Introduction to ROS

B팀

김준서 임승현 정종현 최지훤

INDEX

- 1. More about ROS
 - 2. Navigation
 - 3. Reference

1

More about ROS

What is ROS?

Why do we need special Robot framework? What are the advantages using ROS?

What is ROS? (2)

Basic Configuration & Communication

TCP based communication

Dividing whole framework into several nodes.

Node communicate each other by sending messages.

Communication between nodes

Topic (Publisher-Subscriber)

Service (Server-Client)

Send message all times

Send Response based on Request

Node Communication example

All nodes are registered by ROS Master (Master Node) Each node publish/subscribe data, has its own functions.

Advantages for providing data types format

:::ROS

Regulated type of data Ex) PointCloud,geometry_msgs

Easy for collaboration between multiple sensors, programs, etc.

Others

Cannot cover up all data types

Hard to collaborate between teams

Hard to manage data formats

For ROS, you can manage your own data types by rosmsg files!

Friendly with various tools & Open Source Packages

Visualization

Friendly with various tools & Open Source Packages

OpenCV

Image Processing

Bunch of ROS packages available in github!

2

Navigation

Overview

http://wiki.ros.org/navigation/Tutorials/RobotSetup

Odometry

https://www.autonics.com/series/300 0482 https://pinkwink.kr/1277 https://wego-robotics.com/wegovlp-16/ http://vctec.co.kr https://www.e2box.co.kr

Visual SLAM

TF

$$\begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_1 \\ X_1 \\ 1 \end{bmatrix}$$

https://answers.ros.org/question/355242/robot_localization-with-turtlebot3/

Map Server

AMCL

O. Initialization: Spread particle on the map http://jinyongjeong.github.io/2017/02/22/lec11_Particle_filter/

AMCL

1. Motion Update: Update motion of particle by control input http://jinyongjeong.github.io/2017/02/22/lec11_Particle_filter/

AMCL

2. Measurement: Obtain data of environment from robot sensor http://jinyongjeong.github.io/2017/02/22/lec11_Particle_filter/

AMCL

3. Weight Update: Update weight of particle from sensor data http://jinyongjeong.github.io/2017/02/22/lec11_Particle_filter/

AMCL

4. Resampling: Resampling particle by weight. http://jinyongjeong.github.io/2017/02/22/lec11_Particle_filter/

AMCL

Global Planner: Dijkstra's Algorithm

https://mattlee.tistory.com/50

- 1. Make cost of start node 0 and the others to inf
- 2. Compare start node cost + edge cost and target node cost
- 3. If former is smaller, update node cost and mother node
- 4. Repeat

Local Planner: DWA Local Planner

1. Discretization

2. Simulation

3. Evaluation

4. Selection

