Отчет по лабораторной работе №1

Дисциплина: Информационная безопасность

Выполнила: Афтаева Ксения Васильевна

Содержание

1	Цель работы	6
2	Задание	7
3	Теоретическое введение	8
4	Выполнение лабораторной работы	10
5	Выводы	29
Сп	исок литературы	30

Список иллюстраций

4.1	Авторизация на github.com	10
4.2	Создание рабочего пространства	11
4.3	Создание репозитория по шаблону	11
4.4	Созданный по шаблону репозиторий	12
4.5	Наличие git на устройстве	12
4.6	Копирование ssh для копирования репозитория	13
4.7	Рабочее пространство	13
4.8	Создание каталогов для лабораторных работ	14
4.9	Каталоги для отчетов и презентаций	14
4.10	Добавление файлов в репозиторий	15
4.11	Создание отчетов в нужных форматах	15
4.12	Скачивание дистрибутива	16
	Создание виртуальной машины, имя и ОС	16
4.14	Создание виртуальной машины, объем памяти и количество про-	
	цессоров	17
4.15	Создание виртуальной машины, виртуальный жесткий диск	17
	Запуск виртуальной машины	18
4.17	Выбор языка интерфейса	19
4.18	Настройки установки ОС	20
4.19	Настройки раскладки клавиатуры	20
4.20	Выбор программ	21
4.21	Отключение KDUMP	21
4.22	Сетевое соединение	22
4.23	Пароль для root	22
	Завершение установки	23
4.25	Имя пользователя	23
	Пароль	24
4.27	Вход под своей учетной записью	24
4.28	Подключение образа диска дополнений гостевой ОС	25
4.29	Подключение образа диска дополнений гостевой ОС	25
4.30	Проверка имени хоста	25
4.31	Команда dmesg	26
	Koмaндa dmesg grep -i Linux	26
4.33	Koмaндa uname -r	26
	Koмaндa dmesg grep -i mhz	27
	Koмaндa dmesg grep -i CPU0	27
	Komanna fraa	27

4.37	Команда lscpu													28
4.38	Команды df -T и df -h	•												28

Список таблиц

1 Цель работы

Создание репозитория курса на github.com на основе шаблона. Подготовка рабочего пространства для лабораторных работ. Установка и конфигурация операционной системы на виртуальную машину.

2 Задание

- 1. Создать репозиторий курса на github.com на основе шаблона и соглашений о наименовании, описанных на странице курса.
- 2. Подготовить рабочее пространство для лабораторных работ.
- 3. Установить необходимые для дальнейшей работы программы (pandoc, texlive и т.д.).
- 4. Установить и конфигурировать операционную систему на виртуальную машину.

3 Теоретическое введение

В ходе данного курса мы будем работать с **репозиторием** и выгружать результаты своей работы на github. **Репозиторий или проект GIT** включает в себя полный набор файлов и папок, связанных с проектом, а также журнал изменений каждого файла. Журнал файла представлен в виде моментальных снимков на определенные моменты времени. Эти снимки называются фиксациями. Фиксации можно упорядочивать по нескольким линиям разработки, называемым ветвями. Так как GIT — распределенная система управления версиями, репозитории являются автономными единицами и любой пользователь, имеющий копию репозитория, может получать доступ ко всей базе кода и ее истории. С помощью командной строки или других удобных интерфейсов возможны также следующие действия с репозиторием GIT: взаимодействие с журналом, клонирование репозитория, создание ветвей, фиксация, слияние, сравнение изменений в разных версиях кода и многое другое [1].

Для выполнения отчетов в данном курсе мы будем использовать **Markdown** — это облегченный язык разметки с синтаксисом форматирования обычного текста. Несмотря на то, что файлы с разметкой Markdown имеют собственный формат .md или .markdown, они содержат только текст и могут создаваться в любых программах типа Блокнот. Однако, его можно без проблем конвертировать и в гипертекст, и даже в документ с визуальным оформлением (RTF или DOC) без потери форматирования [2].

В данном курсе подразумевается работа на виртуальной машине операционной системы Linux (дистрибутив Rocky). **Rocky Linux** — дистрибутив на базе

RedHat Enterprise Linux. Является альтернативой CentOS. Распространяется сво-

бодно. Поддерживается сообществом. Релизы Rocky Linux выходят аналогично

тому, как ранее выходили релизы CentOS. Выпуск очередного релиза Rocky Linux

выполняется после выхода новой версии RedHat Enterprise Linux [3].

Доступны следующие образы системы:

• Minimal

• DVD

• Boot

Формат образа: ISO

9

4 Выполнение лабораторной работы

1. Так как у меня уже был аккаунт на **github.com**, я авторизировалась в уже имеющейся учетной записи (рис. 4.1).

Sign in to GitHub

Рис. 4.1: Авторизация на github.com

2. Создала рабочее пространство предмета в соответствии с требуемой [4] иерархией (рис. 4.2).

Рис. 4.2: Создание рабочего пространства

3. Создала репозиторий по шаблону, предложенному на странице курса (рис. 4.3).

Рис. 4.3: Создание репозитория по шаблону

Видим, что репозиторий успешно создан (рис. 4.4).

Рис. 4.4: Созданный по шаблону репозиторий

4. После одного из предыдущих курсов у меня был установлен **git**, а также сохранен ключ. Проверила, что все установлено, введя команду git -v (рис. 4.5).

```
PS C:\work\study\2023-2024\Информационная безопасность\infosec> git -v
git version 2.39.1.windows.1
PS C:\work\study\2023-2024\Информационная безопасность\infosec>
```

Рис. 4.5: Наличие git на устройстве

5. Скопировала ssh из репозитория (рис. 4.6) и использовала его для рекурсивного копирования этого репозитория с помощью команды git clone --recursive. Видим, что теперь соответтвующее рабочее пространство появилось на моем рабочем устройстве (рис. 4.7).

Рис. 4.6: Копирование ssh для копирования репозитория

Рис. 4.7: Рабочее пространство

6. Создала папки для лабораторных работ (рис. 4.8), перенеся соответствующие каталоги из каталога курса "Матемтическое моделирование" (рис. 4.9).

Рис. 4.8: Создание каталогов для лабораторных работ

Рис. 4.9: Каталоги для отчетов и презентаций

7. Отправила файлы на сервер с помощью команд git add ., git commit -am 'feat(main): make course structure', git push. Перейдя в репозиторий, видим, что каталог для лабораторных был добавлен (рис. 4.10).

Рис. 4.10: Добавление файлов в репозиторий

8. После одного из предыдущих курсов у меня был установлен **pandoc** и **texlive**. Проверила, что отчеты нужных форматов генерируются, введя команду make в папке соответствующей лабораторной (рис. 4.11). Видим, что файлы были созданы.

Рис. 4.11: Создание отчетов в нужных форматах

9. Скачала дистрибутив Rocky с предложенного сайта (рис. 4.12).

Рис. 4.12: Скачивание дистрибутива

10. Создала новую виртуальную машину (рис. 4.13). Для этого в VirtualBox выбрала Машина - Создать . Указала имя виртуальной машины (мой логин в дисплейном классе), подключила образ, установленный ранее. Также выбираю пропустить автоматическую установку.

Рис. 4.13: Создание виртуальной машины, имя и ОС

11. Указала объем памяти (2048МБ) и количество процессоров (4) (рис. 4.14).

Рис. 4.14: Создание виртуальной машины, объем памяти и количество процессоров

12. Выбрала создание нового виртуального жесткого диска размером 40ГБ (рис. 4.15).

Рис. 4.15: Создание виртуальной машины, виртуальный жесткий диск

13. Запустила виртуальную машину (рис. 4.16).

Рис. 4.16: Запуск виртуальной машины

14. Выбрала английский язык в качестве языка интерфейса (рис. 4.17) и перешла к настройкам установки операционной системы (рис. 4.18).

Рис. 4.17: Выбор языка интерфейса

Рис. 4.18: Настройки установки ОС

15. Добавила в раскладку клавиатуры русский язык, оставив английский языком по умолчанию (рис. 4.19).

Рис. 4.19: Настройки раскладки клавиатуры

16. В разделе выбора программ укажите в качестве базового окружения Server

with GUI, a в качестве дополнения — Development Tools (рис. 4.20).

Рис. 4.20: Выбор программ

17. Отключила KDUMP (рис. 4.21).

Рис. 4.21: Отключение КDUMP

18. Включила сетевое соединение и в качестве имени узла указала kvaftaeva.localdomain (рис. 4.22).

Рис. 4.22: Сетевое соединение

19. Установила пароль для пользователя root (рис. 4.23).

Рис. 4.23: Пароль для root

20. Дождалась завершения установки и перезапустила виртуальную машину (рис. 4.24).

Рис. 4.24: Завершение установки

21. Задала имя пользователя (рис. 4.25) и пароль (рис. 4.26). Еще раз перезапустила виртуальную машину на всякий случай. Зашла под своей учетной записью после загрузки (рис. 4.27).

Рис. 4.25: Имя пользователя

Рис. 4.26: Пароль

Рис. 4.27: Вход под своей учетной записью

22. В меню Устройства виртуальной машины подключила образ диска дополнений гостевой ОС (рис. 4.28-4.29). После загрузки перезапустила виртуальную

машину.

Рис. 4.28: Подключение образа диска дополнений гостевой ОС

Рис. 4.29: Подключение образа диска дополнений гостевой ОС

23. Проверила имя хоста, введя команду hostnamectl (рис. 4.30). . Видим, что имя хоста задано верно.

Рис. 4.30: Проверка имени хоста

24. Выполнила команду dmesg (рис. 4.31). Так мы видим вывод всех сообщений ядра OC.

Рис. 4.31: Команда dmesg

25. Получила информацию о версии ядра Linux двумя способами: с помощью команды dmesg | grep -i Linux (рис. 4.32)и команды uname -r(рис. 4.33).

```
[kvaftaeva@kvaftaeva ~]$ dmesg | grep -i Linux
[    0.000000] Linux version 5.14.0-284.11.1.el9_2.x86_64 (mockbuil
(GCC) 11.3.1 20221121 (Red Hat 11.3.1-4), GNU ld version 2.35.2-37.
2023
[    0.000000] The list of certified hardware and cloud instances for Ecosystem Catalog, https://catalog.redhat.com.
[    0.048638] SELinux: Initializing.
[    0.169659] ACPI: Added _OSI(Linux-Dell-Video)
[    0.169660] ACPI: Added _OSI(Linux-HPI-Hybrid-Graphics)
```

Рис. 4.32: Команда dmesg | grep -i Linux

```
[kvaftaeva@kvaftaeva ~]$ uname -r
5.14.0-284.11.1.el9_2.x86_64
```

Рис. 4.33: Команда uname -r

26. Получила информацию о частоте ядра с помощью команды dmesg | grep -i mhz (рис. 4.34).

Рис. 4.34: Команда dmesg | grep -i mhz

27. Получила информацию о модели процессора с помощью команды dmesg | grep -i CPU0 (рис. 4.35).

```
[kvaftaeva@kvaftaeva ~]$ dmesg | grep -i CPU0
[ 0.156896] smpboot: <mark>CPUO</mark>: AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx (family: 0x17, model: 0x18,
)
[kvaftaeva@kvaftaeva ~]$
```

Рис. 4.35: Команда dmesg | grep -i CPU0

28. Получила информацию об объеме доступной памяти с помощью команды free (рис. 4.36).

Рис. 4.36: Команда free

29. Получила информацию о типе обнаруженного гипервизора (KVM) с помощью команды lscpu (рис. 4.37).

```
kvaftaeva@kvaftaeva ~]$ lscpu
Architecture:
                          x86_64
 CPU op-mode(s):
                          32-bit, 64-bit
                          48 bits physical, 48 bits virtual
 Address sizes:
 Byte Order:
                          Little Endian
CPU(s):
 On-line CPU(s) list:
                          0-3
                          AuthenticAMD
Vendor ID:
 Model name:
                          AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx
    CPU family:
    Model:
   Thread(s) per core:
   Core(s) per socket:
    Socket(s):
    Stepping:
   BogoMIPS:
                          4192.12
                          fpu vme de pse tsc msr pae mce cx8 apic sep mtr
    Flags:
                           sse2 ht syscall nx mmxext fxsr_opt rdtscp lm c
                          xtd_apicid tsc_known_freq pni pclmulqdq ssse3 c
ve avx rdrand hypervisor lahf_lm cmp_legacy cr8
                          sbd vmmcall fsgsbase bmi1 avx2 bmi2 rdseed clfl
Virtualization features:
 Hypervisor vendor:
                          KVM
  Virtualization type:
```

Рис. 4.37: Команда lscpu

- 30. Получила информацию о типе файловой системы корневого раздела с помощью команды df -T (рис. 4.38).
- 31. Получила информацию о последовательности монтирования файловых систем с помощью команды df -h (рис. 4.38).

```
4096
                                                                                                              0% /dev
                                                                                       4096 0% /deV/shm

1008420 0% /deV/shm

397152 2% /run

33273184 15% /

775904 26% /boot

201576 1% /run/user/1000
                                                         1008420
                                                           403372
                                                       38721052 5447868
1038336 263332
dev/sr0
kvaftaeva@kvaftaeva
                                                                           51716
                                                Used Avail Use% Mounted on
                                                                         0% /dev
0% /dev/shm
                                                            995M 0% /GeV/Snm

388M 2% /run

32G 15% /

757M 26% /boot

197M 1% /run/user/1000

0 100% /run/media/kvaftaeva/VBox_GAs_7.0.2
                                                6.1M
5.2G
258M
                                                           388M
32G
757M
                                   1014M
dev/sda1
                                                 108K
51M
   vaftaeva@kvaftaeva
```

Рис. 4.38: Команды df -T и df -h

5 Выводы

Я создала репозиторий курса на github.com на основе шаблона. Подготовила рабочее пространство для лабораторных работ. Установила операционную систему на виртуальную машину.

Список литературы

- 1. Документация по GitHub [Электронный ресурс]. 2023. URL: https://docs.git hub.com/ru/get-started/using-git/about-git.
- 2. Markdown легкий язык разметки текста [Электронный ресурс]. 2023. URL: https://www.bestfree.ru/article/computer/markdown.php.
- 3. Дистрибутив Rocky Linux [Электронный ресурс]. 2021. URL: https://pingvinus.ru/distribution/rocky-linux?ysclid=lmaseasjfq451914223.
- 4. Методические замечания [Электронный ресурс]. Российский университет дружбы народов им. Патриса Лумумбы, 2023. URL: https://esystem.rudn.ru/pluginfile.php/2090339/mod_folder/content/0/000-methodical.pdf?forcedown load=1.