4. DISTRIBUCIONES FUNDAMENTALES DEL MUESTREO

4.01	Distribución muestral de la media \overline{X}	Sea $X_1, X_2,, X_n$ una muestra aleatoria de n variables aleatorias independientes e idénticamente distribuidas con $E(X_i) = \mu y$ $Var(X_i) = \sigma^2 (i = 1, 2,, n)$, entonces: $\overline{X} \sim Normal (\mu_{\overline{X}}, \sigma_{\overline{x}}^2)$ siendo $E(\overline{X}) = \mu$ y $Var(\overline{X}) = \frac{\sigma^2}{n}$
4.02	Teorema del límite central	Si \overline{X} es la media de una muestra aleatoria de tamaño n tomada de una población con media μ y σ^2 , entonces la forma límite de la distribución de: $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(z; 0, 1) \text{ cuando } n \to \infty$
4.03	Distribución muestral de la diferencia de medias $\overline{X}_I - \overline{X}_2$	Siendo \overline{X}_1 y \overline{X}_2 estadísticos definidos bajo las condiciones dadas para la distribución muestral de \overline{X} : $\overline{X}_1 - \overline{X}_2 \sim Normal (\mu_{\overline{X}_1 - \overline{X}_2}, \sigma^2_{\overline{X}_1 - \overline{X}_2})$ $E(\overline{X}_1 - \overline{X}_2) = \mu_1 - \mu_2$ $Var(\overline{X}_1 - \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$
4.04	Estadístico χ^2 para la distribución muestral de la varianza S^2	$\chi^{2} = \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2} con \ v \ grados \ de \ libertad$ $donde \ v = n - 1$
4.05	Estadístico t para la distribución muestral de medias	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t \ con \ v \ grados \ de \ libertad$ $donde \ v = n - 1$
4.06	Estadístico F para la distribución muestral de cociente de varianzas	$F = \frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2} \sim F \text{ con } v_1 \text{ y } v_2 \text{ grados de libertad}$ $donde \ v_1 = n_1 - 1 \text{ y } v_2 = n_2 - 1$
4.07	Propiedad del estadístico F	$f_{1-\alpha}(v_1, v_2) = \frac{1}{f_{\alpha}(v_2, v_1)}$

Fórmulas 13