Packet Analysis Reference Guide v3.0 Headers, Tables, Tools and Notes

Compiled & Written by
James Summers, CISSP - ISSAP, ISSMP, CISA
GCIA, GCIH, G7799, GAWN-C, GSEC, GFSP, GPCI
CCNA, CCDA, CS-CFWS, CS-CISecS, 4001 Rec, MCSE
james@vsnry.com
©2008

Table of Contents

	Page
Subnet Breakdown (Binary to decimal)	1
Subnet Breakdown (Binary to Hexadecimal)	2
Equations	3
Header Offset Shortcuts	4
OSI vs. TCP/IP	5
TCP vs. UDP	6
IPv4 Header (RFC 791)	7
Transmission Control Protocol - TCP Header (RFC 793)	9
User Datagram Protocol - UDP Header (RFC 768)	10
Internet Control Message Protocol - ICMP Header (RFC 792)	11
PING (Echo/Echo Reply) - ICMP Header (792)	12
Address Resolution Protocol - ARP (RFC 826)	13
Domain Name System - DNS (RFC 1035)	14
Dynamic Routing Protocols	15
OSPF v2 (RFC 1583)	16
Generic Routing Encapsulation - GRE (RFC 2784)	17
Authentication Header - AH (RFC 2402)	18
Encapsulating Security Payload - ESP (RFC 2406)	19
IPV6 Header (RFC 2460)	21
IEEE Framing	24
Ethernet II Frame Format (similar to IEEE 802.3)	25
Ethernet IEEE 802.2 Frame Format (802.3 with 802.2)	26
Ethernet IEEE 802.3 SNAP Frame Format	27
Ethernet Novell Netware 802.3 "Raw" Frame Format	28
802.11 (IEEE 1999 Reference Specification)	29
Kismet	32
TCPDUMP / WINDUMP	33
NGREP	35
Ethereal / Wireshark	36
Windows TCP / UDP Ports	37
OS Fingerprinting	41
Decimal to Hexadecimal to ASCII Chart	42
References	13

						Subne	t Breakdown						
-	Octet	_			_				28				_
/8	1	255		000000		92 (2			92		192		400
/9 /10	2	128 192		0000000			01000000 01000001	64 65		10000000 10000001	128 129	11000000 11000001	192 193
/11	2	224		0000001			01000001	66		10000001	130	1100001	194
/12	2	240		252 0000001			01000011	67		10000011	131	11000011	195
/13	2	248		(6) 0000010			01000100	68		10000100	132	11000100	196
/14	2	252		0000010			01000101	69		10000101	133	11000101	197
/15	2	254	040	0000011			01000110	70		10000110	134	11000110	198
/16 /17	3	255 128	248 (5)	252 0000011 (6) 0000100			01000111 01001000	71 72		10000111 10001000	135 136	11000111 11001000	199 200
/17	3	192	(3)	0000100			01001000	73		10001000	137	11001000	201
/19	3	224		0000101			01001010	74		10001010	138	11001010	202
/20	3	240		252 0000101	1 11	L_	01001011	75		10001011	139	11001011	203
/21	3	248		(6) 0000110			01001100	76		10001100	140	11001100	204
/22	3	252		0000110			01001101	77 70		10001101	141	11001101	205
/23 /24	3	254 255	249	0000111 252 0000111			01001110 01001111	78 79		10001110 10001111	142 143	11001110 11001111	206 207
/25	4	128	(5)	(6) 0001111			01001111	80	-	10011111	144	11010000	208
/26	4	192	(0)	0001000			01010001	81		10010001	145	11010001	209
/27	4	224		0001001			01010010	82		10010010	146	11010010	210
/28	4	240		252 0001001			01010011	83	L	10010011	147	11010011	211
/29	4	248		(6) 0001010			01010100	84		10010100	148	11010100	212
/30	4	252		0001010			01010101	85 86		10010101	149	11010101	213
/32	4	255	248	0001011 252 0001011	-		01010110 01010111	86 87		10010110 10010111	150 151	11010110 11010111	214 215
Clas	sses	1	(5)	(6) 0001011			01010111	88		100111000	152	11010111	216
	0		(0)	0001100			01011001	89		10011001	153	11011001	217
_	10			0001101			01011010	90		10011010	154	11011010	218
С	110			252 0001101		L_	01011011	91		10011011	155	11011011	219
D	1110			(6) 0001110			01011100	92		10011100	156	11011100	220
				0001110			01011101	93		10011101	157	11011101	221
	224	240	2/18	0001111 252 0001111			01011110 01011111	94 95		10011110 10011111	158 159	11011110 11011111	222 223
	(3)	(4)	(5)	(6) 0010000			01100000	96	+	10100000	160	11100000	224
	(0)	(-)	(0)	0010000			01100001	97		10100001	161	11100001	225
				0010001			01100010	98		10100010	162	11100010	226
				252 <u>0010001</u>		-	01100011	99		10100011	163	11100011	227
				(6) 0010010			01100100	100		10100100	164	11100100	228
				0010010 0010011			01100101 01100110	101 102		10100101 10100110	165 166	11100101 11100110	229 230
			248	252 0010011			01100110	103		10100110	167	11100110	231
			(5)	(6) 0010100			01101000	104		10101000	168	11101000	232
				0010100			01101001	105		10101001	169	11101001	233
				0010101			01101010	106		10101010	170	11101010	234
				252 0010101 (6) 0010110			01101011 01101100	<u>107</u> 108	-	10101011 10101100	<u>171</u>	11101011 11101100	235 236
				0010110			01101100	109		10101100	173	11101100	237
				0010111			01101110	110		10101110	174	11101110	238
		240	248	252 <u>0010111</u>			01101111	111		10101111	175	11101111	239
		(4)	(5)	(6) 0011000			01110000	112		10110000	176	11110000	240
				0011000			01110001	113		10110001	177	11110001	241
				0011001 252 0011001			01110010 01110011	114 115		10110010 10110011	178 179	11110010 11110011	242 243
				(6) 0011001	. — - — - — - –		01110100	<u>115</u>	-	10110111	180	11110100	$\frac{243}{244}$
				0011010			01110101	117		10110101	181	11110101	245
				0011011			01110110	118		10110110	182	11110110	246
				252 0011011			01110111	119	_	10110111	183	11110111	247
			(5)	(6) 0011100			01111000	120		10111000	184 185	11111000	248
				0011100 0011101			01111001 01111010	121 122		10111001 10111010	185 186	11111001 11111010	249 250
				252 0011101			01111010	123		10111011	187	11111010	251
				(6) 0011110			01111100	124		10111100	188	11111100	252
				0011110			01111101	125		10111101	189	11111101	253
				0011111			01111110	126		10111110	190	11111110	254
				0011111	1 63		01111111	127		10111111	191	11111111	255

			Sul	bnet Breakdown (
					128				
		0000000	192		192		192		<u></u>
		00000000 00000001	00 01	01000000 01000001	40 41	10000000 10000001	80 81		C0 C1
		0000001	02	01000001	42	1000001	82		C2
		252 00000011	03	01000011	43	10000011	83		C3
		(6) 00000100	04	01000100	44	10000100	84		<u>C4</u>
		00000101	05	01000101	45	10000101	85	11000101	C5
		00000110	06	01000110	46	10000110	86		C6
		252 <u>00000111</u>	07	01000111	47	10000111	87		<u>C7</u>
	(5)	(6) 00001000	08	01001000	48	10001000	88		C8
		00001001	09	01001001	49	10001001	89		C9
		00001010 252 00001011	0A 0B	01001010 01001011	4A 4B	10001010 10001011	8A 8B		CA CB
		(6) 000011100	OC	01001011	4C	10001011	8C		CC
		00001101	0D	01001101	4D	10001101	8D		CD
		00001110	0E	01001110	4E	10001110	8E		CE
240	248	252 <u>00001111</u>	0F	01001111	4F	10001111	8F	11001111	CF
(4)	(5)	(6) 00010000	10	01010000	50	10010000	90		D0
		00010001	11	01010001	51	10010001	91		D1
		00010010	12	01010010	52	10010010	92		D2
		252 <u>00010011</u>	13	01010011	<u> 53</u>	10010011 10010100	<u>- 93</u>		<u>D3</u>
		(6) 00010100 00010101	14 15	01010100 01010101	54 55	10010100	94 95		D4 D5
		00010101	16	01010101	56	10010101	96		D6
	248	252 00010111	17	01010111	57	10010111	97		D7
	(5)	(6) 00011000	18	01011000	58	10011000	98		D8
		00011001	19	01011001	59	10011001	99	11011001	D9
		00011010	1A	01011010	5A	10011010	9A		DA
		252 <u>00011011</u>	1 <u>B</u>	01011011	5B	10011011	9B		DB_
		(6) 00011100 00011101	1C 1D	01011100 01011101	5C 5D	10011100 10011101	9C 9D		DC DD
		00011101	1E	01011101	5D 5E	10011101	9D 9E		DE
224 240	248	252 00011111	1F	01011111	5F	10011111	9F		DF
(3) (4)	(5)	(6) 00100000	20	01100000	60	10100000	A0		E0
() ()	` ,	00100001	21	01100001	61	10100001	A1		E1
		00100010	22	01100010	62	10100010	A2		E2
		252 <u>00100011</u>	23	01100011	63	10100011	A3		<u>E3</u>
		(6) 00100100	24	01100100	64 65	10100100	A4		E4
		00100101 00100110	25 26	01100101 01100110	65 66	10100101 10100110	A5 A6		E5 E6
	248	252 00100111	20 27	01100110	67	10100110	A7		E7
		(6) 00101000	28	01101000	68	10101000	A8		<u>E8</u>
	` ,	00101001	29	01101001	69	10101001	A9		E9
		00101010	2A	01101010	6A	10101010	AA		EΑ
		252 <u>00101011</u>	2B	01101011	6B	10101011	AB		EB_
		(6) 00101100	2C	01101100	6C	10101100	AC		EC
		00101101 00101110	2D 2E	01101101 01101110	6D	10101101 10101110	AD		ED
240	248	252 00101111	2E 2F	01101110	6E 6F	10101110	AE AF		EE EF
(4)	(5)	(6) 00110000	30	01110000	70	10110000	B0		F0
(-,	(-)	00110001	31	01110001	71	10110001	B1		F1
		00110010	32	01110010	72	10110010	B2	11110010	F2
		252 <u>00110011</u>	33	01110011	73	10110011	B3		F3
		(6) 00110100	34	01110100	74	10110100	B4		F4
		00110101	35	01110101	75 70	10110101	B5		F5
	240	00110110 252 00110111	36 37	01110110 01110111	76 77	10110110 10110111	B6 B7		F6
	(5)	(6) 001111000	38	011110111	7 <i>1</i>	101111000	<u>В7</u> В8		F7 F8
	(5)	00111001	39	01111001	79	10111001	B9		F9
		00111010	3A	01111010	7A	10111010	BA		FΑ
		252 <u>00111011</u>	3B	01111011	7B	10111011	BB	11111011	FΒ
		(6) 00111100	3C	01111100	7C	10111100	ВС		FC
		00111101	3D	01111101	7D	10111101	BD		FD
		00111110	3E	01111110	7E	10111110	BE		FE
		00111111	3F	01111111	7F	10111111	BF	11111111	FF

Equations

TCP & IP Equations

TCP Options Length =

(TCP Header Length * 4 byte multiplier) - (Minimum TCP Header Length * 4 byte multiplier)

(TCP Header Length * 4 byte multiplier) - 20 bytes

Length of IP Packet Payload =

IP total Length - ((IP Header Length * 4 byte multiplier) + (TCP Header Length * 4 byte multiplier))

((1111111111111111111111111111111111111		g,								
Logic Equations										
1 AND 1 is 1	1 OR 1 is 1	1 XOR 1 is 0								
1 AND 0 is 0	1 OR 0 is 1	1 XOR 0 is 1								
0 AND 1 is 0	0 OR 1 is 1	0 XOR 1 is 1								
0 AND 0 is 0	0 OR 0 is 0	0 XOR 0 is 0								

Subneting Equations

Number of hosts on a subnet =

2ⁿ-2

Where n is the number of bits in the ip address / subnet dedicated to the host Remember the -2 is because host bits of all 0's is the network address and all 1's is the

broadcast address for that subnet

Number of subnets that can be created from n subnet bits =

2ⁿ

Where n is the number of bits dedicated to the subnet

Note: This assume you have something like "ip subnet zero" on your network device. Otherwise you have to - 2 from your total where all the subnet bits are 0's or 1's

Number of host bits needed for X hosts to be on the same subnet =

In(X+2)

Where X is the number of hosts required on the subnet.

Note: In is the nature log. Round up to the nearest whole number.

Number of network and subnet bits needed for X hosts to be on the same subnet =

 $32 - \frac{\ln(X+2)}{\ln 2}$

Where X is the number of hosts required on the subnet.

Note: In is the nature log. Round up to the nearest whole number.

Determining the network address from IP and subnet mask by doing a logical AND on the IP with the subnet mask

 10.170.85.254 is the IP address

255.255.255.240 is the subnet mask

00000011 10101010 01010101 11110000

10.170.85.240 is the network address for the subnet

Converting Binary or Hexadecimal to Decimal

The equation:

$$(b^{p} \cdot n_{p}) + ... + (b^{1} \cdot n_{1}) + (b^{0} \cdot n_{0})$$

b is the base (b = 2 for binary and b = 16 for hexadecimal)

p is the position of the number (counting starts from the rightmost character as 0)

n is the number in the pth position

Examples:

Convert from binary to decimal

$$(2^7 * 1) + (2^6 * 0) + (2^5 * 1) + (2^4 * 0) + (2^3 * 1) + (2^2 * 1) + (2^1 * 1) + (2^0 * 1)$$

128 + 0 + 32 + 0 + 8 + 4 + 2 + 1 = **175**

Convert from hexadecimal to decimal

$$(16^3 * A) + (16^2 * C) + (16^1 * 8) + (16^0 * 9)$$

This is where you need to know hex A is decimal 10 and hex C is decimal 12

$$(16^3 * 10) + (16^2 * 12) + (16^1 * 8) + (16^0 * 9)$$

 $(4096 * 10) + (256 * 12) + (16 * 8) + (1 * 9)$

40960 + 3072 + 128 + 9 = 44169

3

Header Offset Shortcuts

Field	Length (bits)	TCPDU	MP Filter								
IP Header Length	4	ip[0] &0x	0F	Remember to use a 4 byte multiplier to find header length in bytes							
IP Packet Length	16	ip[2:2]		There is no multipler for this length field							
IP TTL	8	ip[8]		, ,							
IP Protocol	8	ip[9]									
	Dec	Hex	Proto	Dec	Hex	Proto	Dec	Hex	Proto		
	1	0x01	ICMP	9	0x09	IGRP	50	0x32	ESP		
	2	0x02	IGMP	17	0x11	UDP	51	0x33	AH		
	6	0x06	TCP	47	0x2F	GRE	88	0x58	EIGRP		
IP Address - Src	32	ip[12:4]									
IP Address - Dst	32	ip[16:4]									
ID Fragmentation	flag=3	ip[6]	&0x20 =	0x20	More Fra	gment bit	is set.				
IP Fragmentation	offset=13	ip[6:2] 8	&0x1fff !=	0x0000	Fragmen	t offset in	not 0				
ICMP Type	8	icmp[0]									
ICMP Code	8	icmp[1]									
TCP Src Port	16	tcp[0:2]									
TCP Dst Port	16	tcp[2:2]									
TCP Header Length	4	tcp[12] &	ΛχΩΕ	Remember to use a 4 byte multiplier to find header							
•		τορ[12] α	OXOI	length in bytes							
TCP Flags	8	tcp[13]									
TCP Windows Size	16	tcp[14:2]									
UDP Src Port	16	udp[0:2]									
UDP Dst Port	16	udp[2:2]									
UDP Header Length	16	upd[4:2]	-	There is	no multip	er for this	length fie	eld			

4 Hdr Offset

OSI vs. TCP/IP

	Application	7		
	Presentation	6	Application	
	Session	5		
OSI	Transport	4	Transport (TCP)	TCP/IP
	Network	3	Internet (Network) (IP)	
	Data Link	2	Network Access	
	Physical	1	(Data Link)	

Application Layer (Layer 7)

Determines the network services required.

Examples: DNS, FTP, LDP, Telent, TFTP, SMTP and WWW

Presentation Layer (Layer 6)

Presents data to the application layer. Essentially functions as a translator from computer to human readable form.

Examples: HTTP, TIFF, JPEG, MIDI and MPEG

Session Layer (Layer 5)

Establishes and maintains the connection between systems and formats the data for transfer between nodes.

Examples: NFS, SQL, RPC

Transport Layer (Layer 4)

Defines how to address physical locations, how to make connections between nodes, and how to handle the network of messages. This layer is responsible for **end-to end** integrity and control of the session and handles the sequencing of packets.

Examples: TCP, UDP, SPX

Network Layer (Layer 3)

Defines how packets of data are routed between end systems over interconnected networks. Routing error detection, and control of node data traffic are managed at this layer.

Examples: IP, OSPF, ICMP, RIP

Data Link Layer (Layer 2)

Defines the protocols that computers use in order to access the network for transmitting and receiving messages. **Has two sub layers:** *Logical Link Control* and *Media Access Control*.

Examples: ARP, SLIP, PPP

Physical Layer (Layer 1)

Defines the physical connection (RJ48, BNC, HSSI, etc...) between a host and a network and converts the bits into voltages or light impulses for transmission.

Examples: HSSI, X.21, EIA/TIA-232 and EIA/TIA-449

Encapsulation (In reverse is demultiplexing.)

For outgoing packets, the data + header from an upper layer is packaged into the data of the layer below it. For incomming packets, the layer header information is strip off and used to determine where the remaining data is to go.

Manchester encoding - Preamble is 62 bits of alternating 1's and 0's. followed by 11.

5 OSI

TCP vs. UDP

6 TCPvsUDP

IPv4 Header (RFC 791)

0 1 2 3 4 5 6	7 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31								
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3								
Version IP Heade (4-bit) length (4-l	I voe of Service (8-bit)	Total Length (16-bit) (in Byte Offsets)									
Byte Offset 4	Byte Offset 5	Byte Offset 6 Byte Offset 7									
IP Identificat	on Number (16-bit)	R DF MF Fragment Offset (13-bit)									
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11								
Time to Live (8-bit)	Protocol (8-bit)	Header Checksum (16-bit)									
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15								
	Source IP Ad	dress (32-bit)									
Byte Offset 16	Byte Offset 17	Byte Offset 18 Byte Offset 19									
	Destination IP	Address (32-bit)									
Byte Offset 20	Byte Offset 21	Byte Offset 22	Byte Offset 23								
	IP Options (variable length) (if any)										
	`	ole length)									
0 1 2 3 4 5 6	7 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31								

IP Version Number

Valid values are: 4 for IP version 4 6 for IP version 6

IP Header Length (4 byte multiplier)

Number of 32-bit words in IP header minimum value 5 (5 x 4 = 20 bytes) maximum value 15 (15 x 4 = 60 bytes)

Type of Service (Used by gateways as a QoS type field) (Most OS's default to 0)

If the first 3 high order bits are 1's, then possible it came from busy router that had to set tags to get through a backlog

Total Length (No multiplier)

Number of bytes in packet maximum length = 65,535

IP Identification Number

Uniquely identifies every datagram sent by host, value typically incremented by 1 (AKA Fragment ID)

Flags

R is reserved and must be set to 0

D is Don't Fragment Flag 1=Don't Fragment 0=Can Fragment

MF is More Fragments 1=More Fragments 0=No Fragment or no more Fragments

(frag x:y@z where x is the fragment ID, y is # of bytes (must be divisible by 8) and z is the fragment offset)

(In Ethernet the MTU 1500 should see middle fragments of size 1480 (1480 data + 20 ip header = 1500)

Fragment Offset (8 byte multiplier) (Measured in units of 64 bits) (Max fragment offset 65528 (8191*8))

Position of this fragment in the original datagram value is multiplied by 8 to get bytes

Time To Live

IP Protocol	D	Hex			D	Hex			D	Hex		_	D	Hex	
	1	0x01	ICMP		9	0x09	IGRP	-	47	0x2F	GRE	-'	88	0x58	EIGRP
	2	0x02	IGMP	•	17	0x11	UDP		50	0x32	ESP		89	0x59	OSPF
	6	0x06	TCP	4	47	0x2F	GRE		51	0x33	AH		•		•

Header Checksum

Covers IP header only Validated along the path from source to destination

Options (0-40 bytes; 1st @ 20th byte offset; padded 4-byte boundary) (Processed by each router as packet passes)

D	Hex		D	Hex	
0	0x00	End of Option list	68	0x44	Timestamp
1	0x01	No operation (pad)	131	0x83	Loose source route (security risk)
7	0x07	Record Route (security risk)	137	0x89	Strict source route (security risk)

7 IPv4 Hdr

IPv4 Header (cont.)

Type of Service

(Used by gateways as a QoS type field) (Most OS's default to 0)

Bit	0 -	2	Precedence		
Bit	3		0 = Normal Delay	1	Low Delay
Bit	4		0 = Normal Throughput	1	= High Throughput
Bit	5		0 = Normal Reliability	1	 High Reliability
Bit	6 &	7	Reserved for future use (Always	set to	0)

Preced	enc	е		Protocol	TOS Value
1	1	1	Network Control	Telnet	1000
1	1	0	Internetwork Control	FTP Control	1000
1	0	1	CRITIC / ECP	FTP Data	0100
1	0	0	Flash Override	TFTP	1000
0	1	1	Flash	SMTP Command	1000
0	1	0	Immediate	SMTP Data	0100
0	0	1	Priority	DNS UDP Query	1000
0	0	0	Routine	DNS TCP Query	0000
				DNE Zone Transfer NNTP	0100
				ICMP - Erros	0000
Telr	et			ICMP - Requests	0000
				ICMP - Responces	Same as request
				Any IGP	0010
				EGP	0000
				SNMP	0010
				BOOTP	0000

Transmission Control Protocol - TCP Header (RFC 793)

	5 6 7				16 17 18 19 20 21	22 23 24		31				
Byte Offset	0	By	te Offse	et 1	Byte Offset 2		Byte Offset 3					
Source	e Port N	umber (16-	-bit)		Destinatio	on Port Nu	umber (16-bit)					
Byte Offset	4	Ву	te Offse	et 5	Byte Offset 6		Byte Offset 7					
			Se	quence Nu	ımber (32-bit)							
Byte Offset	8	By	te Offse	et 9	Byte Offset 10		Byte Offset 11	20				
	Acknowledgement Number (32-bit)											
Byte Offset 1	12	Byt	e Offse	t 13	Byte Offset 14		Byte Offset 15					
	served I-bit)	URG ECN CWR	PSH ACK	FIN SYN RST	Window Size (16-bit)							
Byte Offset 1	16	Byt	e Offse	t 17	Byte Offset 18		Byte Offset 19					
	Checksui	m (16-bit)			Urge	nt Pointe	r (16-bit)					
Byte Offset 2	20	Byt	e Offse	t 21	Byte Offset 22		Byte Offset 23					
TCP Options I	_ength = ⁻			•	ble length) (if any) rent packet - 20 bytes (N	Minimum 1	ΓCP Header Length)					
Lenç	gth of Pac		d = IP T	otal Length	ole length) - (IP Header Length +∃							
0 1 2 3 4	5 6 7	8 9 10	11 12	13 14 15	16 17 18 19 20 21	22 23 24	25 26 27 28 29 30	31				

Common Port Numbers

D	Hex	<u> </u>	D	Hex		D	Hex		D	Hex	
7	0x07	echo	25	0x19	smtp	119	0x77	nntp	389	0x185	ldap
19	0x13	chargen	53	0x35	domain	137	0x89	netbios-ns	443	0x1BB	https (ssl)
20	0x14	ftp-data	79	0x4F	finger	139	0x8B	netbios-ssn	445	0x1BD	ms-ds
21	0x15	ftp-control	80	0x50	http	143	0x8F	imap			
22	0x16	ssh	110	0x6E	pop3	179	0xB3	bgp		• '	1

Sequence Number

32-bit number uniquely identifies initial byte of segment data.

Acknowledgement Number

Represents next byte of data receiving host expects: (last received sequence number + 1)

Header Length (4 byte multiplier)

Number of 32-bit words in TCP header minimum value 5 (5x4=20bytes) maximum value 15 (5x15=60bytes)

Reserved 4 bits set to 0

Congestion Window Reduced (CWR)

Set to 0 unless ECN is used. (1 = sender cuts congestion window in half)

Explicit Congestion Notification Echo (ECN)

Set to 0 unless ECN is used. (1 = receiver cuts congestion window in half)

Flags

URG = Urgent ACK = Acknowledgment PSH = Push RST = Reset SYN = Syncronize FIN = Finish (Note: Push means don't buffer data but push it to be processes as soon as it comes in.)

Window Size

Acts as flow control. Window size dynamically changes as data is received. A 0 window size tells src host to wait.

Checksum

Covers psedo header (IP Header source and destinstation addresses, the protocol and the computed TCP length (the TCP header length the and data length in octets)) and the TCP header

Urgent Pointer

Points to the sequence number of the octet following the urgent data.

Options

0 End of Options List 2 Maximum segment size 4 Selective ACK ok 1 No Operation (pad) 3 Window scale 8 Timestamp

9 TCP Hdr

User Datagram Protocol - UDP Header (RFC 768)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31				
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3				
Source Port N	umber (16-bit)	Destination Port Number (16-bit)					
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7				
Length	(16-bit)	Checksum (16-bit)					
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11				
	data (variab	ole length)					
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31				

Common Port Numbers

D	Hex	Protocol		D	Hex	Protocol		D	Hex	Protocol
7	0x07	echo		69	0x45	tftp	'•	500	0x1F4	isakmp
19	0x13	chargen	•	123	0x7B	ntp		514	0x202	syslog
37	0x25	time	•	137	0x89	netbios-ns		520	0x208	rip
53	0x35	domain	•	138	A8x0	netbios-dgm		33434	829A	traceroute
67	0x43	bootps	•	161	0xA1	snmp				
68	0x44	bootpc	•	162	0xA2	snmp-trap				

Length

Number of bytes in the entire datagram including header

minimum value 8 bytes

(Which is the length of just the header with no data)

maximum value 65515 bytes (or 65507 bytes of UDP data)

(Max IP is 65535 bytes - 20 byte header = 65515 bytes for UDP packet - 8 bytes of UDP header = 65507)

Checksum

Covers psedo header (IP Header source and destinstation addresses, the protocol and UDP length) and entire UDP datagram

(Note: By RFC, the crc is not required)

10 UDP Hdr

Internet Control Message Protocol - ICMP Header (RFC 792)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31				
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3				
Message Type (8-bit)	Message Code (8-bit)	Checksum (16-bit)					
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7				
(contents depends on type and code)							
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31				

Common Types & Codes

Type	Type Description	Code	Message Code Description
0	Echo reply	0	
3	Destination Unreachable	0	Net Unreachable
		1	Host Unreachable
		2	Protocol Unreachable
		3	Port Unreachable
		4	Fragmentation Needed & Don't Fragment Flag Set
		5	Source Route Failed
		6	Destination Network Unknown
		7	Destination Host Unknown
		8	Source Route Isolated
		9	Network Administratively Prohibited
		10	Host Administratively Prohibited
		11	Network Unreachable for TOS
		12	Host Unreachable for TOS
		13	Communication Administratively Prohibited
4	Source Quench	0	
5	Redirect	0	Redirect Datagram for the Network
		1	Redirect Datagram for the Host
		2	Redirect Datagram for the TOS & Network
		3	Redirect Datagram for the TOS & Host
8	Echo	0	
9	Router Advertisement	0	
10	Router Selection	0	
11	Time Exceeded	0	Time to Live exceeded in transit
		1	Fragment Reassembly Time Exceeded
12	Parameter Problem	0	Pointer indicates the error
		1	Missing a Required Option
		2	Bad Length
13	Timestamp Request	0	
14	Timestamp Reply	0	
15	Information Request	0	
16	Information Reply	0	
17	Address Mask Request	0	
18	Address Mask Reply	0	
30	Traceroute	0	
31	Datagram Conversion Error	0	
37	Domain Name Request	0	
38	Domain Name Reply	0	
40	Photuris (RFC 2521)	0	

(Note: Byte offset 4-5: identification #) (Note: Byte offset 6-7: sequence #)

11 ICMP Hdr

PING (Echo/Echo Reply) - ICMP Header (792)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31		
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3		
Message Type (8 or 0)	Message Code (0)	Checksu	m (16-bit)		
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7		
data (variable length)					

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type	Type Description	Code	Message Code Description
0	Echo reply	0	
8	Echo	0	

12 Ping

Address Resolution Protocol - ARP (RFC 826)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31			
Byte Offset 0 Byte Offset 1		Byte Offset 2	Byte Offset 3			
Hardware Addre	ess Type (16-bit)	Protocol Address Type (16-bit)				
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7			
Hardware Address Length (8-bit)	Protocol Address Length (8-bit)	Operatio	n (16-bit)			
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11			
Source Hardware Address (48-bit)						
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15			
Source Hardward	e Address (cont.)	Source Protocol Address (32-bit)				
Byte Offset 16	Byte Offset 17	Byte Offset 18	Byte Offset 19			
Source Protocol	Address (cont.)	Target Hardware Address (48-bit)				
Byte Offset 20	Byte Offset 21	Byte Offset 22	Byte Offset 23			
Target Hardware Address (cont.)						
Byte Offset 24	Byte Offset 25	Byte Offset 26	Byte Offset 27			
	Target Protocol Address (32-bit)					
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31			

ARP maps the logical address (IP) to the physical address (MAC)

Hardware Address Type

1 Ethernet6 IEEE 802 Lan

Protocol Address Type

2048 IPv4 (0x0800)

Hardware Address Length

6 for Ethernet/IEEE 802

Protocol Address Length

4 for IPv4

Operation

1 Request2 Reply

13 ARP

Domain Name System - DNS (RFC 1035)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16	17 18 19 20	21	22	23	24	25 26 27	28 29 30 31	
Byte Offset 0	Byte Offset 1		Byte Offset 2 Byte Offset 3				Offset 3			
DNS ID	(16-bit)	QR	Opcode (4-bit)	AA	тс	RD	RA	Z (3-bit)	RCODE (4-bit)	
Byte Offset 4	Byte Offset 5		Byte Offse	et 6				Byte C	Offset 7	
Question Count (C	Answer Count (ANCOUNT) (16-bit)									
Byte Offset 8	Byte Offset 9	Byte Offset 10 Byte Offset 11					ffset 11			
Name Server Count	(NSCOUNT) (16-bit)	Additional Records Count (ADCOUNT) (16-bit)								
Byte Offset 12	Byte Offset 13	Byte Offset 14						Byte Offset 15		
Question Se	Answer Section (16-bit)									
Byte Offset 16	Byte Offset 18 Byte Offset 19					ffset 19				
Authority Se	Additional Information Section (16-bit)									
0 1 2 3 4 5 6 7	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31									

Query/Response

dig version.bind txt chaos @ server name

0 Query

dig @ server name txt chaos version.bind

1 Response

Opcode

- 0 Standard query (QUERY)
- 1 Inverse query (IQUERY)
- 2 Server status request (STATUS)

AA

Authoritative Answer

TC

1 Truncation

RD

1 Recursion Desired

RA

1 Recursion Available

Z

Reserved; set to 0

Response Code

- 0 No Error
- 1 Format Error
- 2 Server Failure
- 3 Non-existent Domain (NXDOMAIN)
- 4 Query Type Not Implemented
- 5 Query Refused

QDCOUNT

(Number of entries in Question section)

ANCOUNT

(Number of resource records in Answer section)

NSCOUNT

(Number of name server resource records in Authority section)

ARCOUNT

(Number of resource records in Additional Information section)

14 DNS

Dynamic Routing Protocols

RIPv1

Distance Vector

Default Administrative Distance 120

Maximum hop count 15

Classful

Broadcast based (255.255.255.255)

No support for VLSM networks

Auto-summarization No authentication

No support for discontiguous networks Broadcast all routes every 30 seconds

Uses lowest hop count for best route (Bellman-Ford)

Slow convergence

IGRP (Cisco Proprietary / No longer supported)

Distance Vector

Default Administrative Distance 100

Maximum hop count 255 (default 100)

Classful

Broadcast based (255.255.255.255)

No support for VLSM networks

No authentication

No support for discontiguous networks Broadcast all routes every 90 seconds

Uses bandwidth and delay for best route

Uses autonomous system numbers

OSPF

Link State

Default Administrative Distance 110

Maximum hop count limit - none

Classful

Broadcast based (255.255.255.255)

Supports Variable Length Subnet Mask(VLSM) networks

Manual summarization

Allows for authentication

Supports discontiguous networks & route summaries

Multicast on change

Uses bandwidth and delay for best route (Dijkstra)

Uses autonomous system numbers

Fast convergence

Uses wildcard masks (inverse) in Cisco routers

Ripv2

Distance Vector

Default Administrative Distance 120

Maximum hop count 15

Classless

Uses multicast (224.0.0.9)

Supports Variable Length Subnet Mask(VLSM) networks

Auto-summarization

Allows for MD5 authentication Supports discontiguous networks Broadcast all routes every 30 seconds

Uses lowest hop count for best route (Bellman-Ford)

Slow convergence

EIGRP (Cisco Proprietary)

Hybrid

Default Administrative Distance 90 (External is 170)

Maximum hop count 255 (default 100)

Classless

Broadcast based (255.255.255.255)

Supports Variable Length Subnet Mask(VLSM) networks

Auto and manual summarization

Allows for authentication

Supports discontiguous networks & route summaries

No periodic route updates. Hello messages with neighbors

Best Path selection via Diffusing Update Alogorithm (DUAL)

Uses autonomous system numbers

Comunication via Reliable Transport Protocol (RTP)

Support for IPv4 and IPv6

OSPF v2 (RFC 1583)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31	1			
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3				
Version Number (8-bit)	Type (8-bit)	Packet Len	gth (16-bit)				
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7				
Router ID (32-bit)							
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11				
Area ID (32-bit)							
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15	Bytes			
Checksu	m (16-bit)	Authentication Type (16-bit)					
Byte Offset 16	Byte Offset 17	Byte Offset 18	Byte Offset 19				
	Authentica	tion (64-bit)					
Byte Offset 20	Byte Offset 21	Byte Offset 22	Byte Offset 23				
Authentication (cont)							
	data (variable length)						
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31							

Version Number

Valid values are: 12 forOSPF version 2

Type

Type Description		Description	Type	Description		
	1	Hello	4	Link state Update		
	2	Databse Description	5	Link State Acknowledgment		
	3	Link State Update				

Packet Length

(Used by gateways as a QoS type field) (Most OS's default to 0)

The length of the protocol packet in bytes includinging the standard OSPF header

Router ID

The router ID of the packet's sour maximum length = 65,535

Area ID

Identifies the are that this packet belongs to. Packets travelling over a virtual link are labelled with the backbone Area ID og 0.0.0.0

Checksum

Standard IP checksum of the entire contents of the OSPF packet excluding the 64-bit authentication field.

Authentication Type

Identifies the authentication scheme to be used for the packet.

Туре	Description
	No authentication
1	Simple password in the clear
rest	Reserved for assignment by the IANA

Authentication

Used by the authentication scheme

16 OSPF

Generic Routing Encapsulation - GRE (RFC 2784)

0	1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31	
	Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3	
С	Reserved-0 (1	Version (3-bit)	Protocol Ty	ype (16-bit)	
	Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7	
	Checksum (16-	-bit) (optional)	Reserved-1 (16	6-bit) (optional)	
	data (encapsulated packet) (variable length)				
0	1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31	

Checksum Present Bit

If the checksum bit is set to 1 then the Checksum and Reserved-1 fields are present.

Reserved-0

If bits 1 through 5 are non-zero then the packet should be discarded unless receiver implements RFC 1701. Bits 6 through 12 are reserved for future use. The bits must be set to 0 and ignored on receipt.

Version Number

The version number fields must be 0.

Protocol Type

Contains the protocol type of the payload packet. Values are listed in the "ETHER TYPES" section of RFC 1700

Type	Value (Hex)
XNS	0600, 0807
IP version 4	0800
ARP	806
IP (VINES)	0BAD, 80C4
DRP	6003
LAT	6004
DRP	6003

Type	Value
LAVC	6007
IPX	8037
AppleTalk	809B
ARP (Atalk)	80F3
NetWare	8137
IP version 6	86DD

Checksum

Standard IP checksum of the all the 16 bit words in the GRE header and payload packet.

Reserved - 1

Reserved for future use. Only present if checksum bit is set and if present must be 0.

Authentication

Used by the authentication scheme

17 GRE

Authentication Header - AH (RFC 2402)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31		
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3		
Next Header (8-bit) Payload Length (8-bit) Reserved (16-bit)			d (16-bit)		
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7		
Puto Offcot 9	•	ter Index (32-bit)	Puto Offcot 11		
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11		
	Sequence Nu	ımber (32-bit)			
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15		
	Authentication Data (variable length)				
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31		

Next Header

Equivalent to the IP Protocol Identifier field in IPv4

D	Hex		D	Hex		D	Hex		D	Hex	
1	0x01	ICMP	9	0x09	IGRP	47	0x2F	GRE	88	0x58	EIGRP
2	0x02	IGMP	17	0x11	UDP	50	0x32	ESP	89	0x59	OSPF
6	0x06	TCP	47	0x2F	GRE	51	0x33	AH		-	=

Payload Length

Specifies the length of the Authentication Header (number of 32-bit words - 2 for IPv6 compatibility)

Reserved

Zero filled field

Security Parameter Index (SPI)

Random 32-bit value used with destination IP address and IP Sec protocol to uniquely identify the SA.

The SPI is generally selected by the destination IP Sec node.

Sequence Number

A 32-bit sequence number starting at zero and incremented by one for each packet.

This monotonically increasing sequence number is the AH anti-replay mechanism.

Authentication Data

A variable-length field that contains the Integrity Check Value (ICV) for the packet.

The length of the IVC must be an integral multiple of 32 bits (IPv4) or 64 bits (IPv6); will need to be padded or truncated to meet the requirement.

AH Transport Mode Packet

AH Tunnel Mode Packet

ŀ	: Encaps	sulation>			
	New IP Header	Authentication Header	Original IP Header	Upper Layer Header	Upper Layer Data
Ī	Authenticated				

16 AH

Encapsulating Security Payload - ESP (RFC 2406)

ESP Header

Security Parameter Index (SPI)

Random 32-bit value used with destination IP address and IP Sec protocol to uniquely identify the SA. The SPI is generally selected by the destination IP Sec node.

Sequence Number

A 32-bit sequence number starting at zero and incremented by one for each packet.

This monotonically increasing sequence number is the AH anti-replay mechanism.

ESP Payload

Payload Data

A variable-length field containing the data to be protected by the ESP protocol; i.e., the original IP packet

ESP Trailer

Padding

A 0-255 byte field used for variety of purposes. It is primarily used to ensure that the Payload, Pad Length, & Next Header align on a 32-bit boundary. It can also be used if the ESP encryption algorithm requires a certain minimum number of bytes. Finally, it may be used to hide the real size of the payload (protect against traffic flow analysis)

Pad Length

8-bit value indicating the number of Pad bytes that were inserted.

Next Header

Equivalent to the IP Protocol Identifier field in IPv4

D	Hex		D	Hex		D	Hex		D	Hex	
1	0x01	ICMP	9	0x09	IGRP	47	0x2F	GRE	88	0x58	EIGRP
2	0x02	IGMP	17	0x11	UDP	50	0x32	ESP	89	0x59	OSPF
6	0x06	TCP	47	0x2F	GRE	51	0x33	AH		-	•

ESP Authentication

Authentication Data

A variable-length field that contains the Integrity Check Value (ICV) for ESP the packet. The length of the this field is dependent upon the authentication function used. This field is present only if an authentication service is being employed in the SA.

19 ESP

Encapsulating Security Payload - ESP (cont.)

Original Packet Original IP Header Upper Layer Header Upper Layer Data

ESP Transport Mode Packet

ESP Tunnel Mode Packet

20 ESP (2)

IPv6 Header (RFC 2460)

		5 16 17 18 19 20 21 22 23				
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3			
Version (4-bit)	lass (8-bit)	Flow Label (20-b	oit)			
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7			
Payload Le	ength (16-bit)	Next Header (8-bit)	Hop Limit (8-bit)			
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11			
	Source IP Ac	ddress (128-bit)				
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15			
	Source IP Address (cont.)					
Byte Offset 16	Byte Offset 17	Byte Offset 18	Byte Offset 19			
	Source IP A	ddress (cont.)		40 B		
Byte Offset 20	Byte Offset 21	Byte Offset 22	Byte Offset 23	Bytes		
	Source IP Address (cont.)					
Byte Offset 24 Byte Offset 25 Byte Offset 26 Byte Offset						
	Destination IP	Address (128-bit)				
Byte Offset 28	Byte Offset 29	Byte Offset 30	Byte Offset 31			
	Destination IP	Address (cont.)				
Byte Offset 32	Byte Offset 33	Byte Offset 34	Byte Offset 35			
	Destination IP	Address (cont.)				
Byte Offset 36	Byte Offset 37	Byte Offset 38	Byte Offset 39			
	Destination IP	Address (cont.)				
Byte Offset 40	Byte Offset 41	Byte Offset 42	Byte Offset 43	_		
Next Header (8-bit)	Extension	n Header Information (variable	e length)	Variable Length		
	Extension Header Information (variable length)					
	data (varia	ble length)		gth		
0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31					

IP Version Number 6 for IP version 6 4 for IP version 4

Traffic Class 8-bit field similar to IPv4 type of service field

Flow Label To tag packets of a specific flow to differentiate the packets at the network layer. (QoS)

Payload LengthThe total length of the data portion of the packetNext HeaderSimilar to the protocol field of IPv4 packet headerHop Limit:Similar to Time to Live field in IPv4 packet header

Source Address 128-bit source address field
Destination Address 128-bit destination address field

21 IPv6 Hdr

IPv6 (cont.)

A IPv6 Address is 16 bytes (128 bits) this give us 3.4 X 10^38

Samble IPv6 Address:

 2001:
 0db8:
 abdc:
 1234:
 0000:
 0000:
 9865:
 4321

 Global Prefix
 Subnet
 Interface ID

Special IPv6 Addresses

Address	Description		
0:0:0:0:0:0:0	Equal ::. This is the equivalent to IPv4's 0.0.0.0.		
0:0:0:0:0:0:0:1	Equals ::1. This is equivalent to IPv4's local host of 127.0.0.1.		
0:0:0:0:0:0:0:192.168.100.1	IPv4 address written in a mixed IPv6 / IPv4 network environment.		
2000::/3	The global unicast address range.		
FC00::/7	The unique local unicast range. Same Idea as the IPv4 RFC 1918 private addresses.		
FE80::/10	The link-local unicast range. Same Idea as the IPv4 RFC 1918 private addresses. But for on a single LAN. Non routeable.		
FF00::/8	The multicast range.		
3FFF:FFF::/32 Reserved for examples and documentation.			
2001:0DB8::/32	Reserved for examples and documentation.		
2002::/16	Used with 6to4, which is the strucuture that allows IPv6 packets to be transmitted over an IPv4 network without the need to configure explicit tunnels.		

IEEE Framing

Ethernet II

A physical layer standard that defines the CSMA/CD access method on a bus topology. This is the most common frame type for Ethernet IP traffic.

IEEE 802.1

Flavors of 802.1 (common)

802.1P Provides a mechanism for implementing Quality of Service (QoS)

802.1Q **VLAN Tagging**

802.1X Port based network access control

IEEE 802.2

A data link layer standard used with 802.3, 802.4, and 802.5 & 802.11

IEEE 802.3

A physical layer standard that defines the CSMA/CD access method on a bus topology.

Flavors of 802.3

802.3 "RAW" This framing does not use 802.2 LLC. Novell used this framing.

802.3 with 802.2 This framing does use the 802.2 LLC.

802.3 with 802.2 SNAP This framing does have the LLC and SNAP. Used in conjunction with Wireless traffic

on the wired side.

IEEE 802.4

This is Token Passing Bus Access Method and Physical Layer Specifications.

IEEE 802.5

Token Ring Access Method and Physical Layer Specifications.

IEEE 802.11

Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications.

Flavors of 802.11 (common)

802.11a 54 Mbit/s using the 5 GHz band with up to 23 non overlapping channels. (~15 users per AP) 802.11b 11 Mbit/s using the 2.4 GHz band with 3 non-overlapping channels. (~25 users/AP)(Marketed - WiFi) 802.11g 54 Mbit/s using the 2.4 GHz band with 3 non-overlapping channels. (~20 users/AP)(Marketed - WiFi) 802.11n Allows for greater Mbit/s using multiple-input multiple-output (MIMO), channel bonding and frame aggregation. This standard can be used in the 2.4 with 3 non overlapping channels and 5.0 GHz band

with up to 23 non overlapping channels. (~15 users per AP)

Organizationally Unique Identifier (OUI) This is the first 3 bites of the Media Access Control (MAC) Address) http://standards.ieee.org/regauth/oui/oui.txt

Ethernet II Frame Format (similar to IEEE 802.3)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31			
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3			
	Destination Address (48-bit)					
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7			
Destination Ad	ddress (cont)	Source Address (48-bit)				
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11			
	Source Address (cont.)					
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15			
Type (16-bit)	data (46 to 1500 bytes)				
Byte Offset 16	Byte Offset 17	Byte Offset 18	Byte Offset 19			
data (variable length)						
	Frame Check Sequence (32-bit)					
0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31					

Most common format of Ethernet packets today.

Preamble: 8 bytes (64 bit) At the head of each frame is a preamble used for synchronization

1010...10101011 this is know as Manchester encoding.

Destination Address: 6 byte (48 bit) destination media access control (MAC) address

Source Address: 6 byte (48 bit) source media access control (MAC) address

Type: 2 byte (16 bit) field that specifies the upper-layer protocol

Note: The difference between Ethernet II and IEEE 802.3 is that this field in the IEEE

standard is called the length field.

Type	Value (Hex)		
XNS	0600, 0807		
IP version 4	0800		
ARP	0806		
IP (VINES)	0BAD, 80C4		
DRP	6003		
LAT	6004		
DRP	6003		

Туре	Value
LAVC	6007
IPX	8037
AppleTalk	809B
ARP (Atalk)	80F3
NetWare	8137
IP version 6	86DD

Data: 46 to 1500 bytes of upper-layer protocol information

Frame Check Sequence: The cyclic redundancy check (CRC) or checksum for the Ethernet Frame

Min Ethernet Frame:

14 byte frame header + 46 bytes of encapsulated data + 4 byte frame trailer = 64 bytes Max Ethernet Frame:

14 byte frame header + 1500 bytes of encapsulated data + 4 byte frame trailer = 1518 bytes

Ethernet IEEE 802.2 Frame Format (802.3 with 802.2)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31									
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3									
	Destination Ad	ddress (48-bit)										
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7									
Destination Ac	ldress (cont)	Source Addre	ess (48-bit)									
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11									
	Source Add	ress (cont.)										
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15									
Length	(16-bit)	DSAP (8-bit)	SSAP (8-bit)									
Byte Offset 16	Byte Offset 17	Byte Offset 18	Byte Offset 19									
Control (1	or 2 bytes)	data + pad (variable leng	th) (43 to 1497 bytes)									
	data + pad (cont.)											
	Frame Check Sequence (32-bit)											
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31									

Preamble: 8 bytes (64 bite) At the head of each frame is a preamble used for synchronization

1010...10101011

Destination Address: 6 byte (48 bit) destination media access control (MAC) address (Part of 802.3 Header)

Source Address: 6 byte (48 bit) source media access control (MAC) address (Part of 802.3 Header)

2 byte (16 bit) field that specifies the number of bytes (3-1500) in the LLC and data fields Length:

(Part of 802.3 Header)

The logical link control (LLC) is made up of the DSAP, SSAP and Control fields. This is a **Logical Link control**

method for telling the 802.3 IEEE and Netware (RAW) formats. The IEEE 802.3 format has

the LLS and the NetWare 802.3 "Raw" format does not. (This is the 802.2 Header)

DSAP: 1 byte destination service access point; receiving process at destination

SSAP: 1 byte source service access point; sending process at source

Control: 1 byte is various control information (Connection less)

2 bytes are for connection-oriented LLC

Pad: Pads the frame to minimum of 46 bytes of data and LLC (so collisions can be detected)

Data: 46 to 1500 bytes of upper-layer protocol information

Frame Check Sequence: The cyclic redundancy check (CRC) or checksum for the Ethernet Frame

Ethernet IEEE 802.2 SNAP Frame Format (802.3 with 802.2 SNAP)

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31										
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3										
	Destination A	ddress (48-bit)											
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7										
Destination Ad	ddress (cont)	Source Add	ress (48-bit)										
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11										
	Source Address (cont.)												
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15										
Length	(16-bit)	DSAP (8-bit)	SSAP (8-bit)										
Byte Offset 16	Byte Offset 17	Byte Offset 18	Byte Offset 19										
Control (8-bit)		Vendor code (24-bit)											
Туре (16-bit)	data + pad (variable lenç	gth) (43 to 1497 bytes)										
	Frame Check Sequence (32-bit)												
0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31										

This is the Framing formate used on the Ethernet (wired) side with 802.11 with 802.2 SNAP for the wireless.

Preamble: 8 bytes (64 bite) At the head of each frame is a preamble used for synchronization

1010...10101011

Destination Address: 6 byte (48 bit) destination media access control (MAC) address (Part of 802.3 Header)

Source Address: 6 byte (48 bit) source media access control (MAC) address (Part of 802.3 Header)

Length: 2 byte (16 bit) field that specifies the number of bytes (3-1500) in the LLC and data fields

The logical link control (LLC) is made up of the DSAP, SSAP and Control fields. This is a

method for telling the 802.3 IEEE and Netware (RAW) formats. The IEEE 802.3 format has the LLS and the NetWare 802.3 "Raw" format does not. (Part of the 802.2 SNAP Header)

DSAP: 1 byte destination service access point; receiving process at destination (**Always AA**)

SSAP: 1 byte source service access point; sending process at source (Always AA)

Control: 1 byte is various control information (Connection less)

2 bytes are for connection-oriented LLC

SNAP Header

Logical Link control

The Subnet Access Protocol Header consists of the Vendor Code and Type fields

Vendor Code: 3 byte (24 bit) field to identify the vendor

Type: 2 byte (16 bit) field that specifies the upper-layer protocol

Type	Value
NetWare	8137
XNS	0600, 0807
IP	800
IP (VINES)	0BAD, 80C4
ARP	806

Type	Value
RARP	8035
DRP	6003
LAT	6004
LAVC	6007
ARP (Atalk)	80F3

Pad: Pads the frame to minimum of 46 bytes of data and LLC (so collisions can be detected)

Data: 46 to 1500 bytes of upper-layer protocol information

Frame Check Sequence: The cyclic redundancy check (CRC) or checksum for the Ethernet Frame

Ethernet Novell Netware 802.3 "Raw" Frame Format (802.3 without 802.2)

		16 17 18 19 20 21 22 23										
Byte Offset 0	Byte Offset 1	Byte Offset 2	Byte Offset 3									
	Destination A	ddress (48-bit)										
Byte Offset 4	Byte Offset 5	Byte Offset 6	Byte Offset 7									
Destination Ad	ddress (cont)	Source Add	ress (48-bit)									
Byte Offset 8	Byte Offset 9	Byte Offset 10	Byte Offset 11									
	Source Addi	ress (cont)										
Byte Offset 12	Byte Offset 13	Byte Offset 14	Byte Offset 15									
Type (16-bit)	data (variable length) (46 to 1500 bytes)										
Byte Offset 16	Byte Offset 17	Byte Offset 18	Byte Offset 19									
	data (cont.)											
	Frame Check Sequence (32-bit)											
0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31											

IP Version Number

Preamble: 8 bytes (64 bite) At the head of each frame is a preamble used for synchronization

1010...10101011

Destination Address: 6 byte (48 bit) destination media access control (MAC) address

Source Address: 6 byte (48 bit) source media access control (MAC) address

Length: 2 byte (16 bit) field that specifies the number of bytes (46-1500) in the LLC and data fields

Note the lack of the LLC fields, this is how you tell Netware 802.3 from IEEE 802.3

Data: 46 to 1500 bytes of upper-layer protocol information. IPX header starting with 2 byte

checksum (usually FFF) followed by NetWare higher layers ('data')

Frame Check Sequence: The cyclic redundancy check (CRC) or checksum for the Ethernet Frame

802.11 (IEEE 1999 Reference Specification)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Byte Offset 1 Byte Offset 0 Byte Offset 2 Byte Offset 3 Frame Control (16-bit) **Total Duration/ID (16-bit)** Byte Offset 4 Byte Offset 5 Byte Offset 6 Byte Offset 7 Address 1 (48-bit) Byte Offset 8 Byte Offset 9 Byte Offset 10 Byte Offset 11 Φ <u>y</u>te Address 1 (cont.) Address 2 (48-bit) MAC Byte Offset 12 Byte Offset 13 Byte Offset 14 Byte Offset 15 Address 2 (cont.) Header Byte Offset 17 Byte Offset 18 Byte Offset 19 Byte Offset 16 (Offset 0 to Address 3 (48-bit) Byte Offset 20 Byte Offset 21 Byte Offset 22 Byte Offset 23 Address 3 (cont.) Sequence Control (16-bit) Byte Offset 24 Byte Offset 25 Byte Offset 26 Byte Offset 27 Address 4 (48-bit) Byte Offset 28 Byte Offset 29 Byte Offset 30 Byte Offset 31 0 to 2312 bit Frame Body (variable length) Address 4 (cont.) 0 to 2312 bit Frame Body (variable length)

FCS (32-bit)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Frame Control

Consists of the following subfields: Protocol Version (bits 0-1), Type (bits 2-3), Subtype (bits 4-7), To DS (bit 8), From DS (bit 9), More Fragment (bit 10), Retry (bit 11), Power management (bit 12), More Data (bit 13), WEP (bit 14) and Order (bit 15)

Duration/ID field encoding

Duration / ID

 · · · ·			2 41 44101 412 11014 01100 41119
15	14	bit 13 - 0	Usage
0		0 - 32767	Duration
1	0	0	Fixed value within frames transmitted during the CFP
1	0	1-16383	Reserved
1	1	0	Reserved
1	1	1-2007	Association Identification (AID) in PS-Poll frames (Max association per AP is 2007)
1	1	2008 - 16383	Reserved

Address Fields

There are 4 address fields in the MAC frame format. These fields are used to indicate the BSSID, source address (SA), destination address (DA), transmitting station address (TA), and the receiving station address (RA).

Sequence Control

Consists of the following subfields: Fragment Number (bits 0-3) and Sequence Number (bits 4-15). Frames that have a payload larger than **2312 bytes** will be fragmented.

Frame Body FCS

Variable length field that contains information specific to individual frame types and subtypes. 32-bit check sum field calculated over all the fields of the MAC header and Frame body

29 802.11

802.11 (cont.)

Frame Control

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Byte	0	ffse	t 0)ffse			
PV		Тур			ubt	ype		11	ы	Z	Re	PM	S	M	Or
(2-bi	t)	(2-bi	t)		(4-b	it)		S	S	ΙF	try	M	D	EP	dei

Protocol Version Currently the value should always be 0

Type / Subtype The type and subtype field together identify the function of the frame

Туре		Туре	Subtype				together identity the function of the frame
						Subtype Description	
				=			Association Request
0	0	Management	0	0	0		
0		Management	0	0			Association Response
0		Management	0	_	1		Reassociation Request
0		Management					Reassociation Response
0		Management	0		0		Probe Request
0		Management	0		0		Probe Response
0		Management		110			Reserved
0	_	Management	1	0		_	Beacon
0		Management	1	0	0		Announcement traffic indication message (ATIM)
0		Management	1	0			Disassociation
0		Management	1	0	1		Authentication
0	0	Management	1	1	0		Deauthentication
0	0	Management		101·			Reserved
0	1	Control	0	000			Reserved
0	1	Control	1	0			Power Save (PS)-Poll
0	1	Control	1	0	1		Request To Send (RTS)
0	1	Control	1	1	0		Clear To Send (CTS)
0	1	Control	1	1	0	1	Acknowledgment (ACK)
0	1	Control	1	1	1	0	Contention-Free (CF)-End
0	1	Control	1	1	1	1	CF-End + CF-Ack
1	0	Data	0	0	0	0	Data
1	0	Data	0	0	0	1	Data + CF-Ack
1	0	Data	0	0	1	0	Data + CF-Poll
1	0	Data	0	0	1	1	Data + CF-Ack + CF-Poll
1	0	Data	0	1	0	0	Null function (no data)
1	0	Data	0	1	0		CF-Ack (no data)
1	0	Data	0	1	1	0	CF-Poll (no data)
1	0	Data	0	1	1		CF-Ack + CF-Poll (no data)
1	0	Data	1	000	-111		Reserved
1	1	Reserved	0	000	-111	1	Reserved

Miscellaneous Info

802.11a	54 Mbit/s using the 5 GHz band
802.11b	11 Mbit/s using the 2.4 GHz band (Marketed under the name WiFi)
802.11g	54 Mbit/s using the 2.4 GHz band (Marketed under the name WiFi)
802.11n	Allows for greater Mbit/s using multiple-input multiple-output (MIMO), channel bonding and frame
	aggregation. This standard can be used in the 2.4 and 5.0 GHz band.

802.11 header information was compiled from the 802.11 1999 reference specification available at http://standards.ieee.org/getieee802/download/802.11-1999.pdf

30 802.11 (2)

802.11 (cont.)

Frame Control

0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Byte	e Oi	ffse	t 0)ffs(
PV (2-bit)	Тур (2-b			ubt (4-b	ype it)		TDS	FDS	MF	Retry	PM	MD	WEP	Orde

To DS Set to 1 in data type frames destined for the DS. This includes all data type frames sent by

wireless stations associated with an AP. The To DS field is set to 0 in all other frames.

From DS Set to 1 in data type frames exiting the DS. It is set to 0 in all other frames.

DS TO/From DS Values

		101110111011101111111111111111111111111
То	From	Meaning
0		A data frame direct from one wireless station to another wireless within the same IBSS, as well as all management and control type frames. (AD HOC)
		Address 1 is Destination, Address 2 is Source, Address 3 is BSSID*
0	1	Data frame destined for the DS (to a wired network) from a wireless station (Infrastructure) Address 1 is Destination, Address 2 is BSSID, Address 3 is Source
1	0	Data frame exiting the DS (from a wired network) to a wireless station (Infrastructure) Address 1 is BSSID, Address 2 is Source, Address 3 is Destination
1	1	Wireless distribution system (WDS) frame being distributed from one AP to another AP Address 1 is Receiver, Address 2 is Transmitter Address 3 is Destination, Address 4 is Source

^{*} **Note:** The BSSID in an IBSS network is a randomly-selected value with the first 2 bits consistenly set to 01. The value is in the range of 40:00:00:00:00 to 7f:ff:ff:ff:ff:ff.

More Fragments

Set to 1 in all data management type frames that have another fragment of the current MSDU or current MMPDU to follow. It is set to 0 in all other frames.

Retry

Set to 1 in any data or management type frame that is a retransmission of an earlier frame. It is set to 0 in all other frames. A receiving station uses this indication to aid in the process of eliminating duplicate frames.

Power Management

Set to 1 indicates that the STA will be in power-save mode. A value of 0 indicates that the STA will be in active made. This field is always act to 0 in frames transmitted by an AR

will be in active mode. This field is always set to 0 in frames transmitted by an AP.

More Data

Set to 1 in directed data type frames transmitted by a contention-free (CF)-Pollable STA to the point coordinator (PC) in response to a CF-Poll to indicate that the STA has at least one additional buffered MSDU available for transmission in response to a subsequent CF-Poll. Set to 0 in all other directed frames.

0 in all other directed frames.

WEP Set to 1 if the Frame Body field contains information that has been processed by the WEP

algorithm. The WEP field is set to 0 in all other frames. When the WEP bit is set to 1, the Frame

Body field is expanded.

Order Set to 1 if any data type frame that contains an MSDU, or fragment thereof, which is being

transferred using the Strictly Ordered service class. Set to 0 in all other frames.

Sequence Control

0	1	2	3	4	5	6	7	8	9 10 11 12 13 14 15
	I	3yte	Of	fset	22			Byte Offset 23	
	igm (4-k	ent oit)	#			Sec	que	nce	Number (12-bit)

Fragment field

Field value can be 0 to 4096. Normally 0 because packets are not normally fragmented. Each fragment is assigned a unique fragment number with the entirety of the packet identified with a single sequence number. Note: Frames that have a payload larger than 2312 bytes will be fragmented.

31 802.11 (3)

	Kismet					
	Commands					
Key	Description					
QUICK REFERENCE						
е	List Kismet servers					
z	Toggle fullscreen zoom of network view					
m	Toggle muting of sound and speech					
t	Tag (or untag) selected network					
g	Group tagged networks					
u	Ungroup current group					
С	Show clients in current network					
L	Lock channel hopping to the current network channel					
Н	Return to normal channel hopping					
+	Expand groups					
-	Collapse groups					
^L	Force a screen redraw					
POPUP WINDOWS						
h	Help					
n	Name current network					
i	detailed information about selected network					
s	Sort network list					
I (lower case L)	Show wireless card power levels					
d	Dump printable strings					
r	Packet rate graph					
a	Statistics					
p	Dump packet type					
f	Follow network center					
w	Track alerts					
X	Cloase popup window					
Q	Quit					

Definitions of Symbols

Definitions of Symbols					
k/Group Types:					
Name	Description				
Probe Request	No associated connection yet				
Access Point	Standard wireless network				
ad-hoc	Point-to-point wireless network (IBSS)				
Turbocell	Turbocell (aka Karlnet or Lucent Outdoor Router) network				
Group					
Data	Data data only network with no control packets				
	_				
atus Flags					
Description					
Vulnerable facto	ory configuration.				
Address range of	, ,				
Address range of	Address range of # octets found via UDP traffic				
Address range of	Address range of # octets found via ARP traffic				
Address range f	Address range found via observed DHCP traffic				
WEPed network	decrypted with user-supplied key				
	k/Group Types: Name	Name Description			

Information obtained from the Kismet help screen

32 Kismet

TCPDUMP / WINDUMP

windump -i <interface> -nX capture from interface (-i <interface>) do not convert names(-n) and print out hex

and ascii (-X)

windump -i <interface> -nX -s0 capture from interface (-i <interface>) do not convert names(-n), print out hex and

ascii (-X) and capture all the packet

windump -r <file> -nXp capture from file (-r <file>), do not convert names (-n), print out hex and ascii (-X),

not in promiscuous mode (-p)

Keywords

host (host)	ip	vrrp	ether multicast
src host (host)	ip6	ip broadcast	vlan (vlan_id)
dst host (host)	arp	ip proto (protocol)	atalk
gateway (host)	icmp	ip protochan (protocol)	decnet
net (net/len)	icmp6	ip6 proto (protocol)	decnet src
src net (net)	tcp	ip6 protochain (protocol)	decnet host
dst net (net)	udp	ip multicast	iso
port (port)	ah	ip6 multicast	stp
src port (port)	esp	ether host (MAC)	ipx
dst port (port)	igmp	ether src (MAC)	netbeui
less (length)	igrp	ether dst (MAC)	
greater (length)	rarp	ether proto (protocol)	

Bit Masking	tcpflags	icmptype	icmp-echoreply	icmp-echo	icmp-paramprob
And unwanted bits with 0	tcp-fin		icmp-unreachable	icmp-ireq	icmp-tstamp
And wanted bits with 1	tcp-syn		icmp-sourcequench		icmp-tstampreply
0 AND 0 = 0	tcp-rst		icmp-redirect		icmp-ireq
0 AND 1 = 0	tcp-push		icmp-routeradvert		icmp-ireqreply
1 AND 0 = 0	tcp-ack		icmp-routersolicit		icmp-maskreq
1 AND 1 = 1	tcp-urg		icmp-timxceed		icmp-maskreply

Expressions: >, <, >=, <=, =, !=, +, -, *, /, &, | ! or not && or and || or or

filter format rotocol header>[offset:length]<relation><value>

tcpdump [command line options] ['filter'] windump [command line options] ["filter"]

Examples

host A and B	Connection	Connections between host A and host B				
ip[9] = 1 icmp		ip[9] = 6 tcp	ip[9] = 17 udp		[9] = 0x11	
tcp[2:2] < 20	The TCP of	lst port is greater than 20	udp[6:2] != 0	Non-zero	UDP checksum	
tcp[tcpflags]=tcp-syn		tcp[13] &0x02 != 0 At minimur				
tcp[tcpflags]=tcp-ack	Only Ack	tcp[13] &0x10 != 0 At minimur	n the ACK bit set			
tcp[tcpflags]=tcp-fin	or	tcp[13] &0xff=0x01 Only the FI	N bit is set	to	p[13] &0xff = 1	
tcp[13] &0xff =16	or	tcp[13] &0xff = 0x10				
icmp[0]=3 and icm	np[1]=2	icmp type 3 is destination unreachable category and a code of 2 specifies that this is an ICMP protocol unreachable (Good filter for detecting protocol scans)				
(tcp and (tcp[13] &0x0 not port 25 and not		A tcp packet where any combination of PSH, RST, SYN, FIN are set and the packet is not port 25 or 20				
udp[21:4]=0x564	55253	Looks for "VERS" in udp payloa	d for VERSION.BIND			
tcp[20:4] = 0x535	3482d	Looks for "SSH-" in TCP payload				
ip[6:2] & 0x3fff		Look for ALL fragmented ip packets				
ip[6] &0x20 = 0x20 c		Look for more fragment bit set or fragment offset greater than 0 (Look for ALL				
&0x1fff != 0		fragmented ip packets)				
ip[6] &0x20 = 0 and ip[i != 0	-	Look for more fragment bit not single fragment packets)	set and fragment offset (greater tha	ın 0 (Last	

33 TCPDUMP

	TCPDUMP / WINDUMP (cont.)						
Command Line Options							
Options	Description						
-a	Attempt to convert network and broadcast addresses to names						
-a -A	Attempt to convert network and broadcast addresses to names						
-B <size></size>	Set driver's buffer size to size in KiloBytes. The default buffer size is 1 megabyte (i.e 1000).						
-c <count></count>	Exit after receiving <count> of packets</count>						
Before writing a raw packet to a savefile, check whether the file is currently larger							
-C <file size=""></file>	file_size and, if so, close the current savefile and open a new one.						
	Dump the compiled packet-matching code in a human readable form to standard output and						
-d	Istop						
-dd	Dump packet-matching code as a C program fragment						
-ddd	ddd Dump packet-matching code as decimal numbers (preceded with a count)						
-D	Print the list of the interface cards available on the system. WINDUMP ONLY						
-e	Print the link-level header on each dump line						
	Use algo:secret for decrypting IPsec ESP packets where algorithms may be des-cbc, 3des-cbc,						
-E <algo:secret></algo:secret>	blowfish-cbc, rc3-cbc, cast128-cbc, or none.						
-f	Print 'foreign' internet addresses numerically rather than symbolically						
-F <file></file>	Use file as input for the filter expression						
-i <interface></interface>	Listen on interface (defaults to lowest numbered interface)						
-l	Make stdout line buffered. ``tcpdump -l tee dat" or ``tcpdump -l > dat & tail -f dat"						
-L							
-m <module></module>	Load SMI MIB module definitions from file module						
-n	Don't convert addresses to names						
	Don't convert addresses or port numbers (port numbers are resolved based on information the						
-nn	the linux /etc/service file or the windows %windir%\system32\drivers\etc\services file.)						
-N	Don't print domain name qualification of host names						
-0	Do not run the packet-matching code optimizer						
-p	Don't put the interface into promiscuous mode						
-q	Quick output – print less protocol information						
-r <file></file>	Read packets from file (created with the –w option)						
-R	Assume ESP/AH packets to be based on old specs						
-s <snaplen></snaplen>	Snarf snaplen bytes of data from each packet (default is 68)						
	x Ethernet Frame (14 byte Ethernet header + 1500 byte IP + 4 byte Ethernet trailer)						
	Ethernet Frame (14 byte Ethernet header + 64 byte IP + 4 byte Ethernet trailer)						
	Note: -s0 mean full ethernet packet						
-S	Print absolute, rather than relative TCP sequence numbers						
-t	Don't print a timestamp on each dump line						
	Force packets selected by "expressions" to be interpreted the specified type (cnfp, rpc, rtp,						
-T <type></type>	snmp, wb)						
-tt	Print an unformatted timestamp on each dump line						
-ttt	Print a delta (in micro-seconds) between current and previous line on each dump line						
-tttt	Print a timestamp in default format proceeded by date on each dump line						
-u	Print undecoded NFS handles						
-U							
-V	Verbose output (TOS, TTL, IP ID, Fragment Offset, IP Flags, length)						
V							
-w <file></file>	Write the raw packet to file rather than parsing and printing to stdout						
-x	Print each packet (minus link level header) in hex						
-X	Print each packet in hex and ascii						
-y <datalinktype></datalinktype>							

http://www.tcpdump.org/tcpdump_man.html http://windump.polito.it/docs/manual.htm#Wdump

NGREP

ngrep

<-hXViwqpevxIDtT> <-IO pcap_dump> <-n num> <-d dev> <-A num> <-s snaplen> <-S limitlen> <match expression>
 <

	Command Line Options					
- A (num)	is dump num packets after a match					
-D	is replay pcap_dumps with their recorded time intervals					
-d (device)	is use a device different from the default (pcap)					
-е	is show empty packets					
-h	is help/usage					
-i	is ignore case					
-I (file)	is read packet stream from pcap format file pcap_dump (Capitol i)					
-l	is make stdout line buffered					
-n (num)	is look at only num packets					
-O (file)	is dump matched packets in pcap format to pcap_dump					
-p	is don't go into promiscuous mode					
-q	is be quiet					
-S (limitlen)	is set the limitlen on matched packets					
-s (snaplen)	is set the bpf caplen					
-t	is print timestamp every time a packet is matched					
-T	is print delta timestamp every time a packet is matched					
-V	is version information					
-v	is invert match					
-W	is word-regex (expression must match as a word)					
-X	is interpret match expression as hexadecimal					
-X	is print in alternate hexdump format					

<match expression> is either an extended regular expression or a hexadecimal string. see the man page for

more information.

Examples:

ngrep " icmpprint all UDP packetsngrep " tcpprint all TCP packetsngrep " udpprint all UDP packets

ngrep " port 53 print all packets to or from TCP or TDP port 53 print all packets to or from only TCP port 53 print all packets to or from only TCP port 53 print all packets but those to or from TCP port 53

ngrep 'USER|PASS' tcp port 21 print all packets to or from TCP port 21 where USER or PASS

ngrep 'SSH-' port tcp 22 print all packets to or from TCP port 22 where SSHngrep 'LILWORD' port 138 print Microsoft browsing traffic for NT domain LILWORLD
ngrep -iq 'rcpt to|mail from' tcp port 25 monitor current delivery and print sender and recipients

ngrep 'user' port 110 monitor POP3

ngrep -q 'abcd' icmp "pinging" host running a Microsoft operating system?

ngep -i -l <input file> "Yahoo" read from input file and search for case insensitive "Yahoo"

Note: You can use "frame contains <string>" in ethereal to do similar searches.

http://www.packetfactory.net/projects/ngrep/usage.html

35 NGREP

Ethereal / Wireshark

Wireless Filters

wlan.fc.wep = 1 Displays all the frames that do have the **WEP** bit (or privacy bit) set wlan.fc.wep!= 1 Displays all the frames that do **NOT** have the **WEP** bit (or privacy bit) set

eapol and eap.type == 17 Will display **Cisco Leap** packets

eap.type == 17 and eap.code == 2 Will display only Cisco Leap packets that are EAP responses

wlan mgt.tag.number == 221 Displays **TKIP** or **AES** packets

wlan.bssid == <mac> Displays only packets that have the specified BSSID

wlan.fc.type_subtype eq 32 Displays only data frames

wlan.fc.type_subtype eq 11 or wlan.fc.type_subtype < 6 Display all probe request and response packets

wlan.fc.type_subtype != 8 Will exclude all the beacon frames from a wireless packet capture

Displays packets where the 1st byte in the destination MAC address is 0x01, a

multicast address.

wlan.da[0:1] == 1 http://www.iana.org/assignments/multicast-addresses http://www.cavebear.com/Cavebear/ethernet/multicast.html

(wlan.fc.wep!= 1) and (wlan.fc.type_subtype eq 32) and !(STP or http or nbus or arp or dns or browser or rip)

General IP Filters

ip.proto == 0x?? Display ICMP if ??=01, TCP if ??= 06 and UDP if ??=11

tcp.flags.syn == 0 tcp.flags.ack == 0 tcp.flags.fin == 0

tcp.flags.reset == 0 tcp.flags.push == 0

IPSec Filters

ip.proto == 0x?? Display IPSec AH if ??=51 and ESP if ??=50

isakmp or udp.port eq 500 or

udp.port eq 10000 or udp.port eq Displays ISAKMP traffic (Note 500/CheckPoint, 10000/Cisco, 5150/agere)

5150

isakmp[18] eq 4 Display IPSec ISAKMP packets using aggressive IKE mode

OS Finger Printing

browser.os_major < 5 Display pre-Windows 2000 Clients (Note: eq 5 WK2000 System)

Finds Data In A Packet

data contains "HTTP/1.1 240" Displays a packets with HTTP error code 240 in the header

http.cookie contains "x" Displays data "x" list in the cookie

Organizationally Unique Identifiers 1st 24 bits of MAC. OUI to Org. http://standards.ieee.org/regauth/oui/oui.txt

36 Ethereal

	Windows TCP / UDP Ports					
Port	Protocol	Application protocol	System service name			
n/a	GRE	GRE (IP protocol 47)	Routing and Remote Access			
n/a	ESP	IPsec ESP (IP protocol 50)	Routing and Remote Access			
n/a	AH	IPsec AH (IP protocol 51)	Routing and Remote Access			
7	TCP	Echo	Simple TCP/IP Services			
7	UDP	Echo	Simple TCP/IP Services			
9	TCP	Discard	Simple TCP/IP Services			
9	UDP	Discard	Simple TCP/IP Services			
13	TCP	Daytime	Simple TCP/IP Services			
13	UDP	Daytime	Simple TCP/IP Services			
17	TCP	Quotd	Simple TCP/IP Services			
17	UDP	Quotd	Simple TCP/IP Services			
19	TCP	Chargen	Simple TCP/IP Services			
19	UDP	Chargen	Simple TCP/IP Services			
20	TCP	FTP default data	FTP Publishing Service			
21	TCP	FTP control	FTP Publishing Service			
21	TCP	FTP control	Application Layer Gateway Service			
23	TCP	Telnet	Telnet			
25	TCP	SMTP	Simple Mail Transfer Protocol			
25	UDP	SMTP	Simple Mail Transfer Protocol			
25	TCP	SMTP	Exchange Server			
25	UDP	SMTP	Exchange Server			
42	TCP	WINS Replication	Windows Internet Name Service			
42	UDP	WINS Replication	Windows Internet Name Service			
53	TCP	DNS	DNS Server			
53	UDP	DNS DNS Server				
53	TCP	DNS	Internet Connection Firewall/Internet Connection Sharing			
53	UDP	DNS	Internet Connection Firewall/Internet Connection Sharing			
67	UDP	DHCP Server	DHCP Server			
67	UDP	DHCP Server	Internet Connection Firewall/Internet Connection Sharing			
69	UDP	TFTP	Trivial FTP Daemon Service			
80	TCP	HTTP	Windows Media Services			
80	TCP	HTTP	World Wide Web Publishing Service			
80	TCP	HTTP	SharePoint Portal Server			
88	TCP	Kerberos	Kerberos Key Distribution Center			
88	UDP	Kerberos	Kerberos Key Distribution Center			
102	TCP	X.400	Microsoft Exchange MTA Stacks			
110	TCP	POP3	Microsoft POP3 Service			
110	TCP	POP3	Exchange Server			
119	TCP	NNTP	Network News Transfer Protocol			
123	UDP	NTP	Windows Time			
123	UDP	SNTP	Windows Time			
135	TCP	RPC	Message Queuing			
135	TCP	RPC	Remote Procedure Call			
135	TCP	RPC	Exchange Server			
135	TCP	RPC	Certificate Services			
135	TCP	RPC	Cluster Service			
135	TCP	RPC	Distributed File System			
135	TCP	RPC	Distributed Link Tracking			
135	TCP	RPC	Distributed Transaction Coordinator			
135	TCP	RPC	Event Log			
135	TCP	RPC	Fax Service			
135	TCP	RPC	File Replication			
			p://support.microsoft.com/kb/832017			

37 MS PORTS

	Windows TCP / UDP Ports						
Port	Protocol	Application protocol	System service name				
135	TCP	RPC	Group Policy				
135	TCP	RPC	Local Security Authority				
135	TCP	RPC	Remote Storage Notification				
135	TCP	RPC	Remote Storage Server				
135	TCP	RPC	Systems Management Server 2.0				
135	TCP	RPC	Terminal Services Licensing				
135	TCP	RPC	Terminal Services Session Directory				
137	UDP	NetBIOS Name Resolution	Computer Browser				
137	UDP	NetBIOS Name Resolution	Server				
137	UDP	NetBIOS Name Resolution	Windows Internet Name Service				
137	UDP	NetBIOS Name Resolution	Net Logon				
137	UDP	NetBIOS Name Resolution	Systems Management Server 2.0				
138	UDP	NetBIOS Datagram Service	Computer Browser				
138	UDP	NetBIOS Datagram Service	Messenger				
138	UDP	NetBIOS Datagram Service	Server				
138	UDP	NetBIOS Datagram Service	Net Logon				
138	UDP	NetBIOS Datagram Service	Distributed File System				
138	UDP	NetBIOS Datagram Service	Systems Management Server 2.0				
138	UDP	NetBIOS Datagram Service	License Logging Service				
139	TCP	NetBIOS Session Service	Computer Browser				
139	TCP	NetBIOS Session Service	Fax Service				
139	TCP	NetBIOS Session Service	Performance Logs and Alerts				
139	TCP	NetBIOS Session Service	Print Spooler				
139	TCP	NetBIOS Session Service	Server				
139	TCP	NetBIOS Session Service	Net Logon				
139	TCP	NetBIOS Session Service	Remote Procedure Call Locator				
139	TCP	NetBIOS Session Service	Distributed File System				
139	TCP	NetBIOS Session Service	Systems Management Server 2.0				
139	TCP	NetBIOS Session Service	License Logging Service				
143	TCP	IMAP	Exchange Server				
161	UDP	SNMP	SNMP Service				
162	UDP	SNMP Traps Outbound	SNMP Trap Service				
389	TCP	LDAP Server	Local Security Authority				
389	UDP	LDAP Server	Local Security Authority				
389	TCP	LDAP Server	Distributed File System				
389	UDP	LDAP Server	Distributed File System				
443	TCP	HTTPS	HTTP SSL				
443	TCP	HTTPS	World Wide Web Publishing Service				
443	TCP	HTTPS	SharePoint Portal Server				
443	TCP	RPC over HTTPS	Exchange Server 2003				
445	TCP	SMB	Fax Service				
445	TCP	SMB	Print Spooler				
445	TCP	SMB	Server				
445	TCP	SMB	Remote Procedure Call Locator				
445	TCP	SMB	Distributed File System				
445	TCP	SMB	License Logging Service				
445	TCP	SMB	Net Logon				
464	TCP	Kerberos Password V5	Net Logon				
500	UDP	IPsec ISAKMP	Local Security Authority				
515	TCP	LPD	TCP/IP Print Server				
548	TCP	File Server for Macintosh	File Server for Macintosh				
554	TCP	RTSP	Windows Media Services				
5 57		is from the text provided at http://s					

	Windows TCP / UDP Ports					
Port	Protocol	Application protocol	System service name			
563	TCP	NNTP over SSL	Network News Transfer Protocol			
593	TCP	RPC over HTTPS endpoint mapper	Remote Procedure Call			
593	TCP	RPC over HTTPS	Exchange Server			
636	TCP	LDAP SSL	Local Security Authority			
636	UDP	LDAP SSL	Local Security Authority			
993	TCP	IMAP over SSL	Exchange Server			
995	TCP	POP3 over SSL	Exchange Server			
1067	TCP	Installation Bootstrap Service	Installation Bootstrap protocol server			
1068	TCP	Installation Bootstrap Service	Installation Bootstrap protocol client			
1270	TCP	MOM-Encrypted	Microsoft Operations Manager 2000			
1433	TCP	SQL over TCP	Microsoft SQL Server			
1433	TCP	SQL over TCP	MSSQL\$UDDI			
1434	UDP	SQL Probe	Microsoft SQL Server			
1434	UDP	SQL Probe	MSSQL\$UDDI			
1512	TCP	WINS	Windows Internet Name Service			
1512	UDP	WINS	Windows Internet Name Service			
1645	UDP	Legacy RADIUS	Internet Authentication Service			
1646	UDP	Legacy RADIUS	Internet Authentication Service			
1701	UDP	L2TP	Routing and Remote Access			
1723	TCP	PPTP	Routing and Remote Access			
1755	TCP	MMS	Windows Media Services			
1755	UDP	MMS	Windows Media Services			
1801	TCP	MSMQ	Message Queuing			
1801	UDP	MSMQ	Message Queuing			
1812	UDP	RADIUS Authentication	Internet Authentication Service			
1813	UDP	RADIUS Accounting	Internet Authentication Service			
1863	TCP	Microsoft Messenger Protocol	MSN Messenger			
1863	UDP	Microsoft Messenger Protocol	MSN Messenger			
1900	UDP	SSDP	SSDP Discovery Service			
2101	TCP	MSMQ-DCs	Message Queuing			
2103	TCP	MSMQ-RPC	Message Queuing			
2105	TCP	MSMQ-RPC	Message Queuing			
2107	TCP	MSMQ-Mgmt	Message Queuing			
2383	TCP	OLAP Services 9.0	SQL Server: Downlevel OLAP Client Support (SQL 2005)			
2393	TCP	OLAP Services 7.0 / 8.0	SQL Server: Downlevel OLAP Client Support			
2394	TCP	OLAP Services 7.0 / 8.0	SQL Server: Downlevel OLAP Client Support			
2460	UDP	MS Theater	Windows Media Services			
2535	UDP	MADCAP	DHCP Server			
2701	TCP	SMS Remote Control (control)	SMS Remote Control Agent			
2701	UDP	SMS Remote Control (control)	SMS Remote Control Agent			
2702	TCP	SMS Remote Control (data)	SMS Remote Control Agent			
2702	UDP	SMS Remote Control (data)	SMS Remote Control Agent			
2703	TCP	SMS Remote Chat	SMS Remote Control Agent			
2703	UPD	SMS Remote Chat	SMS Remote Control Agent			
2704	TCP	SMS Remote File Transfer	SMS Remote Control Agent			
2704	UDP	SMS Remote File Transfer	SMS Remote Control Agent			
2725	TCP	SQL Analysis Services	SQL Analysis Server			
2869	TCP	UPNP	Universal Plug and Play Device Host			
2869	TCP	SSDP event notification	SSDP Discovery Service			
3268	TCP	Global Catalog Server	Local Security Authority			
3269	TCP	Global Catalog Server over SSL	Local Security Authority Local Security Authority over SSL			
3343	UDP	Cluster Services	Cluster Service			
0070		is from the text provided at http://s				

		Windows TCF	P / UDP Ports		
Port	Protocol	Application protocol	System service name		
3389	TCP	Terminal Services	NetMeeting Remote Desktop Sharing		
3389	TCP	Terminal Services	Terminal Services		
3478	UDP	STUN	OCS A/V Edge Server for STUN Communications		
3527	UDP	MSMQ-Ping	Message Queuing		
4011	UDP	BINL	Remote Installation		
4500	UDP	NAT-T	Local Security Authority		
5000	TCP	SSDP legacy event notification	SSDP Discovery Service		
5004	UDP	RTP	Windows Media Services		
5005	UDP	RTCP	Windows Media Services		
5061	TCP	SIP/MTLS	OCS Access Edge Server Communication		
5062	TCP	SIP/MTLS	OCS Access Edge Server Authentication		
6001	TCP	Information Store	Exchange Server 2003		
6002	TCP	Directory Referral	Exchange Server 2003		
6004	TCP	DSProxy/NSPI	Exchange Server 2003		
8057	TCP	PSOM/MTLS	OCS Web Conferencing Edge Server		
42424	TCP	ASP.Net Session State	ASP.NET State Service		
50000-59999	TCP	OCS A/V Edge Server	Used for inbound and outbound media transfer		
51515	TCP	MOM-Clear	Microsoft Operations Manager 2000		
1024-65534	TCP	RPC (DCOM)	Randomly allocated high TCP ports		
			Used with RPC endpoint Mapper listening on TCP 135		

Kerberos

- Authentication service (AS) Exchange 1
- Ticket-Granting Service (TGS) Exchange Client/Server (CS) Excahnge 2

The AS Excannge is where the Kerberos key distribution (KDC)

IPC\$ Inter-Process Communication

OS Fingerprinting

os	Version	Platform	TTL	Window	DF	TOS	TCP Options
DC-Osx	1.1-95	Pyramid/NILE	30	8192	n	0	
Windows	9x/NT	Intel	32	5000-9000	У	0	
NetApp	OnTap	5.1.2-5.2.2	54	8760	У	0	
HPJetDirect	?	HP_Printer	59		n	0	
AIX	4.3.X	IBM/RS6000	60	16000-16100	У	0	MSS
AIX	4.2.X	IBM/RS6000	60	16000-16100	n	0	
Cisco	11.2	7507	60		У	0	
DigitalUnix	4	Alpha	60		у	16	
IRIX	6.x	SGI	60		У	16	
OS390	2.6	IBM/S390	60		n	0	
Reliant	5.43	Pyramid/RM1000	60		n	0	
FreeBSD	3.x	Intel	64		у	16	
JetDirect	G.07.x	J311A	64		n	0	
Linux	2.2.x	Intel	64	32120	У	0	MSS, SackOK, wscale, Timestamp, one NOP
Linux	2.4	Intel	64	5840			MSS, SackOK, wscale, Timestamp, one NOP
OpenBSD	2.x	Intel	64		n	16	MSS, Timestamp, wscale, sacks OK, 5 nops
0s/400	r4.4	AS/400	64		у	0	
SCO	R5	Compaq	64		n	0	
Solaris	8	Intel/Sparc	64		у	0	
FTX(Unix)	3.3	STRATUS	64	32678	n	0	
Unisys	х	Mainframe	64	32768	n	0	
Netware	4.11	Intel	128	32000-32768	у	0	
Windows	9x/NT	Intel	128	5000-9000	У	0	
Windows	2000	Intel	128	17000-18000	У	0	MSS, SackOK, 2 NOPs
Windows	XP Pro	Intel	128	???	??	0	MSS, nop, nop, SackOk
Cisco	12	2514	255	3800-5000	n	192	
Solaris	2.x	Intel/Sparc	255	8760	У	0	

ADDITIONAL NOTES

#

The page is from the text provided at http://project.honeynet.org/papers/finger/traces.txt

[#] Cisco IOS 12.0 normally starts all IP sessions with IP ID of 0

[#] Solaris 8 uses a smaller TTL (64) then Solaris 7 and below (255).

[#] Windows 2000 uses a much larger Window Size then NT.

Decimal to Hexadecimal to ASCII Chart

Dec	Hex	ASCII
0	0	NUL
1	1	SOH
2	2	STX
3	3	ETX
4	4	EOT
5	5	ENQ
6	6	ACK
7	7	BEL
8	8	BS
9	9	HT
10	Α	LF
11	В	LF VT
12	С	FF
13	D	CR
14	D E	SO
15	F	SI
16	10	DLE
17	11 12	DC1 DC2
18	12	
19	13	DC3
20	14	DC4
21	15	NAK
22	16	SYN
23	17	ETB
24	18	CAN
25	19	EM
26	1A	SUB
27	1B	ESC
28	1C	FS
29	1D 1E	GS
30	1E	RS
31	1F	US

Dec	Hex	ASCII
32	20	SP
33	21	!
34	22	"
35	23	#
36	22 23 24 25	\$
37	25	%
38	26 27	&
39	27	'
40	28	(
41	29)
42	2A	*
43	29 2A 2B	+
44	2C	,
45	2D	-
46	2D 2E 2F	,
47	2F	/ 0 1
48	30	0
49	31	1
50	32	2
51	33	3 4
52	34	4
53	35	5
54	36	6
55	37	7
56	38	8
57	39	9
58	3A 3B	
59	3B	;
60	3C	<
61	3D	=
62	3E	^
63	3F	?

Dec	Hex	ASCII
64	40	@
65	41	Α
66	42	В
67	43	С
68	44	C
69	45	Е
70	46	F
71	47	G
72	48	Н
73	49	I
74	4A	J K
75	4B	
76	4C	L M
77	4D	
78	4E	N
79	4F	0
80	50	Р
81	51	Q
82	52	R
83	53	S T
84	54	
85	55	U
86	56	V
87	57	W
88	58	X
89	59	Υ
90	5A	X Y Z [
91	5B	
92	5C	\
93	5D]
94	5E	٨
95	5F	

Dec	Hex	ASCII
96	60	-
97	61	а
98	62	b
99	63	С
100	64	DEL
101	65	е
102	66	f
103	67	g
104	68	h
105	69	i
106	6A	j
107	6B	k
108	6C	
109	6D	m
110	6E	n
111	6F	0
112	70	р
113	71	q
114	72	r
115	73	S
116	74	t
117	75	u
118	76	٧
119	77	W
120	78	Х
121	79	у
122	7A	Z
123	7B	{
124	7C	
125	7D	}
126	7E	~
127	7F	DEL

Dec	Hex	ASCII
128	80	Ç
129	81	ü
130	82	é
131	83	â
132	84	ä
133 134	85	à
134	86	å
135	87	Ç
136	88	ê
137	89	ë
137 138	8A	è
139	8B	Ϊ
140	8C	î
141	8D	ì
141 142	8E	ì Ä Å É
143	8F	Å
144	90	É
143 144 145 146	91	æ
146	92	Æ
147	93	ô
147 148	93 94	Ö
149 150	95 96	Ò
150	96	û
151	97 98	ù
152	98	ÿ
153	99	Ö û ù ÿ Ö Ü ¢
154	9A	Ü
155	9B	¢
156	9C	
157	9D	¥
158	9E	¥ Pts f
159	9F	f

Dec	Hex	ASCII
160	A0	á í
161	A1	
162	A2	Ó
163	А3	ú
164	A4	ñ
165	A5	Ñ
166	A6	а
167	A7	0
168	A8	ن
169	A9	L
170	AA	Г
171	AB	1/2
172	AC	1/4
173	AD	i
174	ΑE	«
175	AF	»
176	В0	000 000 000
177	B1	******
178	B2	
179	В3	
180	B4	-
181	B5	=
182	В6	4
183	В7	Π
184	B8	7
185	В9	
186	BA	
187	BB	7
188	ВС	
189	BD	Ш
190	BE	_
191	BF	7

Dec	Hex	ASCII
		L
192 193	C0 C1	-
	C2	
194	C2	-T
195	C3	
196	C4	
197	C5	
198	C6	F
199	C7 C8	<u> </u> -
200	C8	L
201	C9	F
202	CA	工
203	СВ	Ī
204	CC	F
205	CD	=
206	CE	#
207	CD CE CF	= # =
208	D0	1
209	D1	₹
210	D2	- I -
211	D3	
212	D4	F
213	D5	F
214	D6	Г
215	D7	+
216	D8	<u></u>
217	D9	
218	DA	Г
219	DB	
220	DC	
221	DD	
222	DE	
223	DF	

Dec	Hex	ASCII
224	E0	α
225	E1	ß
226	E2	Γ
227	E3	π
228	E4	Σ
229	E5	σ
230	E6	μ
231	E7	T
232	E8	Ф
233	E9	Θ
234	EΑ	Ω
235	EB	δ
236	EC	∞
237	ED	φ
238	EE	3
239	EF	\cap
240	F0	Ш
241	F1	±
242	F2	ΛΙ
243	F3	≤
244	F4	
245	F5	J
246	F6	÷
247	F7	*
248	F8	0
249	F9	•
250	FA	
251	FB	$\sqrt{}$
252	FC	n
253	FD	2
254	FE	•
255	FF	Hardspace

42 ASCII

References

1. Cisco, "The ABCs of IP Version 6", 2002

URL: http://www.cisco.com/application/pdf/en/us/guest/products/iosswrel/c1127/cdccont_0900aecd8018e369.pdf

 Honeynet Project, "Lists of fingerprints for passive fingerprint monitoring" May 23, 2000 URL: http://project.honeynet.org/papers/finger/traces.txt

3. IANA, "ICMP TYPE NUMBERS", January 27, 2005

URL: http://www.iana.org/assignments/icmp-parameters

 IANA, "IP OPTION NUMBERS", June 06, 2001 URL: http://www.iana.org/assignments/ip-parameters

5. IANA, "PROTOCOL NUMBERS", October 18, 2004 URL: http://www.iana.org/assignments/protocol-numbers

6. IEEE, "Get IEEE 802" March, 9 2005 URL: http://standards.ieee.org/getieee802/

7. IEEE, "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", June 12, 2003 URL: http://standards.ieee.org/getieee802/download/802.11-1999.pdf

8. Kismet, "KISMET PANELS INTERFAC",

URL: http://www.kismetwireless.net/

Packetfactory, "ngrep - network grep",
 URL: http://www.packetfactory.net/projects/ngrep/usage.html

10. POLITECNICO DI TORINO, "WinDump: tcpdump for Windows", March 14, 2002 URL: http://windump.polito.it/docs/manual.htm#Wdump.

11. RFC Editor, "RFC Editor Homepage", August 12, 2002 URL: http://www.rfc-editor.org/

12. SANS Institute's, "Audit 511: Auditing Wireless Networks, Part 1", 2005

13. SANS Institute's, "TCP/IP and tcpdump Pocket Reference Guide", June 2002 URL: http://www.sans.org/resources/tcpip.pdf

tcpdump.org, "tcpdump man pages"
 URL: http://www.tcpdump.org/tcpdump_man.html

 Todd Lammle, "CCNA: Cisco Certified Network Associate Study Guide" Wiley Publishing, Inc., Copyright 2007

43 References