PROBLEMAS PROPUESTOS. MOVIMIENTO EN UNA DIMENSIÓN

COMPRENSIÓN

Dadas las siguientes afirmaciones indique sí es verdadero o falso

1	La fuerza es una forma de energía	
2	El trabajo es siempre una magnitud positiva	
3	La definición de trabajo como una fuerza multiplicada por el desplazamiento recorrido es válida, generalmente sólo para problemas en una dimensión	
4	Una cesta se arrastra desde el punto A al punto B sobre un suelo rugoso, el trabajo realizado es independiente del camino que se siga para llegar desde A hasta B	

Dadas las siguientes situaciones, seleccione la opción que usted considere correcta

Un hombre hala una cuerda que pasa por una polea y que en su extremo está unida a una caja, tal como se indica en la figura. Si la caja se desplaza una altura h, y se mueve a velocidad constante, entonces se puede afirmar que el trabajo total efectuado sobre la caja al realizar ese desplazamiento es igual a:

(A)

-Th

(B)

Th

(c)

mgh

D)

0

Una carga de bloques es levantada mediante una cuerda que se encuentra amarrada a un motor, la carga asciende verticalmente $\Delta y=10m$ a velocidad constante, para esta situación con respecto al trabajo realizado sobre la carga se puede afirmar que:

APLICACIÓN

Dadas las siguientes afirmaciones indique sí es verdadero o falso

Dadas las siguientes situaciones, seleccione la opción que usted considere correcta

- SP. 2 La energía cinética de una persona de 50 Kg que corre con una rapidez de 2m/s en comparación con la de una moneda de 5 g que cae con una rapidez de 200 m/s, es:
 - A mayor B igual C menor D No se puede saber
- SP. 3

 Un bloque de masa m = 2
 Kg que estaba
 inicialmente en reposo
 sobre una superficie
 horizontal lisa comienza a
 moverse bajo la acción
 de la fuerza *F* indicada en
 la figura.

Entonces, el trabajo neto (o trabajo total) en los primeros 12 m del recorrido tiene un valor de:

(A) 24 J (B) 12 J (C) 48 J (D) 36 J

¿Cuál es la rapidez del bloque en la posición x = 12 m?

 $igaplus 24 \text{ m/s} igoplus (72)^{1/2} \text{ m/s} igoplus (12)^{1/2} \text{ m/s} igoplus 6 \text{ m/s}$

ANÁLISIS

Dadas las siguientes afirmaciones indique sí es verdadero o falso

1	Sí varias fuerzas actúan sobre una misma partícula en una misma dirección, el trabajo total realizado por todas ellas, es el mismo trabajo realizado por la fuerza resultante.	
2	Sí se duplica la velocidad de una partícula, su energía cinética se incrementa en un factor de cuatro	
3	La energía adquirida por un bloque resbala hacia la parte inferior de un plano inclinado sin rozamiento es la misma que hubiera caído libremente desde la misma altura	

Dadas las siguientes situaciones, seleccione la opción que usted considere correcta

- SP. 1 Un hombre y un muchacho van corriendo. El hombre tiene la mitad de la energía cinética del muchacho. El muchacho tiene una masa igual a la mitad de la masa que tiene el hombre. Entonces se verifica que:
- A La velocidad del muchacho es igual a la del hombre
- B El muchacho tiene mayor aceleración que el hombre
- (C) El muchacho tiene una velocidad igual a la mitad de la del hombre
- D La velocidad del muchacho es el doble de la del hombre

Dos esferitas idénticas de masas m_1 y m_2 , se sueltan desde la parte superior de planos inclinados lisos de igual altura h. Si θ_2 =2 θ_1 . Con respecto al trabajo realizado por el peso sobre las esferitas desde que se desplazan de la parte superior del plano hasta el final del plano se puede afirmar que:

- Es mayor el realizado sobre la esferita m₁, porque el ángulo del plano es mayor
- B Es menor el realizado sobre la esferita m₁, porque el desplazamiento es mayor.
- Es menor el realizado sobre la esferita m₁, porque la pendiente del plano es menor
- D Son iguales porque las esferitas tienen igual masa y recorren la misma altura

Dpto. de Matemática y Física Física I

PROBLEMAS GENERALES

PROBLEMA 1. Para llevar un piano, de masa m, al segundo piso de su casa Carlitos decide improvisar una rampa que forma un ángulo α con la horizontal, el piano se encuentra en reposo en la parte inferior de la rampa y Carlitos lo comienza a mover ayundandose de una cuerda inextensible y masa despreciable, tal y como se muestra en la figura. La fuerza que hace Carlitos en todo el recorrido del piano es de 420 N, y la fuerza de roce que existe entre el piano y la rampa se presenta en la gráfica $f_r = f_r(x)$.

Datos: m = 80kg; $L_{Rampa} = 6m$; $\alpha = 30^{\circ}$; $F_h = 420N$; $g = 9.8 m/s^2$

- 1. El valor del trabajo neto realizado sobre el piano durante todo el recorrido de la rampa, es:
- 2. La fuerza media tiene un valor de:
- 3. La rapidez cuando el piano llegue al final de la rampa tendrá un valor de:
- 4. Y la potencia cuando el piano llegue al final de la rampa, es:

PROBLEMA 2. Para subir la caja de masa m se utiliza el plano inclinado como se muestra en la figura. Para ello tres personas aplican fuerzas F_1 , F_2 y F_3 respectivamente. Entre la caja y el plano inclinado existe un coeficiente de roce cinético μ_k . Considere la información anexa

$$F_2 = 240N$$
 ; $\alpha = 70^\circ$; $\vec{F}_3 = (90x + 50x^2)\hat{i}$ N ; $m = 90 \, kg$; $\theta = 37^\circ$; $\mu_k = 0.1$; $g = 9.8$ m/s^2

- 1. El trabajo efectuado por cada una de las fuerzas F1, F2 y F3 sobre la caja desde el inicio del plano inclinado hasta la mitad de éste es:
- 2. El trabajo neto realizado sobre la caja desde el inicio del plano inclinado hasta la mitad de éste es:
- 3. Si la caja estaba en reposo al inicio del plano inclinado, la rapidez de la caja en la mitad del plano inclinado será:
- **4.** Si en el justo momento de pasar por la mitad del plano inclinado, las tres personas dejan de aplicar las fuerzas sobre la caja, se puede asegurar que:
- a. La caja no alcanza b. La caja llega al c. La caja llega al final d. La caja empieza a e. La caja se detiene a llegar al final del plano inclinado. borde del plano inclinado del plano inclinado con v=0. con v>0. inmediatamente.

PROBLEMA N° 3. Un bloque de masa **m** se muve sobre un plano horizontal rugoso, bajo la influencia de dos fuerzas F_1 y F_2 . La fuerza F_1 =40 N forma un ángulo α con la horizontal tal y como se muestra en la figura. La fuerza F_2 =F(x).

El bloque se encuentra inicialmente en reposo en el punto A (0,0), alcanzando luego el punto B (6,0)con una rapidez V_B .

$$|\vec{F}_1| = 40i \ N \ ; \ \vec{F}_2 = (4x - 3)\hat{i} \ N$$

$$m= 3Kg$$

 $\alpha = 37^{\circ}$

$$V_B = 2 \text{ m/s}$$

 $g = 9.8 \text{ m/s}^2$

- 1. El valor del trabajo realizado por F1 desde, desde A hasta B (en Joule), es:
- 2. El valor del trabajo realizado por F₂ desde, desde A hasta B (en Joule), es:
- 3. Y el coeficiente de roce cinético entre el bloque y el plano es:

4. La potencia media cuando el bloque se desplaza desde A hasta B (en Watt) es:

PROBLEMA N° 4. Una caja de masa m se encuentra inicialmente en reposo, y comienza a moverse a lo largo del plano inclinado \Box por la acción de dos fuerzas F_a y F_b , tal y como se muestra en la figura. Entre la caja y el plano inclinado existe roce. Considere la información anexa para determinar:

- 1. ¿Cuál es el trabajo efectuado por la gravedad sobre la caja desde X = 0 hasta X = L ?
- 2. Si el valor de la fuerza de roce entre la caja y el plano inclinado es de 52 N, entonces ¿Cuál será la variación de la energía cinética de la caja desde X = 0 hasta X =L ?:
- 3. Y en la posición X=L, el valor de la potencia instantánea es:
- 4. Si justo cuando la caja alcanza la posición X=L, dejan de actuar simultáneamente las fuerzas F_a y F_b, Entonces se puede afirmar que la distancia recorrida por la caja justo antes de detenerse es:

a.
$$\frac{v^2}{2g(\cos(90+\alpha)-\mu\cos\alpha)}$$
 b.
$$\frac{v^2}{2g(\cos(90-\alpha)-\mu\cos\alpha)}$$
 c.
$$\frac{v^2}{2g\cos(\alpha)}$$
 d.
$$\frac{v^2}{2g\cos(90-\alpha)}$$

PROBLEMA N° 5. Un muchacho hala una caja de masa m subiendo por un plano inclinado rugoso de ángulo θ aplicando una fuerza variable F_a durante le tramo \overline{AB} .

Datos:
$$m = 20 \text{ kg} \; ; \; \theta = 30^{\circ} \; ; \; \overline{AB} = 0.8 \text{ m}$$

 $\vec{v}_o = 2\hat{i} \; \frac{m}{s} \; ; \; F_a = F_a(x) \; ; \; \vec{v}_B = 4,47 \hat{i} \; \frac{m}{s} \; ; \; \vec{v}_$

Usando los datos proporcionados, calcule

- 1. Trabajo hecho por la fuerza F_a en el tramo \overline{AB} .
- 2. Trabajo neto en el tramo \overline{AB} .
- 3. El coeficiente de roce cinético $\left(\mu_k\right)$ entre el plano inclinado y la caja