

PROBLEMA DE ROTEAMENTO DE VEÍCULO NA CIDADE DE MACEIÓ

Danilo MARTINS(1); Edison MORAES (2); Jarbas ALVES (3); Rosely NAKARA

(1) CEFET-AL, Rua Barão de Atalaia, s/n, 3336-2873, e-mail: edison@cefet-al.br

(2) CEFET-AL, e-mail: danilo.m.s@globo.com
(3) CEFET-AL, e-mail: jarbas@cefet-al.br
(4) CEFET-AL, e-mail: rosely_nakahara@msn.com

RESUMO

Este trabalho consiste no desenvolvimento de um software para minimizar o custo logístico relacionado ao transporte, além de conhecer e compreender os algoritmos matemáticos sobre PRV (problema de roteamento de veículo). Será utilizado pesquisa bibliográfica e estudo de caso. Com um banco de dados contendo todas os pontos das ruas de Maceió e o mapa da cidade montado a partir de fotos de satélite do google Earth foram implementados alguns algoritmos de PRV compilados na literatura para resolver o problema do caminho mínimo.

Palavras-chave: PRV, Roteamento

1. INTRODUÇÃO

O PRV tem sido uma das áreas de pesquisa que atraiu muitos pesquisadores nos últimos dez anos. Neste período um número muito grande de publicações, dissertações e teses foram publicados. O fato do grande número de publicações é que estes problemas envolvem áreas como Engenharia Elétrica, Planejamento, Construção, Comunicação, etc, além de tratar de problemas que, se resolvidos de forma exata, muitas vezes torna o tempo de execução dos algoritmos inadmissível, fazendo com que os métodos heurísticos e meta-heurísticos sejam cada vez mais pesquisados.

Com o retorno da crise mundial do petróleo, faz-se necessário repensar todo o processo logístico nas empresas focando e investindo no PRV com o objetivo de minimizar os custos variáveis (associados à rota escolhida), custos fixos e o número de veículos.

Um outro fator é que estudos nos EUA [Ballou1993] mostraram que os custos logísticos são de 21% do produto nacional bruto (PNB), sendo deste total, 46% correspondente ao transporte.

O preço de um software de roteirização varia de 8.995 a 76.000 dólares [Novaes2001], sendo a quantidade de "softwares" disponíveis no mercado brasileiro bastante limitada.

O software desenvolvido servirá de ferramenta de tomada de decisão na escolha da melhor rota ou plano de viagem na rede viária da cidade de Maceió. O software poderá ser usado por empresas transportadoras, de transporte coletivo, correios, etc.

O objetivo do projeto consiste em desenvolver um software para minimizar o custo logístico relacionado ao transporte, além de conhecer e compreender os algoritmos matemáticos sobre PRV(problema de roteamento de veículo). O programa utilizará um software livre para criar o SIG (Sistemas de informações geográficas) e um SGBD(Sistema gerenciador de banco de dados) livre PostGres com o PostGis usado para criação de banco de dados geográfico. Como implementação dos algoritmos será usada a linguagem de programação Java.

2. CONTEÚDO

O PRV é um conjunto de clientes geograficamente dispersos, de localização conhecida e com demanda conhecida por determinado produto, que deve ser suprido, a partir de um depósito central, por uma frota de veículos com capacidade conhecida, no qual o problema consiste em obter rotas para os veículos, de modo a minimizar os custos de transporte. Define-se como um problema características combinatórias e de muitas dificuldades.

MySql é um sgbd de código aberto disponível gratuitamente. Foi desenvolvido gratuitamente na Suécia.

Segundo LAPORTE[1992], as estratégias de solução para os problemas de roteamento de veículos podem ser divididos em dois grupos:

- 1. Métodos exatos
 - Programação dinâmica
 - Branch-and-Bound
 - Branch-and-cut
 - Geração de colunas
- 2. Métodos Inexatos
 - Métodos adaptados do PCV (Problemas do Caixeiro Viajante)
 - Métodos Heurísticos

- Algoritmos com base no cálculo de economias
- Algoritmo de Gillet e Miller (varredura)
- Meta-heurísticas
- Têmpera Simulada
- Busca Tabu
- Algoritmos Genéticos
- Grasp

Os métodos exatos são aqueles que possibilitam a obtenção da solução ótima para o problema. Já os métodos heurísticos permitem apenas a obtenção de soluções aproximadas, porém, com maior rapidez e por último, os métodos meta-heurísticos são aqueles que trabalham como função de probabilidade, na qual nem sempre é garantida a obtenção de um mesmo resultado para uma determinada instância de um problema, o que não ocorre com as heurísticas.

O projeto foi desenvolvido na linguagem de programação C++ usando como IDE o dev-cpp que utiliza a licença GNU (GENERAL PUBLIC LICENSE). Foram utilizados várias bibliotecas uma para conexão com o BD Mysql onde foram instalados os pacotes libmysql-4.1.13a-1sid e libmysql-5.0.5-1sid e uma outra biblioteca com recursos gráficos chamada de SDL(Simple Directmedia Layer).

Foi criado um BD relacional de acordo com as tabelas mostradas no diagrama abaixo.

Figura 1 – Diagrama ER

O programa desenvolvido permite ao usuário cadastrar vários mapas possuindo estes diversos pontos com as suas respectivas coordenadas x e y. As distâncias entre os pontos vizinhos serão calculadas em pixeis. O sistema a partir de uma distância real entre dois pontos cria uma fórmula de conversão de pixel em metros e faz uma estimativa muito próxima da distância real entre o menor caminho. O algoritmo utilizado foi o de Dijkstra. Também foi implementado o algoritmo de Floyd e outros algoritmos serão implementados em versões futuras.

O algoritmo de Floyd pode ser visto abaixo:

```
function fw(int[1..n,1..n] graph) {
    // Initialization
   var int[1..n,1..n] dist := graph
   var int[1..n,1..n] pred
    for i from 1 to n
        for j from 1 to n
            if dist[i,j] < Infinity</pre>
                pred[i,j] := i
    // Main loop of the algorithm
    for k from 1 to n
        for i from 1 to n
            for j from 1 to n
                if dist[i,j] > dist[i,k] + dist[k,j]
                    dist[i,j] = dist[i,k] + dist[k,j]
                    pred[i,j] = pred[k,j]
    return dist
```

O programa criado pode ser visto abaixo. Na tela mostrada o usuário está definindo o ponto de origem e depois o ponto de destino em que o usuário deseja chegar e ao clicar em roteamento será desenhado automaticamente o menor caminho entre os dois pontos selecionados.

FIGURA 2 – Interface do programa criado

Na opção cadastrar mapa o usuário define o nome do arquivo que contém o mapa que o usuário deseja utilizar para resolver o PRV. Já a opção editar permite o usuário definir todos os pontos no mapa gerando uma numeração seqüencial.

3. CONSIDERAÇÕES FINAIS

Com o barateamento dos equipamentos de GPS no Brasil, a inclusão de mapas de satélite pelo GoogleEarth gratuita e a crise do petróleo, faz-se necessário desenvolver aplicativos que reduzam custos nas empresas de transportes. Pensando nisso, elaboramos inicialmente um programa com recursos limitados, porém, dá inicio a um longo caminho que deve ser percorrido para novas implementações usando outros algoritmos mais sofisticados e emergentes.

Fazer este aplicativo funcionar em um celular ou Palm com GPS é uma meta que este projeto pretende chegar fazendo as empresas saltar muitas vezes de um conhecimento intuitivo para um conhecimento científico.

REFERÊNCIAS

BALLOU, Ronald H. Logística Empresarial. São Paulo. Atlas, 1993.

LAPORTE, Gilbert et all. Vehicle routing: modern heuristics. In Local Search in Combinatorial Optimization. *Edited by E. Aarts and J. K. Lenstra* - p.311-336. John Wiley, 1997.

NOVAES, Antônio Galvão. **Logística e Gerenciamento da Cadeia de Distribuição**. Rio de Janeiro:Campus, 2001.

DRUCKER, Peter. Desafios Gerenciais para o século XXI. São Paulo: Pioneira, 1999.