Oefenzitting 1: Kinematica - snelheid

De hoofdstukken die gekend dienen te zijn voor deze oefenzitting zijn: H1, H2, H3 (met aandacht voor methode 3).

Los onderstaande oefeningen op met behulp van de methode van de som van rotaties.

Oefening 1: 1 rotatie

Gegeven is de roterende stang uit Fig. 1. Op een gegeven ogenblik ligt het punt P op een afstand

Figure 1: roterende stang

 $l_1 = 0.3m$ van het centrum op de x-as. De stang roteert met hoeksnelheid $\omega_1 = 2rad/s$ om de z-as. Bepaal de totale rotatievector van P. Bepaal eveneens de totale snelheidsvector van punt P.

$$\bullet \ \vec{\omega} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} rad/s$$

$$\bullet \ \vec{v}_P = \begin{bmatrix} 0 \\ 0.6 \\ 0 \end{bmatrix} m/s$$

Oefening 2: 2 rotaties

Gegeven is de systeem met 2 roterende stangen uit Fig. 2. De eerste stang heeft lengte $l_1 = 0.3m$

Figure 2: systeem met 2 roterende stangen

en de tweede $l_2 = 0.4m$. De eerste stang roteert met hoeksnelheid $\omega_1 = 2rad/s$ om de z-as. De tweede stang roteert met hoeksnelheid $\omega_2 = 3rad/s$ om de y'-as vast aan het uiteinde van stang 1. Bepaal de totale rotatievector van P. Bepaal eveneens de totale snelheidsvector van punt P.

$$\bullet \ \vec{\omega} = \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix} rad/s$$

$$\bullet \ \vec{v}_P = \begin{bmatrix} 0 \\ 1.4 \\ -1.2 \end{bmatrix} m/s$$

Oefening 3: 2 rotaties

Gegeven is de systeem met 2 roterende stangen uit Fig. 3. De eerste stang heeft lengte $l_1 = 0.3m$

Figure 3: systeem met 2 roterende stangen

en de tweede $l_2 = 0.4m$. De eerste stang roteert met hoeksnelheid $\omega_1 = 2rad/s$ om de z-as. Het syteem wordt geanalyseerd in een stand waarbij de eerste stang is geroteerd over een hoek $\theta = 30^{\circ}$ volgens $\vec{\omega}_1$. De tweede stang roteert met hoeksnelheid $\omega_2 = 3rad/s$ om de y''-as vast aan het uiteinde van stang 1. Stang 2 is gedraaid over een hoek $\gamma = -30^{\circ}$ in het x''z'' vlak. Bepaal de totale rotatievector van P. Bepaal eveneens de totale snelheidsvector van punt P.

$$\vec{\omega} = \begin{bmatrix} -3\frac{1}{2} \\ 3\frac{\sqrt{3}}{2} \\ 2 \end{bmatrix} rad/s, \ \vec{v}_P = \begin{bmatrix} -0.13 \\ 1.42 \\ -1.04 \end{bmatrix} m/s$$

Oefening 4: 3 rotaties

Gegeven is de systeem met 3 roterende stangen uit Fig. 4. De eerste stang en derde stang

Figure 4: systeem met 3 roterende stangen

hebben lengte $l_1 = 0.3m$ en de tweede $l_2 = 0.4m$. De eerste stang roteert met hoeksnelheid $\omega_1 = 2rad/s$ om de z-as. De tweede stang roteert met hoeksnelheid $\omega_2 = 3rad/s$ om de y'-as vast aan het uiteinde van stang 1. De derde stang roteert met $\omega_3 = 4rad/s$ rond de x" vast aan het uiteinde van stang 2. Bepaal de totale rotatievector van P. Bepaal eveneens de totale snelheidsvector van punt P.

•
$$\vec{\omega} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} rad/s$$

$$\bullet \ \vec{v}_P = \begin{bmatrix} 0 \\ 2 \\ -2.1 \end{bmatrix} m/s$$