Contents

1	Description Of A Task
2	Algorithm correctness
	2.1 Zero Error
	2.2 Nonzero Error
	2.3 Undifferentiable convex function
3	Error's Value
4	Number of iterations
5	Tests

1 Description Of A Task

Let's consider a following task:

$$\min_{(x,y)} \left\{ f(x,y) | (x,y) \in Q \right\},\,$$

where f is a convex function, Q - is a square on the plane.

Let's consider a following method. One solves task of minimization for a function $g(x) = f\left(x, y_0 = \frac{a}{2}\right)$ on a segment [0, a] with an accuracy δ on function. After that one calculates a sub-gradient in a received point and chooses the rectangle which the sub-gradient "does not look" in. Similar actions are repeated for a vertical segment. As a result we have the square decreased twice. Let's find a possible value of error δ_0 for task on segment and a sufficient iteration's number N to solve the initial task with accuracy ϵ on function.

Let's describe an algorithm formally. See pseudo-code 1.

Algorithm 1 Algorithm of the method

```
1: function METHOD(convex function f, square Q = [a, b] \times [c, d])
                x_0 := solve(g = f(\cdot, \frac{c+d}{2}), [a, b], \delta)

g = subgradient(f, (x_0, \frac{c+d}{2}))
 2:
              if g[1] > 0 then
                     Q:=[a,b]\times [c,\tfrac{c+d}{2}]
 3:
 4:
                     Q:=[a,b]\times [\tfrac{c+d}{2},d]
 5:
              end if
 6:
                y_0 := solve(g = f(\frac{a+b}{2}, \cdot), [c, d], \delta)

g := subgradient(f, (\frac{a+b}{2}), y_0)
               \begin{array}{l} \textbf{if} \ \mathrm{g}[0] > 0 \ \textbf{then} \\ Q := [a, \frac{a+b}{2}] \times [c, d] \end{array} 
 7:
 8:
 9:
                     Q:=[\tfrac{a+b}{2},b]\times [c,d]
10:
              end if
11:
              if StopRec() == False then
12:
              \begin{array}{c} \operatorname{Method}(f,\,Q) \\ \mathbf{end} \ \mathbf{ifreturn} \ (\frac{a+b}{2},\frac{c+d}{2}) \end{array}
13:
14:
15: end function
```

2 Algorithm correctness

Let's \mathbf{x}_0 is solution of the task on segment, Q_1 is choosed rectangle, Q_2 is not choosed rectangle.

2.1 Zero Error

Lemma 1. If the optimization task on segment is solved with zero error and the f is convex and differentiable at a point-solution, rectangle with solution of initial task was choosed correct.

Proof. From sub-gradient definition, $\mathbf{x}^* \in \{x | (\mathbf{g}(\mathbf{x}_0), \mathbf{x}_0 - \mathbf{x}^*) \geq 0)\}$. Lemma's statement follows from it and a fact that the first (or the second for vertical segment) gradient's component in point \mathbf{x}_0 is zero.

2.2 Nonzero Error

Theorem 2.1. Let's the f has continuous derivative on the square. Then there is a neighbourhood of a solution of optimization task on segment such as a choice of rectangle will not change if one use any point from the neighbourhood.

Proof. Let's consider a case when we work with horizontal segment. Case with vertical segment is considered analogously. Then we are interesting in $f'_{\nu}(x_0, y_0)$. If \mathbf{x}_0 is not solution of initial task, then $f'_{\nu}(x_0, y_0) \neq 0$.

From a continuity of the derivative:

$$\lim_{\delta \to 0} f_y'(x_0 + \delta, y_0) = f_y'(x_0, y_0)$$

Therefore,

$$\exists \delta_0 : \forall \mathbf{x}_{\delta} \in B_{\delta_0}(x_0) \times y_0 \Rightarrow \operatorname{sign}(f'_y(\mathbf{x}_{\delta})) = \operatorname{sign}(f'_y(\mathbf{x}_0))$$

From it and lemma 1 theorem's statement follows.

2.3 Undifferentiable convex function

The method does not work for all convex functions even for zero error on segment. Let's consider following example.

Example 1.

$$f(x,y) = \max\{x - 2y, y - 2x\}, Q = [-1,1]^2 \tag{1}$$

Function f is convex as maximum of affine functions on x and y. A solution of task on horizontal segment $[-1,1] \times \{0\}$ is point (0,0). Its subdifferential is

$$\partial f(0,0) = \text{conv}\left\{ (1,-2)^{\top}, (-2,1)^{\top} \right\}.$$

So if one takes a subgradient $(1,-2)^{\top}$ then a bottom rectangle will be choosed. But optimal value is point (1,1) and there is not it in choosed rectangle. Therefore, this method cannot give a solution of initial task with error less than $\frac{1}{2}$.

3 Error's Value

Let's find possible value of error's value δ_0 . Rectangles are defined correctly for a horizontal optimization task, if:

$$\forall \delta : |\delta| < \delta_0 \Rightarrow f_n'(\mathbf{x}_0) f_n'(x_0 + \delta, y_0) > 0 \tag{2}$$

Analogically, for a vertical segment:

$$\forall \delta : |\delta| < \delta_0 \Rightarrow f_x'(\mathbf{x}_0) f_x'(x_0, y_0 + \delta) > 0 \tag{3}$$

Theorem 3.1. Let's function f is convex and differentiable and current rectangle is $[a, b] \times [c, d]$.

For horizontal segment: There is f''_{xy} on the segment. Rectangle is defined in point $(x_0 + \delta, y_0)$ correctly if one meet following condition:

$$\delta_0 < \frac{|f_y'(x_0)|}{\max_{t \in [a,b]} |f_{xy}''(t,y_0)|} \tag{4}$$

For vertical segment: There is f''_{yx} on the segment. Rectangle is defined in point $(x_0, y_0 + \delta)$ correctly if one meet following condition:

$$\delta_0 < \frac{|f_x'(\mathbf{x}_0)|}{\max_{t \in [c,d]} |f_{yx}''(x_0,t)|}$$
 (5)

Proof. Let's prove this statement for horizontal segment.

Rewrite the condition (1) using Taylor formula:

$$\forall \delta : |\delta| \le \delta_0 \Rightarrow f_y'(\mathbf{x}_0) \left(f_y'(\mathbf{x}_0) + f_{xy}'' \left(\mathbf{x}_0 + (\theta \delta, 0)^\top \right) \delta \right) > 0,$$

where $\theta \in (0,1)$

Using the written above inequality we have a following inequality for δ_0 :

$$\delta_0 < \frac{|f_y'(\mathbf{x}_0)|}{\max_{\theta \in [-1,1]} |f_{xy}''(x_0 + \theta \delta_0, y_0)|}$$

It and an obvious inequality $\max_{\theta \in [-1,1]} |f''_{xy}(x_0 + \theta \delta_0, y_0)| < \max_{t \in [a,b]} |f''_{xy}(t, y_0)|$ proves (3). Inequality (4) are proved similar.

Theorem 3.2. Let's function f is convex and has L-Lipschitz continuous gradient.

And on horizontal segment $\exists M_1 : \forall x \Rightarrow |f'_y(x)| > M_1$. Then rectangle is defined correctly if the possible value of error is not more $\frac{M_1}{L}$.

And on vertical segment $\exists M_2 : \forall x \Rightarrow |f'_x(x)| > M_2$. Then rectangle is defined correctly if the possible value of error is not more $\frac{M_2}{L}$

Proof. Condition (1) is met if there is a derivative $f'_y(x_0 + \delta, y_0)$ in a neighbourhood of $f'_y(\mathbf{x}_0)$ with radius $|f'_y(\mathbf{x}_0)|$:

$$|f_y'(\mathbf{x}_0) - f_y'(x_0 + \delta, y_0)| < |f_y'(\mathbf{x}_0)|$$

The L-Lipschitz continuity gives following inequality:

$$\left| f_y'(\mathbf{x}_0) - f_y'(x_0 + \delta, y_0) \right| \le L|\delta|$$

Theorem's estimate for vertical segment follows from two written above inequality. Inequality for vertical segment is proved similarly. \Box

4 Number of iterations

Following estimates are correct if each iterations was correct (a rectangle is selected correctly on each iterations).

Theorem 4.1. If function f is convex and L-Lipschitz continuous, then for to solve initial task with accuracy ϵ on function one has to make any following iteration's numbers:

$$N = \left| \log_2 \frac{La}{\sqrt{2}\epsilon} + 1 \right|, \tag{4.1}$$

$$N = \left| \log_2 \frac{\Delta f}{\epsilon} + 1 \right|, \tag{4.2}$$

where a is a size of the initial square Q, $\Delta f = f(x_0) - f(x^*)$, x_0 is a center of square Q.

Proof.

$$|f(\mathbf{x}^*) - f(\mathbf{x})| < L|\mathbf{x}^* - \mathbf{x}|$$

After N iterations we have a square with size $\frac{a}{2^N}$. That's why if we choose a squares center as proximal solution we have following estimates:

$$|\mathbf{x}^* - \mathbf{x}| \le \frac{a}{\sqrt{2}} 2^{-N}$$

$$|f(\mathbf{x}^*) - f(\mathbf{x})| < La2^{-N}$$

Therefore, for accuracy epsilon following number of iterations is sufficient:

$$N > \log_2 \frac{La}{\sqrt{2}\epsilon}$$

It proves the estimate (4.1).

$$|f(x_1) - f(x_2)| < L|\mathbf{x}_1 - \mathbf{x}_2|$$

In particular, if x_0 is a squares center and \mathbf{x}^* is a solution then

$$\Delta f = f(x_0) - f(x^*) < L|\mathbf{x}_0 - \mathbf{x}^*| \le L\frac{a}{\sqrt{2}}$$

Using it and estimate (4.1) we have estimate (4.2).

But any convex function is locally Lipschitz continuous at all $x \in \text{int } Q$. Therefore, we have following theorem.

Theorem 4.2. If function f is convex and a solution $x^* \in \text{int } Q$, then for to solve initial task with accuracy ϵ on function one has to make following iteration's number:

$$N = \left[\log_2 \max \left\{ \frac{a}{\epsilon_0(\mathbf{x}^*)}, \frac{La}{\sqrt{2}\epsilon} \right\} + 1 \right], \tag{4.3}$$

$$N = \left[\log_2 \max \left\{ \frac{a}{\epsilon_0(\mathbf{x}^*)}, \frac{\Delta f}{\epsilon} \right\} + 1 \right], \tag{4.4}$$

where a is a size of the initial square Q, $\epsilon_0(x^*)$ is size of neighbourhood of x^* which f is L-Lipschitz continuous in, $\Delta f = f(x_0) - f(x^*)$, x_0 is a center of square Q.

5 Tests