

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : A63H 30/00	A1	(11) International Publication Number: WO 00/44464 (43) International Publication Date: 3 August 2000 (03.08.00)
(21) International Application Number: PCT/DK00/00037		(81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), DM, EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 28 January 2000 (28.01.00)		
(30) Priority Data: PA 1999 00105 28 January 1999 (28.01.99) DK PA 1999 00144 4 February 1999 (04.02.99) DK		
(71) Applicant (for all designated States except AU BR CA CN GB IE IN MX NZ SG US): LEGO A/S [DK/DK]; Aastvej 1, DK-7190 Billund (DK).		
(71) Applicant (for AU BR CA CN GB IE IN MX NZ SG only): INTERLEGO AG [CH/CH]; Neuhofstrasse 21, CH-6340 Baar (CH).		
(72) Inventors; and		Published
(75) Inventors/Applicants (for US only): DOOLEY, Mike [US/US]; 126 East Bluegill Lane, Suffield, CT 06078 (US). MUNCH, Gaute [DK/DK]; Granslevbyvej 19, DK-8870 Langå (DK). RASMUSSEN, Jesper [DK/DK]; Thit Jensen Vej 37, DK-7182 Bredsten (DK).		With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. In English translation (filed in Danish).
(74) Agent: HOFMAN-BANG A/S; Hans Bekkevolds Allé 7, DK-2900 Hellerup (DK).		

(54) Title: A REMOTE CONTROLLED TOY

(57) Abstract

A remote controlled apparatus (4), e.g., a remote controlled toy, for remote control from a remote control unit, e.g., a pocket torch (2). The apparatus is characterized in that it is adapted to respond to a sequence of light pulses which have a frequency of repetition that is lower than the maximum frequency which a human being can produce manually, e.g., by alternately turning the torch on and off. In a special embodiment, after a received sequence of light pulses, the apparatus is adapted to emit an acoustic acceptance signal by means of sound generator (15).

THIS PAGE BLANK (use reverse)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 00/00037

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 A63H30/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A63H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 802 879 A (RISSMAN OWEN R ET AL) 7 February 1989 (1989-02-07) column 1, line 40 -column 2, line 36 abstract ---	1-12
X	DE 34 04 260 A (KLIR GMBH V) 15 November 1984 (1984-11-15) page 4, line 18 -page 5, line 14 abstract ---	1,3-7
X	CH 678 153 A (TAKARA CO LTD) 15 August 1991 (1991-08-15) column 9, line 56 -column 10, line 18; figure 8 abstract --- -/-	1-6

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *Z* document member of the same patent family

Date of the actual completion of the international search

17 April 2000

Date of mailing of the international search report

14.06.2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentstaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Caroline Stolt/AB

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DK 00/00037

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 2 215 227 A (TAKARA CO LTD) 20 September 1989 (1989-09-20) page 5, line 9 - line 20 -----	1-6

THIS PAGE BLACK

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DK 00/00037

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4802879	A	07-02-1989	US	4813907 A		21-03-1989
DE 3404260	A	15-11-1984		NONE		
CH 678153	A	15-08-1991	JP	3083629 A	09-04-1991	
			JP	3176097 A	31-07-1991	
			JP	2118513 C	06-12-1996	
			JP	3178685 A	02-08-1991	
			JP	8032281 B	29-03-1996	
			JP	2097213 C	02-10-1996	
			JP	3202093 A	03-09-1991	
			JP	7100089 B	01-11-1995	
			AU	614219 B	22-08-1991	
			AU	5015890 A	03-01-1991	
			CA	2019397 A	16-08-1990	
			CN	1048357 A	09-01-1991	
			DE	4012587 A	14-03-1991	
			DE	9010048 U	13-09-1990	
			DK	79990 A	31-12-1990	
			FR	2649905 A	25-01-1991	
			GB	2229646 A,B	27-07-1990	
			HK	491 A	11-01-1991	
			IT	1240194 B	27-11-1993	
			NL	9000534 A	16-01-1991	
			NO	901551 A	02-01-1991	
			PT	93650 A	31-01-1992	
			SE	9001232 A	31-12-1990	
			SG	96190 G	18-01-1991	
			US	5303491 A	19-04-1994	
			BE	1002173 A	25-09-1990	
			BR	9001087 A	15-10-1991	
			ES	2021215 A	16-10-1991	
			LU	87698 A	07-05-1991	
			US	5134796 A	04-08-1992	
			GR	90200109 U	30-12-1991	
			ZA	9002511 A	30-01-1991	
GB 2215227	A	20-09-1989	US	4944708 A	31-07-1990	

This PAGE IS BLANK (WE TRY)

A remote controlled toy

The present invention relates to a remote controlled toy element for remote control by means of signals from a remote control unit, said toy element comprising a sensor which can detect the signals, and at least one unit which is controlled by a microprocessor in response to a program which is executed by the microprocessor, said program comprising program steps.

10

Such toy elements are widely used and are known e.g. from the product ROBOTICS INVENTION SYSTEM from LEGO MIND-STORMS, which is a toy that can be programmed by means of a computer to perform conditional as well as unconditional actions.

Such toy elements are unique in that programs or other forms of instructions are transferred to the toy by means of a form of communications protocol. Typically, the communications protocol will be adapted to transfer data to the toy in the fastest possible and simultaneously most error-free manner to achieve a good and fast response.

It is a problem with such a toy, however, that the full play potential is not utilized fully.

Accordingly, an object is to provide new play possibilities with an electronic toy.

This is achieved when the toy element mentioned in the opening paragraph is characterized in that the toy element is adapted to record pulse patterns containing pulses which have flanks with intervals that are longer than the response time of a human being, and to control the unit in various ways by selecting a program step in response to a recorded pulse pattern.

It is ensured hereby that the toy element can be remote controlled by sound or particularly by light. Remote control by light takes place in that a user signals with e.g. an ordinary hand-held lamp which is driven by batteries or by the mains. The signalling takes place in that the user manually turns the lamp on and off and thereby produces pulses of visible light with a predetermined sequence of short and long pulses and intervals.

5 The signalling may also take place by means of sound pulses, which may e.g. be produced in that the user claps his hands or whistles or sings a specific sequence of short and long pulses and intervals.

10

15 The invention will now be described with reference to the drawing, in which

fig. 1 shows a block diagram of a remote controlled toy element for remote control by means of signals from a remote control unit and for control of units;

20 fig. 2 shows a flow chart for a program for selecting a subset of program steps from a set of program steps in response to an operation selection;

25 fig. 3 shows a flow chart for a program for controlling a unit in various ways by selecting a program step in response to a recorded pulse pattern;

30 fig. 4 shows examples of recorded pulse patterns;

fig. 5 shows an example of a transmitted pulse pattern and an associated recorded pulse pattern;

fig. 6 shows first and second toy elements where the first toy element can transfer data to the second toy element;

5 fig. 7 shows a flow chart for storing program steps; and

fig. 8 shows a block diagram for a first toy element which can transfer data to a second toy element.

10 Fig. 1 shows a block diagram for a remote controlled toy element for remote control by means of signals from a remote control unit and for control of units. A user 101, e.g. a playing child, can operate a signal generator, e.g. a pocket torch 102. The pocket torch can be operated
15 by alternately turning the torch on and off or by moving the cone of light of the torch. The cone of light may be directed toward a light detector 103. The light detector may be positioned behind a protecting light permeable plate in a toy element 104. The toy element may e.g. be a
20 building element which can be connected with other building elements of the same or another type. The detector 103 can emit a signal in response to the light which it receives. The signal may be an analogue signal which depends on the light intensity which falls on the light detector or merely be a simple on/off signal. The toy element 104 comprises a microprocessor 105 which can perform
25 one or more programs stored in the memory 110. The microprocessor 105 is connected to a number of units for transmitting and receiving signals. A first unit 109 can receive signals on external mechanical impacts e.g. from a switch 112. A second unit 108 can emit light signals via a lamp or light diode 113. A third unit 107 can control a motor 114. A fourth unit 106 can emit sound signals via a sound generator 115 e.g. a loudspeaker or a
30 piezoelectric element. Moreover, the microprocessor 105 can control an LCD display 116. The switch 111 can be
35

used for selecting a state of the microprocessor 105 so that a specific subset of program steps can be selected from a set of program steps.

5 It is thus possible to combine the above-mentioned elements/units so that the toy element may be incorporated in a structure such as e.g. a car or another vehicle or a movable figure, the structure being composed of elements in a construction toy set.

10

Fig. 2 shows a flow chart for a program for selecting a subset of program steps from a set of program steps in response to an operation selection. The operation selection can e.g. take place by operating the switch 111. The 15 flow chart starts in step 200. Then a subset of program steps is selected. A subset of program steps is also called a rule. In 201, rule R is selected from a collection of predetermined rules R1-R7 in the form of rule based programs stored in the memory 110. It is decided in 20 step 202 whether the selected rule is rule R=R1. If this is the case (yes), the rule based program R1 is executed in step 203. Alternatively (no), it is checked whether rule R=R2 was selected. Correspondingly, it is decided in steps 204, 206 and 208 whether the selected rule is rule 25 2, 3 or 7, and respective rule based programs are executed in steps 205, 207 or 209. It is thus possible to select one of several predetermined rules. These rules may e.g. be determined by the manufacturer of the toy element.

30

However, it will also be possible to store user defined rules by combining the predetermined rules. This will be mentioned below in connection with the description of fig. 7.

35

Fig. 3 shows a flow chart for a program for controlling a unit in various ways by selecting a program step in response to a recorded pulse pattern. An audio/visual signal may be emitted in response to the recorded pulse pattern as a receipt for the reception of the pulse pattern. The pulse pattern may be generated by flashing a pocket torch.

Step 301 corresponds to step 208 in fig. 2. In step 302, 10 a pulse pattern is detected, consisting of e.g. a pulse of 1 second's duration, a pause of 1 second, a pulse of 1 second's duration, a pause of 1 second's duration, and a pulse of 3 seconds' duration.

15 It is decided in step 302 whether the pulse pattern is a known pulse pattern (e.g. stored together with other pulse patterns in the memory 110). If the pulse pattern is a known pattern S1 (yes), an audio or visual signal L1 recognizable by the user is played in step 305. An audio 20 signal may e.g. be played by means of a piezoelectric element. The user can hereby receive a receipt of recognition of the command. This may be part of the play with the toy element. The user may be rewarded in step 307 in that the toy element performs a given action by executing 25 a sequence of commands in the microprocessor 105.

Alternatively, if the light sequence was not recognized in step 303, another sound sequence L2 may be played in step 304. Subsequently, the toy element may perform an 30 action corresponding to a wrong answer.

Examples of possible functions of a number of rule based programs R1-R7 are given below (rule 1, rule 2, rule 3, rule 4, rule 5, rule 6 and rule 7).

35

Rule 1:

- 1) A pause of 1 second.
- 2) A sound sequence (start sound) is played.
- 3) A pause of 0.5 second.
- 4) A sound sequence (backward sound) is played.
- 5) The motor runs backwards for 5 seconds.
- 6) The motor stops.
- 7) Points 3-6 are repeated twice (3 times in all).
- 8) The rule is stopped.

10 Rule 2:

- 1) A pause of 1 second.
- 2) A sound sequence (start sound) is played.
- 3) A pause of 0.5 second.
- 4) A sound sequence (backward sound) is played.
- 5) The motor runs backwards for 5 seconds.
- 9) The motor stops.
- 6) A pause of 0.5 second.
- 7) A sound sequence (forward sound) is played.
- 8) The motor runs forwards for 5 seconds.
- 10) The motor stops.
- 11) Points 3-10 are repeated twice (3 times in all).
- 12) The rule is stopped.

25 Rule 3:

- 1) A pause of 1 second.
- 2) A sound sequence (calibrate sound) is played.
- 3) A sound sequence (start sound) is played.
- 4) A sound sequence (backward sound) is played.
- 5) The motor runs backwards for max. 7 seconds.
- 6) If light is detected before the 7 seconds have elapsed (point 5):
 - The motor stops.
 - Forward sound sequence is played.
 - The motor runs forwards as long as light is

detected.

If light disappears:

- i. The motor stops after 0.5 second.
- ii. If the light comes back within 2 seconds, the motor starts again.
- iii. If the light is out for 2 seconds, then the motor remains turned off.

- 5 7) Points 4-6 are repeated as long as light is detected within the 7 seconds and until 3 attempts without light have been made.
- 10 8) The motor stops.
- 9) The rule stops.

15 Example of the user's experience: The model is constructed such that when the model drives backwards the model turns, and when it drives forwards, it drives straight ahead. The rule therefore gives a search light function - when the user throws light on the model, the model drives forwards toward the user.

20

Rule 4:

- 1) A pause of 1 second.
- 2) Motor direction is set for forwards.
- 25 3) A sound sequence (calibrate sound) is played.
- 4) A sound sequence (start sound) is played.
- 5) When light is detected:
 - The motor runs.
- 6) When dark is detected:
 - The motor stops.
- 30 7) When 2 flashes are detected:
 - The motor direction is changed either from forwards to reverse or from reverse to forwards.
 - A sound sequence is played in accordance with the direction of the motor.
- 35 8) The rule is stopped 15 minutes after the last light

was detected.

Example of the user's experience: The user experiences a remote control. The user can run the motor by constantly 5 throwing light on the model, and change the motor direction by flashing to the model.

Rule 5:

- 10 1) A pause of 1 second.
- 2) A sound sequence (calibrate sound) is played.
- 3) A sound sequence (start sound) is played.
- 4) When a flash is detected:
 - A sound is played.
 - If the motor is off, it is turned on.
 - If the motor is on, the speed is increased by one step.
- 15 5) If no light is detected:
 - If the speed is greater than step 0, the speed is reduced by one step.
 - If the speed is step 0, the motor is stopped.
- 20 6) The rule stops 15 minutes after the last flash.

Example of the user's experience: The user experiences a 25 form of "keep alive" function. The more and faster flashes, the faster the model runs and the more sounds it plays. If the user does not flash to it, the model "dies".

30 Rule 6:

- 1) A pause of 1 second.
- 2) Motor direction is set for reverse.
- 3) A sound sequence (calibrate sound) is played.
- 35 4) A sound sequence (start sound) is played.
- 5) When a change in the light level takes place:

- The alarm sound sequence is played.
- The motor runs for 1 second.
- The motor direction is changed.
- The above 3 points are repeated 6 times.

5 6) The rule is stopped.

Example of the user's experience: The user experiences an alarm function where the user e.g. places a pocket torch which throws light on the model. Then the rule is 10 started, when the light beam from the pocket torch is broken, the alarm sound is played and the motor runs.

Rule 7:

- 15 1) A pause of 1 second.
- 2) A sound sequence (calibrate sound) is played.
- 3) A sound sequence (start sound) is played.
- 4) A pause of 1.5 seconds.
- 5) A long or short tone is played (random).
- 20 6) Points 4 and 5 are repeated 2 to 4 times (random). 3 to 5 times in all.
Then the user must send long and short flashes to the model in accordance with the tones.
- 7) Check flash length:
 - 25 - Short flash must be less than 0.5 second.
 - Long flash must be between 0.5 and 2 seconds.
- 8) If the length and number of flashes are correct:
 - Play sound sequence (correct sound)
 - The motor runs forwards for 300 milliseconds.
- 30 9) If the length and number of flashes are wrong:
 - Play sound sequence.
 - The motor runs backwards for 300 milliseconds.
 - Repeat points 4 - 7 2 times more and until success.
 - If wrong flashes have been given 3 times, a

sound sequence (tease sound) is played.

- The rule stops.

Example of the user's experience: 3 - 5 tones are played
5 for the user. The tones are played in either a short version or a long version. When the user has heard the tones, the user must flash back the length and the number of the tones in the form of light. If the user does this correctly, a success sound is obtained, and the motor
10 runs forwards briefly. If the user does not flash the correct length or number, a sound is played and the motor runs backwards briefly. The user gets 2 more attempts for performing the task (3 attempts in all). If the user is not successful in the 3 attempts, a tease sound is
15 played.

In a preferred embodiment, a given recognizable pulse pattern (S1-S7) can be related to a given sound sequence (L1-L7) so that the user may be informed of the pulse
20 pattern which has been received, and e.g. of the rule or command that will be executed by the microprocessor.

Fig. 4 shows examples of recorded pulse patterns M1, M2 and M3. The pulse patterns may be selected in many different ways, provided that they satisfy the condition
25 that characteristics in the form of the duration of two successive flanks for the patterns are generated so that the duration is greater than the human response time. Two successive flanks may be a positive flank followed by a
30 negative flank or two successive positive flanks.

The pulse pattern M1 comprises a positive flank and a negative flank.

The pulse pattern M2 comprises two successive pulses of a relatively short duration, e.g. 400 milliseconds separated by a period of e.g. 700 milliseconds.

5 The pulse pattern M3 comprises a pulse of a relatively long duration of e.g. 20 seconds.

These pulse patterns may cause a response from the toy element, e.g. as described above.

10

Fig. 5 shows an example of an emitted pulse pattern and an associated recorded pulse pattern. This may be an example of a pulse pattern in connection with rule 7 described above. The pulse pattern to the left can indicate 15 playing of two short tones followed by a long tone of durations of t1 and t2, respectively. After playing of the tones, the toy element expects that the user tries to imitate the pattern by generating light pulses with a pattern, that is two short pulses followed by a long 20 pulse.

As it may be difficult for the user, who tries to imitate the pattern, to find the precise length of the emitted pulses and to generate pulses of the same length, it is 25 accepted that the pulses may deviate by a specified deviation d.

Fig. 6 shows first and second toy elements, where the first toy element can transfer data to the second toy 30 element. The first toy element 601 comprises a microprocessor 607, a I/O module 610, a memory 609 and a user interface 608. The toy element 601 moreover comprises a two-way communications unit 606 for communication with an infrared transmitter/receiver 605 or for communication by 35 means of a light source/light detector 604 which can emit and detect visible light.

- Correspondingly, the second toy element 602 comprises a microprocessor 614, a I/O module 615 and a memory 616. The toy element 602 moreover comprises a communications unit 613 for communication via an infrared transmitter/receiver 612 or for communication by means of a light source/light detector 611 which can emit and detect visible light.
- 10 In a preferred embodiment of the invention, the first toy element can both transmit and receive data, while the second toy element can only receive data.
- 15 Data can be transferred as visible light via a light guide 603. Alternatively, data may be transferred as infrared light 617 and 618. Data may be in the form of codes that indicate a specific instruction and associated parameters which can be interpreted by the microprocessors 607 and/or 614. Alternatively, data may be in the 20 form of codes which refer to a subprogram or a rule stored in the memory 616.
- 25 The I/O modules 610 and 615 may be connected to electronic units (e.g. motors) for control of these. The I/O modules 610 and 615 may also be connected to electronic sensors so that the units may be controlled in response to detected signals.
- 30 In a preferred embodiment, the fibre 603 is adapted such that part of the visible light transmitted by it escapes from the fibre. It is hereby possible for a user - directly - to watch the transmission. The user can e.g. see when the communication begins and stops.
- 35 The light through the fibre can transfer data with a given data transmission frequency as changes in the light

level in the fibre. Data may be transmitted such that it is possible for the user to observe individual light level changes during a transmission (that is at a suitably low data transmission frequency) or merely by seeing 5 whether the transmission is going on (that is with a suitably high data transmission frequency).

Generally, it is undesirable that part of the light to be transmitted through the fibre escapes from the fibre. But 10 in connection with communication between two toy elements it is a desired effect, since it is then possible to watch the communication in a very intuitive manner.

It is known to a skilled person how to ensure that part 15 of the light escapes from the fibre. It can e.g. be done by imparting impurities to the sheath of the fibre or by making mechanical notches or patterns in the fibre. The part of the light which is to escape from the fibre may also be controlled by controlling the ratio of the refractive index of a core to that of a sheath of a light 20 guide.

Fig. 7 shows a flow chart for the storage of program steps. Step 701 corresponds to step 211. The flow chart 25 shows how a user can store own rules transferred from an external unit for e.g. another toy element, as stated above, or from a personal computer. In an embodiment, just references to the rules stored in the toy element are transferred. This reduces the necessary bandwidth for 30 communication between the toy elements. It is checked in step 702 whether download signals are received from external units. If this is the case, it is checked in step 703 whether the download signals are valid. If the signals are not valid (no), a sound indicating an error is 35 played in step 704. If the signals are valid (yes), it is checked whether the signals are to be interpreted as com-

- mands which are to be executed at once (execute), or whether the signals are to be interpreted as commands which are to be stored with a view to subsequent execution (save). If the commands are to be executed at once,
5 this is done in step 706, and then the program returns to step 702. If the commands are to be stored, a recognition sound is played in step 707 and the command is stored as a program step in step 708 in the storage 709.
- 10 An example of a command to be carried out at once may be that the commands in the storage 709 are to be executed.
- In an alternative embodiment, the user's own rules may be formed by making a combination of existing rules without
15 using an external unit.
- Fig. 8 shows a block diagram for a first toy element which can transfer data to a second toy element. The toy element 801 comprises a plurality of electronic means for programming the toy element so that it can affect electronic units (e.g. motors) in response to signals picked up from various electronic sensors (e.g. electrical switches).
- 20 The toy element may hereby be caused to perform sophisticated functions such as e.g. event-controlled movement, on condition that the toy element is combined with the electronic units/sensors in a suitable manner.
- 25 The toy element 801 comprises a microprocessor 802 which is connected to a plurality of units via a communications bus 803. The microprocessor 802 can receive data via the communications bus 803 from two A/D converters "A/D input #1" 105 and "A/D input #2" 806. The A/D converters can pick up discrete multibit signals or simple binary sig-

nals. Furthermore, the A/D converters are adapted to detect passive values such as e.g. ohmic resistance.

The microprocessor 802 can control electronic units such
5 as e.g. an electric motor (not shown) via a set of terminals "PWM output #1" 807 and "PWM output #2" 808. In a preferred embodiment of the invention, the electronic units are controlled by a pulse width modulated signal.

10 Further, the toy element can emit sound signals or sound sequences by controlling a sound generator 809, e.g. a loudspeaker or piezoelectric unit.

15 The toy element can emit light signals via the light source "VL output" 810. These light signals may be emitted by means of light-emitting diodes. The light-emitting diodes may e.g. be adapted to indicate various states for the toy element and the electronic units/sensors. The light signals may moreover be used as communications signals for other toy elements of a corresponding type. The light signals may e.g. be used for transferring data to another toy element via a light guide.

20 The toy element can receive light signals via the light detector "VL input" 111. These light signals may be used inter alia for detecting the intensity of the light in the room in which the toy element is present. The light signals may alternatively be received via a light guide and represent data from another toy element or a personal computer. The same light detector may thus have a communication function via a light guide as well as serve as a light sensor for detecting the intensity of the light in the room in which the toy element is present.

35 In a preferred embodiment, "VL input" 811 is adapted to selectively either communicate via a light guide, or al-

ternatively to detect the intensity of the light in the room in which the toy element is present.

Via the infrared light detector "IR input/output" 812,
5 the toy element can transfer data to other toy elements or receive data from other toy elements or e.g. a personal computer.

The microprocessor 802 uses a communications protocol for
10 receiving or transmitting data.

The display 804 and the keys "shift" 813, "run" 814, "select" 815 and "start/interrupt" 816 constitute a user interface for operating/programming the toy element. In a
15 preferred embodiment, the display is an LCD display that can show a plurality of specific icons or symbols. The appearance of the symbols on the display may be controlled individually, e.g. an icon may be visible, be invisible and be caused to flash.

20 By affecting the keys, the toy element may be programmed at the same time as the display provides feedback to the user about the program which is being generated or executed. This will be described more fully below. As the
25 user interface comprises a limited number of elements (that is a limited number of icons and keys), it is ensured that a child who wants to play with the toy will quickly learn how to operate it.

30 The toy element also comprises a memory 817 in the form of RAM and ROM. The memory contains an operating system "OS" 818 for control of the basic functions of the microprocessor, a program control "PS" 819 capable of controlling the execution of user-specified programs, a plurality of rules 820, each rule consisting of a plurality of
35

specific instructions for the microprocessor, and a program 821 in RAM which utilizes the specific rules.

In a preferred embodiment, the toy element is based on a
5 so-called single chip processor which comprises a plurality
of inputs and outputs, a memory and a microprocessor
in a single integrated circuit.

In a preferred embodiment, the toy element comprises
10 light-emitting diodes which can indicate the direction of
rotation of connected motors.

PATENT CLAIMS:

-
1. A remote controlled toy element for remote control by
5 means of signals from a remote control unit, said toy
element comprising

a sensor which can detect the signals,
 - 10 at least one unit which is controlled by a microprocessor
in response to a program which is executed by the micro-
processor, said program comprising program steps,

characterized in that
15 the toy element is adapted to record pulse patterns con-
taining pulses which have flanks with intervals that are
longer than the response time of a human being, and to

20 control the unit in various ways by selecting a program
step in response to a recorded pulse pattern.
 - 25 2. A remote controlled toy element according to claim 1,
characterized in that the apparatus is
adapted to respond to pulses of light.
 - 30 3. A remote controlled toy element according to claim 1,
characterized in that the apparatus is
adapted to respond to pulses of visible light.
 - 35 4. A remote controlled toy element according to claim 1,
characterized in that the apparatus is
adapted to response to sound pulses.
 5. A remote controlled toy element according to claim 1,
characterized in that said intervals are

longer than 100 milliseconds, 200 milliseconds or 300 milliseconds.

6. A remote controlled toy element according to claim 1,
5 characterized in that said intervals are longer than the smallest intervals which a human being can produce by an oscillating movement of a part of the body.

10 7. A remote controlled toy element according to claim 1 and having at least two different functions which are selected by means of signals from a remote control unit, wherein toy elements, after a received signal for selection of function, are adapted to emit a signal which depends on the received signal.
15

8. A remote controlled toy element according to claim 7, characterized in that the emitted signal is an acoustic signal.
20

9. A remote controlled toy element according to claim 7, characterized in that the emitted signal is an optical signal.
25

10. A remote controlled toy element according to claim 7, characterized in that the signal is emitted before the selected function is carried out.
30

11. A remote controlled toy element according to claim 7, characterized in that the apparatus is adapted to compare a signal received from the remote control unit with a plurality of expected signals, and to emit a first signal in the event that the received signal matches one of the expected signals, and to emit a second signal in the event that the received signal does not match any of the expected signals.
35

12. A programmable toy with a receiver for reception of instructions for programming the toy as well as means for execution of received instructions,

5

characterized in that the toy has a transmitter for transmission of instructions to a second toy.

13. A toy according to claim 12, characterized in that its receiver is adapted for wireless reception of instructions.

14. A toy according to claim 12, characterized in that its receiver is adapted for reception of infrared signals.

15. A toy according to claim 12, characterized in that its receiver is adapted for reception of visible light.

20

16. A toy according to claim 12, characterized in that its receiver comprises a keyboard for manual input of instructions.

25

17. A toy according to claim 12, characterized in that its transmitter is adapted for wireless transmission of instructions to the second toy.

30

18. A toy according to claim 17, characterized in that its transmitter is adapted for transmission of infrared signals.

35

19. A toy according to claim 16, characterized in that, via the keyboard, it is adapted to receive a program comprising at least two instructions for transmission to the second programmable toy.

Fig. 1

This Page Blank (uspto)

Fig. 2

This Page Blank (uspto)

Fig. 3

This Page Blank (uspto)

Pulse patterns

Fig. 4

pulse pattern from apparatus (sound)

Respond pulse pattern from user (light)

code recognition

$t_1: 0.3 \text{ s}$

$t_2: 1.2 \text{ s}$

$T: 10 \text{ s}$

$d: +/- 50\%$

Fig. 5

This Page Blank (uspto)

Fig. 6

This Page Blank (uspto)

Fig. 7

This Page Blank (uspto)

Fig. 8

This Page Blank (uspto)

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 00/00037

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A63H30/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A63H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 802 879 A (RISSMAN OWEN R ET AL) 7 February 1989 (1989-02-07) column 1, line 40 -column 2, line 36 abstract	1-12
X	DE 34 04 260 A (KLIR GMBH V) 15 November 1984 (1984-11-15) page 4, line 18 -page 5, line 14 abstract	1,3-7
X	CH 678 153 A (TAKARA CO LTD) 15 August 1991 (1991-08-15) column 9, line 56 -column 10, line 18; figure 8 abstract	1-6

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

17 April 2000

Date of mailing of the international search report

14.06.2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Caroline Stolt/AB

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DK 00/00037

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 2 215 227 A (TAKARA CO LTD) 20 September 1989 (1989-09-20) page 5, line 9 - line 20 -----	1-6

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DK 00/00037

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4802879	A	07-02-1989	US	4813907 A		21-03-1989
DE 3404260	A	15-11-1984		NONE		
CH 678153	A	15-08-1991				
			JP	3083629 A	09-04-1991	
			JP	3176097 A	31-07-1991	
			JP	2118513 C	06-12-1996	
			JP	3178685 A	02-08-1991	
			JP	8032281 B	29-03-1996	
			JP	2097213 C	02-10-1996	
			JP	3202093 A	03-09-1991	
			JP	7100089 B	01-11-1995	
			AU	614219 B	22-08-1991	
			AU	5015890 A	03-01-1991	
			CA	2019397 A	16-08-1990	
			CN	1048357 A	09-01-1991	
			DE	4012587 A	14-03-1991	
			DE	9010048 U	13-09-1990	
			DK	79990 A	31-12-1990	
			FR	2649905 A	25-01-1991	
			GB	2229646 A,B	27-07-1990	
			HK	491 A	11-01-1991	
			IT	1240194 B	27-11-1993	
			NL	9000534 A	16-01-1991	
			NO	901551 A	02-01-1991	
			PT	93650 A	31-01-1992	
			SE	9001232 A	31-12-1990	
			SG	96190 G	18-01-1991	
			US	5303491 A	19-04-1994	
			BE	1002173 A	25-09-1990	
			BR	9001087 A	15-10-1991	
			ES	2021215 A	16-10-1991	
			LU	87698 A	07-05-1991	
			US	5134796 A	04-08-1992	
			GR	90200109 U	30-12-1991	
			ZA	9002511 A	30-01-1991	
GB 2215227	A	20-09-1989	US	4944708 A	31-07-1990	

This Page Blank (uspto)