Lecture 24

If X(t) is a random process, then for every value of t, X(t) is a random variable, which has a mean E[Xt]. We call

$$\mu_{X}(t)$$
 or $m_{X}(t) = E[X(t)]$

as the mean function of the random process.

The mean function reflects the average behavior of the process with time.

Example: In a communication system, the carrier signal at the receiver is modeled as $X(t) = Cos(2\pi f t + \Theta)$, where $O \sim unif[-T, T]$

$$m_{\chi}(t) = E[\chi(t)] = E[\cos(2\pi f t + 0)]$$

$$= \int \cos(2\pi f t + 0) f(0) d0$$

$$-\pi$$

$$= \int \cos(2\pi f t + 0) \frac{1}{2\pi} d0 = 0$$

$$\to m_{\chi}(t) = 0 \quad \text{for all } \underline{t}.$$

If $X(t_1)$, $X(t_2)$ are two random variables of a process $X(t_1)$, their correlation is denoted by

$$R_{\times}(t_1, t_2) = E[\times_{(1)} \times_{(2)}]$$

Auto-Correlation function of the random process X(t).

The value of $R(t_1, t_2)$ on the "diagonal" $t_1 = t_2 = t$ is the average power of X(t)

$$R(t,t) = E[X(t)]$$

Autocovariance function ((t1, t2) of X(t)

$$C_{X}(t_{1},t_{2}) = Cov(X(t_{1}),X(t_{2}))$$

$$= E[X(t_1)X(t_2)] - \mu_X(t_1)\mu_X(t_2)$$

$$C_X(t,t) = E[X(t)] - H_X(t) = Var(X(t))$$

Properties of auto-correlation and auto-covariance functions.

(1) $R_{\chi}(t_1, t_2) = R_{\chi}(t_2, t_1)$, i.e $R_{\chi}(\cdot, \cdot)$ is a symmetric function of t_1 and t_2 .

Recall that we had the problem in Mid-Term 2, $(E[AB])^2 \le E(A^2)E(B^2)$

 $\Rightarrow E[X(t_1)X(t_2)]^2 \leq E[X(t_1)]E[X(t_2)]$

 $= (R_{x}(t_{1},t_{2}))^{2} \leq E[x^{2}(t_{0})] E[x^{2}(t_{0})]$

 $\left|\mathcal{R}_{\times}(t_1,t_2)\right| \leq \sqrt{E\left(\chi^2(t_0)E\left(\chi^2(t_2)\right)}$

② $C_{\times}(t_1, t_2) = C_{\times}(t_2, t_1)$, i'e the auto-covariance function is also sympnetric.

Let X(t) and Y(t) be two random processes. Their cross-correlation function is

$$R_{XY}(t_1,t_2) = E[X(t_1)Y(t_2)]$$

Their coross-covariance function is

$$C_{XY}(t_1,t_2) = E[(\times(t_1) - \mu_{\chi}(t_1))(Y(t_2) - \mu_{\chi}(t_2))]$$

$$X(t) = Cos(2\pi f t + 0)$$
, where $O \sim unif[-\pi, \pi]$

Auto correlation function

$$R_{\times}(t_1,t_2) = E[\times(t_1)\times(t_2)]$$

=
$$E\left[\cos\left(2\pi f t_1 + \Theta\right)\cos\left(2\pi f t_2 + \Theta\right)\right]$$

$$Cos A Cos B = Cos(A+B) + Cos(A-B)$$

$$= \frac{1}{2} E \left[\cos \left(2\pi f(t_1 + t_2) + \theta \right) + \cos \left(2\pi f(t_1 - t_2) \right) \right]$$

$$= \frac{1}{2} E \left[\cos \left(2\pi f (t_1 + t_2) + \Theta \right) \right] + \frac{1}{2} \cos \left(2\pi f (t_1 - t_2) \right)$$

auto-correlation

$$R_{\chi}(t_{1},t_{2}) = \frac{1}{2} (os(2\pi f(t_{1}-t_{2})))$$

$$X(t) = \cos(2\pi f t + \theta_1)$$

$$Y(t) = \cos(2\pi f t + \Theta_2)$$
, Θ_1 , Θ_2 are independent unif $[-\Pi, \Pi]$ random

$$R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)] = E[Cos(2\pi f t_1 + \theta_1) Cos(2\pi f t_2 + \theta_2)]$$

$$= E[Cos(2\pi f t_1 + \theta_1)] E[Cos(2\pi f t_2 + \theta_2)] \Leftrightarrow \sin \omega$$

$$= O \times O = O$$

$$Cos(2\pi f t_1 + \theta_1) = E[Cos(2\pi f t_2 + \theta_2)] \Leftrightarrow \sin \omega$$

$$= O \times O = O$$

$$Cos(2\pi f t_1 + \theta_1) = O$$

$$Cos(2\pi f t_2 + \theta_2) = O$$

$$Cos(2\pi f t_2 + \theta_1) = O$$

Strict-Sense Stationary and Wide-Sense Stationary Processes

A random process is nth order strictly Stationary if for any collection of n times, $t_1, t_2, ..., t_n$, the joint distribution of $(X(t_1), X(t_2), ..., X(t_n))$ is the same as the joint distribution of $X(t_1+\Delta)$, $X(t_2+\Delta)$, ..., $X(t_n+\Delta)$ for any Δ .

A random process is strictly stationary if it is nth order strictly stationary for every positive, finite integer n.

1st order s.s.
$$f_{X(t)}(x) = f_{X(t+\Delta)}(x)$$
 for $f_{X(t+\Delta)}(x)$

$$2^{nd}$$
 order S.S. $f(x_1, x_2) = f(x_1, x_2)$
 $X(t_1) X(t_2) = X(t_1+\Delta) X(t_2+\Delta)$
for all Δ

Eg : Xn be a sequence of iid r.v.'s with a common density $f(\cdot)$

Wide-Sense Stationary (WSS)

A random process is WSS if the following two properties (both) hold:

- (i) The mean function $\mu_{X}(t)$ does not depend on time t, i'e. $E[\times(t)] = \mu_{\times}$
- (ii) The correlation function Rx(t1, t2) depends on to and to only through the time difference t1-t2.

$$R_{X}(t_{1}, t_{2}) = R_{X}(t_{1}, t_{7})$$
, where $= R_{X}(t_{1}, t_{7})$

$$R_{x}(t_{1},t_{2}) = R_{x}(t_{1},t_{1}-z)$$

$$= R_{x}(z) \qquad (t_{1}-z)$$
Strictly
$$= R_{x}(z) \qquad (t_{1}-z)$$
Fact: Every Stationary process is WSS.

However WSS does NOT imply S.S.

Eg: Input to a digital filter is an iid random sequence X_2 X_1 X_0 X_1 X_2... with $E[x_i] = 0$, $Var[x_i] = 1$ for all i. The output of the filter is a random sequence ... I2 1/2 /1 /2 ...

 $\forall n = \times_n + \times_{n-1}$ for all integers n. Find $\mu_{\gamma}(n)$, and $C_{\gamma}(m,n)$ of γ_n . mean auto-correlation function

 $E[Y_n] = E[X_n + X_{n-1}] = E[X_n] + E[X_{n-1}]$

 \Rightarrow E[Yn] = 0 for all n.

 $\Rightarrow \left[\mu_{Y}(n) = E[Y_n] = 0 \right]$

 $C_{\Upsilon}(m, n) = E[\Upsilon(m)\Upsilon(n)] - M_{\Upsilon}(m)M_{\Upsilon}(n)$ $= E[\Upsilon_m \Upsilon_n]$ $= E[(\times_m + \times_{m-1})(\times_n + \times_{n-1})]$

 $= E \left[\times_{mn} + \times_{m} \times_{n-1} + \times_{m-1} \times_{n} + \right]$

 $= C_{\times}(m,n) + C_{\times}(m,n-1) + C_{\times}(m-1,n) + C_{\times}(m-1,n-1)$

To find this, we note that

$$C_{\times}(m,n) = E[\times_m \times_n] = \begin{cases} 0 & \text{if } m \neq n \\ 1 & \text{if } m = n. \end{cases}$$

$$C_{\gamma}(m,n) = C_{\chi}(m,n) + C_{\chi}(m,n-1) + C_{\chi}(m-1,n) + C_{\chi}(m-1,n-1)$$

If
$$m = n \Rightarrow C_{\chi}(m, n) = C_{\chi}(m, m) + C_{\chi}(m-1, m-1)$$

$$= 2$$

$$\begin{cases} \text{If } m=n-1 \Rightarrow C_Y(m,n)=C_X(m,m)=1 \\ \text{If } m-1=n \Rightarrow C_Y(m,n)=C_X(n,n)=1 \end{cases}$$

If
$$m-1=n \Rightarrow C_{Y}(m,n) = C_{X}(n,n) = 1$$

or
$$|m-n|=1$$

For
$$|m-n| > 1$$
 $C_{\gamma}(m,n) = 0$

Jointly Wide-Sense Stationary Processes

X(t) and Y(t) are jointly WSS if (a) both X(t) and Y(t) are WSS, and

(b) $Cross-correlation depends only on time difference <math>R_{XY}(t,t-z)=R_{XY}(z)$

Es Let Xn be a WSS discrete-time random process, with auto-correlation function Rx[k], Let Yn be a random process as: and zero-

$$\forall n = (-1)^n \times n$$

(1) Is Yn WSS ?

$$E[Y_n] = (-1)^n E[X_n] = 0$$
 (does not depend on time)

 $R_{Y}(n, n+k) = E[Y_n Y_{n+k}]$ = E[(-1)" ×n (-1)" ×n+k]

$$= (-1)^{k} R [k]$$

= (-1) E[Xn Xn+k]

= (-1) R [k] (auto-correlation depends only on time-difference k)

(ii) Cross-correlation

$$R_{XY}(n, n+k) = E[X_n Y_{n+k}]$$

$$= E\left[\times_{n} (-1)^{n+k} \times_{n+k} \right]$$

$$= (-1)^{n+k} R_{\times}(k)$$

 $= (-1)_{k}^{n+k} R_{x}[k]$ depends on n and k both

even though Xn is WSS and Yn is WSS.