MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelo de regressão múltipla Exercícios parte 1

O QUE VOU ESTUDAR HOJE?

Exercícios

Modelo de primeira ordem

Modelo de primeira ordem com interação

Variáveis numéricas Variáveis categóricas

Sejam y = vendas em uma lanchonete (milhares de \$), x_1 = número de lanchonetes concorrentes no raio de 1 km, x_2 = população no raio de 1 km (milhares de pessoas) e x_3 uma variável indicadora que vale 1 se a lanchonete tiver drive-thru e 0 se não tiver. Suponha que o modelo de regressão verdadeiro seja:

$$y = 10,00 - 1,2x_1 + 6,8x_2 + 15,3x_3 + \varepsilon$$

- a) Qual é o valor médio das vendas quando há 2 lojas concorrentes, 8000 pessoas no raio de 1 km e a lanchonete dispõe de drive-thru?
- b) Qual é o valor médio das vendas para uma lanchonete que não dispõe de drive-thru e que tem três concorrentes e 5000 pessoas no raio de 1 km?
- c) Interprete β_3 .

Antes de resolver o exercício

$$y = 10,00 - 1,2x_1 + 6,8x_2 + 15,3x_3 + \epsilon$$
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

Variável resposta → y = vendas em uma lanchonete (milhares de \$), Variáveis preditoras:

- $x_1 e x_2 \leftarrow numéricas$
 - x₁ = número de lanchonetes concorrentes no raio de 1 km,
 - x₂ = população no raio de 1 km (milhares de pessoas) e
- x₃ ← categórica
 - $x_3 = 1$ se a lanchonete tiver drive-thru
 - $x_3 = 0$ se não tiver drive-thru

a) Qual é o valor médio das vendas quando há 2 lojas concorrentes, 8000 pessoas no raio de 1km e a lanchonete dispõe de drive-thru?

Modelo
$$y = 10,00 - 1,2x_1 + 6,8x_2 + 15,3x_3 + \epsilon$$

- y = vendas em uma lanchonete (milhares de \$),
- x₁ = número de lanchonetes concorrentes no raio de 1 km
 - $x_1 = 2$
- x₂ = população no raio de 1 km (milhares de pessoas) e
 - x₂ = 8 (veja que na descrição indica que o valor é por milhares)
- $x_3 = 1 \rightarrow a$ lanchonete possui drive-thru

Valor esperado:
$$\mu_{y \cdot x_{\bar{1}}^* \cdot x_2^* \cdot x_3^*} = \mu_{y \cdot 2 \cdot 8 \cdot 1}$$
?
$$\mu_{y \cdot 2 \cdot 8 \cdot 1} = 10,00 - 1,2(2) + 6,8(8) + 15,3(1)$$

$$\mu_{v \cdot 2 \cdot 8 \cdot 1} = 77,3 \text{ isto \'e, } 77300\$ \text{ em vendas}$$

b) Qual é o valor médio das vendas para uma lanchonete que não dispõe de drive-thru e que tem três concorrentes e 5000 pessoas no raio de 1km?

Modelo
$$y = 10,00 - 1,2x_1 + 6,8x_2 + 15,3x_3 + \epsilon$$

- y = vendas em uma lanchonete (milhares de \$),
- x₁ = número de lanchonetes concorrentes no raio de 1 km
 - $x_1 = 3$
- x₂ = população no raio de 1 km (milhares de pessoas) e
 - $x_2 = 5$ (veja que na descrição indica que o valor é por milhares)
- x₃ =0 → a lanchonete não tem drive-thru

Valor esperado:
$$\mu_{y \cdot x_{\bar{l}}^* \cdot x_2^* \cdot x_3^*} = \mu_{y \cdot 3 \cdot 5 \cdot 0}$$
?
$$\mu_{y \cdot 2 \cdot 8 \cdot 1} = 10,00 - 1,2(3) + 6,8(5) + 15,3(0)$$
 $\mu_{y \cdot 2 \cdot 8 \cdot 1} =$ 40,4 isto é, 40400\$ em vendas.

b. Interprete β_3

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

Modelo
$$y = 10,00 - 1,2x_1 + 6,8x_2 + 15,3x_3 + \varepsilon$$

constante

Se manter fixos os valores de x_1 (quantidade de lanchonetes) x_2 (população no raio de 1 km), o que ocorre com as vendas?

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$
constante

Elas incrementam em 15,3 (isto é \$15300) se a lanchonete tiver drive-thu

Pesquisadores realizaram um estudo para verificar como y = deflexão máxima (mm) de vigas de cimento compostas com dureza ultrarreforçada era influenciada por x1 = proporção do alcance do cisalhamento e x2 = resistência à tensão de divisão (MPa), e uma variável x3= x1x2, resultando nos dados a seguir:

("Shear behavior of reinforced ultrahigh toughness cementitious composite beams without trans-verse reinforcement", J. of Materials in Civil Engr., 2012: 1283-1294):

X ₁	$\boldsymbol{x_2}$	y	X ₁	$\boldsymbol{x_2}$	У
2.04	3.55	3.11	3.08	3.62	3.36
2.04	6.07	3.26	3.08	5.89	6.49
3.06	3.55	3.89	4.11	3.62	2.72
3.06	6.07	10.25	4.11	5.89	12.48
4.08	3.55	3.11	2.01	6.18	2.82
4.08	6.16	13.48	3.02	6.18	5.19
2.06	3.62	3.94	4.03	6.18	8.04
2.06	6.16	3.53			

a) Se R²=0,825 observe a seguir alguns resultados obtidos no python, descreva o modelo resultante e faça um teste de utilidade do modelo.

	coef	std err	t	P> t		
Intercept	17.2787	7.167	2.411	0.035		
x1	-6.3678	2.260	-2.817	0.017		
x2	-3.6584	1.364	-2.682	0.021		
x3	1.7067	0.431	3.956	0.002		

- b) O preditor de interação deve ser retido no modelo? Faça um teste de hipóteses utilizando um nível de significância de 0,05.
- c) Se o modelo $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$ fosse ajustado aos dados. Considerando que os preditores x1, x2 e x1x2 permanecem no modelo, os preditores quadráticos fornecem informações adicionais úteis? Declare e teste as hipóteses apropriadas.

a) Se R²=0,825 observe a seguir alguns resultados obtidos no python, descreva o modelo resultante e faça um teste de utilidade do modelo.

=======================================						
	coef	std err	t	P> t		
Intercept	17.2787	7.167	2.411	0.035		
x1	-6.3678	2.260	-2.817	0.017		
x2	-3.6584	1.364	-2.682	0.021		
x3	1.7067	0.431	3.956	0.002		

O resultado da regressão é uma reta do tipo:

$$y = 17, 3 - 6, 37x_1 - 3, 66x_2 + 1, 71x_3$$

De acordo com a descrição do enunciado

$$y = 17, 3 - 6, 37x_1 - 3, 66x_2 + 1, 71x_1x_2$$

a) Se R²=0,825 observe a seguir alguns resultados obtidos no python, descreva o modelo resultante e faça um teste de utilidade do modelo.

O modelo com preditores de primeira ordem e interação:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$$

$$y = 17, 3 - 6, 37x_1 - 3, 66x_2 + 1, 71x_1x_2$$

a) Se R²=0,825 observe a seguir alguns resultados obtidos no python, descreva o modelo resultante e faça um teste de utilidade do modelo.

O modelo com preditores de primeira ordem e interação:

$$y = 17, 3 - 6, 37x_1 - 3, 66x_2 + 1, 71x_1x_2$$

Teste de utilidade do modelo:

- Hipótese nula H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$
- Hipótese alternativa H_a pelo menos um $\beta_i \neq 0$

a) Se R²=0,825 observe a seguir alguns resultados obtidos no python, descreva o modelo resultante e faça um teste de utilidade do modelo.

f = 17, 29

Estatística de teste:

$$f = \frac{R^2/k}{(1-R^2)/[n-(k+1)]}$$
 n=15, k=3 e R²=0,825
$$f = \frac{0,825/3}{(1-0,825)/[15-(3+1)]}$$

- a) Se R²=0,825 observe a seguir alguns resultados obtidos no python, descreva o modelo resultante e faça um teste de utilidade do modelo.
- $F_{k,n-(k+1)} \to F_{3,11}$
- Analisar se $f \ge F_{crit}$ rejeitar H_0
- f=17,29 e $F_{crit} = 6,49$
- 17,29 \geq 3,59 SIM, portanto rejeitar a hipótese nula H_0 isto é, que existe relação entre y e pelo menos um dos parâmetros.

	α	1	2	3	4	5	6
10	.050 .010	4.96 10.04	4.10 7.56	3.71 6.55	3.48 5.99	3.33 5.64	3.22 5.39
	.001	21.04	14.91	12.55	11.28	10.48	9.93
	.100	3.23 4.84	2.86 3.98	2.66 3.59	2.54 3.36	2.45 3.20	2.39 3.09
11 .(.010	9.65 19.69	7.21 13.81	6.22 11.56	5.67 10.35	5.32 9.58	5.07 9.05
	.100	3.18	2.81	2.61	2.48	2.39	2.33
12	.050 .010	4.75 9.33	3.89 6.93	3.49 5.95	3.26 5.41	3.11 5.06	3.00 4.82
	.001	18.64	12.97	10.80	9.63	8.89	8.38

b) O preditor de interação deve ser retido no modelo? Faça um teste de hipóteses utilizando um nível de significância de 0,05.

========	=========			
	coef	std err	t	P> t
Intercept	17.2787	7.167	2.411	0.035
x1	-6.3678	2.260	-2.817	0.017
x2	-3.6584	1.364	-2.682	0.021
x3	1.7067	0.431	3.956	0.002

-6.3678

-3.6584

1.7067

x1

x2

a) O preditor de interação deve ser retido no modelo? Faça um teste de hipóteses utilizando um nível de significância de 0,05.

-2.817

-2.682

3.956

0.017

0.021

0.002

$$eta_3 = 1,71\ extbf{e}\ s_{\widehateta_3} = 0,431$$
 $t = rac{\widehateta_3 - eta_{30}}{s_{\widehateta_3}} = rac{1,71}{0,431} = 3,968$ coef std err t /P>|t|
Intercept 17.2787 7.167 2.411 0.035

2.260

1.364

0.431

a) O preditor de interação deve ser retido no modelo? Faça um teste de hipóteses utilizando um nível de significância de 0,05.

$$\beta_3 = 1,71$$
, $s_{\widehat{\beta}_3} = 0,431$, $t = 3,968$
$$t_{crit} = t_{\alpha \atop \overline{2},(n-(k+1))} = t_{0,025,11} = 2,201$$

 $|t| \ge t_{crit} \rightarrow 3,968 \ge 2,201$ SIM, portantorejeitarhipótesenula β_3 deve ser mantido no modelo

				======
	coef	std err	t /	P> t
Intercept	17.2787	7.167	2.411	0.035
x1	-6.3678	2.260	-2.817	0.017
x2	-3.6584	1.364	-2.682	0.021
x3	1.7067	0.431	3.956	0.002

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$$

- Hipótese nula H_0 : $\beta_3 = \beta_4 = 0$
- Hipótese alternativa H_a pelo menos um $\beta_i \neq 0$
- Se $|t| \ge t_{crit}$ rejeitar H_0
 - n=15 k=5
 - $t_{crit} = t_{\frac{\alpha}{2},(n-(k+1))} = t_{0,025,9} = 2,262$

```
1 regmul = smf.ols('y ~ x1 + x2 + x3 + x4 + x5', data = df)
2 res = regmul.fit()
3 print(res.summary())
```

OLS Regression Results					
Dep. Variable: y R-squared:					
Dep. Variable:		-			0.845
Model:		_	. R-squared:		0.759
Method:	Least Square	es F-st	tatistic:		9.807
Date:	Fri, 01 Apr 202	22 Prot	(F-statisti	c):	0.00192
Time:	02:35:	54 Log-	-Likelihood:		-26.215
No. Observations:	1	LS AIC:	:		64.43
Df Residuals:		9 BIC:	:		68.68
Df Model:		5			
Covariance Type:	nonrobus	st			
coe	f std err	t	P> t	[0.025	0.975]
Intercept -34.322	7 48.933	-0.701	0.501	-145.017	76.372
x1 -6.568	2 6.364	-1.032	0.329	-20.964	7.827
x2 19.346	9 21.662	0.893	0.395	-29.657	68.351
x3 0.058	5 0.954	0.061	0.952	-2.100	2.217
x4 -2.358	6 2.217	-1.064	0.315	-7.373	2.656
x5 1.654	9 0.452	3.661	0.005	0.632	2.677

c) Se o modelo $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$ fosse ajustado aos dados. Considerando que os preditores x1, x2 e x1x2 permanecem no modelo, os preditores quadráticos fornecem informações adicionais úteis? Declare e teste as hipóteses apropriadas.

Se $|t| \ge t_{crit}$ rejeitar $H_0 \rightarrow |t_i| \ge 2,262$?? NÃO rejeitar H_0 Os preditores $\beta_3 \ e \ \beta_4$ não proveem informação relevante

=========	========	========		
	coef	std err	t	P> t
Intercept	-34.3227	48.933	-0.701	0.501
x1	-6.5682	6.364	-1.032	0.329
x2	19.3469	21.662	0.893	0.395
x3	0.0585	0.954	0.061	0.952
x4	-2.3586	2.217	-1.064	0.315
x5	1.6549	0.452	3.661	0.005
========	========	=========	========	

MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelo de regressão múltipla Exercícios parte 1