Def: $\pi: X \longrightarrow Y$ closed embedding π boally sprincipal if \exists ofen cover $Y=\bigcup SpecA;$ st. $\forall i$ ideal of X in A_i is sprincipal

 π (or imes) is an effective Cartier divisor if furthermore ideal she for generaled by non-zero divisor.

Rom: Notions not independent of the affine source.

Def: $M \in A$ -mod. In M-regular sequence in A is $\pi_1, \dots, \pi_r \in A$ such that $A : X_i = X_i$ is not zero divisor on $M/(\pi_1, \dots, \pi_{i-1})$.

S: An A-regular sequence is a regular seq.

The (A, m) Noetherian local ring. M , fg. A-mod. Then M-tegular sequence π_1, \dots, π_r in m then π_1, \dots, π_r temains tegular after reordering.

Def: Say that a locally closed sombedding $\pi: X \hookrightarrow Y$ is a regular sequence of length Y:

Say π is a regular embedding (of codimY) if reg embedding (of codimY) at every fit $p \in X$.

Agh: A coolin r complete intersection in a scheme \forall is a closed subscheme \times expressible as scheme theoretic intersection of r effective Parker divisors $D_1,...,D_r$ i.e. egrs corresponding to $D_1,...,D_r$ form a regular seg in $C_{\chi p} \ \forall \, p \in \times$.

§ 9 Floer products and Base change

The Flored products exist in Sch "Roof: Say given Je

Step 1: X = Spec A, Y = Spec B, Z = Spec C

then Xxy = Spec A&B

Step 2: If &B factor through open USZ then

 $X \times Y \cong X \times Y$

Step 3: Cover Z by ofen affines W_i , over $\sqrt[4]{(w_i)}$ with ofen affines U_{ij} , $\sqrt[8]{(w_i)}$ by V_{ik} . Step 4: The

Warning: Topological space underlying \times_{\geq}^{\times} vis not coame as $+op \times_{+op \geq}^{\times} +op \times_{+op \geq}^{\times}$ eg: $-eg: A_k^1 \times A_k^2 \cong A_k^2$

. If \times , \times if white style spec \overline{R} $\left\{\begin{array}{c} \underline{chosed} \text{ pts in} \\ \times \underline{x} \end{array}\right\} \cong \left\{\begin{array}{c} \underline{chosed} \text{ pts in} \\ \times \end{array}\right\} \times \left\{\begin{array}{c} \underline{chosed} \text{ pts in} \\ \end{array}\right\}$

- (abegorically speaking this is saying that $Hom(-, \times) \times Hom(-, \times)$ is representable.

§ 9.2 Fibered fooducts in practice

$$\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

2)
$$A \underset{B}{\otimes} B(t) = A(t) \rightarrow A_{B} \xrightarrow{\Gamma} A_{B}$$

Spec $A \xrightarrow{\Gamma} Spec A$

Sef:
$$A_S' := A_{Z \times Z}^1 \times S$$

Also if $S \in k$ -Sch $S \cap A_S$

$$5 \longrightarrow Spec \ R \longrightarrow Spec \ Z$$

$$\uparrow \Gamma \qquad \uparrow \qquad \qquad \uparrow$$

$$A'_{s} \longrightarrow A'_{k} \longrightarrow A'_{z}$$

