

Twinning

Göttingen, Februar 15th, 2012

Examples of (Pseudo-) Merohedral Twins

rherbst@shelx.uni-ac.gwdg.de

http://shelx.uni-ac.gwdg.de/~rherbst/twin.html

Space Group Determination

Crystal system H and Lattice type P selected

Mean $|E^*E-1| = 0.529$ [expected .968 centrosym and .736 non-centrosym]

Systematic absence exceptions:

6	6 ₁ /6 ₅	$6_2 = 3_1$	6 ₃	-C-	C	
N	15	12	9	553	301	
N I>30	σ 1	1	1	535	279	
< >	1.3	1.3	1.4	265.5	253.1	
< I /σ>	1.1	1.1	1.3	42.6	40.3	
Opt. S	Space Gr.	CSD	R(int)	N(eq)	Syst. Abs.	CFOM
•	Space Gr. P6 ₁	CSD 62	R(int) 0.061	N(eq) 5574	Syst. Abs. 1.3 / 34.8	CFOM 6.18
[A] F	•					
[A] F	P6 ₁	62	0.061	5574	1.3 / 34.8	6.18

Symmetry Operators in P6/mmm

Atomic Coordinates

Indices

P-3

-X+y,-X, Z

P-31m

x, x-y, -z -x, -x+y, z

-x, -x+y, -z x, x-y, z

P-3m1

P6/m

X-Y, X, Z

Merohedral Twins in the Trig./Hex. Crystal System

Laue group	Apparent Laue Group	Indices related by Twinning	Twin Law
-3	-31m	-k,-h, -l	0 -1 0 -1 0 0 0 0 -1
-3	-3m1	k, h, -l	0 1 0 1 0 0 0 0 -1
-3	6/m	-h,-k, l	-1 0 0 0 -1 0 0 0 1
-3	6/mmm	-k,-h, -l	0 -1 0 -1 0 0 0 0 -1
		k, h, -l	0 1 0 1 0 0 0 0 -1
		-h,-k, l	-1 0 0 0 -1 0 0 0 1
-3m1	6/mmm	-h,-k, l	-1 0 0 0 -1 0 0 0 1
-31m	6/mmm	-h,-k, l	-1 0 0 0 -1 0 0 0 1
6/m	6/mmm	k, h, -l	0 1 0 1 0 0 0 0-1

XPREP 6.12


```
[1] -3 / -31m:
   R(int) 0.060(4612)/0.142(898), < |E^2-1| > 0.505/0.487
   TWIN 0-10-10000-1 BASF 0.382 [C] or 0.350 [NC]
[2] -3 / -3m1:
   R(int) 0.060(4612)/0.156(824), < |E^2-1| > 0.505/0.486
   TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.365 [C] or 0.328 [NC]
[3] -3 / 6/m:
   R(int) 0.060(4612)/0.012(962), < |E^2-1| > 0.505/0.514
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.481 [C] or 0.475 [NC]
[4] -31m / 6/mmm:
   R(int) 0.142(898)/0.021(444), < |E^2-1| > 0.487/0.505
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.479 [C] or 0.474 [NC]
[5] -3m1 / 6/mmm:
   R(int) 0.156(824)/0.022(518), < |E^2-1| > 0.486/0.506
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.481 [C] or 0.476 [NC]
[6] 6/m / 6/mmm:
   R(int) \ 0.012(962)/0.183(380), < |E^2-1| > 0.514/0.505
  TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.365 [C] or 0.328 [NC]
```


Solution and Refinement

Patterson in P6₁: 1 Cs

TWIN 010 100 00-1 BASF .4

Difference Fourier with these coordinates:

	without	with TWIN
$R1(F > 4\sigma(F))$	0.245	0.133
wR2 (all data)	0.617	0.384
K2		0.355(9)
E-density	only few	nearly the whole
·	peaks	structure interpretable

R1 = 0.022wR2 = 0.057 K2 = 0.341(1)

BUT:

** Possible racemic twinning or wrong absolute structure - try TWIN refinement **

Flack x: 0.87(5)

Absolute Structure

Flack absolute structure parameter x:

$$(F_c^2)^* = (1-x) F_c^2_{hkl} + x F_c^2_{-h-k-l}$$

- $x = 0 \rightarrow$ correct absolute structure
- $x = 1 \rightarrow$ wrong absolute structure Inversion of the structure: MOVE 1 1 1 -1

exceptions for some space groups like Fdd2, $I4_1$ etc. sometimes it is necessary to change also the space group, e.g.

 $\text{P3}_1 \rightarrow \text{P3}_2$

** Possible racemic twinning or wrong absolute structure - try TWIN refinement **

 $\cdot 0 < x < 1 \rightarrow$

TWIN -1 0 0 0 -1 0 0 0 -1 2 BASF k2

H. D. Flack, Acta Crystallogr. A39, 876 (1983)

Additional Racemic Twinning?

Perhaps four twin domains with following indices:

h, k, l	
k, h, -l	TWIN matrix
-h, -k, -l	Racemic twinning
-k, -h, l	TWIN matrix and racemic twinning

TWIN 0 1 0 1 0 0 0 0 -1 -4 BASF .2 .2 .2

Parameter	Value	S.U.	Indices
K1	1-(K2+K3+K4)		h, k, l
K2	0.00395	0.02478	k, h, -l
K3	0.69754	0.03486	-h, -k, -l
K4	0.33611	0.02478	-k, -h, l
correct spa	ce group P6 ₅ :		

MOVE 1 1 1 -1 TWIN 0 1 0 1 0 0 0 0 -1

Different Refinements


```
A: Space group P6<sub>1</sub>
TWIN 010 100 00-1
```

B: Space group P6₁ TWIN 0-10-100 001

C: Space group P6₅ TWIN 0-10-10001

D: Space group P6₅
TWIN 010 100 00-1

	R1	wR2	K2	Flack x	s.u. (C - C)
A	0.022	0.057	0.341(1)	0.87(5)	0.011 - 0.013
В	0.021	0.054	0.341(1)	0.35(3)	0.010 - 0.012
C	0.020	0.049	0.340(1)	0.09(3)	0.009 - 0.011
D	0.018	0.046	0.340(1)	-0.03(4)	0.008 - 0.010

Example of a Pseudo-Merohedrally-Twinned Structure

Very instable compound, difficult to mount,

But good crystal quality

unknown Al-compound, possible composition $C_{27}H_{26}AlN_2$, perhaps some I from the starting material

cell: 16.934 16.934 12.603 90.00 90.00 120.00

hexagonal metric

Crystal System

Search for higher metric symmetry

Option A: FOM = 0.00 deg. HEXAG. P-lattice R(sym) = 0.653 [10906] Cell: $16.934 \ 16.934 \ 12.603 \ 90.00 \ 90.00 \ 120.00 \ Volume: 3129.81$

Matrix: 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

Option B: FOM = 0.00 deg. ORTHO. C-lattice R(sym) = 0.493 [11989]

Cell: 16.934 29.330 12.603 90.00 90.00 90.00 Volume: 6259.63

Matrix: 0.000 1.000 0.000 2.000 1.000 0.000 0.000 0.000 -1.000

Option C: FOM = 0.00 deg. ORTHO. C-lattice R(sym) = 0.493 [12004]

Cell: 16.934 29.330 12.603 90.00 90.00 90.00 Volume: 6259.63

Matrix: 1.000 1.000 0.000 -1.000 1.000 0.000 0.000 0.000 1.000

Option D: FOM = 0.00 deg. ORTHO. C-lattice R(sym) = 0.033 [12024]

Cell: 16.934 29.330 12.603 90.00 90.00 90.00 Volume: 6259.63

Matrix: 1.000 0.000 0.000 1.000 2.000 0.000 0.000 0.000 1.000

Orthorhombic?

Crystal system O and Lattice type C selected

Mean $|E^*E-1| = 0.702$ [expected .968 centrosym and .736 non-centrosym]

Systematic absence exceptions:

	C	n	-C-	-n-	a	b	21
N	1259	1259	785	785	1602	1602	<u>Л</u> 1
N I>3s							
< >	29.2	29.2	65.3	65.3	0.2	0.2	0.1
< /s>	28.0	28.0	35.0	35.0	0.3	0.3	0.3

Opt. Space Gr. No. CSD R(sym) N(eq) Syst. Abs. CFOM

No acceptable space group - change tolerances or unset chiral flag or possibly change input lattice type, then recheck cell using H-option

Monoclinic Space Group?

Cell: 16.934 12.603 16.934 90.00 120.00 90.00 Monoclinic P $R_{int} = 0.026$

Crystal system M and Lattice type P selected

Mean $|E^*E-1| = 0.708$ [expected .968 centrosym and .736 non-centrosym] Systematic absence exceptions:

	-21-	-6	3-	-C-	-n	-		
N	41	173	32 1	602	172	6		
$N (I > 3\sigma)$	0	83	9	0	83	9		
< >	0.1	35	.3	0.2	35.	4		
< I /o>	0.3	17.	9	0.3	18.	0		
Opt. Space [A] P2(1)		No. # 14	CSD 19410	•	sym) 026	N(eq) 7746	Syst. Abs. 0.3 / 17.9	

Solution in P2₁/c

RE = 0.365 for 48 atoms and 2982 E-values AII_3 unit can be identified

Refinement in P2₁/c

Refinement of the AlI₃ unit

Determination of the Twin Matrix

$$egin{pmatrix} 0.5 & -0.5 & 0 \ 0 & 0 & 1 \ -1 & 0 & 0 \ \end{pmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{pmatrix}
0 & 0 & -1 \\
-2 & 0 & -1 \\
0 & 1 & 0
\end{pmatrix}$$

Check of the Matrix

- The matrix must transform the cell into an equivalent cell.
- The matrix must not be a symmetry operator of the Laue group of the structure.
- The refinement of the BASF factors is reasonable (i.e. the value is in between 0 and 1 and the s.u. is relatively small).
- The TWIN command must improve your refinement.

ROTAX / TwinRotMat - Theory

- Generation of matrices for possible two-fold axis about reciprocal or real axes with small indices
- Use of the data with the largest $(F_{obs}^2-F_{calc}^2)/sigma$ values)
- Transformation of the indices by the possible rotation matrix.
- · Deviation from integral values as figure of merit
- A small figure of merit means that most (or all) of the indices were transformed to integers and this makes it a likely candidate for a twin law.

TwinRotMat - Output

SE P.L.A.T.O.N	X
TwinRotMat	TwinRoMt 25 NRefSelMin Deltal/Sigl
Analysis of Fo/Fc Data for Unaccounted (Non)Merchedral Twinning for: p21c	MaxIndexUVW
Cell: 0.71073 16.934 12.603 16.934 90.00 120.00 90.00 Spgr: P21/c	Delta Theta
Criteria: DeltaI/SigmaI .GT. 4.0, DeltaTheta O.10 Deg., NselMin = 50	FullListing
N(refl) = 8918. N(selected) = 50. IndMax = 5. CritI = 0.1. CritI = 0.10	EPS-TwinLaw
	DspTwinMat1
2-axls (1 0 0) [2 0 1], Angle () [] = 0.00 Deg, Freq = 50	DspTwinMat2
(1.000 0.000 1.000) (h1) (h2)	DspTwinMat3
$(0.000 -1.000 0.000) * (k1) = (k2) BASF = 0.50 \bot$	DspTwinMat4
(0.000	EPS-TwinLat
2-axls (0 0 1) [0 2], Angle () [] = 0.00 Deg, Freq = 55	Resolution>
(-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 8740 (0.000 -1.000 0.000) * (k1) = (k2) BASE = 0.17	IcalFromCIF
0.000 -1.000 0.000) * (k1) = (k2) BASF = 0.17	
(L.000 0.000 1.000) (L1) (L2) DEL-R =-0.034	Zone-H,K,L
	Up Down
——————————————————————————————————————	RacemicTwin
$ \Box _{0} $ (0.000 0.000 -1.000) (h1) (h2) Nr Overlap = 8/35 $ \Box _{0}$	SelectTMat1
	SelectTMat2
	SelectTMat3
5	SelectTMat4
(-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 1542	HKLF5-Critl
(-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 1542 2	HKLF5-CritT
[C	HKLF5-Gener
2 C p21c	End
INPUT INSTRUCTIONS via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)	Exit

Refinement as Twin

TWIN 101 0-10 00-1

BASF 0.5

R1 = 0.1487

wR2 = 0.4103

Final Results

R1 (F > 4σ(F))	0.022	wR2 (all data)	0.046
K2	0.4982(4)	Parameter	307
Data	8918	Residual Density [eÅ ⁻³]	1.07

R. S. Ghadwal, H. W. Roesky, R. Herbst-Irmer, P. G. Jones, N-Heterocyclic Carbene Adducts of Aluminum Triiodide, *Z. Anorg. Allgem. Chem*, **635**, 431, 2009.

Twinning by Reticular Merohedry

Structure of $K[Au(CN)_2]$ cell: 7.240 7.240 26.445 90 90 120, space group R $\bar{3}$

A. Rosenzweig, D. T. Cromer, Acta Cryst. (1959). 12, 709.

$K[Au(CN)_2]$

R1 = 0.074 for 640 $F_o > 4\sigma(F_o)$, wR2 = 0.170 for all 648 data

R1 = 0.027 for 640 Fo > $4\sigma(Fo)$, wR2 = 0.076 for all 648 data Residual density: 1.18/-1.48 e/ A^3

Warning Signs

Systematic Absences Violations:

cally absent
cally absent
C(

...

Most Disagreeable Reflections

h	k	1	F_0^2	F_c^2	$\Delta(F^2)/\sigma$	F_c/F_{cmax}	Res.(Å)
0	3	0	1907.04	407.73	11.79	0.026	2.09
-1	2	6	7075.12	11145.69	6.78	0.137	2.80
1	1	6	1275.08	818.27	3.69	0.037	2.80
-1	2	0	27026.22	32870.20	3.53	0.235	3.60
-1	2	3	47884.52	56252.36	2.98	0.307	3.35
-1	2	12	7698.09	9417.93	2.98	0.126	1.88
-5	4	6	642.68	966.24	2.77	0.040	1.31

...

R. Herbst-Irmer, G. M. Sheldrick, Refinement of obverse/reverse twins, *Acta Crystallogr. B***58**, 477, 2002

Reciprocal Space Plot I = 0

Reciprocal Space Plot I = 2

Obverse/Reverse Twinning

	Р	Α	В	С	I	F	Obv	Rev	All
N	0	4252	4264	4282	4258	6399	5663	5715	8516
N I>3σ	0	2177	2189	2180	2198	3273	1698	1887	4447
<l></l>	0.0	303.7	302.2	132.1	303.5	245.8	93.4	246.6	341.6
<i σ=""></i>	0.0	6.0	6.0	5.4	6.0	5.8	3.3	4.2	6.1

Obverse/reverse test for trigonal/hexagonal lattice

Mean I: obv only 619.5, rev only 252.1, neither obv nor rev 0.5, Preparing dataset for refinement with BASF 0.289 and TWIN -1 0 0 0 -1 0 0 0 1

Reflections absent for both components will be removed

Obverse/Reverse Twinning

P.L.A.T.O.N	TwinRoMt 25
TwinRotMat	NRefSelMin
	Deltal/Sigl
Analysis of Fo/Fc Data for Unaccounted (Non)Merchedral Twinning for: hp33	MaxIndexUVW
	Delta Theta
Cell: 0.71073 7.240 7.240 26.445 90.00 90.00 120.00 Spgr: R-3	FullListing
Criteria: DeltaI/SigmaI .GT. 4.0, DeltaTheta 0.10 Deg., NselMin = 50 N(refl) = 648. N(selected) = 50, IndMax = 5, CritI = 0.1, CritT = 0.10	EPS-TwinLaw
N(reft) = 840; N(setected) = 30; IndNax = 3; Crttl = 0.1; Crttl = 0.10	DspTwinMat1
2-axls (0 0) [2 0], Angle () [] = 0.00 Deg, Freq = 50	DspTwinMat2
(-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 223 (1.000 1.000 0.000) * (k1) = (k2) BASF = 0.27	DspTwinMat3
\odot (1.000 1.000 0.000) * (k1) = (k2) BASF = 0.27	DspTwinMat4
(0.000 0.000 -1.000) (L1) (L2) DEL-R =-0.044	EPS-TwinLat
2-axls (0 0 1) [0 0 1], Angle () [] = 0.00 Deg, Freq = 46	Resolution>
	IcalFromCIF
T	
0.000 0.000 1.000) (L1) (L2) DEL-R =-0.039	Zone-H,K,L
2-axis (1 -2 0) [0 -1 0], Angle () [] = 0.00 Deg, Freq = 50	Up Down
□ ************************************	RacemicTwin
0.000 - 1.000 - 1.000 0.000) (h1) (h2) Nr Overlap = 648	SelectTMat1
	SelectTMat2
0 0 (6:866 6:866 1:866) (61) (62)	SelectTMat3
PLATON-Sep Fc from Fo/F	SelectTMat4
	HKLF5-CritI
from from	HKLF5-CritT
ш	HKLF5-Gener
교 (L) hp33	End

Refinement as Twin - SHELXL-97

MERG 0 BASF 0.3 HKLF 5

original hkl-file after merging in XPREP

h	k	I	F ²	$\sigma(F^2)$
-3	2	1	547.68	13.89
-2	2	1	3919.92	91.76
-1	2	1	0.4728	0.786
-1	2	0	792.98	19.51
-5	4	3	1287.24	31.66

new hkl-file

h	k	I	F ²	σ(F ²)	N
-2	2	1	3919.92	91.76	1
2 -1 4 -5	-1 2 -5 4	0 3	792.98 792.98 1287.24 1287.24	19.51 19.51 31.66 31.66	1 -2

Refinement as Twin - SHELXL-2012

TWIN 0-10 -100 00-1 BASF 0.3 HKLF 4

Refinement as Twin - Results

R1 = 0.0178 for 640 F_o > 4 σ (F_o) wR2 = 0.0430 for 648 data K2 = 0.290(4)

Residual density maximum = 1.03 e/Å^3

S. R. Hettiarachchi, B. K. Schaefer, R. L. Yson, R. J. Staples, R. Herbst-Irmer, H. H. Patterson, *Inorg. Chem.*, **46**, 6997, 2007.

Acknowledgements

- D. Stalke, University of Göttingen
- P. Jones, University of Braunschweig
- R. Staples, Michigan State University
- G. M. Sheldrick, University of Göttingen