LTAT.02.004 MACHINE LEARNING II

Missing roadmap to Expectation-maximisation algorithm

Sven Laur University of Tartu

Hard clustering versus soft clustering

	Hard clustering	Soft clustering
Maximisation goal	$oxed{egin{aligned} \mathbf{p}[oldsymbol{x}_1,\ldots,oldsymbol{x}_n oldsymbol{z},oldsymbol{\Theta}] \end{aligned}}$	$oxed{egin{aligned} \mathbf{p}[oldsymbol{\Theta}] \cdot \sum_{oldsymbol{z}} \mathbf{p}[oldsymbol{x}_1, \dots, oldsymbol{x}_n, oldsymbol{z} oldsymbol{\Theta}] \end{aligned}}$
Optimisation method	Two-step maximisation algorithm	
Tactical objective	$F(\mathbf{z},\mathbf{\Theta})$	$F({\color{red} {m q}},{m \Theta})$
Mixture proportions	Ignored by design	Core of the model
Cluster labels	Search goal	Integrated out

Desired properties of the tactical objective

Property I. Let $q_{\Theta}(\cdot)$ be the optimal probability distribution for label vectors z for fixed model parameters Θ . Then the tactical objective coincides with the actual objective:

$$F(q_{\mathbf{\Theta}}, \mathbf{\Theta}) = \log p[\mathbf{\Theta} | \mathbf{x}_1, \dots, \mathbf{x}_n]$$
.

Property II. For fixed model parameters Θ the optimal probability distribution can be found as the posterior probability of label vectors:

$$q_{\boldsymbol{\Theta}}(\boldsymbol{z}) = p[\boldsymbol{z}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n,\boldsymbol{\Theta}]$$
.

Rationale

- ▶ The first property is essential for obtaining a local maxima.
- > The second property is needed to justify the practical algorithm.

The derivation of the tactical objective

Let q(z) be an arbitrary probability distribution over label vectors z. Then tautology together with Jensen's inequality assures

$$\log p[\mathbf{\Theta}|\mathbf{x}_1, \dots \mathbf{x}_n] = \log \left(\sum_{\mathbf{z}} q(\mathbf{z}) \cdot \frac{p[\mathbf{\Theta}, \mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n]}{q(\mathbf{z})} \right)$$
$$\geq \sum_{\mathbf{z}} q(\mathbf{z}) \cdot \log \left(\frac{p[\mathbf{\Theta}, \mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n]}{q(\mathbf{z})} \right) = F(q, \mathbf{\Theta})$$

For the probability assignment $q_{\boldsymbol{\Theta}}(\boldsymbol{z}) = \mathrm{p}[\boldsymbol{z}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n,\boldsymbol{\Theta}]$ we get

$$F(q_{\Theta}, \Theta) = \sum_{z} q_{\Theta}(z) \cdot \log \left(\frac{p[\Theta, z | x_1, \dots, x_n]}{p[z | x_1, \dots, x_n, \Theta]} \right)$$
$$= \sum_{z} q_{\Theta}(z) \cdot \log \left(p[\Theta | x_1, \dots, x_n] \right) = \log p[\Theta | x_1, \dots, x_n] .$$

Tactical objective as a linearisation

The expectation-maximisation algorithm can be viewed as follows:

- \triangleright Guess model parameters $\mathbf{\Theta}^{(i)}$.
- riangleright Compute probability assignments $q_{m{\Theta}^{(i)}}(m{z}) = \mathrm{p}[m{z}|m{x}_1,\ldots,m{x}_n,m{\Theta}^{(i)}]$.
- \triangleright Approximate $p[\boldsymbol{z}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n,\boldsymbol{\Theta}]$ with a linearisation $F(q_{\boldsymbol{\Theta}^{(i)}},\boldsymbol{\Theta})$.
- \triangleright Fix a new guess $\mathbf{\Theta}^{(i+1)}$ that maximises $F(q_{\mathbf{\Theta}^{(i)}}, \mathbf{\Theta})$.

As the actual value and linearisation can be expressed as

$$\log p[\mathbf{\Theta}|\mathbf{x}_1, \dots \mathbf{x}_n] = \sum_{\mathbf{z}} q_{\mathbf{\Theta}^{(i)}}(\mathbf{z}) \cdot \log \left(\frac{p[\mathbf{\Theta}, \mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n]}{p[\mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{\Theta}]} \right)$$
$$F(q_{\mathbf{\Theta}^{(i)}}, \mathbf{\Theta}) = \sum_{\mathbf{z}} q_{\mathbf{\Theta}^{(i)}}(\mathbf{z}) \cdot \log \left(\frac{p[\mathbf{\Theta}, \mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n]}{p[\mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{\Theta}^{(i)}]} \right)$$

Tactical objective as a linearisation

- \triangleright Guess model parameters $\mathbf{\Theta}^{(i)}$.
- riangleright Compute probability assignments $q_{m{\Theta}^{(i)}}(m{z}) = \mathrm{p}[m{z}|m{x}_1,\ldots,m{x}_n,m{\Theta}^{(i)}]$.
- ho Approximate $p[\boldsymbol{z}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n,\boldsymbol{\Theta}]$ with the linear function $F(q_{\boldsymbol{\Theta}^{(i)}},\boldsymbol{\Theta})$.
- ho Fix a new guess $\mathbf{\Theta}^{(i+1)}$ that maximises $F(q_{\mathbf{\Theta}^{(i)}}, \mathbf{\Theta})$

Kullback-Leibler divergence between probability assignments for label vectors

$$D(q_{\mathbf{\Theta}^{(i)}}||q_{\mathbf{\Theta}}) = \sum_{\mathbf{z}} q_{\mathbf{\Theta}^{(i)}}(\mathbf{z}) \cdot \log \left(\frac{p[\mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{\Theta}^{(i)}]}{p[\mathbf{z}|\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{\Theta}]} \right)$$

measures the linearisation error $p[\boldsymbol{z}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n,\boldsymbol{\Theta}^{(i)}] - F(q_{\boldsymbol{\Theta}^{(i)}},\boldsymbol{\Theta}).$

Simplification of the lower bound

Observation I. The distribution q_{Θ} decomposes into a product of posteriors:

$$q_{\mathbf{\Theta}}(\mathbf{z}) = \prod_{i=1}^{n} \mathrm{p}[z_i | \mathbf{x}_i, \mathbf{\Theta}]$$
.

Observation II. Let W be matrix of weights $w_{ij} = p[z_i = j | x_i, \Theta^{(*)}]$. The lower bound can be expressed only in terms of W and Θ :

$$F(q_{\mathbf{\Theta}^{(*)}}, \mathbf{\Theta}) = \log p[\mathbf{\Theta}] - \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log w_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \cdot \log \lambda_{j} + \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \cdot \log (p[\mathbf{x}_{i}|\mathbf{\Theta}_{j}]) .$$

Parameter optimisation

Hard clustering finds model parameters of the jth cluster by solving

$$\sum_{i=1}^{n} [z_i = j] \cdot \log (p[\mathbf{x}_i | \mathbf{\Theta}_j]) \to \max .$$

Soft clustering finds model parameters of the jth cluster by solving

$$\sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \cdot \log \left(p[\boldsymbol{x}_i | \boldsymbol{\Theta}_j] \right) \to \max .$$

and additionally updates mixture proportions $\lambda_1, \ldots, \lambda_k$.