On Tackling the Limits of Resolution in SAT Solving

Alexey Ignatiev^{1,2}, Antonio Morgado¹, and Joao Marques-Silva¹

August 29, 2017

¹ LASIGE, FC, University of Lisbon, Portugal

² ISDCT SB RAS, Irkutsk, Russia

Definitions

Resolution

CDCL SAT solvers use resolution:

CDCL SAT solvers use resolution:

$$\frac{X \vee A \qquad \neg X \vee B}{A \vee B}$$

1

CDCL SAT solvers use resolution:

$$\frac{X \lor A \qquad \neg X \lor B}{A \lor B}$$

1

m + 1 pigeons by m holes

m + 1 pigeons by m holes

∃ hole with > 1 pigeons

m + 1 pigeons by m holes

∃ hole with > 1 pigeons

CNF formulation:

 $x_{ij} = true \Leftrightarrow pigeon i is at hole j$

$$m + 1$$
 pigeons by m holes

∃ hole with > 1 pigeons

CNF formulation:

 $x_{ij} = true \Leftrightarrow pigeon i is at hole j$

$$\bigwedge_{i=1}^{m+1} \mathsf{AtLeast1}(x_{i1},\ldots,x_{im}) \ \land \ \bigwedge_{j=1}^{m} \mathsf{AtMost1}(x_{1j},\ldots,x_{m+1,j})$$

m + 1 pigeons by m holes

∃ hole with > 1 pigeons

CNF formulation:

 $x_{ij} = true \Leftrightarrow pigeon i is at hole j$

$$\bigwedge_{i=1}^{m+1} AtLeast1(x_{i1}, \dots, x_{im}) \wedge \bigwedge_{j=1}^{m} AtMost1(x_{1j}, \dots, x_{m+1,j})$$

hard for resolution!

(A. Haken. The intractability of resolution. TCS, 39:297–308, 1985.)

given
$$\mathcal{F} = \mathcal{H} \wedge \mathcal{S} \models \bot$$
,

given
$$\mathcal{F}=\mathcal{H}\wedge\mathcal{S}\models\bot$$
, satisfy \mathcal{H} and maximize $\sum_{c\in\mathcal{S}} weight(c)$

given
$$\mathcal{F} = \mathcal{H} \wedge \mathcal{S} \models \bot$$
, satisfy \mathcal{H} and maximize $\sum_{c \in \mathcal{S}} weight(c)$

$$\mathcal{H} = (\neg x \vee \neg y, \top) \quad (\neg x \vee \neg z, \top) \quad (\neg y \vee \neg z, \top)$$

$$\mathcal{S} = (x, 10) \quad (y, 20) \quad (z, 40)$$

3

given
$$\mathcal{F} = \mathcal{H} \wedge \mathcal{S} \models \bot$$
, satisfy \mathcal{H} and maximize $\sum_{c \in \mathcal{S}} weight(c)$

$$\mathcal{H} = (\neg x \lor \neg y, \top) (\neg x \lor \neg z, \top) (\neg y \lor \neg z, \top)$$

$$\mathcal{S} = (x, 10) (y, 20) (z, 40)$$

given
$$\mathcal{F} = \mathcal{H} \wedge \mathcal{S} \models \bot$$
, satisfy \mathcal{H} and maximize $\sum_{c \in \mathcal{S}} weight(c)$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \quad (\neg x \lor \neg z, \top) \quad (\neg y \lor \neg z, \top)$$

$$\mathcal{S} = (x, 10) \quad (y, 20) \quad (z, 40)$$

given
$$\mathcal{F} = \mathcal{H} \wedge \mathcal{S} \models \bot$$
, satisfy \mathcal{H} and maximize $\sum_{c \in \mathcal{S}} weight(c)$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \quad (\neg x \lor \neg z, \top) \quad (\neg y \lor \neg z, \top)$$

$$\mathcal{S} = (x, 10) \quad (y, 20) \quad (z, 40)$$

given
$$\mathcal{F} = \mathcal{H} \wedge \mathcal{S} \models \bot$$
, satisfy \mathcal{H} and maximize $\sum_{c \in \mathcal{S}} weight(c)$

$$\mathcal{H} = (\neg x \vee \neg y, \top) \quad (\neg x \vee \neg z, \top) \quad (\neg y \vee \neg z, \top)$$

$$\mathcal{S} = (x, 10) \quad (y, 20) \quad (z, 40)$$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \quad (\neg x \lor \neg z, \top) \quad (\neg y \lor \neg z, \top)$$

$$\mathcal{S} = (x, 10) \quad (y, 20) \quad (z, 40)$$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \qquad (\neg x \lor \neg z, \top) \qquad (\neg y \lor \neg z, \top)$$

$$\mathcal{S} = (x, 1) \qquad (y, 1) \qquad (z, 1)$$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \qquad (\neg x \lor \neg z, \top) \qquad (\neg y \lor \neg z, \top)$$

$$\mathcal{S} = (x, 1) \qquad (y, 1) \qquad (z, 1)$$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \qquad (\neg x \lor \neg z, \top) \qquad (\neg y \lor \neg z, \top)$$

$$(r_1 + r_2 \leqslant 1, \top)$$

$$S = (x, 1) \qquad (y, 1) \qquad (z, 1)$$

$$(x \lor r_1, 1) \qquad (y \lor r_2, 1)$$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \qquad (\neg x \lor \neg z, \top) \qquad (\neg y \lor \neg z, \top)$$

$$(r_1 + r_2 \leqslant 1, \top)$$

$$S = (x, \top) \qquad (y, \top) \qquad (z, 1)$$

$$(x \lor r_1, 1) \qquad (y \lor r_2, 1)$$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \qquad (\neg x \lor \neg z, \top) \qquad (\neg y \lor \neg z, \top)$$

$$\underbrace{(r_1 + r_2 \lor 1, \top)}_{(r_1 + r_2 + r_3} \leqslant 2, \top)$$

$$\mathcal{S} = (x, \top) \qquad (y \lor r_2, 1)$$

$$(z \lor r_3, 1)$$

$$\mathcal{H} = (\neg x \lor \neg y, \top) \qquad (\neg x \lor \neg z, \top) \qquad (\neg y \lor \neg z, \top)$$

$$S = (x, \top) \qquad (x \lor r_1, 1) \qquad (y \lor r_2, 1)$$

$$(z \lor r_3, 1)$$

4

$$\mathcal{H} = (\neg x \lor \neg y, \top) \qquad (\neg x \lor \neg z, \top) \qquad (\neg y \lor \neg z, \top)$$

$$S = (x, \top) \qquad (y, \top) \qquad (z, \top)$$

$$(x \lor r_1, 1) \qquad (y \lor r_2, 1)$$

$$Cost = 2$$

4

Approach

Approach

- 1 input: F
- 2 $\mathsf{HEnc}(\mathfrak{F}) = \langle \mathfrak{H}, \mathfrak{S} \rangle \leftarrow \mathsf{DualRailEncode}(\mathfrak{F})$
- $3 cost \leftarrow ApplyMaxSAT(HEnc(\mathcal{F}))$

Approach

```
1 input: F
2 \mathsf{HEnc}(\mathfrak{F}) = \langle \mathfrak{H}, \mathfrak{S} \rangle \leftarrow \mathsf{DualRailEncode}(\mathfrak{F})
3 \operatorname{cost} \leftarrow \operatorname{ApplyMaxSAT}(\operatorname{HEnc}(\mathfrak{F}))
4 if cost \leq |var(\mathcal{F})|:
   return true
6 else:
7 return false
```

$$\forall x_i \in \text{var}(\mathcal{F})$$

$$\forall x_i \in \text{var}(\mathfrak{F}) \qquad \qquad \qquad \left\{ \begin{array}{l} (p_i, 1) \\ (n_i, 1) \\ (\neg p_i \lor \neg n_i, \top) \end{array} \right.$$

$$\forall x_i \in \text{var}(\mathcal{F}) \qquad \qquad \qquad \left\{ \begin{array}{l} (p_i, 1) \\ (n_i, 1) \\ (\neg p_i \lor \neg n_i, \top) \end{array} \right.$$

$$\forall c_i \in \mathcal{F},$$

$$c_i = (l_{i1} \vee \ldots \vee l_{ik_i})$$

$$\forall x_i \in \text{var}(\mathcal{F}) \qquad \qquad \qquad \left\{ \begin{array}{l} (p_i, 1) \\ (n_i, 1) \\ (\neg p_i \lor \neg n_i, \top) \end{array} \right.$$

$$\forall c_i \in \mathcal{F},$$
 $c_i = (l_{i1} \vee \ldots \vee l_{ik_i})$

$$\begin{cases} (\neg y_{i1} \lor \dots \lor \neg y_{ik_i}, \top) \text{ s.t.} \\ y_{ij} \leftarrow p_{ij} \text{ if } l_{ij} = \neg x_{ij} \\ y_{ij} \leftarrow n_{ij} \text{ if } l_{ij} = x_{ij} \end{cases}$$

$$\forall x_{i} \in \text{var}(\mathfrak{F})$$

$$\begin{cases}
(p_{i}, 1) \\
(n_{i}, 1) \\
(\neg p_{i} \vee \neg n_{i}, \top)
\end{cases}$$

$$\begin{cases}
(\neg y_{i1} \vee \ldots \vee \neg y_{ik_{i}}, \top) \text{ s.t.} \\
y_{ij} \leftarrow p_{ij} \text{ if } l_{ij} = \neg x_{ij} \\
y_{ij} \leftarrow n_{ij} \text{ if } l_{ij} = x_{ij}
\end{cases}$$

Horn MaxSAT formula!

$$\mathcal{F}$$
 $(\neg x_1 \vee \neg x_2)$ (x_2)

$$\mathcal{F} \qquad (\neg x_1 \lor \neg x_2) \quad (x_2)$$

$$\mathcal{F} \qquad (p_1, 1) \quad (n_1, 1) \quad (p_2, 1) \quad (n_2, 1)$$

$$\mathcal{F} \qquad (\neg p_1 \lor \neg n_1, \top) \quad (\neg p_2 \lor \neg n_2, \top)$$

$$\mathfrak{F} \qquad (\neg x_1 \vee \neg x_2) \quad (x_2)$$

$$\mathfrak{S} \qquad (p_1, 1) \quad (n_1, 1) \quad (p_2, 1) \quad (n_2, 1)$$

$$\mathfrak{P} \qquad (\neg p_1 \vee \neg n_1, \top) \quad (\neg p_2 \vee \neg n_2, \top)$$

$$\mathfrak{H} \qquad (\neg p_1 \vee \neg p_2, \top) \quad (\neg n_2, \top)$$

$$\mathcal{F} \qquad (\neg x_1 \vee \neg x_2) \quad (x_2)$$

$$\mathbb{S} \qquad (p_1, 1) \quad (n_1, 1) \quad (p_2, 1) \quad (n_2, 1)$$

$$\mathcal{P} \qquad (\neg p_1 \vee \neg n_1, \top) \quad (\neg p_2 \vee \neg n_2, \top)$$

$$\mathcal{H} \qquad (\neg p_1 \vee \neg p_2, \top) \quad (\neg n_2, \top)$$

$$\mathcal{F} \qquad (\neg x_{1} \vee \neg x_{2}) \quad (x_{2})$$

$$\mathcal{S} \qquad (p_{1}, 1) \quad (n_{1}, 1) \quad (p_{2}, 1) \quad (n_{2}, 1)$$

$$\mathcal{P} \qquad (\neg p_{1} \vee \neg n_{1}, \top) \quad (\neg p_{2} \vee \neg n_{2}, \top)$$

$$\mathcal{H} \qquad (\neg p_{1} \vee \neg p_{2}, \top) \quad (\neg n_{2}, \top)$$

$$\mathfrak{F} \qquad (\neg x_1 \vee \neg x_2) \quad (x_2)$$

$$\mathfrak{S} \qquad (p_1,1) \quad (n_1,1) \quad (p_2,1) \quad (n_2,1)$$

$$\mathfrak{P} \qquad (\neg p_1 \vee \neg n_1, \top) \quad (\neg p_2 \vee \neg n_2, \top)$$

$$\mathfrak{H} \qquad (\neg p_1 \vee \neg p_2, \top) \quad (\neg n_2, \top)$$

$$\mathsf{Cost} = 2$$

$$(\mathfrak{F} \text{ is satisfiable})$$

$$\mathcal{F} (x_1) (\neg x_1 \lor \neg x_2) (x_2)$$

$$\mathcal{F} (x_1) (\neg x_1 \lor \neg x_2) (x_2)$$

$$\mathcal{F} (p_1, 1) (n_1, 1) (p_2, 1) (n_2, 1)$$

$$\mathcal{F} (\neg p_1 \lor \neg n_1, \top) (\neg p_2 \lor \neg n_2, \top)$$

$$\mathcal{H} (\neg p_1 \lor \neg p_2, \top) (\neg n_2, \top)$$

$$\mathcal{F} \quad (x_1) \quad (\neg x_1 \vee \neg x_2) \quad (x_2)$$

$$\mathcal{F}$$

$$\mathcal{F} \quad (p_1, 1) \quad (n_1, 1) \quad (p_2, 1) \quad (n_2, 1)$$

$$\mathcal{F} \quad (\neg p_1 \vee \neg n_1, \top) \quad (\neg p_2 \vee \neg n_2, \top)$$

$$\mathcal{H} \quad (\neg n_1, \top) \quad (\neg p_1 \vee \neg p_2, \top) \quad (\neg n_2, \top)$$

$$\mathcal{F} (x_1) (\neg x_1 \vee \neg x_2) (x_2)$$

$$\mathbb{S} (p_1, 1) (n_1, 1) (p_2, 1) (n_2, 1)$$

$$\mathcal{P} (\neg p_1 \vee \neg n_1, \top) (\neg p_2 \vee \neg n_2, \top)$$

$$\mathcal{H} (\neg n_1, \top) (\neg p_1 \vee \neg p_2, \top) (\neg n_2, \top)$$

$$cost = 3$$
 (\mathcal{F} is unsatisfiable)

$$X_{ij}$$
, $1 \le i \le m+1$
 $1 \le j \le m$ $m \cdot (m+1)$ vars

 n_{ii} and p_{ii}

$$\mathsf{HEnc}(\mathsf{PHP}_m^{m+1}) \triangleq \langle \mathfrak{H}, \mathcal{S} \rangle = \left\langle \bigwedge_{i=1}^{m+1} \mathcal{L}_i \wedge \bigwedge_{j=1}^m \mathfrak{M}_j \wedge \mathfrak{P}, \mathcal{S} \right\rangle$$

- 1. assume MSU3 algorithm
 - analyze disjoint sets separately

- 1. assume MSU3 algorithm
 - analyze disjoint sets separately
- 2. relate soft clauses with each \mathcal{L}_i and \mathcal{M}_i
 - \cdot each constraint disjoint from the others but not from ${\mathfrak P}$

- 1. assume MSU3 algorithm
 - analyze disjoint sets separately
- 2. relate soft clauses with each \mathcal{L}_i and \mathcal{M}_i
 - each constraint disjoint from the others but not from $\mathcal P$
- 3. derive large enough lower bound on # of falsified clauses:

- 1. assume MSU3 algorithm
 - analyze disjoint sets separately
- 2. relate soft clauses with each \mathcal{L}_i and \mathcal{M}_i
 - each constraint disjoint from the others but not from \mathcal{P}
- 3. derive large enough lower bound on # of falsified clauses:

Constr. type	# falsified cls	# constr	in total
\mathcal{L}_{i}	1	$i=1,\ldots,m+1$	m + 1
\mathfrak{M}_{j}	m	$j=1,\ldots,m$	m · m
			$m \cdot (m+1) + 1$

- 1. assume MSU3 algorithm
 - analyze disjoint sets separately
- 2. relate soft clauses with each \mathcal{L}_i and \mathcal{M}_i
 - each constraint disjoint from the others but not from \mathcal{P}
- 3. derive large enough lower bound on # of falsified clauses:

Constr. type	# falsified cls	# constr	in total
\mathcal{L}_{i}	1	$i=1,\ldots,m+1$	m + 1
\mathfrak{M}_{j}	m	$j=1,\ldots,m$	m · m
			$m \cdot (m+1) + 1$

4. each lower bound increase — by unit propagation

Constraint	Hard clause(s)	Soft clause(s)	Relaxed clauses	Updated AtMost <i>k</i> Constraints	LB increase
\mathcal{L}_i	$(\neg n_{i1} \lor \ldots \lor \neg n_{im})$	$(n_{i1}),\ldots,(n_{im})$	$(r_{il} \vee n_{il}),$ $1 \leqslant l \leqslant m$	$\sum_{l=1}^{m} r_{il} \leqslant 1$	1
	$(\neg p_{1j} \lor \neg p_{2j})$	$(p_{1j}), (p_{2j})$	$(r_{1j} \vee p_{1j}), (r_{2j} \vee p_{2j})$	$\sum_{l=1}^{2} r_{lj} \leqslant 1$	1
\mathfrak{M}_j	$(\neg p_{1j} \lor \neg p_{3j}), (\neg p_{2j} \lor \neg p_{3j}), (r_{1j} \lor p_{1j}), (r_{2j} \lor p_{2j}), \sum_{l=1}^{2} r_{lj} \leqslant 1$	(p_{3j})	$(r_{3j} \vee p_{3j})$	$\sum_{l=1}^{3} r_{lj} \leqslant 2$	1
		(1	m — 3 times)		
	$(\neg p_{1j} \lor \neg p_{m+1j}), \dots,$ $(\neg p_{mj} \lor \neg p_{m+1j}),$ $(r_{1j} \lor p_{1j}), \dots,$ $(r_{mj} \lor p_{mj}),$ $\sum_{l=1}^{m} r_{lj} \leqslant m-1$	(p_{m+1j})	$(r_{m+1j} \vee p_{m+1j})$	$\sum_{l=1}^{m+1} r_{lj} \leqslant m$	1

Constraint	Hard clause(s)	Soft clause(s)	Relaxed clauses	Updated AtMost <i>k</i> Constraints	LB increase
\mathcal{L}_{i}	$(\neg n_{i1} \lor \ldots \lor \neg n_{im})$	$(n_{i1}),\ldots,(n_{im})$	$(r_{il} \lor n_{il}),$ $1 \leqslant l \leqslant m$	$\sum_{l=1}^{m} r_{il} \leqslant 1$	1

Constraint	Hard clause(s)	Soft clause(s)	Relaxed clauses	Updated AtMost <i>k</i> Constraints	LB increase
\mathcal{L}_i	$(\neg n_{i1} \lor \ldots \lor \neg n_{im})$	$(n_{i1}),\ldots,(n_{im})$	$(r_{il} \vee n_{il}),$ $1 \leqslant l \leqslant m$	$\sum_{l=1}^{m} r_{il} \leqslant 1$	1
	$(\neg p_{1j} \lor \neg p_{2j})$	$(p_{1j}), (p_{2j})$	$(r_{1j} \vee p_{1j}),$ $(r_{2j} \vee p_{2j})$	$\sum_{l=1}^{2} r_{lj} \leqslant 1$	1

 \mathcal{M}_j

Constraint	Hard clause(s)	Soft clause(s)	Relaxed clauses	Updated AtMost <i>k</i> Constraints	LB increase
\mathcal{L}_i	$(\neg n_{i1} \lor \ldots \lor \neg n_{im})$	$(n_{i1}),\ldots,(n_{im})$	$(r_{il} \vee n_{il}),$ $1 \leqslant l \leqslant m$	$\sum_{l=1}^{m} r_{il} \leqslant 1$	1
	$(\neg p_{1j} \lor \neg p_{2j})$	$(p_{1j}), (p_{2j})$	$(r_{1j} \vee p_{1j}), (r_{2j} \vee p_{2j})$	$\sum_{l=1}^{2} r_{lj} \leqslant 1$	1
\mathfrak{M}_j	$ \begin{array}{l} (\neg p_{1j} \lor \neg p_{3j}), \\ (\neg p_{2j} \lor \neg p_{3j}), \\ (r_{1j} \lor p_{1j}), \\ (r_{2j} \lor p_{2j}), \\ \sum_{l=1}^{2} r_{lj} \leqslant 1 \end{array} $	(p_{3j})	$(r_{3j} \vee p_{3j})$	$\sum_{l=1}^{3} r_{lj} \leqslant 2$	1

Constraint	Hard clause(s)	Soft clause(s)	Relaxed clauses	Updated AtMost <i>k</i> Constraints	LB increase
\mathcal{L}_i	$(\neg n_{i1} \lor \ldots \lor \neg n_{im})$	$(n_{i1}),\ldots,(n_{im})$	$(r_{il} \vee n_{il}),$ $1 \leq l \leq m$	$\sum_{l=1}^{m} r_{il} \leqslant 1$	1
	$(\neg p_{1j} \lor \neg p_{2j})$	$(p_{1j}), (p_{2j})$	$(r_{1j} \vee p_{1j}), (r_{2j} \vee p_{2j})$	$\sum_{l=1}^{2} r_{lj} \leqslant 1$	1
\mathfrak{M}_j	$(\neg p_{1j} \lor \neg p_{3j}),$ $(\neg p_{2j} \lor \neg p_{3j}),$ $(r_{1j} \lor p_{1j}),$ $(r_{2j} \lor p_{2j}),$ $\sum_{l=1}^{2} r_{lj} \leqslant 1$	(p_{3j})	$(r_{3j} \vee p_{3j})$	$\sum_{l=1}^{3} r_{lj} \leqslant 2$	1
_		,	- · · · · · · · · · · · · · · · · · · ·		

 \cdots (m-3 times)

Constraint	Hard clause(s)	Soft clause(s)	Relaxed clauses	Updated AtMost <i>k</i> Constraints	LB increase
\mathcal{L}_i	$(\neg n_{i1} \lor \ldots \lor \neg n_{im})$	$(n_{i1}),\ldots,(n_{im})$	$(r_{il} \vee n_{il}),$ $1 \leqslant l \leqslant m$	$\sum_{l=1}^{m} r_{il} \leqslant 1$	1
	$(\neg p_{1j} \vee \neg p_{2j})$	$(p_{1j}), (p_{2j})$	$(r_{1j} \vee p_{1j}), (r_{2j} \vee p_{2j})$	$\sum_{l=1}^{2} r_{lj} \leqslant 1$	1
\mathfrak{M}_j	$ \begin{array}{l} (\neg p_{1j} \lor \neg p_{3j}), \\ (\neg p_{2j} \lor \neg p_{3j}), \\ (r_{1j} \lor p_{1j}), \\ (r_{2j} \lor p_{2j}), \\ \sum_{l=1}^{2} r_{lj} \leqslant 1 \end{array} $	(p_{3j})	$(r_{3j} \vee p_{3j})$	$\sum_{l=1}^{3} r_{lj} \leqslant 2$	1
		(1	m — 3 times)		
	$(\neg p_{1j} \lor \neg p_{m+1j}), \dots, (\neg p_{mj} \lor \neg p_{m+1j}), (r_{1j} \lor p_{1j}), \dots, (r_{mj} \lor p_{mj}), \sum_{l=1}^{m} r_{lj} \leqslant m-1$	(p_{m+1j})	$(r_{m+1j}\vee p_{m+1j})$	$\sum_{l=1}^{m+1} r_{lj} \leqslant m$	1

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \vee \neg p_{k+1j}), \ldots, (\neg p_{kj} \vee \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^{k} r_{lj} \leqslant k-1\right) \vdash_{1} \bot$

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \lor \neg p_{k+1j}), \ldots, (\neg p_{kj} \lor \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(ρ_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \vee \neg p_{k+1j}), \ldots, (\neg p_{kj} \vee \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \vee \neg p_{k+1j}), \ldots, (\neg p_{kj} \vee \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(ρ_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \vee \neg p_{k+1j}), \ldots, (\neg p_{kj} \vee \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(ρ_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \vee \neg p_{k+1j}), \ldots, (\neg p_{kj} \vee \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(ρ_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \vee \neg p_{k+1j}), \ldots, (\neg p_{kj} \vee \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \lor \neg p_{k+1j}), \ldots, (\neg p_{kj} \lor \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \lor \neg p_{k+1j}), \ldots, (\neg p_{kj} \lor \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^k r_{lj} \leqslant k-1\right) \vdash_1 \bot$

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \lor \neg p_{k+1j}), \ldots, (\neg p_{kj} \lor \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^{k} r_{lj} \leqslant k - 1\right) \vdash_{1} \bot$

· Key points:

• for each \mathcal{L}_i , UP raises LB by 1

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j} = 1$
$(\neg p_{1j} \lor \neg p_{k+1j}), \ldots, (\neg p_{kj} \lor \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^{k} r_{lj} \leqslant k - 1\right) \vdash_{1} \bot$

· Key points:

- for each \mathcal{L}_i , UP raises LB by 1
- for each \mathfrak{M}_i , UP raises LB by m

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j}=1$
$(\neg p_{1j} \lor \neg p_{k+1j}), \ldots, (\neg p_{kj} \lor \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^{k} r_{lj} \leqslant k - 1\right) \vdash_{1} \bot$

· Key points:

- for each \mathcal{L}_i , UP raises LB by 1
- for each \mathcal{M}_j , UP raises LB by m
- in total, UP raises LB by $m \cdot (m+1) + 1$

Clauses	Unit Propagation
(p_{k+1j})	$p_{k+1j} = 1$
$(\neg p_{1j} \lor \neg p_{k+1j}), \ldots, (\neg p_{kj} \lor \neg p_{k+1j})$	$p_{1j}=\ldots=p_{kj}=0$
$(r_{1j} \vee p_{1j}), \ldots, (r_{kj} \vee p_{kj})$	$r_{1j}=\ldots=r_{kj}=1$
$\sum_{l=1}^{k} r_{lj} \leqslant k - 1$	$\left(\sum_{l=1}^{k} r_{lj} \leqslant k - 1\right) \vdash_{1} \bot$

· Key points:

- for each \mathcal{L}_i , UP raises LB by 1
- for each \mathfrak{M}_{j} , UP raises LB by m
- in total, UP raises LB by $m \cdot (m+1) + 1$
- PHP_m^{m+1} is unsatisfiable

Short MaxSAT proof for PHP

short DRE+MaxSAT-resolution proof

see the paper!

Experimental results

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
 - 5. MaxRes (Eva)

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
 - 5. MaxRes (*Eva*)
 - 6. MIP (CPLEX)

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
 - 5. MaxRes (Eva)
 - 6. MIP (CPLEX)
 - 7. OPB (cdcl-cuttingplanes, Sat4j)

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
 - 5. MaxRes (Eva)
 - 6. MIP (CPLEX)
 - 7. OPB (cdcl-cuttingplanes, Sat4j)
 - 8. BDD (ZRes)

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
 - 5. MaxRes (Eva)
 - 6. MIP (CPLEX)
 - 7. OPB (cdcl-cuttingplanes, Sat4j)
 - 8. BDD (ZRes)
- · Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
 - 5. MaxRes (Eva)
 - 6. MIP (CPLEX)
 - 7. OPB (cdcl-cuttingplanes, Sat4j)
 - 8. BDD (ZRes)
- Machine configuration:
 - · Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux

- · approaches tested:
 - 1. SAT (MiniSat 2.2, Glucose 3.0)
 - 2. SAT+ (lingeling, CryptoMiniSat)
 - 3. IHS MaxSAT (MaxHS, LMHS)
 - 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
 - 5. MaxRes (Eva)
 - 6. MIP (CPLEX)
 - 7. OPB (cdcl-cuttingplanes, Sat4j)
 - 8. BDD (ZRes)
- · Machine configuration:
 - · Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux
 - · 1800s timeout

· approaches tested:

- 1. SAT (MiniSat 2.2, Glucose 3.0)
- 2. SAT+ (lingeling, CryptoMiniSat)
- 3. IHS MaxSAT (MaxHS, LMHS)
- 4. CG MaxSAT (MSCG, OpenWBO16, WPM3)
- 5. MaxRes (Eva)
- 6. MIP (CPLEX)
- 7. OPB (cdcl-cuttingplanes, Sat4j)
- 8. BDD (ZRes)

Machine configuration:

- · Intel Xeon E5-2630 2.60GHz with 64GByte RAM
- · running Ubuntu Linux
- · 1800s timeout
- 10GByte memout

- · benchmarks:
 - 1. PHP (pigeonhole principle):
 - PHP_m^{m+1} , $m \in \{4, ..., 100\}$
 - pairwise 46 instances
 - sequential counter 46 instances

¹P. Chatalic and L. Simon. Multiresolution for SAT checking. *International Journal on Artificial Intelligence Tools*, 10(4):451–481, 2001.

- · benchmarks:
 - 1. PHP (pigeonhole principle):
 - PHP_m^{m+1} , $m \in \{4, ..., 100\}$
 - pairwise 46 instances
 - sequential counter 46 instances
 - 2. URQ (Urquhart formulas¹):
 - URQ_{n,i}, $n \in \{3, ..., 30\}, i \in \{1, 2, 3\}$
 - 84 instances

¹P. Chatalic and L. Simon. Multiresolution for SAT checking. *International Journal on Artificial Intelligence Tools*, 10(4):451–481, 2001.

- · benchmarks:
 - 1. PHP (pigeonhole principle):
 - PHP_m^{m+1} , $m \in \{4, ..., 100\}$
 - pairwise 46 instances
 - sequential counter 46 instances
 - 2. URQ (Urquhart formulas¹):
 - $URQ_{n,i}$, $n \in \{3, ..., 30\}$, $i \in \{1, 2, 3\}$
 - · 84 instances
 - 3. COMB (combined):
 - $PHP_m^{m+1} \lor URQ_{n,i}$, $m \in \{7, 9, 11, 13\}$, $n \in \{3, ..., 10\}$, $i \in \{1, 2, 3\}$
 - · 96 instances

¹P. Chatalic and L. Simon. Multiresolution for SAT checking. *International Journal on Artificial Intelligence Tools*, 10(4):451–481, 2001.

Performance on pigeonhole formulas

\mathcal{P} clauses can be harmful

$$(\neg p_i \lor \neg n_i, \top)$$

\mathcal{P} clauses can be harmful

$$(\neg p_i \lor \neg n_i, \top) \land (p_i, 1) \land (n_i, 1) - \text{trivial core}$$

\mathcal{P} clauses can be harmful

$$(\neg p_i \lor \neg n_i, \top) \land (p_i, 1) \land (n_i, 1) - \text{trivial core}$$

Performance on Urquhart and combined formulas

Overall performance

		glucose	lgl	lgl-no²	maxhs	lmhs	lmhs-nes	mscg	wbo	eva	lp-cnf	lp-wcnf	cc-cnf	cc-opb	zres
PHP-pw	(46)	7	29	7	46	46	29	46	10	46	46	46	6	5	10
PHP-sc	(46)	13	11	11	46	46	45	46	15	40	46	46	6	2	8
URQ	(84)	3	29	4	50	44	37	5	22	3	0	6	3	0	84
COMB	(96)	11	37	41	78	91	80	7	13	6	0	18	6	0	39
Total	(272)	34	106	63	220	227	191	104	60	95	92	116	21	7	141

 $^{^2}$ This represents lgl-nogauss for URQ and lgl-nocard for PHP-pw, PHP-sc, and COMB.

solving SAT with DRE+MaxSAT

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - · apply MaxSAT technology:
 - · core-guided reasoning
 - · MaxSAT resolution

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - apply MaxSAT technology:
 - · core-guided reasoning
 - MaxSAT resolution
 - refuting PHP in polynomial time
 - more examples (Urquhart and combined)

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - apply MaxSAT technology:
 - · core-guided reasoning
 - MaxSAT resolution
 - refuting PHP in polynomial time
 - more examples (Urquhart and combined)

more easy examples?

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - · apply MaxSAT technology:
 - · core-guided reasoning
 - · MaxSAT resolution
 - refuting PHP in polynomial time
 - more examples (Urquhart and combined)

more easy examples? any hard examples?

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - apply MaxSAT technology:
 - · core-guided reasoning
 - · MaxSAT resolution
 - refuting PHP in polynomial time
 - more examples (Urquhart and combined)

- more easy examples? any hard examples?
- similar transformations for other hard examples?

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - apply MaxSAT technology:
 - · core-guided reasoning
 - · MaxSAT resolution
 - refuting PHP in polynomial time
 - more examples (Urquhart and combined)

- more easy examples? any hard examples?
- similar transformations for other hard examples?
- integrating in a SAT solver?

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - apply MaxSAT technology:
 - · core-guided reasoning
 - · MaxSAT resolution
 - refuting PHP in polynomial time
 - more examples (Urquhart and combined)

- more easy examples? any hard examples?
- similar transformations for other hard examples?
- integrating in a SAT solver?
- relation to known proof systems (TLR/GR/ER, CP, etc.)?

- solving SAT with DRE+MaxSAT
 - · dual-rail (Horn) encoding
 - apply MaxSAT technology:
 - · core-guided reasoning
 - · MaxSAT resolution
 - refuting PHP in polynomial time
 - more examples (Urquhart and combined)

- more easy examples? any hard examples?
- similar transformations for other hard examples?
- integrating in a SAT solver?
- relation to known proof systems (TLR/GR/ER, CP, etc.)?
- why is IHS so good?

