Department of Computer Science & Engineering University of Asia Pacific (UAP)

Program: B.Sc. in Computer Science and Engineering

Final Examination Spring 2021 3rd Year 2nd Semester

Course Code: CSE 313 Course Title: Numerical Methods Credits: 3

Full Marks: 120* (Written)

Duration: 2 Hours

Instructions:

1. There are **Four (4)** Questions. Answer all of them. All questions are of equal value. Part marks are shown in the margins.

2. Non-programmable calculators are allowed.

1. a) Using $[x_1, x_2, x_3] = [0,0,0]$ as the initial guess, find the values of $[x_1, x_2, x_3]$ after three iterations in the Gauss-Seidel method for

20

10

10

<u>Note</u>: Please replace the coefficient of x_3 (\bullet) in the equation (iii) with the multiplication of your roll number (e.g. xxxxxx51) and 0.1 (i.e. 51×0.1).

- **b)** How to ensure that the above system of equations (in question 1. (a)) will converge using the Gauss-Seidel method?
- 2. a) The upward velocity of a rocket is given as a function of time in the Table 1. Find the velocity at t = 3 seconds using the Newton Divided Difference method for Quadratic interpolation.

Table 1: Velocity as a function of time

<i>t</i> (s)	v(t) (m/s)	
3.5	27.4	
36.3	64.5	
59.75	98.24	
93.5	123.9	
119.15	187.5	
155.35	240.2	
203.75	355.8	

<u>Note</u>: Please replace the value of t (\bullet) in the question with the addition of your roll number (e.g. xxxxxx51) and 10 (i.e. 51 + 3).

b) How will you calculate the absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first order (Linear interpolation) and second order (Quadratic interpolation) polynomial?

<u>Note</u>: You have to solve question **2.** (a) using the Newton Divided Difference method for Linear interpolation to answer question **2.** (b).

^{*} Total Marks of Final Examination: 150 (Written: 120 + Viva: 30)

3. a) Find the most nearly value of $\int_a^b \frac{dx}{2x+4}$ by using 4-segment Simpson's 1/3 rule.

<u>Note</u>: Please assume the value of a is the multiplication of your roll number (e.g. xxxxxx51) and 0.2 (i.e. 51×0.2), and the value of b is a + 5.

20

10

20

10

- **b)** Find the true error, E_t and absolute relative true error, $|\epsilon_a|$ for question 3. (a).
- **4. a)** To find the longitudinal modulus of composite, the following data is collected. Find the constants for the regression model given by $y = a_0 + a_1 x$.

x	2	11	•	27	50
у	3	110	350	500	950

<u>Note</u>: Please replace the 3^{rd} value of x (\bullet) with the multiplication of your roll number (e.g. xxxxxx51) and 0.2 (i.e. 51×0.2).

b) How is regression related to the concept of interpolation? Explain.

OR

a) Using the Golden Section Search method, find the maximum value of a function $f(x) = 120x - x^2$. Assuming an initial interval of $\left[0, \frac{\blacksquare}{2}\right]$, find the maximum value after **2 iterations**.

<u>Note</u>: Please replace the value of \bullet in the initial interval with the multiplication of your roll number (e.g. xxxxxx51) and 0.2 (i.e. 51×0.2).

b) What would be the scenario if the Equal Interval Search method is applied to solve **OR(a)** of question number **4**? Explain considering the fundamentals of the Equal Interval Search method.