Homework guidelines:

- Each problem I assign, unless otherwise stated, is asking you to prove something. Give a full mathematical proof using only results from class or Wade.
- Submit a PDF or JPG to gradescope. The grader has ~ 250 proofs to grade: please make his job easier by submitting each problem on a different page.
- If you submit your homework in Latex, you get 2% extra credit.

Problems (5 total, 10 pts each)

Problem 1. For each $p \in \mathbb{N}$ and $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, define

$$\|\mathbf{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Prove that for each such \mathbf{x} , we have that

$$\lim_{p\to\infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty},$$

where

$$\|\mathbf{x}\|_{\infty} := \max\{|x_i| : 1 \le i \le n\}.$$

You may freely use the following facts: (i) if $a \in (0, \infty)$, then $\lim_{m \to \infty} a^{1/m} = 1$; and (ii) if $a \in (0, 1)$ then $\lim_{m \to \infty} a^m = 0$.

Proof. Let assumptions be as the above problem statement. We can write $\lim_{p\to\infty}\|x\|_p = \lim_{p\to\infty} (\sum_{i=1}^n |x_i|^p)^{1/p}$. Consider if $x_1 = x_2 = \dots = x_n$ then we get $(nx_i^p)^{1/p} = (n)^{1/p}x_i$ and since $n \geq 1$ then $n^{1/p} \to 1$ as $n \to \infty$. Therefore, $\lim_{p\to\infty}\|x\|_p = x_i$ if $x_1 = x_2 = \dots = x_n = \max\{|x_i| : 1 \leq i \leq n\}$. Now consider if $x_1 > x_2, x_3, \dots, x_n$ without loss of generality. We have that $(x_1^p + x_2^p + \dots + x_n^p)^{1/p} = (1 + \frac{x_2^p}{x_1^p} + \dots + \frac{x_n^p}{x_1^p})^{1/p}x_1$ and similarly since $(1 + \frac{x_2^p}{x_1^p} + \dots + \frac{x_n^p}{x_1^p}) \geq 1$ we have that $(1 + \frac{x_2^p}{x_1^p} + \dots + \frac{x_n^p}{x_1^p}) \to 1$ as $p \to \infty$ which further implies that $(1 + \frac{x_2^p}{x_1^p} + \dots + \frac{x_n^p}{x_1^p})^{1/p}x_1 \to x_1$ as $p \to \infty$ which means that $\lim_{p\to\infty} \|x\|_p = \max\{|x_i| : 1 \leq i \leq n\}$. Since this is true for both cases then we know that the original statement that $\lim_{p\to\infty} \|x\|_p = \|x\|_\infty$ as desired.

Problem 2. Prove that the set

$$U = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_1 < 1 \}$$

is open. You may freely use the triangle inequality for $\|\cdot\|_1$, namely that

$$\|\mathbf{x} + \mathbf{y}\|_1 \le \|\mathbf{x}\|_1 + \|\mathbf{y}\|_1$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

as well as the fact (Remark 8.7 in Wade) that $\|\mathbf{x}\| \leq \|\mathbf{x}\|_1 \leq \sqrt{n} \|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^n$.

Proof. Let $U = \{x \in \mathbb{R}^n : ||x||_1 < 1\}$. Then we can see that $||x - y + y||_1 \le ||x - y||_1 + ||y||_1$. It follows then that $||x|| - ||y|| \le ||x - y||$ by symmetry, one gets $|||x|| - ||y|| \le ||x - y||$. Therefore, this set U is a continuous preimage of an open set, [0, 1), which means that it is open.

Problem 3. Prove that $\mathbb{Z} \subset \mathbb{R}$ is closed.

Proof. Consider the compliment to \mathbb{Z} which we will denote $\mathbb{Z}^c = \bigcup_{k \in \mathbb{Z}} (k, k+1)$ which is an open set because it is a union of open sets. Therefore, since the compliment \mathbb{Z}^c is an open subset, we know that $\mathbb{Z} \subset \mathbb{R}$ is closed.

Problem 4. Let $a, b, c, d \in \mathbb{R}$ and assume a < b and c < d. Prove that the set $U = (a, b) \times (c, d)$ is open.

Proof. Let assumptions be as in the problem statement. Let $x = (x_1, x_2)$ where $a < x_1 < b$ and $c < x_2 < d$. If we let $\epsilon > \min(x_1 - a, b - x_1, x_2 - c, d - x_2)$ which is the minimum distance from (x_1, x_2) to the edge of the rectangle $(a, b) \times (c, d)$. Then the open ball $B_{\epsilon}(x_1, x_2) \subset (a, b) \times (c, d)$ which implies that $(a, b) \times (c, d)$ is an open rectangle.

Problem 5. Prove that the set

$$E = \{(x, y) \in \mathbb{R}^2 : |y| > |x| + 2\}$$

is disconnected.

Proof. Let $E = \{(x,y) \in \mathbb{R}^2 : |y| > |x| + 2\}$. Consider the set $U = \{(x,y) \in \mathbb{R}^2 : |x| + 3 > |y| > |x| + 2\}$ and $V = \{(x,y) \in \mathbb{R}^2 : |y| \geq |x| + 3\}$. For these sets, because of the way they are defined we know that $E \cap U \cap V = \emptyset$, $E \cap U = \emptyset$ primarily that we know that $E \cap U \cap V = \emptyset$. Similarly if we take $E \cap U \cap V = \emptyset$ then we know that $E \cap U \cap V = \emptyset$ and that $E \cap V = \emptyset$. Given these conditions we know that the set $E \cap U \cap V = \emptyset$ and that $E \cap V = \emptyset$ of isometed.