L3 — SEQUENCES 2

1. (Test) Sequence x_1, x_2, x_3, \ldots of real numbers is given by $x_1 = 1$ and $x_{n+1} = x_n^2 + x_n$ for $n \ge 1$. Prove that for all $n \ge 1$ holds

$$\sum_{i=1}^{n} \frac{1}{1+x_i} + \prod_{i=1}^{n} \frac{1}{1+x_i} = 1.$$

2. The sequence (a_n) is defined by $a_1 = 0$,

$$a_{n+1} = \frac{a_1 + a_2 + \ldots + a_n}{n} + 1.$$

Prove that $a_{2019} > \frac{1}{2} + a_{1000}$.

3. Given $x_1, x_2, ..., x_n$ real numbers, prove that there exists a real number y, such that,

$${y-x_1} + {y-x_2} + \dots + {y-x_n} \le \frac{n-1}{2}.$$

4. Determine all positive reals α for which exists sequence of positive reals (x_i) satisfying

$$x_{n+2} = \sqrt{\alpha x_{n+1} - x_n}, \quad n = 1, 2, 3, \dots$$

5. Sequence a_0, a_1, a_2, \ldots satisfies $a_0 = 2018$ and

$$a_{n+1} = \frac{a_n^2}{a_n + 1}$$
 for $n = 0, 1, 2, \dots$

Prove that for $n \in \{0, 1, 2, ..., 1010\}$ holds $\lfloor a_n \rfloor = 2018 - n$.

6. Let $c \ge 1$ be integer. Sequence a_1, a_2, \ldots is given by $a_1 = c$ and

$$a_{n+1} = ca_n + \sqrt{(c^2 - 1)(a_n^2 - 1)}$$
 for $n \ge 1$.

Prove that each term of the sequence is integer.

7. (Bonus) Given positive real numbers a, b, c, d that satisfy equalities

$$a^{2} + d^{2} - ad = b^{2} + c^{2} + bc$$
 and $a^{2} + b^{2} = c^{2} + d^{2}$,

find all possible values of the expression $\frac{ab+cd}{ad+bc}$.