```
data = pd.read_csv('cardio_train.csv',sep=";")
```

data.head()

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	0	18393	2	168	62.0	110	80	1	1	0	0	1	0
1	1	20228	1	156	85.0	140	90	3	1	0	0	1	1
2	2	18857	1	165	64.0	130	70	3	1	0	0	0	1
3	3	17623	2	169	82.0	150	100	1	1	0	0	1	1
4	4	17474	1	156	56.0	100	60	1	1	0	0	0	0

data.drop("id",axis=1,inplace=True)

```
data['years'] = (data['age'] / 360).round().astype('int')
```

```
data["bmi"] = data["weight"] / (data["height"]/100)**2
```


data.head()

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio	years	bmi
0	18393	2	168	62.0	110	80	1	1	0	0	1	0	51	21.967120
1	20228	1	156	85.0	140	90	3	1	0	0	1	1	56	34.927679
2	18857	1	165	64.0	130	70	3	1	0	0	0	1	52	23.507805
3	17623	2	169	82.0	150	100	1	1	0	0	1	1	49	28.710479
4	17474	1	156	56.0	100	60	1	1	0	0	0	0	49	23.011177

```
data.columns
dtype='object')
In [45]:
       models = {
           "LR": LogisticRegression(),
           "KNN": KNeighborsClassifier(),
           "DT": DecisionTreeClassifier(),
           "RF": RandomForestClassifier(),
           "XGB": XGBClassifier(),
           "Naive Bayes": GaussianNB(),
           "SVC": SVC()
       }
                                      Training Model DT
Training Model KNN
                                       -----
Training Accuracy: 0.7786428571428572
Testing Accuracy: 0.68
                                      Testing Confusion Matrix:
```

```
Training Accuracy: 0.9998035714285715
                                              Testing Accuracy: 0.6329285714285714
Testing Confusion Matrix:
                                              [[4460 2609]
[[4948 2121]
                                               [2530 4401]]
 [2359 4572]]
                                              Testing Recall: 0.634973308324917
Testing Recall: 0.659645072861059
                                              Testing Precesion: 0.6278174037089872
Testing Precesion: 0.6831017480950247
                                              Testing F-1: 0.6313750806972241
Testing F-1: 0.6711685261303583
                                              Testing F-Beta: 0.6292356523977011
Testing F-Beta: 0.6782778981099606
                                              ______
                                             Training Model XGB
Training Model RF
-----
                                             Training Accuracy: 0.7689642857142858
Training Accuracy: 0.9997857142857143
                                             Testing Accuracy: 0.7310714285714286
Testing Accuracy: 0.7111428571428572
                                             Testing Confusion Matrix:
Testing Confusion Matrix:
                                             [[5468 1601]
[[5148 1921]
                                              [2164 4767]]
 [2123 4808]]
                                             Testing Recall: 0.6877795411917472
Testing Recall: 0.6936949935074304
                                             Testing Precesion: 0.7485866834170855
Testing Precesion: 0.7145192450587011
                                             Testing F-1: 0.7168960072185879
Testing F-1: 0.7039531478770131
                                             Testing F-Beta: 0.7355800388852883
Testing F-Beta: 0.7102549708984548
                                              Training Model SVC
Training Model Naive Bayes
                                              Training Accuracy: 0.6054642857142857
Training Accuracy: 0.5953571428571428
                                              Testing Accuracy: 0.5981428571428572
Testing Accuracy: 0.5960714285714286
                                              Testing Confusion Matrix:
Testing Confusion Matrix:
                                              [[4600 2469]
[[6239 830]
                                              [3157 3774]]
[4825 2106]]
                                             Testing Recall: 0.5445101716923965
Testing Recall: 0.30385225797143267
                                             Testing Precesion: 0.6045170591061989
Testing Precesion: 0.7173024523160763
                                             Testing F-1: 0.572946713223015
Testing F-1: 0.4268774703557312
                                             Testing F-Beta: 0.5914804250383976
Testing F-Beta: 0.563855421686747
```