Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_şt-nat* Barem de evaluare și de notare

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

• SUBIECTUL I (30 de puncte)

- 50	(50 de punc	ie)
1.	$a_2 - a_1 = r \Rightarrow r = -1$	2p
	$a_3 = 0$	2p
	Finalizare: produsul este egal cu 0	1p
2.	$\Delta = 4 + 4m < 0$	3p
	$m \in (-\infty, -1)$	2p
3.	$x(x-1)=12 \Rightarrow x=-3 \text{ sau } x=4$	3 p
	x = 4 convine, $x = -3$ nu convine	2p
4.	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}}$	1p
	nr. cazuri posibile	
	Numărul numerelor \overline{abc} pentru care $a \cdot b \cdot c = 3$ este egal cu $3 \Rightarrow 3$ cazuri favorabile	2p
	Numărul numerelor naturale de trei cifre este de 900 ⇒ 900 cazuri posibile	1p
	$n-\frac{1}{n}$	•
	$p = \frac{1}{300}$	1p
5.	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos \ll (\vec{a}, \vec{b}) = 2 \cdot 3 \cdot \frac{1}{2}$	3 p
	$\vec{a} \cdot \vec{b} = 3$	2p
6.	$B(0,1)$ şi $C(3,1) \Rightarrow BC \parallel Ox$, deci $x_H = x_A = 1$, unde H este ortocentrul triunghiului ABC	2p
	$BH \perp AC \Rightarrow m_{BH} \cdot m_{AC} = -1 \Rightarrow \frac{y_H - 1}{1} \cdot \frac{-2}{2} = -1$	2p
	$y_H = 2$	1p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	Suma elementelor matricei A este egală cu $1+(2n+1)+n+1+(2n^2+1)+n^2+1=$	3 p
	$=3n^2+3n+5$	2p
b)	$\det A = n^2 - n$	2p
	Finalizare: $n \in \mathbb{N} \setminus \{0,1\}$	3 p
c)	$A = \frac{1}{2} \Delta $	1p
	$n^2 + n - 6 = 0 \Rightarrow n = 2 \text{ sau } n = -3$	3 p
	Finalizare: $n = 2$	1p
2.a)	$2011 \circ 2012 = 2011 + 2012 + 1 =$	3 p
	= 4024	2p
b)	$(x \circ y) \circ z = x + ay + az + 2$ pentru orice $x, y, z \in \mathbb{R}$	2p
	$x \circ (y \circ z) = x + ay + a^2z + a + 1$ pentru orice $x, y, z \in \mathbb{R}$	2p
	$(x \circ y) \circ z = x \circ (y \circ z)$ pentru orice $x, y, z \in \mathbb{R} \Rightarrow a = 1$	1p

	, ,		
c)	$2^x = t \Longrightarrow t^2 - t = 0$	2p	ì
	Finalizare: $x = 0$	3р	1

SUBIECTUL al III-lea (30 de puncte)

	(companies)		
1.a)	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2)$	2p	
	$f'(x) = (x + \ln x)' = 1 + \frac{1}{x}$, pentru orice $x \in (0, +\infty)$	2p	
	Finalizare	1p	
b)	y - f(1) = f'(1)(x-1)	2p	
	f(1)=1, f'(1)=2	2p	
	Ecuația tangentei este $y = 2x - 1$	1p	
c)	$f''(x) = -\frac{1}{x^2}$, pentru orice $x \in (0, +\infty)$	2p	
	$f''(x) < 0$, pentru orice $x \in (0, +\infty)$	2p	
	Finalizare	1p	
2.a)	$\int_{0}^{1} f_{1}(x) dx = (x+1)e^{x} \Big _{0}^{1} - \int_{0}^{1} e^{x} dx =$	2p	
	$=\left((x+1)e^x-e^x\right)\Big _0^1=e$	3 p	
b)	f_{2011} derivabilă și $f_{2011}'(x) = ((x+2011)e^x)' = e^x + (x+2011)e^x = (x+2012)e^x$, $\forall x \in \mathbb{R}$	3 p	
	$f_{2011}' = f_{2012}$	2p	
c)	$(x+n)e^x \ge (x+n)(x+1)$, pentru orice $x \in [0,1]$ și $n \in \mathbb{N}^*$	1p	
	$\int_{0}^{1} (x+n)e^{x} dx \ge \int_{0}^{1} (x+n)(x+1) dx$	1p	
	$\int_{0}^{1} (x+n)(x+1) dx = \left(\frac{x^{3}}{3} + (n+1)\frac{x^{2}}{2} + nx\right)\Big _{0}^{1} = \frac{9n+5}{6}$	2p	
	Finalizare	1p	