del parar	neters					
$\exp(\theta_1)$	First order absorption rate constant	1.56	1.37, 1.77			
$\exp(\theta_2)$	Apparent central volume	61.5	58.3, 64.9			
$\exp(\theta_3)$	Apparent clearance	3.23	3.06, 3.41			
$\exp(\theta_4)$	Apparent peripheral volume	67.3	64.9, 69.9			
$\exp(\theta_5)$	Apparent intercompartmental clearance	3.61	3.37, 3.87			
Covariate effect parameters						
$ heta_6$	eGFR effect on CL/F	0.485	0.407, 0.562			
$oldsymbol{ heta}_7$	Age effect on CL/F	-0.0378	-0.162, 0.086			
$ heta_8$	Serum albumin effect on CL/F	0.419	0.250, 0.588			
he log-do	omain were back-transformed for clarity	17				
_		y				
	$\exp(\theta_1)$ $\exp(\theta_2)$ $\exp(\theta_3)$ $\exp(\theta_4)$ $\exp(\theta_5)$ Et param θ_6 θ_7 θ_8	$\exp(\theta_2)$ Apparent central volume $\exp(\theta_3)$ Apparent clearance $\exp(\theta_4)$ Apparent peripheral volume $\exp(\theta_5)$ Apparent intercompartmental clearance $\exp(\theta_5)$ eGFR effect on CL/F θ_7 Age effect on CL/F θ_8 Serum albumin effect on CL/F	$\exp(\theta_1)$ First order absorption rate constant $\exp(\theta_2)$ Apparent central volume $\exp(\theta_3)$ Apparent clearance $\exp(\theta_4)$ Apparent peripheral volume $\exp(\theta_4)$ Apparent intercompartmental $\exp(\theta_5)$ Apparent intercompartmental $\exp(\theta_5)$ Apparent $\exp(\theta_5)$ Apparent $\exp(\theta_5)$ Apparent intercompartmental $\exp(\theta_5)$ Apparent $\exp(\theta_5)$			

Source file: pk-param-final-fixed.tex

Estimate

95% CI

	Interindividual variance parameters								
	IIV-KA	$\Omega_{(1,1)}$	0.219 [CV%=49.4]	0.116, 0.322	14.1				
	IIV-V2/F	$\Omega_{(2,2)}$	0.0824 [CV%=29.3]	0.0631, 0.102	5.22				
	IIV-CL/F	$\Omega_{(3,3)}$	0.114 [CV%=34.8]	0.0893, 0.139	0.942				
	Interindividual covariance parameters								
	V2/F-KA	$\Omega_{(2,1)}$	0.0668 [Corr=0.498]	0.0287, 0.105	-				
	CL/F-KA	$\Omega_{(3,1)}$	0.121 [Corr=0.767]	0.0776, 0.165	-				
	CL/F-V2/F	$\Omega_{(3,2)}$	0.0704 [Corr=0.725]	0.0524, 0.0884	-				
	Residual variance								
	Proportional	$\Sigma_{(1,1)}$	0.0399 [CV%=20.0]	0.0375, 0.0424	5.02				
standard deviatio	on; SE = standa aal omegas = sq sqrt(estimate) ·	rd error rt(exp(100	als; Corr = Correlation estimate) - 1) · 100	n coefficient; CV	= coefficient of	variation; SD =			

Source file: pk-param-final-random.tex

Estimate

Shrinkage (%)

95% CI