Creating input files Processing output files Making figures and animations Making shapefiles

Python Workshop How we use python

Joseph D. Hughes

U.S. Geological Survey Florida Water Science Center, Tampa, Florida USA

USGS National Groundwater Workshop, August 2012

Create GHB file from raw data (1)

[xoff,yoff,rot]=[1000,1000,45]

Create GHB file from raw data (2)

CreateCoastalGHB.py

```
import numpy as np
    import MFArrayUtil as au
    #--function for calculating equivalent freshwater head
    def eqfwh ( rho, h, z ):
        return ( rho / 1000. ) * h - ( ( rho - 1000. ) / 1000. ) * min( h, z )
    #--main script
    #--spatial dimensions
    nlav, nrow, ncol = 1, 41, 40
    dx, dy = 500.0, 500.0 \#m
10
    #--temporal dimensions
11
    nper = 3
12
    #--boundary condition data
13
    icbc, start coast = 0, 36
14
    kh = 10.000 \, \#m/d
15
    cond = kh * dx * dv
16 #--read MODFLOW data from external files
17
    ibound = au.loadArrayFromFile(nrow,ncol,'..\\ref\\ibound.ref')
18
    top = au.loadArrayFromFile(nrow,ncol,'..\\ref\\top.ref')
```


Create GHB file from raw data (3)

CreateCoastalGHB.py

```
#--ghb dataset
19
20
    nghb = 0
21
    for ir in range(0,nrow):
22
        for ic in range (0, ncol):
23
            if ibound[ir,ic] == 2:
24
                nghb += 1
25
    f = open('Model.ghb','w')
26
    #--dataset 0
27
    f.write( '#Coastal Aguifer GHB Package\n' )
28
    #--dataset 1
29
    f.write( '{0:10d}{1:10d} NOPRINT\n'.format( nghb, icbc ) )
30
    #--write header for qhb file -- stress period 1
31
    f.write( '{0:10d}
                                    #STRESS PERIOD {1:05d}\n'.format(nghb, 1))
32
    for ir in range (0, nrow):
33
        for ic in range(0, ncol):
34
            if ibound[ir.ic] == 2:
35
                f.write( '\{0:9d\}\{1:9d\}\{2:9d\}\{3:9.5f\}\{4:9.3g\}\n'.format(nlay,ir+1,ic+1, \
36
                         egfwh( 1025., 0.0, top[ir,ic]),cond ) )
37
    #--reuse data for the remaining stress period(s)
38
    for iper in range(1,nper):
39
        f.write( '{0:10d} 0
                                    #STRESS PERIOD {1:05d}\n'.format(-1,iper+1))
40
    f.close()
```

Output GHB file from raw data (4)

Model.ghb

```
#Coastal Aquifer GHB Package
  2
              205
                              NOPRINT
  3
              205
                                       #STRESS PERIOD 00001
                                     36
                                          0.00000
                                                     2.5e+06
  5
                                     37
                                          0.05000
                                                     2.5e+06
                                     38
                                          0.10000
                                                     2.5e+06
                                     39
                                          0.15000
                                                     2.5e+06
  8
                                     40
                                          0.20000
                                                     2.5e+06
  9
                                     36
                                          0.00000
                                                     2.5e+06
 10
                                     37
                                          0.05000
                                                     2.5e+06
 11
                                     38
                                          0.10000
                                                     2.5e+06
 12
                                     39
                                          0.15000
                                                     2.5e+06
 13
                                     40
                                          0.20000
                                                     2.5e+06
210
                          41
                                     36
                                          0.00000
                                                     2.5e+06
211
                          41
                                     37
                                          0.05000
                                                     2.5e+06
212
                          41
                                     38
                                          0.10000
                                                     2.5e+06
213
                          41
                                          0.15000
                                                     2.5e+06
                                     39
214
                          41
                                     40
                                          0.20000
                                                     2.5e+06
215
                                       #STRESS PERIOD 00002
216
                                       #STRESS PERIOD 00003
```


Extract heads to create a new initial head array

extractSteadyHead.py

```
import numpy as np
    import MFBinaryClass as mfb
    #--problem size
    nlay, nrow, ncol = 1, 41, 40
    nper, nstp = 1, 100
    #--name of MODFLOW head file
    head file = '..\\Results.SWI\\CoastalAguifer.hds'
    #--read head data
    #--create instance of head object from MFBinaryClass
10
    headObj = mfb.MODFLOW_Head(nlay, nrow, ncol, head_file)
11
    #--read array
12
    totim, kstp, kper, h, success = headObj.get record(nstp, nper)
13
    #--save array or print error message
14
    if success:
15
        np.savetxt('..\\ref\\steady ihead.ref',h[0,:,:])
16
    else:
17
        print 'Could not read Stress Period {0} Time Step {1}\n from {2}'.format(nper,nstp,\
18
                                                                                     head file)
```


Binary head data

plotHeads.py

```
43
     #--get available times
44
    headObj = mfb.MODFLOW_Head(nlay, nrow, ncol, head_file)
45
    t = headObj.get gage(1)
46
    ntimes = t.shape[0]
47
    mf times = np.zeros( (ntimes), np.float )
48
    for i in range(0,ntimes):
49
        mf times[i] = t[i.0]
55
     #--create figures for each output time
56
    for ipos, on time in enumerate ( mf times ):
57
         #--build output file name
58
        output_name = '\{0\}\{1\}_{2:05d}.\{3\}'.format(base_dir,base_name,int(ipos),extension)
59
        fnames.append( output name )
60
        #--read head data
61
        headObi = mfb.MODFLOW Head(nlav,nrow,ncol,head file)
62
        totim, kstp, kper, h, success = headObj.get record(on time)
63
        hd = np.copy(h[0,:,:])
```


Figures (1)

plotHeads.py

```
84
         hp = ax.pcolor(Xedge, Yedge, hd, \
85
                        vmin=0, vmax=2, cmap='jet r', alpha=1.0, edgecolors='None')
86
         ch = ax.contour(xcell, ycell, hd, \
87
                         levels=hdcontour,colors='k',linewidths=1)
88
         ax.clabel(ch,inline=1,fmt='%5.2f',fontsize=6)
89
         ax.plot([xedge[0], xedge[35]], [ycell[20], ycell[20]], linewidth=1, color='b', label='River')
90
         ax.plot(xcel1[struct_loc[1]],ycel1[struct_loc[0]], 'gs', markersize=4, label='Structure')
91
         ax.plot(xcell[well_loc[0,1]],ycell[well_loc[0,0]],'ko',markersize=3,label='PW-1')
92
         ax.plot(xcell[well loc[1,1]],ycell[well loc[1,0]],'ko',markersize=3,label='PW-2')
```


Figures (2)

Using ffmpeg.exe

```
101
     #--animate head data
102
     coutf = '{0}{1}.swf'.format(base dir,base name)
103
     cline = 'ffmpeq.exe -i {0}{1}_%05d.png {2} -y'.format( base_dir,base_name,coutf )
104
     try:
105
         os.remove(coutf)
106
     except:
107
         print 'could not remove...{0}'.format( coutf )
108
     subprocess.call(cline, stdin=None, stdout=None, stderr=None, shell=False)
```


Using ffmpeg.exe

Making shapefiles (1)

makeShapefileFromDIS.py

```
import numpy as np
     import shapefile
     import MFArrayUtil as au
89
     filename = '..\\data\\CoastalAquifer.dis'
90
     offset, nlay, nrow, ncol, delr, delc = load dis file (filename)
91
     #--flip the delc since we moved the orgin to lower left
92
     delc = np.flipud( delc )
93
     #--sum the lengths along the distance vectors
94
     delr cum = np.cumsum(delr)
95
     delc cum = np.cumsum(delc)
96
     #--flip the delc since we moved the origin to lower left
97
     delc cum = np.flipud( delc cum )
98
     #--insert '0' in the first position
99
     xedge = np.hstack((0.delr cum))
100
     vedge = np.hstack((delc cum, 0))
101
     #--read MODFLOW data from external files
102
     ibound = au.loadArrayFromFile(nrow,ncol,'..\\ref\\ibound.ref')
103
     top = au.loadArrayFromFile(nrow,ncol,'..\\ref\\top.ref')
```


Making shapefiles (2)

makeShapefileFromDIS.py

```
104
     #--create polygon shapefile of grid
105
     wr = shapefile.Writer()
106
     wr.field('row', fieldType='N', size=20)
107
     wr.field('column', fieldType='N', size=20)
108
     wr.field('delx',fieldType='N',size=20)
109
     wr.field('dely',fieldType='N',size=20)
110
     wr.field('cellnum', fieldType='N', size=20)
111
     wr.field('ibound',fieldType='N',size=20)
112
     wr.field('elev m', fieldType='N', size=16, decimal=7)
113
     #--create each polygon
114
     cell count = 0
115
     for ir in range (0, nrow):
116
         for ic in range(0, ncol):
117
              #--calc the box points relative to the grid
118
              lowleft = [xedge[ic], yedge[ir]]
119
              lowright = [xedge[ic+1], yedge[ir]]
120
              upright = [xedge[ic+1], yedge[ir+1]]
121
              upleft = [xedge[ic], yedge[ir+1]]
122
              closeit = [xedge[ic], yedge[ir+1]-0.0001]
123
              this box = [upleft.upright.lowright.lowleft.closeit]
```


Making shapefiles (3)

makeShapefileFromDIS.py

```
124
              #--if rotation is non-zero
125
              if offset[2] != 0.0:
126
                 this box = rotate(this box, offset[2])
127
              #--add the offset in after the rotation
128
             this_box = add_offset(this_box,offset)
129
              ibt = ibound[ir,ic]
130
              ttop = top[ir.ic]
131
             wr.poly(parts=[this_box], shapeType=5)
132
             wr.record([ir+1,ic+1,delc[ir],delr[ic],cell count+1,ibt,ttop])
133
             cell count += 1
134
     #--save polygon shapefile
135
     wr.save(target='..\\data\\CoastalAquifer_grid')
```

