	Utech
Name:	
Roll No.:	To Annual Williamshife and Explanal
Invigilator's Signature :	

CS/B.TECH(EE)/SEM-5/EE-503/2011-12

2011

CONTROL SYSTEM - I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

$$10 \times 1 = 10$$

i) Transfer function of a simple R-C integrator circuit shown in figure is given by

a) $\frac{1}{s-a}$

b) $\frac{1}{s+a}$

c) $\frac{a}{s-a}$

d) $\frac{a}{s+a}$

5104

[Turn over

CS/B.TECH(EE)/SEM-5/EE-503/2011-12

- ii) Area under a unit impulse function is
 - a) infinity

b) zero

c) unity

- d) none of these.
- iii) A system has a single pole at origin. Its impulse response will be
 - a) contrast
- b) ramp
- c) decaying exponential d)
- d) oscillatory.
- iv) A second order system exhibits 100% overshoot. Its damping coefficient is
 - a) 0

b) 1

c) < 1

- d) > 1.
- v) If the Nyquist plot of a certain feedback system crosses the negative real axis at -0.1 point, the gain margin of the system is
 - a) 0·1

b) 10

c) 100

- d) none of these.
- vi) The centre of asymptotes for an open-loop transfer function $G(s) = \frac{2(s+2)}{s^2(s+4)}$ is
 - a) 1

b) -3

c) - 4

- d) 0.
- vii) A slope of 20 dB/decade corresponds to
 - a) 3 dB/octave
- b) 6 dB/octave
- c) 9 dB/octave
- d) 20 dB/octave.

- viii) A feedback system with the transfer function $G(s) = \frac{6(s+1)(s+6)}{s^3(s+2)(s+4)}$ is a
 - a) type 5 system
- b) type 3 system
- c) type 2 system
- d) type 0 system.
- ix) If the gain of a third order system (all poles) is increased, then the phase margin
 - a) increases
 - b) decreases
 - c) remains same
 - d) it is not possible to predict.
- x) The settling time for an underdamped second order system
 - a) increases with damping ratio
 - b) reduces with damping ratio
 - c) does not depend on damping ratio
 - d) may increase or decrease with damping ratio.
- xi) Without affecting steady-state error, maximum overshoot can be decreased by
 - a) derivative error control
 - b) integral error control
 - c) gain adjustment
 - d) proportional error control.

CS/B.TECH(EE)/SEM-5/EE-503/2011-12

- xii) A D only controller will produce
- O O Ulech
- a) always zero steady state error
- b) always infinite steady state error
- c) output only if error changes
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

2. Obtain the Laplace Transform for the signal shown in figure below:

3. A system is defined by $G(s) = \frac{k}{s(Ts+1)}$. Calculate the steady state position and velocity error due to a unit ramp input and hence the loop gain to reduce the error by 10%. 2+3

5104

4. If $G(s) = \frac{W_n^2}{s^2 + 2\xi W_n s + W_n^2}$ is an underdamped second order

system, what happens to the peak overshoot of the closed loop system shown in figure below, if the gain k is increased. Substantiate your answer. Assume k > 0

How does the peak overshoot change for the same value of k if the configuration is as shown in figure

3 + 2

- 5. A system is defined by the transfer function $G(s) = \frac{k}{(T_1s+1)(T_2s+1)}, \quad T_1, \ T_2 > 0 \ .$ Prove mathematically that the system will be stable.
- 6. A system is defined by $G(s) = \frac{5(1-0.1s)}{(0.2s+1)(s+1)}$. Calculate the corner frequencies and the slopes of the asymptotes.

- 7. For the system defined by $G(s) = \frac{k}{(Ts+1)}$ calculate the steady state error due to a unit step input with a PI controller.
- 8. Define gain margin. What happens to the phase of the system at a particular frequency if the system gain is changed? Does phase margin change with system gain?

2 + 1 + 2

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 9. Prove that for an underdamped second order system defined by $G(s) = \frac{\omega_n^2}{(s^2 + 2\xi\omega_n s + \omega_n^2)}$, the peak overshoot due to a unit step input depends on the damping ξ only. What is the
 - locus of constant ω_n roots ? Symbols carry usual significance. 10 + 5
- 10. For the DC position control system shown in the figure below draw the signal flow graph assuming the motor to be in the armature controlled mode with armature resistance r_a and inductance L_a and inertial and damping constants J_m and F_m . Assume the amplifier gain to be K_a , the potentiometer gains to be K_p V/radians and appropriate motor emf and torque constants. Hence derive the transfer function $Q_c(s)/Q_r(s)$.

5104

- 11. Using Routh-Hurwitz Stability Criterion determine the maximum feedback gain K for which the closed loop system will be stable if the open-loop transfer function is $G(s) = \frac{5(1-0\cdot 2s)}{(s^2+3\cdot 2s+4)}$. Calculate the frequency of oscillation at this gain.
- 12. For the system defined by $G(s) = \frac{10}{s(0.1s+1)(0.05s+1)}$ draw the asymptotic gain and phase plots and calculate the gain and phase margins. What is the output of the system at steady-state if a step of 2 units is applied as an input at t = 0?
- 13. For the system defined by $G(s)H(s) = \frac{(1+4s)}{s(s+1)(2s+1)}$ draw the Nyquist plot and hence comment on the stability of the closed loop system.
