# More about Normal-Form Games

By Marzie Nilipour Spring 2023

# Outline

- Correlated Equilibrium
- ε-Nash Equilibrium

• We already know a lot about this game.

|   | А    | В    |
|---|------|------|
| Α | 2, 1 | 0, 0 |
| В | 0, 0 | 1, 2 |

We already know a lot about this game.

|   | А    | В    |
|---|------|------|
| А | 2, 1 | 0, 0 |
| В | 0, 0 | 1, 2 |

- Coordination game
  - without communication, it is possible that the two players might fail to coordinate

- Pure-strategy equilibria
  - NE = (A,A) and (B,B)
  - Payoff profiles (2,1) and (1,2)
  - Unfair, but pareto optimal

|   | А    | В    |
|---|------|------|
| Α | 2, 1 | 0, 0 |
| В | 0, 0 | 1, 2 |

Mixed-strategy equilibrium

|   | А    | В    |             |
|---|------|------|-------------|
| А | 2, 1 | 0, 0 | р           |
| В | 0, 0 | 1, 2 | <b>1</b> -p |
|   | q    | 1-q  |             |

• Player1's expected utility?

$$E[U_{1}(A,(q,1-q))] = 2q + 0(1-q)$$

$$E[U_{1}(B,(q,1-q))] = 0q + 1(1-q)$$

$$2q = (1-q) \Rightarrow q = \frac{1}{3}$$

Player2's expected utility?

$$E[U_{2}((p,1-p),A)] = 1p + 0(1-p)$$

$$E[U_{2}((p,1-p),B)] = 0p + 2(1-p)$$

$$1p = 2(1-p) \Rightarrow p = \frac{2}{3}$$

|   | А    | В    |     |
|---|------|------|-----|
| А | 2, 1 | 0, 0 | р   |
| В | 0, 0 | 1, 2 | 1-p |
|   | q    | 1-q  |     |

Mixed-strategy equilibrium

Player 1 Player 2 
$$\left[ \left( \frac{2}{3}, \frac{1}{3} \right), \left( \frac{1}{3}, \frac{2}{3} \right) \right]_{p \quad 1-p \quad q \quad 1-q}$$

|   | А    | В    |     |
|---|------|------|-----|
| А | 2, 1 | 0, 0 | 2/3 |
| В | 0, 0 | 1, 2 | 1/3 |
|   | 1/3  | 2/3  |     |



• What is the probability for the two players meet or not to meet?

|   | Α    | В    |     |
|---|------|------|-----|
| А | 2, 1 | 0, 0 | 2/3 |
| В | 0, 0 | 1, 2 | 1/3 |
|   | 1/3  | 2/3  |     |

- What is the probability for the two players meet or not to meet?
- $\rightarrow$  Prob(meet) = 2/3\*1/3+1/3\*2/3=4/9
- → I- Prob(meet) = 5/9 !!!

• Payoff profile?





- Payoff profile?
  - Each player's payoff at this profile =  $\frac{2}{9}$ \*2 + 0 + 0 +  $\frac{2}{9}$ \*1 =  $\frac{2}{3}$
  - $(^2/_3, ^2/_3)$  is Fair

|   | А    | В    |     |
|---|------|------|-----|
| А | 2, 1 | 0, 0 | 2/3 |
| В | 0, 0 | 1, 2 | 1/3 |
|   | 1/3  | 2/3  |     |

- Payoff profile?
  - Each player's payoff at this profile =  $\frac{2}{9}$ \*2 + 0 + 0 +  $\frac{2}{9}$ \*1 =  $\frac{2}{3}$
  - $(^{2}/_{3}, ^{2}/_{3})$  is Fair
- Is this profile pareto optimal?

|   | А    | В    |     |
|---|------|------|-----|
| А | 2, 1 | 0, 0 | 2/3 |
| В | 0, 0 | 1, 2 | 1/3 |
|   | 1/3  | 2/3  | 1   |

- Payoff profile?
  - Each player's payoff at this profile =  $\frac{2}{9}$ \*2 + 0 + 0 +  $\frac{2}{9}$ \*1 =  $\frac{2}{3}$
  - $(\frac{2}{3}, \frac{2}{3})$  is Fair
- Is this profile pareto optimal?
  - No, this profile is Pareto dominated by (A,A) and (B,B)

• How we can obtain both pareto optimality and fairness in NE payoffs?

|   | Α    | В    |
|---|------|------|
| А | 2, 1 | 0, 0 |
| В | 0, 0 | 1, 2 |

How we can obtain both pareto optimality and fairness in NE payoffs?

- Neither pure nor mixed NE
- Flip a coin
  - Heads → both choose A
  - Tails → both choose B



How we can obtain both pareto optimality and fairness in NE payoffs?

- Neither pure nor mixed NE
- Flip a coin
  - Heads → both choose A
  - Tails → both choose B
  - Payoff profile?



How we can obtain both pareto optimality and fairness in NE payoffs?

- Neither pure nor mixed NE
- Flip a coin
  - Heads → both choose A
  - Tails → both choose B
  - Payoff profile?
    - Each player's payoff at this profile = 1/2\*2 + 0 + 0 + 1/2\*1 = 3/2
    - (1.5, 1.5) is Fair and Pareto optimal



# Correlated Equilibrium

 A new randomization on each strategy of a game which expected utility is strictly higher than those of NE

# Correlated Equilibrium

 A new randomization on each strategy of a game which expected utility is strictly higher than those of NE

**Theorem** For every Nash equilibrium  $\sigma^*$  there exists a corresponding correlated equilibrium  $\sigma$ .

# Correlated Equilibrium

• No agent i can benefit by deviating from  $\sigma_i$ , so  $\sigma$  is a correlated equilibrium

- There also are correlated equilibria that aren't equivalent to NE
  - e.g., Battle of the Sexes

• Find a correlated equilibrium in which the sum of the players' payoff is higher than NE.

|   | L   | $^{\mathrm{C}}$ | R   |
|---|-----|-----------------|-----|
| U | 1,1 | 2,4             | 4,2 |
| M | 4,2 | 1,1             | 2,4 |
| D | 2,4 | $^{4,2}$        | 1,1 |

 Find a correlated equilibrium in which the sum of the players' payoff is higher than any NE.

Pure strategy?

Dominated strategy?



 Find a correlated equilibrium in which the sum of the players' payoff is higher than any NE.

Pure strategy? No

Dominated strategy? No



Mixed strategy?



#### Mixed strategy?

```
\begin{split} & \text{Expected Utility}[Player1 \; (\text{U}, (q_1 \, , q_2 \, , 1 \, \cdot (q_1 \, + \, q_2))] = q_1 \, + \, 2q_2 \, + \, 4 \; (1 \, \cdot q_1 \, - \, q_2 \, ) = \\ & 3q_1 - 2q_2 \, + \, 4 \\ & \text{Expected Utility}[Player1 \; (\text{M}, \; (q_1 \, , q_2 \, , \; 1 \, \cdot \, (q_1 \, + \, q_2))] = \, 4q_1 \, + \, q_2 \, + \, 2 \; (1 \, \cdot q_1 \, - \, q_2 \, ) = \\ & 2q_1 - q_2 \, + \, 2 \\ & \text{Expected Utility}[Player1 \; (\text{D}, \; (q_1 \, , q_2 \, , \; 1 \, \cdot \, (q_1 \, + \, q_2))] = \, 2q_1 \, + \, 4q_2 \, + \, (1 \, \cdot q_1 \, - \, q_2 \, ) = \\ & q_1 \, + \, 3q_2 \, + \, 1 \end{split}
```



#### Mixed strategy?

$$\begin{aligned} &\text{Expected Utility}[Player1~(\text{U},(q_1\,,q_2\,,1\,\text{-}\,(q_1+\,q_2))] = q_1 + 2q_2 + 4~(1\text{-}q_1-q_2\,) = \\ &-3q_1 - 2q_2 + 4 \\ &\text{Expected Utility}[Player1~(\text{M},~(q_1\,,q_2\,\,,\,1\,\text{-}\,(q_1+\,q_2))] = 4q_1 + q_2 + 2~(1\text{-}q_1-q_2\,\,) = \\ &2q_1 - q_2 + 2 \\ &\text{Expected Utility}[Player1~(\text{D},~(q_1\,,q_2\,\,,\,1\,\text{-}\,(q_1+\,q_2))] = 2q_1 + 4q_2 + (1\text{-}q_1-q_2\,\,) = \\ &q_1 + 3q_2 + 1 \end{aligned}$$

| U<br>M<br>D | L<br>1,1<br>4,2<br>2,4 | C<br>2,4<br>1,1<br>4,2 | R<br>4,2<br>2,4<br>1,1 | P1<br>p2<br>1-p1-p2 |
|-------------|------------------------|------------------------|------------------------|---------------------|
|             | q1                     | q2                     | 1-q1-q2                | 2                   |

$$\begin{cases}
-3q_1 - 2q_2 + 4 = 2q_1 - q_2 + 2 \\
-3q_1 - 2q_2 + 4 = q_1 + 3q_2 + 1
\end{cases}
q_1 = q_2 = \frac{1}{3}$$



$$q_1 = q_2 = \frac{1}{3}$$

Mixed Strategy NE = 
$$\{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\}$$

| U<br>M<br>D | L<br>1,1<br>4,2<br>2,4 | C<br>2,4<br>1,1<br>4,2 | R<br>4,2<br>2,4<br>1,1 | 1/3<br>1/3<br>1/3 |
|-------------|------------------------|------------------------|------------------------|-------------------|
|             | 1/3                    | 1/3                    | 1/3                    |                   |

Mixed Strategy NE = 
$$\{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\}$$

Expected payoff for each player?



Mixed Strategy NE = 
$$\{(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})\}$$

Expected payoff for each player?

$$\frac{1}{3} * \frac{1}{3} (1*3 + 2*3 + 4*3) = \frac{7}{3}$$



• What is correlated equilibrium?



• What is correlated equilibrium?



• What is correlated equilibrium?

Expected payoff for each player?



What is correlated equilibrium?

Expected payoff for each player?

$$\frac{1}{6}$$
\* (3\*4 + 3\*2) = 3





#### Definition (3): Nash Equilibrium

Strategy profile s\* constitutes a **Nash Equilibrium** if, for each player *i*,

Where:  $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*), \forall s_i \in S_i$ 

#### Definition (3): Nash Equilibrium

Strategy profile s\* constitutes a **Nash Equilibrium** if, for each player *i*,

Where:  $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*), \forall s_i \in S_i$ 

**Definition**  $(\epsilon$ -Nash) Fix  $\epsilon > 0$ . A strategy profile  $s = (s_1, \ldots, s_n)$  is an  $\epsilon$ -Nash equilibrium if, for all agents i and for all strategies  $s'_i \neq s_i$ ,  $u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i}) - \epsilon$ .

- $\varepsilon$ -Nash equilibria exist for every  $\varepsilon > 0$ 
  - Every NE is surrounded by a region of  $\epsilon$ -Nash equilibria

- Computationally useful
  - Finding NE algorithms can stop when they get close sufficiently

• Example

• NE?

• ε-Nash equilibrium?



Example

• NE? (*D*, *R*)

- ε-Nash equilibrium? (*U, L*)
  - Neither agent can gain more than  $\epsilon$  by deviating

