

ADD

Integer Addition

ADD

Syntax ADD op1, op2
Operation $(op1) \leftarrow (op1) + (op2)$

Data Types WORD

Description

Performs a 2's complement binary addition of the source operand specified by op2 and the destination operand specified by op1. The sum is then stored in op1.

Condition Flags

E	Z	V	С	N
*	*	*	*	*

- **E** Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used to signal the end of a table.
- **Z** Set if result equals zero. Cleared otherwise.
- V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified data type. Cleared otherwise.
- C Set if a carry is generated from the most significant bit of the specified data type. Cleared otherwise.
- **N** Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemo	onic	Format	Bytes
ADD	Rw _n , Rw _m	00 nm	2
ADD	Rw _n , [Rw _i]	08 n:10ii	2
ADD	Rw _n , [Rw _i +]	08 n:11ii	2
ADD	Rw _n , #data3	08 n:0###	2
ADD	reg, #data16	06 RR ## ##	4
ADD	reg, mem	02 RR MM MM	4
ADD	mem, reg	04 RR MM MM	4

ADDB

Integer Addition

ADDB

SyntaxADDBop1, op2Operation $(op1) \leftarrow (op1) + (op2)$

Data Types BYTE

Description

Performs a 2's complement binary addition of the source operand specified by op2 and the destination operand specified by op1. The sum is then stored in op1.

Condition Flags

E	Z	V	С	N
*	*	*	*	*

- **E** Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used to signal the end of a table.
- **Z** Set if result equals zero. Cleared otherwise.
- V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified data type. Cleared otherwise.
- C Set if a carry is generated from the most significant bit of the specified data type. Cleared otherwise.
- **N** Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemor	nic	Format	Bytes
ADDB	Rb _n , Rb _m	01 nm	2
ADDB	Rb _n , [Rw _i]	09 n:10ii	2
ADDB	Rb _n , [Rw _i +]	09 n:11ii	2
ADDB	Rb _n , #data3	09 n:0###	2
ADDB	reg, #data8	07 RR ## xx	4
ADDB	reg, mem	03 RR MM MM	4
ADDB	mem, reg	05 RR MM MM	4

SUB Integer Subtraction

SUB

SyntaxSUBop1, op2Operation $(op1) \leftarrow (op1) - (op2)$

Data Types WORD

Description Perform

Performs a 2's complement binary subtraction of the source operand specified by op2 from the destination operand specified by op1. The result is then stored in op1.

Condition Flags

E	Z	V	С	N
*	*	*	S	*

- **E** Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used to signal the end of a table.
- **Z** Set if result equals zero. Cleared otherwise.
- **V** Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified data type. Cleared otherwise.
- **C** Set if a borrow is generated. Cleared otherwise.
- **N** Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemoni	С	Format	Bytes
SUB	Rw _n , Rw _m	20 nm	2
SUB	Rw_n , $[Rw_i]$	28 n:10ii	2
SUB	Rw_n , $[Rw_i+]$	28 n:11ii	2
SUB	Rw _n , #data3	28 n:0###	2
SUB	reg, #data16	26 RR ## ##	4
SUB	reg, mem	22 RR MM MM	4
SUB	mem, reg	24 RR MM MM	4

SUBB

Integer Subtraction

SUBB

Syntax SUBB op1, op2
Operation $(op1) \leftarrow (op1) - (op2)$

Data Types BYTE

Description Performs a 2's complement binary subtraction of the source

operand specified by op2 from the destination operand specified

by op1. The result is then stored in op1.

Condition Flags

E	Z	V	С	N
*	*	*	S	*

- E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used to signal the end of a table.
- **Z** Set if result equals zero. Cleared otherwise.
- **V** Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified data type. Cleared otherwise.
- **C** Set if a borrow is generated. Cleared otherwise.
- **N** Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

	Format	Bytes
Rb _n , Rb _m	21 nm	2
Rb _n , [Rw _i]	29 n:10ii	2
Rb _n , [Rw _i +]	29 n:11ii	2
Rb _n , #data3	29 n:0###	2
reg, #data8	27 RR ## xx	4
reg, mem	23 RR MM MM	4
mem, reg	25 RR MM MM	4
F	Rb _n , [Rw _i] Rb _n , [Rw _i +] Rb _n , #data3 reg, #data8 reg, mem	Rb _n , Rb _m 21 nm Rb _n , [Rw _i] 29 n:10ii Rb _n , [Rw _i +] 29 n:11ii Rb _n , #data3 29 n:0### reg, #data8 27 RR ## xx reg, mem 23 RR MM MM

MOV Move Data MOV

Syntax MOV op1, op2

Operation $(op1) \leftarrow (op2)$

Data Types WORD

Description Moves the contents of the source operand specified by op2 to the

location specified by the destination operand op1. The contents of the moved data is examined, and the condition codes are updated

accordingly.

Condition Flags

E	Z	V	С	N
*	*	-	-	*

- **E** Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used to signal the end of a table.
- **Z** Set if the value of the source operand op2 equals zero. Cleared otherwise.
- V Not affected.
- C Not affected.
- **N** Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

JMPA

Absolute Conditional Jump

JMPA

Syntax

JMPA op1, op2

Operation

IF (op1) = 1 THEN

 $(IP) \leftarrow op2$

ELSE

Next Instruction

END IF

Description

If the condition specified by op1 is met, a branch to the absolute address specified by op2 is taken. If the condition is not met, no action is taken, and the instruction following the JMPA instruction is executed normally.

Note

The condition codes for op1 are defined in Table 5.

Condition Flags

E	Z	V	С	N
-	-	-	-	-

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

Not affected.

Addressing

Mnemonic

Format

Bytes

Modes

JMPA cc, caddr

EA c0 MM MM

4

JMPA

Absolute Conditional Jump

JMPA

Syntax

JMPA op1, op2

Operation

IF (op1) = 1 THEN

 $(IP) \leftarrow op2$

ELSE

Next Instruction

END IF

Description

If the condition specified by op1 is met, a branch to the absolute address specified by op2 is taken. If the condition is not met, no action is taken, and the instruction following the JMPA instruction is executed normally.

Note

The condition codes for op1 are defined in Table 5.

Condition Flags

E	Z	V	С	N
-	-	-	-	-

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

Not affected.

Addressing

Mnemonic

Format

Bytes

Modes

JMPA cc, caddr

EA c0 MM MM

4

JMPI Indirect Conditional Jump

JMPI

Syntax JMPI op1, op2

Operation IF (op1) = 1 THEN

 $(IP) \leftarrow op2$

ELSE

Next Instruction

END IF

Description If the condition specified by op1 is met, a branch to the absolute

address specified by op2 is taken. If the condition is not met, no action is taken, and the instruction following the JMPI instruction is

executed normally.

Note The condition codes for op1 are defined in Table 5.

Condition Flags

E	Z	V	С	N
-	-	-	-	-

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

Not affected.

AddressingMnemonicFormatBytesModesJMPIcc, $[Rw_n]$ 9C cn2