EXERCISES 14.2

In Exercises 1-4, calculate the given iterated integrals.

1.
$$\int_0^1 dx \int_0^x (xy + y^2) dy$$
 2. $\int_0^1 \int_0^y (xy + y^2) dx dy$

3.
$$\int_0^{\pi} \int_{-x}^{x} \cos y \, dy \, dx$$
 4. $\int_0^2 dy \, \int_0^{y} y^2 e^{xy} \, dx$ In Exercises 5–14, evaluate the double integrals by iteration.

5.
$$\iint_R (x^2 + y^2) dA$$
, where R is the rectangle $0 \le x \le a$, $0 \le y \le b$

6.
$$\iint_R x^2 y^2 dA$$
, where R is the rectangle of Exercise 5

7.
$$\iint_{S} (\sin x + \cos y) dA$$
, where S is the square
$$0 \le x \le \pi/2, 0 \le y \le \pi/2$$

8.
$$\iint_T (x - 3y) dA$$
, where *T* is the triangle with vertices $(0, 0)$, $(a, 0)$, and $(0, b)$

9.
$$\iint_R xy^2 dA$$
, where *R* is the finite region in the first quadrant bounded by the curves $y = x^2$ and $x = y^2$

10.
$$\iint_D x \cos y \, dA$$
, where *D* is the finite region in the first quadrant bounded by the coordinate axes and the curve $y = 1 - x^2$

11.
$$\iint_D \ln x \, dA$$
, where *D* is the finite region in the first quadrant bounded by the line $2x + 2y = 5$ and the hyperbola $xy = 1$

12.
$$\iint_T \sqrt{a^2 - y^2} dA$$
, where *T* is the triangle with vertices $(0,0), (a,0)$, and (a,a)

13.
$$\iint_R \frac{x}{y} e^y dA$$
, where R is the region

$$0 \le x \le 1, x^2 \le y \le x$$

14.
$$\iint_T \frac{xy}{1+x^4} dA$$
, where *T* is the triangle with vertices $(0,0)$, $(1,0)$, and $(1,1)$

In Exercises 15-18, sketch the domain of integration and evaluate the given iterated integrals.

15.
$$\int_0^1 dy \int_y^1 e^{-x^2} dx$$
 16. $\int_0^{\pi/2} dy \int_y^{\pi/2} \frac{\sin x}{x} dx$

17.
$$\int_0^1 dx \int_x^1 \frac{y^{\lambda}}{x^2 + y^2} dy \quad (\lambda > 0)$$

18.
$$\int_0^1 dx \int_x^{x^{1/3}} \sqrt{1-y^4} dy$$

In Exercises 19-28, find the volumes of the indicated solids.

19. Under
$$z = 1 - x^2$$
 and above the region $0 \le x \le 1$, $0 \le y \le x$

20. Under
$$z = 1 - x^2$$
 and above the region $0 \le y \le 1$, $0 \le x \le y$

21. Under
$$z = 1 - x^2 - y^2$$
 and above the region $x \ge 0$, $y \ge 0$, $x + y \le 1$

22. Under
$$z = 1 - y^2$$
 and above $z = x^2$

23. Under the surface
$$z = 1/(x + y)$$
 and above the region in the xy -plane bounded by $x = 1$, $x = 2$, $y = 0$, and $y = x$

24. Under the surface
$$z = x^2 \sin(y^4)$$
 and above the triangle in the xy -plane with vertices $(0,0)$, $(0,\pi^{1/4})$, and $(\pi^{1/4},\pi^{1/4})$

25. Above the
$$xy$$
-plane and under the surface $z = 1 - x^2 - 2y^2$