CH1020 Worksheet 15

CH1020 Exercises (Worksheet 14)

(Enthalpy, Thermochemical equations)

1. Under what condition will the enthalpy change of a process equal the amount of heat transferred into or out of the system?

- 2. Does the enthalpy of a system in a particular state depend on how the system reached that state? Explain.
- 3. During a constant-pressure process the system absorbs heat from the surroundings. Does the enthalpy of the system increase or decrease in the process?
- 4. Why is the change in enthalpy a meaningful for many chemical processes?
- 5. H is a state function but q is not a state function. Explain.
- 6. For a given process at constant pressure, ΔH is negative. Is the process endothermic or exothermic?
- 7. The complete combustion of CH₃OH(l) to form H₂O(l) and CO₂(g) at constant pressure produces 726.7 kJ of heat per mole of CH₃OH. Write a balanced thermochemical equation for this reaction.
- 8. The decomposition reaction of NH₃(g) to form N₂(g) and H₂(g) at constant pressure requires 46.19 kJ of heat per mole of NH₃(g). Write a balanced thermochemical equation for the reaction.
- 9. You are given ΔH for a process that occurs at constant pressure. What additional information is needed to determine ΔE for the process?
- 10. What is the advantage of using enthalpy rather than internal energy to describe energy changes in reactions?
- 11. The reaction: SO₃(g) + H₂O(l) → H₂SO₄(aq) is the last step in the commercial production of sulfuric acid. The enthalpy change for this reaction is -227 kJ. In designing a sulfuric acid plant, is it necessary to provide for heating or cooling of the reaction mixture? Explain.

CH1020 Worksheet 15

- 12. Are the following processes exothermic or endothermic?
 - a. when solid KBr is dissolved in water, the solution gets colder.
 - b. Natural gas (CH₄) is burned in a furnace
 - c. When concentrated H₂SO₄ is added to water, the solution gets very hot
 - d. Water is boiled in a teakettle
 - e. the combustion of gasoline in a car engine
 - f. water condensing on a cold pipe
 - g. $CO_2(s) \rightarrow CO_2(g)$
 - h. $F_2(g) \rightarrow 2F(g)$
- 13. Which of the following has the highest enthalpy at a given temperature and pressure: $H_2O(s)$; $H_2O(l)$; or $H_2O(g)$? Which has the lowest enthalpy?
- 14. Consider the following reaction:

$$3O_2(g) \rightarrow 2O_3(g)$$
 $\Delta H = +284.6 \text{ kJ}$

Under the conditions of this reaction, does $O_2(g)$ or $O_3(g)$ have the higher enthalpy?

15. The overall reaction in commercial heat packs can be represented as

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$
 $\Delta H = -1652 kJ$

- a. How much heat is released when 1.00 mol Fe₂O₃ is produced?
- b. How much heat is released when 1.00 g of iron is reacted with excess O₂?
- c. How much heat is released when 4.00 moles of Fe and 4.00 moles of O_2 are reacted?
- d. How much heat is released when 0.540 moles of Fe and 15.0 g of O₂ react?
- e. How many grams of Fe is required to react to release 1200. kJ of heat?
- 16. Consider the following reaction:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)\Delta H = -572 kJ$$

- a. How much heat is evolved for the production of 1.00 mol of $H_2O(1)$?
- b. How many grams of hydrogen is required to react, so that it produces 1400. kJ of heat?
- c. How much heat is evolved when 4.03 g of hydrogen is reacted with excess oxygen?
- 17. Consider the combustion reaction of ethane gas, $C_2H_6(g)$:

CH1020 Worksheet 15

$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$$
 $\Delta H = -1430 \text{ kJ}$

- a. What is the enthalpy change for the reverse reaction?
- b. Balance the forward reaction with whole-number coefficients. What is the ΔH for the reaction represented by this equation?
- c. Which is more likely to be thermodynamically favored, the forward reaction or the reverse reaction?
- d. If the reaction were written to produce $H_2O(1)$ instead of $H_2O(g)$, would you expect the magnitude of ΔH to increase, decrease, or stay the same? Explain.
- 18. Consider the decomposition of liquid benzene, $C_6H_6(l)$ to gaseous acetylene, $C_2H_2(g)$:

$$1/3C_6H_6(l) \rightarrow C_2H_2(g)$$
 $\Delta H = +210 \text{ kJ}$

- a. What is the enthalpy change for the reverse reaction?
- b. What is ΔH for decomposition of 78.1 g of benzene to acetylene?
- c. Which is more likely to be thermodynamically favored, the forward reaction or the reverse reaction?
- d. If $C_6H_6(g)$ were consumed instead of $C_6H_6(l)$, would you expect the magnitude of ΔH to increase, decrease, or stay the same? Explain.