

PCB Design Guidelines for 2x2 LGA Accelerometers

Introduction

This technical note is intended to provide information about Kionix's 2 x 2 mm LGA packages and guidelines for developing PCB land pattern layouts. These guidelines are general in nature and based on recommended industry practices. The user must apply their actual experiences and development efforts to optimize designs and processes for their manufacturing techniques and the needs of varying end-use applications. It should be noted that with the proper PCB footprint and solder stencil designs, the package will self-align during the solder reflow process.

2x2 LGA Package Marking

 Marking font type : Arial

 Font size : 1.5 Point (0.56 mm height)

Line space : 0.1 mm

Text information

- 1st line – AAZ Assembly Build Lot code
- 2nd line – ZZ Device name

Note - All text lines shall be right justified.

Figure 1. 2x2 mm LGA package marking information

2x2 LGA Package Outline and Dimensions

The following diagrams show the outline of the Kionix's LGA packages with dimensions and tolerances. All dimensions and tolerances conform to ASME Y14.5M-1994. All dimensions are in millimeters and angles are in degrees.

Figure 2. 12-pin 2 x 2 mm LGA package outline diagram with dimensions.

Typical LGA packages expose metal traces on the package sides; so no solder material should be allowed to contact the package sides.

Solder Pad Layer Dimensions

The solder pocket is defined by dimensions of the metal layers behind the solder pad and the solder mask around the pad.

Table 1. For 2x2 products with 0.13mm substrates (KXTJ2, KX022)

Solder Mask (Cross Section "X-a")(μm)				Solder Pad (Cross section "X-b")(μm)			
Layer	Min	Nominal	Max	Layer	Min	Nominal	Max
S/M 10	10	20	30	NI	3	-	12
	10			Au	0.3	-	1.0

LGA PCB Layout Recommendations

Given the above 2 x 2 mm package dimensions, the following guidelines are recommended:

The PCB should be designed with SMD (Solder Mask Defined) openings for the LGA lands. These openings should be an identical mirror image of the bottom pattern of the LGA package. The land size on the PCB should be 100% of the device land.

The next figure shows an example of a 2x2 LGA part in a multilayer PCB:

Figure 3. Example of a 12-pin 2 x 2 mm LGA in a multilayer PCB

LGA Solder Stencil Guidelines

A laser-cut, stainless steel stencil with electro-polished trapezoidal walls is recommended.

The stencil can be a 4 mil stencil (0.102 mm).

If improved solder release is required, aperture walls can be trapezoidal and the corners rounded.

- NOTES:
 - 1. THE DIMENSIONS IN PARENTHESIS ARE REFERENCE.
 - 2. ALL DIMENSIONS IN MILIMETERS(MM).

Figure 4. Example of a 12-pin 2 x 2 mm LGA solder stencil layout

PCB Via and Trace Placement

Vias are not needed for thermal dissipation, as our part doesn't generate much heat. Therefore, only electrical vias are needed. If vias are not in the land pads, then capped, plugged, tented, un-capped or un-plugged vias can be used. To ensure optimal performance, vias and traces should not be placed on the top layer directly beneath the accelerometer. The following figures illustrate an example of proper PCB via and trace placement. Obviously, each product will present its own physical limitations for accelerometer placement and trace routing. Therefore, these guidelines are general in nature. Engineering judgment should be used to try to avoid placement directly beneath the accelerometer. Generally there is a recommended 2mm keep-out area around the device that applies to vias. No extra copper is required under device.

Figure 5. Via and Trace "2 mm Keepout area" (Top Vew)

Figure 6. Via and Trace "2 mm Keepout" (Side View)

Tape and Reel Dimensions

The following section provides information on the tape and reel used for shipping Kionix's 2 x 2 mm LGA accelerometers.

Package	Tape Width	Component Pitch	Hole Pitch	Reel Diameter
LGA (2x2)	8mm	8mm	4mm	330mm

Figure 7. Dimensions of the reel

Figure 8. Carrier tape description for 2x2 mm LGA parts

Figure 9. Orientation of the parts in the carrier tape and direction of feed

Revision History

Rev	Date	Description of Change		
-	20-Apr-2012	Initial Release		
1	27-Aug-2013	Added part orientation in carrier tape and direction of feed.		
2	12-Jun-2014	Improved Solder Stencil Layout. Added Reel dimensions. Added Solder pad layer dimensions		
3	15-Oct-2014	Added No solder on side of package recommendation.		
4	02-Apr-2015	Updated package outline diagram with dimensions figure and solder stencil layout figure.		
5	10-July-2015	Renamed the document		

"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications, application notes, and technical notes or discontinue any product at any time without prior notice. This publication supersedes and replaces all information previously supplied.

© 2015 Kionix, Inc. - All rights reserved

