SENAI BELO HORIZONTE CETEL CÉSAR RODRIGUES

PLANTA DIDÁTICA DE VAZÃO

TRABALHO DE CONCLUSÃO DE CURSO

ANDRÉ

BERNARDO

BRUNO

CAUAN

DENIS

DOUGLAS

LUCAS

MARIO

MATHEUS

RAMON

ROGÉRIO

SAMUEL

BELO HORIZONTE 10/2016

SENAI BELO HORIZONTE CETEL CÉSAR RODRIGUES

ANDRÉ

BERNARDO

BRUNO

CAUAN

DENIS

DOUGLAS

LUCAS

MARIO

MATHEUS

RAMON

ROGÉRIO

SAMUEL

PLANTA DIDÁTICA DE VAZÃO

Parcial do Trabalho de Conclusão de Curso apresentado ao SENAI/CETEL de BELO HORIZONTE, César Rodrigues, como requisito parcial para obtenção do certificado de Técnico em Automação Industrial.

Orientadores: Alexandre Diniz e Devanir

BELO HORIZONTE

10/2016

SUMÁRIO

RESUMO	2
LISTA DE QUADROS	5
LISTA DE FIGURAS	6
LISTA DE SIGLAS	7
1 INTRODUÇÃO	8
1.1 Objetivo	9
2 DESENVOLVIMENTO	10
2.1 Layout	10
2.2 Diagrama mecânico	13
2.3 Diagramas elétricos	16
2.6 Diagrama P&ID	31
2.5 Lista de tarefas	38
2.6 Cronograma Geral	38
2.7 Cronograma de montagem física	39
2.8 Cronograma da sintonia	39
2.9 Cronograma de montagem do supervisório	40
2.10 Cronograma da montagem elétrica	40
2.11 Lista de materiais	41
ANEXO A – Vistas do layout	42
ANEXO B – Diagramas mecânicos	51
REFERÊNCIAS	58

RESUMO

Etapa inicial do desenvolvimento da planta didática no qual abrange uma ampla variedade de equipamentos industriais com o foco em medição de vazão. A planta contém três malhas, na qual duas têm autonomia em realizar a devida medição da sua vazão individualmente. A terceira malha tem como ofício medir a vazão da união das outras duas.

Para realizar a montagem correta da planta foi criado, diagramas elétricos, diagramas mecânicos, lista de materiais, cronogramas, P&ID e layout. Os mesmos continuará sendo aprimorados durante a elaboração do trabalho.

Palavras chaves: Planta didática, controle de vazão, malhas de fluxo, controle, instrumentação e automação.

LISTA DE QUADROS

Quadro 1 – Lista de tarefas (Etapa documentação)	38
Quadro 2 – Cronograma geral	38
Quadro 3 – Cronograma de montagem física	39
Quadro 4 – Cronograma de sintonia	39
Quadro 5 – Cronograma de montagem do supervisório	40
Quadro 6 – Cronograma da montagem elétrica da planta	40
Quadro 7 – Lista parcial de materias	4

LISTA DE FIGURAS

Figura 1 – 3D da vista Frontal	10
Figura 2 – Vista 3D posterior	11
Figura 3 – Vista 3D da vista superior, posterior e lateral direita	12
Figura 4 – Lista de componentes	14
Figura 5 - Vista frontal	15
Figura 6 – Folha 1 do diagrama elétrico	16
Figura 7 – Folha 2 do diagrama elétrico	
Figura 8 – Folha 3 do diagrama elétrico	18
Figura 9 – Folha 4 do diagrama elétrico	19
Figura 10 – Folha 5 do diagrama elétrico	
Figura 11 – Folha 6 do diagrama elétrico	21
Figura 12 – Folha 7 do diagrama elétrico	22
Figura 13 – Folha 8 do diagrama elétrico	
Figura 14 – Folha 9 do diagrama elétrico	
Figura 15 – Folha 10 do diagrama elétrico	25
Figura 16 – Folha 11 do diagrama elétrico	
Figura 17 – Folha 12 do diagrama elétrico	
Figura 18 – Folha 13 do diagrama elétrico	
Figura 19 – Folha 14 do diagrama elétrico	
Figura 20 – Folha 15 do diagrama elétrico	
Figura 21 – Primeiro loop de malha	
Figura 22 – Segundo loop de malha	
Figura 23 – Terceiro loop de malha	
Figura 24 – Quarto loop de malha	
Figura 25 – Quinto loop de malha	
Figura 26 – Sexto loop de malha	
Figura 27 – Diagrama P&ID	
Figura 28 – 3D da vista Frontal	
Figura 29 – 3D das vistas posterior, lateral esquerda e superior	
Figura 30 – 3D das vistas Frontal, lateral direita e superior	
Figura 31 – 3D das vistas inferior, frontal e lateral esquerda	
Figura 33 – 3D da vista inferior	
Figura 34 – 3D da vista superior	
Figura 35 – 3D da vista esquerda	
Figura 36 – 3D da vista posterior	
Figura 37 – 3D das vistas posterior, lateral direita e superior	
Figura 38 – Vista lateral direita	
Figura 39 - Vista lateral esquerda	
Figura 40 – Vista posterior	
Figura 41 – Vista superior	
Figura 42 - Vista frontal	
Figura 43 – Fluxograma de calibração da válvula pneumática trim mínimo	
Figura 44 – Fluxograma de calibração da válvula pneumática trim máximo	57

LISTA DE SIGLAS

CETEL

Centro tecnológico de eletroeletrônico Serviço Nacional de Aprendizagem Industrial Controlador Lógico Programável SENAI

CLP

1 INTRODUÇÃO

O controle de vazão é um importante processo nas indústrias. Quando se tem um correto controle da vazão os ganhos são muitos, no que se diz a respeito de fins contábeis e rendimento dos processos.

"A vazão é a terceira grandeza mais manipulada na indústria. As aplicações são muitas, indo desde aplicações simples como a medição de vazão de água em estações de tratamento e residências, até medição de gases industriais e combustíveis, em petroquímicas". [13]

Existe vários métodos para medição de vazão como por exemplo: por diferença de pressão ou por medidores do tipo turbina, vórtice, corioles entre outros.

A planta didática em fase inicial desenvolvida neste trabalho terá três malhas. Que possibilita medir a variável vazão por três tipos de sensores, sendo na primeira malha pela placa de orifício, que faz a medição através do diferencial de pressão. A segunda utiliza um sensor de fluxo tipo turbina, que tem como vantagem, exercer baixa perda de carga no sistema, já que não possui qualquer obstrução. Sua demarcação é feita através da relação do fluido que se move dentro um campo magnético e produz uma força eletromotriz, proporcional a sua velocidade. Já a terceira, realizará a medição da união entre a primeira e segunda malha, usando como medidor de vazão o sensor de fluxo tipo turbina, no qual, através da passagem do fluido sobre as palhetas, aciona o rotor.

Em fase de elaboração a planta apresenta seus diagramas elétricos, P&ID, cronograma de montagem, layout e lista de materiais que serão aprimorados e estudados após essa etapa registrada através deste documento.

1.1 Objetivo

É visado no trabalho a elaboração de uma planta didática com principal objetivo a medição da vazão, aonde, pode-se utilizar malhas independentes para realizar diferentes comparações entre elas.

Mas o objetivo maior é a TAI01N através desta oportunidade única, de realizar todo projeto e montagem da planta, poder absorver o máximo de conhecimento e técnicas de vazão. Além de deixar para a unidade CETEL uma planta que servirá como instrumento de aprendizagem para os futuros aluno

2 DESENVOLVIMENTO

2.1 Layout

Utilizando o software SolidWorks versão 2016 foi criada um modelo 3D da planta didática automatizada para controle de malhas industriais de vazão. As medidas reais foram conservadas e os equipamentos representam fielmente aos originais. Sua criação, teve como prioridade organizar e posicionar os instrumentos em modo que todos tivessem fácil acesso de visualização e parametrização para as práticas que ocorrerão na mesma.

A planta é composta por duas malhas de vazão que são integradas unificando seus fluidos onde percorre um sensor de fluxo tipo turbina, possuindo cada uma delas retorno individual para o tanque.

Figura 1 – 3D da vista Frontal Fonte: Autoria própria

Na Figura 16, pode-se observar a primeira malha da planta de vazão, e seus instrumentos que estão em destaque, sendo ela composta por: bomba, laminador de fluxo, rotâmetro, placa de orifício e válvula de controle.

Figura 2 – Vista 3D posterior Fonte: Autoria própria

Na imagem a seguir encontra-se em destaque os componentes da segunda malha, possuindo esta: bomba, laminador de fluxo, rotâmetro, e medidor de fluxo tipo magnético.

Figura 3 – Vista 3D da vista superior, posterior e lateral direita Fonte: Autoria própria

2.2 Diagrama mecânico

Diagrama Mecânico 2D da planta didática, foi criado no software SolidWorks versão 2016.

Está no diagrama as referências de dimensionamento da planta, que serão referencias para realizar a montagem e posicionamento dos instrumentos, como podese observar nas figuras a seguir.

Figura 4 – Lista de componentes Fonte: Autoria própria

Figura 5 - Vista frontal Fonte: Autoria própria

2.3 Diagramas elétricos

A primeira página indica as simbologias que serão encontradas no projeto elétrico.

Figura 6 – Folha 1 do diagrama elétrico Fonte: Lucas Santiago

A segunda página indica a regra de cabeamentos de acordo com as colunas, páginas e a sequência. É basicamente uma instrução de como se lê o diagrama.

Figura 7 – Folha 2 do diagrama elétrico Fonte: Lucas Santiago

Na terceira página é indicada a partida da primeira bomba através do inversor e as alimentações trifásicas. Lembrando que a alimentação do Inversor utiliza apenas duas fases, porém para partir a bomba diretamente aciona-se uma alimentação trifásica.

Figura 8 – Folha 3 do diagrama elétrico Fonte: Lucas Santiago

Na quarta página é indicado a partida da segunda bomba através do inversor e as alimentações trifásicas. Lembrando que a alimentação do Inversor utiliza apenas duas fases, porém para partir a bomba diretamente aciona-se uma alimentação trifásica.

Figura 9 – Folha 4 do diagrama elétrico Fonte: Lucas Santiago

Na quinta página foi representada as alimentações chegando do acrílico para a entrada do posicionador da válvula de controle de vazão.

Figura 10 – Folha 5 do diagrama elétrico Fonte: Lucas Santiago

Na sexta página foi representada a energização geral da planta com um sistema 220V(fase-fase), que energiza alguns dispositivos de manobra, além de ser responsável por alimentar a fonte de 24V.

Figura 11 – Folha 6 do diagrama elétrico Fonte: Lucas Santiago

Na sétima página tem-se a representação elétrica da chave seletora, onde seleciona-se o modo remoto (Controle da bomba 3M1 através do inversor), ou acionamento local, habilitando as botoeiras para o operador partir a bomba diretamente.

Figura 12 – Folha 7 do diagrama elétrico Fonte: Lucas Santiago

Na oitava página tem-se a representação elétrica da chave seletora, onde seleciona-se o modo remoto (Controle da bomba 4M2 através do inversor), ou acionamento local, habilitando as botoeiras para o operador partir a bomba diretamente.

Figura 13 – Folha 8 do diagrama elétrico Fonte: Lucas Santiago

Acionamento dos relés de 24V que acionam as válvulas solenóides de 220V com seus respectivos contatos auxiliares.

Figura 14 – Folha 9 do diagrama elétrico Fonte: Lucas Santiago

Na décima página tenho as chaves seletoras que habilitam os instrumentos que são a 4 fios das malhas B(magnético) e C(turbina). Além de uma chave seletora para habilitar um relé para acionar o controlador CD-600.

Figura 15 – Folha 10 do diagrama elétrico Fonte: Lucas Santiago

Na 11ª página são representados os transmissores, que no caso da Malha A(placa de orifício-conjunto com LD-301) a dois fios. Nas malhas B e C são representados os transmissores magnético e turbina, ambos a 4 fios.

Figura 16 – Folha 11 do diagrama elétrico Fonte: Lucas Santiago

Representação de todos os bornes que chegam e saem da régua de bornes do Acrílico (XA).

Figura 17 – Folha 12 do diagrama elétrico Fonte: Lucas Santiago

Representação de sinais de entradas e saídas digitais que saem para o acrílico e chegam do mesmo.

Figura 18 – Folha 13 do diagrama elétrico Fonte: Lucas Santiago

Representação do CLP S7-300 com seus cartões e sua alimentação, seus sinais analógicos e digitais.

Figura 19 – Folha 14 do diagrama elétrico Fonte: Lucas Santiago

Representação do cartão analógico dedicado a saída da válvula de controle, recebendo a alimentação da fonte do primeiro cartão.

Figura 20 – Folha 15 do diagrama elétrico Fonte: Lucas Santiago

2.4 Diagrama P&ID

Diagrama P&ID A planta didática foi planejada para conter 3 malhas de controle, sendo 2 Malhas distintas: malha A e malha B, e a terceira malha como a integradora das duas malhas do circuito (malha C). As malhas A e B podem ser controladas simultaneamente ou individualmente, sem uma interferir na outra ou também passando da malha A para a C ou da B para a C, e podem ser controladas usando tipos de controles variados. O Diagrama P&ID foi construído com o intuito de facilitar o entendimento dos circuitos das 3 malhas de controle e as disposições dos instrumentos podendo servir como auxilio para as práticas na planta de Vazão.

O Diagrama P&I foi derivado em 6 loops de controle, para ditar os instrumentos e o caminho a ser utilizado para as práticas de controle na planta didática:

O primeiro loop é o circuito da malha A utilizando a placa de orifício como PV e a válvula de controle como MV e retornando para o tanque pela HV-501-L.

Figura 21 – Primeiro loop de malha Fonte: Douglas

O segundo loop da malha A passando pela malha C, atuando a solenoide SV-501, utilizando a placa de orifício como MV e a Válvula de controle como PV e retornando para o Tanque pelo Bay Pass. do medidor tipo turbina da malha C.

Figura 22 – Segundo loop de malha Fonte: Douglas O terceiro loop é bem parecido com o segundo loop mas o fluido passa pelo By pass da placa de orifício e retornando para o tanque pelo medidor tipo turbina que agora é usado como PV.

Figura 23 – Terceiro loop de malha Fonte: Douglas

O quarto loop é o circuito puramente da malha B, utilizando como MV o inversor de frequência da bomba FY-502, medidor magnético como PV e retornando para o tanque pela HV-502-I.

Figura 24 – Quarto loop de malha Fonte: Douglas O quinto loop é bem parecido com o loop da planta B mas dessa vez atuando a Solenoide SV-502 e retornando pelo by pass do medidor tipo turbina da malha C.

Figura 25 – Quinto loop de malha Fonte: Douglas

O sexto loop tem acionamento da solenoide da planta B mas Com a alteração da PV que agora é recebida pelo medidor tipo turbina da malha C.

Figura 26 – Sexto loop de malha Fonte: Douglas

Figura 27 – Diagrama P&ID Fonte: Autoria própria

2.5 Lista de tarefas

		Lista de	Tarefas	(Etapa [Docume	ntação)					Dec.	
Tarefa	André	Bernardo	Bruno	Cauan	Denis	Douglas	Lucas	Mario	Mateus	Ramon	Rógerio	Samue
Diagrama P&I												
Diagrama Elétrico									000		20 20	3
Diagrama de Malha											31	
Cronograma Previsto e Executado	38 3			8 8			i j	j	2	1		7
Fluxograma de Calibração/Ajuste									1		-	
Diagrama Mecânico	38 3						9,				S .	3
Layout da Planta												
Lista de materiais			3	8 8				j				8
Diagrama de Alimentação												
Guias de práticas	38 3						- ES	. 9			8	ĵ
Descritivo de Sintonia												
Manual operação Supervisório				8 8			j				S	S v
Descritivo de Partida e Parada												
Possibilidades de controle							,		2		S	S:
Referencia												
Layout de comunicação	84 8			6 8 6 4			3		8		8	3
Descritivo Geral									V		4	

Quadro 1 – Lista de tarefas (Etapa documentação) Fonte: Autoria própria

2.6 Cronograma Geral

Cronograma Geral				
ID	Tarefa	Data Inico	Data Fim	Responsavel
1	Documentação	16/08/2016	10/10/2016	Bernardo e Cauan
2	Montagem fisica e Equipamentos	19/09/2016	30/09/2016	Rogerio e Denis
3	Montagem Elétrica	03/10/2016	14/10/2016	Lucas e Ramon
4	Teste 1 e Ajustes	17/10/2016	21/10/2016	Denis
5	Programação CLP	24/10/2016	26/10/2016	Samuel
6	Teste 2	27/10/2016	31/10/2016	Lucas(Sem Equipe)
7	Programação Supervisório	01/11/2016	09/11/2016	Mateus e Bernardo
8	Teste 3	10/11/2016	11/11/2016	Rogerio(Sem Equipe)
9	Sintonia das malhas de Controle	14/11/2016	18/11/2016	Rogerio e Mateus
10	Teste 4 e Ajustes	21/11/2016	25/11/2016	Denis

Quadro 2 – Cronograma geral Fonte: Autoria própria

2.7 Cronograma de montagem física

CRONOGRAMA DA MONTAGEM FÍSICA	DA PLANTA	4
EQUIPE		
ANDRÉ		
BRUNO		
DOUGLAS		
ROGÉRIO		
DENIS		
ATIVIDADE A SER REALIZADA	DATA INI- CIAL	DATA FI- NAL
MEDIÇÕES, CORTES DA TUBULAÇÃO E	19/09	21/09
SOLDA DA TUBULAÇÃO, E CRIAÇÃO DOS SUPORTES DOS	22/09	23/09
MONTAGEM DAS TUBULAÇÕES E TESTES DE	26/09	28/09
FINALIZAÇÃO DA MONTAGEM	29/09	30/09

Quadro 3 – Cronograma de montagem física Fonte: Autoria própria

2.8 Cronograma da sintonia

CRONOGRAMA D	A SINTONIA	
EQUIPE		
BERNAR	DO	
MATHE	JS	
ROGÉR	IO	
DENIS	;	
ATIVIDADE A SER REALIZADA	DATA INICIAL	DATA FINAL
LEVANTAMENTO DE DADOS	01/11	01/11
DESENVOLVIMENTO	02/11	02/11
APLICAÇÃO	03/11	03/11
TESTES	04/11	04/11
AJUSTES	05/11	09/11

Quadro 4 – Cronograma de sintonia Fonte: Autoria própria

2.9 Cronograma de montagem do supervisório

CRONOGRAMA DE MONTA	<mark>GEM DO SUP</mark>	ERVISÓRIO		
EQUIP	E			
BERNA	RD			
DOUG	LA			
MATHEU				
ATIVIDADE A SER REALIZADA	DATA INICIAL	DATA FINAL		
TELA DE INTRODUÇÃO	01/1	01/1		
TELA DE EQUIPAMENTOS	02/1	02/1		
GRÁFICO DE TENDÊNCIAS	03/1	03/1		
TELA DE ALARMES	04/1	04/1		
TESTE	05/1	09/1		

Quadro 5 – Cronograma de montagem do supervisório Fonte: Autoria própria

2.10 Cronograma da montagem elétrica

CRONOGRAMA DA MONTAGEM ELÉTR	RICA	
EQUIPE		
CAUAN		
LUCAS		
MÁRIO		
RAMON		
ATIVIDADE A SER REALIZADA	DATA INI- CIAL	DATA FI- NAL
INSERIR NO CHASSI DO PAINEL DISPOSITIVOS DE MANOBRA E BORNES DE CONEXÃO	03/10	04/10
COM BASE NO DIAGRAMA ELÉTRICO, REALIZAR MONTAGEM DA PARTE FORCA (BOMBAS).	05/10	06/10
LIGAÇÃO DE BOTOEIRAS, DISPOSITIVOS DE ENTRADAS, SÁIDAS DI- GITAIS NO CONTROLADOR.	07/10	10/10
LIGAÇÃO DE ENTRADAS (TRANSMISSSORES) E SÁIDAS (VALV. DE CONTR.) ANALÓGICAS NO CONTROLADOR.	11/10	12/10
FINALIZAR QUESTÕES DE ACABAMENTO E REALIZAR TESTES FI- NAIS.	13/10	14/10

Quadro 6 – Cronograma da montagem elétrica da planta Fonte: Autoria própria

2.11 Lista de materiais

	Descrição				
Item	Quantidade	Unidade	Valor unit.		
Reservatório	1	1	8		
Eletrobomba	2	2	=		
Placas de orifício	2	2	5		
Rotâmetros de 1000 ml	2	2	=		
Rotâmetros de 2000 ml	1	1	2		
Controlador transmisssor eletromagnético	1	1	=		
Sensor transmissor eletromagnético	1	1	2		
Sensor transmissor tipo turbina	1	1	=		
Válvula de vazão com posicionador	1	1	2		
Manômetro	2	2	=		
Inversores de Fregência	2	2	=		

Quadro 7 – Lista parcial de materiais. Fonte: Autoria própria.

ANEXO A - Vistas do layout

Figura 28 – 3D da vista Frontal Fonte: Autoria própria

Figura 29 – 3D das vistas posterior, lateral esquerda e superior Fonte: Autoria própria

Figura 30 – 3D das vistas Frontal, lateral direita e superior Fonte: Autoria própria

Figura 31 – 3D das vistas inferior, frontal e lateral esquerda Fonte: Autoria própria

Figura 33 – 3D da vista inferior Fonte: Autoria própria

Figura 34 – 3D da vista superior Fonte: Autoria própria

Figura 35 – 3D da vista esquerda Fonte: Autoria própria

Figura 36 – 3D da vista posterior Fonte: Autoria própria

Figura 37 – 3D das vistas posterior, lateral direita e superior Fonte: Autoria própria

ANEXO B – Diagramas mecânicos

Figura 38 – Vista lateral direita Fonte: Autoria própria

Figura 39 - Vista lateral esquerda Autor: Autoria própria

Figura 40 – Vista posterior Fonte: Autoria própria

Figura 41 – Vista superior Fonte: Autoria própria

Figura 42 - Vista frontal Fonte: Autoria própria

ANEXO C - Fluxograma de calibração da válvula pneumática

Figura 43 – Fluxograma de calibração da válvula pneumática trim mínimo Fonte: Cauan Lima

Figura 44 – Fluxograma de calibração da válvula pneumática trim máximo Fonte: Cauan Lima

REFERÊNCIAS

- [1] CAMPOS, C. M. M., TEIXEIRA, H, C. G. Controles Típicos de Equipamentos e Processos Industriais. Blucher, 2006.
- [2] INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA. NBR 10068 Folha de desenho Leiaute e dimensões. http://docente.ifrn.edu.br/samueloliveira/disciplinas/desenho-industrial/normas-abnt-para-desenho-tecnico/nbr-10068-folha-de-desenho-leiaute-e-dimensoes/view. Acesso em: 19 de ago. 2016.
- [3] TOGNETTI, Eduardo Stockler. Simbologia e Terminologia de Instrumentação da Norma ISA 5.1. Disponível em: http://www.ene.unb.br/estognetti/files/Simbologia_ISA.pdf. Acesso em 21 de Ago. 2016.
- [4] EDUARDO, Durán Jesús. Standard ANSI/ISA 5.4 Instrument Loop Diagrams. http://webdelprofesor.ula.ve/ingenieria/oscaror/CursosDictados/Sobre%20el%2 0Blog%20Arturo%20Rondon/ISA%20S54%20PRESENTACION_PDF.pdf. Acesso em 21 de Ago. 2016.
- [5] BRAGA, Fredy Godinho. Tutoriais e dicas do autoCAD. Disponível em: http://www.aditivocad.com/blog/ajustar-espelhamento- de-blocos- no-autocad/ Acesso em 26 de Ago. 2016.
- [6] ANDRÉ, Luiz. Configurando um layout no autoCAD. Disponível em: http://qualificad.com.br/configurando-um- layout-no- autocad/. Acesso em 26 de Ago. 2016.
- [7] PANIZZA, Alexandre. Apostila de AutoCAD Básico. Disponível em: http://www.ibam-concursos.org.br/documento/autocad- 2.pdf. Acesso em 26 de Ago. 2016.
- [8] INCONTROL S/A. Manual de Operação e Instalação. Medidor de vazão Eletromagnético. Indicador, Totalizador e Transmissor de Vazão. 11/2008.
- [9] IEC 60617 DB-12M Graphical Symbols for Diagrams. Parts 2 to 13. Geneva, Switzerland. Pub. 05/2012.
- [10] Centro Tecnológico de Eletroeletrônica "César Rodrigues". Controle Feedback de Vazão. Belo Horizonte, 2015.
- [11] SMAR. Manual de Instruções, Operação e manutenção de Plantas Didáticas. http://www.smar.com/brasil/manuais-por-funcao. PD3 PD3-F Manual Português. Acesso em 23 de Ago. 2016.
- [12] Aplicações de Técnicas de Controle no MATLAB/SIMULINK Com Comunicação Via OPC em Uma Planta Didática Hart. http://www.fadep.br/engenharia-eletrica/congresso/pdf/117935_1.pdf. Acesso em 23 de Ago. 2016.

[13]Smar, Medição de vazão.Disponível em: < http://www.smar.com/newsletter/marketing/index40.html>. Acesso em 28 de Ago. 2016.

[14]Recanto das letras, Como fazer citações da internet. Disponível em:

< http://www.recantodasletras.com.br/teorialiteraria/1861690>. Acesso em 28 de Ago. 2016.