Symbolic Powers

Eloísa Grifo University of California, Riverside

Mulheres Matemáticas: uma tarde de encontro

Algebra \leftarrow Geometry

$$xy = 0$$

$$x^2 + y^2 - 1 = 0$$

$$y-x^2=0$$

Algebra
$$\leftarrow$$
 Geometry

$$\begin{cases} xy = 0 \\ xz = 0 \\ yz = 0 \end{cases}$$

$$\begin{cases} x_1 - a_1 = 0 \\ \vdots \\ x_d - a_d = 0 \end{cases}$$

systems of polynomial equations in *d* variables

point (a_1, \ldots, a_d) in *d*-dimensional space

nice subsets of *d*-dimensional space

Definition (Variety)

A *variety* is a subset $V \subseteq \mathbb{C}^d$ that consists of precisely all the common zeroes of a system of polynomial equations.

Theorem (Hilbert's Basis Theorem)

Every system of polynomial equations in d variables with coefficients in \mathbb{R} , \mathbb{C} , or more generally any field can be described by a finite number of equations.

 f_1, f_2, \dots polynomials in d variables

$$\begin{cases} f_1 = 0 \\ f_2 = 0 \\ \vdots \end{cases}$$

variety V in d-space all common zeros of all f_i

all polynomials f with f(v) = 0 for all $v \in V$

Hilbert gives $\int_{0}^{\infty} finitely many f$

$$I = (f_1, \dots, f_n) := \{g_1f_1 + \dots + g_nf_n : g_i \text{ polynomial}\}$$

ideal

Ideals

An **ideal** I of the **ring** of polynomials in d variables, $R = \mathbb{C}[x_1, \dots, x_d]$, is a nice set of polynomials with good algebraic properties.

- 0 ∈ I
- $a, b \in I \Rightarrow a + b \in I$
- $a \in I$ and $r \in R \Rightarrow ra \in I$

algebra of
$$R=\mathbb{C}[x_1,\ldots,x_d]$$
 \longleftrightarrow geometry of \mathbb{C}^d

radical ideals
$$(f^n ∈ I \Rightarrow f ∈ I)$$
 $\xrightarrow{1:1}$ varieties

Hilbert's Nullstellensatz

Geometry

$$(0) = \{0\}$$

variety \mathbb{C}^d

$$\mathbb{C}[x_1,\ldots,x_d]$$

variety Ø

$$(x_1-a_1,\ldots,x_d-a_d)$$

$$\leftarrow$$
 point $\{(a_1,\ldots,a_d)\}$

smaller ideals

larger varieties

prime ideals
$$(fg \in I \Rightarrow f \in I \text{ or } g \in I)$$

irreducible varieties (not the union of smaller varieties) variety V \longleftrightarrow ideal of all polynomials f that vanish at every point $v \in V$

Question

How do we measure vanishing?

variety V \longleftrightarrow ideal of all polynomials f that vanish at every point $v \in V$

Question

How do we measure vanishing?

Example

The polynomial $f = x^3$ vanishes *more* at the point 0 than g = x.

Vanishing to order n

A polynomial f vanishes to order n at P if all terms of order < n in its power series expansion around P vanish.

Definition (Algebraic Powers)

For an ideal I, its nth power I^n is the ideal

$$I^n = (f_1 \cdots f_n : f_i \in I).$$

Example

In
$$\mathbb{C}[x, y]$$
, $(x, y)^2 = (x^2, xy, y^2)$.

Symbolic Powers

For an ideal I, its *nth symbolic power* $I^{(n)}$ can be defined via *primary decomposition*. Roughly speaking, primary decomposition is an ideal version of the fundamental theorem of algebra, which says (for \mathbb{Z}) that we can write things as products of primes.

Definition

The *n*th symbolic power of a prime P (so the corresponding variety is irreducible) in $R = \mathbb{C}[x_1, \dots, x_d]$ is

$$P^{(n)} = \{ r \in R \mid sr \in P^n \text{ for some } s \notin P \}.$$

In general, if $I = P_1 \cap \cdots \cap P_t$,

$$I^{(n)} = P_1^{(n)} \cap \cdots \cap P_t^{(n)}.$$

Algebraic Powers

The algebraic powers I^n are very easy to describe algebraically, but have no clear geometric meaning.

Symbolic Powers

The symbolic powers $I^{(n)}$ are very hard to describe algebraically, even with a computer, but have a very important geometric meaning.

Theorem (Zariski–Nagata)

I ideal
$$\longleftrightarrow$$
 variety V

$$I^{(n)} = \{ f \in I : f \text{ vanishes to order } n \text{ at every } v \in V \}$$

- ② $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.

- ② $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.
- If I is generated by a subset of the variables, then $I^n = I^{(n)}$ for all n.

- ② $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.
- If I is generated by a subset of the variables, then $I^n = I^{(n)}$ for all n.
- **1** In general, $I^n \neq I^{(n)}$.

- ② $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.
- If I is generated by a subset of the variables, then $I^n = I^{(n)}$ for all n.
- **1** In general, $I^n \neq I^{(n)}$.

Example

The ideal I in $\mathbb{C}[x,y,z]$ corresponding to the curve parametrized by (t^3,t^4,t^5) in \mathbb{C}^3 has $I^n\neq I^{(n)}$ for all $n\geqslant 2$.

Given an ideal I (or the corresponding variety V), describe $I^{(n)}$.

This can be very difficult to do, even with a powerful computer. This is why many innocent sounding questions about symbolic powers are still open.

When is $I^n = I^{(n)}$?

For which I is $I^n = I^{(n)}$ for all n? Given I, is $I^n = I^{(n)}$ for some n?

When is $I^n = I^{(n)}$?

For which I is $I^n = I^{(n)}$ for all n? Given I, is $I^n = I^{(n)}$ for some n?

Theorem (G-Huneke, 2019)

If I has codimension 2 and R/I has nice* singularities, then $I^{(n)} = I^n$ for all n.

For example, this applies to

- I generated by the minors of a generic matrix
- R/I Veronese (k[all monomials of degree d in v variables])
- \bullet R/I ring of invariants of a linearly reductive group

 $^{^{*}=}$ strongly F-regular in char p / of dense strong F-regular type in char 0

What is the smallest degree $\alpha(I^{(n)})$ of an element in $I^{(n)}$? That is, what is the lowest degree of a polynomial that vanishes to order n on a given variety?

What is the smallest degree $\alpha(I^{(n)})$ of an element in $I^{(n)}$? That is, what is the lowest degree of a polynomial that vanishes to order n on a given variety?

Conjecture (Chudnovsky, 1981)

If V is a finite set of points in \mathbb{P}^n , then

$$\frac{\alpha(I^{(m)})}{m} \geqslant \frac{\alpha(I) + n - 1}{n}.$$

What is the smallest degree $\alpha(I^{(n)})$ of an element in $I^{(n)}$? That is, what is the lowest degree of a polynomial that vanishes to order n on a given variety?

Conjecture (Chudnovsky, 1981)

If V is a finite set of points in \mathbb{P}^n , then

$$\frac{\alpha(I^{(m)})}{m} \geqslant \frac{\alpha(I) + n - 1}{n}.$$

Theorem (Bisui–G–Hà–Nguyễn, 2020)

Chudnovsky's Conjecture holds for $\geqslant 4^n$ general points in \mathbb{P}^n .

Containment Problem

When is $I^{(a)} \subseteq I^b$?

Conjecture (Harbourne, 2008)

If the largest codimension of a component of V is h, then

$$I^{(hn-h+1)} \subseteq I^n$$

for all $n \ge 1$.

(Dumnicki–Szemberg–Tutaj-Gasińska): this fails for very special configurations of points in \mathbb{P}^2 .

Theorem (G–Huneke, 2019)

If R/I has ok^* singularities, then I satisfies Harbourne's Conjecture.

^{* =} F-pure in char p / of dense F-pure type in char 0

Obrigada!

Symbolic Power

For a prime ideal P in $R = \mathbb{C}[x_1, \dots, x_d]$, the n-th **symbolic power** of P is

$$P^{(n)} = \{ f \in R : sf \in P^n \text{ for some } s \notin P \}$$