CSE411: Real-Time and Embedded Systems Design

Spring 2025

Project Description – Idea 1

Advanced Power Window Control System

Project Overview

This project aims to develop an advanced power window control system using the Tiva C Series TM4C123GH6PM microcontroller and FreeRTOS for real-time task management. The system will control a front passenger door window, featuring manual and automatic operation, obstacle detection, window lock functionality, and precise position tracking. The implementation emphasizes safety, reliability, and efficient resource utilization.

Key Features

1. Manual and Automatic Window Operation

- Manual Mode: The window moves up or down while the respective switch is held.
- One-Touch Auto Mode: A short press fully opens or closes the window without requiring continuous input.

2. Obstacle Detection and Safety Measures

- IR sensors detect obstacles during auto-close operation.
- If an obstacle is detected, the window immediately stops and reverses downward for 0.5 seconds to prevent injury or damage.
- Upper and lower limit switches ensure safe operation by preventing over-travel.

3. Position Control with Encoder Feedback

- An incremental encoder provides precise window position feedback.
- Position tracking enables additional features like partial window opening.

4. Window Lock Functionality

- A window lock switch allows the driver to disable passenger-side controls.
- When activated, only the driver can operate the passenger window.
- Status is displayed on an LCD screen

5. Power Management

• The system enters low-power mode when idle, reducing energy consumption and improving efficiency

6. Real-Time Task Scheduling with FreeRTOS

- The system is structured into independent FreeRTOS tasks for:
 - Manual and automatic window control
 - Obstacle detection and response
 - Position tracking and safety monitoring
 - o System status updates (LCD, LED, buzzer alerts)
- Synchronization is handled using semaphores and message queues to ensure reliable task execution.

Hardware Components

- Microcontroller: TM4C123GH6PM (Tiva C Series)
- Motor and Driver: DC motor with an H-bridge motor driver
- Sensors:
 - o IR Sensor for obstacle detection
 - Incremental encoder for position tracking
 - o Limit switches for limits of window
- User Interface:
 - o Push buttons for window control
 - o ON/OFF switch for window lock
 - LCD display for status updates
 - o Buzzer and RGB LED for audible/visual alerts

Project Deliverables

- 1. Hardware Setup: A fully functional prototype with all components integrated.
- 2. Software Implementation: Well-structured, modular FreeRTOS-based firmware.
- 3. Live Demonstration: Showcasing all features in real-time operation.
- 4. Project Report including but not limited to:
 - o System design and architecture
 - FreeRTOS implementation details
 - Challenges and solutions
 - Future improvements

MARKS	ACTIVITIES
2	Manual Mode from both sides
2	Automatic Mode from both sides
2	Obstacle Detection and Jam Protection
2	Encoder feedback
2	Upper/lower limit switches
1	LCD displays window's position accurately
1	Lock switch disables passenger-side control properly
1	Driver retains full control when lock is enabled
1	Sleep mode when idle
1	Tasks are created and scheduled correctly
1	Tasks priorities are assigned properly
1	Semaphores/mutexes for resource management
1	Queues for passing data between tasks
2	Full Technical Report
5	Individual Assessment
25	Total Project