Assignment 2 - Triangulation and Linear Programming

Pattarawat Chormai - 0978675 November 22, 2015

$\mathbf{Q2}$

A polygon P = (V, E), which has n vertices and edges, can be covered by a guard if and only if there is a feasible region R in which when we place a guard, he can see every edges of the polygon. Such a region can simply computed by using half plane intersected technic which we use for solving linear programming.

We first compute a half plane $h(e_i)$ of each edge, e_i of P where a half plane corresponds to region of the polygon. Also, the leftmost, topmost, rightmost and bottommost vertices of P are used to define the boundary box. In each step of adding $h(e_i)$, if a helper point v_{i-1} is not in $h(e_i)$, the current intersected region not corresponding to $h(e_i)$, a line L moving along x-axis is used as a objective function of 1dBoundedLP algorithm from 4th lecture for finding a new intersected region and update v_i . On the other hand, if v_{i-i} is in $h(e_i)$, that means the current region is still valid. Hence, we set v_i equal to v_{i-1} .

If the algorithm succeeds to find v_i until the end, then only one guard is needed to cover P, otherwise, we need more than one guard to cover P.

The algorithm works as follow:

Figure 1: An example of how the algorithm works.

Algorithm 1 CheckOneGuardPolygon

```
Require: a simple polygon P = (V, E)
  Find the boundary box R_o of P.
  Find v_o from R_o
  Derive h(e_i) for all e_i \in E.
  Shuffle h(e_i) randomly for all e_i \in E.
  for 1 \le i \le n do
       if v_{i-1} \in h(e_i) then
           v_i \leftarrow v_{i-1}
       else
           \sigma \leftarrow all intersected points of R_{i-1}.
           v_i \leftarrow 1 \text{dBoundedLP}(\sigma, \text{ line equation of } h(e_i))
           if v_i = \text{nill then}
               return false
           end if
       end if
  end for
  return true
```

Correctness

We first argue that for any e_i , a guard can see it if he is in the region of $h(e_i)$. This implies that if P has a intersected region between all $h(e_i)$, then only one guard is needed to cover P.

The algorithm uses v_i as a helper point to represent the current intersected region whenever the intersected region changes, v_i is updated.

First considering e_1 , it can be covered by a guard, if the guard is in any area in $h(e_1)$, of course this area should be inside P. Assume when processing e_i , the intersected region between $h(E_{i-1})$ where E_{i-1} is $\{e_j : e_j \in E \text{ and } 1 \leq j \leq i-1\}$ has computed already. Thus if we put a guard in any position in the region R_{i-1} , he can cover all edges in E_{i-1} . If the intersection of $h(e_i)$ and $h(E_{i-1})$ does not change, v_{i-1} in $h(e_i)$, one guard is still sufficient to cover E_i . On the other hand, if $h(e_i)$ and $h(E_{i-1})$ create a new intersected region, $v_{i-1} \notin h(e_i)$, the algorithm will try to find a new position for v_i which represents the new intersected region. If it succeeds, only one guard is needed

to cover E_i , otherwise we need more than one guard to cover the region. The reasoning is also true when processing e_n .

Therefore, by using induction, the algorithm report correct result.

Running Time

- Finding the boundary box takes O(n).
- Finding v_0 takes constant time.
- Deriving half planes for all edge takes O(n).
- Shuffle half planes order takes O(n).
- Processing $h(e_i)$ takes O(1) if the intersected region does not change when processing $h(e_i)$ O(i) otherwise because we have to find the new position of the helper point v_i

Since we know that, the probability of v_{i-1} and v_i , $Pr[v_{i-1} \in R_i]$, are the same is never greater than 1, while the probability that we have to find new position of v_i , $Pr[v_{i-1} \notin R_i]$, is equal to the probability of when removing $h(e_i)$ and v_i is changed, the probability of such a case is never greater than the probability of selecting 2 half planes defining their intersected.

Thus, the expected running time is:

$$T(n) = 3O(n) + \sum_{i=1}^{n} (Pr[v_{i-1} \in R_i] * O(1) + Pr[v_{i-1} \notin R_i] * O(i))$$

$$= 3O(n) + O(n) + \sum_{i=1}^{n} (2/i)O(i)$$

$$= 4O(n) + 2O(n)$$

$$= O(n)$$

Therefore, the algorithm runs in linear expected running time.