Parâmetres e Estimalores le Interesse

	Pofulação	Amostra
Hélia	μ= ε[×]	$\bar{u} = \frac{1}{n} \cdot \sum_{i=1}^{m} u_i$
Voriância	σ²= V[×]	$5^{2} = \frac{1}{m-1} \cdot \sum_{i=1}^{m} (\mathcal{H}_{i} - \overline{\mathcal{H}})^{2}$ $5^{2} = \frac{1}{m-1} \left(\sum_{i=1}^{m} (\mu_{i}^{2}) - \dots - \mu^{2} \right)$
Desvio Palrão	o = JV[x]	5 = \(\int 5^2 \)
Profrição	f = m canon for ma bl. m canon for ma lot.	1 = n: carsi Bar, na amostra n: carsi fos, na amostra

Estimação Pontual

	0 -> Parâmstro	A-DEStimator
Média	μ= ε[×]	$\hat{\mu} = \overline{\chi}$
Voriância	o2=V[x]	$\hat{\sigma}^2 = 5^2$
Desvis Palnãs	o = TV[x]	\$\tilde{\sigma} = 5
Propress	f = m = canon box. ma fol. m = canon fox. ma fol.	$\hat{f} = f^*$
Binomial	x ~ B (f)	Ê= F*
Poisson	y~ρ(λ) λ=ε[x]=ν[x]	$\hat{\lambda} = \overline{\kappa}$
Normal	x~N(ル,の) ル=E[x] の=V[x]	な=元 分と=5 ²
Expensial	×~ εμ (θ) θ = ૯[×]	$\hat{\theta} = \overline{n}$

$$4 = 1 - f$$

 $4 = 1 - f$
 $4 = 1 - f$
 $1 = 1 - f$
Quanto $f = ?$, $f = 0.5$.

Passos fara Formular o IC

1°-Escelher e θ fara o θ.
2°- Determinar a D.A.;
3°- I Lentificar o I.C. (le lugir, se necessário).
4°- Determinar o α e os quantis.
5°- Talcular e Interpretar o I.C..
Sobre os I.C.:

- Diminuir o grau le confiança faz com que a amflitule liminua (caso se mantenha o ni le elementos la amostra).
- · Aumentar o ni le elementes la amostra faz com que a amflitule liminua (laso se mantenha o gran le confiança).

Passes fora os Testes & Hife teres

1º Formular as hiféteses e tife à teste,

 $2^{\frac{1}{2}}$ finan ∞ .

3- Definir a D.A. & a E.T.;

9- Tomar a Decisa = Refeitar Ho se:
Pela RC: E.T. fertencer à RC;

· Pela P-value: P-value € ∝;

5- façer a conclusão.

Tip le =>

Hø	HI	Tipo le Teste
	σ!=σω	Bilateral
	σ > σ _g	unilateral Dineits
	0<00	unilateral Enquence
07,00	0100	unilateral Enquence
0 600	0>00	unilateral Dineite

D.A.: Distribuição Amostral

E.T.: Estatistica & Teste

> P-Value 11 Kenor X

P-Value:

D Valor a

Fartir To

Gual se

refeita Ho.

Sé servem foru lestes le Hijsteres: farametros 0 La · Paramétricos: Lafulações! · Serven fara confirmar ou refeitar um Valor hifotético fara um o le uma fof.. · M - D Hei Zia ·M, -Kz -D Diferença le Mélias · σ² - D Variancia · σ²/σ² - D Quociente & Variancias • f - Profinção -Para testes le f,-f,-Diberença la Proforções f fole-se crion Não Paramétricos: as amostras no R, utilizanco · Testes & Afustamento: 179 Jana O. - Servem fara testar a hif. le que uma amostra é le uma população Com Uma certa listribuição. → Qui - Qualralo => Precisa le +abelos le - Kolmogorov - Sminner Contingência - Lilliefors e le Valilon -0 Shafir wilk as 3 regras! · leste le Inlefentência: → Sende fara Verifiear se existe ou não indefendência entre 2 Vars. -D Qui - Qualrale -> As tabelas le contingência sur bilimensionais! Testes à Iguallale le 2 Distribuiçois: -D Servem fura Verifica se 2 amostros Jolem ser consileralas la mesma fofulação (se têm lists. iguais). - Wilconon = Amostras Emfarelhalas -D Hann-Whitney => Amostrus Inlefendentes. -D'Alternativa co teste faramétrico XIIIc. → Mn → Heliana le D = Y-x; Ho: Mn = O.

Testes fara Diferenças em Populações Mé-se fels testes le Afustaments:
- Kolmogenov - Smirnev; - Lilliefors; - Shofin- wilk. • 5im (eaf. 5) gu Não (n 730): - Teste Panamé trico => 1, -12 • Não (caf. 6.2) (~ <30): -D Teste Não Paramétrico: - Wilconon (Vors. Emfarelhalas) - Mann - Whitney (Vars. In Zefen Zentes) · Uma las Amestras Afresenta Não Normalilale: · Amostral In refendantes: - Teste N.P. => Mann-Whitney · Amostrus Emparelhazas: • Se Houver Normalilale: -D Teste Paramétrico Lora a Mélia · Se Não Houver Normalizale: -1> Teste N. P. => Wilconon Testes le Hifsteses Paramétrices · Enros & Decisas: • 1° Esfécie (falso fositivo/Conlencr inocentes): · Nivel le significancia le teste. • ∝ = P[refeitar Hg | Hg VenZazeina] · 2° Esfécie (falso negativo/culfalos são inocentes): • B = P[não refeitar Ho | Ho falsa] = P[não refeitar Ho | H, Verlateira]

· Waln.P:

- Probabilitate associala a E.T., fara Ho Vertaleira.
- Dist. Simétricas (Normal Reluzila ou E-Stulent):
 - · Bilateral: Valor-f = 2×P(U>/Vobs1)
 - · Uni. Direito: Valor-f = P(U>U65x)
 - •Uni EsquerZo: Valor-f = P(U≤Uobs)
 - · Dist. Assimétricas (Qui-Quatralo on F & Snelecor):
 - · Bilateral: Valor-f = 2×min {P(V≤Vobs), P(V>Vobs)}
 - · Uni. Direito: Valor-f = P(V ≥ Vobs)
 - •Uni. EsquerZo: Valor-f = P (V ≤ Vobs)

· Regias Trítica:

- · Distribuição Simétrica Normal:
 - •Bilateral: R.C. =]-00,-8,]U[8,-4, +00[
 - · Uni. Direito: R.c.=[5,-x,+00[
 - Olni. Esquenzo: R.C. = J-0,-3,-3
- Distribuicio Simétrica T- Sturent:
 - ·Bilateral: R.e. =]-w, -t, = , de]U[t,=, ef + D[
 - Uni. Direito: R.C. = [+1, db) + co[
 - Olni. Esquenzo: R.C. =]-∞, t_{1-∞,df}]
- Distribuição Assimétrica qui-qualralo:
 - Bilateral: R.C. = $[O, \mathcal{N}_{\alpha/2}^2, d_{\delta}]U[\mathcal{N}^2, +\infty[$
 - Uni. Direito: R.c. = [N2 1-4,df) +co[
 - Olni. Esquenzo: R.C. = [O] NZ, 26]
- Distribuição Assimétrica F & Snalecon:
 - ·Bilateral: R.e. = [0, bd/2, cb, 1 cb2] U[f, = 26, 1 cb2, +00[
 - Uni. Direito: R.C. = [b, a, db, ,db2, + 20[
 - •Uni. EsquerZo: R.e.=[0, f, db, db2]