

-60.0

Center 1.75500 GHz #Res BW 100 kHz

1.110. LTE Band Edge(NTNV)(Subtest:110, Channel:20350, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	30	0.1	RMS	1755.75	-35.49	Pass	601
Agilent Spectrum Analyzer - Swe	ept SA						
XI RL RF 50Ω	AC		INT REF	ALIGN OFF	03:27:15 PM Mar 31,		equency
Center Freq 1.75500	10000 GHZ PN0: Fast	→ Trig: Fre	eRun A	Avg Type: RMS Avg Hold: 1/1	TRACE 1 2 3	//////	quonoy
PASS	IFGain:Low		2 dB		DET A A A		Auto Tune
Ref Offset 9.6	8 dB			Mkr1	1.755 75 G -35.495 di	11 / 1	Auto Tulic
10 dB/div Ref 30.00 (IBM				-00.430 di	711	
Trace 1 Pass						l c	enter Freq
20.0						1.755	000000 GHz
10.0							
10.0							Start Freq
0.00	monument	n-zalba				1.740	0000000 GHz
-10.0							Stop Freq
-20.0						1.770	0000000 GHz
20.0							
-30.0		1.5 10	1-				CF Step .000000 MHz
	ر الم					<u>Auto</u>	Man
-40.0 -40.0	 		N4/ "H				
oth Arrevalleria			n dubyhynpropris	h. a			rea Offset

VBW 300 kHz*

0 Hz

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.111. LTE Band Edge(NTNV)(Subtest:111, Channel:20350, Bandwidth:10, Modulation:16QAM, RB Number: 25, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	30	0.1	RMS	1755.05	-34.36	Pass	601
Agilent Spectrum Analyzer - Swe XI RL RF 50 Ω Center Freq 1.75500 PASS	AC	Trig: Fre	eRun A	⚠ALIGN OFF Avg Type: RMS vg Hold: 1/1	03:27:21 PM Mar 31 TRACE 1 2 3 TYPE M WW DET A A A	4 5 6 *******	equency
Ref Offset 9.60	Hz Bm	Auto Tune					
20.0 Trace 1 Pass							enter Freq 5000000 GHz
0.00	- cont	may from the second				1.740	Start Freq
-10.0						1 770	Stop Freq

VBW 300 kHz*

CF Step 3.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 30.00 MHz #Sweep 1.000 s (601 pts)

1.112. LTE Band Edge(NTNV)(Subtest:112, Channel:20350, Bandwidth:10, Modulation:16QAM, RB Number: 50, RB Position:LOW)

1.113. LTE Band Edge(NTNV)(Subtest:113, Channel:20025, Bandwidth:15, **Modulation:QPSK, RB Number: 1, RB Position:LOW)**

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1710	40	0.15	RMS	1709.933	-30.16	Pass	60
Agilent Spectrum Analyzer - Swe XI RL RF 50 Ω Center Freq 1.71000 PASS	AC	Trig: Fre	e Run	ALIGN OFF #Avg Type: RMS Avg Hold: 1/1	03:27:41 PM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 Fr	equency
Ref Offset 9.60 10 dB/div Ref 30.00 d	Hz 3m	Auto Tune					
Trace 1 Pass							Center Freq 0000000 GHz
0.00						1.690	Start Fred
-10.0			-			1.730	Stop Fred
-30.0			1 4			4 <u>Auto</u>	CF Step .000000 MHz Mar
-50.0	a A		ا ا ا				Freq Offse 0 Ha
Center 1.71000 GHz	-women manual for b	Candre Market			Cnon 40 00 B		
#Res BW 150 kHz	VB	W 470 kHz*			Span 40.00 N 1.000 s (601 p		

STATUS

1.114. LTE Band Edge(NTNV)(Subtest:114, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.115. LTE Band Edge(NTNV)(Subtest:115, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Man

Freq Offset 0 Hz

Center 1.71000 GHz #Res BW 150 kHz

1.116. LTE Band Edge(NTNV)(Subtest:116, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1710	40	0.15	RMS	1710	-37	Pass	601
Agilent Spectrum Analyzer - Swept SA X RL RF 50 Ω AC INT REF ALIGN OFF 03:27:58 PM Mar 31, 2016 Center Freq 1.710000000 GHz							
Ref Offset 9.				Mkr1	1.710 00 G -37.004 d	ITIZ PER SE	Auto Tune
Trace 1 Pass							enter Freq 0000000 GHz
0.00			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1.690	Start Freq
-10.0						1.730	Stop Freq
-30.0						4	CF Step .000000 MHz

#Sweep 1.000 s (601 pts)

STATUS

1.117. LTE Band Edge(NTNV)(Subtest:117, Channel:20025, Bandwidth:15, Modulation: QPSK, RB Number: 36, RB Position: MID)

1.118. LTE Band Edge(NTNV)(Subtest:118, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:HIGH)

Fre	Center quency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
	1710	40	0.15	RMS	1709.267	-45.49	Pass	601		
LXI RL	RF 50 Ω ter Freq 1.71000	AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	03:28:10 PM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 WWW AAA	equency		
10 dE	Ref Offset 9.6		Mkr1 1.709 27 GHz -45.495 dBm							
20.0	Trace 1 Pass							enter Freq		
10.0					الرياني والمراسات المراسات والمراسات	hungd	1.690	Start Freq		
-10.0							4.720	Stop Freq		

VBW 470 kHz*

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.119. LTE Band Edge(NTNV)(Subtest:119, Channel:20025, Bandwidth:15, Modulation:QPSK, RB Number: 75, RB Position:LOW)

1.120. LTE Band Edge(NTNV)(Subtest:120, Channel:20025, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
1710	40	0.15	RMS	1710	-29.12	Pass	601		
Agilent Spectrum Analyzer - Swept SA M RL RF 50 Ω AC INT REF ALIGN OFF 03:28:22 PM Mar 31, 2016 Center Freq 1.710000000 GHz #Avg Type: RMS TRACE 12 3 4 5 6 PASS PNO: Fast → IFGain: Low Atten: 32 dB Avg Hold: 1/1 TYPE MARKET									
Ref Offset 9.66 dB									
20.0 Trace 1 Pass							enter Freq 0000000 GHz		
0.00						1.690	Start Fred		
-10.0			-				Stop Fred		

My What W

VBW 470 kHz*

CF Step 4.000000 MHz

Freq Offset

Man

0 Hz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

#Sweep 1.000 s (601 pts)

STATUS

1.121. LTE Band Edge(NTNV)(Subtest:121, Channel:20025, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:MID)

1.122. LTE Band Edge(NTNV)(Subtest:122, Channel:20025, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point		
1710	40	0.15	RMS	1697.533	-40.62	Pass	601		
Agilent Spectrum Analyzer - Swept SA W RL RF 50 Ω AC INT REF ALIGN OFF 03:28:34 PM Mar 31, 2016 Center Freq 1.710000000 GHz PNO: Fast → IFGain:Low Trig: Free Run Atten: 32 dB Avg Hold: 1/1 TYPE MANAGED AA AA AA									
Ref Offset 9.66 dB Ref 30.00 dBm Ref 30.00 dBm Ref 30.00 dBm									
Trace 1 Pass							enter Freq 0000000 GHz		
0.00						1.690	Start Freq		
-10.0						1.730	Stop Freq		
-30.0							CF Step		

VBW 470 kHz*

4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

hada.

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.123. LTE Band Edge(NTNV)(Subtest:123, Channel:20025, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:LOW)

1.124. LTE Band Edge(NTNV)(Subtest:124, Channel:20025, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:MID)

1.125. LTE Band Edge(NTNV)(Subtest:125, Channel:20025, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1710	40	0.15	RMS	1709.133	-45.98	Pass	601
Agilent Spectrum Analyzer - Swept SA							equency
Ref Offset 9				Mkr1	1.709 13 G -45.976 dl	П	Auto Tune

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 1.71000 GHz #Res BW 150 kHz

1.126. LTE Band Edge(NTNV)(Subtest:126, Channel:20025, Bandwidth:15, Modulation:16QAM, RB Number: 75, RB Position:LOW)

	enter ncy(MHz)	Span(M	Hz)	RBW (MHz)	Detecto	r	quency MHz)	Power		Verdict	Sweep Point
	1710		40	0.15	RMS		1709.333	-32	.86	Pass	601
	trum Analyzer - Swe	pt SA									
LXI RL	RF 50 Ω req 1.71000		,		INT REF	#Avg Type	ALIGN OFF	03:28:58 PM TRACE			equency
PASS	req 1.7 1000	PNC): Fast ↔	Trig: Free		Avg Hold:		TYPE	1 2 3 4 M WWW A A A A	WW A A	
. дос			in:Low	Atten. 32	. ab		Mkr1	1.709 3	13 CI		Auto Tune
10 dB/div	Ref Offset 9.66 Ref 30.00 d	6 dB Bm					IVIKI I	-32.85	8 dB	m	
Trac	e 1 Pass										enter Freq
20.0											0000000 GHz
10.0											Start Freq
0.00										1.690	0000000 GHz
0.00					homen	reduction of the state of the s	~~ preb~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · · · · · · · · · · · · · · · · · ·			
-10.0								_ \			Oten From
					1					1 730	Stop Freq
-20.0								-		11700	000000
					¦						CF Step
-30.0				 	 			\			.000000 MHz
-40.0			لما	سامر\ارال _{مس} مرس	/			hode	~~~~	Auto	Man
		and the same	الم المحامل ال								
-50.0	Mary Comment of the Comment	Na _{man} an								F	req Offset 0 Hz
Mart at	which the second										UHZ
-60.0											

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 150 kHz

1.127. LTE Band Edge(NTNV)(Subtest:127, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.128. LTE Band Edge(NTNV)(Subtest:128, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.129. LTE Band Edge(NTNV)(Subtest:129, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 1.75500 GHz #Res BW 150 kHz

1.130. LTE Band Edge(NTNV)(Subtest:130, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.15	RMS	1755	-44.53	Pass	601
Agilent Spectrum Analyzer - Swep							
RE	0000 GHz			Avg Type: RMS	03:29:26 PM Mar 31, TRACE 1 2 3 TYPE M MAAAA	456 Fr	equency
PASS	PNO: Fast IFGain:Low	Atten: 32			DET A A A	AAA	
Ref Offset 9.66			7	Mkr1	1.755 00 G -44.528 dl	ΠZ	Auto Tune
Trace 1 Pass							enter Freq 5000000 GHz
0.00	- And British and Andrews					1.735	Start Freq
-10.0						1.775	Stop Freq 5000000 GHz
-30.0 -40.0	NI AIL	man	1			<u>Auto</u>	CF Step .000000 MHz Man
-60.0				harry was a market before have for	Lagendonagenary/montesse	thank.	0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

Center 1.75500 GHz #Res BW 150 kHz

1.131. LTE Band Edge(NTNV)(Subtest:131, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:MID)

Center Frequency(MHz	:)	Span(MHz)	RBW (MHz)	Detector	r	quency MHz)	Power		Verdict	Sweep Point
17	55	40	0.15	RMS		1755.067	-3	4.3	Pass	601
Agilent Spectrum Analyzer										
	50 Ω A			INT REF	#Avg Type	ALIGN OFF	03:29:31 PM			equency
Center Freq 1.75	50000	PNO: Fast IFGain:Low	Trig: Fre	e Run	Avg Hold:		TYPE	1234 Mwww AAAA	A A	
			Atten. 02	. VID		Mkr1	1.755 (7 GI	17	Auto Tune
Ref Offse 10 dB/div Ref 30.0	t 9.68 d 0 0 dB r	1B m		,			-34.29	7 dB	m	
Trace 1 Pass										enter Freq
20.0										6000000 GHz
10.0										Start Freq
			and a						1 735	Start Freq
0.00									11100	000000 0112
-10.0										Ot
									1 775	Stop Freq
-20.0		<u> </u>							1.775	0000000 G112
		}	l l							CF Step
-30.0	. 1		h.	♦ '					4.	.000000 MHz
-40.0	المالمه		A A CONTRACTOR OF THE PARTY OF						<u>Auto</u>	Man
500 Morallow Land				mandre of the second						Off 1
-50.0					money from	When to plan for the	المهاد			req Offset
							. Allerander	- Annual Value	Topport I and the second	0 112
-60.0										

1

VBW 470 kHz*

whatalah la

Center 1.75500 GHz #Res BW 150 kHz

1.132. LTE Band Edge(NTNV)(Subtest:132, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 36, RB Position:HIGH)

Center Frequency(M	Hz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	1755	40	0.15	RMS	1755.067	-31.25	Pass	601
Agilent Spectrum Analy (X) RL RF Center Freq 1. PASS	50 Ω	AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	03:29:37 PM Mar 31. TRACE 1 2 3 TYPE MWW DET A A A	456 WWW AAA	equency Auto Tune
10 dB/div Ref	ffset 9.68 30.00 d				Mkr1	1.755 07 G -31.253 dl		Auto Tune
Trace 1 Pas	SS							enter Freq 5000000 GHz
0.00		pupateur	the of the standards				1.735	Start Freq 5000000 GHz
-10.0								Stop Freq

MANA MANA

1.775000000 GHz

CF Step

Man

4.000000 MHz

Freq Offset 0 Hz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.133. LTE Band Edge(NTNV)(Subtest:133, Channel:20325, Bandwidth:15, Modulation:QPSK, RB Number: 75, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
1755	40	0.15	RMS	1755.467	-31.87	Pass	601			
Agilent Spectrum Analyzer - Swept SA IX RF 50 Ω AC INT REF ALIGN OFF 03:29:43 PM Mar 31, 2016 Frequency Center Freq 1.755000000 GHz #Avg Type: RMS TRACE 1 2 3 4 5 6 TYPE MWWWWW PNO: Fast → IFGain: Low IFGain: Low Atten: 32 dB Trig: Free Run Analyzer - Swept SA Avg Hold: 1/1 TYPE MWWWWW										
Ref Offset 9.66				Mkr1	1.755 47 G -31.872 dl	TIZ POST	Auto Tune			
Trace 1 Pass							Senter Freq 50000000 GHz			
0.00	بالإمدار ووجوايك ألدوم سعوالها	Landing recognition				1.735	Start Freq 5000000 GHz			
-10.0						1.775	Stop Freq			

VBW 470 kHz*

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 1.75500 GHz #Res BW 150 kHz

1.134. LTE Band Edge(NTNV)(Subtest:134, Channel:20325, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.15	RMS	1767.467	-36.72	Pass	601
Agilent Spectrum Analyzer - Sw							
	ter Freq 1.755000000 GHz Trig: Free Run Availabile: 1/1 Type: Management of the control of th				456 Fr	equency	
Ref Offset 9.1	58 dB			Mkr1	1.767 47 G -36.721 dE	ΠZ	Auto Tune
Trace 1 Pass							enter Freq 5000000 GHz
0.00						1.738	Start Freq 5000000 GHz
-10.0						1.775	Stop Freq 50000000 GHz
-30.0	, ,			•	1	Auto 4	CF Step .000000 MHz Man
-50.0 January	Maring Maring	Man and hard		A	borago agrando		Freq Offset 0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Center 1.75500 GHz #Res BW 150 kHz

1.135. LTE Band Edge(NTNV)(Subtest:135, Channel:20325, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:MID)

Cer Frequen		Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
	1755	40	0.15	RMS	1755.333	-55.14	Pass	601
Agilent Spectru	im Analyzer - Swe			INT REF	⚠ ALIGN OFF	03:29:55 PM Mar 31,	2016	
	eq 1.75500		Trig: Fre	# eRun A	Avg Type: RMS avg Hold: 1/1	TRACE 1 2 3 4 TYPE M WAAAAAAAA DET A A A A	456 MAAA	equency
10 dB/div	Ref Offset 9.6 Ref 30.00 d	8 dB Bm		1	Mkr1	1.755 33 G -55.144 dE	ΠZ	Auto Tune
Trace	1 Pass	h						enter Freq 5000000 GHz
0.00							1.735	Start Freq 5000000 GHz
-10.0							1.775	Stop Freq 5000000 GHz
-30.0							4 Auto	CF Step .000000 MHz Man
-50.0	1	Land Contraction of the Contract	how hore a	1			ı	Freq Offset 0 Hz

1.136. LTE Band Edge(NTNV)(Subtest:136, Channel:20325, Bandwidth:15, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.15	RMS	1755	-27.43	Pass	60
Agilent Spectrum Analyzer - Swe (x) RL RF 50 Ω Center Freq 1.75500 PASS	0000 GHz PNO: Fast	Trig: Fre	e Run A	ALIGN OFF AVg Type: RMS	03:30:01 PM Mar 31, TRACE 1 2 3 4 TYPE M WANN	Fr.	equency
Ref Offset 9.6 10 dB/div Ref 30.00 d		Atten: 32	2 015	Mkr1	1.755 00 G -27.431 dE	Hz	Auto Tune
Trace 1 Pass		A					enter Fred 5000000 GH:
0.00						1.735	Start Free
-10.0			1			1.775	Stop Fre 65000000 GH
-30.0	<u> </u>		• ' 			4 <u>Auto</u>	CF Ste j .000000 MH Mai
-50.0	anno Maria	~ Nothing	MAN Work property	1		F	Freq Offse
-60.0 Center 1.75500 GHz				a to manifest themat of	Span 40.00 N	IHz	

STATUS

1.137. LTE Band Edge(NTNV)(Subtest:137, Channel:20325, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.15	RMS	1755.2	-44.54	Pass	60
Agilent Spectrum Analyzer - Swej							
M RL RF 50Ω Center Freq 1.755000 PASS	PNO: Fast	Trig: Fre	eRun A	Avg Type: RMS vg Hold: 1/1	03:30:07 PM Mar 31, TRACE 1 2 3 TYPE M WWW. DET A A A	4 5 6 ***********************************	equency
Ref Offset 9.68		Atten: 3	2 dB	Mkr1	1.755 20 G -44.542 dl	Hz	Auto Tun
Trace 1 Pass							enter Free
0.00	www.					1.738	Start Fre
-10.0						1.775	Stop Fre 5000000 G⊢
30.0 h.hm/h/pm/h/	Aporor's					4 Auto	CF Ste .000000 M⊢ Ma
-40.0 -40.0 -50.0		- Balkal	1	Lynny Daniel Dan			Freq Offse
-60.0				Pathermone	PORTURAL PROPERTY AND		31
Center 1.75500 GHz #Res BW 150 kHz	VR	— W 470 kHz*			Span 40.00 N 1.000 s (601 p		

STATUS

1.138. LTE Band Edge(NTNV)(Subtest:138, Channel:20325, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point			
1755	40	0.15	RMS	1755	-38.17	Pass	601			
Agilent Spectrum Analyzer - Swept 5A W RL RF 50 Ω AC INT REF ALIGN OFF 03:30:13 PM Mar 31, 2016 Frequency Center Freq 1.755000000 GHz #Avg Type: RMS TRACE 12:3 4.5 6 12:3 4.5 6 TYPE MAXAMAM AAAAA PNO: Fast → IFGain:Low Atten: 32 dB Avg Hold: 1/1 TYPE MAXAMAM AAAAAA										
Ref Offset 9.66				Mkr1	1.755 00 G -38.167 dl	П	Auto Tune			
Trace 1 Pass							enter Freq 5000000 GHz			
0.00	phast form of the state of the					1.735	Start Freq			
-10.0						1.775	Stop Freq			

VBW 470 kHz*

CF Step 4.000000 MHz

Freq Offset 0 Hz

Man

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.139. LTE Band Edge(NTNV)(Subtest:139, Channel:20325, Bandwidth:15, Modulation:16QAM, RB Number: 36, RB Position:HIGH)

Fred	Cente quency	-	Span(MH	lz)	RBW (MHz)	Detector	•	quency MHz)	Power (dBm)	Verdict	Sweep Point
		1755	4	40	0.15	RMS		1755.467	-28.99	Pass	601
XI RL	er Fred	nalyzer - Swe RF 50 Ω 1.75500	AC 0000 GHz	Fast ↔ :Low		e Run	#Avg Type Avg Hold:		03:30:19 PM Mar 31 TRACE 1 2 3 TYPE MWW DET A A A	4 5 6	requency
10 dB/		ef Offset 9.6 e f 30.00 c						Mkr1	1.755 47 G -28.991 d	iHz Bm	Auto Tune
20.0	Trace 1	Pass									Center Fred 55000000 GHz
0.00			f	-pr-numb	i-4gt-vage*i-set-downlet-drop					1.73	Start Free
10.0										1.77	Stop Fre 6 75000000 GH
30.0			A STANKE								CF Ste 4.000000 MH

VBW 470 kHz*

Freq Offset 0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.140. LTE Band Edge(NTNV)(Subtest:140, Channel:20325, Bandwidth:15, Modulation:16QAM, RB Number: 75, RB Position:LOW)

Center Frequency(N	ЛHz)	Span(MHz)	RBW (MHz)	Detector		quency MHz)	Power (dBm)	Verdict	Sweep Point
	1755	40	0.15	RMS		1755.333	-31.56	Pass	60
Agilent Spectrum Anal	yzer - Swe	pt SA							
Center Freq 1. PASS	50 Ω . 75500		Trig: Fre	e Run .	#Avg Type Avg Hold:		03:30:24 PM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 Fr	equency
Ref C	Offset 9.68 30.00 d	3 dB Bm		7		Mkr1	1.755 33 G -31.559 dl	HZ	Auto Tune
Trace 1 Pa	SS								enter Freq
10.0									Start Freq
-10.0	17.1840sequ4	hohwatharan sagifuyalkayan	word popularished by					1.738	5000000 GHz
-20.0								1.775	Stop Freq 5000000 GHz
-30.0 -40.0	1			1	hall I	-luludura		4 Auto	CF Step .000000 MHz Man
-40.0					- Total park	- Indiana	ola.		Trop Office

VBW 470 kHz*

Span 40.00 MHz #Sweep 1.000 s (601 pts)

STATUS

Freq Offset 0 Hz

1.141. LTE Band Edge(NTNV)(Subtest:141, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.142. LTE Band Edge(NTNV)(Subtest:142, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:MID)

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.143. LTE Band Edge(NTNV)(Subtest:143, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

VBW 620 kHz*

1.144. LTE Band Edge(NTNV)(Subtest:144, Channel:20050, Bandwidth:20, Modulation: QPSK, RB Number: 50, RB Position: LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency Power (MHz) (dBm)		Verdict	Sweep Point
1710	40	0.2	RMS	1709.933	-39.29	Pass	601
Agilent Spectrum Analyzer - Swept SA LX RL RF 50 Ω AC INT REF ALIGN OFF 03:30:55 PM Mar 31, 2016 Center Freq 1.710000000 GHz PASS PNO: Fast PRO: Fast P							equency
Ref Offset 9.6 10 dB/div Ref 30.00 d				Mkr1	1.709 93 G -39.290 dl		Auto Tune

1.145. LTE Band Edge(NTNV)(Subtest:145, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm) Verdict		Sweep Point		
1710	40	0.2	RMS	1710	-41.72 Pass		601		
Agilent Spectrum Analyzer - Swept SA									
Center Freq 1.710000000 GHz		T! F		Avg Type: RMS	TYPE MWWWW		equency		
PASS	IFGain:Low		2 dB		DET A A A		Auto Tune		
Ref Offset 9.6				Mkr1 1.710 00 GHz					

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.146. LTE Band Edge(NTNV)(Subtest:146, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:HIGH)

VBW 620 kHz*

1.147. LTE Band Edge(NTNV)(Subtest:147, Channel:20050, Bandwidth:20, Modulation:QPSK, RB Number: 100, RB Position:LOW)

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.148. LTE Band Edge(NTNV)(Subtest:148, Channel:20050, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Agilent Spectrum Analyzer - Swept SA LY RL RF 50 Ω AC INT REF Center Freq 1.7100000000 GHz PASS Ref Offset 9.66 dB Ref 30.00 dBm Ref 30.00 dBm Ref 30.00 dBm Center I Pass Ref Offset 9.65 dB Ref 30.00 dBm Center I Pass Ref 30.00 dBm Center I Pass Center I 1.7100000000
No. Ref Offset 9.66 dB No. Ref 30.00 dBm Ref 30.00 dBm Ref 20.00 dBm Ref 30.00 d
1.690000000 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0

VBW 620 kHz*

1.149. LTE Band Edge(NTNV)(Subtest:149, Channel:20050, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:MID)

1.150. LTE Band Edge(NTNV)(Subtest:150, Channel:20050, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1710	40	0.2	RMS	1693.267	-41.42	Pass	601
Center Freq 1.7100 PASS	OOOOO GHZ PNO: Fast IFGain:Low		e Run	AALIGN OFF #Avg Type: RMS Avg Hold: 1/1	03:31:30 PM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 MMM AAA	equency Auto Tune
Ref Offset 9. 10 dB/div Ref 30.00 Log					-41.415 dl		
20.0 Trace 1 Pass							enter Freq 0000000 GHz
0.00						1.690	Start Freq
-10.0						1.730	Stop Freq
-30.0 1					<i></i>	Auto 4	CF Step .000000 MHz Man
-50.0						,	Fre q Offset 0 Hz
-60.0							
Center 1.71000 GHz #Res BW 200 kHz	VB	W 620 kHz*			Span 40.00 N 1.000 s (601)		

1.151. LTE Band Edge(NTNV)(Subtest:151, Channel:20050, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:LOW)

#Sweep 1.000 s (601 pts)

STATUS

#Res BW 200 kHz

1.152. LTE Band Edge(NTNV)(Subtest:152, Channel:20050, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:MID)

VBW 620 kHz*

Center 1.71000 GHz

#Res BW 200 kHz

1.153. LTE Band Edge(NTNV)(Subtest:153, Channel:20050, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:HIGH)

VBW 620 kHz*

0 Hz

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

1.154. LTE Band Edge(NTNV)(Subtest:154, Channel:20050, Bandwidth:20, Modulation:16QAM, RB Number: 100, RB Position:LOW)

1.155. LTE Band Edge(NTNV)(Subtest:155, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:LOW)

1.156. LTE Band Edge(NTNV)(Subtest:156, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:MID)

1.157. LTE Band Edge(NTNV)(Subtest:157, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 1, RB Position:HIGH)

Center 1.75500 GHz #Res BW 200 kHz

1.158. LTE Band Edge(NTNV)(Subtest:158, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:LOW)

VBW 620 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1755.667	-46.05	Pass	601
Agilent Spectrum Analyzer - Swe X RL RF 50 Ω Center Freq 1.75500 PASS Ref Offset 9.66 10 dB/div Ref 30.00 d	AC OOOO GHZ PNO: Fast IFGain:Low	Trig: Fre	e Run A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	03:32:23 PM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A 1.755 67 G -46.053 dl	456 From	equency Auto Tune
Trace 1 Pass							enter Freq 5000000 GHz
0.00						1.735	Start Freq 5000000 GHz

Stop Freq 1.775000000 GHz

> CF Step 4.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.159. LTE Band Edge(NTNV)(Subtest:159, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1755.267	-41.29	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA						- 19
Center Freq 1.75500 PASS	PNO: Fast	Trig: Fre	eRun A	Avg Type: RMS avg Hold: 1/1	03:32:29 PM Mar 31, TRACE 1 2 3 TYPE M WWW	456 Fr	equency
Ref Offset 9.6		Atten: 32	2 40	Mkr1	1.755 27 G	Hz	Auto Tune

1.160. LTE Band Edge(NTNV)(Subtest:160, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 50, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1755.067	-36.09	Pass	601
Agilent Spectrum Analyzer - Swe X	AC	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	03:32:35 PM Mar 31, TRACE 1 2 3 TYPE M WANT DET A A A	456 MWW AAA	equency
Ref Offset 9.6 10 dB/div Ref 30.00 d			1	Mkr1	1.755 07 G -36.093 dl	П	Auto Tune

Span 40.00 MHz

#Sweep 1.000 s (601 pts)

STATUS

Center 1.75500 GHz

#Res BW 200 kHz

1.161. LTE Band Edge(NTNV)(Subtest:161, Channel:20300, Bandwidth:20, Modulation:QPSK, RB Number: 100, RB Position:LOW)

VBW 620 kHz*

Center 1.75500 GHz #Res BW 200 kHz

1.162. LTE Band Edge(NTNV)(Subtest:162, Channel:20300, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1771.8	-36.34	Pass	601
Agilent Spectrum Analyzer - Sw	ept SA						
RL RF 50 Ω Center Freq 1.75500 PASS	AC DOOO GHZ PNO: Fast IFGain:Low	Trig: Fre	e Run /	ALIGN OFF Avg Type: RMS Avg Hold: 1/1	03:32:48 PM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A	456 MMM AAA	equency
Ref Offset 9.0	58 dB d Bm			Mkr1	1.771 80 G -36.343 dl	11 / 1	Auto Tune
Trace 1 Pass							enter Freq 5000000 GHz
0.00						1.735	Start Freq 5000000 GHz
-10.0						1.775	Stop Freq 5000000 GHz
-30.0	<u> </u>				1	Auto 4	CF Step .000000 MHz Man
-40.0		1 1					rea Offset

VBW 620 kHz*

0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.163. LTE Band Edge(NTNV)(Subtest:163, Channel:20300, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:MID)

Center 1.75500 GHz #Res BW 200 kHz

1.164. LTE Band Edge(NTNV)(Subtest:164, Channel:20300, Bandwidth:20, Modulation:16QAM, RB Number: 1, RB Position:HIGH)

Fre	Center quency(I	MHz)	Span(N	/IHz)	RBW (MHz)	Detecto	r	equency (MHz)	Power (dBm)	Verdic	Sweep Point
		1755		40	0.2	RMS		1755	-28.56	Pass	601
LXI RL	er Freq 1	50 Ω	AC 0000 GH PN	Z 10: Fast ain:Low	Trig: Fre		#Avg Typ Avg Hold		03:33:00 PM Mar3: TRACE 1 2 3 TYPE M WW DET A A A	456	Frequency
10 dB		Offset 9.68 30.00 d						Mkr1	1.755 00 C -28.564 d		Auto Tune
20.0	Trace 1 Pa	ass			А					1.	Center Freq 755000000 GHz
10.0 - 0.00 -										1.	Start Freq 735000000 GHz
-10.0 - -20.0 -					}					1.	Stop Freq 775000000 GHz
-30.0 -	1		Ą			1				Auto	CF Step 4.000000 MHz <u>0</u> Man

VBW 620 kHz*

Freq Offset 0 Hz

Span 40.00 MHz #Sweep 1.000 s (601 pts)

1.165. LTE Band Edge(NTNV)(Subtest:165, Channel:20300, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:LOW)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1755.533	-44.56	Pass	601
Agilent Spectrum Analyzer - Swe (X) RL RF 50 \(\text{SC} \) Center Freq 1.75500 PASS	0000 GHz PNO: Fast	Trig: Fre	eRun A	ALIGN OFF Avg Type: RMS vg Hold: 1/1	03:33:05 PM Mar 31, TRACE 1 2 3 TYPE M WWW	456 Fr	equency
Ref Offset 9.6		Atten: 32	2 46	Mkr1	1.755 53 G -44.555 dl	Hz	Auto Tune

1.166. LTE Band Edge(NTNV)(Subtest:166, Channel:20300, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:MID)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1755.067	-39.11	Pass	601
Agilent Spectrum Analyzer - Swe	pt SA						
LXI RL RF 50Ω	AC		INT REF	ALIGN OFF	03:33:11 PM Mar 31,		o di Longia
Center Freq 1.75500	0000 GHz			Avg Type: RMS	TRACE 1 2 3	4 3 0	equency
PASS	PNO: Fast IFGain:Low			vg Hold: 1/1	TYPE M WWW.		

1.167. LTE Band Edge(NTNV)(Subtest:167, Channel:20300, Bandwidth:20, Modulation:16QAM, RB Number: 50, RB Position:HIGH)

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1755.067	-33.48	Pass	601
Agilent Spectrum Analyzer - Swe RL RF 50 Ω Center Freq 1.75500	AC	.		ALIGN OFF Avg Type: RMS vg Hold: 1/1	03:33:17 PM Mar 31, TRACE	456 Fr	equency
PASS Ref Offset 9.6 10 dB/div Ref 30.00 d	IFGain:Low 8 dB			-	1.755 07 G -33.477 d	Hz	Auto Tune

Center 1.75500 GHz #Res BW 200 kHz

1.168. LTE Band Edge(NTNV)(Subtest:168, Channel:20300, Bandwidth:20, Modulation:16QAM, RB Number: 100, RB Position:LOW)

VBW 620 kHz*

Center Frequency(MHz)	Span(MHz)	RBW (MHz)	Detector	Frequency (MHz)	Power (dBm)	Verdict	Sweep Point
1755	40	0.2	RMS	1755.133	-37	Pass	601
Agilent Spectrum Analyzer - Swe XI RF 50 Ω Center Freq 1.75500 PASS Ref Offset 9.6 10 dB/div Ref 30.00 0	AC	Trig: Fre	e Run A	Avg Type: RMS vg Hold: 1/1	03:33:23 PM Mar 31, TRACE 1 2 3 TYPE M WWW DET A A A 1.755 13 G -36.996 dE	456 Fr MMW AAA	equency Auto Tune
Log							

Start Freq 1.735000000 GHz

Stop Freq 1.775000000 GHz

> CF Step 4.000000 MHz Man

Freq Offset 0 Hz

<u>Auto</u>

Span 40.00 MHz #Sweep 1.000 s (601 pts)

END