

To: Fuzhou Rockchip Electronics Co., Ltd

FrizzMonitor User Manuel (V1.00)

8th. June. 2016

MegaChips Corporation

LSC-L-2015D033

The APK of Android side overview

- This procedure manual describes the method for using sample application.
- The FrizzMonitor includes some sample application, user can evaluate this functions and operations of Android development board(evaluation board).

FrizzMonitor(main menu)

1. There is Menu Item on list.

Mode Name	Description
PDR Stable	Mode that is used when the device is worn at a stable position.(waist, pocket, etc.).
PDR swing	Mode that is used when the device is worn around the wrist and is always swinging while walking.
PDR Auto	Mode that can automatically switch between PDR stable and PDR swing.
PDR watching	Mode that is used when the device is worn as you see mobile phone.
Sensor List	User confirms sensor value.
Magnetic Calibration	User executes magnetic calibration and confirms magnetic calibration parameter.

FrizzMonitor(PDR function)

- 1. Item A: Value of speed, step, distance is displayed.
- 2. Item B: frizz PDR algorithm version.
- 3. Item C:PDR track is displayed.
- 4. Item D: Start: PDR track is displayed. Reset: PDR track is deleted. Menu: Back main menu.

*Note: PDR stable/swing/auto/watching, about display item is the same. PDR is calculated through gyro and accelerometer data, so please make sure gyro calibration have completed.

PDR have provided offset position for user. Position X/Y unit: meter.

Figure 1: 1 \rightarrow start point, 2 \rightarrow track stop point.

Figure 2: User can to set position x/y.

Figure 3: After inputs offset position, the pdr track will change to point 3.

FrizzMonitor(PDR direction)

PDR have provided offset direction for user. direction unit: deg.

Figure1: PDR track direction.

Figure2: User can to set direction.

Figure 3: After inputs offset direction, the pdr track will change 90 deg.

FrizzMonitor(Sensor List)

Sensor Lister: User can to confirm value of each sensor.

- accel: accelerometer raw data
- magnetic: magnetic raw data
- gyro:gyro raw data
- pdr:pdr data
- gesture : gesture data
- pedometer:pedometer data
- Fall Det:fall down data
- HR & BP: heart rate and blood pressure data
- HR & BP Learn : heart rate and blood pressure learning
- Stair Det: up/down of the stairs
- ActivityDet:activity detection data
- Motion Sensing: Motion detection data
- Calorie: Calorie data
- Bike Detector: Bike detection data

Note: About frizzMonitor APK application will have a corresponding frizz firmware. Please connect with MageChips.

FrizzMonitor(Sensor List- 9 axis)

- timestamp: Each data output will have time stamp. Unit: msec.
- x/y/z: These are the output of each axial. That is a float.

FrizzMonitor(Sensor List- pdr)

- PDR Data Format Description
 - timestamp : tick = 1 msec
 - px/py (m)
 The relative position of each point with the first point. So user can use the X,Y position from frizz provided.
 - step: walk step count
 - vx/vy:about frizz PDR speed data musts to be transfer through the vector quation.

dist:accumulation distance[m]

FrizzMonitor(Sensor List- gesture)

- Gesture Data Format Description
 - timestamp : tick = 1 msec
 - value: gesture type
 - 2:raise hand and look at watch
 - For turn on display
 - 3:let hand down
 - For turn off display

FrizzMonitor(Sensor List- pedometer)

- Pedometer Data Format Description
 - timestamp : tick = 1 msec
 - value: walk step count.

FrizzMonitor(Sensor List- Fall Down)

Fall down Data Format Description

timestamp : tick = 1 msec

value: Fall down data count

HR&BP Data Format

• timestamp : tick = 1 msec

HRF: Heart Rate

BP_Max: Systolic blood pressure

BP_MIN: Diastolic blood pressure

HR&BP Learn Data Format

 Learn Point: 0~24, The value = 24, learning have completed.

FrizzMonitor(Sensor List-Stair Detection)

- Stair detection Data Format Description It can distinguish three states, as well as the rise and fall of height (unit: m).
 - timestamp : tick = 1 msec
 - status: it supports three kinds of stair detection
 - 0: walk up stair
 - 2: walk flat place
 - 4: walk down stair
 - altitude: relative altitude from the floor of device startup

FrizzMonitor(Sensor List-Activity Detection)

- Activity detection Data Format Description
 - timestamp : tick = 1 msec
 - status: It is a long record of activity, that is for record daily motion.

Notify: when activity state is changed.

- There supports five kinds of activity detection.
 - 0 : ACTIVITY_DEEPSLEEP
 - 1 : ACTIVITY_SLEEP
 - 2: ACTIVITY_REST
 - 3 : ACTIVITY_WALK
 - 4 : ACTIVITY_RUN
 - 5 : ACTIVITY_STOP
- step_count: Step count during active status
- toss_turn_cnt: Toss-and-turn count during sleep status

FrizzMonitor(Sensor List-Motion Sensing)

- Motion Sensing Data Format Description
 - timestamp : tick = 1 msec
 - status: It is a immediate recognition.
 Notify: when motion state is changed.
 - There supports four kinds of motion detection.
 - 0 : Stop state (Put on table)
 - 1 : Rest state (Stop moving)
 - 2: Walk state
 - 3: Run state

FrizzMonitor(Sensor List-Calorie)

- Calorie Data Format Description
 - timestamp : tick = 1 msec
 - Calorie: Calories data. It is a float type.

FrizzMonitor(Sensor List-Bike Detector)

- Bike Detector Data Format Description
 - timestamp : tick = 1 msec
 - status: It is a immediate recognition.
 Notify: when state is changed.
 - There supports six kinds of bike detection.

0:walk

1:run

2:bike

3:checking

4:rest

5:vehicle

FrizzMonitor(Calibration)

Click the "Gyro Calibration" and Set Enable and Start to calibrate gyro.

When you click Enable and Start, frizz will calibrate gyro. When calibration succeed, it will display calibration values.

*Note: Make sure that the device is stationary on calibration.

Reset

0

Menu

 \triangleleft

Stop

- Wearing Detector Data Format Description
 - timestamp : tick = 1 msec
 - status::when state is changed.
 - There supports two kinds of wearing detection.

0:Un-wearing

1:Wearing

FrizzMonitor(Sensor List-Command)

 frizz provided some command application for developer. Developer can depending on the application to adjust parameter through these command.

Note: About command format, please reference "Application Note_frizz kernel driver and android HAL description_Chinese".

If user wants to execute magnetic calibration, user pushes start button. user moves mobile phone like figure of eight.

Quarity of magnetic calibration (high quarity)3 > 2 > 1 > 0 (low quarity) 3.0

Result of magnetic calibratoin 0:calibration failed 1:calibration success

Accel value

Mangnetic value x = -27.900002 y = 11.1 z = -36.0 angle = 0.0 magnetic flux density = 46.8/8/8084605/346

Calibration Parameter

- Quality of magnetic calibration
 - 0 : Magnetic can't calibrate in this area
 - 1 : Calibration OK but Accuracy is not good 2.
 - 2 : Calibration OK. but Accuracy is not good
 3.
 - 3 : Calibration OK. Accuracy is good.
- Magnetic value
 - x/y/x: magnetic raw data
 - angle: angle by using magnetic value
 - 0 degree : north
 - 90 degree : east
 - 180 degree : south
 - 270 degree : west