The germinationmetrics Package: A Brief Introduction

Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan

2023-08-13

ICAR-National Bureau of Plant Genetic Resources, New Delhi.

Contents

verview	 	 1
stallation	 	 1
rsion History	 	 3
ermination count data	 	 3
ngle-value germination indices	 	 4
on-linear regression analysis	 	 30
Four-parameter hill function	 	 30
rapper functions	 	 42
ting germinationmetrics	 	 59
ssion Info	 	 59
oferences		60

Overview

The package germinationmetrics is a collection of functions which implements various methods for describing the time-course of germination in terms of single-value germination indices as well as fitted curves.

The goal of this vignette is to introduce the users to these functions and get started in describing sequentially recorded germination count data. This document assumes a basic knowledge of $\tt R$ programming language.

Installation

The package can be installed using the following functions:

```
# Install from CRAN
install.packages('germinationmetrics', dependencies=TRUE)

# Install development version from Github
devtools::install_github("aravind-j/germinationmetrics")
```

Then the package can be loaded using the function

```
library(germinationmetrics)
```

Welcome to germinationmetrics version 0.1.7.9000

- # To know how to use this package type:
 browseVignettes(package = 'germinationmetrics')
 for the package vignette.
- # To know whats new in this version type: news(package='germinationmetrics') for the NEWS file.
- # To cite the methods in the package type:
 citation(package='germinationmetrics')
- # To suppress this message use: suppressPackageStartupMessages(library(germinationmetrics))

Version History

The current version of the package is 0.1.7. The previous versions are as follows.

Table 1. Version history of germinationmetrics R package.

Version	Date
0.1.0	2018-04-17
0.1.1	2018-07-26
0.1.1.1	2018-10-16
0.1.2	2018-10-31
0.1.3	2019-01-19
0.1.4	2020-06-16
0.1.5	2021-02-17
0.1.6	2022-06-15

To know detailed history of changes use news(package='germinationmetrics').

Germination count data

Typically in a germination test, the germination count data of a fixed number of seeds is recorded at regular intervals for a definite period of time or until all the seeds have germinated. These germination count data can be either partial or cumulative (Table 2).

Table 2: A typical germination count data.

intervals	counts	cumulative.counts
1	0	0
2	0	0
3	0	0
4	0	0
5	4	4
6	17	21
7	10	31
8	7	38
9	1	39
10	0	39
11	1	40
12	0	40
13	0	40
14	0	40

The time-course of germination can be plotted as follows.

Single-value germination indices

The details about the single-value germination indices implemented in **germinationmetrics** are described in Table 3.

 ${\bf Table~3:}~{\bf Single-value~germination~indices~implemented~in~germinationmetrics.}$

Germination index	Function	Details	Unit	Measures	Reference
Germination percentage or Final germination percentage or Germinability (GP)	GermPercent	It is computed as follows. $GP=\frac{N_g}{N_t}\times 100$ Where, N_g is the number of germinated seeds and N_t is the total number of seeds.	Percentage (%)	Germination capacity	ISTA (2015)
Peak germination percentage (PGP)	PeakGermPercent	It is computed as follows. $PGP = \frac{N_{max}}{N_t} \times 100$ Where, N_{max} is the maximum number of seeds germinated per interval.	Percentage (%)	Germination capacity	Vallance (1950); Roh et al. (2004)
Time for the first germination or Germination time lag (t_0)	FirstGermTime	It is the time for first germination to occur (e.g. First day of germination). $t_0 = \min \left\{ T_i : N_i \neq 0 \right\}$ Where, T_i is the time from the start of the experiment to the i th interval and N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval)	time	Germination time	Edwards (1932); Czabator (1962); Goloff and Bazzaz (1975); Labouriau (1983a); Ranal (1999); Quintanilla et al. (2000)
Time for the last germination (t_g)	LastGermTime	It is the time for last germination to occur (e.g. Last day of germination) $t_g = \max \{T_i : N_i \neq 0\}$ Where, T_i is the time from the start of the experiment to the i th interval and N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval)	time	Germination time	Edwards (1932)
Time spread of germination or Germination distribution	TimeSpreadGerm	It is the difference between time for last germination (t_g) and time for first germination (t_0) . Time spread of germination $= t_g - t_0$	time	Germination time	Al-Mudaris (1998); Schrader and Graves (2000); Kader (2005)
Peak period of germination or Modal time of germination (t_{peak})	PeakGermTime	It is the time in which highest frequency of germinated seeds are observed and need not be unique. $t_{peak} = \{T_i: N_i = N_{max}\}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval) and N_{max} is the maximum number of seeds germinated per interval.	time	Germination time	Ranal and Santana (2006)

Germination index	Function	Details	Unit	Measures	Reference
Variance of germination time (s_T^2)	VarGermTime	It is computed according to the following formula. $s_T^2 = \frac{\sum_{i=1}^k N_i (T_i - \overline{T})^2}{\sum_{i=1}^k N_i - 1}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	time ⁻¹	Germination time	Labouriau (1983a); Ranal and Santana (2006)
Standard error of germination time $(s_{\overline{T}})$	SEGermTime	It signifies the accuracy of the calculation of the mean germination time. It is estimated according to the following formula: $s_{\overline{T}} = \sqrt{\frac{s_T^2}{\sum_{i=1}^k N_i}}$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval) and k is the total number of time intervals.	time	Germination time	Labouriau (1983a); Ranal and Santana (2006)
Mean germination rate (\overline{V})	MeanGermRate	It is computed according to the following formula: $\overline{V} = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k N_i T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. It is the inverse of mean germination time (\overline{T}) . $\overline{V} = \frac{1}{\overline{T}}$	time ⁻¹	Germination rate	Labouriau and Valadares (1976); Labouriau (1983b); Ranal and Santana (2006)

7

Germination index	Function	Details	Unit	Measures	Reference
Coefficient of velocity of germination (CVG) or Coefficient of rate of germination (CRG) or Kotowski's coefficient of velocity	CVG	It is estimated according to the following formula. $CVG = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k N_i T_i} \times 100$ $CVG = \overline{V} \times 100$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	$\% ext{ time}^{-1}$	Germination rate	Kotowski (1926), Nichols and Heydecker (1968); Bewley and Black (1994); Labouriau (1983b); Scott et al. (1984)
Variance of germination rate (s_V^2)	VarGermRate	It is calculated according to the following formula. $s_V^2=\overline{V}^4\times s_T^2$ Where, s_T^2 is the variance of germination time.	time ⁻²	Germination rate	Labouriau (1983b); Ranal and Santana (2006)
Standard error of germination rate $(s_{\overline{V}})$	SEGermRate	It is estimated according to the following formula. $s_{\overline{V}} = \sqrt{\frac{s_V^2}{\sum_{i=1}^k N_i}}$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	time ⁻¹	Germination rate	Labouriau (1983b); Ranal and Santana (2006)
Germination rate as the reciprocal of the median time (v_{50})	GermRateRecip	It is the reciprocal of the median germination time (t_{50}) . $v_{50} = \frac{1}{t_{50}}$	${ m time^{-1}}$	Germination rate	Went (1957); Labouriau (1983b); Ranal and Santana (2006)
Speed of germination or Germination rate Index or index of velocity of germination or Emergence rate index (Allan, Vogel and Peterson; Erbach; Hsu and Nelson) or Germination index (AOSA)	GermSpeed	It is the rate of germination in terms of the total number of seeds that germinate in a time interval. It is estimated as follows. $S = \sum_{i=1}^k \frac{N_i}{T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. Instead of germination counts, germination percentages may also be used for computation of speed of germination.	% time ⁻¹ or count time ⁻¹	Mixed	Throneberry and Smith (1955); Maguire (1962); Allan et al. (1962); Kendrick and Frankland (1969); Bouton et al. (1976); Erbach (1982); AOSA (1983); Khandakar and Bradbeer (1983); Hsu and Nelson (1986); Bradbeer (1988); Wardle et al. (1991)

Germination index	Function	Details	Unit	Measures	Reference
Speed of accumulated germination	GermSpeedAccumulate	It is the rate of germination in terms of the accumulated/cumulative total number of seeds that germinate in a time interval. It is estimated as follows.	% time ⁻¹ or count time ⁻¹	Mixed	Bradbeer (1988); Wardle et al. (1991); Haugland and Brandsaeter (1996); Santana and Ranal (2004)
		$S_{accumulated} = \sum_{i=1}^k \frac{\sum_{j=1}^i N_j}{T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, $\sum_{j=1}^i N_j$ is the cumuative/accumulated number of seeds germinated in the i th interval, and k is the total number of time intervals. Instead of germination counts, germination percentages may also be used for computation of speed of germination.			
Corrected germination rate index	GermSpeedCorrected	It is computed as follows. $S_{corrected} = \frac{S}{FGP} \label{eq:Scorrected}$	$\mathrm{time}^{\text{-}1}$	Mixed	Evetts and Burnside (1972)
		Where, S is the germination speed computed with germination percentage instead of counts and FGP is the final germination percentage or germinability.			
Weighted germination percentage (WGP)	WeightGermPercent	It is estimated as follows. $WGP = \frac{\sum_{i=1}^k (k-i+1)N_i}{k\times N}\times 100$ Where, N_i is the number of seeds that germinated in the time interval i (not cumulative, but partial count), N is the total number of seeds tested, and k is the total number of time intervals.	Percentage (%)	Mixed	Reddy et al. (1985); Reddy (1978)
Mean germination percentage per unit time (\overline{GP})	MeanGermPercent	It is estimated as follows. $\overline{GP} = \frac{GP}{T_k}$ Where, GP is the final germination percentage, T_k is the time at the k th time interval, and k is the total number of time intervals required for final germination.	% time ⁻¹	Mixed	Czabator (1962)
Number of seeds germinated per unit time \overline{N}	MeanGermNumber	It is estimated as follows. $\overline{N} = \frac{N_g}{T_k}$ Where, N_g is the number of germinated seeds at the end of the germination test, T_k is the time at the k th time interval, and k is the total number of time intervals required for final germination.	count time ⁻¹	Mixed	Khamassi et al. (2013)

9

Germination index	Function	Details	Unit	Measures	Reference
Timson's index $[\sum 10 \text{ (Ten summation)}, \sum 5 \text{ or } \sum 20] \text{ or Germination energy index } (GEI)$	TimsonsIndex	It is the progressive total of cumulative germination percentage recorded at specific intervals for a set period of time and is estimated in terms of cumulative germination percentage (G_i) as follows. $\Sigma k = \sum_{i=1}^k G_i$ Where, G_i is the cumulative germination percentage in time interval i , and k is the total number of time intervals. It also estimated in terms of partial germination percentage as follows. $\Sigma k = \sum_{i=1}^k g_i(k-j)$ Where, g_i is the germination (not cumulative, but partial germination) in time interval i (i varying from 0 to k), k is the total number of time intervals, and $j=i-1$.	Percentage (%)	Mixed	Grose and Zimmer (1958); Timson (1965); (lyonRapid-MethodDetermining1966?); Chaudhary and Ghildyal (1970); Negm and Smith (1978); Brown and Mayer (1988); Baskin and Baskin (1998); Goodchild and Walker (1971)
Modified Timson's index (Σk_{mod}) (Labouriau)	TimsonsIndex	It is estimated as Timson's index Σk divided by the sum of partial germination percentages. $\Sigma k_{mod} = \frac{\Sigma k}{\sum_{i=1}^k g_i}$	no unit	Mixed	Ranal and Santana (2006)
Modified Timson's index (Σk_{mod}) (Khan and Unger)	TimsonsIndex	It is estimated as Timson's index (Σk) divided by the total time period of germination (T_k) . $\Sigma k_{mod} = \frac{\Sigma k}{T_k}$	$\% ext{ time}^{-1}$	Mixed	Khan and Ungar (1984)
George's index (GR)	GermRateGeorge	It is estimated as follows. $GR = \sum_{i=1}^k N_i K_i$ Where N_i is the number of seeds germinated by i th interval and K_i is the number of intervals(eg. days) until the end of the test, and and k is the total number of time intervals.	count time	Mixed	George (1961); Tucker and Wright (1965); Nichols and Heydecker (1968); Chopra and Chaudhary (1980)

Germination index	Function	Details	Unit	Measures	Reference
Germination Index (GI) (Melville)	GermIndex	It is estimated as follows. $GI = \sum_{i=1}^k \frac{ (T_k - T_i) N_i }{N_t}$ Where, T_i is the time from the start of the experiment to the i th interval (day for the example), N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), N_t is the total number of seeds used in the test, and k is the total number of time intervals.	time	Mixed	Melville et al. (1980)
Germination Index (GI_{mod}) (Melville; Santana and Ranal)	GermIndex	It is estimated as follows. $GI_{mod} = \sum_{i=1}^k \frac{ (T_k - T_i) N_i }{N_g}$ Where, T_i is the time from the start of the experiment to the i th interval (day for the example), N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), N_g is the total number of germinated seeds at the end of the test, and k is the total number of time intervals.	time	Mixed	Melville et al. (1980); Santana and Ranal (2004); Ranal and Santana (2006)
Emergence Rate Index (ERI) or Germination Rate Index (Shmueli and Goldberg)	EmergenceRateIndex	It is estimated as follows. $ERI = \sum_{i=i_0}^{k-1} N_i(k-i)$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), i_0 is the time interval when emergence/germination started, and k is the total number of time intervals.	count	Mixed	Shmueli and Goldberg (1971)
Modified Emergence Rate Index (ERI_{mod}) or Modified Germination Rate Index (Shmueli and Goldberg; Santana and Ranal)	EmergenceRateIndex	It is estimated by dividing Emergence rate index (ERI) by total number of emerged seedlings (or germinated seeds). $ERI_{mod} = \frac{\sum_{i=i_0}^{k-1} N_i(k-i)}{N_g} = \frac{ERI}{N_g}$ Where, N_g is the total number of germinated seeds at the end of the test, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), i_0 is the time interval when emergence/germination started, and k is the total number of time intervals.	no unit	Mixed	Shmueli and Goldberg (1971); Santana and Ranal (2004); Ranal and Santana (2006)

Germination index	Function	Details	Unit	Measures	Reference
Emergence Rate Index (ERI) or Germination Rate Index (Bilbro & Wanjura)	EmergenceRateIndex	It is the estimated as follows. $ERI = \frac{\sum_{i=1}^k N_i}{\overline{T}} = \frac{N_g}{\overline{T}}$ Where, N_g is the total number of germinated seeds at the end of the test, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and \overline{T} is the mean germination time or mean emergence time.	count time ⁻¹	Mixed	Bilbro and Wanjura (1982)
Emergence Rate Index (ERI) or Germination Rate Index (Fakorede)	EmergenceRateIndex	It is estimated as follows. $ERI=\frac{\overline{T}}{FGP/100}$ Where, \overline{T} is the Mean germination time and FGP is the final germination time.	time count ⁻¹	Mixed	Fakorede and Ayoola (1980); Fakorede and Ojo (1981); Fakorede and Agbana (1983)
Peak value (PV) (Czabator) or Emergence Energy (EE)	PeakValue	It is the accumulated number of seeds germinated at the point on the germination curve at which the rate of germination starts to decrease. It is computed as the maximum quotient obtained by dividing successive cumulative germination values by the relevant incubation time. $PV = \max\left(\frac{G_1}{T_1}, \frac{G_2}{T_2}, \cdots \frac{G_k}{T_k}\right)$ Where, T_i is the time from the start of the experiment to the i th interval, G_i is the cumulative germination percentage in the i th time interval, and k is the total number of time intervals.	% time ⁻¹	Mixed	Czabator (1962); Bonner (1967)
Germination value (GV) (Czabator)	GermValue	It is computed as follows. $GV = PV \times MDG$ Where, PV is the peak value and MDG is the mean daily germination percentage from the onset of germination. It can also be computed for other time intervals of successive germination counts, by replacing MDG with the mean germination percentage per unit time (\overline{GP}) . GV value can be modified (GV_{mod}) , to consider the entire duration from the beginning of the test instead of just from the onset of germination	$\%^2$ time ⁻²	Mixed	Czabator (1962); Brown and Mayer (1988)

onset of germination.

Germination index	Function	Details	Unit	Measures	Reference
Germination value (GV) (Diavanshir and Pourbiek)	GermValue	It is computed as follows. $GV = \frac{\sum DGS}{N} \times GP \times c$ Where, DGS is the daily germination speed computed by dividing cumulative germination percentage by the number of days since the since the onset of germination, N is the frequency or number of DGS calculated during the test, GP is the germination percentage expressed over 100, and c is a constant. The value of c is decided on the basis of average daily speed of germination ($\frac{\sum DGS}{N}$). If it is less than 10, then c value of 10 can be used and if it is more than 10, then value of 7 or 8 can be used for c . GV value can be modified (GV_{mod}), to consider the entire duration from the beginning of the test instead of just from the onset of germination.	$\%^2~{ m time^{-1}}$	Mixed	Djavanshir and Pourbeik (1976); Brown and Mayer (1988)
Coefficient of uniformity of germination (CUG)	CUGerm	It is computed as follows. $CUG = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k (\overline{T} - T_i)^2 N_i}$ Where, \overline{T} is the the mean germination time, T_i is the time from the start of the experiment to the i th interval (day for the example), N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	${ m time}^{-2}$	Germination unifromity	Heydecker (1972); Bewley and Black (1994)
Coefficient of variation of the germination time (CV_T)	CVGermTime	It is estimated as follows. $CV_T=\sqrt{\frac{s_T^2}{\overline{T}}}$ Where, s_T^2 is the variance of germination time and \overline{T} is the mean germination time.	no unit	Germination unifromity	Gomes (1960); Ranal and Santana (2006)
Synchronization index (\overline{E}) or Uncertainty of the germination process (U) or informational entropy (H)	GermUncertainty	It is estimated as follows. $\overline{E} = -\sum_{i=1}^k f_i \log_2 f_i$ Where, f_i is the relative frequency of germination $(f_i = \frac{N_i}{\sum_{i=1}^k N_i}), N_i \text{ is the number of seeds germinated on the } i\text{th time interval, and } k \text{ is the total number of time intervals.}$	bit	Germination synchrony	Shannon (1948); Labouriau and Valadares (1976); Labouriau (1983b)

Germination index	Function	Details	Unit	Measures	Reference
Synchrony of germination $(Z \text{ index})$	GermSynchrony	It is computed as follows. $Z = \frac{\sum_{i=1}^k C_{N_i,2}}{C_{\Sigma N_i,2}}$ Where, $C_{N_i,2}$ is the partial combination of the two germinated seeds from among N_i , the number of seeds germinated on the i th time interval (estimated as $C_{N_i,2} = \frac{N_i(N_i-1)}{2}$), and $C_{\Sigma N_i,2}$ is the partial combination of the two germinated seeds from among the total number of seeds germinated at the final count, assuming that all seeds that germinated did so simultaneously.	no unit	Germination synchrony	Primack (1985); Ranal and Santana (2006)

Examples

```
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
z \leftarrow c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
int <- 1:length(x)</pre>
# From partial germination counts
GermPercent(germ.counts = x, total.seeds = 50)
GermPercent()
[1] 80
PeakGermPercent(germ.counts = x, intervals = int, total.seeds = 50)
[1] 34
# For multiple peak germination times
PeakGermPercent(germ.counts = z, intervals = int, total.seeds = 50)
Warning in PeakGermPercent(germ.counts = z, intervals = int, total.seeds = 50): Multiple peak germinati
[1] 22
# From cumulative germination counts
GermPercent(germ.counts = y, total.seeds = 50, partial = FALSE)
[1] 80
PeakGermPercent(germ.counts = y, intervals = int, total.seeds = 50,
                partial = FALSE)
[1] 34
# For multiple peak germination times
PeakGermPercent(germ.counts = cumsum(z), intervals = int, total.seeds = 50,
                partial = FALSE)
Warning in PeakGermPercent(germ.counts = cumsum(z), intervals = int, total.seeds = 50, : Multiple peak
exist.
[1] 22
# From number of germinated seeds
GermPercent(germinated.seeds = 40, total.seeds = 50)
[1] 80
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
z \leftarrow c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
int <- 1:length(x)</pre>
# From partial germination counts
```

t50()

```
FirstGermTime(germ.counts = x, intervals = int)
FirstGermTime(), LastGermTime(), PeakGermTime(), TimeSpreadGerm()
[1] 5
LastGermTime(germ.counts = x, intervals = int)
[1] 11
TimeSpreadGerm(germ.counts = x, intervals = int)
[1] 6
PeakGermTime(germ.counts = x, intervals = int)
[1] 6
# For multiple peak germination times
PeakGermTime(germ.counts = z, intervals = int)
Warning in PeakGermTime(germ.counts = z, intervals = int): Multiple peak germination times exist.
[1] 5 6
# From cumulative germination counts
FirstGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 5
LastGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 11
TimeSpreadGerm(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
PeakGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
# For multiple peak germination time
PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE)
Warning in PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE): Multiple peak germing
exist.
[1] 5 6
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
t50(germ.counts = x, intervals = int, method = "coolbear")
```

```
[1] 5.970588
t50(germ.counts = x, intervals = int, method = "farooq")
[1] 5.941176
# From cumulative germination counts
t50(germ.counts = y, intervals = int, partial = FALSE, method = "coolbear")
[1] 5.970588
t50(germ.counts = y, intervals = int, partial = FALSE, method = "farooq")
[1] 5.941176
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
MeanGermTime(germ.counts = x, intervals = int)
MeanGermTime(), VarGermTime(), SEGermTime(), CVGermTime()
[1] 6.7
VarGermTime(germ.counts = x, intervals = int)
[1] 1.446154
SEGermTime(germ.counts = x, intervals = int)
[1] 0.1901416
CVGermTime(germ.counts = x, intervals = int)
[1] 0.1794868
# From cumulative germination counts
MeanGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.7
VarGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 19.04012
SEGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.2394781
CVGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.6512685
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
```

```
int <- 1:length(x)</pre>
# From partial germination counts
MeanGermRate(germ.counts = x, intervals = int)
MeanGermRate(), CVG(), VarGermRate(), SEGermRate(), GermRateRecip()
[1] 0.1492537
CVG(germ.counts = x, intervals = int)
[1] 14.92537
VarGermRate(germ.counts = x, intervals = int)
[1] 0.0007176543
SEGermRate(germ.counts = x, intervals = int)
[1] 0.004235724
GermRateRecip(germ.counts = x, intervals = int, method = "coolbear")
[1] 0.1674877
GermRateRecip(germ.counts = x, intervals = int, method = "farooq")
[1] 0.1683168
# From cumulative germination counts
MeanGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1492537
CVG(germ.counts = y, intervals = int, partial = FALSE)
[1] 14.92537
VarGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.009448666
SEGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.005334776
GermRateRecip(germ.counts = y, intervals = int,
              method = "coolbear", partial = FALSE)
[1] 0.1674877
GermRateRecip(germ.counts = y, intervals = int,
              method = "farooq", partial = FALSE)
[1] 0.1683168
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
```

```
# From partial germination counts
GermSpeed(germ.counts = x, intervals = int)
GermSpeed(), GermSpeedAccumulated(), GermSpeedCorrected()
[1] 6.138925
GermSpeedAccumulated(germ.counts = x, intervals = int)
[1] 34.61567
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "normal")
[1] 0.1534731
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "accumulated")
[1] 0.8653917
# From partial germination counts (with percentages instead of counts)
GermSpeed(germ.counts = x, intervals = int,
         percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = x, intervals = int,
                     percent = TRUE, total.seeds = 50)
[1] 69.23134
# From cumulative germination counts
GermSpeed(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.138925
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
[1] 34.61567
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "normal")
[1] 0.1534731
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "accumulated")
[1] 0.8653917
# From cumulative germination counts (with percentages instead of counts)
GermSpeed(germ.counts = y, intervals = int, partial = FALSE,
         percent = TRUE, total.seeds = 50)
```

```
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
       percent = TRUE, total.seeds = 50)
[1] 69.23134
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
#-----
WeightGermPercent(germ.counts = x, total.seeds = 50, intervals = int)
WeightGermPercent()
[1] 47.42857
# From cumulative germination counts
WeightGermPercent(germ.counts = y, total.seeds = 50, intervals = int,
                 partial = FALSE)
[1] 47.42857
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
MeanGermPercent(germ.counts = x, total.seeds = 50, intervals = int)
MeanGermPercent(), MeanGermNumber()
[1] 5.714286
MeanGermNumber(germ.counts = x, intervals = int)
[1] 2.857143
# From cumulative germination counts
MeanGermPercent(germ.counts = y, total.seeds = 50, intervals = int, partial = FALSE)
[1] 5.714286
MeanGermNumber(germ.counts = y, intervals = int, partial = FALSE)
[1] 2.857143
# From number of germinated seeds
MeanGermPercent(germinated.seeds = 40, total.seeds = 50, intervals = int)
```

[1] 5.714286

```
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
# Wihout max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50)
TimsonsIndex(), GermRateGeorge()
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "none")
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
           modification = "labouriau")
[1] 8.3
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "khanungar")
[1] 47.42857
GermRateGeorge(germ.counts = x, intervals = int)
[1] 332
# With max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50, max = 10)
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "none")
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "labouriau")
[1] 4.410256
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             max = 10, modification = "khanungar")
[1] 24.57143
GermRateGeorge(germ.counts = x, intervals = int, max = 10)
[1] 172
GermRateGeorge(germ.counts = x, intervals = int, max = 14)
```

[1] 332

```
# From cumulative germination counts
# Wihout max specified
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
            total.seeds = 50)
[1] 664
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "none")
[1] 664
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "labouriau")
[1] 8.3
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "khanungar")
[1] 47.42857
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,)
[1] 332
# With max specified
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50, max = 10)
[1] 344
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             max = 10, modification = "none")
[1] 344
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             max = 10, modification = "labouriau")
[1] 4.410256
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
            total.seeds = 50,
             max = 10, modification = "khanungar")
[1] 24.57143
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
               max = 10
[1] 172
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,
               max = 14
```

[1] 332

GermIndex()

[1] 5.84

[1] 5.84

[1] 7.3

[1] 5.84

[1] 5.84

[1] 7.3

EmergenceRateIndex()

[1] 292

```
[1] 292
```

[1] 7.3

[1] 5.970149

[1] 8.375

```
# From cumulative germination counts
#-----
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,)
```

[1] 292

[1] 292

[1] 7.3

[1] 5.970149

[1] 8.375

PeakValue(), GermValue()

[1] 9.5

```
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
    method = "czabator")
```

\$`Germination Value` [1] 38.95

[[2]]

	<pre>germ.counts</pre>	${\tt intervals}$	${\tt Cumulative.germ.counts}$	Cumulative.germ.percent	DGS
3	34	3	34	17.0	5.666667
4	40	4	74	37.0	9.250000
5	21	5	95	47.5	9.500000
6	10	6	105	52.5	8.750000
7	4	7	109	54.5	7.785714
8	5	8	114	57.0	7.125000
9	3	9	117	58.5	6.500000
10	5	10	122	61.0	6.100000
11	8	11	130	65.0	5.909091
12	7	12	137	68.5	5.708333
13	7	13	144	72.0	5.538462
14	6	14	150	75.0	5.357143
15	6	15	156	78.0	5.200000
16	4	16	160	80.0	5.000000
17	0	17	160	80.0	4.705882
18	2	18	162	81.0	4.500000
19	0	19	162	81.0	4.263158
20	2	20	164	82.0	4.100000
~	(

GermValue(germ.counts = x, intervals = int, total.seeds = 200,
 method = "dp", k = 10)

\$`Germination Value`

[1] 53.36595

[[2]]

2]]						
germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS	SumDGSbyN	GV
34	3	34	17.0	5.666667	5.666667	9.633333
40	4	74	37.0	9.250000	7.458333	27.595833
21	5	95	47.5	9.500000	8.138889	38.659722
10	6	105	52.5	8.750000	8.291667	43.531250
4	7	109	54.5	7.785714	8.190476	44.638095
5	8	114	57.0	7.125000	8.012897	45.673512
3	9	117	58.5	6.500000	7.796769	45.611097
5	10	122	61.0	6.100000	7.584673	46.266503
8	11	130	65.0	5.909091	7.398497	48.090230
7	12	137	68.5	5.708333	7.229481	49.521942
7	13	144	72.0	5.538462	7.075752	50.945411
6	14	150	75.0	5.357143	6.932534	51.994006
6	15	156	78.0	5.200000	6.799262	53.034246
4	16	160	80.0	5.000000	6.670744	53.365948
0	17	160	80.0	4.705882	6.539753	52.318022
2	18	162	81.0	4.500000	6.412268	51.939373
0	19	162	81.0	4.263158	6.285850	50.915385
2	20	164	82.0	4.100000	6.164414	50.548194
	germ.counts	germ.counts intervals 34 3 40 4 21 5 10 6 4 7 5 8 3 9 5 10 8 11 7 12 7 13 6 14 6 15 4 16 0 17 2 18 0 19	germ.counts intervals Cumulative.germ.counts 34 3 34 40 4 74 21 5 95 10 6 105 4 7 109 5 8 114 3 9 117 5 10 122 8 11 130 7 12 137 7 13 144 6 14 150 6 15 156 4 16 160 0 17 160 2 18 162 0 19 162	germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent 34 3 34 17.0 40 4 74 37.0 21 5 95 47.5 10 6 105 52.5 4 7 109 54.5 5 8 114 57.0 3 9 117 58.5 5 10 122 61.0 8 11 130 65.0 7 12 137 68.5 7 13 144 72.0 6 14 150 75.0 6 15 156 78.0 4 16 160 80.0 0 17 160 80.0 2 18 162 81.0 0 19 162 81.0	germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent DGS 34 3 34 17.0 5.666667 40 4 74 37.0 9.250000 21 5 95 47.5 9.500000 10 6 105 52.5 8.750000 4 7 109 54.5 7.785714 5 8 114 57.0 7.125000 3 9 117 58.5 6.500000 5 10 122 61.0 6.100000 8 11 130 65.0 5.909991 7 12 137 68.5 5.708333 7 13 144 72.0 5.538462 6 14 150 75.0 5.357143 6 15 156 78.0 5.200000 4 16 160 80.0 5.000000 0 17 160 80.0	germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent DGS SumDGSbyN 34 3 34 17.0 5.666667 5.666667 40 4 74 37.0 9.250000 7.458333 21 5 95 47.5 9.50000 8.138889 10 6 105 52.5 8.75000 8.291667 4 7 109 54.5 7.785714 8.190476 5 8 114 57.0 7.125000 8.012897 3 9 117 58.5 6.500000 7.796769 5 10 122 61.0 6.100000 7.584673 8 11 130 65.0 5.909091 7.398497 7 12 137 68.5 5.708333 7.229481 7 13 144 72.0 5.538462 7.075752 6 14 150 75.0 5.357143 6.932534

\$testend

[1] 16

```
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
    method = "czabator", from.onset = FALSE)
```

\$`Germination Value`

[1] 38.95

[[2]]

	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS
1	0	1	0	0.0	0.000000
2	0	2	0	0.0	0.000000
3	34	3	34	17.0	5.666667
4	40	4	74	37.0	9.250000
5	21	5	95	47.5	9.500000
6	10	6	105	52.5	8.750000
7	4	7	109	54.5	7.785714
8	5	8	114	57.0	7.125000
9	3	9	117	58.5	6.500000
10	5	10	122	61.0	6.100000
11	8	11	130	65.0	5.909091
12	7	12	137	68.5	5.708333
13	7	13	144	72.0	5.538462
14	6	14	150	75.0	5.357143
15	6	15	156	78.0	5.200000
16	4	16	160	80.0	5.000000
17	0	17	160	80.0	4.705882
18	2	18	162	81.0	4.500000
19	0	19	162	81.0	4.263158
20	2	20	164	82.0	4.100000

GermValue(germ.counts = x, intervals = int, total.seeds = 200,
 method = "dp", k = 10, from.onset = FALSE)

\$`Germination Value`

[1] 46.6952

[[2]]

L	[4]]						
	germ.counts	${\tt intervals}$	Cumulative.germ.counts	${\tt Cumulative.germ.percent}$	DGS	${\tt SumDGSbyN}$	GV
1	0	1	0	0.0	0.000000	0.000000	0.000000
2	0	2	0	0.0	0.000000	0.000000	0.000000
3	34	3	34	17.0	5.666667	1.888889	3.211111
4	40	4	74	37.0	9.250000	3.729167	13.797917
5	21	5	95	47.5	9.500000	4.883333	23.195833
6	10	6	105	52.5	8.750000	5.527778	29.020833
7	4	7	109	54.5	7.785714	5.850340	31.884354
8	5	8	114	57.0	7.125000	6.009673	34.255134
9	3	9	117	58.5	6.500000	6.064153	35.475298
1	0 5	10	122	61.0	6.100000	6.067738	37.013202
1	1 8	11	130	65.0	5.909091	6.053316	39.346552
1	2 7	12	137	68.5	5.708333	6.024567	41.268285
1	3 7	13	144	72.0	5.538462	5.987174	43.107655
1	4 6	14	150	75.0	5.357143	5.942172	44.566291
1	5 6	15	156	78.0	5.200000	5.892694	45.963013
1	6 4	16	160	80.0	5.000000	5.836901	46.695205
1	7 0	17	160	80.0	4.705882	5.770370	46.162961

18	2	18	162	81.0 4.500000	5.699794 46.168331
19	0	19	162	81.0 4.263158	5.624182 45.555871
20	2	20	164	82.0 4.100000	5.547972 45.493374

\$testend

[1] 16

[1] 9.5

\$`Germination Value`

[1] 38.95

[[2]]

	2				
	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS
3	34	3	34	17.0	5.666667
4	40	4	74	37.0	9.250000
5	21	5	95	47.5	9.500000
6	10	6	105	52.5	8.750000
7	4	7	109	54.5	7.785714
8	5	8	114	57.0	7.125000
9	3	9	117	58.5	6.500000
10	5	10	122	61.0	6.100000
11	8	11	130	65.0	5.909091
12	7	12	137	68.5	5.708333
13	7	13	144	72.0	5.538462
14	6	14	150	75.0	5.357143
15	6	15	156	78.0	5.200000
16	4	16	160	80.0	5.000000
17	0	17	160	80.0	4.705882
18	2	18	162	81.0	4.500000
19	0	19	162	81.0	4.263158
20	2	20	164	82.0	4.100000

\$`Germination Value`

[1] 53.36595

[[2]]

	germ.counts	${\tt intervals}$	Cumulative.germ.counts	Cumulative.germ.percent	DGS	${\tt SumDGSbyN}$	GV
3	34	3	34	17.0	5.666667	5.666667	9.633333
4	40	4	74	37.0	9.250000	7.458333	27.595833
5	21	5	95	47.5	9.500000	8.138889	38.659722
6	10	6	105	52.5	8.750000	8.291667	43.531250
7	4	7	109	54.5	7.785714	8.190476	44.638095
8	5	8	114	57.0	7.125000	8.012897	45.673512
9	3	9	117	58.5	6.500000	7.796769	45.611097

10	5	10	122	61.0 6.100000	7.584673 46.266503
11	8	11	130	65.0 5.909091	7.398497 48.090230
12	7	12	137	68.5 5.708333	7.229481 49.521942
13	7	13	144	72.0 5.538462	7.075752 50.945411
14	6	14	150	75.0 5.357143	6.932534 51.994006
15	6	15	156	78.0 5.200000	6.799262 53.034246
16	4	16	160	80.0 5.000000	6.670744 53.365948
17	0	17	160	80.0 4.705882	6.539753 52.318022
18	2	18	162	81.0 4.500000	6.412268 51.939373
19	0	19	162	81.0 4.263158	6.285850 50.915385
20	2	20	164	82.0 4.100000	6.164414 50.548194

\$testend

[1] 16

\$`Germination Value`

[1] 38.95

[[2]]

	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS
1	0	1	0		0.000000
2	0	2	0	0.0	0.000000
3	34	3	34	17.0	5.666667
4	40	4	74	37.0	9.250000
5	21	5	95	47.5	9.500000
6	10	6	105	52.5	8.750000
7	4	7	109	54.5	7.785714
8	5	8	114	57.0	7.125000
9	3	9	117	58.5	6.500000
10	5	10	122	61.0	6.100000
11	8	11	130	65.0	5.909091
12	7	12	137	68.5	5.708333
13	7	13	144	72.0	5.538462
14	6	14	150	75.0	5.357143
15	6	15	156	78.0	5.200000
16	4	16	160	80.0	5.000000
17	0	17	160	80.0	4.705882
18	2	18	162	81.0	4.500000
19	0	19	162	81.0	4.263158
20	2	20	164	82.0	4.100000

\$`Germination Value`

[1] 46.6952

[[2]]

	germ.counts	intervals	Cumulative.germ.counts	Cumulative.germ.percent	DGS	SumDGSbyN	GV
1	0	1	0	0.0	0.000000	0.000000	0.000000
2	0	2	0	0.0	0.000000	0.000000	0.000000
3	34	3	34	17.0	5.666667	1.888889	3.211111

4	40	4	74	37.0 9.250000	3.729167 13.797917
5	21	5	95	47.5 9.500000	4.883333 23.195833
6	10	6	105	52.5 8.750000	5.527778 29.020833
7	4	7	109	54.5 7.785714	5.850340 31.884354
8	5	8	114	57.0 7.125000	6.009673 34.255134
9	3	9	117	58.5 6.500000	6.064153 35.475298
10	5	10	122	61.0 6.100000	6.067738 37.013202
11	8	11	130	65.0 5.909091	6.053316 39.346552
12	7	12	137	68.5 5.708333	6.024567 41.268285
13	7	13	144	72.0 5.538462	5.987174 43.107655
14	6	14	150	75.0 5.357143	5.942172 44.566291
15	6	15	156	78.0 5.200000	5.892694 45.963013
16	4	16	160	80.0 5.000000	5.836901 46.695205
17	0	17	160	80.0 4.705882	5.770370 46.162961
18	2	18	162	81.0 4.500000	5.699794 46.168331
19	0	19	162	81.0 4.263158	5.624182 45.555871
20	2	20	164	82.0 4.100000	5.547972 45.493374

\$testend

[1] 16

CUGerm()

[1] 0.7092199

```
# From cumulative germination counts
#-----
CUGerm(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 0.05267935

GermSynchrony(), GermUncertainty()

[1] 0.2666667

```
GermUncertainty(germ.counts = x, intervals = int)
```

[1] 2.062987

```
# From cumulative germination counts
#------
GermSynchrony(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 0.2666667

GermUncertainty(germ.counts = y, intervals = int, partial = FALSE)

[1] 2.062987

Non-linear regression analysis

Several mathematical functions have been used to fit the cumulative germination count data and describe the germination process by non-linear regression analysis. They include functions such as Richard's, Weibull, logistic, log-logistic, gaussian, four-parameter hill function etc. Currently germinationmetrics implements the four-parameter hill function to fit the count data and computed various associated metrics.

Four-parameter hill function

The four-parameter hill function defined as follows (El-Kassaby et al., 2008).

$$f(x) = y = y_0 + \frac{ax^b}{x^b + c^b}$$

Where, y is the cumulative germination percentage at time x, y_0 is the intercept on the y axis, a is the asymptote, b is a mathematical parameter controlling the shape and steepness of the germination curve and c is the "half-maximal activation level".

this function can also be be reparameterized by substituting b with e^{β} to constraint b to positive values only.

$$y = y_0 + \frac{ax^{e^{\beta}}}{c^{e^{\beta}} + x^{e^{\beta}}}$$

Where, $b = e^{\beta}$ and $\beta = \log_e(b)$.

The details of various parameters that are computed from this function are given in Table 4.

Table 4 Germination parameters estimated from the four-parameter hill function.

Germination parameters	Details	Unit	Measures
y intercept (y_0)	The intercept on the y axis.		
Asymptote (a)	It is the maximum cumulative germination percentage, which is equivalent to germination capacity.	%	Germination capacity
Shape and steepness (b)	Mathematical parameter controlling the shape and steepness of the germination curve. The larger the b , the steeper the rise toward the asymptote a , and the shorter the time between germination onset and maximum germination.		Germination rate
Half-maximal activation level (c)	Time required for 50% of viable seeds to germinate.	time	Germination time

	Unit	Measures
and is computed ion after setting	time	Germination time
ermination onset (c) .	time	Germination time
s to germinate.	time	Germination time
rminated seeds	time	Germination time
to germinate.	time	Germination time
minated seeds to	time	Germination time
percentages of nts umin and	time	Germination time
arameter hill e of germination	time	Germination time
s rate of ted as follows.		
1)		
tarts to decline.		
fitted curve n the argument		Mixed
ed curve and	time	Germination time
	ed curve and	ed curve and time

Examples

FourPHFfit()

Warning in FourPHFfit(germ.counts = x, intervals = int, total.seeds = 50, : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

\$data

φαασα						
	gp	csgp	intervals			
1	0	0	1			
2	0	0	2			
3	0	0	3			
4	0	0	4			
5	8	8	5			
6	34	42	6			
7	20	62	7			
8	14	76	8			
9	2	78	9			
10	0	78	10			
11	2	80	11			
12	0	80	12			
13	0	80	13			
14	0	80	14			

\$Parameters

```
term estimate std.error statistic p.value
         NA
                   NA
  a
2
                             NA
                                    NA
   b
           NA
                    NA
3
   С
           NA
                    NA
                             NA
                                    NA
           NA
                    NA
                             NA
                                    NA
  yО
```

\$Fit

```
sigma isConv finTol logLik AIC BIC deviance df.residual nobs 1 NA NA NA NA NA NA NA NA
```

\$a

[1] NA

\$b

[1] NA

\$c

[1] NA

\$y0

[1] NA

```
$lag
[1] NA
$Dlag50
[1] NA
$t50.total
[1] NA
$txp.total
10 60
NA NA
$t50.Germinated
[1] NA
$txp.Germinated
10 60
NA NA
$Uniformity
       90
                   10 uniformity
       NA
                              NA
                   NA
$TMGR
[1] NA
$AUC
[1] NA
$MGT
[1] NA
$Skewness
[1] NA
[1] "#1. failed to evaluate 'fn' at starting values: could not find function \"FourPHF_fixa_fixy0\" "
$isConv
[1] NA
<simpleError in gsl_nls.formula(csgp ~ FourPHF_fixa_fixy0(x = intervals, a = max(csgp), bta, c), da</pre>
attr(,"class")
[1] "FourPHFfit" "list"
# From cumulative germination counts
FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, tmax = 20,
partial = FALSE)
```

Warning in FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

\$data

	gp	csgp	${\tt intervals}$
1	0	0	1
2	0	0	2
3	0	0	3
4	0	0	4
5	8	8	5
6	34	42	6
7	20	62	7
8	14	76	8
9	2	78	9
10	0	78	10
11	2	80	11
12	0	80	12
13	0	80	13
14	0	80	14

\$Parameters

term estimate std.error statistic p.value NA NANANA NANANA 2 b 3 С NA NANANA у0 NANANANA

\$Fit

sigma is
Conv fin Tol log
Lik AIC BIC deviance df.
residual nobs 1 NA NA NA NA NA NA NA NA

\$a

[1] NA

\$b

[1] NA

\$с

[1] NA

\$y0

[1] NA

\$lag

[1] NA

\$Dlag50

[1] NA

\$t50.total

[1] NA

\$txp.total

10 60

NA NA

\$t50.Germinated

```
[1] NA
$txp.Germinated
10 60
NA NA
$Uniformity
       90
                  10 uniformity
       NA
                  NA
                             NA
$TMGR
[1] NA
$AUC
[1] NA
$MGT
[1] NA
$Skewness
[1] NA
$msg
[1] "#1. failed to evaluate 'fn' at starting values: could not find function \"FourPHF_fixa_fixy0\" "
$isConv
[1] NA
$model
<simpleError in gsl_nls.formula(csgp ~ FourPHF_fixa_fixy0(x = intervals, a = max(csgp), bta, c), da</pre>
attr(,"class")
[1] "FourPHFfit" "list"
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
total.seeds = 50
# From partial germination counts
#-----
fit1 <- FourPHFfit(germ.counts = x, intervals = int,</pre>
                 total.seeds = 50, tmax = 20)
Warning in FourPHFfit(germ.counts = x, intervals = int, total.seeds = 50, : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
# From cumulative germination counts
fit2 <- FourPHFfit(germ.counts = y, intervals = int,</pre>
```

Warning in FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

total.seeds = 50, tmax = 20, partial = FALSE)

Default plots plot(fit1)

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 14 rows containing missing values (`geom_segment()`).
Removed 14 rows containing missing values (`geom_segment()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`). Removed 1 rows containing missing values (`geom_vline()`).

plot(fit2)

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 14 rows containing missing values (`geom_segment()`). Removed 14 rows containing missing values (`geom_segment()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

plot(fit1, plotlabels = FALSE)

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 14 rows containing missing values (`geom_segment()`). Removed 14 rows containing missing values (`geom_segment()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`). Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 14 rows containing missing values (`geom_segment()`). Removed 14 rows containing missing values (`geom_segment()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`). Removed 1 rows containing missing values (`geom_vline()`).


```
# Only the FPHF curve
plot(fit1, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
    tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
```


Without y axis limits adjustment
plot(fit1, limits = FALSE)

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 14 rows containing missing values (`geom_segment()`). Removed 14 rows containing missing values (`geom_segment()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 101 rows containing missing values (`geom_function()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`).
Removed 1 rows containing missing values (`geom_vline()`).

Warning: Removed 14 rows containing missing values (`geom_segment()`). Removed 14 rows containing missing values (`geom_segment()`).

Warning: Removed 1 rows containing missing values (`geom_vline()`). Removed 1 rows containing missing values (`geom_vline()`).

Wrapper functions

Wrapper functions germination.indices() and FourPHFfit.bulk() are available in the package for computing results for multiple samples in batch from a data frame of germination counts recorded at specific time intervals.

germination.indices() This wrapper function can be used to compute several germination indices simultaneously for multiple samples in batch.

	${\tt Genotype}$	Rep	Day01	Day02	Day03	Day04	Day05	Day06	Day07	Day08	Day09	Day10	Day11	Day12	Day13	Day14	Tota
1	G1	1	0	0	0	0	4	17	10	7	1	0	1	0	0	0	
2	G2	1	0	0	0	1	3	15	13	6	2	1	0	1	0	0	
3	G3	1	0	0	0	2	3	18	9	8	2	1	1	1	0	0	
4	G4	1	0	0	0	0	4	19	12	6	2	1	1	1	0	0	
5	G5	1	0	0	0	0	5	20	12	8	1	0	0	1	1	0	
6	G1	2	0	0	0	0	3	21	11	7	1	1	1	1	0	0	
7	G2	2	0	0	0	0	4	18	11	7	1	0	1	0	0	0	
8	G3	2	0	0	0	1	3	14	12	6	2	1	0	1	0	0	
9	G4	2	0	0	0	1	3	19	10	8	1	1	1	1	0	0	
10	G5	2	0	0	0	0	4	18	13	6	2	1	0	1	0	0	
11	G1	3	0	0	0	0	5	21	11	8	1	0	0	1	1	0	

12	G2 3	0 0	0	0 3	20 10	7	1	1	1 1	0	0
13	G3 3	0 0	0	0 4	19 12	8	1	1	0 1	1	0
14	G4 3	0 0	0	0 3	21 11	6	1	0	1 1	0	0
15		0 0		0 4	17 10	8	1		1 0	0	0
	GermPercent 1	PeakGermPerc	ent FirstGe	ermTime Las		PeakGe	ermTime Ti	meSprea	dGerm t	_	_
1	80.00000	34.00		5	11		6		6	5.97058	
2	82.35294	29.41		4	12		6		8	6.19230	
3	93.75000	37.50		4	12		6		8	6.00000	
4	90.19608	37.25		5	12		6		7	6.04166	
5	96.00000	40.00		5	13		6		8	5.97500	
6	93.87755	42.85		5	12		6		7	5.97619	
7	87.50000	37.50		5	11		6		6	5.97222	
8	85.10638	29.78		4	12		6		8	6.20833	
9	86.53846	36.53		4	12		6		8	6.00000	
10		36.00		5	12		6		7	6.07692	
11		41.17		5	13		6		8	5.92857	
12		39.21		5	12		6		7	5.97500	
13		38.77		5	13		6		8	6.08333	
14		43.75		5	12		6		7	5.92857	
15		35.41		5 	11	D-+-	6 W C D -	+- 000	6	6.05000	
4	MeanGermTime						VarGermRa		ermRate		GermRa ⁻
1	6.700000 6.857143	1.446154 2.027875).00071765).00091720				
2 3	6.866667	2.027678).00091720).00115720				
4	6.891304	2.187923					0.00115720				
5	6.812500	2.167923).000 <i>91</i> 012).00109956				
6	6.869565	2.071498					0.00109930				
7	6.690476	1.389663					0.00093010				
8	6.875000	2.112179					0.00093556				
9	6.866667	2.300000					0.00034345				
10		1.831313					0.00100400				
11		2.381206					0.00001000				
12		2.149577					0.00095585				
13		2.539315					0.00109707				
14		1.900634					0.00090332				
15		1.670151					0.00077676				
	GermRateReci										umulate
1	-	.1683168	6.13892	=	12.27785	-		34.6		•	
2		. 1625000	6.36269		12.47588			35.5			
3	0	. 1674419	6.8821	79	14.33787			38.2			
4		. 1666667	6.9274		13.58317			38.6			
5	0	. 1680672	7.31898	37	14.63797			41.0	0786		
6	0	. 1680000	6.93178	32	14.14649			38.7	7620		
7	0	. 1682243	6.4484	19	13.43427			36.3	8546		
8	0	. 1621622	6.0531	75	12.87909			33.7	7079		
9	0	. 1674009	6.83059	92	13.13575			38.1	1511		
10	0	. 1656051	6.81269	98	13.62540			38.1	9527		
11		. 1693548	7.34279	96	14.39764			41.1	7452		
12		. 1680672	6.6222	58	12.98482			37.0	0640		
13		. 1655172	7.05232	20	14.39249			39.2	9399		
14		. 1693548	6.70678		13.97246			37.6			
15		. 1666667	6.36392		13.25818			35.6			
	GermSpeedCor:	rected_Norma	-	dCorrected_	Accumulate	_	•	cent Me		ercent Mea	nGermNı

0.8653917

0.1534731

1

47.42857

5.714286

2	0.1514928		0.8462043	47.89916		.882353	3.00
3	0.1529373		0.8510501	54.46429	6	. 696429	3.2
4	0.1505960		0.8409680	52.24090	6	. 442577	3.2
5	0.1524789		0.8543303	56.14286	6	.857143	3.49
6	0.1506909		0.8429608	54.51895	6	.705539	3.2
7	0.1535345		0.8663205	51.93452	6	. 250000	3.00
8	0.1513294		0.8442698	49.39210	6	.079027	2.8
9	0.1517909		0.8470024	50.27473	6	. 181319	3.2
10	0.1513933		0.8487837	52.57143	6	.428571	3.2
11	0.1529749		0.8578026	55.18207	6	.722689	3.45
12	0.1505059		0.8410547	50.00000	6	. 162465	3.14
13	0.1500494		0.8360424	55.24781	6	.851312	3.3
14	0.1524269		0.8567022	53.86905	6	.547619	3.14
15	0.1515220		0.8499278	51.19048	6	.250000	3.00
	TimsonsIndex TimsonsIndex_L	abouriau Timso					
1	8.00000	1.00	0.5714286	4	5.840000		300000
2	9.803922	1.25	0.7002801	5	5.882353		42857
3	14.583333	1.40	1.0416667	7	6.687500		133333
4	7.843137	1.00	0.5602241	4	6.411765		108696
5	10.000000	1.00	0.7142857	5	6.900000		87500
6	6.122449	1.00	0.4373178	3	6.693878		130435
7	8.333333	1.00	0.5952381	4	6.395833		309524
8	10.638298	1.25	0.7598784	5	6.063830		25000
9	9.615385	1.25	0.6868132	5	6.173077		133333
10	8.000000	1.00	0.5714286	4	6.460000		177778
11	9.803922	1.00	0.7002801	5	6.784314		208333
12	5.882353	1.00	0.4201681	3	6.137255		13636
13	8.163265	1.00	0.5830904	4	6.775510		63830
14	6.250000	1.00	0.4464286	3	6.625000		227273
15	8.333333	1.00	0.5952381	4	6.291667		190476
13	EmergenceRateIndex_SG Emerg						
1	292		300000		970149	er Remcere	reinder"
2	300		142857		125000		
3	321		133333		553398		
4	327						
5	345		108696 187500		675079 045872		
6	328		130435		696203		
7	307		309524		277580		
	285						
8 9	321		125000		818182		
			133333		553398 596091		
10	323		177778				
11	346		208333		067485		
12	313		113636		389439		
13			063830		776074		
14			227273		496644		
15	302		190476		167832	arra	
_	PeakValue GermValue_Czabato						GermSyncl
1	9.500000 54.2857				9.56076 0		0.26
2	9.313725 54.7866				0.99260 0		0.23
3	10.416667 69.7544				3.42809 0		0.22
4	10.049020 64.7415				8.86825 0		0.250
5	11.250000 77.1428	6 80.16914	77	1/1/1986 - 5	6 77475 N	43191 <u>8</u> 4	0.26
					6.23935 0		
6 7	10.714286 71.8450 10.416667 65.1041	6 76.51983	71	.84506 5	3.06435 0 7.37690 0	.4934701	0.279 0.279

8	9.574468	58.20345	56.00669	58.20345	43.67948 0.4855842	0.22
9	9.855769	60.92165	58.13477	60.92165	45.30801 0.4446640	0.249
10	10.250000	65.89286	70.91875	65.89286	49.10820 0.5584666	0.25
11	11.029412	74.14731	77.39782	74.14731	54.27520 0.4288905	0.268
12	9.803922	60.41632	64.44988	60.41632	44.71582 0.4760266	0.27
13	10.969388	75.15470	78.16335	75.15470	54.94192 0.4023679	0.25
14	10.677083	69.90947	74.40140	69.90947	51.41913 0.5383760	0.299
15	10.156250	63.47656	67.62031	63.47656	46.48043 0.6133519	0.249
	GermUncertainty					
1	2.062987					
2	2.321514					
3	2.462012					
4	2.279215					
5	2.146051					

 10
 2.187983

 11
 2.128670

 12
 2.185245

 13
 2.241181

 14
 2.037680

2.160545

2.040796

2.357249

2.321080

2.185028

6

7

8

9

15

FourPHFfit.bulk() This wrapper function can be used to fit the four-parameter hill function for multiple samples in batch.

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

	Genot	уре Н	Rep D	ay01	Day02	Day03	Day04	Day05	Day06	Day07	Day08	Day09	Day10	Day11	Day12	Day13	Day14	Tota
1		G1	1	0	0	0	0	4	17	10	7	1	0	1	0	0	0	
2		G2	1	0	0	0	1	3	15	13	6	2	1	0	1	0	0	
3		G3	1	0	0	0	2	3	18	9	8	2	1	1	1	0	0	
4		G4	1	0	0	0	0	4	19	12	6	2	1	1	1	0	0	
5		G5	1	0	0	0	0	5	20	12	8	1	0	0	1	1	0	
6		G1	2	0	0	0	0	3	21	11	7	1	1	1	1	0	0	
7		G2	2	0	0	0	0	4	18	11	7	1	0	1	0	0	0	
8		G3	2	0	0	0	1	3	14	12	6	2	1	0	1	0	0	
9		G4	2	0	0	0	1	3	19	10	8	1	1	1	1	0	0	
10		G5	2	0	0	0	0	4	18	13	6	2	1	0	1	0	0	
11		G1	3	0	0	0	0	5	21	11	8	1	0	0	1	1	0	
12		G2	3	0	0	0	0	3	20	10	7	1	1	1	1	0	0	
13		G3	3	0	0	0	0	4	19	12	8	1	1	0	1	1	0	
14		G4	3	0	0	0	0	3	21	11	6	1	0	1	1	0	0	
15		G5	3	0	0	0	0	4	17	10	8	1	1	1	0	0	0	
	b	С	у0	lag	Dlag5	0 t50	.total	txp.to	otal_10) txp.1	total_6	30 t50	.Germi	nated '	txp.Ge:	rminate	ed_10 f	txp.
1	<na></na>	<na></na>	<na></na>	<na></na>	<na:< td=""><td>></td><td><na></na></td><td></td><td><na></na></td><td>•</td><td><na< td=""><td><i>l></i></td><td></td><td><na></na></td><td></td><td></td><td><na></na></td><td></td></na<></td></na:<>	>	<na></na>		<na></na>	•	<na< td=""><td><i>l></i></td><td></td><td><na></na></td><td></td><td></td><td><na></na></td><td></td></na<>	<i>l></i>		<na></na>			<na></na>	
_																		

<

<

```
8 <NA> <NA> <NA> <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                <NA>
                                                                                <NA>
                                                                                                    <NA>
   <NA> <NA> <NA> <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                <NA>
                                                                                <NA>
                                                                                                    <NA>
10 <NA> <NA> <NA> <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                <NA>
                                                                                <NA>
                                                                                                    <NA>
11 <NA> <NA> <NA> <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                <NA>
                                                                                <NA>
                                                                                                    <NA>
12 <NA> <NA> <NA> <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                <NA>
                                                                                <NA>
                                                                                                    <NA>
13 <NA> <NA> <NA> <NA>
                                                                                <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                <NA>
                                                                                                    <NA>
14 <NA> <NA> <NA> <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                < NA >
                                                                                <NA>
                                                                                                    <NA>
15 <NA> <NA> <NA> <NA>
                                                                                <NA>
                          <NA>
                                     <NA>
                                                   <NA>
                                                                <NA>
                                                                                                    <NA>
   Uniformity_90 Uniformity_10 Uniformity TMGR
                                                  AUC MGT Skewness
1
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
2
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
3
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
4
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
5
            < NA >
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
6
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
            <NA>
7
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
8
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
9
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
                                       <NA> <NA> <NA> <NA>
10
            <NA>
                           <NA>
                                                                <NA>
11
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
12
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
13
            <NA>
                           <NA>
                                       <NA> <NA> <NA> <NA>
                                                                <NA>
                                       <NA> <NA> <NA> <NA>
                           <NA>
14
            <NA>
                                                                <NA>
15
                           <NA>
                                       <NA> <NA> <NA> <NA>
            <NA>
                                                                <NA>
                                                                                                  msg Fit_si
1
  #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
  #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
  #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
  #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
  #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
7
   #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
  #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
9 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
10 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
11 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
12 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF fixa fixy0"
13 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
14 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
15 #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
   Fit_finTol Fit_logLik Fit_AIC Fit_BIC Fit_deviance Fit_df.residual Fit_nobs
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
1
2
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
3
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
4
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
5
         <NA>
                     <NA>
                             <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
                                      <NA>
6
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
7
         < NA >
                     <NA>
                             <NA>
                                      < NA >
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
                             <NA>
8
         <NA>
                     <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
9
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
10
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
11
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
12
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
13
         <NA>
                     <NA>
                             <NA>
                                      <NA>
                                                    <NA>
                                                                     <NA>
                                                                              <NA>
```

```
14
           <NA>
                         < NA >
                                  <NA>
                                            <NA>
                                                             <NA>
                                                                                 <NA>
                                                                                            <NA>
                                   <NA>
                                                                                            <NA>
15
           <NA>
                         < NA >
                                            <NA>
                                                             <NA>
                                                                                 < NA >
```

Multiple fitted curves generated in batch can also be plotted.

```
data(gcdata)
counts.per.intervals <- c("Day01", "Day02", "Day03", "Day04", "Day05",</pre>
                          "Day06", "Day07", "Day08", "Day09", "Day10",
                          "Day11", "Day12", "Day13", "Day14")
fits <- FourPHFfit.bulk(gcdata, total.seeds.col = "Total Seeds",</pre>
                    counts.intervals.cols = counts.per.intervals,
                    intervals = 1:14, partial = TRUE,
                    fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60),
                    tmax = 20, tries = 3, umax = 90, umin = 10)
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error
#1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"
```

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

Warning in FourPHFfit(germ.counts = unlist(mget(counts.intervals.cols)), : Convergence Error #1. failed to evaluate 'fn' at starting values: could not find function "FourPHF_fixa_fixy0"

```
# Plot FPHF curves
plot(fits, group.col = "Genotype")
```

Warning: Removed 1965 rows containing missing values (`geom_line()`).


```
# Plot ROG curves
plot(fits, rog = TRUE, group.col = "Genotype")
```

Warning: Removed 1965 rows containing missing values (`geom_line()`).


```
# Plot FPHF curves with points
plot(fits, group.col = "Genotype", show.points = TRUE)
```



```
# Plot FPHF curves with annotations
plot(fits, group.col = "Genotype", annotate = "t50.total")
```

Warning: Removed 15 rows containing missing values (`geom_vline()`).

plot(fits, group.col = "Genotype", annotate = "t50.germ")

Warning: Removed 1965 rows containing missing values (`geom_line()`). Removed 15 rows containing missing values (`geom_vline()`).

Warning: Removed 1965 rows containing missing values (`geom_line()`). Removed 15 rows containing missing values (`geom_vline()`).


```
plot(fits, group.col = "Genotype", annotate = "mgt")
```

Warning: Removed 1965 rows containing missing values (`geom_line()`). Removed 15 rows containing missing values (`geom_vline()`).

plot(fits, group.col = "Genotype", annotate = "uniformity")

Warning: Removed 1965 rows containing missing values (`geom_line()`).

Warning: Removed 15 rows containing missing values (`geom_point()`). Removed 15 rows containing missing values (`geom_point()`).

Warning: Removed 15 rows containing missing values (`geom_segment()`).


```
# Plot ROG curves with annotations
plot(fits, rog = TRUE, group.col = "Genotype", annotate = "t50.total")
```

Warning: Removed 15 rows containing missing values (`geom_vline()`).


```
plot(fits, rog = TRUE, group.col = "Genotype", annotate = "t50.germ")
```

Warning: Removed 1965 rows containing missing values (`geom_line()`). Removed 15 rows containing missing values (`geom_vline()`).

plot(fits, rog = TRUE, group.col = "Genotype", annotate = "tmgr")

Warning: Removed 1965 rows containing missing values (`geom_line()`). Removed 15 rows containing missing values (`geom_vline()`).

Warning: Removed 1965 rows containing missing values (`geom_line()`). Removed 15 rows containing missing values (`geom_vline()`).


```
plot(fits, rog = TRUE, group.col = "Genotype", annotate = "uniformity")
```

Warning: Removed 15 rows containing missing values (`geom_point()`). Removed 15 rows containing missing values (`geom_point()`).

Warning: Removed 15 rows containing missing values ('geom_segment()').


```
# Change colour of curves using ggplot2 options
library(ggplot2)
curvesplot <- plot(fits, group.col = "Genotype")

# 'Dark2' palette from RColorBrewer
curvesplot + scale_colour_brewer(palette = "Dark2")</pre>
```

Warning: Removed 1965 rows containing missing values (`geom_line()`).

lat fas htt: Rdp yam mat gsl: dat hig

Citing germinationmetrics

```
To cite the R package 'germinationmetrics' in publications use:
```

Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan (). germinationmetrics: Seed Germination Indices and Curve Fitting. R package version 0.1.7.9000, https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics.

A BibTeX entry for LaTeX users is

```
@Manual{,
    title = {germinationmetrics: Seed Germination Indices and Curve Fitting},
    author = {J. Aravind and S. {Vimala Devi} and J. Radhamani and Sherry Rachel Jacob and {Kalyani Srinote = {R package version 0.1.7.9000 https://aravind-j.github.io/germinationmetrics/ https://CRAN.R
```

This free and open-source software implements academic research by the authors and co-workers. If you u it, please support the project by citing the package.

Session Info

}

```
sessionInfo()
```

R Under development (unstable) (2023-08-09 r84924 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 11 x64 (build 22621)

Matrix products: default

locale:

[1] LC_COLLATE=English_India.utf8 LC_CTYPE=English_India.utf8 LC_MONETARY=English_India.utf8

[4] LC_NUMERIC=C LC_TIME=English_India.utf8

time zone: Asia/Calcutta tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] germinationmetrics_0.1.7.9000 ggplot2_3.4.2

loaded via a namespace (and not attached):

Toua.	ou viu u numobpuoo	(and not accaonca).				
[1]	utf8_1.2.3	generics_0.1.3	tidyr_1.3.0	bitops_1.0-7	stringi_1.7.12	
[7]	digest_0.6.33	magrittr_2.0.3	RColorBrewer_1.1-3	evaluate_0.21	grid_4.4.0	
[13]	plyr_1.8.8	Matrix_1.6-0	ggrepel_0.9.3	backports_1.4.1	tinytex_0.46	
[19]	purrr_1.0.1	fansi_1.0.4	pander_0.6.5	scales_1.2.1	XML_3.99-0.14	
[25]	cli_3.6.1	rlang_1.1.1	rbibutils_2.2.14	munsell_0.5.0	withr_2.5.0	
[31]	tools_4.4.0	parallel_4.4.0	reshape2_1.4.4	dplyr_1.1.2	colorspace_2.1-0	1
[37]	broom_1.0.5	curl_5.0.1	vctrs_0.6.3	R6_2.5.1	lifecycle_1.0.3	
[43]	stringr_1.5.0	pkgconfig_2.0.3	rJava_1.0-6	pillar_1.9.0	gtable_0.3.3	
[49]	glue_1.6.2	Rcpp_1.0.11	xfun_0.40	tibble_3.2.1	tidyselect_1.2.0	
[55]	rstudioapi_0.15.0	knitr_1.43	farver_2.1.1	htmltools_0.5.5	labeling_0.4.2	

[61] compiler_4.4.0 RCurl_1.98-1.12

References

- Allan, R. E., Vogel, O. A., and Peterson, C. J. (1962). Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. *Agronomy Journal* 54, 347. doi:10.2134/agronj1962.00021962005400040022x.
- Al-Mudaris, M. A. (1998). Notes on various parameters recording the speed of seed germination. *Der Tropenlandwirt Journal of Agriculture in the Tropics and Subtropics* 99, 147–154. Available at: https://www.jarts.info/index.php/tropenlandwirt/article/download/1495/671.
- AOSA (1983). Seed Vigor Testing Handbook. Ithaca, NY, USA: Association of Official Seed Analysts.
- Baskin, C. C., and Baskin, J. M. (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego: Academic Press.
- Bewley, J. D., and Black, M. (1994). *Physiology of Development and Germination*. New York, USA: Plenum Publishing Corporation Available at: https://www.cabdirect.org/cabdirect/abstract/19950315483.
- Bilbro, J. D., and Wanjura, D. F. (1982). Soil crusts and cotton emergence relationships. *Transactions of the ASAE* 25, 1484–1487. doi:10.13031/2013.33750.
- Bonner, F. T. (1967). Ideal sowing depth for sweetgum seed. *Tree Planters' Notes* 18, 1–1. Available at: https://www.fs.usda.gov/treesearch/pubs/download/42583.pdf.
- Bouton, J. H., Dudeck, A. E., and Smith, R. L. (1976). Germination in freshly harvested seed of centipedegrass. *Agronomy Journal* 68, 991. doi:10.2134/agronj1976.00021962006800060040x.
- Bradbeer, J. W. (1988). Seed Dormancy and Germination. Glasgow; London: Blackie Available at: www.springer.com/in/book/9780216916364 [Accessed January 15, 2018].
- Brown, R. F., and Mayer, D. G. (1988). Representing cumulative germination. 1. A critical analysis of single-value germination indices. *Annals of Botany* 61, 117–125. doi:10.1093/oxfordjournals.aob.a087534.
- Chaudhary, T. N., and Ghildyal, B. P. (1970). Effect of temperature associated with levels of bulk density on rice seedling emergence. *Plant and Soil* 33, 87–90. doi:10.1007/bf01378199.
- Chopra, U. K., and Chaudhary, T. N. (1980). Effect of soil temperature alteration by soil covers on seedling emergence of wheat (*Triticum aestivum* L.) sown on two dates. *Plant and Soil* 57, 125–129. doi:10.1007/bf02139648.
- Coolbear, P., Francis, A., and Grierson, D. (1984). The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. *Journal of Experimental Botany* 35, 1609–1617. doi:10.1093/jxb/35.11.1609.
- Czabator, F. J. (1962). Germination value: An index combining speed and completeness of pine seed germination. Forest Science 8, 386–396. doi:10.1093/forestscience/8.4.386.
- Djavanshir, K., and Pourbeik, H. (1976). Germination value-A new formula. Silvae Genetica 25, 79–83. Available at: https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1976/Vol._25_Heft_2/25_2_79.pdf.
- Edmond, J. B., and Drapala, W. J. (1958). The effects of temperature, sand and soil, and acetone on germination of okra seed. *Proceedings of the American Society for Horticultural Science* 71, 428–434.
- Edwards, T. I. (1932). Temperature relations of seed germination. The Quarterly Review of Biology 7, 428–443. doi:10.1086/394417.
- El-Kassaby, Y. A., Moss, I., Kolotelo, D., and Stoehr, M. (2008). Seed germination: Mathematical representation and parameters extraction. *Forest Science* 54, 220–227. doi:10.1093/forestscience/54.2.220.
- Ellis, R. H., and Roberts, E. H. (1980). Improved equations for the prediction of seed longevity. *Annals of Botany* 45, 13–30. doi:10.1093/oxfordjournals.aob.a085797.
- Erbach, D. C. (1982). Tillage for continuous corn and corn-soybean rotation. *Transactions of the ASAE* 25, 906–0911. doi:10.13031/2013.33638.
- Evetts, L. L., and Burnside, O. C. (1972). Germination and seedling development of common milkweed and other species. Weed Science 20, 371–378. doi:10.1017/S004317450003589x.
- Fakorede, M. A. B., and Agbana, S. B. (1983). Heterotic effects and association of seedling vigour with mature characteristics and grain yield in some tropical maize cultivars. *Maydica* 28, 327–338.
- Fakorede, M. A. B., and Ayoola, A. O. (1980). Relation between seedling vigor and selection for yield improvement in maize. *Maydica* 25, 135–147.
- Fakorede, M. A. B., and Ojo, D. K. (1981). Variability for seedling vigour in maize. Experimental Agriculture

- 17, 195-201. doi:10.1017/s0014479700011455.
- Farooq, M., Basra, S. M. A., Ahmad, N., and Hafeez, K. (2005). Thermal hardening: A new seed vigor enhancement tool in rice. *Journal of Integrative Plant Biology* 47, 187–193. doi:10.1111/J.1744-7909.2005.00031.x.
- George, D. W. (1961). Influence of germination temperature on the expression of post-harvest dormancy in wheat. in *Crop Science Abstracts; Western Society of Crop Science Annual Meeting*, 1961 (Western Society of Crop Science), 15.
- Goloff, A. A., and Bazzaz, F. A. (1975). A germination model for natural seed populations. *Journal of Theoretical Biology* 52, 259–283. doi:10.1016/0022-5193(75)90001-6.
- Gomes, F. P. (1960). Curso De Estatística Experimental. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Available at: https://books.google.de/books?id=ZckqGwAACAAJ.
- Goodchild, N. A., and Walker, M. G. (1971). A method of measuring seed germination in physiological studies. *Annals of Botany* 35, 615–621. doi:10.1093/oxfordjournals.aob.a084504.
- Gordon, A. G. (1969). Some observations on the germination energy tests for cereals. *Proceedings of the Association of Official Seed Analysts* 59, 58–72. Available at: https://www.jstor.org/stable/23432357 [Accessed December 11, 2018].
- Gordon, A. G. (1971). The germination resistance test A new test for measuring germination quality of cereals. *Canadian Journal of Plant Science* 51, 181–183. doi:10.4141/cjps71-036.
- Grose, R. J., and Zimmer, W. J. (1958). Some laboratory germination responses of the seeds of river red gum, *Eucalyptus camaldulensis* Dehn. Syn. *Eucalyptus rostrata* Schlecht. *Australian Journal of Botany* 6, 129. doi:10.1071/bt9580129.
- Haugland, E., and Brandsaeter, L. O. (1996). Experiments on bioassay sensitivity in the study of allelopathy. Journal of Chemical Ecology 22, 1845–1859. doi:10.1007/BF02028508.
- Heydecker, W. (1972). Seed Ecology. Proceedings of the Nineteenth Easter School in Agricultural Science, University of Nottingham, 1972. University Park, USA: Pennsylvania State University Press.
- Hsu, F. H., and Nelson, C. J. (1986). Planting date effects on seedling development of perennial warm-season forage grasses. I. Field emergence. *Agronomy Journal* 78, 33–38. doi:10.2134/agronj1986.00021962007800010008x.
- ISTA (2015). "Chapter 5: The germination test," in *International Rules for Seed Testing. International Seed Testing Association*, Zurich, Switzerland. (International Seed Testing Association), i-5-56. Available at: https://doi.org/10.15258/istarules.2015.05.
- Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. *Journal and Proceedings of the Royal Society of New South Wales* 138, 65–75. Available at: https://royalsoc.org.au/images/pdf/journal/138 Kader.pdf.
- Kendrick, R. E., and Frankland, B. (1969). Photocontrol of germination in *Amaranthus caudatus*. *Planta* 85, 326–339. doi:10.1007/bf00381281.
- Khamassi, K., Harbaoui, K., Jaime, A. T. da S., and Jeddi, F. B. (2013). Optimal germination temperature assessed by indices and models in field bean (*Vicia faba* L. Var. *Minor*). *Agriculturae Conspectus Scientificus* 78, 131–136. Available at: https://hrcak.srce.hr/104663.
- Khan, M. A., and Ungar, I. A. (1984). The effect of salinity and temperature on the germination of polymorphic seeds and growth of *Atriplex triangularis* Willd. *American Journal of Botany* 71, 481–489. doi:10.2307/2443323.
- Khandakar, A. L., and Bradbeer, J. W. (1983). *Jute seed quality*. Bangladesh Agricultural Research Council, Dhaka.
- Kotowski, F. (1926). Temperature relations to germination of vegetable seeds. *Proceedings of the American Society for Horticultural Science* 23, 176–184.
- Labouriau, L. G. (1983a). A Germinação Das Sementes. Organização dos Estados Americanos. Programa Regional de Desenvolvimento Científico e Tecnológico. Série de Biologia. Monografia 24.
- Labouriau, L. G. (1983b). Uma nova linha de pesquisa na fisiologia da germinação das sementes. in *Anais do XXXIV Congresso Nacional de Botânica. SBB, Porto Alegre* (Sociedade Botânica do Brasil), 11–50.
- Labouriau, L. G., and Valadares, M. E. B. (1976). On the germination of seeds of *Calotropis procera* (Ait.) Ait. f. *Anais da Academia Brasileira de Ciências* 48.
- Maguire, J. D. (1962). Speed of germination Aid in selection and evaluation for seedling emergence and vigor. *Crop Science* 2, 176–177. doi:10.2135/cropsci1962.0011183x000200020033x.
- Melville, A. H., Galletta, G. J., Draper, A. D., and Ng, T. J. (1980). Seed germination and early seedling

- vigor in progenies of inbred strawberry selections. HortScience 15, 749–750.
- Mock, J. J., and Eberhart, S. A. (1972). Cold tolerance in adapted maize populations. *Crop Science* 12, 466–469. doi:10.2135/cropsci1972.0011183x001200040021x.
- Negm, F. B., and Smith, O. E. (1978). Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed. *Plant Physiology* 62, 473–476. doi:10.1104/pp.62.4.473.
- Nichols, M. A., and Heydecker, W. (1968). Two approaches to the study of germination data. *Proceedings of the International Seed Testing Association* 33, 531–540.
- Primack, R. B. (1985). Longevity of individual flowers. *Annual Review of Ecology and Systematics* 16, 15–37. doi:10.1146/annurev.es.16.110185.000311.
- Quintanilla, L. G., Pajarón, S., Pangua, E., and Amigo, J. (2000). Effect of temperature on germination in northernmost populations of *Culcita macrocarpa* and *Woodwardia radicans*. *Plant Biology* 2, 612–617. doi:10.1055/s-2000-16638.
- Ranal, M. A. (1999). Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. *American Fern Journal* 89, 149. doi:10.2307/1547349.
- Ranal, M. A., and Santana, D. G. de (2006). How and why to measure the germination process? *Brazilian Journal of Botany* 29, 1–11. doi:10.1590/s0100-84042006000100002.
- Reddy, L. V. (1978). Effect of temperature on seed dormancy and alpha-amylase activity during kernel maturation and germination in wheat (*Triticum aestivum* L.) cultivars. Available at: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1j92gb854.
- Reddy, L. V., Metzger, R. J., and Ching, T. M. (1985). Effect of temperature on seed dormancy of wheat. Crop Science 25, 455. doi:10.2135/cropsci1985.0011183X002500030007x.
- Roh, M., Bentz, J.-A., Wang, P., Li, E., and Koshioka, M. (2004). Maturity and temperature stratification affect the germination of *Styrax japonicus* seeds. *The Journal of Horticultural Science and Biotechnology* 79, 645–651. doi:10.1080/14620316.2004.11511820.
- Santana, D. G. de, and Ranal, M. A. (2004). Análise Da Germinação: Um Enfoque Estatístico. Brasília: Universidade de Brasília.
- Schrader, J. A., and Graves, W. R. (2000). Seed germination and seedling growth of *Alnus maritima* from its three disjunct populations. *Journal of the American Society for Horticultural Science* 125, 128–134. doi:10.21273/JASHS.125.1.128.
- Scott, S. J., Jones, R. A., and Williams, W. A. (1984). Review of data analysis methods for seed germination. Crop Science 24, 1192–1199. doi:10.2135/cropsci1984.0011183x002400060043x.
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.
- Shmueli, M., and Goldberg, D. (1971). Emergence, early growth, and salinity of five vegetable crops germinated by sprinkle and trickle irrigation in an arid zone. *HortScience* 6, 563–565.
- Smith, P. G., and Millet, A. H. (1964). Germinating and sprouting responses of the tomato at low temperatures. *Proceedings of the American Society for Horticultural Science* 84, 480–484.
- Throneberry, G. O., and Smith, F. G. (1955). Relation of respiratory and enzymatic activity to corn seed viability. *Plant Physiology* 30, 337–343. doi:10.1104/pp.30.4.337.
- Timson, J. (1965). New method of recording germination data. Nature 207, 216. doi:10.1038/207216a0.
- Tucker, H., and Wright, L. N. (1965). Estimating rapidity of germination. Crop Science 5, 398–399. doi:10.2135/cropsci1965.0011183X000500050006x.
- Vallance, K. (1950). Studies on the germination of the seeds of *Striga hermonthica* I. The influence of moisture-treatment, stimulant-dilution, and after-ripening on germination. *Annals of Botany* 14, 347–363. doi:10.1093/oxfordjournals.aob.a083251.
- Wardle, D. A., Ahmed, M., and Nicholson, K. S. (1991). Allelopathic influence of nodding thistle (*Carduus nutans* L.) seeds on germination and radicle growth of pasture plants. *New Zealand Journal of Agricultural Research* 34, 185–191. doi:10.1080/00288233.1991.10423358.
- Went, F. W. (1957). The experimental control of plant growth. Chronica Botanica Co., Waltham, Mass., USA; The Ronald Press Co., New York, USA.