Honework 2

Problem 611:

$$-\hat{\vec{L}}$$
 is a pseudovector: $\hat{\vec{L}}' = \hat{\vec{T}}^{\dagger}\hat{\vec{L}}\hat{\vec{T}} = \hat{\vec{L}}$

-if l'tl is even, then this tells us nothing, but if it's odd, it's saying the matrix element is equal to its negative self, which is only possible when it's zero

Problem 6.13

a) (100|Pe|100)

- we know via the

(n'1'm'1P)

if l'tl is even

- in this case, l't

LPE

b) for n=2, l c

possible to have

b) for
$$n=2$$
, l can take values 0,1, so it's possible to have something line $\langle 210|\vec{P}e|200\rangle$

Where $l'+l=1$ is odd, so it's non-zero

(Pe) = 0

-to construct a single wavefunction, we use a linear combination of two states: $|14\rangle = \chi(210) + \beta(200)$

$$\Rightarrow \langle \vec{r}|200\rangle = k_{20}(r) = \frac{1}{r_2} a^{-3/2} \left(1 - \frac{1}{2} \frac{c}{a}\right) e^{-r/2a}$$

$$\langle \vec{r}|210\rangle = k_{21}(r) = \frac{1}{2\sqrt{6}} a^{-3/2} \left(\frac{c}{a}\right) e^{-r/2a}$$

(Pe) = (a* <2101 + p* <2001) Pe (x1210) + B (2005)

=
$$\alpha^*\beta\langle 210|\hat{p}_e|200\rangle + \beta^*\alpha\langle 200|\hat{p}_e|210\rangle$$

- Since $\hat{p}_e = q\hat{\tau}$ and $\hat{\tau}$ is a vector, there are 8 components:

- only 1#1 states survive, so

where
$$\hat{r}_{x}|t(r)\rangle = r\sin\theta\cos\beta |t(r)\rangle$$

$$\hat{r}_{y}|t(r)\rangle = r\sin\theta\sin\beta |t(r)\rangle$$

$$\hat{r}_{z}|t(r)\rangle = r\cos\theta |t(r)\rangle$$
-further, $R_{20}(r)$ and $R_{21}(r)$ are entirely real, so

 $\hat{\vec{r}} = (\hat{r}_x, \hat{r}_y, \hat{r}_z)$

(pe) = 2(a*β-β*α)...

=0 from sole & dependence

$$y \rightarrow \int \int \int \int d^3r \, R_{21}(r) \, R_{20}(r) \, r \sin \theta \, \sin \theta \, f$$

=0 similarly

 $\int \int \int \int \int d^3r \, R_{21}(r) \, R_{20}(r) \, r \sin \theta \, \sin \theta \, f$

- Just plugged into Mathematica... and let
$$\alpha = \beta = \frac{1}{72}$$

=) $\langle \hat{Pe} \rangle_{4} = -3qa \hat{k}$

for $|A'\rangle = \frac{(210) + (200)}{\sqrt{2}}$

Eq. (6.34) -> [\hat{f}] = 0 for some scalar operator \hat{f} .

-) Since \hat{L} is the generator of rotations, simply by representing (choosing $\hat{n} = \hat{L}$, i.e. \hat{z} -axis rotation)

$$\hat{\varrho}(\phi) = \exp\left[-\frac{i\omega}{\hbar}\hat{L}z\right]$$

as a power series, then if \hat{f} commutes ω / $\hat{L}i$, it must commute with $\hat{R}_{\epsilon}(\alpha)$. Thus,

 $\hat{f}' = R_{\xi}(\sigma) \hat{f} R_{\xi}(\sigma) = R_{\xi}^{\dagger}(\sigma) R_{\xi}(\sigma) \hat{f} = \hat{f}$ since $\hat{Q}_{\xi}(\sigma)$ is unitary.

f is unchanged by a rotation.

$$\begin{array}{ll}
\neg & \stackrel{?}{\nabla}' = \hat{R}_{y}^{T}(S) \stackrel{?}{\nabla} \hat{R}_{y}(S) \\
&= \left(1 + \frac{iS}{k} \hat{L}_{y}\right) \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} \begin{pmatrix} 1 - \frac{iS}{k} \hat{L}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{iS}{k} \begin{pmatrix} \hat{L}_{y}^{T}, \hat{V}_{x} \\ \hat{L}_{y}^{T}, \hat{V}_{z} \end{pmatrix} + O(S^{2}) \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{iS}{k} \begin{pmatrix} -ik \hat{V}_{z} \\ 0 \\ ik \hat{V}_{x} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{iS}{k} \begin{pmatrix} -ik \hat{V}_{z} \\ 0 \\ ik \hat{V}_{x} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{x}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} + \hat{V}_{y} \\ \hat{V}_{y} - \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{x}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} + \hat{V}_{y} \\ \hat{V}_{y} - \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} + \hat{V}_{y} \\ \hat{V}_{y} - \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} + \hat{V}_{y} \\ \hat{V}_{y} - \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} + \hat{V}_{y} \\ \hat{V}_{y} - \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} + \hat{V}_{y} \\ \hat{V}_{y} - \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} + \hat{V}_{y} \\ \hat{V}_{y} - \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{y} \\ \hat{V}_{z} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{y} \\ \hat{V}_{z} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{y} \\ \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{y} \\ \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{y} \\ \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{z}} \begin{pmatrix} \hat{V}_{y} \\ \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \end{pmatrix} + \frac{\hat{V}_{y}}{\hat{V}_{y}} \begin{pmatrix} \hat{V}_{y} \\ \hat{V}_{y} \end{pmatrix} \\
&= \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{$$

- by inspection,

$$\begin{pmatrix} \hat{V}_{x'} \\ \hat{V}_{y} \\ \hat{V}_{t} \end{pmatrix} = \begin{pmatrix} 1 & 0 & S \\ 0 & 1 & 0 \\ -S & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{V}_{x} \\ \hat{V}_{y} \\ \hat{V}_{t} \end{pmatrix}$$

Problem 6.17 (FIRm Inlm) = E Dmin Trem Ra(S) Yren = E Dmin trem -infinitesimal form: (1- i8 ñ.]) them = - $-\eta \hat{\lambda} \cdot \hat{l} = \eta_x \hat{l}_x + \eta_y \hat{l}_y + \eta_z \hat{l}_z$ - cannot know these simultaneously, but we Know: Lt = Lx + ily \rightarrow $\hat{L}_{+} = \hat{L}_{\times} + i L_{y}$ L- = Lx - i Ly => AL+ + BL- = nx lx + ny lq A(lx+ily) + B(lx-ily) = ~ $(A+B)\hat{L}x + i(A-B)\hat{L}y = Nx\hat{L}x + ny\hat{L}y$ $\begin{cases} A+B = nx & A \vdash B = nx \\ i(A-B) = ny \rightarrow A-B = -iny \end{cases}$ $\rightarrow A = \frac{n_x - in_y}{2}$ $\frac{N_{x-iny}}{2} + B = N_{x} - 7 B = \frac{N_{x} + in_{y}}{2}$ -Back to original eq: Malm - is (nx-ony it + ny+iny i + nz Lz) Malm - we know L+ Ynem = to [(1+1)-m(m+1) Ynem+1 1- trem = t //(2+1) - m(m-1) trem-1 - Trem - if (nx-iny) to (l(1+1)-m(m+1) tolm+1 + (nx+iny) + [((+1)-m(m-1) + n)m-1 +nztm Ynlm | (grouping like eigenfuncs) = (1-inz8m) 4nlm -i8(nx+iny) [1(1+1)-mlm-1) tnem-1 - is (nx-iny) ((1+1) - m(m+1) + nlm+1 = 20mm + nlm -we can define the wellicient/function O to be: $\frac{1 - in 2 \delta m}{-i \delta (nx + iny) [l(1+1) - m(m-1)]}$ if m' = m - 1 $\frac{1}{2} (nx + iny) [l(1+1) - m(m-1)]$ if m' = m - 1ib (nx-iny) [(1+1)-m(m+1) if m'=m+1 otherwist