CS330 - Computer Organization and Assembly Language Programming

Lecture 9

-Floating Point Representation-

Professor: Mahmut Unan – UAB CS

Agenda

- IEEE floating point standard
- Example and properties

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 101.112

2 7/8 10.1112

1 7/16 1 . **0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

```
Value Representation
```

- 1/3 0.01010101[01]...2
- 1/5 0.001100110011[0011]...2
- 1/10 0.0001100110011[0011]...2

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	exp	frac
	•	

Precision options

Single precision: 32 bits

Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

- The value encoded by a given bit representation can be divided into three different cases, depending on the value of exp.
- Case 1: Normalized Values
- Case 2: Denormalized Values
- Case 3: Special Values

Case 1: "Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
v = (-1)^s M 2^E

E = Exp - Bias
```

```
• Value: float F = 15213.0;

15213_{10} = 11101101101101_2

= 1.1101101101101_2 \times 2^{13}
```

Significand

```
M = 1.101101101_2
frac = 10110110110100000000002
```

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 1101101101101000000000

s exp

frac

Case 2: Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - $\exp = 000...0, frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Case 3: Special Values

- Condition: **exp** = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: **exp** = **111**...**1**, **frac** ≠ **000**...**0**
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

Visualization: Floating Point Encodings

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

frac

s exp

 $v = (-1)^s M 2^E$

n: E = Exp - Bias

d: E = 1 - Bias

		-						
	0	0000	000	-6	0			
	0	0000	001	-6	1/8*1/64	=	1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	=	2/512	ciosest to zero
numbers								
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6	7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/512	
	•••							
	0	0110	110	-1	14/8*1/2	=	14/16	
	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	=	1	
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	=	10/8	
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	largest norm
	0	1111	000	n/a	inf			

Value

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Exercises

Convert 147.625 to IEEE 754 format

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits 147: 10010011 128+16+2+1=147 .625 = $5/8 \rightarrow 101$

 $\frac{1}{2} + \frac{1}{8}$

Unan - UAB - CS330

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011
128+16+2+1 = 147
.625 =
$$5/8 \rightarrow 101$$

 $\frac{1}{2} + \frac{1}{8}$

10010011.101

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011
128+16+2+1 =147
.625 =
$$5/8 \rightarrow 101$$

 $\frac{1}{2} + \frac{1}{8}$

10010011.101

=1.0010011101 * 2⁷

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011
128+16+2+1 = 147
.625 =
$$5/8 \rightarrow 101$$

 $\frac{1}{2} + \frac{1}{8}$

10010011.101

=1.0010011101 * 2⁷

7= Exp - 127 → Exp=134 134→ 1000110 (exponent)

Convert 147.625 t

Sign: 1 Bit Exp: 8 Bits

147: 10010011

$$.625 = 5/8 \rightarrow 101$$

$$\frac{1}{2} + \frac{1}{8}$$

Remember:

E = Exp - Bias

Bias;

Single precision: 127

Double precision: 1023

=1.0010011101 * 2⁷

7= Exp - 127 → Exp=134

134→ 1000110 (exponent)

• Sign: 1 Bit Exp: 8 Bits Mantiss 147: 10010011 128+16+2+1 = 147 101 101 128 + 16+2+1 = 147 101 101 101 $*2^7$ $\frac{1}{2} + \frac{1}{8}$ 100100110 (exponent)

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011
128+16+2+1 = 147
.625 =
$$5/8 \rightarrow 101$$

 $\frac{1}{2} + \frac{1}{8}$

10010011.101 10010011101 * 2⁷

7= Exp - 127 → Exp=134 134→ 1000110 (exponent)

0010011101 → Mantissa

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011

$$128+16+2+1=147$$

 $.625 = 5/8 \rightarrow 101$
 10010011.101
 $=1.0010011101 * 2^7$
 $1/2 + 1/8$
 $134 \rightarrow 1000110 \text{ (exponent)}$

0010011101 → Mantissa → it is 10 bits, we will need to add 13 zeros (Remember: Mantissa should be 23 bits for single precision)

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011

$$128+16+2+1=147$$

 $.625 = 5/8 \rightarrow 101$
 10010011.101
 $=1.0010011101 * 2^7$
 $10010011101 * 2^7$
 $10010011101 * 2^7$
 $10010011101 * 2^7$
 $10010011101 * 2^7$

0010011101 → Mantissa → it is 10 bits, we will need to add 13 zeros 00100111010000000000000 → Mantissa 1000110 → exp $0 \rightarrow \text{sign bit}$

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011
128+16+2+1 = 147
.625 =
$$5/8 \rightarrow 101$$

 $\frac{1}{2} + \frac{1}{8}$

10010011.101 10010011101 * 2⁷

7= Exp - 127 → Exp=134 134→ 10000110 (exponent)

0010011101 → Mantissa → it is 10 bits, we will need to add 13 zeros 00100111010000000000000 → Mantissa 10000110 → exp $0 \rightarrow sign bit$

0 10000110 00100111010000000000000

• Sign: 1 Bit Exp: 8 Bits Mantissa: 23 Bits

147: 10010011
128+16+2+1 =147
.625 =
$$5/8 \rightarrow 101$$

 $\frac{1}{2} + \frac{1}{8}$

10010011.101

=1.<mark>0010011101</mark> * 2⁷

7= Exp - 127 → Exp=134 134→ 10000110 (exponent)

Mantissa

- $0 \rightarrow sign bit \rightarrow positive$

- $0 \rightarrow sign bit \rightarrow positive$
- 10000111 \rightarrow convert to decimal \rightarrow 135

$$135-127 = 8 \rightarrow 2^{8}$$

- $0 \rightarrow sign bit \rightarrow positive$
- 10000111 \rightarrow convert to decimal \rightarrow 135

$$135-127 = 8 \rightarrow 2^{8}$$

Since we always drop 1, now we can add it

1.000111100000000000000000

- $0 \rightarrow sign bit \rightarrow positive$
- 10000111 \rightarrow convert to decimal \rightarrow 135

$$135-127 = 8 \rightarrow 2^{8}$$

Since we always drop 1, now we can add it

1.000111100000000000000000

we can move the decimal points 8 times

100011110.0000000000000000

- $0 \rightarrow sign bit \rightarrow positive$
- 10000111 \rightarrow convert to decimal \rightarrow 135

Unan - UAB - CS330

- $0 \rightarrow sign bit \rightarrow positive$
- 10000111 \rightarrow convert to decimal \rightarrow 135

$$135-127 = 8 \rightarrow 2^{8}$$

Since we always drop 1, now we can add it

100011110.0000000000000000

- $0 \rightarrow sign bit \rightarrow positive$
- 10000111 \rightarrow convert to decimal \rightarrow 135

$$135-127 = 8 \rightarrow 2^{8}$$

Since we always drop 1, now we can add it

286.00

ts 8 times

100011110.0000000000000000

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

•	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
- Round down ($-\infty$)	\$1	\$1	\$1	\$2	- \$2
- Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
 Nearest Even (default) 	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

```
7.8949999 7.89(Less than half way)
```

7.8950001 7.90(Greater than half way)

7.8950000 7.90(Half way—round up)

7.8850000 7.88(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

- $(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$ -Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - –Sign s, significand M:
 - Result of signed align & add
 - -Exponent E: E1

Fixing

- -If M ≥ 2, shift M right, increment E
- -if M < 1, shift M left k positions, decrement E by k
- –Overflow if E out of range
- -Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative?
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - 0 is additive identity?

Yes

Yes

- Every element has additive inverse?
- Almost
- Yes, except for infinities & NaNs
- Monotonicity

Almost

- a ≥ b \Rightarrow a+c ≥ b+c?
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

– Closed under multiplication?

Yes

But may generate infinity or NaN

– Multiplication Commutative?

Yes

– Multiplication is Associative?

No

Possibility of overflow, inexactness of rounding

• Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20

– 1 is multiplicative identity?

Yes

– Multiplication distributes over addition?

No

Possibility of overflow, inexactness of rounding

• 1e20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = NaN

Monotonicity

 $- a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

Almost

Except for infinities & NaNs

Floating Point in C

- C Guarantees Two Levels
 - -float single precision
 - **-double** double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - -double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - $-int \rightarrow double$
 - Exact conversion, as long as int has ≤ 53 bit word size
 - $-int \rightarrow float$
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
* x == (int)(float) x

* x == (int)(double) x

* f == (float)(double) f

* d == (double)(float) d

* f == -(-f);

* 1.0/2 == 1/2.0

* d * d >= 0.0

* (d+f)-d == f
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Table 10.3 IEEE 754 Format Parameters

Parameter	Format		
1 at afficier	binary32	binary64	binary128
Storage width (bits)	32	64	128
Exponent width (bits)	8	11	15
Exponent bias	127	1023	16383
Maximum exponent	127	1023	16383
Minimum exponent	-126	-1022	-16382
Approx normal number range (base 10)	10_38, 10+38	10_308, 10+308	$10_{-4932}, 10_{+4932}$
Trailing significand width (bits)*	23	52	112
Number of exponents	254	2046	32766
Number of fractions	2 ₂₃	2 ₅₂	2 ₁₁₂
Number of values	1.98 × 2 ₃₁	1.99 × 2 ₆₃	1.99 × 2 ₁₂₈
Smallest positive normal number	2_126	2_1022	2_16362
Largest positive normal number	$2_{128} - 2_{104}$	$2_{1024} - 2_{971}$	$2_{16384} - 2_{16271}$
Smallest subnormal magnitude	2_149	2_1074	2_16494

^{*} not including implied bit and not including sign bit

Table 10.5
Interpretation of IEEE 754 Floating-Point Numbers (page 1 of 3)

	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	all 1s	0	8
Minus infinity	1	all 1s	0	-8
quiet NaN	0 or 1	all 1s	≠ 0; first bit = 1	qNaN
signaling NaN	0 or 1	all 1s	≠ 0; first bit = 0	sNaN
positive normal nonzero	0	0 < e < 255	f	$2_{e-127}(1.f)$
negative normal nonzero	1	0 < e < 255	f	$-2_{e-127}(1.f)$
positive subnormal	0	0	f ≠ 0	$2_{e-126}(0.f)$
negative subnormal	1	0	f ≠ 0	$-2_{e-126}(0.f)$

(a) binary32 format

Table 10.5
Interpretation of IEEE 754 Floating-Point Numbers (page 2 of 3)

	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	all 1s	0	8
Minus infinity	1	all 1s	0	_8
quiet NaN	0 or 1	all 1s	≠ 0; first bit = 1	qNaN
signaling NaN	0 or 1	all 1s	≠ 0; first bit = 0	sNaN
positive normal nonzero	0	0 < e < 2047	f	$2_{e-1023}(1.f)$
negative normal nonzero	1	0 < e < 2047	f	$-2_{e-1023}(1.f)$
positive subnormal	0	0	f ≠ 0	$2_{e-1022}(0.f)$
negative subnormal	1	0	f ≠ 0	$-2_{e-1022}(0.f)$

(a) binary64 format

Creating Floating Point Number

- Steps
 - Normalize to have leading 1
 - Round to fit within fraction

- Postnormalize to deal with effects of rounding
- Case Study
 - Convert 8-bit unsigned numbers to tiny floating point format
 Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

- Requirement
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = 1 \rightarrow > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Interesting Numbers

- Double ≈ 1.8×10^{308}

{single,double}

D	escription	exp	frac	Numeric Value
•	Zero	0000	0000	0.0
•	Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
	- Single ≈ 1.4 x 10^{-45}			
	- Double ≈ 4.9×10^{-324}			
•	Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
	- Single ≈ 1.18 x 10^{-38}			
	- Double ≈ 2.2×10^{-308}			
•	Smallest Pos. Normalized	0001	0000	$1.0 \times 2^{-\{126,1022\}}$
	 Just larger than largest denorm 	alized		
•	One	0111	0000	1.0
•	Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
	- Single ≈ 3.4×10^{38}			