C e Kit de Desenvolvimento

Lucas Gonçalves Serrano - RA: 12.01328-5 Flávia Janine Béo Rosante - RA: 13.03188-0 Erica Yumi Kido - RA: 13.02422-0

16 de março de 2016

1 C

1.1 Otimizações

O GCC suporta 3 tipos de otimização básicos e um tipo que une todas as outras otimizações. Elas sendo :

- -O1 / -O : Gasta mais tempo em funções grandes.
- -O2 : Otimiza mais.
- -O3 : Otimiza mais ainda.
- -O0 : Nada é otimizado.
- -Os -> utiliza todas.

1.2 volatile/const/static

volatile:

Essa variável diz ao programa que a ela pode ser alterada fora do programa principal.

• const:

São variáveis que não podem ser alteradas após serem definidas.

static:

É um valor guardado antes de ocorrer a compilação do programa. Que geralmente faz parte do escopo de uma função ou classe, não de uma instância de um objeto.

1.3 MakeFile

O MakeFile é um arquivo utilizado pelo comando **make** e outros derivados dele para que na hora de compilar seguir regras escritas no mesmo, por exemplo apagar arquivos temporários, executar comandos, entre outras funcionalidades.

1.4 ASCII

ASCII é um código para a codificação de caracteres, existe uma tabele ASCII que mostra o valor em binário do caractere, em hexadecimal e o caractere em si. É utilizado quando se cria arquivos que necessitem de codificação.

2 SAM4s-EK2

2.1 Gravador/Debug

Os testes JTAG são feitos com um registrador chamado BSR - Boundary Scan Register. Os bits deste registrador estão no limite do dispositivo, entre o núcleo e os seus pinos ou esferas que estão ligando o mesmo à placa.

2.2 Jumpers

- JP3 É utilizado para apagar a memória Flash, ou seja quado fechado reinicializa a memória.
- JP9 É utilizado para selecionar o chip NAND da Flash.
- Outro O jumper JP6 acessa a medida atual no VDDIO.

2.3 Clock

É composto de:

- 1 Slow Clock: Com um oscilador em modo bypass.
- Oscilador de Cristal.
- Oscilador RC.
- PLLB: Para o USB Full Speed Controller.
- PLLA: Um clock MCK para p processador.

2.4 Alimentação

- VDDOUT : Output da voltagem interna.
- VDDIO : 1.62V até 3.6V.
- VDDIN : 1.8V até 3.6V.
- VDDPLL : 1.62V até 1.95V.
- VDDCORE : 1.62V até 1.95V.

2.5 LEDs

Existem 3 leds na placa:

- 1 Azul e 1 Verde: Para controle da GPIO.
- 1 Vermelho: Indica que o power rail de 3V está ativo, também é controlado pela GPIO e poder ser usado pelo usuário. Este é controlado por um transistor MOS.

2.6 Botões

Ambos são para o usuário.

- Push-button 1: Linha PB3 da PIO.
- Push-button 2: Linha PC12 da PIO.

2.7 Periféricos

LCD: É resetado pelo NRST que tamém é usado pelo JTAG e o push-button 1, e está conectado ao jumper JP13. É usado para output de dados, ou para input já que tamém é touchscreen.

3 SAM4SD32C

3.1 Memória

São 4 chips de memória:

- Flash 2048 KB
- SRAM 60 KB
- ROM 16 KB, com BootLoader (UART, USB) e In-Application Programming.

3.2 IOH, IOL

- IOH: High Level Output Current.
- IOL: Low Level Output Current.

Ambos são correntes do terminal output com as condições de input.

3.3 Brownout

Fluxo de energia reduzido por um longo período de tempo. Usado para evitar picos de energia e blackouts.

3.4 Watchdog Timer

 $\acute{\rm E}$ um temporizador que dispara um reset no sistema caso algum erro impeça de fazê-lo.

3.5 PIO

É um método de transferência de dados entre um processador e um periférico que é usado quando o software usa instruões que acessam o endereço de acesso do $\rm I/O$ ou um dispositivo $\rm I/O$.

3.6 Custo

O custo desse chip é aproximadamente 10 dólares, variando no maximo 2 dólares a mais e a menos dependendo do modelo específico.