ПЛАН

- Линейная регрессия и её особенности
- Метрики качества регрессии
- Практика

Пример (напоминание):

Предположим, что мы хотим предсказать стоимость дома у по его площади (x_1) и количеству комнат (x_2) .

Линейная модель для предсказания стоимости:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2,$$

где w_0, w_1, w_2 -

параметры модели (веса).

Пример (напоминание):

Предположим, что мы хотим предсказать стоимость дома у по его площади (x_1) и количеству комнат (x_2) .

Линейная модель для предсказания стоимости:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2,$$

где w_0, w_1, w_2 -

параметры модели (веса).

Общий вид (линейная регрессия):

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

где $x_1, ..., x_n$ - признаки объекта x.

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

• сокращенная запись:

$$a(x) = w_0 + \sum_{j=1}^n w_j x_j$$

• запись через скалярное произведение (с добавлением признака $x_0=1$):

$$a(x) = w_0 \cdot 1 + \sum_{j=1}^{n} w_j x_j = \sum_{j=0}^{n} w_j x_j = \langle (w, x) \rangle$$

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

• сокращенная запись:

$$a(x) = w_0 + \sum_{j=1}^n w_j x_j$$

• запись через скалярное произведение (с добавлением признака $x_0 = 1$):

$$a(x) = w_0 \cdot 1 + \sum_{j=1}^{n} w_j x_j = \sum_{j=0}^{n} w_j x_j = (w, x) \Leftrightarrow a(x) = (w, x)$$

Линейная регрессия:

$$a(x) = w_0 + \sum_{j=1}^{n} w_j x_j = (w, x)$$

Обучение линейной регрессии - минимизация среднеквадратичной ошибки:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2 = \frac{1}{l} \sum_{i=1}^{l} ((w, x_i) - y_i)^2 \to \min_{w}$$

(здесь l – количество объектов)

Пример:

Предположим, что мы хотим предсказать стоимость дома у по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

$$a(x) = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4.$$

Пример:

Предположим, что мы хотим предсказать стоимость дома y по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4.$$

<u>Проблема №1:</u> район (х₃) — это не число, а название района. Например, Мамыри, Дудкино, Барвиха... Что с этим делать?

Пример:

Предположим, что мы хотим предсказать стоимость дома y по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

$$a(x) = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4.$$

<u>Проблема №1:</u> район (х₃) — это не число, а название района. Например, Мамыри, Дудкино, Барвиха... Что с этим делать?

<u>Решение</u> – one-hot encoding (OHE): создаем новые числовые столбцы, каждый из которых является индикатором района.

ONE-HOT ENCODING

Район
Дудкино
Барвиха
Мамыри
•••
Барвиха

Мамыри	Дудкино	Барвиха
0	1	0
0	0	1
1	0	0
•••	•••	•••
0	0	1

$$a(x) =$$

= $w_0 + w_1 x_1 + w_2 x_2 + w_{31} x_{\text{Мамыри}} + w_{32} x_{\text{Дудкино}} + w_{33} x_{\text{Барвиха}} + w_4 x_4.$

Пример:

Предположим, что мы хотим предсказать стоимость дома у по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

<u>Проблема №2:</u> удаленность от МКАД (х₄) не монотонно влияет на стоимость дома.

<u>Проблема №2:</u> удаленность от МКАД (x_4) не монотонно влияет на стоимость дома.

<u>Решение</u> – бинаризация (разбиение на бины).

Новые признаки:

• $x_{[0;10)}$ - равен 1, если

дом находится в пределах

10 км от МКАД, и 0 иначе

• $x_{[10;30)}$ - равен 1, если

дом находится в пределах от 10 км до 30 км МКАД, и 0 иначе. И т.д.

<u>Проблема №2:</u> удаленность от МКАД (х₄) не монотонно влияет на стоимость дома.

Решение – бинаризация (разбиение на бины).

Новые признаки:

• $x_{[0;10)}$ - равен 1, если

дом находится в пределах

10 км от МКАД, и 0 иначе

• $x_{[10;30)}$ - равен 1, если

дом находится в пределах от 10 км до 30 км МКАД, и 0 иначе. И т.д.

$$a(x) = = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_{41} x_{[0;10)} + w_{42} x_{[10;30)} + w_{43} x_{[30;50)} + w_{44} x_{\geq 50}$$

МЕТРИКИ РЕГРЕССИИ

СРЕДНЕКВАДРАТИЧНОЕ ОТКЛОНЕНИЕ: MSE (MEAN SQUARED ERROR)

Среднеквадратичное отклонение:

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2$$

СРЕДНЕКВАДРАТИЧНОЕ ОТКЛОНЕНИЕ: MSE (MEAN SQUARED ERROR)

Среднеквадратичное отклонение:

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2$$

Плюсы:

- Позволяет сравнивать модели
- Подходит для контроля качества во время обучения

СРЕДНЕКВАДРАТИЧНОЕ ОТКЛОНЕНИЕ: MSE

Среднеквадратичное отклонение:

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (\mathbf{a}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

Плюсы:

- Позволяет сравнивать модели
- Подходит для контроля качества во время обучения

Минусы:

- Плохо интерпретируется, т.к. не сохраняет единицы измерения (если целевая переменная кг, то MSE измеряется в кг в квадрате)
- Тяжело понять, насколько хорошо данная модель решает задачу, так как MSE не ограничена сверху.

RMSE (ROOT MEAN SQUARED ERROR)

Корень из среднеквадратичной ошибки:

$$RMSE(a, X) = \sqrt{\frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2}$$

Плюсы:

- Все плюсы MSE
- Сохраняет единицы измерения (в отличие от MSE)

Минусы:

• Тяжело понять, насколько хорошо данная модель решает задачу, так как RMSE не ограничена сверху.

КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ (R^2)

Коэффициент детерминации:

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{l} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{l} (y_{i} - \overline{y})^{2}},$$

где
$$\overline{y} = \frac{1}{l} \sum_{i=1}^{l} y_i$$
.

КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ (R^2)

Коэффициент детерминации:

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{l} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{l} (y_{i} - \overline{y})^{2}},$$

где
$$\overline{y} = \frac{1}{l} \sum_{i=1}^{l} y_i$$
.

Коэффициент детерминации <u>это доля дисперсии целевой</u> переменной, объясняемая моделью.

- Чем ближе R^2 к 1, тем лучше модель объясняет данные
- ullet Чем ближе ${
 m R}^2$ к 0, тем ближе модель к константному предсказанию
- ullet Отрицательный ${
 m R}^2$ говорит о том, что модель плохо решает задачу

КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ (R^2)

$$R^2 \leq 1$$

MAE (MEAN ABSOLUTE ERROR)

Средняя абсолютная ошибка:

$$MAE(a,X) = \frac{1}{l} \sum_{i=1}^{l} |a(x_i) - y_i|$$

MAE (MEAN ABSOLUTE ERROR)

Средняя абсолютная ошибка:

$$MAE(a, X) = \frac{1}{l} \sum_{i=1}^{l} |a(x_i) - y_i|$$

Плюсы:

• Менее чувствителен к выбросам, чем MSE

MAE (MEAN ABSOLUTE ERROR)

Средняя абсолютная ошибка:

$$MAE(a, X) = \frac{1}{l} \sum_{i=1}^{l} |a(x_i) - y_i|$$

Плюсы:

• Менее чувствителен к выбросам, чем MSE

Минусы:

• МАЕ - не дифференцируемый функционал

ОПТИМУМЫ МЅЕ И МАЕ

Рассмотрим вероятностную постановку задачи.

Предположим, что на объектах с одинаковым признаковым описанием могут быть разные ответы. В этом случае на всех таких объектах MSE (или MAE) должна выдать один и тот же ответ.

Теорема. Пусть даны l объектов с одинаковым признаковым описанием и значениями целевой переменной y_1, \dots, y_l . Тогда:

1. Оптимум MSE достигается на среднем значении ответов:

$$\alpha_{MSE} = \sum_{i=1}^{l} y_i$$

2. Оптимум МАЕ достигается на медиане ответов:

$$\alpha_{MAE} = median\{y_1, ..., y_l\}$$

MSLE (MEAN SQUARED LOGARITHMIC ERROR)

Среднеквадратичная логарифмическая ошибка:

$$MSLE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (\log(\mathbf{a}(\mathbf{x_i}) + \mathbf{1}) - \log(\mathbf{y} + \mathbf{1}))^2$$

- Подходит для задач с неотрицательной целевой переменной (у ≥ 0)
- Штрафует за отклонения в порядке величин
- Штрафует заниженные прогнозы сильнее, чем завышенные

MAPE

MAPE – Mean Absolute Percentage Error:

$$MAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|\mathbf{y_i} - \mathbf{a}(\mathbf{x_i})|}{|\mathbf{y_i}|}$$

МАРЕ измеряет относительную ошибку.

MAPE

$$MAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|\mathbf{y_i} - \mathbf{a}(\mathbf{x_i})|}{|\mathbf{y_i}|}$$

Плюсы:

- Ограничена: $0 \le MAPE \le 1$
- Хорошо интерпретируема: например, MAPE=0.16 означает, что ошибка модели в среднем составляет 16% от фактических значений.

MAPE

$$MAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|\mathbf{y_i} - \mathbf{a}(\mathbf{x_i})|}{|\mathbf{y_i}|}$$

Плюсы:

- Ограничена: $0 \le MAPE \le 1$
- Хорошо интерпретируема: например, МАРЕ=0.16 означает, что ошибка модели в среднем составляет 16% от фактических значений.

Минусы:

• По-разному относится к недо- и перепрогнозу. Например, если правильный ответ y=10, а прогноз a(x)=20, то ошибка $\frac{|10-20|}{|10|}=\mathbf{1}$, а если ответ y=30, то ошибка $\frac{|30-20|}{|30|}=\frac{1}{3}\approx\mathbf{0}.33$.

SMAPE – Symmetric Mean Absolute Percentage Error (симметричный вариант MAPE):

$$SMAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|y_i - a(x_i)|}{(|y_i| + |a(x_i)|)/2}$$

SMAPE – попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

SMAPE – Symmetric Mean Absolute Percentage Error (симметричный вариант MAPE):

$$SMAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|y_i - a(x_i)|}{(|y_i| + |a(x_i)|)/2}$$

SMAPE – попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

Проверим:

Пусть правильный ответ y=10, а прогноз a(x)=20, то ошибка $\frac{|10-20|}{|10+20|/2}=\frac{2}{3}\approx 0.67$, а если ответ y=30, то ошибка $\frac{|30-20|}{|30+20|/2}=\frac{2}{5}=0.4$.

SMAPE – попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

Проверим:

Пусть правильный ответ y=10, а прогноз a(x)=20, то ошибка $\frac{|10-20|}{|10+20|/2}=\frac{2}{3}\approx 0.67$, а если ответ y=30, то ошибка $\frac{|30-20|}{|30+20|/2}=\frac{2}{5}=0.4$.

Ошибки стали меньше отличаться друг от друга, но всё-таки не равны.

SMAPE – попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

"Сейчас уже в среде прогнозистов сложилось более-менее устойчивое понимание, что SMAPE не является хорошей ошибкой. Тут дело не только в завышении прогнозов, но ещё и в том, что наличие прогноза в знаменателе позволяет манипулировать результатами оценки." (см. источник)