Feature selection

Victor Kitov

November-December 2015.

Feature selection

Feature selection is a process of selecting a subset of original features with minimum loss of information related to final task (classification, regression, etc.)

Applications of feature selection

- Why feature selection?
 - increase predictive accuracy of classifier
 - improve optimization stability by removing multicollinearity
 - increase computational efficiency
 - reduce cost of future data collection
 - make classifier more interpretable
- Not always necessary step:
 - some methods have implicit feature selection
 - decision trees and tree-based (RF, ERT, boosting)
 - regularization

Types of features

Define f - the feature, $F = \{f_1, f_2, ... f_D\}$ - full set of features, $S = F \setminus \{f\}$.

Strongly relevant feature:

$$p(y|f,S) \neq p(y|S)$$

• Weakly relevant feature:

$$p(y|f,S) = p(y|S)$$
, but $\exists S' \subset S : p(y|f,S') \neq p(y|S')$

Irrelevant feature:

$$\forall S' \subset S : p(y|f,S') = p(y|S')$$

Aim of feature selection

Find minimal subset $S \subset F$ such that $P(y|S) \approx P(y|F)$, i.e. leave only relevant and non-redundant features.

Specification

- Need to specify:
 - quality criteria J(X)
 - subset generation method $S_1, S_2, S_3, ...$

Types of feature selection algorithms

- Completeness of search:
 - Complete
 - exhaustive search complexity is C_D^d for |F| = D and |S| = d.
 - Suboptimal
 - deterministic
 - random (deterministic with randomness / completely random)
- Integration with predictor
 - independent (filter methods)
 - uses predictor quality (wrapper methods)
 - is embedded inside predictor (embedded methods)

Classifer dependency types

- filter methods
 - rely only on general measures of dependency between features and output
 - more universal
 - are computationally efficient
- wrapper methods
 - subsets of variables are evaluated with respect to the quality of final classification
 - give better performance than filter methods
 - more computationally demanding
- embedded methods
 - feature selection is built into the classifier
 - feature selection and model tuning are done jointly
 - ullet example: classification trees, methods with L_1 regularization.

Table of Contents

- Filter methods
 - Probability measures
 - Context relevant measures
- Peature subsets generation

Correlation

• two class:

$$\rho(f,y) = \frac{\sum_{i} (f_{i} - \bar{f})(y_{i} - \bar{y})}{\left[\sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{i} - \bar{y})^{2}\right]^{1/2}}$$

• multiclass $\omega_1, \omega_2, ...\omega_C$ (micro averaged $\rho(f, y_c) c = 1, 2, ...C.$)

$$R^{2} = \frac{\sum_{c=1}^{C} \left[\sum_{i} (f_{i} - \bar{f})(y_{ic} - \bar{y}_{c}) \right]^{2}}{\sum_{c=1}^{C} \sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{ic} - \bar{y}_{c})^{2}}$$

- Benefits:
 - simple to compute
 - applicable both to continuous and discrete features/output.
 - does not require calculation of p.d.f.

Correlation for non-linear relationship

- Correlation captures only linear relationship
- Example: $X \sim \text{Uniform}[-1, 1], Y = X^2$:

$$\mathbb{E}\left\{\left(X - \mathbb{E}X\right)\left(Y - \mathbb{E}Y\right)\right\} = \mathbb{E}\left\{X(X^2 - \mathbb{E}X^2)\right\}$$
$$= \mathbb{E}X^3 - \mathbb{E}X\mathbb{E}X^2 = 0$$

• Other examples of data and its correlation:

Entropy

• Entropy of random variable Y:

$$H(Y) = -\sum_{y} p(y) \ln p(y)$$

- level of uncertainty of Y
- proportional to the average number of bits needed to code the outcome of Y using optimal coding scheme $(-\ln p(y))$ for outcome y.
- Entropy of Y after observing X:

$$H(Y|X) = -\sum_{x} p(x) \sum_{y} p(y|x) \ln p(y|x)$$

Kullback-Leibler divergence

Kullback-Leibler divergence

For two p.d.f. P(x) and Q(x) Kullback-Leibler divergence KL(P||Q) equals $\sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$

Properties:

- defined only for P(x) and Q(x) such that $Q(x) = 0 \Rightarrow P(x) = 0$
- $KL(P||Q) \geq 0$
- $P(x) = Q(x) \forall x$ if and only if KL(P||Q) = 0 (for discrete r.v.)
- $KL(P||Q) \neq KL(Q||P)$

Kullback-Leibler divergence

- Symmetrical distance: $KL_{sym}(P||Q) = KL(P||Q) + KL(Q||P)$
- Information theoretic meaning:
 - true data distribution P(x)
 - estimated data distribution Q(x)

$$\mathit{KL}(P||Q) = -\sum_{x} P(x) \ln Q(x) + \sum_{x} P(x) \ln P(x)$$

• KL(P||Q) shows how much longer will be the average length of the code word.

Mutual information

Mutual information measures how much X gives information about Y:

$$MI(X,Y) = H(Y) - H(Y|X)$$

$$= \sum_{x,y} p(x,y) \ln \left[\frac{p(x,y)}{p(x)p(y)} \right]$$

Properties:

- MI(X, Y) = MI(Y, X)
- $MI(X,Y) = KL(p(x,y), p(x)p(y)) \ge 0$
- $MI(X, Y) \le \min \{H(X), H(Y)\}$
- X, Y- independent, then MI(X, Y) = 0
- X completely identifies Y, then MI(X,Y) = H(Y) < H(X)

Mutual information for feature selection

- Normalized variant $NMI(X, Y) = \frac{MI(X, Y)}{H(Y)}$ equals
 - zero, when P(Y|X) = P(Y)
 - one, when X completely identifies Y.
- Properties of MI and NMI:
 - identifies arbitrary non-linear dependencies
 - requires calculation of probability distributions
 - continuous variables need to be discretized

- Filter methods
 - Probability measures
 - Context relevant measures

Relevance based on probabilistic distance

Measure of feature f relevance - distance between $p(f|\omega_1)$ and $p(f|\omega_2)$

Examples of distances

Distances between probability density functions f(x) and g(x):

- Total variation: $\frac{1}{2} \int |f(x) g(x)| dx$,
- Euclidean: $\frac{1}{2} \left(\int (f(x) g(x))^2 dx \right)^{1/2}$
- Hellinger: $\left(\frac{1}{2}\int \left(\sqrt{f(x)}-\sqrt{g(x)}\right)^2 dx\right)^{1/2}$
- Symmentrical KL: $\int (f(x) g(x)) \ln \frac{f(x)}{g(x)} dx$

Distances between cumulative probability functions: F(x) and G(x):

- Kolmogorov: $\sup_{x} |F(x) G(x)|$
- Kantorovich: $\int |F(x) G(x)| dx$
- L_p : $(\int |F(x) G(x)|^p dx)^{1/p}$

Other

Multiclass extensions:

Suppose, we have a two-class distance score $J(\omega_i, \omega_j)$. We can extend it to multiclass case using:

$$J = \max_{\omega_i, \omega_j} J(\omega_i, \omega_j)$$
 $J = \sum_{i < j} p(\omega_i) p(\omega_j) J(\omega_i, \omega_j)$

Comparison with general p.d.f:

We can also compare $p(x|\omega_i)$ vs. p(x) using

$$J = \sum_{i=1}^{C} p(\omega_i) D(p(x|\omega_i), p(x))$$

- Chernoff: $J = \sum_{i=1}^{C} p(\omega_i) \left\{ -\log \int p^s(x|\omega_i) p^{1-s}(x) \right\} dx$
- Bhattacharyya: $J = \sum_{i=1}^{\mathcal{C}} p(\omega_i) \left\{ -\log \int \left(p(x|\omega_i) p(x) \right)^{rac{1}{2}} dx
 ight\}$
- Patrick-Fisher: $J = \sum_{i=1}^{C} p(\omega_i) \left\{ \int [p(x|\omega_i) p(x)]^2 dx \right\}^{1/2}$

Feature selection - Victor Kitov
Filter methods

Context relevant measures

- Filter methods
 - Probability measures
 - Context relevant measures

Relevance in context

Individually features may not predict the class, but may be relevant together:

$$p(y|x_1) = p(y), p(y|x_2) = p(y), \text{ but } p(y|x_1, x_2) \neq p(y)$$

Relief criterion

INPUT:

Training set $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$ Number of neighbours KDistance metric d(x, x') # usually Euclidean

for each pattern x_n in $x_1, x_2, ...x_N$:

calculate K nearest neighbours of the same class y_i :

$$X_{s(n,1)}, X_{s(n,2)}, ... X_{s(n,K)}$$

calculate K nearest neighbours of class different from y_i :

$$X_{d(n,1)}, X_{d(n,2)}, ... X_{d(n,K)}$$

for each feature f_i in $f_1, f_2, ... f_D$:

calculate relevance
$$R(f_i) = \sum_{n=1}^N \sum_{k=1}^K \frac{|x_n^i - x_{d(n,k)}^i|}{|x_n^i - x_{s(n,k)}^i|}$$

OUTPUT:

feature relevances R

Cluster measures

General idea of cluster measures

Feature subset is good if observations belonging to different classes group into different clusters.

Cluster measures

Define:

- $z_{ic} = \mathbb{I}[y_i = \omega_c]$, N-number of samples, N_i -number of samples belonging to class ω_i .
- $m = \frac{1}{N} \sum_{i} x_{i}$, $m_{c} = \frac{1}{N_{c}} \sum_{i} z_{ic} x_{i}$, j = 1, 2, ... C.
- Global covariance: $\Sigma = \frac{1}{N} \sum_{i} (x m)(x m)^{T}$,
- Intraclass covariances: $\Sigma_c = \frac{1}{N_c} \sum_i z_{ic} (x_i m_c) (x_i m_c)^T$
- Within class covariance: $S_W = \sum_{c=1}^C rac{N_c}{N} \Sigma_c$
- Between class covariance: $S_B = \sum_{c=1}^{C} \frac{N_c}{N} (m_j m) (m_j m)$

Interpretation

Within class covariance shows how samples are scattered within classes.

Between class covariance shows how classes are scattered between each other.

Scatter magnitude

Theorem 1

Every real symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be factorized as

$$A = U\Sigma U^T$$

where Σ is diagonal and U is orthogonal. $\Sigma = \text{diag}\{\lambda_1, \lambda_2, ... \lambda_n\}$ and $U = [u_1, u_2, ... u_n]$ where $\lambda_i, i = 1, 2, ... n$ are eigenvalues and $u_i \in \mathbb{R}^{n \times 1}$ are corresponding eigenvectors.

• U^T is basis transform corresponding to rotation, so only Σ reflects scatter.

Measuring scatter of symmetric matrix

Scaling in basis U

- ullet Aggregate measures of scatter ${
 m tr}\, \Sigma = \sum_i \lambda_i$ and ${
 m det}\, \Sigma = \prod_i \lambda_i$
- Since $\operatorname{tr}\left[P^{-1}BP\right]=\operatorname{tr}B$ and $\det\left[P^{-1}BP\right]=\det B$, we can estimate scatter with $\operatorname{tr}A=\operatorname{tr}\Sigma$ and $\det A=\det \Sigma$

Clusterization quality

- Good clustering: S_W is small and S_B, Σ are big.
- Cluster discriminability metrics:

$$Tr\{S_W^{-1}S_B\}, \frac{Tr\{S_B\}}{Tr\{S_W\}}, \frac{\det \Sigma}{\det S_W}$$

Resume

- Pairwise feature measures
 - fail to estimate relevance in context of other features
 - are robust to curse of dimensionality
- Context aware measures:
 - estimate relevance in context of other features
 - prone to curse of dimensionality if distances are calculated (such as Relief criterion)

Table of Contents

- Filter methods
- Peature subsets generation
 - Deterministic feature selection
 - Randomised feature selection

Feature selection - Victor Kitov
Feature subsets generation
Deterministic feature selection

- Peature subsets generation
 - Deterministic feature selection
 - Randomised feature selection

Incomplete search with suboptimal solution

- Consider not all but only the most promising feature subsets.
- Order features with respect to J(f):

$$J(f_1) \geq J(f_2) \geq ... \geq J(f_D)$$

select top m

$$\hat{F} = \{f_1, f_2, ... f_m\}$$

• select best set from nested subsets:

$$S = \{\{f_1\}, \{f_1, f_2\}, ... \{f_1, f_2, ... f_D\}\}$$

$$\hat{F} = \arg\max_{F \in S} J(F)$$

- Comments:
 - simple to implement
 - if J(f) is context unaware, so will be the features
 - example: when features are correlated, it will take many redundant features

Sequential search

- Sequential forward selection algorithm:
 - init: $k = 0, F_0 = \emptyset$
 - while k < max_features:</p>
 - $f_{k+1} = \operatorname{arg} \max_{f \in F} J(F_k \cup \{f\})$
 - $F_{k+1} = F_k \cup \{f_{k+1}\}$
 - if $J(F_{k+1}) < J(F_k)$: break
 - k=k+1
 - return F_k
- Variants:
 - sequential backward selection
 - up-k forward search
 - down-p backward search
 - up-k down-p composite search
 - up-k down-(variable step size) composite search

Feature selection - Victor Kitov
Feature subsets generation
Randomised feature selection

- Peature subsets generation
 - Deterministic feature selection
 - Randomised feature selection

Genetic algorithms

- Each feature set $F = \{f_{i(1)}, f_{i(2)}, ... f_{i(K)}\}$ is represented using binary vector $[b_1, b_2, ... b_D]$ where $b_i = \mathbb{I}[f_i \in F]$
- Genetic operations:

•
$$crossover(b^1, b^2) = b$$
, where $b_i = \begin{cases} b_i^1 & \text{with probability } \frac{1}{2} \\ b_i^2 & \text{otherwise} \end{cases}$
• $mutation(b^1) = b$, where $b_i = \begin{cases} b_i^1 & \text{with probability } 1 - \alpha \\ \neg b_i^1 & \text{with probability } \alpha \end{cases}$

$$ullet$$
 mutation $(b^1)=b$, where $b_i=egin{cases} b_i^1 & ext{with probability } 1-lpha \
eg b_i^1 & ext{with probability } lpha \end{cases}$

Genetic algorithms

```
INPUT:
    size of population B
    size of expanded population B'
    parameters of crossover and mutation \theta
    maximum number of iterations T, minimum quality change \Delta J
ALGORITHM:
generate B feature sets randomly: P^0 = \{S_1^0, S_2^0, ... S_R^0\}, set t=1
while t \le T and |J^t - J^{t-1}| > \Delta J:
    modify P^{t-1} using crossover and mutation:
        P'^{t} = S'^{t}_{1}, S'^{t}_{2}, ... S'^{t}_{R'} = modify(P^{t-1}|\theta)
    order transformed sets by decreasing quality:
        J(S_{i(1)}^{t}) \geq J(S_{i(1)}^{t}) \geq ...J(S_{i(B')}^{t})
    get B best representatives:
        S_1^t, S_2^t, ... S_R^t = \text{best\_representatives}(P^{\prime t}, B)
    set next population to consist of best representatives:
        P^{t} = \{S_{i(1)}^{t}, S_{i(2)}^{t}, ... S_{i(R)}^{t}\}
    J^t = J^t(S^t_{i(1)})
    t = t + 1
```

Modifications of genetic algorithm

- Augment P'^t with K best representatives from P^{t-1} to preserve attained quality
- Allow crossover only between best representatives
- Make mutation probability higher for good features (that frequently appear in best representatives)
- Crossover between more than two parents
- Simultaneously modify several populations and allow rare random transitions between them.