

11 Veröffentlichungsnummer:

0 269 806 A1

(2)

ī

EUROPÄISCHE PATENTANMELDUNG

- 2) Anmeldenummer: 87114161.0
- 2 Anmeldetag: 29.09.87

(9) Int. Cl.4: **C07D 231/14**, C07D 231/16, C07D 403/06, C07D 403/04, C07D 413/04, C07D 403/10, A01N 43/56

- ③ Priorität: 04.10.86 DE 3633840
- Veröffentlichungstag der Anmeldung: 08.06.88 Patentblatt 88/23
- Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB GR IT LI NL SE
- Anmelder: HOECHST AKTIENGESELLSCHAFT
 Postfach 80 03 20
 D-6230 Frankfurt am Main 80(DE)
- ② Erfinder: Sohn, Erich, Dr. Lerchenbergstrasse 46/1

D-7300 Esslingen(DE) Erfinder: Handte, Reinhard, Dr.

Theliweg 23

D-8901 Gablingen(DE)

Erfinder: Mildenberger, Hilmar, Dr.

Fasanenstrasse 24

D-6233 Keikheim (Taunus)(DE) Erfinder: Bürstell, Helmut, Dr.

Am Hohlacker 65

D-6000 Frankfurt am Main 50(DE)

Erfinder: Bauer, Klaus, Dr. Doorner Strasse 53D D-6450 Hanau(DE)

Erfinder: Bieringer, Hermann, Dr.

Eichenweg 26

D-6239 Eppstein/Taunus(DE)

- Phenylpyrazoicarbonsäurederivats, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener.
- Verbindungen der Formel I

worin R Halogen, Hydroxy, Cyano, Nitro, (subst.) Alkyl, (subst.) Alkoxy, (Halogen)alkylthio, Carboxy, Alkoxycarbonyl; (Halogen)Alkylsulf(inyl)(onyl) oder -(onyloxy); (Halogen)phenyl, (Halogen)phenoxy; X in 3 oder 5-Position einen (Thio)carbonsäure - oder davon abgeleiteten gegebenenfalls heterocyclischen Rest; Y = Halogen, m = dle Zahl 0 oder 1 und n eine Zahl von 0 bis 5 bedeutet, besitzen wertvolle pflanzenwuchsregulierende Eigenschaften und eignen sich darüberhinaus als Safener zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.

87114161:0

HOECHST AKTIENGESELLSCHAFT

HOE 86/F247

Dr.AU/gm-je

Beschreibung

Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener

Phenylaminopyrazole mit herbizider Wirkung sind z.B. aus EP-A 138 149 bekannt.

Es wurden neue Phenylpyrazolcarbonsäurederivate gefunden die überraschenderweise hervorragende pflanzenwachstumsregulierende Eigenschaften besitzen und darüber hinaus phytotoxische Nebenwirkungen von Herbiziden gegenüber Kulturpflanzen vermindern.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der Formel I

15

10

5

20 worin

R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro, (C_1-C_4) Alkyl, (C_1-C_4) Halogenalkyl, (C_1-C_4) Alkoxy- (C_1-C_6) Alkoxy, (C_1-C_6) Alkoxy- (C_1-C_4) Alkoxy, (C_1-C_6) Halogenalkoxy, (C_1-C_4) Alkylthio, (C_1-C_4) Halogenalkylthio, Carboxy, (C_1-C_4) Alkoxycarbonyl,

- 30 X = in Position 3 oder 5 des Pyrazolringes orientiert ist und einen Rest der Formeln

-CN, -C-OR
1
, -CSR 2 , -C-NR 3 R 4 ,

35

Y = Halogen

Z = 0 oder S

U = 0, S oder N-R,

15

10

5

R Wasserstoff, (C -C)Alkyl,
(C -C)Alkyl, das ein- oder mehrfach durch Halogen
1 12 12 12 15 his zweifach durch Hydroxy, (C₁-C₆)Alkoxy, (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfinyl, Mono- ode Di-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl, 20 (C₁-C₄)Alkylcarbonyl, (C₁-C₄-Alkoxy)carbonyl, Cyclo(C₃-C₇)-alkyl, Tri(C₁-C₄)alkyl-silyl, Benzyloxy, Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder 25 (C,-C,)Alkyl substituiert ist, durch Phenoxy, Phenylthio, die durch Halogen oder (C1-C4)-Alkyl substituiert sein können, durch Oxiranyl, Tetrahyrofuryl, Triazolyl, Pyridinyl, Imidazolyl, durch 30 Carboxy, Carboxylat mit einem für die Landwirtschaft einsetzbaren Kation oder durch den Rest -O-N=C(CH3)2 substituiert ist, (C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl, unsubstituiertes oder durch Halogen oder (C1-C4)Alkyl 35 substituiertes Cyclo(C3-C7)alkyl, unsubstituiertes oder durch Halogen oder (C1-C4)Alkyl substituiertes

25

30

 $\begin{aligned} &\operatorname{Cyclo}(\mathsf{C}_5-\mathsf{C}_7)\operatorname{alkenyl}, \ (\mathsf{C}_3-\mathsf{C}_6)\operatorname{Alkinyl}, \\ &1,2\text{-Epoxy-prop-3-yl}, \ \operatorname{Phenyl} \ \operatorname{oder} \ \operatorname{Phenyl}, \ \operatorname{das} \ \operatorname{ein} \ \operatorname{oder} \\ &\operatorname{zweifach} \ \operatorname{durch} \ \operatorname{Halogen}, \ \operatorname{Nitro}, \ \operatorname{Cyano}, \ (\mathsf{C}_1-\mathsf{C}_4)\operatorname{Alkyl}, \\ &(\mathsf{C}_1-\mathsf{C}_4-\operatorname{Alkoxy})\operatorname{carbonyl} \ \operatorname{oder} \ (\mathsf{C}_1-\mathsf{C}_4)\operatorname{Alkoxy} \ \operatorname{substituiert} \\ &\operatorname{ist}, \ (\mathsf{C}_1-\mathsf{C}_4-\operatorname{Alkyl})\operatorname{carbonyl}, \ \operatorname{Phenylcarbonyl}, \ \operatorname{wobei} \ \operatorname{der} \\ &\operatorname{Phenylring} \ \operatorname{durch} \ \operatorname{Halogen}, \ \operatorname{Nitro}, \ \operatorname{Cyano} \ \operatorname{oder} \\ &(\mathsf{C}_1-\mathsf{C}_4)\operatorname{Alkyl} \ \operatorname{substituiert} \ \operatorname{sein} \ \operatorname{kann}, \end{aligned}$

einen Rest der Formeln

$$-N=C(R^{10})_2, -NR^3R^{11}, \qquad NR^3R^{11}, \qquad NR^3R^{11}$$

oder ein für die Landwirtschaft einsetzbares Kation,

- R² (C₁-C₁₂)Alkyl oder (C₁-C₁₂)Alkyl, das bis zu zweifach durch (C₁-C₄)Alkoxyethoxy, Cyclo(C₃-C₆)alkyl,
 Benzyloxy, Phenyl, Phenoxy, (C₁-C₄)Alkylthio, (C₁-C₄-Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,
 - \mathbb{R}^3 jeweils unabhängig voneinander (C_1-C_6) -Alkyl, Phenyl oder (C_3-C_6) -Alkenyl,

15

Wasserstoff, (C_-C_)Alkyl oder (C_-C_)Alkyl, das bis zu zweifach durch (C_1-C_)Alkoxy, (C_1-C_4)Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C_-C_4)-Alkoxyimino, Halogen, Cyclo(C_3-C_6)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C_1-C_4-Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C_-C_4)Alkyl oder (C_1-C_4)Alkoxy substituiert ist; (C_3-C_6)-Alkenyl, (C_3-C_6)Cycloalkyl, einen Rest der Formeln

 $-NR^3R^{12}$, $-0-R^6$, $-NH-CONH_2$, $-NH-CS-NH_2$ oder $-SO_2R^{13}$ oder

- R und R gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C₁-C₄)Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,
- R⁵ H, (C₁-C₆)Alkyl oder Phenyl, oder im Falle X =
 -CS-OR⁵ ein für die Landwirtschaft einsetzbares Kation,
- 25 R jeweils unabhängig voneinander H, (C-C₁)Alkyl oder Benzyl,
- peweils unabhängig voneinander H, (C -C)Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C -C)Alkyl oder (C -C)Alkoxy substituiert ist, durch Hydroxy, Cyano, (C -C -Alkoxy)-carbonyl, (C -C)-Alkylthio, (C -C)-Alkoxy, Cyclo(C -C)alkyl oder Benzyloxy substituiert ist,
- 35 (C₃-C₆)Alkenyl, Halogen(C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, Cyclo(C₅-C₈)alkyl, Cyclo(C₅-C₆)alkenyl, (C₁-C₆-Alkyl)carbonyl,

Halogen(C₁-C₆-alkyl)carbonyl,
[(C₁-C₆-Alkyl)amino]carbonyl, Benzoyl, Halogenbenzoyl
oder Methylbenzoyl

- jeweils unabhängig voneinander (C₁-C₀)Alkyl, das unsubstituiertes oder durch Phenyl,

 Cyclo(C₅-C₇)alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio oder Halogen substituiert ist,

 oder zwei Reste R gemeinsam mit Z und dem

 Kohlenstoffatom, an das sie gebunden sind, einen unsubstituierten oder durch (C₁-C₄)Alkyl, Hydroxy
 (C₁-C₄)alkyl, Halogen(C₁-C₄)alkyl oder Phenyl substituierten 5- oder 6-gliedrigen gesättigten heterocyclischen Ring;
- P jeweils unabhängig voneinander H, Halogen, (C₁-C₄)-Alkyl, Nitro oder Cyano,
- unabhängig voneinander H, (C₁-C₄)Alkyl, das
 unsubstituiert oder durch (C₁-C₄)Alkoxy, Triazolyl
 oder Imidazolyl substituiert ist, Cyclo(C₃-C₆)alkyl,
 (C₂-C₆)Alkenyl, Phenyl oder Benzyl, oder im Falle R¹=-N=C(R¹⁰)₂ beide Restingemeinsam mit dem Kohlenstoffatom, an das sie
 gebunden sind, ein unsubstituiertes oder durch Methyl
 oder Halogen substituiertes Cyclo-(C₅-C₇)alkyl,
 - R¹¹ (C₁-C₂)Alkyl, Phenyl, (C₁-C₂-Alkyl)carbonyl, Benzyl, Benzoyl, Halogenbenzyl, Halogenbenzoyl oder Methylbenzoyl,
- R 12
 R, (C₁-C₄)Alkyl, Formyl, (C₁-C₆-Alkyl)carbonyl,
 Benzoyl, Halogenbenzoyl, Methylbenzoyl oder
 Trihalogenacetyl,
- 35 R¹³ (C₁-C₄)Alkyl, Phenyl oder Methylphenyl,
 - **a** 0 oder 1,
 - n eine ganze Zahl von 0 bis 5, insbesondere 1 bis 3,

- p eine ganze Zahl von 0 bis 4, insbesondere 0 bis 2 und
- q eine ganze Zahl von 0 bis 6, insbesondere 0 bis 3,
- 5 bedeuten, sowie deren für landwirtschaftliche Zwecke verträglichen Salze und Quaternisierungsprodukte.

Die Salzbildung bzw. Quaternisierung erfolgt hierbei am basischen Stickstoffatom des Pyrazolrings. Die Salzbildung oder Quaternisierung ist nicht möglich, wenn R, R ein Kation bedeutet oder R, R, R eine Carboxylatgruppe enthält.

Bevorzugt unter den Verbindungen der Formel I sind insbesondere solche, bei denen R= Halogen, (C_1-C_4) Alkyl, Halogen (C_1-C_4) alkyl oder (C_1-C_4) Alkoxy; X= CN, -COOR¹, CO-SR² oder -CONR³R⁴; Y= Halogen; R¹, R²= H, (C_1-C_4) Alkyl (C_2-C_4) Alkenyl, (C_2-C_4) Alkinyl, (C_1-C_4) Alkoxy - (C_1-C_4) alkyl oder ein Kation; R, R⁴= H, (C_1-C_4) Alkyl, m= 0 oder 1 und n= 1 bis 3 bedeuten. Von besonderem Interesse hierbei sind Verbindungen mit R_n= 2,6-Dialkyl, Mono- oder Dihalogen oder mono-Trifluormethyl.

Der Rest Y ist insbesondere in Position 4 des Pyrazolringes orientiert.

Unter Halogen ist F, Cl, Br oder J, insbesondere F, Cl oder Br zu verstehen.

 (C_1-C_4) Halogenalkyl enthält 1 bis 5, insbesondere 1 bis 3 Chlor oder Fluoratome; bevorzugt ist der Rest CF_3 .

Halogeniertes (C₁-C₁)Alkyl enthält insbesondere 1 bis 13 Chlor- oder Fluoratome, hierzu zählen beispielsweise die Reste 2,2,2-Trichlorethyl, 4-Chlorbutyl, 2,2,2-Trifluorethyl, 1,1,1,3,3,3-Hexafluorprop-2-yl; 2,2,3,4,4,4-Hexafluorbutyl und 3,3,4,4,5,5,6,6,7,7,8,8,8-Trideka_fluoroct-1-yl.

 (C_1-C_6) Halogenalkylthio, Halogen (C_1-C_6) alkylsulfinyl, Halogen (C_1-C_6) alkylsulfonyl und Halogen (C_1-C_6) alkylsulfonyl und Halogen (C_1-C_6) alkylsulfonyloxy enthalten joweils insbesondere 1 bis 9 Chlor- oder Fluoratome;

Halogeniertes (C_3 - C_6)Alkenyl enthält insbesondere 1 bis 3 Chlor oder Fluoratome.

Halogenphenyl, Halogenbenzyl oder Halogenbenzoyl onthalten insbesondere 1 bis 3 Fluor, Chlor oder Bromatome.

Unter Tribalogenacetyl ist insbesondere Trichlor- und Trifluorocetyl zu vorstokon.

Für den Foll, das der Rost - MR R (für X B CO- MR R) oinen heteroeyelischen Ring bildet, ist bierunter beispielsweise Piperidin, Morphelin, 2,6-Dimethylmorphelin, Piperozin, Triazel, Imidazel, Pyrazel, Thiazel und Bonzimidazel zu vorstehen.

Für den Foll, daß in don aufgeführten Substituenten zusätzlich zum Pyrazelring - voitoro basische Stickstoffatomo auftroton, ist auch oino mohrfache Salzbildung oder Quaternisiorung möglich.

Für die Herstellung der Salze geeignet sind alle anorganischen oder organischen Säuron, die aufgrund ihres pRs-Wertes zur Salzbildung befühigt sind, 2.8. Halogenvasserstoffsäuren, Salpetersäure, Schwefelsäure, Phosphorsäure, Phosphorsäuren, Sulfonsäuren, Halogenessigsäuren oder Oxalsäure.

Als Quatornisiorungsprodukte sind die Vmsotzungsprodukto mit Alkyl-, Alkylthioalkyl-, Alkonyalkyl-, insbosondere (C₁-C₆)Alkyl- und gegobonomialis im Phonylrost substituiertom, imsbosondoro halogeniortom Phonocylhalogeniden zu werstehen. Die Merstellung der Quatornisiorungsprodukto der Verbindungen der Formel i orfolgt nach allgemein Whilehen Methodon.

Als Kationen für R, R oder R, die für die Landwirtschaft einsetzbar sind, kommen Metallkationen z.B. Alkali- oder Erdalkalikationen wie Ma, K, Mg oder organische Kationen wie organisches substituiertes Ammonium, organisch aubstituiertes Phosphonium, Sulfonium oder Sulfononium oder andere Stickstoff-kationen in Betracht.

Organisch oubstituiertes Ammonium bedeutet primüres, ockundares, tertiares, quartaros, aliphatiochos, arematicehos eder hotorearematisches Ammenium, das 1 bis droi N- Atomo ontholton konn. Dio Stickotoffotomo dos Amins kënnon hiorboi queh Toil oinos eyelisehen Systoms soin. Als Boispiole für seleko Ammeniumsalzo soien gonannt: Mono-, Di-, Tri-, Totro[(C -C)Alkyl]ommonium vio Icopropylamonium, Butylamonium, Stoarylamonium, Triothylommonium, Mono-, Di-, Tri-[(C,-C,)alkexy(C,-C,)alkyl]ammonium edor Mene-, Di-,
Tri-[(C,-C,)-alkanel]-ammenium vio Mothexyothylammenium, Motherypropylammenium, Triothanelammenium, Tripropunolummonium, odor Ammoniumvorbindungon mit gomischton Roston wio tort .- Butyldiothanolammonium, Triothylbenzylammenium, Hydrenyothyltrimothylammenium, Chlerothyltrimothylommenium, edor Allylommenium, Diallylammenium, Cyclehonylammenium, Monthanylammenium, Aminoothylommonium, Ethylondiommonium, Bonzhydrylommonium, Pyrrolidinium, Morphilinium, 3-Pyridylummonium, Piporidinium odor Piporozinium, odor oin von oinor Aminociuro edor doron Ector abgoloitotoc Ammenium wio $[NH_3-CH_2-COOCH_3]^{\diamond}$.

Organisch substituiortes Phosphonium, organisches Sulfonium oder organisches Sulfononium onthalten aliphatische oder arylaliphatische Roste, wie sie für Ammonium angegeben wurden.

Andoro Stickstoff-Kationon sind boispiolsweiss Mydrasonium, Mydroxylammonium, Guanidinium, Aminoguanidinium odor doron Substitutionsprodukto.

Gogonstand dor Erfindung ist formor oim Vorfabron zur

15

20

9

gekennzeichnet, daß man eine Verbindung der Formel II

worin R (C₁-C₆)-Alkyl bedeutet, mit einer Verbindung der Formel III

$$H_2^{N-NH}$$
 - R_n (III)

umsetzt und anschließend gegebenenfalls derivatisiert.

Das Verfahren wird bei 0° bis 120°C in einem organischen Lösemittel gegebenenfalls in Gegenwart einer organischen Säure, wie p-Toluolsulfonsäure, Methansulfonsäure, durchgeführt. Als Lösemittel können polare Verbindungen wie Alkohole, z.B. Ethanol, Methanol, organische Säuren wie Eisessig, chlorierte Kohlenwasserstoffe wie Dichlorethan oder aromatische Lösemittel wie Toluol, Xylol eingesetzt werden.

Während der Reaktion entstehen als Zwischenstufen die Verbindungen der Formel IVa und IVb.

35 Diese Zwischenprodukte können isoliert werden und anschließend unter den oben beschriebenen Bedingungen

20

25

cyclisiert werden. Bei der direkten Weiterreaktion werden in der Regel Gemische der Verbindungen der Formel I d.h. die Verbindungen der Formel Ia und Ib nebeneinander erhalten.

Die Verbindungen der Formeln (Ia) bzw. (Ib) können nach üblichen Verfahren an der Gruppe -COOR oder durch Halogenierung des Pyrazolrestes derivatisiert werden.

So lassen sich die Pyrazole der Formeln Ia oder Ib unter den üblichen Bedingungen der Aromatenhalogenierung in der 4-Position des Pyrazolrestes halogenieren, s. Houben-Weyl, Methoden der organischen Chemie Band 5/3 S. 503 ff, Band 5/4, S. 13 ff (1962). Zur Derivatisierung wird weiterhin der Rest -COOR in bekannter Weise in andere für X genannte Reste umgewandelt, z.B. durch Verseifung, Veresterung, Umesterung, Amidierung, Salzbildung etc. wie dies z.B. in den deutschen Offenlegungsschriften DE-OS 34 44 918 und DE-OS 34 42 690 beschrieben ist, oder es erfolgt auf übliche Weise Salzbildung oder Quaternisierung am basischen Stickstoffatoms des Pyrazolrings.

Die Ausgangsverbindungen der Formel II lassen sich durch Umsetzung der Verbindungen der Formel V mit Verbindungen der Formel VI in Gegenwart einer organischen Hilfsbase,

$$R^{14}-OCH=CH_{2} \qquad \qquad R^{15}-C-C-OR^{15}$$

$$(V) \qquad \qquad (VI)$$

10

exhalten (Literatur; Chem. Ber. 115, S. 2766-2782 (1982)). R bedeutet eine Abgangsgruppe wie Cl, Br, OSO₂CF₃

Als Hilfsbase können organische Amine wie Triethylamin oder Pyridin eingesetzt werden. Das Verfahren wird zwischen -20° und +30°C durchgeführt. Die erhaltenen Verbindungen der Formel II können direkt ohne Aufarbeitung weiter umgesetzt werden. Die Ausgangsverbindungen der Formel III lassen sich nach üblichem Verfahren, D. Houben Weyl, Methoden der organischen Chemie Bd 10/2 S. 169 (1967) herstellen.

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I als Pflanzenwuchsregulatoren. 15 Mit den erfindungsgemäßen Verbindungen sind typische vachstumsregulierende Effekte erzielbar. Die Verbindungen greisen regulierend in den pflonzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pilanzeninhaltsstoffen sowie zur Ernteerleichterung wie zum 20 Auslösen von Desikkation und Wuchsstauchung eingesetzt verden. Des veiteren eignen sie sich zur generellen Steuerung und Hemmung von unervünschtem vegetativen Wachstum, ohne dabei die Pilanzen abzutöten. Eine Hemmung des vegetativen Hachstums spickt bei viclen mono- und 25 dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert verden kann. Besonders hervorzuheben ist die vechstumsregulatorische Hirkscakeit der Verbindungen als Huchsbemmer in Getreide, Mais, Sojo, Tabak, Bawayolle, Ackarbohne, Raps, Reis, 30 Sonnenblume, Rosen sowie ihre Fühigkeit, den Gehalt on erwinschten Inhaltootoffen vie Kohlehydraten (z.B. Zuckerrohr oder Hirsekulturen) und Protein bei Nutzpflanzen zu erhöhen. Schließlich zeigen die Verbindungen eine ochr gute Verbesserung der Fruchtabssission, insbesondere bei 35 Zitrusfrüchten.

10

Eine weitere Lösung der gestellten Aufgabe sind auch das Pflanzenwachstum regulierende Mittel, die sich durch einen wirksamen Gehalt mindestens einer der erfindungsgemäßen Verbindung auszeichnen. Die Aufwandmenge der Verbindungen der Formel I beträgt im allgemeinen 0,02 bis 2,5 kg Wirksubstanz pro ha, vorzugsweise 0,05 bis 1,5 kg/ha. Die Verbindungen lassen sich bei ihrem praktischen Einsatz gegebenenfalls auch vorteilhaft mit bekannten Wachstumsregulatoren oder natürlichen oder pflanzlichen Hormonen kombinieren.

Gegenstand der Erfindung ist former die Vervendung der Verbindungen der Formel I als Safenor. So wurde gefunden, daß sie phytotoxische Nebenvirkungen von

- 15 Pilonzenschutzmitteln, insbesondere von Herbiziden, beim Einsatz in Nutzpilonzenkulturen vermindern oder ganz unterbinden.
- Die Verbindungen der Formel I können zusemmen mit anderen 20 Kerbiziden ausgebracht werden und sind dann in der Lage, schüdliche Nebenwirkungen dieser Kerbizide zu antagonisieren oder völlig aufzuheben, ohne die herbizide Wirksamkeit dieser Herbizide gegen Schadpflanzen zu beeintrüchtigen. Hierdurch kann das Einsatzgebiet
- herkömilieher Pflonzenschutzmittel Bonz orheblich
 vergrößert vorden. Solche Vorbindungen, die die Eigenschaft
 besitzen, Kulturpflonzen gegen phytotoxische Schöden durch
 Herbizide zu schützen, verden Antidots oder "Sofener"
 genonnt.

30

Herbizide, deren phytotoxische Nebenvirkungen mittels der Vorbindungen der Formel I herebgesetzt vorden können, sind z.B. Carbemate, Thiolearbemate, Helogenaceetanilide, substituierte Phonoxy-, Naphthoxy- und

35 Phenoxyphenoxyearbonsiurederivate novie Reteroaryloxyphenoxyearbonsiurederivate vie Chinolyloxy-,

Chinoualylony-, Pyridylony-, Benzonazolylony-, Benzthiazolylony-phenony-carbonsäurcester und ferner Dimedononimabkömmlinge. Bevorzugt hiervon sind Phenonyphenony- und Heteroarylonyphenonyearbonsäurcester. Als Ester kommen hierbei insbesondere niedere Alkyl-, Alkenyl und Alkinylester in Frage.

Beispielsweise seien, ohne daß dadurch eine Beschränkung erfolgen soll, folgende Herbizide genannt:

- A) Herbizide wom Typ der Phenoxyphenoxy- und Heterosryloxy phenoxycorbonsäure-(C₁-C₄)olkyl-, (C₂-C₄)olkenyl- und (C₃-C₄)olkinylester vie
 - 2-(4-(2,4-Dichlorphonoxy)-phonoxy)-propionsiuromethylecster.
 - 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propions uremethylogeter.
 - 2- (4- (4-Trifluormethylphenoxy)-phonoxy)-propionsiuremethylester,
 - 2- (4- (2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propionnüuremethylenter.
 - 2-(4-(2,4-Dichlorbcazyl)-phenoxy)-propionsiuremethyl-
 - 4- (4- (4- Trifluormethylphenoxy)-phenoxy)-pent-2-en-siureethylester,
 - 2- (4- (3, 5-Dichlorpyridyl-2-oxy)-phonoxy)-propionsäureethyloster,
 - 2- (4- (3, 5-Dichlorpyridyl-2-oxy)-phonoxy)-propionsiureproportyloster,
 - 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäuretrimethylsilylmethylester,
 - 2- (4- (6-Chlorbeazonneol-2-yl-ony)-phenony)-propionenureethylenter,
 - 2- (4- (6-Chlorbeasthicsel-2-yl-oxy)-phenoxy)-propionsiurecthylester,
 - 2- (4- (3-Chlor-5-trifluoracthyl-2-pyridyloxy)-phenoxy)-propions duremethyloster,

- 2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäureethylester
- 2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propion-säurebutylester,
- 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäureethylester,
- 2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäureethylester,
- 2-(4-(6-Chlor-2-chinolyloxy)-phenoxy)-propionsäureethylester,
- B) Chloracetanilid-Herbizide wie
 N-Methoxymethyl-2,6-diethyl-chloracetanilid,
 N-(3'-Methoxyprop-2'-yl)-methyl-6-ethyl-chloracetanilid,
 N-(3-Methyl-1,2,4-oxdiazol-5-yl-methyl)-chloressigsäure2.6-dimethylanilid,
- C) Thiocarbamate wie S-Ethyl-N,N-dipropylthiocarbamat oder S-Ethyl-N,N-diisobutylthiocarbamat
- Dimedon-Derivate wie

 2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy

 2-cyclo-hexen-1-on,

 2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthiopropyl)-3-hydroxy-2-cyclohexen-1-on oder

 2-(1-Allyloxyiminobutyl)-4-methoxycarbonyl-5,5-dimethyl-3-oxocyclohexenol.

 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on,

 2-(N-Ethoxybutyrimidoyl)-3-hydroxy-5-(thian-3-yl)-2-cyclohexen-1-on.

Das Mengenverhältnis Safener: Herbizid kann innerhalb weiter Grenzen, im Bereich zwischen 1:10 und 10:1, insbesondere zwischen 2:1 und 1:10, schwanken. Die jeweils optimalen Mengen an Herbizid und Safener sind abhängig vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden

Pflanzenbestandes und lassen sich von Fall zu Fall durch entsprechende Versuche ermitteln.

Haupteinsatzgebiete für die Anwendung der Safener aind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle, Zuckerrüben, Zuckerrohr und Sojabohne.

Die Safener der Formel I können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verundet verden oder vor der Saat in die Saatfurchen eingebracht verden oder zusammen mit dem Kerbizid vor oder nach dem Auflaufen der Pflanzen angevendet verden. Vorauflaufbehandlung sehließt sowohl die Bahandlung der Ambaufläche vor der Aussaat als devenden Bahandlung der angesäten, aber noch nicht bowachsenen Ambauflächen ein. Bevorzugt ist die gemeinsame Anwendung mit dem Herbizid. Hierzu können Tankmischungen oder Fortigformulierungen eingesetzt verden.

Gogenstand der vorliegenden Erfindung ist daher auch ein Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nabenwirkungen von Herbiziden, das dadurch gekennzeichnet ist, daß eine virksame Menge einer Verbindung der Formel I vor, nach oder Gleichzeitig mit dem Herbizid appliziert vird.

Die erkindungsgemißen Verbindungen der Formel I können, Gegebenonfells im Gemisch mit veiteren Virkkomponenten oder auch Eustemen mit einem Merbizid, els Spritzpulver, emulgierbere Konzentrete, versprühbere Lösungen, Stüubemittel, Beizmittel, Dispersionen, Grenulete oder Mikrogrenulete in den üblichen Zubereitungen engewendet verden.

Unter Spritzpulvern verden in Vesser Eleichmüßig dispergierbere Früperete verstanden, die neben dem Wirkstoff Dußer gegebenenfalls dinem Vordünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fottolkohole, Alkyl- oder Alkylphenylsulfonate und Dispergiermittel, z.B.

ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'disulfonsaures Natrium, dibutylnaphthalinsulfonsaures
Natrium oder auch elecylmethyltaurinsaures Natrium
enthalten. Ihre Herstellung erfolgt in üblicher Weise z.B.
durch Mahlen und Vermischen der Komponenten.

10

30

Emulgicrbare Konzentrate Lönnen z.B. durch Auflösen des Wirkstoffes in einem imerten organischen Lösungsmittel, z.B. Butenol, Cyclohexenon, Dimethylformenid, Xylol oder euch höhersiedenden Arometen oder Kohlenvasserstoffen unter

- Zusatz von oinem oder mehreren Emulgatoren hergestellt verden. Bei flüssigen Hirkstoffen konn der Lösungsmittelanteil ganz oder auch teilveise entfallen. Als Emulgatoren können beispielsveise vorvendet verden:
 Alkylarylsulfonsaure Calciumsalze vie
- Co-dodecylbenzolsulfonot, oder michtionische Emulgatoren vie Fettsäurepolyglykolostor, Alkylorylpolyglykolether, Fettsikoholpolyglykolether, Propylenoxid-Ethylonoxid-Kondenstionsprodukte, Alkylpolyglykolether, Sorbitanfettsäureester,
- 25 Felyexothylonserbitanicttsiurcostar eder Pelyexothylonserbitaster.

Stüubomittol vorden durch Vormahlen des Tirkstoffes mit fein vorteilten, festen Stoffen, z.B. Telkum, netürlichen Tonen vie Kaolin, Bentonit, Pyrophillit oder Dietomeenerde erhelten.

Granulato könnan ontroder durch Vordüson des Virkstoffes auf adsorptionsfähiges, Granuliertes Inertastorial herrestellt vorden oder durch Aufbringen von

35 hergostellt vordom odor durch Aufbrimgem vom Virkstoffkomsemtratem mittels Bindemittelm, s.B.

Folyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen auf die Oberfläche von Trägerstoffen vie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert verden.

In Spritzpulvern beträgt die Wirkstoffkonzentration etwa
10 bis 90 Gew.-%; der Rest zu 100 Gew.-% besteht aus
10 üblichen Formulierungsbestandteilen. Bei emulgierbaren
Konzentraten kann die Wirkstoffkonzentration etwa 10 bis 60
Gew.-% betragen. Staubfähige Formulierungen enthalten
Deistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare
Lösungen etwa 1 bis 20 Gew.-%. Bei Granulaten hängt der
15 Wirkstoffgehalt zum Teil davon ab, ob die virksame
Verbindung flüssig oder fest vorliegt und velche
Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstoffermulierungen

20 gegebenenfalls die jeweils üblichen Haft-, Netz-,
Dispergier-, Emulgier-, Ponetrations-, Lösungsmittel, Fülloder Trägerstoffe.

Zur Anwendung verden die in hendelsüblieher Form

25 vorliegenden Konzentrete gegebenenfelle in üblieher Weise verdünnt, z.B. bei Spritzpulvern, omulgierberen Konzentreten, Dispersionen und teilveise auch bei Mikrogrenuleten mittels Wesser. Staubförmige und granulierte Zubereitungen sowie versprühbere Lösungen verden vor der Anwendung üblicherveise nicht mehr mit veiteren inerten Stoffen verdünnt.

Dio benötigten Aufrandmengen der Verbindungen der Formel I
bei ihrem Einsatz als Safoner können je nach Indikation und
Verrendetem Herbizid innerhalb veiter Granzen schranken und
Variieren im allgemeinen zwichen 0,01 und 10 kg Wirkstoff
je Hekter.

35

Folgende Beispiele dienen zur Erläuterung der Erfindung.

A. Formulierungsbeispiele

- 5 a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel I und 90 Gewichtsteile Talkum oder Inertstoff mischt und in einer Schlogmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver vird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel I, 64 Gewichtsteile kaolinkeltigen Quarz ein Inertatoff, 10 Gewichtsteile ligninaulfonsaures Kalium und 1 Gewichtsteil oleoylmethyltourinsaures

 Natrium ein Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- e) Ein in Wasser leicht dispersierbares

 Dispersionskonzentrat wird erhalten, indem man 20

 Cewichtsteile einer Verbindung der Formel I mit 6

 Gewichtsteilen Alkylphenolpolyglykolether ((R)Triton X

 207), 3 Gewichtsteilen Isotrideennolpolyglykolether

 (8 AcO) und 71 Gewichtsteilen persiinischem Mineralöl

 (Siedebereich z.B. ec. 255 bis über 377°C) mischt und in

 ciner Reibkugelmühle auf eine Feinheit won unter 5

 Mikron wermahlt.
 - d) Ein ceulgicrberce Kenzentret vird orhelten aus 15
 Gerichtsteilen einer Verbindung der Fereel I, 75
 Gerichtsteilen Cyclohexenon als Lösungsmittel und 10
 Gerichtsteilen exethyliertes Monylphenol als Emulgator.
 - c) Ein Hosser leicht omulgiorborcs Konzentrot aus cincm Phanoxycorbonsiureester und cincm Antidot (10:1) wird orhalton aus

- 12,00 Gew.-% 2-[4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy]propionsäureethylester
- 1,20 Gew.-% Verbindung der Formel I

- 69,00 Gew.-% Xylol
- 7,80 Gew.-% dodecylbenzolsulfonsaurem Calcium
- 6,00 Gew.-% ethoxyliertem Nonylphenol (10 EO)
- 10 4,00 Gew.-% ethoxyliertem Rizinusöl (40 E0)

Die Zubereitung erfolgt wie unter Beispiel a) angegeben.

- f) Ein in Wasser leicht emulgierbares Konzentrat aus einem
 Phenoxycarbonsäureester und einem Antidot (1:10) wird
 erhalten aus
 - 4,0 Gew.-% 2-[4-(6-Chlorbenzoxazo1-2-yl-oxy)-phenoxy]propionsäureethylester
- 20 40,0 Gew.-% Verbindung der Formel I
 - 30,0 Gew.-% Xylol
 - 20,0 Gew.-% Cyclohexanon
 - 4,0 Gew.-% dodecylbenzolsulfonsaurem Calcium
 - 2,0 Gew.-% ethoxyliertem Rizinusöl (40 E0)

25

B. Chemische Beispiele

Beispiele 1 und 2

- 30 1-Phenyl-pyrazol-5(und 3)-carbonsäureethylester
 - Zu 14 g Oxalsäurehalbethylesterchlorid wurde zwischen 0° und 30°C 15 g Ethylvinylether zugetropft und 20 h bei 20 30°C nachgerührt. Das Reaktionsgemisch wurde im
- Wasserstrahlvakuum eingeengt und in 100 ml Eisessig aufgenommen. Zu dieser Lösung tropfte man zwischen 10 und 80°C 10,8 g Phenylhydrazin in 150 ml Eisessig zu und

15

erhitzte das Gemisch 2 h zum Rückfluß. Man gab das erhaltene Produkt in 1 l Wasser und extrahierte es zweimal mit 300 ml Essigester. Der organische Extrakt wurde einmal mit 100 ml Wasser, zweimal mit 100 ml gesättigter

NaHCO - Lösung und wieder mit 100 ml Wasser gewaschen und über Mg SO getrocknet. Nach destillativer Trennung erhielt man

1-Phenyl-pyrazol-5-carbonsäureethylester Kp 100-102/0,5 Torr (Beispiel 1)

1-Phenyl-pyrazol-3-carbonsäureethylester Kp 125-128/0,5 Torr (Beispiel 2)

10 Ausbeute: 10,5 g

Beispiel 3

1-Phenyl-pyrazol-5-carbonsaure

4,4 g 1-Phenyl-pyrazol-5-carbonsäureethylester von Beispiel
l wurden mit 10 ml 16,5 % wäßrigem NaOH und 10 ml Ethanol
6 h bei Raumtemperatur gerührt; das Ethanol wurde
abdestilliert, die wäßrige Phase zweimal mit 10 ml Toluol
extrahiert und mit konz. HCl auf pH 3 eingestellt. Der
Niederschlag wurde abgesaugt, mit wenig Wasser gewaschen
und getrocknet: Man erhielt 3,1 g Produkt vom Fp. 182 183°C

25 Beispiel 4

1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester

Zu 137 g Oxalsäurehalbethylesterchlorid tropfte man unter

Kühlen mit Eis/Kochsalz 145 g Ethyl-vinylether zu; Nach
Erwärmen auf Raumtemperatur wurde 20 h nachgerührt. Die
flüchtigen Bestandteile wurden abdestilliert und der
Rückstand im Wasserstrahlvakuum fraktioniert. Man erhielt
4-Ethoxy-2-oxo-but-3-en-säureethylester vom Kp 140-143°C.

17,5 g des Produktes wurde in 200 ml Toluol gelöst.
Bei 0°C wurden 17,5 g 2,6-Dichlorphenylhydrazin unter
Rühren hinzugeführt. Man erhitzte langsam zum Sieden und

trennte am Wasserabscheider Ethanol und Wasser ab, bis der Siedepunkt bei 111°C konstant blieb. Der Rückstand wurde mit Toluol verdünnt, zweimal mit 2n Salzsäure, gesättigter Hydrogencarbonatlösung und Wasser gewaschen, getrocknet, zur Trockene eingedampft und aus Ethanol umkristallisiert.

Ausbeute: 18,3 g

Fp: 51-53°C

Beispiel 5

10

5

4-Brom-1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester

14,3 g 1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester vom Beispiel 4 wurden in 100 ml Eisessig gelöst, mit
15 10 g Na-Acetat versetzt und bei Raumtemperatur 4,5 g Brom
zugetropft. Nach 60 h wurde das Reaktionsgemisch auf 1 1
Wasser gegossen. Der Niederschlag wurde abgesaugt, mit Wasser nachgewaschen und aus Ethanol
umkristallisiert. Ausbeute: 8,2 g
Fp: 62-65°C.

20

Beispiele 6 und 7

1-(3-Trifluormethylphenyl) - pyrazol-5(und 3)-carbonsäure-cyclohexylester

25

30

35

Zu 19,5 g Oxalsäurehalbcyclohexylesterchlorid wurden 15 g Ethylvinylether bei 0°C zugetropft, das Gemisch 20 h bei Raumtemperatur gerührt und die leichtflüchtigen Anteile abdestilliert. Man gab 200 ml Toluol und 0,5 g p-Toluolsulfonsäure hinzu und erhitzte 2 h am Wasserabscheider. Bei 100°C wurden eine Lösung von 17,6 g 3-Trifluormethylphenylhydrazin in 100 ml Toluol hinzugefügt und das Gemisch am Wasserabscheider erhitzt, bis das Destillat konstant bei 111°C überdestillierte. Das Produkt wurde mit Toluol verdünnt, zweimal mit 100 ml 2n HCl, zweimal mit 100 ml gesättigter NaHCO₃-Lösung und einmal mit 100 ml Wasser gewaschen, über MgSO₄ getrocknet und die Lösung zur

Trockene eingedampft. Nach Säulenchromatographie erhielt man

1-(3-Trifluormethylphenyl)-pyrazol-5-carbonsäurecyclohexylester, als farbloses Oel, Ausbeute 8,2 g (Beispiel 6) und 1-(3-Trifluormethylphenyl)-pyrazol-3-carbonsäurecyclohexylester, als Oel, Ausbeute 8,7 g (Beispiel 7) Die Verbindungen wurden H-NMR-spektroskopisch charakterisiert.

- 10 Beispiele 8 und 9
 - 1-(4-Methylphenyl)-pyrazol-5(und 3)-carbonsäuremethylester
- Zu einer Lösung von 16 g 4-Ethoxy-2-oxo-but-3-en-säure-15 methylester in 100 ml Eisessig wurden bei 50°C 12,5 g p-Tolylhydrazin in 150 ml Eisessig zugegeben. Man rührte 5 h bei 100°C, gab das Gemisch auf 1 1 Wasser und extrahierte zweimal mit 150 ml Essigester. Die organische Phase wurde mit gesättigter NaHCO₂-Lösung und anschließend 20 mit Wasser gewaschen und getrocknet. Nach Einengen im Wasserstrahlvakuum wurde das Gemisch im Hochvakuum destillativ getrennt. Man erhielt 4,1 g 1-(4-Methylphenyl)-pyrazol-5-carbonsaure-methylester vom Kp 116-120°C (Beispiel 8)
 0,01
 und 5,3 g 1-(4-Methylphenyl)-pyrazol-3-carbonsäuremethylester 25 vom Kp 138-142° C 1 Die Verbindungen wurden H-NMR-spektroskopisch charakterisiert.

Die in der nachfolgenden Tabelle angegebenen Verbindungen der Formel I werden nach den in den vorangehenden Beispielen beschriebenen Verfahrensweisen hergestellt oder aus oben beschriebenen Verbindungen durch Derivatisierung erhalten.

Tabelle I

Bsp.Nr.	R _n	4 - Y	x .	Fp(°C) (Kp/torr)
10	н	н	5-C00K	
11	Ħ	Н	5-C00Na	
12	Ħ	#	5-COONH (C.H.OH),	131-132
13	π	П	5-COODNP,-C-C.H,,	
14	**	Br	5-C00C2H6	59-61
15	Н	Br	3-C00C2H6	75-87
16	W	Bī	5-COO HPN	Oel
17	н	Br	5-COOH, NO-C-C.H.,	139-143
18	н	CJ	5-C00C2H8	•
19	#	#	5-COOH	
20	#	₩ .	5-C00n-C12H25	-
21	#	н	3-C00H	142-144
22	₩	₩	3-COO ^O NH(C ₂ H ₄ OH);	Oel
23	•	Br	3-C00C2H5	
24	₩ .	П	3 C00H	
25	₩	**	3C00nC ₆ H ₁₃	
26	₩	C1	3C00CH ₃	66-68
27	17	W	3 C00H	174-175
28	₩	Ħ	3-C00K	
29	Ħ	M	3-COOCH, CC1,	
30	4-CH ₃	н	5-COOH	192-196
31	4-CH3	н	3-C00H	169-172
32	Ħ	Br	5C00C2Hs	
33	Ħ	Ħ	3-C00C2Hs	
34	2,4-01:	н	5-C00C2H6	56-60
35	•	77	5-C00H	212-213

	Beispiel- Nr.	R _n	4-Y	`x 	Fp(°C) (Kp/torr)
	36	2,4-01,	н	3-C00H	177-180
5	37	Ħ	Ħ	5-COSC ₂ H ₅	Oel
	38	п	П	5-CON N	Oel
	39	W	Br	5-C00C ₂ H ₅	45-48
	40	W	Ħ	3-C00C2H4	91-102
10	41	₩	Ħ	3-C00H	184-188
	42	**	Ħ	5-C00H	175-177
	43	Ħ	**	5-COOPNH®(C2HLOH);	72-75
	44	Ħ	Ħ	5-COOK	> 260
15	45	Ħ	н	3-C00C2H5	72-77
	46	W	Н	5-COOCH2CF2CFHCF3	Oel
	47	#	*	5-C00-n-C12H2E	Oel.
	48	n	**	5-C00-c-C.H.1	0el
	49	Ħ	Ħ	. 5-C00 Li*	>260
20	50	#	*	3-C00 K+	>260
	51	#	Ħ	5-C00 Ca1/2	178-180
	52	17	Ħ	5-COOPNH.®	140-143
	53	17	Br	5-CONH ₂	118-120
	54	Ħ	Н	3-C00 ⁹ NH . ®	212-215
25	55	#	Br	5-CN	106-110
	56	Ħ	m	5CO-N-C-	
	57	Ħ	. #	5-CONHCH2CH2OH	49-50
30	58	77	π	5-COOCH:SCH:	•
	59	Ħ	Cl	5- CN-N	
35	60	Ħ	#	3-C CH3	

	Beispiel- Nr.	R _n .	4-Y	X	<pre>Fp(°C) (Kp/torr)</pre>
	61	2,4-Cl2	C1	5-C / CH,	
5	62	2,6-(CH ₃) ₂	н	5-C00H	167-170
	63	n	#	5-C00C2Hs	101-108/0,02
	64	#	17	3-COO NH(C2H4OH);	83-86
	65	п	Ħ	3-C00 H, NO-c-C.H,	144-146
	67)-000-H3N0-06H11	144-140
10	66	#	Br	5-CNH NHOH	
	67	17	Br	5-COOCH2-CF2CHFCF3	
	68	П	Cl	5-COOH	
15	69	n	Cl	5-CNHOH	· •
	70	2,6-(C ₂ H ₅) ₂	Н	5-C00C ₂ H ₅	119-123/0,01
	71	Ħ	н	3-C00C2H5	135-152/0,01
20	72	Ħ	н	5-C00H	142-146
	73	Ħ	н	3-COOH	162-164
	74	W	Br	5-C00H	117-123
	75	Ħ	W	3-C00H	.136-141
	76	Ħ	Ħ	5-CONH ₂	
25	77	n	Br	3-CONHOH	
	78	•	Ħ	5-CONC.H.	
	79	Ħ	Cl	5-COOH	
	80	Ħ	Cl	3-C00H	
30	81	Ħ	Cl	5-000n-0 ₁₂ H ₂₅	•
	82	2-CH3,6-C2H5	Н	5-C00C2H6	120-125/0,02
	82	#	**	3-C00C2H6	140-144/0,02
	83	₩	Ħ	5-C00H	126-128
35	84	11	Ħ	5-C00 H2N	137-140

	Beispiel- Nr.	R _n	4-Y	X .	Fp(°C) (Kp/torr)
	85	2-CH ₃ , 6-C ₂ H ₅	Br	5-C00H	
5	86	Ħ	Cl	5-C00C2Hs	
	87	W	77	3-COOH	
	88	2,6-01;	н	5-COOH	207-208
	89	n	Br	5-C00H	187-192
	90	#	н	5-CONH ₂	117-118
10				F	
	91	Ħ	н	5-CONH C1	225
	92	m	Ħ	5-COSC ₂ H ₆	0el
	93	π	W	5-C00(CH ₂) ₂ (CF ₂) ₄ -CF ₃	57-61
15	94	Ħ	Ħ	5-C00-n-C12H28	44-48
	95	Ħ	Ħ	5-C00CH3	113-115
	96	П	Ħ	5-CN	94-96
	97	#	17	5-CONHCH ₃	220-223
	98	2,6-Cl ₂ ,3-NO	, •	5-C00C2Hs	Oel
20	99	Ħ	#	5-C00H	178-179
	100	2,6-Cl;	•	5-CNHNH-C1 OCH;	176-177
25	101	Ħ	Ħ	NH 5-CNHOH	
	102	#	Ħ	5-C 0-NC (CH ₃);	
30	103	π	77	5-CN CH ₃	·
	104	п	Br	5-C00C ₂ H ₆	
	105	П	Br	5-COOCH2CF2CHFCF3	
35				O 5-C -NHSO:CH;	
	106	#	**	5-C"-NHSO2CH3	

	Beispiel- Nr.	R _n	4-Y	×	Fp(°C) (Kp/torr)
5	107	2,6-Cl2	Br	5-C NH	
	108	Ħ	Cl	5-C00C2H6	
	109	Ħ	Cl	5-C00H	
10	110	π	Cl	5 - N : 11 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1	
	111	π	n	5-C-N 0	
15		·			
	112	π	н	3-C00H	
	113	Ħ	Br	3-C00C2H5	
	114	П	Cl	3-C00CH ₃	
	115	3,4-Cl ₂	Н	5-C00C2H5	95-99
20	116	Ħ	W	3-C00C2H5	93-96
	117	Ħ	# =	5-C00H	217-219
	118	П	#	5-COOPNP(C2H6OH);	137-140
	119	Ħ	Br	5-COONC (CH ₃) ₂	
	120	Ħ	Cl	5-C00CH ₃	
25	121	Ħ	Ħ	3-C00C2H6	
	122	Ħ	Ħ	5-C00nC ₁₂ H ₂₅	
	123	3,5-Cl;	H	5-C00C2H5	94-97
	124	Ħ	•	5-C00H	229-232
	125	#	Bī	5-C00H	
30	126	π	Ħ	3-C00H	٠
	127	Ħ	Cl	5-C00C2H5	
	128	2,3,4-Cl ₃	Ĥ	5-C00C2H8	Oel
	129	Ħ	н	5-C00H	146
	130	Ħ	₩	3-C00C2H6	Oel
35	131	W	Bī	5-C00H	
	132	π	#	5-cocc H2 CF 2 CHFCF 3	• • •

	Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
	133	2,3,4-01,	Br	5-C00CH2CCl;	
5	134	Ħ	Cl	5-C00H	
	135	2,4,6-Cl;	н :	5-C00C2H5	99-101
	136	Ħ	*	3-C00C2H4	114-115
	137	п .	11	5-C00H	
	138	π	17	3-C00H	
10	139	Ħ	#	5-C00CH ₃	
••	140	π	Br	5-C00H	
	141	Ħ	Bī	3-C00H	
	142	π	Cl	5-C00H	
	143	#	#	3-C00H	
15	144	4-C4H5	н	5-C00C2H5	40-43
•-	145	Ħ	₩	3-C00C2H6	89-92
	146	Ħ	n	3-C00H	196-199
	147	W	н	5-C00nC ₁₂ H ₂₅	•
	148	₩	Br	5-COOH	
20	149	#	Br	3-COOH	•
	150	Ħ	C1	5-COOH	
	151	77		3-C00H	
	152	2-C1	Н	5-COOCH;	64 - 70
	153	W	*	5-C00C2Hs	81
25	154	•	,	5-C00H	157-161
	155	•	#	5-CONH ₂	
	156	₩	Ħ	5-CONHC 2H 5	
•	157	**	Ħ	5-CONHNHC 2 H 5	
	158	*	я	5-COSC ₂ H ₅	
30	159	n	#	5-C00-nC ₁₂ H ₂₅	
-	160	n	**	3-C00C2H6	
	161	п	Ħ	3-COSC ₂ H ₈	
	162	#	**	3-C00H	
	163	*	#	3-C00nC.H.	
35	164	#	Bī	5-C00C2H6	81

	Beispiel- Nr.	R _n	4-Y	×	Fp(°C) (Kp/torr)
	165	2-C1	Br	5-COSC ₂ H ₆	
5	166	π	Ħ	5-C00H	
-	167	π	Ħ	3-C00C ₂ H ₅	
	168	π	Cl	5-C00C2H5	
	169	Ħ	Cl	5-C00H	
	170	π	#	3-C00C2H5	
10	171	π	#	3-COSC ₂ H ₅	
	172	2,4-Cl ₂ -5-OCH ₃	H	5-C00C2H5	Oel
	173	Ħ	Ħ	5-C00H	187-190
	174	Ħ	#	3-C00C2H5	
	175	Ħ	Br	5-COSC ₂ H ₅	
15	176	Ħ	Cl	3-C00C2H5	
	177	Ħ	n	5-C00C2H5	
	178	2,4-Cl ₂ -5-CO ₂ C ₂ H ₅	Н	5-C00C2H6	170-175/0,01
	179	#	-1 π	5-C00CH3	
	180	W	Ħ	5-C00-c-C.H.1	
20	181	Ħ	Ħ	3-C00C2H6	·
	182	₩	Br :	5-C00C2H5	
	183	W	C1	5-C00C2H5	
	184	2-F-4-C1-5-OCH	Н	5-C00C2H5	155-162/0,01
	185	W	· n	5-C00H	207-210
25	186	77	n	5-CN	
	187	#	•	5-CONH ₂	
	188	₩	Ħ	5-CNHNH ₂	
	189	W	#	3-C00C2H5	
	190	Ħ	Ħ	3-C00H	•
30	191	π		5-C00NH4	
	192	π	W	5-C00K	
	193	Ħ	Cl	5-C00CH3	
	194	Ħ	Cl	5-C00H	
	195	Ħ	#	3-C00CH3	
35	196	M.	Br	5-C00C.H.	
- -	197	Ħ	Br	5-COOCH2CCH	
	•				

	Beispiel- Nr.	R _n	4-Y	x	Fp(°C) (Kp/torr)
	198	2-F-4-C1-5-OCH,	Br	3-C00C2H5	
5	199	4-CF;	Н	5-C00C2H5	53-54
	200	Ħ	Ħ	3-C00C ₂ H ₆	79-84
	201	4-0F ₃ -2,6-(ND ₂) ₂	Н	5-C00C2H5	108-112
	202	Ħ	Ħ	3-C00C ₂ H ₅	138-142
	203	2,C1-4CF;	Н	5C00C2H5	45-47
10	204	Ħ	Ħ	5 C00H	149-150
	205	Ħ	Ħ	3-C00C2H8	66-69
	206	3-CF 3	Н	5-C00C2H6	87-101/0,01
	207	π	Ħ	3-C00C2H5	79-84
	208	Ħ	Ħ	5-C00H	136-138
15	209	π	#	3-C00 ⁻ (Ca ²⁺)/ ₂	244-261
	210	#	Ħ	3-C00K	242
	211	**	Ħ	3-COONa	283 ·
	212	Ħ	W	5-C00 ⁻ Ca ²⁺ 1/2	128-131
	213	Ħ	Ħ	3-C00-c-C ₆ H ₁ ,	67-68
20	214	Ħ	Br	3-C00-C-C.H.1	86-91
	215	π	н :	5-C00-c-C4H11	155-160/0,5
	216	**	Br	5-C00-c-C4H11	0el
	217	#	н	5-C00 ⁻ K ⁺	208-213
	218	Ħ	#	5-C00"NH, +	65-71
25	219	Ħ	#	3-C00 ⁻ NH. ⁺	207-212
	220	Ħ	₩	3-C00 ⁻ Li ⁺	>250
	221	n	n	5-CONH-4-C6H4-4-C1	
	222	π	•	5-C(NH ₂)NOCH ₃	
• •	223	π	₩	5-C00CH2CH2C-C4H11	
30	224	Ħ	*	5-CSOC ₂ H ₆	
	225		₩	3-COSC ₂ H ₆	
	226	Ħ	Br	5-COSC ₂ H ₆	
	227	Ħ	Br	3-COSC ₂ H ₈	
~-	228	#	Cl	5-COONHCOCH;	
35	229	Ħ	Cl	5-C00(CH2)20C2H2CH3	
	230	Ħ	#	5-COOCH2C6H5	

	Beispiel- Nr	R _n	4-Y	x	Fp(°C) (Kp/Torr)
	231	2,4-F ₂	н	5-C00C2H5	102-106/0,02
5	232	π	Ħ	3-C00C2H5	120-122/0,02
	233	Ħ	Ħ	5-C00H	196-199
	234	Ħ	Br	5-C00H	165-168
	235	17	Br	3-C00C2H5	
	236	#	Cl	5-C00H	
10	237	4-F	H	5-C00C2H6	96-98
	238	4-F	Н	3-C00C2H5	44-49
	239	#	Н	5-C00H	147-148
	240	Ħ	Н	5-COSC ₂ H ₅	62-65
	241	Ħ	•	5-CSSC ₂ H ₅	
15	242	π	Ħ	5-CSN(CH ₃) ₂	
	243	П	Ħ	5-CONHNHOOC 6H5	
	244	#	**	3-COSC ₂ H ₈	
	245	Ħ	W	3-CCNH ₂	
	246	Ħ	Br	5-C00H	207 (Zers.)
20	247	Ħ	: Br	5-CO-N	·
	248	π	Br	3-C00C2H5	79-83
25	249	Ħ	Cl	5-C00H	
25	250 [*]	π	₩	3-COOH	
	251	4BI	Н	5-C00C2H5	63-65
	252	Ħ	*	5-C00C2H5	78-81
	253	π	•	5-C00H	
30	254	Ħ	Ħ	5-COSC ₂ H ₅	
90	255	77	•	3-COSC ₂ H ₅	
	256	π	Br	5-C00H	
	257	Ħ	Cl	5-C00H	
	258	π	#	3-COOH	
35	259	4-C1	н	5-C00C2H5	60-65
	260	Ħ	Ħ	3-COOH	169-174

	Beispiel- Nr	R _n ,	4-Y	X	Fp(°C) (Kp/Torr)
	261	4 - Cl	н	5-C00H	181-182
5	262 .	n	Ħ	3-C00C2H5	71-74
	263	n	Br	3-C00C ₂ H ₅	107-109
	264	п	17	5-C00C ₂ H ₅	109-112
10	265	77	н	5-C00 H ₂	152-154
10	266	n	n	5-C00 H ₃ N	Oel
	267	W	Br	# ₃ C-/ 5-COOH	196-198
	268	W	17	5-C00 HN+ (C2H40H),112-114
15		, ·		H ₃ C	
	269	W	**	5-C00 H, N+ H	0el
	270	3-C1	н	5000 2 H XH3C	55-60
	271	•	₩ -	5-COOH	205
	272	3-C1-5-NO ₂	н	5-C00C2H5	104-116
20	273	Ħ	Ħ	3-C00C2H6	141-147
	274	3-C1	. H	3-C00H	
	275	#	#	3-COSC ₂ H ₆	
	276	Ħ	Br	5-COOCH;	
	277	Ħ	Cl	5-C00H	
25	278	Ħ	Ħ	3-C00H	
	279	3-C00C2H5	н	3-C00C ₂ H ₅	92-95
	280	11	₩	5-C00C2H5	85-87
	281	3-000 HN*(C ₂ H ₄ CH) ₃	Н	3-000 HV (C2H,OH);	0el
	282	3-COOH	H	5-C00H	236-238
30	283	3C00H	H .	3-C00H	240-243
	284	4-C00H	Н	5-COOH	>260
	285	*	**	3-C00H	>260
	286	3-OCF 2 CHF 2	H	5-C00-c-C.H11XH2	SO, Oel
	287	₩	Ħ	5-C00C2H4	Oel
35	288	Ħ	н	3-C00C2Hs	47-51
	289	Ħ	Ħ	5-C00-c-C ₆ H ₁₁	Oel
	290	Ħ	#	3-C00-c-C.H.1	Oel

Beispiel- Nr	R _n	4-Y	X	Fp(°C) (Kp/Torr)
291	3-OCF ₂ CHF ₂	Н	5-COO-i-Borneyl	Oel
292	П	π	3-COO-i-Borneyl	88-90
293	Ħ	Br	5-C00-c-C.H.1	Oel
294	Ħ	Ħ	3-COOC 2 Hs	62-64
295	П	17	5-C00C2H5	Oel
296	77	C1	5-C00C ₂ H ₅	
297	**	Ħ	3-C00C2H5	
298	3-OCF 2 CHFCF 3	Н	5-C00C2H5	01
299	Ħ	Ħ	5-C00H	129-131
300	#	17	5-COSC ₂ H ₅	
301	Ħ	H	5-CN	
302	Ħ	Ħ	3-C00C2H5	44-46
303	Ħ	Ħ	3-C00H	104 (Zers.)
304	Ħ	Н	3-COSC ₂ H ₅	
305	Ħ	Br	5-C00C2H5	
306	Ħ	17	3-C00C2H6	
307	3-0CF ₃	н	5-C00C2H5	81
308	TT	H	3-C00C2H5	55-58
309	π	C1	5-C00C2H5	
310	4-0CF;	Н	5-C00C2H5	Öl
311	П	н	5-C00H	157-158
312	Ħ	**	3-C00C ₂ H ₅	68-71
313	π	C1	5-C00C2H5	98-99
314	3-NO ₂	Н	5-C00C2H5	76-82
315	3-OCHF ₂	Н	5-C00C2H5	
316	Ħ	17	5-C00H	
317	2,4-F ₂ ,3,5-Cl ₂	Н	5-C00C2H5	
318	Ħ	n .	3-C00C2H5	
319	Я	Ħ	5-C00H	
320	п	BI	5-C00C2H5	
321	n	C1	3-C00C2H5	
322	4-0-C6H5	Н	5-C00C2H5	
323	"	Ħ	5-C00H	-

Beisp.	-Nr. R _n	4-Y	x	Fp(°C)Kp(torr)
324	4-0-C ₆ H ₅	Н	3-C00C ₂ H ₅	
325	4-0-C ₆ H ₄ -2-	-C1 H	5-C00C ₂ H ₅	
326	4-NH ₂	Н	3-C00C ₂ H ₅	84-87
327	3-NHCOCH ₃	Н	5-C00C ₂ H ₅	
328	3-SH	Н	5-C00C ₂ H ₅	
329	3-S-C ₆ H ₅	н	5-C00C 2H5	
330	3-S02-C6H	, H	5-C00CH ₃	
331	2,6-Cl ₂ -4-CF	3 Н	5-C00C ₂ H ₅	69-71 .
332	11	Н	5-CONH ₂	171-173
333	17	н	5-CN	67-69
334	Ħ	Н	3-C00C ₂ H ₅	112-115
335	4-NO ₂	Н	3-C00C ₂ H ₅	159-161
336	3-C2H5	Н	5-C00C ₂ H ₅	Oel
337	Ħ	Н	3-C00C ₂ H ₅	Oel
338	3-0CF ₃	Н	5-C00H	113-115
339	4-0CF ₃	Br	3-C00C ₂ H ₅	92-97
340	4-F-3-NO ₂	Н	5-C00C ₂ H ₅	74-76
341	11	H	5-C00H	178 Zers.
342	2,4,6-Cl ₃	Br	5-C00C ₂ H ₅	64-65
343	2,4,6-Cl ₃ 3-CH	3 H	5-C00C 2 H'5	38-42
344	3-F+	Н	5-C00C ₂ H ₅	Oel
345	3 - F	Н	3-C00C2H5	Oel
346	2-CF ₃	Н	5-C00C ₂ H ₅	Oel
347	π	н	5-C00H	130-132
348	2-C1-5-CF ₃	н	5-C00C ₂ H ₅	Oel
349	Ħ	н	3-C00C2H5	Oel

BeispNr. R _n		4-Y	X		Fp(°C) Kp(torr)
350	3,5-(CF ₃)	₂ H	5-C00C ₂ H ₅		63-67
351	17	Н	3-C00C ₂ H ₅		108-110
352	n	Н	5-C00H		124-126
353	2,4-Cl ₂ -6-0	CH ₃ H	5-C00C2H5		63-65
354	F ₅	н	5-C00C2H5		Oel
355	п	н	3-C00C ₂ H ₅		Oel
356	Ħ	Н	5-C00H		146-150
357	4-NHCH=C(CN) ₂ H	3-C00C ₂ H ₅		>220
358	4-1	H .	3-C00C ₂ H ₅		115-117
359	3-NHCOCOOC2	H₅ H	5-C00C ₂ H ₅		50-54
360	2,4-Cl ₂ -5NO), Br	5-CONH ₂		204-206
361	2,4,6-Cl ₃ -3	NO ₂ H	5-C00C ₂ H ₅		94-101
362	Ħ	Н	5-C00H		185-187
363	11	Н	5-C00K		189-192
364	3-CF ₃	Н	5-CON(C ₂ H ₅) ₂		66-68
365	Ħ	Н	5-CONHCH2CH(OCH	13)2	92-94
366	Ħ	Н	5-CONH ₂		119-121
367	Ħ	H	5-CONHCH ₃		72 - 77
368	n	Н	5-CONHCH2CH(CH3)-n-C4H, O		, Oel
369	11 -	Н	5-CONH-c-C6H11		134 Zers.
370	2-C1-4-CF;	Br	5-C00C ₂ H ₅		Oel
371	Ħ	Br	3-C00C ₂ H ₅		38-41
372	17	н	5-C00-(O)-0CH(CH3)	COOC₂H₅	Oel
373	π	н	Ħ	COOH	104-106

.

ķ

Beips.	-Nr. R _n	4-Y	X	Fp(°C) Kp(torr)
374	2-C1-5-NO ₂	н	5-C00C ₂ H ₅	78-82
375	2-01	н	5-CO (Benzimidazol-1-yl)	
376	n	н	5-CON 0	
377	5-NO ₂ -2-SC ₆ H		5-C00C₂H₅	125-126
378	5-C1-2-NO ₂	н	5-C00C ₂ H ₅	0el 90-94
379	3-C1-4-NO ₂	н	5-C00C ₂ H ₅	
380	2,4-(SC ₆ H ₅) ₂		J-0000 2 H 5	109-113
700	2,4-(306H5/2	H	5-C00CH ₃	145-148
381	4-0-CH ₃	Н	5-C00C ₂ H ₅	Oel
382	11	Н	3-C00C ₂ H ₅	Oel
383	11	Н	5-C00H	170-172
384	n	Н	3-C00H	185-187
385	2,3,5,6-F.	Н	5-C00C ₂ H ₅	57-60
386	π .	Н	5-C00H	128-130
387	п	Н	5-CON(C ₂ H ₅) ₂	80-83
388	π	н	5-C00-n-C ₆ H ₁₃	Oel
389	3-N	н	5-C00C ₂ H ₅	96-101
390	0 3-N0₂-4-0C ₆ H	s H	5-C00C ₂ H ₅	52-54
391	Ħ	Н	5-C00H	178-181
392	4-NH-S02CH3	Н	3-C00C ₂ H ₅	150-155
393	3-C1-4-F	H	5-C00C ₂ H ₅	84-87
394	Ħ	Н	3-C00C ₂ H ₅	122-125
395	Ħ	Н	5-C00H	>225
396	4-F-3-CF ₃	**	3-C00C ₂ H ₅	24-29
397	4-N(CH ₃) ₂ -3-6	CF ₃ H	•	Oel
398	H	н	3-C00C ₂ H ₅	Oel

ſ

BeispNr. R _n 4-		R _n 4-Y X		Fp(°C) Kp(torr)
399	3-C1-2,6-(C	2H ₅) H	5-C00C 2 H 5	Oel
400	11	Н	3-C00C2H5	Oel
401	"	н	5-C00H	145-147
402	11	Br	5-C00C ₂ H ₅	Oel
403	2,4-Br ₂	Н	5-C00C2H5	Oel
404	Ħ	Н	3-C00C ₂ H ₅	103-105
405	11	Н	5-C00H	217-219
406	11	Br	5-C00C2H5	Oel
407	2,4-012	н	3-CONHSO2CH3	155-159
408	11	Н	3-C00CH ₃	105-107
409	17	н	3-COOCH₂C≡CH	101-103
10	17	Н	5-COOCH2C≅CH	0el
11	11	Н	5-C00CH(CH ₃) ₂	Oel
412	17	Н	5-C00CH2CCl3	Oel
413	W	н	5-COONC(CH ₃) ₂	87-89
414	**	н	5-C00CH(CF ₃) ₂	Oel
115	Ħ	н	5-CN	70-71
416	Ħ	н	5-C00CH ₂ Si(CH ₃) ₃	Oel
417	Ħ	н	3-COOCH ₂ Si(CH ₃) ₃	51-54
418	17	н	5-CON 0	Oel

.

Biologische Beispiele

A. Wachstumsregulierung

5 1. Wuchshemmung an Getreide

In Schalenversuchen im Gewächshaus wurden junge Getreidepflanzen (Weizen, Gerste, Roggen) im 3-Blattstadium mit erfindungsgemässen Verbindungen in verschiedenen Wirkstoffkonzentrationen (kg/ha) tropfnass gespritzt.

Nachdem die unbehandelten Kontrollpflanzen eine Wuchshöhe von etwa 55 cm erreicht hatten, wurde bei allen Pflanzen der Zuwachs gemessen und die Wuchshemmung in å des Zuwachses der Kontrollpflanzen berechnet. Es wurde außerdem die phytotoxische Wirkung der Verbindungen beobachtet, wobei 100% den Stillstand des Wachstums und 0% ein Wachstum entsprechend den unbehandelten Kontrollpflanzen bedeuten. Es zeigte sich, daß die Verbindungen sehr gute wachstumsregulierende Eigenschaften besitzen.

Die Ergebnisse sind in der nachfolgenden Tabelle zusammengestellt.

25

20

10

15

<u>Tabelle</u>

Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchsh			Phytotox. Wirkung
			Gerste	Roggen	WITKUIIG
17	2.5	15	22	19	keine
	1.25	11	16	14	Schäden
34	11	14	21	17	keine
	11	10	14	11	Schäden
42	H	25	38	22	keine
	H	22	23	17	Schäden
43	81	24	38	23	keine
	81	21	22	16	Schäden
44	11	24	37	23	keine
	17	20	23	17	Schäden
52	17	22	31	21	keine
	11:	18	26	17	Schäden
53	11	16	21	19	keine
	11	10	15	13	Schäden
55	19	14	20	21	keine
	11	9	13	14	Schäden
62	# #	18 14	21 15	14 12	keine Schäden
72	es	14	17	14	keine
	89	12	15	9	Schäden
83	n	19	22	19	keine
	n	12	14	13	Schäden
88	#	23	36	29	keine
	#	18	28	20	Schäden
89	79	26	39	24	keine
	79	21	24	19	Schäden
90	W	14	21	18	keine
	ES	10	16	13	Schäden
92	11	17	22	19	keine
	11	11	17	14	Schäden

	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)			Phytotox. Wirkung	
			Weizen Gerste		Roggen		
5	115	2.5 1.25	16 11	21 17	19 14	keine Schäden	
	116	n n	17 12	22 17	19 13	keine Schäden	
	117	H H	19 14	24 19	21 16	keine Schäden	
10	128	11 11	16 11	21 16	17 13	keine Schäden	
	129	99 89	22 18	31 25	22 19	keine Schäden	
	135	n	15 11	19 16	18 14	keine Schäden	
15	140	11 11	20 14	24 19	22 17	keine Schäden	
, ,	153	17	20 13	23 19	21 16	keine Schäden	
	154	tt	22 15	27 23	24 19	keine Schäden	
20	178	n n	14 12	19 14	19 15	keine Schäden	
20	185	н н	13 9	18 13	15 9	keine Schäden	
	204	n N	16 11	19 16	17 15	keine Schäden	
25	206	n n	15 13	20 13	18 14	keine Schäden	
	208	п н	20 14	35 24	22 17	keine Schäden	
	217	**	17 14	27 22	22 17	keine Schäden	
30	218	n n	18 15	27 23	19 16	keine Schäden	
30	246	11	25 21	38 29	27 24	keine Schäden	
	267	n n	21 17	30 23	22 17	keine Schäden	
35	269	19 19	24 21	37 28	27 23	keine Schäden	

	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)			Phytotox. Wirkung
			-	Gerste	Roggen	
5	295	2.5 1.25	19 16	29 24	22 17	keine Schäden
,	356	11 11	19 15	28 22	21 16	keine Schäden
	366	11 11	17 11	21 16	17 13	keine Schäden
10	405	11 11	24 21	37 28	23 18	keine Schäden
•	413	ti 11	19 13	26 19	18 13	keine Schäden

i

10

15

2. Wuchshemmung in Wasserreis

Reispflanzen wurden in Töpfen im Gewächshaus bis zum 3-Blattstadium angezogen, und dann mit den erfindungsgemässen Verbindungen behandelt. Die Substanzen wurden sowohl durch Spritzung appliziert als auch in das Wasser gegeben.

3 Wochen nach Behandlung wurde bei allen Pflanzen der Zuwachs gemessen und die Wuchshemmung in % des Zuwachses der Kontrollpflanzen berechnet. Es wurde außerdem auf eine mögliche phytotoxische Wirkung der Verbindungen geachtet.

Die Wuchshemmung wurde als prozentualer Wert ermittelt, wobei 100% den Stillstand des Wachstums und 0% ein Wachstum entsprechend dem der unbehandelten Kontrollpflanzen bedeuten.

Die Ergebnisse sind in der nachfolgenden Tabelle zusammengefaßt.

20

<u>Tabelle</u>

			•
Verbindungen nach Bsp. Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)	Phytotox. Wirkung
42	2. ⁵ 1.25 0.62	26 24 20	keine Schäden
43	11 11	27 24 19	keine Schäden
62	11 11	19 15 8	keine Schäden
83	11 11	21 16 13	keine Schäden
88	11 11 11	19 16 12	keine Schäden
178	17 11 11	22 17 15	keine Schäden
206	11 - 11 -	25 19 17	keine Schäden
208	ti 11	32 27 21	keine Schäden
218	17 13 13	26 20 17	keine Schäden
219	17 15 11	27 21 17	keine Schäden
246	11 11	29 25 21	keine Schäden

10

3. Wuchshemmung an Sojabohnen

Ca. 10 cm große Sojabohnen wurden mit den Wirkstoffzubereitungen tropfnaß bespritzt. Nach 3 Wochen wurde bonitiert.

Die Wuchshemmung wurde als prozentualer Wert ermittelt, wobei 100 % den Stillstand des Wachstums und 0 % ein Wachstum entsprechend dem der unbehandelten Kontrollpflanzen bedeutet.

<u>Tabelle</u>

15	Verbindungen nach Bsp.Nr.		Wuchshemmung (%)	Phytotox. Wirkung
	35	2.5	22	keine Schäden
	88	2.5	25	tt
	89	2.5	27	n
	42	2.5	26	n
20	43	2.5	24	11
	44	2.5	26	n

25

B. Safener - Wirkung

Beispiel 1

Getreide, vorzugsweise Weizen, wurde im Gewächshaus in Plastiktöpfen von 9 cm Durchmesser bis zum 3-4 Blattstadium herangezogen und dann gleichzeitig mit den erfindungsgemäßen Verbindungen und den getesteten Herbiziden im Nachlaufverfahren behandelt. Herbizide und die Verbindungen der Formel I wurden dabei in Form wässriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 800 1/ha ausgebracht. 3-4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde.

Die Ergebnisse aus Tabelle V veranschaulichen, daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an den Kulturpflanzen effektiv reduzieren können.

Selbst bei starken Überdosierungen des Herbizids werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert, geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in ausgezeichneter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

30 Beispiel 2

Getreide und die beiden Schadgräser Avena fatua und Alopecurus myosuroides wurden in Plastiktöpfen von 9 bzw. 13 cm Durchmesser in lehmigen Sandboden ausgesät,

35

20

unter optimalen Wuchsbedingungen im Gewächshaus bis zum 3-4 Blattstadium bzw. zur beginnenden Bestockung angezogen und mit Mischungen aus den erfindungsgemäßen Verbindungen und den Herbiziden behandelt. Die Präparate wurden dabei in Form wässriger Suspensionen oder Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 - 600 1/ha ausgebracht.

3-4 Wochen nach der Applikation wurden die Versuchspflanzen auf Wachstumsveränderungen und Schädigung im Vergleich
zu unbehandelten und mit den Herbiziden alleine behandelten
Kontrollen visuell bonitiert.

Die Ergebnisse aus der Tabelle V zeigen, daß die erfingsgemäßen Verbindungen sehr gute Safenereigenschaften bei
Getreidepflanzen aufweisen und somit Herbizidschäden
wirkungsvoll verhindern können, ohne die eigentliche herbizide Wirkung gegen Schadgräser zu beeinträchtigen.

Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen können somit zur selektiven Unkrautbekämpfung eingesetzt werden.

Safenerwirkung der erfindungsgemäßen Verbindungen. Schädigung der Kulturpflanzen in %.

<u>Tabelle</u>

Beispiel-Nr.	herbizide Wirk TA	ung HV
Hi	85	80
H ₁ + 16	40	-
H ₁ + 17	45	-
H ₁ + 26	40	-
H ₁ + 27	40	-
H ₁ + 30	50	-
$H_1 + 34$	40	-
H ₁ + 45	20	35
$H_1 + 46$	30	40
$H_1 + 47$	30	-
H ₁ + 48	30	-
H ₁ + 49	-	50
$H_1 + 50$	30	-
H ₁ + 51	-	50
$H_1 + 54$	-	50
$H_1 + 65$	30	-
H ₁ + 84	40	55
H ₁ + 96	30	-
H ₁ + 98	50	-
H ₁ + 99	•	40
H ₁ + 128	-	50
H ₁ + 136	20	-
H ₁ + 153	30	65
$H_1 + 154$	40	-
H ₁ + 164	40	-
H ₁ + 178	50	-
H ₁ + 201	30	-
H ₁ + 204	40	35

Beispiel-Nr.	herbizide TA	e Wirkung HV
H ₁ + 205	50	30
H ₁ + 209	50	-
$H_1 + 210$	35	-
H ₁ + 211	40	55
H ₁ + 218	-	40
H ₁ + 219	35	-
H ₁ + 220	50	-
H ₁ + 237	40	-
H ₁ + 238	30	-
H ₁ + 239	50	-
H ₁ + 240	50	•••
H ₁ + 246	40	30
H ₁ + 251	30	-
H ₁ + 252	30	40
H ₁ + 259	30	-
H ₁ + 260	40	50
H ₁ + 261	50	40
H ₁ + 262	40	45
H ₁ + 265	•	50
H ₁ + 269	-	50
H ₁ + 270	60	50
H ₁ + 271	20	45
H ₁ + 279	50	-
H ₁ + 280	50	-
H ₁ + 286	10	40
H ₁ + 288	30	40
H ₁ + 289	40	-
H ₁ + 293	50	-
H ₁ + 294	40	-
H ₁ + 295	50	-
H ₁ + 298	-	50
H ₁ + 311	40	40
H ₁ + 312	40	50
H ₁ + 314	40	-

Beispiel-Nr.	herbizide TA	Wirkung HV	
H ₁ + 331	40	-	
$H_1 + 334$	20	50	
$H_1 + 340$	40	-	
$H_1 + 342$	40	-	
$H_1 + 343$	40	-	
$H_1 + 344$	40	-	
$H_1 + 346$	40	-	
$H_1 + 347$	40	-	
$H_1 + 348$	30	-	
$H_1 + 349$	20	50	
$H_1 + 350$	40	50	
H ₁ + 352	-	50	
H ₁ + 353	40	-	
$H_1 + 371$	40	35	
$H_1 + 373$	45	60	
$H_1 + 375$	35	-	
$H_1 + 389$	20	50	
$H_1 + 391$. 40	-	
$H_1 + 394$	40	-	
H ₁ + 395	40	-	
$H_1 + 407$	40	35	
$H_1 + 408$	35	35	
$H_1 + 409$	40	40	
$H_1 + 410$	60	50	
$H_1 + 415$	40	-	
H ₁ + 416	30	60	
$H_1 + 417$	40	40	

.

Erklärungen und Abkürzungen

Dosierungen der Mischungspartner:

H₁ : 2,0 kg a.i. / ha (TA)

5 0,3 kg a.i. / ha (HV)

Safener : 2,5 kg a.i. / ha

 $H_1 = Fenoxaprop - ethyl$

TA = Triticum aestivum

10 HV = Hordeum vulgare

15

Patentansprüche

 Verbindungen der Formel I, deren Salze und Quaternisierungsprodukte,

worin

5

20

R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro,

(C₁-C₄)Alkyl, (C₁-C₄)Halogenalkyl, (C₁-C₄)Alkoxy(C₁-C₄)alkyl, (C₁-C₆)Alkoxy, (C₁-C₆)Alkoxy-(C₁-C₄)alkoxy,
(C₁-C₆)Halogenalkoxy, (C₁-C₄)Alkylthio,
(C₁-C₄)Halogenalkylthio, Carboxy, (C₁-C₄)Alkoxycarbonyl,
(C₁-C₄)Alkylsulfinyl, (C₁-C₄)Halogenalkylsulfinyl,
(C₁-C₄)Alkylsulfonyl, (C₁-C₄)Halogenalkylsulfonyl,
(C₁-C₄)Alkylsulfonyloxy, (C₁-C₄)Halogenalkylsulfonyloxy,
Phenyl, Halogenphenyl, Phenoxy oder Halogenphenoxy,

X = in Position 3 oder 5 des Pyrazolringes orientiert ist
und einen Rest der Formeln

Y = Halogen Z = O oder S U = O, S oder N-R⁶.

Wasserstoff, (C₁-C₁₂)Alkyl, (C₁-C₁₂)Alkyl, das ein- oder mehrfach durch Halogen und/oder ein- bis zweifach durch Hydroxy, (C₁-C₄)Alkoxy, (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfonyl, Mono- ode Di-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl, 10 (C₁-C₄)Alkylcarbonyl, (C₁-C₄-Alkoxy)carbonyl, Cyclo(C₃-C₇)-alkyl, Tri(C₁-C₄)alkyl-silyl, Benzyloxy, Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder (C,-C,)Alkyl substituiert ist, durch Phenoxy, 15 Phenylthio, die durch Halogen oder (C₁-C₄)-Alkyl substituiert sein können, durch Oxiranyl, Tetrahydrofuryl, Triazolyl, Pyridinyl, Imidazolyl, durch Carboxy, Carboxylat mit einem für die 20 Landwirtschaft einsetzbaren Kation oder durch den Rest -O-N=C(CH₃)₂ substituiert ist, (C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes Cyclo(C₃-C₇)alkyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes 25 Cyclo(C₅-C₇)alkenyl, (C₃-C₆)Alkinyl, 1,2-Epoxy-prop-3-yl, Phenyl oder Phenyl, das ein oder zweifach durch Halogen, Nitro, Cyano, (C,-C,)Alkyl, (C₁-C₄-Alkoxy)carbonyl oder (C₁-C₄)Alkoxy substituiert ist, (C₁-C₄-Alkyl)carbonyl, Phenylcarbonyl, wobei der 30 Phenylring durch Halogen, Nitro, Cyano oder (C1-C2)Alkyl substituiert sein kann,

einen Rest der Formeln

$$-N=C(R^{10})_{2}, -NR^{3}R^{11}, \qquad NR^{3}R^{11}, \qquad NR^{3}R^{3}, \qquad NR^{3}R^{11}, \qquad NR^{3}R^{11}, \qquad NR^{3}R^{11}, \qquad NR^{3}R^{3}, \qquad N$$

oder ein für die Landwirtschaft einsetzbares Kation,

- 15 R² (C₁-C₁)Alkyl oder (C₁-C₂)Alkyl, das bis zu zweifach durch (C₁-C₄)Alkoxyethoxy, Cyclo(C₃-C₆)alkyl,
 Benzyloxy, Phenyl, Phenoxy, (C₁-C₄)Alkylthio, (C₁-C₄-Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,
 - R jeweils unabhängig voneinander (C1-C6)-Alkyl, Phenyl oder (C3-C6)-Alkenyl,
- 25 R⁴ Wasserstoff, (C₁-C₂)Alkyl oder (C₁-C₂)Alkyl, das bis zu zweifach durch (C₁-C₂)Alkoxy, (C₁-C₂)Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C₁-C₂)-Alkoxyimino, Halogen, Cyclo(C₃-C₆)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C₁-C₂-Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C₁-C₂)Alkyl oder (C₁-C₂)Alkoxy substituiert ist; (C₃-C₆)-Alkenyl, (C₃-C₆)Cycloalkyl, einen Rest der Formeln
- 35 NR 3 R 12 , -O-R 6 , -NH-CONH₂, -NH-CS-NH₂ oder -SO₂ R 13 oder

- R und R gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C₁-C₄)Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,
- R⁵ H, (C₁-C₁)Alkyl oder Phenyl, oder im Falle X =

 10

 -CS-OR⁵ ein für die Landwirtschaft einsetzbares Kation,
 - R jeweils unabhängig voneinander H, (C-C₄)Alkyl oder Benzyl,
- R jeweils unabhängig voneinander H, (C₁-C₁)Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl oder (C₁-C₄)Alkoxy substituiert ist, durch Hydroxy, Cyano, (C₁-C₄-Alkoxy)-carbonyl, (C₁-C₄)-Alkylthio, (C₁-C₄)-Alkoxy, Cyclo(C₅-C₇)alkyl oder Benzyloxy substituiert ist,
- (C₃-C₆)Alkenyl, Halogen(C₃-C₆)Alkenyl,

 (C₃-C₆)Alkinyl, Cyclo(C₅-C₈)alkyl,

 Cyclo(C₅-C₆)alkenyl, (C₁-C₆-Alkyl)carbonyl,

 Halogen(C₁-C₆-alkyl)carbonyl,

 [(C₁-C₆-Alkyl)amino]carbonyl, Benzoyl, Halogenbenzoyl
 oder Methylbenzoyl
- 30 R° jeweils unabhängig voneinander (C₁-C₀)Alkyl, das unsubstituiertes oder durch Phenyl,

 Cyclo(C₅-C₇)alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio oder Halogen substituiert ist,

 oder zwei Reste R° gemeinsam mit Z und dem

 Kohlenstoffatom, an das sie gebunden sind, einen

unsubstituierten oder durch (C₁-C₄)Alkyl, Hydroxy-(C₁-C₄)alkyl, Halogen(C₁-C₄)alkyl oder Phenyl substituierten 5- oder 6-gliedrigen gesättigten heterocyclischen Ring;

- p geweils unabhängig voneinander H, Halogen, (C₁-C₄)-Alkyl, Nitro oder Cyano,
- unabhängig voneinander H, (C₁-C₂)Alkyl, das
 unsubstituiert oder durch (C₁-C₄)Alkoxy, Triazolyl
 oder Imidazolyl substituiert ist, Cyclo(C₃-C₆)alkyl,
 (C₂-C₆)Alkenyl, Phenyl oder Benzyl, oder im Falle R¹=-N=C(R¹⁰)₂ beide Reste
 R¹⁰ gemeinsam mit dem Kohlenstoffatom, an das sie
 gebunden sind, ein unsubstituiertes oder durch Methyl
 oder Halogen substituiertes Cyclo-(C₅-C₇)alkyl,
 - R¹¹ (C₁-C₄)Alkyl, Phenyl, (C₁-C₆-Alkyl)carbonyl, Benzyl, Benzoyl, Halogenbenzyl, Halogenbenzoyl oder Methylbenzoyl,
- R
 12
 H, (C₁-C₄)Alkyl, Formyl, (C₁-C₆-Alkyl)carbonyl,
 Benzoyl, Halogenbenzoyl, Methylbenzoyl oder
 Trihalogenacetyl,
- 25 R¹³ (C₁-C₄)Alkyl, Phenyl oder Methylphenyl,
 - m 0 oder 1
 - n eine ganze Zahl von 0 bis 5
- p eine ganze Zahl von 0 bis 4 und
 - q eine ganze Zahl von 0 bis 6
- 35 bedeuten.

25

30

 Verfahren zur Herstellung der Verbindungen der Formel I von Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin R (C₁-C₆)Alkyl Verbindung der Formel III

bedeutet, mit einer

umsetzt und anschließend gegebenenfalls derivatisiert.

- 3. Pflanzenbehandlungsmittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 4. Pflanzenwachstumsregulierende Mittel, gekennzeichnet 20 durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
 - 5. Mittel zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
 - 6. Verwendung der Verbindungen der Formel I zur Wachstumsregulierung von Pflanzen.
 - 7. Verwendung der Verbindungen der Formel I zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.
- 8. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man auf die Pflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I app¹iziert.

- 9. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß man auf die Kulturpflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert.
- 10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß das Herbizid ein Phenoxy-phenoxy- oder
 Heteroaryloxyphenoxy-carbonsäureester ist.

Patentansprüche Österreich und Spanien:

Verfahren zur Herstellung von Verbindungen der Formel I

1

worin

- R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro,

 (C₁-C₄)Alkyl, (C₁-C₄)Halogenalkyl, (C₁-C₄)Alkoxy(C₁-C₄)alkyl, (C₁-C₆)Alkoxy, (C₁-C₆)Alkoxy-(C₁-C₄)alkoxy,
 (C₁-C₆)Halogenalkoxy, (C₁-C₄)Alkylthio,
 (C₁-C₄)Halogenalkylthio, Carboxy, (C₁-C₄)Alkoxycarbonyl,
 (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Halogenalkylsulfinyl,
 (C₁-C₄)Alkylsulfonyl, (C₁-C₄)Halogenalkylsulfonyl,
 (C₁-C₄)Alkylsulfonyloxy, (C₁-C₄)Halogenalkylsulfonyloxy,
 Phenyl, Halogenphenyl, Phenoxy oder Halogenphenoxy,
- 20 X = in Position 3 oder 5 des Pyrazolringes orientiert ist und einen Rest der Formeln

Y = Halogen Z = O oder S U = O, S oder N-R.

R Wasserstoff, (C₁-C₁)Alkyl,
(C₁-C₁)Alkyl, das ein- oder mehrfach durch Halogen und/oder ein- bis zweifach durch Hydroxy, (C₁-C₆)Alkoxy, (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfonyl, Mono- ode Di-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl, 10 (C₁-C₂)Alkylcarbonyl, (C₁-C₄-Alkoxy)carbonyl, $Cyclo(C_3-C_7)$ -alkyl, $Tri(\dot{C}_1-\dot{C}_4)$ alkyl-silyl, Benzyloxy, Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder $(C_1 - C_L)$ Alkyl substituiert ist, durch Phenoxy, 15 Phenylthio, die durch Halogen oder (C1-C4)-Alkyl substituiert sein können, durch Oxiranyl, Tetrahydrofuryl, Triazolyl, Pyridinyl, Imidazolyl, durch Carboxy, Carboxylat mit einem für die Landwirtschaft einsetzbaren Kation oder durch den Rest 20 -O-N=C(CH₃)₂ substituiert ist, (C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes Cyclo(C₃-C₇)alkyl, unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl substituiertes Cyclo(C₅-C₇)alkenyl, (C₃-C₆)Alkinyl, 1,2-Epoxy-prop-3-yl, Phenyl oder Phenyl, das ein oder 25 zweifach durch Halogen, Nitro, Cyano, (C1-C4)Alkyl, (C₁-C₄-Alkoxy)carbonyl oder (C₁-C₄)Alkoxy substituiert ist, (C₁-C₄-Alkyl)carbonyl, Phenylcarbonyl, wobei der 30 Phenylring durch Halogen, Nitro, Cyano oder (C₁-C₄)Alkyl substituiert sein kann,

einen Rest der Formeln

10

oder ein für die Landwirtschaft einsetzbares Kation,

- 15 R² (C₁-C₁)Alkyl oder (C₁-C₁)Alkyl, das bis zu zweifach durch (C₁-C₄)Alkoxyethoxy, Cyclo(C₃-C₆)alkyl,
 Benzyloxy, Phenyl, Phenoxy, (C₁-C₄)Alkylthio, (C₁-C₄-Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,
 - peweils unabhängig voneinander (C₁-C₆)-Alkyl, Phenyl oder (C₃-C₆)-Alkenyl,
- 25 R Wasserstoff, (C₁-C₂)Alkyl oder (C₁-C₂)Alkyl, das bis zu zweifach durch (C₁-C₆)Alkoxy, (C₁-C₄)Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C₁-C₄)-Alkoxyimino, Halogen, Cyclo(C₃-C₆)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C₁-C₄-Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl oder (C₁-C₄)Alkoxy substituiert ist; (C₃-C₆)-Alkenyl, (C₃-C₆)Cycloalkyl, einen Rest der Formeln
- $-NR^3R^{12}$, $-O-R^6$, $-NH-CONH_2$, $-NH-CS-NH_2$ oder $-SO_2R^{13}$ oder

- R³ und R⁴ gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus
- siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C₁-C₄)Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann.
- R⁵ H, (C₁-C₂)Alkyl oder Phenyl, oder im Falle R =
 10
 -CS-OR⁵ ein für die Landwirtschaft einsetzbares Kation,
 - R jeweils unabhängig voneinander H, (C₁-C₄)Alkyl oder Benzyl,
- peweils unabhängig voneinander H, (C₁-C₁)Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl oder (C₁-C₄)Alkoxy substituiert ist, durch Hydroxy, Cyano, (C₁-C₄-Alkoxy)-carbonyl, (C₁-C₄)-Alkylthio, (C₁-C₄)-Alkoxy, Cyclo(C₅-C₇)alkyl oder Benzyloxy substituiert ist.
- (C₃-C₆)Alkenyl, Halogen(C₃-C₆)Alkenyl, Halogen(C₃-C₆)-alkenyl, (C₃-C₆)Alkinyl, Cyclo(C₅-C₈)alkyl,

 Cyclo(C₅-C₆)alkenyl, (C₁-C₆-Alkyl)carbonyl,

 Halogen(C₁-C₆-alkyl)carbonyl,

 [(C₁-C₆-Alkyl)amino]carbonyl, Benzoyl, Halogenbenzoyl oder Methylbenzoyl
- 30 R⁸ jeweils unabhängig voneinander (C₁-C₆)Alkyl, das unsubstituiertes oder durch Phenyl,

 Cyclo(C₅-C₇)alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio oder Halogen substituiert ist,

 oder zwei Reste R⁸ gemeinsam mit Z und dem

 Kohlenstoffatom, an das sie gebunden sind, einen

unsubstituierten oder durch (C₁-C₄)Alkyl, Hydroxy-(C₁-C₄)alkyl, Halogen(C₁-C₄)alkyl oder Phenyl substituierten 5- oder 6-gliedrigen gesättigten heterocyclischen Ring;

5

Jeweils unabhängig voneinander H, Halogen, (C₁-C₄)-Alkyl, Nitro oder Cyano,

10

- unabhängig voneinander H, (C-C)Alkyl, das unsubstituiert oder durch (C-C)Alkoxy, Triazolyl oder Imidazolyl substituiert ist, Cyclo(C-C)alkyl, (C-C)Alkenyl, Phenyl oder Benzyl, oder beide Reste R¹⁰ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, ein unsubstituiertes oder durch Methyl oder Halogen substituiertes Cyclo-(C₅-C₇)alkyl,
- R¹¹ (C₁-C₄)Alkyl, Phenyl, (C₁-C₆-Alkyl)carbonyl, Benzyl, Benzoyl, Halogenbenzyl, Halogenbenzoyl oder Methylbenzoyl,

20

15

- R H, (C₁-C₄)Alkyl, Formyl, (C₁-C₆-Alkyl)carbonyl, Benzoyl, Halogenbenzoyl, Methylbenzoyl oder Trihalogenacetyl,
- 25 R¹³ (C₁-C₄)Alkyl, Phenyl oder Methylphenyl,
 - m 0 oder 1
 - n eine ganze Zahl von 0 bis 5

- p eine ganze Zahl von 0 bis 4 und
- q eine ganze Zahl von 0 bis 6
- 35 bedeuten,

dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin R (C₁-C₆)Alkyl Verbindung der Formel III

bedeutet, mit einer

ß

$$H_2^{N-NH}$$
 - R_n (III)

umsetzt und anschließend gegebenenfalls derivatisiert.

- 2. Pflanzenbehandlungsmittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 3. Pflanzenwachstumsregulierende Mittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 4. Mittel zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
- 5. Verwendung der Verbindungen der Formel I zur Wachstumsregulierung von Pflanzen.
- 6. Verwendung der Verbindungen der Formel I zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.
- 7. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man auf die Pflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I appliziert.

- 8. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß man auf die Kulturpflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert.
- 9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß das Herbizid ein Phenoxy-phenoxy- oder Heteroaryloxyphenoxy-carbonsäureester ist.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 87 11 4161

	EINSCHLÄ	GIGE DOKUMENTE		
Categorie	Kennzeichnung des De der maß	okuments mit Angabe, soneit erforderlich, geblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
X	DE-A-1 670 382 * Seite 4 *	(CHINOIN)	1	C 07 D 231/14 C 07 D 231/16
A	EP-A-0 151 866	(ELI LILLY)		C 07 D 403/06 C 07 D 403/04
P,A	EP-A-0 204 242	(BAYER)		C 07 D 413/04 C 07 D 403/10
P,A	EP-A-0 234 119	(MAY & BAKER)		A 01 N 43/56
				RECHERCHIERTE SACHGEBIETE (Int. Cl.4
				C 07 D 231/00
				C 07 D 403/00 C 07 D 413/00 A 01 N 43/00
		·		
Der vor	liegende Recherchenbericht	wurde für alle Patentansprüche erstellt		
DE	Recharchement N HAAG	Abschilddum der Recherche 10-01-1988	DE BI	Protect I.A.F.

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Gr E: älteres Patentiokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

SPO FORM 1500 03.82 (P0403)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.