PhD Defense

Extraction and normalization of simple and structured entities in medical documents

PhD Student: Perceval Wajsburt 1

Supervisors: **Xavier Tannier**¹, **Christel Daniel**²

^{1,2} Sorbonne Université, LIMICS || {perceval.wajsburt, xavier.tannier}@sorbonne-universite.fr ² Assistance Publique des Hôpitaux de Paris, LIMICS, || {christel.daniel@aphp.fr}

Introduction

- → A large quantity of information in **textual format**
- → Medical research, patient care, hospital management need structured data

→ to follow patients, build cohorts, manage services, perform statistical studies...

- → To fill these structured databases, we extract information from documents
- → Depending on the need, we extract more or less complex entities

Mammographie:

Deux kystes à gauche situés sur le rayon de 8h à 3cm et à 6h 2cm. Le dernier déjà connu n'a pas évolué.

Conclusion:

Densité mammaire de type B ACR 3

→ "Named entities" used as is, or as building bricks for more complex objects

→ "Named entities" used as is, or as building bricks for more complex objects

→ Can be "normalized" to be guariable arruped as innuts in rule-based systems

(3)

Information extraction

- → For some needs, normalized named entities are not enough
- → We extract structured antition with multiple name and multiple labels

→ We tackle these three tasks in the biomedical and clinical domain, with non-

Domain

Medical domain

- → Technical vocabulary
- → Inherent semantic structure
- → Overlapping information
- → Textual structure (sections, lists...)

French domain

- → Fewer available resources and tools
- → Less research literature
- → Need to be interoperable with widespread mainly English resources like terminologies & ontologies

Machine learning

Pros

- → Automatic feature extraction and capture hidden patterns
- → Better generalization (especially with pre-training e.g. BERT)
- → Improvement through sample correction (i.e. more data)

Cons

- → Requires complex architectures and lots of samples
- → Hard to interpret: "blackboxes"

Research questions

- → How do we cope with **overlapping** information in textual documents?
- → In low-data contexts, can we leverage resources in other languages or existing medical knowledge to bootstrap and improve our models?
- → How do we represent information to extract complex entities from clinical reports
- → How do we extract structured entities composed of different parts & labels?

Nested named entity recognition

Classic named entity recognition

- → A named entity is a typed span of text
- → Classically, we predict a tag for each word (e.g. using the BIOUL scheme)
- → Example with two named entities in a sentence:

La patiente a un petit nodule dans le quadrant sup. ext. du sein droit

(= The patient has a small nodule in the upper outer quadrant of the right breast.)

-															
	La	patiente	a	un	petit	nodule	dans	le	quadrant	sup.	ext.	du	sein	droit	.
	Ŷ	₽	Ţ	₽	₽	Û	Û	仚	₽	₽	₽	₽	₽	Û	仚
	0	0	0	0	0	U-lesion	0	0	B-anat	l-anat	l-anat	l-anat	l-anat	L-anat	0
_	 														

nodule

monocytes

Classic named entity recognition

→ If we have **overlapping/nested** entities, the classic flat tag schemes do not work anymore

La patiente a un petit nodule dans le quadrant sup. ext. du sein droit

(= The patient has a small nodule in the upper outer quadrant of the right breast.)

	1 -			-			1	quadrant	- 1					1 1
₽	₽	Û	₽	₽	\Box	Û	₽	₽	勹	勹	¢	亽	$\hat{\mathbf{U}}$	む
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

Multiple options

Several options to predict overlapping entities

- → adapt the tagging scheme or but there are limitations
- → predict non overlapping entities layer by layer (small first, then larger ...)
 - can we improve this approach by preventing layer specialization?
- → do away with token classification and classify each possible span instead
 - can we keep a token classification step?

- → Encode the text as embeddings
- → Predict multiple labels per word
- → Convert into candidate entities
- → Filter these candidates, but keep at least one candidate for each non empty word

- → Encode the text as embeddings
- → Predict multiple labels per word
- → Convert into candidate entities
- → Filter these candidates, but keep at least one candidate for each non empty word

- → Encode the text as embeddings
- → Predict multiple labels per word
- → Convert into candidate entities
- Filter these candidates, but keep at least one candidate for each non empty word

- → Encode the text as embeddings
- → Predict multiple labels per word
- → Convert into candidate entities
- → Filter these candidates, but keep at least one candidate for each non empty word

Method 2: autoregressive model

- → Iteratively predict non overlapping entities
- → Feed back predictions to the model to prevent repetition and improve next predictions
- → Train the model with custom strategies

Example (train to predict large entities first)

Init: no entities
Step 1: predict cancer du sein

Step 2: predict sein

Step 3: predict $\emptyset \rightarrow$ we stop

	DEFT 3.1 DEFT			Г 3.2		GENIA		CC	ONLL EN	1 2003
	train	test	train	test	train	val	test	train	val	test
Language	F	R	F	R		EN			EN	
Domain	Clin	ical	Clin	nical	Bi	omedica	ıl	(General	
# docs	100	67	100	67	1599	190	213	946	216	231
# entities	5677		2167	1445	46185	4379	5515	23499	5942	5648
avg length	1.94	2.03	4.55	4.74	1.90	2.11	2.05	1.45	1.45	1.44
# unique labels	8	8	2	2	5	5	5	4	4	4
# unique texts	3449	2179	1878	1320	15441	2141	2681	8082	2809	2637
# nestings	475	422	14	4	4524	436	658	0	0	0
# same label nestings	8	2	2	1	2430	234	331	0	0	0
# crossing overlaps	1	0	0	0	0	0	0	0	0	0
# same label crossing	0	0	0	0	0	0	0	0	0	0
# superpositions	0	1	0	0	43	12	9	0	0	0

- → French and English
- → General and medical

- → Small and large
- → With more or less overlap

			DEF	Г 3.2		GENIA		CC	ONLL EN	1 2003	
	train	test	train	test	train	val	test	train	val	test	
Language	F	R	F	R		EN			EN		
Domain	Clin	Clinical		Clinical		Biomedical			General		
# docs	100	67	100	67	1599	190	213	946	216	231	
# entities	5677		2167	1445	46185	4379	5515	23499	5942	5648	
avg length	1.94	2.03	4.55	4.74	1.90	2.11	2.05	1.45	1.45	1.44	
# unique labels	8	8	2	2	5	5	5	4	4	4	
# unique texts	3449	2179	1878	1320	15441	2141	2681	8082	2809	2637	
# nestings	475	422	14	4	4524	436	658	0	0	0	
# same label nestings	8	2	2	1	2430	234	331	0	0	0	
# crossing overlaps	1	0	0	0	0	0	0	0	0	0	
# same label crossing	0	0	0	0	0	0	0	0	0	0	
# superpositions	0	1	0	0	43	12	9	0	0	0	

→ French and English→ General and medical

- → Small and large
- → With more or less overlap

	DEF	Г 3.1	DEF	Г 3.2		GENIA		CC	ONLL EN	1 2003	
	train	test	train	test	train	val	test	train	val	test	
Language	F	R	F	R		EN			EN		
Domain	Clin	Clinical		Clinical		Biomedical			General		
# docs	100	67	100	67	1599	190	213	946	216	231	
# entities	5677		2167	1445	46185	4379	5515	23499	5942	5648	
avg length	1.94	2.03	4.55	4.74	1.90	2.11	2.05	1.45	1.45	1.44	
# unique labels	8	8	2	2	5	5	5	4	4	4	
# unique texts	3449	2179	1878	1320	15441	2141	2681	8082	2809	2637	
# nestings	475	422	14	4	4524	436	658	0	0	0	
# same label nestings	8	2	2	1	2430	234	331	0	0	0	
# crossing overlaps	1	0	0	0	0	0	0	0	0	0	
# same label crossing	0	0	0	0	0	0	0	0	0	0	
# superpositions	0	1	0	0	43	12	9	0	0	0	

- → French and English
- → General and medical

- → Small and large
- → With more or less overlap

	DEF	Г 3.1	DEF	Г 3.2	1	GENIA		CC	ONLL EN	1 2003
	train	test	train	test	train	val	test	train	val	test
Language	F	R	F	R		EN			EN	
Domain	Clin	ical	Clin	nical	Bi	omedica	d	(General	
# docs	100	67	100	67	1599	190	213	946	216	231
# entities	5677		2167	1445	46185	4379	5515	23499	5942	5648
avg length	1.94	2.03	4.55	4.74	1.90	2.11	2.05	1.45	1.45	1.44
# unique labels	8	8	2	2	5	5	5	4	4	4
# unique texts	3449	2179	1878	1320	15441	2141	2681	8082	2809	2637
# nestings	475	422	14	4	4524	436	658	0	0	0
# same label nestings	8	2	2	1	2430	234	331	0	0	0
# crossing overlaps	1	0	0	0	0	0	0	0	0	0
# same label crossing	0	0	0	0	0	0	0	0	0	0
# superpositions	0	1	0	0	43	12	9	0	0	0

- → French and english
- → General and medical

- → Small and large
- → With more or less overlap

Nested named entity recognition

			GENIA (F1)	Exact	Half	CoNLL (F1)	Exact	Half
			Lin et al. [2019]	74.8		Lample et al. [2016]	90.9	- 2
			Shibuya and Hovy [2020]	75.5		Strubell et al. [2017]	90.7	
DEFT (F1)	Exact	Half	Luan et al. [2019]	76.2		Devlin et al. [2019]	92.8	
Copara et al. [2020]	70.7		Straková et al. [2019]*	78.3		Straková et al. [2019]	93.4	
Copara et al. [2020] (\times 3)	72.6		Wang et al. [2020]*	79.3		Yu et al. [2020]	93.5	
BERT + softmax	50.4	60.5	BERT + softmax	73.8	81.7	BERT + softmax	91.1	92.8
Autoreg short→large	74.1	84.5	Autoreg large→short	78.3	84.3	Autoreg	93.0	94.2
BiTag w/o finetuning	73.9	83.6	BiTag w/o fine-tuning	78.1	83.4	BiTag w/o finetuning	92.6	94.1
Biaffine only	73.5	82.1	Biaffine-only	78.5	83.8	Biaffine-only	92.8	94.0
BiTag	74.3	84.3	BiTag	78.4	84.3	BiTag	93.1	94.3
Autoreg short \rightarrow large (\times 3)	75.4	85.2	Autoreg large \rightarrow short (× 3)	79.0	85.1	Autoreg (× 3)	93.6	94.5
BiTag (\times 3)	75.3	85.4	BiTag (\times 3)	79.1	85.1	BiTag (× 3)	93.4	94.7

			GENIA (F1)	Exact	Half	CoNLL (F1)	Exact	Half
			Lin et al. [2019]	74.8		Lample et al. [2016]	90.9	
			Shibuya and Hovy [2020]	75.5		Strubell et al. [2017]	90.7	
DEFT (F1)	Exact	Half	Luan et al. [2019]	76.2		Devlin et al. [2019]	92.8	
Copara et al. [2020]	70.7		Straková et al. [2019]*	78.3		Straková et al. [2019]	93.4	
Copara et al. [2020] (× 3)	72.6		Wang et al. [2020]*	79.3		Yu et al. [2020]	93.5	
BERT + softmax	50.4	60.5	BERT + softmax	73.8	81.7	BERT + softmax	91.1	92.8
Autoreg short→large	74.1	84.5	Autoreg large→short	78.3	84.3	Autoreg	93.0	94.2
BiTag w/o finetuning	73.9	83.6	BiTag w/o fine-tuning	78.1	83.4	BiTag w/o finetuning	92.6	94.1
Biaffine only	73.5	82.1	Biaffine-only	78.5	83.8	Biaffine-only	92.8	94.0
BiTag	74.3	84.3	BiTag	78.4	84.3	BiTag	93.1	94.3
Autoreg short \rightarrow large (\times 3)	75.4	85.2	Autoreg large \rightarrow short (× 3)	79.0	85.1	Autoreg (\times 3)	93.6	94.5
BiTag (\times 3)	75.3	85.4	BiTag (\times 3)	79.1	85.1	BiTag (\times 3)	93.4	94.7

- → The classic token classification model fails on nested datasets
- → No noticeable difference between the two proposed models

- → Discrepancy between Exact and Half and token classification helps Half F1
- → Ensembling improves the performance

			GENIA (F1)	Exact	Half	CoNLL (F1)	Exact	Half
			Lin et al. [2019]	74.8		Lample et al. [2016]	90.9	
			Shibuya and Hovy [2020]	75.5		Strubell et al. [2017]	90.7	
DEFT (F1)	Exact	Half	Luan et al. [2019]	76.2		Devlin et al. [2019]	92.8	
Copara et al. [2020]	70.7		Straková et al. [2019]*	78.3		Straková et al. [2019]	93.4	
Copara et al. [2020] (\times 3)	72.6		Wang et al. [2020]*	79.3		Yu et al. [2020]	93.5	
BERT + softmax	50.4	60.5	BERT + softmax	73.8	81.7	BERT + softmax	91.1	92.8
Autoreg short→large	74.1	84.5	Autoreg large→short	78.3	84.3	Autoreg	93.0	94.2
→ BiTag w/o finetuning	73.9	83.6	BiTag w/o fine-tuning	78.1	83.4	BiTag w/o finetuning	92.6	94.1
Biaffine only	73.5	82.1	Biaffine-only	78.5	83.8	Biaffine-only	92.8	94.0
BiTag	74.3	84.3	BiTag	78.4	84.3	BiTag	93.1	94.3
Autoreg short \rightarrow large (\times 3)	75.4	85.2	Autoreg large \rightarrow short (\times 3)	79.0	85.1	Autoreg (\times 3)	93.6	94.5
BiTag (\times 3)	75.3	85.4	$BiTag(\times 3)$	79.1	85.1	BiTag $(\times 3)$	93.4	94.7

- → The classic token classification model fails on nested datasets
- → No noticeable difference between the two proposed models

- → Discrepancy between Exact and Half and token classification helps Half F1
- → Ensembling improves the performance

			GENIA (F1)	Exact	Half	CoNLL (F1)	Exact	Half
			Lin et al. [2019]	74.8		Lample et al. [2016]	90.9	
			Shibuya and Hovy [2020]	75.5		Strubell et al. [2017]	90.7	
DEFT (F1)	Exact	Half	Luan et al. [2019]	76.2		Devlin et al. [2019]	92.8	
Copara et al. [2020]	70.7		Straková et al. [2019]*	78.3		Straková et al. [2019]	93.4	
Copara et al. [2020] (× 3)	72.6		Wang et al. [2020]*	79.3		Yu et al. [2020]	93.5	
BERT + softmax	50.4	60.5	BERT + softmax	73.8	81.7	BERT + softmax	91.1	92.8
Autoreg short→large	74.1	84.5	Autoreg large→short	78.3	84.3	Autoreg	93.0	94.2
BiTag w/o finetuning	73.9	83.6	BiTag w/o fine-tuning	78.1	83.4	BiTag w/o finetuning	92.6	94.1
Biaffine only +0.8	73.5	82.1	+2.2 ine-only -0.1 (78.5	83.8	+0.5ne-only	92.8	94.0
BiTag	74.3	84.3	BiTag	78.4	84.3	BiTag	93.1	94.3
Autoreg short \rightarrow large (\times 3)	75.4	85.2	Autoreg large \rightarrow short (\times 3)	79.0	85.1	Autoreg (\times 3)	93.6	94.5
BiTag (\times 3)	75.3	85.4	BiTag (\times 3)	79.1	85.1	BiTag (\times 3)	93.4	94.7

- → The classic token classification model fails on nested datasets
- → No noticeable difference between the two proposed models

- → Discrepancy between Exact and Half and token classification helps Half F1
- → Ensembling improves the performance

			GENIA (F1)	Exact	Half	CoNLL (F1)	Exact	Half
			Lin et al. [2019]	74.8		Lample et al. [2016]	90.9	
			Shibuya and Hovy [2020]	75.5		Strubell et al. [2017]	90.7	
DEFT (F1)	Exact	Half	Luan et al. [2019]	76.2		Devlin et al. [2019]	92.8	
Copara et al. [2020]	70.7		Straková et al. [2019]*	78.3		Straková et al. [2019]	93.4	
Copara et al. [2020] (\times 3)	72.6		Wang et al. [2020]*	79.3		Yu et al. [2020]	93.5	
BERT + softmax	50.4	60.5	BERT + softmax	73.8	81.7	BERT + softmax	91.1	92.8
Autoreg short→large	74.1	84.5	Autoreg large→short	78.3	84.3	Autoreg	93.0	94.2
BiTag w/o finetuning	73.9	83.6	BiTag w/o fine-tuning	78.1	83.4	BiTag w/o finetuning	92.6	94.1
Biaffine only	73.5	82.1	Biaffine-only	78.5	83.8	Biaffine-only	92.8	94.0
BiTag	74.3	84.3	BiTag	78.4	84.3	BiTag	93.1	94.3
Autoreg short \rightarrow large (\times 3)	75.4	85.2	Autoreg large \rightarrow short (\times 3)	79.0	85.1	Autoreg (× 3)	93.6	94.5
BiTag (× 3)	75.3	85.4	BiTag (\times 3)	79.1	85.1	BiTag (\times 3)	93.4	94.7

- → The classic token classification model fails on nested datasets
- → No noticeable difference between the two proposed models

- → Discrepancy between Exact and Half and token classification helps Half F1
- → Ensembling improves the performance

71.6

70.5

Experiments: ablations

+ Finetuning

73.3 (+1.9)

We document other findings by ablating parts of our models:

→ finetuning the encoder weights can be beneficial

82.4 (+1.5)

→ adding surrounding context to BERT embeddings improves the performance

84.5 (+0.0)

BIOUL decoding

- → optimal autoregressive order varies with the dataset

\longrightarrow KI()	→ BIOUL encoding scheme is best both for decoding and angled and antition arms.													
2 010	OK PROPERTY.		· Company		,	DEI	FT	GEN	NIA					
	DF	EFT	GE	NIA	1	Exact	Half	Exact	Half					
	Exact	Half	Exact	Half	$large \rightarrow short$		79.7	79.5	85.2					
base	71.4	80.9	78.9	84.5	0	1 3 3 5 8		3.5.76	2.2.5.					
Tagging	71.2 (-0.2)	79.2 (-1.7)	78.8 (-0.1)	83.5 (-1.0)	greedy	71.1	80.3	79.2	85.2					
Doc context			78.6 (-0.3)		short o large	71.6	80.6	78.7	85.0					
- Char CNN	71.0 (-0.4)	80.2 (-0.7)	78.8 (-0.1)	84.4 (-0.1)	DDDD		1.	B10111	1.					
FastText					DEFT	BIO enc	oding	BIOUL en	icoding					
- Pasticat	71.8 (+0.4) 81.1 (+0.2) 78				BIO decoding	70.1		71.	.3					

78.9 (+0.0)

Experiments: ablations

We document other findings by ablating parts of our models:

- → finetuning the encoder weights can be beneficial
- → adding surrounding context to BERT embeddings improves the performance
- → optimal autoregressive order varies with the dataset
- opinial dateregioserre erder varios vitar and dataset

→ BIOUL encoding scheme is best both for decoding and angoding antition CENTA									
and the second s					DEFT		GENIA		
		EFT	C .	NIA		Exact	Half	Exact	Half
	Exact	Half	Exact	Half	$large \rightarrow short$	70.5	79.7	79.5	85.2
base	71.4	80.9	78.9	84.5	greedy	71.1	80.3	79.2	85.2
 Tagging 	71.2 (-0.2)	79.2 (-1.7)	78.8 (-0.1)	83.5 (-1.0)	0 0	TO STREET, AND S			United the State of the State o
Doc context	70.6 (-0.8)	80.2 (-0.7)	78.6 (-0.3)	85.0 (-0.2)	$short \rightarrow large$	71.6	80.6	78.7	85.0
Char CNN	71.0 (-0.4)	80.2 (-0.7)	78.8 (-0.1)	84.4 (-0.1)	DEFT	BIO end	odina	DIOI II as	nandina
FastText	71.8 (+0.4)	81.1 (+0.2)	78.8 (-0.1)	84.4 (-0.1)	12	2000000-00-000000000	- 0	BIOUL er	
Gentlemannen der Stille			[- 10.0121억) 1 - 10 10 10 10 10 10 10 10 10 10 10 10 10		BIO decoding	70.	1	71.	.3
+ Finetuning	/3.3 (+1.9)	82.4 (+1.5)	78.9 (+0.0)	84.5 (+0.0)	DIOIII deceding	70	_	71	6

BIOUL decoding

70.5

71.6

Experiments: ablations

We document other findings by ablating parts of our models:

- → finetuning the encoder weights can be beneficial
- → adding surrounding context to BERT embeddings improves the performance
- → optimal autoregressive order varies with the dataset

→ BIOUL encoding scheme is best both for decoding and encoding entities

			C.T.				L.I.	GEI	ATU
	DE	FT	GE	NIA		Exact	Half	Exact	Half
	Exact	Half	Exact	Half	$large \rightarrow short$	70.5	79.7	79.5	85.2
base	71.4	80.9	78.9	84.5	•				
TOTAL DESCRIPTION	1501000 71		3.000	NEW COLD COLD COLD COLD COLD COLD COLD COLD	greedy	71.1	80.3	79.2	85.2
Tagging	71.2 (-0.2)	79.2 (-1.7)	78.8 (-0.1)	83.5 (-1.0)	showt lower	71.6	00.6	70.7	05.0
 Doc context 	70.6 (-0.8)	80.2 (-0.7)	78.6 (-0.3)	85.0 (-0.2)	short o large	/1.0	80.6	78.7	85.0
Char CNN	71.0 (-0.4)	80.2 (-0.7)	78.8 (-0.1)	84.4 (-0.1)					••
	- [[[]			DEFT	BIO enc	oding	BIOUL er	acoding
FastText	71.8 (+0.4)	81.1 (+0.2)	[- [원.] 12 전 12	[- [[[[[[[[[[[[[[[[[[BIO decoding	70.	1	71.	.3
+ Finetuning	73.3 (+1.9)	82.4 (+1.5)	78.9 (+0.0)	84.5 (+0.0)	BIOUL decoding	70.		71.	
					DIOOL decoding	70.		/ 1.	

Experiments: ablations

+ Finetuning

73.3 (+1.9)

We document other findings by ablating parts of our models:

- → finetuning the encoder weights can be beneficial
- → adding surrounding context to BERT embeddings improves the performance
- → optimal autoregressive order varies with the dataset

82.4 (+1.5)

→ BIOUL encoding scheme is best both for decoding and encoding entities

	DE	TYT	CE!	VIT A		DEF		GENIA	
	DE	FT	GE	NIA		Exact	Half	Exact	Half
	Exact	Half	Exact	Half	large \chort	70.5	79.7	79.5	85.2
base	71.4	80.9	78.9	84.5	$large \rightarrow short$			2.5.76	
Tagging	71.2 (+0.2)	79.2 (-1.7)	78.8 (-0.1)	83.5 (-1.0)	greedy	71.1	80.3	79.2	85.2
Doc context	70.6 (-0.8)	80.2 (-0.7)	78.6 (-0.3)	85.0 (-0.2)	$short \rightarrow large$	71.6	80.6	78.7	85.0
Char CNN	71.0 (-0.4)	80.2 (-0.7)	78.8 (-0.1)	84.4 (-0.1)	DEFT	BIO enc	oding	BIOUL er	ocoding
FastText	71.8 (+0.4)	81.1 (+0.2)	78.8 (-0.1)	84.4 (-0.1)		ACTORISE CONTRACTOR	-	Contract State Contract Contra	
IUSTICAL	/ I.O (O.T)	01.1 (0.2)	/0.0 (0.1)	01.1 (0.1)	DIO decedine	70	1	71	2

84.5 (+0.0)

78.9 (+0.0)

BIO decoding

BIOUL decoding

70.1

70.5

71.3

71.6

Key contributions & findings

- → Two methods for overlapping NER
- → Features matter: finetune BERT and add surrounding context
- → Tag classification helps, especially w.r.t. relaxed match performance
- → Optimal autoregressive order can vary depending on the dataset
- → Exact match metric should be completed by a relaxed metric

Multilingual medical named entity normalization

A retrieval and translation problem

→ A terminology, such as the UMLS, contains concepts and at least one example/synonym for each concept Synonyms

5th metacarpal bone	C0730166
bcg vaccination	C0199804
kidney transplant	C1261317
fifth metacarpal bone	C0730166
bone of the 5th me	C0730166
café robusta	C0678439
attention	C0004268

Concepts

- → Given an extracted named entity, map it to the correct concept in a terminology
- → Some methods directly classify the named entity
- → But only English works and medium-sized terminologies < 160 000 concepts

- → Most methods search the closest synonym and lookup its concept
- → But this means larger/slower models since each synonym needs to be embedded

→ What if the source and target languages differ?

- → What if the source and target languages differ?
- → Existing literature relies synonym lookup with manual or machine translation of terminologies...

- → ... or the translation of named entities before normalizing them (Roller et al., 2018)
- → However, doing this can be a source of error and makes models more complex or dependent on external services

→ Could we skip all these steps and still normalize named entities in non-English languages against large terminologies?

Architecture of our classifier

→ Embed synonyms and concepts in a shared and language-agnostic space

→ Too many concepts, so we train on a subset first

→ Then, add missing concepts

→ Benefits
 optimizations, since
 the encoder is frozen

Untrained model initialized with BERT

Terminology subset + corpus data if any

Slow optimization train encoder & concept embeddings, full softmax

Intermediate model with low concept coverage

+ corpus data if any

Fast optimization frozen encoder, top candidates softmax

Complete model with full concept coverage

→ Too many concepts, so we train on a subset first

→ Then, add missing concepts

→ Benefits

 optimizations, since
 the encoder is frozen

→ Too many concepts, so we train on a subset first → Then, add missing concepts

Untrained model Terminology subset initialized with BERT + corpus data if any **Slow** optimization (train encoder & concept embeddings, full softmax) Intermediate model with Full terminology + corpus data if any low concept coverage

→ Too many concepts, Untrained model Terminology subset so we train on a initialized with BERT + corpus data if any subset first **Slow** optimization (train encoder & concept embeddings, full softmax) → Then, add missing Intermediate model with Full terminology concepts + corpus data if any low concept coverage → Benefits **Fast** optimization (frozen encoder, top candidates softmax) optimizations, since Complete model with full concept coverage the encoder is frozen

Experiments: data

→ Quaero dataset (2015 & 2016 versions)

Language: French

Terminology: Filtered UMLS = 766 548 concepts

Coverage: ~70% of concepts in French

Annotated training samples: 5695

→ Mantra dataset:

Languages: English, French, Spanish, Dutch and German

Terminology: Mantra terminology = 591 918 concepts

Coverage: ~65% in French/Dutch/German, 93% in Spanish, 100% for English

Annotated training samples: 0

Experiments: general results

			Quaero 2015		Quaero 2016	
	Quaero (F1)	MEDLINE	EMEA	MEDLINE	EMEA	
	[Afzal et al., 2015]	67.1	87.2		V 	
Others	[Cabot et al., 2016]	-	_	55.2	52.4	
	[Roller et al., 2018]	73.6	83.5	71.3	73.4	
Our model	no corpus annotations	73.7	76.5	75.4	72.7	
	with corpus annotations	79.0	85.1	79.0	74.3	

Mantr	a Medline (F1)	English	Spanish	French	Dutch	German
[Rol	ler et al., 2018]	_	68.7	68.6	64.8	67.9
Our	· model	81.7	74.5	71.5	70.0	76.0

→ compares favorably to the state of the art on both datasets

→ even good results with no corpus training annotations for Quaero

Experiments: general results

		Quaero 2015		Quaero 2016	
	Quaero (F1)	MEDLINE	EMEA	MEDLINE	EMEA
	[Afzal et al., 2015]	67.1	87.2		N
Others	[Cabot et al., 2016]	-	_	55.2	52.4
	[Roller et al., 2018]	73.6	83.5	71.3	73.4
Our model	no corpus annotations	73.7	76.5	75.4	72.7
	with corpus annotations	79.0	85.1	79.0	74.3

Mantra Medline (F1)	English	Spanish	French	Dutch	German
[Roller et al., 2018]		68.7	68.6	64.8	67.9
Our model	81.7	74.5	71.5	70.0	76.0

→ compares favorably to the state of the art on both datasets → even good results with no corpus training annotations for Quaero

Auxiliary experiments

We document other findings:

- → training with multilingual BERT does not improve performance vs English BERT
- → English only model + machine translation < our bilingual model
- → 2-step training does not degrade the performance, but reduces the training time

Quaero (2015) F1	MEDLINE	EMEA
mBERT (multilingual)	73.7	76.5
camemBERT (FR)	73.5	75.5
BERT (EN)	73.7	76.8

Quaero (2015) F1	MEDLINE	EMEA
Our model	73.7	76.5
with mBERT-MT	71.8	76.5
with BERT-MT	72.4	75.5

Quaero (2015) F1	MEDLINE	EMEA
~7h training 2 steps	73.7	76.5
~15h training 1 step	73.6	76.2

Auxiliary experiments

We document other findings:

→ training with multilingual BERT does not improve performance vs English BERT

- → English only model + machine translation < our bilingual model</p>
- → 2-step training does not degrade the performance, but reduces the training time

Quaero (2015) F1	MEDLINE	EMEA
mBERT (multilingual)	73.7	76.5
camemBERT (FR)	73.5	75.5
BERT (EN)	73.7	76.8

Quaero (2015) F1	MEDLINE	EMEA
Our model	73.7	76.5
with mBERT-MT	71.8	76.5
with BERT-MT	72.4	75.5

Quaero (2015) F1	MEDLINE	EMEA
~7h training 2 steps	73.7	76.5
~15h training 1 step	73.6	76.2

76.5

76.5

75.5

MEDI INE

73.7

71.8

72.4

Auxiliary experiments

We document other findings:

- → training with multilingual BERT does not improve performance vs English BERT
- → English only model + machine translation < our bilingual model</p>
- → 2-step training does not degrade the performance, but reduces the training time

Quaero (2015) F1	MEDLINE	EIVIEA
mBERT (multilingual)	73.7	76.5
camemBERT (FR)	73.5	75.5
BERT (EN)	73.7	76.8
Quaero (2015) F1	MEDLINE	EMEA

Our model

with mBERT-MT

with BERT-MT

Quaero (2015) F1	MEDLINE	EMEA
~7h training 2 steps	73.7	76.5
~15h training $1~{ m step}$	73.6	76.2

Experiments: monolingual / bilingual / multilingual

Mantra

Train ▼ Test ▶	ENG	SPA	FRE	GER	DUT	All
ENG	81.1	52.2	53.0	45.9	38.7	62.2
ENG+SPA	81.9	72.8	60.8	49.9	40.0	67.4
ENG+FRE	81.4	56.9	<u>73.7</u>	48.8	40.9	67.4
ENG+GER	81.8	55.5	56.6	<u>70.9</u>	45.2	<u>68.3</u>
ENG+DUT	81.4	55.7	55.1	51.7	<u>66.1</u>	66.6
Multilingual	81.0	73.4	74.1	72.9	68.8	75.7

0 (0045)	MEDLINE 2015			EMEA 2015		
Quaero (2015)	Prec.	Rec.	F1	Prec.	Rec.	F1
FR synonyms only	73.8	52.8	61.5	82.4	52.8	64.4
EN synonyms only	79.7	45.1	57.5	84.3	41.0	55.1
FR + EN synonyms	78.3	62.1	69.3	82.7	57.4	67.8

Given the same set of concepts

- → Bilingual > monolingual
- → Multilingual > bilingual
- → Similar languages have better co-training performance

Experiments: monolingual / bilingual / multilingual

Mantra

Train ▼ Test ▶	ENG	SPA	FRE	GER	DUT	All
ENG	81.1	52.2	53.0	45.9	38.7	62.2
ENG+SPA	81.9	72.8	60.8	49.9	40.0	67.4
ENG+FRE	81.4	56.9	73.7	48.8	40.9	67.4
ENG+GER	81.8	55.5	56.6	70.9	45.2	<u>68.3</u>
ENG+DUT	81.4	55.7	55.1	51.7	66.1	66.6
Multilingual	81.0	73.4	74.1	72.9	68.8	75.7

0 (0045)	MEDLINE 2015			EMEA 2015		
Quaero (2015)	Prec.	Rec.	F1	Prec.	Rec.	F1
FR synonyms only	73.8	52.8	61.5	82.4	52.8	64.4
EN synonyms only	79.7	45.1	57.5	84.3	41.0	55.1
FR + EN synonyms	78.3	62.1	69.3	82.7	57.4	67.8

Given the same set of concepts

- → Bilingual > monolingual
- → Multilingual > bilingual
- → Similar languages have better co-training performance

Experiments: monolingual / bilingual / multilingual

Mantra

Train ▼ Test ▶	ENG	SPA	FRE	GER	DUT	All
ENG	81.1	52.2	53.0	45.9	38.7	62.2
ENG+SPA	81.9	72.8	60.8	49.9	40.0	67.4
ENG+FRE	81.4	56.9	<u>73.7</u>	48.8	40.9	67.4
ENG+GER	<u>81.8</u>	55.5	56.6	<u>70.9</u>	45.2	<u>68.3</u>
ENG+DUT	81.4	55.7	55.1	51.7	<u>66.1</u>	66.6
Multilingual	81.0	73.4	74.1	72.9	68.8	75.7

0 (0045)	MEDLINE 2015			EMEA 2015		
Quaero (2015)	Prec.	Rec.	F1	Prec.	Rec.	F1
FR synonyms only	73.8	52.8	61.5	82.4	52.8	64.4
EN synonyms only	79.7	45.1	57.5	84.3	41.0	55.1
FR + EN synonyms	78.3	62.1	69.3	82.7	57.4	67.8

Given the same set of concepts

- → Bilingual > monolingual
- → Multilingual > bilingual
- → Similar languages have better co-training performance

Some examples

System	Example mention	Expected concept + synonyms	Predicted concept + synonyms
MI Novem	greffon renal	 C1261317 [EN] transplanted kidney [EN] kidney transplant [EN] structure of transplanted kidney 	∜
MLNorm	cinquième métacarpien	C0730166[EN] bone structure of fifth metacarpal[EN] fifth metacarpal bone	₹
	vaccination par le b.c.g	C0199804 FR] immunisation contre la tuberculose EN] bcg vaccination	⋾
	in vitro	C0681828 • [EN] in vitro study • [EN] study vitro	 C3850137 [EN] in vitro techniques [EN] technique in vitro [EN] in vitro as topic
	coffea robusta	C0678439 • [EN] coffea rubusta (food)	C1138610 • [EN] coffea arabica
mBERT-MT	cellar (translated from the French "cave")	C0042460 • [EN] vena cava structure • [EN] venae cavae	C0007634 • [EN] cell • [EN] cell structure
	be careful (translated from the French "attention")	C0004268 • [EN] attention	C3257858 EN] my thinking is usually careful and purposeful

Key contributions

- → good results even without manually annotated data using knowledge from UMLS
- → multilingual model > bilingual model > monolingual model
- → pre-training embeddings matter less than expected
- → two steps training can be used to speed up training

Structured entity extraction

Medical context

Prevention

- → Breast cancer detection using machine learning models on images
- → Validate or train using existing data: need to extract it and make it queriable

Patient follow-ups

- → Extract patient history
- → Detect lesion evolutions
- → Map different reports together

Complex entities...

Frame type	Field	Field value
12.550	score trigger	
Cancer Risk	score type	type 0 / type 1 / type 6
Cancer Risk	laterality	left / right
	temporality	overlap / before doc time
	density trigger	
Daniel desire	density type	type 1 / type 2 / type 3 / type 4
Breast density	laterality	left / right
	temporality	overlap / before doc time
	diag. trigger	
	diag. type	mammography / ultrasound /
Diagnostic procedure	organ	breast / other

laterality

angle

Radiological lesion

temporality overlap / before / after doc time
ther. trigger
ther. type surgery / other
organ breast / other
laterality left / right

temporality	overlap / before / after doc time
lesion trigger	
organ	breast / other
laterality	left / right
temporality	overlap / before doc time
quadrant	lower inner / axillary region /
size	
distance	

left / right

- → Different kinds of structured entities
- → Multiple fields per entity
- → Justify each field in the text

Lesion 1		Frame 1	Frame 2		
field	value	justification	value	justification	
trigger		[kystes], [nodules]		Plusieurs [kystes]	
organ	breast	[mammaire]	breast		
laterality	left	[Gauche]:	left	à [gauche]	
temporality	overlap		overlap		
quadrant					
size		[millimetrique]			
distance	30mm	[3 cm]			
angle	8	[8h]			

Structured entity extraction

... in complex documents

Long documents

Typos

Ambiguous sections

Overlapping, elliptic structures

PDF→text artefacts

Implicit information (e.g. time)

••

→ Let's focus on an example and extract lesion entities

Echographie mammaire:

Gauche:

2 kystes situés à 8h 3cm et 2cm sur le rayon de 6h. Ces nodules sont millimétriques.

Droite:

Pas de masse suspecte.

CONCLUSION:

→ We fill a first frame...

Echographie mammaire:

Gauche:

2 kystes situés à 8h 3cm et 2cm sur le rayon de 6h. Ces nodules sont millimétriques.

Droite:

Pas de masse suspecte.

CONCLUSION:

Lesion 1	Frame 1			
field	value	justification		
trigger		[kystes], [nodules]		
organ	breast	→ [mammaire]		
laterality	left	→ [Gauche]:		
temporality	overlap			
quadrant				
size		[millimetrique]		
distance		→ [3 cm]		
angle		▶ [8h]		

- → We fill a first frame...
- → ... part of an object referred in 2 places

Echographie mammaire:

Gauche:

2 kystes situés à 8h 3cm et 2cm sur le rayon de 6h. Ces nodules sont millimétriques.

Droite:

Pas de masse suspecte.

CONCLUSION:

Lesion 1		Frame 1	Frame 2		
field	value	justification	value	justification	
trigger		[kystes], [nodules]		Plusieurs [kystes]	
organ	breast	[mammaire]	breast		
laterality	left	[Gauche]:	left	à [gauche]	
temporality	overlap		overlap		
quadrant					
size		[millimetrique]			
distance		[3 cm]			
angle		[8h]			

→ There is a second lesion

Echographie mammaire:

Gauche:

2 kystes situés à 8h 3cm et 2cm sur le rayon de 6h. Ces nodules

sont millimétriques.

Droite:

Pas de masse suspecte.

CONCLUSION:

Lesion 2	Frame 3		Frame 2	
field	value	justification	value	justification
trigger		[kystes], [nodules]		Plusieurs [kystes]
organ	breast	[mammaire]	breast	
laterality	left	[Gauche]:	left	à [gauche]
temporality	overlap		overlap	
quadrant				
size		[millimetrique]		
distance	esparación netro stato del contento so	[2 cm]		
angle		[6h]		

- → There is a second lesion
- → The 2 lesions overlap in many places

Echographie mammaire:

Gauche:

2 kystes situés à 8h 3cm et 2cm sur le rayon de 6h. Ces nodules sont millimétriques.

Droite:

Pas de masse suspecte.

CONCLUSION:

Lesion 1	Frame 1		Frame 2	
field	value	justification	value	justification
trigger		[kystes], [nodules]		Plusieurs [kystes]
organ	breast	[mammaire]	breast	
laterality	left	[Gauche]:	left	à [gauche]
temporality	overlap		overlap	
quadrant				
size		[millimetrique]		
distance		[3 cm]		
angle		[8h]		

Lesion 2	Frame 3		Frame 2	
field	value	justification	value	justification
trigger		[kystes], [nodules]		Plusieurs [kystes]
organ	breast	[mammaire]	breast	
laterality	left	[Gauche]:	left	à [gauche]
temporality	overlap		overlap	
quadrant				
size		[millimetrique]		
distance		[2 cm]		
angle		[6h]		

→ We annotate other types of entities

Echographie mammaire:

Gauche:

2 kystes situés à 8h 3cm et 2cm sur le rayon de 6h. Ces nodules sont millimétriques.

Droite:

Pas de masse suspecte.

CONCLUSION:

Plusieurs kystes à gauche.

Diag. proc. 1	Frame 4		Frame 5		
field	value	justification	value	justification	
trigger		[Echographie]		[Echographie]	
organ	breast	[mammaire]	breast	[mammaire]	
laterality	left	[Gauche]:	right	[Droite]	
temporality	maintenant		maintenant		
diag type	ultrasound	[Echographie]	ultrasound	[Echographie]	

Lesion 1	Frame 1		Frame 2	
field	value	justification	value	justification
trigger		[kystes], [nodules]		Plusieurs [kystes]
organ	breast	[mammaire]	breast	
laterality	left	[Gauche]:	left	à [gauche]
temporality	overlap		overlap	
quadrant				
size		[millimetrique]		
distance		[3 cm]		
angle		[8h]		
Lesion 2		Frame 3		Frame 2

justification

value

justification

field

value

Annotation result

Total objects/frames

	train		test		
	object	frame	object	frame	
radiological lesion	279	449	122	210	
diagnostic procedure	285	795	141	379	
therapeutic procedure	51	83	22	29	
BIRADS score	152	152	82	82	
breast density	98	98	52	52	

Per document:	train	test
count	80	40
average words	361.08	362.18
average lines	45.74	45.48
average frames	19.48	18.42
average objects	10.81	10.48

The method

We split the problem in multiple subtasks

\n Left side \n 2cm and 3cm cysts .

Simple bricks: normalized named entities

Build on the previously described tasks

- → Extract named entities using a model as described earlier
- → Normalize them using a classification model (some entities may have multiple concepts)
- → Compute an embedding of mentions with the average of the embeddings for each word

Frame extraction

→ Build a graph by asking: "Do these two entities belong to the same frame(s)?"

Frame extraction

→ Build a graph by asking: "Do these two entities belong to the same frame(s)?"

Frame extraction

→ Build a graph by asking: "Do these two entities belong to the same frame(s)?"

Frame extraction

→ Build a graph by asking: "Do these two entities belong to the same frame(s)?"

→ Extract maximal cliques: largest groups where all eptities agree with each other

Frame extraction: simple relations

- → How do we decide if two mentions should be linked?
- → Should we simply match embeddings together?

→ Yes, but not only

Frame extraction: scope relations

- → Concept of scope relations: text area does an entity convey its meaning
- → Mix "scopes" linking with simple "matching"
- → Assymetric relation: special training procedure
- → Latent scopes: the model learn the scopes on its own, since no direct supervision information about them: we only know which mentions should be together

```
Echographie mammaire:

Gauche:

2 kystes situés à 8h 3cm et 2cm
sur le rayon de 6h. Ces nodules
sont millimétriques.

Droite:
Pas de masse suspecte.

CONCLUSION:
Plusieurs kystes à gauche.
```

Frame extraction: scope relations

→ Connect pairs of entities that are part of the same frame(s)

Frame extraction: scope relations

→ Connect pairs of entities that are part of the same frame(s)

Frame extraction: the architecture

Composition: frame classification

Finally, fill in the mandatory fields that were not explicitly found in the text using a constrained classification model

Lesion 1	Frame 1					
field	value	justification				
trigger		[kystes], [nodules]				
organ	breast	[mammaire]				
laterality	left	[Gauche]:				
temporality	?					
quadrant						
size		[millimetrique]				
distance		[3 cm]				
angle		[8h]				

ORGAN:BREAST Echographie mammaire: 2 kystes situés à 8h 3cm et 2cm sur le rayon de 6h. Ces nodules sont millimétriques. Droite: Pas de masse suspecte. CONCLUSION: Plusieurs kystes à gauche.

Knowledge injection: synthetic sentences

- → Automatically build synthetic dummy sentences from a small lexicon to boostrap the NER and normalization steps
- → New sentences are mixed with the original corpus

	Synonyms	Concepts	_	
	de [6mm]	size		Le concept est de [6mm] .
	en [2014]	temporality_passe d	\	Le concept est en [2014].
	[nodule]	lesion_trigger	- /	Il y a [nodule] .
	[mammaire]	organ_breast		Le concept est [mammaire].
,	•••			•••

Knowledge injection: constraints

- → Filter legal relations when building the graph
- → Filter legal frame labels combinations during final frame classification

Experiments: general results

- → Correct performance given the small number of documents and their complexity
- → Can be used to pre-annotate
- → Simpler entities obtain better results

Frame type / F1	Mention Half	Frame Support	Frame Label
BIRADS score		92.5	83.3
Breast density		90.5	88.1
Diagnostic procedure		86.6	78.1
Therapeutic procedure		86.6	68.6
Lesion		78.0	62.9
Overall	96.2	85.3	72.2

Query	F1
Is mammography?	93.9
Has passed surgery?	73.7
Current BIRADS score	97.1
Current lateralized BIRADS score	92.0
Current breast density	92.6
Current lateralized breast density	90.5
Current lesion with quadrant	83.2
Current lesion with quadrant or radial position	77.9
Current lesion with quadrant or radial position & size	77.5

		Mention	Frame support	Frame label
	Base	96.2	85.3	72.2
Neural	input-residual	95.2 (-0.9)	83.9 (-1.4)	69.3 (-2.9)
net tricks	 relative attention 	95.6 (-0.5)	84.0 (-1.3)	70.5 (—1.8)
	 relation heuristics supervision 	96.1 (-0.1)	85.4 (+0.1)	71.8 (-0.4)
Frame	 word-level scope supervision 	96.1 (-0.1)	82.1 (-3.2)	69.5 (-2.7)
extraction	 word-level – asymmetric scope sup. 	95.9 (-0.3)	74.4 (-10.9)	57.5 (-14.8)
	scopes (only simple)	96.2 (-0.0)	80.4 (-4.9)	66.9 (-5.3)
	doc splitting (1)	96.1 (-0.0)	85.3 (+0.1)	71.5 (-0.7)
Knowledge	synthetic sentences (2)	95.4 (-0.8)	85.0 (-0.3)	70.8 (-1.5)
injection	 data augmentations (1+2) 	95.4 (-0.8)	85.0 (-0.3)	69.9 (-2.3)
	 constraints during training 	96.2 (-0.0)	84.0 (-1.3)	69.4 (-2.8)

- → architecture matters
- → procedure to train the model matters (especially scopes)

- → scope relations improve the performance
- → constraints improve the performance
- → augmentations improve the performance

		Mention	Frame support	Frame label
	Base	96.2	85.3	72.2
Neural	input-residual	95.2 (-0.9)	83.9 (-1.4)	69.3 (-2.9)
net tricks	 relative attention 	95.6 (-0.5)	84.0 (-1.3)	70.5 (-1.8)
	 relation heuristics supervision 	96.1 (-0.1)	85.4 (+0.1)	71.8 (-0.4)
Frame	 word-level scope supervision 	96.1 (-0.1)	82.1 (-3.2)	69.5 (-2.7)
extraction	 word-level — asymmetric scope sup. 	95.9 (-0.3)	74.4 (-10.9)	57.5 (—14.8)
	scopes (only simple)	96.2 (-0.0)	80.4 (-4.9)	66.9 (-5.3)
	doc splitting (1)	96.1 (-0.0)	85.3 (+0.1)	71.5 (-0.7)
Knowledge	synthetic sentences (2)	95.4 (-0.8)	85.0 (-0.3)	70.8 (-1.5)
injection	– data augmentations (1+2)	95.4 (-0.8)	85.0 (-0.3)	69.9 (-2.3)
	 constraints during training 	96.2 (-0.0)	84.0 (-1.3)	69.4 (-2.8)

- → architecture matters
- → procedure to train the model matters (especially scopes)

- → scope relations improve the performance
- → constraints improve the performance
- → augmentations improve the performance

		Mention	Frame support	Frame label
	Base	96.2	85.3	72.2
Neural	input-residual	95.2 (-0.9)	83.9 (-1.4)	69.3 (-2.9)
net tricks	 relative attention 	95.6 (-0.5)	84.0 (-1.3)	70.5 (-1.8)
	 relation heuristics supervision 	96.1 (-0.1)	85.4 (+0.1)	71.8 (-0.4)
Frame	 word-level scope supervision 	96.1 (-0.1)	82.1 (-3.2)	69.5 (-2.7)
extraction	 word-level – asymmetric scope sup. 	95.9 (-0.3)	74.4 (-10.9)	57.5 (-14.8)
	scopes (only simple)	96.2 (-0.0)	80.4 (-4.9)	66.9 (-5.3)
Knowledge	doc splitting (1)	96.1 (-0.0)	85.3 (+0.1)	71.5 (-0.7)
	synthetic sentences (2)	95.4 (-0.8)	85.0 (-0.3)	70.8 (-1.5)
injection	 data augmentations (1+2) 	95.4 (-0.8)	85.0 (-0.3)	69.9 (-2.3)
	 constraints during training 	96.2 (-0.0)	84.0 (-1.3)	69.4 (-2.8)

- → architecture matters
- → procedure to train the model matters (especially scopes)

- → scope relations improve the performance
- → constraints improve the performance
- → augmentations improve the performance

		Mention	Frame support	Frame label
	Base	96.2	85.3	72.2
Neural	input-residual	95.2 (-0.9)	83.9 (-1.4)	69.3 (-2.9)
net tricks	 relative attention 	95.6 (-0.5)	84.0 (-1.3)	70.5 (-1.8)
	 relation heuristics supervision 	96.1 (-0.1)	85.4 (+0.1)	71.8 (-0.4)
Frame	 word-level scope supervision 	96.1 (-0.1)	82.1 (-3.2)	69.5 (-2.7)
extraction	 word-level – asymmetric scope sup. 	95.9 (-0.3)	74.4 (-10.9)	57.5 (-14.8)
	scopes (only simple)	96.2 (-0.0)	80.4 (-4.9)	66.9 (-5.3)
-	doc splitting (1)	96.1 (-0.0)	85.3 (+0.1)	71.5 (-0.7)
Knowledge	synthetic sentences (2)	95.4 (-0.8)	85.0 (-0.3)	70.8 (-1.5)
injection	 data augmentations (1+2) 	95.4 (-0.8)	85.0 (-0.3)	69.9 (-2.3)
	 constraints during training 	96.2 (-0.0)	84.0 (-1.3)	69.4 (-2.8)

- → architecture matters
- → procedure to train the model matters (especially scopes)

- → scope relations improve the performance
- → constraints improve the performance
- → augmentations improve the performance

		Mention	Frame support	Frame label
-	Base	96.2	85.3	72.2
Neural	input-residual	95.2 (-0.9)	83.9 (-1.4)	69.3 (-2.9)
net tricks	 relative attention 	95.6 (-0.5)	84.0 (-1.3)	70.5 (-1.8)
	 relation heuristics supervision 	96.1 (-0.1)	85.4 (+0.1)	71.8 (-0.4)
Frame	 word-level scope supervision 	96.1 (-0.1)	82.1 (-3.2)	69.5 (-2.7)
extraction	 word-level — asymmetric scope sup. 	95.9 (-0.3)	74.4 (-10.9)	57.5 (-14.8)
	scopes (only simple)	96.2 (-0.0)	80.4 (-4.9)	66.9 (-5.3)
	doc splitting (1)	96.1 (-0.0)	85.3 (+0.1)	71.5 (-0.7)
Knowledge	synthetic sentences (2)	95.4 (-0.8)	85.0 (-0.3)	70.8 (—1.5)
injection	 data augmentations (1+2) 	95.4 (-0.8)	85.0 (-0.3)	69.9 (—2.3)
1804	 constraints during training 	96.2 (-0.0)	84.0 (-1.3)	69.4 (-2.8)

- → architecture matters
- → procedure to train the model matters (especially scopes)

- → scope relations improve the performance
- → constraints improve the performance
- → augmentations improve the performance

- → Knowledge injection helps, especially with low number of samples
- → Non zero performance with no document
- → Performance improves slowly so larger number of annotations is needed

Experiments: scopes visualization

- → Scopes capture the structure of the report
- Can he used to internret results

Key findings and contributions

- → Formalized a framework to structure breast imaging reports
- → New dataset of breast imaging reports
- → Knowledge injection improves the performance in a low and no data contexts
- → Novel method to extract overlapping structured entities
- → Concept of scope relations to improve the extraction and interpretability

- Novel methods to extract simple or structured overlapping entities in texts
- Leveraged resources in other languages and existing medical and task
 knowledge to bootstrap and improve our models in low data settings
- Framework and corpus to structure complex objects in radiology reports
- Proposed a novel model using scope relations and cliques to compose named entities in frames

Conclusion & perspectives

- Improve the annotation phase with custom scheme for structured data
 - ⇒developed Metanno, a new a modulable and interactive annotation software

- Connect frames together between same documents and different documents
 - ⇒ same- and cross-document structured entity coreference
- Knowledge injection using constraints
 how do extract implicit entities? (no trigger word)
 - ⇒ use first order logic frameworks and knowledge from ontologies
- Latent scopes help structuration tasks
 & large normalization training
 - ⇒ pretrain embedding models built on such inductive biases and knowledge

Thank you!

Appendix

Why machine learning

Rule based models

- → Need lots of handcrafting and complex rule sets
- → Usually interpretable
- → Need manual feature extraction, sometimes very difficult
- → Do not generalize well
- → Need re-engineering to improve

Machine & deep learning models

- → Need lots of samples and complex architectures
- → Often blackboxes
- → Automatic feature extraction and capture hidden patterns
- → Better generalisability (pretraining++)
- → Need more corrected samples

Classic named entity recognition

- → A named entity is a typed span of text
- → Classically, we predict a tag for each word (e.g. using the BIOUL scheme)
- → Example with two named entities in a sentence:

La patiente a un petit nodule dans le quadrant sup. ext. du sein droit

(= The patient has a small nodule in the upper outer quadrant of the right breast.)

	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					<u>_</u>				
La	patiente	a	un	petit	nodule	dans	le	quadrant	sup.	ext.	du	sein	droit	$ \cdot $
Ŷ	₽	Ċ	Ŷ	₽	Ŷ	₽	₽	₽	Û	₽	Û	₽	Û	仚
Ø	Ø	Ø	Ø	Ø	[]	Ø	Ø	[_]	Ø
						,								, —

nodule

monocytes

Medical context

