

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE

DEVELOPMENT

Title: Exe19 - Decision Tree Exercise 1

Name: Chong Mun Chen

IC Number: 960327-07-5097

Date: 18/7/2023

Introduction: Practising on supervised machine learning with decision tree classification and regression.

Conclusion: Achieved a proper accuracy score with the training and testing sets.

Section 1

Reference: https://www.kaggle.com/vinicius150987/bank-full-machine-learning/notebook (https://www.kaggle.com/vinicius150987/bank-full-machine-learning/notebook)

Decision Tree

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import matplotlib.image as mpimg
        import plotly.express as px
```

Read "bank-full.csv"

```
In [2]: df = pd.read_csv('../data_samples2/bank-full.csv', delimiter=';')
In [3]:
         df.head()
Out[3]:
              age
                           job
                                marital education default balance
                                                                   housing
                                                                            loan
                                                                                   contact day
                                                                                                 month
                                                                                              5
           0
               58
                   management
                               married
                                           tertiary
                                                             2143
                                                                                  unknown
                                                                                                   may
                                                       no
                                                                        yes
                                                                              no
           1
               44
                     technician
                                 single
                                        secondary
                                                                29
                                                                                              5
                                                                                                   may
                                                       no
                                                                        yes
                                                                                  unknown
                                                                              no
                                                                             yes
               33
                   entrepreneur
                                                                 2
                                                                                              5
                               married
                                        secondary
                                                       no
                                                                        yes
                                                                                  unknown
                                                                                                   may
           3
               47
                     blue-collar
                               married
                                         unknown
                                                       no
                                                              1506
                                                                        yes
                                                                                   unknown
                                                                                              5
                                                                                                   may
                                                                              no
               33
                                                                 1
                                                                                              5
                      unknown
                                 single
                                         unknown
                                                                                  unknown
                                                                                                   may
                                                       no
                                                                         no
                                                                              no
```

Check the distribution of labels ('yes', 'no') are distributed.

```
In [4]: sns.countplot(x=df['y'])

df['y'].value_counts()
```

Out[4]: no 39922 yes 5289

Name: y, dtype: int64

Counts of "yes" and "no" with "age"

```
In [5]: | age_df = df.groupby('age')['y'].value_counts()
        age_df = age_df.rename('count').reset_index()
        print(age df)
        # Plot using seaborn barplot
        # plt.figure(figsize=(10, 6))
        # sns.barplot(data=age_df, x='age', y='count', hue='y')
        # plt.xlabel('Age')
        # plt.ylabel('Count')
        # plt.legend(title='Response')
        # plt.title("Count of 'Yes' and 'No' with Age")
        # plt.show()
        # Plot using plotly barplot
        fig = px.bar(age_df, x='age', y='count', color='y', barmode='group')
        fig.update_layout(
            title="Count of 'Yes' and 'No' with Age",
            xaxis_title="Age",
            yaxis_title="Count",
            legend_title="Response"
        fig.show()
```

```
age
           y count
0
     18 yes
                   7
1
      18
                   5
         no
2
      19
          no
                  24
3
      19 yes
                  11
4
      20
                  35
         no
143
      92 yes
                   2
144
     93 yes
                   2
145
      94
         no
                   1
      95
                   1
146
          no
147
      95 yes
                   1
```

[148 rows x 3 columns]

Count of 'Yes' and 'No' with Age

Correlation between the data

In [6]: | df.corr(numeric_only=True)

Out[6]:

	age	balance	day	duration	campaign	pdays	previous
age	1.000000	0.097783	-0.009120	-0.004648	0.004760	-0.023758	0.001288
balance	0.097783	1.000000	0.004503	0.021560	-0.014578	0.003435	0.016674
day	-0.009120	0.004503	1.000000	-0.030206	0.162490	-0.093044	-0.051710
duration	-0.004648	0.021560	-0.030206	1.000000	-0.084570	-0.001565	0.001203
campaign	0.004760	-0.014578	0.162490	-0.084570	1.000000	-0.088628	-0.032855
pdays	-0.023758	0.003435	-0.093044	-0.001565	-0.088628	1.000000	0.454820
previous	0.001288	0.016674	-0.051710	0.001203	-0.032855	0.454820	1.000000

Plot the heatmap

In [7]: plt.figure(figsize=(20,10))
 sns.heatmap(df.corr(numeric_only=True), annot=True)
 plt.show()

Convert categorical data into numerical

```
In [8]: replace_response = {'yes': 1, 'no': 0}
df = df.replace({'default': replace_response, 'housing': replace_response, 'loo'y': replace_response,})

# replace_marital = {'single': 1, 'married': 2, 'divorced': 3}
# df['marital'] = df['marital'].replace(replace_marital)

# replace_education = {'primary': 1, 'secondary': 2, 'tertiary': 3, 'unknown': # df['education'] = df['education'].replace(replace_education)

# replace_contact = {'telephone': 1, 'cellular': 2, 'unknown': None}
# df['contact'] = df['contact'].replace(replace_contact)

df
```

Out[8]:

0 58 management married tertiary 0 2143 1 0 unknown 5 1 44 technician single secondary 0 29 1 0 unknown 5 2 33 entrepreneur married secondary 0 2 1 1 unknown 5 3 47 blue-collar married unknown 0 1506 1 0 unknown 5 4 33 unknown single unknown 0 1 0 0 unknown 5 <t< th=""><th></th><th>age</th><th>job</th><th>marital</th><th>education</th><th>default</th><th>balance</th><th>housing</th><th>loan</th><th>contact</th><th>day</th><th>m</th></t<>		age	job	marital	education	default	balance	housing	loan	contact	day	m
2 33 entrepreneur married secondary 0 2 1 1 1 unknown 5 3 47 blue-collar married unknown 0 1506 1 0 unknown 5 4 33 unknown single unknown 0 1 0 0 unknown 5	0	58	management	married	tertiary	0	2143	1	0	unknown	5	
3 47 blue-collar married unknown 0 1506 1 0 unknown 5 4 33 unknown single unknown 0 1 0 0 unknown 5 <th>1</th> <th>44</th> <th>technician</th> <th>single</th> <th>secondary</th> <th>0</th> <th>29</th> <th>1</th> <th>0</th> <th>unknown</th> <th>5</th> <th></th>	1	44	technician	single	secondary	0	29	1	0	unknown	5	
4 33 unknown single unknown 0 1 0 0 unknown 5 <td< th=""><th>2</th><th>33</th><th>entrepreneur</th><th>married</th><th>secondary</th><th>0</th><th>2</th><th>1</th><th>1</th><th>unknown</th><th>5</th><th></th></td<>	2	33	entrepreneur	married	secondary	0	2	1	1	unknown	5	
### ### ##############################	3	47	blue-collar	married	unknown	0	1506	1	0	unknown	5	
45206 51 technician married tertiary 0 825 0 0 cellular 17 45207 71 retired divorced primary 0 1729 0 0 cellular 17 45208 72 retired married secondary 0 5715 0 0 cellular 17 45209 57 blue-collar married secondary 0 668 0 0 telephone 17 45210 37 entrepreneur married secondary 0 2971 0 0 cellular 17 45211 rows × 17 columns 0 2971 0 0 cellular 17	4	33	unknown	single	unknown	0	1	0	0	unknown	5	
45207 71 retired divorced primary 0 1729 0 0 cellular 17 45208 72 retired married secondary 0 5715 0 0 cellular 17 45209 57 blue-collar married secondary 0 668 0 0 telephone 17 45210 37 entrepreneur married secondary 0 2971 0 0 cellular 17 45211 rows × 17 columns												
45208 72 retired married secondary 0 5715 0 0 cellular 17 45209 57 blue-collar married secondary 0 668 0 0 telephone 17 45210 37 entrepreneur married secondary 0 2971 0 0 cellular 17 45211 rows × 17 columns	45206	51	technician	married	tertiary	0	825	0	0	cellular	17	
45209 57 blue-collar married secondary 0 668 0 0 telephone 17 45210 37 entrepreneur married secondary 0 2971 0 0 cellular 17 45211 rows × 17 columns	45207	71	retired	divorced	primary	0	1729	0	0	cellular	17	
45210 37 entrepreneur married secondary 0 2971 0 0 cellular 17 45211 rows × 17 columns	45208	72	retired	married	secondary	0	5715	0	0	cellular	17	
45211 rows × 17 columns	45209	57	blue-collar	married	secondary	0	668	0	0	telephone	17	
	45210	37	entrepreneur	married	secondary	0	2971	0	0	cellular	17	
	45211 roug v 17 columns											
•	4021110W5 ^ 17 COIDIIII15											
	1											•

Next step is to select features and labels

```
In [11]: # da = df.dropna(subset=['education', 'contact'])
# X = da.drop(['job', 'day', 'month', 'poutcome', 'y'], axis=1)
X = df[['default', 'housing', 'loan']]
y = df.y
```

Drop "poutcome"

```
In [12]: new_df = df.drop('poutcome', axis=1)
    new_df
```

Out[12]:

	age	job	marital	education	default	balance	housing	loan	contact	day	m
0	58	management	married	tertiary	0	2143	1	0	unknown	5	
1	44	technician	single	secondary	0	29	1	0	unknown	5	
2	33	entrepreneur	married	secondary	0	2	1	1	unknown	5	
3	47	blue-collar	married	unknown	0	1506	1	0	unknown	5	
4	33	unknown	single	unknown	0	1	0	0	unknown	5	
45206	51	technician	married	tertiary	0	825	0	0	cellular	17	
45207	71	retired	divorced	primary	0	1729	0	0	cellular	17	
45208	72	retired	married	secondary	0	5715	0	0	cellular	17	
45209	57	blue-collar	married	secondary	0	668	0	0	telephone	17	
45210	37	entrepreneur	married	secondary	0	2971	0	0	cellular	17	
45211	45211 rows × 16 columns										
4											•

Split the data into train and test

```
In [13]: from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn import metrics, tree

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, randon)
```

Applying Decision Tree Classifier:

Next, I created a pipeline of StandardScaler (standardize the features) and DT Classifier (see a note below regarding Standardization of features). We can import DT classifier as from sklearn.tree import DecisionTreeClassifier from Scikit-Learn. To determine the best parameters (criterion of split and maximum tree depth) for DT classifier, I also used Grid Search Cross Validation. The code snippet below is self-explanatory.

```
In [14]: clf = DecisionTreeClassifier()
clf = clf.fit(X_train,y_train)
```

To display

The number of nodes and the maximum depth

15 3

Prediction

```
In [17]: y_pred = clf.predict(X_test)
    pd.DataFrame({'Predicted':y_pred})
```

Out[17]:

	Predicted
0	0
1	0
2	0
3	0
4	0
13559	0
13560	0
13561	0
13562	0
13563	0

13564 rows × 1 columns

Accuracy measurement

```
In [18]: metrics.accuracy_score(y_test, y_pred)
```

Out[18]: 0.8856531996461221

Grid Search

```
In [19]: from sklearn.pipeline import Pipeline
         # param grid = {
                'criterion': ['gini', 'entropy'],
                'max_depth': [2, 4, 6, 8, 10, 12]
         # }
         pipe = Pipeline(steps=[('dec_tree', clf)])
         criterion = ['gini', 'entropy']
         max_depth = [2, 4, 6, 8, 10, 12]
         parameters = dict(dec_tree__criterion = criterion,
                          dec_tree__max_depth = max_depth)
         # grid_search = GridSearchCV(clf, param_grid, cv=5)
         grid_search = GridSearchCV(pipe, parameters)
         grid_search.fit(X_train, y_train)
Out[19]:
                  GridSearchCV
              estimator: Pipeline
            ▶ DecisionTreeClassifier
```

Display the best features

```
In [20]: features = X.columns
  importances = clf.feature_importances_

best_features_df = pd.DataFrame({'Features': features, 'Importance': importance best_features_df
```

Out[20]:

	reatures	importance
0	default	0.029758
1	housing	0.719692
2	loan	0.250550

Run DecisionTreeClassifier using the obtained **features**

```
In [21]: criterion = grid_search.best_estimator_.get_params()['dec_tree__criterion']
         # criterion = grid_search.best_params_['criterion']
         max_depth = grid_search.best_estimator_.get_params()['dec_tree__max_depth']
         # max_depth = grid_search.best_params_['max_depth']
         X = df[['housing', 'loan']]
         y = df.y
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, rando
         optimized clf = DecisionTreeClassifier(criterion = criterion, max depth = max
         optimized_clf.fit(X_train, y_train)
Out[21]:
                 DecisionTreeClassifier
```

DecisionTreeClassifier(max_depth=2)

Concat train test results

```
In [22]: import numpy as np
         y pred train = optimized clf.predict(X train)
         y_pred_test = optimized_clf.predict(X_test)
         y_pred_train = y_pred_train.reshape(len(y_pred_train), 1)
         y_pred_test = y_pred_test.reshape(len(y_pred_test), 1)
         print('Train Result')
         print(np.concatenate((y_pred_train, y_train.to_numpy().reshape(len(y_train), 1
         print('Test Result')
         print(np.concatenate((y_pred_test, y_test.to_numpy().reshape(len(y_test), 1)),
         Train Result
         [[0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]]
         Test Result
         [[0 0]]
          [0 0]
          [0 0]
           [0 0]
          [0 0]
          [0 1]]
```

Section 2

1. Read "petrol consumption.csv" file

```
In [23]: petrol_df = pd.read_csv('../data_samples2/petrol_consumption.csv')
```

2. Display the first 5 records

In [24]: petrol_df.head()

Out[24]:

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)	Petrol_Consumptio
0	9.0	3571	1976	0.525	54
1	9.0	4092	1250	0.572	52
2	9.0	3865	1586	0.580	56
3	7.5	4870	2351	0.529	41
4	8.0	4399	431	0.544	41
4					•

4. Identify the label (Petrol_Consumption)

```
In [25]: y_petrol = petrol_df['Petrol_Consumption']
```

5. Identify the features.

```
In [26]: X_petrol = petrol_df.drop('Petrol_Consumption', axis=1)
```

6. Use of describe method to describe the dataset.

```
In [27]: petrol_df.describe()
```

Out[27]:

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)	Petrol_Consun
count	48.000000	48.000000	48.000000	48.000000	48.0
mean	7.668333	4241.833333	5565.416667	0.570333	576.7
std	0.950770	573.623768	3491.507166	0.055470	111.8
min	5.000000	3063.000000	431.000000	0.451000	344.0
25%	7.000000	3739.000000	3110.250000	0.529750	509.5
50%	7.500000	4298.000000	4735.500000	0.564500	568.5
75%	8.125000	4578.750000	7156.000000	0.595250	632.7
max	10.000000	5342.000000	17782.000000	0.724000	968.0
4					•

7. Display the first 5 records of the features

In [28]: X_petrol.head()

Out[28]:

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)
0	9.0	3571	1976	0.525
1	9.0	4092	1250	0.572
2	9.0	3865	1586	0.580
3	7.5	4870	2351	0.529
4	8.0	4399	431	0.544

8. Split the data into training (80%) and testing (20%) sets.

```
In [29]: X_petrol_train, X_petrol_test, y_petrol_train, y_petrol_test = train_test_spli-
```

9. Build your model and train the training data

```
In [30]: reg_petrol = DecisionTreeRegressor()
reg_petrol = reg_petrol.fit(X_petrol_train,y_petrol_train)
reg_petrol
```

Out[30]: v Dec

```
   DecisionTreeRegressor

DecisionTreeRegressor()
```

10. Prediction using the testing set

```
In [31]: y_petrol_pred = reg_petrol.predict(X_petrol_test)
y_petrol_pred
```

```
Out[31]: array([487., 524., 534., 635., 524., 467., 571., 580., 968., 574.])
```

11. Display Actual and Predictied price side by side in df

Out[32]:

	Actual	Predicted
0	628	487.0
1	547	524.0
2	648	534.0
3	640	635.0
4	561	524.0
5	414	467.0
6	554	571.0
7	577	580.0
8	782	968.0
9	631	574.0

12. Evaluate the model using mean_absulate_error

```
In [33]: from sklearn.metrics import mean_absolute_error
    mean_absolute_error(y_petrol_test, y_petrol_pred)
```

Out[33]: 63.6

13. Display the predicted output using first 5 features.

```
In [34]: compare_df[['Predicted']].head()
```

Out[34]:

	Predicted
0	487.0
1	524.0
2	534.0
3	635.0
4	524.0