FCC ID: 2AB43-EPC-1500-RRI

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in § 1.1307(b)

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field	Power	Average		
Range(MHz)	Strength(V/m)	Strength(A/m) Density(mW/cm ²		Time		
(A) Limits for Occupational/Control Exposures						
300-1500			F/300	6		
1500-100000			5	6		
(B) Limits for General Population/Uncontrol Exposures						
300-1500			F/1500	6		
1500-100000			1	30		

11.1 Friis transmission formula: $Pd=(Pout*G)\setminus(4*pi*R^2)$

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

11.2 Measurement Result

Power density limited:

 1mW/cm^2

Antenna gain: 1 dBi

802.11b

Cł	nannel	Channel	Output	Output	Antenna	Power density	Power density
		Frequency	Peak power	Peak power	Gain (dBi)	at 20cm	Limits
		(MHz)	(dBm)	(mW)	Numeric	(mW/cm^2)	(mW/cm^2)
	1	2412	19.27	84.5279	1.2589	0.0212	1
	6	2437	19.32	85.5067	1.2589	0.0214	1
	11	2462	19.44	87.9023	1.2589	0.0220	1

802.11g

Channel	Channel	Output	Output	Antenna	Power density	Power density
	Frequency	Peak power	Peak power	Gain (dBi)	at 20cm	Limits
	(MHz)	(dBm)	(mW)	Numeric	(mW/cm^2)	(mW/cm^2)
1	2412	17.33	54.0754	1.2589	0.0135	1
6	2437	16.9	48.9779	1.2589	0.0123	1
11	2462	17.31	53.8270	1.2589	0.0135	1

802.11n HT20

Channel	Channel	Output	Output	Antenna	Power density	Power density
	Frequency	Peak power	Peak power	Gain (dBi)	at 20cm	Limits
	(MHz)	(dBm)	(mW)	Numeric	(mW/cm^2)	(mW/cm^2)
1	2412	16.33	42.9536	1.2589	0.0108	1
6	2437	15.85	38.4592	1.2589	0.0096	1
11	2462	15.87	38.6367	1.2589	0.0097	1