Project 1 - BBC News Classification

In [49]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
import re
from nltk.corpus import stopwords
from nltk.tokenize import word tokenize
from wordcloud import WordCloud, STOPWORDS
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
```

Importing Data

In [2]:

```
data = pd.read_csv("D:\Python Data Science\BBC News Classification\BBC News Train.csv")
data
```

Out[2]:

	ArticleId	Text	Category
0	1833	worldcom ex-boss launches defence lawyers defe	business
1	154	german business confidence slides german busin	business
2	1101	bbc poll indicates economic gloom citizens in	business
3	1976	lifestyle governs mobile choice faster bett	tech
4	917	enron bosses in \$168m payout eighteen former e	business
1485	857	double eviction from big brother model caprice	entertainment
1486	325	dj double act revamp chart show dj duo jk and \dots	entertainment
1487	1590	weak dollar hits reuters revenues at media gro	business
1488	1587	apple ipod family expands market apple has exp	tech
1489	538	santy worm makes unwelcome visit thousands of \dots	tech

1490 rows × 3 columns

Understanding Features & Target Attributes

In [3]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1490 entries, 0 to 1489
Data columns (total 3 columns):
     Column
                Non-Null Count Dtype
     ArticleId 1490 non-null
                                 int64
 0
               1490 non-null
 1
     Text
                                object
 2
     Category 1490 non-null
                                object
dtypes: int64(1), object(2)
memory usage: 35.0+ KB
In [4]:
data['Category'].value_counts()
Out[4]:
                 346
sport
business
                 336
politics
                 274
                 273
entertainment
tech
                 261
```

Checking Any Null Values

Name: Category, dtype: int64

```
In [5]:
```

```
data.isnull().any()
```

Out[5]:

ArticleId False Text False Category False

dtype: bool

Countplot of Target Attribute(Category)

In [6]:

```
sns.countplot(data.Category).set_title('Countplot of Category')
```

C:\Users\Shivam\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretati on.

warnings.warn(

Out[6]:

Text(0.5, 1.0, 'Countplot of Category')

In [8]:

```
data['Text_length'] = data['Text'].str.len()
data
```

Out[8]:

	ArticleId	Text	Category	Text_length
0	1833	worldcom ex-boss launches defence lawyers defe	business	1866
1	154	german business confidence slides german busin	business	2016
2	1101	bbc poll indicates economic gloom citizens in	business	3104
3	1976	lifestyle governs mobile choice faster bett	tech	3618
4	917	enron bosses in \$168m payout eighteen former e	business	2190
1485	857	double eviction from big brother model caprice	entertainment	1266
1486	325	dj double act revamp chart show dj duo jk and	entertainment	3111
1487	1590	weak dollar hits reuters revenues at media gro	business	1370
1488	1587	apple ipod family expands market apple has exp	tech	3242
1489	538	santy worm makes unwelcome visit thousands of	tech	1723

1490 rows × 4 columns

Distribution Plot

In [9]:

```
sns.distplot(data.Text_length).set_title('News length Distribution')
```

C:\Users\Shivam\anaconda3\lib\site-packages\seaborn\distributions.py:2551: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

Text(0.5, 1.0, 'News length Distribution')

Constructing Wordcloud

In [10]:

```
def text_wordcloud(words):
    wc = WordCloud(width=800, height=500, max_font_size=110).generate(words)
    plt.figure(figsize=(10, 7))
    plt.axis('off')
    plt.imshow(wc, interpolation="bilinear")
```

In [11]:

```
temp_sport = data[data['Category'] == "sport"]
sport_sentences = temp_sport['Text'].tolist()
text = " ".join(sport_sentences)

text_wordcloud(text)
```


In [12]:

```
temp_sport = data[data['Category'] == "entertainment"]
entertainment_sentences = temp_sport['Text'].tolist()
text = " ".join(entertainment_sentences)

text_wordcloud(text)
```

```
recordsinger love list best king number one added list year later sale ukplayed last year later year later year later year later year later year later
```

In [13]:

```
temp_sport = data[data['Category'] == "politics"]
politics_sentences = temp_sport['Text'].tolist()
text = " ".join(politics_sentences)

text_wordcloud(text)
```

```
put mrs brown change will bill new give support Still new give health pay member make make support Still new give health pay member make support Still new give health pay member make support Still new give health pay member make support Still new give give home secretary said mr howard support Still new give home secretary support Still new give home secretary support Still new give give home secretary give home secretary give home secretary give home secretary give give need to give home secretary give home secretary give need to give home secretary give home support give h
```

In [14]:

```
temp_sport = data[data['Category'] == "business"]
business_sentences = temp_sport['Text'].tolist()
text = " ".join(business_sentences)

text_wordcloud(text)
```

```
Tuture analyst investment two deal international yst investment two deal investor investment two deal investor investment two deal investor investment two deal investor inves
```

In [15]:

```
temp_sport = data[data['Category'] == "tech"]
tech_sentences = temp_sport['Text'].tolist()
text = " ".join(tech_sentences)

text_wordcloud(text)
```

```
way play market offer uks people selection of the phone selection of
```

Data Preprocessing

Removing special characters

- \r
- \n

Removing Punctuations & Stopwords

In [16]:

```
def preprocess_text(text):
    text = text.lower().replace('\n',' ').replace('\r','').strip()
    text = re.sub(' +', ' ',text)
    text = re.sub(r'[^\w\s]','',text)

mystopwords = set(stopwords.words('english'))
word_tokenize_output = word_tokenize(text)

temp_word_list = []
for each_word in word_tokenize_output:
    if each_word not in mystopwords:
        temp_word_list.append(each_word)
    temp_word_list = " ".join(temp_word_list)

return temp_word_list
```

In [17]:

```
data['Cleaned_text'] = data['Text'].apply(preprocess_text)
data['Cleaned_text_length'] = data['Cleaned_text'].str.len()
data
```

Out[17]:

	ArticleId	Text	Category	Text_length	Cleaned_text	Cleaned_text_length
0	1833	worldcom ex- boss launches defence lawyers defe	business	1866	worldcom exboss launches defence lawyers defen	1423
1	154	german business confidence slides german busin	business	2016	german business confidence slides german busin	1508
2	1101	bbc poll indicates economic gloom citizens in	business	3104	bbc poll indicates economic gloom citizens maj	2145
3	1976	lifestyle governs mobile choice faster bett	tech	3618	lifestyle governs mobile choice faster better	2412
4	917	enron bosses in \$168m payout eighteen former e	business	2190	enron bosses 168m payout eighteen former enron	1581
1485	857	double eviction from big brother model caprice	entertainment	1266	double eviction big brother model caprice holb	869
1486	325	dj double act revamp chart show dj duo jk and	entertainment	3111	dj double act revamp chart show dj duo jk joel	2080
1487	1590	weak dollar hits reuters revenues at media gro	business	1370	weak dollar hits reuters revenues media group	990
1488	1587	apple ipod family expands market apple has exp	tech	3242	apple ipod family expands market apple expande	2273
1489	538	santy worm makes unwelcome visit thousands of	tech	1723	santy worm makes unwelcome visit thousands web	1225

1490 rows × 6 columns

Label Encoding

In [18]:

```
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
data['Category_target'] = label_encoder.fit_transform(data['Category'])
```

In [19]:

data

Out[19]:

	ArticleId	Text	Category	Text_length	Cleaned_text	Cleaned_text_length	Catego
0	1833	worldcom ex-boss launches defence lawyers defe	business	1866	worldcom exboss launches defence lawyers defen	1423	
1	154	german business confidence slides german busin	business	2016	german business confidence slides german busin	1508	
2	1101	bbc poll indicates economic gloom citizens in 	business	3104	bbc poll indicates economic gloom citizens maj	2145	
3	1976	lifestyle governs mobile choice faster bett	tech	3618	lifestyle governs mobile choice faster better 	2412	
4	917	enron bosses in \$168m payout eighteen former e	business	2190	enron bosses 168m payout eighteen former enron	1581	
1485	857	double eviction from big brother model caprice	entertainment	1266	double eviction big brother model caprice holb	869	
1486	325	dj double act revamp chart show dj duo jk and	entertainment	3111	dj double act revamp chart show dj duo jk joel	2080	
1487	1590	weak dollar hits reuters revenues at media gro	business	1370	weak dollar hits reuters revenues media group 	990	
1488	1587	apple ipod family expands market apple has exp	tech	3242	apple ipod family expands market apple expande	2273	

	ArticleId	Text	Category	Text_length	Cleaned_text	Cleaned_text_length	Catego		
1489	538	santy worm makes unwelcome visit thousands of	tech	1723	santy worm makes unwelcome visit thousands web	1225			
1490 ı	1490 rows × 7 columns								
4							•		

Splitting Data in Training Set and Testing Set

```
In [20]:
x_train,x_test,y_train,y_test = train_test_split(data['Cleaned_text'], data['Category_targe
In [21]:
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(1117,)
(1117,)
(373,)
(373,)
In [28]:
tfidf = TfidfVectorizer(encoding = 'utf-8',
                        ngram_range = (1,2),
                        max_df = 1.,
                        min df = 10,
                        max_features = 300,
features_train = tfidf.fit_transform(x_train).toarray()
labels train = y train
print(features_train.shape)
features_test = tfidf.transform(x_test).toarray()
labels_test = y_test
print(features_test.shape)
(1117, 300)
(373, 300)
```

Building a Model

Logistic Regression

In [34]:

```
lc_model = LogisticRegression()
lc_model.fit(features_train,labels_train)
lc_model_predictions = lc_model.predict(features_test)

print("Accuracy ->", accuracy_score(labels_test,lc_model_predictions))
print(classification_report(labels_test,lc_model_predictions))
```

Accuracy -> 6	.9544235924	932976		
	precision	recall	f1-score	support
0	0.95	0.94	0.95	86
1	0.97	0.97	0.97	62
2	0.96	0.96	0.96	75
3	0.97	0.97	0.97	79
4	0.92	0.93	0.92	71
accuracy			0.95	373
macro avg	0.95	0.95	0.95	373
weighted avg	0.95	0.95	0.95	373

Decision Tree

In [38]:

```
dc_model = DecisionTreeClassifier()
dc_model.fit(features_train,labels_train)
dc_model_predictions = dc_model.predict(features_test)

print("Accuracy ->", accuracy_score(labels_test,dc_model_predictions))
print(classification_report(labels_test,dc_model_predictions))
```

```
Accuracy -> 0.7855227882037533
```

	precision	recall	f1-score	support
0	0.71	0.76	0.73	86
1	0.85	0.74	0.79	62
2	0.74	0.77	0.76	75
3	0.78	0.92	0.84	79
4	0.91	0.72	0.80	71
accuracy			0.79	373
macro avg	0.80	0.78	0.79	373
weighted avg	0.79	0.79	0.79	373

Random Forest

In [40]:

```
rf_model = RandomForestClassifier()
rf_model.fit(features_train,labels_train)
rf_model_predictions = rf_model.predict(features_test)

print("Accuracy ->", accuracy_score(labels_test,rf_model_predictions))
print(classification_report(labels_test,rf_model_predictions))
```

Accuracy -> 0.9302949061662198 recall f1-score precision support 0 0.95 0.91 0.93 86 1 0.90 0.90 0.90 62 2 0.93 0.95 0.94 75 3 0.92 0.97 0.94 79 0.94 0.93 71 0.92 accuracy 0.93 373 0.93 0.93 0.93 373 macro avg

0.93

0.93

KNeighborsClassifier

In [44]:

weighted avg

```
kn_model = KNeighborsClassifier()
kn_model.fit(features_train,labels_train)
kn_model_predictions = kn_model.predict(features_test)

print("Accuracy ->", accuracy_score(labels_test,kn_model_predictions))
print(classification_report(labels_test,kn_model_predictions))
```

0.93

373

```
Accuracy -> 0.900804289544236
```

,	precision	recall	f1-score	support
0 1	0.87 0.95	0.87 0.84	0.87 0.89	86 62
2	0.84	0.92	0.88	75
3	0.97	0.95	0.96	79
4	0.89	0.92	0.90	71
accuracy			0.90	373
macro avg	0.90	0.90	0.90	373
weighted avg	0.90	0.90	0.90	373

Naive Bayes

In [47]:

```
nb_model = GaussianNB()
nb_model.fit(features_train,labels_train)
nb_model_predictions = nb_model.predict(features_test)

print("Accuracy ->", accuracy_score(labels_test,nb_model_predictions))
print(classification_report(labels_test,nb_model_predictions))
```

Accuracy -> 0.9088471849865952

-	precision	recall	f1-score	support
0	0.90	0.86	0.88	86
1	0.87	0.87	0.87	62
2	0.92	0.93	0.93	75
3	0.96	0.97	0.97	79
4	0.88	0.90	0.89	71
accuracy			0.91	373
macro avg	0.91	0.91	0.91	373
weighted avg	0.91	0.91	0.91	373

In []: