

中华人民共和国国家标准

GB 17740—2017 代替 GB 17740—1999

地震震级的规定

General ruler for earthquake magnitude

2017-05-12 发布 2017-12-01 实施

中华人民共和国国家质量监督检验检疫总局 皮 布 田 国 家 标 准 化 管 理 委 员 会

目 次

前言		\coprod
引言		IV
1 范	围	1
2 术	语和定义	1
3 测	定方法	3
4 使	用规定	5
附录 /	A (规范性附录) 地方性震级量规函数表	7
附录 I	B(规范性附录) 地震仪器参数与传递函数 ······	10
附录(C(规范性附录) 不同震中距选用地震面波周期值 ······	12
附录 I	D (规范性附录) $Q(\Delta,h)$ 值表 ···································	13
参考文	文献	16

Ι

前 言

本标准的第2章和 4.2.2 中的 c) 为推荐性的,其余为强制性的。

- 本标准按照 GB/T 1.1-2009 给出的规则起草。
- 本标准代替 GB 17740-1999《地震震级的规定》。
- 本标准与 GB 17740-1999 相比主要技术内容变化如下:
- ——增加了 16 条术语和定义:"地震""震源""震中""震中位置""震源深度""浅源地震""中源地震" "深源地震""地震体波""地震矩""地方性震级""面波震级""体波震级""矩震级""质点运动位 移"和"地震速报";
- ——修改了3条术语的定义:"质点运动""质点运动速度"和"量规函数";
- ——删除了1条术语的定义:"地动位移";
- 一一增加了地方性震级 $M_{\rm L}$ 、短周期体波震级 $m_{\rm b}$ 、宽频带体波震级 $m_{\rm B(BB)}$ 、宽频带面波震级 $M_{\rm S(BB)}$ 和矩震级 $M_{\rm W}$ 的测定方法:
- ——修改了地震震级的使用规定。
- 本标准由中国地震局提出。
- 本标准由全国地震标准化技术委员会(SAC/TC 225)归口。
- 本标准起草单位:中国地震局地球物理研究所、中国地震台网中心、国家海洋环境预报中心。
- 本标准主要起草人:刘瑞丰、陈运泰、许绍燮、任枭、徐志国、薛峰、冯义钧、郑秀芬、杨辉、王丽艳、王晓欣、邹立晔、陈宏峰、张立文、任克新、孙丽、韩雪君、和锐。
 - 本标准所代替标准的历次版本发布情况为:
 - ——GB 17740—1999。

引 言

GB 17740—1999 自实施以来,规范了地震震级的测定方法和使用规定,对地震监测预报、震害防御、应急救援等防震减灾相关工作发挥了重要作用,取得了良好的科学效益和社会效益。

修订 GB 17740-1999 的主要原因是:

- ——经过十几年的发展,我国的地震观测系统实现了数字化和网络化的历史性突破,到 2007 年底,我国正式运行的所有地震台站都是数字化的台站,仪器特性、数据传输方式、数据分析处理方式、震级测定的时效性都发生了根本的变化;
- ——GB 17740—1999 实施以来,我国已经积累了大量的地震观测资料,在地震震级测定方面有了新的认识;
- ——国际上在震级测定方法和发布规则上取得了重要进展,并逐步得到应用。

地震震级的规定

1 范围

本标准规定了地震震级的测定方法和使用规定。

本标准适用于地震监测、地震应急、信息发布、科学普及、新闻报道等与地震震级有关的工作。

本标准不适用于科学研究所使用其他类型的震级。

2 术语和定义

下列术语和定义适用于本文件。

2.1

地震 earthquake

大地震动。包括天然地震(构造地震、火山地震、陷落地震)、诱发地震(矿山采掘活动、水库蓄水等引发的地震)和人工地震(爆破、核爆炸、物体坠落等产生的地震)。一般指天然地震中的构造地震。

注:改写 GB/T 18207.1-2008,定义 3.1。

2.2

震源 earthquake source; seismic source

产生地震的源。

「GB/T 18207.1─2008, 定义 3.2〕

2.3

震中 epicentre

震源在地面上的投影。

「GB/T 18207.1—2008, 定义 3.7]

2.4

震中距 epicentral distance

地震震中至某一指定地点的地面距离。

注: 在测定地方性震级 $M_{\rm L}$ 时,震中距的单位为千米(km);在测定面波震级 $M_{\rm S}$ 、宽频带面波震级 $M_{\rm S(BB)}$ 、短周期体波震级 $m_{\rm b}$ 和宽频带体波震级 $m_{\rm B(BB)}$ 时,震中距的单位为度(°)。 $1^{\circ} \approx 111.2~{\rm km}$ 。

2.5

震中位置 epicentre location

震中的地理经度和地理纬度。

[GB/T 18207.2—2005,定义 3.1.9.2]

2.6

震源深度 focal depth

震源与震中的距离。

「GB/T 18207.2—2005, 定义 3.1.9.3〕

2.7

浅[源地]震 shallow earthquake

震源深度小于 60 km 的地震。

GB 17740-2017

「GB/T 18207.2—2005, 定义 3.1.6]

2.8

中源地震 intermediate earthquake

震源深度在 60 km~300 km 范围内的地震。

[GB/T 18207.2—2005,定义 3.1.7]

29

深「源地] 震 deep-focus earthquake

震源深度大于 300 km 的地震。

「GB/T 18207.2—2005, 定义 3.1.8]

2.10

地震面波 seismic surface wave

沿着地球表面附近传播的地震波。常见的有勒夫波和瑞利波。

注: 改写 GB/T 18207.2—2005,定义 4.1.3.2。

2.11

地震体波 seismic body wave

在地球内部传播的地震波。通常包括地震纵波和地震横波。

注: 改写 GB/T 18207.2—2005,定义 4.1.3.1。

2.12

质点运动 particle motion

在地震波通过时,地球上某一点的运动。

2.13

质点运动位移 displacement of particle motion

质点运动时,相对于原静止点的距离。

2.14

质点运动速度 velocity of particle motion

质点运动时,该质点运动位移对时间的微商。

2.15

地震矩 seismic moment

对地震大小的一种绝对量度,用 M。表示。

[GB/T 18207.2—2005,定义 3.1.9.10]

2.16

震级 earthquake magnitude

对地震大小的量度。

2.17

地方性震级 local magnitude

近震震级

用震中距为 $1\ 000\ \text{km}$ 以内地震的横波 (S 波) 或短周期勒夫波 (Lg 波) 记录测定的震级,用 M_{L} 表示。

注: 改写 GB/T 18207.2-2005,定义 3.1.9.4。

2.18

体波震级 body wave magnitude

用地震体波记录测定的震级。其中用短周期体波记录测定的体波震级称为短周期体波震级,用 m_b 表示;用宽频带体波记录测定的体波震级称为宽频带体波震级,用 $m_{B(BB)}$ 表示。

注: 改写 GB/T 18207.2—2005,定义 3.1.9.5。

2.19

面波震级 surface wave magnitude

用地震面波记录测定的震级,通常用水平向面波记录测定,用 M_s 表示;用垂直向宽频带面波记录测定的面波震级称为宽频带面波震级,用 $M_{S(BB)}$ 表示。

注: 改写 GB/T 18207.2—2005,定义 3.1.9.6。

2.20

矩震级 moment magnitude

用地震矩换算的震级,用 M_w 表示。

「GB/T 18207.2—2005, 定义 3.1.9.7]

2.21

量规函数 calibration function

在不同的观测点上测定震级时,因地震波随震中距或震源深度衰减所需要加的校正值。

2.22

地震速报 rapid earthquake information report

对已发生地震的时间、地点、震级等的快速测报。

「GB/T 18207.1—2008, 定义 4.15]

3 测定方法

3.1 地方性震级

测定地方性震级 $M_{\rm L}$ 应使用仿真成 DD-1 短周期地震仪两水平向记录 S 波(或 Lg 波)的最大振幅,该最大振幅应大于干扰水平 2 倍以上,按照式(1)计算:

$$M_{L} = \lg(A) + R(\Delta)$$

$$A = \frac{A_{N} + A_{E}}{2}$$
....(1)

式中:

A ——最大振幅,单位为微米(μ m);

 A_N — 北南向 S 波或 Lg 波最大振幅,单位为微米(μ m);

 $A_{\rm E}$ ——东西向 S 波或 Lg 波最大振幅,单位为微米(μ m);

 Δ ——震中距,单位为千米(km);

 $R(\Delta)$ ——地方性震级的量规函数,取值见附录 A。

DD-1 短周期地震仪的仪器参数和传递函数见附录 B 中 B.1。

3.2 面波震级

测定浅源地震的面波震级 M_s ,应将原始宽频带记录仿真成基式(SK)中长周期地震仪记录,使用水平向面波质点运动位移的最大值及其周期,按照式(2)计算:

式中:

A ——水平向面波最大质点运动位移,取两水平向质点运动位移矢量和的模,单位为微米(μ m);

 Δ ——震中距,单位为度(°);

T ——A 对应的周期,单位为秒(s)。

在测量最大质点运动位移的两水平向分量时,应取同一时刻或周期相差在 1/8 周期之内。若两分量周期不一致时,则取加权和,T 按照式(3)计算。

$$T = \frac{T_{\rm N}A_{\rm N} + T_{\rm E}A_{\rm E}}{A_{\rm N} + A_{\rm E}} \qquad \qquad \cdots \qquad (3)$$

式中:

 A_N — 北南向面波质点运动位移,单位为微米(μ m);

 $A_{\rm E}$ ——东西向面波质点运动位移,单位为微米(μ m);

 $T_N \longrightarrow A_N$ 对应的周期,单位为秒(s);

 $T_{\rm E}$ —— $A_{\rm E}$ 对应的周期,单位为秒(s)。

测定面波震级 M_s 时,使用面波的周期 T 宜在附录 C 给出的范围;基式(SK)中长周期地震仪的仪器参数和传递函数见 B.2。

3.3 宽频带面波震级

测定浅源地震的宽频带面波震级 $M_{\text{S(B)}}$,应在垂直向速度型宽频带记录上量取面波质点运动速度的最大值,按式(4)计算:

$$M_{\text{S(BB)}} = \lg\left(\frac{V_{\text{max}}}{2\pi}\right) + 1.66\lg(\Delta) + 3.3$$
 (2° < Δ < 160°, 3 s < T < 60 s)(4)

式中:

 V_{max} ——垂直向面波质点运动速度的最大值,单位为微米每秒($\mu m/s$);

T — V_{max} 对应的周期,单位为秒(s);

 Δ ——震中距,单位为度(°)。

3.4 短周期体波震级

测定短周期体波震级 m_b ,应将垂直向宽频带记录仿真成 DD-1 短周期地震仪记录,测量 P 波波列 (包括 P,pP,sP,甚至可以为 PcP 及其尾波,一般取在 PP 波之前)质点运动位移的最大值,按式(5)计算:

$$m_b = \lg(\frac{A}{T}) + Q(\Delta, h), 5^{\circ} < \Delta < 100^{\circ}$$
 $(T < 3 \text{ s}, 0 \leqslant h \leqslant 700 \text{ km})$ (5)

式中:

A ——P 波波列质点运动位移的最大值,单位为微米(μ m);

T ——A 对应的周期,单位为秒(s);

 Δ ——震中距,单位为度($^{\circ}$);

h ——震源深度,单位为千米(km);

 $Q(\Delta,h)$ ——垂直向 P 波体波震级的量规函数,取值见附录 D。

DD-1 短周期地震仪的仪器参数和传递函数见 B.1。

3.5 宽频带体波震级

测定宽频带体波震级 $m_{\text{B(B)}}$,应在垂直向速度型宽频带记录上测量 P 波波列(包括 P、pP、sP,甚至可以为 PeP 及其尾波,一般取在 PP 波之前)质点运动速度的最大值,按照式(6)计算:

$$m_{\text{B(BB)}} = \lg\left(\frac{V_{\text{max}}}{2\pi}\right) + Q(\Delta, h)$$
 (5° < \Delta < 100°, 0.2 s < T < 30.0 s, 0 \leftrightarrow h \leftrightarrow 700 km)

式中:

 V_{max} — 整个 P 波波列质点运动速度的最大值,单位为微米每秒($\mu \text{m/s}$);

 $T \longrightarrow V_{\text{max}}$ 对应的周期,单位为秒(s);

 Δ ——震中距,单位为度($^{\circ}$);

 $Q(\Delta,h)$ ——垂直向 P 波体波震级的量规函数,取值见附录 D。

3.6 矩震级

矩震级 M_w 应使用测定的地震矩按照式(7)计算:

$$M_{\rm W} = \frac{2}{3} ({\rm lg} M_{\rm o} - 9.1)$$
 (7)

式中:

 M_0 ——地震矩,单位为牛顿米(N·m)。

4 使用规定

4.1 震级测定

- 4.1.1 负责日常地震监测的各地震台网(站),应按照第 3 章的方法测定可能测到的所有震级,包括地方性震级 $M_{\rm L}$ 、短周期体波震级 $m_{\rm b}$ 、宽频带体波震级 $m_{\rm B(BB)}$ 、面波震级 $M_{\rm S}$ 、宽频带面波震级 $M_{\rm S(BB)}$ 和矩震级 $M_{\rm W}$ 。
- 4.1.2 测定的震级之间不应相互换算。

4.2 震级发布

- **4.2.1** 地震台网在发布地震速报信息时,对能及时测定地震矩 M_{\odot} 的地震,应优先选择矩震级 $M_{\rm w}$ 作为对外发布的震级。
- 4.2.2 地震台网在发布地震速报信息时,对不能及时测定地震矩 M_0 的地震,应按以下原则确定对外发布的震级:
 - a) 对于 M_{\perp} < 4.5 的浅源地震, 应选择地方性震级 M_{\perp} 为对外发布的震级;
 - b) 对于 $M_L \geqslant 4.5$ 的浅源地震,应选择宽频带面波震级 $M_{S(BB)}$ 为对外发布的震级;
 - c) 对于中源地震和深源地震,宜选择短周期体波震级 m_b 或宽频带体波震级 $m_{B(BB)}$ 为对外发布的震级。
- 4.2.3 对外发布的震级应用 M 表示,不应加"里氏震级""矩震级"等附加信息。
- 4.2.4 地震台网在编制地震目录时,应同时列出所有测定的震级和对外发布的震级。示例见表1。

序号	发震时刻 (UTC)	纬度 (°)	经度 (°)	深度 km	$M_{ t L}$	$M_{ m S}$	M _{S (BB)}	m_{b}	$m_{ m B(BB)}$	$M_{ m W}$	M	参考地名
1	2011/03/11 05:46:19.0	38.10N	142.50E	20		8.7	8.6	7.3	7.7	9.0	9.0	日本本州 东岸近海
2	2013/07/21 23:45:56.5	34.54N	104.21E	15	6.6	6.7	6.5	5.9	6.3		6.5	甘肃岷县

表 1 地震目录中震级表示方法示例

GB 17740—2017

表 1(续)

序号	发震时刻 (UTC)	纬度 (°)	经度 (°)	深度 km	$M_{ t L}$	$M_{ m S}$	M _{S (BB)}	m_{b}	$m_{ m B(BB)}$	$M_{ m W}$	M	参考地名
3	2014/12/21 05:09:37.0	27.88N	101.48E	11	4.3	4.1	4.0	4.3	4.5		4.3	四川盐源
4	2015/10/30 07:03:40.9	43.16N	131.04E	570				4.5	4.5		4.5	吉林珲春

- 4.2.5 各级地震工作部门或机构对外发布地震信息、进行科普教育等工作时,应使用发布的震级 M。
- 4.2.6 电视台、广播电台、报刊、杂志和网站等新闻媒体在发布地震信息时,应使用发布的震级 M。
- 4.2.7 地震灾害发生以后,各级政府应依据发布的震级 M 启动地震应急响应,开展地震应急工作。

附 录 A (规范性附录) 地方性震级量规函数表

地方性震级量规函数值见表 A.1。其中,黑龙江、吉林、辽宁、内蒙古、北京、天津、河北、山西、山东、河南、宁夏、陕西应使用 R_{11} ;福建、广东、广西、海南、江苏、上海、浙江、江西、湖南、湖北、安徽应使用 R_{12} ;云南、四川、重庆、贵州应使用 R_{13} ,青海、西藏、甘肃应使用 R_{14} ,新疆应使用 R_{15} 。

表 A.1 地方性震级量规函数值

Δ/km	R_{11}	R_{12}	R_{13}	R_{14}	R_{15}
0~5	1.9	1.8	2.0	2.0	2.0
10	2.0	1.9	2.0	2.1	2.1
15	2.2	2.1	2.1	2.2	2.2
20	2.3	2.2	2.2	2.3	2.3
25	2.5	2.4	2.4	2.5	2.5
30	2.7	2.6	2.6	2.6	2.6
35	2.9	2.8	2.7	2.8	2.8
40	2.9	2.9	2.8	2.9	2.8
45	3.0	3.0	2.9	3.0	2.9
50	3.1	3.1	3.0	3.1	3.0
55	3.2	3.2	3.1	3.2	3.1
60	3.3	3.3	3.2	3.2	3.2
70	3.3	3.3	3.2	3.2	3.2
75	3.4	3.4	3.3	3.3	3.3
85	3.3	3.3	3.3	3.4	3.3
90	3.4	3.4	3.4	3.5	3.4
100	3.4	3.4	3.4	3.5	3.4
110	3.5	3.5	3.5	3.6	3.6
120	3.5	3.5	3.5	3.6	3.6
130	3.6	3.6	3.6	3.7	3.6
140	3.6	3.6	3.6	3.7	3.6
150	3.7	3.7	3.7	3.8	3.7
160	3.7	3.7	3.7	3.7	3.7
170	3.8	3.8	3.8	3.8	3.8

表 A.1 (续)

Δ/km	R_{11}	R_{12}	R_{13}	R_{14}	R_{15}
180	3.8	3.7	3.8	3.8	3.8
190	3.9	3.8	3.9	3.9	3.9
200	3.9	3.9	3.9	3.9	3.9
210	3.9	4.0	3.9	4.0	3.9
220	3.9	4.0	3.9	4.0	4.0
230	4.0	4.1	4.0	4.1	4.0
240	4.1	4.1	4.0	4.1	4.0
250	4.1	4.2	4.0	4.1	4.1
260	4.1	4.2	4.1	4.1	4.1
270	4.2	4.2	4.2	4.2	4.2
280	4.2	4.3	4.1	4.1	4.1
290	4.3	4.4	4.2	4.2	4.2
300	4.2	4.4	4.3	4.2	4.3
310	4.3	4.5	4.4	4.3	4.4
320	4.3	4.4	4.4	4.3	4.4
330	4.4	4.5	4.5	4.4	4.4
340	4.4	4.5	4.5	4.4	4.4
350	4.4	4.5	4.5	4.5	4.5
360	4.5	4.6	4.5	4.5	4.5
370	4.5	4.6	4.5	4.4	4.5
380	4.5	4.6	4.6	4.5	4.5
390	4.5	4.6	4.6	4.5	4.5
400	4.6	4.7	4.7	4.5	4.6
420	4.6	4.7	4.7	4.6	4.7
430	4.6	4.7	4.8	4.7	4.7
440	4.6	4.7	4.8	4.8	4.8
450	4.6	4.7	4.8	4.8	4.8
460	4.6	4.7	4.8	4.8	4.8
470	4.7	4.7	4.8	4.8	4.8
500	4.8	4.7	4.8	4.8	4.8

表 A.1 (续)

Δ/km	R_{11}	R_{12}	R_{13}	R_{14}	R_{15}
510	4.8	4.8	4.9	4.9	4.9
530	4.8	4.8	4.9	4.9	4.9
540	4.8	4.8	4.9	4.9	4.9
550	4.8	4.8	4.9	4.9	4.9
560	4.9	4.9	4.9	4.9	4.9
570	4.8	4.9	4.9	4.9	4.9
580	4.9	4.9	4.9	4.9	4.9
600	4.9	4.9	4.9	4.9	4.9
610	5.0	5.0	5.0	5.0	5.0
620	5.0	5.0	5.0	5.0	5.0
650	5.1	5.1	5.1	5.1	5.1
700	5.2	5.2	5.2	5.2	5.2
750	5.2	5.2	5.2	5.2	5.2
800	5.2	5.2	5.2	5.2	5.2
850	5.2	5.2	5.2	5.2	5.2
900	5.3	5.3	5.3	5.3	5.3
1 000	5.3	5.3	5.3	5.3	5.3

附 录 B (规范性附录) 地震仪器参数与传递函数

B.1 DD-1短周期地震仪

B.1.1 仪器参数

仪器参数包括:

- a) 拾震器固有周期: $T_1 = 1.0 \text{ s}$;
- b) 拾震器阻尼常数: $D_1 = 0.45$;
- c) 记录笔固有周期: $T_3 = 0.05 \text{ s}$;
- d) 记录笔阻尼常数: $D_3 = 0.707$ 。

B.1.2 传递函数

式中: $s = i\omega$; $\omega = 2\pi f$; $i = \sqrt{-1}$;

DD-1 短周期地震仪对地动位移响应的归一化传递函数为:

$$H_1(s) = \frac{s^3}{(s^2 + 5.655s + 39.48)(s + 4.545)} \cdot \frac{15791}{s^2 + 177.7s + 15791}$$
(B.1)

B.2 基式(SK)中长周期地震仪

f — 频率,单位为赫兹(Hz)。

B.2.1 仪器参数

仪器参数包括:

- a) 拾震器固有周期: $T_1 = 12.5 \text{ s}$;
- b) 拾震器阻尼常数: $D_1 = 0.45$;
- c) 电流计固有周期: $T_2 = 1.2 \text{ s}$;
- d) 电流计阻尼常数: $D_2 = 5.0$;
- e) 耦合系数: $\sigma^2 = 0.1(水平向), \sigma^2 = 0.3(垂直向)$ 。

B.2.2 传递函数

水平向对地动位移的归一化传递函数为:

$$H(s) = \frac{s^2}{(s^2 + 0.447 \ 2s + 0.269 \ 3)} \cdot \frac{52.36s}{(s^2 + 52.36s + 25.72)} \qquad \dots \dots \dots (B.2)$$

垂直向对地动位移的归一化传递函数为:

$$H(s) = \frac{s^2}{(s^2 + 0.416 \ 7s + 0.269 \ 3)} \cdot \frac{52.40s}{(s^2 + 52.40s + 22.10)} \quad \dots \dots \dots \dots (B.3)$$

式中:

 $s = i\omega$;

 $\omega = 2\pi f$;

 $i=\sqrt{-1}$;

f——频率,单位为赫兹(Hz)。

附 录 C (规范性附录) 不同震中距选用地震面波周期值

不同震中距选用地震面波周期值见表 C.1。

表 C.1 不同震中距选用地震面波周期值

$\Delta/(\degree)$	T/s	$\Delta/(\degree)$	T/s	$\Delta/(\degree)$	T/s
2	3~6	20	9~14	70	14~22
4	4~7	25	9~16	80	16~22
6	5~8	30	10~16	90	16~22
8	6~9	40	12~18	100	16~25
10	7~10	50	12~20	110	17~25
15	8~12	60	14~20	130	18~25

附 录 D (规范性附录) $Q(\Delta,h)$ 值表

计算短周期体波震级 $m_{\scriptscriptstyle b}$ 和宽频带体波震级 $m_{\scriptscriptstyle \mathrm{B(BB)}}$ 的 $Q(\Delta,h)$ 值见表 D.1。

表 D.1 $Q(\Delta,h)$ 值表

A /(°)									h/km								
Δ/(°)	0.0	25	50	75	100	150	200	250	300	350	400	450	500	550	600	650	700
5	5.9	5.9	5.9	5.9	5.9	6.0	6.1	6.1	5.9	5.9	6.0	6.1	6.2	6.2	6.2	6.0	5.8
10	6.0	6.0	6.0	6.0	6.0	6.1	6.2	6.2	6.0	6.0	6.1	6.2	6.3	6.3	6.3	6.1	5.9
20	6.1	6.1	6.1	6.1	6.1	6.2	6.3	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.2	6.0
21	6.1	6.2	6.1	6.1	6.1	6.2	6.3	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.2	6.0
22	6.2	6.2	6.2	6.2	6.1	6.2	6.3	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.3	6.1
23	6.3	6.3	6.2	6.2	6.1	6.2	6.4	6.3	6.2	6.1	6.2	6.3	6.4	6.4	6.4	6.3	6.1
24	6.4	6.3	6.3	6.2	6.2	6.3	6.4	6.3	6.2	6.1	6.2	6.3	6.3	6.4	6.4	6.4	6.1
25	6.5	6.4	6.3	6.2	6.2	6.3	6.4	6.3	6.2	6.1	6.2	6.3	6.3	6.4	6.4	6.4	6.2
26	6.5	6.4	6.3	6.3	6.3	6.4	6.5	6.4	6.2	6.1	6.2	6.2	6.3	6.4	6.4	6.4	6.2
27	6.5	6.4	6.4	6.3	6.3	6.4	6.5	6.4	6.2	6.1	6.2	6.2	6.3	6.4	6.4	6.4	6.3
28	6.6	6.5	6.4	6.4	6.4	6.5	6.5	6.4	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.3
29	6.6	6.5	6.4	6.4	6.4	6.5	6.5	6.4	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.3
30	6.6	6.6	6.5	6.5	6.5	6.5	6.5	6.4	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.3
31	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.3
32	6.7	6.7	6.6	6.6	6.5	6.6	6.4	6.4	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.4
33	6.7	6.7	6.6	6.6	6.6	6.5	6.4	6.4	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.4
34	6.7	6.7	6.7	6.7	6.6	6.5	6.4	6.4	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.4	6.3
35	6.6	6.7	6.7	6.7	6.7	6.5	6.4	6.3	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.3	6.3
36	6.6	6.7	6.7	6.7	6.7	6.5	6.4	6.3	6.3	6.1	6.1	6.2	6.3	6.4	6.4	6.3	6.3
37	6.5	6.6	6.7	6.7	6.7	6.5	6.4	6.3	6.2	6.1	6.1	6.2	6.3	6.4	6.4	6.3	6.3
38	6.5	6.6	6.7	6.7	6.7	6.5	6.4	6.3	6.2	6.1	6.1	6.2	6.3	6.4	6.3	6.3	6.3
39	6.4	6.5	6.6	6.7	6.6	6.5	6.4	6.3	6.1	6.0	6.1	6.2	6.3	6.4	6.3	6.3	6.3
40	6.4	6.5	6.6	6.7	6.6	6.5	6.3	6.2	6.1	6.0	6.1	6.2	6.3	6.4	6.3	6.2	6.3
41	6.5	6.5	6.5	6.6	6.6	6.4	6.3	6.2	6.0	6.0	6.1	6.2	6.3	6.3	6.3	6.2	6.3
42	6.5	6.5	6.5	6.6	6.6	6.4	6.3	6.2	6.0	6.0	6.1	6.2	6.3	6.3	6.3	6.2	6.3

表 D.1 (续)

. / (0)									h/km	ı							
$\Delta/(\degree)$	0.0	25	50	75	100	150	200	250	300	350	400	450	500	550	600	650	700
43	6.5	6.5	6.5	6.6	6.6	6.4	6.3	6.1	6.0	6.0	6.1	6.2	6.3	6.3	6.3	6.2	6.3
44	6.6	6.6	6.5	6.6	6.6	6.4	6.3	6.1	6.1	6.0	6.1	6.2	6.3	6.3	6.3	6.2	6.2
45	6.7	6.7	6.6	6.6	6.6	6.4	6.2	6.1	6.1	6.0	6.1	6.2	6.3	6.3	6.3	6.2	6.2
46	6.8	6.7	6.7	6.7	6.6	6.4	6.2	6.1	6.1	6.0	6.1	6.2	6.3	6.3	6.3	6.2	6.2
47	6.9	6.8	6.7	6.7	6.6	6.4	6.2	6.1	6.1	6.0	6.1	6.2	6.3	6.3	6.3	6.2	6.2
48	6.9	6.8	6.8	6.7	6.6	6.5	6.2	6.1	6.1	6.0	6.1	6.2	6.2	6.3	6.3	6.2	6.2
49	6.8	6.8	6.8	6.8	6.7	6.5	6.2	6.2	6.1	6.1	6.1	6.2	6.2	6.3	6.3	6.2	6.2
50	6.7	6.8	6.8	6.8	6.8	6.5	6.3	6.2	6.1	6.1	6.1	6.1	6.2	6.3	6.3	6.1	6.1
51	6.7	6.7	6.8	6.8	6.8	6.5	6.3	6.2	6.2	6.1	6.1	6.1	6.2	6.2	6.2	6.1	6.1
52	6.7	6.7	6.8	6.8	6.8	6.5	6.4	6.2	6.2	6.1	6.1	6.1	6.1	6.2	6.2	6.1	6.1
53	6.7	6.7	6.8	6.8	6.8	6.6	6.4	6.2	6.2	6.1	6.1	6.1	6.1	6.1	6.2	6.1	6.1
54	6.8	6.8	6.8	6.8	6.8	6.6	6.4	6.3	6.2	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.0
55	6.8	6.8	6.8	6.8	6.8	6.6	6.5	6.3	6.2	6.2	6.1	6.1	6.1	6.1	6.1	6.0	6.0
56	6.8	6.8	6.8	6.8	6.8	6.7	6.5	6.3	6.2	6.2	6.1	6.1	6.1	6.1	6.1	6.0	6.0
57	6.8	6.8	6.8	6.9	6.8	6.7	6.5	6.4	6.2	6.2	6.2	6.2	6.1	6.1	6.0	6.0	6.0
58	6.8	6.8	6.9	6.9	6.8	6.7	6.5	6.4	6.3	6.2	6.2	6.2	6.1	6.1	6.0	6.0	6.0
59	6.9	6.9	6.9	6.9	6.9	6.7	6.5	6.4	6.3	6.2	6.2	6.2	6.2	6.1	6.0	6.0	6.0
60	6.9	6.9	6.9	6.9	6.9	6.7	6.5	6.4	6.3	6.3	6.2	6.2	6.2	6.1	6.0	6.0	6.0
61	6.9	6.9	6.9	6.9	6.8	6.7	6.5	6.4	6.3	6.3	6.3	6.3	6.2	6.2	6.1	6.0	6.0
62	7.0	6.9	6.9	6.9	6.8	6.7	6.6	6.4	6.4	6.3	6.3	6.3	6.3	6.2	6.1	6.1	6.0
63	7.0	6.9	6.9	6.8	6.7	6.7	6.6	6.5	6.4	6.4	6.4	6.3	6.3	6.2	6.2	6.1	6.0
64	7.0	6.9	6.8	6.7	6.7	6.7	6.6	6.5	6.5	6.4	6.4	6.4	6.4	6.3	6.2	6.1	6.1
65	7.0	6.9	6.8	6.7	6.7	6.7	6.6	6.5	6.5	6.5	6.4	6.4	6.4	6.3	6.2	6.1	6.1
66	7.0	6.9	6.8	6.7	6.7	6.7	6.5	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.2	6.2	6.1
67	7.0	6.9	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.2	6.1
68	7.0	6.9	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.2	6.2
69	7.0	6.9	6.7	6.7	6.6	6.6	6.5	6.5	6.5	6.5	6.4	6.4	6.4	6.3	6.3	6.2	6.2
70	6.9	6.9	6.7	6.7	6.6	6.6	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.3	6.2	6.2
71	6.9	6.9	6.7	6.7	6.6	6.6	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.3	6.3	6.2

表 D.1 (续)

A //(°)									h/km								
$\Delta/(\degree)$	0.0	25	50	75	100	150	200	250	300	350	400	450	500	550	600	650	700
72	6.9	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.3	6.3	6.2
73	6.9	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.3	6.3	6.3
74	6.8	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.3	6.3	6.3
75	6.8	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.5	6.4	6.3	6.2	6.3	6.3	6.3
76	6.9	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.5	6.4	6.3	6.2	6.3	6.3	6.3
77	6.9	6.8	6.8	6.7	6.6	6.5	6.5	6.5	6.5	6.6	6.5	6.4	6.2	6.2	6.2	6.3	6.3
78	6.9	6.8	6.8	6.7	6.6	6.5	6.5	6.5	6.5	6.6	6.5	6.4	6.2	6.2	6.2	6.3	6.3
79	6.8	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.6	6.6	6.5	6.4	6.2	6.2	6.2	6.3	6.3
80	6.7	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.6	6.6	6.5	6.4	6.2	6.2	6.2	6.3	6.3
81	6.8	6.8	6.7	6.7	6.6	6.5	6.5	6.5	6.6	6.6	6.5	6.4	6.3	6.3	6.3	6.3	6.3
82	6.9	6.8	6.8	6.7	6.6	6.5	6.5	6.5	6.6	6.6	6.5	6.4	6.3	6.3	6.3	6.3	6.3
83	7.0	6.9	6.8	6.7	6.7	6.6	6.5	6.5	6.6	6.6	6.5	6.5	6.3	6.3	6.3	6.4	6.3
84	7.0	7.0	6.8	6.8	6.7	6.6	6.5	6.6	6.6	6.6	6.5	6.5	6.4	6.4	6.4	6.4	6.3
85	7.0	7.0	6.9	6.8	6.7	6.6	6.5	6.6	6.6	6.6	6.6	6.5	6.4	6.4	6.4	6.4	6.4
86	6.9	7.0	7.0	6.8	6.8	6.6	6.6	6.6	6.6	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4
87	7.0	7.0	7.0	6.9	6.8	6.7	6.6	6.6	6.7	6.7	6.6	6.5	6.5	6.5	6.5	6.5	6.4
88	7.1	7.1	7.0	6.9	6.8	6.8	6.6	6.6	6.7	6.7	6.6	6.6	6.6	6.6	6.6	6.5	6.4
89	7.0	7.1	7.1	7.0	6.9	6.8	6.7	6.7	6.7	6.7	6.6	6.6	6.6	6.7	6.7	6.6	6.5
90	7.0	7.0	7.1	7.0	6.9	6.8	6.7	6.7	6.7	6.7	6.6	6.7	6.7	6.7	6.7	6.7	6.5
91	7.1	7.1	7.2	7.1	7.0	6.9	6.8	6.7	6.7	6.7	6.7	6.7	6.7	6.8	6.8	6.7	6.6
92	7.1	7.2	7.2	7.2	7.1	6.9	6.8	6.8	6.7	6.8	6.7	6.8	6.8	6.8	6.8	6.8	6.7
93	7.2	7.2	7.2	7.2	7.1	7.0	6.9	6.8	6.8	6.8	6.8	6.8	6.8	6.9	6.8	6.9	6.7
94	7.1	7.2	7.2	7.2	7.2	7.0	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	7.0	6.9	6.8
95	7.2	7.2	7.2	7.2	7.2	7.1	7.0	7.0	6.9	6.9	6.9	6.9	6.9	7.0	7.0	7.0	6.9
96	7.3	7.2	7.3	7.3	7.3	7.2	7.1	7.0	7.0	7.0	6.9	7.0	7.0	7.0	7.0	7.0	6.9
97	7.4	7.3	7.3	7.3	7.3	7.2	7.1	7.1	7.0	7.0	7.0	7.0	7.1	7.1	7.1	7.0	7.0
98	7.5	7.3	7.3	7.3	7.3	7.3	7.2	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.0
99	7.5	7.3	7.3	7.3	7.4	7.3	7.2	7.2	7.2	7.1	7.1	7.2	7.2	7.2	7.2	7.1	7.0
100	7.3	7.3	7.3	7.4	7.4	7.3	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.1

参 考 文 献

- [1] GB/T 18207.1—2008 防震减灾术语 第1部分:基本术语
- [2] GB/T 18207.2-2005 防震减灾术语 第 2 部分:专业术语

5AC