Probabilistic models for neural data: From single neurons to population dynamics

NEUROBIO 316QC

Jan Drugowitsch
jan_drugowitsch@hms.harvard.edu

Session 5: Dimensionality reduction

Today

Q&A about previous session

Discussing assignment (15-25min)

Paper discussion (~1h)

Dimensionality reduction (remaining time)

Overview

(Linear) Dimensionality reduction

Linear dimensionality reduction in general

Two perspectives on PCA

Probabilistic PCA

Factor analysis, and relationship to probabilistic PCA

Dimensionality reduction

Assumes Data $x_1, x_2, ...$ lies on lower-dimensional manifold u_1

Deviations $x_n - \tilde{x}_n$ from this manifold: noise

Example high-d population activity might linearly encode

small number of latent variables

PRLM Fig. 12.2

Population (linear) dimensionality reduction methods

Principal component analysis

Linear mapping from latent space + isotropic noise

Factor analysis

Linear mapping from latent space + independent (but not isotropic) noise

Projections

Project x onto unit vector u (||u|| = 1)

1. Angle α between x and u

$$\cos \alpha = \frac{\mathbf{u}^T \mathbf{x}}{\|\mathbf{x}\|} = \mathbf{u}^T \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

2. Length $\|\tilde{x}\|$ of projected x

$$\|\widetilde{\mathbf{x}}\| = \|\mathbf{x}\| \cos \alpha = \mathbf{u}^T \mathbf{x}$$

3. Scaling **u** by this length

$$\widetilde{\mathbf{x}} = \|\widetilde{\mathbf{x}}\|\mathbf{u} = (\mathbf{x}^T\mathbf{u})\mathbf{u}$$

Project x into orthonormal basis $u_{1:M}$

$$\widetilde{\mathbf{x}} = \sum_{j=1}^{M} (\mathbf{x}^T \mathbf{u}_j) \mathbf{u}_j$$

length of projection onto u_i

Principal component analysis (PCA)

Variance maximization perspective

Find projection $u_1^T x_n$ (with $||u_1|| = 1$) for all $x_{1:N}$ that captures most variance

Leads to

$$oldsymbol{\mathcal{S}}oldsymbol{u}_1 = \lambda_1 oldsymbol{u}_1$$
 data covariance

 $\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$ with variance of projection, $\lambda_1 = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$

Thus: variance-maximizing projection is eigenvector \pmb{u}_1 of \pmb{S} for largest eigenvalue λ_1

Remove $u_1^T x_n$ and repeat: u_j is eigenvector associated with jth largest eigenvalue λ_j

Recall spectral covariance decomposition

columns = Σ_x eigenvectors diagonal = (positive) Σ_x eigenvalues $\Sigma_x = RD^2R^T$

principal axes u_j (rotation) variance λ_j along principal axes (scaling)

Minimum error perspective

Assume orthonormal basis $u_1, u_2, ..., u_M$ (M $\leq D$, where M is dimensionality of x_n)

Find basis that minimizes error $\sum_{n} \|x_{n} - \widetilde{x}_{n}\|^{2}$, where \widetilde{x}_{n} is x_{n} projected into this basis

Leads to the same eigenvalue problem as above

Some applications of PCA

Visualization

Plot high-d data along first two/three principal components

oil flow data colors = flow type

PRML, Fig. 12.8

Pre-processing

Whitening/sphering the data to achieve zero mean unit covariance data (rather than just zero mean unit variance along each dimension)

Compression

Maintain only the first M < D data dimensions

Variance 'explained' by first M dimensions: $\sum_{m=1}^{M} \lambda_m$

Probabilistic PCA (PPCA)

Generative model: mapping from low-d latent space z to high-d space of observables x

latent space $z_1, z_2, ...$ space of observables, $x_1, x_2, ...$ p(z) = N(z|0,I) $p(x|z) = N(x|Wz + \mu, \sigma^2 I)$ $p(x) = \int_{-\infty}^{\infty} p(x|z)p(z)dz$ M-dimensional $p(x|z) = \sum_{n=0}^{\infty} p(x|z)p(x)dz$ $= N(x|\mu, \sigma^2 I + WW^T)$ $p(\mathbf{x}|\hat{z})$ Z_n χ_n x_1 x_1 PRML, Fig. 12.9

Latent space rotation invariance (R = rotation/orthonormal matrix)

$$p(Rz) = N(z|\mathbf{0}, RR^T) = N(z|\mathbf{0}, I) = p(z)$$

$$p(x|Rz) = N(x|WRz + \mu, \sigma^2 I) = N(x|\widetilde{W}z + \mu, \sigma^2 I)$$

W can only be determined up to some rotation R, rotation does not impact C in p(x)

Inference in PPCA

Maximum likelihood solution

$$\widehat{\pmb{\mu}}_{ML} = \overline{\pmb{x}} = \frac{1}{N} \sum_{n} \pmb{x}_{n}$$

$$\widehat{\pmb{W}}_{ML} = \pmb{U}_{M} (\pmb{\Lambda}_{M} - \sigma^{2} \pmb{I})^{1/2} \pmb{R}$$
 eigenvectors $\pmb{u}_{1:M}$ arbitrary rotation

largest eigenvalues $\lambda_{1:M}$ of S along diagonal

$$\hat{\sigma}_{ML}^2 = \frac{1}{D-M} \sum_{i=M+1}^{D} \lambda_i$$
 captures the deviation from principal axes by average variance of remaining dimensions

Alternative: EM-algorithm (more efficient for larger datasets)

Mapping from observable x_n to latent z_n

$$p(\mathbf{z}_n|\mathbf{x}_n,\boldsymbol{\theta}) = N(\mathbf{z}_n|\mathbf{M}^{-1}\mathbf{W}(\mathbf{x} - \boldsymbol{\mu}), \sigma^{-2}\mathbf{M})$$

$$\uparrow$$

$$\mathbf{M} = \mathbf{W}^T\mathbf{W} + \sigma^2\mathbf{I}$$

In the limit
$$\sigma^2 \to 0$$
: $E[\mathbf{z}_n | \mathbf{x}_n] \to (\widehat{\mathbf{W}}_{ML}^T \widehat{\mathbf{W}}_{ML})^{-1} \widehat{\mathbf{W}}_{ML} (\mathbf{x} - \overline{\mathbf{x}})$ (standard PCA)

Variants: missing data, Bayesian inference with ARD

Why PPCA?

Reveals the generative model assumptions underlying PCA

Supports efficient EM-style inference algorithm

Supports Bayesian treatment; use of ARD to determine latent space dimensionality M

Can be used to generate samples from p(x), p(z), p(z|x)

Factor analysis (FA)

Probabilistic PCA

Factor analysis

latent space prior
$$p(z) = N(z|0, I)$$

$$p(\mathbf{x}|\mathbf{z}) = N(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

marginal likelihood
$$p(\mathbf{x}) = N(\mathbf{x}|\boldsymbol{\mu}, \sigma^2 \mathbf{I} + \mathbf{W}\mathbf{W}^T)$$

 $p(\mathbf{z}) = N(\mathbf{z}|\mathbf{0}, \mathbf{I})$ diagonal

$$p(x|z) = N(x|Wz + \mu, \Psi)$$

$$p(\mathbf{x}) = N(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Psi} + \boldsymbol{W}\boldsymbol{W}^T)$$

Remains invariant to rotations R in latent space; $Rz \rightarrow WRz = \widetilde{W}z$

Separate roles of W and Ψ

generative model

- W contributes to marginal likelihood through WW^T ; captures correlations in x components
- Ψ contributes to marginal likelihood as diagonal matrix; captures (different) independent variances in x components

Maximum likelihood inference: \widehat{W}_{ML} no longer close-form, requires EM algorithm

Overview

(Linear) Dimensionality reduction

Linear dimensionality reduction in general & subspace projections

Two perspectives on PCA

Probabilistic PCA

Factor analysis, and relationship to probabilistic PCA

Summary

PCA as variance maximizing or error minimizing linear projection

Covariance eigenvectors = principal axes; eigenvalues = variance along axes

Probabilistic PCA reveals assumptions underlying PCA & supports extensions

PCA & FA assumptions: observations = linear mapping from latent space (induce correlations)

PCA: isotropic noise; FA: independent (but not isotropic noise)

Until next week

Read paper and prepare presentation (see notes for Session 6)

Read statistical methods section (see notes for Session 6)

Next session

Q&A about previous session

Paper discussions (~1h)

Laplace approximations and intro to state space models (~40min)