

Hall switch sensor

1 Product Features ÿ

Low power

consumption - 5Hz version: 1.6uA@1.8V -

20Hz version: 3.3uA@1.8V ÿ Wide operating

voltage range: 1.6V~5.5V ÿ Magnetic field threshold

optional (Bop) - 33Gs low threshold

- 46Gs high threshold ÿ Omni-

polar magnetic field detection

ÿ CMOS push-pull output ÿ

Package: SOT-553 ÿ Operating

temperature range: -40ÿ~85ÿ ÿ Excellent ESD

performance: HBM 8KV ÿ RoHS compliant

2 Typical applications ÿ

Laptop and tablet switch detection ÿ TWS headsets, mobile

phones ÿ Electronic locks, valve

position detection ÿ Water meters, gas meters,

flow meters ÿ Non-contact detection

3 Application circuit schematic diagram

Note: In order to filter the noise at the power supply end of the chip, a 100nF capacitor needs to be connected between

the power supply and ground, and the capacitor should be as close to the VDD pin as possible.

4 Overview

systems and It is a low-power Hall switch sensor designed for space-constrained battery-sensitive systems. The chip is available in a variety of magnetic field thresholds, switching operating frequencies and packaging styles to suit various applications. When the

applied S-pole or N-pole magnetic induction intensity exceeds the operating point BOP, the chip outputs a low level and remains low. Until the S pole or N pole magnetic induction intensity is lower than the release point BRP, the chip outputs a high level.

The chip has built-in temperature compensation circuit and clock logic circuit to ensure the stable operating point and switching frequency of the chip. The chip can provide omnipolar magnetic

can operate response with extremely low current consumption. The SL1605 package 5.5V and use within status of the status of the

TODAY-553

5 pin definition and labeling information

Pin name	Pin number	Function description
VDD	4	Power input terminal
OUTPUT	5	Output
GND	2	Ground terminal
NC	1ÿ3	vacant end

2

6Functional block diagram

7Switch output characteristics

As shown in the figure below, when the south pole of the magnet is close to the top of the chip, the magnetic field lines pass from the bottom to the top of the chip, and the magnetic induction intensity B is considered to be positive at this time; when the north pole of

Output characteristics

8 product model composition

9Absolute maximum ratings (@TA=+25ÿ, unless otherwise stated)

project	Parameter Description	numerical value	unit
VDD supply v	oltage	6	IN
VDD_REV rever	se supply voltage	-0.3	IN
IOUTPUT outpu	t drive current	5	mA
B magnetic	induction intensity	unlimited	Gauss
PD package		400	mW
TSTG operatir	g temperature range	-50ÿ + 150	оС
The highest temper	erature resistance of TJ junction	+150	оС
ESD HBM Human	Body Model ESD Capability	8000	IN

NOTE: Exceeding absolute maximum ratings may cause permanent damage. Operating under absolute maximum rated conditions for a long time may affect the reliability of the chip.

Reliability.

10Reference working conditions (@TA=+25ÿ, unless otherwise specified)

project	project Parameter working		numerical value	unit
VDD	description Supply voltage	conditions chip	1.6ÿ5.5	IN
FACING	range Operating temperature range	working chip working	-40ÿ85	οС

11 Electrical parameters (@TA=+25ÿ, VDD=1.8V unless otherwise specified)

SL1605-TX series						
project	Parameter Description	working conditions	Minimum valu	e. Typical value Ma	ximum value unit	
VDD	Supply voltage	working status	1.6	-	5.5	IN
VOL	Output low level	IOUT=1mA	-	0.02	0.1	IN
VOH	Output high level	IOUT=1mA	VDD-0.1	VDD-0.02 — V		
IDD(AVG)	average current	TA=+25ÿÿVDD=1.8V	-	3.30	— uA	
IDD (awake)	Wake-up state current	TA=+25ÿÿVDD=1.8V	-	2.0	— mA	
IDD(Sleep)	Sleep state current	TA=+25ÿÿVDD=1.8V	-	1.00		uA
DRUGS	wake time	working status	-	5	— ÿs	
TPERIOD	cycle	working status	-	80	— ms	

SL1605

SL1605-SX series						
project	Parameter Description	working conditions	Minimum va	lue. Typical value	e Maximum val	ue unit
VDD	Supply voltage	working status	1.6	-	5.5	IN
VOL	Output low level	IOUT=1mA	-	0.02	0.1	IN
VOH	Output high level	IOUT=1mA	VDD-0.1	VDD-0.02 —	V	
IDD(AVG)	average current	TA=+25ÿÿVDD=1.8V	-	1.6	— uA	
IDD (awake)	Wake-up state current	TA=+25ÿÿVDD=1.8V	-	2.0	— mA	
IDD(Sleep)	Sleep state current	TA=+25ÿÿVDD=1.8V	-	1.0		uA
DRUGS	wake time	working status	-	5	— ÿs	
TPERIOD	cycle	working status	-	200	— ms	

Note: After the chip is powered on (VDD is 1.6V~5.5V), the output starts sampling, and the output status is valid after the second working cycle.

12 Magnetic parameters (@TA=+25ÿ, VDD=1.8V unless otherwise specified)

project	Parameter Description	working conditions	Minimum va	lue. Typical va	lue Maximum v	alue unit
SL1605-XH series						
BOPS	Magnetic field operating	point TA=+25ÿ, VDD=1.8V	40	46	52	
BRPS	Magnetic field release po	oint TA=+25ÿ, VDD=1.8V	26	34	38	
BOPN	Magnetic field operating	point TA=+25ÿ, VDD=1.8V	-52	-46	-40	Gauss
BRPN	Magnetic field release po	pint TA=+25ÿ, VDD=1.8V	-38	-34	-26	
BHY (BOPX - BRPX)	Hysteresis			12		

project	Parameter Description	working conditions	Minimum value. Ty	pical value Maximum va	alue unit	
SL1605-XL series						**************************************
BOPS	Magnetic field operating	g point TA=+25ÿ, VDD=1.8V	26	33	38	
BRPS	Magnetic field release	point TA=+25ÿ, VDD=1.8V	16	23	28	
BOPN	Magnetic field operating	g point TA=+25ÿ, VDD=1.8V	-38	-33	-28	Gauss
BRPN	Magnetic field release	point TA=+25ÿ, VDD=1.8V	-28	-23	-16	
BHY (BOPX - BRPX)	Hysteresis			10		

13Performance curve graph

SL1605-XH series (high threshold version)

www.slkormicro.com

SL1605-XL series (low threshold version)

Magnetic field threshold vs. supply voltage @TA=25ÿ

Magnetic field threshold vs temperature @VDD=1.6V

Magnetic field threshold vs temperature @VDD=1.8V

Magnetic field threshold vs temperature @VDD=5.5V

Average operating current vs. supply voltage @ TA=25ÿ

Average operating current vs. supply voltage @ TA=25ÿ

SL1605

14Ordering information

model	Package Type Nu	mber of Pins M	agnetic Field Threshold (Bop)	Switching Frequen	cy Temperature	
SL1605-TH	TODAY-553	3	46Gauss	20Hz	-40ÿ~85ÿ	
SL1605-TL	TODAY-553	3	33Gauss	20Hz	-40ÿ~85ÿ	
SL1605-SH	TODAY-553	3	46Gauss	5Hz	-40ÿ~85ÿ	
SL1605-SL	TODAY-553	3	33Gauss	5Hz	-40ÿ~85ÿ	

TODAY-553

	Dimensions in	Millimeters	
Symbol	Min.	Max.	
А	0.45	0.60	
A1	0.00	0.05	
b	0.17	0.27	
С	0.09	0.16	
It is	0.45	0.55	
D	1.50	1.70	
AND	1.50	1.70	
E1	1.10	1.30	
L	0.10	0.30	
i	7°REF		