

APRIORI ALGORITHM

Market Basket Analysis

Market Basket Analysis

iPhone X

Market Basket Analysis

Market Basket Analysis is one of the key techniques used by large retailers to uncover associations between items.

Market Basket Analysis

Market Basket Analysis is one of the key techniques used by large retailers to uncover associations between items.

Bread and Butter

$$A \Rightarrow B$$

$$Support = \frac{freq(A, B)}{N}$$

$$Confidence = \frac{freq(A, B)}{freq(A)}$$

$$Lift = \frac{Support}{Supp(A) \times Supp(B)}$$

Transaction at a Local Market

T1	Α	В	С
T2	Α	С	D
Т3	В	С	D
T4	Α	D	Е
T5	В	С	Е

Rule	Support	Confidence	Lift
A=>D	2/5	2/3	10/9
C=>A	2/5	2/4	5/6
A => C	2/5	2/3	5/6
B, C=>A	1/5	1/3	5/9

Apriori Algorithm

Apriori Algorithm

Apriori algorithm uses frequent item sets to generate association rules. It is based on the concept that a subset of a frequent itemset must also be a frequent itemset.

But what is a frequent item set?

Frequent Itemset is an itemset whose support value is greater than a threshold value.

Apriori Algorithm

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Min. Support count = 2

Apriori Algorithm - Ist Iteration

C1

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1
{5}	4

Apriori Algorithm - Ist Iteration

C1

F1

Itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1
{5}	4

Itemset	Support
{1}	3
{2}	3
{3}	4
{5}	4

Apriori Algorithm – 2nd Iteration

Only Items present in F1

7	9
v	4
	_

ŀ	2	
	917	

TID	Items
T1	134
T2	235
T3	1235
T4	25
T5	135

Itemset	Support
{1,2}	1
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

Itemset	Support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

C3?

Items
134
235
1235
25
135

Itemset	Support
{1,2,3}	
{1,2,5}	
{1,3,5}	
{2,3,5}	

C3

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Itemset	In F2?
{1,2,3}, {1,2}, {1,3}, {2,3}	NO
{1,2,5}, {1,2}, {1,5}, {2,5}	NO
{1,3,5},{1,5}, {1,3}, {3,5}	YES
{2,3,5}, {2,3}, {2,5}, {3,5}	YES

C3

Itemset	In F2?
{1,2,3}, {1,2}, {1,3}, {2,3}	NO
{1,2,5}, {1,2}, {1,5}, {2,5}	NO
{1,3,5},{1,5}, {1,3}, {3,5}	YES
{2,3,5}, {2,3}, {2,5}, {3,5}	YES

F2

Itemset	Support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

If any of the subsets of these item sets are not there in F2 then we remove that itemset

Items
134
235
1235
25
135

Itemset	Support
{1,3,5}	2
{2,3,5}	2

Apriori Algorithm – 4th Iteration

F3

TID	Items
T1	134
T2	235
T3	1235
T4	25
T5	135

Itemset	Support
{1,2,3,5}	1

Since support of C4 is less than 2, stop and return to the previous itemset, i.e. C3

Apriori Algorithm – Subset Creation

F3

Itemset	Support
{1,3,5}	2
{2,3,5}	2

```
For I = \{1,3,5\}, subsets are \{1,3\}, \{1,5\}, \{3,5\}, \{1\}, \{3\}, \{5\}
```

For $I = \{2,3,5\}$, subsets are $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2\}$, $\{3\}$, $\{5\}$

For every subsets S of I, output the rule:

 $S \rightarrow (I-S)$ (S recommends I-S)

if support(I)/support(S) >= min_conf value

Apriori Algorithm – Applying Rules

Applying Rules to Item set F3

1. {1,3,5}

- ✓ Rule 1: $\{1,3\}$ → $\{\{1,3,5\}$ $\{1,3\}$) means 1 & 3 → 5 Confidence = support $\{1,3,5\}$ /support $\{1,3\}$ = 2/3 = 66.66% > 60% Rule 1 is selected
- ✓ Rule 2: $\{1,5\}$ → $\{\{1,3,5\}$ $\{1,5\}$) means 1 & 5 → 3 Confidence = support $\{1,3,5\}$ /support $\{1,5\}$ = 2/2 = 100% > 60% Rule 2 is selected
- ✓ Rule 3: $\{3,5\}$ → $\{\{1,3,5\}\}$ $\{3,5\}$) means 3 & 5 → 1 Confidence = support $\{1,3,5\}$ /support $\{3,5\}$ = 2/3 = 66.66% > 60% Rule 3 is selected

Apriori Algorithm – Applying Rules

Applying Rules to Item set F3

- 1. {1,3,5}
 - ✓ Rule 4: {1} → ({1,3,5} {1}) means 1 → 3 & 5 Confidence = support(1,3,5)/support(1) = 2/3 = 66.66% > 60%Rule 4 is selected
 - ✓ Rule 5: {3} → ({1,3,5} {3}) means $3 \to 1 \& 5$ Confidence = support(1,3,5)/support(3) = 2/4 = 50% < 60%Rule 5 is rejected
 - ✓ Rule 6: {5} → ({1,3,5} {5}) means 5 → 1 & 3
 Confidence = support(1,3,5)/support(3) = 2/4 = 50% < 60%</p>
 Rule 6 is rejected

##