Your J-number
$$JN := 00298436 := (J_k | k \in 1..8)$$

1 (i)
$$A := \{k \in 1..8 | J_k \text{ is even}\} = \{1,2,3,5,6,8\}$$

k	1	2	3	4	5	6	7	8
J_k	0	0	2	9	8	4	3	6
J_k	Y	Y	(<u>Y</u>)	Y	Y	Y	Y	(Y)
is even	N	N	N	(N)	N	N	(N)	N

1 (ii)
$$B := \left\{ J_k \in 0..9 \middle| k \text{ is prime} \right\} = \left\{ 0.2.3.8 \right\}$$

			_					
k	1	2	3	4	5	6	7	8
J_k	0	0	(2)	9	(8)	4	(3)	6
k is	Y	(Y)	(Y)	Y	(Y)	Y	(<u>Y</u>)	Y
k is prime	N	N	N	(N)	N	(N)	N	N

$$\{1,2,3,5,6,8\} = A \subseteq B = \{0,2,3,8\}$$
 Y

Why? By inspection (eLs) 1 (#RS)

2 (iii) Decide if:

$$\{0,2,3,8\} = B \subseteq A = \{1,2,3,5,6,8\}$$
 Y (M)

Why? By inspection,

6 (1b) Compute the following, showing all work including trees on the facing page or pages provided for work, and record ONLY the answers on this page.

Your J-number $JN := 00298436 := (J_k | k \in 1..8)$

$$C := \{k \in 1..8 | J_k \le 2\} = \{1, 2, 3\}$$

$$D := \begin{cases} J_k \in 0..9 | k \in 1..3 \end{cases} = \begin{cases} 0, 2 \end{cases}$$

1(i)
$$C \cup D = \{1,2,3\} \cup \{0,2\} = \{0,1,2,3\}$$

$$1 \text{ (ii)} \quad C \cap D \qquad = \qquad \left\{ 1, 2, 3 \right\} \cap \left\{ 0, 2 \right\} = \qquad \left\{ \qquad \left[2, 3 \right] \right\}$$

1 (iii)
$$C \setminus D = \{1, 2, 3\} \setminus \{0, 2\} = \{1, 3\}$$

$$1 \text{ (iv) } D \setminus C \qquad = \left\{ \begin{array}{c} 0, 2 \end{array} \right\} \setminus \left\{ 1, 2, 3 \right\} = \left\{ \begin{array}{c} 0 \end{array} \right\} \longrightarrow \left[\begin{array}{c} 1 \end{array} \right]$$

$$1 \text{ (v) } C \times D = \left\{ \begin{array}{l} 1, 2, 3 \\ 3, 0 \end{array} \right\} \times \left\{ \begin{array}{l} 0, 2 \\ 3, 0 \end{array} \right\} = \left\{ \begin{array}{l} (1, 0), (1, 2), \\ (2, 0), (2, 2), \\ (3, 0), (3, 2) \end{array} \right\}$$

$$1 \text{ (vi) } C \times D = \left\{ \begin{array}{l} 1, 2, 3 \\ 3, 0 \end{array} \right\} \times \left\{ \begin{array}{l} 0, 2 \\ 3, 0 \end{array} \right\} = \left\{ \begin{array}{l} (1, 0), (1, 2), \\ (2, 0), (2, 2) \\ (3, 0), (3, 2) \end{array} \right\}$$

5 (1c) Define $\forall X, Y \in \mathcal{U}$ $X \circ Y$ $(X \cup Y) \setminus (Y \cap X)$

> Circle correct choices from among Y, N, Proof, and Witness and provide below a proof or witness as the case may be:

2 (i) $\forall X,Y\in\mathcal{U}$ $\left(X\circ Y=Y\circ X\right)$

Proof) Witness $X \circ Y = (X \cup Y) \setminus (Y \cap X)$ = $(Y \cup X) \setminus (X \cap Y)$

= Yox

3 (ii)
$$\forall X, Y, Z \in \mathcal{U}$$
 $\left((X \circ Y) \circ Z = X \circ (Y \circ Z) \right)$ Y N

Proof

Witness

 $(X \circ Y) \circ Z = (((X \cup Y) \setminus (Y \cap X) \cup Z) \setminus (Z \cap ((X \cup Y) \setminus (Y \cap X)))$

 $= \left(\frac{XU((YUZ))(ZNY)}{(YUZ)} \right) \left(\frac{(YUZ)}{(ZNY)} \right)$ $= \frac{2}{3} \frac$ = Xo(YoZ)

- 6 (2a) Answer the following:
- 1 (i) $\{a\} = \left\{a\right\}$

Why? By inspection.

1 (ii) $\{a\} \neq \left\{a\right\}$

Why? By inspection.

1 (iii) $a \in \{a\}$

Why? By inspection.

1 (iv) $\{a\} \notin \left\{ \{a\} \right\}$

Why? By inspection.

 $1 (v) {a} \subseteq \left\{a\right\}$

Why? By inspection,

1 (vi) $\{a\} \nsubseteq \left\{ \{a\} \right\}$

Why? By inspection.

107

$$\chi \coloneqq \nu(X) \in \mathbb{N}$$

Base case:

 (B_0)

$$S_0 := X$$

Recursive step:

(R)

$$\forall n \in \mathbb{N}$$
 $S_{n+1} := \left(S_n\right) \sqcup \left(S_n\right)$

1 (i)

Compute:

 S_1

$$= (X \times \{0\}) \cup (X \times \{1\})$$

labe

Compute: 1 (iii)

 $\nu(S_1)$

$$=$$
 $2x$

1 (ii)

Compute:

 S_2

$$= \left(S, \times \{0\}\right) \cup \left(8, \times \{1\}\right)$$

1 (iv)

Compute:

 $\nu(S_2) = 4$

$$(1) \qquad S_1$$

$$= (S_0) \sqcup (S_0)$$

$$= X \sqcup X$$

$$= (X \times \{0\}) \cup (X \times \{1\})$$

(iii)
$$\nu(S_1)$$

= $\nu(S_0) + \nu(S_0)$
= $2\nu(X)$
= 2∞

(ii)
$$S_2$$

= $(S_1) \sqcup (S_1)$
= $(S_1 \times \{0\}) \cup (S_1 \times \{1\})$

$$(iv) \nu(S_2)$$

$$= \nu(S_1) + \nu(S_1)$$

$$= 2\alpha + 2\alpha$$

$$= 4\alpha$$

$$(v) \nu(S_{n})$$
= $2\nu(S_{n-1})$
= $2 \times 2\nu(S_{n-2})$
= $2 \times 2 \times 2\nu(S_{n-3})$

$$= 2 \times 2 \times 2 \times (S_{n-3})$$

$$= 2^{n} \times (S_{0})$$

$$= 2^{n} \times 2 \times 2 \times (S_{n-3})$$

5 (2c) Circle correct choices from among Y, N, Proof, and Witness and provide below a proof or witness as the case may be:

2 (i)
$$\forall X, Y, Z \in \mathcal{U} \qquad \left(X \times Y \right) \cap Z = \left(X \cap Z \right) \times \left(Y \cap Z \right)$$

Proof

$$Y \quad N$$

$$X = \{1,2\}, Y = \{2,3\}, Z = \{(2,3)\}$$

$$(X \times Y) \cap Z = \{(2.3)\},$$

$$(X \cap Z) \times (Y \cap Z) = \{\}$$

$$\exists X, Y, Z \in \mathcal{U} \quad (X \times Y) \land Z \neq (X \land Z) \times (Y \land Z)$$

3 (ii)
$$\forall X, Y, Z \in \mathcal{U}$$
 $Z \cup \left(X \times Y\right) = \left(Z \cup X\right) \times \left(Z \cup Y\right)$

Witness

N

 $\forall X, Y, Z \in \mathcal{U}$

$$ZU(X \times Y) = (ZUX) \times (ZUX)$$

(i)
$$\odot (X \times Y) \wedge Z$$

= $\begin{cases} (1,2), (1,3), \\ (2,2), (2,3) \end{cases} \wedge \begin{cases} (2,3) \end{cases}$
= $\begin{cases} (2,3) \end{cases}$

(i) ②
$$\times \cap \times$$

= $\{1,2\} \cap \{(1,2)\}$
= $\{\}$

$$(1) \bigcirc Y \cap Z$$

= $\{2.3\} \cap \{(1,2)\}$
= $\{3\}$

$$(i) \bigoplus (X \cap Z) \times (Y \cap Z)$$

$$= \{ \{ \} \times \{ \} \}$$

$$= \{ \}$$

6 (3a) Compute the following, showing all work on the facing page or pages provided for work, and record ONLY the answers on this page.

Your J-number $JN := 00298436 := U_k | k \in 1..8$

1 (i) $E := \left\{ J_k \in 0..9 \middle| \exists n \in \mathbb{N} \left(J_k = n^3 \right) \right\} = \left\{ \bigcirc \right\}$

k	1	2	3	4	5	6	7	8
J_k	0	0	2	9	(8)	4	3	6
/	Y	Y	Y	Y	Y	Y	Y	Y
$\exists n \in \mathbb{N} \left(J_k = n^3\right)$	N	N	N	N	N	N	(N)	N

1 (ii) $F := \left\{ k \in \mathbb{1}..9 \middle| \exists n \in \mathbb{N} \left(k = n^2 \right) \right\} = \left\{ \begin{array}{c} 1 \\ 1 \end{array}, \begin{array}{c} \\ \end{array} \right\}$

	k	1	2	3	4	5	6	7	8
	I _k	0	O	2	9	8	4	3	6
	/	Y	Y	Y	Y	Y	Y	Y	Y
$\exists n \in \mathbb{N}$	$\left(k=n^2\right)$	N	N	N	N	N	N	N	N

 $1 \text{ (iii)} \qquad E \cap F \qquad = \qquad \bigg\{$

(i)
$$|\chi|_{1 \le x \le 9}^{x} = N^{3}(n = N)^{2}$$

= $\{1, 8\}$

(ii)
$$\begin{cases} 3 & 1 \le 3 \le 8 \end{cases}$$
 $3 = n^2 (n = N)$

(iii)
$$E \cap F$$

= $\{0\} \cap \{1,4\}$
= $\{3\}$

3 (i)
$$\exists X, Y, Z \in \mathcal{U} \qquad \left(X \cup Y \right) \cap Z = X \cup \left(Y \cap Z \right)$$
Proof Witness $Y \cap X$

$$X = Y = Z$$

$$\frac{X = I = X}{(XUY)UX = X, XU(YUX) = X}$$

$$\frac{X = I = X}{(XUY)UX = XU(YUX)}$$

3 (i)
$$\forall X, Y, Z \in \mathcal{U} \qquad \left(X \cap Y\right) \cup Z = X \cap \left(Y \cup Z\right)$$
Proof Witness
$$Y = N$$

$$\frac{A \times (X \times X) \times (X \times X)$$

- 5 (3c) Circle correct choices from among Y, N, Proof, and Witness and provide below a proof or witness as the case may be:
- 2 (i) $\forall X, Y, Z \in \mathcal{U}$

$$Vld\left(\frac{X\subseteq Y}{X\setminus Z\subseteq Y\setminus Z}\right)$$

Proof

Witness

<u>Y</u> 1

ARE(X/S) XEL

 $\forall x \in (1/2)$

 $\forall x, r, z \in \mathcal{U}$

XISCLIS

 $\forall X,Y,Z\in\mathcal{U}$

$$Vld\left(\frac{X=Y}{X\setminus Z=Y\setminus Z}\right)$$

Proof

Witness

$$\forall x \in (X \setminus Z), X = Y$$

4x (() Z)

$$\forall x, x, z \in \mathcal{X} \quad \left(\frac{x = 1}{x \mid z = 1 \mid z}\right)$$

N

- 5 (3c) Circle the correct choice on the right and prove your assertion accordingly.
- 2 (i) $\exists X, Y, Z \in \mathcal{U} \qquad \left(X \times Y \right) \times Z = X \times \left(Y \times Z \right)$ Proof Witness Y = N

3 (i) $\forall X, Y, Z \in \mathcal{U} \qquad \left(X \sqcup Y \right) \sqcup Z = X \sqcup \left(Y \sqcup Z \right)$ Proof Witness $Y \qquad N$