Név: osztály:.....

RETTSÉGI VIZSGA • 2007. november

FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2007. november 7. 14:00

Az írásbeli vizsga időtartama: 120 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fizika — középszint Név:	osztály:
--------------------------	----------

Fontos tudnivalók

A feladatlap megoldásához 120 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázat.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap végén található üres oldalakon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

Fizika —	közé	pszint

Név: osztály:.....

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükséges, számításokkal ellenőrizze az eredményt!)

- 1. Azonos magasságú, 30 és 60 fokos hajlásszögű lejtőről egyszerre engedünk el két pontszerű testet. Melyik test ér le előbb a lejtő aljára? A súrlódás elhanyagolható!
 - A) A 30 fokos lejtőn lecsúszó ér le előbb.
 - B) A 60 fokos lejtőn lecsúszó ér le előbb.
 - C) Egyszerre érnek le.

2. Az alábbi állítások egy rendeltetésszerűen működő falióra kismutatójának hegyére vonatkoznak. Válassza ki a helyes megállapítást! (A mutató hegyének mozgása folyamatos.)

- A) A mutató hegyének sebessége és gyorsulása is nulla.
- B) A mutató hegyének sebessége nem nulla, gyorsulása nulla.
- C) A mutató hegyének sebessége és gyorsulása sem nulla.

- 3. Egy rugót megnyújtunk 20 centiméterrel, kétféle módszerrel. Első változat: A rugó egyik végét a falhoz rögzítjük, a másik végét kihúzzuk. Második változat: A rugó egyik végét megfogjuk, a másik végét a másik kezünkkel elmozdítjuk 20 cm-rel. Melyik esetben végzünk kevesebb munkát?
 - A) Az első változatban.
 - B) A második változatban.
 - C) Egyenlő munkát végzünk mindkét esetben.

4. Három test körpályán mozog. A mellékelt sebességnagyságidő grafikonon ábrázoltuk mozgásukat. Melyik állítás igaz az alábbiak közül?

- A) Az 1. test egyenletesen gyorsulva mozog.
- **B)** A 2. test egyenletesen mozog.
- C) A 3. test gyorsuló mozgást végez.

- 5. Egy golyó merőlegesen falnak ütközik, tökéletesen rugalmasan, s a becsapódási sebességgel megegyező nagyságú sebességgel visszapattan. Hogyan érvényesül a lendületmegmaradás törvénye?
 - A) A golyó lendülete megmarad, mert sebessége és tömege is megmarad.
 - B) A golyó lendületet ad át a falnak, s ezáltal a Földnek.
 - C) Itt nem érvényesül a lendületmegmaradás, az csak a tökéletesen rugalmatlan ütközéseknél érvényes.

- 6. Két különböző fajhőjű anyagot keverünk össze. E két anyag nem lép kémiai reakcióba egymással. Mekkora lesz a keverék fajhője?
 - A) A keverék fajhője mindkét összetevő fajhőjénél kisebb lesz.
 - B) A keverék fajhője a két összetevő fajhője közötti érték lesz.
 - C) A keverék fajhője a két összetevő fajhőjének összege lesz.

Fizika —	1287	ána	zint
Г1Z1Ka —	köz	eps:	zınt

Név:	 osztály:
LACV.	 OSZIGI y

- 7. Tökéletesen hőszigetelt, 0 °C hőmérsékletű tartályban összekeverünk 1 kg 0 °C hőmérsékletű vizet és 10 kg 0 °C hőmérsékletű jeget. Mi lesz a tartályban az egyensúly beállta után?
 - **A)** 11 kg víz.
 - **B)** 11 kg jég.
 - C) 1 kg víz és 10 kg jég.

2 pont	

- 8. Miért van Magyarországon télen hidegebb, mint nyáron?
 - **A)** Mert télen a Nap "alacsonyabban jár", laposabb szögben éri a földfelszínt. sugárzása.
 - B) Mert télen többször van felhős idő, s nehezebben melegszik fel a levegő.
 - C) Mert a Föld keringése során télen messzebb van a Naptól.

2 pont	
--------	--

9. Állandó keresztmetszetű, vízszintes hengerben, elhanyagolható tömegű, vékony dugattyú súrlódásmentesen mozoghat. Kezdeti egyensúlyi állapotában a dugattyú 10 cm-re van a henger zárt végétől, és 30 °C-os héliumgázt zár el. A héliumot 300 °C-ra melegítjük, eközben a külső nyomás változatlan marad. Eléri-e a zárt végtől 20 cm-re található ékeket a

dugattyú?

- A) A dugattyú eléri az ékeket a melegítés során.
- B) A dugattyú nem éri el az ékeket a melegítés után sem.
- C) A fenti adatok segítségével a kérdés nem dönthető el.

12. A hálózati feszültséget biztonsági transzformátorunk letranszformálja, de e feszültséget szeretnénk még jobban lecsökkenteni. Ezért a transzformátor primer és szekunder tekercsének menetszámát felére csökkentjük. Eredményes-e ez az eljárás?

A) Igen, mert a menetszámok különbsége csökkent.

- B) Nem, mert a folyamatot csak a vasmag határozza meg.
- C) Nem, mert a menetszámok aránya nem változott.

13. Az ábrán a voltmérő U feszültséget, az ampermérő I áramerősséget mutat. Mit ad meg az $\frac{U}{I}$ hányados?

(A műszereket tekintsük ideálisnak.)

- **A)** R₁ értékét.
- **B)** R₂ értékét.
- C) Az eredő ellenállást.

- 14. Két pontszerű, elektromosan töltött test távolságát 4-szeresére növeljük. A testek töltését nem változtatjuk meg. Hogyan változik a testek közötti elektromos erő?
 - A) Felére csökken.
 - **B)** $\frac{1}{4}$ részére csökken.
 - C) $\frac{1}{16}$ részére csökken.

ont	

- 15. Melyik a helyes állítás az alábbiak közül?
 - **A)** A Föld körül keringő űrhajóban súlytalanság van, mert csak a gravitációs erő hat.
 - B) A Föld körül keringő űrhajóban nincs súlytalanság, mert hat a gravitáció.
 - C) A Föld körül keringő űrhajóban súlytalanság van, mert ilyen távolságban már nem érvényesül a gravitációs vonzás.

2 pont	

Fizil	ka —	középszint	Név:	osztály:
16.	Mel	yik állítás helyes a F	Föld körül ellipszispályán keringő űrállor	nás mozgására?
	A) B) C)	Az űrállomás földk	ségének nagysága állandó. özelben gyorsabban, földtávolban lassabba özelben lassabban, földtávolban gyorsabba	
17.	Mily	ven folyamatokban l	keletkezik látható fény?	
	A) B) C)	Radioaktív bomlás	mélyebb energiaszintre kerül. során. ben történő melegítés közben.	
18.	Mely A)	A β ⁻ -bomlást.	ázza az alábbiak közül a Bohr-féle atom	2 pont modell?
	B) C)	A hidrogén vonalas A fényelektromos j		2 pont
	-		mmag elektron kibocsátásával stabilabb nmag nukleonösszetétele?	állapotba kerül.
	A) B) C)	Egy neutronnal key	esebb, de egy neutronnal több lesz a magbar resebb, de egy protonnal több lesz a magbar is veszít az atommag.	

Fizika —	- középszint	Név:	osztály:
	otoeffektus (fényelektrom kség?	os hatás) során 1 elektron kilépéséhez há	ány fotonra van
A) B) C)		nergiájú fotonra. energiájú foton szükséges. ma az elektron de Broglie-hullámhosszától	függ.
			2 nont

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy téglalap alakú, homogén lemezt az egyik csúcsánál egy szöggel felfüggesztünk, amely körül könnyen elfordulhat a lemez, a vele átellenes csúcsánál pedig vízszintes irányban F=6 N erővel húzzuk. Ekkor a lemez b oldala vízszintes lesz.

$$a = 30 \text{ cm}, b = 90 \text{ cm}$$
 $(g = 10 \frac{\text{m}}{\text{s}^2})$

- a) Mekkora a lemez tömege?
- b) Mekkora a lemezre ható nehézségi erő és a húzóerő eredője?
- c) Mekkora a felfüggesztési pontban ható kényszererő?

Összesen

2. Egy PB-gázzal működő átfolyós vízmelegítő óránként 66 liter 15 °C-os vizet 40 °C-ra melegít fel. Ehhez 0,79 m³ gázt használ fel.

A PB-gáz égéshője 49,6
$$\frac{MJ}{kg}$$
, sűrűsége 2,17 $\frac{kg}{m^3}$. A víz fajhője 4200 $\frac{J}{kg\cdot {}^{\circ}C}$.

Számolja ki a készülék hatásfokát!

(Befektetett hőnek a gáz égetéséből nyert hőt tekintjük.)

Összesen

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3.A Egy fonál végére egy kicsi, de erős mágnest függesztünk, az inga alá pedig egy vastag alumínium- vagy rézlemezt rögzítünk. A fonálon függő mágnest lengésbe hozzuk. Azt tapasztaljuk, hogy az inga néhány lengés során lelassul, gyakorlatilag megáll, míg lemez nélkül akár száz lengést is végezhet a lecsillapodásig. Értelmezze a jelenséget, illetve a jelenség közben lejátszódó

Értelmezze a jelenséget, illetve a jelenség közben lejátszódó részfolyamatokat!

Az inga leállását követően kimutathatjuk, hogy a lemez nagyon kis mértékben, de felmelegedett. Mi a jelenség magyarázata?

Összesen

3.B Az alábbi grafikont, amely a radioaktív szén atommagok $\binom{14}{C}$ számát mutatja az idő függvényében, régészeti leletek kormeghatározására használják. A kezdetnek választott időpontban (t=0 év) a vizsgált mintában $14\cdot10^{12}$ db 14 C izotóp található.

Jellemezze a bomlási folyamatot a következő kérdések alapján!

- a) A nulla időponthoz viszonyítva hány év alatt bomlik el a radioaktív izotópok fele?
- b) Mennyi idő alatt feleződik meg az első 1250 évben még el nem bomlott izotópok száma?
- c) A 3500 év elteltével még el nem bomlott izotópok száma mikorra feleződik meg?
- d) Mit jelent a felezési idő, és mennyi a ¹⁴C felezési ideje?
- e) Mikor lesz a radioaktív magok száma 3·10¹² db?
- f) Ha az első 2250 évben elbomlott atommagok száma N, akkor hány újabb év kell ahhoz, hogy további N atommag elbomoljon?

írásbeli vizsga 0622 14 / 16 2007. november 7.

Összesen

Fizika — középszint	Név:	osztály:

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
ÖSSZESEN	90	

javító tanár	

Dátum:

	elért pontszám	programba beírt pontszám
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		

javító tanár	jegyző	
Dátum:	Dátum:	