

Versioni

Ver.	Data	Redattore	Verificatore	Descrizione
1.0 0.5	2024-05-08 2024-05-07	Elena Ferro Elena Ferro	Valerio Occhinegro	Approvazione documento Aggiunta caso d'uso filtri, rifinimento diagrammi UML.
0.4 0.3	2024-04-30 2024-04-29	Elena Ferro Elena Ferro		Aggiunta casi d'uso per dati urbani Aggiunta casi d'uso per dati atmo- sferici
0.2 0.1	2024-04-24 2024-03-08	Elena Ferro Matteo Tiozzo		Aggiunta sezione requisiti Stesura struttura documento

Indice

Elenco delle tabelle

Elenco delle figure

1 Introduzione

1.1 Scopo del documento

Questo documento ha lo scopo di illustrare i casi d'uso e i requisiti del capitolato₆ proposto da *SyncLab S.r.l.*, a seguito di un'analisi da parte del gruppo e di un confronto tenuto con l'azienda.

Vengono presentate le funzionalità che il progetto dovrà offrire, suddivise in requisiti obbligatori, desiderabili e opzionali, in accordo con le richieste della proponente_G.

1.2 Glossario

Per evitare qualsiasi ambiguità o malinteso sui termini utilizzati nel seguente documento, è stato aggiunto un glossario_G, contenente le definizioni necessarie. È possibile individuare ogni termine presente nel glossario_G grazie ad uno stile specifico:

- ad ogni parola presente sarà aggiunta una "G" al pedice della stessa;
- verrà fornito il link al glossario_G online (v.1.0) per ciascuna parola.

1.3 Riferimenti

1.3.1 Normativi

- Capitolato_G C6 SyncCity_G: Smart city_G monitoring platform https://www.math.unipd.it/~tullio/IS-1/2023/Progetto/C6.pdf
- Regolamento di progetto didattico
 https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/PD2.pdf
- Norme di progetto_Gv1.0: https://7last.github.io/docs/rtb/documentazione-interna/norme-di-progetto

2 Descrizione del prodotto

2.1 Obiettivi del prodotto

L'obiettivo del prodotto è quello di sviluppare una piattaforma di monitoraggio per una città intelligente che consenta alle autorità locali di avere una visione d'insieme delle condizioni della città, permettendo loro di prendere decisioni informate e tempestive riguardo ad eventuali interventi e ottimizzazioni dei servizi da effettuare.

2.2 Architettura del prodotto

Il prodotto è costituito da 4 componenti principali:

- simulatore: rappresenta la sorgente di dati. In uno scenario reale, i dati sarebbero raccolti da migliaia di sensori installati in città. La proponente_G richiede che i
 dati siano più realistici possibili, non escludendo la possibilità di inserire rilevazioni
 provenienti da sensori reali. È stato scelto di utilizzare Python_G come linguaggio di
 programmazione per la simulazione dei dati;
- piattaforma di streaming: svolge la funzione di broker_G per disaccoppiare lo stream di informazioni provenienti dai simulatori dei sensori. Si occupa di ricevere i dati provenienti dal simulatore e di inviarli ai vari consumatori. In questo caso, il consumatore principale è il database di cui si discute al punto successivo. A tal fine, si è scelto di utilizzare Redpanda_G come piattaforma di streaming;
- **database**: necessario per la persistenza dei dati raccolti. Per questo scopo è stato adottato ClickHouse_G, un database colonnare;
- **dashboard**_G: permette di visualizzare in tempo reale i dati raccolti. Questo componente rappresenta l'interfaccia utente del prodotto. Si è scelto di utilizzare Grafana_G come strumento per la creazione della dashboard_G.

Figura 1: Architettura del prodotto

2.3 Funzionalità del prodotto

Una volta che il sistema sarà in funzione, esso sarà in grado di:

- raccogliere e memorizzare i dati provenienti dai sensori;
- visualizzare i dati raccolti in tempo reale attraverso una dashboard_G, offrendo una panoramica delle condizioni della città. Tra le informazioni visualizzate ci saranno una mappa con la posizione dei sensori e alcuni grafici che mostrano gli andamenti delle misurazioni;
- calcolare un indice di salute della città, basato sulle ultime rilevazioni dei sensori.
 Questo indice sarà rappresentato da un punteggio da 0 a 100, dove un punteggio più alto corrisponderà a condizioni di vita migliori;
- **notificare** automaticamente le autorità locali in caso di superamento di soglie critiche da parte dei sensori.

2.4 Caratteristiche degli utenti

Si prevede che gli utenti principali saranno i dipendenti delle autorità locali responsabili $_{\rm G}$ del monitoraggio dello stato di salute, sicurezza ed efficienza della città. Gli utenti interagiscono solamente con il sistema attraverso la dashboard $_{\rm G}$.

2.4.1 Conoscenze e competenze

Si suppone che tali utenti siano in grado di comprendere i dati visualizzati dalla dashboard_© e filtrare le informazioni per ottenere una visione d'insieme della situazione.

2.4.2 Dispositivi

Per accedere alla piattaforma gli utenti potranno indifferentemente utilizzare un dispositivo mobile, un computer o un tablet.

3 Casi d'uso

3.1 Introduzione

In questa sezione del documento vengono analizzati nel dettaglio i casi d'uso individuati per il sistema nel corso dell'analisi del capitolato e dei colloqui con la proponente.

3.2 Struttura dei casi d'uso

In tutto il documento ci si riferirà ai casi d'uso utilizzando la sigla UC seguita dal rispettivo codice nella forma

UC-[identificativo_caso_principale].[identificativo_sotto_caso]

il quale permette di utilizzarlo come riferimento in questo e altri documenti. Per ciascun caso d'uso vengono definiti i seguenti elementi:

- attore principale: l'attore primariamente coinvolto nel caso d'uso;
- precondizioni: le condizioni che devono essere verificate affinché il caso d'uso possa essere eseguito;
- **postcondizioni**: le condizioni che devono essere verificate al termine dell'esecuzione del caso
- scenario principale: la sequenza di passi che descrive il comportamento del sistema durante l'esecuzione del caso d'uso;
- user story_G: una descrizione testuale del caso d'uso.

3.3 Attori

I seguenti attori sono coinvolti nei casi d'uso:

- Impiegati presso autorità locali: essi possono accedere al sistema per visualizzare i dati di monitoraggio della Smart City_G.
- **sensori**: sorgente di dati con un determinato dominio di interesse che effettua misurazioni e trasmette i dati al sistema.

3.4 Elenco dei casi d'uso

3.4.1 UC-1: Visualizzazione dashboard

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;

- Postcondizioni: L'autorità locale visualizza una dashboard; presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard con i dati relativi ai sensori per poter monitorare la loro posizione e i dati trasmessi.

Figura 2: UC-1: Visualizzazione dashboard

3.4.2 UC-2: Visualizzazione dashboard dati grezzi

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza la dashboard dei dati grezzi con i dati relativi ai sensori presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard dei dati grezzi con i dati relativi ai sensori presenti, la quale mi consente di monitorare quanti, quali sensori sono presenti e la loro posizione.

Figura 3: UC-2: Visualizzazione dashboard dei dati grezzi

3.4.2.1 UC-2.1: Visualizzazione panel con tabella sensori

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- Postcondizioni: L'autorità locale visualizza il panel contenente una tabella di tutti i sensori collegati al sistema;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare un panel contenente una tabella di tutti i sensori collegati al sistema. I dati che dovranno essere presenti nella tabella sono: identificativo del sensore, tipo di sensore, e data dell'ultima trasmissione. I dati presenti nella tabella mi consentiranno di avere una visione d'insieme dei sensori presenti.

Figura 4: UC-2.1: Visualizzazione panel con tabella sensori

3.4.2.2 UC-2.2: Visualizzazione mappa interattiva sensori

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori nel territorio ed eventualmente di intervenire nel caso in cui siano presenti zone non coperte.

Figura 5: UC-2.2: Visualizzazione mappa interattiva sensori

3.4.2.3 UC-2.3: Visualizzazione panel numero sensori per tipo

- Attore principale: Autorità locale;
- Precondizioni: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza un panel contenente il conteggio totale di sensori presenti nel sistema;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare il conteggio totale di sensori presenti nel sistema suddivisi per tipo, in modo da poter decidere eventualmente di aggiungerne altri.

Figura 6: UC-2.3: Visualizzazione panel numero sensori per tipo

3.4.2.4 UC-2.4: Visualizzazione tabella sensori non trasmettenti

- Attore principale: Autorità locale;
- Precondizioni: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza una tabella contenente i sensori che non trasmettono da più di un giorno;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i sensori che non trasmettono da più di un giorno, in modo da poter intervenire e ripristinare il corretto funzionamento.

Figura 7: UC-2.4: Visualizzazione tabella sensori che non trasmettono da più di 1 giorno

3.4.2.5 UC-2.5: Visualizzazione tabella dati grezzi temperatura

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di temperatura;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di temperatura, in modo da poter analizzare i dati in modo più dettagliato.

Figura 8: UC-2.5: Visualizzazione tabella dati grezzi temperatura

3.4.2.6 UC-2.6: Visualizzazione tabella dati grezzi umidità

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di umidità;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di umidità, in modo da poter analizzare i dati in modo più dettagliato.

Figura 9: UC-2.6: Visualizzazione tabella dati grezzi umidità

3.4.2.7 UC-2.7: Visualizzazione tabella dati grezzi traffico

- Attore principale: Autorità locale;
- Precondizioni: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di traffico;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di traffico, in modo da poter analizzare i dati in modo più dettagliato.

Figura 10: UC-2.7: Visualizzazione tabella dati grezzi traffico

3.4.2.8 UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di qualità dell'aria;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di qualità dell'aria, in modo da poter analizzare i dati in modo più dettagliato.

Figura 11: UC-2.8: Visualizzazione tabella dati grezzi qualità dell'aria

3.4.2.9 UC-2.9: Visualizzazione tabella dati grezzi precipitazioni

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di precipitazioni;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di precipitazioni, in modo da poter analizzare i dati in modo più dettagliato.

Figura 12: UC-2.9: Visualizzazione tabella dati grezzi precipitazioni

3.4.2.10 UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di isole ecologiche;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di isole ecologiche, in modo da poter analizzare i dati in modo più dettagliato.

Figura 13: UC-2.10: Visualizzazione tabella dati grezzi isole ecologiche

3.4.2.11 UC-2.11: Visualizzazione tabella dati grezzi livello di acqua

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di livello di acqua;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di livello di acqua, in modo da poter analizzare i dati in modo più dettagliato.

Figura 14: UC-2.11: Visualizzazione tabella dati grezzi livello di acqua

3.4.2.12 UC-2.12: Visualizzazione tabella dati grezzi colonnine di ricarica

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza una tabella contenente i dati grezzi trasmessi dai sensori di colonnine di ricarica;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare una tabella contenente i dati grezzi trasmessi dai sensori di colonnine di ricarica, in modo da poter analizzare i dati in modo più dettagliato.

Figura 15: UC-2.12: Visualizzazione tabella dati grezzi colonnine di ricarica

3.4.2.13 UC-2.13: Visualizzazione grafico time series dati grezzi complessivi temperatura

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di temperatura presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di temperatura presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 16: UC-2.6: Visualizzazione grafico time series dati grezzi complessivi temperatura

3.4.2.14 UC-2.14: Visualizzazione grafico time series dati grezzi complessivi umidità

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di umidità presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di umidità presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 17: UC-2.14: Visualizzazione grafico time series dati grezzi complessivi umidità

3.4.2.15 UC-2.15: Visualizzazione grafico time series dati grezzi complessivi traffico

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di traffico presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di traffico presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 18: UC-2.15: Visualizzazione grafico time series dati grezzi complessivi traffico

3.4.2.16 UC-2.16: Visualizzazione grafico time series dati grezzi complessivi qualità dell'aria

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di qualità dell'aria presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di qualità dell'aria presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 19: UC-2.16: Visualizzazione grafico time series dati grezzi complessivi qualità dell'aria

3.4.2.17 UC-2.17: Visualizzazione grafico time series dati grezzi complessivi precipitazioni

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di precipitazioni presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di precipitazioni presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 20: UC-2.17: Visualizzazione grafico time series dati grezzi complessivi precipitazioni

3.4.2.18 UC-2.18: Visualizzazione grafico time series dati grezzi complessivi isole ecologiche

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di isole ecologiche presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di isole ecologiche presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 21: UC-2.18: Visualizzazione grafico time series dati grezzi complessivi isole ecologiche

3.4.2.19 UC-2.19: Visualizzazione grafico time series dati grezzi complessivi livello di acqua

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di livello di acqua presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di livello di acqua presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 22: UC-2.19: Visualizzazione grafico time series dati grezzi complessivi livello di acqua

3.4.2.20 UC-2.20: Visualizzazione grafico time series dati grezzi complessivi colonnine di ricarica

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di colonnine di ricarica presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard dei dati grezzi.
- User story_G: Come autorità locale desidero poter visualizzare un grafico time series contenente i dati grezzi trasmessi da tutti i sensori di colonnine di ricarica presenti nella città, in modo da poterli confrontare tra loro e analizzare in modo più dettagliato.

Figura 23: UC-2.20: Visualizzazione grafico time series dati grezzi complessivi colonnine di ricarica

3.4.3 UC-3: Visualizzazione dashboard temperatura

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza la dashboard relativa ai sensori di temperatura presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard relativa ai sensori di temperatura presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento della temperatura sulla base di dati storici e in tempo reale, mostrando anche statistiche come la temperatura media, massima e minima nel periodo di tempo selezionato.

Figura 24: UC-3: Visualizzazione dashboard temperatura

3.4.3.1 UC-3.1: Visualizzazione grafico time series temperatura

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di temperatura;
- Postcondizioni: L'autorità locale visualizza un grafico time series contenente le misurazioni storiche della temperatura aggregate per 5 minuti;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.
- User story_G: Come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche della temperatura per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 25: UC-3.1: Visualizzazione grafico time series per temperatura

3.4.3.2 UC-3.2: Visualizzazione mappa sensori temperatura

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di temperatura;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.

User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di temperatura
e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione
dei sensori di temperatura nel territorio ed eventualmente intervenire nel caso in
cui siano presenti zone non coperte.

Figura 26: UC-3.2: Visualizzazione mappa interattiva sensori temperatura

3.4.3.3 UC-3.3: Visualizzazione *panel* temperatura media nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura media nel periodo di tempo selezionato;
- Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.
- **User story**_G: Come autorità locale desidero poter visualizzare la temperatura media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 27: UC-3.3: Visualizzazione *panel* temperatura media nel periodo di tempo selezionato

3.4.3.4 UC-3.4: Visualizzazione panel temperatura in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di temperatura;

- Postcondizioni: L'autorità locale visualizza un panel contenente la temperatura in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.
- **User story**_G: Come autorità locale desidero poter visualizzare la temperatura in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 28: UC-3.4: Visualizzazione panel temperatura in tempo reale

3.4.3.5 UC-3.5: Visualizzazione *panel* temperatura massima nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura massima nel periodo di tempo selezionato;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.
- **User story**_G: Come autorità locale desidero poter visualizzare la temperatura massima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 29: UC-3.5: Visualizzazione panel temperatura massima

3.4.3.6 UC-3.6: Visualizzazione *panel* temperatura minima nel periodo di tempo selezionato

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura minima nel periodo di tempo selezionato;
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di temperatura;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la temperatura minima nel periodo di tempo selezionato;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di temperatura.
- User story_G: Come autorità locale desidero poter visualizzare la temperatura minima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la temperatura attuale.

Figura 30: UC-3.6: Visualizzazione panel temperatura minima

3.4.4 UC-4: Visualizzazione dashboard umidità

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza la dashboard relativa ai sensori di umidità presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di umidità.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard relativa ai sensori di umidità presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento dell'umidità sulla base di dati storici e in tempo

reale, mostrando anche statistiche come l'umidità media, massima e minima nel periodo di tempo selezionato.

Figura 31: UC-4: Visualizzazione dashboard umidità

3.4.4.1 UC-4.1: Visualizzazione grafico time series umidità

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di umidità
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente le misurazioni storiche di umidità aggregate per 5 minuti;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di umidità:
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di umidità per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 32: UC-4.1, Visualizzazione grafico time series umidità

3.4.4.2 UC-4.2: Visualizzazione mappa sensori umidità

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di umidità;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di umidità;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di umidità.

User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di umidità e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di umidità nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 33: UC-4.2: Visualizzazione mappa interattiva sensori umidità

3.4.4.3 UC-4.3: Visualizzazione panel umidità media nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di umidità:
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente l'umidità media nel periodo di tempo selezionato;
- Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare l'umidità media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 34: UC-4.3: Visualizzazione panel umidità media nel periodo di tempo selezionato

3.4.4.4 UC-4.4: Visualizzazione panel umidità in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di umidità:
- Postcondizioni: L'autorità locale visualizza un panel contenente l'umidità in tempo reale;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare l'umidità in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 35: UC-4.4: Visualizzazione panel umidità in tempo reale

3.4.4.5 UC-4.5: Visualizzazione *panel* umidità massima nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:

- 2. Il sistema ha caricato la dashboard relativa ai sensori di umidità;
- Postcondizioni: L'autorità locale visualizza un panel contenente l'umidità massima nel periodo di tempo selezionato;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare l'umidità massima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 36: UC-4.5: Visualizzazione panel umidità massima

3.4.4.6 UC-4.6: Visualizzazione panel umidità minima nel periodo di tempo selezionato

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di umidità;
- Postcondizioni: L'autorità locale visualizza un panel contenente l'umidità minima nel periodo di tempo selezionato;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di umidità.
- **User story**_G: Come autorità locale desidero poter visualizzare l'umidità minima nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con l'umidità attuale.

Figura 37: UC-4.6: Visualizzazione panel umidità minima

3.4.5 UC-5: Visualizzazione dashboard qualità dell'aria

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- **Postcondizioni**: L'autorità locale visualizza la dashboard relativa ai sensori di qualità dell'aria presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di qualità dell'aria.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard relativa ai sensori di qualità dell'aria presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento della qualità dell'aria sulla base di dati storici e in tempo reale, mostrando anche statistiche quali il giorno con la qualità dell'aria peggiore e il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato.

Figura 38: UC-5: Visualizzazione dashboard qualità dell'aria

3.4.5.1 UC-5.1: Visualizzazione grafico time series qualità dell'aria

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;

- 2. Il sistema ha caricato la dashboard relativa ai sensori di qualità dell'aria
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente le misurazioni storiche di qualità dell'aria aggregate per 5 minuti;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di qualità dell'aria;
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di qualità dell'aria per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 39: UC-5.1, Visualizzazione grafico time series qualità dell'aria

3.4.5.2 UC-5.2: Visualizzazione mappa interattiva sensori qualità dell'aria

• Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di qualità dell'aria;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori della qualità dell'aria;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori della qualità dell'aria.
- **User story**_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori della qualità dell'aria e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori della qualità dell'aria nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 40: UC-5.2: Visualizzazione mappa interattiva sensori qualità dell'aria

3.4.5.3 UC-5.3: Visualizzazione *panel* qualità dell'aria media nel periodo di tempo selezionato

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di qualità dell'aria;
- Postcondizioni: L'autorità locale visualizza un panel contenente qualità dell'aria media nel periodo di tempo selezionato;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di qualità dell'aria.
- **User story**_G: Come autorità locale desidero poter visualizzare della qualità dell'aria media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 41: UC-5.3: Visualizzazione *panel* qualità dell'aria media nel periodo di tempo selezionato

3.4.5.4 UC-5.4: Visualizzazione panel qualità dell'aria in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di qualità dell'aria;
- Postcondizioni: L'autorità locale visualizza un panel contenente qualità dell'aria in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di qualità dell'aria.
- **User story**_©: Come autorità locale desidero poter visualizzare della qualità dell'aria in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 42: UC-5.4: Visualizzazione panel qualità dell'aria in tempo reale

3.4.5.5 UC-5.5: Visualizzazione *panel* giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di qualità dell'aria;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente il giorno con la qualità dell'aria peggiore nel periodo di tempo selezionato;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di qualità dell'aria.

• **User story**_G: Come autorità locale desidero poter visualizzare il giorno con la qualità dell'aria peggiore nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la qualità dell'aria attuale.

Figura 43: UC-5.5: Visualizzazione *panel* giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

3.4.5.6 UC-5.6: Visualizzazione *panel* giorno con qualità dell'aria migliore nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di qualità dell'aria;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato;
- Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di qualità dell'aria.
- **User story**_©: Come autorità locale desidero poter visualizzare il giorno con la qualità dell'aria migliore nel periodo di tempo selezionato in modo da poterla prendere come riferimento e confrontarla con la qualità dell'aria attuale.

Figura 44: UC-5.6: Visualizzazione *panel* giorno con qualità dell'aria peggiore nel periodo di tempo selezionato

3.4.6 UC-6: Visualizzazione dashboard precipitazioni

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza la dashboard relativa ai sensori di precipitazioni presenti nella città;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di precipitazioni.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard relativa ai sensori di precipitazioni presenti nella città, la quale dovrà contenere informazioni utili per monitorare l'andamento delle precipitazioni sulla base di dati storici e in tempo reale, mostrando anche statistiche quali quantità di precipitazioni media, massima e minima nel periodo di tempo selezionato.

Figura 45: UC-6: Visualizzazione dashboard precipitazioni

3.4.6.1 UC-6.1: Visualizzazione grafico time series quantità precipitazioni nel periodo di tempo selezionato

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di precipitazioni
- Postcondizioni: L'autorità locale visualizza un grafico time series contenente le misurazioni storiche di precipitazioni aggregate per 5 minuti;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;

- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di precipitazioni;
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di precipitazioni per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 46: UC-6.1, Visualizzazione grafico time series precipitazioni

3.4.6.2 UC-6.2: Visualizzazione mappa sensori precipitazioni

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di precipitazioni;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di precipitazioni;
- Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di precipitazioni.
- **User story**_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori di precipitazioni e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori di precipitazioni nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 47: UC-6.2: Visualizzazione mappa interattiva sensori precipitazioni

3.4.6.3 UC-6.3: Visualizzazione *panel* quantità di precipitazioni media nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:

- 2. Il sistema ha caricato la dashboard relativa ai sensori di precipitazioni;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente di quantità di precipitazioni media nel periodo di tempo selezionato;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di precipitazioni.
- **User story**_G: Come autorità locale desidero poter visualizzare di quantità di precipitazioni media nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 48: UC-6.3: Visualizzazione *panel* quantità di precipitazioni media nel periodo di tempo selezionato

3.4.6.4 UC-6.4: Visualizzazione panel quantità di precipitazioni in tempo reale

• Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di precipitazioni;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente di quantità di precipitazioni in tempo reale;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di precipitazioni.
- **User story**_G: Come autorità locale desidero poter visualizzare di quantità di precipitazioni in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 49: UC-6.3: Visualizzazione panel quantità di precipitazioni in tempo reale

3.4.6.5 UC-6.5: Visualizzazione *panel* giorno con precipitazioni maggiori nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di precipitazioni;
- Postcondizioni: L'autorità locale visualizza un panel contenente il giorno con la quantità di precipitazioni maggiori nel periodo di tempo selezionato;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di precipitazioni.
- **User story**_G: Come autorità locale desidero poter visualizzare il giorno con la quantità di precipitazioni maggiori nel periodo di tempo selezionato e poterla facilmente confrontare con i dati storici.

Figura 50: UC-6.5: Visualizzazione *panel* giorno con precipitazioni maggiori nel periodo di tempo selezionato

3.4.6.6 UC-6.6: Visualizzazione *panel* giorno con precipitazioni minori nel periodo di tempo selezionato

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di precipitazioni;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente il giorno con la quantità di precipitazioni minori nel periodo di tempo selezionato;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di precipitazioni.
- **User story**_G: Come autorità locale desidero poter visualizzare il giorno con la quantità di precipitazioni minori nel periodo di tempo selezionato e poterla facilmente confrontare con i dati storici.

Figura 51: UC-6.6: Visualizzazione *panel* giorno con precipitazioni minori nel periodo di tempo selezionato

3.4.7 UC-7: Visualizzazione dashboard traffico

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard relativa ai sensori di traffico presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di traffico.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard relativa ai sensori di traffico presenti nella città, la quale dovrà contenere informazioni

utili per monitorare l'andamento del traffico sulla base di dati storici e in tempo reale, mostrando anche statistiche quali numero di veicoli in tempo reale, velocità media in tempo reale e calcolo dell'ora di punta (basato su numero veicoli e velocità media).

Figura 52: UC-7: Visualizzazione dashboard traffico

3.4.7.1 UC-7.1: Visualizzazione grafico time series traffico

Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. Il sistema ha caricato la dashboard relativa ai sensori di traffico
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente le misurazioni storiche di traffico aggregate per 5 minuti;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di traffico;
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di traffico per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie o congestioni.

Figura 53: UC-7.1, Visualizzazione grafico time series traffico

3.4.7.2 UC-7.2: Visualizzazione mappa sensori traffico

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di traffico;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del traffico;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori del traffico.

User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del traffico e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del traffico nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 54: UC-7.2: Visualizzazione mappa interattiva sensori traffico

3.4.7.3 UC-7.3: Visualizzazione *panel* numero veicoli in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di traffico;
- Postcondizioni: L'autorità locale visualizza un panel contenente il numero di veicoli in tempo reale;
- Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di traffico.
- **User story**_G: Come autorità locale desidero poter visualizzare del numero di veicoli in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 55: UC-7.3: Visualizzazione panel numero di veicoli in tempo reale

3.4.7.4 UC-7.4: Visualizzazione panel velocità media in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di traffico;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la velocità media in tempo reale;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di traffico.
- User story_G: Come autorità locale desidero poter visualizzare della velocità media in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 56: UC-7.4: Visualizzazione panel velocità media in tempo reale

3.4.7.5 UC-7.5: Visualizzazione panel calcolo ora di punta

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di traffico:

 Postcondizioni: L'autorità locale visualizza un panel contenente il calcolo dell'ora di punta basato sul numero di veicoli e sulla velocità media;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di traffico.
- **User story**_G: Come autorità locale desidero poter visualizzare il calcolo dell'ora di punta basato sul numero di veicoli e sulla velocità media in modo da poter monitorare l'andamento del traffico e poterlo confrontare con i dati storici.

Figura 57: UC-7.5: Visualizzazione panel calcolo ora di punta

3.4.8 UC-8: Visualizzazione dashboard colonnine di ricarica

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;

• **Postcondizioni**: L'autorità locale visualizza la dashboard relativa alle colonnine di ricarica presenti nella città;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa alle colonnine di ricarica.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard_G relativa alle colonnine di ricarica presenti nella città, la quale dovrà contenere informazioni riguardo il loro stato di funzionamento e manutenzione.

Figura 58: UC-8: Visualizzazione dashboard colonnine di ricarica

3.4.8.1 UC-8.1: Visualizzazione mappa colonnine di ricarica con stato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa alle colonnine di ricarica;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione delle colonnine di ricarica;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;

- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa delle colonnine di ricarica.
- **User story**_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione delle colonnine di ricarica contenenti il loro identificativo e lo stato di funzionamento. Essa mi consentirà di visualizzare la distribuzione delle colonnine di ricarica nel territorio ed eventualmente intervenire nel caso in cui vi siano dei guasti.

Figura 59: UC-8.1: Visualizzazione mappa interattiva sensori colonnine di ricarica

3.4.8.2 UC-8.2: Visualizzazione *panel* numero colonnine di ricarica per stato in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai dati atmosferici;

- Postcondizioni: L'autorità locale visualizza un panel contenente il conteggio delle colonnine di ricarica suddivise per stato di funzionamento;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa alle colonnine di ricarica.
- User story_G: Come autorità locale desidero poter visualizzare un panel contenente il conteggio delle colonnine di ricarica suddivise per stato di funzionamento per poterle monitorare e intervenire in caso di guasti.

Figura 60: UC-8.2: Visualizzazione panel numero colonnine di ricarica per stato

3.4.9 UC-9: Visualizzazione dashboard parcheggi

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard relativa ai parcheggi presenti nella città;

• Scenario principale:

- L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai parcheggi.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard relativa ai parcheggi presenti nella città, la quale dovrà contenere informazioni utili per monitorare lo stato di occupazione dei parcheggi sulla base di dati storici e in tempo reale, in modo da poter individuare eventuali zone di criticità e intervenire per aumentare la disponibilità di parcheggi.

Figura 61: UC-9: Visualizzazione dashboard parcheggi

3.4.9.1 UC-9.1: Visualizzazione mappa interattiva parcheggi con rispettivo stato di occupazione

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai parcheggi con rispettivo stato di occupazione;
- Postcondizioni: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei parcheggi con rispettivo stato di occupazione;
- Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai parcheggi.
- **User story**_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei parcheggi con rispettivo stato di occupazione e contenenti il loro identificativo. Essa consentirà di individuare facilmente le zone con maggiore affluenza ed eventualmente intervenire per aumentare la disponibilità di parcheggi.

Figura 62: UC-9.1: Visualizzazione mappa interattiva sensori parcheggi con rispettivo stato di occupazione

3.4.9.2 UC-9.2: Visualizzazione *panel* con conteggio parcheggi per stato in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai parcheggi;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente i parcheggi con rispettivo stato di occupazione in tempo reale;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai parcheggi con rispettivo stato di occupazione.
- **User story**_G: Come autorità locale desidero poter visualizzare i parcheggi con rispettivo stato di occupazione in tempo reale in modo da poterne monitorare l'andamento e poterla facilmente confrontare con i dati storici.

Figura 63: UC-9.2: Visualizzazione *panel* parcheggi con rispettivo stato di occupazione in tempo reale

3.4.10 UC-10: Visualizzazione dashboard isole ecologiche

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- Postcondizioni: L'autorità locale visualizza la dashboard relativa alle isole ecologiche presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa alle isole ecologiche.
- **User story**_G: Come autorità locale desidero poter visualizzare una dashboard relativa alle isole ecologiche presenti nella città, la quale dovrà contenere informazioni utili per monitorare il loro stato di riempimento. In questo modo potrò intervenire per poter svuotare le isole ecologiche piene.

Figura 64: UC-10: Visualizzazione dashboard isole ecologiche

3.4.10.1 UC-10.1: Visualizzazione *panel* con riempimento isole ecologiche in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa alle isole ecologiche;

- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente il riempimento in percentuale delle isole ecologiche in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa alle isole ecologiche.
- **User story**_G: Come autorità locale desidero poter visualizzare il riempimento in percentuale delle isole ecologiche in tempo reale in modo da poterne monitorare l'andamento ed eventualmente intervenire per svuotarle.

Figura 65: UC-10.1: Visualizzazione panel riempimento isole ecologiche in tempo reale

3.4.10.2 UC-10.2: Visualizzazione mappa interattiva isole ecologiche

- Attore principale: Autorità locale;
- Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di isole ecologiche;
- **Postcondizioni**: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori delle isole ecologiche;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori delle isole ecologiche piene.
- **User story**_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori delle isole ecologiche contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione delle isole ecologiche nel territorio.

Figura 66: UC-10.2: Visualizzazione mappa interattiva sensori isole ecologiche

3.4.10.3 UC-10.3: Visualizzazione grafico time series isole ecologiche

Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di isole ecologiche
- Postcondizioni: L'autorità locale visualizza un grafico time series contenente le misurazioni storiche di riempimento e svuotamento di isole ecologiche;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di isole ecologiche;
- **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche di isole ecologiche per poter monitorare gli svuotamenti e i riempimenti nel tempo.

Figura 67: UC-10.3: Visualizzazione grafico time series isole ecologiche

3.4.10.4 UC-10.4: Visualizzazione panel ore di saturazione isole ecologiche

Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di isole ecologiche
- Postcondizioni: L'autorità locale visualizza un panel contenente il conteggio delle ore di saturazione delle isole ecologiche, ovvero il numero di ore in cui le isole ecologiche sono rimaste piene al 100% prima di essere svuotate;

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di isole ecologiche;
- **User story**_©: Come autorità locale desidero poter visualizzare il conteggio delle ore di saturazione delle isole ecologiche in modo da poter monitorare quanto efficienti sono gli svuotamenti e poter intervenire per migliorare il servizio.

Figura 68: UC-10.4: Visualizzazione panel ore di saturazione isole ecologiche

3.4.10.5 UC-10.5: Visualizzazione *panel* con percentuale media di riempimento al momento dello svuotamento

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di isole ecologiche
- Postcondizioni: L'autorità locale visualizza un panel contenente la percentuale media di riempimento delle isole ecologiche al momento dello svuotamento, che rappresenta l'efficienza del servizio di svuotamento;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;

- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di isole ecologiche;
- User story_G: Come autorità locale desidero poter visualizzare la percentuale media di riempimento delle isole ecologiche al momento dello svuotamento in modo da poter monitorare l'efficienza del servizio di svuotamento e poter intervenire per migliorare il servizio.

Figura 69: UC-10.5: Visualizzazione panel percentuale media di riempimento al momento dello svuotamento

3.4.10.6 UC-10.6: Visualizzazione *panel* con percentuale tempo trascorso per livello di riempimento

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di isole ecologiche

- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente la percentuale di tempo trascorso in ciascuno dei seguenti livelli:
 - Basso (0-50%)
 - Medio (50-80%)
 - Alto (80-100%)

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di isole ecologiche;
- **User story**_G: Come autorità locale desidero poter visualizzare la percentuale di tempo trascorso in ciascuno dei livelli di riempimento delle isole ecologiche, in modo da poter monitorare l'andamento del riempimento e poter intervenire per migliorare il servizio.

Figura 70: UC-10.6: Visualizzazione *panel* percentuale tempo trascorso per livello di riempimento

3.4.11 UC-11: Visualizzazione dashboard livello di acqua

- Attore principale: Autorità locale;
- **Precondizioni**: L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- **Postcondizioni**: L'autorità locale visualizza la dashboard relativa ai sensori del livello di acqua presenti nella città;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;

- 2. Il sistema carica i dati trasmessi dai sensori interrogando il database;
- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori del livello di acqua.
- User story_G: Come autorità locale desidero poter visualizzare una dashboard relativa ai sensori del livello di acqua presenti nella città, la quale dovrà contenere informazioni utili per monitorare il livello di acqua sulla base di dati storici e in tempo reale, mostrando anche statistiche quali del livello di acqua medio nel periodo di tempo selezionato e il livello di acqua in tempo reale.

Figura 71: UC-11: Visualizzazione dashboard livello di acqua

3.4.11.1 UC-11.1: Visualizzazione grafico time series livello di acqua

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
 - 2. Il sistema ha caricato la dashboard relativa ai sensori del livello di acqua.
- **Postcondizioni**: L'autorità locale visualizza un grafico time series contenente le misurazioni storiche del livello di acqua aggregate per 5 minuti;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori del livello di acqua;

• **User story**_G: Come autorità locale desidero poter visualizzare un grafico time series contenente le misurazioni storiche del livello di acqua per poter monitorarne l'andamento nel tempo e facilmente individuare eventuali anomalie.

Figura 72: UC-11.1, Visualizzazione grafico time series livello di acqua

3.4.11.2 UC-11.2: Visualizzazione mappa sensori livello di acqua

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori del livello di acqua;
- Postcondizioni: L'autorità locale visualizza una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del livello di acqua;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;

- 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori del livello di acqua.
- User story_G: Come autorità locale desidero poter visualizzare una mappa interattiva popolata con dei marker rappresentanti la posizione dei sensori del livello di acqua e contenenti il loro identificativo. Essa mi consentirà di visualizzare la distribuzione dei sensori del livello di acqua nel territorio ed eventualmente intervenire nel caso in cui siano presenti zone non coperte.

Figura 73: UC-11.2: Visualizzazione mappa interattiva sensori livello di acqua

3.4.11.3 UC-11.3: Visualizzazione *panel* livello di acqua medio nel periodo di tempo selezionato

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato la dashboard relativa ai sensori di livello di acqua;

- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente del livello di acqua medio nel periodo di tempo selezionato;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di livello di acqua.
- User story_G: Come autorità locale desidero poter visualizzare del livello di acqua medio nel periodo di tempo selezionato in modo da poterne monitorare l'andamento.

Figura 74: UC-11.3: Visualizzazione *panel* livello di acqua medio nel periodo di tempo selezionato

3.4.11.4 UC-11.4: Visualizzazione panel livello di acqua in tempo reale

- Attore principale: Autorità locale;
- Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato la dashboard relativa ai sensori di livello di acqua;
- **Postcondizioni**: L'autorità locale visualizza un *panel* contenente il livello di acqua in tempo reale;
- Scenario principale:
 - 1. L'autorità locale accede alla piattaforma;
 - 2. Il sistema carica i dati relativi ai sensori interrogando il database;
 - 3. L'autorità locale seleziona la visualizzazione della dashboard relativa ai sensori di livello di acqua.
- **User story**_G: Come autorità locale desidero poter visualizzare il livello di acqua in tempo reale in modo da poterne monitorare l'andamento e poterlo facilmente confrontare con i dati storici.

Figura 75: UC-11.4: Visualizzazione panel livello di acqua in tempo reale

3.4.12 UC-12: Visualizzazione messaggio assenza di dati

• Attore principale: Autorità locale;

Precondizioni:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- **Postcondizioni**: L'autorità locale visualizza un messaggio che notifica l'assenza di dati;

• Scenario principale:

- 1. L'autorità locale accede alla piattaforma;
- 2. Il sistema carica i dati relativi ai sensori interrogando il database;
- 3. Il sistema non trova dati relativi ai sensori;
- 4. Il sistema mostra un messaggio che notifica l'assenza di dati.

3.4.13 UC-13: Trasmissione dati

- Attore principale: Sensore;
- Precondizioni: Il sensore è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;

- 1. Il sensore effettua una misurazione;
- 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
- 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni della temperatura.

Figura 76: UC-13: Trasmissione dati

3.4.14 UC-13.1: Trasmissione dati temperatura

- Attore principale: Sensore;
- Precondizioni: Il sensore è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore effettua una misurazione di temperatura;
 - 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni della temperatura.

Figura 77: UC-13.1: Trasmissione dati temperatura

3.4.15 UC-13.2: Trasmissione dati umidità

• Attore principale: Sensore;

Precondizioni: Il sensore è attivo e collegato al sistema;

Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;

• Scenario principale:

- 1. Il sensore effettua una misurazione dell'umidità:
- 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
- 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni dell'umidità.

Figura 78: UC-13.2: Trasmissione dati umidità

3.4.16 UC-13.3: Trasmissione dati qualità dell'aria

Attore principale: Sensore;

Precondizioni: Il sensore è attivo e collegato al sistema;

Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;

• Scenario principale:

1. Il sensore effettua una misurazione della quantità di precipitazioni;

- 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
- 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni della qualità dell'aria.

Figura 79: UC-13.3: Trasmissione dati precipitazioni

3.4.17 UC-13.4: Trasmissione dati precipitazioni

- Attore principale: Sensore;
- Precondizioni: Il sensore è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore effettua una misurazione della quantità di precipitazioni;
 - 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni della quantità di precipitazioni.

Figura 80: UC-13.4: Trasmissione dati precipitazioni

3.4.18 UC-13.5: Trasmissione dati traffico

- Attore principale: Sensore;
- Precondizioni: Il sensore è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore effettua una misurazione del traffico:
 - 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni sui dati del traffico.

Figura 81: UC-13.5: Trasmissione dati traffico

3.4.19 UC-13.6: Trasmissione dati colonnine di ricarica

• Attore principale: Sensore;

Precondizioni: Il sensore è attivo e collegato al sistema;

Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;

• Scenario principale:

- 1. Il sensore effettua una misurazione dello stato e l'occupazione delle colonnine di ricarica;
- 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
- 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni sullo stato e l'occupazione delle colonnine di ricarica.

Figura 82: UC-13.6: Trasmissione dati colonnine di ricarica

3.4.20 UC-13.7: Trasmissione dati parcheggi

• Attore principale: Sensore;

Precondizioni: Il sensore è attivo e collegato al sistema;

- Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;
- Scenario principale:

- 1. Il sensore effettua una misurazione dello stato di riempimento del parcheggio;
- 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
- 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni sull'occupazione dei parcheggi.

Figura 83: UC-13.7: Trasmissione dati parcheggi

3.4.21 UC-13.8: Trasmissione dati isole ecologiche

- Attore principale: Sensore;
- Precondizioni: Il sensore è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore effettua una misurazione dello stato di riempimento delle isole ecologiche;
 - 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni sullo stato di riempimento delle isole ecologiche.

Figura 84: UC-13.8: Trasmissione dati isole ecologiche

3.4.22 UC-13.9: Trasmissione dati livello di acqua

- Attore principale: Sensore;
- Precondizioni: Il sensore è attivo e collegato al sistema;
- Postcondizioni: I dati inviati dal sensore sono stati elaborati e memorizzati nel sistema;
- Scenario principale:
 - 1. Il sensore effettua una misurazione del livello di acqua;
 - 2. Il sensore formatta i dati da inviare al sistema, includendo oltre alle misurazioni l'identificativo del sensore, il timestamp, e la sua posizione geografica;
 - 3. Il sensore invia i dati al sistema.
- **User story**_G: Come sensore, desidero poter inviare al sistema le rilevazioni sul livello di acqua.

Figura 85: UC-13.9: Trasmissione dati livello di acqua

3.4.23 UC-14: Applicazione filtro

Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
- 2. Il sistema ha caricato i dati interrogando il database;
- 3. L'autorità locale visualizza una dashboard.
- Postcondizioni: L'autorità locale applica un filtro ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse;

• Scenario principale:

- 1. L'autorità locale visualizza una dashboard:
- 2. L'autorità locale seleziona uno dei filtri disponibili.
- User story_G: Come autorità locale desidero poter applicare dei filtri ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 86: UC-14: Applicazione filtro

3.4.24 UC-14.1: Applicazione filtro per tipo di sensore

• Attore principale: Autorità locale;

• Precondizioni:

- 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione:
- 2. Il sistema ha caricato i dati interrogando il database;

- 3. L'autorità locale visualizza una dashboard.
- Postcondizioni: L'autorità locale applica un filtro per il tipo di sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse;
- Scenario principale:
 - 1. L'autorità locale visualizza una dashboard;
 - 2. L'autorità locale seleziona il tipo di sensore di cui vuole visualizzare i dati;
- **User story**_G: Come autorità locale desidero poter applicare un filtro per il tipo di sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 87: UC-14.1: Applicazione filtro per tipo di sensore

3.4.25 UC-14.2: Applicazione filtro per nome del sensore

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato i dati interrogando il database;
 - 3. L'autorità locale visualizza una dashboard.
- **Postcondizioni**: L'autorità locale applica un filtro per il nome del sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse;
- Scenario principale:
 - 1. L'autorità locale visualizza una dashboard:
 - 2. L'autorità locale seleziona il nome del sensore di cui vuole visualizzare i dati:

• **User story**_G: Come autorità locale desidero poter applicare un filtro per il nome del sensore ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 88: UC-14.2: Applicazione filtro per nome del sensore

3.4.26 UC-14.3: Applicazione filtro temporale

- Attore principale: Autorità locale;
- Precondizioni:
 - 1. L'autorità locale ha effettuato l'accesso al sistema ed esso è in funzione;
 - 2. Il sistema ha caricato i dati interrogando il database;
 - 3. L'autorità locale visualizza una dashboard.
- **Postcondizioni**: L'autorità locale applica un filtro temporale ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse;
- Scenario principale:
 - 1. L'autorità locale visualizza una dashboard;
 - 2. L'autorità locale seleziona il periodo di tempo di cui vuole visualizzare i dati;
- **User story**_G: Come autorità locale desidero poter applicare un filtro temporale ai dati visualizzati in modo da poter circoscrivere l'analisi ai dati di interesse.

Figura 89: UC-14.3: Applicazione filtro temporale

3.4.27 UC-15: Ricezione notifiche superamento soglie

• Attore principale: Autorità locale;

• Precondizioni: Nessuna

 Postcondizioni: L'autorità locale riceve una notifica relativa al superamento delle soglie;

• Scenario principale:

- 1. Si verificano delle condizioni che portano al superamento di soglie prestabilite per uno dei sensori;
- **User story**_G: Come autorità locale desidero poter ricevere delle notifiche relative al superamento delle soglie in modo da poter intervenire tempestivamente in caso di criticità.

Figura 90: UC-15: Ricezione notifiche superamento soglie

3.4.28 UC-15.1: Ricezione notifiche superamento soglia di temperatura

Attore principale: Autorità locale;

• Precondizioni: Nessuna

 Postcondizioni: L'autorità locale riceve una notifica relativa al superamento della soglia di temperatura;

- 1. La temperatura rilevata supera i 40°C per più di 30 minuti;
- 2. Il sistema invia una notifica all'autorità locale.

• **User story**_G: Come autorità locale desidero poter ricevere delle notifiche relative al superamento delle soglie di temperatura in modo da poter avvisare la popolazione e prendere eventuali misure precauzionali.

Figura 91: UC-15.1: Ricezione notifiche superamento soglie di temperatura

3.4.29 UC-15.2: Ricezione notifiche superamento soglia di riempimento dell'isola ecologica

- Attore principale: Autorità locale;
- Precondizioni: Nessuna
- Postcondizioni: L'autorità locale riceve una notifica relativa al superamento della soglia di riempimento dell'isola ecologica;
- Scenario principale:
 - 1. L'isola ecologica rimane piena al 100% per più di 24 ore;
 - 2. Il sistema invia una notifica all'autorità locale.
- User story_G: Come autorità locale desidero poter ricevere delle notifiche relative al superamento delle soglie di riempimento dell'isola ecologica in modo da poter intervenire per svuotarla.

Figura 92: UC-15.2: Ricezione notifiche superamento soglia di riempimento dell'isola ecologica

4 Requisiti

4.1 Definizione di un requisito

Per ciascun requisito vengono fornite le seguenti informazioni:

- Codice: codice identificativo del requisito, meglio specificato nella sezione??;
- **Descrizione**: breve descrizione del requisito;
- Fonte: provenienza del requisito, meglio specificata nella sezione ??;
- Importanza: indica l'importanza del requisito, meglio specificata nella sezione??.

4.2 Tipologie di requisiti

I requisiti possono essere di quattro tipologie:

- Funzionali: descrivono le funzionalità del sistema;
- Qualitativi: descrivono le qualità che il sistema deve avere;
- **Di vincolo**: descrivono i vincoli a cui il sistema deve sottostare;

4.2.1 Codifica dei requisiti

I requisiti sono codificati nel seguente modo:

R[Tipologia]-[Codice]

dove [Codice] è un numero progressivo che identifica univocamente il requisito e [Ti-pologia] è una lettera che identifica la tipologia del requisito:

- F: requisito funzionale;
- Q: requisito qualitativo;
- V: requisito di vincolo;

4.2.2 Fonti dei requisiti

I requisiti possono avere le seguenti fonti:

- Capitolato_G: requisiti individuati a seguito dell'analisi del capitolato;
- **Interno**: requisiti individuati durante le riunioni interne e da coloro che hanno il ruolo di analista;
- Esterno: requisiti aggiuntivi individuati in seguito a incontri con la proponente;
- **Piano di Qualifica**: requisiti necessari per adeguare il prodotto agli standard di qualità definiti nel documento *Piano di Qualifica*.
- Norme di Progetto_G: requisiti necessari per adeguare il prodotto alle norme stabilite nel documento Norme di Progetto_G;

4.2.3 Importanza dei requisiti

I requisiti possono avere tre livelli di importanza:

- Obbligatorio: requisito irrinunciabile per il committente;
- **Desiderabile**: requisito non strettamente necessario, ma che porta valore aggiunto al prodotto;
- Opzionale: requisito relativo a funzionalità aggiuntive.

4.3 Requisiti funzionali

Codice	Importanza	Fonte	Descrizione
			La parte <i>IoT</i> dovrà essere simulata
RF-1	Obbligatorio	Capitolato	attraverso tool di generazione di
IXI - I	Obbligation	Capilolalo	dati casuali che tuttavia siano
			verosimili.
			Il sistema dovrà permettere la
RF-2	Obbligatorio	Capitolato	visualizzazione dei dati in tempo
			reale.
RF-3	Obbligatorio	Capitolato	Il sistema dovrà permettere la
111 0		Сарпоіато	visualizzazione dei dati storici.
			L'utente deve poter accedere
RF-4	Obbligatorio	Capitolato	all'applicativo senza bisogno di
			autenticazione.
			L'utente dovrà poter visualizzare su
RF-5	Obbligatorio	Capitolato	una mappa la posizione
			geografica dei sensori.
	Obbligatorio		I tipi di dati che il sistema dovrà
		Capitolato	visualizzare sono: temperatura,
			umidità, qualità dell'aria,
RF-6			precipitazioni, traffico, stato delle
I I I			colonnine di ricarica, stato di
			occupazione dei parcheggi, stato
			di riempimento delle isole
			ecologiche e livello di acqua.
RF-7	Obbligatorio	Capitolato	I dati dovranno essere salvati su un
		Сарпоіато	database OLAP.
RF-8	Obbligatorio	Capitolato	I sensori di temperatura rilevano i
1(1 0		Сарпоіато	dati in gradi Celsius
RF-9	Obbligatorio	Capitolato	l sensori di umidità rilevano la
,		2 351101010	percentuale di umidità nell'aria.
			I sensori livello acqua rilevano il
RF-10	Obbligatorio	Capitolato	livello di acqua nella zona di
			installazione

Codice	Importanza	Fonte	Descrizione
			l dati provenienti dai sensori
RF-11		Capitalata	dovranno contenere i seguenti
KL-11	Obbligatorio	Capitolato	dati: id sensore, data, ora e
			valore.
			Sviluppo di componenti quali
RF-12	Obbligatorio	Capitolato	widget e grafici per la
IXI - IZ		Сарпоіато	visualizzazione dei dati nelle
			dashboard.
			Il sistema deve permettere di
RF-13	Obbligatorio	Interno	visualizzare una dashboard
IXI IO		ii ii cii io	generale con tutti i dati dei
			sensori.
	Obbligatorio	Interno	Il sistema deve permettere di
RF-14			visualizzare una dashboard
101 11			specifica per ciascuna categoria
			di sensori.
	Obbligatorio	Esterno	Il sistema deve permettere di
RF-15			visualizzare una dashboard con i
			dati grezzi provenienti da tutti i
			sensori.
			Nella dashboard dei dati grezzi
			dovranno essere presenti: una
			mappa interattiva, un widget con
			il conteggio totale dei sensori divisi
			per tipo, una tabella contente
RF-16	Obbligatorio	Interno	tutti i sensori e la data in cui essi
			hanno trasmesso l'ultima volta.
			Inoltre verranno mostrate delle
			tabelle con i dati filtrabili suddivisi
			per sensore e un grafico time
			series con tutti i dati grezzi.

Codice	Importanza	Fonte	Descrizione
			Nella dashboard della
			temperatura dovranno essere
			visualizzati: un grafico time series,
	Obbligatorio		una mappa interattiva, la
RF-17		Interno	temperatura media, minima e
			massima di un certo periodo di
			tempo, la temperatura in tempo
			reale e la temperatura media per
			settimana e mese.
			Nella dashboard dell'umidità
			dovranno essere visualizzati: un
			grafico time series, una mappa
RF-18	Obbligatorio	Interno	interattiva, l'umidità media,
			minima e massima di un certo
			periodo di tempo e l'umidità in
			tempo reale.
	Obbligatorio	Interno	Nella dashboard della qualità
			dell'aria dovranno essere
			visualizzati: un grafico time series,
			una mappa interattiva, la qualità
RF-19			media dell'aria in un certo
			periodo e in tempo reale, i giorni
			con la qualità dell'aria migliore e
			peggiore in un certo periodo di
			tempo.
			Nella dashboard delle
			precipitazioni dovranno essere
			visualizzati: un grafico time series,
			una mappa interattiva, la
RF-20	Obbligatorio	Interno	quantità media di precipitazioni in
			un certo periodo e in tempo reale,
			i giorni con la quantità di
			precipitazioni maggiore e minore
			in un certo periodo di tempo.

Codice	Importanza	Fonte	Descrizione
			Nella dashboard del traffico
			dovranno essere visualizzati: un
			grafico time series, il numero di
RF-21	Obbligatorio	Interno	veicoli e la velocità media in
			tempo reale e il calcolo dell'ora di
			punta sulla base del numero di
			veicoli e velocità media.
			Nella dashboard delle colonnine
			di ricarica dovranno essere
RF-22	Obbligatorio	Interno	visualizzati: una mappa interattiva
IXI -ZZ	Obbligations		contenente anche lo stato e il
			numero di colonnine di ricarica
			suddivise per stato in tempo reale.
	Obbligatorio	Interno	Nella dashboard dei parcheggi
			dovranno essere visualizzati: una
			mappa interattiva con il rispettivo
RF-23			stato di occupazione e il
			conteggio di parcheggi suddivisi
			per stato di occupazione in
			tempo reale.
	Obbligatorio	Interno	Nella dashboard delle isole
			ecologiche dovranno essere
			visualizzati: una mappa interattiva
RF-24			con il rispettivo stato di
			riempimento e il conteggio di isole
			ecologiche suddivise per stato di
			riempimento in tempo reale.
			Nella dashboard del livello di
			acqua dovranno essere
RF-25	Obbligatorio	Interno	visualizzati: un grafico time series,
101 20		111101110	una mappa interattiva, il livello
			medio di acqua in un certo
			periodo e in tempo reale.

Codice	Importanza	Fonte	Descrizione
			Nel caso in cui non ci siano dati
RF-26		Interno	visualizzabili, il sistema deve
RF-20	Obbligatorio	IIIIeIIIO	notificare l'utente mostrando un
			opportuno messaggio.
			I sensori di qualità dell'aria inviano
RF-27	Obbligatorio	Interno	i seguenti dati: PM10, PM2.5, NO2,
1(1-27	Obbligation	IIIIeiiio	CO, O3, SO2 in $\mu g/m^3$ e la qualità
			dell'aria in base all'indice $EAQI_{G}$.
RF-28	Obbligatorio	Interno	I sensori di precipitazioni inviano la
KI -20	Obbligation	lineino	quantità di pioggia caduta in mm.
			l sensori di traffico inviano il
RF-29	Obbligatorio	Interno	numero di veicoli rilevati e la
			velocità in km/h.
	Obbligatorio		Le colonnine di ricarica inviano lo
		Interno	stato di occupazione e il tempo
RF-30			mancante alla fine della ricarica
IXI OO			(se occupate) o il tempo passato
			dalla fine dell'ultima ricarica (se
			libere).
			I sensori di parcheggio inviano lo
			stato di occupazione del
RF-31	Obbligatorio	Interno	parcheggio (1 se occupato, 0 se
			libero) e il timestamp dell'ultimo
			cambiamento di stato.
			Le isole ecologiche inviano lo
RF-32	Obbligatorio	Interno	stato di riempimento come
			percentuale.
RF-33	Obbligatorio	Interno	I sensori di livello di acqua inviano
100		111101110	il livello di acqua in cm.
			Il sistema deve permettere di
RF-34	Obbligatorio	Esterno	filtrare i dati visualizzati in base a
			un intervallo di tempo.

Codice	Importanza	Fonte	Descrizione
		Esterno	Il sistema deve permettere di
RF-35	Obbligatorio		filtrare i dati visualizzati in base al
			sensore che li ha generati.
RF-36	Desiderabile	Esterno	Devono essere messe in relazione
KI -00	Desiderabile	LSIGITIO	più sorgenti di dati.
			Utilizzo di uno schema registry per
RQ-37	Opzionale	Esterno	la pubblicazione dei dati sui topic,
166-07	Opzionale	ESIGITIO	per garantire la correttezza dei
			dati.
	Desiderabile	Esterno	Devono essere calcolati dei KPI
			per ogni categoria di sensori, che
RQ-38			rappresentano la qualità di un
			servizio fornito ai cittadini o delle
			condizioni della città.
			Nei grafici time series i dati
RQ-39	Desiderabile	Esterno	devono essere aggregati
1102-07			calcolando la media di 5 minuti,
			in modo da risultare più leggibili.

Tabella 1: Requisiti funzionali

4.4 Requisiti qualitativi

Codice	Importanza	Fonte	Descrizione
			Sviluppo di test che dimostrino il
		Capitolato,	corretto funzionamento dei servizi
RQ-40	Obbligatorio	Piano di	e delle funzionalità previste. Viene
		Qualifica	richiesta una copertura dell'80%
			corredata di report.
			Il progetto deve essere corredato
		Capitolato,	di documentazione riguardo
RQ-41	Obbligatorio	Piano di	scelte implementative e
		Qualifica	progettuali effettuate e relative
			motivazioni.

RQ-42	Obbligatorio	Capitolato, Piano di Qualifica	Il progetto deve essere corredato di documentazione riguardo problemi aperti e eventuali soluzioni proposte da esplorare.
		Capitolato,	Tutte le componenti del sistema
RQ-43	Obbligatorio	Piano di	devono essere testate con test
		Qualifica	end-to-end _G .

Tabella 2: Requisiti qualitativi

4.5 Requisiti di vincolo

Codice	Importanza	Fonte	Descrizione
RV-44	Obbligatorio	Capitolato	Deve essere implementato
I(V =44	Obbligation	Сарпоіато	almeno un simulatore di dati.
RV-45	Desiderabile	Capitolato	Devono essere implementati più
100	Desiderabile	Сарпоіато	simulatori di dati.
RV-46	Obbligatorio	Capitolato	I simulatori devono produrre dei
177 40	Obbligations	Сарпокаю	dati verosimili.
			Il simulatore di dati deve
RV-47	Obbligatorio	Capitolato	pubblicare messaggi in una
			piattaforma di <i>data streaming</i> .
			La piattaforma di data streaming
RV-48	Obbligatorio	Capitolato	deve essere integrata con un un
			database OLAP.
			Per ciascuna tipologia di sensore
RV-49	Obbligatorio	Capitolato	dev'essere sviluppata almeno una
			dashboard.
RV-50	Opzionale	Capitolato	Previsione di dati futuri basati sui
100	Opzioriale	Сарпоіато	dati storici.
			Deve esistere una dashboard per
RV-51	Desiderabile	Capitolato	la visualizzazione della posizione
10.01		Сарпоіато	geografica dei sensori su una
			mappa.

			Un sistema di notifiche che allerti
RV-52	Opzionale	Capitolato	l'utente in caso di superamento di
			soglie prestabilite.

Tabella 3: Requisiti di vincolo

4.6 Tracciamento

4.6.1 Requisito - Fonte

Requisito	Fonte
RF-1	Capitolato
RF-2	Capitolato
RF-3	Capitolato
RF-4	Capitolato
RF-5	Capitolato
RF-6	Capitolato
RF-7	Capitolato
RF-8	Capitolato
RF-9	Capitolato
RF-10	Capitolato
RF-11	Capitolato
RF-12	Capitolato
RF-13	Interno
RF-14	Interno
RF-15	Esterno
RF-16	Interno
RF-17	Interno
RF-18	Interno
RF-19	Interno
RF-20	Interno
RF-21	Interno
RF-22	Interno
RF-23	Interno

Requisito	Fonte
RF-24	Interno
RF-25	Interno
RF-26	Interno
RF-27	Interno
RF-28	Interno
RF-29	Interno
RF-30	Interno
RF-31	Interno
RF-32	Interno
RF-33	Interno
RF-34	Esterno
RF-35	Esterno
RF-36	Esterno
RQ-37	Esterno
RQ-38	Esterno
RQ-39	Esterno
RQ-40	Capitolato, Piano di Qualifica
RQ-41	Capitolato, Piano di Qualifica
RQ-42	Capitolato, Piano di Qualifica
RQ-43	Capitolato, Piano di Qualifica
RV-44	Capitolato
RV-45	Capitolato
RV-46	Capitolato
RV-47	Capitolato
RV-48	Capitolato
RV-49	Capitolato
RV-50	Capitolato
RV-51	Capitolato
RV-52	Capitolato

Tabella 4: Tracciamento requisito - fonte

4.7 Riepilogo

Tipologia	Obbligatorio	Desiderabile	Opzionale	Totale
Funzionali	35	3	1	39
Qualitativi	4	0	0	4
Di vincolo	5	2	2	9

Tabella 5: Riepilogo