On the Calibration of Multiclass Classification with Rejection

Chenri Ni¹ Nontawat Charoenphakdee^{1,2} Junya Honda^{1,2} Masashi Sugiyama^{2,1}

1: The University of Tokyo 2: RIKEN AIP

Introduction

Saying "I don't know" can prevent misclassification.

Most theoretical works in this problem focused on binary case.

Only Ramaswamy+ 2018 considered confidence-based approach in multiclass case. **Contributions:**

- An analysis of a recent classifier-rejector approach in multiclass case.
- Theoretical guarantee for well-known surrogate losses for confidence-based approach.

Multiclass classification with rejection

(Chow 1970, Ramaswamy+ 2018)

that minimizes the following risk: $R_{0-1-c}(r,f) = \mathbb{E}_{p(\boldsymbol{x},y)}[\mathcal{L}_{0-1-c}(r,f;\boldsymbol{x},y)]$

where
$$\mathcal{L}_{0\text{-}1\text{-}c}(r, f; \boldsymbol{x}, y) = \underbrace{\mathbb{1}_{[f(\boldsymbol{x})\neq y]}\mathbb{1}_{[r(\boldsymbol{x})>0]}}_{\text{misclassification loss}} + \underbrace{c\mathbb{1}_{[r(\boldsymbol{x})\leq 0]}}_{\text{rejection loss}}$$

 $\mathcal{L}_{0\text{-}1\text{-}c}(r, f; \boldsymbol{x}, y)$ is hard to directly optimize.

(Yuan+, 2010, Cortes+ (2015, 2016), Ramaswamy+ 2018)

A computationally-efficient and theoretically justified surrogate loss is needed.

Optimal solution of classification with rejection:

$$f^*(\boldsymbol{x}) = \arg \max_{y \in \mathcal{Y}} \eta_y(\boldsymbol{x}) \qquad \eta_y(\boldsymbol{x}) = p(y|\boldsymbol{x})$$

$$r^*(\boldsymbol{x}) = \max_{y \in \mathcal{Y}} \eta_y(\boldsymbol{x}) - (1 - c)$$
(Chow 1970)

Calibration

Calibration ensures that minimizing a surrogate loss will lead to an optimal solution

- (r, f) is calibrated if $R_{0-1-c}(r, f) = R_{0-1-c}(r^*, f^*)$
- is classification-calibrated if $f(x) = f^*(x)$
- is rejection-calibrated if $sign[r(x)] = sign[r^*(x)]$ If (r, f) is calibrated, r must be rejection-calibrated.

A minimizer of a surrogate loss should give a calibrated (r, f)

Classifier-rejector approach

(Cortes+, 2015, 2016)

Classifier and rejector are trained simultaneously

Classifier

Rejector

(colored area indicates classifier prediction)

(gray area indicates rejection area) $(r_{\boldsymbol{\eta}}^{\dagger}, f_{\boldsymbol{\eta}}^{\dagger}) = \operatorname*{arg\,min}_{r \in \mathbb{R}, \ \boldsymbol{g} \in \mathbb{R}^K} W(r, f; \boldsymbol{\eta}) \quad \boldsymbol{\eta}(\boldsymbol{x}) = [\eta_1(\boldsymbol{x}), \dots, \eta_K(\boldsymbol{x})]^{\top} \quad W(r(\boldsymbol{x}), f(\boldsymbol{x}); \boldsymbol{\eta}(\boldsymbol{x})) = \sum_{y \in \mathcal{Y}} \eta_y(\boldsymbol{x}) \mathcal{L}(r, f; \boldsymbol{x}, y)$

 $lpha \in \mathbb{R} \quad eta \in \mathbb{R}$ Hyperparameters

Corollary 5: (Necessary condition for rejection calibration)

Necessary and sufficient condition is also provided in our paper (Theorem 4)

Supremum and infimum values coincide under the same constraint.

When $\max_y \eta_y = 1 - c$

- $oldsymbol{\eta}$ can only be either $[1-c,c]^{ op}$ or $[c,1-c]^{ op}$
- Multiclass case: η can be arbitrary. Both conditions can be very different and do not hold simultaneously!

Case study:

- $\phi:\mathbb{R} o \mathbb{R} \ \ \psi:\mathbb{R} o \mathbb{R} \ \ \ ext{Convex margin losses}$ Multiplicative pairwise comparison (MPC) loss: $\mathcal{L}_{MPC}(r, f; \boldsymbol{x}, y) = \sum_{y' \neq y} \phi \Big(\alpha \big(g_y(\boldsymbol{x}) - g_{y'}(\boldsymbol{x}) \big) \Big) \psi(-\alpha r(\boldsymbol{x})) + c \psi \big(\beta r(\boldsymbol{x}) \big)$
- Additive pairwise comparison (APC) loss:

$$\mathcal{L}_{\mathrm{APC}}(r,f;\boldsymbol{x},y) = \sum_{y'\neq y} \phi\Big(\alpha\big(g_y(\boldsymbol{x}) - g_{y'}(\boldsymbol{x}) - r(\boldsymbol{x})\big)\Big) + c\psi\big(\beta r(\boldsymbol{x})\Big)$$
 Consider $\phi(z) = \psi(z) = \exp(-z)$

Condition (1) gives
$$\frac{\beta}{\alpha} = (K-2) + 2\sqrt{(K-1)\frac{1-c}{c}}$$

Equivalent to a condition proved by (Cortes+, 2016) when considering a binary case (K=2). In multiclass case, (α, β) that satisfies both conditions simultaneously does not exist. Similar results also hold when using the logistic loss $\phi(z) = \psi(z) = \log(1 + \exp(-z))$.

References

- [1] C. K. Chow. On optimum recognition error and reject tradeoff. IEEE Transaction on Information Theory, 1970
- [2] C. Cortes, G. DeSalvo, and M. Mohri. Learning with rejection. ALT, 2015
- [3] Cortes G. DeSalvo, and M. Mohri. Boosting with abstention. NeurIPS, 2016
- [4] H.G. Ramaswamy, A. Tewari, and S. Agarwal. Consistent algorithms for multiclass classification with an abstain option. EJS, 2018.
- [5] M. Yuan, M.H. Wegkamp. Classification methods with reject option based on convex risk minimization. JMLR, 2010.

Confidence-based approach

(Bartlett+ 2008, Yuan+ 2010, Ramaswamy+ 2018)

Rejector depends solely on classifier's confidence

Cross-entropy (CE) loss:

$$\mathcal{L}_{\text{CE}}(f; \boldsymbol{x}, y) = -g_y(\boldsymbol{x}) + \log \sum_{y' \in \mathcal{Y}} \exp (g_{y'}(\boldsymbol{x}))$$

One-versus-all (OVA) loss:

$$\mathcal{L}_{\text{OVA}}(f; \boldsymbol{x}, y) = \phi(g_y(\boldsymbol{x})) + \sum_{y' \neq y} \phi(-g_{y'}(\boldsymbol{x}))$$

$$r_f(m{x}) = \max_{y \in \mathcal{Y}} \Psi^{-1}(m{g}(m{x})) - (1-c)$$
 $m{g}(m{x}) = [g_1(m{x}), \dots, g_K(m{x})]^{ op}$ $\Psi^{-1} \colon \mathbb{R}^K o [0,1]^K$ Inverse link function

Excess risk:

$$\Delta R_{0\text{-}1\text{-}c}(r_f, f) = R_{0\text{-}1\text{-}c}(r_f, f) - \inf_{f':\text{measurable}} R_{0\text{-}1\text{-}c}(r_f, f)$$
$$\Delta R_{\ell}(f) = R_{\ell}(f) - \inf_{f':\text{measurable}} R_{\ell}(f')$$

If $\Delta R_{0\text{-}1\text{-}c}$ can be upper-bounded by ΔR_{ℓ} ,

-> then the minimizer of both risks are identical.

Excess risk bound of OVA loss:

$$(2C)^{-s}\Delta R_{0\text{-}1\text{-}c}(r_f,f)^s \leq \Delta R_{\text{OVA}}(f) \begin{tabular}{l}{l}{\rm Exponential}\\{\rm Squared}\\{\rm Squared \ Hinge}\end{tabular} \begin{tabular}{l}{l}{\log(1+\exp(-z))}\\{\exp(-z)}\\{(1-z)^2}\\{(1-z)^2_+}\\{\rm Excess\ risk\ bound\ of\ CE\ loss:}\\ \end{tabular}$$

$$\frac{1}{2}\Delta R_{0\text{-}1\text{-}c}(r_f, f)^2 \le \Delta R_{\text{CE}}(f)$$

See our paper for more results, e.g., estimation error bound using Rademacher complexity.

Experiment

Classifier-rejector: MPC+log (MPC with logistic loss), APC+log (APC with logistic loss) Confidence-based: OVA+hin (Ramaswamy+ 2018), OVA+log (OVA with logistic loss), CE

Accuracy of non-rejected data: "- (-)" indicates all data were rejected.

dataset	c	APC+log	MPC+log	OVA+log	CE
	0.05	-(-)	96.6 (2.3)	100 (0.0)	100 (0.0)
vehicle	0.2	98.4 (1.9)	92.4 (3.0)	97.9 (0.7)	97.4 (0.1)
	0.4	89.1 (2.9)	85.3 (4.2)	90.2 (1.6)	91.7 (0.9)
	0.05	99.1 (0.2)	97.2 (1.4)	98.7 (0.1)	98.3 (0.1)
satimage	0.2	95.0 (1.0)	92.6 (1.2)	96.2 (0.2)	95.7 (0.1)
	0.4	91.5 (0.7)	89.0 (1.1)	92.2 (0.3)	91.8 (0.2)
	0.05	-(-)	- (-)	- (-)	- (-)
yeast	0.2	- (-)	-(-)	- (-)	80.6 (6.2)
	0.4	- (-)	- (-)	75.0 (3.9)	76.6 (1.7)
·		·	·	·	·

dataset	c	APC+log	MPC+log	OVA+log	CE
covtype	0.05	79.5 (2.1)	79.8 (1.7)	82.1 (2.7)	82.0 (3.2)
	0.2	74.0 (1.8)	73.8 (1.0)	74.9 (1.4)	77.1 (0.3)
	0.4	69.8 (1.3)	64.9 (3.4)	68.7 (1.1)	69.4 (1.8)
	0.05	99.8 (0.1)	98.6 (0.2)	99.6 (0.2)	99 8 (0.0)
letter	0.2	97.9 (0.3)	96.9 (0.5)	98.3 (0.2)	98.4 (0.1)
	0.4	95.2 (0.5)	94.6 (3.8)	94.6 (0.2)	94.9 (0.3)