# ANALYSIS & DESIGN OF ALGORITHMS

Dr. Sondos Fadl





• The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed before termination.

Approximate not exact!





#### PRIMITIVE OPERATIONS

• Ex: Find min value of an array?



#### EFFICIENCY VS. SPEED

Array size  $10^6$ 

• Ex: sorting numbers:

Ahmed's computer=10<sup>9</sup> operations /sec

Ahmed's Algorithm= $2n^2$  operations

Time= 
$$\frac{Algorithm\ complexity}{device\ speed} = \frac{2 \times (10^6)^2}{10^9} = 2000\ sec$$

Mohamed's computer=10<sup>7</sup> operations /sec

Mohamed's Algorithm= $50n \log n$  operations

20 times better !!!

Time= 
$$\frac{Algorithm\ complexity}{device\ speed} = \frac{50 \times 10^6\ \log 10^6}{10^7} = 100\ sec$$



#### TYPICAL RUNNING TIME

- 1 (constant)
- $\log n$  (logarithmic)
- $n^k$  (polynomial)
  - *n* linear
  - $n^2$  quadratic
  - $n^3$  cubic
- $2^n$  (exponential)



| Input size | n               | $n^2$      | $\log_{10} n$ |  |
|------------|-----------------|------------|---------------|--|
| 10         | 10              | 100        | 1             |  |
| 100        | 100             | 10000      | 2             |  |
| $10^{6}$   | 10 <sup>6</sup> | $(10^6)^2$ | 6             |  |
|            |                 |            |               |  |









# LOOP

```
For i=1 to n

print 'Hi'
```

```
For i=1 to n

if i <11

print 'Hi'

else

break
```

## LOOP

#### Nested loop:

For i=1 to n
$$\sum_{i=1}^{n} n \leftarrow n^{2}$$
for j=1 to n
$$n \text{ print 'Hi}$$

#### Dependent nested loop:



i = n,

n



# SUM EQUATIONS

#### Why study summations?

- 1. In general, the running time of a *loop* can be expressed as the <u>sum</u> of the running time of each iteration.
- 2. Summations come up in solving recurrences.



# SUM EQUATIONS





$$\sum_{i=j}^{n} 1 = n - j + 1$$

$$\sum_{i=1}^{n} x^{i} = \frac{x^{n+1}-1}{x-1}$$

 $x \rightarrow constant$ 

For 
$$(i=1, i \le n, i++)$$

$$\sum_{i=1}^{n} 1$$
Print i
end



$$T(N) = \sum_{i=1}^{n} 1 = 1 * n = n$$



For (i=n-1, i 
$$\geq$$
 1,i--)
$$\sum_{i=1}^{n-1} 1 \quad \begin{cases} \text{Print i} \\ \text{end} \end{cases}$$

$$T(N) = \sum_{i=1}^{n-1} 1 = 1 * (n-1) = n-1$$



$$\sum_{i=1}^{\log_2 n} 1 \begin{cases} \text{For (i=1, i \le n, i*=2)} \\ \text{Print i} \end{cases}$$
end



$$T(N) = \sum_{i=1}^{\log_2 n} 1 = 1 * \log_2 n = \log_2 n$$



$$\sum_{i=1}^{\log_2 n} 1 \begin{cases} For (i=1, i \le n, i/=2) \\ Print i \end{cases}$$
end



$$T(N) = \sum_{i=1}^{\log_2 n} 1 = 1 * \log_2 n = \log_2 n$$



For 
$$(i=1, i \le n, i++)$$

For  $(j=1, j \le n, j++)$ 

print "hi"

end

end



$$T(N) = \sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n^{2}$$



#### INSERTION SORT

• Our first algorithm, insertion sort, solves the sorting problem.

**Input:** A sequence of *n* numbers  $\langle a_1, a_2, \dots, a_n \rangle$ .

**Output:** A permutation (reordering)  $\langle a'_1, a'_2, \dots, a'_n \rangle$  of the input sequence such that  $a'_1 \leq a'_2 \leq \dots \leq a'_n$ .



#### Insertion Sort



#### INSERTION SORT

```
1: for j = 2 to A.length do
2: key = A[j]
3: i = j - 1
4: while i > 0 and A[i] > key do
       A[i+1] = A[i]
5:
6: i = i - 1
7: end while
8: A[i+1] = key
9: end for
```

$$T(N) = \sum_{j=2}^{n} t$$

#### The best case occurs

• If the array is already sorted, Thus  $t_j$  = 1 for j = 2;3; ...; n, and the best-case running time is

$$T(N) = \sum_{j=2}^{n} 1 = n$$

#### The worst case occurs

• If the array is in reverse sorted order that is, in decreasing order—the worst case results. We must compare each element A[j] with each element in the entire sorted subarray A[1..j-1], and so t<sub>j</sub> = j for j = 2;3; ...;n

$$T(N) = \sum_{j=2}^{n} j = \frac{n(n+1)}{2} = \underbrace{\binom{n^2 + n}{2}}_{2}$$

$$O(n^2)$$

