PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1° Semestre 2022

Tarea 5 – Respuesta Pregunta 2

En clases se vio que, dado un alfabeto finito Σ , se puede definir recursivamente el conjunto \mathcal{P}_{Σ} como:

- $\epsilon \in \mathcal{P}_{\Sigma}$.
- $a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.
- si $u \in \mathcal{P}_{\Sigma}$, entonces $a \cdot u \cdot a \in \mathcal{P}_{\Sigma}$ para todo $a \in \Sigma$.

Por otro lado, para una palabra $w = a_1 a_2 \cdots a_n \in \Sigma^*$ se define su palabra reversa $w^R = a_n \cdots a_2 a_1$.

- 1. Demuestre usando inducción que para toda palabra $w \in \Sigma^*$, si $w \in \mathcal{P}_{\Sigma}$, entonces $w = w^R$.
- 2. Demuestre usando inducción que para toda palabra $w \in \Sigma^*$, si $w = w^R$, entonces $w \in \mathcal{P}_{\Sigma}$.

Recuerde que Σ^* corresponde al conjunto de todas las palabras sobre el alfabeto Σ .

Solución:

1)

Como el conjunto se define mediante una regla recursiva se utiliza inducción estructural. Definimos el predicado como:

$$P(w) := \text{si } w \in \mathcal{P}_{\Sigma}, \text{ entonces } w = w^R$$

La capa base S[0] queda definida como todas las palabras singulares, de cardinalidad uno y la palabra vacía ϵ :

$$S[0] := \{\epsilon, a, b, ..., n\}$$

Verificamos que $\forall w \in S[0]$. P(w). Esta expresión se cumple debido a que todo elemento que tiene uno o cero caracteres, su inversa será el mismo y por ende serán equivalentes.

Para el caso construido, si se cumple P(w) para un w cualquiera, entonces se cumplirá $P(a \cdot w \cdot a)$:

$$a \cdot w \cdot a = a, w_1, ..., w_n, a$$

= $a \cdot P(w) \cdot a$

Donde para w, debido a P(w):

$$\forall i \in \mathbb{N}. \ i < n. \ w_{1+i} = w_{n-i}$$

Por lo tanto, debido a que al agregar el mismo caracter a ambos lados de una palabra w, la regla simétrica del predicado se cumple y la palabra anterior es simétrica, se cumple el predicado para la recursividad P(w). De esta manera:

$$= P(a \cdot w \cdot a)$$

2)

Como el conjunto se define mediante una regla recursiva se utiliza inducción estructural. Definimos el predicado como:

$$P(w) := \text{si } w = w^R, \text{ entonces } w \in \mathcal{P}_{\Sigma}$$

La capa base S[0] queda definida como todas las palabras singulares, de cardinalidad uno y la palabra vacía ϵ :

$$S[0] := \{\epsilon, a, b, ..., n\}$$

Verificamos que $\forall w \in S[0]$. P(w). Esta expresión se cumple debido a que todo elemento que tiene uno o cero caracteres por ende son palíndromas por definición y pertenecen a \mathcal{P}_{Σ} por su simetría trivial.

Para el caso construido, si se cumple P(w) para un w cualquiera, entonces se cumplirá $P(a \cdot w \cdot a)$.

Como P(w) se cumple, se tiene que:

$$w = w^R$$

PD: $P(a \cdot w \cdot a)$

Si agregamos un caracter a cada lado de la palabra tenemos el siguiente desarrollo:

$$a_1 \cdot w \cdot a_2 = a_2 \cdot w \cdot a_1$$

Donde $a_1 = a_2$ y se hace la diferencia por conveniencia. Esto lo sabemos porque w es simétrica y al agregar a ambos lados el mismo caracter, no afecta su simetría. Como la nueva palabra se construye con la regla recursiva del conjunto \mathcal{P}_{Σ} y w es una palabra que también pertenece, $a \cdot w \cdot a \in \mathcal{P}_{\Sigma}$. Por lo tanto queda demostrado que para toda palabra $w \in \Sigma^*$, si $w = w^R$, entonces $w \in \mathcal{P}_{\Sigma}$.