OPTICAL RECORDING MEDIUM AND MANUFACTURE THEREOF

Publication number: JP4298389 Publication date: 1992-10-22

Inventor:

TOMINAGA JUNJI; DOI HIDEKI

Applicant:

TDK CORP

Classification:

- international:

B41M5/26; G11B7/24; G11B7/26; B41M5/26;

G11B7/24; G11B7/26; (IPC1-7): B41M5/26; G11B7/24;

G11B7/26

- european:

Application number: JP19910119474 19910423

Priority number(s): JP19910036823 19910206; JP19910119474 19910423

Report a data error here

Abstract of JP4298389

PURPOSE: To obtain a recording medium regeneration meeting CD specifications and having high light-resistance by containing an inorganic compound, which is decomposed by heating and prevents a gas, in a recording thin-film. CONSTITUTION:An optical recording medium 1 has a recording thin-film 3, a derivative thin-film 4 and a reflective thin-film 5 on the surface of a substrate 2, and a protective film 6 is formed onto the reflective thin-film 5. When a recording laser is applied from the rear of the substrate 2 on recording and the recording thin-film is heated, a gas discharged from the recording thin-film 3. An air gap 31 is formed in the recording thin-film 3 by the gas generated. Since the substrate 2 near the recording thin-film 3 is heated and softened, a recessed section 21 is formed on an interface with the recording thin-film 3 by the pressure of the gas generated. Optical conditions such as the optical constant, optical length, etc., of a recording laser-beam applying section are changed by shaping these air gap 21 and recessed section 21, and reflectivity is lowered. The optical recording medium can be used as a worm type optical recording medium by the change of light reflectivity generated in this manner.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-298389

(43)公開日 平成4年(1992)10月22日

(51) Int.CI. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
B41M	5/26				
G11B	7/24	В	7215~5D		
		Α	7215-5D		
	7/26		7215-5D		
			8305-2H	B41M	5/26 X
				:	審査請求 未請求 請求項の数19(全 7 頁)
(21)出願番号		特願平3-119474	*****	(71)出願人	000003067
					テイーデイーケイ株式会社
(22)出顧日		平成3年(1991)4月23日			東京都中央区日本橋1丁目13番1号
				(72)発明者	富永 淳二
(31)優先權主張番号		特願平3-36823		İ	東京都中央区日本橋一丁目13番1号 テイ
(32)優先日		平3 (1991) 2月6日			ーデイーケイ株式会社内
(33)優先權主張国		日本(JP)		(72)発明者	土肥 秀樹
					東京都中央区日本橋一丁目13番1号 テイ
					ーデイーケイ株式会社内
				(74)代理人	弁理士 石井 陽一 (外1名)
				[

(54) 【発明の名称】 光記録媒体およびその製造方法

(57)【要約】

【構成】 基板表面に、記録薄膜、誘電体薄膜および反射薄膜をこの順で設ける。記録レーザー光を照射すると、記録薄膜中の無機化合物が分解してガスを発生し、記録薄膜中には空隙が生じる。また、基板は加熱されて軟化しているため、発生したガスの圧力により基板表面に凹部が形成される。前配空隙や凹部により光学的条件が変化し、レーザー光照射部で反射率が著しく低下する。

【効果】 CD規格に対応した再生が可能である。そして、有機色素を使わず、加熱により分解してガスを発生する無機化合物を用いるため、耐光性が良好であり、信頼性の高い情報保存が可能となる。また、記録感度が高い。

【特許請求の範囲】

【請求項1】 基板表面に、記録薄膜、誘電体薄膜およ び反射薄膜をこの順で有し、前記記録薄膜が、加熱によ り分解してガスを放出する無機化合物を含有することを 特徴とする光記録媒体。

【請求項2】 前記無機化合物のガスを放出する温度が 300℃以下である請求項1に記載の光記録媒体。

【請求項3】 前記ガスが酸素または窒素である請求項 1または2に記載の光記録媒体。

【請求項4】 前記無機化合物が酸化銀または窒化鉄で 10 に記載の光記録媒体の製造方法。 ある請求項1ないし3のいずれかに記載の光記録媒体。

【請求項5】 前記誘電体薄膜が酸化ケイ素を含有する 請求項1ないし4のいずれかに記載の光記録媒体。

【請求項6】 前記記録薄膜の厚さが600~1500 A であり、前配誘電体薄膜の厚さが500~4000A である請求項1ないし5のいずれかに記載の光記録媒

【請求項7】 前記基板と前記記録薄膜との間に、低融 点薄膜を有する請求項1ないし6のいずれかに記載の光 記録媒体。

【請求項8】 前記低融点薄膜の厚さが10~200A である請求項7に記載の光記録媒体。

【請求項9】 前記低融点薄膜が、Sn、2n、Pb、 Bi. Tl. Te. Se. S. Al, Ga. Ge. Cd または I から構成される請求項7または8に記載の光記

【請求項10】 前記反射薄膜の厚さが300~150 0.4 である請求項1ないし9のいずれかに記載の光記録 媒体。

【請求項11】 前記反射薄膜がAg、Al、Au、P 30 tまたはCuから構成される請求項1ないし10のいず れかに記載の光記録媒体。

【請求項12】 基板の記録光照射部表面に凹部が存在 する請求項1ないし11のいずれかに記載の光記録媒 体。

【請求項13】 波長300~900mにおける反射率 が、未記録部で70%以上であり、記録部で50%以下 である請求項1ないし12のいずれかに記載の光記録媒 体。

【請求項14】 請求項1ないし13のいずれかに記載 40 の光記録媒体を製造する方法であって、前記記録薄膜が 反応性スパッタ法により形成されることを特徴とする光 記録媒体の製造方法。

【請求項15】 前記記録薄膜が、酸素ガスを含有する 努囲気中においてAgをターゲットとして反応性スパッ 夕により形成される請求項14に記載の光記録媒体の製 造方法。

【請求項16】 前記反応性スパッタに際して、全ての ガスの合計流量に対し酸素ガスの流量を10~70%と する請求項15に記載の光記録媒体の製造方法。

【請求項17】 前記記録薄膜が、窒素ガスを含有する 雰囲気中においてFeをターゲットとして反応性スパッ 夕により形成される請求項14に記載の光記録媒体の製 造方法。

【請求項18】 前記反応性スパッタに際して、全ての ガスの合計流量に対し窒素ガスの流量を10~20%と する請求項17に記載の光記録媒体の製造方法。

【請求項19】 前記反応性スパッタ時の圧力が3×1 0-1~1. OPaである請求項15ないし18のいずれか

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光記録媒体およびその製 造方法に関し、特にコンパクトディスク規格に対応する 再生が可能な光記録媒体およびその製造方法に関する。

[0002]

【従来の技術】大容量情報記録媒体として、光記録ディ スク等の光記録媒体が注目されている。光記録媒体とし ては、相変化型光記録媒体や光磁気記録媒体等の書き換 20 え可能タイプ、あるいはビット形成型光記録媒体等の追 記タイプなどがある。

【0003】近年、コンパクトディスク(以下、CDと 略称する)規格に対応して追記ないし記録を行なうこと のできる光記録ディスクが提案されている(日経エレク トロニクス1989年1月23日号、No. 465. P 107、社団法人近畿化学協会機能性色素部会、198 9年3月3日, 大阪科学技術センター、SPIE vol 10780p tical Data Storage Topical Meeting, 80 1989等)。 この光記録ディスクは、透明樹脂基板上に、色素層、A u反射層および保護膜をこの順に設層して形成される。 すなわち、反射層を色素層に密着して設けるものであ る。

【0004】しかし、この光記録ディスクは有機色素を 用いているため耐候性、特に耐光性が低く、例えば太陽 光中の紫外線などにより色素が劣化してしまう。このた め、配録前であっても記録後であっても、長期にわたっ て信頼性の高い保存を行なうことが難しい。

[0005]

【発明が解決しようとする課題】本発明は、このような 事情からなされたものであり、CD規格に対応する再生 が可能で、しかも耐光性の高い光記録媒体およびその製 造方法を提供することを目的とする。

[0006]

【課題を解決するための手段】このような目的は下記 (1)~(19)の本発明によって達成される。

【0007】(1) 基板表面に、記録薄膜、誘電体薄 膜および反射薄膜をこの順で有し、前記記録薄膜が、加 熱により分解してガスを放出する無機化合物を含有する ことを特徴とする光記録媒体。

【0008】(2) 前記無機化合物のガスを放出する

温度が300℃以下である上記(1)に記載の光記録媒体。

【0009】(3) 前記ガスが酸素または窒素である 上記(1)または(2)に記載の光記録媒体。

【0010】(4) 前記無機化合物が酸化銀または窒化鉄である上記(1)ないし(3)のいずれかに記載の光記録媒体。

【0011】(5) 前記誘電体薄膜が酸化ケイ素を含有する上記(1)ないし(4)のいずれかに記載の光記録媒体。

【0012】(6) 前記記録薄膜の厚さが600~1500Aであり、前記誘電体薄膜の厚さが500~4000Aである上記(1)ないし(5)のいずれかに記載の光記録媒体。

【0013】(7) 前記基板と前記記録薄膜との間に、低融点薄膜を有する上記(1)ないし(6)のいずれかに記載の光記録媒体。

【0014】(8) 前記低融点薄膜の厚さが10~2 00Aである上記(7)に記載の光記録媒体。

【0015】(9) 前記低融点轉膜が、Sn、Zn、Pb、Bi、Tl、Te、Se、S、Al、Ga、Ge、CdまたはIから構成される上記(7)または(8)に記載の光記録媒体。

【0016】(10) 前記反射薄膜の厚さが300~ 1500Aである上記(1)ないし(9)のいずれかに 記載の光記録媒体。

【0017】(11) 前記反射薄膜がAg、Al、Au、PtまたはCuから構成される上記(1)ないし(10)のいずれかに記載の光記録媒体。

【0018】(12) 基板の記録光照射部表面に凹部 30 が存在する上記(1)ないし(11)のいずれかに記載 の光記録媒体。

【0019】(13) 波長300~900mにおける 反射率が、未記録部で70%以上であり、記録部で50 %以下である上記(1)ないし(12)のいずれかに記 載の光記録媒体。

【0020】(14) 上記(1)ないし(13)のいずれかに記載の光記録媒体を製造する方法であって、前記記録薄膜が反応性スパッタ法により形成されることを特徴とする光記録媒体の製造方法。

【0021】(15) 前記記録薄膜が、酸素ガスを含有する劣囲気中においてAgをターゲットとして反応性スパッタにより形成される上記(14)に記載の光記録媒体の製造方法。

【0022】(16) 前記反応性スパッタに際して、全てのガスの合計流量に対し酸素ガスの流量を10~70%とする上記(15)に記載の光記録媒体の製造方法。

【0023】(17) 前記記録薄膜が、窒素ガスを含 などの短い 有する雰囲気中においてFeをターゲットとして反応性 50 行なえる。

スパッタにより形成される上記(14)に記載の光記録 媒体の製造方法。

【0024】(18) 前記反応性スパッタに際して、全てのガスの合計流量に対し窒素ガスの流量を10~20%とする上記(17)に記載の光記録媒体の製造方法。

【0025】(19) 前記反応性スパッタ時の圧力が $3 \times 10^{-1} \sim 1$. 0Paである上記(15)ないし(18)のいずれかに記載の光記録媒体の製造方法。

10 [0026]

【作用】図1に示されるように、本発明の光記録媒体1 は、基板2の表面に記録薄膜3、誘電体薄膜4および反 射薄膜5を有し、反射薄膜5上には保護膜6が設けられ ている。

【0027】記録時には、基板2の裏面側から基板2を通して記録レーザー光が照射され、記録薄膜3が加熱される。記録薄膜は、加熱により分解してガスを放出する無機化合物を含有するので、記録レーザー光照射により記録薄膜3からガスが放出される。例えば、記録薄膜3が酸化銀を含有する場合、酸化銀は160℃程度でAgとOzとに分解する。また、例えば、記録薄膜3が窒化鉄を含有する場合、200℃程度で空化鉄から窒素が放出される。そして、図1および図2に示されるように、発生したガスにより記録薄膜3中に空隙31が形成される。また、記録薄膜3近傍の樹脂製基板2は加熱されて軟化しているため、発生したガスの圧力により記録薄膜3との界面に凹部21が形成される。

【0028】これらの空隙や凹部などが生じることにより、記録レーザー光照射部の光学定数や光路長等の光学) 的条件が変化し、反射率が低下する。また、凹部の底部 は粗面化しているため、これによっても反射率が低下す る。

【0029】このようにして生じる光反射率の変化は不可逆的であるので、追配型の光記録媒体として使用することができる。そして、CDに対して用いられている780m近傍の光の反射率は、レーザー光照射前で70%以上あり、照射後には50%程度以下、特に、記録持膜に用いる無機化合物を選択することにより20%程度以下まで低下するので、CD規格対応の追記型光記録ディスクとしての使用が可能である。

【0030】また、誘電体薄膜等の厚さを調整することにより、300~900m程度の被長範囲においてこのような反射率変化が得られるので、短波長記録が可能であり、より高い記録密度とすることが可能である。

【0031】また、図2に示されるように、本発明の光記録媒体1において、基板2と記録薄膜3との間に低融点薄膜7を設けた場合、低融点薄膜7が吸熱作用を示すため、記録感度が向上する。このため、例えば3T信号などの短い信号の記録が低パワーのレーザー光で良好に行なえる。

【0032】なお、特公昭63~56920号公報に は、「Ag2 O-SiO2 系の化合物で構成することを 特徴とする光学記録材料」が開示されている。この光学 記録材料は、光照射により黒化し加熱により褪色すると いうAg2 O-SiO2 系化合物の性質を利用したもの であり、酸化銀を含有する記録薄膜と酸化ケイ素を含有 する誘電体薄膜とを積層するという本発明の光記録媒体 の構成とは異なる。また、その作用も本発明とは全く異 なるものである。そして、同公報の記載によれば、初期 反射率が40%未満で、光照射後の反射率低下は8%に 10 過ぎず、CD規格対応の光記録媒体として用いることは 不可能である。

[0033]

【具体的構成】以下、本発明の具体的構成について詳細 に説明する。

【0034】図1に本発明の光記録媒体の好商実施例を 示す。

【0035】同図に示されるように、光記録媒体1は、 基板2の表面に記録薄膜3、誘電体薄膜4および反射薄 膜5を有し、反射薄膜5上には保護膜6が設けられてい 20

【0036】 [基板2] 光紀録媒体1では、基板2を通 して記録薄膜3に記録光および再生光が照射されるの で、基板2はこれらの光に対して実質的に透明である必 要がある。また、基板2は、配録薄膜3から発生するガ スの圧力により凹部が形成される必要があるので、基板 2の材質としては樹脂が好ましい。具体的には、アクリ ル樹脂、ポリカーポネート樹脂、エポキシ樹脂、ポリオ レフィン樹脂等の各種樹脂を用いればよい。

【0037】基板2の形状および寸法は特に限定されな 30 いが、通常、ディスク状であり、その厚さは、通常、 0.5~3 m程度、直径は50~360 m程度である。

【0038】基板2の表面には、トラッキング用やアド レス用等のために、グループ等の所定のパターンが必要 に応じて設けられる。例えば、図示例の光記録媒体には グループが設けられており、記録光はグループ内に照射 される。

【0039】 [記録薄膜3] 記録薄膜3は、加熱により 分解してガスを放出する無機化合物を含有する。無機化 合物がガスを放出する温度は、300℃以下であること 40 が好ましい。また、放出されるガスの種類に特に制限は ないが、常温付近でガスとして安定に存在すること、無 毒性であることなどから、前記ガスは酸素または窒素で あることが好ましい。

【0040】酸素ガスや窒素ガスを発生する無機化合物 としては、酸化銀または窒化鉄を用いることが好まし い。酸化銀を用いる場合、記録薄膜3中の酸素の含有比 率は、5~50原子%、特に10~30原子%であるこ とが好ましい。また、窒化鉄を用いる場合、記録薄膜3 中の窒素の含有比率は、 $5\sim50$ 原子%、特に $10\sim3$ 50 はYを含有するSiAION等を好ましく用いることができ

0原子%であることが好ましい。記録薄膜3は、酸化鍵 だけ、あるいは窒化鉄だけから構成されることが好まし いが、他にSn、Zn等の元素が合計で10原子%程度

【0041】記録薄膜の厚さは、600~1500A、 特に700~1200A であることが好ましい。厚さが 前記範囲未満であると記録が困難となり、前記範囲を超 えると記録薄膜での光吸収のために反射率が不十分とな

以下含有されていてもよい。

【0042】記録薄膜3は、スパッタ法や蒸着法などの 気相成長法により形成されることが好ましく、特に、酸 素ガスや窒素ガス等を反応性ガスとして用いる反応性ス パッタ法により形成されることが好ましい。

【0043】酸化銀からなる記録薄膜を形成する場合、 酸素ガスを含有する雰囲気中において、Agをターゲッ トとして反応性スパッタを行なう。酸素ガスはAr等の 不活性ガスと併用することが好ましく、酸素ガスの流量 は、全てのガスの合計流量中の10~70%とすること が好ましい。酸素ガス流量が前記範囲を外れると、記録 薄膜中の酸素量が不適当になり、十分な記録感度が得ら れない。

【0044】窒化鉄からなる記録薄膜を形成する場合、 窒素ガスを含有する雰囲気中において、Feをターゲッ トとして反応性スパッタを行なう。窒素ガスはAr等の 不活性ガスと併用することが好ましく、窒素ガスの流量 は、全てのガスの合計流量中の10~20%とすること が好ましい。窒素ガス流量が前記範囲を外れると、記録 **薄膜中の窒素量が不適当になり、十分な記録感度が得ら** わない.

【0045】酸化銀形成の際および窒化鉄形成の際の反 応性スパッタ時の圧力は、好ましくは3×10-1~1. OPa、より好ましくは5×10⁻¹~9×10⁻¹Pa、特に 好ましくは5×10⁻¹~8×10⁻¹Paである。

【0046】なお、反応性スパッタにはDCスパッタ法 を用いてもよいが、高周波スパッタ法を用いることが好 ましい。

【0047】 [誘電体薄膜4] 誘電体薄膜4は、各種誘 電体から構成される。用いる誘電体は特に限定されない が、記録薄膜3が酸化銀を含有する場合は、誘電体薄膜 4を酸化ケイ素から構成すれば配録感度が向上する。な お、酸化ケイ素としては、通常、SiO2で表わされる 組成を有するものを用いることが好ましい。また、記録 薄膜3が窒化鉄を含有する場合は、誘電体薄膜4を、流 常S1: N: で表わされる空化ケイ素から構成すれば記 録感度が向上する。

【0048】なお、誘電体としては、この他、透明な各 種セラミクスや各種ガラスなどを用いてもよく、例え ば、La、Si、OおよびNを含有する所謂LaSiONや、 Si、A1、OおよびNを含有する所謂SiAlON、あるい

る。

【0049】誘電体薄膜4の厚さは、用いる誘電体の屈 折率等に応じて適宜設定すればよく、例えば誘電体とし でSiO2を用いる場合、好ましくは500~4000 A、より好ましくは1800~3500A、さらに好ま しくは2500~3300Aである。また、屈折率がS 1O2とは異なる誘電体を用いる場合の好ましい厚さ は、その誘電体の屈折率でSiO2の屈折率を除した値 を上記したSiO2の好ましい厚さ範囲に乗じて求めれ ばよい。誘電体薄膜4の厚さが好ましい範囲を外れる は、十分な反射率およびその変化を得ることが困難とな る。

【0050】誘電体薄膜4は、スパッタ法や蒸着法等の 気相成長法により形成されることが好ましい。

【0051】 [反射薄膜5] 反射薄膜5は、高反射率の 金属や合金から構成されることが好ましく、例えば、A g、A1、Au、Pt、Cu等から適宜選択すればよ い。

【0052】反射薄膜5の厚さは、300~1500A とすることが好ましい。厚さが前記範囲未満であると十 20 分な反射率が得にくくなる。また、前記範囲を超えても 反射率の向上は小さく、コスト的に不利になる。

【0053】反射薄膜5は、スパッタ法や蒸着法等の気相成長法により形成されることが好ましい。

【0054】 [保護膜6] 保護膜6は、耐擦傷性や耐食性の向上のために設けられるものであり、種々の有機系の物質から構成されることが好ましいが、特に、放射線硬化型化合物やその組成物を、電子線、紫外線等の放射線により硬化させた物質から構成されることが好ましい。

【0055】保護膜6の厚さは、通常、0.1~100 μm 程度であり、スピンコート、グラピア釜布、スプレ ーコート、ディッピング等、通常の方法により形成すれ ばよい。

【0056】 [低融点薄膜7] 図2に、本発明の光記録 媒体の他の実施例を示す。

【0057】図2において、光記録媒体1は、基板2と記録薄膜3との間に低融点薄膜7を有する。

【0058】低融点薄膜7は、記録感度向上のために設けられるものであり、融点200~800℃程度の物質 40から構成されることが好ましい。このような物質としては、例えば、Sn、Zn、Pb、Bi、Ti、Te、Se、S、Al、Ga、Ge、Cd、I等や、これらの合金、化合物等が挙げられ、適宜選択して用いればよい。

【0059】また、低融点の樹脂で低融点薄膜7を構成してもよい。このような樹脂としては、例えば、ニトロセルロース、ポリイミド、フロオロカーボンなどが挙げられる。樹脂を用いる場合、低融点薄膜は蒸着法により形成することが好ましいが、スピンコートにより形成することもできる。

【0060】低融点薄膜7の厚さは、10~200A、特に50~100Aとすることが好ましい。厚さが前記範囲未満であると記録感度向上効果が不十分となり、前記範囲を超えると光の吸収が多くなりすぎて十分な反射

【0061】低融点薄膜7は、スパッタ法や蒸着法等の 気相成長法により形成されることが好ましい。

率が得られにくくなる。

【0062】なお、低融点薄膜7上に記録薄膜3が形成されると、低融点薄膜7は記録薄膜3中に拡散することがある。

【0063】 [反射率変化作用] 図1に示される構成の 光記録媒体1の基板2の裏面倒から記録レーザー光を照 射すると、基板2を透過した記録レーザー光は記録薄膜 3を加熱する。記録薄膜3中の無機化合物は加熱されて 分解し、ガスを発生する。例えば、無機化合物が酸化銀 の場合、AgとOzとに分解され、Ozガスが発生す る。また、無機化合物が窒化鉄の場合、FeとNzとに 分解され、Nzガスが発生する。そして、発生したガス の圧力により記録薄膜3内には空隙31が形成される。

7 【0064】一方、記録薄膜3の温度上昇と共に記録薄膜3近傍の基板2の温度も上昇し、基板2は軟化する。 そして、発生したガスの圧力により基板2表面に凹部2 1が形成される。なお、場合によっては、ガスの圧力により誘電体薄膜4側もへこむことがある。

【0065】また、図2のように低融点薄膜7を設けてある場合、記録レーザー光照射により低融点薄膜7が昇湿して融解し、これにより記録薄膜3および基板2の加熱が促進されることになる。

【0066】記録レーザー光照射により形成された空隙 30 31内では、屈折率n(複素屈折率の実部)や消衰係数 k (複素屈折率の虚部)等の光学定数が記録薄膜3内とは異なり、また、四部21の存在により光路長も変わるので、多重反射条件が変化し、記録レーザー光照射部において反射率が著しく低下する。

【0067】凹部21は、深さ500~1500A程度、特に500~800A程度であり、走査型電子顕微鏡(SEM)や走査型トンネル顕微鏡(STM)等により寸法を測定することができる。また、凹部21の底部は粗面化している。このような粗面化は、無機化合物の分解によりガスがパブル状に発生したことによるものと考えられ、この粗面化も反射率の低下に寄与していると考えられる。

【0068】 [媒体構造] 以上では、本発明をCD規格 に対応する片面記録型の光記録媒体に適用する場合につ いて説明したが、本発明は両面記録型の光記録媒体にも 適用可能である。

【0069】両面記録型の光記録媒体に適用する場合、一対の基板2、2を、配録薄膜3が内封されるように接着する。

50 【0070】また、片面記録型であって、保護膜6上に

保護板を接着した構成とすることもできる。この場合の 保護板としては、通常、基板2と同質のものを用いれば よいが、透明である必要はなく、その他の材質も用いる ことができる。

[0071]

【実施例】以下、本発明の具体的実施例を挙げ、本発明 をさらに詳細に説明する。

【0072】 [実施例1] 基板2の表面に、酸化銀から 構成される記録薄膜3、酸化ケイ素から構成される誘電 体持膜4、反射持膜5 および紫外線硬化型樹脂の保護膜 10 用い、スパッタ法により5 0A の厚さに形成した。 6を形成し、図1に示される構成を有する光記録ディス クサンプルNo. 1を作製した。

【0073】基板2には、射出成形によりグループを同 時形成した直径133㎜、厚さ1.2㎜のディスク状ポ リカーポネート樹脂を用いた。

【0074】記録薄膜3は、酸素ガスとArガスを含む 努囲気中で反応性高周波スパッタ法により800Aの厚 さに形成した。スパッタ時の圧力は5.5×10-1Paと し、酸素ガスの流量およびArガスの流量はいずれも1 OSCCMとした。また、ターゲットにはAgを用い、スパ 20 ていた。 ッタパワーは200% とした。記録薄膜3の組成をオー ジェ分光法により測定したところ、10原子%の酸素を 含み、残部はAgであった。

【0075】誘電体薄膜4は、SiO2 をターゲットと してスパッタ法により2700Aの厚さに形成した。

【0076】反射薄膜5は、Agをターゲットとしてス パッタ法により1000Aの厚さに形成した。

【0077】保護膜6は、紫外線硬化型樹脂をスピンコ ート法により塗布後、紫外線照射により硬化して形成し た。硬化後の厚さは5μmであった。

【0078】サンブルNo、1について、CD信号(3 T、5T、7T、9T、11T) の記録再生を行なっ た。なお、紀録時には8回のレーザー光を照射し、再生 時には0.5™のレーザー光を照射した。これらのレー ザー光の波長は、780mとした。

【0079】この結果、未記録部の反射率は70%、記 録部の反射率は20%であり、CD規格に対応する再生 が可能であった。

【0080】また、サンブルNo. 1を切り出して酸処理 することにより、基板表面の反射薄膜、誘電体薄膜およ 40 び記録薄膜を溶解、剥離し、SEMにより観察したとこ ろ、記録部の基板表面には深さ500~1000Aの凹 部が形成されており、この凹部の底部は、ガスがパブル 状に発生した結果とみられる粗面状態となっていた。

【0081】 [実施例2] 記録薄膜3の単さを900A 、誘電体薄膜4の厚さを3200Aとし、その他は実 施例1のサンプルNo. 1と同様にして光記録ディスクサ ンプルNo. 2を作製した。

【0082】サンブルNo. 2について、実施例1と同様 な記録再生を行なったところ、未記録部の反射率は78 50 3と同様にして形成し、その他の構成は実施例4のサン

10

%、記録部の反射率は8%であり、サンプルNo. 1より も高いモジュレーションが得られた。

【0083】また、サンプルNo. 2においても、記録部 の基板表面にはサンプルNo. 1と同様な凹部が形成され ており、凹部の深さは500~800Aであった。

【0084】 [実施例3] 基板2と配録薄膜3との間に 低融点薄膜?を設けて、図2に示される構成の光記録デ ィスクサンプルNo. 3を作製した。

【0085】低融点薄膜7は、ターゲットとしてSnを

【0086】なお、低融点薄膜7以外の構成は実施例1 で作製したサンプルNo、1と同じとした。

【0087】サンブルNo. 3について、記録レーザー光 のパワーをサンブルNo. 1よりも2mm低い6mmとし、再 生レーザー光のパワーを0.5mgとして記録および再生 を行なったところ、サンブルNo. 1と同様にCD規格に 対応する再生が可能であった。

【0088】また、サンプルNo. 3においても、記録部 の基板表面にはサンブルNo. 1と同様な凹部が形成され

【0089】 [実施例4] 記録薄膜3を窒化鉄から構成 し、また、誘電体導膜4を窒化ケイ素から構成し、その 他は実施例1のサンプルNo. 1と同様にして光記録ディ スクサンプルNo. 4を作製した。

【0090】記録薄膜3は、窒素ガスとArガスを含む 雰囲気中で反応性高周波スパッタ法により800%の厚 さに形成した。スパッタ時の圧力は5.5×10⁻¹Paと し、窒素ガスの流量は1SCCMとし、Arガスの流量は1 O SCCMとした。また、ターゲットにはFeを用い、スパ 30 ッタパワーは200V とした。記録薄膜3の組成をオー ジェ分光法により測定したところ、10原子%の窒素を 含み、残部はFeであった。

【0091】誘電体薄膜4は、Sia Na をターゲット としてスパッタ法により2300Aの厚さに形成した。

【0092】サンプルNo. 4について、CD信号(3 T、5T、7T、9T、11T) の記録再生を行なっ た。なお、記録時には10㎡のレーザー光を照射し、再 生時には0.5㎜のレーザー光を照射した。これらのレ ーザー光の波長は、780mをした。

【0093】この結果、未配録部の反射率は70%、記 録部の反射率は20%であり、CD規格に対応する再生 が可能であった。

【0094】また、サンブルNo. 4においても、記録部 の基板表面にはサンブルNo. 1と同様な凹部が形成され ていた。

【0095】 [実施例5] 基板2と記録薄膜3との間に 低融点薄膜 7 を設けて、図2に示される構成の光記録デ ィスクサンブルNo. 5を作製した。

【0096】低融点薄膜7は、実施例3のサンプルNo.

ブルNo. 4と同じとした。

【0097】サンブルNo. 5について、記録レーザー光 のパワーをサンプルNo. 4よりも4m低い6mVとし、再 生レーザー光のパワーを0.50%として記録および再生 を行なったところ、サンプルNo. 4と同様にCD規格に 対応する再生が可能であった。

【0098】また、サンブルNo. 5においても、記録部 の基板表面にはサンブルNo. 1と同様な凹部が形成され

【0099】 [実施例6] 反射薄膜3の組成を、A1、 Au、PtまたはCuとし、その他は上記各実施例と同 様にして光記録ディスクサンブルを作製した。

【0100】これらの各サンブルについて、上記各実施 例と同様な記録再生を行なったところ、上記各実施例と ほぼ同様の結果が得られた。

[0101]

【発明の効果】本発明の光記録媒体は、未記録部におい て70%程度以上の反射率が得られ、また、記録部では 50%程度以下、特に20%程度以下まで反射率が低下 するので、CD規格に対応する追記型光記録ディスクと 20 5 反射薄膜 しての使用が可能である。

【0102】そして、本発明では有機色素等の耐光性の 低い物質を用いないので極めて耐光性が高く、記録前お

よび記録後のいずれにおいても長期にわたって信頼性の 高い保存が可能である。

12

【0103】また、本発明の光記録媒体は記録感度が高 く、例えば8m以下の低パワーのレーザー光による記録 が可能であり、特に、基板と記録薄膜との間に低融点薄 膜を設ければ、6mm以下の低パワーで記録を行なうこと ができる。

【図面の簡単な説明】

【図1】本発明の光記録媒体の好適実施例を示す部分断 10 面図である。

【図2】本発明の光記録媒体の好適実施例を示す部分断 面図である。

【符号の説明】

- 1 光記録媒体
- 2 基板
- 21 凹部
- 3 記録薄膜
- 31 空隙
- 4 誘電体薄膜
- - 6 保護膜
 - 7 低融点薄膜

[図1]

[図2]

