α) Η υπερβολή $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$, με $\beta = \sqrt{\gamma^2 - \alpha^2}$, έχει εστίες τις $E'(-\gamma, 0)$, $E(\gamma, 0)$ και ασύμπτωτες τις ευθείες ε_1 : $y = \frac{\beta}{\alpha} x$, ε_2 : $y = -\frac{\beta}{\alpha} x$.

Η υπερβολή C: $x^2-y^2=1$ είναι ισοσκελής, με $\alpha=\beta=1$.

Επιπλέον
$$\beta = \sqrt{\gamma^2 - \alpha^2} \Leftrightarrow 1 = \sqrt{\gamma^2 - 1} \Leftrightarrow \gamma^2 = 2 \stackrel{\gamma > 0}{\Longleftrightarrow} \gamma = \sqrt{2}$$
 .

Επομένως, οι εστίες της C είναι τα σημεία $E'\left(-\sqrt{2},0\right)$, $E\left(\sqrt{2},0\right)$ και ασύμπτωτες, οι ευθείες ε_1 : y=x , ε_2 : y=-x .

β)

i. Η εφαπτομένη της υπερβολής $\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}=1$ στο σημείο της $M(x_1,y_1)$ είναι η ευθεία $\frac{x\cdot x_1}{\alpha^2}-\frac{y\cdot y_1}{\beta^2}=1.$

Η εφαπτομένη της C στο σημείο A(1,0) είναι η ζ : $x \cdot 1 - y \cdot 0 = 1 \Leftrightarrow x = 1$.

ii. Το σημείο Γ προκύπτει από την επίλυση του συστήματος (Σ) : $\begin{cases} \varepsilon_1 \colon y = x \\ \zeta \colon x = 1 \end{cases} \Leftrightarrow \begin{cases} y = 1 \\ x = 1 \end{cases}$. Επομένως $\Gamma(1,1)$.