S.-J. Kimmerle

- **Assumption:** f(x) is 2x continuous differentiable; f'(x) and f''(x) can be computed analytically.
- Strategy: Determine iteratively a zero of the 1st derivative; start with a value, that is assumed to be close to a minimum.
- **Method:** Start with initial value $x^{[0]}$

For
$$k = 0, 1, 2, ...$$
: $x^{[k+1]} = x^{[k]} - \frac{f'(x^{[k]})}{f''(x^{[k]})}$

 Convergence: the Newton method converges locally quadratically, i.e. there holds

$$|\overline{X} - X^{[k+1]}| \leq C \cdot |\overline{X} - X^{[k]}|^2$$

if f'' is invertible and differentiable (can be weakened) in a neighbourhood of a zero.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

Excursus: solving nonlinear equations

Nonlinear equations appear:

- Implicit methods: solving a calculation rule for $x^{[k+1]}$
- Determine stationary points of nonlinear differential equations
- Numerical methids for nonlinear differential equations
- and many other applications . . .

In general: let $g \in C^1(\mathbb{R})$. Determine constructively \hat{x} such that

$$g(\hat{x}) = 0.$$

If $f'(\hat{x})$ represent carse optimization

Newton method:

$$x^{[k+1]} = x^{[k]} - \frac{g(x^{[k]})}{g'(x^{[k]})}, \quad x^{[0]} \in \mathbb{R} \text{ given initial value}$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

(here $x^{[n]}$ defines a sequence)

See https://de.wikipedia.org/wiki/Newton-Verfahren.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

Problems & modifications of the Newton method

- f"(x) cannot be computed explicitly.
 - \implies Replace f''(x) by the corresponding difference quotient or by a formula for numerical differentiation.
- The Newton method diverges.
 - ⇒ Combine the Newton method with a "safe" method as, e.g., the bisection search or reduce step size (damped Newton method)
- The method converges to a saddle point.
 - ⇒ Start with another initial value or compute a few iterations with a "slower" method.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

Example: Golden-section search

- Assumption: f(x) continuous with minimum in [a, b]
- Divide [a, b] in the ratio of the golden section, i.e.

$$\lambda = a + 0.382 \cdot (b - a)$$
 und $\mu = a + 0.618 \cdot (b - a)$

• If $f(\lambda^{[k]}) > f(\mu^{[k]})$ go to case 1 else go to case 2 and apply the method recursively

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Derivatives

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

Golden section: convergence

• Safe convergence of the method, if f(x) is convex, e.g., on the considered interval

Relatively slow convergence:

$$|b_{k+1} - a_{k+1}| = 0.618 \cdot |b_k - a_k|$$

For comparison, bisection search:
 $|b_{k+1} - a_{k+1}| = 0.5 \cdot |b_k - a_k|$

- Contrary to the Newton method (or the gradient descent) the golden-section search does not require derivatives.
- The special division ration of the golden section saves one function evaluation in each step.

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Local extrema and mean value theorems

Convex and concave

Excursion: unrestricted optimization in 1d

Newton method 1d

Golden section search

Integration in 1d

