

Industrial Data Logger IIoT 4.0

Contents

1.	Intro	oduction	2
2.	Feat	tures	3
3.	Ben	efits	4
4.	Арр	olications	4
5.	Bloc	ck Diagram	5
6.	Pin-	out	6
7.	Prog	gramming IDE	8
8.	Proc	duct Specification	8
	8.1.	Digital Input	8
	8.2.	Digital Output	10
	8.3.	Analog Input	11
	8.4.	SD Card	13
	8.5.	RTC	14
	8.6.	FRAM	15
	8.7.	PWDT (Physical Watch Dog Timer)	15
	8.8.	Flash	16
	8.9.	Ethernet	17
	8.10.	ESP32/XBEE/LoRA/RS485	18
	8.11.	GSM	21
	8.12.	RS485 Modbus	22
	8.13.	RS232/FT232/Program	23
	8.14.	DAC	24
	8.15.	Status LED Display	26
	8.16.	RDL Bus	27
	8.17.	STM32	28
9.	Ord	er Information Table	31
10). R	eferences and Datasheets	32

1. Introduction

RDL data logger is a comprehensive real time industrial automation tool. The product is designed to seamlessly integrate with the IoT and Analytical processing systems. Supporting multiple I/O options, interfaces data logger is a perfect fit to build custom automation solutions.

The state of art design incorporates carefully selected devices with minimum power requirements, stable operation in industrial environment and up to date feature set. The product architecture incorporates functionally partitioned across multiple controllers to ensure minimum down-time and interruptions on the production lines.

2. Features

- o 8x ADC 0-10v / 4-20ma
- o 3x DAC 0-10V
- o 1x 4-20ma Transmitter
- o 3x ADC/IO 0-5v
- o 8x DI 24v & 3x DO
- o 2x RS485 Modbus*
- o 10/100 MBPS Ethernet
- o 1x RS232
- o 1x Quad band GSM /GPRS Modem*
- o 1x External PWDT

- o 1x SD card, RTC, FLASH & FRAM
- o 1x xbee /ESP32/Lora/RS485*
- o 12/24V DC to DC Converter
- RDL Extension BUS with SPI /I2C /IO
- o Mega2560 Controller
- Enable with STM32F030RCTx Cocontroller for Advanced programming

3. Benefits

Reduce Supplier dependency and cost by complete ownership of the solution. Automation requirements keep increasing and changing with time, engaging external supplier is cost and loss of productive time. Open Platform Model allows to build custom solutions with minimal R&D cost. Our platform and tools will enable a base solution to be built and deployed with 1 person month of effort with basic programming skills.

- o Simplified logging network as RDL Data Logger supports multiple features
- o Paper-less Production environment
- o Production count, rejections
- o Machine availability and Downtimes
- o Preventive maintenance
- o Performance Forecasting
- Enable Management by IT

4. Applications

- Production and process monitoring.
- Utilities monitoring.
- Condition monitoring.
- Environment monitoring.
- Industrial Smart grid
- Leakage detection.
- Cold storage monitoring.
- District metering.
- Water treatment.
- o Generator monitoring.
- Green House.
- Warning message in case of calamities.
- Standard SCADA Applications

5. Block Diagram

6. Pin-out

	FT232/MAX23	D0		A14	IN		
	FT232/MAX23	D1		A13	IN		
	RDL BUS CS	D2		A12	IN		
	GSM PWR Key	D3		A11	IN		
	WATCH DOG	D4		A15	ADC/4-20mA IN		
	RS485 Select	D5		A10	ADC/4-20mA IN		
				A9	ADC/4-20mA IN		
	10	D6		A8	ADC/4-20mA IN		
	10	D7		A2	ADC IN3		
	10	D8		A1	ADC IN3		
	ETHERNET RST	D9		AO	ADC IN3		
	ETHERNET CS	D10		~	ADEINS		
	LED	D12		SS	SD CARD CS		
	LED	D13		SCK	FLASH/SD/ETHERNET/RDL BUS		
	RS485		≥	MOSI	FLASH/SD/ETHERNET/RDL BUS		
			ATMega 2560	MISO	FLASH/SD/ETHERNET/RDL BUS		
	GSM	TX2	ega	D49	DOUT		
	GSM	RX2	1 2!	D48	DOUT		
	XBEE/RS485	TX1	560	D47	DOUT		
	XBEE/RS485	RX1		D46	DOUT		
RTC/FRA	TC/FRAM/DAC/RDL BUS			D39	FLASH CS		
RTC/FRAM/DAC/RDL BUS		SDA		D45	DIN		
				D45	DIN		
	mA 0=ADC	D22		D43	DIN		
	1= 4-20mA 0= ADC			D42	DIN		
	mA 0=ADC	D24		D41	DIN		
	1=4-20mA 0=ADC 1=4-20mA 0=ADC 1=4-20mA 0=ADC			D40	DIN		
				D38	DIN		
				D37	DIN		
1=4-20mA 0=ADC 1=4-20mA 0=ADC		D28					
		023		D36	XBEE RESET		
	10	IO D30		D35	10		
	10	D31		D34	10		
	10	D32		D33	Ю		

Pins	Functionality					
D0, D1	Serial Pins. To which either FT232 can be connected or a MAX232 can					
	be connected.					
D2	RDL Bus chip select Pin					
D3	RDL chip select or slave select pin					
D4	GSM power key (Software Switch). High-to-Low on this pin powers ON					
	the GSM.					
D5	RS485 select (control) pin for serial communication.					
D6 – D8, D30 –	Left open to the user and can be configured either as an input or					
D35	output.					
D9	Reset pin for Ethernet					
D10	Chip select or slave select pin for Ethernet					
D12, D13	LED pins which could be programmed for status indication as					
	required.					
TX3, RX3	RS485 serial communication					
TX2, RX2	GSM serial communication					
TX1, RX1	Can either be connected to RD485 or XBEE for serial communication					
SCL, SDA	Can be connected to I2C based RTC, FRAM, DAC and RDL bus					
D22 – D29	Control pins to select ADC as a 0-10V Voltage reading channel or 4-					
	20mA Current reading channel.					
D36	XBEE reset pin					
D37, D38	Digital input pins					
D39	Chip select or slave select pin for Flash					
D40 - D45	Digital input pins					
D46 - D49	Digital Output pins					
MISO, MOSI, SCK	SPI pins to where number of devices could be connected					
SS	Chip select or slave select pin for SD Card					
A0 – A2	Analog Input Pins left open to the user					
A8, A9, A10, A15	Analog Input Pins which could be configured (using pins d22-d29) to					
	read either voltage or current.					
A11 – A14	Analog Input Pins left open to the user					

7. Programming IDE

The hardware supports various Open Source Programming IDE including Arduino IDE, Atmel Studio and Arduino Compatible Compiler for LabView. For more information on this follow "Open Source Programming IDE" section of the following link.

https://rdltech.in/data-logger-iiot-4-0

8. Product Specification

8.1. Digital Input

Specification

Channels: 8

o Input Voltage: 0-24V

- Logic High: >11V

- Logic Low: < 3V

o Isolation: 3750 VRMS

o Supports Inverted DI Status

o Supported Connection: Dry and Wet both

Functional Diagram

Application Wiring

Use Case

1. Measuring Frequency

Example Code

You may look into the following link for example on reading a digital pin.

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/

8.2. Digital Output

Specification

Channels: 3Open Collector

o Isolation: 3750 VRMS

o Absolute maximum voltage - 35V, Current - 100mA

Cut-Off Frequency: 10KHz

Functional Diagram

Application Wiring

Example Code

You may look into the following link for more details on writing to digital pin.

https://www.arduino.cc/en/Reference.digitalWrite

8.3. Analog Input

Specification

o Channels: 8+3

Group 1:

o Channel: 4

o Input : Voltage(0-10V) / Current(4-20mA)

o Resolution: 16 bits

o Sampling Rate – 860 sample/sec

Page **11** of **33**

o Group 2:

o Channel: 4

o Input: Voltage(0-10V) / Current(4-20mA)

o Resolution: 10 bits

o Sampling Rate – 9.6KHz (13 clocks)

o **Group 3:**

o Channel: 3

Input: Voltage(0-5V)Resolution: 10 bits

o Sampling Rate – 9.6KHz (13 clocks)

Application Wiring

1. Interfacing ADC with Sensor

Example Code

You may look into the following link for more details on reading analog pin.

https://www.arduino.cc/en/Tutorial/ReadAnalogVoltage#toc5

8.4. SD Card

Specification

- o SPI Serial Interface
- Supports Fat File system

Functional Diagram

Example Code

You may look into the following link for example on SD Card.

https://www.arduino.cc/en/Reference/SD

8.5. RTC

Specification

- DS1307 with I2C Serial Interface
- Counts Seconds, Minutes, Hours, Date, Month, Day, and Year with Leap-Year Compensation.
- o 56-Byte, Battery-Backed, NV RAM for Data Storage
- o Consumes <500nA in Battery Backup Mode with Oscillator Running

Functional Diagram

Example Code

You may look into the following link for example code on RTC.

https://www.arduino.cc/en/Reference/RTC

8.6. FRAM

FRAM is specifically used for applications such as production counting, production rejection where variable subjected to continuous write cycle

Specification

- o MB85RC256V, I2C compatible with Bit configuration: 32,768 words × 8 bits
- Operating frequency : 1 MHz (Max)
- o Read/write endurance: 1012 times / byte
- o Number of write cycles: 100 Trillion times
- Operating power supply voltage: 2.7V to 5.5V, current 200 μA
- o Data Retention: 10 years (+85°C), 95 years (+55°C), over 200 years (+35°C).

Functional Diagram

Example Code

You may look into the following link for example on RTC

https://github.com/adafruit/Adafruit FRAM I2C/blob/master/examples/MB85RC256 V/MB85RC256V.ino

8.7. PWDT (Physical Watch Dog Timer)

External physical watchdog is connected along with inbuilt watchdog timer. There are many instances where we need to set watch dog time for more than 8 seconds (typically bulk file upload takes in minutes). As inbuilt WDT is limited to maximum of 8Sec, we have gone a step further to support watch dog time up to 3 minutes.

Note: User must program PWDT to refresh before the timer (3 min) expires.

Specification

- PWDT supports up to 3minutes.
- o PIC12F1840 used for PWDT
- o Refresh time: 1 pulse in every 3 minutes
- Operating temperature range: -40 to 125 °C

Functional Diagram

Example Code

You may look into the following link for examples on watchdog timer.

https://folk.uio.no/jeanra/Microelectronics/ArduinoWatchdog.html

8.8. Flash

Flash is specifically used for embedded server.

Specification

- SST25VF080B SPI Compatible: Mode 0 and Mode 3
- o Memory: 8MBit
- High Speed Clock Frequency 50 MHz
- Single Voltage Read and Write Operations 2.7-3.6V
- o Endurance: 100,000 Cycles (typical) >100 years Data Retention
- Low Power Consumption: Active Read Current: 10 mA (typical)
- Flexible Erase Capability Uniform 4KB, 32KB overlay blocks and 64KB overlay blocks
- Software Write Protection

Functional Diagram

Example Code

You may look into the following link for example on how to use flash.

https://github.com/nullboundary/SST25VF

8.9. Ethernet

Ethernet is specifically used for establishing secured physical network connectivity with local network infrastructure

Specification

- W5500 IC with SPI serial interface
- o IEEE 802.3 Gigabit Ethernet Compliant
- o Communication protocols: TCP/IP, HTTP, FTP, MQTT, UDP, JSON....
- o 3.3V operation with 5V I/O signal tolerance
- Low Power Consumption <200mW at 1.25Gbps.

Functional Diagram

Use Case

Example Code

You may look into the following link for examples on Ethernet. https://www.arduino.cc/en/Reference/Ethernet

8.10. ESP32/XBEE/LoRA/RS485

This is Add-On pluggable module. One among ESP32, XBEE, LoRA or RS485 is comes with the product. For more details on this, look into <u>Order Information Table</u>.

This is specifically used for wireless connectivity with existing infrastructure.

Functional Diagram

Use Case

1. Interfacing Industrial Data Logger with Bluetooth

2. Interfacing Industrial Data Logger with LoRA

3. Interfacing Industrial Data Logger with Xbee

4. Interfacing Industrial Data Logger with Wi-Fi (ESP32)

Example Code

You may look into the following link for examples on esp8266.

https://www.arduino.cc/en/Reference/WiFiServer

8.11. GSM

This is specifically used for M2M and remote data logging and control applications.

Specification

- Quectel M95, Quad-Band 850/900/1800/1900MHz.
- o Serial interface for direct communication with PC or MCU.
- Configurable baud rate.
- Power controlled using 29302WU IC.
- ESD Compliance.
- o Enabled with Audio jack.
- With push pull SIM card holder.
- With Stub antenna and SMA connector.
- o Input Voltage: 12V DC.

Functional Diagram

Use Case

Example Code

You may look into the following link for examples on GSM.

https://www.arduino.cc/en/Tutorial/GSMExamplesSendSMS

8.12. RS485 Modbus

- o Modbus is an Industrial standard serial communication protocol.
- Open protocol
- Information is stored in the Slave device in four different tables.
 Two tables store on/off discrete values (coils) and two store numerical values (registers). The coils and registers each have a read-only table and read-write table.
- Each table has 9999 values.
 Each coil or contact is 1 bit and assigned a data address between 0000-270E.
 Each register is 1 word = 16 bits = 2 bytes and also has data address between 0000 and 270E.
- Supported Functions are
 - Coils
 - Discrete inputs
 - Input Registers
 - Holding Registers.

Specification

- o LTC485 IC.
- Supports slave address up to 32.
- Supports Modbus protocol with RTU and ASCII formats.
- o Configurable baud rate from 4800 to 115200.
- o Configurable packet format (data bits, parity bit, stop bits).

Functional Diagram

Use Case

Example Code

You may look into the following link for examples on Modbus examples.

https://playground.arduino.cc/Code/ModbusMaster

8.13. RS232/FT232/Program

Used for programming the board. When in user mode, the port could be used for data communication.

Functional Diagram

Example Code

You may look into the following link for examples on FT232/MAX232 serial communication.

https://www.arduino.cc/reference/en/language/functions/communication/serial/

https://www.arduino.cc/en/Tutorial/SoftwareSerialExample

8.14. DAC

Specification

- MCP4768 with I2C serial interface
- o Quad, 12-bit voltage output
- Channel: 4 (buffered outputs)
- o Internal Voltage Reference
- o Output Voltage Range using 0-10V

Functional Diagram

Application Wiring

1. Interfacing DAC with Motor Speed Control Module

2. Interfacing DAC with Motor Speed Control Module using Loop Current

Use Case

1. Motion Control

START

The operation is continued slows down to stop until the stop signal is i/p Speed can be changed w.r.t time

STOP

2. Acceleration and Deceleration

3. Jog Operation and Trapezoidal Control Operation

The speed can be freely changed until the operation starts to decelerate to stop

4. Measuring Frequency

Example Code

You may look into the following link for the Arduino library and example on DAC.

https://github.com/hideakitai/MCP4728

8.15. Status LED Display

Status LED's can be programmed as per used needs for visual indication of an event.

Refer Digital Output Section

Functional Diagram

Example Code

You may look into the following link for more details on programming LED pins.

https://www.arduino.cc/en/Reference.digitalWrite

8.16. RDL Bus

Specification

- Extend I/O pins for communicating with external devices.
- o Extends SPI pins, I2C pins, UART pins and Digital I/O pins.

Functional Diagram

Application Wiring

8.17. STM32

Extend I/O pins for complex controller operations so as to reduce load on AVR. For example Complex math operations can be assigned to STM32 controller by establishing physical connection with AVR controller.

Currently, some I/O pins are used for LED status indication as per commands received from AVR as shown in the figure below. But user can assign complex task on STM32 controller.

Specification

- o Controller: STM32F030RCT6
- o Core: ARM®32-bit Cortex®-M0 CPU with frequency 48 MHz
- 256KB flash, 32KB RAM, 51 IO pins.
- o CRC calculation unit
- o One 12-bit, 1.0μs ADC (up to 16 channels)
- o 2 I2C, 6 USART, 2 SPI, 11 timers.

Functional Diagram

Application Diagram

9. Order Information Table

Table-I:

L.T.
177
_

Model	RDL7000	RDL7001	RDL7002	RDL7003	RDL7004	RDL7005	RDL7006	RDL7007	RDL7008
DI	8	8	8	8	8	8	8	8	8
DO	3	3	3	3	3	3	3	3	3
ADC/4-	8	8	8	8	8	8	8	8	8
20ma									
DAC	х	х	х	х	х	х	3	3	3
4x20ma Tx	х	х	х	х	х	х	1	1	1
GPRS	х	х	х	х	х	1	1	1	1
Ethernet	х	х	х	х	1	1	1	1	1
10/100mbps									
RS485	1	1	1	1	1	1	1	1	1
RS232	1	1	1	1	1	1	1	1	1
Wi-Fi	х	х	х	х	1	1	1	1	1
Bluetooth	х	х	х	1	х	х	х	х	х
LoRA	х	х	1	х	х	х	х	х	х
Custom	8	3	1						

Ordering Information:

Example:

RDL7008WI - It comes with all the above features listed in Table-I with Wi-Fi enabled.

RDL7008BT - It comes with all t0he above features listed in Table-I with Bluetooth enabled

RDL7008LO - It comes with all the above features listed in Table-I with LoRA enabled.

RDL7008RS - It comes with all the above features listed in Table-I with RS-485 bus.

RDL7008 - It comes with the only features listed in Table-I

10. References and Datasheets

- 1. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561 datasheet.pdf
- 2. http://www.ti.com/lit/ds/symlink/max232.pdf
- 3. http://ww1.microchip.com/downloads/en/DeviceDoc/40001441F.pdf
- 4. http://ww1.microchip.com/downloads/en/DeviceDoc/20005685A.pdf
- 5. http://www.ti.com/lit/ds/symlink/lm2576hv.pdf
- 6. https://www.vishay.com/docs/83513/tcmd1000.pdf
- 7. http://www.analog.com/media/en/technical-documentation/data-sheets/485fm.pdf
- 8. http://www.ti.com/lit/ds/symlink/lm317.pdf
- 9. http://www.ti.com/lit/ds/symlink/ads1115.pdf
- 10. http://ww1.microchip.com/downloads/en/DeviceDoc/20005045C.pdf
- 11. https://www.fujitsu.com/uk/Images/MB85RC256V-20171207.pdf
- 12. http://ww1.microchip.com/downloads/en/DeviceDoc/mic811.pdf
- 13. http://wizwiki.net/wiki/lib/exe/fetch.php?media=products:w5500:w5500_ds_v106e_141230.pdf
- 14. http://www.analog.com/media/en/technical-documentation/data-sheets/485fm.pdf
- 15. http://ww1.microchip.com/downloads/en/DeviceDoc/22187E.pdf
- 16. http://www.ti.com/lit/ds/symlink/xtr115.pdf