

#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 12035 Summer-2013 Page No: 1/24 Model Answers **Important Instructions to examiners:** 1) The answers should be examined by key words and not as wordto-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills). 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.



|              | (-2 3 / - 2 2 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 |     |            |   |
|--------------|-------------------------------------------------|-----|------------|---|
| Subject Code | 12035 <b>Summer-2013</b>                        | Pag | ge No: 2/2 | 4 |
|              |                                                 |     |            |   |

| Subjec      | t Code:   | 12035 <b>Summer-2013</b>                                                                                                                                                                | Pag   | ge No: 2/2     |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Que.<br>No. | Sub.      | Model answers                                                                                                                                                                           | Mark  | Total<br>Marks |
| 1)          | Que.      | Attempt any ten of the following:                                                                                                                                                       | S     | Iviai KS       |
| ,           | a)<br>Ans | Evaluate: $\int \frac{dx}{4-x^2}$ $\int \frac{dx}{4-x^2}$                                                                                                                               |       |                |
|             |           | $= \int \frac{dx}{(2)^2 - x^2}$                                                                                                                                                         | 1/2   |                |
|             | b)        | $= \frac{1}{4} \log \left  \frac{2+x}{2-x} \right  + c$ <b>Note:</b> In the solution of any integration problems, if the constant $c$ is not added, $\frac{1}{2}$ mark may be deducted. | 1+1/2 | 02             |
|             | Ans       | Evaluate: $\int \sin^2 x \cos x dx$ $\int \sin^2 x \cos x dx$                                                                                                                           |       |                |
|             |           | Put $\sin x = t$<br>$\therefore \cos x dx = dt$<br>$= \int t^2 dt$                                                                                                                      | 1/2   |                |
|             |           | $=\frac{t^3}{3}+c$                                                                                                                                                                      | 1     |                |
|             | a)        | $=\frac{\sin^3 x}{3} + c$                                                                                                                                                               | 1/2   | 02             |
|             | c)        | <b>Evaluate:</b> $\int xe^x dx$                                                                                                                                                         |       |                |
|             | Ans       | $\int xe^x dx$ $= x \int e^x dx - \int \left[ \frac{d}{dx} x \cdot \int e^x dx \right] dx$                                                                                              |       |                |
|             |           | $= x \int e^x dx - \int \left[ \frac{d}{dx} x \cdot \int e^x dx \right] dx$                                                                                                             | 1/2   |                |
|             |           | $= xe^{x} - \int 1 \cdot e^{x} dx$ $= xe^{x} - e^{x} + c$                                                                                                                               | 1 1/2 | 02             |
|             | d)        | If $\int_{0}^{1} (3x^{2} + 2x + k) dx = 0$ . Find k                                                                                                                                     |       |                |
|             | Ans       | $\int_{0}^{1} (3x^{2} + 2x + k) dx = 0$<br>$\therefore \left[ x^{3} + x^{2} + kx \right]_{0}^{1} = 0$                                                                                   |       |                |
|             |           | $ \therefore \left[ x^3 + x^2 + kx \right]_0^1 = 0 $ $ 1 + 1 + k - 0 = 0 $                                                                                                              | 1 1/2 |                |
|             |           | 2+k=0                                                                                                                                                                                   | 1/2   |                |
|             |           | $\therefore k = -2$                                                                                                                                                                     | 1/2   | 02             |
|             |           |                                                                                                                                                                                         |       |                |
|             |           |                                                                                                                                                                                         |       |                |



Page No: 3/24

Subject Code: 12035

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                 | Marks | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------|-------|----------------|
|             | e)           | Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin x \cos x dx$                                                         |       |                |
|             | Ans          | $\int_{0}^{\frac{\pi}{2}} \sin x \cos x dx \qquad \text{Put } \sin x = t \qquad \therefore \cos x dx = dt$    | 1/2   |                |
|             |              | $ \begin{array}{c cc} x & 0 & \pi/2 \\ t & 0 & 1 \end{array} $                                                | 1/2   |                |
|             |              | $= \int_{0}^{\infty} t dt$ $= \left[ \frac{t^2}{2} \right]_{0}^{1}$                                           | 1/2   |                |
|             |              | $=\frac{1}{2}$ <b>OR</b>                                                                                      | 1/2   | 02             |
|             |              | $=\int_{0}^{\frac{\pi}{2}}\sin x \cos x dx$                                                                   |       |                |
|             |              | $=\frac{1}{2}\int_{0}^{\frac{\pi}{2}} 2\sin x \cos x dx$                                                      |       |                |
|             |              | $=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\sin 2x dx$                                                              | 1/2   |                |
|             |              | $= \frac{1}{2} \int_{0}^{2} \sin 2x dx$ $= \frac{1}{2} \left[ \frac{-\cos 2x}{2} \right]_{0}^{\frac{\pi}{2}}$ | 1/2   |                |
|             |              | $=\frac{1}{4}\left\{\left[-\cos\pi-\left(-\cos0\right)\right]\right\}$                                        | 1/2   |                |
|             |              | $= \frac{1}{4}[1+1]$ $= \frac{1}{4}[2] = \frac{1}{2}$                                                         | 1/2   | 02             |
|             | f)<br>Ans    | Form a differential equation if $y = mx + c$<br>y = mx + c                                                    |       |                |
|             |              | $\therefore \frac{dy}{dx} = m$ $\therefore \frac{d^2y}{dx^2} = 0$                                             | 1     |                |
|             |              | $\therefore \frac{d^2y}{dx^2} = 0$                                                                            | 1     | 02             |
|             |              |                                                                                                               |       |                |



Subject Code: 12035 Page No: 4/24 Summer-2013

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                     | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 1)          | g)           | Solve the D.E. $\frac{1}{y^2} dx = \frac{1}{x} dy$                                                                |       |                |
|             | Ans          | $\therefore \frac{1}{y^2} dx = \frac{1}{x} dy$                                                                    |       |                |
|             |              | $\therefore xdx = y^2dy$ Solution is,                                                                             | 1/2   |                |
|             |              | $\int x dx = \int y^2 dy$                                                                                         | 1/2   |                |
|             |              | $\frac{x^2}{2} = \frac{y^3}{3} + c$                                                                               | 1     | 02             |
|             | h)           | Find the area bounded by $y = x$ , $x = 0$ and $x = 4$                                                            |       |                |
|             | Ans          | Area = $\int_{a} y dx$                                                                                            |       |                |
|             |              | $=\int_{0}^{4}xdx$                                                                                                | 1/2   |                |
|             |              | $= \left[\frac{x^2}{2}\right]_0^4$                                                                                | 1/2   |                |
|             |              | $=\frac{(4)^2}{2}-0$                                                                                              | 1/2   |                |
|             | i)           | = 8 Find the probability that a card is drawn from a pack is a diamond.                                           | 1/2   | 02             |
|             | Ans          | $n(S) = {}^{52}C_1 = 52$                                                                                          | 1/2   |                |
|             |              | A=card is a diamond $n(A)={}^{13}C_1=13$                                                                          | 1/2   |                |
|             |              | $P(A) = \frac{n(A)}{n(S)} = \frac{13}{52} = \frac{1}{4} = 0.25$                                                   | 1     | 02             |
|             | j)           | Find order and degree of a D.E. $\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$ |       |                |
|             | Ans          | $\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$                                 |       |                |
|             |              |                                                                                                                   | 1     |                |
|             |              | $\left(\frac{dx^2}{dx}\right) \left[\frac{dx}{dx}\right]$<br>Order=2, degree=2                                    | 1     | 02             |
|             | k)           | When a die is thrown, find the probability of getting even numbers.                                               |       |                |
|             | Ans          | $S = \{1, 2, 3, 4, 5, 6\}$<br>n (S)=6                                                                             | 1/2   |                |



Subject Code: 12035 Page No: 5/24 Summer-2013

| Que.   | Sub. | Model answers                                                                | Marks | Total |
|--------|------|------------------------------------------------------------------------------|-------|-------|
| No. 1) | Que. | $A = \{2, 4, 6\}$                                                            |       | Marks |
| -/     |      | n(A)=3                                                                       | 1/2   |       |
|        |      | $P(A) = \frac{n(A)}{n(S)} = \frac{3}{6} = \frac{1}{2} = 0.5$                 |       |       |
|        |      | $\Gamma(A) - \frac{1}{n(S)} = \frac{1}{6} = \frac{1}{2} = 0.3$               | 1     | 02    |
|        | 1)   | Two coins are tossed simultaneously, find the probability of                 |       |       |
|        |      | getting atleast one head. $S = \{HH, HT, TH, TT\} \qquad \text{n (S)=4}$     | 1/2   |       |
|        |      | $A = \{HH, HT, TH\}$                                                         |       |       |
|        |      | n (A)=3                                                                      | 1/2   |       |
|        |      | $P(A) = \frac{n(A)}{n(S)} = \frac{3}{4} = 0.75$                              | 1     | 02    |
|        |      | n(S) = 4 = 0.75                                                              |       |       |
| 2)     |      | Attempt any four of the following:                                           |       |       |
|        |      | - $dx$                                                                       |       |       |
|        | a)   | Evaluate: $\int \frac{dx}{5 + 4\cos x}$                                      |       |       |
|        | Ans  | Put $\tan \frac{x}{2} = t$                                                   |       |       |
|        |      | 2                                                                            |       |       |
|        |      | $\cos x = \frac{1-t^2}{1+t^2}$ , $dx = \frac{2dt}{1+t^2}$                    | 1     |       |
|        |      | $\int \frac{dx}{5 + 4\cos x}$                                                |       |       |
|        |      | $\int 5+4\cos x$                                                             |       |       |
|        |      | $=\int \frac{1}{(1-t^2)} \cdot \frac{2at}{1+t^2}$                            | 1/2   |       |
|        |      | $= \int \frac{1}{5+4\cos x} \cdot \frac{2dt}{1+t^2} \cdot \frac{2dt}{1+t^2}$ |       |       |
|        |      |                                                                              |       |       |
|        |      | $= \int \frac{1}{\frac{5(1+t^2)+4(1-t^2)}{1+t^2}} \cdot \frac{2dt}{1+t^2}$   |       |       |
|        |      | $1 \pm t$                                                                    |       |       |
|        |      | $=2\int \frac{dt}{5(1+t^2)+4(1-t^2)}$                                        | 1/2   |       |
|        |      | $=2\int \frac{dt}{9+t^2}$                                                    |       |       |
|        |      |                                                                              |       |       |
|        |      | $=2\int \frac{dt}{\left(3\right)^2+t^2}$                                     | 1/2   |       |
|        |      | $=2.\frac{1}{3}.\tan^{-1}\frac{t}{3}+c$                                      |       |       |
|        |      |                                                                              | 1     |       |
|        |      | $= \frac{2}{3} \tan^{-1} \left( \frac{\tan \frac{x}{2}}{3} \right) + c$      |       |       |
|        |      |                                                                              | 1/2   | 04    |
|        |      |                                                                              |       |       |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 6/24

| Que. | Sub. |                                                                                                                                                         |       | Total |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Model answers                                                                                                                                           | Marks | Marks |
| 2)   | b)   | Evaluate: $\int \frac{x+1}{x^3 - 4x} dx$                                                                                                                |       |       |
|      | Ans  | $\int \frac{x+1}{x^3 - 4x} dx$                                                                                                                          |       |       |
|      |      | $= \int \frac{x+1}{x(x-2)(x+2)} dx$                                                                                                                     | 1/2   |       |
|      |      | Consider, $\frac{x+1}{x(x-2)(x+2)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+2}$                                                                       | 1/2   |       |
|      |      | $\therefore x+1 = (x-2)(x+2)A + x(x+2)B + x(x-2)C$ Put $x = 0$ $1 = (-2)(2)A + 0 + 0$                                                                   |       |       |
|      |      | $\therefore 1 = -4A \qquad A = \frac{1}{-4}$                                                                                                            | 1/2   |       |
|      |      | Put $x = 2$<br>3=0+2(4)B+0                                                                                                                              |       |       |
|      |      | $B = \frac{3}{8}$ Put $x = -2$                                                                                                                          | 1/2   |       |
|      |      | -1=0+0+(-2)(-4)C                                                                                                                                        | 1/2   |       |
|      |      | -1=8C $C = \frac{-1}{8}$ $\therefore \frac{x+1}{x(x-2)(x+2)} = \frac{\frac{1}{-4}}{x} + \frac{\frac{3}{8}}{x-2} + \frac{\frac{-1}{8}}{x+2}$             | 72    |       |
|      |      | $\therefore \int \frac{x+1}{x(x-2)(x+2)} dx = \frac{1}{-4} \int \frac{1}{x} dx + \frac{3}{8} \int \frac{1}{x-2} dx - \frac{1}{8} \int \frac{1}{x+2} dx$ | 1/2   |       |
|      |      | $= \frac{-1}{4} \log x  + \frac{3}{8} \log x - 2  - \frac{1}{8} \log x + 2  + c$                                                                        | 1     | 04    |
|      | c)   | Evaluate: $\int x \tan^{-1} x dx$                                                                                                                       |       |       |
|      | Ans  | $\int x \tan^{-1} x dx$                                                                                                                                 |       |       |
|      |      | $= \tan^{-1} x \cdot \int x dx - \int \left[ \frac{d}{dx} \tan^{-1} x \cdot \int x dx \right] dx$                                                       | 1     |       |
|      |      | $= \tan^{-1} x \cdot \frac{x^2}{2} - \int \frac{1}{1+x^2} \cdot \frac{x^2}{2} \cdot dx$                                                                 | 1     |       |
|      |      | $= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{1+x^2} dx$                                                                                   |       |       |
|      |      | $= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \frac{1 + x^2 - 1}{1 + x^2} dx$                                                                         | 1     |       |
|      |      |                                                                                                                                                         |       |       |



# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 7/24

| Que.   | Sub. | Model answers                                                                                                                                                                                                                                                                                                                                                                            | Marks | Total       |
|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| No. 2) | Que. | $= \frac{x^{2}}{2} \tan^{-1} x - \frac{1}{2} \int \left[ \frac{1+x^{2}}{1+x^{2}} - \frac{1}{1+x^{2}} \right] dx$ $= \frac{x^{2}}{2} \tan^{-1} x - \frac{1}{2} \int \left[ 1 - \frac{1}{1+x^{2}} \right] dx$ $= \frac{x^{2}}{2} \tan^{-1} x - \frac{1}{2} \left[ x - \tan^{-1} x \right] + c$ Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ | 1     | Marks<br>04 |
|        |      | Evaluate. $\int_{0}^{\pi} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x}} dx$ Let $I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ $I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin \left(\frac{\pi}{2} - x\right)} + \sqrt{\cos \left(\frac{\pi}{2} - x\right)}} dx$                                 | 1     |             |
|        |      | $I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx - (2)$ Add (1) and (2) $I + I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx + \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$                                                                                                  | 1/2   |             |
|        |      | $2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ $\frac{\pi}{2}$                                                                                                                                                                                                                                                                   | 1/2   |             |
|        |      | $2I = \int_{0}^{\infty} dx$ $2I = \left[x\right]_{0}^{\frac{\pi}{2}}$ $2I = \frac{\pi}{2} - 0$                                                                                                                                                                                                                                                                                           | 1/2   |             |
|        | e)   | $\therefore I = \frac{\pi}{4}$ Find the area of circle $x^2 + y^2 = 36$ by using definite integral.                                                                                                                                                                                                                                                                                      | 1/2   | 04          |
|        | Ans  | $x^2 + y^2 = 36$                                                                                                                                                                                                                                                                                                                                                                         |       |             |
|        |      |                                                                                                                                                                                                                                                                                                                                                                                          |       |             |



#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

| Subjec | t Code: | (ISO/IEC - 27001 - 2005 Certified) 12035 <b>Summer-2013</b>                                                                                                                                                                                                                                                                                                            | Page No: 8                          | /24   |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|
| Que.   | Sub.    | Model answers                                                                                                                                                                                                                                                                                                                                                          | Marks                               | Total |
| No.    | Que.    |                                                                                                                                                                                                                                                                                                                                                                        | WILLIAM                             | Marks |
| 2)     |         | $y^{2} = 36 - x^{2}$ $y = \sqrt{36 - x^{2}}$ $Area = \int_{a}^{b} y dx$ $A = \int_{0}^{6} \sqrt{36 - x^{2}} dx = \int_{0}^{6} \sqrt{(6)^{2} - x^{2}} dx$ $= \left[ \frac{x}{2} \sqrt{(6)^{2} - x^{2}} + \frac{(6)^{2}}{2} \sin^{-1} \left( \frac{x}{6} \right) \right]_{0}^{6}$ $= \left[ 0 + 18 \sin^{-1}(1) \right] - \left[ 0 \right]$ $= 18 \frac{\pi}{2} = 9 \pi$ | 1/ <sub>2</sub> 1/ <sub>2</sub> 1 1 |       |
|        |         | $\therefore \text{ Area of circle} = 4(9\pi)$ $= 36 \pi$                                                                                                                                                                                                                                                                                                               | 1                                   | 04    |
|        | Ans     | Evaluate: $\int_{4}^{5} \frac{\sqrt[3]{x-4}}{\sqrt[3]{x-4} + \sqrt[3]{5-x}} dx$ Let $I = \int_{4}^{5} \frac{\sqrt[3]{x-4}}{\sqrt[3]{x-4} + \sqrt[3]{5-x}} dx$ $I = \int_{4}^{5} \frac{\sqrt[3]{(5+4-x)-4}}{\sqrt[3]{(5+4-x)-4} + \sqrt[3]{5-(5+4-x)}} dx$ $I = \int_{4}^{5} \frac{\sqrt[3]{5-x}}{\sqrt[3]{5-x}} dx$                                                    | 1 1 1/2                             |       |
|        |         | $2I = [x]_{4}^{5}$ $2I = 5-4=1$                                                                                                                                                                                                                                                                                                                                        | 1/2                                 |       |
|        |         | $I = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                      | 1/2                                 | 04    |
|        |         |                                                                                                                                                                                                                                                                                                                                                                        |                                     |       |



Subject Code: 12035 Page No: 9/24 Summer-2013

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                             | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 3)          |              | Attempt any four of the following:                                                                                                        |       |                |
|             | a)           | Evaluate: $\int_{0}^{1} x \sin^{3} x \cos^{2} x dx$                                                                                       |       |                |
|             | Ans          | Let $I = \int_{0}^{\pi} x \sin^3 x \cos^2 x dx$                                                                                           |       |                |
|             |              | $I = \int_{0}^{\pi} (\pi - x)\sin^{3}(\pi - x)\cos^{2}(\pi - x)dx$                                                                        | 1/2   |                |
|             |              | $I = \int_{0}^{\pi} (\pi - x) \sin^3 x \cos^2 x dx$ $I = \int_{0}^{\pi} \pi \sin^3 x \cos^2 x dx - \int_{0}^{\pi} x \sin^3 x \cos^2 x dx$ | 1/2   |                |
|             |              | $I = \int_{0}^{\pi} \pi \sin^3 x \cos^2 x dx - I$                                                                                         |       |                |
|             |              | $I + I = \pi \int_{0}^{\pi} \sin^3 x \cos^2 x dx$                                                                                         | 1/2   |                |
|             |              | $2I = \pi \int_{0}^{\pi} \sin^2 x \cos^2 x \sin x dx$                                                                                     |       |                |
|             |              | $2I = \pi \int_{0}^{\pi} (1 - \cos^2 x) \cos^2 x \sin x dx$                                                                               |       |                |
|             |              | Put $\cos x = t$                                                                                                                          |       |                |
|             |              | $-\sin x dx = dt$ $\sin x dx = -dt$ $x  0  \pi$ $t  1  -1$                                                                                | 1     |                |
|             |              | $\therefore 2I = \pi \int_{1}^{-1} \left(1 - t^2\right) t^2 \left(-dt\right)$                                                             |       |                |
|             |              | $\therefore 2I = -\pi \int_{1}^{-1} \left(t^2 - t^4\right) dt$                                                                            |       |                |
|             |              | $\therefore 2I = -\pi \left[ \frac{t^3}{3} - \frac{t^5}{5} \right]_1^{-1}$                                                                | 1/2   |                |
|             |              | $\therefore 2I = -\pi \left[ \left( \frac{-1}{3} + \frac{1}{5} \right) - \left( \frac{1}{3} - \frac{1}{5} \right) \right]$                |       |                |
|             |              | $\therefore 2I = -\pi \left( \frac{-1}{3} + \frac{1}{5} - \frac{1}{3} + \frac{1}{5} \right)$                                              | 1/2   |                |
|             |              | $\therefore 2I = -\pi \left( \frac{-2}{3} + \frac{2}{5} \right)$                                                                          |       |                |
|             |              |                                                                                                                                           |       |                |



Subject Code: 12035 Page No: 10/24 Summer-2013

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                                                       | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 3)          |              | $\therefore 2I = -2\pi \left(\frac{-1}{3} + \frac{1}{5}\right)$ $\therefore I = \frac{2\pi}{15}$                                                                                    | 1/2   | 04             |
|             | b)           | Find the centre of gravity of an area enclosed by the curve $y = 2x + 3$ ordinates $x = 1, x = 2$ and $x - axis$ .                                                                  |       |                |
|             | Ans          | $\overline{x} = \frac{\int_{1}^{2} xy dx}{\int_{1}^{2} y dx}$ and $\overline{y} = \frac{\frac{1}{2} \int_{1}^{2} y^{2} dx}{\int_{1}^{2} y dx}$                                      |       |                |
|             |              | Consider, $\int_{1}^{2} xy dx = \int_{1}^{2} (2x^{2} + 3x) dx$                                                                                                                      |       |                |
|             |              | $= \left[ \frac{2x^3}{3} + \frac{3x^2}{2} \right]_1^2$ $= \left[ \left( \frac{16}{3} + \frac{12}{2} \right) - \left( \frac{2}{3} + \frac{3}{2} \right) \right]$                     |       |                |
|             |              | $=\frac{55}{6}=9.16$                                                                                                                                                                | 1     |                |
|             |              | $\int_{1}^{2} y dx = \int_{1}^{2} (2x+3) dx$                                                                                                                                        |       |                |
|             |              | $= \left[x^2 + 3x\right]_1^2 = (4+6) - (1+3) = 6$ $\int_1^2 y^2 dx = \int_1^2 (4x^2 + 12x + 9) dx$                                                                                  | 1     |                |
|             |              | $= \left[ \frac{4x^3}{3} + 6x^2 + 9x \right]_1^2 = \left[ \left( \frac{32}{3} + 24 + 18 \right) - \left( \frac{4}{3} + 6 + 9 \right) \right]$                                       |       |                |
|             |              | $=\frac{109}{3}$                                                                                                                                                                    | 1     |                |
|             |              | $ \frac{x}{x} = \frac{\frac{55}{6}}{\frac{6}{6}} = \frac{55}{36} \text{ or } 1.527 $ $ \frac{1}{y} = \frac{\frac{1}{2} \cdot \frac{109}{3}}{6} = \frac{109}{36} \text{ or } 3.027 $ | 1/2   |                |
|             |              |                                                                                                                                                                                     |       |                |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Subjec      | t Code:      | (ISO/IEC - 27001 - 2005 Certified) 12035 Summer-2013                                                                                        | Page N | o: 11/24       |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                               | Marks  | Total<br>Marks |
| 3)          |              | C.G. is $(\bar{x}, \bar{y}) = (\frac{55}{36}, \frac{109}{36})$                                                                              | 1/2    | 04             |
|             |              | <b>Note:</b> The above example can be solve by directly finding the values of $\overline{x}$ and $\overline{y}$ .                           |        |                |
|             | c)           | Find the volume obtained by revolving about the x-axis, the region bounded by x-axis, the curve $9x^2 - 4y^2 = 36$ and the line $x=2,x=4$ . |        |                |
|             | Ans          | Given, $9x^2 - 4y^2 = 36$<br>$\therefore y^2 = \frac{1}{2}(9x^2 - 36)$                                                                      | 1/2    |                |
|             |              | $\therefore y^2 = \frac{1}{4}(9x^2 - 36)$ Volume V= $\pi \int_a^b y^2 dx$                                                                   |        |                |
|             |              | $V = \pi \int_{2}^{4} \frac{(9x^2 - 36)}{4} dx$                                                                                             | 1/2    |                |
|             |              | $=\frac{\pi}{4} \left[ \frac{9x^3}{3} - 36x \right]_2^4$                                                                                    | 1      |                |
|             |              | $= \frac{\pi}{4} \left[ 3x^3 - 36x \right]_2^4$                                                                                             | 1/2    |                |
|             |              | $= \frac{\pi}{4} [(192 - 144) - (24 - 72)]$ $= 24\pi$                                                                                       | 1 1/2  | 04             |
|             | d)           | Evaluate: $\int \frac{1}{4\sin^2 x + 5\cos^2 x} dx$                                                                                         |        |                |
|             | Ans          | $\int \frac{1}{4\sin^2 x + 5\cos^2 x} dx$                                                                                                   |        |                |
|             |              | $= \int \frac{\frac{1}{\cos^2 x}}{4\frac{\sin^2 x}{\cos^2 x} + 5\frac{\cos^2 x}{\cos^2 x}} dx$                                              | 1/2    |                |
|             |              | $= \int \frac{\sec^2 x}{4\tan^2 x + 5} dx$                                                                                                  | 1/2    |                |
|             |              | Put $\tan x = t$<br>$\therefore \sec^2 x dx = dt$                                                                                           | 1/2    |                |
|             |              | $=\int \frac{1}{4t^2 + 5} dt$                                                                                                               | 1/2    |                |
|             |              |                                                                                                                                             |        |                |



Subject Code: 12035 Page No: 12/24 Summer-2013

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                | Marks           | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| 3)          |              | $= \frac{1}{4} \int \frac{1}{t^2 + \left(\frac{\sqrt{5}}{2}\right)^2} dt$                                    | 1/2             |                |
|             |              | $= \frac{1}{4} \cdot \frac{1}{\frac{\sqrt{5}}{2}} \tan^{-1} \left( \frac{t}{\frac{\sqrt{5}}{2}} \right) + c$ | 1               |                |
|             |              | $= \frac{1}{2\sqrt{5}} \cdot \tan^{-1} \left( \frac{2 \tan x}{\sqrt{5}} \right) + c$                         | 1/2             | 04             |
|             |              | Evaluate: $\int \frac{e^x \sin(e^x)}{\cos^2(e^x)} dx$                                                        |                 |                |
|             | Ans          | $\int \frac{e^x \sin(e^x)}{\cos^2(e^x)} dx$                                                                  |                 |                |
|             |              | Put $e^x = t$<br>$\therefore e^x dx = dt$                                                                    | 1               |                |
|             |              | $= \int \frac{\sin t}{\cos^2 t} dt$                                                                          | 1/2             |                |
|             |              | $= \int \tan t \sec t dt$                                                                                    | 1               |                |
|             |              | =sect+c                                                                                                      | 1               |                |
|             |              | $=\sec(e^x)+c$                                                                                               | 1/2             | 04             |
|             | f)           | Solve the D.E. $\frac{dy}{dx} = e^{x-y} + xe^{-y}$                                                           |                 |                |
|             | Ans          | $\frac{dy}{dx} = e^{x-y} + xe^{-y}$                                                                          |                 |                |
|             |              | $\frac{dy}{dx} = e^x e^{-y} + x e^{-y}$                                                                      | 1/2             |                |
|             |              | $\frac{dy}{dx} = e^{-y}(e^x + x)$                                                                            |                 |                |
|             |              | $e^{y}dy = (e^{x} + x)dx$                                                                                    | 1 1/2           |                |
|             |              | $\int e^{y} dy = \int (e^{x} + x) dx$                                                                        | <del>1</del> /2 |                |
|             |              |                                                                                                              |                 |                |



Subject Code: 12035 Page No: 13/2 Summer-2013

| Que.<br>No. | Sub.<br>Que. | Model answers                                                          | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------|-------|----------------|
| 3)          |              | $e^y = e^x + \frac{x^2}{2} + c$                                        | 2     | 04             |
| 4)          |              | Attempt any four of the following:                                     |       |                |
|             | a)           | Solve: $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$ given that y=2 when x=1. |       |                |
|             | Ans          | $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$                                 |       |                |
|             |              | Put $y = vx$                                                           | 1/2   |                |
|             |              | $\frac{dy}{dx} = v + x \frac{dv}{dx}$                                  |       |                |
|             |              | $\therefore v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{xvx}$           | 1/2   |                |
|             |              | $v + x\frac{dv}{dx} = \frac{x^2(1+v^2)}{vx^2}$                         |       |                |
|             |              | $x\frac{dv}{dx} = \frac{1+v^2-v^2}{v}$                                 | 1     |                |
|             |              | $\therefore vdv = \frac{dx}{x}$                                        |       |                |
|             |              | $\int v dv = \int \frac{dx}{x}$                                        |       |                |
|             |              | $\therefore \frac{v^2}{2} = \log x  + c$                               | 1     |                |
|             |              | $\frac{y^2}{x^2} = \log x  + c$                                        |       |                |
|             |              | x = 1, y = 2                                                           |       |                |
|             |              | $\therefore \frac{4}{2} = \log(1) + c$                                 | 1/2   |                |
|             |              | $\therefore c = 2$                                                     |       |                |
|             |              | $\frac{y^2}{x^2} = \log x  + 2$                                        | 1/2   | 04             |
|             |              |                                                                        |       |                |



Page No: 14/24

Subject Code: 12035 Summer-2013

| Que.<br>No. | Sub.<br>Que. | Model answers                                                               | Marks | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------|-------|----------------|
| 4)          | b)           | Solve: $(e^x + 2xy^2 + y^3)dx + (a^y + 2x^2y + 3xy^2)dy = 0$                |       |                |
|             | Ans          | $M = e^x + 2xy^2 + y^3$                                                     |       |                |
|             |              | $N = a^y + 2x^2y + 3xy^2$                                                   |       |                |
|             |              | $\frac{\partial M}{\partial y} = 4xy + 3y^2$                                |       |                |
|             |              | $\frac{\partial N}{\partial x} = 4xy + 3y^2$                                |       |                |
|             |              | $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$  | 2     |                |
|             |              | ∴ Given D.E.is exact.                                                       |       |                |
|             |              | ∴ solution is,                                                              |       |                |
|             |              | $\int_{y-\cos n \sin t} Mdx + \int_{terms \ not \ containing; x'} Ndy = c$  | 1/2   |                |
|             |              | $\int_{y-const} \left( e^x + 2xy^2 + y^3 \right) dx + \int a^y dy = c$      | 1/2   |                |
|             |              | $e^{x} + x^{2}y^{2} + xy^{3} + \frac{a^{y}}{\log a} = c$                    | 1     | 04             |
|             | c)           | Solve: $\frac{dy}{dx} + xy = x^3 y^3$                                       |       |                |
|             | Ans          | $\frac{dy}{dx} + xy = x^3 y^3$                                              |       |                |
|             |              | $\frac{1}{y^3}\frac{dy}{dx} + x.\frac{1}{y^2} = x^3$                        | 1/2   |                |
|             |              | $Put \frac{1}{y^2} = v$                                                     |       |                |
|             |              | $\frac{-2}{y^3} \cdot \frac{dy}{dx} = \frac{dv}{dx}$                        | 1/2   |                |
|             |              | $\therefore \frac{1}{y^3} \frac{dy}{dx} = \frac{-1}{2} \cdot \frac{dv}{dx}$ |       |                |
|             |              | $\therefore \frac{-1}{2} \frac{dv}{dx} + xv = x^3$                          |       |                |
|             |              | $\therefore \frac{dv}{dx} - 2xv = -2x^3$                                    | 1/2   |                |
|             |              |                                                                             |       |                |



Subject Code: 12035 Summer-2013 Page No: 15/24

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                   | Marks | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------|----------------|
| 4)          | Que.         | I.F.= $e^{-2\int x dx} = e^{-x^2}$                                                                              | 1/2   | IVICITES       |
|             |              | I.F.= $e$ — $e$ Its solution is,                                                                                |       |                |
|             |              | $vI.F. = \int Q.I.F.dx + c$                                                                                     |       |                |
|             |              |                                                                                                                 |       |                |
|             |              | $\frac{1}{y^2}.e^{-x^2} = \int -2x^3.e^{-x^2}dx + c$                                                            | 1/2   |                |
|             |              | put $x^2 = t$ in R.H.S                                                                                          | 1/2   |                |
|             |              | 2xdx = dt                                                                                                       | 72    |                |
|             |              | $\therefore \frac{1}{y^2} e^{-x^2} = -\int t e^{-t} dt + c$                                                     |       |                |
|             |              | $\therefore \frac{1}{y^2} e^{-x^2} = -\left[t \frac{e^{-t}}{-1} - \int 1 \cdot \frac{e^{-t}}{-1} dt\right] + c$ | 1/2   |                |
|             |              | $\therefore \frac{1}{y^2} e^{-x^2} = t e^{-t} + e^{-t} + c$                                                     |       |                |
|             |              | $\therefore \frac{1}{y^2} e^{-x^2} = x^2 e^{-x^2} + e^{-x^2} + c$                                               | 1/2   | 04             |
|             | d)           | Show that the root of $x^3 - 9x + 1 = 0$ lies between 2 and 3. Obtain                                           |       |                |
|             |              | the root by bisection method (three iterations only).                                                           |       |                |
|             |              | Let $f(x) = x^3 - 9x + 1$                                                                                       |       |                |
|             |              | f(2) = -9 < 0                                                                                                   |       |                |
|             |              | f(3)=1>0                                                                                                        | 1     |                |
|             |              | ∴ the root lies in (2,3)                                                                                        | 1     |                |
|             |              | $x_1 = \frac{a+b}{2} = \frac{2+3}{2} = 2.5$                                                                     | 1     |                |
|             |              | f(2.5) = -5.875 < 0                                                                                             |       |                |
|             |              | ∴ the root lies in (2.5,3)                                                                                      |       |                |
|             |              | $x_2 = \frac{x_1 + b}{2} = \frac{2.5 + 3}{2} = 2.75$                                                            | 1     |                |
|             |              | $f(x_2) = -2.96 < 0$                                                                                            |       |                |
|             |              | ∴ the root lies in (2.75,3)                                                                                     |       |                |
|             |              |                                                                                                                 |       |                |



| Subject Code: 12035 |              | Summer-2013 Pa                           |                                                                                                     |                         | Page No: 16/24                                   |            |    |       |                |
|---------------------|--------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------|----|-------|----------------|
| Que.<br>No.         | Sub.<br>Que. |                                          |                                                                                                     | Mo                      | del answers                                      |            |    | Marks | Total<br>Marks |
| 4)                  |              | $x_3 = \frac{x_2 + b}{2} = \frac{2}{3}$  | $x_3 = \frac{x_2 + b}{2} = \frac{2.75 + 3}{2} = 2.875$                                              |                         |                                                  |            |    | 1     | 04             |
|                     |              | OR 2                                     | 2                                                                                                   |                         |                                                  |            |    |       |                |
|                     |              |                                          |                                                                                                     |                         |                                                  |            |    |       |                |
|                     |              | f(2) = -9 < 0<br>f(3) = 1 > 0            |                                                                                                     |                         |                                                  |            |    |       |                |
|                     |              | ∴ the root lies i                        | n (2,3)                                                                                             |                         |                                                  |            |    | 1     |                |
|                     |              |                                          | a                                                                                                   | b                       | $x = \frac{a+b}{2}$                              | f(x)       |    |       |                |
|                     |              |                                          | 2                                                                                                   | 3                       | 2.5                                              | -5.875     |    | 1+1+1 |                |
|                     |              |                                          | 2.5                                                                                                 | 3                       | 2.75                                             | -2.96      |    | 1,1,1 | 04             |
|                     |              |                                          | 2.75                                                                                                | 3                       | 2.875                                            |            |    |       | 04             |
|                     | e)           | Obtain the root                          | of the e                                                                                            | quatio                  | n by Regula-I                                    | Falsi meth | od |       |                |
|                     |              | $x^3 - x - 1 = 0$ (th                    |                                                                                                     | ations                  | only).                                           |            |    |       |                |
|                     | Ans          | Let $f(x) = x^3$                         | -x-1                                                                                                |                         |                                                  |            |    |       |                |
|                     |              | f(1) = -1 $f(2) = 5$                     |                                                                                                     |                         |                                                  |            |    |       |                |
|                     |              |                                          | n (1.2)                                                                                             |                         |                                                  |            |    | 1     |                |
|                     |              | $\therefore$ the root lies i             | , , ,                                                                                               | (5)-2                   | (_1) 7                                           |            |    |       |                |
|                     |              | $x_{1} = \frac{af(b) - bf}{f(b) - f(b)}$ | $\frac{(a)}{(a)} = \frac{1}{a}$                                                                     | $\frac{(3)^{-2}}{5-(-}$ | $\left(\frac{(1)}{-1}\right) = \frac{7}{6} = 1.$ | 16         |    | 1     |                |
|                     |              | f(1.16) = -0.5                           | 99 <0                                                                                               |                         |                                                  |            |    |       |                |
|                     |              | ∴ the root lies i                        | n (1.16,                                                                                            | 2)                      |                                                  |            |    | 1     |                |
|                     |              | $x_2 = \frac{x_1 f(b) - b}{f(b) - f}$    | $x_2 = \frac{x_1 f(b) - b f(x_1)}{f(b) - f(x_1)} = \frac{1.16(5) - 2(-0.599)}{5 - (-0.599)} = 1.24$ |                         |                                                  |            |    |       |                |
|                     |              | $f(x_2) = -0.33 < 0$                     |                                                                                                     |                         |                                                  |            |    |       |                |
|                     |              | ∴ the root lies i                        | ∴ the root lies in (1.24,2)                                                                         |                         |                                                  |            |    |       |                |
|                     |              | $x_3 = \frac{x_2 f(b) - b}{f(b) - f}$    | $\frac{f\left(x_{2}\right)}{\left(x_{2}\right)} =$                                                  | $=\frac{1.24(}{5}$      | $\frac{5)-2(-0.33)}{-(-0.33)}$                   | =1.28      |    | 1     | 04             |
|                     |              |                                          |                                                                                                     |                         |                                                  |            |    |       |                |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 17/24

| Que.<br>No. | Sub.<br>Que. | Model answers                                                            | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------|-------|----------------|
| 4)          | Que.         | OR                                                                       |       | IVIAINS        |
|             |              |                                                                          |       |                |
|             |              | $f(x) = x^3 - x - 1$<br>$\therefore f(1) = -1 < 0$                       |       |                |
|             |              | f(2) = 5 > 0                                                             | 1     |                |
|             |              | $\therefore$ the root is in $(1, 2)$ .                                   |       |                |
|             |              | a b $f(a)$ $f(b)$ $x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ $f(x)$         |       |                |
|             |              | 1 2 -1 5 1.16 -0.599                                                     | 1+1+1 |                |
|             |              | 1.16 2 -0.599 5 1.24 -0.33                                               |       |                |
|             |              | 1.24 2 -0.33 5 1.28                                                      |       | 04             |
|             |              |                                                                          |       |                |
|             |              |                                                                          |       |                |
|             | f)           | Using Newton-Raphson method, evaluate $\sqrt[3]{100}$ . (Carry out three |       |                |
|             |              | iterations only)                                                         |       |                |
|             | Ans          | Let, $x = \sqrt[3]{100}$                                                 |       |                |
|             |              | $\therefore x^3 = 100$                                                   |       |                |
|             |              | $x^3 - 100 = 0$                                                          |       |                |
|             |              | $f\left(x\right) = x^3 - 100$                                            | 1/2   |                |
|             |              | f(4) = -36                                                               |       |                |
|             |              | f(5) = 25                                                                |       |                |
|             |              | $f'(x) = 3x^2$                                                           |       |                |
|             |              | $f(4) = -36$ $f(5) = 25$ $f'(x) = 3x^{2}$ $\therefore f'(5) = 75$        |       |                |
|             |              | $\therefore \text{Initial root } x_0 = 5$                                | 1/2   |                |
|             |              | $x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 5 - \frac{25}{75} = 4.66$           | 1     |                |
|             |              | f(4.66) = 0.19 and $f'(4.66) = 65.14$                                    |       |                |
|             |              | $x_2 = x_1 - \frac{f(x_1)}{f(x_1)} = 4.66 - \frac{0.19}{65.14} = 4.64$   | 1     | 04             |
|             |              |                                                                          |       |                |



| Subje       | ct Code:     | (ISO/IEC - 27001 - 2005 Certified)<br>: 12035 Summer-2013                                                     | Page No: 18 | 8/24           |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------|-------------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                 | Marks       | Total<br>Marks |
| 4)          |              | f(4.64) = -0.102 and $f'(4.64) = 64.58$                                                                       |             |                |
|             |              | f(4.64) = -0.102 and $f'(4.64) = 64.58x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 4.64 + \frac{0.102}{64.58} = 4.64$ | 1           | 04             |
| 5)          |              | Attempt any four of the following:                                                                            |             |                |
|             | a)           | A particle starts from rest. Its acceleration at any time is (t+3)                                            |             |                |
|             |              | m/sec <sup>2</sup> . Find the distance travelled in 4 seconds.                                                |             |                |
|             | Ans          | From given $\frac{dv}{dt} = (t+3)$                                                                            |             |                |
|             |              | $\therefore dv = (t+3)dt$                                                                                     |             |                |
|             |              | $\therefore \int dv = \int (t+3)dt$                                                                           | 1/2         |                |
|             |              | $\therefore dv = (t+3)dt$ $\therefore \int dv = \int (t+3)dt$ $v = \frac{t^2}{2} + 3t + c$ (1)                | 1/2         |                |
|             |              | at $t=0, v=0$                                                                                                 | 1/          |                |
|             |              | ∴ c=0                                                                                                         | 1/2         |                |
|             |              | Equation (1) becomes,                                                                                         |             |                |
|             |              | $v = \frac{t^2}{2} + 3t$                                                                                      |             |                |
|             |              | $\frac{dx}{dt} = \frac{t^2}{2} + 3t$                                                                          |             |                |
|             |              | $dx = \left(\frac{t^2}{2} + 3t\right)dt$                                                                      |             |                |
|             |              | $\int dx = \int \left(\frac{t^2}{2} + 3t\right) dt$                                                           | 1/2         |                |
|             |              | $x = \frac{t^3}{6} + \frac{3t^2}{2} + c_1$                                                                    | 1           |                |
|             |              | At $t = 0$ , $x = 0$                                                                                          |             |                |
|             |              | $\therefore c_1 = 0$                                                                                          | 1/2         |                |
|             |              | $x = \frac{t^3}{6} + \frac{3t^2}{2}$                                                                          |             |                |
|             |              | At t=4,                                                                                                       |             |                |
|             |              |                                                                                                               |             |                |
|             |              |                                                                                                               |             |                |



## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 19/24

| Que. | Sub. | Model answers                                                                                                   | Marks | Total |
|------|------|-----------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que. | Woder answers                                                                                                   |       | Marks |
| 5)   |      | $x = \frac{64}{6} + \frac{48}{2} = 34.66$                                                                       | 1/2   | 04    |
|      | b)   | Solve: $(1+y^2)dx = (\tan^{-1} y - x)dy$                                                                        |       |       |
|      | Ans  | $(1+y^2)dx = (\tan^{-1} y - x)dy$                                                                               |       |       |
|      |      | $\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1} y}{1+y^2}$ Linear in x                                       | 1/2   |       |
|      |      | $\therefore \text{I.F.} = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$ Its solution is,                       | 1/2   |       |
|      |      | $x \text{ I.F.} = \int Q.\text{ I.F. } dy + c$                                                                  |       |       |
|      |      | $xe^{\tan^{-1}y} = \int \frac{\tan^{-1}y}{1+y^2} e^{\tan^{-1}y} dy + c$                                         | 1/2   |       |
|      |      | Put $tan^{-1} y = t$ in R.H.S.                                                                                  |       |       |
|      |      | $\frac{1}{1+y^2}dy = dt$                                                                                        |       |       |
|      |      | $xe^{\tan^{-1}y} = \int te^t dt + c$                                                                            | 1/2   |       |
|      |      | $xe^{\tan^{-1}y} = te^t - \int e^t + c$                                                                         | 1/2   |       |
|      |      | $\therefore xe^{\tan^{-1}y} = te^t - e^t + c$                                                                   | 1     |       |
|      |      | $\therefore xe^{\tan^{-1}y} = e^{t}(t-1) + c$ $\therefore xe^{\tan^{-1}y} = e^{\tan^{-1}y}(\tan^{-1}y - 1) + c$ | 1/2   | 04    |
|      | c)   | Solve $\frac{dy}{dx} = \frac{x+y}{x+y+2}$                                                                       |       |       |
|      | Í    |                                                                                                                 |       |       |
|      | Ans  | $\frac{dy}{dx} = \frac{x+y}{x+y+2}$                                                                             |       |       |
|      |      | Put $x + y = v$                                                                                                 |       |       |
|      |      | $1 + \frac{dy}{dx} = \frac{dv}{dx}$                                                                             |       |       |
|      |      | $\frac{dy}{dx} = \frac{dv}{dx} - 1$                                                                             | 1/2   |       |
|      |      | $\frac{dv}{dx} - 1 = \frac{v}{v+2}$                                                                             |       |       |
|      |      | $\frac{dv}{dx} = \frac{v}{v+2} + 1$                                                                             |       |       |
|      |      | $\frac{dv}{dx} = \frac{v+v+2}{v+2} = \frac{2(v+1)}{v+2}$                                                        | 1     |       |
|      |      | $\frac{1}{2} \cdot \frac{v+2}{v+1} dv = dx$                                                                     | 1/2   |       |
|      |      | $\therefore \frac{1}{2} \int \left[ 1 + \frac{1}{1+\nu} \right] d\nu = \int dx$                                 | 1/2   |       |
|      |      | $\begin{bmatrix} 2^{J} \end{bmatrix} \begin{bmatrix} 1+v \end{bmatrix}$                                         | , 2   |       |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 20/24

|             |              | 3411111C1 2013                                                                                                                     | age No. 2 | -, - :         |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                      | Marks     | Total<br>Marks |
| 5)          |              | $\therefore \frac{1}{2} \left( v + \log  1 + v  \right) = x + c$                                                                   | 1         |                |
|             |              | $\therefore \frac{1}{2} \left( x + y + \log 1 + x + y  \right) = x + c$                                                            | 1/2       | 04             |
|             | d)           | A particle executes S.H.M. according to the law $\frac{d^2x}{dt^2} = -4x$ . If $x = 2$                                             |           |                |
|             |              | and $\frac{dx}{dt}$ =3 at t=0. Find the displacement $x$ at any time t.                                                            |           |                |
|             | Ans          | Given, $\frac{d^2x}{dt^2} = -4x$                                                                                                   |           |                |
|             |              | $v\frac{dv}{dx} = -4x$                                                                                                             | 1/2       |                |
|             |              | $vdv = -4xdx$ $\int vdv = -4\int xdx$                                                                                              | 1/2       |                |
|             |              | $\frac{v^2}{2} = -2x^2 + c$                                                                                                        |           |                |
|             |              | At $x = 2$ , $v = 3$ when $t = 0$                                                                                                  | 1/2       |                |
|             |              | $c = \frac{25}{2}$ $\frac{v^2}{2} = -2x^2 + \frac{25}{2}$                                                                          | 72        |                |
|             |              | $v^2 = -4x^2 + 25$ $v = \sqrt{25 - 4x^2}$                                                                                          | 1/2       |                |
|             |              | i.e. $\frac{dx}{dt} = \sqrt{25 - 4x^2}$                                                                                            |           |                |
|             |              | $\frac{dx}{\sqrt{25-4x^2}} = dt$                                                                                                   |           |                |
|             |              | $\int \frac{dx}{2\sqrt{\left(\frac{5}{2}\right)^2 - x^2}} = \int dt$                                                               |           |                |
|             |              | $\frac{1}{2} \cdot \sin^{-1} \left( \frac{x}{5/2} \right) = t + c$                                                                 | 1/2       |                |
|             |              | At t=0, $x = 2$<br>$\therefore \frac{1}{2} \cdot \sin^{-1} \left( \frac{4}{5} \right) = c$                                         | 1/2       |                |
|             |              | $\therefore \frac{1}{2} \cdot \sin^{-1} \left( \frac{x}{5/2} \right) = t + \frac{1}{2} \cdot \sin^{-1} \left( \frac{4}{5} \right)$ | 1/2       |                |
|             |              | $\sin^{-1}\left(\frac{2x}{5}\right) = 2t + \sin^{-1}\left(\frac{4}{5}\right)$                                                      |           |                |
|             |              |                                                                                                                                    |           |                |



| Subject Code: 12035 |              | 12035 Summer-2013 P                                                                                                                                                                                                                                                                                                                                      | Page No: 21/24 |                |
|---------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| Que.<br>No.         | Sub.<br>Que. | Model answers                                                                                                                                                                                                                                                                                                                                            | Marks          | Total<br>Marks |
| 5)                  |              | $\frac{2x}{5} = \sin(2t + \alpha)$ $x = \frac{5}{2}\sin(2t + \alpha)$ \left(\frac{4}{5}\right) = \alpha\right)                                                                                                                                                                                                                                           | 1/2            | 04             |
|                     | e)<br>Ans    | Solve using Gauss elimination method:<br>x+2y+3z=14, 3x+y+2z=11, 2x+3y+z=11<br>Given,<br>x+2y+3z=14<br>3x+y+2z=11<br>2x+3y+z=11                                                                                                                                                                                                                          |                |                |
|                     |              | 3x+6y+9z = 42  3x+y+2z=11  =  5y+7z=31 $2x+4y+6z = 28  2x+3y+z=11  =  y+5z=17$                                                                                                                                                                                                                                                                           | 1+1            |                |
|                     |              | 5y + 7z = 31 $5y + 25z = 85$ $-18z = -54$                                                                                                                                                                                                                                                                                                                | 1              |                |
|                     |              | $\therefore z = 3$ $y = 2$ $x = 1$ <b>Note:</b> In the above solution, first x is eliminated and then y is                                                                                                                                                                                                                                               | 1              | 04             |
|                     |              | eliminated to find the value of z first. If in case the problem is solved by elimination of another unknown i. e., either first y or z, appropriate marks to be given as per above scheme of marking. Let us see, how the solution becomes by eliminating first y and then z to get the value of x, as illustrated below:  OR $x+2y+3z=14$ $9x+3y+6z=33$ |                |                |
|                     |              | 6x + 2y + 4z = 22 $$                                                                                                                                                                                                                                                                                                                                     | 1+1            |                |
|                     |              |                                                                                                                                                                                                                                                                                                                                                          |                |                |



| Subje       | ct Code:     | (ISO/IEC - 27001 - 2005 Certified)  12035 Summer-2013                                                 | Page No: 2 | 2/24           |
|-------------|--------------|-------------------------------------------------------------------------------------------------------|------------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                         | Marks      | Total<br>Marks |
| 5)          | Que.         | $-25x - 5z = -40$ $\frac{7x + 5z = 22}{-18x = -18}$                                                   | 1          | TYTALIA        |
|             |              | $\therefore x = 1$ $y = 2$ $z = 3$                                                                    | 1          | 04             |
|             | f)           | Solve using Jacobi's method. (three iterations only) $10x+y+2z=13,3x+10y+z=14,2x+3y+10z=15$           |            |                |
|             | Ans          | $x = \frac{1}{10}(13 - y - 2z)$ $y = \frac{1}{10}(14 - 3x - z)$ $z = \frac{1}{10}(15 - 2x - 3y)$      |            |                |
|             |              | $z = \frac{1}{10} (15 - 2x - 3y)$ Starting with $x_0 = y_0 = z_0 = 0$ $x_1 = 1.3$                     | 1          |                |
|             |              | $y_1 = 1.4$ $z_1 = 1.5$ $x_2 = 0.86$                                                                  | 1          |                |
|             |              | $y_2 = 0.86$ $z_2 = 0.82$ $x_3 = 1.05$                                                                | 1          | 04             |
|             |              | $y_3 = 1.06$<br>$z_3 = 1.07$                                                                          | 1          |                |
| 6)          | a)           | Solve using Gauss-Seidal method.(three iterations) $5x+2y+z=12, x+4y+2z=15, x+2y+5z=20$               |            |                |
|             | Ans          | $x = \frac{1}{5}(12 - 2y - z)$ $y = \frac{1}{4}(15 - x - 2z)$ $z = \frac{1}{5}(20 - x - 2y)$          |            |                |
|             |              | $z = \frac{1}{5}(20 - x - 2y)$ Starting with $y_0 = z_0 = 0$ $I) x_1 = 2.4$ $y_1 = 3.15$ $z_1 = 2.26$ | 1          |                |
|             |              |                                                                                                       | 1          |                |



#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

| Subjec | t Code: | (ISO/IEC - 27001 - 2005 Certified) 12035 Summer-2013 P                                                                     | age No: 2 | 3/24  |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| Que.   | Sub.    | Model answers                                                                                                              | Marks     | Total |
| No.    | Que.    |                                                                                                                            | IVIAIRS   | Marks |
| 6)     |         | $II) x_2 = 0.688$                                                                                                          |           |       |
|        |         | $y_2 = 2.44$                                                                                                               | 1         |       |
|        |         | $z_2 = 2.88$                                                                                                               |           |       |
|        |         | $III)x_3 = 0.848$                                                                                                          |           |       |
|        |         | $y_3 = 2.098$                                                                                                              | 1         | 04    |
|        |         | $z_3 = 2.99$                                                                                                               |           |       |
|        | b)      | A box contains 10 radio valves of which 4 are defective find                                                               |           |       |
|        | ·       | the probability that if two of them valves are taken from the                                                              |           |       |
|        |         | box, they are both defective.                                                                                              |           |       |
|        | Ans     | $n(S) = {}^{10}C_2 = 45$                                                                                                   |           |       |
|        |         | $\Gamma(0) = \mathbb{C}_2 + \mathbb{D}$                                                                                    | 1         |       |
|        |         | A= two of them valves are defective                                                                                        |           |       |
|        |         | $n(A) = {}^{4}C_{2} = 6$                                                                                                   | 1         |       |
|        |         | $n(\Lambda) = 6$                                                                                                           |           |       |
|        |         | $P(A) = \frac{n(A)}{n(S)} = \frac{6}{45} = 0.133$                                                                          | 2         | 04    |
|        |         |                                                                                                                            |           |       |
|        | c)      | If 3% of electric bulbs manufacture by a company is defective                                                              |           |       |
|        |         | find the probability that in a sample 100 bulbs, exactly 5 bulbs are defective (Given $e^{-3} = 0.04974$ )                 |           |       |
|        |         | build the defective (Given t 0.04774)                                                                                      |           |       |
|        | Ans     | P=3%=0.03, n=100                                                                                                           | 1         |       |
|        |         | Mean , m=np                                                                                                                |           |       |
|        |         | =0.03(100)<br>=3                                                                                                           | 1         |       |
|        |         |                                                                                                                            |           |       |
|        |         | $\therefore P(r) = \frac{e^{-m}m^r}{r!}$                                                                                   |           |       |
|        |         | $P(5) = \frac{e^{-3}(3)^5}{5!} = 0.1007$                                                                                   | 2         | 04    |
|        |         |                                                                                                                            |           |       |
|        | d)      | The life times of certain kinds of electric devices have a mean                                                            |           |       |
|        |         | of 300 hrs and S.D. of 25 hrs. Find the probability that any one of these electronic devices will have a life time of more |           |       |
|        |         | than 350 hrs.(area between z=0 to z=2 is 0.4772).                                                                          |           |       |
|        | Ans     | Given, $\bar{x} = 300$ , $\sigma = 25$ , $x = 350$                                                                         |           |       |
|        |         | Standard normal variate $\bar{z}$ is,                                                                                      |           |       |
|        |         | $\overline{z} = \frac{x - \overline{x}}{\sigma} = \frac{350 - 300}{25} = 2$                                                | 1         |       |
|        |         | σ 25<br>∴ Area =0.5-(area between z=0 to z=2)                                                                              |           |       |
|        |         | =0.5-0.4772                                                                                                                | 2         |       |
|        |         | =0.0228                                                                                                                    |           |       |
|        |         |                                                                                                                            |           |       |



#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)
Summer-2013

| Subjec      | t Code:      | (ISO/IEC - 27001 - 2005 Certified) 12035 Summer-2013 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | age No: 2            | 4/24           |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks                | Total<br>Marks |
| 6)          | e)           | A bag contains 6 white and 4 black balls 5 balls are drawn at                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    | 04             |
|             | Ans          | A bag contains 6 white and 4 black balls.5 balls are drawn at random. What is the probability that 3 are white and 2 are black? $n (S) = {}^{10}C_5 = 252$ $A = \{2 \text{ balls are white and 2 balls are black}\}$ $n (A) = {}^{6}C_3 \cdot {}^{4}C_2 = 20(6) = 120$ $P(A) = \frac{n(A)}{n(S)} = \frac{120}{252} = 0.4761$                                                                                                                                                                                                             | 1<br>1<br>2          | 04             |
|             | f)<br>Ans    | Two cards are drawn at random from well shuffled pack of 52 cards. Find the probability that  i) Both the cards are spade  ii) One king and other queen $n(S) = {}^{52}C_2 = 1326$ i) A={both are spade} $n(A) = {}^{13}C_2 = 78$ $P(A) = \frac{n(A)}{n(S)} = \frac{78}{1326} = 0.0588$ ii) A={one king and other queen} $n(B) = {}^{4}C_1 \cdot {}^{4}C_1 = 16$                                                                                                                                                                         | 1<br>1/2<br>1<br>1/2 |                |
|             |              | $P(B) = \frac{n(A)}{n(S)} = \frac{16}{1326} = 0.0120$ $\underline{Important\ Note:} \ In\ the\ solution\ of\ the\ question\ paper,$ $wherever\ possible\ all\ the\ possible\ alternative\ methods\ of\ solution\ are\ given\ for\ the\ sake\ of\ convenience.\ Still\ student\ may\ follow\ a\ method\ other\ than\ the\ given\ herein.\ In\ such\ case,\ first\ see\ whether\ the\ method\ falls\ within\ the\ scope\ of\ the\ curriculum,\ and\ then\ only\ give\ appropriate\ marks\ in\ accordance\ with\ the\ scheme\ of\ marking.$ |                      | 04             |

