Лекция 1

Односторонние функции

(Конспект: К. Шмаков)

Часто в криптографии используется понятие односторонней функции. Одностороннюю функцию можно интуитивно представить себе как эффективно вычислимую функцию, обратную к которой никто (в том числе наш противник) не может вычислить эффективно.

1.1 Функции, односторонние в наихудшем случае

В качестве "первого приближения" рассмотрим вариант, когда обратная функция просто не вычислима на детерминированной машине Тьюринга за полиномиальное время.

Теорема 1.1. Пусть $P \neq NP$. Тогда существует такая $f \in \widetilde{P}$ (т.е. вычислимая на полиномиальной детерминированной машине Тьюринга), что $f^{-1} \notin \widetilde{P}$.

Доказательство. Действительно, пусть Φ — формула в КН Φ , а A — набор значений переменных. Определим одностороннюю функцию:

$$f(\Phi,A) = \begin{cases} (\Phi,1^{|A|}), & \text{if } \Phi[A] = \mathtt{True}, \\ (\Phi,0^{|A|}), & \text{otherwise}. \end{cases}$$

Если бы могли обратить эту функцию, мы могли бы найти выполняющий набор для любой выполнимой формулы, вычислив

$$f^{-1}(\Phi, 1^{\text{кол-во переменных}}).$$

Но мы знаем, что эта задача $\widetilde{\mathbf{NP}}$ -полна.

Определение 1.1. Функция f называется vecmnoй, если у любой точки y её образа имеется прообраз, длина которого полиномиально (от длины y) ограничена.

В дальнейшем все рассматриваемые односторонние функции и прочие конструкции, основанные на них, — по существу, честные (даже если определения допускают иное).

Упражнение 1.1 (1). В условии теоремы " \Rightarrow " заменить на " \Leftrightarrow " в предположении, что f — честная.

К сожалению, построенная нами функция может быть легко обращена во многих точках. Поэтому понятие односторонней функции нуждается в корректировке.

1.2 Односторонние функции

Определение 1.2. Функция $f: \{0,1\}^* \to \{0,1\}^*$ называется *односторонней* (*one-way function*, *owf*), если

- f вычислима за полиномиальное время на ДМ T^2 ,
- $\bullet \ \forall \text{BMT}^3 \ A \\
 \forall k \in \mathbb{N} \\
 \exists N \\
 \forall n > N$

$$\Pr\{A(f(x), 1^n) \in f^{-1}(f(x))\} < \frac{1}{n^k},$$

где вероятность берётся по случайным числам, используемым A, и равномерному распределению по входным строкам $x \in \{0,1\}^n$.

Замечание 1.1. Заметим, что наличие 1^n у взломщика предоставляет ему возможность хотя бы пытаться взламывать нечестные функции. В каком случае A может самостоятельно вычислить n? Ясно, что это так, например, если длина f(x) — инъективная функция от n.

Замечание 1.2. Иногда так определённые односторонние функции называют *сильно* односторонними функциями. Мы слово "сильно" будем опускать.

¹Решено на семинаре.

²ДМТ — детерминированная машина Тьюринга

³ВМТ — вероятностная машина Тьюринга — (детерминированная) машина Тьюринга, использующая случайные числа.

Упражнение 1.2 (4). Что будет, если при вычислении f разрешить использовать случайные числа: изменится ли понятие, будет ли существование старых оwf эквивалентно существованию новых owf?

Варианты: f может быть вычислима всегда правильно, но лишь за occudaemoe полиномиальное время (Las Vegas), либо же f может быть вычислима с константной ошибкой (Monte Carlo).

Упражнение 1.3. Что будет, если рассматривать лишь детерминированные A: как будут соотноситься понятия односторонних функций?

Упражнение 1.4. А если f или A, или оба будут последовательностью схем, то изменится ли что-то? А в предположениях упражнений 1.2 и 1.3?

Упражнение 1.5 (5). Что будет, если x будет распределено на $\{0,1\}^n$ не равномерно, а иначе (но вычислимо за полиномиальное время)?

1.3 Семейства односторонних функций

Много кому надо шифровать — значит, каждому нужна своя собственная односторонняя функция!

Определение 1.3. Семейство односторонних функций (one-way function family, owff) — это детерминированный полиномиальный по времени алгоритм G, который по входу, состоящему из 1^n и (случайной строки) r_g , генерирует e и s — две булевы схемы, задающие функции

- $e \colon \{0,1\}^n \to \{0,1\}^{\epsilon(n)}$ (encryptor собственно односторонняя функция),
- $s: \{0,1\}^{\sigma(n)} \to \{0,1\}^n$ (sampler по (случайной) строке r_s генерирует вход для функции e),

```
причём \forall \mathrm{BMT}\ A \forall k\in\mathbb{N} \exists N \forall n>N \Pr\{A(e(x),1^n,e,s)\in f^{-1}(f(x))\}<\frac{1}{n^k},
```

⁴Решено на семинаре.

⁵Решено на семинаре.

где

$$G(1^n, r_g) = (e, s),$$

$$s(r_s) = x,$$

вероятность берётся по случайным числам, используемым A, и по (равномерно распределённым) r_g и r_s .

Мотивация для наличия s следущая: e не обязана быть односторонней всюду; s выбрасывает из области определения e "простые" точки. Взломщик A получает s на входе, так как сама односторонняя функция должна быть целиком известна публике.

Упражнение 1.6 (6). А нужно ли передавать взломщику s?

Упражнение 1.7. Выполнить упражнения 1.1–1.5 для семейств.

Оказывается, что owf и owff существуют или не существуют одновременно.

Теорема 1.2. $\exists f - o\partial hocmopohhas \phi yhkuus \Leftrightarrow \exists G - cemeйcmbo odhocmopohhux функций.$

Доказательство. " \Rightarrow ". Построим по f семейство следующим образом. Получая 1^n и r_g , про r_g забываем, а по n строим e как схему, которая отражает результат работы машины Тьюринга, вычисляющей f, на входе длины n (см. курс прошлого семестра). В качестве s возьмём тождественную функцию s(x) = x.

Если получившееся — не семейство односторонних функций, то существует его взломщик A. Но тогда имеется и взломщик A' для исходной owf f: чтобы вызвать A, нам (в дополнение к 1^n и собственно f(x)) требуется e (мы его только что построили по n) и s (тривиально строящееся по n). На вход A подаётся в точности f(x) для равномерно распределённого $x \in \{0,1\}^n$, и результат требуется ровно тот же, что и требовался для owff.

" \Leftarrow ". Построим f по G: f делит свой вход на ν , r_g и r_s (в соответствии с "положенными" согласно G длинами для r_s и r_g на длине $n=|\nu|$) и и запускает $e(s(r_s))$ (где $G(1^n,r_g)=(e,s)$); итого,

$$f(\nu, r_g, r_s) = (e(s(r_s)), e, s).$$

Предположим, что получилась не односторонняя функция, т.е. f ломается на некоторое полиномиальной доле. Но тогда и исходное семейство можно взломать тем же самым взломщиком: строки r_g и r_s распределены, как и положено, равномерно, так как это части входа для f;

⁶Решено на семинаре.

⁷Проблема: а если не делится? Упражнение 1.8!

первые n битов на происходящее не влияют, и распределены они также равномерно; на вход взломщику подаётся привычное ему распределение $e(s(r_s))$ вместе с e и s. А доля будет по-прежнему полиномиальна, так как $n+|r_s(n)|+|r_q(n)|$ ограничено полиномом от n.

Упражнение 1.8 (8). Что делать с тем, что в доказательстве теоремы входная строка для f может "не разделиться" на ν , r_g и r_s ?

Замечание 1.3. В принципе можно определить односторонние функции как многопараметрические функции. Тогда можно было бы не "делить" одну строку на три, а спокойно расставить запятые между ν , r_g и r_s .

Упражнение 1.9. Что произойдёт, если ограничиться $e \colon \{0,1\}^n \to \{0,1\}^n$ или, наоборот, разрешить $e \colon \{0,1\}^{p(n)} \to \{0,1\}^{p(n)}$?

Упражнение 1.10. Сравнить определение односторонней функции с определением из какой-нибудь книги¹⁰ и понять, эквивалентны ли они.

1.4 Слабо односторонние функции

Можно ослабить определение односторонней функции.

Определение 1.4. Функция $f: \{0,1\}^* \to \{0,1\}^*$ — слабо односторонняя функция, если

- f вычислима за полиномиальное время на ДМТ,
- $\exists k \in \mathbb{N}$ $\forall BMT A$ $\exists N$ $\forall n > N$

$$\Pr\{A(f(x), 1^n) \in f^{-1}(f(x))\} < 1 - \frac{1}{n^k},$$

где вероятность берётся по случайным числам, используемым A, и равномерному распределению по входным строкам $x \in \{0,1\}^n$.

Оказывается, что такое ослабление никак не влияет на существование односторонней функции.

Теорема 1.3. $\exists f_w - c$ лабо односторонняя функция $\Leftrightarrow \exists f_s - c$ ильно односторонняя функция.

⁸Решено на семинаре.

 $^{{}^{9}}$ **NB:** в книге Голдрейха именно так.

¹⁰К примеру, Oded Goldreich, Foundations of Cryptography.

Доказательство. "←". Тривиально. "⇒". Построим

$$f_s(x_1, x_2, \dots, x_m) = (f_w(x_1), f_w(x_2), \dots, f_w(x_m)),$$

где m = m(n); полином m(n) мы определим позже (с учётом k_w , определяющего "необратимую" долю $1/n^{k_w}$ для f_w).

Предположим, что существуют A_s и k_s , такие, что A_s обращает f_s хотя бы с вероятностью $1/n^{k_s}$. Построим A'_w , обращающий f_w на строке y, следующим образом: для каждого $1 \le j \le m$ он порождает x_1, \ldots, x_m случайным образом и запускает

$$A_s(f_w(x_1),\ldots,f_w(x_{j-1}),y,f_w(x_{j+1}),\ldots,f_w(x_m)).$$

Если A_s хотя бы для одного значения j сработает успешно, то мы получим элемент $f^{-1}(y)$ (мы его легко распознаем, применив f).

Рассмотрим

$$S_n = \{x \in \{0,1\}^n | \Pr\{A'_w(f_w(x),1^n) \in f_w^{-1}(f_w(x))\} > \frac{n}{a(n)}\},$$

где многочлен a мы определим позднее. Неформально говоря, S_n — множесство тех x, на которых A'_w достаточно успешен; а priori понятно лишь, что он успешен в среднем по всем возможным x — на каких-то [конкретных] x сколько его не повторяй, успеха не добьёшься; а мы бы хотели повторениями увеличить вероятность успеха — повторённый многократно A'_w и будет нашим взломщиком A_w .

Вероятность успеха A'_{w} , повторённого a(n) раз:

$$\Pr\{A_w(f_w(x), 1^n)\} > \Pr\{x \in S_n\} \times \Pr\{A_w(f_w(x), 1^n) | x \in S_n\}.$$

Правый сомножитель легко оценить: вероятность одной неудачи A'_w для такого x — это $1 - \frac{n}{a(n)}$, а после a(n) повторений —

$$\left(\left(1 - \frac{1}{a(n)/n}\right)^{a(n)/n}\right)^n \sim \frac{1}{e^n}.$$

Покажем, что $\Pr\{x \in S_n\} \ge 1 - \frac{n}{m}$ — тогда, взяв достаточно быстро растущий многочлен m, мы сможем взломать f_w с вероятностью, большей любой наперёд заданной доли вида $1 - \frac{1}{n^{k_w}}$, что противоречит определению слабо односторонней функции.

Пусть, напротив, $\Pr\{x \in S_n\} < 1 - \frac{n}{m}$. Оценим вероятность успеха A_s сверху по формуле полной вероятности, разделив два случая: среди его m аргументов все оказались из S_n — или же не все?

В первом случае вероятность события — это $\left(\left(1-\frac{1}{m/n}\right)^{m/n}\right)^n \sim \frac{1}{e^n}$, и даже оценив (условную) вероятность успеха в этом случае единицей, мы получим экспоненциально маленькое слагаемое. Напротив, во втором случае мала вероятность успеха. Достаточно оценить эту вероятность при условии, что первый аргумент — не из S_n (слагаемое для всех аргументов будет разве что лишь в m раз больше).

Эта вероятность — не больше, чем вероятность успеха A'_w в этом случае, так как для j=1 алгоритм A'_w с первым аргументом f(x) как раз запустит A_s на этом f(x). По определению множества S_n эта вероятность — не больше $\frac{n}{a(n)}$. Выбрав $a(n)=2mn^{1+k_s}$, получим, что общая вероятность успеха A_s — не больше $\frac{nm}{a(n)}+\frac{1}{e^{\Omega(n)}}$. Это меньше, чем $1/n^{k_s}$ для больших n, т.е. противник A_s вовсе не обращает f_s с заявленной вероятностью. Противоречие.

Замечание 1.4. Мы были вынуждены раздуть вход в полиномиальное число раз и, в частности, значительно увеличить N, с которого наша функция надёжна. Можно поступить гораздо экономнее (мы это изучим на семинаре).

Упражнение 1.11 (11). Можно ли перенести эту теорему на случай 00 0 owff?

Упражнение 1.12 (12). f_s получилась определённой на довольно редком множестве. Как быть со входами длины, отличной не mn?

¹¹Тривиальное.

¹²В общих чертах решено на семинаре.