Taylor's Theorem & Taylor's Inequality

Recall Polynomial: $T_{n,a}\left(x
ight)=f\left(a
ight)+f'\left(a
ight)\left(x-a
ight)+rac{f''\left(a
ight)}{2!}\left(x-a
ight)^{2}+...+rac{f^{\left(n
ight)}\left(a
ight)}{n!}\left(x-a
ight)^{n}$

Remaineder Formula: math

Inequality: $|R_{n,0}\left(x
ight)| \leq rac{\left|x
ight|^{n+1}}{(n+1)!}$

Ex) Find $T_{2n+1,\,0}\left(x\right)$ for $\sin x$ and $T_{2n,\,0}\left(x\right)$ for $\cos x$. Also, find an expression for $|R_{n,\,0}\left(x\right)|$ for $\sin x$ and $\cos x$.

Solution: For $f\left(x\right)=\sin x,\ f\left(0\right)=0$

$$f'(x) = \cos x, \ f'(0) = 1$$

$$f''(x) = -\sin x, \ f''(0) = 0$$

$$f'''(x) = -\cos x, \ f'''(0) = -1$$

$$f''''(x) = \sin x, \ f''''(0) = 0$$

Thus, the following pattern emerges: $f^{w}\left(0
ight) = 0$ for n even, ±1 for n odd

therefor $\sin x \ pprox T_{2n+1} \left(x
ight) = x - rac{x^3}{3!} + rac{x^5}{5!} - rac{x^7}{7!} + ... + rac{(-1)^n x^{2n+1}}{(2n+1)!}$

repeat this for $f\left(x\right)=\cos x,\;f\left(0\right)=1$

$$f'\left(x\right) = -\sin x, \ f'\left(0\right) = 1$$

$$f''(x) = -\cos x, \ f''(0) = 0$$

$$f'''(x) = \sin x, \ f'''(0) = -1$$

$$f''''(x) = \cos x, \ f''''(0) = 0$$

Thus, the following pattern emerges: $f^{w}(0) = 0$ for n odd, ± 1 for n even

Short cut: $\cos x = \frac{d}{dx} (\sin x) \to \text{take the derivative of } \sin x \text{'s equation above!}$

To find an expression for $|R_{n,0}\left(x
ight)|$ for $\sin x$ and $\cos x$, observe that $\left|f^{n+1}\left(x
ight)
ight|\leq 1$ for all n & x.

Thus, we obtain from Taylor's inequality that $|R_{n,0}\left(x
ight)| \leq rac{|x|^{n+1}}{(n+1)!}$ (set $a=0,\ k=1$ in Taylor's Inequality.

Remark: For a fixed finite x value, $\lim_{n o \infty} |R_{n,\,0}\left(x
ight)| = 0$

Special Case:

Observe that for n=0, Taylor's formula becomes the following:

$$f\left(x
ight)=T_{0,a}\left(x
ight)+R_{0,a}\left(x
ight)$$
 where $T_{0,a}\left(x
ight)=f\left(a
ight)$ and $R_{0,a}\left(x
ight)=f'\left(c
ight)\left(x-a
ight)$

 $\Rightarrow f'\left(c
ight) = rac{\left(f(x) - f(a)
ight)}{x - a}$ for c between a and x o mean value theorem

Applications of Taylor Polynomials include:

- 1. approximating functions by polynomials
- 2. approximating integrals
- 3. evaluating limits