# 電腦與通訊工程系

# 通訊實習報告

# 實驗一



授課教師:郝敏忠

成員: 0551006 吳冠毅

0551020 陳致溢

0551022 游竣凱

0551040 李博宬

日期: 2018/9/20

# 一、 實驗目的

A:以簡單的AM基本架構幫助學生瞭解AM調變的方式, 並藉由示波器觀察以明瞭AM調變對信號產生的作用,然 後進一步探討調變深度的意義,以及如何求得其值。 B:以ACOLADE軟體的基本模組方塊架構AM的基本組態, 然後經由模擬分析來瞭解AM的調變原理與信號作用。

### 二、 實驗過程

#### A.TIMS 通訊系統模組

 $AA.\varphi$  () AM t 的求得與調變深度的計算



圖一: AM 調變的系統方塊圖

#### 調變深度計算

| 弦波振幅(V) | 直流分量(V) | $Max_{PP}$ – $(V)$ | $Min_{PP}$ – $(V)$ | β    |  |  |  |  |
|---------|---------|--------------------|--------------------|------|--|--|--|--|
| 1V      | 1.0V    | 4V                 | 280mV              | 0.86 |  |  |  |  |
| 1V      | 1.5V    | 5.2V               | 1.24V              | 0.61 |  |  |  |  |
| 1V      | 2.0V    | 6.4V               | 800mV              | 0.78 |  |  |  |  |
| 2V      | 2.0V    | 8.4V               | 160mV              | 0.96 |  |  |  |  |
| 2V      | 2.5V    | 9.2V               | 640mV              | 0.86 |  |  |  |  |
| 2V      | 3.0V    | 10V                | 480mV              | 0.96 |  |  |  |  |

## 調整弦波振幅與直流分量值改變 AM 波形

弦波振幅(V) 直流分量(V) 1V 1V





弦波振幅(V) 直流分量(V) 1V 1V





#### AB.AM 分項組合架構

#### (1) 如圖三進行接線。



抑制雙旁波帶調變訊號之調變深度計算

| 抑制雙旁波帶訊號振幅(V) | 直流分量(V) | $Max_{PP}$ - $(V)$ | Min <sub>PP</sub> -(V) | β    |
|---------------|---------|--------------------|------------------------|------|
| 1V            | 1.0V    | 3.96V              | 180mV                  | 0.91 |
| 1V            | 1.5V    | 6V                 | 920mV                  | 0.73 |
| 1V            | 2.0V    | 7.2V               | 1.68V                  | 0.62 |
| 2V            | 2.0V    | 8.4V               | 1.1V                   | 0.76 |
| 2V            | 2.5V    | 9.28V              | 1.2V                   | 0.77 |
| 2V            | 3.0V    | 10.2V              | 2.2V                   | 0.64 |

#### 抑制雙旁波帶調變訊號波形

抑制雙旁波帶訊號振幅(V) 直流分量(V) 抑制雙旁波帶 1.0V 1.0V 1.0V 1.0V

抑制雙旁波帶訊號振幅(V) 直流分量(V) 1.0V 2.0V













AC. 過調變訊號  $\varphi$  AMt()

弦波振幅(V) 1V

直流分量(V) 1V

弦波振幅(V) 1V

直流分量(V) 2V







弦波振幅(V) 直流分量(V) 1V 2V



#### 問題討論:

(1)在實驗過程AA 與AC 中,若乘法器的輸入耦合切換開關設在AC 狀態下,則會有什麼情況發生?

答:成法器會阻隔直流訊號,導致輸出產生變化。

- (2) 試證明  $\beta = \frac{Max_{p-p} Min_{p-p}}{Max_{p-p} + Min_{p-p}}$ 。若  $\beta > 1$  時,這公式仍成立否?答:是,當Min p-p 值為負時。
- (3) 為何實驗過程AA 不需考慮相位問題,而AB 則需要考慮相位問題? 答:實驗AA兩個訊號相位相同,實驗AB兩個訊號相差180°所以需要 考慮相位問題。
- (4) 在實驗過程AB中,為何雙旁波帶訊號項與載波訊號項須同相位? 答:載波訊號經過相移器調整。
- (5) 在 ACOLADE 的實驗中,改變訊號的振福與頻率對整個系統會有影響, 請說明為何會有這種影響?
- (6) 在 ACOLADE 的實驗中,改變載波的頻率與直流準位的大小對整個系統會有影響,請說明為何會有這種影響?
- (7) 調變深度的改變受到什麼因數的影響?

答:受到加在音頻訊號上的直流與音頻訊號本身振幅影響。

#### 0551006 吳冠毅心得

這禮拜的實驗看起來跟上自差不多,一開始操作非常的順利想說應該很快就能完成,做完實驗AA跳去做AC這兩個接線一模一樣,就接著做,也是很順利地做完了,當做到實驗AB時頭就開始痛了接完輸出的波型跟參考的圖不一樣,又重接了一遍還是一樣,最後開始亂接,終於波型出來了,結果好像是主訊號模組接錯?!

### 0551020 陳致溢心得

這禮拜的實習在調整儀器上面比上禮拜的題目來得困難一點,有一題調了很久都調不出來才發現好像是題目有些問題,經過大家互相討論實驗過後才發現問題所在,希望之後的實習可以順利一點,並且對於儀器的操作能夠更加上手。

## 0551022 游竣凱心得

這次的實習是我第二次接觸通訊相關的實習,對各個儀器都還沒熟悉,所以總是要在實作前先把該次實驗會用到的東西先學一遍,在摸索好一段時間後才正式開始操作,經過這次的實習讓我更熟悉各個儀器,希望可以在這堂課學到更多新的知識。

# 0551040 李博宬心得

今天是這學期第二次實驗,對各個儀器都還是很陌生,再接電路圖的時候都要花上不少時間來摸索,這次的實驗一共有三題,前兩題都非常順利地完成測量,沒有遇到什麼困難,但是在做最後一題的時候,卻碰上了很大的問題,將電路重接好幾次都沒辦法得到正確的測量值,經過大家一起慢慢檢討還有討論後,才發現是講義的說明有誤,導致我們的其中一個輸入接錯了,還好最後有在時間內完成實驗,希望往後幾週的實驗可以順利一點,並且對儀器的操作可以更加熟練。