

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

ESAME DI SISTEMI ENERGETICI PER INGEGNERIA FISICA

10/02/2017

Allievi fisici

Allegare alle soluzioni il presente testo indicando (in STAMPATELLO):

NOME E COGNOME	
☐ II PROVA ITINERE	☐ ESAME COMPLETO

Tempo a disposizione: 3 ore 0 minuti per ESAME COMPLETO 2 ore 30 minuti per II PROVA ITINERE

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti (intestato con nome e matricola).

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

ESERCIZIO 1 (punti 5) SOLO ESAME COMPLETO

In un impianto di sollevamento acqua (densità 1000 kg/m^3) il condotto di aspirazione è costituito da un tubo di diametro pari a 200 mm e lunghezza 60 m, mentre il circuito di mandata è costituito da 2 condotti identici in parallelo di diametro 180 mm e lunghezza pari a 150 m. L'impianto collega due serbatoi (A e B) in pressione. La quota del pelo libero dei due serbatoi è rispettivamente $h_A=10$ m e $h_B=120$ m mentre la pressione è rispettivamente $P_A=3$ bar e $P_B=10$ bar.

La portata in aspirazione alla pompa è 60 kg/s e il fattore di attrito "f" è pari a 0.02 per entrambi i circuiti di aspirazione e mandata. Le perdite concentrate per ciascuno condotto sono pari a 5 altezze cinetiche. Sapendo che il rendimento idraulico η idr della pompa è 0.8 e il rendimento organico-elettrico è pari a 0.93, viene richiesto:

- lo schema di impianto con evidenziate le portate e velocità
- le perdite dell'impianto in [J/kg]
- il lavoro ideale necessario per spostare l'acqua tra i due bacini in assenza di perdite
- le perdite della pompa [J/kg]
- La differenza di temperautra tra mandata e aspirazione della pompa (c_{acqua}=4.2 kJ/kgK)
- la potenza elettrica richiesta dalla pompa

Se i due tubi di mandata avessero diametri differenti come si distribuirebbe la portata?

ESERCIZIO 2 (punti 4) ESAME COMPLETO / II PROVA

Una parete piana (superficie 30 m²) è costituita da due strati di mattoni identici (k_{mattoni}= 0.658 W/m/K) di spessore pari a 6 cm tra i quali è interposto uno strato di materiale isolante di spessore pari a 4 cm. Le superficie esterne sono rispettivamente alla temperatura di 25°C e 10°C, mentre la superficie fredda dello strato isolante è di 13°C. In regime stazionario e sistema schematizzabile come monodimensionale si chiede:

- La potenza termica dispersa
- La temperatura della superficie calda dell'isolante
- La conduttività termica dello strato isolante
- La resistenza termica dei singoli strati e della parete
- Di rappresentare graficamente la distribuzione di temperatura nella parete

□ ESERCIZIO 3 (punti 4) ESAME COMPLETO / (punti 5) II PROVA

Due barrette cilindriche identiche di rame (k=365 W/mK) di lunghezza pari a 180 cm e diametro di 1 cm vengono saldate insieme. Affinchè la saldatura avvenga correttamente si deve garantire una temperatura alla giunzione di 680°C. Assumendo di essere in condizioni stazionarie, in riferimento ai dati riportati nella figura sottostante, si chiede di:

- Giustificare l'approccio utilizzato (semplificazioni al problema)
- Calcolare la temperatura a 30 cm dalla giunzione.
- Calcolare la potenza termica necessaria per saldare le due barre

□ ESERCIZIO 4 (punti 8) ESAME COMPLETO / (punti 6) II PROVA

Una centrale termoelettrica è realizzata mediante il ciclo Rankine non rigenerativo rappresentato in figura. Il rendimento del generatore di vapore è pari a 95%. La potenza elettrica assorbita dagli ausiliari (compresa la pompa dell'acqua di raffreddamento) è pari a 400 kW. La potenza elettrica netta prodotta dall'impianto è pari a 7500 kW. Alla luce dei dati riportati in figura si chiede:

\$\$h_2=3443.25 \text{ kJ/kg}\$\$

- il lavoro specifico di turbina e pompa
- la portata di fluido circolante nell'impianto
- la potenza termica entrante con il combustibile nel generatore di vapore
- il rendimento elettrico netto dell'impianto.

SOLO ESAME COMPLETO

- Stimare approsimativamente T2, P3, x3 ipotizzando P2=50bar (riportare i punti 2 e 3 nel diagramma h-s allegato).
- Rappresentare qualitativamente il ciclo nel piano T-s

□ ESERCIZIO 5 (punti 5) SOLO II PROVA

La superficie superiore di una lastra quadrata di acciaio (k_{acc}=45W/m/K, c_{acc}=515 J/kg/K) (lato pari a 1.5 m) è mantenuta ad una temperatura di 40°C. L'aria della stanza può essere assunta in quiete ad una temperatura di 20°C. Assumendo di trascurare lo scambio termico radiativo, si chiede di:

- Determinare il coefficiente di scambio termico convettivo
- Valutare la potenza termica necessaria a mantenere la lastra a 40°C

Correlazione per convezione naturale per lastra piana orizzontale scaldata sulla superficie superiore (lunghezza caratteristica pari al lato del quadrato):

$$Nu = 0.15Ra^{\frac{1}{3}} = 0.15(Gr * Pr)^{\frac{1}{3}}$$

Proprietà termofisiche aria (gas perfetto) valutate alla temperatura di film di 30°C:

ср	1006.73	J/kgK
k	0.0262	W/mK
μ	1.873E-05	Pa*s
densità	1.15	kg/m ³

Se la lastra quadrata fosse incollata al soffitto con la faccia calda rivolta verso il basso, la potenza termica necessaria per mantenere la superficie a 40°C sarebbe superiore o inferiore al caso precedente? (Giustificare la risposta da un punto di vista qualitativo)

□ QUESITO 5 (<u>Rispondere ad una sola delle due domande per entrambe le parti del corso</u>) (punteggio 7.5)

PRIMA PARTE CORSO (SOLO ESAME COMPLETO)

- 1- Disegnare qualitativamente il diagramma T-s di un fluido generico (es. acqua), evidenzando il punto critico e la zona bifase. Definire il titolo di vapore e riportare le linee isotitolo e la procedura per tracciarle.
- 2- Descrivere e commentare la relazione di Darcy-Weisbach per il calcolo della caduta di pressione riportando le unità di misura delle varie grandezze. Descrivere l'utilizzo dell'abaco di Moody (commentandone le caratteristiche) nel calcolo della caduta di pressione.

SECONDA PARTE CORSO (ESAME COMPLETO / II PROVA)

- 1- Ricavare l'equazione di scambio termico conduttivo generale (regime variabile, generazione interna di potenza, 3D). A partire dall'equazione ottenuta, ricavare l'espressione del profilo di temperatura al caso di conduzione monodimensionale in regime stazionaria e senza generazione di potenza per una lastra piana con temperatura imposta ai due estremi e conduttività termica uniforme e indipendente da T.
- 2- Descrivere l'effetto di una riduzione della pressione di condensazione per un ciclo Rankine surriscaldato ideale. Rappresentare nel piano T-s i due cicli e fare le opportune considerazioni.

□ QUESITO 6 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle 15 domande a risposta guidata. Segnare la <u>sola risposta corretta</u> (0.5 punti per risposta corretta, -0.125 punti se sbagliata).

ESAME COMPLETO/ II PROVA

	JUIL LETO/ IIT KOVA
Le perdite di carico distribuite in regime	•
turbolento sono espresse dalla	□ Lega 6 paramettri fisici
seguente funzione	$\ \square$ viene espressa come Π_1 =g(Π_2) (Π adimensionale)
$\Delta P=f(v, \mu, \rho, D, rugosità, L)$ che:	□ Può essere scritta come funzione di 4 gruppi Π
In un ciclo a gas reale:	 Il rendimento aumenta all'aumentare del β
β → Rapporto di Compressione	 Il lavoro specifico aumenta all'aumentare del β
T3 → Temperatura Ingresso Turbina	□ II rendimento diminuisce all'aumentare di T3
	□ II rendimento aumenta all'aumentare di T3
Una semisfera (r=1 cm, k=40 W/mK)	□ II numero di Biot=0.0167
appoggiata su un piano adiabatico a	□ La temperatura dopo 100 s è 318.5°C
Tiniziale=300°C è raffreddato da aria	□ II prodotto di Biot*Fourier è costante
(h=100 W/m ² K T=0°C):	□ La T per r=0.25cm è circa uguale a T per r=0.35cm
	□ hvapore > hliquido > hliquido-vapore
termico convettivo di un fluido (h),	□ hliquido-vapore > hliquido > hvapore
generalmente si ha:	□ hliquido-vapore > hvapore > hliquido
	□ hliquido > hvapore > hliquido-vapore
In un tubo di vetro(d _i =8 cm,	□ La potenze termica scambiata aumenta
spess=2mm, k=1.5 W/mK) scorre un	□ La potenza termica scambiata diminuisce
fluido a 100°C. La superficie esterna è	□ La potenza termica scambiata è uguale
lambita da aria(20°C, h=25 W/m ² K). Se	□ Nessuna delle precedenti
lo spessore del tubo aumenta del 50%:	
In un ciclo Rankine, ad una riduzione	□ il rapporto di espansione aumenta
della pressione massima (a pari T	□ Il titolo di vapore diminuisce
massima e P minima):	□ II rendimento del ciclo diminuisce
	□ Nessuna delle precedenti
La potenza radiativa emessa da un	$\square \ \epsilon \sigma(T)^4 [W/m^2]$
corpo grigio ad una temperatura pari a	□ Indipendente dall'emissività
T espressa in [°C], è:	□ Minore di σ(T+273.15) ⁴ [W/m ²]
	□ Dipendente dal fattore di vista della superficie
Il rendimento di secondo principio (per	□ E' maggiore del rendimento di primo principio
un ciclo che opera tra due sorgenti):	□ E' pari a 1 per ogni ciclo di Carnot
	□ E' sempre minore di 1 per un ciclo reale
	□ E' indipendente dal tipo di ciclo

II PROVA

In un ciclo Joule-Brayton ideale, la potenza del compressore è:	 Molto minore di quella dell'espansore Minore di quella dell'espansore Maggiore di quella dell'espansore Molto maggiore di quella dell'espansore
Il numero di Grashof (Gr) è definito come:	 gβ(T_s-T_∞)L_C³/(ν²) c_pμ/k gβ(T_s-T_∞)L_C³/(μ²) Ra*Pr
In un ciclo Joule-Brayton chiuso ideale il lavoro utile è (a pari T1):	 Massimo per β → ∞ Indipendente dal fluido Espresso generalmente in kW Crescente con la temperatura massima

In regime, di convezione forzata, il coefficiente di scambio h è generalmente ottenibile da una correlazione di tipo:	□ Nu=A·Gr ^B ·Pr ^C □ h=-A·S·(T _P -T _∞) □ Nu=A·Re ^B ·Pr ^C □ Nessuna di queste
Si consideri un ciclo A reversibile e un ciclo B irreversibile:	 ηA sempre maggiore di ηΒ La Potenza A > Potenza B ηA >di ηB sicuramente solo se A e B lavorano tra sorgenti a T diverse E' possibile ηA < ηΒ Nessuna delle precedenti
Il diagramma di Nukiyama per ebollizione statica:	 Mostra che il legame tra ∆Ts e Ф è monotono È diverso a seconda del fluido considerato E' indipendente dalla pressione dell'esperimento Evidenzia 3 zone distinte
Per un corpo opaco con riflessività pari a 0.80, se vale la legge di Kirchoff:	 L'emissività è pari a 0.2 l'energia incidente è il 20% di quella del corpo nero Il coefficiente di assorbimento è 0.8 Parte della radiazione incidente attraversa il corpo

SOLO ESAME COMPLETO

	PEO EGAME COM EETO
II Principio degli Stati Corrispondenti:	 Implica fattore di comprimibilità >1 per gas reali E' utile per stimare il comportamento del fluido lontano dal punto critico Non è rigorosamente valido E' espresso in funzione della Pcrit [Pa] e Tcrit [K]
Un liquido è contenuto in un serbatoio chiuso. Se la densità diminuisce all'aumentare di T, allora in un processo di riscaldamento: Una portata di fluido incomprimibile scorre in un tubo a sezione costante con una curva. La spinta del fluido sulla parete (1→Ingresso 2→Uscita)	□ Il livello di riempimento diminuisce □ La massa contenuta diminuisce □ Il volume occupato aumenta □ Il livello di riempimento dipende dalla viscosità □ Dipende da v2 - v1 □ Nulla se perdite carico nulle □ Dipende dalla densità del fluido □ E' nulla se angolo della curva è 180°C
Un portata massica "m" scorre in tubo a sezione costante. Se il regime è laminare:	□ Il coefficiente di attrito "f" non dipende dal fluido □ Le perdite sono inversamente proporziali alla densità □ Il numero di Reynolds è certamente uguale a 2300 □ Il coefficiente di attrito dipende dalla scabrezza
Un gas perfetto monoatomico viene compresso da P1= 3 bar a P2=6 bar. Se la temperatura di aspirazione del gas è 25°C (T1):	 Il lavoro specifico è minore per una compressione isoterma rispetto a compressione isoentropica Il lavoro specifico non dipende dalla trasformazione Per compressione reale T2<t2is< li=""> Per compressione isoentropica T2is=305.6 K </t2is<>
La conoscenza del coefficiente di Joule Thomson è:	 Possibile solo per gas perfetto Ricavabile a partire dall'equazione di stato del fluido Possibile solo all'interno della curva di inversione utile nel caso di Z circa apri a 1
In un piano h-s, le isobare di un liquido incomprimibile:	 mostrano la dipendenza dalla pressione hanno andamento logaritmico hanno una rappresentazione identica in un piano T-s collassano tutte su un'unica linea

