APLC Design Summary

 ${\tt \triangleright 1_SPHERE_N100_FPM225M0100_IWA0500_OWA02000_C8_BW20_Nlam1_LS_ID_ST_A_OD_nPu_ls_0100.fits.fits}$

Solution File:

Instrument	SPHERE
пРир	100 x 100 pixels
Coronagraphic throughput (transmitted energy)	0.6759
Core throughput (encircled energy)	0.4547
Lyot stop inner diamater (% of inscribed circle)	0.002
Lyot stop outer diameter (% of inscribed circle)	0.1
Bandpass	20.0%
# wavelengths	1
FPM radius (grayscale)	2.252 λ/D
nFPM	100 pixels
IWA — OWA	5.0—20.0 λ/D
Contrast constraint	10 ⁻⁸
Lyot Stop alignment tolerance	1 pixels
Input Files :	
> Pupil file: SPHERE/pupil=vlt_btw_nPup=100.fits	
▷ Lyot stop file: SPHERE/sphere_stop_ST_ALC2_nPup0100.fits	

Tue Aug 1 17:06:59 2023

Monochromatic on – axis PSF in log irradiance, normalized to the peak irradiance value.

Monochromatic on — axis PSF azimuthally averaged over angular seperations 0.1-33.9 λ/D , normalized to the peak irradiance. The vertical, solid black line at separation 2.252 λ/D marks the radius of the FPM occulting spot. The vertical, red lines at 5.0 and 20.0 λ/D respectively indicate the radii of the inner and outermost constraints applied during the apodizer optimization.

Analysis Summary

Pupil core throughput: Lyot stop core throughput: Maximum core throughput: w.r.t. pupil core throughput:

Maximum core throughput w.r.t. pupil core throughput:

Maximum core throughput w.r.t. Lyot stop core throughput:

Inner working angle:

0.6522279295085497 0.42418974570130463 0.29654197221271755 0.4546600333968531 0.6990785968256976 2.439124441733854 λ_0/D

Broadband normalized irradiance for four representative levels of residual pointing jitter.

Azimuthally averaged raw contrast for four representative levels of rms residual pointing jitter.