Corso di Algebra per Informatica

Lezione 14: Esercizi

- (1) Scrivere la tavola di Cayley del gruppo (s, \circ) dell'Esercizio 4, Lezione 13 e confrontarla con quella dell'Esercizio 12 della stessa lezione. Possiamo dire che i due gruppi sono isomorfi?
- (2) Costruire un isomorfismo tra il monoide delle parole sull'alfabeto $A = \{a\}$ e il monoide $(\mathbb{N}, +, 0)$.
- (3) Sia (s,*) una struttura algebrica, sia $t \le s$ e sia $\iota : t \longrightarrow s$ l'immersione di t in s. ι è un omomorfismo da (s,*) a (t,*)? Se sì, che tipo di omomorfismo è?
- (4) Provare se $f: m \in \mathbb{Z} \mapsto m-1 \in \mathbb{Z}$ è un isomorfismo tra $(\mathbb{Z}, +)$ e (\mathbb{Z}, α) con α definita nell'Esercizio 1, Lezione 10.
- (5) Sia $\alpha : (x, y) \in \mathbb{Q} \times \mathbb{Q} \mapsto 4xy \in \mathbb{Q}$. Provare che (\mathbb{Q}, α) è un gruppo abeliano.
- (6) Sia a un insieme e consideriamo l'applicazione $f: x \in P(a) \mapsto a \cap x \in P(a)$. f è un automorfismo di $(P(a), \cup)$? E di $(P(a), \cap)$?
- (7) Sia g un gruppo abeliano e sia $f: x \in g \mapsto x^{-1} \in g$. Mostrare che f è un automorfismo di g. La stessa cosa vale per tutti i gruppi? (Hint: provare con il gruppo dell'Esercizio 7, Lezione 11).
- (8) Sia $\varphi : s \to s'$ un isomorfismo tra (s, *) e (s', *'). Dimostrare che se x è un elemento cancellabile di s, anche $\varphi(x)$ è cancellabile.
- (9) Dimostrare che $(\mathbb{Z} \times \mathbb{Z}, +, *)$ con (a, b) + (c, d) = (a + c, b + d) e (a, b) * (c, d) = (ac, ad + bc) è un anello commutativo unitario.
- (10) Dimostrare che ($\mathbb{Z} \times \mathbb{Z}$, +, \circ) con (a, b) + (c, d) = (a + c, b + d) e (a, b) \circ (c, d) = (ac, bc) è un anello non commutativo.