Cryptography

Asymmetric Cryptography

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

Knapsack Cryptosystem

Introduction

- Public key algorithms = asymmetric algorithms
- Public key cryptography relies on number theory
- Misconception: asymmetric crypto is more secure than symmetric crypto
 - The security relies on the the length of the key and the computational work to break
- Misconception: asymmetric crypto made symmetric crypto obsolete
 - Symmetric crypto is still in use, sometimes preferable over the asymmetric crypto
- Misconception: it's easy to distribute the keys of public key crypto
 - Some protocols are still needed involving a central agent

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

Knapsack Cryptosystem

- Public key cryptography evolved to solve two issues:
- 1. Key distribution under symmetric encryption
 - The communicants already share a key
 - Or the use of a key distribution center
- 2. Digital signatures:
 - Signing electronic documents

- Asymmetric cryptography uses two keys:
 - One for encryption
 - Another different but related key for decryption
- Characteristics:
 - Cannot compute the decryption key given only the algorithm and the encryption key
 - o Either of the two keys can be used for encryption, with the other used for decryption
 - RSA exhibits this characteristic

- A public-key encryption scheme has six ingredients:
 - Plaintext
 - Encryption algorithm
 - Public and private keys
 - Ciphertext
 - Decryption algorithm

Basic steps

Bob sends to Alice: Encrypted message using Alice's PK

Any user can update his key pair:

- Change the private key
- Keep the private key secret
- Publish the companion public key

Alice decrypts it using her private key

A public-key encryption: confidentiality

- Encryption → Public key
- Decryption → Private key

- The cryptanalyst tries to:
 - \circ Guess the plaintext, \widehat{X}
 - \circ Guess the private key, $\widehat{PR_h}$

• A public-key encryption: authentication — **Digital Signature**

- Encryption → Private key
- Decryption → Public key

- The cryptanalyst tries to:
 - \circ Guess the private key, \widehat{PR}_a

A public-key encryption: authentication and confidentiality

What are the requirements for public key cryptography?

1. Computationally easy for party B to generate key pair (PU_B, PR_B)

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$
- 4. Computationally hard to get PR_B given only the PU_B

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$
- 4. Computationally hard to get PR_B given only the PU_B
- 5. Computationally hard to decrypt C using PU_B

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$
- 4. Computationally hard to get PR_B given only the PU_B
- 5. Computationally hard to decrypt C using PU_B

Trap-door one-way function

• Trapdoor function: maps the domain to the range

 Trapdoor function: maps the domain to the range but impossible to calculate from the other direction

$$y = f_k(x)$$

$$x \neq f_{?}^{-1}(y)$$
Easy
$$f(x)$$

$$hard$$
Domain
Range

• Trapdoor function: maps the domain to the range but impossible to calculate from the other direction unless some information is known.

$$y = f_k(x)$$

$$x \neq f_?^{-1}(y)$$

$$x = f_k^{-1}(y)$$

• Trapdoor function: maps the domain to the range but impossible to calculate from the other direction unless some information is known.

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

Knapsack Cryptosystem

- RSA sees the plaintext and ciphertext as integers between [0: n-1]
- n is a large integer value ≥ 1024 bits
 - A number that is 309 digits
 - $0 n < 2^{1024}$

24725387912226386773406422770506824337943430362146117585611811 53322971499614407180042227635152596218510405414532496746537437 34734188672138481874162250814304104733926303051948325997875058 56430815348087510866371728812805464582241735489450115288528172 8600701643105745461025953612473530075689406770397864088629194

- RSA math depends on modular exponentiation.
- The plaintext block must be less than n.

```
0 \log_2(n)+1 ...1001010111010110100...
```

- For example, if n=13, the plaintext block size = $\log_2(13)+1\cong 4$ bits
- Thus, the possible values can be $[0:12] \rightarrow [0000:1100]$

• Encryption:

$$C = M^e \mod n$$

• Decryption:

$$M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

- Public key: $PU = \{e, n\}$
- Private key: $PR = \{d, n\}$
- Both sender and receiver know e, n
- Only receiver knows d

- RSA requirements:
- 1. Possible to find value $e, d, n \mid M^{ed} \mod n = M \quad \forall M < n$

2. Easy to compute $M^e \mod n$ and $C^d \mod n$ $\forall M < n$

3. Infeasible to determine d given e and n

- RSA requirements:
- 1. Possible to find value $e, d, n \mid M^{ed} \mod n = M \quad \forall M < n$ How to find values e, d to satisfy $M^{ed} \mod n$?
- 2. Easy to compute $M^e \mod n$ and $C^d \mod n$ $\forall M < n$
- 3. Infeasible to determine d given e and n

• $M^{ed} \mod n \rightarrow \text{ if } e \text{ and } d \text{ are } \underline{\text{multiplicative inverses modulo}} \phi(n)$

$$ed \ mod \ \phi(n) = 1$$

$$ed \equiv 1 \ mod \ \phi(n)$$

$$d = e^{-1} \ mod \ \phi(n)$$

$$\circ \gcd(e, \phi(n)) = 1 \ \text{and} \ \gcd(d, \phi(n)) = 1$$

- $\phi(n)$ is Euler totient function
 - o If $n = p \times q$, where p and q are primes $\rightarrow \phi(pq) = (p-1)(q-1)$

• RSA parameters set

Prime numbers p , q	Private	Chosen
n = pq	Public	Calculated
$e \mid \gcd(\phi(n), e) = 1; 1 < e$	Public	Chosen
$d \equiv e^{-1} \left(mod \ \phi(n) \right)$	Private	Calculated

Alice generates her keypair

Key Generation by Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Bob sends a message to Alice

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^e \mod n$

Alice decrypts the message

Decryption by Alice with Alice's Private Key

Ciphertext:

Plaintext: $M = C^d \mod n$

Key generation example

Find primes p, q $n = p \times q$ $\phi(n) = (p-1)(q-1)$ Find $e \mid \gcd(\phi(n), e) = 1$ $d \equiv e^{-1} \mod n$ Publish $PU\{e, n\}$ Keep $PR = \{d, n\}$

$$p = 17$$
$$q = 11$$

Key generation example

Find primes p, q $n = p \times q$ $\phi(n) = (p-1)(q-1)$ Find $e \mid \gcd(\phi(n), e) = 1$ $d \equiv e^{-1} \mod n$ Publish $PU\{e, n\}$ Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod n$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod n$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17$$
, $q = 11$
 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod \phi(n)$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$
 $d = egcd(e, \phi(n)) = egcd(7, 160) = 23$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod n$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$
 $d = egcd(e, \phi(n)) = egcd(7, 160) = 23$
 $PU = \{7, 187\}$

Key generation example

```
Find primes p, q
n = p \times q
\phi(n) = (p-1)(q-1)
Find e \mid \gcd(\phi(n), e) = 1
d \equiv e^{-1} \mod n
Publish PU\{e, n\}
Keep PR = \{d, n\}
```

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$
 $d = egcd(e, \phi(n)) = egcd(7, 160) = 23$
 $PU = \{7, 187\}$
 $PR = \{23, 187\}$

- Encrypt the message: "ABC" given $PU = \{7, 187\}$
- 1. Convert the string to numerical values:

А	В	С
65	66	67

2. Encrypt each character by computing: $M^7 \mod 187$

65	66	67
$65^7 \% 187 = 142$	$66^7 \% 187 = 110$	$67^7 \% 187 = 67$

3. Send ciphertext {142, 110, 67} to Alice

- Decrypt the message: $\{142, 110, 67\}$ given $PR = \{23, 187\}$
- 1. Read each ciphertext block and compute: $C^{23} \mod 187$

142	110	67
$142^{23} \% 187 = 65$	$110^{23} \% 187 = 66$	$67^{23} \% 187 = 67$

2. Decode the encrypted values

65	66	67
А	В	С

3. The plaintext is "ABC"

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

- The first public-key cryptosystem
 - Broken, not secure with today's standards
- Based on the knapsack problem:
 - Assume we have a knapsack that a set of numbers
 - \circ If we are told what the numbers are \rightarrow easy to compute the sum
 - \circ If we are told what the sum is \rightarrow hard to tell what numbers in the knapsack

- If we are given two k-tuples: $a = [a_1, a_2, ..., a_k]$ and $x = [x_1, x_2, ..., x_n]$ $\circ a$ is a tuple that includes a set of elements, x is a tuple in which x_i is either 0 or 1 \circ 0 = the element a_i is not in the knapsack, 1 = the element is in the knapsack
- The sum of elements in the knapsack is $s = knapsackSum(a,x) = x_1a_1 + x_2a_2 + \cdots + x_na_n$
- Given \overline{x} and $a \rightarrow$ easy to compute s
- Given $s \rightarrow$ hard to compute x and a $\circ inv_knapsackSum$ is infeasible
- We say that *knapsackSum* is a one-way function

- Easy to compute knapsackSum and its inverse if a is superincreasing
- In a superincreasing tuple, $a_i \ge a_1 + a_2 + \cdots + a_{i-1}$ • each element (except a_1) is greater than or equal to the sum of all previous elements

```
      knapsackSum (x [1 ... k], a [1 ... k])
      inv_knapsackSum (s, a [1 ... k])

      s \leftarrow 0
      for (i = k \text{ down to } 1)

      s \leftarrow s + a_i \times x_i
      \{

      s \leftarrow s + a_i \times x_i
      \{

      s \leftarrow s + a_i \times x_i
      \{

      s \leftarrow s - a_i
      \{
    <
```

• Example: assume that a = [17, 25, 46, 94, 201, 400] and s = 272 are given. Show how the tuple x is found using $inv_knapsackSum$ routine.

i	a_i	S	$s \ge a_i$	x_i	$s \leftarrow s - a_i \times x_i$
6	400	272	false	$x_6 = 0$	272
5	201	272	true	$x_5 = 1$	71
4	94	71	false	$x_4 = 0$	71
3	46	71	true	$x_3 = 1$	25
2	25	25	true	$x_2 = 1$	0
1	17	0	false	$x_1 = 0$	0

• So, x = [0, 1, 1, 0, 1, 0]: 25, 46, and 201 are in the knapsack.

Knapsack key generation

- 1. Create a superincreasing k-tuple $b = [b_1, b_2, ..., b_k]$
- 2. Choose a modulus n, such that $n > b_1 + b_2 + \dots + b_k$
- 3. Select a random integer r that is co-prime with n and $1 \le r \le n-1$
- 4. Create a temporary k-tuple $t = [t_1, t_2, ..., t_k]$ in which $t_i = r \times \overline{b_i \mod n}$
- 5. Select a permutation of k objects and find a new tuple a = permute(t)
- 6. The public key is the k-tuple a
- 7. The private key is n, r, and the k-tuple b

Encryption

Suppose Alice needs to send message to Bob.

- 1. Alice converts her message to a k-tuple $x = [x_1, x_2, ..., x_k]$, in which x_i is either 0 or 1. The tuple x is the plaintext
- 2. Alice uses the *knapsackSum* routine to calculate *s*
- 3. Alice sends the value of s as the ciphertext

Decryption

Bob receives the ciphertext *s*.

- 1. Bob calculates $s' = r^{-1} \times s \mod n$
- 2. Bob uses $inv_knapsackSum$ to create x`
- 3. Bob permutes x to find x
- 4. The tuple x is the recovered plaintext

• Example:

Key generation

Create $b = [b_1, b_2, ..., b_k]$

Choose a modulus *n*

Select r that is co-prime with n and $1 \le r \le n-1$

Create $t = [t_1, t_2, ..., t_k] \mid t_i = r \times b_i \mod n$

Select a = permute(t)

The public key is the k-tuple a

The private key is n, r, and the k-tuple b

The superincreasing tuple

$$b = [7, 11, 19, 39, 79, 157, 313]$$

• Example:

Key generation

Create $b = [b_1, b_2, \dots, b_k]$

Choose a modulus *n*

Select r that is co-prime with n and $1 \le r \le n-1$

Create $t = [t_1, t_2, ..., t_k] \mid t_i = r \times b_i \mod n$

Select a = permute(t)

The public key is the k-tuple a

The private key is n, r, and the k-tuple b

The superincreasing tuple

$$b = [7, 11, 19, 39, 79, 157, 313]$$

$$n = 900$$

• Example:

Key generation

Create $b = [b_1, b_2, \dots, b_k]$

Choose a modulus *n*

Select r that is co-prime with n and $1 \le r \le n-1$

Create $t = [t_1, t_2, ..., t_k] \mid t_i = r \times b_i \mod n$

Select a = permute(t)

The public key is the k-tuple a

The private key is n, r, and the k-tuple b

The superincreasing tuple

$$b = [7, 11, 19, 39, 79, 157, 313]$$

$$n = 900$$

$$r = 37$$

• Example:

Key generation

Create $b = [b_1, b_2, \dots, b_k]$

Choose a modulus *n*

Select r that is co-prime with n and $1 \le r \le n-1$

Create
$$t = [t_1, t_2, ..., t_k] \mid t_i = r \times b_i \mod n$$

Select a = permute(t)

The public key is the k-tuple a

The private key is n, r, and the k-tuple b

The superincreasing tuple

$$b = [7, 11, 19, 39, 79, 157, 313]$$

$$n = 900 \mid r = 37$$

t = [259, 407, 703, 543, 223, 409, 781]

• Example:

Key generation

Create $b = [b_1, b_2, \dots, b_k]$

Choose a modulus *n*

Select r that is co-prime with n and $1 \le r \le n-1$

Create $t = [t_1, t_2, ..., t_k] \mid t_i = r \times b_i \mod n$

Select a = permute(t)

The public key is the k-tuple a

The private key is n, r, and the k-tuple b

The superincreasing tuple

$$b = [7, 11, 19, 39, 79, 157, 313]$$

$$n = 900 \mid r = 37$$

t = [259, 407, 703, 543, 223, 409, 781]

a = permute(t) = [543, 407, 223, 703, 259, 781, 409]

• Example:

Key generation

Create $b = [b_1, b_2, ..., b_k]$

Choose a modulus *n*

Select r that is co-prime with n and $1 \le r \le n-1$

Create $t = [t_1, t_2, ..., t_k] \mid t_i = r \times b_i \mod n$

Select a = permute(t)

The public key is the k-tuple a

The private key is n, r, and the k-tuple b

The superincreasing tuple

$$b = [7, 11, 19, 39, 79, 157, 313]$$

$$n = 900 \mid r$$

$$r = 37$$

t = [259, 407, 703, 543, 223, 409, 781]

$$a = permute(t) = [543, 407, 223, 703, 259, 781, 409]$$

The public key:

a = [543, 407, 223, 703, 259, 781, 409]

The private key:

$$n = 900, r = 37, b = [7, 11, 19, 39, 79, 157, 313]$$

• Example: Suppose Alice wants to send a single character "g" to Bob.

_	
Fncrv	ntion
Ellel y	Pulgii

Convert the message to k-tuple x

Calculate s using kanpsackSum

Send the value of *s* as the ciphertext

Use the 7-bit ASCII of the letter "g"

$$x = g = [1,1,0,0,1,1,1]$$

• Example: Suppose Alice wants to send a single character "g" to Bob.

Encryption

Convert the message to k-tuple x

Calculate *s* using *kanpsackSum*

Send the value of s as the ciphertext

Use the 7-bit ASCII of the letter "g" x = g = [1,1,0,0,1,1,1]

We have a = [543, 407, 223, 703, 259, 781, 409] s = kanpsackSum(a, x) $s = 1 \times 543 + 1 \times 407 + ... + 1 \times 409 = 2165$

• Example: Suppose Alice wants to send a single character "g" to Bob.

Encryption

Convert the message to k-tuple x

Calculate s using kanpsackSum

Send the value of *s* as the ciphertext

Use the 7-bit ASCII of the letter "g"

$$x = g = [1,1,0,0,1,1,1]$$

We have a = [543, 407, 223, 703, 259, 781, 409]

s = kanpsackSum(a, x)

$$s = 1 \times 543 + 1 \times 407 + ... + 1 \times 409 = 2165$$

Ciphertext = s = 2165

• Example: Bob receives s = 2165

Decryption

Calculate s = $r^{-1} \times s \mod n$

Compute $x' = inv_kanpsackSum$

Compute plaintext = x = permute(x)

We have
$$r = 37$$
, $n = 900$

$$r^{-1} = modInv(37, 900) = 73$$

$$s$$
 = 73 ×2165 mod 900 = 527

• Example: Bob receives s = 2165

Decryption

Calculate $s` = r^{-1} \times s \mod n$

Compute $x' = inv_kanpsackSum$

Compute plaintext = x = permute(x)

We have
$$r = 37$$
, $n = 900$

$$r^{-1} = modInv(37,900) = 73$$

$$s$$
 = 73 ×2165 mod 900 = 527

$$x' = Inv_kanpSack(s', b) = [1, 1, 0, 1, 0, 1, 1]$$

• Example: Bob receives s = 2165

Decryption

Calculate $s` = r^{-1} \times s \mod n$

Compute $x' = inv_kanpsackSum$

Compute plaintext = x = permute(x)

We have
$$r = 37$$
, $n = 900$

$$r^{-1} = modInv(37, 900) = 73$$

$$s$$
` = 73 ×2165 mod 900 = 527

$$x' = inv_kanpSack(s', b) = [1, 1, 0, 1, 0, 1, 1]$$

$$x = permute(x) = [1,1,0,0,1,1,1]$$

Plaintext = (1100111) = "g"

TASK

- Implement the Knapsack cryptosystem.
- Implement RSA.