Diplomvorprüfung Experimentalphysik 2

Prof. Andreas Meyer, SS2005, 08.09.2005, 13:30

Hilfsmittel: 1 beschriebenes DIN-A4-Blatt, ein nichtprogrammierbarer Taschenrechner.

Bearbeitungszeit: 90 Minuten.

Aufgabe 1

Betrachten Sie eine zylindersymmetrische, in Richtung der Symmetrieachse unendlich ausgedehnte Ladungsverteilung $\rho(r)$ (r ist der Abstand von der Symmetrieachse).

- a) Leiten Sie mit Hilfe des Gauß'schen Satzes einen allgemeinen Ausdruck für das elektrische Feld im gesamten Raum her.
- b) Betrachten Sie einen unendlich ausgedehnten Hohlzylinder (Innenradius r_1 , Außenradius r_2), der zwischen r_1 und r_2 mit einer Substanz der konstanten Ladungsdichte ρ_0 gefüllt ist. Berechnen Sie das elektrische Feld $\vec{E}(\vec{r})$ innerhalb des Zylinders $(r \le r_1)$, im Ladungsbereich $(r_1 \le r \le r_2)$ und außerhalb des Zylinders $(r_2 \ge r)$.
- c) Berechnen Sie $E(r) = |\vec{E}(r)|$ für eine zylindersymmetrische, exponentiell abfallende Dichte $\rho(r) = \rho_0 e^{-\lambda r}$. Integralangabe: $\int x e^{ax} dx = \frac{ax-1}{a^2} e^{ax} + C$

Aufgabe 2

Die Maxwellschen Gleichungen im Vakuum lauten

$$\operatorname{div} \vec{E}(\vec{r},t) = 0 \qquad \operatorname{div} \vec{B}(\vec{r},t) = 0 \qquad \operatorname{rot} \vec{E}(\vec{r},t) = -\frac{\partial \vec{B}(\vec{r},t)}{\partial t} \qquad \operatorname{rot} \vec{B}(\vec{r},t) = \epsilon_0 \mu_0 \frac{\partial \vec{E}(\vec{r},t)}{\partial t}$$

- a) Zeigen Sie, dass ebene Wellen der Form $\vec{E}(\vec{r},t) = \vec{E}_0 \cos(\omega t \vec{k} \cdot \vec{r}), \vec{B}(\vec{r},t) = \vec{B}_0 \cos(\omega t \vec{k} \cdot \vec{r})$ ($\vec{k} = (2\pi/\lambda)\hat{n}$ = Wellenvektor; λ = Wellenlänge, \hat{n} = Einheitsvektor in Ausbreitungsrichtung, Lichtgeschwindigkeit $c = \vec{k}$) Lösungen der Maxwellgleichungen im Vakuum sind und dass das Quadrat der Lichtgeschwindigkeit gleich dem Kehrwert von $\epsilon_0 \mu_0$ ist. Zeigen Sie weiterhin, dass \vec{E} und \vec{B} senkrecht aufeinander sowie beide senkrecht auf \vec{k} stehen.
- b) Betrachten Sie nun ein Dielektrikum mit einer relativen Dielektrizitätskonstanten ϵ_r . Wie lauten die Maxwellgleichungen im Dielektrikum? Zeigen Sie, dass die Lichtgeschwindigkeit \tilde{c} im Dielektrikum kleiner als c ist und geben Sie das Verhältnis \tilde{c}/c an. Welchen Zahlenwert nimmt \tilde{c} in Corning-8870-Glas ($\epsilon_r=9.5$) an?

Bitte wenden!

Aufgabe 3

Für beide nebenstehend abgebildeten Schaltskizzen eines Tief- und Hochpasses sei jeweils die Eingangsspannung $U_E(t) = U_0 \cos(\omega t)$ (Kreisfrequenz ω) sowie die Ausgangsspannung $U_A(t) = U_1 \cos(\omega t - \delta)$ (Phasenverschiebung δ).

- (a) Berechnunen Sie fuer die nebenstehende Abbildung eines Tiefpasses $U_1(\omega)$ und $\delta(\omega)$. Zeigen Sie, dass diese Schaltung hohe Frequenzen unterdrückt (Skizze von $U_1(\omega)$).
- b) Berechnen Sie für die nebenstehend abgebildete Hochpassfilter-Schaltung die Ausgangsgrößen $U_1(\omega)$ und $\delta(\omega)$. Zeigen Sie, dass diese Schaltung tiefe Frequenzen unterdrückt (Skizze von $U_1(\omega)$).

Aufgabe 4

Eine rechteckige geschlossene Drahtschleife (Länge l, Breite b, Querschnitt A, Masse m, Gesamtwiderstand R, $\hat{x} - \hat{y} - \text{Ebene}$) fällt durch ein Gebiet der Höhe Δy , in dem ein homogenes Magnetfeld in \hat{z} -Richtung herrscht. Die Schleife fällt unter Einfluss der Schwerkraft $\vec{F} = -mg\hat{e}_y$ (m = Masse der Schleife) nach unten mit der Geschwindigkeit $\vec{v}(t) = -v(t)\hat{e}_y$.

- a) Berechnen Sie den in der Schleife induzierten Strom I in Abhängigkeit von der Geschwindigkeit $\vec{v}(t)$. Betrachten Sie hierzu das Faraday'sche Induktionsgesetz.
- b) Berechnen Sie die auf die Schleife wirkende bremsende Kraft $|\vec{F}_R|$, die durch den induzierten Strom entsteht.
- c) Berechen Sie $\vec{v}(t)$ für den Fall, dass $\Delta y > l$ ist und $\vec{v}(t=0) = -v_0 \hat{e}_y$ beim Eintritt in das Magnetfeld. Stellen Sie hierzu die Bewegungsgleichung auf und lösen Sie diese. Diskutieren Sie die Fälle $0 < t < t_1$, $t_1 < t < t_2$ und $t > t_2$ (Zeitpunkt t_1 , bei dem die Schleife vollständig in das Magnetfeld eingetaucht ist; Zeitpunkt t_2 , bei dem der untere Bügel der Schleife aus dem Magnetfeld austritt).