Word Embeddings

ADVISOR: PROF. AMITABHA MUKERJEE

PRANJAL SINGH 10327511

Index

- 1. Motivation
- 2. Past
- 3. Objectives
- 4. Earlier Work
 - a. NLP from Scratch
 - b. Bilingual Word Embeddings
 - c. Vector Space Word Representation
- 5. Dataset
- 6. Results (English and Hindi)
- 7. Conclusion and Future Work

Motivation

- Word embeddings have the power to capture syntax and semantics both
- We have many sources of unsupervised raw data but not supervised data
- Unsupervised techniques could greatly improve existing supervised systems (Collobert et al.(2013))

Leveraging large amount of data floating around, we can improve existing systems

Past

 LSA and LDA were used to capture word embeddings(not exactly) and hence derive semantic relations

Most of the existing systems treat word as atomic units

BUT

Words also inherit meanings which can only be defined if we represent it as a vector/combination of latent words

Objective

To maximize probability of raw text given a context window

So for a given context window of size *c*:

$$\max \frac{1}{T} \sum_{t=1}^{T} \log p\left(w_t | w_{t-c}^{t+c}\right)$$

Earlier Work

word2vec (Mikolov et al., 2013) learns embeddings using neural language model

Collobert & Weston, 2011 : NLP from Scratch

Bilingual Word Representations (Zou et al. al & Manning et al., 2013)

Embeddings

Word2vec

1) CBOW

Embeddings are represented by a set of latent variables and initialized randomly

Training learns these for each word w_t in the vocabulary

So for a given context window of size *c*:

$$\max \frac{1}{T} \sum_{t=1}^{T} \log p \left(w_t | w_{t-c}^{t+c} \right)$$

$$p(w_t | w_{t-c}^{t+c}) = \frac{\exp\left(e_{w_t}^{'} \cdot \sum_{-c \le j \le c, j \ne 0} e_{w_{t+j}} \right)}{\sum_{w} \exp\left(e_{w}^{'} \cdot \sum_{-c \le j \le c, j \ne 0} e_{w_{t+j}} \right)}$$

Embeddings

Word2vec

2) Relational Constraint Model

Define R as a set of relation between two words and relations have scores associated to indicate strength

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{w \in \mathbf{R}_{w_i}} \log p(w|w_i),$$

--- They do not include scores of these relations

Interesting!!!!

A joint model:

$$\max \frac{1}{T} \sum_{t=1}^{T} \log p\left(w_t | w_{t-c}^{t+c}\right)$$

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{w \in \mathbf{R}_{w_i}} \log p(w|w_i),$$

- Built a unified architecture for tasks such as POS tagging, Chunking, NER
- Compared against classical NLP benchmarks
- Avoided task specific engineering
- Generalize a system to handle multiple tasks

- Learn lookup table by back propagation
- Words are mapped to d-dimensional vector using lookup table operation
- Lookup table returns a matrix for a given sentence

Used entire English Wikipedia to learn word embeddings (631 million words)

Tokenized using Penn Treebank Tokenizer

The total training time was about four weeks

Window size: 11 and a Hidden layer with 100 units

<u>Objective</u>: Seek a network that computes a higher score when given a legal phrase than when given an incorrect phrase

$$\theta \mapsto \sum_{x \in \mathcal{X}} \sum_{w \in \mathcal{D}} \max \left\{ 0, 1 - f_{\theta}(x) + f_{\theta}(x^{(w)}) \right\}$$

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
454	1973	6909	11724	29869	87025
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	$_{\mathrm{MB/S}}$
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

13

Bilingual Word Embeddings

- It proposes a method to learn bilingual embeddings rather than just monolingual embeddings
- So it utilizes counts of MT alignments derived from Berkeley aligner to initialize monolingual embeddings of another language

$$W_{t\text{-}init} = \sum_{s=1}^{S} \frac{C_{ts} + 1}{C_t + S} W_s$$

They have used the same formulation as Collobert et al.(2008) to learn embeddings except that they
have used global context information as in Huang et al.(2012)

Bilingual Word Embeddings

- Their objective function captures information of both monolingual embedding and also on translation matrices, also called alignment matrices
- They have trained on 100K-vocabulary word embeddings
- With 500,000 iterations it took 19 days of training on 8-core machine
- For phrase similarity in 2 languages, they have averaged out the word embedding vectors corresponding to each word in both phrases and then taken cosine similarity to quantize amount of semantic similarity

Dataset

-Hindi :Wikipedia text dump (279мв)

English: Wikipedia text dump (95МВ)

Result (English)

"boy" is to "father" as "girl" is to ...?

(Top 3)

1. Mother 0.6219688653945923

2. Grandmother 0.5560075640678406

3. Wife 0.5442352890968323

Result (English)

he his she:?

big bigger bad:?

going went being:?

- 'he' is to 'his' as 'she' is to 'her'
- 'big' is to 'bigger' as 'bad' is to 'worse'
- 'going' is to 'went' as 'being' is to 'were'

Result (English)

Which word doesn't go with the others?

breakfast cereal dinner lunch

> cereal

भारत

यूक्रेन 0.488481163979

मैक्सिको 0.472263723612

फिलीपीन्स 0.461070656776

कोसोवो 0.445656210184

कैलिफौर्निया 0.438328802586

तिरुवनंतपुरम 0.437484622002

ओंटारियो **0.437374174595**

सिचुआन 0.436686635017

लम्पुर 0.436174809933

वेलेस्ले 0.434365183115

Odd one out

'भारत'

'रूस'

'मुम्बई'

'चीन'

x= similar(['भारत'.decode('utf8')], topn=5)

प्रदेश	0.434905201197
/1911	0.101000201107

देश 0.434299349785

ਗਿ**ਫ**ਕਰ 0.434264868498

आन्ध्रप्रदेश 0.428886473179

लद्दाख़ 0.427965015173

x= similar(['ट्यापार'.decode('utf8')], topn=5)

व्यवसाय	0.671647787094
9 1 9 (11 1	0.07 10 17 7 07 00 1

वाणिज्य	0.612713575363
---------	----------------

•	
सस्थागत	0.61127692461
4441914	U D I I Z / D9 Z 4 D I
\	0.01127002101

बैंकिंग 0.607060432434

कम

PRANJAL SINGH 10327511

24

Future Work

What if we **ADD** the embeddings???

Or

If we **SUBTRACT** the embeddings??

Very Big

Bigger

Such phrases and words should have greater semantic similarity

Can operations such as addition/subtraction give a better insight into such relationships (applicable for Hindi also)

Future Work

Indian Cricketer

Sachin

Infact above phrase and word may belong to same embedding

Future Work

- The embeddings obtained could help in initializing the embeddings used in work of Collobert and Weston
- Manning et al.(2013) have used semantic information to improve word embeddings
- Collobert et al.(2008) have used large unlabeled data to do the same thing.
- Can we use syntactic or morphological information to improve word embeddings or even produce some good word embeddings?

Motivation

- Morphologically similar words have some sought of close connection between them
- e.g. morphology, phonology, etymology

References

- Manning, W. Y. (2013). Bilingual Word Embeddings for Phrase-Based Machine Translation. Proceedings of the 2013 Conference
 on Empirical Methods in Natural Language Processing (EMNLP 2013), (p. 2013).
- Weston, R. C. (2011). Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 12, 2493--2537.
- Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. CoRR, abs/1301.3781.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani & K. Weinberger (ed.), Advances in Neural Information Processing Systems 26 (pp. 3111--3119).
- Zheng, X., Chen, H. & Xu, T. (2013). Deep Learning for Chinese Word Segmentation and POS Tagging.. *EMNLP* (p./pp. 647-657), : ACL. ISBN: 978-1-937284-97-8
- Sarath Chandar A P, Mitesh M Khapra, Ravindran B, Vikas Raykar, Amrita Saha, "Multilingual Deep Learning". In Deep Learning Workshop at NIPS 2013.

Thank You!!!