WHAT IS CLAIMED IS:

I	1. A biological agent detection apparatus, comprising:
2	a substrate;
3	an array of two or more sensors arranged on the substrate, wherein at least a
4	first one of the sensors includes a sensing element configured to detect a biological agent; and
5	a processing module directly coupled to each of the sensors and configured to
6	process signals received from the two or more sensors to produce an output signal.
1	2. The apparatus of claim 1, wherein the processor is configured to
2	execute a first process that detects a change in an environmental condition, and a second
3	process that identifies an origin of the change in the environmental condition.
1	3. The apparatus of claim 2, wherein the second process includes a
2	pattern recognition algorithm.
1	4. The apparatus of claim 1, further including a communication module
2	configured to provide the output signal to an external intelligence device.
1	5. The apparatus of claim 4, wherein the communication module includes
2	one of a wireless interface and a physical bus interface for communicating with the external
3	intelligence device.
1	6. The apparatus of claim 4, further including:
2	a power module for supplying power to the detection apparatus; and
3	a pick-up antenna, wherein the power is supplied by an external RF field
4	received by the antenna.
1	7. The apparatus of claim 1, further including a communication module
2	configured to provide information to a user in response to the output signal having a value at
3	or above a threshold value.
1	8. The apparatus of claim 7, wherein the communication module includes
2	one of a LED, speaker, buzzer and vibration mechanism.
1	9. The apparatus of claim 5, wherein the wireless interface device
2	includes one of an RF transmitter, an RF transceiver, an IR transmitter and an IR transceiver.

- The apparatus of claim 5, wherein the physical bus interface includes 1 10. 2 one of an RS-232 port, a USB port and a Firewire port. 1 11. The apparatus of claim 1, wherein at least two of the sensors are 2 polymer composite sensors. 12. The apparatus of claim 1, wherein at least a second one of the sensors 1 2 is a chemical sensor. 1 13. The apparatus of claim 1, wherein the sensing element of the first sensor is selected from the group consisting of a polymer composite sensor, a surface 2 3 modified carbon black sensor, a sol-gel encapsulated enzyme, a biopolymer, a self 4 assembling monolayer, an intrinsically conducting polymer, a carbon nanotube composite, a 5 nanogold composite and a nanoscale polymer composite. 1 14. The apparatus of claim 1, wherein the apparatus has a dimension of 2 less than about 4 square inches. 1 15. The apparatus of claim 1, wherein the apparatus has a dimension of 2 less than about 1 square inch. 1 16. The apparatus of claim 1, wherein the sensors and the processing 2 module are integrated on the substrate. 1 17. The apparatus of claim 1, further including an attachment mechanism 2 for allowing a user to wear the apparatus. 1 The apparatus of claim 17, wherein the attachment mechanism 18. 2 includes one of a clip and a pin. 1 19. The apparatus of claim 1, wherein the sensing element of the first 2 sensor is an intrinsically conducting polymer selected from the group consisting of
 - 20. The apparatus of claim 1, wherein the apparatus is used to diagnose a disease or determine a biological agent based on sampling the atmosphere or a bodily fluid.

3

1

2

polyaniline and polythiophene.

1	21. The apparatus of claim 1, wherein a second one of the sensors includes
2	a sensing element configured to detect a biological element different from the biological
3	agent detectable by the first sensor.
1	22. The device of claim 21, further comprising a communication module
2	configured to communicate with an external processor.
1	23. The device of claim 22, wherein the communication module includes a
2	wireless transmitter device.
1	24. The device of claim 23, wherein the wireless transmitter device
2	includes one of an RF transmitter and an IR transmitter.
1	25. A sensor system, comprising
2	a plurality of sensing devices, each device including an array of two or more
3	sensors arranged on a substrate and a wireless communication module for remote
4	communication; and
5	a central processing node, located remote from said sensing devices, including
6	a processing module and a communication module, said node being configured to receive and
7	process signals from the plurality of sensing devices.
1	26. The system of claim 25, wherein at least a first one of said sensing
2	devices includes a polymer composite sensor.
1	27. The system of claim 25, wherein each of said sensing devices includes
2	a polymer composite sensor.
1	28. The system of claim 25, wherein at least a first one of said sensing
2	devices includes a sensor configured to detect a biologic agent.
1	29. The system of claim 25, wherein at least a first one of said sensing
2	devices includes a sensor configured to detect a chemical agent.
1	30. The system of claim 25, wherein each sensing device includes a power
2	source selected from the group consisting of a battery, a solar cell, an RF tag module and an
3	IR tag module.

31. The apparatus of claim 25, wherein at least one sensing device includes a power source selected from one of an RF tag module and an IR tag module, and wherein the communication module of the central processing node includes one of a corresponding RF or IR transceiver for sending a corresponding RF or IR activation signal to the at least one sensing device and for receiving an information signal from the at least one sensing device.

1

2

3

4

5

- The system of claim 25, wherein at least a first sensing device is selected from the group consisting of a polymer composite sensor, a surface modified carbon black sensor, a sol-gel encapsulated enzyme, a biopolymer, a self assembling monolayer, an intrinsically conducting polymer, a carbon nanotube composite, a nanogold composite and a nanoscale polymer composite.
- 1 33. The system of claim 25, wherein at least a first sensing device includes 2 an intrinsically conducting polymer selected from the group consisting of polyaniline and 3 polythiophene.