Import data

% all 12 months data is imported in a file datastore

```
raw_data= fileDatastore('D:\asus\15.Cody\Data Science\3. Predictive Modeling and Machine Learn:
raw data =
 FileDatastore with properties:
                      Files: {
                               ...\Taxi Data\Taxi Data\data\yellow_tripdata_2015-01.csv';
                             ' ...\Taxi Data\Taxi Data\data\yellow_tripdata_2015-02.csv';
                             ' ...\Taxi Data\Taxi Data\data\yellow_tripdata_2015-03.csv'
                              ... and 9 more
                    Folders: {
                               ...\3. Predictive Modeling and Machine Learning\Taxi Data\Taxi Data\data'
                UniformRead: 1
                   ReadMode: 'file'
                  BlockSize: Inf
                 PreviewFcn: @importTaxiDataWithoutCleaning
     SupportedOutputFormats: ["txt"
                                     "csv" "xlsx"
                                                         "xls"
                                                                                                 "jpg"
                                                                  "parquet"
                                                                               "parq"
                                                                                         "png"
                                                                                                          "jpeg"
                    ReadFcn: @importTaxiDataWithoutCleaning
   AlternateFileSystemRoots: {}
```

data=readall(raw_data)

data = 2922266×19 table

	Vendor	PickupTime	DropoffTime	Passengers	Distance	PickupLon
1	2	2015-01-15 14:	2015-01-15 14:	1	3	-73.9643
2	2	2015-01-15 14:	2015-01-15 14:	1	0.6700	-73.9709
3	2	2015-01-07 14:	2015-01-07 15:	1	0.9800	-73.9487
4	2	2015-01-07 14:	2015-01-07 15:	3	4.3900	-73.9887
5	1	2015-01-20 23:	2015-01-20 23:	1	3.9000	-73.9750
6	2	2015-01-18 19:	2015-01-18 20:	6	4	-73.9710
7	2	2015-01-01 01:	2015-01-01 01:	1	5.7800	-74.0078
8	2	2015-01-01 01:	2015-01-01 01:	4	0.8800	-73.9642
9	1	2015-01-28 10:	2015-01-28 10:	1	0.6000	-73.9664
10	1	2015-01-23 16:	2015-01-23 17:	1	9.3000	-74.0067
11	1	2015-01-07 20:	2015-01-07 20:	1	6.9000	-73.9901
12	1	2015-01-10 19:	2015-01-10 19:	1	1	-73.9785
13	1	2015-01-10 19:	2015-01-10 19:	1	1.1000	-74.0016
14	2	2015-01-25 17:	2015-01-25 17:	1	0	-73.9757

:

Exploratory Data Analysis (EDA)

summary(data)

```
Variables:
```

Vendor: 2922266×1 categorical

Values:

1 1.3876e+06 2 1.5347e+06

PickupTime: 2922266×1 datetime

Values:

Min 2015-01-01 00:00:43 Median 2015-06-20 18:21:55 Max 2015-12-31 23:59:59

DropoffTime: 2922266×1 datetime

Values:

Min 2015-01-01 00:04:02 Median 2015-06-20 18:35:14 Max 2016-01-01 22:10:58

Passengers: 2922266×1 double

Values:

Min 0 Median 1 Max 9

Distance: 2922266×1 double

Values:

Min 0 Median 1.71 Max 1.468e+07

PickupLon: 2922266×1 double

Values:

Min -171.8 Median -73.982 Max 0

PickupLat: 2922266×1 double

Values:

Min 0 Median 40.753 Max 69.703

RateCode: 2922266×1 categorical

Values:

 Standard
 2.8453e+06

 JFK
 61564

 Newark
 5046

 Nassau
 1051

 Negotiated
 9110

 Group
 28

 99
 127

HeldFlag: 2922266×1 categorical

Values:

N 2.898e+06 Y 24296

DropoffLon: 2922266×1 double

Values:

Min -171.8 Median -73.98 Max 0

DropoffLat: 2922266×1 double

Values:

Min 0 Median 40.753 Max 456.37

PayType: 2922266×1 categorical

Values:

Credit card 1.8323e+06
Cash 1.0764e+06
No charge 10130
Dispute 3413
Unknown 3

Fare: 2922266×1 double

Values:

Min -150 Median 9.5 Max 4.1027e+05

ExtraCharge: 2922266×1 double

Values:

Min -45.2 Median 0 Max 579.72

Tax: 2922266×1 double

Values:

Min -1.7 Median 0.5 Max 80.35

Tip: 2922266×1 double

Values:

Min -2.7 Median 1.16 Max 650

Tolls: 2922266×1 double

Values:

Min -15 Median 0 Max 911.08

ImpSurcharge: 2922266×1 double

Values:

Min -0.3 Median 0.3 Max 0.3

TotalCharge: 2922266×1 double

Values:

Min -150.8 Median 11.8 Max 4.1027e+05

histogram(data.Passengers)

Most of the rides were with single passengers.

histogram(data.PayType)

Adding taxi zones

```
data_2=addTaxiZones(data);
```

4 new feature variables are added using the shapefile information ("TaxiZones.shp" file).

Converting zones to taxis

Adding pick-up regions

```
% creating 2 new feature variables
data_2.pickup_region= data_2.PickupZone;
data_2.drop_region= data_2.DropoffZone;
```

```
% import the "Taxi Regions and Zones.csv" file as 'regions'
regions
```

regions = 19×6 table

1	"Alphabet City"	"Clinton East"	"Upper East Side North"
	LowerManhattan	Midtown	UpperEastSide

	LowerManhattan	Midtown	UpperEastSide
2	"Battery Park"	"Clinton West"	"Upper East Side South"
3	"Battery Park City"	"Midtown Center"	"Yorkville East"
4	"Chinatown"	"Midtown East"	"Yorkville West"
5	"East Village"	"Midtown North"	"Lenox Hill East"
6	"Financial District North"	"Midtown South"	"Lenox Hill West"
7	"Financial District South"	"Murray Hill"	"East Harlem South"
8	"Greenwich Village North"	"Penn Station/Madison Sq West"	""
9	"Greenwich Village South"	"Union Sq"	""
10	"Hudson Sq"	"UN/Turtle Bay South"	""
11	"Little Italy/NoLiTa"	"Times Sq/Theatre District"	""
12	"Lower East Side"	"Sutton Place/Turtle Bay North"	""
13	"Meatpacking/West Village	"Stuy Town/Peter Cooper Village"	""
14	"Seaport"	"West Chelsea/Hudson Yards"	""

:

```
% creating another copy
data_3=data_2;
```

```
% convert the variable to string
data_3.pickup_region=string(data_3.pickup_region);
```

```
% We want to group all these sub-regions into 6 overall region.
r1=replace(data_3.pickup_region, regions.LowerManhattan, "Lower Manhattan");
data_3.pickup_region=r1;
r2=replace(data_3.pickup_region, regions.Midtown, "Midtown");
data_3.pickup_region=r2;
```

```
r3=replace(data_3.pickup_region, regions.UpperEastSide(1:7), "Upper East Side");
data_3.pickup_region=r3;

r4=replace(data_3.pickup_region, regions.UpperWestSide(1:6), "Upper West Side");
data_3.pickup_region=r4;
```

```
data_3
```

data_3 = 2922266×25 table

	Vendor	PickupTime	DropoffTime	Passengers	Distance	PickupLon
1	2	2015-01-15 14:	2015-01-15 14:	1	3	-73.9643
2	2	2015-01-15 14:	2015-01-15 14:	1	0.6700	-73.9709
3	2	2015-01-07 14:	2015-01-07 15:	1	0.9800	-73.9487
4	2	2015-01-07 14:	2015-01-07 15:	3	4.3900	-73.9887
5	1	2015-01-20 23:	2015-01-20 23:	1	3.9000	-73.9750
6	2	2015-01-18 19:	2015-01-18 20:	6	4	-73.9710
7	2	2015-01-01 01:	2015-01-01 01:	1	5.7800	-74.0078
8	2	2015-01-01 01:	2015-01-01 01:	4	0.8800	-73.9642
9	1	2015-01-28 10:	2015-01-28 10:	1	0.6000	-73.9664
10	1	2015-01-23 16:	2015-01-23 17:	1	9.3000	-74.0067
11	1	2015-01-07 20:	2015-01-07 20:	1	6.9000	-73.9901
12	1	2015-01-10 19:	2015-01-10 19:	1	1	-73.9785
13	1	2015-01-10 19:	2015-01-10 19:	1	1.1000	-74.0016
14	2	2015-01-25 17:	2015-01-25 17:	1	0	-73.9757

data_4=data_3;
data_4.pickup_region=categorical(data_4.pickup_region);

summary(data_4.pickup_region)

Allerton/Pelham Gardens	13
Arrochar/Fort Wadsworth	2
Astoria	6167
Astoria Park	49
Auburndale	9
Baisley Park	414
Bath Beach	18
Bay Ridge	133
Bay Terrace/Fort Totten	7
Bayside	19
Bedford	1331
Bedford Park	42
Bellerose	12
Belmont	36
Bensonhurst East	31
Bensonhurst West	54
Bloomfield/Emerson Hill	3
Boerum Hill	3438
Borough Park	60
Breezy Point/Fort Tilde	1
Briarwood/Jamaica Hills	217
Brighton Beach	18
Bronx Park	11
Bronxdale	14
Brooklyn Heights	3509

Brooklyn Navy Yard	110
Brownsville	54
Bushwick North	886
Bushwick South	1689
	1089
Cambria Heights Canarsie	
	37
Carroll Gardens	2040
Central Harlem	8758
Central Harlem North	4022
Central Park	37173
Charleston/Tottenville	1
City Island	4
Claremont/Bathgate	38
Clinton Hill	1716
Co-Op City	9
Cobble Hill	1856
College Point	18
Columbia Street	214
Coney Island	23
Corona	108
Country Club	2
Crotona Park	2
Crotona Park East	13
Crown Heights North	1226
Crown Heights South	225
Cypress Hills	17
DUMBO/Vinegar Hill	1307
Douglaston	4
Downtown Brooklyn/Metro	4075
Dyker Heights	26
	132
East Concourse/Concours	_
East Elmhurst	487
East Flatbush/Farragut	53
East Flatbush/Remsen Vi	50
East Flushing	5
East Harlem North	9290
East New York	95
East New York/Pennsylva	21
East Tremont	27
East Williamsburg	2909
Eastchester	6
Elmhurst	1055
Elmhurst/Maspeth	485
Eltingville/Annadale/Pr	1
Erasmus	105
Far Rockaway	7
Flatbush/Ditmas Park	385
Flatlands	47
Flushing	188
Flushing Meadows-Corona	304
Fordham South	24
Forest Hills	583
Forest Park/Highland Park	7
Fort Greene	3103
Fresh Meadows	10
Glen Oaks	16
Glendale	35
Governor's Island/Ellis	2
Gowanus	708
Gravesend	10
Great Kills	10
Green-Wood Cemetery	9
Greenpoint	2653
Hamilton Heights	3361

Hammels/Arverne	7
Heartland Village/Todt	1
Highbridge	91
Highbridge Park	17
-	
Hillcrest/Pomonok	33
Hollis	23
Homecrest	40
Howard Beach	20
Hunts Point	23
Inwood	297
Inwood Hill Park	13
JFK Airport	62178
Jackson Heights	1855
Jamaica	248
Jamaica Bay	2
Jamaica Estates	30
Kensington	175
Kew Gardens	169
Kew Gardens Hills	61
Kingsbridge Heights	39
	70720
LaGuardia Airport	
Laurelton	2
Long Island City/Hunter…	4303
Long Island City/Queens	3242
Longwood	15
Lower Manhattan	554435
Lower Manhattan City	26156
Madison	21
Manhattan Beach	18
Manhattanville	2827
Marble Hill	21
Marine Park/Floyd Benne…	7
Marine Park/Mill Basin	23
Mariners Harbor	3
Maspeth	181
Melrose South	157
Middle Village	59
Midtown	1296074
	21
Midtown-Queens Midwood	
	66
Morningside Heights	14152
Morrisania/Melrose	72
Mott Haven/Port Morris	593
Mount Hope	55
New Dorp/Midland Beach	3
Newark Airport	160
North Corona	117
Norwood	33
Oakland Gardens	4
Ocean Hill	97
Ocean Parkway South	50
Old Astoria	2095
Ozone Park	27
Park Slope	4490
Parkchester	27
Pelham Bay	13
Pelham Parkway	20
_	
Port Richmond	1
Prospect Heights	1224
Prospect Park	192
Prospect-Lefferts Gardens	487
Queens Village	32
Queensboro Hill	37
Queensbridge/Ravenswood	1076
f=====================================	20,0

Randalls Island	193
Red Hook	291
Rego Park	325
Richmond Hill	108
Ridgewood	126
Rikers Island	3
Riverdale/North Riverda	29
Roosevelt Island	234
Rosedale	11
Saint Albans	9
Saint George/New Brighton	5
Saint Michaels Cemetery	258
Schuylerville/Edgewater	13
Sheepshead Bay	22
Soundview/Bruckner	31
Soundview/Castle Hill	41
South Beach/Dongan Hills	3
South Jamaica	174
South Ozone Park	174
South Williamsburg	375
Springfield Gardens North	18
Springfield Gardens South	149
. •	82
Spuyten Duyvil/Kingsbri	
Starrett City	2 2228
Steinway Stuyvesant Heights	
-	609
Sunnyside	5435
Sunset Park East Sunset Park West	34 426
University Heights/Morr	79
Upper East Side	422235
• •	
Upper West Side	265523
Van Cortlandt Park	8
Van Cortlandt Village	41
Van Nest/Morris Park	30
Washington Heights North	653
Washington Heights South	2711
West Brighton	1
West Concourse	390
West Farms/Bronx River	24
Westchester Village/Uni	35
Westerleigh	3
Whitestone	4
Willets Point	10
Williamsbridge/Olinville	20
Williamsburg (North Side)	6641
Williamsburg (South Side)	5352
Windsor Terrace 139	
Woodhaven 60	
Woodlawn/Wakefield 20	
Woodside 1897	
<undefined> 48799</undefined>	

So, there are many areas that did not fall into the 6 specified regions. We will take care of those later.

Adding Drop-off Regions

```
data_4.drop_region=string(data_4.drop_region);
r1=replace(data_4.drop_region, regions.LowerManhattan,"Lower Manhattan");
```

```
data_4.drop_region=r1;

r2=replace(data_4.drop_region, regions.Midtown, "Midtown");
data_4.drop_region=r2;

r3=replace(data_4.drop_region, regions.UpperEastSide(1:7),"Upper East Side");
data_4.drop_region=r3;

r4=replace(data_4.drop_region, regions.UpperWestSide(1:6),"Upper West Side");
data_4.drop_region=r4;

data_4.drop_region=categorical(data_4.drop_region)
```

data_4 = 2922266×25 table

Vendor PickupTime DropoffTime Passengers Distance PickupLon -73.9643 2 2015-01-15 14:... 2015-01-15 14:... 1 3 2 -73.9709 2015-01-15 14:... 2015-01-15 14:... 1 0.6700 3 2 2015-01-07 14:... 2015-01-07 15:... 1 0.9800 -73.9487 4 2 3 -73.9887 2015-01-07 14:... 2015-01-07 15:... 4.3900 5 1 3.9000 1 2015-01-20 23:... 2015-01-20 23:... -73.9750 6 6 2 2015-01-18 19:... 2015-01-18 20:... 4 -73.9710 7 2015-01-01 01:... 2015-01-01 01:... 1 5.7800 -74.0078 2 8 2015-01-01 01:... 2015-01-01 01:... 4 0.8800 -73.9642 9 1 1 2015-01-28 10:... 2015-01-28 10:... 0.6000 -73.9664 10 1 2015-01-23 16:... 2015-01-23 17:... 1 9.3000 -74.0067 11 1 2015-01-07 20:... 2015-01-07 20:... 1 6.9000 -73.9901 12 2015-01-10 19:... 2015-01-10 19:... 1 -73.9785 1 13 1 2015-01-10 19:... 2015-01-10 19:... 1 1.1000 -74.0016 14 2 2015-01-25 17:... 0 -73.9757 2015-01-25 17:... 1

summary(data_4.drop_region)

Allerton/Pelham Gardens	170
Arden Heights	16
Arrochar/Fort Wadsworth	63
Astoria	15209
Astoria Park	77
Auburndale	176
Baisley Park	837
Bath Beach	249
Bay Ridge	2546

Bay Terrace/Fort Totten	217
Bayside	388
Bedford	6192
Bedford Park	468
Bellerose	143
Belmont	296
Bensonhurst East	397
Bensonhurst West	610
Bloomfield/Emerson Hill	69
Boerum Hill	5455
Borough Park	681
Breezy Point/Fort Tilde	28
Briarwood/Jamaica Hills	803
Brighton Beach	278
Broad Channel	16
Bronx Park	128
Bronxdale	231
Brooklyn Heights	8264
Brooklyn Navy Yard	431
Brownsville	396
Bushwick North	3981
Bushwick South	6462
	178
Cambria Heights	
Canarsie	510
Carroll Gardens	3372
Central Harlem	17038
Central Harlem North	11821
Central Park	33415
Charleston/Tottenville	12
City Island	43
Claremont/Bathgate	266
Clinton Hill	6660
Co-Op City	210
Cobble Hill	2462
College Point	297
Columbia Street	972
Coney Island	234
Corona	1028
Country Club	62
Crotona Park	14
Crotona Park East	159
Crown Heights North	6454
Crown Heights South	1622
Cypress Hills	310
DUMBO/Vinegar Hill	4184
Douglaston	224
Downtown Brooklyn/Metro	5395
Dyker Heights	493
East Concourse/Concours	1112
East Elmhurst	1203
East Flatbush/Farragut	501
East Flatbush/Remsen Vi	438
East Flushing	172
East Harlem North	20357
East New York	681
East New York/Pennsylva	241
East Tremont	246
East Williamsburg	7665
Eastchester	124
Elmhurst	2853
Elmhurst/Maspeth	1462
Eltingville/Annadale/Pr	24
Erasmus	485
Far Rockaway	117
i di Nockaway	

Flatbush/Ditmas Park	2790
Flatlands	537
Flushing	1351
Flushing Meadows-Corona	560
Fordham South	181
Forest Hills	3673
Forest Park/Highland Park	55
Fort Greene	5485
Fresh Meadows	316
Freshkills Park	2
Glen Oaks	153
Glendale	412
Governor's Island/Ellis	1
Gowanus	1920
Gravesend	161
Great Kills	25
Green-Wood Cemetery	46
_	9947
Greenpoint	
Grymes Hill/Clifton	24
Hamilton Heights	7957
Hammels/Arverne	107
Heartland Village/Todt	59
Highbridge	562
Highbridge Park	149
Hillcrest/Pomonok	454
Hollis	121
Homecrest	380
Howard Beach	235
Hunts Point	310
Inwood	2237
Inwood Inwood Hill Park	
	190
JFK Airport	25608
Jackson Heights	5368
Jamaica	765
Jamaica Bay	3
Jamaica Estates	380
Kensington	968
Kew Gardens	703
Kew Gardens Hills	639
Kingsbridge Heights	343
LaGuardia Airport	35891
Laurelton	171
Long Island City/Hunter	9892
Long Island City/Queens	3846
Longwood	288
Lower Manhattan	496078
Lower Manhattan City	28694
Madison	345
Manhattan Beach	183
Manhattanville	4741
Marble Hill	152
Marine Park/Floyd Benne	19
Marine Park/Mill Basin	339
Mariners Harbor	39
Maspeth	1135
Melrose South	850
Middle Village	961
Midtown	1205864
Midtown-Queens	394
Midwood	611
Morningside Heights	21721
Morrisania/Melrose	430
Mott Haven/Port Morris	2065
Mount Hope	560

New Dorp/Midland Beach	35
Newark Airport	4649
North Corona	866
Norwood	401
Oakland Gardens	208
Oakwood	13
Ocean Hill	693
Ocean Parkway South	279
Old Astoria	4417
Ozone Park	222
Park Slope	11263
Parkchester	372
Pelham Bay	163
Pelham Bay Park	32
Pelham Parkway	365
Port Richmond	13
Prospect Heights	3550
Prospect Park	697
Prospect-Lefferts Gardens	2373
Queens Village	283
Queensboro Hill	239
Queensbridge/Ravenswood	1737
Randalls Island	470
Red Hook	1295
Rego Park	1175
Richmond Hill	600
Ridgewood	1952
Rikers Island	3
Riverdale/North Riverda	848
Rockaway Park	114
Roosevelt Island	1425
Rosedale	228
Rossville/Woodrow	18
Saint Albans	295
Saint George/New Brighton	66
Saint Michaels Cemetery	267
Schuylerville/Edgewater	337
Sheepshead Bay	355
Soundview/Bruckner	323
Soundview/Castle Hill	379
South Beach/Dongan Hills	55
South Jamaica	261
South Ozone Park	1059
South Williamsburg	1190
Springfield Gardens North	276
Springfield Gardens South	541
Spuyten Duyvil/Kingsbri	1094
Stapleton	50
Starrett City	85
Steinway	6889
Stuyvesant Heights	3921
Sunnyside	8326
Sunset Park East	693
Sunset Park West	2163
University Heights/Morr	525
Upper East Side	421602
Upper West Side	249292
Van Cortlandt Park	123
Van Cortlandt Village	510
Van Nest/Morris Park	301
Washington Heights North	5533
Washington Heights South	10589
West Brighton	35
West Concourse	1156

```
West Farms/Bronx River
                                 301
Westchester Village/Uni...
                                255
Westerleigh
                                  45
Whitestone
                                 339
Willets Point
                                  28
Williamsbridge/Olinville
                                 274
Williamsburg (North Side)
                               11766
Williamsburg (South Side)
                               10825
Windsor Terrace
                                1601
Woodhaven
                                 552
Woodlawn/Wakefield
                                 377
Woodside
                                3860
<undefined>
                               51915
```

Data Preprocessing

```
dp = data_4;

%invalid ratecode
dp2 = dp(dp.RateCode ~= "99", :);

%invalid location
dp3 = standardizeMissing(dp2, 0, "DataVariables", ["PickupLat", "PickupLon", "DropoftLat", "Dropoftp3 = rmmissing(dp3, "DataVariables", ["PickupLat", "PickupLon", "DropoftLat", "
```



```
prctile(dp4.Distance,[0,99])

ans = 1×2
     0   18.6000

dp5=dp4(dp4.Distance>0,:);
```

dp5=dp4(dp4.Distance>0,:);
prctile(dp5.Distance,[0,99])

ans = 1×2 0.0100 18.6000

prctile(dp5.Distance,[0,99.9])

ans = 1×2 0.0100 24.5300

prctile(dp5.Distance,[0,99.99])

ans = 1×2 0.0100 40.5000

dp6=rmoutliers(dp5,"percentiles",[0,99.99],"DataVariables","Distance")

 $dp6 = 2858743 \times 25 table$

1	2	2015-01-15 14:	2015-01-15 14:	1	3	-73.9643
	Vendor	PickupTime	DropoffTime	Passengers	Distance	PickupLon

	Vendor	PickupTime	DropoffTime	Passengers	Distance	PickupLon
2	2	2015-01-15 14:	2015-01-15 14:	1	0.6700	-73.9709
3	2	2015-01-07 14:	2015-01-07 15:	1	0.9800	-73.9487
4	2	2015-01-07 14:	2015-01-07 15:	3	4.3900	-73.9887
5	1	2015-01-20 23:	2015-01-20 23:	1	3.9000	-73.9750
6	2	2015-01-18 19:	2015-01-18 20:	6	4	-73.9710
7	2	2015-01-01 01:	2015-01-01 01:	1	5.7800	-74.0078
8	2	2015-01-01 01:	2015-01-01 01:	4	0.8800	-73.9642
9	1	2015-01-28 10:	2015-01-28 10:	1	0.6000	-73.9664
10	1	2015-01-23 16:	2015-01-23 17:	1	9.3000	-74.0067
11	1	2015-01-07 20:	2015-01-07 20:	1	6.9000	-73.9901
12	1	2015-01-10 19:	2015-01-10 19:	1	1	-73.9785
13	1	2015-01-10 19:	2015-01-10 19:	1	1.1000	-74.0016
14	2	2015-01-23 00:	2015-01-23 00:	1	6.0300	-73.9852

histogram(dp6.Distance)

% fare

```
prctile(dp6.Fare,[0,99])
ans = 1 \times 2
  -118
        52
sum(dp6.Fare<=0)</pre>
ans = 1189
sum(dp6.Fare<=2.5)</pre>
ans = 5876
dp7=dp6(dp6.Fare>0,:);
prctile(dp7.Fare,[0,99.9])
ans = 1 \times 2
    0.0100
            76.0000
prctile(dp7.Fare,[0,99.99])
ans = 1 \times 2
    0.0100 140.0000
sum(dp7.Fare>140)
ans = 270
histogram(dp7.Fare)
```


dp8=rmoutliers(dp7,"percentiles",[0,99.99],"DataVariables","Fare")

dp8 = 2857284×25 table

	Vendor	PickupTime	DropoffTime	Passengers	Distance	PickupLon
1	2	2015-01-15 14:	2015-01-15 14:	1	3	-73.9643
2	2	2015-01-15 14:	2015-01-15 14:	1	0.6700	-73.9709
3	2	2015-01-07 14:	2015-01-07 15:	1	0.9800	-73.9487
4	2	2015-01-07 14:	2015-01-07 15:	3	4.3900	-73.9887
5	1	2015-01-20 23:	2015-01-20 23:	1	3.9000	-73.9750
6	2	2015-01-18 19:	2015-01-18 20:	6	4	-73.9710
7	2	2015-01-01 01:	2015-01-01 01:	1	5.7800	-74.0078
8	2	2015-01-01 01:	2015-01-01 01:	4	0.8800	-73.9642
9	1	2015-01-28 10:	2015-01-28 10:	1	0.6000	-73.9664
10	1	2015-01-23 16:	2015-01-23 17:	1	9.3000	-74.0067
11	1	2015-01-07 20:	2015-01-07 20:	1	6.9000	-73.9901
12	1	2015-01-10 19:	2015-01-10 19:	1	1	-73.9785
13	1	2015-01-10 19:	2015-01-10 19:	1	1.1000	-74.0016
14	2	2015-01-23 00:	2015-01-23 00:	1	6.0300	-73.9852

:

```
boxplot(dp8.Fare)
```



```
dp9=dp8(dp8.Fare>=2.5,:);
```

```
% extra charge
dp9=dp9(dp9.ExtraCharge>=0,:);
dp9=dp9(dp9.Tax>=0,:);
dp9=dp9(dp9.Tip>=0,:);
dp9=dp9(dp9.Tolls>=0,:);
dp9=dp9(dp9.ImpSurcharge>=0,:);
dp10=dp9(dp9.TotalCharge>=0,:);
boxplot(dp10.Tax)
```


histogram(dp10.Tax)


```
dp11 = dp10(abs(dp10.ImpSurcharge-0.3) < 0.01, :);
dp11 = dp11(abs(dp11.Tax-0.5) < 0.01, :);
dp11 = dp11(abs(dp11.Fare + dp11.ExtraCharge + dp11.Tax + dp11.Tip + dp11.Tolls + dp11.ImpSurch
boxplot(dp11.Tax)</pre>
```



```
% fare distance ratio
x=dp11.Fare./dp11.Distance;
prctile(x,[0,99])

ans = 1×2
     0.0712   15.1515

prctile(x,[0,99.99])

ans = 1×2
     0.0712   520.0000

sum(x>520)

ans = 269

dp12=dp11(x<=520,:);

df = addDuration(dp12); % minutes</pre>
```

df = addAveSpeed(df); % mph

boxplot(df.Duration)

histogram(df.Duration)

prctile(df.Duration,[0,99])

ans = 1×2 -985.5000 56.2667

prctile(df.Duration,[0,99.5])

ans = 1×2 -985.5000 66.8667

sum(df.Duration<=0)</pre>

ans = 139

df2=df(df.Duration>=1 & df.Duration<120,:)</pre>

 $df2 = 2824737 \times 27 \text{ table}$

	Vendor	PickupTime	DropoffTime	Passengers	Distance	PickupLon
1	2	2015-01-15 14:	2015-01-15 14:	1	3	-73.9643
2	2	2015-01-15 14:	2015-01-15 14:	1	0.6700	-73.9709
3	2	2015-01-07 14:	2015-01-07 15:	1	0.9800	-73.9487
4	2	2015-01-07 14:	2015-01-07 15:	3	4.3900	-73.9887
5	1	2015-01-20 23:	2015-01-20 23:	1	3.9000	-73.9750

25

	Vendor	PickupTime	DropoffTime	Passengers	Distance	PickupLon
6	2	2015-01-18 19:	2015-01-18 20:	6	4	-73.9710
7	2	2015-01-01 01:	2015-01-01 01:	1	5.7800	-74.0078
8	2	2015-01-01 01:	2015-01-01 01:	4	0.8800	-73.9642
9	1	2015-01-28 10:	2015-01-28 10:	1	0.6000	-73.9664
10	1	2015-01-23 16:	2015-01-23 17:	1	9.3000	-74.0067
11	1	2015-01-07 20:	2015-01-07 20:	1	6.9000	-73.9901
12	1	2015-01-10 19:	2015-01-10 19:	1	1	-73.9785
13	1	2015-01-10 19:	2015-01-10 19:	1	1.1000	-74.0016
14	2	2015-01-23 00:	2015-01-23 00:	1	6.0300	-73.9852

df2=df2(df2.AveSpeed>=0.1 & df2.AveSpeed<100,:);
df2=df2(df2.TotalCharge>=0.5 & df2.TotalCharge<=120,:);
df3=df2(df2.Tolls<=20,:);
timeofday(df3.PickupTime);
hour(df3.PickupTime(1:6));
%writetable(df3,'prepared_dataset_01.csv')</pre>

```
% Only keep trips that begin and end inside the region of interest.

lat = [40.5612 40.9637];
lon = [-74.1923 -73.5982];

inROI = inpolygon(df3.PickupLat,df3.PickupLon, lat([1 2 2 1]),lon([1 1 2 2])) ...
    & inpolygon(df3.DropoffLat,df3.DropoffLon, lat([1 2 2 1]),lon([1 1 2 2]));

df5 = df3(inROI,:);
```

Hourly data

df6 = 2823681×16 table

```
df5.hourly_data= dateshift(df5.PickupTime, "start", "hour");

df5.hourly_data_dropoff= dateshift(df5.DropoffTime, "start", "hour");

df6=df5(:,["PickupTime", "DropoffTime", "Distance", "Fare", "ExtraCharge", "Tax", "Tip", "Tolls", "Imp!
```

. . .

	PickupTime	DropoffTime	Distance	Fare	ExtraCharge	Tax
1	2015-01-15 14:	2015-01-15 14:	3	12	0	0.5000
2	2015-01-15 14:	2015-01-15 14:	0.6700	5	0	0.5000
3	2015-01-07 14:	2015-01-07 15:	0.9800	7	0	0.5000
4	2015-01-07 14:	2015-01-07 15:	4.3900	15.5000	0	0.5000
5	2015-01-20 23:	2015-01-20 23:	3.9000	15	0.5000	0.5000
6	2015-01-18 19:	2015-01-18 20:	4	16	0	0.5000
7	2015-01-01 01:	2015-01-01 01:	5.7800	23	0.5000	0.5000
8	2015-01-01 01:	2015-01-01 01:	0.8800	6	0.5000	0.5000
9	2015-01-28 10:	2015-01-28 10:	0.6000	5.5000	0	0.5000
10	2015-01-23 16:	2015-01-23 17:	9.3000	39	1	0.5000
11	2015-01-07 20:	2015-01-07 20:	6.9000	23	0.5000	0.5000
12	2015-01-10 19:	2015-01-10 19:	1	6	0	0.5000
13	2015-01-10 19:	2015-01-10 19:	1.1000	8	0	0.5000
14	2015-01-23 00:	2015-01-23 00:	6.0300	20	0.5000	0.5000

%writetable(df6,'short_dataset.csv')

Removing Other Regions

```
ds=df6;
regions=["Lower Manhattan","Midtown","Upper East Side","Upper West Side","JFK Airport","LaGuard
ds2=ds((ds.pickup_region==regions(1) | ds.pickup_region==regions(2) | ds.pickup_region==regions
unique(ds2.pickup_region)
```

ans = 6×1 categorical
JFK Airport
LaGuardia Airport
Lower Manhattan
Midtown
Upper East Side
Upper West Side

```
ds3=ds2((ds2.drop_region==regions(1) | ds2.drop_region==regions(2) | ds2.drop_region==regions(2)
```

ds3 = 2292216×16 table

. . .

	PickupTime	DropoffTime	Distance	Fare	ExtraCharge	Tax
1	2015-01-15 14:	2015-01-15 14:	0.6700	5	0	0.5000
2	2015-01-07 14:	2015-01-07 15:	0.9800	7	0	0.5000
3	2015-01-20 23:	2015-01-20 23:	3.9000	15	0.5000	0.5000
4	2015-01-18 19:	2015-01-18 20:	4	16	0	0.5000
5	2015-01-01 01:	2015-01-01 01:	0.8800	6	0.5000	0.5000
6	2015-01-28 10:	2015-01-28 10:	0.6000	5.5000	0	0.5000
7	2015-01-10 19:	2015-01-10 19:	1	6	0	0.5000
8	2015-01-10 19:	2015-01-10 19:	1.1000	8	0	0.5000
9	2015-01-23 17:	2015-01-23 18:	8.2000	34	1	0.5000
10	2015-01-17 19:	2015-01-17 19:	0.8900	5.5000	0	0.5000
11	2015-01-17 19:	2015-01-17 19:	2.5700	12.5000	0	0.5000
12	2015-01-17 23:	2015-01-17 23:	0.5000	5	0.5000	0.5000
13	2015-01-28 20:	2015-01-28 20:	0.8000	5.5000	0.5000	0.5000
14	2015-01-07 21:	2015-01-07 21:	0.5000	4.5000	0.5000	0.5000

unique(ds3.drop_region)

ans = 6×1 categorical
JFK Airport
LaGuardia Airport
Lower Manhattan
Midtown
Upper East Side
Upper West Side

Grouping

gp=groupsummary(ds3,["pickup_region","hourly_data"],"mean",["Duration","Distance","Fare"])

 $gp = 48734 \times 6$ table

	pickup_region	hourly_data	GroupCount	mean_Duration	mean_Distance
1	JFK Airport	2015-01-01 05:	1	36	19.9300
2	JFK Airport	2015-01-01 07:	1	23.7333	19.4700
3	JFK Airport	2015-01-01 09:	1	23.7000	17.2700
4	JFK Airport	2015-01-01 11:	1	36.3000	19.2300
5	JFK Airport	2015-01-01 12:	1	24.3000	16.9800
6	JFK Airport	2015-01-01 13:	2	23.9750	18.1550

	pickup_region	hourly_data	GroupCount	mean_Duration	mean_Distance
7	JFK Airport	2015-01-01 14:	2	35.5750	20.1100
8	JFK Airport	2015-01-01 15:	2	37.7667	19.1750
9	JFK Airport	2015-01-01 16:	4	35.8792	18.2450
10	JFK Airport	2015-01-01 17:	2	28.4833	19.2050
11	JFK Airport	2015-01-01 18:	2	30.4500	18.2300
12	JFK Airport	2015-01-01 19:	1	31.3833	17.8200
13	JFK Airport	2015-01-01 20:	3	30.4944	18.4100
14	JFK Airport	2015-01-01 21:	3	32.2778	19.3700

gp.Properties.VariableNames(3)="pickup_count"

 $gp = 48734 \times 6$ table

	pickup_region	hourly_data	pickup_count	mean_Duration	mean_Distance
1	JFK Airport	2015-01-01 05:	1	36	19.9300
2	JFK Airport	2015-01-01 07:	1	23.7333	19.4700
3	JFK Airport	2015-01-01 09:	1	23.7000	17.2700
4	JFK Airport	2015-01-01 11:	1	36.3000	19.2300
5	JFK Airport	2015-01-01 12:	1	24.3000	16.9800
6	JFK Airport	2015-01-01 13:	2	23.9750	18.1550
7	JFK Airport	2015-01-01 14:	2	35.5750	20.1100
8	JFK Airport	2015-01-01 15:	2	37.7667	19.1750
9	JFK Airport	2015-01-01 16:	4	35.8792	18.2450
10	JFK Airport	2015-01-01 17:	2	28.4833	19.2050
11	JFK Airport	2015-01-01 18:	2	30.4500	18.2300
12	JFK Airport	2015-01-01 19:	1	31.3833	17.8200
13	JFK Airport	2015-01-01 20:	3	30.4944	18.4100
14	JFK Airport	2015-01-01 21:	3	32.2778	19.3700

gd=groupsummary(ds3,["drop_region","hourly_data_dropoff"],"mean",["Duration","Distance","Fare"]

 $gd = 47468 \times 6$ table

1	JFK Airport	2015-01-01 04:00:00	1	31.2000
	drop_region	hourly_data_dropoff	GroupCount	mean_Duration

	drop_region	hourly_data_dropoff	GroupCount	mean_Duration
2	JFK Airport	2015-01-01 06:00:00	1	23.9500
3	JFK Airport	2015-01-01 07:00:00	2	22.1333
4	JFK Airport	2015-01-01 08:00:00	1	29.0833
5	JFK Airport	2015-01-01 09:00:00	3	25.1167
6	JFK Airport	2015-01-01 10:00:00	2	28.8500
7	JFK Airport	2015-01-01 11:00:00	5	29.3700
8	JFK Airport	2015-01-01 13:00:00	3	30.8333
9	JFK Airport	2015-01-01 15:00:00	2	32
10	JFK Airport	2015-01-01 16:00:00	1	30.1833
11	JFK Airport	2015-01-01 17:00:00	3	33.4278
12	JFK Airport	2015-01-01 18:00:00	1	22.8333
13	JFK Airport	2015-01-01 19:00:00	2	24.7917
14	JFK Airport	2015-01-01 20:00:00	1	33.5833

gd.Properties.VariableNames(3)="drop_count"

gd = 47468×6 table

٠.

	drop_region	hourly_data_dropoff	drop_count	mean_Duration
1	JFK Airport	2015-01-01 04:00:00	1	31.2000
2	JFK Airport	2015-01-01 06:00:00	1	23.9500
3	JFK Airport	2015-01-01 07:00:00	2	22.1333
4	JFK Airport	2015-01-01 08:00:00	1	29.0833
5	JFK Airport	2015-01-01 09:00:00	3	25.1167
6	JFK Airport	2015-01-01 10:00:00	2	28.8500
7	JFK Airport	2015-01-01 11:00:00	5	29.3700
8	JFK Airport	2015-01-01 13:00:00	3	30.8333
9	JFK Airport	2015-01-01 15:00:00	2	32
10	JFK Airport	2015-01-01 16:00:00	1	30.1833
11	JFK Airport	2015-01-01 17:00:00	3	33.4278
12	JFK Airport	2015-01-01 18:00:00	1	22.8333
13	JFK Airport	2015-01-01 19:00:00	2	24.7917
14	JFK Airport	2015-01-01 20:00:00	1	33.5833

:

sum(ismissing(gd))

ans = 1×6 0 0 0 0 0 0

sum(ismissing(gp))

ans = 1×6

0 0 0 0 0 0

gp.Properties.VariableNames(1)="region"

gp = 48734×6 table

region hourly_data pickup_count mean_Duration mean_Distance JFK Airport 2015-01-01 05:... 1 36 19.9300 2015-01-01 07:... 1 23.7333 19.4700 JFK Airport 3 JFK Airport 2015-01-01 09:... 1 23.7000 17.2700 4 JFK Airport 1 36.3000 19.2300 2015-01-01 11:... 5 2015-01-01 12:... 1 24.3000 16.9800 JFK Airport 6 JFK Airport 2015-01-01 13:... 2 23.9750 18.1550 2 20.1100 JFK Airport 2015-01-01 14:... 35.5750 8 2 37.7667 JFK Airport 2015-01-01 15:... 19.1750 9 JFK Airport 2015-01-01 16:... 4 35.8792 18.2450 10 2 28.4833 19.2050 JFK Airport 2015-01-01 17:... 11 JFK Airport 2015-01-01 18:... 2 30.4500 18.2300 12 1 JFK Airport 2015-01-01 19:... 31.3833 17.8200 13 2015-01-01 20:... 3 JFK Airport 30.4944 18.4100 14 JFK Airport 2015-01-01 21:... 3 32.2778 19.3700

gd.Properties.VariableNames(1)="region"

 $gd = 47468 \times 6$ table

region hourly_data_dropoff drop_count mean_Duration mean_Distance 1 JFK Airport 2015-01-01 04:00:00 31.2000 18.4100 2 JFK Airport 2015-01-01 06:00:00 1 23.9500 16.3800 3 JFK Airport 2015-01-01 07:00:00 2 22.1333 16.8150 1 JFK Airport 2015-01-01 08:00:00 29.0833 18.6500 5 JFK Airport 2015-01-01 09:00:00 3 25.1167 17.9633

	region	hourly_data_dropoff	drop_count	mean_Duration	mean_Distance
6	JFK Airport	2015-01-01 10:00:00	2	28.8500	17.8450
7	JFK Airport	2015-01-01 11:00:00	5	29.3700	18.2240
8	JFK Airport	2015-01-01 13:00:00	3	30.8333	19.0967
9	JFK Airport	2015-01-01 15:00:00	2	32	15.8350
10	JFK Airport	2015-01-01 16:00:00	1	30.1833	19.2500
11	JFK Airport	2015-01-01 17:00:00	3	33.4278	19.2667
12	JFK Airport	2015-01-01 18:00:00	1	22.8333	16.0600
13	JFK Airport	2015-01-01 19:00:00	2	24.7917	16.4550
14	JFK Airport	2015-01-01 20:00:00	1	33.5833	17

gd.Properties.VariableNames(2)="hourly_data"

gd = 47468×6 table

. . .

	region	hourly_data	drop_count	mean_Duration	mean_Distance
1	JFK Airport	2015-01-01 04:	1	31.2000	18.4100
2	JFK Airport	2015-01-01 06:	1	23.9500	16.3800
3	JFK Airport	2015-01-01 07:	2	22.1333	16.8150
4	JFK Airport	2015-01-01 08:	1	29.0833	18.6500
5	JFK Airport	2015-01-01 09:	3	25.1167	17.9633
6	JFK Airport	2015-01-01 10:	2	28.8500	17.8450
7	JFK Airport	2015-01-01 11:	5	29.3700	18.2240
8	JFK Airport	2015-01-01 13:	3	30.8333	19.0967
9	JFK Airport	2015-01-01 15:	2	32	15.8350
10	JFK Airport	2015-01-01 16:	1	30.1833	19.2500
11	JFK Airport	2015-01-01 17:	3	33.4278	19.2667
12	JFK Airport	2015-01-01 18:	1	22.8333	16.0600
13	JFK Airport	2015-01-01 19:	2	24.7917	16.4550
14	JFK Airport	2015-01-01 20:	1	33.5833	17

:

Joining

```
dj= outerjoin(gp,gd,"Keys",["region","hourly_data"]);
```

```
dj_2= outerjoin(gp,gd,"Keys",["region","hourly_data"],"MergeKeys",true);

%Data Missing
sum(ismissing(dj_2))
```

```
ans = 1 \times 10
0 0 1902 1902 1902 1902 ...
```

```
%dj_3=fillmissing(dj_2,"constant",0)
dj_3=fillmissing(dj_2,"constant",0,'DataVariables',@isnumeric);
%Combining
dj_3.netpickups= dj_3.pickup_count- dj_3.drop_count;
dj_3.avg_duration=(dj_3.mean_Duration_gd + dj_3.mean_Duration_gp)/2;
dj_3.avg_distance=(dj_3.mean_Distance_gd + dj_3.mean_Distance_gp)/2;
dj_3.avg_fare=(dj_3.mean_Fare_gd + dj_3.mean_Fare_gp)/2;
dj_3
```

 $dj_3 = 50636 \times 14 \text{ table}$

	region	hourly_data	pickup_count	mean_Duration_gp	mean_Distance_gp
1	JFK Airport	2015-01-01 04:	0	0	0
2	JFK Airport	2015-01-01 05:	1	36	19.9300
3	JFK Airport	2015-01-01 06:	0	0	0
4	JFK Airport	2015-01-01 07:	1	23.7333	19.4700
5	JFK Airport	2015-01-01 08:	0	0	0
6	JFK Airport	2015-01-01 09:	1	23.7000	17.2700
7	JFK Airport	2015-01-01 10:	0	0	0
8	JFK Airport	2015-01-01 11:	1	36.3000	19.2300
9	JFK Airport	2015-01-01 12:	1	24.3000	16.9800
10	JFK Airport	2015-01-01 13:	2	23.9750	18.1550
11	JFK Airport	2015-01-01 14:	2	35.5750	20.1100
12	JFK Airport	2015-01-01 15:	2	37.7667	19.1750
13	JFK Airport	2015-01-01 16:	4	35.8792	18.2450
14	JFK Airport	2015-01-01 17:	2	28.4833	19.2050

:

Train-test split

```
dj_4=dj_3;
rng(1)
partition=cvpartition(height(dj_4),"HoldOut",0.2)

partition =
Hold-out cross validation partition
NumObservations: 50636
NumTestSets: 1
    TrainSize: 40509
    TestSize: 10127

train_idx=training(partition);
test_idx=test(partition);
train_data= dj_4(train_idx,:);
test_data = dj_4 (test_idx,:);
```

Generating Response Variable

```
train_data.demand= discretize(train_data.netpickups,[-inf,0,15,inf],"categorical",["low","medic
```

train_data = 40509×15 table

. . .

	region	hourly_data	pickup_count	mean_Duration_gp	mean_Distance_gp
1	JFK Airport	2015-01-01 06:	0	0	0
2	JFK Airport	2015-01-01 08:	0	0	0
3	JFK Airport	2015-01-01 09:	1	23.7000	17.2700
4	JFK Airport	2015-01-01 13:	2	23.9750	18.1550
5	JFK Airport	2015-01-01 14:	2	35.5750	20.1100
6	JFK Airport	2015-01-01 15:	2	37.7667	19.1750
7	JFK Airport	2015-01-01 16:	4	35.8792	18.2450
8	JFK Airport	2015-01-01 17:	2	28.4833	19.2050
9	JFK Airport	2015-01-01 18:	2	30.4500	18.2300
10	JFK Airport	2015-01-01 19:	1	31.3833	17.8200
11	JFK Airport	2015-01-01 20:	3	30.4944	18.4100
12	JFK Airport	2015-01-01 21:	3	32.2778	19.3700
13	JFK Airport	2015-01-01 22:	5	29.8567	18.2060
14	JFK Airport	2015-01-02 00:	2	25.1583	17.7750

:

```
test_data.demand= discretize(test_data.netpickups,[-inf,0,15,inf],"categorical",["low","medium"
```

	region	hourly_data	pickup_count	mean_Duration_gp	mean_Distance_gp
1	JFK Airport	2015-01-01 04:	0	0	0
2	JFK Airport	2015-01-01 05:	1	36	19.9300
3	JFK Airport	2015-01-01 07:	1	23.7333	19.4700
4	JFK Airport	2015-01-01 10:	0	0	0
5	JFK Airport	2015-01-01 11:	1	36.3000	19.2300
6	JFK Airport	2015-01-01 12:	1	24.3000	16.9800
7	JFK Airport	2015-01-01 23:	4	25.4833	18.1775
8	JFK Airport	2015-01-02 03:	0	0	0
9	JFK Airport	2015-01-02 14:	5	44.9400	18.8100
10	JFK Airport	2015-01-02 19:	6	35.4861	18.8000
11	JFK Airport	2015-01-03 01:	1	20.0667	18.9000
12	JFK Airport	2015-01-03 06:	2	29.7833	17.4300
13	JFK Airport	2015-01-03 08:	1	29.8667	19.2900
14	JFK Airport	2015-01-03 17:	1	50.9000	19.0600

Summary Statistics

groupsummary(train_data,"demand")

ans = 3×2 table

	demand	GroupCount
1	low	18037
2	medium	19236
3	high	3236

groupsummary(test_data,"demand")

ans = 3×2 table

	demand	GroupCount	
1	low	4414	
2	medium	4916	
3	high	797	

groupsummary(train_data,["demand","region"])

ans = 17×3 table

	demand	region	GroupCount
1	low	JFK Airport	1795
2	low	LaGuardia Airport	2173
3	low	Lower Manhattan	3348
4	low	Midtown	3217
5	low	Upper East Side	3963
6	low	Upper West Side	3541
7	medium	JFK Airport	4536
8	medium	LaGuardia Airport	3944
9	medium	Lower Manhattan	3061
10	medium	Midtown	2476
11	medium	Upper East Side	2239
12	medium	Upper West Side	2980
13	high	LaGuardia Airport	79
14	high	Lower Manhattan	588

:

groupsummary(test_data,["demand","region"])

ans = 17×3 table

	demand	region	GroupCount
1	low	JFK Airport	487
2	low	LaGuardia Airport	499
3	low	Lower Manhattan	816
4	low	Midtown	792
5	low	Upper East Side	944
6	low	Upper West Side	876
7	medium	JFK Airport	1144
8	medium	LaGuardia Airport	965
9	medium	Lower Manhattan	802
10	medium	Midtown	665
11	medium	Upper East Side	597
12	medium	Upper West Side	743
13	high	LaGuardia Airport	12
14	high	Lower Manhattan	139

:

Feature Creation

```
df=dj_4;
[~,df.DayOfWeek] = weekday(df.hourly_data,"long")
```

 $df = 50636 \times 15 \text{ table}$

	region	hourly_data	pickup_count	mean_Duration_gp	mean_Distance_gp
1	JFK Airport	2015-01-01 04:	0	0	0
2	JFK Airport	2015-01-01 05:	1	36	19.9300
3	JFK Airport	2015-01-01 06:	0	0	0
4	JFK Airport	2015-01-01 07:	1	23.7333	19.4700
5	JFK Airport	2015-01-01 08:	0	0	0
6	JFK Airport	2015-01-01 09:	1	23.7000	17.2700
7	JFK Airport	2015-01-01 10:	0	0	0
8	JFK Airport	2015-01-01 11:	1	36.3000	19.2300
9	JFK Airport	2015-01-01 12:	1	24.3000	16.9800
10	JFK Airport	2015-01-01 13:	2	23.9750	18.1550
11	JFK Airport	2015-01-01 14:	2	35.5750	20.1100
12	JFK Airport	2015-01-01 15:	2	37.7667	19.1750
13	JFK Airport	2015-01-01 16:	4	35.8792	18.2450
14	JFK Airport	2015-01-01 17:	2	28.4833	19.2050

```
df.DayOfWeek = categorical(cellstr(df.DayOfWeek));
x=df.hourly_data(26)
```

x = datetime 2015-01-02 06:00:00

```
x2=datevec(x)

x2 = 1×6

2015 1 2 6 0 0
```

```
x3=datenum(x2(1:3))
```

x3 = 735966

day = x3 - datenum(x2(1), 1,0)

day = 2

df=adddayofyear(df)

df = 50636×16 table

	region	hourly_data	pickup_count	mean_Duration_gp	mean_Distance_gp
1	JFK Airport	2015-01-01 04:	0	0	0
2	JFK Airport	2015-01-01 05:	1	36	19.9300
3	JFK Airport	2015-01-01 06:	0	0	0
4	JFK Airport	2015-01-01 07:	1	23.7333	19.4700
5	JFK Airport	2015-01-01 08:	0	0	0
6	JFK Airport	2015-01-01 09:	1	23.7000	17.2700
7	JFK Airport	2015-01-01 10:	0	0	0
8	JFK Airport	2015-01-01 11:	1	36.3000	19.2300
9	JFK Airport	2015-01-01 12:	1	24.3000	16.9800
10	JFK Airport	2015-01-01 13:	2	23.9750	18.1550
11	JFK Airport	2015-01-01 14:	2	35.5750	20.1100
12	JFK Airport	2015-01-01 15:	2	37.7667	19.1750
13	JFK Airport	2015-01-01 16:	4	35.8792	18.2450
14	JFK Airport	2015-01-01 17:	2	28.4833	19.2050

÷

df.demand= discretize(df.netpickups,[-inf,0,15,inf],"categorical",["low","medium","high"])

df = 50636×17 table

	region	hourly_data	pickup_count	mean_Duration_gp	mean_Distance_gp
1	JFK Airport	2015-01-01 04:	0	0	0
2	JFK Airport	2015-01-01 05:	1	36	19.9300
3	JFK Airport	2015-01-01 06:	0	0	0
4	JFK Airport	2015-01-01 07:	1	23.7333	19.4700
5	JFK Airport	2015-01-01 08:	0	0	0
6	JFK Airport	2015-01-01 09:	1	23.7000	17.2700
7	JFK Airport	2015-01-01 10:	0	0	0
8	JFK Airport	2015-01-01 11:	1	36.3000	19.2300

	region	hourly_data	pickup_count	mean_Duration_gp	mean_Distance_gp	
9	JFK Airport	2015-01-01 12:	1	24.3000	16.9800	
10	JFK Airport	2015-01-01 13:	2	23.9750	18.1550	
11	JFK Airport	2015-01-01 14:	2	35.5750	20.1100	
12	JFK Airport	2015-01-01 15:	2	37.7667	19.1750	
13	JFK Airport	2015-01-01 16:	4	35.8792	18.2450	
14	JFK Airport	2015-01-01 17:	2	28.4833	19.2050	

Feature Selection

%heatmap(df.demand,df.DayOfWeek)

crosstab(df.demand,df.DayOfWeek)

ans =
$$3 \times 7$$

3225 3157 3142 3453 3272 3087 · · · · 3405 3516 3584 3305 3436 3462
620 571 482 428 642 645

[a,chi2,p]=crosstab(df.demand,df.DayOfWeek)

```
a = 3 \times 7
        3225
                      3157
                                   3142
                                                3453
                                                             3272
                                                                           3087 ...
        3405
                      3516
                                   3584
                                                3305
                                                             3436
                                                                           3462
         620
                      571
                                    482
                                                 428
                                                              642
                                                                            645
chi2 = 121.4323
p = 3.2012e-20
```

[a,chi2,p]=crosstab(df.demand,df.dayofyear)

```
a = 3 \times 366
                                                                                     57 • • •
    61
           61
                 63
                        66
                               62
                                      59
                                             58
                                                   60
                                                          62
                                                                 59
                                                                        64
                                                                              51
    74
           74
                 69
                        70
                               67
                                      69
                                             67
                                                   62
                                                          65
                                                                 66
                                                                        69
                                                                              75
                                                                                     67
     1
           2
                  5
                                      10
                                                                              13
                                                                                     14
chi2 = 618.0252
p = 0.9990
```

[p,tbl]=anova1(df.dayofyear,df.demand)

ANOVA Table						
Source	SS	df	MS	F	Prob>F	
Groups Error	559993961.7	50633	179714 11059.9	16.25	8.81705e-08	
Total	560353389.6	50635				

p = 8.8170e-08
tbl = 4×6 cell

	1	2	3	4	5	6
1	'Source'	'SS'	'df'	'MS'	'F'	'Prob>F'
2	'Groups'	3.5943e+05	2	1.7971e+05	16.2492	8.8170e-08
3	'Error'	5.5999e+08	50633	1.1060e+04	[]	[]
4	'Total'	5.6035e+08	50635	[]	[]	[]

[p,tbl]=anova1(df.netpickups,df.dayofyear)

	ANOVA Table						
Source	SS	df	MS	F	Prob>F		
Groups	1702.44	365	4.664	0.03	1		
Error	7794999.56	50270	155.063				
Total	7796702	50635					

p = 1tbl = 4×6 cell

	1	2	3	4	5	6
1	'Source'	'SS'	'df'	'MS'	'F'	'Prob>F'
2	'Groups'	1.7024e+03	365	4.6642	0.0301	1
3	'Error'	7.7950e+06	50270	155.0627	[]	[]
4	'Total'	7796702	50635	[]	[]	[]

Warning: While saving an object of class 'matlab.graphics.primitive.Line':

Recursion limit exceeded when saving instance of class to a MAT-file. This is either because the instance contains an extremely long chain of references, or the class definition contains an error.

Warning: While saving an object of class 'matlab.graphics.primitive.Line':

Recursion limit exceeded when saving instance of class to a MAT-file. This is either because the instance contains an extremely long chain of references, or the class definition contains an error.

```
%[p,tbl]=anova1(string(df.demand),df.dayofyear)
%df_2= isholiday(df,holidays)
%[a,chi2,p]=crosstab(df_2.demand,df_2.isholiday)
%[a,chi2,p]=crosstab(df_2.demand,df_2.DayOfWeek)
%s=groupsummary(df_2,["DayOfWeek","region"],"mean","netpickups")
%gscatter(s.DayOfWeek,s.region,s.mean_netpickups)
```

```
%heatmap(s,"DayOfWeek","mean_netpickups")
%df_2.hourofday=hours(timeofday(df_2.hourly_data))
%corr(df_2.demand,df_2.avg_duration)
%df_3=df_2
%df_3.demand(df_2.demand=='low')=0
%df_3.demand=grp2idx(df_3.demand)
%summary(df_3)
%corr(df_3.demand,df_3.avg_duration)
%corr(df_3.demand,df_3.avg_distance)
%corr(df_3.demand,df_3.avg_fare)
%corr(df_3.demand,df_3.avg_fare)
%corr(df_3.demand,df_3.DayOfWeek)
```

Raw Model

```
y_pred=raw_model_bagged.predictFcn(test_data)
cMetrics(test_data.demand,y_pred)
```

Oversampling the Minority Class

```
x_train_v1= [x_train,y_train]
xhigh=x_train_v1(x_train_v1.demand=='high',:)
xothers=x_train_v1(x_train_v1.demand~='high',:)
histogram(x_train_v1.demand)
[a,b]=histcounts(x_train_v1.demand)
xhigh_os= datasample(xhigh,12000,"Replace",true)
combining
x_comb=[xhigh_os;xothers]
histogram(x_comb.demand)
```

Prediction on Test Data

```
y_pred=model_bag_unb_cost.predictFcn(test_data)
cMetrics(test_data.demand,y_pred)
confusionchart(test_data.demand,y_pred,"Normalization","row-normalized")
y_pred=model_bag_unb_2.predictFcn(test_data)
cMetrics(test_data.demand,y_pred)
confusionchart(test_data.demand,y_pred,"Normalization","row-normalized")
```

Classifier Function

```
function [trainedClassifier, validationAccuracy] = trainClassifier_01(trainingData)
% [trainedClassifier, validationAccuracy] = trainClassifier(trainingData)
% Returns a trained classifier and its accuracy. This code recreates the
% classification model trained in Classification Learner app. Use the
% generated code to automate training the same model with new data, or to
% learn how to programmatically train models.
% Input:
%
       trainingData: A table containing the same predictor and response
%
        columns as those imported into the app.
%
% Output:
%
      trainedClassifier: A struct containing the trained classifier. The
%
        struct contains various fields with information about the trained
%
        classifier.
%
%
      trainedClassifier.predictFcn: A function to make predictions on new
%
%
%
       validationAccuracy: A double containing the accuracy in percent. In
%
        the app, the History list displays this overall accuracy score for
%
        each model.
\% Use the code to train the model with new data. To retrain your
% classifier, call the function from the command line with your original
% data or new data as the input argument trainingData.
% For example, to retrain a classifier trained with the original data set
% T, enter:
    [trainedClassifier, validationAccuracy] = trainClassifier(T)
% To make predictions with the returned 'trainedClassifier' on new data T2,
   yfit = trainedClassifier.predictFcn(T2)
% T2 must be a table containing at least the same predictor columns as used
% during training. For details, enter:
   trainedClassifier.HowToPredict
% Auto-generated by MATLAB on 09-Apr-2021 17:24:47
% Extract predictors and response
% This code processes the data into the right shape for training the
% model.
inputTable = trainingData;
predictorNames = {'region', 'avg_duration', 'avg_distance', 'avg_fare', 'DayOfWeek', 'dayofyear', 'isholiday',
predictors = inputTable(:, predictorNames);
response = inputTable.demand;
isCategoricalPredictor = [true, false, false, false, false, false, false];
% Train a classifier
```

```
% This code specifies all the classifier options and trains the classifier.
       template = templateTree(...
            'MaxNumSplits', 40508);
       classificationEnsemble = fitcensemble(...
           predictors, ...
           response, ...
           'Method', 'Bag', ...
           'NumLearningCycles', 30, ...
            'Learners', template, ...
           'Cost', [0 4 2; 10 0 6; 1 1 0], ...
           'ClassNames', categorical({'high'; 'low'; 'medium'}));
       % Create the result struct with predict function
       predictorExtractionFcn = @(t) t(:, predictorNames);
       ensemblePredictFcn = @(x) predict(classificationEnsemble, x);
       trainedClassifier.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x));
       % Add additional fields to the result struct
       trainedClassifier.RequiredVariables = {'DayOfWeek', 'avg_distance', 'avg_duration', 'avg_fare', 'dayofyear', '
       trainedClassifier.ClassificationEnsemble = classificationEnsemble;
       trainedClassifier.About = 'This struct is a trained model exported from Classification Learner R2020a.';
       trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n yfit = c.predictFcn(
       % Extract predictors and response
       % This code processes the data into the right shape for training the
       % model.
       inputTable = trainingData;
       predictorNames = {'region', 'avg_duration', 'avg_distance', 'avg_fare', 'DayOfWeek', 'dayofyear', 'isholiday',
       predictors = inputTable(:, predictorNames);
       response = inputTable.demand;
       isCategoricalPredictor = [true, false, false, false, false, false, false];
       % Perform cross-validation
       partitionedModel = crossval(trainedClassifier.ClassificationEnsemble, 'KFold', 5);
       % Compute validation predictions
       [validationPredictions, validationScores] = kfoldPredict(partitionedModel);
       % Compute validation accuracy
       validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');
Loss analysis
       p= raw_model.predictFcn(test_data)
       idx_low_high= find(p=='high' & y_test.demand=='low')
       raw_fare=x_test(idx_low_high, "avg_fare")
       summary(raw_fare)
       mean(raw_fare.avg_fare)
       p= final_model.predictFcn(test_data)
       idx_low_high= find(p=='high' & y_test.demand=='low')
       raw_fare=x_test(idx_low_high,"avg_fare")
```

summary(raw_fare)

```
mean(raw_fare.avg_fare)

p= raw_model.predictFcn(test_data)
idx_low_high= find(p=='medium' & y_test.demand=='low')
raw_fare=x_test(idx_low_high, "avg_fare")
summary(raw_fare)
mean(raw_fare.avg_fare)

p= final_model.predictFcn(test_data)
idx_low_high= find(p=='medium' & y_test.demand=='low')
raw_fare=x_test(idx_low_high, "avg_fare")
summary(raw_fare)
mean(raw_fare.avg_fare)
```