UNCLASSIFIED

AD 41918I

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

SATALOGED BY DDC
AS AD No. 41

Title: NEUTRON CROSS SECTIONS
OF NATURAL CHLORINE

64-5

Prepared by

M. H. Kalos J. H. Ray

Date: 30 September 1963

Contract No.: DA-18-108-CML-7156 (UNC Project 2185)

419181

	UNCLASSIFIED		UNCLASSIFIED
United Nuclear Corporation, Development United Nuclear Corporation, Development Division, White Plains, N. Y. NEUTRON CROSS SEC'LIONS OF NATURAL CHLORINE Report No. UNC-5067, 30 September 1963, pp., 4 tables Contract DA-18-108-CML-7156 Complete sets of cross sections for natural chlorine are presented for the range of incident neutron energies from 0.02 to 18 Mev.	1. Neutron Cross Section. of Nat- ural Chlorine 2. Contract DA-18- 108-CML-7156	ADAccession NoUnited Nuclear Corporation, Development Division, White Plains, N. Y. NEUTRON CROSS SECTIONS OF NATURAL CHLORINE Report No. UNC-5067, 30 September 1963, pp., 4 tables Contract DA-18-108-CML-7156 Complete sets of cross sections for natural chlorine are presented for the range of incident neutron energies from 0.02 to 18 Mev.	 Neutron Cross Sections of Nat- ural Chlorine Contract DA-18- 108-CML-7156
	UNCLASSIFIED		UNCLASSIFIED
	UNCLASSIFIED		UNCLASSIFIED
United Nuclear Corporation, Development Division, White Plains, N. Y. NEUTRON CROSS SECTIONS OF NATURAL CHLORINE Report No. UNC-5067, 30 September 1963, pp., 4 tables Contract DA-18-108-CML-7156 Complete sets of cross sections for natural chlorine are presented for the range of inci- dent neutron energies from 0.02 to 18 Mev.	1. Neutron Cross Sections of Nat- ural Chlorine 2. Contract DA-18- 108-CML-7156	United Nuclear Corporation, Development Division, White Plaths, N. Y. NEUTRON CROSS SECTIONS OF NATURAL CHLORINE Report No. UNC-5067, 30 September 1963, pp., 4 tables Contract DA-18-108-CML-7156 Complete sets of cross sections for natural chlorine are presented for the range of incident neutron energies from 0.02 to 18 Mev.	 Neutron Cross Sections of Nat- ural Chlorine Contract DA-18- 108-CML-7156
	UNCLASSIFIED		UNCLASSIFIED

•

·

· ·

· ·

UNCLASSIFIED

Contractor: United Nuclear Corporation
Development Division - NDA
Contract No.: DA-18-108-CML-7156 (UNC Project 2185)

UNC-5067 TOPICAL REPORT

Title: NEUTRON CROSS SECTIONS OF NATURAL CHLORINE

Prepared by M. H. Kalos J. H. Ray

Date: 30 September 1963

Previous Reports Published on this Contract

UNC-5038 M. H. Kalos et al., Revised Cross Sections for Neutron Interactions with Oxygen and Deuterium (Aug. 31, 1962).

ABSTRACT

Complete sets of cross sections for natural chlorine are presented for the range of incident neutron energies from 0.02 ev to 18 Mev.

CONTENTS

1.	INTRODUCTION	1
	1.1 Neutron Cross Sections for Chlorine	1
	1.1.1 The Total Cross Section, $\sigma_{\mathbf{T}}$	1
	1.1.2 The (n,γ) Cross Section	10
	1.1.3 The (n,p) Cross Section	16
	1.1.4 The (n,α) Cross Section	17
	1.1.5 The (n,2n) Cross Section	17
		17
	1.1.6 The (n,n') and (n,x) Cross Sections	
	1.1.7 The (n,d) Cross Section	21
	1.1.8 The Elastic Scattering Cross Section, σ_n	21
	1.2 Angular Distribution of Elastically Scattered Neutrons	21
	1.3 Gamma Rays from Neutron Capture	21
2.	REFERENCES	27
	TABLES	
1.	Chlorine - Cross Sections as a Function of Energy	2
2.	Chlorine - Cross Sections for the Production of Inelastic	
	Neutrons	19
3.	Chlorine - Cross Sections for Gamma Ray Production	
	Following Neutron Inelastic Scattering	20
4.	Chlorine – Legendre Expansion Coefficients for the Angular	
-•	Distribution of Elastically Scattered Neutrons	23
	Did intitui of Limbianity Doublet on 110mi ond,	20

1. INTRODUCTION

The naturally occurring isotopic mixture of chlorine consists of 75.4% Cl^{35} and 24.6% Cl^{37} . The following cross sections for this mixture have been compiled for incident neutron energies from 0.02 ev to 18 Mev: σ_T , $\sigma_{n,\gamma}$, $\sigma_{n,p}$, $\sigma_{n,q}$, $\sigma_{n,d}$, $\sigma_{n,2n}$, $\sigma_{n,n'}$, $\sigma_{n,x}$, and $\sigma_{n,n}$. The data are presented in Table 1. Cross sections for production of neutrons by inelastic scattering, for production of gamma rays by inelastic scattering, and for production of gamma rays by neutron capture are given. Legendre polynomial coefficients to describe the angular distribution of elastically scattered neutrons are also given.

It should be stated here that very little information is available on neutron interactions with chlorine in the energy range above about 0.25 Mev.

1.1 NEUTRON CROSS SECTIONS FOR CHLORINE

1.1.1 The Total Cross Section, σ_T

In the energy ranges below 1100 ev and above 0.2 Mev, the total cross section was taken from BNL 325.^{1,2} From 0.2 to 0.75 Mev the data were averaged in such a way as to preserve as well as possible the shape of the data. In this averaging process the data were integrated by trapezoidal rule from the midpoint of the interval below the mesh point in question to the midpoint of the interval above it, and the integral divided by the energy range of the integration.

Table 1 — Chlorine – Cross Sections as a Function of Energy

		Table 1 -	– Cnorine	- Cross se	Chlorine — Cross Sections as a function of Energy	unction of E	nergy		
s, Mev	$\sigma_{ m T}$ barns	$\sigma_{\mathbf{n},\gamma}$	on,p mb	$\sigma^{\mathbf{u}}$	^σ n,d barns	on, an	$\sigma_{\mathbf{n_j}\mathbf{n'}}$	^σ n,x barns	$\sigma_{ m n}$ barns
80		0	ę	•	.151	~	• 104	• 00	1.000
7	•	_	ċ	-	.154	•	.707	1.000	1.010
•	•		6	Š	.151	Š	.710	1.000	1.010
5.	•		6	7	• 146	2	•716	1.000	1.010
4.	•			04.	•136		•720	1.000	1.000
4.0	•		÷	07.	• 130	•	•724	1.000	086*
3.	•		6	14.	• 109	3•0	• 735	1.000	096•
12.7	1.97		45.7	122.5	•088	1.4	.742	1.000	026.
2.	•		3.	30.	• 062	0.	•755	1.000	046.
-	•		8	39.	•030	_	.773	1.000	•950
ô			9	46.	000		.788	1.000	1.000
ċ	•		6	53.			• 804	1.030	1.020
8			1.	60.			•829	1.070	1,030
4	•		9	65.			•856	1.110	1.090
6.	•			• 69		_	*89	1.160	1.100
5	•		01.	71.			.923	1,195	1.125
	•		04.	72.		_	* 944	1.220	1.160
٠,7	•		05.	71.			416	1.250	1.170
6 3	•		05.	9.			• 995	1.270	1.220
6•	•		05.	67.			1.008	1.280	1.270
•	•		05.	63.			1.002	1.270	1.330
	•		5.	57.			866*	1.260	1.380
ပ္	•		05.	50.			•975	1.230	1.450
۲.	•		05.	42.		·-	.948	1.195	1.505
4	•		05.	31.	_		•924	1.160	1.560
7	•		05.	12.			•893	1.110	1.630
6	•		05.	00			•858	1.063	1.687
•	•		05.	6		_	•836	1.030	1.770
4.	•		04.	•	_		.820	1.000	1.850
•2	•		03.	4			•803	.970	1.930
0	•		01.	.			• 784	• 932	2.018
8	•		è.	۲.	-		.767	• 903	2.107
•	•		•	æ			• 149	.873	2.197
•	•	-•	•	;			•728	.843	2.247
• 2	•	-	;	•	-	-	669•	• 806	2.294

	$\sigma_{ m n}^{ m parns}$	22222222222222222222222222222222222222
	$\overset{\sigma}{\underset{\text{barns}}{\text{n,x}}}$	
	on,n' barns	00000000044440000000000000000000000000
	on,2n mb	•
Pable 1 (Continued)	on, d	0000•
है. 1. वृत्य	u qu	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	o din din	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
·	on, y	0.000000000000000000000000000000000000
	^o T barns	20000000000000000000000000000000000000
	E, Mev	
		3

.

*Averaged over fine structure of resonance.

			TODT		וורדווומבתי				
E, Mev	$\sigma_{ m T}$	on mb	on mb	on on	on, d barns	on, 2n mb	on, n,n' berns	on,x barns	$\sigma_{\mathbf{n}}$ barns
•0233	• 560	• 450	.111	0	000	0	000	.001	.559
•0221	•670	• 200	•117					000•	•670
.0210	.740	.140	.124					000•	.740
•0200	.830	• 128	.131					000•	.830
•0100	086	.150	.138			<u>. </u>		000•	.980
E, kev									
	1.300	026	146					000•	1.300
9 ~	57.759**	798.700**	159.730**	-				.958	56.801
	-		300					•005	•638
	•	1.5	9300					•005	1.698
4	65.037**	1048.2**	201.64**	_		_		1.250	63.787
4		6.	• 200					•001	• 159
3	.861	•16	•030			-		000•	.861
. 2	•920	•11	.013					000.	•920
2	•950	60•	• 008					000•	• 950
-	066*	60 •	900•					000	066
ċ	1.02	• 10	• 005	_			_	000	1.020
•	1.06	• 13	• 005	_			-	000•	1.060
6	1.11	• 20	• 00 •					000•	1.110
64.6	1.20	• 45	* 00 *					000•	1.200
8.97	1.50	2.5	*00				<u>-</u>	•003	1.497
8.53	9.762*	92.421*	*00			_	<u> </u>	•092	0.04
8.12	• 930	06•	• 003	_				•001	,929
7.72	.975	• 30	• 003	_				000•	.975
7.34	•	• 20	• 003					000•	1.010
66.9	1.03	• 17	• 003					000•	1.030
99.9	•	• 153	• 003		·			000	1.050
6.32	•	• 146	• 003	-	-	->	->	000•	1.080
6.01	•	• 144	• 003	>	-	_	_	000•	1.090

*Averaged over fine structure of resonance. **Value at peak of resonance near tabulated energy.

	$\sigma_{ m n}$ barns	11.00 11.00 11.00 11.00 11.00 10.00
	$\sigma_{\mathbf{n,x}}$	12 0000 00
	on,n' barns	•
	on,2n	•
ntinued)	^o n,d barns	•
Table 1 — (Continued)	n, a	• •
Tab	on mp	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	$\mathop{\rm dm}\limits_{{\bf p},\gamma}$	11828 11828 11828 11828 11828 11828 11828 11828 11838
	$\sigma_{ m T}$ barns	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	E, kev	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

			Tabl	Table 1 — (Continued)	ntinued)				
E, kev	$\sigma_{\mathbf{T}}$ barns	on mp	au _o gu	on qui	on,d barns	ur qu	on, n' paring	on,x barns	σ _n barns
11.01.01.01.01.01.01.01.01.01.01.01.01.0	13.0 13.0	3.60 10122. 5.00 5.00 7.00 7.00 7.00 10.00	0000 0012.0 0046 0045 0046	•	•	•	•	11 1000 1000 1000 1000 1000 1000 1000	2
	•	0.00	7 * •	•	>	-	•	•	, † †

55.55 60 4.608 4.762 4.866 4.989 5.152 $\sigma_{
m n}$ barns $\sigma_{n,x}$.072 .078 .084 .091 on,n' 0000 n'u m dm 0 Table 1 — (Continued) $\sigma_{\mathbf{n},\mathbf{d}}$ 000 $\sigma_{\mathbf{n},\alpha}^{\sigma_{\mathbf{n},\alpha}}$ 444 800 800 800 on dum $\sigma_{
m n, \gamma}$ barns $^{\sigma}_{\mathbf{n},\gamma}$ 72. 77.5 83.5 90. $\sigma_{
m T}$ barns 55.55 56 4 . 68 4 . 95 5 . 08 5 . 25 E, kev .233 .221 .210 .200 .190 E, ev

			RT.	Table 1 — (Continued)	Oliveration				
E, ev	$\sigma_{\mathbf{T}}$ barns	$\sigma_{\mathbf{n},\gamma}$ barns	on D	on, a	^σ n,d barns	on, in	on,n' barns	on,x barns	$\sigma_{ m n}$ barns
•	0.2	.429	~	•	000	0	000	.431	8
49.5	10.50	• 450	2.20	'-	-		_	•452	0
٠	7.0	•471	ω.					•473	0.27
•	0.	044	4,					-492	0.50
•	7	010	ບັດ		_			•513	99.0
• •	• •	560	, 4		· · · · ·			• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6
	. 8	582	·					• • 0 00 0 00 0 00 0 00	2.5
	0.2	• 608	00		<u> </u>			•611	1.38
	2.2	•635	0				<u>-</u> -	•638	1.61
•	2.5	099•	7					•663	1.83
•	2 • 7	• 688	.7					169.	2.05
*	3.0	• 718	Ę.				-	•721	2.27
	3.2	• 750	4				-	•753	2.44
۰	3.4	• 780	9					• 184	2.61
.+	9.0	.810	<u> </u>					•814	2.78
•	3.7	.840	ထ					*844	2.90
å	9.0	.880	0	_			- -	•884	3.01
• (0 •	.918	٦,				_	.922	3.12
•	•	900	J .			_		400	3.64
	•	1.025	1 1) O O	• t
		•	, ,					0000	, ,
	5.0	1.100		_				1.000	- 00
'n	5.1	•	0					1.150	3.95
.	5.0	•	~					1.185	4.06
3	5.4	•	6		·	_	-	1.225	4.17
6	5.5	•	5		-			1.266	• 28
~	5.7	•	7					1.316	4.38
~	5.8	•	6			·	.	1•361	4.48
1.5	9•0	•	7					1.401	4.59
6.0	•	•	2			<u> </u>		1.441	4.65
Ö	•	1.480	4	->	-3	->	-	1.486	۲.
6	9	1,525	9	-	-	-	-	1.532	9

·

•

.

•

·

•

	$\sigma_{ m n}$ barns	14.81	14.91	14.95	15.05	15,15	15.20	15	15.28	15,32	15,35	15,39	15.44	15.49	15.53	~	15.54	15.57	15.61	15.69	15.72	15.75	15.83	15.88	15,88	15.90	15.92	15.95	15.98	15.98	15,98	15.99	16.02	16.00	16.003
	o _{n,x} barns	1.587	1.637	1.692	1.743	1.798	1.848	1.908	1.968	2.029	2.099	2.159	2.209	2.260	2.320	2.410	2.501	2.571	2.631	2.701	2.772	2 • 8 4 2	2.912	3.013	3.113	3.193	3.274	3.344	3.414	3.515	3.615	3.706	3.776	3.896	3.997
	on,n' barns	000•			_									_	_		_											-						1	>
	on, zn mb	•							-		-			_										-				_	-					-	-
Table 1 — (Continued)	^o n,d barns	000•														-				-								_			_			3	>
able 1 —	$\sigma_{\mathbf{n},\alpha}$	0•		-	_			_			-	_	•						_									_			_			-	>
I	on,p mb	•	7.10	3	3	~	6	8 15	4	8.65	8.9	9.2	5. 6	9•6	6•6	ċ	ċ	ċ	11.1	-	÷	2.	2	2.	3	3.	3.	4	4	4	5.	5.	15.9	• 9	16.8
	$\sigma_{\mathbf{n},\gamma}$ barns	1.580	1.630	•68	• 73	• 79	•84	• 90	1.96	2.02	2 0 0 9	2.15	2 • 20	2.25	2.31	2.40	5.49	2.56	2.62	5.69	2.76	2.83	2 • 90	3.00	3.10	3.18	3.26	3,33	3.40	3.50	3.60	3.69	3.76	3.88	3.98
	$\sigma_{ m T}$ barns	4.9	6.5	9.9	6.8	6.9	7.0	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8.0	8•1	8.2	8.4	8.5	8.6	8 • 7	8.9	0.6	9.1	9.2	9.3	7. 6	9.5	9.6	9.7	19.80	6.6	0.0
	E, ev	4	6	3	7	~	ě	6	9	.3	•	۲.	4	7	6•	9	4.	~	0	8	•	4	3	Ť	õ	æ	~	• 2	4		• 5	-	2.00	5	30

.

	on, x on barns	-97	15.94	15,93	15,91	15.90	15.87	740 15.	71 15.79	21 15.72	42 15.68	52 15.65	83 15.61	03 15.69	34 15.76	75 15.82	95 15.80	26 15.87	77 15.92	70 15.49	28 16.07	79 16.12	30 16.17	30 16.17	31 16.16	16.16	33 16.16	33 16.16	91 91	35 16.21	16 16.18	97 16.20	18 16.18	39 16.21	16.21
	$\sigma_{\mathbf{n,n'}}$	• 000	_									-																		-					-1
	on, m mp	0	_	-								 -		-									-			-	_								-
Continued)	^o n,d barns	000•									•••						•			-						• .				-		_			-•
Table 1 — (Continued)	on on mp	0.						-		_																						-			->
r	on du du	7.	17.8	8	• 8	9	•	20.0	ċ	21.1	•	2•	2•	3	9	•	5	5	•	·	7	8	6	°	·	31.7	· .	3	•	5.	9	^	8	÷	·
	$\int_{0}^{\sigma} \frac{n_{1} \gamma}{\text{barns}}$	60*7	4.20	•	•	4.50	4.61	4.72	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	7.40	•	•		•	•	•	•	•	•
	$\sigma_{\mathbf{T}}$ barns	0.0	0.1	1.2	0.3	0.4	0.5	20.58	9•0	0.7	0.8	6 • €	1.0	1.2	1 • 4	1.6	1.8	2.0	2.2	7.4	2•6	2 • ₿	3.0	3 • 2	3.4	3.6	ω Φ	7 • 0	₹•	5 • 5	4.6	7 • 4	5.0	5.2	5
	Е, еv	.72	.63	S		•41	* 34	. •27	2	S	6	4	6ń	4	σ	3	,	7	~	O.	9	3	9	~	•	•518 	•	•	4	\sim	C	Œ	Æ	4	088.

10.000 10.004 10	10.0 43.1
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	-
11.00	
11111111111111111111111111111111111111	
2.200000000000000000000000000000000000	
2000	
22.20 23.20 24.20 25.20 26	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2.55	
2.2996	
2.2996	
55.0003 55.0003 55.0004 55.	
2.294 152 154 155	
56.868 166.571 166.571 166.571 166.977	
66.170 166.571 166.571 166.571 166.571 166.571 166.577 166.577 166.577 166.5787 166.5787 167.	
66.571 66.973 76.973 76.975 76.977 76.977 76.078	
24.00.28.3 24.00.28.3 25.20.3 26.28.	
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
0.283 0.283 0.283 0.283 0.283 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293 1.293	
90.283 90.283 16 16 10 10 10 10 10 10 10 10 10 10	
9.283 16 9.785 16 0.287 15 11.291 15 2.296 15	
9.785 16 0.287 15 0.789 15 1.291 15 2.296 15	
0.287 15 0.789 15 1.291 15 2.296 15	
0.789 15 1.291 15 2.296 15	
1.291 15 1.794 15 2.296 15	
1.794 15 2.296 15	
2.296 15	
	->

				Table 1 -	Table 1 — (Continued)	(pa			
E, ev	$\sigma_{\mathbf{T}}$ barns	$\sigma_{\mathbf{n},\gamma}^{\sigma}$	d u du	o un qu	^o n,d barns	on,2n mb	on,n' barns	$\sigma_{\mathbf{n},\mathbf{x}}$	$\sigma_{\mathbf{n}}^{\sigma}$ barns
0518	39.30	23.3	100	0	000•	Ç	000•	23.400	15.900
0492	40.00	24.0	103.					24.103	15.897
.0468	40.50	24.7	105.					24.805	15.695
0445	41.10	25.3	198.					25.408	15.692
0424	41.60	25.9	111.					26.011	15.589
.0403	42.20	26.6	114.					26.714	15.486
0383	42.90	27.2	117.				_	27.317	15,583
4980	43.40	27.9	120					28.020	15.380
1341	43.90	28.7	123.	_				28.823	15.077
.0333	04.44	29.3	126.					29•426	14.974
• 0 3 1 4	45.00	30.1	129.					30.229	14.771
6620	45.60	31.0	133.					31.133	14.467
.C284	46.20	3].9	136.					35.036	14.164
.0270	46.80	32.8	139.					32.939	13.861
.0257	47.40	3 3 4 6	143.					33.743	13.657
•0244	48.00	34.4	146.					34.546	13.454
.0233	48.70	35.2	149.					35.349	13,351
.0221	49.50	36.0	153.			<u> </u>		36.153	13.347
•0210	50.50	36.9	158.					37.058	13,142
.0200	51.00	17.9	162.	-		-8)	38.062	12,938
•(190	51.80	38.8	166.	>	>	-	-	38.966	12.834

In the range from 1100 ev to 0.2 Mev the total cross section was computed from the resonance parameters given below, as was the value at the peak of the 405 ev resonance, shown in the tables at 403 ev.

Isotope	$\mathbf{E_0}$	Γ_n^0	$\Gamma_{\!\gamma}$	Γ_{p}	g	l	Reference
35	- 210	1.38	0.5	0.0024	5/8	0	3
35	405	0.001888	0.5	0.070	5/8	1	3
35	1100	0.000169	0.5	0.050	5/8	1	3
35	4300	0.003965	0.5	0.035	5/8	1	3
37	8700	0.536	0.5	0	1/2	0	2
35	15×10^3	0.245	0.5	0.10	1/2	0	3
35	17×10^3	0.268	0.5	0.10	1/2	0	3
_	25.5×10^{3}	1.566	0.5	0	1/2	0	2
35	27×10^3	1.065	0.5	0	1/2	0	2
_	47×10^3	1.617	0.5	0	1/2	0	2
_	55 ×10 ³	0.235	0.5	0	1/2	0	2
_	59×10^3	0.371	0.5	0	1/2	0	2
_	63×10^3	0.339	0.5	0	1/2	0	2
_	68.5×10^3	0.478	0.5	0	1/2	0	2
35	102×10^3	0.751	0.5	0	1/2	0	2
35	113×10^3	1.487	0.5	0	1/2	0	2
37	125×10^3	0.424	0.5	0	1/2	0	2
37	128×10^3	0.839	0.5	0	1/2	0	2
35	135×10^3	1.633	0.5	0	1/2	0	2
37	139×10^3	2.146	0.5	0	1/2	0	2
3 5	143×10^3	1.058	0.5	0	1/2	0	2
37	145×10^3	3.808	0.5	0	1/2	0	2
37	159×10^3	1.755	0.5	0	1/2	0	2
37	180×10^3	2.593	0.5	0	1/2	0	2
35	190×10^3	2.753	0.5	0	1/2	0	2
37	193 ×10 ³	1.480	0.5	0	1/2	0	2
35	202×10^3	6.230	0.5	0	1/2	0	2

 σ_{pot} = 1.2 b. Energies and widths are given in ev. Where isotopic assignments were made, the factor g was weighted by the isotopic abundance a in the calculations. Where there is no assignment, g was used without weighting. a (35) = 0.754, a (37) = 0.246.

1.1.2 The (n,γ) Cross Section

The radiative capture cross section was measured by Meadows and Whalen⁴ at 0.0253 ev. Their value is 34.2 barns. Popov and Shapiro,^{3,5} whose parameters we have used for the lowest few resonances, use the value from BNL 325, 33.6 b. For consistency with the resonance calcuations, we also have used 33.6 b at 0.025 ev. A 1/v line was carried through this point to 2 ev and then faired into the cross-section curve calculated from the resonance parameters, finally coinciding with that curve at about 40 ev. The calculated curve was followed up to 0.21 Mev above which a 1/E line was followed passing through 0.1 mb at about 0.3 Mev. The cross section was considered to go to zero at about 2 Mev because of competition with other reactions.

1.1.3 The (n,p) Cross Section

For neutron energies below about 18 kev, the (n,p) cross section was calculated from resonance parameters. Above this energy, we found only one measurement of $\sigma_{n,p}$ in Cl³⁵, that of Scalan and Fink⁶ at 14.8 Mev. To give an indication of the rising part of the cross section at high energies we have, therefore, adapted the curve of $\sigma_{\mathbf{n},\mathbf{p}}$ in phosphorus given in BNL 325. Phosphorus is an odd-odd nucleus, as is Cl35. In addition, the Q value for the reaction in phosphorus is not vastly different from the corresponding Q in chlorine so that the competition due to neutron emission does not lead to very different level densities. Ashby and Catron 7 give -0.7025 Mev as the Q for the (n,p) reaction in phosphorus and +0.6139 Mev in ${
m Cl}^{35}.$ Thus, the steep rise in the $\sigma_{
m n,p}$ curve in ${
m Cl}^{35}$ should appear at an energy about 1.3 Mev below that at which it appears in P. Accordingly, we have used a smoothed version of the $\sigma_{\text{n.p}}$ curve for P shifted in energy so that it rises most steeply at about 0.5 Mev and becomes flat at about 4.5 Mev, remaining so until about 8 Mev. The curve was then brought down through Scalan and Fink's point at 14.8 Mev. For inclusion in this compilation the values had, of course, to be weighted by 0.754, the abundance of Cl35 in natural Cl. In the range between 18 key and about 0.5 Mev, a 1/E curve was used which passed through 0.13 mb at 20 kev.

BNL 325^1 shows a curve of $\sigma_{n,p}$ in Cl^{37} rising sharply at about 12 MeV, and Scalan and Fink⁶ have measured this cross section at 14.8 MeV. These values are in good agreement and were included in the tabulations weighted by the abundance of Cl^{37} .

1.1.4 The (n,α) Cross Section

In the range from 3 to 4 Mev, data for the (n,α) cross section in Cl^{35} came from BNL 325. The gap between this steeply rising part of the curve and the point at 14.8 Mev measured by Scalan and Fink was bridged by a curve which rises to a peak at about 8 Mev and descends again at higher energies.

The only measurement found of $\sigma_{n,\alpha}$ in Cl^{37} is that of Scalan and Fink⁶ at 14.8 Mev. From examination of the Q values of Ashby and Catron⁷ for (n,p) and (n,α) reactions in nearby odd-odd nuclides, we concluded that the (n,α) reaction could be expected to appear about 1 Mev below the (n,p) reaction. Accordingly, we have drawn the curve for $\sigma_{n,\alpha}$ starting at about 11 Mev and passing through Scalan and Fink's point at 14.8 Mev.

1.1.5 The (n,2n) Cross Section

Scalan and Fink⁶ have measured cross sections for the (n,2n) reaction leading to the ground state of Cl^{34} and to the 32.4 minute isomer. The sum of these has been taken to be the (n,2n) cross section in Cl^{35} . Ashby and Catron⁷ give the Q value for the (n,2n) reaction in Cl^{35} as -12.5 MeV. We have taken 12.5 MeV as the threshold for the reaction and have drawn a curve through Scalan and Fink's point. The Q value for (n,2n) in Cl^{37} is -10.3 MeV, ⁷ and no measurement of $\sigma_{n,2n}$ in this isotope was found in the literature. Because of this and because Cl^{37} is also three times less abundant than Cl^{35} , we have taken $\sigma_{n,2n}$ in Cl^{35} to be $\sigma_{n,2n}$ in natural chlorine.

1.1.6 The (n,n') and (n,x) Cross Sections

No measurements of inelastic scattering of neutrons by chlorine were found. In the range from 4 to 11 MeV, values of the elastic scattering cross section were taken from the work of Longley⁸ and subtracted from values of the total cross section from BNL 325.¹ The resulting nonelastic cross section was extended to lower energies by assuming it to be equal to the (n,p) cross section at 1 Mev. It was assumed to be constant at 1 b above 11 Mev.

The Landolt-Börnstein tables show the first excited level in ${\rm Cl}^{35}$ at 1.22 Mev and that in ${\rm Cl}^{37}$ at 0.838 Mev. The spin and parity assignments, however, are insufficient to permit Hauser-Feshbach calculations of cross sections for the excitation of individual levels. We therefore have taken the total inelastic scattering cross section to be the difference between the nonelastic cross section described above and the sum of the cross sections for all of the other nonelastic reactions. In the region around 12 Mev, however, this technique led to a rise in $\sigma_{\rm n,n'}$ which we considered to be very unlikely behavior. Therefore, we led the $\sigma_{\rm n,n'}$ curve smoothly downward and ascribed that part of $\sigma_{\rm n,x}$ to the appearance of a charged particle reaction for which no measurements were available. It should be mentioned here that the use of Longley's values of $\sigma_{\rm n}$ and the BNL 325¹ values of $\sigma_{\rm T}$ gives a rising curve of $\sigma_{\rm n,x}$ in this range, making the situation worse rather than better.

Table 2 displays the cross section for inelastic scattering of neutrons from energy E to energy E'. It was calculated using a complete statistical assumption¹⁰ and the following parameters:

 $E_1 = 1.0$ Mev, energy of first level

 $E_0 = 4.0$ Mev, energy of transition to exponential density of levels

B = 1.0/Mev, level density for $E_1 \ge E \ge E_0$

a = 3.6/Mev, level density parameter for exponential distribution density = exp ($\sqrt{2aE}$) for E > E.

The spectrum of gamma rays following inelastic neutron scattering was computed using Troubetzkoy's statistical theory¹¹ as embodied in the GRAINS computer program. The same level density parameters were used as for the neutron spectrum. This spectrum is shown in Table 3.

Table 2 — Chlorine - Cross Sections for the Production of Inelastic Neutrons

 $\sigma_{n,n'}(E,E')$, barns/Mev, for E' given in Mev

				·n,n·\-,.	- ,,	-,, .	- 5.			
	$\sigma_{n,n'}$									
E, Mev	barns	0.5	1.0	1.5	2.0	3.0	4.0	6.0	8.0	10.0
,							-•-			
18.0	•704	06.02	1062	1205	1260	1257	1001	0522	0220	00003
		•0683	•1063	•1295	•1360	•1257	•1021	•0533	•0228	•00803
17.1	•707	•0728	•1110	•1341	•1404	•1301	•1025	•0516	•0209	•00672
16.3	•710	•0774	•1186	.1399	.1444	•1310	•1019	•0497	•0192	•00604
15.5	•716	•0809	.1242	•1453	•1504	•1337	•1020	•0474	•0174	•00487
14.75	•720	•0864	•1310	•1511	•1553	•1359	•1033	•0451	•0153	•00396
14.0	•724	•0883	•1372	.1583	.1596	.1376	•1022	•0431	.0135	•00398
13.3	•735	•0948	•1444	•1659	.1658	•1402	•1014	•0406	•0118	•00478
12.7	• 742	•1005	•1517	•1704	•1707	•1419	•1011	•0384	•0102	-00742
12.1	• 755	•1031	•1582	.1784	•1765	•1438	1004	•0362	•0089	•01004
11.5	•773	•1098	•1687	•1863	.1837	•1465	•1001	•0335	•0118	•01507
10.9	•788	•1170	•1761	•1942	.1886	•1475	•0982	•0307	•0182	•0
10.4	804	•1246	.1837	•2006	•1942	•1479	•0961	•0280	•0257	1
9.89	•829	•1409	•1990	•2096	•1983	•1492	• 0942	•0279	•0372	
9.41	.856	•1370	•2026	.2156	.2050	.1481	•0912	•0394	•0529	
8.95	.894	•1395	.2110	.2235	.2092	•1489	•0872	.0561	•0745	
8.51	•923	.1495	.2178	.2294	.2123	.1463	.0840	•0785	• 0	
8.10	.944	•1510	.2209	.2275	.2084	.1397	•0774	•1051	1	
7.70	.974	.1544	.2179	.2242	.2023	.1321	•0934	•1400		- 1
7.33	995	.1522	.2169	.2219	.1985	•1261	.1224	.1846		1
6.97	1.008	.1502	•2082	•2097	.1852	•1220	1542	•2319		
6.63	1.002	•1463	.1987	.1974	.1713	.1445	•1924	•0		
6.30	•998	•1337	•1823	1788	•1524	•1634	•2211	•••	i	- 1
6.00	.975	•1214	•1626	.1576	.1380	.1989	•2652	Ī	1	- 1
5.70		•1119						1		
	• 948		•1474	.1416	•1564	•2335	•3113	l l		
5.43	•924	• 1044	•1337	•1349	•1800	•2700	• 3600	1	1	l
5.16	•893	•0996	•1143	•1482	.1982	•2869	•3964	í	- 1	
4.91	.850	•0886	•1016	•1655	•2203	.3315	•0	ı	l	
4.67	•836	•0711	•1212	•1822	•2430	.3647	ı		1	- 1
4.44	-820	•0686	•1378	•2075	• 2604	•3905		ı	i	1
4.23	•803	•0779	•1555	•2345	•3120	•4590	1	i		1
4.02	•784	•0847	•1693	• 2532	•3371	•5057	ł		ŀ	i
3.82	•767	•0964	•1929	•2893	.3858	•0.	i	ł	1	
3.64	• 749	•1075	•2149	•3224	•4299	ļ		Į.	1	ŀ
3.46	•728	•1203	•2406	•3609	•4812	1		i	1	
3.29	•699	•1333	•2666	•3999	•5332		Ē		ŀ	
3.13	•674	•1486	•2971	•4457	•5942				j j	i
2.97	• 649	•1672	•3345	•5017	•0,		i	ŀ	İ	1
2.83	•625	.1866	.3733	•5599	1			Į.	ļ	
2.69	•597	•2090	.4181	•6271	1			1	ı	į į
2.56	•578	•2375	•4750	•7125	1	ı	1	1	ł	
2.44	•561	.2705	•5411	• 0	ì	į.		- 1		
2.32	• 540	•3099	-6198	1	1		1	1	l	i
2.21	•518	.3538	.7076	- 1		1	į.	l	l	i
2.10	.492	•4066	.8132	1	ľ			1	- 1	1
2.00	•464	•4640	•0 .		- 1		- 1	- 1		ı
1.90	•430	•5309	١ ٠		ĺ		ŀ	!	- 1	1
			1	1	- 1			İ		İ
1.81	• 393	•5990	1	1	1	1		l	İ	
1.72	• 354	•6829	1						i	l
1.63	• 335	.8440	1	.1.			1	1	1	1
1.55	• 314	1.0380	T	¥	Y	Y	Y	T	4	Y
1.48	• 294	•0	▼	•	•	•	•	•	•	•

Table 3 — Chlorine – Cross Sections for Gamma Ray Production Following Neutron Inelastic Scattering

 $\sigma_{n,n'\gamma}(E,E_{\gamma})$, barns, for E_{γ} between Group Boundaries, given in Mev

		11911	, , .	,	, ,		•		•	•	
	$\sigma_{\mathbf{n},\mathbf{n}'}$										
E, Mev	barns	05	.5-1.	11.5	1.5-2.	2 3.	34.	46.	6. -8.	810.	1018
18.0	• 704	•001	.014	.134	-115	•210	•206	•425	• 346	• 208	•172
17.1	•707	•001	•014	.134	•115	•206	•198	•404	•326	•195	•163
16.3	•710	•001	.014	.134	•114	•202 •198	•191 •184	• 384 • 364	•307 •289	•185 •177	•156 •149
15•5	•716	•001	.014	.134	.114		•176				
14.75 14.0	•720 •724	•001	•013 •013	•135 •135	•113 •112	•194 •189	•167	•343 •321	•272 •258	•173 •172	•139 •127
13.3	•735	•001 •001	•013	.136	•112	.186	•160	•304	•250	•176	•109
12.7	.742	•001	.013	.137	.112	.182	•153	•289	• 246	.179	•090
12.1	.755	•001	.013	.140	.113	.181	•147	•277	• 248	-180	•069
11.5	.773	•001	.014	.143	•114	.179	•142	• 270	•256	•177	•046
10.9	788	•001	•014	.146	•116	.178	•138	•267	•265	•165	•023
10.4	•804	•001	.014	.150	.118	.178	•135	•271	•272	•149	•006
9.89	•829	•001	.014	.156	.122	.180	•136	• 282	•276	.118	•000
9.41	.856	•001	.015	.162	•126	.185	•139	•296	.274	• 082	1
8.94	.894	•001	.015	.172	•133	.194	•146	•315	• 266	• 049	
8.51	.923	•001	.016	.181	.140	.204	•154	•328	.247	.018	i
8.10	.944	•001	•017	.190	•147	.215	•163	• 334	•212	•001	
7.70	•974	•001	•018	.202	•156	·230	•174	•335	•162	• 000	
7.33	• 995	•001	•019	•214	•166	•245	•184	•325	•115	1	- 1
6.97	1.008	•001	•020	•225	•176	•261	•190	• 306	•071	į	- 1
6.63	1.002	•001	•020	.234	.183	.272	•191	• 277	•034	- 1	1
6.30	•998	•001	•021	•243	•192	.283	•190	• 240	•001		
6.00	•975	•001	•021	• 248	•196	•287	•183	•193	•000	- 1	- 1
5.70	• 948	•001	•021	•252	•200	•289	•172	•143	ľ	l l	1
5.43	•924	•001	•022	•256	•203	•289	•162	•104		- 1	l l
5.16 4.91	•893	•001 •001	•022 •021	•258 •256	•204 •201	•285 •274	•148 •133	•070 • 04 4	1		<u> </u>
4.67	•850 •836	•001	•022	.262	-205	272	•121	•025	ł	I	- 1
4.44	•820	•001	•022	.267	•207	•267	•108	•011	1	1	ì
4.23	.803	•001	•022	.272	•209	•260	•093	•003	ļ		ł
4.02	• 784	•001	•023	.277	.210	.251	•074	•000	i	1	1
3.82	•767	•001	•023	.282	.212	.242	•054	- 1			j
3.64	.749	•001	.023	.288	.212	.231	•037	- 1	1	- {	- 1
3.46	•728	•001	.023	.293	.212	.217	•022	1	- 1	- 1	- 1
3.29	•699	•001	•023	.295	•209	•197	•010	- 1	ŀ		1
3.13	•674	•001	.023	~298	•206	•176	•002	1	1	1	1
2.97	•649	•001	•023	·303	•204	•148	•000	1		- 1	ı
2.83	•625	•001	•023	•307	•200	•122		į	ļ	- 1	- 1
2.69	• 597	•001	•023	•311	•194	•095	ŀ		ĺ	- 1	i
2.56	•578	•001	•023	•318	•190	•071	- 1	j	- 1	- 1	1
2.44	•561	•001	•023	.327	-184	•050	- 1	j		- 1	ł
2.32	•540	•001	•024	•335 •342	•174	•030 •015	į	- 1	- 1	1	1
2.21 2.10	•518	•001	•024 •024	.348	•161 •141	•007	1	1	1	1	1
2.00	•492 •464	•001 •001	•024	.349	•115	•000		1			4
1.90	•430	.001	•025	346	•084	1	1	1	i	1	1
1.81	• 393	•000	•025	.336	• 057			- 1		1	Ī
1.72	354	•000	.025	.321	•033	1		ŀ	i	- 1	1
1.63	.335	•000	•027	.320	•014]]]	1	
1.55	.314	•000	.029	.311	• 009			- 1			
1.48	.294	•000	•031	•293	• 000	1	ì	1	1	1	1
1.41	•270	•000	•033	.269	1	1		1			
1.34	• 243	•000	•036	•242	- 1	1	- 1	l l	l l	l l	l l
1.27	•210	•000	•039	208	1	- 1	1		- 1		
1.21	•176	•000	•042	.174	- 1	l	- 1	- 1	- [- 1	Į
1.15	•139	•000	•046	•139	1.	.1	I.	L	1	1	1
1.096	•097	•000	•050	•095	V	¥	7	7	1	7	T
1.042	•047	•000	•047	•039	•	4	Ŧ	•	•	•	•

1.1.7 The (n,d) Cross Section

Ashby and Catron⁷ give the Q value for the (n,d) reaction in Cl^{35} as -4.14 Mev and, in Cl^{37} , as -6.17 Mev. No measurements of cross sections for this reaction were found in the literature. We have ascribed the extra part of $\sigma_{n,x}$ to this reaction. That the cross section rises steeply at about 11 Mev, rather than about 4 Mev as given by the Q value for (n,d) in Cl^{35} , is not implausible. Coulomb barrier effects and competition of the (n,p) and (n, α) reactions both may be expected to inhibit the (n,d) reaction for some distance above its threshold.

1.1.8 The Elastic Scattering Cross Section, σ_{n}

In the range of incident neutron energies from 4 to 11 Mev values of σ_n were taken from the work of Longley.⁸ Elsewhere the relation $\sigma_n = \sigma_T - \sigma_{n,x}$ was used.

1.2 ANGULAR DISTRIBUTION OF ELASTICALLY SCATTERED NEUTRONS
Guseinov and Nikolaev¹² show the angular distribution of fast neutrons elastically
scattered from chlorine to be similar to that from potassium. We, therefore,
have used the Legendre coefficients for potassium from UNC-5002.¹³ (See
Table 4.)

1.3 GAMMA RAYS FROM NEUTRON CAPTURE

Groshev¹⁴ lists 31 gamma rays emitted in the capture of thermal neutrons by chlorine. These are listed below. We have assumed that the spectrum of gammas is independent of the energy of the captured neutron.

	Intensity,		Intensity,		Intensity,
Eγ, Mev	%	Ε _γ , Mev	%	E _γ , Mev	%
8.58	2.8	4.79	1.9	2.88	9.5
7.79	7.8	4.64	2.3	2.83	2.
7.42	14.	4.50	2.2	2.71	2.
6.99	1.9	4.15	2.3	2.51	1.
6.64	14.4	4.05	2.1	1.95	29.
6.11	21.4	3.90	1.8	1.72	1.
5.72	5.6	3.63	2.9	1.67	1.
5.50	2.	3.40	3.6	1.60	2.4
5.28	1.6	3.08	4.5	1.165	36.
4.98	6.	3.02	3.5	0.79	23.
				0.51	<26.

Table 4 — Chlorine - Legendre Expansion Coefficients for the Angular Distribution of

rapie	4 Cniori	ne – Legen	ore Expans Elastical	radie 4 Chiorine - Legendre Expansion Coemicients for the Angular Distribution of Elastically Scattered Neutrons	ents ior the Neutrons	Angular 1	Jistridution	ö
s, Mev	f ₁	$\mathbf{f_2}$	f3	f,	fs	fe	f	f.
•	.721	.571		œ	.314	.261	.222	.135
17.10	• 718	.568	• 445	8	.312	.259	.216	.128
•	•716	• 566	.448	8	• 308	•256	• 203	.120
•	•715	.565	•456	8	•303	.253	.202	.110
•	•715	.564	•463	8	•296	.248	.193	•098
00.41	.715	.564	.467	.380	•288	.233	.182	.082
•	•715	• 563	.467	~	•272	.214	.167	•066
•	•716	•564	•461	S	• 248	.195	.151	•050
7	•720	•565	.451	4	•226	.176	•134	040.
•	.732	.567	• 443	2	•204	.160	.112	•033
•	• 744	.571	.437	-	.184	.144	• 092	•026
10.40	.754	.577	.431	0	.172	.130	.077	• 022
•	• 762	.581	• 427	8	.161	.118	• 064	.018
•	.770	.586	•423	~	.152	.107	.054	.015
•	•776	•589	•420	5	.141	960•	• 046	.012
•	•779	.592	•416	3	.131	• 086	•039	.010
•	. 780	• 593	.412	\sim	.120	•076	•032	6000
•	. 781	.593	.407	6	•110	•068	• 025	•008
•	• 780	.591	•400	9	•100	•090	.019	• 000
•	.778	.587	.392	.140	060•	•053	.014	• 005
69.63	•725	•554	.378	_	.081	•046	.010	•003
•	• 668	.514	.340	.103	.071	•039	.007	• 002
•	.640	.480	.297	•092	• 062	•033	*00*	• 002
•	. 599	.450	•272	•085	• 053	•027	• 002	.001
•	.560	064.	•252	•080	• 045	•022	000•	•001
•	.520	.413	.233	•076	• 039	•017	001	• 000
•	.491	666.	.218	•072	• 033	•013	001	_
•	•455	•386	• 202	390•	• 028	•010	002	
•	•423	.374	.185	•065	• 023	. 007	005	-
•	.397	.364	.170	•061	•019	• 002	002	_
•	.370	.352	•156	•058	•016	+00•	001	
•	.342	.341	.142	•055	.013	•003	001	
3.64	.323	.332	.130	•052	•010	• 005	001	
•	.310	.321	.116	• 040	·007	• 005	001	
•	• 295	.312	• 104	• 046	• 004	•001	000•	>

2. REFERENCES

- 1. D. J. Hughes and R. B. Schwartz, 2nd Ed., BNL 325 (July 1, 1958).
- D. J. Hughes, B. A. Magurno, and M. K. Brussel, Supplement No. 1, 2nd Ed., BNL 325 (Jan. 1, 1960).
- 3. Yu. P. Popov and F. L. Shapiro, Soviet Physics JETP 13:1132 (1961); translated from J. Exptl. Theoret. Phys. (USSR) 40:1610 (1961).
- 4. J. Meadows and J. Whalen, p. 2, WASH-1028 (Apr. 28-29, 1960).
- 5. N. T. Kashukeev, Yu. P. Popov, and F. L. Shapiro, Reactor Science and Technology 14:76 (1961).
- 6. R. S. Scalan and R. W. Fink, Nuclear Physics 9:334 (1958-59).
- 7. V. J. Ashby and H. C. Catron, UCRL-5419 (Feb. 10, 1959).
- 8. H. J. Longley, LA-2016 (Mar. 1956).
- 9. Landolt-Börnstein Tables: New Series; Group I: Vol. 1; A. M. and K. H. Hell-wege, Eds.; Berlin-Göttingen-Heidelberg, Springer-Verlag, 1961.
- 10. B. T. Feld et al., NYO-636 (Jan. 31, 1951).
- 11. E. S. Troubetzkoy, Phys. Rev. 122:212 (1961).
- 12. A. G. Guseinov and M. N. Nikolaev, Atomnaya Energiya 12:243 (1962).
- 13. N. Tralli et al., UNC-5002 (Jan. 31, 1962).
- 14. L. V. Groshev et al., Atlas of Thermal Capture Gamma Rays, U.S.S.R. Atomic Energy Ministry, Moscow, 1958.

DISTRIBUTION

	No. of Copies
Commander, A.S.T.I.A. Attn: TIPDR, Arlington Hall Station	10
Commanding Officer, U. S. Army Chemical Corps, Nuclea	ar Defense
Laboratory	
Edgewood Arsenal, Maryland	
Attn: Contract Project Officer	
Nuclear Physics Division	90*
Commanding Officer	
U. S. Army Chemical Center, Procurement Agency	
Edgewood Arsenal, Maryland	
Attn: Contracting Officer	

^{*}Plus one reproducible master.