ECE404 HW03	
FCF 4	0400: Introduction to Computer Security
LCL 4	<u>0400: Introduction to compater security</u>
	Spring 2024
	Prateek Yashwant Jannu
	Purdue University, West Lafayette
	Professor: Dr. Avinash C Kak

Theory Problems

- 1. Given A = {0,1}, determine whether or not the set forms a group with the following binary operators:
 - boolean and

Does not form a Group

Closure: Yes Associative: Yes Identity: 1 x+1=x

Inverse: No, Example - 0 does not have an inverse which would result in 1

• boolean or

Does not form a Group

Closure: Yes Associative: Yes Identity: 0 0+x=x

Inverse: No, Example 1 does not have an inverse which would result in 0

• boolean xor

Forms a Group

Closure: Yes Associative: Yes Identity: 0 x+0=x

Inverse: Yes All elements 1 has an inverse 1 and 0 has an inverse 0, hence inverse exists

2. Given W, the set of all unsigned integers, determine whether or not w forms a group under the gcd(·) operator.

Does not Form a Group

Closure: Yes Associative: Yes Identity: 0

Inverse: No, No multiplicative inverse because there is no element b such that

gcd(a,b)=0 because gcd(0,a)=a for any a and cannot be 0

3. Let's say we have a ring with the group operator + as addition and the ring operator × as multiplication. If you switch the two (i.e. multiplication is the group operator and addition is the ring operator), would it still be a ring? Explain why or why not (i.e. indicate all the properties that are true/not true that show it is/is not a ring)

No, switching the two operators may not hold the ring properties, as addition and multiplication have different properties. The resulting set may not have the conditions to be considered a ring. I list the properties down below before and after switching

Before Switching

Additive Closure: For any elements a and b in the ring, the sum a + b is also in the ring. **Additive Associativity**: For any elements a, b, and c in the ring, (a + b) + c = a + (b + c).

Additive Identity: There exists an additive identity element

Additive Inverse: For every element a in the ring, there exists an additive inverse

Multiplicative Closure: For any elements a and b in the ring, the product a x b is also in the ring. **Multiplicative Associativity**: For any elements a, b, and c in the ring, $(a \times b) \times c = a \times (b \times c)$. **Distributivity over group operator**: For any elements a, b, and c in the ring, $a \times (b + c) = a \times b + a \times c$ and $a \times b \times c = a \times c + b \times c$.

After Switching

Multiplication as Group operator:

If group operator is replaced by multiplication, then properties of additive identity, and additive inverse may not hold for multiplication.

Addition as ring operator:

If multiplication is replaced by addition, the properties of multiplicative closure, multiplicative associativity, and left/right distributivity may not hold for addition.

Hence we **cannot assume** that when we switch the group and ring operators, it would still be a ring.

4. Explain in detail how one would use Bezout's identity to find the multiplicative inverse of an integer in the field Zp, where p is a prime number. Then, use those steps to find the multiplicative inverse of 47 in Z97.

\\ Definitions and explanation taken from lecture notes

Bezout's Identity states that for two integers a and b, there exist integers x and y such that ax + by = gcd(a, b). This theorem is used for finding the multiplicative inverse of an integer in a finite field, where p is a prime number.

To find the multiplicative inverse of an integer a in the field, where p is prime number, you would use Bezout's Identity to find x and y such that ax + by = 1. The integer x will be the multiplicative inverse of a.

Here are the steps to find the multiplicative inverse of an integer a using Bezout's Identity:

1. Bezout's Identity:

Write the equation ax+by=1 where b is the prime. This is guaranteed to be true since b is prime.

2. Use Extended Euclidean Algorithm:

Use the extended Euclidean algorithm to find x and y such that ax+by = gcd(a, b).

3. Check if gcd(a, b) is 1:

Make sure that gcd(a,b)=1. If not, then a and b are not relatively prime, and a does not have a multiplicative inverse.

Let's find the multiplicative inverse of 47 modulo 97:

```
GCD (47,97)
 = GCD (97,47) \mid residue = 47 = (47x1) + (97x0) 
 = GCD (47,3) \mid residue = 3 = -2*(47x1) + (97x1) 
 = GCD (3,2) \mid residue = 2 = (47x1) - 15*(-2*(47x1) + (97x1)) 
 = (47x1) + 30(47*1) - 15(97*1) 
 = 31(47x1) - 15(97x1) 
 = GCD (2,1) \mid residue = 1 = -2*(47x1) + (97x1) - 31(47x1) + 15(97x1) 
 = -33*(47x1) + 16*(97x1)
```

We get x=-33+97=64

The multiplicative inverse of 47 in Z97=64

- 5. In the following, find the smallest possible integer x that solves the congruences. You should not solve them by simply plugging in arbitrary values of x until you get the correct value. Make sure to show your work.
 - (a) 28x ≡ 34 (mod 37)

 First find inverse using the bezout's identity

 GCD(28,37)

 GCD(37,28)=r=28=(28*1)+(37*0)

 GCD(28,9)=r=9=(37*1)-(28*0)

 GCD(9,1)=1=(28*1)+(37*0)-3(37*1)+3(28*0)

 = 4*(28*1)-3(37*1)

 Inverse=4

 Now Multiply each side by the inverse to the question

 4 * 28x= 34*4(mod 37)

 X= 136 mod 37

 X=25

 QED x=25 where 28x≡ 34 (mod 37)
 - (b) $19x \equiv 42 \pmod{43}$ First find inverse using the bezout's identity GCD(19,43) GCD(43,19)=r=19=(19*1)+(43*0) GCD(19,5)=r=5=(43*1)-2(19*1) GCD(5,4)=r=4=(19*1)+(43*0)-3*(43*1)+6*(19*1) = 7*(19*1)-3(43*1) GCD(4,1)=r=1=(43*1)-2(19*1)-7*(19*1)+3(43*1) =4*(43*1)-9(19*1) Now Multiply each side by the inverse to the question -9 * 19 x= 42*-9(mod 43)

X= -378 modulo 43

X=9

X=9

QED x=9 where $19x\equiv 42 \pmod{43}$

(c) $54x \equiv 69 \pmod{79}$ First find inverse using the bezout's identity GCD(54,79) GCD(79,54)=r=54=(54*1)+(79*0) GCD(54,25)=r=25=-1*(54*1)+1*(79*1) GCD(25,4)=r=4=3*(54*1)-2(79*1)GCD(4,1)=r=1=-19(54*1)+13(79*1)

Now Multiply each side by the inverse to the question $-19 * 54 x= 69*-19 \pmod{79}$ X= -1311 modulo 79 X=32

X=32

QED x=32 where $54x = 69 \pmod{79}$

(d) $153x \equiv 182 \pmod{271}$

First find inverse using the bezout's identity GCD(153,271)
GCD(271,153)=r=118= (271*1)-(153*1)
GCD(153,118)=r=35= -1(271*1)+2(153*1)
GCD(118,35)=r=118= 4(271*1)-7(153*1)
GCD(35,13)=r=118= -9(271*1)+16(153*1)
GCD(13,9)=r=118= 13(271*1)-23(153*1)
GCD(9,4)=r=118= -35(271*1)+62(153*1)

Now Multiply each side by the inverse to the question $62 * 153 x= 182*62 \pmod{271}$ X= 11284 mod 271 X=173

X=173

QED x=173 where 153x= 182 (mod 271)

- (e) $672x \equiv 836 \pmod{997}$
- (f) First find inverse using the bezout's identity GCD(672,997)

$$=GCD(22,17)=r=17=-43(672*1)+29(997*1)$$

$$=GCD(5,2)=r=2=-181(672*1)+122(997*1)$$

Now Multiply each side by the inverse to the question

408*672x= 408*836(mod 997)

X= 341088 mod 997

X=114

X=114

QED x=114 where $672x \equiv 836 \pmod{997}$

6. Simplify the following polynomial expression in GF(89) (54x 10 - 62x 9 - 84x 8 + 70x 7 - 75x 6 + x 5 - 50x 3 + 84x 2 + 65x + 78) + (-67x 9 + 44x 8 - 26x 7 - 37x 6 + 61x 5 + 68x 4 + 22x 3 + 74x 2 + 87x + 38)

$$54x^{10} + 49x^9 + 49x^8 + 44x^7 + 66x^6 + 62x^5 + 68x^4 + 61x^3 + 69x^2 + 63x^1 + 27$$

7. Simplify the following polynomial expression in GF (11) $(8x 3 + 6x 2 + 8x + 1) \times (3x 3 + 9x 2 + 7x + 5)$

$$=2x^{6}+6x^{5}+1x^{4}+7x^{3}+7x^{5}+10x^{4}+9x^{3}+8x^{2}+2x^{4}+6x^{3}+1x^{2}+7x^{1}+3x^{3}+9x^{2}+7x^{1}+5$$

$$=2x^{6}+2x^{5}+2x^{4}+3x^{3}+7x^{2}+3x^{1}+5$$

8. For the finite field GF(2^3), simplify the following expressions with modulus polynomial (x 3 + x + 1): (a) (x 2 + x + 1) \times (x 2 + x)

a)

a)
$$(x^2 + x + 1) \times (x^2 + x)$$

$$X^4 + x$$

$$X^4/(x^3+x+1)$$

$$=x^2+x+x$$

```
=x^2
```

b) X^2-X^2+X+1 =X+1 Final answer=x+1

= X^2+1

c) $(X^2+x+1)/(x^2+1)$ Multiplicative inverse of x^2+1 wrt to (x^3+x+1) $GCD(x^3+x+1,x^2+1)=R=x^2+1=1*(x^2+1)+0*(x^3+x+1)$ $FCD(x^2+1,1)=R=1=x*(x^2+1)-1(x^3+x+1)$ We get MI=x $(X^2+X+1)*X$ $=X^3+X+1$ Dividing x^3 by modulus polynomial (x^3+x+1) We get $=X+1+X^2+X$