Seminář 4: Model důchod-výdaje JEB009 Makroekonomie I

Institut ekonomických studií Fakulta sociálních věd Univerzita Karlova

jeb009makro1@seznam.cz

Josef Švéda

- předpoklady
- dvousektorová, třísektorová, čtyřsektorová ekonomika
- klíčová rovnice a odvození multiplikátoru
- státní rozpočet

- předpoklady
 - investice jsou nezávislé na úrokové míře
 - existují nevyužité výrobní kapacity
 - ekonomika pod potenciálem
 - stabilní cenová hladina

- Navazující teorie
 - Model IS-LM
 - Uvolněná úroková míra
 - Model AS-AD
 - Uvolněná cenová hladina

- klíčová rovnice a odvození multiplikátoru
 - 2 sektory

$$AE = C + I = C_A + cY + I$$

- klíčová rovnice a odvození multiplikátoru
 - 3 sektory

$$AE = C + I + G = C_A + cYD + I + G$$
$$YD = Y - TA + TR$$

- klíčová rovnice a odvození multiplikátoru
 - 4 sektory

$$AE = C + I + G + NX = C_A + cYD + I + G + X - M$$

$$YD = Y - TA + TR$$

$$M = M_A + m \cdot Y$$

V rovnováze platí Y = AE, S = I

Důchod-výdaje se 2 sektory

Uvažujte model důchod-výdaje se 2 sektory.

- Vyjádřete multiplikátor s pomocí výrazu pro úspory.
- Jak ekonomika reaguje na změnu sklonu k úsporám?

Uvažujte model důchod-výdaje se 2 sektory.

Vyjádřete multiplikátor s pomocí výrazu pro úspory.

Agregátní výdaje:
$$AE = C + I$$
, kde $C = C_A + cY$
Ekonomika je v rovnováze, když $Y = AE$
Potom $Y = C + I = C_A + cY + I$
 $Y = \frac{1}{1-c}(C_A + I)$, obecně pak $Y = \alpha A$
Multiplikátor $\alpha = \frac{1}{1-c} = \frac{1}{s}$, protože c+s=1

Důchod-výdaje se 2 sektory

Uvažujte model důchod-výdaje se 2 sektory.

- Vyjádřete multiplikátor s pomocí výrazu pro úspory.
- Jak ekonomika reaguje na změnu sklonu k úsporám?

Důchod-výdaje se 2 sektory

Uvažujte model důchod-výdaje se 2 sektory.

Jak ekonomika reaguje na změnu sklonu k úsporám?

Derivace: $\frac{\delta Y}{\delta s} = -\frac{1}{s^2} A < 0 \ \Rightarrow \ Y$ je klesající v s

Důchod-výdaje se 4 sektory

Uvažujte model důchod-výdaje se 4 sektory.

- Vyjádřete multiplikátor.
- Jak ovlivní změna sklonu ke spotřebě rovnovážný důchod?
- Jak ostatní parametry?

Uvažujte model důchod-výdaje se 4 sektory.

Vyjádřete multiplikátor.

Agregátní výdaje:
$$AE = C + I + G + NX$$
, kde $C = C_A + cYD$, $YD = Y + TR - TA$, $TA = tY$, $NX = NX_A - mY$ Ekonomika je v rovnováze, když $Y = AE$ Potom $Y = \frac{1}{1 - c(1 - t) + m} (C_A + cTR + I + G + NX_A)$, obecně pak $Y = \alpha A$ Multiplikátor $\alpha = \frac{1}{1 - c(1 - t) + m}$

Důchod-výdaje se 4 sektory

Uvažujte model důchod-výdaje se 4 sektory.

- Vyjádřete multiplikátor.
- Jak ovlivní změna sklonu ke spotřebě rovnovážný důchod?
- Jak ostatní parametry?

Důchod-výdaje se 4 sektory

Uvažujte model důchod-výdaje se 4 sektory.

Jak ovlivní změna sklonu ke spotřebě rovnovážný důchod?

Derivace:
$$\frac{\delta Y}{\delta c} = \frac{TR(1+m)+(C_A+I+G+NX_A)(1-t)}{(1-c(1-t)+m)^2} > 0 \Rightarrow Y$$
 je rostoucí v c

Důchod-výdaje se 4 sektory

Uvažujte model důchod-výdaje se 4 sektory.

- Vyjádřete multiplikátor.
- Jak ovlivní změna sklonu ke spotřebě rovnovážný důchod?
- Jak ostatní parametry?

Důchod-výdaje se 4 sektory

Uvažujte model důchod-výdaje se 4 sektory.

Jak ostatní parametry?

Derivace: $\frac{\delta Y}{\delta t} < 0 \ \Rightarrow \ Y$ je klesající v t

Derivace: $\frac{\delta Y}{\delta m} < 0 \implies Y$ je klesající v m

Uvažujte vládní rozpočet vyjádřený jako:

$$BS = TA - G - TR = tY - G - TR$$

- **1** Vypočítejte dopad změny transferů $\frac{dBS}{dTR}$
- **9** Vypočítejte dopad změny daňové sazby $\frac{dBS}{dt}$

Dopad změny transferů dBS dTR

$$BS = TA - G - TR = tY - G - TR$$

$$\frac{\delta BS}{\delta TR} = \frac{\delta TA}{\delta TR} - \frac{\delta G}{\delta TR} - \frac{\delta TR}{\delta TR} = \frac{\delta tY}{\delta TR} - 0 - 1$$

$$\frac{\delta BS}{\delta TR} = t \cdot \frac{\delta Y}{\delta TR} - 1 = t \cdot \frac{c}{1 - c(1 - t)} - 1$$

$$\frac{\delta BS}{\delta TR} = \frac{ct}{1 - c(1 - t)} - 1$$

Uvažujte vládní rozpočet vyjádřený jako:

$$BS = TA - G - TR = tY - G - TR$$

- **1** Vypočítejte dopad změny transferů $\frac{dBS}{dTR}$
- **9** Vypočítejte dopad změny daňové sazby $\frac{dBS}{dt}$

① Dopad změny daňové sazby $\frac{dBS}{dt}$

$$BS = TA - G - TR = tY - G - TR$$

$$\frac{\delta BS}{\delta t} = \frac{\delta TA}{\delta t} - \frac{\delta G}{\delta t} - \frac{\delta TR}{\delta t} = \frac{\delta t}{\delta t} \cdot Y + t \cdot \frac{\delta Y}{\delta t} - 0 - 0$$

$$\frac{\delta BS}{\delta t} = Y + t \cdot \frac{\delta Y}{\delta t}$$

$$\frac{\delta BS}{\delta t} = \frac{A}{1 - c(1 - t)} + t \cdot \frac{-cA}{(1 - c(1 - t))^2}$$

$$\frac{\delta BS}{\delta t} = \frac{(1 - c)A}{(1 - c(1 - t))^2}$$

Důchod-výdaje se 3 sektory + pravidlem vyrovnaného rozpočtu

Uvažujte model důchod-výdaje se 3 sektory a pravidlem vyrovnaného rozpočtu.

- Vyjádřete multiplikátor při nárůstu vládních výdajů financovaném ekvivalentním nárůstem paušální daně TA (tj. jaká je změna Y pri změně G?)
- Vyjádřete multiplikátor při nárustů transferů financovaném ekvivalentním nárůstem paušální daně TA
- Co by se stalo, kdybychom uvažovali lineární daň tY namísto paušální? *

Uvažujte model důchod-výdaje se 3 sektory a pravidlem vyrovnaného rozpočtu.

Vyjádřete multiplikátor při nárůstu vládních výdajů financovaném ekvivalentním nárůstem paušální daně TA (tj. jaká je změna Y pri změně G?)

$$\Delta BS = 0 \Rightarrow \Delta TA = \Delta G$$

$$Y = \frac{1}{1-c} (C_A + cTR - cTA + I + G)$$

$$\Delta Y = \frac{\delta Y}{\delta TA} \Delta TA + \frac{\delta Y}{\delta G} \Delta G$$

$$\Delta Y = \frac{-c}{1-c} \Delta TA + \frac{1}{1-c} \Delta G$$

$$\Delta Y = \Delta G \Rightarrow Multiplikátor : \frac{\Delta Y}{\Delta G} = 1$$

Důchod-výdaje se 3 sektory + pravidlem vyrovnaného rozpočtu

Uvažujte model důchod-výdaje se 3 sektory a pravidlem vyrovnaného rozpočtu.

- Vyjádřete multiplikátor při nárůstu vládních výdajů financovaném ekvivalentním nárůstem paušální daně TA (tj. jaká je změna Y pri změně G?)
- Vyjádřete multiplikátor při nárustů transferů financovaném ekvivalentním nárůstem paušální daně TA
- Co by se stalo, kdybychom uvažovali lineární daň tY namísto paušální? *

Uvažujte model důchod-výdaje se 3 sektory a pravidlem vyrovnaného rozpočtu.

Vyjádřete multiplikátor při nárustů transferů financovaném ekvivalentním nárůstem paušální daně TA

$$\Delta BS = 0 \Rightarrow \Delta TA = \Delta TR$$

$$Y = \frac{1}{1-c} (C_A + cTR - cTA + I + G)$$

$$\Delta Y = \frac{\delta Y}{\delta TA} \Delta TA + \frac{\delta Y}{\delta TR} \Delta TR$$

$$\Delta Y = \frac{-c}{1-c} \Delta TA + \frac{c}{1-c} \Delta TR$$

$$\Delta Y = 0 \Rightarrow Multiplikátor : \frac{\Delta Y}{\Delta TR} = 0$$

Důchod-výdaje se 3 sektory + pravidlem vyrovnaného rozpočtu

Uvažujte model důchod-výdaje se 3 sektory a pravidlem vyrovnaného rozpočtu.

- Vyjádřete multiplikátor při nárůstu vládních výdajů financovaném ekvivalentním nárůstem paušální daně TA (tj. jaká je změna Y pri změně G?)
- Vyjádřete multiplikátor při nárustů transferů financovaném ekvivalentním nárůstem paušální daně TA
- Co by se stalo, kdybychom uvažovali lineární daň tY namísto paušální? *

Uvažujte model důchod-výdaje se 3 sektory a pravidlem vyrovnaného rozpočtu.

Co by se stalo, kdybychom uvažovali lineární daň tY namísto paušální? *

Analogicky k 4a)

Namísto
$$\Delta G = \Delta TA$$
 máme $\Delta G = \Delta (t \cdot Y) = \Delta t \cdot Y + t \cdot \Delta Y$

Uvažujte model důchod-výdaje se 3 sektory a pravidlem vyrovnaného rozpočtu.

Co by se stalo, kdybychom uvažovali lineární daň tY namísto paušální? *

Analogicky k 4b)

Namísto
$$\Delta TR = \Delta TA$$
 máme $\Delta TR = \Delta (t \cdot Y) = \Delta t \cdot Y + t \cdot \Delta Y$

Příklad 5 Multiplikátor

Uvažujme c = 0, 9, t = 0, 15, d = 0, 05 a m = 0, 12. Poté platí:

- **1** Vypočítejte multiplikátor autonomních transferů $\alpha_{\textit{TR}}$
- **v** Vypočítejte multiplikátor vládních výdajů α_G

Příklad 5 Multiplikátor

Uvažujme c = 0, 9, t = 0, 15, d = 0, 05 a m = 0, 12. Poté platí:

1 Vypočítejte multiplikátor autonomních transferů $\alpha_{\textit{TR}}$

$$\alpha_{TR} = \frac{c}{1 - c(1 - t) + m} = \frac{0.9}{1 - 0.9(1 - 0.15) + 0.12} = 2.54$$

lacktriangle Vypočítejte multiplikátor vládních výdajů $lpha_{\it G}$

Příklad 5 Multiplikátor

Uvažujme c = 0, 9, t = 0, 15, d = 0, 05 a m = 0, 12. Poté platí:

1 Vypočítejte multiplikátor autonomních transferů α_{TR}

$$\alpha_{TR} = \frac{c}{1 - c(1 - t) + m} = \frac{0.9}{1 - 0.9(1 - 0.15) + 0.12} = 2.54$$

vypočítejte multiplikátor vládních výdajů α_G

$$\alpha_G = \frac{1}{1 - c(1 - t) + m} = \frac{1}{1 - 0,9(1 - 0,15) + 0,12} = 2,82$$