Suponha que $|f(x)| \leq |x|^k$, com k > 1. Calcule, por definição, f'(0).

Resolução:

Observemos inicialmente que $|f(0)| \leq |0|^k = 0$, logo f(0) = 0.

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h}$$

Como $0 \le |f(x)| \le |x|^k$:

$$\text{(I): } \lim_{h \to 0^+} \frac{0}{h} \leq \lim_{h \to 0^+} \frac{|f(h)|}{h} \leq \lim_{h \to 0^+} \frac{|h|^k}{h} \ \Rightarrow \ 0 \leq \lim_{h \to 0^+} \frac{|f(h)|}{h} \leq 0.$$

$$\text{(II): } \lim_{h \to 0^{-}} \frac{|h|^{k}}{h} \leq \lim_{h \to 0^{-}} \frac{|f(h)|}{h} \leq \lim_{h \to 0^{-}} \frac{0}{h} \ \Rightarrow \ 0 \leq \lim_{h \to 0^{-}} \frac{|f(h)|}{h} \leq 0.$$

Por (I) e (II), e pelo teorema do confronto, $\lim_{h\to 0} \frac{|f(h)|}{h} = 0$.

Se
$$f(h) \ge 0$$
, $\lim_{h\to 0} \frac{|f(h)|}{h} = \lim_{h\to 0} \frac{f(h)}{h}$.

Se
$$f(h) < 0$$
, $\lim_{h \to 0} \frac{|f(h)|}{h} = \lim_{h \to 0} \frac{-f(h)}{h} = -\lim_{h \to 0} \frac{f(h)}{h}$.

Em ambos os casos, $\lim_{h\to 0} \frac{f(h)}{h} = 0$, $\log_{h} \left[f'(0) = 0 \right]$.

Documento compilado em Thursday 13th March, 2025, 10:05, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Comunicar erro: "a.vandre.g@gmail.com"