2018 TSTST #3

Tristan Shin 4 July 2018

Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle Γ . Let M be the midpoint of \overline{AB} . Ray AI meets \overline{BC} at D. Denote by ω and γ the circumcircles of $\triangle BIC$ and $\triangle BAD$, respectively. Line MO meets ω at X and Y, while line CO meets ω at C and Q. Assume that Q lies inside $\triangle ABC$ and $\angle AQM = \angle ACB$.

Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given that $\angle BAC \neq 60^{\circ}$, prove that these four lines are concurrent on Γ .

Let M_A be the midpoint of minor arc BC on Γ and $P \in \Gamma$ be such that $M_AP \parallel AB$. Then M_A is the center of ω by Fact 5, so

$$AP = BM_A = CM_A$$

and thus $AM_A \parallel PC$. Now, line MXOY is the perpendicular bisector of M_AP , so

$$PX = XM_A = YM_A = PY$$

and thus $M_A X P Y$ is a rhombus.

Since $\angle AQM = \angle ACB = \angle AOM$ and $Q \neq O$, we have AMQO cyclic. Then

$$\angle AQC = \angle AQO = \angle AMO = \frac{\pi}{2},$$

so Q lies on the circle with diameter AC, call it Ω with center N (midpoint of AC). Then the radical axis of ω and Ω is CQ, while the center line is M_AN , so $CO \perp M_AN$. By the perpendicularity lemma,

$$CM_A^2 - CN^2 = OM_A^2 - ON^2 = OC^2 - ON^2 = CN^2$$

SO

$$PM_A^2 = AC^2 = 4CN^2 = 2CM_A^2 = 2YM_A^2 = YP^2 + YM_A^2$$

and thus $PY \perp YM_A$, so M_AXPY is a square. Then P is the pole of XY with respect to ω .

Now, observe that

$$\angle PAD = \angle APC = \angle ABC = \angle ABD$$
,

so PA is tangent to γ . Next, observe that

$$AP^2 = BM_A^2 = YM_A^2 = PY^2 = PM_A^2 - YM_A^2$$

so the power of P with respect to γ and ω is the same, thus P lies on the radical axis of γ and ω . But \sqrt{bc} inversion sends γ to CM_A and ω to itself, two orthogonal figures since CM_A passes through the center of ω , so γ and ω are orthogonal and hence the polar of M_A with respect to γ is the radical axis of γ and ω , so P is on the polar of M_A with respect to γ . Then by La Hire, M_A is on the polar of P with respect to γ , so $AM_A \cap \gamma = D$ is the second point of tangency from P onto γ . Hence, P is the pole of AD with respect to γ .

Thus, the tangents to ω at X and Y and the tangents to γ at A and D concur on Γ (specifically at P).