Национальный исследовательский университет ИТМО Факультет ПиИКТ

Лабораторная работа № 5

по «Вычислительной математике» Интерполяция функции

Работу выполнил: Велюс Арина

Группа: Р32151

Преподаватель: Машина Екатерина Александровка

Санкт-Петербург **2023** г.

Цель работы:

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Вариант №2

x	v	№	X.	\mathbf{X}_2	
	,	варианта	Al		
0,50	1,5320	2	0,502	0,645	

- многочлен Лагранжа;
- многочлен Гаусса.

Задание лабораторной работы:

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу;
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
 - а) в виде набора данных (таблицы х,у), пользователь вводит значения с клавиатуры;
 - b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
 - с) на основе выбранной функции, из тех, которые предлагает программа, например, sin х. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл.
- 5.2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

Описание метода, расчетные формулы:

Формула для полинома Лагранжа:

$$L_{n}(x) = \sum_{i=0}^{n} y_{i} \frac{(x - x_{0}) \dots (x - x_{j-1})(x - x_{j+1}) \dots (x - x_{n})}{(x_{j} - x_{0})(x_{j} - x_{1}) \dots (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \dots (x_{j} - x_{n})}$$

Формула интерполяции полинома Гаусса для x > a:

$$P_{n}(x) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^{3} y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!} \Delta^{4} y_{-2} + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!} \Delta^{5} y_{-2} \dots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-(n-1)} + \frac{(t+n-1)\dots(t-n)}{(2n)!} \Delta^{2n} y_{-n}$$

Таблица для вычислительной реализации:

X	0.50	0.55	0.60	0.65	0.70	0.75	0.80
y	1.5320	2.5356	3.5406	4.5462	5.5504	6.5559	7.5594

$$X1 = 0.502$$

$$X2 = 0.645$$

Конечные разности:

x_i	y_i	Δ^1 y_i	Δ^2 y_i	Δ^3 y_i	Δ^4 y_i	Δ^5 y_i	Δ^6 y_i
0.50	1.5320	1.0036	0.0014	-0.0008	-0.0012	0.0059	-0.0166
0.55	2.5356	1.0050	0.0006	-0.0020	0.0047	-0.0107	-
0.60	3.5406	1.0056	-0.014	0.0027	-0.0060	-	-
0.65	4.5462	1.0042	0.0013	-0.0033	-	-	-
0.70	5.5504	1.0055	-0.0020	-	-	-	-
0.75	6.5559	1.0035	-	-	-	-	-

```
0.80 7.5594 - - - - - - -
```

```
t = (0.502 - 0.50) / 0.05 = 0.04
Для X1:
t = (0.502 - 0.50) / 0.05 = 0.04
y = 1.5320 + 0.04 * 1.0036 + (0.04 * (0.04 - 1))/2! * 0.0014 + (0.04 * (0.04 - 1))(0.04 - 2))/3! *-0.0008 + ... = 1.5723
Для X2:
t = (0.645 - 0.6) / 0.05 = 0.9
y = 1.5320 + 0.9 * 1.0036 + ... = 4.4457
```

Листинг программы:

```
@staticmethod
def lagrange method(x list, y list, x0):
   result = 0
    for y index in range(len(y list)):
       mul = 1
        for x index in range(len(x list)):
           mul *= (x0 - x_list[x_index]) / (x_list[y_index] -
        result += y list[y index] * mul
   return result
@staticmethod
def gauss method(x list, differences, x0):
```

```
row = middle
    for ind in range(len(differences)):
        if differences[row][ind] == "-":
        y values.append(differences[row][ind])
            row -= 1
            coefficients.append(coefficients[-1] * (t + num) /
ind)
            coefficients.append(coefficients[-1] * (t - num) /
ind)
    result = sum(y values[ind] * coefficients[ind] for ind in
range(len(y values)))
   return result
```

Примеры и результаты работы программы:

Ввод:

```
2

cos(x + sin(x)) + sin(x)

-10

10

6

-8
```

Вывод:

Вывод:

В данной работе были рассмотрены методы интерполирования, с помощью многочлена Лагранжа и Гаусса. Реализован код для многочленов Лагранжа и Гаусса. Методы довольно точно строят функции, во многом даже близко совпадают, однако в среднем метод Гаусса немного точнее.