Segnali e immagini 30 ottobre 2019

Analisi di Fourier

L'analisi di Fourier permette di passare da segnali temporali o spaziali a frequenziale e viceversa.

Serie di Fourier

Funzione di sintesi Una funzione $f:R\to R$ periodica di periodo T, con variabile continua t, può essere espressa come:

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n e^{j\frac{2\pi n}{T}t}$$
 (sintesi)

con $n \in Z$. Praticamente la funzione di analisi sintetizza ol segnale come somma di molteplici oggetti. I coefficienti c_n rappresentano i pesi, mentre le esponenziali $e^{j\frac{2\pi n}{T}t}$ rappresentano le fratures/caratteristiche del signali (dipendono da n).

Funzione di analisi I coefficienti c_n sono calcolati come segue:

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t)e^{-j\frac{2\pi n}{T}t} dt$$
 (analisi)

per $n \in Z$.

Rappresentazione dei coefficienti I coefficienti possono essere rappresentati nelle forma rettangolare ($c_n = Re + jIm$) oppure nella forma polare ($c_n = |c_n|e^{j\theta_n}$).

Spiegazione della funzione di sintesi L'esponenziale $e^{j\frac{2\pi n}{T}t}$ viene interpretata come un fasore, dove $\frac{2\pi n}{T}t$ rappresenta la sua velocità angolare¹.

Quindi ogni termine della sommatoria, ottenuto dalla moltiplicazione di un numero complesso e un fasore, sarà un altro fasore:

$$c_n e^{j\frac{2\pi n}{T}t} = |c_n|e^{j\theta_n}e^{j\frac{2\pi n}{T}t} = |c_n|e^{j\frac{2\pi n}{T}t + \theta_n}$$

In questo modo, praticamente, estendo il fasore iniziale $e^{j\frac{2\pi n}{T}t}$ ad una lunghezza $|c_n|$, facendolo partire con un angolo θ_n (detto angolo di fase).

 $^{^{1}}$ Più grande è n (che dipende dal coefficiente c_{n}), più giri vengono effettuati nell'unità di tempo, e quindi più grande è la velocità angolare.

Caso coefficiente reale

Notiamo che:

- c_n può appartenere agli $\,\mathbb{R}\,$, nel qual caso significa che $\, heta_n$ non compare, avendo quindi solo un cambiamento nella lunghezza dell'n-esimo fasore pari a $|c_n|$

$$c_n = |c_n| e^{i\theta_n}$$

$$c_n e^{j\frac{2\pi n}{T}t} = |c_n| e^{j\frac{2\pi n}{T}t} = |c_n| e^{j\frac{2\pi n}{T}t}$$

Spettro di ampiezza Prendiamo come esempio la serie di Fourier per il segnale $f(t) = cos(2\pi t)$ con T = 1. Dal calcolo della funzione di analisi, posso ottenere i seguenti coefficienti:

$$c_{-1} = \frac{1}{2}$$
 $c_0 = 0$ $c_1 = \frac{1}{2}$ $c_{i \le 2, i \ge 2} = 0$

Sostituendi c_1 nell'equazione di sintesi ottengo:

$$cos(2\pi t) = \frac{1}{2}e^{-j2\pi t} + \frac{1}{2}e^{j2\pi t} = \frac{e^{j2\pi t} + e^{-j2\pi t}}{2}$$

I coefficienti c_{-1} e c_1 rappresentano i moduli/ampiezze dei faseri complessi di frequenza $f_0 \cdot (-1)$ e $f_0 \cdot (-1)^2$. Lo spettro di ampiezza è il seguente:

Spettro di fase Prendiamo come esempio la serie di Fourier per il segnale $f(t) = sin(2\pi t)$ con T = 1. Dal calcolo della funzione di analisi, posso ottenere i seguenti coefficienti:

$$c_{-1} = -\frac{1}{2j}$$
 $c_0 = 0$ $c_1 = \frac{1}{2j}$ $c_{i \le 2, i \ge 2} = 0$

$$c_0 = 0$$

$$c_1 = \frac{1}{2i}$$

$$c_{i \le 2, i \ge 2} = 0$$

²la frequenza fondamentale $\frac{2\pi}{T}$ è anche chiamata f_0 .

Segnali e immagini 30 ottobre 2019

PAssando alla forma esponenziale, i coefficienti possono essere riscritti come segue:

$$\pm \frac{1}{2j} = j \cdot \mp \frac{1}{2}$$

Rettangolare
$$j \cdot -\frac{1}{2} = 0 + j \cdot -\frac{1}{2}$$

$$|c| = \sqrt{0^2 + \left(-\frac{1}{2}\right)^2} = \frac{1}{2}$$

$$\theta = arctg(-0.5/0) \rightarrow -\frac{\pi}{2}$$
Esponenziale $\frac{1}{2}e^{j \cdot -\frac{\pi}{2}} = c_1$

$$|c| = \frac{1}{2}$$
Re
$$|c| = \frac{1}{2}$$

Poichè, in questo caso, i coefficienti c_n appartengono al dominio complesso, rappresento, oltre all'ampiezza, anche lo spettro di fase (gli angoli del fasore).

Segnali e immagini 30 ottobre 2019

Gli spettri sono i seguenti:

Proprietà della serie di Fourier Lo spettro di ampiezza e di fase sono funzioni nel dominio delle frequenze che formano lo spettro di Fourier. Nel caso di segnali periodici, lo spettro di Fourier gode delle seguenti proprietà:

- Lo spettro di ampiezza è simmetrico rispetto all'asse y;
- Lo spettro di fase è antisimmetrico rispetto all'asse y;
- Se i coefficienti c_n sono reale, allora lo spettro di fase non esiste;
- Entrambi gli spettri sono funzioni a pettine, definite su frequenze $\frac{2\pi n}{T}$, con $n \in \mathbb{Z}$ (ovvero frequenze multiple rispetto a quella fondamentale $\frac{2\pi}{T}$).