

Κλινική Φαρμακευτική Ανάλυση

Εκχύλιση στερεάς φάσης

Ειρήνη Παντερή

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φαρμακευτικής Τομέας Φαρμακευτικής Χημείας Εργαστήριο Φαρμακευτικής Ανάλυσης Σημειώσεις, Αθήνα 2020

Υγροχρωματογραφία υψηλής απόδοσης – HPLC

Ο Ρώσος βοτανολόγος Michael Tswett επιτυγχάνει το 1906 το διαχωρισμό μίγματος χλωροφυλλών σε στήλη $CaCO_3$ με διαλύτη πετρελαϊκό αιθέρα. Για πρώτη φορά τότε εμφανίζεται ο όρος χρωματογραφία.

Η υγροχρωματογραφία υψηλής απόδοσης (HPLC) αποτελεί μια τεχνική διαχωρισμού η οποία χρησιμοποιείται στην ανάλυση μίγματος ουσιών. Η ταχύτητα, η απόδοση καθώς και το ευρύ φάσμα εφαρμογής της την καθιστούν ένα χρήσιμο εργαλείο στην ανάλυση.

Από το 1937 μέχρι το 1972 έχουν απονεμηθεί συνολικά 12 βραβεία Νόμπελ στα οποία η τεχνική HPLC είχε κυρίαρχο ρόλο και σε ορισμένα από αυτά υπήρξαν εξελίξεις στην τεχνική της χρωματογραφίας:

- √ 1948 Arne W.K. Tiselius electrophoresis- absorption analysis
- √ 1952 Nobel Prize in Chemistry Archer J.P. Martin, Richard L.M. Synge (Χρωματογραφία Κατανομής, Partition Chromatography)
- ✓ 1972 Stanford Moore, William H. Stein , ανακαλύπτουν τον 1° αυτόματο αναλυτή αμινοξέων και προσδιορίζουν την αμινοξική ακολουθία της ριβονουκλεάσης

Figure 1. Chromatographic apparatus for use with pressure, 1-3; and suction, 4; with typical chromatogram, 5. For explanation, see the text.

Διαγραμματική παρουσίαση του πρώτου χρωματογραφικού συστήματος που χρησιμοποιήθηκε από τον Tswett.

Πηγή: J. Chem. Education 44, 1967, 238-242

Εκχύλιση στερεάς φάσης

Φυσική διαδικασία εκχύλισης που περιλαμβάνει μια υγρή και μια στατική φάση και βασίζεται στις αρχές της υγροχρωματογραφίας.

Η απομόνωση του αναλύτη από ένα πολύπλοκο δείγμα επιτυγχάνεται δια μέσου ενός συστήματος δύο φάσεων:

1. Στατική φάση : στερεό υπόστρωμα ακινητοποιημένο σε μικρούς κυλινδρικούς σωλήνες ορισμένης χωρητικότητας

2. Υγρή φάση

Μικροφυσίγγια εκχύλισης στερεάς φάσης

✓ Bond-elut cartridge

Στερεά φάση 100-500 mg (συμπιεσμένο υλικό

σε ξηρή κατάσταση)

Δεξαμενή: 1 - 5 ml

Luer tip χαμηλή πίεση.

✓ Sep-pak cartridge

Luer fitting: υψηλή πίεση

Στερεά φάση 370 - 900 mg

(συμπιεσμένο υλικό σε ξηρή κατάσταση)

Solid Phase Extraction Cartridges:

Ορολογία

Στατική φάση αποτελείται από πορώδη σωματίδια καθορισμένης διαμέτρου και μεγέθους πόρων που τοποθετημένα σφικτά μέσα σε μικρές κυλινδρικές στήλες διαφόρων μεγεθών.

Όγκος κοίτης: η ποσότητα του διαλύτη που απαιτείται για να γεμίσουν πλήρως οι πόροι των σωματιδίων και τα διαστήματα μεταξύ των σωματιδίων χαρακτηρίζει τον όγκο κοίτης μιας καθορισμένης στήλης. (120 μL/ 100mg sorbent)

Χωρητικότητα υποστρώματος (capacity): Η ολική μάζα ενός συστατικού που μπορεί πλήρως να συγκρατηθεί, σε βέλτιστες συνθήκες, από μία δεδομένη μάζα του υποστρώματος. Η μάζα του αναλύτη δεν πρέπει να υπερβαίνει το 5% της μάζας της στατικής φάσης:

50mg/1mL SPE cartridges → μέχρι 2,5 mg αναλύτη

Ορολογία (συνέχεια)

Εκλεκτικότητα υποστρώματος: η ικανότητα ενός υποστρώματος να διακρίνει και να συγκρατεί μόνο το προς ανάλυση συστατικό από ένα δείγμα μέσα στο οποίο βρίσκεται διαλυμένο.

Η εκλεκτικότητα είναι συνάρτηση των ακόλουθων παραγόντων:

- Ι. Χημική δομή του αναλύτη
- ΙΙ. Ιδιότητες του υποστρώματος
- ΙΙΙ. Σύσταση του αναλυόμενου δείγματος

Συσκευή εκχύλισης στερεάς φάσης

Οι βασικές αρχές της εκχύλισης στερεάς φάσεως βασίζονται σε αυτές της τεχνικής της υγρής χρωματογραφίας, με διαφορετικό όμως τρόπο εφαρμογής:

Επιλέγονται οι βέλτιστες συνθήκες ώστε να κατακρατηθούν από τη στατική φάση οι αναλύτες ή οι προσμίξεις -> Εκλεκτική διαδικασία εκχύλισης SPE

Ο ιδανικός διαλύτης έκπλυσης απομακρύνει εκλεκτικά τις προσμίζεις -> Εκλεκτική έκπλυση (Selective washing)

Ο ιδανικός διαλύτης έκλουσης παραλαμβάνει εκλεκτικά τους αναλύτες, ενώ οι προσμίξεις παραμένουν στη στατική φάση \rightarrow Εκλεκτική έκλουση (Selective elution)

Βασικές αρχές της εκχύλισης στερεάς φάσης

Σταθεροποίηση ή ενεργοποίηση:

Εμβροχή του στερεού υποστρώματος με κατάλληλο διαλύτη.

Η πηκτή πυριτίας στο μικροσκόπιο δίνει την εικόνα δάσους χαρακτηριστικών ομάδων ριζωμένων σε γέφυρες σιλοξανίου. Αυτές οι γέφυρες και η πηκτή πυριτίας που βρίσκεται κάτω από αυτές είναι υπεύθυνες για τις ιδιότητες της πηκτής πυριτίας ως στατικής φάσης. Η χημικά συνδεδεμένη πηκτή πυριτίας παρουσιάζει την εικόνα δάσους με τις αλειφατικές αλυσίδες να περιπλέκονται γύρω από την πηκτή πυριτίας. Έτσι η στατική φάση έχει μικρή επιφάνεια και κατά συνέπεια μικρή δραστικότητα. Για το λόγο αυτό είναι απαραίτητη η εμβροχή της στατικής φάσης. Με την εμβροχή απελευθερώνονται οι αλειφατικές αλυσίδες και αυξάνεται η επιφάνεια στην οποία θα συγκρατηθεί το υπό ανάλυση συστατικό.

Συγκράτηση:

Καθώς το διάλυμα του αναλύτη διέρχεται από τη στατική φάση, αυτή «έλκει» τα μόρια του αναλύτη στην επιφάνεια της.

Η συγκράτηση είναι συνάρτηση τριών παραγώντων:

Ι Αναλύτη, ΙΙ. Διαλύτη και ΙΙΙ. Στατικής φάσης

Έκπλυση:

Η στατική φάση εκπλένεται με τη χρήση κατάλληλου διαλύτη προς απομάκρυνση όλων των προσμίξεων.

Έκλουση:

Ο αναλύτης απομακρύνεται από την επιφάνεια του υποστρώματος με ένα διαλύτη προς τον οποίο ο αναλύτης έχει μεγαλύτερη συγγένεια.

Isolate: Αναλύτης (Is)

Matrix: Μητρικό υλικό (Mt), π.χ. σε περιπτώσεις βιολογικών

δειγμάτων: πλάσμα, αίμα, ορός, ούρα, γάλα... κ.λπ.

Sorbent: Στατική φάση (Sb) (πληρωτικό υλικό)

Αλληλεπιδράσεις αναλύτη-στατικής φάσης Is/Sb

- Πολικές
- Μη πολικές
- Ιοντικές
- Ή συνδυασμός των παραπάνω

Εξαρτώνται από τις χαρακτηριστικές ομάδες που φέρει ο αναλύτης

Αλληλεπιδράσεις αναλύτη – υλικό μήτρας Is/Mt

Αλληλεπιδράσεις αναλύτη – υλικό μήτρας Is/Mt

Οι αλληλεπιδράσεις αυτές επηρεάζουν τη συγκράτηση του αναλύτη στη στατική φάση:

- Γενικά χαρακτηριστικά του υλικού μήτρας (πολικό, μη πολικό, ιοντικό).
- Προσρόφηση του αναλύτη στα σωματίδια του υλικού μήτρας.
- Πρωτεϊνική σύνδεση.

Στόχος - μείωση των αλληλεπιδράσεων Is/Mt

- Ι. Αραίωση δείγματος
- ΙΙ. Προκατεργασία δείγματος πριν την SPE με κάποια διαδικασία εκχύλισης
- ΙΙΙ. Διάσπαση της πρωτεϊνικής σύνδεσης

Στατικές φάσεις (στερεά υποστρώματα)

- 1. Πηκτή πυριτίας: υλικό μεγάλης πολικότητας. Η επιφάνεια της φέρει ελευθέρων ομάδων σιλανόλης (SiOH) και γέφυρες σιλοξανίου. (Μηχανισμός προσρόφησης)
- 2. Alumina (Al2O3) (Μηχανισμός προσρόφησης)
- 3. Florisil (Μηχανισμός προσρόφησης)
- 4. Χημικά συνδεδεμένη πηκτή πυριτίας: παρασκευάζεται μετά από αντίδραση των πολικών -ΟΗ της πηκτής πυριτίας με διάφορα αντιδραστήρια. (Μηχανισμός κατανομής).
- Οι χημικά συνδεδεμένες στατικές φάσεις είναι σταθερές σε pH 2.0-7.5.
 - Σε pH > 7.5 διαλύονται σε υδατικά διαλύματα.
 - Σε pH < 2.0 παρατηρείται διάσπαση των αιθερικών δεσμών με αποτέλεσμα την καταστροφή της επιφάνειας της στατικής φάσης.
 - Σταθερές σε όλους τους οργανικούς διαλύτες.
- Συνηθέστερα χρησιμοποιούμενες: C-18, C-8.
- 5. End-capping (Μηχανισμός κατανομής), BDS C-18
- 6. Ισχυρές ιονανταλλακτικές φάσεις. (Μηχανισμός ανταλλαγής ιόντων).
- 7. Στήλες κυκλοδεξτρινών: διαχωρισμοί εναντιομερών.

Είδη αλληλεπιδράσεων αναλύτη-στερεού υποστρώματος

ΜΗ ΠΟΛΙΚΕΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ

Αλληλεπιδράσεις μεταξύ μη πολικών αναλυτών και μη πολικών στατικών φάσεων.

ΠΟΛΙΚΕΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ

Αλληλεπιδράσεις ανάμεσα σε πολικές στατικές φάσεις και πολικούς αναλύτες.

Είναι αλληλεπιδράσεις δεσμών υδρογόνου, δεσμών διπόλου –διπόλου, διπόλου-επαγώμενου διπόλου.

ΙΟΝΤΙΚΕΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ

Ο διαχωρισμός βασίζεται σε ηλεκτροστατικές αλληλεπιδράσεις ανάμεσα στον αναλύτη και το φορτισμένο υπόστρωμα. Για να ενεργοποιηθεί ο μηχανισμός είναι απαραίτητη η ρύθμιση του p H ώστε να είναι φορτισμένα Is & Sb

Τα υποστρώματα στις ιοντικές αλληλεπιδράσεις φέρουν χημικές ομάδες που μπορούν να ιοντισθούν

Αλληλεπιδράσεις υλικού μήτρας (Mt) με στερεό υπόστρωμα (Sb)

Αλληλεπιδράσεις υλικού μήτρας(Mt) με στερεό υπόστρωμα (Sb)

Επιδιώκουμε διαδικασία SPE με μηχανισμό εκλεκτικό για τον αναλύτη (Is). Έτσι:

αν ο αναλύτης μπορεί να αλληλεπιδράσει με μη πολικές και ιοντικές αλληλεπιδράσεις

(a)

το υπόστρωμα περιέχει υψηλές συγκεντρώσεις σε άλατα.

⇒ Τότε επιλέγουμε διαδικασία SPE <u>με μη πολικό μηχανισμό</u>.

Διαδικασία εκχύλισης υγρό-υγρό πριν την SPE, για την εκλεκτική απομάκρυνση των προσμίζεων.

ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΟΥ

Α. ΣΚΟΠΟΣ ΜΕΘΟΔΟΥ

- Ποια θα είναι η επιθυμητή καθαρότητα του Is
- Ποια είναι η επιθυμητή συγκέντρωση (τελικά) του Is
- Ποιος είναι ο διαλύτης έκλουσης του Is.

B. MEAETH TOY ANAAYTH (Is)

- Φυσικοχημικά χαρακτηριστικά του Is
- Παρουσία πολικών ομάδων.
- Υπαρξη –NH₂ ή –OH.
- Παρουσία ομάδων που μπορούν να ιοντισθούν (ανιοντικές, κατιοντικές ή και τα δύο) (pk_a).
- Διαλυτότητα σε διαλύτες.
- Σταθερότητα του Is σε ορισμένο pH.
- Ελεύθερο ή δεσμευμένο Is.
- Χρωματογραφικά δεδομένα.

ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΟΥ (συνέχεια)

Γ . MEAETH TOY YAIKOY MHTPA Σ (Mt)

- Είδος υλικού μήτρας (Mt)
- Υδατικό διάλυμα ή διάλυμα σε μη πολικό διαλύτη
- Προεργασία του Mt πριν την SPE
- Συστατικά που περιέχει
- Συστατικά που έχουν παρόμοια χημική δομή με τον αναλύτη (Is).

Επιλογή στατικής φάσης

Βασικά καθορίζονται από τη χημική δομή του Is που θα καθορίσει και το μηχανισμό της αλληλεπίδρασης Is-Sb.

- Α. Συγκράτηση αναλύτη (Is) μη πολικοί μηχανισμοί.
 - Mt: πολικό
 - Διαδικασία ανάλογη με χρωματογραφία αντίστροφης φάσης (RP-HPLC).

ΤΥΠΙΚΑ ΔΕΙΓΜΑΤΑ: Φαρμακευτικές ουσίες σε πλάσμα ή ορό αίματος, εντομοκτόνα σε νερό, κυκλοσπορίνες σε αίμα, προσταγλανδίνες σε κυτταρικές καλλιέργειες, εξαρτησιογόνες ουσίες σε ούρα και ορό αίματος κλπ.

- Β. Συγκράτηση αναλύτη (Ιs) πολικοί μηχανισμοί
 - Mt: μη πολικό

ΤΥΠΙΚΑ ΔΕΙΓΜΑΤΑ: Βιταμίνη D, αραχιδονικό οξύ σε κυτταρικές καλλιέργειες, αφλατοξίνη σε φυστικοβούτυρο κλπ.

- Γ. Συγκράτηση αναλύτη (Is) ιοντικοί μηχανισμοί
 - Mt: χαμηλής ιοντικής ισχύος

ΤΥΠΙΚΑ ΔΕΙΓΜΑΤΑ:

(cation exchange) Κατεχολαμίνες, φαρμακευτικές ουσίες σε πλάσμα και ούρα κ.λπ.

(anion exchange) Οργανικά οξέα, ριβονουκλεοτίδια σε κυτταρικές καλλιέργειες κλπ.

ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΟΥ

- ✓ Βελτιστοποίηση συγκράτησης προτύπων διαλυμάτων
- ✓ Βελτιστοποίηση έκλουσης προτύπων διαλυμάτων
- ✓ Έλεγχος των παρεμποδίσεων από το υλικό μήτρας με ανάλυση λευκού δείγματος.
- ✓ Έλεγχος εμβολιασμένων δειγμάτων σε υλικό μήτρας

ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΟΥ (συνέχεια)

- 1. Εμβροχή υποστρώματος:
- Μη πολικό ή πολικό μηχανισμό: Διαλύτης ίδιος με αυτόν που παρασκευάσθηκαν τα πρότυπα διαλύματα σε όγκο 10-20 φορές τον όγκο κοίτης.
- Ιοντανταλλακτικό μηχανισμό: Ρυθμιστικό διάλυμα ώστε το υπόστρωμα και ο αναλύτης να αποκτήσουν το επιθυμητό φορτίο.
- 2. Τοποθέτηση του πρότυπου διαλύματος:

Έλεγχος στο υγρό που περνάει αν υπάρχει ο αναλύτης.

- 3. Έκπλυση με τον ίδιο διαλύτη που έχουν παρασκευασθεί τα πρότυπα διαλύματα: Ελεγχος στο υγρό που περνάει αν υπάρχουν οι αναλύτες (Is).
- 4. Έκλουση με το διαλύτη έκλουσης:

 $100 \text{ mg} \Rightarrow 300 - 500 \,\mu\text{l}$ elution solvent

 $500 \text{ mg} \Rightarrow 1000 \text{ }\mu\text{l} \text{ elution solvent.}$

ΠΡΑΚΤΙΚΕΣ ΣΥΜΒΟΥΛΕΣ

Μη πολικές αλληλεπιδράσεις

Χαρακτηριστικά Ιs: Ενώσεις που περιέχουν μη πολικά τμήματα όπως αλκυλ-, αρωματικές, αλικυκλικές ή άλλες χαρακτηριστικές ομάδες με δομή υδρογονάνθρακα.

Διαλύτες συγκράτησης: Νερό, ρυθμιστικά διαλύματα χαμηλής ιοντικής ισχύος (<0.1 M), συνδυασμοί νερού/διαλυτών (νερό/μεθανόλη, νερό/ακετονιτρίλιο). Επιλέγεται μικρό ποσοστό οργανικού τροποποιητή.

Διαλύτες έκλουσης: Οργανικοί διαλύτες (μεθανόλη, ακετονιτρίλιο, οξικός αιθυλεστέρας, ΤΗΓ, χλωροφόρμιο, διχλωρομεθάνιο, εξάνιο), συνδυασμοί νερού / διαλυτών με υψηλό ποσοστό σε οργανικό διαλύτη.

Πολικές αλληλεπιδράσεις

Χαρακτηριστικά Ις: Ενώσεις πολικές ομάδες

Διαλύτες συγκράτησης: Εξάνιο, ισοοκτάνιο, χλωροφόρμιο, διχλωρομεθάνιο, ή συνδυασμός αυτών, ΤΗF, οξικός αιθυλεστέρας κλπ.

Διαλύτες έκλουσης: Μεθανόλη, νερό, ΤΗΓ, ισοπροπανόλη, οξικό οξύ, ακετονιτρίλιο, ακετόνη, αμίνες, ρυθμιστικά διαλύματα υψηλής ιοντικής ισχύος (οργανικά και ανόργανα) και συνδυασμοί αυτών.

ΠΡΑΚΤΙΚΕΣ ΣΥΜΒΟΥΛΕΣ (συνέχεια)

Αλληλεπιδράσεις ανταλλαγής ιόντων

🦴 Ανταλλαγή ανιόντων

- Χαρακτηριστικά Ιs: Ενώσεις με χαρακτηριστικές ομάδες ικανές να φέρουν αρνητικό φορτίο (όξινες ομάδες), ανόργανα ανιόντα.
- Διαλύτες συγκράτησης: Νερό, ρυθμιστικά χαμηλής ιοντικής ισχύος (<0.1 M), σε pH χαμηλότερο του pkα του στερεού υποστρώματος (Sb) και υψηλότερο από το pkα του αναλύτη (Is) (φορτισμένο τόσο το Sb, όσο και το Is)

Διαλύτες έκλουσης:

- Υυθμιστικό σε pH 2 μονάδες υψηλότερο από το pkα του Sb → υπόστρωμα αδιάστατο.
- Υυθμιστικό σε pH 2 μονάδες χαμηλότερο από το pkα του Is → αναλύτης αδιάστατος.
- Υυθμιστικό υψηλής ιοντικής ισχύος (>0.1 M σε ανιόντα)
- Υυθμιστικό που περιέχει υψηλής εκλεκτικότητας ανιόντα.
- ✓ Συνδυασμός των παραπάνω.

ΠΡΑΚΤΙΚΕΣ ΣΥΜΒΟΥΛΕΣ (συνέχεια)

Αλληλεπιδράσεις ανταλλαγής ιόντων

🤟 Ανταλλαγή κατιόντων

Χαρακτηριστικά Ις: Ενώσεις με χαρακτηριστικές ομάδες ικανές να φέρουν θετικό φορτίο (βασικές ομάδες), ανόργανα κατιόντα.

Διαλύτες συγκράτησης: Νερό, ρυθμιστικά χαμηλής ιονικής ισχύος (<0.1 M), σε pH υψηλότερο του pka του Sb και χαμηλότερο από το pka του Is (φορτισμένο τόσο το Sb, όσο και το Is)

Διαλύτες έκλουσης:

Ρυθμιστικό σε pH 2 μονάδες χαμηλότερο από το pka του Sb.

Ρυθμιστικό σε pH 2 μονάδες υψηλότερο από το pkα του Is.

Ρυθμιστικό υψηλής ιονικής ισχύος (>0.1 Μ σε κατιόντα)

Ρυθμιστικό που περιέχει υψηλής εκλεκτικότητας κατιόντα.

Συνδυασμός των παραπάνω.

ΑΝΑΠΥΞΗ ΜΕΘΟΔΟΥ SPE ΣΕ 5 ΒΗΜΑΤΑ

1º BHMA:

Έλεγχος της εκλουστικής ισχύος του διαλύτη που έχουμε επιλέξει για την έκλουση του αναλύτη, (Is).

Διαδικασία:

Διάλυση του αναλύτη στο διαλύτη έκλουσης > δίοδος από την ενεργοποιημένη στήλη > μέτρηση.

Η ανάκτηση υπολογίζεται σε σχέση με ίδιας συγκέντρωσης πρότυπα διαλύματα (σε διαλύτη έκλουσης) που αναλύθηκαν χωρίς προκατεργασία με SPE.

Αν 90 - 100% του αναλύτη διέρχεται από τη στήλη τότε ο διαλύτης έκλουσης είναι κατάλληλος.

2º ΒΗΜΑ: Έλεγχος του μηχανισμού συγκράτησης.

Διαδικασία:

Διάλυση του αναλύτη σε απεσταγμένο νερό (reverse phase) ή σε οργανικό διαλύτη (normal phase ή ion exchange) και δίοδος από την ενεργοποιημένη στήλη ακολουθεί έκλουση από τη στήλη όπως στο 1ο βήμα και μέτρηση.

Η ανάκτηση υπολογίζεται σε σχέση με ίδιας συγκέντρωσης πρότυπα διαλύματα (σε διαλύτη έκλουσης) που αναλύθηκαν χωρίς προκατεργασία με SPE.

Αν η ανάκτηση > 90% τότε είναι σωστή η επιλογή στερεού υποστρώματος.

ΑΝΑΠΥΞΗ ΜΕΘΟΔΟΥ SPE ΣΕ 5 ΒΗΜΑΤΑ (συνέχεια)

- **3º ΒΗΜΑ:** Έλεγχος της συγκράτησης, της έκλουσης και της απομάκρυνσης των προσμίξεων.
- Διάλυση του αναλύτη σε υλικό μήτρας (πχ ανθρώπινο πλάσμα, ούρα κ.λπ) και επανάληψη του δεύτερου βήματος.
- Η ανάκτηση υπολογίζεται σε σχέση με το δείγμα που αναλύθηκε με το 2ο βήμα. Παράλληλα γίνεται και έλεγχος παρεμποδίσεων με ανάλυση λευκού δείγματος (απουσία αναλυτών).
- **4º BHMA:** Έλεγχος της γραμμικότητας της καμπύλης αναφοράς που προκύπτει από την ανάλυση εμβολιασμένων δειγμάτων σε μητρικό υλικό.
- Προκατεργασία δειγμάτων σύμφωνα με το 3ο βήμα.
- Υπολογισμός correlation coefficient: r > 0.95
- **5° BHMA:** Ανάλυση αγνώστων δειγμάτων και αξιολόγηση με άλλες μεθόδους ως προς την ορθότητα και την πιστότητα. Εμβολιασμός αγνώστων δειγμάτων με γνωστές ποσότητες από το standard και υπολογισμός της ανάκτησης.
- Προκατεργασία δειγμάτων σύμφωνα με το 3ο βήμα. Ανάκτηση: 95 ± 10%.

Sample Characteristics Determine Your SPE Procedure

