6. Random matrices and covariance estimation

担当:みーとみ

2021年6月30日,7月7日

Table of Contents

6.1 Some preliminaries

6.2 Wishart matrices and their behavior

6.1 Some preliminaries

6.2 Wishart matrices and their behavior

- ・サンプル x_i は, d-次元正規分布 $\mathcal{N}(0,\Sigma)$ から i.i.d. で引かれるとする.
- ・このとき,

$$X = \begin{pmatrix} x_1^{\mathrm{T}} \\ \vdots \\ x_n^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{n \times d}$$

は, Σ -Gaussian ensemble から引かれると言う.

・ Sample covariance $\widehat{\Sigma} = \frac{1}{n} X^{\mathrm{T}} X$ は, a multivariate Wishart distribution に従う.

Theorem 6.1

 $X \in \mathbb{R}^{n \times d}$ は Σ -Gaussian ensemble から引かれるとする. このとき, 任意の $\delta > 0$ に対し, 最大特異値 $\sigma_{\max}(X)$ は以下の upper deviation inequality を満たす:

$$\mathbb{P}\left[\frac{\sigma_{\max}(X)}{\sqrt{n}} \ge \gamma_{\max}\left(\sqrt{\Sigma}\right)(1+\delta) + \sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}\right] \le \exp\left(-\frac{n\delta^2}{2}\right). \tag{6.8}$$

さらに $n \geq d$ なら, 最小特異値 $\sigma_{\min}(X)$ は以下の lower deviation inequality を満たす:

$$\mathbb{P}\left[\frac{\sigma_{\min}(X)}{\sqrt{n}} \le \gamma_{\min}\left(\sqrt{\Sigma}\right)(1-\delta) - \sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}\right] \le \exp\left(-\frac{n\delta^2}{2}\right). \tag{6.9}$$

Example 6.2 (Operator norm bounds for the standard Gaussian ensemble)

- ・ $W \in \mathbb{R}^{n \times d}$ は各成分が $\mathcal{N}(0,1)$ i.i.d. で引かれる random matrix とする $(\Sigma = I_d)$.
- ・Thm 6.1 より, $n \geq d$ なら, 確率 $1 2\exp\left(-\frac{n\delta^2}{2}\right)$ 以上で

$$\frac{\sigma_{\max}(W)}{\sqrt{n}} \le 1 + \delta + \sqrt{\frac{d}{n}}$$
 and $\frac{\sigma_{\min}(W)}{\sqrt{n}} \ge 1 - \delta - \sqrt{\frac{d}{n}}$ (6.10)

となる.

・よって、同じ確率で

$$\left\| \left\| \frac{1}{n} W^{\mathrm{T}} W - I_d \right\|_{2} \le 2\epsilon + \epsilon^2, \quad \text{where} \epsilon = \sqrt{\frac{d}{n}} + \delta.$$
 (6.11)

・したがって, $d/n \to 0$ なら, sample covariance $\widehat{\Sigma} = \frac{1}{n} W^{\mathrm{T}} W$ は identity matrix I_d の一致推定量となる.

Example 6.3 (Gaussian covariance estimation)

- ・ $X \in \mathbb{R}^{n \times d}$ は Σ -Gaussian ensemble からの random matrix とする.
- ・このとき $X=W\sqrt{\Sigma}$ と書ける($W\in\mathbb{R}^{n\times d}$ は standard Gaussian random matrix)ので、

$$\left| \left| \left| \frac{1}{n} X^{\mathrm{T}} X - \Sigma \right| \right| \right|_{2} = \left| \left| \left| \sqrt{\Sigma} \left(\frac{1}{n} W^{\mathrm{T}} W - I_{d} \right) \right| \right| \right|_{2} \leq |||\Sigma|||_{2} \left| \left| \left| \frac{1}{n} W^{\mathrm{T}} W - I_{d} \right| \right| \right|_{2}.$$

・したがって (6.11) より, 任意の $\delta>0$ に対して確率 $1-2\exp\left(-\frac{n\delta^2}{2}\right)$ で

$$\frac{|||\widehat{\Sigma} - \Sigma|||_2}{|||\Sigma|||_2} \le 2\sqrt{\frac{d}{n}} + 2\delta + \left(\sqrt{\frac{d}{n}} + \delta\right)^2. \tag{6.12}$$

・よって, $|||\widehat{\Sigma} - \Sigma|||_2/|||\Sigma|||_2$ は $d/n \to 0$ である限り 0 に収束する.

Example 6.4 (Faster rates under trace constraints)

- ・ $\{\gamma_i(\Sigma)\}_{i=1}^d$ は Σ の固有値列で, $\gamma_1(\Sigma)$ がそのうち最大のもの.
- ・ Σ は、次元に対して独立な定数 C に対し、次の "trace constraint" を満たすとする:

$$\frac{\operatorname{tr}(\Sigma)}{|||\Sigma|||_2} = \frac{\sum_{j=1}^d \gamma_j(\Sigma)}{\gamma_1(\Sigma)} \le C. \tag{6.13}$$

- ・C は Σ の(実質的な)rank と見なせる(\cdot : (6.13) は $C = \operatorname{rank}(\Sigma)$ では常に成立.)
- ・パラメータ $q \in [0,1]$ と半径 $R_q > 0$ の the Schatten q-"balls" を, 以下で定義 する:

$$\mathbb{B}_q(R_q) := \left\{ \Sigma \in S^{d \times d} \middle| \sum_{j=1}^d |\gamma_j(\Sigma)|^q \le R_q \right\}. \tag{6.14}$$

- ・q=0 なら, rank R_a 以下の対称行列の集合.
- ・ q=1 なら, trace constraint になる.
- ・任意の非零行列 $\Sigma \in \mathbb{B}_q(R_q)$ は, (6.13) を $C = R_q/(\gamma_1(\Sigma))^q$ で満たす.

・(6.13) を満たす任意の Σ に対し, Thm 6.1 は高確率で X の最大特異値が次のように抑えられることを保証する:

$$\frac{\sigma_{\max}(X)}{\sqrt{n}} \le \gamma_{\max}(\sqrt{\Sigma}) \left(1 + \delta + \sqrt{\frac{C}{n}} \right). \tag{6.15}$$

・ $\Sigma = I_d$ のときの bound (6.10) と比べると, C が d に置き換わって "実行的なrank" となっている.

Proof of Theorem 6.1.