6				
Howevork 9 Giagtos St f3352410.				
Ginates C				
Giagtos S. 73352410.	y wants			
13002 110.				
1) Correct 2) Correct 3) Correct 4) Correct 5) Correct 6) Correct 7) Correct 9) Correct 10) Correct 11) Correct 12) Correct 13) Correct	9	30) Correct 2, C		
2) correct		31) Correct 2		
3) Convect!	5	321 Correct 3		
4) Cornect	49	33) Correct 2,4		
5) Correct	0 /	34 Correct 2		
s) Correct.	1 /1	35) Correct 2,6		
6) Correct	1.6	36) Correct 2,		
7) Correct	1,4	37) Correct 2		
8) Correct	1	38) Correct 2		
9) Correct	•	39) Correct 1,		
10) Correct		40) Correct		
11) Correct	1,4			
12) Correct	1,3	41) Correct 1	,)	
13) Correct S		K 24)	/ =	
(4) Correct				
15) Correct				
16) Not valid				
17) Valia:				
18) Correct	, 4			
20) Correct:				
			-	
21) Correct:		``		
22 Correct:				
23) Correct.	10 2			
24 Correct:		a a		
25) Correct:	177 2			
26) Correct:	1,2,3			
27) Correct:				
28) (ov rect:	1.2			
12) Confect:	43			

minJl01 = unin 118112 - min 20 subject to yiloxital>=1,iel-,n yi= 0 for xiews yi= 0 for xiews. L(0,0,1)=1070- Sindi[Yi(07xi+00]-1] 2 dl = 0 (=) &- Si=1 digixi=0 (=) &= Si=1 digixi de_OC=1 - Si=1 digi=0=2 Sin digi=0. 0= 870 - 1 [Si=1 digixi] [Sindigini] = 1 Si=1 Sj=1 didjyiyj xi¹xj. 2 (λ) =](θ) - Si=) λί[yi (ð]χί + θο) -]]

= 1 Si=1 S: 1 λίλι yi yi χί χ΄; - Si=1 λί[yi (Si=1 λίμιχι χι τω-1
= 2 Si=1 λί - 1 Si=1 Σί=1 λίλι yi yi χί χ; Συδίει το Si=1 ἀχί=0
2

EXERCISE 44

```
In [1]: import scipy.io as sio
        import numpy as np
        import matplotlib.pyplot as plt
        Dataset a = sio.loadmat('HW9a.mat')
        train_x_a = Dataset_a['train_X']
        train_y_a = Dataset_a['train_y']
        test_x_a = Dataset_a['test_X']
        test_y_a = Dataset_a['test_y']
        from sklearn import svm
        def make_meshgrid(x, y, h=.02):
            """Create a mesh of points to plot in
            Parameters
            x: data to base x-axis meshgrid on
            y: data to base y-axis meshgrid on
            h: stepsize for meshgrid, optional
            Returns
            xx, yy : ndarray
            x_{min}, x_{max} = x.min() - 1, x.max() + 1
            y_{min}, y_{max} = y_{min}() - 1, y_{max}() + 1
            xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                                  np.arange(y_min, y_max, h))
            return xx, yy
        def plot_contours(ax, clf, xx, yy, **params):
            """Plot the decision boundaries for a classifier.
            Parameters
            ax: matplotlib axes object
            clf: a classifier
            xx: meshgrid ndarray
            yy: meshgrid ndarray
            params: dictionary of params to pass to contourf, optional
            Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
            Z = Z.reshape(xx.shape)
```

```
out = ax.contourf(xx, yy, Z, **params)
return out
```



```
-1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
                                               1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
                                              -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1,
                                            -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1,
                                                                                                                                                                                                                                  1,
                                              1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                              -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                                            -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1,
                                              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1],
                                         dtype=int16)
```

```
import scipy.io as sio
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.metrics import accuracy_score, classification_report
```

```
# Load the dataset from HW9a.mat
Dataset a = sio.loadmat('HW9a.mat')
# Extract the training and test sets
train_x_a = Dataset_a['train_X'] # Training features
train_y_a = Dataset_a['train_y'] # Training labels
test_x_a = Dataset_a['test_X'] # Test features
test_y_a = Dataset_a['test_y'] # Test labels
# Function to create a meshgrid for plotting decision boundaries
def make_meshgrid(x, y, h=.02):
   """Create a mesh grid to plot decision boundaries."""
   x_{min}, x_{max} = x.min() - 1, x.max() + 1
   y_{min}, y_{max} = y_{min}() - 1, y_{max}() + 1
   xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
   return xx, yy
# Function to plot decision boundaries
def plot_contours(ax, clf, xx, yy, **params):
    """Plot decision boundaries for a classifier."""
   Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
   Z = Z.reshape(xx.shape)
   out = ax.contourf(xx, yy, Z, **params)
   return out
# Function to train and evaluate SVM with different kernels
def train_and_evaluate_svm(kernel, C=1.0, degree=3, gamma='scale'):
   Train an SVM model with specified kernel and parameters and evaluate it.
   Parameters:
    - kernel: The kernel type ('linear', 'poly', or 'rbf')
   - C: Regularization parameter
   - degree: Degree of the polynomial kernel (relevant for 'poly')
    - gamma: Kernel coefficient (relevant for 'poly' and 'rbf')
   # Create the SVM classifier
   clf = svm.SVC(kernel=kernel, C=C, degree=degree, gamma=gamma)
   clf.fit(train_x_a, train_y_a.flatten()) # Train the model
   # Make predictions on the test set
   test_pred = clf.predict(test_x_a)
   # Evaluate accuracy and print classification report
   accuracy = accuracy_score(test_y_a.flatten(), test_pred)
   print(f"\nAccuracy on the test set with {kernel} kernel: {accuracy:.4f}")
   print(classification_report(test_y_a.flatten(), test_pred))
   # Plot the decision boundaries
   X0, X1 = train_x_a[:, 0], train_x_a[:, 1]
   xx, yy = make_meshgrid(X0, X1) # Generate meshgrid for plotting
   fig, ax = plt.subplots(1, 1, figsize=(8, 6))
   color = ['red' if label == 1 else 'blue' for label in train_y_a.flatten()]
   plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.6) # Plot decision
```

```
ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # F
   plt.title(f"Decision Boundary with {kernel} kernel")
   plt.show()
# Train and evaluate SVM with different kernels and parameters
kernels = ['linear', 'poly', 'rbf']
C_values = [0.1, 1.0, 10.0] # Experiment with different values of C
degree_values = [3, 4, 5] # Only relevant for polynomial kernel
gamma values = ['scale', 'auto'] # Only relevant for polynomial and RBF kernels
# Evaluate SVM with linear kernel
print("Evaluating SVM with Linear Kernel:")
for C in C_values:
   train_and_evaluate_svm('linear', C=C)
# Evaluate SVM with polynomial kernel
print("Evaluating SVM with Polynomial Kernel:")
for C in C_values:
   for degree in degree_values:
        train_and_evaluate_svm('poly', C=C, degree=degree)
# Evaluate SVM with RBF kernel
print("Evaluating SVM with RBF Kernel:")
for C in C_values:
   for gamma in gamma values:
        train_and_evaluate_svm('rbf', C=C, gamma=gamma)
```

Evaluating SVM with Linear Kernel:

```
Accuracy on the test set with linear kernel: 0.5556
             precision recall f1-score support
         -1
                 0.00
                           0.00
                                    0.00
                                               120
                                    0.71
          1
                 0.56
                           1.00
                                               150
                                    0.56
                                               270
   accuracy
                 0.28
                           0.50
                                    0.36
                                               270
  macro avg
weighted avg
                 0.31
                           0.56
                                    0.40
                                               270
```

```
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
  ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points
```

Decision Boundary with linear kernel

Accuracy on the test set with linear kernel: 0.5556 precision recall f1-score support -1 0.00 0.00 0.00 120 0.56 1.00 0.71 150 accuracy 0.56 270 270 macro avg 0.28 0.50 0.36 weighted avg 0.31 0.56 0.40 270

```
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
  warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
  ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points
```

Decision Boundary with linear kernel

C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

precision recall f1-score support -1 0.00 0.00 0.00 120 1 0.56 1.00 0.71 150 accuracy 0.56 270 0.28 0.50 0.36 270 macro avg weighted avg 0.31 0.56 0.40 270

Accuracy on the test set with linear kernel: 0.5556

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with linear kernel

C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
Evaluating SVM with Polynomial Kernel:

-	0.50	1.00	0.7 -	100
accuracy			0.56	270
macro avg	0.28	0.50	0.36	270
weighted avg	0.31	0.56	0.40	270

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with poly kernel

Accuracy on the test set with poly kernel: 0.6444 precision recall f1-score support

0.58	0.72	0.64	120
0.72	0.59	0.65	150
		0.64	270
0.65	0.65	0.64	270
0.66	0.64	0.64	270
	0.72	0.720.590.650.65	0.72 0.59 0.65 0.64 0.65 0.65 0.64

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with poly kernel

Accuracy on	the test set	with poly	kernel: 0	.6815
	precision	recall	f1-score	support
-1	0.60	0.82	0.70	120
1	0.80	0.57	0.66	150
accuracy			0.68	270
macro avg	0.70	0.70	0.68	270
weighted avg	0.71	0.68	0.68	270

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Accuracy on the test set with poly kernel: 0.5556 precision recall f1-score support -1 0.00 0.00 0.00 120 0.56 1.00 0.71 150 accuracy 0.56 270 270 macro avg 0.28 0.50 0.36 weighted avg 0.31 0.56 0.40 270

C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. warn prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot training points

Accuracy on	the test set	with poly	kernel:	0.6444
	precision	recall	f1-score	support
-1	0.58	0.76	0.65	120
1	0.74	0.55	0.63	150
accuracy			0.64	270
macro avg	0.66	0.66	0.64	270
weighted avg	0.67	0.64	0.64	270

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with poly kernel

Accuracy on the test set with poly kernel: 0.6741 precision recall f1-score support -1 0.60 0.82 0.69 120 1 0.79 0.56 0.66 150 270 accuracy 0.67 0.67 270 macro avg 0.70 0.69

0.67

0.71

weighted avg

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

0.67

Accuracy on the test set with poly kernel: 0.5556 precision recall f1-score support -1 0.00 0.00 0.00 120 0.56 1.00 0.71 150 accuracy 0.56 270 270 macro avg 0.28 0.50 0.36 weighted avg 0.31 0.56 0.40 270

C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. warn prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot training points

Accuracy on	the test set	with poly	kernel:	0.6444
	precision	recall	f1-score	support
-1	0.58	0.76	0.65	120
1	0.74	0.55	0.63	150
accuracy			0.64	270
macro avg	0.66	0.66	0.64	270
weighted avg	0.67	0.64	0.64	270

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with poly kernel

Accuracy on the test set with poly kernel: 0.6815 precision recall f1-score support -1 0.61 0.80 0.69 120 1 0.79 0.59 0.67 150 0.68 270 accuracy 0.68 270 macro avg 0.70 0.69

0.68

0.71

weighted avg

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

0.68

C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
Evaluating SVM with RBF Kernel:

Accuracy on the test set with rbf kernel: 0.5556

	precision	recall	f1-score	support
-1	0.00	0.00	0.00	120
1	0.56	1.00	0.71	150
accuracy			0.56	270
macro avg	0.28	0.50	0.36	270
weighted avg	0.31	0.56	0.40	270

C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with rbf kernel

C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\steli\anaconda3\Lib\site-packages\sklearn\metrics_classification.py:1531:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Accuracy	on t	he test	set	with	rbf	kernel:	0.	5556	
		precisi	lon	rec	all	f1-sco	re	suppo	rt
	-1	0.	00	6	.00	0.	00	1	20
	1	0.	56	1	.00	0.	71	1	50
accur	racy					0.	56	2	70
macro	avg	0.	28	6	.50	0.	36	2	70
weighted	avg	0.	31	6	.56	0.	40	2	70

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with rbf kernel

Accuracy on the test set with rbf kernel: 0.8889 precision recall f1-score support -1 0.86 0.90 0.88 120 0.92 0.88 0.90 150 270 accuracy 0.89 macro avg 0.89 0.89 0.89 270 0.89 270 weighted avg 0.89 0.89

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with rbf kernel

Accuracy on the test set with rbf kernel: 0.8000 precision recall f1-score support

-	1	0.70	0.97	0.81	120
	1	0.96	0.67	0.79	150
accurac	У			0.80	270
macro av	g	0.83	0.82	0.80	270
weighted av	g	0.84	0.80	0.80	270
	0				

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

Decision Boundary with rbf kernel

Accuracy on the test set with rbf kernel: 0.9185 precision recall f1-score support -1 0.95 0.87 0.90 120 0.90 0.96 0.93 150 0.92 270 accuracy 0.91 0.92 270 macro avg 0.92

0.92

weighted avg

0.92

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

0.92

Decision Boundary with rbf kernel

0.890.90

0.90

0.90

accuracy

macro avg

weighted avg

C:\Users\steli\AppData\Local\Temp\ipykernel_20700\438884638.py:62: UserWarning: No d
ata for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 ax.scatter(X0, X1, c=color, cmap=plt.cm.coolwarm, s=10, edgecolors='face') # Plot
training points

0.90

0.89

0.90

270

270

Decision Boundary with rbf kernel

Accuracy Results for Each Kernel:

• Linear Kernel:

- Accuracy: [0.556, 0.556, 0.556] (for C values of 0.1, 1.0, and 10.0)
- The performance of the linear kernel is consistently low, with an accuracy of about
 55.6% for all values of C. This suggests that the data is not linearly separable, and a more complex kernel is required to capture the underlying patterns.

Polynomial Kernel:

- Accuracy: [0.556, 0.644, 0.681, 0.556, 0.644, 0.674, 0.556, 0.644,
 0.681] (for varying C and degree values)
- The polynomial kernel performs better than the linear kernel, with the accuracy improving up to **68.1%** when C=10 and degree=3. However, the performance fluctuates slightly based on the choice of C and degree. It seems to perform best for certain parameter combinations but still doesn't outperform the RBF kernel.

RBF Kernel:

Accuracy: [0.556, 0.556, 0.889, 0.8, 0.919, 0.896] (for varying C and gamma values)

■ The RBF kernel performs significantly better than both the linear and polynomial kernels. The highest accuracy of **91.9%** is achieved with C=10 and gamma=scale, demonstrating that the RBF kernel is much better at capturing the non-linear relationships in the data.

Comments on the Results:

1. Linear Kernel:

The linear kernel consistently provides poor performance (around 55.6% accuracy). This suggests that the dataset is not linearly separable, and using a linear kernel is not suitable for this task.

2. Polynomial Kernel:

• The **polynomial kernel** performs better than the linear kernel, reaching an accuracy of **68.1%** at best. This shows that the polynomial kernel is more flexible, but its performance is still limited compared to the RBF kernel. The performance fluctuates with different values of C and degree.

3. RBF Kernel:

• The **RBF kernel** outperforms both the linear and polynomial kernels by a large margin. With an accuracy of **91.9%** (the highest value), the RBF kernel is clearly the best choice for this dataset. The RBF kernel can capture complex non-linear patterns in the data, which is why it performs so much better.

Conclusion:

- **Best Performance**: The **RBF kernel** with C=10 and gamma=scale provides the best accuracy of **91.9%**, making it the most suitable kernel for this dataset.
- **Linear Kernel**: The linear kernel is unsuitable for this dataset, with consistently low accuracy.
- **Polynomial Kernel**: While the polynomial kernel performs better than the linear one, its performance is still not as good as the RBF kernel.

Therefore, the **RBF kernel** is the recommended choice for this problem.