Car MPG Prediction Using Machine Learning

Objective: To predict the miles per gallon (MPG) of cars based on various features such as displacement, horsepower, weight, acceleration, model year, and origin.

Data Source: The dataset used for this project is sourced from the YBI Foundation Dataset Repository.

Import Library

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Import Data

df = pd.read_csv('https://github.com/YBI-Foundation/Dataset/raw/main/MPG.csv')

df.head()

$\overline{\Rightarrow}$		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

df.nunique()

→	mpg	129
	cylinders	5
	displacement	82
	horsepower	93
	weight	351
	acceleration	95
	model_year	13
	origin	3
	name	305
	dtype: int64	

Data Preprocessing

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 398 entries, 0 to 397
 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	392 non-null	float64
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model_year	398 non-null	int64
7	origin	398 non-null	object
8	name	398 non-null	object
dtyp	es: float64(4)	, int64(3), obje	ct(2)

memory usage: 28.1+ KB

df.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.010050
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	3.697627
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.000000
50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000	79.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

Remove Missing Values

df = df.dropna()

df.info()

<class 'pandas.core.frame.DataFrame'> Index: 392 entries, 0 to 397 Data columns (total 9 columns):

Ducu	columns (cocal 5 columns):						
#	Column	Non-Null Count	Dtype				
0	mpg	392 non-null	float64				
1	cylinders	392 non-null	int64				
2	displacement	392 non-null	float64				
3	horsepower	392 non-null	float64				
4	weight	392 non-null	int64				
5	acceleration	392 non-null	float64				
6	model_year	392 non-null	int64				
7	origin	392 non-null	object				
8	name	392 non-null	object				
dtype	es: float64(4)	, int64(3), obje	ct(2)				

Data Visualization

memory usage: 30.6+ KB

sns.pairplot(df,x_vars= ['displacement','horsepower','weight','acceleration','mpg'],y_vars=['mpg']);

sns.regplot(x = "displacement", y = "mpg", data = df);

Define Target Variable Y and Feature X

→		displacement	horsepower	weight	acceleration
	0	307.0	130.0	3504	12.0
	1	350.0	165.0	3693	11.5
	2	318.0	150.0	3436	11.0
	3	304.0	150.0	3433	12.0
	4	302.0	140.0	3449	10.5
	393	140.0	86.0	2790	15.6
	394	97.0	52.0	2130	24.6
	395	135.0	84.0	2295	11.6
	396	120.0	79.0	2625	18.6
	397	119.0	82.0	2720	19.4

392 rows × 4 columns

Scaling Data

pd.DataFrame(x).describe()

→		0	1	2	3
	count	3.920000e+02	3.920000e+02	3.920000e+02	3.920000e+02
	mean	-7.250436e-17	-1.812609e-16	-1.812609e-17	4.350262e-16
	std	1.001278e+00	1.001278e+00	1.001278e+00	1.001278e+00
	min	-1.209563e+00	-1.520975e+00	-1.608575e+00	-2.736983e+00
	25%	-8.555316e-01	-7.665929e-01	-8.868535e-01	-6.410551e-01
	50%	-4.153842e-01	-2.853488e-01	-2.052109e-01	-1.499869e-02
	75%	7.782764e-01	5.600800e-01	7.510927e-01	5.384714e-01
	max	2.493416e+00	3.265452e+00	2.549061e+00	3.360262e+00

Train Test Split Data

from sklearn.model_selection import train_test_split

 x_{train} , x_{train} , y_{train} , $y_{$

 $x_train.shape, \ x_test.shape, \ y_train.shape, \ y_test.shape$

→ ((274, 4), (118, 4), (274,), (118,))

Linear Regression Model

from sklearn.linear_model import LinearRegression

lr = LinearRegression()

lr.fit(x_train, y_train)

```
▼ LinearRegression
LinearRegression()
```

```
y_pred = lr.predict(x_test)
```

y_pred

```
array([18.51865637, 15.09305675, 14.30128789, 23.6753321 , 29.7546115 ,
       23.68796629, 26.61066644, 24.56692437, 15.06260986, 11.94312046,
       24.08050053, 27.96518468, 31.66130278, 31.01309132, 18.32428976,
      19.32795009, 28.08847536, 32.1506879 , 31.15859692, 27.15792144,
       18.82433097, 22.54580176, 26.15598115, 32.36393869, 20.74377679,
       8.78027518, 22.19699435, 18.20614294, 25.00052718, 15.26421552,
       23.13441082, 17.10542257, 9.87180062, 30.00790415, 20.41204655,
       29.11860245, 24.4305187, 21.72601835, 10.51174626, 13.12426391,
       21.41938406, 19.96113872, 6.19146626, 17.79025345, 22.5493033,
       29.34765021, 13.4861847, 25.88852083, 29.40406946, 22.41841964,
       22.07684766, 16.46575802, 24.06290693, 30.12890046, 10.11318121,
       9.85011438, 28.07543852, 23.41426617, 20.08501128, 30.68234133,
       20.92026393, 26.78370281, 22.9078744 , 14.15936872, 24.6439883 ,
       26.95515832, 15.25709393, 24.11272087, 30.80980589, 14.9770217,
       27.67836372, 24.2372919 , 10.92177228, 30.22858779, 30.88687365,
       27.33992044, 31.18447082, 10.8873597, 27.63510608, 16.49231363,
       25.63229888, 29.49776285, 14.90393439, 32.78670687, 30.37325244,
       30.9262743 , 14.71702373, 27.09633246, 26.69933806, 29.06424799,
       32.45810182, 29.44846898, 31.61239999, 31.57891837, 21.46542321,
       31.76739191, 26.28605476, 28.96419915, 31.09628395, 24.80549594,
      18.76490961, 23.28043777, 23.04466919, 22.14143162, 15.95854367,
       28.62870918, 25.58809869, 11.4040908, 25.73334842, 30.83500051,
       21.94176255, 15.34532941, 30.37399213, 28.7620624 , 29.3639931 ,
       29.10476703, 20.44662365, 28.11466839])
```

Model Accuracy

```
from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,r2_score
mean_absolute_error(y_test,y_pred)
3.3286968643244106
mean_absolute_percentage_error(y_test,y_pred)
    0.14713035779536746
r2_score(y_test,y_pred)
→ 0.7031250746717691
Polynomial Regression
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2,interaction_only=True,include_bias=False)
x_train2 = poly.fit_transform(x_test)
x_test2 = poly.fit_transform(x_train)
lr.intercept
    23.485738559737584
lr.coef
    array([-1.05767743, -1.68734727, -4.10787617, -0.11495177])
```

Model Accuracy

```
from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,r2_score
# Import the necessary libraries
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
# Create a polynomial features object
poly_features = PolynomialFeatures(degree=2)
# Transform the input features
X_poly = poly_features.fit_transform(x_train)
# Train a linear regression model
lr = LinearRegression()
lr.fit(X_poly, y_train)
# Predict the output for the test data
y_pred_poly = lr.predict(poly_features.transform(x_test))
# Calculate the mean absolute error
mean absolute error(y test, y pred poly)
3.0297164844490183
mean_absolute_percentage_error(y_test, y_pred_poly)
     0.13669355401577676
```