Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018952

International filing date: 17 December 2004 (17.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-421716

Filing date: 18 December 2003 (18.12.2003)

Date of receipt at the International Bureau: 07 April 2005 (07.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

JAPAN PATENT OFFICE

20.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月18日

出 願 Application Number:

特願2003-421716

[ST. 10/C]:

[JP2003-421716]

出 願 人 Applicant(s):

国立大学法人 東京大学

川渕 一郎

特許庁長官 Commissioner, Japan Patent Office

3月24日 2005年

【書類名】 特許願 【整理番号】 KAWA0301 【提出日】 平成15年12月18日 【あて先】 特許庁長官 殿 【国際特許分類】 B25J 17/00 【発明者】 【住所又は居所】 東京都大田区新蒲田3-1-9 グリーンコーポ203 【氏名】 川渕 一郎 【発明者】 【住所又は居所】 茨城県つくば市梅園二丁目31番14号 【氏名】 ▲たち▼ ▲すすむ▼ 【発明者】 【住所又は居所】 鳥取県鳥取市大工町頭九番地 【氏名】 川上 直樹 【特許出願人】 【識別番号】 391012327 【住所又は居所】 東京都文京区本郷7丁目3番1号 【氏名又は名称】 東京大学長 【特許出願人】 【識別番号】 501401113 【住所又は居所】 東京都大田区新蒲田3-1-9 グリーンコーポ203 【氏名又は名称】 川渕 一郎 【代理人】 【識別番号】 100091443 【弁理士】 【氏名又は名称】 西浦 ▲嗣▼晴 【持分の割合】 50/100 【手数料の表示】 【予納台帳番号】 076991 【納付金額】 10,500円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項1】

第1の仮想中心線を有する第1のリンクと第2の仮想中心線を有する第2のリンクとが、回転伸縮関節機構を介して連結されている回転伸縮リンク機構であって、

前記回転伸縮関節機構は、前記第1の仮想中心線と前記第2の仮想中心線とが重なっている状態から前記第1の仮想中心線に対して前記第2の仮想中心線が交差しながら回転する際に、前記第1の仮想中心線と前記第2の仮想中心線との交差点が前記第1の仮想中心線上をその回転角に応じる所定の距離だけ変位するように前記第1及び第2のリンクを連結するように構成されていることを特徴とする回転伸縮リンク機構。

【請求項2】

前記第1のリンクは所定の間隔をあけて対向する第1及び第2の対向壁部を有しており

前記第2のリンクは前記第1の対向壁部と対向する第1の被対向壁部と前記第2の対向 壁部と対向する第2の被対向壁部とを有しており、

前記回転伸縮関節機構は、前記第1の被対向壁部に設けられて前記第2の仮想中心線に沿って延びる第1のラックギヤと、前記第1のラックギヤと噛み合う複数の歯を備えて前記第1のラックギヤ上を転動し且つ前記第1の仮想中心線に沿ってスライドするように前記第1の対向壁部にスライド可能に支持された第1のセクターギヤと、前記第2の対向壁部に設けられて前記第1の仮想中心線に沿って延びる第2のラックギヤと、前記第2のラックギヤと噛み合う複数の歯を備えて前記第2のラックギヤ上を転動し且つ前記第2の仮想中心線に沿ってスライドするように前記第2の被対向壁部にスライド可能に支持された第2のセクターギヤとを備えていることを特徴とする請求項1に記載の回転伸縮リンク機構。

【請求項3】

前記第1及び第2の仮想中心線が共に存在する仮想平面へ垂直に投影して見る状態において、前記第1のラックギヤに対する前記第1のセクターギヤの相対的な第1の回転量及び第1の回転方向と前記第2のラックギヤに対する前記第2のセクターギヤの相対的な第2の回転量及び第2の回転方向については、前記第1及び第2の回転量が等しく且つ前記第1及び第2の回転方向が逆になり、前記第1のセクターギヤの前記第1の仮想中心線に沿う第1のスライド量及び第1のスライド方向と前記第2のセクターギヤの前記第2の仮想中心線に沿う第2のスライド量及び第2のスライド方向については、前記第1及び第2のスライド量が等しく且つ前記第1及び第2のスライド方向が相対的に逆方向になるように、前記第1のラックギヤ及び前記第1のセクターギヤの形状、大きさ及びその位置関係と、前記第2のラックギヤ及び第2のセクターギヤの形状、大きさ及びその位置関係とが定められていることを特徴とする請求項2に記載の回転伸縮リンク機構。

【請求項4】

前記第1の仮想中心線に対して第2の仮想中心線が相対的に回転する際に前記仮想平面上に生ずる前記第2の仮想中心線の回転中心と前記第1の仮想中心線との間の最短距離及び前記回転中心と前記第2の仮想中心線との間の最短距離が常に実質的に一定になるように、前記第1のラックギヤ及び前記第1のセクターギヤの形状、大きさ及びその位置関係と、前記第2のラックギヤ及び第2のセクターギヤの形状、大きさ及びその位置関係とが定められていることを特徴とする請求項2または3に記載の回転伸縮リンク機構。

【請求項5】

前記第1のセクターギヤを前記第1のラックギヤに対して転動させる駆動力、前記第1のセクターギヤを前記第1の仮想中心線に添って直動させる駆動力、前記第2のセクターギヤを前記第2のラックギヤに対して転動させる駆動力及び前記第2のセクターギヤを前記第2の仮想中心線に添って直動させる駆動力のうち、少なくとも一つの前記駆動力を発生する駆動力付与機構を更に備えている請求項2に記載の回転伸縮リンク機構。

【請求項6】

前記駆動力付与機構は、

前記第1及び第2の仮想中心線間の交差点上に前記仮想平面に対して軸線が垂直に延び 且つ前記第1及び第2のセクターギヤを回転自在に貫通する共通軸と、

前記共通軸に支持されたプーリと、

前記プーリに掛かって前記第1及び第2の仮想中心線の両方に沿って伸びる駆動ロープと、

前記駆動ロープを巻き取るロープ巻き取り装置と、

前記駆動ロープの張力を自在に発生するロープ張力発生機構とを備え、

前記ロープ巻き取り装置から引き出された前記駆動ロープの先端が前記第1のリンクまたは第2のリンクの一方に固定されており、

前記駆動ロープが前記ロープ巻き取り装置により巻き取られること及び前記ロープ張力 出力発生機構により張力が与えられることにより、前記第1のセクターギヤを前記第1の 仮想中心線に沿って直動させる駆動力および前記第2のセクターギヤを前記第2の仮想中 心線に沿って直動させる駆動力の両方を発生することを特徴とする請求項5に記載の回転 伸縮関節機構。

【請求項7】

前記第1のリンクと前記第2のリンクとの間には、前記第1の仮想中心線と前記第2の仮想中心線とを相対的に回転させようとする力を常時発生する復帰機構が設けられていることを特徴とする請求項6に記載の回転伸縮リンク機構。

【請求項8】

前記第1及び第2の対向壁部の間に前記第2のリンクの前記第1の被対向壁部と前記第2の被対向壁部が位置していることを特徴とする請求項1に記載の回転伸縮リンク機構。

【請求項9】

前記第2のリンクの前記第1の被対向壁部と前記第2の被対向壁部とは所定の間隔をあけて配置されており、

前記第1の対向壁部、前記第1の被対向壁部、前記第2の被対向壁部及び前記第2の対向壁部の順番に交互に並ぶように前記第1のリンクと前記第2のリンクとが組み合わされていることを特徴とする請求項1に記載の回転伸縮リンク機構。

【請求項10】

前記第2のリンクの前記第1の被対向壁部と前記第2の被対向壁部とは所定の間隔をあけて配置されており、

前記第1の対向壁部、前記第1の被対向壁部、前記第2の対向壁部及び前記第2の被対向壁部の順番に交互に並ぶように前記第1のリンクと前記第2のリンクとが組み合わされていることを特徴とする請求項1に記載の回転伸縮リンク機構。

【請求項11】

前記第1のセクターギヤ及び前記第1の対向壁部の一方並びに前記第2のセクターギヤ及び前記第2の被対向壁部の一方にそれぞれスライド用凸部が設けられ、前記第1のセクターギヤ及び前記第1の対向壁部の他方並びに前記第2のセクターギヤ及び前記第2の被対向壁部の他方に前記スライド用凸部がスライド可能に嵌合されるスライド用凹部がそれぞれ設けられている請求項1に記載の回転伸縮リンク機構。

【請求項12】

前記第1のリンクの対向壁部及び前記第2のリンクの被対向壁部の少なくとも一方は、 対応する前記仮想中心線方向の長さを機械的に調節できるように構成されていることを特 徴とする請求項1乃至11のいずれか1項に記載の回転伸縮リンク機構。

【請求項13】

前記回転伸縮関節機構は、

前記第1の被対向壁部に設けられて前記第2の仮想中心線に沿って延びる第1のラックギヤと、第1の仮想中心線に沿ってスライドするように前記第1の対向壁部にスライド可能に支持された第1のセクターギヤと、前記第1のラックギヤ及び前記第1のセクターギヤの間に位置して両者と噛み合って回転する第1の反転ギヤと、

前記第2の対向壁部に設けられて前記第1の仮想中心線に沿って延びる第2のラックギ

ヤと、前記第2の仮想中心線に沿ってスライドするように前記第2の被対向壁部にスライド可能に支持された第2のセクターギヤと、前記第2のラックギヤと前記第2のセクターギヤとの間に位置して両者と噛み合って回転する第2の反転ギヤとを備えていることを特徴とすることを請求項1に記載の回転伸縮リンク機構。

【請求項14】

前記第1及び第2の仮想中心線が共に存在する仮想平面に垂直に投影して見る状態において、前記第1のラックギヤに対する前記第1のセクターギヤの相対的な第1の回転量及び第1の回転方向と前記第2のラックギヤに対する第2のセクターギヤの相対的な第2の回転量及び第2の回転方向については、前記第1及び第2の回転量が等しく且つ前記第1及び第2の回転方向が逆になり、前記1のセクターギヤの前記第1の仮想中心線に沿う第1のスライド量及び第1のスライド方向と第2のセクターギヤの前記第2の仮想中心線に沿う第2のスライド量及び第2のスライド方向については、前記第1及び第2のスライド 量が等しく且つ前記第1及び第2のスライド方向が相対的に逆方向になるように、前記第1のラックギヤ、前記第1のセクターギヤ及び前記第1の反転ギヤの形状、大きさ及びその位置関係と、前記第2のラックギヤ、第2のセクターギヤ及び前記第2の反転ギヤの形状、大きさ及びその位置関係とが定められていることを特徴とする請求項13に記載の回転伸縮リンク機構。

【請求項15】

第1の反転ギヤ及び前記第1のセクターギヤを前記第1のラックギヤに対して転動させる駆動力、前記第1のセクターギヤを前記第1の仮想中心線に添って直動させる駆動力、第2の反転ギヤ及び前記第2のセクターギヤを前記第2のラックギヤに対して転動させる駆動力及び前記第2のセクターギヤを前記第2の仮想中心線に添って直動させる駆動力のうち、少なくとも一つの前記駆動力を発生する駆動力付与機構を更に備えている請求項14に記載の回転伸縮リンク機構。

【請求項16】

請求項1乃至15のいずれか1項に記載の回転伸縮リンク機構が直列に複数個接続されて構成されるシリアル多関節機構。

【請求項17】

回転伸縮関節機構を駆動するために付加された前記駆動ロープが、それを巻き取ったり引き伸ばしたりする前記ロープ巻き取り装置及び前記ロープ張力出力発生機構との間に存在する他の全ての回転伸縮関節機構内のプーリを介して引き回わされる請求項16に記載のシリアル多関節機構。

【書類名】明細書

【発明の名称】回転伸縮リンク機構

【技術分野】

[0001]

本発明は、回転伸縮関節機構を有する回転伸縮リンク機構に関するものである。

【背景技術】

[0002]

特開2003-117873公報及び特開2003-175484公報に示されるように、ロボットアーム等に用いられる一般的な機構としては、実体の回転軸を有する回転関節機構を介して二つのリンクを回転させるリンク機構が知られている。

【特許文献1】特開2003-117873公報

【特許文献2】特開2003-175484公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかしながら、二つのリンクが相対的に回転する機構において、両者間の回転中心付近に空間を必要とする用途が存在し、そのような用途に対しては実体の回転軸を有する一般的な回転関節機構が適用できない。例えば、図9に示すように人体(ここでは指)の動きに沿って一般的なリンク機構を動かそうとすると、次のような問題が生じる。まず、図9の上段の図に示すように一般的なリンク機構を指の上部に配置(すなわち、指の回転軸とリンク機構の回転軸が平行になるように配置)した場合は、指の関節の回転角が大きくなるとリンク機構が指に衝突してしまい、45度程度より大きな可動角は得られない。一般的なリンク機構を指の側面に配置(すなわち、人体の関節の回転軸と一般的なリンク機構の関節機構の回転軸の位置を一致させるように配置)した場合は、指とリンク機構は同じ運動をすることができるが、関節軸の延長線上にリンク機構が存在するため、その配置空間が存在しない人体(例えば手の中指)に適用することができない。

[0004]

本発明の目的は、二つのリンクが回転しかつ伸縮することができる回転伸縮リンク機構を提供することにある。

[0005]

本発明の目的は、仮想的な回転軸を有する回転関節を実現する回転伸縮リンク機構を提供することにある。

[0006]

本発明の他の目的は、少ないスペースでも配置することができる回転伸縮リンク機構を 提供することにある。

[0007]

本発明のさらに他の目的は、少ない部品数で構成することができる回転伸縮リンク機構を提供することにある。

【課題を解決するための手段】

[00008]

本発明の回転伸縮リンク機構は、第1の仮想中心線を有する第1のリンクと第2の仮想中心線を有する第2のリンクとが回転伸縮関節機構を介して連結されて構成されている。ここで第1及び第2のリンクは、本発明の回転伸縮リンク機構において後に詳述する回転伸縮関節機構に拘束される部材あり、回転伸縮関節機構を介して相互に連結されかつ連動する部材である。また、第1及び第2の仮想中心線は、第1及び第2のリンクの内部に仮想された中心線を意味し、第1及び第2の仮想中心線は重なった状態にあり、第1のリンクと第2のリンクとが直交する状態では第1及び第2の中心線も直交する。

[0009]

本発明では、回転伸縮関節機構は、第1の仮想中心線と第2の仮想中心線とが重なっている状態から第1の仮想中心線に対して第2の仮想中心線が交差しながら回転する際に、

第1の仮想中心線と第2の仮想中心線との交差点が第1の仮想中心線上をその回転角に応じる所定の距離だけ変位するように第1及び第2のリンクを連結するように構成されている。第1の仮想中心線と第2の仮想中心線との交差点は、第1及び第2のリンクが連動する際に、第1及び第2の仮想中心線が相互に交わる点を意味する。第1の仮想中心線上をその回転角に応じる所定の距離だけ変位するとは、第2のリンクが第1のリンクに対して回転する際にその回転角に対応した第1の仮想中心線上の所定の距離を上記交差点が移動することを意味している。このような回転伸縮リンク機構を採用すると、第1及び第2のリンクが回転伸縮関節機構を介して実体の構造部材が存在しない仮想の回転軸を中心として相互に回転運動することができる。

[0010]

第1のリンクは、所定の間隔をあけて対向する第1及び第2の対向壁部を有しており、第2のリンクは、第1の対向壁部と対向する第1の被対向壁部と第2の対向壁部と対向する第2の被対向壁部とを有している。そして、上述の回転伸縮関節機構は、第1の被対向壁部に設けられて第2の仮想中心線に沿って延びる第1のラックギヤと、第1のラックギヤと、第1のラックギヤと、第1のラックギヤと、第1の反想中心線に沿って延びる第1の仮想中心線に沿ってみりを第1の仮想中心線に沿って延びる第2の対向壁部に設けられて第1の仮想中心線に沿って延びる第2のラックギヤと、第2の対向壁部に設けられて第1の仮想中心線に沿って延びる第2のラックギヤと、第2の対向壁部にスライド可能に支持された第2の中心線に沿ってスライドするように第2の被対向壁部にスライド可能に支持された第1のラックギヤとを備えている。第2のリンクの第1の被対向壁部に一体に構成された第1のラックギヤ上を第1のリンクの第1の対向壁部にスライド可能に支持された第1のカーギヤが複数の歯を介して転動し、第1のリンクの第2の対向壁部にスライド可能に支持された第2のカーギヤが複数の歯を介して転動するため、第1及び第2のリンクの運動に剛性を与えることができる。

[0011]

本発明では、第1及び第2の仮想中心線が共に存在する仮想平面に垂直に投影して見る状態において、第1のラックギヤに対する第1のセクターギヤの相対的な第1の回転量及び第1の回転方向と第2のラックギヤに対する第2のセクターギヤの相対的な第2の回転量及び第2の回転方向については、第1及び第2の回転量が等しく且つ第1及び第2の回転方向が逆になり、第1のセクターギヤの第1の仮想中心線に沿う第1のスライド量及び第1のスライド方向と第2のセクターギヤの第2の仮想中心線に沿う第2のスライド量及び第2のスライド方向については、第1及び第2のスライド量が等しく且つ第1及び第2のスライド方向が相対的に逆方向になるように、第1のラックギヤ及び第1のセクターギヤの形状、大きさ及びその位置関係と、第2のラックギヤ及び第2のセクターギヤの形状、大きさ及びその位置関係とが定められている。

[0012]

ここで、第1及び第2の仮想中心線が共に存在する仮想平面とは、第1及び第2の仮想中心線が相互に交差する状態で共に存在しうる仮想された平面を意味する。このように第1のラックギヤ及び第1のセクターギヤの形状、大きさ及びその位置関係と、第2のラックギヤ及び第2のセクターギヤの形状、大きさ及びその位置関係とを定めると、第1のリンクに対する第2のリンクの転動運動及び伸縮運動を一義的に定めることができる。

[0013]

第1のラックギヤ及び第1のセクターギヤの形状、大きさ及びその位置関係と、第2のラックギヤ及び第2のセクターギヤの形状、大きさ及びその位置関係とは、第1の仮想中心線に対して第2の仮想中心線が相対的に回転する際に仮想平面上に生ずる第2の仮想中心線の回転中心と第1の仮想中心線との間の最短距離及びこの回転中心と第2の仮想中心線との間の最短距離が常に実質的に一定になるように定められている。ここで回転中心の一般的な定義は、平面上のある物の運動がある点回りの回転運動とみなせる場合におけるその点のことであり、この定義を本件に適用すると、第2の仮想中心線が運動する際にあ

る点との間の最短距離が一定であれば、第2の仮想中心線はその点を回転中心とする回転 運動をしていることになる。

[0014]

本発明の回転伸縮リンク機構は、第1のセクターギヤを第1のラックギヤに対して転動させる駆動力、第1のセクターギヤを第1の仮想中心線に添って直動させる駆動力、第2のセクターギヤを第2のラックギヤに対して転動させる駆動力及び第2のセクターギヤを第2の仮想中心線に添って直動させる駆動力のうち、少なくとも一つの駆動力を発生する駆動力付与機構を更に備えている。この駆動力付与機構により、回転伸縮リンク機構を駆動させることができる。

[0015]

具体的な駆動力付与機構としては、第1及び第2の仮想中心線間の交差点上に仮想平面に対して軸線が垂直に延び且つ第1及び第2のセクターギヤを回転自在に貫通する共通軸と、共通軸に支持されたプーリに掛かって第1及び第2の仮想中心線の両方に沿って伸びる駆動ロープと、駆動ロープを巻き取るロープ巻き取り装置と、前記駆動ロープの張力を自在に発生するロープ張力発生機構とを備えている。そして、ロープ巻き取り装置から引き出された駆動ロープの先端は第1のリンクまたは第2のリンクの一方に固定されており、駆動ロープはロープ巻き取り装置により巻き取られること及びロープ張力出力発生機構により張力が与えられることにより、第1のセクターギヤを第1の仮想中心線に沿って直動させる駆動力および第2のセクターギヤを第2の仮想中心線に沿って直動させる駆動力の両方を発生することができる。

[0016]

上記のロープ張力発生機構を中心とした駆動力付与機構では、外力が働かない限り駆動ロープを引き出すことができない。そこで、第1のリンクと第2のリンクとの間には、第1の仮想中心線と第2の仮想中心線とを相対的に回転させようとする力を常時発生する復帰機構が設けられている。このような復帰機構を設けると、駆動力付与機構において駆動ロープの巻き取り及び引き出しに必要な駆動ロープに張力を与えることができ、さらに駆動ロープのたわみを防止することができるために回転伸縮リンク機構に剛性を与えることができる。

[0017]

第1及び第2の対向壁部の間に第2のリンクが位置するように構成することができる。 具体的には、第2のリンクの第1の被対向壁部と第2の被対向壁部とを所定の間隔をあけて配置し、第1の対向壁部、第1の被対向壁部、第2の被対向壁部及び第2の対向壁部の順番に交互に並ぶように第1のリンクと第2のリンクとが組み合わされるように構成することができる。このようにすると、少ない部品数でしかもコンパクトに回転伸縮リンク機構を構成することができるため、回転伸縮リンク機構の小型化、低コスト化を図ることができる。

$[0\ 0\ 1\ 8]$

また、第2のリンクの第1の被対向壁部と第2の被対向壁部とは所定の間隔をあけて配置された第1のリンクと第2のリンクとが組み合わせとしては、第1の対向壁部、第1の被対向壁部、第2の対向壁部及び第2の被対向壁部の順番に交互に並ぶようにしてもよい。このようにしても、少ない部品数でしかもコンパクトに回転伸縮リンク機構を構成することができる。

[0019]

第1のセクターギヤ及び第1の対向壁部の一方並びに第2のセクターギヤ及び第2の被対向壁部の一方にはそれぞれスライド用凸部が設けられ、第1のセクターギヤ及び第1の対向壁部の他方並びに第2のセクターギヤ及び第2の被対向壁部の他方にスライド用凸部がスライド可能に嵌合されるスライド用凹部がそれぞれ設けられている。スライド用凸部はスライド用凹部に嵌合されるため、スライド用凹部の寸法よりも僅かに小さくなっている。スライド用凹部は、スライド用凸部を嵌合した状態でスライドを許容するものであればよいため、第1のセクターギヤ及び第1の対向壁部の他方並びに第2のセクターギヤ及

び第2の被対向壁部の他方に対して貫通していても貫通していなくてもよい。スライド用 凸部は、スライド凹部に嵌合されてスライドすることにより、第1のリンクは第2のリン クに対して伸縮運動をし、第2のリンクは第1のリンクに対して伸縮運動をすることがで きる。これに回転運動が加わることにより、本発明の回転伸縮リンク機構の回転運動及び 伸縮機構を実現することができる。

[0020]

第1のリンクの対向壁部及び第2のリンクの被対向壁部の少なくとも一方は、対応する仮想中心線方向の長さが機械的に調節できるように構成されている。機械的に調整できるようにするために、例えばリンクを仮想中心線方向にスライド可能なスライド機構を介して結合される二つの分割リンクと、これら二つの分割リンクとスライド機構とを固定状態にする構造とにより構成する。固定状態にする構造としては、ビス止め等を用いることができる。このようにリンクの長さを機械的に調整できるようにすると、用途に応じてリンクの長さを設定できるので、リンクの種類を多種類用意する必要がなくなって、汎用性が高くなる。

[0021]

また、スライド用凹部内にビス止めを設けることにより、スライド用凸部がスライド用凹部内をスライドする距離を制限してもよい。これにより、回転伸縮リンク機構の可動範囲を調整したい場合でも、部品を取り替える必要がない。

[0022]

回転伸縮関節機構は、第1の被対向壁部に設けられて第2の仮想中心線に沿って延びる第1のラックギヤと、第1の仮想中心線に沿ってスライドするように第1の対向壁部にスライド可能に支持された第1のセクターギヤと、第1のラックギヤ及び第1のセクターギヤと、第1の同転でで第1の仮想中心線に沿って延びる第2のラックギヤと、第2の仮想中心線に沿ってスライド可能に支持された第2のセクターギヤと、第2のテックギャと、第2の仮想中心線に沿って正びる第2のラックギャと、第2のセクターギャと、第2のラックギャと第2のセクターギャとの間に位置して両者と噛み合って回転する第2の反転ギャとを備えている。このような第1及び第2の反転ギャを用いた回転伸縮リンク機構を採用することにより、第1および第2のラックギヤや第1および第2のセクターギャを、第1の仮想中心線に対する第2の仮想中心線の回転中心から大きく離すことが可能となり、その回転中心付近の空間をより大きく取ることが可能となる。

[0023]

本発明の回転伸縮リンク機構では、第1及び第2の仮想中心線が共に存在する仮想平面に垂直に投影して見る状態において、第1のラックギヤに対する第1のセクターギヤの相対的な第1の回転量及び第1の回転方向と第2のラックギヤに対する第2のセクターギヤの相対的な第2の回転量及び第2の回転方向については、第1及び第2の回転量が等して見るが第2の回転方向が逆になり、第1のセクターギヤの第1の仮想中心線に沿う第1のスライド量及び第2のスライド方向と第2のセクターギヤの第2の仮想中心線に沿う第2のスライド量及び第2のスライド方向については、第1及び第2のスライド量が等しく且つ第1及び第2のスライド方向については、第1及び第2のスライド量があるように、第1のラックギヤ、第1のセクターギヤ及び第1の反転ギヤの形状、大きさ及びその位置関係と、第2のラックギヤ、第2のセクターギヤ及び第2の反転ギヤの形状、大きさ及びその位置関係とを定めることができる。このように第1のラックギヤ、第2のセクターギヤ及び第2の反転ギヤの形状、大きさ及びその位置関係とを定めると、第1及び第2の反転ギヤを1の反転ギャの形状、大きさ及びその位置関係とを定めると、第1及び第2の反転ギヤを2の反転ギャの形状、大きさ及びその位置関係とを定めると、第1及び第2の反転ギヤを1の反転半を採用しても、第1のリンクに対する第2のリンクの転動運動及び伸縮運動を一義的に定めることができる。

[0024]

この場合において、更に、第1の反転ギヤ及び第1のセクターギヤを第1のラックギヤに対して転動させる駆動力、第1のセクターギヤを第1の仮想中心線に添って直動させる駆動力、第2の反転ギヤ及び第2のセクターギヤを第2のラックギヤに対して転動させる

駆動力及び第2のセクターギヤを第2の仮想中心線に添って直動させる駆動力のうち、少なくとも一つの駆動力を発生する駆動力付与機構を備えることができる。これにより、第 1及び第2の反転ギヤを用いた場合でも、回転伸縮リンク機構を駆動することができる。

[0025]

さらに、本発明の回転伸縮リンク機構を直列に複数個接続することによりシリアル多関 節機構を構成することができる。このようなシリアル多関節機構を採用することにより、 回転伸縮リンク機構を組み合わされるため、複雑な動作を実現することができる。

[0026]

このシリアル多関節機構において、回転伸縮関節機構を駆動するために付加された駆動ロープを、それを巻き取ったり引き伸ばしたりするロープ巻き取り装置及び前記ロープ張力出力発生機構との間に存在する他の全ての回転伸縮関節機構内のプーリを介して引き回わされるように構成すると、個々の回転伸縮リンク機構の運動を調整することができるため、より複雑な動作を実現することができる。

【発明の効果】

[0027]

本発明によれば、回転伸縮関節機構を有する回転伸縮リンク機構によって、回転運動だけでなく伸縮運動も実現することができるため、リンク機構において実体の構造部材が存在しない空間に仮想の回転軸を有する関節ならびにその仮想の回転軸周りの回転運動を実現することができる。

【発明を実施するための最良の形態】

[0028]

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明の回転伸縮リンク 機構の一実施の形態の構成を示す斜視図である。また、図2Aは本発明の回転伸縮リンク 機構の実施の形態の回転運動を行う前の状態の主要部の構成を示す斜視図であり、図2B は図2Aの分解斜視図であり、図2Cは図2Aの実施の形態の動作を説明するために用い る図である。図3は図2Aの実施の形態の駆動状態を示す斜視図及びその平面図である。 これらの図において、符号1は本発明の回転伸縮リンク機構の一実施の形態を示している 。この回転伸縮リンク機構は1、第1の仮想中心線3を有する第1のリンク5と第2の仮 想中心線7を有する第2のリンク9とが後に詳しく説明する回転伸縮関節機構11を介し て連結されて構成されている。第1及び第2のリンク5,9は、回転伸縮関節機構11に 拘束され、回転伸縮関節機構11を介して相互に連結されかつ連動する部材である。第1 及び第2のリンク5,9は金属性の材料を用いて形成されているが、これらは耐久性のあ るプラスチック材料を用いて形成してもよい。また、第1及び第2の仮想中心線3,7は 、第1及び第2のリンク5,9の内部に仮想された中心線を意味し、具体的には第1及び 第2のリンク5.9が相互に重なり合っている状態ではこれらの中心線も相互に重なって おり、第1及び第2のリンク5、9が相互に直交する状態ではこれらの中心線も相互に直 交するように設定されている。

[0029]

この回転伸縮関節機構1においては、第1のリンク5の第1の仮想中心線3と第2のリンク9の第2の仮想中心線7とが重なっている状態から第1の仮想中心線3に対して第2の仮想中心線7が交差しながら回転する際に、第1の仮想中心線3と第2の仮想中心線7との交差点13が移動する。すなわち回転伸縮関節機構1は、この交差点13が第1の仮想中心線3上をその回転角に応じる所定の距離だけ変位する間に第2のリンク9が第1のリンク5に対して回転するように第1及び第2のリンク5,9を連結するように構成されている。ここで第1及び第2の仮想中心線3,7の交差点13は、第1及び第2のリンク5,9が相互に連動する際に、第1及び第2の仮想中心線3,7が相互に交わる点を意味している。この場合、第2のリンク9がの第1のリンク5に対して回転するとその回転角に対応した第1の仮想中心線3上の所定の距離だけ交差点13が移動する。見方を変えると、本発明の実施の形態では、第1及び第2のリンク5,9が回転伸縮関節機構11を介して実体の構造部材が存在しない仮想の回転軸(仮想の回転中心)を中心として相互に回

転運動している。

[0030]

また、第1のリンク5は、所定の間隔をあけて対向する第1及び第2の対向壁部15. 17を有しており、第1及び第2の対向壁部15,17は第2のリンク9と接する側とは 反対側の端部の上で連結壁部16により連結された一体型構造となっている。第2のリン ク9は、第1及び第2の対向壁部15、17に対応する第1及び第2の被対向壁部19、 21とを有しており、第1及び第2の被対向壁部19,21は第1のリンク5と接する側 とは反対側の端部の上で連結壁部20により連結された一体型構造となっている。すなわ ち、第1及び第2のリンク5,9は、後述する第1及び第2のラックギヤ23,27の位 置と対向する第1及び第2の対向壁部15,17と第1及び第2の被対向壁部19,21 との間の間隔寸法が異なる点を除いてほぼ同じ形状となっている。第1の対向壁部15と 第1の被対向壁部19とは所定の間隔を介して間隔対向し、第2の対向壁部17と第2の 被対向壁部21とにそれぞれ隣接している。回転伸縮関節機構11は、第1の対向壁部1 5に設けられて第2の仮想中心線7に沿って延びる第1のラックギヤ23と、第1のラッ クギヤ23と噛み合う複数の歯25aを備えて第1のラックギヤ23上を転動し且つ第1 の仮想中心線3に沿ってスライドするように第1の対向壁部15にスライド可能に支持さ れた第1のラックギヤ25と、第2の対向壁部17に設けられて第1の仮想中心線3に沿 って延びる第2ラックギヤ27と、第2ラックギヤ27と噛み合う複数の歯29aを備え て第2ラックギヤ27上を転動し且つ第2の仮想中心線7に沿ってスライドするように第 2の対向壁部17にスライド可能に支持された第2のセクターギヤ29とを備えている。 第1のラックギヤ23は、第2の仮想中心線7に沿って直線的に延びるように形成されて おり、第2のリンク9の第1の被対向壁部19から第1のリンク5の第1の対向壁部15 側に突出する幅寸法を有している。第2ラックギヤ27は、第1の仮想中心線3に沿って 直線的に延びるように形成されており、第1のリンク5の第2の対向壁部17から第2の リンク9の第2の被対向壁部21側に突出する幅寸法を有している。第1及び第2のラッ クギヤ23, 27には、複数の歯23a, 27aが形成されている。なお、第2のリンク 9の第1の被対向壁部19及び第1のリンク5の第2の対向壁部17の第1及び第2のラ ックギヤ23,27が設けられている付近には貫通孔19a,17aが設けられている。 これらの貫通孔19a,17aは本来なくても良いが、これらの貫通孔19a,17aが 存在することにより、回転伸縮リンク機構の軽量化を図ることができ、また、潤滑油の注 油等のギヤのメンテナンスが容易になる。

[0031]

また、第2のリンク9の第1の被対向壁部19には、第1のラックギヤ23の上側の第1のラックギア23とほぼ平行する位置に直線的に延びるように貫通孔19bが設けられている。この貫通孔19bが存在することにより、後に説明する共通軸37が第2の仮想中心線7に沿って第1の被対向壁部19を貫通可能に移動することができる。

[0032]

第1及び第2のセクターギャ25,29は、ほぼ同じ扇型形状を有しており、扇型の弧の部分に複数の歯25a,29aが形成されている。第1及び第2のセクターギャ25,29には、後に説明する第1及び第2の対向壁部15,17のスライド用凹部15a,21aにスライド可能に嵌合されるスライド用凸部25b,29bが一体に形成されている。このように第2のリンク9の第1の被対向壁部19に一体に構成された第1ラックギャ23上を第1のリンク5の第1の対向壁部15にスライド可能に支持された第1のセクターギャ25が複数の歯25aを介して転動し、第1のリンク5の第2の対向壁部17に一体に構成された第1ラックギャ23上を第2のリンク9の第2の被対向壁部21にスライド可能に支持された第2のセクターギャ29が複数の歯29aを介して転動することにより、第1及び第2のリンク5,9の運動に剛性を与えることができる。

[0033]

図1に示す本実施の形態では、第1のセクターギヤ25の第1のリンク5の第1の対向 壁部15側及び第2のセクターギヤ29の第2のリンク9の第2の被対向壁部21側には

、第1及び第2の仮想中心線3,7に沿って、突起25b,29bが設けられている。そ して、第1のリンク5の第1の対向壁部15及び第2のリンク9の第2の被対向壁部21 には、第1及び第2の仮想中心線3,7に沿って細長い貫通孔15a,21aが設けられ ている。突起25b,29bは、本発明のスライド用凸部としてこの貫通孔15a,21 aにスライド可能に嵌合されている。突起25b,29bの寸法は、貫通孔15a,21 aの寸法よりも小さくなっている。なお、上記実施の形態では、突起25b, 29bは第 1及び第2のセクターギヤ25,29に形成され、貫通孔15a,21aは、第1の対向 壁部15及び第2の被対向壁部21に形成されているが、スライド用凸部としての突起を 第1の対向壁部15及び第2の被対向壁部21に形成し、スライド用凹部としての貫通孔 を第1及び第2のセクターギヤ25,29に形成してもよいのはもちろんである。また、 本実施の形態では、本発明のスライド用凹部として貫通孔15 a, 21 aを用いたが、ス ライド用凹部は、突起25b,29bをスライド可能に嵌合させるものであればよいため 、第1の対向壁部15及び第2の被対向壁部21を貫通していても貫通していなくてもよ い。本実施の形態では、突起25b,29bが貫通孔15a,21aにスライド可能に嵌 合されることにより、第1のリンク5は第2のリンク9に対して伸縮運動を行うことがで きる。これに回転運動が加わることにより、本発明の回転伸縮リンク機構の回転運動及び 伸縮機構を実現することができる。

[0034]

本実施の形態において、第1ラックギヤ23及び第1のセクターギヤ25の形状、大き さ及びその位置関係と、第2ラックギヤ27及び第2のセクターギヤ29の形状、大きさ 及びその位置関係とは、次のような条件のもとに定められている。すなわち、図1に示す ように第1及び第2の仮想中心線3,7が共に存在する仮想平面31に垂直に投影して見 る状態において、第1のラックギヤ23に対する第1のセクターギヤ25の相対的な回転 量及び回転方向をそれぞれRQ1及びRD1とし、第2ラックギヤ27に対する第2のセ クターギヤ29の相対的な回転量及び回転方向をRQ2及びRD2とすると、回転量RQ 1及びRQ2は等しく且つ回転方向RD1及びRD2は方向が逆になる。また、第1のセ クターギヤ25の第1の仮想中心線3に沿うスライド量及びスライド方向をそれぞれSQ 1及びSD1とし、第2のセクターギヤ29の第2の仮想中心線7に沿うスライド量及び スライド方向をそれぞれSQ2及びSD2とすると、スライド量SQ1及びSQ2は等し く且つスライド方向SD1及びSD2は相対的に逆方向になる。すなわち、第1及び第2 のラックギヤ23,27と第1及び第2のセクターギヤ25,29とが噛み合う部分の長 さはほぼ同じ長さとなっている。ここで、第1及び第2の仮想中心線3,7が共に存在す る仮想平面31とは、第1及び第2の仮想中心線3,7が相互に交差する状態で存在しう る仮想された平面を意味する。このように第1ラックギヤ23及び第1のセクターギヤ2 5の形状、大きさ及びその位置関係と、第2ラックギヤ27及び第2のセクターギヤ29 の形状、大きさ及びその位置関係とを定めると、第1のリンク5に対する第2のリンク9 の転動運動及び伸縮運動を一義的に定めることができる。

[0035]

また、図4は、本発明の回転伸縮リンク機構の他の実施の形態の構成概略的に示す図である。この図において、図1及び図3に示した実施の形態と共通する部分については図1及び図3に付した符号の数字に100を加えた数の符号を付してある。第1のラックギヤ123及び第1のセクターギヤ125の形状、大きさ及びその位置関係と、第2のラックギヤ127及び第2のセクターギヤ129の形状、大きさ及びその位置関係とは、第1の仮想中心線103に対して第2の仮想中心線107が相対的に回転する際に仮想平面上に生ずる第2の仮想中心線107の回転中心33と第1の仮想中心線103との間の最短距離L1及びこの回転中心と第2の仮想中心線107との間の最短距離L2が常に完全に一定になるように定められている。回転中心33は、平面上のある物の運動がある点回りの回転運動とみなすことができる場合におけるその点を意味する。したがって、第2の仮想中心線7が運動する際にある点との間の最短距離が一定であれば、第2の仮想中心線7はその点を回転中心とする回転運動をしていることになる。この場合、第1及び第2のラッ

クギヤ123,127は、図面上のほぼ左方向に進むに従って半径が小さくなっていき且 つ図面上のほぼ上方向に凸状に湾曲している。また、第1及び第2のセクターギヤ125 , 129は、図面上のほぼ左方向に進むに従って半径が小さくなっていき且つ図面のほぼ 下方向に凸状に湾曲している。図4において、第1及び第2のラックギヤ123,127 と第1及び第2のセクターギヤ125,129の複数の歯は省略されているが、第1及び 第2のラックギヤ123,127と第1及び第2のセクターギヤ125,129とがそれ ぞれ噛み合う部分の長さはほぼ同じ長さとなっている。この本発明の他の実施の形態によ り、理想的な回転伸縮リンク機構を実現することができる。

[0036]

本発明の実施の形態は、図1に示すように第1のセクターギヤ25を第1ラックギヤ2 3に対して転動させる駆動力、第1のセクターギヤ25を第1の仮想中心線3に添って直 動させる駆動力、第2のセクターギヤ29を第2のラックギヤ27に対して転動させる駆 動力及び第2のセクターギヤ29を第2の仮想中心線7に添って直動させる駆動力のうち 、少なくとも一つの駆動力を発生する駆動力付与機構35を更に備えている。この駆動力 付与機構35は、回転伸縮リンク機構11を駆動するために設けられている。本実施の形 態では、具体的な駆動力付与機構35として、第1及び第2の仮想中心線3,7間の交差 点上に仮想平面31に対して軸線が垂直に延び且つ第1及び第2のセクターギヤ25、2 9を回転自在に貫通する共通軸37と、共通軸37に支持されたプーリ39に掛かって第 1及び第2の仮想中心線3,7の両方に沿って伸びる駆動ロープ41と、駆動ロープ41 を巻き取るロープ巻き取り装置と、駆動ロープ41の張力を自在に発生するロープ張力発 生機構43とを備えている。プーリ39は、駆動ロープ41が巻き付けられて共通軸37 の軸を中心に回転する滑車である。駆動ロープ41には、ワイヤロープが用いられている が、強度の高いロープであればどのような材質を用いてもよいのはもちろんである。ロー プ巻き取り装置43及びロープ張力発生機構43は、特に図示されていないモータを駆動 源としているが、駆動源となるものであればモータに限られるものではない。そして、ロ ープ巻き取り装置43から引き出された駆動ロープ41の先端は第1のリンク5または第 2のリンク9の一方に固定されており、駆動ロープ41はロープ巻き取り装置43により 巻き取られること及びロープ張力出力発生機構により張力が与えられる。これにより、第 1のセクターギヤ25を第1の仮想中心線3に沿って直動させる駆動力および第2のセク ターギヤ29を第2の仮想中心線7に沿って直動させる駆動力の両方を発生することがで きる。

[0037]

上記のロープ張力発生機構43を中心とした駆動力付与機構35では、外力が働かない 限り駆動ロープ41を引き出すことができない。そこで、第1のリンク5と第2のリンク 9との間には、第1の仮想中心線3と第2の仮想中心線7とを相対的に回転させようとす る力を常時発生する復帰機構が設けられている。本実施の形態では復帰機構としてばね4 7が用いられている。このようにばね47を用いると、駆動力付与機構35において駆動 ロープ41の巻き取り及び引き出しに必要な駆動ロープ41に張力を与えることができ、 さらに駆動ロープ41のたわみを防止することができるために回転伸縮リンク機構に剛性 を与えることができる。

[0038]

本実施の形態は、第1及び第2の対向壁部15,17の間に第2のリンク9が位置する ように構成されている。すなわち、第2のリンク9の第1の被対向壁部19と第2の被対 向壁部21とを所定の間隔をあけて配置し、第1の対向壁部15、第1の被対向壁部19 、第2の被対向壁部21及び第2の対向壁部17の順番に交互に並ぶように第1のリンク 5と第2のリンク9とが組み合わされて構成されている。このようにすると、少ない部品 数でしかもコンパクトに回転伸縮リンク機構を構成することができる。その結果、回転伸 縮リンク機構の小型化、低コスト化を図ることができる。

[0039]

また、第2のリンク9の第1の被対向壁部19と第2の被対向壁部21とが所定の間隔

をあけて配置されて第1のリンク5と第2のリンク9とが組み合わせられる場合の組み合わせは上記の例に限られず、第1の対向壁部15、第1の被対向壁部19、第2の対向壁部17及び第2の被対向壁部21の順番に交互に並ぶようにしてもよい。このような組み合わせにしても、少ない部品数でしかもコンパクトに回転伸縮リンク機構を構成することができる。

[0040]

なお、特に図示していないが、本実施の形態を、第1のリンク5の第1の対向壁部15及び第2のリンク9の第1の被対向壁部19の少なくとも一方を、対応する仮想中心線方向の長さが機械的に調節できるように構成することができる。機械的に調整する方法としては、第1及び第2のリンク5,9を第1及び第2の仮想中心線3,7方向にスライド可能なスライド機構を介して結合される二つの分割リンクと、これら二つの分割リンクとスライド機構とを固定状態にする構造とにより構成する。固定状態にする構造としては、ビス止め等を用いることができる。このようにリンクの長さを機械的に調整できるようにすると、用途に応じてリンクの長さを設定できるので、リンクの種類を多種類用意する必要がなくなって、汎用性が高くなる。また、貫通孔15a,21a内にビス止めすることにより突起25b,29bが貫通孔15a,21a内をスライドする距離を制限する方法等がある。これにより、回転伸縮リンク機構の可動範囲を調整したい場合でも、部品を取り替える必要がない。

[0041]

図 5 は、本発明の更に他の実施の形態及びその駆動状態を示す平面図である。この図に おいて、図1及び図3に示した実施の形態と共通する部分については図1及び図3に符号 の数字に200を加えた数の符号を付してある。回転伸縮関節機構211は、壁219に 設けられて第2の仮想中心線207に沿って延びる第1のラックギヤ223と、第1の仮 想中心線203に沿ってスライドするように壁215にスライド可能に支持された第1の セクターギヤ225と、第1のラックギヤ223及び第1のセクターギヤ225の間に位 置して両者と噛み合って回転する第1の反転ギヤ53と、第2の対向壁部217に設けら れて第1の仮想中心線3に沿って延びる第2のラックギヤ227と、第2の仮想中心線2 07に沿ってスライドするように第2の被対向壁部221にスライド可能に支持された第 2のセクターギヤ229と、第2のラックギヤ227と第2のセクターギヤ229との間 に位置して両者と噛み合って回転する第2の反転ギヤ55とを備えている。図1及び図3 に示す実施の形態と比較すると、本実施の形態では、第1及び第2のリンク205.20 9、第1及び第2のラックギヤ223,227及び第1及び第2のセクターギヤ225, 229が、図1及び図3に示す実施の形態における第1及び第2のリンク5,9、第1及 び第2のラックギヤ23,27及び第1及び第2のセクターギヤ25,29に対してすべ て反転した状態で構成されている。そして、第1及び第2の反転ギヤ53.55は第1及 び第2のラックギヤ223,227及び第1及び第2のセクターギヤ225,229の間 に挟まれて両者と噛み合うように構成されている。第1及び第2の反転ギヤ53,55は 、第1及び第2のラックギヤ223,227及び第1及び第2のセクターギヤ225,2 29が直接噛み合うように構成されると、第1のリンク205に対して第2のリンク20 9が上側に回転してしまうため、第1のリンク205に対して第2のリンク209が下側 に回転するようにするため採用されている。このような第1及び第2の反転ギヤ53.5 5を用いた回転伸縮リンク機構を採用することにより、第1及び第2のラックギヤ223 - 227や第1及び第2のセクターギヤ225, 229を、第1の仮想中心線203に対 する第2の仮想中心線207の回転中心から大きく離すことが可能となり、その回転中心 付近の空間をより大きく取ることが可能となる。

[0042]

この実施の形態では、第1及び第2の仮想中心線203,207が共に存在する仮想平面に垂直に投影して見る状態において、第1のラックギヤ223に対する第1のセクターギヤ225の相対的な回転量RQ201及び回転方向RD201と第2のラックギヤ227に対する第2のセクターギヤ229の相対的な回転量RQ202及び回転方向RD20

2については、回転量RQ201及びRQ202が等しく且つ回転方向RD201及びRD202が逆になり、第1のセクターギヤ225の第1の仮想中心線203に沿うスライド量SQ201及びスライド方向SD201と第2のセクターギヤ229の第2の仮想中心線7に沿うスライド方向SD201及びスライド方向SD202については、スライド量SQ201及びSQ202が等しく且つスライド方向SD201及びSD202が相対的に逆方向になるように、第1のラックギヤ223、第1のセクターギヤ225及び反転ギヤ53の形状、大きさ及びその位置関係と、第2のラックギヤ227、第2のセクターギヤ229及び第2の反転ギヤ55の形状、大きさ及びその位置関係とを定められている。このように第1のラックギヤ223、第1のセクターギヤ225及び反転ギヤ53の形状、大きさ及びその位置関係と、第2のラックギヤ227、第2のセクターギヤ229及び第2の反転ギャ55の形状、大きさ及びその位置関係とを定めると、第1及び第2の反転ギャ53、55を用いた構成を採用しても、第1のリンク205に対する第2のリンク209の転動運動及び伸縮運動を一義的に定めることができる。

[0043]

この実施の形態においては、更に、第1の反転ギヤ53及び第1のセクターギヤ225を第1のラックギヤ223に対して転動させる駆動力、第1のセクターギヤ225を第1の仮想中心線3に添って直動させる駆動力、第2の反転ギヤ55及び第2のセクターギヤ229を第2の仮想中心線7に添って直動させる駆動力及び第2のセクターギヤ229を第2の仮想中心線7に添って直動させる駆動力のうち、少なくとも一つの駆動力を発生する駆動力付与機構235を備えることができる。これにより、第1及び第2の反転ギヤ53,55を用いた場合でも、回転伸縮リンク機構を駆動することができる。

[0044]

図6は、回転伸縮リンク機構を複数組み合わせた場合の実施の形態を示す平面図である。この実施の形態では、回転伸縮リンク機構を直列に3つ接続することによりシリアル多関節機構57を構成している。接続する回転伸縮リンク機構の個数は、必要に応じていくつでもよい。このように回転伸縮リンク機構を組み合わせてシリアル多関節機構57を構成すると、複雑な動作を実現することができる。

[0045]

このシリアル多関節機構の実施の形態においては、3つの回転伸縮関節機構を駆動するために付加された駆動ロープ41を、それを巻き取ったり引き伸ばしたりするロープ巻き取り装置43及びロープ張力出力発生機構43との間に存在する他の全ての回転伸縮関節機構内のプーリ39を介して引き回わされるように構成されている。このようにすると、駆動ロープを巻き取ったり引き伸ばしたりするロープ巻き取り装置43及びロープ張力出力発生機構45のすべてを運動しない基部に配置することができるため、シリアル多関節機構の運動する部分の質量を軽くすることが容易となる。

$[0\ 0\ 4\ 6]$

なお、図7、本実施の形態を具体的に製品化した場合の構造を示す斜視図であり、図8 はこの図7の構造を人体に適用した場合の状態を示す図である。

[0047]

以上、本発明の本実施の形態について説明したが、以下、特許請求の範囲に記載した発明以外の他の発明の特徴を列記する。

[0048]

[1] 第1乃至第n(nは正の整数)のリンクが第1乃至第(n-1)の回転伸縮関節機構を介して直列接続されており、前記第1乃至第nのリンクの各仮想中心線が直線状に重なっている状態で第1乃至第nのリンクは直線的に並んでおり、

前記第1乃至第n-1の回転伸縮関節機構が、前段のリンクに対して後段のリンクが前段の仮想中心線と後段の仮想中心線とが重なっている状態から前記前段の仮想中心線に対して前記後段の仮想中心線が回転する際に、前記前段の仮想中心線と前記後段の仮想中心線との交差点が前記前段の仮想中心線上を変位するように構成されている回転伸縮リンク機構であって、

前記前段のリンクは所定の間隔をあけて対向する第1及び第2の対向壁部を有しており

前記後段のリンクは前記第1の対向壁部と対向する第1の被対向壁部と前記第2の対向 壁部と対向する第2の被対向壁部とを有しており、

前記回転伸縮関節機構は、前記第1の被対向壁部に設けられて前記後段の仮想中心線に沿って延びる第1のラックギヤと、前記第1のラックギヤと噛み合う複数の歯を備えて前記第1のラックギヤ上を回動し且つ前記前段の仮想中心線に沿ってスライドするように前記第1の対向壁部にスライド可能に支持された第1のセクターギヤと、前記第2の対向壁部に設けられて前記前段の仮想中心線に沿って延びる第2のラックギヤと、前記第2のラックギヤと噛み合う複数の歯を備えて前記第2のラックギヤ上を回動し且つ前記後段の仮想中心線に沿ってスライドするように前記第2の被対向壁部にスライド可能に支持された第2のセクターギヤとを備えていることを特徴とする回転伸縮リンク機構。

[0049]

[2] 前記第1のラックギヤに対する前記第1のセクターギヤの相対的な回転方向と前記第2のラックギヤに対する第2のセクターギヤの相対的な回転方向とが逆になり、前記1のセクターギヤの前記前段の仮想中心線に沿うスライド方向と第2のセクターギヤの前記後段の仮想中心線に沿うスライド方向とが相対的に逆方向になるように、前記第1のラックギヤ及び前記第1のセクターギヤの位置関係、前記第2のラックギヤ及び第2のセクターギヤの位置関係、前記第1のセクターギヤ及び第2のセクターギヤの位置関係が定められていることを特徴とする上記[1]に記載の回転伸縮リンク機構。

[0050]

[3] 前記第1及び第2のセクターギヤの回転中心が、前記前段の仮想中心線と前記後段の仮想中心線との交差点の回転中心よりも、外側に位置するように、前記第1のラックギヤ及び前記第1のセクターギヤの位置関係並びに前記第2のラックギヤ及び第2のセクターギヤの位置関係が定められている上記[2]に記載の回転伸縮リンク機構。

[0051]

[4] 第1乃至前記(n-1)の回転伸縮関節機構の前記第2のセクターギヤを前記第2のラックギヤに対して回動させる駆動力を前記第2のセクターギヤにそれぞれ同期して付与する駆動力付与機構を更に備えている上記[1]に記載の回転伸縮リンク機構。

[0052]

[5] 上記[1]乃至[4]に記載の回転伸縮リンク機構は、指等の複数の関節を有する骨格に対して、前記関節の回転中心よりも径方向外側に位置するように配置されて、前記骨格の動きに応じて変形するように構成されており、

第1乃至前記(n-1)の回転伸縮関節機構における前記前段の仮想中心線と前記後段の仮想中心線との交差点の回転中心が前記関節の回転中心と実質的に一致するように、前記第1及び第2のラックギヤの形状及び前記第1及び第2のセクターギヤの形状が定められていることを特徴とする回転伸縮リンク機構。

【図面の簡単な説明】

[0053]

- 【図1】本発明の回転伸縮リンク機構の一実施の形態の構成を示す斜視図
- 【図2A】本発明の回転伸縮リンク機構の実施の形態の回転運動を行う前の状態の主要部の構成を示す斜視図
 - 【図2B】図2Aの分解斜視図
 - 【図2C】図2Aの実施の形態の動作を説明するために用いる図
 - 【図3】図2Aの実施の形態の駆動状態を示す斜視図及びその平面図
 - 【図4】本発明の回転伸縮リンク機構の他の実施の形態の構成概略的に示す図
 - 【図5】図2Aにおけるさらに他の実施の形態及びその駆動状態を示す平面図
 - 【図6】回転伸縮リンク機構を複数組み合わせた場合の実施の形態を示す平面図
 - 【図7】本発明の実施の形態を具体的に製品化した場合の構造を示す斜視図

- 【図8】本発明の実施の形態を具体的に製品化した場合の構造を示す平面図
- 【図9】本発明の従来技術を示す概略図及び本発明の実施の形態の概略図

【符号の説明】

[0054]

- 1 回転伸縮リンク機構
- 3,103,203 第1の仮想中心線
- 5,205 第1のリンク
- 7,107,207 第2の仮想中心線
- 9,209 第2のリンク
- 11,211 回転伸縮関節機構
- 13 交差点
- 15,215 第1の対向壁部
- 17,217 第2の対向壁部
- 19,219 第1の被対向壁部
- 21,221 第2の被対向壁部
- 15a, 21a 貫通孔
- 23, 123, 223 第1のラックギヤ
- 25,125,225 第1のセクターギヤ
- 27, 127, 227 第2のラックギヤ
- 29,129,229 第2のセクターギヤ
- 25a, 29a 複数の歯
- 25b, 29b 突起
- 3 1 仮想平面
- 33 回転中心
- L1, L2 最短距離
- 35 駆動力付与機構
- 3 7 共通軸
- 39 プーリ
- 41 駆動ロープ
- 43 ロープ巻き取り装置(ロープ張力出力発生機構)
- 45 ロープ張力出力発生機構
- 47 lta
- 53 第1の反転ギヤ
- 55 第2の反転ギヤ
- 57 シリアル多関節機構

【書類名】図面 【図1】

【図2A】

【図2B】

【図2C】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【書類名】要約書

【要約】

【課題】仮想的な回転軸を有する回転関節を実現する回転伸縮リンク機構を提供する。

【解決手段】第1の仮想中心線3を有する第1のリンク5と第2の仮想中心線7を有する第2のリンク9を回転伸縮関節機構11を介して連結するように回転伸縮リンク機構1を構成する。回転伸縮関節機構11は、第1の仮想中心線3と第2の仮想中心線7とが重なっている状態から第1の仮想中心線3に対して第2の仮想中心線7が交差しながら回転する際に、第1の仮想中心線3と第2の仮想中心線7との交差点が第1の仮想中心線7上をその回転角に応じる所定の距離だけ変位するように第1及び第2のリンク5,9を連結して構成されている。

【選択図】図1

【書類名】 手続補正書 【整理番号】 KAWA0301H3 【提出日】 平成16年12月16日 【あて先】 特許庁長官 殿 【事件の表示】 【出願番号】 特願2003-421716 【補正をする者】 【識別番号】 504137912 【氏名又は名称】 国立大学法人 東京大学 【補正をする者】 【識別番号】 501401113 【氏名又は名称】 川渕 一郎 【代理人】 【識別番号】 100091443 【弁理士】 【氏名又は名称】 西浦 ▲嗣▼晴 【電話番号】 03-3519-7885 【手続補正1】 【補正対象書類名】 特許願 【補正対象項目名】 発明者 【補正方法】 変更 【補正の内容】 【発明者】 【住所又は居所】 【氏名】 川渕 一郎 【発明者】

【住所又は居所】

【住所又は居所】

【氏名】

【氏名】

【その他】

【発明者】

東京都大田区新蒲田3-1-9 グリーンコーポ203 川渕 一郎

茨城県つくば市梅園二丁目31番14号

▲舘▼ ▲すすむ▼

鳥取県鳥取市大工町頭九番地

川上 直樹

本件3名の発明者、川渕 一郎、▲舘▼ ▲すすむ▼、川上 直 樹のうち、▲舘▼ ▲すすむ▼の「氏名」の欄を、入力ミスによ り「▲たち▼ ▲すすむ▼」と誤って記載して特許出願したため 、発明者の▲舘▼ ▲すすむ▼の氏名を訂正する手続補正書を提 出する。また、同日付けで「出願人名義変更届(一般承継)」を 提出し、「東京大学長」を「国立大学法人 東京大学」に変更し ている。

認定・付加情報

特許出願の番号

特願2003-421716

受付番号

5 0 4 0 2 1 5 7 1 4 6

書類名

手続補正書

担当官

小野塚 芳雄

6590

作成日

平成17年 2月 7日

<認定情報・付加情報>

【補正をする者】

【識別番号】

504137912

【住所又は居所】

東京都文京区本郷7丁目3番1号

【氏名又は名称】

国立大学法人 東京大学

【補正をする者】

【識別番号】

501401113

【住所又は居所】

東京都大田区新蒲田3-1-9 グリーンコーポ

2 0 3

【氏名又は名称】

川渕 一郎

【代理人】

申請人

【識別番号】

100091443

【住所又は居所】

東京都港区虎ノ門1丁目25番5号 虎ノ門34

MTビル9階 西浦特許事務所

【氏名又は名称】

西浦 ▲嗣▼晴

【書類名】

【提出日】

【あて先】

【事件の表示】

【出願番号】

【承継人】

【識別番号】

【住所又は居所】

【氏名又は名称】

【承継人代理人】

【識別番号】

【弁理士】

【氏名又は名称】

【その他】

【提出物件の目録】

【物件名】

【援用の表示】

出願人名義変更届(一般承継)

平成16年12月16日

特許庁長官 殿

特願2003-421716

504137912

東京都文京区本郷7丁目3番1号

国立大学法人 東京大学

100091443

西浦 ▲嗣▼晴

15文科会第1999号に基づく承継

委任状 1

平成16年12月16日提出の包括委任状

6 5 9 0

認定・付加情報

特許出願の番号 特願2003-421716

受付番号 5 0 4 0 2 1 5 7 1 4 5

書類名 出願人名義変更届 (一般承継)

小野塚 芳雄 作成日 平成17年 2月 8日

<認定情報・付加情報>

【承継人】

担当官

【識別番号】 504137912

【住所又は居所】 東京都文京区本郷7丁目3番1号

【氏名又は名称】 国立大学法人 東京大学

【承継人代理人】 申請人

> 【識別番号】 100091443

【住所又は居所】 東京都港区虎ノ門1丁目25番5号 虎ノ門34

MTビル9階 西浦特許事務所

【氏名又は名称】 西浦 ▲嗣▼晴

出願人履歴情報

識別番号

[391012327]

1. 変更年月日 [変更理由]

1991年 1月22日 新規登録

住 所氏 名

東京都文京区本郷7丁目3番1号

東京大学長

出願人履歴情報

識別番号

[501401113]

変更年月日
変更理由]

2001年10月15日

更理由] 新規登録住 所 東京都大

東京都大田区新蒲田3-1-9 グリーンコーポ203

氏 名 川渕 一郎

出願人履歴情報

識別番号

[504137912]

1. 変更年月日 [変更理由] 住 所

氏 名

2004年 4月 6日 新規登録

新規登録

東京都文京区本郷7丁目3番1号

国立大学法人 東京大学