Correctness Proof of Shortest Distances using BFS

Douglas R. Stinson
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

November 2, 2015

Lemma 1 If u is discovered before v, then $dist[u] \leq dist[v]$.

Proof:

- By contradiction. Let v be the first vertex such that dist[u] > dist[v] for some u that was discovered before v.
- Denote d = dist[v]; then $dist[u] \ge d + 1$.
- Let $\pi[v] = v_1$; then $dist[v_1] = d 1$.
- Let $\pi[u] = u_1$; then $dist[u_1] \ge d$.
- Note that v_1 was discovered before u_1 since v is the first "out-of-order" vertex.
- So, in order of discovery, we have v_1, u_1, u, v .
- Vertex v was discovered while processing $Adj[v_1]$ and vertex u was discovered while processing $Adj[u_1]$.
- \bullet This means that v was discovered before u, a contradiction.

Lemma 2 If uv is any edge, then $|dist[u] - dist[v]| \le 1$.

Proof: WLOG suppose u is discovered before v, so we explore uv in the direction $u \to v$. We identify three cases:

- (1) Suppose v is white when we process Adj[u]. Then dist[v] = dist[u] + 1.
- (2) Suppose v is grey when we process Adj[u]. Let $\pi[v] = v_1$; then v was discovered when $Adj[v_1]$ was being processed. So v_1 was discovered before u. By Lemma 1, $dist[v_1] \leq dist[u]$. Also, $dist[v] = dist[v_1] + 1$, so $dist[u] \geq dist[v] 1$. Since u was discovered before v, we have $dist[u] \leq dist[v]$ by Lemma 1. Therefore, $dist[u] \leq dist[v] \leq dist[u] + 1$.
- (3) Suppose v is black when we process Adj[u]. Then Adj[v] has been completely processed and we would already have discovered u from v. This is a contradiction, so this case does not occur.

Theorem For every vertex v, dist[v] equals the length of the shortest path from s to v.

Proof:

- Let $\delta(v)$ denote the length of the shortest path from s to v.
- Consider the path

$$v \quad \pi[v] \quad \pi[\pi[v]] \quad \cdots \quad s.$$

- This path has length dist[v], so $\delta(v) \leq dist[v]$.
- To complete the proof, we show that $\delta(v) \geq dist[v]$; we will prove this by induction on $\delta(v)$.

Base case: $\delta(v) = 0$. Then v = s and $dist[v] = 0 = \delta(v)$.

Induction assumption: Assume $\delta(v) \ge dist[v]$ if $\delta(v) \le d-1$. Now suppose $\delta(v) = d$. Let

$$s$$
 v_1 v_2 \cdots v_{d-1} $v_d = v$

be a shortest path (having length d). Then $\delta(v_{d-1}) = d-1 = dist[v_{d-1}]$ by induction. Now, $dist[v] \leq dist[v_{d-1}] + 1$ (by Lemma 2). But $dist[v_{d-1}] = d-1$, so $dist[v] \leq d = \delta(v)$ and we're done.