Myhill-Nerode Theorem

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

30 January 2024

Outline

- Overview
- 2 Myhill-Nerode Theorem
- 3 Correspondence between DA's and MN relations
- Canonical DA for L
- 5 Computing canonical DFA

Myhill-Nerode Theorem: Overview

- A language L is regular iff a certain equivalence relation induced by L (called \equiv_L) has a finite number of equivalence classes.
- Every language *L* has a "canonical" deterministic automaton accepting it.
 - Every other DA for L is a "refinement" of this canonical DA.
 - There is a unique DA for L with the minimal number of states.
- Holds for any L (not just regular L).
- L is regular iff this canonical DA has a finite number of states.
- There is an algorithm to compute this canonical DA from any given finite-state DA for *L*.

DA for any language

Note that every language L has DA accepting it (we call this the "free" DA for L).

The free DA for $L = \{a^n b^n \mid n \ge 0\}$:

Illustrating "refinement" of DA: Example 0

- Replicate each state p in the first automaton some number of times (p_1, p_2, \dots) , and add an edge labelled a from each p_i to some q_j such that $\delta(p, a) = q$. The "split" DA accepts the same language.
- Conversely, every DA for L is a "splitting" of the canonical DA for L.

Illustrating "refinement" of DA: Example 1

Every DA for *L* is a "refinement" of this canonical DA:

Illustrating "refinement" of DA: Example 2

Every DA for *L* is a "refinement" of this canonical DA:

Myhill-Nerode Theorem

Canonical equivalence relation \equiv_L on A^* induced by $L \subseteq A^*$:

$$x \equiv_L y \text{ iff } \forall z \in A^*, \ xz \in L \text{ iff } yz \in L.$$

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).

Describe the equivalence classes for L = "Odd number of a's".

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which the 2nd last letter is a b.

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a,b\}^*$ comprising strings in which the 2nd last letter is a b.

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$.

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$.

Myhill-Nerode (MN) relations for a language

- An MN relation for a language L on an alphabet A is an equivalence relation R on A^* satisfying
 - **1** R is right-invariant (i.e. $xRy \implies xaRya$ for each $a \in A$.)
 - 2 R refines (or "respects") L (i.e. $xRy \implies x, y \in L \text{ or } x, y \notin L$).

Deterministic Automata for L and MN relations for L

DA for L and MN relations for L are in 1-1 correspondence (they represent eachother).

Maps $\mathcal{A} \mapsto R_{\mathcal{A}}$ and $\mathcal{A}_R \leftarrow R$ are inverses of eachother.

Example DA and its induced MN relation

L is "Odd number of a's":

Deterministic Automata for L and MN relations for L

DA (with no unreachable states) for L and MN relations for L are in 1-1 correspondence.

Maps $\mathcal{A} \mapsto R_{\mathcal{A}}$ and $\mathcal{A}_R \leftarrow R$ are inverses of eachother.

Equivalence relations and Refinement

An equivalence relation R on a set X refines another equivalence relation S on X if for each $x, y \in X$, $xRy \implies xSy$.

Exercise: Consider the relations R: "equal $\mod 2$ " and S: "equal $\mod 4$ " on \mathbb{N} . Which refines which? Picture R and S.

Any MN-relation for L refines the relation \equiv_L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L .

Any MN-relation for L refines the relation \equiv_L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L .

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence xzRyz. But this contradicts the assumption that R respects L.

Any MN-relation for L refines the relation \equiv_L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L .

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence xzRyz. But this contradicts the assumption that R respects L.

As a corollary we have:

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).

Canonical DA for L

- We call A_{\equiv_l} the "canonical" DA for L.
- In what sense is A_{\equiv_i} canonical?
 - Every other DA for L is a refinement of \mathcal{A}_{\equiv_L} .
 - \mathcal{A} is a refinement of \mathcal{B} if there is a stable partitioning \sim of \mathcal{A} such that quotient of \mathcal{A} under \sim (written \mathcal{A}/\sim) is isomorphic to \mathcal{B} .
 - Stable partitioning of $\mathcal{A}=(Q,s,\delta,F)$ is an equivalence relation \sim on Q such that:
 - $p \sim q$ implies $\delta(p, a) \sim \delta(q, a)$.
 - If $p \sim q$ and $p \in F$, then $q \in F$ also.
 - Note that if \sim is a stable partitioning of \mathcal{A} , then \mathcal{A}/\sim accepts the same language as \mathcal{A} .

A stable partitioning shown by pink and light pink classes, and below, the quotiented automaton:

Proving canonicity of \mathcal{A}_{\equiv_L}

Let \mathcal{A} be a DA for L with no unreachable states. Then \mathcal{A}_{\equiv_L} represents a stable partitioning of \mathcal{A} . (Use the refinement of \equiv_L by the MN relation $R_{\mathcal{A}}$.)

b	<i>b</i>	
-		$A_{\equiv_L} \longleftrightarrow \equiv_L$
, M		

Stable partitioning \approx

- Let $A = (Q, s, \delta, F)$ be a DA for L with no unreach. states.
- The canonical MN relation for L (i.e. \equiv_L) induces a "coarsest" stable partitioning \approx_L of $\mathcal A$ given by

$$p \approx_L q$$
 iff $\exists x, y \in A^*$ such that $\widehat{\delta}(s, x) = p$ and $\widehat{\delta}(s, y) = q$, with $x \equiv_L y$.

ullet Define a stable partitioning pprox of ${\mathcal A}$ by

$$p \approx q \text{ iff } \forall z \in A^* : \ \widehat{\delta}(p,z) \in F \text{ iff } \widehat{\delta}(q,z) \in F.$$

Example of \approx partitioning relation

Stable partitioning \approx is coarsest

Claim: \approx coincides with \approx_I .

$$\approx_L = \approx$$
.

Proof:

$$p \not\approx q \text{ iff } \exists x, y, z : \ \widehat{\delta}(s, x) = p, \ \widehat{\delta}(s, y) = q, \text{ and }$$

 $\widehat{\delta}(p, z) \in F \text{ but } \widehat{\delta}(q, z) \not\in F.$
 $\text{iff } p \not\approx_L q.$

Algorithm to compute pprox for a given DFA

Input: DFA $A = (Q, s, \delta, F)$.

Output: \approx for \mathcal{A} .

- Create a (symmetric) table indexed by pairs of states. Initialize entry for each pair to "unmarked".
- ② Mark (p,q) if $p \in F$ and $q \notin F$ (or vice-versa).
- **3** Call a pair (p, q) markable if (p, q) is unmarked, and for some $a \in A$, the pair $(\delta(p, a), \delta(q, a))$ is marked.
- While there is an markable pair:
 - Pick a markable pair (p, q) and mark it.
- **1** Return \approx as: $p \approx q$ iff (p,q) is left unmarked in table.

Exercise

Run Algorithm to compute \approx for DFA below:

Correctness of minimization algorithm

Claim: Algo always terminates. Let n = |Q|.

- n(n-1)/2 table entries in each scan, and at most n(n-1)/2 scans.
- In fact, number of scans in algo is $\leq n$.
 - Consider modified Step 3.1 in which mark check is done wrt the table at the end of previous scan.
 - ② Argue that at end of *i*-th scan algo computes \approx_i , where

$$p \approx_i q \text{ iff } \forall w \in A^* \text{ with } |w| \leq i : \widehat{\delta}(p, w) \in F \text{ iff } \widehat{\delta}(q, w) \in F.$$

- **3** Observe that \approx_{i+1} strictly refines \approx_i , unless the algo terminates after scan i+1. So modified algo does at most n scans.
- On Both versions mark the same set of pairs. Also if modified algomarks a pair, original algo has already marked it.
- Hence algo runs in $O(n^3)$ time.

Correctness of minimization algorithm

Claim: Original algo marks (p, q) iff $p \not\approx q$.

- (⇒:) Argue by induction on number of steps of the algo that this is true.
- (\Leftarrow :) Suppose $p \not\approx q$. Argue by induction on n that if two states t and u are distinguished by a string z of length n, then (t, u) will be marked by the algo.

A corollary

If p and q are two states such that $p \not\approx q$, then there is a string of length at most n-2 which distinguishes them.

