MassiveClicks

A Massively-parallel Framework for Efficient Click Models Training

August 28, 2023

Skip Thijssen, Ana-Lucia Varbanescu, Pooya Khandel, Andrew Yates

University of Amsterdam

- 1. Users interact with **search engines**.
- 2 Clicks on search results show relevance.
- 3. Relevance assessments help improve search engines¹.

Search

Search Query \wp

- 0. Search result
- 1. Search result
- 2. Search result
- 3. Search result
- 4. Search result
- 5. Search result
- 6. Search result
- 7. Search result
- 8. Search result
- 9. Search result

¹Filip Radlinski et al. "How Does Clickthrough Data Reflect Retrieval Quality?"

- 1. Users interact with search engines.
- 2. Clicks on search results show relevance.
- 3. Relevance assessments help **improve search engines**¹.

Click

Search Query 🔎

- 0. Search result
- 1. Search result
- 2. Search result
- 3. Search result
- 4. Search result
- 5. Search result
- **6**. Search result
- 7. Search result
- . Search result
- 8. Search result
- 9. Search result

¹Filip Radlinski et al. "How Does Clickthrough Data Reflect Retrieval Quality?"

- 1. Users interact with **search engines**.
- 2. Clicks on search results show relevance.
- 3. Relevance assessments help improve search engines¹.

Improve

Search Query S

- 3. Search result <
- 1. Search result
- 2. Search result
- 0. Search result €
- 4. Search result
- 5. Search result
- 6. Search result
- 7. Search result
- 8. Search result
- 9. Search result

¹Filip Radlinski et al. "How Does Clickthrough Data Reflect Retrieval Quality?"

A click model assigns a **click probability** to a search engine result page (SERP).

- 1. A search engine logs a user's clicks on a SERP inside a *click* log.
- 2. Click models use parameters to quantify relevance.
- 3. EM-based models (for example) are used to train these parameters using data from click logs.

Click logs from real-world search engines can be very large² making training expensive.

²https://www.internetlivestats.com/google-search-statistics/

Motivation

- **Training** EM-based models is **challenging due to the size** of click logs.
- **Existing tools** like *PyClick* are sequential and slow.
- **ParClick**, though parallel, is limited to single-node multi-core systems.

Massive Clicks Motivation

A scalable multi-GPU solution to parallelize generic EM-based training algorithms for click models.

Why MassiveClicks?

- First multi-GPU, distributed click model training framework.
- Efficient GPU kernels and data-partitioning.
- Outperforms ParClick on GPUs/multi-node.

Requirements

- Scalable EM-based training.
- Efficient, multi-GPU, multi-node distributed processing.
- General, adaptable framework.

Massive Clicks Motivation

A scalable multi-GPU solution to parallelize generic EM-based training algorithms for click models.

Context

Click models supported by MassiveClicks:	Computational difficulty:
 Position-based Model (PBM) 	8 %
 Click Chain Model (CCM) 	88 %
 Dynamic Bayesian Network model (DBN) 	100 %
 User Browsing Model (UBM) 	10 %

Context

Click models supported by MassiveClicks:	Computational difficulty:
 Position-based Model (PBM) 	8 %
 Click Chain Model (CCM) 	88 %
 Dynamic Bayesian Network model (DBN) 	100 %
 User Browsing Model (UBM) 	10 %

1. Read click log.

2. Preprocess input.

3. Estimate parameters.

4. Evaluate and output results.

Partitioning and distribution

Constrain data distribution to **reduce communication** during parameter estimation. Sessions are *grouped by query*.

Constrain data distribution to **reduce communication** during parameter estimation. Sessions are *grouped by query*.

Nodes *parse sessions independently* from root, ensuring dataset size isn't limited by the root node's memory.

Difficulties:

- Similar queries grouped on same node.
- Query IDs on other nodes unknown.
- IDs are inconsistent due to gaps.
- Variable query count per node.
- Differing memory available per node.

Desirable Characteristics:

Minimize inter-node communication.

Decide session distribution across nodes by adjusting *node ranges* on a *hash ring* based on some property, i.e., number of CUDA cores.

Uniform Distribution

Property-Based Distribution

Five partitioning policies:

- Round-robin
- Maximum-Utilization
- Proportional to:
 - Available Memory
 - CUDA-core Count
 - Theoretical Peak Performance

Iterative parameter estimation

EM-based parameter estimation is divided into four phases.

EM-based parameter estimation is divided into four phases.

Programming models:

- C++ framework.
- **CUDA** for (multi) GPU execution.
- MPI for multi-node communication.

The Framework GPU Support

Dataset placement in global GPU memory.

Compute — Threads *read* parameters from *previous* iteration.

Compute — Threads *write* parameters from *current* iteration.

Update — Threads *write* parameters to *previous* iteration.

Measure performance for (up to 14) multi-GPU/multi-node configurations using **NVIDIA RTX A4000 GPUs** and 24-core **AMD EPYC 7402P CPUs** and subsets of the Yandex dataset of varying sizes (Dn = n million sessions dataset).

Report:

- **Speed-up** vs. ParClick, the **only alternative** for parallel click model training.
- Scalability for multi-GPU/multi-node setups and click logs.
- **Usability** for real-world problems.
- Kernel performance using a roofline model.

Speed-up of MassiveClicks for **PBM** and **CCM** on a single **NVIDIA RTX A4000** GPU.

Speed-up for **PBM** (left) and **CCM** (right) for different datasets and **NVIDIA RTX A4000 GPUs** compared to ParClick on an **AMD EPYC 7402P CPU** with **48 threads**.

Scalability

Scalability for PBM (left) and CCM (right) for different datasets and NVIDIA RTX A4000 GPUs compared to ParClick on an AMD EPYC 7402P CPU with 48 threads.

Scalability

Training time of MassiveClicks for **PBM** (left) and **CCM** (right) for **D10** with different number of **NVIDIA RTX A4000** GPUs per node.

Usability Evaluation

Real-world applications:

- 'Search engine'-size click logs.
- Energy consumption.

Training time (left) and **memory footprint** (right) of MassiveClicks of **PBM** for real-world datasets using 14 **NVIDIA RTX A4000** GPUs.

Training time (left) and **memory footprint** (right) of MassiveClicks of **CCM** for real-world datasets using 14 **NVIDIA RTX A4000** GPUs.

Expected **energy consumption** of MassiveClicks for **PBM** and **CCM** compared to ParClick.

Roofline model of MassiveClicks for PBM, CCM, DBN, and UBM on a single NVIDIA RTX A4000 GPU.

Roofline model of MassiveClicks for PBM, CCM, DBN, and UBM on a single NVIDIA RTX A4000 GPU.

Roofline model of MassiveClicks for PBM, CCM, DBN, and UBM on a single NVIDIA RTX A4000 GPU.

Roofline model of MassiveClicks for PBM, CCM, DBN, and UBM on a single NVIDIA RTX A4000 GPU.

Roofline model of MassiveClicks for PBM, CCM, DBN, and UBM on a single NVIDIA RTX A4000 GPU.

Conclusion and Future Directions

• **In Summary:** We introduced MassiveClicks, a tool for training EM-based click models on heterogeneous multi-GPU/multi-node setups, offering a significant performance improvement over existing solutions.

• Future Work:

- Exploring hybrid training methods.
- Transition to HIP for broader compatibility.
- **Repository:** Find the code and documentation for MassiveClicks at *github.com/skip-th/MassiveClicks* or the QR-code.

Hybrid training

Conclusion
Future work

Automatic

- Compute optimal data distribution.

Manual

- User chooses desired distribution.

Compatibility

Conclusion

Future work

The heterogeneity only extends to CUDA GPUs.

- AMD GPUs are not supported.
- Currently converting codebase to HIP using HIPify³.

³https://github.com/ROCm-Developer-Tools/HIPIFY

$$P(C_d = 1) = P(E_d = 1) \cdot P(A_d = 1)$$

A user **clicks** a search result if, and only if, they **examined** the result and were **attracted** to it.

 γ_r – rank-dependent examination parameters.

 α_{qd} – query-dependent attractiveness parameter.

$$P(C_d = 1) = P(E_d = 1) \cdot P(A_d = 1)$$

A user **clicks** a search result if, and only if, they **examined** the result and were **attracted** to it.

 τ_1, τ_2, τ_3 – document-dependent *continuation* parameters.

 α_{q_rd} – query-dependent *relevance* parameter.

30> Query-dependent parameters

Shared by All

Rank-dependent

parameters

Memory footprint of MassiveClicks for PBM and CCM on a single NVIDIA RTX A4000 GPU.

Compute — Threads *read* parameters from *previous* iteration.

Update — Threads *reduce* parameters to *current* iteration.

Update — Threads *swap* old and new parameters.

