

GBI-ÜBUNGSSTUNDE

Kahoot!

- Wir spielen jetzt noch eine letzte Runde Kahoot!
- Das heutige Quiz könnt ihr euch später nochmal anschauen: https://create.kahoot.it/share/gbi-ubungsstunde/f80350a3-4473-4080-aeaf-35f456ac2a19
- Alle anderen Kahoot!s sind in den entsprechenden Foliensätzen verlinkt

Aufgabe 1: Sprachen

Aufgabe

Gegeben seien die folgenden Sprachen:

$$\begin{split} L_1 &= \left\{ \mathbf{a}^n \mathbf{b}^m \quad | \quad n, m \in \mathbb{N}_0, \, n > m \right\} \\ L_2 &= \left\{ \mathbf{a}^n \mathbf{b}^m \mathbf{c}^o \quad \middle| \quad n, o \in \mathbb{N}_0, \, m \in \mathbb{N}_+ \right\} \end{split}$$

- a) Geben Sie für $i \in \{1, 2\}$ einen regulären Ausdruck R_i an, sodass gilt:
 - $\langle R_i \rangle = L_i$.

Falls eine der Sprachen nicht regulär ist, geben Sie eine kontextfreie Grammatik an, die diese Sprache erzeugt.

b) Geben Sie für jede reguläre Sprache L_i ($i \in \{1, 2\}$) einen endlichen Akzeptor A_i an, der genau L_i akzeptiert.

Aufgabe 1: Sprachen

Lösung a)

- $G_1 = (\{S, X\}, \{a, b\}, S, \{S \to aSb|X, X \to aX|a\})$
- $R_2 = a * bb * c*$

Lösung b)

Aufgabe 2: Graphen

Aufgabe

Gegeben seien der oben dargestellte Graph G = (V, E).

- a) Geben Sie die Adjazenzmatrix A und die Wegematrix W von G an.
- b) Geben Sie einen gerichteten Graphen $G_W = (V, E_W)$ an, dessen Adjazenzmatrix W ist.
- c) Geben Sie einen schleifenfreien Graphen G' = (V', E') an, der nicht zu G isomorph ist, für den aber $G'_W = (V', E'_W)$ isomorph zu G_W ist. Dabei ist G'_W analog zu b) der Graph, dessen Adjazenzmatrix die Wegematrix von G' ist.

Aufgabe 2: Graphen

Lösung a)

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Lösung b)

Aufgabe 2: Graphen

Lösung c)

FEEDBACK + KURZE PAUSE

https://5vuj7k3npj7.typeform.com/to/wn5gx2qp

Aufgabe 3: Äquivalenzrelation

Aufgabe

Sei ${\mathfrak G}$ die Menge, die alle Graphen enthält.

(Wir ignorieren an dieser Stelle gekonnt, dass diese Definition keine Grundmenge hat)

Sei $R \subseteq \mathcal{G} \times \mathcal{G}$ eine binäre Relation, für die für beliebige $G, H \in \mathcal{G}$ gilt:

 $(G, H) \in R \Leftrightarrow G$ ist isomorph zu H". Zeigen Sie, dass R eine

Äquivalenzrelation ist.

Aufgabe 3: Äquivalenzrelation

Lösung

Zeige, dass R (i) reflexiv, (ii) transitiv und (iii) symmetrisch ist.

- (i) Sei $G = (V, E) \in \mathcal{G}$ ein Graph.
- Setze $f = Id_V$. Dann ist f offensichtlich bijektiv.
- Es gilt für bel. $v_1, v_2 \in V$: $(v_1, v_2) \in E \Leftrightarrow (v_1, v_2) = (f(v_1), f(v_2)) \in E$.
- Also ist f ein Graphenisomorphismus und es ist $(G, G) \in R$.
- (ii) Seien $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, $G_3 = (V_3, E_3) \in \mathcal{G}$ mit (G_1, G_2) , $(G_2, G_3) \in R$.
 - Dann ex. Graphenisomorphismen $f_1: V_1 \longrightarrow V_2$ und $f_2: V_2 \longrightarrow V_3$.
 - Setze $f = f_2 \circ f_1$. f ist als Verkettung bijektiver Funktionen selbst bijektiv.
 - Es gilt für $v_1, v_2 \in V_1$: $(v_1, v_2) \in E_1 \Leftrightarrow (f_1(v_1), f_1(v_2)) \in E_2$ $\Leftrightarrow (f_2(f_1(v_1)), f_2(f_1(v_2))) \in E_3 \Leftrightarrow (f(v_1), f(v_2)) \in E_3$
 - Also ist f ein Graphenisomorphismus und es folgt $(G_1, G_3) \in R$.

Aufgabe 3: Äquivalenzrelation

Lösung

Zeige, dass R (i) reflexiv, (ii) transitiv und (iii) symmetrisch ist.

(iii) Seien
$$G_1 = (V_1, E_1), G_2 = (V_2, E_2) \in \mathcal{G}$$
 mit $(G_1, G_2) \in \mathcal{R}$.

- Dann ex. ein Graphenisomorphismus $f: V_1 \longrightarrow V_2$.
- Da f bijektiv ist, existiert die Umkehrfunktion $f^{-1}: V_2 \longrightarrow V_1$, die selbst bijektiv ist.
- Seien $v_1, v_2 \in V_2$ beliebig. Dann existieren $w_1, w_2 \in V_1$ mit $v_1 = f(w_1), v_2 = f(w_2)$ bzw. $w_1 = f^{-1}(v_1), w_2 = f^{-1}(v_2)$.
- Dann gilt:

$$(v_1, v_2) = (f(w_1), f(w_2)) \in E_2 \Leftrightarrow (w_1, w_2) = (f^{-1}(v_1), f^{-1}(v_2)) \in E_1$$

• Also ist f^{-1} ein Graphenisomorphismus und es folgt $(G_2, G_1) \in R$.

Damit ist die Beh. gezeigt.

11

Aufgabe 4: Induktion (WS 2008)

Aufgabe

Es sei $A = \{a, b\}$. Die Sprache $L \subseteq A^*$ sei definiert durch

$$L = (\{\mathbf{a}\}^* \cdot \{\mathbf{b}\} \cdot \{\mathbf{a}\}^*)^*$$

Zeigt, dass jedes Wort w aus $\{a, b\}^*$, das mindestens einmal das Zeichen b enthält, in L liegt. (Hinweis: Macht eine Induktion über die Anzahl der Vorkommen des Zeichens b in w.)

Aufgabe 4: Induktion (WS 2008)

$$L = (\{\mathbf{a}\}^* \cdot \{\mathbf{b}\} \cdot \{\mathbf{a}\}^*)^*$$

Sei k die Anzahl der Vorkommen von b in einem Wort $w \in \{a, b\}^*$.

Induktionsanfang

Für k = 1: In diesem Fall lässt sich das Wort w aufteilen in

$$w = w_1 \cdot \mathbf{b} \cdot w_2$$

wobei w_1 und w_2 keine b enthalten und somit in $\{a\}^*$ liegen. Damit gilt $w \in \{a\}^* \cdot \{b\} \cdot \{a\}^*$ und somit auch

$$w \in \left(\{\mathtt{a}\}^* \cdot \{\mathtt{b}\} \cdot \{\mathtt{a}\}^*\right)^* = L$$

Aufgabe 4: Induktion (WS 2008)

Induktionsvoraussetzung

Für ein festes $k \in \mathbb{N}$ gilt, dass alle Wörter über $\{a,b\}^*$, die genau k-mal das Zeichen b enthalten, in L liegen.

Induktionsschritt

Wir betrachten ein Wort w, das genau k+1 mal das Zeichen b enthält. Dann kann man w zerlegen in $w=w_1\cdot w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k-mal das Zeichen b. Nach Induktionsanfang liegt w_1 in $\{a\}^*\{b\}\{a\}^*$. Nach Induktionsvoraussetzung liegt w_2 in $(\{a\}^*\{b\}\{a\}^*)^*$, was bedeutet, dass $w=w_1\cdot w_2$ in

$$\left(\{a\}^*\{b\}\{a\}^*\right)\cdot \left(\{a\}^*\{b\}\{a\}^*\right)^* \subseteq \left(\{a\}^*\{b\}\{a\}^*\right)^* = L$$

liegt und die Behauptung ist gezeigt. □

Und so geht es weiter...

- Algorithmen I
 - Mehr zu Algorithmen, Laufzeiten, Datenstrukturen, Graphen
- Technische Informatik
 - Realisierung von Schaltungen, Prozessoren (MIMA, ...)
- Theoretische Grundlagen der Informatik
 - Mehr zu Grammatiken, Komplexität, Entscheidbarkeit, Turingmaschinen

- THE END -

Viel Erfolg bei euren Klausuren! ©

Credits

An der Erstellung des Foliensatzes haben mitgewirkt:

Daniel Jungkind Thassilo Helmold Philipp Basler Nils Braun Dominik Doerner Ou Yue Max Schweikart