Supporting Information for

Nanostructured Reduced Graphene Oxide-Fe₂O₃ Composite as a High-Performance Anode Material for Lithium Ion Batteries

Xianjun Zhu, † , Yanwu Zhu, ‡ Shanthi Murali, ‡ Meryl D. Stoller, ‡ and Rodney S. Ruoff ‡,*

[†]College of Chemistry, Central China Normal University, 152 Luoyu Rd, Wuhan, Hubei 430079, China, and [‡]Department of Mechanical Engineering and the Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States

FS1. XRD patterns of (a) RG-O/Fe₂O₃ composite, and (b) Fe₂O₃ (JCPDS 97-002-2505). (c) Fe₂p XPS pattern of RG-O/Fe₂O₃.

1

^{*} Address correspondence to r.ruoff@mail.utexas.edu

FS2. Raman spectra of (a) RG-O/Fe₂O₃ composite, (b) free Fe₂O₃, and (c) RG-O.

FS3. Thermal gravimetric analysis (TGA) curves of RG-O/Fe₂O₃, Fe₂O₃ and RG-O obtained at a heating rate of 5 °C/min under an air flow of 20 ml/min between 25~800 °C.

FS4. The comparison of the first cycles. (a) RG-O/Fe₂O₃, (b) Free Fe₂O₃ physically mixed with carbon black in the same ratio, and (c) RG-O.

FS5. Representative discharge and charge curves of RG-O/Fe $_2$ O $_3$ at different current densities.

