

Scalable Data Science

Lecture 14a: Sparse Random Projection

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Curse of Dimensionality

Refers to rise in complexity of related issues with increasing dimensions

- E.g. failure of intuition from low-dimensional cases: if $x \sim N(\mu, I_d)$ then

x does not lie "near" μ

Reducing dimension

- Basic theme
 - If we have to learn a model, or solve an optimization, reduce dimension of input to $k \ll d$
- Many variants on how to reduce dimension
 - PCA, Factor Analysis, ICA, feature selection...
- Random projection is unique among them in being dataoblivious

Preserving pairwise distances

 $x_1, x_2, \dots x_n \in \mathbb{R}^d$, Euclidean space

Want $x_1', x_2', \dots, x_n' \in \mathbb{R}^k$, possibly also Euclidean, $k \ll d$

with a guarantee that $|x_i' - x_j'| \approx |x_i - x_j|$ for every pair (i, j)?

Johnson Lindenstrauss Lemma

 $\epsilon, \delta > 0$, $k \ge \frac{1}{\epsilon^2} \log(n)$. There exists a linear mapping A such that for all (i, j)

$$(1 - \epsilon)|x_i - x_j| \le |Ax_i - Ax_j| \le (1 + \epsilon)|x_i - x_j|$$

Johnson Lindenstrauss Lemma [JL84]

 $\epsilon>0$, $k\geq \frac{1}{\epsilon^2}\log(n)$. There exists a linear mapping A such that for all (i,j)

$$(1 - \epsilon)|x_i - x_j| \le |Ax_i - Ax_j| \le (1 + \epsilon)|x_i - x_j|$$

Can show that this actually happens with a high probability, also that such matrices A are easy to construct (randomized)

Intuition

Preserving pairwise distances preserves the inherent geometry of the points Input dimension does not come into bound

Why is it useful?

Used in

- learning classifiers efficiently
- randomized numerical linear algebra: matrix factorizations and regressions
- a number of streaming algos are essentially random projections
- LSH for L2, other near neighbour data structures
- compressed sensing

How to create such a matrix

- $R_{ij} \sim N(0,1)$ independently
- $\frac{1}{\sqrt{k}}R \in \Re^{k \times d}$ is the required matrix

Why does this work?

JL lemma:
$$k \ge \frac{c}{\epsilon^2} \log \left(\frac{1}{\delta} \right)$$
. For the previous matrix $A = \frac{1}{\sqrt{k}} R$, $|x| = 1$
$$\Pr[(1 - \epsilon) \le |Ax| \le (1 + \epsilon)] \ge 1 - \delta$$

- Enough to show this since linear mapping
- Previous claim follows by taking union bound over all pairwise distances

Proof Sketch

$$Ax = \frac{1}{\sqrt{k}}Rx = \frac{1}{\sqrt{k}}(Y_1, ... Y_k)$$
 $Y_i = \sum_j R_{ij} x_j$

 $|Ax|^2 = \frac{1}{k} \sum_i Y_i^2$, we are interested in the distribution of this

<u>2-stability</u>: If p ~ $N(\mu, \sigma)$, $q \sim N(\alpha, \gamma)$ are iid, $p + q \sim N(\mu + \alpha, \sqrt{\sigma^2 + \gamma^2})$

Proof Sketch

$$Ax = \frac{1}{\sqrt{k}}Rx = \frac{1}{\sqrt{k}}(Y_1, ... Y_k)$$
 $Y_i = \sum_j R_{ij} x_j$

 $|Ax|^2 = \frac{1}{k} \sum_i Y_i^2$, we are interested in the distribution of this

2-stability: If p ~
$$N(\mu, \sigma)$$
, $q \sim N(\alpha, \gamma)$ are iid, $p + q \sim N(\mu + \alpha, \sqrt{\sigma^2 + \gamma^2})$

$$Y_i = \sum_j R_{ij} x_j , Y_i \sim N(E[\sum_j R_{ij} x_j], \sigma(\sum_j R_{ij} x_j)) \sim N\left(0, \sqrt{\sum_j x_j^2}\right) \sim N(0,1)$$

Proof Sketch

$$E\left[\frac{1}{k}\sum_{j}Y_{i}^{2}\right]=1$$
 , also $kZ=\sum_{i}Y_{i}^{2}$ is χ_{k}^{2} distributed

We now apply Chernoff style tail bounds to show concentration of kZ around the mean.

$$\Pr[Z > 1 + \epsilon] \le \Pr[\exp(tkZ) > \exp(tk(1 + \epsilon))] \le \frac{E[\exp(tkZ)]}{\exp(tk(1 + \epsilon))}$$
$$\le \frac{\prod_{i} E[\exp(tY_{i}^{2})]}{\exp(tk(1 + \epsilon))} \le \dots \le \exp(-k\epsilon^{2} C)$$

Missing steps involve the MGF of the χ_k^2 distribution and algebra

Other properties

- The bound $k \ge \frac{c}{\epsilon^2} \log \left(\frac{1}{\delta}\right)$ is tight
 - Alon03, JW11
- Target dimension depends only on ϵ, δ
- Such result cannot hold in distances other than Euclidean metric

Other constructions

[Achlioptas '03]

Sampling and storing Gaussian random variables is expensive

$$A = \frac{1}{\sqrt{k}} R$$

•
$$R_{ij} = \begin{cases} +1 & with \ prob \frac{1}{3} \\ 0 & with \ prob \frac{2}{3} \\ -1 & with \ prob \frac{1}{3} \end{cases}$$

Other constructions

[Achlioptas '03]

Sampling and storing Gaussian random variables is expensive

$$A = \frac{1}{\sqrt{k}} R$$

•
$$R_{ij} = \begin{cases} +1 & with \ prob \frac{1}{3} \\ 0 & with \ prob \frac{2}{3} \\ -1 & with \ prob \frac{1}{3} \end{cases}$$

 $R_{ij} \sim \text{any subgaussian distribution}$ with variance 1

Example Application: PCA

• Suppose we have $A\in\Re^{n\times d}$, want to get a rank-k approximation A' so that $|A-A'|_F \text{ is minimized}$

- Optimal low-rank approximation, $A_k = U_k \Sigma_k V_k^t$
 - Takes time $O(nd \min(n, d))$

Low rank Approximation

- Projection $P_A^k = U_k U_k^t$, $\left| A P_A^k A \right|_2 = \sigma_{k+1}$
- For any B and P_B^k , $\left|A P_B^k A\right| \le \sigma_{k+1} + \sqrt{2|AA^t BB^t|} \quad \text{[FKV04]}$
- Want B that is
 - Efficiently computable and small
 - Leads to low error, $|AA^t BB^t| \le \epsilon |AA^t|$

[Example courtesy Edo Liberty]

Cheap and effective low rank

• $A \in \Re^{n \times d}$, create $R \in \Re^{d \times k}$ as a JL matrix

• $B = AR \in \Re^{n \times k}$

Cheap and effective low rank

• $A \in \Re^{n \times d}$, create $R \in \Re^{d \times k}$ as a JL matrix

• $B = AR \in \Re^{n \times k}$

• Note that $E[BB^t] = A E[RR^t]A^t = AA^t$

JL in low rank approximation

Using the JL property

$$\Pr[|yR|^2 - |y|^2 > \epsilon |y|^2] < \exp(-ck\epsilon^2)$$

Using union bound over a ϵ —net, $k = \tilde{O}\left(\frac{rank(A)}{\epsilon^2}\right)$

$$|A^t A - B^t B| = \sup_{|x|=1} ||xA|^2 - |xAR|^2| \le \epsilon |A^t A|$$

Time taken = O(ndk)

Summary

- JL random projections a versatile tool
 - Tight bound on the number
- Number of ways to construct, will see more
- Saw a specific application

References:

- Primary references
 - The Random Projection Method, Santosh Vempala, AMS.
 - Foundations of Data Science, Blum, Hopcroft, Kannan, https://www.cs.cornell.edu/jeh/book.pdf
 - Survey by Long Chen, https://www.math.uci.edu/~chenlong/RNLA/JL.pdf

Thank You!!

