Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions

Ben Safvati

References:

- Science Advances, 09 Nov 2018: Vol. 4, no. 11, eaau4159
- Science 23 Oct 2015: Vol. 350, Issue 6259, pp. 417-420, DOI: 10.1126/science.aac8703

Experimental Setup

- 2 ML MgO/Ag(001) decouples magnetic adatoms from surface electrons.
- RF radiation through the tip combined with DC tunneling current to study electron spin resonance (ESR) and atomic interactions.
- Magnetic adatoms collected on the STM tip allow for magnetoresistive DC sensing.

 $\boldsymbol{B}_{\boldsymbol{z}}$ sets the Zeeman splitting of the adatom.

 $B_x >> 0$ modifies the S_z basis states to enable coherent Rabi oscillations.

leading terms of the |0⟩ and |1⟩ wavefunctions (in the basis of z-axis orbital and spin quantum numbers |M_L, M_S>) are spin-polarized

 $|1\rangle = 0.92|-2,-2\rangle - 0.40|+2,-2\rangle + ...$

 $|0\rangle = 0.92|+2.+2\rangle - 0.40|-2.+2\rangle + ...$

 In-plane magnetic field mixes spin components, allows for coherent transitions by dominant F₁(t) term.

ESR Spectra of Titanium Dimers

- Atom-atom distance determines strength of exchange interaction J relative to Zeeman splitting of triplet states.
- ESR-STM uses RF electric fields that cause oscillations in the magnetic surface atom.
- Moving of these atoms in the **tip fields** $B_z (\Delta m = 0)$ and $B_x (\Delta m = \pm 1)$ causes changes in the tunneling magnetoresistance (TMR) that can be detected as DC current.

Heisenberg Exchange Interaction

Detuning for Different Interaction Strengths

Dimer Spin Coherence and Field Sensitivity

Homodyne Detection for Enhanced Spin Coherence

