## Análisis e Interpretación de Datos

MÁSTER UNIVERSITARIO EN ANÁLISIS Y VISUALIZACIÓN DE DATOS MASIVOS / VISUAL ANALYTICS AND BIG DATA

Miller Janny Ariza Garzón

# Tema 1\_2. Introducción



### Razonamiento Estadístico

### Contexto

Objeto de estudio

#### PROBLEMA

Necesidad-Oportunidad

#### **DATOS**

### Análisis e interpretación

Respaldo técnico

Descripción Explicación Inferencia Predicción

. . .

Audiencia modifica el lenguaje, la estructura y el formato.

- Visualización: Tablas, gráficos, medidas dashboards
- Discurso argumentativo:
   Balance entre respaldo
   técnico, resultados y utilidad.

#### Comunicación

#### Objetividad

Toda frase del discurso se respalda con resultados cuantitativos, con evidencia empírica asociada a los datos en un espacio-tiempo especifico.

#### **Decisiones**

#### Video complementario:

## Razonamiento Estadístico

Pensamiento crítico tiene en cuenta las siguientes preguntas:

- ¿Cuál es el contexto?(Incluye una descripción y delimitación espacio-temporal)
- ¿Cuál es el objetivo del estudio? (comprensión del problema en su contexto)
   (Dedicarle tiempo-delimitarlo)
- ¿Cuál es la unidad de análisis?
- ¿Cuáles son las fuentes de los datos?
- ¿Qué tipos de variables se tienen?
- ¿Con qué tipo de muestreo han sido obtenidos los datos? (error de muestreo)
- ¿Existen variables (intermedias) que influyan en los resultados y se hayan omitido?
- ¿Las tablas y gráficas resumen adecuadamente los datos?
- ¿Qué tipos de errores y sesgo ("manipulación" voluntaria o involuntaria) que podemos encontrar?
- ¿Las conclusiones se extraen directa y naturalmente de los datos?

### Tabla de contenido

- Tema 1: Introducción a la estadística.
  - Distribución de frecuencias.
  - Tabulación de variables
  - Gráficas básicas
  - Elegir gráficos adecuados
  - Aplicación de las TIC
  - Retos de la estadística en el Big Data

### Tabla de contenido



| Modalidades | Frecuencias<br>(absolutas) | Frecuencias<br>relativas | Frecuencias<br>absolutas<br>acumuladas | Frec. relativas<br>acumuladas |
|-------------|----------------------------|--------------------------|----------------------------------------|-------------------------------|
| 1           | $n_1$                      | $f_1$                    | $N_1$                                  | $F_1$                         |
| 2           | $n_2$                      | $f_2$                    | $N_2$                                  | $F_2$                         |
|             |                            |                          |                                        |                               |
| k           | $n_k$                      | $f_k$                    | N                                      | 1                             |
| SUMA        | N                          | 1                        |                                        |                               |

X: número de dormitorios en viviendas de una determinada localidad: 3, 1, 2, 1, 2, 1, 2, 4, 1, 3, 5, 2, 2, 5, 4, 4, 4, 5, 1 y 2

| $x_i$ | $n_i$ | $f_i$ | $N_i$ | $F_i$ |
|-------|-------|-------|-------|-------|
| 1     | 5     | 5     | 0,25  | 0,25  |
| 2     | 6     | 11    | 0,30  | 0,55  |
| 3     | 2     | 13    | 0,10  | 0,65  |
| 4     | 4     | 17    | 0,20  | 0,85  |
| 5     | 3     | 20    | 0,15  | 1     |
| Total | 20    |       | 1     |       |

X: Tipos de reclamaciones en un departamento de atención al cliente

| Causas             | $n_i$ | $N_i$ | $f_i$ | $F_i$ |
|--------------------|-------|-------|-------|-------|
| Mal funcionamiento | 6     | 6     | 0,30  | 0,30  |
| Retrasos           | 5     | 11    | 0,25  | 0,55  |
| Personal           | 4     | 15    | 0,20  | 0,75  |
| Incompetencia      | 3     | 18    | 0,15  | 0,90  |
| Compatibilidad     | 2     | 20    | 0,10  | 1     |
| Total              | 20    |       | 1     |       |

¿Tienen sentido?

#### X: Calificaciones en una prueba [0,6].

| 2,87 | 2,44 | 3,49 | 3,83 | 3,97 | 4,69 | 3,35 | 1,89 | 3,90 | 3,55 |  |
|------|------|------|------|------|------|------|------|------|------|--|
| 4,69 | 3,03 | 3,00 | 4,96 | 3,10 | 1,84 | 2,23 | 3,64 | 1,96 | 4,39 |  |
| 3,15 | 3,61 | 4,43 | 2,96 | 2,04 | 2,62 | 3,96 | 2,41 | 4,03 | 4,70 |  |
| 5,33 | 3,19 | 3,19 | 5,03 | 3,92 | 1,93 | 2,74 | 2,83 | 3,03 | 2,64 |  |
| 3,70 | 1,41 | 3,87 | 1,04 | 2,43 | 2,87 | 3,44 | 0,92 | 4,22 | 2,88 |  |
|      |      |      |      |      |      |      |      |      |      |  |

| Intervalo | $f_i$ |
|-----------|-------|
| [0,1)     | 1     |
| [1,2)     | 6     |
| [2,3)     | 14    |
| [3,4)     | 19    |
| [4,5)     | 8     |
| [5,6]     | 2     |
| Total     | 50    |

Número de intervalos: k

 $k=\sqrt{n}$  , Sturges, Scott, Freedman-Diaconis, ...

https://r-charts.com/distribution/histogram-breaks/ https://osoramirez.github.io/R Para Biologos/distribucion-de-frecuencias.html

Para *X* y *Y* variables categóricas (**tablas de contingencia**):

| n <sub>ij</sub> | Y=1             | Y = 2           |     | Y = J           | Totals          |
|-----------------|-----------------|-----------------|-----|-----------------|-----------------|
| X = 1           | n <sub>11</sub> | n <sub>12</sub> | ••• | n <sub>1J</sub> | n <sub>1+</sub> |
| X = 2           | n <sub>21</sub> | n <sub>22</sub> |     | $n_{2J}$        | <b>n</b> 2+     |
| :               | :               | :               | ٠   | :               | :               |
| X = I           | $n_{l1}$        | n <sub>12</sub> |     | nIJ             | n <sub>I+</sub> |
| Totals          | n <sub>+1</sub> | n <sub>+2</sub> |     | $n_{+J}$        | $n = n_{++}$    |

Ej. Doce individuos se clasificaron según el sexo (hombre, mujer) y su deseo de ver o no una final de campeonato de fútbol que será televisada:

```
futbol si no sexo si no sum hombre 6 1 7 mujer 1 4 5 absolutas

futbol si no hombre 0.50000000 0.08333333 mujer 0.08333333 mujer 0.08333333 0.33333333 mujer 0.08333333 0.33333333 mujer 0.08333333 0.33333333 mujer 0.08333333 0.33333333 mujer 0.083333333 mujer 0.083333333 0.33333333 mujer 0.083333333 0.33333333 mujer 0.083333333 0.33333333 mujer 0.083333333 mujer 0.083333333 mujer 0.083333333 mujer 0.083333333 mujer 0.083333333 0.33333333 mujer 0.083333333 0.33333333 mujer 0.083333333 0.33333333 mujer 0.08333333 0.3333333 mujer 0.08333333 0.3333333 mujer 0.08333333 0.3333333 mujer 0.08333333 0.3333333 mujer 0.08333333 mujer 0.0833333 mujer 0.0833333 mujer 0.0833333 mujer 0.08333333 mujer 0.0833333 mujer 0.0833333 mujer 0.0833333 mujer 0.0833333 mujer 0.0833333 mujer 0.083333 mujer 0.0833333 mujer 0.0833333 mujer 0.083333 mujer 0.08333 mujer 0.0833 m
```

futbol sexo si no hombre 0.8571429 0.2000000 mujer 0.1428571 0.8000000

Tabla de frecuencias relativas al total por columna

futbol sexo si no hombre 0.8571429 0.1428571 mujer 0.2000000 0.8000000

Tabla de frecuencias relativas al total por fila

(Pennstate2.csv)

# **Gráfico de tarta (pie) Gráfico de barras (barplot)**



85%



Compara magnitudes o frecuencias de varias categorías

https://r-graph-gallery.com/

#### **Gráfico de Pareto**

Ej. Queremos saber qué mueve a los clientes para comprar un determinado producto, por ejemplo, un teléfono móvil.

Busca establecer prioridades. Focalizar lo importante. Regla 80-20 (20% del esfuerzo genera el 80% resultado)

| Motivación   | Frec. Abs. | Frec. Ac. | %       |
|--------------|------------|-----------|---------|
| Diseño       | 50         | 50        | 50,00%  |
| Calidad      | 30         | 80        | 80,00%  |
| Precio       | 5          | 85        | 85,00%  |
| Tecnología   | 3          | 88        | 88,00%  |
| Prestaciones | 3          | 91        | 91,00%  |
| Procesador   | 2          | 93        | 93,00%  |
| Capacidad    | 2          | 95        | 95,00%  |
| Cámara       | 2          | 97        | 97,00%  |
| Marca        | 2          | 99        | 99,00%  |
| Otros        | 1          | 100       | 100,00% |
| Total        | 100        |           |         |



### Histograma

El histograma es útil para estudiar la **forma** en que se distribuyen (forma, centralidad y dispersión) los datos cuantitativos.

Lo importante de un histograma son las áreas de los rectángulos, no sus alturas.

#### Histograma de la variable Altura



### Histograma

X: Edad de las actrices que han recibido un Oscar (Triola, 2009)







Histograma

Polígono de frecuencias

Polígono de frecuencias acumuladas-ojiva

### Histograma

La visualización del histograma depende del número de intervalos y de la longitud de cada intervalo definido para la variable en estudio. Lo define el investigador.



Age distribution of Titanic passengers

#### Gráficos de densidad

Se basan en Kernel density estimation. Producen una estimación de la distribución (densidad) de la variable.



20

65

9

# Gráficas básicas

### Gráfico de caja y bigotes (Box-Plot)

#### Boxplot de la variable Altura



#### Diagrama de barra (adosado-agrupado)

Compara distribuciones

#### Diagrama de barra (anidado-apilado)

Distribución total,

Participación en cada categoría

#### Diagrama de barra (bidireccional)

Compara distribuciones

### Alumnado que terminó Bachillerato por su opción académica (Miles de alumnos)



#### Consumo de tabaco según sexo y grupos de edad

Fumadores diarios (porcentajes)



Fuente: Encuesta Nacional de Salud 2006. INE

### Gráfico de línea

Usada para estudiar tendencias temporales y comportamiento histórico.





### Gráfico de dispersión

Utiliza puntos para representar los valores de dos variables numéricas diferentes. La posición de cada punto en el eje horizontal y vertical indica los valores de un punto de datos individual. Los gráficos de dispersión se utilizan para observar las relaciones entre las variables.





Salario (dólares hora) según ocupación





Ridgeline plot





# El arte de elegir el gráfico adecuado



Utilizamos diferentes tipos de gráficos según la naturaleza de las variables de estudio, numéricas, categóricas, y según el objetivo del análisis.

Hoy la visualización de data es una "ciencia".









# Retos de la estadística en el Big Data:

- Excesiva cantidad de información y datos
- 2. Complejidad de los datos

Volumen, Velocidad, Variedad de los datos, Veracidad de los datos, Viabilidad, Visualización de los datos, Valor de los datos

- 3. Necesidad de infraestructuras potentes de análisis
- 4. Políticas de privacidad
- Recogida de datos sin previa especificación del problema -Medición de errores
- 6. Explicabilidad y transparencia

https://ec.europa.eu/info/sites/default/files/business\_economy \_euro/banking\_and\_finance/documents/191113-report-expert-group-regulatory-obstacles-financial-innovation\_en.pdf



### Próxima sesión

- Tema 3: Medidas que resumen la información.
  - Medidas de tendencia central.
  - Medidas de tendencia central robustas.
  - Medidas de dispersión.
  - Medidas de dispersión robustas.
  - Medidas de posición y forma.
  - Gráficos de caja.
  - Datos atípicos y análisis exploratorio de datos.



Learn by DOING.

Estudiar Tema 2. Estadística computacional. Principios básicos. Ámbitos de aplicación. Técnicas básicas de programación. Presentación del software R



### Instalación de R

Para instalar estos programas se puede usar lo siguiente:

**Instalar R para Windows:** 

https://cran.r-project.org/bin/windows/base/

**Instalar R para MacOs:** 

https://cran.r-project.org/bin/macosx/

#### **Instalar Rstudio para Windows o MacOs:**

Descarga e instala la última versión que corresponda.

https://www.rstudio.com/products/rstudio/download/

| OS            | Download                           | Size      | SHA-256  |
|---------------|------------------------------------|-----------|----------|
| Windows 10/11 | <b>♣</b> RStudio-2022.07.2-576.exe | 190.49 MB | b38bf925 |
| macOS 10.15+  | <b>▲</b> RStudio-2022.07.2-576.dmg | 224.49 MB | 35028d02 |

#### Tema 1. Introducción

| 1.1. Presentación                   | 3  |
|-------------------------------------|----|
| 1.2. ¿Qué es R?                     | 3  |
| 1.3. Un poco de historia            | 4  |
| 1.4. ¿Por qué usar R?               | 5  |
| 1.5. El entorno de trabajo RStudio  | 6  |
| 1.6. Instalación de R y RStudio     | 7  |
| 1.7. Formato del código en el texto | 13 |
| 1.8. La ayuda en línea de R         | 14 |
| 1.9. Referencias bibliográficas     | 16 |



#### Tema 2. Empezando con R: algunos conceptos básicos

| 2.1. Introducción y objetivos                      | 3  |  |
|----------------------------------------------------|----|--|
| 2.2. Entorno de trabajo de RStudio                 | 3  |  |
| 2.3. La consola de R                               | 7  |  |
| 2.4. Variables                                     | 8  |  |
| 2.5. Objetos                                       | 11 |  |
| 2.6. Directorio de trabajo                         | 15 |  |
| 2.7. Scripts                                       | 17 |  |
| 2.8. Creación de Proyectos                         | 20 |  |
| 2.9. Manejo de la biblioteca: paquetes adicionales | 22 |  |
| 2.10. Referencias bibliográficas                   | 27 |  |



#### Tema 3. Estructura de datos

| 3.1. Introducción y objetivos | 3  |
|-------------------------------|----|
| 3.2. Estructuras de datos     | 3  |
| 3.3. Vectores                 | 4  |
| 3.4. Factores                 | 17 |
| 3.5. Matrices                 | 23 |
| 3.6. Arrays                   | 37 |
| 3.7. Data frames              | 40 |
| 3.8. Listas                   | 63 |
| 3.10. Cuaderno de ejercicios  | 70 |



#### Tema 4. Programación básica

| 4.1. Introducción y objetivos   | 3  |
|---------------------------------|----|
| 4.2. Operadores en R            | 3  |
| 4.3. Estructuras de control     | 14 |
| 4.4. Funciones                  | 43 |
| 4.5. Referencias bibliográficas | 58 |
| 4.6 Cuaderno de ejercicios      | 58 |



#### Tema 5. Manejo de datos

| 5.1. Introducción y objetivos                   | 3  |
|-------------------------------------------------|----|
| 5.2. Importando datos desde un archivo          | 4  |
| 5.3. Leer datos desde un paquete                | 24 |
| 5.4. Guardas datos desde R                      | 25 |
| 5.5. Manipulación de datos: una introducción al |    |
| tidyverse lones                                 | 32 |
| 5.6. Referencias bibliográficas                 | 43 |
| 5.7. Cuaderno de ejercicios                     | 43 |



#### Tema 6. Visualización de datos

| 6.1. Introducción y objetivos                | 3  |
|----------------------------------------------|----|
| 6.2. La función plot                         | 4  |
| 6.3. La función hist()                       | 34 |
| 6.4. La función boxplot()                    | 39 |
| 6.5. Gráfico de barras: la función barplot() | 42 |
| 6.6. Otros gráficos                          | 47 |
| 6.7. El paquete ggplot2                      | 47 |
| 6.8. Referencias bibliográficas              | 80 |
| 6.9. Cuaderno de ejercicios                  | 80 |



#### Tema 7. Introducción a R Markdown

| 7.1. Introducción y objetivos             | 3  |
|-------------------------------------------|----|
| 7.2. Elementos básicos de RMarkdown       | 4  |
| 7.3. Formatos de salida                   | 10 |
| 7.4. Bloques de código y código en línea. | 14 |
| 7.5. Elementos de sintaxis                | 22 |
| 7.6. Escritura de expresiones matemáticas | 39 |
| 7.7. Referencias bibliográficas           | 44 |
| 7.8. Cuaderno de ejercicios               | 44 |





www.unir.net