Задача 1

1. Для линейно упругого материала, представленного на рисунке 1х записать общий вид матрицы жёсткости в двух декартовых ортогональных системах координат. Общий вид должен показывать априори равные друг-другу значения и нулевые значения коэффициентов матриц жёсткости. Охарактеризовать тип материала.

Варианты заданий:

Вариант	Рисунок	CK_1	CK_2
1	1a	X ₁ X ₃ X ₂	X~2X~3X~1
2	16	X ₁ X ₃ X ₂	X*3X*2X*1
3	1в	X ₁ X ₃ X ₂	X'1X'2X'3
4	1a	X ₃ X ₂ X ₁	X~2X~1X~3
5	16	X ₃ X ₂ X ₁	X*3X*1X*2
6	1в	X ₃ X ₂ X ₁	X'2X'1X'3
7	1a	X ₂ X ₁ X ₃	X~2X~1X~3
8	16	X ₂ X ₁ X ₃	X*3X*2X*1
9	1в	X ₂ X ₁ X ₃	X'1X'2X'3
10	1a	X ₂ X ₃ X ₁	X~2X~3X~1
11	16	X ₂ X ₃ X ₁	X*3X*1X*2
12	1в	X ₂ X ₃ X ₁	X'2X'3X'1
13	1a	X ₁ X ₂ X ₃	X~2X~1X~3
14	16	X ₁ X ₂ X ₃	X*3X*2X*1
15	1в	X ₁ X ₂ X ₃	X'2X'1X'3
16	1a	X ₃ X ₁ X ₂	X~2X~3X~1
17	16	X ₃ X ₁ X ₂	X*3X*1X*2
18	1в	X ₃ X ₁ X ₂	X'2X'3X'1
19	1a	X ₁ X ₃ X ₂	X~1X~3X~2
20	16	X ₁ X ₃ X ₂	X*2X*1X*3
21	1в	X ₁ X ₃ X ₂	X'3X'2X'1
22	1a	X ₃ X ₂ X ₁	X~ ₁ X~ ₃ X~ ₂
23	16	X ₃ X ₂ X ₁	X*2X*1X*3
24	1в	X ₃ X ₂ X ₁	X'3X'2X'1
25	1a	X ₂ X ₁ X ₃	X~1X~3X~2
26	16	X ₂ X ₁ X ₃	X*2X*1X*3
27	1в	X ₂ X ₁ X ₃	X'3X'2X'1

Задача 2

Построить область допустимых состояний многослойного композиционного материала в системе координат $\sigma_{11} - \sigma_{22} - \tau_{12}$ многослойного композиционного материала, работающего в условиях плоского напряжённого состояния. Указать характерные значения напряжений.

Схема армирования [ϕ_1 δ_1 / ϕ_2 δ_2]. Материал монослоёв ортотропный, технические характеристики упругости которого заданы в осях ортотропии. Модули упругости 10 рода E_1 Па и E_2 Па, сдвиговой модуль G_{12} Па, коэффициент Пуассона V_{12} ед. Гипотеза прочности материала монослоя согласно теории максимальных нормальных напряжений. В системе координат монослоя предел прочности на растяжение в направлении 1 F_{+1} Па, предел прочности на сжатие в направлении 2 F_{+2} Па, предел прочности на сжатие в направлении 2 F_{-2} Па. Предел прочности на сдвиг каждого монослоя $F_{12} = 1$ Па.

Допускается изображение области допустимого состояния многослойного композиционного материала в проекции только на одну плоскость σ_{11} — σ_{22} и по наступлению предельного состояния каждого из монослоёв отдельно.

Варианты заданий:

Вариант	φ1	φ2	E ₁	E ₂	V 12	G ₁₂	F+1	F-1	F+2	F-2	δ1	δ 2
1	-30	30	10	4	0,1	4	10	-6	4	-6	0,5	0,5
2	-60	60	10	4	0,1	4	10	-6	4	-6	0,5	0,5
3	-90	90	10	4	0,1	4	10	-6	4	-6	0,5	0,5
4	-45	45	10	4	0,1	4	10	-6	4	-6	0,5	0,5
5	0	0	10	4	0,1	4	10	-6	4	-6	0,5	0,5
6	-15	15	10	4	0,1	4	10	-6	4	-6	0,5	0,5
7	-20	20	10	4	0,1	4	10	-6	4	-6	0,5	0,5
8	-25	25	10	4	0,1	4	10	-6	4	-6	0,5	0,5
9	-35	35	10	4	0,1	4	10	-6	4	-6	0,5	0,5
10	-50	50	10	4	0,1	4	10	-6	4	-6	0,5	0,5
11	-55	55	10	4	0,1	4	10	-6	4	-6	0,5	0,5
12	-65	65	10	4	0,1	4	10	-6	4	-6	0,5	0,5
13	-70	70	10	4	0,1	4	10	-6	4	-6	0,5	0,5
14	-75	75	10	4	0,1	4	10	-6	4	-6	0,5	0,5
15	-85	85	10	4	0,1	4	10	-6	4	-6	0,5	0,5
16	0	90	10	4	0,1	4	10	-6	4	-6	0,1	0,9
17	0	90	10	4	0,1	4	10	-6	4	-6	0,2	0,8
18	0	90	10	4	0,1	4	10	-6	4	-6	0,3	0,7
19	0	90	10	4	0,1	4	10	-6	4	-6	0,4	0,6
20	0	90	10	4	0,1	4	10	-6	4	-6	0,5	0,5
21	90	0	10	4	0,1	4	10	-6	4	-6	0,1	0,9
22	90	0	10	4	0,1	4	10	-6	4	-6	0,2	0,8
23	90	0	10	4	0,1	4	10	-6	4	-6	0,3	0,7
24	90	0	10	4	0,1	4	10	-6	4	-6	0,4	0,6
25	90	0	10	4	0,1	4	10	-6	4	-6	0,5	0,5
26	0	90	10	4	0,1	4	10	-6	4	-6	0,25	0,75
27	90	0	10	4	0,1	4	10	-6	4	-6	0,25	0,75