Home ► My courses ► EEE117-2017S-Tatro ► Exams and Quizzes ► Exam 3 (Final) - Bode Diagram, Chapters 14, 15, 16, and Bode Diagrams

Started on Monday, 15 May 2017, 10:11 AM

State Finished

Completed on Monday, 15 May 2017, 11:18 AM

Time taken 1 hour 6 mins

Grade 90.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

Q1b

Given: C = 347 nF (nano F) $R = 2.4 \text{ k}\Omega \text{ (kilo Ohm)}$

a) Write the parameters of the transfer function H(s).

$$H(s) = V_0 / V_1 = 1200.76$$
 $\checkmark / (s + 1200.76)$

b) Calculate the cutoff frequency $\boldsymbol{\omega}_{c}$ in rad/sec and \boldsymbol{f}_{c} in Hz.

$$\omega_{c} = 1200.76$$
 \checkmark rad/sec $f_{c} = 191.205$ \checkmark Hz

c) State the phase angle of the output voltage when fully in the passband region where $\omega << \omega_c.$

$$\theta(\text{pass band}) = \boxed{0}$$
 \(\sqrt{\circ}\circ\circ} \text{(Degrees)}

d) State the phase angle of the output voltage at the corner frequency $\boldsymbol{\omega}_{c}.$

$$\theta(\omega_c) = \begin{bmatrix} -45 \end{bmatrix}$$
 (Degrees)

e) State the phase angle of the output voltage when fully in the stopband region where $\omega \gg \omega_c$.

$$\theta(\text{stop band}) = \boxed{-90}$$
 \checkmark \circ (Degrees)

f) Identify the filter type of this circuit.

Correct

Correct

Mark 10.00 out of 10.00

Q2a

Given: L = 1 mH (milli H) $R = 10 \Omega \text{ (Ohm)}$

a) Write the parameters of the transfer function H(s).

$$H(s) = V_0 / V_i = s / (s + 10000)$$

b) Calculate the cutoff frequency $\boldsymbol{\omega}_{c}$ in rad/sec and \boldsymbol{f}_{c} in Hz.

$$\omega_{c} = \begin{bmatrix} 10000 & \checkmark \text{ rad/sec} & f_{c} = \begin{bmatrix} 1592.35 & \checkmark \end{bmatrix}$$

c) State the phase angle of the output voltage when fully in the passband region where $\omega >> \omega_c.$

$$\theta$$
(pass band) = 0 \checkmark ° (Degrees)

d) State the phase angle of the output voltage at the corner frequency ωw_c .

$$\theta(\omega_c) = \boxed{45}$$
 \times^\circ} (Degrees)

e) State the phase angle of the output voltage when fully in the stopband region where $\omega << \omega_c$

$$\theta(\text{stop band}) = 90$$
 \checkmark ° (Degrees)

f) Identify the filter type of this circuit.

Correct

Question $\bf 3$

Correct

Mark 10.00 out of 10.00

Q3Pa

Given: $R = 160 \Omega$ (Ohm) $C = 5 \mu F$ (micro F) $L = 203 \mu H$ (micro H)

a) Find the resonant frequency ω_0 .

$$\omega_0 = \boxed{31388}$$
 $\checkmark \text{ rad/sec}$

b) Find the lower half-power frequency w_{c1} .

$$\omega_{c1} = \boxed{30763}$$
 \checkmark rad/sec

c) Find the upper half-power frequency $\mathbf{w}_{\mathrm{c}2}$.

$$\omega_{c2} = \sqrt{\frac{32013}{\text{rad/sec}}}$$

d) Find the bandwidth β (Beta).

$$\beta = 1250$$
 \checkmark rad/sec

e) Find the quality factor Q.

f) Identify the filter type of this circuit.

Correct

Correct

Mark 10.00 out of 10.00

Q4Pc

Given: $R = 750 \Omega$ (Ohm) C = 40 nF (nano F) $L = 150 \mu\text{H}$ (micro H)

a) Calculate ω_0 .

$$\omega_0 = \boxed{408}$$
 krad/sec (kilo rad/sec)

b) Calculate f₀.

$$f_0 = 65$$
 \checkmark kHz (kilo Hz)

c) Find ω_{c1} .

$$\omega_{c1} = \boxed{392}$$
 \checkmark krad/sec (kilo rad/sec)

d) Find ω_{c2} .

$$\omega_{c2} = 425$$
 \checkmark krad/sec (kilo rad/sec)

e) Find β (Beta).

f) Find Q.

g) Identify the filter type of this circuit.

Correct

Correct

Mark 10.00 out of 10.00

Q5b

Given: $Vin = 20 \cos(2,000t)$ Volts

$$R_{in} = 20 \; k\Omega \; (kilo \; Ohm) \quad \ \ C_{in} = 0.1 \; \mu F \; (micro \; F) \quad \ \ Rf = 10 \; k\Omega \; (kilo \; Ohm)$$

$$R_{out} = 1 \text{ k}\Omega \text{ (kilo Ohm)}$$
 $R2 = 10 \Omega \text{ (Ohm)}$

The opamp has power input rails at +15V and -15V.

Find the steady-state output voltage v_{out} which is the voltage across the resistor R_{out} .

$$v_{out} = 9.7$$
 $\sim \cos(2,000 t + 194)$ $\sim \circ (Degrees) Volts$

State the phase angle as a positive angle (counterclockwise from the origin) in the correct quadrant.

Correct

Correct

Mark 10.00 out of 10.00

Q6b

Given: The Fourier coefficients for this waveform are

$$a_{v} = 0 \text{ V}$$

$$a_n = -8V_p /(n\pi)^2$$
 Volts for k odd
T = 5 ms (milli sec)

$$b_n = 0 \text{ V}$$

 $V_p = 50 \text{ V}$

$$T = 5 \text{ ms (milli sec)}$$

Write the following terms of this waveform's Fourier series.

a) What is the average value?

$$Avg = \boxed{0}$$
 Volts

Answers for the next two questions are in the order of magnitude, identify cosine or sine and the frequency of the sinusoid in radians/sec.

b) Write the expression for n = 1.

$$v_1(t) = 40.53$$
 cosine \checkmark (1256.64 \checkmark t) Volts

c) Write the expression for n = 5.

$$v_5(t) = \boxed{1.62}$$
 cosine \checkmark (6283.9 \checkmark t) Volts

Correct

Correct

Mark 10.00 out of 10.00

Q7c

Given the "normal" trigonometric form of the Fourier series coefficients for a waveform are

$$a_{avg} = zero$$

$$a_n = -20/n^2$$

$$b_n = 15/n$$

Determine the coefficients for the Alternative trigonometric form of the Fourier series in the polar form

$$a_n - jb_n = A_n < -\theta_n$$
 (Magnitude A_n at angle - θ_n)

a) For the first term in the summation where n = 1:

$$A_1 = 25$$
 Volts

$$-\theta_1$$
 (Theta 1) = $\boxed{-143.13}$

b) For the second term in the summation where n = 2:

$$A_2 = 9$$
 Volts

$$-\theta_2$$
 (Theta 2) = $\boxed{-123.69}$

c) For the second term in the summation where n = 3:

$$A_3 = 5.5$$
 Volts

$$-\theta_3$$
 (Theta 3) = $\begin{bmatrix} -114 \end{bmatrix}$

° (Degrees, angle CW from origin)

CW = Clock-wise

Note that the angle also includes the "-" sign as shown in the polar form.

Correct

Correct

Mark 10.00 out of 10.00

Q8

The triangular-wave voltage source is applied to this circuit.

The Fourier series of this input waveform is

$$v(t) = 25 - \frac{200}{\pi^2} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \cos(n \omega_0 t)$$

The s domain transfer function of the circuit is

$$H(s) = \frac{10^{12}}{s^2 + s10^6 + 10^{12}}$$

The desired output is the voltage across the 20 k Ω (kilo Ohm) resistor.

a) Determine the steady-state output voltage for n = 1 written as polar phasor.

b) Determine the steady-state output voltage for n = 5 written as polar phasor.

$$v_{5,20W,steady-state}(t) = Magnitude -0.165$$
 at angle 11.77 (Degrees) Volts (negative magnitude and positive angle)

c) Determine an estimate of the time varying power across the 20 k Ω (kilo Ohm) resistor based on the voltage from n = 1 term only.

$$P_{20W,steady-state} = 10.26$$
 www (milli W)

Correct

Correct

Mark 10.00 out of 10.00

Q9b

The voltage and current at terminals of this network are

$$v(t) = 70 + 200 \sin(500 t + 45^{\circ}) + 60 \cos(1,500 t)$$
 Volts

$$i(t) = 8 + 6\cos(500 t + 75^{\circ}) + 3\sin(1,500 t - 30^{\circ})$$
 Amps

a) What is the average power at terminals?

b) What is the rms value of the voltage of this truncated series?

$$V_{\rm rms} = \boxed{163.4}$$
 \checkmark $V_{\rm rm}$

c) What is the rms value of the current of this truncated series?

$$I_{\rm rms} = 9.298 \qquad \checkmark A_{\rm rms}$$

Correct

Marks for this submission: 10.00/10.00.

Question 10

Not answered

Marked out of 10.00

You created a Bode Diagram of a given transfer function in-class on May 8th. That in-class work will be manually graded and the score entered here on your final exam.