Indexing for Near-Sorted Data

Aneesh Raman

Subhadeep Sarkar

Matthaios Olma

Manos Athanassoulis

Indexes in Databases

efficient queries

The process of inducing "sortedness" to an otherwise unsorted data collection

What if data already has some structure?

What if data already has some structure?

Near-sorted data

What if data already has some structure?

treated same as unstructured data!

Intermediate-Sortedness in Practice

classical indexes carry redundant effort!

Ideally...

The Sortedness-Aware (SWARE) Paradigm

Sortedness-Aware (SWARE) Paradigm

SWARE framework can be applied to any tree-index!

SWARE Ingestions

SWARE Ingestions

SWARE Ingestions

SWARE Ingestions Buffer SWARE Buffer 974-1030 1088 1500 915-970 Zonemap (min-max) non overlapping pages may move tail leaf node flush non-overlapping pages to tree non-overlapping pages bulk load page-by-page if in order B+-tree → fully sorted pages Leaf pages

How do lookups work?

Overall Structure for Queries

How do we evaluate SWARE?

Benchmark on Data Sortedness (TPCTC 2022)

Insert Only

Mixed Workloads (interleaved reads and writes)

Experimental Setup

Metrics:

- 1. Overall performance (speedup)
- 2. Raw performance (latency)

System Setup:

- 1. Intel Xeon Gold 5230
- 2. 2.1GHZ processor w. 20 cores
- 3. 384GB RAM, 28MB L3 cache

Workload Generator: BoDS

- 1. 500M Integer keys (~ 4GB)
- 2. Random existing lookups

Default Index Setup:

- 1. Buffer = 40MB; flush <= 50%
- 2. BFs = 10 BPK; Murmur Hash
- 3. Split at 80%

Overall Performance

Overall Performance

Overall Performance

Raw Ingestion Performance

ingestion latency reduced between 27-90%

Raw Ingestion Performance

ingestion latency reduced between 27-90%

bulk loading is maximized with high data sortedness

Space Efficiency

Sortedness Degree	<pre>#. Nodes (#. Internal, #. Leaf)</pre>	
	B+ tree	SA B+ tree
Fully Sorted	2.004M (8K, 1.996M)	0.52x
Near-Sorted	1.847M (7K, 1.840M)	0.6x
Less-Sorted	1.878M (4.3K, 1.873M)	1.01x

Space Efficiency

Sortedness Degree	<pre>#. Nodes (#. Internal, #. Leaf)</pre>	
	B+ tree	SA B+ tree
Fully Sorted	2.004M (8K, 1.996M)	0.52x
Near-Sorted	1.847M (7K, 1.840M)	0.6x
Less-Sorted	1.878M (4.3K, 1.873M)	1.01x

increased fill/split factor
helps reduce memory footprint

Summary

Identify "sortedness" as a resource

Works well with write-heavy or mixed read-write workloads

Thank You!

: aneeshr@bu.edu

: ramananeesh.com/

