

Travaux Dirigés Électricité et composants électroniques

Niveau & Filière: 1A-CP

Pr. Korota Arsène COULIBALY

Partie A Association de résistances

Objectifs:

Maitriser les associations séries, parallèles et mixtes des résistances

Exercice 1

On branche 2 résistances R₁ et R₂ en série.

- 1. Donner le schéma et l'expression de la résistance équivalente en série Rs.
- 2. Calculer R_S si $R_1 = R_2 = R$.
- 3. Calculer R_S si $R1 = 10\Omega$ et $R2 = 10K\Omega$. Que peut-on conclure si R_1 est négligeable devant R_2 ($R_1 << R_2$).

Exercice 2

On branche 2 résistances R_1 et R_2 en parallèle.

- 1. Donner le schéma et l'expression de la résistance équivalente en parallèle R_P.
- 2. Calculer $R_P \operatorname{si} R_1 = R_2 = R$.
- **3.** Démontrer que R_P est plus petite que R_1 si $R_1 \le R_2$.
- 4. Calculer R_P si $R_1 = 10\Omega$ et $R_2 = 10K\Omega$. Que peut-on conclure si R_1 est négligeable devant R_2 ($R_1 << R_2$).
- 5. Si $R_1 = 0\Omega$, donner le schéma et calculer R_P .
- **6.** Si $R_1 = \infty \Omega$, donner le schéma et calculer R_P .

Exercice 3

Pour les figures suivantes, calculer la résistance vue entre les points A et B :

figure 1

Partie B Loi des mailles et des nœuds

Maitriser la loi d'ohm, la loi des nœuds et la loi des mailles.

Exercice 1

Soit le schéma suivant :

On donne : $U_M = 0V$, E = 12V, $U_{BM} = 8V$, $U_{CM} = 6V$ et $U_{DM} = 4V$

- 1. Calculer U_A, U_B, U_C et U_D
- 2. En déduire les tensions U_{AB} , U_{BC} et U_{CD}

Exercice 2

On donne $U_{AB}=8V,\ U_{BD}=10V,\ U_{ED}=-6V,\ U_{BC}=6V$ et $U_{DF}=2V$

- 1. Calculer les valeurs de toutes les autres tensions représentées.
- 2. Si $U_E = 0$, calculer les potentiels de tous les autres points.

Exercice 3

On considère le circuit du schéma suivant :

$$E = 10 \text{ V}$$
 $E_1 = 5 \text{ V}$ $E_2 = 3 \text{ V}$ $E_3 = 6 \text{ V}$ $R_1 = 1 \text{ k}$ $R_2 = 2.2 \text{ k}$ $R_3 = 3.3 \text{ k}$

Calculer le courant I débité par la source de tension E.

Exercice 4

Soit le montage suivant:

La mesure des intensités des courants sur le montage ci-dessous a donné :

$$I=8mA\;;\qquad \qquad I_1=2mA\;;\qquad \qquad I_3=4mA$$

Calculer la valeur des intensités des courants I2 et I4

Sans faire de calcul, donner la valeur des courants ${\rm I}_5$ et ${\rm I}_6$.

Partie C Théorème de Thévenin et de Millman, diviseur de tension

Exercice 1

 Dessiner le générateur de Thévenin de la figure suivante, sans tenir compte de la résistance R.

- 2. pour $R = 150 \text{ k}\Omega$
 - a. Déterminer le courant qui traverse R
 - b. calculer la puissance fournie à R

Exercice 2

Soit le circuit suivant :

- Déterminer les caractéristiques E_T et R_T du générateur de Thévenin équivalent vu des points A et B, sans tenir compte de la résistance R.
- 2. Calculer la tension aux bornes de R.

Exercice 3 : Théorème de Millman

Soit le circuit électriquesuivant :

On donne: $E_1 = 5V$ $E_2 = 12V$ $R_1 = 1k\Omega$ $R_2 = R_3 = 2k\Omega$

- 1. Calculer la ddp U entre les points A et B.
- 2. Calculer et indiquer le sens du courant dans chaque résistance
- 3. Vérifier la loi des nœuds

Exercice 4: Diviseur de tension

Soit le circuit suivant :

On donne: E = 12 V, $R_1 = 2.2 \text{ k}\Omega$,

 $R_2 = 1k\Omega$

et $R_3 = 1.8k\Omega$

- **1.** Exprimer U_1 , U_2 et U_3 en fonction de E, R_1 , R_2 et R_3 .
- 2. Combien vaut la somme des 3 tensions U₁+U₂+U₃?
- 3. Calculer la valeur la tension U₃.
- 4. On désire obtenir une tension U₃ = 2 V, sans modifier les valeurs de R₁ et R₃. Quelle doit être la valeur de R₂?

Exercice 6 : Théorème de superposition

Calculer la tension U_{AB} aux bornes de R_1 .

Figure 1

Références

[1] http://electroussafi.ueuo.com/?page=celec