Package 'GEC'

October 24, 2023

Type Package

Title Generalized Exponentiated Composite Distributions

Version 0.1.0
Author Bowen Liu [aut, cre], Malwane M.A. Ananda [aut], Dwaipayan Mukhopadhyay [aut]
Maintainer Bowen Liu bowen.liu@umkc.edu>
Description Contains the framework of the estimation, sampling, and hypotheses testing for two special distributions (Exponentiated Exponential-Pareto and Exponentiated Inverse Gamma-Pareto) within the family of Generalized Exponentiated Composite distributions. The detailed explanation and the applications of these two distributions were introduced in Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.1080 03610926.2022.2050399="">, Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390 math10111895="">, and Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390 app13010645="">.</doi:10.3390></doi:10.3390></doi:10.1080>
License GPL-3
Encoding UTF-8
Imports stats, mistr
RoxygenNote 7.2.3
NeedsCompilation no
Repository CRAN
Date/Publication 2023-10-24 16:40:02 UTC
R topics documented:
asymptotic_eep 2 asymptotic_eigp 3 cdf_eep 4 cdf_eigp 4 eep_nll 5 eep_optim 6 eep_sampling 6
eigp_nll

2 asymptotic_eep

	eigp_optim	8
	eigp_sampling	8
	exp_eep	9
	hazard_eep	10
	hazard_eigp	10
	inv_gamma_eigp	11
	LRT_eep	12
	LRT_eigp	12
	mle_eep	13
	mle_eigp	14
	mle_iter_eep	15
	mle_iter_eigp	15
	mle_search_eep	16
	mle_search_eigp	17
	neg_log_eep	17
	neg_log_eigp	18
	pareto_eep	19
	pareto_eigp	19
	pdf_eep	20
	pdf_eigp	21
	q_eep	21
	q_eigp	22
	raw_est_eep	22
	raw_est_eigp	23
	se_eep	24
	se_eigp	24
	validation	25
Index		27

asymptotic_eep

Asymptotic Wald's test for testing the exponent in a EEP model.

Description

This function computes the test statistic and the p-value of Wald's test for the exponent parameter in EEP model.

Usage

```
asymptotic_eep(data, eta0, theta1, eta1)
```

Arguments

data	Observations.
eta0	To test if the exponent equals 1, the default for eta0 is et to be 1.
theta1	The unrestricted MLE of theta.
eta1	The unrestricted MLF of eta

asymptotic_eigp 3

Details

```
asymptotic_eep
```

Value

This function returns the test statistic and the p-value of the Wald's test.

Examples

```
sample1 = eep_sampling(200,eta = 1.1,theta = 3)
theta1 = mle_search_eep(data = sample1)$theta
eta1 = mle_search_eep(data = sample1)$eta
asymptotic_eep(sample1,eta0 = 1,theta1,eta1)
```

asymptotic_eigp

Asymptotic Wald's test for testing the exponent in a EIGP model.

Description

This function computes the test statistic and the p-value of Wald's test for the exponent parameter in EIGP model.

Usage

```
asymptotic_eigp(data, eta0 = 1, theta1, eta1)
```

Arguments

data	Observations.
eta0	To test if the exponent equals 1, the default for eta0 is et to be 1.
theta1	The unrestricted MLE of theta.
eta1	The unrestricted MLE of eta.

Details

```
asymptotic_eigp
```

Value

This function returns the test statistic and the p-value of the Wald's test.

```
sample1 = eigp_sampling(200,eta = 1.1,theta = 3)
theta1 = mle_search_eigp(data = sample1)$theta
eta1 = mle_search_eigp(data = sample1)$eta
asymptotic_eigp(sample1,eta0 = 1,theta1,eta1)
```

4 cdf_eigp

Description

cdf_eep

Usage

```
cdf_eep(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data Observations.

Value

Return the cumulative probability of EEP at the specific location.

Examples

```
cdf_eep(1,2,5)
```

cdf_eigp

Description

cdf_eigp

Usage

```
cdf_eigp(theta, eta, data)
```

Arguments

theta	The location parameter for the base distribution (eta $= 1$). The value needs to be
-------	--

positive.

eta The exponent parameter. The value provided needs to be positive.

data Observations.

eep_nll 5

Value

Return the cumulative probability of EIGP at the specific location.

Examples

```
cdf_{eigp}(1,2,5)
```

eep_nll

The EEP Negative Log-likelihood Function.

Description

This function serves as the objective function for the Maximum Likelihood Estimation procedure for EEP.

Usage

```
eep_nll(x, m, data)
```

Arguments

x Vector of parameters.

m The number of data items less than the density change point.

data Observations.

Details

eep_nll

Value

A scalar that represents the negative loglikelihood of a EEP sample given the model parameter and the data.

```
eep_nll(c(2,2),50,seq(1:100))
```

6 eep_sampling

eep_optim	The Wrapper Function that Returns the Final Estimates from Maximum Likelihood Estimation for EEP.

Description

This function serves as a wrapper that returns the final estimates of theta, eta, and the corresponding density change point

Usage

```
eep_optim(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

Arguments

data Observations.

init The vector of initial values of the model parameters. The default is c(1,1).

lower_bound The vector of the lower bound for the parameters. The default is c(0.01,0.01).

Details

eep_optim

Value

A data frame with 1 row and 3 columns that contains the MLE of theta, eta, and the predicted density change point.

Examples

```
eep_optim(seq(1:100))
```

eep_sampling

The Random Number Generation Function for EIGP

Description

Create a EEP random sample.

Usage

```
eep_sampling(n, theta, eta)
```

eigp_nll 7

Arguments

n Number of observations. (n>=1)

theta The location parameter for the parent EP distribution (eta = 1). The value needs

to be positive.

eta The exponent parameter. The parameter should be positive.

Details

```
eep_sampling
```

Value

returns a numerical vector of size n.

Examples

```
eep_sampling(100,1,1)
```

eigp_nll

The EIGP Negative Log-likelihood Function.

Description

This function serves as the objective function for the Maximum Likelihood Estimation procedure for EIGP.

Usage

```
eigp_nll(x, m, data)
```

Arguments

x Vector of parameters.

m The number of data items less than the density change point.

data Observations.

Details

eigp_nll

Value

A scalar that represents the negative loglikelihood of a EIGP sample given the model parameter and the data.

```
eigp_nll(c(2,2),50,seq(1:100))
```

8 eigp_sampling

eigp_optim	The Wrapper Function that Returns the Final Estimates from Maximum Likelihood Estimation for EIGP.

Description

This function serves as a wrapper that returns the final estimates of theta, eta, and the corresponding density change point

Usage

```
eigp_optim(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

Arguments

data Observations.

init The vector of initial values of the model parameters. The default is c(1,1).

lower_bound The vector of the lower bound for the parameters. The default is c(0.01,0.01).

Details

eigp_optim

Value

A data frame with 1 row and 3 columns that contains the MLE of theta, eta, and the predicted density change point.

Examples

```
eigp_optim(seq(1:100))
```

eigp_sampling

The Random Number Generation Function for EIGP

Description

Create a EIGP random sample.

Usage

```
eigp_sampling(n, theta, eta)
```

exp_eep 9

Arguments

n Number of observations. (n>=1)

theta The location parameter for the parent IGP distribution (eta = 1). The value needs

to be positive.

eta The exponent parameter. The parameter should be positive.

Details

```
eigp_sampling
```

Value

This function returns a numerical vector of size n.

Examples

```
eigp_sampling(100,1,1)
```

exp_eep	The negative log density of a sample item if it follows exponential in a
	EED madal

Description

This function return the negative log density of a sample item if if it follows exponential in a EEP model.

Usage

```
exp_eep(x, theta, eta)
```

Arguments

x The value of a sample item.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
exp_exp
```

Value

This function return the negative log density of a sample item if it follows exponential in a EEP model.

10 hazard_eigp

Examples

```
exp_eep(1,5,2)
```

hazard_eep

The hazard function of EEP.

Description

hazard_eep

Usage

```
hazard_eep(theta, eta, data)
```

Arguments

The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data Observations.

Value

Return the hazard of EEP at the specific location.

Examples

```
hazard_eep(2,1,5)
plot(hazard_eep(2,1,seq(0.01,100,by=0.01)))
```

hazard_eigp

The hazard function of EIGP.

Description

hazard_eigp

Usage

```
hazard_eigp(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data Observations.

inv_gamma_eigp 11

Value

Return the hazard of EIGP at the specific location.

Examples

```
hazard_eigp(1,2,5)
plot(hazard_eep(2,1,seq(0.01,100,by=0.01)))
```

inv_gamma_eigp

The negative log density of a sample item if it follows inverse gamma in a EIGP model

Description

This function return the negative log density of a sample item if if it follows inverse gamma in a EIGP model.

Usage

```
inv_gamma_eigp(x, theta, eta)
```

Arguments

x The value of a sample item.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
inv_gamma_eigp
```

Value

This function return the negative log density of a sample item if if it follows inverse gamma in a EIGP model.

```
inv_gamma_eigp(1,5,2)
```

12 LRT_eigp

LRT_eep	${\it Likelihood~Ratio~Test~(LRT)} \ for \ the \ exponent \ parameter \ in \ EEP \ model.$
---------	--

Description

This function computes the test statistic and the p-value of LRT for the exponent parameter in EEP model.

Usage

```
LRT_eep(data, theta0, theta1, eta1)
```

Arguments

theta0 The MLE of theta when eta = 1. theta1 The unrestricted MLE of theta. eta1 The unrestricted MLE of eta.

Details

```
LRT_eep
```

Value

This function returns the test statistic and the p-value of the LRT test

Examples

```
sample1 = eep_sampling(200,eta = 1.1,theta = 6)
eta1 = mle_search_eep(data = sample1)$eta
theta1 = mle_search_eep(data = sample1)$theta
theta0 = mle_iter_eep(data = sample1,eta = 1)
LRT_eep(sample1,theta0,theta1,eta1)
```

LRT_eigp Likelihood Ratio Test (LRT) for the exponent parameter in EIGP model.

Description

This function computes the test statistic and the p-value for LRT for the exponent parameter in EIGP model.

mle_eep

Usage

```
LRT_eigp(data, theta0, theta1, eta1)
```

Arguments

data Observations.

theta0 The MLE of theta when eta = 1. theta1 The unrestricted MLE of theta. eta1 The unrestricted MLE of eta.

Details

```
LRT_eigp
```

Value

This function returns the test statistic and the p-value from the LRT test

Examples

```
sample1 = eigp_sampling(200,eta = 1.1,theta = 3)
eta1 = mle_search_eigp(data = sample1)$eta
theta1 = mle_search_eigp(data = sample1)$theta
theta0 = mle_iter_eigp(data = sample1,eta = 1)
LRT_eigp(sample1,theta0,theta1,eta1)
```

mle_eep

Analytical solution of theta given eta in EEP model.

Description

This function provides the analytical solution of theta for given eta EEP model.

Usage

```
mle_eep(s, m, n)
```

Arguments

A numeric value the sum of log(1/x_i^eta), where i is from 1 to m.

m is the number of data items less than the density change point.

n is the sample size, n has to be greater than m.

Details

```
mle_eep
```

14 mle_eigp

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta

Examples

```
mle_eep(5,2,5)
```

mle_eigp

Analytical solution of theta given eta in EIGP model.

Description

This function provides the analytical solution of theta for given eta EIGP model.

Usage

```
mle_eigp(s, m, n)
```

Arguments

s a numeric value the sum of log(1/x_i^eta), where i is from 1 to m.

m is the number of data items less than the density change point.

n is the sample size, n has to be greater than m.

Details

```
mle_eigp
```

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta.

```
mle_eigp(5,2,5)
```

mle_iter_eep 15

mle_iter_eep	Iteration function to find the analytical solution of theta given eta and data in EEP model.

Description

This function finds the analytical solution of theta given eta and data in EEP model.

Usage

```
mle_iter_eep(data, eta)
```

Arguments

data Observations.

eta The exponent parameter. This value is greater than 0.

Details

```
mle_iter_eep
```

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta with data.

Examples

```
mle_iter_eep(seq(1:100),2)
```

mle_iter_eigp	Iteration function to find the analytical solution of theta given eta and
	data in EIGP model.

Description

This function finds the analytical solution of theta given eta and data in EIGP model.

Usage

```
mle_iter_eigp(data, eta)
```

Arguments

data	Observations

eta The exponent parameter. This value is greater than 0.

mle_search_eep

Details

```
mle_iter_eigp
```

Value

This function returns the Maximum Likelihood Estimate of theta for a given eta with data.

Examples

```
mle_iter_eigp(seq(1:100),2)
```

mle_search_eep

The grid search procedure for parameter estimation of EEP.

Description

This function find the parameter estimates of EEP through a grid search procedure.

Usage

```
mle_search_eep(eta_seq = seq(0.5, 10, by = 0.01), data)
```

Arguments

eta_seq A predefined range for eta values. The default is c(0.5,10,by=0.01)

data Observations.

Details

```
mle_search_eep
```

Value

This function returns a data frame as the parameter estimates for EEP from grid search methods.

```
sample1 = eep_sampling(200,eta = 2,theta = 3)
mle_search_eep(data = sample1)
```

mle_search_eigp 17

-		
mle	search	eign

The grid search procedure for parameter estimation of EIGP.

Description

This function find the parameter estimates of EIGP through a grid search procedure.

Usage

```
mle_search_eigp(eta_seq = seq(0.5, 10, by = 0.01), data)
```

Arguments

eta_seq A predefined range for eta values. The default is c(0.5,10,by = 0.01)

data n by 1 vector with all positive entries.

Details

```
mle_search_eigp
```

Value

This function returns data frame as the parameter estimates for EIGP from grid search methods.

Examples

```
sample1 = eigp_sampling(200,eta = 2,theta = 3)
mle_search_eigp(data = sample1)
```

neg_log_eep

The negative log likelihood function for EEP distribution.

Description

This function computes the negative log-likelihood for EEP distribution.

Usage

```
neg_log_eep(y, theta, eta)
```

Arguments

y n by 1 vector with all positive entries.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

neg_log_eigp

Details

```
neg_log_eigp
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EEP model.

Examples

```
neg_log_eep(seq(1:100),2,2)
```

neg_log_eigp

The negative log likelihood function for EIGP distribution.

Description

This function computes the negative log-likelihood for EIGP distribution.

Usage

```
neg_log_eigp(y, theta, eta)
```

Arguments

y n by 1 vector with all positive entries.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
neg_log_eigp
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EIGP model.

```
neg_log_eigp(seq(1:100),2,2)
```

pareto_eep 19

pareto_eep	The negative log density of a sample item if it follows Pareto in a EEP model

Description

This function return the negative log density of a sample item if if it follows Pareto in a EEP model.

Usage

```
pareto_eep(x, theta, eta)
```

Arguments

x The value of a sample item.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
pareto_eep
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EEP model.

Examples

```
pareto_eep(10,5,2)
```

pareto_eigp	The negative log density of a sample item if it follows Pareto in a EIGP model
pareto_eigp	

Description

This function return the negative log density of a sample item if if it follows Pareto in a EIGP model.

Usage

```
pareto_eigp(x, theta, eta)
```

20 pdf_eep

Arguments

x The value of a sample item.

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

Details

```
pareto_eigp
```

Value

This function return the negative log density of a sample item if if it follows Pareto in a EIGP model.

Examples

```
pareto_eigp(10,5,2)
```

|--|

Description

```
pdf_eep
```

Usage

```
pdf_eep(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data Observations.

Value

Return the density of EEP

```
pdf_eep(1,2,5)
```

pdf_eigp 21

pdf_eigp	The probability density function of EIGP.	
----------	---	--

Description

```
pdf_eigp
```

Usage

```
pdf_eigp(theta, eta, data)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

data Observations.

Value

Return the density of EIGP

Examples

```
pdf_eigp(1,2,5)
```

q_eep	The quantile function of EEP.	
-------	-------------------------------	--

Description

q_eep

Usage

```
q_eep(theta, eta, p)
```

Arguments

theta The location parameter for the base distribution (eta = 1). The value needs to be

positive.

eta The exponent parameter. The value provided needs to be positive.

p This indicates the p-th percentile. p is greater than 0 and less than 100.

22 raw_est_eep

Value

Return the p-th percentile of EEP.

Examples

```
q_{eigp}(1,2,5)
```

q_eigp

The quantile function of EIGP.

Description

q_eigp

Usage

```
q_eigp(theta, eta, p)
```

Arguments

theta	The location parameter for the base distribution (eta $= 1$). The value needs to be positive.
eta	The exponent parameter. The value provided needs to be positive.
р	This indicates the p-th percentile. p is greater than 0 and less than 100.

Value

Return the p-th percentile of EIGP.

Examples

```
q_{eigp}(1,2,5)
```

raw_est_eep

The Optimization Function for EEP Maximum Likelihood Estimation.

Description

This function serves as the optimization function for EEP at different locations of density change points.

Usage

```
raw_est_eep(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

raw_est_eigp 23

Arguments

data Observations.

init The vector of initial values of the model parameters. The default is c(1,1). lower_bound The vector of the lower bound for the parameters. The default is c(0.01,0.01).

Details

```
raw_est_eep
```

Value

The matrix with estimates of theta and eta for n-1 different locations of density change points (1st column for theta, 2nd column for eta).

Examples

```
raw_est_eep(seq(1:100))
```

raw_est_eigp The Optimization Function for EIGP Maximum Likelihood Estimation.

Description

This function serves as the optimization function for EIGP at different locations of density change points.

Usage

```
raw_est_eigp(data, init = c(1, 1), lower_bound = c(0.01, 0.01))
```

Arguments

data Observations.

init The vector of initial values of the model parameters. The default is c(1,1). lower_bound The vector of the lower bound for the parameters. The default is c(0.01,0.01).

Details

```
raw_est_eigp
```

Value

The matrix with estimates of theta and eta for n-1 different locations of density change points (1st column for theta, 2nd column for eta).

```
raw_est_eigp(seq(1:100))
```

24 se_eigp

se_eep	The function for calculating the standard errors of the parameters of EEP model.
	EEP model.

Description

This function find the parameter estimates of EEP through a grid search procedure.

Usage

```
se_eep(data, theta, eta)
```

Arguments

data	Observations.
theta	The MLE of theta
eta	The MLE of eta

Details

se_eep

Value

The estimate of SE for theta and eta

Examples

```
sample1 = eep_sampling(200,eta = 2,theta = 3)
theta = mle_search_eep(data = sample1)$theta
eta = mle_search_eep(data = sample1)$eta
se_eep(sample1,theta,eta)
```

Description

This function find the parameter estimates of EIGP through a grid search procedure.

Usage

```
se_eigp(data, theta, eta)
```

validation 25

Arguments

data Observations.

theta The MLE of theta

eta The MLE of eta

Details

se_eigp

Value

The estimate of SE for theta and eta

Examples

```
sample1 = eigp_sampling(200,eta = 2,theta = 3)
theta = mle_search_eigp(data = sample1)$theta
eta = mle_search_eigp(data = sample1)$eta
se_eigp(sample1,theta,eta)
```

validation

The validation Function for Model Parameters.

Description

This function checks if the estimates from raw_est_eigp or raw_est_eep satisfy the pre-defined conditions for the parameters.

Usage

```
validation(data, estimate)
```

Arguments

data Observations.

estimate The data frame with 2 columns named 'theta' and 'eta'.

Details

validation

Value

A Boolean vector.

26 validation

```
 \begin{array}{l} {\rm estimate = raw\_est\_eigp(seq(1:100),init = c(1,1),lower\_bound = c(0.01,0.01))} \\ {\rm estimate = data.frame(estimate)} \\ {\rm colnames(estimate) = c('theta','eta')} \\ {\rm validation(seq(1:100),estimate)} \\ \end{array}
```

Index

```
asymptotic_eep, 2
                                                   raw_est_eigp, 23
asymptotic_eigp, 3
                                                   se_eep, 24
cdf_eep, 4
                                                   se_eigp, 24
cdf_{eigp}, 4
                                                   validation, \color{red} 25
eep_nl1, 5
eep_optim, 6
eep_sampling, 6
eigp_nll, 7
eigp_optim, 8
\verb|eigp_sampling|, 8
exp_eep, 9
hazard_eep, 10
hazard_eigp, 10
inv_gamma_eigp, 11
LRT_eep, 12
LRT_eigp, 12
mle_eep, 13
mle_eigp, 14
mle_iter_eep, 15
mle_iter_eigp, 15
mle_search_eep, 16
mle_search_eigp, 17
neg_log_eep, 17
neg_log_eigp, 18
pareto_eep, 19
pareto_eigp, 19
pdf_eep, 20
pdf_eigp, 21
q_eep, 21
q_eigp, 22
raw_est_eep, 22
```