## MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 2 - NOVEMBER 2012 ROUND 7 TEAM QUESTIONS ANSWERS**



A) Let 
$$Z = \frac{1}{i - \frac{1}{i -$$

$$i - \frac{1}{i - \frac{1}{i - \frac{1}{i - \frac{1}{i - \frac{1}{i}}}}}$$

For example, for 
$$k = 2$$
,  $Z = \frac{1}{i - \left[\frac{1}{i}\right]}$ .

For some minimum value of k this expression simplifies to  $-\frac{A}{B}i$ , where A and B are positive integers and A is a perfect square  $(A \neq 1)$ . Determine the ordered triple (k, A, B).

B) Dick, Joe and Norm are practicing for a big math contest. They are very competitive and equally talented and on a set of 100 practice questions, each was able to correctly answer 60 questions and no question stumped all three mathletes.

A question is defined to be *hard* if exactly one mathlete got it right. A question is defined to be *easy* if all three mathletes got it right. Some questions are neither easy nor hard.

There were k more hard questions than easy questions. Compute k.

C) In a regular nonagon ABCDEFGHI,  $\triangle ADG$  has area  $36\sqrt{3}$ . The area of the nonagon is  $k \sin \theta^{\circ}$ . Find the ordered pair  $(k, \theta^{\circ})$ , where both k and  $\theta$  are positive integers and  $\theta$  is acute.



- E) In polar coordinates, the equation  $r = \cos \theta + \sqrt{3} \sin \theta$  defines a circle which passes through the origin.  $\theta = 30^{\circ}$  and  $\theta = 60^{\circ}$  defines lines through the origin which make angles of  $30^{\circ}$ and  $60^{\circ}$  respectively, measured counterclockwise from the positive x-axis. Let B and C be the points in the first quadrant where these lines intersect the circle. Compute the distance between *B* and *C*.
- F) Scalene triangle ABC has sides of integer length.

AD is the altitude to side BC.

If AB = 12 and  $m \angle BAD = 30^{\circ}$ , compute all possible perimeters of  $\triangle ABC$ .