

ری وی اوری ترم بهار ۲۰۵۰ ۱۴۰ دانشکده ی مهندسی برق دانشگاه صنعتی شریف

استاد: دکتر محمدحسین یاسائی میبدی

مهلت تحویل: جمعه ۱۸ فروردین ۱۴۰۲، ساعت ۲۳:۵۹

(*) مسائلی که با ستاره مشخّص شدهاند امتیازی هستند و حل کردن آنها نمره ی امتیازی خواهد داشت!

۱ مجموعههای محدّب!

محدّب بودن یا نبودن مجموعه های زیر را نشان دهید.

n بعدى: n بعدى:

$$\{\mathbf{x} \in \mathbb{R}^n \mid \alpha_i \le x_i \le \beta_i, i = 1, ..., n\}$$

۲. گوه n بعدی:

$$\left\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_{1}^{\top} \mathbf{x} \leq b_{1}, \mathbf{a}_{1}^{\top} \mathbf{x} \leq b_{1}\right\}$$

۳. مجموعه نقاطی که به یک مجموعه نزدیکتر از مجموعه دیگر هستند. به عبارت دیگر:

$$\{\mathbf{x} \mid \operatorname{dist}(\mathbf{x}, \mathcal{S}) \leq \operatorname{dist}(\mathbf{x}, \mathcal{T})\}$$

به طوری که \mathbb{R}^n و داریم:

$$\operatorname{dist}(\mathbf{x}, \mathcal{S}) = \inf_{z} \left\{ \|x - z\|_{\mathsf{Y}} \mid \mathbf{z} \in \mathcal{S} \right\}$$

۴. مجموعه ی \mathcal{S}_1 و \mathcal{S}_1 محدّب است. $\{\mathbf{x}\mid \mathbf{x}+\mathcal{S}_{\mathsf{r}}\subseteq\mathcal{S}_1\}$ مجموعه ی

مجموعه نقاطی که فاصله ی آنها تا نقطه ی a بیشتر از یک ضریب ثابت θ از فاصله ی آنها تا نقطه ی a نیست. به عبارت دیگر:

$$\{\mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x} - \mathbf{a}\|_{\mathsf{r}} \le \theta \|\mathbf{x} - \mathbf{b}\|_{\mathsf{r}}\}$$

 $\cdot \, \circ \leq heta \leq 1$ و اa
eq b میتوانید فرض کنید

۲ مجموعهی قطبی

مجموعه ی قطبی یک مجموعه مانند $\mathcal{C}\subseteq\mathbb{R}^n$ به شکل زیر تعریف می شود:

$$\mathcal{C}^{\circ} = \left\{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y}^{\top} \mathbf{x} \leq 1, \ \forall \mathbf{x} \in \mathcal{C} \right\}.$$

با توجه به این تعریف به پرسشهای زیر پاسخ دهید.

. نشان دهید ${\bf C}^{\circ}$ مجموعه ای محدّب است (حتی اگر ${\bf C}$ محدّب نباشد).

۲. نشان دهید اگر \mathcal{C} بسته و محدّب باشد، با فرض $\mathrm{int}\{\mathcal{C}\}$ $\circ \in \mathrm{int}\{\mathcal{C}\}$. دنشان دهید اگر \mathcal{C} بسته و محدّب باشد، با فرض $\mathcal{C} \subseteq \mathrm{int}\{\mathcal{C}\}$ مجموعهی تهی است. برای اثبات بخش دوم از قضیه یی ابرصفحه یی جداکننده استفاده کنید.

۳ دوگان اشتراک مخروطها

فرض کنید $\mathcal C$ و $\mathcal C$ دو مخروط محدّب بسته در $\mathbb R^n$ باشند. در این سوال می خواهیم نشان دهیم که:

$$(\mathcal{C} \cap \mathcal{D})^* = \mathcal{C}^* + \mathcal{D}^*$$

که در این رابطه منظور از نماد + جمع دو مجموعه به شکل زیر است:

$$\mathcal{C}^* + \mathcal{D}^* = \{\mathbf{u} + \mathbf{v} \mid \mathbf{u} \in \mathcal{C}^*, \mathbf{v} \in \mathcal{D}^*\}$$

به زبان دیگر، میخواهیم نشان دهیم دوگان اشتراک دو مخروط محدّب بسته برابر مجموع دوگانهای آنها است.

۱۰ نشان دهید $\mathcal{C}\cap\mathcal{D}$ و $\mathcal{C}^*+\mathcal{D}^*$ مخروطهای محدّب هستند. (این مجموعهها بسته نیز هستند ولی نیازی به اثبات این موضوع نیست.)

$$\mathcal{C}^* + \mathcal{D}^* \subseteq (\mathcal{C} \cap \mathcal{D})^*$$
 نشان دهید .۲

۳. حال کافیست نشان دهیم $\mathcal{C}^*+\mathcal{D}^*\subseteq\mathcal{C}^*+\mathcal{D}^*$ نبرای این کار ابتدا ثابت کنید .

$$(\mathcal{C}\cap\mathcal{D})^*\subseteq\mathcal{C}^*+\mathcal{D}^*\Leftrightarrow (\mathcal{C}^*+\mathcal{D}^*)^*\subseteq\mathcal{C}\cap\mathcal{D}$$

می توانید از این نکته استفاده کنید که اگر \mathcal{K} یک مخروط محدّب بسته باشد آنگاه $\mathcal{K} = \mathcal{K}$. سپس نشان دهید:

$$(\mathcal{C}^* + \mathcal{D}^*)^* \subseteq \mathcal{C} \cap \mathcal{D}$$

و از آن نتیجه بگیرید

$$(\mathcal{C}\cap\mathcal{D})^*=\mathcal{C}^*+\mathcal{D}^*$$

۴. نشان دهید دوگان مجموعه $\{\mathbf{x}\mid \mathbf{A}\mathbf{x}\succeq \mathbf{o}\}$ برابر با مجموعه $\mathcal{V}^*=\{\mathbf{A}^ op\mathbf{v}\mid \mathbf{v}\succeq \mathbf{o}\}$ است.

۴ اثبات کنید!

احكام زير را ثابت كنيد.

د. فرض کنید $\mathcal C$ یک مجموعه ی محدّب باشد و $\mathcal K=\{\lambda \mathbf x\mid \lambda>\circ, \mathbf x\in\mathcal C\}$ آنگاه $\mathcal K$ کوچکترین مخروط محدّبی است که شامل $\mathcal C$ است.

 $\mathcal{B}^*\subseteq\mathcal{A}^*$ نشان دهید اگر $\mathcal{B}\subseteq\mathcal{B}$ آنگاه ۲.

۵ پاسخ نامنفی معادله ی خطی

ماتریس $\mathbf{A} \in \mathbb{R}^{m imes n}$ یک ماتریس حقیقی و $\mathbf{b} \in \mathbb{R}^{m imes 1}$ یک بردار حقیقی است. نشان دهید همواره دقیقاً یکی از گزارههای زیر درست است، نه هر دو:

$$\exists \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \succeq \circ .$$
 \

$$\exists \mathbf{y} \in \mathbb{R}^m : \mathbf{y}^{ op} \mathbf{A} \preceq \circ, \mathbf{y}^{ op} \mathbf{b} > \circ . \mathsf{Y}$$

راهنمایی : میتوانید نشان دهید اگر ۱ برقرار باشد حتما ۲ برقرار نیست و اگر ۱ برقرار نباشد حتما ۲ برقرار است. برای اثبات قسمت دوم پوش مخروطی بردارهای ستونهای A را تعریف کنید و در ادامه از قضیهی ابرصفحهی جداکننده برای این مجموعه و یک بردار مناسب (که خودتان باید پیدا کنید) استفاده کنید.

۶ انبساط مجموعهها!

مجموعه ی $\mathbb{S}\subseteq\mathbb{R}^n$ را در نظر بگیرید. $\mathcal{S}\subseteq\mathbb{R}^n$ را در نظر بگیرید.

- ا. برای $o \geq a$ تعریف میکنیم $\mathcal{S}_a = \{\mathbf{x} \in \mathbb{R}^n \mid \operatorname{dist}(\mathbf{x},\mathcal{S}) \leq a\}$ که تعریف فاصله را در سوال یک داشتیم. $a \geq a$ نیز محدّب است. نسخه ی منبسط و گسترده شده ی $a \neq a$ با $a \neq a$ باشد، $a \neq a$ نیز محدّب است.
- ۲. برای $a \geq 0$ تعریف می کنیم $\mathcal{S}(\mathbf{x},a) \subseteq \mathcal{S}$ تعریف می کنیم $\mathcal{S}(\mathbf{x},a) \subseteq \mathcal{S}$ را نسخه منقبض و محدودشده ی $\mathcal{S}(\mathbf{x},a) \in \mathcal{S}$ با a مینامیم. نشان دهید اگر $\mathcal{S}(\mathbf{x},a) \subseteq \mathcal{S}$ با a مینامیم. نشان دهید اگر $\mathcal{S}(\mathbf{x},a) \subseteq \mathcal{S}$ محدب باشد، $\mathcal{S}(\mathbf{x},a) \subseteq \mathcal{S}$ نیز محدب است.

(*) بستارهای برابر!

نشان دهید اگر $\mathcal K$ و $\mathcal M$ دو مجموعه ی محدّب و $\mathbb R^n$ یک مجموعه ی ناتهی محدود باشد که به ازای آن داشته باشیم $\mathrm{cl}\{\mathcal K\}=\mathrm{cl}\{\mathcal M\}$ ، خواهیم داشت: $\mathcal K+\mathcal A=\mathcal M+\mathcal A$

(*) مرز نامحدّب!

فرض کنید \mathcal{S} یک مجموعهی محدّب، بسته و محدود باشد و همچنین بدانیم که $\varnothing \neq S$ نشان دهید که مرز مجموعهی \mathcal{S} محدب نیست.