Answers of homework Exercises Module SAA: Sampling and Aliasing

Course: Signals Processing Basics (5ESE0)

Notes:

- During the contact hours complete workout of exercises can be explained by a tutor on request.
- The symbol [P] in the margin of an exercise denotes there is a pencast available.

[P1]

a.
$$x_a[n] = 3\sin(\frac{5\pi}{6}n - \frac{\pi}{3})$$

b.
$$x_b[n] = 3\sin(\frac{3\pi}{4}n - \frac{2\pi}{3})$$

c.
$$x_c[n] = 3\sin(\frac{\pi}{2}n - \frac{\pi}{3})$$

Spectrum
$$x_c[n]$$

$$\begin{array}{cccc}
X^* & X \\
& X \\
& -\frac{\pi}{2} & 0 & \frac{\pi}{2}
\end{array}$$
 θ [-]

Exercise 2

b. Equalities thus occur 5 times per second, or at a frequency of 5 [Hz].

c.
$$x_1[n] = x_2[n] = 2\cos(0.8\pi n)$$

Exercise 3

a.
$$x(t) = 10 + 16\cos(200\pi t - \frac{\pi}{3}) + 8\cos(600\pi t)$$

a.

b.
$$x[n] = 10 + 16\cos(\frac{2\pi}{9}n - \frac{\pi}{3}) + 8\cos(\frac{2\pi}{3}n)$$

c.
$$x[n] = 18 + 16\cos(\frac{2\pi}{3}n - \frac{\pi}{3})$$

a.
$$x(t) = 5 + 20\cos(40\pi t - \pi/4) + 12\cos(100\pi t + \pi/3)$$
.

$$X_1 = 10e^{-j\frac{\pi}{4}}$$
 $X_2 = 6e^{j\frac{\pi}{3}}$

Exercise 5

- a. Signal is real.
- b. $x(t) = 4\cos(80\pi t \pi/2) + 8\cos(24\pi t \pi/3)$
- c. x(t) is periodic with period $T_0 = \frac{1}{4}$ [sec].
- d. $f_s > 80$ [samples/sec].

Exercise 6

- a. Signal is periodic with period $T_0 = \frac{1}{200}$ [sec].
- b. $x(t) = \frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{3}}\cos(2400\pi t \frac{\pi}{4}) + \frac{1}{\sqrt{3}}\cos(4800\pi t \frac{\pi}{3})$
- c. $f_s > 4800$ [samples/sec].

[P2] First possibility:
$$x(t) = 10\cos(1000\pi t - \frac{\pi}{3})$$

Second possibility: $x(t) = 10\cos(4000\pi t + \frac{\pi}{3})$

Exercise 8

a.
$$y(t) = \sin(10\pi t + \frac{\pi}{3})$$

b.
$$y(t) = \sin(16\pi t + \frac{\pi}{3})$$

c.
$$y(t) = \sin(10\pi t + \frac{2\pi}{3})$$

d.
$$y(t) = \sin(16\pi t + \frac{2\pi}{3})$$

Exercise 9

a.
$$f_s > 40$$
 [samples/sec].

b.
$$x[n] = 10\cos(\frac{\pi}{2}n) + 1$$

a.

 $x(t) = X_1 e^{\mathbf{j}2000\pi t} + X_1^* e^{-\mathbf{j}2000\pi t} + X_2 e^{\mathbf{j}2500\pi t} + X_2^* e^{-\mathbf{j}2500\pi t} + X_2^* e^{\mathbf{j}1500\pi t} + X_2 e^{-\mathbf{j}1500\pi t}$ with $X_1 = 5$ and $X_2 = \frac{5}{2} e^{-\mathbf{j}\frac{\pi}{2}}$. This signal is periodic with Fundamental frequency $F_0 = 1/T_0 = 250$ [Hz].

b. $f_s > 2(1250) = 2500$ [samples/sec].

Exercise 11

- a. $f_s > 2(150) = 300$ [samples/sec].
- b. We can evaluate a mathematical expression to describe the samples x[n] as follows:

$$x[n] = 2\cos(0.4\pi n + \pi/2) + \cos(0.8\pi n).$$

The spectal plot of x[n] is depicted in the figure.

c. $f_s = 150$ [samples/sec].

Exercise 12

[P3]

C/D:
$$f_{si} = 800 \text{ [Hz]}$$

D/C: $f_{so} = 400 \text{ [Hz]}$.

Exercise 13

b.

$$y(t) == 10 + 10\cos(4000\pi t - \pi) + 8\cos(6000\pi t + 3\pi/4)$$

c. $\Rightarrow y_c(t) = 10 + 10\cos(8000\pi t - \pi) + 8\cos(12000\pi t + \frac{3\pi}{4})$

Exercise 14

a.
$$F_0 = 1/T_0 = 33$$
 [Hz].

b. $x[n] = x(t)|_{t=n/f_s} = 2\cos(\frac{\pi}{5}n) + \cos(\frac{3}{5}\pi n).$

- c. $y(t) = 2\cos(\frac{\pi}{5}30t) + \cos(\frac{3}{5}\pi30t) = 2\cos(6\pi t) + \cos(18\pi t)$. $F_0 = 1/T_0 = 3$ [Hz].
- d. We observe for $f_s=30~\mathrm{[Hz]}$ that x(t) has a fundamental frequency of 33 [Hz] and y(t) has a fundamental frequency of 3 [Hz] a eleven fold difference in frequency. This illustrates that the fundamental frequency can be changed by altering the sampling rate of a sampling system.