Laboratorio di Fisica 1 R2: Misura costante elastica di una molla

Gruppo 17: Bergamaschi Riccardo, Graiani Elia, Moglia Simone

04/10/2023 - 11/10/2023

Sommario

Il gruppo di lavoro ha misurato la costante elastica di una molla con due metodi distinti.

1 Materiali utilizzati e strumenti di misura

- 3 campioni solidi A, B, C (con forme approssimabili a parallelepipedi) con masse m_A, m_B, m_C distinte;
- Uno specchio, per evitare errori di parallasse;
- Una livella.

Nome	Soglia	Portata	Sensibilità
Fototraguardo con contatore di impulsi	1 μs	$99999999\mu s$	$1\mathrm{\mu s}$
Righello	$0.1\mathrm{cm}$	$60.0\mathrm{cm}$	$0.1\mathrm{cm}$
Bilancia di precisione	$0.01\mathrm{g}$	$6200.00\mathrm{g}$	$0.01\mathrm{g}$

2 Esperimento e procedimento di misura

2.1 Misurazione della costante elastica nel caso statico

- 1. Fissiamo il righello davanti allo specchio, parallelo alla direzione del campo gravitazionale locale e solidale all'estremo fisso della molla. Individuiamo un punto del sistema, solidale all'estremo libero della molla, che terremo come riferimento per misurare l'allungamento della molla: ne misuriamo allora la posizione x_0
- 2. Consideriamo i tre campioni (e tutte le combinazioni possibili):
 - \bullet Ne misuriamo la massa m_i con la bilancia di precisione;

Appeso il grave alla molla, ne misuriamo l'allungamento (Δx)_i, sottraendo x₀ alla misura x_i della sua posizione (δ(Δx)_i = δx₀ + δx_i).
Per ridurre ulteriormente la probabilità di commettere un errore di parallasse, ripetiamo il procedimento tre volte, tenendo solamente la misura più vicina alla media.

2.2 Misurazione della costante elastica nel caso dinamico

- 1. Accendiamo il contatore di impulsi e lo impostiamo su *Universal Counter* e su 20 oscillazioni;
- 2. Consideriamo, nel caso dinamico, il campione A, B, C e A + B:
 - Appeso il campione alla molla, allineiamo i due fototraguardi aiutandoci con la livella, in modo tale che possano rilevare le oscillazioni;
 - Tiriamo il campione verso il basso e poi lo rilasciamo, in modo che il sistema molla inizi a oscillare con direzione parallela al campo gravitazionale locale;
 - Una volta verificato che l'oscillazione sia stabile, facciamo partire il contatore di impulsi, che misurerà il tempo impiegato per compiere 20 oscillazioni;

3 Dati raccolti e conclusioni

Di seguito sono riportate tutte le misure effettuate direttamente, così come quelle calcolate come descritto.

Parallelepipedo	x (mm)	y (mm)	z (mm)
Misura 1	39.90 ± 0.05	64.60 ± 0.05	5.01 ± 0.01
Misura 2	39.90 ± 0.05	64.40 ± 0.05	4.99 ± 0.01
Misura 3	39.90 ± 0.05	64.40 ± 0.05	4.98 ± 0.01
Misura tenuta	39.90 ± 0.05	64.40 ± 0.05	4.99 ± 0.01

Cilindro 1	h (mm)	d (mm)
Misura 1	24.83 ± 0.01	27.95 ± 0.05
Misura 2	24.82 ± 0.01	28.05 ± 0.05
Misura 3	24.83 ± 0.01	28.00 ± 0.05
Misura tenuta	24.83 ± 0.01	28.00 ± 0.05

Sfera	d (mm)
Misura 1	20.63 ± 0.01
Misura 2	20.63 ± 0.01
Misura 3	20.64 ± 0.01
Misura tenuta	20.63 ± 0.01

Cilindro 2	h (mm)	d (mm)
Misura 1	77.75 ± 0.05	6.97 ± 0.01
Misura 2	77.80 ± 0.05	6.97 ± 0.01
Misura 3	77.80 ± 0.05	6.98 ± 0.01
Misura tenuta	77.80 ± 0.05	6.97 ± 0.01

Campione	m (g)	$V (\rm cm^3)$	$\rho \ (\mathrm{g/cm^3})$
Parallelepipedo	107.40 ± 0.01	12.87 ± 0.05	8.34 ± 0.03
Cilindro 1	41.21 ± 0.01	15.29 ± 0.06	2.695 ± 0.011
Sfera	35.81 ± 0.01	4.597 ± 0.007	7.789 ± 0.014
Cilindro 2	8.00 ± 0.01	2.97 ± 0.01	2.695 ± 0.013

Campione	$\rho \ (\mathrm{g/cm^3})$	Materiale	$\rho_{\rm lett.}~({\rm g/cm^3})$	ε
Parallelepipedo	8.34 ± 0.03	Ottone giallo (high brass)	8.47 ± 0.01	2.5
Cilindro 1	2.695 ± 0.011	Lega di Al laminato 3003	2.73 ± 0.01	1.7
Sfera	7.789 ± 0.014	Acciaio	7.8 ± 0.1	0.1
Cilindro 2	2.695 ± 0.013	Lega di Al laminato 3003	2.73 ± 0.01	1.5

L'inconsistenza non trascurabile tra ρ (le nostre misure) e $\rho_{\rm lett.}$ è dovuta principalmente al fatto che si tratta di leghe; probabilmente, i nostri campioni presentavano concentrazioni diverse dei vari elementi.