

Análise Complexa e Equações Diferenciais 1º Semestre 2009/2010

1º Teste - Versão A

Cursos: LEIC-A, MEAer, MEMec, LEAN, MEC, LEGM, LET

Justifique cuidadosamente as respostas apresentando todos os cálculos.

Data: 7 de Novembro de 2009 - das 13h às 14:30h

Duração: 1h30.

- 1. Seja $u(x,y)=xy^2+e^{-y}\cos(x)+\alpha(x)$, em que $\alpha:\mathbb{R}\to\mathbb{R}$ é uma função de classe $C^2(\mathbb{R})$.
- [1.0] (a) Determine a forma geral de $\alpha(x)$ de modo a que u seja a parte real duma função holomorfa $f:\mathbb{C}\to\mathbb{C}.$

Resolução: Como a função $u \in C^2(\mathbb{R}^2)$ e \mathbb{R}^2 é um domínio simplesmente conexo, ela é parte real duma função f holomorfa em todo o domínio \mathbb{C} se e só se for harmónica, isto é, $\Delta u = 0$.

Mas

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2x + \alpha''(x),$$

donde a condição $\Delta u = 0$ é equivalente a

$$2x + \alpha''(x) = 0 \Leftrightarrow \alpha''(x) = -2x,$$

a qual, primitivando duas vezes, dá

$$\alpha(x) = -\frac{x^3}{3} + Ax + B,$$

com $A, B \in \mathbb{R}$, constantes arbitrárias reais.

[1.0] (b) Considerando $\alpha(x)=-\frac{x^3}{3}+x$, calcule a função f holomorfa em $\mathbb C$ tal que ${\rm Re}(f)=u$ e $f(0)=1+{\rm i}.$

Resolução: Esta função é um caso particular específico da família de funções $\alpha(x)$ possíveis (com A=1 e B=0), determinadas na alínea anterior. Tem-se portanto

$$u(x,y) = xy^2 + e^{-y}\cos(x) - \frac{x^3}{3} + x.$$

Como $f=u+\mathrm{i} v$ é holomorfa, a sua parte real $u=\mathrm{Re}\, f$ e imaginária $v=\mathrm{Im}\, f$ satisfazem necessariamente as equações de Cauchy-Riemann,

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}. \end{cases}$$

Substituindo a função conhecida u na primeira desta equações, e primitivando em ordem a y obtém-se

$$v(x,y) = \int (y^2 - e^{-y} \operatorname{sen}(x) - x^2 + 1) \, dy = \frac{y^3}{3} + e^{-y} \operatorname{sen}(x) - x^2 y + y + c(x).$$

Resta apenas determinar a função c(x) para se conhecer completamente a função v(x,y), e consequentemente f. Para isso, substituem-se a função u dada e a v, agora obtida, na segunda das equações de Cauchy-Riemann

$$2xy - e^{-y}\cos(x) = -e^{-y}\cos(x) + 2xy + c'(x),$$

donde se conclui que c'(x)=0, ou seja que a função c(x) é constante $c(x)=C\in\mathbb{R}.$ Para terminar, é ainda necessário determinar o valor de C de modo a que seja satisfeita a condição imposta, ou seja, que $f(0)=1+\mathrm{i}.$ Mas esta condição é o mesmo que v(0,0)=1, donde C=1 e assim, finalmente, se tem

$$f(z) = f(x+iy) = \left(xy^2 + e^{-y}\cos(x) - \frac{x^3}{3} + x\right) + i\left(\frac{y^3}{3} + e^{-y}\sin(x) - x^2y + y + 1\right).$$

[1.0] (c) Calcule
$$\oint_{|z|=2009} \frac{f(z)}{(z-\mathrm{i})^2} dz$$
, onde a curva é percorrida uma vez em sentido directo.

Resolução: A função f é inteira. Em particular é holomorfa sobre a circunferência de raio 2009 centrada na origem, assim como em todos os pontos do seu interior. E, obviamente, o ponto $z_0=i$ está no seu interior. Pelo que estão satisfeitas as condições para a aplicação da fórmula integral de Cauchy, para a primeira derivada de f:

$$\oint_{|z|=2009} \frac{f(z)}{(z-i)^2} dz = 2\pi i f'(i).$$

Resta-nos, portanto, calcular a derivada de f no ponto i. Observe-se como é suficiente o conhecimento da parte real u da função f para calcular a derivada f', pelo que não é necessário ter-se resolvido a alínea b) para responder a esta alínea c). Assim,

$$f'(z) = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y} = \left(y^2 - e^{-y}\operatorname{sen}(x) - x^2 + 1\right) - i\left(2xy - e^{-y}\operatorname{cos}(x)\right),$$

pelo que $f'(i) = 2 + i e^{-1}$ e, portanto

$$\oint_{|z|=2009} \frac{f(z)}{(z-i)^2} dz = -2\pi e^{-1} + 4\pi i.$$

- 2. Considere a função $f(z)=\frac{1}{2-z}$, definida em $\mathbb{C}\setminus\{2\}$.
- [1.5] (a) Determine o desenvolvimento de f em série de Taylor na região $|z-{\bf i}|<\sqrt{5}$, e o desenvolvimento de Laurent na região $|z-{\bf i}|>\sqrt{5}$.

Resolução: A função f é diferenciável em todo o seu domínio $\mathbb{C}\setminus\{2\}$, por ser uma função racional. Tendo apenas, portanto, uma única singularidade (necessariamente isolada, por ser única) no ponto z=2 em que o denominador se anula e a função não está definida.

Assim, centrando o desenvolvimento em série de potências no ponto $z_0={\rm i}$, o teorema de Taylor garante a convergência da correspondente série, e a igualdade dela à função f, na maior bola centrada nesse ponto e contida dentro do domínio de diferenciabilidade da função, ou seja, até (pelo menos) atingir a singularidade em z=2. A distância entre os dois pontos $|2-{\rm i}|=\sqrt{5}$ é, portanto, um limite inferior do raio de convergência da série de Taylor pedida.

Para obtê-la basta escrever a função dada como uma série geométrica

$$f(z) = \frac{1}{2-z} = \frac{1}{2-i-z+i} = \frac{1}{2-i} \left(\frac{1}{1-\frac{z-i}{2-i}}\right)$$
$$= \frac{1}{2-i} \sum_{n=0}^{\infty} \left(\frac{z-i}{2-i}\right)^n = \sum_{n=0}^{\infty} \frac{1}{(2-i)^{n+1}} (z-i)^n.$$

Sendo uma série geométrica, esta série converge se e só se o módulo da razão for inferior a 1, ou seja, quando

$$\left| \frac{z - i}{2 - i} \right| < 1 \Leftrightarrow |z - i| < \sqrt{5},$$

tal como previsto atrás pelo teorema de Taylor.

Analogamente, a região $|z-{\rm i}|>\sqrt{5}$ trata-se agora do maior anel de diferenciabilidade no exterior da singularidade, e ainda centrado em $z_0={\rm i}$, onde é desta feita válido o desenvolvimento (único) em série de Laurent

$$f(z) = \frac{1}{2-z} = \frac{1}{2-i-z+i} = -\frac{1}{z-i} \left(\frac{1}{1-\frac{2-i}{z-i}} \right)$$
$$= -\frac{1}{z-i} \sum_{n=0}^{\infty} \left(\frac{2-i}{z-i} \right)^n = \sum_{n=0}^{\infty} -(2-i)^n \frac{1}{(z-i)^{n+1}},$$

o qual, sendo de novo uma série geométrica, é agora convergente para

$$\left| \frac{2 - i}{z - i} \right| < 1 \Leftrightarrow |z - i| > \sqrt{5},$$

como desejado.

[0.5] (b) Aproveite o resultado da alínea anterior para determinar $f^{(7)}(i)$.

Resolução: Sendo único o desenvolvimento duma função em série de potências centradas num ponto de diferenciabilidade, o coeficiente da sétima potência de $(z-\mathrm{i})$ na série anterior é necessariamente o correspondente coeficiente $f^{(7)}(\mathrm{i})/7!$ da sua série de Taylor. Portanto,

$$\frac{f^{(7)}(i)}{7!} = \frac{1}{(2-i)^8} \Leftrightarrow f^{(7)}(i) = \frac{7!}{(2-i)^8}.$$

[1.5] 3. Calcule

$$\int_{-\pi}^{\pi} \frac{1 + \operatorname{sen}(x)}{5 - 4\operatorname{cos}(x)} dx.$$

Resolução: Atendendo a que

$$sen x = \frac{e^{ix} - e^{-ix}}{2i}$$
 e $cos x = \frac{e^{ix} + e^{-ix}}{2}$,

podemos escrever:

$$I = \int_{-\pi}^{\pi} \frac{1 + \sin(x)}{5 - 4\cos(x)} dx = \int_{-\pi}^{\pi} \frac{1 + \frac{e^{ix} - e^{-ix}}{2i}}{5 - 4\frac{e^{ix} + e^{-ix}}{2}} dx.$$

Considerando $z=e^{ix}$ para $-\pi \leq x \leq \pi$ (o que significa que z(x) é uma parametrização da curva |z|=1 percorrida uma vez no sentido directo e $\frac{dz}{dx}=\mathrm{i}z$), obtém-se:

$$I = \oint_{|z|=1} \frac{1 + \frac{z-z^{-1}}{2i}}{5 - 4\frac{z+z^{-1}}{2}} \frac{dz}{iz} = \frac{1}{2} \oint_{|z|=1} \frac{(z+i)^2}{z(2z^2 - 5z + 2)} dz.$$

A função

$$f(z) = \frac{(z+i)^2}{z(2z^2 - 5z + 2)}$$

é uma função racional e consequentemente holomorfa em $\mathbb{C}\setminus\{z:z(2z^2-5z+2)=0\}=\mathbb{C}\setminus\{0,\frac{1}{2},2\}$. Aplicando o teorema dos resíduos:

$$I = \frac{1}{2} 2\pi i \left(\text{Res}(f, \frac{1}{2}) + \text{Res}(f, 0) \right).$$

Atendendo a que, por factorização do polinómio do denominador de f,

$$f(z) = \frac{(z+i)^2}{z(2(z-\frac{1}{2})(z-2))}$$

é fácil de concluir que ambas as singularidades são polos simples e

Res
$$(f, \frac{1}{2}) = \lim_{z \to \frac{1}{2}} (z - \frac{1}{2}) f(z) = \frac{1}{2} - \frac{2i}{3}$$

е

Res
$$(f, 0) = \lim_{z \to 0} z f(z) = -\frac{1}{2}$$

Conclui-se que

$$\int_{-\pi}^{\pi} \frac{1 + \sin(x)}{5 - 4\cos(x)} dx = \frac{2\pi}{3}.$$

4. Considere a função

$$f(z) = \frac{1 - \cos z}{z^2(z^2 + 1)} + z^3 \cos \frac{1}{z}$$

[1.0] (a) Determine e classifique todas as singularidades de f.

Resolução: Considere-se

$$f(z) = \frac{1 - \cos z}{z^2(z^2 + 1)} + z^3 \cos \frac{1}{z} \equiv f_1(z) + f_2(z)$$

A função $f_1(z)$ é um quociente de funções inteiras, pelo que as suas singularidades são os zeros do denominador, i.e.

$$z^2(z^2+1)=0$$
 \Leftrightarrow $z=0$ ou $z=\pm i$

Observe-se que

$$f_1(z) = \frac{1 - \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}}{z^2 (z^2 + 1)} = \frac{\frac{z^2}{2} - \frac{z^4}{4!} + \frac{z^6}{6!} - \dots}{z(z^2 + 1)} = \frac{\frac{1}{2} - \frac{z^2}{4!} + \frac{z^4}{6!} - \dots}{(z^2 + 1)}$$

pelo que

$$\lim_{z \to 0} f_1(z) = \frac{1}{2}$$

concluindo-se que 0 é uma singularidade removível de f_1 . Por outro lado, atendendo a que

$$f_1(z) = \frac{1 - \cos z}{z^2(z - i)(z + i)}$$

é fácil de concluir que

$$\lim_{z \to i} (z - i) f_1(z) = \frac{1 - \cos i}{2} \qquad e \qquad \lim_{z \to -i} (z + i) f_1(z) = \frac{1 - \cos i}{2}$$

concluindo-se que tanto i como $-\mathrm{i}$ são pólos de primeira ordem de f_1 .

A função f_2 é holomorfa em $\mathbb{C}\setminus\{0\}$ e, aparentemente, a singularidade z=0 é essencial. Podemos confirmar isto desenvolvendo f_2 em série de Laurent centrada em 0; assim obtém-se, para todo o z verificando $0<|z|<\infty$:

$$z^{3}\cos\frac{1}{z} = z^{3}\sum_{n=0}^{\infty} \frac{(-1)^{n}z^{-2n}}{(2n)!} = z^{3}\left(1 - \frac{1}{2z^{2}} + \frac{1}{4!z^{4}} - \frac{1}{6!z^{6}} + \ldots\right) = z^{3} - \frac{z}{2} + \frac{1}{4!z} - \frac{1}{6!z^{3}} + \ldots$$

Observa-se que a parte principal da série, $\frac{1}{4!z} - \frac{1}{6!z^3} + \dots$ tem uma infinidade de termos não nulos, o que confirma que 0 é singularidade essencial de f_2 .

Conclusão: as singularidades de f são 0, que é uma singularidade essencial, e $\pm i$ que são pólos simples.

[1.5] (b) Calcule

$$\oint_{|2z-\mathbf{i}|=2} f(z) \, dz.$$

Resolução: Sendo f uma função com um número finito de singularidades isoladas podemos aplicar o teorema dos resíduos para determinar o valor do integral. Dado que

$$|2z - i| = \left| 2\left(z - \frac{i}{2}\right) \right| = 2\left|z - \frac{i}{2}\right|,$$

resulta que $|2z-{\rm i}|=2\Leftrightarrow |z-{\rm i}/2|=1$, ou seja, $|2z-{\rm i}|=2$ é uma circunferência centrada em ${\rm i}/2$ e de raio 1. Desta forma, 0 e i estão no interior de $|2z-{\rm i}|=2$, e $-{\rm i}$ no exterior de $|2z-{\rm i}|=2$.

Consequentemente:

$$\oint_{|2z-i|=2} f(z) dz = 2\pi i \left(\text{Res}(f,0) + \text{Res}(f,i) \right) = 2\pi i \left(\frac{1}{4!} + \frac{1 - \cos i}{2} \right)$$
$$= i\pi \left(\frac{13}{12} - \frac{e^{-1} + e}{2} \right)$$

(onde os resíduos foram obtidos utilizando os cálculos da alínea (a)).

[1.0] 5. Seja $f: \mathbb{C} \to \mathbb{C}$ inteira tal que f(2z) = 2f(z), $\forall z \in \mathbb{C}$. Mostre que existe $a \in \mathbb{C}$ tal que f(z) = az, $\forall z \in \mathbb{C}$.

Resolução: Como a função f é inteira, o teorema de Taylor garante que $f(z) = \sum_{n=0}^{\infty} a_n z^n$, para qualquer $z \in \mathbb{C}$, sendo os coeficientes a_n univocamente determinados por f. Dado $z \in \mathbb{C}$, temos por hipótese que f(2z) = 2f(z), pelo que

$$\sum_{n=0}^{\infty} a_n (2z)^n = 2 \sum_{n=0}^{\infty} a_n z^n,$$

o que (pela propriedade de linearidade das séries convergentes) é equivalente a:

$$\sum_{n=0}^{\infty} 2^n a_n z^n = \sum_{n=0}^{\infty} 2a_n z^n.$$

Como o desenvolvimento em série de Taylor da função f(2z) (em torno de z=0) é único temos que, para todo o $n \in \mathbb{N}$:

$$2^{n}a_{n} = 2a_{n} \Leftrightarrow 2\left(2^{n-1} - 1\right)a_{n} = 0 \Leftrightarrow n = 1 \lor a_{n} = 0$$

Assim sendo, $a_n=0$, para qualquer $n\in\mathbb{N}_0\setminus\{1\}$ (mas a_1 pode tomar qualquer valor em \mathbb{C}). Em conclusão:

$$f(z) = a_1 z$$
 para qualquer $z \in \mathbb{C}$.

Resolução Alternativa: Como a função f é inteira, o teorema de Taylor garante que f pode ser desenvolvida em série de potências centradas na origem, com raio de convergência infinto

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n.$$

Usamos agora a condição dada para mostrar que todos os coeficientes são nulos, à excepção de n=1.

Com efeito, por exemplo logo para n=0 temos $f(2\times 0)=f(0)=2f(0)$, donde se conclui que necessariamente f(0)=0.

Analogamente, para n>1 tem-se, derivando n vezes a condição f(2z)=2f(z), e avaliando-a em z=0,

$$2^{n} \frac{d^{n} f}{dz^{n}}(0) = 2 \frac{d^{n} f}{dz^{n}}(0),$$

o que permite concluir que, exceptuando o caso n=1, todas as outras derivadas satisfazem $f^{(n)}(0)=0$ e que portanto a série de Taylor se reduz a

$$f(z) = f'(0)z.$$

Ou seja, conclui-se que f é igual a uma constante complexa multiplicada por z.