DESCRIPTION

The M54844P, a semiconductor integrated circuit fabricated with using IIL technology, is designed for driving an 8-digit, 8-segment fluorescent display.

FEATURES

- Can be used in either an 8-digit or 7-digit plus a decimal point.
- 4-bit data input
- Mode-input controllable display mode
- Internal clock generator
- Wide operating voltage (V_{CC}=5~12V)

APPLICATION

Micro computer display Digital equipment for industrial and consumer use

FUNCTION

The M54844p, a decoder/driver for fluorescent displays, has a 4-bit \times 8-digit memory. Employing the dynamic lighting method, it can light an 8-segment, 8-digit device. Two indication modes can be selected, by the setting of the MODE input.

DESCRIPTION OF OPERATION

Output after reset and during reset.
Outputs during reset (RES=high-state) is shown in the following chart.

Output pin	Output level	
Digit output	To	Н
Digit output	T ₁ ~T ₇	L
Someont output	a~I	L
Segment output	DP	L

After reset, the outputs $T_0 \sim T_7$ are scanned beginning with T_0 . Outputs $S_a \sim S_1$ and DP remain in low-state until CTL has been input for 8 cycles.

2. Decimal point setting

The location of the decimal point depends on the contents of the data memory corresponding to T_0 . When the decimal point is to be displayed, digit T_0 cannot be used.

The display position of the decimal point is as follows.

Content of digit To	Display position of decimal point
0 or 8	T ₁
1 or 9	T ₂
2 or A	T ₃
3 or B	Τ₄
4 or C	T ₅
5 or D	T ₆
6 or E	T ₇
7 or F	T ₀

3. Operation timing

(1) Data programming

- Reset input is necessary before data programming input.
- S₀~S₃ data is read at the leading edge of the CTL

(2) Output timing

DISPLAY CHARACTERS

Hexadecimal code Mode	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
I		,	7	7	'-	<u>_</u>	,-	-,	רו	Ü	ı	E		-	<i>i_i</i>	
п	Li	i	, C	_i	L¦L	וב'	וֹנֵוּ	i	Ci	j '	d	Ь	C	ď	E	+

Mode I is displayed when MODE input is low-state. Mode $I\!I$ is displayed when MODE input is high-state.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~+15	٧
V _i	Input voltage		-0.3~V _{cc}	
V _{cc} -V _o	Voltage between the power supply and output pin	Output off-state	-0.3~+35	
Topr	Operating temperature		-30 ∼+85	C
Tstg	Storage temperature		-55~+125	℃

RECOMMENDED OPERATING CONDITIONS ($T_a = -30 \sim +85$ °C, unless otherwise noted)

0	0	Limits			Unit
Symbol	Parameter	Min	Тур	Max	Ullit
Vcc	Supply voltage	4. 5	10	12	٧
V _{cc} -V _o	Voltage between the power supply and output pin			33	٧

ELECTRICAL CHARACTERISTICS ($\tau_a = -30 \sim +85 \, \text{°C}$, $\nu_{cc} = 10 \, \text{V}$, unless otherwise noted)

	Parameter			Limits			
Symbol		Test conditions	Min	Тур	Max	Unit	
V _{IH}	High-level input voltage		2		V _{cc}	V	
V _{IL}	Low-level input voltage		0		0.7	V	
I _{IH}	High-level input current	V _{IH} =10V			20	μA	
IIL	Low-level input current	V _{IL} =0.5V			-200	μA	
VoH	High-level output voltage	I _{OH} =-10mA	8			V	
IOLK	Output leak current	V ₀ =-20V			-30	μA	
Icc	Supply current	Display off-state		12	18	mA	
tws	Segment output width	C _{ext} =1000pF	130	260	520	μS	
twe	Segment blank width	C _{ext} =1000pF	20	40	80	μS	
two	Digit output width	C _{ext} =1000pF	150	300	600	μS	
tcy	Digit period	C _{ext} =1000pF	1.2	2.4	4.8	ms	

TIMING REQUIREMENTS ($T_a = -30 \sim +85^{\circ}C$, $V_{CC} = 4.5 \sim 12V$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
			Min	Тур	Max	Unit	
tisc	Input setup time in relation to CLK		5			μs	
tiHC	Input hold time in relation to CLK		10			μS	
twH	High-level CTL width		5			μs	
twL	Low-level CTL width		10			μS	
t _{isw}	Input setup time in relation to WR		0		1	μs	
t _{iHW}	Input hold time in relation to WR		5			μS	
tww	WR width		5			μS	
twc	WR→CTL		5			μs	
tcw	CTL→WR		15			μs	

OUTPUT TIMING DIAGRAM

DIGIT OUTPUT WIDTH t_{wo} =15 t_{OSC} SEGMENT OUTPUT WIDTH t_{ws} =13 t_{OSC} SEGMENT BLANK WIDTH t_{ws} =2 t_{OSC} (t_{OSC} is oscillation period of the oscillator circuit.)

INPUT TIMING DIAGRAM

