Amendments to the Claims

This listing of claims will replace all the prior revisions, and listings of claims in this application.

- 10 <u>accelerometric sensor, gyroscopic sensor, velocity sensor, global positioning</u>
 sensor, inertial sensor, and MEMs.
 - 8. (Currently Amended) The method of claim 7 wherein the calculating step b c above
- 2 comprises setting the t_{HOB} as a percentage X% of t_a wherein said percentage is less than
- 3 100% and wherein $t_{HOB} = t_a + X\%t_a$
- 9. (Previously Presented) The method of claim 8 wherein said percentage of t_a is calculated
- 2 as follows:
- if $t_a > 12$ seconds then down leg time = 90% of t_a ;
- 4 if $12 \sec > t_a > 9$ seconds then down leg time = 70% of t_a ;
- if $9 \sec > t_a > 7$ seconds then down leg time = 10% of t_a ;
- if $t_a < 7$ seconds then there may be a malfunction and the projectile should be
- disabled.
- 1 10. (Currently Amended) The method of claim 7 wherein said step b c is calculated as
- 2 follows:

$$t_{HOB} = t_a + \sqrt{t_a^2 - 2 \times HOB/g + C}$$

- 4 where $g=9.81 \text{ m/sec}^2 = 32 \text{ ft/sec}^2$
- 5 and C = correction factor.
 - 11. (Previously Presented) The method of claim 10 wherein said correction factor C is
- 2 calculated as follows:
- if $t_a > 12$ seconds then C = 1.0 sec;
- 4 if $12 \sec > t_a > 9$ seconds then C =0.75 sec;
- if $9 \sec > t_a > 7$ seconds then $C = 0.5 \sec$;

Appl. No. 10/711,521 Amnd. Dated 28-Apr-08, 2007 Reply to Office Action of 29-OCT-2007

if $t_a < 7$ seconds then there may be a malfunction and the projectile should be disabled.