Deep Generative Models

Lecture 4

Roman Isachenko

2024, Summer

Recap of previous lecture

Flow log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

The main challenge is a determinant of the Jacobian.

Linear flows

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

► LU-decomposition

$$W = PLU$$
.

QR-decomposition

$$W = QR$$
.

Decomposition should be done only once in the beggining. Next, we fit decomposed matrices (P/L/U or Q/R).

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

Hoogeboom E., et al. Emerging convolutions for generative normalizing flows, 2019

Recap of previous lecture

Consider an autoregressive model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_j(\mathbf{x}_{1:j-1}), \sigma_j^2(\mathbf{x}_{1:j-1})\right).$$

Gaussian autoregressive NF

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j}(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_{j} + \mu_{j}(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad \mathbf{z}_{j} = (x_{j} - \mu_{j}(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_{j}(\mathbf{x}_{1:j-1})}.$$

- We have an **invertible** and **differentiable** transformation from $p(\mathbf{z})$ to $p(\mathbf{x}|\theta)$.
- Jacobian of such transformation is triangular!

Generation function $\mathbf{g}_{\theta}(\mathbf{z})$ is **sequential**. Inference function $\mathbf{f}_{\theta}(\mathbf{x})$ is **not sequential**.

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Recap of previous lecture

Let split x and z in two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}].$$

Coupling layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1; & \begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1). \end{cases} \begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)}. \end{cases}$$

Estimating the density takes 1 pass, sampling takes 1 pass!

Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{\partial_{d \times m - d}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{i=1}^{m-d} \frac{1}{\sigma_j(\mathbf{x}_1)}.$$

Coupling layer is a special case of autoregressive NF.

1. Latent variable models (LVM)

2. Variational lower bound (ELBO)

3. EM-algorithm
Amortized inference

1. Latent variable models (LVM)

2. Variational lower bound (ELBO)

EM-algorithm Amortized inference

Bayesian framework

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables, t unobserved variables (latent variables/parameters);
- $ightharpoonup p(\mathbf{x}|\mathbf{t})$ likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$ evidence;
- $ightharpoonup p(\mathbf{t})$ prior distribution, $p(\mathbf{t}|\mathbf{x})$ posterior distribution.

Meaning

We have unobserved variables \mathbf{t} and some prior knowledge about them $p(\mathbf{t})$. Then, the data \mathbf{x} has been observed. Posterior distribution $p(\mathbf{t}|\mathbf{x})$ summarizes the knowledge after the observations.

Bayesian framework

Let consider the case, where the unobserved variables ${\bf t}$ is our model parameters ${m heta}.$

- $\mathbf{X} = {\mathbf{x}_i}_{i=1}^n$ observed samples;
- $p(\theta)$ prior parameters distribution (we treat model parameters θ as random variables).

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

If evidence $p(\mathbf{X})$ is intractable (due to multidimensional integration), we can't get posterior distribution and perform the exact inference.

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \left(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right)$$

Latent variable models (LVM)

MLE problem

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

The distribution $p(\mathbf{x}|\theta)$ could be very complex and intractable (as well as real distribution $\pi(\mathbf{x})$).

Extended probabilistic model

Introduce latent variable z for each sample x

$$p(\mathbf{x}, \mathbf{z}|\theta) = p(\mathbf{x}|\mathbf{z}, \theta)p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}).$$

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta)d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \theta)p(\mathbf{z})d\mathbf{z}.$$

Motivation

The distributions $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ and $p(\mathbf{z})$ could be quite simple.

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

Examples

Mixture of gaussians

- $ightharpoonup p(z) = \operatorname{Categorical}(\pi)$

PCA model

- $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$
- $ho(z) = \mathcal{N}(0, \mathbf{I})$

Maximum likelihood estimation for LVM

MLE for extended problem

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(\mathbf{X}, \mathbf{Z} | m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}) = \\ &= rg\max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}). \end{aligned}$$

However, **Z** is unknown.

MLE for original problem

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i, \mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive approach

Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$

where $\mathbf{z}_k \sim p(\mathbf{z})$.

Challenge: to cover the space properly, the number of samples grows exponentially with respect to dimensionality of **z**.

1. Latent variable models (LVM)

2. Variational lower bound (ELBO)

EM-algorithm Amortized inference

Variational lower bound (ELBO)

Derivation 1 (inequality)

$$\log p(\mathbf{x}|\theta) = \log \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} =$$

$$= \log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} \right] \ge \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} = \mathcal{L}(q, \theta)$$

Derivation 2 (equality)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \geq \mathcal{L}(q, \boldsymbol{\theta}).$$

Variational lower bound (ELBO)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\theta) = \mathcal{L}(q,\theta) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\theta))$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\theta) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\theta)).$$

▶ Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{\boldsymbol{\theta}} p(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \max_{\boldsymbol{q},\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{q},\boldsymbol{\theta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$\arg\max_{q} \mathcal{L}(q, \theta) \equiv \arg\min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)).$$

1. Latent variable models (LVM)

2. Variational lower bound (ELBO)

3. EM-algorithm
Amortized inference

EM-algorithm

$$\mathcal{L}(q, \theta) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z})) =$$

$$= \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z})}{p(\mathbf{z})} \right] d\mathbf{z} \to \max_{q, \theta}.$$

Block-coordinate optimization

- lnitialize θ^* ;
- ▶ E-step $(\mathcal{L}(q, \theta) \to \mathsf{max}_q)$

$$egin{aligned} q^*(\mathbf{z}) &= rg\max_q \mathcal{L}(q, oldsymbol{ heta}^*) = \ &= rg\min_q \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*)) = \mathit{p}(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*); \end{aligned}$$

▶ M-step $(\mathcal{L}(q, \theta) \rightarrow \mathsf{max}_{\theta})$

$$\theta^* = \arg\max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

EM-algorithm illustration

1. Latent variable models (LVM)

2. Variational lower bound (ELBO)

3. EM-algorithm
Amortized inference

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*).$$

- ▶ $q(\mathbf{z})$ approximates true posterior distribution $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$, that is why it is called **variational posterior**;
- \triangleright $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$ could be **intractable**;
- $ightharpoonup q(\mathbf{z})$ is different for each object \mathbf{x} .

Idea

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x},\phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \cdot \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \eta \cdot
abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{\phi}_k, oldsymbol{ heta})|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Variational EM illustration

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\phi},\boldsymbol{\theta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq \mathcal{L}(\boldsymbol{\phi},\boldsymbol{\theta}).$$

► E-step

$$\phi_k = \phi_{k-1} + \eta \cdot \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational posterior distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \cdot \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}},$$

where θ – parameters of the generative distribution $p(\mathbf{x}|\mathbf{z},\theta)$. Now all that is left is to obtain gradients: $\nabla_{\phi}\mathcal{L}(\phi,\theta)$, $\nabla_{\theta}\mathcal{L}(\phi,\theta)$. Challenge: Number of samples n could be huge (we need derive the **unbiased** stochastic gradients).

Summary

- Bayesian framework is a generalization of most common machine learning tasks.
- ► LVM introduces latent representation of observed samples to make model more interpretative.
- ► LVM maximizes variational evidence lower bound (ELBO) to find MLE for the parameters.
- The general variational EM algorithm maximizes ELBO objective for LVM model to find MLE for parameters θ .
- Amortized variational inference allows to efficiently compute the stochastic gradients for ELBO using Monte-Carlo estimation.