Probability distributions and inference

Confidence intervals

Jenine Harris Brown School

Computing and interpreting confidence intervals around means and proportions

- The range around the sample mean where the population mean *might be* shows the uncertainty of computing a mean from a sample.
- These ranges are reported as **confidence intervals** (or CIs).
- In this context, *confidence* is not about an emotion or feeling, but about how much uncertainty there is in the results.
- Most of the time, social scientists report 95% intervals or **95% confidence intervals** which show the range where the population value would likely be 95 times if the study were conducted 100 times.
- Sometimes smaller or larger intervals are reported, like a 68% confidence interval (68% CI) or a 99% confidence interval (99% CI), but usually it's a 95% confidence interval.

95% interval interpretation

- The 95% interval idea comes from the following properties:
 - about 95% of values lie within 2 standard deviations of the mean for a variable that is normally distributed
 - Remember, the number of standard deviations some observation is away from the mean is called a z-score.
 - the standard error of a sample is a good estimate of the standard deviation of the sampling distribution, which is normally distributed
 - the mean of the sampling distribution is a good estimate of the population mean
 - o so, most sample means will be within 2 standard errors of the population mean (to be precise, this is actually 1.96 rather than 2).

Observations outside the confidence interval

• With 95% of observations being within 1.96 standard deviations of the mean, this leaves 5% of observations in the tails of the distribution, outside the confidence interval, like this:

Import the distance data

```
# distance to substance abuse facility with medication assisted treatmen
dist.mat <- read.csv("/Users/harrisj/Box/teaching/Teaching/Fall2020/data

# rename variable
library(package = "tidyverse")
dist.mat.cleaned <- dist.mat %>%
    rename('distance' = VALUE)

# review the data
summary(object = dist.mat)
```

```
##
  STATEFP
                   COUNTYFP
                                   YEAR
                                            INDICATOR
  Min. : 1.00 Min. : 1.0 Min. :2017
##
                                           Length: 3214
   1st Ou.:19.00
                 1st Qu.: 35.0 1st Qu.:2017
                                           Class : character
   Median: 30.00
                 Median: 79.0 Median: 2017
                                           Mode :character
##
   Mean :31.25
                Mean :101.9 Mean :2017
   3rd Ou.:46.00
                3rd Ou.:133.0 3rd Ou.:2017
##
                Max. :840.0 Max. :2017
   Max. :72.00
##
   VALUE
                    STATE
                          STATEABBREVIATION
                                                     COUNTY
##
   Min.: 0.00 Length: 3214 Length: 3214
                                             Length: 3214
   1st Ou.: 9.25 Class: character Class: character Class: character
##
   Median : 18.17
                Mode :character Mode :character Mode :character
##
   Mean : 24.04
   3rd Ou.: 31.00
   Max. :414.86
```

Take a sample of 500

```
# set a starting value for sampling
# same seed from prior video
set.seed(seed = 1945)

# sample 500 counties at random
counties.500 <- dist.mat.cleaned %>%
    sample_n(size = 500, replace = TRUE)

# compute the mean death rate in the sample
counties.500 %>%
    summarize(mean.s1 = mean(x = distance, na.rm = TRUE))
```

```
## mean.s1
## 1 24.40444
```

Use R to computing a 95% confidence interval for a mean

```
## mean.s1 sd.s1 se.s1 lower.ci.s1 upper.ci.s1
## 1 24.40444 23.79142 1.063985 22.31903 26.48985
```

- The 95% confidence interval for the mean distance from the sample of 500 counties was 22.32 26.49. Kiara interpreted the results for the team:
- Reporting the mean and sd:
 - The mean distance in miles to the nearest substance abuse treatment facility with MAT in a sample of 500 counties is 24.4; the true or population mean distance in miles to a facility likely lies between 22.32 26.49 (m = 24.4; 95% CI = 22.32 26.49).

Examine the mean and sd with a histogram

• A histogram of the distance to a treatment facility showing the mean and the 95% confidence interval around the mean:

Examine the sample mean, pop mean, and CI

Examine the other sample

1 23.49652 20.08756 0.8983431 21.73577 25.25727

```
# set a different starting value for sampling
set.seed(seed = 48)
# sample 500 counties at random
counties.500.2 <- dist.mat.cleaned %>%
  sample n(size = 500, replace = TRUE)
# compute the mean death rate in the sample
counties.500.2 %>%
  summarize (mean.s2 = mean(x = distance, na.rm = TRUE))
## mean.s2
## 1 23.49652
# add CI to summary statistics other sample
counties.500.2 %>%
  summarize (mean = mean (x = distance),
            sd = sd(x = distance),
            se = sd(x = distance)/sqrt(x = length(x = distance)),
            lower.ci = mean - 1.96*se,
            upper.ci = mean + 1.96*se)
##
  mean sd se lower.ci upper.ci
```

Plot second sample mean with CI

Examine confidence intervals for lots of samples

- For both, the population mean was inside the confidence interval and near the sample mean.
- What about the confidence intervals when they took 20, 100, and 1000 samples.
- Find these values by using group by() and summarize(), start with the 20 samples data:

Review the CI for 20 samples

```
\# A tibble: 20 x 6
      sample num means
                            sd
                                  se lower.ci upper.ci
##
      <chr>
                  <dbl> <dbl> <dbl>
                                         <dbl>
                                                  <dbl>
##
                   24.2
                         24.5 1.09
                                          22.0
                                                    26.3
##
                   22.0
                         17.1 0.765
                                                    23.5
    2 10
                                          20.5
##
                   23.9
                                          22.1
                                                    25.6
    3 11
                         20.0 0.895
##
    4 12
                   23.8
                                          21.9
                                                    25.6
                         20.7 0.924
##
                         20.8 0.931
    5 13
                   23.1
                                          21.2
                                                    24.9
##
    6 14
                   23.0
                         22.3 0.999
                                          21.0
                                                    24.9
##
    7 15
                   22.6
                         19.7 0.880
                                          20.9
                                                    24.3
                   24.4
                                          22.5
                                                    26.3
##
    8 16
                         21.9 0.979
    9 17
                                          22.5
                   24.4
                         21.6 0.965
                                                    26.3
##
                         22.9 1.02
  10 18
                   24.0
                                          22.0
                                                    26.0
   11 19
                   23.7
                         21.4 0.958
                                          21.9
                                                    25.6
  12
                   24.2
                                          22.4
                         19.6 0.878
                                                    25.9
  13 20
                   23.1
                         21.4 0.957
                                          21.2
                                                    25.0
  14 3
                   23.9
                         22.4 1.00
                                          22.0
                                                    25.9
##
  15 4
                   24.4
                         21.7 0.971
                                          22.5
                                                    26.3
  16 5
                   24.7
                         22.6 1.01
                                          22.7
                                                    26.7
                   22.8
                                          21.1
                         19.1 0.853
                                                    24.5
                                          22.2
  18
                   24.2
                         23.5 1.05
                                                    26.3
                   23.9
  19 8
                         21.9 0.978
                                          22.0
                                                    25.8
## 20 9
                   24.2
                         22.4 1.00
                                          22.3
                                                    26.2
```

• Do they all contain the population mean of 24.04?

Use a graph to examine CI

Use a graph to examine CI

• The 95% confidence intervals for 19 of the 20 samples contained the population mean.

Examining the CI for 100 sample means

• Get the 100 sample means

Graphing the CI for 100 sample means

Graphing the CI for 100 sample means

Highlighting the CI not including the pop mean

Confidence intervals for percentages

- Shockingly, the 95% confidence interval around a proportion is computed in a similar way since the sampling distribution for a binary variable is **normally distributed**.
- For variables that only have two values (e.g., Yes and No, success and failure, 1 and 0), the mean of the variable is the same as the percentage of the group of interest.
- For example, consider a survey of 10 people which asked if they drink coffee or do not drink coffee where drinking coffee is coded as 1 and not drinking coffee is coded as 0, for example:

```
## [1] 0.6
```

- The percentage of people in a sample who have the variable category of interest is the mean of the sample for that variable.
- The mean of a binary variable like this one is typically abbreviated as p for proportion rather than m for mean.

Importing the opioid policy data

```
# open state opioid program data
state.opioid.pgm.2018 <- read.csv(file = "/Users/harrisj/Box/teaching/Text
# recode Yes to 1 and No to 0
# change long name to pdmp
state.opioid.pgm.2018.cleaned <- state.opioid.pgm.2018 %>%
  rename(pdmp = Required.Use.of.Prescription.Drug.Monitoring.Programs) %
  mutate(pdmp = as.numeric(x = as.factor(pdmp)) - 1)
# find the mean of pdmp
state.opioid.pgm.2018.cleaned %>%
  summarize(p = mean(x = pdmp))
```

```
## p
## 1 0.627451
```

• The mean shows .6275 or 62.75% of the states have a PDMP.

Take samples of states and find sample means

Graph the sampling distribution

Standard error for binary variables

- For any given sample, the 95% confidence interval for the mean (which is the percentage in the category of interest) can be computed using the same formula of $m + 1.96 \cdot se$ and $m 1.96 \cdot se$.
- The only thing needed now is the standard error.
- For binary variables, the standard error is computed:

$$se_p = \sqrt{rac{p\cdot (1-p)}{n}}$$

• Where p is the mean (proportion of 1s) and n is the sample size.

Get sample statistics

```
\# A tibble: 100 x 7
##
     sample num p
                     n se lower.ci upper.ci differs
##
   <chr>
               <dbl> <int> <dbl>
                                   <dbl>
                                           <dbl> <lal>
##
               0.567
                       30 0.0905 0.389
                                           0.744 FALSE
   1 1
##
   2 10
               0.733
                       30 0.0807 0.575 0.892 FALSE
                       30 0.0894 0.425 0.775 FALSE
##
               0.6
   3 100
                       30 0.0911 0.355
##
  4 11
               0.533
                                           0.712 FALSE
                       30 0.0905 0.389 0.744 FALSE
##
   5 12
               0.567
##
   6 13
               0.733
                       30 0.0807 0.575 0.892 FALSE
##
   7 14
               0.533
                       30 0.0911 0.355
                                           0.712 FALSE
##
   8 15
               0.6
                       30 0.0894 0.425
                                           0.775 FALSE
                                   0.355
  9 16
               0.533
                       30 0.0911
                                           0.712 FALSE
##
  10 17
               0.6
                       30 0.0894
                                   0.425
                                           0.775 FALSE
  # ... with 90 more rows
```

Graph means & CI for 100 samples

```
# graph means and CI for 100 samples
samp.100.stats.states %>%
   ggplot(aes(y = p, x = sample num)) +
 geom errorbar(aes(ymin = lower.ci,
                    vmax = upper.ci,
                color = differs)) +
 geom point(stat = "identity", aes(fill = "Sample proportion"), color =
 geom hline (aes (yintercept = .627451, linetype = "Population proportion
 labs(y = "Proportion of states with PDMP",
      x = "Sample ") +
 scale fill manual(values = "#7463AC", name = "") +
 scale color manual(values = c("#7463AC", "deeppink"), name = "",
                     labels = c("95% CI of\nsample proportion", "\n95% C
 scale linetype manual (values = c(1, 1), name = "") +
 theme minimal(base size = 18) +
 theme(axis.text.x = element blank())
```

• All of the 100 samples had a 95% confidence interval including the population mean of 62.75% of states with PDMP.

Graph means & CI for 100 samples

Wider and narrower confidence intervals

- To compute a wider or narrower confidence interval, replace the 1.96 with the z-score for the interval of interest.
- The three most common intervals have the following z-scores:
 - 90% confidence interval z-score is 1.645
 - 95% confidence interval z-score is 1.96
 - 99% confidence interval z-score is 2.576

CI for small samples

- Confidence intervals for small samples, usually defined as samples with fewer than 30 observations, use a t-statistic instead of a z-statistic in computing confidence intervals for means and in other types of analyses.
- The t-statistic is from the t-distribution and, like the z-score, the t-statistic measures the distance from the mean.
- However, the t-statistic does this using the *standard deviation of the sampling distribution*, also known as the *standard error*, rather then the *standard deviation of the sample*.
- Specifically, the t-statistic is computed using the formula:

$$t = rac{m}{rac{s}{\sqrt{n}}}$$

- Where m is the sample mean, s is the sample standard deviation, and n is the sample size. Note that the denominator for m is $\frac{s}{\sqrt{n}}$, which is the standard error.
- The main practical difference between the two is that the t-statistic works better when samples are small; once samples are very large (n > 1000), the two values will be virtually identical.