An Introduction to Iterative Solvers and Preconditioning Techniques

Alison Ramage Department of Mathematics University of Strathclyde

ar@maths.strath.ac.uk
http://www.maths.strath.ac.uk/~caas63/

Overview

- motivation
- Krylov subspace methods for
 - symmetric positive definite systems
 - symmetric indefinite systems
 - nonsymmetric systems
- preconditioning
- further information

PDE-based Problems

- large-scale simulations in e.g. fluid mechanics, structural engineering, medical applications, meteorology . . .
- linear algebra costs often dominate
- finite element, finite difference, finite volume discretisations
- only local connections between unknowns on the computational grid
- very large, very sparse linear systems

Model Finite Element BVP

- Laplace's equation
- d-dimensional uniform grid, discretisation parameter h
- $n = \frac{1}{h}$ nodes in each dimension
- coefficient matrix A is $N \times N$ where $N = O(n^d) = O(h^{-d})$
- e.g. bilinear finite elements
 - d = 2:9 nonzeros per row
 - d = 3:27 nonzeros per row

Direct or Iterative Solvers?

- direct methods
 - efficient for full matrices
 - good for lots of RHS vectors
 - sparse matrices may lead to fill-in
 - node ordering often important
 - storage and CPU restrictions

Direct or Iterative Solvers?

- direct methods
 - efficient for full matrices
 - good for lots of RHS vectors
 - sparse matrices may lead to fill-in
 - node ordering often important
 - storage and CPU restrictions
- iterative methods
 - data structures predetermined
 - no need for special node ordering
 - efficient for extremely large sparse problems
 - last iterate can give a good starting vector
 - some expertise needed
 - often no guarantee of success

Asymptotic Estimates

Iterative method: Conjugate Gradients

Direct method: Gaussian Elimination with band-minimising

node ordering

Asymptotic Estimates

Iterative method: Conjugate Gradients

Direct method: Gaussian Elimination with band-minimising node ordering

Computational Work

	d=2	d=3
CG	$O(N^{\frac{3}{2}})$	$O(N^{\frac{4}{3}})$
GE factorise	$O(N^2)$	$O(N^{\frac{7}{3}})$
GE solve	$O(N^{\frac{3}{2}})$	$O(N^{\frac{5}{3}})$

Asymptotic Estimates

Iterative method: Conjugate Gradients

Direct method: Gaussian Elimination with band-minimising node ordering

Computational Work

	d=2	d=3
CG	$O(N^{\frac{3}{2}})$	$O(N^{\frac{4}{3}})$
GE factorise	$O(N^2)$	$O(N^{\frac{7}{3}})$
GE solve	$O(N^{\frac{3}{2}})$	$O(N^{\frac{5}{3}})$

Storage

	d=2	d=3
CG	O(N)	O(N)
GE factorise	$O(N^{\frac{3}{2}})$	$O(N^{\frac{5}{3}})$
GE solve	$O(N^{\frac{3}{2}})$	$O(N^{\frac{5}{3}})$

I. Symmetric Positive Definite Systems

Solve Ax = b where

- A is symmetric and positive definite
- A has s distinct (positive) eigenvalues

Minimal polynomial:

$$A^{s} + m_{1}A^{s-1} + \dots + m_{s-1}A + m_{s}I = 0$$

SO

$$A^{-1} = -\frac{1}{m_s}A^{s-1} - \frac{m_1}{m_s}A^{s-2} - \dots - \frac{m_{s-1}}{m_s}I$$

$$\hat{\mathbf{x}} = A^{-1}\mathbf{b} \in \mathcal{K}(A, \mathbf{b}, s) \equiv \text{span}\{\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{s-1}\mathbf{b}\}$$

Krylov Subspace

Three equivalent problems

1. solve $A\mathbf{x} = \mathbf{b}$

Three equivalent problems

1. solve $A\mathbf{x} = \mathbf{b}$

2. minimise
$$\Phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b}$$

$$\nabla \Phi(\mathbf{x}) = A \mathbf{x} - \mathbf{b} = \mathbf{0}$$

Three equivalent problems

1. solve $A\mathbf{x} = \mathbf{b}$

2. minimise
$$\Phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b}$$

$$\nabla \Phi(\mathbf{x}) = A \mathbf{x} - \mathbf{b} = \mathbf{0}$$

3. minimise $\|\mathbf{x} - \hat{\mathbf{x}}\|_A$

$$\|\mathbf{v}\|_{A} = \left\{\mathbf{v}^{T} A \mathbf{v}\right\}^{\frac{1}{2}}$$
$$(\mathbf{x} - \hat{\mathbf{x}})^{T} A (\mathbf{x} - \hat{\mathbf{x}}) = \mathbf{b}^{T} A^{-1} \mathbf{b} + 2\Phi(\mathbf{x})$$

Steepest Descent Method

$$\Phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b}$$

At a point x_k , Φ decreases most rapidly in direction

$$-\nabla\Phi(\mathbf{x}_k) = \mathbf{b} - A\mathbf{x}_k = \mathbf{r}_k$$

Value of Φ at point $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{r}_k$ minimised when

$$\alpha_k = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{r}_k^T A \mathbf{r}_k}$$

and

$$\Phi(\mathbf{x}_{k+1}) < \Phi(\mathbf{x}_k)$$

is guaranteed

A Practical SD Example

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

A Practical SD Example

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

$$A = \left[\begin{array}{cc} 9 & 1 \\ 1 & 1 \end{array} \right]$$

Conjugate Gradient Method

Choose new search directions $\{p_0, p_1, ...\}$ with iterates

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{\alpha}{\alpha} \mathbf{p}_k$$

Writing $P_{k+1} \equiv \operatorname{span}\{\mathbf{p}_0,\ldots,\mathbf{p}_k\}$, we require

(i)
$$\mathbf{x}_{k+1} = \min_{\mathbf{x} \in P_{k+1}} \Phi(\mathbf{x})$$

(ii)
$$\min_{\alpha} \Phi(\mathbf{x}_k + \alpha \mathbf{p}_k)$$

QUESTION: can we choose p_k so that x_{k+1} satisfies (i) and (ii) simultaneously?

YES: choose the vectors \mathbf{p}_k to be A-conjugate, i.e.

$$\mathbf{p}_{j}^{T} A \mathbf{p}_{k} = 0, \ j < k$$

Some nice properties:

- \mathbf{x}_k minimises $\Phi(\mathbf{x})$ over all $\mathbf{x} \in P_k$
- $\|\mathbf{x}_k \hat{\mathbf{x}}\|_A \equiv \mathsf{minimum}$
- $\mathbf{r}_k \perp \mathcal{K}(A, \mathbf{r}_0, k)$
- $\mathbf{p}_j^T A \mathbf{p}_k = \mathbf{r}_k^T \mathbf{p}_j = \mathbf{r}_k^T \mathbf{r}_j = 0$ j < k
- $\operatorname{span}\{\mathbf{r}_0,\ldots,\mathbf{r}_{k-1}\}=\operatorname{span}\{\mathbf{p}_0,\ldots,\mathbf{p}_{k-1}\}=\mathcal{K}(A,\mathbf{r}_0,k)$

Conjugate Gradient Method

Hestenes & Stiefel (1952)

choose
$$\mathbf{x}_0$$
 compute $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$ set $\mathbf{p}_0 = \mathbf{r}_0$ for $k = 0$ until convergence do $\alpha_k = \mathbf{r}_k^T \mathbf{r}_k/\mathbf{p}_k^T A\mathbf{p}_k$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k A\mathbf{p}_k$ $\beta_k = \mathbf{r}_{k+1}^T \mathbf{r}_{k+1}/\mathbf{r}_k^T \mathbf{r}_k$ $\mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k$ end do

Finite Termination

CG method constructs iterates

$$\mathbf{x}_k \in \mathbf{x}_0 + \mathsf{span}\{\mathbf{r}_0, A\mathbf{r}_0, \dots, A^{k-1}\mathbf{r}_0\}$$

with properties

- \mathbf{x}_k minimises $\|\mathbf{x}_k \hat{\mathbf{x}}\|_A$
- $\mathbf{r}_k \perp \mathcal{K}(A, \mathbf{r}_0, k)$
- \mathbf{p}_k can be calculated via a three-term recurrence relation

Theorem: The CG method finds $\hat{\mathbf{x}}$ in s steps.

Finite Termination

CG method constructs iterates

$$\mathbf{x}_k \in \mathbf{x}_0 + \mathsf{span}\{\mathbf{r}_0, A\mathbf{r}_0, \dots, A^{k-1}\mathbf{r}_0\}$$

with properties

- \mathbf{x}_k minimises $\|\mathbf{x}_k \hat{\mathbf{x}}\|_A$
- $\mathbf{r}_k \perp \mathcal{K}(A, \mathbf{r}_0, k)$
- \mathbf{p}_k can be calculated via a three-term recurrence relation

Theorem: The CG method finds $\hat{\mathbf{x}}$ in s steps.

Proof: $\hat{\mathbf{x}} \in \mathcal{K}(A, \mathbf{r}_0, s)$ so $\hat{\mathbf{x}} \in P_s$. But $\hat{\mathbf{x}}$ minimises $\Phi(\mathbf{x})$ over $\mathbf{x} \in \mathcal{K}(A, \mathbf{r}_0, s)$ and \mathbf{x}_s minimises $\Phi(\mathbf{x})$ over $\mathbf{x} \in P_s$. Hence $\mathbf{x}_s = \hat{\mathbf{x}}$.

A Practical CG Example

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

A Practical CG Example

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

$$A = \left[\begin{array}{cc} 9 & 1 \\ 1 & 1 \end{array} \right]$$

CG Convergence

$$\mathbf{x}_k \in \mathbf{x}_0 + \mathsf{span}\{\mathbf{r}_0, A\mathbf{r}_0, \dots, A^{k-1}\mathbf{r}_0\}$$

$$\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k = \mathbf{b} - A\left(\mathbf{x}_0 + \sum_{i=1}^k \gamma_i A^{i-1} \mathbf{r}_0\right) = \mathbf{r}_0 - \sum_{i=1}^k \gamma_i A^i \mathbf{r}_0$$

i.e.

$$\mathbf{r}_k = \hat{P}_k(A)\mathbf{r}_0$$

 $\hat{P}_k \in \Pi_k^1 \equiv \text{polynomials of degree } k \text{ with constant term 1}$

$$\|\mathbf{x}_k - \hat{\mathbf{x}}\|_A = \|\mathbf{r}_k\|_{A^{-1}} = \min_{P_k \in \Pi_k^1} \|P_k(A)\mathbf{r}_0\|_{A^{-1}}$$

Expand \mathbf{r}_0 in terms of orthonormal eigenvectors:

$$\mathbf{r}_0 = \sum_{i=1}^n \rho_i \mathbf{v}_i, \qquad \rho_i = \mathbf{v}_i^T \mathbf{r}_0, \qquad A \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

$$\|\mathbf{x}_{k} - \hat{\mathbf{x}}\|_{A} = \min_{P_{k} \in \Pi_{k}^{1}} \|P_{k}(A) \sum_{i=1}^{n} \rho_{i} \mathbf{v}_{i}\|_{A^{-1}}$$

$$= \left\{ \min_{P_{k} \in \Pi_{k}^{1}} \sum_{i=1}^{n} P_{k}(\lambda_{i})^{2} (\rho_{i} \mathbf{v}_{i})^{T} A^{-1} (\rho_{i} \mathbf{v}_{i}) \right\}^{\frac{1}{2}}$$

$$\leq \min_{P_{k} \in \Pi_{k}^{1}} \max_{i} |P_{k}(\lambda_{i})| \left\{ \mathbf{r}_{0}^{T} A^{-1} \mathbf{r}_{0} \right\}^{\frac{1}{2}}$$

$$= \min_{P_{k} \in \Pi_{k}^{1}} \max_{i} |P_{k}(\lambda_{i})| \|\mathbf{r}_{0}\|_{A^{-1}}$$

$$\|\mathbf{x}_k - \hat{\mathbf{x}}\|_A \le \min_{P_k \in \Pi_k^1} \max_i |P_k(\lambda_i)| \|\mathbf{x}_0 - \hat{\mathbf{x}}\|_A$$

Ideal Bound

 P_{\min} is such that

$$M = \max_{i} |P_{\min}(\lambda_i)| = \min_{P_k \in \Pi_k^1} \max_{i} |P_k(\lambda_i)|$$

MINIMAX APPROXIMATION

Theorem: Greenbaum (1979)

This error bound is sharp, i.e. there is always some x_0 such that the discrete minimax bound

$$\|\mathbf{x}_k - \hat{\mathbf{x}}\|_A \le M\|\mathbf{x}_0 - \hat{\mathbf{x}}\|_A$$

is attained.

Practical Bound

Based on knowledge of λ_{max} and λ_{min} alone, bound involves

$$\hat{T}_k(\lambda) = \frac{T_k \left[\frac{\lambda_{\max} + \lambda_{\min} - 2\lambda}{\lambda_{\max} - \lambda_{\min}} \right]}{T_k \left[\frac{\lambda_{\max} + \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} \right]}, \quad \text{condition number} \quad \kappa = \frac{\lambda_{\max}}{\lambda_{\min}}$$

$$M = \max_{i} |\hat{T}_{k}(\lambda_{i})| = \frac{1}{T_{k} \left[\frac{\lambda_{\max} + \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}}\right]} = \frac{1}{T_{k} \left[\frac{\kappa + 1}{\kappa - 1}\right]}$$

TCHEBYSHEV APPROXIMATION

Number of iterations required for convergence is

$$k \simeq \frac{1}{2} \ln \frac{2}{\epsilon} \sqrt{\kappa}$$

CG residual reduction

 512×512 matrices, zero initial guess, random RHS different eigenvalue spectra, same condition number

PDE examples

3D uniform grid with n nodes per dimension

$$r, s, t = 1, \ldots, n$$

7 point Finite Difference Stencil

$$\lambda^{rst} = 1 - \frac{1}{3}\cos\frac{r\pi}{n+1} - \frac{1}{3}\cos\frac{s\pi}{n+1} - \frac{1}{3}\cos\frac{t\pi}{n+1}$$

27 point Finite Element Stencil

$$\lambda^{rst} = 1 - \frac{1}{4} \cos \frac{r\pi}{n+1} \cos \frac{s\pi}{n+1} - \frac{1}{4} \cos \frac{r\pi}{n+1} \cos \frac{t\pi}{n+1}$$
$$-\frac{1}{4} \cos \frac{s\pi}{n+1} \cos \frac{t\pi}{n+1} - \frac{1}{4} \cos \frac{r\pi}{n+1} \cos \frac{s\pi}{n+1} \cos \frac{t\pi}{n+1}$$

7 point Finite Difference Stencil

Tchebyshev error: 0.5662e-1

7 point Finite Difference Stencil

Tchebyshev error: 0.5662e-1

Minimax error: 0.5507e-1

27 point Finite Element Stencil

Tchebyshev error: 0.3918e-2

27 point Finite Element Stencil

Tchebyshev error: 0.3918e-2

Minimax error: 0.1369e-2

CG Method In Practice

- Advantages:
 - involves only matrix-vector and dot products
 - exact solution obtained in at most s iterations

CG Method In Practice

Advantages:

- involves only matrix-vector and dot products
- exact solution obtained in at most s iterations

Problems:

- s may be very large
- rounding error means theoretical properties lost

CG Method In Practice

Advantages:

- involves only matrix-vector and dot products
- exact solution obtained in at most s iterations

Problems:

- s may be very large
- rounding error means theoretical properties lost

Solution:

 reduce the number of CG steps required by applying PRECONDITIONING (more later ...)

2. Symmetric Indefinite Systems

If *A* is symmetric indefinite:

- A has both positive and negative (nonzero) eigenvalues
- $\mathbf{v}^T A \mathbf{v}$ may equal zero for some n-vector $\mathbf{v} \neq 0$

Potential problems with CG:

- A can no longer be used to define a norm
- breakdown may occur: denominator of α_k could be zero (or close to zero)

Conjugate Residual Method

Stiefel (1955)

Solve $A^2\mathbf{x} = A\mathbf{b}$ by CG method

CR method constructs iterates

$$\mathbf{x}_k \in \mathbf{x}_0 + \mathsf{span}\{\mathbf{r}_0, A\mathbf{r}_0, \dots, A^{k-1}\mathbf{r}_0\}$$

with properties

- \mathbf{x}_k minimises $\|\mathbf{x}_k \hat{\mathbf{x}}\|_{A^2} = \|\mathbf{r}_k\|_2$
- \mathbf{p}_k can be calculated via a three-term recurrence relation

CR Algorithm

choose
$$\mathbf{x}_0$$
 compute $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$ set $\mathbf{p}_0 = \mathbf{r}_0$ compute $A\mathbf{p}_0$ for $k = 0$ until convergence do $\alpha_k = \mathbf{r}_k^T \mathbf{r}_k / (A\mathbf{p}_k)^T A\mathbf{p}_k$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k A\mathbf{p}_k$ $\beta_k = \mathbf{r}_{k+1}^T \mathbf{r}_{k+1} / \mathbf{r}_k^T A\mathbf{r}_k$ $\mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k$ $A\mathbf{p}_{k+1} = A\mathbf{r}_{k+1} + \beta_k A\mathbf{p}_k$ end do

can be implemented with one MVM per iteration

Convergence of CR method

$$\|\mathbf{x}_k - \hat{\mathbf{x}}\|_{A^2} \le \min_{P \in \Pi_k^1} \max_i |P(\lambda_i)| \|\mathbf{x}_0 - \hat{\mathbf{x}}\|_{A^2}$$

For symmetric eigenvalue intervals, Tchebyshev bound implies number of iterations required to achieve convergence is $k \propto \kappa$

Alternative Methods

Potential problems with CR:

- breakdown may occur: denominator of α_k could be zero (or close to zero)
- CR algorithm is unstable in this form

Possible solution:

• generate an orthonormal basis for $\kappa(A, \mathbf{r}_0, k)$ in a more stable way, retaining the cheap three-term recurrence

⇒ mathematically equivalent but stable method . . .

MINRES

Paige and Saunders (1975)

Construct iterates

$$\mathbf{x}_k = \mathbf{x}_0 + V_k \mathbf{y}_k$$

satisfying

- \mathbf{x}_k minimises $\|\mathbf{r}_k\|_2$
- $\mathbf{r}_k \perp \operatorname{span}\{A\mathbf{r}_0, A^2\mathbf{r}_0, \dots, A^k\mathbf{r}_0\}$

$$V_k = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$$

 \mathbf{v}_k form an orthonormal basis for $\kappa(A, \mathbf{r}_0, k)$

Use the Lanczos method to find v_k .

Lanczos Method

Lanczos (1950)

Three-term recurrence:

$$\beta_{j+1}\mathbf{v}_{j+1} = A\mathbf{v}_j - \alpha_j\mathbf{v}_j - \beta_j\mathbf{v}_{j-1}, \quad \alpha_j = \mathbf{v}_j^T A\mathbf{v}_j, \ \mathbf{v}_1 = \frac{\mathbf{r}_0}{\beta_1}, \ \beta_1 = \|\mathbf{r}_0\|_2$$

$$T_k \equiv \mathtt{tri}[\beta_j, \alpha_j, \beta_{j+1}]$$

extreme eigenvalues of $T_k \rightarrow$ extreme eigenvalues of A

$$\hat{T}_k \equiv T_k \quad \text{first } k \text{ rows}$$
 $[0, \dots, 0, \beta_{k+1}] \quad \text{last row}$

$$AV_k = V_{k+1}\hat{T}_k$$

MINRES ideas

• use Lanczos method to produce tridiagonal matrix \hat{T}_k

$$\mathbf{r}_{k} = \mathbf{b} - A(\mathbf{x}_{0} + V_{k}\mathbf{y}_{k})$$

$$= \mathbf{r}_{0} - V_{k+1}\hat{T}_{k}\mathbf{y}_{k}$$

$$= V_{k+1}(\beta_{1}\mathbf{e}_{1} - \hat{T}_{k}\mathbf{y}_{k})$$

minimise
$$\|\mathbf{r}_k\|_2 \equiv \text{minimise } \|\beta_1 \mathbf{e}_1 - \hat{T}_k \mathbf{y}_k\|_2$$

• least squares problem for y_k :

Givens rotations, QR factorisation of \hat{T}_k

MINRES Algorithm

Fischer (1994)

choose
$$\mathbf{x}_0$$
 compute $\hat{\mathbf{v}}_0 = \mathbf{b} - A\mathbf{x}_0$ initialise set $\beta_0 = \|\hat{\mathbf{v}}_0\|_2, \ \eta_0 = \beta_0$ set $c_0 = 1, \ c_{-1} = 1, \ s_0 = 0, \ s_{-1} = 0$

for k = 0 until convergence do

$$\begin{aligned} \mathbf{v}_{k+1} &= \hat{\mathbf{v}}_k/\beta_k\\ \alpha_{k+1} &= \mathbf{v}_{k+1}^T A \mathbf{v}_{k+1}\\ \hat{\mathbf{v}}_{k+1} &= (A - \alpha_{k+1} I) \mathbf{v}_{k+1} - \beta_k \mathbf{v}_k\\ \beta_{k+1} &= \|\hat{\mathbf{v}}_0\|_2 \end{aligned} \qquad \text{Lanczos}$$

$$\begin{split} \hat{r_1} &= c_k \alpha_{k+1} - c_{k-1} s_k \beta_k \\ r_1 &= \sqrt{\hat{r_1}^2 + \beta_{k+1}^2} & \mathsf{QR} \\ r_2 &= s_k \alpha_{k+1} + c_{k-1} c_k \beta_k \\ r_3 &= s_{k-1} \beta_k \end{split}$$

$$c_{k+1}=\hat{r_1}/r_1$$
 Givens
$$s_{k+1}=\beta_{k+1}/r_1$$

$$\begin{aligned} \mathbf{w}_{k+1} &= (\mathbf{v}_{k+1} - r_2 \mathbf{w}_k - r_3 \mathbf{w}_{k-1})/r_1 \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + c \eta_k \mathbf{w} \end{aligned} \quad \text{update} \\ \eta_{k+1} &= -s \eta_k \end{aligned}$$

end do

Alternative methods

SYMMLQ

Paige and Saunders (1975)

Also has a strong Lanczos connection, but minimises the 2-norm of the error rather than the residual

ORTHODIR

Fletcher (1976)

ORTHOMIN/ORTHODIR

Chandra et al. (1977)

Equivalent to MINRES, closer in implementation to CG/CR

- (i) minimisation property
- (ii) fixed length recurrence

- (i) minimisation property
- (ii) fixed length recurrence
- Normal Equations solve $A^T A \mathbf{x} = A^T \mathbf{b}$ using CG

- (i) minimisation property
- (ii) fixed length recurrence
- Normal Equations solve $A^T A \mathbf{x} = A^T \mathbf{b}$ using CG
- Minimum Residual Methods retain (i), sacrifice (ii)

- (i) minimisation property
- (ii) fixed length recurrence
- Normal Equations solve $A^T A \mathbf{x} = A^T \mathbf{b}$ using CG
- Minimum Residual Methods retain (i), sacrifice (ii)
- Biorthogonalisation Methods retain (ii), sacrifice (i)

CGNR

Hestenes and Stiefel (1952)

Apply CG to normal equations

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Construct iterates

$$\mathbf{x}_k \in \mathbf{x}_0 + \operatorname{span}\{A^T\mathbf{r}_0, (A^TA)A^T\mathbf{r}_0, \dots, (A^TA)^{k-1}A^T\mathbf{r}_0\}$$

satisfying

- \mathbf{x}_k minimises $\|\mathbf{x}_k \hat{\mathbf{x}}\|_{A^TA} = \|\mathbf{r}_k\|_2$
- $\mathbf{r}_k \perp \{AA^T\mathbf{r}_0, (AA^T)^2\mathbf{r}_0, \dots, (AA^T)^k\mathbf{r}_0\}$

CGNR Convergence

$$\|\mathbf{r}_k\|_2 \le \min_{p \in \Pi_k^1} \max_{z \in \Sigma^2} |p(z)| \|\mathbf{r}_0\|$$

where Σ contains the singular values of A

number of iterations required for convergence is

$$k \propto \kappa$$

where
$$\kappa = \kappa(A^TA) = [\kappa(A)]^2$$

BUT ... recall that this may be very pessimistic

Generalised Minimal Residual Method (GMRES)

Saad and Schultz (1986)

Construct iterates

$$\mathbf{x}_k = \mathbf{x}_0 + V_k \mathbf{y}_k$$

satisfying

- \mathbf{x}_k minimises $\|\mathbf{r}_k\|_2$
- $\mathbf{r}_k \perp \operatorname{span}\{A\mathbf{r}_0, A^2\mathbf{r}_0, \dots, A^k\mathbf{r}_0\}$ shifted Krylov space

$$V_k = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$$

 \mathbf{v}_k form an orthonormal basis for $\kappa(A, \mathbf{r}_0, k)$

Use the Arnoldi method to find \mathbf{v}_k

Arnoldi Method

Arnoldi (1951)

recurrence relation:

$$\mathbf{v}_{j+1} = \frac{\mathbf{w}_{j+1}}{\|\mathbf{w}_{j+1}\|_2}, \quad \mathbf{w}_{j+1} = A\mathbf{v}_j - \sum_{i=1}^{j} h_{i,j}\mathbf{v}_j, \quad h_{i,j} = \mathbf{v}_i^T A\mathbf{v}_j$$

$$H_k \equiv \text{upper Hessenberg}, (h_{i,j} = 0, i > j + 1)$$

extreme eigenvalues of $H_k \rightarrow$ extreme eigenvalues of A

$$\hat{H}_k \equiv H_k \quad \text{first } k \text{ rows}$$
 $[0, \dots, 0, h_{k,k+1}] \quad \text{last row}$

$$AV_k = V_{k+1}\hat{H}_k$$

GMRES

• use Arnoldi method to produce upper Hessenberg matrix \hat{H}_k

minimise
$$\|\mathbf{r}_k\|_2 \equiv \text{minimise } \|\beta_1\mathbf{e}_1 - \hat{H}_k\mathbf{y}_k\|_2$$

• least squares problem for y_k :

Givens rotations, QR factorisation of \hat{H}_k (modified Gram-Schmidt)

 alternative implementations available e.g. based on Householder orthogonalisation: extra work but better numerical properties

Residual norms satisfy

$$\|\mathbf{r}_k\|_2 = \min_{p_k \in \Pi_k^1} \|p_k(A)\mathbf{r}_0\|_2.$$

Residual norms satisfy

$$\|\mathbf{r}_k\|_2 = \min_{p_k \in \Pi_k^1} \|p_k(A)\mathbf{r}_0\|_2.$$

• Exact solution $\hat{\mathbf{x}}$ obtained in at most n steps.

Residual norms satisfy

$$\|\mathbf{r}_k\|_2 = \min_{p_k \in \Pi_k^1} \|p_k(A)\mathbf{r}_0\|_2.$$

- Exact solution $\hat{\mathbf{x}}$ obtained in at most n steps.
- If A is diagonalisable (i.e. $A = X\Lambda X^{-1}$) then

$$\|\mathbf{r}_k\|_2 \le \|X\|_2 \|X^{-1}\|_2 \min_{p_k \in \Pi_k^1} \max_{\lambda_j} |p_k(\lambda_j)| \|\mathbf{r}_0\|_2.$$

Residual norms satisfy

$$\|\mathbf{r}_k\|_2 = \min_{p_k \in \Pi_k^1} \|p_k(A)\mathbf{r}_0\|_2.$$

- Exact solution $\hat{\mathbf{x}}$ obtained in at most n steps.
- If A is diagonalisable (i.e. $A = X\Lambda X^{-1}$) then

$$\|\mathbf{r}_k\|_2 \le \|X\|_2 \|X^{-1}\|_2 \min_{p_k \in \Pi_k^1} \max_{\lambda_j} |p_k(\lambda_j)| \|\mathbf{r}_0\|_2.$$

 If S and R are the symmetric and skew-symmetric parts of A, and S is positive definite, then

$$\|\mathbf{r}_k\|_2 \le \left(1 - \frac{\lambda_{\min}(S)^2}{\lambda_{\min}(S)\lambda_{\max}(S) + \rho(R)^2}\right)^{\frac{k}{2}} \|\mathbf{r}_0\|_2.$$

Some Variations...

Restarted GMRES

- restart GMRES every m steps
- no simple rule for choosing m: convergence speed may vary drastically with different values
- some convergence analysis available

Simpler GMRES Walker and Zhou (1994)

- calculate orthonormal basis for $A\kappa(A, \mathbf{b}, k)$ directly
- may be useful for restarting with small m

Biorthogonalisation Methods

Nonsymmetric Lanczos Method

Generates two sets of biorthogonal vectors v_i , w_i

$$\hat{\mathbf{v}}_{j+1} = A\mathbf{v}_j - \delta_j \mathbf{v}_j - \gamma_j \mathbf{v}_{j-1}, \quad \hat{\mathbf{w}}_{j+1} = A^T \mathbf{w}_j - \delta_j \mathbf{w}_j - \eta_j \mathbf{w}_{j-1}$$

$$\mathbf{v}_{j+1} = \eta_{j+1} \hat{\mathbf{v}}_j, \quad \mathbf{w}_{j+1} = \gamma_{j+1} \hat{\mathbf{w}}_{j+1}$$

$$\operatorname{span}\{\mathbf{v}_i\} = \operatorname{span}\{\mathbf{v}_0, A\mathbf{v}_0, \dots, A^{k-1}\mathbf{v}_0\}$$

$$\operatorname{span}\{\mathbf{w}_i\} = \operatorname{span}\{\mathbf{w}_0, A^T \mathbf{w}_0, \dots, (A^T)^{k-1} \mathbf{w}_0\}$$

$$AV_k = V_k G_k + [0 \dots 0 \ \eta_{k+1} \mathbf{v}_k], \quad A^T W_k = W_k G_k^T + [0 \dots 0 \ \gamma_{k+1} \mathbf{w}_k]$$
$$W_k^T V_k = I_k, \quad W_k^T A V_k = G_k, \quad V_k^T A^T W_k = G_k^T$$

where

$$G_k \equiv \mathtt{tri}[\gamma_j, \delta_j, \eta_{j+1}]$$

Biconjugate Gradient Method (BiCG)

Lanczos (1952), Fletcher (1976) choose
$$\mathbf{x}_0$$
, compute $\mathbf{p}_0 = \mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$ choose $\hat{\mathbf{r}}_0$ set $\hat{\mathbf{p}}_0 = \hat{\mathbf{r}}_0$, $\rho_0 = \hat{\mathbf{r}}_0^T\mathbf{r}_0$ for $k = 1, 2, \ldots$ until convergence do
$$\sigma_{k-1} = \hat{\mathbf{p}}_{k-1}^TA\mathbf{p}_{k-1}$$

$$\alpha_{k-1} = \rho_{k-1}/\sigma_{k-1}$$

$$\mathbf{x}_k = \mathbf{x}_{k-1} + \alpha_{k-1}\mathbf{p}_{k-1}$$

$$\mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1}A\mathbf{p}_{k-1}$$

$$\hat{\mathbf{r}}_k = \hat{\mathbf{r}}_{k-1} - \alpha_{k-1}A^T\hat{\mathbf{p}}_{k-1}$$

$$\rho_k = \hat{\mathbf{r}}_k^T\mathbf{r}_k$$

$$\beta_{k-1} = \rho_k/\rho_{k-1}$$

$$\mathbf{p}_k = \mathbf{r}_k + \beta_k\mathbf{p}_{k-1}$$

$$\hat{\mathbf{p}}_k = \hat{\mathbf{r}}_k + \beta_k\hat{\mathbf{p}}_{k-1}$$
 end

BiCG Theory

Construct iterates

$$\mathbf{x}_k = \mathbf{x}_0 + \operatorname{span}\{\mathbf{r}_0, A\mathbf{r}_0, \dots, A^{k-1}\mathbf{r}_0\}$$

satisfying

- $\mathbf{r}_k \perp \operatorname{span}\{\hat{\mathbf{r}}_0, A\hat{\mathbf{r}}_0, \dots, A^{k-1}\hat{\mathbf{r}}_0\}$
- three-term recurrence

Potential problems:

- wild oscillations in $\|\mathbf{r}_k\|_2$
- possible breakdowns:

$$\hat{\mathbf{p}}_{k-1}^T A \mathbf{p}_{k-1} = 0, \quad \hat{\mathbf{r}}_{k-1}^T \mathbf{r}_{k-1} = 0$$

when $\hat{\bf r}_{k-1} \neq 0$, ${\bf r}_{k-1} \neq 0$.

Look-ahead Lanczos

Possible breakdown: $\mathbf{v}_k^T \mathbf{w}_k = 0, \ \mathbf{v}_k \neq 0, \ \mathbf{w}_k \neq 0$

Problem: cannot scale to find Lanczos vectors corresponding to basis vectors $A^k \mathbf{v}_0$ and $(A^T)^k \mathbf{w}_0$

Solution: relax biorthogonality condition for l steps (may be fulfilled again for higher powers of A and A^T)

i.e. still satisfy

$$AV_k = V_k G_k + [0 \dots 0 \ \eta_{k+1} \mathbf{v}_k], \quad A^T W_k = W_k G_k^T + [0 \dots 0 \ \gamma_{k+1} \mathbf{w}_k]$$

but not $W_k^T V_k = I_k$ for l steps

 G_k is now upper Hessenberg block tridiagonal

Quasi-Minimal Residual Method (QMR)

Freund and Nachtigal (1991)

Construct iterates

$$\mathbf{x}_k = \mathbf{x}_0 + V_k \mathbf{y}_k$$

where

$$V_k = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$$

 \mathbf{v}_k form a basis for $\kappa(A, \mathbf{r}_0, k)$

- nonsymmetric Lanczos: V_k is not unitary
- too expensive to minimise $\|\mathbf{r}_k\|_2 = \|V_{k+1}(\beta_1\mathbf{e}_1 G_k\mathbf{y}_k)\|_2$
- quasi-minimal: minimise $\|\beta_1 \mathbf{e}_1 G_k \mathbf{y}_k\|_2$
- avoid Lanczos breakdown: do l steps of "look-ahead" Lanczos

- G_k is upper Hessenberg: QR factorisation via Givens rotations
- if A is symmetric, QMR \equiv MINRES
- incurable breakdown (unlikely due to round-off)
- convergence results (X is a matrix of eigenvectors of G_k):

$$\|\mathbf{r}_k\|_2 \le \|V_{k+1}\|_2 \|X\|_2 \|X^{-1}\|_2 \min_{p_k \in \Pi_k^1} \max_{\lambda_j} |p_k(\lambda_j)| \|\mathbf{r}_0\|_2$$

$$\|\mathbf{r}_k^{QMR}\|_2 \le \kappa(V_{k+1}) \|\mathbf{r}_k^{GMRES}\|_2$$

Transpose-free Methods

Transpose-Free QMR (TFQMR)

Freund (1991), Chan et al. (1991), Freund and Szeto (1991)

 \bullet A^T can be eliminated by choosing a suitable starting vector

Transpose-free Methods

Transpose-Free QMR (TFQMR)

Freund (1991), Chan et al. (1991), Freund and Szeto (1991)

ullet A^T can be eliminated by choosing a suitable starting vector

Conjugate Gradients Squared (CGS) Sonneveld (1989)

Construct iterates

$$\mathbf{x}_{2k} = \mathbf{x}_0 + \kappa(A, \mathbf{r}_0, 2k)$$

where
$$\mathbf{r}_{2k}^{CGS} = (p_k^{BiCG}(A))^2 \mathbf{r}_0$$

- magnifies erratic convergence of BiCG
- may diverge when BiCG converges

BiCGSTAB

van der Vorst (1990)

Construct iterates

$$\mathbf{x}_{2k} = \mathbf{x}_0 + \kappa(A, \mathbf{r}_0, 2k)$$

where
$$\mathbf{r}_{2k}^{BiCGSTAB} = p_k^{BiCG}(A)\chi_k(A)\mathbf{r}_0$$

• polynomial $\chi_k \in \Pi^1_k$ updated with a linear factor at each step

$$\chi_k(\lambda) = (1 - \mu_k \lambda) \chi_{k-1}(\lambda)$$

- free parameter μ_k determined via a local steepest descents problem
- convergence typically much smoother than CGS

BiCGSTAB

van der Vorst (1990)

Construct iterates

$$\mathbf{x}_{2k} = \mathbf{x}_0 + \kappa(A, \mathbf{r}_0, 2k)$$

where
$$\mathbf{r}_{2k}^{BiCGSTAB} = p_k^{BiCG}(A)\chi_k(A)\mathbf{r}_0$$

• polynomial $\chi_k \in \Pi^1_k$ updated with a linear factor at each step

$$\chi_k(\lambda) = (1 - \mu_k \lambda) \chi_{k-1}(\lambda)$$

- free parameter μ_k determined via a local steepest descents problem
- convergence typically much smoother than CGS

BiCGStab2, Gutnecht (1993)
BiCGstab(l), Sleijpen and Fokkema (1993)

Example: Calculation of Invariant Tori

$$a(X,Y)\frac{\partial s}{\partial X} + b(X,Y)\frac{\partial s}{\partial Y} + c(X,Y)s = \psi$$

Preconditioning

Idea: instead of solving Ax = b, solve

$$M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$$

for some preconditioner M

Choose M so that

- (i) eigenvalues of $M^{-1}A$ are well clustered
- (ii) $M\mathbf{u} = \mathbf{r}$ is easily solved

Preconditioning

Idea: instead of solving Ax = b, solve

$$M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$$

for some preconditioner M

Choose M so that

- (i) eigenvalues of $M^{-1}A$ are well clustered
- (ii) $M\mathbf{u} = \mathbf{r}$ is easily solved

Extreme cases:

- M = A: good for (i), bad for (ii)
- M = I: good for (ii), bad for (i)

Practical Implementation

- preconditioner $M = M_1 M_2$
- solve $M\mathbf{u} = \mathbf{r}$, $M^T\mathbf{u} = \mathbf{r}$
- new system

$$[M_1^{-1}AM_2^{-1}][M_2\mathbf{x}] = M_1^{-1}\mathbf{b} \Rightarrow \tilde{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$$

• $\mathbf{x}_k = M_2^{-1} \tilde{\mathbf{x}}_k, \ \mathbf{r}_k = M_1 \tilde{\mathbf{r}}_k$

central: as above

left: $M_2 = I$

right: $M_1 = I$

symmetric positive definite: if $M_2 = M_1^T$, resulting system is also symmetric positive definite

symmetric indefinite: M must be symmetric positive definite for MINRES; M can be indefinite with QMR

nonsymmetric:

central: analysis may be easier

• left: if $M^{-1}A\simeq I$, $\tilde{\mathbf{r}}_k=M^{-1}A(\mathbf{x}_k-\hat{\mathbf{x}})\simeq\mathbf{x}_k-\hat{\mathbf{x}}$, i.e.

$$\|\tilde{\mathbf{r}}_k\|_2 \simeq \|\mathbf{x}_k - \hat{\mathbf{x}}\|_2$$

right: minimise in correct norm, i.e.

$$\|\tilde{\mathbf{r}}_k\|_2 = \|\mathbf{r}_k\|_2$$

Preconditioned Conjugate Gradient Method

Concus, Golub & O'Leary (1976)

choose
$$\mathbf{x}_0$$
 compute $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$ solve $M\hat{\mathbf{r}}_0 = \mathbf{r}_0$ set $\mathbf{p}_0 = \mathbf{r}_0$ for $k = 0$ until convergence do $\alpha_k = \mathbf{r}_k^T \hat{\mathbf{r}}_k/\mathbf{p}_k^T A\mathbf{p}_k$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$ $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k A\mathbf{p}_k$ solve $M\hat{\mathbf{r}}_{k+1} = \mathbf{r}_{k+1}/\mathbf{r}_k^T \hat{\mathbf{r}}_k$ $\mathbf{p}_{k+1} = \hat{\mathbf{r}}_{k+1}/\mathbf{r}_k^T \hat{\mathbf{r}}_k$ end do

Connection with Stationary Methods

matrix splitting
$$A = M - N$$

Iterates

$$\mathbf{x}_{k+1} = M^{-1}N\mathbf{x}_k + M^{-1}\mathbf{b} = \mathbf{x}_k + M^{-1}\mathbf{r}_k$$

where the error satisfies

$$\mathbf{x}_k - \hat{\mathbf{x}} = (I - M^{-1}A)^k (\mathbf{x}_0 - \hat{\mathbf{x}}).$$

 $(I - M^{-1}A)$ is small \Rightarrow rapid convergence

good preconditioner = good splitting operator

Introduce iteration parameter α :

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha M^{-1} \mathbf{r}_k$$

with error

$$\mathbf{x}_k - \hat{\mathbf{x}} = (I - \alpha M^{-1} A)^k (\mathbf{x}_0 - \hat{\mathbf{x}}).$$

Vary α from step to step: error becomes

$$\mathbf{x}_k - \hat{\mathbf{x}} = (I - \alpha_{k-1} M^{-1} A) \dots (I - \alpha_0 M^{-1} A) (\mathbf{x}_0 - \hat{\mathbf{x}})$$

polynomial of degree k with constant term 1

M = I gives CG method

Common Matrix Splittings

$$A = M - N,$$
 $A = D + L + U$

Richardson: A = I - (I - A)

Jacobi:
$$A = D - [-(L + L^T)]$$

Gauss-Seidel: $A = (D+L) - (-L^T)$

SOR:
$$A = M_{\omega} - N_{\omega}$$

= $\frac{1}{\omega}(D + \omega L) - \frac{1}{\omega}[(1 - \omega)D - \omega L^{T}]$

SSOR:
$$A = \frac{\omega}{2-\omega}(M_{\omega}D^{-1}M_{\omega}^T - N_{\omega}D^{-1}N_{\omega}^T)$$

Incomplete LU Factorisation

Step 1: select set $J = \{(i, j) : 1 \le i, j \le N\}$ of index pairs (including all (i, i))

Step 2: perform LU factorisation and restrict all non-zeros to entries in J

$$A = LU - R = M - R$$

$$r_{ij} = 0, \ (i,j) \in J, \qquad r_{ii} = \alpha \sum_{i \neq j} r_{ij}$$

- ILU factorisations do not always exist
- very sequential in nature
- block matrix analogues

Parameterised Incomplete Factorisation

```
for i = 1, \ldots, n do
        for j = 1, \ldots, n do
                 s_{ij} = a_{ij} - \sum_{k=1}^{\min(i,j)-1} l_{ik} u_{kj}
                 if (i, j) \in J then
                         if (i \geq j) then l_{ij} = s_{ij}
                         if (i < j) then u_{ij} = s_{ij}
                 else
                         l_{ii} = l_{ii} + \alpha s_{ij}
                 endif
        enddo
        u_{ii}=1
        for j = i + 1, \ldots, n do
                u_{ij} = u_{ij}/l_{ii}
        enddo
enddo
```

Some Variations on ILU

• $J \equiv$ nonzero entries in A

 $\alpha = 0$: ILU, Meijerink and van der Vorst (1977)

 $\alpha = 1$: MILU, Gustafsson (1978)

- ILU(N), MILU(N)
 J includes N extra diagonals
- ILU with Drop Tolerance, Munksgaard (1980) Drop all entries of fill-in with absolute value less than $\tau \in [10^{-4}, 10^{-2}]$.
- Shifted ILU, Manteuffel (1978,1980)
 Make A more diagonally dominant by factorising

$$\bar{A} = D + \frac{1}{1+\gamma}C.$$

Sample Eigenvalue Plots

seven point finite difference stencil

Incomplete Cholesky

Modified Incomplete Cholesky

Polynomial Preconditioning

Apply CG to

$$p(B^{-1}A)B^{-1}A\mathbf{x} = p(B^{-1}A)B^{-1}\mathbf{b}$$

i.e. use

$$M^{-1} = p(B^{-1}A)B^{-1}$$

so that $\mathbf{u} = M^{-1}\mathbf{r}$ is easily solved

Choose B to be a matrix splitting from stationary methods e.g.

- B from SSOR gives m-step CG method (Adams (1985))
- B = I from Richardson (Ashby (1987))

Grid-based Preconditioners

hierarchical basis preconditioners
 Yserentant (1986), Ong (1989)

$$M = S^{-T}S^{-1}$$

S is the linear transformation from standard to hierarchical finite element basis

- multigrid methods
 Hackbusch (1985)
 solve on a series of coarse to fine grids algrbraic multigrid
- domain decomposition
 Bramble, Pasciak and Schatz (1986)
 different preconditioners for different parts of the grid

Element-By-Element Method

Hughes, Levit & Winget (1983)

- assemble one element matrix A_e into G_e
- form $\bar{G}_e = I + D^{-\frac{1}{2}}(G_e D_e)D^{-\frac{1}{2}}$
- factorise $\bar{G}_e = \mathcal{L}_e \mathcal{D}_e \mathcal{L}_e^T$ (\mathcal{L}_e is the assembly of lower \triangle factor of related \bar{A}_e)
- preconditioner is

$$M = D^{\frac{1}{2}} \left[\prod_{e=1}^{E} \mathcal{L}_e \right] \left[\prod_{e=1}^{E} \mathcal{D}_e \right] \left[\prod_{e=E}^{1} \mathcal{L}_e^T \right] D^{\frac{1}{2}}$$

Element Factorisation Method

Kaasschieter (1989)

- factor element matrices $A_e = (D_e + L_e)D_e^+(D_e + L_e)^T$ (D_e^+ is the generalised inverse of D_e)
- number without maximal global node numbers (using e.g. Reverse Cuthill-McKee numbering)
- form $\mathcal{L} = L^T[L_e]L$, $\mathcal{D} = L^T[D_e]L$
- preconditioner is

$$M = (\mathcal{D} + \mathcal{L})\mathcal{D}^{-1}(\mathcal{D} + \mathcal{L}^T)$$

• standard tests: $\|\mathbf{r}_k\|_2 \leq \epsilon, \quad \frac{\|\mathbf{r}_k\|_2}{\|\mathbf{r}_0\|_2} \leq \epsilon$

- standard tests: $\|\mathbf{r}_k\|_2 \le \epsilon, \quad \frac{\|\mathbf{r}_k\|_2}{\|\mathbf{r}_0\|_2} \le \epsilon$
- with left preconditioning: $\|M_1\mathbf{r}_k\|_2 \le \epsilon, \quad \frac{\|M_1\mathbf{r}_k\|_2}{\|M_1\mathbf{r}_0\|_2} \le \epsilon$

- standard tests: $\|\mathbf{r}_k\|_2 \leq \epsilon, \quad \frac{\|\mathbf{r}_k\|_2}{\|\mathbf{r}_0\|_2} \leq \epsilon$
- with left preconditioning: $||M_1\mathbf{r}_k||_2 \le \epsilon, \quad \frac{||M_1\mathbf{r}_k||_2}{||M_1\mathbf{r}_0||_2} \le \epsilon$
- condition number dependent (e.g. Ashby et al. (1990)):

$$\frac{\|\mathbf{x}_{k} - \hat{\mathbf{x}}\|_{2}}{\|\mathbf{x}_{0} - \hat{\mathbf{x}}\|_{2}} \le \kappa(A) \frac{\|\mathbf{r}_{k}\|_{2}}{\|\mathbf{r}_{0}\|_{2}} \le \epsilon, \quad \frac{\|\mathbf{x}_{k} - \hat{\mathbf{x}}\|_{A}}{\|\mathbf{x}_{0} - \hat{\mathbf{x}}\|_{A}} \le \left(\kappa_{A}(A) \left|\frac{\gamma_{k}}{\gamma_{0}}\right|\right)^{\frac{1}{2}}$$

- standard tests: $\|\mathbf{r}_k\|_2 \le \epsilon, \quad \frac{\|\mathbf{r}_k\|_2}{\|\mathbf{r}_0\|_2} \le \epsilon$
- with left preconditioning: $\|M_1\mathbf{r}_k\|_2 \le \epsilon, \quad \frac{\|M_1\mathbf{r}_k\|_2}{\|M_1\mathbf{r}_0\|_2} \le \epsilon$
- condition number dependent (e.g. Ashby et al. (1990)):

$$\frac{\|\mathbf{x}_{k} - \hat{\mathbf{x}}\|_{2}}{\|\mathbf{x}_{0} - \hat{\mathbf{x}}\|_{2}} \le \kappa(A) \frac{\|\mathbf{r}_{k}\|_{2}}{\|\mathbf{r}_{0}\|_{2}} \le \epsilon, \quad \frac{\|\mathbf{x}_{k} - \hat{\mathbf{x}}\|_{A}}{\|\mathbf{x}_{0} - \hat{\mathbf{x}}\|_{A}} \le \left(\kappa_{A}(A) \left|\frac{\gamma_{k}}{\gamma_{0}}\right|\right)^{\frac{1}{2}}$$

backward error analysis (e.g. Arioli et al. (1991)):

$$\frac{\|\mathbf{r}_k\|_{\infty}}{\|A\|_{\infty}\|\mathbf{x}_k\|_1 + \|\mathbf{r}_0\|_{\infty}} \le \epsilon$$

Software Packages

Available from netlib:

by WWW:

http://www.netlib.org/master/expanded_liblist.html

- by email: mail netlib@netlib.org with send index from linalg
- by anonymous ftp:

ftp.netlib.org

Some Examples

Netlib:

itpack Young and Kincaid FORTRAN

slap Seager and Greenbaum FORTRAN

linalg/laspack Skalicky C

linalg/qmrpack Freund and Nachtigal FORTRAN

linalg/templates Barrett et al. C, FORTRAN,

MATLAB

linalg/cg Eijkhout PVM

Also:

cgcode Ashby et al., LLNL FORTRAN

AZTEO Taile and L

AZTEC Tuminaro et al. nCUBE2, IBM SP2,

Sandia National Lab. Intel Paragon, MPI

Some Relevant Books

- Templates for the Solution of Linear Systems...,
 Barrett et al., SIAM (1994)
- Iterative Solution Methods, Axelsson, CUP (1996)
- Iterative Methods for Sparse Linear Systems, Saad, PWS (1996)
- Iterative Methods for Solving Linear Systems, Greenbaum, SIAM (1997)
- Computer Solution of Large Linear Systems, Meurant, North-Holland (1999)
- Iterative Krylov Methods for Large Linear Systems, van der Vorst, CUP (2003)

Some Summary Papers

- Iterative Solution of Linear Systems, Freund, Golub and Nachtigal, Acta Numerica (1991)
- Developments and Trends in the Parallel Solution of Linear Systems, Duff and van der Vorst, Parallel Computing 25 (1999)
- Numerical Progress in Eigenvalue Computation in the 20th Century, Golub and van der Vorst, J. Comp. and Appl. Math. 123 (2000)
- Iterative Solution of Linear Systems in the 20th Century, Saad and van der Vorst, J. Comp. and Appl. Math. 123 (2000)
- Preconditioning Techniques for Large Linear Systems:
 A Survey, Benzi, J. Comput. Phys. (2003)

Summary

- symmetric positive definite CG
- symmetric indefinite CR, MINRES, SYMMLQ
- nonsymmetric
 - normal equations

CGNR

minimisation

GMRES, GMRES(m)

biorthogonalisation
 BiCG, CGS, BiCGSTAB, BiCGstab(l), QMR

Summary

- symmetric positive definite CG
- symmetric indefinite CR, MINRES, SYMMLQ
- nonsymmetric
 - normal equations

CGNR

minimisation

GMRES, GMRES(m)

biorthogonalisation
 BiCG, CGS, BiCGSTAB, BiCGstab(l), QMR

PRECONDITION WISELY!