AL/2018/02/S-I தே கண் சில்ல දෙපාර්තමේන්තුව தே ලංකා විශාශ දෙපාර්**ල 'இகின்' தில**ிக்களும் இனங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka G ஒடி சிலில் சேர் சிலில் சிலில் சேர் சிலில் சிலில் சேர் சிலில் சில අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர் (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018 2018.08.15 / 0830 - 1030 රසායන විදු වාව පැය දෙකයි இரசாயனவியல் I Chemistry இரண்டு மணித்தியாலம் Two hours උපදෙස්: * ආවර්තිතා වගුවක් සපයා ඇත. * මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ. * **සියලු ම** පුශ්නවලට පිළිතුරු සපයන්න. * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ. * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න. 🛪 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න. * 1 සිට 50 තෙක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය **උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොදු දක්වන්න.** සාර්වතු වායු නියතය $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ ඇවගාඩ්රෝ නියතය $N_{\scriptscriptstyle A}=6.022 imes 10^{23}\,\mathrm{mol}^{-1}$ ප්ලෑන්ක්ගේ නියතය $h^A = 6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \,\mathrm{m \ s^{-1}}$ $oldsymbol{1.}$ භුමි අවස්ථාවේ පවතින වායුමය $oldsymbol{\mathrm{Co}}^{3+}$ අයනයක ඇති යුගලනය නොවූ ඉලෙක්ටුෝන සංඛාාව වනුයේ, (1) 1 ${f 2.}$ පරමාණුවක පරමාණුක කාක්ෂිකයක හැඩය හා ආශුිත වන්නේ කුමන ක්වොන්ටම් අංකය/අංක $(n,\,l,\,m_{_{l}},\,m_{_{s}})$ ද?(1) l(3) n හා l $(4) \quad n \otimes_l m, \qquad (5) \quad l \otimes_l m,$ 3. පහත දක්වා ඇති සංයෝගයේ IUPAC නාමය කුමක් ද? $CH_3CH_2CH-C = CHCO_2H$ Br NO₂ (1) 4-bromo-3-nitro-2-hexenoicacid (2) 4-bromo-3-nitro-2-hexenoic acid (3) 3-nitro-4-bromo-2-hexenoicacid (4) 3-nitro-4-bromo-2-hexenoic acid (5) 3-bromo-4-nitro-4-hexenoic acid **4.** O_2 , H_2O_2 , OF_2 හා O_2F_2 (H_2O_2 වලට සමාන වසුහයක් ඇත.) යන අණු, ඔක්සිජන්හි (O) ඔක්සිකරණ අවස්ථා අඩු වන පිළිවෙළට සැකසූ විට නිවැරදී පිළිතුර වනුයේ, $(1) \quad {\rm O_2F_2} > {\rm OF_2} > {\rm O_2} > {\rm H_2O} > {\rm H_2O_2}$ (2) $H_2O > H_2O_2 > O_2 > O_2F_2 > OF_2$ $(3) \quad H_2O_2 > O_2F_2 > O_2 > OF_2 > H_2O$ (4) $OF_2 > O_2F_2 > O_2 > H_2O > H_2O_2$ (5) $OF_2 > O_2F_2 > O_2 > H_2O_2 > H_2O_3$ 5. තයෝසයනේට් අයනය SCN සඳහා **වඩාත්ම** පිළිගත හැකි ලුවිස් වාූහය වනුයේ, $(1) \quad \stackrel{\bigcirc}{:} \overset{\square}{:} -C \equiv N \qquad (2) \quad \stackrel{\bigcirc}{:} = C = N : \qquad (3) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (4) \quad \stackrel{\bigcirc}{S} = C \equiv N : \qquad (5) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (6) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (7) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (8) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (8) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\bigcirc}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \equiv C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \cong C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \cong C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \cong C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \cong C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \cong C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square}{S} \cong C = \stackrel{\square}{N} : \qquad (9) \quad \stackrel{\square$

6. ඝනත්වය $1.03~{
m g~cm}^{-3}$ හා ස්කන්ධය අනුව NaI 3% වන NaI දුාවණයක මවුලිකතාව (${
m mol~dm}^{-3}$) වනුයේ,

- (Na = 23, I = 127)
 - (1) 0.21
- (2) 0.23
- (3) 0.25
- (4) 0.28
- (5) 0.30

7. AgI හා AgBr හි අවක්ෂේප ආසුැත ජලය සුළු පුමාණයකට එකතු කරන ලදී. මෙම මිශුණය $25~^{\circ}{
m C}$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. සමතුලිතතාවයේ දී ඝනයන් දෙකම පද්ධතියෙහි තිබෙන බව නිරීක්ෂණය කරන ලදී. පහත සඳහන් කුමන සම්බන්ධතාව මෙම දුාවණය සඳහා යෙදිය හැකි ද?

$$(25 \text{ °C } \otimes \xi \text{ } K_{\text{sp(AgI)}} = 8.0 \times 10^{-17} \text{ mol}^2 \text{ dm}^{-6}, K_{\text{sp(AgBr)}} = 5.0 \times 10^{-13} \text{ mol}^2 \text{ dm}^{-6})$$

- (1) $[Br^-] = \sqrt{5.0 \times 10^{-13}} \mod dm^{-3} \iff [I^-] = \sqrt{8.0 \times 10^{-17}} \mod dm^{-3}$
- (2) $[Br^-][I^-] = [Ag^+]^2$
- (3) $[Ag^+] = (\sqrt{5.0 \times 10^{-13}} + \sqrt{8.0 \times 10^{-17}}) \text{ mol dm}^{-3}$
- (4) $\frac{[Br^-]}{[I^-]} = \frac{5.0}{8.0} \times 10^4$
- (5) $[Ag^+] = [Br^-] = [I^-]$
- 8. පහත සඳහන් කුමන පුකාශය **අසත** වේ ද?
 - (1) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල කාබනේට ජලයේ අදුාවා වුව ද ඒවායේ බයිකාබනේට දුාවා වේ.
 - (2) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල හයිඩොක්සයිඩ ජලයේ දුාවා වේ.
 - (3) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල නයිටේට ජලයේ දාවා වේ.
 - (4) Na සහ Mg වල ඔක්සයිඩ සහ හයිඩොක්සයිඩ භාස්මික ගුණ පෙන්වන අතර Al හි ඔක්සයිඩය සහ හයිඩුොක්සයිඩය උභයගුණී ලක්ෂණ පෙන්නුම් කරයි.
 - (5) Si සහ S වල හයිඩුයිඩ දූර්වල ආම්ලික ගුණ පෙන්නුම් කරයි.
- 9. පරමාණුක අරයයන් **වැඩි වන** පිළිවෙළට මූලදුවා දී ඇත්තේ (වමේ සිට දකුණට) පහත කුමන ලැයිස්තුවෙහි ද?
 - (1) Li, Na, Mg, S

- (2) C, Si, S, Cl
- (3) B, C, N, P

(4) Li, Na, K, Ca

- (5) B, Be, Na, K
- $oldsymbol{10.}$ $oldsymbol{A}$ හා $oldsymbol{B}$ දුව පරිපූර්ණ දුාවණයක් සාදයි. නියත උෂ්ණත්වයෙහි ඇති සංවෘත දෘඪ බඳුනක් තුළ වාෂ්පය සමග සමතුලිතතාවයෙහි ඇති A හා B දුවයන්හි මිශුණයක් සලකන්න. P_A^o හා P_B^o යනු පිළිවෙළින් A හා B හි සන්තෘප්ත වාෂ්ප පීඩන වන අතර බඳුනෙහි මුළු පීඩනය P හා වාෂ්ප කලාපයෙහි A හි මවුල භාගය $X_A^{\mathfrak g}$ වේ. මෙම පද්ධතිය සම්බන්ධයෙන් පහත සඳහන් කුමක් නිවැරදි වේ ද?

 - (1) $P = (P_A^0 P_B^0) X_A^g + P_B^0$ (2) $\frac{1}{P} = (\frac{1}{P_A^0} \frac{1}{P_B^0}) X_A^g + \frac{1}{P_B^0}$ (3) $P = (P_A^0 + P_B^0) X_A^g P_B^0$
 - (4) $\frac{1}{P} = \left(\frac{1}{P_p^0} \frac{1}{P_A^0}\right) \frac{1}{X_A^g}$ (5) $\frac{1}{P} = \left(\frac{1}{P_A^0} \frac{1}{P_A^0}\right) \frac{1}{X_A^g}$
- 11. පහත සඳහන් දුවායන්හි තාපාංක **වැඩි වන** පිළිවෙළ වනුයේ,

$$He, CH_4, CCl_4, CBr_4, SiH_4$$

- (5) $He < CH_4 < CCl_4 < SiH_4 < CBr_4$
- 12. පහත දැක්වෙන ඒවායින් **නිවැරදි** පුකාශය හඳුනාගන්න.
 - (1) හයිඩුජන් පරමාණුවක $n=2 \longrightarrow n=1, n=3 \longrightarrow n=2$ සහ $n=4 \longrightarrow n=3$ ඉලෙක්ටෝන සංකුමණ අතුරෙන් වැඩිම ශක්තියක් පිටකරනුයේ $n=3 \longrightarrow n=2$ වල දී ය.
 - (2) OF_2 , OF_4 සහ SF_4 විශේෂ අතුරෙන් අඩුවෙන්ම ස්ථායි වන්නේ SF_4 ය.

 - (3) $\text{Li}, \overset{\circ}{\text{C}}, \overset{\circ}{\text{N}}, \overset{\circ}{\text{Na}}$ සහ $\overset{\circ}{\text{P}}$ මූලදුවා අතුරෙන් විදුහුත් සෘණතාව අඩුම මූලදුවාය Li වේ. (Li සහ F), (Li^{\dagger} සහ C^{2}) සහ (C^{2} සහ F) යුගල වල, අරයයන්හි වැඩිම වෙනස ඇත්තේ Li^+ සහ O^{2-} අතර ය.
 - (5) CH_Cl_ වල දුව කලාපයෙහි පවතින එකම අන්තර් අණුක බල වර්ගය වන්නේ ද්විධුැව-ද්විධුැව බල වේ.

13. $\operatorname{CH}_4(g) \longrightarrow \operatorname{CH}_3(g) + \operatorname{H}(g)$ පුතිකිුයාව සලකන්න.

ඉහත පුතිකිුිිිිිිිිිිි සම්මත එන්තැල්පි වෙනස වනුයේ,

- (1) මීතේන්හි පළමු C—H බන්ධනයෙහි විඝටනය සඳහා සම්මත එන්තැල්පි වෙනසයි.
- (2) මීතේන්හි සම්මත පරමාණුකරණ එන්තැල්පි වෙනසයි.
- (3) මීතේන්හි සම්මත පළමු අයනීකරණ එන්තැල්පි වෙනසයි.
- (4) මීතේන්හි සම්මත බන්ධන විඝටන එන්තැල්පි වෙනසයි.
- (5) මීතේන්හි මුක්තඛණ්ඩක සෑදීමේ සම්මත එන්තැල්පි වෙනසයි.
- ${f 14.}\ 2\,{
 m A(g)} \longrightarrow {
 m B(g)}$ යන මූලික පුතිකිුයාව සංවෘත දෘඪ බඳුනක් තුළ නියත උෂ්ණත්වයක දී සිදු වේ. බඳුනේ ආරම්භක පීඩනය $P_{_{
 m O}}$ සහ පුතිකිුයාවේ ශීඝුතාව ආරම්භක අගයෙන් 50% වන විට පීඩනය $P_{_{_{m I}}}$ වේ. පහත සඳහන් කුමක් මගින් $rac{P_t}{P}$ සඳහා නිවැරදි අගය ලැබේ ද?

(1) $\frac{P_t}{P_0} = \frac{1}{2}$ (2) $\frac{P_t}{P_0} = \frac{1}{\sqrt{2}}$ (3) $\frac{P_t}{P_0} = \frac{1+\sqrt{2}}{2\sqrt{2}}$ (4) $\frac{P_t}{P_0} = \frac{\sqrt{2}}{1+\sqrt{2}}$ (5) $\frac{P_t}{P_0} = \frac{\sqrt{2}-1}{1+\sqrt{2}}$

15. pK_a අගයයන් පිළිවෙළින් 4.7 හා 5.0 වන HA හා HB දුබල අම්ලවල සමමවුලික ජලීය දාවණයක් (එක් එක් අම්ලයෙන් $1.0~{
m mol}~{
m dm}^{-3}$ වන) සමතුලිතතාවයේ ඇත.

 $\log\left(\frac{[A^-]}{[B^-]}\right)$ හි අගය ආසන්න වශයෙන් සමාන වනුයේ,

(4) 0.94

(5) 1.06

16. පහත සඳහන් කුමන වගන්තිය ${
m C_6H_5OH}$ පිළිබඳ ව **අසත** ${
m color}$ වේ ද?

- (1) CH₂COCl සමග පුතිකිුයා කර ෆීනයිල් එස්ටරයක් සාදයි.
- (2) බෝමීන් දියර සමග පුතිකිුිිිිිිිිිි කර සුදු පැහැති අවක්ෂේපයක් ලබා දේ.
- (3) NaHCO_3 සමග පිරියම් කළ විට CO_2 වායුව පිට කරයි.
- (4) NaOH හමුවේ $C_6 H_5 N_2^+ Cl^-$ සමග පිරියම් කළ විට වර්ණවත් සංයෝගයක් ලබා දේ.
- (5) උදාසීන FeCl සමග පිරියම් කළ විට වර්ණවත් (දම් පැහැයට හුරු) දාවණයක් ලබා දේ.

17. පුතිකිුයාවක අර්ධ ආයු කාලය,

- (1) සැමවිටම පුතිකිුයකවල ආරම්භක සාන්දුණයෙන් ස්වායත්ත වේ.
- (2) සැමවිටම ශීඝුතා නියතය මත රඳා පවතී.
- (3) සැමවිටම පුතිකිුයාවෙහි පෙළින් ස්වායත්ත වේ.
- (4) සැමවිටම උෂ්ණත්වයෙන් ස්වායත්ත වේ.
- (5) මුළු පුතිකිුයා කාලය මෙන් දෙගුණයකට සමාන වේ.
- 18. විදාුුත් රසායනික කෝෂයක විදාුුත්ගාමක බලය රඳා **නොපවතින්නේ**,
 - (1) විදාුත් විච්ඡේදායේ ස්වභාවය මත ය.
 - (2) උෂ්ණත්වය මත ය.
 - (3) විදාුුත් විච්ඡේදා වල සාන්දුණ මත ය.
 - (4) ඉලෙක්ටුෝඩ වල පෘෂ්ඨික ක්ෂේතුඵල මත ය.
 - (5) ඉලෙක්ටුෝඩ සාදන ලෝහ වර්ග මත ය.
- 19. ආම්ලික මාධායේ දී ${
 m IO}_3^-$ (අයඩේට් අයනය), ${
 m SO}_3^{2-}$ අයනය ${
 m SO}_4^{2-}$ බවට ඔක්සිකරණය කරයි. ${
 m Na}_2{
 m SO}_3$ $(0.50~{
 m mol~dm}^{-3})$ දුාවණයක් $25.0~{
 m cm}^3$ හි අඩංගු ${
 m Na_2SO_3}$ පුමාණය සම්පූර්ණයෙන් ${
 m Na_2SO_4}$ බවට ඔක්සිකරණය කිරීමට අවශා වන KIO_3 ස්කන්ධය 1.07~g වේ. O=16,~K=39,~I=127පුතිකිුයාව සම්පූර්ණ වූ පසු අයඩීන්හි අවසාන ඔක්සිකරණ අවස්ථාව වනුයේ,

(1) -1

(2) 0

(3) +1

(4) +2

(5) +3

 ${f 20.}$ ආවර්තිතා වගුවේ s-ගොනුවේ මූලදුවා පිළිබඳ ව පහත කුමන වගන්තිය **අසත** ${f x}$ වන්නේ ද ${f ?}$

- (1) I කාණ්ඩයේ සියලු ම මූලදවා ජලය සමග පුතිකියා කර H, වායුව නිදහස් කරයි.
- (2) Li හැර I කාණ්ඩයේ අනිකුත් සියලු ම මූලදවා ${
 m N_2}$ වායුව සමග පුතිකියා කරයි.
- (3) Π කාණ්ඩයේ සියලු ම මූලදුවා N_2 වායුව සමග පුතිකිුයා කරයි.
- (4) වැඩිපුර O_2 සමග Na පුතිකිුයා කර Na_2O_2 ලබා දෙන අතර K,KO_2 ලබා දෙයි.
- (5) s-ගොනුවේ සියලු ම මූලදුවා හොඳ ඔක්සිහාරක වේ.

21. පරිපූර්ණ වායුවක් අඩංගු දෘඪ බඳුන් දෙකකින් සමන්විත පද්ධතියක් රූපසටහනෙහි දක්වා ඇත. කපාටය විවෘත කිරීමෙන් බඳුන් එකිනෙක හා සම්බන්ධ කළ හැකි වේ. කපාටය විවෘත කළ විට පද්ධතිය ${f A}$ සැකසුමේ සිට ${f B}$ සැකසුම දක්වා වෙනස් වේ. සාමානායෙන් $n,\,P,\,V$ සහ Tමගින් පිළිවෙළින් මවුල සංඛාාව, පීඩනය, පරිමාව හා උෂ්ණත්වය නිරූපණය කෙරේ.

සැකසුම A (කපාටය වසා ඇත)

සැකසුම B (කපාටය විවෘතව ඇත)

මෙම පද්ධතිය පිළිබඳ ව පහත දැක්වෙන කුමන සම්බන්ධය **නිවැරදි** වේ ද?

$$(1) \quad P_1 V_1 = P_2 V_2$$

(2)
$$\frac{P_3 T_1}{P_1} + \frac{P_3 T_2}{P_2} = 2T_3$$
 (3) $\frac{T_1}{P_1} = \frac{T_2}{P_2}$

(3)
$$\frac{T_1}{P_1} = \frac{T_2}{P_2}$$

(4)
$$P_1T_1 = P_2T_2$$

(5)
$$P_1V_1 + P_2V_2 = P_3(V_1 + V_2)$$

- ${f 22.}$ ආවර්තිතා වගුවේ 3d-මූලදුවා පිළිබඳ ව පහත කුමන වගන්තිය **අසත** ${f x}$ වන්නේ ද?
 - (1) පරමාණුක අරයයන්, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවාසයන්හි පරමාණුක අරයයන්ට වඩා කුඩා වේ.
 - (2) ඝනත්වය, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවායන්හි ඝනත්වයට වඩා වැඩි වේ.
 - (3) V_2O_5 , CrO_3 හා Mn_2O_7 ආම්ලික ඔක්සයිඩ වේ.
 - (4) පළමු අයනීකරණ ශක්ති, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවායන්හි පළමු අයනීකරණ ශක්තිවලට වඩා අඩු වේ.
 - (5) කොබෝල්ට් සංයෝගවල කොබෝල්ට් හි වඩාත්ම සුලභ ඔක්සිකරණ අවස්ථා වනුයේ +2 හා +3 ය.
- **23.** එකිනෙකට වෙනස් උෂ්ණත්ව දෙකක දී $ext{MO}(s) \longrightarrow ext{M}(s) + rac{1}{2} ext{O}_2(g)$ පුතිකිුයාව සඳහා සම්මත ගිබ්ස් ශක්ති වෙනස පහත දී ඇත.

පුතිකිුයාවෙහි සම්මත එන්ටොපි වෙනස වනුයේ,

- (1) 248.8 J K⁻¹ mol⁻¹
- (2) $-248.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- (3) $-48.4 \text{ J K}^{-1} \text{ mol}^{-1}$

- (4) $348.4 \text{ J K}^{-1} \text{ mol}^{-1}$
- 48.4 J K⁻¹ mol⁻¹
- ${f 24.}$ සාන්දු ${
 m HNO_3}$ / සාන්දු ${
 m H_2SO_4}$ මගින් බෙන්සීන් නයිටුෝකරණ යන්තුණයේ දී **නිවැරදි** පියවරක් දක්වන්නේ පහත සඳහන් කුමකින් ද?

$$(1) \bigcirc \stackrel{+}{\bigcirc}^{NO_2} \longrightarrow \bigcirc \stackrel{H}{\longrightarrow}^{NO_2}$$

$$(2) \bigcirc^{+}_{H^{2}}$$

$$(3) \bigcirc^{NO_2} \longrightarrow \bigcirc^{H}_+ NO_2$$

$$(4) \qquad \begin{array}{c} \text{H} & \text{HSO}_{4}^{2} \\ \text{NO}_{2} & \longrightarrow \end{array} \qquad \begin{array}{c} \text{NO}_{2} \\ \text{+} & \text{H}_{2}\text{SO}_{4} \end{array}$$

$$(5) \qquad \begin{array}{c} + & \text{NO}_2 \\ \text{H} & \text{HSO}_4^{-} \end{array} \qquad + & \text{H}_2\text{SO}_4$$

ඉහත සඳහන් පුතිකිුයා අනුපිළිවෙළෙහි X සහ Y හි වූහ පිළිවෙළින් වනුයේ,

$$(1) \bigcirc \begin{matrix} \text{CO}_2\text{H} \\ \text{CH}_2\text{CH}_2\text{CHCH}_3 \\ \text{OH} \end{matrix} , \bigcirc \begin{matrix} \text{CO}_2\text{MgBr} \\ \text{CH}_2\text{CH}_2\text{CHCH}_3 \\ \text{OMgBr} \end{matrix}$$

(2)
$$CH_2OH$$
 , CH_2OH_3 , $CH_2CH_2COCH_3$, $CH_2CH_2-C-CH_3$ OMgBr

$$(4) \bigcirc CO_{2}H$$

$$CH_{2}CH_{2}CHCH_{3}$$

$$OH$$

$$CH_{3}$$

$$CH_{2}CH_{2}CHCH_{3}$$

$$CH_{2}CH_{2}CHCH_{3}$$

$$OMgBr$$

- ${f 26.}$ ${
 m (NH_4)_2CO_3(s),(NH_4)_2Cr_2O_7(s)}$ හා ${
 m NH_4NO_3(s)}$ රත් කළ විට ලැබෙන නයිටුජන් අඩංගු සංයෝග පිළිවෙළින්
 - (1) NH₃, N₂ to NO₂ (4) N₂, N₂O to NH₃
 - (2) N_2O , N_2 to NH_3 (5) N_2 , NH_3 to N_2O
- (3) NH₃, N₂ to N₂O
- **27.** සන්තෘප්ත AgCl දුාවණයක් හා $\operatorname{AgCl}(s)$ අඩංගු බීකරයක Zn කුරක් හා Ag කුරක් රූපයේ දැක්වෙන පරිදි ගිල්වා

27. සන්තෘප්ත
$$\operatorname{AgCl}$$
 දාවණයක් හා $\operatorname{AgCl}(s)$ අඩංගු බීකරයක Zn කුරක් හා Ag කුරක් රූපයේ දැක්වෙන පරිදි ගිල්වා ලෝහ කුරු දෙක සන්නායකයක් මගින් සම්බන්ධ කළ විගස පහත සඳහන් කුමක් සිදු වේ ද?

$$Zn^{2+}(aq) + e \longrightarrow Zn(s)$$
 $E^{\circ} = -0.76 \, V$

- (1) Zn දිය වේ, Ag තැන්පත් වේ, AgCl(s) දිය වේ.
- (2) Zn දිය වේ, Ag දිය වේ, AgCl(s) දිය වේ.
- (3) Zn දිය වේ, Ag දිය වේ, AgCl(s) තැන්පත් වේ.
- (4) Zn තැන්පත් වේ, Ag දිය වේ, AgCl(s) දිය වේ.
- (5) දාවණයෙහි ක්ලෝරයිඩ සාන්දුණය අඩු වේ.

 $Ag^{+}(aq) + e \longrightarrow Ag(s) \quad E^{\circ} = 0.80 \text{ V}$

 ${f 28.}$ පහත දැක්වෙන පුතිකිුයා අනුපිළිවෙළෙහි ${f P}$ සහ ${f Q}$ හි වූඅහ පිළිවෙළින් වනුයේ,

$$C_6H_5C\equiv CH$$
 $\xrightarrow{Hg^{2+}/m}$ $\xrightarrow{Hg^{2+}/m}$

(5)
$$C_6H_5C=CH_2$$
, $C_6H_5CHCH_3$
OH OH

- 29. පහත සඳහන් කුමන වගන්තිය බහුඅවයවක පිළිබඳ ව **වැරදි** ද?
 - (1) බේක්ලයිට් තාප ස්ථාපන බහුඅවයවයකි.
 - (2) ටෙෆ්ලෝන් තාප සුවිකාර්ය බහුඅවයවයකි.
 - (3) නයිලෝන් 6,6 සෑදී ඇත්තේ 1,6-ඩයිඇමයිනොහෙක්සේන් සහ හෙක්සේන්ඩයිඔයික් අම්ලය අතර ආකලන බහුඅවයවීකරණය මගිනි.
 - (4) ටෙරිලීන් සෑදී ඇත්තේ එතිලීන් ග්ලයිකෝල් සහ ටෙරිතැලික් අම්ලය අතර සංඝනන බහුඅවයවීකරණය
 - (5) ස්වාභාවික රබර් cis-පොලිඅයිසොපීන් දාමවලින් සමන්විත ය.
- ${f 30.}\ \ {f S_2O_3^{2^-}(aq)} + 2{f H}^+(aq)\ \longrightarrow\ {f H_2O(l)} + {f SO_2(g)} + {f S(s)}\$ යන පුතිකියාවෙහි ${f S_2O_3^{2^-}}$ අනුබද්ධයෙන් පෙළ ${f (m)}$ සෙවීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී. අම්ල දුාවණයකට $0.01~\mathrm{mol~dm}^{-3}~\mathrm{S_2O_3^{2^-}}$ විවිධ පරිමාවන් (v) එකතු කරමින් පුතිකියාවෙහි ආරම්භක ශීඝුතාව (R) මනින ලදී. පුතිකියා මිශුණයෙහි H^{\dagger} සාන්දුණය නියතව පවත්වා ගත් නමුත් මුළු පරිමාව (V) වෙනස් වීමට ඉඩ හරින ලදී. පුතිකියාවෙහි ආරම්භක ශීඝුතාව පිළිබඳ ව පහත සඳහන් කුමන සම්බන්ධය නිවැරදි වේ ද?
 - (1) $R \propto \left(\frac{v}{V}\right)^m$ (2) $R \propto v^m$ (3) $R \propto v^{\frac{1}{m}}$ (4) $R \propto \left(\frac{v}{V}\right)^{\frac{1}{m}}$ (5) $R \propto V^m$

- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛ්‍යාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(<i>d</i>) සහ (<i>a</i>)	වෙනත් පුතිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛාහාවක් හෝ
නිවැරදියි	නිවැ <i>ර</i> දියි	නිවැරදියි	නිවැ <i>ර</i> දියි	සංයෝජනයක් හෝ නිවැරදියි

- 31. දුබල අම්ලයක් (නියත පරිමාවක්) හා පුබල භස්මයක් අතර අනුමාපනයක් සලකන්න. පහත සඳහන් කුමක්/කුමන ඒවා දුබල අම්ලයෙහි සාන්දුණයෙන් ස්වායත්ත වේ ද?
 - (a) සමකතා ලක්ෂායේ දී pH අගය
 - (b) අන්ත ලක්ෂාය කරා ළඟා වීමට අවශා පුබල භස්මයෙහි පරිමාව
 - (c) දුබල අම්ලයෙහි විඝටන නියතය
 - (d) අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයේ $[\operatorname{H}^+] imes [\operatorname{OH}^-]$ අගය

32. පහත දී ඇති අණුව පිළිබඳ ව පහත කුමන වගන්තිය/වගන්ති **සතෳ** වේ ද?

$$CH_3$$
 $C \equiv C - CHO$

- (a) කාබන් පරමාණු හතරම එකම තලයේ පිහිටයි.
- (b) $\mathrm{C_d^{-}H}$ සහ $\mathrm{C_d^{-}C_c}$ බන්ධන අතර කෝණය දළ වශයෙන් 120° වේ.
- (c) $\operatorname{C}_{\mathbf{b}}$ සහ $\operatorname{C}_{\mathbf{c}}$ අතර σ -බන්ධන දෙකක් සහ π බන්ධනයක් ඇත.
- (d) $C_{f b}$ සහ $C_{f c}$ අතර σ -බන්ධනයක් සහ π -බන්ධන දෙකක් ඇත.
- ${f 33.}$ ${f Na}_2{f CO}_3$ නිෂ්පාදනය පිළිබඳ ව **සතෳ** වන්නේ පහත සඳහන් කුමන වගන්තිය/වගන්ති ද?
 - (a) භාවිත කරන එක අමුදුවාායක් CO_{γ} වේ.
 - (b) NH_3 වලින් සන්තෘප්ත ජලීය NaCl හා CO_2 අතර පුතිකිුයාව තාපාවශෝෂක වේ.
 - (c) නිෂ්පාදන කුියාවලිය අදියර පහකින් සමන්විත වේ.
 - (d) කිුිිියාවලියේ දී භාවිත වන NH_3 වැඩි පුමාණයක් නැවත ලබාගත හැක.
- 34. මූලික පුතිකිුයාවක පෙළ පරීක්ෂණාත්මකව නිර්ණය කිරීමේ දී උෂ්ණත්වය නියත අගයක පවත්වා ගත යුතු වන්නේ,
 - (a) පුතිකිුයාවෙහි පෙළ උෂ්ණත්වය මත රඳාපවතින නිසා ය.
 - (b) සකිුයන ශක්තිය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
 - (c) පුතිකිුයාවෙහි යන්තුණය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
 - (d) ශීඝුතා නියතය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
- $oldsymbol{35.}$ පහත සඳහන් කුමන වගන්තිය/වගන්ති එතීන් සහ එතයින් පිළිබඳ ව **සතඃ** වේ ද?
 - (a) CaC ූ ජලය සමග පුතිකිුයා කර එතයින් සාදයි.
 - (b) $\operatorname{CaC}_{\mathfrak{Z}}$ ජලය සමග පුතිකිුයා කර එතීන් සාදයි.
 - (c) ඇමෝනිකෘත $\operatorname{AgNO}_{_{\mathbf{q}}}$ සමග එතීන් පුතිකිුයා කර අවක්ෂේපයක් ලබා දේ.
 - (d) ඇමෝනිකෘත $\operatorname{Cu_2Cl_2}$ සමග එතයින් පුතිකිුයා කර අවක්ෂේපයක් ලබා දේ.
- ${f 36.}$ හැලජන පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති **සතඃ** වන්නේ ද?
 - (a) කාණ්ඩයේ පහළට හැලජනවල තාපාංක වැඩි වේ.
 - (b) අනෙකුත් හැලජන මෙන් නොව, ෆ්ලුවොරීන්ට ${
 m F}_{\!\! 2}$ හි හැර, අන් සැමවිටම (-1) ඔක්සිකරණ අවස්ථාව ඇත.
 - (c) සියලු ම හැලජන හොඳ ඔක්සිහාරක වේ.
 - (d) ආවර්තිතා වගුවේ සියලු ම මූලදුවා අතරින් ෆ්ලුවොරීන් වඩාත්ම පුතිකුියාශීලි වන නමුත් එය නිෂ්කිුය වායු සමග පුතිකුියා නොකරයි.
- 37. සංවෘත දෘඪ බඳුනක් තුළ සිදුවන $C(s) + CO_2(g) \Rightarrow 2 CO(g)$ පුතිකිුයාව සඳහා $700 \, ^{\circ}$ C හා $800 \, ^{\circ}$ C හි දී CO(g) ඵල පුතිශත අනුපිළිවෙළින් 60% හා 80% වේ. පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත පුතිකිුයාව සම්බන්ධයෙන් **නිවැරදී** වේ ද?
 - (a) පුතිකිුයාව තාපාවශෝෂක වේ.
 - (b) පුතිකිුයාව තාපදායක වේ.
 - (c) උෂ්ණත්වය අඩු කිරීම ආපසු පුතිකිුිිිියාවට හිතකර වේ.
 - (d) $\mathrm{C}(\mathrm{s})$ ඉවත් කිරීම මගින් සමතුලිකතාව පුතිකියක දෙසට නැඹුරු කළ හැක.
- 38. සයික්ලොපොපේන් \longrightarrow පොපීන් මූලික පුතිකිුයාවකි.

පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත පුතිකිුයාව සම්බන්ධයෙන් **නිවැරදි** වේ ද?

- (a) ප්‍රතිකියාවෙහි අර්ධ ආයු කාලය සයික්ලොපොපේන් සාන්දුණය මත රඳා පවතී.
- (b) පුතිකුියාවෙහි ශීඝුතාව පුොපීන් සාන්දුණය මත රඳා නොපවතී.
- (c) සකිුයන ශක්තියට වඩා වැඩි ශක්තියක් ඇති සයික්ලොපොපේන් අණුවල භාගය, උෂ්ණත්වය වැඩි වීමත් සමග වැඩි වේ.
- (d) පුතිකුියාව ද්විඅණුක ගැටුමක් හරහා සිදු වේ. (අණුකතාව =2)
- ${f 39.}$ පහත සඳහන් කුමන වගන්තිය/වගන්ති ${f 3-}$ හෙක්සීන් පිළිබඳ ව **සත** ${f x}$ වේ ද ${f ?}$
 - (a) ජාාමිතික සමාවයවිකතාව නොපෙන්වයි.
 - (b) පුකාශ සමාවයවිකතාව පෙන්වයි.
 - (c) $\mathrm{H}_{\mathbf{1}}/\mathrm{Pd}$ සමග පුතිකිුයා කරවූ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව නොපෙන්වයි.
 - (d) HBr සමග පුතිකිුිිියා කරවූ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව පෙන්වයි.

- 40. නයිටුජන් චකුය පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති නිවැරදී වන්නේ ද?
 - (a) වායුගෝලයේ ඇති N_2 තිර වන්නේ වායුගෝලීය හා කාර්මික තිර කිරීමෙන් පමණි.
 - (b) වායුගෝලීය තිර කිරීමේ දී N_2 ඔක්සිහරණය වේ.
 - (c) කාර්මික තිර කිරීමේ දී N, ඔක්සිකරණය වේ.
 - (d) වායුගෝලීය තිර කිරීමේ දී සැදෙන නයිවේට හා නයිටුයිට වර්ෂාපතනය නිසා පොළොව මත තැන්පත් වූ විට ඒවා පුෝටීන් සෑදීමට ශාක මගින් යොදා ගනී.
- අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.
(2)	සතා වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙගි .
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා මව්.
(5)	අසතා වේ.	අසතා වේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	MgCO ₃ වලට වඩා BaCO ₃ තාපස්ථායි වේ.	දෙවන කාණ්ඩයේ කැටායනවල ධුැවීකරණ බලය කාණ්ඩයේ පහළට යන විට අඩු වේ.
42.	ඇමීනයක නයිටුජන් මත ඇති එකසර ඉලෙක්ටුෝන යුගලය H ⁺ සමග බන්ධනයක් සෑදීමට ඇති පුවණතාව ඇල්කොහොලයක ඔක්සිජන් මත ඇති එකසර ඉලෙක්ටුෝන යුගලයට වඩා අඩු ය.	ඔක්සිජන් වලට වඩා නයිටුජන් විදාුුත් ඍණතාවයෙන් අඩු ය.
43.	උත්පේුරකයක් යෙදීමෙන් සමතුලිතතාවයේ ඇති පුතිකිුිිිියාවක් ඉදිරිිිියට (එනම් සමතුලිත ලක්ෂාය දකුණට විස්ථාපනය කිරීම) පෙළඹවීම කළ හැක.	උත්පේුරකය මගින් ඉදිරි පුතිකිුයාව සඳහා පමණක් අඩු සකිුයන ශක්තියක් ඇති මාර්ගයක් සපයයි.
44.	CO_3^{2-} හා SO_3^{2-} අයනවලට සමාන හැඩයන් ඇත.	${ m CO_3^{2-}}$ හා ${ m SO_3^{2-}}$ යන දෙකෙහිම මධා පරමාණුවේ එකසර ඉලෙක්ටුෝන යුගල් ඇත.
45.	$\mathrm{CH_3CH_2CH_2OH}$ හි තාපාංකය $\mathrm{CH_3CH_2CHO}$ හා $\mathrm{CH_3COCH_3}$ හි තාපාංකවලට වඩා වැඩි ය.	කාබන් ඔක්සිජන් ද්වීත්ව බන්ධනය, කාබන් ඔක්සිජන් තනි බන්ධනයට වඩා ශක්තිමත් ය.
46.	ඒකලිත පද්ධතියක් තුළ ස්වයංසිද්ධව සිදු වන පුතිකිුයාවක් සඳහා සැමවිටම සෘණ ගිබ්ස් ශක්ති වෙනසක් ඇත.	
47.	තෙල් හා මේද සමග NaOH හෝ KOH පුතිකිුයාවෙන් සැදෙන මේද අම්ලවල සෝඩියම් හෝ පොටෑසියම් ලවණ, බහුල ලෙස භාවිත වන සබන් වල අඩංගු වේ.	ජලීය NaOH හෝ KOH සමග එස්ටරයක් පුතිකිුිිිියාවෙන් කාබොක්සිලික් අම්ලයේ සෝඩිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි
48.	$\mathrm{C}_6^{}\mathrm{H}_5^{}\mathrm{OH}$ සැදීමට NaOH සමග $\mathrm{C}_6^{}\mathrm{H}_5^{}\mathrm{Br}$ පහසුවෙන් පුතිකියා නොකරයි.	ෆීනයිල් කාබොකැටායනය ඉතා ස්ථායි වේ.
49.	දුබල අම්ලයක ජලීය දුාවණයක් තනුක කරන විට විඝටනය වූ අම්ල අණුවල භාගය හා මාධායේ pH අගය යන දෙකම වැඩි වේ.	දුබල අම්ල අණුවල විඝටනය සිදු වන්නේ අම්ල විඝටන නියතය K ූ නියතව පවතින පරිදි ය.
50.	සූර්යාලෝකය ඇති වීට හරිත ශාක තුළ CO_2 තිර වේ.	වායුගෝලයේ CO ₂ මට්ටම ඉහළ යාම හරිත ශාක මගින් පාලනය කළ නොහැක.

සියලු ම හිමිකම් ඇව්රිනි / மුழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$]

இ ලංකා විතාග දෙපාර්තමේත්තුව ලී ලංකා විතාග දෙපාර්තී අවතින් මෙන්න ලෙපාර්තමේත්තුව ලී ලංකා විතාග දෙපාර්තමේත්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Operations of Examinations, Sri Lanka Operations of Examinations of Exa

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදපාවIIஇரசாயனவியல்IIChemistryII

* සාර්වතු වායු නියතය $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

st ඇවගාඩරෝ නියතය $N_A^{}=6.022\, imes\,10^{23}~{
m mol}^{-1}$

B කොටස – රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

5. (a) පහත සඳහන් පුතිකිුයා සලකන්න.

$$M(CO_3)_2.nH_2O(s) \rightarrow M(CO_3)_2(s) + nH_2O(g)$$

$$M(CO_3)_2(s) \rightleftharpoons MO_2(s) + 2 CO_2(g)$$

පරිමාව $0.08314\,\mathrm{m}^3$ වූ රේචනය කරන ලද දෘඪ බඳුනක $\mathrm{M(CO_3)_2\cdot nH_2O(s)}$ සුළු පුමාණයක් $(0.10\ \mathrm{mol})$ ඇත. බඳුනේ උෂ්ණත්වය $400\ \mathrm{K}$ දක්වා වැඩි කරන ලදී. මෙම උෂ්ණත්වයේ දී $\mathrm{M(CO_3)_2}$ ලෝහ කාබනේටය වියෝජනය නොවන නමුත් ස්එටිකීකරණය වූ ජලය සම්පූර්ණයෙන් වාෂ්පීකරණය වේ. බඳුනෙහි පීඩනය $1.60\times10^4\ \mathrm{Pa}$ බව මැන ගන්නා ලදී. ඝන දුවා මගින් අයත් කරගන්නා පරිමාව නොසලකා හැරිය හැකි වේ.

 $M(CO_3)_2 \cdot nH_2O(s)$ සූතුයෙහි ඇති 'n' හි අගය නිර්ණය කරන්න.

(ලකුණු 2.0 යි.)

- (b) ඉහත පද්ධතියෙහි උෂ්ණත්වය ඉන්පසු $800~{
 m K}$ දක්වා වැඩි කරන ලදී. මෙවිට ඝන ලෝහ කාබනේටයෙන් යම් පුමාණයක් වියෝජනය වී වායු කලාපය සමග සමතුලිතව ඇති බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි පීඩනය $4.20 imes 10^4~{
 m Pa}$ බව මැනගන්නා ලදී.
 - (i) 800 K හි දී බඳුන තුළ ඇති ජලවාෂ්පයෙහි ආංශික පීඩනය ගණනය කරන්න.
 - (ii) $800~{
 m K}$ හි දී බඳුන තුළ ඇති ${
 m CO_2}$ හි අාංශික පීඩනය ගණනය කරන්න.
 - (iii) $\mathrm{M(CO_3)_2(s)}$ හි වියෝජනයට අදාළ පීඩන සමතුලිතතා නියතය, K_p සඳහා පුකාශනයක් ලියන්න. $800~\mathrm{K}$ හි දී K_p ගණනය කරන්න.
 - (iv) 800 K හි දී ලෝහ කාබනේටයෙහි වියෝජනය වූ මවුල පුතිශතය ගණනය කරන්න.
 - (v) ඉහත තත්ත්ව යටතේ ලෝහ කාබනේටයෙහි වියෝජනය සඳහා එන්තැල්පි වෙනස $(\Delta H)\,40.0\,{
 m kJ}\,{
 m mol}^{-1}$ වේ. අනුරූප එන්ටොපි වෙනස $(\Delta S)\,$ ගණනය කරන්න.
 - $(vi)\ M(CO_3)_2(s)$ හි වියෝජන පුතිකිුිිිිිිිිිිිිි දිශාවට යොමු කිරීම සඳහා කුම **දෙකක්** යෝජනා කරන්න.

(ලකුණු 6.5 යි.)

(c) තාප රසායනික චකු හා වගුවෙහි දී ඇති දත්ත ආධාරයෙන් පහත සඳහන් පුශ්නවලට පිළිතුරු සපයන්න.

විශේෂය	සම්මත උත්පාදන එන්තැල්පිය $({f \Delta H}_f^\circ)({ m kJmol}^{-1})$
M(s)	0.0
M(g)	800.0
O ₂ (g)	0.0
O(g)	249.2
MO ₂ (g)	-400.0

- (i) $MO(g) + \frac{1}{2} O_2(g) \rightarrow MO_2(g) \Delta H^\circ = -50.0 \text{ kJ mol}^{-1}$ බව දී ඇත්නම් MO(g) හි සම්මත උත්පාදන එන්තැල්පිය ගණනය කරන්න.
- (ii) MO(g) හි M—O බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.

- (iii) $\mathrm{MO}_2(\mathrm{g})$ හි $\mathrm{M-O}$ බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.
- (iv) සම්මත තත්ත්ව යටතේ දී හා $2000~{\rm K}$ හි දී ${\rm MO}_2({\rm g})
 ightarrow {\rm MO}({\rm g}) + \frac{1}{2} {\rm O}_2({\rm g})$ පුතිකුියාව ස්වයංසිද්ධ වේ දැයි සුදුසු ගණනය කිරීමක් මගින් පුරෝකථනය කරන්න. මෙම පුතිකුියාවෙහි සම්මත එන්ටොපි වෙනස $30.0\,{\rm J}\,{\rm K}^{-1}\,{\rm mol}^{-1}$ වේ. (ලකුණු ${\bf 6.5}~{\rm G}$.)

6. (a) අම්ශු දුව පද්ධතියක් සාදන ජලය (${f A}$) හා කාබනික දුාවකයක් (${f B}$) අතර, අයඩීන් (${f I}_2$) හි වහාප්ති සංගුණකය නිර්ණය කිරීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී. ${f I}_2$ මවුල 'n' සංඛ්යාවක් අඩංගු ${f B}$ හි $20.00~{
m cm}^3$ සමග ${f A}$ හි $20.00~{
m cm}^3$ මිශු කර කාමර උෂ්ණත්වයේ දී සමතුලිතතාවයට එළඹීමට ඉඩහරින ලදී.

 ${f A}$ කලාපයෙන් $5.00~{
m cm}^3$ නියැදියක් ඉවත් කර එය $0.005~{
m mol~dm}^{-3}~{
m Na}_2{
m S}_2{
m O}_3$ දාවණයක් සමග අනුමාපනය කිරීමෙන් ${f A}$ කලාපයේ ${f I}_2$ සාන්දුණය නිර්ණය කරන ලදී. අන්ත ලක්ෂාය ලබා ගැනීමට අවශා වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව ${f 22.00~{
m cm}}^3$ විය. ${f B}$ කලාපයෙහි ${f I}_2$ සාන්දුණය ${f 0.040~{
m mol~dm}}^{-3}$ බව නිර්ණය කරන ලදී.

- (i) ${
 m Na_2S_2O_3}$ හා ${
 m I_2}$ අතර පුතිකිුයාව සඳහා තුලික රසායනික සමීකරණය ලියන්න.
- (ii) A කලාපයෙහි I, සාන්දුණය ගණනය කරන්න.
- (iii) වාහප්ති සංගුණකය K_D හි අගය ගණනය කරන්න. $K_D = \dfrac{\left[\mathbf{I}_2 \right]_{\mathbf{B}}}{\left[\mathbf{I}_2 \right]_{\mathbf{A}}}$ වේ.
- (iv) ${f A}$ හා ${f B}$ කලාප දෙකෙහි ඇති මුළු ${f I}_2$ මවුල පුමාණය ගණනය කරන්න.

(ලකුණු 4.5 යි.)

- (b) $\bf A$ කලාපයට $\bf I^-$ අයන එකතු කර, ඉහත පරීක්ෂණය එම තත්ත්ව යටතේ දී ම එනම් එම උෂ්ණත්වයේ දී හා එම $\bf I_2$ පුමාණය හා එම පරිමාවන් භාවිතයෙන් නැවත සිදු කරන ලදී. පද්ධතිය හොඳින් කළතා සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. $\bf A$ කලාපයෙහි $5.00~{
 m cm}^3$ නියැදියක ඇති $\bf I_2$ අනුමාපනය කිරීම සඳහා අවශා වූ $0.005~{
 m mol}~{
 m dm}^{-3}~{
 m Na}_2{
 m S}_2{
 m O}_3$ දාවණ පරිමාව ${
 m 41.00~cm}^3$ විය. මෙවිට $\bf B$ කලාපයෙහි $\bf I_2$ සාන්දණය $0.030~{
 m mol}~{
 m dm}^{-3}$ බව නිර්ණය කරන ලදී.
 - (i) ${f A}$ හා ${f B}$ කලාප අතර ${f I}_2$ හි වහාප්තිය සඳහා වහාප්ති සංගුණකය පදනම් කර ගනිමින් ${f A}$ කලාපයෙහි $5.00~{
 m cm}^3$ හි තිබිය යුතු යැයි බලාපොරොත්තු වන ${f I}_2$ පුමාණය (මවුල) ගණනය කරන්න.
 - (ii) ඉහත අනුමාපනයේ දී ${
 m Na_2S_2O_3}$ සමග පුතිකිුයා කරන ලද ${
 m I_2}$ පුමාණය (මවුල) ගණනය කරන්න.
 - (iii) ඉහත (b) (i) හා (b) (ii) කොටස් සඳහා ලබාගත් පිළිතුරු එකිනෙකින් වෙනස් වන්නේ මන්දැයි ${f A}$ කලාපයෙහි ඇති විවිධ අයඩීන් විශේෂ සලකමින් පැහැදිලි කරන්න.

(ලකුණු 3.5 යි.)

(c) \mathbf{X} හා \mathbf{Y} යන දුව රඌල් නියමය අනුගමනය කරන පරිපූර්ණ දුාවණයක් සාදයි.

රූපයේ පෙන්වා ඇති පරිදි රේචනය කරන ලද දෘඪ බඳුනකට මුලින් $\mathbf X$ දුවය පමණක් ඇතුළු කරන ලදී. දුව මට්ටම l හි පවත්වා ගනිමින් පද්ධතිය $400~\mathrm{K}$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. බඳුනෙහි පීඩනය $3.00 \times 10^4~\mathrm{Pa}$ ලෙස මැන ගන්නා ලදී. දුව මට්ටම l හි ඇති විට වාෂ්ප කලාපයේ පරිමාව $4.157~\mathrm{dm}^3$ විය.

ඉන් පසු \mathbf{Y} දවය බඳුන තුළට ඇතුළු කර \mathbf{X} දවය සමග මිශු කර පද්ධතිය $400~\mathrm{K}$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. දව මට්ටම l හි පවත්වා ගන්නා ලදී. දව කලාපයෙහි $\mathbf{X}:\mathbf{Y}$ මවුල අනුපාතය 1:3 බව සොයාගන්නා ලදී. බඳුනෙහි පීඩනය $5.00\times10^4~\mathrm{Pa}$ බව මැනගන්නා ලදී.

- (i) $400~{
 m K}$ හි දී ${
 m X}$ හි සන්තෘප්ත වාෂ්ප පීඩනය කුමක් වේ ද?
- (ii) සමතුලිතතාවයේ දී දුව කලාපයේ X හා Y හි මවුල භාග ගණනය කරන්න.
- (iii) Y එකතු කළ පසු සමතුලිතතාවයේ දී X හි අාංශික පීඩනය ගණනය කරන්න.
- (iv) සමතුලිතතාවයේ දී Y හි ආංශික පීඩනය ගණනය කරන්න.
- (v) Y හි සන්තෘප්ත වාෂ්ප පීඩනය ගණනය කරන්න.
- (vi) වාෂ්ප කලාපයෙහි ඇති X හා Y හි පුමාණ (මවුලවලින්) ගණනය කරන්න.
- (vii) X හා Y දුව මිශුණයක් භාගික ආසවනයට භාජනය කළ විට භාගික ආසවන කුළුණින් කුමන සංයෝගය මුලින් ආසවනය වී පිට වේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුරට හේතුව/හේතු දක්වන්න.

(ලකුණු 7.0 යි.)

7. (a) ලැයිස්තුවේ දී ඇති රසායන දුවා පමණක් භාවිත කර ඔබ පහත සඳහන් පරිවර්තනය සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න.

$$C_2H_5CH_2CHO \longrightarrow C_2H_5COCH_3$$

රසායන දුවෘ ලැයිස්තුව ජලීය NaOH, HBr, මදාසාරීය KOH, NaBH₄, H⁺/KMnO₄

ඔබගේ පරිවර්තනය පියවර 7 කට වඩා වැඩි නොවිය යුතු ය.

(ලකුණු 6.0 යි.)

(b) පහත සඳහන් පුතිකුියා පටිපාටිය සම්පූර්ණ කිරීම සඳහා \mathbf{R}_1 — \mathbf{R}_4 සහ \mathbf{X}_1 — \mathbf{X}_4 සහ \mathbf{Y}_1 , \mathbf{Y}_2 හඳුනාගන්න.

(c) (i) පහත සඳහන් පුතිකිුියාවේ යන්තුණය දෙන්න.

(ලකුණු 6.0 යි.)

$$C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$$

- (ii) ඉහත සඳහන් පුතිකිුයාව නාාෂ්ටිකාමී (nucleophilic) ආදේශ පුතිකිුයාවක් ද නැතහොත් ඉලෙක්ටුෝනකාමී (electrophilic) ආදේශ පුතිකිුයාවක් ද යන්න සඳහන් කරන්න. අදාළ පරිදි නියුක්ලියොෆයිලය හෝ ඉලෙක්ටුොෆයිලය හඳුනාගන්න.
- (iii) පීනෝල් (C_6H_5OH) සහ එතනෝල් (C_2H_5OH) යන සංයෝග දෙක අතරින් වඩා ආම්ලික වන්නේ කුමක් දැයි හේතු දක්වමින් සඳහන් කරන්න. (ලකුණු 3.0 යි.)

C කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

8. (a) P නම් ජලීය දාවණයක කැටායන **දෙකක්** හා ඇනායන **දෙකක්** අඩංගු වේ. මෙම කැටායන හා ඇනායන හඳුනාගැනීම සඳහා පහත සඳහන් පරීක්ෂණ සිදු කරන ලදී.

කැටායන

	පරීක්ෂණය	නිරීක්ෂණය
0	තනුක HCl මගින් $m{P}$ ආම්ලිකෘත කර දුාවණය තුළින් H_2S බුබුලනය කරන ලදී.	පැහැදිලි දාවණයක් ලැබුණි.
0	$ m H_2S$ සියල්ල ම ඉවත් වන තුරු ඉහත දුාවණය නටවන ලදී. සාන්දු $ m HNO_3$ බිංදු කිහිපයක් එකතු කර දාවණය තවදුරටත් රත් කරන ලදී. ලැබුණු දුාවණය සිසිල් කර, $ m NH_4Cl/NH_4OH$ එකතු කරන ලදී.	දුඹුරු පැහැති අවක්ෂේපයක් (Q) සැදුණි.
3	${f Q}$ පෙරා ඉවත් කර පෙරනය තුළින් ${f H}_2 {f S}$ බුබුලනය කරන ලදී.	ලා-රෝස පැහැති අවක්ෂේපයක් (R) සෑදුණි.
4	${f R}$ පෙරා ඉවත් කර ${f H}_2{f S}$ සියල්ල ම ඉවත් වන තුරු පෙරනය නටවන ලදී. දුාවණයට ${f (NH_4)}_2{f CO}_3$ එකතු කරන ලදී.	පැහැදිලි දාවණයක් ලැබුණි.
(5)	P හි අලුත් කොටසකට තනුක NaOH එකතු කරන ලදී.	කැත-කොළ පැහැති අවක්ෂේපයක් සහ සුදු අවක්ෂේපයක් සෑදුණි.

Q හා R අවක්ෂේප සඳහා පරීක්ෂණ:

	පරීක්ෂණය	නිරික්ෂණය			
6	තනුක HNO_3 හි \mathbf{Q} දුවණය කර, සැලිසිලික් අම්ල දුාවණයක්	ලා-දම් පැහැති දුාවණයක් ලැබුණි.			
	එක් කරන ලදී.				
7	තනුක අම්ලයක ${f R}$ දුවණය කර, දුාවණයට තනුක ${f NaOH}$ එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් සෑදුණි. කල් තැබීමේ දී එය දුඹුරු පැහැයට හැරුණි.			

ඇනායන

		පරීක් ෂාව	නිරීක්ෂණය
8	I	BaCl_2 දුාවණයක් ${f P}$ වලට එකතු කරන ලදී.	සුදු අවක්ෂේපයක් සෑදුණි.
	II	සුදු අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපයට තනුක HCl එක් කරන ලදී.	සුදු අවක්ෂේපය දුවණය නොවුණි.
9	_	II හි පෙරනයෙන් කොටසකට Cl_2 දියරය හා ක්ලෝරෆෝම් තු කර මිශුණය හොඳින් සොලවන ලදී.	ක්ලෝරෆෝම් ස්තරය කහ-දුඹුරු පැහැයට හැරුණි.

- (i) ${f P}$ දුාවණයෙහි ඇති කැටායන **දෙක** හා ඇනායන **දෙක** හඳුනාගන්න. (හේතු අවශා **නැත**.)
- (ii) ${f Q}$ හා ${f R}$ අවක්ෂේපවල රසායනික සූතු ලියන්න.
- (iii) පහත සඳහන් දේවල් සඳහා හේතු දෙන්න:
 - I. කැටායන සඳහා $\mathbf{\hat{Q}}$ පරීක්ෂණයේ දී H,S ඉවත් කිරීම
 - $\mathrm{II.}$ කැටායන සඳහා $\mathrm{ extbf{Q}}$ පරීක්ෂණයේ දී සාන්දු $\mathrm{HNO_3}$ සමග රත් කිරීම

(b) ලෙඩ්, කොපර් හා නිෂ්කිුය දවාසයක් ${f X}$ නියැදියෙහි අඩංගු වේ. ${f X}$ හි ඇති ලෙඩ් හා කොපර් විශ්ලේෂණය කිරීම සඳහා පහත කිුියාවලිය සිදු කරන ලදී.

කියාවලිය

 ${f X}$ හි 0.285 g ස්කන්ධයක් තනුක ${f HNO}_3$ මඳක් වැඩි පුමාණයක දුවණය කරන ලදී. පැහැදිලි දාවණයක් ලැබුණි. ලැබුණු පැහැදිලි දාවණයට ${f NaCl}$ දාවණයක් එක් කරන ලදී. සුදු අවක්ෂේපයක් ${f (Y)}$ සෑදුණි. අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපය ${f (Y)}$ හා පෙරනය ${f (Z)}$ වෙන වෙනම විශ්ලේෂණය කරන ලදී.

අවක්ෂේපය (Y)

අවක්ෂේපය උණු ජලයෙහි දුවණය කරන ලදී. $K_2 CrO_4$ දාවණයකින් වැඩිපුර එක් කරන ලදී. කහ පැහැති අවක්ෂේපයක් සෑදුණි. අවක්ෂේපය පෙරා වෙන් කර තනුක HNO_3 හි දුවණය කරන ලදී. තැඹිලි පැහැති දාවණයක් ලැබුණි. මෙම දාවණයට වැඩිපුර KI එක් කර, පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~mol~dm^{-3}~Na_2S_2O_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ $Na_2S_2O_3$ පරිමාව $27.00~cm^3$ විය. (අනුමාපනයට NO_3^- අයන බාධා **නොකරන** බව උපකල්පනය කරන්න.)

පෙරනය (${f Z}$)

මෙරනය උදාසීන කර එයට වැඩිපුර KI එක් කරන ලදී. පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~{
m mol~dm^{-3}}~{
m Na}_2{
m S}_2{
m O}_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව $15.00~{
m cm^3}$ විය.

(**හැ.ගූ.**: නිෂ්කුිය දවායෙ තනුක HNO_3 හි දුවණය වේ යැයි හා එය පරීක්ෂණයට බාධා **නොවේ** යැයි උපකල්පනය කරන්න.)

- (i) X හි අඩංගු ලෙඩ හා කොපර් ස්කන්ධ පුතිශත ගණනය කරන්න. අදාළ අවස්ථාවන් හි තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) Y අවක්ෂේපය විශ්ලේෂණයේ දී කරන අනුමාපනයෙහි අන්ත ලක්ෂායේ දී ලැබෙන වර්ණ විපර්යාසය කුමක් ද? (Cu=63.5, Pb=207)

(ලකුණු 7.5 යි.)

- $oldsymbol{9}.~(a)$ පහත සඳහන් පුශ්න පරිසරය සහ ඊට අදාළ ගැටලු මත පදනම් වේ.
 - (i) ගෝලීය උණුසුම්කරණයට දායක වන හරිතාගාර වායු **තුනක්** හඳුනාගන්න. ගෝලීය උණුසුම්කරණය නිසා ඇති වන පුතිවිපාක **දෙකක්** සඳහන් කරන්න.
 - (ii) ගල් අඟුරු බලාගාර නිසා ඇති වන ගෝලීය පාරිසරික ගැටලු හොඳින් පුකට වී ඇත. ගංගා සහ ජලාශ වල සමහර ජල තත්ත්ව පරාමිතියන් වෙනස් වීම සඳහා **සැලකිය යුතු ලෙස** දායක වන එවැනි **එක්** ගැටලුවක් හඳුනාගන්න.
 - (iii) ඉහත (ii) හි හඳුනාගන්නා ලද පාරිසරික ගැටලුව සඳහා හේතු වන රසායනික විශේෂය නම් කරන්න. මෙම ගැටලුව නිසා බලපෑමට ලක් විය හැකි ජල තත්ත්ව පරාමිතියන් **තුනක්** සඳහන් කරන්න.
 - (iv) වායුගෝලයේ ඕසෝන් මට්ටම වෙනස් කරන (වැඩි කරන හෝ අඩු කරන) පාරිසරික ගැටලු **දෙකක්** හඳුනාගෙන මෙම වෙනස් වීම් සිදුවන්නේ කෙසේ දැයි තුලිත රසායනික සමීකරණ ආධාරයෙන් කෙටියෙන් පැහැදිලි කරන්න.
 - (v) I. "උත්පේරක පරිවර්තක (catalytic converters) මගින් වාහන පිටාර වායුවෙහි ඇති අහිතකර වායු බහුතරයක්, සාපේක්ෂව අහිතකර බවින් අඩු වායු බවට පරිවර්තනය කරනු ලැබේ." මෙම පුකාශය කෙටියෙන් පැහැදිලි කරන්න.
 - II. උත්පේරක පරිවර්තකයක් මගින් අහිතකර බවින් අඩු වායුවක් බවට පරිවර්තනය නොවන අහිතකර වායුව (CO_2 හැර) නම් කරන්න. මෙම අහිතකර වායුව වාහන එන්ජිම තුළ නිපදවෙන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(b) ${f P}_1$ හා ${f P}_2$ යන වැදගත් සංයෝග දෙකක් හා ඒවායින් වුහුත්පන්න කරනු ලබන ${f P}_3$, ${f P}_4$ හා ${f P}_5$ යන තවත් වැදගත් සංයෝග තුනක් නිපදවන අයුරු පහත දී ඇති ගැලීම් සටහනෙහි දැක්වේ. ${f Na}_2{f CO}_3$ නිෂ්පාදනයේ දී ${f P}_1$ අමුදවායක් ලෙස භාවිත වේ. ${f P}_1$ හා ${f P}_2$ අතර පුතිකියාවෙන් ${f P}_3$ නිෂ්පාදනය කළ හැක. ${f P}_3$ පොහොරක් ලෙස හා ස්ඓා්ටකයක් ලෙස භාවිත වේ. බහුල වශයෙන් භාවිත වන පොහොරක් වන ${f P}_4$ නිෂ්පාදනයේ දී ද ${f P}_1$ භාවිත වේ. වැදගත් තාපස්ථාපන බහු අවයවකයක් වන ${f P}_5$ සංශ්ලේෂණයේ දී ${f P}_4$ භාවිත වේ.

 M
 නිෂ්පාදන කිුයාවලිය
 PC
 අමුදුවා ලබා ගැනීම සඳහා
 R
 අමුදුවා

 P
 එලය
 S
 අමුදුවා සඳහා පුභවය

(X) පුතිකියා නොකළ අමුදුවාය (අමුදුවා)/ භෞතික භා/හෝ රසායනික කියාවලියේ දී වායුගෝලයට මුදාහැරෙන දුවා

ඉහත ගැලීම් සටහන පදනම් කරගනිමින් පහත පුශ්නවලට පිළිතුරු සපයන්න.

- (i) P_1, P_2, P_3, P_4 හා P_5 හඳුනාගන්න.
- (ii) $\mathbf{R_1}$, $\mathbf{R_2}$ හා $\mathbf{R_3}$ හඳුනාගන්න.
- (iii) X_1, X_2 හා X_3 හඳුනාගන්න.
- (iv) S හඳුනාගන්න.
- (v) අදාළ අවස්ථාවලදී තුලිත රසායනික සමීකරණ දෙමින් \mathbf{PC}_1 හා \mathbf{PC}_2 හි සිදු වන කියාවලි කෙටියෙන් සඳහන් කරන්න.
- $({
 m vi})$ ${
 m M_1, M_2}$ හා ${
 m M_3}$ නිෂ්පාදන කිුයාවලි හඳුනාගන්න. (උදා: ස්පර්ශ කුමය හෝ ${
 m H_2SO_4}$ නිෂ්පාදනය.)
- $({
 m vii})$ ${
 m M}_1, {
 m M}_2$ හා ${
 m M}_3$ හි සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ සුදුසු තත්ත්ව සමග දෙන්න.
- $({
 m viii})$ I. ${f P_1}$ හා ${f P_2}$ යන එක් එක් සංයෝගය සඳහා ඉහත සඳහන් කර නොමැති එක් පුයෝජනයක් බැගින් දෙන්න.
 - II. අමුදුවාායක් ලෙස භාවිත කිරීම හැර, $\mathbf{P_1}$ නිෂ්පාදන කියාවලියෙහි $\mathbf{R_1}$ හි එක් පුයෝජනයක් දෙන්න.

10.(a) A හා B යනු අෂ්ටතලීය ජාාමිතියක් ඇති **සංකීර්ණ අයන** (එනම්, ලෝහ අයනය හා එයට සංගත වී ඇති ලිගත) වේ. ඒවාට එකම පරමාණුක සංයුතිය වන $MnC_5H_3N_6$ ඇත. එක් එක් සංකීර්ණ අයනයෙහි ලිගන වර්ග **දෙකක්** ලෝහ අයනයට සංගත වී ඇත. A අඩංගු ජලීය දාවණයක් පොටැසියම් ලවණයක් සමග පිරියම් කළ විට C සංගත සංයෝගය සෑදෙයි. ජලීය දාවණයේ දී C මගින් අයන හතරක් ලැබේ. B අඩංගු ජලීය දාවණයක් පොටැසියම් ලවණයක් සමග පිරියම් කළ විට D සංගත සංයෝගය සෑදෙයි. ජලීය දාවණයේ දී D මගින් අයන තුනක් ලැබේ. C හා D දෙකටම අෂ්ටතලීය ජාාමිතියක් ඇත.

(සැ.යූ.: පොටෑසියම් ලවණය සමග පිරියම් කළ විට ${f A}$ හා ${f B}$ හි ඇති මැන්ගනීස් හි ඔක්සිකරණ අවස්ථා වෙනස් නොවේ.)

- (i) A හා B හි මැන්ගනීස්වලට සංගත වී ඇති ලිගන හඳුනාගන්න.
- (ii) A, B, C හා D හි වනුහ දෙන්න.
- (iii) A හා B හි මැන්ගනීස් අයනයන්හි ඉලෙක්ටුෝනික විනාහසයන් ලියන්න.
- (iv) C හා D හි IUPAC නම් ලියන්න.

(ලකුණු 7.5 යි.)

- (b) (i) I. Ag(s) AgCl(s) Cl (aq) ඉලෙක්ටෝඩයට අදාළ ඔක්සිහරණ අර්ධ පුතිකියාව ලියන්න.
 - II. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ හි ඉලෙක්ටෝඩ විභවය දාවණයෙහි Ag^+ සාන්දණය මත රඳාපවතින්නේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුර පැහැදිලි කරන්න.
 - (ii) පහත පුතිකිුයාව සලකන්න.

$$Fe(s) + 2H^{+}(aq) + \frac{1}{2}O_{2}(g) \rightarrow Fe^{2+}(aq) + H_{2}O(1)$$

- I. ඉහත පුතිකිුයාවට අදාළ ඔක්සිකරණ හා ඔක්සිහරණ අර්ධ පුතිකිුයා ලියන්න.
- II. ඉහත පුතිකිුිිියාව විදාුුුත් රසායනික කෝෂයක කෝෂ පුතිකිුිිියාව බව දී ඇත් නම් එම කෝෂයෙහි සම්මත විදාුුුත් ගාමක බලය නිර්ණය කරන්න.

$$E_{Fe^{2+}(aq)/Fe(s)}^{\circ} = -0.44V$$
 $E_{H^{+}(aq)/O_{2}(g)/H_{2}O(1)}^{\circ} = 1.23V$

(iii) රූපයේ දැක්වෙන පරිදි $0.10~{
m mol~dm^{-3}~CaBr_2}$ ජලීය දාවණයක $100.00~{
m cm^3}$ තුළින් $100~{
m mA}$ වූ නියත ධාරාවක් යවන ලදී. පද්ධතියේ උෂ්ණත්වය $25~{
m ^{\circ}C}$ හි පවත්වා ගන්නා ලදී.

- I. ඉලෙක්ටුෝඩවල සිදු වන ඔක්සිකරණ සහ ඔක්සිහරණ පුතිකිුයා ලියන්න.
- II. $\operatorname{Ca(OH)}_2(s)$ අවක්ෂේප වීම ආරම්භ වීමට ගත වන කාලය ගණනය කරන්න. $25~^{\circ}\mathrm{C}$ හි දී $\operatorname{Ca(OH)}_2$ හි දුාවාහා ගුණිතය $1.0 \times 10^{-5}~\mathrm{mol}^3~\mathrm{dm}^{-9}$ වේ. ජලයෙහි අයනීකරණය නොසලකා හරින්න. ජලීය කලාපයෙහි පරිමාව නියතව පවතින බව උපකල්පනය කරන්න.

ආවර්තිතා වගුව

	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι-	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

සියලු ම හිමිකම් ඇව්රිණි /(ψ (ψ ப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$)

ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව පිරාස පුළුජාර්ජාවේර්පාව විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இல்හනසට පුර්ධකාපති නිකානස්සාගෙ මුරාහනසට පුර්ධකාපති නිකානස්සන්ගමණීමෙන්ට පුර්ධකාපති නිකානස්සනගෙ මුරාහනසට පුර්ධකාපති නිකානස්සනගෙන් පුර්ධකාපති නිකානස්සනගෙන් ප්රධාන අධ්යකාපති විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලේකා විම ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන් ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්ත් ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර ලේකා විභාග දෙපාර්තමේ

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

<mark>රසායන විදනව II</mark> இரசாயனவியல் II Chemistry II

2018.08.17 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය-මිනිත්තු 10 යිமேலதிக வாசிப்பு நேரம்-10 நிமிடங்கள்Additional Reading Time-10 minutes

විභාග අංකය :

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

- * ආවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- 🗱 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වතු වායු නියතය, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- st ඇවගාඩ්රෝ නියතය, $N_A=6.022 imes10^{23}~
 m mol^{-1}$
- * මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- A කොටස වපුහගත රචනා (පිටු 2 8)
- * **සියලු ම** පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - □ B කොටස සහ C කොටස රචනා (පිටු 9 15)
- * එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ගනිමින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි B සහ C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	පුශ්න අංකය	ලැවූ ලකුණු
	1	
. [2	
A	3	
	4	
	5	
В	6	
	7	
	8	
c [9	
	10	
එකතුව		
පුතිශත ය		

අවසාන ලකුණ

ඉලක්කමෙන් අකුරින්

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ	
අධීක්ෂණය කළේ :	U. Walle

A කොටස - වපුහගත රචනා

පුශ්න හතරට ම මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 10 කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

- 1. (a) පහත සඳහන් පුකාශ **සත**ුද නැතහොත් **අසතු** ද යන බව සඳහන් කරන්න. (හේතු අවශා **නැත**.)
 - (i) විශාලත්වය වැඩිවීමත් සමග හේලයිඩ අයනවල ධුැවණශීලීතාවය වැඩි වේ.
 - (ii) NO_2 හි O-N-O බන්ධන කෝණය NO_7^- හි එම කෝණයට වඩා විශාල වේ.
 - (iii) ${
 m CCl}_4$ අණු අතර ලන්ඩන් අපකිරණ බල ${
 m SO}_3$ අණු අතර ලන්ඩන් අපකිරණ බලවලට වඩා කුඩා වේ.
 - (iv) ${
 m HSO}^-_4$ අයනයේ හැඩය නිුයානති ද්විපිරමිඩාකාර වේ.
 - $({
 m v})$ පරමාණුවක සියලු ම 3d පරමාණුක කාක්ෂික $(n,l,m_l)\,3,2,1$ යන ක්වොන්ටම් අංකවලින් නිරූපණය වේ.
 - (vi) වායුමය පොස්පරස් පරමාණුවකට ඉලෙක්ටුෝනයක් එක් කිරීම තාපදායක කිුිිියාවලියක් වන අතර වායුමය නයිටුජන් පරමාණුවක් සඳහා එය තාප අවශෝෂක වේ.

(ලකුණු 2.4 යි)

(b) (i) SF_3N අණුව සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් වාූහය අඳින්න.

(ii) C_3O_2 (කාබන් සබ්ඔක්සයිඩ්) අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් වූහුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් වූහුහ (සම්පුයුක්ත වූහුහ) **දෙකක්** අඳින්න.

(සැ. යු.: අෂ්ටක නියමයට අනුකූල නොවන ලුවිස් ව\\ වහවලට ලකුණු පුදානය කරනු නොලැබේ.) $\ddot{O} = C = C = \ddot{O}$

- (iii) පහත සඳහන් ලුවිස් වාුහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති C, N හා P පරමාණුවල
 - I. පරමාණුව වටා VSEPR යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

$$F - C^{1} - N^{2} - C^{3} - P^{4} - CI$$

		C^1	N ²	C^3	P ⁴
I.	VSEPR යුගල්				
II.	ඉලෙක්ටුෝන යුගල් ජාාමිතිය				
III.	හැඩය				
IV.	මුහුම්කරණය				

2.

/2018	/UZ-S-II(A)		-3-	I III TOWN	
(හයෙහි පහත සඳහන් σ බන්ධන ස ාණුවල අංකනය (iii) කොටසෙහි ආා	- The state of the	මෙම තීරයේ කිසිවක් නො ලියන්:
	I. F—C1	F	C ¹	1 12 12	
	II. C ¹ —N ²	C ¹	N^2		
	III. N ² —C ³	N ²	C ³		
	IV. C ³ —P ⁴	C ³	P ⁴		
	V. P ⁴ —Cl	P ⁴	CI		
(ායෙහි පහත සඳහන් π බන්ධන ස වල අංකනය (iii) කොටසෙහි ආකාර	189	
	I. N ² —C ³	N^2	C ³		
	II. C ³ —P ⁴	C ³	P ⁴	(ලකුණු 5.2 යි)	
		ි ගුණය වැඩිවන පිළිවෙළට පළමුවන අයනීකරණ ශක්සි	පහත සඳහන් දෑ සකසන්න. (හේතු බිය)	අවශා නොවේ .)	
	<	<	< <		
(ii) NH ₃ , NOCl, N	ට ₂ CI, NH ₄ ⁺ , F ₃ C-NC (න	යිටුජන්වල විදපුත් සෘණතාව)		
	<	<	< <		
(i	ii) පරමාණුවක ඉලෙ	ක්ටුෝනවල ක්වොන්ටම් අ	ංක (n,l,m_l,m_s)		/ \
	$(3,1,0,-\frac{1}{2}),(3,$	$(0,0,+\frac{1}{2}),(2,0,0$	$(2,1,+1,+\frac{1}{2}), (3,2,-1,+\frac{1}{2})$	ත්ටුෝනයේ ශක්තිය)	100
	<	<		(ලකුණු 2.4 යි)	
	ඔක්සිකරණ අවස්ථා පහසුවෙන් දුවණය වී	පරාසයක් පෙන්නුම් කරයි. භාස්මික දුාවණයක් ලබා ම	යකි. එය ද්විපරමාණුක වායුවක් ලෙ . X හි වඩාත් ම සුලභ හයිඩුයිඩය දෙයි. Y ඔක්සිකාරකයක්, ඔක්සිහාරස X හි ද්විපරමාණුක වායුව භාවිත වේ	Y වේ. Y ජලයෙහි යෙක්, අම්ලයක් සහ	
	(i) X සහ Y හඳුනා	ගන්න.			
	X =	Y =			
(ii) X හි ද්විපරමාණුක	ා වායුව සාමානාපයෙන් නිෂ්	්කිුය යැයි සලකනු ලැබේ. කෙටියෙ	න් පහදන්න.	
(i	ii) X හි ඔක්සයිඩ තු දක්වන්න.	නක රසායනික සූතු ලියා :	එම එක් එක් සංයෝගයේ X හි ඔ	ක්සිකරණ අවස්ථාව	

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
(i	v) පහත සඳහන් එක සමීකරණය බැගින		ඛ්යාකාරිත්වය පෙන්නුම් කිරීම සඳෑ	ාා තුලිත රසායනික	
	I V modelmos	acead acea			

II. Y ඔක්සිහාරකයක් ලෙස

(v)	X අඩංගු කාණ්ඩයේ මූලදුවාවල Y ර තාපාංක විචලනය වන ආකාරයේ ග හයිඩුයිඩ, ඒවායේ රසායනික සූතු භ (කැ. යූ.: තාපාංකවල අගයයන් අවශා	දළ සටහනක් පහත පුස්තාරයේ ාවිතයෙන් පෙන්නුම් කරන්න.	මෙම හයිඩුයිඩවල (Y ද ඇතුළුව) ්	මෙම තීරයේ කිසිවක් නො ලිය
	·			
	තාපාංකය \uparrow			
	L -4			
(vi)	The state of the s		ඩුයිඩය	
(1)	ඉහත (v) කොටසෙහි තාපාංකවල වීෑ	වලිනයට හෙතු දකටනන.		
	***************************************		***************************************	
	•••••			
(vii)	I. Y හි ජලීය දාවණයකින් වැඩිපුං නිරීක්ෂණය කරන්නේ දැයි ලියන		රියකට එක් කළ විට ඔබ කුමක්	

	II. ඉහත I කොටසෙහි ඔබගේ නිරීක්	්ෂණයට හේතු කාරක වන විශේ	ෂයෙහි රසායනික සූතුය ලියන්න.	
(viii)	Y හඳුනාගැනීමට එක් රසායනික පරීක	් ෂාවක් දෙන්න.	-	
	පරික්ෂාව:			
	නිරීක්ෂණය:		***************************************	
(ix)	${f Z}$ යනු ${f X}$ හි ඔක්සො-අම්ලයක් හා පු	බල ඔක්සිකාරකයකි.		
	I. Z හඳුනාගන්න			
	$\mathrm{II.}$ සල්ෆර් සමග උණු සාන්දු \mathbf{Z} පුති	කිුිිිිිිිිිි යා කළ විට ලැබෙන ඵල සඳ	හන් කරන්න.	
			(ලකුණු 6.0 යි)	
උෂ්ණ ඝන ර	B යනු ආවර්තිතා වගුවේ එකම කාළ ත්වයේ දී හා වායුගෝලීය පීඩනයේ වස්ථාවන්හි ද දක්නට ලැබේ. A හි ක හා ධුැවීය සංයෝග පහසුවෙන් A	දී අවර්ණ, ගඳක් නොමැති දුව ඝන අවස්ථාව එහි දුව අවස්ථා	යක් ලෙස 🗛 පවතී. එය වායු හා	*
	උෂ්ණත්වයේ දී හා වායුගෝලීය පී ලද පෙරහන් කඩදාසියක් B මගින් ම			
(i)	A හා B හඳුනාගන්න.			
• •	A =	B =		