LDPC code-based (and other) variants of the McEliece cryptosystem

Marco Baldi

Università Politecnica delle Marche Ancona, Italy

m.baldi@univpm.it

McEliece cryptosystem

- Public Key Cryptosystem (PKC) proposed by McEliece in 1978
 [1]
- Based on the problem of decoding a linear large code with no visible structure

Still unbroken!

- Faster than competing solutions, like RSA.
- The original version uses binary Goppa codes with:
 - o length n = 1024
 - o dimension k = 524
 - o minimum distance $d_{min} = 101$
 - o error correction capability t = 50 errors
- [1] R. J. McEliece, "A public-key cryptosystem based on algebraic coding theory," *DSN Progress Report*, pp. 114–116, 1978.

McEliece cryptosystem (2)

- Private key: {G, S, P}
 - G: systematic generator matrix of a t-error correcting Goppa code
 - S: k x k non-singular scrambling matrix
 - o **P**: n x n permutation matrix
- Public key: G' = SGP
- **e**: vector of t intentional errors

encryption map:
$$\mathbf{x} = \mathbf{uG'} + \mathbf{e}$$

McEliece cryptosystem (3)

After receiving x, Bob computes:

$$x' = xP^{-1} = uSG + eP^{-1}$$

He then corrects all the t errors and gets:

$$u' = uS$$

- Finally, Bob calculates u'S-1, thus obtaining u
- Requisites for the codes:
 - For given n, k and t, the family of codes must be large enough to avoid any enumeration
 - An efficient algorithm must be known for decoding
 - A generator (or parity-check) matrix of a permutation equivalent code must give no information on the secret code
- Main drawback: large public keys

Niederreiter cryptosystem

- Exploits the same principle, but uses the code paritycheck matrix (H) in the place of the generator matrix (G)
- Secret key: {H, S} → Public key: H' = SH
- Message mapped into a weight-t error vector (e)
- Encryption: $\mathbf{x} = \mathbf{H}' \mathbf{e}^{\mathsf{T}}$
- Decryption: $\mathbf{s} = \mathbf{S}^{-1}\mathbf{x} = \mathbf{H}\mathbf{e}^{T} \rightarrow \text{syndrome decoding (e)}$
- Advantages:
 - o shorter keys for code rate > 1/2
 - smaller encryption complexity

Goppa codes [2,3]

- Goppa codes are subfield subcodes of GRS codes
- Given:
 - o A degree-t (irreducible) polynomial g(x) in $GF(p^m)[x]$
 - o A set of n elements of $GF(p^m)$ (support of the code) which are not zeroes of g(x):

$$a_0, a_1, ..., a_{n-1}$$

• A Goppa code is defined as the set of vectors $\mathbf{c} = [c_0, c_1, ..., c_{n-1}]$, with c_i in GF(p), such that:

$$\sum_{i=0}^{n-1} \frac{c_i}{x - \alpha_i} \equiv 0 \mod g(x)$$

- [2] V. D. Goppa, "A new class of linear error-correcting codes," Probl. Peredach. Inform., vol. 6, no. 3, pp. 24-30, Sept. 1970.
- [3] V. D. Goppa, "Rational representation of codes and (L,g) codes," Probl. Peredach. Inform., vol. 7, no. 3, pp. 4149, Sept. 1971.

Goppa codes and key size

- Any degree-t (irreducible) polynomial generates a different code
- So, the number of different codes with same parameters and correction capability is very high
- Their matrices are non-structured, thus their storage requires:
 - o kn bits for the McEliece cryptosystem
 - o rn bits for the Niederreiter version
- In order to resist message resend attacks, a CCA2 secure conversion should be adopted [4]
- This also allows to store only the non-systematic part of the matrices, that is, rk bits.

^[4] K. Kobara, H. Imai, "Semantically secure McEliece public-key cryptosystems - conversions for McEliece PKC", Proc. PKC 2001, pp. 19-35.

LDPC Codes

 Low-Density Parity-Check (LDPC) codes are stateof-art forward error correcting (FEC) codes

 Firstly introduced by Gallager in 1962 [5] and recently rediscovered [6]

EEE 802.11n

 They are able to approach the channel capacity under belief propagation (BP) decoding [7]

Now adopted in many applications and standards

- [5] R. G. Gallager, "Low-density parity-check codes," IRE Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.
- [6] D. J. C. MacKay and R. M. Neal, "Good codes based on very sparse matrices," in Cryptography and Coding. 5th IMA Conference, ser. Lecture Notes in Computer Science, C. Boyd, Ed. Berlin: Springer, 1995, no. 1025, pp. 100–111.
- [7] C. Sae-Young, G. Forney, T. Richardson, and R. Urbanke, "On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit," IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

LDPC Codes (2)

- LDPC codes are linear block codes
 - o n: code length
 - o k: code dimension
 - o r = n k: code redundancy
 - o **G**: $k \times n$ generator matrix
 - \circ **H**: $r \times n$ parity-check matrix
 - o d_v : average **H** column weight
 - o d_c : average **H** row weight
- LDPC codes have parity-check matrices with:
 - o Low density of ones $(d_v << r, d_c << n)$
 - No more than one overlapping symbol 1 between any two rows/columns
 - No short cycles in the associated Tanner graph

LDPC decoding

- LDPC decoding can be accomplished through the Sum-Product Algorithm (SPA) with Log-Likelihood Ratios (LLR)
- For a random variable U:

$$LLR(U) = \ln \left[\frac{\Pr(U=0)}{\Pr(U=1)} \right]$$

- The initial LLRs are derived from the channel
- They are then updated by exchanging messages on the Tanner graph

LDPC decoding for the McEliece PKC

- The McEliece encryption map is equivalent to transmission over a special Binary Symmetric Channel with error probability p = t/n
- LLR of a priori probabilities associated with the codeword bit at position i:

$$LLR(x_i) = \ln \left[\frac{P(x_i = 0 \mid y_i = y)}{P(x_i = 1 \mid y_i = y)} \right]$$

Applying the Bayes theorem:

$$LLR(x_i \mid y_i = 0) = \ln\left(\frac{1-p}{p}\right) = \ln\left(\frac{n-t}{t}\right)$$

$$LLR(x_i \mid y_i = 1) = \ln\left(\frac{p}{1-p}\right) = \ln\left(\frac{t}{n-t}\right)$$

Bit flipping decoding

- LDPC decoding can also be accomplished through harddecision iterative algorithms known as bit-flipping (BF)
- During an iteration, every check node sends each neighboring variable node the binary sum of all its neighboring variable nodes, excluding that node
- In order to send a message back to each neighboring check node, a variable node counts the number of unsatisfied parity-check sums from the other check nodes
- If this number overcomes some threshold, the variable node flips its value and sends it back, otherwise, it sends its initial value unchanged
- BF is well suited when soft information from the channel is not available (as in the McEliece cryptosystem)

Decoding threshold

- Differently from algebraic codes, the decoding radius of LDPC codes is not easy to estimate
- Their error correction capability is statistical (with a high mean)
- For iterative decoders, the decoding threshold of large ensembles of codes can be estimated through density evolution techniques
- The decoding threshold of BF decoders can be found by iterating simple closed-form expressions

n [t	oits]	12288	15360	18432	21504	24576	27648	30720	33792	36864	39936	43008	46080	49152
R = 2/3	$d_v = 13$	190	237	285	333	380	428	476	523	571	619	666	714	762
It = 2/3	$d_v = 15$	192	240	288	336	384	432	479	527	575	622	670	718	766
n [t	oits]	16384	20480	24576	28672	32768	36864	40960	45056	49152	53248	57344	61440	65536
R = 3/4	$d_v = 13$	181	225	270	315	360	405	450	495	540	585	630	675	720
11 - 3/4	$d_v = 15$	187	233	280	327	374	421	468	515	561	608	655	702	749

First LDPC-based McEliece PKC [8]

- **H**: private LDPC matrix
- T: $r \times r$ transformation matrix
- H' = TH: public parity-check matrix (prevents LDPC decoding)
- T → must be dense to avoid possible recovering of H from H'
- H' → becomes dense too
- [8] C. Monico, J. Rosenthal, and A. Shokrollahi, "Using low density parity check codes in the McEliece cryptosystem," in *Proc. IEEE ISIT 2000*, Sorrento, Italy, Jun. 2000, p. 215.

First LDPC-based McEliece PKC (2)

- The high density of H' helps preventing Eve from using the iterative LDPC decoder
- But a dense (and unstructured) H' gives no advantage in terms of key size over Goppa matrices
- Can we use structured LDPC codes (like Quasi-Cyclic LDPC codes) to "compensate" the need for dense matrices?

Quasi-Cyclic codes

- A linear block code is a Quasi-Cyclic (QC) code if [9]:
 - 1. Its dimension and length are both multiple of an integer p ($k = k_0 p$ and $n = n_0 p$)
 - 2. Every cyclic shift of a codeword by n_0 positions yields another codeword
 - 3. Each block of n_0 bits in a codeword is formed by k_0 information bits followed by $r_0 = n_0 k_0$ parity bits (can be extended to the non-systematic case)
- The generator and parity-check matrices of a QC code can assume two alternative forms:
 - Circulant of blocks
 - Block of circulants

^[9] R. Townsend, E. Jr. Weldon, "Self-orthogonal Quasi-Cyclic codes," IEEE Trans. Inform. Theory, vol. 13, no. 2, pp. 183–195, April 1967.

QC-LDPC codes with rate $(n_0 - 1)/n_0$

- For $r_0 = 1$, we obtain a particular family of codes with length $n = n_0 p$, dimension $k = k_0 p$ and rate $(n_0 1)/n_0$
- H assumes the form of a single row of circulants:

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_0^c & \mathbf{H}_1^c & \cdots & \mathbf{H}_{n_0-1}^c \end{bmatrix} \quad \longleftarrow$$

- In order to be non-singular, H must have at least one non-singular block (suppose the last)
- In this case, G (in systematic form)
 is easily derived:

$$\mathbf{G} = \begin{bmatrix} \left[\left(\mathbf{H}_{n_0-1}^c \right)^{-1} \cdot \mathbf{H}_0^c \right]^T \\ \left[\left(\mathbf{H}_{n_0-1}^c \right)^{-1} \cdot \mathbf{H}_1^c \right]^T \end{bmatrix}$$
 completely described by its $(k+1)$ -th column
$$\left[\left(\mathbf{H}_{n_0-1}^c \right)^{-1} \cdot \mathbf{H}_{n_0-2}^c \right]^T$$

Random-based design

- We define "Random Difference Family" (RDF) a series of subsets of a finite group G such that every non-zero element of G appears no more than once as a difference of two elements in a subset
- An RDF can be used to obtain a QC-LDPC matrix free of length-4 cycles in the form:

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_0^c & \mathbf{H}_1^c & \cdots & \mathbf{H}_{n_0-1}^c \end{bmatrix}$$

- The random-based approach allows to design large families of codes with fixed parameters
- The codes in a family share the characteristics that mostly influence LDPC decoding, thus they have equivalent error correction performance

An example

- RDF over Z_{13} :
 - o {1, 3, 8} (differences: 2, 11, 7, 6, 5, 8)
 - o {5, 6, 9} (differences: 1, 12, 4, 9, 3, 10)
- Parity-check matrix $(n_0 = 2, p = 13)$:

Using QC-LDPC codes

- The need for dense public matrices is no longer a problem if we exploit the structured nature of QC-LDPC codes
- However, if we use the classical McEliece setting, the public code is permutation equivalent to the private one
- Can it be possible to recover the secret representation of the code (differently from Goppa codes)?

Attack to the Dual Code

- The dual of the secret code has at least r codewords with very low weight
- An opponent can directly search for them, thus recovering H
- Stern's algorithm (or one of its more recent variants) searches for low weight codewords through an iterative procedure [10]
- Some values of work factor (W) for code rate 3/4:
 - o n = 16000, $d_v = 13 \rightarrow W = 2^{37.5}$
 - o n = 32000, $d_v = 17 \rightarrow W = 243.7$
 - o n = 64000, $d_v = 21 \rightarrow W = 2^{50.4}$
- Even though long codes (and rather dense matrices) are adopted, the system is highly exposed to a total break!

Disguising the secret code [11]

- When using LDPC codes, we cannot expose a public code which is permutation equivalent to the private code
- To avoid this, we can replace the permutation matrix P with a more general (but still sparse) transformation matrix Q
- This way, we trade some error correcting capability for security

^[11] M. Baldi, M. Bodrato, F. Chiaraluce, "A new analysis of the McEliece cryptosystem based on QC-LDPC codes", in Security and Cryptography for Networks, Vol. 5229 of Lecture Notes in Computer Science, pp. 246–262, Springer Berlin / Heidelberg, 2008.

New System Proposal

- **Q** is formed by $n_0 \times n_0$ circulant blocks with size p
- The public code has parity-check matrix H' = HQ^T
- Q has column weight m
- The row weight of **H**' is $\sim m \cdot n_0 \cdot d_v \rightarrow$ increased weight
- The QC-LDPC code must be able to correct t = t'm errors (t' are those added by Alice)

New System Proposal (2)

- The permutation matrix used in the original McEliece is replaced by a (denser) transformation matrix Q
- The transformation must be inverted before LDPC decoding
- This causes an "error spreading" phenomenon during decryption...
- ...but it is compensated by the high correction capability of LDPC codes
- This prevents all attacks based on the code "sparsity"
- But a bad choice of S and Q can still expose the system to dangerous attacks

Attack to the dual code

- In the new system, the dual of the public code does not have low-weight codewords
- The dual code has codeword weight $\leq m \cdot n_0 \cdot d_v$
- Due to the matrix sparsity, it is highly probable that the minimum weight approaches $m \cdot n_0 \cdot d_v$
- Even a small m is sufficient to make searching for those codewords too difficult for an attacker

System parameters and key size

• Public key size (in bytes), considering a CCA2 secure conversion $[(n_0 - 1)p]$:

p [bits]	4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
$n_0 = 3$	1024	1280	1536	1792	2048	2304	2560	2816	3072	3328	3584	3840	4096
$n_0 = 4$	1536	1920	2304	2688	3072	3456	3840	4224	4608	4992	5376	5760	6144

The key size increases linearly in the code length!

Decoding Attacks

 Given an intercepted ciphertext x, the linear block code generated by:

$$G'' = \begin{bmatrix} G' \\ x \end{bmatrix}$$

contains only one minimum weight codeword, and this coincides with the error vector **e**

- So, the problem of finding e translates into that of finding the minimum weight codeword of a linear block code
- We refer to the algorithm in [12] for the search of minimum weight codewords in a linear block code (with no visible structure)

^[12] D. J. Bernstein, T. Lange, C. Peters, "Attacking and defending the McEliece cryptosystem," In Post-Quantum Cryptography, vol. 5299 of LNCS, pages 31–46. Springer Berlin / Heidelberg, 2008.

Decoding Attacks (2)

- Every blockwise cyclically shifted version of the ciphertext x is still a valid ciphertext
- Eve can continue extending G" by adding shifted versions of x, and can search for as many shifted versions of the error vector

Security level

• Minimum attack WF for m = 7:

p [bits]	4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
$n_0 = 3 d_v = 13$	2^{54}	2^{63}						_		2^{146}	_	2^{161}	2^{161}
$\begin{vmatrix} n_0 = 3 \\ d_v = 15 \end{vmatrix}$	2^{54}	2^{64}	2^{75}					2^{126}		2^{146}	2^{157}	2^{168}	2^{179}
$d_v = 13$	2^{60}	2^{73}	/,	2^{98}	2^{109}	2^{121}	2^{134}	2^{146}	2^{153}	2^{154}	2	2^{154}	2^{154}
$\begin{vmatrix} n_0 = 4 \\ d_v = 15 \end{vmatrix}$	2^{62}	2^{75}	2^{88}	2^{100}	2^{113}	2^{127}	2^{138}	2^{152}	2^{165}	2^{176}	2^{176}	2^{176}	2^{176}

Key size (in bytes):

p [bits]	4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
$n_0 = 3$	1024	1280	1536	1792	2048	2304	2560	2816	3072	3328	3584	3840	4096
$n_0 = 4$	1536	1920	2304	2688	3072	3456	3840	4224	4608	4992	5376	5760	6144

Encryption complexity

• Encryption complexity (computing the product $\mathbf{u} \cdot \mathbf{G}'$ and adding the intentional error vector):

$$C_{enc} = C_{mul}(\mathbf{u} \cdot \mathbf{G}') + n$$

- Naïve computation: $C_{\text{mul}}(\mathbf{u} \cdot \mathbf{G}') = n \cdot k/2$
- Strong reduction by exploiting circulant matrices (Toom-Cook algorithm, Winograd convolution)

Binary operations for each encrypted bit

p [bits]	4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
$n_0 = 3$	726	823	919	1005	1092	1178	1236	1351	1380	1524	1510	1697	1639
$n_0 = 4$	956	1081	1206	1321	1437	1552	1624	1783	1811	2013	1984	2244	2157

Decryption complexity

- Decryption complexity can be split into three parts:
 - o calculating the product x · Q
 - decoding the secret LDPC code
 - o calculating the product u' · S

$$C_{\text{dec}} = C_{\text{mul}}(\mathbf{x} \cdot \mathbf{Q}) + C_{\text{LDPC}} + C_{\text{mul}}(\mathbf{u'} \cdot \mathbf{S})$$

 Concerning LDPC decoding, the SPA already has low complexity, and BF decoding further reduces it

Binary operations for each decrypted bit (BF decoding)

<i>p</i> [bits]	4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
n - 9	$d_v = 13$	1476	1544	1611	1668	1726	1784	1827	1899	1928	2014	2014	2130	2101
	$d_v = 13$ $d_v = 15$													
$n_0 - 1$	$d_v = 13$	1598	1694	1790	1877	1963	2050	2107	2223	2252	2396	2381	2569	2511
$n_0 = 4$	$d_v = 15$	1731	1828	1924	2010	2097	2183	2241	2356	2385	2529	2515	2702	2644

Some comparison

 Comparison considering the Niederreiter version with 80-bit security (CCA2 secure conversion)

	k		Key size [bytes]	Enc.	Dec. compl.
Goppa 1632 based	1269	33	57581	48	7890
QC-LDPC 24576 based	18432	38	2304 1/2 E	1206	1790 (BF)

- Goppa code parameters proposed in [12]
- The QC-LDPC based system scales favourably when larger keys are needed, since the key size grows linearly with the code length, due to the quasi-cyclic nature of the codes

Generalization of the approach

 An even stronger disguisement of the secret code can be achieved by choosing:

$$Q = R + T$$

- T is still a non-singular sparse component, which also has the (undesired) effect of propagating the intentional errors
- R is a singular disguisement matrix, whose effect on the intentional errors can be rendered null
- This stronger disguisement allows to revitalize the use of GRS codes in the McEliece cryptosystem, which have always incurred security flaws until now

Generalization of the approach (2)

- A toy solution is to obtain \mathbf{R} as $\mathbf{a}^T \mathbf{b}$, with \mathbf{a} and \mathbf{b} two randomly chosen $1 \times n$ vectors
- **a** is disclosed, **b** kept secret
- The intentional error vectors are selected such that $\mathbf{ae}^T = 0$, thus $\mathbf{Re}^T = \mathbf{0}$ and there is no error propagation due to \mathbf{R}
- Actually, disclosing a generates a flaw
- A more clever scheme can be used, which exploits the same principle, but with some variants
- Known distinguishers are not able to tell the public matrix obtained from a GRS code from a random matrix

Using MDPC codes [13]

- A recent follow-up uses Moderate-Density Parity-Check (MDPC) codes in the place of LDPC codes
- With MDPC codes, the public code can still be permutation equivalent to the private code without incurring attacks to the dual code
- In addition, the correction capability of these codes remains the same even if some short cycles are present
- Thus, the design of MDPC codes can be completely random
- This has permitted to obtain the first security reduction (to the random linear code decoding problem) for these schemes
- On the other hand, decoding MDPC codes is more complex than for LDPC codes
- [13] R. Misoczki, J.-P. Tillich, N. Sendrier, P. S. L. M. Barreto, "MDPC-McEliece: New McEliece Variants from Moderate Density Parity-Check Codes", cryptology ePrint archive, http://eprint.iacr.org/2012/409

A present (and future) challenge

- Quantum computers allow to factorize large integers and compute discrete logarithms in polynomial time
- They will break many widespread cryptographic and digital signature systems (RSA, DSA...)
- They will also endanger systems based on elliptic curves (like ECDSA)

D-Wave One™

 October 2011: first commercial and operational quantum computing academic center (University of Southern California, Lockheed Martin and D-Wave Systems)

Possible applications

- Code-based cryptography can be used to:
 - Provide security against attacks based on quantum computers
 - Implement lightweight encryption and decryption for resource-limited and mobile devices
 - Provide fast and up-to-date security tools for cloud platforms

- A practical example: Cloud Wallet™
 - App to securely save passport, bank and credit card details, photos, voice recordings and other sensitive information
 - Combines 256-bit AES encryption with Post-Quantum Secure McEliece encryption (Goppa-based)
 - Built on top of Dropbox to provide cloud storage

Preprint papers

 M. Baldi, M. Bianchi, F. Chiaraluce, "Security and complexity of the McEliece cryptosystem based on QC-LDPC codes"

http://arxiv.org/abs/1109.5827

M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani, "Enhanced public key security for the McEliece cryptosystem"

http://arxiv.org/abs/1108.2462

ESCAPADE research project

http://escapade.dii.univpm.it

Backup slides

Attack to Circulant Permutation Matrices

- QC-LDPC codes based on circulant permutation blocks are widespread (also included in the IEEE 802.16e standard)
- Without null blocks, their parity-check matrices cannot have full rank
- Null blocks are commonly inserted in such a way to impose the lower triangular (or quasi-lower triangular) form
- A total-break attack is possible, in the form of a global deduction (find \mathbf{T}_d and \mathbf{H}_d such that $\mathbf{H}' = \mathbf{T}_d \cdot \mathbf{H}_d$ and \mathbf{H}_d is suitable for BP decoding)
- It does not depend on the T density

Attack to Circulant Permutation Matrices (2)

$$\mathbf{H'} = \mathbf{T}\mathbf{H} = \mathbf{T}\mathbf{Z}\mathbf{Z}^{-1}\mathbf{H} = \mathbf{T}_{d}\mathbf{H}_{d} \qquad \qquad \mathbf{H} = \begin{bmatrix} \mathbf{P} \mid \mathbf{Z} \end{bmatrix}$$

$$\mathbf{H'} = \mathbf{T} \cdot \mathbf{H} = \begin{bmatrix} \mathbf{T}_{00} & \mathbf{T}_{01} & \mathbf{T}_{02} \\ \mathbf{T}_{10} & \mathbf{T}_{11} & \mathbf{T}_{12} \\ \mathbf{T}_{20} & \mathbf{T}_{21} & \mathbf{T}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{P}_{00} & \mathbf{P}_{01} & \mathbf{P}_{02} & \mathbf{P}_{03} & \mathbf{0} & \mathbf{0} \\ \mathbf{P}_{10} & \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} & \mathbf{P}_{14} & \mathbf{0} \\ \mathbf{P}_{20} & \mathbf{P}_{21} & \mathbf{P}_{22} & \mathbf{P}_{23} & \mathbf{P}_{24} & \mathbf{P}_{25} \end{bmatrix}$$

$$\mathbf{Z}^{*} = \begin{bmatrix} \mathbf{P}_{03} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_{14} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P}_{25} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{H}_{b} \text{ has the same} \\ \text{density as } \mathbf{H} \\ \text{(total break)!} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{V}_{00} & \mathbf{0} & \mathbf{0} \\ \mathbf{V}_{10} & \mathbf{V}_{11} & \mathbf{0} \\ \mathbf{V}_{10} & \mathbf{V}_{11} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{T}_{00} = \mathbf{V}_{10} + \mathbf{V}_{11} + \mathbf{V}_{12} + \mathbf{V}_{12} + \mathbf{V}_{13} + \mathbf{V}_{14} + \mathbf{V$$

Attack to CPMs - Examples

Successful global deduction for $n_0 = 24$, $r_0 = 6$, p = 40

Unsuccessful global deduction for $n_0 = 24$, $r_0 = 8$, p = 40

What to avoid

- In our first version [15] we chose:
 - $o d_{v} = 13$
 - p = 4032
 - \circ m = 7
 - o t' = 27
- This choice allows to resist all standard attacks
- For reducing complexity, both S and Q were chosen sparse, with non-null blocks having row/column weight m (that is small)
- Q was in diagonal form: $\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_0 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_1 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{Q}_{n-1} \end{bmatrix}$

[15] M. Baldi, F. Chiaraluce, "Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes," Proc. IEEE ISIT 2007, Nice, France (June 2007) 2591–2595

OTD attack

- A new attack was formulated by Otmani et al. (OTD) [16]
- It is based on the fact that, by selecting the first k columns of G', an eavesdropper gets

$$\mathbf{G}'_{\leq k} = \mathbf{S}^{-1} \cdot \begin{bmatrix} \mathbf{Q}_0^{-1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_1^{-1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{Q}_{n_0-2}^{-1} \end{bmatrix}$$

• By inverting $\mathbf{G}'_{\leq k}$ and considering its block at position (i, j), he can obtain $\mathbf{Q}_i \mathbf{S}_{i,j}$, that corresponds to the polynomial

$$g_{i,j}(x) = q_i(x) \cdot s_{i,j}(x) \bmod (x^p + 1)$$

• If both \mathbf{Q}_i and $\mathbf{S}_{i,j}$ are sparse (with row/col weight m), it is highly probable that $g_{i,j}(\mathbf{x})$ has exactly m^2 non-null coefficients and its support contains at least one shift:

$$x^d \cdot q_i(x), 0 \le d \le p - 1$$

[16] A. Otmani, J.P. Tillich, L. Dallot, "Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes," Proc. SCC 2008, Beijing, China (April 2008)

OTD attack (2)

- Three attack strategies
- First strategy: enumerate and validate all m-tuples belonging to the support of $g_{i,i}(x)$

$$WF = 2^{50.3}$$

• Second strategy: calculate all possible Hadamard products $g^d_{i,j}(x) \otimes g_{i,j}(x)$ and check whether the resulting polynomial has support with weight m

$$WF = 2^{36}$$

• Third strategy: consider the *i*-th row (\mathbf{R}_i) of the inverse of $\mathbf{G'}_{\leq k}$ and search for low weight codewords in the code generated by $(\mathbf{Q}_i\mathbf{S}_{i,0})^{-1}\cdot\mathbf{R}_i$

$$WF = 2^{32}$$

Countermeasures

- OTD attacks exploit the sparse nature of \boldsymbol{S} and \boldsymbol{Q} and the block-diagonal form of \boldsymbol{Q}
- They can be countered by adopting dense \$ matrices [17]
- With dense **S**, Eve cannot obtain \mathbf{Q}_i and $\mathbf{S}_{i,j}$, even knowing $\mathbf{Q}_i\mathbf{S}_{i,j}$
- The choice of a dense S influences decoding complexity
- But efficient algorithms for circulant matrices can be adopted [17]
- Q must be sparse to allow correction of all intentional errors
- A block-diagonal Q is weak, so it is advisable to avoid it
- [17] M. Baldi, M. Bodrato, F. Chiaraluce, "A New Analysis of the McEliece Cryptosystem based on QC-LDPC Codes," Proc. SCN 2008, Amalfi, Italy, vol. 5229 of LNCS., Springer (2008) 246–262