Computer Architecture

Assignment #1: ARM Instructions Analysis

Gyu Dong Kim (gyudong_kim@korea.ac.kr)

Binary number

- Binary number represents any number with 0 and 1
- How to convert Decimal to Binary?
 - $7392 = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$
- How to convert binary to Decimal?
 - $(11010)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (26)_{10}$

 $2^{10} = 1$ Kilo $2^{20} = 1$ Mega $2^{30} = 1$ Giga

Table 1-1
Powers of Two

n		n		n	
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

Convert to binary

■ Ex 1-1) Convert decimal 41 to binary.

	Integer Quotient		Remainder	Coefficient
41/2 =	20	+	1/2	$a_0 = 1$
20/2 =	10	+	0	$a_1 = 0$
10/2 =	5	+	0	$a_2 = 0$
5/2 =	2	+	1/2	$a_3 = 1$
2/2 =	1	+	0	$a_4 = 0$
1/2 =	0	+	1/2	$a_5 = 1$

Integer Remainder 41 20 10 Answer =101001

answer: $(41)_{10} = (a_5 a_4 a_3 a_2 a_1 a_0)_2 = (101001)_2$

Octal and Hexadecimal

Table 1-2 *Numbers with Different Bases*

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

- (r-1)'s complement of N is $(r^n-1) N$
 - n is equal to N's digit
- r=10, r-1=9, the 9's complements of N is (10ⁿ 1) N
 Ex) the 9's complements of 546700 is 999999 (= 1000000 1) -546700 = 453299
 the 9's complements of 012398 is 999999-012398 = 987601
- In the case of binary, r=2, r-1=1 1's complement of N is (2ⁿ - 1) - N

```
Ex) the 1's complements of 1011000 is (10000000 - 1) - 1011000 = 1111111 - 1011000 = 0100111
the 1's complements of 0101101 is 1010010
```

- $r^n N = [(r^n 1) N] + 1$
 - r's complements is equal to (r-1)'s complements + 1

Ex) the 2's complements of 1011000 is 0100111 + 1 = 0101000 the 2's complements of 0101101 is 1010010 + 1 = 1010011

■ Ex1-7) X=1010100, Y=1000011, (a) X-Y, (b) Y-X

2's complement of Y =
$$+0111101$$
Sum = 10010001
Discard end carry $2^7 = -10000000$
Answer: X-Y = 0010001

Y = 1000011
2's complement of X = $+0101100$
Sum = 1101111

There is no carry.

The answer is Y-X = -(2's complement of 1101111) = -0010001

■ Ex) X=1010100, Y=1010100, X-Y

$$X = 1010100$$

2's complement of $Y = +0101100$

Sum = 10000000

Discard end carry $2^7 = -10000000$

Answer: $X-Y = 0000000$

The answer is X-Y = 0

Shift operation in binary

$$(11010)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (26)_{10}$$

Shift Left 2
 $(1101000)_2 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
 $= (104)_{10} = (26)_{10} \times 4$

$$(110100)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = (52)_{10}$$

Shift Right 2
 $(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (13)_{10} = (52)_{10} / 4$

inst data.mif

Byte Address

0 4 12...20 24 28 36 40

Word Index

```
000
         EA000006;
001
         EAFFFFFE;
002
          EA0000A7;
[003,.005]
                 EAFFFFFE;
006
          EA0000A4;
007
         EAFFFFFE;
800
         E59F2EC8;
009
         E3A00040;
00A
         E5820010;
00B
         E5820014;
00C
         E5820018;
00D
         E582001C;
00E
         E5820020;
00F
         E5820024;
010
         E3A0003F;
011
         E5820028;
012
         E3A00008;
013
         E582002C;
         E59F3E9C;
014
015
         E59F1E9C;
016
         E5831000;
017
         E59F9E98;
018
         E3A08000;
019
         E5898000;
01A
         E5898004;
01B
         E5898008;
01C
         E589800C;
01D
         E5898010;
01E
         E5898014;
01F
         E5898018;
         E59FDE78;
020
021
         E5931200;
022
         E3510001;
023
         0A000000;
024
         EAFFFFFB;
```

EA000006

Instruction

Example

◆ 000: EA000006

- > Change instructions to binary format
- > Translate the binary instructions to assembly codes by referring to the reference file
 - B #008;
- > Describe what instruction means
 - 1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits
 - 0000 0000 0000 0000 0000 0110 -> **00 0000** 0000 0000 0000 0000 0110
 - 2. Shifting the result left two bits to form a 32-bit value
 - 0000 0000 0000 0000 0000 0001 $1000 = 6_{10} * 4 = 24_{10}$
 - Adding this to the contents of the PC, which contains the address of the branch instruction plus 8 bytes.
 - Make '32' by adding the current instruction address '(0*4)+8' and '24'
 - Divide '32' into 4 so that it branches at first among the word-unit instructions : 32 / 4 = 8
 - ❖ Next instruction will be E59F2EC8 at the address 008

Example

◆ 001: EAFFFFE

- Change instructions to binary format
- > Translate the binary instructions to assembly codes by referring to the reference file
 - B #001; 1111 1111 1111 1111 1110 = 2's complement of 0000 0000 0000 0000 0000 0010
- Describe what instruction means
 - 1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits
 - 1111 1111 1111 1111 1111 1110 -> **11 1111** 1111 1111 1111 1111 1110
 - 2. Shifting the result left two bits to form a 32-bit value
 - 1111 1111 1111 1111 1111 1111 1000 = $-2_{10} * 4 = -8_{10}$
 - Adding this to the contents of the PC, which contains the address of the branch instruction plus 8 bytes.
 - Make '4' by adding the current instruction address '(1*4)+8' and '-8'
 - Divide '4' into 4 so that it branches at first among the word-unit instructions : 4/4 = 1
 - ❖ Because it branches to the same instruction, the same instruction repeats indefinitely