

Biomedical Engineering 5CCYB070

COMPUTATIONAL METHODS

Lecture 14 Vector Calculus and PDEs II

Tools to solve PDEs

102 Methods to solve PDEs

Learning objectives

Tools to solve PDEs

Basic integral calculus

Fundamental conservation law

Methods to solve PDEs

Review the ABC in ODEs

Separation of variables

Integral transforms: Fourier and Laplace

Learning objectives

- Toolkit to solve PDEs
 - Identify the basic integral calculus necessary for PDEs; e.g. surface integrals or the divergence theorem
 - Become familiar with a fundamental conservation law and use it to derive PDEs in specific physical contexts (e.g. diffusion)
- Methods to solve PDEs
 - Review the ABC in ODEs
 - Separation of variables
 - Integral transforms: Fourier and Laplace

Fundamental Theorem of Calculus

The FTC relates a function and its derivative

$$f(x) = \frac{dF(x)}{dx} \Leftrightarrow \int_{a}^{b} f(x) dx = F(b) - F(a)$$

 Still works if functions have more than one variable, i.e. if we use partial derivatives, for example:

$$g(x,y,z) = \frac{\partial G(x,y,z)}{\partial y} \Leftrightarrow \int_{y=\alpha}^{y=\beta} g(x,y,z) \, dy = G(x)\beta(z) - G(x)\alpha(z)$$

Note the 'free' variable(s)

Surface integrals

- To compute this, we need to model a surface
- Need an 'ideal' surface but this is not practical
- Approximate an ideal surface using small area elements
- Each element has unit normal vector

Surface integral of scalar field

- A surface S: set of surface elements: δS_1 , δS_2 , . . . , δS_N
- Scalar field $\varphi(x,y,z)$, value at each element: φ_1 , φ_2 , ... , φ_N
- Can approximate the integral of φ over S

$$\int_{S} \phi \, dS \approx \sum_{i=1}^{N} \phi_{i} \operatorname{area}(\delta S_{i})$$

$$\int_{S} \phi \, dS \approx \sum_{i=1}^{N} \phi_{i} \, \delta S_{i}$$

• Simplify notation: assume δS_i represents the **area** of the element

Gives a scalar result

Surface integral of scalar field

The parts

- Not actually a single variable integration (even if it looks like one)
- The surface can be parametrised by two variables
- or modelled by a discrete number of polygons such as triangles

Surface integral with normals

Can take surface normals into account, E.g.

$$\sum_{i=1}^{N} \phi_i \, \hat{n}_i \, \delta S_i$$
 instead of $\sum_{i=1}^{N} \phi_i \, \delta S_i$ Vector result

Textbooks sometimes write

$$\hat{n}_i \delta S_i$$
 as $\delta \vec{S}_i$

so can re-write

write
$$\hat{n}_i \delta S_i \quad \text{as} \quad \delta \vec{S}_i$$

$$\sum_{i=1}^N \phi_i \, \hat{n}_i \, \delta S_i = \sum_{i=1}^N \phi_i \, \delta \vec{S}_i$$

Approximation for

$$\int_{S} \phi \, \hat{n} \, dS \quad \text{or} \quad \int_{S} \phi \, d\vec{S}$$

Surface integral of scalar field with normals

• 2-D schematic illustration, 'surface' represented by polygon.

Scalar field represented by colour cloud (red=positive), 'surface elements' are all same size

- Can integrate vector field (VF) over a surface in different ways
- One way: use the dot product of VF with the surface normals
- A surface S: set of surface elements $\delta S_1, \delta S_2, \ldots, \delta S_N$
- Normals $\hat{n}_1, \hat{n}_2, \dots, \hat{n}_N$
- A vector field $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_N$

$$\sum_{i=1}^N ec{v}_i \cdot \hat{n}_i \, \delta S_i = \sum_{i=1}^N ec{v}_i \cdot \delta ec{S}_i$$

Approximate the dot product integral of vector field over S

• Either of the following are equivalent

2-D schematic illustration

$$\sum_{i=1}^{N} \vec{v}_i \cdot \hat{n}_i \, \delta S_i = \sum_{i=1}^{N} \vec{v}_i \cdot \delta \vec{S}_i$$

Equivalent forms for the continuous integral

$$\int\limits_{S} \vec{v} \cdot d\vec{S}$$

$$\int\limits_{S} \vec{v} \cdot \hat{n} \, dS$$

2-D schematic illustration

$$\sum_{i=1}^{N} \vec{v}_i \cdot \hat{n}_i \, \delta S_i = \sum_{i=1}^{N} \vec{v}_i \cdot \delta \vec{S}_i$$

2-D schematic illustration

$$\sum_{i=1}^{N} \vec{v}_i \cdot \hat{n}_i \, \delta S_i = \sum_{i=1}^{N} \vec{v}_i \cdot \delta \vec{S}_i$$

2-D schematic illustration

$$\sum_{i=1}^{N} \vec{v}_i \cdot \hat{n}_i \, \delta S_i = \sum_{i=1}^{N} \vec{v}_i \cdot \delta \vec{S}_i$$

Equivalent forms for the continuous integral

$$\int\limits_{S} \vec{v} \cdot d\vec{S}$$

$$\int\limits_{S} \vec{v} \cdot \hat{n} \, dS$$

Divergence theorem

- Total Divergence of a vector field v inside a region
- Integral of v over boundary (with the dot product)

Divergence theorem

The parts

Divergence theorem

Left hand integral as a sum over small volume elements

For an internal volume element, net flow out equals flow *in* for neighbours, with **opposite** signs, so cancel in the summation

$$\int\limits_{V} \nabla \cdot \vec{a} \, dV \approx \sum_{i} \nabla \cdot \vec{a}_{i} \, \delta V_{i}$$

Element at the boundary: Flow across the boundary does not get cancelled.

Represented by

$$\vec{a}_i \cdot \hat{n}_i \delta S_i = \vec{a}_i \cdot \delta \vec{S}_i$$

So we get

$$\sum_{i} \nabla \cdot \vec{a}_{i} \, \delta V_{i} \approx \sum_{j} \vec{a}_{j} \cdot \delta \vec{S}_{j} \, \Rightarrow$$

i loops over volume elements j loops over surface elements

Leibniz's Rule: 'differentiation under the integral sign'

- When is it possible to 'carry' differentiation from outside an integral to inside it?
- If we have a function of *two* variables and integrated w.r.t. *one* of them, e.g.

$$\int_{a}^{b} f(x,t) dt$$

• And we take the derivative w.r.t the *other* variable

$$\frac{d}{dx} \int_{a}^{b} f(x,t) dt = \int_{a}^{b} \frac{\partial f(x,t)}{\partial x} dt$$

... the derivative can be 'carried' in if the limits are constant

Leibniz's Rule: 'differentiation under the integral sign'

• This works for either variable, e.g. if the integral is over *x*

$$\int_{c}^{d} f(x,t) \, dx$$

• if c and d are constant, then

$$\frac{d}{dt} \int_{c}^{d} f(x,t) \, dx = \int_{c}^{d} \frac{\partial f(x,t)}{\partial t} \, dx$$

Important thing is that the derivative and integral are over different variables

Leibniz's Rule

More variables, surface integral example, differentiated w.r.t. t

• Rule allows us to carry in the *t*-derivative if surface *S* is fixed.

$$\frac{d}{dt} \int_{S} g(x, y, z, t) dS = \int_{S} \frac{\partial g(x, y, z, t)}{\partial t} dS$$

Learning objectives

- Toolkit to solve PDEs
 - Identify the basic integral calculus necessary for PDEs; e.g. surface integrals or the divergence theorem
 - Become familiar with a fundamental conservation law and use it to derive PDEs in specific physical contexts (e.g. diffusion)
- Methods to solve PDEs
 - Review the ABC in ODEs
 - Separation of variables
 - Integral transforms: Fourier and Laplace

Conservation law

How (energy, chamical density...) is conserved defines a PDE

- E.g. rate of change of population in a region *V* depends on:
 - Flow rate into the region
 - Flow rate out of the region
 - Birth rate
 - Death rate

Net flow rate: can be +ve or -ve

Net creation rate: can be +ve or -ve

Provides a PDE that the measured quantity should satisfy.

Conservation Law: A 1-D case

- Measure 'stuff' in a long thin bar
- u(x,t) indicates **density** at location x and time t
- f (x,t) indicates **net creation rate** at location x and time t
 - f is known as the source term
- Focus on interval between x=a and x=b
- 'Flux': net flow rate across a specific point (signed)

+ve = to the 'right', in the direction of increasing x

Denoted by $\Phi(x,t)$

• A is the cross-sectional area

Total amount of stuff in the interval $\int_{-\infty}^{b} A \, u \, dx$

$$\int_{a}^{b} A u \, dx$$

Focus on rates of change:

Rate of change of total amount

Rate of change due to net flow

Rate of change due to creation

$$\frac{\partial}{\partial t} \int_{a}^{b} A u \, dx$$

$$A\Phi(a,t) - A\Phi(b,t)$$

$$\int_{a}^{b} A f(x, t) \, dx$$

u(x,t) density f(x,t) creation rate $\Phi(x,t)$ flux A cross-sectional area

$$\frac{\partial}{\partial t} \int_{a}^{b} \mathcal{A}u(x,t) dx = \mathcal{A}\Phi(a,t) - \mathcal{A}\Phi(b,t) + \int_{a}^{b} \mathcal{A}f(x,t) dx$$

$$\int_{a}^{b} u_{t}(x,t) dx = \Phi(a,t) - \Phi(b,t) + \int_{a}^{b} f(x,t) dx$$

u(x,t) density f(x,t) creation rate $\Phi(x,t)$ flux A cross-sectional area

$$\int_{a}^{b} u_{t}(x,t) dx = \left| -\int_{a}^{b} \Phi_{x}(x,t) dx \right| + \int_{a}^{b} f(x,t) dx$$

Get three integrals with same limits

$$\int_{a}^{b} u_{t}(x,t) dx = -\int_{a}^{b} \Phi_{x}(x,t) dx + \int_{a}^{b} f(x,t) dx$$

• Because this is true for **any** interval [a,b], we get

$$u_t(x,t) = -\Phi_x(x,t) + f(x,t)$$

$$u_t(x,t) + \Phi_x(x,t) = f(x,t)$$
 Fundamental Conservation Law

- We can decide which f to use and how Φ relates to u
 - Depends on the system we want to model.
- Allows us to write Φ in terms of $u \Rightarrow Obtain a PDE in u$

Advection model

Start with the FCL

- $\left| u_t(x,t) + \Phi_x(x,t) \right| = f(x,t)$
- Make Assumption: Flux is proportional to density

$$\Phi = cu$$
 $\Phi_x(x,t) = \frac{\partial \Phi}{\partial x} = c \frac{\partial u}{\partial x}$

- Make Assumption: No material generated, source term f is zero
- Substitute into FCL: Provides the Advection Equation

$$u_t + c u_x = 0$$

• Example: *u* = density of concentration of chemical at a point in a flowing river

Diffusion model

$$u_t(x,t) + \Phi_x(x,t) = f(x,t)$$

- Start with the FCL
- Make Assumption: Flux is proportional to gradient of density (In opposite direction)

$$\Phi = -\alpha \frac{\partial u}{\partial x} \qquad \Phi_x(x,t) = \frac{\partial \Phi}{\partial x} = -\alpha \frac{\partial^2 u}{\partial x^2}$$

- Make Assumption: No material generated, source term f is zero
- Substitute into FCL: Provides the diffusion equation

$$u_t - \alpha u_{xx} = 0$$

• Example: *u* = Temperature of a point along a metal bar

Advection-diffusion model

$$u_t(x,t) + \Phi_x(x,t) = f(x,t)$$

- Start with the FCL
- Make Assumption: Flux depends on both density and its gradient

$$\Phi = cu - \alpha \frac{\partial u}{\partial x}$$
 $\Phi_x(x,t) = \frac{\partial \Phi}{\partial x} = cu_x - \alpha u_{xx}$

- Make Assumption: No material generated, source term f is zero
- Substitute into FCL: Provides the Advection-Diffusion Equation

$$u_t + cu_x - \alpha u_{xx} = 0$$

Diffusion, Advection and Advection-Diffusion

Diffusion

Advection

Advection-Diffusion

$$u_t + c u_x = 0$$

$$u_t + cu_x - \alpha u_{xx} = 0$$

How the different systems vary with time.

Learning objectives

- Toolkit to solve PDEs
 - Identify the basic integral calculus necessary for PDEs; e.g. surface integrals or the divergence theorem
 - Become familiar with a fundamental conservation law and use it to derive PDEs in specific physical contexts (e.g. diffusion)
- Methods to solve PDEs
 - Review the ABC in ODEs
 - Separation of variables
 - Integral transforms: Fourier and Laplace

Useful results from ODEs

- Following can be useful when solving PDEs
- Especially if we can convert a PDE into one or more ODEs

$$\frac{du}{dx} = \lambda u$$

$$u(x) = e^{\lambda x}$$

$$\frac{du}{dx} = \lambda u$$

$$u(x) = e^{\lambda x}$$

$$\frac{d^2u}{dx^2} = \lambda^2 u$$

$$u(x) = Ae^{\lambda x} + Be^{-\lambda x}$$

$$\frac{d^2u}{dx^2} = -\lambda^2 u$$

$$u(x) = C\sin \lambda x + D\cos \lambda x$$

$$u(x) = Ae^{\lambda i x} + Be^{-\lambda i x}$$

$$\sin a = \frac{1}{2i} \left(e^{ia} - e^{-ia} \right)^{-1}$$

$$\cos a = \frac{1}{2} \left(e^{ia} + e^{-ia} \right)^{-1}$$

Analysis of solutions: Advection

Example: Advection Eqn in 1-D

$$u_t + cu_x = 0$$

Consider the simple function

$$p(x, t) = x - ct$$

$$\frac{\partial p}{\partial t} = -c$$
 $\frac{\partial p}{\partial x} = 1$ $p_t + cp_x = -c + c \times 1 = 0$

- So p(x,t) = x ct is a possible solution
- Now consider a function of p (indirectly a function of x and y)

$$F(x, y) = F(p) = F(x - ct)$$

Analysis of solutions: Advection

- Example: Advection Eqn in 1-D $u_t + cu_x = 0$ p(x,t) = x - ct F(x, y) = F(p) = F(x - ct)
- Partial derivatives

$$\frac{\partial F}{\partial t} = \frac{dF}{dp} \frac{\partial p}{\partial t} = -c F'(p) = -c F'(x - ct)$$

$$\frac{\partial F}{\partial x} = \frac{dF}{dp} \frac{\partial p}{\partial x} = F'(p) = F'(x - ct)$$

We get

$$F_t + cF_x = -cF'(x-ct) + cF'(x-ct) = 0$$

So that F is also a solution of the advection equation

Analysis of solutions: Advection

• Example: Advection Eqn in 1-D

$$u_t + cu_x = 0$$

- F can be **any** arbitrary function of p = x-ct
- F(x-K): a copy of F(x) shifted by K
- F(x-ct): shifted by a time-varying amount, i.e. travelling wave

Analysis of solutions: Advection

• Example: Advection Eqn in 1-D

$$u_t + cu_x = 0$$

• Shape of F(x-ct) depends on auxiliary conditions

Find u(x, t) where $u_t + cu_x = 0$ and u(x, 0) = p(x)

Method: separation of variables

- Analytical method for solving a PDE
- Assume solution to a PDE is separable, e.g.

$$f(x, y, z, t) = X(x) Y(y) Z(z) T(t)$$

Examples

$$e^x y(z+1)^2$$

$$xy(z+t)$$

$$x + y + z$$

$$x^2(z+3)\sin x$$

$$yz\cos(xy)$$

$$t(x+t)$$

Separable

Part separable

Not separable

Separation of variables: Wave equat.

• Example: Wave equation in 1-D

$$\left(\frac{1}{c^2}u_{tt} = u_{xx}\right) PDI$$

Assume the solution is separable

$$u(x, t) = X(x) T(t)$$

Derivatives

$$\frac{\partial u}{\partial x} = \frac{\partial X(x)}{\partial x} T(t) = X'(x) T(t) \qquad \qquad \frac{\partial u}{\partial t} = X(x) \frac{\partial T(t)}{\partial t} = X(x) T'(t)$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 X(x)}{\partial x^2} T(t) = X''(x) T(t) \qquad \qquad \frac{\partial^2 u}{\partial t^2} = X(x) \frac{\partial^2 T(t)}{\partial t^2} = X(x) T''(t)$$

Separation of variables: Wave equat.

Example: Wave equation in 1-D

$$u_{xx} = X''(x) T(t)$$

$$u_{tt} = X(x) T''(t)$$

$$\frac{1}{c^2}u_{tt} = u_{xx}$$
 PDE

$$\left(\frac{1}{c^2}u_{tt} = u_{xx}\right) PDE$$

$$\frac{1}{c^2} X(x) T''(t) = X''(x) T(t)$$

$$\frac{1}{c^2} \frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = K$$

Setting K = -1 leads to

$$T''(t) = -c^2 T(t)$$

$$X''(x) = -X(x)$$

Pair of ODEs

Separation of variables: Wave equat.

• Example: Wave equation in 1-D

$$\frac{1}{c^2}u_{tt} = u_{xx}$$
 PDE

Now we have ODEs

$$X''(x) = -X(x)$$

$$T''(t) = -c^2 T(t)$$

$$X(x) = \alpha \sin x + \beta \cos x$$

$$T(t) = \gamma \sin ct + \delta \cos ct$$

$$u(x,t) = (\alpha \sin x + \beta \cos x)(\gamma \sin ct + \delta \cos ct)$$

$$u(x,t) = A \sin(x - ct) + B \sin(x + ct)$$

- Sum of two travelling waves, rightward and leftward
- Compare with Advection Equation's solution

$$\nabla p = \varrho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \, \mathbf{u} \right) - \mu \Delta \mathbf{u}$$

Learning objectives

- Toolkit to solve PDEs
 - Identify the basic integral calculus necessary for PDEs; e.g. surface integrals or the divergence theorem
 - Become familiar with a fundamental conservation law and use it to derive PDEs in specific physical contexts (e.g. diffusion)
- Methods to solve PDEs
 - Review the ABC in ODEs
 - Separation of variables
 - Integral transforms: Fourier and Laplace

Transforms for PDEs

- Possible to use different transforms, e.g.
 - Fourier Transform
 - Laplace Transform
- Basic idea:
 - Convert a PDE to a new domain
 - Easier to find solution in new domain
 - Transform back to obtain solution

Fourier Transform

Operates on functions

$$\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} dt$$

Fourier Transform

Operates on functions

$$\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} dt$$

• Can go `back' from Fourier to or
$$f(t)=rac{1}{2\pi}\int_{-\infty}^{\infty} ilde{f}(\omega)\,e^{i\,\omega\,t}\,d\omega$$

Fourier Transform

• Standard properties relating to differentiation

Function	$\xrightarrow{\mathcal{F}}$	Fourier Transform
f(t)		$ ilde{f}(\omega)$
$rac{\partial f}{\partial t}$		$i\omega \tilde{f}(\omega)$
$\frac{\partial^2 f}{\partial t^2}$		$i\omega(i\omega\tilde{f}(\omega)) = -\omega^2\tilde{f}(\omega)$
:		: :

Fourier Transform - multivariate function

• E.g two variables, give a choice of integrations

$$\mathcal{F}_{x} \qquad \qquad \mathcal{F}_{y}$$

$$\int_{-\infty}^{\infty} f(x,y) e^{-i\omega x} dx \qquad \qquad \int_{-\infty}^{\infty} f(x,y) e^{-i\omega y} dy$$

$$\tilde{f}(\omega,y) \qquad \qquad \tilde{f}(x,\theta)$$

$$\mathcal{F}_{y} \qquad \qquad \tilde{f}(\omega,\theta)$$

$$\mathcal{F}_{x} \qquad \qquad \mathcal{F}_{x}$$

- General idea recap
 - Start with a PDE
 - Apply the Fourier transform
 - Get an easier equation to solve in the frequency domain
 - Solve it 'over there'
 - Apply the inverse Fourier transform to 'get back'
 - We have a solution to our original problem

- Example
 - Wave equation in one spatial and one time dimension

- Example
 - Wave equation in one spatial and one time dimension

$$\int_{-\infty}^{\infty} u_{tt}(x,t) e^{-i\omega x} dx = \int_{-\infty}^{\infty} c^2 u_{xx}(x,t) e^{-i\omega x} dx$$

$$\frac{\partial^2}{\partial t^2} \int_{-\infty}^{\infty} u(x,t) e^{-i\omega x} dx = c^2 \int_{-\infty}^{\infty} \frac{\partial^2 u(x,t)}{\partial x^2} e^{-i\omega x} dx$$

$$\tilde{u}(\omega,t) \qquad \qquad -\omega^2 \, \tilde{u}(\omega,t)$$

$$\frac{\partial^2 \tilde{u}(\omega,t)}{\partial t^2} = -c^2 \omega^2 \tilde{u}(\omega,t)$$

- Example
 - Wave equation in one spatial and one time dimension

$$\frac{\partial^2 \tilde{u}(\omega, t)}{\partial t^2} = -c^2 \omega^2 \tilde{u}(\omega, t)$$

- Treat ω as a constant parameter and write $U(t) = \tilde{u}(\omega, t)$
- Obtain an ODE $\frac{\partial^2 U(t)}{\partial t^2} = -c^2 \omega^2 U(t)$
- Solve ODE $U(t) = \tilde{u}(\omega, t) = F e^{-i\omega ct} + G e^{i\omega ct}$

Formula
$$\frac{d^2u}{dx^2} = -\lambda^2 u$$
 $u(x) = Ae^{\lambda i x} + Be^{-\lambda i x}$

- Example
 - Wave equation in one spatial and one time dimension
- Solution in the Fourier Domain

$$U(t) = \tilde{u}(\omega, t) = F e^{-i\omega ct} + G e^{i\omega ct}$$

• F, G constants w.r.t variable t but they can depend on ω ! And make explicit that *all* functions live in the Fourier domain (use tilde notation)

$$\tilde{u}(\omega,t) = \tilde{F}(\omega) e^{-i\omega ct} + \tilde{G}(\omega) e^{i\omega ct}$$

$$\mathcal{F}_{\omega}^{-1}$$

$$u(x,t) = ?$$

- Example
 - Wave equation in one spatial and one time dimension
- Inverse transform

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\tilde{F}(\omega) e^{-i\omega ct} + \tilde{G}(\omega) e^{i\omega ct} \right) e^{i\omega x} d\omega$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{F}(\omega) e^{-i\omega ct} e^{i\omega x} d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{G}(\omega) e^{i\omega ct} e^{i\omega x} d\omega$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{F}(\omega) e^{i\omega (x-ct)} d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{G}(\omega) e^{i\omega (x+ct)} d\omega$$

- Example
 - Wave equation in one spatial and one time dimension
- Inverse transform

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{F}(\omega) e^{i\omega} \, \mathcal{C} \, d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{G}(\omega) e^{i\omega} \, \mathcal{B} \, d\omega$$

$$\alpha = x - ct$$
 $\beta = x + ct$

Now we have a pair of 'standard' Inverse FTs, so

$$u(x,t) = F(\alpha) + G(\beta)$$

$$u(x,t) = F(x - ct) + G(x + ct)$$

General Solution to the wave equation

Re-cap

$$u_{tt}(x,t) = c^2 u_{xx}(x,t)$$

Wave equation

$$\mathcal{F}_x$$

FT both sides

$$\frac{\partial^2 U(t)}{\partial t^2} = -c^2 \omega^2 U(t) \qquad U(t) = \tilde{u}(\omega, t) \quad \text{ODE in Fourier domain}$$

$$\tilde{u}(\omega, t) = \tilde{F}(\omega) e^{-i\omega ct} + \tilde{G}(\omega) e^{i\omega ct}$$

Solution in Fourier domain

$$u(x,t) = F(x - ct) + G(x + ct)$$

Inverse FT to obtain General Solution

Wave Equation General Solution

$$u(x,t) = F(x-ct) + G(x+ct)$$

• Without auxiliary conditions, F and G can be any functions of x - ct and x + ct, E.g., with c=2

$$F(x, t) = \sin(x-2t)$$
 $G(x, t) = 7(x + 2t)^3$

Solution is sum of leftward and rightward travelling waves

Wave Equation

Well-posed PDE

• If auxiliary conditions are *initial* conditions on u and u_t

Find
$$u_{tt}(x, t) = c^2 u_{xx}(x, t)$$
 where $u(x, 0) = p(x)$ and $u_t(x, 0) = 0$

$$u(x, 0) = p(x)$$

$$u_t(x, 0) = 0$$

• Then we can use

$$F(x-ct) = \frac{1}{2}p(x-ct)$$

$$F(x-ct) = \frac{1}{2}p(x-ct) \qquad G(x+ct) = \frac{1}{2}p(x+ct)$$

• Which gives the particular solution

$$u(x,t) = \frac{1}{2}p(x-ct) + \frac{1}{2}p(x+ct)$$

- Exercise: Prove that, for any p, that this solution satisfies
 - the PDE
 - the initial conditions

- Fourier for steady state signal
- Laplace for transient signal

$$\bar{f}(s) = \int_0^\infty f(t) e^{-s t} dt$$

- Response to pulses, step functions, delta functions,
- Basis: a set of exponentials

https://johnflux.com/2019/02/12/laplace-transform-visualized/

• Can be looked up for common functions, e.g.

	f(t)	$\bar{f}(s)$	
Original (time/space) domain	1	$\frac{1}{s}$	
	t	$\frac{\frac{1}{s^2}}{\frac{s^2}{s^2}}$	Laplace
	$\sin t$	$\frac{s^2}{s^2+1}$	(frequency)
	e^{at}	$\frac{a}{s-a}$	domain
	•	•	

- Important properties relating to differential equations
- Laplace transform of first derivative

$$\mathcal{L}[f'(t)] = \int_0^\infty f'(t) e^{-st} dt$$

Can use integration by parts to show that

$$\mathcal{L}[f'(t)] = -f(0) + s\mathcal{L}[f(t)]$$

And higher order: replace f for f'

$$\mathcal{L}[f''(t)] = -f'(0) + s\mathcal{L}[f'(t)]$$

$$\mathcal{L}[f''(t)] = -f'(0) - s f(0) + s^2 \mathcal{L}[f(t)]$$

General idea

- Start with a PDE
- Apply Laplace transform
- Get an easier equation in the Laplace domain
- Solve it 'over there'
- Apply the inverse Laplace transform to 'get back'
- We have a solution to our original problem

Issues:

Very similar to use of Fourier Transform but ...

Harder to analytically invert than for the FT

In the discrete case, the counterpart is the z-transform (Signal and Image processing module?)

Laplace transform: example

ODE: First order linear, constant coefficients

$$A\frac{\partial f}{\partial t} + Bf + C = 0$$

Apply LT:

$$A\mathcal{L}\left[\frac{\partial f}{\partial t}\right] + B\mathcal{L}[f] + C\mathcal{L}[1] = 0$$

• Rules for LT:

$$A\left(-f(0) + s\bar{f}(s)\right) + B\bar{f}(s) + C\frac{1}{s} = 0$$

• Obtain a simple equation in f(s)

Laplace transform: example

ODE: First order linear, constant coefficients

$$A\frac{\partial f}{\partial t} + Bf + C = 0$$

• Rearrange $A\left(-f(0) + s\bar{f}(s)\right) + B\bar{f}(s) + C\frac{1}{s} = 0$

$$\bar{f}(s) = \frac{As f(0) - C}{s(As + B)}$$

- Now get the inverse.
- Popular in linear time invariant systems

Time domain

Frequency domain

Laplace transform: multivariate

• E.g two variables, give a choice of integrations

Laplace transform: multivariate

- When applying to a PDE, choose the one that gives the simplest resulting equation in the Laplace domain.
 - Example: diffusion equation

Learning objectives

- Toolkit to solve PDEs
 - Identify the basic integral calculus necessary for PDEs; e.g. surface integrals or the divergence theorem
 - Become familiar with a fundamental conservation law and use it to derive PDEs in specific physical contexts (e.g. diffusion)
- Methods to solve PDEs
 - Review the ABC in ODEs
 - Separation of variables
 - Integral transforms: Fourier and Laplace

Biomedical Engineering 5CCYB070

COMPUTATIONAL METHODS

Lecture 14 Vector Calculus and PDEs II

11 Math tools and definitions

02

Finite diferences

