Boolean Networks in Systems Life Sciences

Juri Kolčák

Friday 17th October, 2025

Self-Introduction

Postdoc in the Algorithmic Cheminformatics Group uni-bielefeld.de/fakultaeten/technische-fakultaet/arbeitsgruppen/algorithmische-chemieinformatik/

Head of the group: Prof. Daniel Merkle

Graph Transformation for Chemistry

Contact info: juri.kolcak@uni-bielefeld.de Office U10-128

This Course

FORMAT:

Lectures + exercise sessions.

EVALUATION:

Oral exam: 15+15 minutes (introduce a topic + questions). Compulsory exercise sheet (at least 50% correct).

MATERIALS:

jurikolcak.eu/teaching

Unofficial:

L. Paulevé and S. Sené. Boolean networks and their dynamics: The impact of updates.

In Systems Biology Modelling and Analysis, chapter 6, pages 173-250. John Wiley & Sons, Ltd, 2022

C. Baier and J.-P. Katoen. Principles of Model Checking.

The MIT Press, Cambridge, MA, USA, May 2008

Boolean Networks

Abstract (high-level) model of interacting entities.

All variables in the model are Boolean, valued 0 or 1.

Variables connected with directed edges (interactions or influences).

Interaction interplay defined by means of Boolean (logical) functions.

Main application area: Gene regulation networks.

Systems Life Sciences

Complex systems in life sciences.

Mathematical and computational study of systems as a whole, with focus on complex interactions between the components and the arising emergent properties/behaviours, which are not observable by study of the components individually.

Holistic approach: "A system is more than the sum of its parts."

The dynamics (behaviour) of the systems and dynamical properties are of interest.

Hypothesis driven.

Drug Target Detection

Ö. Sahin, H. Fröhlich, C. Löbke, U. Korf, S. Burmester, M. Majety, J. Mattern, I. Schupp, C. Chaouiya, D. Thieffry, A. Poustka, S. Wiemann, T. Beissbarth, and D. Arlt. Modeling erbb receptor-regulated g1/s transition to find novel targets for de novo trastuzumab resistance.

BMC Systems Biology, 3(1):1, Jan 2009

Cell Differentiation

Cell identity cascading landscape

 $I. \ Crespo \ and \ A. \ del \ Sol. \ A \ general \ strategy for \ cellular \ reprogramming: \ The \ importance \ of \ transcription factor \ cross-repression.$

Stem Cells, 31(10):2127-2135, Oct 2013

Cell Differentiation – T-helper Cell Example

W. Abou-Jaoudé, P. T. Monteiro, A. Naldi, M. Grandclaudon, V. Soumelis, C. Chaouiya, and D. Thieffry. Model checking to assess t-helper cell plasticity.

Frontiers in Bioengineering and Biotechnology, 2, 2015

Cell Reprogramming

W. Abou-Jaoudé, P. T. Monteiro, A. Naldi, M. Grandclaudon, V. Soumelis, C. Chaouiya, and D. Thieffry. Model checking to assess t-helper cell plasticity.

Frontiers in Bioengineering and Biotechnology, 2, 2015

Microbial Communities

Work in progress...

Outline

Boolean Networks in Systems Life Sciences

```
24/10/25 Dynamical Models in Life Sciences – an Overview;
31/10/25 Boolean Algebra and Propositional Logic;
07/11/25 Boolean Networks (Syntax+(Classical) Semantics);
14/11/25 Transition Systems;
21/11/25 Interaction (Influence) Graphs;
28/11/25 Most Permissive Semantics;
05/12/25 Model Verification (Temporal Properties);
12/12/25 Model Checking:
19/12/25 Network Inference;
09/01/26 Complexity;
16/01/26 No Lecture;
23/01/26 Ongoing Work: Microbial Interaction Inference;
30/01/26 Review (on demand);
06/02/26 Review (on demand);
```