B.M.S. COLLEGE OF ENGINEERING

(AUTONOMOUS COLLEGE UNDER VTU)
BENGALURU-19

LAB TEST 1 REPORT

NAME : Aditya Satish Kumar

USN : 1BM19CS191

COURSE NAME : DATABASE MANAGEMENT

SYSTEMS

COURSE TITLE : 19CS4PCDBM

SEM : 4

SECTION : D

LAB PROGRAMS 1-10:

PROGRAM 1: INSURANCE DATABASE

Consider the Insurance database given below. The primary keys are underlined and the data types are specified.

PERSON (driver-id #: String, name: String, address: String)

CAR (Regno: String, model: String, year: int)

ACCIDENT (report-number: int, date: date, location: String)

OWNS (driver-id #: String, Regno: String)

PARTICIPATED (driver-id: String, Regno: String, report-number: int, damage-amount: int)

i. Create the above tables by properly specifying the primary keys and the foreign keys

```
create database INSURANCE;
create table INSURANCE.person(
driver id varchar(10),
name varchar(20),
address varchar(30),
primary key(driver_id)
);
create table INSURANCE.car(
reg num varchar(10),
model varchar(10),
year int,
primary key(reg_num)
);
create table INSURANCE.accident(
report num int,
accident date date,
location varchar(20),
primary key(report_num)
create table INSURANCE.owns(
driver id varchar(10),
reg_num varchar(10),
primary key(driver id,reg num),
foreign key(driver_id) references person(driver_id),
foreign key(reg_num) references car(reg_num)
create table INSURANCE.participated(
driver_id varchar(10),
reg_num varchar(10),
report_num int,
damage_amount int,
primary key(driver id,reg num,report num),
foreign key(driver id) references person(driver id),
foreign key(reg_num) references car(reg_num),
foreign key(report_num) references accident(report_num));
```

ii. Enter at least five tuples for each relation

use INSURANCE;

insert into person values('A01','Richard','Srinivas Nagar'); insert into person values('A02','Pradeep','Rajajinagar'); insert into person values('A03','Smith','Ashoknagar'); insert into person values('A04','Venu','N.R.Colony'); insert into person values('A05','John','Hanumanth Nagar'); select * from person;

insert into car values('KA052250','Indica', 1990); insert into car values('KA031181','Lancer', 1957); insert into car values('KA095477','Toyota', 1998); insert into car values('KA053408','Honda', 2008); insert into car values('KA041702','Audi', 2005); select * from car;

	reg_num	model	year
١	KA031181	Lancer	1957
	KA041702	Audi	2005
	KA052250	Indica	1990
	KA053408	Honda	2008
	KA095477	Toyota	1998
	HULL	NULL	NULL

insert into accident values(11,'2001-01-03','Mysore Road'); insert into accident values(12,'2002-01-04','Southend Circle'); insert into accident values(13,'2021-01-03','Bulltemple Road'); insert into accident values(14,'2017-02-08','Mysore Road'); insert into accident values(15,'2008-03-05','Kanakpura Road'); select * from accident;

	report_num	accident_date	location
•	11	2001-01-03	Mysore Road
	12	2002-01-04	Southend Circle
	13	2021-01-03	Bulltemple Road
	14	2017-02-08	Mysore Road
	15	2008-03-05	Kanakpura Road
	NULL	HULL	NULL

insert into owns values('A01','KA052250'); insert into owns values('A02','KA053408'); insert into owns values('A03','KA031181'); insert into owns values('A04','KA095477'); insert into owns values('A05','KA041702'); select * from owns;

	driver_id	reg_num	
•	A03	KA031181	
	A05	KA041702	
	A01	KA052250	
	A02	KA053408	
	A04	KA095477	
	NULL	NULL	

insert into participated values('A01','KA052250',11,10000); insert into participated values('A02','KA053408',12,50000); insert into participated values('A03','KA095477',13,25000); insert into participated values('A04','KA031181',14,3000); insert into participated values('A05','KA041702',15,5000); select * from participated;

	driver_id	reg_num	report_num	damage_amount
٠	A01	KA052250	11	10000
	A02	KA053408	12	50000
	A03	KA095477	13	25000
	A04	KA031181	14	3000
	A05	KA041702	15	5000
	NULL	NULL	NULL	NULL

iii. Demonstrate how you

- a. Update the damage amount for the car with a specific Regno in the accident with report number 12 to 25000.
- b. Add a new accident to the database.

use INSURANCE; UPDATE participated SET damage_amount=25000 WHERE report_num=12; insert into accident values('16','2009-04-05','Mysore Road'); select * from accident;

	report_num	accident_date	location
•	11	2001-01-03	Mysore Road
	12	2002-01-04	Southend Circle
	13	2021-01-03	Bulltemple Road
	14	2017-02-08	Mysore Road
	15	2008-03-05	Kanakpura Road
	16	2009-04-05	Mysore Road
_	NULL	NULL	NULL

iv. Find the total number of people who owned cars that involved in accidents in 2008.

use INSURANCE;

SELECT COUNT(DISTINCT driver_id) FROM accident, participated WHERE accident.report_num = participated.report_num AND accident_date LIKE '2008%';

	COUNT(DISTINCT driver_id)
•	1

v. Find the number of accidents in which cars belonging to a specific model were involved

use INSURANCE; SELECT COUNT(report_num) FROM car, participated WHERE car.reg_num = participated.reg_num AND model='Lancer';

PROGRAM 2: BANKING ENTERPRISE DATABASE

Consider the following database for a banking enterprise.

Branch (branch-name: String, branch-city: String, assets: real) **BankAccount**(accno: int, branch-name: String, balance: real)

BankCustomer (customer-name: String, customer-street: String, customer-city: String)

Depositer(customer-name: String, accno: int)

Loan (loan-number: int, branch-name: String, amount: real)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Find all the customers who have at least two accounts at the *Main* branch (ex. SBI_ResidencyRoad).
- iv. Find all the customers who have an account at *all* the branches located in a specific city (Ex. Delhi).
- v. Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

INTRODUCTION: This database is developed for supporting banking facilities. Details of the branch along with the accounts and loans handled by them are recorded. Also details of the depositors of the corresponding branches are maintained.

Schema Diagram

i. Create the above tables by properly specifying the primary keys and the foreign keys.

```
create database Bank;
use Bank:
create table Branch(
branch_name varchar(30),
branch city varchar(30),
assests real,
primary key(branch_name));
create table BankCustomer(
customer_name varchar(30),
customer_street varchar(30),
customer_city varchar(30),
primary key(customer_name));
create table BankAccount(
accno int,
branch_name varchar(20),
balance real,
primary key(accno),
foreign key(branch_name) references Branch(branch_name));
create table Depositer(
customer_name varchar(20),
accno int,
primary key(customer_name,accno),
foreign key(customer_name) references BankCustomer(customer_name),
foreign key(accno) references BankAccount(accno)
);
create table Loan(
loan_number int,
branch_name varchar(20),
Amount real,
primary key(loan_number),
foreign key(branch name) references Branch(branch name)
);
```

ii. Enter at least five tuples for each relation.

```
use Bank;
insert into Branch values('SBI_Chamrajpet','Bangalore',50000);
insert into Branch values('SBI_ResidencyRoad','Bangalore',10000);
insert into Branch values('SBI_ShivajiRoad','Bangalore',20000);
```

insert into Branch values('SBI_ParliamentRoad','Delhi',10000); insert into Branch values('SBI_Jantarmantar','Delhi',20000); select *from Branch;

	branch_name	branch_city	assests
•	SBI_Chamrajpet	Bangalore	50000
	SBI_Jantarmantar	Delhi	20000
	SBI_ParlimentRoad	Delhi	10000
	SBI_ResidencyRoad	Bangalore	10000
	SBI_ShivajiRoad	Bangalore	20000
	NULL	NULL	NULL

insert into Loan values(2,'SBI_ResidencyRoad',2000); insert into Loan values(1,'SBI_Chamrajpet',1000); insert into Loan values(3,'SBI_ShivajiRoad',3000); insert into Loan values(4,'SBI_ParliamentRoad',4000); insert into Loan values(5,'SBI_Jantarmantar',3000); select *from Loan;

	loan_number	branch_name	Amount
١	1	SBI_Chamrajpet	1000
	2	SBI_ResidencyRoad	2000
	3	SBI_ShivajiRoad	3000
	4	SBI_ParlimentRoad	4000
	5	SBI_Jantarmantar	3000
	NULL	NULL	NULL

insert into BankAccount values(1,'SBI_Chamrajpet',2000); insert into BankAccount values(2,'SBI_ResidencyRoad',5000); insert into BankAccount values(3,'SBI_ShivajiRoad',6000); insert into BankAccount values(4,'SBI_ParliamentRoad',9000); insert into BankAccount values(5,'SBI_Jantarmantar',8000); insert into BankAccount values(6, 'SBI_ShivajiRoad', 4000); insert into BankAccount values(8, 'SBI_ResidencyRoad', 4000); insert into BankAccount values(9, 'SBI_ParliamentRoad', 3000); insert into BankAccount values(10, 'SBI_ResidencyRoad', 5000); insert into BankAccount values(11, 'SBI_Jantarmantar', 2000); select *from BankAccount;

	accno	branch_name	balance
•	1	SBI_Chamrajpet	2000
	2	SBI_ResidencyRoad	5000
	3	SBI_ShivajiRoad	6000
	4	SBI_ParlimentRoad	9000
	5	SBI_Jantarmantar	8000
	6	SBI_ShivajiRoad	4000
	8	SBI_ResidencyRoad	4000
	9	SBI_ParlimentRoad	3000
	10	SBI_ResidencyRoad	5000
	11	SBI_Jantarmantar	2000
	HULL	HULL	HULL

insert into BankCustomer values ('Avinash', 'Bull_Temple_Road', 'Bangalore');

insert into BankCustomer values ('Dinesh', 'Bannergatta_Road', 'Bangalore'); insert into BankCustomer values ('Mohan', 'National_College_Road', 'Bangalore'); insert into BankCustomer values ('Nikhil', 'Akbar_Road', 'Delhi'); insert into BankCustomer values ('Ravi', 'Prithviraj_Road', 'Delhi'); select *from BankCustomer;

	customer_name	customer_street	customer_city
۰	Avinash	Bull_Temple_Road	Bangalore
	Dinesh	Bannergatta_Road	Bangalore
	Mohan	National_College_Road	Bangalore
	Nikhil	Akbar_Road	Delhi
	Ravi	Prithviraj_Road	Delhi
	HULL	NULL	NULL

insert into Depositer values('Avinash', 1); insert into Depositer values('Dinesh', 2); insert into Depositer values('Nikhil', 4); insert into Depositer values('Ravi', 5); insert into Depositer values('Avinash', 8); insert into Depositer values('Nikhil', 9); insert into Depositer values('Dinesh', 10); insert into Depositer values('Nikhil', 11); select *from Depositer;

	customer_name	accno
Þ	Avinash	1
	Dinesh	2
	Nikhil	4
	Ravi	5
	Avinash	8
	Nikhil	9
	Dinesh	10
	Nikhil	11
	NULL	NULL

iii. Find all the customers who have at least two accounts at the *Main* branch (ex. SBI_ResidencyRoad).

use Bank;
select c.customer_name
from BankCustomer c
where exists(
select d.customer_name
from Depositer d, BankAccount ba
where d.accno=ba.accno
and c.customer_name=d.customer_name
and ba.branch_name='SBI_ResidencyRoad'
group by d.customer_name
having count(d.customer_name)>=2);

iv. Find all the customers who have an account at *all* the branches located in a specific city (Ex. Delhi).

use Bank;
select distinct d.customer_name
from Depositer d
where exists(
select * from BankAccount ba
where ba.accno=d.accno
and exists(
select * from Branch b
where b.branch_name = ba.branch_name
and b.branch_city='Delhi'));

v. Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

use Bank; delete from BankAccount where branch_name in(select branch_name from branch where branch_city = 'Bombay'); select *from BankAccount;

	accno	branch_name	balance
١	1	SBI_Chamrajpet	2000
	2	SBI_ResidencyRoad	5000
	3	SBI_ShivajiRoad	6000
	4	SBI_ParlimentRoad	9000
	5	SBI_Jantarmantar	8000
	6	SBI_ShivajiRoad	4000
	8	SBI_ResidencyRoad	4000
	9	SBI_ParlimentRoad	3000
	10	SBI_ResidencyRoad	5000
	11	SBI_Jantarmantar	2000
	NULL	NULL	NULL

PROGRAM 3: SUPPLIER DATABASE

Consider the following schema:

SUPPLIERS(sid: integer, sname: string, address: string)

PARTS(pid: integer, pname: string, color: string)

CATALOG(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

Schema Diagram

Table Data

ı	SUPPL	IERS	
ı	SID	SNAME	CITY
ı			
ı	10001	Acme Widget	Bangalore
ı	10002	Johns	Kolkata
ı	10003	Vimal	Mumbai
l	10004	Reliance	Delhi

CATALOG SID	PID	COST
40004		4.0
10001	20001	10
10001	20002	10
10001	20003	30
10001	20004	10
10001	20005	10
10002	20001	10
10002	20002	20
10003	20003	30
10004	20003	40

PARTS PID PNAME	COLOR
20001 Book	Red
20002 Pen	Red
20003 Pencil	Green
20004 Mobile	Green
20005 Charger	Black

QUERY 1

create database Suppliers; use Suppliers; create table supplier(sid int, sname char(30), city char(30)); create table catalog(sid int, pid int, cost int); create table parts(pid int, pname varchar(15), color varchar(10), primary key (pid));

QUERY 2

use Suppliers; insert into supplier values(10001, 'Acme Widget', 'Bengaluru'); insert into supplier values(10002, 'Johns', 'Kolkata'); insert into supplier values(10003, 'Vimal', 'Mumbai'); insert into supplier values(10004, 'Reliance', 'Delhi'); insert into supplier values(10005, 'Mahindra', 'Mumbai');

insert into supplier values(10005, 'Mahindra', 'Mumbai'); select * from supplier;

sid sname city 10001 Acme Widget Bengaluru 10002 Johns Kolkata Vimal Mumbai 10003 10004 Reliance Delhi Mahindra Mumbai 10005 10001 Acme Widget Bengaluru 10002 Johns Kolkata Vimal 10003 Mumbai 10004 Reliance Delhi 10005 Mahindra Mumbai

insert into parts values(20001, 'Book', 'Red'); insert into parts values(20002, 'Pen', 'Red'); insert into parts values(20003, 'Pencil', 'Green'); insert into parts values(20004, 'Mobile', 'Green'); insert into parts values(20005, 'Charger', 'Black'); select * from parts;

insert into catalog values(10001, '20001','10'); insert into catalog values(10001, '20002','10'); insert into catalog values(10001, '20003','30'); insert into catalog values(10001, '20004','10'); insert into catalog values(10001, '20005','10'); insert into catalog values(10002, '20001','10'); insert into catalog values(10002, '20002','20'); insert into catalog values(10003, '20003','30'); insert into catalog values(10004, '20003','40'); select * from catalog;

1. Find the pnames of parts for which there is some supplier.

use Suppliers; select distinct p.pname from parts p,catalog c where p.pid = c.pid;

2. Find the snames of suppliers who supply every part.

use Suppliers;

select s.sname from supplier s where not exists(select p.pid from parts p where not exists(select c.sid from catalog c where c.sid = s.sid and c.pid = p.pid));

3. Find the snames of suppliers who supply every red part.

use Suppliers; select s.sname from supplier s where not exists(select p.pid from parts p where p.color = 'Red' and not exists (select c.sid from catalog c where c.sid = s.sid and c.pid = p.pid));

4.Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

use Suppliers;
select p.pname from parts p,catalog c,supplier s
where p.pid = c.pid and c.sid = s.sid and s.sname = 'Acme Widget'
and not exists(
select * from catalog c1, supplier s1
where p.pid = c1.pid
and c1.sid = s1.sid
and s1.sname <> 'Acme Widget');

5. Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part).

use Suppliers; select distinct c.sid from catalog c

where c.cost > (select avg (c1.cost) from catalog c1 where c1.pid = c.pid);

6. For each part, find the sname of the supplier who charges the most for that part.

use Suppliers; select p.pid, s.sname from parts p, supplier s, catalog c where c.pid = p.pid and c.sid = s.sid and c.cost = (select MAX(c1.cost) from catalog c1 where c1.pid = p.pid);

	pid	sname
•	20001	Acme Widget
	20004	Acme Widget
	20005	Acme Widget
	20001	Johns
	20002	Johns
	20003	Reliance
	20001	Acme Widget
	20004	Acme Widget
	20005	Acme Widget
	20001	Johns
	20002	Johns
	20003	Reliance

PROGRAM 4: STUDENT FACULTY DATABASE

Consider the following database for student enrollment for course:

STUDENT(snum: integer, sname:string, major: string, lvl: string, age: integer)

CLASS(cname: string, meetsat: time, room: string, fid: integer)

ENROLLED(snum: integer, cname:string)

FACULTY(fid: integer, fname:string, deptid: integer)

```
create database StudentFaculty;
use StudentFaculty;
create table student(
snum int.
sname varchar(10),
major varchar(2),
IvI varchar(2),
age int,
primary key (snum));
create table faculty(
fid int.
fname varchar(20),
deptid int,
primary key(fid));
create table class(
cname varchar(20),
meetsat timestamp,
room varchar(10),
fid int,
primary key (cname),
foreign key(fid) references faculty(fid));
create table enrolled(
snum int,
cname varchar(20),
primary key(snum,cname),
foreign key(snum) references student(snum),
foreign key(cname) references class(cname));
```

```
use StudentFaculty;
insert into student values(1, 'jhon', 'CS', 'Sr', 19);
insert into student values(2, 'Smith', 'CS', 'Jr', 20);
insert into student values(3, 'Jacob', 'CV', 'Sr', 20);
```

insert into student values(4, 'Tom', 'CS', 'Jr', 20); insert into student values(5, 'Rahul', 'CS', 'Jr', 20); insert into student values(6, 'Rita', 'CS', 'Sr', 21); select * from student;

	snum	sname	major	IVI	age
•	1	jhon	CS	Sr	19
	2	Smith	CS	Jr	20
	3	Jacob	CV	Sr	20
	4	Tom	CS	Jr	20
	5	Rahul	CS	Jr	20
	6	Rita	CS	Sr	21
	HULL	NULL	NULL	NULL	NULL

insert into faculty values(11, 'Harish', 1000); insert into faculty values(12, 'MV', 1000); insert into faculty values(13, 'Mira', 1001); insert into faculty values(14, 'Shiva', 1002); insert into faculty values(15, 'Nupur', 1000); select * from faculty;

	fid	fname	deptid
•	11	Harish	1000
	12	MV	1000
	13	Mira	1001
	14	Shiva	1002
	15	Nupur	1000
	NULL	NULL	HULL

insert into class values('class1', '12/11/15 10:15:16', 'R1', 14); insert into class values('class10', '12/11/15 10:15:16', 'R128', 14); insert into class values('class2', '12/11/15 10:15:20', 'R2', 12); insert into class values('class3', '12/11/15 10:15:25', 'R3', 12); insert into class values('class4', '12/11/15 20:15:20', 'R4', 14); insert into class values('class5', '12/11/15 20:15:20', 'R3', 15); insert into class values('class6', '12/11/15 13:20:20', 'R2', 14); insert into class values('class7', '12/11/15 10:10:10', 'R3', 14); select * from class;

	cname	meetsat	room	fid
•	dass1	2012-11-15 10:15:16	R1	14
	class 10	2012-11-15 10:15:16	R128	14
	dass2	2012-11-15 10:15:20	R2	12
	dass3	2012-11-15 10:15:25	R3	12
	dass4	2012-11-15 20:15:20	R4	14
	dass5	2012-11-15 20:15:20	R3	15
	dass6	2012-11-15 13:20:20	R2	14
	dass7	2012-11-15 10:10:10	R3	14
	NULL	NULL	NULL	HULL

insert into enrolled values(1, 'class1'); insert into enrolled values(2, 'class1'); insert into enrolled values(3, 'class3'); insert into enrolled values(4, 'class3'); insert into enrolled values(5, 'class4'); insert into enrolled values(1, 'class5');

```
insert into enrolled values(2, 'class5'); insert into enrolled values(3, 'class5'); insert into enrolled values(4, 'class5'); insert into enrolled values(5, 'class5'); select * from enrolled;
```


i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by Harish

```
use StudentFaculty;
select distinct S.sname from student S, class C, enrolled E, faculty F
where S.snum = E.snum
and E.cname = C.cname
and C.fid = F.fid
and F.fname = 'Harish' and S.IvI = 'Jr';

sname
Tom
```

ii.Find the names of all classes that either meet in room R128 or have five or more Students enrolled.

```
select C.cname from class C
where C.room = 'R128'
or C.cname in (
select E.cname from enrolled E
group by E.cname
having COUNT(*) >= 5);
```


iii. Find the names of all students who are enrolled in two classes that meet at the same time.

```
select distinct S.sname from student S where S.snum in ( select E1.snum from enrolled E1, enrolled E2, class C1, class C2 where E1.snum = E2.snum
```

```
and E1.cname <> E2.cname
and E1.cname = C1.cname
and E2.cname = C2.cname
and C1.meetsat = C2.meetsat);
```

Rahul

iv. Find the names of faculty members who teach in every room in which some class is taught.

```
select f.fname,f.fid from faculty f
where f.fid in (
select fid from class
group by fid having COUNT(*)=(
select COUNT(distinct room) from class) );
```


v.Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.

```
select distinct F.fname from faculty F
where 5 > (
select COUNT(E.snum) from class C, enrolled E
where C.cname = E.cname
and C.fid = F.fid);
```


vi. Find the names of students who are not enrolled in any class.

select distinct S.sname from student S where S.snum not in (select E.snum from enrolled E);

vii.For each age value that appears in Students, find the level value that appears most often

select S.age, S.lvl from Student S group by S.age, S.lvl having S.lvl in (select S1.lvl from Student S1
where S1.age = S.age
group by S1.lvl, S1.age
having COUNT(*) >= all (select COUNT(*)
from Student S2
where s1.age = S2.age
group by S2.lvl, S2.age));

	age	Ivl
١	19	Sr
	20	Jr
	21	Sr

PROGRAM 5: AIRLNE FLIGHT DATABASE

Consider the following database that keeps track of airline flight information:

FLIGHTS(flno: integer, from: string, to: string, distance: integer, departs: time, arrives: time, price: integer)

AIRCRAFT(aid: integer, aname: string, cruisingrange: integer)

CERTIFIED(eid: integer, aid: integer)

EMPLOYEES(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly.

```
create database flightdb;
use flightdb;
create table flights(
flno int,
fromplace varchar(15),
toplace varchar(15),
distance int,
departs datetime,
arrives datetime,
price int,
primary key (flno));
create table aircraft(
aid int,
aname varchar(15),
cruisingrange int,
primary key (aid));
create table employees (
eid int,
ename varchar(15),
salary int,
primary key (eid));
create table certified (
eid int,
aid int,
foreign key (eid) references employees(eid),
foreign key (aid) references aircraft(aid));
use flightdb;
insert into flights values(101, 'Bangalore', 'Delhi', 2500, '2005-05-13 07:15:31', '2005-05-13 18:15:31',
5000);
```

insert into flights values(102, 'Bangalore', 'Lucknow', 3000, '2013-05-05 07:15:31', '2013-05-05 11:15:31', 6000);

insert into flights values(103, 'Lucknow', 'Delhi', 500, '2013-05-05 12:15:31', '2013-05-05 17:15:31', 3000);

insert into flights values(107, 'Bangalore', 'Frankfurt', 8000, '2013-05-05 07:15:31', '2013-05-05 22:15:31', 60000);

insert into flights values (104, 'Bangalore', 'Frankfurt', 8500, '2013-05-05 07:15:31', '2013-05-05 23:15:31', 75000):

insert into flights values(105, 'Kolkata', 'Delhi', 3400, '2013-05-05 07:15:31', '2013-05-05 09:15:31', 7000);

insert into flights values(106, 'Bangalore', 'Kolkata', 1000, '2013-05-05 01:15:30', '2013-05-05 09:20:30', 10000);

insert into flights values(108, 'Lucknow', 'Kolkata', 1000, '2013-05-05 11:30:30', '2013-05-05 15:20:30', 10000);

select * from flights;

	fino	fromplace	toplace	distance	departs	arrives	price
١	101	Bangalore	Delhi	2500	2005-05-13 07:15:31	2005-05-13 18:15:31	5000
	102	Bangalore	Lucknow	3000	2013-05-05 07:15:31	2013-05-05 11:15:31	6000
	103	Lucknow	Delhi	500	2013-05-05 12:15:31	2013-05-05 17:15:31	3000
	104	Bangalore	Frankfurt	8500	2013-05-05 07:15:31	2013-05-05 23:15:31	75000
	105	Kolkata	Delhi	3400	2013-05-05 07:15:31	2013-05-05 09:15:31	7000
	106	Bangalore	Kolkata	1000	2013-05-05 01:15:30	2013-05-05 09:20:30	10000
	107	Bangalore	Frankfurt	8000	2013-05-05 07:15:31	2013-05-05 22:15:31	60000
	108	Lucknow	Kolkata	1000	2013-05-05 11:30:30	2013-05-05 15:20:30	10000
	HULL	NULL	HULL	NULL	HULL	NULL	HULL

insert into aircraft values(101, '747', 3000);

insert into aircraft values(102, 'Boeing', 900);

insert into aircraft values(103, '647', 800);

insert into aircraft values(104, 'Dreamliner', 10000);

insert into aircraft values(105, 'Boeing', 3500);

insert into aircraft values(106, '707', 1500);

insert into aircraft values(107, 'Dream', 120000);

insert into aircraft values (108, '707', 760);

insert into aircraft values(109, '747', 1000);

select * from aircraft;

	aid	aname	cruisingrange
•	101	747	3000
	102	Boeing	900
	103	647	800
	104	Dreamliner	10000
	105	Boeing	3500
	106	707	1500
	107	Dream	120000
	108	707	760
	109	747	1000
	NULL	NULL	NULL

insert into employees values(701, 'A', 50000);

insert into employees values(702, 'B', 100000);

insert into employees values(703, 'C', 150000);

insert into employees values(704, 'D', 90000);

insert into employees values(705, 'E', 40000);

insert into employees values(706, 'F', 60000);

insert into employees values(707, 'G', 90000); select * from employees;

	eid	ename	salary
Þ	701	Α	50000
	702	В	100000
	703	C	150000
	704	D	90000
	705	E	40000
	706	F	60000
	707	G	90000
	NULL	NULL	NULL

insert into certified values(701, 101); insert into certified values(701, 102); insert into certified values(701, 106); insert into certified values(701, 105); insert into certified values(702, 104); insert into certified values(703, 104); insert into certified values(704, 104); insert into certified values(704, 107); insert into certified values(702, 107); insert into certified values(704, 107); insert into certified values(704, 107); insert into certified values(702, 101); insert into certified values(701, 109); select * from certified;

	eid	aid
•	701	101
	701	102
	701	106
	701	105
	702	104
	703	104
	704	104
	702	107
	703	107
	704	107
	702	101
	702	108
	701	109

i.Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80,000.

use flightdb; select distinct a.aname from aircraft a where a.aid in (select c.aid from certified c, employees e where c.eid = e.eid and not exists(select * from employees e1 where e1.eid=e.eid and e1.salary<80000));

ii.For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruisingrange of the aircraft for which she or he is certified.

use flightdb;

select max(a.cruisingrange), c.eid from certified c, aircraft a where c.aid = a.aid group by c.eid having count(c.eid)>3;

iii.Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt.

use flightdb; select ename from employees where salary <(select min(price) from flights where fromplace='Bangalore' and toplace='Frankfurt');

iv.For all aircraft with cruisingrange over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft.

use flightdb; select avg(e.salary), c.aid from certified c, employees e where c.aid in(select aid from aircraft where cruisingrange>1000) and e.eid = c.eid group by c.aid;

v.Find the names of pilots certified for some Boeing aircraft.

```
use flightdb;
select ename from employees where eid in(
select eid from certified where aid in(
select aid from aircraft where aname = 'Boeing'));
```


vi. Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi.

use flightdb; select aname from aircraft where cruisingrange > any(select distance from flights where fromplace='Bangalore' and toplace='Delhi');

vii.A customer wants to travel from Bangalore to Kolkata New with no more than two changes of flight. List the choice of departure times from Madison if the customer wants to arrive in Kolkata by 6 p.m.

```
use flightdb;
select F.flno, F.departs from flights F
where F.flno in ((select F0.flno
from flights FO
where F0.fromplace = 'Bangalore' and F0.toplace = 'Kolkata'
and EXTRACT(hour from F0.arrives) < 18)
UNION(select F0.flno
from flights F0, flights F1
where F0.fromplace = 'Bangalore' and F0.toplace <> 'Kolkata'
and F0.toplace = F1.fromplace and F1.toplace = 'Kolkata'
and F1.departs > F0.arrives
and EXTRACT(hour from F1.arrives) < 18)
UNION(select F0.flno
from flights F0, flights F1, flights F2
where F0.fromplace = 'Bangalore'
and F0.toplace = F1.fromplace
and F1.toplace = F2.fromplace
and F2.toplace = 'Kolkata'
and F0.toplace <> 'Kolkata'
and F1.toplace <> 'Kolkata'
and F1.departs > F0.arrives
and F2.departs > F1.arrives
and EXTRACT(hour from F2.arrives) < 18))
```

	fino	departs
•	102	2013-05-05 07:15:31
	106	2013-05-05 01:15:30

PROGRAM 6: ORDER DATABASE

Q.Consider the following schema for Order Database:

SALESMAN (Salesman_id, Name, City, Commission)
CUSTOMER (Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)
Write SQL queries to

Schema Diagram

Salesman

- 1. Count the customers with grades above Bangalore's average.
- 2. Find the name and numbers of all salesmen who had more than one customer.
- 3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)
- 4. Create a view that finds the salesman who has the customer with the highest order of a day.
- 5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

QUERY 1

```
create database order_database;
use order_database;
create table salesman(
Salesman_id int,
Name char(30),
City varchar(30),
Commission varchar(5),
primary key(Salesman_id));
create table customer(
Customer_id int,
Cust_Name char(30),
City varchar(30),
Grade int,
Salesman_id int,
primary key(Customer_id,Salesman_id),
foreign key(Salesman_id) references salesman(Salesman_id) on delete cascade);
create table orders(
Ord_No int,
Purchase_Amt int,
Ord_Date varchar(20),
Customer_id int,
Salesman_id int,
primary key(Customer_id,Salesman_id),
foreign key(Customer_id) references customer(Customer_id) on delete cascade,
foreign key(Salesman_id) references salesman(Salesman_id) on delete cascade);
```

QUERY 2

use order_database;

insert into salesman values('1000','John','Bangalore','25%'); insert into salesman values('2000','Ravi','Bangalore','20%'); insert into salesman values('3000','Kumar','Mysore','15%'); insert into salesman values('4000','Smith','Delhi','30%'); insert into salesman values('5000','Harsha','Hyderaba','15%'); select * from salesman;

Name	City	Commission
John	Bangalore	25%
Ravi	Bangalore	20%
Kumar	Mysore	15%
Smith	Delhi	30%
Harsha	Hyderaba	15%
	John Ravi Kumar Smith Harsha	John Bangalore Ravi Bangalore Kumar Mysore Smith Delhi

insert into customer values('10','Preethi','Bangalore','100','1000'); insert into customer values('11','Vivek','Bangalore','300','1000'); insert into customer values('12','Bhaskar','Chennai','400','2000'); insert into customer values('13','Chethan','Bangalore','200','2000'); insert into customer values('14','Mamatha','Bangalore','400','3000'); select * from customer;

	Customer_id	Cust_Name	City	Grade	Salesman_id
١	10	Preethi	Bangalore	100	1000
	11	Vivek	Bangalore	300	1000
	12	Bhaskar	Chennai	400	2000
	13	Chethan	Bangalore	200	2000
	14	Mamatha	Bangalore	400	3000
	NULL	NULL	HULL	NULL	NULL

insert into orders values('50','5000','04-MAY-17','10','1000'); insert into orders values('51','450','20-JAN-17','10','2000'); insert into orders values('52','1000','24-FEB-17','13','2000');

insert into orders values ('53','3500','13-APR-17','14','3000'); insert into orders values ('54','550','09-MAR-17','12','2000'); select * from orders;

	Ord_No	Purchase_Amt	Ord_Date	Customer_id	Salesman_id
١	50	5000	04-MAY-17	10	1000
	51	450	20-JAN-17	10	2000
	54	550	09-MAR-17	12	2000
	52	1000	24-FEB-17	13	2000
	53	3500	13-APR-17	14	3000
	NULL	NULL	NULL	NULL	NULL

QUERY 3

use order_database;

select grade,COUNT(*)

from customer

group by grade

having grade > (select avg(grade)

from customer

where city = 'Bangalore');

	grade	COUNT(*)
>	300	1
	400	2

QUERY 4

use order_database;

select Name,Salesman_id from salesman s

where 1<(select count(*)

from customer

where Salesman_id=s.Salesman_id);

QUERY 5

use order_database;

 $select\ salesman_id,\ name,\ cust_name,\ commission$

from salesman, customer

where salesman.city = customer.city

union

select salesman_id, name, 'no customer', commission

from salesman

where not city = any(select city

from customer);

	salesman_id	name	cust_name	commission
١	1000	John	Preethi	25%
	2000	Ravi	Preethi	20%
	1000	John	Vivek	25%
	2000	Ravi	Vivek	20%
	1000	John	Chethan	25%
	2000	Ravi	Chethan	20%
	1000	John	Mamatha	25%
	2000	Ravi	Mamatha	20%
	3000	Kumar	no customer	15%
	4000	Smith	no customer	30%
	5000	Harsha	no customer	15%

QUERY 6

```
use order_database;
```

```
create view highsalesman as
select b.ord_date, a.salesman_id, a.name
from salesman a, orders b
where a.salesman_id = b.salesman_id
and b.purchase_amt=(select max(purchase_amt)
from orders c
where c.ord_date = b.ord_date);
select * from highsalesman;
```

	ord_date	salesman_id	name
•	04-MAY-17	1000	John
	20-JAN-17	2000	Ravi
	09-MAR-17	2000	Ravi
	24-FEB-17	2000	Ravi
	13-APR-17	3000	Kumar

QUERY 7

use order_database;

delete from salesman

where $Salesman_id = 1000$;

select * from salesman;

select * from orders;

	Ord_No	Purchase_Amt	Ord_Date	Customer_id	Salesman_id
•	54	550	09-MAR-17	12	2000
	52	1000	24-FEB-17	13	2000
	53	3500	13-APR-17	14	3000
	HULL	NULL	NULL	NULL	NULL

PROGRAM 7: BOOK DATABASE

BOOK (Book_id, Title, Publisher_Name, Pub_Year)
BOOK_AUTHORS (Book_id, Author_Name)
PUBLISHER (Name, Address, Phone)

BOOK COPIES (Book id, Branch id, No-of Copies)

BOOK_LENDING (Book_id, Branch_id, Card_No, Date_Out, Due_Date)

LIBRARY BRANCH (Branch id, Branch Name, Address)

Schema Diagram

Book

- 1. Retrieve details of all books in the library id, title, name of publisher, authors, number of copies in each branch, etc.
- 2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017
- 3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.
- 4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.

5. Create a view of all books and its number of copies that are currently available in the Library.

QUERY 1

```
create database book_database;
use book_database;
create table publisher (
name varchar(30),
phone int,
address varchar(50),
primary key(name));
create table book (
book_id int,
title varchar(50),
pub_year varchar(10),
publisher_name varchar(30),
primary key(book_id),
foreign key (publisher_name) references publisher (name) on delete cascade
);
create table book_authors (
author_name varchar(30),
book_id int,
foreign key (book_id) references book (book_id) on delete cascade,
primary key (book_id, author_name));
```

```
create table library_branch (
branch_id int,
branch_name varchar(50),
address varchar(50),
primary key(branch_id));
create table book_copies (
no_of_copies int,
book_id int,
branch_id int,
foreign key (book_id) references book (book_id) on delete cascade,
foreign key (branch_id) references library_branch (branch_id) on delete cascade,
primary key (book_id, branch_id));
create table card (
card_no int,
primary key(card_no));
create table book_lending(
date_out date,
due_date date,
book_id int,
branch_id int,
card_no int,
foreign key (book_id) references book (book_id) on delete cascade,
foreign key (branch_id) references library_branch (branch_id) on delete cascade,
foreign key (card_no) references card (card_no) on delete cascade,
primary key (book_id, branch_id, card_no));
```

QUERY 2

use book_database;

insert into publisher values ('mcgraw-hill', 99890, 'bangalore'); insert into publisher values ('pearson', 98890, 'newdelhi'); insert into publisher values ('random house', 74556, 'hyderabad'); insert into publisher values ('hachette livre', 897086, 'chenai'); insert into publisher values ('grupo planeta', 77561, 'bangalore'); select * from publisher;

	name	phone	address
•	grupo planeta	77561	bangalore
	hachette livre	897086	chenai
	mcgraw-hill	99890	bangalore
	pearson	98890	newdelhi
	random house	74556	hyderabad
	NULL	NULL	NULL

insert into book values (1,'dbms','01-2017', 'mcgraw-hill'); insert into book values (2,'adbms','06-2016', 'mcgraw-hill'); insert into book values (3,'cn','09-2016', 'pearson'); insert into book values (4,'cg','09-2015', 'grupo planeta'); insert into book values (5,'os','05-2016', 'pearson'); select * from book;

	book_id	title	pub_year	publisher_name
•	1	dbms	01-2017	mcgraw-hill
	2	adbms	06-2016	mcgraw-hill
	3	cn	09-2016	pearson
	4	cg	09-2015	grupo planeta
	5	os	05-2016	pearson
	NULL	HULL	NULL	NULL

insert into book_authors values ('navathe', 1); insert into book_authors values ('navathe', 2); insert into book_authors values ('tanenbaum', 3); insert into book_authors values ('edward angel', 4); insert into book_authors values ('galvin', 5);
select * from book_authors;

	author_name	book_id
٠	navathe	1
	navathe	2
	tanenbaum	3
	edward angel	4
	galvin	5
	NULL	NULL

insert into library_branch values (10,'rr nagar','bangalore'); insert into library_branch values (11,'rnsit','bangalore'); insert into library_branch values (12,'rajaji nagar', 'bangalore'); insert into library_branch values (13,'nitte','mangalore'); insert into library_branch values (14,'manipal','udupi'); select * from library_branch;

	branch_id	branch_name	address
١	10	rr nagar	bangalore
	11	rnsit	bangalore
	12	rajaji nagar	bangalore
	13	nitte	mangalore
	14	manipal	udupi
	NULL	NULL	HULL

insert into book_copies values (10, 1, 10); insert into book_copies values (5, 1, 11); insert into book_copies values (2, 2, 12); insert into book_copies values (5, 2, 13); insert into book_copies values (7, 3, 14); insert into book_copies values (1, 5, 10); insert into book_copies values (3, 4, 11); select * from book_copies;

	no_of_copies	book_id	branch_id
١	10	1	10
	5	1	11
	2	2	12
	5	2	13
	7	3	14
	3	4	11
	1	5	10
	HULL	HULL	NULL

insert into card values (100); insert into card values (101); insert into card values (102); insert into card values (103); insert into card values (104); select * from card;

	card_no
•	100
	101
	102
	103
	104
	NULL

insert into book_lending values ('01-01-17','01-06-17', 1, 10, 101); insert into book_lending values ('11-01-17','11-03-17', 3, 14, 101); insert into book_lending values ('21-02-17','21-04-17', 2, 13, 101); insert into book_lending values ('15-03-17','15-07-17', 4, 11, 101); insert into book_lending values ('12-08-17','12-08-17', 1, 11, 104); select * from book_lending;

use book_database;

select b.book_id, b.title, b.pub_year, b.publisher_name, bc.no_of_copies, ba.author_name, lb.branch_name from

book b, book_authors ba, library_branch lb, book_copies bc

where b.book_id = ba.book_id and

b.book_id = bc.book_id and

lb.branch_id = bc.branch_id;

QUERY 4

use book_database;

select card_no

from book_lending

where year(date_out)>17 and month(date_out)<7

group by card_no having count(card_no)>2;

use book_database;

delete from book where book_id = 3;
select * from book;
select * from book_authors;

select * from book_copies;
select * from book_lending;

	salesman_id	name	cust_name	commission
١	1000	John	Preethi	25%
	2000	Ravi	Preethi	20%
	1000	John	Vivek	25%
	2000	Ravi	Vivek	20%
	1000	John	Chethan	25%
	2000	Ravi	Chethan	20%
	1000	John	Mamatha	25%
	2000	Ravi	Mamatha	20%
	3000	Kumar	no customer	15%
	4000	Smith	no customer	30%
	5000	Harsha	no customer	15%

QUERY 6

use book_database;

create view view1

as select pub_year from book;

select * from view1;

	ord_date	salesman_id	name
١	04-MAY-17	1000	John
	20-JAN-17	2000	Ravi
	09-MAR-17	2000	Ravi
	24-FEB-17	2000	Ravi
	13-APR-17	3000	Kumar

use book_database;

create view view2

as select b.book_id, b.title, bc.no_of_copies from book b,book_copies bc where b.book_id = bc.book_id;

select * from view2;

	Ord_No	Purchase_Amt	Ord_Date	Customer_id	Salesman_id
•	54	550	09-MAR-17	12	2000
	52	1000	24-FEB-17	13	2000
	53	3500	13-APR-17	14	3000
	NULL	NULL	HULL	NULL	HULL

PROGRAM 8: STUDENT ENROLLMENT

Consider the following database of student enrollment in courses & books adopted for each course.

```
STUDENT (regno: string, name: string, major: string, bdate:date)
COURSE (course #:int, cname:string, dept:string)
ENROLL (regno:string, course#:int, sem:int, marks:int)
BOOK _ ADOPTION (course# :int, sem:int, book-ISBN:int)
TEXT (book-ISBN:int, book-title:string, publisher:string, author:string)
```

Database applications laboratory GCEM DEPARTMENT OF CSE Page - 5 - 5th semester i. Create the above tables by properly specifying the primary keys and the foreign keys.

- ii. Enter at least five tuples for each relation.
- iii. Demonstrate how you add a new text book to the database and make this book be adopted by some department.
- iv. Produce a list of text books (include Course #, Book-ISBN, Book-title) in the alphabetical order for courses offered by the 'CS' department that use more than two books.
- v. List any department that has all its adopted books published by a specific publisher.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.

QUERY 1

```
create database StudentEnrollment;
use STudentEnrollment;
create table student(
regno varchar(20),
name varchar(30),
major varchar(20),
bdate date,
primary key (regno)
);
create table course(
courseno int,
cname varchar(20),
dept varchar(20),
primary key (courseno)
);
create table enroll(
regno varchar(20),
courseno int,
sem int.
marks int,
primary key (regno, courseno),
foreign key (regno) references student (regno),
foreign key (courseno) references course (courseno)
);
```

```
create table text(
book_isbn int,
book_title varchar(30),
publisher varchar(30),
author varchar(30),
primary key (book_isbn)
);

create table book_adoption(
courseno int,
sem int,
book_isbn int,
primary key (courseno,book_isbn),
foreign key (courseno) references course (courseno),
foreign key (book_isbn) references text(book_isbn)
);
```

use studentenrollment;

insert into student values('1PE11CS002','b','SR','19930924'); insert into student values('1PE11CS003','c','SR','19931127'); insert into student values('1PE11CS004','d','SR','19930413'); insert into student values('1PE11CS005','e','JR','19940824'); select * from student;

insert into course values(111,'OS','CSE'); insert into course values(112,'EC','CSE'); insert into course values(113,'SS','ISE'); insert into course values (114,'DBMS','CSE'); insert into course values (115,'SIGNALS','ECE'); select * from course;

insert into text values(10,'DATABASE SYSTEMS','PEARSON','Schield'); insert into text values(900,'OPERATING SYS','PEARSON','Leland'); insert into text values(901,'CIRCUITS','HALL INDIA','Bob'); insert into text values(902,'SYSTEM SOFTWARE','peterson','Jacob'); insert into text values(903,'SCHEDULING','PEARSON','Patil'); insert into text values(904,'DATABASE SYSTEMS','PEARSON','Jacob'); insert into text values(905,'DATABASE MANAGER','PEARSON','Bob'); insert into text values(906,'SIGNALS','HALL INDIA','Sumit'); select * from text;

	book_isbn	book_title	publisher	author
٠	10	DATABASE SYSTEMS	PEARSON	Schield
	900	OPERATING SYS	PEARSON	Le Schield
	901	CIRCUITS	HALL INDIA	Bob
	902	SYSTEM SOFTWARE	peterson	Jacob
	903	SCHEDULING	PEARSON	Patil
	904	DATABASE SYSTEMS	PEARSON	Jacob
	905	DATABASE MANAGER	PEARSON	Bob
	906	SIGNALS	HALL INDIA	Sumit
	NULL	NULL	NULL	NULL

insert into enroll values('1PE11CS002',114,5,100); insert into enroll values('1PE11CS003',113,5,100); insert into enroll values('1PE11CS004',111,5,100); insert into enroll values('1PE11CS005',112,3,100); select * from enroll;

	book_isbn	book_title	publisher	author
١	10	DATABASE SYSTEMS	PEARSON	Schield
	900	OPERATING SYS	PEARSON	Leland
	901	CIRCUITS	HALL INDIA	Bob
	902	SYSTEM SOFTWARE	peterson	Jacob
	903	SCHEDULING	PEARSON	Patil
	904	DATABASE SYSTEMS	PEARSON	Jacob
	905	DATABASE MANAGER	PEARSON	Bob
	906	SIGNALS	HALL INDIA	Sumit
	NULL	NULL	NULL	NULL

insert into book_adoption values(111,5,900); insert into book_adoption values(111,5,903); insert into book_adoption values(111,5,904); insert into book_adoption values(112,3,901); insert into book_adoption values(113,3,10); insert into book_adoption values(114,5,905); insert into book_adoption values(113,5,902); insert into book_adoption values(115,3,906); select * from book_adoption;

	book_isbn	book_title	publisher	author
•	10	DATABASE SYSTEMS	PEARSON	Schield
	900	OPERATING SYS	PEARSON	Leland
	901	CIRCUITS	HALL INDIA	Bob
	902	SYSTEM SOFTWARE	peterson	Jacob
	903	SCHEDULING	PEARSON	Patil
	904	DATABASE SYSTEMS	PEARSON	Jacob
	905	DATABASE MANAGER	PEARSON	Bob
	906	SIGNALS	HALL INDIA	Sumit
	HULL	NULL	NULL	HULL

use studentenrollment;

insert into text values (907,'ai','HALL INDIA','Sumit'); insert into book_adoption values(115, 2, 907); select * from text; select * from book_adoption;

	courseno	sem	book_isbn
Þ	111	5	900
	111	5	903
	111	5	904
	112	3	901
	113	3	10
	113	5	902
	114	5	905
	115	3	906
	115	2	907
	HULL	MULL	NULL

QUERY 4

use studentenrollment;

select b.book_isbn, b.courseno, t.book_title from book_adoption b,text t where t.book_isbn = b.book_isbn and b.courseno in(select courseno from course where dept = 'CSE' and courseno in (select courseno from book_adoption group by courseno having count(*)>2));

	book_isbn	courseno	book_title
٠	900	111	OPERATING SYS
	903	111	SCHEDULING
	904	111	DATABASE SYSTEMS

QUERY 5

use studentenrollment;

select distinct c.dept from course c where c.dept in(select c.dept from course c,book_adoption b,text t where c.courseno=b.courseno and t.book_isbn=b.book_isbn and t.publisher='HALL INDIA') and c.dept not in(select c.dept from course c,book_adoption b,text t where c.courseno=b.courseno and t.book_isbn=b.book_isbn and t.publisher != 'HALL INDIA');

PROGRAM 9: MOVIE DATABASE

Consider the schema for Movie Database:

ACTOR (Act_id, Act_Name, Act_Gender)
DIRECTOR (Dir_id, Dir_Name, Dir_Phone)
MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)
MOVIE_CAST (Act_id, Mov_id, Role)
RATING (Mov_id, Rev_Stars)
Write SQL queries to

- 1. List the titles of all movies directed by 'Hitchcock'.
- 2. Find the movie names where one or more actors acted in two or more movies.
- 3. List all actors who acted in a movie before 2000 and also in a movie after

2015 (use JOIN operation).

- 4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.
- 5. Update rating of all movies directed by 'Steven Spielberg' to 5.

Schema Diagram


```
create database movie_database;
use movie database;
create table actor(
act id int,
act_name varchar(30),
act_gender enum('M','F'),
primary key(act_id));
create table director(
dir_id int,
dir name varchar(30),
dir_phone varchar(10),
primary key(dir_id));
create table movies(
mov_id int,
mov_title varchar(30),
mov_year year,
mov_lang varchar(10),
dir_id int,
primary key(mov_id),
foreign key(dir_id) references director(dir_id) on delete cascade);
create table moviecast(
act_id int,
mov_id int,
part varchar(20),
primary key(act_id, mov_id),
foreign key(act_id) references actor(act_id) on delete cascade,
foreign key(mov_id) references movies(mov_id) on delete cascade);
create table rating(
mov id int,
rev_stars float,
primary key(mov_id, rev_stars),
foreign key(mov_id) references movies(mov_id) on delete cascade);
QUERY 2
use movie_database;
insert into actor values(100, "Leonardo DiCaprio", 'M');
insert into actor values(101, "Tom Hanks", 'M');
insert into actor values(102, "Tom Cruise", 'M');
insert into actor values(103, "Margot Robbie", 'F');
insert into actor values(104, "Jennifer Aniston", 'F');
insert into actor values(105, "Gal Gadot", 'F');
select * from actor;
```

	act_id	act_name	act_gender
۰	100	Leo DiCaprio	M
	101	Tom Hanks	M
	102	Tom Cruise	M
	103	Margot Robbie	F
	104	Jennifer Aniston	F
	105	Gal Gadot	F
	HULL	NULL	NULL

insert into director values(200, 'Steven Spielberg', '1649503470'); insert into director values(201, 'Alfred Hitchcock', '7989467865'); insert into director values(202, 'James Cameron', '5218281077'); insert into director values(203, 'Kathryn Bigelow', '6157228013'); insert into director values(204, 'Niki Caro', '8976600547'); insert into director values(205, 'Sofia Coppola', '3949875040'); select * from director;

insert into movies values(300, 'Avatar', 2010, 'EN', 202); insert into movies values(301, 'Dial M For Murder', 1990, 'EN', 201); insert into movies values(302, 'Jurassic Park 1', 1999, 'EN', 200); insert into movies values(303, 'Jurassic Park 2', 2017, 'EN', 200); insert into movies values(304, 'Vertigo', 1986, 'EN', 201); insert into movies values(305, 'Zero Dark Thirty', 2012, 'EN', 200); select * from movies;

insert into moviecast values(101, 300, 'actor'); insert into moviecast values(105, 300, 'actress'); insert into moviecast values(102, 301, 'actor'); insert into moviecast values(103, 301, 'actress'); insert into moviecast values(100, 302, 'actor'); insert into moviecast values(104, 302, 'actress'); insert into moviecast values(100, 303, 'actor'); insert into moviecast values(104, 303, 'actress'); insert into moviecast values(102, 304, 'actor'); insert into moviecast values(105, 304, 'actress'); insert into moviecast values(103, 305, 'actress'); select * from moviecast;

	act_id	mov_id	part
١	100	302	actor
	100	303	actor
	101	300	actor
	102	301	actor
	102	304	actor
	103	301	actress
	103	305	actress
	104	302	actress
	104	303	actress
	105	300	actress
	105	304	actress
	NULL	NULL	HULL

insert into rating values(300, 4.5); insert into rating values(301, 3); insert into rating values(302, 4); insert into rating values(303, 3.5); insert into rating values(304, 5); insert into rating values(305, 4); select * from rating;

	mov_id	rev_stars
•	300	4.5
	301	3
	302	4
	303	3.5
	304	5
	305	4
	NULL	NULL

QUERY 3

select m.mov_title from movies m, director d where m.dir_id=d.dir_id and d.dir_name='Alfred Hitchcock';

QUERY 4

select m.mov_title from movies m, moviecast mc where m.mov_id=mc.mov_id and act_id in(
select act_id from moviecast group by act_id having count(act_id) > 1)
group by m.mov_title having count(*) >= 2;

select a.act_name, m.mov_title, m.mov_year from actor a, movies m, moviecast mc where a.act_id=mc.act_id and mc.mov_id=m.mov_id and m.mov_year not between 2000 and 2015;

	act_name	mov_title	mov_year
•	Tom Cruise	Dial M For Murder	1990
	Margot Robbie	Dial M For Murder	1990
	Leo DiCaprio	Jurassic Park 1	1999
	Jennifer Aniston	Jurassic Park 1	1999
	Leo DiCaprio	Jurassic Park 2	2017
	Jennifer Aniston	Jurassic Park 2	2017
	Tom Cruise	Vertigo	1986
	Gal Gadot	Vertigo	1986

QUERY 6

select mov_title, max(rev_stars)
from movies inner join rating using (mov_id)
group by mov_title
having max(rev_stars)>0
order by mov_title;

	mov_title	max(rev_stars)
١	Avatar	4.5
	Dial M For Murder	3
	Jurassic Park 1	4
	Jurassic Park 2	3.5
	Vertigo	5
	Zero Dark Thirty	4

QUERY 7

update rating set rev_stars = 5 where mov_id in (select mov_id from movies where dir_id in(select dir_id from director where dir_name='Steven Spielberg')); select * from rating;

	mov_id	rev_stars
١	300	4.5
	301	3
	302	5
	303	5
	304	5
	305	5
	NULL	NULL

PROGRAM 10: COLLEGE DATABASE

Consider the schema for College Database: STUDENT (USN, SName, Address, Phone, Gender) SEMSEC (SSID, Sem, Sec) CLASS (USN, SSID) SUBJECT (Subcode, Title, Sem, Credits) IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinalIA) Write SQL queries to

- 1. List all the student details studying in fourth semester 'C' section.
- 2. Compute the total number of male and female students in each semester and in each section.
- 3. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.
- 4. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

Schema Diagram

QUERY 1

create database college_database;
use college_database;

create table student(usn varchar(30), sname varchar(30), address varchar(30), phone real,

```
gender varchar(30),
primary key(usn));
create table semsec(
ssid varchar(30),
sem int,
sec varchar(30),
primary key(ssid));
create table class(
usn varchar(30),
ssid varchar(30),
primary key(usn,ssid),
foreign key(usn) references student(usn),
foreign key(ssid) references semsec(ssid));
create table subject(
code varchar(30),
title varchar(30),
sem int,
credits int,
primary key(code));
create table marks(
usn varchar(30),code varchar(30),
ssid varchar(30),
test1 real,
test2 real.
test3 real,
final real,
primary key(usn,code,ssid),
foreign key(usn) references student(usn),
foreign key(code) references subject(code),
foreign key(ssid) references semsec(ssid));
QUERY 2
use college_database;
insert into student values('1RN13CS020', 'akshay', 'belagavi', 8877881122, 'm'),
('1RN13CS062', 'sandhya', 'bengaluru', 7722829912, 'f'),
('1RN13CS091','teesha','bengaluru',7712312312,'f'),
('1RN13CS066', 'supriya', 'mangaluru', 8877881122, 'f'),
('1RN14CS010', 'abhay', 'bengaluru', 9900211201, 'm'),
('1RN14CS032','bhaskar','bengaluru',9923211099,'m'),
('1RN14CS025', 'asmi', 'bengaluru', 7894737377, 'f'),
('1RN15CS011','ajay','tumkur',98545091341,'m'),
('1RN15CS029','chitra','davangere',7696772121,'f'),
('1RN15CS045','jeeva','bellary',9944850121,'m'),
('1RN15CS091','santosh','mangaluru',8812332201,'m'),
('1RN16CS045', 'ismail', 'kalburgi', 9900232201, 'm'),
('1RN16CS088', 'sameera', 'shimoga', 9905542212, 'f'),
('1RN16CS122','vinayaka','chikamagaluru',8800880011,'m');
```

select * from student;

	usn	sname	address	phone	gender
١	1RN13CS020	akshay	belagavi	8877881122	m
	1RN13CS062	sandhya	bengaluru	7722829912	f
	1RN13CS066	supriya	mangaluru	8877881122	f
	1RN13CS091	teesha	bengaluru	7712312312	f
	1RN14CS010	abhay	bengaluru	9900211201	m
	1RN14CS025	asmi	bengaluru	7894737377	f
	1RN14CS032	bhaskar	bengaluru	9923211099	m
	1RN15CS011	ajay	tumkur	98545091341	m
	1RN15CS029	chitra	davangere	7696772121	f
	1RN15CS045	jeeva	bellary	9944850121	m
	1RN15CS091	santosh	mangaluru	8812332201	m
	1RN16CS045	ismail	kalburgi	9900232201	m
	1RN16CS088	sameera	shimoga	9905542212	f
	1RN16CS122	vinayaka	chikamag	8800880011	m
	HULL	NULL	NULL	NULL	NULL

insert into semsec values('CSE8A',8,'A'), ('CSE8B',8,'B'),('CSE8C',8,'C'), ('CSE7A',7,'A'),('CSE7B',7,'B'),('CSE7C',7,'C'), ('CSE6A',6,'A'),('CSE6B',6,'B'),('CSE6C',6,'C'), ('CSE5A',5,'A'),('CSE5B',5,'B'),('CSE5C',5,'C'), ('CSE4A',4,'A'),('CSE4B',4,'B'),('CSE4C',4,'C'), ('CSE3A',3,'A'),('CSE3B',3,'B'),('CSE3C',3,'C'), ('CSE2A',2,'A'),('CSE2B',2,'B'),('CSE2C',2,'C'), ('CSE1A',1,'A'),('CSE1B',1,'B'),('CSE1C',1,'C'); select * from semsec;

ssid	sem	sec
CSE5B	5	В
CSE5C	5	C
CSE6A	6	Α
CSE6B	6	В
CSE6C	6	C
CSE7A	7	Α
CSE7B	7	В
CSE7C	7	C
CSE8A	8	Α
CSE8B	8	В
CSE8C	8	C
HULL	HULL	HULL

insert into class values('1RN13CS020', 'CSE8A'), ('1RN13CS062', 'CSE8A'), ('1RN13CS066', 'CSE8B'), ('1RN13CS091', 'CSE8C'), ('1RN14CS010', 'CSE7A'), ('1RN14CS025', 'CSE7A'), ('1RN14CS032', 'CSE7A'), ('1RN15CS011', 'CSE4A'), ('1RN15CS029', 'CSE4A'), ('1RN15CS045', 'CSE4B'), ('1RN15CS091', 'CSE4C'), ('1RN16CS045', 'CSE3A'), ('1RN16CS088', 'CSE3B'), ('1RN16CS122', 'CSE3C'); select * from class;

insert into subject values('10CS81','ACA',8,4), ('10CS82','SSM',8,4),('10CS83','NM',8,4), ('10CS84','CC',8,4),('10CS85','PW',8,4), ('10CS71','OOAD',7,4),('10CS72','ECS',7,4), ('10CS73','PTW',7,4),('10CS74','DWDM',7,4), ('10CS75','JAVA',7,4),('10CS76','SAN',7,4), ('10CS51','ME',5,4),('10CS52','CN',5,4), ('10CS53','DBMS',5,4),('10CS54','ATC',5,4), ('10CS55','JAVA',5,3),('10CS56','AI',5,3), ('10CS41','M4',4,4),('10CS42','SE',4,4), ('10CS43','DAA',4,4),('10CS44','MPMC',4,4), ('10CS45','OOC',4,3),('10CS46','DC',4,3), ('10CS31','M3',3,4),('10CS32','ADE',3,4), ('10CS33','DSA',3,4),('10CS34','CO',3,4), ('10CS35','USP',3,3),('10CS36','DMS',3,3); select * from subject;

insert into marks(usn,code,ssid,test1,test2,test3) values('1RN13CS091','10CS81','CSE8C',15,16,18), ('1RN13CS091','10CS82','CSE8C',12,19,14),('1RN13CS091','10CS83','CSE8C',19,15,20), ('1RN13CS091','10CS84','CSE8C',20,16,19),('1RN13CS091','10CS85','CSE8C',15,15,12); select * from marks;

	usn	code	ssid	test1	test2	test3	final
•	1RN13CS091	10CS81	CSE8C	15	16	18	NULL
	1RN13CS091	10CS82	CSE8C	12	19	14	NULL
	1RN13CS091	10CS83	CSE8C	19	15	20	NULL
	1RN13CS091	10CS84	CSE8C	20	16	19	NULL
	1RN13CS091	10CS85	CSE8C	15	15	12	NULL
	NULL	NULL	NULL	NULL	NULL	NULL	NULL

select S.*, SS.sem, SS.sec from student S, semsec SS, class C where S.usn = C.usn AND SS.ssid = C.ssid AND SS.sem = 4 AND SS.sec = 'C';

	usn	sname	address	phone	gender	sem	sec
•	1RN15CS091	santosh	mangaluru	8812332201	m	4	С

QUERY 4

select SS.sem, SS.sec, S.gender, count(S.gender) as COUNT from student S, semsec SS, class C where S.usn = C.usn AND SS.ssid = C.ssid group by SS.sem, SS.sec, S.gender ORDER by sem;

sem	sec	gender	COUNT
3	В	f	1
3	C	m	1
4	A	f	1
4	A	m	1
4	В	m	1
4	C	m	1
7	A	f	1
7	A	m	2
8	A	f	1
8	A	m	1
8	В	f	1
8	C	f	1

QUERY 5

create view STU_test1_marks_view as
select test1, code
from marks
where usn = '1RN13CS091';
select * from STU_test1_marks_view;

	test1	code
•	15	10CS81
	12	10CS82
	19	10CS83
	20	10CS84
	15	10CS85

select S.usn, S.sname, S.address, S.phone, S.gender,(CASE when IA.final between 17 and 20 then 'outstanding' when IA.final between 12 and 16 then 'average' else 'weak' end) AS CAT from student S, semsec SS, marks IA, subject sub where S.usn = IA.usn

AND SS.ssid = IA.ssid AND sub.code = IA.code AND sub.sem = 8;

	usn	sname	address	phone	gender	CAT
•	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak
	1RN13CS091	teesha	bengaluru	7712312312	f	weak