ત્રિકોણમિતીય પ્રતિવિધેયો

2

No matter how correct a mathematical theorem may appear to be, one caught never to be satisfied that there was not something imperfect about it untill it also gives the impression of being beautiful.

- George Boole

Mathematics consists of proving the most obvious things in the least obvious way.

- George Polya

2.1 પ્રાસ્તાવિક

આપણે શીખી ગયાં છીએ કે જો વિધય એક-એક અને વ્યાપ્ત હોય તો અને તો જ તેનું પ્રતિવિધય મળે. ઘણાં વિધયો એવાં છે કે જે એક-એક નથી કે વ્યાપ્ત નથી કે બંનેમાંથી એક પણ નથી. આવાં વિધયોનાં પ્રતિવિધય ન મળે. ધોરણ XIમાં આપણે શીખી ગયાં કે બધાં જ ત્રિકોણમિતીય વિધયો આવૃત્ત વિધયો હોઈ, અનેક-એક સંગતતાવાળાં વિધયો છે અને તેથી તેમનાં પ્રતિવિધયો પ્રાપ્ત થશે નહિ. પરંતુ તેમના પ્રદેશગણ અને સહપ્રદેશગણ મર્યાદિત કરીએ, કે જેથી આ મર્યાદિત પ્રદેશગણ અને સહપ્રદેશગણમાં તે એક-એક અને વ્યાપ્ત થાય તો આ મર્યાદિત પ્રદેશગણમાં અને સહપ્રદેશગણમાં તેમનાં પ્રતિવિધય અસ્તિત્વ ધરાવશે.

આપણે જાણીએ છીએ કે $f = \{(x, y) \mid y = f(x), x \in A, y \in B\}$ એક-એક અને વ્યાપ્ત વિધેય હોય, તો તેનું પ્રતિવિધય એ $f^{-1} = \{(y, x) \mid y = f(x), x \in A, y \in B\}$ દ્વારા મળે.

વળી,
$$fof^{-1} = I_R$$
 અને $f^{-1}of = I_A$

$$\therefore$$
 $x \in A \Rightarrow (f^{-1}of)(x) = x, y \in B \Rightarrow (fof^{-1})(y) = y$

આ પ્રકરણમાં આપણે ત્રિકોણમિતીય વિધેયોનાં પ્રતિવિધેયોના અસ્તિત્વ અંગે વિચારીશું અને તેમના ગુણધર્મોની ચર્ચા કરીશું.

2.2 sine विधेयनुं प्रतिविधेय

આપણે જાણીએ છીએ કે $sin: \mathbf{R} \to \mathbf{R}$ એ અનેક-એક વિધેય છે અને તેનો વિસ્તાર [-1, 1] હોવાથી તે \mathbf{R} પર વ્યાપ્ત નથી.

 $sin = \{(x, y) \mid y = sinx, x \in \mathbb{R}, y \in [-1, 1]\}$ એ \mathbb{R} માં અનેક-એક વિધેય છે અને [-1, 1]માં વ્યાપ્ત વિધેય છે. તે અનેક-એક છે અને તે આવર્તી વિધેય છે તથા તેનું આવર્તમાન 2π છે. આપણે આલેખ પરથી જોઈ શકીએ છીએ કે જો sine વિધેયનો પ્રદેશગણ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ અથવા $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ અથવા $\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$ અથવા $\left[(2k-1)\frac{\pi}{2}, (2k+1)\frac{\pi}{2}\right]$, $k \in \mathbb{Z}$ લઈએ, તો તે એક-એક અને [-1, 1] પર વ્યાપ્ત થાય.

તેથી sine વિધેયના પ્રતિવિધેયને વ્યાખ્યાયિત કરવા આપણે ઉપર લીધેલ કોઈ પણ અંતરાલને પ્રદેશગણ તરીકે લઈ શકીએ. આપણે મર્યાદિત પ્રદેશગણ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ લઈશું.

 $sin = \left\{ (x, y) \mid y = sinx, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], y \in [-1, 1] \right\}$ એક-એક સંગતતાવાળું અને વ્યાપ્ત વિધેય બનશે આથી તેનું પ્રતિવિધેય મળી શકે. sine વિધેયના પ્રતિવિધેયને sin^{-1} સંકેત વડે દર્શાવીશું.

∴
$$sin^{-1} = \{(y, x) \mid y = sinx, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y \in [-1, 1]\}.$$
 આમ વ્યાખ્યા અનુસાર $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ અને $y \in [-1, 1]$ માટે $y = sinx \Leftrightarrow sin^{-1}y = x$ sin^{-1} વિધેયનો પ્રદેશ $[-1, 1]$ અને વિસ્તાર $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ છે.

અહીં આપણે ધ્યાનમાં રાખીશું કે જો $y\in[-1,\ 1]$, તો $sin^{-1}y$ એ કોઈ પણ વાસ્તવિક x નથી કે જેને માટે sinx=y થાય પરંતુ $sin^{-1}y$ તે એવી વાસ્તવિક સંખ્યા $x\in\left[-\frac{\pi}{2},\ \frac{\pi}{2}\right]$ છે કે જેને માટે sinx=y થાય. ઉદાહરણ તરીકે, જો $y=\frac{\sqrt{3}}{2}$, તો આપણે જાણીએ છીએ કે $sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}$ અને $\frac{\pi}{3}\in\left[-\frac{\pi}{2},\ \frac{\pi}{2}\right]$. તેથી $sin^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$. પરંતુ $sin\left(\pi-\frac{\pi}{3}\right)=sin\left(\frac{2\pi}{3}\right)=\frac{\sqrt{3}}{2}$ પરંતુ આપણે $sin^{-1}\frac{\sqrt{3}}{2}=\frac{2\pi}{3}$ નહીં લઈએ, કારણ કે, $\frac{2\pi}{3}\not\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

ઉદાહરણ તરીકે, $sin\left(sin^{-1}\frac{5}{7}\right) = \frac{5}{7}$, કારણ કે $\frac{5}{7} \in [-1, 1]$. $sin^{-1}\left(sin\frac{2\pi}{5}\right) = \frac{2\pi}{5}$, કારણ કે $\frac{2\pi}{5} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. પરંતુ $sin^{-1}\left(sin\left(\frac{3\pi}{5}\right)\right) \neq \frac{3\pi}{5}$, કારણ કે $\frac{3\pi}{5} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

જો $f: \mathbf{A} \to \mathbf{B}$ વિધેયનું પ્રતિવિધેય $f^{-1}: \mathbf{B} \to \mathbf{A}$ હોય, તો

 $fof^{-1} = I_B$ અને $f^{-1}of = I_A$ થાય તે આપણે જાણીએ છીએ.

અહીં, $sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$ નું પ્રતિવિધેય $sin^{-1}: \left[-1, 1\right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ છે.

 $\therefore \quad \sin^{-1}(\sin x) = x, \ \forall x \in \left[-\frac{\pi}{2}, \ \frac{\pi}{2} \right] \ \text{અને} \ \sin(\sin^{-1}x) = x, \ \ \forall x \in [-1, \ 1].$

અહીં આપણે નોંધીશું કે,

(1)
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow -\frac{\pi}{2} \le x \le \frac{\pi}{2} \Leftrightarrow |x| \le \frac{\pi}{2}$$
 અને $y \in [-1, 1] \Leftrightarrow -1 \le y \le 1 \Leftrightarrow |y| \le 1$.

(2)
$$\sin^{-1}x \neq \frac{1}{\sin x}$$
, એટલે કે $\sin^{-1}x \neq (\sin x)^{-1}$

2.3 $y = \sin^{-1} x$ નો આલેખ

 sin^{-1} વિધેયનો પ્રદેશ $[-1,\ 1]$ અને વિસ્તાર $\left[-\frac{\pi}{2},\ \frac{\pi}{2}\right]$ હોવાથી તેનો આલેખ શિરોલંબ રેખાઓ x=-1 અને x=1 અને સમક્ષિતિજ રેખાઓ $y=-\frac{\pi}{2}$ અને $y=\frac{\pi}{2}$ વચ્ચેના મર્યાદિત પ્રદેશમાં મળશે.

40 ગણિત 12

આપણે અહીં, y = sinx વિધેયનો આલેખ દોરવાના જ્ઞાનનો ઉપયોગ કરી $y = sin^{-1}x$ નો આલેખ મેળવીશું. આ માટે પ્રથમ જો વિધેય fનું પ્રતિવિધેય f^{-1} અસ્તિત્વ ધરાવતું હોય તો fના આલેખ પરથી f^{-1} નો આલેખ કેવી રીતે મળે તે વિચારવું જરૂરી છે. y = f(x) અને $y = f^{-1}(x)$ ના આલેખો વચ્ચે રસપ્રદ સંબંધ છે. જો બિંદુ (a, b) એ y = f(x) આલેખ પરનું

બિંદુ હોય તો b = f(a) અને તેથી $a = f^{-1}(b)$. તેથી બિંદુ (b, a) એ આલેખ $y = f^{-1}(x)$ પરનું બિંદુ થશે. આ વિધાનનું પ્રતિપ પણ સત્ય છે. તેથી જો A(a, b) એ y = f(x) ના આલેખ પર હોય તો અને તો જ B(b, a) એ $y = f^{-1}(x)$ ના આલેખ પર હોય.

આપણે જોઈ શકીએ છીએ કે y=x રેખા એ A(a,b) અને B(b,a)ને જોડતા રેખાખંડનો લંબદ્ધિભાજક છે. A(a,b) અને B(b,a)ને જોડતાં રેખાખંડનો ઢાળ $\frac{b-a}{a-b}=-1$ થશે. રેખા y=x નો ઢાળ 1 છે. તેથી $\stackrel{\longleftrightarrow}{AB}$ એ y=x ને લંબ રેખા છે. વળી, $\stackrel{\longleftrightarrow}{AB}$ નું મધ્યબિંદુ $\left(\frac{a+b}{2},\frac{a+b}{2}\right)$ એ y=x રેખા પર છે.

આમ, રેખા y=x એ \overline{AB} નો લંબદ્ધિભાજક છે. આમ, B(b,a) એ A(a,b)નું y=x રેખાને સાપેક્ષ પ્રતિબિંબ થશે. આમ, $y=f^{-1}(x)$ નો આલેખ એ y=f(x)ના આલેખનું y=x રેખામાં પ્રતિબિંબ થશે.

આમ, $y = sin^{-1}x$ નો આલેખ એ sin વિધેયના આલેખનું y = x રેખામાં પ્રતિબિંબ મેળવવાથી સહેલાઈથી મળી જશે. સૌ પ્રથમ એક કાગળ પર y = sinx, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $y \in [-1, 1]$ નો આલેખ દોરો. આ કાગળને y = x રેખા ઉપર વાળો અને વાળેલા કાગળમાં દેખાતાં y = sinx વિધેયના આલેખને વાળેલા કાગળ ઉપર દોરો. હવે કાગળને ઉલટાવી દો અને X-અક્ષને Y-અક્ષ તરીકે $X = xin^{-1}x$ નો આલેખ છે.

નોંધ : આ પ્રયોગ વિદ્યાર્થી વર્ગમાં સ્વયં કરે તે ઇચ્છનીય છે. $y=\sin x \text{ --- in } \text{ --- in } x \in \left[-\frac{\pi}{2},\,\frac{\pi}{2}\right],\,y\in[-1,\,1]$ અને $y=\sin^{-1}x \text{ --- in } \text{ --- in } x \in [-1,\,1]$ અને $y\in\left[-\frac{\pi}{2},\,\frac{\pi}{2}\right].$

ઉદાહરણ 1 : મૂલ્ય મેળવો : (1) $sin^{-1}\left(\frac{1}{2}\right)$, (2) $sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$, (3) $sin^{-1}\left(-\frac{1}{2}\right)$.

 $634: (1) \sin^{-1}\left(\frac{1}{2}\right) = \sin^{-1}\left(\sin\frac{\pi}{6}\right) = \frac{\pi}{6}, \text{ singl} \ \ \frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$

(2)
$$sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = sin^{-1}\left(sin\frac{\pi}{4}\right) = \frac{\pi}{4}, \text{ single } \frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

(3)
$$sin^{-1}\left(-\frac{1}{2}\right) = sin^{-1}\left(-sin\frac{\pi}{6}\right) = sin^{-1}\left(sin\left(-\frac{\pi}{6}\right)\right) = -\frac{\pi}{6}$$
, since $\frac{1}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

2.4 cosine विधेयनं प्रतिविधेय

આપણે જાણીએ છીએ કે $cos: R \rightarrow R$ એ અનેક-એક વિધેય છે અને તેનો વિસ્તાર [-1, 1] હોવાથી તે વ્યાપ્ત નથી. $cos = \{(x, y) \mid y = cosx, x \in R, y \in [-1, 1]\}$ અનેક-એક અને [-1, 1] પર વ્યાપ્ત વિધેય છે અને તેનું

આવર્તમાન 2π છે. આલેખ પરથી જોતાં જો cosine નો પ્રદેશ $[0, \pi]$ અથવા $[\pi, 2\pi]$ અથવા $[2\pi, 3\pi]$ અથવા... $[k\pi, (k+1)\pi], k \in Z$ લઈએ, તો વિધેય એક-એક અને વ્યાપ્ત થાય.

આપણે cosine વિધેયનું પ્રતિવિધેય વ્યાખ્યાયિત કરવા મર્યાદિત પ્રદેશગણ $[0, \pi]$ લઈશું.

 $\cos = \{(x, y) \mid y = \cos x, x \in [0, \pi], y \in [-1, 1]\}$ એક-એક સંગતતાવાળું અને વ્યાપ્ત વિધેય બનશે. માટે તેનું પ્રતિવિધેય મેળવી શકાય. તેના પ્રતિવિધેયને \cos^{-1} સંકેત વડે દર્શાવીશું.

ે.
$$\cos^{-1} = \{(y, x) \mid y = \cos x, x \in [0, \pi], y \in [-1, 1]\}$$
. આમ, વ્યાખ્યા અનુસાર $x \in [0, \pi]$ અને $y \in [-1, 1]$ માટે $y = \cos x \Leftrightarrow \cos^{-1} y = x$. \cos^{-1} વિધેયનો પ્રદેશ $[-1, 1]$ અને વિસ્તાર $[0, \pi]$ છે.

sine વિધયની જેમ અહીં પણ આપણે ધ્યાન રાખીશું કે જો $y \in [-1, 1]$ તો $\cos^{-1}y$ એ એવી કોઈ પણ વાસ્તવિક x નથી કે જેને માટે $\cos x = y$ થાય પણ $\cos^{-1}y$ એવી જ વાસ્તવિક સંખ્યા $x \in [0, \pi]$ છે કે જેને માટે $\cos x = y$ થાય.

ઉદાહરણ તરીકે, $cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$ અને $\frac{\pi}{6}\in[0,\,\pi]$. આથી $cos^{-1}\Big(\frac{\sqrt{3}}{2}\Big)=\frac{\pi}{6}$. પણ $cos\Big(-\frac{\pi}{6}\Big)=cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$. પરંતુ $-\frac{\pi}{6}\not\in[0,\,\pi]$. આથી, $cos^{-1}\Big(\frac{\sqrt{3}}{2}\Big)\neq-\frac{\pi}{6}$.

 $cos: [0, \pi] \to [-1, 1]$ નું પ્રતિવિધેય $cos^{-1}: [-1, 1] \to [0, \pi]$ છે. આથી, $cos^{-1}(cosx) = x$, $\forall x \in [0, \pi]$ અને $cos(cos^{-1}x) = x$, $\forall x \in [-1, 1]$.

નોંધ : $\forall x \in \mathbb{R}$, $sin^{-1}(sinx)$ અને $cos^{-1}(cosx)$ નું અસ્તિત્વ છે, પરંતુ તે x ન પણ થાય. તેમ છતાં તે તેના મર્યાદિત પ્રદેશમાં x થાય છે. (ઉપરનો પ્રયોગ અહીં સહેજ ફેરફાર સાથે કરી શકાય.)

2.5
$$y = cos^{-1}x$$
 નો આલેખ

આપણે આપેલ વિધેયના આલેખને આધારે તેના પ્રતિવિધેયનો આલેખ કેવી રીતે મેળવાય તેની ચર્ચા અગાઉ કરી. તે મુજબ \cos^{-1} નો આલેખ \sin^{-1} ના આલેખની જેમ $y=\cos x$, $x\in[0,\pi]$ ના આલેખ પરથી આકૃતિ 2.5 પ્રમાણે મળે.

$$(-1, \pi)$$
 Υ

$$y = \cos^{-1} x$$

Y' આકૃતિ 2.5

ઉદાહરણ 2 : મૂલ્ય મેળવો : (1)
$$cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
 (2) $cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

Get: (1)
$$cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = cos^{-1}\left(cos\frac{\pi}{4}\right) = \frac{\pi}{4}$$
, step if $\frac{\pi}{4} \in [0, \pi]$.

(2)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \cos^{-1}\left(\cos\frac{5\pi}{6}\right) = \frac{5\pi}{6}$$
, size $\frac{5\pi}{6} \in [0, \pi]$.

2.6 tan विधेयनुं प्रतिविधेय

આપણે જાણીએ છીએ કે $tan: \mathbf{R} - \left\{ (2k+1) \frac{\pi}{2} \mid k \in \mathbf{Z} \right\} \to \mathbf{R}$ એ અનેક-એક વિધેય છે અને તેનો વિસ્તાર \mathbf{R} હોવાથી તે વ્યાપ્ત છે.

 $tan = \left\{ (x,\ y) \mid y = tanx,\ x \in \mathbb{R} - \left\{ (2k+1)\frac{\pi}{2} \mid k \in Z \right\},\ y \in \mathbb{R} \right\} \text{ વિષય અનેક-એક સંગતતાવાળું વ્યાપ્ત વિષય છે તથા <math>\pi$ આવર્તમાનવાળું વિષય છે. જો તેનો પ્રદેશગણ $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ અથવા $\left(\frac{\pi}{2}, \frac{3\pi}{2} \right)$ અથવા $\left(\frac{3\pi}{2}, \frac{5\pi}{2} \right)$ અથવા $\left((2k-1)\frac{\pi}{2}, (2k+1)\frac{\pi}{2} \right),\ k \in Z$ લઈએ, તો વિષય એક-એક અને વ્યાપ્ત થાય. અહીં આપેલ અંતરાલમાંથી કોઈ પણ અંતરાલને મર્યાદિત પ્રદેશગણ તરીકે લઈએ તો તેનું પ્રતિવિષય મળે. આપણે $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ ને મર્યાદિત પ્રદેશગણ લઈ તેનું પ્રતિવિષય મેળવીશું અને તેને tan^{-1} સંકેત વડે દર્શાવીશું.

$$tan^{-1} = \{(y, x) \mid y = tanx, x \in (-\frac{\pi}{2}, \frac{\pi}{2}), y \in \mathbb{R}\}.$$

આમ, જો
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 અને $y \in \mathbb{R}$ તો $y = tanx \Leftrightarrow tan^{-1}y = x$.

 tan^{-1} વિધેયનો પ્રદેશગણ ${f R}$ અને વિસ્તાર $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ છે.

$$tan^{-1}x \neq (tanx)^{-1}, tan^{-1}x \neq \frac{1}{tanx} \cdot tan^{-1}x \neq \frac{sin^{-1}x}{cos^{-1}x}$$

$$tan^{-1}(tanx) = x, \ \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 અને $tan(tan^{-1}x) = x, \ \forall x \in \mathbb{R}$.

$$tan\left(-\frac{\pi}{4}\right) = -1$$
 અને $-\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ તેથી, $tan^{-1}(-1) = -\frac{\pi}{4}$

પરંતુ
$$tan\left(\frac{3\pi}{4}\right) = -1$$
 હોવાથી $tan^{-1}(-1) = \frac{3\pi}{4}$ સત્ય નથી, કારણ કે $\frac{3\pi}{4} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$tan^{-1}\left(tan\left(-\frac{\pi}{6}\right)\right) = -\frac{\pi}{6}$$
, size $\frac{3}{6} - \frac{\pi}{6} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ અને $tan\left(tan^{-1}\left(\frac{533}{413}\right)\right) = \frac{533}{413}$.

પરંતુ
$$tan^{-1}\left(tan\frac{5\pi}{6}\right)\neq\frac{5\pi}{6}$$
 કારણ કે $\frac{5\pi}{6}\notin\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

$2.7 \ y = tan^{-1}x$ નો આલેખ

 $y=tanx,\ x\in\left(-\frac{\pi}{2},\ \frac{\pi}{2}\right),\ y\in\mathbb{R}$ ના આલેખનું y=x રેખામાં પ્રતિબિંબ મેળવતાં $y=tan^{-1}x$ નો આલેખ આકૃતિ 2.6 પ્રમાણે મળશે :

ત્રિકોણમિતીય પ્રતિવિધેયો

આકૃતિ 2.6

2.8 cot विधेयनुं प्रतिविधेय

આપણે જાણીએ છીએ કે $cot: R-\{k\pi\mid k\in Z\}\to R$ એ અનેક-એક વિધય છે અને તેનો વિસ્તાર R હોવાથી તે વ્યાપ્ત છે. $cot=\{(x,y)\mid y=cotx, x\in R-\{k\pi\mid k\in Z\}, y\in R\}$ વિધય અનેક-એક સંગતતાવાળું વ્યાપ્ત વિધય છે તથા π આવર્તમાનવાળું વિધય છે. જો તેનો પ્રદેશગણ $(0,\pi)$ અથવા $(\pi,2\pi)$ અથવા $(2\pi,3\pi)$ અથવા $(k\pi,(k+1)\pi), k\in Z$ લઈએ તો વિધય એક-એક અને વ્યાપ્ત થાય. અહીં આપણે મર્યાદિત પ્રદેશગણ $(0,\pi)$ લઈશું. cot ના પ્રતિવિધયને cot^{-1} સંકેત વડે દર્શાવીશું.

તેથી, $cot^{-1}=\{(y,\ x)\mid y=cotx,\ x\in(0,\ \pi),\ y\in\mathbb{R}\}.$ આમ, જો $x\in(0,\ \pi)$ અને $y\in\mathbb{R}$ તો $y=cotx\Leftrightarrow cot^{-1}y=x.$

 \cot^{-1} વિધેયનો પ્રદેશગણ R અને વિસ્તાર $(0, \pi)$ છે.

 $\cot^{-1}(\cot x) = x, \ x \in (0, \ \pi) \ \text{and} \ \cot(\cot^{-1}x) = x, \ x \in \ \mathrm{R}.$

44 ગણિત 12

નોંધ :
$$\cot^{-1}\left(\cot\left(\frac{3\pi}{4}\right)\right) = \frac{3\pi}{4}$$
, કારણ કે $\frac{3\pi}{4} \in (0, \pi)$

વળી, $\cot\left(\frac{3\pi}{4}\right) = -1 \Leftrightarrow \cot^{-1}(-1) = \frac{3\pi}{4}$. પરંતુ $\cot\left(-\frac{\pi}{4}\right) = -1$ છતાં, $\cot^{-1}(-1) \neq -\frac{\pi}{4}$ ન લેવાય કારણ કે $-\frac{\pi}{4} \notin (0, \pi)$.

$$\cot^{-1}\left(\cot\frac{4\pi}{3}\right)\neq\frac{4\pi}{3}, \text{ singl} \text{ if } \frac{4\pi}{3}\not\in(0,\ \pi).$$

પરંતુ,
$$cot\left(\frac{4\pi}{3}\right)=cot\left(\pi+\frac{\pi}{3}\right)=cot\frac{\pi}{3}$$
 અને $\frac{\pi}{3}\in (0,\pi)$.

તેથી
$$cot^{-1}\left(cot\frac{4\pi}{3}\right) = cot^{-1}\left(cot\frac{\pi}{3}\right) = \frac{\pi}{3}$$
.

 $y = \cot x$ અને $y = \cot^{-1}x$ નાં આલેખ આકૃતિ 2.7 માં દર્શાવેલ પ્રમાણે મળશે.

2.9 sec વિધેયનું પ્રતિવિધેય

આપણે જાણીએ છીએ કે $cos:[0,\pi] \to [-1,1]$ એક-એક તથા વ્યાપ્ત વિધેય છે.

$$\therefore$$
 $sec: [0,\pi]-\left\{rac{\pi}{2}
ight\}
ightarrow R-(-1,1)$ એક-એક તથા વ્યાપ્ત વિધેય છે.

∴ $sec = \{(x, y) \mid y = secx, x \in [0, \pi] - \{\frac{\pi}{2}\}, y \in \mathbb{R} - (-1, 1)\}$ એક-એક સંગતતાવાળું વ્યાપ્ત વિષય છે. તેથી તેનું પ્રતિવિષય મળે તેનાં પ્રતિવિષયને સંકેતમાં sec^{-1} વડે દર્શાવાય છે.

તેથી,
$$sec^{-1} = \{(y, x) \mid y = secx, x \in [0, \pi] - \{\frac{\pi}{2}\}, y \in \mathbb{R} - (-1, 1)\}.$$

આમ, જો
$$x\in[0,\pi]-\left\{\frac{\pi}{2}\right\}$$
, $y\in\mathbf{R}-(-1,1)$ તો $y=\sec x\Leftrightarrow\sec^{-1}y=x$.

$$sec^{-1}$$
 નો પ્રદેશ $\mathbf{R} - (-1, 1)$ અને વિસ્તાર $[0, \pi] - \left\{\frac{\pi}{2}\right\}$ છે.

વળી,
$$sec\left(\frac{\pi}{4}\right) = \sqrt{2}$$
. તેથી, $sec^{-1}(\sqrt{2}) = \frac{\pi}{4}$, કારણ કે $\frac{\pi}{4} \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$.

પરંતુ
$$sec\left(-\frac{\pi}{4}\right) = \sqrt{2}$$
 તેથી, $sec^{-1}(\sqrt{2}\,) = -\frac{\pi}{4}$ ન લખી શકાય, કારણ કે $-\frac{\pi}{4} \not\in [0,\,\pi] - \left\{\frac{\pi}{2}\right\}$.

ત્રિકોણમિતીય પ્રતિવિધેયો

પ્રત્યેક $x \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ માટે $\sec^{-1}(\sec x) = x$ અને પ્રત્યેક $x \in \mathbb{R} - (-1, 1)$, $\sec(\sec^{-1}x) = x$. અહીં આપણે નોંધીશું કે $x \in \mathbb{R} - (-1, 1) \Leftrightarrow x \le -1$ અથવા $x \ge 1 \Leftrightarrow |x| \ge 1$. $y = \sec x$ અને $y = \sec^{-1}x$ ના આલેખ આકૃતિ 2.8માં દર્શાવ્યા પ્રમાણે મળશે.

2.10 cosec विधेयनुं प्रतिविधेय

આપણે જાણીએ છીએ કે $sin:\left[-\frac{\pi}{2},\,\frac{\pi}{2}\right] \to [-1,\,1]$ એક-એક તથા વ્યાપ્ત વિધેય છે.

$$: cosec : \left[-rac{\pi}{2}, rac{\pi}{2}
ight] - \{0\}
ightarrow R - (-1, 1)$$
 એક-એક તથા વ્યાપ્ત વિધેય છે.

$$cosec = \left\{ (x, y) \mid y = cosecx, \ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\}, \ y \in \mathbb{R} - (-1, 1) \right\}$$
 એક-એક તથા વ્યાપ્ત વિધેય છે અને તેનું પ્રતિવિધેય મળશે તેના પ્રતિવિધેયને $cosec^{-1}$ સંકેત વડે દર્શાવીએ તો,

$$cosec^{-1} = \{(y, x) \mid y = cosecx, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}, y \in \mathbb{R} - (-1, 1)\}.$$

આમ, જો
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\}, y \in \mathbb{R} - (-1, 1)$$
 તો, $y = cosecx \Leftrightarrow cosec^{-1}y = x$.

$$cosec^{-1}$$
 નો પ્રદેશ ${f R} - (-1,\ 1)$ અને વિસ્તાર $\left[-\frac{\pi}{2},\ \frac{\pi}{2}\right] - \{0\}$ છે.

વળી,
$$cosec\frac{\pi}{3} = \frac{2}{\sqrt{3}}$$
, $\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$. તેથી, $cosec^{-1}\frac{2}{\sqrt{3}} = \frac{\pi}{3}$.

દરેક
$$x \in R - (-1, 1)$$
 માટે $cosec(cosec^{-1}x) = x$ અને

પ્રત્યેક
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 માટે $cosec^{-1}(cosecx) = x$.

y = cosecx અને $y = cosec^{-1}x$ ના આલેખ આકૃતિ 2.9 માં દર્શાવ્યા પ્રમાણે મળશે :

ઉદાહરણ 3 : કિંમત શોધો : (1)
$$tan^{-1}(\sqrt{3})$$
 (2) $cot^{-1}(-\sqrt{3})$ (3) $cosec^{-1}\left(-\frac{2}{\sqrt{3}}\right)$

634: (1)
$$tan^{-1}(\sqrt{3}) = tan^{-1}(tan\frac{\pi}{3}) = \frac{\pi}{3}$$
 $\left(\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)$

46

$$\begin{array}{c} (2) \ cof^{-1}(-\sqrt{3}) = cof^{-1}\left(-cot\frac{\pi}{6}\right) = cof^{-1}\left(cot\frac{5\pi}{6}\right) = \frac{5\pi}{6} \\ (3) \ cosec^{-1}\left(-\frac{2}{\sqrt{3}}\right) = cosec^{-1}\left(-cosec\frac{\pi}{3}\right) = cosec^{-1}\left(cosec\left(-\frac{\pi}{3}\right)\right) = -\frac{\pi}{3} \ \left(-\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}\right) \\ (3) \ cosec^{-1}\left(-\frac{2}{\sqrt{3}}\right) = cosec^{-1}\left(-cosec\frac{\pi}{3}\right) = cosec^{-1}\left(cosec\left(-\frac{\pi}{3}\right)\right) = -\frac{\pi}{3} \ \left(-\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}\right) \\ (4) \ cof^{-1}\left(tan\frac{7\pi}{4}\right) \ (5) \ cos^{-1}\left(sin\frac{\pi}{5}\right) \\ (3) \ dan^{-1}\left(tan\frac{3\pi}{4}\right) = (5) \ cos^{-1}\left(sin\frac{\pi}{5}\right) \\ (2) \ sin^{-1}\left(sin\frac{2\pi}{3}\right) = sin^{-1}\left(sin\left(\pi - \frac{\pi}{3}\right)\right) \\ = sin^{-1}\left(sin\frac{\pi}{3}\right) \\ : \ sin^{-1}\left(sin\frac{2\pi}{3}\right) = \frac{\pi}{3} \\ (3) \ tan^{-1}\left(tsin\frac{2\pi}{3}\right) = \frac{\pi}{3} \\ (3) \ tan^{-1}\left(tan\frac{3\pi}{4}\right) = tan^{-1}\left(tan\left(\pi - \frac{\pi}{4}\right)\right) \\ = tan^{-1}\left(tan\left(-\frac{\pi}{4}\right)\right) \\ : \ tan^{-1}\left(tan\frac{3\pi}{4}\right) = -\frac{\pi}{4} \\ (4) \ cof^{-1}\left(tan\frac{3\pi}{4}\right) = cof^{-1}\left(tan\left(2\pi - \frac{\pi}{4}\right)\right) \\ = cof^{-1}\left(cot\frac{\pi}{4}\right) \\ = cof^{-1}\left(cot\frac{\pi}{4}\right) \\ : \ cof^{-1}\left(tan\frac{2\pi}{4}\right) = \frac{3\pi}{4} \\ (5) \ cos^{-1}\left(sin\frac{\pi}{5}\right) = cos^{-1}\left(cos\left(\frac{\pi}{2} - \frac{\pi}{5}\right)\right) \\ = cos^{-1}\left(cos\frac{3\pi}{10}\right) \\ : \ cos^{-1}\left(sin\frac{\pi}{3}\right) = \frac{3\pi}{10} \\ \end{array}$$

ઉદાહરણ 5 : કિંમત શોધો :

(1) $\cos\left(2\sin^{-1}\frac{3}{4}\right)$ (2) $\sin\left(2\tan^{-1}\frac{4}{5}\right)$ (3) $\tan^{2}\left(\frac{1}{2}\cos^{-1}\frac{3}{4}\right)$ (4) $\cos\left(3\cos^{-1}\frac{2}{3}\right)$ (3) $\tan^{2}\left(\frac{1}{2}\cos^{-1}\frac{3}{4}\right)$ (4) $\cos\left(3\cos^{-1}\frac{2}{3}\right)$ (4) $\cos\left(3\cos^{-1}\frac{2}{3}\right)$

ત્રિકોણમિતીય પ્રતિવિધેયો 47

તેથી,
$$cos(2sin^{-1}\frac{3}{4}) = cos2\theta$$

= $1 - 2sin^2\theta = 1 - 2(\frac{9}{16}) = -\frac{1}{8}$

$$\therefore \cos(2\sin^{-1}\frac{3}{4}) = -\frac{1}{8}$$

(2) ધારો કે
$$tan^{-1}\frac{4}{5} = \theta$$
. $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. તેથી $tan\theta = \frac{4}{5}$

$$sin\left(2tan^{-1}\frac{4}{5}\right) = sin2\theta$$

$$= \frac{2tan\theta}{1 + tan^2\theta} = \frac{2\left(\frac{4}{5}\right)}{1 + \frac{16}{5}} = \frac{40}{41}$$

$$\therefore \sin\left(2\tan^{-1}\frac{4}{5}\right) = \frac{40}{41}$$

(3) ધારો કે
$$cos^{-1}\frac{3}{4}=\theta$$
. $\theta\in[0,\pi]$. માટે $cos\theta=\frac{3}{4}$ તેથી, $tan^2(\frac{1}{2}cos^{-1}\frac{3}{4})=tan^2(\frac{\theta}{2})=\frac{1-cos\theta}{1+cos\theta}=\frac{1-\frac{3}{4}}{1+\frac{3}{4}}=\frac{4-3}{4+3}=\frac{1}{7}$

$$\therefore \tan^2\left(\frac{1}{2}\cos^{-1}\frac{3}{4}\right) = \frac{1}{7}$$

(4) ધારો કે
$$cos^{-1}\frac{2}{3} = \theta$$
. $\theta \in [0, \pi]$. માટે $cos\theta = \frac{2}{3}$ તેથી, $cos(3cos^{-1}\frac{2}{3}) = cos3\theta$

$$= 4cos^3\theta - 3cos\theta$$

$$= 4(\frac{8}{27}) - 3(\frac{2}{3}) = \frac{32 - 54}{27} = -\frac{22}{27}$$

$$cos(3cos^{-1}\frac{2}{3}) = -\frac{22}{27}$$

ઉદાહરણ 6 : નીચે આપેલાને સરળ સ્વરૂપમાં ફેરવો :

(1)
$$tan^{-1} \left(\sqrt{\frac{1 - cosx}{1 + cosx}} \right), -\pi < x < \pi$$
 (2) $tan^{-1} \left(\frac{cosx}{1 + sinx} \right), -\frac{\pi}{2} < x < \frac{\pi}{2}$

Geq: (1)
$$tan^{-1}\left(\sqrt{\frac{1-cosx}{1+cosx}}\right) = tan^{-1}\left(\sqrt{tan^2\frac{x}{2}}\right) = tan^{-1}\left(\left|tan\frac{x}{2}\right|\right)$$

વિકલ્પ 1 : જો
$$-\pi < x < 0$$
, તો $-\frac{\pi}{2} < \frac{x}{2} < 0$

$$\therefore \tan \frac{x}{2} < 0$$

$$\therefore \tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \tan^{-1}\left(-\tan\frac{x}{2}\right)$$
$$= \tan^{-1}\left(\tan\left(-\frac{x}{2}\right)\right)$$

હવે,
$$0<-rac{x}{2}<rac{\pi}{2}$$
. તેથી $-rac{\pi}{2}<-rac{x}{2}<rac{\pi}{2}$

$$\therefore tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = -\frac{x}{2}$$

વિકલ્પ 2 : જો $0 \le x < \pi$, તો $0 \le \frac{x}{2} < \frac{\pi}{2}$

$$\therefore \tan \frac{x}{2} \geq 0$$

$$tan^{-1}\left(\left|tan\frac{x}{2}\right|\right) = tan^{-1}\left(tan\frac{x}{2}\right) = \frac{x}{2}$$

 $\left(0 \le \frac{x}{2} < \frac{\pi}{2}\right)$

$$\therefore tan^{-1} \left(\sqrt{\frac{1 - \cos x}{1 + \cos x}} \right) = \begin{cases} \frac{x}{2} & 0 \le x < \pi \\ -\frac{x}{2} & -\pi < x < 0 \end{cases}$$

(2)
$$tan^{-1} \left(\frac{cosx}{1 + sinx} \right) = tan^{-1} \left(\frac{cos\frac{2x}{2} - sin\frac{2x}{2}}{cos\frac{2x}{2} + sin\frac{2x}{2} + 2sin\frac{x}{2}cos\frac{x}{2}} \right)$$

$$= tan^{-1} \left(\frac{\left(cos\frac{x}{2} + sin\frac{x}{2}\right)\left(cos\frac{x}{2} - sin\frac{x}{2}\right)}{\left(cos\frac{x}{2} + sin\frac{x}{2}\right)^{2}} \right)$$

$$= tan^{-1} \left(\frac{cos\frac{x}{2} - sin\frac{x}{2}}{cos\frac{x}{2} + sin\frac{x}{2}} \right)$$

$$= tan^{-1} \left(\frac{1 - tan\frac{x}{2}}{1 + tan\frac{x}{2}} \right)$$

$$= tan^{-1} \left(tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \right)$$

હવે,
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
. આથી, $-\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{4}$. માટે $-\frac{\pi}{4} < -\frac{x}{2} < \frac{\pi}{4}$.

$$\therefore \quad 0 < \left(\frac{\pi}{4} - \frac{x}{2}\right) < \frac{\pi}{2}$$

હવે,
$$tan^{-1}\left(\frac{cosx}{1+sinx}\right) = tan^{-1}\left(tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right) = \frac{\pi}{4} - \frac{x}{2}$$

$$\therefore \tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) = \frac{\pi}{4} - \frac{x}{2}, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

स्वाध्याय 2.1

1. કિંમત શોધો :

(1)
$$tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

(2)
$$sin^{-1}\left(-\frac{1}{2}\right)$$

(3)
$$sec^{-1}(-2)$$

(4)
$$tan^{-1}(-\sqrt{3})$$

(5)
$$sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(6)
$$cosec^{-1}(-\sqrt{2})$$

2. કિંમત શોધો :

(1)
$$cos^{-1}\left(sin\frac{\pi}{7}\right)$$

(2)
$$sin^{-1}(cos\frac{\pi}{5})$$

(3)
$$tan^{-1}\left(tan\frac{5\pi}{4}\right)$$

(4)
$$sec^{-1}\left(cosec\left(\frac{\pi}{8}\right)\right)$$

3. કિંમત શોધો :

(1)
$$sin(2tan^{-1}\frac{2}{5})$$

(2)
$$tan^2(\frac{1}{2}cos^{-1}\frac{2}{3})$$

(3)
$$sin(2cos^{-1}\frac{4}{5})$$

(4)
$$tan^2(\frac{1}{2}sin^{-1}\frac{2}{3})$$

(5)
$$sin(3 sin^{-1} \frac{1}{2})$$

4. સરળ સ્વરૂપમાં ફેરવો :

$$tan^{-1}\left(\frac{cosx-sinx}{cosx+sinx}\right), -\frac{\pi}{4} < x < \frac{\pi}{4}$$

*

2.11 વિરોધી સંખ્યાઓ માટે ત્રિ-પ્રતિવિધેયોનાં મૂલ્યો માટેનાં સૂત્રો

આપણે જોયું કે ત્રિકોણમિતીય વિધેયોના પ્રદેશગણ અને સહપ્રદેશગણને મર્યાદિત કરતાં તે એક-એક અને વ્યાપ્ત બને છે, જે પ્રતિવિધેય મેળવવા માટેની આવશ્યક અને પર્યાપ્ત શરત છે. વળી આપણે મર્યાદિત પ્રદેશને એવી રીતે પસંદ કર્યો છે કે જેથી તે દરેકનો ઉપગણ $\left(0,\frac{\pi}{2}\right)$ હોય જ. એટલે કે વિધેયનું મૂલ્ય જ્યારે ધન હોય ત્યારે પ્રતિવિધેયનું મૂલ્ય $\left(0,\frac{\pi}{2}\right)$ માં જ મળે. અહીં આપણે એ પણ નોંધીશું કે તેના મર્યાદિત પ્રદેશને એવી રીતે પસંદ કર્યો છે કે દરેક પ્રદેશમાં x હોય તો -x પણ હોય જ. પ્રદેશગણ [-1,1] અથવા R અથવા R-(-1,1), એટલે કે $|x| \le 1$ અથવા R અથવા $|x| \ge 1$ હોવાના કારણે જો A એ આમાંનો કોઈ પણ ગણ હોય, તો $x \in A \Leftrightarrow -x \in A$.

x અને -x માટે ત્રિકોણમિતીય પ્રતિવિધેયોનાં મૂલ્યો નીચે આપેલા પ્રમેયમાં દર્શાવ્યા મુજબનો સંબંધ ધરાવે છે :

પ્રમેય 2.1 : (1)
$$sin^{-1}(-x) = -sin^{-1}x$$
, $|x| \le 1$

(2)
$$\cos^{-1}(-x) = \pi - \cos^{-1}x, |x| \le 1$$

(3)
$$tan^{-1}(-x) = -tan^{-1}x$$
, $x \in \mathbb{R}$

(4)
$$\cot^{-1}(-x) = \pi - \cot^{-1}x, \quad x \in \mathbb{R}$$

(5)
$$cosec^{-1}(-x) = -cosec^{-1}x, |x| \ge 1$$

(6)
$$sec^{-1}(-x) = \pi - sec^{-1}x, |x| \ge 1$$

સાબિતી : (1) $|x| \leq 1$

ધારો કે $sin^{-1}x = \theta$, $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, તો $x = sin\theta$.

$$sin(-\theta) = -sin\theta = -x \tag{i}$$

$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Rightarrow -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
$$\Rightarrow \frac{\pi}{2} \ge -\theta \ge -\frac{\pi}{2}$$
$$\Rightarrow -\frac{\pi}{2} \le -\theta \le \frac{\pi}{2}$$

$$\cdot$$
 -0 \in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ અને $|x| = |-x|$. આથી $|x| \le 1 \Longrightarrow |-x| \le 1$

$$\therefore \quad \text{(i) uzul, } \sin(-\theta) = -x \qquad \qquad \left(-\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \; |-x| \le 1\right)$$

$$\therefore \sin^{-1}(-x) = -\theta = -\sin^{-1}x$$

$$\therefore \sin^{-1}(-x) = -\sin^{-1}x$$

(2) ધારો કે
$$\cos^{-1}x = \theta$$
, $\theta \in [0, \pi]$, $|x| \le 1$, તો $x = \cos\theta$.

$$qv(1, cos(\pi - \theta)) = -cos\theta = -x$$
 (i)

$$\theta \in [0, \pi] \implies 0 \le \theta \le \pi$$

$$\Rightarrow 0 \ge -\theta \ge -\pi$$

$$\Rightarrow \pi \ge (\pi - \theta) \ge 0$$

$$\Rightarrow 0 \le (\pi - \theta) \le \pi$$

50

$$\therefore$$
 $(\pi - \theta) \in [0, \pi]$ અને $|x| = |-x|$. આથી $|x| \le 1 \Rightarrow |-x| \le 1$

∴ (i) પરથી,
$$cos(\pi - \theta) = -x$$

$$(\pi - \theta \in [0, \pi], |-x| \le 1)$$

$$\therefore cos^{-1}(-x) = \pi - \theta = \pi - cos^{-1}x$$

$$\therefore cos^{-1}(-x) = \pi - cos^{-1}x$$

(3) ધારો કે
$$tan^{-1}x = \theta$$
. અહીં, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $x \in \mathbb{R}$. આથી $x = tan\theta$. હવે, $tan(-\theta) = -tan\theta = -x$ (i) $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow -\frac{\pi}{2} < \theta < \frac{\pi}{2}$ $\Rightarrow \frac{\pi}{2} > -\theta > -\frac{\pi}{2}$

$$\therefore$$
 $-\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ અને $x \in \mathbb{R}$. આમ $-x \in \mathbb{R}$

∴ (i) પરથી,
$$tan(-\theta) = -x$$

$$\left(-\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), -x \in \mathbb{R}\right)$$

$$\therefore tan^{-1}(-x) = -\theta = -tan^{-1}x$$

$$\therefore tan^{-1}(-x) = -tan^{-1}x$$

આ જ પ્રમાણે (4), (5) અને (6) પણ સાબિત કરી શકાય.

ઉદાહરણ 7 : કિંમત શોધો :

(1)
$$sin^{-1}\left(-\frac{1}{2}\right)$$
 (2) $cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ (3) $tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ (4) $cot^{-1}(-1)$

634: (1)
$$sin^{-1}\left(-\frac{1}{2}\right) = -sin^{-1}\left(\frac{1}{2}\right) = -\frac{\pi}{6}$$

(2)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \pi - \cos^{-1}\frac{\sqrt{3}}{2} = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

(3)
$$tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$$

(4)
$$\cot^{-1}(-1) = \pi - \cot^{-1}1 = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

2.12 વ્યસ્ત સંખ્યાઓ માટેનાં ત્રિકોણમિતીય પ્રતિવિધેયોનાં મુલ્યો માટેનાં સુત્રો

હવે આપણે શૂન્યેતર x ના વ્યસ્ત $\frac{1}{x}$ માટે ત્રિકોણમિતીય પ્રતિવિધેયોનાં મૂલ્યો માટેનાં સૂત્ર મેળવીએ.

પ્રમેય 2.2 : (1)
$$cosec^{-1}x = sin^{-1}\frac{1}{x}$$
, $|x| \ge 1$

(2)
$$sec^{-1}x = cos^{-1}\frac{1}{x}, |x| \ge 1$$

(3) (a)
$$\cot^{-1}x = \tan^{-1}\frac{1}{x}, x > 0$$

(b)
$$\cot^{-1}x = \tan^{-1}\frac{1}{x} + \pi, x < 0$$

સાહિતી : (1) ધારો કે $cosec^{-1}x=\theta$. $\theta\in\left[-\frac{\pi}{2},\,\frac{\pi}{2}\right]-\{0\}$. આથી, $x=cosec\theta$.

$$|x| \ge 1$$
. તેથી $x \ne 0$ અને $\left| \frac{1}{x} \right| \le 1$.

$$cosec\theta = x$$

$$\therefore \quad \sin\theta = \frac{1}{x}$$

$$\therefore \quad \theta = \sin^{-1}\frac{1}{x} \qquad \qquad \left(\theta \in \left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}\right) \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \left|\frac{1}{x}\right| \leq 1\right)$$

$$\therefore \quad cosec^{-1}x = sin^{-1}\frac{1}{x}$$

(2) ધારો કે
$$sec^{-1}x = \theta$$
. $\theta \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$. આથી, $x = sec\theta$. $|x| \ge 1$. તેથી $\left|\frac{1}{x}\right| \le 1$ અને $x \ne 0$.

$$sec\theta = x$$

$$\therefore \cos\theta = \frac{1}{x}$$

$$\therefore \quad \theta = \cos^{-1} \frac{1}{r}$$

$$\left(\theta \in \left(\left[0, \, \pi\right] - \left\{\frac{\pi}{2}\right\}\right) \subset \left[0, \, \pi\right], \, \left|\frac{1}{x}\right| \leq 1\right)$$

$$\therefore sec^{-1}x = cos^{-1}\frac{1}{x}$$

(3) (a) ધારો કે
$$cot^{-1}x = \theta$$
. $\theta \in (0, \pi), x \in \mathbb{R}$

$$\therefore \cot \theta = x$$

$$x > 0$$
 અને તેથી $x \neq 0$. માટે $\frac{1}{x} \in \mathbb{R}$.

$$\therefore \tan\theta = \frac{1}{x} \ \text{અને } \theta \in (0, \pi)$$

હવે
$$x>0$$
, હોવાથી આપણને $tan\theta=\frac{1}{x}>0$ મળશે.

વળી,
$$0 < \theta < \pi$$
. તેથી $0 < \theta < \frac{\pi}{2}$.

$$(tan\theta > 0)$$

(x < 0)

આથી,
$$tan\theta = \frac{1}{x}$$
, $\theta \in \left(0, \frac{\pi}{2}\right) \subset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$\therefore \quad \theta = tan^{-1}\left(\frac{1}{x}\right)$$

$$\therefore \cot^{-1}x = \tan^{-1}\frac{1}{x}$$

(b) આપણે ઉપર જોયું કે, જો
$$\cot^{-1}x = \theta$$
, $\theta \in (0, \pi)$, $x \in \mathbb{R}$ તો $\cot\theta = x$.

$$\cot \theta = x < 0$$
 હોવાથી, $\tan \theta < 0$ અને $\theta \in (0, \pi)$.

વળી,
$$x
eq 0$$
 માટે $rac{1}{x} \in R$ અને $rac{\pi}{2} < heta < \pi$

$$\therefore \quad \frac{\pi}{2} - \pi < (\theta - \pi) < \pi - \pi$$

$$\therefore \quad -\frac{\pi}{2} < (\theta - \pi) < 0$$

આમ,
$$\theta - \pi \in \left(-\frac{\pi}{2}, 0\right) \subset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 અને $\frac{1}{r} \in \mathbb{R}$, જ્યાં $x \neq 0$.

$$tan(\theta - \pi) = tan\theta = \frac{1}{x}$$

(tan નું આવર્તમાન π છે)

$$\therefore \tan(\theta - \pi) = \frac{1}{x}$$

$$\therefore \quad \theta - \pi = tan^{-1} \frac{1}{x}$$

$$\left(\theta - \pi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \frac{1}{x} \in \mathbb{R}\right)$$

$$\therefore \tan^{-1}\frac{1}{x} = \cot^{-1}x - \pi$$

:.
$$x < 0$$
 માટે $\cot^{-1}x = \tan^{-1}\frac{1}{x} + \pi$.

52

(નોંધ : આ પ્રમેય પરથી તારવી શકાય કે,

(1)
$$sin^{-1}x = cosec^{-1}\frac{1}{x}, x \in [-1, 1] - \{0\}$$

(2)
$$cos^{-1}x = sec^{-1}\frac{1}{x}, x \in [-1, 1] - \{0\}$$

(3) (a)
$$tan^{-1}x = cot^{-1}\frac{1}{x}, x > 0$$

(b)
$$tan^{-1}x = cot^{-1}\frac{1}{x} - \pi, x < 0$$

2.13 કોટિ સંખ્યાઓ માટે ત્રિકોણમિતીય પ્રતિવિધેયોનાં મૂલ્યોનાં સૂત્રો

પ્રમેય 2.3 : (1)
$$sin^{-1}x + cos^{-1}x = \frac{\pi}{2}$$
, $|x| \le 1$

(2)
$$cosec^{-1}x + sec^{-1}x = \frac{\pi}{2}, |x| \ge 1$$

(3)
$$tan^{-1}x + cot^{-1}x = \frac{\pi}{2}, \quad x \in \mathbb{R}$$

સાબિતી : (1) ધારો કે $sin^{-1}x=\theta,\;\theta\in\left[-\frac{\pi}{2},\,\frac{\pi}{2}\right],\;|x|\leq1.\;$ તો $x=sin\theta.$

હવે,
$$sin\theta = x$$

$$\therefore \cos\left(\frac{\pi}{2}-\theta\right)=x$$

હવે,
$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 $\Rightarrow -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
$$\Rightarrow \frac{\pi}{2} \ge -\theta \le -\frac{\pi}{2}$$

$$\Rightarrow \pi \ge \left(\frac{\pi}{2} - \theta \right) \ge 0$$

$$\Rightarrow 0 \le \left(\frac{\pi}{2} - \theta \right) \le \pi$$

$$\therefore \left(\frac{\pi}{2} - \theta\right) \in [0, \pi]$$
 અને $|x| \le 1$ તથા $\cos\left(\frac{\pi}{2} - \theta\right) = x$

$$\therefore cos^{-1}x = \frac{\pi}{2} - \theta = \frac{\pi}{2} - sin^{-1}x$$

$$\therefore \quad \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$

(2) ધારો કે
$$cosec^{-1}x = \theta$$
, $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$, $|x| \ge 1$. dì $x = cosec\theta$.

હવે,
$$cosec\theta = x$$

$$\therefore \sec\left(\frac{\pi}{2} - \theta\right) = x$$

હવે,
$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\}$$
 $\Rightarrow -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \, \theta \ne 0$
$$\Rightarrow \frac{\pi}{2} \ge -\theta \ge -\frac{\pi}{2}, \, \theta \ne 0$$

$$\Rightarrow \pi \ge \left(\frac{\pi}{2} - \theta \right) \ge 0, \, \theta \ne 0$$

$$\Rightarrow 0 \le \left(\frac{\pi}{2} - \theta \right) \le \pi, \, \theta \ne 0$$
 વળી, $\frac{\pi}{2} - \theta \ne \frac{\pi}{2}$

 $(\theta \neq 0)$

53

ત્રિકોણમિતીય પ્રતિવિધેયો

એટલે કે,
$$\left(\frac{\pi}{2} - \theta\right) \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$$

$$\therefore \quad \frac{\pi}{2} - \theta \in [0, \pi] - \left\{\frac{\pi}{2}\right\}, \mid x \mid \geq 1 \text{ dus } sec\left(\frac{\pi}{2} - \theta\right) = x.$$

$$\therefore \quad sec^{-1}x = \frac{\pi}{2} - \theta$$

$$\therefore \quad \theta + sec^{-1}x = \frac{\pi}{2}$$

$$\therefore \quad cosec^{-1}x + sec^{-1}x = \frac{\pi}{2}$$

અથવા બીજી રીતે વિચારતાં,
$$cosec^{-1}x + sec^{-1}x = sin^{-1}\frac{1}{x} + cos^{-1}\frac{1}{x}$$
 $\left(|x| \ge 1 \Rightarrow \frac{1}{|x|} \le 1\right)$
$$= \frac{\pi}{2} \tag{(1) પરથી}$$

(1) પ્રમાણે (3) સાબિત કરી શકાય.

2.14 સરવાળા-બાદબાકી માટે મુલ્યો

પ્રમેય 2.4 : જો x > 0, y > 0, હોય, તો

(1)
$$tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
, we $xy < 1$

(2)
$$tan^{-1}x + tan^{-1}y = \pi + tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
, wii $xy > 1$

(3)
$$tan^{-1}x + tan^{-1}y = \frac{\pi}{2}$$
, $vai xy = 1$

(4)
$$tan^{-1}x - tan^{-1}y = tan^{-1}\left(\frac{x-y}{1+xy}\right)$$

સાબિતી : અહીં x > 0, y > 0.

ધારો કે
$$tan^{-1}x = \alpha$$
 અને $tan^{-1}y = \beta$, α , $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$\therefore$$
 $tan \alpha = x$ તથા $x > 0$ અને $tan \beta = y$ તથા $y > 0$

$$\therefore$$
 $tanlpha$ અને $taneta$ ધન છે તથા $lpha,\ eta\in\left(-rac{\pi}{2},\,rac{\pi}{2}
ight)$ હોવાથી $lpha,\ eta\in\left(0,\,rac{\pi}{2}
ight)$

(1)
$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta} = \frac{x + y}{1 - xy}$$

અહીં,
$$x > 0$$
, $y > 0$ અને $xy < 1$. તેથી, $(1 - xy) > 0$

$$\therefore \frac{x+y}{1-xy} > 0. \text{ del, } \tan(\alpha + \beta) > 0$$

વળી,
$$\alpha$$
, $\beta\in\left(0,\frac{\pi}{2}\right)$ એટલે કે $0<\alpha<\frac{\pi}{2}$ અને $0<\beta<\frac{\pi}{2}$

$$\therefore 0 < \alpha + \beta < \pi$$

પરંતુ
$$tan(\alpha + \beta) > 0$$
. આથી, $\alpha + \beta \in \left(0, \frac{\pi}{2}\right)$

હવે,
$$tan(\alpha + \beta) = \frac{x+y}{1-xy}$$

54

$$\therefore \quad \alpha + \beta = tan^{-1} \frac{x+y}{1-xy}. \qquad \left((\alpha + \beta) \in \left(0, \frac{\pi}{2} \right) \subset \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$$

ગણિત 12

$$\therefore \tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right).$$

(2)
$$tan(-\pi + \alpha + \beta) = tan(\alpha + \beta)$$
 (tan નું આવર્તમાન π છે.)
$$= \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta}$$

$$\therefore \tan(-\pi + \alpha + \beta) = \frac{x+y}{1-xy}$$

હવે,
$$x > 0$$
, $y > 0$. વળી, $xy > 1$ તેથી $1 - xy < 0$

$$\therefore \quad \frac{x+y}{1-xy} < 0$$

$$\therefore \tan(-\pi + \alpha + \beta) < 0$$

હવે,
$$\alpha$$
, $\beta \in \left(0, \frac{\pi}{2}\right)$.

$$\therefore 0 < \alpha < \frac{\pi}{2}$$
 અને $0 < \beta < \frac{\pi}{2}$

$$\therefore$$
 $0 < \alpha + \beta < \pi$

$$\therefore -\pi < \alpha + \beta - \pi < 0$$

પરંતુ,
$$tan(-\pi + \alpha + \beta) < 0$$
.

$$\therefore$$
 $-\frac{\pi}{2}<\alpha+\beta-\pi<0$. આથી, $\alpha+\beta-\pi\in\left(-\frac{\pi}{2},0\right)$

sa,
$$tan(-\pi + \alpha + \beta) = \frac{x+y}{1-xy}$$
, $\alpha + \beta - \pi \in (-\frac{\pi}{2}, 0)$

$$\therefore -\pi + \alpha + \beta = tan^{-1} \left(\frac{x+y}{1-xy} \right).$$

$$\therefore \quad \alpha + \beta = tan^{-1} \left(\frac{x+y}{1-xy} \right) + \pi$$

$$\therefore \tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right) + \pi$$

(3)
$$tan^{-1}x + tan^{-1}y = tan^{-1}x + tan^{-1}\frac{1}{x}$$
 ($xy = 1$)

$$= tan^{-1}x + cot^{-1}x$$
 ($x > 0$)

$$= \frac{\pi}{2}$$

(4) આપણે જોયું કે,
$$\alpha$$
, $\beta \in \left(0, \frac{\pi}{2}\right)$

તેથી,
$$0<\alpha<\frac{\pi}{2}$$
 અને $0<\beta<\frac{\pi}{2}$ એટલે કે $-\frac{\pi}{2}<-\beta<0$.

$$\therefore \quad 0 < \alpha < \frac{\pi}{2} \ \textઅને -\frac{\pi}{2} < -\beta < 0.$$

$$\therefore -\frac{\pi}{2} < (\alpha - \beta) < \frac{\pi}{2}$$

તેથી,
$$(\alpha - \beta) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
.

$$tan(\alpha - \beta) = \frac{tan\alpha - tan\beta}{1 + tan\alpha tan\beta}$$

$$\therefore \tan(\alpha - \beta) = \frac{x - y}{1 + xy} \qquad \alpha - \beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\therefore \quad \alpha - \beta = tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$

$$\therefore \tan^{-1}x - \tan^{-1}y = \tan^{-1}\left(\frac{x-y}{1+xy}\right)$$

$$tan^{-1}x - tan^{-1}y = tan^{-1}\left(\frac{x-y}{1+xy}\right)$$

ત્રિકોણમિતીય પ્રતિવિધેયો

 $\left(\frac{x-y}{1+xy} \in \mathbb{R} \text{ with } x>0, y>0\right)$

ઉદાહરણ 8 : સાબિત કરો :

(1)
$$tan^{-1}\frac{2}{11} + tan^{-1}\frac{7}{24} = tan^{-1}\left(\frac{1}{2}\right)$$

(2)
$$cot^{-1}\frac{1}{2} + cot^{-1}\frac{1}{3} = \frac{3\pi}{4}$$

(3)
$$tan^{-1}\frac{1}{7} + tan^{-1}\frac{4}{7} + tan^{-1}\frac{9}{7} = \frac{\pi}{2}$$

Given: (1) stan =
$$tan^{-1}\frac{2}{11} + tan^{-1}\frac{7}{24}$$

$$= tan^{-1}\left(\frac{\frac{2}{11} + \frac{7}{24}}{1 - \frac{2}{11} \times \frac{7}{24}}\right)$$

$$= tan^{-1}\left(\frac{48 + 77}{264 - 14}\right) = tan^{-1}\left(\frac{125}{250}\right) = tan^{-1}\frac{1}{2} = \%.91.$$

(2) SI.GI.
$$= \cot^{-1}\frac{1}{2} + \cot^{-1}\frac{1}{3}$$

 $= \tan^{-1}2 + \tan^{-1}3$ (2 > 0, 3 > 0)
 $= \pi + \tan^{-1}\left(\frac{2+3}{1-2\times3}\right)$ (2 × 3 > 1)
 $= \pi + \tan^{-1}(-1)$
 $= \pi - \tan^{-1}(1)$ ($\tan^{-1}(-x) = -\tan^{-1}x$)
 $= \pi - \frac{\pi}{4} = \frac{3\pi}{4} = \%$.GII.

(3) SI.GI.
$$= tan^{-1} \frac{1}{7} + tan^{-1} \frac{4}{7} + tan^{-1} \frac{9}{7}$$

$$= tan^{-1} \left(\frac{\frac{1}{7} + \frac{4}{7}}{1 - \frac{1}{7} \times \frac{4}{7}} \right) + tan^{-1} \frac{9}{7}$$

$$= tan^{-1} \left(\frac{7 + 28}{49 - 4} \right) + tan^{-1} \frac{9}{7}$$

$$= tan^{-1} \left(\frac{35}{45} \right) + tan^{-1} \left(\frac{9}{7} \right)$$

$$= tan^{-1} \left(\frac{7}{9} \right) + tan^{-1} \left(\frac{9}{7} \right)$$

$$= \frac{\pi}{2} = \%.61.$$

$$(\frac{7}{9} \times \frac{9}{7} = 1)$$

ઉદાહરણ 9 : સાબિત કરો કે $3sin^{-1}x = sin^{-1}(3x - 4x^3)$, જ્યાં, $-\frac{1}{2} \le x \le \frac{1}{2}$.

ઉકેલ : ધારો કે $sin^{-1}x = \theta$, $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $|x| \le 1$. તો $x = sin\theta$.

હવે,
$$sin3\theta = 3sin\theta - 4sin^3\theta$$

$$\therefore \sin 3\theta = 3x - 4x^3$$

56

ત્રિકોણમિતીય પ્રતિવિધેયો 57

$$\begin{array}{lll} \gcd, \frac{\pi}{2} < x < \pi \implies \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}. \\ \therefore & \cos \frac{x}{2} < \sin \frac{x}{2} \text{ sut} \cos \frac{x}{2} > 0, \sin \frac{x}{2} > 0 \\ \gcd(1, -\frac{\pi}{4} > -\frac{x}{2}) > -\frac{\pi}{2}. \det(\frac{\pi}{2} - \frac{\pi}{4} > \frac{\pi}{2} - \frac{x}{2} > 0. \\ \therefore & 0 < \frac{\pi}{2} - \frac{x}{2} < \frac{\pi}{4}. \\ \therefore & \text{st.ot.} = & \cot^{-1}\left(\frac{(\cos \frac{x}{2} + \sin \frac{x}{2}) - (\cos \frac{x}{2} - \sin \frac{x}{2})}{(\cos \frac{x}{2} + \sin \frac{x}{2}) + (\cos \frac{x}{2} - \sin \frac{x}{2})}\right) & \left(|\cos \frac{x}{2} - \sin \frac{x}{2}| = -(\cos \frac{x}{2} - \sin \frac{x}{2})\right) \\ & = & \cot^{-1}\left(\cot(\frac{\pi}{2} - \frac{x}{2})\right) \\ & = & \cot^{-1}\left(\cot(\frac{\pi}{2} - \frac{x}{2})\right) \\ & = & \frac{\pi}{2} - \frac{x}{2} = \Re \text{ ot.} & (\text{ii)} \\ & \tan^{-1}\left(\frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}}\right), \ 0 < x < 1 \\ & \text{tith } \frac{1}{9} \ \theta = \cos^{-1}x, \ \theta \in (0, \ \pi), \ x \in (0, \ 1). \ \det(1, x) = \cos\theta. \\ & \text{st.ot.} = & \tan^{-1}\left(\frac{\sqrt{1 + \cos\theta} - \sqrt{1 - \cos\theta}}{\sqrt{1 + \cos\theta} + \sqrt{1 - \cos\theta}}\right) \\ & = & \tan^{-1}\left(\frac{\sqrt{2\cos^2\frac{\theta}{2}} - \sqrt{2\sin^2\frac{\theta}{2}}}{\sqrt{2\cos^2\frac{\theta}{2}} + \sqrt{2\sin^2\frac{\theta}{2}}}\right) \\ & = & \tan^{-1}\left(\frac{|\cos\frac{\theta}{2}| - |\sin\frac{\theta}{2}|}{|\cos\frac{\theta}{2}| + |\sin\frac{\theta}{2}|}\right) \\ & & \text{dd}, \ 0 < x < 1 \ \Rightarrow \ 0 < \frac{\theta}{2} < \frac{\pi}{4} \\ & \text{st.ot.} = & \tan^{-1}\left(\frac{\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}\right) \\ & = & \cos^{\pi}\frac{\pi}{2} < \cos\theta < \cos\theta \\ & \Rightarrow \ 0 < \theta < \frac{\pi}{2} \\ & \Rightarrow \ 0 < \frac{\theta}{2} < \frac{\pi}{4} \\ & \text{st.ot.} = & \tan^{-1}\left(\frac{\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}\right) \\ & = & \tan^{-1}\left(\frac{1 - \tan\frac{\theta}{2}}{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}\right) \\ & = & \tan^{-1}\left(\frac{1 - \tan\frac{\theta}{2}}{1 + \tan\frac{\theta}{2}}\right) \\ & = & \tan^{-1}\left(\tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right) \\ & = & \frac{\pi}{4} - \frac{\theta}{2} = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x = \Re \text{ot.} \end{aligned} \qquad \left(\frac{\pi}{4} - \frac{\theta}{2} \in \left(0, \frac{\pi}{4}\right)\right) \right)$$

58 ગણિત 12

2.15 ત્રિકોણમિતીય પ્રતિવિધેયોના આંતર સંબંધો

(1)
$$\sin^{-1}x = \cos^{-1}\sqrt{1-x^2} = \tan^{-1}\frac{x}{\sqrt{1-x^2}}$$
, we $0 < x < 1$.

(2)
$$cos^{-1}x = sin^{-1}\sqrt{1-x^2} = tan^{-1}\frac{\sqrt{1-x^2}}{x}$$
, we i $0 < x < 1$.

(3)
$$tan^{-1}x = cos^{-1}\frac{1}{\sqrt{1+x^2}} = sin^{-1}\frac{x}{\sqrt{1+x^2}}, \text{ wil } x > 0$$

સાબિતી : ધારો કે, $sin^{-1}x=\theta,\;\theta\in\left[-\frac{\pi}{2},\;\frac{\pi}{2}\right]$. તેથી $sin\theta=x$.

$$sin\theta=x$$
 તથા $x>0$. તેથી, $\theta\in\left(0,\frac{\pi}{2}\right)$. $\left(x\neq0,\,1\Rightarrow\theta\neq0,\,\frac{\pi}{2}\right)$

તેથી,
$$cos^2\theta = 1 - sin^2\theta = 1 - x^2$$

$$\therefore \cos\theta = \sqrt{1-x^2} \qquad \left(\left(0, \frac{\pi}{2} \right) + i \cos\theta > 0 \right)$$

$$\therefore \quad \theta = \cos^{-1}\sqrt{1-x^2} \qquad \qquad \left(\theta \in \left(0, \frac{\pi}{2}\right), \ 0 < \sqrt{1-x^2} < 1\right)$$

$$\therefore \sin^{-1}x = \cos^{-1}\sqrt{1-x^2}$$

હવે,
$$tan\theta = \frac{sin\theta}{cos\theta}$$

$$tan\theta = \frac{x}{\sqrt{1-x^2}}$$

$$\therefore \quad \theta = tan^{-1} \frac{x}{\sqrt{1-x^2}} , \quad \theta \in \left(0, \frac{\pi}{2}\right).$$

$$\therefore \sin^{-1}x = \tan^{-1}\frac{x}{\sqrt{1-x^2}}.$$

આ જ રીતે (2) અને (3) પણ મેળવી શકાય.

 $=\frac{\pi}{2}$ = જ.બા.

ઉદાહરણ 11 : સાબિત કરો :
$$sin^{-1}\frac{3}{5} + cos^{-1}\frac{15}{17} + sin^{-1}\frac{36}{85} = \frac{\pi}{2}$$

634: SLAL =
$$sin^{-1} \frac{3}{5} + cos^{-1} \frac{15}{17} + sin^{-1} \frac{36}{85}$$

= $tan^{-1} \frac{\frac{3}{5}}{\sqrt{1 - \frac{9}{25}}} + tan^{-1} \frac{\sqrt{1 - \frac{225}{289}}}{\frac{15}{17}} + tan^{-1} \frac{\frac{36}{85}}{\sqrt{1 - \frac{36^2}{85^2}}}$
= $tan^{-1} \frac{3}{\sqrt{25 - 9}} + tan^{-1} \frac{\sqrt{289 - 225}}{15} + tan^{-1} \frac{36}{\sqrt{85^2 - 36^2}}$
= $tan^{-1} \frac{3}{4} + tan^{-1} \frac{8}{15} + tan^{-1} \frac{36}{77}$
= $tan^{-1} \left(\frac{\frac{3}{4} + \frac{8}{15}}{1 - \frac{3}{4} \times \frac{8}{15}}\right) + tan^{-1} \left(\frac{36}{77}\right)$
= $tan^{-1} \left(\frac{45 + 32}{60 - 24}\right) + tan^{-1} \left(\frac{36}{77}\right)$
= $tan^{-1} \left(\frac{77}{36}\right) + tan^{-1} \left(\frac{36}{77}\right)$

ત્રિકોણમિતીય પ્રતિવિધેયો

 $\left(\frac{77}{36} \times \frac{36}{77} = 1\right)$

સ્વાધ્યાય 2.2

1. કિંમત શોધો :

(1)
$$sin^{-1}\frac{\sqrt{3}}{2} - cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) + 2tan^{-1}(1)$$

(2)
$$3\sin^{-1}\frac{1}{2} + 4\cos^{-1}\frac{\sqrt{3}}{2} + \sec^{-1}1$$

(3)
$$\cot^{-1}(1) + 3\sin^{-1}\frac{1}{2} - \csc^{-1}(-2) - 3\tan^{-1}\frac{1}{\sqrt{3}}$$

(4)
$$5\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) - 4\tan^{-1}\left(-\sqrt{3}\right) + 3\sin^{-1}(1)$$

(5)
$$cos\left(sin^{-1}\left(-\frac{4}{5}\right)\right) + sin\left(tan^{-1}\frac{3}{4}\right) + cos\left(cosec^{-1}\frac{5}{3}\right)$$

(6)
$$sin\left(\frac{\pi}{2} - cos^{-1}\frac{3}{7}\right) + cos\left(\frac{3\pi}{2} - sin^{-1}\frac{2}{7}\right) + cot\left(tan^{-1}\frac{7}{6}\right)$$

(7)
$$sin^{-1}(sin\frac{5\pi}{6}) + cos^{-1}(cos\frac{5\pi}{3}) + tan^{-1}(tan\frac{7\pi}{3})$$

2. સાબિત કરો :

(1)
$$tan^{-1}\frac{4}{5} + tan^{-1}\frac{2}{3} = tan^{-1}\frac{22}{7}$$

(2)
$$tan^{-1}\frac{1}{7} + tan^{-1}\frac{1}{13} = tan^{-1}\frac{2}{9}$$

(3)
$$tan^{-1}\frac{1}{2} + tan^{-1}\frac{1}{5} + tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

(4)
$$tan^{-1}\frac{1}{3} + \frac{1}{2}tan^{-1}\frac{1}{7} = \frac{\pi}{8}$$

(5)
$$tan^{-1}\frac{1}{5} + tan^{-1}\frac{1}{3} - tan^{-1}\frac{1}{7} = tan^{-1}\frac{21}{53}$$

(6)
$$tan^{-1}\frac{1}{5} + tan^{-1}\frac{1}{7} + tan^{-1}\frac{1}{3} + tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

3. સાબિત કરો :

(1)
$$\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} = \tan^{-1}\left(\frac{56}{33}\right)$$

(2)
$$sin^{-1}\frac{3}{5} + cos^{-1}\frac{4}{5} = cot^{-1}\left(\frac{7}{24}\right)$$

(3)
$$2\sin^{-1}\frac{5}{13} = \cos^{-1}\frac{119}{169}$$

(4)
$$2\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{24}{25} = \frac{\pi}{2}$$

(5)
$$2\cot^{-1} 2 + \csc^{-1} \frac{5}{3} = \frac{\pi}{2}$$

(6)
$$sin^{-1}\frac{3}{5} + sin^{-1}\frac{8}{17} + sin^{-1}\frac{36}{85} = \frac{\pi}{2}$$

4. સાબિત કરો :

(1)
$$2\cot^{-1}\frac{1}{3} + \tan^{-1}\frac{3}{4} = \pi$$

(2)
$$\cot^{-1} 1 + \tan^{-1} 2 + \cot^{-1} \frac{1}{3} = \pi$$

(3)
$$\cot^{-1}\frac{1}{5} + \frac{1}{2}\cot^{-1}\frac{12}{5} = \frac{\pi}{2}$$

(4)
$$sin^{-1}\frac{12}{13} + cos^{-1}\frac{4}{5} + tan^{-1}\frac{63}{16} = \pi$$

*

ગણિત 12

પ્રકીર્ણ ઉદાહરણો :

ઉદાહરણ 12 : સાબિત કરો કે
$$\cos^{-1}a + \cos^{-1}b + \cos^{-1}c = \pi \implies a^2 + b^2 + c^2 + 2abc = 1$$
, જ્યાં $a, b, c \in [-1, 1]$.

ઉકેલ : ધારો કે
$$cos^{-1}a=\alpha$$
, $cos^{-1}b=\beta$, $cos^{-1}c=\gamma$ [α , β , $\gamma\in[0,\pi]$]

$$\therefore$$
 $a = \cos \alpha$, $b = \cos \beta$, $c = \cos \gamma$

હવે,
$$\cos^{-1}a + \cos^{-1}b + \cos^{-1}c = \pi$$

$$\alpha + \beta + \gamma = \pi$$

$$\alpha + \beta = \pi - \gamma$$

$$\therefore \cos(\alpha + \beta) = \cos(\pi - \gamma)$$

$$\therefore \cos\alpha\cos\beta - \sin\alpha\sin\beta = -\cos\gamma$$

$$\therefore \cos\alpha\cos\beta + \cos\gamma = \sin\alpha\sin\beta$$

$$\therefore (\cos\alpha \cos\beta + \cos\gamma)^2 = \sin^2\alpha \sin^2\beta$$

$$\therefore$$
 $(ab + c)^2 = (1 - a^2)(1 - b^2)$

$$a^2b^2 + 2abc + c^2 = 1 - a^2 - b^2 + a^2b^2$$

$$a^2 + b^2 + c^2 + 2abc = 1$$

ઉદાહરણ 13 : સાબિત કરો કે
$$cosec[tan^{-1}(cos(cot^{-1}(sec(sin^{-1}a))))] = \sqrt{3-a^2}$$
, જ્યાં $0 < a < 1$.

634: SL.41. =
$$cosec[tan^{-1}(cos(cot^{-1}(sec(sin^{-1}a))))]$$

= $cosec[tan^{-1}(cos(cot^{-1}(sec(sec^{-1}\frac{1}{\sqrt{1-a^2}}))))]$ $(sin^{-1}a = cos^{-1}\sqrt{1-a^2})$
= $cosec[tan^{-1}(cos(cot^{-1}\frac{1}{\sqrt{1-a^2}}))]$

$$= cosec[tan^{-1}(cos(tan^{-1}\sqrt{1-a^2}))] \qquad (\sqrt{1-a^2} > 0)$$

$$= cosec[tan^{-1}(cos(cos^{-1}\frac{1}{\sqrt{1-a^2}}))] \qquad (tan^{-1}x = cos^{-1}\frac{1}{\sqrt{1+x^2}})$$

$$= cosec(tan^{-1}\frac{1}{\sqrt{2-a^2}})$$

$$= cosec(sin^{-1}\frac{\frac{1}{\sqrt{2-a^2}}}{\sqrt{1+\frac{1}{2-a^2}}}) \qquad (tan^{-1}x = sin^{-1}\frac{x}{\sqrt{1+x^2}})$$

$$= cosec(sin^{-1}\frac{1}{\sqrt{3-a^2}})$$

$$= cosec(cosec^{-1}\sqrt{3-a^2})$$

$$= \sqrt{3-a^2} =$$
%.બા.

ઉદાહરણ 14 : નીચે આપેલાં સમીકરણો ઉકેલો :

(1)
$$tan^{-1}\sqrt{3} + 2tan^{-1}x = \frac{5\pi}{6}$$

(2)
$$tan^{-1}2x + 2tan^{-1}x = \frac{\pi}{2}$$

Get: (1)
$$tan^{-1}\sqrt{3} + 2tan^{-1}x = \frac{5\pi}{6}$$

$$\therefore \quad \frac{\pi}{3} + 2\tan^{-1}x = \frac{5\pi}{6}$$

$$\therefore 2tan^{-1}x = \frac{5\pi}{6} - \frac{\pi}{3}$$

$$\therefore \quad 2tan^{-1}x = \frac{\pi}{2}$$

$$\therefore \quad \tan^{-1}x = \frac{\pi}{4}$$

$$\therefore x = tan\frac{\pi}{4}$$

$$\therefore x = 1$$

આ સમીકરણો ત્રિકોણિમતીય પ્રતિવિધેયનાં સૂત્રોનો ઉપયોગ કરી સરળતાથી ઉકેલી શકાય છે. પ્રતિવિધેયો વ્યાખ્યાયિત કરવા માટે ત્રિકોણિમતીય વિધેયના પ્રદેશ અને વિસ્તાર મર્યાદિત કર્યા હોય છે તેથી ઉકેલ મેળવ્યા બાદ તેની ચકાસણી કરી ઉકેલ નક્કી કરવો જોઈએ.

ચકાસણી : સમીકરણમાં x = 1 લેતાં,

$$\text{sl.Gl.} = tan^{-1}\sqrt{3} + 2tan^{-1}x = \frac{\pi}{3} + 2\left(\frac{\pi}{4}\right) = \frac{\pi}{3} + \frac{\pi}{2} = \frac{5\pi}{6} = \text{w.gl.}$$

∴ ઉકેલગણ {1} છે.

(2)
$$tan^{-1}2x + 2tan^{-1}x = \frac{\pi}{2}$$

સ્પષ્ટ છે કે જો
$$x \ge 1$$
, તો $2tan^{-1}x \ge 2 \cdot \frac{\pi}{4} = \frac{\pi}{2}$ $(x \ge 1)$

આથી, $tan^{-1}2x \le 0$ જે શક્ય નથી.

જો x < 0, તો ડા.બા. < 0, જ.બા. > 0, જે શક્ય નથી.

$$\therefore$$
 0 < x < 1.

અહીં,
$$tan^{-1}2x + 2tan^{-1}x = \frac{\pi}{2}$$

$$\therefore \tan^{-1}2x + \tan^{-1}x + \tan^{-1}x = \frac{\pi}{2}$$

$$\therefore \tan^{-1}2x + \tan^{-1}\left(\frac{x+x}{1-x^2}\right) = \frac{\pi}{2}$$
 (0 < x² < 1)

$$\therefore \tan^{-1}2x + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{2}$$

આપણે જાણીએ છીએ કે $xy = 1 \iff tan^{-1}x + tan^{-1}y = \frac{\pi}{2}$

$$\therefore 2x \cdot \frac{2x}{1-x^2} = 1$$

$$\therefore 4x^2 = 1 - x^2$$

$$\therefore \quad 5x^2 = 1$$

$$\therefore x^2 = \frac{1}{5}$$

$$\therefore x = \pm \frac{1}{\sqrt{5}}. \ \forall \dot{z}_{0} \ x > 0$$

$$\therefore \quad x = \frac{1}{\sqrt{5}}$$

ચકાસણી :
$$x = \frac{1}{\sqrt{5}}$$
 લેતાં,

SI. QL. =
$$tan^{-1}\frac{2}{\sqrt{5}} + 2tan^{-1}\frac{1}{\sqrt{5}}$$

= $tan^{-1}\frac{2}{\sqrt{5}} + tan^{-1}\frac{1}{\sqrt{5}} + tan^{-1}\frac{1}{\sqrt{5}}$
= $tan^{-1}\frac{2}{\sqrt{5}} + tan^{-1}\left(\frac{\frac{1}{\sqrt{5}} + \frac{1}{\sqrt{5}}}{1 - \frac{1}{5}}\right)$
= $tan^{-1}\frac{2}{\sqrt{5}} + tan^{-1}\left(\frac{\sqrt{5} + \sqrt{5}}{5 - 1}\right)$
= $tan^{-1}\frac{2}{\sqrt{5}} + tan^{-1}\frac{\sqrt{5}}{2}$
= $\frac{\pi}{2} = \%$. QL.

 \therefore ઉકેલગણ $\left\{\frac{1}{\sqrt{5}}\right\}$ છે.

ઉદાહરણ 15 : જો 0 < x < 1 અને $tan^{-1}(1-x)$, $tan^{-1}x$ અને $tan^{-1}(1+x)$ સમાંતર શ્રેણીમાં હોય, તો સાબિત કરો કે $x^3 + x^2 = 1$.

6કેલ : અહીં, $tan^{-1}(1-x)$, $tan^{-1}x$ અને $tan^{-1}(1+x)$ સમાંતર શ્રેણીમાં છે.

$$2tan^{-1}x = tan^{-1}(1-x) + tan^{-1}(1+x)$$

$$\therefore \tan^{-1}x + \tan^{-1}x = \tan^{-1}\frac{1-x+1+x}{1-(1-x^2)} \qquad (1-x>0, 1+x>0, 0<1-x^2<1)$$

$$\therefore \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\frac{2}{x^2}\right) \tag{0 < x^2 < 1}$$

$$\therefore \frac{2x}{1-x^2} = \frac{2}{x^2} \tag{tan}^{-1} \text{ dis-dis } \Theta.$$

$$\therefore x^3 = 1 - x^2$$

$$x^3 + x^2 = 1$$

ઉદાહરણ 16 : ઉકેલો : $cos^{-1}x + sin^{-1}2x = \frac{\pi}{6}$

$$634: cos^{-1}x + sin^{-1}2x = \frac{\pi}{6}$$

ધારો કે $cos^{-1}x = \alpha$, $\alpha \in [0, \pi]$. તો $x = cos\alpha$

$$\therefore \sin\alpha = \sqrt{1 - \cos^2\alpha} = \sqrt{1 - x^2}$$

 $(\sin\alpha \geq 0 \text{ sirgl } \hat{s} \alpha \in [0, \pi])$

ધારો કે
$$sin^{-1}2x = \beta$$
, $\beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ તો $2x = sin\beta$

$$\therefore \cos\beta = \sqrt{1-4x^2}$$

 $(\cos\beta \ge 0 \text{ sirgl } \beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right])$

હવે,
$$\cos^{-1}x + \sin^{-1}2x = \frac{\pi}{6}$$

$$\therefore \quad \alpha + \beta = \frac{\pi}{6}$$

$$\therefore \sin(\alpha + \beta) = \sin\frac{\pi}{6}$$

$$\therefore \sin\alpha \cos\beta + \cos\alpha \sin\beta = \frac{1}{2}$$

$$\therefore \quad \sqrt{1-x^2} \ \sqrt{1-4x^2} + x(2x) = \frac{1}{2}$$

$$\therefore \sqrt{1-x^2} \sqrt{1-4x^2} = \frac{1}{2} - 2x^2$$

$$\therefore \sqrt{1-5x^2+4x^4} = \frac{1}{2} - 2x^2$$

$$\therefore$$
 1 - 5x² + 4x⁴ = $(\frac{1}{2} - 2x^2)^2$

$$\therefore 1 - 5x^2 + 4x^4 = \frac{1}{4} - 2x^2 + 4x^4$$

$$\therefore$$
 $3x^2 = \frac{3}{4}$

$$\therefore x^2 = \frac{1}{4}$$

$$\therefore x = \pm \frac{1}{2}$$

ચકાસણી :
$$x = \frac{1}{2}$$
 માટે

$$\text{si.4l.} = \cos^{-1}\frac{1}{2} + \sin^{-1}1 = \frac{\pi}{3} + \frac{\pi}{2} \neq \frac{\pi}{6} \neq \text{s.4l.}$$

$$x = -\frac{1}{2}$$
 માટે

st. બા.
$$= cos^{-1} \left(-\frac{1}{2} \right) + sin^{-1} (-1)$$

 $= \frac{2\pi}{3} - \frac{\pi}{2} = \frac{\pi}{6} = \%$. બા.

$$\therefore$$
 ઉકેલગણ $\left\{-\frac{1}{2}\right\}$ છે.

स्वाध्याय 2

1. સાબિત કરો :

(1)
$$sin^{-1}(2x\sqrt{1-x^2}) = 2sin^{-1}x$$
, $|x| < \frac{1}{\sqrt{2}}$

(2)
$$cos^{-1}(2x^2 - 1) = 2cos^{-1}x$$
, $0 < x < 1$

(3)
$$\cos^{-1}(4x^3 - 3x) = 3\cos^{-1}x, \quad \frac{1}{2} < x < 1$$

(4)
$$\cot^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) = \frac{\pi}{2} - \frac{1}{2}\tan^{-1}x$$

(5)
$$sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2tan^{-1}x, |x| \le 1$$

(6)
$$tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) = 3tan^{-1}x, \ 0 < x < \frac{1}{\sqrt{3}}$$

(7)
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, \quad 0 < x < \frac{\pi}{2}.$$

(8)
$$tan^{-1} \left(\frac{\sqrt{1 + cosx} + \sqrt{1 - cosx}}{\sqrt{1 + cosx} - \sqrt{1 - cosx}} \right) = \frac{\pi}{4} - \frac{x}{2}, \quad \pi < x < \frac{3\pi}{2}.$$

(9)
$$tan^{-1} \left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} cos^{-1}x^2, -1 < x < 1, x \neq 0$$

(10)
$$tan^{-1}\left(\frac{acosx - bsinx}{bcosx + asinx}\right) = tan^{-1}\left(\frac{a}{b}\right) - x, -\frac{\pi}{2} < x < \frac{\pi}{2}, \frac{a}{b} tanx > -1$$

(11)
$$sin^{-1} \left(\frac{sinx + cosx}{\sqrt{2}} \right) = \frac{\pi}{4} + x, \quad -\frac{\pi}{4} < x < \frac{\pi}{4}$$

2. (1) જો
$$tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$$
, તો સાબિત કરો કે $x + y + z = xyz$

(2) જો
$$\cot^{-1}\frac{1}{x} + \cot^{-1}\frac{1}{y} + \cot^{-1}\frac{1}{z} = \frac{\pi}{2}$$
, તો સાબિત કરો કે $xy + yz + zx = 1$

(3) જો
$$\cot^{-1}a + \cot^{-1}b + \cot^{-1}c = \pi$$
, તો સાબિત કરો કે $ab + bc + ca = 1$

(4)
$$\hat{a} > b > c > 0$$
, all $\hat{b} = cot^{-1}\left(\frac{ab+1}{a-b}\right) + cot^{-1}\left(\frac{bc+1}{b-c}\right) + cot^{-1}\left(\frac{ca+1}{c-a}\right) = \pi$.

(5) જો
$$tan^{-1}\frac{yz}{xr} + tan^{-1}\frac{zx}{yr} + tan^{-1}\frac{xy}{zr} = \frac{\pi}{2}$$
, તો સાબિત કરો કે $x^2 + y^2 + z^2 = r^2$.

(6) જો
$$tan^{-1}\sqrt{\frac{ar}{bc}} + tan^{-1}\sqrt{\frac{br}{ca}} + tan^{-1}\sqrt{\frac{cr}{ab}} = \pi$$
, તો સાબિત કરો કે $a + b + c = r$. $(a, b, c, r > 0)$

(7) જો
$$sin^{-1}x + sin^{-1}y + sin^{-1}z = \pi$$
, તો સાબિત કરો કે $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$.

(8) સાબિત કરો કે
$$tan(\frac{\pi}{4} + \frac{1}{2}cos^{-1}\frac{a}{b}) + tan(\frac{\pi}{4} - \frac{1}{2}cos^{-1}\frac{a}{b}) = \frac{2b}{a}$$

(9) સાબિત કરો :
$$\sum_{r=1}^{n} tan^{-1} \left(\frac{1}{1 + r(r+1)} \right) = tan^{-1} (n+1) - \frac{\pi}{4}.$$

(10)
$$tan^{-1}(\frac{1}{2}tan^{2}A) + tan^{-1}(cotA) + tan^{-1}(cot^{3}A) = \begin{cases} 0, & \frac{\pi}{4} < A < \frac{\pi}{2} \\ \pi, & 0 < A < \frac{\pi}{4} \end{cases}$$

3. નીચે આપેલાં સમીકરણો ઉકેલો :

(1)
$$tan^{-1}\frac{x-1}{x-2} + tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$$

(2)
$$tan^{-1}2x + tan^{-1}3x = \frac{\pi}{4}$$
.

$$(3) \quad 2tan^{-1}(cosx) = tan^{-1}(2cosecx)$$

(4)
$$sin^{-1}x + cos^{-1}2x = \frac{\pi}{6}$$

(5)
$$sin^{-1}\frac{5}{x} + sin^{-1}\frac{12}{x} = \frac{\pi}{2}$$

(6)
$$tan^{-1}(x+1) + tan^{-1}(x-1) = tan^{-1}\frac{8}{31}$$

(7)
$$tan^{-1}2x + tan^{-1}\left(\frac{1}{x+4}\right) = \frac{\pi}{2}$$

4. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ્પ પસંદ કરીને ___ માં લખો :

વિભાગ A (1 ગુણ)

(1)
$$sin(3sin^{-1}\frac{1}{3}) =$$

(a) $\frac{23}{27}$

(b) $\frac{1}{3}$

(c) $\frac{27}{23}$

(d) $\frac{2\sqrt{3}}{9}$

- (2) જો કોઈક $x \in (-1, 1)$ માટે $sin^{-1}x = \frac{\pi}{7}$ તો $cos^{-1}x =$ (a) $\frac{3\pi}{14}$ (b) $\frac{5\pi}{14}$ (c) $\frac{\pi}{14}$ (d) $\frac{6\pi}{7}$
- (3) $sec^2(tan^{-1}2) + cosec^2(cot^{-1}3) = \dots$
- (3) $sec^2(tan^{-1}2) + cosec^2(cot^{-1}3) =$ (a) 15 (b) 6 (c) 13 (d) 25
- (4) $\cos^{-1}(\cos\frac{7\pi}{6}) = \dots$
- (a) $\frac{\pi}{6}$ (b) $\frac{5\pi}{6}$ (c) $-\frac{\pi}{6}$ (d) $\frac{7\pi}{6}$
- (5) cos⁻¹ નો પ્રદેશગણ છે.
- (a) $(-\infty, \infty)$ (b) [0, 1] (c) $[0, \pi]$ (d) [-1, 1]
- (6) tan⁻¹ નો વિસ્તાર છે.
- (a) $(-\pi, \pi)$ (b) R (c) $(0, \pi)$ (d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (7) $\cos^{-1}\left(\cos\left(-\frac{\pi}{3}\right)\right)$ if yet $\dot{\Theta}$.
- (a) $-\frac{\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{4\pi}{3}$ (d) $\frac{2\pi}{3}$
- $(8) \sin^{-1}\left(\cos\frac{\pi}{6}\right) = \dots$
- (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{3\pi}{2}$
- (10) $cos(cos^{-1}(-\frac{1}{5}) + sin^{-1}(-\frac{1}{5})) =$
- (a) $\frac{4}{9}$ (b) $\frac{1}{3}$ (c) 0 (d) $-\frac{1}{3}$
- (11) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + 2\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \dots$
- (a) $\frac{5\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{4\pi}{3}$ (d) $\frac{4\pi}{6}$
- $(12) \sin^{-1}\left(\sin\frac{7\pi}{6}\right) = \dots$
- (12) $sin^{-3}(sin\frac{\pi}{6})$ (a) $\frac{\pi}{6}$ (b) $\frac{5\pi}{6}$ (c) $\frac{-\pi}{6}$ (d) $\frac{7\pi}{6}$
- (13) $sin\left\{\frac{\pi}{3} sin^{-1}\left(-\frac{1}{2}\right)\right\} = \dots$
- (a) 0 (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$ (d) 1
- (14) $sin(cos^{-1}\frac{4}{5})$ નું મૂલ્ય છે.
- (a) $\frac{1}{2}$ (b) $\frac{3}{5}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$
- (15) $cos(tan^{-1}\frac{4}{3})$ નું મૂલ્ય છે.
- (a) $\frac{2}{3}$ (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ (d) $\frac{3}{5}$

વિભાગ B (2 ગુણ)

$$(16) 2tan^{-1}5 + tan^{-1}\frac{5}{12} = \dots$$

(a)
$$\frac{\pi}{4}$$

(b)
$$\frac{2\pi}{3}$$

(d)
$$\frac{\pi}{2}$$

(17)
$$\Re \sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$$
, $\operatorname{di} \cos^{-1}x + \cos^{-1}y = \dots$

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{4}$$

(18)
$$4\sin^{-1}x + \cos^{-1}x = \pi$$
, $\cot x = \dots$

(a)
$$-\frac{1}{4}$$
 (b) $\frac{1}{4}$

(b)
$$\frac{1}{4}$$

(c)
$$-\frac{1}{2}$$

(d)
$$\frac{1}{2}$$

(19)
$$sin(tan^{-1}(tan\frac{7\pi}{6})) + cos(cos^{-1}(cos\frac{7\pi}{3})) = \dots$$

(a)
$$-1$$

(d)
$$\frac{\sqrt{3}}{2}$$

(20) જો
$$cos(2sin^{-1}x) = \frac{1}{9}$$
, તો x નું મૂલ્ય છે.

(a)
$$\frac{3}{2}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{1}{2}$$

(21)
$$sin[2sin^{-1}(cosA)]$$
 નું મૂલ્ય છે.

(22)
$$sin[3sin^{-1}(\frac{1}{5})] + \frac{1}{5}$$

(a)
$$-\frac{3}{5}$$
 (b) $\frac{79}{12}$

(b)
$$\frac{79}{12}$$

(c)
$$-\frac{71}{125}$$

(d)
$$\frac{71}{125}$$

(23)
$$tan^{-1}\left(-tan\,\frac{13\pi}{8}\right) =$$

(a)
$$-\frac{5\pi}{8}$$
 (b) $\frac{3\pi}{8}$

(b)
$$\frac{3\pi}{8}$$

(c)
$$-\frac{3\pi}{8}$$

(d)
$$\frac{13\pi}{8}$$

(24)
$$sin^{-1}(sin \frac{32\pi}{7}) =$$

(a)
$$\frac{3\pi}{7}$$

(a)
$$\frac{3\pi}{7}$$
 (b) $\frac{4\pi}{7}$

(c)
$$\frac{18\pi}{7}$$

(d)
$$\frac{32\pi}{7}$$

(25)
$$cos\left[\frac{\pi}{6} + cos^{-1}\left(-\frac{1}{2}\right)\right]$$
 નું મૂલ્ય છે.

(a)
$$-\frac{\sqrt{3}}{2}$$

(a)
$$-\frac{\sqrt{3}}{2}$$
 (b) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (c) $\frac{\sqrt{5}-1}{4}$

(c)
$$\frac{\sqrt{5}-1}{4}$$

(d)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$

(26)
$$tan^{-1}2 + tan^{-1}3 = \dots$$

(a)
$$-\frac{\pi}{4}$$
 (b) $\frac{\pi}{2}$

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{3\pi}{4}$$

(d)
$$\frac{3\pi}{2}$$

(27)
$$\sin \left[\tan^{-1}(-\sqrt{3}) + \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \right]$$
 \(\frac{1}{2}\) મૂલ્ય છે.

$$(a) -1$$

(c)
$$\frac{1}{2}$$

(28)
$$sin^{-1}\frac{3}{5} + tan^{-1}\frac{1}{7} = \dots$$

- (b) $\frac{\pi}{2}$
- (c) π
- (d) $sin^{-1} \frac{4}{5}$

(29)
$$tan\left(cos^{-1}\frac{3}{4} + sin^{-1}\frac{3}{4} - sec^{-1}3\right)$$
 ij મૂલ્ય છે.

- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{3}}$
- (d) $\frac{1}{2\sqrt{2}}$

(30)
$$sec\left[tan^{-1}\left(\frac{b+a}{b-a}\right)-tan^{-1}\left(\frac{a}{b}\right)\right]$$
 નું મૂલ્ય છે.

- (a) 1
- (b) $\sqrt{2}$
- (c) 2
- (d) 4

વિભાગ C (3 ગુણ)

(31)
$$\cot \left[\frac{\pi}{4} - 2\cot^{-1} 3 \right]$$
 નું મૂલ્ય છે.

- (a) 3
- (b) 7
- (d) $\frac{3}{4}$

(32)
$$tan^{-1}\left(\frac{x}{y}\right) - tan^{-1}\left(\frac{x-y}{x+y}\right) = \dots \left(\frac{x}{y} \ge 0\right)$$

- (a) $\frac{\pi}{4}$
- (b) $\frac{\pi}{3}$
- (d) π

(33) જો
$$x = \frac{1}{3}$$
, તો $\cos(2\cos^{-1}x + \sin^{-1}x)$ નું મૂલ્ય છે.

- (a) $-\sqrt{\frac{8}{9}}$ (b) $-\sqrt{\frac{1}{3}}$ (c) $\frac{\sqrt{3}}{2}$
- (d) $\frac{1}{2}$

(34)
$$\cos^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$
, તો $x \neq y$ મૂલ્ય છે.

- (d) 4

(35)
$$\cot\left(\csc^{-1}\frac{5}{3} + \tan^{-1}\frac{2}{3}\right)$$
 નું મૂલ્ય છે.

- (a) $\frac{3}{17}$ (b) $\frac{4}{17}$
- (c) $\frac{5}{17}$
- (d) $\frac{6}{17}$

(36)
$$tan\left(2cos^{-1}\frac{3}{5}\right) = \dots$$

- (b) $\frac{24}{25}$
- (c) $\frac{7}{25}$
- (d) $-\frac{24}{7}$

- (a) $\frac{2+\sqrt{3}}{\sqrt{2}}$ (b) $\frac{3-\sqrt{5}}{2}$ (c) $\frac{\sqrt{3}-1}{2\sqrt{2}}$
- (d) $\frac{\sqrt{5}+1}{4}$

(38)
$$\Re 0 < x < 1$$
, $\operatorname{di} \tan^{-1} \left(\frac{\sqrt{1-x^2}}{1+x} \right) = \dots$

- (a) $\frac{1}{2}sin^{-1}\sqrt{\frac{1-x}{2}}$ (b) $\frac{1}{2}cos^{-1}x$ (c) $\frac{1}{2}cot^{-1}\left(\frac{1-x}{1+x}\right)$ (d) $\frac{1}{2}tan^{-1}\left(\frac{x}{2}\right)$

(39) જો
$$cos(2tan^{-1}x) = \frac{1}{2}$$
, તો $x + \frac{1}{2}$ મૂલ્ય છે.

- (a) $\frac{1}{\sqrt{3}}$ (b) $1 \sqrt{3}$ (c) $1 \frac{1}{\sqrt{3}}$
- (d) $\sqrt{3}$

(40)
$$tan \left\{ sin^{-1} \left(\frac{3}{5} \right) + cos^{-1} \left(\frac{5}{13} \right) \right\} + i$$
 $\frac{1}{2}$ $\frac{1$

- (a) $-\frac{24}{5}$ (b) $-\frac{22}{15}$ (c) $-\frac{63}{16}$
- (d) $-\frac{47}{12}$

(41)
$$\Re \sin^{-1}\frac{x}{5} + \csc^{-1}\frac{5}{4} = \frac{\pi}{2}$$
, $\operatorname{ch} x = \dots$

- (b) 2
- (d) 4

(42)
$$sin^{-1}(cos(sin^{-1}x)) + cos^{-1}(sin(cos^{-1}x)) =$$

- (a) 0
- (b) $\frac{\pi}{4}$
- (c) $\frac{\pi}{2}$
- (d) $\frac{3\pi}{4}$

વિભાગ D (4 ગુણ)

(43)
$$\cot^{-1}\left(\frac{\sqrt{1-\sin x} + \sqrt{1+\sin x}}{\sqrt{1-\sin x} - \sqrt{1+\sin x}}\right) = \dots \left(0 < x < \frac{\pi}{2}\right)$$

- (a) $\frac{x}{2}$ (b) $\frac{\pi}{2} 2x$ (c) $2\pi x$
- (d) $\pi \frac{x}{2}$

(44)
$$\Re \sin^{-1}\frac{1}{x} = 2\tan^{-1}\frac{1}{7} + \cos^{-1}\frac{3}{5}$$
, $\operatorname{cli} x = \dots$

- (a) $\frac{24}{117}$
- (b) $\frac{7}{3}$
 - (c) $\frac{125}{117}$
- (d) $-\frac{117}{44}$

(45)
$$\Re \alpha = \cos^{-1}\left(\frac{4}{5}\right), \ \beta = \tan^{-1}\left(\frac{2}{3}\right), \ \alpha, \ \beta \in \left(0, \frac{\pi}{2}\right), \ \text{di} \ \alpha - \beta = \dots$$

- (a) $sin^{-1}\frac{2}{\sqrt{13}}$ (b) $tan^{-1}\left(\frac{1}{18}\right)$ (c) $cos^{-1}\left(\frac{1}{5\sqrt{3}}\right)$ (d) $sin^{-1}\left(\frac{6}{5\sqrt{13}}\right)$
- (46) નીચે આપેલા પૈકી કઈ જોડ સાચી છે ?

વિભાગ (A)	વિભાગ (B)
(1) $tan^{-1}(\frac{1}{3}) + tan^{-1}(\frac{1}{4})$	(a) $\frac{\pi}{2}$
(2) $sin^{-1}\left(\frac{3}{5}\right) + sin^{-1}\left(\frac{8}{17}\right) + sin^{-1}\left(\frac{36}{85}\right)$	(b) π
(3) $tan^{-1}(1) + cos^{-1}(-\frac{1}{2}) + sin^{-1}(-\frac{1}{2})$	(c) $tan^{-1}\left(\frac{7}{11}\right)$
(4) $2tan^{-1}(5) + tan^{-1}(\frac{5}{12})$	(d) $\frac{3\pi}{4}$

- (a) 1 c, 2 b, 3 d, 4 a
- (b) 1 c, 2 a, 3 d, 4 b
- (c) 1 c, 2 a, 3 b, 4 d
- (d) 1 a, 2 b, 3 d, 4 c

(47)
$$tan\left(2tan^{-1}\frac{1}{5} - \frac{\pi}{4}\right) = \dots$$

- (a) $\frac{14}{32}$ (b) $\frac{-7}{17}$
- (c) $\frac{17}{7}$
- (d) $\frac{24}{25}$

(48)
$$\Re \sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$$
, $\operatorname{ch} x = \dots$

- - (a) $-\frac{1}{2}$
- (b) 0
- (c) $\frac{1}{2}$
- (d) $\frac{1}{2}$
- (49) $tan^{-1}(x + 1) + tan^{-1}x + tan^{-1}(x 1) = tan^{-1}3x$ સમીકરણનું સમાધાન કરતી xની કિંમતોની સંખ્યા છે.
 - (a) 2
- (b) 3
- (c) 4
- (d) અનંત

(50)
$$\Re \cot^{-1}x + \cot^{-1}y + \cot^{-1}z = \frac{\pi}{2}$$
, $\operatorname{ch} x + y + z = \dots$

- (a) xy + yz + zx (b) xyz (c) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ (d) $\frac{xy + yz + zx}{3}$
- (51) $\Re \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\tan^{-1}x, \text{ dù } x = \dots (0 < a, b < 1)$

- (a) $\frac{a-b}{1+ab}$ (b) $\frac{a+b}{1-ab}$ (c) $\frac{b}{1-ab}$ (d) $\frac{b}{1+ab}$

સારાંશ

આ પ્રકરણમાં આપણે નીચે આપેલા મુદ્દાઓ શીખ્યા :

- ત્રિકોણમિતીય પ્રતિવિધેયોની વ્યાખ્યા
- ત્રિકોણમિતીય પ્રતિવિધેયોના આલેખ
- 3. (1) $sin^{-1}(-x) = -sin^{-1}x$, $|x| \leq 1$
 - (2) $\cos^{-1}(-x) = \pi \cos^{-1}x, |x| \le 1$
 - (3) $tan^{-1}(-x) = -tan^{-1}x$, $x \in \mathbb{R}$
 - (4) $\cot^{-1}(-x) = \pi \cot^{-1}x, \quad x \in \mathbb{R}$
 - (5) $cosec^{-1}(-x) = -cosec^{-1}x, |x| \ge 1$
 - (6) $sec^{-1}(-x) = \pi sec^{-1}x, |x| \ge 1$
- 4. (1) $cosec^{-1}x = sin^{-1}\frac{1}{x}$, $|x| \ge 1$
 - (2) $sec^{-1}x = cos^{-1}\frac{1}{x}$, $|x| \ge 1$
 - (3) $\cot^{-1}x = \tan^{-1}\frac{1}{x}$, x > 0 $=\pi + tan^{-1}\frac{1}{r}, \qquad x < 0$

5. (1)
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$
, $|x| \le 1$

(2)
$$cosec^{-1}x + sec^{-1}x = \frac{\pi}{2}, |x| \ge 1$$

(3)
$$tan^{-1}x + cot^{-1}x = \frac{\pi}{2}$$
, $x \in \mathbb{R}$

6.
$$\Re x > 0, y > 0, \text{ al}$$

(1)
$$tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
, we $xy < 1$

(2)
$$tan^{-1}x + tan^{-1}y = \pi + tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
, we $xy > 1$

(3)
$$tan^{-1}x + tan^{-1}y = \frac{\pi}{2}$$
, sati $xy = 1$

(4)
$$tan^{-1}x - tan^{-1}y = tan^{-1}\left(\frac{x-y}{1+xy}\right)$$

7. (1)
$$\sin^{-1}x = \cos^{-1}\sqrt{1-x^2} = \tan^{-1}\frac{x}{\sqrt{1-x^2}}$$
, we if $0 < x < 1$

(2)
$$\cos^{-1}x = \sin^{-1}\sqrt{1-x^2} = \tan^{-1}\frac{\sqrt{1-x^2}}{x}$$
, we $0 < x < 1$

(3)
$$tan^{-1}x = cos^{-1} \frac{1}{\sqrt{1+x^2}} = sin^{-1} \frac{x}{\sqrt{1+x^2}}$$
, we i $x > 0$

Srinivasa Ramanujan: Adulthood in India

On 14 July 1909, Ramanujan was married to a nine-year old bride, Janaki Ammal. In the branch of Hinduism to which Ramanujan belonged, marriage was a formal engagement that was consummated only after the bride turned 17 or 18, as per the traditional calendar.

After the marriage, Ramanujan developed a hydrocele testis, an abnormal swelling of the tunica vaginalis, an internal membrane in the testicle. The condition could be treated with a routine surgical operation that would release the blocked fluid in the scrotal sac. His family did not have the money for the operation, but in January 1910, a doctor volunteered to do the surgery for free.

After his successful surgery, Ramanujan searched for a job. He stayed at friends' houses while he went door to door around the city of Madras (now Chennai) looking for a clerical position. To make some money, he tutored some students at Presidency College who were preparing for their F.A. exam.

In late 1910, Ramanujan was sick again, possibly as a result of the surgery earlier in the year. He feared for his health, and even told his friend, R. Radakrishna Iyer, to "hand these [my mathematical notebooks] over to Professor Singaravelu Mudaliar [mathematics professor at Pachaiyappa's College] or to the British professor Edward B. Ross, of the Madras Christian College." After Ramanujan recovered and got back his notebooks from Iyer, he took a northbound train from Kumbakonam to Villupuram, a coastal city under French control.

ત્રિકોણમિતીય પ્રતિવિધેયો 71