EJERCICIOS DE FÍSICA NUCLEAR: TEMA 4 Curso 2019/2020

1. En la tabla adjunta se presenta la distribución angular del ¹⁶O medida tras haber sido difundido elásticamente sobre ¹²C a 168 MeV. Demostrar que dicha distribución puede reproducirse utilizando un modelo de difracción de Franhöfer.

Tomar el factor r_0 de la parametrización del radio nuclear como r_0 =1.44 fm.

Table 1: Secciones eficaces en mbarn/sr y ángulo en el CM

$\theta(^{o})$	σ										
15.0	400	20.0	80	25.0	7	30.0	2	35.0	1.1	40.0	1.2
15.5	180	20.5	90	25.5	12	30.5	1.8	35.5	1.5	40.5	0.8
16.0	70	21.0	80	26.0	16	31.0	2.2	36.0	1.3	41.0	0.6
16.5	28	21.5	70	26.5	20	31.5	3.1	36.5	1.0	41.5	0.4
17.0	20	22.0	50	27.0	15	32.0	3.8	37.0	0.9	42.0	0.3
17.5	10	22.5	25	27.5	11	32.5	4.1	37.5	0.8	42.5	0.2
18.0	18	23.0	11	28.0	9	33.0	3.7	38.0	0.9		
18.5	27	23.5	6	28.5	7	33.5	3.1	38.5	1.0		
19.0	45	24.0	1.1	29.0	5	34.0	2.7	39.0	1.05		
19.5	70	24.5	4.2	29.5	3	34.5	2.5	39.5	1.2		

2. Consideremos que tenemos un sistema de nucleones bajo el efecto de un potencial tridimensional de tipo pozo cuadrado.

 $V(r) = V_0 \text{ para } r < R$

V(r) = 0 para r > R

Utilizando la aproximación de Born evalúa:

- a) la amplitud de difusión
- b) la sección eficaz diferencial, distinguiendo el caso de baja energía $(kR_0 < 1)$ y alta energía $(kR_0 > 1)$
- 3. La distribución angular correspondiente a momento angular transferido l=2 para la reacción 20 Ne $(d,n)^{21}$ Na poblando el estado $J^{\pi}=5/2^{+}$ a 2.14 MeV en el 21 Na presenta un pico a 36° para una energía del deuterón incidente en el CM de 6 MeV. Utilizando la aproximación de Born de ondas planas determinar el valor del radio del 21 Na y compararlo con el valor obtenido a partir de la parametrización $R=1.2A^{1/3}$ fm.