Macroeconomics 1

Lecture - Overlapping generations model

Diego de Sousa Rodrigues diego.desousarodrigues@sciencespo.fr

Sciences Po

2022 Fall

Introduction

Moving away from the Representative agent model

- ► Representative agent implies a disregard for life-cycle motives for saving, i.e., saving for old age.
- All agents are the same and age does not affect saving decisions.
- ► How would allowing for some life-cycle motives for savings change the conclusions we had before?

Overlapping generations model

- ▶ We introduce a discrete-time model developed by Allais (1947), Samuelson (1958), and Diamond (1965).
- Households are not pictured as a single dynasty but as a sequence of overlapping families, each one with its own utility and budget constraint.

Overlapping generations model

- ▶ We introduce a discrete-time model developed by Allais (1947), Samuelson (1958), and Diamond (1965).
- Households are not pictured as a single dynasty but as a sequence of overlapping families, each one with its own utility and budget constraint.
- ► Each family lives for two periods and overlaps with the family from the previous period (when young) and the next one (when old).
- ► This setting has an equilibrium that could Pareto dominated the market one and the failure of the Ricardian equivalence.

Why is this interesting?

- ► New economic interactions: decisions made by older generations will affect the prices faced by younger generations;
- ▶ Provide a tractable alternative to infinite-horizon representative agent models;

Why is this interesting?

- ► New economic interactions: decisions made by older generations will affect the prices faced by younger generations;
- Provide a tractable alternative to infinite-horizon representative agent models;

- Some key implications are different from a neoclassical growth model, where there is an equilibrium that is better than the market outcome;
- ▶ It gives insights into the role of National debt, i.e., Fiscal Policy and Social Security in the economy.

The Model

- Each household lives for two periods.
- ▶ There are N_t young households born in period t and each one supplies labor inelastically so that the total labor supply L_t is equal to N_t . Assume the labor force grows at the rate n:

$$\frac{L_{t+1}}{L_t} = \frac{N_{t+1}}{N_t} = 1 + n.$$

- Each household lives for two periods.
- ▶ There are N_t young households born in period t and each one supplies labor inelastically so that the total labor supply L_t is equal to N_t . Assume the labor force grows at the rate n:

$$\frac{L_{t+1}}{L_t} = \frac{N_{t+1}}{N_t} = 1 + n.$$

► The budget constraint of a household born in t is:

$$c_{1t} + s_t = \omega_t,$$

$$c_{2t+1} = R_{t+1}s_t.$$

- Each household lives for two periods.
- ▶ There are N_t young households born in period t and each one supplies labor inelastically so that the total labor supply L_t is equal to N_t . Assume the labor force grows at the rate n:

$$\frac{L_{t+1}}{L_t} = \frac{N_{t+1}}{N_t} = 1 + n.$$

► The budget constraint of a household born in t is:

$$c_{1t} + s_t = \omega_t,$$

$$c_{2t+1} = R_{t+1}s_t.$$

► They will maximize their utility:

$$U(c_{1t}) + \beta U(c_{2t+1}).$$

► Assume a **production function** homogeneous of degree one:

$$Y_t = F(K_t, L_t),$$

where we could also have the format: $Y_t = F(K_t, A_t L_t)$.

► Capital accumulation is:

$$K_{t+1} = (1 - \delta)K_t + I_t.$$

¹Notice there are N_t workers but $N_t + N_{t+1}$ households alive.

► Assume a **production function** homogeneous of degree one:

$$Y_{t}=F\left(K_{t},L_{t}\right) ,$$

where we could also have the format: $Y_t = F(K_t, A_t L_t)$.

► Capital accumulation is:

$$K_{t+1} = (1 - \delta)K_t + I_t.$$

► Define the per worker variables as:¹

$$y_t = f(k_t), \quad y_t = \frac{Y_t}{L_t}, \quad k_t = \frac{K_t}{L_t}.$$

¹Notice there are N_t workers but $N_t + N_{t+1}$ households alive.

► The derivative of the original and per worker functions *F* and *f* are related by:

$$\frac{\frac{\partial F(K_t, L_t)}{\partial K_t}}{\frac{\partial F(K_t, L_t)}{\partial L_t}} = f'(k_t),$$

$$\frac{\frac{\partial F(K_t, L_t)}{\partial L_t}}{\frac{\partial F(K_t, L_t)}{\partial L_t}} = f(k_t) - k_t f'(k_t).$$

Market equilibrium

▶ The savings s_t are the solution to the following program:

$$\begin{aligned} & \text{Max } s_{t} U(c_{1t}) + \beta U(c_{2t+1}), \\ & c_{1t} + s_{t} = \omega_{t}, \\ & c_{2t+1} = R_{t+1} s_{t}. \end{aligned}$$

...

ightharpoonup The savings s_t are the solution to the following program:

$$\begin{aligned} & \mathsf{Max} \ _{s_t} U(c_{1t}) + \beta U(c_{2t+1}) \,, \\ & c_{1t} + s_t = \omega_t, \\ & c_{2t+1} = R_{t+1} s_t. \end{aligned}$$

...

► The **F.O.C**. will be:

$$U'(c_{1t}) = \beta R_{t+1} U'(c_{2t+1}).$$

ightharpoonup The savings s_t are the solution to the following program:

$$\begin{aligned} & \mathsf{Max} \ _{s_t} U \left(c_{1t} \right) + \beta U \left(c_{2t+1} \right), \\ & c_{1t} + s_t = \omega_t, \\ & c_{2t+1} = R_{t+1} s_t. \end{aligned}$$

. . .

► The F.O.C. will be:

$$U'(c_{1t}) = \beta R_{t+1} U'(c_{2t+1}).$$

► Therefore, the savings function will be:

$$s_t \equiv S(\omega_t, R_{t+1})$$
.

Optimal savings – effect of wages

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2}).$$

How do savings depend on wages (income)?

Optimal savings - effect of wages

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2}).$$

How do savings depend on wages (income)?

1. Differentiate in ω the above implicit equation:

$$U''(\omega - S)d\omega - U''(\omega - S)(dS/d\omega)d\omega = \beta R^2 U''(RS)(dS/d\omega)d\omega.$$

Optimal savings - effect of wages

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2}).$$

How do savings depend on wages (income)?

1. Differentiate in ω the above implicit equation:

$$U''(\omega - S)d\omega - U''(\omega - S)(dS/d\omega)d\omega = \beta R^2 U''(RS)(dS/d\omega)d\omega.$$

2. Rearrange to get:

$$rac{dS}{d\omega} = rac{U''(c_1)}{eta R^2 U''(c_2) + U''(c_1)} > 0.$$

Optimal savings – effect of wages

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2}).$$

How do savings depend on wages (income)?

1. Differentiate in ω the above implicit equation:

$$U''(\omega - S)d\omega - U''(\omega - S)(dS/d\omega)d\omega = \beta R^2 U''(RS)(dS/d\omega)d\omega.$$

2. Rearrange to get:

$$\frac{dS}{d\omega} = \frac{U''(c_1)}{\beta R^2 U''(c_2) + U''(c_1)} > 0.$$

 An increase in the wage level implies an increase in consumption at both periods, thus savings (to transfer consumption to the second period).

Optimal savings – effect of interest rate

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2})$$

How do savings depend on the interest rate?

Optimal savings - effect of interest rate

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2}).$$

How do savings depend on the interest rate?

1. Totally differentiate (in S and R) the above implicit equation:

$$-U''(\omega - S)dS = \beta U'(RS)dR + \beta RU''(RS)SdR + \beta R^2 U''(RS)dS.$$

Optimal savings - effect of interest rate

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2}).$$

How do savings depend on the interest rate?

1. Totally differentiate (in S and R) the above implicit equation:

$$-U''(\omega - S)dS = \beta U'(RS)dR + \beta RU''(RS)SdR + \beta R^2 U''(RS)dS.$$

2. Rearrange to get:

$$\frac{dS}{dR} = -\beta \frac{U'(c_2) + RU''(c_2)S}{\beta R^2 U''(c_2) + U''(c_1)} \leq 0.$$

Optimal savings - effect of interest rate

Savings $S(\omega, R)$ solve:

$$U'(\underbrace{\omega - S(\omega, R)}_{=c_1}) = \beta RU'(\underbrace{RS(\omega, R)}_{=c_2}).$$

How do savings depend on the interest rate?

1. Totally differentiate (in S and R) the above implicit equation:

$$-U''(\omega - S)dS = \beta U'(RS)dR + \beta RU''(RS)SdR + \beta R^2 U''(RS)dS.$$

2. Rearrange to get:

$$\frac{dS}{dR} = -\beta \frac{U'(c_2) + RU''(c_2)S}{\beta R^2 U''(c_2) + U''(c_1)} \leq 0.$$

3. Effect of interest rate on savings is ambiguous.

Income and substitution effect

$$\frac{dS}{dR} = -\beta \frac{U'(c_2) + RU''(c_2)S}{\beta R^2 U''(c_2) + U''(c_1)} \leq 0.$$

Can someone tell why this effect is ambiguous?

Income and substitution effect

$$\frac{dS}{dR} = -\beta \frac{U'(c_2) + RU''(c_2)S}{\beta R^2 U''(c_2) + U''(c_1)} \leq 0.$$

Can someone tell why this effect is ambiguous?

...

▶ Income effect: because the young are savers, an increase in the interest rate makes them richer – the future return on their savings will be higher – this increases early consumption and hence reduces the incentives to save.

Income and substitution effect

$$\frac{dS}{dR} = -\beta \frac{U'(c_2) + RU''(c_2)S}{\beta R^2 U''(c_2) + U''(c_1)} \leq 0.$$

Can someone tell why this effect is ambiguous?

...

► Income effect: because the young are savers, an increase in the interest rate makes them richer – the future return on their savings will be higher – this increases early consumption and hence reduces the incentives to save.

► Substitution effect: an increase in the interest rate makes future consumption relatively cheaper (increases the returns on savings), this increases the incentives to save.

Optimal savings

1. Take as an example the isoelastic utility function:

$$U(c) = rac{c^{1- heta}}{1- heta}.$$

2. Savings are:

...

Optimal savings

1. Take as an example the isoelastic utility function:

$$U(c) = rac{c^{1- heta}}{1- heta}.$$

2. Savings are:

...

$$S\left(\omega_{t},R_{t+1}\right) = \frac{\omega_{t}}{1 + \left(\beta R_{t+1}^{1-\theta}\right)^{-1/\theta}}.$$

3. If $\theta = 1$, savings are a constant fraction of real wage income:

$$S(\omega_t, R_{t+1}) = \frac{\beta \omega_t}{1+\beta}.$$

▶ If K_t is used in period t, then the **total output available** is:

$$(1-\delta)K_t+F(K_t,L_t).$$

▶ If K_t is used in period t, then the **total output available** is:

$$(1-\delta)K_t + F(K_t, L_t)$$
.

▶ Consequently R_t , the marginal rate of return on K_t is:

$$R_t = rac{\partial}{\partial \mathcal{K}_t} \left[(1 - \delta) \mathcal{K}_t + F\left(\mathcal{K}_t, \mathcal{L}_t
ight)
ight] = 1 - \delta + f'\left(\mathcal{K}_t
ight).$$

Capital dynamics

▶ Capital in period t + 1 is equal to savings in period t. Because only the N_t young households save, we have:

. .

Capital dynamics

▶ Capital in period t + 1 is equal to savings in period t. Because only the N_t young households save, we have:

...

$$K_{t+1} = N_t s_t$$
.

► In per worker terms we have:

..

Capital dynamics

▶ Capital in period t + 1 is equal to savings in period t. Because only the N_t young households save, we have:

...

$$K_{t+1} = N_t s_t$$
.

► In per worker terms we have:

...

$$k_{t+1} = \frac{s_t}{1+n}.$$

► The equation of the evolution of capital per worker:

...

Capital dynamics

▶ Capital in period t + 1 is equal to savings in period t. Because only the N_t young households save, we have:

...

$$K_{t+1} = N_t s_t$$
.

► In per worker terms we have:

...

$$k_{t+1} = \frac{s_t}{1+n}.$$

► The equation of the evolution of capital per worker:

...

$$k_{t+1} = \frac{S\left(\omega_t, R_{t+1}\right)}{1+n}.$$

Capital dynamics

• Using $\omega_t = f(k_t) - k_t f'(k_t)$ and $R_t = 1 - \delta + f'(k_t)$ we have:

$$k_{t+1} = \frac{1}{1+n} S\left[f(k_t) - k_t f'(k_t), 1 - \delta + f'(k_{t+1})\right].$$

Capital dynamics

• Using $\omega_t = f(k_t) - k_t f'(k_t)$ and $R_t = 1 - \delta + f'(k_t)$ we have:

$$k_{t+1} = \frac{1}{1+n} S\left[f(k_t) - k_t f'(k_t), 1 - \delta + f'(k_{t+1})\right].$$

- ▶ We cannot say that much, since S(.) can take many forms:
 - 1. There can be multiple steady states.
 - 2. There can be no steady state.
 - 3. There can be a unique steady state.

▶ Neoclassical Growth Model: with standard assumptions on utility and the production function we get:

...

► Neoclassical Growth Model: with standard assumptions on utility and the production function we get:

..

- 1. Unique steady state,
- 2. Saddle path stability,
- 3. Pareto efficiency,
- 4. No over-saving.
- ▶ O.L.G. model: getting rid of the representative agent and keeping everything else:

...

► Neoclassical Growth Model: with standard assumptions on utility and the production function we get:

..

- 1. Unique steady state,
- 2. Saddle path stability,
- 3. Pareto efficiency,
- 4. No over-saving.
- ▶ O.L.G. model: getting rid of the representative agent and keeping everything else:

1. We cannot say much in general.

- Explanation is in the income and substitution effect.
 - ► Stability in Neoclassical Growth Model because on the equilibrium path:

$$k_t > k^* \Leftrightarrow r_t < r^* \Rightarrow \text{ dissave } \Rightarrow \dot{c}_t < 0 \& \dot{k}_t < 0.$$

What could happen in the O.L.G. when we decrease the interest rate?
...

...

- Explanation is in the income and substitution effect.
 - ▶ Stability in Neoclassical Growth Model because on the equilibrium path:

$$k_t > k^* \Leftrightarrow r_t < r^* \Rightarrow \text{ dissave } \Rightarrow \dot{c}_t < 0 \& \dot{k}_t < 0.$$

- ▶ What could happen in the O.L.G. when we decrease the interest rate?
- ▶ With O.L.G. if income effect is strong, then low-interest rates can increase savings (saving does not have as high a return as before, so need to save more to compensate). This would increase capital accumulation.

Income and substitution effect with CRRA

Assume the utility is CRRA:

$$U(c_t) = rac{c_t^{1- heta}-1}{1- heta}.$$

- 1. Find the optimal saving rates function, s_t .
- 2. Analyse the **impact of** ω and R_{t+1} in the saving rates. How does this impact depend on the parameter θ (which effects dominate for each possible scenario)? Explain your results.

1. Let the **utility function be**:

$$U(c_{1t}) + \beta U(c_{2t+1}) = \log_{1t} + \beta \log c_{2t+1}.$$

2. Assume:

$$f(k) = Ak^{\alpha}$$
.

3. Remember the capital dynamics is:

$$k_{t+1} = \frac{S\left(\omega_t, R_{t+1}\right)}{1+n}$$

4. Find the **dynamic equation** for this case:

..

1. Let the **utility function be**:

$$U(c_{1t}) + \beta U(c_{2t+1}) = \log_{1t} + \beta \log c_{2t+1}.$$

2. Assume:

$$f(k) = Ak^{\alpha}$$
.

3. Remember the capital dynamics is:

$$k_{t+1} = \frac{S\left(\omega_t, R_{t+1}\right)}{1+n}$$

4. Find the **dynamic equation** for this case:

..

► The **dynamics equation** is then given by:

$$k_{t+1} = \frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}k_t^{\alpha}.$$

► The **dynamics equation** is then given by:

$$k_{t+1} = \frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}k_t^{\alpha}.$$

► This will **converge monotonically** toward the unique equilibrium:

$$k^* = \left[\frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}\right]^{1/(1-\alpha)}.$$

► The **dynamics equation** is then given by:

$$k_{t+1} = \frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}k_t^{\alpha}.$$

► This will **converge monotonically** toward the unique equilibrium:

$$k^* = \left[\frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}\right]^{1/(1-\alpha)}.$$

What are the implications of savings and population growth for capital accumulation in this case? Are the results different from the Solow Model?

► The **dynamics equation** is then given by:

$$k_{t+1} = \frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}k_t^{\alpha}.$$

► This will **converge monotonically** toward the unique equilibrium:

$$k^* = \left[\frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}\right]^{1/(1-\alpha)}.$$

What are the implications of savings and population growth for capital accumulation in this case? Are the results different from the Solow Model?

► The **dynamics equation** is then given by:

$$k_{t+1} = \frac{\beta(1-\alpha)A}{(1+n)(1+\beta)}k_t^{\alpha}.$$

This will converge monotonically toward the unique equilibrium:

$$k^* = \left[rac{eta(1-lpha)A}{(1+n)(1+eta)}
ight]^{1/(1-lpha)}.$$

What are the implications of savings and population growth for capital accumulation in this case? Are the results different from the Solow Model?

Optimality

How does this result compare to the planner problem?

- ► Question: what would the social planner's choice be if she were to maximize the weighted average of all generations' utilities?
- What aspects the Social Planner should take into consideration?
 ...

How does this result compare to the planner problem?

- ► Question: what would the social planner's choice be if she were to maximize the weighted average of all generations' utilities?
- ▶ What aspects the Social Planner should take into consideration?

..

- Allocation between two periods of one household (life-cycle allocation).
- Allocation between generations.

How does this result compare to the planner problem?

- ► Question: what would the social planner's choice be if she were to maximize the weighted average of all generations' utilities?
- What aspects the Social Planner should take into consideration?
 - ► Allocation between two periods of one household (life-cycle allocation).
 - Allocation between generations.
- ▶ It is possible to show that the planner allocates life-cycle consumption exactly as the agent would do (i.e. following the Euler equation).
- ► However, the allocation between generations is not Pareto-optimal: there is over-accumulation of capital because older generations do not take into account the negative impact of their capital accumulation on the interest rate faced by following generations.

Pareto Optima

▶ In period *t* to **balance the goods markets** we should have:

$$N_t c_{1t} + N_{t-1} c_{2t} + K_{t+1} = F(K_t, L_t) + (1 - \delta) K_t.$$

► In per worker terms we will have:

$$c_{1t} + \frac{c_{2t}}{1+n} + (1+n)k_{t+1} = f(k_t) + (1-\delta)k_t.$$

Pareto Optima

▶ In period t to balance the goods markets we should have:

$$N_t c_{1t} + N_{t-1} c_{2t} + K_{t+1} = F(K_t, L_t) + (1 - \delta)K_t.$$

► In per worker terms we will have:

$$c_{1t} + \frac{c_{2t}}{1+n} + (1+n)k_{t+1} = f(k_t) + (1-\delta)k_t.$$

► The **Social Planner Problem** can be written as:

Maximize
$$c_{1t}, c_{2t+1}, k_{t+1} \sum_{t=0}^{\infty} \zeta_t \left[U(c_{1t}) + \beta U(c_{2t+1}) \right], \quad \text{s.t.}$$

$$c_{1t} + \frac{c_{2t}}{1+n} + (1+n)k_{t+1} = f(k_t) + (1-\delta)k_t. \quad \forall t$$

▶ Solving the previous problem we find:

$$U'(c_{1t}) = \beta R_{t+1} U'(c_{2t+1}).$$

- The idea is that an infinity of Pareto optima satisfies this condition.
- ► Let's use a more discriminating criterion and compute the optimal level of capital in a steady state.
- ▶ Denote it by \hat{k} , as the one that maximizes the utility of the representative household.

1. The **problem** now will be:

Maximize
$$U(c_1) + \beta U(c_2)$$
, s.t. $c_1 + \frac{c_2}{1+n} = f(k) - (\delta + n)k$.

1. The **problem** now will be:

Maximize
$$U(c_1) + \beta U(c_2)$$
, s.t $c_1 + \frac{c_2}{1+n} = f(k) - (\delta + n)k$.

2. First observes that we have:

$$f'(\hat{k}) = \delta + n.$$

1. The **problem** now will be:

Maximize
$$U(c_1) + \beta U(c_2)$$
, s.t $c_1 + \frac{c_2}{1+n} = f(k) - (\delta + n)k$.

2. First observes that we have:

$$f'(\hat{k}) = \delta + n.$$

3. Now the problem will be:

Maximize
$$U(c_1) + \beta U(c_2)$$
, s.t $c_1 + \frac{c_2}{1+n} = f(\hat{k}) - (\delta + n)\hat{k}$.

1. The **problem** now will be:

Maximize
$$U(c_1) + \beta U(c_2)$$
, s.t. $c_1 + \frac{c_2}{1+n} = f(k) - (\delta + n)k$.

2. First observes that we have:

$$f'(\hat{k}) = \delta + n.$$

3. Now the problem will be:

Maximize
$$U(c_1) + \beta U(c_2)$$
, s.t. $c_1 + \frac{c_2}{1+n} = f(\hat{k}) - (\delta + n)\hat{k}$.

4. Since $R_t = 1 - \delta + f'(k_t)$, in the end, we have: $\hat{R} = 1 + n$.

- Now we will explore the possibility of **inefficient equilibria**.
- ► We say that there is overaccumulation of capital if the amount of capital per worker is superior to the value given by the golden rule:

$$f'(k) < \delta + n = f'(\hat{k}).$$

- Now we will explore the possibility of inefficient equilibria.
- ► We say that there is overaccumulation of capital if the amount of capital per worker is superior to the value given by the golden rule:

$$f'(k) < \delta + n = f'(\hat{k}).$$

▶ If this is the case, it is possible to improve the situation of all generations, so the initial one is not even Pareto optimal:

$$c_{1t} + \frac{c_{2t}}{1+n} + (1+n)k_{t+1} = f(k_t) + (1-\delta)k_t.$$

▶ Imagine that starting at period t = 1, k_t decreases to the level k_1 , with $\hat{k} \le k_1 < k_0$.

- ▶ Imagine that starting at period t = 1, k_t decreases to the level k_1 , with $\hat{k} \le k_1 < k_0$.
- \triangleright Compared to the **reference trajectory corresponding to** k_0 we have:

$$\Delta\left(c_{1t}+rac{c_{2t}}{1+n}
ight)=\Delta\left[f\left(k_{t}
ight)+(1-\delta)k_{t}-(1+n)k_{t+1}
ight].$$

- ▶ Imagine that starting at period t = 1, k_t decreases to the level k_1 , with $\hat{k} \le k_1 < k_0$.
- \triangleright Compared to the **reference trajectory corresponding to** k_0 we have:

$$\Delta\left(c_{1t}+rac{c_{2t}}{1+n}
ight)=\Delta\left[f\left(k_{t}
ight)+(1-\delta)k_{t}-(1+n)k_{t+1}
ight].$$

For t = 0 we have:

- ▶ Imagine that starting at period t = 1, k_t decreases to the level k_1 , with $\hat{k} \le k_1 < k_0$.
- \triangleright Compared to the **reference trajectory corresponding to** k_0 we have:

$$\Delta\left(c_{1t}+rac{c_{2t}}{1+n}
ight)=\Delta\left[f\left(k_{t}
ight)+(1-\delta)k_{t}-(1+n)k_{t+1}
ight].$$

ightharpoonup For t=0 we have:

$$\Delta\left(c_{10}+\frac{c_{20}}{1+n}\right)=(1+n)(k_0-k_1)>0.$$

And for $t \geq 1$:

- ▶ Imagine that starting at period t = 1, k_t decreases to the level k_1 , with $\hat{k} \le k_1 < k_0$.
- \triangleright Compared to the **reference trajectory corresponding to** k_0 we have:

$$\Delta\left(c_{1t}+\frac{c_{2t}}{1+n}\right)=\Delta\left[f\left(k_{t}\right)+(1-\delta)k_{t}-(1+n)k_{t+1}\right].$$

For t = 0 we have:

$$\Delta\left(c_{10}+\frac{c_{20}}{1+n}\right)=(1+n)(k_0-k_1)>0.$$

ightharpoonup And for t > 1:

$$\Delta\left(c_{1t} + \frac{c_{2t}}{1+n}\right) = [f(k_1) - (\delta+n)k_1] - [f(k_0) - (\delta+n)k_0] > 0.$$

All generations benefit from it, so the initial equilibrium was not Pareto optimal.

Pensions

Using the Overlapping generations models to study pensions

➤ We can study the debate between a "fully funded" pension system and a "pay-as-you-go" pension system. How do you explain those pension systems? ...

Using the Overlapping generations models to study pensions

- We can study the debate between a "fully funded" pension system and a "pay-as-you-go" pension system. How do you explain those pension systems? ...
- ► The government collects a premium x_t from young households and gives a pension z_{t+1} to old households:

$$c_{1t} + s_t = \omega_t - x_t,$$

 $c_{2t+1} = R_{t+1}s_t + z_{t+1}.$

Using the Overlapping generations models to study pensions

- We can study the debate between a "fully funded" pension system and a "pay-as-you-go" pension system. How do you explain those pension systems? ...
- ► The government collects a premium x_t from young households and gives a pension z_{t+1} to old households:

$$c_{1t} + s_t = \omega_t - x_t,$$

 $c_{2t+1} = R_{t+1}s_t + z_{t+1}.$

- ▶ The "fully-funded" and the "pay-as-you-go" system differ basically in the way x_t and z_{t+1} are related.
- Use the utility function:

$$\log c_{1t} + \beta \log c_{2t+1}$$

► The government collects a premium x_t , and invests it into the financial markets, which is used as private savings:

$$z_{t+1} = R_{t+1} x_t.$$

► The government collects a premium x_t , and invests it into the financial markets, which is used as private savings:

$$z_{t+1} = R_{t+1} x_t$$
.

► The household's budget constraint:

$$c_{1t} + s_t = \omega_t - x_t,$$

 $c_{2t+1} = R_{t+1}s_t + R_{t+1}x_t.$

► The intertemporal budget constraint is:

$$c_{1t} + \frac{c_{2t+1}}{R_{t+1}} = \omega_t.$$

► What is the **optimal level of savings**?

► The optimal level of savings will be:

$$s_t = \frac{\beta \omega_t}{1 + \beta} - x_t.$$

What does this mean?

..

► The optimal level of savings will be:

$$s_t = \frac{\beta \omega_t}{1+\beta} - x_t.$$

What does this mean?

..

▶ What about the capital accumulation?

...

► The optimal level of savings will be:

$$s_t = \frac{\beta \omega_t}{1+\beta} - x_t.$$

- What does this mean?
 - ..
- What about the capital accumulation?
 - ...
- ► The capital accumulation will be:

$$K_{t+1} = N_t (s_t + x_t) = \frac{\beta N_t \omega_t}{1 + \beta}.$$

► The optimal level of savings will be:

$$s_t = \frac{\beta \omega_t}{1 + \beta} - x_t.$$

What does this mean?

. . .

- What about the capital accumulation?
- ► The capital accumulation will be:

$$K_{t+1} = N_t (s_t + x_t) = \frac{\beta N_t \omega_t}{1 + \beta}.$$

Compared to the system without pensions, the introduction of a fully funded pension system is neutral.

► The government collects premia from the young generation and distributes them immediately to the old generation:

$$N_t x_t = N_{t-1} z_t,$$

and since $N_t = (1 + n)N_{t-1}$ we have:

$$z_t = (1+n)x_t.$$

► The government collects premia from the young generation and distributes them immediately to the old generation:

$$N_t x_t = N_{t-1} z_t,$$

and since $N_t = (1 + n)N_{t-1}$ we have:

$$z_t = (1+n)x_t.$$

and the **budget constraint** will be:

$$c_{1t} + s_t = \omega_t - x_t,$$

 $c_{2t+1} = R_{t+1}s_t + (1+n)x_{t+1}.$

Assume that $x_{t+1} = x_t$. So, the **problem of the household** will be:

$$\text{Max}_{s_t} \log (\omega_t - x_t - s_t) + \beta \log [R_{t+1}s_t + (1+n)x_t].$$

..

Assume that $x_{t+1} = x_t$. So, the **problem of the household** will be:

$$\text{Max}_{s_t} \log (\omega_t - x_t - s_t) + \beta \log [R_{t+1}s_t + (1+n)x_t].$$

..

By solving the problem the optimal savings will be:

$$s_t = \frac{\beta}{1+\beta} \left(\omega_t - x_t\right) - \frac{1+n}{(1+\beta)R_{t+1}} x_t.$$

Use the following relationships and find the dynamic equation for capital accumulation:

$$k_{t+1} = \frac{s_t}{1+n},$$
 $\omega_t = f(k_t) - k_t f'(k_t),$
 $R_{t+1} = 1 - \delta + f'(k_{t+1}).$

...

Use the following relationships and find the dynamic equation for capital accumulation:

$$k_{t+1} = \frac{s_t}{1+n},$$

 $\omega_t = f(k_t) - k_t f'(k_t),$
 $R_{t+1} = 1 - \delta + f'(k_{t+1}).$

. . .

This gives the following dynamic equation for capital accumulation:

$$k_{t+1} = \frac{\beta \left[f(k_t) - k_t f'(k_t) - x_t \right]}{(1+\beta)(1+n)} - \frac{x_t}{(1+\beta)\left[1 - \delta + f'(k_{t+1}) \right]}.$$

Define

$$k_{t+1} = \frac{\beta \left[f(k_t) - k_t f'(k_t) - x_t \right]}{(1+\beta)(1+n)} - \frac{x_t}{(1+\beta)\left[1 - \delta + f'(k_{t+1}) \right]} \equiv \Theta(k_t, x_t).$$

► The derivatives are the following ones. Prove it:

$$\Theta_k > 0, \quad \Theta_x < 0.$$

b By assuming the steady state capital $k^*(x)$ is **dynamically efficient** we have:

- ► The fully funded system was neutral with respect to a system without pensions.
- Observe we have:

$$k^*(x) = \Theta[k^*(x), x].$$

▶ We then have by taking derivative:

$$\frac{dk^*(x)}{dx} = \frac{\Theta_x}{1 - \Theta_k},$$

where at least at the steady state we have, $\Theta_{\it k} < 1$.

Consider the case where we go from $x_t = 0$ for $x_t = x > 0$.

- Consider the case where we go from $x_t = 0$ for $x_t = x > 0$.
- ► If the level of capital is lower than k*(x). An increase in x_t results in a gain for the current old generations, as they get extra benefits. However, it will reduce k* in the future and the future generations will be worse off.

- Consider the case where we go from $x_t = 0$ for $x_t = x > 0$.
- ► If the level of capital is lower than k*(x). An increase in x_t results in a gain for the current old generations, as they get extra benefits. However, it will reduce k* in the future and the future generations will be worse off.
- ► If there is overaccumulation the introduction of the pay-as-you-go retirement will go in the right direction.

- Consider the case where we go from $x_t = 0$ for $x_t = x > 0$.
- If the level of capital is lower than k*(x). An increase in x_t results in a gain for the current old generations, as they get extra benefits. However, it will reduce k* in the future and the future generations will be worse off.
- ► If there is overaccumulation the introduction of the pay-as-you-go retirement will go in the right direction.

Taxes and Capital Accumulation

The way that taxes are collected affects capital accumulation in the O.L.G. economy. Let the households have utility function:

$$\log C_1 + \beta \log C_2.$$

Assume they receive an exogenous income Y when young and can invest an amount of capital K, which will give them an income AK in the second period. The government spends G, which is financed by lump-sum taxes.

- 1. Assume that the **government taxes young households in a lump-sum** by an amount $T_1 = G$. What is the level of capital accumulation?
- 2. Assume that the **government taxes old households in a lump-sum** by an amount $T_2 = G$. What is the level of capital accumulation?
- 3. Compare the answers.

Labor versus Capital Taxation

Let $Y_t = AK_t^{\alpha}L_t^{1-\alpha}$ and $K_{t+1} = I_t$. Suppose we have an O.L.G. structure with a constant population where the generation t has the utility function:

$$U_t = \log C_{1t} + \beta \log C_{2t+1}.$$

The government maximizes the discounted sum of utilities:

$$\sum_{t=s-1}^{\infty} \phi^{t} U_{t} = \sum_{t=s-1}^{\infty} \phi^{t} \left(\log C_{1t} + \beta \log C_{2t+1} \right).$$

The government spending is $G_t = \zeta Y_t$.

Assume the government taxes labor and capital income at the constant rate τ_{ℓ} and τ_{k} , so that the total taxes collected are:

$$T_t = \tau_\ell \omega_t L_t + \tau_k R_t K_t.$$

Assume also the government balances the budget period by period: $T_t = G_t$:

- 1. Compute the **dynamics of this economy**.
- 2. Find the **optimal tax rates** τ_{ℓ} and τ_{k} .

Conclusions

Summary

- ▶ O.L.G. models are more realistic than infinitely lived representative agent models.
- ► In O.L.G. models the possibility of over-accumulation of capital leads to dynamic inefficiency.
- ► Key to **overaccumulation**:
 - High motive for savings.
 - ► Generations do not take into account the negative impact of their savings on future interest rates.

Summary

- ▶ O.L.G. models are more **realistic** than infinitely lived representative agent models.
- ▶ In O.L.G. models the possibility of over-accumulation of capital leads to dynamic inefficiency.
- ► Key to **overaccumulation**:
 - High motive for savings.
 - Generations do not take into account the negative impact of their savings on future interest rates.
- Pay-as-you-go social security might alleviate this problem.
- But overaccumulation is probably not the biggest problem
- ► There is still the key question in growth:

Summary

- ▶ O.L.G. models are more **realistic** than infinitely lived representative agent models.
- ► In O.L.G. models the possibility of over-accumulation of capital leads to dynamic inefficiency.
- ► Key to **overaccumulation**:
 - High motive for savings.
 - Generations do not take into account the negative impact of their savings on future interest rates.
- Pay-as-you-go social security might alleviate this problem.
- But overaccumulation is probably not the biggest problem
- ▶ There is still the key question in growth:
- ▶ Why do so many countries have so little capital?