Master's Exam in Real Analysis December 2018

Part 1: Problems 1-7 Do six problems in Part 1.

- 1. (a) Let $\mathbb N$ be the set of natural numbers. Prove that the power set $\mathcal P(\mathbb N)$ is uncountable.
 - (b) Prove that the collection of isolated points of any set $S \subseteq \mathbb{R}^n$ is countable.
- 2. Prove that the Cantor set is perfect.
- 3. Prove that compact subsets of metric spaces are closed and bounded. Is the converse true? Justify your answer.
- 4. (a) Prove that any connected subset E of \mathbb{R} is an interval, i.e., if $x, y \in E$ and x < y, then x < z < y implies $z \in E$.
 - (b) Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$ be continuous. Assume that X is connected, prove that f(X) is connected.
- 5. (a) Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers. Prove that

$$\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n,$$

provided the sum on the right is not of the form $\infty - \infty$.

(b) Prove that if $x_n \to x$ as $n \to \infty$, then

$$\lim_{n \to \infty} \sup (x_n + y_n) = \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} \sup y_n.$$

- 6. (a) If $s_n \to s$, where $s_n, s \in \mathbb{R}$ for $n \in \mathbb{N}$, then show that $\frac{s_1 + s_2 + \ldots + s_n}{n} \to s$. Does the converse hold true?
 - (b) Let $\{x_n\}$ be a sequence in \mathbb{R} . Suppose that there is an r > 1 such that

$$|x_{n+1} - x_n| < r^{-n}$$
, for $n = 1, 2, 3, \dots$,

Prove that $\{x_n\}$ converges.

- 7. Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers.
 - (a) Assume that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Prove that $\sum_{n=1}^{\infty} a_n$ converges. Is the converse true? Justify your answer.
 - (b) Prove that if $a_n \ge 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n^2$ converges.

1

Part 2: Problems 8-14 Do six problems in Part 2

8. Let $f:(a,b)\to\mathbb{R}$ be differentiable on (a,b) with $|f'(x)|\leq M$ for $x\in(a,b)$ and some $M\geq0$. Prove that

$$\lim_{x \to b^{-}} f(x)$$

exists.

9. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases} x^4 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Study the continuity and differentiability of f on \mathbb{R} . How many times is f differentiable?

10. Let f be a bounded function on [-1, 1] and let

$$\alpha(x) = \begin{cases} 0, & \text{if } x \le 0 \\ 2, & \text{if } 0 < x. \end{cases}$$

Prove that $f \in \mathcal{R}(\alpha)$ on [-1,1] if and only if f(0+) = f(0). Compute the integral $\int_{-1}^{1} f \, d\alpha$ when $f \in \mathcal{R}(\alpha)$.

- 11. Suppose that f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b], and α is continuous at every point at which f is discontinuous. Prove that f is Riemann-Stieltjes integrable on [a, b].
- 12. (a) Suppose that f(x) is a continuous, nonnegative function on the interval [0,1]. Let $M = \sup\{f(x) : x \in [0,1]\}$. Prove that

$$\lim_{n \to \infty} \left[\int_0^1 f(t)^n dt \right]^{\frac{1}{n}} = M.$$

- (b) Let f(x) and g(x) be continuous on [a,b] with $\int_a^b f(x) dx = \int_a^b g(x) dx$. Prove that there is a c in [a,b] with f(c) = g(c).
- 13. Suppose that $f_n(x)$ is differentiable on [a, b] for $n \ge 1$ with $|f'_n(x)| \le M$, for $x \in [a, b]$ and some M > 0. If $\{f_n(x)\}$ converges to f(x) pointwise on [a, b], prove that $\{f_n(x)\}$ converges to f(x) uniformly on [a, b].
- 14. For what values of $x \ge 0$ does the series

$$\sum_{k=1}^{\infty} \frac{1}{k + k^2 x}$$

converge? Is the convergence uniform on the set where the series converges? Justify your answer.

2