CS 188 Discussion 6b

MLE, Naive Bayes

Maximum Likelihood Estimation

- What value *x* would give our observed sequence of values the highest probability of occurring?
 - 1. Compute likelihood function
 - 2. Take the natural log to simplify calculations
 - 3. Take the derivative
 - 4. Set derivative to 0 and solve for x

Surface Level Intro to ML

- Generally, ML is the field of constructing and/or learning the parameters of a specified model given some data
- Two main divisions of ML algorithms
 - Supervised Learning
 - Regression Models
 - Linear Regression
 - Classification Models
 - Logistic Regression
 - Naive Bayes
 - Perceptrons
 - Neural nets (usually)
 - Unsupervised Learning

Surface Level Intro to ML

- Use feature engineering to create more predictive features
- Be careful of overfitting

Naive Bayes

- Basic classification model that assumes features are independent of each other given class label
- $prediction(F) = \underset{y_i}{\operatorname{argmax}} P(Y = y_i) \prod_{j} P(F_j = f_j | Y = y_i)$

$$\theta = \frac{1}{N_h} \sum_{j=1}^{N_h} f_i^{(j)} \qquad \theta = P(F_i = 1 | Y = ham))$$

- Laplace smoothing
 - with strength k, assumes having seen k extra of each outcome

$$P_{LAP,k}(x|y) = \frac{count(x,y) + k}{count(y) + k|X|}$$

tinyurl.com/cs188su23

tinyurl.com/188feedback