CSci 423 Homework 10

Due: 1:00 pm, Wednesday, 11/28 Eric Shih

- 1. (10 points) Prove that $A = \{w_{2i} | w_{2i} \notin L(M_i)\}$ is not Turing-recognizable, where w_{2i} is the 2*i*th string in the lexicographic order of binary strings and M_i is the TM whose binary cod e is w_i .
 - Assume that A is Turing Recognizable, such that \exists TM M such that A = L(M). $M + M_i$ with code w_i for some i. $w_{2i} \in A_D$ if and only if $w_{2i} \notin L(M_i)$ by definition of A. $w_{2i} \in A$ if and only if $w_{2i} \in L(M_1)$ by $A = L(M_{2i})$. This gives us a contradiction proving that A is not Truing Recognizable.
- 2. (10 points) Exercise 5.1 on page 211. (Hint: Reduction from *ALL_{CFG}* on page 197.) *reference www.cs.uml.edu/ giam/91.304/Spring06/tf11*
 - Assume it is decidable. Then there exists a TM R that decides EQ_{CFG} . A construction of TM S that uses R to decide ALL_{CFG} follows.
 - S = On input G, where G is a CFG:
 - 1. Run R on input G, G1 where G1 isa CFG that generates .
 - 2. If R accepts, accept; if R rejects, reject.
 - If R decides EQ_{CFG} , S decides ALL_{CFG} . But ALL_{CFG} is undecidable, so EQ_{CFG} must also be undecidable.
- 3. (10 points) Problem 5.12 on page 211. (Hint: Reduction from A_{TM} .) *reference www.cs.uml.edu/ giam/91.304/Spring06/tf11*
 - First modify *M* so that all of its transitions that WRITE a blank over a non blank are replaced by writing a new, different symbol. Then the modified *M* will accept exactly the same set of strings without ever writing a blank over a non- blank. The encompassing TM *S* of the last problem must:
 - a) change each M as indicated,
 - b) run *M* and at all acceptances make sure that a blank is now written over a non-blank: you may have to move left one or more positions, but, since the initial input was NOT blank and you never overwrote a blank with a non-blank, there must be at least one non-blank for you to overwrite.
 - The submachine that carries out a) and b) is the desired machine R. Now run this machine through the T that is supposed to decide the blank/non-blank. Any machine R that writes a blank must have resulted from a modified M stopping; any machine R that is rejected (did not write a blank) must have come from an M that did NOT stop. So we have a decision for A_{TM} .
- 4. (10 points) Prove that $ES_{TM} = \{\text{code of M: TM M accepts the empty string}\}\$ is undecidable. (Hint: Reduction from A_{TM} .)
 - We will show TM M to be undecidable by reducing A_{TM} to M. Assume that M can decide ES_{TM} . Then M will be used to construct TM M_A to show that A_{TM} is decidable.
 - $M_A = \text{On input} < M, w >$

- 1. Construct a TM M_v that runs on an input string v such that:
 - (a) Replace every symbol with a blank symbol.
 - (b) Write w on its input tape.
 - (c) Run M on w. If M accepts w, M accepts, otherwise M rejects.
- 2. Run M_v on M. If M accepts, accept, otherwise, reject.

This will decide A_{TM} , which is a contradiction because A_{TM} is undecidable, which proves ES_{TM} to be undecidable.