Dans tout l'exercice, a est un réel strictement positif.

Partie A

On considère la fonction φ définie sur \mathbb{R}_+^* par : $\forall x > 0$, $\varphi(x) = \ln(x) - ax^{2a}$.

- 1. Déterminer $\lim_{x\to 0} \varphi(x)$ et $\lim_{x\to +\infty} \varphi(x)$.
- 2. Étudier les variations de la fonction φ et dresser son tableau de variations. On fera apparaı̂tre dans ce tableau le réel $x_0 = \left(\frac{1}{2a^2}\right)^{\frac{1}{2a}}$.
- 3. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, l'équation $\varphi(x) = 0$ admet exactement deux solutions z_1 et z_2 , vérifiant $z_1 < x_0 < z_2$. Que se passe-t-il si $a = \sqrt{\frac{1}{2e}}$? Si $a > \sqrt{\frac{1}{2e}}$?

Partie B

Soit f la fonction définie sur l'ouvert $U = (\mathbb{R}_+^*)^2$ par : $\forall (x,y) \in U$, $f(x,y) = \ln(x) \ln(y) - (xy)^a$.

- **4.** Justifier que f est de classe C^2 sur U.
- 5. Calculer les dérivées partielles premières de f.
- **6.** Démontrer que pout tout $(x,y) \in U$: (x,y) est un point critique de $f \iff \begin{cases} x=y, \\ \varphi(y)=0. \end{cases}$
- 7. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, la fonction f admet exactement deux points critiques : (z_1, z_1) et (z_2, z_2) , où z_1 et z_2 sont les réels définies dans la partie A. Déterminer aussi les eventuels points critiques de f dans les cas où $a = \sqrt{\frac{1}{2e}}$ et $a > \sqrt{\frac{1}{2e}}$.

Partie C

Dans cette partie, on suppose que $a<\sqrt{\frac{1}{2\,\mathrm{e}}}$. On rappelle alors que la fonction f admet exactement deux points critiques :

- 8. Calculer les dérivées partielles d'ordre 2 de la fonction f.
- 9. Calculer la matrice hessienne de f au point (z_1, z_1) . Vérifier que cette matrice peut s'écrire sous la forme : $\nabla^2(f)(z_1, z_1) = \begin{pmatrix} -a^2 z_1^{2a-2} & \frac{1}{z_1^2} a^2 z_1^{2a-2} \\ \frac{1}{z_1^2} a^2 z_1^{2a-2} & -a^2 z_1^{2a-2} \end{pmatrix}.$
- **10.** On pose $M = \nabla^2(f)(z_1, z_1), X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, et $X_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Calculer MX_1 et MX_2 , et en déduire les valeurs propres de M.

- **11.** La fonction f présente-t-elle un extremum local en (z_1, z_1) ? Si oui, est-ce un minimum? Un maximum?
- 12. La fonction f présente-t-elle un extremum local en (z_2, z_2) ? Si oui, est-ce un minimum? Un maximum?