Cosmic Microwave Background map-making solutions improve with cooling

Bai-Qiang Qiang (KMH: want chinese characters?)¹ and Kevin M. Huffenberger D¹

¹Department of Physics, Florida State University, Tallahassee, Florida 32306

ABSTRACT

In the context of Cosmic Microwave Background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in "messenger" methods for solving linear systems, we split the noise covariance into uniform and non-uniform parts and adjusting their relative weight during the iterative solution. This "cooling" or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. A conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach, for the same computational cost per iteration. We conclude that cooling is helpful separate from its appearance in the messenger methods. We give an analytical expression for the parameter that controls how gradually should change during the course of the solution.

Keywords: Computational methods — Cosmic microwave background radiation — Astronomy data reduction

1. INTRODUCTION

10

11

12

13

14

15

In observations of the Cosmic Microwave Background (CMB), map-making is an intermediate step between the collection of raw scanning data and the scientific analyses, such as the estimation of power spectra and cosmological parameters. Next generation CMB observations will generate much more data that today, and so it is worth exploring efficient ways to process the data, even though, on paper, the map-making problem has long been solved.

The time-ordered scanning data is summarized by

$$\mathbf{d} = P\mathbf{m} + \mathbf{n} \tag{1}$$

where **d**, **m**, and **n** are the vectors of time-ordered data (TOD), the CMB sky-map signal, and measurement noise, and P is the sparse matrix that encodes the telescope's pointing. Of several mapmaking methods (Tegmark 1997), one of the most common is the method introduced for the Cosmic Background Explorer (COBE, Janssen & Gulkis 1992). This optimal, linear solution is

$$(P^{\dagger}N^{-1}P)\hat{\mathbf{m}} = P^{\dagger}N^{-1}\mathbf{d}$$
 (2)

 $_{\rm 37}$ where ${\bf \hat{m}}$ provides the generalized least squares mini- $_{\rm 38}$ mization of the χ^2 statistic

$$\chi^{2}(\mathbf{m}) \equiv (\mathbf{d} - P\mathbf{m})^{\dagger} N^{-1} (\mathbf{d} - P\mathbf{m}). \tag{3}$$

⁴¹ Here we assume that the noise has zero mean $\langle \mathbf{n} \rangle = \mathbf{0}$, ⁴² and noise covariance matrix could be written as $N = \frac{1}{3} \langle \mathbf{n} \mathbf{n}^{\dagger} \rangle$. We cast mapmaking as a standard linear regression problem. In case the noise is Gaussian, the COBE solution is also the maximum likelihood solution.

With current computation power, we cannot solve for 47 $\hat{\mathbf{m}}$ by calculating $(P^{\dagger}N^{-1}P)^{-1}P^{\dagger}N^{-1}\mathbf{d}$ directly, since 48 the $(P^{\dagger}N^{-1}P)$ matrix is too large to invert. The noise 49 covariance matrix N is sparse in frequency domain and 50 the pointing matrix P is sparse in the time-by-pixel do-51 main, and their product is dense. In experiments cur- $_{52}$ rently under design, there may be $\sim 10^{16}$ time sam-₅₃ ples and $\sim 10^9$ pixels, so these matrix inversions are 54 intractable. Therefore we use iterative methods, such 55 as conjugate gradient descent, to avoid the matrix in-56 versions, while executing each matrix multiplication in 57 a basis where the matrix is sparse, using a fast Fourier 58 transform to go between the frequency and time domain. As an alternative technique, Huffenberger & Næss 60 (2018) showed that the "messenger method" could be 61 adapted to solve the linear mapmaking system, based 62 on the approach from Elsner & Wandelt (2013) to solve 63 the linear Wiener filter. This technique splits the noise 64 covariance into a uniform part and the remainder, and, 65 over the course of the iterative solution, it adjusts the 66 relative weight of those two parts. Starting with the 67 uniform covariance, the modified linear system gradu-68 ally transforms to the final system via a cooling param-69 eter. The cooling idea again comes from Elsner & Wan-

105

106

117

70 delt (2013). In numerical experiments, Huffenberger & 71 Næss (2018) found that the large scales of map produced 72 by the cooled messenger method converged significantly ₇₃ faster than for standard methods, and to higher fidelity. Papež et al. (2018) showed that the iterations in the 75 messenger field approach is equivalent to a fixed point 76 iteration scheme, and studied its convergence proper-77 ties in detail. Furthermore, they showed that the split 78 covariance and the modified system that incorporates 79 the cooling can be solved by other means, including 80 a conjugate gradient technique, which should generally 81 show better convergence properties than the fixed-point 82 scheme. However in numerical tests, Papež et al. (2018) 83 did not find benefits to the cooling modification of the 84 mapmaking system, in contrast to findings of Huffen-85 berger & Næss (2018).

In this paper, we show that the difference arose be- 87 cause the numerical tests in Papež et al. (2018) used 88 much less low-frequency (1/f) noise than Huffenberger 89 & Næss (2018), and show that the cooling technique 90 improves mapmaking performance especially when the 91 low frequency noise is large. This performance boost de- 92 pends on a proper choice for the pace of cooling. Kodi 93 Ramanah et al. (2017) showed that for Wiener filter the 94 cooling parameter should be chosen as a geometric se- 95 ries. In this work, we give an alternative interpretation 96 of the parameterizing process and show that for map- 97 making the optimal choice (unsurprisingly) is also a ge- 98 ometric series.

In Section 2 we describe our methods for treating the mapmaking equation and our numerical experiments. In Section 3 we present our results. In Section 4 we interpret the mapmaking approach and its computational cost. In Section 5 we conclude. In appendices we derives how we set our cooling schedule.

2. METHODS

2.1. Parameterized Conjugate Gradient Method

The messenger field approach introduced an extra cooling parameter λ to the map-making equation, and solved the linear system with the alternative covariance $N(\lambda) = \lambda \tau I + \bar{N}$. The parameter τ represents the uniform level of (white) noise in the covariance, \bar{N} is the balance of the noise, and the parameterized covariance equals the original covariance when the cooling parameter $\lambda = 1$. In this work we find it more convenient to work with the inverse cooling parameter $\eta = \lambda^{-1}$ and define the covariance as

$$N(\eta) = \tau I + \eta \bar{N} \tag{4}$$

167

which leads to the same system of mapmaking equations. (This is because $N(\eta) = \lambda^{-1} N(\lambda)$ and the mapmaking

¹²⁰ equation is insensitive to to scalar multiple of the co-¹²¹ variance since is appears on both sides.)

Papež et al. (2018) showed that the conjugate gradi-123 ent method can be easily applied to parameterized map-124 making equation by iterating on

$$P^{\dagger}N(\eta)^{-1}P \hat{\mathbf{m}} = P^{\dagger}N(\eta)^{-1}\mathbf{d}$$
 (5)

127 as the cooling is adjusted. In our numerical experiments, 128 we confirm that the conjugate gradient approach is con129 verging faster than the fixed point iterations suggested 130 by the messenger mapmaking method in Huffenberger 131 & Næss (2018). For simplicity we fix the preconditioner 132 to $M = P^{\dagger}P$ for all of calculations.

When $\eta=0$, the noise covariance matrix N(0) is proportional to identity matrix I, and solution is given by simple binned map $\mathbf{m}_0=\left(P^\dagger P\right)^{-1}P^\dagger\mathbf{d}$, which can be solved directly. From this starting point, the cooling scheme requires the inverse cooling parameter η increase as $0=\eta_0\leq\eta_1\leq\cdots\leq\eta_{\mathrm{final}}=1$, at which point we arrive at the desired mapmaking equation. For each intermediate η_i , we treat it as a seperate conjugate gradient method to solve equation $(P^\dagger N(\eta_i)^{-1}P)\hat{\mathbf{m}}(\eta_i)=P^\dagger N(\eta_i)^{-1}\mathbf{d}$, using the result from previous calculation $\hat{\mathbf{m}}(\eta_{i-1})$ as the initial value, and move to next parameter η_{i+1} when $(P^\dagger N(\eta_i)^{-1}P)\hat{\mathbf{m}}(\eta_i)-P^\dagger N(\eta_i)^{-1}\mathbf{d}\simeq 0$, the KMH: In this description, it is not totally clear whether you intend to update the eta after every iteration.

The non-white part \bar{N} is the troublesome portion of the the covariance, and we can think of the η parameter as turning it on slowly, adding a perturbation to the solution achieved at a particular stage, building ultimately upon the initial uniform covariance model.

2.2. Choice of inverse cooling parameters η

The next question is how we choose these monotonising ically increasing parameters η . If we choose them inappropriately, the solution converge slowly, because we
solve waste effort converging on the wrong system. We also
want to determine $\eta_1, \dots, \eta_{n-1}$ before starting conjugate gradient iterations. The time ordered data \mathbf{d} is very
large, and we do not want to keep it in the system memory during calculation. If we determine $\eta_1, \dots, \eta_{n-1}$ before the iterations, then we can precompute the righthand side $P^{\dagger}N(\eta)^{-1}\mathbf{d}$ for each η_i and keep these mapisized objects in memory, instead of the entire timeordered data.

In the appendix, we show that a generic good choice for the η parameters are the geometric series

$$\eta_i = \min\left\{ \left(2^i - 1\right) \frac{\tau}{\max(\bar{N}_f)}, \ 1 \right\},\tag{6}$$

where \bar{N}_f is the frequency representation of the non-uniform part of the covariance. This is the main result.

It tells us not only how to choose parameters η_i , but also when we should stop the perturbation, and set $\eta=173$ 1. For example, if noise covariance matrix N is almost white noise, then $\bar{N}=N-\tau I\approx 0$, and we would have $\tau=175$ $\tau/\max(\bar{N}_f)\gg 1$. This tell us that we don't need to use parameterized method at all, because $\tau=175$ 0 and $\tau=175$ 0 and $\tau=175$ 1. This corresponds to the standard conjugate gradient method with simple binned map as the initial guess (as recommended by Papež et al. 2018).

2.3. Numerical Simulations

180

196

197

206

215

To compare these algorithms, we need to do some simple simulation of scanning processes, and generate time ordered data from random sky signal. Our sky is a small rectangular area, with two orthogonal directions x and y, both with range from -1° to $+1^{\circ}$. The signal has first three stokes parameters (I, Q, U).

For the scanning process, our single telescope contains nine detectors, each has different sensitivity to polarization Q and U. It scans the sky with a raster scanning pattern and scanning frequency $f_{\rm scan}=0.1$ Hz sampling frequency $f_{\rm sample}=100$ Hz. The telescope scans the sky horizontally and then vertically, and then digitizes the position (x,y) into 512×512 pixel. This gives noiseless signal s.

The noise power spectrum is given by

$$P(f) = \sigma^2 \left(1 + \frac{f_{\text{knee}}^{\alpha} + f_{\text{apo}}^{\alpha}}{f^{\alpha} + f_{\text{apo}}^{\alpha}} \right)$$
 (7)

Here we fixed $\sigma^2=10~\mu\text{K}^2,~\alpha=3$, and $f_{\rm knee}=10~\text{Hz},$ and change $f_{\rm apo}$ to compare the performance under different noise models. Dünner et al. (2013) measured the slopes of the atmospheric noise in the Atacama under different water vapor conditions, finding $\alpha=2.7$ to 2.9.

Note that as $f_{\rm apo}\to 0,~P(f)\to \sigma^2(1+(f/f_{\rm knee})^{-\alpha}),$ it becomes a 1/f noise model. The noise covariance matrix

$$N_{ff'} = P(f) \frac{\delta_{ff'}}{\Delta_f} \tag{8}$$

 $_{207}$ is a diagonal matrix in frequency space, where Δ_f is equal to reciprocal of total scanning time $T\approx 1.05\times 10^4$ seconds. In our calculations we choose differnt combination of $f_{\rm knee}$ and $f_{\rm apo}$, some of the power spectrum are shown in Figure(1).

Finally, we get the simulated time ordered data $\mathbf{d} = \mathbf{s} + \mathbf{n}$ by adding up signal and noise.

3. RESULTS

Figure 1. The noise power spectum based on Eq. (7) with $\sigma^2 = 10 \ \mu\text{K}^2$ and $\alpha = 3$. Two knee frequencies $f_{\text{knee}} = 10$ (solid lines) and $f_{\text{knee}} = 0.1$ (dashed lines). For each knee frequency, we have $f_{\text{apo}} = 0$, $0.1 f_{\text{knee}}$ and $0.01 f_{\text{knee}}$. The vertical line shows our scaning frequency.

First let's compare the results with vanilla conjugate gradient method with simple preconditioner $P^{\dagger}P$. Figure (2) shows the results for 1/f noise model ($f_{\rm apo}=0$) with different knee frequency. In Figure (3) we fixed $f_{\rm knee}=10$ Hz, and change $f_{\rm apo}$. Here note that χ^2 in all figures are calculated based on Eq. (3) not $\chi^2(\mathbf{m},\eta)$ in Eq. (A1). The $\chi^2_{\rm min}$ is calculated from perturbative conjugate gradient method with 100 η values, and it stops when the norm of residuel $\|\mathbf{r}\|=1$ let $\|P^{\dagger}N^{-1}\mathbf{d}-(P^{\dagger}N^{-1}P)\mathbf{m}\|$ per pixel is smaller than 10^{-10} , or after 1000 iterations.

As we can see in Figure (2) and the first graph in Fig-228 ure (3), for 1/f noise model, when $f_{\rm knee} \gtrsim 10 f_{\rm scan}$ the 229 parameterized method starts showing advantage over 230 vanilla conjugate gradient method. From Figure (3) we 231 can see that as we increase $f_{\rm apo}$ while fix $f_{\rm knee}$, these 232 two methods performs similar.

If we look at the power spectrum in Figure (1), when $f_{\rm knee}$ is small or $f_{\rm apo}$ is large there are not many large scale low frequency noise. So introducing η parameter could improve perform when there are large low noise contribution.

We also tried differnt α values. For $\alpha=2$, the conclusion is the same as $\alpha=3$. When $\alpha=1$, there are not many low frequency noise, the vanilla conjugate gradient is preferred, except some cases with very large knee frequency like $f_{\rm knee}=100$ Hz and $f_{\rm apo}=0$ would favour parameterized method. In Papež et al. 2018, the $\alpha=1$ and the noise power spectrum is apodized at $0.1f_{\rm knee}$, which corresponds to $f_{\rm apo}\approx0.1f_{\rm knee}$, and their knee frequency is the same as scaning frequency, so $f_{\rm knee}=f_{\rm scan}=0.1$ in our cases. In their case there are not many low frequency noise, and we confirm that vanilla conjugate gradient method would converge faster.

¹ The source code and other information are available at https://github.com/Bai-Qiang/map_making_perturbative_approach

251

252

253

Figure 2. These three figures show the $\frac{\chi^2(\mathbf{m}) - \chi^2_{\min}}{\chi^2_{\min} - \chi^2_{\min}}$ changes for each iteration under different noise covariance matrix with fixed $f_{\text{apo}} = 0$ and f_{knee} being 0.1, 0.5, and 1.0.

Figure 3. These three figures show the $\frac{\chi^2(\mathbf{m}) - \chi^2_{\min}}{\chi^2_{\min} - \chi^2_{\min}}$ changes for each iteration under different noise covariance matrix with fixed $f_{\text{knee}} = 10 \text{ and } f_{\text{apo}} \text{ being } 0, 0.1, \text{ and } 1.0.$

4. DISCUSSION

4.1. Intuitive Interpretation of η

KMH: most of this is pretty similar to discussion in Huffenberger and Naess. The last paragraph is new. 254

In this section, let me introduce another way to understand the role of η . Our ultimate goal is to find $\hat{\mathbf{m}}(\eta=1)$ which minimizes $\chi^2(\mathbf{m}) = (\mathbf{d} - P\mathbf{m})^{\dagger} N^{-1} (\mathbf{d} - P\mathbf{m}).$ Since N is diagonal in frequency space, χ^2 could be writ-₂₅₉ ten as a sum of all frequency mode $\left|(\mathbf{d}-P\mathbf{m})_f\right|^2$ with weight N_f^{-1} , such as $\chi^2(\mathbf{m}) = \sum_f |(\mathbf{d} - P\mathbf{m})_f|^2 N_f^{-1}$. $_{261}$ N_f^{-1} is large when there is little noise at that frequency, 262 and vice versa. Which means $\chi^2(\mathbf{m})$ would favor the 263 low noise frequency mode over high noise ones. In other words the optimal map $\hat{\mathbf{m}}$ focusing on minimize the er-₂₆₅ ror $\mathbf{r} \equiv \mathbf{d} - P\mathbf{m}$ in the low-noise part.

After introducing η , we minimize $\chi^2(\mathbf{m}, \eta) = (\mathbf{d} - \mathbf{m})$ 267 P**m**) $^{\dagger}N_{\eta}^{-1}(\mathbf{d}-P$ **m**). For $\eta=0, N_{\eta=0}^{-1} \propto I$ and the estimated map $\hat{\mathbf{m}}(\eta = 0)$ does not prioritize any frequency 269 mode. As we slowly increase η , we decrease the weight 270 for the frequency modes which have large noise, and fo-271 cusing minimizing error for low noise part. If we start 272 with $\eta_1 = 1$ directly, which corresponds to the vanilla 273 conjugate gradient method, then the entire conjugate 274 gradient solver will focus most on minimizing the low 275 noise part, such that χ^2 would converge very fast at low 276 noise region, but slowly on high noise part. Since it fo-277 cus on low noise part only, it may be stuck at some local 278 minimum point. To get to the global minimum, it need 279 to adjust the low noise part, that would be difficult if it's 280 stuck at an local minimum. However by introducing η 281 parameter, we let the solver first treat every frequency 282 equally. Then as η slowly increases, it gradually shifts 283 focus from the highest noise to the lowest noise part.

²⁸⁴ KMH: I feel what this is missing is why the high-noise modes get stuck though.

If we write the difference between final and initial χ^2 value as $\chi^2(\hat{\mathbf{m}}(1),1) - \chi^2(\hat{\mathbf{m}}(0),0) = \frac{1}{288} \int_0^1 \mathrm{d}\eta \, \frac{\mathrm{d}}{\mathrm{d}\eta} \chi^2(\hat{\mathbf{m}}(\eta),\eta)$, and use Eq. (A2). We note that when η is very small, the $\frac{\mathrm{d}}{\mathrm{d}\eta} \chi^2(\hat{\mathbf{m}}(\eta),\eta)$ would have relatively large contribution from medium to large noise improve the convergence of χ^2 at these regions, because the vanilla conjugate gradient method only focuses on the low noise part and it may have difficulty at these regions.

4.2. Computational Cost To properly compare the performance cost of this

298 method with respect to vanilla conjugate gradient

299 method with simple preconditioner, we need to com-

300 pare their computational cost at each iteration. The

296

301 right hand side of parameterized map-making equation ₃₀₂ Eq. (5) could be computed before iterations, so it won't 303 introduce extra computational cost. The most demand-304 ing part of conjugate gradient method is calculating $P^{\dagger}N^{-1}P\hat{\mathbf{m}}$, because it contains a Fourier transform of $P\hat{\mathbf{m}}$ from time domain to frequency domain and an inverse Fourier transform of $N^{-1}P\hat{\mathbf{m}}$ from frequency domain back to time domain, which is order $\mathcal{O}(n \log n)$ with n being the length of time ordered data. If we since change N^{-1} to $N(\eta)^{-1}$, it won't add extra cost, since 311 both matrices are diagonal in frequency domain. There-312 fore the computational cost it the same for one step. However our previous analysis is 314 $\chi^2(\hat{\mathbf{m}}(\eta_i), \eta_i)$ which is evaluated at $\hat{\mathbf{m}}(\eta_i)$ the estimated map at η_i . So We should update η_i to η_{i+1} 316 when $\mathbf{m} \approx \hat{\mathbf{m}}(\eta_i)$. How do we know this condition is satisfied? Since for each new η_i value, we are solving 318 a new set of linear equations $A(\eta_i)\hat{\mathbf{m}} = \mathbf{b}(\eta_i)$ with 319 $A(\eta_i) = P^{\dagger} N(\eta_i)^{-1} P$ and $\mathbf{b}(\eta_i) = P^{\dagger} N(\eta_i)^{-1} \mathbf{d}$, and we 320 could stop calculation and moving to next value η_{i+1} when the norm of residual $||\mathbf{r}(\eta_i)|| = ||\mathbf{b}(\eta_i) - A(\eta_i)\mathbf{m}||$ 322 smaller than some small value. Calculate $||\mathbf{r}(\eta_i)||$ is 323 part of conjugate gradient algorithm, so this won't 324 add extra cost compare to vanilla conjugate gradient method. Therefore, overall introducing η won't have

4.3. Other η Choises

326 extra computational cost.

Now let us compare the performance difference between choosing η parameters based on Eq. (6) and manually fixing number of η parameters n_{η} manually. We manually choose the η_i values using function numpy.logspace(start=ln(η_1), stop=0, num= n_{η} , base=e). The results are showed in Figure (4).

Since the η values determined from Eq. (6)

335

$$\eta_i = \min\left\{1, \ \frac{\tau}{\max(\bar{N}_f)} (2^i - 1)\right\} \tag{6}$$

are not dependent on any scanning information, it only depends on noise power spectrum P(f), or noise covariance matrix N. Figure (??) and Figure (??) show two examples with same parameters as in Figure (??) except for the scanning frequency $f_{\rm scan}$ in Figure (??) it scans very slow and in Figure (??) it's very fast. In these two cases under 1/f noise model, our η values based on Eq. (6) are better than manually selected values. Based on these two results we know, the η values should somehow depends on scanning scheme.

4.4. Future Prospects

KMH: some of this future prospects should move to discussion As you may have noticed in the second and third Figure(??), the perturbation parameter based on Eq. (6) is more than needed, especially for 1/f noise case. For the case $\kappa=10^{12}$, we notice that based on Eq. (6) it gives us $n_{\eta}\approx 40$, however from χ^2 result in the last Figure(??) $n_{\eta}\approx 30$ or even $n_{\eta}\approx 15$ is good enough. Also, for the nearly-white-noise case, we could certainly choose $n_{\eta}=1$ such that $\eta_1=1$ which corresponds to vanilla conjugate gradient method, based on χ^2 result in first Figure(??). However Eq. (6) gives us $n_{\eta}\approx 6$, even though it does not make the final χ^2 result much different at the end.

Is it possible to further improve the analysis, such that it produces smaller n_{η} ? Let's examine how we get η_i series. Remember that we determine $\delta \eta$ value based on the upper bound of $-\delta \chi^2(\hat{\mathbf{m}}(\eta), \eta)/\chi^2(\hat{\mathbf{m}}(\eta), \eta)$, in Eq. (??). For $\eta \neq 0$, the upper bound is

$$\delta \eta \frac{\hat{\mathbf{r}}_{\eta}^{\dagger} N(\eta)^{-1} \bar{N} N(\eta)^{-1} \hat{\mathbf{r}}_{\eta}}{\hat{\mathbf{r}}_{\eta}^{\dagger} N(\eta)^{-1} \hat{\mathbf{r}}_{\eta}} \le \frac{\delta \eta}{\eta + \frac{\tau}{\max(N_f) - \tau}} \tag{9}$$

with $\mathbf{r}_{\eta} = \left[1 - P(P^{\dagger}N(\eta)^{-1}P)^{-1}P^{\dagger}N(\eta)^{-1}\right]\mathbf{d} \equiv \mathcal{P}_{\eta}\mathbf{d}$. 369 To get the upper bound we treated $\mathbf{d} - P\hat{\mathbf{m}}(\eta)$ as an arabitrary vector in frequency domain, since we don't know 371 how to calculate \mathcal{P}_{η} for $\eta \neq 0$, and it's hard to analyze 372 the projection matrix \mathcal{P}_{η} in frequency space, as it con-373 tains $\left(P^{\dagger}N(\eta)^{-1}P\right)^{-1}$. Note that we have to determine 374 all of η value before calculation, because we don't want 375 to keep the time ordered data in system RAM, so we 376 need to somehow analytically analyze \mathcal{P}_{η} , and its be-377 havior in frequency space. Unless \mathbf{r}_{η} almost only has 378 large noise modes, $\left|\frac{\mathrm{d}}{\mathrm{d}\eta}\chi^{2}(\hat{\mathbf{m}}(\eta),\eta)/\chi^{2}(\hat{\mathbf{m}}(\eta),\eta)\right|$ won't 379 get close to the upper bound $1/\left(\eta + \frac{\tau}{\max(N_{f}) - \tau}\right)$. Based

Figure 4. The blue line and the orange line are vanilla conjugate gradient method and parameterized conjugate gradient method. For three extra lines, we fix the number of η parameter n_{η} manually. Instead of using Eq. (6), we use numpy.logspace(start=ln(η_1), stop=0, num= n_{η} , base=e) to get all η parameters.

412

on the analysis in Section(4.1), for small η the estimated map $\hat{\mathbf{m}}(\eta)$ does not only focusing on minimizing error \mathbf{r}_{η} at low noise region. So we would expect that there would be a fair amount of low noise modes contribution in \mathbf{r}_{η} especially for the first few η values. Which means if we could somehow know the frequency distribution of \mathbf{r}_{η} , we could tighten the boundary of $\left|\frac{\mathrm{d}}{\mathrm{d}\eta}\chi^{2}(\hat{\mathbf{m}}(\eta),\eta)/\chi^{2}(\hat{\mathbf{m}}(\eta),\eta)\right|$, and get larger $\delta\eta$ value. This should make η goes to 1 faster, and yields the fewer η parameters we need.

Also notice that the η values determined from Eq. (6) are not dependent on any scanning information, it only depends on noise power spectrum P(f), or noise covariance matrix N. In Appendix $\ref{Appendix}$ we would show two examples with same parameters as in Figure($\ref{Appendix}$) except scanning frequency f_{scan} . It turns out the η values should somehow depends on scanning scheme. Again that's because when we determine the upper boundwe treated \mathbf{r}_{η} as an arbitrary vector, such that we lose all information related to scanning scheme in the pointing matrix P.

Even though the perturbation parameter η get from Eq. (6) are not the most optimal, it still performs much

better than traditional conjugate gradient method undos der 1/f noise scenario without adding extra computational cost. The only extra free parameter added is
to determine whether the error at current step $\mathbf{r}(\eta_i) =$ $|\mathbf{b}(\eta_i) - A(\eta_i)\mathbf{m}||$ is small enough such that we advance
to next value η_{i+1} .

Also this analysis of η value also explains why cooling parameters $\lambda = 1/\eta$ in messenger field are chosen to be geometric series or logspace used in Huffenberger & Næss (2018).

5. CONCLUSIONS

KMH: We need some discussion of the things that haven't yet been demonstrated with the PCG, like multiple messenger fields. Has the Kodi-Ramanah dual messenger field scheme been demonstrated in a PCG scheme by Papez?

All of the calculation are using simple preconditioner $P^{\dagger}P$, but the entire analysis is independent of preconditioner. Better preconditioners would also lead to improvements.

422 BQ and KH are supported by NSF award 1815887.

APPENDIX

A. THE SEQUENCE OF INVERSE COOLING PARAMETERS

We know that the initial inverse cooling parameter $\eta_0 = 0$. What would be good value for the next parameter η_1 ?

To simplify notation, we use N_{η} to denote $N(\eta) = \tau I + \eta \bar{N}$. For some specific η value, the minimum χ^2 value is given by the optimized map $\hat{\mathbf{n}}(\eta) = \left(P^{\dagger}N_{\eta}^{-1}P\right)^{-1}P^{\dagger}N_{\eta}^{-1}\mathbf{d}$, which minimizes

$$\chi^{2}(\hat{\mathbf{m}}(\eta), \eta) = (\mathbf{d} - P\hat{\mathbf{m}}(\eta))^{\dagger} N_{\eta}^{-1} (\mathbf{d} - P\hat{\mathbf{m}}(\eta)). \tag{A1}$$

423

We restrict to the case that the noise covariance matrix N is diagonal in the frequency domain, and represent the frequency-domain eigenvalues as N_f .

Let us first consider $\eta_1 = \eta_0 + \delta \eta = \delta \eta$ such that $\eta_1 = \delta \eta$ is very small quantity, $\delta \eta \ll 1$. Since $\hat{\mathbf{m}}(\eta)$ minimizes $\chi^2(\hat{\mathbf{m}}(\eta), \eta)$, we have $\frac{\partial}{\partial \hat{\mathbf{m}}} \chi^2(\hat{\mathbf{m}}(\eta), \eta) = 0$, and using chain rule

$$\frac{\mathrm{d}}{\mathrm{d}\eta}\chi^{2}(\hat{\mathbf{m}}(\eta),\eta) = \frac{\partial}{\partial\eta}\chi^{2}(\hat{\mathbf{m}}(\eta),\eta) = -(\mathbf{d} - P\hat{\mathbf{m}}(\eta))^{\dagger}N_{\eta}^{-1}\bar{N}N_{\eta}^{-1}(\mathbf{d} - P\hat{\mathbf{m}}(\eta))$$
(A2)

Then the fractional decrease of $\chi^2(\hat{\mathbf{m}}(0),0)$ from $\eta_0=0$ to $\eta_1=\delta\eta$ is

434

443

452

465

$$-\frac{\delta \chi^{2}(\hat{\mathbf{m}}(0),0)}{\chi^{2}(\hat{\mathbf{m}}(0),0)} = -\delta \eta \frac{\frac{\mathrm{d}}{\mathrm{d}\eta} \chi^{2}(\hat{\mathbf{m}}(0),0)}{\chi^{2}(\hat{\mathbf{m}}(0),0)} = \delta \eta \frac{1}{\tau} \frac{(\mathbf{d} - P\hat{\mathbf{m}}(0))^{\dagger} \bar{N}(\mathbf{d} - P\hat{\mathbf{m}}(0))}{(\mathbf{d} - P\hat{\mathbf{m}}(0))^{\dagger}(\mathbf{d} - P\hat{\mathbf{m}}(0))}$$
(A3)

⁴³⁹ Here we put a minus sign in front of this expression such that it's non-negative, and use $N_{\eta=0} = \tau I$ at the second equality. Since it is hard to analyze $\mathbf{d} - P\hat{\mathbf{m}}$ under frequency domain, we treat it as an arbitary vector, then the least upper bound is given by

$$-\frac{\delta \chi^2(\hat{\mathbf{m}}(0), 0)}{\chi^2(\hat{\mathbf{m}}(0), 0)} \le \frac{\delta \eta}{\tau} \max(\bar{N}_f)$$
(A4)

where $\max(\bar{N}_f)$ is the maxium eigenvalue of \bar{N} . Here if we assume that initial χ^2 value $\chi^2(\hat{\mathbf{m}}(0),0)$ is much larger than final value $\chi^2(\hat{\mathbf{m}}(1),1), \chi^2(\hat{\mathbf{m}}(0),0) \gg \chi^2(\hat{\mathbf{m}}(1),1)$, then we would expect

$$-\frac{\delta \chi^2(\hat{\mathbf{m}}(0), 0)}{\chi^2(\hat{\mathbf{m}}(0), 0)} = 1 - \frac{\chi^2(\hat{\mathbf{m}}(1), 1)}{\chi^2(\hat{\mathbf{m}}(0), 0)} \approx 1^-$$
(A5)

The upper bound is strictly smaller than 1. Ideally, if $\delta \chi^2(\hat{\mathbf{m}}(0),0) = \chi^2(\hat{\mathbf{m}}(1),1) - \chi^2(\hat{\mathbf{m}}(0),0)$, then it would get close to the final χ^2 at next iteration, but we do not know the final $\chi^2(\hat{\mathbf{m}}(1),1)$. So we want $\left|\frac{\delta \chi^2(\hat{\mathbf{m}}(0),0)}{\chi^2(\hat{\mathbf{m}}(0),0)}\right|$ to be as large as possible, so it could converge fast, but subject to another constraint that the least upper bound cannot exceed 1. Therefore we can choose $\delta \eta$ such that the least upper bound is equal to 1. Thus we choose

$$\eta_1 \equiv \frac{\tau}{\max(\bar{N}_f)} = \frac{\min(N_f)}{\max(N_f) - \min(N_f)}.$$
(A6)

Here N_f and \bar{N}_f are the eigenvalues of N and \bar{N} in the frequency domain. If the condition number of noise covariance matrix $\kappa(N) = \max(N_f)/\min(N_f) \gg 1$, then $\eta_1 \approx \kappa^{-1}(N)$.

What about the other parameters η_m with m > 1? We use a similar analysis, letting $\eta_{m+1} = \eta_m + \delta \eta_m$ with a small $\delta \eta_m \ll 1$, and set the least upper bound of relative decrease equal to 1.

$$-\frac{\delta \chi^{2}(\hat{\mathbf{m}}(\eta_{m}), \eta_{m})}{\chi^{2}(\hat{\mathbf{m}}(\eta_{m}), \eta_{m})} = \delta \eta_{m} \frac{(\mathbf{d} - P\hat{\mathbf{m}}(\eta_{m}))^{\dagger} N_{\eta_{m}}^{-1} \bar{N} N_{\eta_{m}}^{-1} (\mathbf{d} - P\hat{\mathbf{m}}(\eta_{m}))}{(\mathbf{d} - P\hat{\mathbf{m}}(\eta_{m}))^{\dagger} N_{\eta_{m}}^{-1} (\mathbf{d} - P\hat{\mathbf{m}}(\eta_{m}))}$$

$$\leq \delta \eta_{m} \max \left(\frac{\bar{N}_{f}}{\tau + \eta_{m} \bar{N}_{f}}\right)$$
(A7)

The upper bound in the second line is a little bit tricky. Both matrix \bar{N} and $N_{\eta_m}^{-1}$ can be simultaneously diagonalized in frequency space. For each eigenvector \mathbf{e}_f , the corresponding eigenvalue of the matrix on the numerator $N_{\eta_m}^{-1}\bar{N}N_{\eta_m}^{-1}$ is $\lambda_f = \bar{N}_f(\tau + \eta_m \bar{N}_f)^{-2}$, and the eigenvalue for matrix on the denominator $N_{\eta_m}^{-1}$ is $\gamma_f = (\tau + \eta_m \bar{N}_f)^{-1}$. Their eigenvalues are related by $\lambda_f = [\bar{N}_f/(\tau + \eta_m \bar{N}_f)]\gamma_f$. For any vector $\mathbf{v} = \sum_f \alpha_f \mathbf{e}_f$, we have

$$\frac{\mathbf{v}^{\dagger} N_{\eta_m}^{-1} \bar{N} N_{\eta_m}^{-1} \mathbf{v}}{\mathbf{v}^{\dagger} N_{\eta_m}^{-1} \mathbf{v}} = \frac{\sum_f \alpha_f^2 \lambda_f}{\sum_f \alpha_f^2 \gamma_f} = \frac{\sum_f \alpha_f^2 \gamma_f \bar{N}_f / (\tau + \eta_m \bar{N}_f)}{\sum_f \alpha_f^2 \gamma_f} \le \max\left(\frac{\bar{N}_f}{\tau + \eta_m \bar{N}_f}\right). \tag{A8}$$

Similarly, we could set the least upper bound equal to 1. Then we get

$$\delta \eta_m = \min\left(\frac{\tau + \eta_m N_f}{\bar{N}_f}\right) = \eta_m + \frac{\tau}{\max(\bar{N}_f)}.$$
 (A9)

467 Therefore

$$\eta_{m+1} = \eta_m + \delta \eta_m = 2\eta_m + \frac{\tau}{\max(\bar{N}_f)}$$
(A10)

The final term $\tau/\max(\bar{N}_f) = \eta_1$ becomes subdominant after a few terms, and we see that the η_m increase like a geometric series. Here we assumed that $\chi^2(\hat{\mathbf{n}}(\eta_m), \eta_m) \gg \chi^2(\hat{\mathbf{n}}(1), 1)$, which we expect it to be satisfied for our assumed $\eta_m \ll 1$. Since the final result is geometric series, only the last few η_m values fail to be much smaller than 1. If written in the form $\eta_{m+1} + \tau/\max(\bar{N}_f) = 2(\eta_m + \tau/\max(\bar{N}_f))$ it's easy to see that for $m \geq 1$, $\eta_m + \tau/\max(\bar{N}_f)$ forms a geometric series

$$\eta_m + \frac{\tau}{\max(\bar{N}_f)} = \left(\eta_1 + \frac{\tau}{\max(\bar{N}_f)}\right) 2^{m-1} = \frac{\tau}{\max(\bar{N}_f)} 2^m \tag{A11}$$

where we used $\eta_1 = \tau/\max(\bar{N}_f)$. Note that m = 0 and $\eta_0 = 0$ also satisfy this expression and we've got final expression and η_m

$$\eta_m = \min\left\{1, \ \frac{\tau}{\max(\bar{N}_f)}(2^m - 1)\right\} \tag{A12}$$

Here we need to truncate the series when $\eta_m > 1$.

REFERENCES

Dünner, R., Hasselfield, M., Marriage, T. A., et al. 2013,
 ApJ, 762, 10, doi: 10.1088/0004-637X/762/1/10
 Flenor, F. & Wandolt, B. D. 2013, A&A, 549, A111

484 Elsner, F., & Wandelt, B. D. 2013, A&A, 549, A111,

doi: 10.1051/0004-6361/201220586

486 Huffenberger, K. M., & Næss, S. K. 2018, The

487 Astrophysical Journal, 852, 92,

doi: 10.3847/1538-4357/aa9c7d

489 Janssen, M. A., & Gulkis, S. 1992, in NATO Advanced

490 Science Institutes (ASI) Series C, ed. M. Signore &

491 C. Dupraz, Vol. 359 (Springer), 391–408

492 Kodi Ramanah, D., Lavaux, G., & Wandelt, B. D. 2017,

493 MNRAS, 468, 1782, doi: 10.1093/mnras/stx527

⁴⁹⁴ Papež, J., Grigori, L., & Stompor, R. 2018, A&A, 620, A59,

doi: 10.1051/0004-6361/201832987

496 Tegmark, M. 1997, ApJL, 480, L87, doi: 10.1086/310631