Tabla 1.1. Resultados obtenidos de voltaje y corriente, en cada elemento del circuito.

Variable	Valor calculado	Valor medido	Error porcentual
$V_{R1}(V)$	2.05	2.05	0.01 %
$I_{R1}(mA)$	2.05	2.05	0.01%
$V_{R2}(V)$	4.24	4.25	0.01%
I _{R2} (mA)	1.09	0.965	11.46%
$V_{R3}(V)$	2.12	2.12	0.01%
$I_{R3}(mA)$	0.964	0.965	0.01%
$V_{R4}(V)$	2.12	2.12	0.01%
I _{R4} (mA)	0.964	0.965	0.10%
$V_{R5}(V)$	3.69	3.70	0.27%
I _{R5} (mA)	2.05	2.05	0.01%

CÁLCULOS

$$R_{eq1} = R_3 + R_4$$
 $R_{eq1} = 2200 + 2200$ $R_{eq1} = 4400 \Omega$ $R_{eq1} = 4.4 m\Omega$

$$\begin{split} \frac{1}{R_{eq2}} &= \frac{1}{R_2} + \frac{1}{R_{eq1}} \\ \frac{1}{R_{eq2}} &= \frac{1}{3900} + \frac{1}{4400} \\ \frac{1}{R_{eq2}} &= \frac{83}{171600} \\ R_{eq2} &= \frac{171600}{83} \\ R_{eq2} &= 2067.47 \ \Omega \\ R_{eq2} &= 2.067 \ m\Omega \end{split}$$

$$R_{eq3} = R_1 + R_{eq2} + R_5$$

 $R_{eq3} = 1000 + 2.067 + 1800$

$$R_{eq3} = 4867.47 \,\Omega$$

$$R_{eq3} = 4.867 \, m\Omega$$

$$I_T = \frac{V}{R_{eq3}}$$

$$I_T = \frac{10}{4867.47}$$

$$I_T = 2.05 \times 10^{-3} A$$

$$I_T = 2.05 \text{ mA}$$

Para resistencia 1

$$V_{R1} = I_T x R_1$$

$$V_{R1} = 2.05x 10^{-3} x 1000$$

$$V_{R1} = 2.05 V$$

$$I_{R1} = \frac{V_{R1}}{R_1}$$

$$I_{R1} = \frac{2.05}{1000}$$

$$I_{R1} = 2.05x10^{-3} A$$

$$I_{R1} = 2.05 mA$$

Para resistencia 2

$$V_{Req2} = R_{eq2} x I_T$$

$$V_{Req2} = 2067.47 x 2.05 x 10^{-3}$$

$$V_{Req2} = 4.2383 V \approx 4.24 V$$

$$I_{Req2} = \frac{V_{Req2}}{R_{eq2}}$$
 $I_{Req2} = \frac{4.24}{2067.47}$
 $I_{Req2} = 2.05x10^{-3} A$
 $I_{Req2} = 2.05 mA$

$$V_{R2} = 4.24 V$$

$$I_{R2} = \frac{V_{R2}}{R_2}$$

$$I_2 = \frac{4.24}{3900}$$

$$I_{R2} = 1.0871x10^{-3} A \approx 1.09 \, mA$$

Para resistencia 3

$$I_{Req1} = \frac{V_{Req1}}{R_{eq1}}$$

$$I_{Req1} = \frac{4.24}{4400}$$

$$I_{Req1} = 9.64x10^{-4} A = 964x10^{-6} A$$

$$I_{Req1} = 964 \mu A$$

$$I_{Req1} = 0.964 mA$$

$$I_{R3} = 0.964 \, mA$$

$$V_{R3} = I_{R3} x R_3$$

 $V_{R3} = 0.964x10^{-3} x 2200$
 $V_{R3} = 2.12 V$

Para resistencia 4

$$I_{R3} = I_{R4} = 0.964 \, mA$$

$$V_{R3} = I_{R4} x R_4$$

$$V_{R4} = 0.964x10^{-3} x 2200$$

$$V_{R4} = 2.12 V$$

Para resistencia 5

$$V_{R5} = I_T x R_5$$

 $V_{R3} = 2.05x10^{-3} x 1800$
 $V_{R3} = 3.69 V$

$$I_{R5} = \frac{V_{R5}}{R_5}$$

$$I_{R5} = \frac{3.69}{1800}$$

$$I_{R5} = 2.05x10^{-3} A$$

$$I_{R5} = 2.05 mA$$

Tabla 1.2 Verificación de la tabla LVK

	TRAYECTORIA 1		TRAYECTORIA 2		TRAYECTORIA 3		
VOLTAJE	Calculado	Medido	Calculado	Medido	Calculado	Medido	Error
							porcentual
$V_{T}(V)$	10	10	0	0	0	0	-
$V_{R1}(V)$	2.05	2.05	0	0	2.05	2.05	0.01%
$V_{R2}(V)$	4.25	4.25	4.25	4.25	0	0	0.01%
$V_{R3}(V)$	0	0	2.12	2.12	2.12	2.12	0,01%
$V_{R4}(V)$	0	0	2.12	2.12	2.12	2.12	0.01%
$V_{R5}(V)$	3.69	3.70	0	0	3.69	3.70	0.27%
$\sum \mathbf{V}$	19.99	20	8.49	8.49	9.98	9.98	-

CÁLCULOS

Trayectoria 1

$$6.7 I_1 - 3.9 I_2 = 10$$

Trayectoria 2

$$-3.9 I_1 + 8.3 I_2 = 0$$

$$-26.13 I_{1} + 15.21 I_{2} = -39$$

$$26.13 I_{1} - 55.61 I_{2} = 0$$

$$-40.4 I_{2} = -39$$

$$I_{2} = 0.964 mA$$

$$I_{1} = \frac{8.3 I_{2}}{3.9}$$

$$I_{1} = \frac{8.3 \times 0.96}{3.9}$$

$$I_{1} = \frac{8.3 \times 0.96}{3.9}$$

$$I_{1} = 2.043 mA$$

$$V = IR$$

$$V_{R1} = I_1 R_1$$

$$V_{R1} = 2.05 \times 10^{-3} \times 1000$$

$$V_{R1} = 2.05 V$$

$$V_{R5} = I_5 R_5$$

 $V_{R5} = 2.05 \times 10^{-3} \times 1800$
 $V_{R5} = 3.69 V$

$$V_{R3} = I_3 R_3$$

 $V_{R3} = 0.964 \times 10^{-3} \times 2200$
 $V_{R3} = 2.12 V$

$$V_{R3} = V_{R4} = 2.12 V$$

$$V_{R2} = (I_1 - I_2) x 3.9$$

 $V_{R2} = 1.09 x 3.9$
 $V_{R2} = 4.25 V$

Tabla 1.3 Verificación de la LCK

AMPERAJ E	NODO 1		NODO 2			
	Calculad	Medid	Error	Calcula	Medid	Error
L	0	0	porcentual	do	0	porcentual
$\mathbf{I}_{\mathrm{T}}\left(\mathbf{V}\right)$	2.05	2.05	0.01%	0.964	0.965	0.10%
$I_{R1}(V)$	2.05	2.05	0.01%	0	0	-
$I_{R2}(V)$	1.09	0.965	11.46%	1.09	0.965	11.46%
$I_{R3}(V)$	0	0	-	0.964	0.965	0.10%
$I_{R4}(V)$	0	0	-	0.964	0.965	0.10%
$I_{R5}(V)$	2.05	2.05	0.01%	0	0	-
$\sum \mathbf{I}$	7.24	7.115	-	3.98	3.86	-

$$I = \frac{V}{R}$$

$$I_{R1} = \frac{2.05}{1000} = 2.05 \, mA$$

$$I_{R2} = \frac{4.25}{3900} = 1.09 \, mA$$

$$I_{R3} = \frac{2.12}{2200} = 0.964 \, mA$$

$$I_{R3} = I_{R4} = 0.964 \, mA$$

$$I_{R5} = \frac{3.69}{1800} = 2.05 \, mA$$

Formulas a considerar: