Modeling canopy fluxes and optical properties using CliMA Land

Yujie WANG, 2022-Sep-01

Direct "observation"

Figure from FLUXNET

Figure from Zhang and Ye (2021) Sci Tot Env

CRUJRA-v1 ▲ SiB3 **JSBACH**

- Spatial coverage
- Temporal resolution

	MODIS	Primary Use		Band	Bandwidth ¹	Spectral Radiance ²			
			Land/Cloud/Aerosols Boundaries		620 - 670	21.8	128		
		boundaries		2	841 - 876	24.7	201		
		Land/Cloud/Aerosols Properties		3	459 - 479	35.3	243		
				4	545 - 565	29.0	228		
TROPOMI				5	1230 - 1250	5.4	74		
Band		andwidth im)	Resolution (m)	6	1628 - 1652	7.3	275		
Band 1 UV (UV)	0.27 to 0.3	,	28000 (68000)	7	2105 - 2155	1.0	110		
Band 2 UV (UV)	0.3 to 0.32		7000 (17000)						
Band 3 UV-VIS (VIS)	0.32 to 0.405		7000 (17000)	OCO-2 Band Band 1 02 A-band (NIR) Wavelet (µm) 0.758 0.772					
Band 4 UV-VIS (VIS)	0.405 to 0.495		7000 (17000)						
Band 5 NIR (NIR)	0.675 to 0.725		7000 (17000)						
Band 6 NIR (NIR)	0.725 to 0.775		3500 (8500)						
Band 7 SWIR (SWIR)	2.305 to 2.345		7000 (34000)	Band 2 weak CO2 (SWIR)				1.594 to 1.619	
Band 8 SWIR (SWIR)	2.345 to 2.385		7000 (34000)	Band 3 strong CO2 (SWIR) 2.04: 2.08:					

Tools designed to use these spectra

as well as ground-based measurements

Existing Land surface models are not

The CliMA Land Model

a highly modular solution

CliMA Land (v0.1)

- 1. Hydraulic traits such as vulnerability curve and maximum conductance impact water transport, and thus stomatal behavior.
- **2. Canopy traits** such as leaf area index and clumping index impact light penetration to lower canopy, and reflected light and solar-induced chlorophyll fluorescence (SIF) escaping from lower canopy.
- 3. Leaf angular distributions impact light scattering within the canopy.
- **4. Leaf biophysical traits** such as chlorophyll and carotenoid contents impact leaf level reflectance, transmittance, and SIF spectra.
- 5. Leaf physiological traits such as maximum carboxylation rate impact leaf gas exchange.
- 6. Environmental conditions such as soil moisture and atmospheric humidity impact plant's physiological responses.

11

Refactored CliMA Land (v0.2)

LeafOptics.jl

- Hyperspectral mode
- Broadband mode

CanopyRadiativeTransfer.jl

SoilHydraulics.jl

- Soil types
- Soil layers
- Soil albedo
 - o Broadband
 - Hyperspectral

PlantHydraulics.jl

Photosynthesis.jl

Photosynthesis

- Classic C3 modelClassic C4 model Use with an empirical fluorescence model

New C3 model (fluorescence model included)

Figures from Wang et al. (2020)

Empirical Models

- Ball-Berry
- Leuning
- Medlyn
- Gentine

Optimization Models

- Wolf-Anderegg-Pacala
- WAP MOD
- Sperry
- Eller
- Wang

More pending...

SoilPlantAirContinuum.jl

Scaling for global simulation

Global scale pattern of GPP

Global scale pattern of SIF₆₈₃

Global scale pattern of SIF₇₄₀

Global scale pattern of SIF₇₅₇

Global scale pattern of NDVI

Global scale pattern of NIRv

> 3000 Options

•	LeafOptics.jl	x2	
•	Photosynthesis.jl	х3	
•	SoilHydraulics.jĺ	x2	×
•	PlantHydraulics.jl	x3	
•	StomataModels.jl	x9	
	CanonyRatiativeTransfer il	x5	

Thanks

A "byproduct"

GriddingMachine.jl

https://github.com/CliMA/GriddingMachine.jl/issues/62

These datasets are supposed to be updated on annually basis:									
Dataset type	LABEL EXTRALABEL		ıx	JT	YEAR	VK	Reference	Change logs	
Gross primary productivity	GPP	MPI_RS	2X	1M, 8D	2001-2019	V1	Tramontana et al. (2016)	4,9	
	GPP	VPM	5X, 12X	8D	2000-2019	V2	Zhang et al. (2017)	1,4	
Leaf area index	LAI	MODIS	2X, 10X, 20X	1M, 8D	2000-2020	V1	Yuan et al. (2011)	1,4,9	
Latent heat flux	LE	MPI_RS	2X	1M, 8D	2001-2015	V1	Jung et al. (2019)	4,9	
Solar induced chlorophyll fluorescence	SIF	TROPOMI_683, TROPOMI_683DC	1X, 2X, 4X, 5X, 12X	1M, 8D	2018-2020	V2	Köhler et al. (2020)	1,8	
	SIF	TROPOMI_740, TROPOMI_740DC	1X, 2X, 4X, 5X, 12X	1M, 8D	2018-2021	V1	Köhler et al. (2018)	1,8	
	SIF	0C02_757, 0C02_757DC, 0C02_771, 0C02_771DC	5X	1M	2014-2020	V3	Sun et al. (2017)	1,8	

Dataset type	LABEL	EXTRALABEL		YEAR	vĸ	Reference	Change logs
Biomass	BIOMASS	ROOT	120X			Huang et al. (2021)	
	BIOMASS	SHOOT	120X			Santoro et al. (2021)	
Canopy height			20X			Simrad et al. (2021)	
						Boonman et al. (2020)	1,3,4,5
Clumping Index			240X			He et al. (2012)	1,3,4
							1,3,4,6
						Braghiere et al. (2019)	
Elevation	ELEV					Yamazaki et al. (2017)	
Land mask	LM		4X			ERA5	
Leaf nitrogen content	LNC					Butler et al. (2017)	
	LNC					Boonman et al. (2020)	1,3,4,5
Leaf phosphorus content	LPC					Butler et al. (2017)	
Plant functional type	PFT					Lawrence and Chase (2007)	1,4,7
Solar induced luminescence			20X			Köhler et al. (2021)	1,3,4
Specific leaf area	SLA					Butler et al. (2017)	
	SLA					Boonman et al. (2020)	1,3,4,5
Soil color						Lawrence and Chase (2007)	1,4,6
Soil hydraulic parameters	SOIL	SWCR					1,3,6
	SOIL	SWCR	120X			Dai et al. (2019)	
	SOIL	swcs	12X			Dai et al. (2019)	1,3,6
	SOIL	swcs	120X		V1	Dai et al. (2019)	1,3
	SOIL	VGA					1,3,6
	SOIL	VGA	120X			Dai et al. (2019)	1,3
	SOIL	VGN					1,3,5,6
	SOIL	VGN	120X		V1	Dai et al. (2019)	1,3,5
	SOIL	KSAT	100X			Gupta et al. (2021)	1,2,3,4,5
Surface area	SA					Lawrence and Chase (2007)	1,4,6
						Lawrence and Chase (2007)	
Tree density						Crowther et al. (2017)	1,3,4,6
			120X			Crowther et al. (2017)	1,3,4
Maximum carboxylation rate	VCMAX					Smith et al. (2019)	1,2,4
	VCMAX						
Wood density	WD					Boonman et al. (2020)	1,3,4,7

Julia: GriddingMachine.jl

https://github.com/CliMA/GriddingMachine.jl

```
# To install
using Pkg; Pkg.add("GriddingMachine");
# To use
using GriddingMachine.Collections;
file_path = query_collection("VCMAX_2X_1Y_V1");
```

```
% Matlab script
                                                                                           % Octave script
% Install the toolbox
                                                                                           % Install the package
url = 'https://github.com/Yujie-W/octave-griddingmachine/raw/main/GriddingMachine.mltbx';
                                                                                          pkg install "https://github.com/gnu-octave/pkg-json/archive/v1.5.0.tar.gz";
urlwrite(url, 'GriddingMachine.mltbx');
                                                                                           pkg install "https://github.com/Yujie-W/octave-griddingmachine/archive/v0.1.1.tar.gz";
matlab.addons.toolbox.installToolbox('GriddingMachine.mltbx');
                                                                                           % Use the package
delete('GriddingMachine.mltbx');
                                                                                           pkg load griddingmachine;
% Use the toolbox
                                                                                           update_GM();
update_GM();
                                                                                           art_name = 'VCMAX_2X_1Y_V1';
                                                                                           file_path = query_collection(art_name);
art_name = 'VCMAX_2X_1Y_V1';
                                                                                           [vcmax,error] = request_LUT(art_name, 35.1, 115.2);
file_path = query_collection(art_name);
[vcmax,error] = request_LUT(art_name, 35.1, 115.2);
                                                                                           [vcmax,error] = request_LUT(art_name, 35.1, 115.2, 'interpolation', true);
[vcmax,error] = request_LUT(art_name, 35.1, 115.2, 'interpolation', true);
                                                                                           # R script
                                                                                           # Install the package
                                                                                           library(devtools);
                                                                                           install_github("Yujie-W/r-griddingmachine");
# Python script
                                                                                           # Use the Package
from griddingmachine import update_GM, query_collection, request_LUT;
                                                                                           library("griddingmachine");
                                                                                           update_GM();
update_GM();
                                                                                           art_name <- "VCMAX_2X_1Y_V1";
art_name = "VCMAX_2X_1Y_V1";
file_path = query_collection(art_name);
                                                                                           file_path <- query_collection(art_name);
vcmax,error = request_LUT(art_name, 35.1, 115.2);
                                                                                           results <- request_LUT(art_name, 35.1, 115.2);
vcmax,error = request_LUT(art_name, 35.1, 115.2, interpolation = True);
                                                                                           results <- request_LUT(art_name, 35.1, 115.2, interpolation = TRUE);
                                                                                                                                                                              35
```