Note Titl	Numerical rank & rank-revealing factorizations
	Let A ERMXn & suppose r=rank A & min &m,n ?.
	If $A = U \sum V^T$, then $A = \sum_{k=1}^{r} \sigma_k u_k v_k$. In practice one may not get the computed $\sum_{k=1}^{r} \sigma_k v_k v_k$.
	In practice one may not get the computed to singular values equal to zero, so a choice
	of r needs to be made so that
	In practice one may not get the computed $\hat{\gamma}$ of singular values equal to zero, so a choice of $\hat{\gamma}$ needs to be made so that $\hat{\gamma}$ of $\hat{\gamma}$ are non-zero \hat{z} of $\hat{\gamma}$ are stipulated to be zero.
	Then $\hat{\tau}$ is called the "numerical rank" of A. Typically $\hat{\tau} \leq r$.
-	There are 2 papular ways of determining i: Using SVD - very reliable, but very sensitive and Sometimes computationally expensive.
	Sometimes computationally expensive. QR with column-pivoting.
۷	
	There are additional general rank-revealing factorizations of the form $AZ = QR$, where Z is orthogonal
	(Ref. Sections 5-4.5-5.4.7 of Golub-Loan.
(I)	Numerical rank using SYD (Section 5.4.1 of GL).
	Numerical rank using SYD (Section 5.4.1 of GL). Suppose we have, in exact arithmetic, $A = U \sum V$,
	So $A = \sum_{k=1}^{r} G_k u_k v_k^T$, $r = rank A$.

	Now suppose the computed matrices are U, 2 2 V
	<u> </u>
	so that $\hat{\mathcal{U}} \wedge \hat{\mathcal{V}} = \hat{\mathcal{I}} = \text{diag}(\hat{\sigma}_1, \dots, \hat{\sigma}_n)$
	where $\widehat{\sigma}_1 \ge \widehat{\sigma}_2 = \widehat{\sigma}_n \ge 0$
	1 2 2 9 7 5
	Unless remarkable cancellation occurs, none of the computed
	Unter remarkable cancellation occurs, none of the computed singular values will be zero (because of fl. pt. arithmetic)
	At this point there are 2 possibilities:
	· \
	Stick to the strict Relax the defen of rank & set
	defn. 2 treat A the "small" computed singular as having full rank values to zero; let $\hat{r} = numerical$ rank i.e. $A \approx \int \hat{G}_{1} \hat{u}_{1} \hat{v}_{1}^{T}$
	ie. A TONAT values to zero; let r=numerical
	$A \approx \int \hat{G} \hat{v} \hat{v}^{T}$
(But this way you will end up $k=1$ $k=1$ $k=1$ $k=1$
(as it is a full rank matrix.
	But this way you will end up working with every matrix as if it is a full rank matrix, which is not a good idea)
	What do we mean by "small"? This amounts to choosing a
	This amounts to choosing a
	tolerance 5>0 & declaring A to
	tolerance 6>0 & declaring A to have numerical rank if the computed singular values satisfy
	Compuled singular values salisfy
	6, ≥ ≥ 6; > S > 0; +1 ≥ ≥ 6,
	set-these to zero.
Note:	this computation is sensitive to changes in A & the chaice of S.
	·

	·
(11)	QR with column pivoting.
	This is knodification of the Householder QR procedure.
	First: why is column pirotuig required?
	Consider the fall situation that can occur if A is not full rank:
	Tutt raine:
	$A = \begin{bmatrix} a_1 / a_2 / a_3 / a_4 \end{bmatrix} = \begin{bmatrix} q_1 / q_2 / q_3 / q_4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $m \times 4$ Q $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
	mx4 Q 0 0 0 1
	10 2 1 4 0 ra a a a a a a 1 7 1 1 1 1
	• rank $R = 3 \neq \#$ of non-zero $\begin{bmatrix} 9_{11} & 9_{12} & 9_{13} & 9_{14} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ entries on the $= \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ diagonal of R . $\begin{bmatrix} 9_{m1} & 9_{m4} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
	diagonal of R. lami and [0001]
	י ד
	or span { 91,92,93} or span { 91,92,93} or span { 91,93,94}
	or span { 91,92,94}
	or span } 91,93,9+}
	or span {92,93,94}.
	·
	In this case, the QR factorization offers no insight into
	In this case, the QR factorization offers no insight into rank(A), or range(A) or mull(A).
	In exact withmetic, the modified algorithm produces the factorization
	the factor zation
	T [Ry R12] where rerank A,
	QAP = R11 R12 r where r=rankA, Qin orthogonal r non-singular
	D D m-r Ruis upper Dr &
	r n-r mm. non-singular 2 ρ is a permutation.
	2 P is a permutation.

```
A-[a11...] an]
       If AP = [a_{c_1}| - - |a_{c_n}], Q = [q_1| - - |q_m],
                ack = [ rik 9i E span {91, ..., 9x} +1 ≤k ≤n.
    then
                which implies that range (A) = span { 91, -, 9x }.
    Steps of the algorithm:
    Step 1: Compute 11a1/12, ..., 11an/12, let p be the
                 smallest index for which
                           ||ap 112 = max & ||a1 ||2, -1 || lan ||2 |
    Step 2: Exchange columns 1 & P (i.e. post-multiply by a perm matrix P1)
         Then apply a suitable Householder matrix to annihilate the subdiagonal cutries of column 1.
      Thus A apply A P, apply Householder Q, A P, = A, transf. Q,
          Now repeat the above steps for the right-lower submatrix of A1.
                                                         (k-1)_{x}(k-1) upper \Delta^{r}

& non-singular.

R_{11}

R_{12}

R_{22}
     Stepk: We have reached
             A_{k-1} = Q_{k-1} - \dots Q_1 A P_1 - \dots P_{k-1} =
```


	as zero. Thus R22 = 0 & we're done
	(: this implies rank R = r = rank A)
	In principle, QR with column pivoting reveals the rank of A.
	·
	But in the presence of floating point errors, it is unlikely that we will get all entries of R22 equal to zero. So it is reasonable to terminate the reduction & declare A to have rank k if
	it is unlikely that we will get all entries of R22
	equal to zero. So it is reasonable to terminate the
	reduction à acture 1 10 have rank k if
	R ₂₂ is suitably small.
	A typical terminating criterion is of the form
	() 2
	$ R_{22} _2 \le \mathcal{E} \cdot A _2$ for some machine-dependent/
	user-defined
	parameter E.
Cantion	: In theory, it does not follow that $ R_{22} _2$ in Small if rank $A=k$
	(See page 279, h-L for an example)
	However, in practice, it is almost always-brue
	that $ R_{22} _{l_2}$ is small if rank $A=k$.