Sample Charts from ML Analysis of 3 Data Sets

Cal Housing

longitude	latitude	housingMedianAge	totalRooms	totalBedroor	population	households	medianIncome	medianHouseValue	expensive
-117.86	34.24	52	803	267	628	225	4.19	14999	0
-117.02	36.4	19	619	239	490	164	2.1	14999	0
-122.74	39.71	16	255	73	85	38	1.66	14999	0
-123.17	40.31	36	98	28	18	8	0.54	14999	0

USGS Earthquakes

${\sf Flights}$

airline	orignum	deptime	depdelay	arrdelay	cancelled	distance
19930	83	0	0	0	1	1448
19930	65	0	0	0	1	1448
19930	83	0	0	0	1	679
19930	83	0	0	0	1	679
19930	83	0	0	0	1	697
19930	83	0	0	0	1	697
19930	83	0	0	0	1	679
19930	83	0	0	0	1	550

id	tsunami	year	eq	region	deaths	
7614	0	2007	1.6	150	3	
10330	0	2018	2.1	10	7	
10036	0	2013	2.1	150	14	
5754	0	2004	2.2	110	0	
9832	0	2011	3.1	150	0	
8535	0	2009	3.1	170	0	
10317	0	2017	3.2	60	1	
9996	1	1703	3.2	130	0	
5514	0	1999	3.2	40	0	
8492	0	2009	3.4	30	2	
10293	0	2018	3.4	120	0	
9887	0	2011	3.5	60	2	
8792	0	2009	3.5	10	2	
7221	0	1982	3.5	150	10	

Sample output from data sets and algorithms: BEER FOAM

Sample output from data sets and algorithms: K-Means

Sample output from data sets and algorithms: Multivariate Linear and Elastic

Cal Housing

Flights

USGS Earthquakes


```
predictions = model.predict(X)
# Plot Residuals
plt.scatter(predictions, predictions - y)
plt.hlines(y=0, xmin=predictions.min(), xmax=predictions.max())
plt.show()

-200000
-400000
-800000
-800000
-800000
-800000 -80000 10000 12000
```

Sample output from data sets and algorithms: Univariate

Sample output from data sets and algorithms: Simple Plot

Cal Housing

Flights

fig=plt.figure(figsize=(17,10)) data.hist(column="medianHouseValue", bins=30) plt.xlabel("medianIncome",fontsize=15) plt.ylabel("medianHouseValue", fontsize=15) plt.xlim([0.0,1000000.0]) plt.axvline(data["medianIncome"].mean(), color="red") print('Mean Median House Value'.format(data["medianHouseValue"].mean())) Mean Median House Value <Figure size 1224x720 with 0 Axes> fig=plt.figure(figsize=(17,10)) data.hist(column="depdelay", bins=30) plt.xlabel("orignum", fontsize=15) plt.ylabel("depdelay",fontsize=15) plt.xlim([0.0,100.0]) 1400 plt.axvline(data["orignum"].mean(), color="red") medianHouseValue print('Mean Departure Delay'.format(data["depdelay"].mean())) Mean Departure Delay <Figure size 1224x720 with 0 Axes> depdelay 200 400000 1000000 medianIncome depdep 2000000

USGS Earthquakes

