From Digital Dasign by Mano, 2nd edition, 1991.

TABLE 2-7 Truth Tables for the 16 Functions of Two Binary Variables

×	7	F_0	Fı	F ₂	F_3	F	$F_{\rm S}$	F_6	F7	\mathcal{F}_{B}	F9	F ₁₀	F _{1.1}	F ₁₂	F_{13}	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	-	_	_	_	_	-	_	-
0	_	0	0	0	0	Т	_	-	-	0	0	0	0	1	_	_	-
-	0	0	0	_	П	0	0	_	-	0	0	_	-	0	0	_	_
-	_	0	_	0	1	0	-	0	-	0	_	0	_	0	_	0	_
Oper	ator-																
symbol	loqi			/		/		\oplus	+	\rightarrow	\odot	~	U		\cap	\leftarrow	
	-	-	-				-										

TABLE 2-8 Boolean Expressions for the 16 Functions of Two Variables

Society and the following of two variables	of the 10 I miletions	OI I WO VALIABLES	
Boolean functions	Operator symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x but not y
$F_3 = x$		Transfer	×
$F_4 = x'y$	y/x	Inhibition	y but not x
$F_5 = y$		Transfer	, A
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$x \odot y$	Equivalence	x equals y
$F_{10} = y'$	ν,	Complement	Not y
$F_{11} = x + y'$	$x \cap y$	Implication	If y then x
$F_{12}=x'$	X'	Complement	Not x
$F_{13}=x'+y$	$x \supset y$	Implication	If x then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$	1	Identity	Binary constant 1

Truth table	x 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} x & F \\ \hline 0 & 0 \\ \hline 1 & 1 \end{array}$	x y y F O O O O O O O O O O O O O O O O O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x y F 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
Algebraic function	F = xy	F = x + y	F = x'	F = x	F = (xy)'	F = (x + y)'	$F = xy' + x'y$ $= x \oplus y$	$F = xy + x'y'$ $= x \odot y$
Graphic symbol	<i>y y y</i>	y X	x	x F	$\frac{x}{y}$	y F	$X \longrightarrow F$	x y
Name	AND	OR	Inverter	Buffer	NAND	NOR	Exclusive-OR (XOR)	Exclusive-NOR or equivalence

FIGURE 2-5 Digital logic gates