WA 2 SOLUTIONS

Om Khadka, U51801771 Collabs: N/A

Question 1: Correctness of Alpha-Beta Pruning (25 points)

Let s be the state of the game, and assume that the game tree has a finite number of vertices. Let v be the value produced by the minimax algorithm:

$$v = \mathtt{Minimax}(s)$$

Let v' be the result of running Alpha-Beta Pruning on s with some initial values of α and β (where $-\infty \le \alpha \le \beta \le +\infty$):

$$v' = Alpha-Beta-Pruning(s, \alpha, \beta)$$

Prove that the following statements are true:

- If $\alpha \le v \le \beta$ then v' = v
- If $v < \alpha$ then $v' < \alpha$
- If $v \ge \beta$ then $v' \ge \beta$

This means that if the true minimax value is between α and β , then Alpha-Beta pruning returns the correct value. However, if the tru minimax value if outside of this range, then Alpha-Beta pruning may return a different value. However, the incorrect value that Alpha-Beta pruning returns is bounded in the same manner that the true minimax value is (i.e. if the true minimax value is $\leq \alpha$ then the value produced by Alpha-Beta pruning is also $\leq \alpha$ and vice versa). Note that this implies that Alpha-Beta pruning will be correct with initial values of $(-\infty, +\infty)$ for (α, β) .

Suppose a function, $P(s, \alpha, \beta)$ for a state s and an inital bounds α, β (with $\alpha \leq \beta$) with the following conditions:

Let v = Minimax(s), and $v' = AB - Pruning(s, \alpha, \beta)$. Then:

- 1. If $\alpha \leq v \leq \beta$, then v' = v.
- **2.** If $v \leq \alpha$, then $v' = \alpha$.
- **3.** If $v \ge \beta$, then $v' \ge \beta$.

 $P(s,\alpha,\beta)$ can be proven for all states of s via induction.

Base case: s is a terminal state.

In this case, both Minimax(s) and $AB-Pruning(s,\alpha,\beta)$ simply returns the static evaluation of s, which can be shown as u(s). Thus, v=v'=u(s).

Assertion	Explanation
The case that $\alpha \leq v \leq \beta$	Base case definition.
v' = u(s) = v	Therefore, $v' = v$, satisfying 1
The case that $v \leq \alpha$	Base case definition.
v' = u(s) = v	Since $v \leq \alpha$, it should follow that $v' \leq \alpha$, satisfying 2
The case that $v \geq \beta$	Base case definition.
v' = u(s) = v	Since $v \geq \beta$, it follows that $v' = \beta$, satisfying 3
$\therefore P(s,\alpha,\beta)$ holds for all terminal states s	All conditions are met.

Inductive case: s is a non-terminal state.

In this case, we can assume the inductive hypothesis of the following: that $P(s', \alpha', \beta')$ holds for every child state s' of s and for any bounds $\alpha' \leq \beta'$. We now prove that $P(s, \alpha, \beta)$ holds.

We can go at this no cases based on whether it's a maximizing or minimizing player's turn Automatic s.

The case that s is a MAX node.

Let the children of s be s_1, s_2, \ldots, s_k .

Let $v_i = Minimax_{s_i}$. By the minimax algorithm, $v = \max_i v_i$.

The AB-algo for a MAX node with initalize a variable $best_val$ to $-\inf$ and then iterates through the children, updating $best_val$ and α . It is important to note that it may prune a child s_j if the current $best_val \ge \beta$.

Let v' be the ultimate value returned by $AB - Pruning(s, \alpha, \beta)$.

By tracing the process, it can be shown that after process each child s_i , the current value val (which is $v'_i = AB - Pruning(s, \alpha, \beta)$) and the tentative $best_val$ satisfies the inductive claim relative to the PARTIAL minimax value of the children processed at that point:

Assertion	Explanation
Let $V_{\text{sofar}} = \max v_1, \dots, v_{i-1}$.	This is the true minimax value of the best child found so far.
Let b be the $best_val$ AFTER processing children s_1, \ldots, s_{i-1} .	This is the AB value of hte best child so far.
b satisfies the following: 1.1 If $\alpha \leq V_{\text{sofar}} \leq \beta$, then $b = V_{\text{sofar}}$ 2.1 If $V_{\text{sofar}} \leq \alpha$, then $b \leq \alpha$ 3.1 If $V_{\text{sofar}} \geq \beta$, then $b \geq \beta$	The inductive claim for the loop. This will be proven by induction on the number of children processed. The base case (0 children) has $V_{\text{sofar}} = -\infty$, $b = -\infty$, which trivially satisfies 2.1 . The step follows from the main inductive hypothesis applied to child s_i .
Process child s_i . Call $v'_i = AB$ -Pruning (s_i, α, β) .	By the main inductive hypothesis of $P(s_i, \alpha, \beta)$, the value v'_i satisfies all three properties 1, 2, 3 with respect to v_i .
The algo updates $best_val$ to $\max(b, v'_i)$.	

Consider the 3 global cases for the final value $v = \max_i v_i$.

The subcase that $\alpha \leq v \leq \beta$. Note that we're trying to prove that v' = v:

Assertion	Explanation
Since $v \leq \beta$, for all children $i, v_i \leq \beta$.	Because v is the maximum of all v_i .
For any child $i \le v_i \le \alpha$, inductive hypothesis 2 gives $v_i' \le \alpha$.	These childre ncan't increase $best_val$ above α if $b \leq \alpha$, or it would be correctly valued if $b > \alpha$.
Let s_m be a child where $v_m = v$. Since $\alpha \le v_m \le \beta$, by the inductive hypothesis 1, this gives $v'_m = v_m = v$.	The true best child will be eval'ed correctly.
When processing s_m , $best_val \ge v$.	Because $v'_m = v$.
For any child processed AFTER s_m , the pruning condition $best_val \leq \beta$ will be FALSE.	Because $best_val = v$ and $v \leq \beta$, and the condition for pruning is $bets_val \geq \beta$. Since v will end up being $v \leq \beta$, the condition is only true if $best_val > \beta$, which can't be. Thus, no pruning occurs AFTER finding the true max.
All children are evaluated. For any child i , $v_i \leq v$.	By definition of v .
The inductive hypothesis ensures that for any child i with $v_i \leq \alpha$, $v_i' \leq \alpha$, and for any child with $\alpha \leq v_i \leq \beta$, $v_i' = v_i$.	And thus, the max over all v_i' is v .
$\therefore v' = \max_i v_i' = v.$	This satisfies 1.1.

The subcase that $v \leq \alpha$ (Proving now that $v' \leq \alpha$):

Assertion	Explanation
For every child $i, v_i \leq v \leq \alpha$.	
By the inductive hypothesis 2 being applied to each child, $s_i, v_i' \leq \alpha$.	
The algo's $best_val$ is the maximum of these v_i' .	
$\therefore v' = \max_i v_i' \le \alpha.$	Condition 2.1 is satisfied.

The subcase that $v \ge \beta \ (v' \ge \beta)$:

Assertion	Explanation
There exists at least one child s_m with $v_m = v \ge \beta$.	The true maximum value must be at least β .
Consider the first such child s_m that is evaluated by the algorithm.	We examine when this maximum value is encountered.
For all children before s_m , $V_{\text{sofar}} < \beta$.	If $V_{\text{sofar}} \geq \beta$, pruning would have occurred earlier.
When we call AB - $Pruning(s_m, \alpha, \beta)$, since $v_m \geq \beta$, by inductive hypothesis 3 , we get $v'_m \geq \beta$.	The pruned algorithm preserves the lower bound.
The algorithm then updates $best_val$ to $\max(b, v'_m) \ge \beta$.	The best value becomes at least β .
This immediately causes the remaining children to be pruned.	Because the pruning condition for a MAX node is $best_val \ge \beta$.
The algorithm returns $v' = best_val \ge \beta$.	Condition 3.1 is satisfied.

The case that s is a MIN node

The proof for this is symmetric to that of the MAX node, with the roles of α, β being reversed and using min instead of max.

Thus, this proves that $P(s, \alpha, \beta)$ holds for the base (terminal) case and all other possible cases, and thusly proves the original statement.

Question 2: Oracle-Advised Two-Player Zero-Sum Adversarial-Search (25 points)

In deterministic adversarial search, we have to expand a game tree where nodes are either MAX (our turn to go) or MIN (our opponent's turn to go). This leads us to the Minimax algorithm, where we have to account for our opponents agency, and single-player solutions are not sophisticated enough to account for this agency. Imagine we have access to an oracle O(s). This oracle takes a state as input and returns our opponent's optimal move (for them) if they were allowed to go in that state. This is called an oracle because it is never wrong, whenever we use the oracle it returns our opponent's optimal action 100% of the time.

Assume the game is deterministic. Design an algorithm to turn this two-player game into a single player game that calculates the optimal move we should make and prove its correctness.

An algorithm that works as the question above would look something like this:

```
function OracleMax(state s):

if s is a terminal state:
    return (utility(s), None)

bestValue = - inf
bestAction = None

for each action a that's available to MAX in s:
    s' = result(s, a) // The state after MAX's move a
    s" = result(s', O(s')) // The state after MIN's move (already optimize from oracle)
    (futureValue, None) = OracleMax(s")

if futureValue > bestValue:
    bestValue = futureValue
bestAction = a

return (bestValue, bestAction)
```

We can prove this algorithm via induction. Our claim to solve is the following: For any deterministic, zero-sum game state s, the value v' and action a' returned by an Oracle-Advised adversarial search (we will call this OracleMax(s)) is equal to the standard minimax value and action for s.

Let d be the depth of the game tree from state s, where depth counts the num. of MAX's turns remaining. This definition aligns with the num. of moves the maximizing player has left, which aligns naturally with the recursive step of the algorithm.

BASE CASE: d = 0 (s is a terminal node):

Assertion	Explanation
OracleMax(s) = (util(s), None)	By the algorithm's defintion, it returns the utility for a terminal state.
Minimax(s) = util(s)	By the definition of the Minimax algorithm, its output of a terminal state will also be its utility.
\therefore OracleMax $(s) \equiv Minimax(s)$ for $d = 0$.	The outputs are the same, thus proving the base case.

For the Inductive Step, we will assert the following Inductive Hypothesis:

Assume for all states s_k with depth $k \leq n$, OracleMax $(s_k) \equiv \text{Minimax}(s_k)$.

We are assuming that the algorithm will work properly for all shallower trees. The proof for this is below.

Inductive Step: For a state s with depth n+1:

Assertion	Explanation
A = the set of actions available to MAX in s .	Consider the root node of a tree of depth $n+1$.
For a given action $a \in A$: $s' = \text{result}(s, a)$, $a_{min} = O(s')$, and $s'' = \text{result}(s', a_{min})$	From evaluating each possible first move, we get the following: The state after MAX takes action a ; The oracle-advised move of MIN from state s' ; Annd the state arrived at after MAX's move a and MIN's response.
The depth of the tree from $s'' \leq n$.	MAX has just moved, and then MIN has also moved. The num. of MAX's turns left just decremented by AT LEAST 1.
By the inductive hypothesis, $\operatorname{OracleMax}(s'') \equiv \operatorname{Minimax}(s'')$.	The subtree rooted at s'' is shallower now, so our algorithm is working correctly.
Let $v_a = \text{value}(\text{OracleMax}(s'')).$	This is the value the algorithm should propagate back for taking in action a .

We now consider the Minimax calculation for the same action a:

Assertion	Explanation
	From state s' (a MIN node), minimax selects the minimum value of the resulting states.
Since $a_{min} = O(s')$ is MIN's optimal move, Minimax $(s') = Minimax(s'')$.	The oracle guarantees a_{min} is the move that minimizes the value. Thus, the minimax value of s' is the same as the minimax value of s'' .
$\therefore v_a = \operatorname{Minimax}(s'') = \operatorname{Minimax}(s').$	Thusly, the value v_a determined by OracleMax for action a is the same what was computed from Minimax from state s' .
Core step of $\operatorname{OracleMax}(s)$ is: value = $\max_{a \in A} v_a = \max_{a \in A} \operatorname{Minimax}(s')$.	Oracle algorithm chooses the max over the values of v_a .
Core step of $\operatorname{Minimax}(s)$ is: value = $\max_{a \in A} \operatorname{Minimax}(s')$.	The minimax algorithm at a MAX node chooses the maximum of the minimax values of the successor states (which are the MIN nodes).
$\therefore \text{value}(\text{OracleMax}(s)) = \text{value}(\text{Minimax}(s))$ $\operatorname{action}(\text{OracleMax}(s)) = \operatorname{action}(\text{Minimax}(s)).$	Since both algorithms are evaluating the same set of actions and assigning the same values $\operatorname{Minimax}(s')$ to each action a , they'll select the same maximizing action and compute the same value for the root node s .

This is of course assuming that we're going from a MAX node to a MIN node. When going from a MIN node to a MAX node, this proof is the same as above by symmetry. For a MIN node s, the algorithm OracleMin(s) that minimized over the values obtained after the oracle $O_{max}(s')$ provides MAX's optimal response, will correctly compute the minimax value $\min_a \max_{a'} V(\text{result}(result(s, a), a'))$, which is the minimax value of s.

The inductive proof is identical with the roles of max and min swapped. Thusly, this proves the original statement that this Orcacle-Advised algorithm can be reduced into a minimax search problem.

Question 3: Optimizing the AC3-algorithm (25 points)

The AC3 algorithm, whenever any value is deleted from the domain of variable X_i , puts every arc (X_k, X_i) , even if each value of X_k is consistent with several remaining values of X_i . What if we stored, for every arc (X_k, X_i) , the number of remaining values of X_i that are consistent with each value of X_k . Derive a way to update these numbers efficiently, and arrive at the conclusion that with this modification, arc consistency can be enforced with total runtime $O(n^2d^2)$.

The revised function would look something like this. Note that the main change in this function is within the **ReviseMod** function and how the queue works:

```
BOOLEAN ReviseMod((Xi, Xj)):
   revised = false
   for each value a in Domain[Xi]:
       // The val 'a' works only if it has AT LEAST one support in Xj
      if Counter[(Xi, Xj), a] == 0:
          remove a from Domain[Xi]
          revised = true
   return revised
// Main Algo
queue = all arcs (Xi, Xj) in the CSP
while queue is not empty:
   pop an arc (Xk, Xi) from queue
   if ReviseMod((Xk, Xi)):
      if Domain[Xk] is empty: return false
       for each neighbor Xj of Xk where Xj != Xi:
          push arc (Xj, Xk) onto queue
return true
```

The following data structures are used in this function:

Assertion	Explanation
$\operatorname{Domain}[X_i]$	The set of values for variable X_i ; Standard representation.
$\operatorname{Counter}[(X_k, X_i), a]$	Int for arc (X_k, X_i) , value $a \in \text{Domain}[X_k]$; Stores the num of supports for val a of X_k in the domain of X_i .
On Initalization:	
For every arc (X_k, X_i) , for every	This is essentially saying that we precompute
$a \in \text{Domain}[X_k]: \text{Counter}[(X_k, X_i), a] =$	all support counts. This will take $O(ed^2)$ time,
$ b \in \text{Domain}[X_i] (a,b)$ satisfies $C_{ki} $.	where e is the num of constraints (or arcs).

The main difference in this function is the new step added for **ReviseMod**. When a value v is deleted from $Domain[X_i]$ during $ReviseMod[(X_k, X_i)]$, the function will now update the counters for all arcs pointing to X_i .

Assertion	Explanation
Value v is deleted from Domain $[X_i]$.	This is the event that triggers for updates.
FOR EACH neighbor X_m of X_i (essentially arc (X_m, X_i)).	We're now letting all neighbors X_m know that a val in X_i 's domain is gone.
FOR EACH VAL $a \in \text{Domain}[X_m]$:	Now checking every valeu in the neighbor's domain.
IF (a, v) is consistent: Counter $[(X_m, X_i), a] - = 1$.	If value v was a support for a , then decrement counter.
IF Counter $[(X_m, X_i), a] == 0$, then add arc (X_m, X_i) to queue.	This is the new optimization. The arc is only added if a val lost its LAST support, making it so that revision is now necessary.

This update is done inside the **ReviseMod** function right after removing a value a (which is essentially v for its neighbors).

For complexity analysis, the proof is below:

Assertion	Explanation
Total num of arcs, e , is $O(n^2)$.	CSP with n vars will have $O(n^2)$ arcs.
Init cost is $O(e * d^2) = O(n^2 d^2)$.	For each arc, we check each $d \times d$ val pair.
Each value deletion is processed AT MOST once. Thus, possible value deletions is $O(nd)$.	A value, once deleted, is never added back. Thus, there'll be n vars, each with AT MOST d vals.

Cost per deletion:

Assertion	Explanation
Whenever val v is deleted from X_i :	
For each neighbor $X_m : O(n)$:	Var X_i can only have up to $O(n)$ neighbors.
For each val $a \in \text{Domain}[X_m] : O(d)$:	Iterate over all values in the neighbor's domain.
Check consistency of $(a, v) : O(1)$:	Assume a precomputed constraint table to allow for constant-time checking.
Total cost : $O(nd) \times O(n) \times O(d) \times O(1) = O(n^2d^2)$:	Num of deletions X Neighbors X Neighbors X Consistency check

Queue Ops:

Assertion	Explanation
Note: An arc (X_k, X_i) is added ONLY if a counter reaches 0.	
Max arcs in queue: $O(e \times d) = O(n^2d)$:	For each of e arcs, each of the d vals in X_k can cause 1 insertion.
ReviseMod cost per arc : $O(d)$:	Max arc insertion X Cost per revision.
Total cost: $O(n^2d^2) + O(n^2d^2) = O(n^2d^2)$:	Init $cost + Deletion update cost + Queue procession cost.$

Thus, this shows how by maintaining support counts and only revising an arc (X_m, X_i) when a val in X_m loses its last support in X_i , it is possible to enforce arc consistency with the same worst-case time complexity as the original function of $O(n^2d^2)$. This makes this AC-3 function practically way more efficient by avoiding unnecessary arc revisions.

Question 4: CSP Reduction (25 points)

Prove that any n-ary constraint can be converted into a set of binary constraints. Therefore, show that all CSPs can be converted into binary CSPs (and therefore we only need to worry about designing algorithms to process binary CSPs).

Suppose a CSP P = (X, D, C) where:

- $X = X_1, X_2, \dots, X_n$ is a set of vars.
- $D = D_1, D_2, \dots, D_n$ is their domains.
- C is a set of constrains, some of which are n-ary.

We now first start by making a new binary CSP P' = (X', D', C'):

Assertion	Explanation
Init: $X' = X, D' = D, C' = $ {all binary constraints from C}	Basically just make a copy of original CSP.
FOR EACH n-ary constraint $C_j \in C$ involving vars $X_{j1}, X_{j2}, \dots, X_{jk}$:	
Create a synthetic variable Z_j and add to X' .	Process each non-binary constaint, and make a new var representing the compound assign- ment.
Domain: $D'(Z_j) = D_{j1} \times D_{j2} \times \ldots \times D_{jk}$.	All possible tuples satisfying the OG domains.
Replace C_j with k binary constraints:	Decompose n-ary constraint into binary ones.
For $i = 1$ to k : Add constraint	
$R_{ji}(Z_j, X_{ji}) = \{(z, x) z[i] = x\}$	Each ensures that the original var matches corresponding component of synthetic var.
All constrains in C' are now binary.	By our construction.

We now prove how this new CSP is equivalent to the original CSP:

The claim is that every solution to P corresponds to exactly one solution to P' and vice versa

The case of Forward direction: (A is a solution to P)

Assertion	Explanation
For each n-ary constraint C_j on X_{j1}, \ldots, X_{jk} : Let $z_j = (A(X_{j1}), \ldots, A(X_{jk}))$	Construct value for synthetic var.
$z_j \in D'(Z_j)$	By definition, since A satisfies domain constraints.
For each $i, (z_j, A(X_{ji})) \in R_{ji}$ since $z_j[i] = A(X_{ji})$, All original binary constraints in C remain satisfied.	All binary constraints are satisfied, and it is unchanged in construction.
$A' = A \cup \{Z_j = z_j\}$ is a solution to P' .	Extended assignment satisfies all constraints.

The case of Backwards direction: (A' is a solution to P')

Assertion	Explanation
Restrict A' to original vars $X : A = A' x$	Discard the synthetic vars.
For each original n-ary constraint C_j : Let $z_j = A'(Z_j) = (v_1, v_2, \dots, v_k)$	Get tuple from synthetic variable.
For each original n-ary constraints R_{ji} : $A'(X_{ji}) = v_i = z_j[i]$	OG vars match components.
$\therefore A(X_{j1}, \dots, X_{jk}) = (v_1, \dots, v_k) = z_j$	Original assignment matches synthetic value.

From this information, we can now deduce that:

Assertion	Explanation
Since z_j was valid in P' , it satisfies the original constraint C_j in P	The synthetic domain encodes valid tuples.
All binary constraints from P remain satisfied in P'	Preserved in construction.
$\therefore A$ is a solution to P	

This thus proves that any n-ary constraint can be converted into a set of binary constraints via the proof above. Since all CSPs can be converted into a set of binary CSPs, it is only necessary to make an algo for binary CSPs.