日本国特許

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されてる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed this Office.

1999年 3月31日

額 番 号

blication Number:

平成11年特許願第092530号

類 人

icant (s):

三洋電機株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2000年 3月10日

特許庁長官 Commissioner, Patent Office

近藤隆

特平11-092530

【書類名】

特許願

【整理番号】

ECA0990023

【提出日】

平成11年 3月31日

【あて先】

特許庁長官殿

【国際特許分類】

H04N 5/782

【発明者】

【住所又は居所】

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】

山崎 明

【発明者】

【住所又は居所】

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会

社内

【氏名】

毎田 佳秋

【特許出願人】

【識別番号】

000001889

【氏名又は名称】

三洋電機株式会社

【代理人】

【識別番号】

100086391

【弁理士】

【氏名又は名称】

香山 秀幸

【手数料の表示】

【予納台帳番号】

007386

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9300341

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 映像記録装置、映像再生装置および映像記録再生装置【特許請求の範囲】

【請求項1】 各フィールドの垂直ブランキング期間に所定のVBI信号が 多重されている映像信号を記録媒体に記録する映像記録装置において、

映像信号をデジタルの映像データに変換するAD変換手段、

デジタルの映像データから、1フィールド単位毎にVBIデータを分離するとともに、分離したVBIデータを符号化してVBI符号化データを生成するVBI分離符号化手段、

VBIデータが分離された後の映像データを1フィールド単位毎に圧縮する映像データ圧縮手段、

映像データ圧縮手段によって得られた各フィールドの圧縮映像データに、当該フィールドに対応するVBI符号化データを付加するVBI符号化データ付加手段、および

VBI符号化データ付加手段によってVBI符号化データが付加された圧縮映像データを記録媒体に記録する記録手段、

を備えていることを特徴とする映像記録装置。

【請求項2】 VBI分離符号化手段は、

映像データから1フィールド単位毎にVBIデータを分離する手段、

分離されたVBIデータを所定レベルでスライスすることによって、VBIデータをビット方向に圧縮する第1のVBIデータ圧縮手段、および

第1のVBIデータ圧縮手段によって得られた圧縮VBIデータを、所定データ数単位毎に平均化して時間軸方向に圧縮する第2のVBIデータ圧縮手段、

を備えている請求項1に記載の映像記録装置。

【請求項3】 請求項1記載の映像記録装置によって記録媒体に記録された データを再生する映像再生装置であって、

記録媒体からVBI符号化データが付加されている圧縮映像データを読み取る手段、

記録媒体から読み取られた圧縮映像データからVBI付加データを分離すると

ともに分離したVBI付加データを復号化してVBIデータを生成するVBI分離復号化手段、

VBI符号化データが分離された後の圧縮映像データを1フィールド単位毎に 伸張する映像データ伸張手段、

映像データ伸張手段によって得られた各フィールドの映像データに、当該フィールドに対応するVBIデータを付加するVBIデータ付加手段、および VBIデータ付加手段によってVBIデータが付加された映像データをアナログの映像信号に変換するDA変換手段、

を備えていることを特徴とする映像再生装置。

【請求項4】 各フィールドの垂直ブランキング期間に所定のVBI信号が 多重されている映像信号を記録媒体に記録する記録装置と、記録媒体に記録され たデータを再生する再生装置とを備えた映像記録再生装置において、

記録装置は、映像信号をデジタルの映像データに変換するAD変換手段、デジタルの映像データから、1フィールド単位毎にVBIデータを分離するとともに、分離したVBIデータを符号化してVBI符号化データを生成するVBI分離符号化手段、VBIデータが分離された後の映像データを1フィールド単位毎に圧縮する映像データ圧縮手段、映像データ圧縮手段によって得られた各フィールドの圧縮映像データに、当該フィールドに対応するVBI符号化データを付加するVBI符号化データ付加手段、およびVBI符号化データ付加手段によってVBI符号化データが付加された圧縮映像データを記録媒体に記録する記録手段を備えており、

再生装置は、記録媒体からVBI符号化データが付加されている圧縮映像データを読み取る手段、記録媒体から読み取られた圧縮映像データからVBI付加データを分離するとともに分離したVBI付加データを復号化してVBIデータを生成するVBI分離復号化手段、VBI符号化データが分離された後の圧縮映像データを1フィールド単位毎に伸張する映像データ伸張手段、映像データ伸張手段によって得られた各フィールドの映像データに、当該フィールドに対応するVBIデータを付加するVBIデータ付加手段、およびVBIデータ付加手段によってVBIデータが付加された映像データをアナログの映像信号に変換するDA

変換手段を備えていることを特徴とする映像記録再生装置。

【請求項5】 VBI分離符号化手段は、

映像データから1フィールド単位毎にVBIデータを分離する手段、

分離されたVBIデータを所定レベルでスライスすることによって、VBIデータをビット方向に圧縮する第1のVBIデータ圧縮手段、および

第1のVBIデータ圧縮手段によって得られた圧縮VBIデータを、所定データ数単位毎に平均化して時間軸方向に圧縮する第2のVBIデータ圧縮手段、

を備えている請求項3に記載の映像記録再生装置。

【発明の詳細な説明】

[0001]

[0002]

【発明の属する技術分野】

この発明は、映像記録装置、映像再生装置および映像記録再生装置に関する。

【従来の技術】

複数台の監視カメラによって撮像された映像を1フィールド期間毎に順番に切り替えて出力するマルチプレクサからの時分割多重映像信号を、画像圧縮装置によって圧縮し、圧縮データをビデオテープに記録する記録装置と、ビデオテープに記録された圧縮データを読み取り、読み取った圧縮データを画像伸張装置よって伸張させてマルチプレクサに出力する再生装置とを備えた映像記録再生装置が既に開発されている。

[0003]

このような場合、時分割多重映像信号に含まれている各フィールドが、いずれの監視カメラによる映像であるかを示すカメラ番号等の情報が、マルチプレクサによって、各フィールドの垂直ブラキング期間にVBI信号として多重せしめられる。そして、このVBI信号もビデオテープに記録される。

再生時においては、ビデオテープに記録されている映像信号およびVBI信号 も再生される。そして、VBI信号に含まれているカメラ番号に基づいて、所望 の監視カメラからの再生映像信号のみが選択されて表示される。

[0004]

【発明が解決しようとする課題】

この発明は、VBI信号に対する記録データ量の低減化を図ることができる映像記録装置、映像再生装置および映像記録再生装置を提供することを目的とする

[0005]

【課題を解決するための手段】

この発明による映像記録装置は、各フィールドの垂直ブランキング期間に所定のVBI信号が多重されている映像信号を記録媒体に記録する映像記録装置において、映像信号をデジタルの映像データに変換するAD変換手段、デジタルの映像データから、1フィールド単位毎にVBIデータを分離するとともに、分離したVBIデータを符号化してVBI符号化データを生成するVBI分離符号化手段、VBIデータが分離された後の映像データを1フィールド単位毎に圧縮する映像データ圧縮手段、映像データ圧縮手段によって得られた各フィールドの圧縮映像データに、当該フィールドに対応するVBI符号化データを付加するVBI符号化データ付加手段、およびVBI符号化データ付加手段によってVBI符号化データが付加された圧縮映像データを記録媒体に記録する記録手段を備えていることを特徴とする。

[0006]

この発明による映像再生装置は、上記映像記録装置によって記録媒体に記録されたデータを再生する映像再生装置であって、記録媒体からVBI符号化データが付加されている圧縮映像データを読み取る手段、記録媒体から読み取られた圧縮映像データからVBI付加データを分離するとともに分離したVBI付加データを復号化してVBIデータを生成するVBI分離復号化手段、VBI符号化データが分離された後の圧縮映像データを1フィールド単位毎に伸張する映像データ伸張手段、映像データ伸張手段によって得られた各フィールドの映像データに、当該フィールドに対応するVBIデータを付加するVBIデータ付加手段、およびVBIデータ付加手段によってVBIデータが付加された映像データをアナログの映像信号に変換するDA変換手段を備えていることを特徴とする。

[0007]

この発明による映像記録再生装置は、各フィールドの垂直ブランキング期間に 所定のVBI信号が多重されている映像信号を記録媒体に記録する記録装置と、 記録媒体に記録されたデータを再生する再生装置とを備えた映像記録再生装置に おいて、記録装置は、映像信号をデジタルの映像データに変換するAD変換手段 、デジタルの映像データから、1フィールド単位毎にVBIデータを分離すると ともに、分離したVBIデータを符号化してVBI符号化データを生成するVB I 分離符号化手段、VBIデータが分離された後の映像データを1フィールド単 位毎に圧縮する映像データ圧縮手段、映像データ圧縮手段によって得られた各フ ィールドの圧縮映像データに、当該フィールドに対応するVBI符号化データを 付加するVBI符号化データ付加手段、およびVBI符号化データ付加手段によ ってVBI符号化データが付加された圧縮映像データを記録媒体に記録する記録 手段を備えており、再生装置は、記録媒体からVBI符号化データが付加されて いる圧縮映像データを読み取る手段、記録媒体から読み取られた圧縮映像データ からVBI付加データを分離するとともに分離したVBI付加データを復号化し てVBIデータを生成するVBI分離復号化手段、VBI符号化データが分離さ れた後の圧縮映像データを1フィールド単位毎に伸張する映像データ伸張手段、 映像データ伸張手段によって得られた各フィールドの映像データに、当該フィー ルドに対応するVBIデータを付加するVBIデータ付加手段、およびVBIデ ータ付加手段によってVBIデータが付加された映像データをアナログの映像信 号に変換するDA変換手段を備えていることを特徴とする。

[0008]

VBI分離符号化手段としては、たとえば、映像データから1フィールド単位 毎にVBIデータを分離する手段、分離されたVBIデータを所定レベルでスラ イスすることによって、VBIデータをビット方向に圧縮する第1のVBIデー タ圧縮手段、および第1のVBIデータ圧縮手段によって得られた圧縮VBIデ ータを、所定データ数単位毎に平均化して時間軸方向に圧縮する第2のVBIデ ータ圧縮手段を備えているものが用いられる。

[0009]

【発明の実施の形態】

以下、図面を参照して、この発明を、複数台の監視カメラによって撮像された映像を記録再生するデジタルVTRに適用した場合の実施の形態について説明する。

[0010]

[1] 監視システムの全体的な構成の説明

図1は、監視システムの全体的な構成を示している。

[0011]

監視システムは、4台のビデオカメラ(以下、監視カメラという)101~104と、これらの監視カメラ101~104によって得られる映像信号A~Dを入力とし、時分割多重映像信号を生成するビデオマルチプレクサ105と、ビデオマルチプレクサ105によって生成された時分割多重映像信号を圧縮してビデオテープに記録するためのデジタルVTR106と、デジタルVTR106によって再生された時分割多重映像信号のうちビデオマルチプレクサ105によって選択された映像を表示するモニタ107とを備えている。

[0012]

ビデオマルチプレクサ105は、ある1フィールド期間において監視カメラ101の映像信号Aを出力し、その次のフィールド期間で監視カメラ102の映像信号Bを出力し、その次のフィールド期間で監視カメラ103の映像信号Cを出力し、その次のフィールド期間で監視カメラ104の映像信号Dを出力するというように、1フィールド期間毎に出力する映像信号を監視カメラ101~104毎に順番に切り替えて出力する。このように、複数の監視カメラ101~104からの映像信号を時分割多重することによって得られた映像信号を時分割多重映像信号という。

[0013]

ビデオマルチプレクサ105から出力される時分割多重映像信号の各フィールドには、いずれの監視カメラ101~104からの入力映像信号A~Dであるかを示すカメラ番号A、B、C、D等の情報が垂直ブランキング期間に多重されている。以下、垂直ブランキング期間に多重された情報をVBI信号ということにする。

[0014]

ビデオマルチプレクサ105から出力される時分割多重映像信号は、デジタル VTR106に送られる。デジタルVTR106では、送られてきた時分割多重 映像信号が圧縮されてビデオテープに記録される。

[0015]

再生時には、デジタルVTR106からの再生出力(時分割多重映像信号)から、ビデオマルチプレクサ105が1フィールド毎にVBI信号を読み取り、読み取られたVBI信号によって表されるカメラ番号に基づいてそのフィールドの映像が提示すべき映像信号であるか否かを判定する。提示すべき映像信号であると判定した場合には、ビデオマルチプレクサ105内にある画像メモリにそのフィールドの映像を保存する。そして、所定フィールド分の映像が画像メモリに蓄積されると、画像メモリから映像を読み出して、モニタ107によって表示させる。

[0016]

[2] デジタルVTR106の映像信号処理回路の記録時の動作についての説明 【0017】

図2は、デジタルVTR106の映像信号処理回路の構成を示している。

[0018]

記録時には、ビデオマルチプレクサ105から送られてきたアナログの映像信号は、デコーダ11によってデジタルの映像データに変換される。デコーダ11によって得られた映像データは、VBI情報分離・符号化部12によってVBIデータが分離された後、差分ブロック13に送られる。

[0019]

VBI情報分離・符号化部12は、デコーダ11から送られてきた映像データからVBIデータを分離して、第1のFPGA(フィールドプログラマブルゲートアレイ)14に送るとともに、VBIデータをより単純な形式に符号化して第1のFPGA14に送る。

[0020]

図3は、VBIデータの符号化の具体例を示している。

[0021]

マルチプレクサ105から出力される時分割多重映像信号に含まれているVB I信号は、図3(a)(b)に示すように、10から20番目の水平ラインの垂直ブランキング期間に多重されている。これらの各水平ラインに含まれているVBI信号は、デコーダ11によって8ビット×768個のVBIデータに変換される。

[0022]

VBI情報分離・符号化部12は、まず、このVBIデータを、所定のレベルによってスライスすることにより、図3(c)に示すように、1ビット×768個のデータに変換する。そして、図3(d)に示すように、連続する8個分のデータを加算して、3ビットのデータを生成し、その最上位ビットのみをとることにより、平均化する。つまり、8個分のデータの加算値が10進法で0~3であればこれらの8個分のデータを1ビットデータ"0"に、10進法で4~8であればこれらの8個分のデータを1ビットデータ"1"に変換する。これにより、8ビット×768個のVBIデータが、1ビット×96個のVBI符号化データに変換される。

[0023]

このようなVBI符号化データの復号化は次のように行われる。VBI符号化データが"1"であれば、全て"1"の8個のデータ列に変換する。VBI符号化データが"0"であれば、全て"0"の8個のデータ列に変換する。このようして、まず、VBI符号化データを1ビット×768個のデータに変換する。次に、1ビット×768個のデータのうち、"0"のデータについては"0"を表す8ビットを割り当て、"1"のデータについては、"255"を表す8ビットを割り当てる。これにより、8ビット×768個からなるVBIデータが得られる。

[0024]

差分ブロック13は、メモリ31と、加算減算手段32とを備えている。メモリ31には、複数台の監視カメラ101~104に対応して、すなわち、4つのカメラ番号A、B、C、Dに対応して、4つの記憶領域EA、EB、EC、ED

8

が設けられている。メモリ31は、第1のFPGA14によって制御される。

[0025]

図4は、差分ブロック13の記録時の動作を示している。

[0026]

第1のFPGA14は、VBI情報分離・符号化部12から送られてくるVB Iデータに基づいてカメラ番号を解読し、差分ブロック13に入力されているフィールドに対応するカメラ番号を判別する。

[0027]

そして、第1のFPGA14は、VBI情報分離・符号化部12から出力される時分割多重映像データに含まれている、同じカメラ番号が付加されているフィールドどうしからなるフィールド群毎に、所定フィールド数周期(たとえば、6垂直期間周期)で、メモリ31内のそのフィールド群に付加されているカメラ番号に対応した領域EA、EB、EC、EDに、映像データを基本映像データとして格納するとともにその映像データを加算減算手段32をスルーさせて画像圧縮伸張回路15に送る。

[0028]

VBI情報分離・符号化部12から出力される時分割多重映像データに含まれている、同じカメラ番号が付加されているフィールドどうしからなる各フィールド群において、メモリ31内のそのフィールド群に付加されているカメラ番号に対応する領域EA、EB、EC、EDに映像データが格納されたフィールドから次に当該領域EA、EB、EC、EDに映像データが格納されるフィールドまでの間の各フィールドの映像データは、加算減算手段32に送られ、当該領域EA、EB、EC、EDに最新に格納された基本映像データとの差分がとられ、得られた差分データが画像圧縮伸張回路15に送られる。

[0029]

図4の例では、各監視カメラ101~104の画像データA1、B1、C1、D1が、メモリ31内のそのカメラ番号に対応する領域EA、EB、EC、EDにそれぞれ格納されるとともに、それらの映像データが画像圧縮伸張回路15に送られる。

[0030]

また、メモリ31に格納された各監視カメラ101~104の画像データA1、B1、C1、D1から、次にメモリ31に格納されるフィールドまでの映像データは、メモリ31内に格納されている映像データのうち、同じカメラ番号を持つ映像データとの差分が算出され、得られた差分データが画像圧縮伸張回路15に送られる。

[0031]

加算減算手段32をスルーして画像圧縮伸張回路15に送られた映像データ(基本映像データ)をI映像データといい、加算減算手段32によって基本映像データとの差分が取られた後に画像圧縮伸張回路15に送られた映像データ(差分データ)をP映像データということにする。

[0032]

画像圧縮伸張回路 1 5 では、差分ブロック 1 3 から送られてきた映像データが、フィールド単位毎にたとえば J P E G 方式で圧縮される。画像圧縮伸張回路 1 5 によって得られた圧縮映像データ(符号化データ)は、付加情報・V B I 情報付加/分離部 1 6 に送られる。

[0033]

一方、マイコン40は、付加情報・VBI情報付加/分離部16に送られた圧縮映像データがI映像データまたはP映像データであるかを示すI/P識別情報、当該圧縮映像データに対応するカメラ番号およびVBI情報符号化データを第1のFPGA14から取得し、記録時刻情報(現在の年月日分秒の情報)とともに付加情報・VBI情報付加/分離部16に送る。

[0034]

付加情報・VBI情報付加/分離部16では、画像圧縮伸張回路15によって得られた圧縮映像データに、マイコン40から送られてきた当該圧縮映像データに対応するI/P識別情報、カメラ番号、記録時刻情報等の付加情報およびVBI符号化データが付加される。付加情報・VBI情報付加/分離部16によって所定のデータが付加されたデータは、第2のFPGA17に送られる。

[0035]

第2のFPGA17は、付加情報・VBI情報付加/分離部16から送られて きたデータを、複数フィールド分のデータを含む所定ブロック単位毎に2つのメ モリ18、19に交互に書き込み、1ブロック分のデータがメモリに書き込まれ る毎に、1ブロック分のデータの書き込みが終了したメモリから、データを読み 出して、フォーマッタ20に送る。1ブロックは、この例では、オーディオに関 する情報も含めて、288トラック分のデータからなる。

[0036]

つまり、第2のFPGA17は、付加情報・VBI情報付加/分離部16から 送られてきたデータを、一方のメモリ、たとえば、第1メモリ18に書き込んで いく。そして、第1メモリ18への1ブロック分のデータの書き込みが終了する と、データを書き込むメモリが他方の第2メモリ19に切り替えられると同時に 、第1メモリ18から、データの読み出しが開始される。

[0037]

第1メモリ18から読み出されたデータは、フォーマッタ20に送られる。そ して、第1メモリ18からの1ブロック分のデータの読み出しが完了すると、読 み出しが停止せしめられる。

[0038]

この後、第2メモリ19への1ブロック分のデータの書き込みが終了すると、 データを書き込むメモリが第1メモリ18に切り替えられると同時に、第2メモ リ19から、データの読み出しが開始される。第2メモリ19から読み出された データは、フォーマッタ20に送られる。そして、第2メモリ19からの1ブロ ック分のデータの読み出しが完了すると、読み出しが停止せしめられる。以後、 同様な処理が繰り返される。

[0039]

フォーマッタ20では、送られてきたデータがビテオテープに記録できるデー タ構造のデータに変換される。フォーマッタ20によって得られたデータは、信 号記録再生部21内の記録アンプおよびビデオヘッドを介して、ビデオテープに 記録される。つまり、図5に示すように、ビデオテープには、1ブロック(28 トラック分)単位で、映像データが記録される。1ブロック単位のデータの記録

1 1

が終了する毎に、ビデオテープは停止せしめられる。ビデオテープは、停止開始 から約38トラック分空走して停止する。

[0040]

なお、第2のFPGA17およびフォーマッタ20は、マイコン40によって 制御される。

[0041]

〔3〕映像信号処理回路の再生時の動作についての説明

[0042]

再生時には、信号記録再生部21内のビデオヘッドによってビデオテープから 1ブロック単位毎にデータが読み取られる。読み取られた映像データは、信号記 録再生部21内の再生アンプおよびフォーマッタ20を介して、第2のFPGA 17に送られる。

[0043]

第2のFPGA17は、送られてきたデータを、ブロック単位毎に2つのメモリ18、19に交互に書き込んでいき、1ブロック分のデータがメモリに書き込まれる毎に、1ブロック分のデータの書き込みが終了したメモリからデータを読み出して付加情報・VBI情報付加/分離部16に送る。

[0044]

付加情報・VBI情報付加/分離部16では、送られてきた1フィールド分のデータから、カメラ番号、I/P識別情報、時刻情報等の付加情報およびVBI符号化データ等が分離される。分離されたデータは、マイコン40を介して第1のFPGA14に送られる。

[0045]

付加情報・VBI情報付加/分離部16によって所定のデータが分離された後のデータは、画像圧縮伸張回路15に送られて1フィールド単位毎に伸張される。画像圧縮伸張回路15によって得られた映像データは、差分ブロック13に送られる。

[0046]

図6は、差分ブロック13の再生時の動作を示している。

[0047]

第1のFPGA14は、マイコン40から送られてくるカメラ番号に基づいて 差分ブロック13に入力されるフィールドに対応するカメラ番号を判別するとと もに I/P 識別情報に基づいて差分ブロック13に入力されるフィールドが I映像であるか P映像であるかを判別する。

[0048]

そして、差分ブロック13に入力されるフィールドがI映像である場合には、 メモリ31内のそのフィールドに対応するカメラ番号に対応した領域EA、EB 、EC、EDにその映像データを格納するとともに、その映像データを加算減算 手段32をスルーさせてVBI情報復号化・VBI情報付加部21に送る。

[0049]

差分ブロック13に入力されるフィールドがP映像である場合には、そのP映像データ(差分データ)を加算減算手段32に送り、メモリ31内のそのフィールドに対応するカメラ番号に対応した領域EA、EB、EC、EDに最新に格納されたI映像データ(基本映像データ)との和をとる。そして、得られた映像データをVBI情報復号化・VBI情報付加部21に送る。

[0050]

図6の例では、I画像の映像データ"A1"、"B1"、"C1"、"D1"が、メモリ31内のそのフィールドに対応するカメラ番号に対応した領域EA、EB、EC、EDにそれぞれ格納されるとともにVBI情報復号化・VBI情報付加部21に送られる。

[0051]

また、P映像の映像データ"A2-A1"、"B2-B1"、"C2-C1"、"D2-D1"等が、メモリ31内のそのフィールドに対応するカメラ番号に対応した領域EA、EB、EC、EDに最新に格納されたI映像データ"A1"、"B1"、"C1"、"D1"と加算されて、元の映像に戻された後、VBI情報復号化・VBI情報付加部21に送られる。

[0052]

VBI情報復号化・VBI情報付加部21には、第1のFPGA14から、付

加情報・VBI情報付加/分離部16によって分離されたVBI符号化データも送られてくる。VBI情報復号化・VBI情報付加部21は、第1のFPGA14から送られてきたVBI符号化データを上述した方法で復号化する。そして、差分ブロック13からVBI情報復号化・VBI情報付加部21に送られてきた映像データに、その映像データに対応する復号化後のVBIデータを付加する。

[0053]

VBI情報復号化・VBI情報付加部21によって、VBIデータが付加された映像データは、エンコーダ22によってアナログの映像信号に戻された後、ビデオマルチプレクサ105に送られる。

[0054]

[4]映像信号処理回路の再生時のエラー処理についての説明

[0055]

再生時において、ビデオヘッドによってビデオテープから映像データを読み取ったデータにエラーが発生している可能性がある。このようなエラーの検出方法と、エラーを検出した場合の処理について説明する。

[0056]

図7は、ビデオテープに記録される1フィールド分のデータのフォーマットを 示している。

[0057]

1フィールド分のデータブロックは、第1ヘッダ部51、第2ヘッダ部52、第3ヘッダ部53、オーディオ付加データ部54、オーディオデータ部55および映像データ部56からなる。第1ヘッダ部51は32ワード(word)、第2ヘッダ部52は64ワード、第3ヘッダ部53は64ワード、オーディオ付加データ部54は32ワード、オーディオデータ部55は32×m(mは1以上の整数)ワード、映像データ部56は32×n(nは1以上の整数)ワードというように、各部51~56のワード数は、図7に示すように、32ワード×k(kは整数)となるように、決められている。オーディオ付加データ部54には、オーディオデータ部55のワード数を規定するmを示すデータが含まれている。

[0058]

第1ヘッダ部51には、I/P識別情報、記録時刻情報(年、月、日、時、分、秒)、カメラ番号等の付加情報が含まれている。I/P識別情報としては、たとえば、"EXFFh"が用いられ、第1ヘッダ部51の先頭にフレームヘッダとして挿入されている。ここで、"EXFFh"の"h"は"EXFF"が16 進数であることを表し、"EXFF"中の"X"が0であればI映像を、"X"が1であればP映像を表す。

[0059]

第2ヘッダ部52には、量子化テーブル(Qテーブル)が含まれている。第3ヘッダ部53には、VBI符号化データが含まれている。第3ヘッダ部53の先頭には、エラー検出用第1ヘッダ(たとえば、"E4FFh")が挿入されている。

[0060]

オーディオ付加データ部54の先頭には、エラー検出用第2ヘッダ(たとえば、"E7FFh")が挿入されている。映像データ部56の先頭には、エラー検出用第3ヘッダ(たとえば、"D8FFh")が挿入されている。映像データ部56の最後には、映像データ部の最後であることを示すエンドコード(EOI;たとえば、"D9FFh")が挿入されている。

[0061]

再生時には、第2のFPGA17は、フォーマッタ20から送られてきたデータからフレームヘッダ"EXFFh"、エラー検出用第1ヘッダ"E4FFh"、エラー検出用第2ヘッダ"E7FFh"、エラー検出用第3ヘッダ"D8FFh"およびエンドコード"D9FFh"を確認しながら、フォーマッタ20から送られてきたデータをメモリ18または19に書き込んでいく。

[0062]

第2のFPGA17は、フォーマッタ20から第2のFPGA17に送られてきたデータからフレームヘッダ"EXFFh"を検出すると、ワード数のカウントを開始する。そして、エラー検出用第1ヘッダ"E4FFh"が挿入されている位置に対応するカウント数になったときに、エラー検出用第1ヘッダが存在するか否かを確認し、エラー検出用第1ヘッダを確認できなければエラーが発生し

たと判断する。

[0063]

エラー検出用第1ヘッダ"E4FFh"が挿入されている位置に対応するカウント数になったときにエラー検出用第1ヘッダを確認できた場合には、エラー検出用第2ヘッダ"E7FFh"が挿入されている位置に対応するカウント数になったときに、エラー検出用第2ヘッダが存在するか否かを確認し、エラー検出用第2ヘッダを確認できなければエラーが発生したと判断する。

[0064]

エラー検出用第2ヘッダ"E7FFh"が挿入されている位置に対応するカウント数になったときに、エラー検出用第2ヘッダを確認できた場合には、エラー検出用第3ヘッダ"D8FFh"が挿入されている位置に対応するカウント数になったときに、エラー検出用第3ヘッダが存在するか否かを確認し、エラー検出用第3ヘッダを確認できなければエラーが発生したと判断する。

[0065]

なお、エラー検出用第3ヘッダ"D8FFh"が挿入されている位置に対応するカウント数は、オーディオ付加データ部54に含まれているオーディオデータ部55のワード数を規定するmを示すデータを取得することによって求められる

[0066]

第2のFPGA17は、エラーが発生したと判断したときには、当該フィールドの1つ前のフィールドのエンドコード(EOI)が書き込まれたアドレスまでポインタを戻し、エラーが発生したと判断したフィールドの次のフィールドのフレームへッダが送られてくるまで、そのメモリへのデータの書き込みを中止する。エラーが発生したと判断したフィールドの次のフィールドのフレームへッダが送られてくると、ポインタを1つ進めて当該フィールドのデータの書き込みを開始する。

[0067]

【発明の効果】

この発明によれば、VBI信号に対する記録データ量の低減化を図ることがで

きる映像記録装置、映像再生装置および映像記録再生装置が得られる。

【図面の簡単な説明】

【図1】

監視システムの構成を示すブロック図である。

【図2】

デジタルVTRの概略構成を示すブロック図である。

【図3】

VBI分離・VBI情報符号化部によるVBIデータの符号化方法を説明する ため の模式図である。

【図4】

差分ブロックの記録時の動作を示すタイムチャートである。

【図5】

ビデオテープにデータがブロック単位で記録されることを示す模式図である。

【図6】

差分ブロックの再生時の動作を示すタイムチャートである。

【図7】

ビデオテープに記録される1フィールド分のデータに対するフォーマットを示す模式図である。

【符号の説明】

- 12 VBI分離·VBI情報符号化部
- 13 差分ブロック
- 14 第1のFPGA
- 15 画像圧縮伸張回路
- 16 付加情報·VBI情報付加/分離部
- 17 第2のFPGA
- 18、19 メモリ
- 20 フォーマッタ
- 21 信号記録再生部
- 40 マイコン

- 31 メモリ
- 3 2 加算減算手段

【書類名】 図面

【図1】

【図	4]				
	D3	۵		D3-D1	۵
	C3	O	118811	C3-C1	
	B 3	ω	1/8/1/	A3-A1B3-B1	a
	A 3	⋖	N/KKI	A3-A1	a .
	D2	۵	136/1	D2-D1	۵
	C 2	ပ	11881	C2-C1	۵.
	82	Φ	77877	A2-A1 B2-B1	<u>α</u> .
	A 2	∢	1/4//	A2-A1	<u>α</u>
	Nex!			11/6/11/	
	1331	O		NIEN.	_
	1/8/1/	m	1788/1	1/18/1/	_
		• ◀			-
	(a) 入力映像データ [[を]] [[を]	(b) カメラ番号	(c) メモリに格納 されるデータ	(d) 出力映像データ <u>(A) ((a)</u> ((a)-(c))	(e) I/P識別情報

【図6】

(a) ヘカデータ		1/18///	1/2/1	1/6/1	/A2-A182-81 C2-C1 D2	82-81	C2-C1	위	1 A 3 - A 1 B	3 - B	1	D3-D1	1
(b) カメラ番号	⋖	മ	O	<u> </u>	∢	8	ပ	۵	∢	œ	O	۵	
(c) I/P識別情報	<u>-</u>	-	_	<u>-</u> '	٥	۵	۵	۵	<u>α</u> .	. a.	۵	<u>a</u> .	

ლ ე ဗ B 3 A 3 02 82 (e) 出力映像データ [Z ((a)+(d))

(d)メモリに格納 されるデータ

【要約】

【課題】 この発明は、VBI信号に対する記録データ量の低減化を図ることができる映像記録装置を提供することを目的とする。

【解決手段】 映像信号をデジタルの映像データに変換するAD変換手段、デジタルの映像データから、1フィールド単位毎にVBIデータを分離するとともに、分離したVBIデータを符号化してVBI符号化データを生成するVBI分離符号化手段、VBIデータが分離された後の映像データを1フィールド単位毎に圧縮する映像データ圧縮手段、映像データ圧縮手段によって得られた各フィールドの圧縮映像データに、当該フィールドに対応するVBI符号化データを付加するVBI符号化データ付加手段、およびVBI符号化データ付加手段によってVBI符号化データが付加された圧縮映像データを記録媒体に記録する記録手段を備えている。

【選択図】 図2

職権訂正履歴 (職権訂正)

特許出願の番号

平成11年 特許願 第092530号

受付番号

59900302800

書類名

特許願

担当官

鈴木 夏生

6890

作成日

平成11年 4月28日

<訂正内容1>

訂正ドキュメント

明細書

訂正原因

職権による訂正

訂正メモ

【請求項4】を【請求項5】と訂正しました。

訂正前内容

【請求項4】

訂正後内容

【請求項5】

出の願い人の履い歴の情の報

識別番号

[000001889]

1. 変更年月日

1993年10月20日

[変更理由]

住所変更

住 所

大阪府守口市京阪本通2丁目5番5号

氏 名

三洋電機株式会社