

MiniBrass: Soft Constraint Programming

Alexander Schiendorfer et al.

Evaluation

- Direkter Vergleich schwierig
- Kein anderes System implementiert PVS (oder c-Semiringe)
- → Dafür unterstützt toulbar2 Weighted CSP und Cost Function Networks (der einzig frei verfügbare Soft-Constraint-Solver)

https://github.com/MiniZinc/minizinc-benchmarks

Evaluation

- Direkter Vergleich schwierig
- Kein anderes System implementiert PVS (oder c-Semiringe)
- → Dafür unterstützt toulbar2 Weighted CSP und Cost Function Networks (der einzig frei verfügbare Soft-Constraint-Solver)
- Daher Beschränkung auf Weighted CSP für die Evaluierung
- Abbildung aus Constraint-Relationships
- Probleme sind Variationen von 5 Problemen aus den MiniZinc-Benchmarks¹ (erweitert um Soft Constraints in PVS)

https://github.com/MiniZinc/minizinc-benchmarks

Rahmenbedingungen

- Eingesetzte Solver
 - JaCoP
 - Gecode
 - Google OR-Tools
 - G12
 - Choco
 - toulbar2
- Eingesetzte Probleme (insgesamt 15 Instanzen)
 - Soft-Queens
 - Photo-Platzierung
 - Talent-Scheduling
 - On-Call-Rostering
 - Multi-Skilled Project Scheduling Problem
- Timeout: 10 Minuten

Resultate: Kleine Probleme

Photo-Platzierung und Soft-Queens

Werte in Klammern geben die beste gefundene Lösung nach Timeout an; Da Weighted CSP \rightarrow Minimierung. Zeiten in Sekunden.

	OR-Tools	Gecode	Choco	JaCoP	G12	toulbar2
Photo						
photo1 photo2	0.18 1.06	0.19 2.98	0.41 0.52	0.54 2.92	3.38 35.3	0.4 0.55
Soft-Queens						
n = 8 n = 16 n = 30	0.03 0.03 0.04 (0)	0.03 0.04 600 (4)	0.46 0.5 0.55 (0)	0.18 0.22 187.86 (0)	0.03 0.05 600 (4)	0.27 0.28 0.58 (0)

Resultate: Mittlere Probleme

Talent-Scheduling und On-Call Rostering

Werte in Klammern geben die beste gefundene Lösung nach Timeout an; Da Weighted CSP \to Minimierung. Zeiten in Sekunden.

	OR-Tools	Gecode	Choco	JaCoP	G12	toulbar2
Talents						
small	0.03	0.03	0.35	0.16	0.04	2.28
concert	0.05	0.05	0.47	0.24	0.07	16.98
film103	2.23	67.69	7.48	3.01	9.3	-
Rostering						
4s-10d ²	0.14	0.17	1.53	0.64	0.22	0.81
4s-23d	2.59	2.92	5.68	4.06	4.49	3.98
10s-50d	600 (6)	600 (6)	600 (14)	600 (10)	600 (10)	87.18 (1)

²s bezeichnet "staff", d "days"

Resultate: Große Probleme

Multi-Skilled Project Scheduling Problem

Werte in Klammern geben die beste gefundene Lösung nach Timeout an; Da Weighted CSP \to Minimierung. Zeiten in Sekunden.

	OR-Tools	Gecode	Choco	JaCoP	G12	toulbar2
MSPSP						
easy_01	0.2	0.32	1.26	0.94	0.27	_
medium_01	0.19	0.22	1.35	0.67	0.21	_
hard_02	0.37	0.33	1.59	1.01	0.37	600 (-)
hard_04	0.27	0.25	1.62	0.86	0.28	

References I

Amadio, R. M. and Curien, P.-L. (1998).

Domains and Lambda-Calculi.

Cambridge Tracts in Theoretical Computer Science 46. Cambridge University Press.

Knapp, A. and Schiendorfer, A. (2014).

Embedding Constraint Relationships into C-Semirings.

Technical Report 2014-03, Institute for Software and Systems Engineering, University of Augsburg.

http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/2684.

Knapp, A., Schiendorfer, A., and Reif, W. (2014).

Quality over Quantity in Soft Constraints.

In Proc. 26th Int. Conf. Tools with Artificial Intelligence (ICTAI'2014), pages 453–460.

References II

Schiendorfer, A., Steghöfer, J.-P., Knapp, A., Nafz, F., and Reif, W. (2013). Constraint Relationships for Soft Constraints.

In Bramer, M. and Petridis, M., editors, *Proc. 33rd SGAI Int. Conf. Innovative Techniques and Applications of Artificial Intelligence (Al'13)*, pages 241–255. Springer.