Rotations, Gram-Schmidt orthogonalization

- 1. Let $\begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\top} \in \mathbb{R}^2$ and $r := \sqrt{x_1^2 + x_2^2}$. Determine a rotation $G \in \mathbb{R}^{2 \times 2}$ and $\begin{bmatrix} y_1 & y_2 \end{bmatrix}^{\top} \in \mathbb{R}^2$ such that $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = G \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $y_1 = y_2$.
- 2. Let $A:=\begin{bmatrix}\mathbf{a}_1&\cdots&\mathbf{a}_n\end{bmatrix}\in\mathbb{R}^{n\times n}$. Then A satisfies the Hadamard's determinant inequality

$$|\det(A)| \le \prod_{j=1}^n \|\mathbf{a}_j\|_2.$$

Your task is to prove the Hadamard's inequality using QR factorization of A. Let A = QR be a QR factorization of A and let $R = \begin{bmatrix} \mathbf{r}_1 & \cdots & \mathbf{r}_n \end{bmatrix}$ be the column partition of R.

- (a) Show that $\|\mathbf{a}_j\|_2 = \|\mathbf{r}_j\|_2$ for j = 1 : n.
- (b) Show that $|\det(Q)| = 1$.
- (c) Show that $|\det(A)| = \prod_{j=1}^n |r_{jj}| \le \prod_{j=1}^n \|\mathbf{a}_j\|_2$, where r_{11}, \ldots, r_{nn} are diagonal entries of R.
- (d) Suppose the columns of A are nonzero. Show that $|\det(A)| = \prod_{j=1}^{n} ||\mathbf{a}_j||_2 \iff$ the columns of A are orthogonal.
- 3. Let $A \in \mathbb{R}^{m \times n}$. Suppose that $\operatorname{rank}(A) = n$. Consider the compact QR factorization A = QR, where $Q \in \mathbb{R}^{m \times n}$ is an isometry and $R \in \mathbb{R}^{n \times n}$ is upper triangular with positive diagonal entries. Partitioning A, Q and R as

$$[A_1 \quad A_2] = [Q_1 \quad Q_2] \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix},$$
 (**)

where $A_1 \in \mathbb{R}^{m \times k}$, we obtain a block algorithm for the QR factorization (**):

- 1. Compute the unique compact QR factorization $A_1 = Q_1 R_{11}$
- 2. Compute $R_{12} \leftarrow Q_1^T A_2$
- 3. Compute $A_2 \leftarrow A_2 Q_1 R_{12}$
- 4. Recursively continue with A_2

Show that for k = 1 the resulting algorithm is the same as the Modified Gram-Schmidt method (MGS). Show that for k = n - 1 the resulting algorithm is the same as the Classical Gram-Schmidt method (CGS).

****** End *****