### PHY PCIE

Prof. Jorge Soto
IE-0523 Circuitos Digitales II

## Diagrama de capas PCIE Figure 14-1: Link Training and Status State Machine Location



<sup>\*</sup> PCI Express® System Architecture; Budruk, Anderson y Shanley; MindShare, Inc.; 2008

#### Enlace de dos capas físicas

Physical Layer Physical Layer Rx Rx Logical Logical Electrical Electrical Link Rx+ T<sub>Rx+</sub>

Figure 11-2: Logical and Electrical Sub-Blocks of the Physical Layer

#### Capa física eléctrica

Figure 2-30: Electrical Physical Layer Showing Differential Transmitter and Receiver



#### Detalles de la capa física en TX y RX

From Data Link Layer To Data Link Layer Control Transmit Receive Throttle Řх Ťx Buffer Buffer IDLE/PAD START / END / IDLE / PAD Character Removal and Mux Packet Alignment Check D/K# D/K# Byte Un-StripingLane N (N=0,1,3,7,11,15,3 Byte Striping Lane N (N=0,1,3,7,11,15,31) Lane 0 De-Scrambler Lane 1, .., N-1 De-Scrambler Scrambler Scrambler Tx Local Error 8b/10b 8b/10b Decoder Detect Decoder Encoder Encoder Rx Local Tx Clk Serial-to-Parallel Serial-to-Parallel Parallel-to-Serial Parallel-to-Serial and Elastic Buffer and Elastic Buffer **∢**·····**≻** Lane 0 Lane 1, ..,N-1 Lane N Lane N Lane 0 Lane 1, .., N-1

Figure 11-3: Physical Layer Details

#### Byte Striping de datos hacia 4 lanes

Figure 11-8: x4 Byte Striping



#### Lógica RX

Figure 11-21: Receiver Logic's Front End Per Lane



# Microarquitectura del proyecto #1

Lógica de control y multiplexores para la transmisión (TX) y recepción (RX) de datos en el PHY.

#### Detalles del PHY para el proyecto #1



#### Detalles del paralelo-serial

- Convierte el bus paralelo con reloj clk\_4f a una señal serial con reloj clk\_32f.
- Envía la señal paralela hex(BC) cuando valid está en bajo.
- No hay señal valid de salida, todos los datos diferentes de hex(BC) son válidos.
- Por simplificación del proyecto, no hay codificador 8b/10b y no se puede enviar hex(BC) como dato válidos.



#### Detalles del serial-paralelo

- Se necesita enviar 4 hex(BC) para activar el receptor.
- Al enviar 4 hex(BC), se habilita la señal active y ésta se mantiene arriba.
- La señal valid\_out estará arriba siempre que active esté arriba y no se tenga un hex(BC) en los datos.





#### Detalles del serial-paralelo

- Envío de datos
- Si se recibe un hex(BC), se baja la señal de valid.
- Los datos estarán disponibles en la salida en el siguiente ciclo de clk\_4f.





#### Símbolos de control

Table 11-5: Control Character Encoding and Definition

| Character<br>Name | 8b Name     | 10b (CRD-)  | 10b (CRD+)  | Description                                                                                                                                                |
|-------------------|-------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СОМ               | K28.5 (BCh) | 001111 1010 | 110000 0101 | First character in any<br>Ordered-Set. Detected by<br>receiver and used to<br>achieve symbol lock dur-<br>ing TS1/TS2 Ordered-Set<br>reception at receiver |
| PAD               | K23.7 (F7h) | 111010 1000 | 000101 0111 | Packet Padding character                                                                                                                                   |
| SKP               | K28.0 (1Ch) | 001111 0100 | 110000 1011 | Used in SKIP Ordered-<br>Set. This Ordered-Set is<br>used for Clock Tolerance<br>Compensation                                                              |
| STP               | K27.7 (FBh) | 110110 1000 | 001001 0111 | Start of TLP character                                                                                                                                     |
| SDP               | K28.2 (5Ch) | 001111 0101 | 110000 1010 | Start of DLLP character                                                                                                                                    |
| END               | K29.7 (FDh) | 101110 1000 | 010001 0111 | End of Good Packet<br>character                                                                                                                            |
| EDB               | K30.7 (FEh) | 011110 1000 | 100001 0111 | Character used to mark<br>the end of a 'nullified'<br>TLP.                                                                                                 |



#### Símbolos de control



Table 11-5: Control Character Encoding and Definition

| Character<br>Name | 8b Name     | 10b (CRD-)  | 10b (CRD+)  | Description                                                                                                   |
|-------------------|-------------|-------------|-------------|---------------------------------------------------------------------------------------------------------------|
| FTS               | K28.1 (3Ch) | 001111 1001 | 110000 0110 | Used in FTS Ordered-Set.<br>This Ordered-Set used to<br>exit from L0s low power<br>state to L0                |
| IDL               | K28.3 (7Ch) | 001111 0011 | 110000 1100 | Used in Electrical Idle<br>Ordered-Set. This<br>Ordered-Set used to<br>place Link in Electrical<br>Idle state |

#### Proyecto #1

 Ver detalles de evaluación y entregables en "Especificaciones Proyecto 1 II Ciclo 2019".

