E85F2105

1T 8051 内核 AD 型 8 位微控制器

Part No.	Core	FLASH	RAM	I/O	Timer	PWM	ACP	ADC	SPI	IIC	UART	Package
E85F2105	1T 8051	16KByte	1KByte	18	4 x 16Bit	3 x 2Ch	1	12 Bit	1	1x3Ch	1 x 4Ch	20/16/8

1 产品特性

▶ 内核

- O 1T 8051 内核, 兼容标准 8051 指令集
- O 内核最高工作频率 16MHz

▶ 存储

- 16K字节 MAIN FLASH 程序存储器,支 持 IAP(应用中自编程)功能(IAP操 作时 CPU 暂停运行)
- 512 字节 DATA FLASH 数据存储器,支 持 IAP(应用中自编程)功能(IAP操 作时 CPU 暂停运行)
- 〇 核内 256 字节 SRAM,核外 768 字节 SRAM

> 复位

- O 内置上电复位 POR
- O 内置掉电复位 BOR, 支持 4 档掉电检测 电压 2.1V, 2.5V, 3.7V, 4.2V
- O 支持外部复位端口 RSTN, 低电平复位

≻ 时钟

- 外部 2-20MHz 晶体振荡器,支持振荡器 停振检测功能
- 〇 内部 16MHz 高精度振荡器(出厂校准 精度<±1%,全温工作精度<±2%)
- O 内部 16KHz 低功耗振荡器

▶ 工作条件

- VDD 工作电压范围 2.0~5.5V
- O VREF 工作电压范围 2.6~5.5V
- 工作温度范围 -40~85℃

> 低功耗

- 支持 IDLE 和 SLEEP 两种低功耗模式
- 〇 待机睡眠功耗典型值 3uA
- O 16KHz 运行功耗典型值 25uA
- O 16MHz运行功耗典型值3mA

> 端口

- 最多支持 18 个 I/O 端口
- 〇 所有端口支持独立弱上拉和弱下拉控制
- 〇 16 个端口支持外部中断功能
- 〇 最多支持 10 个大电流驱动输出口,最 大灌电流 80mA

▶ 外设

- 4路16位定时/计数器TMR
- O 3路边沿捕捉器 CAP
- 3 组独立 16 位脉宽调制器 PWM,每组 支持 2 个 PWM 输出通道
- 〇 1路 IIC 总线控制器,支持3组分时通讯端口
- O 1路 UART 收发器,支持4组分时通信端口
- O 1路 SPI 收发器
- O 内置低电压检测模块 LVD
- O 1路模拟比较器 ACP
- 12 通道 12 位 SAR 结构 ADC,最高采 样率 500KHz
- O 内置多档可选高精度参考电压 VREF (出厂校准精度<±10mV)

> 封装

O TSSOP20/SOP16/SOP8

2 管脚配置

E85F2105TF

图表 1 TSSOP20 脚封装顶视图

E85F2105PE

图表 2 SOP16 脚封装顶视图

E85F2105PB

图表 3 SOP8 脚封装顶视图

注:SOP8 封装中, P17 和 P20 通过内部打线连接于同一管脚。

*ISP_SCK, ISP_SDA 为编程管脚;同时建议在布板时将 P00 一并接出;P00 作为复位管脚使用时将参与编程时序的运行 *TMS, TCK, TDI, TDO 为仿真管脚

*P01、P02、 P05、P06、P07、P10、P11、P12、P16、P17 为大电流输出口

下表格中"其他"为模拟管脚功能或配置字控制的功能。作为模拟管脚使用时管脚输出功能需关闭,建议也将输入功能关闭。

其他	FUN3	FUN2	FUN1	FUN0	Р	PIN		FUN1	FUN2	FUN3	其他
RSTN	_	STP0	_	P00	P00	VDD		VDD			
_	SCL	RX	PWM20	P01*	P01	P21	P21	PWM01/TIN2	TX	SCL	AN0
_	SDA	TX	PWM21	P02*	P02	P20	P20	PWM00/CAP2	RX	SDA	AN1/ACPP2
XOSCN	SCL	RX	TIN1	P03	P03	P17	P17*	PWM11	MISO	TGT0	AN2/VREFP
XOSCP	SDA	TX	TIN2	P04	P04	P16	P16*	PWM10	MOSI	TGT1	AN3/ACPP1
_	TGT0	ACPO	PWM00/CAP0	P05*	P05	P15	P15	PWM01	SCK	TGT2	AN4/LVDIN
_	TGT1	STP1	PWM01/TIN0	P06*	P06	P14	P14	PWM00	SS	TGT3/ACPO	AN5
AN10	TGT2	RX	PWM10/TIN1	P07*	P07	P13	P13	TIN3	STP2	_	AN6/ACPN
AN9	TGT3	TX	PWM11/CAP1	P10*	P10	P12	P12*	PWM21	_	_	AN7/ACPP0
VSS					VSS	P11	P11*	PWM20	ACPO	STP	AN8

图表 4 E85F2105 管脚复用表

PIN	符号	描 述	Px_FUN	Px_IE	Px_OE	Px_ODE	其他
	P00	通用 I/O	00	Х	x	х	_
P00	STP0	PWM0 刹车输入	10	1	0	0	_
	RSTN	芯片外部复位输入	xx	Х	х	Х	RSTN_EN=1
	P01	通用 I/O (大电流输出)	00	Х	х	х	_
D01	PWM20	PWM2 通道 0 输出	01	Х	1	0	_
P01	RX	UART 接收端	10	1	0	0	_
	SCL	IIC 时钟线	11	1	1	1	_
	P02	通用 I/O (大电流输出)	00	Х	х	х	_
P02	PWM21	PWM2 通道 1 输出	01	Х	1	0	_
P02	TX	UART 发送端	10	Х	1	0	_
	SDA	IIC 数据线	11	1	1	1	_
	P03	通用 I/O	00	Х	х	Х	_
	TIN1	TMR1 外部时钟输入	01	1	0	Х	_
P03	RX	UART 接收端	10	1	0	0	_
	SCL	IIC 时钟线	11	1	1	1	_
	XOSCN	外部振荡器端口(输出)	XX	Х	x	Х	XOSC 使能
	P04	通用 I/O	00	Х	х	Х	_
	TIN2	TMR2外部时钟输入	01	1	0	Х	_
P04	TX	UART 发送端	10	Х	1	0	_
	SDA	IIC 数据线	11	1	1	1	_
	XOSCP	外部振荡器端口(输入)	xx	Х	x	х	XOSC 使能
	P05	通用 I/O (大电流输出)	00	Х	х	Х	_
	PWM00	PWM0 通道 0 输出	01	Х	1	0	_
P05	CAP0	CAP0 捕捉输入	01	1	0	Х	_
	ACPO	模拟比较器输出	10	Х	1	0	_
	TGT0	TMR0 门控输入	11	1	0	Х	_
	P06	通用 I/O (大电流输出)	00	Х	х	Х	_
	PWM01	PWM0 通道 1 输出	01	Х	1	0	_
P06	TIN0	TMR0 外部时钟输入	01	1	0	Х	_
	STP1	PWM1 刹车输入	10	1	0	х	_
	TGT1	TMR1 门控输入	11	1	0	x	_
	P07	通用 I/O (大电流输出)	00	Х	Х	Х	_
P07	PWM10	PWM1 通道 0 输出	01	Х	1	0	
FU/	TIN1	TMR1 外部时钟输入	01	1	0	х	_
	RX	UART 接收端	10	1	0	0	_

-2552

PIN	符号	描 述	Px_FUN	Px_IE	Px_OE	Px_ODE	其他
	TGT2	TMR2 门控输入	11	1	0	Х	_
	AN10	ADC 通道 10	xx	0	0	х	_
	P10	通用 I/O (大电流输出)	00	Х	х	Х	_
	PWM11	PWM1 通道 1 输出	01	Х	1	0	
P10	CAP1	CAP1 捕捉输入	01	1	0	Х	
P 10	TX	UART 发送端	10	Х	1	0	
	TGT3	TMR3 门控输入	11	1	0	x	
	AN9	ADC 通道 9	xx	0	0	х	_
	P11	通用 I/O (大电流输出)	00	Х	х	Х	_
	PWM20	PWM2 通道 0 输出	01	Х	1	0	_
P11	ACPO	模拟比较器输出	10	Х	1	0	_
	STP	PWM 刹车输入	11	1	0	0	
	AN8	ADC 通道 8	xx	0	0	Х	
	P12	通用 I/O (大电流输出)	00	Х	Х	Х	_
P12	PWM21	PWM2 通道 1 输出	01	Х	1	0	_
PIZ	AN7	ADC 通道 7	XX	0	0	Х	_
	ACPP0	ACP 正向输入端	XX	0	0	Х	_
	P13	通用 I/O	00	Х	х	Х	_
	TIN3	TMR3外部时钟输入	01	1	0	х	
P13	STP2	PWM2 刹车输入	10	1	0	0	
	AN6 ADC 通道 6		xx	0	0	Х	_
	ACPN	ACP 负向输入端	XX	0	0	Х	_
	P14	通用 I/O	00	Х	х	Х	
	PWM00	PWM0 通道 0 输出	01	Х	1	0	
P14	SS	SPI 片选信号	10	1	0	0	_
1 14	ACPO	模拟比较器输出	11	Х	1	0	_
	TGT3	TMR3 门控输入	11	1	0	Х	_
	AN5	ADC 通道 5	XX	0	0	Х	_
	P15	通用 I/O	00	Х	х	х	
	PWM01	PWM0 通道 1 输出	01	Х	1	0	_
P15	SCK	SPI 时钟信号	10	Х	х	0	_
1 13	TGT2	TMR2 门控输入	11	1	0	х	_
	AN4	ADC 通道 4	xx	0	0	х	_
	LVDIN	LVD 外部输入	XX	0	0	х	_
P16	P16	通用 I/O (大电流输出)	00	Х	Х	Х	_

PIN	符号	描 述	Px_FUN	Px_IE	Px_OE	Px_ODE	其他
	PWM10	PWM1 通道 0 输出	01	Х	1	0	_
	MOSI	SPI 主控输出从动输入	10	Х	х	х	
	TGT1	TMR1 门控输入	11	1	0	х	_
	ACP1	ACP 正向输入端 1	xx	0	0	х	
	AN3	ADC 通道 3	XX	0	0	х	_
	P17	通用 I/O (大电流输出)	00	Х	х	Х	_
	PWM11	PWM1 通道 1 输出	01	Х	1	0	_
P17	MISO	SPI 主控输入从动输出	10	Х	х	х	_
PII	TGT0	TMR0 门控输入	11	1	0	х	_
	AN2	ADC 通道 2	xx	0	0	х	_
	VREFP	ADC 外部参考输入	XX	0	0	х	
	P20	通用 I/O	00	Х	Х	Х	_
	PWM00	PWM0 通道 0 输出	01	Х	1	0	
P20	CAP2	CAP2 捕捉输入	01	1	0	х	
F20	RX	UART 接收端	10	1	0	0	
	SDA	IIC 数据线	11	1	1	1	_
	AN1	ADC 通道 1	xx	0	0	х	_
	P21	通用 I/O	00	Х	х	Х	_
	PWM01	PWM0 通道 1 输出	01	Х	1	0	_
P21	TIN2	TMR2外部时钟输入	01	1	0	х	_
PZI	TX	UART 发送端	10	Х	1	0	_
_		11.1.15	4.4	4	1	1	
	SCL	IIC 时钟线	11	1	<u> </u>	I _	

图表 5 E85F2105 管脚复用配置表

3 功能框图

图表 6 E85F2105 功能框图

4 电气特性

4.1 极限参数

存储温度 T _{STG}	55°C ~ 125°C
供电极限电压 V _{DD} -V _{SS}	0.3V ~ 6.5V
输入极限电压 V _{IN}	V _{SS} -0.3V ~ V _{DD} +0.3V
VDD 最大承载电流 I _{VDD}	100mA
VSS 最大承载电流 l _{vss}	100mA

4.2 工作条件

符号	描述	最小值	最大值	单位
F _{SYS_CLK}	系统工作频率	_	16M	Hz
VDD	工作电压	2.0	5.5	V
T _A	工作温度	-40	85	$^{\circ}$
t _{VDD}	VDD 上电斜率			us/V

4.3 DC 特性

*以下参数均为设计值

典型值测试基本条件: T_A=25℃, VDD=3V 电流测试时 I/O 输出无负载, I/O 输入不浮空。

符号	描述	最小值	典型值	最大值	单位	条件
VDD	供电电压	2.0		5.5	V	1
I _{DDH}	高速工作电流		3	_	mA	F _{SYS_CLK} =16MHz
I_{DDL}	低速工作电流		20	25	uA	F _{SYS_CLK} =16KHz
I_{DDS}	待机电流		3	10	uA	进入 PD 模式 , 所有功能关闭
V_{IL}	输入低电压	0		0.3 VDD	V	I/O 均为 SCHMITT 输入特性
V _{IH}	输入高电压	0.7 VDD		VDD	V	I/O 均为 SCHMITT 输入特性
I _{LK}	输入漏电流			±1	uA	内部上/下拉电阻关闭
V _{OL}	输出低电压	VSS+0.6			>	大电流端口 I _{OL} =60mA 非大电流端口 I _{OL} =10mA
V _{OH}	输出高电压	_	_	VDD-0.7	V	I _{OH} =10mA
R _{PU}	内部上拉电阻	_	10K	_	Ω	_
R_{PD}	内部下拉电阻	_	10K	_	Ω	_

4.4 存储器特性

存储	操作	最小值	最大值	单位	条件
	擦写次数	100,000			最小擦写时间
FLASH	数据保持时间	100		year	室温
FLASH	擦除时间	20	40	ms	_
	编程时间	20	40	us	_
SRAM	最低数据保持电压	1.5	_	V	_

4.5 AC 特性

ADC 特性

符号	描述	最小值	典型值	最大值	单位	备注
V_{ADC}	ADC 工作电压	2.6	5.0	5.5	V	使用 VREF 作为参考时最
VADC	ADC 工作电压	2.0	5.0	5.5	V	低工作电压为 2.6V
N _R	分辨率	1	1	12	bit	_
E _{IL}	积分非线性误差	_	±1	±2	LSB	_
E _{DL}	微分非线性误差	_	±1	±1	LSB	_
E _{OF}	偏置误差	_	±1	±2	LSB	_
E _{GN}	增益误差	_	±1	±2	LSB	
V _{AIN}	输入电压	VSS	_	V_{REF}	V	_
Z _{AIN}	输入阻抗	_	_	10K	Ω	
T _{AD}	ADC 时钟周期	125	_	_	nS	_
T _{CNV}	ADC 转换周期数	_	12	_	T_{AD}	不包含采样时间

ACP 特性

符号	描述	最小值	典型值	最大值	单位	备注
V_{IOF}	输入失调电压		±10	±60	mV	1
V _{ICM}	共模输入电压	0		VDD	LSB	
C_{MRR}	共模抑制比		50	_	dB	1
C _{HYS}	比较器迟滞		20		mV	
T_RR	上升沿响应时间		400	_	nS	
T_{RF}	下降沿响应时间		200	_	nS	

目录

1	产	·品特性	1 -
2	管	遠脚配置	2 ·
3	功	〕能框图	7 ·
4	电	3气特性	- 8 ·
	4.1	极限参数	8
	4.2	工作条件	8 ·
	4.3	DC 特性	8 ·
	4.4	存储器特性	9
	4.5	AC 特性	9
5	内]核	15
	5.1	描 述	15
	5.2	内核寄存器	15 ·
6	存	序储	17
	6.1	程序寻址空间映射	17 ·
	6.2	FLASH 存储器	17 ·
	6.3	用户配置信息	18
	6.4	ISP 应用考虑	21 -
	6.5	IAP 操作	22 ·
	6.6	数据寻址空间	25
7	复	夏位	32
	7.1	描述	32 ·
	7.2	复位寄存器	33
8	时] 钟	34
	ឧ 1	描述	- 34 -
		时钟寄存器	
9		E功耗	
		描 述	
10)	看门狗定时器 WDT	40
		描述	
	10.2	? WDT 寄存器	40
11		中断	41
	11.1	中断向量	41

•	11.2	? 中断优先级	- 41 -
•	11.3	3 中断寄存器	- 42 -
•	11.4	I 外部端口中断 EINT	- 43 -
•	11.5	5 定时器 TMR 中断	- 44
•	11.6	6 边沿捕捉器 CAP 中断	- 45
•	11.7	7 脉宽调制器 PWM 中断	- 46
•	11.8	3 异步收发器 UART 中断	- 47
•	11.9) IIC 总线控制器中断	- 48
•	11.1	0 SPI 模块中断	- 49
•	11.1	1 模拟模块中断	- 50
12	1/0	O 端口	- 52
	12.1	I/O 功能框图	- 52
		2 I/O 寄存器	
13		定时/计数器 TMR	- 61 -
		描述	
•	13.2	2 TMR 寄存器	- 63
14		边沿捕捉器 CAP	- 65 -
	14.1	描述	- 65
•	14.2	? CAP 寄存器	- 67 -
15		脉宽调制器 PWM	- 68
	15.1	描述	- 68
		2 PWM 寄存器	
16	11	ART 异步收发器	72
		描述	
•	16.2	2 UART 寄存器	- 75 -
17	IIC	C 总线控制器	- 77 -
	17.1	描述	- 77
		2 IIC 寄存器	
18	SI	PI 通讯端口	- 83
		描述2 SPI 寄存器	
19		模数转换器 ADC	- 87 -
	19.1	描述	- 87 -
	19.2	2 ADC 寄存器	- 88
20		模拟比较器 ACP	- 91 -

20.1	I ACP 功能框图	91 -
20.2	2 ACP 寄存器	91
21	内部参考电压 VREF	93 -
21.1	l 描述	93 -
21.2	2 VREF 寄存器	93 -
22	低电压检测 LVD	94
22.1	Ⅰ 描述	94
22.2	2 LVD 寄存器	94 -
23	指令集	95 -
23.1	l 算术运算指令	95 ·
23.2	2 逻辑操作指令	96 -
	3 数据传送指令	
	4 位操作指令	
23.5	5程序转移指令	98 -
24	封装尺寸图	99 .

图表目录

图表 1 TSSOP20 脚封装顶视图
图表 2 SOP16 脚封装顶视图 2
图表 3 SOP8 脚封装顶视图 2
图表 4 E85F2105 管脚复用表 3
图表 5 E85F2105 管脚复用配置表6
图表 6 E85F2105 功能框图
图表 7 程序存储空间映射图 17
图表 8 INFO FLASH 映射图18
图表 9 ISP 复用端口定义图 21
图表 10 IAP 操作流程图 22
图表 11 数据寻址空间映射图 25
图表 12 系统时钟源功能框图 34
图表 13 外部振荡器 XOSC 连接示意图 34
图表 14 中断向量表 41
图表 15 I/O 功能框图 52
图表 16 TMR 功能框图 61
图表 17 TMR 操作流程图 62
图表 18 捕捉清零模式示例波形图 65
图表 19 捕捉累加模式示例波形图 65
图表 20 CAP 操作流程图 66
图表 21 PWM 工作示例波形图 68
图表 22 PWM 操作流程图 69
图表 23 UART 发送调制示意图 72

图表 24 UART 操作流程图	73 -
图表 25 UART 操作流程图	74 -
图表 26 IIC 通信等待波形示意图	77 -
图表 27 IIC 主控通讯流程图	78 -
图表 28 IIC 从机通讯流程图	79 -
图表 29 SPI 主控模式流程图	83 -
图表 30 SPI 从动模式流程图	84 -
图表 31 ADC 操作流程图	87 -
图表 32 ACP 功能杆图	- 91 -

5 内核

5.1 描述

芯片采用 1T 8051 架构 8 位 CPU 内核, 兼容标准 8051 指令集。

5.2 内核寄存器

ACC 累加器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
A <7:0>									

Bit7-0 **A**<7:0>: 累加器

B B 寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
B <7:0>									

Bit7-0 **B**<7:0>: B 寄存器

SP 堆栈指针

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
RW-0000_0000										
SP <7:0>										

Bit7-0 **SP**<7:0>: 堆栈指针

DPL 数据指针低 8 位寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
DPTR<7:0>									

Bit7-0 **DPTR**<7:0>: 数据指针低 8 位

DPH 数据指针高 8 位寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
RW-0000_0000										
DPTR<15:8>										

Bit7-0 **DPTR**<15:8>: 数据指针高 8 位

PSW 状态寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0	RW-0	RW-0	RW-00		RW-0	_	RW-0
CY	AC	F0	RS <1:0>		OV		Р

Bit7 CY: 进位标志位

1: 算数或逻辑运算有进/借位 0: 算数或逻辑运算无进/借位

Bit6 AC:辅助进位标志位(用于BCD操作)

1: 算数或逻辑运算有辅助进/借位 0: 算数或逻辑运算无辅助进/借位

Bit5 **F0**: 用户自定义标志位 0

Bit4-3 **RS**<1:0>: 工作寄存器 R0-R7 bank 选择位

11: bank3 (18H~1FH) 10: bank2 (10H~17H) 01: bank1 (08H~0FH)

00: bank0 (00H~07H)

Bit2 **OV**: 溢出标志位

1: 有符号数运算有溢出 0:有符号数运算无溢出

Bit1 保留

 Bit0
 P: 奇偶标志位

1:累加器中"1"的个数为奇数 0:累加器中"1"的个数为偶数

6 存储

芯片存储采用 Harvard 架构,即程序寻址空间与数据寻址空间独立。

6.1 程序寻址空间映射

图表 7 程序存储空间映射图

6.2 FLASH 存储器

数据区 DATA FLASH

芯片内置 512 字节 DATA FLASH 存储器用于存储数据。

DATA FLASH 支持以下操作:

- MOVC 指令读取
- 应用中自编程 IAP 操作
- 烧录器编程 ISP 操作

信息区 INFO FLASH

芯片内置 INFO FLASH 存储器用于存储用户 ID 和用户配置选项。

INFO FLASH 支持以下操作:

- MOVC 指令读取
- 烧录器编程 ISP 操作

程序区 MAIN FLASH

芯片内置 16K 字节 MAIN FLASH 存储器用于存储程序代码。

MAIN FLASH 支持以下操作:

- 程序取指
- MOVC 指令读取 (操作权限受 CFG_WD3.IAP_PRn 限制)
- 应用中自编程 IAP 操作(操作权限受 CFG_WD3.IAP_PRn 限制)
- 烧录器编程 ISP 操作(支持硬件代码加密)

6.3 用户配置信息

005511	
80FFH	
	reserved
803FH	UID_15
	0.1010
	•••
8030H	UID_00
	reserved
	10001704
800DH	CFG_WD3
	reserved
8009H	CFG WD2
	_
	reserved
8005H	CFG_WD1
	reserved
8001H	CFG_WD0
	reserved

图表 8 INFO FLASH 映射图

用户 ID 和用户配置选项存储于 INFO FLASH。INFO FLASH通过用户在烧录器界面配置烧录。

用户 ID

用户 ID 共 16 字节 $UID_00~UID15$, 映射于程序程序存储空间 8030H~803FH。用户 ID 存储的信息由用户自行定义。

用户配置选项 CFG_WDn

用户配置选项共4字节 CFG_WD0~CFG_WD3。

CFG_WD0 配置字 0

OSCS<1:0>		PWRC<1:0>		WDT EN	BOR EN	BORS<1:0>	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-6 **OSCS**<1:0>: 系统时钟选择位

11: 上电默认选择 HRC, 软件可配置

10: 固定选择 HRC 01: 固定选择 XOSC

00: 未用

Bit5-4 **PWRC**<1:0>: 上电延时选择位

11:约128ms 10:约64ms 01:约16ms

00: 无上电延时

Bit3 WDT_EN: WDT 使能位

1:使能 0:关闭

Bit2 BOR_EN: BOR 使能位

1:使能 0:关闭

Bit1-0 BORS<1:0>: BOR 复位电压选择位

11: 4.2V 10: 3.7V 01: 2.5V 00: 2.1V

CFG_WD1 配置字 1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
XOSC MD<7:0>									

Bit7-0 XOSC_MD<7:0>: XOSC 工作模式选择位

HS 模式: 1011_1111 (外接 16MHz 晶振推荐值)

CFG_WD2 配置字 2

Bit7	Bit6	Bit5	Bit4	Bit3	Bit3 Bit2		Bit0
DBG_N	CCM_E	RSTN_EN		POR_FLTS<1:0>		BOR_FL	. TS <1:0>

Bit7 **DBG_N**:调试模式使能位

1:正常工作模式 0:使能调试模式

Bit6 **CCM_E**: XOSC 停振检测使能位

1:使能 0:关闭

Bit5 RSTN_EN: RSTN 复用功能使能位

1: P00 用作 RSTN 复用功能

0: P00 用作 I/O 功能

Bit4 保留

Bit3-2 POR_FLTS<1:0>: POR 滤波时间选择位

11:约200us 10:约150us 01:约100us 00:无滤波

Bit1-0 BOR_FLTS<1:0>: BOR 滤波时间选择位

11:约200us 10:约150us 01:约100us 00:无滤波

CFG WD3 配置字 3

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IAP PR3<1:0>		IAP_PR	R2 <1:0>	IAP_PR	?1 <1:0>	IAP PR0<1:0>	

Bit7-6 IAP_PR3<1:0>: MAIN FLASH 地址 3000H~3FFFH 操作权限配置位

11:IAP擦写允许,MOVC指令读取允许 10:IAP擦写禁止,MOVC指令读取允许 0x:IAP擦写禁止,MOVC指令读取禁止

Bit5-4 IAP_PR2<1:0>: MAIN FLASH 地址 2000H~2FFFH 操作权限配置位

11:IAP擦写允许,MOVC指令读取允许 10:IAP擦写禁止,MOVC指令读取允许 0x:IAP擦写禁止,MOVC指令读取禁止

Bit3-2 IAP_PR1<1:0>: MAIN FLASH 地址 1000H~1FFFH 操作权限配置位

11:IAP 擦写允许,MOVC 指令读取允许 10:IAP 擦写禁止,MOVC 指令读取允许 0x:IAP 擦写禁止,MOVC 指令读取禁止

Bit1-0 IAP_PR0<1:0>: MAIN FLASH 地址 0000H~0FFFH 操作权限配置位

11:IAP擦写允许,MOVC指令读取允许 10:IAP擦写禁止,MOVC指令读取允许 0x:IAP擦写禁止,MOVC指令读取禁止

6.4 ISP 应用考虑

芯片开发工具支持调试器和量产烧录器。调试器支持烧录和代码在线调试功能。量产烧录器支持量产批量烧录。调试器和烧录器均通过 ISP 复用端口进行操作。用户如需要在应用系统板上进行程序下载、更新或调试,需在 PCB 布板时预先对 ISP 复用端口予以考虑。

烧录器涉及管脚:ISP_SCK, ISP_SDA 为编程管脚,同时建议在布板时考虑将 P00 也一并接出; P00 作为复位管脚使用时将参与编程时序的运行。

调试器涉及管脚:TCK,TDI,TMS,TDO为调试时使用管脚。

图表 9 ISP 复用端口定义图

6.5 IAP 操作

MAIN FLASH和 DATA FLASH都支持应用中自编程 IAP 操作。MAIN FLASH分为32页(Page),每页包含512字节(Byte)FLASH存储单元,页地址由 IAP_AH.IAP_A<15:9>指定。DATA FLASH分为2页(Page),每页包含256字节(Byte)FLASH存储单元,页地址由IAP_AH.IAP_A<15:8>指定(8200h为 DATA FLASH第一页起始地址,8300h为 DATA FLASH第二页起始地址)。

IAP操作包括页擦除和字节编程,读取校验通过 MOVC 指令完成。IAP 页擦除操作的操作单位为页,IAP编程操作的操作单位为字节,字节地址由 IAP_AH 和 IAP_AL 指定。IAP 页擦除或编程操作启动时,CPU 自动进入暂停运行状态,直到擦除或编程操作完成,CPU 才恢复运行。在此过程中,外设保持当前运行状态,产生的中断请求会置位相应中断标志,但不响应中断服务程序。擦除或编程操作完成后,恢复对中断的正常响应。

需注意的是页擦除时间为 2ms , 编程时间为 20us。

IAP 操作流程

图表 10 IAP 操作流程图

IAP 寄存器

为保护 MAIN FLASH 存储器不被异常的程序执行误改动,用户可通过 CFG_WD3 分区设置 IAP 操作权限,同时所有 IAP 寄存器默认是锁定状态。如果要对 IAP 寄存器进行写操作,必须通过 IAP_PR 寄存器进行解锁。

IAP_PR IAP 解锁寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	IAP_PR<7:0>									

Bit7-0 **IAP PR**<7:0>: IAP 操作解锁字

W:写入 ACH 解锁,写入其他值锁定

R:锁定状态读出为00H,解锁状态读出为01H

IAP_AS IAP 区域选择寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	IAP_AS<7:0>									

Bit7-0 IAP AS<7:0>: IAP 区域选择字

W:写入 A5H 选择程序区,写入 5AH 选择数据区R:选择程序区读出为 00H,选择数据区读出为 01H

IAP_AL IAP 地址寄存器低 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	IAP_A<7:0>									

Bit7-0 IAP_A<7:0>: IAP 操作地址低 8 位

IAP_AH IAP 地址寄存器高 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	RW-0000_0000										
	IAP_A<15:8>										

Bit7-0 IAP_A<15:8>: IAP 操作地址高 8 位

IAP_D IAP 数据寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	RW-0000_0000										
	IAP_D<7:0>										

Bit7-0 **IAP_D**<7:0>: IAP 操作数据

IAP_C0 IAP 控制寄存器 0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	_	_	_	RW-0
_	_	_	_	_	_	_	IAP_EN

Bit7-1 保留

Bit0 IAP_EN: IAP 使能位

1:使能 0:关闭

IAP_C1 IAP 控制寄存器 1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
W-0000_0000								
IAP_OPS<7:0>								

> 写 12H : 触发 IAP 擦除 写 34H : 触发 IAP 编程

写其他值:无操作

6.6 数据寻址空间

数据寻址空间映射

图表 11 数据寻址空间映射图

SFR 映射

SFR	ADDR	BIT7	ВІТ6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0		
ACC	E0H				A <	7:0>		•			
В	F0H		B <7:0>								
SP	81H		SP <7:0>								
DPL	82H		DPTR <7:0>								
DPH	83H				DPTR	<15:8>					
PSW	D0H	CY	CY AC F0 RS<1:0> OV — P								
PCON	87H		PCON_PR<3:0> — — IDLE SLEEP								
RST_FLAG	C8H	_	ROM_OV _ RSTN_F _ SRST_F _ WDTR_F						POR_F		
INTn_IE	E8H	GIE	INT6_IE	INT5_IE	INT4_IE	INT3_IE	INT2_IE	INT1_IE	INT0_IE		
INTn_IF	88H	_	INT6_IF	INT5_IF	INT4_IF	INT3_IF	INT2_IF	INT1_IF	INT0_IF		
INTn_IP	F8H	_	INT6_IP	INT5_IP	INT4_IP	INT3_IP	INT2_IP	INT1_IP	INT0_IP		
WDT_C	84H	_	_	_	_	WDT_CKS		WDT_CY<2:0>			
WDT_OP	85H				WDT_C	P <7:0>					
PORT_C0	8EH	_	_	PT_OD	S <1:0>	PT_RD	S <1:0>	PT_PLS	PT_IOS		
P0_IE	8FH				P0_IE	<7:0>					
P0_OE	огп				P0_OI	E <7:0>					
P1_IE	91H				P1_IE	<7:0>					
P1_OE	910				P1_OI	E <7:0>					
P2_IE	92H	_	_	_	_	_	_	P2_IE	<1:0>		
P2_OE	920	_	_	_	_	_	_	P2_O	<1:0>		
P0_DAT	80H				P0_n	<7:0>					
P1_DAT	90H				P1_n	<7:0>					
P2_DAT	A0H	_	_	_	_	_	_	P2_n	<1:0>		
P0_PUE	0411				P0_PU	E <7:0>					
P0_PDE	94H				P0_PD	E <7:0>					
P1_PUE	0511		P1_PUE<7:0>								
P1_PDE	95H	P1_PDE<7:0>									
P2_PUE	OGLI	_	P2_PUE<1:0>								
P2_PDE	96H	_	P2_PDE<1:0>								
P0_ODE	0711		P0_ODE<7:0>								
P1_ODE	97H				P1_OD	E<7:0>					

SFR	ADDR	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0				
P2_ODE		_	_	_		_	_	P2_OD	E <1:0>				
P0_FUNL	9AH	P03_FL	JN<1:0>	P02_FU	N <1:0>	P01_FL	JN<1:0>	P00_FL	JN <1:0>				
P0_FUNH	9BH	P07_FL	JN<1:0>	P06_FU	IN <1:0>	P05_FL	JN<1:0>	P04_FUN <1:0>					
P1_FUNL	9CH	P13_FU	JN<1:0>	P12_FU	IN <1:0>	P11_FU	JN <1:0>	P10_FU	JN <1:0>				
P1_FUNH	9DH	P17_FU	JN <1:0>	P16_FU	IN <1:0>	P15_FU	JN <1:0>	P14_FU	JN <1:0>				
P2_FUNL	9EH		_			P21_FU	JN <1:0>	_	JN <1:0>				
EINTn_IE	9FH	EINT7_IE	EINT6_IE	EINT5_IE	EINT4_IE	EINT3_IE	EINT2_IE	EINT1_IE	EINT0_IE				
EINTn_IF	98H	EINT7_IF	EINT6_IF	EINT5_IF	EINT4_IF	EINT3_IF	EINT2_IF	EINT1_IF	EINT0_IF				
EINT_MSL	A1H	EINT3_I	MS <1:0>	EINT2_I	//S <1:0>	EINT1_I	MS <1:0>	EINT0_I	VIS <1:0>				
EINT_MSH	A2H	EINT7_I	MS <1:0>	EINT6_N		_	VIS <1:0>	EINT4_I	VIS <1:0>				
EINT_IOS	A3H				EINT_IC								
TMRn_IE	BFH		_		_	TMR3_IE	TMR2_IE	TMR1_IE	TMR0_IE				
TMRn_IF	A8H	_	_	_	_	TMR3_IF	TMR2_IF	TMR1_IF	TMR0_IF				
PWMn_IE	D9H	_	STP2_IE	STP1_IE	STP0_IE	_	PWM2_IE	PWM1_IE	PWM0_IE				
CAPn_IE	D311	_	_				CAP2_IE	CAP1_IE	CAP0_IE				
PWMn_IF	вон	_		STP_IF <2:0>		_	PWM2_IF	PWM1_IF	PWM0_IF				
CAPn_IF	Dorr	_	_	_	_	<u> </u>	CAP2_IF	CAP1_IF	CAP0_IF				
UART_IE		_	_	_	_	_	_	TX_IE	RX_IE				
IICn_IE	E7H	_	_	_	IIC_IE	<u> </u>	_	_	_				
SPIn_IE		_	SPI_IE	_		_	_	_	_				
UARTn_IF		_	_	_	_	_	_	TX_IF	RX_IF				
IICn_IF	B8H	_	_	_	IIC_IF	_	_	_	_				
SPIn_IF		_	SPI_IF	_		_	_	_	_				
AN_IE	FFH	_	CCM_IE	_	LVD_IE	_	ADC_IE	_	ACP_IE				
AN_IF	C0H	_	CCM_IF	_	LVD_IF	_	ADC_IF	_	ACP_IF				
HRC_TRML	89H				HRC_TF	RM<7:0>	I	T					
HRC_TRMH	8AH		HRC_P			_	_	HRC_TF	RM<9:8>				
TMR0_C0	A4H	TMR0_EN	TMR0_PRE	TMR0_C	KS <1:0>		TMR0_P	ST <3:0>					
TMR0_C1	A5H	_	_	_	_	_	_	TMR0_GS	TMR0_GE				
TMR0L	A6H				TMR								
TMR0H	A7H					<15:8>							
TMR0_CYL	A9H					CY <7:0>							
TMR0_CYH	AAH	TMR0_CY<15:8>											
TMR1_C0	ABH	TMR1_EN	TMR1_PRE	TMR1_C	KS <1:0>		TMR1_P	R1_EN TMR1_PRE TMR1_CKS<1:0> TMR1_PST<3:0>					

SFR	ADDR	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
TMR1 C1	ACH	_	_	_	_	_	_	TMR1 GS	TMR1_GE	
TMR1L	ADH				TMR1	<7:0>		_	_	
TMR1H	AEH				TMR1	<15:8>				
TMR1_CYL	AFH		TMR1_CY<7:0>							
TMR1_CYH	B1H				TMR1_C	Y <15:8>				
TMR2_C0	B2H	TMR2_EN	TMR2_EN TMR2_PRE TMR2_CKS<1:0> TMR2_PST<3:0>							
TMR2_C1	ВЗН	_	TMR2_GS TMR2_GE							
TMR2L	B4H				TMR2	!<7:0>				
TMR2H	B5H				TMR2	<15:8>				
TMR2_CYL	B6H				TMR2_0	CY <7:0>				
TMR2_CYH	B7H				TMR2_C	Y <15:8>				
TMR3_C0	В9Н	TMR3_EN	TMR3_PRE	TMR3_C	KS <1:0>		TMR3_P	ST <3:0>		
TMR3_C1	BAH	_	_	_	_	_	_	TMR3_GS	TMR3_GE	
TMR3L	BBH		TMR3<7:0>							
TMR3H	BCH		TMR3<15:8>							
TMR3_CYL	BDH				TMR3_0					
TMR3_CYH	BEH				TMR3_C					
PWM0_C	C1H		SPS <1:0>	_	_		BS <1:0>		IOD <1:0>	
CAP0_C			GS <1:0>	CAP0_C			BS <1:0>		OD <1:0>	
PWM0_OC	C2H	PWM01_D	PWM00_D	PWM01_T	PWM00_T	PWM01_N	PWM01_P	PWM00_N	PWM00_P	
PWM0_R0L	СЗН				PWM0_					
CAP0_DL	0011				CAP0_					
PWM0_R0H	C4H				PWM0_F					
CAP0_DH					CAP0_I					
PWM0_R1L	C5H					R1 <7:0>				
PWM0_R1H	C6H				PWM0_F					
PWM0_DT	C7H				PWM0_I			Γ		
PWM1_C	C9H		PWM1_SPS<1:0> — PWM1_TBS<1:0> PWM1_MOD<1:0>							
CAP1_C			CAP0_EGS<1:0> CAP0_CNT<1:0> CAP0_TBS<1:0> CAP0_MOD<1:0>							
PWM1_OC	CAH	PWM11_D	PWM11_D PWM10_D PWM11_T PWM10_T PWM11_N PWM11_P PWM10_N PWM10_P							
PWM1_R0L	СВН	PWM1_R0<7:0>								
CAP1_DL					CAP0_					
PWM1_R0H	ССН		PWM1_R0 <15:8>							
CAP1_DH	00				CAP0_I) <15:8>				

SFR	ADDR	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
PWM1_R1L	CDH			•	PWM1_	R1 <7:0>			
PWM1_R1H	CEH				PWM1_F	R1 <15:8>			
PWM1_DT	CFH				PWM1_	DT <7:0>			
PWM2_C	D1H	PWM2_S	SPS <1:0>	_	_	PWM2_1	TBS <1:0>	PWM2_M	IOD <1:0>
CAP2_C	חוט	CAP0_E	GS <1:0>	CAP0_C	NT<1:0>	CAP0_T	BS <1:0>	CAP0_M	OD <1:0>
PWM2_OC	D2H	PWM21_D	PWM20_D	PWM21_T	PWM20_T	PWM21_N	PWM21_P	PWM20_N	PWM20_P
PWM2_R0L	D3H				PWM2_	R0 <7:0>			
CAP2_DL	ВЗП		CAPO_D <7:0>						
PWM2_R0H	D4H				PWM2_F	R0 <15:8>			
CAP2_DH	<i>D</i> 4П		CAPO_D <15:8>						
PWM2_R1L	D5H		PWM2_R1<7:0>						
PWM2_R1H	D6H		PWM2_R1<15:8>						
PWM2_DT	D7H			PWM2_DT<7:0>					
UART_BRL	DAH			UART_BRR<7:0>					
UART_BRH	DBH				UART_BI	RR <15:8>			
UART_RXC	DCH	FERR	OERR	PERR	RX9D	PARS	BRFX	RXEN	l<1:0>
UART_RXB	DDH					<7:0>			
UART_TXC	DEH	TXST	TXBF	TX9S	<1:0>	STPS	TXDM	TXEN	<1:0>
UART_TXB	DFH				TXB	<7:0>			
UART_TXM	8EH	TXM-		_	_	_	_	_	<u> </u>
IIC_C0	E1H		IIC_SM	PF <3:0>		IIC_IM	WTEN	IIC_MD	IIC_EN
IIC_C1	E2H	_	_	_	MTAI_MK	STOP	START	WAIT	ACK
IIC_STA	E3H	SLV_ADF	SLV_RWF	STOP_F	START_F	ACK_F	BUF_ST	OVT_F	BFOV_F
IIC_ADDR	E4H	_				IIC_ADDR<6:0	>		
IIC_DATA	E5H				IIC_DA	TA <7:0>			
IIC_BRR	E4H	_				IIC_BRR<6:0>			
SPI_C0	86H	SPI_SSC	SPI_SSD	SPI_CPOL	SPI_CPHA	SPI_DIR		SPI_CLK	
SPI_C1	8BH	SPI_EN	SPI_MS	_	_	SPI_TXSP	SPI_RXSP	SPI_WOL	SPI_RXSP
SPI_DATA	8CH					DATA LVD_CKS			
LVD_C0	ECH	LVD_EN	LVD_IM				LVD_INS		S <1:0>
ADC_C0	FAH	ADC_EN	S_TRG		S <1:0>			L <3:0>	
ADC_C1	FBH	VREFP_EN	VREFP_S<3:0> AVDD_S ADC_DM ADC_CKS<1:0>					KS <1:0>	
ADC_C2	FCH		_	- ADC_CNT<1:0> - SMP_T<2:0>					
ADC_DL	FDH		ADC_DL<7:0>						

SFR	ADDR	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
ADC_DH	FEH		ADC_DH<7:0>							
ADC_CMP_C	F7H	ADC_CP_E	MAX_E MIN_E INT_MD MAX_F MIN_F ADC_DMD							
VREF_C	F6H		VREF_C<7:0>							
ACP_C0	EDH	ACP_EN	_	HYS_EN	ACP_INV	ACF	P_PS	ACP_NS	ACP_O	
ACP_C1	EEH		ACP_FLT<3:0> — ACP_VRFS<2:0>				>			
ACP_C2	F1H							FLT_C	(S <1:0>	

系统寄存器映射

SYS_SFR	ADDR	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0		
IAP_PR	9000H	IAP_PR<7:0>									
IAP_AS	9001H				IAP_A	S <7:0>					
IAP_AL	9002H				IAP_A	\ <7:0>					
IAP_AH	9003H				IAP_A	<15:8>					
IAP_D	9004H				IAP_C) <7:0>					
IAP_C0	9005H			_	_	_	_	_	IAP_EN		
IAP_C1	9006H				IAP_OF	PS <7:0>					
CLK_PR	9020H				CLK_P	PR <7:0>					
CLK_C0	9021H			CLK_S	S <1:0>	_		CLK_DIV <2:0>			
CLK_C1	9022H	OSC_I	F<1:0>	XOSC_ST	HRC_ST	_	_	XOSC_EN	HRC_EN		
PCK_GTC0	9023H	_	CP2_G	CP1_G	CP0_G	TMR3_G	TMR2_G	TMR1_G	TMR0_G		
PCK_GTC1	9024H	_	ACP_G	_	ADC_G	IIC_G	_	_	UART_G		
CCM_C	9025H	CCM_EN — — — CCM_CKS<2:0>									
CLK_LP	9026H										
WKUP_T	9027H		WKUP_T<7:0>								

位操作映射

寄存器		F/7	E/6	D/5	C/4	B/3	A/2	9/1	8/0	
P0_DAT	80H				P	0_n <7:0>				
INTn_IF	88H	_	INT6_IF	INT5_IF	INT4_IF	INT3_IF	INT2_IF	INT1_IF	INT0_IF	
P1_DAT	90H				P'	1_n< 7:0>				
EINTn_IF	98H	EINT7_IF	EINT6_IF	EINT5_IF	EINT4_IF	EINT3_IF	EINT2_IF	EINT1_IF	EINT0_IF	
P2_DAT	A0H	_	_	_	_	_	_	P2_n-	<1:0>	
TMRn_IF	A8H	_	_	_	_	TMR3_IF	TMR2_IF	TMR1_IF	TMR0_IF	
PWMn_IF	DOLL	_	Ç	STP_IF<2:0>	•	_	PWM2_IF	PWM1_IF	PWM0_IF	
CAPn_IF	B0H	_	_	_	_	_	CAP2_IF	CAP1_IF	CAP0_IF	
UARTn_IF	DOLL	_	_	_	_	_	_	TX_IF	RX_IF	
IICn_IF	B8H	_	_	_	IIC_IF	_	_	_	_	
SPIn_IF		_	SPI_IF	_	_	_	_	_	_	
AN_IF	C0H	_	CCM_IF	_	LVD_IF	_	ADC_IF	_	ACP_IF	
RST_FLAG	C8H	_	_	_	ROM_OV	RSTN_F	SRST_F	WDTR_F	POR_F	
PSW	D0H	CY	AC	F0	RS	<1:0>	OV	_	Р	
ACC	E0H		A <7:0>			A <7:0>				
INTn_IE	E8H	GIE	INT6_IE	INT5_IE	INT4_IE	INT3_IE	INT2_IE	INT1_IE	INTO_IE	
В	F0H					B <7:0>				
INTn_IP	F8H	_	INT6_IP	INT5_IP	INT4_IP	INT3_IP	INT2_IP	INT1_IP	INT0_IP	

7 复位

7.1 描述

程序溢出复位

由于程序执行异常,程序计数器 PC 指向合法程序空间之外取指时,产生程序溢出复位。程序溢出复位同时,将 RST_FLAG.ROM_OV 标志位置 1,该标志可通过软件清 0。

RSTN 外部端口复位

当用户配置选项 CFG_WD2.RSTN_EN 位使能时,RSTN 复用端口复用为外部复位功能。当RSTN端口输入有效宽度的低电平时,使芯片复位。RSTN 复位同时,将RST_FLAG.RSTN_F标志位置1,该标志可通过软件清0。

SRST 软件复位

对软件复位寄存器 SOFT_RST 写入 A5H,产生软件复位。软件复位同时,将 RST_FLAG.SRST_F标志位置1,该标志可通过软件清0。

WDT 复位

芯片内置硬件看门狗电路 WDT。在 WDT 溢出标志存在的情况下(WDT_OP 读出不为 00H),再次产生 WDT 溢出,会产生 WDT 复位。WDT 复位同时,将 RST_FLAG.WDTR_F 标志置 1,该标志可通过软件清 0。

POR 和 BOR 复位

POR 复位是芯片的内部复位,复位自动发生于芯片初始上电或芯片电源发生极端异常波动后的上电恢复。POR 硬件强制使能。

BOR 复位是芯片的内部复位,主要用于芯片电源 VDD 跌落至用户设定的 BOR 复位门限电压以下时产生芯片复位。用户可根据系统需要,使能或关闭 BOR 功能,并可选择不同的 BOR 的复位门限电压。

POR 或者 BOR 复位发生时,将 RST_FLAG.POR_F 标志置 1,并将 RST_FLAG 寄存器的其他标志位复位清 0, POR F 标志位可通过软件清 0。

7.2 复位寄存器

RST_FLAG 复位标志寄存器

ĺ	_	_	_	ROM_OV	RSTN_F	SRST_F	WDTR_F	POR_F
ĺ	_	_	_	RW-0	RW-0	RW-0	RW-0	RW-0
ĺ	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-5 保留

Bit4 ROM_OV:程序溢出复位标志位

1:程序执行溢出产生芯片复位

0:未发生程序执行溢出

Bit3 RSTN_F: RSTN 复位标志位

1:通过 RSTN 复用端口产生芯片复位

0:未发生 RSTN 复用端口复位

Bit2 SRST_F: 软件复位标志位

1:通过写 SOFT_RST 寄存器产生软件复位

0:未发生软件复位

Bit1 WDTR_F: WDT 复位标志位

1:WDT 溢出产生复位 0:未发生 WDT 溢出复位

Bit0 **POR_F**: POR 上电复位标志位

1:发生 POR 上电复位 (系统初次上电或系统电源的异常跌落恢复产生的重新上电)

0: 未发生 POR 上电复位

SOFT RST 软件复位寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
W-0000_0000											
	SOFT RST<7:0>										

Bit7-0 **SOFT_RST**<7:0>: 软件复位字

W:写A5H产生软件复位

8 时钟

8.1 描述

图表 12 系统时钟源功能框图

外部振荡器 XOSC

外部振荡器 XOSC 适用于外接 2~20MHz 高频晶振。

图表 13 外部振荡器 XOSC 连接示意图

外部振荡器停振检测 CCM

芯片内置外部振荡器停振检测模块 CCM,用于监控外部振荡器的工作状态。当系统时钟源采用XOSC 时,CCM 如果使能,CCM 会实时监控 XOSC 工作状态,当 XOSC 发生异常停振时,CCM 会产生停振异常中断标志 AN_IF.CCM_IF,同时自动将系统时钟切换为内部低频时钟 LRC。

内部高频 RC 时钟 HRC

芯片内置 16MHz 高频 RC 时钟,用于系统和外设时钟源。 HRC 出厂校准精度±1%(T=25℃)。

内部低频 RC 时钟 LRC

芯片内置 16KHz 低频 RC 时钟,用于系统和外设时钟源,同时用于 WDT 时钟源。LRC 时钟硬件强制使能,用户无法将其关闭。

8.2 时钟寄存器

为保护时钟相关寄存器不被异常的程序执行误改动,所有时钟寄存器默认是锁定状态。如果要对时钟寄存器进行改写,必须通过 CLK_PR 寄存器进行解锁。

CLK_PR 时钟解锁寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
			RW-000	00_0000						
	CLK PR<7:0>									

Bit7-0 **CLK_PR**<7:0>: 时钟寄存器解锁字

W:写入A5H解锁,写入其他值锁定

R:锁定状态读出为00H,解锁状态读出为01H

CLK CO 时钟控制寄存器 0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	RW	/-00	_		RW-000	
_	_	CLK_S	S <1:0>	_	C	LK_DIV <2:0	>

Bit7-6 保留

Bit5-4 **CLK_S**<1:0>: 系统时钟源选择位

11:保留

10:选择 LRC

01:选择 XOSC

00:选择 HRC

Bit3 保留

Bit2-0 **CLK DIV**<2:0>: 系统时钟分频位

系统时钟频率 $F_{SYSCLK} = \frac{F_{SOURCE}}{2^{CLK}_DIV<2:0>}$

CLK_C1 时钟控制寄存器 1

OSC I	F<1:0>	XOSC ST	HRC ST	_	_	XOSC EN	HRC EN
R-	00	R-0	R-0	_	_	RW-0	RW-0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-6 **OSC_F**<1:0>: 系统时钟源状态位

11:保留

10:当前系统时钟源为 LRC 01:当前系统时钟源为 XOSC 00:当前系统时钟源为 HRC

Bit5 XOSC_ST: 外部振荡器 XOSC 工作状态位

1:XOSC 已进入稳定工作状态

0: XOSC 启动中

Bit4 HRC_ST:内部高速振荡器 HRC 工作状态位

1: HRC 已进入稳定工作状态

0: HRC 启动中

Bit3-2 保留

Bit1 XOSC EN:外部振荡器 XOSC 使能位

1:使能0:关闭

Bit0 HRC_EN:内部高速振荡器 HRC 使能位

1:使能 0:关闭

PCK_GTC0 外设时钟控制寄存器 0

_	CP2 G	CP1 G	CP0 G	TMR3 G	TMR2 G	TMR1 G	TMR0 G
_	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 保留

Bit6 CP2_G: CAP2 和 PWM2 外设时钟使能位

1:使能 0:关闭

Bit5 CP1_G: CAP1 和 PWM1 外设时钟使能位

1:使能 0:关闭

Bit4 CP0_G: CAP0 和 PWM0 外设时钟使能位

1:使能 0:关闭

Bit3 TMR3_G: TMR3 外设时钟使能位

1:使能 0:关闭

Bit2 TMR2_G: TMR2 外设时钟使能位

1:使能 0:关闭

Bit1 TMR1_G: TMR1 外设时钟使能位

1:使能 0:关闭

Bit0 TMR0_G: TMR0 外设时钟使能位

1:使能 0:关闭

PCK_GTC1 外设时钟控制寄存器 1

Ī	_	ACP_G	_	ADC_G	IIC_G	_	_	UART_G
Ī	_	RW-1	_	RW-1	RW-1	_	_	RW-1
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 保留

Bit6 ACP_G: ACP 外设时钟使能位

1:使能0:关闭

Bit5 保留

Bit4 ADC_G: ADC 外设时钟使能位

1:使能 0:关闭

Bit3 **IIC_G**: IIC 外设时钟使能位

1:使能 0:关闭

Bit2-1 保留

Bit0 **UART_G**: UART 外设时钟使能位

1:使能 0:关闭

CCM_C 停振检测控制寄存器

CCM EN	_	_		_	CCM CKS<2:0>		
RW-0	_	_	_	_	RW-000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 **CCM_EN**: XOSC 停振检测使能位

1:使能 0:关闭

Bit6-3 保留

Bit2-0 **CCM_CKS**<2:0>: 检测器时钟频率选择位

111~100:32KHz

011: 1MHz 010: 4MHz 001: 8MHz 000: 16MHz

CLK_LP 时钟低功耗控制寄存器

_	_	_	CLK_LEN	_		_	FLT_BPS
_	_	_	RW-0	_	_	_	RW-0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-5 保留

Bit4 CLK_LEN: SLEEP 模式下系统时钟源使能位

1:系统时钟源在 SLEEP 模式下保持工作

0: 系统时钟源在 SLEEP 模式下关闭

Bit3-1 保留

Bit0 FLT_BPS: 系统时钟滤波器旁路控制位

1:系统时钟滤波器关闭(旁路)

0:系统时钟滤波器使能

WKUP T SLEEP 唤醒等待时间寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RW-1111_1111								
WKUP T<7·0>								

Bit7-0 WKUP_T<7:0>: SLEEP 唤醒等待时间控制位

唤醒等待时间 Twkup = (WKUP_T<7:0> + 1) x 4 x Tsys CLK

HRC_TRML HRC 调校寄存器低 8 位

Ī	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	RW-xxxx_xxxx								
	HRC_TRM<7:0>								

Bit7-0 **HRC_TRM**<7:0>: HRC 频率调校位低 8 位。校准数据低位写完成后生效。

HRC TRMH HRC 调校寄存器高 2 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	RW-	0000		_	_	RW-xx	
HRC_PR<3:0>				_	_	HRC_TF	RM <9:8>

Bit7-4 **HRC_PR**<3:0>: HRC 调校位写保护

W:写入5H锁定,写入AH解锁

R:锁定状态读出为 0H,解锁状态读出为 1H

Bit3-2 保留

Bit1-0 **HRC_TRM**<9:8>: HRC 频率调校位高 2 位

注 1: HRC_TRML 和 HRC_TRMH 寄存器不受 CLK_PR 控制。

9 低功耗

9.1 描述

芯片支持2种低功耗模式,IDLE模式和SLEEP模式。

IDLE 模式

在 IDLE 模式下, CPU 暂停执行指令,系统时钟和外设均保持当前的工作状态。

用户可关闭不需要运行模块的使能位,并通过 PCK_GTC0/1 寄存器关闭相应模块的时钟,以节省不必要的功率消耗。

保持运行的外设产生的中断,如果相应的中断使能位为 1(GIE 不需使能),可将芯片从 IDLE 状态唤醒。IDLE 唤醒无等待时间,唤醒后 CPU 继续运行。

SLEEP 模式

在 SLEEP 模式下,系统时钟自动关闭, CPU 和所有采用系统时钟工作的外设模块均暂停工作。用户还可通过 CLK_LP.CLK_LEN 关闭系统时钟源,以进一步节省功耗。

采用非系统时钟工作的外设可在 SLEEP 模式下保持工作,并且产生的中断,如果相应的中断使能位为 1(GIE 不需使能),可将芯片从 SLEEP 状态唤醒。SLEEP 唤醒需要一定的等待时间,用户可通过 WKUP_T 寄存器设定,等待时间用以确保芯片恢复运行前内部的部分模块已达到稳定工作状态,唤醒后系统时钟恢复运行,CPU 和经系统时钟同步的外设继续运行。

9.2 低功耗寄存器

PCON 低功耗控制寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	RW-	0000		_	_	RW-0	RW-0
	PCON_I	PR <3:0>		_	_	IDLE	SLEEP

Bit7-4 **PCON_PR**<3:0>: PCON 解锁字

W:写入5H解锁,写入其他值锁定

R:锁定状态读出为 0H,解锁状态读出为 1H

Bit3-2 保留

Bit1 IDLE: IDLE 模式使能位

1: 进入 IDLE 模式 (仅在 PCON_PR 解锁状态下,对 PCON 寄存器写 02H 可置 1)

0:退出 IDLE 模式 (写 0 无效,唤醒后硬件自动清 0)

Bit0 SLEEP: SLEEP 模式使能位

1: 进入 SLEEP 模式(仅在 PCON PR 解锁状态下,对 PCON 寄存器写 01H 可置

1)

0: 退出 SLEEP 模式 (写 0 无效, 唤醒后硬件自动清 0)

10 看门狗定时器 WDT

10.1 描 述

芯片内置 16 位硬件看门狗定时器 WDT。支持 2 种时钟源可选,支持溢出周期可配置。

WDT 溢出

当 16 位 WDT 计数器累加到与 WDT_C.WDT_CY<2:0>位所选择的溢出值相等时, WDT 计数器溢出。溢出后 WDT 重新从 0 开始累加。WDT 溢出可将 CPU 从低功耗模式下唤醒。读 WDT_OP 寄存器可判断溢出标志。

喂狗操作

对 WDT_OP 寄存器写 5AH 即可进行喂狗操作,喂狗操作将 WDT 计数器清 0 , 同时清除 WDT 溢出标志。

WDT 复位

在 WDT 溢出标志存在的情况下(WDT_OP 读出不为 00H),再次产生 WDT 溢出,会产生 WDT 复位。WDT 复位同时将 WDT 复位标志 RST_FG.WDTF 置 1。

10.2 WDT 寄存器

WDT_C WDT 控制寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	RW-0	RW-0100			
_	_	_	WDT_CKS	WDT_CY<3:0>			

Bit7-5 保留

Bit4 WDT_CKS: WDT 时钟源选择位

1:内部低频时钟 LRC0:系统时钟 SYS_CLK

Bit3-0 **WDT_CY**<3:0>: WDT 计数溢出值选择位

 1100:000FH
 1011:001FH
 1010:003FH
 1001:007FH

 1000:00FFH
 0111:01FFH
 0110:03FFH
 0101:07FFH

 0100:0FFH
 0011:1FFFH
 0010:3FFFH
 0001:7FFFH

0000:FFFFH 其他:OFFFH

WDT_OP WDT 操作寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	RW-0000_0000								
WDT_OP<7:0>									

Bit7-0 **WDT OP**<7:0>: WDT 操作字

W:写入5AH将WDT计数器清0,且清除WDT溢出标志

R: WDT 未溢出读出为 00H, WDT 溢出读出为 01H, WDT 溢出唤醒读出为 03H

11 中断

11.1 中断向量

芯片共支持 7 个中断向量,每个中断向量对应单独的入口地址。如下表所示,芯片的所有中断源都有各自的中断标志和中断使能位,这些中断源被分组对应到 7 个中断向量。同时,每个中断向量也有一个向量使能位 INT_IE, 并且所有的中断向量还共用 1 个总的使能位 INT_IE.GIE。GIE 禁止时所有中断不响应,但向量和中断源使能的中断仍支持低功耗模式唤醒功能。

向量 编号	对应 Interrupt	入口地址	向量使能	向量标志	中断源使能	中断源标志
INT0	0	0003H	INT0_IE	INT0_IF	EINTn_IE(n=3:0)	EINTn_IF(n=3:0)
INT1	2	0013H	INT1_IE	INT1_IF	EINTn_IE(n=7:4)	EINTn_IF(n=7:4)
					TMRn_IE	TMRn_IF
INT2	7	003BH	INT2 IE	INT2_IF	CAPn_IE	CAPn_IF
IINIZ	,	ООЗБП	IIN I Z_IE	IIN I Z_IF	PWMn_IE	PWMn_IF
					STPn_IE	STP_IF<2:0>
					TX_IE	TX_IF
INT3	8	0043H	INT3 IE	INT3 IF	RX_IE	RX_IF
IIVIO	0	00 4 3H	IIN I 3_IE	11412_15	IIC_IE	IIC_IF
					SPI_IE	SPI_IF
INT4	9	004BH	INT4_IE	INT4_IF	ACP_IE	ACP_IF
INT5	10	0053H	INT5_IE	INT5_IF	ADC_IE	ADC_IF
INT6	11	005BH	INITE IE	INITE IE	LVD_IE	LVD_IF
IINIO	11	иизвп	INT6_IE	INT6_IF	CCM_IE	CCM_IF

图表 14 中断向量表

11.2 中断优先级

中断系统分为 2 个优先级阶,即高阶优先级和低阶优先级,每个中断向量可通过相应的 INT_IP 位单独设置优先级阶。在同阶优先级中,中断向量号越小的中断向量优先级越高。同一中断向量对应的多个中断源不分优先级,用户需在对应于该向量入口地址的中断服务程序中进行软件判别。

高优先级的中断可嵌套低优先级中断。反之,低优先级中断只能等待高优先级或同级中断完成中断处理并退出中断服务程序后才可得到响应。

11.3 中断寄存器

INTn_IE 中断使能寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0
GIE	INT6_IE	INT5_IE	INT4_IE	INT3_IE	INT2_IE	INT1_IE	INTO_IE

Bit7 GIE:中断总使能位

1:使能

0:禁止(仅禁止中断响应,不禁止中断唤醒)

Bit6-0 **INTn_IE**<6:0>: 中断向量 INTO~6 使能位

1:使能

0:禁止(禁止中断响应和中断唤醒)

INTn_IF 中断标志寄存器

Ī	_	INT6 IF	INT5 IF	INT4 IF	INT3 IF	INT2 IF	INT1 IF	INTO IF
ſ	_	RW-0						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 保留

Bit6-0 **INTn_IF**<6:0>: 中断向量 INT0~6 标志位

1:有中断请求0:无中断请求

INTn_IP 中断向量优先级寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	RW-0						
_	INT6_IP	INT5_IP	INT4_IP	INT3_IP	INT2_IP	INT1_IP	INT0_IP

Bit7 保留

Bit6-0 **INTn_IP**<6:0>: 中断向量 INTO~6 优先级选择位

1:高阶优先级0:低阶优先级

11.4 外部端口中断 EINT

芯片支持 8 个外部端口中断源 EINT0~7,每个 EINT 中断源又支持 2 个端口可选。每个 EINT 中断源可独立设置中断触发方式。

EINTn_IE EINT 使能寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
EINT_IE <7:0>										

Bit7-0 **EINTn_IE**<7:0>: 外部端口中断 EINTO~7 使能位

1:使能 0:禁止

EINTn IF EINT 标志寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0							
EINT7_IF	EINT6_IF	EINT5_IF	EINT4_IF	EINT3_IF	EINT2_IF	EINT1_IF	EINT0_IF

Bit7-0 **EINTn IF**<7:0>: 外部端口中断 EINT0~7 标志位

1:有 EINTn 中断请求 0:无 EINTn 中断请求

EINT_MSL EINT 触发选择寄存器低 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-	-00	RW-00		RW-00		RW-00	
EINT3_MS<1:0>		EINT2_MS <1:0>		EINT1_MS<1:0>		EINTO_MS <1:0>	

EINT_MSH EINT 触发选择寄存器高 8 位

Ī	EINT7 MS<1:0>		EINT6 N	/IS <1:0>	EINT5 N	//S <1:0>	EINT4 MS<1:0>	
ſ	RW-00		RW-00		RW-00		RW	-00
Ī	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

EINTn_MS: EINTn 触发方式选择位

11: 低电平触发

10:双边沿触发(上升和下降沿都触发)

01:下降沿触发00:上升沿触发

EINT_IOS EINT 端口选择寄存器

Bit	7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	RW-0000_0000									
	EINT_IOS<7:0>									

Bit7-0 **EINT IOS**<7:0>: EINT0~7 端口选择位

EINT_IOS	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
1	P21	P20	P17	P16	P15	P14	P13	P12
0	P11	P10	P07	P06	P05	P04	P02	P01

11.5 定时器 TMR 中断

芯片的 4 个定时器 TMR0~3 都支持中断。当 TMRn 的 16 位计数器累加到与 16 位周期寄存器 TMRn_CY 相等时,TMRn 产生 1 次溢出。当溢出次数达到后分频位 TMRn_C0.TMRn_PST<3:0> 所设定的次数时,即产生 TMRn 中断。

TMRn_IE TMR 中断使能寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	RW-0	RW-0	RW-0	RW-0
_	_	_	_	TMR3_IE	TMR2_IE	TMR1_IE	TMR0_IE

Bit7-4 保留

Bit3-0 TMRn_IE<3:0>: TMRn 中断使能位

1:使能0:禁止

TMRn_IF TMR 中断标志寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	RW-0	RW-0	RW-0	RW-0
_	_	_	_	TMR3_IF	TMR2_IF	TMR1_IF	TMR0_IF

Bit7-4 保留

Bit3-0 TMRn_IF: TMRn 中断标志位

1:有 TMRn 中断请求 0:无 TMRn 中断请求

11.6 边沿捕捉器 CAP 中断

芯片的 3 个边沿捕捉器 CAP0~2 都支持中断。当满足用户设定的捕捉条件的捕捉事件发生时,即产生捕捉中断。

CAPn_IE CAP 中断使能寄存器 (与 PWMn_IE 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	_	RW-0	RW-0	RW-0
_	_	_	_	_	CAP2 IE	CAP1 IE	CAP0 IE

Bit7-3 保留

Bit2-0 CAPn_IE<2:0>: CAPn 中断使能位

1:使能0:禁止

CAPn_IF CAP 中断标志寄存器 (与 PWMn_IF 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_		_	_	RW-0	RW-0	RW-0
_	_		_	_	CAP2_IF	CAP1_IF	CAP0_IF

Bit7-3 保留

Bit2-0 CAPn_IF: CAPn 中断使能位

1:有 CAPn 中断请求 0:无 CAPn 中断请求

11.7 脉宽调制器 PWM 中断

芯片的 3 个脉宽调制器 PWM0~2 都支持 2 种中断,即 PWM 周期中断和 PWM 刹车中断。

PWM 周期中断

当 PWMn 所选时基的计数器值累加到该时基对应的周期值时,即产生 PWM 周期中断。

PWM 刹车中断

当 PWMn 发生刹车事件时,会产生 PWM 刹车中断。

PWMn_IE PWM 中断使能寄存器 (与 CAPn_IE 寄存器复用)

_	STP2_IE	STP1_IE	STP0_IE	_	PWM2_IE	PWM1_IE	PWM0_IE
_	RW-0	RW-0	RW-0	_	RW-0	RW-0	RW-0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 保留

Bit6-4 STPn_IE: PWMn 刹车中断使能位

1:使能 0:禁止

Bit3 保留

Bit2-0 PWMn_IE<2:0>: PWMn 周期中断使能位

1:使能0:禁止

PWMn_IF PWM 中断标志寄存器 (与 CAPn_IF 寄存器复用)

	STP2 IF	STP1 IF	STP0 IF		PWM2 IF	PWM1 IF	PWM0 IF
_	RW-0	RW-0	RW-0	_	RW-0	RW-0	RW-0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 保留

Bit6-4 STPn_IF: PWMn 刹车中断标志位

1:有 PWMn 刹车中断请求 0:无 PWMn 刹车中断请求

Bit3 保留

Bit2-0 **PWMn_IF**: PWMn 周期中断标志位

1:有 PWMn 周期中断请求 0:无 PWMn 周期中断请求

11.8 异步收发器 UART 中断

UART 支持 2 个中断,即 TX 发送中断和 RX 接收中断。

TX 发送中断

根据 **UART_TXC.TXEN**<1:0>位的配置,TX 发送中断可以是 UART 发送空闲产生中断,或发送寄存器空产生中断,或两者都产生中断。

RX 接收中断

UART接收寄存器接收到1帧数据,即产生RX接收中断。

UARTn_IE UART 中断使能寄存器 (与 IIC_IE 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_		_	RW-0	RW-0
_	_	_	_	_	_	TX IE	RX IE

Bit7-2 保留

Bit1 **TX_IE**: UART 发送中断使能位

1:使能 0:禁止

Bit0 **RX_IE**: UART接收中断使能位

1:使能 0:禁止

UARTn_IF UART 中断标志寄存器 (与 IIC_IF 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_		_	_	_	RW-0	RW-0
_	_		_		_	TX_IF	RX_IF

Bit7-2 保留

Bit1 **TX_IF**: UART 发送中断标志位

1:有 UART 发送中断请求 0:无 UART 发送中断请求

Bit0 **RX_IF**: UART 接收中断标志位

1:有 UART 接收中断请求 0:无 UART 接收中断请求

11.9 IIC 总线控制器中断

IIC 总线控制器支持 1 个中断。通过 IIC_CO.IIC_IM 位可配置如下事件产生 IIC 中断。

START/STOP 位中断

检测到总线上有 START 或 STOP 位,产生中断。

发送/接收中断

完成1个字节的发送或接收,产生中断。

IICn_IE IIC 中断使能寄存器 (与 UARTn_IE 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	RW-0	_	_	_	_
_	_	_	IIC_IE	_	_	_	_

Bit7-5 保留

Bit4 IIC_IE: IIC 中断使能位

1:使能0:禁止

Bit3-0 保留

IICn_IF IIC 中断标志寄存器 (与 UARTn_IF 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	RW-0	_	_	_	_
_	_		IIC IF	_	_	_	

Bit7-5 保留

Bit4 IICn_IF: IIC 中断标志位

1:有IIC中断请求 0:无IIC中断请求

Bit3-0 保留

11.10 SPI 模块中断

SPI 持 1 个中断。一个数据传输完成产生一个中断。

SPIn_IE SPI 中断使能寄存器 (与 UARTn_IE 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	RW-0	_	_		_	_	_
_	SPI IE	_	_	_	_	_	_

Bit7 保留

Bit6 SPI_IE: SPI 中断使能位

1:使能 0:禁止

Bit5-0 保留

SPIn_IF SPI 中断标志寄存器 (与 UARTn_IF 寄存器复用)

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	_	RW-0	_	_	_		_	_
Ī	_	SPI IF	_	_	_	_	_	_

Bit7 保留

Bit6 SPI_IF: IIC 中断标志位

1:有 SPI 中断请求 0:无 SPI 中断请求

Bit5-0 保留

11.11 模拟模块中断

模拟模块包括 CCM、LVD、ADC、ACP,每个模块都有1组独立的中断使能位和中断标志位。

XOSC 停振检测 CCM 中断

检测到 XOSC 异常停振时,产生 CCM 中断。

低电压检测 LVD 中断

当满足 LVD_C0.LVD_IM 所设置的条件时,产生 LVD 中断。

模数转换器 ADC 中断

当 ADC 转换完成时,并达到 ADC_C2.ADC_CNT<1:0>所设定的转换次数时,产生 ADC 中断。

模拟比较器 ACP 中断

ACP输出 ACP_O为1时,产生ACP中断。

AN IE 模拟中断使能寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	RW-0	_	RW-0	_	RW-0	_	RW-0
_	CCM_IE	_	LVD_IE	_	ADC_IE	_	ACP_IE

Bit7 保留

Bit6 **CCM_IE**: CCM 中断使能位

1:使能0:禁止

Bit5 保留

Bit4 LVD_IE: LVD 中断使能位

1:使能0:禁止

Bit3 保留

Bit2 ADC IE: ADC 中断使能位

1:使能 0:禁止

Bit1 保留

Bit0 ACP_IE: ACP 中断使能位

1:使能0:禁止

AN_IF 模拟中断标志寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	RW-0	_	RW-0	_	RW-0	_	RW-0
_	CCM_IF	_	LVD_IF	_	ADC_IF	_	ACP_IF

Bit7 保留

Bit6 **CCM IF**: CCM 中断标志位

1:有 CCM 中断请求

0:无 CCM 中断请求

Bit5 保留

Bit4 LVD_IF: LVD 中断标志位

1:有 LVD 中断请求

0:无LVD中断请求

Bit3 保留

Bit2 ADC_IF: ADC 中断标志位

1:有 ADC 中断请求

0:无 ADC 中断请求

Bit1 保留

Bit0 ACP_IF: ACP 中断标志位

1:有 ACP 中断请求 0:无 ACP 中断请求

.ESSE

12 I/O 端口

12.1 I/O 功能框图

图表 15 I/O 功能框图

12.2 I/O 寄存器

PORT_CO 端口控制寄存器 (与 UART_TXM 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-00 RW		-00	RW	'-00	RW-0	RW-0	
PORT_MD<1:0>		PT_OD	S <1:0>	PT RDS<1:0>		PT_PLS	PT_IOS

Bit7-6 PORT_MD<1:0>: UART 发送与 PWM00 调制(输出跟随 UART_TXD)

1x:低调制 01:高调制 00:无调整

Bit5-4 **PT_ODS**<1:0>: 开漏控制选择位

11:选择 P0 开漏控制 10:选择 P2 开漏控制 01:选择 P1 开漏控制 00:选择 P0 开漏控制

Bit3-2 **PT_RDS**<1:0>: 读端口模式选择位

11:输出模式时读端口寄存器,输入模式读端口电平

10:始终读端口寄存器 01:始终读端口电平

00:输出模式时读端口寄存器,输入模式读端口电平

Bit1 PT_PLS:端口上/下拉控制选择位

1:选择端口下拉控制 0:选择端口上拉控制

Bit0 PT_IOS:端口输入/输出控制选择位

1:选择 Px_IE 寄存器

0:选择 Px_OE 寄存器

P0_IE P0 端口输入使能寄存器 (与 P0_OE 寄存器复用,通过 PORT_C0.PT_IOS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RW-1111_1111								
P0 IE<7:0>								

Bit7-0 **P0 IE**<7:0>: P0 端口输入使能位

1:输入使能0:输入禁止

P1_IE P1 端口输入使能寄存器 (与 P1_OE 寄存器复用,通过 PORT_C0.PT_IOS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-1111_1111									
	P1 IE<7:0>									

Bit7-0 **P1_IE**<7:0>: P1 端口输入使能位

1:输入使能0:输入禁止

P2_IE P2 端口输入使能寄存器 (与 P2_OE 寄存器复用,通过 PORT_C0.PT_IOS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	_	_	RW-11	
_	_	_	_	_	_	P2_IE <1:0>	

Bit7-2 保留

Bit1-0 **P2_IE**<1:0>: P2 端口输入使能位

1:输入使能 0:输入禁止

P0_OE P0 端口输出使能寄存器 (与 P0_IE 寄存器复用,通过 PORT_C0.PT_IOS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RW-0000_0000								
P0_OE<7:0>								

Bit7-0 **P0_OE**<7:0>: P0 端口输出使能位

1:输出使能0:输出禁止

P1_OE P1 **端口输出使能寄存器** (与 P1_IE 寄存器复用,通过 PORT_C0.PT_IOS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
	P1 0E<7:0>								

Bit7-0 **P1_OE**<7:0>: P1 端口输出使能位

1:输出使能 0:输出禁止

P2_OE P2 端口输出使能寄存器 (与 P2_IE 寄存器复用,通过 PORT_C0.PT_IOS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	_	_	RW	/-00

_ _ _ _ _ _ _ _ _ _ _ P2_0E<1:0>

Bit7-2 保留

Bit1-0 **P2_OE**<1:0>: P2 端口输出使能位

1:输出使能0:输出禁止

P0_DAT P0 端口数据寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
	P0 n<7:0>								

Bit7-0 **P0_n**<7:0>: P0 端口输出位

1:端口输出高电平 0:端口输出低电平

P1_DAT P1 端口数据寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
	P1_n<7:0>								

Bit7-0 **P1_n**<7:0>: P1 端口输出位

1:端口输出高电平 0:端口输出低电平

P2_DAT P2 端口数据寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	_		RW-00	
_	_	_	_	_	_	P2_n< 1:0>	

Bit7-2 保留

Bit1-0 **P2_n**<1:0>: P2 端口输出位

1:端口输出高电平 0:端口输出低电平

PO_PUE PO 端口弱上拉使能寄存器 (与 PO_PDE 寄存器复用,通过 PORT_CO.PT_PLS 位选

择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
			P0_PU	E <7:0>						

Bit7-0 **P0_PUE**<7:0>: P0 端口弱上拉使能位

1:弱上拉使能0:弱上拉关闭

P1_PUE P1 端口弱上拉使能寄存器 (与 P1_PDE 寄存器复用,通过 PORT_C0.PT_PLS 位选

择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
			P1_PU	E <7:0>						

Bit7-0 **P1_PUE**<7:0>: P1 端口弱上拉使能位

1:弱上拉使能0:弱上拉关闭

P2_PUE P2 端口弱上拉使能寄存器 (与 P2_PDE 寄存器复用,通过 PORT_C0.PT_PLS 位选

择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	_	_	RW-00	
_	_	_	_	_	_	P2 PUE <1:0>	

Bit7-2 保留

Bit1-0 **P2_PUE**<1:0>: P2 端口弱上拉使能位

1:弱上拉使能0:弱上拉关闭

PO_PDE PO 端口弱下拉使能寄存器 (与 PO_PUE 寄存器复用,通过 PORT_CO.PT_PLS 位选

择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
	P0 PDE<7:0>								

Bit7-0 **P0_PDE**<7:0>: P0 端口弱下拉使能位

1:弱下拉使能0:弱下拉关闭

P1_PDE P1 端口弱下拉使能寄存器 (与 P1_PUE 寄存器复用,通过 PORT_C0.PT_PLS 位选

择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0000_0000									
	P1 PDE<7:0>								

Bit7-0 **P1_PDE**<7:0>: P1 端口弱上拉使能位

1:弱下拉使能0:弱下拉关闭

P2_PDE P2 端口弱下拉使能寄存器 (与 P2_PUE 寄存器复用,通过 PORT_C0.PT_PLS 位选

择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	_	_	_	_	RW-00	
_	_	_	_	_	_	P2_PDE <1:0>	

Bit7-2 保留

Bit1-0 **P2_PDE**<1:0>: P2 端口弱上拉使能位

1:弱下拉使能0:弱下拉关闭

P0_ODE P0 端口开漏使能寄存器(与 P1_ODE、P2_ODE 寄存器复用,通过 PORT_C0.PT_ODS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	PORT_ODE<7:0>									

Bit7-0 **P0_ODE** <7:0>: P0 端口输出模式选择位

1:开漏输出模式(要求开漏端口电平不高于 VDD 电平)

0:推挽输出模式

P1_ODE P1 端口开漏使能寄存器 (与 P0_ODE、P2_ODE 寄存器复用,通过

PORT_C0.PT_ODS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	PORT_ODE<7:0>									

Bit7-0 P1_ODE <7:0>: P1 端口输出模式选择位

1:开漏输出模式(要求开漏端口电平不高于 VDD 电平)

0:推挽输出模式

P2_ODE P2 端口开漏使能寄存器(与 **P0_ODE、P1_ODE** 寄存器复用,通过

PORT CO.PT ODS 位选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	_	_	_	_	_	RW-00	
_	_	_	_	_	_	P2 ODE <1:0>	

Bit7-0 **P2 ODE** <1:0>: P0 端口输出模式选择位

1:开漏输出模式(要求开漏端口电平不高于 VDD 电平)

0:推挽输出模式

P0_FUNL P0 端口复用选择寄存器低 8 位(**P0<**3:0>功能选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW	/-00	RW	'-00	RW	'-00	RW	'-00
P03_FUN<1:0> P02_FUN<1:0>		P01_FU	IN <1:0>	P00 FUN<1:0>			

Bit7-6 **P03 FUN**<1:0>: P03 端口复用选择位(参见端口复用表)

11: IIC 时钟线 SCL 10: UART 接收端 RX

01: TMR1 外部时钟输入 TIN1

00:通用I/O P03

Bit5-4 **P02_FUN**<1:0>: P02 端口复用选择位(参见端口复用表)

11: IIC 数据线 SDA 10: UART 发送端 TX

01:PWM2通道 1 输出 PWM21

00:通用 I/O (大电流输出) P02

Bit3-2 **P01_FUN**<1:0>: P01 端口复用选择位(参见端口复用表)

11: IIC 时钟线 SCL 10: UART 接收端 RX

01:PWM2通道 0 输出 PWM20 00:通用 I/O (大电流输出) P01

Bit1-0 **P00_FUN**<1:0>: P00 端口复用选择位(参见端口复用表)

11:通用 I/O P00

10: PWM0 刹车输入 STP0

01:通用 I/O P00 00:通用 I/O P00

P0_FUNH P0 端口复用选择寄存器高 8 位(**P0**<7:4>功能选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-00		RW	RW-00		RW-00		'-00
P07 FUN <1:0>		P06 FU	IN <1:0>	P05_FU	N <1:0>	P04 FUN <1:0>	

Bit7-6 **P07_FUN<**1:0>: P07 端口复用选择位(参见端口复用表)

11: TMR2 门控输入 TGT2

10: UART接收端RX

01: TMR1 外部时钟输入 TIN1, PWM1 通道 0 输出 PWM00

00:通用 I/O (大电流输出) P07

Bit5-4 **P06_FUN**<1:0>: P06 端口复用选择位(参见端口复用表)

11: TMR1 门控输入 TGT1

10: PWM1 刹车输入

01: TMR0 外部时钟输入 TIN0, PWM0 通道 1 输出 PWM01

00:通用 I/O (大电流输出) P06

Bit3-2 **P05_FUN**<1:0>: P05 端口复用选择位(参见端口复用表)

11: TMR0 门控输入 TGT0

10:通用 I/O (大电流输出)

01: CAP0 捕捉输入 CAP0, PWM0 通道 0 输出 PWM00

00:通用 I/O (大电流输出) P05

Bit1-0 **P04_FUN**<1:0>: P04 端口复用选择位(参见端口复用表)

11: IIC 数据线 SDA 10: UART 发送端 TX

01: TMR2 外部时钟输入 TIN2

00: 通用 I/O P04

P1_FUNL P1 端口复用选择寄存器低 8 位 (P1<3:0>功能选择)

P13_FUN<1:0>		P12_FU	IN <1:0>	P11_FUN<1:0>		P10_FUN <1:0>	
RW-00 RW-0		'-00	RW	'-00	RW	'-00	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-6 **P13_FUN**<1:0>: P13 端口复用选择位(参见端口复用表)

11:通用 I/O P13

10:PWM2 刹车输入 STP2 01:TMR3 外部时钟输入 TIN3

00:通用 I/O P13

Bit5-4 **P12_FUN**<1:0>: P12 端口复用选择位(参见端口复用表)

11:通用 I/O (大电流输出) P12 10:通用 I/O (大电流输出) P12 01:PWM2 通道 1 输出 PWM21 00:通用 I/O (大电流输出) P12

Bit3-2 **P11_FUN<**1:0>: P11 端口复用选择位(参见端口复用表)

11: 所有 PWM 刹车输入 STP

10:通用 I/O (大电流输出) P11 01:PWM2 通道 0 输出 PWM20 00:通用 I/O (大电流输出) P11

Bit1-0 **P10_FUN**<1:0>: P10 端口复用选择位(参见端口复用表)

11: TMR3 门控输入 TGT3

10: UART 发送端 TX

01: CAP1 捕捉输入 CAP1, PWM1 通道 1 输出 PWM11

00:通用 I/O (大电流输出) P10

P1_FUNH P1 端口复用选择寄存器高 8 位 (P1<7:4>功能选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-00		RW-00		RW-00		RW-00	
P17 FUN<1:0>		P16_FU	IN <1:0>	P15_FU	IN <1:0>	P14 FUN<1:0>	

Bit7-6 **P17_FUN**<1:0>: P17 端口复用选择位(参见端口复用表)

11: TMR0 门控输入 TGT0 10: SPI 主输入从输出 MISO 01: PWM1 通道 1 输出 PWM11 00: 通用 I/O (大电流输出) P17

Bit5-4 P16_FUN<1:0>: P16 端口复用选择位(参见端口复用表)

11:TMR1 门控输入 TGT1 10:SPI 主输出从输入 MOSI 01:PWM1 通道 0 输出 PWM10

00:通用 I/O (大电流输出) P16

Bit3-2 P15_FUN<1:0>: P15 端口复用选择位(参见端口复用表)

11:TMR2 门控输入 TGT2 10:SPI 时钟信号 SCK

01: PWM0 通道 1 输出 PWM01

00:通用 I/O P15

Bit1-0 **P14_FUN**<1:0>: P14 端口复用选择位 (参见端口复用表)

11: TMR3 门控输入 TGT3

10:SPI 片选信号 SS

01:PWM0通道0输出PWM00

00:通用 I/O P14

P2_FUNL P2 端口复用选择寄存器(**P2<**1:0>功能选择)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_			RW-00		RW-00	
_	_			P21_FUN <1:0>		P20_FU	JN <1:0>

Bit7-4 保留

Bit3-2 **P21_FUN**<1:0>: P21 端口复用选择位(参见端口复用表)

11: IIC 时钟线 SCL 10: UART 发送端 TX

01: TMR2 外部时钟输入 TIN2, PWM0 通道 1 输出 PWM01

00:通用 I/O P21

Bit1-0 **P20_FUN**<1:0>: P20 端口复用选择位(参见端口复用表)

11: IIC 数据线 SDA 10: UART 接收端 RX

01: CAP2 捕捉输入 CAP2, PWM0 通道 0 输出 PWM00

00:通用 I/O P20

13 定时/计数器 TMR

13.1 描 述

芯片内置 4组 16位定时/计数器 TMR0~TMR3。支持门控计数功能。

16 位 TMRn 使能后进行累加计数,当计数器 TMRn 值与周期寄存器 TMRn_CY 值相等时,产生 1 次计数溢出,TMRn 被自动清零后继续累加计数。

图表 16 TMR 功能框图

TMR 操作流程(以TMR0为例)

TMRO计数时钟源:通过配置TMRO_CKS(TMRO_C0[5:4])选择需要计数的时钟

TMRO设置计数周期:通过配置{TMRO_CYH, TMRO_CYL}配置计数溢出周期

TMRO计数其他配置:

1:分频配置,TMRO_PRE(TMRO_C0[6])设置为1则对计数时钟进行8分频
2:后分频,通过配置TMRO_PST(TMR_C0[3:0])进行后分频配置,后分频
是指产生(TMRO_PST+1)次的溢出产生一次中断。

中断相关配置:

1:满足溢出后分频次数匹配后,产生中断TMRO中断标志位TMR_IF[0]
2:使能TMR_IE[0]可置起NT_IF[2],如果使能NT_IE[2]和GIE可产生中断,向量入口地址为0X3B。

开启TMRO计数:将TMRO_EN(TMRO_C0[7])设置为1,使能计数

TMR_IF[0]软件进行清零;INT_IF[2]在进中断后硬件清零,如果未使能中断,INT_IF[2]软件清零。

图表 17 TMR 操作流程图

13.2 TMR 寄存器

TMRn_C0 TMRn 控制寄存器 0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0	RW-0	RW	'-00		RW-0	000			
TMRn_EN	TMRn_PRE	TMRn_C	TMRn_CKS<1:0>		TMRn_PST<3:0>				

Bit7 TMRn_EN: TMRn 使能位

1:使能 0:关闭

Bit6 TMRn_PRE: TMRn 计数时钟 8 分频使能位

1:使能 0:关闭

Bit5-4 TMRn_CKS<3:0>: TMRn 计数时钟选择位

11:XOSC 外部振荡器10:LRC 内部低频时钟01:EXCK 复用端口输入00:SYS_CLK 系统时钟源

Bit3-0 TMRn_PST<3:0>: TMRn 后分频位

TMRn 的 n 次溢出产生中断 (n = TMRn_POS<3:0> + 1)

TMRn C1 TMRn 控制寄存器 1

Ī	_	_	_	_	_	_	TMRn GS	TMRn GE
ĺ	_	_	_	_	_	_	RW-0	RW-0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-2 保留

Bit1 **TMRn_GS**: TMRn 门控极性选择位

1:TMRG 输入低电平计数 0:TMRG 输入高电平计数

Bit0 **TMRn_GE**: TMRn 门控使能位

1:使能 0:关闭

TMRnL TMRn 计数寄存器低 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
TMRn<7:0>										

Bit7-0 TMRn<7:0>: TMRn 计数值低 8 位,写时应先低位后高位;读出时先高位后低位

TMRnH TMRn 计数寄存器高 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	RW-0000_0000										
	TMRn<15:8>										

Bit7-0 TMRn<15:8>: TMRn 计数值高 8 位,写时应先低位后高位;读出时先高位后低位

TMRn_CYL TMRn 周期寄存器低 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	RW-0000_0000										
	TMRn CY<7:0>										

Bit7-0 **TMRn_CY** <7:0>: TMRn 周期值低 8 位

TMRn_CYH TMRn 周期寄存器高 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	RW-0000_0000										
			TMRn_C	Y <15:8>							

Bit7-0 **TMRn_CY**<15:8>: TMRn 周期值高 8 位

14 边沿捕捉器 CAP

14.1 描 述

芯片内置 3 路边沿捕捉器 CAP0~CAP2。

边沿捕捉器 CAP 为 TMR 的附加功能,工作时需选定一个 TMR 作为其工作时基。

捕捉清零模式

示例: CAPn_MOD<1:0>=11, CAPn_EGS<1:0>=01, CAPn_CNT<1:0>=00

图表 18 捕捉清零模式示例波形图

捕捉累加模式

示例: CAPn_MOD<1:0>=10, CAPn_EGS<1:0>=11, CAPn_CNT<1:0>=01

图表 19 捕捉累加模式示例波形图

CAP操作流程(以CAP0为例)

图表 20 CAP 操作流程图

14.2 CAP 寄存器

CAPn_C CAPn 捕捉控制寄存器 (与 PWMn_C 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW	/- 00	RW-00		RW-00		RW-00	
CAPn EGS<1:0>		CAPn_C	NT <1:0>	CAPn_T	BS <1:0>	CAPn MOD<1:0>	

Bit7-6 CAPn_EGS<1:0>: CAPn 捕捉边沿选择位

11:上升和下降沿都捕捉

10:下降沿捕捉01:上升沿捕捉

00:保留

Bit5-4 CAPn_CNT<1:0>: CAPn 捕捉边沿个数选择位

11:16个触发边沿产生1次捕捉事件 10:8个触发边沿产生1次捕捉事件 01:4个触发边沿产生1次捕捉事件

00:1个触发边沿产生1次捕捉事件

Bit3-2 CAPn_TBS<1:0>: CAPn 工作时基选择位

11:选择 TMR3 10:选择 TMR2 01:选择 TMR1 00:选择 TMR0

Bit1-0 CAPn_MOD<1:0>: CAPn 捕捉模式选择位

11:捕捉清零模式 (捕捉事件发生时,时基 TMR 清零)

10:捕捉累加模式(捕捉事件发生时,时基 TMR 继续累加)

01:保留(用于 PWM 模式)

00:关闭

CAPn_DL CAPn 捕捉寄存器低 8 位 (与 PWMn_R0L 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	RW-0000_0000										
			CAPn_	D <7:0>							

Bit7-0 **CAPn_D**<7:0>: CAPn 捕捉值低 8 位

CAPn_DH CAPn 捕捉寄存器高 8 位 (与 PWMn_R0H 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
CAPn D<15:8>										

Bit7-0 **CAPn_D**<15:8>: CAPn 捕捉值高 8 位

15 脉宽调制器 PWM

15.1 描 述

芯片内置 3 组脉宽调制器 PWM0~PWM2,每组支持 2 路 PWM 输出。

脉宽调制器 PWM 为 TMR 的附加功能,工作时需选定一个 TMR 作为工作时基。在选择时基时,根据应用系统的需求,可多组 PWM 选择同一个 TMR 时基,也可分别选择不同的 TMR 时基。当选择同一TMR 时基时,采用同一时基工作的多组 PWM 的输出频率是相同的。

示例:**PWMn_DT**<7:0>=00H

 $PWMn0_T=0$, $PWMn0_P=1$, $PWMn0_N=0$

PWMn1_T=0 , PWMn0_P=0 , PWMn0_N=1

图表 21 PWM 工作示例波形图

PWM 周期

PWM 以所选定 TMR 作为时基进行工作,PWM 的周期即为所选定 TMR 的 TMRn_CY 寄存器所设定的计数周期。

PWM 匹配点

PWM 模块包含 2 组 16 位的匹配寄存器 PWMn_R0 和 PWMn_R1,且 2 组匹配寄存器各有 1 级缓冲器 PWMn_R0_BUF 和 PWMn_R1_BUF,分别对应于 PWMn 的 2 路输出通道。当 PWM 关闭时,写匹配寄存器会同时将写入值更新到匹配缓冲器中;当 PWM 运行时,写匹配寄存器不会立即更新匹配缓冲器,而是在一个完整的 PWM 周期结束时才将匹配寄存器的内容更新到匹配缓冲器中。PWM 工作时,时基的计数值会实时和匹配缓冲器进行比较,当 PWM 时基计数值与匹配缓冲器值相等时,即为匹配点。用户可分别设定 PWM 周期内匹配点前和匹配点后的 PWM 输出电平。

PWM 输出初始态

当 PWM 模块不使能,或 PWM 工作中进入刹车状态,PWM 波形为输出初始态,用户可设定初始态的输出电平。当然,这个初始态的输出电平是否通过 PWM 复用端口输出,要取决于相应复用端口的设置。

PWM 操作流程(以 PWM0 为例)

图表 22 PWM 操作流程图

15.2 PWM 寄存器

PWMn_C PWMn 控制寄存器 (与 CAPn_C 寄存器复用)

PWMn_SPS<1:0> PWMn_M		n_MT	PWMn_T	BS <1:0>	PWMn_M	IOD <1:0>	
RW	'-00	RW	RW-00		RW-00		'-00
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-6 PWMn_SPS<1:0>: PWMn 刹车模式选择位

11:软件刹车(写"11"立即进入刹车状态) 10:模拟比较器输出 ACP_O 为低电平时刹车

01:STP 复用端口输入低电平刹车

00:关闭刹车功能

Bit5-4 PWM_MT

11: PWM 移相模式, PWMn1 以 PWMn0 为基础, 移动 PWMn_R1 个计数周期

10:传统模式 0x:传统模式

Bit3-2 **PWMn TBS**<1:0>: PWMn 工作时基选择位

11:选择 TMR3 10:选择 TMR2 01:选择 TMR1 00:选择 TMR0

Bit1-0 PWMn MOD<1:0>: PWMn 模式选择位

1x:保留(用于 CAP 模式)

01:PWM 模式

00: 关闭

PWMn_ROL PWMn **通道 0 匹配点寄存器低 8 位**(与 CAPn_DL 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	PWMn R0<7:0>									

Bit7-0 **PWMn_R0**<7:0>: PWMn 通道 0 占空比低 8 位

PWMn_R0H PWMn 通道 0 匹配点寄存器高 8 位 (与 CAPn_DH 寄存器复用)

			-			-				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	PWMn R0<15:8>									

Bit7-0 **PWMn_R0**<15:8>: PWMn 通道 0 占空比高 8 位

PWMn_R1L PWMn 通道 1 匹配点寄存器低 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	RW-0000_0000								
			PWMn_	R1 <7:0>					

Bit7-0 **PWMn_R1**<7:0>: PWMn 通道 1 占空比低 8 位

PWMn_R1H PWMn 通道 1 匹配点寄存器高 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	RW-0000_0000										
	PWMn_R1<15:8>										

Bit7-0 **PWMn_R1**<15:8>: PWMn 通道 1 占空比高 8 位

PWMn DT PWMn 死区时间寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	RW-0000_0000									
	PWMn DT<7:0>									

Bit7-0 PWMn_DT<7:0>: PWMn 死区时间值

PWMn OC PWMn 输出控制寄存器

RW-0	RW-0	RW-0	RW-0	RW-0	RW-1	RW-0	RW-1
PWMn1	PWMn0	PWMn1	PWMn0	PWMn1	PWMn1	PWMn0	PWMn0
D	D	T T	T	N	P	N	

Bit7 **PWMn1_D**: PWMn 通道 1 死区延时边沿选择位

1:延时上升沿0:延时下降沿

Bit6 **PWMn0_D**: PWMn 通道 0 死区延时边沿选择位

1:延时上升沿0:延时下降沿

Bit5 PWMn1_T: PWMn 通道 1 输出初始态选择位

1:輸出高电平0:輸出低电平

Bit4 PWMn0_T: PWMn 通道 0 输出初始态选择位

1:输出高电平0:输出低电平

Bit3 PWMn1_N: PWMn 通道 1 匹配点后输出值

1:輸出高电平0:輸出低电平

Bit2 PWMn1_P: PWMn 通道 1 匹配点前输出值

1:輸出高电平0:輸出低电平

Bit1 PWMn0 N: PWMn 通道 0 匹配点后输出值

1:輸出高电平0:輸出低电平

Bit0 PWMn0 P: PWMn 通道 0 匹配点前输出值

1:輸出高电平0:輸出低电平

16 UART 异步收发器

16.1 描述

芯片内置 1路 UART 异步收发器,支持 4组 UART 通信端口,可实现分时复用。

UART 发送 PWM 调制

UART 发送支持 PWM 调制输出,可选择输出高电平调制或输出低电平调制。UART 调制功能固定选择 PWM00 波形进行调制。

图表 23 UART 发送调制示意图

UART 发送操作流程

UART 接收操作流程

16.2 UART 寄存器

UART_BRL UART 波特率寄存器低 8 位

ĺ	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Ī	RW-0000_0000									
ĺ	UART_BRR<7:0>									

Bit7-0 **UART_BRR**<7:0>: UART 波特率低 8 位

UART_BRH UART 波特率寄存器高 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	RW-0000_0000								
	UART BRR <15:8>								

Bit7-0 **UART_BRR**<15:8>: UART 波特率高 8 位

UART RXC UART 接收控制寄存器

ſ	FERR	OERR	PERR	RX9D	PARS	BRFX	RXEN	I<1:0>
ſ	R-0	R-0	R-0	R-0	RW-0	RW-0	RW-0	RW-0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 FERR: UART 接收帧错误标志位

1:有帧错误 0:无帧错误

Bit6 OERR: UART接收溢出错误标志位

1:有溢出错误0:无溢出错误

Bit5 PERR: UART 接收校验错误标志位(仅在 RXEN<1:0>=11 时有效)

1:有校验错误0:无校验错误

Bit4 RX9D: UART 接收第 9 位数据

Bit3 PARS: 奇偶校验选择位

1:偶校验 0:奇校验

Bit2 BRFX: UART 波特率自适应使能位

1:使能 0:关闭

Bit1-0 RXEN<1:0>: UART接收使能位

11:使能9位数据接收(影响奇偶校验标志 PERR) 10:使能9位数据接收(不影响奇偶校验标志 PERR) 01:使能8位数据接收(不影响奇偶校验标志 PERR)

10:关闭 RX 接收功能

UART RXB UART 接收数据寄存器

_									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	RW-0000_0000								
			RXB-						

Bit7-0 **RXB**<7:0>: UART接收数据

UART_TXC UART 发送控制寄存器

TXST	TXBF	TX9S <1:0>		STPS	TXDM	TXEN<1:0>	
R-0	R-0	RW	RW-00		RW-0	RW-00	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 **TXST**: UART 发送状态标志位

1: UART 发送未完成 0: UART 发送已完成

Bit6 TXBF: UART 发送缓冲区满标志位

1: UART 发送缓冲区满 0: UART 发送缓冲区空

Bit5-4 **TX9S**<1:0>: UART 发送第 9 位数据格式选择位

11:发送数据 1 10:发送数据 0 01:发送偶校验 00:发送奇校验

Bit3 STPS: 发送 STOP 位长度选择位

1:发送2位STOP位 0:发送1位STOP位

Bit2 TXDM: UART 发送数据格式选择位

1:9位数据 0:8位数据

Bit1-0 TXEN<1:0>: UART 发送使能位

11: 使能,发送空闲和发送寄存器空均产生中断

10:使能,发送空闲产生中断

01:使能,发送寄存器空产生中断

00: 关闭

UART TXB UART 接收数据寄存器

_								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
RW-0000_0000								
			TXB-	<7:0>				

Bit7-0 **TXB**<7:0>: UART 发送数据

UART_TXM UART 发送调制控制寄存器 (与 PORT_C0 寄存器复用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-00		_	_	_	_		_
TXM <1:0>		_	-	_			

Bit7-6 **TXM**<1:0>: UART 发送调制模式选择位

1x: TX 输出 0 调制 01: TX 输出 1 调制 00: 关闭调制功能

Bit5-0 保留

17 IIC 总线控制器

17.1 描述

芯片内置 1 路 IIC 总线控制器,3组端口分时复用,功能特性如下:

- 支持主控模式(仅支持单主机,不支持多主仲裁)
- 支持从动模式(仅支持7位从机地址,从机地址可设置)
- 支持通信等待功能
- 支持通信超时检测

IIC 通信等待

图表 26 IIC 通信等待波形示意图

IIC 总线控制器支持通信等待功能,通过 IIC_CO.WTEN 位使能。

在主控模式中使能通信等待功能,当 IIC 总线上每完成一个字节的发送或接收后,主机将时钟线 SCL 释放为高电平,并实时检测 SCL 线上的电平状态。如果 SCL 为高电平,则继续进行后续时钟 发送;如果 SCL 被从机拉为低电平,说明从机没有作好通信准备,强制进入通信等待状态,则主机一直等到从机重新将 SCL 线释放为高电平后,才继续进行后续时钟发送。

在从动模式中使能通信等待功能,当 IIC 总线上每完成一个字节的发送或接收后,从机自动将时钟线 SCL 拉为低电平,强制 进入通信等待状态。待从机作好通信准备后,通过将 IIC_C1.WAIT 位置1将 SCL 线释放为高电平,主机检测到这个高电平后会继续进行后续传输。

IIC 通信超时检测

IIC 通信中,由于存在通信等待等主、从机之间的握手机制,因此有可能在异常情况下导致通信死锁。使能通信超时检测功能,可以通过超时中断发现通信中的异常死锁,以便进行软件处理。超时检测功能检测 IIC 总线上 SCL 线低电平的持续时间,如果 SCL 线低电平的持续时间超过 IIC_TOC.IIC_OVT 所设定的超时时间,则会产生 IIC 超时中断。

IIC 主控通讯流程

IIC 从机通讯流程

图表 28 IIC 从机通讯流程图

17.2 IIC 寄存器

IIC_C0 IIC 控制寄存器 0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	RW-	0000		RW-0	RW-0	RW-0	RW-0
	IIC_SMI	PF <3:0>		IIC_IM	WTEN	IIC_MD	IIC_EN

Bit7-4 IIC_SMPF<3:0>: SCL 和 SDA 采样滤波时间(要求远小于波特率设定的时钟周期)

> IIC_SMPF<3:0> + 1 滤波时间 TFLT =

Bit3 IIC_IM: IIC 位中断模式选择位

1:START和STOP位不产生中断,完成1个字节的接收或发送产生中断

0:START和STOP位产生中断,完成1个字节的接收或发送产生中断

Bit2 WTEN: IIC 等待功能使能位

1:使能

0:关闭

IIC_MD: IIC 主/从模式选择位 Bit1

> 1:从动模式 0: 主控模式

Bit0 IIC_EN: IIC 使能位

> 1:使能 0:关闭

IIC_C1 IIC 控制寄存器 1

_	_	_	MTAI MK	STOP	START	WAIT	ACK
_	_	_	RW-0	RW-0	RW-0	RW-0	RW-0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7-5 保留

Bit4 MTAI MK: 主机发送地址中断屏蔽位

1: 主机发送地址不产生中断

0: 主机发送地址产生中断

Bit3 STOP: STOP 位发送位

1:置1发送STOP位(发送完成硬件自动清0)

0:STOP 位发送完成

START: START 位发送位 Bit2

1:置1发送START位(发送完成硬件自动清0)

0:START 位发送完成

Bit1 **WAIT**: 从机等待释放位 (仅在 **IIC_MD**=1 并且 **WTEN**=1 时有意义)

1:置1释放从机等待状态(完成下一字节传送时,硬件自动清零)

0:从机等待状态

ACK: ACK 位发送选择位 Bit0

> 1: 发送 NACK 0: 发送 ACK

IIC STA IIC 状态寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
R-0	R-0	R-0	R-0	R-0	R-0	RW-0	RW-0
SLV_ADF	SLV_RWF	STOP_F	START_F	ACK_F	BUF_ST	WERR	OERR

Bit7 SLV_ADF:从机已接收字节类型标志位

1:当前接收完成的字节为数据 0:当前接收完成的字节为地址

Bit6 **SLV_RWF**: 从机读写标志位

1:主机读从机0:主机写从机

Bit5 STOP_F: STOP 位检测标志位

1:检测到 IIC 总线上有 STOP 位 (清 IIC IF.IIC IF 位时同步被清 0)

0:未检测到 IIC 总线上有 STOP 位

Bit4 START F: START 位检测标志位

1:检测到 IIC 总线上有 START 位 (清 IIC IF.IIC IF 位时同步被清 0)

0:未检测到 IIC 总线上有 START 位

Bit3 ACK F: ACK 位检测标志位

1:检测到 NACK 0:检测到 ACK

Bit2 BUF_ST:缓冲器状态位

接收模式

1:接收缓冲器满(读 IIC_DATA 寄存器时同步被清 0)

0:接收缓冲器未满

发送模式

1:发送缓冲器空(写 IIC_DATA 寄存器时同步被清 0)

0:发送缓冲器未空

Bit1 **OVT_F:** IIC 超时标志位

1:超时(清 IIC_IF.IIC_IF 位时同步清 0,也可软件清 0)

0:未超时

Bit0 BFOV_F:缓冲器溢出标志位

接收模式

1:接收缓冲器溢出(软件清0)

0:接收缓冲器未溢出

发送模式

1:发送写缓冲器溢出(软件清0)

0:发送写缓冲器未溢出

IIC_BRR IIC 波特性寄存器 (用于主控模式,从动模式下复用为 IIC_ADDR 寄存器)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
_		RW-000 0000								
_		IIC BRR<6:0>								

Bit7 保留

Bit6-0 **IIC_BRR**<6:0>: IIC 波特率

波特率 $IIC_BR = \frac{F_{SYSCLK}}{(IIC_BRR<6:0>+1) \times 4}$

IIC_ADDR IIC 从地址寄存器 (用于从动模式,主控模式下复用为 IIC_BRR 寄存器)

В	it7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
-	_		RW-000_0000								
_	_		IIC ADDR<6:0>								

Bit7 保留

Bit6-0 IIC_ADDR<6:0>: IIC 从机地址

IIC_DATA IIC 数据寄存器

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	RW-0000_0000							
Ī	IIC_DATA<7:0>							

Bit7-0 **IIC_DATA**<7:0>: IIC 发送/接收数据

IIC_TOC IIC 超时控制寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
RW-0	_		RW-00_0000						
TOC EN	_		IIC OVT<5:0>						

Bit7 **TOC_EN:** IIC 超时检测使能位

1:使能 0:关闭

Bit6 保留

Bit5-0 IIC_OVT<5:0>:IIC 超时时间

超时时间 T_{OV} = (IIC_OVT<5:0> +1) x 64 F_{SYSCLK}

18 SPI 通讯端口

18.1 描述

芯片具备 1组 SPI 通讯端口。

- 支持全双工工作模式
- 支持主从模式
- 极性可配置
- 支持传输格式高低位可配置

SPI 主控通讯流程

SPI 从动通讯流程

18.2 SPI 寄存器

SPI_C0 SPI 控制寄存器 0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0	RW-0	RW-0	RW-0	RW-0		RW-000	
SPI_SSC	SPI_SSD	SPI_CPOL	SPI_CPHA	SPI_DIR	SPI_CLK		

Bit7 SPI_SSC: SPI的 SS 使能控制位

1: 片选信号软件控制,受 SPI_SSD 控制

0:SS管脚有效

Bit6 SPI_SSD: SPI的SS 软件控制位

1:关闭片选 0:片选使能

Bit5 SPI CPOL: SPI 管脚空闲状态

1:空闲状态是 SCK 保持 10:空闲状态是 SCK 保持 0

Bit4 SPI_CPHA: SPI 数据采样格式

1: SCK 周期的第二个沿采集数据 0: SCK 周期的第一个沿采集数据

Bit3 SPI_DIR: SPI 传输格式

1:LSB 先发送 0:MSB 先发送

Bit2-0 SPI_CLK: SPI_CLK 分频器

111: SYSCLK/2 110: SYSCLK/128 101: SYSCLK/64 100: SYSCLK/32 011: SYSCLK/16 010: SYSCLK/8 001: SYSCLK/4 000: SYSCLK/2

SPI_C1 SPI 控制寄存器 1

SI	PI EN	SPI MS	_	_	SPI TXSP	SPI RXSP	SPI WOL	SPI ROV
F	RW-0	RW-0	_	_	R-0	R-0	RW-0	RW-0
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 SPI_EN: SPI 使能控制位

1:使能 0:禁止

Bit6 SPI_MS: SPI 主从模式

1:从机模式0:主控模式

Bit5-4 保留

Bit3 SPI_TXSP: 发送缓存区空满标志

1:发送缓存区满0:发送缓存区空

Bit2 SPI_RXSP:接收缓存区空满标志

1:接收缓存区满

0:接收缓存区空

Bit1 SPI_WOL: SPI 写冲突标志位

1:写冲突,硬件置1 0:无写冲突,软件清0

Bit0 **SPI_RXSP**: SPI 接收冲突标志位

1:有接收溢出,硬件置 10:无接收溢出,软件清 0

SPI_DATA SPI 数据寄存器

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RW-0000_0000 SPI DATA<7:0>				Bit0						
	RW-0000_0000									
		SPI_DATA<7:0>								

Bit7-0 **SPI_DATA<7:0>**: SPI 发送/接收数据

R:读取 SPI_DATA 时将获得接收移位换寄存器的数据W:写入 SPI_DATA 的数据被放置到发送移位寄存器中

19 模数转换器 ADC

19.1 描述

芯片内置 12 位 SAR 结构 ADC, 支持高速模式(最高采样率 500KHz)。

- 支持 11 个外部采样通道 AN0~AN10
- 支持内部 1/2 VDD 和 1/4 VDD 检测通道

ADC 操作流程

图表 31 ADC 操作流程图

19.2 ADC 寄存器

ADC_C0 ADC 控制寄存器 0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0	RW-0	RW	'-00		RW-	1111	
ADC_EN	S_TRG	TRG_S	TRG_S<1:0>		CH_SE	L <3:0>	

Bit7 ADC_EN: ADC 使能位

1:使能0:关闭

Bit6 **S_TRG**: ADC 软件触发位

1: 触发 ADC 转换

0:转换完成(硬件自动清0)

Bit5-4 TRG_S<1:0>: 触发方式选择位

11: TMR3 中断触发 10: TMR2 中断触发

01: TMR1 或 TMR0 中断触发

00: 软件触发(S_TRG 触发转换)

Bit3-0 CH_SEL<3:0>: ADC 采样通道选择位

1111:所有通道关闭

1110:保留

1101:选择内部 1/4 VDD 通道 1100:选择内部 1/2 VDD 通道

1011:保留

1010:选择通道 AN10 1001:选择通道 AN9

... ...

0001:选择通道 AN1 0000:选择通道 AN0

ADC_C1 ADC 控制寄存器 1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0		RW-000			RW-0	RW-00	
VREFP_EN	\	VREF_S <2:0>		AVDD_S	ADC_DM	ADC_CI	KS <1:0>

Bit7 VREFP_EN: VREFP 复用端口选通使能位

1: VREFP 复用端口选通 (预先设置 P1_IE<7>=0, P1_OE<7>=0,

P1_PUE<7>=0 , **P1_PDE**<7>=0)

0:VREFP复用端口关闭

Bit6-4 **VREFP_S**<2:0>: 内部参考电压源选择位

111:选择内部 1/4 VDD 110:选择内部 1/2 VDD

101:选择内部 VREF 2.048V (预先设置 **VREF_C** = EBH)

100:选择内部 VREF 2.5V (预先设置 **VREF_C** = EBH)

001: 选择 VDD

其他:关闭内部参考电压 VREF

Bit3 AVDD_S: ADC 工作系统电压选择位

1: 芯片工作在 5V 系统 (使用外部参考或者 VDD 参考时无需使能 VREF)

0:芯片工作在 3.3V 系统 (该模式下必须使能 VREF)

Bit2 ADC_DM: ADC 转换数据格式选择位

1:左对齐(结果放置{ADC_DH<7:0>, ADC_DL<7:4>})
0:右对齐(结果放置{ADC_DH<3:0>, ADC_DL<7:0>})

Bit1-0 ADC_CKS<1:0>: ADC 转换时钟 ADC_CLK 选择位

11: 系统时钟 SYS_CLK 16 分频10: 系统时钟 SYS_CLK 8 分频01: 系统时钟 SYS_CLK 4 分频00: 系统时钟 SYS_CLK 2 分频

ADC_C2 ADC 控制寄存器 2

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	_	RW	/- 00		RW-011		
_	_	ADC_CNT<1:0>		_		SMP_T<2:0>	•

Bit7-6 保留(用户固定写 11)

Bit5-4 **ADC_CNT**<1:0>: ADC 转换次数选择位

11:8次转换取平均10:4次转换取平均01:2次转换取平均

00:1次转换

Bit3 保留(用户固定写 1)

Bit2-0 **SMP T**<2:0>: ADC 采样时间控制位

采样时间 T_{SAMPLE} = (SMP_T<2:0> x 2 + 1) x T_{ADC_CLK}

ADC DL ADC 结果寄存器低 8 位

Bit7	Bit7 Bit6		Bit4	Bit3	Bit2	Bit1	Bit0		
	RW-0000_0000								
	ADC DL<7:0>								

Bit7-0 ADC_DL<7:0>: ADC 结果寄存器低 8 位

ADC_DH ADC 结果寄存器高 8 位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	RW-0000_0000								
ADC_DH<7:0>									

Bit7-0 **ADC_DH**<7:0>: ADC 结果寄存器高 8 位

ADC_CMP_C0 ADC 结果比较控制寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW	-00
ADC_CMP_	ADC_MAX_	ADC_MIN_	CMP_INT	ADC_MAX_	ADC_MIN_	ADC	_DM
E	E	E	M	F	F	D)

Bit7 ADC_CP_E: ADC 比较功能使能位

1:使能 0:关闭

Bit6 MAX_E:上限比较使能位

1:使能 0:关闭

Bit5 **MIN_E**: 下限比较使能位

1:使能 0:关闭

Bit4 INT_MD: ADC 中断模式 (比较模式使能后有效)

1:转换完成和比较超出上下限产生中断

0:仅比较超出上下限产生中断

Bit3 MAX_F: 上限比较使能位

1:小于等于上限阈值

0:大于上限阈值

Bit2 MIN_F: 下限比较使能位

1:大于等于下限阈值

0:小于下限阈值

Bit1-0 ADC_DMD<1:0>: ADC_DH和 ADC_DL操作对象控制

00: 仅可读出 ADC 转换值,对齐方式受 AD_DM 控制

01:对 ADC_DH和 ADC_DL写操作为配置 ADC 上限阈值,低对齐

10:对 ADC_DH和 ADC_DL写操作为配置 ADC 下限阈值,低对齐

11: 仅可读出 ADC 转换值,对齐方式受 AD_DM 控制

20 模拟比较器 ACP

20.1 ACP 功能框图

图表 32 ACP 功能框图

20.2 ACP 寄存器

ACP_C0 ACP 控制寄存器 0

RW-0	_	RW-0 HYS EN	ACP INV		RW-0	_	R-0 ACP_O
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Bit7 ACP_EN: ACP 使能位

1:使能 0:关闭

Bit6 保留(保持为1)

Bit5 HYS_EN:比较器输出迟滞使能位

1:使能0:禁止

Bit4 ACP_INV: ACP_O 输出反向使能位

1:输出端反向0:输出端正向

Bit3-2 ACP_PS: ACP 正向端选择位

11: 关闭

10:选择 ACPP2 复用端口 01:选择 ACPP1 复用端口 00:选择 ACPP0 复用端口

Bit1 ACP_NS: ACP 负向端选择位

1:选择 ACPN 复用端口

0:选择内部参考电压 VREF (预先设置 **VREF_C** = EBH)

Bit0 ACP_O: 比较输出位

ACP_INV=1时

1:正向端低于负向端 0:正向端高于负向端

ACP INV=0时

1:正向端高于负向端 0:正向端低于负向端

ACP_C1 ACP 控制寄存器 1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	RW-	0000		_		RW-000	
	ACP_F	L T <3:0>		_	ACP_VRFS<2:0>		0>

Bit7-4 ACP_FLT<3:0>: ACP 输出滤波位

0000: 滤波关闭

其他:ACP 输出滤波时间 T_{FLT} = ACP_FLT<3:0> + 1 F_{FLTCLK}

Bit3 保留

Bit2-0 ACP_VRFS<2:0>: ACP 参考电压选择位

ACP_C2 ACP 控制寄存器 2

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	_	_	_	_	_	RW	'-00
						FTI CK	(S<1:0>

Bit7-2 保留(保持为全0)

Bit1-0 FLT CKS<1:0>: ACP 输出滤波时钟 FLTCLK 选择位

11:保留

10:选择内部高频时钟 HRC 二分频 (8MHz) 01:选择内部低频时钟 LRC 二分频 (16KHz)

00:选择系统时钟 SYS_CLK 二分频

21 内部参考电压 VREF

21.1 描述

芯片内置高精度参考电压模块 VREF, 出厂校准精度 < ±1%。

VREF 模块用于 ADC 和 ACP 的内部参考电压,当 ADC 和 ACP 选择 VREF 作为参考时,需预先通过 VREF_C 寄存器使能 VREF 模块,不选用 VREF 时需将模块关闭,以节省电流消耗。

ADC 的温度采样通道也来自于 VREF 模块,进行 ADC 的温度采样前,需预先使能 VREF 模块。

21.2 VREF 寄存器

VREF_C VREF 配置寄存器

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	RW-0000_0000							
	VREF_C<7:0>							

Bit7-0 **VREF_C**<7:0>: VREF 配置位

EBH: 使能内部参考电压 2.5V 和 2.0V

00H: 关闭 VREF 模块

其他:保留

22 低电压检测 LVD

22.1 描述

芯片内置低电压检测模块 LVD。该模块用于监测 VDD 电压,也可用于对 LVDIN 复用端口输入电压进行监测,被监测电压由低于比较阈值产生 LVD 中断标志。

22.2 LVD 寄存器

LVD_C0 LVD 控制寄存器 0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RW-0	RW-0	RW-0	RW-0	RW-0	RW-000		
LVD_EN	LVD_IM	LVD_FLT	LVD_CKS	LVD_INS	LVD_VS<2:0>		>

Bit7 LVD_EN: LVD 使能位

1:使能 0:关闭

Bit6 **保留(用户固定写 0)**

Bit5 LVD_FLT: LVD 滤波选择位

1:7个LVD工作时钟

0:关闭滤波器

Bit4 LVD_CKS: LVD 工作时钟选择位

1:内部低频时钟 LRC 0:系统时钟 SYS_CLK

Bit3 LVD_INS:被监测电压选择位

1: LVDIN 复用管脚(阈值电压固定为 0.5V)

0: VDD

Bit2-0 **LVD_VS**<2:0>: 阈值电压选择位(仅用于监测 VDD)

23 指令集

23.1 算术运算指令

指令		描述	字节	周期
ADD	A, Rn	A = A + Rn	1	1
ADD	A, direct	A = A + [direct]	2	2
ADD	A, @Ri	A = A + [Ri]	1	2
ADD	A, #data	A = A + data	2	2
ADDC	A, Rn	A = A + Rn + C	1	1
ADDC	A, direct	A = A + [direct] + C	2	2
ADDC	A, @Ri	A = A + [Ri] + C	1	2
ADDC	A, #data	A = A + data + C	2	2
SUBB	A, Rn	A = A - Rn - C	1	1
SUBB	A, direct	A = A - [direct] - C	2	2
SUBB	A, @Ri	A = A - [Ri] - C	1	2
SUBB	A, #data	A = A - data - C	2	2
INC	Α	A = A + 1	1	1
INC	Rn	Rn = Rn + 1	1	2
INC	direct	[direct] = [direct] + 1	2	3
INC	@Ri	[Ri] = [Ri] + 1	1	3
DEC	Α	A = A - 1	1	1
DEC	Rn	Rn = Rn - 1	1	2
DEC	direct	[direct] = [direct] - 1	2	3
DEC	@Ri	[Ri] = [Ri] - 1	1	3
INC	DPTR	DPTR = DPTR + 1	1	4
MUL	AB	$B:A = B \times A$	1	11
DIV	AB	A = Int [A/B]; $B = Mod [A/B]$	1	11
DA	A	十进制调整	1	1

23.2 逻辑操作指令

	指令	描述	字节	周期
ANL	A, Rn	A = A <i>and</i> Rn	1	1
ANL	A, direct	A = A and [direct]	2	2
ANL	A, @Ri	A = A and [Ri]	1	2
ANL	A, #data	A = A and data	2	2
ANL	direct, A	[direct] = [direct] and A	2	3
ANL	direct, #data	[direct] = [direct] and data	3	3
ORL	A, Rn	A = A <i>or</i> Rn	1	1
ORL	A, direct	$A = A \ or [direct]$	2	2
ORL	A, @Ri	$A = A \ or [Ri]$	1	2
ORL	A, #data	$A = A \ or \ data$	2	2
ORL	direct, A	[direct] = [direct] or A	2	3
ORL	direct, #data	[direct] = [direct] or data	3	3
XRL	A, Rn	A = A <i>xor</i> Rn	1	1
XRL	A, direct	A = A xor[direct]	2	2
XRL	A, @Ri	A = A xor[Ri]	1	2
XRL	A, #data	A = A xor data	2	2
XRL	direct, A	[direct] = [direct] xor A	2	3
XRL	direct, #data	[direct] = [direct] xor data	3	3
CLR	А	A = 00H	1	1
CPL	А	A = not A	1	1
RL	А	A<7:0> = {A<6:0>, A<7>}	1	1
RLC	Α	$\{C, A<7:0>\} = \{A<7:0>, C\}$	1	1
RR	A	A<7:0> = {A<0>, A<7:1>}	1	1
RRC	A	{C, A<7:0>} = {A<0>, C, A<7:1>}	1	1
SWAP	A	A<7:0> = {A<3:0>, A<7:4>}	1	4

23.3 数据传送指令

	指令	描述	字节	周期
MOV	A, Rn	A = Rn	1	1
MOV	A, direct	A = [direct]	2	2
MOV	A, @Ri	A = [Ri]	1	2
MOV	A, #data	A = data	2	2
MOV	Rn, A	Rn = A	1	2
MOV	Rn, direct	Rn = [direct]	2	3
MOV	Rn, #data	Rn = data	2	2
MOV	direct, A	[direct] = A	2	2
MOV	direct, Rn	[direct] = Rn	2	2
MOV	direct1, direct2	[direct1] = [direct2]	3	3
MOV	direct, @Ri	[direct] = [Ri]	2	3
MOV	direct, #data	[direct] = data	3	3
MOV	@Ri, A	[Ri] = A	1	2
MOV	@Ri, direct	[Ri] = [direct]	2	3
MOV	@Ri, #data	[Ri] = data	2	2
MOV	DPTR, #data 16	DPTR = data(16-bit)	3	3
MOVC	A, @A+DPTR	A = [A+DPTR](程序代码)	1	7
MOVC	A, @A+PC	A = [A+PC](程序代码)	1	8
MOVX	A, @Ri	A = [Ri](核外 RAM)	1	5
MOVX	A, @DPTR	A = [DPTR](核外 RAM)	1	6
MOVX	@Ri, A	[Ri](核外 RAM) = A	1	4
MOVX	@DPTR, A	[DPTR](核外 RAM) = A	1	5
PUSH	direct	SP=SP+1, [SP] = [direct]	2	5
POP	direct	[direct] = [SP], SP = SP-1	2	5
XCH	A, Rn	A ↔ Rn	1	3
XCH	A, direct	A ↔ [direct]	2	4
XCH	A, @Ri	A ↔ [Ri]	1	4
XCHD	A, @Ri	A<3:0> ↔ [Ri]<3:0>	1	4

23.4 位操作指令

指令		描述	字节	周期
CLR	С	C = 0	1	1
CLR	bit	bit = 0	2	3
SETB	С	C = 1	1	1
SETB	bit	bit = 1	2	3
CPL	С	C = not C	1	1
CPL	bit	bit = <i>not</i> bit	2	3
ANL	C, bit	C = C and bit	2	2
ANL	C, /bit	bit = C and (not bit)	2	2
ORL	C, bit	C = C or bit	2	2
ORL	C, /bit	$bit = C \ or (not \ bit)$	2	2
MOV	C, bit	C = bit	2	2
MOV	bit, C	bit = C	2	3

23.5 程序转移指令

	指令	描述	字节	周期
ACALL	addr11	2K 空间子程序调用	2	7
LCALL	addr16	64K 空间子程序调用	3	7
RET		调用程序返回	1	8
RETI		中断返回	1	8
AJMP	addr11	2K 空间程序跳转	2	4
LJMP	addr16	64K 空间程序跳转	3	5
SJMP	rel	相对短跳转	2	4
JMP	@A+DPTR	相对长跳转	1	6
JZ	rel	相对短跳转(如果 A=0)	2	3/5
JNZ	rel	相对短跳转(如果 A≠0)	2	3/5
JC	rel	相对短跳转(如果 C=1)	2	2/4
JNC	rel	相对短跳转(如果 C=0)	2	2/4
JB	bit, rel	相对短跳转(如果 bit=1)	3	4/6
JNB	bit, rel	相对短跳转(如果 bit=0)	3	4/6
JBC	bit, rel	相对短跳转(如果 bit=1), bit = 0	3	4/6
CJNE	A, direct, rel	相对短跳转(如果 A≠[direct])	3	4/6
CJNE	A, #data, rel	相对短跳转(如果 A≠data)	3	4/6
CJNE	Rn, #data, rel	相对短跳转(如果 Rn≠data)	3	4/6
CJNE	#Ri, #data, rel	相对短跳转(如果[Ri]≠data)	3	4/6
DJNZ	Rn, rel	Rn=Rn-1, 相对短跳转(如果 Rn≠0)	2	3/5
DJNZ	direct, rel	[direct]=[direct]-1, 相对短跳转(如果[direct]≠0)	2	3/5
NOP		空操作	1	1

24 封装尺寸图

TSSOP20

	公制 (mm)		英制 (inch)
标号	MIN	MAX	MIN	MAX
D	6.400	6.600	0.252	0.259
Е	4.300	4.500	0.169	0.177
b	0.190	0.300	0.082	0.099
С	0.090	0.200	0.004	0.008
E1	6.250	6.550	0.246	0.258
Α		1.200		0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0.150	0.002	0.006
е	0.65(E	BSC)	0.026	(BSC)
L	0.500	0.700	0.020	0.028
Н	0.25(TYP)		0.01(TYP)
θ	1º	7°	10	7º

SOP16

	公制 (mm)		英制(i	inch)
标号	MIN	MAX	MIN	MAX
D	9.70	10.10	0.382	0.398
Е	5.80	6.20	0.228	0.245
b	0.39	0.48	0.015	0.019
E1	3.70	4.10	0.145	0.162
Α		1.77		0.070
A2	1.20	1.60	0.047	0.063
A1	0.08	0.28	0.003	0.011
е	1.27(E	1.27(BSC)		(BSC)
L	0.50	080	0.02	0.032
θ	00	80	00	80

SOP8

	公制 (mm)		英制(inch)
标号	MIN	MAX	MIN	MAX
D	4.8	4.98	0.189	0.196
Е	5.80	6.20	0.228	0.245
b	0.39	0.48	0.015	0.019
E1	3.70	4.10	0.145	0.162
Α		1.77		0.070
A2	1.20	1.60	0.047	0.063
A1	0.08	0.28	0.003	0.011
е	1.27(E	3SC) 0.050 (BS		(BSC)
L	0.50	080	0.02	0.032
θ	00	8°	00	8°