Inference 2, 2023, lecture 13

Rolf Larsson

December 11, 2023

Today

Chap. 5. Testing hypotheses (continued): Conditional tests

Example 1:

- Let $\mathbf{X} = (X_1, ..., X_n)$ be an i.i.d. sample from $N(\mu, \sigma^2)$ with *unknown* σ^2 .
- Test H_0 : $\mu \le \mu_0$ vs H_1 : $\mu > \mu_0$.
- Is there any test which in some sense is optimal in this situation?
- In particular, how should a test statistic for tests on μ with distribution not depending on σ^2 be found?

Example 2:

The same questions for the test of H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$.

More general:

- Suppose we have the model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta \subseteq \mathcal{R}^k\}.$
- Suppose P_{θ} belongs to a *k*-parameter exponential family:

$$p(\mathbf{x}; \theta) = A(\theta) \exp \left\{ \sum_{j=1}^{k} \zeta_j(\theta) R_j(\mathbf{X}) \right\} h(\mathbf{x}).$$

- Define $\beta_j = \zeta_j(\theta)$.
- Suppose the **parameter of interest** is $\lambda = \beta_1 = \zeta_1(\theta)$.
- $\vartheta = (\beta_2, ..., \beta_k)^T$ is called the **nuisance parameter**.
- Write

$$p(\mathbf{x}; \theta) = A(\theta) \exp \left\{ \lambda U(\mathbf{x}) + \vartheta^{\mathrm{T}} T(\mathbf{x}) \right\} h(\mathbf{x}).$$

Example 1:

- Let $\mathbf{X} = (X_1, ..., X_n)$ be a i.i.d. sample from $N(\mu, \sigma^2)$ with unknown σ^2 .
- We want to test hypotheses about μ .
- The likelihood $p(\mathbf{x}; \theta) = L(\theta; \mathbf{x})$, where $\theta = (\mu, \sigma^2)$, may be written on a form as above (why?):

$$L(\theta) = A(\theta) \exp \left\{ \lambda U(\mathbf{x}) + \vartheta T(\mathbf{x}) \right\},\,$$

where $\lambda = \mu/\sigma^2$, $U(\mathbf{x}) = n\bar{\mathbf{x}}$, $\vartheta = -1/(2\sigma^2)$, $T(\mathbf{x}) = \sum_{i=1}^n x_i^2$.

- Recall: $p(\mathbf{x}; \theta) = A(\theta) \exp \left\{ \lambda U(\mathbf{x}) + \vartheta^{\mathrm{T}} T(\mathbf{x}) \right\} h(\mathbf{x}).$
- Here, $U(\mathbf{x})$ is the suff. stat. for λ and $T(\mathbf{x})$ is the suff. stat. for ϑ .
- Rewrite $p(\mathbf{x}; \theta)$ as the joint probability (density) function of (U, T):

$$p^{(U,T)}(u,t;\theta) = A(\theta) \exp(\lambda u + \vartheta^{T} t) h(u,t)$$

$$= c(\lambda,t) \exp(\lambda u) h(u,t) \cdot A(\theta) \exp(\vartheta^{T} t) c(\lambda,t)^{-1}$$

$$= p^{U|T=t}(u|t;\lambda) \qquad \cdot p^{T}(t;\theta)$$

- The trick is to concentrate on **the conditional model** $\mathcal{P}_t = \left\{ \mathrm{P}_{\lambda}^{U|T=t} : \lambda \in A \subseteq \mathcal{R} \right\}, \ t \in \mathcal{R}^{k-1}.$
- Test H_0 : $\lambda \geq \lambda_0$ vs H_1 : $\lambda < \lambda_0$.
- Let $\mathcal Z$ be the parameter space after transformation into (λ, ϑ) .
- Write $\mathcal{Z} = \mathcal{Z}_0 \cup \mathcal{Z}_1$ where $\mathcal{Z}_0 = \{(\lambda, \vartheta) : \lambda \geq \lambda_0\}$ and $\mathcal{Z}_1 = \{(\lambda, \vartheta) : \lambda < \lambda_0\}.$
- $\bullet \ \ \mathsf{Define} \ \ \mathsf{the} \ \ \mathsf{boundary} \ \mathsf{set} \ \ \mathcal{Z}_{\mathrm{bound}} = \{(\lambda_0,\vartheta): (\lambda_0,\vartheta) \in \mathcal{Z}\}.$

Definition (5.13)

A test φ is said to be α -similar on \mathcal{Z}_{bound} if.f.

$$E_{(\lambda_0,\vartheta)}\varphi(\mathbf{X}) = \alpha.$$
 (Independent on ϑ .)

Definition (5.14)

Consider the test problem H_0 : $\lambda \geq \lambda_0$ vs H_1 : $\lambda < \lambda_0$. A test φ is **uniformly most powerful** α -similar for this problem if.f. φ is α -similar on $\mathcal{Z}_{\mathrm{bound}}$ and

$$E_{(\lambda,\vartheta)}\{\varphi(\mathbf{X})\} \ge E_{(\lambda,\vartheta)}\{\psi(\mathbf{X})\}$$

for all $(\lambda, \vartheta) \in \mathcal{Z}_1$ and for all α -similar tests ψ on \mathcal{Z}_{bound} .

We get the following generalization of the Blackwell "UMP theorem" for α -similar tests:

Theorem (5.7)

(One-sided conditional test) Consider the test problem H_0 : $\lambda \geq \lambda_0$ vs H_1 : $\lambda < \lambda_0$. Assume that $\mathcal Z$ is convex and includes a k-dimensional interval. The test

$$\varphi_{I}(u,t) = \begin{cases} 1 & \text{if } u < c_{0}(t), \\ \gamma_{0}(t) & \text{if } u = c_{0}(t), \\ 0 & \text{if } u > c_{0}(t), \end{cases}$$

with $\gamma_0(t)$ and $c_0(t)$ such that $E_{\lambda_0}\{\varphi_I(U,T)|T=t\}=\alpha$ for all t, is a UMP α -similar test for this problem.

Note: For H_0 : $\lambda \leq \lambda_0$, H_1 : $\lambda > \lambda_0$ the same result holds by switching < and > in the φ_I formula.

Example 1:

- Let $\mathbf{X} = (X_1, ..., X_n)$ be an i.i.d. sample from $N(\mu, \sigma^2)$ with unknown σ^2 .
- Consider testing H_0 : $\mu \leq \mu_0$ vs H_1 : $\mu > \mu_0$.
- Show that the one-sided t test is UMP α -similar.

Definition

Consider the test problem H_0 : $\lambda = \lambda_0$ vs H_1 : $\lambda \neq \lambda_0$. A test φ is **uniformly most powerful unbiased** α -similar for this problem if.f. φ is α -similar unbiased on $\mathcal{Z}_{\mathrm{bound}}$ and

$$E_{(\lambda,\vartheta)}\{\varphi(\mathbf{X})\} \ge E_{(\lambda,\vartheta)}\{\psi(\mathbf{X})\}$$

for all $(\lambda, \vartheta) \in \mathcal{Z}_1$ and for all α -similar unbiased tests ψ on \mathcal{Z}_{bound} .

Theorem (5.8)

(Two-sided conditional test) Assume that Z is convex and includes a k-dimensional interval. Consider the test problem H_0 : $\lambda = \lambda_0$ vs H_1 : $\lambda \neq \lambda_0$. The test

$$\varphi_{II}(u,t) = \begin{cases} 1 & \text{if} \quad u < c_1(t), \ u > c_2(t), \\ \gamma_1(t) & \text{if} \quad u = c_1(t), \\ \gamma_2(t) & \text{if} \quad u = c_2(t), \\ 0 & \text{if} \quad c_1(t) < u < c_2(t), \end{cases}$$

with $\gamma_i(t)$ and $c_i(t)$ such that $\mathbb{E}_{\lambda_0}\{\varphi_{II}(U,T)|T=t\}=\alpha$ for all t and

$$E_{\lambda_0}\{U\varphi_H(U,T)|T=t\}=\alpha E_{\lambda_0}(U|T=t)$$

is a UMPU α -similar test for this problem.

Example 2:

- Let $\mathbf{X} = (X_1, ..., X_n)$ be a i.i.d. sample from $N(\mu, \sigma^2)$ with unknown σ^2 .
- Consider testing H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$.
- Show that the two-sided t test is UMPU α -similar.

News of today

Generalization to conditional tests:

- The test concerns a parameter of interest, in the presence of nuisance parameters.
- The exponential family.
- Trick: Condition on the nuisance parameters!
- α -similar test on the boundary set
- UMP α -similar test
 - one-sided
 - two-sided (unbiased test)