

Thematically Sequenced Playlist

Georgetown Analytics
Cohort 19

By: Nick Merkling, Adam Goldstein, Patricia Merino, and Navneet Sandhu

Introduction

- 286 Million Monthly active
 Spotify users (130 million
 premium users)
- 36% of global streaming market
- Average of 25 listening hours a month per user
- Over 50 million tracks
 available on Spotify (Igbar)

Spotify Audio Features

- 1. Valence Music Positivity or Reflectiveness
- 2. Energy Intensity or Activity
- 3. Danceability How Suitable for Dancing
- 4. Acousticness How confident an acoustic instrument is present
- 5. Liveness Detects presence of an audience
- 6. Speechiness Detects presence of speech
- 7. Instrumentalness Predicts whether a track has no vocals or vocals
- 8. Key Scale the track is played in
- 9. Mode Indicates major or minor scale
- 10. Tempo Beats Per Minute
- 11. Time Signature How many beats per minute

Hypothesis

 We believe that creating playlists driven by lyrical content can give the user a glimpse into thematic sequences that exist within their "liked" tracks.

 Additionally, we believe that the sonic variation of a playlist, ordered according to a valence-energy curve, provides the user with a captivating listening
.

experience.

Our Data Science Pipeline

Tools that we used:

- Spotify API
- AWS S3 Storage
- Python 3
 - Jupyter Notebook
 - Yellowbrick
 - o NLTK

Image Source: Sudeep Agarwal - http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/

Ingestion Phase

- Retrieved data from 4 different sources including:
 - Personal Music database
 - Kaggle file which includes song lyrics
 - Spotify's Greatest hits per Decade (1960s-2010s)
 - Critically Acclaimed Albums over the last 50 years

Why?

 Personal touch, legal acquisition of song lyrics to bypass web scraping methods, notable music based off popular Spotify playlists, and to introduce expert perspectives of target parameters

Wrangling Phase

- Navigated Spotify API file's JSON tree to locate useful data fields
 - Music database, Spotify Greatest Hits playlists, and critically acclaimed albums
- Mapped Kaggle data to track uri from Spotify API
 - Validated the match using Python library, fuzzymatch
 - Set threshold at 96% probability (4% error)
 - Dataset is dramatically reduced using a 1-to-1 match
- 3 phases of lyric cleaning:
 - Spacy Lemmatization, NLTK tokenization, and removal of stop words using NLTK, as well as other .txt file resources

EDA Music Database

EDA Lyric Dataset

Topic Modeling

- Sklearn LatentDirichletAllocation/LDA Topic
 Modeling
- CountVectorizer to convert lyrics to tokens/terms
- Fitted the LDA model on our vectorized data
 - Output n_topics and n_words
- Fine tuned hyperparameters to produce coherent topics
- Determined probability of each document fitting with in a topic

Logic to Creating Playlists Using Topic Analyses

Return all playlist that meet the following criteria:

- 10 =< Playlist length =< 20
- Only return track_uris that have a probability of 0.65 or more for a topic.

_		Topic0	Topic1	Topic2	Topic3	Topic4	Topic5	Topic6	Topic7	Topic8	Topic9
	2s4VgvPiR53zdL3J5MaQN21115	0	0.12	0	0	0	0	0.05	0	0	0.4
	08r7EUSkvCw7SKCSCPn5jg2828	0	0	0	0	0	0	0.16	0	0	0
	5uiWMRE1tpoGaurztqRMvs709	0	0	0.01	0.14	0	0	0	0	0	0.82
	1HFD2CepjuRBQmDg4pvfoW108	0	0	0	0	0	0	0.74	0	0	0.06
	4Fy4IEL2IHJWVFYEG9Otcv572	0	0.23	0	0	0	0	0	0	0	0.02
	7eJwdZaLJxvmXEZOpojPbe1614	0	0	0	0	0	0.1	0.32	0	0	0.04
	62JIdCeeRjVIR1mf5pveKh299	0	0	0	0	0	0	0	0	0	0
	6bj9T3EwxkyDxpuMiqKDW7921	0	0	0	0	0	0.06	0	0	0	0.13
	0S2P5gXIwNIcD5hsBCYxc2598	0	0	0.05	0.05	0	0	0	0	0	0
	6EWgcAqvGNvJmA94XUUoNZ1257	0	0	0	0	0	0	0	0	0	0
	5Cpbdd5vnNA3hu3BU44vGT677	0	0	0	0	0.07	0	0.16	0	0	0

Binary Classification: Setting Target Parameter

- Set our target as good or bad playlist
 - (1 or 0) using binary classification
 - Set thresholds for Valence, Energy,
 Danceability feature values
- Parameters (mean)
 - Valence >= 0.45
 - Energy >= 0.65
 - Danceability >= 0.52

Binary Classification: Class Imbalance

- 1 = "Good Playlist"
- 0 = "Bad Playlist"
- Initially had massive class imbalance, but used Sci-kit learn's resample utility to create a 50/50 split between our binary classification

Feature Selection

- With 12 initial features saw recognized leakage between
 Valence, Energy, and Danceability
- Removed loudness because there was some collinearity found and did not provide

Model Selection

	Model	Transformer	Test Model Score	F1 Score	Precision Score	Recall Score
0	LogisticRegression()	StandardScaler()	0.713683	0.728371	0.704087	0.754391
1	MLPClassifier()	StandardScaler()	0.717967	0.734750	0.706671	0.765153
2	$(Decision Tree Classifier (max_features = 'auto', r $	StandardScaler()	0.883880	1.000000	1.000000	1.000000
3	$(Decision Tree Classifier (max_depth=1, random_st$	StandardScaler()	0.717231	0.732461	0.701124	0.766731
4	KNeighborsClassifier()	StandardScaler()	0.741291	0.934033	0.876336	0.999863
5	$\label{lem:control} \mbox{([DecisionTreeRegressor(criterion="friedman_ms}$	StandardScaler()	0.719606	0.738309	0.702361	0.778135

Grid Search Results

 Tested various models, opted for simplicity and favorability towards greater recall than precision

Live Jupyter Notebook Demo

Envisioned User Interface

Thanks for Listening!

Any questions?

References

Iqbal, M. (2020, May 08). Spotify Usage and Revenue Statistics (2020). Retrieved June 19, 2020, from https://www.businessofapps.com/data/spotify-statistics/

Spotify Audio Features: https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/

LDA: https://www.youtube.com/watch?v=T05t-SqKArY&t=670s

Q&A: https://www.youtube.com/watch?v=5qap5aO4i9A

Visualization: https://www.scikit-yb.org/en/latest/api/features/rankd.html

Q&A: Topic Modeling

Alpha

