Self-Adaptation in Smartphone Applications: State-of-the-Art Techniques,

Challenges, and Future Directions

Mughees Ali^{a,*}, Saif Ur Rehman Khan^a, Shahid Hussain^b, Inayat-ur-Rehman^a

^aDepartment of Computer Science, COMSATS University Islamabad (CUI), ISB Pakistan

^bDepartment of Computer and Information Science, University of Oregon, USA

SWOT Analysis

Table presents the conducted SWOT analysis of the selected studies.

Table: SWOT analysis of the selected studies

No.	Study	Strength	Weakness	Opportunity	Threats
	ID				
1.	[S1]	Proposed decentralized algorithm	Performed on small scale social graphs	Create macro-level social structures and	Threat in case of mobile exchange/
		and it monitors social interaction.	analysis. The algorithm works online on	consider Twitter social network in paper,	snatched because it stores ego behavior
			every user node.	work on other platforms is opportunity.	and it is completely decentralized.
2.	[S2]	Proposed adaptation policy that	Lacks in developing an adaptation	The algorithm impact can be enhanced by	Threat is in security criteria, as the
		determines adaptation need before	algorithm.	implementing proactive detection.	medical data is very sensitive is not
		going to an unusable state.			discussed.
3.	[S3]	Proposed software architecture for	Authors consider very small scale	Opportunity of working in medium and	Set plenty to irregular user and
		collaborative mobile learning that	scenarios to perform. Their mechanism	large scale scenarios. Need to add a	detection of suspicious node according
				separate dashboard for the teacher work.	to the security point of view lacks.

		support mobile-based learning	have not demonstrated all the failure		
		activities.	instances are correctly addressed.		
4.	[S4]	Proposed context-aware software	The major focus of the authors is on	Proposed algorithm should be optimized	Secure web applications and browser
		platform for self-adaptive mobile	fragmentation.	and also evaluated for different other	compatibility/capabilities.
		application development.		ubiquitous application environments.	
5.	[S5]	Proposed non vehicle bound	Authors explain simple steps for the	Modification/improvement need in this	Consider the internet connection issue.
		application. The proposed	detection. Algorithm activation and	work. There is an opportunity for the	what kind of other things to be done
		mechanism is battery friendly.	speech reorganization process are not	development of such a self-adaptive	after the successful detection of the
			well explained.	algorithm and application as well.	accident (i.e. services)
6.	[S6]	Proposed framework that supports	Limited resource of mobile devices.	Three applications idea based on VSNs:	Privacy, trust and security are common
		context-aware applications	Unstable networking connections.	Safety improvements, Traffic	concerns for VSNs. In their current
		development and deployment for	Cost is a major concern in such type of	management, Entertainment (streaming,	version of the S-Aframe, work on
		vehicular social networks (VSNs).	applications.	downloads).	security mechanisms lacks.
7.	[S7]	Automatic application configurations	Authors considering just one resource,	A general approach that utilizes other	Evaluation of the approach is by
		generation approach and	which is the battery level.	different resources simultaneously.	simulating the execution of an
		reconfiguration plans at runtime.		Algorithm optimization is also another	application on a mobile phone.
		Authors specify a case study and use		opportunity.	A threat to validity is the comparison of
		it in the evolution of their approach.			their results and real users results

8.	[S8]	Proposed Cosmapek which is an	A big application has several feature	Enhance performance: Work can be done	Sensors of the monitoring module are
		adaptive deployment infrastructure.	models, due to which a lot of	on the performance area, which lacks in	always in the active state, and the
		Implement BUSCAME which is a	reconfiguration plans are made by the	work.	analyzer module is activated to analyze,
		self-adaptive Android application.	planner component.		there will be battery drain issues.
9.	[S9]	The energy metabolism self-adaptive	Focus on a specific area, rural American	Can develop an application like this,	Threat in case if the user performs some
		model was developed to estimate	areas. Network, application	globally. The opportunity of working in	unusual activities in his/her routine
		daily changes in insulin resistance	optimization, and performance issues	performance, app optimization, and	which need to be handle as the app is
		and fat mass.	lack in work.	network context in current context.	containing all the history of the patient.
10.	[S10]	Presented GCA. Authors use the	Their concept is complex in terms of	Battery optimization is an issue. Need of	Integration of context adaption features
		Nokia MDC dataset in their	computation.	hybrid technique which may use for	in application is difficult as achieving
		simulations.		performance and time efficiency as well.	good context predictions is complex.
11.	[S11]	Proposed framework based on	A small image dataset for the	Learning could be extended to the model	Security and privacy are not handled
		reinforcement learning.	experiment/ test is used.	itself.	which is a threat.
				Security and privacy requirements can be	
				modeled before making a decision.	
12.	[S12]	Authors conduct two literature	No evaluation is done in work.	Application on these defined principles.	Methodological evaluation is not done.
		reviews in AUI domain and design 8	The expert's opinion lacks regarding		
		principles for adaptive user	their principles of the adaptive user		
		interfaces.	interface.		

13.	[S13]	Proposes a hybrid feature	Focus on feature recommendation	Explore more the relationship between	The functional tightness of the
		recommendation method.	(Application side), while hardware	functional feature and API to improve	classified APIs with similar functions
		Experimental results show that the	features are missing (battery	functional feature recommendation and	and Apps will have an impact on their
		proposed method is more effective	optimization).	also the quality of App classification.	proposed method.
		than the classical method.			
14.	[S14]	Proposed a self-adaptive step	Less focus on power consumption.	Their application consumes more power	Still, some inevitable measurement
		counting algorithm to improve the		than an android native application.	errors occur during the time of
		accuracy of step counting.			condition change.
15.	[S15]	Work on adaptive interface.	Basic idea about adaptive interface. It	Develop a deep and high-level model that	If an activity (single screen) has a lot of
			may not applicable on applications	supports most of the android widget's	widgets then widgets might be merged,
			having lot of widgets on a single screen.	well.	lacks in work.
16.	[S16]	Proposed framework for energy	It's simulated work. A basic and simple	May practically implemented and discuss	Need to focus on security based
		efficiency based on the self-	idea about self-adaptation in the energy	results about the battery consumption.	features.
		adaptability of mobile applications.	consumption area.		
17.	[S17]	Proposed cloud aware.	Limited network coverage.	Resource discovery.	Security issues.
		It supports automated context-aware	Lack of centralized infrastructure.	Partitioning and task scheduling.	
		self-adaptation techniques.	Lack of incentive models.	Lack of standards.	
18.	[S18]	Developed an environment that	Support in the richer scenarios for	Using machine learning algorithms to	Dealing with richer scenarios and richer
		allows the crowd to observe the	example one person responds to a	enhanced event selection formulas.	heterogeneous data lacks.
		earlier version work plan.		Create guidelines for feedback collection	

		The purpose is to achieve affecting	sequence of system events to a user	points and also including dynamic	
		program structure and process.	event rather than by just one event.	changes to such feedback collection.	
19.	[S19]	Proposed an adaptive security model.	Solution for local apps, not cloud-based	Use adaptive security in DSPL to develop	Need to realize the expected security
			applications. Not discuss the response	cloud computing secure Applications,	needs, response time, and
			time, which is an important factor in	this will provide efficient mechanisms to	reconfiguration overhead to make the
			security applications.	manage and dynamic characteristics of	decision when the reconfiguration must
				the security in mobile cloud computing.	be carried out.
20.	[S20]	Proposed adaptation strategy to	Their app focused on elderly people	Develop app for all age group users.	The threat is related to the change of
		investigate how users understand and	(over 60 years). The authors test the	Experimental study needed to assess the	emotions, which has been observed and
		perceive the security and satisfaction	model on just two volunteers.	adaptability of services	discussed.
		of context-aware applications.			
21.	[S21]	Propose the ADMDM and improve	Detection rate vary with android	Improvements need to be done in their	Still some limitations in ADMDM in
		the Apriori algorithm.	versions due to hardware compatibility.	current work for better detection.	the detection of the hidden anomaly.
22.	[S22]	Propose DAMPAT which makes	Authors assume infinite resources of	Opportunity to work on performance	Resource management issue.
		decisions at runtime on how to adapt	application and do not consider that the	area, multiple applications	
		multimedia presentations.	other applications also running on the	simultaneously.	
			same device.		
23.	[S23]	Proposed application based on	Speaker classification capability was	Opportunity to work on overlapping	Sentiment analysis at the sentence-level
		meeting minutes. Speak recognition,	dependent on noise effect reduction and	conversation.	for opinion mining is incomplete which
			the duration of per-speaker audio.		

		text summarization algorithm is used			may change the sense of work, and
		and perform sentiment analysis.			effect the determined agreed actions.
24.	[S24]	An improved version of a speech	Work on battery optimization lacks.	Opportunity to work on battery	There is a need to present output in
		source localization method is	Computation time and efficiency	optimization and on current algorithm in	more visualization form, because of the
		presented. Proposed new VAD.	discussion lack.	case if noise is huge and the voice is low.	eyesight issues in overage persons.
25.	[S25]	Authors present RA.	Architecture does not enable end-users	Conduct some more case studies	Conduct more case studies as
		Conduct a case study to evaluate	domain experts to create their	intending to evaluate RA. RA can be	mentioned in the Opportunities section
		their RA.	applications.	used in industry for evolution when	and figure out threats related to security
				applied to a larger real environment.	issues.
26.	[S26]	Describe the framework (CAMeL) to	From their case study, it is difficult to	Consider more case studies and	They discussed a case study and explain
		improve context-aware middlewares	conclude that it can be applied to every	experiments to evaluate their architecture.	architecture accordingly, there is a need
		by machine learning capabilities.	possible application, few general		for more case studies or experiments to
			principles can formulate from it.		evaluate accuracy.
27.	[S27]	Propose four different adaptation	They used two scenarios, which cover a	Consider more scenarios to cover the	Energy consumption cannot be isolated
		engines in terms of energy	large number of applications.	maximum number of the application for	for application to be tested from all the
		consumption and evaluate them. The	However, there are some other	evaluation.	other system processes and background
		authors show that it is possible to	applications, which lacks in their		running apps.
		reduce the applications' energy	scenarios.		
		consumption.			

28.	[S28]	Work on malware detection in	Focus on android phone and less	May also work on other smartphone	Model validation lacks, needs more
		android phones.	number of experiments performed.	operating systems.	experiments that help in the evaluation.
29.	[S29]	Work on the detection of the user	Computation time on a large amount of	Can be work on proposing a classifier	In case of low network connection,
		environment. Data collected from a	data.	that detects more user context-based	collected data will not be timely send to
		large crowdsourcing campaign,		components and not only just the	the network.
		collected from different mobile		environment types.	
		devices, and sent to the mobile			
		network.			
30.	[S30]	Perform SLR focusing on self-	Consider only one electronic database	Less work is done in this area, there is a	N/A.
		adaptability in mobile applications	Google Scholars.	need to highlight the advantages of	
		context. According to the authors, it		adaptation in mobile application	
		is the first study conducted in this		applications.	
		field.			
31.	[S31]	The focus is on providing an	Data-driven composition requirements,	Use their approach to real applications	Presented results obtained from case
		approach for application designing,	Monitoring of unexpected events,	that are coming from industrial	studies modeled by authors. The
		operation of the application, and	Further adaptation mechanisms and	experiences. Study the usability of their	author's approach is represented by the
		service-based applications based on	strategies implementation, User	approach.	Process Engine which operates in a
		run-time adaptation.	involvement, and flexible adaptations		centralized manner currently.
			are few weaknesses mentioned.		