Protocol dan Model Referensi OSI

Protokol Komunikasi

Protocol Jaringan:

- ① Satu set aturan
- 2) yang mengatur komunikasi antarar dua host
- 3 dimplementasikan sbg software

Contoh

- TCP
- IP
- IPX/SPX (Novel Netware)

Apakah Model OSI?

- Model Open Systems Interconnection fundamental utk semua komunikasi antar device jaringan
- Dikembangkan thn 1974 oleh <u>ISO</u> setelah DOD Amerika mulai menggunakan protocol suiteTCP/IP
- Akhirnya diadopsi pd thn 1977. Saat ini merupakan <u>model teoritis</u> menjelaskan bagaimana komunikasi berlangsung antar device jaringan

Layer-Layer

- DIm hal tujuan dan tanggung jawab, tiap layer terpisah dan independen
- Masing-masing punya fungsi sendiri, tetapi juga menyediakan service ke layer di atas dan di bawahnya
- Model sebagai bantuan utk memahami komunikasi pada jaringan – dan berguna dalam memilah kesalahan/troubles yg mungkin terjadi pd jaringan
- Memungkinkan baik software engineer dan hardware manufacturers menjamin produk mereka bisa bekerja sama

Kerja Layer-Layer

- Saat berkomunikasi, tiap layer OSI berbicara dg layer yg sama pd device yg lain
- Mis. Application Layer dari Device A berkomunikasi dg Application Layer dari Device B, dg meneruskan data melalui layer-layer lain
- Application Layer dari tiap device tdk peduli bagaimana layer-layer lain berfungsi, tetapi bergantung pd layerlayer tsb utk mendpkan service

Bagaimana Data Mengalir?

Saat data dikirim dari application pd komputer sumber hal berikut terjadi

- Data dlm bentuk suatu <u>packet</u> "bergerak turun" melalui layer-layer
- Saat mencapai Physical Layer siap dikirim melalui media
- Pd Physical Layer bit-bit bisa <u>analog</u> atau <u>digital</u>, dlm bentuk <u>elektrikal</u>, <u>cahaya</u> atau <u>gelombang radio</u>

Bagaimana Data Mengalir?(2)

- Data ditransmisikan ke device tujuan
- Bergerak melalui layer-layer dari model OSI, mencapai user
- Dlm pergerakan melalui layer-layer data di <u>encapsulated</u>
 yaitu informasi tambahan ditambahkan sbg <u>headers</u>
 atau trailers
- Data di dlm paket tdk berubah

Model Seven Layer OSI

Layer 1: Physical Layer

Fungsi Utama: Berhubungan dg sinyal elektrik

- Contoh: Manchester Signal Encoding
 - NRZI Signal Encoding
 - Bipolar-AMI Signal Encoding

Mendefinisikan bagaimana sinyal direpresentasikan

• Interpretasi sinyal elektrik, representasikan sbg 1 atau 0

Model Seven Layer OSI

Layer 2: Data Link Layer

Fungsi Utama:

- <u>Deteksi dan koreksi</u> error sinyal, jika ada
- Meneruskan/Forward sinyal yg diterima ke network layer
- Jika error tdk dp dikoreksi, memberikan error warning ke network layer
- Menyediakan Media Access Control (MAC)
 - Utk "shared" network, kontrol siapa yg dp menggunakan network

Contoh penggunaan bersama Network:

3 Star (=hub)

Model Seven Layer OSI

Layer 3: Network Layer

Fungsi Utama:

- Best effort delivery service
 - Meroutekan paket dari sumber ke tujuan
 - <u>Translasi address</u>

Model Seven Layer OSI

Layer 4: Transport Layer

Fungsi Utama:

- Deteksi dan koreksi error paket (error control) utk E2E
- Melaksanakan flow control
 - Jika penerima ingin slow down, mengurang laju transmisi TX
 - Jika network congesti, mengurang laju transmisi
 - → congestion control

Layer 5: Session Layer

Fungsi Utama:

- Establish/Manage/Delete koneksi (E2E)
- Kontrol Full-Duplex/Half-Duplex
- QoS (specifikasi toleransi delay maximum)

Model Seven Layer OSI Layer 6: Presentation Layer Fungsi Utama: Encryption, compression, dll Encryption Raw Data Presentation Layer Presentation Layer Encrypted Data Compressed Data Layer 7: Application Layer Fungsi Utama: Interface ke application programs Contoh: Network API (Application Program Interface)

Model Seven Layer OSI - Summary

L7	User applic	ations		Network management applications		
L6	Encryption/ decryption		Compression/ expansion		Choice of Syntax	
L5	Session control	Session synch.	Session to transport mapping		Session management	
L4	Flow control		Error recovery		Multiplexing	
L3	Connection control		Routing		Addressing	
L2	Data link establishment		Error control	Flow control	Synch.	Framing
L1	Access to transmission media		Physical and electrical interface		Activation/deactivation of connections	

Base on Understanding Telecommunications, Ericsson & Telia, Student Litterature, 1998