InfiniGen

Efficient Generative Inference of Large Language Models with Dynamic KV Cache Management

Wonbeom Lee[†] Jungi Lee[†] Junghwan Seo Jaewoong Sim Seoul National University

Outline

- LLM Inference & KV Cache
- Prior Approaches & Limitations
- InfiniGen: Dynamic KV Cache Management
 - Speculative KV Prefetching
 - Key/Query Skewing
- Evaluation
- Conclusion

Serving LLM Inference

Serving LLM Inference Millions of Tokens 1.4M words **2M Maximum Tokens** 60K lines of code 2 hours of video **1M** 22 hours of audio 4096 512 Gemini 1.5 Pro Claude 3 **GPT** GPT-4

Serving LLM Inference

Millions of Tokens

Prior Approaches for KV Cache Problem

1. Quantization

Compress the **KV cache** by converting it into a low-bit data format

Prior Approaches for KV Cache Problem

Compress the **KV cache** by converting it into a low-bit data format

Problem 1

KV cache access still linearly increases with the sequence length

Problem 3

Fixed KV cache budget can lead to subpar performance **Permanently eliminate** unimportant tokens to keep the KV cache size in check

you

Problem 3

Fixed KV cache budget can lead to **subpar performance**

2. Eviction

Permanently eliminate unimportant tokens to keep the KV cache size in check

Problem 3

Fixed KV cache budget can lead to **subpar performance**

2. Eviction

Permanently eliminate unimportant tokens to keep the KV cache size in check

Prior Approaches

Problem 1

KV cache access still linearly increases with the sequence length

Problem 2

Permanent elimination of tokens can lead to an accuracy drop

Problem 3

Fixed KV cache budget can lead to subpar performance

Prior Approaches

Problem 1

KV cache access still linearly increases with the sequence length

Not a scalable nor effective solution in an era of millions of tokens!

Problem 3

Fixed KV cache budget can lead to subpar performance

Outline

- LLM Inference & KV Cache
- Prior Approaches & Limitations
- InfiniGen: Dynamic KV Cache Management
 - Speculative KV Prefetching
 - Key/Query Skewing
- Evaluation
- Conclusion

InfiniGen: Key Direction

Problem 1

Memory access overhead still inearly scales with the sequence length

Exploit the abundant CPU memory capacity to manage the KV cache!

Problem 3

Fixed KV cache budget can lead to subpar performance

Expensive & Small

Expensive & Small

Expensive & Small

Significant slowdown due to the limited PCIe bandwidth

Load and compute only with a few important tokens

Prefetch essential KV entries in the preceding layer

Original Attention: Layer i

Original Attention: Layer i

Original Attention: Layer i

Original Attention: Layer *i* Minimal Rehearsal: Layer i-1**Partial** Query Projection **Query Projection Highly Similar! Attention Input Attention Input** of Layer i-1

Original Attention: Layer i

Before

Query

1 4 1 4 3

Key

1 3 2 3 2

Before

1

Offline modification of the query and key weights using singular value decomposition

Partial Query

Partial Key

After

1

The identical computation result

$$(Q \times A) \times (A^T \times K^T) = Q \times K^T$$

Before

Offline modification of the query and key weights using singular value decomposition

Outline

- LLM Inference & KV Cache
- Prior Approaches & Limitations
- InfiniGen: Dynamic KV Cache Management
 - Speculative KV Prefetching
 - Key/Query Skewing
- Evaluation
- Conclusion

Experimental Setup

Model

Open Pre-trained Transformer (OPT)

: 6.7B, 13B, 30B

• Llama-2

: 7B, 13B

Baseline

- KV Cache Offloading
 - CUDA Unified Virtual Memory (UVM)
 - FlexGen
- KV Cache Management Methods
 - H₂O: Eviction-based
 - Quantization

Workload

- Im-evaluation-harness
- PG-19

System Configuration

GPU	
GPU	NVIDIA RTX A6000
GPU Memory Size	48 GB
CPU	
CPU	Intel Xeon Gold
	6136
CPU Memory Size	96GB
Interconnect	
PCIe Generation	3.0
Lane	16

Performance

InfiniGen greatly improves the overall performance of a modern offloading-based inference system

Performance

InfiniGen improves performance with longer sequences while others lead to saturating speedups

Accuracy

InfiniGen offers substantially better model accuracy than other KV cache management methods

More Details in Our Paper

Long Sequences

- Key/Query Skewing
- Sensitivity Study and Overhead Analysis
- Latency across batch sizes and model sizes
- Accuracy with Other Combinations
- Others ...

Conclusion

Problem

- The large memory footprint of the KV cache size in LLM inference
- Existing methods show subpar performance

Solution: InfiniGen, a dynamic KV cache management framework

- Speculative prefetching of the essential KV cache
- Skewing query and key for efficient speculation

Result

- InfiniGen shows 3x faster performance while preserving model accuracy
- It also shows better scalability than prior solutions!

InfiniGen

Efficient Generative Inference of Large Language Models with Dynamic KV Cache Management

Wonbeom Lee (wonbeom@snu.ac.kr)

OSDI'24 | July 2024