Streaming Algorithms

Meng-Tsung Tsai
03/13/2018

Pairwise Independence

References

- "Pairwise Independence and Derandomization," Luby and Wigderson (2005)
- "Sketch Techniques for Approximate Query Processing," Cormode

Family of functions

Let H be a family of functions, e.g. $H = \{h_{a,b}(x) : a, b \in \mathbb{Z}_p\}$ where

$$h_{a,b}(x) = ax + b \mod p$$
.

Let h be a function sampled uniformly at random from H. We say H is pairwise independent if for each $i\neq j \in \textbf{Z}_p$

$$Pr[h(i) = a \wedge h(j) = b] = 1/p^2.$$

Family of functions

Let H be a family of functions, e.g. $H = \{h_{a,b}(x) : a, b \in \mathbb{Z}_p\}$ where

$$h_{a,b}(x) = ax + b \mod p$$
.

Let h be a function sampled uniformly at random from H. We say H is **pairwise independent** if for each $z_1 \neq z_2 \in \mathbb{Z}_p$, for each $y_1, y_2 \in \mathbb{Z}_p$

$$Pr[h(z_1) = y_1 \wedge h(z_2) = y_2] = 1/p^2.$$

<u>Theorem 1</u>. $H = \{h_{a,b}(x) : a, b \in \mathbb{Z}_p\}$ is pairwise independent.

Proof of Theorem 1

Recall that $H = \{h_{a,b}(x) : a, b \in \mathbb{Z}_p\}$ where $h_{a,b}(x) = ax + b \mod p$.

Let $z_1 \neq z_2$ in \mathbb{Z}_p . If $h = h_{a,b}(x)$ for a = 0, then $h(z_1) = b = h(z_2)$.

$$\Rightarrow$$
 Pr[h(z₁) = b \land h(z₂) = b] = Pr[h = h_{0,b}] = 1/p².

If $h=h_{a,b}(x)$ for $a\neq 0$, then for each (y_1,y_2) where $y_1\neq y_2$ there exists a unique $h_{a,b}$ so that $h_{a,b}(z_1)=y_1$ and $h_{a,b}(z_2)=y_2$. (Why?)

For each $a \neq 0$, b in \mathbb{Z}_p ,

 $h_{a,b}(z_1)$ and $h_{a,b}(z_2)$ maps $(z_1,\,z_2)$ into $(y_1,\,y_2)$ for some $y_1\neq y_2.$

For each $y_1 \neq y_2$,

some $h_{a,b}$ for $a \neq 0$ maps (y_1, y_2) into (z_1, z_2) .

Illustration of Theorem 1

h	0	1	•••
h _{0,0}	0	0	
$\mathbf{h}_{0,1}$	1	1	
$\mathbf{h}_{0,2}$	2	2	
$\mathbf{h}_{1,0}$	0	1	
$\mathbf{h}_{1,1}$	1	2	
$h_{1,2}$	2	0	
$\mathbf{h}_{2,0}$	0	2	
$\mathbf{h}_{2,1}$	1	0	
$\mathbf{h}_{2,2}$	2	1	

Implications of Theorem 1

For each p, there exists a pairwise independent family H of functions so that each function in H can be represented in O(log p) space. (How?)

Of course there are many pairwise independent families, but few of which can use logarithmic space to represent each function in them.

Count-Min Sketch

Problem Defintion

Input: a sequence of n elements e_1 , e_2 , ..., e_n where each e_i in $[U] = \{1, ..., U\}$. Let |U| be a prime w.l.o.g.

Output: for each $k \in [U]$, output the frequency $f(k) = \sum_{i \in [n]} \mathbf{1}[e_i = k]$. In words, f(k) is the number of e_i in the sequence that has value k.

Goal: using $o(U \log n)$ bits to get an approximate $\hat{f}(k)$ for each f(k).

Algorithm

Sample functions h_1 , h_2 , ..., h_d independently, uniformly at random from $H_w = \{h_{a,b}(x)\%w : a, b \in \mathbf{Z}_p\}$ where $w \ll p = |U|$.

$$T[d][w] \leftarrow \{0, 0, ..., 0\}.$$

let $\hat{f}(k) = \min_{j \in [d]} \{T[j][h_j(k)]\};$

For each hash function h_j

Observe that $T[j][a] = \sum_{i \in [n]} \mathbf{1}[h_j(e_i) = a]$ and therefore

$$T[j][h_j(k)] \ge f(k).$$

Because h_i is sampled from a pairwise independent H, we have

$$Pr[h_j(\ell) = h_j(k)] = 1/w \text{ for every } \ell \neq k.$$

Hence, the expected noise $E[\mathscr{E}_j] = \sum_{\ell \neq k, \ hj(\ell) = hj(k)} E[T[j][h_j(\ell)]] = n/w$.

Let $w = 2/\epsilon$. Then $E[\mathscr{E}_i] = \epsilon n/2$. By Markov inequality,

$$Pr[\mathscr{E}_i \ge \epsilon n] \le 1/2$$
.

For all hash functions h₁, h₂, ..., h_d

$$\begin{split} & \Pr[\min_{j \in [d]} \, \mathscr{E}_j \geq \epsilon n] \\ & = \prod_{j \in [d]} \Pr[\mathscr{E}_j \geq \epsilon n] \quad (Why?) \\ & < 1/2^d \end{split}$$

Pick d = log nU. Then for a certain k in [U], the estimate $\hat{f}(k)$ has the additive error bounded to within ε n with probability at least 1-1/(nU). Formally,

$$0 \le \hat{f}(k) - f(k) \le \varepsilon n$$

By the union bound, $\hat{f}(k)$ for all k in [U] have the additive error bounded to within ε n with probability at least 1-1/n.

Result

By the Count-Min Sketch, one can over-estimate each f(k) to within the additive error ϵn with probability at least $1-1/n^{\Omega(1)}$ using $O((1/\epsilon) \log nU)$ space and $O(n \log nU)$ time.

By CM Sketch, can we output a set S so that every $k \in U$ that has $f(k) \ge (n)^{1/2}$ is contained in S with high probability?

Result

By the Count-Min Sketch, one can over-estimate each f(k) to within the additive error ϵn with probability at least $1-1/n^{\Omega(1)}$ using $O((1/\epsilon) \log nU)$ space and $O(n \log nU)$ time.

By CM sketch, can we output a set S so that all $k \in S$ have $f(k) \ge (n)^{1/2}$ with high probability?