Modelos Probabilísticos

Modelos Lineares Generalizados

Luan Fiorentin

12 de maio de 2021

Sumário

- ► Introdução
- ► Distribuição Bernoulli
- ► Distribuição Binomial
- **▶** Distribuição Poisson
- **Distribuição Normal**
- Distribuição Gama
- ► Considerações finais

Introdução

Introdução

- Probabilidade forma a base para entender os modelos de regressão.
- Modelos probabilísticos descrevem a variável aleatória em termos de probabilidade.
- Reconhecer o suporte da variável permite escolher de forma adequada um modelo.
- ► Há modelos **adequados** para variáveis aleatórias discretas e contínuas.

Figura 1. Modelo de probabilidade.

Distribuição Bernoulli

Distribuição Bernoulli

- Variável aleatória Y tem distribuição de Bernoulli se apresenta apenas dois resultados possíveis, representados por 0 (fracasso ou negativo) e 1 (sucesso ou positivo).
- ightharpoonup O parâmetro 0 é a**probabilidade de sucesso**.
- A função de probabilidade é

$$P(Y = y) = \begin{cases} 1 - p, & \text{se "fracasso" ou } y = 0 \\ p, & \text{se "sucesso" ou } y = 1, \end{cases}$$
$$= p^{y} \cdot (1 - p)^{1 - y}, \quad y \in \{0, 1\}.$$

- Denotamos por $Y \sim \text{Ber}(p)$.
- Y apresenta média e variância dadas por
 - $\triangleright \mu = E(Y) = p.$
 - $\sigma^2 = V(Y) = p \cdot (1 p)$.

Exemplos de v.a. com distribuição Bernoulli

- 1. Ataque de macaco-prego em uma árvore: se árvore está atacada $\rightarrow y = 1$.
- 2. Espécie de interesse econômico: se é de interesse comercial $\rightarrow y = 1$.
- 3. Sobrevivência de árvore em floresta: se árvore está viva $\rightarrow y = 1$.
- 4. Germinação de semente: se semente germinar $\rightarrow y = 1$.
- 5. Indivíduo dominante: se árvore for dominante $\rightarrow y = 1$.

Nem sempre o que é considerado como "sucesso" (y=1) é algo necessariamente bom.

Gráfico da distribuição Bernoulli

Figura 2. Gráficos para a distribuição de Bernoulli.

Distribuição Binomial

Distribuição Binomial

▶ **Características** de uma v.a. com distribuição Binomial:

Um experimento aleatório consiste em n > 0 tentativas de Bernoulli, de modo que

- 1. As tentativas são **independentes**.
- 2. A probabilidade de um sucesso em cada tentativa, 0 , é**constante**.
- 3. Cada tentativa apresenta apenas um de dois resultados possíveis (0: fracasso ou 1: sucesso).

Distribuição Binomial

- ▶ Variável aleatória Y, que é igual ao **número de tentativas que resultam em sucesso**, é uma v.a. Binomial com parâmetros p e n.
- ► A função de probabilidade de Y é

$$P(Y=y) = \binom{n}{y} \cdot p^y \cdot (1-p)^{n-y}, \quad y \in \{0, \dots, n\}.$$

- ▶ Denotamos por $Y \sim Bin(n, p)$.
- Y apresenta **média** e **variância** dadas por
 - $\blacktriangleright \mu = E(Y) = n \cdot p.$
 - $\sigma^2 = V(Y) = n \cdot p \cdot (1-p)$.
- ▶ Lembre-se que $\binom{n}{u} = \frac{n!}{u!(n-u)!}$.

Gráfico da distribuição Binomial

Figura 3. Gráficos para a distribuição Binomial.

Exemplos de v.a. com distribuição Binomial

- 1 Número de ocorrências de árvores mortas em 100 árvores
- 2. Número de sementes germinadas em um saco com 1000 sementes.
- 3. Número de árvores atacadas por pragas florestais em 1500 árvores.
- 4. Número de árvores bifurcadas em uma unidade amostral com 150 árvores.
- 5. Número de espécies de interesse comercial em uma unidade de exploração com 150 espécies.

As suposições precisam ser atendidas para o modelo ser válido.

Distribuição de Poisson

Distribuição de Poisson

▶ Características de uma v.a. com distribuição de Poisson:

Uma variável aleatória Y apresenta distribuição de Poisson se as seguintes suposições são atendidas

- 1. Variável é o número de eventos que ocorrem em um certo domínio, como intervalo de tempo, área, volume, distância ou outra unidade de medida (pessoa, website, bairro).
- 2. A probabilidade de que um evento ocorra é a mesma para qualquer unidade de mesma dimensão, ou seja, → taxa de ocorrência constante.
- 3. O número de eventos que ocorrem em uma unidade é independente do número de eventos que ocorrem em outra unidade mutuamente exclusiva.
- 4. A probabilidade do evento ocorrer em um subdomínio é igual para todos os possíveis subdomínios de mesma dimensão e é proporcional a dimensão do subdomínio.

Luan Fiorentin Modelos Probabilísticos

Distribuição Poisson

▶ Variável aleatória Y tem distribuição de Poisson com parâmetro (**taxa**) $\lambda > 0$ se sua função de probabilidade é expressa por

$$P(Y = y) = \frac{\exp\{-\lambda\} \cdot \lambda^y}{y!}, \quad y \in \{0, 1, 2, \ldots\}.$$

- ▶ Denotamos por $Y \sim Pois(\lambda)$.
- Y apresenta média e variância dadas por
 - $\triangleright u = E(Y) = \lambda.$
 - $\sigma^2 = V(Y) = \lambda$
- ▶ Se $\mu = \sigma^2$, então a relação configura uma **equidispersão**.

Gráfico da distribuição Poisson

Figura 4. Gráficos para a distribuição de Poisson.

Exemplos de v.a. com distribuição de Poisson

- 1. Número de árvores mortas por hectare.
- 2. Número de árvores colhidas no primeiro desbaste.
- 3. Número de árvores bifurcadas por unidade amostral.
- 4. Número de espécies por hectare em uma floresta nativa.
- 5. Número de árvores atacadas por macaco-prego por hectare.

As suposições precisam ser atendidas para o modelo ser válido.

Tipos dispersão e relação média variância

Figura 5. Padrões de dispersão espacial e a relação de média e variância da contagem.

Distribuição Poisson para dimensão não constante

▶ **Propriedade da Poisson**: se a dimensão da unidade de observação em que ocorrem os eventos for multiplicada por uma constante t > 0, então a v.a. resultante terá distribuição de Poisson com a função de probabilidade da forma

$$P(Y = y) = \frac{\exp\{-\lambda t\} \cdot (\lambda t)^y}{y!}, \quad y \in \{0, 1, 2, \ldots\}.$$

- Y apresenta **média** e **variância** dadas para unidades de tamanho t por
 - $\mu = E(Y) = \lambda t$.
 - $\sigma^2 = V(Y) = \lambda t$.

- ► A distribuição Normal é a **mais** importante distribuição contínua.
- Principais motivos:
 - 1. Modela um grande número de variáveis aleatórias contínuas
 - 2. Serve de aproximação para diversas distribuições contínuas e discretas.
 - 3. Desempenha papel importante na Teoria Estatística, fundamentando a obtenção de inferências em diferentes contextos.

Figura 6. Distribuição Gama.

- Características de uma v.a. com distribuição Normal:
 - Variável aleatória contínua não limitada
 - ► Possui comportamento simétrico em relação a u.
 - ▶ Ponto máximo (moda) de f(y) é o ponto x = u.
 - ▶ Pontos de inflexão da função são $\mu - \sigma \in \mu + \sigma$.
 - ► A curva é assintótica em relação ao eixo y.
 - Resultado do efeito de muitos fatores de pequena contribuição.

Figura 7. Distribuição Gama.

▶ Variável aleatória Y tem distribuição Normal com parâmetros $\mu \in \mathbb{R}$ e $\sigma^2 > 0$ se sua função densidade de probabilidade é dada por

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}, \quad -\infty < y < \infty.$$

- ▶ Denotamos por $Y \sim N(\mu, \sigma^2)$.
- Y apresenta **média** e **variância** dadas por
 - \triangleright E(Y) = μ .
 - \triangleright $V(Y) = \sigma^2$
- Média (μ) e variância (σ^2) são os **parâmetros da distribuição**:

$$\mu = \frac{\sum_{i=1}^{n} y_i}{n}$$
 e $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu)^2$.

Gráfico da distribuição Normal

Figura 8. Gráficos para a distribuição Normal.

Distribuição Normal Padrão

- Probabilidades associadas à distribuição Normal não podem ser obtidas analiticamente (mas sim numericamente), pois a integral correspondente não tem forma fechada.
- Pode-se usar softwares estatísticos ou consultar tabelas da distribuição **Normal Padrão** ($\mu = 0$, $\sigma^2 = 1$).
- ► Basta determinar probabilidades na Normal Padrão para calcular probabilidades de qualquer v.a. Normal.

► A consulta a tabela da Normal Padrão se justifica pelo fato que se $Y \sim N(\mu, \sigma^2)$, então

$$Z = \frac{Y - \mu}{\sigma} \sim N(\mu = 0, \sigma^2 = 1).$$

Então, Z representa o caso em que $Y \sim N(0, 1)$.

▶ Dessa forma, pelo caminho contrário, tem-se que

$$Y = \mu + \sigma \cdot Z \sim N(\mu, \sigma^2).$$

Exemplos de v.a. com distribuição Normal

- 1. Altura total de árvores.
- 2. Diâmetro à altura do peito.
- 3. Volume individual de árvores.
- 4. Volume total de árvores por hectare.
- 5. Volume de madeira atacada por pragas florestais.

Distribuição Gama

Distribuição Gama

- Características de uma v.a. com distribuição Gama
 - ► Seja $Y_{Ei} \sim \text{Exp}(\lambda)$ ($i \in \{1, ..., k\}$) uma variável com distribuição Exponencial. Então, $Y = Y_{F1} + Y_{F2} + \cdots + Y_{Fk}$ tem distribuição Gama.
 - ► A Gama tem suporte no conjunto dos reais positivos, assumindo formas assimétricas.
 - ► Ela tem ampla aplicações na área de confiabilidade e análise de sobrevivência.

Figura 9. Distribuição Gama.

Distribuição Gama

▶ Variável aleatória Y tem distribuição Gama de parâmetros r > 0 e $\lambda > 0$ se sua **função** densidade de probabilidade é dada por

$$f(y) = \frac{\lambda^r}{\Gamma(r)} \cdot y^{(r-1)} \cdot \exp\{-\lambda y\}, \quad y > 0,$$

em que

$$\Gamma(r) = \int_0^\infty u^{r-1} \exp\{-u\} du \quad \text{com} \quad \Gamma(r) = (r-1)! \quad \text{quando } r \in \mathbb{N},$$

é a função gama (por isso distribuição Gama).

- ▶ Denotamos por $Y \sim \text{Gama}(r, \lambda)$.
- Parâmetros λ e r são chamados de **taxa** e **forma**, respectivamente.
- ► Y apresenta **média** e **variância** dadas por

$$\mu = E(Y) = \frac{r}{\lambda}$$
 e $\sigma^2 = V(Y) = \frac{r}{\lambda^2}$.

Gráfico de densidade da Gama

Figura 10. Gráficos de densidade para a Gama.

Luan Fiorentin Modelos Probabilísticos 31

Gráfico de distribuição da Gama

Figura 11. Gráficos de distribuição para a Gama.

Luan Fiorentin Modelos Probabilísticos 32

Exemplos de v.a. com distribuição Gama

- 1. Volume total por parcela.
- Volume individual de árvores.
- 3. Tempo de sobrevivência da árvore em uma floresta.
- Tempo de sobrevivência de mudas em uma casa de vegetação.
- 5. Razão entre o diâmetro mensurado em diferentes alturas do fuste da árvore e o diâmetro à altura do peito.

Considerações finais

Considerações finais

- ▶ A **escolha** de uma distribuição de probabilidade adequada é fundamental para uma análise correta do problema.
- ► Há **diversas** distribuições na literatura.
- ► A utilização de softwares é fundamental para a aplicação dos modelos.

Figura 12. Modelo de probabilidade.