

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 18

Transformações Lineares:

Definição, Propriedades e Exemplos

Professora: Isamara C. Alves

Data: 13/05/2021

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	?
Maria	3	4	8	?
Ana	8	3	7	?
Pedro	6	8	10	?

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	?
Maria	3	4	8	?
Ana	8	3	7	?
Pedro	6	8	10	?

Como obter a COLUNA da MÉDIA ARITMÉTICA?

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	?
Maria	3	4	8	?
Ana	8	3	7	?
Pedro	6	8	10	?

Como obter a COLUNA da MÉDIA ARITMÉTICA?

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a \text{NOTA} + 2^a \text{NOTA} + 3^a \text{NOTA})$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	?
Maria	3	4	8	?
Ana	8	3	7	?
Pedro	6	8	10	?

Como obter a COLUNA da MÉDIA ARITMÉTICA?

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a \text{NOTA} + 2^a \text{NOTA} + 3^a \text{NOTA})$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a \text{NOTA} + 2^a \text{NOTA} + 3^a \text{NOTA})$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a \text{NOTA} + 2^a \text{NOTA} + 3^a \text{NOTA})$$

Como obter a MÉDIA ARITMÉTICA?

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a$$
NOTA + 2^a NOTA + 3^a NOTA)

Como obter a MÉDIA ARITMÉTICA?
Podemos utilizar, por exemplo, a função:

$$\mathcal{F}:\mathbb{R}^3\to\mathbb{R}$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^{a}\text{NOTA} + 2^{a}\text{NOTA} + 3^{a}\text{NOTA})$$

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R} \text{ tal que; } \quad \mathcal{F}(x,y,z) = \frac{1}{3}(x+y+z);$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a$$
NOTA + 2^a NOTA + 3^a NOTA)

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R} \text{ tal que; } \quad \mathcal{F}(x,y,z) = \frac{1}{3}(x+y+z);$$

onde, $x = 1^a \text{NOTA}$;

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a$$
NOTA + 2^a NOTA + 3^a NOTA)

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R} \text{ tal que; } \quad \mathcal{F}(x,y,z) = \frac{1}{3}(x+y+z);$$

onde, $x = 1^a \text{NOTA}$; $y = 2^a \text{NOTA}$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a$$
NOTA + 2^a NOTA + 3^a NOTA)

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R} \text{ tal que; } \quad \mathcal{F}(x,y,z) = \frac{1}{3}(x+y+z);$$

onde, $x = 1^a$ NOTA; $y = 2^a$ NOTA e $z = 3^a$ NOTA.

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a$$
NOTA + 2^a NOTA + 3^a NOTA)

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R} \text{ tal que; } \mathcal{F}(x, y, z) = \frac{1}{3}(x + y + z);$$

$$\mathcal{G}:\mathcal{M}_{4 imes3}(\mathbb{R}) o\mathcal{M}_{4 imes1}(\mathbb{R})$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

MÉDIA ARITMÉTICA =
$$\frac{1}{3}(1^a$$
NOTA + 2^a NOTA + 3^a NOTA)

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R}$$
 tal que; $\mathcal{F}(x, y, z) = \frac{1}{3}(x + y + z);$

$$\mathcal{G}: \mathcal{M}_{4 \times 3}(\mathbb{R}) o \mathcal{M}_{4 \times 1}(\mathbb{R}) \text{ tal que; } \mathcal{G}(A) = \frac{1}{3}(A_{4 \times 3}B_{3 \times 1});$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

$$\frac{\text{M\'edia Aritm\'etica}}{3} = \frac{1}{3} (1^{a} \text{NOTA} + 2^{a} \text{NOTA} + 3^{a} \text{NOTA})$$

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R}$$
 tal que; $\mathcal{F}(x, y, z) = \frac{1}{3}(x + y + z);$

$$\mathcal{G}: \mathcal{M}_{4\times 3}(\mathbb{R}) \to \mathcal{M}_{4\times 1}(\mathbb{R}) \text{ tal que; } \quad \mathcal{G}(A) = \frac{1}{3}(A_{4\times 3}B_{3\times 1});$$
 onde, $A_{4\times 3} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix};$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

$$\frac{\text{M\'edia Aritm\'etica}}{3} = \frac{1}{3} (1^{a} \text{NOTA} + 2^{a} \text{NOTA} + 3^{a} \text{NOTA})$$

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R}$$
 tal que; $\mathcal{F}(x, y, z) = \frac{1}{3}(x + y + z);$

$$\mathcal{G}: \mathcal{M}_{4 imes 3}(\mathbb{R}) o \mathcal{M}_{4 imes 1}(\mathbb{R}) ext{ tal que; } \quad \mathcal{G}(A) = rac{1}{3}(A_{4 imes 3}B_{3 imes 1});$$

onde,
$$A_{4\times3} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix}$$
; e $B_{3\times1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ é uma matriz fixa.

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

$$\frac{\text{M\'edia Aritm\'etica}}{3} = \frac{1}{3} (1^{a} \text{NOTA} + 2^{a} \text{NOTA} + 3^{a} \text{NOTA})$$

Como obter a MÉDIA ARITMÉTICA?

Podemos utilizar, por exemplo, a função:

$$\mathcal{F}: \mathbb{R}^3 \to \mathbb{R}$$
 tal que; $\mathcal{F}(x, y, z) = \frac{1}{3}(x + y + z);$

$$\mathcal{G}: \mathcal{M}_{4 imes 3}(\mathbb{R}) o \mathcal{M}_{4 imes 1}(\mathbb{R}) ext{ tal que; } \quad \mathcal{G}(A) = rac{1}{3}(A_{4 imes 3}B_{3 imes 1});$$

onde,
$$A_{4\times3} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix}$$
; e $B_{3\times1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ é uma matriz fixa.

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}:\mathbb{R}^3\to\mathbb{R}$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}: \mathbb{R}^3 o \mathbb{R} ext{ tal que; } \quad \mathcal{F}(x,y,z) = rac{1}{3}(x+y+z);$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}: \mathbb{R}^3 o \mathbb{R} ext{ tal que; } \quad \mathcal{F}(x,y,z) = rac{1}{3}(x+y+z);$$

temos;

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}: \mathbb{R}^3 o \mathbb{R} ext{ tal que; } \quad \mathcal{F}(x,y,z) = rac{1}{3}(x+y+z);$$

temos;

Alunos	1^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$\mathcal{F}(5,5,5) = \frac{1}{3}(5+5+5) = 5$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}: \mathbb{R}^3 o \mathbb{R} ext{ tal que; } \quad \mathcal{F}(x,y,z) = rac{1}{3}(x+y+z);$$

temos;

Alunos	1^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$\mathcal{F}(5,5,5) = \frac{1}{3}(5+5+5) = 5$
Maria	3	4	8	$\mathcal{F}(3,4,8) = \frac{1}{3}(3+4+8) = 5$
Iviaria		•		$3(3,1,3) = \frac{3}{3}(3+1+3) = 3$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}: \mathbb{R}^3 o \mathbb{R} ext{ tal que; } \quad \mathcal{F}(x,y,z) = rac{1}{3}(x+y+z);$$

temos;

Alunos	1^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$\mathcal{F}(5,5,5) = \frac{1}{3}(5+5+5) = 5$
Maria	3	4	8	$\mathcal{F}(3,4,8) = \frac{1}{3}(3+4+8) = 5$
Ana	8	3	7	$\mathcal{F}(8,3,7) = \frac{1}{3}(8+3+7) = 6$
		!	'	

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}: \mathbb{R}^3 o \mathbb{R} ext{ tal que; } \quad \mathcal{F}(x,y,z) = rac{1}{3}(x+y+z);$$

temos;

Alunos	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$\mathcal{F}(5,5,5) = \frac{1}{3}(5+5+5) = 5$
Maria	3	4	8	$\mathcal{F}(3,4,8) = \frac{1}{3}(3+4+8) = 5$
Ana	8	3	7	$\mathcal{F}(8,3,7) = \frac{1}{3}(8+3+7) = 6$
Pedro	6	8	10	$\mathcal{F}(6,8,10) = \frac{1}{3}(6+8+10) = 8$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA? Então, para

$$\mathcal{F}: \mathbb{R}^3 o \mathbb{R} ext{ tal que; } \quad \mathcal{F}(x,y,z) = rac{1}{3}(x+y+z);$$

temos;

Alunos	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$\mathcal{F}(5,5,5) = \frac{1}{3}(5+5+5) = 5$
Maria	3	4	8	$\mathcal{F}(3,4,8) = \frac{1}{3}(3+4+8) = 5$
Ana	8	3	7	$\mathcal{F}(8,3,7) = \frac{1}{3}(8+3+7) = 6$
Pedro	6	8	10	$\mathcal{F}(6,8,10) = \frac{1}{3}(6+8+10) = 8$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix}$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 6 \\ 8 \end{bmatrix}$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 6 \\ 8 \end{bmatrix}$$

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 6 \\ 8 \end{bmatrix}$$

João 5 5 $c_{11} = 5$	ÉTICA	MÉDIA ARITMÉT	3 ^a nota	2 ^a nota	1 ^a nota	Alunos
		$c_{11} = 5$	5	5	5	João
Maria 3 4 8 $c_{21} = 5$		$c_{21} = 5$	8	4	3	Maria

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 6 \\ 8 \end{bmatrix}$$

Alunos	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$c_{11} = 5$
Maria	3	4	8	$c_{21} = 5$
Ana	8	3	7	$c_{31} = 6$
	1	l		, 52

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 6 \\ 8 \end{bmatrix}$$

Alunos	1^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$c_{11} = 5$
Maria	3	4	8	$c_{21} = 5$
Ana	8	3	7	$c_{31} = 6$
Pedro	6	8	10	$c_{41} = 8$

Transformações Lineares

Aplicação: Problema.1: Alunos x Notas de Provas em MATA07

Como obter a MÉDIA ARITMÉTICA?

Agora, utilizando a função $\mathcal{G}:\mathcal{M}_{4\times 3}(\mathbb{R})\to\mathcal{M}_{4\times 1}(\mathbb{R})$

$$\mathcal{G}(A) = \frac{1}{3}(A_{4\times3}B_{3\times1});$$

$$C_{4\times 1} = \frac{1}{3} \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 6 \\ 8 \end{bmatrix}$$

ALUNOS	1 ^a nota	2 ^a nota	3 ^a nota	MÉDIA ARITMÉTICA
João	5	5	5	$c_{11} = 5$
Maria	3	4	8	$c_{21} = 5$
Ana	8	3	7	$c_{31} = 6$
Pedro	6	8	10	$c_{41} = 8$

Sejam ${\mathcal V}$ e ${\mathcal U}$ espaços vetoriais sobre o mesmo corpo ${\mathbb K}$ e

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais sobre o mesmo corpo \mathbb{K} e seja \mathcal{F} uma **aplicação (ou função)** de \mathcal{V} em \mathcal{U} .

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais sobre o mesmo corpo \mathbb{K} e seja \mathcal{F} uma **aplicação (ou função)** de \mathcal{V} em \mathcal{U} . Dizemos que \mathcal{F} é uma Transformação Linear de \mathcal{V} em \mathcal{U}

(I)
$$\forall v_1, v_2 \in \mathcal{V}$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) =$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V}$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K}$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K} \Rightarrow \mathcal{F}(\lambda v) =$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K} \Rightarrow \mathcal{F}(\lambda v) = \lambda \mathcal{F}(v)$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K} \Rightarrow \mathcal{F}(\lambda v) = \lambda \mathcal{F}(v)$$

$$\mathcal{F}:\mathcal{V}\to\mathcal{U}$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K} \Rightarrow \mathcal{F}(\lambda v) = \lambda \mathcal{F}(v)$$

$$\mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$\mathcal{F}(v) = u;$$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K} \Rightarrow \mathcal{F}(\lambda v) = \lambda \mathcal{F}(v)$$

$$\mathcal{F}: \mathcal{V} \to \mathcal{U}$$

 $\mathcal{F}(v) = u; \quad v \in \mathcal{V}$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K} \Rightarrow \mathcal{F}(\lambda v) = \lambda \mathcal{F}(v)$$

$$\mathcal{F}: \mathcal{V} \to \mathcal{U}$$

 $\mathcal{F}(v) = u; \quad v \in \mathcal{V} \text{ e } u \in \mathcal{U}$

(I)
$$\forall v_1, v_2 \in \mathcal{V} \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2)$$

(II)
$$\forall v \in \mathcal{V} \in \forall \lambda \in \mathbb{K} \Rightarrow \mathcal{F}(\lambda v) = \lambda \mathcal{F}(v)$$

$$\mathcal{F}: \mathcal{V} \to \mathcal{U}$$

 $\mathcal{F}(v) = u; \quad v \in \mathcal{V} \text{ e } u \in \mathcal{U}$

Transformações Lineares Observações

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ o conjunto de todas as transformações lineares de \mathcal{V} em \mathcal{U} ,

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ o conjunto de todas as transformações lineares de \mathcal{V} em \mathcal{U} , incluindo a TRANSFORMAÇÃO LINEAR NULA:

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ o conjunto de **todas as transformações lineares de** \mathcal{V} **em** \mathcal{U} , incluindo a TRANSFORMAÇÃO LINEAR NULA:

$$0: \mathcal{V} \to \mathcal{U}$$

Transformações Lineares Observações

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ o conjunto de **todas as transformações lineares de** \mathcal{V} **em** \mathcal{U} , incluindo a TRANSFORMAÇÃO LINEAR NULA:

$$0: \mathcal{V} \to \mathcal{U}$$
$$0(v) = 0; \forall v \in \mathcal{V}$$

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ o conjunto de todas as transformações lineares de \mathcal{V} em \mathcal{U} , incluindo a TRANSFORMAÇÃO LINEAR NULA:

$$0: \mathcal{V} \to \mathcal{U} \\ 0(v) = 0; \forall v \in \mathcal{V}$$

2. Uma Transformação Linear \mathcal{F} de \mathcal{V} em \mathcal{U} ;

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ o conjunto de todas as transformações lineares de \mathcal{V} em \mathcal{U} , incluindo a TRANSFORMAÇÃO LINEAR NULA:

$$0: \mathcal{V} \to \mathcal{U} \\ 0(v) = 0; \forall v \in \mathcal{V}$$

2. Uma Transformação Linear \mathcal{F} de \mathcal{V} em \mathcal{U} ; onde $\mathcal{V} = \mathcal{U}$, é também denominada Operador Linear.

Transformações Lineares Observações

1. Indicaremos por $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ o conjunto de todas as transformações lineares de \mathcal{V} em \mathcal{U} , incluindo a TRANSFORMAÇÃO LINEAR NULA:

$$0: \mathcal{V} \to \mathcal{U} \\ 0(v) = 0; \forall v \in \mathcal{V}$$

2. Uma Transformação Linear $\mathcal F$ de $\mathcal V$ em $\mathcal U$; onde $\mathcal V=\mathcal U$, é também denominada Operador Linear. Notação: $\mathcal F\in\mathcal L(\mathcal U)$

Transformações Lineares Exemplos

Transformações Lineares Exemplos

$$\mathcal{F}:\mathbb{R}^2\to\mathbb{R}$$

Transformações Lineares Exemplos

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) =$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) =$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 =$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) =$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

1. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2,\mathbb{R})$ tal que;

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II) $\forall v = (x, y) \in \mathbb{R}^2 \in \forall \lambda \in \mathbb{R}$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II) $\forall v = (x, y) \in \mathbb{R}^2 \in \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II) $\forall v = (x, y) \in \mathbb{R}^2 \ e \ \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II) $\forall v = (x, y) \in \mathbb{R}^2 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = \lambda x + \lambda y = x_1 + x_2 + x_3 + x_4 + x_4 + x_4 + x_4 + x_4 + x_5 + x_5$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II) $\forall v = (x, y) \in \mathbb{R}^2 \in \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = \lambda x + \lambda y = \lambda(x + y) = \lambda($

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II) $\forall v = (x, y) \in \mathbb{R}^2 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = \lambda x + \lambda y = \lambda (x + y) = \lambda \mathcal{F}(v).$

(II)
$$\forall v = (x, y) \in \mathbb{R}^2 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = \lambda x + \lambda y = \lambda (x + y) = \lambda \mathcal{F}(v)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II) $\forall v = (x, y) \in \mathbb{R}^2 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = \lambda x + \lambda y = \lambda (x + y) = \lambda \mathcal{F}(v).$

Transformações Lineares Exemplos

Transformações Lineares Exemplos

$$\mathcal{F}:\mathbb{R}^4\to\mathcal{P}_3(\mathbb{R})$$

Transformações Lineares Exemplos

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$

$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

$$\begin{aligned} \mathcal{F} &: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R}) \\ \mathcal{F}(x, y, z, w) &= x - yt + wt^2 - zt^3 \end{aligned}$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4$$

$$\begin{aligned} \mathcal{F} &: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R}) \\ \mathcal{F}(x, y, z, w) &= x - yt + wt^2 - zt^3 \end{aligned}$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) =$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) =$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2)$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 + x_2) + (x_1 + x_2)t^2 - (x_1 + x_2)t^3 = (x_1 + x_2)t^3 + (x_1 + x_2)t^3 = (x_1 + x_2)t^3 + (x_1 + x_2)t^3 = (x_1 + x_2)t^3 + (x_1 + x_1 + x_2)t^3 + (x_1 + x_2)t^3 + (x_1 + x_1 + x_2)$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 + x_2)t^3 + (x_1 + x_2)t^3 = (x_1$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t)$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$

 $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2)$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$

 $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) +$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) =$$

 $\mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 =$
 $(x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t)$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2)$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$

 $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) =$$

 $\mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 =$
 $(x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) =$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$

 $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) =$$

 $\mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 =$
 $(x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$

 $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$
(II) $\forall v = (x, y, z, w) \in \mathbb{R}^4 \in \forall \lambda \in \mathbb{R}$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$
(II) $\forall v = (x, y, z, w) \in \mathbb{R}^4 \in \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = (x_1 + x_2) + (x_1 + x_2) + (x_2 + x_2) + (x_1 + x_2) + (x_1 + x_2) + (x_1 + x_2) + (x_2 + x_2) + (x_1 + x_2) + (x_1 + x_2) + (x_1 + x_2) + (x_2 + x_2) + (x_1 + x_$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$
(II) $\forall v = (x, y, z, w) \in \mathbb{R}^4 \in \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y, \lambda z, \lambda w) = (x_1 + x_2)t^3 + (x_2 + y_2)t + (x_1 + y_2)t^2 + (x_2 + y_2)t + (x_1 + y_2)t^2 +$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$

 $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II)
$$\forall v = (x, y, z, w) \in \mathbb{R}^4 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y, \lambda z, \lambda w) = \lambda x - \lambda vt + \lambda wt^2 - \lambda zt^3 = \lambda vt + \lambda wt^2 - \lambda zt^3 = \lambda vt + \lambda wt^2 - \lambda vt^2 - \lambda$$

$$\mathcal{F}: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R})$$
$$\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) =$$

 $\mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 =$
 $(x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$

(II)
$$\forall v = (x, y, z, w) \in \mathbb{R}^4 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y, \lambda z, \lambda w) = \lambda x - \lambda yt + \lambda wt^2 - \lambda zt^3 = \lambda(x - yt + wt^2 - zt^3) = \lambda vt^3 = \lambda vt^$$

$$\begin{aligned} \mathcal{F} &: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R}) \\ \mathcal{F}(x, y, z, w) &= x - yt + wt^2 - zt^3 \end{aligned}$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II)
$$\forall v = (x, y, z, w) \in \mathbb{R}^4 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y, \lambda z, \lambda w) = \lambda x - \lambda yt + \lambda wt^2 - \lambda zt^3 = \lambda (x - yt + wt^2 - zt^3) = \lambda \mathcal{F}(x, y, z, w).$$

$$\begin{aligned} \mathcal{F} &: \mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R}) \\ \mathcal{F}(x, y, z, w) &= x - yt + wt^2 - zt^3 \end{aligned}$$

(I)
$$\forall v_1 = (x_1, y_1, z_1, w_1), v_2 = (x_2, y_2, z_2, w_2) \in \mathbb{R}^4 \Rightarrow \mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2) = (x_1 + x_2) - (y_1 + y_2)t + (w_1 + w_2)t^2 - (z_1 + z_2)t^3 = (x_1 - y_1t + w_1t^2 - z_1t^3) + (x_2 - y_2t + w_2t^2 - z_2t^3) = \mathcal{F}(v_1) + \mathcal{F}(v_2).$$

(II)
$$\forall v = (x, y, z, w) \in \mathbb{R}^4 \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y, \lambda z, \lambda w) = \lambda x - \lambda yt + \lambda wt^2 - \lambda zt^3 = \lambda (x - yt + wt^2 - zt^3) = \lambda \mathcal{F}(x, y, z, w).$$

Transformações Lineares Exemplos

Transformações Lineares Exemplos

$$\mathcal{F}:\mathcal{P}_3(\mathbb{R}) o\mathcal{P}_2(\mathbb{R})$$

Transformações Lineares Exemplos

$$egin{aligned} \mathcal{F}: \mathcal{P}_{3}(\mathbb{R}) &
ightarrow \mathcal{P}_{2}(\mathbb{R}) \ \mathcal{F}(p(t)) &= p^{'}(t) \end{aligned}$$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

(I)
$$\forall p(t), q(t) \in \mathcal{P}_3(\mathbb{R})$$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

(I)
$$\forall p(t), q(t) \in \mathcal{P}_3(\mathbb{R}) \Rightarrow \mathcal{F}(p(t) + q(t)) =$$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

$$(\mathsf{I}) \ \ \forall p(t), q(t) \in \mathcal{P}_3(\mathbb{R}) \Rightarrow \mathcal{F}(p(t) + q(t)) = \left(p(t) + q(t)\right)' =$$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

(I)
$$\forall p(t), q(t) \in \mathcal{P}_{3}(\mathbb{R}) \Rightarrow \mathcal{F}(p(t) + q(t)) = (p(t) + q(t))^{'} = p^{'}(t) + q^{'}(t) =$$

$$egin{aligned} \mathcal{F}: \mathcal{P}_{3}(\mathbb{R}) &
ightarrow \mathcal{P}_{2}(\mathbb{R}) \ \mathcal{F}(p(t)) &= p^{'}(t) \end{aligned}$$

$$\begin{array}{l} \text{(I)} \ \, \forall p(t), q(t) \in \mathcal{P}_{3}(\mathbb{R}) \Rightarrow \mathcal{F}(p(t)+q(t)) = \left(p(t)+q(t)\right)^{'} = p^{'}(t)+q^{'}(t) = \\ \mathcal{F}(p(t)) + \mathcal{F}(q(t)). \end{array}$$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

$$\begin{array}{l} \text{(I)} \ \, \forall p(t),q(t)\in\mathcal{P}_{3}(\mathbb{R})\Rightarrow\mathcal{F}(p(t)+q(t))=\left(p(t)+q(t)\right)^{'}=p^{'}(t)+q^{'}(t)=\\ \, \mathcal{F}(p(t))+\mathcal{F}(q(t)).\\ \text{(II)} \ \, \forall p(t)\in\mathcal{P}_{3}(\mathbb{R}) \end{array}$$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

$$\begin{array}{l} \text{(I)} \ \, \forall p(t), q(t) \in \mathcal{P}_{3}(\mathbb{R}) \Rightarrow \mathcal{F}(p(t)+q(t)) = \left(p(t)+q(t)\right)^{'} = p^{'}(t)+q^{'}(t) = \\ \mathcal{F}(p(t)) + \mathcal{F}(q(t)). \end{array}$$

(II) $\forall p(t) \in \mathcal{P}_3(\mathbb{R}) \text{ e } \forall \lambda \in \mathbb{R}$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

$$\begin{array}{l} (\mathsf{I}) \ \ \forall p(t), q(t) \in \mathcal{P}_3(\mathbb{R}) \Rightarrow \mathcal{F}(p(t)+q(t)) = \left(p(t)+q(t)\right)^{'} = p^{'}(t)+q^{'}(t) = \\ \mathcal{F}(p(t)) + \mathcal{F}(q(t)). \end{array}$$

(II)
$$\forall p(t) \in \mathcal{P}_3(\mathbb{R}) \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda p(t)) =$$

$$egin{aligned} \mathcal{F}: \mathcal{P}_{3}(\mathbb{R}) &
ightarrow \mathcal{P}_{2}(\mathbb{R}) \ \mathcal{F}(p(t)) &= p^{'}(t) \end{aligned}$$

$$\begin{array}{l} (\mathsf{I}) \ \ \forall p(t), q(t) \in \mathcal{P}_3(\mathbb{R}) \Rightarrow \mathcal{F}(p(t)+q(t)) = \left(p(t)+q(t)\right)' = p^{'}(t)+q^{'}(t) = \\ \mathcal{F}(p(t)) + \mathcal{F}(q(t)). \end{array}$$

$$(\mathsf{II}) \ \forall p(t) \in \mathcal{P}_3(\mathbb{R}) \ \mathsf{e} \ \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda p(t)) = (\lambda p(t))' =$$

$$egin{aligned} \mathcal{F}: \mathcal{P}_{3}(\mathbb{R}) &
ightarrow \mathcal{P}_{2}(\mathbb{R}) \ \mathcal{F}(p(t)) &= p^{'}(t) \end{aligned}$$

$$\begin{array}{l} (\mathsf{I}) \ \ \forall p(t), q(t) \in \mathcal{P}_{3}(\mathbb{R}) \Rightarrow \mathcal{F}(p(t)+q(t)) = \left(p(t)+q(t)\right)^{'} = p^{'}(t)+q^{'}(t) = \\ \mathcal{F}(p(t)) + \mathcal{F}(q(t)). \end{array}$$

$$(\mathsf{II}) \ \, \forall p(t) \in \mathcal{P}_3(\mathbb{R}) \ \, \mathsf{e} \ \, \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda p(t)) = (\lambda p(t))^{'} = \lambda(p^{'}(t)) =$$

$$egin{aligned} \mathcal{F}: \mathcal{P}_{3}(\mathbb{R}) &
ightarrow \mathcal{P}_{2}(\mathbb{R}) \ \mathcal{F}(\mathit{p}(t)) &= \mathit{p}^{'}(t) \end{aligned}$$

- (1) $\forall p(t), q(t) \in \mathcal{P}_3(\mathbb{R}) \Rightarrow \mathcal{F}(p(t) + q(t)) = (p(t) + q(t))' = p'(t) + q'(t) =$ $\mathcal{F}(p(t)) + \mathcal{F}(q(t)).$
- (II) $\forall p(t) \in \mathcal{P}_3(\mathbb{R}) \text{ e } \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda p(t)) = (\lambda p(t))' = \lambda (p'(t)) = \lambda \mathcal{F}(p(t)).$

$$\mathcal{F}: \mathcal{P}_3(\mathbb{R}) o \mathcal{P}_2(\mathbb{R}) \ \mathcal{F}(p(t)) = p^{'}(t)$$

$$\begin{array}{l} (\mathsf{I}) \ \ \forall p(t), q(t) \in \mathcal{P}_3(\mathbb{R}) \Rightarrow \mathcal{F}(p(t)+q(t)) = \left(p(t)+q(t)\right)' = p^{'}(t)+q^{'}(t) = \\ \mathcal{F}(p(t)) + \mathcal{F}(q(t)). \end{array}$$

$$\text{(II)} \ \ \forall p(t) \in \mathcal{P}_3(\mathbb{R}) \ \text{e} \ \forall \lambda \in \mathbb{R} \Rightarrow \mathcal{F}(\lambda p(t)) = (\lambda p(t))' = \lambda (p'(t)) = \lambda \mathcal{F}(p(t)).$$

Exemplos

$$\mathcal{F}:\mathbb{R}^2\to\mathbb{R}^2$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; e

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2 \text{ \'e um vetor arbitr\'ario fixo.}$$

$$\mathcal{F}(x, y) = (x + a, y + b)$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; e $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; e $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $e \ w = (a, b) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + a, y_1 + y_2 + b) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) = (x_1 + \mathbf{a}, y_1 + \mathbf{b})$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $e \ w = (a, b) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + a, y_1 + y_2 + b) = (x_1 + a, y_1 + b) + (x_2, y_2) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) = (x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) +$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2 \text{ \'e um vetor arbitr\'ario fixo.}$$

$$\mathcal{F}(x, y) = (x + a, y + b)$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) = (x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2)$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) = (x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) +$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) =$
 $(x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $e \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) =$
 $(x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$
(II) $\forall v = (x, y) \in \mathbb{R}^2$;

4. Seja

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) =$
 $(x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$
(II) $\forall v = (x, y_1) \in \mathbb{R}^2$; $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$ $\mathbf{e} \ \forall \lambda \in \mathbb{R}$

(II) $\forall v = (x, v) \in \mathbb{R}^2$: $w = (a, b) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

- (1) $\forall v_1 = (x_1, v_1), v_2 = (x_2, v_2) \in \mathbb{R}^2$; e $w = (a, b) \in \mathbb{R}^2$ $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, v_1 + v_2) = (x_1 + x_2 + \mathbf{a}, v_1 + v_2 + \mathbf{b}) =$ $(x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, v_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$
- (II) $\forall v = (x, v) \in \mathbb{R}^2$: $w = (a, b) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$ $\mathcal{F}(\lambda v) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $e \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) = (x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$

(II)
$$\forall v = (x, y) \in \mathbb{R}^2$$
; $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$
 $\mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) =$
 $(x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$

(II)
$$\forall v = (x, y) \in \mathbb{R}^2$$
; $w = (a, b) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$
 $\mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = (\lambda x + a, \lambda y + b) =$

4. Seia

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $\mathbf{e} \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) =$
 $(x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$

(II)
$$\forall v = (x, y) \in \mathbb{R}^2$$
; $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$
 $\mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = (\lambda x + \mathbf{a}, \lambda y + \mathbf{b}) = \lambda(x, y) + (\mathbf{a}, \mathbf{b}) = \lambda(x, y) + (\mathbf{a}, \mathbf{b}) = \lambda(x, y) + (\mathbf{a}, \mathbf{b})$

4. Seia

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2 \text{ \'e um vetor arbitr\'ario fixo.}$$

$$\mathcal{F}(x, y) = (x + a, y + b)$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2; e \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$$

 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) =$
 $(x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$

(II)
$$\forall v = (x, y) \in \mathbb{R}^2$$
; $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$
 $\mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = (\lambda x + \mathbf{a}, \lambda y + \mathbf{b}) = \lambda(x, y) + (\mathbf{a}, \mathbf{b}) = \lambda \mathcal{F}(v) + (\mathbf{a}, \mathbf{b})$

4. Seia

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2$ é um vetor arbitrário fixo. $\mathcal{F}(x, y) = (x + a, y + b)$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $e \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) = (x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$

(II)
$$\forall v = (x, y) \in \mathbb{R}^2$$
; $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$
 $\mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = (\lambda x + \mathbf{a}, \lambda y + \mathbf{b}) = \lambda(x, y) + (\mathbf{a}, \mathbf{b}) = \lambda \mathcal{F}(v) + (\mathbf{a}, \mathbf{b}) \neq \lambda \mathcal{F}(v)$.

4. Seia

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathcal{F}(v) = v + w; \quad w = (a, b) \in \mathbb{R}^2 \text{ \'e um vetor arbitr\'ario fixo.}$$

$$\mathcal{F}(x, y) = (x + a, y + b)$$

(I)
$$\forall v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$$
; $e \ w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$
 $\mathcal{F}(v_1 + v_2) = \mathcal{F}(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + \mathbf{a}, y_1 + y_2 + \mathbf{b}) = (x_1 + \mathbf{a}, y_1 + \mathbf{b}) + (x_2, y_2) = \mathcal{F}(v_1) + (x_2, y_2) \neq \mathcal{F}(v_1) + \mathcal{F}(v_2).$

(II)
$$\forall v = (x, y) \in \mathbb{R}^2$$
; $w = (\mathbf{a}, \mathbf{b}) \in \mathbb{R}^2$ e $\forall \lambda \in \mathbb{R}$
 $\mathcal{F}(\lambda v) = \mathcal{F}(\lambda x, \lambda y) = (\lambda x + \mathbf{a}, \lambda y + \mathbf{b}) = \lambda(x, y) + (\mathbf{a}, \mathbf{b}) = \lambda \mathcal{F}(v) + (\mathbf{a}, \mathbf{b}) \neq \lambda \mathcal{F}(v)$.

Logo; por (1) e (11) temos que $\mathcal{F}(v)$ não é uma transformação linear.

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

$$\begin{aligned} 1. \ \ \forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0 \\ \text{Exemplo:} \\ \mathcal{F} : \mathbb{R}^2 \rightarrow \mathbb{R} \end{aligned}$$

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

Exemplo:
 $\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$
 $\mathcal{F}(x, y) = x + y$

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

Exemplo:
 $\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$
 $\mathcal{F}(x, y) = x + y$
 $\mathcal{F}(0) = \mathcal{F}(0, 0) = 0$

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

Exemplo:
 $\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$
 $\mathcal{F}(x, y) = x + y$
 $\mathcal{F}(0) = \mathcal{F}(0, 0) = 0$

2.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(-v) = -\mathcal{F}(v); \forall v \in \mathcal{V}$$

Transformações Lineares

Propriedades Imediatas

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

Exemplo:
 $\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$
 $\mathcal{F}(x, y) = x + y$
 $\mathcal{F}(0) = \mathcal{F}(0, 0) = 0$

2.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(-v) = -\mathcal{F}(v); \forall v \in \mathcal{V}$$

Exemplo:

 $\mathcal{F}:\mathbb{R}^2 \to \mathbb{R}$

Transformações Lineares

Propriedades Imediatas

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

Exemplo:
 $\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$
 $\mathcal{F}(x, y) = x + y$
 $\mathcal{F}(0) = \mathcal{F}(0, 0) = 0$

2.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(-v) = -\mathcal{F}(v); \forall v \in \mathcal{V}$$

Exemplo:
$$\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$$

$$\mathcal{F}(x, v) = x + v$$

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

Exemplo:
 $\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$
 $\mathcal{F}(x, y) = x + y$
 $\mathcal{F}(0) = \mathcal{F}(0, 0) = 0$

2.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(-v) = -\mathcal{F}(v); \forall v \in \mathcal{V}$$

Exemplo:
$$\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$$

$$\mathcal{F}(x, y) = x + y$$

$$\mathcal{F}(-v) = \mathcal{F}(-x, -y) = -x - y = -(x + y) = -\mathcal{F}(v)$$

1.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(0) = 0$$

Exemplo:
 $\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$
 $\mathcal{F}(x, y) = x + y$
 $\mathcal{F}(0) = \mathcal{F}(0, 0) = 0$

2.
$$\forall \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U}) \Rightarrow \mathcal{F}(-v) = -\mathcal{F}(v); \forall v \in \mathcal{V}$$

Exemplo:
$$\mathcal{F} : \mathbb{R}^2 \to \mathbb{R}$$

$$\mathcal{F}(x, y) = x + y$$

$$\mathcal{F}(-v) = \mathcal{F}(-x, -v) = -x - y = -(x + y) = -\mathcal{F}(v)$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais sobre o mesmo corpo \mathbb{K} e

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F$ uma **aplicação** de $\mathcal V$ em $\mathcal U$.

Teorema

Teorema

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) =$$

Teorema

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1)$$

Teorema

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2);$$

Teorema

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais sobre o mesmo corpo \mathbb{K} e seja \mathcal{F} uma aplicação de \mathcal{V} em \mathcal{U} . Então, \mathcal{F} é uma Transformação Linear de \mathcal{V} em \mathcal{U} se, e somente se,

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

$$\mathcal{F}:\mathcal{V}\to\mathcal{U}$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

Note que,

$$\mathcal{F}: \mathcal{V} \to \mathcal{U}$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2)$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

$$\mathcal{F}:\mathcal{V}\rightarrow\mathcal{U}$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) \underbrace{=}_{(i)}$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) \underbrace{=}_{(i)} \mathcal{F}(\lambda_1 v_1) + \mathcal{F}(\lambda_2 v_2)$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) \underbrace{=}_{(i)} \mathcal{F}(\lambda_1 v_1) + \mathcal{F}(\lambda_2 v_2) \underbrace{=}_{(ii)}$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

Note que,

$$\mathcal{F}: \mathcal{V} \to \mathcal{U}$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) \underbrace{=}_{(i)} \mathcal{F}(\lambda_1 v_1) + \mathcal{F}(\lambda_2 v_2) \underbrace{=}_{(ii)} \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2); \forall v_1, v_2 \in \mathcal{V}; \forall \lambda_1, \lambda_2 \in \mathbb{K}.$$

Note que,

$$\mathcal{F}: \mathcal{V} \to \mathcal{U}$$

$$\mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2) \underbrace{=}_{(i)} \mathcal{F}(\lambda_1 v_1) + \mathcal{F}(\lambda_2 v_2) \underbrace{=}_{(ii)} \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$;

Teorema

Teorema

Teorema

$$\forall v \in \mathcal{V}$$

Teorema

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v)$$

Teorema

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_i \mathcal{F}(v_i);$$

Teorema

$$orall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^n \lambda_i \mathcal{F}(v_i); orall \lambda_i \in \mathbb{K}.$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então,

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_i \mathcal{F}(v_i); \forall \lambda_i \in \mathbb{K}.$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então.

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_{i} \mathcal{F}(v_{i}); \forall \lambda_{i} \in \mathbb{K}.$$

$$\mathcal{F}(v) = \mathcal{F}(\sum_{i=1}^{n} \lambda_i v_i) =$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então.

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_{i} \mathcal{F}(v_{i}); \forall \lambda_{i} \in \mathbb{K}.$$

$$\mathcal{F}(v) = \mathcal{F}(\sum_{i=1}^{n} \lambda_i v_i) = \mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) =$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então.

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^n \lambda_i \mathcal{F}(v_i); \forall \lambda_i \in \mathbb{K}.$$

$$\mathcal{F}(v) = \mathcal{F}(\sum_{i=1}^{n} \lambda_i v_i) = \mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) = \lambda_1 \mathcal{F}(v_1)$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então.

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_{i} \mathcal{F}(v_{i}); \forall \lambda_{i} \in \mathbb{K}.$$

$$\mathcal{F}(v) = \mathcal{F}(\sum_{i=1}^{n} \lambda_i v_i) = \mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) + \ldots + \lambda_n \mathcal{F}(v_n)$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então.

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_{i} \mathcal{F}(v_{i}); \forall \lambda_{i} \in \mathbb{K}.$$

$$\mathcal{F}(v) = \mathcal{F}(\sum_{i=1}^{n} \lambda_i v_i) = \mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) + \ldots + \lambda_n \mathcal{F}(v_n)$$

$$\mathcal{F}(v) =$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então.

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_i \mathcal{F}(v_i); \forall \lambda_i \in \mathbb{K}.$$

$$\mathcal{F}(v) = \mathcal{F}(\sum_{i=1}^{n} \lambda_i v_i) = \mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) + \ldots + \lambda_n \mathcal{F}(v_n)$$

$$\mathcal{F}(v) = \sum_{i=1}^{n} \lambda_i \mathcal{F}(v_i).$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$; e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} . Então.

$$\forall v \in \mathcal{V} \Rightarrow \mathcal{F}(v) = \sum_{i=1}^{n} \lambda_i \mathcal{F}(v_i); \forall \lambda_i \in \mathbb{K}.$$

$$\mathcal{F}(v) = \mathcal{F}(\sum_{i=1}^{n} \lambda_i v_i) = \mathcal{F}(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) + \ldots + \lambda_n \mathcal{F}(v_n)$$

$$\mathcal{F}(v) = \sum_{i=1}^{n} \lambda_i \mathcal{F}(v_i).$$

Transformações Lineares Exemplos

1. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2, \mathbb{R})$ tal que;

Transformações Lineares

Exemplos

1. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2, \mathbb{R})$ tal que;

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

Transformações Lineares

Exemplos

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

Transformações Lineares

Exemplos

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i =$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \dots$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 =$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = 0$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = (\lambda_1 - 2\lambda_2 + \lambda_2) = (\lambda_1 -$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) +$$

15 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 \mathcal{F}(v_2) = \lambda_1 \mathcal{F}(v_2) = \lambda_1 \mathcal{F}(v_2)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow \mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y))$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$

 $\mathcal{F}(x, y) = x + y$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5}(x - 2y)) - 3(-\frac{1}{5}(2x + y))$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5}(x - 2y)) - 3(-\frac{1}{5}(2x + y)) = (-\frac{1}{5}x + \frac{6}{5}x) +$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y)) - 3(-\frac{1}{5} (2x + y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5}(x - 2y)) - 3(-\frac{1}{5}(2x + y)) = (-\frac{1}{5}x + \frac{6}{5}x) + (\frac{2}{5}y + \frac{3}{5}y) = x + y.$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x,y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1,-2) + \lambda_2 (-2,-1) = \\ (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x-2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x+y). \\ \forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1-2) + \lambda_2 (-2-1) \Rightarrow \\ \mathcal{F}(x,y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x-2y)) - 3(-\frac{1}{5} (2x+y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y. \\ \text{Observe que:}$$

•

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y)) - 3(-\frac{1}{5} (2x + y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$
Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) =$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y)) - 3(-\frac{1}{5} (2x + y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$
Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) +$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y)) - 3(-\frac{1}{5} (2x + y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$
Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x,y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1,-2) + \lambda_2 (-2,-1) = \\ (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x-2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x+y). \\ \forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1-2) + \lambda_2 (-2-1) \Rightarrow \\ \mathcal{F}(x,y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x-2y)) - 3(-\frac{1}{5} (2x+y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$
 Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$
, onde; $\lambda_1 = \frac{1}{5}(x - 2y)$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x,y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1,-2) + \lambda_2 (-2,-1) = \\ (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x-2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x+y). \\ \forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1-2) + \lambda_2 (-2-1) \Rightarrow \\ \mathcal{F}(x,y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x-2y)) - 3(-\frac{1}{5} (2x+y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$
 Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$
, onde; $\lambda_1 = \frac{1}{5}(x-2y)$ e $\lambda_2 = -\frac{1}{5}(2x+y)$.

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow \mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5}(x - 2y)) - 3(-\frac{1}{5}(2x + y)) = (-\frac{1}{5}x + \frac{6}{5}x) + (\frac{2}{5}y + \frac{3}{5}y) = x + y.$$
Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$
, onde; $\lambda_1 = \frac{1}{5}(x-2y)$ e $\lambda_2 = -\frac{1}{5}(2x+y)$. $\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) =$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow \mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5}(x - 2y)) - 3(-\frac{1}{5}(2x + y)) = (-\frac{1}{5}x + \frac{6}{5}x) + (\frac{2}{5}y + \frac{3}{5}y) = x + y.$$
Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2), \text{ onde; } \lambda_1 = \frac{1}{5}(x-2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x+y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \frac{1}{5}(x-2y)\mathcal{F}(v_1) +$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y)) - 3(-\frac{1}{5} (2x + y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$
Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2), \text{ onde; } \lambda_1 = \frac{1}{5}(x-2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x+y).$$
$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \frac{1}{5}(x-2y)\mathcal{F}(v_1) + -\frac{1}{5}(2x+y)\mathcal{F}(v_2).$$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5}(x - 2y)) - 3(-\frac{1}{5}(2x + y)) = (-\frac{1}{5}x + \frac{6}{5}x) + (\frac{2}{5}y + \frac{3}{5}y) = x + y.$$

Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2), \text{ onde; } \lambda_1 = \frac{1}{5}(x-2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x+y).$$

 $\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \frac{1}{\epsilon}(x - 2y)\mathcal{F}(v_1) + -\frac{1}{\epsilon}(2x + y)\tilde{\mathcal{F}}(v_2).$

Portanto, podemos determinar $\mathcal{F}(x,y)$

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y)) - 3(-\frac{1}{5} (2x + y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$

Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$
, onde; $\lambda_1 = \frac{1}{5}(x-2y)$ e $\lambda_2 = -\frac{1}{5}(2x+y)$.

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \frac{1}{5}(x-2y)\mathcal{F}(v_1) + -\frac{1}{5}(2x+y)\mathcal{F}(v_2).$$

Portanto, podemos determinar $\mathcal{F}(x,y)$ se conhecemos os vetores $\mathcal{F}(v_1)$ e

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5} (x - 2y) \text{ e } \lambda_2 = -\frac{1}{5} (2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5} (x - 2y)) - 3(-\frac{1}{5} (2x + y)) = (-\frac{1}{5} x + \frac{6}{5} x) + (\frac{2}{5} y + \frac{3}{5} y) = x + y.$$

Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$
, onde; $\lambda_1 = \frac{1}{5}(x-2y)$ e $\lambda_2 = -\frac{1}{5}(2x+y)$.

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \frac{1}{5}(x-2y)\mathcal{F}(v_1) + -\frac{1}{5}(2x+y)\mathcal{F}(v_2).$$

Portanto, podemos determinar $\mathcal{F}(x,y)$ se conhecemos os vetores $\mathcal{F}(v_1)$ e $\mathcal{F}(v_2)$.

$$\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}$$
$$\mathcal{F}(x, y) = x + y$$

e seja
$$\beta_{\mathcal{V}} = \{(1, -2), (-2, -1)\}.$$

$$\forall v \in \mathbb{R}^2 \Rightarrow v = (x, y) = \sum_{i=1}^2 \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 (1, -2) + \lambda_2 (-2, -1) = (\lambda_1 - 2\lambda_2, -2\lambda_1 - \lambda_2) \Rightarrow \lambda_1 - 2\lambda_2 = x \text{ e } -2\lambda_1 - \lambda_2 = y \Rightarrow \lambda_1 = \frac{1}{5}(x - 2y) \text{ e } \lambda_2 = -\frac{1}{5}(2x + y).$$

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x, y) = \mathcal{F}(\sum_{i=1}^2 \lambda_i v_i) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2) = \lambda_1 (1 - 2) + \lambda_2 (-2 - 1) \Rightarrow$$

$$\mathcal{F}(x, y) = -\lambda_1 - 3\lambda_2 = -(\frac{1}{5}(x - 2y)) - 3(-\frac{1}{5}(2x + y)) = (-\frac{1}{5}x + \frac{6}{5}x) + (\frac{2}{5}y + \frac{3}{5}y) = x + y.$$

Observe que:

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \lambda_1 \mathcal{F}(v_1) + \lambda_2 \mathcal{F}(v_2)$$
, onde; $\lambda_1 = \frac{1}{5}(x-2y)$ e $\lambda_2 = -\frac{1}{5}(2x+y)$.

$$\forall v \in \mathbb{R}^2 \Rightarrow \mathcal{F}(x,y) = \frac{1}{5}(x-2y)\mathcal{F}(v_1) + -\frac{1}{5}(2x+y)\mathcal{F}(v_2).$$

Portanto, podemos determinar $\mathcal{F}(x,y)$ se conhecemos os vetores $\mathcal{F}(v_1)$ e $\mathcal{F}(v_2)$.

Transformação Linear

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita

Transformação Linear

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V}

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em \mathcal{U} .

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em \mathcal{U} . Então,

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em \mathcal{U} .

Então, existe uma única

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em \mathcal{U} .

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em \mathcal{U} .

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i;$$

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em \mathcal{U} .

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Teorema

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Isto é; supondo que existe uma outra transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que; $G(v_i) = u_i$: $\forall i = 1, \ldots, n$:

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Isto é; supondo que existe uma outra transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que; $G(v_i) = u_i$; $\forall i = 1, \dots, n$; temos, $\forall \lambda_i \in \mathbb{K}$;

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Isto é; supondo que existe uma outra transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que; $G(v_i) = u_i; \forall i = 1, ..., n;$ temos, $\forall \lambda_i \in \mathbb{K};$ $G(v) = G(\sum_{i=1}^{n} \lambda_i v_i) =$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Isto é; supondo que existe uma outra transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que; $G(v_i) = u_i$; $\forall i = 1, \dots, n$; temos, $\forall \lambda_i \in \mathbb{K}$; $\mathcal{G}(\mathbf{v}) = \mathcal{G}(\sum_{i=1}^n \lambda_i \mathbf{v}_i) = \sum_{i=1}^n \lambda_i \mathcal{G}(\mathbf{v}_i) =$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

Isto é; supondo que existe uma outra transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que; $G(v_i) = u_i$; $\forall i = 1, \dots, n$; temos, $\forall \lambda_i \in \mathbb{K}$; $\mathcal{G}(\mathbf{v}) = \mathcal{G}(\sum_{i=1}^n \lambda_i \mathbf{v}_i) = \sum_{i=1}^n \lambda_i \mathcal{G}(\mathbf{v}_i) = \sum_{i=1}^n \lambda_i \mathbf{u}_i =$

Teorema

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

$$\mathcal{G}(v_i) = u_i; \forall i = 1, \dots, n; \text{ temos, } \forall \lambda_i \in \mathbb{K};$$

$$\mathcal{G}(v) = \mathcal{G}(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i \mathcal{G}(v_i) = \sum_{i=1}^n \lambda_i u_i = \sum_{i=1}^n \lambda_i \mathcal{F}(v_i)$$

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

$$\mathcal{G}(v_i) = u_i; \forall i = 1, \dots, n; \text{ temos, } \forall \lambda_i \in \mathbb{K};$$

$$\mathcal{G}(v) = \mathcal{G}(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i \mathcal{G}(v_i) = \sum_{i=1}^n \lambda_i u_i = \sum_{i=1}^n \lambda_i \mathcal{F}(v_i) \Rightarrow \mathcal{G}(v) = \mathcal{F}(v).$$

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de \mathcal{V} e sejam u_1, u_2, \dots, u_n elementos quaisquer em 11.

Então, existe uma **única** $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ tal que;

$$\mathcal{F}(v_i) = u_i; \forall i = 1, \ldots, n.$$

$$\mathcal{G}(v_i) = u_i; \forall i = 1, \dots, n; \text{ temos, } \forall \lambda_i \in \mathbb{K};$$

$$\mathcal{G}(v) = \mathcal{G}(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i \mathcal{G}(v_i) = \sum_{i=1}^n \lambda_i u_i = \sum_{i=1}^n \lambda_i \mathcal{F}(v_i) \Rightarrow \mathcal{G}(v) = \mathcal{F}(v).$$

Transformações Lineares Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}));$

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$;

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0, 0, -1, 0) = t^3$:

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$;

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$.

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$.

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, v, z, w) = \lambda_1(2, 0, 0, 0)$

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$.

$$v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) +$$

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, v, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_3(0, 0, 0, 0)$

17 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seia $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$:

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seia $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}; \lambda_2 = -z;$

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seia $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}; \lambda_2 = -z; \lambda_3 = \frac{y}{2};$

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$.

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v:

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0),(0,0,-1,0),(0,2,0,0),(0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x,y,z,w)$. $v = (x,y,z,w) = \lambda_1(2,0,0,0) + \lambda_2(0,0,-1,0) + \lambda_3(0,2,0,0) + \lambda_4(0,0,0,-1)$ $\Rightarrow \lambda_1 = \frac{x}{2}; \lambda_2 = -z; \lambda_3 = \frac{y}{2}; \lambda_4 = -w.$ Agora, aplicando a função em v: $\mathcal{F}(x,y,z,w) =$

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0)$

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0),(0,0,-1,0),(0,2,0,0),(0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x,y,z,w)$. $v = (x,y,z,w) = \lambda_1(2,0,0,0) + \lambda_2(0,0,-1,0) + \lambda_3(0,2,0,0) + \lambda_4(0,0,0,-1)$ $\Rightarrow \lambda_1 = \frac{x}{2}; \lambda_2 = -z; \lambda_3 = \frac{y}{2}; \lambda_4 = -w.$ Agora, aplicando a função em v: $\mathcal{F}(x,y,z,w) = \lambda_1 \mathcal{F}(2,0,0,0) + \lambda_2 \mathcal{F}(0,0,-1,0) +$

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0),(0,0,-1,0),(0,2,0,0),(0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x,y,z,w)$. $v = (x,y,z,w) = \lambda_1(2,0,0,0) + \lambda_2(0,0,-1,0) + \lambda_3(0,2,0,0) + \lambda_4(0,0,0,-1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x,y,z,w) = \lambda_1\mathcal{F}(2,0,0,0) + \lambda_2\mathcal{F}(0,0,-1,0) + \lambda_3\mathcal{F}(0,2,0,0) +$

Exemplos

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x,y,z,w)$. $v = (x,y,z,w) = \lambda_1(2,0,0,0) + \lambda_2(0,0,-1,0) + \lambda_3(0,2,0,0) + \lambda_4(0,0,0,-1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x,y,z,w) = \lambda_1\mathcal{F}(2,0,0,0) + \lambda_2\mathcal{F}(0,0,-1,0) + \lambda_3\mathcal{F}(0,2,0,0) + \lambda_4\mathcal{F}(0,0,0,-1)$;

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$ substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$:

Exemplos

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$ substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) =$

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0),(0,0,-1,0),(0,2,0,0),(0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x,y,z,w)$. $v = (x,y,z,w) = \lambda_1(2,0,0,0) + \lambda_2(0,0,-1,0) + \lambda_3(0,2,0,0) + \lambda_4(0,0,0,-1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x,y,z,w) = \lambda_1\mathcal{F}(2,0,0,0) + \lambda_2\mathcal{F}(0,0,-1,0) + \lambda_3\mathcal{F}(0,2,0,0) + \lambda_4\mathcal{F}(0,0,0,-1)$; substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1,\dots,4$: $\mathcal{F}(x,y,z,w) = \frac{x}{2}(2)$

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$ substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) = \frac{x}{2}(2) - z(t^3) + \frac{x}{2}(2) + \frac{x}$

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x,y,z,w)$. $v = (x,y,z,w) = \lambda_1(2,0,0,0) + \lambda_2(0,0,-1,0) + \lambda_3(0,2,0,0) + \lambda_4(0,0,0,-1)$ $\Rightarrow \lambda_1 = \frac{x}{2}; \lambda_2 = -z; \lambda_3 = \frac{y}{2}; \lambda_4 = -w.$ Agora, aplicando a função em v: $\mathcal{F}(x,y,z,w) = \lambda_1\mathcal{F}(2,0,0,0) + \lambda_2\mathcal{F}(0,0,-1,0) + \lambda_3\mathcal{F}(0,2,0,0) + \lambda_4\mathcal{F}(0,0,0,-1);$ substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i; i = 1,\ldots,4$: $\mathcal{F}(x,y,z,w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) -$

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2,0,0,0) = 2$; $u_2 = \mathcal{F}(0,0,-1,0) = t^3$; $u_3 = \mathcal{F}(0,2,0,0) = -2t$; $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x,y,z,w)$. $v = (x,y,z,w) = \lambda_1(2,0,0,0) + \lambda_2(0,0,-1,0) + \lambda_3(0,2,0,0) + \lambda_4(0,0,0,-1)$ $\Rightarrow \lambda_1 = \frac{x}{2}; \lambda_2 = -z; \lambda_3 = \frac{y}{2}; \lambda_4 = -w.$ Agora, aplicando a função em v: $\mathcal{F}(x,y,z,w) = \lambda_1\mathcal{F}(2,0,0,0) + \lambda_2\mathcal{F}(0,0,-1,0) + \lambda_3\mathcal{F}(0,2,0,0) + \lambda_4\mathcal{F}(0,0,0,-1);$ substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i; i = 1,\ldots,4$: $\mathcal{F}(x,y,z,w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) - w(-t^2)$

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seia $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$: $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$: substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) - w(-t^2)$ $\mathcal{F}(x, y, z, w) =$

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seia $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$: $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$: substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) - w(-t^2)$ $\mathcal{F}(x, y, z, w) = x$

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seia $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$: $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, v, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$: substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) - w(-t^2)$ $\mathcal{F}(x, y, z, w) = x - yt$

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$: $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$: substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) - w(-t^2)$ $\mathcal{F}(x, y, z, w) = x - yt + wt^2$

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$: $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$: substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) - w(-t^2)$ $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

2. Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$; seja $\beta_{\mathbb{R}^4} = \{(2,0,0,0), (0,0,-1,0), (0,2,0,0), (0,0,0,-1)\}$ uma base ordenada e sejam os vetores $u_1, u_2, u_3, u_4 \in \mathcal{P}_3(\mathbb{R})$: $u_1 = \mathcal{F}(2, 0, 0, 0) = 2$: $u_2 = \mathcal{F}(0,0,-1,0) = t^3$: $u_3 = \mathcal{F}(0,2,0,0) = -2t$: $u_4 = \mathcal{F}(0,0,0,-1) = -t^2$. Encontre a transformação linear $\mathcal{F}(x, y, z, w)$. $v = (x, y, z, w) = \lambda_1(2, 0, 0, 0) + \lambda_2(0, 0, -1, 0) + \lambda_3(0, 2, 0, 0) + \lambda_4(0, 0, 0, -1)$ $\Rightarrow \lambda_1 = \frac{x}{2}$; $\lambda_2 = -z$; $\lambda_3 = \frac{y}{2}$; $\lambda_4 = -w$. Agora, aplicando a função em v: $\mathcal{F}(x, y, z, w) = \lambda_1 \mathcal{F}(2, 0, 0, 0) + \lambda_2 \mathcal{F}(0, 0, -1, 0) + \lambda_3 \mathcal{F}(0, 2, 0, 0) + \lambda_4 \mathcal{F}(0, 0, 0, -1)$: substituindo λ_i e os vetores $\mathcal{F}(v_i) = u_i$; $i = 1, \dots, 4$: $\mathcal{F}(x, y, z, w) = \frac{x}{2}(2) - z(t^3) + \frac{y}{2}(-2t) - w(-t^2)$ $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$

Exercícios

Exercícios

$$\mathcal{F}:\mathcal{M}_n(\mathbb{R}) o\mathbb{R} \ \mathcal{F}(A)=tr(A)$$

Exercícios

1. Verifique se a aplicação definida abaixo é uma TRANSFORMAÇÃO LINEAR:

$$\mathcal{F}:\mathcal{M}_n(\mathbb{R})\to\mathbb{R} \ \mathcal{F}(A)=tr(A)$$

1. Verifique se a aplicação definida abaixo é uma TRANSFORMAÇÃO LINEAR:

$$\mathcal{F}: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$$

 $\mathcal{F}(A) = tr(A)$

$$\mathcal{F}: \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}$$

 $\mathcal{F}(p(t)) = \int_a^b p(t) dt$

Exercícios

3. Encontre a Transformação linear $\mathcal{F}\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R}))$ tal que

Exercícios

3. Encontre a TRANSFORMAÇÃO LINEAR $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ tal que

$$\mathcal{F}(e_1) = e_1 + e_3$$
; $\mathcal{F}(e_2) = -e_4$; $\mathcal{F}(e_3) = 2e_1$; $\mathcal{F}(e_4) = e_3 + e_4$.

3. Encontre a TRANSFORMAÇÃO LINEAR $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ tal que

$$\mathcal{F}(e_1) = e_1 + e_3; \mathcal{F}(e_2) = -e_4; \mathcal{F}(e_3) = 2e_1; \mathcal{F}(e_4) = e_3 + e_4.$$

4. Encontre o OPERADOR LINEAR $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que

3. Encontre a TRANSFORMAÇÃO LINEAR $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ tal que

$$\mathcal{F}(e_1) = e_1 + e_3; \mathcal{F}(e_2) = -e_4; \mathcal{F}(e_3) = 2e_1; \mathcal{F}(e_4) = e_3 + e_4.$$

4. Encontre o OPERADOR LINEAR $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que

$$\mathcal{F}(e_1) = e_3; \mathcal{F}(e_2 - e_3) = e_2; \mathcal{F}(-2e_2) = 2e_1.$$

3. Encontre a TRANSFORMAÇÃO LINEAR $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ tal que

$$\mathcal{F}(e_1) = e_1 + e_3; \mathcal{F}(e_2) = -e_4; \mathcal{F}(e_3) = 2e_1; \mathcal{F}(e_4) = e_3 + e_4.$$

4. Encontre o OPERADOR LINEAR $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que

$$\mathcal{F}(e_1) = e_3; \mathcal{F}(e_2 - e_3) = e_2; \mathcal{F}(-2e_2) = 2e_1.$$