A Unified Algorithm for Stochastic Path Problems

Christoph Dann*, Chen-Yu Wei † and $\textbf{Julian Zimmert}^*$

August 30, 2023

^{*}Google Research, †University of Southern California

Introduction

Setting

- Episodic
- Tabular
- No Discount factor
- Goal-state (no fixed horizon)

1

Special case: Stochastic shortest path

Only suffer costs: $r_t \in [-1,0]$. Find the goal at the smallest expected cost.

- Rosenberg et al. (2020)
- Cohenet al. (2021)
- Tarbouriech et al. (2020,2021)
- Vial et al. (2022)
- Chen et al. (2021, 2022)
- Chenand Luo (2021, 2022)
- Jafarnia-Jahromi et al. (2021)
- Min et al. (2022)
- Yin et al. (2022)

Special case: Stochastic shortest path

Only suffer costs: $r_t \in [-1,0]$. Find the goal at the smallest expected cost.

- Rosenberg et al. (2020)
- Cohenet al. (2021)
- Tarbouriech et al. (2020,2021)
- Vial et al. (2022)
- Chen et al. (2021, 2022)
- Chenand Luo (2021, 2022)
- Jafarnia-Jahromi et al. (2021)
- Min et al. (2022)
- Yin et al. (2022)

- What about general rewards?
- Can we reduce the problem to SSP?

Special case: Stochastic shortest path

Only suffer costs: $r_t \in [-1,0]$. Find the goal at the smallest expected cost.

- Rosenberg et al. (2020)
- Cohenet al. (2021)
- Tarbouriech et al. (2020,2021)
- Vial et al. (2022)
- Chen et al. (2021, 2022)
- Chenand Luo (2021, 2022)
- Jafarnia-Jahromi et al. (2021)
- Min et al. (2022)
- Yin et al. (2022)

- What about general rewards?
- Can we reduce the problem to SSP?
- No because of Random stopping time

Stochastic Path

Algorithm 1: Stochastic path protocol

```
Input: State space S \cup \{g\}, Action set A

1 Optional:Problem parameters B^*

2 for k=1,\ldots,K do

3 | t \leftarrow 1

4 | s_1^k \sim \mu_0

5 | while s_t^k \neq g do

6 | Take action a_t^k \in A

7 | Receive r_t^k \leftarrow r(s_t^k, a_t^k), r_t^k \in [-1, 1]

8 | Observe s_{t+1}^k \sim P(s_t^k, a_t^k)

9 | t \leftarrow t+1
```

Goal: Minimize

$$\mathsf{Reg} := \max_{\pi \in \Pi} \mathbb{E}[V^\pi(s_1)K - \sum_{k=1}^K \sum_{t=1}^ au r_t^k]\,.$$

Definitions and assumptions

- Π^{HD} history dependent deterministic policy.
- Assumption: All policies in Π^{HD} are proper.
- Π^{SD} Stationary deterministic policy.
- $V^{\pi}(s) = \mathbb{E}^{\pi}[\sum_{t=1}^{\tau} r(s_t, a_t) \, | \, s_1 = s]$
- $\pi^{\star} \in \Pi^{\text{SD}}$ such that $\forall \pi \in \Pi^{\text{HD}}: V^{\pi^{*}}(s) \geq V^{\pi}(s)$.

Main algorithm

Algorithm 2: VI-SP

```
1 input: B > 1, 0 < \delta < 1.
 2 Initialize: t \leftarrow 0, s_1 \sim \nu_0, V(g) \leftarrow 0.
 3 \forall s \in S: n(s, a, s') = n(s, a) \leftarrow 0, Q(s, a) \leftarrow B, V(s) \leftarrow B.
 4 for k = 1, ..., K do
           while true do
 5
                  t \leftarrow t + 1
 6
                  Play a_t = \operatorname{argmax}_{a} Q(s_t, a), receive r(s_t, a_t), transit to s'_t.
 7
                  Update: n_t \triangleq n(s_t, a_t) \leftarrow n(s_t, a_t) + 1, n(s_t, a_t, s_t') \leftarrow n(s_t, a_t, s_t') + 1.
 8
                  Define \bar{P}_t(s') \triangleq \frac{n(s_t, a_t, s')}{s} \ \forall s'.
 9
                  Define b_t \triangleq \max \left\{ c_1 \sqrt{\frac{\mathbb{V}(\bar{P}_t, V) \iota_t}{n_t}}, \frac{c_2 B \iota_t}{n_t} \right\}, where
10
                    \iota_t = \ln(SA/\delta) + \ln\ln(Bn_t).
                  Q(s_t, a_t) \leftarrow \min \left\{ r(s_t, a_t) + \bar{P}_t V + b_t, Q(s_t, a_t) \right\}
11
                  V(s_t) \leftarrow \max_a Q(s_t, a).
12
                  if s'_t \neq g then then s_{t+1} \leftarrow s'_t;
13
                  else s_{t+1} \sim \nu_0 and break;
14
```

Main result

- $B_{\star} \triangleq \max_{s} |V^{\pi^*}(s)|$
- $R \triangleq \sup_{\pi \in \Pi^{\text{HD}}} \sqrt{\mathbb{E}_{s_1 \sim \nu_0}^{\pi} \left[\left(\sum_{i=1}^{\tau} r(s_i, a_i) \right)^2 \right]}$
- $R_{\max} \triangleq \max_{s} \sup_{\pi \in \Pi^{\text{HD}}} \sqrt{\mathbb{E}^{\pi} \left[\left(\sum_{i=1}^{\tau} r(s_i, a_i) \right)^2 \mid s_1 = s \right]}$

Theorem

If VI-SP is run with $B \ge B_{\star}$, then with probability at least $1 - \delta$:

$$\mathsf{Reg} = \widetilde{\mathcal{O}}\left(R\sqrt{\mathit{SAK}} + R_{\mathsf{max}}\mathit{SA} + \mathit{BS}^2\mathit{A}\right)\,.$$

6

Main result

- $B_{\star} \triangleq \max_{s} |V^{\pi^*}(s)|$
- $R \triangleq \sup_{\pi \in \Pi^{\text{HD}}} \sqrt{\mathbb{E}_{s_1 \sim \nu_0}^{\pi} \left[\left(\sum_{i=1}^{\tau} r(s_i, a_i) \right)^2 \right]}$
- $R_{\max} \triangleq \max_{s} \sup_{\pi \in \Pi^{\text{HD}}} \sqrt{\mathbb{E}^{\pi} \left[\left(\sum_{i=1}^{\tau} r(s_i, a_i) \right)^2 \mid s_1 = s \right]}$

Theorem

If VI-SP is run with $B \ge B_{\star}$, then with probability at least $1 - \delta$:

$$\mathsf{Reg} = \widetilde{\mathcal{O}}\left(R\sqrt{\mathit{SAK}} + R_{\mathsf{max}}\mathit{SA} + \mathit{BS}^2\mathit{A}\right)\,.$$

6

SLP/SSP

Let
$$V_{\star} = |E_{s_1 \sim \nu_0}[V^{\pi^{\star}}(s_1)]|$$

Lemma

If
$$r \geq 0$$
, then $R = \widetilde{\mathcal{O}}(\sqrt{V_{\star}B_{\star}})$, $R_{\mathsf{max}} = \widetilde{\mathcal{O}}(B_{\star})$.

With known B_{\star} SLP regret is bounded by

$$\widetilde{\mathcal{O}}\left(\sqrt{V_{\star}B_{\star}SAK}+B_{\star}S^{2}A\right)$$

- Same regret in SSP (with more careful analysis)
- Matches Tarbouriech et al. (2021), Chen et al. (2021)

Can we improve the general case?

Lower bounds general case

Theorem

For any $u \geq 2$, and $K \geq \Omega(SA)$, we can construct a set of SP instances such that $R \leq u$, $\sqrt{B_\star \cdot V_\star} \ll u$ for all instances, and there exists a distribution over these instances such that the expected regret of any algorithm is at least $\Omega(u\sqrt{SAK})$.

In these instances $R = \mathcal{O}(R_{\star}) = \mathcal{O}(u)$, can we replace R by R_{\star} ?

Lower bound general case

Theorem

Let $u \geq 2$ be arbitrarily chosen, and let $K \geq \Omega(SA)$. For any algorithm that obtains a expected regret bound of $\tilde{O}(u\sqrt{SAK})$ for all problem instances with $R_\star = R_{\text{max}} \leq u$, there exists a problem instance with $R_\star = O(1)$ and $R_{\text{max}} \leq u$ but the expected regret is at least $\tilde{\Omega}(u\sqrt{SAK})$.

Removing knowledge of B_{\star}

```
Simple idea: Use B = \sqrt{K/S^3A}.

Either B \ge B_\star and \text{Reg} = \widetilde{\mathcal{O}}(\sqrt{V_\star B_\star SAK} + B_\star S^2A), or B < B_\star and \text{Reg} = \mathcal{O}(V_\star K) \le \mathcal{O}(V_\star B_\star^2 S^3A).
```

Removing knowledge of B_{\star}

Simple idea: Use
$$B = \sqrt{K/S^3A}$$
.
Either $B \ge B_\star$ and $\text{Reg} = \widetilde{\mathcal{O}}(\sqrt{V_\star B_\star SAK} + B_\star S^2A)$, or $B < B_\star$ and $\text{Reg} = \mathcal{O}(V_\star K) \le \mathcal{O}(V_\star B_\star^2 S^3A)$.

We give up on all instances where the additive term matters.

Can we do better?

Removing knowledge of B_{\star} SSP

Idea: We can initialize Q=0, only require B for confidence intervals. Use doubling based on $\max |Q_t|$.

Optimal regret without knowledge of $B_{\star}!$

Removing knowledge of B_{\star} , SLP

```
Assume we know V_{\star}. 

Simple idea: Use B = V_{\star}\sqrt{K}. 

Either B \geq B_{\star} and \text{Reg} = \widetilde{\mathcal{O}}(\sqrt{V_{\star}B_{\star}K}), or 

B < B_{\star} and \text{Reg} = \mathcal{O}(V_{\star}K) \leq \mathcal{O}\min\{\frac{B_{\star}}{V_{\star}}B_{\star}, B_{\star}\sqrt{K}\}.
```

Removing knowledge of B_{\star} , SLP

Assume we know V_{\star} .

Simple idea: Use
$$B = V_{\star} \sqrt{K}$$
.

Either
$$B \geq B_{\star}$$
 and $Reg = \widetilde{\mathcal{O}}(\sqrt{V_{\star}B_{\star}K})$, or

$$B < B_{\star}$$
 and $Reg = \mathcal{O}(V_{\star}K) \leq \mathcal{O}\min\{\frac{B_{\star}}{V_{\star}}B_{\star}, B_{\star}\sqrt{K}\}$.

We provide an algorithm to estimate $V_*!$

Either: Reg =
$$\widetilde{\mathcal{O}}(\sqrt{V_{\star}B_{\star}SAK} + \frac{B_{\star}^{2}}{V_{\star}}S^{3}A))$$

Or:
$$Reg = \widetilde{\mathcal{O}}(B_{\star}S\sqrt{AK} + B_{\star}S^{2}A))$$

Lower bounds adaptivity

We can not do better in general.

Theorem

Any algorithm with an asymptotic upper bound of

$$\widetilde{\mathcal{O}}\left(B_{\star}^{\alpha}V_{\star}^{1-\alpha}\sqrt{\mathit{SAK}}\right) + o\left(B_{\star}^{2}\right)\,,$$

satisfies at least $\alpha \geq 1$ and any algorithm with an upper bound of

$$\widetilde{\mathcal{O}}\left(\sqrt{V_{\star}B_{\star}SAK}+\left(\frac{B_{\star}}{V_{\star}}\right)^{2}poly(V_{\star},S,A)\right)$$

requires the constant term to be at least $\tilde{\Omega}\left(\frac{B_{\star}^2SA}{V_{\star}}\right)$.

Summary

Setting	Scale B _⋆	$Reg_{\mathcal{K}}$ in $ ilde{O}(\cdot)$	
SP	known	$R\sqrt{SAK} + R_{\text{max}}SA + B_{\star}S^{2}A$	Theorem 2
		$R\sqrt{SAK}$ (lower bound)	Thm 3, Thm 4
SLP	known	$\sqrt{V_{\star}B_{\star}SAK} + B_{\star}S^{2}A$	Theorem 6
	unknown	$B_{\star}S\sqrt{AK}$ or $\sqrt{V_{\star}B_{\star}SAK} + \frac{B_{\star}^2}{V_{\star}}S^3A$	Theorem 8
		$B_{\star}\sqrt{SAK}$ or $\sqrt{V_{\star}B_{\star}SAK} + \frac{B_{\star}^{2}}{V_{\star}}SA$	Corollary 10
		(lower bound)	
SSP	known	$\sqrt{V_{\star}B_{\star}SAK} + B_{\star}S^{2}A$	[1],[2]
	unknown	$\sqrt{V_{\star}B_{\star}SAK} + B_{\star}^3S^3A$	[1],[2]
		$\sqrt{V_{\star}B_{\star}SAK} + B_{\star}S^2A$	Theorem 11

^[1] Tarbouriech et al.(2021)

^[2] Chen et al.(2021)

