

Product Specification

Product Name: VGM128032B5W14

Product Code: M0176H

Customer			
		Approved by Customer	
Approved	Date:		

Dosimol Dec	Charles d Dec	Approved By		
Designed By	Checked By	R&D	QA	
海东峰2016年16日	Apert 1016/16	马鹏静206,10.26	型心地 2016-1026	

CONTENT

KEVI	SION RECORD	3
1 (OVERVIEW	4
2 I	FEATURES	4
3 N	MECHANICAL DATA	4
4 N	MECHANICAL DRAWING	5
5 N	MODULE INTERFACE	6
6 I	FUNCTION BLOCK DIAGRAM	7
7 A	ABSOLUTE MAXIMUM RATINGS	8
8 I	ELECTRICAL CHARACTERISTICS	8
8.1	DC ELECTRICAL CHARACTERISTICS	8
8.2	ELECTRO-OPTICAL CHARACTERISTICS	
8.3	AC ELECTRICAL CHARACTERISTICS	10
9 I	FUNCTIONAL SPECIFICATION AND APPLICATION CIRCUIT	11
9.1	POWER ON AND POWER OFF SEQUENCE WITH EXTERNAL VCC	11
9.2	POWER ON AND OFF SEQUENCE WITH CHARGE PUMP APPLICATION	12
9.3	APPLICATION CIRCUIT	13
9.4	EXTERNAL DC-DC APPLICATION CIRCUIT	15
9.5	DISPLAY CONTROL INSTRUCTION.	16
9.6	RECOMMENDED SOFTWARE INITIALIZATION	16
10 I	PACKAGE SPECIFICATION	17
11 I	RELIABILITY	18
11.1	1 Reliability Test	18
	2 Lifetime	
	FAILURE CHECK STANDARD	
	ILLUSTRATION OF OLED PRODUCT NAME	
13 (OUTGOING QUALITY CONTROL SPECIFICATIONS	20
13.1	1 Sampling Method	20
	2 Inspection Conditions	
	3 QUALITY ASSURANCE ZONES	
13.4	4 Inspection Standard	21
14 I	PRECAUTIONS FOR OPERATION AND STORAGE	24
14.1	1 Precautions for Operation	24
14.2	2 SOLDERING	24
14.3	3 PRECAUTIONS FOR STORAGE	24
14.4	4 WARRANTY PERIOD	24

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
D01	Initial Release	2016-10-26	

1 Overview

VGM128032B5W14 is a monochrome OLED display module with 128×32 dot matrix. The characteristics of this display module are high brightness, self-emission, high contrast ratio, slim/thin outline, wide viewing angle, wide temperature range, and low power consumption.

2 Features

Display Color: White
 Dot Matrix:128×32
 Driver IC: SSD1316Z

➤ Interface: IIC

 \triangleright Wide range of operating temperature: -40°C to 70°C

3 Mechanical Data

	1/100Humout Dutu					
NO.	ITEM	SPECIFICATION	UNIT			
1	Dot Matrix	128(W)×32(H)	-			
2	Dot Size	0.155(W)×0.155(H)	mm ²			
3	Dot Pitch	0.175(W)×0.175(H)	mm ²			
4	Aperture Rate	78	%			
5	Active Area	22.38 (W)×5.58 (H)	mm ²			
6	Panel Size	29(W)×8.8(H) ×1.05(T)	mm ³			
7	Module Size	48(W)×8.8(H) ×1.28(T)	mm ³			
8	Diagonal A/A Size	0.91	inch			
9	Module Weight	0.65±10%	gram			

4 Mechanical Drawing

5 Module Interface

PIN NO.	PIN NAME	DESCRIPTION				
1	C2P					
2	C2N	C1P/C1N – Pin for charge pump capacitor; Connect to each other with a capacitor.				
3	C1P	C2P/C2N – Pin for charge pump capacitor; Connect to each other with a capacitor.				
4	C1N					
5	VBAT	Power supply for charge pump regulator circuit. Table 5.1				
6	VSS	This is a ground pin.				
7	VDD	Power supply pin for core logic operation.				
8	SA0	Slave address				
9	RES#	This pin is reset signal input. When the pin is LOW, initialization of the chip is executed.				
10	NC	NO Connection				
11	SCL	The serial clock pin.				
12	SDA	The serial data pin.				
13	IREF	This pin is segment current reference pin. A resistor should be connected between this pin and VSS.				
14	VCOMH	This pin is the input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS.				
15	VCC	Power supply for panel driving voltage. This is also the most positive power voltage supply pin. When charge pump is enabled, a capacitor should be connected between this pin and VSS.				

Table 5.1

Status	VBAT	VDD	VCC
Enable charge pump	Connect to external VBAT source	Connect to external VDD source	A capacitor should be connected between this pin and VSS
Disable charge pump	Keep float	Connect to external VDD source	Connect to external VCC source

6 Function Block Diagram

7 Absolute Maximum Ratings

ITEM	SYMBOL	MIN	MAX	UNIT	REMARK
Cymply Voltage	VDD	-0.3	4.0	V	IC maximum rating
Supply Voltage	VBAT	-0.3	5.0	V	IC maximum rating
OLED Operating Voltage	VCC	0	16	V	IC maximum rating
Operating Temp.	Тор	-40	70	$^{\circ}$	-
Storage Temp	Tstg	-40	85	$^{\circ}$	-

Note (1): All of the voltages are on the basis of "VSS = 0V".

Note (2): Permanent breakage of module may occur if the module is used beyond the maximum rating. The module can be normal operated under the conditions according to Section 8 "Electrical Characteristics". Malfunctioning of the module may occur and the reliability of the module may deteriorate if the module is used beyond the conditions.

8 Electrical Characteristics

8.1 DC Electrical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Logic Supply Voltage	VDD (1)	22±3°C, 55±15%R.H	1.65	2.8	3.3	V
Supply Voltage for DC/DC	VBAT (2)	22±3°C, 55±15%R.H	3.0	3.7	4.4	V
OLED Driver Supply Voltage (Generated by Internal DC/DC)	VCC (3)	22±3°C, 55±15%R.H	-	9.0	-	V
High-level Input Voltage	V_{IH}	-	$0.8 \times \text{VDD}$	-	-	V
Low-level Input Voltage	$V_{ m IL}$	-	-	-	0.2×VDD	V
High-level Output Voltage	V _{OH}	-	0.9×VDD	-	-	V
Low-level Output Voltage	V _{OL}	-	-	-	$0.1 \times VDD$	V

Note:

- (1) The VDD input must be kept in a stable value and ripple and noise in the range of ± 100 mv.
- (2) Vbat must be ≤ 4.4 V during under working condition, during charging the Vbat must be ≤5V with surge protection;
- (3) The VCC input must be kept in a stable value and ripple and noise in the range of ± 100 mv.; when the brightness changes, the ripple and noise will change simultaneously but not beyond ± 200 mv.

8.2 Electro-optical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Normal Mode Brightness	L_{br}	All pixels ON(1) (VCC generated by internal DC/DC)	120	150	-	cd/m ²
Normal Mode Brightness	L_{br}	All pixels ON(2) (VCC generated by internal DC/DC)	195	245	-	cd/m ²
Normal Mode Power Consumption	Pt	All pixels ON(1) (VCC generated by internal DC/DC)	-	81.4	107.3	mW
Normal Mode Power Consumption	Pt	All pixels ON(2) (VCC generated by internal DC/DC)	-	122.1	159.1	mW
ICC,Sleep mode Current ICC,SLEEP VCC=7~15V		VDD=1.65V~3.3V VCC=7~15V Display OFF, No panel attached	-	-	20	uA
IDD,Sleep mode Current	IDD,SLEEP	VDD=1.65V~3.3V VCC=7~15V Display OFF, No panel attached	-	-	20	uA
C.I.E(White)	(x)	x,y(CIE1931)	0.26	0.30	0.34	-
C.I.L(WIIIC)	(y)	х,у(СПДТЭЭТ)	0.29	0.33	0.37	-
Dark Room Contrast	CR	-	≥2000:1	-	-	-
Response Time		-	-	10	-	μs
View Angle	-	-	≥160	-	-	Degree

Note(1): Normal Mode test conditions are as follows:

- Driving voltage: VBAT: 3.7V (VCC Generated by Internal DC/DC).

Frame rate: 115HzDuty setting: 1/32Contrast setting: 0x53

Note(2): Normal Mode test conditions are as follows:

- Driving voltage: VBAT: 3.7V (VCC Generated by Internal DC/DC).

Frame rate: 115HzDuty setting: 1/32Contrast setting: 0xFF

8.3 AC Electrical Characteristics

I²C interface Timing Characteristics

 $(VDD - VSS = 1.65V \text{ to } 3.3V, TA = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	-	us
t _{HSTART}	Start condition Hold Time	0.6	-	-	us
t _{HD}	Data Hold Time (for "SDA _{OUT} " pin)	0	-	-	ns
	Data Hold Time (for "SDA _{IN} " pin)	300	-	-	ns
t_{SD}	Data Setup Time	100	-	-	ns
tsstart	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-		us
t_{SSTOP}	Stop condition Setup Time	0.6	-	_	us
t _R	Rise Time for data and clock pin	-	-	300	ns
$t_{\rm F}$	Fall Time for data and clock pin	-	-	300	ns
t _{IDLE}	Idle Time before a new transmission can start	1.3	00000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	us

SPI interface characteristics

9 Functional Specification and Application Circuit

9.1 Power ON and Power OFF Sequence with External VCC

Power ON Sequence:

- 1. Power ON VDD
- 2. After VDD become stable, set RES# pin LOW (logic low) for at least 3us $(t_1)^{(4)}$ and then HIGH (logic high).
 - 3. After set RES# pin LOW (logic low), wait for at least 3us (t₂). Then Power ON VCC⁽¹⁾.
 - 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (t_{AF}).

Power OFF Sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF VCC^{(1) (2) (3)}.
- 3. Power OFF VDD after t_{OFF}. (5) (Typical t_{OFF}=100ms)

Note:

- (1)Since an ESD protection circuit is connected between VDD and VCC, VCC becomes lower than VDD whenever VDD is ON and VCC is OFF as shown in the dotted line of VCC in above figures.
- (2) VCC should be kept float (disable) when it is OFF.
- (3) Power Pins(VDD, VCC) can never be pulled to ground under any circumstance.
- (4) The register values are reset after t1.
- (5) VDD should not be Power OFF before VCC Power OFF.

9.2 Power ON and OFF sequence with Charge Pump Application

Power ON sequence:

- 1. Power ON VDD
- 2. Wait for t_{ON} . Power ON VBAT. (1), (2) (where Minimum $t_{ON} = 0$ ms)
- 3. After VBAT become stable, set RES# pin LOW (logic low) for at least 3us (t1) ⁽³⁾ and then HIGH (logic high).
- 4. After set RES# pin LOW (logic low), wait for at least 3us (t₂). Then input commands with below sequence:
 - a. 8Dh 14h for enabling charge pump at 9.0V mode
 - b. AFh for display ON
- 5. SEG/COM will be ON after 100ms (t_{AF}).

Power OFF sequence:

- 1. Send command AEh for display OFF
- 2. Send command 8Dh 10h to disable charge pump
- 3. Power OFF VBAT after t_{OFF} . (1), (2) (Typical $t_{OFF} = 100 \text{ms}$)
- 4. Power OFF VDD after t_{OFF2} . (where Minimum $t_{OFF2} = 0 \text{ms}^{(4)}$, Typical $t_{OFF2} = 5 \text{ms}$)

Note:

- (1)VBAT should be kept float (i.e. disable) when it is OFF.
- (2) Power Pins (VDD, VBAT) can never be pulled to ground under any circumstance.
- (3) The register values are reset after t1.
- (4) VDD should not be Power OFF before VBAT Power OFF

9.3 Application Circuit

1) Application Example of M0176H with with Internal Charge Pump and I²C mode.

Pin connected to MCU interface: RES#, SCL, SDA

Under Internal DC/DC Mode, the Charge Pump Setting (8Dh) must be set as follow:

8Dh: Charge Pump Setting

14h: Enable Charge Pump at 9.0V mode

SA0	0	1
Slave address	0x78	0x7a

Recommended component

C1, C2: 1uF-0603-X7R±10%.RoHS

C3, C4,C5: 4.7µF/16V.RoHS (Tantalum Capacitors)

R1 R2: 0603 1/10W +/-5% 10 Kohm.RoHS R3: 0603 1/10W +/-5% 390Kohm.RoHS

2) Application Example of M0176H with External VCC and I²C mode.

Pin connected to MCU interface: RES#, SCL, SDA

C1P, C1N, C2P, C2N, VBAT should be left open.

Under external VCC Mode, the Charge Pump Setting (8Dh) must be set as follow:

8Dh: Charge Pump Setting

10h: Disable Charge Pump

SA0	0	1
Slave address	0x78	0x7a

Recommended components

C1, C2: 4.7µF/16V.RoHS (Tantalum Capacitors)

R1 R2: 0603 1/10W +/-5% 10 Kohm.RoHS

R3: 0603 1/10W +/-5% 390Kohm.RoHS

9.4 External DC-DC application circuit

Recommend component

The C1 : 1 uF-0603-X7R \pm 10%.RoHS

The C2 : 1 uF-0603-X7R±10%.RoHS

The C3 : $220 pF-0603-X7R\pm10\%$. RoHS

The R1 : 0603 1/10W +/-5% 10Kohm.RoHS

The R2 : 0603 1/10W +/-5% 80Kohm.RoHS

The R3 : 0603 1/10W +/-5% 2Kohm.RoHS

The R4 : 0603 1/10W +/-5% 1Kohm.RoHS

The R5 : 0603 1/10W +/-5% 10Kohm.RoHS

The L1 : 22uH

The U1 : R1200

The U2 : FDN338P

The U3 : 8050

9.5 Display Control Instruction

Refer to SSD1316Z IC Specification.

9.6 Recommended Software Initialization

In order to ensure the reliability and stability of the module, the module must initialized use the following code, Malfunctioning of the module may occur and the reliability of the module may deteriorate if the module is used beyond the initialize code.

```
void Init IC()
  Write Command(0xAE);
                              // Set Display Off
   Write Command(0xD5);
                                // Display divide ratio/osc. freq. mode
                                // 115HZ
   Write Command(0xC1);
   Write Command(0xA8);
                               // Multiplex ration mode:
   Write_Command(0x1F);
   Write Command(0xAD);
                               // External or Internal VCOMH/ IREF Selection
   Write Command(0x00);
                                // Internal VCOMH/ External IREF
   Write Command(0x20);
                                // Set Memory Addressing Mode
   Write Command(0x02);
                                // Page Addressing Mode
   Write Command(0xD3);
                                // Set Display Offset
   Write Command(0x00);
   Write Command(0x40);
                               // Set Display Start Line
   Write Command(0x8D);
                                // DC-DC Control Mode Set
   Write Command(0x14);
                               // DC-DC ON Mode Set
   Write Command(0xA0);
                                // Segment Remap
   Write Command(0xC8);
                                // Set COM Output Scan Direction
   Write Command(0xDA);
                                // Seg pads hardware: alternative
   Write Command(0x12);
                                // Contrast control
   Write Command(0x81);
   Write Command(0x53);
   Write Command(0xD9);
                                  // Set pre-charge period
   Write Command(0x22);
                                // VCOMH deselect level mode
   Write Command(0xDB);
   Write Command(0x00);
   Write Command(0xA4);
                                // Set Entire Display On/Off
   Write_Command(0xA6);
                                // Set Normal Display
   Clear Screen();
   Write Command(0xAF);
                                // Set Display On
```

}

9

46 contained trays,

2 empt:

10 Package Specification

Controlled Seal

- NOTE: 1, 2 The inner carton Fill up the gap adhesive tape. with and master carton must tray. be sealed with
- marking at the inner carton and master carton need adhesive new RoHS If the customer has special needs with the RoHS making,

11 Reliability

11.1 Reliability Test

NO.	ITEM	CONDITION	QUANTITY
1	High Temperature (Non-operation)	85℃,240hrs	4
2	Low Temperature (Non-operation)	-40°C,240hrs	4
3	High Temperature (Operation)	70℃,240hrs	4
4	Low Temperature (Operation)	-40°C,240hrs	4
5	High Temperature / High Humidity (Operation)	60℃,90%RH,240hrs	4
6	Thermal shock (Non-operation)	-40°C~85°C(-40°C/30min;transit/3min;85°C/30min;transit/3min) 1 cycle: 66min,30 cycles	4
7	ESD (Non-operation)	Air discharge model :+/- 8kV Test nine dots and each dots should be discharged ten times and the interval time can't be less than one second.	4
8	Vibration	Frequency: 5~50Hz,0.5G Scan rate: 1 oct/min Time: 2 hrs/axis Test axis: X,Y, Z	1 Carton
9	Drop	Height: 100 cm Sequence: 1 angle, 3 edges and 6 faces	1 Carton

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability, the stable time is at least 15 minutes.
- 2. The degradation of polarizer is ignored for item 5.
- 3. The tolerance of temperature is $\pm 3^{\circ}$ C, and the tolerance of relative humidity is $\pm 5\%$.

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: ≥50% of initial value.
- 4. Current consumption: within \pm 50% of initial value

11.2 Lifetime

End of lifetime is specified as 50% of initial brightness and the test pattern at operating condition is 50% alternating checkerboard.

ITEM	MIN	MAX	UNIT	CONDITION
Operation Life Time	10,000	-	hrs	150 cd/m ² , 50% alternating checkerboard, 22+3°C 55+15% RH

11.3 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 22±3°C; 55±15% RH.

12 Illustration of OLED Product Name

13 Outgoing Quality Control Specifications

13.1 Sampling Method

(1) GB/T 2828.1/ISO2859-1: Inspection level II, normal inspection, single sample inspection

(2) AQL: Major 0.65; Minor 1.0

13.2 Inspection Conditions

The environmental conditions for test and measurement are performed as follows.

Temperature: 22±3°C Humidity: 55±15%R.H Fluorescent Lamp: 30W

Distance between the Panel & Lamp: ≥50cm Distance between the Panel & Eyes: ≥30cm

Viewing angle from the vertical in each direction: ≤45°

(See the sketch below)

13.3 Quality Assurance Zones

13.4 Inspection Standard

Definition of Φ&L&W (Unit: mm)

I . Appearance Defects

NO.	ITEM	CRITERIA					CLASSIFICATION
1	Polarizer Black or White spot, Dirty spot, Foreign matter, Dent on the polarizer	Average Diameter (mm) Φ≤0.15 0.15<Φ≤0.30 Φ>0.30	Zone Zone Zone Zone Zone Zone Zone Zone	A,B	le Number Zone C Ignore		Minor
2	Scratch/line on the glass/Polarizer	Width (mm) W≤0.03 0.03 <w≤0.08 w="">0.08</w≤0.08>	Length (mm) L≤5.0	Accep Zone A Ignor 3	A,B	Number Zone C Ignore	Minor
3	Polarizer Bubble	Average Diameter (mm) Φ>0.5 0.2<Φ≤0.5 Φ≤0.2	Zo	Acceptal one A,B 0 3 gnore	Z	mber one C gnore	Minor
4	Any Dirt & Scratch on Polarizer's Protective Film	Ignore for not affect the polarizer.				Minor	
5	Any Dirt on Cap Glass	Average Diameter (mm) Acception $\Phi \le 0.5$ $0.5 < \Phi \le 1.0$ $\Phi > 1.0$		Acceptal Ig	ble Nu gnore 3 0	mber	Minor

6 Glass Crack Propagation crack is not acceptable. 7 Corner Chip t= Glass thickness
t= Glass thickness
Accept a≤2.0mm or b≤2.0mm, c≤t
8 Corner Chip on Cap Glass $t = Glass thickness$ Accept $a \le 1.5 mm$ or $b \le 1.5 mm$, $c \le t$
9 Chip on Contact Pad t= Glass thickness Accept a≤3.0mm or b≤0.8mm, c≤t (on the contact pin) a≤3.0mm or b≤1.5mm, c≤t (outside of the contact pin)
10 Chip on Face of Display t= Glass thickness Accept a≤1.5mm or b≤1.5mm, c≤t
11 Chip on Cap Glass $t= Glass thickness$ Accept $a \le 3.0 mm, c \le t/2$ $a \le 1.5 mm, t/2 \le c \le t$
12 Stain on Surface Stain removable by soft cloth or air blow is acceptable. Minor
13 TCP/FPC Damage (1) Crack, deep scratch, deep hole and deep pressure mark on the TCP/FPC are not acceptable. (2) Terminal lead twisted or broken is not allowable. (3) Copper exposed is not allowed by naked eye inspection.
14 Dimension Unconformity Checking by mechanical drawing. Major

II. Displaying Defects

NO.	ITEM		CLASSIFICATION		
1	Black/White spot Dirty spot Foreign matter	Average Diameter (mm) Φ≤0.10 0.10<Φ≤0.20 Φ>0.20	Pieces Pe Zone A,B Ignore 3	Zone C Ignore	Minor
2	No Display	N	Major		
3	Irregular Display	Not allowable.			Major
4	Missing Line (row or column)	N	Major		
5	Short	N	Major		
6	Flicker	Not allowable.			Major
7	Abnormal Color	Refer to the SPEC.			Major
8	Luminance NG	Ref	Major		
9	Over Current	Ref	Major		

14 Precautions for operation and Storage

14.1 Precautions for Operation

- (1) Since OLED panel is made of glass, do not apply any mechanical shock or impact or excessive force to it when installing the OLED module. Any strong mechanical impact due to falling dropping etc. may cause damage (breakage or cracking).
- (2) The polarizer on the OLED surface is made of soft material and is easily scratched. Please take most care when handing. When the surface of the polarizer of OLED Module is contaminated, please wipe it off gently by using moisten soft cloth with isopropyl alcohol, do not use water, ketone or aromatics. If there is saliva or water on the OLED surface, please wipe it off immediately.
- (3) When handling OLED module, please be sure that the body and the tools are properly grounded. And do not touch I/O pins with bare hands or contaminate I/O pins, it will cause disconnection or defective insulation of terminals.
- (4) Do not attempt to disassemble or process the OLED module.
- (5) OLED module should be used under recommended operating conditions shown in the specification. Since the higher voltage leads to the shorter lifetime, be sure to use the specified operating voltage.
- (6) Foggy dew, moisture condensation or water droplets deposited on surface and contact terminals will cause polarizer stain or damage, the deteriorated display quality and electrochemical reaction then leads to shorter life time and permanent damage to the module probably. Please pay attention to the environmental temperature and humidity.
- (7) An afterimage is created by the difference in brightness between unused dot and the fixed dot, according to the decrease of brightness of the emitting time. Therefore, to avoid having an afterimage, the full set should be thoroughly used instead of using a fixed dot. When the fixed dot emits, an afterimage can be created.
- (8) Flicker could be come out at full on display. And it disappears when frame frequency increase, but brightness decreases too.

14.2 Soldering

- (1) Soldering should be performed only on the I/O terminals.
- (2) Use soldering irons with proper grounding and no leakage.
- (3) Iron: The temperature setting of electric iron is 350°C, but we suggest that during soldering, the tem perature of iron tip should be no higher than 330°C and soldering be finished within 3~4 seconds.

14.3 Precautions for Storage

- (1) Please store OLED module in a dark place. Avoid exposure to sunlight, the light of fluorescent lamp or any ultraviolet ray.
- (2) Keep the environment temperature between 10°C and 35°C and the relative humidity less than 70%. Avoid high temperature and high humidity.
- (3) Keep the OLED modules stored in the container when shipped from supplier before using them is recommended.
- (4) Do not leave any article on the OLED module surface for an extended period of time.

14.4 Warranty period

Visionox warrants for a period of 12 months from the shipping date when stored or used under normal condition.