AnalizaKretanjaVozila

September 5, 2019

1 Analiza podataka kretanja vozila iz .csv filea

Demo kako uz pomoc pythona i *matplotlib* biblioteke za prikaz grafova Prvo uvezemo potrbne bibliteke

```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    from numpy import genfromtxt, arange, sin, pi
    from matplotlib import style
    from matplotlib import dates as mpl_dates
    import numpy as np
    from pandas.plotting import register_matplotlib_converters
    register_matplotlib_converters()
```

Unese se ime datoteke s podacima i mapiraju se polja sukladno zapisanome.

U ovom primjeru podaci su razdvojeni s znakom ',' ali cesti je slucaj kada su podaci odvojeni nekim drugim znakom te se to treba posebno naznaciti kako bi program znao granice između polja.

1.1 Line plot

Sada smo spremni za prikazati prikupljene podatke. Prvo mozemo prikazati jednostavan s/t graf - brzinu u vremenu. Kako je brzina zapisana u cvorovima, a mi je zelimo prikazati u km/h potrebno izvrsiti konverziju. 1 nauticna milja odgovara 1.852 km.

Svaki graf treba imati oznacene osi. S komandom plt.xlabel i ylabel oznacili smo osi grafa i analogno tome imenovan je i graf kako bi citatelj znao to graf predstavlja. Naravno, pojedinacni grafovi se mogu posebno spremiti u visokoj rezoluciji i zeljenom formatu za kasniju upotrebu.

```
plt.plot(data['Time'],data['Speed']*1.852, 'b-')

plt.legend(loc='upper left')
plt.xlabel ('time')
plt.ylabel ('v [km/h]')
plt.title('Brzina kretanja vozila')
#plt.savefig('GrafKretanjaBrzineVozila.png',format='png', bbox_inches='tight', dpi=100
```

Out[3]: Text(0.5,1,'Brzina kretanja vozila')

Dodatno se mogu izracunati i pogledati razni podaci koje nas zanimaju.

Ako npr. zelimo znati koja je bila maksimalna brzina kojom se vozilo kretalo to se moze vidjeti na sljedeci nacin:

```
In [4]: print('Maksimalna brzina = ',np.max(data['Speed']*1.852) , 'km/h')
Maksimalna brzina = 99.73020000000001 km/h
```

Ako nas zanimaju podaci o temperaturi moguce je cak koristiti i ugrađene statisticke funkcije za izracunati zeljene podatke

```
plt.plot(data['Time'],data['Temperature'], 'g', linewidth=2)

plt.legend(loc='upper left')
plt.xlabel ('time')
plt.ylabel ('$\Theta \, [^\circ C]$')
plt.title('Temperatura tokom puta')

print ('Minimalna temperatura: ',np.min(data['Temperature']), 'řC')
print ('Maximalna temperatura: ',np.max(data['Temperature']), 'řC')
print ('Razlika temperature: ',np.max(data['Temperature']) - np.min(data['Temperature'])
print ('Razlika temperature: ','{:.2f}'.format(np.ptp(data['Temperature'])), 'řC')
print ('Prosjecna temperatura: ', '{:.2f}'.format(np.mean(data['Temperature'])), 'řC')
```

Minimalna temperatura: 25.73 řC Maximalna temperatura: 27.99 řC

Razlika temperature: 2.2599999999999 řC

Razlika temperature: 2.26 řC

Prosjecna temperatura: 26.64 řC ś 0.57 řC

Ako elimo plotati ove dvije veliine na istom grafu da vizualno utvrdimo postojanje korelacije moemo kreirati subplot

```
ax1.set_xlabel('time')
ax1.set_ylabel('v [km/h]', color='b')
ax1.tick_params('y', colors='b')

ax2 = ax1.twinx()
12,=ax2.plot(data['Time'],data['Temperature'], 'g', alpha=0.7, label='Temperature')
ax2.set_ylabel('$\Theta \, [^\circ C]$', color='g')
ax2.tick_params('y', colors='g')

plt.legend([11, 12],["Speed", "Temperature"])
```

Out[6]: <matplotlib.legend.Legend at 0x258d5030f98>

Uvidom u graf ne mozemo vizualno utvdriti postoje zavisnosti jedve velicine o drugoj, ali se moze primjetiti trend porasta temperature s vremenom. Koji je tocan uzrok tome treba dodatno istraziti sto nije predmet ovog rada.

1.2 Scatter plot

Koristeci funkciju *scatter* koji za razliku od *line* ne spaja susjedne toke linijom moemo prikazati kretanje vozila u koordinatnom sustavu.

Dodavanjem vrijednosti parametru c (color) moemo prikazati i dodatnu dimenziju, a to je u ovom sluaju brzina kretanja prikazana putem obojene skale.

```
In [20]: fig, ax = plt.subplots()

p=ax.scatter(data['Longitude'],data['Latitude'],c=data['Speed']*1.852,marker='o',cmap*
#RdYlGn, jet, viridis // _r - rev

plt.rcParams["figure.figsize"] = (10,8)
fig.colorbar(p)
```

```
plt.xlabel ('Longitude')
plt.ylabel ('Latitude')
plt.title('Pozicija i brzina objekta')
```

Out[20]: Text(0.5,1,'Pozicija i brzina objekta')

