Unit 11 Parallelograms And Triangles

THEOREM 11.1.1

Prove that in a parallelogram:

- (i) Opposite sides are congruent
- (ii) Opposite angles are congruent.
- (iii) The diagonals bisect each other.

Solution:

Given:

In a quadrilateral ABCD,

 $\overline{BC} \parallel \overline{AD}$, $\overline{DC} \parallel \overline{AB}$ and the diagonals \overline{AC} , \overline{BD} bisect each other at point O.

To Prove:

(i)
$$\overline{AD} \cong \overline{BC}$$
, $\overline{AB} \cong \overline{DC}$

(ii)
$$\angle BAD \cong \angle BCD$$
, $\angle ABC \cong \angle ADC$

(iii)
$$\overline{OB} \cong \overline{OD}$$
, $\overline{OA} \cong \overline{OC}$

Construction:

In the figure as shown, name the angles as:

41,42,43,44,45,46

Proof:

Statements	Reasons
(i) In $\triangle ABD \leftrightarrow \triangle CDB$	
∠4 ≅ ∠1	Alternate angles
$\overline{BD} \cong \overline{BD}$	Common
∠2 ≅ ∠3	Alternate angles
$\therefore \Delta \triangle BD \cong \Delta CDB$	A.S.A. ≅ A.S.A
Sr $\overline{AB} \cong \overline{DC} \cong \overline{AD} \cong \overline{BC}$	Corresponding sides of congruent triangles
And $\angle A \cong \angle C$	Corresponding angles of congruent triangles
(ii) $\ln \Delta ADB \leftrightarrow \Delta CDB$	
∠1 ≅ ∠4 (a)	Proved
∠2 ≅ ∠3(b)	Proved
$m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$	From (a) and (b)
$\angle ADC \cong \angle ABC$	OK.
Similarly $\angle BAD \cong \angle BCD$	MPI
(iii) In $\triangle BOC \longleftrightarrow \triangle DOA$	VO_{IA} .
$\overline{BC}\cong\overline{AD}.$	Proved
25 ≅ 26	Vertical angles
∠3 ≅ ∠2	Proved
$\Delta BOC \cong \Delta DOA$	A.A.S. ≅ A.A.S.
And $\overrightarrow{OC} \cong \overrightarrow{OA}, \ \overrightarrow{OB} \cong \overrightarrow{OD}$	Corresponding sides of
	congruent triangles

EXERCISE 11.1

Q1. One angle of a parallelogram is 130°. Find the measures of its remaining angles.

Solution:

THEOREM 11.1.2

Prove that if two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.

Solution:

Given:

In a quadrilateral ABCD $\overline{AB} \parallel \overline{DC}$ and $\overline{AB} \cong \overline{DC}$

To Prove:

ABCD is a parallelogram

Construction:

Join the point B to D and in the figure name the angles as: $\angle 1, \angle 2, \angle 3$, and $\angle 4$

Proof:

Statements	Reasons
∠ 1 ≅ ∠2	Alternate angles
In $\triangle ABD \leftrightarrow \triangle CDB$	
$\overline{AB} \cong \overline{DC}$	Given
∠2 ≅ ∠1	Alternate Angles
$\overline{BD} \cong \overline{BD}$	Common
$\therefore \Delta ABD \cong \Delta CDB$	S.A.S postulate
and ∠4 ≅ ∠3 (i)	corresponding angles of
	congruent triangles
$\therefore \overline{AD} \parallel \overline{BC} \qquad \dots \qquad \text{(ii)}$	From (i)
and $\overline{AD} \parallel \overline{DC}$ (iii)	Given
Thus ABCD is a parallelogram	From (ii) and (iii)

Proof:

Statemen	its		Reasons
In $\triangle ABD \longleftrightarrow \triangle C$	CBD		
$\overline{AD} \cong \overline{CB}$			Given
$\overline{AB} \cong \overline{CD}$			Given
$\overline{BD} \cong \overline{DB}$			Common
∴ ΔABD ≅ ΔCDB			S.S.S ≅ S.S.S.
∠2 ≅ ∠1	(i)		Corresponding angles of
			congruent triangles
and ∠4 ≅ ∠3	(ii)		(i) alternate angles
Hence AB II DC			(ii) alternate angles
And BC AD			
Hence ABCD	is	а	
parallelogram.			

THEOREM 11.1.3

The line segment that joins the mid-points of two sides of a triangle is parallel to the third side and is equal to one-half of its length.

Solution:

Given:

In ΔABC , the mid-points of \overline{AB} and \overline{AC} are L and M respectively.

To Prove:

$$\overline{LM} \parallel \overline{BC}$$
 and $m \overline{LM} = \frac{1}{2} m \overline{BC}$

Construction:

Join L to M and produce \overline{ML} to N such that $\overline{ML}\cong \overline{LN}$. Join N to B and in the figure, name the angles as: $\angle 1, \angle 2$ and $\angle 3$

Proof:

OI:	
Statements	Reasons
In $\triangle BLN \leftrightarrow \triangle ALM$	
$\overline{BL} \cong \overline{AL}$	Given
∠1 ≅ ∠2	Vertical angles
$\overline{NL} \cong \overline{ML}$	Construction
$\Delta BLN \cong \Delta ALM$	S.A.S postulate
and $\angle A \cong \angle 3 \ldots$ (i)	Corresponding angles of
	congruent triangles
$\overline{NB} \cong \overline{AM}$ (ii)	Corresponding sides of
	congruent triangles
NB AM	From (i)
$\Rightarrow \overline{NB} \parallel \overline{MC} \dots (iii)$	M is mid-point of \overline{AC}
$\overline{MC} \cong \overline{AM}$ (iv)	Given
$\overline{NB} \cong \overline{MC}$ (v)	From (ii) and (iv)
:. BCMN is	a From (iii) and (v)
parallelogram	
BC LM or BC NL	Opposite sides of a
	parallelogram BCMN
$\overline{BC} \cong \overline{MN}$	(i) Opposite sides of a
	parallelogram
$m \overline{LM} = \frac{1}{2} m \overline{NM}$	Construction
1 70	From (vi) and (vii)
Thus $m \overline{LM} = \frac{1}{2} m \overline{BC}$, , , , , , , , , , , , , , , , , , , ,

EXERCISE 11.3

Prove that the line-segments joining the mid-Q1. points of the opposite sides of a quadrilateral bisect each other.

Solution:

Given:

In quadrilateral ABCD, P, Q, R, S are the mid-points of the sides PR and QS are joined, they meet at O.

To prove:

$$\overline{OP} \cong \overline{OR}, \overline{OQ} \cong \overline{OS}$$

Q3. Prove that the line-segment passing through the mid-points of one side and parallel to another side of a triangle also bisect the third side.

Solution:

Given:

In ΔABC, D is mid-point

of AB DE || BC

To prove:

 $\overline{EA} \cong \overline{EC}$

Construction:

Take EF | AB

Proof:

1001.	
Statements	Reasons
DE BF	Given
EF BD	Construction
∴ DBEF is a parallelogram.	
$\overline{\mathrm{EF}} \cong \overline{\mathrm{DB}}$ (i)	Opposite sides
$\overline{AD} \cong \overline{DB}$ (ii)	Given
$\overline{\mathrm{EF}}\cong\overline{\mathrm{AD}}$ (iii)	νIO_{IA} ,
∠1 ≅ ∠B	From (i) and (ii)
and ∠2 ≅ ∠B	corresponding angles
∴ ∠1 ≅ ∠2 (iv)	
In ΔADE ΔEFC	
×2≥21	From (iv)
∴ ∠3 ≅ ∠C	Corresponding angle
AD ≅ EF	From (iii)
Hence ΔADE ≅ ΔEFC	$A.A.S \cong A.A.S.$
∴ EA ≅ EC	Corresponding sides

THEOREM 11.1.4

The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.

Solution:

Given:

ABC is a triangle

To Prove:

The medians of the \triangle ABC are concurrent and the point of concurrency is the point of trisection of each median.

Construction:

Draw two medians \overline{BE} and \overline{CF} of the $\triangle ABC$ which intersect each other at point G. Join A to G and

produce it to point H such that $\overline{AG} \cong \overline{GH}$. Join H to the points B and C. D is the intersecting point of \overline{AH} and \overline{BC} .

Proof:

root:	•
Statements	Reasons
In Δ ACH, GE CH	· E and G are the
·	midpoints of \overline{AC} and \overline{AH}
Or <u>BE</u> <u>CH</u> (i)	G is a point of BE
Similarly CF BH (ii)	From (i)
: BHCG is a parallelogram	From (i) and (ii)
and $m \overrightarrow{GD} = \frac{1}{2} m \overrightarrow{GH} \dots$ (iii)	Diagonals \overline{BC} and \overline{GH} of a parallelogram BHCG intersect each other at point D.
\overline{AD} is a median of $\triangle ABC$	
Medians \overline{AD} , \overline{BE} and \overline{CF} pasthrough point G	of \overline{BE} and \overline{CF} and \overline{AD} pass through it
Now $\overline{GH} \cong \overline{AG}$ (iv)	Construction
$\therefore m \overline{GD} \cong \frac{1}{2} m \overline{AG}$	From (iii) and (iv)
and G is the point of	
trisection of AD (v)	
Similarly it can be proved that G is also the point of trisection	1.
·	•
of CF and BE	ير بي نيون به مستندم به مستند سند سند سند نيون و يولم بي

To prove:

G is the point of concurrency of the mediahs of $\triangle ABC$ and $\triangle PQR$.

Proof:

1001.	
Statements .	Reasons
PR BC	P, R are mid-points of \overline{AB} ,
PR BQ	AC.
Similarly QR BP	
∴ PBQR is a parallelogram.	
Its diagonal BR and PQ	
bisect each other at T.	
i.e. T is mid-point of PQ.	
Similarly U is mid-point of	
QR and S is mid-point of	100
PR.	\sim () V
∴ PU, QS, RT are medians	MONBK:COM
of ΔPQR	WK.
(i) \overline{AQ} and \overline{SQ} rass through	$V_1 \cup V_{A_1}$
G.	
(ii) BR and TR pass through	
G	
(iii) CP and UP pass through	
G is point of	
Hence G is point of	
concurrency of medians of ΔAGC and ΔPQR.	
AAGC and AFGR.	

THEOREM 11.1.5

If three or more parallel lines make segments congruent on one transversal, they also make congruent segments on any other transversal.

Solution:

Given:

AB || CD || EF

 \overrightarrow{LX} intersects \overrightarrow{AB} , \overrightarrow{CD} and \overrightarrow{EF} at the points M, N and P respectively, such that $\overrightarrow{MN}\cong\overrightarrow{NP}$. \overrightarrow{QY} intersects them at points R,S and T respectively.

To Prove:

 $\overline{RS} \cong \overline{ST}$

Construction:

From R, draw $\overline{RU} \parallel \overline{LX}$, which meets \overline{CD} at U. From S, draw $\overline{SV} \parallel \overline{LX}$ which meets \overline{EF} at V and according to the figure the names of the angles are $\angle 1, \angle 2, \angle 3$ and $\angle 4$.

Proof:

2r001;	
Statements	Reasons
MNUR is a parallelogram	RU Lx (construction)
• ,	AB CD (given)
$\overline{MN} \cong \overline{RU} \dots (i)$	Opposite sides of
Similarly (N)	parallelogram
Similarly	
$\overline{NP} \cong \overline{SV} \dots (ii)$	Civon
But $MN \cong \overline{NP}$ (iii)	Given
$ \frac{1}{2} $ $ \overline{RU} \cong \overline{SV} $	From (i), (iii) and (iii)
Also RU SV	Each one \overrightarrow{LX}
	(construction)
∴ ∠1 ≅ ∠2	Corresponding angles
and ∠3 ≅ ∠4	Corresponding angles
In $\triangle RUS \leftrightarrow \triangle SVT$,	
$\overline{RU} \cong \overline{SV}$	Proved
∠1 ≅ ∠2	Proved
∠3 ≅ ∠4	Proved
$\Delta RUS \cong \Delta SVT$	S.A.A ≅ S.A.A
Anu $\overline{RS} \cong \overline{ST}$	Corresponding sides of
	congruent triangles

Proof:

Statements	Reasons
(i) In $\triangle ABD \leftrightarrow \triangle CDB$	
∠4 ≅ ∠1	Alternate angles
$\overline{BD} \cong \overline{BD}$	Common
∠2 ≅ ∠3	Alternate angles
$\therefore \Delta \triangle BD \cong \Delta CDB$	A.S.A. ≅ A.S.A
Sr $\overline{AB} \cong \overline{DC} \cong \overline{AD} \cong \overline{BC}$	Corresponding sides of congruent triangles
And $\angle A \cong \angle C$	Corresponding angles of congruent triangles
(ii) $\ln \Delta ADB \leftrightarrow \Delta CDB$	
∠1 ≅ ∠4 (a)	Proved
∠2 ≅ ∠3(b)	Proved
$m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$	From (a) and (b)
$\angle ADC \cong \angle ABC$	OK.
Similarly $\angle BAD \cong \angle BCD$	MPI
(iii) In $\triangle BOC \longleftrightarrow \triangle DOA$	VO_{IA} .
$\overline{BC}\cong\overline{AD}.$	Proved
25 ≅ 26	Vertical angles
∠3 ≅ ∠2	Proved
$\Delta BOC \cong \Delta DOA$	A.A.S. ≅ A.A.S.
And $\overrightarrow{OC} \cong \overrightarrow{OA}, \ \overrightarrow{OB} \cong \overrightarrow{OD}$	Corresponding sides of
	congruent triangles

EXERCISE 11.1

Q1. One angle of a parallelogram is 130°. Find the measures of its remaining angles.

Solution:

Opposite angles of a parallelogram

$$m\angle D = m\angle B = 130^{\circ}$$

$$m\angle B + m\angle A = 180^{\circ}$$

$$130^{\circ} + m\angle A = 180^{\circ}$$

$$m\angle A = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

$$m\angle C = m\angle A = 50^{\circ}$$

So unknown angles of parallelogram are 130°, 50° and

Q2. One exterior angle formed on producing one side of a parallelogram is 40°.

Solution:

ABCD is a parallelogram m∠CBL = 40°

 $m\angle ABC + 40^{\circ} = 180^{\circ}$

ABL is a straight line

$$m\angle ABC = 180^{\circ} - 40^{\circ} = 140^{\circ}$$

 $m\angle D = m\angle ABC = 140^{\circ}$

Opposite angles of a parallelogram

$$m\angle D + m\angle C = 180^{\circ}$$

$$m \angle C = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

$$m\angle A = m\angle C = 40^{\circ}$$

Opposite angles of parallelogram

So the measures of interior angles of the parallelogram are 140°, 40°, 140° and 40°.

EXERCISE 11.2

Q1.a) Prove that a quadrilateral is a parallelogram if its

- (a) Opposite angles are congruent.
- (b) Diagonals bisect each other.

Solution:

(a) Opposite angles are congruent.

In quadrilateral ABCD $m \angle A = m \angle C$, $m \angle B = m \angle D$

To prove:

ABCD is a parallelogram

Proof:

Proof:	
Statements	Reasons
$m \angle A = m \angle C$ (i)	Given
$m \angle B = m \angle D$ (ii)	Given
$m \angle A + m \angle B + m \angle C + C$	Angles of quadrilateral
$m \angle D = 360^{\circ}$	140
$m \angle A + m \angle B + m \angle A +$	From (i) and (ii)
m∠B = 360°	
$2m \angle A + 2m \angle B = 360$	•
: m∠A + m ∠B = 180	
∴ AD H BC	Sum of internal angles
Similarly it can be proved	
that $\overline{AB} \parallel \overline{CD}$	
Hence ABCD is a	!
parallelogram.	
parameter	

(b) Diagonals bisect each other.

Solution:

Given:

In quadrilateral ABCD, diagonals \overline{AC} and \overline{BD} bisect each other. i.e. $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$

To prove:

ABCD is a parallelogram

Proof:

Reasons
Given
Given
Vertical opposite angles
S.A.S ≅ S.A.S.
Corresponding angles of
congruent triangles
∠1 ≅ ∠2
DK.
I SUPPLY
$VO_{\Lambda_{\Lambda}}$.
From (i) and (ii)

Q2. Prove that a quadrilateral is a parallelogram if its opposite sides are congruent.

Solution:

Given:

In quadrilateral ABCD

 $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$

To prove:

ABCD is a parallelogram

Construction:

Join B to D

Proof:

Statemen	its		Reasons
In $\triangle ABD \longleftrightarrow \triangle C$	CBD		
$\overline{AD} \cong \overline{CB}$			Given
$\overline{AB} \cong \overline{CD}$			Given
$\overline{BD} \cong \overline{DB}$			Common
∴ ΔABD ≅ ΔCDB			S.S.S ≅ S.S.S.
∠2 ≅ ∠1	(i)		Corresponding angles of
			congruent triangles
and ∠4 ≅ ∠3	(ii)		(i) alternate angles
Hence AB II DC			(ii) alternate angles
And BC AD			
Hence ABCD	is	а	
parallelogram.			

THEOREM 11.1.3

The line segment that joins the mid-points of two sides of a triangle is parallel to the third side and is equal to one-half of its length.

Solution:

Given:

In ΔABC , the mid-points of \overline{AB} and \overline{AC} are L and M respectively.

To Prove:

$$\overline{LM} \parallel \overline{BC}$$
 and $m \overline{LM} = \frac{1}{2} m \overline{BC}$

Construction:

Join L to M and produce \overline{ML} to N such that $\overline{ML}\cong \overline{LN}$. Join N to B and in the figure, name the angles as: $\angle 1, \angle 2$ and $\angle 3$

Proof:

OT:	
Statements	Reasons
In $\triangle BLN \leftrightarrow \triangle ALM$	
$\overline{BL} \cong \overline{AL}$	Given
∠1 ≅ ∠2	Vertical angles
$\overline{NL} \cong \overline{ML}$	Construction
$\therefore \Delta BLN \cong \Delta ALM$	S.A.S postulate
and $\angle A \cong \angle 3 \ldots$ (i)	Corresponding angles of
	congruent triangles
$\overline{NB} \cong \overline{AM}$ (ii)	Corresponding sides of
	congruent triangles
NB AM	From (i)
$\Rightarrow \overline{NB} \parallel \overline{MC} \dots (iii)$	M is mid-point of \overline{AC}
$\overline{MC} \cong \overline{AM}$ (iv)	Given
$\overline{NB} \cong \overline{MC}$ (v)	From (ii) and (iv)
BCMN is	
parallelogram	
$\overline{BC} \parallel \overline{LM}$ or $\overline{BC} \parallel \overline{NL}$	Opposite sides of a
	parallelogram BCMN
$\overline{BC} \cong \overline{MN}$	(vi) Opposite sides of a
C+111	parallelogram
$m \overline{LM} = \frac{1}{2} m \overline{NM}$	Construction
win's	
Thus $m \overline{LM} = \frac{1}{2} m \overline{B}$	From (vi) and (vii)
Thus $m LM = \frac{1}{2} m B$	

EXERCISE 11.3

Prove that the line-segments joining the mid-Q1. points of the opposite sides of a quadrilateral bisect each other.

Solution:

Given:

In quadrilateral ABCD, P, Q, R, S are the mid-points of the sides PR and QS are joined, they meet at O.

To prove:

$$\overline{OP} \cong \overline{OR}, \overline{OQ} \cong \overline{OS}$$

Construction:

Join P, Q, R, S in order. Join A to C.

Proof:

	001.	
L	Statements	Reasons
	$\overline{SD} \cong \overline{AC}$ (i)	In Δ ADC, S, P are mid-
		points of AD, DC.
	$m\overline{SP} = \frac{1}{2}m\overline{AC}$ (ii)	In Δ ABC, P, Q are mid-
	2	points of AB, BC.
	RQ AC (iii)	· DK.
-		INVE
	$m\overline{RQ} = \frac{1}{2}m\overline{AC} \qquad (iv)$	MO_A
	∴ SP RQ (v)	, -
	STUG	From (ii) and (iv)
	and $m\overline{RQ} = \frac{1}{2}m\overline{AC}$ (vi)	
1	V / / /	
	PQRS is a parallelogram	From (v) and (vi)
ŀ	Now PR and SQ diagonals	
	of parallelogram PQRS	
	ntersect at O	
٠.	$\overline{OP} \cong \overline{OR}$	Diagonals of a
		parallelogram bisect each
A	$nd \overline{OS} \cong \overline{OQ}$	other
		·

Q2. Prove that the line-segments joining the midpoints of the opposite sides of a rectangle are the right-bisectors of each other.

Solution:

Given:

In rectangle ABCD, P, Q, R, S are mid-point of the sides P is joined to R, Q is joined to S. \overline{PR} and \overline{QS} intersect at O.

To prove:

 \overline{PR} and \overline{QS} are right bisectors of each other.

Construction:

Join P, Q, R, S in order. Join A to C and B to D.

Proof:

1001;	
Statements	Reasons 🔥 🐧
$\overline{SR} \parallel \overline{AC}$ (i)	In Δ ADC, S, R are mid-
	points of AD, DC.
$m\overline{SR} = \frac{1}{2}m\overline{AC}$ (ii)	In Δ ABC, P, Q are mid-
and $\overline{PQ} \parallel \overline{AC}$ (iii)	points of AB, BC.
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1140
$m\overline{PQ} = \frac{1}{2}m\overline{AC}$ (iv)	From (i) and (iii)
$:: \overline{SR} \parallel \overline{PQ} \qquad (v)$	From (ii) and (iv)
mSR = mPQ (vi)	
: PQRS is a parallelogram	From (v) and (vi)
$m\overline{AC} = m\overline{BD}$	Diagonals of a rectangle
$\frac{1}{2}$ m $\overline{AC} = \frac{1}{2}$ m \overline{BD}	•
$m\overline{PQ} = m\overline{QR}$	
$\therefore m\overline{PQ} = m\overline{QR} = m\overline{RS} = m\overline{S}$	P
∴ PQRS is a rhombus.	
PR and QS are diagonals	of
rhombus PQRS.	
	Discourse of a whomber are
\therefore \overrightarrow{PR} and \overrightarrow{QS} are rig	ht Diagonals of a rhombus are
bisectors of each other.	right bisector of each other.

SEDINFO.NET

Q3. Prove that the line-segment passing through the mid-points of one side and parallel to another side of a triangle also bisect the third side.

Solution:

Given:

In ΔABC, D is mid-point

of AB DE || BC

To prove:

 $\overline{EA} \cong \overline{EC}$

Construction:

Take EF | AB

Proof:

1001.	
Statements	Reasons
DE BF	Given
EF BD	Construction
∴ DBEF is a parallelogram.	
$\overline{\mathrm{EF}} \cong \overline{\mathrm{DB}}$ (i)	Opposite sides
$\overline{AD} \cong \overline{DB}$ (ii)	Given
$\overline{\mathrm{EF}}\cong\overline{\mathrm{AD}}$ (iii)	νIO_{IA} ,
∠1 ≅ ∠B	From (i) and (ii)
and ∠2 ≅ ∠B	corresponding angles
∴ ∠1 ≅ ∠2 (iv)	
In ΔADE ΔEFC	
×2≥21	From (iv)
∴ ∠3 ≅ ∠C	Corresponding angle
AD ≅ EF	From (iii)
Hence ΔADE ≅ ΔEFC	$A.A.S \cong A.A.S.$
∴ EA ≅ EC	Corresponding sides

THEOREM 11.1.4

The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.

Solution:

Given:

ABC is a triangle

EXERCISE 11.4

The distance of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2 cm, 1.4 cm and 1.6 cm. Find the lengths of its medians.

Solution:

Let ABC be triangle with the point of concurrency of medians at G.

$$\overline{MAG} = 1.2$$
 cm, $\overline{MBG} = 1.4$ cm and $\overline{MCG} = 1.6$ cm

$$m(\overline{AP}) = \frac{3}{2} (m\overline{AG}) = \frac{3}{2} \times 1.2 = 1.8 \text{ cm}$$

$$m(\overline{AP}) = \frac{3}{2} (m\overline{AG}) = \frac{3}{2} \times 1.2 = 1.8 \text{ cm}$$

 $m\overline{BQ} = \frac{3}{2} (m\overline{BG}) = \frac{3}{2} \times 1.4 = 2.1 \text{ cm}$
 $m\overline{CR} = \frac{3}{2} (m\overline{CG}) = \frac{3}{2} \times 1.6 = 2.4 \text{ cm}$

$$m\overline{CR} = \frac{3}{2} (m\overline{CG}) = \frac{3}{2} \times 1.6 = 2.4 \text{ cm}$$

Prove that the point of concurrency of the Q2. medians of a triangle and the triangle which is made by joining the mid-points of its sides is the same.

Solution:

Given:

In triangle ABC, CP, AQ, BR are medians, with meet at G. APQR is formed by joining the mid points P, Q, R.

To prove:

G is the point of concurrency of the mediahs of $\triangle ABC$ and $\triangle PQR$.

Proof:

1001.	
Statements .	Reasons
PR BC	P, R are mid-points of \overline{AB} ,
PR BQ	AC.
Similarly QR BP	
∴ PBQR is a parallelogram.	
Its diagonal BR and PQ	
bisect each other at T.	
i.e. T is mid-point of \overline{PQ} .	
Similarly U is mid-point of	
$\overline{\mathbb{QR}}$ and S is mid-point of	100
PR.	\sim () V
∴ PU, QS, RT are medians	MONBK:COM
of ΔPQR	W.
(i) \overline{AQ} and \overline{SQ} rass through	$V_1 \cup V_{A_1}$
G.	
(ii) BR and TR pass through	
G	
(iii) CP and UP pass through	
G is point of	
Hence G is point of	i
concurrency of medians of ΔAGC and ΔPQR.	
AAGC and AFGR.	

THEOREM 11.1.5

If three or more parallel lines make segments congruent on one transversal, they also make congruent segments on any other transversal.

Solution:

Given:

AB || CD || EF

EXERCISE 11.5

Q1. In the given figure, $\parallel \overline{BY} \parallel \overline{CZ} \parallel \overline{DU} \parallel \overline{EV}$ and $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DE}$. If $\overline{mMN} = 1$ cm, then find the length of \overline{LN} and \overline{LQ} .

Solution:

Q2. Take a line segment of length 5.5 cm and divide it into five congruent parts.

Solution:

Construction:

- (i) Draw a line segment \overline{AB} of length 5 cm.
- (ii) Draw an acute angle ∠BAX.
- (iii) On \overline{AX} with the help of compass take five points P, Q, R, S, T such that $\overline{AP} \cong \overline{PQ} \cong \overline{QR} \cong \overline{RS} \cong \overline{ST}$.

- (iv) Join T to B.
- Draw lines \overline{SF} , \overline{RE} , \overline{QD} , \overline{PC} parallel to \overline{TB} . (v) The points C, D, E, F divide the line segment AB into five congruent parts.

REVIEW EXERCISE 11

- Q1. Fill in the blanks.
- (i) In a parallelogram opposite sides are
- (ii) In a parallelogram opposite angles are
- (iii) Diagonals of a parallelogram each other at a point.
- (iv) Medians of a triangle are
- (v) Diagonals of a parallelogram divides the parallelogram into two triangles. •

Answers:

- (i) parallel/congruent
- (ii) equal/congruent

(iii) intersect (iv) concurrent

- (v) congruent
- In parallelogram ABCL Q2.

- (i) \overline{MAB} \overline{MDC}
- $m\overline{BC}$ $m\overline{AD}$ (ii)
- (iii) m∠1 ≅
- m∠2 ≅ (iv)

Answers:

(i) ≊

- (ii) ≅
- (iii) $m \angle 3$
- (iv) $m \angle 1$
- Q3. Find the unknowns in the given figure.

Solution:

n° ≅ 75°

opposite angles are congruent

n = 75

y° ≅ n°

Alternate angles

 $y^{\circ} \cong n^{\circ} \cong 75^{\circ}$

- (iv) Join T to B.
- Draw lines \overline{SF} , \overline{RE} , \overline{QD} , \overline{PC} parallel to \overline{TB} . (v) The points C, D, E, F divide the line segment AB into five congruent parts.

REVIEW EXERCISE 11

- Q1. Fill in the blanks.
- (i) In a parallelogram opposite sides are
- (ii) In a parallelogram opposite angles are
- (iii) Diagonals of a parallelogram each other at a point.
- (iv) Medians of a triangle are
- (v) Diagonals of a parallelogram divides the parallelogram into two triangles. •

Answers:

- (i) parallel/congruent
- (ii) equal/congruent

(iii) intersect (iv) concurrent

- (v) congruent
- In parallelogram ABCL Q2.

- (i) \overline{MAB} \overline{MDC}
- $m\overline{BC}$ $m\overline{AD}$ (ii)
- (iii) m∠1 ≅
- m∠2 ≅ (iv)

Answers:

(i) ≊

- (ii) ≅
- (iii) $m \angle 3$
- (iv) $m \angle 1$
- Q3. Find the unknowns in the given figure.

Solution:

n° ≅ 75°

opposite angles are congruent

n = 75

y° ≅ n°

Alternate angles

 $y^{\circ} \cong n^{\circ} \cong 75^{\circ}$

$$y = 45$$

$$x^{\circ} + y^{\circ} = 180^{\circ}$$

Supplementary angles

$$x + y = 180$$

$$x + 75 = 180$$

$$x = 180 - 75 = 105$$

$$m^{\circ} \cong x^{\circ}$$

opposite angles

$$m = x = 105$$

$$m^0 = 105^0$$

Q4. If the given figure ABCD is a parallelogram, then find x, m.

Solution:

$$11x^b \cong 55^\circ$$

opposite angles

$$11x = 55$$

$$x = 5^{\circ}$$

$$(5m + 10)^{\circ} + 55^{\circ} = 180^{\circ}$$

Sum of interior angles of || lines

$$5m + 10 + 55 = 180$$

$$5m + 65 = 180$$

or $m = 23^{\circ}$

Q5. The given figure LMNP is a parallelogram. Find the value of m, n.

Solution:

As opposite sides of a parallelogram are congruent

$$8m - 4n = 8$$

or
$$2m - n = 2$$

and
$$4m + n = 10$$

Q6. In the question 5, sum of the opposite angles of the parallelogram is 110°, find the remaining angles.

Solution:

Opposite angles of a parallelogram are congruent $\angle L \cong \angle N$ But it is given that $m\angle L + m\angle N = 110$ $2(m\angle L) = 110$ $m\angle L = 55$ $m\angle L = m\angle N = 55^{\circ}$ $m\angle L + m\angle P = 180^{\circ}$ Sum of interior angles between parallel lines $55 + m\angle P = 180^{\circ}$ Angles of the parallelogram are 55° , 125° , 55° and 125°

55°, 125°, 55° and 125° $m \angle M = m \angle P = 725°$