GAI project1 report

練習1:改善決策樹分類模型

本次練習中,透過採用不同的數據前處理方法、增加更多輸入特徵以及調整超參數,成功的提升了決策樹分類模型在測試集上的準確度。以下我將具體介紹改進的過程以及它們對模型性能的影響:

不同的數據前處理方法

- 1. 數值型特徵處理:選取了'Age', 'SibSp', 'Parch', 'Fare'作為數據型特徵,並透過中位數進行缺失值填補('Age'欄位)。之後使用了 MinMaxScalar 進行特徵縮放,將數據縮放到 0 至 1 之間,以消除不同量級特徵帶來的影響。
- 2. 類別型特徵處理:選取'Sex', 'Embarked', 'Pclass'作為類別型特徵·並利用眾數進行缺失值填補('Embarked'欄位)·之後採取 one-hot encoding 將這些類別型特徵轉化為數值型·以便後續的模型處理。

特徵選擇

[繪製圖表]

繪製圖表初步觀察存活狀況‧經過分析‧我挑選出對預測生還機率有較大影響的特徵:'Pclass(艙等)', 'Sex', 'Age', 'SibSp(兄弟姊妹+老婆丈夫的數量)', 'Parch(父母子女的數量)', 'Fare(票價)', 和'Embarked(出發港口)'。此外‧我捨棄了缺失值過多的'Cabin(房間號碼)'欄位‧並捨棄掉了'PassengerId', 'Name' 以及'Ticket'欄位‧因為這三者與看似與生還機率並沒有太大關聯。

[初步觀察]

根據圖表數據初步推斷:

- 1. 女性存活率較高
- 2. 頭等艙乘客存活率較高
- 3. 與兄弟姊妹或老婆丈夫同行的乘客存活機率較高
- 4. 與父母或子女同行的乘客存活機率較高
- 5. 於C碼頭出發者存活機率較高
- 6. 未成年乘客存活機率較高
- 7. 票價較高的乘客存活機率較高

調整超參數

在建模階段·我利用 Grid Search 網格搜索對各種參數組合進行交叉驗證·找到了最佳超參數配置如下:

```
Best parameters found: {'decisiontreeclassifier__max_depth': 4,
'decisiontreeclassifier__min_samples_leaf': 2,
'decisiontreeclassifier__min_samples_split': 2}
```

套用此配置後得到了 0.7988 的 test accuracy·原先我以為這就是當下最好的準確率,然而我測出了一個特殊的現象:當我僅調整 DecisionTreeClassifier 的 max_depth=3 來控制模型的複雜度,竟然得到了 0.8156 的 test accuracy·只做這個簡單的設定,比利用 GridSearchCV 或是 RandomizedSearchCV 尋找更複雜的超參數設定提供了更良好的結果。上網查詢資料後,我才了解利用 Grid Search 並不是每次都能找出最佳超參數配置,原因可能是因為搜索的範圍不夠廣泛,或是僅針對這個數據集,簡單的決策樹反而更適合捕捉數據的趨勢,套用

別的測試集說不定就沒有辦法比 Grid Search 的結果來的高了。因此,我還是選

擇先採用"利用 Grid Search 方法"找出的超參數配置而得出的 test

accuracy(0.7988), 進行後續的分析。

以上的調整也都成功避免了 overfitting, 同時維持足夠的學習能力, 以對新

數據做出準確的預測。此外,固定的 random_state 確保了模型訓練的可重複

性。

模型性能評估

經過以上的改進,可以明顯觀察到 test accuracy 從原先的 0.7262 提高到了

0.7988, 證明了上述前處理方法的有效性, 特徵選擇的合理性以及超參數調整

的必要性。

[Before]

train accuracy: 0.9831460674157303

test accuracy: 0.7262569832402235

[After]

training accuracy: 0.8426966292134831

test accuracy: 0.7988826815642458

[Special case]

train accuracy: 0.8314606741573034

test accuracy: 0.8156424581005587

練習 2:使用不同的模型

本次練習中,我一共套用了五個模型,分別是 GaussianNB(Naive Bayes Classifier), SVC(Support Vector Machines), KNeighborsClassifier(Nearest Neighbors), RandomForestClassifier (Ensemble),以及 GradientBoostingClassifier (Ensemble)。除了 GaussianNB 以外,針對其他 四個模型,分別使用 Grid Search 搭配手動調整來優化超參數配置。其中,我觀察到 Random Forest 以及 Gradient Boosting 的準確率達到 0.7989,是我測

KNeighborsClassifier 也都達到了 0.77 以上的準確率。總結來說,套用這五個model,經過超參數優化,**他們的 test accuracy 皆有大於 0.7262**,打敗了改進前的決策樹分類模型的執行結果。

試的五個模型中表現最好的。至於 GaussianNB, SVC 以及

[長條圖比較]

