PCT

WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro

(51) Internationale Patentklassifikation 6:

A01N 33/24, C07C 259/02

(11) Internationale Veröffentlichungsnummer:

WO 98/38857

A1

(43) Internationales Veröffentlichungsdatum:

11. September 1998 (11.09.98)

(21) Internationales Aktenzeichen:

PCT/EP98/00782

(22) Internationales Anmeldedatum: 12. Februar 1998 (12.02.98)

(30) Prioritätsdaten:

197 08 940.2

5. März 1997 (05.03.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BAYER, Herbert [DE/DE]; D 3.4, D-68159 Mannheim (DE). SAUTER, Hubert [DE/DE]; Neckarpromenade 20, D-68167 Mannheim (DE). MULLER, Bernd [DE/DE]; Jean-Ganss-Strasse 21, D-67227 Frankenthal (DE). GRAMMENOS, Wassilios [DE/DE]; Borsigstrasse 5, D-67063 Ludwigshafen (DE). KIRSTGEN, Reinhard [DE/DE]; Karolinenstrasse 51, D-67434 Neustadt (DE). GYPSER, Andreas [DE/DE]; B 4.4, D-68159 Mannheim (DE). PTOCK, Arne [DE/DE]; Eichenstrasse 23, D-67067 Ludwigshafen (DE). GROTE, Thomas [DE/DE]; Breslauer Strasse 6, D-67105 Schifferstadt (DE). RÖHL, Franz [DE/DE]; Sebastian-Kneipp-Strasse 17, D-67105 Schifferstadt (DE). RACK, Michael [DE/DE]; Sandwingert 67, D-69123 Heidelberg (DE). GÖTZ, Roland [DE/DE]; Schumannstrasse 4, D-91541 Rothenburg (DE). LORENZ, Gisela [DE/DE]; Erlenweg 13, D-67434 Neustadt (DE). AMMERMANN, Eberhard [DE/DE]; Von-Gagern-Strasse 2, D-64646 Heppenheim (DE). STRATHMANN, Siegfried [DE/DE]; Donnersbergstrasse 9, D-67117 Limburgerhof (DE). HAR-RIES, Volker [DE/DE]; Immengärtenweg 29e, D-67227 Frankenthal (DE).

- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU. MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: HYDROXIMIC ACID HALOGENIDES, METHOD FOR THE PRODUCTION AND USE THEREOF
- (54) Bezeichnung: HYDROXIMSÄUREHALOGENIDE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG

(57) Abstract

The invention relates to hydroximic acid halogenides of the formula (I) wherein the substituents have the following significance; X - NOCH₃, CHOCH₃ or CHCH₃; Y - O or NH; R¹ - halogen; R² - optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl or aryl; R3 - optionally substituted alkyl, alkoxyalkyl, cycloalkyl-alkyl, alkenyl and alkynyl and their salts. The invention also relates to a method for the production and use of said hydroximic acid halogenides.

(57) Zusammenfassung

Hydroximsäurehalogenide der Formel (I), in der die Substituenten die folgende Bedeutung haben: X NOCH3, CHOCH3 oder CHCH3; Y O oder NH; R1 Halogen; R2 ggf. subst. Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Aryl; R3 ggf. subst. Alkyl, Alkoxyalkyl, Cycloalkyl-alkyl, Alkenyl und Alkinyl, sowie ihre Salze, Verfahren zu ihrer Herstellung und ihre Verwendung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Amenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
	_	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BB	Barbados	GN	Guinea	MK		TM	Turkmenistan
BE	Belgien			MIK	Die ehemalige jugoslawische	TR	Türkci
BF	Burkina Paso	GR	Griechenland		Republik Mazedonien	TT	
BG	Bulgarien	HU	Ungarn	ML	Mali		Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US -	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
СМ	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE .	Estland	LR	Liberia	SG	Singapur		

Hydroximsäurehalogenide, Verfahren zu ihrer Herstellung und ihre Verwendung

5 Beschreibung

Die vorliegende Erfindung betrifft Hydroximsäurehalogenide der Formel I

10

15 in der die Substituenten die folgende Bedeutung haben:

X NOCH₃, CHOCH₃ oder CHCH₃;

Y O oder NH;

20

R¹ Halogen;

R² C₂-C₆-Alkyl, C₂-C₆-Alkenyl und C₂-C₆-Alkinyl, wobei diese Gruppen partiell oder vollständig halogeniert sein können und/oder einen oder zwei der folgenden Reste tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und Phenyl, welches seinerseits partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy;

Methyl, welches partiell oder vollständig halogeniert ist und/oder einen der folgenden Reste trägt: Cyano, $C_1-C_4-Al-koxy$ oder $C_1-C_4-Halogenalkoxy$;

35

 $C_5-C_6-Cycloalkyl$, welches partiell oder vollständig halogeniert sein kann und/oder eine bis drei $C_1-C_4-Alkylgruppen$ tragen kann;

- 40 Aryl oder Arylmethylen, welches im Arylteil partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Cyano, Nitro, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy und C_1-C_4 -Halogenalkoxy;
- 45 R³ $C_1-C_6-Alkyl$, $C_1-C_3-Alkoxy-C_1-C_6-alkyl$, $C_3-C_6-Cycloalkyl-C_1-C_6-alkyl$, $C_3-C_6-Alkenyl$ und $C_3-C_6-Alkinyl$, wobei diese Gruppen partiell oder vollständig halogeniert sein können

2 .

und wobei die Cycloalkylgruppen außerdem eine bis drei C_1-C_4 -Alkylreste tragen können,

sowie ihre Salze.

5

- Außerdem betrifft die Erfindung Verfahren zur Herstellung der Verbindungen I, sie enthaltende Mittel sowie deren Verwendung zur Bekämpfung von tierischen Schädlingen und Schadpilzen.
- 10 Aus der Literatur sind Phenylessigsäurederivate mit Wirkung gegen tierische Schädlinge und Schadpilze bekannt, deren allgemeine Struktur die Struktur der vorliegenden Verbindungen umfaßt (WO-A 95/21,153; WO-A 95/21,154). Außerdem werden in der WO-A 95/18,789 Verbindungen ähnlicher Strukturen mit Wirkung gegen tierische Schädlinge und Schadpilze beschrieben.

Der vorliegenden Erfindung lagen demgegenüber Verbindungen mit verbesserten Wirkungseigenschaften als Aufgabe zugrunde.

- 20 Demgemäß wurden die eingangs definierten Verbindungen I gefunden. Außerdem wurden Verfahren und Zwischenprodukte zu ihrer Herstellung sowie sie enthaltende Mittel und ihre Verwendung gegen tierische Schädlinge und Schadpilze gefunden.
- 25 Die vorliegenden Verbindungen I unterscheiden sich von den aus WO-A 95/21,153 und WO-A 95/21,154 bekannten Verbindungen durch die besondere Kombination der Gruppen R¹ bis R³. Insbesondere wurde gefunden, daß Verbindungen des bekannten Strukturtyps eine verbesserte Wirkung zeigen, wenn in der Position des Restes R¹
- 30 ein Halogenatom und in der Position des Restes R² eine sterisch anspruchsvolle Gruppe gebunden ist, die die Lipophilie der Verbindung erhöht, und die Position des Restes R³ nicht von Wasserstoff eingenommen wird.
- 35 Die Verbindungen I können im allgemeinen nach den in der eingangs zitierten Literatur beschriebenen Verfahren erhalten werden.
- Besonders vorteilhaft erhält man die Verbindungen I dadurch, daß 40 man einen Carbonsäureester IIa zunächst mit Hydroxylamin in die entsprechende Hydroxamsäure IIc überführt, IIc anschließend mit einer Benzylverbindung IIIa zum entsprechenden Hydroxamsäureester IV umsetzt und IV mit einem Halogenierungsmittel [HAL] in I überführt.

R* in der Formel IIa steht für den Rest einer üblichen Abgangsgruppe. Unter üblichen Abgangsgruppen im Sinne dieser Umsetzung sind besonders die folgenden Gruppen zu verstehen: C₁-C₄-Alkyl (besonders Methyl oder Ethyl) oder Phenyl.

L in der Formel IIIa steht für eine nucleofuge Abgangsgruppe. Im
Sinne dieser Umsetzung sind darunter besonders die Folgenden zu
verstehen: Halogen oder Alkyl- oder Arylsulfonat, besonders
Chlor, Brom, Iod, Mesylat, Tosylat und Triflat.

Die Umsetzung des Carbonsäureesters IIa mit Hydroxylamin erfolgt üblicherweise bei Temperaturen von -20°C bis 50°C, vorzugsweise 0°C bis 20°C, in einem inerten organischen Lösungsmittel, bevorzugt in Gegenwart einer Base (vgl. Lit. Houben-Weyl, 4. Auflage, Bd. E5, S. 1141 ff.).

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Alkohole wie Methanol und Ethanol. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natri-

- -

4

umhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetallund Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat und Calziumcarbonat sowie Alkalimetall5 und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert.-Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie
Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lu10 tidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Alkalimetallhydroxide wie Natrium- und Kaliumhydroxid, sowie Alkalimetallalkoholate wie Natriummethanolat und Natriumethanolat.

15 Die Basen werden im allgemeinen äquimolar oder im Überschuß verwendet.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, Hydro20 xylamin in einem Überschuß bezogen auf IIa einzusetzen.

Die für die Herstellung der Verbindungen I benötigten Carbonsäurester IIa sind in der Literatur bekannt [DE-A 28 08 317; DE-A 22 65 234; J. Chem. Soc. PT 1, 2340 ff. (1975); Chem. Ber. 16, 25 2987 ff. (1883); J. Org. Chem. 37, 139 (1972)] oder können gemäß der zitierten Literatur hergestellt werden.

Die Umsetzung der Hydroxamsäure IIc mit der Benzylverbindung IIIa erfolgt üblicherweise bei Temperaturen von 0°C bis 130°C, 30 vorzugsweise 10°C bis 60°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. Lit. Liebigs Ann. Chem. 1992, 997 ff.; Synth. Commun. 19, 339 ff. (1989)].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie 35 Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Tetrahydrofuran, Acetonitril und Dimethylformamid. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

PCT/EP98/00782 WO 98/38857

5

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetallund Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calzium-5 oxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetall-10 hydrogencarbonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyllithium und Phenyllithium, Alkylmagnesiumhalogenide wie Me-

thylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethano-

15 lat, Kalium- tert.-Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders be-

20 vorzugt werden Natriummethanolat, Kaliumcarbonat und Natriumhydrid.

Die Basen werden im allgemeinen äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet.

25

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, IIc in einem Überschuß bezogen auf IIIa einzusetzen.

30 Die für diese Umsetzung benötigten Benzylverbindungen sind aus der eingangs zitierten Literatur bekannt oder können gemäß dieser Literatur hergestellt werden.

Diese Halogenierung der Hydroxamsäureester IV erfolgt üblicher-35 weise bei Temperaturen von -20°C bis 100°C, vorzugsweise -10°C bis 80°C, in einem inerten organischen Lösungsmittel [vgl. Lit. Houben-Weyl, 4. Aufl. Bd. E5, S. 631 ff.; J. Org. Chem. 36, 233 (1971); Synthesis 9, 750 ff. (1991); Tetrahedron 52(1), 233 ff. (1996)].

40

Als Halogenierungsmittel bei dieser Umsetzung eignen sich die üblichen anorganischen und organischen Halogenierungsmittel, z.B. Thionylchlorid, Oxalylchlorid, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid, Phosphor-45 triiodid, Triphenylphosphin/CCl4, Triphenylphosphin/CBr4, Tri-

6

phenylphosphin/Iod, vorzugsweise Thionylchlorid oder die genannten Triphenylphosphin-Reagentien.

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie 5 Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Acetonitril, Toluol und Tetrahydrofuran. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Die Halogenierungsmittel werden im allgemeinen mindestens in äquimolaren Mengen eingesetzt. Es kann für die Ausbeute vorteilhaft sein, sie in einem Überschuß von bis zu 10 mol bezogen auf 1 mol IV, vorzugsweise bis zu 5 mol, insbesondere bis zu 3 mol,

20 einzusetzen.

IIIb umsetzt.

Die Verbindungen IV können alternativ auch dadurch erhalten werden, daß man eine Carbonsäure IIb mit einem Benzylhydroxylamin

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von -10°C bis 120°C, vorzugsweise 0°C bis 50°C, in einem inerten organischen Lösungsmittel in Gegenwart eines Aktivierungsreagens [vgl. Lit. Houben-Weyl, 4. Aufl. Bd. E5 S. 1141 ff.; J. Antibiot. 39, 35 1382 (1986)].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, sowie Dimethylsulfoxid,

7

trahydrofuran und Methylenchlorid. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Aktivierungsreagentien eignen sich Säurehalogenidbildner wie 5 Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid, Thionylchlorid oder Oxalylchlorid; Anhydridbildner wie Chlorameisensäureethylester oder Methansulfonylchlorid; Carbodiimide wie N, N'-Dicyclohexylcarbodiimid oder andere übliche Mittel wie N, N'-Carbonyldiimidazol oder Triphe-10 nylphosphin in CCl4. Besonders bevorzugt werden Thionylchlorid,

Oxalylchlorid und N, N'-Carbonyldiimidazol.

Die Aktivierungsreagentien werden im allgemeinen äquimolar oder im Überschuß verwendet.

15 Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, IIb in einem Überschuß bezogen auf IIIb einzusetzen.

20 Die für diese Umsetzung benötigten Carbonsäuren IIb sind aus der Literatur bekannt [J. Pharm. Sci. 57, 688 ff. (1968); DE-A 22 23 375; DE-A 22 65 234] oder können gemäß der zitierten Literatur hergestellt werden.

25 Außerdem erhält man die Verbindungen IV auch dadurch, daß man einen Carbonsäureester der Formel IIa unter den vorstehend für die Umsetzung von IIa zu IIc beschriebenen Bedingungen mit dem Benzylhydroxylamin IIIb umsetzt.

35

45

Nach einem weiteren Verfahren erhält man die Verbindungen I vorteilhaft, indem man ein Amidoxim IId mit einer Benzylverbindung IIIa in die entsprechende Verbindung der Formel V überführt und die Aminogruppe von V im Wege einer Diazotierung gegen Halogen 40 austauscht.

Die Umsetzung des Amidoxims IId mit der Benzylverbindung IIIa erfolgt üblicherweise bei Temperaturen von 0°C bis 130°C, vorzugsweise 10°C bis 60°C, in einem inerten organischen Lösungs10 mittel in Gegenwart einer Base [vgl. Lit. Heterocycles 36, 1027 ff. (1993)].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlen15 wasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Tetrahydrofuran, Acetonitril und Dimethylformamid. Es können auch Gemische der genannten Lösungsmittel

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall-30 und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcar-35 bonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyllithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallal-40 koholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert.-Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylami-45 nopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriummethanolat, Kaliumcarbonat und Natriumhydrid.

- -

9

Die Basen werden im allgemeinen äquimolar oder im Überschuß verwendet.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinan-5 der umgesetzt. Es kann für die Ausbeute vorteilhaft sein, IId in einem Überschuß bezogen auf IIIa einzusetzen.

Die für diese Herstellung der Verbindungen I benötigten Amidoxime IId sind in der Literatur bekannt [DE-A 44 42 732; Gazz. 10 Chim. Ital. 55, 327 (1925)] oder können gemäß der zitierten Literatur hergestellt werden.

Die Diazotierung und Halogenierung von V zu I erfolgt üblicherweise bei Temperaturen von -20°C bis 50°C, vorzugsweise 0°C bis 15 20°C, in Wasser oder in einem wäßrigen inerten organischen Lösungsmittel [vgl. Lit. J. Org. Chem. 45, 4144 ff. (1980); Chem. Ber. 26, 1567 ff. (1893)].

Als Halogenierungsmittel dienen in dieser Umsetzung Fluorwaser-20 stoff, Chlorwasserstoff, Bromwasserstoff und Iodwasserstoff, insbesondere Chlorwasserstoff.

Die Halogenierungsmittel werden im allgemeinen im Überschuß oder gegebenenfalls als Lösungsmittel verwendet.

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol,

- 30 Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol,
- 35 sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt sind neben Wasser Gemische von Dioxan und Wasser und/oder Tetrahydrofuran und Wasser.

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, 40 z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z.T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen be-

45 freit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

10

Die Verbindungen I können bei ihrer Herstellung aufgrund ihrer C=C- und C=N-Doppelbingungen als E/Z-Isomerengemische anfallen, wobei diese Gemische in üblicher Weise, z.B. durch Kristallisation oder Chromatographie, in die reinen Isomere aufgetrennt 5 werden können.

Sofern bei der Synthese Isomerengemische anfallen, ist im allgemeinen jedoch eine Trennung nicht unbedingt erforderlich, da sich die einzelnen Isomere teilweise während der Aufbereitung 10 für die Anwendung oder bei der Anwendung (z.B. unter Licht-, Säure- oder Baseneinwirkung) ineinander umwandeln können. Entsprechende Umwandlungen können auch nach der Anwendung, beispielsweise bei der Behandlung von Pflanzen in der behandelten Pflanze oder im zu bekämpfenden Schadpilz oder dem tierischen 15 Schädling erfolgen.

In Bezug auf die C=X-Doppelbindung werden hinsichtlich ihrer Wirksamkeit die E-Isomere der Verbindungen I bevorzugt (Konfiguration bezogen auf die OCH3 bzw. CH3-Gruppe im Verhältnis zur 20 COYCH3-Gruppe).

In Bezug auf die CR²=NOR³ Doppelbindung werden im allgemeinen hinsichtlich ihrer Wirksamkeit die cis-Isomere der Verbindungen I (Konfiguration bezogen auf den Rest R² im Verhältnis zur OR³-25 Gruppe) bevorzugt.

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

30

Halogen: Fluor, Chlor, Brom und Jod;

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4 oder 6 Kohlenstoffatomen, z.B.

- 35 C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl,
 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl,
 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Me-
- 40 thylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;
- 45 Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 4 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome

11

durch Halogenatome wie vorstehend genannt ersetzt sein können,
z.B. C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl,
5 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl
und Pentafluorethyl;

10 Alkoxy: geradkettige oder verzweigte Alkylgruppen mit 1 bis 3 oder 4 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

Halogenalkoxy: geradkettige oder verzweigte Halogenalkylgruppen
15 mit 1 bis 4 Kohlenstoffatomen (wie vorstehend genannt), welche
über ein Sauerstoffatom (-O-) an das Gerüst gebunden sind;

Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 6 Kohlenstoffatomen und einer Doppelbin-20 dung in einer beliebigen Position, z.B. Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-bu-25 tenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethy1-2-propenyl, 1-Ethy1-1propenyl, 1-Ethy1-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-30 pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methy1-3penteny1, 3-Methy1-3-penteny1, 4-Methy1-3-penteny1, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 35 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethy1-3-buteny1, 2,2-Dimethy1-3-buteny1, 2,3-Dimethy1-1buteny1, 2,3-Dimethy1-2-buteny1, 2,3-Dimethy1-3-buteny1, 3,3-Di-40 methyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl,

1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

45

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 6 Kohlenstoffatomen und einer Dreifachbindung in einer

beliebigen Position, z.B. Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl,

- 5 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-bu-
- 10 tinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl,
 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2propinyl;
- 15 Cycloalkyl: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6 oder 5 bis 6 Kohlenstoffringgliedern, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;
- Aryl: ein ein- bis dreikerniges aromatisches Ringsystem enthal-20 tend 6 bis 14 Kohlenstoffringglieder, z.B. Phenyl, Naphthyl und Anthracenyl.

Die Angabe "partiell oder vollständig halogeniert" soll zum Ausdruck bringen, daß in den entsprechend charakterisierten Gruppen

- 25 die Wasserstoffatome der Kohelnwasserstoffreste zum Teil oder vollständig durch Halogenatome wie vorstehend genannt, besonders Fluor, Chlor oder Brom, insbesondere Fluor oder Chlor, ersetzt sein können.
- 30 Im Hinblick auf ihre biologische Wirkung sind Verbindungen I bevorzugt, in denen Y Sauerstoff bedeutet und X für NOCH₃, CHOCH₃ oder CHCH₃ steht.

Gleichermaßen sind Verbindungen I bevorzugt, in denen Y NH be-35 deutet und X für NOCH₃ steht.

Außerdem werden Verbindungen I bevorzugt, in denen \mathbb{R}^1 für Chlor oder Brom, insbesondere Chlor, steht.

- **40** Desweiteren werden Verbindungen I bevorzugt, in denen R² für eine der folgenden Gruppen steht:
 - C_2 - C_6 -Alkyl, welches partiell oder vollständig halogeniert sein kann und/oder einen oder zwei der folgenden Reste tragen kann: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und Phe-
- 45 nyl, welches seinerseits partiell oder vollständig haloge-

13

niert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy und C_1 - C_4 -Halogenalkoxy;

- Phenyl oder Benzyl, welches im Arylteil partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Cyano, Nitro, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy und C_1-C_4 -Halogenalkoxy.

Insbesondere werden Verbindungen I bevorzugt, in denen \mathbb{R}^2 für 10 eine der folgenden Gruppen steht:

- C_2 - C_6 -Alkyl, welches partiell oder vollständig halogeniert sein kann und/oder einen oder zwei C_1 - C_4 -Alkoxyreste tragen kann;
- Phenyl oder Benzyl, welches im Arylteil partiell oder voll- ständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy und C_1-C_4 -Halogenalkoxy.

Desweiteren werden Verbindungen I bevorzugt, in denen R³ für 20 eine der folgenden Gruppen steht:

- $C_1-C_6-Alkyl$, $C_1-C_3-Alkoxy-C_1-C_2-alkyl$, $C_3-C_6-Alkenyl$ und $C_3-C_6-Alkinyl$, wobei diese Gruppen partiell oder vollständig halogeniert sein können.
- 25 Insbesondere werden Verbindungen I bevorzugt, in denen R³ für eine der folgenden Gruppen steht:
 - $C_1-C_6-Alkyl$, $C_1-C_3-Alkoxy-C_1-C_2-alkyl$, $C_3-C_6-Alkenyl$ und $C_3-C_6-Alkinyl$.
- 30 Besonders bevorzugt sind insbesondere Verbindungen I, in denen R^3 für C_1 - C_3 -Alkyl, C_1 - C_3 -Alkoxyethyl, C_3 - C_4 -Alkenyl oder C_3 - C_4 -Alkinyl steht,

Insbesondere werden Verbindungen I im Hinblick auf die biologi-35 sche Wirkung bevorzugt, in denen die Substituenten die folgende Bedeutung haben:

- X NOCH₃, CHOCH₃ oder CHCH₃;
- 40 Y O oder NH;
 - R1 Chlor oder Brom;
 - R^2 C_2 - C_6 -Alkyl;

45

Phenyl oder Benzyl, welches im Phenylteil partiell oder vollständig halogeniert sein kann und/oder einen bis drei

der folgenden Reste tragen kann: Cyano, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$ und $C_1-C_4-Halogenalkoxy$;

R³ C₁-C₆-Alkyl, C₃-C₆-Alkenyl und C₃-C₆-Alkinyl, wobei diese 5 Gruppen partiell halogeniert sein können.

Im Hinblick auf ihre biologische Aktivität werden insbesondere die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten 10 Gruppen stellen außerdem, für sich betrachtet, unabhängig von der Kombination in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

Tabelle 1

15 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 Methyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

25 Tabelle 2

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 Methyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 3

35

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R^3 Methyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

40

$$R^3ON$$
 R^2
 H_3CO
 OCH_3

(I.C)

elle 12

bindungen der all ht, R³ Methyl bed er Gruppe der Tab

elle 13

bindungen der all ht, R³ Methyl bed er Gruppe der Tab

elle 14

bindungen der all ht, R³ Methyl bede er Gruppe der Tabe

elle 15

bindungen der alleht, R³ Methyl bede er Gruppe der Tabe

elle 16

bindungen der alle ht, R³ Methyl bede er Gruppe der Tabe

elle 17

bindungen der alle ht, R³ Ethyl bedeu Gruppe der Tabell

elle 18

bindungen der allg ht, R³ Ethyl bedeu Gruppe der Tabell

elle 19

bindungen der allg ht, R³ Ethyl bedeu Gruppe der Tabell

elle 20

bindungen der allg ht, R³ Ethyl bedeu Gruppe der Tabell

elle 21

bindungen der allg

Tabelle 4

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Chlo steht, R^3 Methyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

.

$$R^3$$
ON N OCH₃ (I.D)

10

Tabelle 5

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluc steht, R^3 Methyl bedeutet und der Rest R^2 für eine Verbindung 15 einer Gruppe der Tabelle B entspricht

Tabelle 6

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluc steht, R^3 Methyl bedeutet und der Rest R^2 für eine Verbindung 20 einer Gruppe der Tabelle B entspricht

Tabelle 7

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Fluc steht, \mathbb{R}^3 Methyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung 25 einer Gruppe der Tabelle B entspricht

Tabelle 8

Verbindungen der allgemeinen Formel I.D, in denen R¹ für Fluc steht, R³ Methyl bedeutet und der Rest R² für eine Verbindung 30 einer Gruppe der Tabelle B entspricht

Tabelle 9

Verbindungen der allgemeinen Formel I.A, in denen R¹ für Bror steht, R³ Methyl bedeutet und der Rest R² für eine Verbindung 35 einer Gruppe der Tabelle A entspricht

Tabelle 10

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Brotsteht, \mathbb{R}^3 Methyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung 40 einer Gruppe der Tabelle A entspricht

Tabelle 11

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Brossteht, R^3 Methyl bedeutet und der Rest R^2 für eine Verbindung 45 einer Gruppe der Tabelle A entspricht

17

steht, R³ Ethyl ner Gruppe der !

Tabelle 31
Verbindungen der steht, R³ Ethyl ner Gruppe der 1

Tabelle 32 Verbindungen de steht, R³ Ethyl ner Gruppe der

Tabelle 33
Verbindungen der steht, R³ Propyl einer Gruppe der

Tabelle 34 Verbindungen der steht, R³ Propyl einer Gruppe der

Tabelle 35 Verbindungen der steht, R³ Propyl einer Gruppe der

Tabelle 36 Verbindungen der steht, R³ Propyl einer Gruppe der

Verbindungen der steht, R³ Propyl einer Gruppe den

Fabelle 38 Verbindungen der steht, R³ Propyl ∍iner Gruppe der

Fabelle 39

Verbindungen der

steht, R³ Propyl

⇒iner Gruppe der

steht, ${\bf R}^3$ Ethyl bedeutet und der Rest ${\bf R}^2$ für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 22

5 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 Ethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 23

10 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 Ethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 24

15 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 Ethyl bedeutet und der Rest R^2 für eine Verbindung ei ner Gruppe der Tabelle B entspricht

Tabelle 25

20 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 Ethyl bedeutet und der Rest R^2 für eine Verbindung ei ner Gruppe der Tabelle A entspricht

Tabelle 26

25 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 Ethyl bedeutet und der Rest R^2 für eine Verbindung ei ner Gruppe der Tabelle A entspricht

Tabelle 27

30 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Ethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung ei ner Gruppe der Tabelle A entspricht

Tabelle 28

35 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R^3 Ethyl bedeutet und der Rest R^2 für eine Verbindung ei ner Gruppe der Tabelle A entspricht

Tabelle 29

40 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R^3 Ethyl bedeutet und der Rest R^2 für eine Verbindung ei ner Gruppe der Tabelle B entspricht

Tabelle 30

45 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod

19

Tabelle 40

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

5

Tabelle 41

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

10

Tabelle 42

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

15

Tabelle 43

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Brom steht, R^3 Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

20

Tabelle 44

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R^3 Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

25

Tabelle 45

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

30

Tabelle 46

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

35

Tabelle 47

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

40

Tabelle 48

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

45

Tabelle 49

Verbindungen der allgemeinen Formel I.A, in denen R¹ für Chlor

steht, R³ iso-Propyl bedeutet und der Rest R² für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 50

5 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 51

10 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 52

15 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 53

20 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 54

25 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 iso-Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 55 -

30 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 56

35 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 57

40 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 58

45 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 iso-Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

21

Tabelle 59

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Brom steht, R^3 iso-Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

5

Tabelle 60

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

10

Tabelle 61

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

15

Tabelle 62

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod steht, R^3 iso-Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

20

Tabelle 63

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R^3 iso-Propyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

25

Tabelle 64

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 iso-Propyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

30

Tabelle 65

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Chlor steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

35

Tabelle 66

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Chlor steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

40

Tabelle 67

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

45

Tabelle 68

Verbindungen der allgemeinen Formel I.D, in denen R¹ für Chlor

steht, R³ 2-Methoxyethyl bedeutet und der Rest R² für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 69

5 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 70

10 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 71

15 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 72

20 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 73

25 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 74

30 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 2-Methoxyethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 75

35 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Brom steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 76

40 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 77

45 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

23

Tabelle 78

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

5

Tabelle 79

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 2-Methoxyethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

10

Tabelle 80

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R^3 2-Methoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

15

Tabelle 81

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Chlor steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

20

Tabelle 82

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Chlor steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

25

Tabelle 83

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

30

Tabelle 84

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Chlor steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

35

Tabelle 85

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

40

Tabelle 86

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

45

Tabelle 87

Verbindungen der allgemeinen Formel I.C, in denen R¹ für Fluor

24

steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 88

5 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 89

10 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 2-Ethoxyethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 90

15 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 91

20 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Brom steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 92

25 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 2-Ethoxyethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 93

30 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 94

35 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 2-Ethoxyethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 95

40 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 96

45 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R^3 2-Ethoxyethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

25

Tabelle 97

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Chlor steht, R^3 Cyclopropylmethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

5

Tabelle 98

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Chlor steht, R^3 Cyclopropylmethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

10

Tabelle 99

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R^3 Cyclopropylmethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

15

Tabelle 100

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Chlor steht, R^3 Cyclopropylmethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

20

Tabelle 101

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R^3 Cyclopropylmethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

25

Tabelle 102

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 Cyclopropylmethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

30

Tabelle 103

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 Cyclopropylmethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

35

Tabelle 104

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 Cyclopropylmethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

40

Tabelle 105

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Cyclopropylmethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

45

Tabelle 106

Verbindungen der allgemeinen Formel I.B, in denen R1 für Brom

26

steht, R3 Cyclopropylmethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 107

5 Verbindungen der allgemeinen Formel I.C, in denen R1 für Brom steht, R3 Cyclopropylmethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 108

10 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R3 Cyclopropylmethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 109

15 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R3 Cyclopropylmethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 110

20 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod steht, R3 Cyclopropylmethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 111

25 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R3 Cyclopropylmethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 112

30 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R3 Cyclopropylmethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 113

35 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Chlor steht, R3 Allyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 114

40 Verbindungen der allgemeinen Formel I.B, in denen R 1 für Chlor steht, R3 Allyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 115

45 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R3 Allyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

27

Tabelle 116

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 Allyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

5

Tabelle 117

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R^3 Allyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

10

Tabelle 118

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 Allyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

15

Tabelle 119

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 Allyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

20

Tabelle 120

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 Allyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

25

Tabelle 121

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Allyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

30

Tabelle 122

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Allyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

35

Tabelle 123

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Allyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

40

Tabelle 124

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Allyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

45

Tabelle 125

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod

28

steht, R^3 Allyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 126

5 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Allyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 127

10 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R^3 Allyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 128

15 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R^3 Allyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 129

20 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 trans-3-Chlorallyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 130

25 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 trans-3-Chlorallyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 131

30 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 trans-3-Chlorallyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 132

35 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 trans-3-Chlorallyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 133

40 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 134

45 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

29

Tabelle 135

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

5

Tabelle 136

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

10

Tabelle 137

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

15

Tabelle 138

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

20

Tabelle 139

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Brom steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

25

Tabelle 140

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

30

Tabelle 141

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 trans-3-Chlorallyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

35

Tabelle 142

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

40

Tabelle 143

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

45

Tabelle 144

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod

steht, R^3 trans-3-Chlorallyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 145

- -

5 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 146

10 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 147

15 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R^3 trans-Butenyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 148

20 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 149

25 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 150

30 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 151

35 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 152

40 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 153

45 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 trans-Butenyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

31

Tabelle 154

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 trans-Butenyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

5

Tabelle 155

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

10

Tabelle 156

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R^3 trans-Butenyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

15

Tabelle 157

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R^3 trans-Butenyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

20

Tabelle 158

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod steht, R^3 trans-Butenyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

25

Tabelle 159

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

30

Tabelle 160

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 trans-Butenyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

35

Tabelle 161

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

40

Tabelle 162

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Chlor steht, R^3 Propargyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

45

Tabelle 163

Verbindungen der allgemeinen Formel I.C, in denen R¹ für Chlor

steht, R^3 Propargyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 164

5 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 165

10 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 166

15 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 167

20 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 168

25 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 169

30 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 Propargyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 170

35 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 171

40 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 172

45 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

33

Tabelle 173

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

5

Tabelle 174

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

10

Tabelle 175

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

15

Tabelle 176

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Propargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

20

Tabelle 177

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Chlor steht, R^3 3-Brompropargyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

25

Tabelle 178

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 3-Brompropargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

30

Tabelle 179

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 3-Brompropargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

35

Tabelle 180

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 3-Brompropargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

40

Tabelle 181

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 3-Brompropargyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

45

Tabelle 182

Verbindungen der allgemeinen Formel I.B, in denen R¹ für Fluor

PCT/EP98/00782 WO 98/38857

34

steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 183

5 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Fluor steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 184

10 Verbindungen der allgemeinen Formel I.D, in denen R¹ für Fluor steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 185

15 Verbindungen der allgemeinen Formel I.A, in denen R1 für Brom steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 186

20 Verbindungen der allgemeinen Formel I.B, in denen R1 für Brom steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 187

25 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 188

30 Verbindungen der allgemeinen Formel I.D, in denen R¹ für Brom steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 189

35 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 190

40 Verbindungen der allgemeinen Formel I.B, in denen R¹ für Iod steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 191

45 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R3 3-Brompropargyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

35

Tabelle 192

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R^3 3-Brompropargyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

5

Tabelle 193

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Chlor steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

10

Tabelle 194

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Chlor steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

15

Tabelle 195

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

20

Tabelle 196

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Chlor steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

25

Tabelle 197

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

30

Tabelle 198

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 But-3-in-1-yl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

35

Tabelle 199

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

40

Tabelle 200

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

45

Tabelle 201

Verbindungen der allgemeinen Formel I.A, in denen R¹ für Brom

36

steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 202

5 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht `

Tabelle 203

10 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 But-3-in-1-yl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 204

15 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 205

20 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 But-3-in-1-yl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 206

25 Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 207

30 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 208

35 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R^3 But-3-in-1-yl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 209

40 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 Fluormethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 210

45 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 Fluormethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

37

Tabelle 211

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Chlor steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

5

Tabelle 212

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Chlor steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

10

Tabelle 213

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

15

Tabelle 214

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

20

Tabelle 215

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

25

Tabelle 216

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

30

Tabelle 217

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

35

Tabelle 218

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Fluormethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

40

Tabelle 219

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Brom steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

45

Tabelle 220

Verbindungen der allgemeinen Formel I.D, in denen R¹ für Brom

PCT/EP98/00782 WO 98/38857

38

steht, R^3 Fluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 221

5 Verbindungen der allgemeinen Formel I.A, in denen R1 für Iod steht, R3 Fluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 222

10 Verbindungen der allgemeinen Formel I.B, in denen R1 für Iod steht, R3 Fluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 223

15 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Iod steht, R3 Fluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 224

20 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Iod steht, R3 Fluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 225

25 Verbindungen der allgemeinen Formel I.A, in denen R¹ für Chlor steht, R3 Difluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 226

30 Verbindungen der allgemeinen Formel I.B, in denen R¹ für Chlor steht, R3 Difluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 227

35 Verbindungen der allgemeinen Formel I.C, in denen R¹ für Chlor steht, R3 Difluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 228

40 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Chlor steht, R3 Difluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 229

45 Verbindungen der allgemeinen Formel I.A, in denen R^1 für Fluor steht, R3 Difluormethyl bedeutet und der Rest R2 für eine Verbindung einer Gruppe der Tabelle B entspricht

39

- -Tabelle 230

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Fluor steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

5

Tabelle 231

Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

10

Tabelle 232

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Fluor steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

15

Tabelle 233

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Brom steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

20

Tabelle 234

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Brom steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

25

Tabelle 235

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 Difluormethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

30

Tabelle 236

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Brom steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

35

Tabelle 237

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

40

Tabelle 238

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 Difluormethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

45

Tabelle 239

Verbindungen der allgemeinen Formel I.C, in denen R¹ für Iod

40

steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 240

5 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R^3 Difluormethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 241

10 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 242

15 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 243

20 Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Chlor steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 244

25 Verbindungen der allgemeinen Formel I.D, in denen R^1 für Chlor steht, R^3 2,2,2-Trifluorethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

Tabelle 245

30 Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 246

35 Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 247

40 Verbindungen der allgemeinen Formel I.C, in denen R^1 für Fluor steht, R^3 2,2,2-Trifluorethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

Tabelle 248

45 Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Fluor steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

41

Tabelle 249

Verbindungen der allgemeinen Formel I.A, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

5

Tabelle 250

Verbindungen der allgemeinen Formel I.B, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

10

Tabelle 251

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

15

Tabelle 252

Verbindungen der allgemeinen Formel I.D, in denen \mathbb{R}^1 für Brom steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle A entspricht

20

Tabelle 253

Verbindungen der allgemeinen Formel I.A, in denen R^1 für Iod steht, R^3 2,2,2-Trifluorethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

25

Tabelle 254

Verbindungen der allgemeinen Formel I.B, in denen R^1 für Iod steht, R^3 2,2,2-Trifluorethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

30

Tabelle 255

Verbindungen der allgemeinen Formel I.C, in denen \mathbb{R}^1 für Iod steht, \mathbb{R}^3 2,2,2-Trifluorethyl bedeutet und der Rest \mathbb{R}^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

35

Tabelle 256

Verbindungen der allgemeinen Formel I.D, in denen R^1 für Iod steht, R^3 2,2,2-Trifluorethyl bedeutet und der Rest R^2 für eine Verbindung einer Gruppe der Tabelle B entspricht

40

Tabelle A

	Nr.	R ²	
5	A.1	CH ₂ CH ₃	
	A.2	CH ₂ CH ₂ -CN	
	A.3	CH ₂ CH ₂ -O-CH ₃	•
	A.4	CH ₂ CH ₂ -O-CH ₂ CH ₃	
	A.5	CH ₂ CH ₂ CH ₃	
	A.6	CH (CH ₃) ₂	
10	A.7	CH ₂ CH ₂ CH ₂ CH ₃	
	A.8	CH (CH ₃) CH ₂ CH ₃	
	A.9	CH ₂ CH (CH ₃) ₂	
	A.10	CH=CH ₂	
	A.11	CH=CH-CH ₃	(E)
15	A.12	CH=CH-[C ₆ H ₅]	(E)
	A.13	CH=CH-[2-CN-C ₆ H ₄]	(E)
	A.14	CH=CH-[3-CN-C ₆ H ₄]	(E)
	A.15	CH=CH-[4-CN-C ₆ H ₄]	(E)
	A.16	$CH=CH-[2-F-C_6H_4]$	(E)
20	A.17	$CH=CH-[3-F-C_6H_4]$	(E)
	A.18	CH=CH-[4-F-C ₆ H ₄]	(E)
	A.19	CH=CH-[2,4-F ₂ -C ₆ H ₃]	(E)
	A.20	$CH=CH-[3, 4-F_2-C_6H_3]$	(E)
	A.21	CH=CH-[2,4,5-F ₃ -C ₆ H ₂]	(E)
25	A.22	$CH=CH-[2,4,6-F_3-C_6H_2]$	(E)
	A.23	CH=CH-[2-C1-C6H4]	(E)
	A.24	CH=CH-[3-C1-C ₆ H ₄]	(E)
į	A.25	CH=CH-[4-C1-C ₆ H ₄]	(E)
20	A.26	CH=CH-[2,4-Cl ₂ -C ₆ H ₃]	(E)
30	A.27	CH=CH-[3,4-Cl ₂ -C ₆ H ₃]	(E)
	A.28	CH=CH-[2,4,5-Cl ₃ -C ₆ H ₂]	(E)
	A.29	CH=CH-[2,4,6-Cl ₃ -C ₆ H ₂]	(E)
i	A.30 A.31	$CH=CH-[2-CH_3-C_6H_4]$ $CH=CH-[3-CH_3-C_6H_4]$	(E)
35	A.32	CH=CH-[3-Ch3-C6h4]	(E)
33	A.33	$CH=CH=\{q=CH_3=C_6H_4\}$ $CH=CH=\{2-F, 4-CH_3-C_6H_3\}$	(E)
	A.34	$CH=CH-\{2-CH_3, 4-F-C_6H_3\}$	(E)
	A.35	$CH=CH-[3-F, 4-CH_3-C_6H_3]$	(E)
	A.36	$CH=CH-[3-CH_3, 4-F-C_6H_3]$	(E)
40	A.37	CH=CH-[2-C1, 4-CH ₃ -C ₆ H ₃]	(E)
	A.38	CH=CH-[2-CH ₃ , 4-C1-C ₆ H ₃]	(E)
	A.39	CH=CH-[3-C1, 4-CH ₃ -C ₆ H ₃]	(E)
	A.40	CH=CH-[3-CH ₃ , 4-Cl-C ₆ H ₃]	(E)
	A.41	CH=CH-[2,4-(CH ₃) ₂ -C ₆ H ₃]	(E)
45			
	A.43	$CH=CH-[2,4,5-(CH_3)_3-C_6H_2]$	(E)
	A.44	CH=CH-[2,4,6-(CH ₃) ₃ -C ₆ H ₂]	(E)
45	A.42 A.43	CH=CH- $[3, 4-(CH_3)_2-C_6H_3]$ CH=CH- $[2, 4, 5-(CH_3)_3-C_6H_2]$	(E)

	Nr.		R ²
	A.45	CH=CH-[2-CF ₃ -C ₆ H ₄]	(E)
	A.46	CH=CH-[3-CF ₃ -C ₆ H ₄]	(E)
	A.47	CH=CH-[4-CF ₃ -C ₆ H ₄]	(E)
5	A.48	CH=CH-[2-F, 4-CF ₃ -C ₆ H ₃]	. (E)
	A.49	$CH=CH-[2-CF_3, 4-F-C_6H_3]$	(E)
	A.50	$CH=CH-[3-F, 4-CF_3-C_6H_3]$	(E)
	A.51	$CH=CH-[3-CF_3, 4-F-C_6H_3]$	(E)
	A.52	$CH=CH-[2-C1, 4-CF_3-C_6H_3]$	(E)
10	A.53	CH=CH-[2-CF ₃ , 4-C1-C ₆ H ₃]	(E)
	A.54	$CH=CH-[3-C1, 4-CF_3-C_6H_3]$	(E)
	A.55	$CH=CH-[3-CF_3, 4-C1-C_6H_3]$	(E)
	A.56	$CH=CH-[2,4-(CF_3)_2-C_6H_3]$	(E)
	A.57	$CH=CH-[3, 4-(CF_3)_2-C_6H_3]$	(E)
15	A.58	$CH=CH-[2,4,5-(CF_3)_3-C_6H_2]$	(E)
	A.59	$CH=CH-[2,4,6-(CF_3)_3-C_6H_2]$	(E)
	A.60	CH=CH-[2-OCH3-C6H4]	(E)
	A.61	$CH=CH-[3-OCH_3-C_6H_4]$	(E)
	A.62	CH=CH-[4-OCH3-C6H4]	(E)
20	A.63	$CH=CH-[2-F, 4-OCH_3-C_6H_3]$	(E)
	A.64	$CH=CH-[2-OCH_3, 4-F-C_6H_3]$	(E)
	A.65	$CH=CH-[3-F, 4-OCH_3-C_6H_3]$	(E)
ļ	A.66	$CH=CH-[3-OCH_3, 4-F-C_6H_3]$	(E)
	A.67	CH=CH-[2-C1, 4-OCH ₃ -C ₆ H ₃]	(E)
25	A.68	CH=CH-[2-OCH ₃ , 4-C1-C ₆ H ₃]	(E)
- 1	A.69	CH=CH-[3-C1, 4-OCH ₃ -C ₆ H ₃]	(E)
	A.70	CH=CH-[3-OCH ₃ , 4-C1-C ₆ H ₃]	(E)
- }	A.71	CH=CH-[2,4-(OCH ₃) ₂ -C ₆ H ₃]	(E)
, l	A.72	CH=CH-[3,4-(OCH ₃) ₂ -C ₆ H ₃]	(E)
30	A.73	CH=CH-[2,4,5-(OCH ₃) ₃ -C ₆ H ₂]	(E)
	A.74	CH=CH-[2,4,6-(OCH ₃) ₃ -C ₆ H ₂]	(E)
ŀ	A.75	CH=CH-[2-OCHF ₂ -C ₆ H ₄]	(E)
ŀ	A.76 A.77	CH=CH-[3-OCHF ₂ -C ₆ H ₄]	(E)
35	A.78	CH=CH- $[4-OCHF_2-C_6H_4]$ CH=CH- $[2-F, 4-OCHF_2-C_6H_3]$	(E)
33 F		$CH=CH-[2-F, 4-OCHF_2-C_6H_3]$ $CH=CH-[2-OCHF_2, 4-F-C_6H_3]$	(E)
-	A.80	$CH=CH-[3-F, 4-OCHF_2-C_6H_3]$	(E)
ŀ	A.81	$CH=CH-[3-F, 4-OCHF_2-C_6H_3]$	(E)
ŀ		$CH=CH-[2-C1, 4-OCHF_2-C_6H_3]$	(E)
40		$CH=CH-[2-OCHF_2, 4-C1-C_6H_3]$	(E)
		$CH=CH-[3-C1, 4-OCHF_2-C_6H_3]$	(E)
	A.85	CH=CH-[3-OCHF ₂ , 4-C1-C ₆ H ₃]	(E)
ŀ		CH=CH-[2,4-(OCHF ₂) ₂ -C ₆ H ₃]	(E)
ŀ		$CH=CH-[3,4-(OCHF_2)_2-C_6H_3]$	(E)
45		CH=CH-[2,4,5-(OCHF ₂) ₃ -C ₆ H ₂]	(E)
		$CH=CH-[2,4,6-(OCHF_2)_3-C_6H_2]$	(E)
		CH ₂ CH=CH ₂	

	Nr.	I	Q 2
	A.91	CH ₂ CH=CH-C1	(E)
	A.92	CH2CH=CH-Br	(E)
	A.93	CH ₂ CH=CH-CH ₃	(E)
5	A.94	C≡CH	
	A.95	C≡C-C1	
	A.96	C≡C-Br	
	A.97	C≡C-CH ₃	
	A.98	$C \equiv C - C_6 H_5$	
10	A.99	$C \equiv C - [2 - C1 - C_6H_4]$	
	A.100	$C \equiv C - [4 - C1 - C_6H_4]$	
	A.101	$C \equiv C - [2, 4 - C1_2 - C_6H_3]$	
	A.102	$C \equiv C - [2 - CH_3 - C_6H_4]$	·
	A.103	$C \equiv C - [4 - CH_3 - C_6H_4]$	
15	A.104	$C \equiv C - [2, 4 - (CH_3)_2 - C_6H_3]$	
	A.105	$C \equiv C - [2 - C1, 4 - CH_3 - C_6H_3]$	
	A.106	$C \equiv C - [2 - CH_3, 4 - C1 - C_6H_3]$	
	A.107	$C \equiv C - [3 - CF_3 - C_6H_4]$	
	A.108	$C \equiv C - [3 - C1, 5 - CF_3 - C_6H_3]$	
20	A.109	$C \equiv C - [2 - OCH_3 - C_6H_4]$	
	A.110	$C \equiv C - [4 - OCH_3 - C_6H_4]$	
	A.111	$C \equiv C - [2, 4 - (OCH_3)_2 - C_6H_3]$	
	A.112	$C \equiv C - [2 - C1, 4 - OCH_3 - C_6H_3]$	
25	A.113	$C \equiv C - [2 - OCH_3, 4 - C1 - C_6H_3]$	
25	A.114	$C \equiv C - [3 - OCHF_2 - C_6H_4]$	
	A.115 A.116	$C \equiv C - [3 - C1, 5 - OCHF_2 - C_6H_3]$	
	A.117	cyclopentyl 1-CH ₃ -cyclopentyl	
	A.118	2-CH ₃ -cyclopentyl	
30	A.119	3-CH ₃ -cyclopentyl	
	A.120	2,3-(CH ₃) ₂ -cyclopentyl	
	A.121	1-C1-cyclopentyl	
	A.122	2-C1-cyclopenty1	
	A.123	3-C1-cyclopentyl	
35	A.124	2-CH ₃ , 3-Cl-cyclopentyl	
	A.125	2,3-Cl ₂ -cyclopentyl	
	A.126	cyclohexyl	
	A.127	1-CH ₃ -cyclohexyl	
	A.128	2-CH3-cyclohexyl	
40	A.129	3-CH ₃ -cyclohexyl	
	A.130	2,3-(CH ₃) ₂ -cyclohexyl	
	A.131	3,3-(CH ₃) ₂ -cyclohexyl	· · · · · · · · · · · · · · · · · · ·
	A.132	1-C1-cyclohexyl	
<u>, </u>	A.133	2-C1-cyclohexyl	
45	A.134	3-C1-cyclohexyl	
	A.135	2-CH ₃ , 3-Cl-cyclohexyl	
	A.136	2,3-Cl ₂ -cyclohexyl	

	Nr.	R ²	
	A.137	C ₆ H ₅	
	A.138	2-CN-C ₆ H ₄	\dashv
	A.139	3-CN-C ₆ H ₄	-
5	A.140	4-CN-C ₆ H ₄	-
	A.141	2-F-C ₆ H ₄	\dashv
	A.141 A.142	3-F-C ₆ H ₄	\dashv
	A.143	4-F-C ₆ H ₄	
	A.143	2,4-F ₂ -C ₆ H ₃	-
10			
10	A.145	3,4-F ₂ -C ₆ H ₃	
	A.146 A.147	2,4,5-F ₃ -C ₆ H ₂ 2,4,6-F ₃ -C ₆ H ₂	
		<u> </u>	
	A.148	2-C1-C ₆ H ₄	
15	A.149	3-C1-C ₆ H ₄	
15	A.150	4-C1-C ₆ H ₄	
	A.151	2,4-Cl ₂ -C ₆ H ₃	
	A.152 A.153	3,4-Cl ₂ -C ₆ H ₃	
	A.153	2,4,5-C1 ₃ -C ₆ H ₂	
20	A.154 A.155	2,4,6-Cl ₃ -C ₆ H ₂ 2-CH ₃ -C ₆ H ₄	
20	A.156	3-CH ₃ -C ₆ H ₄	
	A.157	4-CH ₃ -C ₆ H ₄	
	A.158	2-F, 4-CH ₃ -C ₆ H ₃	\dashv
	A.159	2-CH ₃ , 4-F-C ₆ H ₃	-
25	A.160	3-F, 4-CH ₃ -C ₆ H ₃	
2,5	A.161	3-CH ₃ , 4-F-C ₆ H ₃	
	A.162	2-C1, 4-CH ₃ -C ₆ H ₃	
	A.163	2-CH ₃ , 4-Cl-C ₆ H ₃	
	A.164	3-C1, 4-CH ₃ -C ₆ H ₃	
30	A.165	3-CH ₃ , 4-C1-C ₆ H ₃	
	A.166	2,4-(CH ₃) ₂ -C ₆ H ₃	\dashv
	A.167	3,4-(CH ₃) ₂ -C ₆ H ₃	
	A.168	2,4,5-(CH ₃) ₃ -C ₆ H ₂	
	A.169	2,4,6-(CH ₃) ₃ -C ₆ H ₂	\neg
35	A.170	2-CF ₃ -C ₆ H ₄	
	A.171	3-CF ₃ -C ₆ H ₄	\neg
	A.172	4-CF ₃ -C ₆ H ₄	\dashv
	A.173	2-F, 4-CF ₃ -C ₆ H ₃	
	A.174	2-CF ₃ , 4-F-C ₆ H ₃	\neg
40	A.175	3-F, 4-CF ₃ -C ₆ H ₃	\neg
	A.176	3-CF ₃ , 4-F-C ₆ H ₃	
	A.177	2-C1, 4-CF ₃ -C ₆ H ₃	\neg
	A.178	2-CF ₃ , 4-C1-C ₆ H ₃	\neg
	A.179	3-C1, 4-CF ₃ -C ₆ H ₃	\dashv
45	A.180	3-CF ₃ , 4-C1-C ₆ H ₃	\neg
	A.181	2,4-(CF ₃) ₂ -C ₆ H ₃	\neg
	A.182	3,4-(CF ₃) ₂ -C ₆ H ₃	\neg
		the contract of the contract o	

	Nr.	R ²
	A.183	2,4,5-(CF ₃) ₃ -C ₆ H ₂
	A.184	<u></u>
	A.184 A.185	2,4,6-(CF ₃) ₃ -C ₆ H ₂
5		2-OCH ₃ -C ₆ H ₄
5	A.186	3-OCH ₃ -C ₆ H ₄
	A.187	4-OCH ₃ -C ₆ H ₄
	A.188	2-F, 4-OCH ₃ -C ₆ H ₃
	A.189	2-OCH ₃ , 4-F-C ₆ H ₃
	A.190	3-F, 4-OCH ₃ -C ₆ H ₃
10	A.191	3-OCH ₃ , 4-F-C ₆ H ₃
	A.192	2-C1, 4-OCH ₃ -C ₆ H ₃
	A.193	2-OCH ₃ , 4-C1-C ₆ H ₃
	A.194	3-C1, 4-OCH ₃ -C ₆ H ₃
	A.195	3-OCH ₃ , 4-C1-C ₆ H ₃
15	A.196	2,4-(OCH ₃) ₂ -C ₆ H ₃
	A.197	3,4-(OCH ₃) ₂ -C ₆ H ₃
	A.198	2,4,5-(OCH ₃) ₃ -C ₆ H ₂
	A.199	2,4,6-(OCH ₃) ₃ -C ₆ H ₂
	A.200	2-OCHF ₂ -C ₆ H ₄
20	A.201	3-OCHF ₂ -C ₆ H ₄
	A.202	4-OCHF ₂ -C ₆ H ₄
	A.203	2-F, 4-OCHF ₂ -C ₆ H ₃
	A.204	2-OCHF ₂ , 4-F-C ₆ H ₃
	A.205	3-F, 4-OCHF ₂ -C ₆ H ₃
25	A.206	3-OCHF ₂ , 4-F-C ₆ H ₃
	A.207	2-C1, 4-OCHF ₂ -C ₆ H ₃
	A.208	2-OCHF ₂ , 4-C1-C ₆ H ₃
	A.209	3-C1, 4-OCHF ₂ -C ₆ H ₃
	A.210	3-OCHF ₂ , 4-C1-C ₆ H ₃
30	A.211	2,4-(OCHF ₂) ₂ -C ₆ H ₃
	A.212	3,4-(OCHF ₂) ₂ -C ₆ H ₃
		2,4,5-(OCHF ₂) ₃ -C ₆ H ₂
	A.214	2,4,6-(OCHF ₂) ₃ -C ₆ H ₂
	A.215	CH ₂ -C ₆ H ₅
35	A.216	CH ₂ -[2-CN-C ₆ H ₄]
	A.217	CH ₂ -[3-CN-C ₆ H ₄]
1	A.218	$CH_2 - [4 - CN - C_6H_4]$
	A.219	CH ₂ -[2-F-C ₆ H ₄]
	A.220	$CH_2 - [3 - F - C_6H_4]$
40	A.221	CH ₂ -[4-F-C ₆ H ₄]
	A.222	$CH_2-[2,4-F_2-C_6H_3]$
	A.223	$CH_2-[3,4-F_2-C_6H_3]$
	A.224	$CH_2-[2,4,5-F_3-C_6H_2]$
	A.225	$CH_2-[2,4,6-F_3-C_6H_2]$
45	A.226	$CH_2 - [2-C1-C_6H_4]$
	A.227	CH ₂ -[3-C1-C ₆ H ₄]
	A.228	$CH_2 - [4 - C1 - C_6H_4]$

	Nr.	R ²
	A.229	CH ₂ -[2,4-Cl ₂ -C ₆ H ₃]
	A.230	$CH_2-[3,4-Cl_2-C_6H_3]$
	A.231	$CH_2-[2,4,5-Cl_3-C_6H_2]$
5	A.232	$CH_2-[2,4,6-Cl_3-C_6H_2]$
	A.233	CH ₂ -[2-CH ₃ -C ₆ H ₄]
	A.234	CH ₂ -[3-CH ₃ -C ₆ H ₄]
	A.235	CH ₂ -[4-CH ₃ -C ₆ H ₄]
	A.236	CH ₂ -[2-F, 4-CH ₃ -C ₆ H ₃]
10	A.237	CH ₂ -[2-CH ₃ , 4-F-C ₆ H ₃]
	A.238	CH ₂ -[3-F, 4-CH ₃ -C ₆ H ₃]
	A.239	CH ₂ -[3-CH ₃ , 4-F-C ₆ H ₃]
	A.240	CH ₂ -[2-C1, 4-CH ₃ -C ₆ H ₃]
	A.241	CH ₂ -[2-CH ₃ , 4-C1-C ₆ H ₃]
15	A.242	CH ₂ -[3-Cl, 4-CH ₃ -C ₆ H ₃]
	A.243	CH ₂ -[3-CH ₃ , 4-C1-C ₆ H ₃]
	A.244	CH ₂ -[2,4-(CH ₃) ₂ -C ₆ H ₃]
	A.245	CH ₂ -[3,4-(CH ₃) ₂ -C ₆ H ₃]
	A.246	CH ₂ -[2,4,5-(CH ₃) ₃ -C ₆ H ₂]
20	A.247	CH ₂ -[2,4,6-(CH ₃) ₃ -C ₆ H ₂]
	A.248	CH ₂ -[2-CF ₃ -C ₆ H ₄]
	A.249	CH ₂ -[3-CF ₃ -C ₆ H ₄]
	A.250	CH ₂ -[4-CF ₃ -C ₆ H ₄]
	A.251	CH ₂ -[2-F, 4-CF ₃ -C ₆ H ₃]
25	A.252	$CH_2-[2-CF_3, 4-F-C_6H_3]$
	A.253	CH ₂ -[3-F, 4-CF ₃ -C ₆ H ₃]
	A.254	$CH_2-[3-CF_3, 4-F-C_6H_3]$
	A.255	$CH_2-[2-C1, 4-CF_3-C_6H_3]$
	A.256	CH ₂ -[2-CF ₃ , 4-C1-C ₆ H ₃]
30	A.257	$CH_2-[3-C1, 4-CF_3-C_6H_3]$
	A.258	$CH_2-[3-CF_3, 4-C1-C_6H_3]$
	A.259	$CH_2-[2,4-(CF_3)_2-C_6H_3]$
	A.260	$CH_2-[3,4-(CF_3)_2-C_6H_3]$
	A.261	$CH_2-[2,4,5-(CF_3)_3-C_6H_2]$
35	A.262	$CH_2-[2,4,6-(CF_3)_3-C_6H_2]$
	A.263	CH ₂ -[2-OCH ₃ -C ₆ H ₄]
	A.264	CH ₂ -[3-OCH ₃ -C ₆ H ₄]
	A.265	CH ₂ -[4-OCH ₃ -C ₆ H ₄]
	A.266	$CH_2-[2-F, 4-OCH_3-C_6H_3]$
40	A.267	$CH_2-[2-OCH_3, 4-F-C_6H_3]$
	A.268	$CH_2-[3-F, 4-OCH_3-C_6H_3]$
	A.269	$CH_2-[3-OCH_3, 4-F-C_6H_3]$
	A.270	CH ₂ -[2-C1, 4-OCH ₃ -C ₆ H ₃]
	A.271	CH ₂ -[2-OCH ₃ , 4-Cl-C ₆ H ₃]
45	A.272	CH ₂ -[3-C1, 4-OCH ₃ -C ₆ H ₃]
	A.273	CH ₂ -[3-OCH ₃ , 4-Cl-C ₆ H ₃]
	A.274	$CH_2-[2,4-(OCH_3)_2-C_6H_3]$

1	Nr.	R ²
	A.275	CH ₂ -[3,4-(OCH ₃) ₂ -C ₆ H ₃]
	A.276	$CH_2 = [2, 4, 5 - (OCH_3)_3 - C_6H_2]$
	A.277	$CH_2 = [2, 4, 6 - (OCH_3), 3 - C_6H_2]$
5	A.278	$CH_2 = [2-OCHF_2-C_6H_4]$
	A.279	$CH_2 = [3 - OCHF_2 - C_6H_4]$
	A.280	$CH_2 = [4 - OCHF_2 - C_6H_4]$
	A.281	$CH_2 - [2-F, 4-OCHF_2-C_6H_4]$
	A.282	$CH_2 = [2 - OCHF_2 - C_6H_3]$ $CH_2 = [2 - OCHF_2, 4 - F - C_6H_3]$
10	A.283	$CH_2 = [3-F, 4-OCHF_2-C_6H_3]$
	A.284	$CH_2 = [3 - OCHF_2, 4 - F - C_6H_3]$
	A.285	$CH_2 = [2-C1, 4-OCHF_2-C_6H_3]$
	A.286	$CH_2 = [2 - CCHF_2, 4 - CCHF_2 - CGH_3]$
	A.287	$CH_2 = [3-C1, 4-OCHF_2-C_6H_3]$
15	A.288	$CH_2 = [3 - CCHF_2 - CGHF_2 - CGHF_3]$
-	A.289	CH ₂ -[3,4-(OCHF ₂) ₂ -C ₆ H ₃]
	A.290	CH ₂ -[3, 4-(OCHF ₂) ₂ -C ₆ H ₃]
	A.291	$CH_2 - [2, 4, 5 - (OCHF_2)_3 - C_6H_2]$
	A.292	$CH_2 = [2, 4, 6 - (OCHF_2)_3 - C_6H_2]$
20	A.293	CH (CH ₃) -C ₆ H ₅
	A.294	$CH(CH_3) - [2-CN-C_6H_4]$
	A.295	$CH(CH_3) - [3-CN-C_6H_4]$
	A.296	$CH(CH_3) - [4-CN-C_6H_4]$
	A.297	$CH(CH_3) - [2-F-C_6H_4]$
25	A.298	$CH(CH_3) - [3-F-C_6H_4]$
	A.299	$CH(CH_3) - [4-F-C_6H_4]$
ł	A.300	$CH(CH_3) - [2, 4-F_2-C_6H_3]$
ł	A.301	$CH(CH_3) - [3, 4-F_2-C_6H_3]$
ı	A.302	$CH(CH_3) - [2, 4, 5-F_3-C_6H_2]$
30	A.303	$CH(CH_3) - [2, 4, 6-F_3-C_6H_2]$
	A.304	$CH(CH_3) - [2-C1-C_6H_4]$
İ	A.305	$CH(CH_3) - [3-C1-C_6H_4]$
Ì	A.306	$CH(CH_3) - [4-C1-C_6H_4]$
Ī	A.307	$CH(CH_3) - [2, 4-Cl_2-C_6H_3]$
35	A.308	$CH(CH_3) - [3, 4-Cl_2-C_6H_3]$
	A.309	$CH(CH_3) - [2, 4, 5-Cl_3-C_6H_2]$
[A.310	$CH(CH_3) - [2, 4, 6-Cl_3-C_6H_2]$
[A.311	CH(CH ₃)-[2-CH ₃ -C ₆ H ₄]
	A.312	$CH(CH_3) - [3-CH_3-C_6H_4]$
40	A.313	$CH(CH_3) - [4-CH_3-C_6H_4]$
	A.314	$CH(CH_3)-[2-F, 4-CH_3-C_6H_3]$
	A.315	$CH(CH_3) - [2-CH_3, 4-F-C_6H_3]$
ſ	A.316	$CH(CH_3) - [3-F, 4-CH_3-C_6H_3]$
[A.317	$CH(CH_3) - [3-CH_3, 4-F-C_6H_3]$
45	A.318	$CH(CH_3) - [2-C1, 4-CH_3-C_6H_3]$
	A.319	$CH(CH_3) - [2-CH_3, 4-C1-C_6H_3]$
	A.320	$CH(CH_3) - [3-C1, 4-CH_3-C_6H_3]$

	Nr.	R ²
-	A.321	CH (CH ₃) - [3-CH ₃ , 4-C1-C ₆ H ₃]
-	A.321	$CH(CH_3) - [2, 4 - (CH_3)_2 - C_6H_3]$
-		
5	A.323	$CH(CH_3) - [3, 4 - (CH_3)_2 - C_6H_3]$
3 L	A.324	$CH(CH_3) - [2, 4, 5 - (CH_3)_3 - C_6H_2]$
<u> </u>	A.325	CH(CH ₃)-[2,4,6-(CH ₃) ₃ -C ₆ H ₂]
L	A.326	$CH(CH_3) - [2-CF_3-C_6H_4]$
-	A.327	$CH(CH_3) - [3-CF_3-C_6H_4]$
	A.328	$CH(CH_3) - [4 - CF_3 - C_6H_4]$
10	A.329	$CH(CH_3) - [2-F, 4-CF_3-C_6H_3]$
	A.330	$CH(CH_3) - [2-CF_3, 4-F-C_6H_3]$
L	A.331	$CH(CH_3) - [3-F, 4-CF_3-C_6H_3]$
L	A.332	$CH(CH_3) - [3-CF_3, 4-F-C_6H_3]$
L	A.333	$CH(CH_3) - [2-C1, 4-CF_3-C_6H_3]$
15	A.334	$CH(CH_3) - [2-CF_3, 4-C1-C_6H_3]$
	A.335	$CH(CH_3) - [3-C1, 4-CF_3-C_6H_3]$
	A.336	$CH(CH_3) - [3-CF_3, 4-C1-C_6H_3]$
	A.337	$CH(CH_3) - [2, 4 - (CF_3)_2 - C_6H_3]$
	A.338	$CH(CH_3) - [3, 4 - (CF_3)_2 - C_6H_3]$
20	A.339	$CH(CH_3) - [2, 4, 5 - (CF_3)_3 - C_6H_2]$
	A.340	$CH(CH_3) - [2, 4, 6 - (CF_3)_3 - C_6H_2]$
	A.341	$CH(CH_3) - [2-OCH_3-C_6H_4]$
	A.342	$CH(CH_3) - [3 - OCH_3 - C_6H_4]$
	A.343	$CH(CH_3) - [4 - OCH_3 - C_6H_4]$
25	A.344	$CH(CH_3) - [2-F, 4-OCH_3-C_6H_3]$
	A.345	$CH(CH_3) - [2-OCH_3, 4-F-C_6H_3]$
L	A.346	$CH(CH_3) - [3-F, 4-OCH_3-C_6H_3]$
L	A.347	$CH(CH_3) - [3-OCH_3, 4-F-C_6H_3]$
L	A.348	$CH(CH_3) - [2-C1, 4-OCH_3-C_6H_3]$
30	A.349	$CH(CH_3) - [2-OCH_3, 4-C1-C_6H_3]$
L	A.350	$CH(CH_3) - [3-C1, 4-OCH_3-C_6H_3]$
L	A.351	$CH(CH_3) - [3-OCH_3, 4-C1-C_6H_3]$
L	A.352	$CH(CH_3) - [2, 4 - (OCH_3)_2 - C_6H_3]$
<u> </u>	A.353	$CH(CH_3) - [3, 4 - (OCH_3)_2 - C_6H_3]$
35	A.354	$CH(CH_3) - [2, 4, 5 - (OCH_3)_3 - C_6H_2]$
L	A.355	$CH(CH_3) - [2, 4, 6 - (OCH_3)_3 - C_6H_2]$
<u> </u> _	A.356	$CH(CH_3) - [2-OCHF_2-C_6H_4]$
L	A.357	$CH(CH_3) - [3-OCHF_2-C_6H_4]$
L	A.358	$CH(CH_3) - [4 - OCHF_2 - C_6H_4]$
40	A.359	$CH(CH_3) - [2-F, 4-OCHF_2-C_6H_3]$
_	A.360	$CH(CH_3) - [2-OCHF_2, 4-F-C_6H_3]$
L	A.361	$CH(CH_3) - [3-F, 4-OCHF_2-C_6H_3]$
L	A.362	$CH(CH_3) - [3-OCHF_2, 4-F-C_6H_3]$
	A.363	$CH(CH_3) - [2-C1, 4-OCHF_2-C_6H_3]$
45	A.364	$CH(CH_3) - [2-OCHF_2, 4-C1-C_6H_3]$
L	A.365	$CH(CH_3) - [3-C1, 4-OCHF_2-C_6H_3]$
L	A.366	$CH(CH_3) - [3-OCHF_2, 4-C1-C_6H_3]$

	Nr.	R ²
	A.367	$CH(CH_3) - [2, 4 - (OCHF_2)_2 - C_6H_3]$
	A.368	$CH(CH_3) - [3, 4 - (OCHF_2)_2 - C_6H_3]$
	A.369	CH(CH ₃)-[2,4,5-(OCHF ₂) ₃ -C ₆ H ₂]
5	A.370	CH(CH ₃)-[2,4,6-(OCHF ₂) ₃ -C ₆ H ₂]
	A.371	CH ₂ F
	A.372	CHF ₂
	A.373	CF ₃
	A.374	CH ₂ -CN
10	A.375	CH ₂ -OCH ₃
	A.376	CH ₂ -OCH ₂ CH ₃
	A.377	CH ₂ -OCH ₂ CH ₂ CH ₃
	A.378	CH ₂ -OCH (CH ₃) ₂
	A.379	CH ₂ -OCH ₂ CH ₂ CH ₃
15	A.380	CH ₂ -OCH (CH ₃) CH ₂ CH ₃
	A.381	CH ₂ -OCH ₂ CH (CH ₃) ₂
	A.382	CH ₂ -OC (CH ₃) ₃
	A.383	CH ₂ -OCF ₃
	A.384	CH ₂ -OCH ₂ CF ₃
20	A.385	CH ₂ CH ₂ -OCH ₂ CH ₂ CH ₃
	A.386	CH ₂ CH ₂ -OCH (CH ₃) ₂
	A.387	CH ₂ CH ₂ -OCH ₂ CH ₂ CH ₃
	A.388	CH ₂ CH ₂ -OCH (CH ₃) CH ₂ CH ₃
25	A.389	CH ₂ CH ₂ -OCH ₂ CH (CH ₃) ₂
25	A.390	CH ₂ CH ₂ -OC (CH ₃) ₃
	A.391 A.392	CH ₂ CH ₂ -OCF ₃ CH ₂ CH ₂ -OCH ₂ CF ₃
ļ	A.393	CH ₂ CH ₂ -OCH ₂ CF ₃ CH ₂ CH ₂ -[C ₆ H ₅]
}	A.394	$CH_2CH_2 - [2-CN-C_6H_4]$
30	A.395	$CH_2CH_2 - [3-CN-C_6H_4]$
- 1	A.396	$CH_2CH_2 - [4-CN-C_6H_4]$
	A.397	CH ₂ CH ₂ -[2-F-C ₆ H ₄]
İ	A.398	$CH_2CH_2 - [3-F-C_6H_4]$
ļ	A.399	$CH_2CH_2 - [4 - F - C_6H_4]$
35	A.400	$CH_2CH_2-[2,4-F_2-C_6H_3]$
	A.401	$CH_2CH_2-[3,4-F_2-C_6H_3]$
	A.402	$CH_2CH_2-[2,4,5-F_3-C_6H_2]$
L	A.403	$CH_2CH_2-[2,4,6-F_3-C_6H_2]$
- 1	A.404	CH ₂ CH ₂ -[2-C1-C ₆ H ₄]
40	A.405	$CH_2CH_2 - [3-C1-C_6H_4]$
	A.406	CH ₂ CH ₂ -[4-C1-C ₆ H ₄]
	A.407	CH ₂ CH ₂ -[2,4-Cl ₂ -C ₆ H ₃]
-	A.408	CH ₂ CH ₂ -[3,4-Cl ₂ -C ₆ H ₃]
<u>ا ہ</u>	A.409	$CH_2CH_2 - [2, 4, 5 - C1_3 - C_6H_2]$
45	A.410	$CH_2CH_2 - [2, 4, 6-Cl_3-C_6H_2]$
	A.411	$CH_2CH_2 - [2-CH_3-C_6H_4]$
L	A.412	$CH_2CH_2-[3-CH_3-C_6H_4]$

	r	21
	Nr.	R ²
	A.413	CH ₂ CH ₂ -[4-CH ₃ -C ₆ H ₄]
	A.414	$CH_2CH_2-[2-F, 4-CH_3-C_6H_3]$
_	A.415	$CH_2CH_2-[2-CH_3, 4-F-C_6H_3]$
5	A.416	$CH_2CH_2-[3-F, 4-CH_3-C_6H_3]$
	A.417	$CH_2CH_2-[3-CH_3, 4-F-C_6H_3]$
	A.418	$CH_2CH_2-[2-C1, 4-CH_3-C_6H_3]$
	A.419	$CH_2CH_2-[2-CH_3, 4-C1-C_6H_3]$
	A.420	$CH_2CH_2-[3-C1, 4-CH_3-C_6H_3]$
10	A.421	$CH_2CH_2-[3-CH_3, 4-C1-C_6H_3]$
	A.422	$CH_2CH_2-[2,4-(CH_3)_2-C_6H_3]$
	A.423	$CH_2CH_2-[3,4-(CH_3)_2-C_6H_3]$
	A.424	$CH_2CH_2-[2,4,5-(CH_3)_3-C_6H_2]$
	A.425	$CH_2CH_2-[2,4,6-(CH_3)_3-C_6H_2]$
15	A.426	$CH_2CH_2-[2-CF_3-C_6H_4]$
	A.427	$CH_2CH_2-[3-CF_3-C_6H_4]$
	A.428	CH ₂ CH ₂ -[4-CF ₃ -C ₆ H ₄]
	A.429	$CH_2CH_2-[2-F, 4-CF_3-C_6H_3]$
	A.430	$CH_2CH_2-[2-CF_3, 4-F-C_6H_3]$
20	A.431	$CH_2CH_2-[3-F, 4-CF_3-C_6H_3]$
	A.432	$CH_2CH_2-[3-CF_3, 4-F-C_6H_3]$
	A.433	$CH_2CH_2-[2-C1, 4-CF_3-C_6H_3]$
	A.434	$CH_2CH_2-[2-CF_3, 4-C1-C_6H_3]$
	A.435	$CH_2CH_2-[3-C1, 4-CF_3-C_6H_3]$
25	A.436	$CH_2CH_2-[3-CF_3, 4-C1-C_6H_3]$
	A.437	$CH_2CH_2-[2,4-(CF_3)_2-C_6H_3]$
	A.438	$CH_2CH_2-[3,4-(CF_3)_2-C_6H_3]$
	A.439	$CH_2CH_2-[2,4,5-(CF_3)_3-C_6H_2]$
	A.440	$CH_2CH_2-[2,4,6-(CF_3)_3-C_6H_2]$
30	A.441	CH ₂ CH ₂ -[2-OCH ₃ -C ₆ H ₄]
	A.442	CH ₂ CH ₂ -[3-OCH ₃ -C ₆ H ₄]
	A.443	CH ₂ CH ₂ -[4-OCH ₃ -C ₆ H ₄]
	A.444	CH ₂ CH ₂ -[2-F, 4-OCH ₃ -C ₆ H ₃]
3-	A.445	CH ₂ CH ₂ -[2-OCH ₃ , 4-F-C ₆ H ₃]
35	A.446	CH ₂ CH ₂ -[3-F, 4-OCH ₃ -C ₆ H ₃]
ŀ	A.447	CH ₂ CH ₂ -[3-OCH ₃ , 4-F-C ₆ H ₃]
ŀ	A.448	CH ₂ CH ₂ -[2-C1, 4-OCH ₃ -C ₆ H ₃]
ł	A.449 A.450	$CH_2CH_2-[2-OCH_3, 4-C1-C_6H_3]$ $CH_2CH_2-[3-C1, 4-OCH_3-C_6H_3]$
40	A.450 A.451	
		CH ₂ CH ₂ -[3-OCH ₃ , 4-C1-C ₆ H ₃]
	A.452 A.453	$CH_2CH_2-[2,4-(OCH_3)_2-C_6H_3]$ $CH_2CH_2-[3,4-(OCH_3)_2-C_6H_3]$
-	A.454	CH ₂ CH ₂ -[3,4-(OCH ₃) ₂ -C ₆ H ₃] CH ₂ CH ₂ -[2,4,5-(OCH ₃) ₃ -C ₆ H ₂]
-	A.455	$CH_2CH_2 = \{2, 4, 5 = \{OCH_3\}_3 = C_6H_2\}$ $CH_2CH_2 = \{2, 4, 6 = \{OCH_3\}_3 = C_6H_2\}$
45	A.456	$CH_2CH_2-[2,4,6-(OCH_3)_3-C_6H_2]$ $CH_2CH_2-[2-OCHF_2-C_6H_4]$
43	A.450 A.457	$CH_2CH_2 - [2 - OCHF_2 - C_6H_4]$ $CH_2CH_2 - [3 - OCHF_2 - C_6H_4]$
	A.457 A.458	CH ₂ CH ₂ -[3-OCHF ₂ -C ₆ H ₄] CH ₂ CH ₂ -[4-OCHF ₂ -C ₆ H ₄]
	A.436	Cn2Cn2 [4 OCnr 2 C6n4]

	Nr.	R ²
	A.459	CH ₂ CH ₂ -[2-F, 4-OCHF ₂ -C ₆ H ₃]
	A.460	CH ₂ CH ₂ -[2-OCHF ₂ , 4-F-C ₆ H ₃]
	A.461	$CH_2CH_2-[3-F, 4-OCHF_2-C_6H_3]$
5	A.462	$CH_2CH_2-[3-OCHF_2, 4-F-C_6H_3]$
	A.463	$CH_2CH_2-[2-C1, 4-OCHF_2-C_6H_3]$
	A.464	$CH_2CH_2-[2-OCHF_2, 4-C1-C_6H_3]$
	A.465	$CH_2CH_2-[3-C1, 4-OCHF_2-C_6H_3]$
	A.466	$CH_2CH_2-[3-OCHF_2, 4-C1-C_6H_3]$
10	A.467	$CH_2CH_2-[2,4-(OCHF_2)_2-C_6H_3]$
	A.468	$CH_2CH_2-[3,4-(OCHF_2)_2-C_6H_3]$
	A.469	$CH_2CH_2-[2,4,5-(OCHF_2)_3-C_6H_2]$
	A.470	$CH_2CH_2-[2,4,6-(OCHF_2)_3-C_6H_2])$
	A.471	CH(CH ₃)-CN
15	A.472	CH(CH ₃)-OCH ₃
	A.473	CH(CH ₃)-OCH ₂ CH ₃
	A.474	CH (CH ₃) -OCH ₂ CH ₂ CH ₃
	A.475	CH (CH ₃) -OCH (CH ₃) ₂
1	A.476	CH (CH ₃) -OCH ₂ CH ₂ CH ₂ CH ₃
20	A.477	CH (CH ₃) -OCH (CH ₃) CH ₂ CH ₃
	A.478	CH (CH ₃) -OCH ₂ CH (CH ₃) ₂
	A.479	CH (CH ₃) -OC (CH ₃) ₃
	A.480	CH(CH ₃)-OCF ₃
	A.481	CH (CH ₃) -OCH ₂ CF ₃
25	A.482	CH ₂ CH ₂ F
	A.483	CH ₂ CHF ₂
	A.484	CH ₂ CF ₃
	A.485 A.486	CR CV
30	A.487	CF ₂ CH ₃ CHFCHF ₂
30	A.488	CHFCF ₃
	A.489	CF ₂ CHF ₂
	A.490	CF ₂ CF ₃
	A.491	CF ₂ CHFC1
35	A.492	CH ₂ CH ₂ CH ₂ -CN
	A.493	CH ₂ CH ₂ CH ₂ -OCH ₃
İ	A.494	CH ₂ CH ₂ CH ₂ -OCH ₂ CH ₃
	A.495	CH ₂ CH ₂ CH ₂ -OCH ₂ CH ₂ CH ₃
	A.496	CH ₂ CH ₂ CH ₂ -OCH (CH ₃) ₂
40	A.497	CH ₂ CH ₂ CH ₂ -OCF ₃
	A.498	CH ₂ CH ₂ CH ₂ -OCH ₂ CF ₃
	A.499	CH ₂ CH (CH ₃) -CN
	A.500	CH ₂ CH (CH ₃) -OCH ₃
	A.501	CH ₂ CH (CH ₃) -OCH ₂ CH ₃
45	A.502	CH ₂ CH (CH ₃) -OCH ₂ CH ₂ CH ₃
	A.503	CH ₂ CH (CH ₃) -OCH (CH ₃) ₂
	A.504	CH ₂ CH (CH ₃) -OCF ₃

	Nr.	R ²			
	A.505	CH ₂ CH (CH ₃) -OCH ₂ CF ₃			
	A.506	CH (CH ₂ CH ₃) -CN			
	A.507	CH (CH ₂ CH ₃) -OCH ₃			
5	A.508	CH (CH ₂ CH ₃) -OCH ₂ CH ₃			
	A.509	CH (CH ₂ CH ₃) -OCH ₂ CH ₂ CH ₃			
	A.510	CH (CH ₂ CH ₃) -OCH (CH ₃) ₂			
	A.511	CH (CH ₂ CH ₃) -OCF ₃			
	A.512	CH (CH ₂ CH ₃) -OCH ₂ CF ₃			
10	A.513	CH (CH ₃) CH ₂ -CN			
	A.514	CH (CH ₃) CH ₂ -OCH ₃			
	A.515	CH (CH ₃) CH ₂ -OCH ₂ CH ₃			
	A.516	CH (CH ₃) CH ₂ -OCH ₂ CH ₂ CH ₃			
	A.517	CH (CH ₃) CH ₂ -OCH (CH ₃) ₂			
15	A.518	CH (CH ₃) CH ₂ -OCF ₃			
	A.519	CH (CH ₃) CH ₂ -OCH ₂ CF ₃			
	A.520	CH ₂ CH ₂ CF ₃			
	A.521	CH ₂ CF ₃ CF ₃			
•	A.522	CHFCH ₂ CH ₃			
20	A.523	CH (CF ₃) CH ₃			
	A.524	CH(CF ₃) ₂			
	A.525	CH ₂ CH ₂ CH ₂ -CN			
	A.526	CH ₂ CH ₂ CH ₂ -OCH ₃			
25	A.527 A.528	CH ₂ CH ₂ CH ₂ -OCH ₂ CH ₃			
4.5	A.529	CH ₂ CH ₂ CH ₂ CH ₂ -OCF ₃ CH (CN) -CH ₂ CH ₂ CH ₃			
	A.530	CH (OCH ₃) -CH ₂ CH ₂ CH ₃			
	A.531	CH (OCH ₂ CH ₃) -CH ₂ CH ₂ CH ₃			
	A.532	CH (OCF ₃) -CH ₂ CH ₂ CH ₃			
30	A.533	CH (OCH ₂ CF ₃) -CH ₂ CH ₂ CH ₃			
	A.534	CH (CN) -CH ₂ CH (CH ₃) ₂			
	A.535	CH (OCH ₃) -CH ₂ CH (CH ₃) ₂			
	A.536	CH (OCH ₂ CH ₃) -CH ₂ CH (CH ₃) ₂			
	A.537	CH (OCF ₃) -CH ₂ CH (CH ₃) ₂			
35	A.538	CH (OCH ₂ CF ₃) -CH ₂ CH (CH ₃) ₂			
	A.539	CHFCH ₂ CH ₂ CH ₃			
	A.540	$C(CH_3) = CH_2$			
	A.541	CH=CH-CH ₃ (Z)			
40	A.542	$C(CH_2CH_3) = CH_2$			
	A.543	$C(CH_3) = CH - CH_3 $ (E)			
	A.544	$C(CH_3) = CH - CH_3 $ (Z)			
	A.545	C (CH ₃) = C (CH ₃) ₂			
		CH (CH ₃) -CH=CH ₂			
,		CH=C (CH ₃) ₂			
45		$CH_2-C (CH_3)=CH_2$			
	A.549	CH ₂ -CH		A.550	CH ₂ -CH (CH ₃) -CH=CH ₂

54

- 1	Nr.		R ²
	A.551	CH2-CC1=CH2	
	A.552	CH ₂ -CH=CH-C1	(2)
	A.553	CH ₂ -CC1=CH-C1	(E)
5	A.554	CH ₂ -CC1=CH-C1	(Z)
	A.555	CH ₂ -CH=CCl ₂	(2)
	A.556	CH ₂ -CC1=CC1 ₂	
	A.557	CH ₂ -CBr=CH ₂	
	A.558	CH ₂ -CH=CH-Br	(Z)
10	A.559	CH ₂ -CBr=CH-Br	(E)
_	A.560	CH ₂ -CBr=CH-Br	(2)
	A.561	CH ₂ -CH=CBr ₂	(2)
	A.562	CH2-CBr=CBr2	
	A.563	CH2-CH=CH-CH3	(2)
15	A.564	CH ₂ -C (CH ₃)=CH-CH ₃	(E)
	A.565	CH ₂ -C (CH ₃) =CH-CH ₃	(Z)
	A.566	CH2-CH=C (CH3) 2	,_,_,
	A.567	CH ₂ -CH ₂ -CH=CH ₂	
	A.568	CH ₂ -CC1=CH-CH ₃	(E)
20	A.569	CH ₂ -CC1=CH-CH ₃	(Z)
	A.570	CH2-CH=CC1-CH3	(E)
	A.571	CH ₂ -CH=CC1-CH ₃	(Z)
	A.572	CH ₂ -C (CH ₃) =C (CH ₃) ₂	
	A.573	CH ₂ -CBr=CH-CH ₃	(E)
25	A.574	CH ₂ -CBr=CH-CH ₃	(Z)
	A.575	CH2-CH=CBr-CH3	(E)
	A.576	CH2-CH=CBr-CH3	(Z)
	A.577	CH2-CH=CH-CH2C1	(E)
	A.578	CH2-CH=CH-CH2C1	(Z)
30	A.579	CH2-CH=CH-CH2CH3	(E)
Ì	A.580	CH2-CH=CH-CH2CH3	(Z)
	A.581	CH2-CH=CH-CH2Br	(E)
	A.582	CH2-CH=CH-CH2Br	(Z)
	A.583	CH2-CC1=CC1-CH2C1	(E)
35	A.584	CH2-CC1=CC1-CH2C1	(Z)
	A.585	CH ₂ -CF=CH ₂	
	A.586	CH ₂ -CH=CH-F	(E)
	A.587	CH ₂ -CH=CH-F	(Z)
	A.588	CH ₂ -CH=CF ₂	
40	A.589	CH ₂ -CF=CH-F	(E)
	A.590	CH ₂ -CF=CH-F	(Z)
	A.591	CH (CH ₃) -CH=CH ₂	
	A.592	CH(CH ₃)-CC1=CH ₂	
	A.593	CH (CH ₃) -CH=CH-Cl	(E)
45	A.594	CH (CH ₃) -CH=CH-C1	(Z)
	A.595	CH(CH ₃)-CC1=CH-C1	(E)
	A.596	CH(CH ₃)-CC1=CH-C1	(2)

	Nr.	R	2
	A.597	CH(CH ₃)-CH=CCl ₂	
	A.598	CH(CH ₃)-CC1=CC1 ₂	
	A.599	CH(CH ₃)-CBr=CH ₂	
5	A.600	CH(CH ₃)-CH=CH-Br	(E)
	A.601	CH(CH3)-CH=CH-Br	(Z)
	A.602	CH(CH ₃)-CBr=CH-Br	(E)
	A.603	CH(CH ₃)-CBr=CH-Br	(Z)
	A.604	CH(CH ₃)-CH=CBr ₂	
10	A.605	CH(CH ₃)-CBr=CBr ₂	
	A.606	CH(CH ₃)-C(CH ₃)=CH ₂	
	A.607	CH (CH ₃) -CH=CH-CH ₃	(E)
	A.608	CH (CH ₃) -CH=CH-CH ₃	(Z)
	A.609	$CH(CH_3)-C(CH_3)=CH-CH_3$	(E)
15	A.610	$CH(CH_3)-C(CH_3)=CH-CH_3$	(Z)
	A.611	CH (CH ₃) -CH=C (CH ₃) ₂	
	A.612	CH(CH ₃)-CC1=CH-CH ₃	(E)
	A.613	CH(CH ₃)-CC1=CH-CH ₃	(Z)
	A.614	CH(CH ₃)-CH=CCl-CH ₃	(E)
20	A.615	CH(CH ₃)-CH=CC1-CH ₃	(Z)
	A.616	CH(CH ₃)-CBr=CH-CH ₃	(E)
	A.617	CH(CH ₃)-CBr=CH-CH ₃	(Z)
	A.618	CH(CH ₃)-CH=CBr-CH ₃	(E)
	A.619	CH(CH ₃)-CH=CBr-CH ₃	(Z)
25	A.620	CH(CH ₃)-CH=CH-CH ₂ Cl	(E)
	A.621	CH(CH ₃)-CH=CH-CH ₂ Cl	(Z)
	A.622	CH(CH ₃)-CH=CH-CH ₂ CH ₃	(E)
	A.623	CH(CH ₃)-CH=CH-CH ₂ CH ₃	(Z)
	A.624	CH(CH ₃)-CH=CH-CH ₂ Br	(E)
30	A.625	CH(CH ₃)-CH=CH-CH ₂ Br	(Z)
	A.626	CH(CH ₃)-CC1=CC1-CH ₂ C1	(E)
	A.627	CH (CH ₃) -CC1=CC1-CH ₂ C1	(Z)
	A.628	CH(CH ₃)-CF=CH ₂	
	A.629	CH (CH ₃) -CH=CH-F	(E)
35	A.630	CH (CH ₃) -CH=CH-F	(2)
	A.631	CH (CH ₃) -CH=CF ₂	
	A.632	CH (CH ₃) -CF=CH-F	(E)
	A.633	CH (CH ₃) -CF=CH-F	(2)
40	A.634	CH ₂ CHC1-CH=CH ₂	
40	A.635 A.636	CH ₂ CH ₂ -CH=C (CH ₃) ₂	/B)
	A.636 A.637	CH ₂ CH ₂ -C (CH ₃) = CH-CH ₃	(E)
- 1	A.638	CH ₂ CH ₂ -C (CH ₃) = CH-CH ₃	(Z)
	A.639	$C (CH_3) = CH - [C_6H_5]$ $C (CH_3) = CH - [2 - CN - C_6H_4]$	(E)
45	A.640	$C(CH_3) = CH - [2 - CN - C_6H_4]$	(E)
45	A.641	$C(CH_3) = CH - [3 - CN - C_6H_4]$	(E)
	A.641 A.642	$C(CH_3) = CH - [2 - F - C_6H_4]$	(E)
	A.042	C(CH3) -CH- (2-F-C6H4)	(5)

		56	
	Nr.	R ²	
	A.643	$C(CH_3) = CH - [3 - F - C_6H_4]$	(E)
	A.644	$C(CH_3) = CH - [4 - F - C_6H_4]$	(E)
	A.645	$C(CH_3) = CH - [2, 4 - F_2 - C_6H_3]$	(E)
5	A.646	$C(CH_3) = CH - [3, 4 - F_2 - C_6H_3]$	(E)
	A.647	$C(CH_3) = CH - [2, 4, 5 - F_3 - C_6H_2]$	(E)
	A.648	$C(CH_3) = CH - [2, 4, 6 - F_3 - C_6H_2]$	(E)
	A.649	$C(CH_3) = CH - [2 - C1 - C_6H_4]$	(E)
	A.650	$C(CH_3) = CH - [3 - C1 - C_6H_4]$	(E)
10	A.651	$C(CH_3) = CH - [4 - C1 - C_6H_4]$	(E)
	A.652	$C(CH_3) = CH - [2, 4 - Cl_2 - C_6H_3]$	(E)
	A.653	$C(CH_3) = CH - [3, 4 - Cl_2 - C_6H_3]$	(E)
	A.654	$C(CH_3) = CH - [2, 4, 5 - Cl_3 - C_6H_2]$	(E)
	A.655	$C(CH_3) = CH - [2, 4, 6 - Cl_3 - C_6H_2]$	(E)
15	A.656	$C(CH_3) = CH - [2 - CH_3 - C_6H_4]$	(E)
	A.657	$C(CH_3) = CH - [3 - CH_3 - CGH_4]$	(E)
	A.658	$C(CH_3) = CH - [4 - CH_3 - C_6H_4]$	(E)
	A.659	$C(CH_3) = CH - [2 - F, 4 - CH_3 - C_6H_3]$	(E)
	A.660	$C(CH_3) = CH - [2 - CH_3, 4 - F - C_6H_3]$	(E)
20	A.661	$C(CH_3) = CH - [3-F, 4-CH_3-C_6H_3]$	(E)
	A.662	$C(CH_3) = CH - [3 - CH_3, 4 - F - C_6H_3]$	(E)
	A.663	$C(CH_3) = CH - [2 - C1, 4 - CH_3 - C_6H_3]$	(E)
	A.664	$C(CH_3) = CH - [2 - CH_3, 4 - C1 - C_6H_3]$	(E)
•	A.665	$C(CH_3) = CH - [3 - C1, 4 - CH_3 - C_6H_3]$	(E)
25	A.666	$C(CH_3) = CH - [3 - CH_3, 4 - C1 - C_6H_3]$	(E)
:	A.667	$C(CH_3) = CH - [2, 4 - (CH_3)_2 - C_6H_3]$	(E)
	A.668	$C(CH_3) = CH - [3, 4 - (CH_3)_2 - C_6H_3]$	(E)
	A.669	$C(CH_3) = CH - [2, 4, 5 - (CH_3)_3 - C_6H_2]$	(E)
30	A.670	$C(CH_3) = CH - [2, 4, 6 - (CH_3)_3 - C_6H_2]$	(E)
	A.671	$C(CH_3) = CH - [2 - CF_3 - C_6H_4]$	(E)
	A.672	$C(CH_3) = CH - [3 - CF_3 - C_6H_4]$	(E)
	A.673	$C(CH_3) = CH - [4 - CF_3 - C_6H_4]$	(E)
	A.674	$C(CH_3) = CH - [2-F, 4-CF_3-C_6H_3]$	(E)
	A.675	$C(CH_3) = CH - [2 - CF_3, 4 - F - C_6H_3]$	(E)
35	A.676	$C(CH_3) = CH - [3-F, 4-CF_3-C_6H_3]$	(E)
	A.677	$C(CH_3) = CH - [3 - CF_3, 4 - F - C_6H_3]$	(E)
l	A.678	$C(CH_3) = CH - [2-C1, 4-CF_3-C_6H_3]$	(E)
1	A.679	$C(CH_3) = CH - [2 - CF_3, 4 - C1 - C_6H_3]$	(E)
ļ	A.680	$C(CH_3) = CH - [3 - C1, 4 - CF_3 - C_6H_3]$	(E)
40	A.681	$C(CH_3) = CH - [3 - CF_3, 4 - C1 - C_6H_3]$	(E)
]	A.682	$C(CH_3) = CH - [2, 4 - (CF_3)_2 - C_6H_3]$	(E)
İ	A.683	$C(CH_3) = CH - [3, 4 - (CF_3)_2 - C_6H_3]$	(E)
İ	A.684	$C(CH_3) = CH - [2, 4, 5 - (CF_3)_3 - C_6H_2]$	(E)
	A.685	$C(CH_3) = CH - [2, 4, 6 - (CF_3)_3 - C_6H_2]$	(E)
45	A.686	$C(CH_3) = CH - [2 - OCH_3 - C_6H_4]$	(E)
	A.687	$C(CH_3) = CH - [3 - OCH_3 - C_6H_4]$	(E)
	A.688	$C(CH_3) = CH - [4 - OCH_3 - C_6H_4]$	(E)

	Nr.	R ²	· · · · · · · · · · · · · · · · ·
	A.689	$C(CH_3) = CH - [2-F, 4-OCH_3-C_6H_3]$	(E)
	A.690	$C(CH_3) = CH - [2 - OCH_3, 4 - F - C_6H_3]$	(E)
	A.691	$C(CH_3) = CH - [3-F, 4-OCH_3-C_6H_3]$	(E)
5	A.692	$C(CH_3) = CH - [3 - OCH_3, 4 - F - C_6H_3]$	(E)
	A.693	$C(CH_3) = CH - [2-C1, 4-OCH_3-C_6H_3]$	(E)
	A.694	$C(CH_3) = CH - [2 - OCH_3, 4 - C1 - C_6H_3]$	(E)
	A.695	$C(CH_3) = CH - [3 - C1, 4 - OCH_3 - C_6H_3]$	(E)
	A.696	$C(CH_3) = CH - [3 - OCH_3, 4 - C1 - C_6H_3]$	(E)
10	A.697	$C(CH_3) = CH - [2, 4 - (OCH_3)_2 - C_6H_3]$	(E)
	A.698	$C(CH_3) = CH - [3, 4 - (OCH_3)_2 - C_6H_3]$	(E)
	A.699	$C(CH_3) = CH - [2, 4, 5 - (OCH_3)_3 - C_6H_2]$	(E)
	A.700	$C(CH_3) = CH - [2, 4, 6 - (OCH_3)_3 - C_6H_2]$	(E)
	A.701	$C(CH_3) = CH - [2 - OCHF_2 - C_6H_4]$	(E)
15	A.702	$C(CH_3) = CH - [3 - OCHF_2 - C_6H_4]$	(E)
	A.703	$C(CH_3) = CH - [4 - OCHF_2 - C_6H_4]$	(E)
	A.704	$C(CH_3) = CH - [2-F, 4-OCHF_2-C_6H_3]$	(E)
	A.705	$C(CH_3) = CH - [2 - OCHF_2, 4 - F - C_6H_3]$	(E)
	A.706	$C(CH_3) = CH - [3-F, 4-OCHF_2-C_6H_3]$	(E)
20	A.707	$C(CH_3) = CH - [3 - OCHF_2, 4 - F - C_6H_3]$	(E)
	A.708	$C(CH_3) = CH - [2 - C1, 4 - OCHF_2 - C_6H_3]$	(E)
	A.709	$C(CH_3) = CH - [2 - OCHF_2, 4 - C1 - C_6H_3]$	(E)
	A.710	$C(CH_3) = CH - [3 - C1, 4 - OCHF_2 - C_6H_3]$	(E)
I	A.711	$C(CH_3) = CH - [3 - OCHF_2, 4 - C1 - C_6H_3]$	(E)
25	A.712	$C(CH_3) = CH - [2, 4 - (OCHF_2)_2 - C_6H_3]$	(E)
	A.713	$C(CH_3) = CH - [3, 4 - (OCHF_2)_2 - C_6H_3]$	(E)
ļ	A.714	$C(CH_3) = CH - [2, 4, 5 - (OCHF_2)_3 - C_6H_2]$	(E)
	A.715	$C(CH_3) = CH - [2, 4, 6 - (OCHF_2)_3 - C_6H_2]$	(E)
20	A.716	$CH=C(CH_3)-[C_6H_5]$	(E)
30	A.717	$CH=C(CH_3) - [2-CN-C_6H_4]$	(E)
- 1	A.718 A.719	CH=C (CH ₃) - [3-CN-C ₆ H ₄]	(E)
ŀ	A.719 A.720	CH=C (CH ₃) - [4-CN-C ₆ H ₄]	(E)
ł	A.721	CH=C (CH ₃) - $[2-F-C_6H_4]$ CH=C (CH ₃) - $[3-F-C_6H_4]$	(E)
35	A.722	$CH=C(CH_3)-[3-F-C_6H_4]$ $CH=C(CH_3)-[4-F-C_6H_4]$	
33	A.723	$CH=C(CH_3) - [4-F-C_6H_4]$ $CH=C(CH_3) - [2,4-F_2-C_6H_3]$	(E)
ŀ	A.724	$CH=C(CH_3)-[3,4-F_2-C_6H_3]$	(E)
ŀ	A.725	$CH=C(CH_3)-[2,4,5-F_3-C_6H_2]$	(E)
ŀ	A.726	CH=C (CH ₃) - [2, 4, 6-F ₃ -C ₆ H ₂]	(E)
40	A.727	$CH=C(CH_3)-[2-C1-C_6H_4]$	(E)
-	A.728	CH=C(CH ₃) - [3-C1-C ₆ H ₄]	(E)
	A.729	CH=C (CH ₃) - [4-C1-C ₆ H ₄]	(E)
İ	A.730	CH=C(CH ₃) - [2, 4-Cl ₂ -C ₆ H ₃]	(E)
	A.731	CH=C(CH ₃) - [3, 4-Cl ₂ -C ₆ H ₃]	(E)
45	A.732	$CH=C(CH_3)-[2,4,5-Cl_3-C_6H_2]$	(E)
	A.733	CH=C(CH ₃)-[2,4,6-Cl ₃ -C ₆ H ₂]	(E)
		CH=C(CH ₃)-[2-CH ₃ -C ₆ H ₄]	(E)
			

	Nr.	R ²	
	A.735	$CH=C(CH_3)-[3-CH_3-C_6H_4]$	(E)
	A.736	$CH=C(CH_3)-[4-CH_3-C_6H_4]$	(E)
	A.737	$CH=C(CH_3)-[2-F, 4-CH_3-C_6H_3]$	(E)
5	A.738	$CH=C(CH_3)-[2-CH_3, 4-F-C_6H_3]$	(E)
	A.739	$CH=C(CH_3)-[3-F, 4-CH_3-C_6H_3]$	(E)
	A.740	$CH=C(CH_3)-[3-CH_3, 4-F-C_6H_3]$	(E)
	A.741	$CH=C(CH_3)-[2-C1, 4-CH_3-C_6H_3]$	(E)
	A.742	CH=C(CH ₃)-[2-CH ₃ , 4-C1-C ₆ H ₃]	(E)
10	A.743	$CH=C(CH_3)-[3-C1, 4-CH_3-C_6H_3]$	(E)
	A.744	$CH=C(CH_3)-[3-CH_3, 4-C1-C_6H_3]$	(E)
	A.745	$CH=C(CH_3)-[2,4-(CH_3)_2-C_6H_3]$	(E)
	A.746	$CH=C(CH_3)-[3,4-(CH_3)_2-C_6H_3]$	(E)
	A.747	$CH=C(CH_3) - [2,4,5-(CH_3)_3-C_6H_2]$	(E)
15	A.748	$CH=C(CH_3) - [2,4,5,(CH_3),3,C_6H_2]$	· · · · · · · · · · · · · · · · · · ·
13	A.748		(E)
		CH=C (CH ₃) - [2-CF ₃ -C ₆ H ₄]	(E)
	A.750	CH=C (CH ₃) - [3-CF ₃ -C ₆ H ₄]	(E)
	A.751	CH=C (CH ₃) - [4-CF ₃ -C ₆ H ₄]	(E)
20	A.752	CH=C(CH ₃)-[2-F, 4-CF ₃ -C ₆ H ₃]	(E)
20	A.753	CH=C(CH ₃)-[2-CF ₃ , 4-F-C ₆ H ₃]	(E)
	A.754	CH=C(CH ₃)-[3-F, 4-CF ₃ -C ₆ H ₃]	(E)
	A.755	$CH=C(CH_3)-[3-CF_3, 4-F-C_6H_3]$	(E)
	A.756	$CH=C(CH_3)-[2-C1, 4-CF_3-C_6H_3]$	(E)
	A.757	$CH=C(CH_3)-[2-CF_3, 4-C1-C_6H_3]$	(E)
25	A.758	$CH=C(CH_3)-[3-C1, 4-CF_3-C_6H_3]$	(E)
	A.759	$CH=C(CH_3)-[3-CF_3, 4-C1-C_6H_3]$	(E)
i	A.760	$CH=C(CH_3)-[2,4-(CF_3)_2-C_6H_3]$	(E)
	A.761	$CH=C(CH_3)-[3,4-(CF_3)_2-C_6H_3]$	(E)
	A.762	$CH=C(CH_3) - [2, 4, 5 - (CF_3)_3 - C_6H_2]$	(E)
30	A.763	$CH=C(CH_3)-[2,4,6-(CF_3)_3-C_6H_2]$	(E)
	A.764	$CH=C(CH_3)-[2-OCH_3-C_6H_4]$	(E)
	A.765	$CH=C(CH_3)-[3-OCH_3-C_6H_4]$	(E)
	A.766	$CH=C(CH_3)-[4-OCH_3-C_6H_4]$	(E)
	A.767	$CH=C(CH_3)-[2-F, 4-OCH_3-C_6H_3]$	(E)
35	A.768	$CH=C(CH_3)-[2-OCH_3, 4-F-C_6H_3]$	(E)
	A.769	$CH=C(CH_3)-[3-F, 4-OCH_3-C_6H_3]$	(E)
	A.770	$CH=C(CH_3)-[3-OCH_3, 4-F-C_6H_3]$	(E)
	A.771	$CH=C(CH_3)-[2-C1, 4-OCH_3-C_6H_3]$	(E)
	A.772	$CH=C(CH_3)-[2-OCH_3, 4-C1-C_6H_3]$	(E)
40	A.773	$CH=C(CH_3)-[3-C1, 4-OCH_3-C_6H_3]$	(E)
	A.774	$CH=C(CH_3)-[3-OCH_3, 4-C1-C_6H_3]$	(E)
	A.775	$CH=C(CH_3)-[2,4-(OCH_3)_2-C_6H_3]$	(E)
	A.776	$CH=C(CH_3)-[3,4-(OCH_3)_2-C_6H_3]$	(E)
	A.777	$CH=C(CH_3)-[2,4,5-(OCH_3)_3-C_6H_2]$	(E)
45	A.778	CH=C(CH ₃)-[2,4,6-(OCH ₃) ₃ -C ₆ H ₂]	(E)
	A.779	$CH=C(CH_3)-[2-OCHF_2-C_6H_4]$	(E)
	A.780	CH=C(CH ₃)-[3-OCHF ₂ -C ₆ H ₄]	(E)
	<u> </u>		·

	Nr.	R ²	
	A.781	CH=C(CH ₃)-[4-OCHF ₂ -C ₆ H ₄]	(E)
5	A.782	$CH=C(CH_3)-[2-F, 4-OCHF_2-C_6H_3]$	(E)
	A.783	$CH=C(CH_3)-[2-OCHF_2, 4-F-C_6H_3]$	(E)
	A.784	$CH=C(CH_3)-[3-F, 4-OCHF_2-C_6H_3]$	(E)
	A.785	$CH=C(CH_3)-[3-OCHF_2, 4-F-C_6H_3]$	(E)
	A.786	$CH=C(CH_3)-[2-C1, 4-OCHF_2-C_6H_3]$	(E)
	A.787	$CH=C(CH_3)-[2-OCHF_2, 4-C1-C_6H_3]$	(E)
	A.788	$CH=C(CH_3)-[3-C1, 4-OCHF_2-C_6H_3]$	(E)
10	A.789	$CH=C(CH_3)-[3-OCHF_2, 4-C1-C_6H_3]$	(E)
	A.790	$CH=C(CH_3)-[2,4-(OCHF_2)_2-C_6H_3]$	(E)
	A.791	$CH=C(CH_3)-[3,4-(OCHF_2)_2-C_6H_3]$	(E)
	A.792	$CH=C(CH_3)-[2,4,5-(OCHF_2)_3-C_6H_2]$	(E)
	A.793	$CH=C(CH_3)-[2,4,6-(OCHF_2)_3-C_6H_2]$	(·E)
15	A.794	C≡C-I	
	A.795	CH ₂ -C≡C-H	
	A.796	CH ₂ -C≡C-C1	
	A.797	CH ₂ -C≡C-Br	
!	A.798	$CH_2-C\equiv C-J$	
20	A.799	CH ₂ -C≡C-CH ₃	
	A.800	$CH_2-C \equiv C-CH_2CH_3$	
	A.801	CH ₂ CH ₂ -C≡C-H	
	A.802	CH ₂ CH ₂ -C≡C-C1	
	A.803	CH ₂ CH ₂ -C≡C-Br	
25	A.804	CH ₂ CH ₂ -C≡C-J	
	A.805	$CH_2CH_2-C \equiv C-CH_3$	
	A.806	$CH_2CH_2CH_2-C \equiv C-H$	
	A.807	$CH_2CH_2CH_2-C \equiv C-C1$	
	A.808	$CH_2CH_2CH_2-C \equiv C-Br$	
30	A.809	$CH_2CH_2CH_2-C \equiv C-J$	
	A.810	$CH_2CH_2CH_2-C \equiv C-CH_3$	***************************************
	A.811	CH (CH ₃) -C≡C-H	
	A.812	CH (CH ₃) -C≡C-C1	
	A.813	CH(CH ₃)-C≡C-Br	
35	A.814	CH (CH ₃) -C≡C-J	
	A.815	CH (CH ₃) -C≡C-CH ₃	
	A.816	$C \cong C - [4 - F - C_6 H_4]$	

40

Tabelle B

	Nr.	R ²	
5	B.1	CH ₂ CH ₃	
	B.2	CH ₂ CH ₂ -CN	
	B.3	CH ₂ CH ₂ -O-CH ₃	
į	B.4	CH ₂ CH ₂ -O-CH ₂ CH ₃	
	B.5	CH ₂ CH ₂ CH ₃	
	В.6	CH (CH ₃) ₂	
10	B.7	CH ₂ CH ₂ CH ₂ CH ₃	
	B.8	CH (CH ₃) CH ₂ CH ₃	
	B.9	CH ₂ CH (CH ₃) ₂	
	B.10	CH=CH ₂	
	B.11	CH=CH-CH ₃	(E)
15	B.12	CH=CH-[C ₆ H ₅]	(E)
	B.13	CH=CH-[2-CN-C ₆ H ₄]	(E)
	B.14	CH=CH-[3-CN-C ₆ H ₄]	(E)
	в.15	CH=CH-[4-CN-C ₆ H ₄]	(E)
	B.16	$CH=CH-[2-F-C_6H_4]$	(E)
20	B.17	CH=CH-[3-F-C ₆ H ₄]	(E)
	B.18	CH=CH-[4-F-C ₆ H ₄]	(E)
	в.19	$CH=CH-[2,4-F_2-C_6H_3]$	(E)
	B.20	$CH=CH-[3,4-F_2-C_6H_3]$	(E)
25	B.21	CH=CH-[2,4,5-F ₃ -C ₆ H ₂]	(E)
25	В.22	$CH=CH-[2,4,6-F_3-C_6H_2]$	(E)
	B.23	CH=CH-[2-C1-C ₆ H ₄]	(E)
	B.24	CH=CH-[3-C1-C ₆ H ₄]	(E)
	B.25	CH=CH-[4-C1-C ₆ H ₄]	(E)
30	B.26	CH=CH-[2,4-Cl ₂ -C ₆ H ₃]	(E)
30	B.27	CH=CH-[3,4-Cl ₂ -C ₆ H ₃]	(E)
	B.28	CH=CH-[2,4,5-Cl ₃ -C ₆ H ₂]	(E)
	B.29	CH=CH-[2,4,6-Cl ₃ -C ₆ H ₂]	(E)
	B.30	CH=CH-[2-CH ₃ -C ₆ H ₄]	(E)
35	B.31	CH=CH-[3-CH ₃ -C ₆ H ₄]	(E)
_	B.32	CH=CH-[4-CH ₃ -C ₆ H ₄]	(E)
	B.33 B.34	CH=CH- $[2-F, 4-CH_3-C_6H_3]$ CH=CH- $[2-CH_3, 4-F-C_6H_3]$	(E)
	B.34	$CH=CH-[2-CH_3, 4-F-C_6H_3]$ $CH=CH-[3-F, 4-CH_3-C_6H_3]$	(E)
ł	B.36	$CH=CH=\{3-F, 4-CH_3-C_6H_3\}$ $CH=CH=\{3-CH_3, 4-F-C_6H_3\}$	(E)
40	B.37	$CH=CH=[3-CH_3, 4-F-C_6H_3]$ $CH=CH-[2-C1, 4-CH_3-C_6H_3]$	(E)
	B.38	$CH=CH=\{2-CH, 4-CH_3-C_6H_3\}$ $CH=CH=\{2-CH_3, 4-CH_3-C_6H_3\}$	(E)
- }	B.39	CH=CH-[3-C1, 4-CH ₃ -C ₆ H ₃]	(E)
ŀ	B.40	$CH=CH=[3-CH_3, 4-C1-C_6H_3]$	(E)
- }	B.41	CH=CH-[2-CF ₃ -C ₆ H ₄]	(E)
45	B.42	CH=CH-[3-CF ₃ -C ₆ H ₄]	(E)
	B.43	CH=CH-[4-CF ₃ -C ₆ H ₄]	(E)
	B.44	CH=CH-[2-OCH ₃ -C ₆ H ₄]	(E)
	D.33	[5 Och Coll41	(1)

		01	
	Nr.		R ²
	B.45	CH=CH-[3-OCH ₃ -C ₆ H ₄]	(E)
5	B.46	CH=CH-[4-OCH3-C6H4]	(E)
	B.47	CH=CH-[2-OCHF2-C6H4]	(E)
	B.48	CH=CH-[3-OCHF2-C6H4]	(E)
	B.49	CH=CH-[4-OCHF2-C6H4]	(E)
	B.50	CH ₂ CH=CH ₂	
	B.51	CH ₂ CH=CH-C1	(E)
	B.52	CH2CH=CH-CH3	(E)
10	B.53	C≡CH	
	B.54	C≡C-Cl	
	B.55	C≡C-Br	
	B.56	C≡C-CH ₃	
	B.57	C≡C-C ₆ H ₅	
15	B.58	$C \equiv C - [2 - C1 - C_6H_4]$	
	B.59	$C = C - [4 - C1 - C_6H_4]$	
	B.60	$C = C - [2, 4 - Cl_2 - C_6H_3]$	
	B.61	$C = C - [2 - CH_3 - C_6H_4]$	
	B.62	$C \equiv C - [4 - CH_3 - C_6H_4]$	
20	B.63	$C = C - [2, 4 - (CH_3)_2 - C_6H_3]$	
	B.64	$C = C - [2 - C1, 4 - CH_3 - C_6H_3]$	
	B.65	$C = C - [2 - CH_3, 4 - C1 - C_6H_3]$	
	B.66	$C = C - [3 - CF_3 - C_6H_4]$	
į	B.67	$C \equiv C - [3 - C1, 5 - CF_3 - C_6H_3]$	
25	B.68	$C \equiv C - [2 - OCH_3 - C_6H_4]$	
	B.69	C≡C-[4-OCH ₃ -C ₆ H ₄]	
	B.70	$C \equiv C - [2, 4 - (OCH_3)_2 - C_6H_3]$	
	B.71	$C \equiv C - [2 - C1, 4 - OCH_3 - C_6H_3]$	
	B.72	$C \equiv C - [2 - OCH_3, 4 - C1 - C_6H_3]$	
30	B.73	C≡C-[3-OCHF ₂ -C ₆ H ₄]	
	B.74	$C \equiv C - [3 - C1, 5 - OCHF_2 - C_6H_3]$	
	B.75	cyclopentyl	
	B.76	1-CH ₃ -cyclopentyl	
	B.77	2-CH ₃ -cyclopentyl	
35	B.78	3-CH ₃ -cyclopentyl	
	B.79	.2,3-(CH ₃) ₂ -cyclopentyl	
	B.80	1-C1-cyclopentyl	
	B.81	2-C1-cyclopentyl	
	в.82	3-C1-cyclopentyl	
40	B.83	2-CH ₃ , 3-Cl-cyclopentyl	
	B.84	2,3-Cl ₂ -cyclopentyl	
	в.85	cyclohexyl	
	B.86	1-CH ₃ -cyclohexyl	
	B.87	2-CH ₃ -cyclohexyl	
45	B.88	3-CH ₃ -cyclohexyl	
	B.89	2,3-(CH ₃) ₂ -cyclohexyl	
	B.90	$3,3-(CH_3)_2-cyclohexyl$	
•			

1	Nr.	R ²
	B.91	1-Cl-cyclohexyl
		2-C1-cyclohexyl
	B.92	3-C1-cyclohexyl
5	B.93	
ے ا	B.94	2-CH ₃ , 3-Cl-cyclohexyl
	B.95	2,3-Cl ₂ -cyclohexyl
	В.96	C ₆ H ₅
	в.97	2-CN-C ₆ H ₄
	B.98	3-CN-C ₆ H ₄
10	в.99	4-CN-C ₆ H ₄
	B.100	2-F-C ₆ H ₄
	B.101	3-F-C ₆ H ₄
	B.102	4-F-C ₆ H ₄
	B.103	2,4-F ₂ -C ₆ H ₃
15	B.104	3,4-F ₂ -C ₆ H ₃
	B.105	2,4,5-F ₃ -C ₆ H ₂
	B.106	2,4,6-F ₃ -C ₆ H ₂
	B.107	2-C1-C ₆ H ₄
	B.108	3-C1-C ₆ H ₄
20	B.109	4-C1-C ₆ H ₄
	в.110	2,4-Cl ₂ -C ₆ H ₃
	B.111	3,4-Cl ₂ -C ₆ H ₃
	B.112	2,4,5-Cl ₃ -C ₆ H ₂
0.5	B.113	2,4,6-Cl ₃ -C ₆ H ₂
25	B.114	2-CH ₃ -C ₆ H ₄
	B.115	3-CH ₃ -C ₆ H ₄
	B.116	4-CH ₃ -C ₆ H ₄
	B.117	2-F, 4-CH ₃ -C ₆ H ₃
30	B.118	2-CH ₃ , 4-F-C ₆ H ₃
30	B.119	3-F, 4-CH ₃ -C ₆ H ₃
	B.120	3-CH ₃ , 4-F-C ₆ H ₃
	B.121	2-C1, 4-CH ₃ -C ₆ H ₃
	B.122	2-CH ₃ , 4-C1-C ₆ H ₃
35	B.123	3-C1, 4-CH ₃ -C ₆ H ₃
33	B.124	3-CH ₃ , 4-Cl-C ₆ H ₃
	B.125	2,4-(CH ₃) ₂ -C ₆ H ₃
į	B.126	3,4-(CH ₃) ₂ -C ₆ H ₃
	B.127	2,4,5-(CH ₃) ₃ -C ₆ H ₂
40	B.128	2,4,6-(CH ₃) ₃ -C ₆ H ₂
	B.129	2-CF ₃ -C ₆ H ₄
	B.130	3-CF ₃ -C ₆ H ₄
	B.131	4-CF ₃ -C ₆ H ₄
	B.132	2-F, 4-CF ₃ -C ₆ H ₃
45	B.133	2-CF ₃ , 4-F-C ₆ H ₃
13	B.134	3-F, 4-CF ₃ -C ₆ H ₃
	B.135	3-CF ₃ , 4-F-C ₆ H ₃
	B.136	2-C1, 4-CF ₃ -C ₆ H ₃

	Nr.	R ²
		2-CF ₃ , 4-C1-C ₆ H ₃
	B.137	
_	B.138	3-C1, 4-CF ₃ -C ₆ H ₃
	B.139	3-CF ₃ , 4-C1-C ₆ H ₃
5	B.140	2,4-(CF ₃) ₂ -C ₆ H ₃
	B.141	3,4-(CF ₃) ₂ -C ₆ H ₃
	B.142	2,4,5-(CF ₃) ₃ -C ₆ H ₂
	B.143	2,4,6-(CF ₃) ₃ -C ₆ H ₂
	B.144	2-OCH ₃ -C ₆ H ₄
10	B.145	3-OCH ₃ -C ₆ H ₄
	B.146	4-OCH ₃ -C ₆ H ₄
	B.147	2-F, 4-OCH ₃ -C ₆ H ₃
	B.148	2-OCH ₃ , 4-F-C ₆ H ₃
	B.149	3-F, 4-OCH ₃ -C ₆ H ₃
15	B.150	3-OCH ₃ , 4-F-C ₆ H ₃
	B.151	2-C1, 4-OCH ₃ -C ₆ H ₃
	B.152	2-OCH ₃ , 4-Cl-C ₆ H ₃
l	B.153	3-C1, 4-OCH ₃ -C ₆ H ₃
	B.154	3-OCH ₃ , 4-C1-C ₆ H ₃
20	B.155	2,4-(OCH ₃) ₂ -C ₆ H ₃
	B.156	$3,4-(OCH_3)_2-C_6H_3$
i	B.157	2,4,5-(OCH ₃) ₃ -C ₆ H ₂
ŀ	B.158	2,4,6-(OCH ₃) ₃ -C ₆ H ₂
	B.159	2-OCHF ₂ -C ₆ H ₄
25	B.160	3-OCHF ₂ -C ₆ H ₄
ŀ	B.161	4-OCHF ₂ -C ₆ H ₄
ł	B.162	2-F, 4-OCHF ₂ -C ₆ H ₃
ŀ	B.163	2-OCHF ₂ , 4-F-C ₆ H ₃
ŀ	B.164	3-F, 4-OCHF ₂ -C ₆ H ₃
30	B.165	
}		3-OCHF ₂ , 4-F-C ₆ H ₃
ŀ	B.166	2-C1, 4-OCHF ₂ -C ₆ H ₃
ŀ	B.167	2-OCHF ₂ , 4-C1-C ₆ H ₃
ŀ	B.168	3-C1, 4-OCHF ₂ -C ₆ H ₃
35	B.169	3-OCHF ₂ , 4-C1-C ₆ H ₃
-	B.170	2,4-(OCHF ₂) ₂ -C ₆ H ₃
}	B.171	3,4-(OCHF ₂) ₂ -C ₆ H ₃
ŀ	B.172	2,4,5-(OCHF ₂) ₃ -C ₆ H ₂
ŀ	B.173	2,4,6-(OCHF ₂) ₃ -C ₆ H ₂
40	B.174	CH ₂ -C ₆ H ₅
۱ ۲	B.175	CH ₂ -[2-CN-C ₆ H ₄]
1	B.176	CH ₂ -[3-CN-C ₆ H ₄]
ļ	B.177	CH ₂ -[4-CN-C ₆ H ₄]
ļ	B.178	$CH_2 - [2 - F - C_6H_4]$
45	B.179	CH ₂ -[3-F-C ₆ H ₄]
45	B.180	$CH_2-[4-F-C_6H_4]$
	B.181	$CH_2-[2,4-F_2-C_6H_3]$
	B.182	$CH_2-[3,4-F_2-C_6H_3]$

4		R ²
	Nr.	
	B.183	CH ₂ -[2,4,5-F ₃ -C ₆ H ₂]
	B.184	$CH_2-[2,4,6-F_3-C_6H_2]$
اہ	B.185	CH ₂ -[2-C1-C ₆ H ₄]
5	B.186	$CH_2 - [3-C1-C_6H_4]$
	B.187	CH ₂ -[4-C1-C ₆ H ₄]
	B.188	$CH_2-[2,4-Cl_2-C_6H_3]$
	B.189	$CH_2-[3,4-Cl_2-C_6H_3]$
	В.190	$CH_2-[2,4,5-Cl_3-C_6H_2]$
10	B.191	$CH_2-[2,4,6-Cl_3-C_6H_2]$
	В.192	$CH_2 - [2 - CH_3 - C_6H_4]$
	B.193	$CH_2 - [3 - CH_3 - C_6H_4]$
	B.194	$CH_2 - [4 - CH_3 - C_6H_4]$
	B.195	$CH_2-[2-F, 4-CH_3-C_6H_3]$
15	B.196	$CH_2-[2-CH_3, 4-F-C_6H_3]$
1	B.197	$CH_2-[3-F, 4-CH_3-C_6H_3]$
į	в.198	$CH_2-[3-CH_3, 4-F-C_6H_3]$
	B.199	$CH_2-[2-C1, 4-CH_3-C_6H_3]$
	B.200	$CH_2-[2-CH_3, 4-C1-C_6H_3]$
20	в.201	$CH_2-[3-C1, 4-CH_3-C_6H_3]$
	B.202	$CH_2-[3-CH_3, 4-C1-C_6H_3]$
	B.203	CH ₂ -[2-CF ₃ -C ₆ H ₄]
	B.204	CH ₂ -[3-CF ₃ -C ₆ H ₄]
	в.205	CH ₂ -[4-CF ₃ -C ₆ H ₄]
25	B.206	CH ₂ -[2-OCH ₃ -C ₆ H ₄]
	B.207	CH ₂ -[3-OCH ₃ -C ₆ H ₄]
	в.208	CH ₂ -[4-OCH ₃ -C ₆ H ₄]
	B.209	CH ₂ -[2-OCHF ₂ -C ₆ H ₄]
30	B.210	CH ₂ -[3-OCHF ₂ -C ₆ H ₄]
30	B.211	$CH_2 - [4 - OCHF_2 - C_6H_4]$
- 1	B.212	CH (CH ₃) -C ₆ H ₅
	B.213	CH (CH ₃) - [2-CN-C ₆ H ₄]
	B.214	$CH(CH_3) - [3-CN-C_6H_4]$
35	B.215	CH(CH ₃) - [4-CN-C ₆ H ₄]
	B.216	CH (CH ₃) - [2-F-C ₆ H ₄]
	B.217	$CH(CH_3) - [3-F-C_6H_4]$
	B.218	$CH(CH_3) - [4-F-C_6H_4]$
	B.219	$CH(CH_3) - [2, 4 - F_2 - C_6H_3]$
40	B.220 B.221	$CH(CH_3) - [3, 4-F_2-C_6H_3]$ $CH(CH_3) - [2, 4, 5-F_3-C_6H_2]$
	B.222	$CH(CH_3) - [2, 4, 6-F_3-C_6H_2]$ $CH(CH_3) - [2, 4, 6-F_3-C_6H_2]$
	B.223	$CH(CH_3) - [2, 4, 6-F_3-C_6H_2]$ $CH(CH_3) - [2-C1-C_6H_4]$
}	B.224	$CH(CH_3) - [3-C1-C_6H_4]$
	B.225	$CH(CH_3) - [4-C1-C_6H_4]$
45	B.225 B.226	$CH(CH_3) - [4-C1-C_6H_4]$ $CH(CH_3) - [2,4-C1_2-C_6H_3]$
	B.226 B.227	$CH(CH_3) - [2, 4-CI_2-C_6H_3]$ $CH(CH_3) - [3, 4-CI_2-C_6H_3]$
	B.227	
	D.445	$CH(CH_3) - [2, 4, 5-Cl_3-C_6H_2]$

W	O 98/38857		PCT/EP98/00782
		65	
	Nr.	R ²	
	B.229	CH(CH ₃)-[2,4,6-Cl ₃ -C ₆ H ₂]	
	B.230	CH (CH ₃) - [2-CH ₃ -C ₆ H ₄]	
	B.231	$CH(CH_3) - [3-CH_3-C_6H_4]$	
5	B.232	CH (CH ₃) - [4-CH ₃ -C ₆ H ₄]	· · · · · · · · · · · · · · · · · · ·
	B.233	CH(CH ₃)-[2-F, 4-CH ₃ -C ₆ H ₃]	,
	B.234	CH(CH ₃)-[2-CH ₃ , 4-F-C ₆ H ₃]	
	B.235	$CH(CH_3) - [3-F, 4-CH_3-C_6H_3]$	
	B.236	$CH(CH_3) - [3-CH_3, 4-F-C_6H_3]$	
10	B.237	$CH(CH_3) - [2-C1, 4-CH_3-C_6H_3]$	
	B.238	$CH(CH_3) - [2-CH_3, 4-C1-C_6H_3]$	
	B.239	$CH(CH_3) - [3-C1, 4-CH_3-C_6H_3]$	
	B.240	$CH(CH_3) - [3-CH_3, 4-C1-C_6H_3]$	
	B.241	$CH(CH_3) - [2-CF_3-C_6H_4]$	
15	B.242	$CH(CH_3) - [3-CF_3-C_6H_4]$	
	B.243	$CH(CH_3) - [4-CF_3-C_6H_4]$	
	B.244	CH (CH ₃) - [2-OCH ₃ -C ₆ H ₄]	
	B.245	$CH(CH_3) - [3-OCH_3-C_6H_4]$	
	B.246	$CH(CH_3) - [4 - OCH_3 - C_6H_4]$	
20	B.247	CH (CH ₃) - [2-OCHF ₂ -C ₆ H ₄]	
	B.248	$CH(CH_3) - [3 - OCHF_2 - C_6H_4]$	
	B.249	CH(CH ₃)-[4-OCHF ₂ -C ₆ H ₄]	
	B.250	CH ₂ F	
	B.251	CHF ₂	
25	B.252	CF ₃	
	B.253	CH ₂ -CN	
	B.254	CH ₂ -OCH ₃	
	B.255	CH ₂ -OCH ₂ CH ₃	
~	B.256	CH ₂ -OCH ₂ CH ₂ CH ₃	: ·.
30	B.257	CH ₂ -OCH (CH ₃) ₂	· .•
- 1	в.258	CH ₂ -OCH ₂ CH ₂ CH ₂ CH ₃	·
	B.259	CH ₂ -OCH (CH ₃) CH ₂ CH ₃	··
	B.260	CH ₂ -OCH ₂ CH (CH ₃) ₂	
35	B.261	CH ₂ -OC (CH ₃) ₃	··
"	B.262	CH2-OCF3	
	B.263	CH2-OCH2CF3	
ļ	B.264	CH ₂ CH ₂ -OCH ₂ CH ₂ CH ₃	·
ļ	B.265	CH ₂ CH ₂ -OCH (CH ₃) ₂	
40	B.266	CH ₂ CH ₂ -OCH ₂ CH ₂ CH ₃	
-	B.267	CH ₂ CH ₂ -OCH (CH ₃) CH ₂ CH ₃	
- 1	B.268	CH ₂ CH ₂ -OCH ₂ CH (CH ₃) ₂	
ł	B.269	CH ₂ CH ₂ -OC (CH ₃) ₃	
ļ	B.270	CH ₂ CH ₂ -OCF ₃	
45	B.271	CH ₂ CH ₂ -OCH ₂ CF ₃	
	B.272	CH ₂ CH ₂ -[C ₆ H ₅]	
ļ	B.273	CH ₂ CH ₂ -[2-CN-C ₆ H ₄]	
Ĺ	B.274	$CH_2CH_2 - [3-CN-C_6H_4]$	

	Nr.	R ²
	B.275	CH ₂ CH ₂ -[4-CN-C ₆ H ₄]
5	B.276	CH ₂ CH ₂ -[2-F-C ₆ H ₄]
	B.277	CH ₂ CH ₂ -[3-F-C ₆ H ₄]
	B.278	$CH_2CH_2 - [4-F-C_6H_4]$
	B.279	$CH_2CH_2-[2,4-F_2-C_6H_3]$
	B.280	$CH_2CH_2-[3,4-F_2-C_6H_3]$
	B.281	$CH_2CH_2-[2,4,5-F_3-C_6H_2]$
10	B.282	$CH_2CH_2-[2,4,6-F_3-C_6H_2]$
	B.283	CH ₂ CH ₂ -[2-C1-C ₆ H ₄]
	B.284	$CH_2CH_2-[3-C1-C_6H_4]$
	B.285	CH ₂ CH ₂ -[4-C1-C ₆ H ₄]
	B.286	$CH_2CH_2-[2,4-Cl_2-C_6H_3]$
	B.287	$CH_2CH_2-[3,4-Cl_2-C_6H_3]$
15	B.288	$CH_2CH_2-[2,4,5-Cl_3-C_6H_2]$
	B.289	$CH_2CH_2-[2,4,6-Cl_3-C_6H_2]$
	B.290	$CH_2CH_2-[2-CH_3-C_6H_4]$
	B.291	CH ₂ CH ₂ -[3-CH ₃ -C ₆ H ₄]
10 15 20 25	B.292	CH ₂ CH ₂ - [4-CH ₃ -C ₆ H ₄]
20	B.293	$CH_2CH_2-[2-F, 4-CH_3-C_6H_3]$
	B.294	$CH_2CH_2-[2-CH_3, 4-F-C_6H_3]$
	B.295	$CH_2CH_2-[3-F, 4-CH_3-C_6H_3]$
	B.296	$CH_2CH_2-[3-CH_3, 4-F-C_6H_3]$
10 15 20 25	B.297	$CH_2CH_2-[2-C1, 4-CH_3-C_6H_3]$
25	B.298	$CH_2CH_2-[2-CH_3, 4-C1-C_6H_3]$
	В.299	$CH_2CH_2-[3-C1, 4-CH_3-C_6H_3]$
	в.300	$CH_2CH_2-[3-CH_3, 4-C1-C_6H_3]$
	B.301	$CH_2CH_2-[2-CF_3-C_6H_4]$
20	в.302	$CH_2CH_2 - [3 - CF_3 - C_6H_4]$
30	B.303	CH ₂ CH ₂ -[4-CF ₃ -C ₆ H ₄]
- 1	B.304	CH ₂ CH ₂ -[2-OCH ₃ -C ₆ H ₄]
	B.305	CH ₂ CH ₂ -[3-OCH ₃ -C ₆ H ₄]
ļ	B.306	CH ₂ CH ₂ -[4-OCH ₃ -C ₆ H ₄]
35	B.307	CH ₂ CH ₂ -[2-OCHF ₂ -C ₆ H ₄]
	B.308	CH ₂ CH ₂ -[3-OCHF ₂ -C ₆ H ₄]
ŀ	B.309 B.310	CH ₂ CH ₂ -[4-OCHF ₂ -C ₆ H ₄]
ł	B.311	$CH(CH_3)-CN$ $CH(CH_3)-OCH_3$
ŀ	B.312	CH (CH ₃) -OCH ₂ CH ₃
30	B.312	CH (CH ₃) -OCH ₂ CH ₃ CH (CH ₃) -OCH ₂ CH ₂ CH ₃
ł	B.314	CH (CH ₃) -OCH (CH ₃) ₂
}	B.315	CH (CH ₃) -OCH ₂ CH ₂ CH ₂ CH ₃
ŀ	B.316	CH (CH ₃) -OCH (CH ₃) CH ₂ CH ₃
ŀ	B.317	CH (CH ₃) -OCH ₂ CH (CH ₃) ₂
45	B.318	$CH(CH_3) - OC(CH_3)_3$
ŀ	B.319	CH (CH ₃) -OCF ₃
ŀ	B.320	CH (CH ₃) -OCH ₂ CF ₃
L	2.320	011,0113, 00112013

,	0/		
	Nr.	R ²	
	B.321	CH ₂ CH ₂ F	
5	в.322	CH ₂ CHF ₂	
	B.323	CH ₂ CF ₃	
	B.324	CHFCH ₃	
	B.325	CF ₂ CH ₃	
	B.326	CHFCHF ₂	
	B.327	CHFCF3	
10	B.328	CF ₂ CHF ₂	
	B.329	CF ₂ CF ₃	
	B.330	CF ₂ CHFC1	
	B.331	CH ₂ CH ₂ CH ₂ -CN	
	B.332	CH ₂ CH ₂ CH ₂ -OCH ₃	
	B.333	CH ₂ CH ₂ CH ₂ -OCH ₂ CH ₃	
15	B.334	CH ₂ CH ₂ CH ₂ -OCH ₂ CH ₂ CH ₃	
	B.335	CH ₂ CH ₂ CH ₂ -OCH (CH ₃) ₂	
	B.336	CH ₂ CH ₂ CH ₂ -OCF ₃	
	B.337	CH ₂ CH ₂ CH ₂ -OCH ₂ CF ₃	
:	B.338	CH ₂ CH (CH ₃) -CN	
20	B.339	CH ₂ CH (CH ₃) -OCH ₃	
	B.340	$CH_2CH(CH_3) - OCH_2CH_3$	
	B.341	$CH_2CH(CH_3) - OCH_2CH_2CH_3$	
	B.342	CH ₂ CH (CH ₃) -OCH (CH ₃) ₂	
	B.343	CH ₂ CH (CH ₃) -OCF ₃	
25	B.344	CH ₂ CH (CH ₃) -OCH ₂ CF ₃	
	B.345	CH (CH ₂ CH ₃) -CN	
	в.346	CH (CH ₂ CH ₃) -OCH ₃	
	B.347	CH (CH ₂ CH ₃) -OCH ₂ CH ₃	
	B.348	CH (CH ₂ CH ₃) -OCH ₂ CH ₂ CH ₃	
30	B.349	CH (CH ₂ CH ₃) -OCH (CH ₃) ₂	
	B.350	CH(CH ₂ CH ₃)-OCF ₃	
	B.351	CH(CH ₂ CH ₃)-OCH ₂ CF ₃	
ļ	в.352	CH(CH ₃)CH ₂ -CN	
35	в.353	CH(CH ₃)CH ₂ -OCH ₃	
35	B.354	CH(CH ₃)CH ₂ -OCH ₂ CH ₃	
ļ	B.355	CH(CH ₃)CH ₂ -OCH ₂ CH ₂ CH ₃	
	B.356	CH(CH ₃)CH ₂ -OCH(CH ₃) ₂	
	B.357	CH(CH ₃)CH ₂ -OCF ₃	
40	B.358	CH(CH ₃)CH ₂ -OCH ₂ CF ₃	
	B.359	CH ₂ CH ₂ CF ₃	
	B.360	CH ₂ CF ₃ CF ₃	
ļ	В.361	CHFCH ₂ CH ₃	
ļ	В.362	CH(CF ₃)CH ₃	
45	B.363	CH(CF ₃) ₂	
	B.364	CH ₂ CH ₂ CH ₂ -CN	
	B.365	CH ₂ CH ₂ CH ₂ -OCH ₃	
	В.366	CH ₂ CH ₂ CH ₂ -OCH ₂ CH ₃	

		R	
	Nr.		
	в.367	CH ₂ CH ₂ CH ₂ CH ₂ -OCF ₃	
5	B.368	CH (CN) -CH ₂ CH ₂ CH ₃	
	в.369	CH (OCH ₃) -CH ₂ CH ₂ CH ₃	
	B.370	CH (OCH ₂ CH ₃) -CH ₂ CH ₂ CH ₃	
	B.371	CH (OCF ₃) -CH ₂ CH ₂ CH ₃	
	B.372	CH (OCH ₂ CF ₃) -CH ₂ CH ₂ CH ₃	
	B.373	CH (CN) -CH ₂ CH (CH ₃) ₂	
10	B.374	CH (OCH ₃) -CH ₂ CH (CH ₃) ₂	
	B.375	CH (OCH ₂ CH ₃) -CH ₂ CH (CH ₃) ₂	
	B.376	CH (OCF ₃) -CH ₂ CH (CH ₃) ₂	
	B.377	CH (OCH ₂ CF ₃) -CH ₂ CH (CH ₃) ₂	
	B.377	CHFCH ₂ CH ₂ CH ₃	
15	B.378	C (CH ₃) = CH ₂	
		CH=CH-CH ₃	(2)
	B.380		(2)
	B.381	C(CH ₂ CH ₃)=CH ₂	(7)
	B.382	C(CH ₃)=CH-CH ₃	(E)
	B.383	C(CH ₃)=CH-CH ₃	(2)
20	B.384	C(CH ₃) = C(CH ₃) ₂	
20	B.385	CH (CH ₃) -CH=CH ₂	
	B.386	CH=C (CH ₃) ₂	
	B.387	CH ₂ -C (CH ₃)=CH ₂	
	B.388	CH (CH ₃) -CH ₂ -CH=CH ₂	
25	B.389	CH ₂ -CH (CH ₃) -CH=CH ₂	
25	B.390	CH ₂ -CC1=CH ₂	
	B.391	CH2-CH=CH-C1	(2)
	B.392	CH ₂ -CC1=CH-C1	(E)
	B.393	CH ₂ -CC1=CH-C1	(Z)
20	B.394	CH ₂ -CH=CCl ₂	
30	B.395	CH ₂ -CCl=CCl ₂	
	в.396	CH ₂ -CBr=CH ₂	
	B.397	CH ₂ -CH=CH-Br	(Z)
	B.398	CH ₂ -CBr=CH-Br	(E)
25	B.399	CH ₂ -CBr=CH-Br	(Z)
35	B.400	CH ₂ -CH=CBr ₂	
	B.401	CH ₂ -CBr=CBr ₂	
	B.402	CH ₂ -CH=CH-CH ₃	(Z)
	B.403	$CH_2-C(CH_3)=CH-CH_3$	(E)
40	B.404	$CH_2-C(CH_3)=CH-CH_3$	(Z)
40	B.405	CH ₂ -CH=C (CH ₃) ₂	
	B.406	CH ₂ -CH ₂ -CH=CH ₂	
	B.407	CH ₂ -CCl=CH-CH ₃	(E)
	B.408	CH ₂ -CC1=CH-CH ₃	(Z)
4-	B.409	CH ₂ -CH=CC1-CH ₃	(E)
45	B.410	CH ₂ -CH=CC1-CH ₃	(Z)
	B.411	$CH_2-C(CH_3)=C(CH_3)_2$	
	B.412	CH2-CBr=CH-CH3	(E)

			· · · · · · · · · · · · · · · · · · ·
	Nr.	R ²	
	B.413	CH2-CBr=CH-CH3	. (Z)
5	B.414	CH2-CH=CBr-CH3	(E)
	B.415	CH2-CH=CBr-CH3	(Z)
	B.416	CH2-CH=CH-CH2C1	(E)
	B.417	CH2-CH=CH-CH2C1	(Z)
	B.418	CH ₂ -CH=CH-CH ₂ CH ₃	(E)
	B.419	CH2-CH=CH-CH2CH3	(Z)
	B.420	CH ₂ -CH=CH-CH ₂ Br	(E)
10	B.421	CH ₂ -CH=CH-CH ₂ Br	(Z)
	B.422	CH ₂ -CC1=CC1-CH ₂ C1	(E)
	B.423	CH ₂ -CC1=CC1-CH ₂ C1	
			(Z)
	B.424	CH ₂ -CF=CH ₂	(B)
15	B.425	CH ₂ -CH=CH-F	(E)
13	B.426	CH ₂ -CH=CH-F	(Z)
	B.427	CH ₂ -CH=CF ₂	
	B.428	CH ₂ -CF=CH-F	(E)
	B.429	CH ₂ -CF=CH-F	(2)
	B.430	CH (CH ₃) -CH=CH ₂	
20	B.431	CH(CH ₃)-CC1=CH ₂	
	B.432	CH (CH ₃) -CH=CH-C1	(E)
	B.433	CH(CH ₃)-CH=CH-Cl	(Z)
	B.434	CH(CH ₃)-CC1=CH-C1	(E)
	B.435	CH(CH ₃)-CCl=CH-Cl	(Z)
25	B.436	CH(CH ₃)-CH=CCl ₂	
	B.437	CH(CH ₃)-CCl=CCl ₂	
	B.438	CH(CH ₃)-CBr=CH ₂	
	B.439	CH(CH ₃)-CH=CH-Br	(E)
	B.440	CH(CH ₃)-CH=CH-Br	(Z)
30	B.441	CH(CH ₃)-CBr=CH-Br	(E)
	B.442	CH(CH ₃)-CBr=CH-Br	(Z)
İ	B.443	CH(CH ₃)-CH=CBr ₂	
	B.444	CH(CH ₃)-CBr=CBr ₂	
	B.445	CH (CH ₃) -C (CH ₃) =CH ₂	
35	B.446	CH (CH ₃) -CH=CH-CH ₃	(E)
	B.447	CH (CH ₃) -CH=CH-CH ₃	(Z)
	B.448	$CH(CH_3)-C(CH_3)=CH-CH_3$	(E)
	B.449	CH (CH ₃) -C (CH ₃) =CH-CH ₃	(Z)
	B.450	CH (CH ₃) -CH=C (CH ₃) ₂	
40	B.451	CH(CH ₃)-CC1=CH-CH ₃	(E)
	B.452	CH (CH ₃) -CC1=CH-CH ₃	(Z)
	B.453	CH (CH ₃) -CH=CC1-CH ₃	(E)
	B.454	CH (CH ₃) -CH=CC1-CH ₃	(Z)
	B.455	CH (CH ₃) -CBr=CH-CH ₃	(E)
45	B.456	CH (CH ₃) -CBr=CH-CH ₃	(2)
	B.457	CH (CH ₃) -CH=CBr-CH ₃	(E)
	B.458	CH (CH ₃) -CH=CBr-CH ₃	(2)
1	2.130		(2)

	Nr.	R ²	
	B.459	CH (CH ₃) -CH=CH-CH ₂ Cl	(E)
5	B.460	CH (CH ₃) -CH=CH-CH ₂ C1	(2)
	B.461	CH (CH ₃) -CH=CH-CH ₂ CH ₃	(E)
	B.462	CH (CH ₃) -CH=CH-CH ₂ CH ₃	(Z)
	B.463	CH(CH ₃)-CH=CH-CH ₂ Br	(E)
	B.464	CH (CH ₃) -CH=CH-CH ₂ Br	(Z)
	B.465	CH (CH ₃) -CC1=CC1-CH ₂ C1	(E)
10	B.466	CH(CH ₃)-CC1=CC1-CH ₂ C1	(Z)
	B.467	CH(CH ₃)-CF=CH ₂	
	B.468	CH (CH ₃) -CH=CH-F	(E)
	B.469	CH(CH ₃)-CH=CH-F	(Z)
	B.470	CH (CH ₃) -CH=CF ₂	
	B.471	CH(CH ₃)-CF=CH-F	(E)
15	B.472	CH(CH ₃)-CF=CH-F	(Z)
	B.473	CH2CHC1-CH=CH2	
	B.474	CH ₂ CH ₂ -CH=C (CH ₃) ₂	
	B.475	$CH_2CH_2-C(CH_3)=CH-CH_3$	(E)
20	B.476	CH ₂ CH ₂ -C (CH ₃)=CH-CH ₃	(Z)
	B.477	$C(CH_3) = CH - [C_6H_5]$	(E)
	в.478	$C(CH_3) = CH - [2 - CN - C_6H_4]$	(E)
	B.479	$C(CH_3) = CH - [3 - CN - C_6H_4]$	(E)
25	B.480	$C(CH_3) = CH - [4 - CN - C_6H_4]$	(E)
	B.481	$C(CH_3) = CH - [2 - F - C_6H_4]$	(E)
23	B.482	$C(CH_3) = CH - [3 - F - C_6H_4]$	(E)
	B.483 B.484	$C(CH_3) = CH - [4 - F - C_6H_4]$ $C(CH_3) = CH - [2, 4 - F_2 - C_6H_3]$	(E)
	B.485	$C(CH_3) = CH - [2, 4 - F_2 - C_6H_3]$	(E)
	B.486	$C(CH_3) = CH - [2, 4, 5 - F_3 - C_6H_2]$	(E)
.30	B.487	$C(CH_3) = CH - [2, 4, 6 - F_3 - C_6H_2]$	(E)
	B.488	$C(CH_3) = CH - [2 - C1 - C_6H_4]$	(E)
	B.489	$C(CH_3) = CH - [3 - C1 - C_6H_4]$	(E)
	B.490	$C(CH_3) = CH - [4 - C1 - C_6H_4]$	(E)
	B.491	$C(CH_3) = CH - [2, 4 - Cl_2 - C_6H_3]$	(E)
35	B.492	$C(CH_3) = CH - [3, 4 - Cl_2 - C_6H_3]$	(E)
	в.493	$C(CH_3) = CH - [2, 4, 5 - Cl_3 - C_6H_2]$	(E)
	B.494	$C(CH_3) = CH - [2, 4, 6 - Cl_3 - C_6H_2]$	(E)
	B.495	$C(CH_3) = CH - [2 - CH_3 - C_6H_4]$	(E)
40	B.496	$C(CH_3) = CH - [3 - CH_3 - C_6H_4]$	(E)
	B.497	C (CH ₃) = CH - [4 - CH ₃ - C ₆ H ₄]	(E)
	B.498	C(CH ₃)=CH-[2-F, 4-CH ₃ -C ₆ H ₃]	(E)
	B.499	$C(CH_3) = CH - [2 - CH_3, 4 - F - C_6H_3]$	(E)
	B.500	$C(CH_3) = CH - [3 - F, 4 - CH_3 - C_6H_3]$	(E)
45	B.501	$C(CH_3) = CH - [3 - CH_3, 4 - F - C_6H_3]$ $C(CH_3) = CH - [2 - C1, 4 - CH_3 - C_6H_3]$	(E)
	B.502 B.503	$C(CH_3) = CH - [2 - CH_3, 4 - CH_3 - C_6H_3]$	(E)
	B.503	$C(CH_3) = CH - [2 - CH_3, 4 - CH_3 - CH_3]$	(E)
	B.304	C (Cir3) - Cir (3 C1) 4 Cir3 C6113]	\-\

. .

	Nr. R ²		
	Nr.	<u> </u>	
	B.505	$C(CH_3) = CH - [3 - CH_3, 4 - C1 - C_6H_3]$	(E)
5	B.506	$C(CH_3) = CH - [2 - CF_3 - C_6H_4]$	(E)
	B.507	$C(CH_3) = CH - [3 - CF_3 - C_6H_4]$	(E)
	B.508	$C(CH_3) = CH - [4 - CF_3 - C_6H_4]$	(E)
	B.509	$C(CH_3) = CH - [2 - OCH_3 - C_6H_4]$	(E)
	B.510	$C(CH_3) = CH - [3 - OCH_3 - C_6H_4]$	(E)
,	B.511	$C(CH_3) = CH - [4 - OCH_3 - C_6H_4]$	(E)
10	B.512	$C(CH_3) = CH - [2 - OCHF_2 - C_6H_4]$	(E)
	B.513	$C(CH_3) = CH - [3 - OCHF_2 - C_6H_4]$	(E)
	B.514	$C(CH_3) = CH - [4 - OCHF_2 - C_6H_4]$	(E)
	B.515	CH=C (CH ₃) - [C ₆ H ₅]	(E)
,	B.516	$CH=C(CH_3)-[2-CN-C_6H_4]$	(E)
15	B.517	CH=C (CH ₃) - [3-CN-C ₆ H ₄]	(E)
	B.518	CH=C (CH ₃) - [4-CN-C ₆ H ₄]	(E)
	B.519	CH=C (CH ₃) - [2-F-C ₆ H ₄]	(E)
į	B.520	CH=C (CH ₃) - [3-F-C ₆ H ₄]	(E)
	B.520	$CH=C(CH_3) - [4-F-C_6H_4]$	(E)
	B.521	$CH=C(CH_3)-[4-F-C_6H_4]$ $CH=C(CH_3)-[2,4-F_2-C_6H_3]$	(E)
20	B.522		
		CH=C (CH ₃) - [3, 4-F ₂ -C ₆ H ₃]	(E)
	B.524	CH=C (CH ₃) - [2, 4, 5-F ₃ -C ₆ H ₂]	(E)
25	B.525	CH=C (CH ₃) - [2, 4, 6-F ₃ -C ₆ H ₂]	(E)
	B.526	CH=C (CH ₃) - [2-C1-C ₆ H ₄]	(E)
	B.527	CH=C (CH ₃) - [3-C1-C ₆ H ₄]	(E)
23	B.528	CH=C (CH ₃) - [4-C1-C ₆ H ₄]	(E)
	B.529	CH=C (CH ₃) - [2, 4-Cl ₂ -C ₆ H ₃]	(E)
	B.530	CH=C(CH ₃)-[3,4-Cl ₂ -C ₆ H ₃]	(E)
	B.531	CH=C (CH ₃) - [2, 4, 5-Cl ₃ -C ₆ H ₂]	(E)
30	B.532	CH=C(CH ₃)-[2,4,6-Cl ₃ -C ₆ H ₂]	(E)
30	B.533	CH=C (CH ₃) - [2-CH ₃ -C ₆ H ₄]	(E)
	B.534	CH=C (CH ₃) - [3-CH ₃ -C ₆ H ₄]	(E)
	B.535	$CH=C(CH_3)-[4-CH_3-C_6H_4]$	(E)
	B.536	$CH=C(CH_3)-[2-F, 4-CH_3-C_6H_3]$	(E)
35	B.537	$CH=C(CH_3)-[2-CH_3, 4-F-C_6H_3]$	(E)
33	B.538	$CH=C(CH_3)-[3-F, 4-CH_3-C_6H_3]$	(E)
	B.539	$CH=C(CH_3)-[3-CH_3, 4-F-C_6H_3]$	(E)
	B.540	$CH=C(CH_3)-[2-C1, 4-CH_3-C_6H_3]$	(E)
	B.541	$CH=C(CH_3)-[2-CH_3, 4-C1-C_6H_3]$	(E)
40	B.542	$CH=C(CH_3)-[3-C1, 4-CH_3-C_6H_3]$	(E)
40	B.543	$CH=C(CH_3)-[3-CH_3, 4-C1-C_6H_3]$	(E)
	B.544	$CH=C(CH_3)-[2-CF_3-C_6H_4]$	(E)
	B.545	$CH=C(CH_3)-[3-CF_3-C_6H_4]$	(E)
	B.546	$CH=C(CH_3)-[4-CF_3-C_6H_4]$	(E)
4-	B.547	CH=C(CH ₃)-[2-OCH ₃ -C ₆ H ₄]	(E)
45	B.548	$CH=C(CH_3)-[3-OCH_3-C_6H_4]$	(E)
	B.549	CH=C(CH ₃) - [4-OCH ₃ -C ₆ H ₄]	(E)
	B.550	$CH=C(CH_3)-[2-OCHF_2-C_6H_4]$	(E)

	Nr.		R ²
	B.551	$CH=C(CH_3)-[3-OCHF_2-C_6H_4]$	(E)
5	B.552	$CH=C(CH_3)-[4-OCHF_2-C_6H_4]$	(E)
	B.553	C≡C-I	
	B.554	CH ₂ -C ≡ C-H	
	B.555	CH2-C≡C-C1	
	B.556	CH ₂ -C≡C-Br	
	B.557	CH ₂ -C≡C-J	
	B.558	$CH_2-C \equiv C-CH_3$	
10	B.559	$CH_2-C \equiv C-CH_2CH_3$	
	B.560	$CH_2CH_2-C \equiv C-H$	
	B.561	CH ₂ CH ₂ -C≡C-C1	
	B.562	CH ₂ CH ₂ -C≡C-Br	
	B.563	$CH_2CH_2-C \equiv C-J$	
15	B.564	$CH_2CH_2-C \equiv C-CH_3$	
	B.565	$CH_2CH_2CH_2-C \equiv C-H$	
	B.566	$CH_2CH_2CH_2-C \equiv C-C1$	
	B.567	$CH_2CH_2CH_2-C \equiv C-Br$	
	B.568	$CH_2CH_2CH_2-C \equiv C-J$	
20	B.569	$CH_2CH_2CH_2-C \equiv C-CH_3$	
	B.570	$CH(CH_3)-C\equiv C-H$	
	B.571	$CH(CH_3)-C\equiv C-C1$	
	B.572	CH (CH ₃) -C≡C-Br	
	B.573	CH (CH ₃) -C ≡ C-J	
25	B.574	$CH(CH_3)-C \equiv C-CH_3$	
	B.575	$C \equiv C - [4 - F - C_6 H_4]$	

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum 30 von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Phycomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

35 Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- Alternaria-Arten an Gemüse und Obst,
- 45 Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
 - Cercospora arachidicola an Erdnüssen,

• Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,

73

- Erysiphe graminis (echter Mehltau) an Getreide,
- 5 Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
 - Helminthosporium-Arten an Getreide,
 - Mycosphaerella-Arten an Bananen,
 - Phytophthora infestans an Kartoffeln und Tomaten,
 - Plasmopara viticola an Reben,
- 10 Podosphaera leucotricha an Apfeln,
 - Pseudocercosporella herpotrichoides an Weizen und Gerste,
 - Pseudocercosporella-Arten an Hopfen und Gurken,
 - Puccinia-Arten an Getreide,
 - · Pyricularia oryzae an Reis,
- 15 Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
 - · Septoria nodorum an Weizen,
 - Uncinula necator an Reben,
 - Ustilago-Arten an Getreide und Zuckerrohr, sowie
 - Venturia inaequalis (Schorf) an Apfeln.

20

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen im Materialschutz (z.B. Holz, Papier, Dispersionen für den Ansprich, Fasern bzw. Gewebe) und im Vorratsschutz.

25 Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch 30 die Pilze erfolgen.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

35 Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen 40 von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.

Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes

45 und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials. Die Verbindungen der Formel I sind außerdem geeignet, tierische Schädlinge aus der Klasse der Insekten, Spinnentiere und Nematoden wirksam zu bekämpfen. Sie können im Pflanzenschutz sowie auf dem Hygiene-, Vorratsschutz- und Veterinärsektor zur Bekämpfung tierischer Schädlinge eingesetzt werden. Insbesondere eignen sie sich zur Bekämpfung der folgenden tierischen Schädlinge:

- Insekten aus der Ordnung der Schmetterlinge (Lepidoptera) beispielsweise Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa 10 gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria 15 bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Leucoptera 20 coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, 25 Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobi-
- trella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobi palpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni und Zeiraphera canadensis,
 - Käfer (Coleoptera), z.B. Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Atomaria linea-
- ris, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Dia-
- brotica 12-punctata, Diabrotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani,
- Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus,
 Otiorrhynchus ovatus, Phaedon cochleariae, Phyllotreta chryso-

cephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus und Sitophilus granaria,

75

- Zweiflügler (Diptera), z.B. Aedes aegypti, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Contarinia sorghicola, Cordylobia anthropophaga, Culex pipiens, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Fannia canicularis, Gasterophilus intestinalis, Glossina mor-
- sitans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Musca domestica, Muscina stabulans, Oestrus ovis, Oscinella frit, Pegomya hyso-
- cyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula oleracea und Tipula paludosa,
 - Thripse (Thysanoptera), z.B. Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips ci-
- 20 tri, Thrips oryzae, Thrips palmi und Thrips tabaci,
 - Hautflügler (Hymenoptera), z.B. Athalia rosae, Atta cephalotes, Atta sexdens, Atta texana, Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaonis, Solenopsis geminata und Solenopsis invicta,
- Wanzen (Heteroptera), z.B. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis und
 Thyanta perditor,
 - Pflanzensauger (Homoptera), z.B. Acyrthosiphon onobrychis,
 Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis pomi,
 Aphis sambuci, Brachycaudus cardui, Brevicoryne brassicae, Cerosipha gossypii, Dreyfusia nordmannianae, Dreyfusia piceae,
- Dysaphis radicola, Dysaulacorthum pseudosolani, Empoasca fabae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Metopolophium dirhodum, Myzodes persicae, Myzus cerasi, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali,
- 40 Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Trialeurodes vaporariorum und Viteus vitifolii.
- Termiten (Isoptera), z.B. Calotermes flavicollis, Leucotermes flavipes, Reticulitermes lucifugus und Termes natalensis,
 - Geradflügler (Orthoptera), z.B. Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllo-

76

talpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus und Tachycines asynamorus,

- Arachnoidea wie Spinnentiere (Acarina), z.B. Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Brevipalpus phoenicis, Bryobia praetiosa, Dermacentor silvarum, Eotetranychus carpini, Eriophyes sheldoni, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Paratetranychus pilosus, Dermanyssus gallinae, Phyllocoptruta oleivora, Polyphagotarsonemus latus, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius und Tetranychus urticae,
- Nematoden wie Wurzelgallennematoden, z.B. Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Zysten bildende
 Nematoden, z.B. Globodera rostochiensis, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, Stock- und Blattälchen, z.B. Belonolaimus longicaudatus, Ditylenchus destructor, Ditylenchus dipsaci, Heliocotylenchus multicinctus, Longidorus elongatus, Radopholus similis, Rotylenchus robustus, Trichodorus primitivus, Tylenchorhynchus claytoni, Tylenchorhynchus dubius, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus und Pratylenchus goodeyi.
- 30 Die Aufwandmenge an Wirkstoff zur Bekämpfung von tierischen Schädlingen beträgt unter Freilandbedingungen 0,1 bis 2,0, vorzugsweise 0,2 bis 1,0 kg/ha.

Die Verbindungen I können in die üblichen Formulierungen über35 führt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube,
Pulver, Pasten und Granulate. Die Anwendungsform richtet sich
nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall
eine feine und gleichmäßige Verteilung der erfindungsgemäßen
Verbindung gewährleisten.

40

. .

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als

45 Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aroma-

77

ten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Al-15 kylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit 20 Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, eth-25 oxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen,
30 Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylier35 te Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.

40

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

45 Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden,

wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

78

PCT/EP98/00782

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 10 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind:

15

WO 98/38857

I. 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.

20

25

- II. 30 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffsmit guter Haftfähigkeit (Wirkstoffgehalt 23 Gew.-%).
- III. 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 90 Gew.-Teilen Xylol, 6
 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1Mol Ölsäure-N-monoethanolamid, 2 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).

35

40

- IV. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 60 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 5 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 5Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16 Gew.-%).
- V. 80 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit
 45 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalinalpha-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew.-Tei-

79

len pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen (Wirkstoffgehalt 80 Gew.-%).

- VI. Man vermischt 90 Gew.-Teile einer erfindungsgemäßen Ver-5 bindung mit 10 Gew.-Teilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist (Wirkstoffgehalt 90 Gew.-%).
- VII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gew.-Teilen Wasser erhält maneine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- VIII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-αsulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von 30 direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch 40 Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung

mit Wasser geeignet sind.

PCT/EP98/00782

80

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

5

WO 98/38857

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

10

Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Hilfsstoffe und Mittel können zu den erfindungsgemäßen Wirkstoffen im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, z.B.

20 mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

25

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- Schwefel, Dithiocarbamate und deren Derivate, wie Ferridi methyldithiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylen-bisdithiocarbamat, Manganethylenbisdithiocarbamat, Mangan-Zink-ethylendiamin-bis-dithiocarbamat, Tetramethylthiuramdi-sulfid, Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat), Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat), Zink-(N,N'-propylenbis-dithiocarbamat), N,N'-Poly-
 - propylen-bis-(thiocarbamoyl) disulfid;
 Nitroderivate, wie Dinitro-(1-methylheptyl)-phenylcrotonat,
 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,
 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat,
 5-Nitro-isophthalsäure-di-isopropylester;
- heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-acetat, 2,4-Dichlor-6-(o-chloranilino)-s-triazin, 0,0-Diethyl-phthalimidophosphonothioat, 5-Amino-1-[bis-(dimethylami-no)-phosphinyl]-3-phenyl-1,2,4-triazol, 2,3-Dicyano-1,4-dithioanthrachinon, 2-Thio-1,3-dithiolo[4,5-b]chinoxalin, 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester, 2-Methoxycarbonylamino-benzimidazol, 2-(Furyl-(2))-benz-

imidazol, 2-(Thiazolyl-(4))-benzimidazol, N-(1,1,2,2-Tetra-chlorethylthio)-tetrahydrophthalimid, N-Trichlormethylthio-tetrahydrophthalimid, N-Trichlormethylthio-phthalimid,

- N-Dichlorfluormethylthio-N', N'-dimethyl-N-phenyl-schwefel-säure-diamid, 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol, 2-Rhodanmethylthiobenzthiazol, 1,4-Dichlor-2,5-dimethoxy-benzol, 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon, Pyridin-2-thio-1-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
- 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid, 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methyl-furan-3-carbonsäure-anilid, 2,5-Dimethyl-furan-3-carbonsäure-anilid, 2,4,5-Trimethyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-me-
- thoxy-2,5-dimethyl-furan-3-carbonsäureamid, 2-Methyl-benzoe-säure-anilid, 2-Iod-benzoesäure-anilid, N-Formyl-N-morpho-lin-2,2,2-trichlorethylacetal, Piperazin-1,4-diylbis-1-(2,2,2-trichlorethyl)-formamid, 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan, 2,6-Dimethyl-N-tridecyl-morpho-
- 20 lin bzw. dessen Salze, 2,6-Dimethyl-N-cyclododecyl-morpholin
 bzw. dessen Salze, N-[3-(p-tert.-Butylphenyl)-2-methylpro pyl]-cis-2,6-dimethyl-morpholin, N-[3-(p-tert.-Butylphenyl) 2-methylpropyl]-piperidin, 1-[2-(2,4-Dichlorphenyl)-4-ethyl 1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol, 1-[2-(2,4-Dichlor-
- pheny1)-4-n-propy1-1,3-dioxolan-2-y1-ethy1]-1H-1,2,4-triazol,
 N-(n-Propy1)-N-(2,4,6-trichlorphenoxyethy1)-N'-imidazol-y1harnstoff, 1-(4-Chlorphenoxy)-3,3-dimethy1-1-(1H-1,2,4-triazol-1-y1)-2-butanon, 1-(4-Chlorphenoxy)-3,3-dimethy1-1-(1H1,2,4-triazol-1-y1)-2-butanol, (2RS,3RS)-1-[3-(2-Chlorphe-
- ny1) -2-(4-fluorpheny1) -oxiran-2-ylmethy1] -1H-1,2,4-triazol,
 α-(2-Chlorpheny1) -α-(4-chlorpheny1) -5-pyrimidin-methanol,
 5-Buty1-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin, Bis-(p-chlorpheny1) -3-pyridinmethanol, 1,2-Bis-(3-ethoxycarbony1-2-thioureido) -benzol, 1,2-Bis-(3-methoxycarbony1-2-thiou-reido) -benzol,
 - Strobilurine wie Methyl-E-methoxyimino- $[\alpha$ -(o-tolyloxy)-o-tolyl] acetat, Methyl-E-2- $\{2-[6-(2-cyanophenoxy)-pyrimidin-4-yl-oxy]-phenyl\}$ -3-methoxyacrylat, Methyl-E-methoxyimino- $[\alpha$ -(2-phenoxyphenyl)]-acetamid, Methyl-E-methoxyimino- $[\alpha$ -(2,5-dimethylphenoxy)-o-tolyl]-acetamid,
 - Anilinopyrimidine wie N-(4,6-Dimethylpyrimidin-2-yl)-anilin,
 N-[4-Methyl-6-(1-propinyl)-pyrimidin-2-yl]-anilin,
 N-[4-Methyl-6-cyclopropyl-pyrimidin-2-yl]-anilin,
- Phenylpyrrole wie 4-(2,2-Difluor-1,3-benzodioxol-4-yl)-pyr rol-3-carbonitril,
 - Zimtsäureamide wie 3-(4-Chlorphenyl)-3-(3,4-dimethoxyphenyl)-acrylsäuremorpholid,

82

 sowie verschiedene Fungizide, wie Dodecylguanidinacetat, 3-{3-(3,5-Dimethyl-2-oxycyclohexyl)-2-hydroxyethyl]-glutarimid, Hexachlorbenzol, DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoy1(2)-alaninat, DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyace-5 tyl)-alanin-methyl- ester, N-(2,6-Dimethylphenyl)-N-chloracetyl-D, L-2-aminobutyrolacton, DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester, 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin, 3-[3,5-Dichlorphenyl-(5-methyl-5-methoxymethyl]-1,3-oxazolidin-2,4-dion, 3-(3,5-Di-10 chlorphenyl)-1-isopropylcarbamoylhydantoin, N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid, 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid, 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol, 2,4-Difluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol, N-(3-Chlor-2,6dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-15 aminopyridin, 1-((bis-(4-Fluorphenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.

Synthesebeispiele

20

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in den anschließenden Tabellen 25 mit physikalischen Angaben aufgeführt.

Beispiel 1: Herstellung von

30

Stufe 1:

35

40

45

Eine Lösung von 50g (0,49 mol) 2-Oxobutansäure in 300 ml Methanol wurde portionsweise mit 123g (1,47 mol) Methoxyaminhydrochlorid versetzt. Nach 16 h Rühren bei Raumtemperatur (ca. 25°C) wurde die Reaktionsmischung bei vermindertem Druck vom Lösungsmittel befreit. Der so erhaltene Rückstand wurde in Wasser und tert.-Butylmethylether aufgenommen. Die Ether-Phase wurde mit gesättigter NaHCO₃-Lösung und mit Wasser gewaschen, über Na₂SO₄ getrocknet und anschließend bei vermindertem Druck eingeengt. Man erhielt so 47 g der Titelverbindung als farblose Flüssigkeit.

83

¹H-NMR (CDCl₃; δ in ppm): 1,06 (t, 3H); 2,57 (q, 2H); 3,85 (s, 3H); 4,04 (s, 3H)

Stufe 2:

5

Eine Lösung aus 33 g (0,48 mol) Hydroxylamin-hydrochlorid und 400 ml Methanol wurde bei 10°C tropfenweise mit 46 g 10 (0,32 mol) der Verbindung aus Beispiel 1, Stufe 1, versetzt. Zu der so erhaltenen Mischung wurden anschließend unter Eiskühlung innerhalb von 15 min. 171 g Natriummethylat-Lösung (30%-ig in Methanol, 0,96 mol) gegeben. Die Reaktionsmischung wurde dann für 60h bei Raumtemperatur (ca. 25°C) ge-15 rührt, wobei sich eine Suspension bildete. Die Suspension wurde in Wasser gegeben; die so erhaltene Mischung wurde unter Eiskühlung mit konz. Salzsäure bis zu einem pH Wert von 6,5 angesäuert und anschließend mit Methylenchlorid mehrere 20 Male extrahiert. Die organischen Phasen wurden vereinigt, mit Wasser gewaschen, über Na₂SO₄ getrocknet und bei vermindertem Druck und 30°C vom Lösungsmittel befreit. Man erhielt 34,1 g der Titelverbindung als weißes Pulver; Fp.: 56-59°C.

25 ACHTUNG: Hydroxamsäuren vom Typ der Verbindung gemäß Beispiel 1., Stufe 2, können thermolabil sein und sich bei höheren Temperaturen explosionsartig zersetzen!

 $^{1}\text{H-NMR}$ (CDCl₃; δ in ppm): 1,03 (t, 3H); 2,53 (q, 2H); 3,93 (s, 3H); 8,95 (s, br, 2H)

Stufe 3:

35

Eine Lösung aus 28,5 g (0,195 mol) der Verbindung gemäß Beispiel 1, Stufe 2, 55,8 g (0,195 mol) E-2-Methoxyimino-2-[2'-brommethyl-phenyl]-essigsäure-methylester (gem.
EP-A 400 417) und 600 ml N,N-Dimethylformamid wurde unter
Eiskühlung tropfenweise mit 38,6 g Natriummethylat-Lösung
(30%-ig in Methanol; 0,215 mol) versetzt. Nach 16h Rühren
bei Raumtemperatur (ca. 25°C) wurde das Reaktionsgemisch in
gekühlte verdünnte Salzsäure eingerührt und die so erhaltene
Mischung wurde mit tert.-Butylmethylether extrahiert. Die
organische Phase wurde mit Wasser gewaschen, über Na₂SO₄ ge-

trocknet und bei vermindertem Druck und ca. 35°C vom Lösungsmittel befreit. Der erhaltene Rückstand wurde chromatographisch (Kieselgel; Eluent: tert.-Butylmethylether/Cyclohexan) gereinigt. Nach Waschen des isolierten Feststoffs mit Pentan erhielt man 50 g der Titelverbindung als hellgelbes Pulver; Fp.: 63-65°C.

¹H-NMR (CDCl₃; δ in ppm): 1,03 (t, 3H); 2,51 (q, 2H); 3,87 (s, 6H); 4,03 (s, 3H); 4,86 (s, 2H); 7,14-7,45 (m, 4H); 8,92 (s, 1H)

Stufe 4:

WO 98/38857

5

10

15

20

25

Eine Mischung aus 6,0 g (17,1 mmol) der Verbindung aus Beispiel 1, Stufe 3, 22,4 g (85,5 mmol) Triphenylphosphin und 250 ml Acetonitril wurde portionsweise mit 13,2 g (85,5 mmol) Tetrachlormethan versetzt. Die so erhaltene Reaktionsmischung wurde 60 h unter Rückfluß gekocht und anschließend auf Raumtemperatur (ca. 25°C) abgekühlt. Das Lösungsmittel wurde bei vermindertem Druck abdestilliert und der verbleibende Rückstand wurde chromatographisch (Kieselgel, tert.-Butylmethylether/Cyclohexan) gereinigt. Man erhielt 2,3 g der Titelverbindung als beige-farbenes Pulver; Fp.: 56-59°C.

¹H-NMR (CDCl₃; δ in ppm): 0,97 (t, 3H); 2,55 (q, 2H); 3,85 (s, 3H); 3,99 (s, 3H); 4,04 (s, 3H); 5,13 (s, 2H); 7,15-7,50 (m, 4H)

Beispiel 2: Herstellung von

Eine Lösung aus 15,5 g (42 mmol) der Verbindung aus Beispiel 1, Sufe 4, und 100 ml Tetrahydrofuran wurde mit 33 g Methylamin-Lösung (40%-ig in Wasser) versetzt. Nach 2 h bei Raumtemperatur (ca. 25°C) wurde die Reaktionsmischung in gekühlte verdünnte Saltzsäure gegeben. Die saure Lösung wurde mit tert.-Butylmethylether extrahiert. Anschließend wurde die organische Phase mit Wasser gewaschen, über Na₂SO₄ getrocknet und bei vermindertem Druck vom Lösungsmittel befreit. Nach Verreiben des Rückstands

mit Hexan/tert.-Butylmethylether erhielt man 11,5 g der Titelverbindung als beige-farbenes Pulver; Fp.: 66-69°C.

¹H-NMR (CDCl₃; δ in ppm): 0,97 (t, 3H); 2,54 (q, 2H); 2,85 (d, 5H); 3,91 (s, 3H); 3,97 (s, 3H); 5,15 (s, 2H); 6,80 (s, br, 1H); 7,18-7,43 (m, 4H)

Beispiel 3: Herstellung von

10

Stufe 1:

15

20

25

30

35

Eine Lösung aus 388 g (4,65 mol) Methoxyaminhydrochlorid und 1,5 l Methanol wurde zunächst mit 60 g Molekularsieb (3Å) und anschließend bei 60°C mit 254 g (1,55 mol) Phenylglyo-xylsäure-methylester versetzt. Nach 6 h bei 60°C und weiteren 60 h bei Raumtemperatur (ca. 25°C) wurde die Reaktionsmischung mit Wasser versetzt. Die wäßrige Lösung wurde mit tert.-Butylmethylether extrahiert. Die Etherphase wurde mit Wasser gewaschen, über Na₂SO₄ getrocknet und bei vermindertem Druck vom Lösungsmittel befreit. Der Rückstand wurde chromatographisch (Kieselgel; tert.-Butylmethylether/Cyclohexan) gereinigt. Man erhielt so 66 g der Titelverbindung als hellgelbes Pulver.

¹H-NMR (CDCl₃; δ in ppm): 3,88 (s, 3H); 4,07 (s, 3H); 7,40 (s, 5H)

Stufe 2:

45

40

Eine Lösung aus 58,2 g (1,04 mol) Kaliumhydroxid in 750 ml Methanol wurde tropfenweise mit einer Lösung aus 36,1 g (0,52 mol) Hydroxylamin-hydrochlorid in 250 ml Methanol versetzt. Nach ca. 10 min. wurde der gebildete Niederschlag abfültriert und die erhaltene Lösung wurde mit einer Lösung

86

aus 100 g der Verbindung aus Beispiel 3, Stufe 1, in 500 ml Methanol versetzt. Nach 24 h bei Raumtemperatur (ca. 25°C) wurde das Reaktionsgemisch auf Wasser gegeben und mit tert.—Butylmethylether extrahiert. Die wäßrige Phase wurde unter Eiskühlung mit verdünnter Salzusäure bis zu einem pH von 6,5 angesäuert, wobei sich ein Niederschlag bildete. Der Niederschlag wurde isoliert und bei vermindertem Druck getrocknet. Man erhielt so 57 g der Titelverbindung als beige-farbenes Pulver; Fp.: 142-144°C.

10

5

¹H-NMR (d_6 -DMSO; δ in ppm): 3,89 (s, 3H); 7,33-7,55 (m, 5H); 9,20 (s, br, 1H); 11,14 (s, br, 1H)

Stufe 3:

15

20

25

30

Eine Lösung aus 20 g (0,1 mol) der Verbindung gemäß Beispiel 3, Stufe 2, 27 g (0,1 mol) E-3-Methyl-2-[2'-brommethyl-phenyl]-acrylsäure-methylester (gem. EP-A 513 580) und 300 ml N,N-Dimethylformamid wurde unter Eiskühlung tropfenweise mit 18 g Natriummethylat-Lösung (30%-ig in Methanol; 0,1 mol) versetzt. Nach 12 h Rühren bei Raumtemperatur (ca. 25°C) wurde das Reaktionsgemisch in Eiswasser eingerührt und die so erhaltene Mischung wurde mit Methylenchlorid extrahiert. Die organische Phase wurde mit Wasser gewaschen, über Na₂SO₄ getrocknet und bei vermindertem Druck und ca. 35°C vom Lösungsmittel befreit. Der erhaltene Rückstand wurde aus tert.-Butylmethylether/Hexan/Isopropanol kristallisiert. Man erhielt so 23,8 g der Titelverbindung als farblose Kristalle; Fp.: 81-84°C.

35

¹H-NMR (CDCl₃; δ in ppm): 1,63 (d, 3H); 3,70 (s, 3H); 3,92 (s, 3H); 4,83-4,92 (m, 2H); 7,08-7,53 (m, 10H); 9,07 (s, br, 1H)

Stufe 4:

45

Eine Mischung aus 4,8 g (12,6 mmol) der Verbindung aus Beispiel 3, Stufe 3, 10 g (38 mmol) Triphenylphosphin und 100

ml Acetonitril wurde portionsweise mit 12,6 g (38 mmol) Tetrabrommethan versetzt. Die so erhaltene Reaktionsmischung wurde 100 h unter Rückfluß gekocht und anschließend auf Raumtemperatur (ca. 25°C) abgekühlt. Das Lösungsmittel wurde bei vermindertem Druck abdestilliert und der verbleibende Rückstand wurde chromatographisch (Kieselgel, tert.-Butylmethylether/Cyclohexan) gereinigt. Man erhielt 2,4 g der Titelverbindung als farbloses Pulver; Fp.: 60-61°C.

. -

 \in

	•	
1	-	1
	a	
	_	
	a	
	ς	1
	π	3

			1	88										
There Bottom	IR (KBr): 3450, 2950, 1668, 1519, 1445, 1041, 1001, 980, 950, 930, 813, 699	cm-1	Pp.: 60-61°C	Fp.: 66-69°C	Pp.: 56-59°C	Fp.: 81-84°C	Fp.: 68-70°C	Fp.: 48-50°C	Fp.: 42-45°C	Pp: 110-114°C	Fp: 114-117°C	IR(Film): 1716, 1490, 1254, 1047, 1019, 1009, 956, 943, 808, 765 cm ⁻¹	Fp: 111-113°C	Fp: 121-124°C
93			СН3	CH3	CH ₃	CH2CH3	СН2СН3	CH2CH3	CH2CH3	CH ₃	CH3	CH ₃	CH ₃	CH ₃
92	C ₆ H ₅		C ₆ H ₅	CH ₂ CH ₃	CH ₂ CH ₃	CH2CH3	CH ₂ CH ₃	CH2CH3	CH2CH3	4-C1-C ₆ H ₄	4-C1-C ₆ H ₄	4-C1-C ₆ H ₄	4-F-C6H4	4 - F - C ₆ H ₄
10	CI		Br	CJ	C1	C1	Br	CI	Br	C1	CI	C1	CI	CI
>	HN		0	HN	0	0	HN	HN	0	0	HN	0	0	HN
*	NOCH ₃ (E)		снсн3 (Е)	NOCH ₃ (E)	NOCH ₃ (E)	NOCH ₃ (E)	NOCH ₃ (E)	NOCH ₃ (E)	NOCH ₃ (E)	NOCH ₃ (E)	NOCH ₃ (E)	снсн ₃ (Е)	NOCH ₃ (E)	NOCH ₃ (E)
Mix	I.1		1.2	I.3	F.1	1.5	9°I	L'I	8'I	1.9	1.10	I.11	1.12	I.13

Nr.	×	¥	R1	R ²	R³	phys. Daten	
I.14	снсн ³ (E)	0	C1	4-F-C ₆ H ₄	CH3	Fp.: 52-55°C	
I.15	СН (ОСН3) (Е)	0	C1	сн ₂ сн ₃	CH3	Fp.: 75-80°C	
I.16	I.16 CHCH ₃ (E)	0	C1	СН2СН3	CH ₃	IR(Film): 1718, 1435, 1254, 1208, 1048, 1037, 1001, 946, 849, 762 cm ⁻¹	048, cm ⁻¹
1.17	I.17 NOCH ₃ (E)	0	CJ	СН2СН2СН3	СН3	IR(Film): 2940, 1728, 1438, 1320, 1306, 1221, 1070, 1048, 1020, 967 cm ⁻¹	306,
I.18	NOCH ₃ (E)	0	C1	СН3СНСН3	CH ₃	Fp.: 98-101°C	
I.19	СН (ОСН3) (Е)	0	C1	4 -Cl -C ₆ H ₄	Propargyl	IR(Film): 3280, 2940, 1708, 1634, 14 1286, 1257, 1131, 1112, 10 1004, 939 cm ⁻¹	1491, 1092,
I.20	NOCH ₃ (E)	0	CJ	СН3СНСН2СН3	CH ₃	IR(Film): 2925, 2853, 1729, 1461, 12 1069, 1047, 1018, 969, 952 cm ⁻¹	1220,
I.21	NOCH ₃ (E)	HN	[]	СН3СНСН2СН3	CH ₃	IR(Film): 2959, 2925, 2872, 2854, 16 1526, 1462, 1042, 1008, 979 cm ⁻¹	1672
1.22	NOCH ₃ (E)	HN	C1	CH2CH2CH3	CH ₃	Fp.: 78-81°C	

Beispiele für die Wirkung gegen Schadpilze

Die verbesserte fungizide Wirkung der Verbindungen der allgemei-5 nen Formel I ließ sich durch die folgenden Versuche zeigen. Als Vergleichsverbindungen des Standes der Technik gemäß WO-A 95/21,153 und WO-A 95/21,154 dienten die bekannten Wirkstoffe A.1 und A.2:

10

15

$$H_3CON$$
 CH_3
 H_3CNH
 N
 OCH_3
 $(A.2)$

20

Die Wirkstoffe wurden getrennt als 10%ige Emulsion in einem Gemisch aus 63 Gew.-% Cyclohexanon, 27 Gew.-% Emulgator aufbereitet und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

25

Wirksamkeit gegen Puccinia recondita an Weizen (Weizenbraunrost)

Blätter von in Töpfen gewachsenen Weizensämlingen der Sorte "Frühgold" wurden mit Sporen des Braunrostes (Puccinia recon30 dita) bestäubt. Danach wurden die Töpfe für 24 Stunden in eine Kammer mit hoher Luftfeuchtigkeit (90 bis 95 %) und 20 bis 22°C gestellt. Während dieser Zeit keimten die Sporen aus und die Keimschläuche drangen in das Blattgewebe ein. Die infizierten Pflanzen wurden am nächsten Tag mit einer wäßrigen Wirkstoffaufbereitung tropfnaß besprüht. Nach dem Antrocknen des Spritzbelages wurden die Versuchspflanzen im Gewächshaus bei Temperaturen zwischen 20 und 22°C und 65 bis 70 % relativer Luftfeuchte für 7 Tage kultiviert. Dann wurde das Ausmaß der Rostpilzentwicklung auf den Blättern ermittelt.

40

In diesem Test zeigten die mit 16 ppm der erfindungsgemäßen Verbidnungen I.3, I.6, I.7, I.10 bis I.17, I.21 und I.22 behandelten Pflanzen keinen Befall oder einen Befall von maximal 5% während die mit der gleichen Menge der Vergleichsverbindungen A.1 bzw. A.2 behandelten Pflanzen zu 15 bzw. 80% befallen waren. Die unbehandelten (Kontroll-) Pflanzen waren zu 80% befallen.

91

In einem analogen Test zeigten die mit 4 ppm der erfindungsgemäßen Verbidnungen I.3, I.6, I.7, I.10 bis I.17, I.21 und I.22 behandelten Pflanzen einen Befall von 5 bis 40%, während die mit der gleichen Menge der Vergleichsverbindungen A.1 bzw. A.2 behandelten Pflanzen zu 60 bzw. 80% befallen waren. Die unbehandelten (Kontroll-) Pflanzen waren zu 80% befallen.

Wirksamkeit gegen Pyricularia oryzae (protektiv)

Blätter von in Töpfen gewachsenen Reiskeimlingen der Sorte "Tai-Nong 67" wurden mit wäßriger Wirkstoffaufbereitung bis zur Tropfnäße besprüht. Am folgenden Tag wurden die Pflanzen einer wäßrigen Sporensuspension von Pyricularia oryzae inokuliert. Anschließend wurden die Versuchspflanzen in Klimakammern bei 22 - 24°C und 95 - 99% relativer Luftfeuchtigkeit für 6 Tage aufgestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blättern visuell ermittelt.

In diesem Test zeigten die mit 250 ppm der erfindungsgemäßen

Verbidnungen I.1, I.2, I.3, I.4, I.5, I.6, I.7, I.8, I.10, I.11,

I.14 bis I.17 und I.20 bis I.22 behandelten Pflanzen einen Befall von maximal 15% während die mit der gleichen Menge der Vergleichsverbindungen A.1 bzw. A.2 behandelten Pflanzen zu 80 bzw.

25% befallen waren. Die unbehandelten (Kontroll-) Pflanzen waren

zu 80% befallen.

Beispiele für die Wirkung gegen tierische Schädlinge

Die verbesserte Wirkung der Verbindungen der allgemeinen Formel

I gegen tierische Schädlinge ließ sich durch folgende Versuche zeigen.

Die Wirkstoffe wurden

- a. als 0,1%-ige Lösung in Aceton oder
- b. als 10%-ige Emulsion in einem Gemisch aus 70 Gew.-% Cyclohexanon, 20 Gew.-% Nekanil® LN (Lutensol® AP6, Netzmittel
 mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) und 10 Gew.-% Wettol® EM (nichtionischer Emulgator auf der Basis von ethoxyliertem Ricinusöl)
 aufbereitet und entsprechend der gewünschten Konzentration mit
 Aceton im Fall von a. bzw. mit Wasser im Fall von b. verdünnt.

Nach Abschluß der Versuche wurde die jeweils niedrigste Konzentration ermittelt, bei der die Verbindungen im Vergleich zu unbehandelten Kontrollen noch eine 80 bis 100%-ige Hemmung bzw. Mortalität hervorriefen (Wirkschwelle bzw. Minimalkonzentration).

Patentansprüche

1. Hydroximsäurehalogenide der Formel I

5

10

in der die Substituenten die folgende Bedeutung haben:

- X NOCH₃, CHOCH₃ oder CHCH₃;
- 15 Y O oder NH;
 - R1 Halogen;
- R² C₂-C₆-Alkyl, C₂-C₆-Alkenyl und C₂-C₆-Alkinyl, wobei diese

 20 Gruppen partiell oder vollständig halogeniert sein können und/oder einen oder zwei der folgenden Reste tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und Phenyl, welches seinerseits partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy;

Methyl, welches partiell oder vollständig halogeniert ist und/oder einen der folgenden Reste trägt: Cyano, $C_1-C_4-Alkoxy$ oder $C_1-C_4-Halogenalkoxy$;

 $C_5-C_6-Cycloalkyl$, welches partiell oder vollständig halogeniert sein kann und/oder eine bis drei $C_1-C_4-Alkyl$ -gruppen tragen kann;

35

30

Aryl oder Arylmethylen, welches im Arylteil partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Cyano, Nitro, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy und C_1-C_4 -Halogenalkoxy;

40

45

 R^3 $C_1-C_6-Alkyl$, $C_1-C_3-Alkoxy-C_1-C_6-alkyl$, $C_3-C_6-Cycloalkyl-C_1-C_6-alkyl$, $C_3-C_6-Alkenyl$ und $C_3-C_6-Alkinyl$, wobei diese Gruppen partiell oder vollständig halogeniert sein können und wobei die Cycloalkylgruppen außerdem eine bis drei $C_1-C_4-Alkylreste$ tragen können,

sowie ihre Salze.

Verfahren zur Herstellung der Verbindungen I gemäß Anspruch
 dadurch gekennzeichnet, daß man einen Carbonsäureester
 der Formel IIa

$$R^3ON$$
 OR^x (IIa)

10

in der R^x für einen $C_1\text{-}C_6\text{-}Alkylrest$ oder einen Phenylrest steht, zunächst mit Hydroxylamin in die entsprechende Hydroxamsäure der Formel IIc

15

$$R^3ON$$
 NH
 NH
 R^2
(IIc)

überführt, IIc anschließend mit einer Benzylverbindung der 20 Formel IIIa

25

in der L für eine nucleofuge Abgangsgruppe steht, zum entsprechenden Hydroxamsäureester der Formel IV

30

$$R^3ON$$
 H_3C-Y
 X
 (IV)

- umsetzt und IV mit einem Halogenierungsmittel in I überführt.
- Verfahren zur Herstellung der Verbindungen IV gemäß Anspruch
 dadurch gekennzeichnet, daß man eine Carbonsäure der Formel IIb

$$R^3ON$$
 OH (IIb)

45

mit einem Benzylhydroxylamin der Formel IIIb

PCT/EP98/00782

94

$$H_2NO$$
 H_3C-Y
 X
(IIIb)

5

WO 98/38857

umsetzt.

Verfahren zur Herstellung der Verbindungen I gemäß Anspruch
 1, dadurch gekennzeichnet, daß man ein Amidoxim der Formel
 IId

$$R^3ON$$
 OH (IId)

15

mit einer Benzylverbindung der Formel IIIa gemäß Anspruch 2 in die entsprechende Verbindung der Formel V

20

$$\begin{array}{c|c}
 & NH_2 \\
 & N & O \\
 & N & O
\end{array}$$

$$\begin{array}{c}
 & N & O \\
 & N & O
\end{array}$$

$$\begin{array}{c}
 & N & O \\
 & N & O
\end{array}$$

$$\begin{array}{c}
 & N & O \\
 & N & O
\end{array}$$

$$\begin{array}{c}
 & N & O \\
 & N & O
\end{array}$$

$$\begin{array}{c}
 & N & O \\
 & N & O
\end{array}$$

$$\begin{array}{c}
 & N & O \\
 & N & O
\end{array}$$

- 25 überführt und die Aminogruppe von V im Wege einer Diazotierung gegen Halogen austauscht.
 - 5. Verwendung von Verbindungen der Formel V gemäß Anspruch 4 zur Herstellung der Verbindungen I gemäß Anspruch 1.

30

6. Zur Bekämpfung von tierischen Schädlingen oder Schadpilzen geeignetes Mittel, enthaltend einen festen oder flüssigen Trägerstoff und eine Verbindung der allgemeinen Formel I gemäß Anspruch 1.

35

40

- 7. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man die Pilze oder die vor Pilzbefall zu
 schützenden Materialien, Pflanzen, den Boden oder Saatgüter
 mit einer wirksamen Menge einer Verbindung der allgemeinen
 Formel I gemäß Anspruch 1 behandelt.
- 8. Verfahren zur Bekämpfung von tierischen Schädlingen, dadurch gekennzeichnet, daß man die Schädlinge oder die vor ihnen zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter
- mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I gemäß Anspruch 1 behandelt.

9. Verwendung der Verbindungen I gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung von tierischen Schädlingen oder Schadpilzen geeigneten Mittels.

5 10. Verwendung der Verbindungen I gemäß Anspruch 1 zur Bekämpfung von tierischen Schädlingen oder Schadpilzen.

INTERNATIONAL SEARCH REPORT

Int. ational Application No PCT/EP 98/00782

			717 ET 307 007 GE
A. CLASS IPC 6	FICATION OF SUBJECT MATTER A01N33/24 C07C259/02		
According t	o International Patent Classification(IPC) or to both national classific	ation and IPC	•
	SEARCHED		
Minimum de IPC 6	ocumentation searched (classification system followed by classification ${\tt C07C-A01N}$.	on symbols)	
Documenta	tion searched other than minimumdocumentation to the extent that e	such documents are included i	n the fields searched
	lata base consulted during the international search (name of data ba	se and, where practical, sear	ch terms used)
	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
X	WO 95 21153 A (BASF AG ;BAYER HE (DE); SAUTER HUBERT (DE); MUELLE (DE)) 10 August 1995 cited in the application see page 79; examples 1091-1095	RBERT R RUTH	1-10
X	WO 95 21154 A (BASF AG ;BAYER HEI (DE); SAUTER HUBERT (DE); MUELLEI (DE)) 10 August 1995 cited in the application see page 58; examples 1091-1095	RBERT R RUTH	1-10
Furth	er documents are listed in the continuation of box C.	X Patent family member	ers are listed in annex.
<u> </u>	egories of cited documents :	T* later document published	after the international filing date
"E" earlier de filing de "L" documer which is citation "O" docume other rr documer later the	nt which may throw doubts on priority claim(s) or s cited to establish the publicationdate of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or neans nt published prior to the international filling date but an the priority date claimed	cited to understand the province of particular recannot be considered no involve an inventive step "Y" document of particular recannot be considered to document is combined very particular teleparticular particular onflict with the application but principle or theory underlying the evance; the claimed invention ivel or cannot be considered to o when the document is taken alone evance; the claimed invention involve an inventive step when the rith one or more other such docu- n being obvious to a person skilled same patent family	
	ctual completion of the international search May 1998	Date of mailing of the inte	rnational search report
	ailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Pauwels, G	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. Atlanal Application No PCT/EP 98/00782

Patent document cited in search repor	t	Publication date		Patent family member(s)	Publication date
WO 9521153	Α	10-08-1995	AU	1454695 A	21-08-1995
			BR	9506719 A	23-09-1997
			CA	2182529 A	10-08-1995
			CN	1143359 A	19-02-1997
			CZ	9602314 A	12-02-1997
			EP	0738259 A	23-10-1996
			HU	76002 A	30-06-1997
			JP	9509656 T	30-09-1997
			PL	315773 A	09-12-1996
			SK	102496 A	05-03-1997
WO 9521154	Α	10-08-1995	AU	681932 B	11-09-1997
			AU	1416095 A	21-08-1995
			BR	9506720 A	23-09-1997
			CA	2182407 A	10-08-1995
			CZ	9602315 A	11-12-1996
			£Ρ	0741694 A	13-11-1996
			HU	75534 A	28-05-1997
			JP	9509410 T	22-09-1997
			PL	318595 A	23-06-1997
			SK	102396 A	05-03-1997

INTERNATIONALER RECHERCHENBERICHT

Int. ationales Aktenzeichen PCT/EP 98/00782

	• •	PC	1/EP 98/00/82
A. KLASSI IPK 6	Fizierung des anmeldungsgegenstandes A01N33/24 C07C259/02		
Nach der Int	ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas	ssifikation und der IPK	
B. RECHE	RCHIERTE GEBIETE		
Recherchier IPK 6	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo CO7C AO1N .	le)	
Recherchier	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	weit diese unter die recherchie	rten Gebiete fallen
Während de	r internationalen Recherche konsultlerte elektronische Datenbank (N	erne der Datenbank und evtl.	verwendete Suchbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden	Teile Betr. Anspruch Nr.
X	WO 95 21153 A (BASF AG ;BAYER HER (DE); SAUTER HUBERT (DE); MUELLER (DE)) 10.August 1995 in der Anmeldung erwähnt siehe Seite 79; Beispiele 1091-10	RUTH	1-10
Х	WO 95 21154 A (BASF AG ;BAYER HER (DE); SAUTER HUBERT (DE); MUELLER (DE)) 10.August 1995 in der Anmeldung erwähnt siehe Seite 58; Beispiele 1091-10	RUTH	1-10
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Paten	tamilie
*Besondere "A" Veröffer aber ni "E" älteres I Anmek "L" Veröffer schein: andere soll odd ausgef "O" Veröffer eine Be "P" Veröffer dem be	Kategorien von angegebenen Veröffentlichungen : Itilchung, die den allgemeinen Stand der Technik definiert, Icht als besondere bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist Itilchung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer in im Recherchenbericht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie ührt) Itilchung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht Itilchung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	oder dem Prioritätsdatum Anmeldung nicht kollidiert Erfindung zugrundellegen Theorie angegeben ist "X" Veröffentlichung von beso- kann allein aufgrund diesi erfinderischer Tätigkeit be "Y" Veröffentlichung von beso- kann nicht als auf erfindel werden, wenn die Veröffe Veröffentlichungen dieser	ischer i augkeit derünend betrachtet ntlichung miteiner oder mehreren anderen Kategorie in Verbindung gebracht wird und n Fachmann naheliegend ist
	Abschlusses der internationalen Recherche 5 . Mai 1998	Absendedatum des intern	ationalen Recherchenberichts
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Bevollmächtigter Bediens	teter

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int: _itionales Aktenzeichen
PCT/EP 98/00782

lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		tglied(er) der atentfamilie	Datum der Veröffentlichung
WO 9521153	Α	10-08-1995	AU	1454695 A	21-08-1995
			BR	9506719 A	23-09-1997
			CA	2182529 A	10-08-1995
			CN	1143359 A	19-02-1997
			CZ	9602314 A	12-02-1997
			EP	0738259 A	23-10-1996
			HU	76002 A	30 - 06-1997
			JP	9509656 T	30-09-1997
			PL	315773 A	09-12-1996
			SK	102496 A	05-03-1997
WO 9521154	A	10-08-1995	AU	681932 B	11-09-1997
			AU	1416095 A	21-08-1995
			BR	9506720 A	23-09-1997
			CA	2182407 A	10-08-1995
			CZ	9602315 A	11-12-1996
			EP	0741694 A	13-11-1996
			HU	75534 A	28-05-1997
			JP	9509410 T	22-09-1997
			PL	318595 A	23-06-1997
			SK	102396 A	05-03-1997