School of Mathematics and Statistics

MT5836 Galois Theory

Handout VII: Solution of Equations by Radicals

7 Solution of Equations by Radicals

Radical extensions

Definition 7.1 (i) An extension K of a field F is said to be a *simple radical extension* if $K = F(\alpha)$ for some element $\alpha \in K$ satisfying $\alpha^p \in F$ for some prime number p.

(ii) An extension K of a field F is called a $radical\ extension$ if there is a sequence of intermediate fields

$$F = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$$

such that K_i is a simple radical extension of K_{i-1} for i = 1, 2, ..., n.

Lemma 7.2 Suppose $K = F(\alpha)$ where $\alpha^m \in F$ for some positive integer m > 1. Then K is a radical extension of F.

Lemma 7.3 Any radical extension is a finite extension.

Definition 7.4 Let f(X) be a polynomial over a field F of characteristic zero. We say that f(X) is soluble by radicals if there exists a radical extension of F over which f(X) splits.

Thus, f(X) is soluble by radicals when the splitting field K of f(X) over F is contained in some radical extension L of F. Then every root is some element of L and so can be expressed as a formula involving repeated use of field operations and pth roots (for a variety of prime numbers p).

Lemma 7.5 Let K be a radical extension of a field F of characteristic zero. Then there exists an extension L of K such that L is a normal radical extension of F.

Soluble groups and other group theory

Definition 7.6 A group G is called *soluble* (*solvable* in the U.S.) if there are subgroups

$$G = G_0 \geqslant G_1 \geqslant G_2 \geqslant \dots \geqslant G_d = 1 \tag{1}$$

such that, for each i = 1, 2, ..., d, the subgroup G_i is normal in G_{i-1} and the quotient group G_{i-1}/G_i is abelian.

Basic Observations:

- An abelian group is soluble.
- A non-abelian simple group is not soluble.

Proposition 7.7 (i) If G is soluble, then every subgroup of G is soluble.

- (ii) If G is soluble, then every quotient group of G is soluble.
- (iii) If N is a normal subgroup of G such that G/N and N are both soluble, then G is soluble.

Proposition 7.8 Let G be a finite soluble group. Then G has a chain of subgroups

$$G = H_0 > H_1 > H_2 > \cdots > H_n = 1$$

such that, for i = 1, 2, ..., n, H_i is a normal subgroup of H_{i-1} and H_{i-1}/H_i is cyclic of prime order.

Theorem 7.9 (Cauchy's Theorem) Let G be a finite group and p be a prime number that divides the order of G. Then G contains an element of order p.

Examples of polynomials with abelian Galois groups

Lemma 7.10 Let F be a field of characteristic zero and let K be the splitting field of $X^p - 1$ over F, where p is a prime number. Then the Galois group Gal(K/F) is abelian.

Lemma 7.11 Let F be a field of characteristic zero in which $X^n - 1$ splits. Let $\lambda \in F$ and let K be the splitting field for $X^n - \lambda$ over F. Then the Galois group $\operatorname{Gal}(K/F)$ is abelian.

Galois groups of normal radical extensions

Theorem 7.12 Let F be a field of characteristic zero and K be a normal radical extension of F. Then the Galois group Gal(K/F) is soluble.

Corollary 7.13 (Galois) Let f(X) be a polynomial over a field F of characteristic zero. If f(X) is soluble by radicals then the Galois group of f(X) over F is soluble.

A polynomial which is insoluble by radicals

Lemma 7.14 Let p be a prime and f(X) be an irreducible polynomial of degree p over \mathbb{Q} . Suppose that f(X) has precisely two non-real roots in \mathbb{C} . Then the Galois group of f(X) over \mathbb{Q} is isomorphic to the symmetric group S_p .

Example 7.15 The quintic polynomial $f(X) = X^5 - 9X + 3$ over \mathbb{Q} is not soluble by radicals.

Galois's Great Theorem

Lemma 7.16 Let K be a finite normal extension of a field F of characteristic zero and suppose that $X^p - 1$ splits in F (for some prime p). If Gal(K/F) is cyclic of order p then $K = F(\alpha)$ for some α satisfying $\alpha^p \in F$.

Theorem 7.17 (Galois's Great Theorem) Let f(X) be a polynomial over a field F of characteristic zero. Then f(X) is soluble by radicals if and only if the Galois group of f(X) over F is soluble.