Задание 2: Симулятор катастроф

На картинке изображены два варианта того как могут храниться данные в распределенной базе данных:

Α	В	C	D	E	F	
1 2 3 4 5	1 2 3 4 5	6 7 8 9 10	6 7 8 9 10	11 12 13 14 15	11 12 13 14 15	
A	В	C	D	E	F	

На схеме, буквами A, B, C, D, E, F обозначены сервера. Числами 1-15 обозначены фрагменты данных (чаще всего их называют shard). Где одинаковые числа означают одинаковый фрагмент данных хранится на этих серверах (такие копии называют репликами).

Предположим, что узел А вышел из строя первым. И посчитаем вероятность потери данных (когда ни на одном из оставшихся узлов не осталось реплики данных):

- 1. В первом случае выход из строя В означает потерю фрагментов 1-5, тогда как выход из строя любого из C, D, E, F не приводит к потере данных. Т.е. вероятность потери данных $\frac{1}{5}$ = 0.2
- 2. Во втором случае, при падении В мы теряем фрагмент 1, при падении С -> 7, также D -> 15, F -> 4. Т.е. вероятность потери данных $\frac{4}{5}$ = 0.8

Задача

Нужно создать симулятор выхода из строя серверов:

```
./simulate.py -n 10 --random
```

Симулятор создает 10 виртуальных серверов. Размещает в них 100 фрагментов данных случайным образом по две реплики каждого фрагмента (важно: не размещать 2 реплики на одном и том же сервере). Проверяет что происходит при падении каждых двух серверов. И отображает вероятность потери хотя бы одного фрагмента данных¹:

Killing 2 arbitrary servers results in data loss in 30% cases

И второй режим:

```
> ./simulate.py -n 6 --mirror
Killing 2 arbitrary servers results in data loss in 20% cases
```

Который размещает данные как на верхней части схемы: каждый узел имеет еще одну полную копию всех фрагментов.

Важно: обе симуляции должны отличаться только размещением фрагментов данных, остальная часть кода должна быть одинаковая².

¹ Цифра в выводе не верная, не стоит на нее ориентироваться

² Да мы знаем, что в случае --mirror можно аналитически рассчитать вероятность, но задание состоит не в этом.