

Mechanobiology of the musculoskeletal system Lecture II: Fluid flow in musculoskeletal tissue

Mark S Thompson

C6: Engineering Science

BME2: Biomedical Engineering

HT 2008

BME2 Mechanobiology

- Lecture 1
 - Cell mechanics and bone mechanosensitivity [cells, local structure, bone mechano-regulation]
- Lecture 2
 - Fluid flow in musculoskeletal tissue [material models, focus on cartilage]
- Lecture 3
 - Tools for mechanobiology [digital image correlation, models]
- Lecture 4
 - Mechanobiology theories and applications [bone healing, tissue continuum models]

Fluid flow through porous media

- Henry Darcy (Dijon, 1803 1858)
 - Water flow through sand beds (laminar):
 - Darcy's Law: $Q = -\frac{\kappa A}{\mu} \frac{(P_b - P_a)}{L}$
 - Where Q is volume flow rate [m 3 s $^{-1}$], κ is permeability [m²], μ is viscosity [Pa s], P is pressure [Pa], A is cross section area

Fluid flow through porous media

- Henry Darcy (Dijon, 1803 1858)
 - Water flow through sand beds (laminar):
 - Darcy's Law: $Q = -\frac{\kappa A}{\mu} \frac{(P_b P_a)}{L}$
 - Where Q is volume flow rate [m³s⁻¹], κ is permeability [m²], μ is viscosity [Pa s], P is pressure [Pa], A is cross section area
 - Generalising:

1D:
$$\frac{Q}{A} = q = -\frac{\kappa}{\mu} \frac{\partial P}{\partial x}$$

3D:
$$q = -\frac{\kappa}{\mu} \nabla P(x,t)$$

WARNING!

- Permeability has at least 3 different definitions:
 - Intrinsic permeability, κ [m²]
 - Basic material property
 - Dynamic permeability, $\kappa_{dynamic}$ [m⁴N⁻¹s⁻¹]

e.g. ABAQUS
$$\kappa_{soils} = \kappa_{dynamic} \rho g = \kappa \frac{\rho g}{\mu}$$
e.g. ABAQUS
$$\rho \text{ is fluid density, } g \text{ is gravity}$$

• In this course permeability $= \kappa \, [\text{m}^2]$

Permeability

- Cancellous bone: 1 x 10⁻¹⁰ m²
 - Bone cement 3 mm penetration required
 - Cementation pressures of c. 1 MPa
- Cortical bone
 - Haversian canal: 1 x 10⁻¹³ 1 x 10⁻¹⁵ m²
 - Canaliculi: 1 x 10⁻¹⁹ 1 x 10⁻²² m²
 - Load induced fluid flow, osteocyte stimulation

Beno et al 2006 J Biomech 39, 2378-87

Biological materials

- Cartilage
 - Chondrocyte
 - Proteoglycan:
 - Water affinity: swelling pressure
 - Collagen in tension
- Loading: fluid support
 - Biphasic theory

Mow et al 1980 J Biomech Eng 102, 73-84

Measurement

Soltz & Ateshian 1998 J Biomech 31, 927-34

Biological materials

- Cartilage
 - Chondrocyte
 - Proteoglycan:
 - Water affinity: swelling pressure
 - Collagen II in tension
- Loading: fluid support
 - Biphasic theory

Mow et al 1980 J Biomech Eng 102, 73-84

Measurement

Soltz & Ateshian 1998 J Biomech 31, 927-34

Cartilage: confined compression

$$\sigma(z,t) = -p(z,t) + H_A \frac{\partial u}{\partial z}$$

$$H_A = E \frac{(1-v)}{(1-2v)(1+v)}$$

$$\frac{\partial^2 u}{\partial z^2} - \frac{\mu}{H_A \kappa} \frac{\partial u}{\partial t} = 0$$

 $\sigma(z,t) = -p(z,t) + H_A \frac{\partial u}{\partial z}$ σ is stress, p is fluid part u(z,t) is displacement σ is stress, p is fluid pressure,

 H_A is "aggregate" modulus

continuity, solid & fluid: in equilibrium, incompressible

Soltz & Ateshian 1998 J Biomech 31, 927-34

- Cartilage: confined compression
 - Creep under constant pressure load, $-P_A$

$$p(h,t) = 0$$
 so $\sigma(h,t) = -P_A = H_A \frac{\partial u}{\partial z}\Big|_{z=h}$

also
$$u(z,0) = 0$$
 and $u(0,t) = 0$

- Biphasic / poroelasticity theory (1D)
 - Solution by power series method (e.g. Kreyszig)

$$u(z,t) = -\frac{P_A}{H_A} \left[z - \frac{2h}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+\frac{1}{2})^2} \sin\left[(n+\frac{1}{2}) \frac{\pi z}{h} \right] \exp\left(\frac{-H_A \kappa}{h^2 \mu} (n+\frac{1}{2})^2 \pi^2 t \right) \right]$$

Surface displacement, first term of the sum

$$z = h$$
 and $n = 0$

$$u(h,t) = -\frac{P_A}{H_A} \left[h - \frac{8h}{\pi^2} \exp\left(\frac{-H_A \kappa}{4h^2 \mu} \pi^2 t\right) \right]$$

Kreyszig 2005 Advanced Engineering Mathematics

Soltz & Ateshian 1998 J Biomech 31, 927-34

Fluid flow through porous media

- Analytical solution for creep response
 - Extract biphasic parameters from test data
 - Optimization: minimize error
 - Typical cartilage values:

$$H_A = 0.55 \pm 0.12 \text{ MPa}$$

 $\kappa = 6.21 \times 10^{-19} \pm 2.5 \times 10^{-19} \text{ m}^2$

- More general loading conditions
 - Finite element analysis
 - Iterative optimization (inverse problem)

Fluid flow through porous media

- MRI confirmation (1.5 T)
 - Patella cartilage
 - 5 MPa physiological
 - 50 knee bends
 - 6% volume reduction
 - 50 further knee bends
 - No further volume reduction
 - Recovery ~ 90 mins
 - Flow rate
 - 0.16 mm³min⁻¹

Chondrocytes

- Catabolic and anabolic activities in balance
 - Synthesis and degradation of collagen, proteoglycan, other proteins
- Sparse in matrix
 - $7 \times 10^6 \,\mathrm{g}^{-1}$ (40 years) $1 \times 10^6 \,\mathrm{g}^{-1}$ (90 years)
 - Also decreases with osteoarthritis
- Metabolism / nutrition
 - No blood vessels in cartilage -> nutrient diffusion
 - Mechanically assisted
 - Low [O₂] -> anaerobic metabolism

- Collagen type II main tensile element (12%)
 - (also IX and XI)
- Triple helix tropocollagen (1961) XRD

Altgelt et al 1961 PNAS 47, 1914-24

Spontaneously self-associates

1.5 nm 3.5 nm 10 - 20 nm 50 - 500 nm diameter

Mechanobiology II C6 / BME2 HT 2008 MST

Proteoglycan

Proteoglycan (8%)
 Hyaluronan backbone
 Aggrecan side chains
 form large aggregates

Glycosaminoglycans:

both are

Protein core filament & polysaccharide chains -ve charge

[Cation⁺] increases -> osmotic pressure

Water! (80%)

Buckwalter & Mankin 1997 JBJS 79-A, 612-32 Mechanobiology II C6 / BME2 HT 2008 MST

4 distinct zones:

superficial (S), transitional (T), deep (M) and calcified (C)

Thickness

human 3.6 mm bovine 4.4 mm porcine 2.0 mm canine 1.8 mm ovine 1.5 mm rabbit 1.4 mm rat 0.4 mm

Buckwalter & Mankin 1997 JBJS 79-A, 612-32 Mechanobiology II C6 / BME2 HT 2008 MST

4 distinct zones:

superficial (S): Dense parallel collagen II fibres Low [proteoglycan] High [water] transitional (T): deep (M): Largest ∅ fibrils High [proteoglycan] Low [water] calcified (C)

Chondrocytes

Buckwalter & Mankin 1997 JBJS 79-A, 612-32

	<i>H_A</i> compressive	<i>H_A</i> tensile	K, ppd.	K, parallel
Superficial	low	high	medium	low
Transitional	medium	medium	medium	medium
Deep	high	low	medium	high

- Depth dependent inhomogeneity
 - Fluid pressurization at articular surface
 - Stress & strain non-uniform

Chen et al 2001 J Biomech 34, 1-12 Charlebois et al 2004 J Biomech Eng 126, 129-37 Krishnan et al 2003 J Biomech Eng 125, 569-77

- Collagen fibrils
 - "Arcades"
- μMRI in vitro
 - 7 T, T₂ relaxation
 - "magic angle" ~55°
- 20% strain
 - Reorientation of fibrils
 - Change in relative size of zones

- Rabbit knee cartilage loaded, fast frozen and fractured
 - a) tibia articular surface b) transitional & deep zone - fibre bending c) upper deep zone deformed chondrocytes (ice crystal artefacts)

d) transitional zone

chondrocytes

Kääb et al 2003 Cells Tiss Org 175, 133-9

Cartilage friction

- Coefficient of friction
 - $\mu \sim 0.01$ (dynamic "start up" ~ 0.2)
- Lubrication regimes:
 - Boundary (surfaces in contact)
 - Hyaluronan, Lubricin / PRG4
 - Hydrodynamic / elastohydrodynamic
 - Fluid layer separating surfaces
 - Enhanced by elastic deformation of surfaces
 - "boosted" / "weeping"
 - Enhanced by pressurisation of tissue fluid

Krishnan et al 2004 J Orthop Res 22, 565-70 Schmidt and Sah 2007 Osteoarth Cartilage 15, 35-47

Cartilage mechanosensitivity

- Paraplegia, immobility (MRI)
 - Reduced tissue thickness as early as 7 weeks
 - Stiffness may be reduced
 - Gadolinium contrast for glycosaminoglycan content
- Continuous passive motion lubricin increased
- Chondrocytes in 3D culture
 - Changes in cytoskeleton organization
 - Cell signaling activated
 - Changes in matrix molecule synthesis

Eckstein et al 2006 J Anat 208, 491-512 Nugent-Derfus et al 2006 Osteoarth Cartilage in press Knight et al 2006 J Biomech 39, 1547-51

Cartilage degeneration

 Loss of microstructure, cracking, fibrillation, loss of matrix

 Cell mechanical environment altered

Mechanical properties altered

Cell mechanosensitivity altered

Salter et al 2002 Biorheology 39, 97-108 Jones et al 1999 J Biomech 32, 119-27

Histological images

- Safranin orange
 - Proteoglycans (non-quantitative)
- Light green counterstain
- Early:
 - Loss of surface smoothness & proteoglycans
 - Increase in water content, permeability
- Late:
 - Loss of matrix material
 - Clefting, fibrillation

Lorenz et al 2006 Prog Histochem Cytochem 40, 135-63 Mechanobiology II C6 / BME2 HT 2008 MST

Fluid flow in musculoskeletal tissues

- Bone (cancellous and cortical)
- Cartilage
- Intervertebral disc
- Meniscus
- Tendon, ligament
- Muscle
- . . .

Summary

- Darcy's Law
 - Permeability in [m²]
- Biphasic / poroelasticity theory
- Microstructure and function of cartilage
 - Mechanical deformation
 - Lubrication
- Cartilage degeneration

Cartilage degeneration

- Arthroscopic device tip
 - Tube
 - Fibre optic
 - Nozzle
 - Optical measurement
 - Fluid jet
- Use in conjunction with FE
 - Extract modulus, permeability

