

Serial No.: 10/808,309

In the Claims:

Please amend claims 3 - 7 and add new claims 19 - 22 as follows:

- 1 1. (withdrawn) An endoscope observation system comprising:
2 an illumination optical system having a light source for supplying illumination light to an
3 object;
4 an objective optical system that forms a magnified image of the object such that the
5 absolute value of the image scale factor is larger than 1; and
6 an image pickup element that detects said magnified image;

7 wherein
8 said illumination optical system is provided with a wavelength selection means for, when
9 dividing, among the blue, green, and red wavelength ranges in the illumination light from the
10 light source, either the blue wavelength range or the red wavelength range into two wavelength
11 bands T1 and T2, with the wavelength band T1 being nearer the green wavelength range than is
12 the wavelength band T2, preventing the wavelength band T1 from illuminating the object.

- 1 2. (withdrawn) The endoscope observation system according to claim 1, whercin the wavelength
2 band T1 is within the range: $600 \text{ nm} \leq T1 \leq 700 \text{ nm}$.

- 1 3. (currently amended) An endoscope comprising:
2 an observation unit; and
3 an illumination unit that illuminates an illumination field;
4 wherein
5 the observation unit includes an objective optical system having an observation field of
6 view and an in-focus position; and
7 the observation field of view of the objective optical system at the in-focus position of the
8 objective optical system does not overlap said illumination field; and

Serial No.: 10/808,309

9 a center line of the illumination field and a center line of the observation field are directed
10 in substantially the same direction.

1 4. (currently amended) An endoscope comprising:

2 an image pickup unit having an observation field of view, the image pickup unit
3 including an objective optical system that forms a magnified image of an object in the
4 observation field of view such that the absolute value of the image scale factor is larger than 1;
5 and

6 an illumination unit;

7 wherein

8 the image pickup unit and the illumination unit are positioned so that the observation
9 field of view of the image pickup unit at the in-focus position does not overlap the illumination
10 field of the illumination unit, and

11 a center line of the illumination field and a center line of the observation field are directed
12 in substantially the same direction.

1 5. (currently amended) An endoscopic illumination method in which a light source that does not
2 directly illuminate an observation field of view illuminates an area of tissue outside the
3 observation field of view, and said area of tissue scatters the light from the light source so as to
4 illuminate the observation field of view observation method using an illumination unit and an
5 observation unit comprising:

6 illuminating an object placed in contact with a distal end of the observation unit so that a
7 light source that does not directly illuminate an observation field of view illuminates an area of
8 tissue outside the observation field of view, said area of tissue scatters light from the light source
9 so as to illuminate the observation field of view; and

10 observing an image of the observation field of view by the observation unit such that the
11 absolute value of the image scale factor is larger than 1.

Serial No.: 10/808,309

- 1 6. (currently amended) A method for observing epithelial cells of living tissue using ~~the~~
2 endoscope according to claim 3 an endoscope comprising that includes:
3 an observation unit; and
4 an illumination unit that illuminates an illumination field;
5 wherein
6 the observation unit includes an objective optical system having an observation field of
7 view and an in-focus position; and
8 the observation field of view of the objective optical system at the in-focus position of the
9 objective optical system does not overlap said illumination field;
10 said method comprising:
11 a step in which the illumination light emitted from the illumination system is scattered
12 and reflected by the parenchymal tissues underlying the epithelial cells so as to illuminate the
13 epithelial cells.
- 1 7. (currently amended) A method for observing epithelial cells of living tissue using ~~the~~
2 endoscope according to claim 4 an endoscope comprising that includes:
3 an image pickup unit having an observation field of view, the image pickup unit
4 including an objective optical system that forms a magnified image of an object in the
5 observation field of view such that the absolute value of the image scale factor is larger than 1;
6 and
7 an illumination unit;
8 wherein
9 the image pickup unit and the illumination unit are positioned so that the observation
10 field of view of the image pickup unit at the in-focus position does not overlap the illumination
11 field of the illumination unit;
12 said method comprising:
13 a step in which the illumination system of the endoscope illuminates the underlying
14 parenchymal tissues of the epithelial cells; and

Serial No.: 10/808,309

15 a step in which the illumination light emitted from the illumination system is scattered
16 and reflected by the parenchymal tissues underlying the epithelial cells to illuminate the epithelial
17 cells.

1 8. (withdrawn) An endoscopic, in vivo cellular observation method in which, based on magnified
2 images of living tissue, the number of cell nuclei captured in the field of view is used to evaluate
3 the cell size, or the distance between cell nuclei captured in the field of view is used to evaluate
4 the population density of the nuclei, for diagnosis of abnormal cells, said method comprising the
5 following steps:

6 (a) introducing a coloring agent having blue or red wavelength absorption into cells of
7 living tissue to be imaged so as to enhance the contrast of cell nuclei using the difference in the
8 retention rate of the coloring agent between the nuclei and the other portions of the cells;

9 (b) illuminating the cells with light having the absorption wavelength; and

10 (c) displaying several tens to several hundreds of cell nuclei captured in the field of view
11 so as to facilitate said diagnosis.

1 9. (withdrawn) An endoscopic, in vivo cellular observation method comprising the following
2 steps:

3 (a) applying a blue or red wavelength band absorption substance to cells of living tissue
4 to be imaged;

5 (b) illuminating, when dividing the absorption wavelength band into two wavelength
6 bands T1 and T2, the cells with the illumination light of which the wavelength band T1 closer to
7 the green wavelength range is cut off, thereby enhancing the contrast of cell nuclei using the
8 difference in light absorption for the wavelength band T2 between the cell nuclei and other
9 portions of the cells; and

10 (c) displaying several tens to several hundreds of cell nuclei captured in the field of view
11 for the purpose of evaluating the likelihood that the in vivo cells are cancerous.

Serial No.: 10/808,309

1 10. (withdrawn) An endoscopic, in vivo cellular observation method in which, based on
2 magnified images of living tissue, the ratio of the area of the cell nuclei divided by the area
3 within the cell walls in the field of view is evaluated for diagnosis of abnormal cells, said
4 endoscopic, in vivo cellular observation method comprising the following steps, performed in the
5 order indicated:

6 (a) introducing a coloring agent having blue or red wavelength absorption into cells of
7 living tissue to be imaged so that the contrast of cell nuclei will be enhanced due to a difference
8 in retention rate of the coloring agent in the cell nuclei versus other portions of the cells;

9 (b) illuminating the cells with light having the absorption wavelength;

10 (c) displaying several cell nuclei captured in the field of view for the purpose of
11 evaluating the likelihood that the in vivo cells are cancerous.

1 11. (withdrawn) An endoscopic, in vivo cellular observation method in which, using the
2 endoscope observation system according to claim 1, the ratio of the area of the cell nuclei divided
3 by the area within the cell walls in the field of view is evaluated for diagnosis of abnormal cells,
4 said endoscopic, in vivo cellular observation method comprising the following steps, performed
5 in the order indicated:

6 (a) applying a substance having blue or red wavelength band absorption to cells of living
7 tissue to be imaged so as to enhance the contrast of cell nuclei versus other cell portions using a
8 difference in absorbency of said substance by the cell nuclei versus the other cell portions;

9 (b) illuminating, when dividing the absorption wavelength band into two wavelength
10 bands, T1 and T2, the cells with illumination light wherein the wavelength band T1 is cut off,
11 where T1 is wavelength band among T1 and T2 that is closer to the green wavelength range;

12 (c) displaying several cell nuclei captured in the field of view; and

13 (d) determining said ratio so as to diagnose the presence/absence of abnormal cells in the
14 field of view.

1 12. (withdrawn) The endoscopic, in vivo cellular observation method according to claim 10,

Serial No.: 10/808,309

2 wherein:

3 the endoscope that is used has an objective optical system with a numerical aperture on
4 the object side of 0.3 or larger.

1 13. (withdrawn) The endoscopic, in vivo cellular observation method according to claim 11,

2 wherein:

3 the endoscope that is used has an objective optical system with a numerical aperture on
4 the object side of 0.3 or larger.

1 14. (withdrawn) An endoscope observation system comprising:

2 an image pickup unit that includes a magnifying objective optical system having an image
3 scale factor with an absolute value that is greater than unity; and

4 a light source for supplying illumination light, the light source being an LED that emits
5 single color light rays directly onto an object to be observed by the endoscope.

1 15. (withdrawn) The endoscope according to claim 14, and further comprising:

2 an elongated portion adapted for insertion into a channel installed in another endoscope;

3 wherein

4 the image pickup unit is mounted at a distal end of the elongated portion.

1 16. (withdrawn) An endoscope observation system comprising:

2 an illumination optical system having a light source for supplying illumination light to an
3 object;

4 an objective optical system that forms a magnified image of the object such that the
5 absolute value of the image scale factor is larger than 1; and

6 an image pickup element that detects said magnified image;

7 wherein

8 said illumination optical system is provided with a wavelength selection filter which,

Serial No.: 10/808,309

9 when dividing, among the blue, green, and red wavelength ranges in the illumination light from
10 the light source, either the blue wavelength range or the red wavelength range into two
11 wavelength bands T1 and T2, with the wavelength band T1 being nearer the green wavelength
12 range than is the wavelength band T2, prevents the wavelength band T1 from illuminating the
13 object.

1 17. (previously presented) An endoscope comprising:

2 an observation unit; and

3 an illumination unit that illuminates an illumination field;

4 wherein

5 the observation unit includes an objective optical system having an observation field of
6 view and an in-focus position; and

7 the observation field of view of the objective optical system at the in-focus position of the
8 objective optical system does not overlap said illumination field;

9 wherein the following conditions are satisfied

10 $1 < |\beta_0| \leq 10$

11 $0.9 \leq |\cos w_y' / \cos w_y| \leq 1.1$

12 where

13 β_0 is the image scale factor of the objective optical system,

14 w_y' is the incident angle at which a chief ray corresponding to the largest field angle

15 enters the image pickup surface, and

16 w_y is the image half-field angle.

1 18. (previously presented) An endoscope comprising:

2 an image pickup unit having an observation field of view, the image pickup unit
3 including an objective optical system that forms a magnified image of an object in the
4 observation field of view such that the absolute value of the image scale factor is larger than 1;
5 and

Serial No.: 10/808,309

6 an illumination unit;

7 wherein

8 the image pickup unit and the illumination unit are positioned so that the observation
9 field of view of the image pickup unit at the in-focus position does not overlap the illumination
10 field of the illumination unit; and

11 the following conditions are satisfied

12 $1 < |\beta_0| \leq 10$

13 $0.9 \leq |\cos w_y' / \cos w_y| \leq 1.1$

14 where

15 β_0 is the image scale factor of the objective optical system,

16 w_y' is the incident angle at which a chief ray corresponding to the largest field angle
17 enters the image pickup surface, and
18 w_y is the image half-field angle.

1 19. (new) An endoscope comprising:

2 an observation unit; and

3 an illumination unit that illuminates an illumination field;

4 wherein

5 the observation unit includes an objective optical system having an observation field of
6 view and an in-focus position; and

7 the observation field of view of the objective optical system at the in-focus position of the
8 objective optical system does not overlap said illumination field; and

9 the light scattered and/or reflected at the illumination field fully illuminates the
10 observation field of view.

1 20. (new) An endoscope comprising:

2 an image pickup unit having an observation field of view, the image pickup unit
3 including an objective optical system that forms a magnified image of an object in the

Serial No.: 10/808,309

4 observation field of view such that the absolute value of the image scale factor is larger than 1;

5 and

6 an illumination unit;

7 wherein

8 the image pickup unit and the illumination unit are positioned so that the observation
9 field of view of the image pickup unit at the in-focus position does not overlap the illumination
10 field of the illumination unit, and

11 the light scattered and/or reflected at the illumination field fully illuminates the
12 observation field of view.

1 21. (new) The method according to claim 6, wherein the following conditions are satisfied:

2 $1 < |\beta_0| \leq 10$

3 $0.9 \leq |\cos w_y' / \cos w_y| \leq 1.1$

4 where

5 β_0 is the image scale factor of the objective optical system,

6 w_y' is the incident angle at which a chief ray corresponding to the largest field angle
7 enters the image pickup surface, and

8 w_y is the half-field angle.

1 22. (new) The method according to claim 7, wherein the following conditions are satisfied:

2 $1 < |\beta_0| \leq 10$

3 $0.9 \leq |\cos w_y' / \cos w_y| \leq 1.1$

4 where

5 β_0 is the image scale factor of the objective optical system,

6 w_y' is the incident angle at which a chief ray corresponding to the largest field angle
7 enters the image pickup surface, and

8 w_y is the half-field angle.