a) Podem representar la situació amb el següent esquema, on hem situat la càrrega positiva en el punt $P_1=(-0.2,0)$ i la negativa al punt $P_2=(0.2,0)$. En aquestes condicions, el tercer vèrtex del triangle equilàter es troba al punt $P_3=(0,0.4\sin 60^\circ)=(0,0.4\frac{\sqrt{3}}{2})=(0,0.2\sqrt{3})$

Per calcular el camp elèctric en P_3 , creat per q_1 i q_2 , necessitem els vectors

$$\overrightarrow{P_1P_3} = (0, 0.2\sqrt{3}) - (-0.2, 0) = (0.2, 0.2\sqrt{3})$$

$$\overrightarrow{P_2P_3} = (0, 0.2\sqrt{3}) - (0.2, 0) = (-0.2, 0.2\sqrt{3})$$

i el seu mòdul

$$|\overrightarrow{P_1P_3}| = \sqrt{(0.2)^2 + (0.2\sqrt{3})^2} = 0.2\sqrt{1 + (\sqrt{3})^2} = 0.2\sqrt{1 + 3} = 0.4 \, m$$

$$|\overrightarrow{P_2P_3}| = \sqrt{(-0.2)^2 + (0.2\sqrt{3})^2} = 0.2\sqrt{1 + (\sqrt{3})^2} = 0.2\sqrt{1 + 3} = 0.4 \, m$$

ara podem calcular

$$\vec{E}_{P_3} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{P_1}\overrightarrow{P_3}|^3} \overrightarrow{P_1} \overrightarrow{P_3} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{|\overrightarrow{P_1}\overrightarrow{P_3}|^3} \overrightarrow{P_2} \overrightarrow{P_3}$$

$$= 9 \cdot 10^9 \frac{3 \cdot 10^{-8}}{(0,4)^3} \cdot (0.2, 0.2\sqrt{3}) + 9 \cdot 10^9 \cdot \frac{-3 \cdot 10^{-8}}{(0,4)^3} \cdot (-0.2, 0.2\sqrt{3})$$

$$= \frac{9 \cdot 10^9 \cdot 3 \cdot 10^{-8} \cdot 0, 2}{(0.4)^3} \left[(1, \sqrt{3}) + (1, -\sqrt{3}) \right]$$

$$= \frac{9 \cdot 10^9 \cdot 3 \cdot 10^{-8} \cdot 0, 2}{(0.4)^3} \left(2, 0 \right)$$

$$= (1.687.5, 0) N/C$$

La representació del camp seria

En quant al potencial elèctric en P_3

$$V_{P_3} = V_1^{P_3} + V_2^{P_3}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overline{P_1P_3}|} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{|\overline{P_2P_3}|}$$

$$= 9 \cdot 10^9 \frac{3 \cdot 10^{-8}}{0, 4} + 9 \cdot 10^9 \cdot \frac{-3 \cdot 10^{-8}}{0, 4}$$

$$= 0 V$$

b) Per trobar l'energia potencial elèctrica de les dues càrregues, calculem el treball que cal fer per dur-les des de l'infinit fins el punt on es troben.

El treball per dur la càrrega q_1 al punt P_1 des de l'infinit

$$W_{\infty \to P_1} = q_1 \cdot (V_{P_1} - V_{\infty}) = q_1 \cdot (0 - 0) = 0 V$$

quan q_1 es dirigeix a P_1 , no hi ha cap altre càrrega present i el potencial en P_1 val zero

Ara, el treball per dur la càrrega q_2 al punt P_2 des de l'infinit

$$W_{\infty \to P_2} = q_2 \cdot (V_{P_2} - V_{\infty}) = q_2 \cdot \left(\frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overline{P_1 P_2}|} - 0 \right) = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\overline{P_1 P_2}|}$$

quan q_2 arriba a P_2 , sentirà l'efecte del potencial que crea q_1 en aquest punt.

Noteu que sovint es pren aquest darrer resultat com a "fórmula" per calcular l'energia potencial elèctrica de dues càrregues. Si al problema que hem de resoldre n'hi ha tres o més, llavors la "fórmula" anterior ja no és útil. És sempre millor conèixer els mètodes generals que funcionen en qualsevol situació, independentment del nombre de càrregues presents o la seva disposició en figures més o menys regulars.

La suma $W_{\infty \to P_1} + W_{\infty \to P_2}$ d'aquests dos treballs és l'energia de configuració o energia potencial elèctrica del sistema de càrregues

$$E_i = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\overrightarrow{P_1 P_2}|}$$

Quan la distància es duplica, fent una anàlisi semblant, es comprova que aquesta energia val ara

$$E_f = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{\left(2|\overrightarrow{P_1 P_2}|\right)}$$

Llavors, per la variació de l'energia potencial elèctrica, tenim

$$\Delta E = E_f - E_i = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{2|\overrightarrow{P_1 P_2}|} - \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{|\overrightarrow{P_1 P_2}|}$$

$$= -\frac{1}{2} \cdot \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\overrightarrow{P_1 P_2}|}$$

substituint els valors coneguts

$$\Delta E = -\frac{1}{2} \cdot 9 \cdot 10^9 \cdot \frac{-(3 \cdot 10^{-8})^2}{0.4} = 1,0125 \cdot 10^{-5} \, J > 0$$

l'energia potencial augmenta, que és el que podíem esperar ja que les càrregues de diferent signe s'atrauen, l'energia potencial que tenen com a parella és negativa i si les separem, aquesta energia s'acosta a zero pels valors negatius, per tant augmenta.

a)

Per calcular la força que fan Q_1 i Q_2 sobre Q_3 , calcularem el camp elèctric que creen Q_1 i Q_2 en el punt P_3 . Necessitem els vectors

$$\overrightarrow{P_1P_3} = (3,0) - (-1,3) = (4,-3)$$

 $\overrightarrow{P_2P_3} = (3,0) - (3,3) = (0,-3)$

i el seu mòdul

$$|\overrightarrow{P_1P_3}| = \sqrt{(4)^2 + (-3)^2} = 5 m$$

 $|\overrightarrow{P_2P_3}| = \sqrt{(0)^2 + (-3)^2} = 3 m$

ara podem calcular

$$\vec{E}_{P_3} = \frac{1}{4\pi\epsilon_0} \frac{Q_1}{|\vec{P}_1 \vec{P}_3|^3} \overrightarrow{P}_1 \overrightarrow{P}_3 + \frac{1}{4\pi\epsilon_0} \frac{Q_2}{|\vec{P}_1 \vec{P}_3|^3} \overrightarrow{P}_2 \overrightarrow{P}_3$$

$$= 9 \cdot 10^9 \cdot \frac{3 \cdot 10^{-6}}{5^3} \cdot (4, -3) + 9 \cdot 10^9 \cdot \frac{-5 \cdot 10^{-6}}{3^3} \cdot (0, -3)$$

$$= 9 \cdot 10^9 \cdot 10^{-6} \left[\frac{3}{5^3} \cdot (4, -3) - \frac{5}{3^3} \cdot (0, -3) \right]$$

$$= 9 \cdot 10^3 \cdot \left(\frac{12}{125}, \frac{1634}{3375} \right)$$

$$= \left(\frac{108000}{125}, \frac{14706000}{3375} \right) N/C$$

Llavors la força que experimenta Q_3 ,

$$\vec{F} = q\vec{E} = Q_3\vec{E_{P_3}} = -8 \cdot 10^{-6} \cdot \left(\frac{108000}{125}, \frac{4896000}{1125}\right) = (-0.0069, -0.0348) N$$

b)

El treball demanat per portar la càrrega Q_3 des del punt P_3 a P_4 el calcularem amb

$$W_{P_3 \to P_4} = Q_3(V_{P_4} - V_{P_3})$$

Llavors, calculem el potencial elèctric que creen en aquest dos punts les càrregues Q_1 i Q_2

$$V_{P_3} = V_1^{P_3} + V_2^{P_3}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{P_1P_3}|} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{|\overrightarrow{P_2P_3}|}$$

$$= 9 \cdot 10^9 \cdot \frac{3 \cdot 10^{-6}}{5} + 9 \cdot 10^9 \cdot \frac{-5 \cdot 10^{-6}}{3}$$

$$= -9600 V$$

Hem de fer un càlcul semblant per el punt P_4 , però abans hem de calcular els vectors

$$\overrightarrow{P_1P_4} = (-1, -3) - (-1, 3) = (0, -6)$$

$$\overrightarrow{P_2P_4} = (-1, -3) - (3, -3) = (-4, -6)$$

$$|\overrightarrow{P_1P_4}| = \sqrt{(0)^2 + (-6)^2} = 6 m$$

 $|\overrightarrow{P_2P_4}| = \sqrt{(-4)^2 + (-6)^2} = 2\sqrt{13} m$

Ara

$$V_{P_4} = V_1^{P_4} + V_2^{P_4}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{P_1P_4}|} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{|\overrightarrow{P_2P_4}|}$$

$$= 9 \cdot 10^9 \cdot \frac{3 \cdot 10^{-6}}{6} + 9 \cdot 10^9 \cdot \frac{-5 \cdot 10^{-6}}{2\sqrt{13}}$$

$$= -1740 V$$

Finalment

$$W_{P_3 \to P_4} = Q_3(V_{P_4} - V_{P_3}) = -8 \cdot 10^{-6} \cdot (-1740 - (-9600)) = -0.06288 J$$

Hem calculat el treball que hem de fer per moure la càrrega, com el resultat és negatiu, interpretem que el treball el fa el camp.

Exercici 46

Fixem la notació de les dades de l'exercici

$$A = (0,3)$$
 $B = (0,-5)$ $P = (4,0)$ $O = (0,0)$
 $q_A = 3\mu C$ $q_B = -7\mu C$

a) Llavors, per començar a calcular el camp que creen q_A, q_B en P necessitem com sempre els vectors

$$\overrightarrow{AP} = (4,0) - (0,3) = (4,-3)$$

$$\overrightarrow{BP} = (4,0) - (0,-5) = (4,5)$$

$$|\overrightarrow{AP}| = \sqrt{(4)^2 + (-3)^2} = 5 m$$

 $|\overrightarrow{BP}| = \sqrt{(4)^2 + (5)^2} = \sqrt{41} m$

Ara podem calcular

$$\vec{E}_P = \frac{1}{4\pi\epsilon_0} \frac{q_A}{|\overrightarrow{AP}|^3} \overrightarrow{AP} + \frac{1}{4\pi\epsilon_0} \frac{q_B}{|\overrightarrow{BP}|^3} \overrightarrow{BP}$$

$$= 9 \cdot 10^9 \cdot \frac{3 \cdot 10^{-6}}{5^3} \cdot (4, -3) + 9 \cdot 10^9 \cdot \frac{-7 \cdot 10^{-6}}{(\sqrt{41})^3} \cdot (4, 5)$$

$$= 9 \cdot 10^9 \cdot 10^{-6} \left[\frac{3}{5^3} \cdot (4, -3) - \frac{7}{(\sqrt{41})^3} \cdot (4, 5) \right]$$

$$= (-95.897, -1847.87) N/C$$

b) El potencial elèctric en P

$$V_{P} = V_{A}^{P} + V_{B}^{P}$$

$$= \frac{1}{4\pi\epsilon_{0}} \frac{q_{A}}{|\overrightarrow{AP}|} + \frac{1}{4\pi\epsilon_{0}} \frac{q_{B}}{|\overrightarrow{BP}|}$$

$$= 9 \cdot 10^{9} \cdot \frac{3 \cdot 10^{-6}}{5} + 9 \cdot 10^{9} \cdot \frac{-7 \cdot 10^{-6}}{\sqrt{41}}$$

$$= -4438,95 V$$

Per trobar el potencial elèctric en O calculem els vectors

$$\overrightarrow{AO} = (0,0) - (0,3) = (0,-3)$$

 $\overrightarrow{BO} = (0,0) - (0,-5) = (0,5)$

$$|\overrightarrow{AO}| = \sqrt{(0)^2 + (-3)^2} = 3 m$$

 $|\overrightarrow{BO}| = \sqrt{(0)^2 + (5)^2} = 5 m$

Llavors

$$V_O = V_A^O + V_B^O$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_A}{|\overrightarrow{AO}|} + \frac{1}{4\pi\epsilon_0} \frac{q_B}{|\overrightarrow{BO}|}$$

$$= 9 \cdot 10^9 \cdot \frac{3 \cdot 10^{-6}}{3} + 9 \cdot 10^9 \cdot \frac{-7 \cdot 10^{-6}}{5}$$

$$= -3600 V$$

Finalment,

$$V_O - V_P = -3600 - (-4438, 95) = 838, 95$$

c) El treball que hem de fer per dur una càrrega de $5\mu C$ des del punt O fins a P val

$$W_{O\to P} = 5 \cdot 10^{-6} (V_P - V_O) = 5 \cdot 10^{-6} \cdot (-838, 95) = -0,0042 J$$

Com el resultat és negatiu la conclusió és que el treball el fa el camp.

Exercici 47

Situem la càrrega Q_2 a l'origen de coordenades O=(0,0) de forma que les coordenades de Q_1 són A=(0,2) i el centre del quadrat C=(1,1). En aquestes condicions el camp elèctric en C es pot calcular un cop trobats els vectors

$$\overrightarrow{AC} = (1,1) - (0,2) = (1,-1)$$

 $\overrightarrow{OC} = (1,1) - (0,0) = (1,1)$

amb mòdul

$$|\overrightarrow{AC}| = \sqrt{(1)^2 + (-1)^2} = \sqrt{2} m$$

 $|\overrightarrow{OC}| = \sqrt{(1)^2 + (1)^2} = \sqrt{2} m$

llavors

$$\vec{E}_C = \frac{1}{4\pi\epsilon_0} \frac{Q_1}{|\overrightarrow{AC}|^3} \overrightarrow{AC} + \frac{1}{4\pi\epsilon_0} \frac{Q_2}{|\overrightarrow{OC}|^3} \overrightarrow{OC}$$

$$= 9 \cdot 10^9 \cdot \frac{9 \cdot 10^{-6}}{(\sqrt{2})^3} \cdot (1, -1) + 9 \cdot 10^9 \cdot \frac{-9 \cdot 10^{-6}}{(\sqrt{2})^3} \cdot (1, 1)$$

$$= \frac{9^2 \cdot 10^9 \cdot 10^{-6}}{(\sqrt{2})^3} \left[(1, -1) - (1, 1) \right]$$

$$= (0, -5.73 \cdot 10^4) N/C$$

b) El treball que fa *el camp* elèctric per moure una càrrega Q_3 des del punt C al punt D=(2,0) val

$$W_{C\to D} = -Q_3(V_D - V_C)$$

llavors calculem el potencial en el punt C=(1,1)

$$V_C = V_1^C + V_2^C$$

$$= \frac{1}{4\pi\epsilon_0} \frac{Q_1}{|\overrightarrow{AC}|} + \frac{1}{4\pi\epsilon_0} \frac{Q_2}{|\overrightarrow{OC}|}$$

$$= 9 \cdot 10^9 \cdot \frac{9 \cdot 10^{-6}}{\sqrt{2}} + 9 \cdot 10^9 \cdot \frac{-9 \cdot 10^{-6}}{\sqrt{2}}$$

$$= 0 V$$

per calcular el potencial en el punt D = (2,0) necessitem els vectors

$$\overrightarrow{AD} = (2,0) - (0,2) = (2,-2)$$

 $\overrightarrow{OD} = (2,0) - (0,0) = (2,0)$

amb mòdul

$$|\overrightarrow{AD}| = \sqrt{(2)^2 + (-2)^2} = 2\sqrt{2} m$$

 $|\overrightarrow{OD}| = \sqrt{(2)^2 + (0)^2} = 2 m$

llavors

$$V_D = V_1^D + V_2^D$$

$$= \frac{1}{4\pi\epsilon_0} \frac{Q_1}{|\overrightarrow{AD}|} + \frac{1}{4\pi\epsilon_0} \frac{Q_2}{|\overrightarrow{OD}|}$$

$$= 9 \cdot 10^9 \cdot \frac{9 \cdot 10^{-6}}{2\sqrt{2}} + 9 \cdot 10^9 \cdot \frac{-9 \cdot 10^{-6}}{2}$$

$$= -1.19 \cdot 10^4 V$$

i finalment

$$W_{C\to D} = Q_3(V_D - V_C) = 7 \cdot 10^{-6}(-1, 19 - 0) = -8, 30 \cdot 10^{-2} J$$

a) Escrivim les equacions que corresponen a l'equilibri en els eixos horitzontal i vertical

$$T_x = F_e$$
$$T_y = mg$$

que es poden escriure (sabent que la corda té una longitud L), com

$$T \sin \alpha = \frac{1}{4\pi\epsilon_0} \frac{q^2}{(2L \sin \alpha)^2}$$
$$T \cos \alpha = mg$$

dividint les equacions d'adalt a baix

$$\tan \alpha = \frac{1}{4\pi\epsilon_0} \frac{q^2}{(2L\sin\alpha)^2} \frac{1}{mg}$$

d'on

$$m = \frac{1}{4\pi\epsilon_0} \frac{q^2}{(2L\sin\alpha)^2} \frac{1}{g\tan\alpha}$$
$$= 9 \cdot 10^9 \cdot \frac{(-5, 8 \cdot 10^{-6})^2}{(2 \cdot 1 \cdot \sin 30^\circ)^2} \cdot \frac{1}{9, 8 \cdot \tan 30^\circ}$$
$$= 5, 35 \cdot 10^{-2} \, kg$$

b) Per calcular el camp elèctric que creen les càrregues Q en el punt P fem servir un sistema de coordenades de forma que aquest punt sigui l'origen, per exemple. Llavors, les càrregues es troben situades als punts

$$A = (-L\sin\alpha, -L\cos\alpha) = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

$$B = (L\sin\alpha, -L\cos\alpha) = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

Ara necessitem els vectors (trivialment unitaris, per la geometria de la figura)

$$\widehat{AP} = (0,0) - \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

$$\widehat{BP} = (0,0) - \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

Llavors el camp elèctric en P es calcula com

$$\vec{E}_P = \frac{1}{4\pi\epsilon_0} \frac{Q}{|\widehat{AP}|^3} \widehat{AP} + \frac{1}{4\pi\epsilon_0} \frac{Q}{|\widehat{BP}|^3} \widehat{BP}$$

$$=9\cdot 10^9\cdot \frac{-5,8\cdot 10^{-6}}{1^3}\cdot \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)+9\cdot 10^9\cdot \frac{-5,8\cdot 10^{-6}}{1^3}\cdot \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$$

$$= (0, -9.04 \cdot 10^4) \, N/C$$

Exercici 49

a) El treball que fa el camp elèctric sobre l'electró s'inverteix en variar la seva energia cinètica

$$W = q\Delta V = \frac{1}{2}mv^2$$

d'on

$$\Delta V = \frac{mv^2}{2q} = \frac{9,11 \cdot 10^{-31} \cdot (2 \cdot 10^6)^2}{2 \cdot (1,6 \cdot 10^{-19})} = 11,39 V$$

Les càrregues negatives es mouen espontàniament, tal com vam veure a teoria, de potencials baixos a alts, per tant $V_B > V_A$.

b) L'electró descriurà un moviment parabòlic tal com vam veure a la teoria i es veurà atret per la placa inferior. En aquestes condicions podem escriure

$$F = ma \to Eq = ma \to a = \frac{Eq}{m} = \frac{500 \cdot 1, 6 \cdot 10^{-19}}{9, 11 \cdot 10^{-31}} = 8,78 \cdot 10^{13} \, m/s^2$$

Les components de la velocitat (en mòdul) per tot temps són

$$v_x = v_{0x} = 2 \cdot 10^6 \, m/s$$
$$v_y = v_{0y} + at$$

el temps que tarda a sortir de la regió on hi ha camp elèctric és justament el que tarda a recórrer la longitud de $2\,cm$ que tenen les plaques, aleshores

$$x = v_x t \to t = \frac{x}{v_x} = \frac{0.02}{2 \cdot 10^6} = 10^{-8} \, s$$

llavors, per aquest instant del temps

$$v_x = v_{0x} = 2 \cdot 10^6 \, m/s$$

$$v_y = v_{0y} + at = 0 + 8,78 \cdot 10^{13} \cdot 10^{-8} = 8,78 \cdot 10^5 \, m/s$$

Com hem comentat abans, l'electró corbarà la seva trajectòria cap a baix. Exercici ${\bf 50}$

a)

Tenim

$$\Delta V = Ed = 5000 \cdot 0,01 = 50 V$$

Aquest resultat ha de ser positiu necessàriament, ja que E és el mòdul del vector camp elèctric i d és una distància. En aquest sentit, és difícil justificar un signe per la diferència de potencial, donat que segons com la prenguem surt un o altre resultat. En qualsevol cas la placa positiva es troba a un potencial més alt que la negativa, (recordem els apunts de teoria on es parla del potencial creat per càrregues), llavors,

$$V_{+} - V_{-} = 50 V$$
 $V_{-} - V_{+} = -50 V$

a) Considerem ara aquestes dues partícules

Com que la càrrega A queda suspesa en l'aire, alguna força ha de compensar la del pes que va cap a baix, llavors, ha de ser q_A positiva. Per la càrrega q_B , si fos neutra, cauria amb l'acceleració de la gravetat, $9,8\,m/s^2$. Com que la seva acceleració de baixada és més gran que aquest valor, ha de patir una força suplementaria, que ve donada pel camp elèctric, cosa que obliga a que sigui negativa. Per cada càrrega podem escriure

$$E \cdot q_A = mg \to q_A = \frac{mg}{E} = \frac{0.5 \cdot 10^{-9} \cdot 9.8}{5000} = 9.8 \cdot 10^{-13} C$$

$$E \cdot q_B + mg = ma \rightarrow q_B = m \cdot \frac{a-g}{E} = 0, 5 \cdot 10^{-9} \cdot \frac{14, 7-9, 8}{5000} = 4, 9 \cdot 10^{-13} C$$

Exercici 51

a) De la gràfica es veu que

$$V(10 cm) - V(0 cm) = 700 - 100 = 600 V$$

b) Suposem que l'equació serà

$$V = mx + n$$

llavors

$$\begin{cases} 700 = m \cdot 0, 1 + n \\ 100 = m \cdot 0 + n \end{cases}$$

d'on

$$n = 100 \, V$$

$$m = \frac{700 - n}{0, 1} = \frac{700 - 100}{0, 1} = 6000 \, V/m$$

i l'equació de la recta queda

$$V = 6000x + 100$$

Per trobar el valor del camp elèctric, recordem que és

$$\Delta V = E \cdot d$$

de forma que podem identificar el pendent de la recta, m=1000 amb el valor del camp elèctric, és a dir

$$E = 6000 \, V/m$$

Exercici 52

a) Situem la càrrega Q_2 a l'origen de coordenades O=(0,0) de forma que les coordenades de Q_1 són $P_1=(0,0.15)$, les de Q_3 són $P_3=(0.15,0)$ i les del punt A, (0.15,0.15). En aquestes condicions el camp elèctric en A es pot calcular un cop trobats els vectors

$$\overrightarrow{P_1 A} = (0.15, 0.15) - (0, 0.15) = (0.15, 0)$$

$$\overrightarrow{P_2 A} = (0.15, 0.15) - (0, 0) = (0.15, 0.15)$$

$$\overrightarrow{P_3 A} = (0.15, 0.15) - (0.15, 0) = (0, 0.15)$$

$$|\overrightarrow{P_1 A}| = \sqrt{0.15^2 + 0^2} = 0.15 m$$

$$|\overrightarrow{P_2 A}| = \sqrt{0.15^2 + 0.15^2} = 0.15 \sqrt{2} m$$

$$|\overrightarrow{P_3 A}| = \sqrt{0^2 + 0.15^2} = 0.15 m$$

llavors

$$\vec{E}_A = \frac{1}{4\pi\epsilon_0} \frac{Q_1}{|P_1 A|^3} \overrightarrow{P_1 A} + \frac{1}{4\pi\epsilon_0} \frac{Q_2}{|P_2 A|^3} \overrightarrow{P_2 A} + \frac{1}{4\pi\epsilon_0} \frac{Q_3}{|P_3 A|^3} \overrightarrow{P_3 A}$$

$$= 9 \cdot 10^9 \cdot \frac{10^{-6} \cdot 0.15}{0.15^3} \left[(1,0) + \frac{-2}{(\sqrt{2})^3} \cdot (1,1) + (0,1) \right]$$

$$= 4 \cdot 10^5 \left(1 + \frac{-2}{(\sqrt{2})^3}, \frac{-2}{(\sqrt{2})^3} + 1 \right)$$

$$= (1.17 \cdot 10^5, 1.17 \cdot 10^5) N/C$$

b) Calculem el potencial en el punt A = (0.15, 0.15)

$$V_A = V_1^A + V_2^A + V_3^A$$

$$= \frac{1}{4\pi\epsilon_0} \frac{Q_1}{|\overrightarrow{P_1 A}|} + \frac{1}{4\pi\epsilon_0} \frac{Q_2}{|\overrightarrow{P_2 A}|} + \frac{1}{4\pi\epsilon_0} \frac{Q_2}{|\overrightarrow{P_3 A}|}$$

$$= 9 \cdot 10^9 \cdot \frac{10^{-6}}{0,15} \left[1 - \frac{2}{\sqrt{2}} + 1 \right]$$

$$= 3,51 \cdot 10^4 V$$

El treball que hem de fer per moure una càrrega $Q_4 = 7 \cdot 10^{-6} \, C$ des de l'infinit fins al punt A val

$$W_{\infty \to A} = Q_4(V_A - V_\infty) = 7 \cdot 10^{-6} \cdot (3.51 \cdot 10^4 - 0) = 2.5 \cdot 10^{-4} J$$

El treball l'ha de fer un agent extern.

a) Siguin

$$A = (0,0), \quad B = (3,0), \quad C = (1.5,0), \quad P = (0,4)$$

$$Q_A = 10^{-4} \, C \quad Q_B = -10^{-4} \, C$$

Per calcular el potencial elèctric en P necessitem els vectors

$$\overrightarrow{AP} = (0,4) - (0,0) = (0,4)$$

 $\overrightarrow{BP} = (0,4) - (3,0) = (-3,4)$

amb mòdul

$$|\overrightarrow{AP}| = \sqrt{0^2 + 4^2} = 4 m$$
$$|\overrightarrow{BP}| = \sqrt{(-3)^2 + 4^2} = 5 m$$

Llavors

$$V_P = V_A^P + V_B^P$$

$$= \frac{1}{4\pi\epsilon_0} \frac{Q_A}{|\overrightarrow{AP}|} + \frac{1}{4\pi\epsilon_0} \frac{Q_B}{|\overrightarrow{BP}|}$$

$$= 9 \cdot 10^9 \cdot 10^{-4} \left[\frac{1}{4} - \frac{1}{5} \right]$$

$$= 4, 5 \cdot 10^4 V$$

b) Per trobar l'acceleració que pateix el protó al punt C, calcularem la força elèctrica, que al seu torn depèn del camp elèctric. Ara necessitem els vectors

$$\overrightarrow{AC} = (1.5, 0) - (0, 0) = (1.5, 0)$$

 $\overrightarrow{BC} = (1.5, 0) - (3, 0) = (-1.5, 0)$

$$|\overrightarrow{AP}| = \sqrt{(1.5)^2 + 0^2} = 1.5 \, m$$

 $|\overrightarrow{BP}| = \sqrt{(-1.5)^2 + 0^2} = 1.5 \, m$

$$\vec{E}_C = \frac{1}{4\pi\epsilon_0} \frac{Q_A}{|\overrightarrow{AC}|^3} \overrightarrow{AC} + \frac{1}{4\pi\epsilon_0} \frac{Q_B}{|\overrightarrow{BC}|^3} \overrightarrow{BC}$$

$$= \frac{9 \cdot 10^9 \cdot 10^{-4}}{1.5^3} \left[1 \cdot (1.5, 0) + (-1) \cdot (-1.5, 0) \right]$$

$$= (8 \cdot 10^5, 0) N/C$$

Ara podem calcular

$$\vec{a} = \frac{\vec{F}}{m_p} = \frac{q_p \cdot \vec{E}}{m_p} = \frac{1, 6 \cdot 10^{-19}}{1, 67 \cdot 10^{-27}} \cdot (8 \cdot 10^5, 0) = (7, 67 \cdot 10^{13}, 0) \, m/s^2$$

 \mathbf{c}) Calculem la variació d'energia potencial elèctrica (a l'apartat b) de l'exercici 44. es va fer la justificació del resultat que farem servir a continuació)

$$\Delta E = E_f - E_i = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_A Q_B}{2|\overrightarrow{AB}|} - \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_A Q_B}{|\overrightarrow{AB}|}$$
$$= -\frac{1}{2} \cdot \frac{1}{4\pi\epsilon_0} \frac{Q_A Q_B}{|\overrightarrow{AB}|}$$

amb $\overrightarrow{AB} = (3,0) \rightarrow |\overrightarrow{AB}| = 3 \, m$. Llavors, substituint els valors coneguts

$$\Delta E = -\frac{1}{2} \cdot 9 \cdot 10^9 \cdot \frac{-(10^{-4})^2}{3} = 15 J > 0$$

l'energia potencial augmenta, que és el que podíem esperar ja que les càrregues de diferent signe s'atrauen, l'energia potencial que tenen com a parella és negativa i si les separem, aquesta energia s'acosta a zero pels valors negatius, per tant augmenta.

a) Situem la càrrega $q_1 = 2 \cdot 10^{-6} \, C$ a l'origen de coordenades O = (0,0) i la càrrega $q_2 = 20 \cdot 10^{-6} \, C$ al punt A = (2,0). Per calcular el camp elèctric que creen en un punt de coordenades B = (x,0) situat entre elles, calculem primer els vectors

$$\overrightarrow{OB} = (x,0) - (0,0) = (x,0)$$

$$\overrightarrow{AB} = (x,0) - (2,0) = (x-2,0) = (-(2-x),0)$$

(on el vector \overrightarrow{AB} s'ha escrit d'una forma aparentment capriciosa per poder simplificar còmodament més tard)

amb mòdul

$$|\overrightarrow{OB}| = \sqrt{x^2 + 0^2} = x m$$
$$|\overrightarrow{AB}| = \sqrt{\left(-(2-x)\right)^2 + 0^2} = (2-x) m$$

Llavors

$$\vec{E}_B = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{OB}|^3} \overrightarrow{OB} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{|\overrightarrow{AB}|^3} \overrightarrow{AB} = 0$$

$$\underbrace{\frac{1}{4\pi\epsilon_0}}_{\overrightarrow{OB}|^3} \overrightarrow{OB} + \underbrace{\frac{1}{4\pi\epsilon_0}}_{\overrightarrow{AB}|^3} \overrightarrow{AB} = 0$$

$$\frac{2 \cdot 10^{-6}}{x^3} \cdot (x,0) + \frac{20 \cdot 10^{-6}}{(2-x)^3} \cdot (-(2-x),0) = 0$$

$$\frac{2}{x^{3/2}} \cdot (x, 0) + \frac{20}{(2-x)^{3/2}} \cdot (-(2-x), 0) = 0$$

$$\frac{2}{x^2} \cdot (1,0) + \frac{20}{(2-x)^2} \cdot (-1,0) = 0$$

$$\frac{2}{x^2} + \frac{20 \cdot (-1)}{(x-2)^2} = 0$$

$$\frac{1}{x^2} = \frac{10}{(x-2)^2} \to (x-2)^2 = 10x^2$$

$$x - 2 = \pm x\sqrt{10} \to x \mp x\sqrt{10} = 2 \to x = \frac{2}{1 \mp \sqrt{10}}$$

La única solució que té sentit en el problema és

$$x = \frac{2}{1 + \sqrt{10}} = 0,48 \, m$$

ja que amb dues càrregues positives el camp elèctric només es pot anular en algun punt situat entre elles.

b) Sigui P = (0.2, 0) el punt on es vol calcular el potencial elèctric degut a la presència de les dues càrregues. Necessitem els vectors

$$\overrightarrow{OP} = (0.2, 0) - (0, 0) = (0.2, 0)$$

 $\overrightarrow{AP} = (0.2, 0) - (2, 0) = (-1.8, 0)$

amb mòdul

$$|\overrightarrow{OP}| = \sqrt{(0.2)^2 + 0^2} = 0.2 \, m$$

 $|\overrightarrow{AP}| = \sqrt{(-1.8)^2 + 0^2} = 1.8 \, m$

Llavors

$$V_P = V_O^P + V_A^P$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{OP}|} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{|\overrightarrow{AP}|}$$

$$= 9 \cdot 10^9 \cdot 10^{-6} \left[\frac{2}{0.2} + \frac{20}{1.8} \right]$$

$$= 1, 9 \cdot 10^5 V$$

c) Per trobar l'energia potencial elèctrica de les dues càrregues, calculem el treball que cal fer per dur-les des de l'infinit fins el punt on es troben.

El treball per dur la càrrega q_1 al punt O des de l'infinit

$$W_{\infty \to O} = q_1 \cdot (V_O - V_\infty) = q_1 \cdot (0 - 0) = 0 J$$

quan q_1 es dirigeix a O, no hi ha cap altre càrrega present i el potencial en O val zero

Ara, el treball per dur la càrrega q_2 al punt A des de l'infinit

$$W_{\infty \to A} = q_2 \cdot (V_A - V_\infty) = q_2 \cdot \left(\frac{1}{4\pi\epsilon_0} \frac{q_1}{|\overrightarrow{OA}|} - 0\right) = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\overrightarrow{OA}|}$$

quan q_2 arriba a A, sentirà l'efecte del potencial que crea q_1 en aquest punt.

Llavors, amb

$$\overrightarrow{OA} = (2,0) - (0,0) = (2,0) \rightarrow |\overrightarrow{OA}| = \sqrt{2^2 + 0^2} = 2 m$$

L'energia potencial elèctrica del sistema serà la suma

$$W_{\infty \to O} + W_{\infty \to A} = 0 + \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\overrightarrow{OA}|} = 9 \cdot 10^9 \cdot \frac{2 \cdot 10^{-6} \cdot 20 \cdot 10^{-6}}{2} = 0, 18 J$$

a) Suposem que la placa negativa es troba a $0\,V$. En aquestes condicions tenim

Les càrregues positives es mouran cap a la dreta, les càrregues negatives es mouran cap a l'esquerra. En quant al camp elèctric

$$E \cdot d = V \rightarrow E = \frac{V}{d} = \frac{300}{0,2} = 1500 V$$

b) Moviment rectilini i uniforme $\Rightarrow a=0\,m/s^2$, en aquestes condicions la força elèctrica F_e i la de fregament F_f han de valer el mateix i tenir sentit contrari. En mòdul

$$F_e = qE = 1, 6 \cdot 10^{-19} \cdot 1500 = 2, 4 \cdot 10^{-16} N = F_f$$

- a) Fent referència al diagrama de l'enunciat, per tal que l'electró s'acceleri cap a la dreta a la regió A, el camp elèctric ha d'anar cap a l'esquerra a dins de la regió. Els camps elèctrics "arrosseguen" les càrregues positives en el sentit del camp i les negatives en sentit contrari al camp. A la regió B, el moviment que té l'electró (tal com es va veure a la teoria) és un moviment parabòlic. Com que el camp elèctric en aquesta regió està dirigit cap a baix, la trajectòria de l'electró es corbarà cap a dalt.
 - b) Amb la informació de l'enunciat podem escriure

$$\Delta V = E \cdot d = 40, 0 \cdot 10^3 \cdot 5, 00 \cdot 10^{-2} = 2, 00 \cdot 10^3 V$$

i com sabem que el treball que fa el camp elèctric s'invertirà en incrementar l'energia cinètica de l'electró

$$E_c = |q|\Delta V = 1,60 \cdot 10^{-19} \cdot 2,00 \cdot 10^3 = 3,20 \cdot 10^{-16} J$$

Exercici 57

a) Suposem que la placa superior es troba carregada negativament i la inferior positivament. En aquestes condicions, la trajectòria de l'electró es corbarà cap a baix i sortirà fregant l'extrem B. Perquè passi això l'electró ha de recórrer $5\,cm$ en vertical mentre travessa els $30\,cm$ de llarg. Les equacions del moviment són

$$\begin{cases} x = vt \\ y = \frac{d}{2} - \frac{1}{2}at^2 \end{cases}$$

amb

$$F_e = ma \rightarrow a = \frac{F_e}{m} = \frac{qE}{m} = \frac{1,6 \cdot 10^{-19} \cdot 10^4}{9,11 \cdot 10^{-31}} = 1,76 \cdot 10^{15}$$

calculem el temps que triga a recórrer en vertical la distància $\frac{d}{2}$

$$0 = \frac{0,1}{2} - \frac{1}{2} \cdot 1,76 \cdot 10^{15} \cdot t^2$$

$$t = \sqrt{\frac{0,1}{1,76 \cdot 10^{15}}} = 7,55 \cdot 10^{-9} \, s$$

i finalment

$$0, 3 = v \cdot t \rightarrow v = \frac{0, 3}{7, 55 \cdot 10^{-9}} = 3,97 \cdot 10^7 \, m/s$$

b) Es tracta d'un moviment parabòlic ja que a l'eix horitzontal no hi ha acceleració i en canvi al vertical si, degut a la força que exerceix el camp elèctric sobre l'electró. El treball que fa el camp elèctric sobre l'electró no depèn de la trajectòria seguida, i val

$$W_e = |q|\Delta V = |q|E \cdot \frac{d}{2} = 1,6 \cdot 10^{-19} \cdot 10^4 \cdot 0,05 = 8 \cdot 10^{-17} J$$

Exercici 58

a)

El camp es pot calcular com

$$E = \frac{V}{d} = \frac{60 \cdot 10^{-3}}{7 \cdot 10^{-9}} = 8,57 \cdot 10^{6} \, n/C$$

el sentit i direcció és l'indicat a la figura.

b) El treball que s'ha de fer el calculem com

$$W = |q|\Delta V = |q|(V_{+} - V_{-}) = 1, 6 \cdot 10^{-19} \cdot 60 \cdot 10^{-3} = 9, 60 \cdot 10^{-21} J$$

Exercici 59

a) El potencial només varia si ens movem en contra o a favor del camp. Tenim

$$V_A - V_B = 0$$

ja que A i B es troben en una superfície equipotencial.

$$V_B - V_C = E \cdot d = 500 \cdot 0, 2 = 100 V$$

$$V_A - V_C = V_A - V_B + V_B - V_C = 0 + V_B - V_C = E \cdot d = 100 V$$

b) Una partícula situada en el punt C en equilibri haurà de tenir càrrega negativa per tal que la força elèctrica vagi cap a dalt i compensi la gravitòria (habitualment ignorada en la gran majoria d'exercicis de camp elèctric), llavors

$$qE = mg \rightarrow q = \frac{mg}{E} = \frac{0,002 \cdot 9,8}{500} = 3,92 \cdot 10^{-5} \, C$$

Es trobarà en equilibri en qualsevol altre punt de la regió, ja que es tracta d'un camp uniforme.