CHII

$$y_{2} = d_{2}(d_{1}y_{2} + \ell_{1}) + \beta_{1}\chi_{1} + \beta_{2}\chi_{2} + \ell_{2}$$

$$y_{2}(1 - d_{1}d_{2}) = \beta_{1}\chi_{1} + \beta_{2}\chi_{2} + (d_{2}\ell_{1} + \ell_{2})$$

$$y_{2} = \frac{\beta_{1}}{1 - d_{1}d_{2}}\chi_{1} + \frac{\beta_{2}}{1 - d_{1}d_{3}}\chi_{2} + \frac{d_{2}\ell_{1} + \ell_{2}}{1 - d_{1}d_{2}}$$

$$\overline{D_{1}} = \frac{\beta_{1}}{1 - d_{1}d_{2}}, \overline{D_{2}} = \frac{\beta_{2}}{1 - d_{1}d_{2}}, \overline{V_{2}} = \frac{d_{3}\ell_{1} + \ell_{2}}{1 - d_{1}d_{2}}$$

$$Cov(Y_{2}, e_{1}|X) = E(Y_{2}, e_{1}|X)$$

$$= E\left[\left(\frac{\beta_{1}}{1-d_{1}d_{2}}X_{1} + \frac{\beta_{2}}{1-d_{1}d_{2}}X_{2} + \frac{d_{2}e_{1}+e_{2}}{1-d_{1}d_{2}}\right)e_{1}|X\right]$$

$$= E\left[\left(\frac{\beta_{1}}{1-d_{1}d_{2}}X_{1}e_{1}|X\right)\right] + E\left[\left(\frac{\beta_{2}}{1-d_{1}d_{2}}X_{2}e_{1}|X\right)\right] + E\left[\left(\frac{d_{2}e_{1}+e_{2}}{1-d_{1}d_{2}}e_{1}|X\right)\right]$$

$$= E\left[\left(\frac{d_{2}e_{1}+e_{2}}{1-d_{1}d_{2}}e_{1}|X\right)\right]$$

$$= \frac{d_{2}E(e_{1}^{*}|X) + E(e_{1}e_{2}|X)}{1-d_{1}d_{2}} = \frac{d_{2}O_{1}^{**}}{1-d_{1}d_{2}} > 0 \quad \text{unless } d_{2} > 0.$$

- (b) Since both equations have endogeneous variables, the OLS is biased and consistent.
- (c) Since M=2 and 2-1=1, at least 1 variable needs to be omitted from equations.
 - (1) It omitted two exogeneous varibables. --- "identified"
 - (2) It omitted no variables. --- "not identified"

(d)
$$E(X_{11} V_{11} | X) = E(X_{12} V_{12} | X) = 0$$

Therefore. $E[X_{1k} (\frac{d_1 l_1 + l_2}{1 - d_1 d_2} | X)] = E[\frac{d_1}{1 - d_1 d_2} l_1 X_{1k} | X] + E[\frac{1}{1 - d_1 d_2} l_2 X_{1k} | X] = 0$.

(e)
$$\int_{1}^{1} \frac{d}{d\pi_{1}} \sum (y_{2} - \pi_{1}X_{1} - \pi_{2}X_{2})^{2} = \sum (y_{2} - \pi_{1}X_{1} - \pi_{2}X_{2}) \times (-X_{1}) = 0 \longrightarrow N^{-1} \sum X_{i1} (y_{2} - \pi_{1}X_{i1} - \pi_{2}X_{i2}) = 0$$

$$\int_{1}^{1} \frac{d}{d\pi_{2}} \sum (y_{2} - \pi_{1}X_{1} - \pi_{2}X_{2})^{2} = \sum (y_{2} - \pi_{1}X_{1} - \pi_{2}X_{2}) \times (-X_{2}) = 0 \longrightarrow N^{-1} \sum X_{i2} (y_{2} - \pi_{1}X_{i1} - \pi_{2}X_{i2}) = 0$$

(f)
$$\int_{-\infty}^{\infty} \sum \chi_{i1} (y_2 - \pi_1 \chi_{i1} - \pi_2 \chi_{i2}) = 0 \rightarrow \sum \chi_{i1} y_2 - \pi_1 \sum \chi_{i1}^2 - \pi_2 \sum \chi_{i1} \chi_{i2} = 0 \rightarrow 3 - \pi_1 = 0$$
, $\pi_1 = 3$
 $\sum \chi_{i2} (y_2 - \pi_1 \chi_{i1} - \pi_2 \chi_{i2}) = 0 \rightarrow \sum \chi_{i2} y_2 - \pi_1 \sum \chi_{i1} \chi_{i2} - \pi_2 \sum \chi_{i2}^2 = 0 \rightarrow 4 - \pi_2 = 0$, $\pi_2 = 4$

h) To prove
$$\widehat{\Delta}_{1,2SLS} = \frac{\Sigma \widehat{Y}_{2}Y_{1}}{\Sigma \widehat{Y}_{2}V_{2}} = \widehat{\Delta}_{1}$$
, we need to prove $\Sigma \widehat{Y}_{2}V_{2} = \Sigma \widehat{Y}_{2}Y_{2}$.

And, $\Sigma \widehat{Y}_{2}V_{2} = \Sigma \widehat{Y}_{2}(Y_{2} - \widehat{V}_{2}) = \Sigma \widehat{Y}_{2}Y_{2} - \Sigma \widehat{Y}_{2}\widehat{V}_{2} = \Sigma \widehat{Y}_{2}Y_{2}$.

16.

(a) d, + d>Pi + edi = B, + B>Pi + B>Di + esi

$$(d - \beta) Pi = (\beta_1 - d_1) + \beta_2 \lambda_i + (esi - edi)$$

$$| \hat{\beta}_{i} = \frac{\hat{\beta}_{1} - \hat{d}_{1}}{\hat{d}_{2} - \hat{\beta}_{2}} + \frac{\hat{\beta}_{2}}{\hat{d}_{2} - \hat{\beta}_{2}} | \hat{\lambda}_{i} + \frac{\hat{e}_{si} - \hat{e}_{di}}{\hat{d}_{a} - \hat{\beta}_{2}}$$

$$Q_i = d_1 + d_2 \left(\frac{\beta_1 - d_1}{Q_2 - \beta_2} + \frac{\beta_3}{d_2 - \beta_2} \right)_i + \frac{e_{si} - e_{si}}{Q_2 - \beta_2} \right) + e_{di}$$

$$\begin{array}{l} (d_{2}-\beta_{2}) \, P_{i} = (\beta_{1}-d_{1}) \, \uparrow \, \beta_{2} \, \mathcal{N}_{i} \, + \, (e_{3i}-e_{di}) \\ P_{i} = \frac{\beta_{1}-d_{1}}{\sigma_{2}-\beta_{2}} \, \uparrow \, \frac{\beta_{2}}{d_{2}-\beta_{2}} \, \mathcal{N}_{i} \, + \, \frac{e_{si}-e_{di}}{\sigma_{2}-\beta_{2}} \\ Q_{i} = d_{1} \, \uparrow \, d_{2} \, (\frac{\beta_{1}-d_{1}}{\sigma_{2}-\beta_{2}} \, \uparrow \, \frac{\beta_{2}}{d_{2}-\beta_{2}} \, \mathcal{N}_{i} \, \uparrow \, \frac{e_{si}-e_{di}}{\sigma_{2}-\beta_{2}} \,) \, + \, e_{di} \\ Q_{i} = d_{1} \, \uparrow \, \frac{\beta_{1}-d_{1}}{\sigma_{2}-\beta_{2}} \, d_{2} \, \uparrow \, \frac{\beta_{3}}{d_{2}-\beta_{2}} \, \mathcal{N}_{i} \, d_{2} \, \uparrow \, \frac{e_{si}-e_{di}}{\sigma_{2}-\beta_{2}} \, d_{2} \, \uparrow \, e_{di} \\ \end{array}$$

- (b) Since M=2 and 2-1=1, at least 1 variable needs to be omitted from equations.
 - (1) It omitted two exogeneous varibables. --- "identified"
 - (2) It omitted no variables. -- "not identified"

(c)
$$\hat{Q} = 5 + 0.5 N \longrightarrow 5 + 0.5 N = d_1 + d_2 (24 + N) = (d_1 + 24 d_2) + d_2 N$$

 $\hat{P} = 24 + N \longrightarrow d_1 = 38. d_2 = 0.5$

(d) P=2.4+ W

$$\widehat{Q}_{\nu} = \frac{\sum (\widehat{r}_i - \overline{r})(Q_i - \overline{Q})}{\sum (\widehat{r}_i - \overline{r})^{\nu}} = \frac{1}{\nu}$$

17.							
(a)	Since M=8 a Consumption —	nd 8-)=7, at le It omitted (o e	east 7 Var xogeneous vo	iable needs Aribables.	to be	omitted fro	m equations.
	Investment —	It omitted 1) e	xogeneous vo	iribables.			
	Nage — It omitted 1) exogeneous varibables.						
	•	ns are "identified."					
(b)	endogeneous variables exogeneous variables Consumption —						
	Consumption —	v	4	5	0 1-2		
	Investment —	1	4	5			
	Dage —	1	4	5			
	all function	s are satisfied.		•			
	all lanchon	19 are Suproffled.					
(0)	Wit = Tri+ Troge + Tro Dot + Tra Txo + Tro TIME+ + TroPt-1 + Tra K+-1 + Tro Et-1 + V						
. [(A)						
(d)	1. Get Dir Fron						
2. Use the same method as Pt. 3. Create Ust = Dist Ust							
	4. Regress CNt	by OLS.					
,0,	Two agafficient (vill be the same,	امر خارما	الد ما الدر م	IIt		
(b)	IMO COETTIONENE	JIII de me sume,	OUP P-VAIL	ie wiii de ai	illerent.		