MULTIMEDIA	UNIVERSITY

		וטטונ	FINI	טא ט	
T	ABLE I	NO:			

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

TSN1101 – COMPUTER ARCHITECTURE AND ORGANIZATION

(All Sections / Groups)

2 MARCH 2018 9.00 a.m. - 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 23 pages (excluding this page and the Appendix) with 2 Sections. Each Section contains 4 Questions.
- 2. Attempt a total of 5 Questions, with a maximum of 3 Questions from any 1 Section and the remaining 2 Questions from the other Section. Each Question carries 12 marks and the distribution of the marks for each subdivision is given. Maximum allotted marks are 60 marks.
- 3. Please write all your answers in the Question Paper itself in the space provided.

TOXII	101
TSNI	101

SECTION A

Question A1

a) Complete the following table by performing the appropriate conversions.

Decimal	Binary	Hexadecimal	(8 4 -2 -1) code	Gray code
67.875				
07.875				

		(4 marks

number systems: Octal (Base 8)				
ii) Quinary (Base 5) Show all your calculations.				
	(2 marks			
	•			

c) Assume the decimal numbers given are

$$X = -49$$
 and $Y = -78$

- i) Represent the above decimal numbers in 8-bit two's complement binary representation.
- ii) Perform [(X) (Y)] with the numbers represented in 8-bit two's complement binary form.

(1+1=2 marks)

Continued

d) Perform the multiplication of two 4-bit two's complement binary numbers given below. Use Booth's algorithm (flowchart is given below).

Multiplicand (M) =
$$1110_2$$
 or -2_{10}
Multiplier (Q) = 0011_2 or 3_{10}

(4 marks)

	Q.,	Q	A	M
Initial val				
First cyc				·
Second cy		-		
Third cyc				
Fourth cyc				3

One	stion	Δ2
Que	อนบม	134

	(2 marks
•	

b)

- i) Write the Boolean expression for the output X in the following logic diagram.
- ii) Simplify the Boolean expression to the simplest form using rules of Boolean algebra.
- iii) Write the truth table by using the simplified Boolean expression.

(2+2+2=6 marks)

1			
1			
1			
!			
ľ			
ł.			
1			
1			
1			
1			
i .			
1			
1			
1			
1			
1			
1			
1			
1			
ı			
1			i
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
			100
1			
1			
1			
1 .			
· ·	•		
ı			
1			
I			
1			
1			
1			
I			
1			
1			
1			
1			1
1			1
F			
1			,
1			
1			and the second s
1			
1			l l
1			J
1			J
1			l l
I .]
į.			i
1			
			J
1			
1			
1			
1			
1			
1			
			ļ

11101	COMPUTER ARCHITECTURE AND ORGANIZA	TION 2 MARCH 2
	*	
	·	

KR/TSC/TYTV

- c) For the Boolean function, $F = (A\overline{B}) + (B\overline{C}) + (\overline{A}B\overline{C})$
 - (i) Construct the appropriate truth table, and
 - (ii) Find the standard SOP and standard POS expressions.

(2+2=4 marks)

*			

Question A3

a) Assume that a student has to go through three different assessments (Mid-term Test assessment, Lab assessment and final exam assessment) before obtaining the result for a subject. Assume that staff has marked 1 for the result of the assessment if he/she passes that assessment or 0, if he/she fails that assessment. The student has to get minimum of two 1's in the assessment results in order to pass the subject.

Three input signal lines indicate the results of assessments and the single output signal line indicate the final result of the subject. The output should be 1 if the student passes the subject and 0 if he/she fails.

- Draw the truth table for the above problem indicating all possible combinations for the results of assessments and the corresponding final result of the subject.
- ii) Minimize the expression into simplified Sum-of-Products (SOP) form.
- iii) Construct a logic diagram using AND-OR gate network.

 $(3\times2=6 \text{ marks})$

İ	
•	

Continued...

KR/TSC/TYTV

COMPUTER ARCHITECTURE AND ORGANIZATION	2 MARCH 20
	COMPUTER ARCHITECTURE AND ORGANIZATION

ddend (Y)) and two outputs (Carry Out (C_{out}) ,	(2 mark
	•

KR/TSC/TYTV

11/23

c) Implement the following Sum of Products Boolean expression, using an 8×1 multiplexer.

$$F = A' B C' D' + A' B C D' + A' B C D + A B' C' D + A B C' D' + A B C' D$$

Perform the following steps for the implementation:

- i) Construct the truth table and evaluate the output, F as 0, 1, variable D or the complement of variable D.
- ii) Draw the connection diagram using an 8×1 multiplexer.

(2+2=4 marks)

SN1101	COMPUTER ARCHITECTURE AND ORGANIZATION	2 MARCH 201
· · · · · · · · · · · · · · · · · · ·		
		•

13/23

KR/TSC/TYTV

Question A4

a)	A synchronous counter has three negative-edged triggered D flip-flops and three inputs X, Y and Z. Design the counter based on the sequence listed below: 001, 010, 100, 110, 111 and repeats Undesired states go to don't care on the next clock pulse.				
	i)	Complete the excitation table.	(2 1)		
	ii)	Simplify D _X , D _Y and D _Z and using K-maps.	(3 marks)		
	iii) Draw the synchronous counter.		(6 marks)		
		Diaw die syllemonous counter.	(3 marks)		

TSN1101 COMPUTER ARCHITECTURE AND ORGANIZATION	2 MARCH 2018

SECTION B

Question B1

a) The processing required for a single instruction is called an instruction cycle. A simplified three step cycle will include the fetch, execute and interrupt cycles. The basic instruction cycle is shown below:

List the actions taking place during the fetch cycle.

(4 marks)

118181		 	

b) The system interconnection that connects major computer components (processor, memory, I/O) is called a system bus. List and describe the THREE major modules of the system bus.

(3 marks)

	 -	- ···········	_	_

c)	Many processor designs include a register, often known as the program status word or status bits register that contain status information. List four common status bits. (2 marks)
	Assume that a processor that employs a memory address register (MAR), a memory buffer register (MBR), a program counter (PC), and an instruction register (IR). During the fetch cycle, an instruction is read from memory. List the flow of data during this cycle in the correct order.
·	(3 marks)

KR/TSC/TYTV

Question I	32
------------	----

show how many units are needed for four instructions.	(2 marks
	(= 111111111
Assume that a processor employs a memory address register (Mbuffer register (MBR), a program counter (PC), and an instruction	on register (IR)
buffer register (MBR), a program counter (PC), and an instruction supporting only one-address instructions. List the symbolic sequences	on register (IR)
buffer register (MBR), a program counter (PC), and an instructi-	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instruction supporting only one-address instructions. List the symbolic sequences	on register (IR)
buffer register (MBR), a program counter (PC), and an instructious supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructious supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructious supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructious supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructi- supporting only one-address instructions. List the symbolic seq	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructious supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructious supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructious supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instruction supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instructi- supporting only one-address instructions. List the symbolic seq	on register (IR) uence of micro
buffer register (MBR), a program counter (PC), and an instruction supporting only one-address instructions. List the symbolic sequences	on register (IR) uence of micro

KR/TSC/TYTV

c)	Word 44 owith an A	nat Word 11 contains 22, Word contains 55. Given the memo ccumulator (Register A), wh ccumulator?	ry value	s above and a one-addre	ss machine
	i) iii) v)	LOAD IMMEDIATE 44 LOAD INDIRECT 22 LOAD DIRECT 11	ii) iv) v)	LOAD DIRECT 33 LOAD IMMEDIATE : LOAD INDIRECT 22	22 (3 marks)
*			1100000		
d)		or pipelines, in order to overces can used. Name these static			(3 marks)

KR/TSC/TYTV 19/23

(3 marks)

Continued...

\sim		∇
1 1116	estion	- 14 3
VΨ	MILLOTI	· DJ

source)

KR/TSC/TYTV

a)	Machine instructions operate on data (operands). What are the THREE general categories of operands?
	(2 marks)
b)	Given the following registers and a two-address machine, give your program to compute $Z = (W - X)/(Y + P \times Q) / (Y - X)$. Available instructions are given below:
	a. Registers: A, B and C
	b. Instructions: MOV R1, #DATA; MOV R1, R2; ADD R1, R2; SUB

Store the result in Register A. (Hint: Instruction format - opcode destination,

20/23

R1,R2; MUL R1,R2 and DIV R1,R2

c) Suppose an 8-bit data word stored in memory is 01111001. Using the Hamming algorithm, determine what check bits would be stored in memory with the data word. Show how you got your answer.

(5 marks)

Bit Position 12 11 10 9 8 7 6 5 4 3 2 1 Bits D8 D7 D6 D5 C8 D4 D3 D2 C4 D1 C2 C Word Check bit Check bit<
Word Check
Check
bit

d)	Peripherals are connected to the computer through I/O modules. Why do we no
	connect the peripherals directly to the system bus?

connect the peripherals directly to the system bus?	(2 marks)

TSì	VI 101 COMPUTER ARCHITECTURE AND ORGANIZATION	2 MARCH 2018
Qı	uestion 4	
a)	List any four characteristics of a RISC instruction set architecture.	(2 marks)
b)	Directory protocols collect and maintain information about where of reside. There is a centralized controller that is part of the main mem and a directory that is stored in main memory. The directory contain information about the contents of the various local caches. Expecontroller is able to maintain cache coherence.	ory controller, ns global state
		(4 marks)

KR/TSC/TYTV

22/23

TSNII	10
-------	----

Write ARM instructions to find the 1's complement and 2's complement of a 33 number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma			two benefits				(2 mar)
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma				 ·			
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							= 5'
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
number in memory address 0x1000 and store the result in memory addre 0x7000 and 0x7004. (4 ma							
	number in	memory ac	ns to find the ddress 0x10	1's complem 00 and store	ent and 2's of the result	complement in memor	nt of a 32 y addres
	number in	memory ac	ns to find the ddress 0x10	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the ddress 0x10	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the ddress 0x10	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the ddress 0x10	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the ddress 0x10	1's complem 00 and store	ent and 2's of the result	complement in memor	nt of a 32 y addres (4 mar
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres
	number in	memory ac	ns to find the	1's complem 00 and store	ent and 2's of the result	complement in memor	y addres

End of Page.

ARM® and Thumb®-2 Instruction Set Quick Reference Card

Key to Tables			
	See Table Register, optionally shifted by constant		
<pre><operand2></operand2></pre>	See Table Flexible Operand 2. Shift and rotate are only available as part of Operand2.	<regliat></regliat>	A comma-separated list of registers, enclosed in braces [and].
<fields></fields>	See Table PSR fields,	<reglist-pc></reglist-pc>	As < reglist>, must not include the PC.
<psr></psr>	Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register)	<reglist+pc></reglist+pc>	As < reglist>, including the PC.
C*. V*	Plag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later,	+/-	+ ar -, (+ may be omitted.)
<rs sh></rs sh>	Can be Rs or an immediate shift value. The values allowed for each shift type are the same as those	§	See Table ARM architecture versions.
-122 2-214	shown in Table Register, optionally shifted by constant,	<iflags></iflags>	Interrupt flags. One or more of a, i. f (abort, interrupt, fast interrupt
x,y	B meaning half-register [15:0], or T meaning [31:16].	<p_mode></p_mode>	See Table Processor Modes
<inm8m></inm8m>	ARM: a 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.	SPm	SP for the processor mode specified by <p_mode></p_mode>
-Timeom.	Thomb; a 32-bit constant, formed by left-shifting an 8-bit value by any number of bits, or a bit	<1sb>	Least significant bit of bitfield.
	pattern of one of the forms 0xXYXYXYXY, 0x00XY00XY or 0xXY00XY00.	<width></width>	Width of hitfield, <width> + <lsi> must be <= 32.</lsi></width>
<pre><prefix></prefix></pre>	See Table Prefixes for Parallel instructions	(x)	RsX is Rs rotated 16 bits if X present, Otherwise, RsX is Rs.
(IA IB DA DB)	Increment After, Increment Before, Decrement After, or Decrement Before,	CO	Undates hase register after data transfer if I present (pre-indexed).
ITNITEIMINE	TB and DA are not available in Thumb state, if omitted, defaults to IA.	(3)	Updates condition flags if S present.
	B. SE, H. or SH, meaning Byte, Signed Byte, Halfword, and Signed Halfword respectively.	(T)	User made privilege if T present.
<size></size>	SB and GH are not available in STR instructions.	(R)	Rounds result to nearest if R present, otherwise truncates result.

Operation		§	Assembler		upd			Action	Notes
Add	Add		ADD(G) Rd. Rn. <operand2></operand2>					Rd := Rn + Operand2	N
	with enery	Ιí	AUC(E) Rd, Rn, <operand2></operand2>	N	Y.	C	٧	Rd := Ru + Operand2 + Carry	N
	wide	12	ADD Rd, Rm, # <imm12></imm12>	ļ			- 1	Rd := Ru + imm12, imm12 range 0-4095	T, P
	saturating (doubled)	518	Q(D)ADD Rd, Rm, Sn	1				Rd := SAT(Rm + Rn) doubled; $Rd := SAT(Rm + SAT(Rn * 2n)$	
Address	Form PC-relative address		ADR Rd, <1abel>	Ι.				Rd := <label>, for <label> range from current instruction see Note L</label></label>	N. I.
Subtract	Subigaci		SUB(S) Rd, En, <operand2></operand2>					Rd := Rn - Operand2	N
	with carry	'	SEC(S) Rd, Rn, <operand2></operand2>					Rd := Rn = Operand2 = NOT(Carry)	N
	wide	12	SUE Rd, Rn, # <inm12></inm12>	N	Z.	ť.	٧	Rd := Ra - jmm12, jmm12 range 0-4095	T.P
	reverse subtract	l	RSS(S) Rd, Rm, <operand2></operand2>	N	7.	('	v	Rd := Operand2 Rn	N
	reverse subtract with carry	Į.	RSC(S) Rd, Rn, <operand2></operand2>	N	7.	C	٧	Rd := Operand2 = Rn = NOSC arry)	_ A
	saturating [doubled]	138	Q(D)SUB Rd. Km, Km	ı				Rd := SAT(Rm + Rn) doubted: $Rd := SAT(Rm + SAT(Rn * 2))$	
	Recording return without stack	ı	SUBS PC, LR, 4 <imm8></imm8>	1				PC = LR - imm8, CPSR = SPSR(current mode), imm8 range 0-255.	T
Parettei	Halfword-wise addition	6	<pre>sprof(x>ADD)6 Rd, Rm. Rm</pre>	Т				Rd[31;16] := Rn[31;16] + Rm[31;16], Rd[15;0] := Rn[15;0] + Rm[15;0]	G
arithmetic		6	<pre><pre><pre>dprefix>SUE16 Rd, Rn, Rm</pre></pre></pre>	i				Rd[31;16] := Rn[31;16] - Rm[31;16], R0[15;0] := Rn[15;0] - Rm[15;0]	G
	Byte-wise addition	6	<pre><pre><pre>fix>ADD8 Rd, Rn, Rm</pre></pre></pre>	l				Rd[31;24] := Rn[31;24] + Rm[31;24], Rd[23;16] := Rn[23;16] + Rm[23;16], $Rd[15;8] := Rn[15;8] + Rm[15;8], Rd[7;0] := Rn[7;0] + Rm[7;0]$	G
	Byte-wise subtraction	6	<pre><prefix>SUB8 Rd, Rm, Rm</prefix></pre>					Rd[31;24] := Rn[31;24] - Rm[31;24], Rd[33;16] := Rn[23;16] - Rm[23;16], $Rd[15;8] := Rn[15;8] - Rm[15;8], Rd[7;0] := Rn[7;0] - Rm[7;0]$	G
	Halfword-wise exchange, add, subtract	۱۵	<pre><pre>fix>ASK Rd, Rn, Rm</pre></pre>	1				Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] - Rm[31:16]	G
	Halfword-wise exchange, subtract, add		<pre>cprefix>SAX Rd, Rn, Rm</pre>	ı				Rd[31:16] := Rn[31:16] - Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16]	C
	Unsigned sum of absolute differences	1	USADS Rd, Rm, Rs	l				Rd := Abs(Rm[31:24] + Rs[31:24]) + Abs(Rm[23:16] + Rs[23:16]) + Abs(Rm[15:8] + Rs[15:8]) + Abs(Rm[7:0] + Rs[7:0])	
	and accumulate	6	USADAR Rd, Rm. Rz. Rn					Rd := Ru + Abs(Rui[31:24] + Rs[31:24]) + Abs(Rui[23:16] + Rs[23:16]) + Abs(Rm[15:8] + Rs[15:8]) + Abs(Rm[7:0] + Rs[7:0])	
Salurate	Signed saturate word, right shift	6	SSAT Rd, # <sat>, Rm(, ASR <sh>)</sh></sat>	Т				Rd := SignedSm((Rm ASR sh), sat), <sat> range 1-32, <sh> range 1-31.</sh></sat>	Q. B
	Stened squarate word, left shift	6	SSAT Rd, # <sat>, Rm(, LSL <sh>)</sh></sat>	1				Rd := SignedSarr(Rm LSL sh), sarr, <= a t> range 1-32, <= h> range 0-31,	Q
	Signed saturate two halfwords	6	SSAT16 Rd, # <sat>, Rm</sat>					Rd(31:16) := SignedSut(Rm(31:16), sut), Rd(15:0) := SignedSut(Rm(15:0), sut), <= t > range 1-16.	Q
	Upsigned saturate word, right shift	16	USAT Rd, * <sat>, Rm(, ASR <sh>)</sh></sat>	1				Rd := UnsignedSut(Rm ASR sh), sut), <aat> range 0-31, <ah> range 1-31.</ah></aat>	Q, S
	Upsigned saurrate word, left shift		USAT Rd. # <sat>, Rm(, LSL <sh>)</sh></sat>					Rd := UnsignedSat(Rm LSL sh), sat), <sat> range 0-31, <sa>> range 0-31.</sa></sat>	Q
	Unsigned saturate two halfwords		USAT16 Rd, (<sut>, Rm</sut>	1				Rd[31;16] := UnsignedSat(Rin[31;16], sut). Rd[15:0] := UnsignedSat(Rin[15:0], sut). <= at > range 0-15.	Q

ARM and Thumb-2 Instruction Set Quick Reference Card

peration		6	Assembler	S updates	Notice!	Not
<u> </u>	Multiply	1	MIT(5) Rd, Rm, Ro	N Z C*	Rd := (Rm * Rs)[31:0] (If Rm is Rd, S can be used in Thumb-2)	N.
a,c.p.y	nad accumulate	1 1	MLA(S) Rd, Rm, Rs, Rn	N N C*	Rd := (Ru + (Rm * Rsb)(31:0))	. 8
	and solution	192	MLS Rd. Rm. Rw. Ra		Rd := (Rn + (Rm * Rs))(31:0)	
	unsigned long	**	UMULL(S) RdLo, RdHi, Rm, Rs	N Z C* V*	RdHi,RdLa := unsigned(Rm * Rs)	; ا
			UMLAL(S) RdLo, RdHi, Rm, Rs	N % C+ V*	Rilli Rillo := unsigned(RdHi RdLo + Rm * Rs)	ł
	undgred recomplate long	6	UMAAL RdLo, RdHi, Rm, Rs		RdfH.Rdf.a := unsigned(RdHi + RdLa + Rm * Rs)	l
	unsigned double accumulate long	l º l		N Z (* V*		l
	Signed multiply long		SMULL(S) RdLo, RdHi, Rm, Rs		Rd1fi,RdL0 := signed(Rd1fi,RdL0 + Rm * Rs)	
	and accumulate long		SMLAL(S) RdLo, RdHi, Rm, Rm	M N C. A.		l
	16 * 16 bit	5E	SMULKY Rd, Rm, Rm		$Rd := Rm(x) \cdot Rs(y)$	1
	32 * 16 bit	593	SMULWy Rd, Rm, Rs		Rd := (Rm * Rs[y[)]47:16]	l
	16 * 16 bit nad secondate	513	SMLAxy Rd, Rm, Rs, Rn		$Rd := Rn + Rm[x] \circ Rs[y]$	
	32 * 16 bit and accumulate	515	SMLAWy RG, Rm, Rs, Rn		R3 := Rn + (Rm * Rs[y])[47:16]	l
	16 * 16 hij and gecumulate long	58	SMLALKY RdLo, RdHi, Rm, Rs		$RdHLn := RdH_RdLn + Rm[x] * Rs[y]$	1
	Dual signed multiply, add	6	SMUAD(X) Rd, Rm, Rs		$Rd := Rm[15:0] \triangleq RsX[15:0] + Rm[31:16] \triangleq RsX[31:16]$	1
	and secumulate	6	SMLAD(X) Rd, Rm, Rs. Rn		Rd := Ra + Rad[15:0] * RsX[15:0] + Rad[31:16] * RsX[31:16]	1
	and accumulate long	1 6	SKLALDIX) NdLo, RdHi, Rm, Ra	1	RdHi,RdLa := RdHi,RdLo + Ru(15:0) * RsX[15:0] + Ru(31:16) * RsX[31:16]	1
	Dual signed multiply, subtract	l ä	SHOSD(X) Rd, Rm, Rs	1	Rd := Rin[150] * RsX[150] Rin[51:16] * RsX[31:16]	ı
	and accumulate	۱ ″	SMISD(X) Rd. Bm. Rm. Ro		Rd := R0 + Rm(15:0) * RsX[15:0] Rm[31:16] * RsX[31:16]	1
	W//	6	SMISID(X) Rdio, RdWi, Rm, Rs		$RdHi_*RdCa_1 := RdHi_*RdUa_1 + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]$	1
	and secomplate long				Rd := (Rin * Rs)[63:32]	ı
	Signed top word multiply	1.0	SMMUL(R) Rd, Sm. Rs		Rd := Kn + (Km * Rs)[63:32]	ı
	and accumulate	6	SMMLA(R) Rd, Rm, Rs, Rn			ı
	and subtract	6	SMMLS(R) Rd, Rm, Rs, Rn	i	Rd := Rn - (Rm * Rs)(63:32)	1
	with internal 40-bit accumulate	XS	MLA Ac, Rm, Rs		Λυ := Λυ + Rm * Rs	1
	packed halfword	XS	MIAPH Ac, Rm, Rs	Į.	Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]	1
	halfword	XS	MIAKY Ac. Sm. Rs		Ac := Ac + Rm[x] * Rs[y]	╄
Divide	Signed or Unsigned	КM	<op> Rd, Rn, Rm</op>		Rd := Rn / Rm < op> is SDIV (signed) or UDIV (unsigned)	-
love	Move		MOV(S) Rd, <operand2></operand2>	NZC	Rd := Operand2 See also Shift instructions	П
lata	NOT	1	MVN(S) Rd, <operand2></operand2>	NZC	Rd := fix[4]444444 ifOR Operand2	1
	Lugo	Tž	MOVT Rd, # <inuml6></inuml6>	1	Rd[31:16] := imm16, Rd[15:0] unaffected, imm16 range 0-65535	
	wide	172	NOV Rd. # <imm16></imm16>		Rd[15:0] := mm16, Rd[31:16] = 0, imm16 range 0-65535	1
	40-bit accumulator to register	XS	MRA Rálo, RdHi, Ac		RdLo := Ac[31:0], RdHi := Ac[39:32]	ı
	register to 40-bit accumulator	XS	MAR Ac. RdLo, RdHi		Ac[31:0] := RdLo, Ac[39:32] := RdHi	1
Shift	Arithmetic slaft right	- 1	ASK(S) Rd, Rm, <rs\sh></rs\sh>	NZ C	Rd := ASR(Rm, Rsish) Same as MOV(S) Rd, Rm, ASR <rs sho<="" td="" =""><td>7</td></rs>	7
smπ			LSLISI Rd. Res. <relsh></relsh>	N Z C	Rd := LSL(Rm, Rslsh) Same as MOV(S) Rd, Rm, LSL <re sh="" =""></re>	
	Logical shift left			NZC	Rd := LSR(Rm, Rsish) Same as MOV(S) Rd, Rm, LSR "Ra sh"	
	Lugical shift right	-	LSR(S) Rd, Rm, Albalaha	NZC	Rd = ROR(Rm, Raish) Same as MOV(S) Rd, Rm, ROR <rs sh="" =""></rs>	
	Rorate right	ĺ	ROR(8) Bri, Rm, rRs(sh>	NZC	Rd = RCX(Rm) Same as MOV(S) Rd, Rm, RRX	
	Rotate right with extend		RRX(S) Rd, Rm	N X C		-
Count lea	ding zeros	5	CLZ Rd, Rm		Rd := number of leading zeros in Rm	H
Compare	Compare		CMP Rn, <operand2></operand2>		Opdate CPSR flags on Rn - Operand2	П
	negative		CMN Rn. <operand2></operand2>	NZCV		+
Logical	Test		TST Rn, <operand2></operand2>	NZC	Update CPSR flags on Rn AND Operand2	
-	Test equivalence		TEQ Rn. <operand2></operand2>	NZC	Opdate CPSR flags on Rn EOR Operand2	1
	AND		AND(S) Rd, Rn, <operand2></operand2>	NZC	Rd := Rn AND Operand2	1
		- 1	EOR(S) Rd, Rn, <operand2></operand2>	N Z C	Rd := Ru EOR Operand2	
	LEUK		[EUR(5) KG, KM, CUPETANGZ>			
	EOR			NZC	Rd := Rn OR Operand2	1
	DEOR ORR ORN	,,,,	ORR(S) Rd, Rn, <operand2> ORR(S) Rd, Rn, <operand2> ORN(S) Rd, Rn, <operand2></operand2></operand2></operand2>			

ARM and Thumb-2 Instruction Set Quick Reference Card

Operation	· · · · · · · · · · · · · · · · · · ·	5	Assembler	1,1-1,1-1	Notes
Bit field	Bit Field Clear	12	BFC Rd, f <lsb>, f<width></width></lsb>	Rd](width+lsb-1):lsb] := 0, other hits of Rd unaffected	
	Bit Field Insert	T2	BFI Rd, Rn, # <lsb>, #<width></width></lsb>	Rd[(width+lsh-1):lsh] (= Rn[(width-1):0], other bits of Rd unaffected	
	Signed Bir Field Extract	112	SEPX Rd, Rn, # <lsb>, #<width></width></lsb>	Rd[(width-1);0] = Rd[(width+1sb-1);1sb], Rd[31;width] = Replicate(Rd[width+1sb-1])	
	Unsigned Hit Field Extract	3.5	UEFX Rd, Rn, # <lab>, #<width></width></lab>	Rd[(width-1):0] = Rn[(width+1sh-1):1sh], Rd[31:width] = Replicate(0)	
Pack	Pack halfword bottom + top	6	PKHET Rd, Rn, Rm(, LSL # <sh>)</sh>	Rd[15;0] := Rn[15;0], Rd[31;16] := (Rm 1,SL sh)[31;16], sh 0-31.	
	Pack halfword ton + bottom	6	PKHTB Rd, Rn, Rm(, ASR # <sh>)</sh>	Rd[31:16] := Rn[31:16], Rd[15:0] := (Rm ASR sh)[15:0], sh 1-32.	
Signed	Halfword to word	6	SXTH Rd, Rm{, ROR # <sh>}</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[15:0]), sh 0-3,	N
extend	Two hytes to halfwords	6	SXTBl6 Rd, Rm(, ROR # <sh>)</sh>	Rd[34:16] := Signfixtendf(Rm ROR (8 * shi)[23:16]), Rd[45:0] := Signfixtendf(Rm ROR (8 * shi)[7:0]), sh 0-3,	
	Byte to word	6	SXTB Rd, Rm(, ROR # <sh>)</sh>	Rd[31:0] := SignExtend((Rm ROR (8 * sh))[7:0]), sh 0-3,	N
Unsigned	Halfword to word	6	UXTH Rd, Rm(, ROR # <sh>)</sh>	Rd[31:0] := ZeroExtend((Rm ROR (8 * sla))[15:0]), sla 0-3,	N
extend	Two bytes to halfwords	6	UXTB16 Rd, Rm(, ROR # <sh>)</sh>	Rd[31:16] := Zeroffxiendf(Rm ROR (8 * shi)[23:16]). Rd[15:0] := Zeroffxiendf(Rm ROR (8 * shi)[7:0]), sh 0-3.	
	Byte to word	6	OXTS Rd. Rm(, NOR [<==h>)	Rd[31:0] := ZeroExtend((Rin ROR (8 * sh))[7:0]), sh 3-3,	N
Signed	Halfword to word, add	6	SXTAH Rd. Rn. Bm(, ROR \$ <sh>)</sh>	[Rd[31:0] := Ru[31:0] + Signfratend((Rin ROR (8 * shi)) 15:0[), sh 0-3.	
extend with add	Two hytes to halfwords, add	ń	SXTAB16 Rd. Rn. Rm(, ROR # <sh>)</sh>	Rd[31:16] := Ru[31:16] + SignExtend((Rm ROR (8 * sh))[23:16]), Rd[15:0] := Ru[15:0] + SignExtend((Rm ROR (8 * sh))[7:0]), sh 4-3.	
	Byte to word, add	6	SXTAB Rd, Kn, Knj, ROE [SELD]	Rd[31:0] := Rn[31:0] + Signfaxtend((Rm ROR (8 * sh))[7:0]), sh 0-3.	
Unsigned	Halfword to word, add	6	UXTAH Rd, Rn, Rmf, ROR 4 (sh>)	Rd(31:0] := Rn(31:0] + Zeroffxiend((Rm ROR (8 * shr)(15:0)), sh 0-3.	
extend with add	Two hytes to halfwords, add	6	UXTAB16 Rd, Rn, Rm(, ROR * <sh>)</sh>	Rd[31:16] := Rn[31:16] + ZeroExtend(Rm ROR (8 * sh))[23:16]). Rd[15:0] := Rn[15:0] + ZeroExtend(Rm ROR (8 * sh))[7:0]). sh 0-3.	
	Byte to word, add	6	UXTAU Rd, Rn, Rm[, ROK [<=li>)	Rd[31;0] := Rn[31;0] + Zerotizoend((Rm ROS (8 * sh))[7:0]), sh 0-3,	
Reverse	Bits in word	12	RBIT Rd, Rm	[Por(i=0; i<32; i++): Rd[i] = Rm[31-i]	
	flytes in word	6	RRV Rd, Rm	Rol[31;24] := Rm[7:0], Rol[23:16] := Rm[15:8], Rol[15:8] := Rm[23:16], Rol[7:0] := Rm[31:24]	N
	Bytes in both halfsvords	6	REVIG Rd. Rm	Rd[15;8] := Rm[7:0], Rd[7:0] := Rm[15;8], Rd[31;24] := Rm[23;16], Rd[23;16] := Rm[31;24]	N
	Bytes in low balfword, sign extend	6	REVSE Rd, Rm	Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF	N
Select	Select bytes	ń	SEL Rd, Rn, Rm	Rd[7:0] := Rd[7:0] if Clif(0] = 1, else Rd[7:0] := Rm[7:0] Biss[15:8], [23:16], [31:24] selected similarly by Gli[1], Clif[2], Glif[3]	
il-Then	If-Then	11.3	IT(pattern) (cond)	Makes up to four following instructions conditional, according to pattern, pattern is a string of up to three letters. Each letter can be Tr (Then) or E (Else). The first instruction after I' has condition cand. The following instructions have condition cand if the corresponding letter is T, or the inverse of cand if the corresponding letter is it. See Table Condition Field for switzble condition calculations.	TU
Branch	Branch		B <label></label>	PC := label, label is this instruction ±32MB (P2: ±16MB, T; -252 - +256B)	N, B
	with link		BL <label></label>	LR := address of next inscription, PC := label, label is this inscription ±32MB (T2; ±16MB).	
	and exchange	47	BX Rm	PC := Rm. Target is Thumb if Rm[0] is 1. ARM if Rm[0] is 0.	N
	with link and exchange (1)	5T	BLX <label></label>	LR := address of next instruction, PC := label, Change instruction set, label is this instruction $\pm 52MB$ ($T2$: $\pm 16MB$).	C
	with link and exchange (2)	- 5	BLX Rm	ER:= mhhose of next instruction, PC:= Rm[31;1], Change to Thomb if Rm[0] is 1, to ARM if Rm[0] is 0,	N
	and change to Jazelle state	50	BXJ Rm	Change in Jazelle state if available	
	Compare, beanch if (non) zero	12	CB(N)2 Rn, <label></label>	If Rn (\Longrightarrow or $l=1$ 0 then PC := label, label is (this instruction + 4-130).	NTH
	Table Branch Byte	12	TBE [Rn, Rm]	PC = PC + ZeroExtend(Memory(Rn + Rm, 1) << 1). Branch range 4-512, Rn can be PC.	TU
	Table Branch Halfword	12	TBH (Rn. Rm. LSL #1)	PC = PC + ZeroExtend(Memory) Rn + Rm << 1, 2) << 1). Branch range 4-131072. Rn can be PC.	11.11
Move to or	PSR to register		MRS Rd, <psr></psr>	8a := PSR	
from PSR	register to PSR		M3R <psr>_<fields>, Rm</fields></psr>	PSR := Rm (selected bytes only)	
	immediate to PSR		MSR <psr>_<fields>, #<imm8m></imm8m></fields></psr>	PSR := humad_Br (selected bytes only)	
Processor	Change processor state	6	CPSID <iflags> (, 4<p_mode>)</p_mode></iflags>	Disable specified interrupts, apsional change mode,	U,N
siate		6	CFSIE <iflags> (, f<p_mode>)</p_mode></iflags>	Easible specified interrupts, optional charge mode.	ULN
change	Change processor mude	1 "	CPS # <p_mode></p_mode>		- El
	Sei endianness	6	SETEND <endionness></endionness>	Sets endianness for loads and saves, <endianness> can be BE (Big Endian) or LE (Little Hadian).</endianness>	U.N
	Lives assessmental	1 **	Bernie Janesalmann.	I was a series and a series of the series of	

ARM Instruction Set Quick Reference Card

Single data ite:	m loads and stores	5	Assembler	Action if <op> is LDR</op>	Action if <op> is STR</op>	Notes
Load	Immediate offset		<pre><op>{size}{T} Rd, [Rn (, \$<offset>}](!)</offset></op></pre>	Rd := [nddress, size]	(address, size) := Rd	I.N
or store	Post-indexed, immediate	1	<op>(size){T} Rd, (Rn), #<offset></offset></op>	Rd := [address, size]	[address, size] := Rd	2
word, byte	Register offset	İ	<pre>(size) Rd, [Rn, +/-Km (, <opsh>)](1)</opsh></pre>	Rd := [address, sixe]	jaddresk, sizej := Rd	3. N
or halfword	Post-Indexed, register		<pre>(size)(T) Rd, (Rn), +/-Rm (, <opsh>)</opsh></pre>	Rd := [address, size]	[address, size] := Rd	4
	PC-relative		<op>(size) Rd, <lebel></lebel></op>	Ro := [label, size]	Not available	5, N
Load or store	Immediate offset	513	<pre>Op>D Rd1, Rd3, [Rn (, #<offset>))(1)</offset></pre>	Rd1 := address , Rd2 := nddress + 4	[address] := Rd1, [address + 4] := Rd3	6, 9
doubleword	Post-indexed, immediate	Sli	<pre><april #<affset="" [rn],="" rd1,="" rd2,=""></april></pre>	Rd1 := [address], Rd2 := [address + 4]	[address] := Rd1, [address + 4] ;= Rd2	6,4
ļ	Register offset	511	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Rd1 := [midress], Rd2 := [address + 4]	[saldress] := Rd1, [address + 4] := Rd2	7.4
]	Post-indexed, register	515	<pre><op>D Rd1, Rd2, (Rn), +/-Rm (, <opsh*)< pre=""></opsh*)<></op></pre>	Rd1 := [address], Rd2 := [address + 4]	[uddress] := Rd1, [address + 4] := Rd2	7, 9
	PC-relative	513	<np>D Rdl, Rdl, <iahel></iahel></np>	Rd1 := [label], Rd2 := [label + 4]	Not available	K, 4)

Preload data or instruction	§ (PLD)	§ (PLI)	Assembler		Action If <op> is PLI</op>	Notes
Immediate offset	5E	7	<op> (Rn (, #<offset>))</offset></op>	Pretoad Inddress, 321 (data)	Preford [address, 32] (instruction)	1, 0
Register offset	515	7	<op> (Rn, +/-Rm (, <opsh>)]</opsh></op>	Preload (address, 32) (data)	Preford (address, 32) (instruction)	3, C
PC-relative	515	7	<op> <lshel></lshel></op>	Prefead (label, 32) (data)	Prefund (label, 32) (instruction)	5, C

Other memory o	perations	5	Assembler	Action	Notes
Load multiple	Block data load	1	LDM(TA IB DA DB) En(1), <reglist-pc></reglist-pc>	Load list of registers from [Rn]	N.I
	return (and exchange)	1	LDM(IA IB DA DB) Rn(t), <reglist+pc></reglist+pc>	Load registers, PC := [address][31:1] (§ 5T: Change to Thomb if [address][0] is 1)	1
	and restore CPSR		LDM(IA IS DA DB) Rn(!), <reglist+pc>^</reglist+pc>	Load registers, branch (§ 51'; and exchange), CPSR := SPSR, Exception modes only.	1
	User mode registers		LDM(IA]IB DA DB) Rn, <reglist-pc>^</reglist-pc>	Luad list of User mode registers from [Ru]. Privileged modes only.	1
Рор			POP <reglist></reglist>	Canonical form of LDM SPI, <reglist></reglist>	N.
Load exclusive	Semaphore operation	ń	LUNEX RG. (Ro.)	Rd := (Rn), tag address as exclusive access. Constanting tag set (i not shared address. Rd, Rπ not PC.	
	Halfword or Byte	6K	LDREX(H)E) Rd, [Rn]	Rd[15:0] := [Rn] or Rd[7:0] := [Rn], tag address as exclusive access. Outstanding tag set if not shared address, Rd, Rn not PC.	
	Doubleword	68	LDREXD Rdl, Rd2, [Rn]	Rd1 := [Rn], Rd2 := [Rn+4], rag addresses as exclusive access Outstanding rags set if not shared addresses, Rd1, Rd2, Rn not PC.	9
Store multiple	Push, or Block data store	1	STM(IA IB DA DB) Rn(t), <reglist></reglist>	Store list of registers to [Rn]	N,I
	User mode registers	1	STM(IA IB DA DB) Rn(!), <reglist>"</reglist>	Store list of User mode registers to [Rn]. Privileged modes only,	1
Push			PUSH <reglist></reglist>	Canonical form of SIMDB SPI, <reglist></reglist>	N
Store	Semaphore operation	6	STREX Rd, Rm, [Rn]	If allowed, [Raf]:= Rm, clear exclusive rag, Rd := 0, Else Rd := 1, Rd, Rm, Rn not PC.	
exclusive	Haltword or Byte	éK.	STREEK(H)B) Rd, Rm, (RD)	If allowed. [Rn] := Rni[15:0] or [Rn] := Rni[7:0], clear exclusive tag, Rd := 0. Idse Rd := 1 Rd, Rm, Rd not PC.	ĺ
	Doubleword	6K	STREXO Rd, Rm1, Rm2, [Rm]	If allowed, [Rn] := Rm1, [Rn+4] := Rm2, clear exclusive tags, Rd := 0. Else Ró := 1 Rd, Rm1, Rm2, Ru not PC.	ij
Clear exclusive		6K	CLREX	Clear local processor exclusive tag	C

Note	ARM Word, B, D	ARM SB, H, SH	ARM T, BT	Thumb-2 Word, B, SB, H, SH, D	Thumb-2 T, BT, SBT, HT, SHT
	offset: +4095 tn +4095	offser: +255 to +255	Not available	offset; 255 to +255 if writeback. 255 to +4095 otherwise	offset: 0 to +255, writehack not allowed
	offset; 4095 to +4095	offset: 255 to +255	offset: 4095 to 44095	offset: 255 to +255	Not available
3	Fall range of (, <opsh>)</opsh>	(, <opsh>) nut alluwed</opsh>	Not available	<pre><opsh> restricted to LSL #<sh>. <sh> range 0 to 3</sh></sh></opsh></pre>	Not available
4	Full range of {, <opsh>}</opsh>	(, <epsh>) not allowed</epsh>	full range of (, <opsh>)</opsh>	Not available	Not available
5	label within +/- 4092 of current instruction	Not available	Not available	label within +/- 4093 of current instruction	Not available
6	offset; -255 to +255	ļ.	-	offset: -1020 to +1020, mass be multiple of 4.	•
7	(, <opsh>) nut allowed</opsh>		-	Not available	-
5	label within +/- 252 of corrent instruction	-	-	Not available	-
9	Rd1 even, and up; r14, Rd2 == Rd1 + 1.		-	Rd1 != PC', Rd2 != PC'	-

ARM Instruction Set Quick Reference Card

Coprocessor operations	ş	Assembler		Action	Notes
Data operations	f	CDP(2) <copr>, <opl>, CRd, CRm, CRmf, <op2>}</op2></opl></copr>		Coprocessor defined	£.5
Move to ARM register from coprocessor		MRC(2) <copr>, <opl>, Rd, CRn, CRm{, <op2>}</op2></opl></copr>		Coprocessor defined	C2
Two ARM register move	513	MRRC <copr>, <opl>, Rd, Rn, CRm</opl></copr>		Coprocessor defined	
Alternative two ARM register move	6	MRRC2 <copr>, <opl>, Rd, Rn, CRm</opl></copr>		Copyacessor defined	C
Move to coproc from ARM reg		MCR(2) <copr>, <op1>, Rd, CRn, CRn(, <op2>)</op2></op1></copr>		Capracessar defined	('2
Two ARM register move	512	MCRR <copr>, <opl>, Rd, Rn, CRm</opl></copr>		Capracessor defined	
Alternative two ARM register move	6	MCRR2 <copr>, <op1>, Rd, Rn, CRm</op1></copr>		Coprocessor defined	C
Loads and stores, pre-indexed		<pre><op>(2) <copr>, CRd, [Rn, @+/-<offsetr*4>](1)</offsetr*4></copr></op></pre>	op: Live or STC, offset; multiple of 4 in range 0 to 1020.	Coprocessor defined	C.3
Loads and stores, zero offset		<pre><op>(2) <copr>, CRd, [Rn] (, %-bit copre, option)</copr></op></pre>	op: LDC or STC.	Coprocessor defined	C.5
Loads and stores, post-indexed		<pre><op>(2) <copr>, URd, [Rn], #+/-<cifsetr*4></cifsetr*4></copr></op></pre>	np: LDC or STC, offset; multiple of 4 in range 0 to 1020.	Coprocessor defined	C2

Miscel	laneous operations	§	Assembler	Action	Notes
Swap v	word		SWP Rd, Rat, [Rn]	temp := [Rn], (Rn] := Rm, Rd := temp,	13
Swap I	oyte	ļ	SWPE Rd, Rm, [Rm]	temp := $Xeroi:xtend([Ra][7:0])$, $[Ra][7:0]$:= $Rai[7:0]$, Rd := temp	D
Ŝtore :	eturn state	ű	SUS(IN IB UN DB) SP(!), fep modes	[SPm] := LR, [SPm + 4] := CPSR	C,1
Return	from exception	6	RFE(TA TE DA DB) Rn(I)	PC := [Rn], CPSR := [Rn + 4]	C. 3
Break	point	5	BKPT <imm16></imm16>	Prefetch abort or enter debug state, 16-bit bitfield encoded in instruction.	C.N
Secure	Monitor Call	2.	SMC <ipm16></ipm16>	Secure Monitor Call exception. 16-bit bitfield encoded in instruction. Formerly SMI.	
Super	visor Call		SVC <imm24></imm24>	Supervisor Call exception, 24-bit bitfield encoded in instruction. Formerly SWI,	N
No ope	eration	6	NOP	None, might not even consume any time.	N
Hints	Debug Hini	7	DEG	Provide him to debug and related systems.	
	Data Memory Burier	7	DME	Ensure the order of observation of memory accesses,	C
	Data Synchronization Barrier	7	DSB	Ensure the completion of memory accesses.	C
	Instruction Synchronication Barrier	7	158	Flush processor pipeline and branch prediction logic.	C
	Set event	12	sev	Signal event in multiprocessor system, NOP if not implemented.	N
	Wait for event	T2	WFE	Wait for event, IRQ, FIQ. Imprecise abort, or Debug entry request. NOP if not implemented.	N
	Wait for interrupt	12	WFI	Wait for IRQ, PIQ, imprecise abort, or Debug entry request, NOP if not implemented.	N
	Yield	T2	YIELD	Yield control to alternative dread, NOP If not implemented.	N

N	otes		
A	Not available in Thumb state.	N	Some or all farms of this instruction are 16-bit (Narrow) instructions in Thumb-2 code. For details
В	Can be conditioned in Thumb state without having to be in an IT black.		see the Thumb 16-bit Instruction Set (DAL) Quick Reference Card.
C	Condition codes are not allowed in ARM state.	Р	Rn can be the PC in Thumb state in this instruction.
c	2 The optional 2 is available from ARMy5, is provides an alternative operation. Condition codes are not allowed for the alternative form in ARM state.	a	Sets the Q flag if saturation (addition or substruction) or overflow (multiplication) occurs. Read and reset the Q flag using MRS and MSR.
D	Deprecated, Use LDREX and STREX instead.	R	<sh>range is 1-32 in the ARM instruction.</sh>
G	Updates the four GB fings in the CPSR based on the results of the individual operations.	s	The S modifier is not available in the Thumb-2 instruction.
1	IA is the default, and is normally unitted.	Ŧ	Not needlable in ARM state.
I٤	ARM: <imm8m>, 16-bit Thomb; moltiple of 4 in range 0-1020, 32-bit Thomb; 0-4095,</imm8m>	U	Not allowed in an IT block. Condition codes not allowed in either ARM or Thumb state.

ARM Instruction Set Quick Reference Card

R	ARM architecture version in and above
aT.nJ	Tor J variants of ARM architecture version n and above
58	ARM vili and 6 and above
.1.3	All Thumb-2 versions of ARM v6 and above
6K	ARMy6K and above for ARM instructions, ARMy7 for Thomb
%	All Security extension versions of ARMv6 and above
RM.	ARMv7-R and ARMv7-M unly
XS	XScale coprocessor instruction

Flexible Operand 2	
lumediae value	6 <imm6m></imm6m>
Register, optionally shifted by constant (see below)	Rm (, <opsh>)</opsh>
Register, lugical shift left by register	Rm, LSL Rs
Register, logical shift right by register	Rm, LGR Rs
Register, arithmetic shift right by register	Rm, ASE Rs
Register, roame right by register	Rm, ROR Rs

(No shift)	Rm	Name as Rm. LSL #0
Logical shift left	Rm, LSL 4 <shift></shift>	Allowed shifts 0-31
Logical shift right	Rm. LSR # <shift></shift>	Allowed shifts 1-32
Arithmetic shift right	Rm, ASR f<=hift>	Allowed shifts 1-32
Rotate right	Rm, ROK # <uhift></uhift>	Allowed shifts 1-31
Rorate right with extend	Rm, RRX	

PSR fields	(use at least one suffix)		
Suffix	Meaning		
ų.	Control field mask byte	PSR[7:0]	
£	Plags field mask byte	PSR(31:24)	
al a	Status field mask byte	PSR(23:16)	
×	Extension field mask byte	PSR[15:8]	

conditional Branch instructions). Con- instruction. On processors without Thumb-2, the out-				
Modes				
User				
FIQ Fast Interrupt				
IRQ Interrupt				
Supervisor				
Ahun				
Undefined				

Condition Fiel	d	
Mnemonic	Description	Description (VFP)
FQ	liqual	Isqual
NE	Not equal	Not equal, or unordered
es / ns	Carry Set / Dasigned higher or same	Greater than or equal, or unordered
00 / 10	Carry Clear / Unsigned Inwer	Lane (here
MT.	Negative	Less than
Pr.	Positive or zero	Greater than or equal, or unordered
VS	Overflow	Unordered (at least one NaN operand)
vc.	No overflow	Not unmolered
RI	Unsigned higher	Greater than, or unordered
LS	Unsigned lower or same	Less that or equal
GE	Signed greater than or equal	Greater than of equal
LT	Signed less than	Less than, or unordered
GT	Signed greater dans	Circuter than
LE	Signed less that or equal	Less than or equal, or unordered
AL	Always (normally omitted)	Always (normally omined)

AL Always (astrailly ordited)

All ARM instructions (except those with Mote C or Note 11) can have any one of itose condition codes after the instruction materials (that is, before the first space in the instruction as shown on this early. This condition is encoded in the instruction.

All Thunh-2 instructions (except those with Note C) can have any one of these condition codes after the instruction memorial. This condition is encoded in a preceding IT (instruction except in the case of conditional Branch instructions). Condition codes in instructions must match those in the preceding IT

y Thunh instruction that can have a condition code is B <10.001>.

Prefixes for Paratlel Instructions		
24	Signed arithmetic modulu 28 or 210, sets CPSR GE bits	
Q	Signed saturating arithmetic	
sh	Signed criticactic, balving results	
υ	Hasigned arithmetic modulo 3 ⁸ or 3 ¹⁶ , sets CPSR GIS bits	
υo	Unsigned saturating arithmetic	
QΠ	Unsigned arithmetic, halving results	

Proprietary Notice

Properties by Armited with "or " are registered trademarks or trademarks owned by ARM Limited.
Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this theomem is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or timess for purpose, are excluded.

This reference card is intended only to assist the render in the use of the product. ARM Ltd shall not be liable for any lass or damage arising from the use of any information in this reference card, or any cror or omission in such information, or any incorrect use of the product.

Document Number ARM QRC 00011.

System

Change Log Issue A C E G I R Date June 1998 Nov 1998 Oct 2000 Jan 2003 Dec 2004 March 2006 Date Sept 1996 Oct 1999 Sept 3001 Oct 2003 May 2005 March 2007 Change First Release Third Release Firth Release Seventh Release Ninth Release RVCT 3.0