MFAE - FAE with Mutable Variables

1 INTRODUCTION

MFAE is a toy language for the COSE212 course at Korea University. MFAE stands for an extension of the FAE language with **mutable variables**, and it supports the following features:

- number (integer) values (0, 1, -1, 2, -2, 3, -3, ...)
- arithmetic operators: addition (+) and multiplication (*)
- mutable variable definitions (var)
- first-class functions (=>)
- assignment (=)
- **augmented assignment**: additive (+=) and multiplicative (*=)
- sequences (;)

This document is the specification of MFAE. First, Section 2 describes the concrete syntax, and Section 3 describes the abstract syntax with the desugaring rules. Then, Section 4 describes the big-step operational (natural) semantics of MFAE.

2 CONCRETE SYNTAX

The concrete syntax of MFAE is written in a variant of the extended Backus–Naur form (EBNF). The notation <nt> denotes a nonterminal, and "t" denotes a terminal. We use ? to denote an optional element and + (or *) to denote one or more (or zero or more) repetitions of the preceding element. We use butnot to denote a set difference to exclude some strings from a producible set of strings. We omit some obvious terminals using the ellipsis (...) notation.

```
// basic elements
<digit> ::= "0" | "1" | "2" | ... | "9"
<number> ::= "-"? <digit>+
<alphabet> ::= "A" | "B" | "C" | ... | "Z" | "a" | "b" | "c" | ... | "z"
<idstart> ::= <alphabet> | "_"
<idcont> ::= <alphabet> | "_" | <digit>
<keyword> ::= "var"
<id>
         ::= <idstart> <idcont>* butnot <keyword>
// expressions
<expr> ::= <number> | <expr> "+" <expr> | <expr> "*" <expr>
         | "(" <expr> ")" | "{" <expr> "}"
         | "var" <id> "=" <expr> ";" <expr> | <id>
         | <id> "=>" <expr> | <expr> "(" <expr> ")"
         | <id> "=" <expr> | <id> "+=" <expr> | <id> "*=" <expr>
         | <expr> ";" <expr>
```

The precedence and associativity of operators are defined as follows:

Description	Operator	Precedence	Associativity
Multiplicative	*	1	left
Additive	+	2	
Assignment	=, +=, *=	3	right

3 ABSTRACT SYNTAX

The abstract syntax of MFAE is defined as follows:

Expressions
$$\mathbb{E} \ni e := n$$
 (Num) $|\lambda x.e|$ (Fun) $|e+e|$ (Add) $|e(e)|$ (App) $|e*e|$ (Mul) $|x=e|$ (Assign) $|\text{var } x=e; e|$ (Var) $|e; e|$ (Seq) $|x|$

where

Numbers
$$n \in \mathbb{Z}$$
 (BigInt) Identifiers $x \in \mathbb{X}$ (String)

The semantics of the remaining cases are defined with the following desugaring rules:

$$\mathcal{D}[x+=e] = x=x+\mathcal{D}[e] \qquad \mathcal{D}[x+=e] = x=x+\mathcal{D}[e]$$

The omitted cases recursively apply the desugaring rule to sub-expressions.

4 SEMANTICS

We use the following notations in the semantics:

Environments
$$\sigma \in \mathbb{X} \xrightarrow{\text{fin}} \mathbb{A}$$
 (Env) Memories $M \in \mathbb{A} \xrightarrow{\text{fin}} \mathbb{V}$ (Mem) Values $\mathbb{V} \ni v ::= n$ (NumV) Addresses $a \in \mathbb{A}$ (Addr) $|\langle \lambda x.e, \sigma \rangle|$ (CloV)

The big-step operational (natural) semantics of MFAE is defined as follows:

4.1 Call-By-Reference (CBR) semantics

The above semantics is defined with **call-by-value** (CBV) evaluation strategy. We can augment it with **call-by-reference** (CBR) evaluation strategy by replacing the rule for function application with the following two rules:

$$\begin{split} \operatorname{App}_x & \frac{\sigma, M \vdash e_1 \Rightarrow \langle \lambda x'. e_2, \sigma' \rangle, M_1 \qquad x \in \operatorname{Domain}(\sigma) \qquad \sigma'[x' \mapsto \sigma(x)], M_1 \vdash e_2 \Rightarrow v_2, M_2}{\sigma, M \vdash e_1(x) \Rightarrow v_2, M_2} \\ & \frac{\sigma, M \vdash e_1 \Rightarrow \langle \lambda x. e_3, \sigma' \rangle, M_1 \qquad \forall x'. e_2 \neq x' \qquad \sigma, M_1 \vdash e_2 \Rightarrow v_2, M_2}{a \notin \operatorname{Domain}(M_2) \qquad \qquad \sigma'[x \mapsto a], M_2[a \mapsto v_2] \vdash e_3 \Rightarrow v_3, M_3}{\sigma, M \vdash e_1(e_2) \Rightarrow v_3, M_3} \end{split}$$