Quincena del 1 al 15 de Junio de 2017.

Propuesto por Philippe Fondanaiche.

Problema 832.- En un triángulo ABC, el ángulo de B es igual a 45° . Sea D el punto simétrico del punto A con relación al medio del lado BC. Sean M y N los medios de los lados BD y CD. Demostrar que el ángulo de A del triángulo ABC es igual a 60° si y solamente si los cuatro puntos A, M, N y C son concíclicos.

Fondanaiche, P. (2017): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

-La recta AM corta al lado BC en R. Los triángulos BRM y CRA son semejantes. De la relación de semejanza entre ellos se obtiene

$$2 = \frac{AC}{BM} = \frac{AR}{MR} = \frac{CR}{BR}.$$

Por tanto el área del triángulo ABR es el doble de la del triángulo RBM. La relación de sus áreas es la que sigue. Si llamamos

 $\theta = 4RAC$ tenemos $AB \cdot AR \cdot \text{sen}(\alpha - \theta) = 2BM \cdot RM \cdot \text{sen} \ \theta \ ; \ c \cdot 2RM \cdot \text{sen}(\alpha - \theta) = b \cdot RM \cdot \text{sen} \ \theta \ ; \frac{2c}{b} = \frac{\text{sen} \ \theta}{\text{sen}(\alpha - \theta)} \text{y}$ teniendo en cuenta el teorema de los senos, la razón de los lados es la de los ángulos opuestos, resultando finalmente

$$\frac{2 \operatorname{sen} \gamma}{\operatorname{sen} \beta} = \frac{\operatorname{sen} \theta}{\operatorname{sen}(\alpha - \theta)}$$
(*)

• Si el ángulo $\alpha=60^\circ$, $\gamma=75^\circ$ y se tendrá

$$\frac{2\mathrm{sen}\,\gamma}{\mathrm{sen}\,\beta} = \frac{2\mathrm{sen}\,75^\circ}{\mathrm{sen}\,45^\circ} = \sqrt{3} + 1.$$

La ecuación trigonométrica $\frac{\sin \theta}{\sin(60^\circ - \theta)} = \sqrt{3} + 1$, tiene como solución $\theta = 45^\circ$; como el ángulo $4MNC = 180^\circ - \beta = 135^\circ$, resulta que el cuadrilátero 4MNC es cíclico como se pretendía demostrar.

• El cuadrilátero ACMN tiene en cada vértice los ángulos θ , β + γ , 180° – β y 180° – θ – γ .

Poniendo que los ángulos opuestos sean suplementarios tenemos que este cuadrilátero será cíclico cuando $\beta=\theta$ y recíprocamente. Ya hemos visto que cuando $\alpha=60^\circ$, el ángulo $\theta=45^\circ$ y resulta por tanto inscriptible. Veamos ahora la recíproca, es decir, partimos de que el cuadriláteo es inscriptible (por tanto $\beta=\theta$) y hay que concluir que $\alpha=60^\circ$.

Si $\beta=\theta$ los triángulos ARC y BAC son semejantes: $\frac{RC}{AC}=\frac{AC}{BC'}\frac{2a}{3b}=\frac{b}{a}$ y sustituyendo las razones de los lados por las de los senos correspondientes tendremos $2\cdot \mathrm{sen}^2\alpha=3\cdot \mathrm{cos}^2$ 45° o bien $\mathrm{sen}^2\alpha=\frac{3}{4'}$ una solución de esta ecuación es $\alpha=60^\circ$.

Para α = 120° también resulta que el cuadrilátero AMNC es cíclico como muestra la figura

^[1] $\frac{\sin \theta}{\sin(\theta 0 - \theta)} = \sqrt{3} + 1 \text{ equivale a sen } \theta - \sin(60 - \theta) = \sqrt{3} \sin(60 - \theta) \text{ y ésta a } \sqrt{3} \sin(30 - \theta) = \sqrt{3} \sin(60 - \theta)$ A viva de abí $\theta = 45^{\circ}$ como única solución