(PRESQUE) 50 NUANCES DE RANDOM FOREST DANS UN CONTEXT BUSINESS

FILIPPO MAZZA PHD

IDENTIFIEZ ET PRIORISEZ VOS CIBLES

A quels principaux enjeux faisons nous face?

#1 Gagner du temps

Ciblez les comptes avec la meilleure probabilité de succès

Financial data analysis

« shallow » learning

#2

Augmenter la conversion

Utilisez les signaux d'affaires pour personnaliser votre message

#3

Raccourcir le cycle de vente

Bénéficiez des alertes temps réel pour engager la relation au bon moment

News NLP analysis shallow/deep learning

Notre produit : Predict pour identifier les prospects à plus fort potentiel

+ résultats

Sommaire

- Datalake et R&D
- Objectifs
- Contraintes techniques
- Le modèle RandomForest
 - Méthode
 - Erreur Out of Box
 - Évaluation variables
 - Valeurs manquantes
 - Explication du score de similarité
 - Active Learning
- Conclusions

Business

R&D

Panorama du « data lake » France (on a aussi le UK)

Data lake Sparklane

- ~ 3 millions de sociétés
- ~ 11 millions d'établissements

News sociétés

~ 150 000 articles de presse / mois Historique: ~ 8 millions news

Périmètre client

Périmètre marché

e.g. 10 000 sociétés

Données spécifiques du client

e.g. 100 sociétés

Extrait des informations datalake Sparklane

Firmographiques

- Chiffres d'affaires
- Nombre d'employées
- Forme légale, année de création, ...
- Canal de vente
- Présence digitale (social nets, ...)
- •

News

- Évènement de l'entreprise
- Date

Extraction et traitement à part, pas ce soir ©

La R&D chez Sparklane

J. Gosme, D. Cram et F. Mazza

Chef produit

Traitement Automatique de la Langue

INPUT

Sources textuelles (presse, sites de recrutements, informations légales, réseaux sociaux, sites web ...)

OUTPUT

Signaux d'affaires, nomenclature contacts, Catégorisation intitulés de poste Amélioration identification entreprises

Modèles marchés clients

INPUT

Critères firmographiques des entreprises (CA, effectif, activité, localisation), signaux d'affaires, variables métier...

OUTPUT

Modèles marchés clients Analyse anomalies *Imputation valeurs manquantes*

Le Machine Learning est au cœur du produit

Signaux d'affaires

News concernant la vie des entreprises, leur évolution, leurs changements, ... catégorisées et datées

Données clients

« ONBOARDING » Variables métiers, informations non publiques, ...

Données relatives à la vie économique de l'entreprise, leur secteur, leur marché

Objectifs du ML pour l'identification de leads

Business

- Modéliser les marchés de chaque client afin de prioriser ses cibles, sur la base de ses anciens clients / prospects
- Proposer des nouvelles cibles
- Expliquer les facteurs qui contribuent aux entreprises proposées
- S'adapter aux changements de la stratégie / du produit vendu / ...
- Suivre l'évolution des performances

R&D

- Supervised learning : probabilité de l'« intérêt d'un prospect »
- Calcul d'importance des variables
- Retraining / active learning
- Métriques (accuracy, ROC, ...)

Contraintes

-> limitations sur le choix des outils

Business

- Dans un temps « raisonnable »
- A partir d'un échantillon potentiellement restreint
- Avec beaucoup de variables et de valeurs pas toujours fiables
- •
- Inference time: < 15 ms

Model update: < 2 min

(cost bounded ⊕)

R&D

- Nombre d'échantillons inconnus a priori
 - Petites listes au début 1-100 K échantillons
 - Déséquilibre classes : 1:20
- Nombre de variables inconnu a priori, hétérogène variables clients, variables payantes, ... en pratique, environ 200
- Outliers -> difficile de les enlever a priori
- Gestion des valeurs manquantes

Quelle approche?

(en machine learning, dans notre cas)

Simples

Modèle linéaire

- Interprétation facile
- Plusieurs relations pourraient ne pas être linéaires e.g. formes juridiques, ...

Arbre de décision

- Ok pour les variables mixtes
- Une seule « stratégie » est modélisée
- Risque d'overfit, surtout avec beaucoup de caractéristiques

Avancées

Neural nets, SVMs

- Sensibles aux hyperparamètres
- Entrainement plus couteux
- Peu d'échantillons par rapport aux caractéristiques
- Normalement moins faciles à interpréter

- Nombre d'échantillons trop petit
- Encore moins facile à interpréter
- Plus couteux

Random Forest

« shallow learning » qui répond à nos contraintes

T.K. Ho, 1995 L. Breiman 2001

- Ensemble d'arbres de décision
 - Sortie: vote majoritaire
 - Rapide, parallèlisable
 - Plusieurs type d'arbres, nombre incrémental
- « Features bagging »
 bagging + random feature selection
 - Réduit la variance du modèle et l'overfit
 - Améliore la généralisation
- Plusieurs « outils » intégrés!
 - « Nuances de RF»! ->testset intégré OOB, explication de l'importance des variables, ...

Random Forest intérêt récemment renouvelé

- Pas seulement pour de la classification/régression, mais aussi pour de l'apprentissage non supervisé [Shi2006]
- Pour évaluer l'importance des variables, surtout dans des datasets avec beaucoup des dimensions [Behnamian2017]
- RF fourni plusieurs approches pour traiter des datasets avec classes déséquilibrées (e.g. « balanced trees ») [More2017]
- Utile en 1^{er} approche pour sonder la modélisation de problèmes big data (business d'entreprise, plus performant que les « vanilla » SVMs) [Weiwei2017]

Algorithme d'apprentissage

L. Breiman 2001

Erreur « Out Of Bag »

- Le bagging fourni un « test set » eta^t pour chaque arbre
- RF utilise ces test sets pour mesurer l'erreur de prédiction
- Les études de Breiman montrent que l'erreur OOB donne une mesure
 « comme si on utilisait un test set de la même taille que le training set »
 - Ceci nous permet d'avoir une mesure rapide de la validité du modèle
 - Pratique pour de petits datasets
- Dans les cas pratiques cette mesure suffit pour évaluer le modèle un test set à part est utile si plus de précision est nécessaire

Evaluation Tes

Test set β « Out of Bag »

Hyperparamètres du modèle

- Le modèle RF a peu d'hyperparamètres: (qui jouent un rôle moins important que dans des modèles plus complexes...)
 - m: nombre de variables aléatoires par arbre paramètre le plus important, impacte la « diversité des arbres » -> variance
 - → k: nombre d'arbres convergence de l'erreur
 - *depth:* profondeur des arbres (*biais*)
 - *n*: nombre d'échantillons par arbre
- Optimisation classique (grid-search, cross-validation...)
- Choix suboptimale: compromis entre optimisation et vitesse d'entrainement marchés similaires -> paramètres suboptimaux ok pour plusieurs modèles

Effet du nombre d'arbres sur le taux d'erreur du modèle

Le nombre d'arbres est corrélé avec la capacité de RF de modéliser le dataset

- Plus d'arbres, plus de tirages aléatoires
- …plus de temps et mémoire requis!
- Ne change pas le biais du modèle
- Pas d'overfit!
- Asymptote: dépend de l'information donnée par les variables

Explication du score

importance des variables avec RF

RF permet d'inclure une évaluation de l'importance des variables pendant l'entraînement: *mean decrease accuracy*

Pour chaque arbre, pour chaque variable, on fait une **permutation** des valeurs et on mesure l'accuracy des prédictions

Méthode valide en 1^{ère} approximation mais peut sous-estimer l'importance dans certains cas: [Strobl2007], variables de type hétérogène ou avec beaucoup des catégories

D'autres méthodes statistiques plus précises, mais plus couteuses, (visant à mesurer le *p-value*) ont été proposées (e.g. « Boruta » [Kursa 2010])

$$X_{\pi} = [x_{i,1}, x_{i,2}, ..., \pi(x_{i,i}), ...]$$

$$VI^{t}(x_{j}) = \frac{\sum_{i \in \beta} I(y_{i} = \hat{y}_{i} | X) - \sum_{i \in \beta} I(y_{i} = \hat{y}_{i} | X_{\pi})}{|\beta^{t}|}$$

$$VI \quad (x_j) = \frac{\sum_t VI^t(x_j)}{ntree}$$

Résultat de cas réel Extrait importance des variables

R&D

Résultat de cas réel importance des variables dans l'interface produit

Business

Avant de les montrer dans la plateforme, elles sont agrégées par catégorie

NB: certaines peuvent avoir une influence <u>négative</u> sur le résultat (e.g. baisse de P(gagner))

Explication du score par proximité

RF nous permet de mesurer la proximité des entreprises par rapport au « partage » des *feuilles* des arbres

L'entreprise A et C « tombent » dans la même feuille: elles sont plus similaires entre elles que avec B

Explication du score par proximité

R&D

• En considérant tous les arbres et toutes les entreprises, on obtient une matrice de proximité

N.B.: contraintes techniques à considérer pour de gros datasets (mémoire et temps)

 On peut donc trouver les N plus proches entreprises pour un prospect donné

Business

Par rapport à votre marché, la société Z [....] ressemble à vos clients X et Y, [...]

Résultat exemple du score par proximité

Proximité pour imputer les valeurs manquantes

Business

- On a des valeurs manquantes sur les informations des entreprises, surtout sur les variables fourni par les clients
- On ne doit pas exclure ces entreprises de notre datalake

R&D

- Imputation des valeurs manquantes
 - De solutions rapides existent (médiane, ...)
- RF nous permet d'imputer par proximité : les valeurs de certaines variables sont plus similaires entre échantillons proches
- Plusieurs stratégies proposées:
 - 1. Pré-imputation par médiane, calcul RF, ré-imputation en considérant seulement les M plus proches échantillons (proximité), répéter N fois [Breiman2003]

Proximité pour imputer les valeurs manquantes

2. Imputation pendant la construction des arbres (adaptative tree, [Ishwaran2008])

3. MissForest:

Pré-imputation, calcul RF pour chaque variable avec valeurs manquantes, prédiction de ces valeurs, répéter N fois [Stekhoven2012]

- Surtout pour de datasets avec des variables hétérogènes, l'erreur d'imputation est réduit considérablement par rapport à KNN et MICE
- Est par contre beaucoup plus lent que KNN (env. 5x)
- Parmi les travaux exploratoires en cours chez nous -> opération « backoffice »

Business ... mais on a aussi des prospects à la marge, biens différents des autres

Isolation Forests pour trouver les outliers

Liu et Al. 2008

- Isolation Forest: évolution de RF
- Cet algorithme utilise les arbres pour séparer (isoler) les échantillons
- S'il faut des arbres plus étendus pour les séparer, il y a de fortes chances que ces échantillons soient des outliers

(c) Average path lengths converge

Chaîne de traitements (simplifiée)

Exemple de résultat

Éditeur solutions logiciel prospecte un upsell

~ 30% d'efficacité relative en plus

Résultats: OOB modèles Q4 2017

- Relation avec la taille du jeu d'entrainement
- Plus grande variation avec peu d'entreprises
- Certains clients ont très peu d'échantillons pour l'entrainement!
- A faire: corrélation avec « onboarding »

Evolution du modèle ou réponse au problème précèdent

Business

- L'utilisateur pourrait ne pas avoir accès à l'historique des ventes ou avoir peu de cas clients à proposer
- Le marché de l'utilisateur et sa stratégie commerciale évoluent avec le temps

R&D

- Plusieurs entraînements du modèle au fur et à mesure
 - RF a l'avantage d'être rapide
- Possibilité: remplacer une partie des arbres
- Possibilité: apprentissage « actif » avec un retour utilisateur:
 - on construit un modèle initiale
 - on demande à l'utilisateur d'étiqueter les échantillons (*prospection*) qui sont les plus informatifs pour mettre à jour les seuils décisionnels
 - on entraîne et on réitère

Active Learning basé sur l'incertitude

- Online learning: nouveaux échantillons au fur et à mesure
- Deux phases: exploration et exploitation
- Exploration: on propose à l'utilisateur l'entreprise

$$argmax_x (\varphi_{uncertainty})$$

$$\varphi_{uncertainty} = P_{\theta}(Y_{won}|X) - P_{\theta}(Y_{Lost}|X)$$

 Très utile aussi si l'utilisateur n'a aucun échantillon! (bootstrap)

Violet: entreprises intéressantes Bleu: entreprises non intéressantes Candidates: flèches

Conclusions et pistes pour la suite

Random Forest

- Méthode presque « out of the box »
- Rapide, peu couteuse
- Moins sensible aux hyperparamètres que d'autres mèthodes
- Fourni des « nuances » utiles
- Plus simple à interpreter au niveau génerale que d'autres mèthodes
- Justesse légèrement plus faible que d'autres modèles ...mais à moindre cout

NEXT:

- Comparaisons plus approfondies avec des autres approches (pour les cas avec suffisamment d'échantillons)
- Imputation MissForest

Merci pour votre attention

Suivez nous sur

References

- Breiman L., « Random Forests », research report of University of Berkeley, 2001
- Breiman L., « Setting up, using and understanding Random Forests » , 2003
- Tao Shi et al., « Unsupervised Learning with Random Forest Predictors », Journal of Computational and Graphical Statistics, Vol.15 N.1, 2006
- Strobl C. et al., « Bias in random forest variable importance measures: illustrations, sources and a solution », BMC Bioinformatics, 2007
- Liu F. et al., « Isolation Forest », IEEE International Conference on Data Mining, 2008
- Kursa M.B., Rudnicki W.R., « Feature selection with the Boruta Package », Journal of Statistical Software, Vol 36 issue 11, 2010
- Stekhoven et al., « Missforest-non-parametric missing value imputation for mixed-type data », Bioinformatics, Vol28 n.1, 2012

References

- Criminisi A. et al., « Decision Forests for classification, regression, density estimation, manifold learning and semi-supervised learning », Microsoft Research technical report 114, 2011
- Behnamian A. et al., « A Systematic approach for variable selection with Random Forests: achieving stable variable importance values », IEEE Geoscience and Remote Sensing, V14:11, 2017
- More A.S., Rana D.P., « Review of Random Forest classification techniques to resolve data imbalance », IEEE Conference on Intelligent Systems and Information Management, 2017
- Weiwei L. et al., « An ensemble Random Forest algorithm for insurance big data analysis », IEEE journal open access, 2017