

### Summary of Convolutional Neural Networks (CNNs)

**Putting it all together** 



### Conv Layers

 $(1 \times 0) + (0 \times 1) + (1 \times 0) + (1 \times 1) + (0 \times 0) + (0 \times -1) + (0 \times 0) + (1 \times 1) + (1 \times 0) = 2$ 

| 1x0 | 0x1 | 1x0  | 0 | 1 |   |   |   |    |
|-----|-----|------|---|---|---|---|---|----|
| 1x1 | 0x0 | 0x-1 | 1 | 1 |   | 0 | 1 | 0  |
| 0x0 | 1x1 | 1x0  | 0 | 0 | * | 1 | 0 | -1 |
| 1   | 0   | 0    | 1 | 0 |   | 0 | 1 | 0  |
| 0   | 0   | 1    | 1 | 0 |   |   |   |    |

Input Image Filter or Kernel Output or Feature Map

- Convolution Operations occur when we Convolve our Filters with the input image by sliding it over our image
- This produces an output called a Feature Map
- Feature Maps are now the inputs to the next layer of our CNN



### Stride, Padding and Kernel Size

Feature Map Size = n-f+1=mFeature Map Size = 7-3+1=5

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

0 1 0 1 0 -1 0 1 0

$$\begin{array}{ccc}
7 \times 7 & & & & & 5 \times 5 \\
n \times n & & & & f \times f & & m \times m
\end{array}$$

• We use Stride, Padding and Kernel size to control the output size of our Feature Map

• 
$$(n \times n) * (f \times f) = (\frac{n + 2p - f}{s} + 1) \times (\frac{n + 2p - f}{s} + 1)$$



### Activation Layer ReLU - Adds Non-Linearity to our Network





## Max Pooling - Reduce Dimensionality





Stride = 2Kernel = 2x2

| 123 | 167 |
|-----|-----|
| 187 | 165 |



### Fully Connected Layer - Max Pool Layer is Flattened





## Softmax Layer

**Logits Scores** 

2.0

1.0

$$softmax(x)_{i} = \frac{exp(x_{i})}{\sum_{j} exp(x_{j}))}$$

0.1

0.7

0.2

0.1



### Our Basic CNN





### Parameters in our Basic CNN



| Layer         | Parameters |
|---------------|------------|
| Conv_1 + ReLU | 320        |
| Conv_2 + ReLU | 18494      |
| Max Pool      | 0          |
| Flatten       | 0          |
| FC_1          | 1,179,776  |
| FC_2 (Output) | 1,290      |
| Total         | 1,199,882  |

#### Conv\_1

 $((Height \times Width \times Depth) + bias) \times N_f$  $((3 \times 3 \times 1) + 1) \times 32 = 320$ 

#### Conv\_2

 $((Height \times Width \times Depth) + bias) \times N_f$  $((3 \times 3 \times 32) + 1) \times 64 = 18,494$ 

#### No Trainable Parameters

- Max Pool
- Flatten
- ReLU

#### Fully Connected/Dense

 $(Length + bias) \times N_{nodes}$  $(9216 + 1) \times 128 = 1,179,776$ 

#### Final Output (FC/Dense)

 $(Length + bias) \times N_{nodes}$  $(128 + 1) \times 10 = 1,290$ 



## The Training Process



| P | 6    | 5    | 6    | 8    | 8    | 1    |
|---|------|------|------|------|------|------|
| 0 | 0    | 0.9  | 0.83 | 0.21 | 0.19 | 0.62 |
| 1 | 0.73 | 8.0  | 0.89 | 0.7  | 0.92 | 0.07 |
| 2 | 0.78 | 0.88 | 0.19 | 0.39 | 80.0 | 0.74 |
| 3 | 0.37 | 0.56 | 0.07 | 0.64 | 0.64 | 0.9  |
| 4 | 0.63 | 0.25 | 0.79 | 0.94 | 0.52 | 0.55 |
| 5 | 0.87 | 0.65 | 0.57 | 0.63 | 0.97 | 0.04 |
| 6 | 0.67 | 0.05 | 0.45 | 0.51 | 0.87 | 0.51 |
| 7 | 0.71 | 0.66 | 0.13 | 0.59 | 0.86 | 0.89 |
| 8 | 0.51 | 0.88 | 0.59 | 0.01 | 0.37 | 0.63 |
| 9 | 0.24 | 0.52 | 0.79 | 0.15 | 0.63 | 0.78 |



### Overview on Training

- CNN Model is designed and defined
- Weights are initialised with random values
- Batches of Images (typically 8 to 256) are forward propagated through our CNN Model
- Using Back Propagation with Mini-Batch Gradient Descent we update the individual weights (right to left)
- Using we update all our weights so that we have a lower loss
- We the entire dataset of images is forward propagated, we've completed an Epoch
- We train for 5 to 50 Epochs and stop when Loss stops decreasing



## Batches, Mini-Batches, Iterations & Epochs

• We can feed images one at a time, however using mini-batches is better



## **Advantages of Convolution Neural Networks**

- Invariance Remember our Max Pool Example
- Parameter sharing where a single filter can be used all parts of an image
- Sparsity of connections As we saw, fully connected layers in a typical Neural Network result in a weight matrix with large number of parameters.



| 1 | 0 | 1 | 0 | 1 |   |   |   |    |
|---|---|---|---|---|---|---|---|----|
| 1 | 0 | 0 | 1 | 1 |   | 0 | 1 | 0  |
| 0 | 1 | 1 | 0 | 0 | * | 1 | 0 | -1 |
| 1 | 0 | 0 | 1 | 0 |   | 0 | 1 | 0  |
| 0 | 0 | 1 | 1 | 0 |   |   |   |    |



## **Convolution Neural Networks Assumptions**

- Low-level features are local
- Features are translational invariant
- High-level features are made up of low-level features



# Next...

**History of Deep Learning and Al** 

