Алгебра, семинар №4 ВШЭ, осень, первый курс

Пусть K[x] – кольцо многочленов от одной переменной над полем K, $f \in K[x]$. Через K[x]/(f) обозначается факторкольцо многочленов по отношению эквивалентности

$$R = \{(a, b) : f \mid a - b\} \subset K[x] \times K[x]\}.$$

- **0.** Проверьте, что R отношение эквивалентности.
- **1.** Является ли кольцо $\mathbb{F}_2[x]/(x^2+x+1)$ полем?
- **2.** Является ли кольцо $\mathbb{F}_2[x]/(x^3+x+1)$ полем?
- **3.** Найдите минимальное k, такое что $\bar{x}^k = 1$ в кольце из задачи а). 1 и
- б). 2 $(\bar{x}$ класс эквивалентности элемента x).
- **4.** Найдите все обратимые элементы и все делители нуля в кольцах $\mathbb{F}_2[x]/(f)$ для следующих многчленов f:

$$x+1$$
, x^4+1 , x^4+x^2+1 .

- **5.** Обозначим через \mathbb{F}_4 поле $\mathbb{F}_2[x]/(x^2+x+1)$. Найдите все обратимые элементы и все делители нуля в факторкольце $\mathbb{F}_4[y]/(y^2+\bar{x}y+1)$.
- **6.** Является ли кольцо $\mathbb{R}[x]/(f)$ полем для следующих многочленов f:

$$x^2 + 1$$
, $x^3 + 1$, $x^4 + 1$.

7. Найдите все корни многочлена $x^2 - 1$ в поле \mathbb{F}_p .