

IEL – protokol k projektu

Ivan, Bobrov xbobro01

21. prosince 2019

Obsah

1	Příklad 1	2
2	Příklad 2	5
3	Příklad 3	8
4	Příklad 4	10
5	Příklad 5	11
6	Shrnutí výsledků	13

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Postupně zjednodušíme obvod

$$U = U_1 + U_2 \tag{1}$$

$$U{=}125{+}65{=}190V$$

$$R_{78} = \frac{R_7 * R_8}{R_7 + R_8} \tag{2}$$

$$R_{78} = \frac{330*250}{330+250} = 291.5194\,\Omega$$

$$R_A = \frac{R_1 * R_2}{R_1 + R_2 + R_3} \tag{3}$$

$$R_A = \frac{510*500}{510+500+550} = 163.4615\,\Omega$$

$$R_B = \frac{R_1 * R_3}{R_1 + R_2 + R_3} \tag{4}$$

$$R_B = \frac{510*550}{510+500+550} = 179.8077 \,\Omega$$

$$R_C = \frac{R_2 * R_3}{R_1 + R_2 + R_3} \tag{5}$$

$$R_C = \frac{500*550}{510+500+550} = 176.2820 \,\Omega$$

$$R_{B45} = R_B + R_4 + R_5 \tag{6}$$

 $R_{B45} = R_B + R_4 + R_5 = 179,8077 + 250 + 300 = 729.8077 \Omega$

$$R_{C6} = R_C + R_6 \tag{7}$$

 $R_{C6} = R_C + R_6 = 176,2820 + 800 = 976.2820\,\Omega$

$$R_{B45C6} = \frac{R_{B45} * R_{C6}}{R_{B45} + R_{C6}} \tag{8}$$

 $R_{B45C6} = \frac{729,8077*976,2820}{729,8077*976,2820} = 417.6205\,\Omega$

$$R_{ekv} = R_{AB45C678} = R_A + R_{B45C6} + R_{78} (9)$$

 $R_{ekv} = 163,4615+417,6205+291,5194 = 872.6015\,\Omega$

Podle Ohmova zákona:

$$I = \frac{U}{R_{kv}} \tag{10}$$

$$I = \frac{190}{872,601} = 0,2177A$$

Podle II K.z.:

$$U_{RA} + U_{RB45C6} + U_{R78} = U (11)$$

$$U_{RB45C6} = I * R_{B45C6} (12)$$

 $U_{RB45C6} = 0,2177*417,6205 = 90,916V$

Podle I K.z.:

$$I = I_{RB45} + I_{RC6} (13)$$

$$I_{RB45} = I_{R5} = \frac{U_{RB45C6}}{R_{B45}} \tag{14}$$

$$I_{R5} = \frac{90,916}{729,8077} = 0,1246A$$

$$U_{R5} = I_{R5} * R_5 \tag{15}$$

 $U_{R5} = 0,1246 * 300 = 37,38V$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
Н	220	190	360	580	205	560	180
	R ₁	R ₂	3	R ₄	R ₆	U _{R6}	

$$R_{12} = R_1 + R_2 (16)$$

$$R_{12} = 190 + 360 = 550\,\Omega$$

$$R_{45} = R_4 + R_5 \tag{17}$$

$$R_{45} = 205 + 560 = 765\,\Omega$$

$$R_{345} = \frac{R_3 * R_{45}}{R_3 + R_{45}} \tag{18}$$

$$R_{345} = \frac{580*765}{580+765} = 329.8885 \,\Omega$$

$$R_{ekv} = R_{12345} = R_{12} + R_{345} \tag{19}$$

 $R_{ekv} = 550 + 329,8885 = 879.8885 \,\Omega$

Najdeme proud:

$$I = \frac{U}{R_{ekv}} = \frac{220}{879,8885} = 0,25A \tag{20}$$

Podle II K.z.:

$$(I - I_{R3}) * R_{45} - I_{R3} * R_3 = 0 (21)$$

$$I_{R3} = \frac{I * R_{45}}{R_{45} + R_3} \tag{22}$$

$$I_{R3} = \frac{0.25*765}{765+580} = 0.1422A$$

Podle I K.z.:

$$I_{R45} = I - I_{R3} (23)$$

$$I_{R45} = 0,25 - 0,1422 = 0,1078A$$

$$U_i = I_{R45} * R_5 \tag{24}$$

$$U_i = 0,1078 * 560 = 60,368V$$

Najdeme R Thevenina

$$R_{12} = R_1 + R_2 \tag{25}$$

$$R_{12} = 190 + 360 = 550 \,\Omega$$

$$R_{123} = \frac{R_{12} * R_3}{R_{12} + R_3} \tag{26}$$

$$R_{123} = \frac{550*580}{550+580} = 282.3009 \,\Omega$$

$$R_{1234} = R_{123} + R_4 \tag{27}$$

$$R_{1234} = 282,3009 + 205 = 487.3009 \,\Omega$$

$$R_i = \frac{R_{1234} * R_5}{R_{1234} + R_5} \tag{28}$$

$$R_i = \frac{487,3009*560}{487,3009+560} = 260.5636\,\Omega$$

$$I_{R6} = \frac{U_i}{R_i + R_6} \tag{29}$$

$$I_{R6} = \frac{60,368}{260,5636+180} = 0,137A$$

$$U_{R6} = I_R 6 * R_6 \tag{30}$$

$$U_{R6} = 0,137 * 180 = 24,66V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

8	sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
	A	120	0.9	0.7	53	49	65	39	32

Změníme odpory na vodivosti a napěťový zdroj na proudový:

$$G = \frac{1}{R} \tag{31}$$

$$G_1 = \frac{1}{R_1} = \frac{1}{53} = 0,0189S$$

$$G_2 = \frac{1}{R_2} = \frac{1}{49} = 0,0204S$$

$$G_3 = \frac{1}{R_3} = \frac{1}{65} = 0,0154S$$

$$G_4 = \frac{1}{R_4} = \frac{1}{39} = 0,0256S$$

$$G_5 = \frac{1}{R_5} = \frac{1}{32} = 0,0313S$$

$$I_3 = \frac{U}{R_5} \tag{32}$$

$$I_3 = \frac{120}{32} = 3.75A$$

podle I K.z.:

$$\begin{cases} G_1 U_A + G_2 (U_A - U_B) - I_1 = 0 \\ G_2 (U_B - U_A) + G_{45} (U_B - U_C) - I_3 = 0 \\ G_{45} (U_C - U_B) + G_3 U_3 - I_2 + I_3 = 0 \end{cases}$$

$$\begin{pmatrix} G_1 + G_2 & -G_2 & 0 \\ -G_2 & G_2 + G_{45} & -G_{45} \\ 0 & -G_{45} & G_3 + G_{45} \end{pmatrix} * \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} I_1 \\ I_3 \\ I_2 - I_3 \end{pmatrix}$$

$$\begin{pmatrix} (G_1 + G_2)U_A & (-G_2)U_B & 0\\ (-G_2)U_A & (G_2 + G_{45})U_B & (-G_{45})U_C\\ 0 & (-G_{45})U_B & (G_3 + G_{45})U_C \end{pmatrix} = \begin{pmatrix} I_1\\ I_3\\ I_2 - I_3 \end{pmatrix}$$

$$\begin{pmatrix} (0,0393)U_A & (-0,0204)U_B & 0\\ (-0,0204)U_A & (0,0773)U_B & (-0,0569)U_C\\ 0 & (-0,0569)U_B & (0,0723)U_C \end{pmatrix} = \begin{pmatrix} 0,9\\ 3.75\\ -3,05 \end{pmatrix}$$

 $D = 0,0393*0,0773*0,0723-0,0569*0,0569*0,0393-0,0204*0,0204*0,0723=6.2313*10^{-5}\\ D_B = 0,0393*3,75*0,0723-3,05*0,0569*0,0393+0,0204*0,9*0,0723=0.0052\\ D_C = -0,0393*0,0773*3,05+0,0204*0,0569*0,9+0,0569*3,75*0,0393+0,0204*0,0204*3,05=0,0014$

$$U_B = \frac{D_B}{D} \tag{33}$$

 $U_B = \frac{-0.0035}{6.2313*10^{-5}} = 82,845V$

$$U_C = \frac{D_C}{D} \tag{34}$$

 $U_C = \frac{-0.0054}{6.2313 \times 10^{-5}} = 23,0136V$

$$U_{R4} = U_B - U_C \tag{35}$$

 $U_{R4} = 82.845 - 23.0136 = 59,8314V$

$$I_{R4} = \frac{U_{R4}}{R_4} \tag{36}$$

$$I_{R4} = \frac{30.208}{39} = 1,5341A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [μ F]	f [Hz]
F	20	35	12	10	170	80	150	90	65

Po upravě:

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

H 18 50 40 5	sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
	Н	18	50	40	5

$$i = \frac{U}{R} \tag{37}$$

$$U = U_R + U_C \Rightarrow U = iR + U_C \tag{38}$$

$$U_C' = \frac{i}{C} \tag{39}$$

$$U_C' = \frac{U_R}{R * C} \Rightarrow U_C' = \frac{U - U_C}{R * C} \tag{40}$$

$$U_C' = \frac{U - U_C}{R * C} \Rightarrow U_C' + \frac{U_C}{R * C} = \frac{U}{R * C}$$

$$\tag{41}$$

Charakterestická rovnice:

$$U_C' + \frac{U_C}{R * C} = 0 \tag{42}$$

$$U_C' = \lambda \Rightarrow U_C = 1$$

$$\lambda + \frac{1}{R*C} = 0 \Rightarrow \lambda = -\frac{1}{R*C} \tag{43}$$

Obecný tvár:

$$U_C(t) = k(t) * e^{t\lambda}$$
(44)

$$U'_{C}(t) = k'(t) * e^{t\lambda} + k(t) * (e^{t\lambda})'$$
 (45)

$$U_C'(t) = k'(t) * e^{t\lambda} + \lambda * k(t) * e^{t\lambda}$$

$$U_C' + \frac{U_C}{R * C} = \frac{U}{R * C} \tag{46}$$

$$k'(t)e^{t\lambda} + \lambda k(t)e^{t\lambda} - \lambda \tag{47}$$

$$k(t)e^{t\lambda} = \frac{U}{R*C} \Rightarrow k'(t) = \frac{e^{-t\lambda}*U}{R*C}$$
(48)

$$\int k'(t)dx = \int \frac{e^{-t\lambda} * U}{R * C} dx = \frac{U}{R * C} \int e^{-t\lambda} = U * e^{\frac{t}{R * C}} + k$$
(49)

$$k(t) = U * e^{\frac{t}{R*C}} + k \tag{50}$$

$$U_C(t) = k(t) * e^{t\lambda} = (U * e^{\frac{t}{R*C}} + k) * e^{t\lambda}$$
(51)

$$U_C(0) = U + k \Rightarrow k = U_C(0) - U \tag{52}$$

$$k = 5 - 18 = -13$$

$$U_C(t) = U + e^{t\lambda} * k \tag{53}$$

$$U_C(t) = 18 - 13 * e^{-t\frac{1}{2000}}$$
(54)

Zkontrolujeme výpočtu dosazením do sestavené rovnice

Shrnutí výsledků

Příklad	Skupina	Výsledky			
1	F	$U_{R5} = 37,38V$	$I_{R5} = 0,1246A$		
2	Н	$U_{R6} = 24,66V$	$I_{R6} = 0,137A$		
3	A	$U_{R4} = 59,8314V$	$I_{R4} = 1,5341A$		
4	F	$ U_{C_2} =$	$\varphi_{C_2} =$		
5	Н	$u_C = 18 - 13 * e^{-t\frac{1}{2000}}$			