# Sistemas Operacionais - 2025/1

Prof. Pedro Ramos pramos.costar@gmail.com

Pontifícia Universidade Católica de Minas Gerais ICEI - Departamento de Ciência da Computação

# Avaliação / Datas importantes

- Cronograma e plano de ensino no Canvas
- Debate ainda será divulgado
- "Reservas" no cronograma -> Haverá aula!

| Ao Longo do<br>Semestre | Exercícios       | 15 Pts |
|-------------------------|------------------|--------|
| 22/04                   | PROVA 1          | 30 Pts |
| 24/06                   | DEBATE de SO's   | 20 Pts |
| 01/07                   | PROVA 2          | 30 Pts |
| 04/07                   | PROVA 2a CHAMADA | 30 Pts |
| 08/07                   | REAVALIAÇÃO      | 60 Pts |
| ??/??                   | ADA              | 5 Pts  |

#### Livro Texto: Livro do Tanenbaum

#### Sistemas operacionais modernos.

TANENBAUM, Andrew.

#### Outros livros:

- SILBERSCHATZ, Abraham et al. Fundamentos de sistemas operacionais: princípios básicos
- MACHADO, Francis; MAIA, Luiz Paulo. Arquitetura de Sistemas Operacionais
- CARISSIMI, Alexandre et al. Sistemas operacionais

#### Outros links úteis:

Harvard Course - <a href="https://read.seas.harvard.edu/cs161/2020/">https://read.seas.harvard.edu/cs161/2020/</a>
Stanford Course - <a href="https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/index.php">https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/index.php</a>



#### CONTEÚDO DO CURSO

Aulas iniciais: nivelamento e revisão de arquitetura

- PROCESSOS E THREADS
  - Gerenciamento de processos e threads
  - Escalonamento
- GERENCIAMENTO DE MEMÓRIA
  - Como o OS faz o layout da memória virtual em memória física
- ARMAZENAMENTO E SISTEMAS DE ARQUIVOS
  - Tradicional disco rígido (válido para outros dispositivos)
- SISTEMAS DISTRIBUÍDOS

• ???

- A definição mudou ao longo dos anos
- Sistema Operacional (SO):
  - o INTERFACE entre o usuário e a arquitetura
  - Implementa uma máquina virtual que é (espera-se) mais fácil de programar do que hardware bruto
- 0 que é uma máquina virtual?

- A definição mudou ao longo dos anos
- Sistema Operacional (SO):
  - INTERFACE entre o usuário e a arquitetura
  - Implementa uma máquina virtual que é (espera-se) mais fácil de programar do que hardware bruto
- 0 que é uma **máquina virtual?** 
  - Quando você escreve um programa, você não faz ele para sua máquina específica - você escreve um programa para rodar no sistema operacional.
  - A máquina que o SO apresenta para o usuário é + poderosa que a real

- Nos anos 90, a MS argumentava que muitas coisas faziam parte de um SO.
- Navegador?
- Media player?



- Nos anos 90, a MS argumentava que muitas coisas faziam parte de um SO.
- Navegador?
- Media player?

A MS começou a entregar SO's com várias aplicações embutidas.

- ChromeOS: um navegador-SO.
  - Isso torna o navegador parte de um SO?



### VISÃO TRADICIONAL:

interface entre usuário e arquitetura

esconde detalhes da arquitetura!

#### máquina virtual

+ fácil de programar do que hardware bruto

#### ilusionista

o maior, mais rápido, confiável

#### governo

- divide recursos entre programas que competem
- cobra um imposto/taxa = overhead



#### SISTEMAS OPERACIONAIS HOJE

- Demandas em SO's estão crescendo
- Novos espaços para aplicações (web, cloud)
- Hardware evoluindo rapidamente
- 50 anos atrás:
  - Linux SO de código aberto
- Você pode contribuir para um SO!
- S0's móveis (Android e iOS)

## **TAMANHO DO KERNEL DO LINUX**



#### FUNCIONALIDADES DE UM SISTEMA OPERACIONAL

#### SERVIÇOS

- 0 SO provê serviços "padrões" (a interface) que são implementados pelo hardware.
  - Sistema de arquivos e comunicação com o disco
  - Memória virtual
  - Redes
  - Escalonamento de CPU

# COORDENAÇÃO

- 0 SO coordena múltiplas aplicações e usuários para atingir imparcialidade e eficiência (vazão).
  - concorrência, proteção de memória, redes, segurança

#### FUNCIONALIDADES DE UM SISTEMA OPERACIONAL

#### SERVIÇOS

- 0 SO provê serviços "padrões" (a interface) que são implementados pelo hardware.
  - Sistema de arquivos e comunicação com o disco
  - Memória virtual
  - Redes
  - Escalonamento de CPU

# COORDENAÇÃO

 0 SO coordena múltiplas aplicações e usuários para atingir imparcialidade e eficiência (vazão).

trade-off

 concorrência, proteção de memória, redes, segurança

## PORQUÊ ESTUDAR SISTEMAS OPERACIONAIS?

- abstração
  - como o SO dá ao usuário a impressão de ter memória infinita, múltiplas CPUs, recursos, computação na nuvem?
- projeto de sistemas
  - o como fazer tradeoffs entre
    - performance e conveniência do SO;
    - performance e simplicidade do SO;

O SO É O PONTO DE INTERSECÇÃO ENTRE SOFTWARE E HARDWARE.

#### **CONSTRUINDO SISTEMAS LARGOS**

O SO é um exemplo de um sistema largo.

OBJETIVO: RÁPIDO. CONFIÁVEL. ESCALÁVEL.

Para construir esse tipo de sistema, precisamos saber:

- Sobre cada computador:
  - Detalhes arquiteturais
  - o C/C++
  - Gerenciamento de memória e localidade
  - Concorrência e escalonamento
  - o Discos, redes, sistemas de arquivos
- Através de clusters de computadores:
  - Arquiteturas de servidor
  - o Computação distribuída, sistemas de arquivos distr.

## **CONSTRUINDO SISTEMAS LARGOS**



Pontificia Universidade Católica de Minas Gerais ICEI - Departamento de Ciência da Computação Disciplina: Sistemas Operacionais

# **HISTÓRIA**

De mainframes à sistemas web em 9 slides

#### 1. COMPUTADOR DE USO ÚNICO

- HARDWARE: caro, "MÃO DE OBRA" HUMANA: barata
- um usuário por vez em 1 único console
  - o interagindo com o programa enquanto ele roda
  - speedcoding (John Backus 1953)
- computador executa 1 função por vez
  - o não tem sobreposição de computação com I/O (entrada/saída)
- usuário precisa estar no console para debugar
- múltiplos usuários = uso ineficiente da máquina

#### 2. PROCESSAMENTO EM "BATCH"

- Executar múltiplos trabalhos em "batch":
  - Carregar o programa
  - Rodar
  - Printar resultados, dump do estado da máquina
  - Repetir
- Usuários submetiam trabalhos (programas) em cartões ou fita
- Humano agenda e organiza a sequência de programas
- O SO carrega e roda esses programas todos de uma só vez

... melhorou, mas ainda é limitado.

# 3. I/O (ENTRADA/SAÍDA) & COMPUTAÇÃO AO MESMO TEMPO

Antes: máquina espera I/O terminar para poder começar a executar. -> Ineficiente pois a CPU tinha tempo ocioso.

#### Agora:

- CPU executa outras coisas enquanto espera I/O
- Adição de "buffer"
  - Espaço a ser preenchido com dados antes da saída (output)
- sistema de interrupções
  - eventos de entrada/saída (I/O) disparam um sinal de interrupção

... melhorou, mas ainda é um programa por vez.

# 4. MULTIPROGRAMAÇÃO

- Familiar até hoje: executar vários programas ao mesmo tempo.
- Ideia básica:
  - Executa 1 programa até I/O;
  - Executa outro programa até I/O; etc...;
- 0 SO gerencia as interações entre I/O e os programas.
  - Qual programa rodar (escalonamento)
  - Protege a memória do programa dos outros programas
  - Decide qual programa retorna quando a CPU está disponível

... ok, mas o SO tá ficando complexo...

#### COMPLEXIDADE DE UM SO

- + funcionalidades, + complexidade
- Primeiras falhas:
  - Multics (GE & MIT)
    - anunciado em 1963 e lançado em 1969
    - OS/360 lançado com 1000 bugs conhecidos

- Daí a necessidade de tratar a projeção de um SO como algo científico - não somente um problema de engenharia a ser resolvido de qualquer forma.
- Essa necessidade de que precisamos gerenciar a complexidade de um SO, nos levou a...

## 5. O RENASCIMENTO (1970's)

- HARDWARE: barato, MÃO DE OBRA HUMANA: cara
- Usuários compartilham o sistema via terminais
- A era UNIX
  - o Multics:
    - exército de programadores, 6 anos
    - excessivamente grande e complexo

#### O UNIX:

- 3 programadores, 2 anos
- menor, mais simples
- "shell": comandos que podem compor (cd / | ls | grep )
- PORÉM: Tempo de resposta longo, e fenômeno thrashing

# 6. REVOLUÇÃO INDUSTRIAL DOS ANOS 80

- HARDWARE: muito barato
- MÃO DE OBRA HUMANA: muito cara
- Uso dos PC's
  - o IBM PC: 1981
  - o Macintosh: 1984
- SO's simples: DOS e MacOS
- Não tinha multiprogramação, concorrência, proteção de memória, memória virtual, nada.
- Depois: adicionaram redes, compartilhamento de arquivos, imprimir remotamente
- GUI + SO == "WIMP"

# 7. ERA MODERNA (1990 - 2010)

- Demandas de processamento aumentam
- S0's "reais" em PC's
  - NT(1991), Mac OS X, Linux

- SO's estão presentes em diversas modalidades:
  - tempo-real: operadores de avião e torres de controle.
  - sensores e sistemas embarcados computadores com pouco poder computacional, pouca bateria
  - paralelismo múltiplos processadores em uma mesma máquina
  - distribuído múltiplos processadores através da rede (nuvem)

# TENDÊNCIA DE ARQUITETURA

 EM 50 ANOS, 99% DE TODOS OS COMPONENTE EM TODOS OS COMPUTADORES SERÃO 9 ORDENS DE MAGNITUDE MAIS RÁPIDOS, LARGOS E BARATOS

Isso é sem precedência em qualquer área de negócio.

#### Exemplos:

Transporte - em 200 anos viemos de 16km/h em cavalos para 1600km/h em aviões supersônicos

Comunicação - em 200 anos fomos da velocidade de Transporte para quase a velocidade da luz - 7 ordens de magnitude.

# **CONVERGÊNCIA (2010 -> Hoje)**

- Lei de MOORE estamos atingindo um platô
- Novas funcionalidades:
  - Múltiplos núcleos. NVIDIA RTX 5090 tem 20 mil núcleos a 2.2 GHZ
  - Memórias não confiáveis
  - o SSD's
  - Limitações de energia, S0's ecologicamente amigáveis
  - IA' (Inteligência Artificial)
    - segurança, confiança, privacidade
    - AI-Agents? (Precisaremos de mais memória RAM nos PCs?)

Convergência entre GPU's (processamento), dados (web) e IA preditiva => qual tipo de SO surgirá?