Social engineering techniques 1

The table below provides definitions for common social engineering techniques. Drag and drop the words into the spaces provided to match the technique to the definition.

Technique	Definition
	An attack in which the victim receives a message disguised to look like it has come from a reputable source (for example, a bank), in order to trick them into giving up personal information.
	An attack in which the perpetrator invents a scenario in order to convince the victim to give them personal information or money.
	Deceiving users by sending them to a fake website that the user believes is the real one, with the intention of tricking them to submit personal data.

Items:

Cookies definition

GCSE

A cookie is a	file that contains a relatively	amount of data. The
file is stored on	. It is exchanged between your con	nputer and the
when you browse o	website. The data in the file is used to	activity and to
conte	nt.	
ltems:		
small track	web server text binary large	personalise

All teaching materials on this site are available under a $\underline{\sf CC}$ BY-NC-SA 4.0 license, except where otherwise stated.

Types of malicious software 2

GCSE

Using the statements provided, **match** the form of attack to the correct description by dragging the items into the table.

Form of attack	Description
	Replicates and is designed to infect as many systems as possible. Does not require a host program.
	Appears to be a legitimate file, but actually performs malicious actions.
	Replicates and attaches to other programs or files to spread over computer systems.

Items:

Types of malicious software 5

A Level

Malware refers to **malicious software**, and describes programs designed to cause damage to computer systems, corrupt or change files, steal data, or cause disruption to services. There are several types, including viruses, worms, and trojans.

Select the two true statements about malware.

Trojans look like legitimate software, such as free games, emojis, or utility programs, but they contain malware that installs itself at the same time.
A virus can only be caught by clicking on a malicious link or attachment.
Antivirus software can only remove viruses, not worms or trojans.
Worms can spread autonomously, for example, by emailing themselves to everyone in your address book.
A worm cannot install a back door to enable remote control of a computer.

Malware protection 1

A Level

Select four options that describe appropriate measures to minimise malware risks.						
Only open emails without attached files						
Receive and share files only with users on a local area network						
Choose secure passwords						
Use of firewall						
Use defragmentation software often						
Perform regular computer scans						
Maintain and update anti-virus software						
Use biometric authentication to log in to your computer						

MAC addresses 1

A Level

A MAC address is a unique identifier given to a network interface card. MAC address filtering is a technique that is sometimes used to help secure a network. However, this approach to network security has limitations.

Which one	of the	following	statements	is false ?

MAC addresses are irrelevant if a computer has an IP address.
MAC addresses can be spoofed.
A computer can have multiple MAC addresses.
MAC addresses can be obtained by intercepting network packets.

Limiting devices on a network

A Level

A company wants to control which devices can use their private network. They would like to make sure that only devices **owned by their employees** are able to connect to the WiFi inside their offices

Which of the following device characteristics should the company use to identify the devices that they will allow to connect to the network?

IP Address
Device model number
MAC address
Device name

Password rules

A Level

A website uses the following rules to determine if a password can be used. The password must be:

At least 8 characters long AND contain at least 3 out of the following 4 character types:

- A lowercase letter
- An uppercase letter
- A number
- A symbol

OR

At least 16 characters long

Which four passwords can be used on this site?

pAsw0rd
horsebatterycomputerstaple
fRiEnDenter
aAl,aAl,
@1234/221B+24601!
saveEarth89

Memory vulnerabilities

A Level

Quality of code is essential to avoiding vulnerabilities that can be exploited by malware. One code quality issue is a type of memory fault, where a data structure is not large enough for certain values of data to be passed into it. Malware can exploit this by making data spill out of the field and into nearby memory, overwriting program instructions.

What is the name for this type of error?						
	Fault					
	Buffer underflow					
	Stack flow					
	Excessive overflow					
	Buffer overflow					

SQL injection

Many websites ask users to fill in and submit information. Examples include places to type usernames, passwords, or credit card details. Often these forms are linked to a database that can record the data. A SQL injection occurs when hackers type malicious commands using SQL code into the input boxes, with the intent to gain unauthorised access to the database's contents.

Read the options below and select an example of a SQL injection.

Option D								
SELECT *	FROM	Users	WHERE	Name	="noName"	AND Pas	ss =""	
Option C								
SELECT *	FROM	Users	WHERE	Name	="Usernam	e" AND F	ass ="m	yPassword"
Option A								
SELECT *	FROM	Users	WHERE	Name	="" or ""	="" AND	Pass ="	" ог ""=""
Option B								
SELECT *	FROM	Users	WHERE	Name	="John Do	e" AND F	Pass ="m	yPass"

