Data Visualisation

Visualising Numerical Data

Scatterplot

Explanatory

Variable

Characteristics of Relationship

Correlation (example)

Histograms

- Help to view <u>data density</u>
- Help to see <u>shape of distribution</u>
 - 1) Skewness
 - 2) Modality

Skewness

- Draw a smooth curve to see skewness
- Don't rely on jagged edges

Modality

Modality (Example)

Normal Distribution

Two separate groups

No trend

Binwidth

Measures of Center

Data 56, 87, 34, 65, 77, 62, 90, 45, 77, 79

Mean

Arithmetic Average

Mean =
$$\underline{56 + 87 + 34 + 65 + 77 + 62 + 90 + 45 + 77 + 79}$$

Mean = 67.2

Mode

Most frequent value/observation

Mode = 77

Median

Midpoint of distribution (50th percentile)

Median =
$$\frac{77 + 62}{2}$$
 = 69.5

Box Plots

Min. Value: Lower Extreme (that's not an outlier)

Q1 :Lower Quartile (25% of observations)

Q2 :Median (50% of observations)

Q3 :Upper Quartile (75% of observations)Max. Value :Upper Extreme (that's not an outlier)

IQR :Inter-Quartile Range = Q3 - Q1 (middle 50% of observations)

Box Plots & Skewness

Skewness vs Measures of Center

Intensity/Heat Maps

Time Plots

Measures of Spread

Range

Variance

Standard Deviation

Inter-quartile Range

Range

• Range = Max. Value - Min. Value

• Data: 56, 87, 34, 65, 77, 62, 90, 45, 77, 79

• Range = 90 - 34 = 56

Variance

- A measure of how much data (a variable) varies; how spread out a data set is about the mean.
- Average squared deviation from mean; has squared units of the variable
- Sample Variance

$$S^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

Population Variance

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

Variance (Example)

• Data: 56, 87, 34, 65, 77, 62, 90, 45, 77, 79

$$S^{2} = \underbrace{\frac{\sum (X - \overline{X})^{2}}{N - 1}} = \frac{(56 - 67.2)^{2} + (87 - 67.2)^{2} + \dots + (79 - 67.2)^{2}}{10 - 1}$$

$$= \underbrace{\frac{\sum (X - \overline{X})^{2}}{N - 1}} = \underbrace{\frac{(56 - 67.2)^{2} + (87 - 67.2)^{2} + \dots + (79 - 67.2)^{2}}{10 - 1}}_{2995.6}$$

= 332.8

Sum of Squares

Why Square The Differences?

- Get rid of negatives, so that the negatives and positives do not cancel each other during addition.
- Increase larger deviations more than smaller ones so that they are weighed more heavily.

$$(2-4) + (6-4) = -2 + 2 = 0$$

Standard Deviation (SD)

- Square root of Variance
- It has the same units as the variable, which makes it useful in comparisons and calculations
- Sample SD

$$S = \sqrt{\frac{\sum (X - \overline{X})^2}{N - 1}}$$

Population SD

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x-\mu)^2}{N}}$$

Spread

Less Spread
Low Variance
Low Deviation

More Spread High Variance High Deviation

Robust Statistics

 Measures on which extreme observations or outliers have little effect

Data Transformations

- Applying a Function f(x) to adjust scales of data.
- Done usually when data is skewed, so that it becomes easier to perform modelling.
- Done to convert non-linear relationship into a linear relationship.

(Natural) Log Transformation

- To transform data that is positively skewed
- Usually done when data is concentrated near Zero (relative to the few large values in data)

Log Transformation

- To make the relationship between two variable more linear
- Most of the simple methods for modelling work only when relationship is linear

Other Transformation

- You may use other transformations or create of your own
- For instance: Square Root, Square, Inverse

Visualising Categorical Data

Bar Plot

Frequency

Bar Plot vs Histogram

- Bar Plot for Categorical Variables, Histogram for Numerical Variables
- X-axis in Histogram must be a Number Line
- Ordering of bars is not interchangeable in Histogram as compared to Bar Plot

Pie Chart

■ Cricket ■ Football ■ Hockey ■ Squash ■ Not Sure

Segmented Bar Plot

Relative Frequency Segmented Bar Plot

Side-by-Side Box Plots

Building density against Urban Atlas code

Bubble Plot

Outliers

Why do EDA

- To understand data properties
- To find patterns in data
- To suggest modelling strategies
- To "debug" analyses
- To communicate results

(From JHU)

Why do EDA

https://www.youtube.com/watch?v=jbkSRLYSojo

