Static linear panel data models

Tutorial 2

Stanislav Avdeev

Goal for today's tutorial

- 1. Understand the panel structure of the data
- 2. Explore differences between pooled OLS, fixed, and random effects estimators
- 3. Interpret the variation in the data
- 4. Make proper inferences using panel data models

Panel data

- Panel data contain information on the same individual over multiple time periods
 - \circ "individual" could be a person, a company, a state, a country, etc. There are N individuals
 - \circ "time period" could be a year, a month, a day, etc. There are T time periods
- ullet We assume that we observe each individual the same number of times, i.e. a **balanced** panel (so we have N imes T observations)
 - you can use panel data estimators with unbalanced panels too, it just gets a little more complex

Panel data

- Let's use a data set from wooldridge package on crime data
 - you can use a lot of data sets from packages, such as wooldridge which contains data sets from "Introductory Econometrics: A Modern Approach" by Wooldridge J.M.
- Here's what a panel data set looks like a variable for individual (county), a variable for time (year), and then the different variables

County	Year	CrimeRate	ProbofArrest
1	81	0.0398849	0.289696
1	82	0.0383449	0.338111
1	83	0.0303048	0.330449
1	84	0.0347259	0.362525
3	81	0.0163921	0.202899
3	82	0.0190651	0.162218
3	83	0.0151492	0.181586
3	84	0.0136621	0.194986

Between and within variation

Let's pick a few counties and graph this out

Between variation

If we look at the **between** variation by using the **pooled** OLS estimator, we get this

Between variation

Between variation looks at the relationship between the means of each county

Between variation

The individual year-to-year variation within county doesn't matter

Within variation

Within variation goes the other way: it looks at variation within county from year-to-year

Between and within variation

- We can clearly see that **between** counties there's a strong **positive** relationship
- But if you look **within** a given county, the relationship isn't that strong, and actually seems to be **negative**
 - which would make sense if you think your chances of getting arrested are high,
 that should be a deterrent to crime
 - we are ignoring all differences between counties and looking only at differences within counties
- Fixed effects is sometimes also referred to as the within estimator

Panel data model

ullet The it subscript says this variable varies over individual i and time t

$$Y_{it} = \alpha + X'_{it}\beta + U_{it}$$

- What if there are individual-level components in the error term causing omitted variable bias?
 - \circ X_{it} might be related to the variable which is not in the model and thus in the error term
- Thus, we have the following model

$$Y_{it} = lpha + X'_{it}eta + \eta_i + U_{it}$$

- If you think X_{it} and η_i are not correlated (based on theory, previous research, tests), you can use both FE and RE estimators
- If you think X_{it} and η_i are correlated (based on theory, previous research, tests), use FE estimator

• Let's simulate a panel data set

id	time	х1	x2	у
1	1	2.2872472	1	56.452224
1	2	-1.1967717	1	49.656338
1	3	-0.6942925	1	52.377264
2	1	0.3569862	0	3.046828
2	2	2.7167518	0	9.096420
2	3	2.2814519	0	10.936149

```
# The true effect is 2

library(plm) # package to estimate FE and RE models (fixest is preferred for FE)

pooled ← plm(y ~ x1 + x2, model = "pooling", df) # or lm(y ~ x1 + x2, df)

random ← plm(y ~ x1 + x2, model = "random", index = c("id", "time"), df)

fixed ← plm(y ~ x1 + x2, model = "within", index = c("id", "time"), df)
```

	Model 1	Model 2	Model 3
x1	1.278	1.900***	1.900***
	(2.235)	(0.043)	(0.043)
x2	48.951***	48.967***	
	(4.474)	(14.176)	
Num.Obs.	6000	6000	6000
+ p < 0.1, * p	o < 0.05, **	p < 0.01, ***	* p < 0.001

- Pooled OLS estimates are off as it doesn't take into account the panel structure of data
- RE and FE estimators provide **unbiased** estimates
- ullet FE estimator doesn't produce estimates of X_2 as it's not varying **within** individual

• Let's introduce the correlation between individual characteristics and individual effects

$$\operatorname{corr}(X_{it},\eta_i)
eq 0$$

id	time	х1	x2	у
1	1	2.3372472	0	6.5522242
1	2	-1.1467717	0	-0.2436617
1	3	-0.6442925	0	2.4772643
2	1	0.4569862	1	53.2468280
2	2	2.8167518	1	59.2964204
2	3	2.3814519	1	61.1361494

```
# The true effect is 2
pooled_corr 
    plm(y ~ x1 + x2, model = "pooling", df)
random_corr 
    plm(y ~ x1 + x2, model = "random", index = c("id", "time"), df)
fixed_corr 
    plm(y ~ x1 + x2, model = "within", index = c("id", "time"), df)
```

	Model 1	Model 2	Model 3
x1	21.743***	15.749***	1.900***
	(0.030)	(0.122)	(0.043)
x2	49.517***	49.976***	
	(0.522)	(2.553)	
Num.Obs.	6000	6000	6000
+ p < 0.1, * p	0 < 0.05, **	p < 0.01, **	* p < 0.001

- ullet Pooled OLS and RE estimates are off since $\operatorname{corr}(X_{it},\eta_i)
 eq 0$
- ullet FE estimator still provides **unbiased** estimates since η_i are eliminated
 - \circ how does the FE estimator eliminate η_i ?

Estimation: de-meaning approach

- To estimate FE model, we need to remove **between** variation so that all that's left is **within** variation
- There are two main ways that give the same results
 - de-meaning
 - binary variables
- Let's do de-meaning first, since it's closely related to the "removing between variation" explanation
 - start with a standard panel data model

$$Y_{it} = lpha + X'_{it}eta + \eta_i + U_{it}$$

- for each variable get the mean value of that variable for each individual
- subtract out that mean to get residuals

$$Y_{it}-ar{Y}_i=(lpha-lpha)+(X_{it}-ar{X}_i)'eta+(\eta_i-\eta_i)+(U_{it}-ar{U}_i)'$$

work with those residuals

$$Y_{it}-ar{Y_i}=(X_{it}-ar{X_i})'eta+(U_{it}-ar{U_i})'$$

ullet The residuals are, by construction, no longer related to the η_i

Estimation: LSDV approach

- De-meaning the data is not the only way to do it
 - and sometimes it can make the standard errors wonky, since they don't recognize that you've estimated those means
- You can also use the **least squares dummy variable** LSDV (another word for "binary variable") method
 - we just treat "individual" like the categorical variable and add it as a control

Estimation: empirical example

- Let's get back to the crime data set
- To demean the data, we use <code>group_by</code> to get means-within-groups and subtract them

county	year	crmrte	prbarr	mean_crime	mean_prob	demean_crime	demean_prob
1	81	0.0398849	0.289696	0.0357414	0.3243583	0.0041435	-0.0346623
1	82	0.0383449	0.338111	0.0357414	0.3243583	0.0026035	0.0137527
3	81	0.0163921	0.202899	0.0149364	0.1766691	0.0014557	0.0262299
3	82	0.0190651	0.162218	0.0149364	0.1766691	0.0041287	-0.0144511

Estimation: empirical example

• To use least squares dummy variable, we only need to add FE as categorical variables

```
pooling ← lm(crmrte ~ prbarr, data = crime4)
lsdv ← lm(crmrte ~ prbarr + factor(county), data = crime4)
de_mean ← lm(demean_crime ~ demean_prob, data = crime4)
```

	Model 1	Model 2	Model 3
prbarr	0.049**	-0.030*	
	(0.017)	(0.012)	
demean_prob			-0.030*
			(0.012)
Num.Obs.	27	27	27
+ p < 0.1, * p < 0	.05, ** p <	0.01, ***	p < 0.001

Interpreting a within relationship

- How can we interpret that slope of -0.03?
 - this is all within variation so our interpretation must be within a county
 - \circ if we think we've **causally** identified it then "raising the arrest probability by 1 percentage point in a county reduces the number of crimes per person in that county by -0.0003 "
 - we're basically **controlling for county**, i.e. comparing a county to itself at different points in time
- A benefit of the LSDV approach is that it calculates the fixed effects for you
 - interpretation is exactly the same as with a categorical variable we have an omitted category (one county), and these show the difference relative to that omitted county
 - graphically, de-meaning moves all the points together in the middle to draw a line,
 while LSDV moves the line up and down to meet the points

Interpreting a within relationship

Panel data: estimation

- Empirical researchers rarely do either of these, and rather will use a command specifically designed for the FE estimator
 - feols in fixestfelm in lfeplm in plmlm robust in estimatr
- feols in fixest seems to be a better choice
 - it does all sorts of other neat stuff like fixed effects in nonlinear models like logit, regression tables, joint-test functions, and so on
 - it's very fast, and can be easily adjusted to do fixed effects with other regression methods like logit, or combined with IV
 - it clusters the standard errors by the first fixed effect by default

Panel data: estimation

Let's look at the output of plm and feols

```
library(fixest)
fe_plm ← plm(crmrte ~ prbarr, model = "within", index = "county", crime4)
fe_feols ← feols(crmrte ~ prbarr | county, crime4)
```

	Model 1	Model 2	
prbarr	-0.030*	-0.030*	
	(0.012)	(0.006)	
Num.Obs.	27	27	
Std.Errors		by: county	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001			

Fixed effects: limitations

- 1. Fixed effects don't control for anything that has **within** variation
- 2. They control away everything that's **between** only, so we can't see the effect of anything that's between only (effect of geography on crime rate? nope)
- 3. Anything with only a **little within** variation will have most of its variation washed out too (effect of population density on crime rate? probably not)
- 4. If there's not a lot of within variation, fixed effects are going to be very noisy. Make sure there's variation to study
- 5. The FE estimator pays the most attention to individuals with **lots of variation in treatment**
- 2 and 3 can be addressed by using the RE estimator instead
 - although you need to be certain that

$$\operatorname{corr}(X_{it},\eta_i)=0$$

how can you check that?

Fixed or random effects

- To decide between FE or RE estimators you can run the **Hausman test** where the null hypothesis is that the preferred model is the RE estimator vs. the alternative the FE estimator
- The Hausman test is a broad set of tests that compare the estimates in one model against the estimates in another and sees if they are different
- It basically tests whether the errors are correlated with the regressors
 - \circ under H_0 : $\mathrm{corr}(X_{it},\eta_i)=0$ and both RE and FE estimators are consistent, but the RE estimator is more efficient
 - \circ under H_1 : $\operatorname{corr}(X_{it},\eta_i)
 eq 0$ and only FE estimator is consistent
- FE estimator is almost always preferred to the RE estimator, except when you are quite sure that the right-hand-side variables X_{it} are unrelated to the individual effects η_i

Fixed or random effects

• Let's apply it to two simulated data sets with and without correlated individual effects

```
phtest(fixed, random)
##
##
       Hausman Test
##
## data: v \sim x1 + x2
## chisq = 0.0018287, df = 1, p-value = 0.9659
## alternative hypothesis: one model is inconsistent
phtest(fixed corr, random corr)
###
###
       Hausman Test
###
## data: v \sim x1 + x2
## chisq = 14621, df = 1, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent
```

 As expected, we should use the RE estimator in the first model, and the FE estimator in the second model

Panel data inference

- One of the assumptions of the regression model is that the error terms are independent of each other
 - however, we might imagine that some of the left variation is shared across all individuals, making them correlated with each other
 - thus, not taking that into account would make the s.e. wrong
- Two conditions need to hold for clustering to be necessary
 - first, there needs to be **treatment effect heterogeneity**. That is, the treatment effect must be quite different for different individuals
- If that is true, there's a second condition
 - either DGP is clustered, meaning the individuals/groups in your data represent a
 non-random sampling of the population. For example, some groups are more likely
 to be included in your sample than others
 - or **treatment assignment mechanism** is clustered, meaning within individuals/groups your **treatment variable is assigned in a clustered way**. For example, if you belong to a certain group, you are more likely to get treatment
- So before clustering, think about whether both conditions are likely to be true (Abadie et al. 2017)

Panel data inference

- It's common to cluster s.e. at the level of the fixed effects, since it seems likely that errors would be correlated over time
 - clustered s.e. calculate the standard errors while allowing some level of correlation between the error terms
 - feols in fixest clusters by the first FE by default
- It's possible to have more than one set of fixed effects
 - \circ but interpretation gets tricky think through what variation in X you're looking at

Panel data inference: simulation

id	time	х1	У
1	1	2.2872472	11.452224
1	2	-1.1967717	4.656338
1	3	-0.6942925	7.377264
2	1	0.3569862	13.046828
2	2	2.7167518	19.096420
2	3	2.2814519	20.936149

Panel data inference: simulation

```
# The true effect is 2
fe_clustered ← feols(y ~ x1 | id, df)
fe_not_clustered ← feols(y ~ x1 | id, se = 'standard', df) # make s.e. i.i.d.
```

	Model 1	Model 2
x1	1.900***	1.900***
	(0.046)	(0.043)
Num.Obs.	6000	6000
Std.Errors	by: id	IID
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001		

• Not accounting for clustering at the individual level leads to incorrect s.e.

References

Books

- Huntington-Klein, N. The Effect: An Introduction to Research Design and Causality,
 Chapter 16: Fixed Effects
- Cunningham, S. Causal Inference: The Mixtape, Chapter 8: Panel Data

Slides

- Huntington-Klein, N. Econometrics Course, Week 6: Within Variation and Fixed Effects
- Huntington-Klein, N. Causality Inference Course, Lecture 8: Fixed Effects

Articles

• Abadie, A., Athey, S., Imbens, G. W., & Wooldridge, J. (2017). When Should You Adjust Standard Errors for Clustering? (No. w24003). National Bureau of Economic Research