

Practical Network Defense

Master's degree in Cybersecurity 2024-25

IPv6: addressing and ICMPv6 lab

Angelo Spognardi spognardi di.uniroma 1.it

Dipartimento di Informatica Sapienza Università di Roma

Material taken from Rick Graziani IPv6 courses

STATE OF THE PARTY OF THE PARTY

Recap last lectures

- IPv6 address types
 - Global Unicast Address
 - Local-link Unicast Address
- IPv6 dynamic assignment options
- Multicast Addresses
 - Permanent addresses ("well known multicast groups")
 - Scope of multicast addresses
- IPv6 packet header
- IPv6 Extension headers

Lab activity

Main tasks

- DHCPv6 with prefix delegation
- ICMPv6 MTU discovery
 - With ping and tracepath
- Tunnelbroker
- RIPE NCC IPv6Security-Exercises

To do the activities

- We will use Kathará (formerly known as netkit)
 - A container-based framework for experimenting computer networking: http://www.kathara.org/
- A virtual machine is made ready for you
 - https://drive.google.com/file/d/1W6JQzWVyH5_LKLD20R6XH1ugPDP5 LWP5/view?usp=sharing
- For not-Cybersecurity students, please have a look at the Network Infrastructure Lab material
 - http://stud.netgroup.uniroma2.it/~marcos/network_infrastructures/curr ent/cyber/
 - Instructions are for netkit, we will use kathara

- It should work in both Virtualbox and VMware
- It <u>should</u> work in Linux, Windows and MacOS
- There are some alias (shortcuts) prepared for you
 - Check with alias
- All the exercises can be found in the git repository:
 - https://github.com/vitome/pnd-labs.git
 - DON'T FORGET TO UPDATE → ~/pnd-labs\$ git pull
- You can move in the directory and run lstart
 - NOTE: launch docker first or the first lstart attempt can (...will...) fail

DHCPv6 with prefix delegation

- One router with two lan, both with 2 pcs. The router is connected with an ISP router.
- TASK: configure the topology to use IPv6 addresses
 - The ISP makes use of a DHCPv6 server for address and prefix distribution
 - The router has to ask prefixes to its ISP and has to distribute addresses inside the two lans, using SLAAC.
 - At least two options:
 - dibbler DHCPv6 client + radvd
 - wide-dhcp + dnsmasq
- The ISP is already configured to provide prefixes, while the router and the pcs have to be configured.
 - the router has always 1 in the host part of its own link local address

- Linux ipv6 configuration: ipv6 sysctl
 - https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
- DHCPv6:
 - dibbler+radvd:
 - useful guide: https://k3a.me/setting-up-ipv6-using-a-dhcp-client/
 - man pages:
 - https://manpages.debian.org/testing/radvd/radvd.conf.5.en.html
 - https://klub.com.pl/dhcpv6/doc/dibbler-user.pdf
 - wide-dhcp+dnsmasq:
 - useful guide: https://github.com/torhve/blag/blob/master/using-dnsmasq-for-dhcpv6.md
 - man pages:
 - https://thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html
 - https://manpages.debian.org/stretch/wide-dhcpv6-client/dhcp6c.8.en.html
 - https://manpages.debian.org/stretch/wide-dhcpv6-client/dhcp6c.conf.5

- Three routers connecting two LANs with one PC each.
- Configure the topology to use static addressing for the routers and SLAAC IPv6 addresses for the two LANs. See the README file for the details.
- Moreover, you have to play with the MTU of the links between the routers to generate and capture ICMPv6 packets (Packet too big or MTU discovery).
- You have to use tracepath and ping to test connectivity and MTU
- You can use the ip link set mtu XXXX dev YYY on both the end points of a link to alter the MTU

Exercise 6: create an IPv6 capable connection

- The task is to create an virtual interface for providing capable IPv6 Internet connection
 - IPv6 native: the entire infrastructure supports IPv6
 - Namely, your ISP provides you IPv6 addresses
 - IPv6 capable: the infrastructure can support IPv6 services and technologies by taking advantage of IPv6 transition technologies
 - Namely, you use a Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)
 - Tunnel IPv6 messages inside an IPv4 header
 - IPv4 only: the infrastructure can not support IPv6
- Reference:

https://developers.redhat.com/blog/2019/05/17/an-introduction-to-linux-virtual-interfaces-tunnels/

ISATAP: howto, using hurricane-electric services

- Go to https://www.tunnelbroker.net/ and register
- On the left, select Create regular tunnel
- Setup everything following the form directions
 - You can also refer to https://ipv6.he.net/certification/faq.php or http://ipv6.he.net/presentations.php and http://tunnelbroker.net/forums/
 - Beware if you are in a NAT'd network (this is highly likely)
- Important: your host has to be reachable from outside using protocol 41 → IPv6 Encapsulation (RFC 2473)
 - Virtual server, forward or DMZ in your home router

Steps to follow (sketch)

```
ip tunnel add he-ipv6 mode sit remote 216.66.80.98\
        local 192.168.100.13 ttl 255
ip link set he-ipv6 up
ip addr add 2001:a23f:f25:14c9::2/64 dev he-ipv6
ip route add ::/0 dev he-ipv6
ip -f inet6 addr
```


Exercise 7: IPv6Security-Exercises

- The task is to replicate the exercises of the RIPE NCC security lab
- The topology is the same, but the names are different:
 - hostA → pc1, hostB → pc2, hostC → pc3, router \rightarrow r1
- Scapy is on pc3
- THC-IPV6 and the IPv6-toolkit must be built in pc1 and pc2
 - You can follow the README
 - In a nutshell: copy from shared, unzip, cd and make install

That's all for today

- Questions?
- References:
 - https://developers.redhat.com/blog/2019/05/17/an-introduction-to-linux-virtual-interfaces-tunnels/
 - http://www.tcpipguide.com/free/t_InternetProtocolVersion6IPv6IPNex tGenerationIPng.htm
 - https://www.6diss.org/e-learning/
 - http://www.cabrillo.edu/~rgraziani/ipv6-presentations.html
 - Book chapter 11 (even if quite obsoleted)