베이지안 통계 <기초>

- 평일 저녁 신촌역 편의점 아르바이트 상황에서

가장 편한 요일 고르기

기초

베이지안 통계 <기초> 박민지, 박채은,박희경, 배시예

목차

The Table of Contents

01

CONTENTS

베이지안 통계 이론

Concept of the Bayesian Statistics

3-21_p

02

CONTENTS

프로젝트 : 신촌역 아르바이트 요일 정하기

Project

22 -33_p

베이즈 통계

Bayesian Statisttics

- 베이즈가 주창한 통계적 방법 => 고전 통계학과 구분됨.
- 표집에서 얻은 정보뿐만 아니라 연구자가 가지고 있는 사전 지식이나 주관적 의견 또는 신념과 같은 정보도 포함시키는 추리 통계의 한 방법

베이즈 정리

Bayes' Theorem

- 확률 변수의 사전 확률과 사후 확률 사이의 관계를 나타내는 정리
- "결과로부터 원인을 추론하기"

(ex) A: 병에 걸린 사건, B: 증상이 있을 사건 P(A) -> P(A|B) : 증상이 있을 때 병에 걸렸을 확률

베이즈 정리

Bayes' Theorem

🜖 베이즈 정리 계산하기

$$\begin{split} \Pr(A \mid B) &= \frac{\Pr(B \mid A) \cdot \Pr(A)}{\Pr(B)} \\ &= \frac{\Pr(B \mid A) \cdot \Pr(A)}{\Pr(B \mid A) \cdot \Pr(B \mid A^c) \cdot \Pr(A^c)}. \end{split}$$

Bayes theorem for continuous distributions

continuous random variable θ conditional density for θ given y

$$f(\theta|y) = \frac{f(y|\theta)f(\theta)}{\int f(y|\theta)f(\theta)d\theta}$$
.

Likelihood

Likelihood

● 우도 (Likelihood) = P (확률분포 D / 관측값 X)
(ex) 동전을 10번 던져서 앞면이 7번 나왔다. 이때의 모수(확률 분포)는?

Prior & Posterior

Prior & Posterior

0. Example

50%

70%

- θ = { 50% 동전, 70% 동전}
- 결과는 이미 5번 던졌을 때 앞면 2번, 뒷면 3번으로 정해짐
- X ~ Bin (5, ?) (X = 동전을 던져 나온 앞면의 수)
- '동생은 이때까지 60%로 70% 동전을 썼어!'

Prior & Posterior

Prior & Posterior

1. Prior

- 사전확률: 개인의 믿음, 사전 정보, 도메인 지식
- 주관적
- 0, 1로 두는 것은 좋지 않음

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{\sum_{i=1}^{m} P(B|A_i)P(A_i)}$$

(ex) 이전에 남동생이 60%로 70%동전을 사용했다는 나의 믿음

Prior & Posterior

Prior & Posterior

2. Posterior

- 사후확률
- Information in prior + Information in data
- 데이터가 매우 많다면, prior의 영향력 少

(ex) 사전 확률과 동생과의 내기결과를 바탕으로 새롭게 구한 70%동전을 사용했을 확률 분포

Predictive distribution

Predictive distribution

OPPRIOR Prior predictive distribution(사전 예측 분포)

$$f(\tilde{x}) = \int f(\tilde{x}, \theta) d\theta = \int f(\tilde{x}|\theta) f(\theta) d\theta$$

Posterior predictive(사후 예측 분포)

$$f(\tilde{x}|x) = \int f(\tilde{x}, \theta|x) d\theta = \int f(\tilde{x}|\theta, x) f(\theta|x) d\theta$$

If x and \tilde{x} are independent,

$$f(\tilde{x}|x) = \int f(\tilde{x}|\theta, x) f(\theta|x) d\theta = \int f(\tilde{x}|\theta) f(\theta|x) d\theta$$

01> 베이지안 통계 : 이론

MCMC

Markov Chain Monte Carlo

O. MCMC

마르코프 연쇄 몬테카를로 방법(Markov Chain Monte Carlo, MCMC)은 마르코프 연쇄의 구성에 기반한 확률 분포로부터 원하는 분포의 정적 분포를 갖는 표본을 추출하는 알고리즘의 한 분류이다.

MCMC

Markov Chain Monte Carloc

1. Markov Chain : 각 상태는 바로 이전의 상태에만 영향을 받는다.

MCMC

Markov Chain Monte Carloc

1. Markov Chain

igodown (가정1) Markov assumption: X_{t+1} 에서의 확률분포는 X_t 에 의해서만 결정되어야 한다.

$$p(Xt+1|Xt,Xt-1,...,X2,X1)=p(Xt+1|Xt)$$
 for all $t=2,...,n$
 $p(X1,X2,...,Xn)=p(X1)\cdot p(X2|X1)\cdot p(X3|X2,X1)\cdot ...\cdot p(Xn|Xn-1,Xn-2,...,X2,X1)$

 $p(X1,X2,...Xn)=p(X1) \cdot p(X2|X1) \cdot p(X3|X2) \cdot p(X4|X3) \cdot ... \cdot p(Xn|Xn-1)$

○ (가정 2) 전이 확률은 시간에 따라 바뀌지 않는다.

MCMC

Markov Chain Monte Carloc

2. Monte Carlo

무작위 추출된 난수(random number)를 이용하여 함수의 값을 계산하는 통계학적 방법

(ex)원을 넓이를 계산하는 시뮬레이션

Conjugate

Conjugate

- Prior와 Posterior가 같도록 설정하는 것
- 베이지안으로 posterior를 계산할 때,계산이 너무 복잡한 문제를 해결하기 위해 등장

$$f(\theta|y) = \frac{f(y|\theta)f(\theta)}{\int f(y|\theta)f(\theta)d\theta}$$
.

likelihood	conjugate prior	posterior
$p(x \mid \theta)$	$p_0(\theta)$	$p(\theta \mid x)$
$Normal(\theta, \sigma)$	$Normal(\mu_0, \sigma_0)$	$Normal(\mu_1, \sigma_1)$
$Binomial(N, \theta)$	Beta(r, s)	Beta(r+n, s+N-n)
$Poisson(\theta)$	Gamma(r, s)	Gamma(r+n, s+1)
$Multinomial(\theta_1, \dots, \theta_k)$	$Dirichlet(\alpha_1, \dots, \alpha_k)$	$Dirichlet(\alpha_1 + n_1, \dots, \alpha_k + n_k)$

Gibbs Sampling

Gibbs Sampling

1. Gibbs Sampling 이란?

- Initialize θ_0 , φ_0
- For i=1, ..., m, repeat:
 - 1) using φ_{i-1} , draw $\theta_i \sim P(\theta | \varphi_{i-1}, y)$ get $(\theta_i, \varphi_{i-1})$
 - 2) using θ_i , draw $\varphi_i \sim P(\varphi | \theta_i, y)$ get (θ_i, φ_i)

Gibbs Sampling

Gibbs Sampling

- 0. Set (x_0, y_0, z_0) to some starting value.
- 1. Sample $x_1 \sim p(x|y_0, z_0)$. Sample $y_1 \sim p(y|x_1, z_0)$. Sample $z_1 \sim p(z|x_1, y_1)$.
- 2. Sample $x_2 \sim p(x|y_1, z_1)$. Sample $y_2 \sim p(y|x_2, z_1)$. Sample $z_2 \sim p(z|x_2, y_2)$.

$$v^1 \mid v^2, v^3, \dots, v^d$$

 $v^2 \mid v^1, v^3, \dots, v^d$
 \vdots

$$v^d | v^1, v^2, \dots, v^{d-1}$$

Gibbs Sampling

Gibbs Sampling

2. Gibbs Sampling의 특징

- (θ_1 , φ_1), (θ_2 , φ_2), (θ_3 , φ_3),..., (θ_m , φ_m) 은 dependent
- (θ_t , φ_t)는 (θ_{t-1} , φ_{t-1})에 의존 : Markov chain
- Posterior distribution은 Markov chain의 stationary distribution
- (θ_m , φ_m)의 분포는 posterior에 approaches

Hierarchical Modeling

Hierarchical Model

0. Poisson Example.

Hierarchical Modeling

Hierarchical Model

위치 간의 잠재적인 차이점과 같은 위치의 쿠키가 서로 더 유사할 가능성이 있다는 사실을 무시함.

다른 위치의 데이터를 무시함.

$$y_i \mid \lambda_1 \stackrel{\text{iid}}{\sim} Pois(\lambda)$$
 $i = 1, 2 \cdots 30$
 $y_i \mid \lambda_2 \stackrel{\text{iid}}{\sim} Pois(\lambda)$ $i = 1, 2 \cdots 30$
 $y_i \mid \lambda_3 \stackrel{\text{iid}}{\sim} Pois(\lambda)$ $i = 1, 2 \cdots 30$
 $y_i \mid \lambda_4 \stackrel{\text{iid}}{\sim} Pois(\lambda)$ $i = 1, 2 \cdots 30$
 $y_i \mid \lambda_4 \stackrel{\text{iid}}{\sim} Pois(\lambda)$ $i = 1, 2 \cdots 30$
 $y_i \mid \lambda_5 \stackrel{\text{iid}}{\sim} Pois(\lambda)$ $i = 1, 2 \cdots 30$

Hierarchical Modeling

Hierarchical Model

1. Hierarchical Modeling - Correlated Data

목차

The Table of Contents

01

CONTENTS

베이지안 통계 이론

Concept of the Bayesian Statistics

3-21_p

02

CONTENTS

프로젝트 : 신촌역 아르바이트 요일 정하기

Project

22 -33_p

1. 신촌역 세븐일레븐 17-19시, 평일 중 어떤 요일에 아르바이트를 하는 것이 좋을까?

O A요일이 B요일 보다 사람이 많을 확률

○ 각 요일마다 18000명 이상일 확률 OPEN

2. 사용한 데이터

- 서울교통공사 연도별 일별 시간대별 역별 승하차 인원 (2017년~2019년 데이터)
- Olumn: 날짜, 호선, 역번호, 역명, 승/하차 구분, 1시간 단위 승/하차 인원
- 전처리 후 사용한 데이터 총 739개

날짜	호선	역번호	역명	구분	06시 이전	06 ~ 07	07 ~ 08
2019-01-01	1호선	150	서울역	승차	348	321	348
2019-01-01	1호선	150	서울역	하차	222	821	808
2019-01-01	1호선	151	시청	승차	87	98	143
2019-01-01	1호선	151	시청	하차	48	237	323
2019-01-01	1호선	152	종각	승차	669	318	217
2019-01-01	1호선	152	종각	하차	68	179	293

3. 사용한 모델

- Hierarchical model, MCMC
- 승차 + 하차 인원(승객 수) ~ poisson
- O Lambda의 분포 가정

Lambda: 요일 별 평균 승객 수

Uniform distribution

Gamma distribution

Exponential distribution

4. 분석: prior distribution

4. 분석: prior distribution

Uniform distribution

$$V_{i,j} \mid \lambda_j \stackrel{\text{ind}}{\sim} P_{0is}(\lambda_j) \qquad j = 1,2,3,4,5$$

$$\lambda_j \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,..., n$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,..., n$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,..., n$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,..., n$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,..., n$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim U(\alpha, \beta) \qquad i = 1,2,3,4,5$$

$$m_{i,j} \mid \alpha, \beta \sim$$

Exponential distribution

4. 분석: posterior distribution

4. 분석: posterior distribution

4. 분석: posterior distribution

4. 분석: 요일 별 lambda의 posterior distribution

월요일에 평균 승객이 가장 적을 것이다.

4. 분석: 요일 별 승객 수 예측

월

화

드

금

4. 분석: 요일 별 승객 수 비교

월요일 < 화요일 < 수요일 < 목요일 < 금요일

4. 분석: 요일 별 승객 수가 18000명 이상일 확률

각 요일에 18000명 이상이 지하철을 이용할 확률

월	0
화	0.4795
^	0.9339
목	0.9998
급	1

5. 결론: 어느 요일에 아르바이트를 하는 것이 가장 좋을까?

6. 한계점

데이터가 포아송 분포를 따른다는 가정

데이터 수의 부족

THANK