Universidade Federal do Espírito Santo Terceira Prova de Álgebra Linear Vitória, 06 de novembro de 2012

Nome Legível:

Justifique seu raciocínio.

1. (2 pontos) Seja $\beta = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ e $\beta' = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ bases de um espaço vetorial V. Sabendo que, para $\mathbf{v} \in V$,

$$[\mathbf{v}]_{\beta} = (a, b, c) \Rightarrow [\mathbf{v}]_{\beta'} = (a + b + c, a - b + c, a - b - c)$$

determine a matriz de mudança de base de β' para β .

2. Seja

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

a matriz do operador linear $T: V \longrightarrow V$ numa base $\beta = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}.$

- (a) (1 ponto)Determine $[T(\mathbf{u})]_{\beta}$ e $[T(\mathbf{u}) 3T(\mathbf{v}) + 2T(\mathbf{w})]_{\beta}$.
- (b) (1,5 pontos) O operador T é diagonalizável? T é ortogonalmente diagonalizável?
- 3. Considere as transformações matriciais $T_A : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dadas por $T_A(\mathbf{x}) = A\mathbf{x}$.
 - (a) (1 ponto) Quais são todas as possíveis dimensões do núcleo de T_A ?
 - (b) (1,5 pontos) Para cada dimensão possível n, dê exemplo numérico de uma matriz A com dimensão do núcleo de T_A igual a n.
- 4. Seja π o plano dado por x y + z = 0.
 - (a) (1 ponto) Encontre um operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que
 - . $T(\mathbf{v}) = -\mathbf{v}$ para todo $\mathbf{v} \in \pi$;
 - . dim(Nuc(T)) = 1;
 - . T é ortogonalmente diagonalizável.
 - (b) (1 ponto) Determine a matriz A do operador T, encontrado no item (a), na base canônica.
 - (c) (1 ponto) Encontre matrizes P e D, sendo D diagonal, tal que $P^{-1}AP = D$.

Boa Prova!!!

Prof.: Etereldes 06/11/2012

Solução esperada da prova III - Álgebra Linear

1. Sejam U a matriz cujas colunas são $\mathbf{u}_1,\,\mathbf{u}_2$ e $\mathbf{u}_3,\,V$ a matriz cujas colunas são $\mathbf{v}_1,\,\mathbf{v}_2$ e \mathbf{v}_3 e

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{array} \right].$$

Então $U\cdot [\mathbf{v}]_{\beta}=V\cdot A\cdot [\mathbf{v}]_{\beta'}$. Logo, $U\cdot A^{-1}\cdot [\mathbf{v}]_{\beta}=V\cdot [\mathbf{v}]_{\beta'}$ e a matriz de mudança de base de β' para β é

$$A^{-1} = \left[\begin{array}{ccc} 1/2 & 0 & 1/2 \\ 1/2 & -1/2 & 0 \\ 0 & 1/2 & -1/2 \end{array} \right].$$

- 2. (a) $[T(\mathbf{u})]_{\beta} = (1,0,0)$ e $[T(\mathbf{u}) 3T(\mathbf{v}) + 2T(\mathbf{w})]_{\beta} = [T(\mathbf{u})]_{\beta} 3[T(\mathbf{v})]_{\beta} + 2[T(\mathbf{w})]_{\beta} = (0,-4,0)$.
 - (b) Os autovalores de T são as raízes reais de

$$p(\lambda) = det(\begin{bmatrix} 1 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 1 \\ 0 & 2 & 3 - \lambda \end{bmatrix}) = (1 - \lambda)(\lambda - 1)(4 - \lambda).$$

O autoespaço associado a $\lambda = 1$ é o conjunto solução de

$$\left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right].$$

Logo, O autoespaço associado a $\lambda = 1$ é $ger\{(1,0,0),(0,1,-1)\}$. Como o autoespaço associado a $\lambda = 4$ tem dimensão 1, temos uma base de autovetores de T e portanto T é diagonalizável. T não é ortognalmente diagonalizável, pois A não é simétrica.

- (a) $\dim(Nuc(T_A)) = 3 \dim(Im(T_A))$. Logo, temos os seguintes pares possíveis para $(\dim(Nuc(T_A)), \dim(Im(T_A))$ que são (3,0), (2,1) e (1,2). Veja que T_A não pode ser injetiva e não podemos ter (0,3).
- (b) i. $A \notin a$ matriz nula.

ii.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.
iii. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

3. (a) $\pi = \{(x,y,z) \in \mathbb{R}^3; x-y+z=0\} = \{(y-z,y,z); y,z \in \mathbb{R}\} = \{y(1,1,0)+z(-1,0,1); y,z \in \mathbb{R}\}$, que é o espaço gerado pelos vetores $\mathbf{u}_1 = (1,1,0)$ e $\mathbf{u}_2 = (-1,0,1)$. Então, se $\mathbf{u}_3 = (1,-1,1)$ temos que $\beta = \{u_1,u_2,u_3\}$ é uma base de \mathbb{R}^3 . Definindo $T(\mathbf{u}_3) = 0$, temos que T definido na base β por $T(\mathbf{u}_1) = -\mathbf{u}_1$, $T(\mathbf{u}_2) = -\mathbf{u}_2$ e $T(\mathbf{u}_3) = 0$ tem as propriedades desejadas.

(b) Um vetor qualquer $(x, y, z) \in \mathbb{R}^3$ é combinação linear dos vetores de β . Isto é, existem $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tais que $(x, y, z) = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3$. Resolvendo o sistema

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Temos $\alpha_1 = \frac{x+2y+z}{3}$, $\alpha_2 = \frac{-x+y+2z}{3}$ e $\alpha_3 = \frac{x-y+z}{3}$. Logo, $T(x,y,z) = \alpha_1 T(\mathbf{u}_1) + \alpha_2 T(\mathbf{u}_2) + \alpha_3 T(\mathbf{u}_3) = \frac{x+2y+z}{3} T(1,1,0) + \frac{-x+y+2z}{3} T(-1,0,1) + \frac{x-y+z}{3} T(1,-1,1) = \frac{x+2y+z}{3} (-1,-1,0) + \frac{-x+y+2z}{3} (1,0,-1)$.

Portanto,
$$T(x, y, z) = \left(\frac{-2x - y + z}{3}, \frac{-x - 2y - z}{3}, \frac{+x - y - 2z}{3}\right) = \frac{1}{3} \begin{bmatrix} -2 & -1 & 1\\ -1 & -2 & -1\\ 1 & -1 & -2 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}$$
. Logo

$$A = \frac{1}{3} \left[\begin{array}{rrr} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{array} \right].$$

(c) Defina $P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ e $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Então, AP = PD, pois as duas de A associados ao autovalor -1 e a terceira

primeiras colunas de P são autovetores de A associados ao autovalor -1 e a terceira é um autovetor associado ao autovalor 0. Veja que T tem uma base ortonormal de de autovetores, pois A é simétrica e podemos encontrar tal base ortogonalizando os autovetores associados ao autovalor -1.