Martin Kleinsteuber: Computer Vision

Kapitel 3 – Epipolargeometrie

2. Epipole und Epipolarlinien

Epipolargeometrie

Wiederholung Epipolargleichung

Epipolargeometrie

Definition der Epipole

 Die perspektivischen Projektionen der optischen Zentren in das jeweils andere Kamerasystem heißen Epipole

Epipole

Eigenschaften

- Aus Geometrie der eukl. Bewegung: $\mathbf{e_1} \sim R^{\top} \mathbf{T}, \quad \mathbf{e_2} \sim \mathbf{T}$
- e_1 liegt im Kern von E: $Ee_1 = 0$

• $\mathbf{e_2}$ liegt im Kern von E^{T} : $E^{\mathsf{T}}\mathbf{e_2} = 0$

Die Nullräume von E

aus der Singulärwertzerlegung

$$\mathbf{E} = \begin{bmatrix} \mathbf{u_1} & \mathbf{u_2} & \mathbf{u_3} \end{bmatrix} \begin{bmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v_1^{\top}} \\ \mathbf{v_2^{\top}} \\ \mathbf{v_3^{\top}} \end{bmatrix}$$

$$\mathbf{e_1} \sim \mathbf{v_3} \Rightarrow E\mathbf{e_1} = 0$$

 Das Urbild von e₁ ist äquivalent zum dritten rechtsseitigen Singulärvektor von E

Die Nullräume von E^T

aus der Singulärwertzerlegung

$$\mathbf{E}^{\top} = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} \end{bmatrix} \begin{bmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u_1^{\top}} \\ \mathbf{u_2^{\top}} \\ \mathbf{u_3^{\top}} \end{bmatrix}$$

$$\mathbf{e_2} \sim \mathbf{u_3} \Rightarrow E^{\mathsf{T}} \mathbf{e_2} = 0$$

■ Das Urbild von e_2 ist äquivalent zum dritten linksseitigen Singulärvektor von E

Epipolargeometrie

Definition Epipolarebene und Epipolarlinie

- Die Ebene, die durch O₁, O₂ und P aufgespannt wird, heißt Epipolarebene von P
- Der Schnitt der Epipolarebene mit der Bildebene heißt Epipolarlinie

Epipolarlinien

Geometrische Interpretation

 Die Epipolarlinie ist das Bild, das vom Urbild eines Punktes im anderen Kamerasystem erzeugt wird.

- Die Epipolarebene wird von den
 Ortsvektoren des Bildpunktes und des
 Epipols aufgespannt: span (x_i, e_i)
- Epipolarlinie wird über Cobild identifiziert

$$\ell_{\mathbf{i}} \sim \mathbf{e_i} \times \mathbf{x_i}$$

Epipolarlinien

Eigenschaften

- $\bullet \ \ell_{\mathbf{i}}^{\mathsf{T}} \mathbf{x}_{\mathbf{i}} = 0, \quad \ell_{\mathbf{i}}^{\mathsf{T}} \mathbf{e}_{\mathbf{i}} = 0$
- $\bullet \ \ell_1 \sim E^T \mathbf{x_2}, \quad \ell_2 \sim E \mathbf{x_1}$

Korrespondenzsuche

mit Hilfe der essentiellen Matrix

- Gegeben: E und $\mathbf{x_1}$
- Berechne $\ell_2 \sim E \mathbf{x_1}$
- Bestimme das Bild der Epipolarlinie
- Suche (z.B. mit NCC) entlang des Bildes nach x₂

Zusammenfassung

- Berechnung der Epipole und Epipolarlinien mit Hilfe der essentiellen Matrix
- Urbilder der Epipole aus Singulärwertzerlegung der essentiellen Matrix
- Epipolarlinie mittels $\ell_2 \sim E \mathbf{x}_1$
- Vereinfachte Suche nach Korrespondenzen mit Epipolarlinie