日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年11月29日

出 願 番 号

Application Number:

特願2002-349185

[ST.10/C]:

 $J_i N_i$

[JP2002-349185]

出 願 人
Applicant(s):

ブリヂストンスポーツ株式会社

.

2003年 6月 9日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2002-349185

【書類名】 特許願

【整理番号】 14501

【提出日】 平成14年11月29日

【あて先】 特許庁長官 太田 信一郎 殿

【国際特許分類】 A63B 37/00

【発明者】

【住所又は居所】 埼玉県秩父市大野原20番地 ブリヂストンスポーツ株

式会社内

【氏名】 林 淳二

【発明者】

【住所又は居所】 埼玉県秩父市大野原20番地 ブリヂストンスポーツ株

式会社内

【氏名】 清水 康正

【発明者】

【住所又は居所】 埼玉県秩父市大野原20番地 ブリヂストンスポーツ株

式会社内

【氏名】 樋口 博士

【発明者】

【住所又は居所】 埼玉県秩父市大野原20番地 ブリヂストンスポーツ株

式会社内

【氏名】 市川 八州史

【特許出願人】

【識別番号】 592014104

【氏名又は名称】 ブリヂストンスポーツ株式会社

【代理人】

【識別番号】 100079304

【弁理士】

【氏名又は名称】 小島 隆司

【選任した代理人】

【識別番号】 100114513

【弁理士】

【氏名又は名称】 重松 沙織

【選任した代理人】

【識別番号】 100120721

【弁理士】

【氏名又は名称】 小林 克成

【手数料の表示】

【予納台帳番号】 003207

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

【書類名】 明細書

【発明の名称】 ツーピースソリッドゴルフボール :

【特許請求の範囲】

【請求項1】 ソリッドコアとカバーとを具備してなるツーピースソリッドゴルフボールにおいて、上記ソリッドコアが、(A)シス-1,4-結合を60%以上含有し、希土類元素系触媒を用いて合成されたポリブタジエンを60~100重量%含むゴム基材100重量部に対して、(B)有機過酸化物を0.1~0.8重量部、(C)不飽和カルボン酸及び/又はその金属塩、(D)有機硫黄化合物、(E)無機充填剤を含むゴム組成物から形成され、該ソリッドコアの980N(100kgf)荷重負荷時の変形量が3.0~5.5mmであり、かつ該ソリッドコアの直径が37~42mmであると共に、

上記カバーが、(F)熱可塑性ポリウレタン材料を主成分として形成され、該カバーの厚みが 0.5~2.5 mmであり、かつ該カバーのショア D硬度が 50~70であって、

しかも、上記ソリッドコアと上記カバーとを具備してなるツーピースソリッドゴルフボールの980N(100kgf)荷重負荷時の変形量が $3.0\sim5.0m$ mであることを特徴とするツーピースソリッドゴルフボール。

【請求項2】 上記ポリブタジエンが、希土類元素系触媒としてNd系触媒を用いて合成され、引き続き末端変性剤を反応させて得られた変性ポリブタジエンである請求項1記載のツーピースソリッドゴルフボール。

【請求項3】 上記ゴム組成物が、上記(A)シス-1,4-結合を60%以上含有し、希土類元素系触媒を用いて合成されたポリブタジエンを60~100重量%含むゴム基材100重量部に対して、上記(C)不飽和カルボン酸及び/又はその金属塩を10~60重量部、(D)有機硫黄化合物を0.1~5重量部、(E)無機充填剤を5~80重量部含んでなり、しかも2種以上の(B)有機過酸化物を含んでなる請求項1又は2記載のツーピースソリッドゴルフボール

【請求項4】 上記(F)熱可塑性ポリウレタン材料が、(M)熱可塑性ポリウレタンと(N)イソシアネート混合物とを含んでなり、(N)イソシアネー

ト混合物が、(N-1) 1分子中に官能基として2個以上のイソシアネート基を もつイソシアネート化合物と、(N-2) 該イソシアネート基と実質的に反応し ない熱可塑性樹脂中に分散させたイソシアネート混合物である請求項1,2又は 3記載のツーピースソリッドゴルフボール。

【請求項5】 上記カバーが表面に塗膜を具備し、当該塗膜が多価アルコール成分と多塩基酸成分とを反応させて得られる水酸基含有ポリエステルと、無黄変ポリイソシアネートとを含有し、前記の多価アルコール成分の少なくとも一部が、分子内に脂環構造を有するゴルフボール用塗料組成物にて形成された請求項1万至4のいずれか1項に記載のツーピースソリッドゴルフボール。

【請求項6】 上記カバーが表面に多数のディンプルを具備し、当該カバー表面にディンプルがないと仮定した仮想球の体積に対する各ディンプルの縁部によって囲まれる平面下のディンプル空間体積の総和が占める割合(ディンプル体積占有率)VRが0.70~1.00%であり、かつ上記仮想球の表面積に対する各ディンプルの縁部によって囲まれる仮想球面の総面積が占める割合(ディンプル表面占有率)SRが70~85%である請求項1乃至5のいずれか1項に記載のツーピースソリッドゴルフボール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、飛行性能に優れ、打感が軟らかく、カバーの耐擦過傷性や塗膜の耐磨耗性に優れるゴルフボールに関する。

[0002]

【従来の技術】

従来、ゴルフボールカバー用の樹脂成分として、比較的低価格で良好なフィーリングと耐擦過傷性を有する熱硬化性ポリウレタンエラストマーを使用する多くの試みが提案され、主に、打感、コントロール性、初速(反発性)等についての改良が試みられている。

例えば、特開平9-215778号公報には、ツーピースソリッドゴルフボールのコアをゴム基材を用いて比重1.00以上に形成すると共に、カバー比重を

コア比重より大きく形成すること、かつカバー硬度に応じて慣性モーメントを選定すること、しかもディンプルのボール表面占有率、コア硬度、カバー硬度等を適正化すること、またこの場合、有利にはカバーを熱可塑性ポリウレタンエラストマーにて形成することにより、飛距離、コントロール性、グリーン上でのパターによる打ち出し時の転がり性及び直進性等に優れ、しかも反発性、アイアンの打撃によるカバーの耐久性も良好であるゴルフボールを得る技術が開示されている。

また、特開平9-271538号公報には、コアとカバーとからなるゴルフボールにおいて、カバーの樹脂主成分として、最適な粘弾性特性を有し、ジイソシアネートが脂肪族である熱可塑性ポリウレタンエラストマーを用いることにより、コントロール性、初速(反発性)、アイアン打撃時の耐擦過傷性、変色性、及び成型性のすべてについて優れた性能を発揮し得るゴルフボールを得る技術が提案されている。

さらに、特開平11-178949号公報には、ソリッドゴルフボールのカバーを形成する樹脂主成分として、熱可塑性ポリウレタンエラストマーとイソシアネート化合物との反応生成物を使用することにより、製造時の成形性に優れ、かつ打感、コントロール性、初速(反発性・飛距離)、アイアン打撃時の耐擦過傷性に優れたソリッドゴルフボールを得る技術が提案されている。

[0003]

しかしながら現在のところ、特に打感、飛行性能等については、未だ改良の余地がある。飛行性能に優れ、打感が軟らかく、カバーの耐擦過傷性や塗膜の耐磨 耗性に優れるゴルフボールの開発が望まれていた。

[0004]

【特許文献1】

特開平9-215778号公報

【特許文献2】

特開平9-271538号公報

【特許文献3】

特開平11-178949号公報

[0005]

【発明が解決しようとする課題】

本発明は、上記事情に鑑みなされたもので、飛行性能に優れ、打感が軟らかく 、しかもカバーの耐擦過傷性や塗膜の耐磨耗性に優れるゴルフボールを提供する ことを目的とする。

[0006]

【課題を解決するための手段及び発明の実施の形態】

本発明者は、上記目的を達成するため鋭意検討を行った結果、ソリッドコアとカバーとを具備してなるツーピースソリッドゴルフボールにおいて、特定のゴム組成物から形成され、かつ特定の柔軟性及び直径を有するソリッドコアと、熱可塑性ポリウレタン材料を主成分として形成され、かつ特定の厚み及び硬度を有するカバーとを組合わせたツーピースソリッドゴルフボールとし、しかも該ツーピースソリッドゴルフボール全体の柔軟性を特定の範囲とすることにより、従来のゴルフボールに比して非常に優れた飛び性能、高い耐擦過傷性、軟らかな打感を有し、しかも塗膜の耐摩耗性にも優れたツーピースソリッドゴルフボールが得られることを知見し、本発明をなすに至った。

[0007]

すなわち、本発明は、下記のツーピースソリッドゴルフボールを提供するものである。

請求項1:

ソリッドコアとカバーとを具備してなるツーピースソリッドゴルフボールにおいて、上記ソリッドコアが、(A)シス-1,4-結合を60%以上含有し、希土類元素系触媒を用いて合成されたポリブタジエンを60~100重量%含むゴム基材100重量部に対して、(B)有機過酸化物を0.1~0.8重量部、(C)不飽和カルボン酸及び/又はその金属塩、(D)有機硫黄化合物、(E)無機充填剤を含むゴム組成物から形成され、該ソリッドコアの980N(100kgf)荷重負荷時の変形量が3.0~5.5mmであり、かつ該ソリッドコアの直径が37~42mmであると共に、

上記カバーが、(F)熱可塑性ポリウレタン材料を主成分として形成され、該カ

バーの厚みが $0.5\sim2.5$ mmであり、かつ該カバーのショアD硬度が $5.0\sim7.0$ であって、

しかも、上記ソリッドコアと上記カバーとを具備してなるツーピースソリッドゴルフボールの980N(100kgf)荷重負荷時の変形量が3.0~5.0mmであることを特徴とするツーピースソリッドゴルフボール、

請求項2:

上記ポリブタジエンが、希土類元素系触媒としてNd系触媒を用いて合成され、引き続き末端変性剤を反応させて得られた変性ポリブタジエンである請求項1 記載のツーピースソリッドゴルフボール、

請求項3:

上記ゴム組成物が、上記(A)シス-1,4-結合を60%以上含有し、希土類元素系触媒を用いて合成されたポリブタジエンを60~100重量%含むゴム基材100重量部に対して、上記(C)不飽和カルボン酸及び/又はその金属塩を10~60重量部、(D)有機硫黄化合物を0.1~5重量部、(E)無機充填剤を5~80重量部含んでなり、しかも2種以上の(B)有機過酸化物を含んでなる請求項1又は2記載のツーピースソリッドゴルフボール、

請求項4:

上記(F)熱可塑性ポリウレタン材料が、(M)熱可塑性ポリウレタンと(N)イソシアネート混合物とを含んでなり、(N)イソシアネート混合物が、(N-1)1分子中に官能基として2個以上のイソシアネート基をもつイソシアネート化合物と、(N-2)該イソシアネート基と実質的に反応しない熱可塑性樹脂中に分散させたイソシアネート混合物である請求項1,2又は3記載のツーピースソリッドゴルフボール、

請求項5:

上記カバーが表面に塗膜を具備し、当該塗膜が多価アルコール成分と多塩基酸成分とを反応させて得られる水酸基含有ポリエステルと、無黄変ポリイソシアネートとを含有し、前記の多価アルコール成分の少なくとも一部が、分子内に脂環構造を有するゴルフボール用塗料組成物にて形成された請求項1乃至4のいずれか1項に記載のツーピースソリッドゴルフボール、

請求項6:上記カバーが表面に多数のディンプルを具備し、当該カバー表面にディンプルがないと仮定した仮想球の体積に対する各ディンプルの縁部によって囲まれる平面下のディンプル空間体積の総和が占める割合(ディンプル体積占有率) V R が O . 7 0 ~ 1 . 0 0 %であり、かつ上記仮想球の表面積に対する各ディンプルの縁部によって囲まれる仮想球面の総面積が占める割合(ディンプル表面占有率) S R が 7 0 ~ 8 5 %である請求項1乃至5のいずれか1項に記載のツーピースソリッドゴルフボール、

[0008]

以下、本発明につき更に詳しく説明する。

本発明におけるソリッドコアは下記の各成分、

- (A)シスー1,4ー結合を60%以上含有し、希土類元素系触媒を用いて合成 されたポリブタジエン60~100重量%含むゴム基材、
- (B) 有機過酸化物、
- (C) 不飽和カルボン酸及び/又はその金属塩、
- (D)有機硫黄化合物、
- (E) 無機充填剤

を含むゴム組成物から形成されるものである。

[0009]

本発明における上記(A)シス-1,4-結合を60%以上含有し、希土類元素系触媒を用いて合成されたポリブタジエン60~100重量%含むゴム基材において、上記ポリブタジエンに含まれるシス-1,4-結合の含量としては60%以上、好ましくは80%以上、更に好ましくは90%以上、最も好ましくは95%以上である。上記ポリブタジエンに含まれるシス-1,4-結合の含量が60%未満であると、好適な反発性が得られない。

[0010]

本発明における上記ポリブタジエンは、希土類元素系触媒で合成されたものである。希土類元素系触媒としては、公知のものを使用することができるが、例えば、ランタン系列希土類元素化合物、有機アルミニウム化合物、アルモキサン、ハロゲン含有化合物、更に、必要に応じルイス塩基の組み合わせよりなる触媒を

挙げることができる。

[0011]

上記ランタン系列希土類元素化合物としては、原子番号57~71の金属ハロゲン化物、カルボン酸塩、アルコラート、チオアルコラート、アミド等を挙げることができる。

[0012]

上記有機アルミニウム化合物としては、例えば、 $A1R^1R^2R^3$ (ここで、 R^1 、 R^2 及び R^3 は、同一でも異なっていてもよく、それぞれ水素又は炭素数 $1\sim 8$ の炭化水素残基を表す)で示されるものを用いることができる。

上記アルモキサンは、下記式(I) 又は下記式(II) で示される構造を有する化合物を好適に挙げることができる。この場合、ファインケミカル、23,(9),5(1994)、J. Am. Chem. Soc.,115,4971(1993)、J. Am. Chem. Soc.,117,6465(1995)で示されるアルモキサンの会合体でもよい。

【化1】

(式中、R 4 は、炭素数 $1\sim 2$ 0 の炭素原子を含む炭化水素基、 n は 2 以上の整数である。)

[0015]

ハロゲン含有化合物としては、 $A 1 X_n R_{3-n}$ (ここで、Xはハロゲンを示し、Rは、炭素数が $1 \sim 2 0$ の炭化水素残基であり、例えば、アルキル基、アリール・基、アラルキル基であり、nは、1、1. 5、2 Xは3を示す)で示されるアル

ミニウムハライド、 Me_3SrCl 、 Me_2SrCl_2 、 $MeSrHCl_2$ 、 $MeSrHCl_3$ 、 $MeSrCl_3$ の他、四塩化ケイ素、四塩化スズ、四塩化チタンなどの金属ハライド等が用いられる。

[0016]

ルイス塩基は、ランタン系列希土類元素化合物を錯化するのに用いることができ、例えば、アセチルアセトン、ケトンアルコールなどを挙げることができる。

[0017]

本発明においては、特に、ランタン系列希土類元素化合物としてネオジウム化合物を用いたネオジウム系触媒の使用が、1,4-シス結合が高含量、1,2-ビニル結合が低含量のポリブタジエンゴムを優れた重合活性で得られるので好ましく、これらの希土類元素系触媒の具体例は、特開平11-35633号公報に記載されているものを好適に挙げることができる。

[0018]

また、ランタン系列希土類元素化合物を用いた希土類元素系触媒の存在下でブタジエンを重合させる場合、シス含量及びMw/Mnを上記範囲とするために、ブタジエン/ランタン系列希土類元素化合物は、モル比で1,000~200万、特には5,000~100万とすることが好ましく、また、A1 1 2 2 3 /ランタン系列希土類元素化合物は、モル比で1~1,000、特には3~500とすることが好ましい。更に、ハロゲン化合物/ランタン系列希土類元素化合物は、モル比で0.1~30、特に0.2~15であることが好ましい。ルイス塩基/ランタン系列希土類元素化合物は、モル比で0~30、特に1~10とすることが好ましい。重合にあたっては、溶媒を使用しても、溶媒を使用せずにバルク重合或いは気相重合してもよい。重合温度は、通常、-30~150 $^{\circ}$ $^{\circ}$ 0、好ましくは10~100 $^{\circ}$ 0である。

[0019]

希土類元素系触媒の存在下でブタジエンを重合させる場合、溶媒を使用しても 、溶媒を使用せずにバルク重合あるいは気相重合してもよく、重合温度は通常 -30~150℃、好ましくは10~100℃とすることができる。

[0020]

上記ポリブタジエンのムーニー粘度(ML_{1+4} (100°C))としては、通常 40以上、好ましくは50以上、更に好ましくは52以上、最も好ましくは54以上、上限として通常 140以下、好ましくは120以下、更に好ましくは100以下、最も好ましくは80以下である。ムーニー粘度が上記範囲外であると、作業性が悪くなったり、反発性が低下する場合がある。

[0021]

なお、本発明でいうムーニー粘度とは、いずれも回転可塑度計の1種であるムーニー粘度計で測定される工業的な粘度の指標(JIS-K6300)であり、単位記号として ML_{1+4} (100C)を用いる。また、Mはムーニー粘度、Lは大ロータ(L型)、1+4は予備加熱時間1分間、ロータの回転時間は4分間を示し、100Cの条件下にて測定したことを示す。

[0022]

本発明における上記ポリブタジエンは、上記の希土類元素系触媒による重合に引き続き、ポリマーの活性末端に末端変性剤を反応させることにより得られるものであってもよい。

[0023]

ここで、末端変性剤は、公知のものを使用でき、下記①~⑦に記載した末端変性剤を使用することができる。

①まず、アルコキシシリル基を持つ化合物が挙げられる。アルコキシシリル基を持つ化合物としては、エポキシ基又はイソシアナート基を分子内に少なくとも1個有するアルコキシシラン化合物が好適に使用される。具体例としては、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、(3-グリシジルオキシプロピル)メチルジメトキシシラン、(3-グリシジルオキシプロピル)メチルジエトキシシラン、 $\beta-$ (3, 4-エポキシシクロヘキシル)トリメトキシシラン、 $\beta-$ (3, 4-エポキシシクロヘキシル)メチルジメトキシシラン、 $\beta-$ (3, 4-エポキシシクロヘキシル)メチルジメトキシシラン、 $\beta-$ (3, 4-エポキシシクロヘキシル)エチルジメトキシシラン、3-グリシジルオキシプロピルトリメトキシシランの縮合物、(3-グリシジルオキシプロピル)メチルジメトキシシランの縮合物などのエポキシ基

含有アルコキシシラン;3-イソシアナートプロピルトリメトキシシラン、3-イソシアナートプロピルトリエトキシシラン、(3-イソシアナートプロピル)メチルジメトキシシラン、(3-イソシアナートプロピル)メチルジエトキシシラン、3-イソシアナートプロピルトリメトキシシランの縮合物、(3-イソシアナートプロピル)メチルジメトキシシランの縮合物などのイソシアナート基含有アルコキシシラン化合物が挙げられる。

[0024]

また、上記アルコキシシリル基を持つ化合物を活性末端に反応させる際、反応を促進させるためにルイス酸を添加することもできる。ルイス酸が触媒としてカップリング反応を促進させ、変性ポリマーのコールドフローが改良され貯蔵安定性がよくなる。ルイス酸の具体例としては、ジアルキルスズジアルキルマレート、ジアルキルスズジカルボキシレート、アルミニウムトリアルコキシドなどが挙げられる。

[0025]

② $R_{n}^{5}M'$ X_{4-n} 、M' X_{4} 、M' X_{3} 、 $R_{n}^{5}M'$ $(-R_{0}^{6}-COOR_{0}^{7})$ $_{4-n}$ 又は $R_{n}^{5}M'$ $(-R_{0}^{6}-COR_{0}^{7})$ $_{4-n}$ (式中、 R_{0}^{5} 及び R_{0}^{6} は、同一でも異なっていてもよく、炭素数 $1\sim20$ の炭素原子を含む炭化水素基、 R_{0}^{7} は炭素数 $1\sim20$ の炭素原子を含む炭化水素基であり、側鎖にカルボニル基又はエステル基を含んでいてもよく、M' はスズ原子、ケイ素原子、ゲルマニウム原子又はリン原子、Xはハロゲン原子、 R_{0}^{5} はの R_{0}^{5} 3の整数を示す)に対応するハロゲン化有機金属化合物、、ハロゲン化金属化合物又は有機金属化合物、

③分子中に、Y=C=Z結合(式中、Yは炭素原子、酸素原子、チッ素原子又は イオウ原子、Zは酸素原子、チッ素原子又はイオウ原子を示す)を含有するヘテ ロクムレン化合物、

④分子中に下記結合を含有するヘテロ3員環化合物、

【化2】

(式中、Yは、酸素原子、チッ素原子又はイオウ原子を示す。)

⑤ハロゲン化イソシアノ化合物、

⑥ R^{8} - (COOH) $_{\bf m}$ 、 R^{9} (COX) $_{\bf m}$ 、 R^{10} - (COO- R^{11}) $_{\bf m}$ 、 R^{1} 2 - OCOO- R^{13} 、 R^{14} - (COOCO- R^{15}) $_{\bf m}$ 、 又は下記式で示されるカルボン酸、酸ハロゲン化物、エステル化合物、炭酸エステル化合物又は酸無水物

【化3】

【化4】

(式中、 $R^{17} \sim R^{23}$ は、同一でも異なっていてもよく、炭素数 $1 \sim 2$ 0 の炭素原子を含む炭化水素基、M'' はスズ原子、ケイ素原子又はゲルマニウム原子、1 は $0 \sim 3$ の整数を示す。)等を挙げることができる。

[0026]

以上に示される末端変性剤の具体例及び反応させる方法は、例えば、特開平11-35633号公報,特開平7-268132号公報,特開2002-293996号公報等に記載されているもの及び方法を挙げることができる。

なお、上述した触媒の中では、希土類元素系触媒、特にNd系触媒が好ましい

[0027]

本発明において、上記ポリブタジエンとしては、分子量分布Mw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が、2.0以上、好ましくは2.2以上、更に好ましくは2.4以上、最も好ましくは2.6以上であり、上限としては8.0以下、好ましくは7.5以下、更に好ましくは4.0以下、最も好ましくは3.4以下であることが好ましく、Mw/Mnが小さすぎると作業性が低下し、大きすぎると反発性が低下する場合がある。

[0028]

本発明における上記(A)成分は、上記のようなポリブタジエンを主材とした ゴム基材であるが、この主材のポリブタジエンの含量としては、ゴム基材中60 重量%以上、好ましくは70重量%以上、更に好ましくは80重量%以上、最も 好ましくは85重量%以上である。また、ゴム基材の100重量%が上記ポリブ タジエンであってもよく、95重量%以下、場合によっては90重量%以下の含 有量とし得る。ポリブタジエンの含量が60重量%未満であると、反発性が劣る

[0029]

なお、上記(A)成分に含まれるポリブタジエン以外の成分としては、上記ポリブタジエン以外のポリブタジエン、例えばVIII族金属化合物触媒を用いて得られたポリブタジエン、その他のジエンゴム、例えばスチレンブタジエンゴム、天然ゴム、イソプレンゴム、エチレンプロピレンジエンゴム等が挙げられる。

[0030]

この場合、上記ポリブタジエン以外のゴム成分のうちでは、VIII族の触媒を用いて合成され、ムーニー粘度(ML_{1+4} (100°C))が50未満、その25 %における5 重量%トルエン溶液の粘度 π が200 m Pa·s以上、400 m Pa·s以下である第2 のポリブタジエンを使用することが、高い反発性、良好な作業性を得ることができる点から好ましい。

[0031]

上記VIII族触媒として、具体的には、下記のニッケル系触媒、コバルト系 触媒を挙げることができる。

ここで、ニッケル系触媒としては、例えば、ニッケルケイソウ土のような1成分系、ラネーニッケル/四塩化チタンのような2成分系、ニッケル化合物/有機金属/三フッ化ホウ素エーテラートのような3成分系のもの等を挙げることができる。なお、ニッケル化合物としては、担体付還元ニッケル、ラネーニッケル、酸化ニッケル、カルボン酸ニッケル、有機ニッケル錯塩などが用いられる。また、有機金属としては、トリエチルアルミニウム、トリーnープロピルアルミニウム、トリイソブチルアルミニウム、トリーnーへキシルアルミニウム等のトリアルキルアルミニウム、nーブチルリチウム、secーブチルリチウム、tertーブチルリチウム、1,4ージリチウムブタン等のアルキルリチウム、ジエチル亜鉛、ジブチル亜鉛等のジアルキル亜鉛等を挙げることができる。

[0032]

また、コバルト系触媒としては、コバルト及びその化合物として、ラネーコバルト、塩化コバルト、臭化コバルト、ヨウ化コバルト、酸化コバルト、硫酸コバルト、炭酸コバルト、リン酸コバルト、フタル酸コバルト、コバルトカルボニル、コバルトアセチルアセトネート、コバルトジエチルジチオカルバメート、コバルトアニリニウムナイトライト、コバルトジニトロシルクロリド等を挙げることができ、特にこれらの化合物とジエチルアルミニウムモノクロリド、ジイソブチルアルミニウムモノクロリド等のジアルキルアルミニウムモノクロリド、トリエチルアルミニウム、トリーnープロピルアルミニウム、トリイソブチルアルミニウム、トリーnーペキシルアルミニウム等のトリアルキルアルミニウム、エチルアルミニウムセスキクロリド等のアルミニウムアルキルセスキクロリド、塩化アルミニウム等との組み合わせを好適に挙げることができる。

[0033]

上記VIII族系触媒、特にニッケル系触媒又はコバルト系触媒を用いて重合する場合は、通常、溶剤、ブタジエンモノマーと併せて連続的に反応機にチャージさせ、例えば、反応温度を5~60℃、反応圧力を大気圧から70数気圧の範囲で適宜選択して、上記ムーニー粘度のものが得られるように操作する方法を挙

げることができる。

[0034]

上記第2のポリブタジエンのムーニー粘度は、50未満であり、好ましくは4 8以下、更に好ましくは45以下である。この場合、ムーニー粘度の下限としては、10以上、より好ましくは20以上、更に好ましくは25以上、最も好ましくは30以上であることが好ましい。

また、第2のポリブタジエンの25℃における5重量%トルエン溶液の粘度 π が200mPa・s以上、より好ましくは210mPa・s以上、更に好ましくは230mPa・s以上で、400mPa・s以下、より好ましくは370mPa・s以下、更に好ましくは340mPa・s以下、特に好ましくは300mPa・s以下であることが好ましい。

[0035]

なお、本発明でいう25℃における5%トルエン溶液の粘度η (m P a · s) とは、測定対象のポリブタジエン2. 28gをトルエン50mlに溶解した後、 標準液として粘度計構成用標準液 (J I S Z 8 8 0 9)を用いて、所定の粘度 計により25℃の条件下で測定した値のことをいうものとする。

[0036]

上記第2のポリブタジエンの配合量は、ゴム基材中、0%以上、好ましくは5%以上、より好ましくは10%以上で、40%以下、より好ましくは30%以下、更に好ましくは20%以下、最も好ましくは15%以下とすることが好ましい

[0037]

次に、本発明における(B)有機過酸化物としては、2種以上が併用されることが好ましく、この場合、155℃における半減期が一番短い有機過酸化物を(a)、155℃における半減期が一番長い有機過酸化物を(b)とし、(a)の半減期をa_t、(b)の半減期をb_tとした場合、半減期の比b_t/a_tとしては7以上、好ましくは8以上、より好ましくは9以上、更に好ましくは10以上で、20以下、より好ましくは18以下、更に好ましくは16以下である。2種以上の有機過酸化物を用いても、上記範囲を逸脱した場合、反発性、コンプレッショ

ン、耐久性に劣ってしまう場合がある。

[0038]

この場合、上記(a)の155 Cにおける半減期 a_t としては、5 秒以上、より好ましくは10 秒以上、更に好ましくは15 秒以上で、120 秒以下、より好ましくは90 秒以下、更に好ましくは60 秒以下であることが好ましく、上記(b)の155 Cにおける半減期 b_t としては、300 秒以上、より好ましくは360 0 秒以上、更に好ましくは420 秒以上で、800 秒以下、より好ましくは700 0 0 秒以下、更に好ましくは600 秒以下であることが好ましい。

[0039]

上記有機過酸化物として具体的には、ジクミルパーオキサイド、1, 1-ビス (t-ブチルパーオキシ) -3, 5, $5-トリメチルシクロヘキサン、<math>\alpha$, α ' -ビス (t-ブチルパーオキシ) ジイソプロピルベンゼン等が挙げられる。これら有機過酸化物は市販品を用いることができ、例えば、パークミルD (日本油脂社製)、パーヘキサ 3 M (日本油脂社製)、Luperco 231 XL (アトケム社製) 等が挙げられる。この場合、上記(α) 成分の有機過酸化物としては、 α 1, α 2 (α 3) α 4 (α 4) α 5 (α 5) α 6 (α 6) 成分の有機過酸化物としては、 α 7 (α 6) 成分の有機過酸化物としては、 α 7 (α 7) が好ましく、(α 7) (α 8) 成分の有機過酸化物としては、ジクミルパーオキサイドが好ましい。

[0040]

また、上記(a),(b)成分を含む有機過酸化物の総配合量は、上記(A)成分100重量部(以下、重量部を「部」と略記する事がある)に対して0.1 部以上、好ましくは0.2 部以上、より好ましくは0.3 部以上、更に好ましくは0.4 部以上であり、上限として0.8 部以下、好ましくは0.7 部以下、より好ましくは0.6 部以下、更に好ましくは0.5 部以下である。配合量が少なすぎると、架橋に要する時間が長くなり、生産性の低下が大きく、コンプレッションも大きく低下してしまう。配合量が多すぎると、反発性、耐久性が低下してしまう。

本発明においては、コアに希土類元素系触媒、特に好ましくはNd系触媒を用いて合成されたポリブタジエンを使用し、かつ、有機過酸化物の添加量を上記範

囲とすることで、本発明のゴルフボールの反発性が非常に良好となる。反発性が向上する分、ソリッドコア、またはゴルフボール全体をソフト化することが可能となり、ドライバー等のフルショットでの初期条件が低スピン・高打ち出しとなり、しかも飛距離が向上するものである。軟らかな打感も得ること可能となる。

[0041]

なお、(a)成分の添加量としては、(A)成分100部に対し、0.05部以上、より好ましくは0.08部以上、更に好ましくは0.1部以上で、0.5部以下、より好ましくは0.4部以下、更に好ましくは0.3部以下であることが好ましく、(b)成分の添加量としては0.05部以上、より好ましくは0.15部以上、更に好ましくは0.2部以上で、0.7部以下、より好ましくは0.6部以下、更に好ましくは0.5部以下であることが好ましい。

[0042]

次に、(C)不飽和カルボン酸及び/又はその金属塩において、不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸等が挙げられ、特にアクリル酸、メタクリル酸が好ましい。不飽和カルボン酸の金属塩としては、亜鉛塩、マグネシウム塩等が挙げられ、中でもアクリル酸亜鉛が好適に用いられる。

[0043]

上記(C)成分の配合量としては、上記(A)成分100部に対し、通常10部以上、より好ましくは15部以上、更に好ましくは20部以上であり、上限として通常60部以下、より好ましくは50部以下、更に好ましくは45部以下、最も好ましくは40部以下である。(C)成分の配合量が上記範囲を外れると、反発性や打感が低下する(劣る)場合がある。

[0044]

本発明における上記(D)成分の有機硫黄化合物としては、例えば、チオフェノール、チオフトール、ハロゲン化チオフェノール又はそれらの金属塩が挙げられる。より具体的には、ペンタクロロチオフェノール、ペンタフルオロチオフェノール、ペンタブロモチオフェノール、パラクロロチオフェノール又はそれらの亜鉛塩、硫黄数が2~4のジフェニルポリスルフィド、ジベンジルポリスルフィ

ド、ジベンゾイルポリスルフィド、ジベンゾチアゾイルポリスルフィド、ジチオベンゾイルポリスルフィド、アルキルフェニルジスルフィド類、フラン環を有する硫黄化合物類、チオフェン環を有する硫黄化合物類が挙げられるが、特に、ペンタクロロチオフェノールの亜鉛塩、ジフェニルジスルフィドを好適に用いることができる。

[0045]

上記(D)成分の配合量としては、(A)成分100部に対し、0.1部以上、より好ましくは0.2部以上、更に好ましくは0.4部以上、最も好ましくは0.7部以上で、5部以下、より好ましくは4部以下、更に好ましくは3部以下、最も好ましくは2部以下、特に好ましくは1.5部以下である。その配合量が少なすぎると、反発性を向上させる効果がなくなる場合があり、多すぎると、硬度が軟らかくなりすぎ、十分な反発性が得られない場合がある。

[0046]

本発明における(E)成分の無機充填剤としては、酸化亜鉛、硫酸バリウム、炭酸カルシウム等が挙げられ、その配合量としては(A)成分100部に対し、通常5部以上、より好ましくは7部以上、更に好ましくは10部以上、最も好ましくは13部以上、上限として通常80部以下、より好ましくは65部以下、更に好ましくは50部以下、最も好ましくは40部以下である。配合量が多すぎたり、少なすぎたりすると、適正な重量及び好適な反発性を得ることができない場合がある。

[0047]

また、上記(A)~(E)成分を含んでなるゴム組成物には必要に応じ、更に 老化防止剤を添加することもできる。老化防止剤の添加量としては、(A)成分 100部に対し、0.05部以上、より好ましくは0.1部以上、更に好ましく は0.2部以上で、3部以下、より好ましくは2部以下、更に好ましくは1部以 下、最も好ましくは0.5部以下を配合することができる。

老化防止剤としては市販品を用いることができ、例えば、ノクラックNS-6、同NS-30(大内新興化学工業(株)製、ヨシノックス425(吉富製薬(株)製)等が挙げられる。

[0048]

本発明における上記ソリッドコアは、上記(A)~(E)成分を含むゴム組成物から形成されるものであるが、形成方法としては、該ゴム組成物を加硫・硬化する方法が好適である。加硫条件としては、例えば、加硫温度100~200℃、加硫時間10~40分にて実施することができる。

[0049]

上記のように形成される上記ソリッドコアの局部的な硬度としては適宜調整することができ、特に制限されるものではなく、局部的な硬度の分布としては、中心から成形物表面までが同等の硬度であっても、中心と成形物表面までに硬度差があってもいずれの場合であってもよい。

[0050]

上記ソリッドコアの直径としては、37mm以上、好ましくは38mm以上、より好ましくは39mm以上、上限として42mm以下、好ましくは41mm以下、更に好ましくは40mm以下である。ソリッドコアの直径が37mm未満であると、打感や反発が悪くなり、一方、42mmを超えると、割れ耐久性が悪くなる。

[0051]

上記ソリッドコアの980N(100kgf)荷重負荷時のたわみ量としては、3.0mm以上、好ましくは3.5mm以上、より好ましくは3.6mm以上、更に好ましくは3.7mm以上、最も好ましくは4.0mm以上、上限としては5.5mm以下、好ましくは5.4mm以下、更に好ましくは5.3mm以下、最も好ましくは5.0mm以下である。当該変形量が3.0mm未満であると、打感が悪くなると共に、特にドライバーなどのボールに大変形が生じるロングショット時にスピンが増えすぎて飛ばなくなり、一方、5.5mmを超えると、打感が鈍くなると共に、反発が十分でなくなり飛ばなくなる上、繰り返し打撃による割れ耐久性が悪くなる。

[0052]

上記ソリッドコアの比重(g/cm^3)としては、通常 0.9以上、好ましくは 1.0以上、更に好ましくは 1.1以上、上限として 1.4以下、好ましくは

1. 3以下、更に好ましくは1. 2以下であることが推奨される。

[0053]

本発明に用いられるカバーは、 (F) 熱可塑性ポリウレタン材料を主成分として形成されるものである (以下、カバー材と略記することがある)。

上記(F)アイオノマー樹脂を含む樹脂組成物としては、(M)熱可塑性ポリウレタンと(N)イソシアネート混合物とを含んでなり、(N)イソシアネート混合物が、(N-1)1分子中に官能基として2個以上のイソシアネート基をもつイソシアネート化合物と、(N-2)該イソシアネート基と実質的に反応しない熱可塑性樹脂中に分散させたイソシアネート混合物であることが好ましい。

[0054]

本発明に用いられる(M)熱可塑性ポリウレタンとしては、ポリウレタンを主成分とする熱可塑性樹脂であれば特に限定されるものではないが、ソフトセグメントを構成する高分子ポリオール化合物と、ハードセグメントを構成するジイソシアネート及び単分子鎖延長剤とから構成されていることが好適である。

[0055]

高分子ポリオール化合物としては、特に制限されるものではないが、例えばポリエステル系ポリオール、ポリエーテル系ポリオール等が挙げられ、反発弾性の観点或いは低温特性の観点から、ポリエーテル系が好ましく用いられる。

ポリエーテル系ポリオールとしては、例えばポリテトラメチレングリコール、ポリプロピレングリコール等が挙げられ、特に、ポリテトラメチレングリコールが好ましく用いられる。また、これらの数平均分子量は好ましくは1000~500、より好ましくは1500~3000である。

[0056]

ジイソシアネートとしては、特に制限されるものではないが、例えば、4,4 'ージフェニルメタンジイソシアネート、2,4ートルエンジイソシアネート、2,6ートルエンジイソシアネートなどの芳香族ジイソシアネートや、ヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネートが挙げられる。本発明では、後述するイソシアネート混合物を配合した場合の、イソシアネート混合物との反応安定性の観点から、4,4'ージフェニルメタンジイソシアネートが好ま

しく用いられる。

[0057]

単分子鎖延長剤としては、特に制限されないが、通常の多価アルコール、アミン類を用いることができ、例えば1,4-ブチレングリコール、1,2-エチレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,6-ヘキシレングリコール、2,2-ジメチル-1,3-プロパンジオール、1,3-ブチレングリコール、ジシクロヘキシルメチルメタンジアミン(水添MDA)、イソホロンジアミン(IPDA)などが挙げられる。これら鎖延長剤の平均分子量は20~15000であることが好ましい。

[0058]

このようなポリウレタンエラストマーとしては、市販品を用いることができ、例えばパンデックスT7298、同TR3080、同T8290、同T8295、同T8260(ディーアイシーバイエルポリマー社製)やレザミン2593、同2597(大日精化工業社製)などが挙げられる。これらは一種を単独で用いても良いし、二種以上を併用しても良い。

[0059]

本発明におけるカバーには、上述した(F)熱可塑性ポリウレタンに後述する特定のイソシアネート混合物を更に配合したものが好ましく用いられる。該特定のイソシアネート混合物を配合することにより、通常のポリウレタンエラストマー単独を主材として形成された外層カバーを用いたゴルフボールと比べて、フィーリング性、コントロール性、耐カット性、耐擦過傷性及び操り返し打撃時の割れ耐久性が更に優れたゴルフボールを得ることができる。

[0060]

本発明に用いられる(N)イソシアネート混合物としては、(N-1)1分子中に官能基として2個以上のイソシアネート基をもつイソシアネート化合物と、(N-2)該イソシアネート基と実質的に反応しない熱可塑性樹脂中に分散させたイソシアネート混合物であることが好適である。

[0061]

ここで上記(N-1)のイソシアネート化合物としては、従来のポリウレタン

に関する技術において使用されているイソシアネート化合物を使用でき、例えば 芳香族イソシアネート化合物、芳香族イソシアネート化合物の水素添加物、脂肪 族ジイソシアネート、脂環式ジイソシアネート等が挙げられるが、これらに限定 されるものではない。

[0062]

芳香族イソシアネート化合物としては、例えば2,4ートルエンジイソシアネート、2,6ートルエンジイソシアネート及びこれら両者の混合物、4,4'ージフェニルメタンジイソシアネート、mーフェニレンジイソシアネート、4,4'ービフェニルジイソシアネート等が挙げられる。

芳香族イソシアネート化合物の水素添加物としては、例えばジシクロヘキシルメタンジイソシアネート等が挙げられる。

脂肪族ジイソシアネートとしては、例えばテトラメチレンジイソシアネート、 ヘキサメチレンジイソシアネート(HDI)、オクタメチレンジイソシアネート 等が挙げられる。

脂環式ジイソシアネートとしては、例えばキシレンジイソシアネート等が挙げられる。

[0063]

また、上記(N-2)の熱可塑性樹脂としては、吸水性が低く、熱可塑性ポリウレタン材料との相溶性に優れた樹脂が好ましい。このような樹脂として、例えばポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリカーボネート樹脂、ポリエステルエラストマー(ポリエーテル・エステルブロック共重合体、ポリエステル・エステルブロック共重合体等)が挙げられるが、これらに限定されるものではない。反発弾性や強度の観点から、ポリエーテル・エステルブロック共重合体が特に好ましい。

[0064]

イソシアネート混合物を製造する際の、上記(N-2)成分と(N-1)成分の配合比は、100:5~100:100(重量比)、特に100:10~100:40(重量比)であることが好ましい。(N-2)成分に対する(N-1)成分の配合量が少なすぎると、ポリウレタンエラストマーとの架橋反応に十分な

添加量を得るためには、より多くのイソシアネート混合物を添加しなくてはならず、(N-2)成分の影響が大きく作用することで架橋後のポリウレタンエラストマーの物性が不十分となる場合があり、配合量が多すぎると(N-1)成分が混練中にすべり現象を起こし混合物の合成が困難となる場合がある。

[0065]

イソシアネート混合物は、例えば(N-2)成分に(N-1)成分を配合し、これらを温度 130~250 $\mathbb C$ のミキシングロール又はバンバリーミキサーで十分に混練して、ペレット化又は冷却後粉砕することにより得ることができる。

該イソシアネート混合物としては、市販品を用いることができ、例えば大日精 化工業社製クロネートEM30等が好ましく用いられるが、これに限定されるも のではない。

[0066]

上記イソシアネート混合物の配合量は、上記(M)熱可塑性ポリウレタン100重量部に対して、通常1重量部以上、好ましくは5重量部以上、更に好ましくは10重量部以上、上限として通常100重量部以下、好ましくは50重量部以下、更に好ましくは30重量部以下である。配合量が少なすぎると十分な架橋反応が得られず、物性の向上が認めらない場合があり、配合量が多すぎると経時、熱、紫外線による変色が大きくなる場合や、反発の低下等の問題が生じるおそれがある。

[0067]

このように、本発明のゴルフボールのカバー外層は、(M)熱可塑性ポリウレタンを主材として形成されたものが特に好ましいが、所望により他の成分、例えば顔料、分散剤、酸化防止剤、紫外線吸収剤、紫外線安定剤、可塑剤等や無機充填剤(酸化亜鉛、硫酸バリウム、二酸化チタン等)を配合することもできる。

[0068]

上記添加剤の配合量としては、上記(F)熱可塑性ポリウレタン材料100重量部に対し、通常0.1~50重量部、好ましくは0.5~30重量部、更に好ましくは1~6重量部である。添加剤の配合量が大きすぎると、耐久性が低下する場合があり、添加剤の配合比が小さすぎると、添加剤の効果が得られない場合

がある。

[0069]

本発明における上記カバー材の硬度(ショアD)は、50以上、好ましくは53以上、上限として70以下、好ましくは64以下である。ショアD硬度が低すぎると反撥性に劣ることとなり、ショアD硬度が高すぎると打感、コントロール性の改善が見られない。なお、本発明においてショアD硬度とは、ASTM D2240に準じ、D型デュロメータにより測定した硬度である。

[0070]

上記に示すカバー材は、非常に良好な耐擦過傷性を示し、しかも後述する塗料 と非常に良好に密着するものである。

上記の、軟らかなコアと上記カバーとを組合わせることにより、飛距離を犠牲にすることなくゴルフボール硬度を軟らかくすることが可能となって軟らかな打感が実現可能となり、しかも、硬度が軟らかなことから打撃時のクラブとゴルフボールとの接触面積が広がるため、打撃時の衝撃力が分散することとなり、より耐擦過傷性並びに割れ耐久性が向上することとなる。

[0071]

本発明のツーピースゴルフボールは、上記コアに、上記カバー材にて形成され たカバーを被覆してなるゴルフボールである。

カバーの形成方法としては公知の方法を用いることができ、特に限定されるものではないが、例えば、予め作製したコアを金型内に配備し、上記カバー材を加熱混合溶融し、射出成形する方法等を採用できる。この場合、ゴルフボールの製造は、優れた流動性、成形性が確保された状態で作業でき、得られたゴルフボールは、反発性が高くなるため好適である。

また、本発明のカバー材により予め一対の半球状のハーフカップを成形し、このハーフカップでコアを包んで120~170℃、1~5分間、加圧成形する方法を用いても良い。

[0072]

本発明における上記カバー材は、射出成形に特に適した流動性を確保し、成形性を改良するため、メルトフローレートを調整することが好ましく、この場合、

JIS-K6760で試験温度190℃、試験荷重21.18N(2.16kgf)に従って測定したときのメルトフローレート(MFR)が、通常0.5dg/min以上、好ましくは1dg/min以上、より好ましくは1.5dg/min以上、更に好ましくは2dg/min以上であり、上限としては通常20dg/min以下、好ましくは10dg/min以下、より好ましくは5dg/min以下、更に好ましくは3dg/min以下に調整されることが推奨される。メルトフローレートが、大きすぎても小さすぎても加工性が著しく低下する場合がある。

[0.073]

上記カバー材にて形成されるカバー厚みは、0.5mm以上、好ましくは0.9mm以上、より好ましくは1.1mm以上、上限として2.5mm以下、好ましくは2.0mm以下である。カバー厚みが大きすぎると、反発性が低下し、カバー厚みが小さすぎると、耐久性が低下する。

[0074]

本発明のツーピースゴルフボールにおいては、カバーの表面に多数のディンプルを形成し、更にカバー上に下地処理、スタンプ、塗装等種々の処理を行うことが好適である。ディンプルの配設に当たっては、ディンプルに交差しない大円線が1本もないようにディンプルを配設することが好適である。ディンプルと交差しない大円線が存在すると、飛びにバラツキが発生する場合がある。

[0075]

上記ディンプルとしては、更にディンプルの種類の数及び総数が適正化された ものであることが好ましく、ディンプルの種類の数及び総数の適正化による相乗 効果で弾道がより安定し、飛距離性能に優れたゴルフボールを得ることができる

[0076]

ここで、ディンプルの種類の数は、ディンプルの直径及び/又は深さが互いに 異なるディンプルの種類の数をいい、通常、2種以上、好ましくは3種以上であ ることが推奨される。なお、上限として8種以下、特に6種以下であることが推 奨される。

[0077]

また、ディンプルの総数は、通常300個以上、好ましくは320個以上、上限として480個以下、好ましくは455個以下にすることが推奨される。ディンプル総数が少なすぎても、ディンプル総数が多すぎても、最適な揚力が得られず、飛ばなくなる場合がある。

[0078]

上記ディンプルとしては、更にディンプル体積占有率 V R (%)、ディンプル表面占有率 S R (%)とがそれぞれ適正化されたものであることが推奨される。これら V R と併せた S R の適正化による相乗効果で、弾道が適正化され、飛距離の向上を図ることができ、更に適正な揚抗力のバランスを得ることができ、より優れた飛距離性能を付与することができる。

[0079]

ディンプルがないものと仮定した仮想ゴルフボール体積に対する、ゴルフボール表面ディンプルの容積が占める割合(体積占有率)をVR(単位は%)と定義する。本発明のツーピースゴルフボールのVR値(%)としては通常0.70以上、好ましくは0.75以上、上限としては通常1.00以下、好ましくは0.82以下、更に好ましくは0.79以下である。

また、上記各ディンプルの縁部によって囲まれる仮想球面の総面積が占める割合(ディンプル表面占有率) SR値(%)としては、通常70%以上、好ましくは72%以上、上限として通常85%以下、好ましくは83%以下である。

これらVR値及びSR値が上記範囲を外れると、適正な弾道が得られず、飛距離が低下する場合がある。

上記ソリッドコア及びカバーと、上記比較的高弾道のディンプルを組み合わせることにより、ドロップを防ぎ、より高く、フラットな弾道で飛距離を伸ばす事が可能となる。

[0080]

なお、上記ディンプルの体積占有率VR、ディンプル表面占有率SRの算出は、製品ゴルフボールのディンプルを測定した値であり、例えば、上記カバーを形成した後、ボール表面に対して仕上げ処理(塗装及びスタンプの仕上げ処理等)

などが施された場合には、これら処理が全て完了した製品ボールのディンプルの 形状をもとに算出するものとする。

[0081]

また本発明において、上記塗装を行う際には、特開平10-234884に開示されている塗料組成物、即ち、多価アルコール成分と多塩基酸成分とを反応させて得られる水酸基含有ポリエステルと、無黄変ポリイソシアネートとを含有し、前記の多価アルコール成分の少なくとも一部が、分子内に脂環構造を有するゴルフボール用塗料組成物を用いることが特に好適である。当該塗料組成物は凝集破壊強度に優れ、ゴルフクラブによる繰り返し打撃に耐える耐衝撃性、バンカーショットに耐える耐砂摩耗性、優れた耐草汁汚染性、耐候性及び耐水性に優れる塗料組成物であるが、本発明におけるカバー層と良好に密着させることが可能であることが知見されたものである。

[0082]

本発明のツーピースゴルフボールは、競技用としてゴルフ規則に従うものとすることができ、直径42.67mm以上に形成することができる。

本発明のツーピースゴルフボールの重量としては、通常45.0g以上、好ましくは45.2g以上、上限として45.93g以下とすることが好適である。

[0083]

本発明におけるツーピースゴルフボールは上記コアと上記カバーとを具備し、好ましくはカバー表面に多数のディンプルを具備したものであるが、ボール全体の980N(100kgf)荷重負荷時の撓み量としては、3.0mm以上、好ましくは3.2mm以上、更に好ましくは3.4mm以上、最も好ましくは3.6mm以上、上限としては5.0mm以下、好ましくは4.8mm以下、更に好ましくは4.6mm以下、最も好ましくは4.4mm以下である。当該変形量が3.0mm未満であると、打感が悪くなると共に、特にドライバーなどのボールに大変形が生じるロングショット時にスピンが増えすぎて飛ばなくなり、一方、5.0mmを超えると、打感が鈍くなると共に、反発が十分でなくなり飛ばなくなる上、繰り返し打撃による割れ耐久性が悪くなる。

[0084]

【実施例】

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記 実施例に制限されるものではない。

[0085]

〔実施例1~3,比較例1~3〕

表1に示すゴム組成物を用い、155℃で17分間の加硫により、ソリッドコアを作成した。

表2に示す組成のカバー材を200℃で混練型二軸押出機にてミキシングし、ペレット状のカバー材を得た後、上記ソリッドコアを配備した金型内に射出し、ツーピースソリッドゴルフボールを製造した。カバー表面に配設したディンプル種を表3に示した。表3中に記載のディンプル種A~Cの配設例を、図1,2に示した。

得られた各ゴルフボールの諸特性を表4に示した。

[0086]

【表1】

武公(衛島如)		実施例			比較例		
成万(里)	成分(重量部)		2	3	1	2	3
	HCBN-13	100	100	100			•
ゴム組成物	BR01				50	50	50
	BR11				50	50	50
有機過酸化物	パーヘキサ3M-40	0.3	0.3	0.3	0.6	0.6	0.6
	パークミルロ	0.3	0.3	0.3	0.6	0.6	0.6
不飽和カルポン酸金属塩	アクリル酸亜鉛	28.4	27.0	29.8	27.0	26.0	30.5
有機硫黄化合物	へ°ンタクロロチオフェノール 亜鉛塩	1.0	1.0	1.0	1.0	1.0	1.0
無機充填剤	酸化亜鉛	12.0	12.6	11.2	12.5	13.0	14.8
老化防止剤	ノクラックNS-6	0.1	0.1	⁷ 0.1	0.1	0.1	0.1

HCBN-13

JSR社製、Cis1,4量96%、ムーニー粘度(ML₁₊₄(100℃)) 53、分子量分布Mw/Mn3.2、触媒Nd。

B R O 1

JSR社製、Cis1, 4量96%、ムーニー粘度(ML₁₊₄(100℃)) 44、分子量分布Mw/Mn4. 2、触媒Ni、溶液の粘度150mPa・s。 BR11

JSR社製、Cis1,4量96%、ムーニー粘度(ML₁₊₄(100℃)) 44、分子量分布Mw/Mn4.1、触媒Ni、溶液の粘度270mPa・s。 パーヘキサ3M-40

日本油脂社製。パーヘキサ3M-40は40%希釈品であり、添加量は1,1 ービス(tーブチルパーオキシ)-3,3,5-トリメチルシクロヘキサンの実 質添加量で示した。

パークミルD

日本油脂社製、ジクミルパーオキサイド。

アクリル酸亜鉛

日本蒸留工業(株)製。

ペンタクロロチオフェノール亜鉛塩

東京化成工業(株)製。

酸化亜鉛

堺化学工業(株)製。

<u>ノクラックNS-6</u>

大内新興化学社製、2, 2'ーメチレンビス(4-メチル-6-t-ブチルフェノール)

[0087]

【表2】

成分(軍量部)	実施例			比較例			
(成为(星星印)	1	2	3	1	2	3	
パンデックスT8260	50	100		50	100		
パンデックスT8295	50		100	50			
クロスネートEM30	15	15	15				
サーリン7930						47	
サーリン6320						40	
ニュクレル9ー1						13	
二酸化チタン	2	2	2	2	2	2	

パンデックスT8260

DICバイエルポリマー (株) 製、熱可塑性ポリウレタンエラストマー。

パンデックスT8295

DICバイエルポリマー(株)製、熱可塑性ポリウレタンエラストマー。

クロスネートEM30

大日精化工業(株)製

サーリン7930

米国デュポン社製。アイオノマー樹脂。

サーリン6320

米国デュポン社製。アイオノマー樹脂。

ニュクレル9-1

米国デュポン社製 三元酸共重合体。

[0088]

【表3】

ディンプル種		Α	В	С	
総数		432	398	432	
VR	VR(%)		0.92	1.03	
SR(%)		78.6	74.5	78.6	
異なるディン	プル種類数	3	4	3	
ディンプル1	直径	3.9	4.1	3.9	
	深さ	0.16	0.19	0.2	
	数	300	48	300	
ディンプル2	直径	3.4	3.8	3.4	
	深さ	0.13	0.18	0.17	
	数	60	254	60	
ディンプルᢃ	直径	2.6	3.2	2.6	
	深さ	0.10	0.16	0.14	
	数	72	72	72	
ディンプル4	直径		2.4		
	深さ		0.12		
	数		24		

VR (%)

各ディンプルの縁部によって囲まれる平面下のディンプル空間体積の全ディンプルの総和の、ゴルフボール表面にディンプルがないと仮定した仮想球の全体積に対する割合(%)。

SR (%)

ゴルフボールをディンプルのない球状とみなした仮想球面とした際、個々のディンプルの縁部によって囲まれる仮想球面の表面積の合計が上記仮想球面の全面積を占める割合(%)。

[0089]

【表4】

成分(重量部)		実施例			比較例			
		1	2	3	1	2	3	
コア	外径(mm)	40.3	40.3	40.7	40.3	40.3	40.7	
	硬度(mm)	3.8	4.0	3.6	3.8	4.0	3.0	
カバー	厚み(mm)	1.2	1.2	1.0	1.2	1.2	1.0	
	硬度	55	58	53	54	57	53	
ディ	ンプル種	A	Α	В	A C A		Α	
ボール	外径(mm)	42.7	42.7	42.7	42.7	42.7	42.7	
	重量(g)	45.3	45.3	45.3	45.2	45.2	45.3	
	硬度(mm)	3.6	3.6	3.6	3.6	3.7	2.9	
飛び	初速(m/s)	66.2	66.1	66.3	65.8	65.7	66.2	
	スピン(rpm)	2560	2500	2610	2580	2490	2850	
	キャリー(m)	214.0	213.0	214.5	211.5	207.0	213.5	
	ト―タル(m)	236.5	235.5	236.0	233.0	230.0	232.0	
打感	ドライバー	0	0	0	0	. 0	×	
	パター	0	0	0	0	0	Δ	
耐	寮過傷性	0	0	0	x x x		×	
塗膜耐久性		0	0	0	0	0	×	

コア外径(mm)

表面を5点測定した平均値。

コア硬度(mm)

980N(100kgf)荷重負荷時の変形量(mm)を計測した。

<u>カバー厚み (mm)</u>

(ボール外径-コア外径) ÷2として算出した。

カバー硬度

ASTM D-2240に準じて測定したショアD硬度。

<u>ボール外径(mm)</u>

ディンプルのない部分を5点測定した平均値。

ボール硬度(mm)

得られたゴルフボールに対し、980N(100kgf)荷重負荷時の変形量(mm)を計測した。

飛び

打撃マシン((株)ミヤマエ社製)を用い、ドライバー(W#1)でヘッドスピード40m/sで打撃し、初速度、スピン量、キャリー飛距離、トータル飛距離をそれぞれ測定した。

<u>打感</u>

各ボールについて、アマチュア上級者5名によるドライバー(W#1)及びパター打撃したときの打感を下記基準で評価し、最も多かった評価をボールに対する評価とした

〇:軟らかい

△:普通

×:硬い

耐擦過傷性

ボールを23℃に保温し、ピッチングウェッジをスイングロボットマシンに取り付け、ヘッドスピード33m/sにて打撃し、打撃傷を目視で判断した。次の評価基準で評価した。

〇:傷がない、もしくは使用上、全く気にならない程度の傷。

×:表面が毛羽立つ、ディンプルが欠ける、などのひどい傷。

塗膜耐久性

内容量8Lの磁性のボールミルに、ボールとバンカー用の砂3Lを入れ、2時間ミキシングし、砂磨耗による表面の傷つき度合い、光沢減少の度合い、砂の付着度合いを目視により確認した。比較球(ブリヂストンスポーツ株式会社製「ALTUS NEWING」)と同時に評価を行い、次の評価基準で評価した。

〇:比較球よりも良好な塗膜耐久性。

△:比較球と同等の塗膜耐久性。

×:比較球よりも悪い塗膜耐久性。

【発明の効果】

本発明によれば、従来のゴルフボールに比して非常に優れた飛び性能、高いカ

バーの割れ耐久性及び塗膜の耐摩耗性、軟らかな打感を有するツーピースソリッドゴルフボールを得ることができる。

【図面の簡単な説明】

【図1】

表3におけるディンプル種AまたはCの配設例を説明する概略図である。

【図2】

表3におけるディンプル種Bの配設例を説明する概略図である。

【書類名】 図面【図1】

【図2】

【書類名】

要約書

【要約】

【解決手段】 ソリッドコアが、希土類元素系触媒を用いて合成されたポリブタジエンを含むゴム基材と少量の有機過酸化物と不飽和カルボン酸及び/又はその金属塩と有機硫黄化合物と無機充填剤とを含むゴム組成物から形成され、カバーが、熱可塑性ポリウレタン材料を主成分として形成されたことを特徴とするツーピースソリッドゴルフボール。

【効果】 本発明によれば、従来のゴルフボールに比して非常に優れた飛び性能 、高いカバーの割れ耐久性及び塗膜の耐摩耗性、軟らかな打感を有するツーピー スソリッドゴルフボールを得ることができる。

【選択図】 図1

出願人履歴情報

識別番号

[592014104]

1. 変更年月日

1997年 4月11日

[変更理由]

住所変更

住 所

東京都品川区南大井6丁目22番7号

氏 名

ブリヂストンスポーツ株式会社