Functions Assignment

1. If
$$f(x) = \pi\left(\frac{\sqrt{x+7}-4}{x-9}\right)$$
, then range of function $y = \sin(2f(x))$ is

(1) [0,1]

- $(2) \left(0, \frac{1}{\sqrt{2}}\right]$
- $(3)\ \left(0,\frac{1}{\sqrt{2}}\right)\cup\left(\frac{1}{\sqrt{2}},1\right]$
- (4) (0,1]

2. If the range of function $f(x) = \frac{x^2 + x + c}{x^2 + 2x + c}$, $x \in R$ is $\left[\frac{5}{6}, \frac{3}{2}\right]$, then c is equal to

- (1) -4
- $(2) \ 3$
- $(3) \ 4$
- $(4)\ 5$

3. If a polynomial function f satisfies the relation

$$\log_2 [f(x)] = \log_2 \left(2 + \frac{2}{3} + \frac{2}{9} + \dots + \infty \right) \cdot \log_3 \left(1 + \frac{f(x)}{f(\frac{1}{x})} \right)$$

and f(10) = 1001, then value of f(20) is

- (1) 2002
- (2) 7999
- (3) 8001
- (4) 16001

4. Consider, $P = \frac{x^2 - 2x}{x^2 + x + 1}$, $Q = \frac{y - 1}{y^2 + y + 1}$, $R = \frac{2}{z^2 + z + 1}$ where $x, y, z \in R$. If

k = [P + Q + R] - ([P] + [Q] + [R]) then the possible value(s) of k is (are) (where $[\cdot]$ denotes greatest integer less than equal to x)

- (1) 0
- (2) 1
- (3) 2
- $(4) \ 3$

5. Let f be a function defined in [-2, 3] given as

$$f(x) = \begin{cases} 3(x+1)^{1/3}, & -2 \le x < 0 \\ -(x-1)^2, & 0 \le x < 1 \\ 2(x-1)^2, & 1 \le x < 2 \\ -x^2 + 4x - 3, & 2 \le x \le 3 \end{cases}$$

Column II Column II

- (A) The number of integers in the range of f(x) is (p) 2
- (B) The number of integral values of x which are (q) 4 in the domain of f(1-|x|), is
- (C) The number of integers in the range of (r) 6 |f(-|x|)|, is
- (D) The number of integral values of k for which (s) 7 the equation f(|x|) = k has exactly four distinct solutions is

6.	Let $f(x) = x^2 - 9 - x - a $. Find the number of integers in the range of a so that $f(x) = 0$ has 4 distinct real roots.
7.	The set of real values of x satisfying the equality $\left[\frac{3}{x}\right] + \left[\frac{4}{x}\right] = 5$ (where $[\cdot]$ denotes the greatest integer function) belongs to the inteval $\left(a, \frac{b}{c}\right]$ where $a, b, c \in N$ and $\frac{b}{c}$
	the greatest integer function) belongs to the inteval $\left(a, \frac{b}{c}\right]$ where $a, b, c \in N$ and $\frac{b}{c}$
	is in its lowest form. Find the value of $a + b + c + abc$.
8.	Let R be the set of real numbers and $f: R \to R$, be a differentiable function such

8.	Let R be the set of real numbers and $f: R \to R$, be a differentiable function such
	that $ f(x)-f(y) \leq x-y ^3 \ \forall \ x,y \in R$. If $f(10)=100$, the value of $f(20)$ is equal
	to

(1) 0 (2) 20 (3) 100 (4) 10

9. If the equation

$$\left| |x-1| - 6 \lim_{t \to \infty} \left(\frac{\sqrt{2t^2 - t - 1} - \sqrt{t^2 - t + 1}}{t \left(\tan \frac{\pi}{8} \right)} \right) \right| = k$$

has four distinct solutions then find the number of integral values of k.

10. Let A and B be two sets containing 2 and 3 elements respectively. Then, total number of subsets of $A \times B$ having 3 or more elements is

(1) 42 (2) 56 (3) 54 (4) 52

11. Let the sets be $A = \{x : x \in Z^+ \text{ and } x \leq 9\}, B = \{x : x \in Z \text{ and } -3 < x < 8\}$ and $C = \{x : x \text{ is a prime number}\}$, then the number of elements belonging to exactly two of the three sets A, B and C is

(1) 3 (2) 4 (3) 6 (4) 8

12. Let f be a function from non-negative integers to non-negative integers such that f(xy) = xf(y) + yf(x). It is given that f(10) = 19, f(12) = 52 and f(15) = 26, then f(8) is equal to

(1) 26 (2) 36 (3) 38 (4) 40

13. If a function f(x) satisfies the relation $3f(x) - 5f\left(\frac{2}{x}\right) = 3 - x + x^2 \ \forall \ x \in \mathbb{R} - \{0\},$ then the value of f(1) is equal to

(1) -2 (2) $\frac{-33}{16}$ (3) $\frac{-17}{8}$ (4) $\frac{-35}{16}$

14. The function $f(x) = \sqrt{\log_2 \log_3 \log_4 x} + \sqrt{\{x^2 + x + 1\}}$ (where $\{\}$ represents fractional function, is well defined). Then x may belong to

(1) [0,32] (2) $[64,\infty)$ (3) $[100,\infty)$ (4) [0,64)

15. Let g be a function satisfying $g(x-2)+g(x+2)=\sqrt{3}g(x), \forall x\in R$. Then g also satisfies the relation(s) given as

(1) g(x-4) + g(x+8) = 0 (2) g(x) - g(x+12) = 0

(3) q(x-2) + q(x+4) = 0 (4) q(x) - q(x+24) = 0

n }, where $[\cdot]$ de	. Domain of the function $f(x) = \log_{[x-1]}(\sin^2 \pi x)$ is $x \in [3, \infty) - \{p, p+1, p+2, \ldots, n\}$, where $[\cdot]$ denotes greatest integer function and n is a multiple of 4 and 25, then $(p) + (p+1) + (p+2) + \cdots + n$ can be							
(1) 5047	$(2)\ 20097$	(3) 5050	(4) 45147					
17. Let f be a real valued function which satisfies $f\left(\frac{x-3}{x+1}\right) + f\left(\frac{3+x}{1-x}\right) = x$, $ x \in \mathbb{R}$. Then $f(3)$ is equal to								
	(2) 3	$(3) - \frac{11}{3}$	$(4) \frac{11}{3}$					
18. Let $f(x^2 - 11x + 10) + f(x^2 - 21x + 20) = x^4 - 3x^2 + 21x + 2$, then the value of is								
(1) 20	(2) $\frac{21}{2}$	(3) 24	(4) 0					
19. The range of the function)	19. The range of the function $f(x) = \frac{\sin(\pi [x^2 + x + 1])}{\cos(\pi [x^2 + 3x + 2])}$ is ([·] represents greatest integer function)							
$(1) \{0\}$	$(2) \{1, -1\}$	(3) [-1,1]	$(4) \ (-\infty, \infty)$					
20. If a function sat	tisfies							
(x-y)f(x)	$(x-y)f(x+y) - (x+y)f(x-y) = 2(x^2y - y^3) \ \forall \ x, y \in R \ and \ f(1) = 5$							
then								
(1) $f(x)$ is not of (3) $f(0) = 1$	differentiable	(2) $f(x) = x^2 - 4$ (4) $f'(1) = 8$	+4x					
21. Total number of in $[0, 2\pi]$ is	21. Total number of solutions of $\sin\{x\} = \cos\{x\}$ (where $\{\cdot\}$ denotes the fractional part) in $[0, 2\pi]$ is							
22. Set of exhaustiv	ve values of x satisfyi	ing						
$ x ^2 - x + 1 > x^2 - 1 $								
$(1) \ (-\infty,0) \cup \bigg($	$\left(\frac{1}{2},\infty\right)$	(2) (0,2)						
$(3) \left(\frac{1}{2}, 2\right)$		$(4) \ (-\infty,0) \cup$	$\left(\frac{1}{2},2\right)$					
23. Consider an equation $Sgn([x]) + \lambda = x$. (where $[\cdot]$ represents greatest integer for tion). if n_{λ} denotes the number of solutions of the equation, then the value of is								
(1) 1	(2) $\frac{3}{2}$	(3) 3	$(4) \frac{1}{2}$					

24.	The solution of the function) is	equation $2[x] + [3x]$	$] = 6 \text{ (where } [\cdot] \text{ denotes}$	otes the greatest integer				
	$(1) \left[\frac{4}{3}, \frac{5}{3}\right)$	$(2) \left[\frac{5}{3}, 2\right)$	$(3) \left[\frac{2}{3}, \frac{5}{3}\right)$	$(4) \left[1, \frac{5}{3}\right)$				
25.	$A = \{x \in N : HCF(x, 12) = 1, x < 12\}, B = \{x \in N : LCM(x, 12) = 12\}, $ then the number of relations from A to C , where $A\Delta C = B$, is							
	$(1) 2^{28}$	$(2) 2^{32}$	$(3) 2^{24}$	$(4) 2^{36}$				
26.	The number of subs	odd number of elements						
	$(1) \ 2^{2015}$	$(2) 2^{2016}$	$(3) 2^{2017}$	(4) Data insufficient				
27.	27. The range of the function $f(x) = \frac{(x+3)^2}{x^2+1}$ is							
	(1) [0, 12]	(2) [0, 11]	(3) [0, 10]	(4) [0, 15]				
28.	1(3.5, 4.5) is							
	(1) 0	(2) 1	(3) 2	(4) 3				
29.	If X and Y are two	sets such that						
	$n(X \cap \overline{Y}) = 12$, $n(\overline{X} \cap Y) = 15$ and $n(X \cup Y) = 30$							
	then $n(X \times Y) =$	(2) 2-2	(-)	(1)				
	(1) 210	(2) 270	(3) 180	(4) 300				
30. Let $3^{f_1(x)} + 3^x = 9$ and $f_2(x) = \log_{\frac{1}{2}}(a + 2x - x^2)$. If maximum integral value is equal to the minimum value of $f_2(x)$, then a is equal to								
	(1) -1	$(2) -\frac{1}{2}$	(3) Zero	(4) 1				
31. Find the range of the function								
	$f(x) = \log_{\frac{1}{2}}(2\sin^2 x - 2\sin x + 1)$							
	$(1) \left[\log_{\frac{1}{2}} 5, 0 \right]$	$(2) \left[\log_{\frac{1}{2}} 5, 1 \right]$	$(3) \left(-\infty, \log_{\frac{1}{2}} 5 \right]$	$(4) \left[\log_{\frac{1}{2}} 5, \infty \right)$				