Theorem1:

If ϕ is the Null event, then $P(\phi)=0$

Proof: For any event A, $A=AU\varphi$, where A and φ are mutually exclusive.

 $P(A)=P(AU \varphi)=P(A)+P(\varphi)$

$$\Rightarrow$$
 P(A)=P(A)+P(φ)

$$\Rightarrow P(\phi)=0$$

Theorem2:

If \overline{A} is the complementary event of A, then $P(A) = 1 - P(\overline{A})$

Proof:

If S is the Sample Space, with A and \overline{A} being disjoint events then

 $S = AU\overline{A}$

$$P(S) = P(AU\overline{A}) \Rightarrow 1 = P(A) + P(\overline{A})$$

Or $P(A) = 1 - P(\overline{A})$

Cor: If A & B are any two events, then $P(\overline{A} \cap B) = P(B) - P(A \cap B)$

Proof:

Since $\overline{A} \cap B$ and $A \cap B$ are disjoint events, we can write

 $B=(A\cap B)U(\overline{A}\cap B)$

 $P(B)=P(A\cap B)+P(\overline{A}\cap B)$

Or $P(\overline{A} \cap B) = P(B) - P(A \cap B)$

Theorem 3: (Addition Theorem)

If A and B are any 2 events, then $P(AUB)=P(A)+P(B)-P(A\cap B)$

Proof:

We can write

 $AUB=AU(B\cap \overline{A})$

 $P(AUB)=P(A)+P(B\cap \overline{A}) \longrightarrow 1$

 $B=(A\cap B)U(B\cap \overline{A})$

 $P(B)=P(A\cap B)+P(B\cap \overline{A})$ 2

Subtracting 2 from 1, we get

 $P(AUB)-P(B)=P(A)-P(A\cap B) \Rightarrow P(AUB)=P(A)+P(B)-P(A\cap B)$

Aliter:

Let $AUB=AU(B\cap \overline{A})$

 $P(AUB)=P(A)+P(B\cap \overline{A})$

Add and Subtract $P(A \cap B)$, we get

 $P(AUB)=P(A)+(P(B\cap \overline{A})+P(A\cap B))-P(A\cap B)$

 \Rightarrow P(AUB)=P(A)+P(B)-P(A\cap B)

Theorem 4:

For any three events A, B and C, prove that

 $P(AUBUC)=P(A)+P(B)+P(C)-P(A\cap C)-P(A\cap B)-P(B\cap C)+P(A\cap B\cap C)$

Prove it!

Theorem 5:

If $A \subseteq B$ then $P(A) \leq P(B)$

Prove it!

Results:

1) Show that the probability (that exactly one of the events A or B occurs) is given by $P(A)+P(B)-2P(A\cap B)$

Proof:

For any two events A & B,

Probability (that exactly one of the events A or B occurs) = $P((A \cap \overline{B})U(B \cap \overline{A})]$

Since $A \cap \overline{B}$ and $B \cap \overline{A}$ are mutually exclusive, we have

$$P((A \cap \overline{B})U(B \cap \overline{A})] = P(A) + P(B) - 2P(A \cap B)$$

$$\Rightarrow P((A \cap \overline{B})U(B \cap \overline{A})] = P(A \cap \overline{B}) + P(B \cap \overline{A}) \qquad -----(a)$$

But $A \cap B$ is disjoint with both these sets and the union of the events $A \cap \overline{B}$ and $B \cap \overline{A}$ and $A \cap B$ is nothing but AUB.

Add & Subtract $P(A \cap B)$ in (a) above, we get,

$$P[(A \cap \overline{B})U \ (B \cap \overline{A})] = P(A \cap \overline{B}) + P(B \cap \overline{A}) + P(A \cap B) - P(A \cap B)$$

$$= [P(A \cap \overline{B}) + P(B \cap \overline{A}) + P(A \cap B)] - P(A \cap B)$$

$$= P(AUB)-P(A\cap B)$$

$$= P(A) + P(B) - P(A \cap B) - P(A \cap B)$$

 $\therefore \ The \ required \ probability = P(A) + P(B) - 2P(A \cap B)$

2) For any two events A & B, $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$

Prove it!