Cours de maths synthétique (pour X/ENS CCINP/CENTRALE/MINES)

Crée par des gens de la PSI de Claude B December 24, 2023

1 Algèbre

1.1 Non assigné pour l'instant

- * Soit A et B deux parties de E. Si A est une partie génératrice de E et si $A \subset B$ alors B est une parties génératrice de E (c'est la même chose pour les familles)
- * Une symétrie s est un automorphisme donc $s^{-1} = s$
- * $Mat_B(v \circ u) = Mat_B(v)Mat_B(u)$
- * inégalité triangulaire : $\|a+b\| \leq \|a\| + \|b\|$
- * théorème de pythagore : ||x+y|| = ||x|| + ||y|| ssi x et y sont orthogonaux
- * Toute famille orthogonale de vecteurs non nuls de E est libre, en particulier, toute famille orthonormée de E est libre
- * Théorème de la base orthonormée incomplète : Toute famille orthonormée de E peut être complétée en une base orthonormée de E
- * Théorème de la base incomplète : Toute famille libre fini d'un EV de dimension fini peut être complété en une base de cet EV
- * Théorème de la base extraite : Toutes familles génératrice finie d'un EV fini on peut extraire une base de cet EV
- * Toute espace euclidien possède une base orthonormée

1.2 Caractérisations sur l'inversibilité d'une matrice

 $A \in M_{n,p}(K)$ (par défaut) est inversible <u>SI ET SEULEMENT SI</u>:

- * A est de determinant non nul
- * 0 n'est pas valeur propre de A
- $* Ker(A) = \{0\}$
- $\ast\,$ Il existe un polynôme annulateur de A dont 0 n'est pas racine
- * ses coefficients diagonaux sont tous non nuls dans le cas d'une matrice triangulaire (et son inverse est elle aussi triangulaire supérieure)
- $* rg(A) = n \text{ si } A \in M_n(K)$
- * $\forall X \in K^n \ AX = 0 \rightarrow X = 0 \text{ si } A \in M_n(K)$
- * $\exists B \in M_n(K), AB = I_n$, alors $A \in M_n(K)$ et B sont inversibles et inverse l'une de l'autre

1.3 Propriété sur la semblablilité de deux matrices

A et B sont semblables \underline{SI} \underline{ET} $\underline{SEULEMENT}$ \underline{SI} :

- * det(A) = det(B)
- * tr(A) = tr(B)
- * rg(A) = rg(B)

1.4 Propriété sur la diagonalisation de matrice

- \ast Si le polynôme caractéristique de u est scindé à racines simples, alors u est diagonalisable
- \ast A est diagonalisable si et seulement si elle est symétrique réelle

1.5 Formules à connaitre

* Pour
$$(A, B) \in M_n(K)^2$$
 tel que $AB = BA$, on a pour tout, $p \in N : (A + B)^p = \sum_{k=0}^p \binom{n}{k} A^k B^{p-k}$ et $A^p - B^p = (A - B) \sum_{k=0}^{p-1} A^k B^{p-1-k}$

1.6 Propriété sur les dimensions

- $* dim(E \times F) = dim(E) + dim(F)$
- $* dim(E \oplus F) = dim(E) + dim(F)$
- * $dim(F+G) = dim(F) + dim(G) dim(F \cap G)$
- $* dimL(E,F) = dim(E) \times dim(F)$
- * Théorème du rang : $\dim(E) = rg(u) + \dim(Ker u)$
- * $\dim(\operatorname{Ker} A) + \operatorname{rg}(A) = \operatorname{p} \operatorname{avec} A \in M_{n,p}(K)$

1.7 Propriété sur la liberté d'une famille

- * Toutes sous-famille d'une famille finie liée est liée
- * Une famille finie de polynômes non nuls de degrés 2 à 2 distincts est libre
- * Toutes sous-famille d'une famille finie libre est libre
- * Toutes famille de vecteurs propres associées à des valeurs propres deux à deux distinctes est libre
- *(x,y) liée signifie que x et y sont colinéaires.

1.8 Propriété sur le rang d'une matrice

- * la trace d'un projecteur est égal à son rang
- * Une matrice et sa transposée ont même rang
- * Une matrice est de rang r ssi elle est équivalente à la matrice J_r
- * Deux matrices de même taille sont équivalentes ssi elles ont même rang
- * une sous matrice de A a un rang inférieur à A

1.9 Propriété sur la trace d'une matrice

- $* \operatorname{tr}(AB) = \operatorname{tr}(BA)$
- $* tr(v \circ u) = tr(u \circ v)$

1.10 Propriété sur l'hyperplan

- * H hyperplan de $E \leftrightarrow dim(H) = dim(E) 1$
- * Soit H un SEV de E. Alors H est un hyperplan de E ssi il existe une droite vectorielle D telle que $E=H\oplus D$

1.11 Propriété sur l'injectivité, la surjectivité et la bijectivité d'une application

- * Une application $u \in L(E, F)$ est injective ssi $Ker(u) = \{0\}$
- * Soit E et F deux EV de même dimensions finie. On a que $u \in L(E, F)$ on a : u surjective \Leftrightarrow u injective \Leftrightarrow u bijective

1.12 Propriété sur les valeurs propres, vecteurs propres et les sous espaces propres

- * Un scalaire $\lambda \in K$ est une valeur propre de A ssi il est racine du polynôme caractéristique de A
- $\ast\,$ Si deux endomorphismes commutent, les sous espaces propres de l'un sont stable par l'autre
- $\ast\,$ Si A est une matrice triangulaire, alors l'ensemble de ses valeurs propres est sa diagonale
- * Deux matrices semblambles ont le même spectre et les sous-espaces propres associés sont de même dimension
- * on a pour tout $\lambda \in Sp(u)$: $1 \leq dim(E_{\lambda}(u) \leq m(\lambda))$

- * Théorème de Cayley-Hamilton : Le polynôme caractéristique de u annule $\frac{1}{11}$
- * Si $(\lambda_i)_{i\in I}$ est une famille finie de valeurs propres de u deux à deux distinctes, alors les sous espaces propres associées $E_{\lambda_i}(u)$, pour $i\in I$, sont en somme directe.

1.13 Propriété sur les EV de dimension fini

- 2 Analyse
- 3 Probabilité