Radical Ideals and their Varieties

The Strong Nullstellensatz

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Nov 10-12, 2014

Agenda

- Study (strong/exact) relationships between ideals and varieties
 - Based on the Regular and Strong Nullstellensatz result
- These results are needed for word-level verification of circuits
- The remaining concepts that enable complete hardware verification:
 - Study Nullstellensatz over algebraically closed fields
 - Then study Galois fields \mathbb{F}_{2^k} and hardware design (I'll give you my textbook chapters)
 - \bullet Then apply Nullstellensatz specifically over \mathbb{F}_{2^k} to verify digital circuits
- We should be able to study these basic concepts in the next 3-4 lectures and then apply these concepts to practical datapath circuits.

Some more concepts about Varieties

 \bullet Let $\mathbb F$ be a field and $a\in\mathbb F$ be an arbitrary point

Some more concepts about Varieties

- ullet Let $\mathbb F$ be a field and $oldsymbol{a} \in \mathbb F$ be an arbitrary point
- **a** is a variety of some ideal: find J s.t. $V(J) = \{a\}$

Some more concepts about Varieties

- ullet Let $\mathbb F$ be a field and $oldsymbol{a} \in \mathbb F$ be an arbitrary point
- **a** is a variety of some ideal: find J s.t. $V(J) = \{a\}$

Some more concepts about Varieties

- ullet Let $\mathbb F$ be a field and $oldsymbol{a} \in \mathbb F$ be an arbitrary point
- **a** is a variety of some ideal: find J s.t. $V(J) = \{a\}$

Some more concepts about Varieties

- ullet Let ${\mathbb F}$ be a field and ${f a}\in{\mathbb F}$ be an arbitrary point
- **a** is a variety of some ideal: find J s.t. $V(J) = \{a\}$

$V_1 \cup V_2$ and $V_1 \cap V_2$

Finite unions and intersections of varieties are also varieties. Let $V_1 = V(f_1, ..., f_s)$ and $V_2 = V(g_1, ..., g_t)$:

- $V_1 \cap V_2 = V(f_1, \ldots, f_s, g_1, \ldots, g_t)$
- $V_1 \cup V_2 = V(f_i \cdot g_j : 1 \le i \le s, 1 \le j \le t)$

Example: Consider the union of the (x, y)-plane and the z-axis. Then: $V(z) \cup V(x, y) = V(zx, zy)$

Consequently...

- Every finite set of points is a variety of some ideal V(J)
- Prove it!
- Example:
 - The Galois field $\mathbb{F}_2 = \mathbb{Z}_2$ is a finite set of points (2)
 - $\mathbb{F}_2 = V(J_0)$, where $J_0 = \langle x^2 x \rangle$ the ideal of vanishing polynomial

Other notations:

- Let ideal $I = \langle f_1, \dots, f_r \rangle$, $J = \langle g_1, \dots, g_s \rangle$, then:
 - $I+J=\langle f_1,\ldots,f_r,g_1,\ldots,g_s \rangle$, and $V(I+J)=V(I)\cap V(J)$
 - $I \cdot J = \langle f_i \cdot g_j : 1 \le i \le r, 1 \le j \le s \rangle$, and $V(I \cdot J) = V(I) \cup V(J)$

• If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?
- No! Not always. Maybe $I_1 = I_2$, but not always.

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?
- No! Not always. Maybe $I_1 = I_2$, but not always.
- Example:

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?
- No! Not always. Maybe $I_1 = I_2$, but not always.
- Example:
 - $I_1 = \langle x^2, y^2 \rangle$, $I_2 = \langle x, y \rangle$

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?
- No! Not always. Maybe $I_1 = I_2$, but not always.
- Example:
 - $I_1 = \langle x^2, y^2 \rangle$, $I_2 = \langle x, y \rangle$
 - $V(I_1) = V(I_2) = \{(0,0)\}, \text{ but } I_1 \neq I_2, (I_1 \subset I_2)$

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?
- No! Not always. Maybe $I_1 = I_2$, but not always.
- Example:
 - $I_1 = \langle x^2, y^2 \rangle$, $I_2 = \langle x, y \rangle$
 - $V(I_1) = V(I_2) = \{(0,0)\}, \text{ but } I_1 \neq I_2, (I_1 \subset I_2)$
- Different ideals can have the same variety!

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?
- No! Not always. Maybe $I_1 = I_2$, but not always.
- Example:
 - $I_1 = \langle x^2, y^2 \rangle$, $I_2 = \langle x, y \rangle$
 - $V(I_1) = V(I_2) = \{(0,0)\}, \text{ but } I_1 \neq I_2, (I_1 \subset I_2)$
- Different ideals can have the same variety!
- But I_1 and I_2 are somehow related....

- If ideals $I_1 = I_2$, is $V(I_1) = V(I_2)$?
- Yes, of course!
- If $V(I_1) = V(I_2)$, is $I_1 = I_2$?
- No! Not always. Maybe $I_1 = I_2$, but not always.
- Example:
 - $I_1 = \langle x^2, y^2 \rangle$, $I_2 = \langle x, y \rangle$
 - $V(I_1) = V(I_2) = \{(0,0)\}, \text{ but } I_1 \neq I_2, (I_1 \subset I_2)$
- Different ideals can have the same variety!
- But I_1 and I_2 are somehow related....
- Nullstellensatz describes these relationships exactly

I(V(J)): Ideal of polynomials that vanishes on the variety V(J)

I(V)

```
Let J = \langle f_1, \dots, f_s \rangle \subset \mathbb{F}[x_1, \dots, x_n]. Then:

I(V(J)) = \{ f \in \mathbb{F}[x_1, \dots, x_n] : f(\mathbf{a}) = 0 \ \forall \mathbf{a} \in V(J) \}
```

- I(V(J)) is the set of all polynomials that vanish on V(J)
- If f vanishes on V(J), then $f \in I(V(J))$
- Can you prove that I(V(J)) is indeed an ideal?
- Example:

•
$$J = \langle x^2, y^2 \rangle$$
, $f = x, f \notin J, f \in I(V(J))$

- In a general setting: given generators of $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, not easy to find generators of I(V(J))
- Over algebraically closed fields, I(V(J)) is related to J via \sqrt{J} [details in the next few slides]

◆ロ → 4 両 → 4 三 → 4 三 → 9 Q (~)

• Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$
 - $J = \langle x, y \rangle, I(V(J)) = J$; equality holds in this case

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$
 - $J = \langle x, y \rangle, I(V(J)) = J$; equality holds in this case
 - $J = \langle x^2 + 1 \rangle$, $V_{\mathbb{R}}(J) = \emptyset$, $I(V(J)) = I(\text{empty}) = \mathbb{R}[x]$; here $J \subset I(V(J))$

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$
 - $J = \langle x, y \rangle, I(V(J)) = J$; equality holds in this case
 - $J = \langle x^2 + 1 \rangle$, $V_{\mathbb{R}}(J) = \emptyset$, $I(V(J)) = I(\text{empty}) = \mathbb{R}[x]$; here $J \subset I(V(J))$
- Over Galois fields \mathbb{F}_q , let $J_0 = \langle x^q x \rangle$

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$
 - $J = \langle x, y \rangle, I(V(J)) = J$; equality holds in this case
 - $J = \langle x^2 + 1 \rangle$, $V_{\mathbb{R}}(J) = \emptyset$, $I(V(J)) = I(\text{empty}) = \mathbb{R}[x]$; here $J \subset I(V(J))$
- Over Galois fields \mathbb{F}_q , let $J_0 = \langle x^q x \rangle$
- What is $I(V_{\mathbb{F}_q}(J_0))$? $I(V_{\overline{\mathbb{F}_q}}(J_0))$?

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$
 - $J = \langle x, y \rangle, I(V(J)) = J$; equality holds in this case
 - $J = \langle x^2 + 1 \rangle$, $V_{\mathbb{R}}(J) = \emptyset$, $I(V(J)) = I(\text{empty}) = \mathbb{R}[x]$; here $J \subset I(V(J))$
- Over Galois fields \mathbb{F}_q , let $J_0 = \langle x^q x \rangle$
- What is $I(V_{\mathbb{F}_q}(J_0))$? $I(V_{\overline{\mathbb{F}_q}}(J_0))$?
- $I(V(J_0)) = J_0$ itself! We will prove it shortly...

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$
 - $J = \langle x, y \rangle, I(V(J)) = J$; equality holds in this case
 - $J = \langle x^2 + 1 \rangle$, $V_{\mathbb{R}}(J) = \emptyset$, $I(V(J)) = I(\text{empty}) = \mathbb{R}[x]$; here $J \subset I(V(J))$
- Over Galois fields \mathbb{F}_q , let $J_0 = \langle x^q x \rangle$
- What is $I(V_{\mathbb{F}_q}(J_0))$? $I(V_{\overline{\mathbb{F}_q}}(J_0))$?
- $I(V(J_0)) = J_0$ itself! We will prove it shortly...
- Is V(J) = V(I(V(J)))? Yes, it is!

- Given ideal $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$, then $J \subseteq I(V(J))$, but equality may not occur
 - $J = \langle x^2, y^2 \rangle, I(V(J)) = \langle x, y \rangle$ which shows $J \subset I(V(J))$
 - $J = \langle x, y \rangle, I(V(J)) = J$; equality holds in this case
 - $J = \langle x^2 + 1 \rangle$, $V_{\mathbb{R}}(J) = \emptyset$, $I(V(J)) = I(\text{empty}) = \mathbb{R}[x]$; here $J \subset I(V(J))$
- Over Galois fields \mathbb{F}_q , let $J_0 = \langle x^q x \rangle$
- What is $I(V_{\mathbb{F}_q}(J_0))$? $I(V_{\overline{\mathbb{F}_q}}(J_0))$?
- $I(V(J_0)) = J_0$ itself! We will prove it shortly...
- Is V(J) = V(I(V(J)))? Yes, it is!
- ullet Always remember that V(J) is always taken over an ACF unless specified otherwise

Still some more about I(V(J))

- Prove that I(V(J)) is an ideal
- Show that:
 - $0 \in I(V(J)$ (The zero element of the ring is in I(V(J)))
 - For $f, g \in I(V(J)) \implies f + g \in I(V(J))$
 - For $f \in I(V(J)), h \in \mathbb{F}[x_1, \dots, x_n]$, then $f \cdot h \in I(V(J))$
- The concept of I(V(J)) is valid over any ring (not necessarily algebraically closed)
- Finally, some more examples: $J = \langle x^2, y^2 \rangle$
- $f_1 = x + y$, $f_2 = x \cdot y$; $f_1, f_2 \notin J$, $f_1, f_2 \in I(V(J))$
- $f_3 = x(x + y^2) = x^2 + xy^2$; $f_3 \in J$ and so obviously $f_3 \in I(V(J))$

Regular Nullstellensatz

• Previous examples show that the reason why different ideals can have the same variety is that: for $a \in V(J)$, f(a) = 0 as well as $f^m(a) = 0$ but $(I_1 = \langle f \rangle) \neq (I_2 = \langle f^m \rangle)$

Theorem (Regular Nullstellensatz)

Let $\overline{\mathbb{F}}$ be an algebraically closed field. Let $J=\langle f_1,\ldots,f_s\rangle\subset\overline{\mathbb{F}}[x_1,\ldots,x_n]$. Let another polynomial f vanish on $V_{\overline{\mathbb{F}}}(J)$, so $f\in I(V_{\overline{\mathbb{F}}}(J))$. Then, $\exists m\in\mathbb{Z}_{\geq 1}$ s.t.

$$f^m \in J$$
,

and conversely.

Its proof is very interesting and important. Described very well in [Cox/Little/O'Shea]. Proof covered in class.

Given $\mathbb{F} = \mathsf{ACF}$, $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$ such that f vanishes on V(J), then the following statements are equivalent (i.e. implications ⇔ work both ways)

• $f \in I(V(J))$

- $f \in I(V(J))$
- $f^m \in J$ for some integer $m \ge 1$

- $f \in I(V(J))$
- $f^m \in J$ for some integer $m \ge 1$
- $V(J')=\emptyset$ for the ideal $J'=\langle f_1,\ldots,f_s,1-yf\rangle\subseteq \mathbb{F}[x_1,\ldots,x_n,y]$

- $f \in I(V(J))$
- $f^m \in J$ for some integer $m \ge 1$
- $V(J')=\emptyset$ for the ideal $J'=\langle f_1,\ldots,f_s,1-yf\rangle\subseteq \mathbb{F}[x_1,\ldots,x_n,y]$
- Given J, can you think of an approach to test if $f \in I(V(J))$? Note, you're given generators of J, not the generators of I(V(J))

- $f \in I(V(J))$
- $f^m \in J$ for some integer $m \ge 1$
- $V(J')=\emptyset$ for the ideal $J'=\langle f_1,\ldots,f_s,1-yf\rangle\subseteq \mathbb{F}[x_1,\ldots,x_n,y]$
- Given J, can you think of an approach to test if $f \in I(V(J))$? Note, you're given generators of J, not the generators of I(V(J))
- $f \in I(V(J)) \iff V(J') = \emptyset \iff 1 \in J' \iff \text{reduced GB}(J') = \{1\}$

- $f \in I(V(J))$
- $f^m \in J$ for some integer $m \ge 1$
- ullet $V(J')=\emptyset$ for the ideal $J'=\langle f_1,\ldots,f_{\mathfrak{s}},1-yf
 angle\subseteq \mathbb{F}[x_1,\ldots,x_n,y]$
- Given J, can you think of an approach to test if $f \in I(V(J))$? Note, you're given generators of J, not the generators of I(V(J))
- $f \in I(V(J)) \iff V(J') = \emptyset \iff 1 \in J' \iff \text{reduced GB}(J') = \{1\}$
- Careful: $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$ whereas $J' = \langle f_1, \dots, f_s, 1 yf \rangle \subseteq \mathbb{F}[x_1, \dots, x_n, y]$

Radical Ideals: Ideals with some special properties

We need to study one more type of ideal, called a radical ideal \sqrt{J} , that is related to J:

- In a general setting: $J \subset \sqrt{J} \subset I(V(J))$
- Over an ACF: $I(V(J)) = \sqrt{J}$ (This is the Strong Nullstellensatz)

Lemma

If $f^m \in I(V(J))$ then $f \in I(V(J))$

Definition

An ideal I is **radical** if $f^m \in I$ (for some $m \ge 1$) implies that $f \in I$

Lemma

From the Lemma and Definition above, it follows that the ideal I(V(J)) is radical.

How to find out whether an ideal is radical?

- For any (and all) polynomials f, such that $f^m \in J$ for some $m \ge 1$
 - If $f^m \in J$ implies that $f \in J$
 - Then the ideal J has the property that it is radical
- If you find a counter-example polynomial f with no m such that $f^m \in J$ implying $f \in J$, then J is not radical

Example (Counter-example for Radical Ideal)

Let $J=\langle x^3\rangle$. Pick f=x. Does there exist some m, s.t. $f^m\in J$ while also implies that $f\in J$? No. E.g., consider m=3 such that $f^3=x^3\in J$. But that does not imply $f\in J$. This is true for all $m\geq 3$. Ideal J is NOT radical.

Now consider the example on the next slide

How to find out whether an ideal is radical?

Example

Let $J = \langle x^2, x^4 - x \rangle \subset \mathbb{F}_4[x]$. Note $x^4 - x$ is a vanishing polynomial in $\mathbb{F}_4[x]$.

- Pick any polynomial f such that $f^m \in J$ for some $m \ge 1$
- Say, f = x, then for m = 2, we have $f^2 = x^2 \in J$:
- But this also implies that $f \in J$:

•
$$f = x = x^2 \cdot (x^2) - 1 \cdot (x^4 - x)$$
; so $f \in J$

- Similarly, pick $f = \alpha x^2 + \alpha^2 x$ for $\alpha \in \mathbb{F}_4$
- $\exists m=2$: $f^m=f^2=\alpha^2x^4+\alpha^4x^2$, so $f^m\in J$ for some m
- Notice that $f^m \in J$ implies that $f \in J$
- $f = \alpha x^2 + \alpha^2 x = \alpha x^2 + \alpha^2 \cdot (x^2 \cdot x^2 (x^4 x))$ so $f \in J$
- The argument can be shown to hold for all f that $\exists m : f^m \in J \implies f \in J$
- Clearly the ideal $J = \langle x^2, x^4 x \rangle \subset \mathbb{F}_4[x]$ is radical!

Radical Tests?

- \bullet Given an ideal J, is there an algorithm to find if it is radical?
- In theory, yes, but in practice this is infeasible
- An ideal may or may not be radical
- If an ideal J is NOT radical, then one can compute the Radical of J
- Radical of J is denoted as \sqrt{J} , where $\sqrt{\cdot}$ is just a "symbol"
- If the ideal J is itself radical, then computing the "radical of J" gives J itself, i.e. $\sqrt{J}=J$
- Definition of \sqrt{J} ?

Please read and understand the following two concepts

From Cox/Little/O'Shea:

An ideal $\mathbf{I} = I(V(J))$ consisting of all polynomials that vanish on V(J), has the property that if $f^m \in \mathbf{I} = I(V(J))$ then it implies that $f \in \mathbf{I} = I(V(J))$.

But that is the definition of a radical ideal: so I = I(V(J)) is also a radical ideal

\sqrt{J} : The Radical of J

Let $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$ be an ideal. The radical of J, denoted \sqrt{J} is the set:

$$\sqrt{J} = \{f : f^m \in J, \text{ for some } m \ge 1\}$$

An ideal is radical when $J = \sqrt{J}$. Explain with Examples!

Examples for J, \sqrt{J}

The Radical of J is the smallest ideal containing J, which is also radical. It is possible to have $J \subset \sqrt{J} \subset J_1$ where J_1 is a radical ideal but it is different from the Radical of J.

Example

Let $J = \langle x^2 \rangle$

i)
$$\sqrt{J} = \langle x \rangle$$

- ii) $J_1 = \langle x, y \rangle$ is a radical ideal, but $J_1 \neq \sqrt{J}$
- iii) $J \subset \sqrt{J} \subset J_1$
- iv) $J_1 = \sqrt{J_1}$, since J_1 is a radical ideal too

Given J, SINGULAR provides a library function to compute the Radical of J (OK for small problems). See the SINGULAR file uploaded along with these slides. The procedure radical(J) is available through LIB "primedec.lib" in SINGULAR.

The Strong Nullstellensatz

Theorem (The Strong Nullstellensatz)

Over an algebraically closed field $I(V(J)) = \sqrt{J}$

To prove $I(V(J)) = \sqrt{J}$:

- Prove that $\sqrt{J} \subset I(V(J))$
 - Take an arbitrary polynomial $f \in \sqrt{J}$. This implies $f^m \in J$ (definition of a radical ideal)
 - Then f^m vanishes on V(J), so \underline{f} vanishes on V(J)
 - So, $f \in I(V(J))$. Therefore, $\sqrt{J} \subset I(V(J))$
- Prove that $\sqrt{J} \supset I(V(J))$
 - Let $f \in I(V(J))$. Then $f^m \in J$ (Regular Nullstellensatz)
 - If $f^m \in J$ then $f \in \sqrt{J}$
- Since both I(V(J)) and \sqrt{J} contain each other, they are equal

Radical Membership Testing

Given generators of J, it is not always computationally feasible to identify generators of \sqrt{J} . But, it is possible to test for membership in \sqrt{J} , given J.

Theorem (Radical Membership)

Let \mathbb{F} be a arbitrary field. Let $J=\langle f_1,\ldots,f_s\rangle\subseteq \mathbb{F}[x_1,\ldots,x_n]$ be an ideal. Then a polynomial $f\in \sqrt{J}\iff 1\in J'\iff \mathsf{reducedGB}(J')=\{1\}$ where:

$$J' = \langle f_1, \ldots, f_s, 1 - y \cdot f \rangle \subset \mathbb{F}[x_1, \ldots, x_n, y],$$

and y is a new variable.

Consolidating the results

- Associated with an ideal J, there are two more ideals \sqrt{J} , I(V(J))
- In general: $J \subset \sqrt{J} \subset I(V(J))$
- Over ACF: $\sqrt{J} = I(V(J))$
- They have same solutions: $V(J) = V(\sqrt{J}) = V(I(V(J)))$ over ACF
- If f vanishes on V(J), then $f \in I(V(J)) = \sqrt{J}$
- If J is radical, then $J = \sqrt{J} = I(V(J))$
- Given J, we cannot easily find generators of \sqrt{J}
- But we can test for membership in \sqrt{J}
 - $f \in \sqrt{J} \iff \text{reducedGB}(J + \langle 1 y \cdot f \rangle) = \{1\}$
- $V(J_1) = V(J_2) \iff \sqrt{J_1} = \sqrt{J_2}$

Intuitively: Proving equality of circuits may not imply equality of ideal, but rather equality of their radicals!

401401314313

Given an ideal
$$J=\langle f_1,\ldots,f_s\rangle\subseteq \mathbb{F}_q[x_1,\ldots,x_n]$$
, and let $J_0=\langle x_1^q-x_1,\ldots,x_n^q-x_n\rangle$

$$\bullet \ I(V_{\mathbb{F}_q}(J_0)) = I(V_{\overline{\mathbb{F}_q}}(J_0)) = J_0$$

Given an ideal
$$J=\langle f_1,\ldots,f_s\rangle\subseteq \mathbb{F}_q[x_1,\ldots,x_n]$$
, and let $J_0=\langle x_1^q-x_1,\ldots,x_n^q-x_n\rangle$

- $\bullet \ I(V_{\mathbb{F}_q}(J_0)) = I(V_{\overline{\mathbb{F}_q}}(J_0)) = J_0$
- What is $\sqrt{J_0}$?

Given an ideal $J=\langle f_1,\ldots,f_s\rangle\subseteq \mathbb{F}_q[x_1,\ldots,x_n]$, and let $J_0=\langle x_1^q-x_1,\ldots,x_n^q-x_n\rangle$

- $\bullet \ I(V_{\mathbb{F}_q}(J_0)) = I(V_{\overline{\mathbb{F}_q}}(J_0)) = J_0$
- What is $\sqrt{J_0}$?
- $\sqrt{J_0} = J_0$. IOW, J_0 is a radical ideal. Prove it.

Given an ideal $J=\langle f_1,\ldots,f_s\rangle\subseteq \mathbb{F}_q[x_1,\ldots,x_n]$, and let $J_0=\langle x_1^q-x_1,\ldots,x_n^q-x_n\rangle$

- $\bullet \ I(V_{\mathbb{F}_q}(J_0)) = I(V_{\overline{\mathbb{F}_q}}(J_0)) = J_0$
- What is $\sqrt{J_0}$?
- $\sqrt{J_0} = J_0$. IOW, J_0 is a radical ideal. Prove it.
- $I(V(J_0)) = \sqrt{J_0} = J_0$

Given an ideal $J=\langle f_1,\ldots,f_s\rangle\subseteq \mathbb{F}_q[x_1,\ldots,x_n]$, and let $J_0=\langle x_1^q-x_1,\ldots,x_n^q-x_n\rangle$

- $\bullet \ I(V_{\mathbb{F}_q}(J_0)) = I(V_{\overline{\mathbb{F}_q}}(J_0)) = J_0$
- What is $\sqrt{J_0}$?
- $\sqrt{J_0} = J_0$. IOW, J_0 is a radical ideal. Prove it.
- $I(V(J_0)) = \sqrt{J_0} = J_0$

Given an ideal $J=\langle f_1,\ldots,f_s\rangle\subseteq \mathbb{F}_q[x_1,\ldots,x_n]$, and let $J_0=\langle x_1^q-x_1,\ldots,x_n^q-x_n\rangle$

- $\bullet \ I(V_{\mathbb{F}_q}(J_0)) = I(V_{\overline{\mathbb{F}_q}}(J_0)) = J_0$
- What is $\sqrt{J_0}$?
- $\sqrt{J_0} = J_0$. IOW, J_0 is a radical ideal. Prove it.
- $I(V(J_0)) = \sqrt{J_0} = J_0$

Proof: $J_0 = I(V(J_0)) = \sqrt{J_0}$

Take an arbitrary $f \in J_0$, so f is a vanishing polynomial over \mathbb{F}_q . It vanishes everywhere, so it vanishes on $V(J_0)$ too. Hence, $f \in I(V(J_0))$. Conversely, take $f \in I(V(J_0))$, then $f^m \in J_0$ (Regular Nullstellensatz). Which means f^m is a vanishing polynomial. $f^m = 0$ everywhere $\iff f = 0$ everywhere. This means $f \in J_0$. This proves $J_0 = I(V(J_0))$.

Since
$$V_{\mathbb{F}_q}(J_0)=V_{\overline{\mathbb{F}_q}}(J_0)$$
, we have: $J_0=I(V_{\mathbb{F}_q}(J_0))=I(V_{\overline{\mathbb{F}_q}}(J_0))=\sqrt{J_0}$

Life is easy over Galois fields \mathbb{F}_q

Theorem $(J + J_0 \text{ is radical})$

Over Galois fields $\sqrt{J+J_0}=J+J_0$, i.e. $J+J_0$ is a radical ideal.

Note: J is an arbitrary ideal, and J_0 is the ideal of all vanishing polynomials. J_0 is radical, J may or may not be radical, but $J+J_0$ becomes radical! Proof is attached separately.

Example

I showed you on previous slides that $J=\langle x^2\rangle$ and $J_0=\langle x^4-x\rangle$, then $J+J_0=\langle x^2,x^4-x\rangle\subset \mathbb{F}_4[x]$ is radical, i.e. $J+J_0=\sqrt{J+J_0}$

Theorem (Strong Nullstellensatz over \mathbb{F}_q)

$$I(V_{\mathbb{F}_q}(J)) = I(V_{\overline{\mathbb{F}_q}}(J+J_0) = \sqrt{J+J_0} = J+J_0$$

Apply Strong Nullstellensatz to Circuit Verification

- ullet Now we will apply the Strong Nullstellensatz over \mathbb{F}_q to verify circuits
- Formulate as f vanishes on V(J)
- So $f \in I(V(J))$
- We know that over Galois fields, $I(V(J)) = J + J_0$
- So test if $f \in J + J_0$ or test of $f \xrightarrow{GB(J+J_0)} + 0$?
- The challenge is to do this verification in a scalable fashion
- Next set of slides...