

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PRINCÍPIOS DE CONTAGEM - 2023.1

PROFESSOR: WILLIKAT BEZERRA DE MELO

TURMA: 2Z

MONITOR: JARDEL FELIPE CABRAL DOS SANTOS

RESOLUÇÃO DA LISTA 7

TEBOLO ÇITO DIT LISTIT I
Problema 1. Desenhe um grafo completo com 4 vértices.
Resolução.
Problema 2. Responda o que se pede.
(a) Dado um grafo G com vértices $\{A,B,C,D,E\}$ e arestas $\{(A,B),(B,C),(C,D),(D,E)\}$, indique um subgrafo desse grafo.
Resolução.
1tcsolução.
Utilizaremos a notação $V(X)$ para denotar o conjunto de vértices do grafo X e $E(X)$ para denotar o conjunto de arestas do grafo X .
Por definição, um grafo H é subgrafo de um grafo G se $V(H) \subset V(G)$ e $E(H) \subset E(G)$. Assim, podemos obter um subgrafo H de G se escolhermos $V(H) \subset V(G)$ e $E(H) \subset E(G)$ de modo que H seja um grafo. Por exemplo:
Se H é o grafo onde $E(H)=\{(A,B)\}$ e $V(H)=\{A,B,C,D\}$, então H é subgrafo de G .
(b) Explique a diferença entre subgrafo induzido e subgrafo não induzido.

	ıção.

Dado um grafo G e conjunto $X \subset V(G)$, dizemos que o grafo H é o subgrafo de G induzido
por X se $V(H)=X$ e $E(H)=\{(u,v):u,v\in X\}$. Se $E(H)\varsubsetneq\{(u,v):u,v\in X\}$, então
dizemos que o subgrafo H é não é induzido por X , ou seja, é não induzido.

Problema 3. Responda o que se pede.

(a) O que é uma árvore em teoria dos grafos?

.....

Resolução.

Uma árvore é um grafo G que é acíclico e conexo.

.....

(b) Desenhe uma árvore com 4 vértices.

.....

Resolução.

.....

(c) Qual é o número mínimo de arestas que uma árvore com n vértices pode ter?

.....

Resolução.

Afirmação: Uma árvore com n vértices pode ter no mínimo n-1 arestas.

Para demonstrar esta afirmação, precisaremos de dois teoremas:

Teorema 1: Se G é um grafo conexo com n vértices, então $e(G) \ge n - 1$.

Teorema 2: Seja G um grafo conexo com n vértices. Se e(G) = n - 1, então G é acíclico.

Estes teoremas aparecem nas notas de aula e são demonstrados na página 41 e 42 da mesma. Ver lema 3 e proposição 8.

Demonstração da afirmação. Faremos a demonstração em duas etapas:

- (1) Mostrar a existência de uma árvore com n vértices e com n-1 arestas.
- (2) Argumentar que não existe árvores com n e com menos de n-1 arestas.

Seja G um grafo conexo com n vértices. Pelo teorema 1, temos que $\mathrm{e}(G) \geq n-1$. Ou seja, o número de arestas de G é pelo menos n-1. Para ser uma árvore, G precisa ser acíclico. Suponha que $\mathrm{e}(G) = n-1$ (o teorema 1 garante que isso é possível). Logo, pelo teorema 2, temos que G é acíclico. Portanto, por definição, G é uma árvore. Desse modo, existe uma árvore com n vértices e com n-1 arestas.

Como toda árvore é um grafo conexo, então, dada uma árvore A com n vértices, pelo teorema 1, temos que $e(A) \ge n - 1$. Logo, o número mínimo de arestas que uma árvore com n vértices pode ter é n - 1 arestas.

(d) Quantas folhas uma árvore com 7 vértices pode ter no máximo?

Resolução.

Observe na figura a abaixo uma árvore com 7 vértices e 6 folhas:

Afirmação: Uma árvore com 7 vértices tem no máximo 6 folhas.

Para demonstrar esta afirmação, utilizaremos o seguinte lema:

Lema: Um grafo G é conexo se e somente se para quaisquer $x, y \in V(G)$, existe um caminho de x a y.

Este lema aparece nas notas de aula e é demonstrado na página 40 da mesma. Ver lema 2.

Demonstração da afirmação. Suponha, para efeito de absurdo, que exista uma árvore G com 7 vértices e com mais de 6 folhas. Pela definição de folha, o número de vértices de grau 1 é igual à quantidade de folhas da árvore. Logo, G deve ter 7 folhas pois só possui 7 vértices.

Considere $u, v, w \in V(G)$ tais que $u \neq v, u \neq w$ e $v \neq w$. Por ser uma árvore, temos que G é conexo. Desse modo, pelo lema, para quaisquer $x, y \in V(G)$, existe um caminho de x a y. Sejam A e B sequências de vértices de G que descrevem um caminho de u a v e u a w, respectivamente. Temos duas possibilidades:

- (i) ou a sequência A tem exatamente dois termos. (A = (u, v))
- (ii) ou a sequência A tem mais de dois termos.

Note que (ii) não pode acontecer, pois implicaria que existe um vértice de G que tem grau maior do que 1 (esse vértice seria uma "ponte" que ligaria dois vértices no caminho) e contradiria a hipótese de G ter 7 folhas. Assim, necessariamente (i) deve acontecer.

De maneira análoga, podemos concluir que B é uma sequência com exatamente dois termos, ou seja: B = (u, w). Porém, isso significa que existem as arestas $e_1 = \{u, v\}$ e $e_2 = \{u, w\}$ na árvore G (caso contrário os caminhos entre os vértices não existiriam). Daí, pela definição de grau de um vértice, temos que o grau do vértice u é pelo menos 2. Desse modo, u não é uma folha de G. Absurdo! pois supomos que todo vértice de G é uma folha.

O absurdo aconteceu pois supomos a existência das sequências de vértices A e B. Logo, conclui-se que não existem tais sequências e, portanto, não existem caminhos de u a v e de u a w. Assim, pelo lema, G não é conexo. Absurdo! pois supomos que G é uma árvore e toda árvore é conexa.

Conclui-se que tal árvore G não pode existir. Ou seja, não existe uma árvore com 7 vértices e mais de 6 folhas.
Problema 4. Mostre que dados dois vértices u e v de um grafo G , existe um caminho ligando u a v se e somente se existe um passeio ligando u a v .
Resolução.
Este problema aparece nas notas de aula e é demonstrado na página 39 da mesma. Ver proposição 6.
$\mathbf{D}_{\mathbf{m}} = \mathbf{b}_{\mathbf{m}} = \mathbf{c}_{\mathbf{m}} \text{Most suppose } \mathbf{c}_{\mathbf{m}} \in \mathbf{c}_{\mathbf{m}} \text{Most suppose } \mathbf{c}_{\mathbf{m}} \in \mathbf{c}_{\mathbf{m}} \text{Most suppose } \mathbf{c}_{\mathbf{m}} = \mathbf{c}_{\mathbf{m}} \text{Most suppose } \mathbf{c}_$
Problema 5. Mostre que se G é um grafo com $\delta(G) \geq 2$, então G contém um ciclo de

Resolução.

comprimento pelo menos $\delta(G) + 1$.

Este problema aparece nas notas de aula e é demonstrado na página 39 da mesma. Ver proposição 7.
Problema 6. Mostre que toda árvore com $n \geq 2$ vértices tem pelo menos duas folhas.
Resolução.

Este problema aparece nas notas de aula e é demonstrado na página 42 da mesma. Ver lema 4.