2019 Year 11 Mathematics Advanced Yearly Examination Worked solutions and marking guidelines

Sectio	n I	
	Solution	Criteria
1.	$m = \tan \theta$ $= \tan 30^{\circ}$ $= \frac{1}{\sqrt{3}}$	1 Mark: A calculus
2.	$A = \frac{1}{2} absinC$	1 Mark: C
	$= \frac{1}{2} \times 6 \times 6 \times \sin 54^{\circ}$ = 14.5623 ≈ 14.56 m ²	Trig
3.	A vertical line can be drawn to cut all curves except D, the straight	1 Mark: D
	line.	functions
4.	$x = -2, \qquad x = 2 \text{ and } x = 3$ $(3, 1.2)$ Discontinuities	1 Mark: B calculus
5.	k + 2k + 3k + 2k + k = 1	1 Mark: B
	$9k = 1$ $k = \frac{1}{9}$	prob

		Year 11 Mathema
6.	$2\cos x = \sqrt{3}$	1 Mark: D
	$\cos x = \frac{\sqrt{3}}{2}$	m .
	π 11 π	Trig
	$x = \frac{1}{6}$ and $\frac{1}{6}$	
7.	$\lim_{x \to 4} x - 4$	1 Mark: C
	$x = \frac{\pi}{6} \text{ and } \frac{11\pi}{6}$ $\lim_{x \to 4} \frac{x - 4}{x^2 - 16}$	calculus
	x-4	
	$\lim_{x\to 4} \frac{x-4}{(x-4)(x+4)}$	
	1 1	
	$\lim_{x\to 4} \frac{1}{(x+4)}$	
	= <u>1</u> = <u>1</u>	
	$=\frac{1}{(4+4)}=\frac{1}{8}$	
8.	7+5_12_6	1 Mark: A
	$\frac{1}{70} = \frac{1}{70} = \frac{1}{35}$	Prob
9.	$\cot B = \frac{5}{9}$ cot (and tan) are -ve so 2nd or 4th Quad	1 Mark: C
	$\tan B = \frac{9}{5} \text{ see diagram} $ sin is -ve so 3rd or 4th Quad	Trig
	So 4th Quad so cos +ve	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$	
	$x = \sqrt{106}$	
	$\langle \beta \rangle x$	
	$\int B \qquad \cos B = \frac{5}{\sqrt{a}}$	
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	
10.		1 Mark: A or
	y = -x(x+1)(x-2)	С
	Test point (1, 2)	
	$2 = -1 \times (1 + 1) \times (1 - 2)$ True	functions

Section II		
	Solution	Criteria
11(a) KC	$\frac{6x^3 \times 5x^{-1}}{2x^3 \times 5x^{-2}} = \frac{30x^2}{10x^1} = 3x^1 = 3x$	2 mark for correct answer
		1 mark: Simplifies the fractions
		Algebra
11(b) KC	$\frac{1}{3+\sqrt{3}} = \frac{1}{3+\sqrt{3}} \times \frac{3-\sqrt{3}}{3-\sqrt{3}} = \frac{3-\sqrt{3}}{6}$	2 marks: Correct answer.
	$=\frac{3-\sqrt{3}}{6}$	1 mark: Simplifies the fractions by multiplying by the conjugate.
11()	x + 2y - 2x - y - A(x + 2y) - 3(2x - y)	Algebra
11(c) KC	$\frac{x+2y}{3} - \frac{2x-y}{4} = \frac{4(x+2y) - 3(2x-y)}{12}$ $4x + 8y - 6x + 3y$	2 marks: Correct answer.
	$\frac{x+2y}{3} - \frac{2x-y}{4} = \frac{4(x+2y) - 3(2x-y)}{12}$ $= \frac{4x+8y-6x+3y}{12}$ $= \frac{11y-2x}{12}$	1 mark: Finds common denominator and converts numerators.
	12	Algebra
11(di) KC	Mean (Exp Value) = $0 \times 0.08 + 1 \times 0.12 + 2 \times 0.2 + 3 \times 0.25$ + $4 \times 0.18 + 5 \times 0.13 + 6 \times 0.04$ = 2.88	1 marks for correct answer
		prob
11(dii) KC	Variance = $(-2.88)^2 \times 0.08 + (-1.88)^2 \times 0.12 + (-0.88)^2 \times 0.2$	2 marks for correct answer
	+ $(0.12)^2 \times 0.25 + (1.12)^2 \times 0.18 + (2.12)^2 \times 0.13 + (3.12)^2 \times 0.04$ = $0.663552 + 0.424128 + 0.15488 + 0.0036 + 0.225792 + 0.584272 + 0.389376$ = 2.4456 Standard deviation = $\sqrt{2.4456}$	1 mark for relevant working involving finding deviations from the mean and squaring them
	= 1.563841424185969 $= 1.56 (3 s f)$	prob
12(a) KC	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-3)}{-1 - (-4)} = \frac{6}{3} = 2$	1 marks: Correct answer. <i>functions</i>

		Year 11 Mathematics Advanced
12(b) KC	$x = \frac{x_1 + x_2}{2} = \frac{-4 + (-1)}{2} = -\frac{5}{2}$	1 mark: Correct answer.
-	$x = \frac{x_1 + x_2}{2} = \frac{-4 + (-1)}{2} = -\frac{5}{2}$ $y = \frac{y_1 + y_2}{2} = \frac{-3 + 3}{2} = 0$ $\therefore \text{ Midpoint is (-2.5, 0)}$	Functions
12(c)	Line <i>FG</i> has the same gradient as <i>DE</i> (parallel lines)	2 mark: Correct answer.
AG	$y - y_1 = m(x - x_1)$	(any form is fine)
	y-9=2(x-11)	Functions
	y - 9 = 2x - 22	
	2x - y - 13 = 0	
12(d)	Point <i>G</i> is on the line <i>DG</i> or $y = -3$	2 marks: Correct answer.
AG	To find x when $y = -3$ substitute into the equation of FG	
	2x - (-3) - 13 = 0	1 mark: Used the point slope
	2x = 10	formula with correct slope
	x = 5 $x = 5$	or point. <i>Functions</i>
12(-)	\therefore Coordinates of G are $(5, -3)$	
12(e) AG	Use Pythagoras theorem $EF^2 = 12^2 + 6^2$	1 marks: Correct answer.
AU	$EF = 12^{2} + 6^{2}$ $EF = \sqrt{12^{2} + 6^{2}}$	Functions
	$EF = \sqrt{12^2 + 6^2}$ $= \sqrt{180}$	Tunctions
	$= \sqrt{180}$ $= 3\sqrt{20}$	
	_ 5 V 2 0	
12(f)	$(x-a)^2 + (y-b)^2 = r^2$	1 mark: Correct answer.
AG	$(x-11)^2 + (y-9)^2 = (\sqrt{180})^2$	I marm dorrect answer.
AU	$(x-11)^2 + (y-9)^2 = (\sqrt{180})$	
Au	$(x-11)^2 + (y-9)^2 = (\sqrt{180})$ $(x-11)^2 + (y-9)^2 = 180$	Functions
Au		Functions
13(a)	$f(x) = 3x^2 + x \qquad f(x+h) = 3(x+h)^2 + (x+h)$	3 marks for complete and
	$f(x) = 3x^2 + x \qquad f(x+h) = 3(x+h)^2 + (x+h)$	
13(a)	$f(x) = 3x^2 + x \qquad f(x+h) = 3(x+h)^2 + (x+h)$	3 marks for complete and correct derivation
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	3 marks for complete and correct derivation 2 marks for correct
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working
13(a)	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} 6x + 3h + 1$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct
13(a) AG	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h + 1}{h}$ $= 6x + 1$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working calculus
13(a) AG	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h + 1}{h}$ $= 6x + 1$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working calculus 1 mark for correct answer
13(a) AG	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} 6x + 3h + 1$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working calculus
13(a) AG	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} 6x + 3h + 1$ $= 6x + 1$ $\frac{d}{dx}(3\sqrt{x^{3}}) = \frac{d}{dx}(3x^{\frac{3}{2}}) = 3 \times \frac{3}{2}x^{\frac{1}{2}}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working calculus 1 mark for correct answer
13(a) AG	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} 6x + 3h + 1$ $= 6x + 1$ $\frac{d}{dx}(3\sqrt{x^{3}}) = \frac{d}{dx}(3x^{\frac{3}{2}}) = 3 \times \frac{3}{2}x^{\frac{1}{2}}$ $= \frac{9}{2}x^{\frac{1}{2}}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working calculus 1 mark for correct answer in either form of last 2 lines
13(a) AG	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} 6x + 3h + 1$ $= 6x + 1$ $\frac{d}{dx}(3\sqrt{x^{3}}) = \frac{d}{dx}(3x^{\frac{3}{2}}) = 3 \times \frac{3}{2}x^{\frac{1}{2}}$ $= \frac{9}{2}x^{\frac{1}{2}}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working calculus 1 mark for correct answer in either form of last 2 lines
13(a) AG	$f(x) = 3x^{2} + x f(x+h) = 3(x+h)^{2} + (x+h)$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{3(x+h)^{2} + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) + (x+h) - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} + x + h - 3x^{2} - x}{h}$ $= \lim_{h \to 0} \frac{6xh + 3h^{2} + h}{h}$ $= \lim_{h \to 0} 6x + 3h + 1$ $= 6x + 1$ $\frac{d}{dx}(3\sqrt{x^{3}}) = \frac{d}{dx}(3x^{\frac{3}{2}}) = 3 \times \frac{3}{2}x^{\frac{1}{2}}$	3 marks for complete and correct derivation 2 marks for correct substitution and manipulation with minor errors or not completed fully eg: mistake with limit notation 1 mark for some correct and valid working calculus 1 mark for correct answer in either form of last 2 lines

		Year 11 Mathematics Advanced
13(c)	d(-2) d 3	1 mark for correct answer
AG	$\frac{d}{dx}\left(\frac{-2}{x^3}\right) = \frac{d}{dx}(-2x^{-3})$ $= -2 \times -3x^{-4}$ $= 6x^{-4}$	in either form of last 2 lines
	$=-2 \times -3x^{-4}$	calculus
	$=6x^{-4}$	
	$=\frac{6}{x^4}$	
	$x^{}$	
13(d)	$d(x^2+1)$ $(x+1)(2x)-(x^2+1)(1)$	1 mark for correct equation
AG	$\frac{d}{dx}\left(\frac{x^2+1}{x+1}\right) = \frac{(x+1)(2x) - (x^2+1)(1)}{(x+1)^2}$	calculus
	$2x^2 + 2x - x^2 - 1$	culculus
	$=\frac{2x^2+2x-x^2-1}{(x+1)^2}$	
	$x^2 + 2x - 1$	
	$=\frac{x^2+2x-1}{(x+1)^2}$	
1265	(A + 1)	2
13(e) MV	$\frac{d}{dx}((x^3+2)^5) = 5(x^3+2)^4(3x^2)$	2 mark for correct equation
IVI V	$= 15x^2(x^3+2)^4$	1 mark for working which
	= 15x (x + 2)	includes some correct
		differentiation
12(8)	<i>d</i>	<i>calculus</i> 2 marks for correct
13(f) MV	$\frac{d}{dx}(x^7(x^4+5x)^6) = x^7(6(x^4+5x)^5(4x^3+5)) + 7x^6(x^4+5x)^6$	expression in any
1.14	$= (24x^{10} + 30x^7)(x^4 + 5x)^5 + 7x^6(x^4 + 5x)^6$	reasonable form
		1 1 0 1 1 1 1 1
	Can be further simplified but acquires no extra marks.	1 mark for working which includes some correct
	$= (x^4 + 5x)^5 (24x^{10} + 30x^7 + 7x^{10} + 35x^7)$	differentiation using
	$= (x^4 + 5x)^3 (31x^{10} + 65x^7)$	product and/or chain rule
		calculus
13(gi)	$l = r \theta$	2 marks for correct answer
MV	$= 45 \times \frac{4\pi}{15}$	1 mark for <i>non-exact</i>
	$= 12 \pi \mathrm{cm}$	answer (37.699)
		Trig
13(gii)	$Area = \frac{1}{2} r^2 \theta$	1 mark for correct answer
MV		Trig
	$=\frac{1}{2}\times 45^2\times \frac{4\pi}{15}$	Triy
	$= 270 \pi \text{cm}^2$	
14(a)		1 mark for correct answer
MV	$P(WWW) = \frac{3}{100} \times \frac{2}{99} \times \frac{1}{98}$	_
	$=\frac{1}{161700}$	Prob
		1 1 0
14(b)	If doesn't win first, he still has 3 tickets from 99, since one drawn	1 mark for correct answer
MV	P(Wins next 2 given doesn't win first) = P(WW after L)	Prob
	$=\frac{3}{99}\times\frac{2}{98}$	1100
	$=\frac{1}{1617}$	
	1	

		Year 11 Mathematics Advanced
14(ci)	Recognise the curve as a circle, so complete the square:	2 marks for correct
MV	$x^2 + y^2 - 8x + 6y + 21 = 0$	description
	$x^2 - 8x + y^2 + 6y = -21$	
	$x^{2} - 8x + 4^{2} + y^{2} + 6y + 3^{2} = 16 + 9 - 21$	1 mark for attempt at
	$x^2 - 8x + 4 + y + 6y + 5 = 10 + 9 = 21$	completing the square or
	$x^{2} - 8x + 16 + y^{2} + 6y + 9 = 4$ $(x - 4)^{2} + (y + 3)^{2} = 2^{2}$	equivalent merit
	Curve is a circle, centre $(4, -3)$ and radius 2	Functions
14(cii)	Domain minimum = $4-2 = 2$	1 mark for correct domain
MV	Domain maximum = $4 + 2 = 6$	
	Domain $2 \le x \le 6$	Functions
	OR From Sketch $2 \le x \le 6$	
	-6+	
14(d)	The line $y = 2x - 5$ has a gradient of 2 and a y intercept of -5 so	2 marks for correct graph
PW	has the graph shown with dotted line	
	Absolute value graph is the same when above x axis and the	1 mark for graph of
	reflection when below the axis	y = 2x - 5 or working of
	y	similar merit
	4 + y = 2x - 5	Functions
	2	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	-2 + /	
	-4 + y = 2x - 5	
14(6)	North	1 mark: Correct answer.
14(ei)	1	I mark. Correct answer.
PW	$E \left(158^{\circ} \right)$	Trig
	North 30	1119
	45°	
	\50	
I	${}^{\sim}F$	

			Year 11 Mathematics Advanced
14(eii) PW	$\angle DEG = 45^{\circ}$ (Alternate angle to the bearing of <i>E</i> from <i>D</i>) $\angle FEG = 180 - 158$ $= 22^{\circ}$ (Straight angle of 180°) $\angle DEF = \angle DEG + \angle FEG$ $= 45 + 22$ $= 67^{\circ}$ $a^{2} = b^{2} + c^{2} - 2bc\cos A$	North 30 45° 22° 50 North G 36° F 302°	1 mark: Correct answer. Trig 1 mark: Correct answer.
14(eiii) PW	$DF^{2} = 30^{2} + 50^{2} - 2 \times 30 \times 50 \times \cos 67$ = 2227.8066 $DF = 47.1996$ = 47 m ∴ Distance of F from D is approximately 47 m		Trig
14(eiv) PW	To find $\sin \angle DFE$ $\frac{\sin \angle DFE}{30} = \frac{\sin 67}{47.1996}$ $\sin \angle DFE = \frac{\sin 67 \times 30}{47.1996}$ $\angle DFE = 35.8080$ $\approx 36^{\circ}$ Bearing = $360 - (36 + 22)$ $= 302^{\circ}$ (See above diagram) $\therefore \text{Bearing of } D \text{ from } F \text{ is } 302^{\circ}$		3 marks: Correct answer. 2 marks: Finds ∠DFE 1 mark: Used the sine rule (or alternatively the cosine rule) with at least one correct. Trig
15(a) PW	Substitute <i>P</i> into the equation of <i>C</i> $y = \frac{1}{3} \times 3^3 - 4 \times 3^2 + 8 \times 3 + 3$ $= 9 - 36 + 27$ $= 0$ $\therefore P \text{ lies on } C$		1 mark: Correct answer. calculus
15(b) PW	$\frac{dy}{dx} = x^2 - 8x + 8$ When $x = 3$ $m = 3^2 - 8 \times 3 + 8$ $= -7$ Equation of the tangent $y - y_1 = m(x - x_1)$ $y - 0 = -7(x - 3)$ $y = -7x + 21$ $7x + y - 21 = 0$		2 marks: Correct answer. 1 mark: Finds the gradient of the tangent at <i>P.</i> calculus

		Year 11 Mathematics Advanced
15(c)	Tangent at Q is parallel and has the same gradient $(m = -7)$	2 marks: Correct answer.
PW	$\frac{dy}{dx} = x^2 - 8x + 8 = -7$	
	$\begin{vmatrix} dx \\ x^2 - 8x + 15 = 0 \end{vmatrix}$	1 mark: Finds the <i>x</i>
	$\begin{pmatrix} x - 6x + 15 = 0 \\ (x - 3)(x - 5) = 0 \end{pmatrix}$	coordinate of Q or makes
	x = 3 or x = 5	some progress.
	The x -coordinate of Q is 5	calculus
	$y = \frac{1}{3} \times 5^3 - 4 \times 5^2 + 8 \times 5 + 3 = -15\frac{1}{3}$	Culculus
	$\therefore \text{Point } Q \text{ is } \left(5, -15\frac{1}{3}\right)$	
15(di)	$f(-2) = (-2)^2 - (-2)$	1 mark: Correct answer.
MB	= 6	
		Functions
15(dii)	f(h(x)) = f(2x+1)	1 mark: Correct answer.
MB	$= (2x+1)^2 - (2x+1)$ $= 4x^2 + 2x \text{ or } 2x(2x+1)$	
	$= 4x^2 + 2x \text{ or } 2x(2x+1)$	Functions
15(diii)	h(x) = 0	1 mark: Correct answer.
MB	2x + 1 = 0	
	$x = -\frac{1}{2}$	Functions
15(ei)	$(1 + \tan^2 \theta) \cot \theta$	3 marks: Correct answer.
MB	$LHS = \frac{(1 + \tan^2 \theta)\cot \theta}{\csc^2 \theta}$	
	20.10	2 marks: Makes significant
	$=\frac{\sec^2\theta\cot\theta}{\cos^2\theta}$	progress.
	$= \frac{\sec^2\theta \cot^2\theta}{\csc^2\theta}$ $= \frac{1}{\cos^2\theta} \times \frac{\cos\theta}{\sin\theta} \div \frac{1}{\sin^2\theta}$	1 manula II J
	$=\frac{\cos^2\theta}{\cos^2\theta} \times \frac{\sin\theta}{\sin^2\theta}$	1 mark: Used one correct trigonometric identity.
	$I \equiv \frac{1}{2} \times \sin^2 \theta$	argonomeare facility.
	$\cos\theta \sin\theta$ $\sin\theta$	Trig
	$=\frac{\sin \theta}{\cos \theta}$	- 0
	$= \tan \theta$	
	= RHS	
15(eii)	$\sin(315^\circ) = \frac{-1}{\sqrt{2}}$	1 mark: Correct answer.
MB	√2 1	Trig
15(eiii)	$6^{x-2} = \frac{1}{36}$	1 mark: Correct answer.
MB	$6^{x-2} = 6^{-2}$	Tu: ~
	x - 2 = -2	Trig
1(()	x = 0	1 0
16(a)	Initially $t = 0$	1 mark: Correct answer.
MB	$h(0) = 2 \times 0^2 - 4 \times 0 + 50$ = 50 cm	Calc
	∴ Initial height is 50 cm	Calc
16(b)	Use the derivatives to find the instantaneous rate of change	2 marks: Correct answer.
MB	h'(t) = 4t - 4	
	$h'(4) = 4 \times 4 - 4$	1 mark: Finds the first
	= 12	derivative.
	∴Instantaneous rate is 12 cm/min	Calc

4.66.3		
16(c)	To find the height when $t = 4$	2 marks: Correct answer.
MB	$h(4) = 2 \times 4^2 - 4 \times 4 + 50$	
	= 66 cm	1 mark: Finds the height
	Total change in depth	when $t = 4$ or shows some
	Average rate = $\frac{1}{1}$ Total time taken	understanding.
	$=\frac{66-50}{4}$	3
	= -4	Calc
	= 4 cm/min	Caic
	∴ Average rate is 4 cm/min	
16(di)	Curve is increasing for $0 < x < 3$ and $x > 12$.	1 mark for both correct
SS		inequalities
		1
		Calc
		Cuic
16(dii)	Curve is decreasing at an increasing rate for $3 < x < 6$.	1 mark for correct
SS		inequality
		Calc
		Cuic

_	T	Year 11 Mathematics Advanced
17(a) SS	$x = 2t^3 + t^{\frac{1}{2}}$	3 marks for velocity and acceleration
	$x = 2t^{3} + t^{\frac{1}{2}}$ $\dot{x} = 6t^{2} + \frac{1}{2}t^{-\frac{1}{2}}$ $\ddot{x} = 12t - \frac{1}{4}t^{-\frac{3}{2}}$	2 mark for either velocity or acceleration or working of equivalent merit.
	When $t = 9$ $\dot{x} = 6(9)^2 + \frac{1}{2}(9)^{-\frac{1}{2}}$ $\dot{x} = 6(9)^2 + \frac{1}{2} \times \frac{1}{\sqrt{9}}$ $Velocity = 486\frac{1}{6}$	1 mark for velocity <i>and</i> acceleration functions. Calc
	When $t = 9$	
	$\ddot{x} = 12(9) - \frac{1}{4}(9)^{-\frac{3}{2}}$ $= 108 - \frac{1}{4} \times \frac{1}{\sqrt{9^3}}$	
	$= 108 - \frac{1}{108}$ Acceleration = $107\frac{107}{108}$	
17(b)	y	1 mark <i>for each</i> graph (2)
SS	$y = \csc x$ $\frac{\pi}{2}$ $y = \cos x$	Trig
17(c) SS	$f(x) = 2x^4 - 3x^2 - 1$ $f(-x) = 2x^4 - 3x^2 - 1$	2 marks for correct working and answer
	$\therefore f(x) = f(-x) \therefore even function$	1 mark for finding f(-x)
		Functions