Modelos de Markov

•••

Algoritmos y Estructuras de Datos 2024

Sistemas determinísticos vs estocásticos

- Se denomina sistema determinístico a aquel en que el azar no está involucrado en el desarrollo de los futuros estados del sistema.
- En un modelo determinístico, un mismo conjunto de condiciones de partida producirán **siempre** la misma salida.
- Por su parte, en los sistemas estocásticos la salida está afectada por elementos aleatorios.
- En los sistemas estocásticos, cada salida está vinculada a una probabilidad de ocurrencia.

Modelos de Markov

 En los procesos estocásticos es posible predecir cuál sería el estado futuro más probable de un sistema en base a todos los estados anteriores.

$$P(X_{t+1} = y|X_0 = X_0, X_1 = X_1, ..., X_t = X_t)$$

 Para que un proceso estocástico se considere "markoviano", la probabilidad condicional de un estado futuro depende únicamente del estado actual.

$$P(X_{t+1} = y|X_0 = X_0, X_1 = X_1, ..., X_t = X_t) = P(X_{t+1} = y|X_t = X_t)$$

 Este supuesto permite reducir significativamente el número de cálculos necesarios para cada predicción.

Modelos de Markov

- Un ejemplo típico de modelos markovianos es la predicción del tiempo.
- Al plantearlo como un modelo de Markov, no importa que haya pasado en días anteriores.

Modelos de Markov: definiciones

- **Estado**: cada una de las posibles valores que puede tomar el sistema
- Espacio de estados: todos los estados presentes en el sistema
- Probabilidad de transición: la probabilidad de pasar de un estado a otro.

Tipos de modelos de Markov

- Los modelos se pueden clasificar en base a si los estados son totalmente observables
 o si solo pueden verse las emisiones de un estado.
- Por ejemplo, predecir el nivel de tráfico (no observable) sólo a partir del clima (observable).
- También pueden clasificarse dependiendo de si las probabilidades para pasar de un estado a otro dependen de un agente externo (controlado) o no (autónomo)

	Estados totalmente observables	Estados parcialmente observables
Sistema autónomo	Cadenas de Markov	Modelos ocultos de Hidden Markov
Sistema controlado	Procesos de decisión de Markov	Procesos de decisión de Markov parcialmente observables

Cadenas de Markov

- Son los modelos de Markov más simples, ya que todos los estados son observables
- Los cambios entre estados se denominan transiciones; cada transición tiene asociada una probabilidad de transición.

Cadenas de Markov

- Estos datos pueden expresarse como una serie de probabilidades condicionales.
- La suma de todas las probabilidades a partir de un estado debe ser 1.

Cadenas de Markov

- También pueden plantearse como una matriz de transición.
- Cada fila representa un estado (X_t) y las probabilidades de pasar a otros estados en el futuro (X_{t+1}) .
- La matriz de transición siempre tendra tamaño N x N, siendo N el número de estados del sistema

Cadenas de Markov: predicción

- A partir de un estado inicial, es posible calcular las probabilidades de cualquier estado futuro.
- Por ejemplo, si el estado inicial es soleado, la probabilidad de que llueva al día siguiente se puede obtener de la matriz.

$$P(lluvia/sol) = 0.10$$

 Si quisiéramos saber la probabilidad de que llueva dentro de 2 días, debemos considerar todos los estados intermedios


```
P(sol/sol)*P(lluvia/sol) +
P(lluvia/sol)*P(lluvia/lluvia) + = 0.6*0.1 + 0.1*0.7 + 0.3*0.2 = 0.19
P(nube/sol)*P(lluvia/nube)
```

Cadenas de Markov: predicción

- Otra forma de expresar los cálculos es multiplicando la matriz de transición por un vector con las probabilidades de un estado.
- Suponiendo que el estado actual es "sol", podríamos expresar las probabilidades como:

$$X_{+} = [1, 0, 0]$$

 Para calcular X_{t+1} debemos multiplicar este vector por la matriz de transición:

$$\begin{bmatrix} 1, 0, 0 \end{bmatrix} \times \begin{bmatrix} 0.60 & 0.10 & 0.30 \\ 0.10 & 0.70 & 0.20 \\ 0.20 & 0.20 & 0.60 \end{bmatrix} = \begin{bmatrix} 1*0.6, 1*0.1, 1*0.3 \end{bmatrix} = \begin{bmatrix} 0.6, 0.1, 0.3 \end{bmatrix}$$

Cadenas de Markov: predicción

 Si quisiéramos calcular el estado siguiente (X_{t+2}), debemos multiplicar el nuevo vector X_{t+1} por la matriz de transición:

$$X_{t+2} = X_{t+1} \times P$$

$$X_{t+2} = [0.6, 0.1, 0.3] \times \begin{pmatrix} 0.60 & 0.10 & 0.30 \\ 0.10 & 0.70 & 0.20 \\ 0.20 & 0.20 & 0.60 \end{pmatrix} = [0.43, 0.19, 0.38]$$

 Generalizando, la probabilidad de un estado X_{n+1} se puede calcular como la el vector X_n por la matriz de transición

Cadenas de Markov: generalización

 Para definir la probabilidad en el día 2 de un estado a otro, se multiplica los valores de la "fila objetivo" con los valores de la "columna de inicio".

- Para calcular la probabilidad de cualquier estado futuro a partir de un estado presente, debemos multiplicar la fila y la columna pertinentes.
- Para tener todas las probabilidades de X₂, es necesario multiplicar la matriz por sí misma. Para cualquier otro dia, se debe hacer X_n x P.

Multiplicación de matrices: pseudocódigo

$$AB = egin{pmatrix} a_{11} & \cdots & a_{1n} \ dots & \ddots & dots \ a_{m1} & \cdots & a_{mn} \end{pmatrix} egin{pmatrix} b_{11} & \cdots & b_{1p} \ dots & \ddots & dots \ b_{n1} & \cdots & b_{np} \end{pmatrix} \ = egin{pmatrix} a_{11}b_{11} + \cdots + a_{1n}b_{n1} & \cdots & a_{11}b_{1p} + \cdots + a_{1n}b_{np} \ dots & dots & dots \ a_{m1}b_{11} + \cdots + a_{mn}b_{n1} & \cdots & a_{m1}b_{1p} + \cdots + a_{mn}b_{np} \end{pmatrix}$$

Entrada: matriz A (tamaño m*n) y matriz B (tamaño n*p)

```
Recorrer una fila de una matriz (m):
    Recorrer una columna de la otra matriz (p):
        Recorrer todas las columnas de la primer matriz y las filas
        de la segunda (n):
        Resultado[m][p] += A[m][n] * B[n][p]
```

Multiplicación de matrices: código

```
def multiplicacion_matrices(A, B):
    resultado = []
    filas_A = len(A)
    columnas_A = len(A[0])
    columnas_B = len(B[0])
    for i in range(filas_A):
        resultado.append([])
        for j in range(columnas_B):
            celda = 0
            for k in range(columnas_A):
                celda += A[i][k] * B[k][i]
            resultado[i].append(celda)
    return resultado
A = [[2,3], [4,5], [2,1]]

B = [[4,3,2,1], [5,6,7,8]]
C = multiplicacion_matrices(A, B)
```

Distribución estacionaria

- Una de las cosas interesantes para buscar en las cadenas de Markov es la existencia de distribuciones estacionarias a partir de un estado inicial.
- Las distribuciones estacionarias son conjuntos de probabilidades (π) que ya no cambian en el tiempo, por más que se los multiplique por la matriz de transición.

$$\pi \times P = \pi$$

- Para calcular esta matriz existen 2 estrategias:
 - Cálculo de autovectores (exacto)
 - Cálculo por fuerza bruta de iteraciones hasta lograr un conjunto de probabilidades igual al anterior (aproximado y en caso de no existir, itera infinitamente).

Distribución estacionaria: código

```
x0 = [[1, 0, 0]] \# Estado inicial: sol
P = [[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]]
x1 = multiplicacion_matrices(x0, P)
contador = 1
while x0 != x1:
   x\theta = x1
   x1 = multiplicacion_matrices(x0, P)
    contador += 1
print(x1)
print("Numero de iteraciones:", contador)
```