Claims

[c1]	1.A conductivity sensor comprising:
[6.1]	
	a first annular electrode having a first inner diameter;
	a second annular electrode having the first inner diameter; and
	a tubular portion disposed axially between said first electrode and said second
	electrode, said tubular portion having a second inner diameter greater that said
	first inner diameter,
	said tubular portion, said first electrode and said second electrode defining a
	sensor cell, said cell having a cell length between said first electrode and said
	second electrode.
[c2]	2.A conductivity sensor as recited in claim 1 wherein said cell has a cell
	constant defined by the formula:
	$\pi D_2^2/4L$
	where D is said second inner diameter.
[c3]	3.A conductivity sensor as recited in claim 1 further comprising a seal material
	between said first annular electrode and said tubular portion.
[c4]	4.A conductivity sensor as recited in claim 1 further comprising a control circuit
	generating a an output corresponding to a conductivity of a fluid between said
	first annular electrode and said second annular electrode.
[c5]	5.A conductivity sensor as recited in claim 1 further comprising a calibration
	circuit.
[c6]	6.A conductivity sensor as recited in claim 5 wherein said calibration circuit
	comprises a zero adjustment circuit.
[c7]	7.A conductivity sensor as recited in claim 5 wherein said calibration circuit
	comprises a gain adjustment circuit.
[c8]	8.A conductivity sensor as recited in claim 1 wherein said gain adjustment
	circuit is coupled to said first electrode.
[c9]	9 A conductivity sensor as regited in claim 1 forms
[65]	9.A conductivity sensor as recited in claim 1 further comprising a buffer circuit coupled to said first electrode

portion;

electrode and said second electrode.

[c10] 10.A conductivity sensor as recited in claim 1 wherein said control circuit is operational amplifier-based. [c11] 11.A conductivity sensor comprising: a first annular electrode having a first inner diameter and a first outer diameter, said first annular electrode having a first threaded portion said first outer diameter; a second annular having a second first inner diameter and the second outer diameter, said second annular electrode having a second threaded portion said second outer diameter; and a tubular portion disposed axially between said first electrode and said second electrode, said tubular portion having a third inner diameter greater that said first inner diameter and said second inner diameter, said tubular portion, said first electrode and said second electrode defining a sensor cell, said cell having a cell length between said first electrode and said second electrode. [c12] 12.A sensor as recited in clam 11 wherein said first inner diameter and said second inner diameter are equivalent. [c13] 13.A sensor as recited in clam 11 wherein said first outer diameter and said second outer diameter are equivalent. [c14] 14.A conductivity sensor as recited in claim 11 further comprising a seal material between said first annular electrode and said tubular portion. [c15] 15.A conductivity sensor as recited in claim 11 wherein said seal material comprises polytetrafluoroethylene. [c16]16.A method of assembling a conductivity sensor comprising: coupling a first annular electrode having a first inner diameter to a tubular

coupling a second annular electrode having the first inner diameter to the

tubular portion so that the tubular portion positioned axially between said first

- [c17] 17.A method as recited in claim 16 wherein said step of coupling a first annular electrode having a first inner diameter to a tubular portion comprises threadably coupling a first annular electrode having a first inner diameter to a tubular portion.
- [c18] 18.A method as recited in claim 16 further comprising coupling a control circuit to said first annular electrode and said second annular electrode calibrating the control circuit.
- [c19] 19.A method as recited in claim 18 wherein calibrating said control circuit comprises open circuit zeroing said control circuit.
- [c20] 20.A method as recited in claim 18 wherein calibrating said control circuit comprises adjusting the gain of a buffer circuit.