Character-level Machine Translation

Neural Machine Translation

October, 2016

Alexander Rosenberg Johansen (github.com/alrojo)

Using Neural Networks to translate text

The computers are coming! → Les ordinateurs sont à venir!

Current method - Seq2Seq with attention on words

Google NMT - https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Contributions

New! TensorFlow Seq2Seq functions

New! Hierarchical char-to-char NMT

TensorFlow Additions

Current RNN-Decoder

New! RNN-Decoder

- Variable Sequence Length
- Masking Support

Current Sequence Loss

New! Sequence Loss

- + Faster
- Variable Sequence Length

Dynamic batching

Regular batching

Bucketing

<u>Dynamic batching</u> = <u>Bucketing</u> and <u>Variable Sequence Length</u>

Serving Data - Dynamic Batching (same model)

Why words?

Most recent work: Word-Char hybrid

Use chars-to-char for out-of-dictionary

Reduced dictionary size!

Char-to-Char attention plot (our model)

Hierarchical Encoding (our model)

Word-Level Encoder Charactor-Level Encoder

Model	Language	newstest2015
char-to-char	En-De	15.14 BLEU
char2word-to-char	En-De	<u>17.43</u> BLEU