# 第五章布置习题参考解

5-2 解:



## 5-4 解:



#### 5-5 解:



## 5-6 解:

a) 根据输入方程和输出方程, 画出电路图为:



5-9

| Present State | 00 | 00 | 01 | 00 | 01 | 11 | 00 | 00 | 01 | 11 | 00 |   |
|---------------|----|----|----|----|----|----|----|----|----|----|----|---|
| Input         | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | 1  | 0  | 1  |   |
| Output        | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 0  |   |
| Next State    | 00 | 01 | 00 | 01 | 11 | 00 | 00 | 01 | 11 | 00 | 01 | ١ |

## 5-12

a) 用 Reset 信号分别控制触发器的异步复位和异步置位脚。所以



b) 在触发器输入端前面的每个与门上增加一个输入,接在 Reset 上,当 Reset 为 0 时触发器输入为 0,实现同步复位。注意 Reset 上门的非号。



## 5-20:

穆尔状态图为:



Assumes for E = 0, the output remains

## 状态表:

| Present state | Next<br>For I | Output |   |
|---------------|---------------|--------|---|
| $D_2D_1D_0$   | E=0           | E=1    | Z |
| 000           | 001           | 001    | 0 |
| 001           | 010           | 010    | 1 |
| 010           | 011           | 011    | 1 |
| 011           | 100           | 100    | 1 |
| 100           | 101           | 101    | 1 |
| 101           | 110           | 110    | 1 |
| 110           | 111           | 111    | 1 |
| 111           | 111           | 000    | 0 |

激励函数和输出函数:

$$\begin{split} &D_2(t+1) = D_2\overline{D_1} + D_2\overline{D_0} + \overline{D_2}D_1D_0 + D_2\overline{E} \ (D_2D_1D_0\overline{E}) \\ &D_1(t+1) = D_1\overline{D_0} + \overline{D_1}D_0 + D_2D_0\overline{E} \ (D_2D_1\overline{E}, \quad D_2D_1D_0\overline{E}) \\ &D_0(t+1) = \overline{D_0} + D_2D_1\overline{E} \ (D_2D_1D_0\overline{E}) \\ &Z = \overline{D_2D_1D_0} + \overline{D_2D_1D_0} = D_1\overline{D_0} + D_2\overline{D_1} + \overline{D_2}D_0 = \overline{D_1}D_0 + \overline{D_2}D_1 + D_2\overline{D_0} \end{split}$$

为了能够产生第一个0输出,复位时应该复位到"111"状态,所以Reset信号应该连到所有触发器的异步置位引脚。 电路图:



#### 5-21

按照题意,电路需要能够接受带有停顿的输入序列,出现连续5个"1"以后忽略插入的一位,此时输出Z=0,S=1。因此状态图为:



| Pres | Present state |   | Input | Ne | xt st | Output |   |   |
|------|---------------|---|-------|----|-------|--------|---|---|
| A    | В             | C | X     | Α  | В     | C      | Z | s |
| 0    | 0             | 0 | 0     | 0  | 0     | 0      | 0 | 0 |
| 0    | 0             | 0 | 1     | 0  | 0     | 1      | 1 | 0 |
| 0    | 0             | 1 | 0     | 0  | 0     | 0      | 0 | 0 |
| 0    | 0             | 1 | 1     | 0  | 1     | 0      | 1 | 0 |
| 0    | 1             | 0 | 0     | 0  | 0     | 0      | 0 | 0 |
| 0    | 1             | 0 | 1     | 0  | 1     | 1      | 1 | 0 |
| 0    | 1             | 1 | 0     | 0  | 0     | 0      | 0 | 0 |
| 0    | 1             | 1 | 1     | 1  | 0     | 0      | 1 | 0 |
| 1    | 0             | 0 | 0     | 0  | 0     | 0      | 0 | 0 |
| 1    | 0             | 0 | 1     | 1  | 0     | 1      | 1 | 0 |
| 1    | 0             | 1 | 0     | 0  | 0     | 0      | 0 | 1 |
| 1    | 0             | 1 | 1     | 0  | 0     | 0      | 0 | 1 |

$$\begin{split} D_A &= A\overline{C}X + BCX \\ D_B &= B\overline{C}X + \overline{A}\overline{B}CX \\ D_C &= \overline{C}X \\ Z &= \overline{A}X + \overline{C}X = (\overline{A} + \overline{C})X \\ S &= AC \end{split}$$

## 电路图为:



## 5-24:

按照输入 RA = 00、10、11、01 的顺序设立 4 个状态,表示正常工作时的状态循环,再设立一个异常状态,当出现错误输入时就转到异常状态去。状态图为:



## 状态表:

| Pres | sent s | tate | Inp | uts | Ne | xt st | ate | Output | Pres | sent s | state | Inp | uts | Ne | xt st | ate | Output |
|------|--------|------|-----|-----|----|-------|-----|--------|------|--------|-------|-----|-----|----|-------|-----|--------|
| В    | С      | D    | R   | Α   | В  | С     | D   | E      | В    | С      | D     | R   | Α   | В  | С     | D   | E      |
| 0    | 0      | 0    | 0   | 0   | 0  | 0     | 0   | 0      | 0    | 1      | 1     | 0   | 0   | 0  | 0     | 0   | 0      |
| 0    | 0      | 0    | 0   | 1   | 1  | 0     | 0   | 1      | 0    | 1      | 1     | 0   | 1   | 0  | 1     | 1   | 0      |
| 0    | 0      | 0    | 1   | 0   | 0  | 0     | 1   | 0      | 0    | 1      | 1     | 1   | 0   | 1  | 0     | 0   | 1      |
| 0    | 0      | 0    | 1   | 1   | 1  | 0     | 0   | 1      | 0    | 1      | 1     | 1   | 1   | 1  | 0     | 0   | 1      |
| 0    | 0      | 1    | 0   | 0   | 1  | 0     | 0   | 1      | 1    | 0      | 0     | 0   | 0   | 1  | 0     | 0   | 1      |
| 0    | 0      | 1    | 0   | 1   | 1  | 0     | 0   | 1      | 1    | 0      | 0     | 0   | 1   | 1  | 0     | 0   | 1      |
| 0    | 0      | 1    | 1   | 0   | 0  | 0     | 1   | 0      | 1    | 0      | 0     | 1   | 0   | 1  | 0     | 0   | 1      |
| 0    | 0      | 1    | 1   | 1   | 0  | 1     | 0   | 0      | 1    | 0      | 0     | 1   | 1   | 1  | 0     | 0   | 1      |
| 0    | 1      | 0    | 0   | 0   | 1  | 0     | 0   | 1      |      |        |       |     |     |    |       |     |        |
| 0    | 1      | 0    | 0   | 1   | 0  | 1     | 1   | 0      |      |        |       |     |     |    |       |     |        |
| 0    | 1      | 0    | 1   | 0   | 1  | 0     | 0   | 1      |      |        |       |     |     |    |       |     |        |
| 0    | 1      | 0    | 1   | 1   | 0  | 1     | 0   | 0      |      |        |       |     |     |    |       |     |        |

# 5-26: 根据状态图,用独热码,状态表如下:

| Present State |                 | Input | Nex  | Next State  |   |  |  |  |  |
|---------------|-----------------|-------|------|-------------|---|--|--|--|--|
| A B           | A B Y4 Y3 Y2 Y1 | Х     | A'B" | Y4'Y3'Y2'Y1 | Z |  |  |  |  |
| 0 0           | 0 0 0 1         | 0     | 0 1  | 0 0 1 0     | 1 |  |  |  |  |
| 0 0           | 0 0 0 1         | 1     | 0 0  | 0 0 0 1     | 1 |  |  |  |  |
| 0 1           | 0 0 1 0         | 0     | 0 1  | 0 0 1 0     | 0 |  |  |  |  |
| 0 1           | 0 0 1 0         | 1     | 1 0  | 0 1 0 0     | 0 |  |  |  |  |
| 1 0           | 0 1 0 0         | 0     | 1 1  | 1 0 0 0     | 0 |  |  |  |  |
| 1 0           | 0 1 0 0         | 1     | 1 0  | 0 1 0 0     | 0 |  |  |  |  |
| 1 1           | 1 0 0 0         | 0     | 1 1  | 1 0 0 0     | 0 |  |  |  |  |
| 1 1           | 1 0 0 0         | 1     | 0.0  | 0 0 0 1     | 0 |  |  |  |  |

 $\begin{aligned} &D1 = Y1' = X \cdot Y1 + X \cdot Y4 \\ &D2 = Y2' = \overline{X} \cdot Y1 + \overline{X} \cdot Y2 \\ &D3 = Y3' = X \cdot Y2 + X \cdot Y3 \\ &D4 = Y4' = \overline{X} \cdot Y3 + \overline{X} \cdot Y4 \end{aligned}$ 

# 电路图:



# 6-33



#### 6-9:

- a) 在28ns附近, Clock为1时输入S发生改变, 因此违反了保持时间约束, 在24ns附近S和R同时为1, 因此违反了输入组合约束。
- b) 在24ns附近, Clock为1时输入R发生改变, 因此违反了保持时间约束, 在24ns附近S和R同时为1, 因此违反了输入组合约束。
- c) 在28ns附近, Clock上升沿之前D2不满足建立时间约束。
- d) 在16ns附近, Clock下降沿之后D3不满足保持时间约束; 在24ns附近, Clock下降沿之前D3不满足建立时间约束。

#### 6-10:

- a) 从X到Y的最长路径是通过两个异或门XOR1和XOR2,所以  $t_{delay} = 2 \times t_{pdXOR} = 4ns$
- b) 从X到第二个触发器的输入端的路径最长,经过一个异或门,一个非门, 所以  $t_{delay} = t_{pdXOR} + t_{pdINV} + t_{sFF} = 3.5 ns$
- c) 从第一个触发器的输出到Y的路径最长,经过两个异或门,所以  $t_{delay} = t_{pdFF} + 2 \times t_{pdXOR} = 6ns$
- d) 从第一个触发器输出到第二个触发器输入的路径最长,经过一个异或门,一个非门,所以  $t_{delav} = t_{pdFF} + t_{pdINV} + t_{sFF} = 5.5 ns$
- e) 两个时钟上升沿之间的最大延迟决定了时钟脉冲的最小周期,所以电路的最大时钟频率是1/5.5ns = 181.82MHz。