北京科技大学布科生2011级第二学期

高等数学(AII)期末考试试卷(A)

班级	姓名	学	-

	_	11	三				四		平时分	总分
题号			13	14	15	16	17	18		
得分										
签名										

一、填空题(本题共6小题,每小题4分,满分24分)

1. 设
$$f(u,v)$$
 具有二阶连续偏导数,且 $w = f(x+y+z,xyz)$,则 $\frac{\partial^2 w}{\partial x \partial z} =$ _______.

2. 设向量场
$$\vec{u} = xy^2\vec{i} + ye^z\vec{j} + x\ln(1+z^2)\vec{k}$$
, 则 $\text{div } \vec{u}|_{(1,1,0)} =$ _____.

3.设
$$2\sin(x+2y-3z) = x+2y-3z$$
 ,则 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$

4. 设
$$L$$
 为圆周 $x^2 + y^2 = ax$,则 $\oint_L \sqrt{x^2 + y^2} \, ds = _____.$

5. 曲面
$$x^2 + y^2 + z^2 = 14$$
 在点 $P(1,2,3)$ 处的法线方程为 ______.

6. L 的方向角分别为 60° , 45° , 60° ,则 f(x,y,z)=xy+yz+zx 在点(1,1,2)处沿方向 L 的方向导数_____.

二、单选题(本题共6小题,每小题4分,满分24分)

7. 设函数
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 , 则在原点 $(0,0)$ 处 $(0,0)$

- (A) $6\vec{i}$ (B) $3\vec{j}$ (C) $2\vec{k}$ (D) $6\vec{i} + 3\vec{j}$

9. 方程 $\left\{ \frac{x^2}{4} + \frac{y^2}{9} = 1 \right\}$ 在空间解析几何中表示什么 ()

- (A) 椭圆柱面
- (B) 两条平行直线.
- (C) 两个平行面
- (D) 椭圆曲线.

10. 设 f(x, y) 与 $\varphi(x, y)$ 均为可微函数, 且 $\varphi'_{y}(x, y) \neq 0$, 已知 (x_{0}, y_{0}) 是 f(x, y) 在约束条件 $\varphi(x,y) = 0$ 下的一个极值点,下列选项正确的是

- (B) 若 $f'_{\nu}(x_0, y_0) \neq 0$,则 $f'_{\nu}(x_0, y_0) \neq 0$.
- (C) <math><math>f'_{v}(x_{0}, y_{0}) \neq 0 , <math><math><math><math><math>f'_{v}(x_{0}, y_{0}) = 0 .
- (D) 若 $f'_{\nu}(x_0, y_0) = 0$,则 $f'_{\nu}(x_0, y_0) \neq 0$.

11. 设有空间区域 Ω_1 : $x^2 + y^2 + z^2 \le R^2$, $z \ge 0$ 及

 Ω_2 : $x^2 + y^2 + z^2 \le R^2$, $x \ge 0$, $y \ge 0$, $z \ge 0$,

- (A) $\iiint_{\Omega_{1}} x dv = 4 \iiint_{\Omega_{2}} x dv$ (B) $\iiint_{\Omega_{1}} y dv = 4 \iiint_{\Omega_{2}} y dv$ (C) $\iiint_{\Omega_{1}} z dv = 4 \iiint_{\Omega_{2}} z dv$ (D) $\iiint_{\Omega_{1}} xyz dv = 4 \iiint_{\Omega_{2}} xyz dv$

12. 设 $y = e^x$ 是微分方程 xy' + p(x)y = x 的一个解,则该方程的通解为 ()

- (A) $y = e^x + Ce^{x+e^{-x}}$ (B) $y = e^x + e^{x+e^{-x}} + C$
- (C) $y = C e^{x+e^{-x}}$ (D) $y = e^x + e^{x+e^{-x}}$

三、解答题(本题共 4 小题,满分42分)

13(10分). 一均匀物体(密度 ρ 为常数)占有的闭区域 Ω 由曲面 $z=x^2+y^2$ 和平面 z = 0, |x| = a, |y = a| 所围成,求物体关于 z 轴的转动惯量.

14. (10分). 计算曲线积分 $\int_L (2xy+y+1) dx + (x^2+2x+y^2) dy$, 其中 L 是在圆周 $y = \sqrt{4x-x^2}$ 上由点 A(4,0) 到点到点0(0,0)的一段弧.

15(11分). 设函数 f(x) 具有二阶连续导数,且 f(0) = 0, f'(0) = -1,已知曲面积分 $\int_{L} [x - 6f(x)] \sin y \, dx - [5f(x) - f'(x)] \cos y \, dy$ 与路径无关,求 f(x).

16(11分). 设 Σ 是介于平面 z = 0 及 z = R 之间的圆柱面 $x^2 + y^2 = R^2$, 计算 $\iint_{\Sigma} \frac{\mathrm{d} S}{x^2 + y^2 + z^2}$.

四、综合题(本题共2小题,每小题5分,满分10分)

17. 设 f(x) 有二阶连续导数, $z = f(e^x \sin y)$ 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = ze^{2x}$, 求 f(u).

18. 设 ∑ 为曲面
$$1 - \frac{z}{5} = \frac{(x-2)^2}{16} + \frac{(y-1)^2}{9} (z \ge 0)$$
 的上侧, D 为圆域 $x^2 + y^2 \le 1 (z = 0)$, 且
$$\iint_{\Sigma} \frac{x \, \mathrm{d} \, y \, \mathrm{d} \, z + y \, \mathrm{d} \, z \, \mathrm{d} \, x + z \, \mathrm{d} \, x \, \mathrm{d} \, y}{\sqrt{(x^2 + y^2 + z^2)^3}} = \lambda \iint_{D} \mathrm{e}^{\lambda (x^2 + y^2)} \, \mathrm{d} \, x \, \mathrm{d} \, y$$
, 其中 λ 为正常数,求 λ .