Dot Product with a unit vector

1. The dot product of two vectors \mathbf{x} and \mathbf{y} can be defined as

$$\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}||\mathbf{y}|\cos\theta,$$

where θ is the angle between **x** and **y**.

(a) Show that if $\mathbf{y} = \mathbf{u}$ is a unit vector, $\mathbf{x} \cdot \mathbf{u} = |\mathbf{x}| \cos \theta$.

(b) Draw this length on the figure below and describe the length.

2. Use the idea from the previous page to find the shortest distance from the plane x+2y-2z=6 to the point (-2, -2, -1).

Cross Product

3. The cross product, unlike the dot product, is a vector, which has a length and a direction. The length of the cross product of two vectors \mathbf{x} and \mathbf{y} can be defined as

$$|\mathbf{x} \times \mathbf{y}| = |\mathbf{x}||\mathbf{y}|\sin\theta,$$

where θ is the angle between \mathbf{x} and \mathbf{y} . The direction of the cross product is perpendicular to both \mathbf{x} and \mathbf{y} .

(a) Given the vectors in the figure below, label the length $|\mathbf{x}| \sin \theta$. Explain why the length of the cross product is the area of the parallelogram.

(b) Does the direction of $\mathbf{x} \times \mathbf{y}$ point into the page or out of the page? What about $\mathbf{y} \times \mathbf{x}$?

- 4. Use your understanding of the dot product and cross product to solve the following problems.
 - (a) Find an equation for the line of intersection of the planes x+2y-2z=6 and 2x-y+2z=12.

(b) Find the distance between the skew lines parameterized by $\mathbf{r}(t) = \langle 1+2t, 2-2t, 3+t \rangle$ and $\mathbf{s}(t) = \langle -1-2t, -2+2t, -3-t \rangle$.

Level Sets and Graphs

- 5. Given the plane x + 2y + 3z = 0,
 - (a) Find a parameterization $\mathbf{r}(x,y): \mathbb{R}^2 \to \mathbb{R}^3$ for this plane.

- 6. Write down a function $g: \mathbb{R}^3 \to \mathbb{R}^1$.
 - (a) The graph of g is a subset of _____.
 - (b) A level set of g is a subset of $\underline{\hspace{1cm}}$.
- 7. Find the level surface of the function $f(x, y, z) = x^2 + y^2 + z^2$ that goes through the point (1, 2, 2). Draw a sketch of this surface.

- 8. Given the function $g(x, y, z) = x^2 + y^2 z^2$.
 - (a) Find the level surface that goes through the point (3, 4, 5).
 - (b) Find the level surface that goes through the point (5,0,0).
 - (c) Find the level surface that goes through the point (0,0,4).
 - (d) Draw a sketch of all three of these surfaces on the same axes.