

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 45V, 5A, $R_{DS(ON).max}$ =30m Ω @ V_{GS} =10V
- Improved dv/dt capability
- Fast switching
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 45V \\ R_{DS(on).max} @ V_{GS} {=} 10V & 30 m\Omega \\ I_D & 5A \end{array}$

SOP-8 Pin Configuration

SOP-8

Schematic

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{ extsf{DSS}}$	45	V
Continuous drain current (T _A = 25°C)		5	А
Continuous drain current (T _A = 100°C)	l _D	3.2	А
Pulsed drain current ¹⁾	І _{DM}	20	А
Gate-Source voltage	V_{GSS}	±20	V
Power Dissipation (T _A = 25°C)	P _D	1.3	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	ReJA	96	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM5N04-S8	SOP-8	VSM5N04-S8

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	1) = 25 C unie	T _J = 25°C unless otherwise noted				
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	45			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0		2.0	V
Drain-source leakage current	I _{DSS}	V _{DS} =45V, V _{GS} =0 V, T _J = 25°C			1	μА
		V _{DS} =36V, V _{GS} =0 V, T _J = 125°C			10	μΑ
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0V			-100	nA
Drain-source on-state resistance	_	V _{GS} =10 V, I _D =5A		25	30	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =4A		30	45	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =5A		9.9		S
Dynamic characteristics						
Input capacitance	C _{iss}			597		pF
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $F = 1 \text{MHz}$		56		
Reverse transfer capacitance	C _{rss}	- F = IIVIMZ		43		
Turn-on delay time	t _{d(on)}			13.5		- ns
Rise time	t _r	V _{DD} = 25V,V _{GS} =10V, I _D =5A		12		
Turn-off delay time	t _{d(off)}			43		
Fall time	t _f			11		
Gate charge characteristics						•
Gate to source charge	Q _{gs}			3.3		nC
Gate to drain charge	Q _{gd}	V _{DS} =25V, I _D =5A,		1.6		
Gate charge total	Qg	- V _{GS} = 10 V		12.3		
Drain-Source diode characteristic	s and Maxi	mum Ratings		1		'
Continuous Source Current	Is				5	А
Pulsed Source Current	Ism				20	А
Diode Forward Voltage ²⁾	V _{SD}	V _{GS} =0V, I _S =5A, T _J =25°C			1.2	V
Reverse Recovery Time	t _{rr}			18.5		ns
Reverse Recovery Charge	Qrr	ls=5A,di/dt=100A/us, T _J =25℃		6.5		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics 40 Common Source T_A = 25°C Pulse test V_{GS}=10V V_{GS}=8V 30 Drain current I_D (A) V_{GS}=5V 20 V_{GS}=4V 10 V_{GS}=3V

Figure 2. Transfer Characteristics 50 Common Source V_{DS}=5 V Pulse test 40 Drain current I_D (A) 30 125°C 20 25°C 10 1.5 3.0 4.0 4.5 1.0 2.5 3.5 5.0 Gate-source voltage $V_{GS}(V)$

Figure 3. Capacitance Characteristics

2

Drain-source voltage V_{DS} (V)

5

Figure 7. Rdson-Junction Temperature(°C)

Figure 8. Maximum Safe Operating Area

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJA)

Pulse Width t (s)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

