

LLM-Driven Knowledge Graph Construction from Earth Observation Data for Extreme Events

Theodoros Aivalis^{1,2,*}

Iraklis A. Klampanos¹ Antonis Troumpoukis²

¹University of Glasgow, UK

 2 National Centre for Scientific Research "Demokritos", Greece

*teoaivalis@iit.demokritos.gr

October 25, 2025

Theodoros Aivalis DARES Workshop - ECAI 2025 1

Motivation: Rising Disaster Intensity and Data Complexity

Rising disaster intensity

- 403 major climate disasters in the US since $1980 \rightarrow \$2.9 \text{T}$ in damages¹
- >150 extreme weather events globally in 2024, displacing 800,000+ people²

Explosion of Earth Observation (EO) data

- Sentinel / Copernicus missions generate massive multimodal data daily
- >11,700 active satellites; 2,800 launched in 2024 alone³

Theodoros Aivalis

¹National Centers for Environmental Information (NCEI), "U.S. Billion-Dollar Weather and Climate Disasters," 2025.

²The Guardian, "Extreme weather displaced more than 800,000 people globally in 2024," 2025.

 $^{^3}$ Live Science, "Number of active satellites in orbit surpasses 11,700," 2025.

Integrating Text, Imagery, and Metadata through Multimodal LLMs

Need for a unified and generalisable pipeline to integrate structured and unstructured disaster data.

- Transform heterogeneous disaster-related data into interpretable knowledge
- Use multimodal LLMs to extract ontology-guided triples and build Knowledge Graphs
- Enable transparent event comparisons, support disaster response decisions, and enhance interpretability across socio-economic, spatial, and temporal dimensions

From Heterogeneous Data to Structured Knowledge

Figure: Pipeline overview for transforming heterogeneous disaster-related data into structured KGs using domain-specific ontologies and multimodal LLMs.

Case Study: Integrating Multimodal Data for Flood Event Understanding

Table: Multimodal data for the Sri Lanka flood event (December 2019).

ReliefWeb					
Field (Type – Name)	Content				
string – Name date – Date string – Country float – (lot, lat) string – Disaster Type string – GLIDE ID text – Description	Sri Lanka: Floods and Landslides - Dec 2019 1 Dec 2019 Sri Lanka (80.7, 7.61) Flood FL-2019-000171-LKA At least 3 people died following a landslide in Walapane Village. At least 570 people have been displaced in Batticaloa District and more than 4,100 people have been affected[]				
OpenStreetMap					
Field (Type – Name)	Content				
list – Natural Features Peaks: 2 total; Woods: 2 total; Waters: 1 total					
Microsoft Planetary Compu	iter				
Field (Type – Name)	Content				
image – RGB (visual.png) image – NIR (nir.png) image – NDWI (ndwi.png	Near-Infrared. Date: 11–31 Dec				

Designing an Ontology to Structure Disaster KGs

- Ontology encodes disaster concepts and relationships
- Based on existing standards (YAGO2geo, GeoSPARQL)
- Enables structured queries and interpretable comparisons

Disaster Properties							
hasCountry hasGlide		schoolsAffected	agriculturalLandAffected	hasWetlands			
hasISO3	peopleAffected	businessesDamaged	needsShelter	ter hasWoods			
hasDisasterType	displacedPeople	People roadsDamaged humanitarianNeeds		hasScrubs			
hasStatus	fatalitiesReported	infrastructureDamaged	causedBy	hasGrasslands			
hasDate	injuriesReported	economicDamage	weatherCause	hasSprings			
hasLatitude	housesFlooded	powerOutage	affectedArea	hasTrees			
hasLongitude	housesCollapsed	waterSupplyCut	hasWaters	hasMountainRange			

Ontology schema structuring multimodal disaster data into a Knowledge Graph.

Extracting Structured Triples from Text Descriptions – Example

Metadata

Textual-report

Qualitative insights, including infrastructure damage, evacuation measures, and eyewitness accounts. These reports provide context on the event's broader impact.

Prompt

You are a geospatial analyst. Your task is to extract triples of the form (subject, predicate, object) using the GLIDE ID as subject, for the predicates and types of the relationship.txt file. Extract all structured fields directly when available. Parse impact and cause information from the description text. If a value is unavailable or uncertain, skip the triple. Do not invent any data. Output format: Only return a list of triples, one per line, in the format (subject, predicate, object). No extra comments or text please only the triples."

Example of triple extraction from textual disaster reports and metadata using ontology-guided prompts.

Extracting Structured Triples from Satellite Imagery – Example

Example of triple extraction from satellite imagery (RGB, NIR, NDWI) using ontology-guided prompts.

Visualising Disasters through a Unified Knowledge Graph

Graph view of a single event (left) and the full dataset (right).

Evaluating the Quality of the Extracted Triples

- Text-based triples: Cosine similarity between descriptions and extracted triples.
- **Image-based triples:** Evaluated against ground-truth triples using Precision, Recall, and F1.

Metric	Value					
Matching similarity	0.8915		Metric	RGB	NDWI	NIR
Mean non-matching	0.8285		Precision	0.55	0.60	0.78
Min non-matching	0.7759		Recall	0.56	0.64	0.83
Max non-matching	0.8821		F1 score	0.55	0.61	0.80
Std. non-matching	0.0153					

Evaluation of extracted triples for the text modality (left) and the image modality (right).

• Results show high semantic alignment for text (cosine \approx 0.89) and best image performance for NIR triples (F1 \approx 0.80).

Querying the Graph: Analysing Human and Economic Impact

□ Top 10 floods (peopleAffected) :		∷ Top 1	0 floods (fatalities)	:	; Top 10 floods (BusinessesDamaged) Top 2			∷ Top 10 floo	10 floods (AgriculturalLandAffected)		
Region	Date	PeopleAffected	Region	Date	Fatalities	Region	Date	BusinessesDamaged	Region	Date	AgricultureAffected
	1989-07-01T	100,000,000	Libya	2023-09-10T			2013-04-30T00:0	1,400,000	Syrian Arab Republic	2019-03-31T00:00:	86,000,000
China	1994-06-01T	73,360,000	Philippines	1991-11-05T		Bangladesh	2012-06-27T00:0	230,000		1989-07-01T00:00:	8,500,000
China	1999-06-20T	60,000,000	India	1994-06-24T	2,001	Niger	2017-06-16T00:0	16,000	India	1998-08-20T00:00:	7,000,000
	2010-05-06T	29,000,000	Sudan	2011-08-05T	2,000	Niger	2017-06-16T00:0	9,800	China	1994-06-01T00:00:	4,500,000
	1990-06-01T	26,000,000	China	1989-07-01T	2,000	Bangladesh	1998-07-17T00:0	6,500	Pakistan	2011-07-30T00:00:	2,100,000
Banglade	esh 1998-07-17T	24,000,000	Pakistan	2010-07-22T	1,985	Bangladesh	2023-08-07T00:0	1,430	Pakistan	2010-07-22T00:00:	2,000,000
India	2018-11-16T	23,000,000	China	2012-07-30T	1,250		1997-05-01T00:0	1,000	India	2010-12-06T00:00:	1,500,000
Pakistan	2010-07-22T	20,000,000	China	2011-09-25T	1,250	Iran (Islamic Repu	2020-01-11T00:0		Pakistan	2013-08-04T00:00:	1,500,000
India	2015-06-09T	13,700,000	China	2004-02-20T	1,250	Viet Nam	2017-06-05T00:0		Thailand	1995-10-01T00:00:	1,336,000

Example KG queries: ranking floods by human, economic, and temporal impact.

Querying the Graph: Spatial and Environmental Patterns in Flood Events

Example KG queries: ranking floods by regional characteristics.

Conclusions & Future Work

Conclusions

- Introduced a framework for constructing ontology-guided KGs from multimodal disaster data using multimodal LLMs
- Enabled transparent event representations and interpretable similarity comparisons
- Supports applications in disaster monitoring, early warning, and post-disaster analysis

Future Work

- Integrate additional data sources: social media, sensor networks, governmental databases
- Employ multimodal LLMs fine-tuned for EO tasks
- Build interactive tools with domain experts for real-world disaster management

Thank you!

Dataset (Hugging Face)

Linkedin

teoaivalis@iit.demokritos.gr