CYK/2023/PH201 Mathematical Physics

Tutorial 8: Group Theory

- 1. Verify that each of the following sets is a group with given group product. Which groups are abelian?
 - (a) The set of all non-zero rationals under multiplication.
 - (b) The set of all complex numbers of unit magnitude under multiplication.
 - (c) The set of all complex roots of the equation $z^n = 1$.
 - (d) The set $\{1, 2, \dots, p-1\}$ under multiplication modulo (p), where p is a prime number.
 - (e) The set of following matrices under matrix multiplication:

$$\left\{\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1\\ -1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0\\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}, \begin{bmatrix}1 & 0\\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & -1\\ -1 & 0\end{bmatrix}\right\}$$

(f) The set of functions under function composition:

$$f_1(x) = x$$
, $f_2(x) = 1 - x$, $f_3(x) = x/(x-1)$, $f_4(x) = 1/x$, $f_5(x) = 1/(1-x)$, $f_6(x) = (x-1)/x$,

- (g) The set $\{T_{ab} \mid a, b \in \mathbb{R}, a \neq 0\}$ of all linear transformations on \mathbb{R} , such that $T_{ab}(x) = ax + b$.
- (h) Set of all isometries on \mathbb{R}^2 that set of all linear transformations that leave the Euclidean norm invariant.
- (i) The set of all real 2×2 matrices $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$, where $ad \neq 0$.

Answer:

- (a) (\mathbb{Q}^*, \times) : Group, Abelian, Infinite, Discrete (countable).
- (b) $G = \{z \in \mathbb{C} \mid |z| = 1\}$: Group, Abelian, Infinite, Continous, 1 parameter.
- (c) $G = \{z \in \mathbb{C} \mid z^n = 1\}$: Group, Abelian, Finite, $\mathcal{O}(G) = n$, Cyclic.
- (d) $G = \{1, 2, ..., p-1\}$, p is a prime number. The multiplication is $a \odot b = (a \times b) \mod p$: Example: Let p = 5. the multiplication table is

0	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

To check: $3 \odot 3 = (3 \times 3) \mod 5 = 9 \mod 5 = 4$.

 (G, \odot) : Group, Abelian, Finite, $\mathcal{O}(G) = p - 1$, Cyclic.

(e) Noting that $R_{\pi/2} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $M_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, the multiplication table is

•	I	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	M_x	$M_x R_{\pi/2}$	$M_x R_\pi$	$M_x R_{3\pi/2}$
I	I	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	M_x	$M_x R_{\pi/2}$	$M_x R_{\pi}$	$M_x R_{3\pi/2}$
$R_{\pi/2}$	$R_{\pi/2}$	R_{π}	$R_{3\pi/2}$	I	$M_x R_{\pi/2}$	$M_x R_{\pi}$	$M_x R_{3\pi/2}$	M_x
R_{π}	R_{π}	$R_{3\pi/2}$	I	$R_{\pi/2}$	$M_x R_{\pi}$	$M_x R_{3\pi/2}$	M_x	$M_x R_{\pi/2}$
$R_{3\pi/2}$	$R_{3\pi/2}$	I	$R_{\pi/2}$	R_{π}	$M_x R_{3\pi/2}$	M_x	$M_x R_{\pi/2}$	$M_x R_\pi$
M_x	M_x	$M_x R_{3\pi/2}$	$M_x R_{\pi}$	$M_x R_{\pi/2}$	I	$R_{3\pi/2}$	R_{π}	$R_{\pi/2}$
$M_x R_{\pi/2}$	$M_x R_{\pi/2}$	M_x	$M_x R_{3\pi/2}$	$M_x R_{\pi}$	$R_{\pi/2}$	I	$R_{3\pi/2}$	R_{π}
$M_x R_{\pi}$	$M_x R_{\pi}$	$M_x R_{\pi/2}$	M_x	$M_x R_{3\pi/2}$	R_{π}	$R_{\pi/2}$	I	$R_{3\pi/2}$
$M_x R_{3\pi/2}$	$M_x R_{3\pi/2}$	$M_x R_{\pi}$	$M_x R_{\pi/2}$	M_x	$R_{3\pi/2}$	R_{π}	$R_{\pi/2}$	I

The group is dihedral group of order 8. Not abelian.

- (f) Here, $f_k \circ f_m$ is defined as $(f_k \circ f_m)(x) = f_k(f_m(x))$. For example, $(f_2 \circ f_3) = f_2(f_3(x)) = 1 f_3(x) = 1 x/(x-1) = -1/(x-1) = f_5(x)$, hence $f_2 \circ f_3 = f_5$. This is a nonabelian group of order 6.
- (g) Left for you.
- 2. Does the set of the three matrices

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

form a group under matrix multiplication? If not, add a minimum number of matrices to complete the group. Prepare the multiplication table.

Answer

Note that $B = A^2$. A^3 is a new element. And $A^4 = I$. So, if we add A^3 , we get a cyclic group $\{E, A, B = A^2, A^3\}$.

3. Generate the matrix group (under matrix multiplication) which contains the two elements $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$. What is the order of the group? Is it abelian?

Answer: Let $\psi = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $\sigma = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$. Note, that $\psi^4 = \sigma^4 = I$, $\psi^2 = \sigma^2 = -I$, $\sigma\psi\sigma^{-1} = \psi^{-1}$. Not a dihedral group. Requires a little bit of trial and error to complete the group of 8 elements. The multiplication table is

0	I	ψ	ψ^2	ψ^3	σ	$\sigma \psi$	$\sigma \psi^2$	$\sigma \psi^3$
I	I	ψ	ψ^2	ψ^3	σ	$\sigma \psi$	$\sigma \psi^2$	
ψ	ψ	ψ^2	ψ^3	I	$\sigma \psi$	$\sigma \psi^2$		σ
ψ^2	ψ^2	ψ^3	I	ψ	$\sigma \psi^2$		σ	$\sigma \psi$
ψ^3	ψ^3	I	ψ	ψ^2	$\sigma \psi^3$	σ	$\sigma \psi$	$\sigma \psi^2$
σ	σ	$\sigma \psi^3$		$\sigma \psi$	ψ^2	ψ	I	ψ^3
$\sigma \psi$	$\sigma \psi$	σ	$\sigma \psi^3$	$\sigma \psi^2$		ψ^2	ψ	I
$\sigma \psi^2$	$\sigma \psi^2$		σ	$\sigma \psi^3$	I	ψ^3	ψ^2	ψ
$\sigma \psi^3$	$\sigma \psi^3$	$\sigma \psi^2$	$\sigma \psi$	σ	ψ	I	ψ^3	ψ^2

Not an abelian group.

4. Dihedral group (D_n) is a group generated by two elements A and B subject to relations $A^2 = B^n = (AB)^2 = I$. What is the order of this group? Write down the elements of D_4 .

Answer

Note that $A^{-1} = A$ and $(B^k)^{-1} = B^{n-k}$ Since $BA = AB^{n-1}$. This means that all elements can be written as A^mB^k where m = 0, 1 and k = 0, 1, ..., n - 1. The order of the group is 2n. Obvious subgroups are

$$\triangleright \{I, B, B^2, \dots, B^{n-1}\}$$
, if some $p \mid n$, then $\{I, B^p, B^{2p}, \dots, B^{n-p}\}$.

$$\gt \{I, AB^k\}$$
 where $k = 0, 1, ..., n - 1$.

Equivalence classes are

$$\triangleright \{I\},$$

- $\triangleright \{B^k, B^{n-k}\}$, if n is even then $B^{n/2} = B^{n-n/2}$. Number of these classes are n/2 or (n-1)/2 depending on even n or odd n. $[(AB^k)B^m(AB^k)^{-1} = AB^{k+m}AB^k = AAB^{n-k-m}B^k = B^{n-m}]$
- ▷ If *n* is even then $\{A, AB^2, \dots, AB^{n-2}\}$, $\{AB, AB^3, \dots, AB^{n-1}\}$, $[B^k(AB^m)(B^k)^{-1} = B^kAB^mB^{n-k} = AB^{n-k}B^mB^{n-k} = AB^{m-2k}]$. What will happen when *n* is odd?

5. Find the subgroup of the symmetric (permutation) group S_4 , which leaves the polynomial $x_1x_2 + x_3 + x_4$ invariant.

Answer:

The operation of group element (abcd) on $x_1x_2 + x_3 + x_4$ gives us $x_ax_b + x_c + x_d$ on Only operations that leave this polynomial invariant are (1234), (2134), (2143), (2143).

- 6. An element a of a group G is said to be conjugate to $b \in G$ if $a = g^{-1}bg$ for some $g \in G$ and is denoted by $a \sim b$.
 - (a) Show that the conjugacy relation is an equivalence relation.
 - (b) Show that all elements of a class have same order. (For $a \in G$, minimal n such that $a^n = e$ is called the order of a)
 - (c) Show that in an abelian group, every element is a class by itself.
 - (d) Show that a normal subgroup contains complete classes.

- 7. Find all conjugacy classes and subgroups of the following groups.
 - (a) The set of following matrices under matrix multiplication:

$$\left\{\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & 1\\ -1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0\\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}, \begin{bmatrix}1 & 0\\ 0 & -1\end{bmatrix}, \begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}, \begin{bmatrix}-1 & 0\\ 0 & 1\end{bmatrix}, \begin{bmatrix}0 & -1\\ -1 & 0\end{bmatrix}\right\}$$

- (b) The group generated by two elements $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$.
- (c) Group generated by σ and ψ with constraints $\sigma^2 = \psi^3 = e$ and $\sigma \psi = \psi^2 \sigma$.

Answer:

There is no quick procedure to find equivalence classes, it is a brute force method. When we are performing hand-calculations, a little trial and error would help.

(a) Look at the multiplication table in 1e. The subgroups must be of order 2 and 4 (factors of 8). Each mirror with identity forms a subgroup. R_{π} with identity is also a subgroup. And all rotations is a subgroup of order 4.

The five conjugacy classes are listed here.

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \\
\left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \right\}$$

(b) Look at the multiplication table in $Q3$. Note the only element with order 2, that is an element	
which is it's own inverse, is ψ^2 . So, $\{I, \psi^2\}$ is the subgroup of order 2. Subgroups of order	
4 are $\{I, \psi, \psi^2, \psi^3\}$, $\{I, \sigma, \psi^2, \sigma\psi^2\}$.	

Here is a table of conjugacy transformation (all possible conjugacy products)

$a \odot b \odot a^{-1}$	I	ψ	ψ^2	ψ^3	σ	$\sigma \psi$	$\sigma \psi^2$	$\sigma \psi^3$
I	I	I	I	I	I	I	I	I
ψ	ψ	ψ	ψ	ψ	ψ^3	ψ^3	ψ^3	ψ^3
ψ^2	ψ^2	ψ^2	ψ^2	ψ^2	ψ^2	ψ^2	ψ^2	ψ^2
ψ^3	ψ^3	ψ^3	ψ^3	ψ^3	ψ	ψ	ψ	ψ
σ	σ	$\sigma \psi^2$		$\sigma \psi^2$		$\sigma \psi^2$		$\sigma \psi^2$
$\sigma \psi$	$\sigma \psi$	$\sigma \psi^3$					$\sigma \psi^3$	
$\sigma\psi^2$	$\sigma \psi^2$		$\sigma \psi^2$		$\sigma \psi^2$		$\sigma \psi^2$	
$\sigma \psi^3$	$\sigma \psi^3$	$\sigma \psi$	$\sigma \psi^3$	$\sigma \psi$	$\sigma \psi$	$\sigma \psi^3$	$\sigma \psi$	$\sigma \psi^3$

Each row is a conjugacy class of the corresponding element. Thus the distinct classes are $\{I\}$, $\{\psi, \psi^3\}$, $\{\psi^2\}$, $\{\sigma, \sigma\psi^2\}$, $\{\sigma\psi, \sigma\psi^3\}$.

- (c) Left for you.
- 8. Show that every subgroup of index 2 is a normal subgroup.

Answer:

Let $H \subset G$ and $\mathcal{O}(H) = \mathcal{O}(G)/2$. Let $u \notin H$, then Hu is a right coset which is not H and uH a left coset which is not H. Clearly Hu = uH. Since all left cosets and right cosets are equal, H must be normal.

9. Show that the dihedral group D_4 is homomorphic to the group $\mathbb{Z}_2 = \{1, -1\}$ under multiplication.

Answer:

The group D_4 is generated by $a^4 = b^2 = e$ and $bab = a^{-1} = a^3$. All elements can be written as $b^m a^n$ where m = 0, 1 and n = 0, 1, 2, 3. Define a mapping from $\phi : D_4 \to \mathbb{Z}_2$ such that

$$\phi\left(b^{m}a^{n}\right) = \left(-1\right)^{m}.$$

Check for homomorphism:

$$\begin{split} LHS &= \phi \left(b^m a^n b^l a^k \right) = \phi \left(b^{m+l} a^p \right) = (-1)^{m+l} \\ RHS &= \phi \left(b^m a^n \right) \phi \left(b^l a^k \right) = (-1)^m \left(-1 \right)^l = (-1)^{m+l} \,. \end{split}$$

Here p = n + k if l = 0 and p = 4 - n + k if l = 1.

10. Show that the group of all positive real numbers under multiplication is isomorphic to the set of real numbers under addition. (Hint: Mapping is logarithm function)

Answer:

 $G = (\mathbb{R}^+, \times)$ and $\bar{G} = (\mathbb{R}, +)$. Let $\phi : G \to \bar{G}$ such that $\phi : x \mapsto \log x$. This is a homomorphism since

$$\phi(x \times y) = \log(x \times y) = \log x + \log y = \phi(x) + \phi(y).$$

11. Construct a homomorphism of the group S_3 onto \mathbb{Z}_2 . What is the kernel of the homomorphism? Find the factor group of S_3 that is isomorphic to \mathbb{Z}_2 .

Note: The permutation group, S_n , is a group of all permutations of n symbols (which we will take as integers from 1 to n). Each element is denoted by $a = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \end{pmatrix}$ or just by $a = (a_1, \ldots, a_n)$ where a_1 to a_n are permutations of 1 to n. The product is given by $a \circ b = (a_{b_1}, a_{b_2}, \ldots, a_{b_n})$. For example:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

And
$$\mathcal{O}(S_n) = n!$$
.

Answer:

The group
$$S_3 = \{e, \psi, \psi^2, \sigma, \sigma\psi, \sigma\psi^2\}$$
, where $\psi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. It is easy to check that the mapping $\phi(\psi) = \phi(\psi) = \phi(\psi^2) = 1$ and remaining elements to -1 .

12. Let N be a normal subgroup of G. Show that G is homomorphic to G/N.

Answer:

Let,
$$G/N=\{N,aN,bN,\ldots\}$$
. Let $\phi:G\to G/N$ such that $\phi(g)=gN$. Check that

$$LHS = \phi(g_1g_2) = g_1g_2N$$

$$RHS = \phi(g_1) \phi(g_2) = (g_1N)(g_2N) = g_1g_2N$$