mas541 homework

20208209 오재민

2020년 10월 18일

Problem (5.1).

Let $P(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_0$ and assume that P(z)=0 has no solution. Then by the argument principle, $\frac{1}{2\pi i}\int_{\partial D(Q,R)}\frac{P'(\zeta)}{P(\zeta)}d\zeta=0$ for all R>0. That integral is equal to $\frac{1}{2\pi i}\int_0^{2\pi}\frac{P'(Q+Re^{i\theta})}{P(Q+Re^{i\theta})}Rie^{i\theta}d\theta$. But, as $R\to\infty$, integrand of above goes to in uniformly on $0\le\theta\le 2\pi$. Therefore, the integral above goes to n>0 which is the degree of P. It is contradiction. Thus P(z)=0 has at least one solution in complex plane.

Problem (5.2).

Assume the existence of such f. Since f is bounded near 0, Riemann removable singularity theorem says that f can be extended to the function which is holomorphic on entire unit disc.

If modulus of f(0) is equal to 1 or 2, then image of the unit disc under f is not open which contradicts to the open mapping theorem. So $f(0) \in \{w: 1 < |w| < 2\}$.

Since f is surjective function of the punctured unit disc onto the annulus, we can find $w \neq 0$ such that f(0) = f(w). Choose two disjoint neighborhood U_w, U_0 of w, 0 respectively. Then by the open mapping theorem, $f(U_w)$ and $f(U_0)$ are open and $f(0) \in f(U_w) \cap f(U_0)$. Since $f(U_w) \cap f(U_0)$ is open, we can choose small neighborhood of f(0) contained in the previous set. And therefore we can choose $f(0) \neq \alpha \in f(U_w) \cap f(U_0)$. This cannot be happen since f is injective.

Thus there is no such f.

Problem (5.3).

(a) Choose $R > \lambda$, and choose n so large that $\lambda - 1 \ge 1/n$. Then $\bar{D}(R, R - \frac{1}{n}) \subset Right \ half \ plane$.

Then for $\zeta \in \partial D(R, R-1/n)$, $|e^{-\zeta}| < 1 \le \lambda - 1/n \le |\zeta - \lambda|$. Put $f(z) = e^{-z} + z - \lambda$ and $g(z) = z - \lambda$. Then by above and Rouche's theorem, f and g has same zero on D(R, R-1/n). But any $z \in Right$ half plane must be inside of D(R, R-1/n) for some large R and n. This means f and g have same zero on the right half plane.

But g(z) = 0 has unique solution. Therefore $e^{-z} + z - \lambda = 0$ has unique solution on the right half plane.

(b) Fix $z' \in U$. Note that $U \setminus \{z'\}$ is still a domain. Let $g_k(z) = f_k(z) - f_k(z')$ for $z \in U \setminus \{z'\}$. Since f_j is an injective holomorphic function on U, g_k does not vanish on $U \setminus \{z'\}$. Uniform convergence of f_j on compact subsets of U implies uniform convergence of g_k on compact subsets of $U \setminus \{z'\}$. Since g_k is nonvanishing function, by Hurwitz's theorem, $\lim_{k \to \infty} g_k(z) = f(z) - f(z')$ does not vanish or identically zero.

If it is identically zero on $U \setminus \{z'\}$, then f must be constant function on U. If it is nonvanishing on $U \setminus \{z'\}$, then f(z'') = f(z') implies z'' = z'. Thus f must be injective.

Problem (5.4).

It seems to be solved by the maximum modulus principle (or theorem), but I don't know where to start.

Problem (5.5).

For $z \in S$, $|\varphi(z)| = \left|\frac{e^{2\pi zi}-1}{e^{2\pi zi}+1}\right|$, and the real part of $e^{2\pi zi} > 0$ because $z \in S$. Then it is clear that $|\varphi(z)| < 1$. Also $\varphi(0) = 0$.

Therefore $\varphi \circ f: D \to D$ is holomorphic and it fixes the origin. Then Schwarz's lemma says $|\varphi'(0)f'(0)| \leq 1$. But $\varphi'(0) = \pi$. Therefore $|f'(0)| \leq 1/\pi$. The equality holds only if $\varphi(f(z)) = wz$ for some |w| = 1.