Statistical Programming - Project 3 Report - GROUP 4

Students Name:

STUDENT NUMBER	NAME and SURNAME
221805001	OKTAY CAN SEVIMGIN

Data File: MultRegData.txt

♦ 1. Linear Regression via Matrix Operations

In this part, we created an R function called $my_regression()$ that performs linear regression using matrix operations (without using lm()).

✓ Function Inputs:

- Y: dependent variable vector
- X: independent variable matrix or dataframe

• Beta Hat (Estimated Coefficients):

• Estimated Y Values:

• Residuals:

$$e_hat = Y - Y_hat$$

• TSS (Total Sum of Squares):

$$TSS = sum((Y - mean(Y))^2)$$

• RMSS (Regression Model Sum of Squares):

RMSS =
$$sum((Y hat - mean(Y))^2)$$

• RSS (Residual Sum of Squares):

```
RSS = sum((Y - Y_hat)^2)
```

• R-Squared (R^2):

$$R_squared = 1 - (RSS / TSS)$$

All matrix operations (e.g. transpose t(), inverse solve(), and multiplication %*%) were coded manually from scratch, not using built-in functions like lm().

♦ 2. Model Selection Based on R-Squared

We created another function model_selection() that:

- Tries all combinations of X variables (from 1 to 7 at a time),
- Applies my_regression() to each combination,
- Calculates and stores TSS, RMSS, RSS, and R^2,
- Sorts models by number of variables and descending R-squared.

Output Table Example:

onsole Te	erminal ×					
- R 4.4.2	2 C:/Users/Oktay Can/Desktop/Data	a/ #				
	-					
	Number of Variables		TSS			R-Square
1	1	Х3	639.39	561.20	78.19	:: 0.8777
2	1 1	X4	639.39	488.58	150.80	0.7641
3	1	X5	639.39	153.09	486.30	0.2394
4	1 1	Х6	639.39	138.24	501.14	0.2162
5	1 1	X2	639.39	86.15	553.23	0.1347
6	1 j	X1	639.39	14.51	624.87	0.0227
7	1 1	X7	639.39	5.03	634.35	0.0079
8	2	X3 X6	639.39	567.60	71.78	0.8877
9	2	X1 X3	639.39	565.21	74.18	0.8840
10	2	X3 X5	639.39	564.77	74.62	0.8833
11	2	X3 X4	639.39	561.51	77.88	0.8782
12	2	X2 X3	639.39	561.20	78.19	0.8777
13	2	X3 X7	639.39	561.20	78.19	0.8777
14	2	X4 X6	639.39	510.82	128.57	0.7989
15	2	X4 X5	639.39	498.63	140.76	0.7799
16	2	X2 X4	639.39	493.19	146.19	0.7714
17	2	X1 X4	639.39	490.33	149.05	0.7669
18	2	X4 X7		488.74	150.65	
19	2 İ	X5 X6	639.39	236.82	402.56	0.3704
20	2	X2 X5	639.39	200.08	439.31	0.3129
21		X2 X6	639.39	195.55	443.84	0.3058
22	2 1	X1 X6	639.39	163.77	475.61	0.2561
23	2 i	X1 X5	639.39	163.75	475.64	0.2561
24	$\tilde{2}$	X5 X7	639.39	156.13	483.25	0.2442
25	2 i	X6 X7	639.39		496.00	0.2243
26	$\tilde{2}$	X1 X2	639.39	86.85	552.54	0.1358
27	2	X2 X7	639.39		553.16	0.1349

Dataset Info:

- File: MultRegData.txt
- Variables: IndNo, Y, X1, X2, X3, X4, X5, X6, X7
- We used Y as dependent and X1 to X7 as independent variables.

☆ Conclusion:

- We successfully implemented matrix-based regression manually in R.
- We calculated all statistical metrics (TSS, RSS, R^2) without using built-in functions.
- We generated and compared all possible models to find the one with the highest explanatory power (R^2).
- This approach deepened our understanding of **linear regression fundamentals** and **matrix operations**.