1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Дисциплина: «Моделирование» Лабораторная работа №4

Тема работы: «Моделирование работы обслуживающего аппарата»

Студент: Левушкин И. К.

Группа: ИУ7-72Б

Преподаватель: Рудаков И. В.

Задание

Необходимо промоделировать систему, состоящую из генератора, памяти, емкости L и обслуживающего аппарата. Генератор выдает сообщения, распределенные по равномерному закону, они приходят в память (FIFO) и выбираются по закону второй лабораторной работы (Экспоненциальное распределение). Параметры задаются. Необходимо определить оптимальную длину очереди при которой не будет потерянных сообщений, используя 2 принципа: Δt -метод и событийный метод.

Формализация

Управляющая программа имитационной модели

Управляющая программа имитирует алгоритм взаимодействия отдельных устройств системы.

Она реализуется двумя принципами:

- Принцип Δt
- Событийный принцип

Принцип Δt .

Принцип Δt заключается в последовательном анализе состояний всех блоков в момент $t+\Delta t$ по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени.

Основной **недостаток** этого принципа: значительные затраты машинного времени на реализацию моделирования системы. А при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Достоинство: равномерная протяжка времени.

Событийный принцип.

Характерное свойство систем обработки информации то, что состояние отдельных устройств изменяются в дискретные моменты времени, совпадающие с моментами времени поступления сообщений в систему, временем поступления окончания задачи, времени поступления аварийных сигналов и т.д. Поэтому моделирование и продвижение времени в системе удобно проводить, используя событийный принцип, при котором состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы.

Недостаток событийного принципа: (самостоятельная обработка).

Ниже приведена схема событийного принципа.

Рис. 1: Схема событийного принципа.

Где

- Первая ось: момент появления сообщений;
- Вторая ось: момент освобождения обслуживающего аппарата;
- Третья ось: момент сбора статистики;
- Четвертая ось: время окончания моделирования;
- Пятая ось: текущее время;
- t_{11}, t_{12} моменты появления сообщений на выходе генератора;
- ullet b_1 интервал времени обслуживания первого сообщения;
- t_{3n} моменты сбора статистики;
- \bullet t_{41} момент окончания моделирования;
- SBS список будущих событий.

Таким образом, анализ состояния блоков происходит только во времена $t_{11}, t_{31}, t_{21}, t_{32}, t_{12}, t_{22}, t_{33}, t_{41}$, соответственно (серая ломаная линия на схеме событийного принципа).

Ниже приведена схема управляющей программы имитационной модели.

Рис. 2: Схема управляющей программы имитационной модели.

Откуда видно, что Обслуживающий Аппарат может отправлять заявку на повторную обработку (ставит в очередь). Это происходит с определенной задаваемой вероятностью Q.

Как было сказано в условии лабораторной работы, генератор создает заявки по равномерному закону. Это значит, что время, через которое будет создана следующая заявка, распределено равномерно на интервале от [a,b]. Аналогичная ситуация с обслуживающим аппаратом, обрабатывающим заявки по экспоненциальному закону (задается параметр λ).

Буферная память работает по принципу очереди (FIFO - первый вошел, первый вышел).

Результаты работы программы

Ниже приведены результаты работы программы при следующих параметрах:

- a = 1;
- b = 10;
- $\lambda = 1$;
- Вероятность повторной обработки заявки = 0;
- Количество заявок = 1000;

 Δt метод. $\Delta t = 0.1$

Событийный метод.

Видно, что время работы программы и максимальная длина очереди не сильно различаются.

Проведя более 40 повторных опытов при заданных параметрах, было установлено, что максимальноя длина очереди не превышала размера равного 4.

Таким образом, оптимальная длина очереди L при заданных параметрах равна 4.

Если же при использовании метода Δt задать величину $\Delta t > b$, то программа будет выдавать максимальную длину очереди не больше 1.

Рис. 3: Δt метод. $\Delta t = 0.1$.

Это связано с тем, что и генератор, и Обслуживающий Аппарат, не будут простаивать на каждой итерации, поскольку будут способны выдавать и обрабатывать заявки за время, не превышающее Δt .

Если же задать задать вероятность повторной обработки заявки, равной 0.5, то оптимальная длина очереди L увеличится до 8, поскольку создается дополнительная нагрузка на Обслуживающий Аппарат из-за вновь поступивших в очередь заявок.

 Δt метод. $\Delta t = 0.01$

Событийный метод.

Вывод

В результате проделанной работы была дана теоретическая справка по моделированию работы обслуживающего аппарата и проведена формализация задачи.

Была реализована программа, реализующая поставленную задачу.

Были экспериментально подтверждены недостатки принципа Δt , а именно - значительные затраты машинного времени на реализацию моделирования системы, а также при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Таким образом, для сложных дискретных систем лучше всего стоит применять комбинированный метод при котором на пиковых интервалах он приближается к методу Δt , а вне - к событийному принципу с большим шагом.