

H3C公司WLAN Mesh技术白皮书

关键词: Mesh, WLAN, AP, AC

摘要:本文介绍了WLAN Mesh技术的基本概念和工作原理,以及H3C公司WLAN Mesh解决方案的特点和典型组网应用。

缩略语:

缩略语	英文全名	中文解释
AC	Access controlloer	无线控制器
AP	Access Point	接入点
MA	Mesh Authenticator	Mesh认证者
MAC	Media Access Control	媒质访问控制
MAP	Mesh Access Point Mesh接入点	
WLAN	Wireless LAN	无线局域网
MP	Mesh Point	Mesh节点
MPP	Mesh Portal Point	Mesh Portal节点

目 录

1 梅	[述	4
	1.1 Mesh技术产生背景	4
	1.2 Mesh技术优点	5
2 M	lesh协议介绍	6
	2.1 基本概念	6
	2.2 Mesh帧格式	7
	2.2.1 扩展Mesh帧头	7
	2.2.2 多跳Action帧	8
	2.2.3 Mesh Profile	9
	2.3 Mesh工作原理	0
	2.3.1 Mesh邻居发现1	0
	2.3.2 Mesh连接管理1	1
	2.3.3 Mesh安全机制1	2
	2.3.4 Mesh选路1	4
	2.3.5 Mesh转发1	4
	2.4 应用限制	4
3 H	3C Mesh技术特色1	5
	3.1 即插即用	5
	3.2 完全遵循802.11s标准 1	6
	3.3 灵活的选路策略	6
	3.4 支持故障自愈	7
	3.5 支持端到端安全	7
	3.6 支持VLAN Trunk	7
	3.7 集中管理	7
	3.8 版本自动升级	7
	3.9 高速切换技术	8
4 典	L型组网应用1	8
	4.1 园区或热区覆盖	8
	4.2 无线视频监控	9
	4.3 轨道交通应用	9
5参	考文献2	0

1 概述

无线Mesh技术是基于IP协议的无线宽带接入技术,无线Mesh网络融合了传统WLAN网络和Adhoc网络的优势,支持多点对多点的网状结构,具有自组网、自修复、多跳级联等优点,是一种高可靠、广覆盖的WLAN网络。

1.1 Mesh技术产生背景

传统的WLAN网络为非Mesh WLAN网络,其骨干网络均采用Ethernet技术,各AP 之间通过有线方式进行互联,从而组成一个规模较大的WLAN网络。接入在不同 AP上的STA之间互访,需通过有线网络进行转发。STA访问外部网络,路径上只有一跳为无线连接,其余均为有线连接。

图1 非Mesh WLAN网络

借助Ethernet技术构建WLAN骨干网,技术上非常成熟,网络规划也比较容易。由于这些优点,当前绝大多数WLAN网络在组网时均采用了这种方式。但对有线网络的依赖,也造就了传统WLAN网络的一些弊端,其中最突出的几点有:建设周期长、成本高、灵活性差。

组建一个传统的WLAN网络,如果没有有线网络基础,整个组网最主要的成本和建设时间都将消耗在有线骨干网的构建上,而安装AP则非常容易。并且,一旦AP安装完成后,如果需要对其中某些AP位置进行调整,则需要相应调整有线连接,操作起来比较困难。传统WLAN网络的这些弊端,使得其在诸如应急通信、无线城域网或有线基础薄弱地区等应用场合不适用。可以说,传统无线网络仍然没有摆脱

"有线"的桎梏。

1.2 Mesh技术优点

无线Mesh网络模型是利用无线连接替代有线连接将多个AP连接起来,并最终通过 一个portal节点接入有线网络,从而构成一个WLAN网络。

图2 WLAN Mesh网络

与传统非Mesh WLAN网络相比, Mesh网络具有如下优势:

- ➤ 高性价比。Mesh网络中,只有portal节点需要接入到有线网络,对有线的依赖 程度被降到了最低程度,省却了购买大量有线设备以及布线安装的投资开销。
- ▶ 部署快捷。组建Mesh网络,主要是AP的选址和安装,除portal节点外的其他 AP均不需要走线接入有线网络,网络组建周期较之传统WLAN网络上将大大 缩短。
- ▶ 可扩展性强。Mesh网络中AP之间能自动相互发现并发起无线连接建立,如果需要向网络中增加新的AP节点,只需要将新增节点安装并进行相应的配置,新增节点即可快速接入Mesh网络。
- ➤ 高可靠性。传统WLAN网络模式下,一旦某个AP上行(有线)链路故障,则该 AP所关联的所有STA均无法正常接入WLAN网络。而Mesh网络中各AP之间实

现的是全连接,由某个Mesh AP至portal节点(有线网络)通常有多条可用链路,可以有效避免单点故障。

▶ 应用场景广。Mesh网络除了可以应用于企业网、办公网、校园网等传统 WLAN网络常用场景外,还可以广泛应用于大型仓库、港口码头、城域网、轨道交通、应急通信等应用场景。

2 Mesh协议介绍

IEEE组织为无线Mesh技术制定了802.11s标准,目前还出于草案阶段。该标准是是对业已标准化的802.11 WLAN MAC技术的扩展。

2.1 基本概念

Mesh Portal Point (MPP)

连接无线Mesh网络和非Mesh网络的接入点。

Mesh Access Point (MAP)

同时提供Mesh服务和接入服务的接入点。

Mesh Point (MP)

提供Mesh服务的接入点。

➤ 对端MP(peer mesh point)

已与某个MP建立起Mesh连接的邻居MP,称之为该MP的对端MP。

➤ 邻居MP(neighbor mesh point)

与某个MP处于直接通信范围内的MP, 称之为该MP的邻居MP。不是所有邻居MP 均为对端MP。

➤ Mesh连接(mesh link)

两个相邻MP之间通过连接管理协议建立的无线连接。

Mesh链路(mesh path)

源MP和目的MP之间由一系列Mesh连接级联成的无线链路。

➤ Fit模式MP(Fit MP)

提供mesh服务的Fit AP。

➤ Fat模式MP(Fat MP)

提供mesh服务的Fat AP。

▶ 集中式Mesh

采用Fit MP和AC组建的mesh网络,Fit MP由AC进行集中的配置和管理。

➢ 分布式Mesh

采用Fat MP组建的mesh网络, Fat MP需要独立配置和独立管理。

2.2 Mesh帧格式

传统的WLAN网络均为单跳(无线连接)网络,而Mesh技术要实现的是多跳(无线连接)网络。为此,需要对为单跳应用而定义的802.11帧格式进行扩展,主要变化有扩展Mesh头和引入了多跳Action管理帧。

2.2.1 扩展Mesh帧头

扩展Mesh帧头后的802.11 MAC帧格式如下图所示,扩展的Mesh帧头位置位于帧体的最前面。

图3 支持Mesh的802.11 MAC帧格式

扩展的Mesh帧头所包含的内容如下图所示:

Octets: 1	1	3	0, 6, 12, or 18	
Mesh Flags	Mesh Time To Live (TTL)	Mesh Sequence Number	Mesh Address Extension (present in some con- figurations)	

图4 Mesh帧头格式

其中,Mesh TTL字段指定Mesh帧可以转发的跳数,每经过一个MP,TTL字段减一,当TTL减到0时,则将该Mesh帧丢弃,避免当Mesh网络中存在环路时,Mesh帧被无休止地转发。Mesh序列号字段用于重复帧的检测,MP在收到重复帧后,直接丢弃。

Mesh标识的低2位用于指定地址扩展模式,其余位保留。地址扩展模式的取值与相应的含义如下表所示,扩展后将支持四地址或六地址的数据帧或多跳的Action帧。

Address Mesh Address Extension Applicable frame Address Extension Mode description Extension field Mode value types length (octets) (binary) 00 No Mesh Address Extension field 0 Data 01 Mesh Address Extension field contains 6 Management (Multihop Action) 10 Mesh Address Extension field contains 12 Addr5 and Addr6 11 Mesh Address Extension field contains 18 Management Addr4, Addr5, and Addr6 (Multihop Action)

表1 Mesh地址扩展模式

2.2.2 多跳Action帧

Mesh支持的多跳Action帧格式如下表所示。

表2 多跳Action帧格式

Order	Information		
1	Mesh Header		
2	Action Category		
Last	One or more vendor-specific information elements may appear in this frame. This information element follows all other information elements.		

其中, Action字段指定Action的大类, Mesh技术支持的大类Action帧包括:

- Mesh Peer Link Management
- Mesh Link Metric
- Mesh Path Selection
- Mesh Interworking
- Mesh Resource Coordination
- Mesh Security Architecture(MSA)

每一大类Action帧通常又包括几种具体的帧类型,共同配合实现该大类Action帧的设计功能。

2.2.3 Mesh Profile

一个MP若要加入Mesh网络,至少应配置有一个Mesh profile。Mesh Profile包括如下Mesh网络的基本组成元素:

- Mesh 标识
- Mesh 选路协议标识
- Mesh 路径开销标识

这些信息通过携带在管理帧中的Mesh标识信元和Mesh配置信元进行传递和协商。

1. Mesh标识信元

Mesh 标 识 由 Mesh 标 识 信 元 定 义 , 在 Beacon 、 Probe Request 、 Probe Response、 Peer Link Open以及Peer Link Confirm等帧类型中使用,用于通告 Mesh网络标识,与接入服务中的SSID标识类似,该信元具体格式如下:

Octets: 1	1	0-32	
ID	Length	Mesh ID	

图5 Mesh标识信元

Mesh标识长度为0至32字节,长度为0的Mesh标识代表通配Mesh标识。仅提供Mesh服务中的MP,在Beacon或Probe Response帧中,将包含有效的Mesh标识信元,而针对接入服务的SSID标识信元虽然也包含,但会设置为通配SSID。

2. Mesh配置信元

Mesh配置信元用于通告Mesh服务,在Beacon、Probe Response、Peer Link Open以及Peer Link Confirm等帧类型中使用,具体格式如下:

图6 Mesh配置信元

其中,Mesh选路协议标识指定了采用哪一种Mesh选路协议,Mesh路径开销标识指明该选路协议依据的路径开销算法。Mesh能力字段包含一组能力参数,两个MP只有当能力信息匹配时,才可能协商建立起Mesh连接。Mesh能力字段中包括一"Accepting Peer Links',当MP可以且希望与其他MP建立Mesh连接时,该字段置1,否则,该字段置0。

2.3 Mesh工作原理

2.3.1 Mesh邻居发现

Mesh发现是Mesh网络建立过程中的第一步,类似于接入服务中STA扫描网络。

图7 Mesh发现

1. Mesh网络扫描

MP通过主动发送Probe Request探测帧,或侦听Beacon帧,来收集邻居信息。 Beacon或Probe帧中包含Mesh ID、Mesh Configuration以及安全能力等相关信

息。

2. 邻居关系维护

MP从接收到的Beacon或Probe Response帧中解析发端MP的Mesh profile信息,与本端Mesh profile信息进行匹配。只有当扫描双方的Mesh profile匹配时,双方才可以建立邻居关系。进一步,在所有邻居MP中,只有通告的Mesh能力字段中"Accepting Peer Links"置位的 P,才被选择为候选Peer。

2.3.2 Mesh连接管理

Mesh连接管理包括Mesh连接建立和Mesh连接拆除两个过程,采用Peer Link Open/Confirm/Close三种Mesh连接管理Action帧交互实现。

图8 Mesh连接管理

1. Mesh连接建立

MP在选出候选Peer后,可以与之发起Mesh连接建立过程。建立Mesh连接的双方MP处于对等地位,双方通过两次Peer Link Open /Confirm的交互,完成Mesh连接的建立,协商Mesh连接的双方需要确保使用相同的Mesh profile。

每个MP根据需要可以建立一条或多条Mesh连接,每个连接由四元组 {Local MAC,

Peer MAC, Local Link ID, Peer Link ID) 唯一标识。Local Link ID和Peer Link ID 分别由协商双方MP依据全局唯一原则生成和维护,并在Peer Link Management信元中传递给对方MP。

Octets: 1	1	1	2	2	2
Element ID	Length	Subtype	Local Link ID	Peer Link ID	Reason Code

图9 Peer Link Management信元

Mesh连接建立后,需要继续进行后续的认证和安全协商,之后Mesh连接才可以参与Mesh数据转发。

2. Mesh连接拆除

Mesh连接双方中任一方,均可以主动向对方发送Peer Link Close消息,以关闭双方间的Mesh连接,Peer Link Close消息中需要通过原因码指明关闭连接的原因。 收到Peer Link Close消息的MP,需要向对方MP回应一个Peer Link Close消息。

2.3.3 Mesh安全机制

由于传输媒质的开放性,无线网络很容易遭受非法攻击,802.11i标准的推出解决了传统WLAN网络的安全问题,但Mesh网络的多跳性带来了新的安全挑战。为保证能快速地检测并防范攻击,安全策略控制点势必要分散到各个Mesh节点上,这种分散带来了Mesh网络中安全策略实施的复杂性。

在认证方式上,Mesh安全同样支持802.1x认证和PSK认证方式,802.1x认证通过 Supplicant MP与AAA server交互产生后续密钥协商用的种子密钥MSK,PSK认证 方式则直接使用PSK作为密钥协商的种子密钥。

在数据加密方面, Mesh网络支持如下的密钥层次:

图10 Mesh密钥层次

Mesh密钥层次包含两个分支:一个是Mesh连接安全分支,用于协商Mesh连接使用加密密钥;一个是密钥分发分支,用于协商MKD和MA间安全通信所用的密钥。

图11 Mesh密钥协商

1. Mesh安全关联建立

MSA建立过程包括: MSA认证(可选)和四路握手。如果连接建立过程中协商使用802.1x认证,则需要进行MSA认证,产生用于四路握手的PMK-MKD和PMK-

MA,并安装到MA和Supplicant MP。之后,MA和Supplicant MP进行四路握手, 生成最终用于MA和Supplicant MP之间加密使用的最终密钥PTK。

2. Mesh密钥持有者安全关联

Supplicant MP在完成MSA建立后,在转化为MA角色去认证其他MP前,必须先完成Mesh密钥持有者安全关联,此过程同样是一个四路握手过程,此过程确保该 Supplicant MP与MKD之间的Mesh路径安全。

2.3.4 Mesh选路

Mesh网络是全连接的WLAN网络,任何一个源和目的地之间会存在多条可用的 Mesh链路,并且这些Mesh链路的传输质量会随着周边环境实时变化。因此,非常 有必要在Mesh网络支持选路协议,以确保数据帧能始终通过最优的链路传输。 802.11s标准中定义了如下的选路协议:

OUI	Value	Meaning
00-0F-AC	0	Hybrid Wireless Mesh Protocol (default path selection protocol)
00-0F-AC	1-254	Reserved for future use
00-0F-AC	255	Null protocol
Vendor OUI	0-255	Vendor specific

图12 Mesh选路协议

2.3.5 Mesh转发

Mesh网络中的所有MP,对数据帧均在二层进行标准的桥转发。

对于目的MAC为单播地址的数据帧,首先查找转发表项。若查到匹配表项,则将数据帧由该表项对应的Mesh链路发送出去;若未匹配任何表项,则将该数据帧从所有处于活跃状态的Mesh链路发送出去。

对于目的MAC为组播或广播地址的数据帧,MP将数据帧从所有处于活跃状态的 Mesh链路发送出去。

2.4 应用限制

一个Mesh网络可以包含多个MPP,这种情况下,为防止在LAN和Mesh网络之间形

成环路,需要在MPP所连接的有线设备上启用STP协议。

3 H3C Mesh技术特色

3.1 即插即用

H3C公司实现的Mesh网络为集中式Mesh网络,即采用Fit MP组建Mesh网络,所有MP(包含MAP和MPP)均即插即用,不需要预先作任何配置,相关配置完全由AC自动下发。

提供接入服务的WLAN网络,由于Fit AP均存在到达AC的有线链路,Fit AP发现并注册到AC比较容易。但对于零配置的MP,由于不存在通向AC的固定通道,如何发现AC并完成注册,是集中式Mesh网络面临的主要问题。H3C公司采用下面的方案来解决此问题。

图13 Fit MP获取配置过程

1、MP启动后,根据是否存在有线连接决策自己的角色。

如果存在有效的有线连接,则认为自己是MPP,直接通过有线连接发现并管理到AC,获取并完成Mesh特性的配置;如果不存在有线连接,则认为自己是普通MP。

- 2、非MPP的MP扫描邻居MP,并选择已成功关联到AC的邻居MP作为Peer,与其 建立Mesh连接。此时建立的Mesh连接是不安全的连接。
- 3、该MP通过建立的Mesh连接与DHCP server交互获取到IP地址,完成网络配置。
- 4、MP通过建立的Mesh连接发现AC并完成与AC的关联,完成Mesh及其他相关配置的获取。
- 5、MP以更新的配置与AC重建安全的CAPWAP隧道。
- 6、MP拆除先前建立的Mesh连接,重建安全的Mesh连接。此过程先再次进行 Peer Link Open/Confirm交互,然后再进行EAP认证(可选)和4路握手,协商出 Peer间通信所需的最终密钥。
- 7、此MP继续与AC完成密钥分发协商过程,使自己转换角色为MA,并开始为下游 MP的接入AC提供通路。

3.2 完全遵循802.11s标准

802.11s标准草案已先后经过多次修订,即将成为正式标准。为保证设备间良好的 互通性,遵循这个标准是大势所趋。

H3C公司实现的Mesh技术,完全802.11s标准草案。Mesh邻居发现、连接管理、安全协商等,均完全遵照802.11s标准实现。后续待802.11s草案正式标准化,H3C公司Mesh产品可以以很小的软件修改,平滑升级到支持正式的802.11s标准。

3.3 灵活的选路策略

H3C公司实现自定义的Mesh选路协议,通过在MP之间传递特定的配置消息,从而从网络中的所有MP中,选出一个MP作为Root MP。同时依据各Mesh连接的开销,计算出各MP到Root MP的最优路径。选择的最优路径将用于Mesh数据的转发。

H3C实现的选路协议,在Mesh连接开销计算上,既可以采用在AC上静态配置的方式,也可以根据Mesh连接的RSSI信息实时动态计算。实际使用可以组网需要,灵活指定选路策略。

3.4 支持故障自愈

H3C公司实现的Mesh产品支持故障自愈功能。在任一MP到Root MP之间除了选出的、参与转发的最优路径外,还会有多条备选的可达路径,一旦最优路径出现故障,次优的备选路径将立即参与到Mesh数据的转发,保证故障的迅速自愈。

3.5 支持端到端安全

H3C实现的Mesh网络,全面支持802.11i、WPA、802.11s等安全标准,支持802.1x认证、PSK认证,以及WEP、TKIP、AES等多种加密方式。

对于MAP节点,不但支持对STA的接入认证和数据加密,还支持Mesh连接双方的相互认证和数据加密;对于MP或MPP节点,也同样支持Mesh连接双方的相互认证和数据加密。这保证了数据在Mesh网络中传输的端到端安全性。

3.6 支持VLAN Trunk

H3C实现的Mesh网络支持VLAN Trunk功能。同一Mesh网络,可以同时承载多个 VLAN子网的互联。

3.7 集中管理

由于采用集中式Mesh网络架构,所有MP的运行信息在AC上均可见,包括:接入 STA的数量、Mesh邻居信息、Mesh链路的数量、状态和质量等。这些信息可通过 网管系统,集中呈现给网络维护者。

与采用Fat MP组建的分布式Mesh网络相比,集中式Mesh网络更容易管理、更具灵活性,网络维护者可以轻松完成对Mesh网络的运行监控和优化调整。

3.8 版本自动升级

H3C实现的集中式Mesh网络,可以由AC对网络中的MP进行版本自动升级。网络维护者只需要将更新的版本加载到AC上,需要升级的MP设备会自动从AC上下载

更新的版本,完成升级操作。

而在分布式Mesh网络下,若需要对MP进行升级,只能是逐台进行操作,这在网络 规模较大时将非常耗时耗力。

3.9 高速切换技术

H3C的无线MESH技术在地铁应用中,可以满足列车以80公里高速行进中的快速切换,切换速度最快可以达到5ms,在行进当中传送速率可以稳定在18Mbps以上。

4 典型组网应用

4.1 园区或热区覆盖

Mesh网络的一个最典型应用就是实现园区或热区覆盖。

图14 Mesh技术的园区或热区覆盖应用

如上图所示,两个Mesh网络由一个AC管理。其中,至少一个MPP需要与AC建立有线连接。一个MP启动后,它首先扫描附近的网络,然后与所有检测到的MP建立准安全连接。这种连接是暂时的,只拥有缺省的或最少的配置。通过这种连接,MP可以与AC联系,并下载自己的配置。只有配置消息可以在这种链路上传递。完

成配置文件的下载后,MP会与邻居建立安全的连接。

通过这些安全连接,网络中被定义为MAP角色的MP,根据获取到的无线接入配置,可以为处于覆盖区域内的STA提供上网冲浪、收发邮件等无线接入服务。

4.2 无线视频监控

通过将Mesh技术融合到有线的视频监控解决方案,可以将IP智能监控从通常的有线网络接入延伸到无线接入网络,根据用户的应用场景提供丰富多样的无线覆盖接入模式,通过统一网管对无线资源和监控资源进行统一管理和控制,形成整体的无线监控解决方案。

图15 Mesh技术的无线视频监控应用

4.3 轨道交通应用

针对轨道交通应用的特点,H3C基于Mesh标准扩展支持了先进的MLSP(Mobile Link Switch Protocol)技术,实现列车移动过程中的活跃链路切换,并保证报文不丢失。

图16 Mesh技术的轨道交通应用

如上图,车载MP和轨旁MP均采用Fit MP,受AC集中管理。列出在行进过程中,车载MP不停扫描新的轨旁MP,并选择信号质量最好的两个轨旁MP与之建立一主一备的Mesh连接。主Mesh连接用于车载MP与轨旁有线网络之间的数据传输,从连接用于Mesh连接的切换备份。

MLSP技术的引入,可以确保列车行进过程中,车载MP与轨旁MP的链路切换时间 最短可达5毫秒,业务流量连续不中断。

5 参考文献

1, Draft 802.11s D1.06

Copyright @2004-2008 杭州华三通信技术有限公司 版权所有,保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

本文档中的信息可能变动,恕不另行通知。