

CAPSTONE PROJECT - IV

Book Recommendation System

By:

Shrinidhi Choragi

Data Science Trainee

Almabetter

Contents

- Introduction
- Problem statement
- Dataset
- Data Preprocessing and Exploratory Data Analysis
- Feature Engineering
- Recommenders
 - Recommender System- Popularity
 - Recommender System- Weighted Average
 - Recommendation System- Collaborative Filtering
 - → Memory-based Collaborative Filtering
 - → Model-based Collaborative Filtering
- Conclusion

Introduction

Recommendation System is an information filtering technology used in a wide range of platforms as per the interest of users and is implemented in applications like movies, music, venue, books, research articles, tourism, and social media in general.

Over 80% of what people watch comes from our recommendations

Recommendations are driven by Machine Learning

Problem Statement

The main objective is to create a machine learning model to recommend relevant books to users while exploring different algorithms for the same.

The following points are investigated:

- What is a recommendation system and how does it work?
- What hypothesis can be made from the data analysis?
- Explore/understand the different algorithms that recommend books.
- What are the pros and cons of different approaches and what solutions are suggested?

Dataset

The **Book-Crossing** dataset comprises of the following three files.

- ➤ Users
 - UserID
 - Demographic Data: Location, Age
- **➤** Books
 - ISBN
 - Book-Title, Book-Author, Year-Of-Publication, Publisher
 - Image URL (Image-URL-S,Image-URL-M, Image-URL-L)
- Ratings
 - Book-Rating
 - Contains explicit rating expressed on a scale from 1-10 (higher values denoting higher appreciation), or implicit, expressed by 0.

Data Preprocessing

• The anomalous entries in feature *Year-Of-Publication* are replaced with the median value.

Anomalies:

- Entries for that are greater than 2020
- The entries of year as '0'.
- The missing values in the feature variable "Age" are imputed with the median value.
- The anomalous values/missing values in *Book-Author*, *Publisher* are correctly matched/imputed.
- The values of "Age" greater than 80, and lesser than 10 are replaced with the median value.
- The observations of ratings corresponding to the books that aren't present in "Books" dataset are excluded.
- The implicit ratings provide no information regarding user interaction. Hence dropped.

Outliers: "Age"

Feature Engineering

> Feature Imputation

- New features the "Average-Rating" and the "Book-Rating-Count" are formed using the "Book-Rating" feature information.
 - The data is grouped based on "ISBN" to obtain the average ratings per book using mean transformation.

Average-Rating= Mean of ratings given for a book

 Similarly, grouping based on "ISBN" in order to obtain the count of ratings gives the "Book-Rating-Count" for each book.

Book-Rating-Count = Number of ratings for a book

 Information regarding country and state names is extracted from the existing column "Location", and the column is dropped later.

"Publishers" and "Book-Authors" with the most number of ratings

"Book-Authors" with the most number of books

"Publishers" with the most number of book publications

"Book-Authors" and "Book-Names" with the most number of ratings

Countries with the most ratings

Top 5 countries with the most number of ratings

Countries, States with the most number of ratings

1996.0

2002.0

1999.0

2001.0

2000.0

1998.0

1997.0

2003.0

Year-Of-Publication

1995.0

1994.0

1993.0

1992.0

1990.0

Years with the most number of books

Recommenders and Evaluation Metrics

The following recommenders have been studied and implemented on the given dataset:

- Recommender System- Popularity
- Recommender System- Weighted Average
- Recommender System- Collaborative Filtering
 - Memory-Based Collaborative Filtering
 - Model-Based Collaborative Filtering

Evaluation methods for recommender systems can mainly be divided into two sets:

- The evaluation is based on well-defined metrics
 - If the recommender system is based on a model that outputs numeric values such as rating predictions: RMSE, MAE etc
- The evaluation is mainly based on human judgment and satisfaction estimation.
 - o If the recommender system is not based on numeric values and only returns a list of recommendations

Recommender System - <u>Data Filtering</u>

- The data is considered for filtering in order to:
 - Reduce the dimensionality of the dataset and avoid running into memory error.
 - To bring statistical significance.
 - To access relevant information required to make recommendation.
- > Data filtering algorithms define a threshold/cutoff on one or more characteristics.

Ex:

- ☐ Define a popularity threshold/percentile cutoff
- Define threshold on multiple features: considering the users with at least "user_threshold" ratings and books with at least "ratings_threshold" ratings.

"user_threshold" = 60; "ratings_threshold" = 10

Recommender System - Popularity

- It's a kind of recommendation system that works on the principle of popularity and/or whatever is trending.
- Example: The most viewed article for a website, the most popular movie for Netflix, the most sold items for Amazon, the most trending videos for YouTube, etc.
- Youtube studio also uses this system to show the most popular videos in the last 28 days.

Advantages: Simplicity, less computational usage and easy to keep updated.

Disadvantages: Lack of personalization, and poor accuracy in recommendations, implying fewer profits generated.

Amazon Bestsellers

Our most popular products based on sales. Updated hourly.

Bestsellers in Books

Recommender System - Popularity

- The recommendation based on popularity is done by considering the **Average Rating** of the book.
- Initially, data is filtered by considering the *Popularity Threshold* Minimum number of ratings for a book to be considered for the recommendation.
- The resulting list of books is sorted in decreasing fashion based on the **Average Rating**.

Book-Title

0 Harry Potter and the Sorcerer's Stone (Harry Potter (Paperback)) J. K. Rowling Arthur A. Levine Books 8 939297 313 The Secret Life of Bees Sue Monk Kidd Penguin Books 8 452769 The Da Vinci Code Dan Brown Doubleday 8.435318 The Lovely Bones: A Novel 8 185290 707 Alice Sebold Little. Brown The Red Tent (Bestselling Backlist) Anita Diamant Picador USA 8.182768 383

Book-Author

Popularity Threshold: 300

Recommender System - Weighted Average

- The recommendation index used for our books dataset is Weighted Average Rating.
 It is one of the types of popularity recommendation.
- For the calculation of threshold(m), the 90th percentile is used as the cutoff.
- The weighted average score is calculated for each book and recommendations are done based on the highest scores.
- This approach is not sensitive to the interests and tastes of a particular user.

$$W = \frac{Rv + Cm}{v + m}$$

Where,

W is Weighted Average
v is the number of ratings for the book
m is the threshold- the minimum number of ratings
required to be listed in the chart
R is the average rating of the book
C is the mean average ratings across the
whole dataset- mean(R)

Recommender System - Weighted Average

Recommendations based on "Weighted Average Book Rating"

	Book-Title	Book-Author	Publisher	Average-Rating	Book-Rating-Count	Weighted-Average-Score
0	Harry Potter and the Goblet of Fire (Book 4)	J. K. Rowling	Scholastic	9.262774	137	8.741835
1	Harry Potter and the Sorcerer's Stone (Harry Potter (Paperback))	J. K. Rowling	Arthur A. Levine Books	8.939297	313	8.716469
2	Harry Potter and the Order of the Phoenix (Book 5)	J. K. Rowling	Scholastic	9.033981	206	8.700403
3	To Kill a Mockingbird	Harper Lee	Little Brown & Dompany	8.943925	214	8.640679
4	Harry Potter and the Prisoner of Azkaban (Book 3)	J. K. Rowling	Scholastic	9.082707	133	8.609690

Top 10 recommendations and their scores

Recommender System - Collaborative Filtering

- Collaborative methods for recommender systems are based on the past interactions recorded between users and items in order to produce new recommendations.
- These interactions are stored in the so-called "user-item interactions matrix".

Recommender System - Collaborative Filtering

Item-Item Memory Based Collaborative Filtering

Cosine Similarity

Collaborative Filtering - Item-Item Memory Based Collaborative Filtering

Top 5 recommended books to user who prefers "Harry Potter and The Goblet Of Fire"

	Book-Title	Book-Author	Publisher	Average-Rating	Book-Rating-Count	Similarity-Score
0	Harry Potter and the Prisoner of Azkaban (Book 3)	J. K. Rowling	Scholastic	9.082707	133	0.365923
1	Harry Potter and the Chamber of Secrets (Book 2)	J. K. Rowling	Scholastic	8.783069	189	0.365923
2	Harry Potter and the Order of the Phoenix (Book 5)	J. K. Rowling	Scholastic	9.033981	206	0.365923
3	Harry Potter and the Sorcerer's Stone (Book 1)	J. K. Rowling	Scholastic	8.983193	119	0.365923
4	Harry Potter and the Sorcerer's Stone (Harry Potter (Paperback))	J. K. Rowling	Arthur A. Levine Books	8.939297	313	0.365923

Recommender System - Collaborative Filtering

<u>Item-Item Memory Based Collaborative Filtering</u>

Memory-based collaborative filtering approaches that compute distance relationships between items or users have these two major issues:

- It doesn't scale particularly well to massive datasets, especially for real-time recommendations based on user behavior similarities which take a lot of computations.
- Rating matrices may be overfitting to noisy representations of user tastes and preferences.

Therefore to look for potential benefits of both *speed* and *scalability*, *model-based collaborative filtering* is investigated.

Recommender System - Collaborative Filtering

Model Based Collaborative Filtering

- Involves building a model based on the dataset of ratings.
- Latent factor methods explain the ratings by characterizing both items and users on many factors inferred from the rating pattern.

MATRIX FACTORIZATION

Collaborative Filtering - Model Based Collaborative Filtering

Singular Value Decomposition (SVD)

SVD is a matrix factorization technique which reduces the number of features of a dataset by reducing the space dimension from N-dimension to K-dimension (where K<N).

It finds factors of matrices from the factorization of a high-level (user-item-rating) matrix.

Where,

A is a m x n utility matrix,

U is a *m x k* orthogonal left singular matrix, which represents the relationship between users and latent factors.

S is a k x k diagonal matrix, which describes the strength of each latent factor.

V is a k x n diagonal right singular matrix, which indicates the similarity between items and latent factors.

Collaborative Filtering - Model Based Collaborative Filtering - Predictions

Books that have been rated by user-1424

	Book-Title	Book-Author	Publisher	Book-Rating	Average-Rating	Book-Rating-Count
0	A Walk in the Woods: Rediscovering America on the Appalachian Trail (Official Guides to the Appalachian Trail)	Bill Bryson	Broadway Books	8	8.207547	106
1	Prey	Michael Crichton	Avon Books	8	7.571429	77
2	A Map of the World	Jane Hamilton	Anchor Books/Doubleday	7	7.000000	111
3	The Poisonwood Bible	Barbara Kingsolver	HarperTorch	7	8.264706	34
4	The Name of the Rose: including Postscript to the Name of the Rose	Umberto Eco	Harvest Books	8	8.523810	21
5	The Joy Luck Club	Amy Tan	Prentice Hall (K-12)	6	8.195876	194
6	Plain Truth	Jodi Picoult	Washington Square Press	8	8.148936	47
7	The Poisonwood Bible: A Novel	Barbara Kingsolver	Perennial	7	8.178899	218
8	The Bean Trees	Barbara Kingsolver	HarperTorch	5	7.861111	72
9	Memoirs of a Geisha Uk	Arthur Golden	Trafalgar Square	8	8.174419	86
10	Year of Wonders	Geraldine Brooks	Penguin Books	7	8.318182	88

	Book-Title	Book-Author	Publisher	Average-Rating	Book-Rating-Count
0	1984	George Orwell	Signet Book	8.772277	101
1	1st to Die: A Novel	James Patterson	Little Brown and Company	7.661017	59
2	2010: Odyssey Two	Arthur C. Clarke	Del Rey Books	7.413793	29
3	2061: Odyssey Three	Arthur C. Clarke	Del Rey Books	7.666667	18
4	2nd Chance	James Patterson	Warner Vision	7.722222	90

USER-ID: 1424

Recommender System - Collaborative Filtering

Model Based Collaborative Filtering - Results

The predictions are based on the **SVD** model used for evaluating the model.

• The SVD model is hyperparameter tuned to obtain the *RMSE value of 1.50*

"Book-Rating" predictions for **User 1424**:

- 'The Poisonwood Bible' (Already Rated)
 - Estimated rating: 7.38
 - Actual rating: 7
- '1st to Die: A Novel' (Unseen Book)
 - Estimated rating: 7.67

Actual and predicted "Book-Rating" Plot

"Absolute Error" distribution

Cold-Start Problem

Cold start is a potential problem in computer-based information systems which involves a degree of automated data modeling. There are three instances of a cold start:

1. New community 2. New item 3. New user

collaborative filtering suffers from the "cold start problem".

Possible solutions:

- Random strategy
- Maximum expectation strategy
- Exploratory strategy
- Hybrid Strategy

Conclusion

- Different types of recommenders are explored in order to recommend books based on the "Book- Crossing" dataset.
- The exploratory data analysis gave a basis for hypothesis before going for any data modelling.
- Popularity-based recommendation is simple to implement but suffers from lack of personalization, and doesn't read the user interests.
- Recommendation system based on weighted average is yet another variety of popularity-based recommenders that considers score based on average rating.
- Collaborative filtering recommenders provide larger flexibility, scalability in terms of personalization of recommendations.
- The limitations in memory-based approach like, overfitting, not scalable to real-life large data etc. are overcome by the model-based collaborative filtering resulting in RMSE: 1.50
- The hybrid of popularity-based recommenders with collaborative filtering recommenders can be considered for ultimate performance.

Thank you