Finding and classifying critical points. Coneridor the function g. $g(n,y) = (y^2 - 5y) \sin(2n)$ Critical points are the simultaneous $\frac{\partial g}{\partial x} = 0 \qquad \lambda \qquad \frac{\partial g}{\partial y} = 0$ (=) $(2(y^2-5y)\cos(2n) = 0)$ $\left(\left(2y - 5 \right) \sin \left(2n \right) = 0 \right)$ The second is satisfied.

If and only if. $\int y = \frac{5}{2} \cdot \text{or} \quad 2x = m\pi, \quad m \in \mathbb{Z}$ take each part of these conditions, impose it on first equation and find what remain. If y = 5/2. Then $\frac{\partial g}{\partial x} = 0$

(=)
$$2(\sqrt{2}^2-5(\frac{1}{2}))\cos(2x)=0$$

(=) $\cos(2x)=0$.
(=) $2x = m\pi + \frac{\pi}{2}$, for any $m \in \mathbb{Z}$
(=) $x = m\pi + \frac{\pi}{2} + \frac{\pi}{4}$, for any $m \in \mathbb{Z}$.
Hence any, of the form $(n,y) = (m\pi + \frac{\pi}{2} + \frac{\pi}{4}, \frac{\pi}{2})$, for $m \in \mathbb{Z}$.
In a critical point.
Secondly, assume that $x = m\pi$, for $m \in \mathbb{Z}$. Under this, ± 1 $= 0$.
(=) $2(y^2-5y)\cos(m\pi)=0$.
(=) $y(y-5)=0$
(=) $y = 0$ or 5
So this gives us two injuste families

So lus gres us two vyruite familier. Of critical points, namely

(n,y) =
$$(m\frac{\pi}{2},0)$$
 AND $(m\frac{\pi}{2},5)$
for any $m \in \mathbb{Z}$.

These chofied points are clarified

(max, min, soddle) by considering

the second order partial denivolves

$$\frac{\partial^2 g}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial g}{\partial x} = \frac{\partial}{\partial x} \left(2(y^2 - 5y)\cos(2x)\right)$$

$$= -4 \left(y^2 - 5y\right)\sin(2x)$$

$$= 2\sin(2x)$$

$$\frac{\partial^2 g}{\partial y^2} = \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial x}\right) = \frac{\partial}{\partial x} \left(12y - 5\right)\sin(2x)$$

$$= 2\sin(2x)$$
We need to evaluate the flexion

Letermant $D = \frac{\partial^2 g}{\partial x} \frac{\partial g}{\partial y} - \left(\frac{\partial g}{\partial x \partial y}\right)^2$

at ceach of the contral points. Using mattab D(mT+T) $= 50 \sin^2\left(M\pi + \frac{\pi}{2}\right)$ $= 50 (\pm 1)^{2}$ = 50 >0 So these Minor max accordingly as $\frac{\partial^2 g}{\partial x^2}$ >0 or <0 $\frac{\partial^2 g}{\partial n^2} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)$ $=25 \sin\left(\frac{1}{2}\right)$ = { 25 } m even. il 25 modd

 $\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{4} \right)$ na minimum for meren and a maximum for modd. Mext. $D\left(\frac{m\pi}{2}\right) = -100\cos^2(m\pi)$ $= -100 \left(\pm 1\right)^2$ =-100 < 0. So there (m=1,0) are saddler. $\left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = -100 < 0$ So those (mt, 5) are saddles. Let's confirm some of ther vith some sufferce plats.

Looking at a selection the Suffere has the expected appearance.

 $\left(g(\chi, y) = \left(y^2 - 5y \right) \sin \left(2\chi \right).$ What does Tay Cor series of King look like. From MATLAB, reries based at (0,0),
for gappears as. $g(x,y) = -10 \pi y + 2 \pi y^2 + \frac{20}{3} \pi^2 y + \dots$ Is this the sends generated by the defining funular. $g(h, k) = \sum_{n=0}^{\infty} \frac{1}{n!} p_{g(0,0)}^{n}.$ $= g(0,0) + p_{g(0,0)} + \frac{1}{2!} p_{g(0,0)}^{2}.$

Share $D = h \frac{\partial}{\partial n} + k \frac{\partial}{\partial y}$ Share D''g = D(D(D(-...(Dg))) n operators Dapplied in composition. $D^2g = D(D(g))$

