CS 220 ASSIGNMENT 4

1. State Assignment Table:

Sr. No.	State Name	State
1.	S_0	1'b000
2.	S_1	1'b001
3.	\mathbf{S}_2	1'b011
4.	S_3	1'b010
5.	S_4	1'b110
6.	\mathbf{S}_5	1'b111
7.	S_6	1'b101
8.	S_7	1'b100

2. State Diagram:

Output is high only when state transits from S_7 to S_0 .

Elsewhere output is low.

3. Karnaugh Maps and logic Equations:

K-Maps for the Gray code Counter is given below. The circuit consists of 3 J-K Flip-flop and thus the K-Maps corresponds to the 6 J and K values of the three Flip-flops.

The Logic Equation corresponding to each output is also given below.

Note: Here JQ_2 , JQ_1 , etc. means J or K outputs of the corresponding Flip-flop 0, 1 or 2. Cross means don't care condition.

4. J-K Transition Table:

Trigger	Inputs		Output			i e	
mgger			Present State		Next State		Inference
CLK	J	K	Q	Q	Q	Q	
Ж	х	х	- 1			-	Latched
1	0	0	0	1	0	1	No Change
t		0 0	1	0	1	0	No Change
1	0	1	0	1	0	1	Reset
1	U	0 1	1	0	0	1	Reset
1		_	0	1	1	0	0.4
1	1	1 0	1	0	1	0	Set
1	1		0	1	1	0	
1		1	1	0	0	1	Toggles

5. Circuit Diagram:

6. Output Table:

Sr. No.	Clock	State	Output (z)
1.	High	S_0	0
2.	Low	50	0
3.	High	S_1	0
4.	Low	D ₁	0
5.	High	S_2	0
6.	Low	52	0
7.	High	S_3	0
8.	Low	. 53	0
9.	High	S ₄	0
10.	Low	54	0
11.	High	S_5	0
12.	Low	55	0
13.	High	S_6	0
14.	Low	50	0
15.	High	S_7	1
16.	Low	5,	0

7. State and Excitation Table:

Current State	Next State	Output
S_0	S_1	0
S_1	S_2	0
S_2	S_3	0
S_3	S_4	0
S_4	S_5	0
S_5	S_6	0
S_6	S ₇	0
S ₇	S_0	1