A}$$
,其中 $A > 3$,则

$$a_{n+1} + \frac{1}{a_n} = A + \frac{1}{A},$$

由于1

$$A - a_{n+1} = \frac{A - a_n}{A \cdot a_n}, \frac{A - a_{n+1}}{A - a_n} = \frac{1}{A \cdot a_n} \leqslant \frac{1}{A} < \frac{1}{3} (\because a_n \geqslant 1, A > 3)$$

于是

$$A - a_{n+1} < \left(\frac{1}{3}\right)^n (A - a_1) = \left(\frac{1}{3}\right)^n (A - 1)$$

因此必然存在 N , 使得 $A-a_{N+1} < A-3$, 即 $a_{N+1} > 3$, 矛盾.

因此当 $c > \frac{10}{3}$ 时,不等式不恒成立.

(2) $c \leq \frac{10}{3}$ 部分的另证:

设不动点方程 $x=c-\frac{1}{x}$ 的解为 α 、 β , 其中 $\alpha > 1$, $\beta < 1$, 则

$$\alpha + \beta = c, a\beta = 1.$$

¹注意这里利用不动点构造裂项形式

$$\diamondsuit b_n = rac{a_n - lpha}{a_n - eta}$$
,则

$$\frac{b_{n+1}}{b_n} = \frac{\beta}{\alpha},$$

于是

$$b_n = \left(\frac{\beta}{\alpha}\right)^{n-1} \cdot \frac{1-\alpha}{1-\beta}$$

因此

$$a_n = \frac{\beta b_n - \alpha}{b_n - 1} = \frac{\frac{\beta^n}{\alpha^{n-1}} \cdot \frac{1 - \alpha}{1 - \beta} - \alpha}{\frac{\beta^{n-1}}{\alpha^{n-1}} \cdot \frac{1 - \alpha}{1 - \beta} - 1} = \frac{1 + \alpha^{2n-1}}{\alpha + \alpha^{2n-2}}.$$

因为 $a_n < 3$ 恒成立,于是

$$1 + \alpha^{2n-1} < 3\alpha + 3\alpha^{2n-2},$$

所以 $(\alpha - 3) \cdot \alpha^{2n-2} < 3\alpha - 1$ 恒成立.

进而 $\alpha > 1$,该不等式恒成立,则 $\alpha \leqslant 3$,于是 $c \leqslant \frac{10}{3}$.

习题 5.3 由迭代函数可知 $\{a_n\}$ 单调递增趋于 1. 而

$$1 - a_{n+1} = 1 - \sin\left(\frac{\pi}{2}a_n\right) = 1 + \sin\left(\frac{\pi}{2}(1 - a_n) - \frac{\pi}{2}\right)$$

$$= 1 - \cos\left(\frac{\pi}{2}(1 - a_n)\right) = 2\sin^2\left(\frac{\pi}{4}(1 - a_n)\right)$$

$$< \frac{\pi^2}{8}(1 - a_n)^2 < \frac{\pi^2}{8}\left(1 - \frac{1}{2}\right) \cdot (1 - a_n)$$

$$< \frac{\pi}{4}(1 - a_n)$$

于是

$$\frac{1 - a_{n+1}}{1 - a_n} < \frac{\pi}{4}.$$

习题 5.4 (1)根据迭代函数易得.

(2)左边不等式显然成立.

对于右边不等式

$$\sum_{k=1}^{n} \frac{a_k - a_{k+1}}{a_k \sqrt{a_k}} = \sum_{k=1}^{n} \left(\frac{1}{\sqrt{a_k}} - \frac{a_{k+1}}{a_k \sqrt{a_k}} \right) < \sum_{k=1}^{n} \left(\frac{1}{\sqrt{a_{k+1}}} - \frac{a_k}{a_k \sqrt{a_k}} \right)$$

$$= \sum_{k=1}^{n} \left(\frac{1}{\sqrt{a_{k+1}}} - \frac{1}{\sqrt{a_k}} \right) = \frac{1}{\sqrt{a_{n+1}}} - \frac{1}{\sqrt{a_1}}$$

$$< 1 - \frac{1}{\sqrt{e}} < 1$$

因此原不等式得证.

积分放缩法

6.1 积分放缩法

如图,以f(x)单调递减为例,有¹

$$f(n) < \int_{n-1}^{n} f(x) dx < f(n-1)$$

特别的,若 f(x) 为下凸函数,那么还有更精细的放缩²:

$$\int_{0}^{n} f(x) dx < \frac{f(n) + f(n-1)}{2}$$

依次类推,对级数 $\sum\limits_{k=1}^{n}a_{k}$,其中 $a_{n}=f\left(n\right)$,有 当 $f\left(x\right)$ 单调递减时 3 ,

$$\int_{1}^{n+1} f(x) dx < \sum_{k=1}^{n} a_{k} < \int_{0}^{n} f(x) dx;$$

当f(x)单调递增时,

$$\int_{0}^{n} f(x) dx < \sum_{k=1}^{n} a_{k} < \int_{1}^{n+1} f(x) dx;$$

$$\frac{1}{\sqrt{k}} > \int_{k}^{k+1} \frac{1}{\sqrt{x}} \mathrm{d}x = 2\left(\sqrt{k+1} - \sqrt{k}\right), \frac{1}{k} < \int_{k-1}^{k} \frac{1}{x} \mathrm{d}x = \ln k - \ln \left(k-1\right)$$

²曲边梯形面积小于直角梯形面积 ³积分放缩法的本质即利用定积分构造裂项,如

当 f(x) 单调递减且下凸时,

$$\int_{1}^{n+1} f(x) dx + \frac{f(1) - f(n+1)}{2} < \sum_{k=1}^{n} a_{k} < \int_{0}^{n} f(x) dx;$$

当 f(x) 单调递减且上凸时,

$$\int_{1}^{n+1} f(x) dx < \sum_{k=1}^{n} a_{k} < \int_{0}^{n} f(x) dx - \frac{f(0) - f(n)}{2};$$

当 f(x) 单调递增且下凸时,

$$\int_0^n f(x) dx + \frac{f(n) - f(0)}{2} < \sum_{k=1}^n a_k < \int_1^{n+1} f(x) dx;$$

当 f(x) 单调递增且上凸时,

$$\int_{0}^{n} f(x) dx < \sum_{k=1}^{n} a_{k} < \int_{1}^{n+1} f(x) dx - \frac{f(n+1) - f(1)}{2}.$$

这种将级数不等式放缩为定积分的方法称为积分放缩法.

2、记忆方法

单调递减时,"左大右小";单调递增时,"左小右大";

上凸时有更好的上界,下凸时有更好的下界.

意思是 f(x) 单调递减时,将从 1 到 n 的级数 "左端点移动"变为 $\int_0^n f(x) \, \mathrm{d}x$ 则得到其上界,反之,将从 1 到 n 的级数 "右端点移动"变为 $\int_1^{n+1} f(x) \, \mathrm{d}x$ 则得到其下界,f(x) 单调递增时,将从 1 到 n 的级数 "左端点移动"变为 $\int_0^n f(x) \, \mathrm{d}x$ 则得到其下界,反之,将从 1 到 n 的级数 "右端点移动"变为 $\int_1^{n+1} f(x) \, \mathrm{d}x$ 则得到其上界.

例题 **6.1** 由积分放缩法给出对 p- 级数 $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ 的估计.

利用积分放缩法有

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} < \int_{0}^{n} x^{-\frac{1}{2}} dx = 2x^{\frac{1}{2}} \Big|_{0}^{n} = 2\sqrt{n}$$

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \int_{1}^{n+1} x^{-\frac{1}{2}} dx = 2x^{\frac{1}{2}} \Big|_{1}^{n+1} = 2\left(\sqrt{n+1} - 1\right)$$

更精细的下界:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \frac{1 - \frac{1}{\sqrt{n+1}}}{2} + \int_{1}^{n+1} x^{-\frac{1}{2}} dx$$
$$= 2\sqrt{n+1} - \frac{1}{2\sqrt{n+1}} - \frac{3}{2}.$$

例题 **6.2** (2008年江苏复赛)证明: $\sum_{k=1}^{n} \frac{1}{n+k} < \frac{25}{36}$.

如图.

从而

$$\sum_{k=1}^{n} \frac{1}{n+k} = \sum_{k=n+1}^{2n} \frac{1}{k} < \int_{n}^{2n} \frac{1}{x} dx = \ln 2 < \frac{25}{36}$$

附 $\ln 2 < \frac{25}{36}$ 的证明:

$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots\right),\,$$

取
$$x=rac{1}{3}$$
,得 2

$$\ln 2 = 2\left(\frac{1}{3} + \frac{1}{3^3} \cdot \frac{1}{3} + \frac{1}{3^5} \cdot \frac{1}{5} + \frac{1}{3^7} \cdot \frac{1}{7} + \cdots\right) < 2\left(\frac{1}{3} + \frac{1}{3^4} + \frac{1}{3^6} + \frac{1}{3^8} + \cdots\right) = \frac{25}{36}$$

例题 6.3 (2010年湖北)已知函数 $f(x) = ax + \frac{b}{x} + c$ (a > 0) 的图象在 (1, f(1)) 处的切 线方程为 y = x - 1.

- (1)用 a 表示出 b , c ;
- (2)若 $f(x) \geqslant \ln x$ 在 $[1, +\infty)$ 上恒成立,求 a 的取值范围;

(3)证明:
$$\sum_{k=1}^{n} \frac{1}{k} > \ln(n+1) + \frac{n}{2(n+1)}$$
 ($n \in \mathbf{N}^*$).

本题是对 $\ln n$ 的重要估计:

$$\sum_{k=2}^{n+1} \frac{1}{k} < \ln n < \sum_{k=1}^{n-1} \frac{1}{k} - \frac{1}{2} + \frac{1}{2n}$$

如图.

¹这是泰勒级数
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

如图.
$$\frac{\text{如图.}}{^{1}\text{这是泰勒级数}\,f(x)=\sum\limits_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^{n}}\,.$$
 特别的,当 $a=0$ 时,泰勒级数称为麦克劳林级数。 常用麦克劳林级数:
$$\mathrm{e}^{x}=1+\sum\limits_{n=1}^{\infty}\frac{x^{n}}{n!}\,,\,\ln{(1+x)}=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}x^{n}}{n}\,\,,\,\,\sin{x}=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}\,\,,\,\,\cos{x}=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n}x^{2n}}{(2n)!}$$
 2 这里用到了等比放缩法

(3) 左边为n个小矩形的面积之和, $\ln(n+1)$ 为曲边梯形 ABCD 的面积,而每个矩形右上角的小三角形面积之和为

$$\sum_{k=1}^{n} \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \frac{n}{2(n+1)}.$$

考虑到函数 $y = \frac{1}{x}$ 的凹凸性,原不等式得证.

例题 6.4 (2009年联赛加试)证明: $-1 < \sum_{k=1}^{n} \frac{k}{k^2 + 1} - \ln n \leqslant \frac{1}{2}$.

原不等式即

$$-2 + \ln n^2 < \sum_{k=1}^n \frac{2k}{k^2 + 1} \leqslant 1 + \ln n^2$$

对于函数 $f(x) = \frac{2x}{x^2 + 1}$, 由于 $f'(x) = \frac{2(1 - x^2)}{(x^2 + 1)^2}$, 于是当 $x \geqslant 1$ 时, f(x) 单调递减.

由积分放缩法,如左图,

$$\sum_{k=1}^{n} \frac{2k}{k^2 + 1} > \int_{1}^{n+1} \frac{2x}{x^2 + 1} dx = \ln(x^2 + 1) \Big|_{1}^{n+1}$$
$$= \ln\left(\frac{n^2 + 2n + 3}{2}\right) > \ln\left(\frac{n^2}{e^2}\right)$$
$$= -2 + \ln n^2$$

如右图,

$$\sum_{k=1}^{n} \frac{2k}{k^2 + 1} = 1 + \sum_{i=2}^{n} \frac{2i}{i^2 + 1} \le 1 + \int_{1}^{n} \frac{2x}{x^2 + 1} dx$$
$$= 1 + \ln(x^2 + 1) \Big|_{1}^{n} = 1 + \ln\left(\frac{n^2 + 1}{2}\right)$$
$$\le 1 + \ln n^2$$

因此原命题得证.

6.2 习题

习题 6.1 (2003年江苏)设 a>0 ,如图. 已知直线 $l:\ y=ax$ 及曲线 $C:\ y=x^2$, C 上的点 Q_1 的横坐标为 a_1 (0 < a_1 < a). 从 C 上的点 Q_n ($n\geqslant 1$)作直线平行于 x 轴,交直线 l 于点 P_{n+1} ,再从 P_{n+1} 作直线平行于 y 轴,交曲线 C 于点 Q_{n+1} . Q_n ($n=1,2,\cdots$)的横坐标构成数列 $\{a_n\}$.

(1)试求 a_{n+1} 与 a_n 的关系,并求 $\{a_n\}$ 的通项公式.

$$(2)$$
当 $a=1$, $a_1 \leqslant \frac{1}{2}$ 时, 证明 $\sum_{k=1}^{n} (a_k - a_{k+1}) a_{k+2} < \frac{1}{32}$;

(3) 当
$$a = 1$$
 时,证明: $\sum_{i=1}^{n} (a_i - a_{i+1}) a_{i+2} < \frac{1}{3}$.

习题 **6.2** (2013年深圳一模)证明: $\sum_{k=1}^{n} \frac{4k}{4k^2 - 1} > \ln(2n + 1)$.

习题 6.3 (2012年天津) 已知函数 $f(x) = x - \ln(x + a)$ 的最小值为 0, 其中 a > 0.

(1)求 a 的值 (a 的值为 1);

(2)若对任意的 $x \in [0, +\infty)$,有 $f(x) \leqslant kx^2$ 成立,求实数 k 的最小值(k 的最小值为 $\frac{1}{2}$);

(3)证明:
$$\sum_{k=1}^{n} \frac{2}{2k-1} - \ln(2n+1) < 2$$
 ($n \in \mathbb{N}^*$).

6.3 习题参考答案

习题 6.1 (3)如图,注意到第 k 个小矩形(从右向左)的面积为

$$(a_k - a_{k+1}) \cdot a_{k+1}^2 = (a_k - a_{k+1}) \cdot a_{k+2}$$

于是这些小矩形的面积和小于曲边三角形 OAP 的面积,其中 OP 为抛物线的一部分,

OA、AP 为线段,即

$$\sum_{k=1}^{n} (a_k - a_{k+1}) a_{k+2} < \int_{0}^{1} x^2 dx = \frac{1}{3}.$$

事实上,命题完全可以加强至

$$\sum_{k=0}^{n} (a_k - a_{k+1}) a_{k+2} < \frac{1}{3}, \sharp + a_0 = 1.$$

习题 6.2 注意到

$$\sum_{k=1}^{n} \frac{4k}{4k^2 - 1} = \sum_{k=1}^{n} \left(\frac{1}{2k - 1} + \frac{1}{2k + 1} \right) = 1 + \frac{2}{3} + \frac{2}{5} + \dots + \frac{2}{2n - 1} + \frac{1}{2n + 1}$$

法1

如左图,

$$1 + \frac{2}{3} + \frac{2}{5} + \dots + \frac{2}{2n-1} + \frac{1}{2n+1} \geqslant 1 + \frac{2}{3} + \int_{5}^{2n+2} \frac{1}{x} dx$$

$$> \frac{5}{3} + \int_{5}^{2n+1} \frac{1}{x} dx \quad (相当于用前两个小矩形来填充区间 [2,3] 上的空白)$$

$$= \frac{5}{3} + \ln x |_{5}^{2n+1}$$

$$= \ln (2n+1) + \frac{5}{3} - \ln 5$$

$$> \ln (2n+1)$$

法2

如右图,考虑到 $y = \frac{1}{x}$ 为下凸函数,于是有

$$\sum_{k=1}^{n} \frac{4k}{4k^2 - 1} = \sum_{k=1}^{n} \left(\frac{1}{2k - 1} + \frac{1}{2k + 1} \right) > \int_{1}^{2n+1} \frac{1}{x} dx = \ln(2n + 1)$$

习题 6.3 (3)原不等式即

$$\sum_{k=1}^{n} \frac{2}{2k-1} < 2 + \ln(2n+1)$$

如图, 左边即图中 n 个小矩形的面积和, 因此

$$\sum_{k=1}^{n} \frac{2}{2k-1} < 2 + \int_{1}^{n} \frac{2}{2x-1} dx = 2 + \ln(2x-1)|_{1}^{n} = 2 + \ln(2n-1) < 2 + \ln(2n+1)$$

事实上,注意到

$$\ln(2n+1) = \sum_{k=1}^{n} \ln \frac{2k+1}{2k-1} = \sum_{k=1}^{n} \ln\left(1 + \frac{2}{2k-1}\right),$$

于是

$$\sum_{k=1}^{n} \frac{2}{2k-1} - \ln(2n+1) = \sum_{k=1}^{n} \left[\frac{2}{2k-1} - \ln\left(1 + \frac{2}{2k-1}\right) \right]$$

$$\leq 2 - \ln 3 + \sum_{k=2}^{n} \frac{1}{2} \left(\frac{2}{2k-1}\right)^{2}$$

$$= 2 - \ln 3 + \frac{1}{2} \sum_{k=2}^{n} \frac{1}{\left(k - \frac{1}{2}\right)^{2}}$$

$$< 2 - \ln 3 + \frac{1}{2} \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right)$$

$$= 2 - \ln 3 + \frac{1}{2} \left(1 - \frac{1}{n}\right)$$

$$< 2 - \ln 3 + \frac{1}{2} < 2$$

因此原不等式得证.

7 其他放缩法

在前五节中,我们对级数不等式的放缩主要是逐项进行的,主体思路是将各项放缩至可以求和的形式.下面我们学习对整体或局部的放缩技巧,它们分别称为整体放缩与并项放缩.

7.1 整体放缩法

对级数不等式 $\sum_{k=1}^{n} a_k < T_n$, 我们还可以直接先利用不等式进行整体放缩,然后再尝试求和或放缩求和,这种方法称为整体放缩法. 常用于整体放缩的不等式有柯西不等式和均值不等式. 如利用柯西不等式估计级数:

$$\frac{\left(\sum\limits_{k=1}^{n}\sqrt{a_{k}b_{k}}\right)^{2}}{\sum\limits_{k=1}^{n}b_{k}}\leqslant\sum_{k=1}^{n}a_{k}\leqslant\sqrt{\sum_{k=1}^{n}\frac{a_{k}}{c_{k}}\cdot\sum_{k=1}^{n}c_{k}}$$

例题 7.1 求证: $\sum_{k=1}^{n} \frac{1}{n+k} < \frac{\sqrt{2}}{2}$.

利用不等式处理1

$$\sum_{k=1}^{n} \frac{1}{n+k} < \sqrt{\sum_{k=1}^{n} 1 \cdot \sum_{k=1}^{n} \frac{1}{(n+k)^2}}$$

$$= \sqrt{n \cdot \sum_{k=n+1}^{2n} \frac{1}{k^2}}$$

$$< \sqrt{n \cdot \sum_{k=n+1}^{2n} \left(\frac{1}{k-1} - \frac{1}{k}\right)}$$

$$= \sqrt{n \cdot \left(\frac{1}{n} - \frac{1}{2n}\right)}$$

$$= \frac{\sqrt{2}}{2}$$

于是原不等式得证.

例题 7.2 求证:
$$\sum_{k=1}^{n} \sqrt{k(k+1)} < \frac{n\sqrt{n^2+4n+3}}{2}$$
.

¹这里使用了裂项放缩法

利用不等式处理

$$\sum_{k=1}^{n} \sqrt{k(k+1)} < \sqrt{\sum_{k=1}^{n} k \cdot \sum_{k=1}^{n} (k+1)}$$

$$= \sqrt{\frac{n(n+1)}{2} \cdot \frac{n(n+3)}{2}}$$

$$= \frac{n\sqrt{n^2 + 4n + 3}}{2}$$

于是原不等式得证.

7.2 并项放缩法

对级数不等式 $\sum_{k=1}^{n} a_k < T_n$,我们还可以先将和式分段,然后再尝试逐段求和或放缩求和,这种方法称为并项放缩法¹.

例题 **7.3** 级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散的一个简单初等证明.

适当分组后放缩

$$\sum_{k=1}^{2^{n}} \frac{1}{k} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{n}} + \frac{1}{2^{n}} + \dots + \frac{1}{2^{n}}\right)$$

$$= 1 + \underbrace{\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}}_{n \uparrow}$$

$$> 1 + \frac{n}{2}$$

于是级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

例题 7.4 求证:
$$\sum_{k=1}^{3^n} \frac{\ln k}{k} < 3^n - \frac{5n+6}{6}$$
.

利用 $\ln x < x - 1$, 有 $\frac{\ln x}{x} < 1 - \frac{1}{x}$. 于是

$$\sum_{k=1}^{3^n} \frac{\ln k}{k} = \sum_{k=2}^{3^n} \frac{\ln k}{k} < 3^n - 1 - \sum_{k=2}^{3^n} \frac{1}{k}$$

因此我们只需要证明

$$\sum_{k=3}^{3^n} \frac{1}{k} > \frac{5n}{6}.$$

¹对交错级数的处理方式:分为两个子列以及两两合并的方法也是并项放缩法

事实上

$$\sum_{k=2}^{3^{n}} \frac{1}{k} = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{3^{n}}$$

$$= \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9}\right) + \dots + \left(\frac{1}{2^{n}} + \frac{1}{2^{n} + 1} + \dots + \frac{1}{3^{n}}\right)$$

$$> \frac{5}{6} + \left(\frac{3}{6} + \frac{3}{9}\right) + \left(\frac{9}{18} + \frac{9}{27}\right) + \dots + \left(\frac{3^{n-1}}{2 \cdot 3^{n-1}} + \frac{3^{n-1}}{3^{n}}\right)$$

$$= \frac{5n}{6}$$

因此原不等式成立.

例题 7.5 在平面直角坐标系 xOy 中, y 轴正半轴上的点列 $\{A_n\}$ 与曲线 $y=\sqrt{2x}$ ($x\geqslant 0$)上的点列 $\{B_n\}$ 满足 $|OA_n|=|OB_n|=\frac{1}{n}$,直线 A_nB_n 在 x 轴上的截距为 a_n .点 B_n 的横坐标为 b_n , $n\in {\bf N}^*$.

- (1)求证: $a_n > a_{n+1} > 4$, $n \in \mathbb{N}^*$;
- (2)求证:存在 $N \in \mathbf{N}^*$,使得对任意 n > N 都有 $\sum_{k=1}^n \frac{b_{k+1}}{b_k} < n 2008$.
- (1)根据题意

$$a_n = \sqrt{\frac{1}{n^2} + 1} + 1 + \sqrt{2 + 2\sqrt{\frac{1}{n^2} + 1}}, b_n = \sqrt{\frac{1}{n^2} + 1} - 1.$$

容易证明 $a_n > a_{n+1} > 4$.

(2)欲证明结论

$$\sum_{k=1}^{n} \frac{b_{k+1}}{b_k} < n - 2008 \Leftrightarrow \sum_{k=1}^{n} \left(1 - \frac{b_{k+1}}{b_k}\right) > 2008$$

而

$$1 - \frac{b_{n+1}}{b_n} = 1 - \frac{\sqrt{\frac{1}{(n+1)^2} + 1} - 1}{\sqrt{\frac{1}{n^2} + 1} - 1}$$

$$= n^2 \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right) \frac{\sqrt{\frac{1}{n^2} + 1} + 1}{\sqrt{\frac{1}{n^2} + 1} + \sqrt{\frac{1}{(n+1)^2} + 1}}$$

$$> \frac{2n+1}{2(n+1)^2} = \frac{2n+1}{2(n^2+2n+1)}$$

$$> \frac{2n}{2(n^2+3n)} = \frac{1}{n+3}$$

由级数 $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ 发散,容易知道存在 $N\in \mathbf{N}^*$,使得当 n>N 时, $\sum\limits_{k=1}^{n}\frac{1}{k+3}>2008$. 因此原命题得证.

7.3 倒序放缩法

对级数不等式 $\sum\limits_{k=1}^{n}a_{k}< T_{n}$,我们可以倒序相加后两两配对进行放缩,然后再尝试求和或放缩求和,这种方法称为倒序放缩法.

例题 7.6 求证:
$$\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} < \frac{3}{4}$$
.

倒序相加,有

$$\begin{cases} S = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \\ S = \frac{1}{2n} + \frac{1}{2n-1} + \dots + \frac{1}{n+1} \end{cases}$$

从而

$$2S = \left(\frac{1}{n+1} + \frac{1}{2n}\right) + \dots + \left(\frac{1}{k} + \frac{1}{3n+1-k}\right) + \dots + \left(\frac{1}{2n} + \frac{1}{n+1}\right)$$
$$< n \cdot \left(\frac{1}{n+1} + \frac{1}{2n}\right) < \frac{3}{2}$$

于是原不等式得证.

例题 7.7 求证:
$$\prod_{k=1}^{2n} \left(k + \frac{1}{k}\right) > 2^n (n+1)^n$$
.

原不等式即

$$\prod_{k=1}^{2n} \left(k + \frac{1}{k} \right) \left(2n + 1 - k + \frac{1}{2n+1-k} \right) > \left[2 \left(n + 1 \right) \right]^{2n}$$

于是只需要证明 $1 \le k \le 2n$ 时,

$$\left(k + \frac{1}{k}\right) \left(2n + 1 - k + \frac{1}{2n + 1 - k}\right) > 2(n + 1)$$

事实上

$$\left(k + \frac{1}{k}\right) \left(2n + 1 - k + \frac{1}{2n + 1 - k}\right)$$

$$= k \left(2n + 1 - k\right) + \frac{1}{k \left(2n + 1 - k\right)} + \frac{k}{2n + 1 - k} + \frac{2n + 1 - k}{k}$$

$$> k \left(2n + 1 - k\right) + 2 > 2n + 2$$

于是原不等式得证.

例题 7.8 求证:
$$1 < \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n+1} < 2$$
.

例题 7.9 求证:
$$S_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{8n-1} > \frac{3}{2}$$
.

原不等式即

$$\left(\frac{1}{n} + \frac{1}{8n-1}\right) + \dots + \left(\frac{1}{n+k} + \frac{1}{8n-1-k}\right) + \dots + \left(\frac{1}{8n-1} + \frac{1}{n}\right) > 3$$

而当 $0 \le k \le 7n - 1$ 时

$$\frac{1}{n+k} + \frac{1}{8n-1-k} = \frac{9n-1}{(n+k)(8n-1-k)} > \frac{9n-1}{\left(\frac{9n-1}{2}\right)^2} = \frac{4}{9n-1}$$

于是

$$\left(\frac{1}{n} + \frac{1}{8n-1}\right) + \dots + \left(\frac{1}{n+k} + \frac{1}{8n-1-k}\right) + \dots + \left(\frac{1}{8n-1} + \frac{1}{n}\right)$$

$$> \frac{4}{9n-1} \cdot 7n = \frac{28}{9-\frac{1}{n}} > \frac{28}{9} > 3$$

因此原不等式得证.

例题 7.10 求证: $\prod_{k=1}^{n} (e^k + e^{-k}) > (e^{n+1} + 2)^{\frac{n}{2}}$.

原不等式即

$$\prod_{k=1}^{n} \left(e^{k} + \frac{1}{e^{k}} \right) \left(\frac{e^{n+1}}{e^{k}} + \frac{e^{k}}{e^{n+1}} \right) > \left(e^{n+1} + 2 \right)^{n}$$

也即

$$\prod_{k=1}^{n} \left(e^{n+1} + \frac{e^{2k}}{e^{n+1}} + \frac{e^{n+1}}{e^{2k}} + \frac{1}{e^{n+1}} \right) > \left(e^{n+1} + 2 \right)^n$$

而

$$e^{n+1} + \frac{e^{2k}}{e^{n+1}} + \frac{e^{n+1}}{e^{2k}} + \frac{1}{e^{n+1}} > e^{n+1} + 2,$$

于是原不等式得证.

7.4 切线放缩法

对在区间 (a,b) 上具有凹凸性的函数 f(x),可以利用割线 AB (A(a,f(a)), B(b,f(b))) 和该区间上任意一处的切线进行放缩,这种放缩方法称为切线放缩法. 具体放缩位置的选择取决于不等式取等时的条件.

有时函数 f(x) 具有凹凸性的区间 (a,b) 并不能覆盖所有的取值区间,此时对区间外部的情形进行单独讨论(此时往往有放缩的余地).

例题 **7.11** (2008年江西)已知函数 $f\left(x\right)=\frac{1}{\sqrt{1+x}}+\frac{1}{\sqrt{1+a}}+\sqrt{\frac{ax}{ax+8}}$, $x\in\left(0,\ +\infty\right)$. 对任意正数 a ,证明: $1< f\left(x\right)<2$.

由于
$$f(x) = \frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+\frac{8}{ax}}}$$
.

于是原问题即

已知
$$abc=8$$
,求证: $1<\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}<2$. 事实上

$$\begin{split} \frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+b}} + \frac{1}{\sqrt{1+c}} &> \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \\ &= \frac{\sum\limits_{cyc} \left(1+a\right) \left(1+b\right)}{\left(1+a\right) \left(1+b\right) \left(1+c\right)} \\ &= \frac{3+2 \left(a+b+c\right) + ab + bc + ca}{1+a+b+c+ab+bc+ca+abc} \\ &= \frac{a+b+c+ab+bc+ca+\left(a+b+c+3\right)}{a+b+c+ab+bc+ca+9} \end{split}$$

而

$$a + b + c \geqslant 3(abc)^{\frac{1}{3}} = 6.$$

于是左边成立.

对于右边,不妨设 $c \ge b \ge a$,注意到右边当a,b同趋于0,c趋于无穷大时取得.考虑到¹

$$\frac{1}{\sqrt{1+x}} = \sqrt{\frac{1}{1+x}} = \sqrt{1 - \frac{x}{1+x}} < 1 - \frac{1}{2} \cdot \frac{x}{1+x} (0 < x < 1)$$

 $^{^{1}}$ 在 x=0 处对 $y=\sqrt{1-x}$ 利用切线放缩

于是

$$\frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+b}} + \frac{1}{\sqrt{1+c}} = \frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+b}} + \frac{\sqrt{ab}}{\sqrt{ab+8}}$$

$$< 2 - \frac{1}{2} \left(\frac{a}{1+a} + \frac{b}{1+b} \right) + \frac{\sqrt{ab}}{\sqrt{ab+8}}$$

$$< 2 - \frac{\sqrt{ab}}{\sqrt{1+a+b+ab}} + \frac{\sqrt{ab}}{\sqrt{ab+8}}$$

于是当 $a+b \le 7$ 时,右边不等式成立.

下面证明a+b>7时右边不等式成立.

此时由于 $8 = abc \ge a^3$,于是 $a \le 2$,从而b > 5,进而

$$\frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+b}} + \frac{1}{\sqrt{1+c}} < 1 + \frac{1}{\sqrt{1+5}} + \frac{1}{\sqrt{1+5}} = 1 + \sqrt{\frac{2}{3}} < 2$$

因此右边不等式成立. 综上, 原不等式得证.

7.5 二项式放缩法

考虑到二项式

$$(1+x)^n = 1 + C_n^1 x + C_n^2 x^2 + C_n^3 x^3 + \dots + C_n^n,$$

于是可以利用该式估计当x>0时 $(1+x)^n$ 的多项式下界,这种放缩方法称为二项式放缩法. 如

$$2^{n} \geqslant C_{n}^{0} + C_{n}^{1} + C_{n}^{2} = \frac{n^{2} + n + 2}{2} (n \geqslant 2)$$

例题 7.12 给出 $\left(\frac{3}{2}\right)^n$ ($n\geqslant 2$) 的一个多项式下界.

$$\left(\frac{3}{2}\right)^n = \left(1 + \frac{1}{2}\right)^n > 1 + n \cdot \frac{1}{2} + \frac{n\left(n-1\right)}{2} \cdot \frac{1}{4} = \frac{n^2 + 3n + 8}{8}.$$

例题 7.13 求证: $2 \leqslant \left(1 + \frac{1}{n}\right)^n < 3$.

利用二项式定理展开为级数1

$$\left(1 + \frac{1}{n}\right)^n = 1 + C_n^1 \cdot \frac{1}{n} + C_n^2 \cdot \frac{1}{n^2} + \dots + C_n^n \cdot \frac{1}{n^n}$$

于是

$$\left(1+\frac{1}{n}\right)^n\geqslant 2$$

 $^{^{1}}$ 也可以直接取对数后转化为函数不等式证明: 当 $x\in(0,1]$ 时 $\ln2\leqslant\frac{\ln{(1+x)}}{x}<\ln{3}$

51

而

$$\left(1 + \frac{1}{n}\right)^n = 1 + C_n^1 \cdot \frac{1}{n} + C_n^2 \cdot \frac{1}{n^2} + \dots + C_n^n \cdot \frac{1}{n^n}$$

$$= 2 + \frac{1}{2!} \cdot \frac{n(n-1)}{n^2} + \frac{1}{3!} \cdot \frac{n(n-1)(n-2)}{n^3} + \dots + \frac{1}{n!} \cdot \frac{n!}{n^n}$$

$$< 2 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n-1)}$$

$$= 2 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$= 3 - \frac{1}{n}$$

$$< 3$$

或采用等比放缩:

$$\left(1+\frac{1}{n}\right)^{n} < 2+\frac{1}{2!}+\frac{1}{3!}+\dots+\frac{1}{n!}$$

$$< 2+\frac{1}{2}+\frac{1}{4}+\dots+\frac{1}{2^{n-1}}$$

$$< 2+\frac{\frac{1}{2}}{1-\frac{1}{2}}=3$$

因此原不等式得证. 注意, 左边也可以利用均值不等式证明

$$\left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{1}{n}\right) \cdot \left(1 + \frac{1}{n}\right) \cdot \dots \cdot \left(1 + \frac{1}{n}\right) \cdot 1$$

$$< \left(\frac{\left(1 + \frac{1}{n}\right) \cdot n + 1}{n+1}\right)^{n+1} \quad (A - G)$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+1}$$

于是 $\left(1+\frac{1}{n}\right)^n$ 单调递增,因此 $\left(1+\frac{1}{n}\right)^n \ge 2$.

例题 7.14 求证: 存在正整数 α , 使得

$$\alpha n \leqslant \sum_{k=1}^{n} \left(1 + \frac{1}{k}\right)^k \leqslant (\alpha + 1) n.$$

由例题, $2 \leqslant \left(1 + \frac{1}{n}\right)^n < 3$,于是取 $\alpha = 2$ 即可.

例题 7.15 求证:
$$\frac{n}{2n+1} \leq \sum_{k=1}^{n} \frac{1}{3^k} < \frac{1}{2}$$
.

由于

$$\sum_{k=1}^{n} \frac{1}{3^k} = \frac{\frac{1}{3} \left(1 - \frac{1}{3^n} \right)}{1 - \frac{1}{3}} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right)$$

于是右边不等式显然成立. 而

$$3^n = (1+2)^n \geqslant 1 + 2n,$$

于是左边不等式成立.

例题 7.16 已知数列 $\{a_n\}$ 的首项 $a_1=\frac{3}{5}$, $a_{n+1}=\frac{3a_n}{2a_n+1}$. 求证: $a_1+a_2+\cdots+a_n>\frac{n^2}{n+1}$.

由不动点法容易解得

$$a_n = \frac{3^n}{3^n + 2} = 1 - \frac{2}{3^n + 2},$$

于是欲证不等式即

$$\sum_{k=1}^{n} \frac{2}{3^k + 2} < \frac{n}{n+1},$$

尝试分析通项证明

$$\frac{2}{3^{n}+2} < \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}$$

事实上, 当 $n \ge 2$ 时,

$$\frac{2}{3^n+2} = \frac{2}{(1+2)^n+2} < \frac{2}{1+2C_n^1+4C_n^2+2} = \frac{2}{2n^2+3} < \frac{2}{n^2+n}$$

而 n=1 时, $\frac{2}{5}<\frac{1}{1+1}$ 显然成立,原不等式得证.

例题 7.17 求证: $\frac{3}{2} < \left(1 + \frac{1}{2n}\right)^n < 2 \ (n \geqslant 2)$.

一方面

$$\left(1 + \frac{1}{2n}\right)^n > 1 + C_n^1 \cdot \frac{1}{2n} = \frac{3}{2}$$

另一方面1

$$\left(1+\frac{1}{2n}\right)^n < \frac{2n+1}{2n} \cdot \frac{2n}{2n-1} \cdot \dots \cdot \frac{n+2}{n+1} = \frac{2n+1}{n+1} < 2$$

因此原不等式等得证.

¹分式放缩