技術者リテラシー I (機械工学科) — 第5回 2024/10/23 略解

問題 1.

(1) y' = 3(x-1)(x+1) より、増減表は以下のようになる. よって極大値は 1(x=-1)、極小値は -3(x=1) である.

x		-1		1	
y'	+	0	_	0	+
y	7	1	×	-3	7

(2) y' = 3x(x-2)(x+1) より増減表は以下のようになる. よって、極大値は 3(x=3)、極小値は $\frac{7}{4}$ (x=-1)、-5(x=2) である.

x		-1		0		2	
y'	_	0	+	0	_	0	+
y	×	$\frac{7}{4}$	7	3	×	-5	7

(3) $y' = \frac{1}{x^2}(x-2)(x+2)$ であり, x = 0 における漸近 挙動は

$$\lim_{x\to +0}\left(x+\frac{4}{x}\right)=\infty,\quad \lim_{x\to -0}\left(x+\frac{4}{x}\right)=-\infty$$

であることから増減表は以下のようになる. よって、極大値は -4 (x = -2)、極小値は 4 (x = 2) である.

x		-2		0		2	
y'	+	0	_		_	0	+
y	7	-4	>		>	4	7

問題 2.

(1) $y' = e^{-x}(1-x)$ であり $, +\infty, -\infty$ における漸近挙動は

$$\lim_{x \to +\infty} x e^{-x} = 0, \quad \lim_{x \to -\infty} x e^{-x} = -\infty$$

であることから、増減表は以下のようになる. よって、最大値は $\frac{1}{e}$ (x=1) であり、最小値は存在しない.

x		$(-\infty)$		1		$(+\infty)$
y'	,		+	0	_	
y		0	7	$\frac{1}{e}$	×	0

(2)
$$y'=\frac{-2(x-2)(x+2)}{(x^2+4)^2}$$
 であり $,+\infty,-\infty$ における 漸近挙動は

$$\lim_{x \to +\infty} \frac{2x}{x^2 + 4} = 0, \quad \lim_{x \to -\infty} \frac{2x}{x^2 + 4} = 0$$

であることから、増減表は以下のようになる. よって、最大値は $\frac{1}{2}$ (x=2)、最小値は $-\frac{1}{2}$ (x=-2) である.

x	$(-\infty)$		-2		2		$(+\infty)$
y'		_	0	+	0	_	
y	0	X	$-\frac{1}{2}$	7	$\frac{1}{2}$	×	0

(3) $y' = -\frac{x}{\sqrt{4-x^2}} - 1$ より、増減表は以下のようになる.よって、最大値は $2\sqrt{2}$ $(x = -\sqrt{2})$ 、最小値は -2 (x = 2) である.

x	-2		$-\sqrt{2}$		2
y'		+	0	_	
y	2	7	$2\sqrt{2}$	>	-2

問題 3.

(1)
$$|A| = 2 \cdot 7 - 4 \cdot 3 = 2$$
, $|B| = 4 \cdot 3 - 10 \cdot 5 = -38$, $|C| = 2 \cdot (-6) - (-3) \cdot 4 = 0$.

(2)
$$A^{-1} = \frac{1}{2} \begin{pmatrix} 7 & -4 \\ -3 & 2 \end{pmatrix}, B^{-1} = -\frac{1}{38} \begin{pmatrix} 3 & -10 \\ -5 & 4 \end{pmatrix},$$

 C の逆行列は存在しない。

(3)
$$X = A^{-1}B = \frac{1}{2} \begin{pmatrix} 8 & 58 \\ -2 & -24 \end{pmatrix} = \begin{pmatrix} 4 & 29 \\ -1 & -12 \end{pmatrix},$$

 $Y = BA^{-1} = \frac{1}{2} \begin{pmatrix} -2 & 4 \\ 26 & -14 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 13 & -7 \end{pmatrix}$

問題 4.
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$$
 とおく、このとき、
$$AB = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}$$

より.

$$\det AB = (aa' + bc')(cb' + dd') - (ab' + bd')(ca' + dc')$$

$$= ada'd' + bcb'c' - adb'c' - bca'd'$$

$$= ad(a'd' - b'c') - bc(a'd' - b'c')$$

$$= (ad - bc)(a'd' - b'c')$$

$$= \det A \det B.$$