$$\int_{\mathcal{C}} \frac{d\xi}{(x-a)^n} = \begin{cases} 2nt & n=1\\ 0 & n\neq 1 \end{cases}$$

2. 小圆弧引理
$$f(\delta)$$
 = a+pei θ , $\phi < \theta < \beta$ 上连续 $\Rightarrow \lim_{\rho \to 0} \int_{CP} f(\delta) d\delta = \bar{z}(\beta - d) \lambda$ ② $\lim_{\delta \to a} (\delta - a) f(\delta) = \lambda$ 像一级校点。

4. 柯西积分公式: C+D内解析 =>
$$f(\delta) = \frac{1}{2\pi i} \int_{C} \frac{f(\delta)}{3-\delta} d^{3}$$

$$f^{(n)}(\delta) = \frac{n!}{2\pi i} \int_{C} \frac{f(\delta)}{(3-\delta)^{n+1}} d^{3}y$$

7. 柯酥镁: D內解析
$$|f^{(n)}(a)| \leq \frac{n! M(R)}{R^n}$$
 (M(R)要为|f(a)|在(上最大值)

$$f(x)$$
解析 例 $f(x) = 0$.

$$|\nabla^2 v = 0|$$

$$\int_{(R_0, \eta_0)}^{(R_0, \eta_0)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + Cz$$

$$(4. u(3))$$
 $\frac{18-30}{18-30}$ $= R \perp B$ 两个函数 $\frac{R^2-1^2}{R^2-2RY\cos(\theta-\varphi)+1^2}$ $d\theta$ 边界确定 \Rightarrow 完全确定.

ð

Snyxx 仁> Eqk, Zbk 4xxx

3. 40数半注
$$R = \frac{1}{r}$$

$$\begin{cases} \lim_{n \to \infty} \left| \frac{a_{\text{BM}}}{a_n} \right| = r \\ \lim_{n \to \infty} \sqrt{14n} \right| = r \end{cases}$$

$$\left(\frac{1}{n} + \frac{a_{\text{off}}}{an} \right) = r$$

4. fii)在D内解析 (二) fie)在D内任志 a 可展为 f-a 以界外数

$$(0) = \frac{100}{\sum_{n=0}^{\infty} (-1)^n \frac{\delta^{2n}}{(2n)!}}$$
 $\sin \delta = \sum_{n=0}^{\infty} (-1)^n \frac{\delta^{2n+1}}{(2n+1)!}$

$$sin_{\xi} = \sum_{n=0}^{+\infty} (-1)^n \frac{\xi^{2n+1}}{(2n+1)!}$$

7. a为fcr) 对奇点 ⇐> 引使 fcr) 在 o<|s-a|<p>内有界.<</p>

8. 多胡纸数
$$a_n = \frac{1}{2\pi i} \int \frac{f(3)}{(3-a)^{n+1}} dy$$

11. [fix)dd = ini & Res[fix), ak]

12. a为fir)的n级核点 ⇒ . Res[fis), a] = $\frac{1}{(n-1)!} \frac{d^{n-1}}{ds^{n-1}} [(s-a)^n f(s)]$ (n≥m). $\frac{P(\delta)}{Q(\delta)}$, $P(\alpha) \neq 0$, $\alpha \neq Q(\delta) \mapsto -$ $\frac{P(\delta)}{Q(\delta)}$, $\alpha = \frac{P(\delta)}{Q(\delta)}$, $\alpha = \frac{P(\delta)}{Q(\delta)}$

13.
$$W_R = \sqrt{8}$$
 $\Rightarrow \frac{dW_R}{d8} = \frac{W_R}{n8}$

Lng = In181 + 22798 +2472

3.
$$f(8)$$
在 $G(8)$ $G($

 $d\theta = \frac{d\delta}{2\delta} \qquad 1050 = \frac{1}{2}(\delta + \frac{1}{\delta}) \qquad \sin\theta = \frac{1}{22}(\delta - \frac{1}{\delta})$

$$F.\int_{-\infty}^{+\infty} R(x) \cos mx \, dx$$
 $\int_{-\infty}^{\infty} R(x) \sin mx \, dx$ $R(x) \beta \overline{q}$ $\overline{y} + \overline{y} + \overline{y$

[5] [
$$I = \int_0^\infty \frac{\cos x - e^{-x}}{x} dx$$
 1512. $I = \int_0^{+\infty} e^{-\alpha x^2} \cos bx dx$ (a) 0)

6.
$$a - f(a)$$
 m效量点 $\Rightarrow Res\left(\frac{f(a)}{f(a)}, a\right) = m$, $Res\left(\frac{f'(a)}{f(a)}, b\right) = -n$ $b - f(a)$ n级效点

7.
$$\frac{1}{2\pi i} \left(\frac{f(8)}{f(8)} d8 = N - P \quad (c = 7.3 \pm 1) \right)$$

- 2. 设f(8)为D内单叶函数,则 \ 60, f'(8) \$0
- 3. □是一个边界到路 2个点的单连通区域 => 存在 支换 □→ 1베<1.
- 4. 繁定理. D为 若还要求 fin)=wo, angf(io)=do, 刀1 更换唯一确定.

$$J = \frac{W - W_1}{W - W_2} \cdot \frac{W_3 - W_2}{W_3 - W_1} = \frac{\delta - \delta_1}{\delta - \delta_2} \cdot \frac{\delta_3 - \delta_2}{\delta_3 - \delta_1}$$

6. 若 w(31)=0, w(32)=
$$\infty$$
 则 $w=k\frac{3-31}{3-62}$

$$\delta \cdot e^{\delta}$$
: $\alpha < Im \delta < b \rightarrow \alpha < \alpha rgw < b$.

Lns; a carg w <b -> atenti < Ims < b+2nti 特別 (ns -> a < Ims < b

10.
$$w_k = \sqrt{18}$$
 $\frac{dw_k}{ds} = \frac{1}{\sqrt{18}} = \frac{w_k}{\sqrt{18}} = \frac{w_k}{\sqrt{18}}$

何」,第一級限 → 上半種
$$\delta = \mathbb{D}\hat{c}$$
,0,1 → $W = 1$,1, ∞

0 $\frac{3^2}{3^2}$ $\mathbb{D}\hat{c}$, 0,1 → 2,0,1 $\frac{1}{3}$ $\frac{1}{3^2}$ $\frac{1}{1+2} = \frac{3+2}{38^2}$ $\frac{1}{1-8^2}$ + 验证 ….

例, 沿 [0,1+1] 创建的第一人人

11. 判断 核限足否存在,从实轴和虚轴分到 超近

例 1.
$$\frac{1}{(x+1)(x+2)^{2}(x+3)^{3}} = \frac{1}{8} + \frac{A}{x+1} + \frac{-1}{(x+2)^{2}} + \frac{A}{x+3} + \frac{1}{(x+3)^{2}} + \frac{-\frac{1}{2}}{(x+3)^{2}} + \frac{A}{(x+3)^{2}} + \frac{-\frac{1}{2}}{(x+3)^{2}} + \frac{A}{(x+3)^{2}} + \frac{A}{(x+3)^{2$$

3. (1)
$$(y''(t)+y'(t))=1$$
 $(D^2+D)y=1$ $y=\frac{1}{D(D+1)}(1)=\frac{1}{D(1)}(x)=(1-D+D^2-D^2-1)(x)$
 $(y(0)=y'(0)=0$ $y=y'(0)=0$ $y=y$

①
$$p(D)(e^{at}f(t)) = e^{at}p(atD)(f(t))$$

 $y'(t)-y'(t) = e^{t} \Rightarrow y = \frac{1}{|D|}e^{t} = \frac{(e^{t})}{|D|}e^{t} = \frac{(e^{t})}{|D|}e^{t} = \frac{(e^{t})}{|D|}e^{t} = \frac{1}{|D|}(e^{t} \cdot 1) = e^{t}(\frac{1}{|D|-1})(1) = te^{t}$

$$p(D^{2})(sinwt) = p(-w^{2})sinwt$$

$$p(D^{2})(swt) = p(-w^{2})(sswt)$$

$$J. \stackrel{i}{\underset{z=1}{\stackrel{f}{=}}} \int_{-\infty}^{t_{\infty}} \frac{sin^{3}x}{x^{3}} dx = \int_{-\infty}^{t_{\infty}} \frac{3jinx - sin3x}{4x^{3}} dx$$

$$f(\delta) = \frac{3e^{i\delta} - e^{3i\delta} - 2 - 3\delta^{2}}{4\delta^{3}}$$

$$Res[f(\delta), o] = 0 \quad (4k) = 0$$

$$= \int_{-\infty}^{+\infty} f(\delta) d\delta + \int_{CR} f(\delta) d\delta = 0 \quad (4k) = 0$$

$$f(\delta) = \int_{-\infty}^{+\infty} f(\delta) d\delta = 0$$