EE 637 Final May 5, Spring 2015

Name:	Ker	ł

Instructions:

- This is a 120 minute exam containing **five** problems.
- Each problem is worth 20 points for a total score of 100 points
- You may **only** use your brain and a pencil (or pen) to complete this exam.
- You may not use your book, notes, or a calculator, or any other electronic or physical device for communicating or accessing stored information.

Good Luck.

Fact Sheet

• Function definitions

$$\begin{split} & \operatorname{rect}(t) \stackrel{\triangle}{=} \left\{ \begin{array}{l} 1 & \text{for } |t| < 1/2 \\ 0 & \text{otherwise} \end{array} \right. \\ & \Lambda(t) \stackrel{\triangle}{=} \left\{ \begin{array}{l} 1 - |t| & \text{for } |t| < 1 \\ 0 & \text{otherwise} \end{array} \right. \\ & \operatorname{sinc}(t) \stackrel{\triangle}{=} \frac{\sin(\pi t)}{\pi t} \end{split}$$

• CTFT

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$

• CTFT Properties

$$x(-t) \overset{CTFT}{\Leftrightarrow} X(-f)$$

$$x(t-t_0) \overset{CTFT}{\Leftrightarrow} X(f)e^{-j2\pi ft_0}$$

$$x(at) \overset{CTFT}{\Leftrightarrow} \frac{1}{|a|}X(f/a)$$

$$X(t) \overset{CTFT}{\Leftrightarrow} x(-f)$$

$$x(t)e^{j2\pi f_0t} \overset{CTFT}{\Leftrightarrow} X(f-f_0)$$

$$x(t)y(t) \overset{CTFT}{\Leftrightarrow} X(f) * Y(f)$$

$$x(t) * y(t) \overset{CTFT}{\Leftrightarrow} X(f)Y(f)$$

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(f)Y^*(f)df$$

• CTFT pairs

$$\operatorname{sinc}(t) \overset{CTFT}{\Leftrightarrow} \operatorname{rect}(f)$$

$$\operatorname{rect}(t) \overset{CTFT}{\Leftrightarrow} \operatorname{sinc}(f)$$

For a > 0

$$\frac{1}{(n-1)!}t^{n-1}e^{-at}u(t) \stackrel{CTFT}{\Leftrightarrow} \frac{1}{(j2\pi f + a)^n}$$

• CSFT

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$
$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)}dudv$$

• DTFT

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$
$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

• DTFT pairs

$$a^n u(n) \stackrel{DTFT}{\Leftrightarrow} \frac{1}{1 - ae^{-j\omega}}$$

• Rep and Comb relations

$$\operatorname{rep}_{T}\left[x(t)\right] = \sum_{k=-\infty}^{\infty} x(t - kT)$$

$$\operatorname{comb}_{T}\left[x(t)\right] = x(t) \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$\operatorname{comb}_{T}\left[x(t)\right] \overset{CTFT}{\Leftrightarrow} \frac{1}{T} \operatorname{rep}_{\frac{1}{T}}\left[X(f)\right]$$

$$\operatorname{rep}_{T}\left[x(t)\right] \overset{CTFT}{\Leftrightarrow} \frac{1}{T} \operatorname{comb}_{\frac{1}{T}}\left[X(f)\right]$$

• Sampling and Reconstruction

$$y(n) = x(nT)$$

$$Y(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\frac{\omega - 2\pi k}{2\pi T}\right)$$

$$s(t) = \sum_{k=-\infty}^{\infty} y(k)\delta(t - kT)$$

$$S(e^{j\omega}) = Y\left(e^{j\omega T}\right)$$

Name: _

Problem 1.(20pt)

Consider a color imaging device that takes input values of (r, g, b) and produces output (X, Y, Z)values given by

$$\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right] = A \left[\begin{array}{c} r^{\alpha} \\ g^{\alpha} \\ b^{\alpha} \end{array}\right] \; .$$

where

$$A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] \ .$$

- a) Calculate the white point of the device in chromaticity coordinates.
- b) Determine the chromaticity coordinates of the three primaries associated with the r, g, and bcomponents.
- c) What is the gamma of the device?

a) White point corresponds to
$$r=1$$
, $g=1$ and $b=1$,
$$\begin{bmatrix} x \\ z \end{bmatrix} = A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a+b+c \\ d+e+f \end{bmatrix}$$

Let
$$G = a+b+c+d+e+f+g+h+i$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{a+b+c}{d+e+f} \\ \frac{g+h+i}{d+e+f} \end{bmatrix}$$

b) primary associated with r is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{a}{a+d+9} \\ \frac{d}{a+d+9} \end{bmatrix}$

primary associated with y is [x] = [b+e+h]
bte+h

Primary associated with b is
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{C}{C+f+\epsilon} \\ \frac{c}{C+f+\epsilon} \end{bmatrix}$$

c) The gamma of the device is d.

Problem 2.(20pt)

Let X be a scalar random variable and Z be a $M \times 1$ random vector. Assume that X and Z are zero mean with

$$\begin{array}{rcl} b & = & E[XZ] \\ R & = & E[ZZ^t] \ . \end{array}$$

Further define the estimator

$$\hat{X} = \theta Z$$

where θ is a $1 \times M$ parameter vector.

- a) **Derive** an expression for the value of θ that results in the minimum mean squared error linear estimator of X given Z.
- b) What estimator always results in the minimum mean squared error estimate of X given Z?
- c) Is the minimum mean squared error estimator of X always a linear function of Z? Justify your answer.
- d) What estimator, $\hat{X} = T(Z)$, minimizes the following expression?

$$E[|X - \hat{X}|]$$

- b) E[x|Z]
- c) No. E[x|Z] is a linear function of Z, if x and Z are jointly Gaussian. However, this closs not hold in General.
- d) Median.

Name:	
-------	--

Problem 3.(20pt)

Consider the 1-D error diffusion algorithm specified by the equations

$$b_n = Q(y_n)$$

$$e_n = y_n - b_n$$

$$y_n = x_n + e_{n-1}$$

where x_n is the input, b_n is the output, and $Q(\cdot)$ is a binary quantizer with the form

$$Q(y) = \begin{cases} 1 & \text{if } y > 0.5 \\ 0 & \text{if } y \le 0.5 \end{cases}.$$

where we assume that $e_0 = 0$ and the algorithm is run for $n \ge 1$.

Furthermore, define $d_n = x_n - b_n$.

- a) Draw a flow diagram for this algorithm. Make sure to label all the signals in the flow diagram using the notation defined above.
- b) Calculate b_n for n = 1 to 10 when $x_n = 0.25$ and $e_0 = 0$.
- c) Calculate an expression for d_n in terms of the quantization error e_n .
- d) Calculate an expression for $\sum_{n=1}^{N} d_n$ in terms of the quantization error e_n .
- e) What does the result of part d) above tell you about the output of error diffusion?

c)
$$dn = \chi_{n} - bn = \chi_{n} - (y_{n} - e_{n}) = \chi_{n} - (\chi_{n} + e_{n} - e_{n}) = e_{n} - e_{n} - e_{n}$$

 $d) \sum_{n=1}^{N} d_{n} = \sum_{n=1}^{N} (e_{n} - e_{n}) = e_{N} - e_{0} = e_{N}$

d)
$$\sum_{N=1}^{N} d_{N} = \sum_{N=1}^{N} (e_{N} - e_{N-1}) = e_{N} - e_{0} = e_{N}$$

Name:	

e) 1) It tells us that the accumulative orror is bounded.

Now we prove that en is bounded.

-) When N=0 eo=0 is bounded.
- 2) We assume the exis bounded, then.

Y K+1 = XK+1+ ex is bounded since XK+1 is bounded as well.

Then ex+1=yx+1-bx+1 is bounded, since yx+1 is bounded and bx+1=Q(yx+1) is bounded.

Thus, ex is bounded > ex+1 is bounded.

- 3) By induction. en is bounded for NEZT.
- ② It tells us that the local average of the signal is approximately maintained.

$$\sum_{n=1}^{N} dn = \sum_{n=1}^{N} \left(\chi_n - b_n \right) = e_N$$

Then
$$\sum_{n=1}^{N} b_n = \sum_{n=1}^{N} x_n - e_N$$

So the local average of the input is approximately the same as the local average of the output.

Name: _

Problem 4.(20pt)

Consider a discrete-time random process X_n with i.i.d. samples that are Gaussian with mean 0 and variance $\sigma^2 > 0$.

The rate distortion relation for this source is then given by

$$R(\Delta) = \max \left\{ \frac{1}{2} \log_2 \left(\frac{\sigma^2}{\Delta^2} \right), 0 \right\}$$

 $D(\Delta) = \min \left\{ \sigma^2, \Delta^2 \right\}$

- a) Plot the minimum possible rate (y-axis) versus distortion (x-axis) required to code this source when $\sigma^2 = 1$.
- b) Explain the meaning of the distortion-rate function.
- c) How many bits per sample are required in order to achieve zero distortion?
- d) How many bits per sample are required in order to achieve a distortion of $D = \sigma^2$?
- e) Let $\{X_n\}_{n=1}^N$ be a set of independent Gaussian random variables each with zero mean and variance σ_n^2 where $\sigma_{n-1}^2 \geq \sigma_n^2$. Write an expression for the rate and distortion.
- f) Calculate the distortion-rate function for a Gaussian vector X with mean zero and covariance $R = E\Lambda E^t$ where $EE^t = I$ and Λ is diagonal?

- b) It is the lower bound on achievable rates at a given distortion. Given $D'>D(\Delta)$ and $R'>R(\Delta)$, one can find a coder that achieves rate R' and distortion D'.
- c) Intinite
- d) zoro

e)
$$R(\Delta) = \sum_{n=1}^{N} \max \left\{ \frac{1}{2} \log_2 \left(\frac{6n^2}{\Delta^2} \right), 0 \right\}$$

$$D(\Delta) = \sum_{n=1}^{N} \min \left\{ 6n^2, \Delta^2 \right\}$$

f).
$$R(\Delta) = \sum_{n=1}^{N} \max \left\{ \frac{1}{2} \log_2 \left(\frac{\Delta_{nn}}{\Delta^2} \right), 0 \right\}$$

$$D(\Delta) = \sum_{n=1}^{N} \min \left\{ \Delta_{nn}, \Delta^2 \right\}$$

Problem 5.(20pt)

Let $x(t) = \operatorname{sinc}(at)$ for some positive constant a, and let y(n) = x(nT) where $f_s = 1/T$ is the sampling frequency of the system. Further assume that a has units of \sec^{-1} , T has units of \sec , and f_s has units of $Hz = \sec^{-1}$.

- a) Calculate X(f), the CTFT of x(t).
- b) What is the cutoff frequency of X(f) in Hz? (Your answer will be in terms of a.)
- c) Calculate $Y(e^{j\omega})$, the DTFT of y(n).
- d) Calculate f_q , the Nyquist sampling frequency for the signal. (Your answer will be in terms of a.)
- e) Sketch the function $Y(e^{j\omega})$ on the interval $[-\pi, \pi]$ when $f_s = (3/2)f_q$.
- f) Sketch the function $Y(e^{j\omega})$ on the interval $[-\pi,\pi]$ when $f_s=(2/3)f_q$.

a)
$$X(f) = \frac{1}{a} rect (f/a)$$

c)
$$y(e^{jw}) = \frac{1}{T} \sum_{k=-w}^{w} \chi(\frac{w-2\pi k}{2\pi T})$$

$$= \frac{1}{aT} \sum_{k=-w}^{w} reut(\frac{w-2\pi k}{2\pi aT})$$

d)
$$f_q = a$$

