Machine Learning Foundations

(機器學習基石)

Lecture 13: Hazard of Overfitting

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?

Lecture 12: Nonlinear Transform

- nonlinear ☐ via nonlinear feature transform Φ plus linear ☐ with price of model complexity
- 4 How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

- What is Overfitting?
- The Role of Noise and Data Size
- Deterministic Noise
- Dealing with Overfitting

Bad Generalization

- regression for $x \in \mathbb{R}$ with N = 5 examples
- target f(x) = 2nd order polynomial
- label $y_n = f(x_n) + \text{very small noise}$
- linear regression in Z-space +
 Φ = 4th order polynomial
- unique solution passing all examples
 ⇒ E_{in}(g) = 0
- $E_{\text{out}}(g)$ huge

bad generalization: low E_{in} , high E_{out}

Bad Generalization and Overfitting

- take d_{VC} = 1126 for learning: bad generalization —(E_{out} - E_{in}) large
- switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1126$: **overfitting**
 - $-E_{in} \downarrow$, $E_{out} ↑$
- switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1$: underfitting
 - $-E_{\rm in} \uparrow$, $E_{\rm out} \uparrow$

bad generalization: low E_{in} , high E_{out} ; overfitting: lower E_{in} , higher E_{out}

两者的不同: bad generalization是指一个点的状态,是结果 Overfitting是描述一个过程,Ein变低,Eout变高。

Cause of Overfitting: A Driving Analogy

learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	<mark>bumpy</mark> road 凹凸不平的
limited data size N	limited observations about road condition

next: how does **noise** & **data size** affect overfitting?

Based on our discussion, for data of fixed size, which of the following situation is relatively of the lowest risk of overfitting?

- $oldsymbol{0}$ small noise, fitting from small $d_{\rm VC}$ to median $d_{\rm VC}$
- 2 small noise, fitting from small d_{VC} to large d_{VC}
- $oldsymbol{3}$ large noise, fitting from small $d_{
 m VC}$ to median $d_{
 m VC}$
- 4 large noise, fitting from small d_{VC} to large d_{VC}

Based on our discussion, for data of fixed size, which of the following situation is relatively of the lowest risk of overfitting?

- $oldsymbol{0}$ small noise, fitting from small $d_{
 m VC}$ to median $d_{
 m VC}$
- $oldsymbol{2}$ small noise, fitting from small $d_{
 m VC}$ to large $d_{
 m VC}$
- \odot large noise, fitting from small d_{VC} to median d_{VC}
- 4 large noise, fitting from small d_{VC} to large d_{VC}

Reference Answer: 1

Two causes of overfitting are noise and excessive $d_{\rm VC}$. So if both are relatively 'under control', the risk of overfitting is smaller.

Case Study (1/2)

10-th order target function

overfitting from best $g_2 \in \mathcal{H}_2$ to best $g_{10} \in \mathcal{H}_{10}$?

Case Study (2/2)

10-th order target function

	$g_2 \in \mathcal{H}_2$	$g_{10}\in\mathcal{H}_{10}$
-E _{in}	0.050	0.034
E_{out}	0.127	9.00

50-th order target function noiselessly

	$g_2 \in \mathcal{H}_2$	$g_{10}\in\mathcal{H}_{10}$
-E _{in}	0.029	0.00001
E_{out}	0.120	7680

overfitting from g_2 to g_{10} ? both yes!

Irony of Two Learners

- learner Overfit: pick $g_{10} \in \mathcal{H}_{10}$
- learner Restrict: pick g₂ ∈ H₂
- when both know that target = 10th
 —R 'gives up' ability to fit

but *R* wins in *E*_{out} a lot! philosophy: concession for advantage? :-) 以良为进

Learning Curves Revisited

- \mathcal{H}_{10} : lower E_{out} when $N \to \infty$, but much larger generalization error for small N
- gray area : O overfits! (E_{in} ↓, E_{out} ↑)

在样本数量不够多时,反面简单的模型效果要更好 R always wins in E_{out} if N small!

- learner Overfit: pick $g_{10} \in \mathcal{H}_{10}$
- learner Restrict: pick $g_2 \in \mathcal{H}_2$
- when both know that there is no noise —R still wins

is there really **no noise?** 'target complexity' acts like noise

When having limited data, in which of the following case would learner R perform better than learner O?

- Iimited data from a 10-th order target function with some noise
- ② limited data from a 1126-th order target function with no noise
- 3 limited data from a 1126-th order target function with some noise
- 4 all of the above

When having limited data, in which of the following case would learner R perform better than learner O?

- Iimited data from a 10-th order target function with some noise
- 2 limited data from a 1126-th order target function with no noise
- 3 limited data from a 1126-th order target function with some noise
- 4 all of the above

Reference Answer: (4)

We discussed about \bigcirc 1 and \bigcirc 2, but you shall be able to 'generalize':-) that R also wins in the more difficult case of \bigcirc 3.

A Detailed Experiment

$$y = f(x) + \epsilon$$

$$\sim Gaussian\left(\sum_{q=0}^{Q_f} \alpha_q x^q, \sigma^2\right)$$

- Gaussian iid noise ϵ with level σ^2
- some 'uniform' distribution on f(x) with complexity level Q_f
- data size N

goal: 'overfit level' for different (N, σ^2) and (N, Q_f) ?

The Overfit Measure

- $g_2 \in \mathcal{H}_2$
- $g_{10} \in \mathcal{H}_{10}$
- $E_{in}(g_{10}) \le E_{in}(g_2)$ for sure

overfit measure $E_{\text{out}}(g_{10}) - E_{\text{out}}(g_2)$

The Results

Impact of Noise and Data Size

four reasons of serious overfitting:

```
data size N \downarrow overfit \uparrow stochastic noise \uparrow overfit \uparrow deterministic noise \uparrow overfit \uparrow excessive power \uparrow overfit \uparrow
```

overfitting 'easily' happens

Deterministic Noise

- if f ∉ H: something of f cannot be captured by H
- deterministic noise : difference between best h* ∈ H and f
- acts like 'stochastic noise'—not new to CS: pseudo-random generator
- difference to stochastic noise:
 - depends on H
 - fixed for a given x

philosophy: when teaching a kid, perhaps better not to use examples from a complicated target function? :-)

Consider the target function being $\sin(1126x)$ for $x \in [0, 2\pi]$. When x is uniformly sampled from the range, and we use all possible linear hypotheses $h(x) = w \cdot x$ to approximate the target function with respect to the squared error, what is the level of deterministic noise for each x?

- 1 | sin(1126x)|
- 2 $|\sin(1126x) x|$
- $|\sin(1126x) + x|$
- 4 $|\sin(1126x) 1126x|$

Consider the target function being $\sin(1126x)$ for $x \in [0, 2\pi]$. When x is uniformly sampled from the range, and we use all possible linear hypotheses $h(x) = w \cdot x$ to approximate the target function with respect to the squared error, what is the level of deterministic noise for each x?

- 1 | sin(1126x)|
- 2 $|\sin(1126x) x|$
- 3 $|\sin(1126x) + x|$
- 4 $|\sin(1126x) 1126x|$

Reference Answer: 1

You can try a few different w and convince yourself that the best hypothesis h^* is $h^*(x) = 0$. The deterministic noise is the difference between f and h^* .

Driving Analogy Revisited

learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	bumpy road
limited data size N	limited observations about road condition
start from simple model	drive slowly
data cleaning/pruning	use more accurate road information
data hinting	exploit more road information
regularization	put the brakes
validation	monitor the dashboard

all very **practical** techniques to combat overfitting

Data Cleaning/Pruning

- if 'detect' the outlier 5 at the top by
 - too close to other ∘, or too far from other ×
 - wrong by current classifier
 - ...
- possible action 1: correct the label (data cleaning)
- possible action 2: remove the example (data pruning)

possibly helps, but effect varies

Data Hinting

- slightly shifted/rotated digits carry the same meaning
- possible action: add virtual examples by shifting/rotating the given digits (data hinting)

possibly helps, but watch out

—virtual example not $\stackrel{iid}{\sim} P(\mathbf{x}, \mathbf{y})!$

Assume we know that f(x) is symmetric for some 1D regression application. That is, f(x) = f(-x). One possibility of using the knowledge is to consider symmetric hypotheses only. On the other hand, you can also generate virtual examples from the original data $\{(x_n, y_n)\}$ as hints. What virtual examples suit your needs best?

- $2 \{(-x_n, -y_n)\}$
- $\{(-x_n,y_n)\}$
- $\{(2x_n, 2y_n)\}$

Assume we know that f(x) is symmetric for some 1D regression application. That is, f(x) = f(-x). One possibility of using the knowledge is to consider symmetric hypotheses only. On the other hand, you can also generate virtual examples from the original data $\{(x_n, y_n)\}$ as hints. What virtual examples suit your needs best?

- 1 $\{(x_n, -y_n)\}$
- $\{(-x_n,-y_n)\}$
- $\{(-x_n,y_n)\}$
- $4 \{(2x_n, 2y_n)\}$

Reference Answer: (3)

We want the virtual examples to encode the invariance when $x \to -x$.

Summary

- When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?

Lecture 12: Nonlinear Transform

4 How Can Machines Learn Better?

Lecture 13: Hazard of Overfitting

• What is Overfitting?

lower E_{in} but higher E_{out}

- The Role of Noise and Data Size
 - overfitting 'easily' happens!
- Deterministic Noise
 - what ${\mathcal H}$ cannot capture acts like noise
- Dealing with Overfitting
 - data cleaning/pruning/hinting, and more
- next: putting the brakes with regularization