1. What does a neuron compute?

 \bigcirc A neuron computes an activation function followed by a linear function (z = Wx + b)

A neuron computes a function g that scales the input x linearly (Wx + b)

 \bigcirc A neuron computes a linear function (z = Wx + b) followed by an activation function

A neuron computes the mean of all features before applying the output to an activation function

2. Which of these is the "Logistic Loss"?

 $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} - \hat{y}^{(i)})$

 $\bigcirc \ \, \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid$

 $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} - \hat{y}^{(i)}|^2$

 $\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 - y^{(i)})\log(1 - \hat{y}^{(i)}))$

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

x = img.reshape((32*32*3,1))

x = img.reshape((32*32,3))

x = img.reshape((1,32*32,*3))

x = img.reshape((3,32*32))

4. Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(2, 3) # a.shape = (2, 3)

2 b = np.random.randn(2, 1) # b.shape = (2, 1)

3 c = a + b
```

What will be the shape of "c"?

c.shape = (2, 3)	
The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	c.shape = (3, 2)
	c.shape = (2, 1)
Consider the two following random arrays "a" and "b":	
1 2 3	
What	t will be the shape of "c"?
	c.shape = (3, 3)
	c.shape = (4, 3)
	The computation cannot happen because the sizes don't match. It's going to be "Error"!
	c.shape = (4,2)
6. Si	uppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What is the dimension of ?
	(1,m)
	(m,1)
	(m,n_x)
	(n_x,m)

7. Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.

Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(12288, 150) # a.shape = (12288, 150)
2 b = np.random.randn(150, 45) # b.shape = (150, 45)
3 c = np.dot(a,b)
```

What is the shape of c?

- c.shape = (12288, 150)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (12288, 45)
- c.shape = (150,150)
- 8. Consider the following code snippet:

How do you vectorize this?

- \bigcirc c = a + b.T
- \bigcirc c = a.T + b
- \bigcirc c = a.T + b.T
- \bigcirc c = a + b

9. Consider the following code:

```
1 a = np.random.randn(3, 3)
2 b = np.random.randn(3, 1)
3 c = a*b
```

What will be c? (If you're not sure, feel free to run this in python to find out).

- This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)

10. Consider the following computation graph.

What is the output J?

$$\int J = (c - 1)*(b + a)$$

$$\int = (a - 1) * (b + c)$$

$$\int J = a*b + b*c + a*c$$

$$\int J = (b - 1) * (c + a)$$

- 1.3
- 2.4

- 3. 1
- 4. 1
- 5. 3
- 6.4
- 7.3
- 8. 2
- 9. 1
- 10. 2