

Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran.

References

- Introduction to Algorithms, T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, MIT Press, 2001.
- Foundations of Algorithms Using C++ Pseudocode, R. E. Neapolitan ans K. Naimipour, 1998.
- The Algorithm Design Manual, S. S. Skiena, 2008.
- Algorithms, S. Dasgupta, C. Papadimitriou, and U. Vazirani, 2008.
- The Design and Analysis of Computer Programs, Aho, Hopcropt, and Ullman, 1974.
- Computer Algorithms: Introduction to design and Analysis,
 G. Brassard.

References

- Introduction to Algorithms, T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, MIT Press, 2001.
- Foundations of Algorithms Using C++ Pseudocode, R. E. Neapolitan ans K. Naimipour, 1998.
- The Algorithm Design Manual, S. S. Skiena, 2008.
- Algorithms, S. Dasgupta, C. Papadimitriou, and U. Vazirani, 2008.
- The Design and Analysis of Computer Programs, Aho, Hopcropt, and Ullman, 1974.
- Computer Algorithms: Introduction to design and Analysis,
 G. Brassard.

Grading

Final exam.	40%	
Mid-Term exam. (1394/08/24)	20%	
Exercises	30%	
Teacher Assistant	10%	

Algorithm

Definition (Algorithm)

An algorithm is a finite set of precise instructions for performing a calculation or solving a problem.

Algorithm

Definition (Algorithm)

An algorithm is a finite set of precise instructions for performing a calculation or solving a problem.

Important properties of the Algorithms:

- Input
- Output
- Operation of the second of
- Correctness
- Finiteness
- Effectiveness
- Generality

Goals

The goals of this cours:

- How to devise algorithms?
- 2 How to express algorithms?
- Mow to validate algorithms?
- 4 How to analyze algorithms?
- Mow to test algorithms?

Goals

The goals of this cours:

- How to devise algorithms?
- 2 How to express algorithms?
- How to validate algorithms?
- How to analyze algorithms?
- Mow to test algorithms?

The following techniques will be discussed in this course:

- Divide and Conquer
- Dynamic Programming
- Greedy Algorithms
- Backtracking Algorithms
- Branch and Bound Algorithms

Insertion Sort: How to devise?

Insertion Sort: How to devise?

Insertion Sort: How to express?

```
INSERTION-SORT (A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \triangleright Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

Insertion Sort: How to validate?

Theorem

After the termination of InsertionSort algorithm, the input array A is sorted.

Insertion Sort: How to validate?

Theorem

After the termination of InsertionSort algorithm, the input array A is sorted.

Lemma

At the start of each iteration of the for loop of lines 1-8, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Insertion Sort: How to validate?

Theorem

After the termination of InsertionSort algorithm, the input array A is sorted.

Lemma

At the start of each iteration of the for loop of lines 1-8, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

Proof.

Proof based on induction (Loop Invariant, in this case).

- Initialization: $j = 2 \Longrightarrow A[1..1] = A[1]$, which is sorted.
- Maintenance: A[j] is inserted in the correct position, so A[1..j] is sorted.
- **Termination:** This happens when j = n + 1. So A[1..j 1] = A[1..n] is an ordered array.

Insertion Sort: How to analyze?

Computing the amount of resources (Time, Space, etc.) needed by the algorithm.

In	SERTION-SORT(A)	cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	do $key \leftarrow A[j]$	c_2	n-1
3	Insert A[j] into the sorted		
	sequence $A[1j-1]$.	0	n - 1
4	$i \leftarrow j-1$	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	do $A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow key$	c_8	n-1

where t_j is the number of times the while loop in line 5 is executed for that value of j. So:

$$T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5 \sum_{j=2}^{n} t_j + (c_6 + c_7) \sum_{j=2}^{n} t_j - 1.$$

Insertion Sort: How to analyze?

$$T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5 \sum_{i=2}^{n} t_i + (c_6 + c_7) \sum_{i=2}^{n} t_i - 1.$$

• Best Case: The input array is already sorted, so $t_i = 1$ and we have:

$$T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5(n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$

• Worse Case: The input array is already sorted in reverse order, so $t_j = j$ and we have:

$$T(n) = c_1 n + (c_2 + c_4 + c_8)(n-1) + c_5 (\frac{n(n+1)}{2} - 1)$$

$$+ (c_6 + c_7)(\frac{n(n-1)}{2})$$

$$= (\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2})n^2 + (c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2}$$

$$- \frac{c_7}{2} + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

Insertion Sort: How to test?

Just implement the pseudocode in any programming language and execute it with different instances of random arrays as input...

Exercises

- Answer to the five mentioned questions for the following problems:
 - a. Bubble Sort
 - b. Sequential Search
 - c. Binary Search