A Low-Power Low Dropout Regulator for an Energy Management Unit

M K Akif Alvi Arnab

Examiners: Prof. Dr.-Ing. Andreas Bahr

Prof. Dr.-Ing. Matthias Kuhl

Supervisor: M. Sc. Christian Adam

-

Topics Covered

- Energy Management Unit
- Low Dropout Regulator Basics
- Specifications of the LDO Regulator
- Stability and Frequency Compensation
- LDO Regulator Components Design
- LDO Regulator Simulation Results
- Final Results- Summary
- · Possible Improvements

.

Energy Management Unit

- Supplied through inductive energy transmission.
- Powered by a bank of 4 parallel supercapacitors.
- Lower discharge voltage of the capacitors is achieved by changing the connection form parallel to series, thus increasing the available energy.
- Two low dropout regulators (LDO): the Main LDO and the low-power LDO.
- · Main LDO regulator : Powers the implant.
- Low- power LDO regulator: Powers different circuitry of the energy management unit.

Figure 1: Energy Management Unit of the electronic osteosynthesis implant.

3

Low Dropout Regulator

- Regulation is maintained for a varying supply voltage.
- Main components:
 - Pass element
 - feedback network
 - reference voltage
 - · error amplifier
 - frequency compensation network.
- Main Operational regions :
 - Regulation region
 - dropout region
 - off-region.
- Low quiescent current.

Figure 2 : A basic LDO Regulator [17]

Figure 3: LDO Regulator operating regions [11]

L

Low Dropout Regulator

- · Pass element:
 - Used for transferring large currents from the input to the load.
 - · Driven by the error amplifier in a feedback loop.
 - · Generally a MOSFET is used as a pass device.
 - Additional step-up voltage converter required for NMOS pass device.
 - PMOS pass transistor configuration doesn't require extra circuit to bias the error amplifier, has a low dropout voltage, typically used in LDO regulators.

- Forms a control loop between the error amplifier and the pass transistor.
- Scales down the LDO regulator output voltage to compare against the error amplifier reference voltage.
- A resistive voltage divider is typically used as the feedback network.
- A series of diode connected PMOS transistors could be used as the voltage divider to reduce area consumption.

Figure 2: A basic LDO Regulator [17]

Figure 3: LDO Regulator operating regions

Low Dropout Regulator

- Error Amplifier:
 - Consumes the most current of the LDO regulator, a simple architecture is desirable.
 - Typically, a two stage operational amplifier is used for achieving a higher gain.
 - · Major requirements:
 - High open-loop gain
 - Low quiescent current
 - Operation under low V_{in} conditions.
 - · High bandwidth
 - High power supply rejection
 - High output voltage swing
- Voltage reference:
 - Constant dc 1.2V supply. (Designing the voltage reference wasn't a part of the project work)

Figure 2: A basic LDO Regulator [17]

Figure 3: LDO Regulator operating regions [11]

Specifications of the desired LDO regulator

Parameters	Value
V _{in,min}	2V
$V_{in,max}$	5V
$V_{\rm out}$	1.8V
V_{DO}	200mV
I _{load (active)}	25μΑ
I _{load (inactive)}	6.7μΑ

Table 1: LDO regulator specifications obtained from the energy management unit.

7

Frequency Compensation Approach

- Proper compensation approach is necessary to achieve stability.
- Two types of compensation approach:
 - External compensation:
 - Uses a high valued output capacitor.
 - · LDO regulator output pole is the dominant pole.
 - The load capacitor creates an equivalent series resistor (ESR) whose value changes with frequency.
 - The ESR could lead to a modified AC and transient response.
 - Implementation into very small or lightweight equipment isn't possible.
 - Internal compensation:
 - Miller compensation approach.
 - Can be fully integrated onto system-on-chip (SoC).
 - Error amplifier output pole is the dominant pole.

Figure 4: LDO regulator with major pole locations

Frequency Compensation Approach

- Internal compensation:
 - Known as capacitor-less LDOs.
- Approximate pole locations:
 - $f_{p,out} = \frac{1}{2\pi r_{eq} C_{Load}}$
 - $f_{p,EA} = \frac{1}{2\pi r_{out,EA} C_{PT}}$
 - r_{eq} = equivalent resistance at the output node of the LDO regulator
 - ${f r}_{out,EA}$ = equivalent resistance at the output node of the error amplifier
 - C_{PT} = total equivalent capacitor at the pass-transistor gate
 - C_{Load} = load capacitance
- $f_{p,out}$ and $f_{p,EA}$ both at low frequencies for an uncompensated LDO regulator.
- Internal compensation places $f_{p,out}$ far away from $f_{p,EA}$; ensuring the stability of the LDO regulator.

Figure 4: LDO regulator with major pole locations

Figure 5: Internally compensated LDO regulator [4].

Frequency Compensation Approach

- Internal compensation:
 - $\bullet \quad P_d = \; \frac{1}{r_{out,EA} \, (C_C + C_{PT}) + (C_C + C_{Load}) r_{eq} + g m_{PT} r_{out,EA} r_{eq} C_C} \label{eq:pd}$
 - $P_{nd} = -\frac{gm_{PT} c_C}{(c_C + c_{Load})c_{PT} + c_C c_{Load}}$
 - $z = \frac{1}{\left(\frac{1}{am_{PN}} R_Z\right)C_C}$

Figure 6: Small-signal equivalent circuit of the open-loop miller compensated LDO Regulator [4].

LDO Regulator Components Design

Parameter	Threshold Voltage Low(V)	Threshold Voltage Typical(V)	Threshold Voltage High(V)	$\mu C_{ox} (\mu \frac{A}{V^2})$
PMA	-1.05	-1.2	-1.35	12.85
NMA	1.13	1.23	1.33	46.16
PE	-0.67	-0.7	-0.73	28.69

Table 2: Process parameters for the transistors

1:

LDO Regulator Components Design

- Pass Transistor:
 - 6V PMA transistor.
 - $\left(\frac{W}{L}\right)$ calculation:

•
$$V_{in,min}$$
 = 2V, $V_{in,max}$ = 5V, I_{load} = 25 μ A, V_{out} = 1.8V

•
$$V_{SG} = V_s - V_G = 2V-300mV = 1.7V$$

•
$$I_D = \mu_p C_{ox,p} \frac{W}{L} \left[\left(V_{SG} - V_{Th,p} \right) - \frac{V_{SD}}{2} \right] V_{SD}$$

•
$$\left(\frac{W}{L}\right)_{Pass} = \frac{I_{load}}{\mu_p C_{ox,p} \left[\left(V_{SG} - V_{Th,p}\right) - \frac{V_{SD}}{2}\right] V_{SD}} \approx 24$$

Parameter	Value
Minimum input voltage V _{in,min}	2V
Load current I _{load}	25μΑ
Channel Width, W	68μm
Channel Length, L	2.5μm

Table 3: Parameters for the pass device

LDO Regulator Components Design

- · Feedback Network:
 - V_{out} =1.8V; V_{ref} =1.2V

$$\bullet \quad \frac{v_{out}}{v_{ref}} = \frac{R_{f1} + R_{f2}}{R_{f2}} \ ; \ \frac{v_{out}}{v_{ref}} = 1 + \frac{R_{f1}}{R_{f2}}; \frac{R_{f1}}{R_{f2}} = \frac{1.8}{1.2} - 1 \ ; \ \frac{R_{f2}}{R_{f1}} = 2 : 1$$

- $I_{req} = \frac{V_{out}}{R_{f1} + R_{f2}}$
- $I_{req} = 0.05 \% \text{ of } I_{load} (25 \mu\text{A}) = 13 \text{nA}$
- $R_{f2} = \frac{V_{ref}}{I_{req}} = \frac{1.2V}{13nA} = 92.3M\Omega$
- $R_{f1} = \frac{V_{out}}{I_{req}} R_{f2} = \frac{1.8V}{13nA} 92.3M\Omega = 46.15M\Omega$

Figure 7: Basic LDO Regulator [17]

13

LDO Regulator Components Design

- Feedback Network:
 - 1.98V PE transistor.
 - $\left(\frac{W}{L}\right)$ calculation:

 - n (sub-threshold swing coefficient) = 1.5

 - $V_{SD} = V_{SG}$ =600mV V_t = Thermal voltage =26mV

•
$$\frac{\binom{W}{L}_{feedback}}{\frac{I_{req}}{\mu_p C_{ox,p}(n-1)V_t^2 e^{-VTh/nVt} e^{-VSG/nVt}(1-e^{-VSD/Vt})}} \approx 8.11$$

- From simulation, $\left(\frac{W}{L}\right)_{feedback}$ =0.9
- W= 2μm , L = 2.22μm

Parameter	Value
Output voltage V _{out}	1.8V
Reference Voltage V _{ref}	1.2V
Bias current I _{req}	13nA
Channel Width, W	2μm
Channel Length, L	2.22µm

Table 4: Parameters for the feedback network

LDO Regulator Components Design

Parameter	Value
Open-loop DC gain	60 <i>dB</i>
Phase margin	90°
Settling time	$30Hz \times 10 = 3000Hz$ = 333.33 µs
Unity gain frequency	$1/t_{settling} = 3kHz$
Slew rate	0.015V/μs
Load capacitance	170.79fF

Parameter	Transistor Used	Width(W) (μm)	Length(L) (μm)	Operating region
M _{1,2}	6V NMA	200	1	Sub- threshold
M _{3,4}	6V PMA	2.5	2.5	Saturation
M ₅	6V NMA	8	1	Saturation
M ₆	6V PMA	2.5	1	Saturation
M ₇	6V NMA	8	1	Saturation
M ₈	6V NMA	8	1	Saturation

Table 5: Error amplifier assumed specifications

Table 6: Error amplifier transistor sizes and operating regions

Parameter	Value
C _c	20pF
R_z	163.6ΚΩ

Table 7: Error amplifier frequency compensation parameters

LDO Regulator Frequency Compensation Parameters

$$\begin{split} \bullet & PM = 75^{\circ}; A_{v} = 60dB \\ & PM = 180^{\circ} - \arctan\left(\frac{\omega_{u}}{\omega_{p1}}\right) - \arctan\left(\frac{\omega_{u}}{\omega_{p2}}\right) - \arctan\left(\frac{\omega_{u}}{\omega_{z1}}\right) \\ & \arctan\left(\frac{\omega_{u}}{\omega_{p2}}\right) = & 180^{\circ} - 75^{\circ} - \arctan(A_{v})\arctan\left(\frac{\omega_{u}}{10 \times \omega_{u}}\right) \\ & \omega_{u} = 0.18 \times \omega_{p2} \\ & \frac{gm_{in}}{C_{c}} = 0.18 \times \frac{gm_{PT}}{C_{L}} \\ & \frac{gm_{in}}{C_{c}} = 0.18 \times \frac{10 \times gm_{in}}{C_{L}} \\ & C_{c} \geq 0.55 \times C_{L} \end{split}$$

Parameter	Value
C _c	100fF
C_L	1pF
R _z	14.15ΚΩ

Table 8: Frequency compensation parameters

Power Supply Rejection(PSR)

Defines the regulator's capacity to prevent fluctuation of the output voltage due to the changes in the input voltage.

Figure 14: LDO regulator PSR at (a) V_{in} =2V (b) V_{in} = 5V for I_{load} = 6.7 μ A

Input voltage V _{in}	PSR (dB) (at 1kHz)
2V	-53.6812
5V	-74.2362

Table 12: LDO regulator PSR at (a) V_{in} =2V (b) V_{in} = 5V for I_{load} = $6.7 \mu A$

Transient Simulation

- Tests the circuit behavior in real-time with varying signals.
- Line transient : Displays the LDO regulator output behavior with a varying supply voltage.
 - Input signal rise time:
 - Analyzed from the simulation results of the capacitor bank from the energy management unit.
 - Input signal fall time :
 - Fastest discharging of the supercapacitors possible when all are in series connection.
 - $C_{eq}=2.75mF, R_{Load}=3.6k\Omega, R_{ESR}=160\Omega$
 - Time constant of discharging, $\tau = C_{eq}(R_{Load} +$ $4R_{ESR}) = 11.66s$
 - $V(t) = V_{init} e^{\frac{-t}{\tau}}$; V(t) = 2V, $V_{init} = 5V$

 - Time t for the voltage to reduce from 5V to 2V = 10.68s $\frac{dV}{dt} = -\frac{V_{init}}{\tau} e^{\frac{-t}{\tau}} = -\frac{171.58mV}{s}, t_f = \frac{\Delta V}{SR} = 17.48s$
 - LDO regulator Input signal $t_{rise} = t_{fall} = 300 \mu s$

Figure 15: Transient simulation result of the capacitor bank from the energy management unit

Topology switch	Rise time
Topology 1 to 2	18.3ms
Topology 2 to 3	1.3ms

Table 13: Capacitor voltage rise time during topology switch

Transient behavior under temperature variations

• Temperatures: $-40^{\circ}C$, $0^{\circ}C$, $60^{\circ}C$, $120^{\circ}C$

Figure 22: LDO regulator performance at V_{in} =2V for varying temperatures

Temperature (⁰ C)	Max. undershoot (mV)	Max. overshoot (mV)
-40	130	30
0	50	28
60	45	30
120	58	40

Table 20: LDO regulator maximum undershoot and overshoot for varying temperatures at $V_{\rm in}$ =2V

31

Transient behavior under temperature variations

• Temperatures: $-40^{\circ}C$, $0^{\circ}C$, $60^{\circ}C$, $120^{\circ}C$

Figure 23: LDO regulator performance at V_{in} =5V for varying temperatures

Temperature (⁰ C)	Max. undershoot (mV)	Max. overshoot (mV)
-40	65	25
0	30	23
60	30	26
120	40	30

Table 21: LDO regulator maximum undershoot and overshoot for varying temperatures at $V_{\rm in}$ =5V

DC Line Regulation

- Defined as the change in output voltage in response to a change in the input voltage at a fixed load current.
- LNR= $\frac{\Delta V_{out}}{\Delta V_{IN}}$
- Commonly tested under maximum load current.
- LNR 0.20mV/V at the point of maximum slope.

Figure 24: LDO regulator Line Regulation

33

DC Load Regulation

- Defined as the rate of change of the output voltage in response to a change in the load current, at a constant input voltage.
- LDR= $\frac{\Delta V_{out}}{\Delta I_{load}}$
- Load current is varied from 0 to 25 $\mu A.$
- LDR 0.026mV/ μ A at the point of maximum slope for V $_{in}$ =2V.
- LDR $8\mu V/\mu A$ at the point of maximum slope for $V_{..}=5V$

Efficiency

- Current efficiency $\eta_I = \frac{l_{load}}{l_{ln}} = \frac{l_{load}}{l_{load} + l_Q}$ Power efficiency $\eta = \frac{v_{in} v_{DO}}{v_{in}} * \eta_I = \left[1 \frac{v_{DO}}{v_{in}}\right] \eta_I$ Quiescent current I_Q :

Parameter	Error amplifier	Pass transistor	Feedback network	Total consumption
Ι _Q	3.1799μΑ	13.1nA	13.11nA	3.2μΑ

Table 22: LDO Regulator total current consumption

- $I_{load(active)}$ = 25 μ A, $I_{load(inactive/average)}$ = 6.7 μ A, V_{in} = 2V, V_{DO} =145mV
- η_I = 88.65%, η = 82.22% for $I_{load(active)}$
- η_I = 67.67%, η = 62.76% for $I_{load(inactive/average)}$

35

Final results- Summary

Parameter	Specification	Nominal Results
V _{out}	1.8V	1.8V
V_{DO}	<0.2V	145mV
IQ	-	3.2μΑ
Gain (worst case)	-	55.5dB
Unity Gain Frequency (worst case)	-	42.94kHz
Phase margin (worst case)	>45 ⁰	64.36 ⁰
Power efficiency (I _{load,active})	-	82.22%
Power efficiency (I _{load,inactive/average})	-	62.76%

Table 23: Comparison between specification and final result of the designed LDO regulator

Possible Improvements

- Instead of a constant voltage source, a voltage reference circuit can be designed as the reference voltage of the error amplifier.
- The common-source PMOS transistor at the error amplifier output stage could be biased in triode region to increase the open-loop gain for higher load currents [4].
- A current amplifier could be used as a capacitance multiplier instead of a high valued Miller capacitor to save chip area [15].

37

Reference

(PRIME): IEEE. 2018, pages 241–244.

- [1] Wira Adhitama. "Simple Equation for Capacitor Charging With RC Circuits". url: https://wiraelectrical.com/equation-for-capacitor-charging/.
- [2] Bhupendra K Ahuja. "An improved frequency compensation technique for CMOS operational amplifiers". inIEEE journal of solid-state circuits: 18.6 (1983), pages 629–633.
- [3] Phillip E Allen and Douglas R Holberg. CMOS analog circuit design. Elsevier, 2011.
- [4] Carlos Felipe Ventura Arizmendi. "A 0.18 um CMOS Internally-Compensated Low-Dropout Voltage Regulator". 2014.
- [5] R Jacob Baker. CMOS: circuit design, layout, and simulation. John Wiley & Sons, 2019.
- [6] Miroslaw Cermak. ""Design of low-dropout voltage regulator"". mathesis. Czech Republic: Czech Tech. Univ. in Prague, 2016.
- [7] Chaitanya K Chava and José Silva-Martinez. "A frequency compensation scheme for LDO voltage regulators". inIEEE Transactions on Circuits and Systems I: Regular Papers: 51.6 (2004), pages 1041–1050.
- [8] Paulo Cesar Crepaldi andothers. "A low power CMOS voltage regulator for a wireless blood pressure biosensor". inIEEE Transactions on Instrumentation and Measurement: 61.3 (2011), pages 729–739.
 [9] Gianluca Giustolisi, Gaetano Palumbo and Ester Spitale. "Robust Miller compensation with current
- [9] Gianluca Giustolisi, Gaetano Palumbo and Ester Spitale. "Robust Miller compensation with current amplifiers applied to LDO voltage regulators". inIEEE Transactions on Circuits and Systems I: Regular Paners: 59 (1/2012). pages 1880—1893.
- Papers: 59.9 (2012), pages 1880–1893.
 [10] Paul R Gray and Robert G Meyer. "MOS operational amplifier design-a tutorial overview". inleee journal of solid-state circuits: 17.6 (1982), pages 969–982.
- [11] Guruprasad. "Power Management Circuits, Guruprasad Assistant Professor, senior Scale ECE Department, MIT, Manipal". url: https://www.researchgate.net/publication/303312570.
- [12] Institute for Integrated Circuits, Hamburg University of Technology. "ACDLab_WS1920_T02_opamp_analysis".
 University Lecture. 2019-20.
 [13] Kay-Ove Jensen. An Energy Management Integrated Circuit for a Bank of Supercapacitors. Master
- project work, Institute for Integrated Circuits, Hamburg University of Technology. 2021.
 [14] Pablo Mendoza-Ponce andothers. "Super-capacitors for implantable medical devices with wireless power transmission". in 2018 14th Conference on Ph. D. Research in Microelectronics and Electronics

Reference

- [15] Robert J Milliken, Jose Silva-Martinez and Edgar Sánchez-Sinencio. "Full on-chip CMOS low-dropout voltage regulator". inIEEE Transactions on Circuits and Systems I: Regular Papers: 54.9 (2007),
- [16] Glenn Morita. "Understand Low-Dropout Regulator (LDO) Concepts to Achieve Optimal Designs". url:
- https://www.analog.com/en/analog-dialogue/articles/understand-ldo-concepts.html.
 [17] Mehdi Nasrollahpour andothers. "ECP technique based capacitor-less LDO with high PSRR at low frequencies, -89dB PSRR at 1MHz and enhanced transient response". in2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD): IEEE, 2017, pages 1–4. isbn: 978-1-5090-5052-9. doi: 10.1109/SMACD.2017.7981570. [18] Michael H. Perrott. "Analysis and Design of Analog Integrated Circuits Lecture 16 Subthreshold Operation
- and gm/ld Design". url: https://www.cppsim.com/CircuitLectures/Lecture16.pdf.
- [19] Prof. Dr.-Ing. Matthias Kuhl, Institute for Integrated Circuits, Hamburg University of Technology.
 "Chapter 4: Operational Amplifiers From Single Stage to Two Stage –". University Lecture. 2020.
- [20] Behzad Razavi. Design of analog CMOS integrated circuits., 2005.
- [21] Guoyong Shi. "Symbolic Behavioral Modeling for Slew and Settling Analysis of Operational Amplifiers". url: https://www.researchgate.net/publication/230603210.
 [22] Ramy Tantawy and Elizabeth J Brauer. "Performance evaluation of CMOS low drop-out voltage
- regulators". inThe 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS'04. volume 1. IEEE. 2004, pages I–141.
- [23] Chetali Yadav and Sunita Prasad. "Low voltage low power sub-threshold operational amplifier in 180nm CMOS". in 2017 Third international conference on sensing, signal processing and security (ICSSS): IEEE. 2017, pages 35-38.

39

Thank You