IFT 615 – Intelligence Artificielle

Agents intelligents

Professeur: Froduald Kabanza

Assistant: D'Jeff Nkashama

Sujets couverts

- Agents intelligents
- Rationalité
- Modèle générique PEAS de conception des agents
 - mesure de Performance, modélisation de l'Environnement, et l'implémentation des Actionneurs ainsi que des Senseurs
- Types d'environnements
 - Déterministe, stochastique, etc.
- Types d'agents
 - Reflex, orienté-but, orienté-utilité, etc.
- Exemple Le monde des wumpus (Wumpus world)

C'est quoi un agent?

 Un agent est n'importe quel entité qui perçoit son environnement par des capteurs (sensors) et agit sur cet environnement par des actionneurs (actuators)

Fonction mathématique « agent »

• La **fonction agent** f prend en entrée une séquence d'**observations** (percepts) et retourne une **action** :

$$f: P^* \rightarrow A$$

 En pratique la fonction est implémentée par un programme sur une architecture matérielle particulière

Exemple: Aspirateur robotisé

Observations (données sensorielles) : position et état des lieux

Par exemple : [A,Clean],
[A,Dirty],
[B,Clean],

Actions : Left, Right, Suck, NoOp

IFT615

Exemple: Aspirateur robotisé


```
• f:
```

 $[A,Clean] \rightarrow Right$ $[A,Dirty] \rightarrow Suck$

• • •

[A,Clean] [A,Clean] [A,Dirty] \rightarrow Suck [A,Clean] [A,Clean] [A,Clean] \rightarrow Right

••

Ébauche d'un agent

```
function Skeleton-Agent(percept) returns action
  static: memory, the agent's memory of the world

memory ← UPDATE-MEMORY(memory, percept)
  uction ← Choose-Best-Action(memory)
  memory ← UPDATE-MEMORY(memory, uction)
  return uction
```


Modèle PEAS

- PEAS : Un modèle générique de conceptions des agents par la spécification des composantes suivantes :
 - mesure de performance
 - éléments de l'environnement
 - les actions que l'agent peut effectuer (Actionneurs)
 - la séquence des observations ou percepts de l'agent (Senseurs)
- **PEAS** = **P**erformance, **E**nvironnement, **A**ctuateurs, **S**enseurs

IFT615

Exemple : Modèle PEAS pour voiture autonome

Agent : Voiture autonome

- Mesure de performance : sécurité, vitesse, respect du code routier, voyage confortable, maximisation des profits (pour un taxi)
- **Environnement**: route, trafic, piétons, clients
- Actionneurs : volant, changement de vitesse, accélérateur, frein, clignotants, klaxon
- Senseurs: caméras, sonar, GPS, odomètre, compteur de vitesse, témoins du moteur, etc.

Exemple: Modèle PEAS pour Pacman

• **Agent** : Pacman

- Environnement : le labyrinthe, les biscuits, les fantômes
- Actionneurs : se déplacer, manger, crier
- Senseurs: senseur de fantômes, senseur de biscuits, senseur pour la position,

Caractéristiques d'environnement

- Différents problèmes auront des environnements avec des caractéristiques différentes
- Caractéristiques que l'on distingue:
 - Complètement observable (vs. partiellement observable)
 - Déterministe (vs. stochastique)
 - Épisodique (vs. séquentiel)
 - Statique (vs. dynamique)
 - Discret (vs. continu)
 - ◆ **Agent unique** (vs. multi-agent)

IFT615

Froduald Kabanza

Rappel - Problèmes à résoudre

Architectures des agents

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents

IFT615

Simple reflex agents

IFT615

Simple reflex agents

```
function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition—action rules

state ← INTERPRET-INPUT(percept)

rule ← RULE-MATCH(state, rules)

action ← rule.ACTION

return action
```


IFT615

Model-based reflex agents

Goal-based agents

Utility-based agents

IFT615 Froduald Kabanza

Learning agents

Exemple: le monde des wumpus (Section 7.2)

- Mesure de performance
 - ◆ or +1000, mort -1000
 - -1 par pas, -10 pour une flèche
- Environnement
 - puanteur dans les chambres adjacentes au wumpus³
 - brise dans les chambres adjacentes à une fosse
 - scintillement si l'or est dans la chambre
 - le wumpus meurt si on lui tire une flèche de face
 - on a une seule flèche
 - on peut ramasser l'or dans la même chambre
 - on sort de la grotte en grimpant à la case [1,1]
- Capteurs: Stench (puanteur), Breeze (brise), Glitter (scintillement), Bump (choc), Scream (cri).
- Actionneurs: Left turn, Right turn, Forward, Grab, Climb, Shoot

Caractéristiques du monde des wumpus

- Complètement observable? Non seulement perception locale.
- Déterministe? Oui l'effet de chaque action est prévisible.
- Épisodique? Non séquentiel au niveau des actions.
- Statique? Oui le wumpus et les fosses ne bougent pas.
- Discret? Qui.
- Agent unique? Oui La seule action du wumpus est de nous « bouffer » si on atteint sa chambre.

30

Exercice – Quel type d'environnement pour Pacman?

IFT615 Froduald Kabanza 38

Conclusion

- En résumé, l'intelligence artificielle s'intéresse à tout sujet qui permettrait de reproduire toute capacité de l'intelligence humaine
- Un agent est quelque chose qui perçoit et agit sur son environnement
- Idéalement, on aimerait concevoir un agent rationnel
 - par rationnel, on veut dire qui maximise sa performance espérée (moyenne)
- L'espace des agents possibles est très large
 - dépend de la tâche à résoudre
 - chaque algorithme qu'on va voir est associé à un type d'agent spécifique
- Il existe plusieurs types d'environnement
 - leurs caractéristiques vont déterminer quel algorithme on devrait utiliser

Vous devriez être capable de...

- Donner une définition de l'intelligence artificielle
- Expliquer pourquoi l'approche par intelligence artificielle peut être plus appropriée
- Définir ce qu'est un agent et donnez des exemples
- Faire une analyse d'un agent selon le modèle PEAS
- Déterminer les caractéristiques d'un environnement donné

IFT615

Prochaine leçon

- Formes d'apprentissage
- Algorithmes des K plus proches voisins

