

WHAT WE CLAIM IS:

1. A silver halide color photographic light-sensitive material containing a cyan coupler represented  
5 by the following formula (I):

formula (I)



wherein R<sup>1</sup> and R<sup>2</sup> each independently represent an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group or a heterocyclic group, or R<sup>1</sup> and R<sup>2</sup> may bond together to form a 5- or 6-membered nitrogen-containing heterocycle;  
10 R<sup>3</sup> represents an alkyl group, a cycloalkyl group or an alkenyl group; R<sup>5</sup> represents an alkyl group or an aryl group; and R<sup>4</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup> each independently represent a hydrogen atom or a substituent, with the proviso that at least one of R<sup>4</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup> represents a substituent,  
15 and that two groups of R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup>, which adjoin each other, do not bond together to form any ring.

2. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein R<sup>5</sup> in formula (I) is a straight-chain or branched-chain alkyl group having 1 to 10 carbon atoms.

5

3. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the substituent represented by at least one of R<sup>4</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup> in formula (I) is an alkyl group, an aryl group, a hydroxyl group, an alkoxy group, an aryloxy group, an amino group, a carbonamido group or a sulfonamido group.

10  
15 4. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein R<sup>3</sup> in formula (I) is a group represented by the following formula (II):

formula (II)



wherein, in formula (II), R<sup>11</sup> and R<sup>12</sup> each independently represent an alkyl group, a cycloalkyl group, or an alkenyl group; R<sup>13</sup>, R<sup>14</sup> and R<sup>15</sup> each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an

TO  
DO  
C  
O  
D  
E  
P  
R  
E  
S  
E  
N  
T

alkenyl group; and Z represents carbon atoms necessary to form a 5- to 8-membered ring, which ring may be substituted and may be a saturated or unsaturated ring.

5        5. The silver halide color photographic light-sensitive material as claimed in claim 1, wherein the cyan coupler is contained in an amount of  $1 \times 10^{-3}$  mole to 1 mole, per mole of silver halide in the same layer.

10        6. The silver halide color photographic light-sensitive material as claimed in claim 1, further containing a phenol or naphthol cyan coupler.

15        7. The silver halide color photographic light-sensitive material as claimed in claim 1, further containing an ultraviolet ray-absorbing agent having a triazine skeleton.

20        8. A pyrrolotriazole compound represented by the following formula (I):  
formula (I)



wherein R<sup>1</sup> and R<sup>2</sup> each independently represent an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, or a heterocyclic group, or R<sup>1</sup> and R<sup>2</sup> may bond together to form a 5- or 6-membered nitrogen-containing heterocycle; R<sup>3</sup> represents an alkyl group, a cycloalkyl group or an alkenyl group; R<sup>5</sup> represents an alkyl group or an aryl group; and R<sup>4</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup> each independently represent a hydrogen atom or a substituent, with the proviso that at least one of R<sup>4</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup> represents a substituent, and that two groups of R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup>, which adjoin each other, do not bond together to form any ring.

9. The pyrrolotriazole compound as claimed in claim 8, wherein R<sup>5</sup> in formula (I) is a straight-chain or branched-chain alkyl group having 1 to 10 carbon atoms.

10. The pyrrolotriazole compound as claimed in claim 8, wherein the substituent represented by at least

one of R<sup>4</sup>, R<sup>6</sup>, R<sup>7</sup> and R<sup>8</sup> in formula (I) is an alkyl group, an aryl group, a hydroxyl group, an alkoxy group, an aryloxy group, an amino group, a carbonamido group or a sulfonamido group.

5

11. The pyrrolotriazole compound as claimed in claim 8, wherein R<sup>3</sup> in formula (I) is a group represented by the following formula (II):  
formula (II)



10

wherein, in formula (II), R<sup>11</sup> and R<sup>12</sup> each independently represent an alkyl group, a cycloalkyl group, or an alkenyl group; R<sup>13</sup>, R<sup>14</sup> and R<sup>15</sup> each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an alkenyl group; and Z represents carbon atoms necessary to form a 5- to 8-membered ring, which ring may be substituted and may be a saturated or unsaturated ring.

15  
20  
25  
12. A dye-forming compound represented by the following formula (I):  
formula (I)



wherein  $\text{R}^1$  and  $\text{R}^2$  each independently represent an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, or a heterocyclic group, or  $\text{R}^1$  and  $\text{R}^2$  may bond together to form a 5- or 6-membered nitrogen-containing heterocycle;

5       $\text{R}^3$  represents an alkyl group, a cycloalkyl group or an alkenyl group;  $\text{R}^5$  represents an alkyl group or an aryl group; and  $\text{R}^4$ ,  $\text{R}^6$ ,  $\text{R}^7$  and  $\text{R}^8$  each independently represent a

10     hydrogen atom or a substituent, with the proviso that at least one of  $\text{R}^4$ ,  $\text{R}^6$ ,  $\text{R}^7$  and  $\text{R}^8$  represents a substituent, and that two groups of  $\text{R}^4$ ,  $\text{R}^5$ ,  $\text{R}^6$ ,  $\text{R}^7$  and  $\text{R}^8$ , which adjoin each other, do not bond together to form any ring.

15        13. The dye-forming compound as claimed in claim 12, wherein  $\text{R}^5$  in formula (I) is a straight-chain or branched-chain alkyl group having 1 to 10 carbon atoms.

14. The dye-forming compound as claimed in claim 12,

20        wherein the substituent represented by at least one of  $\text{R}^4$ ,

$R^6$ ,  $R^7$  and  $R^8$  in formula (I) is an alkyl group, an aryl group, a hydroxyl group, an alkoxy group, an aryloxy group, an amino group, a carbonamido group or a sulfonamido group.

- 5        15. The dye-forming compound as claimed in claim 12,  
wherein  $R^3$  in formula (I) is a group represented by the  
following formula (II):  
formula (II)



- 10      wherein, in formula (II),  $R^{11}$  and  $R^{12}$  each independently  
represent an alkyl group, a cycloalkyl group, or an  
alkenyl group;  $R^{13}$ ,  $R^{14}$  and  $R^{15}$  each independently represent  
a hydrogen atom, an alkyl group, a cycloalkyl group, or an  
alkenyl group; and Z represents carbon atoms necessary to  
15     form a 5- to 8-membered ring, which ring may be  
substituted and may be a saturated or unsaturated ring.