Exercice 1. Un calcul d'équivalent.

Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n k^{\alpha}$, que l'on récrit $S_n = n^{\alpha+1} \times \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^{\alpha}$.

On a fait apparaître une somme de Riemann pour la fonction $x \mapsto x^{\alpha}$, qui est continue par morceaux sur [0,1] (elle est notamment prolongeable par continuité en 0 puisque $\alpha > 0$).

D'après le théorème sur la convergence des sommes de Riemann,

$$\frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{\alpha} \underset{n \to +\infty}{\longrightarrow} \int_{0}^{1} x^{\alpha} dx = \frac{1}{\alpha + 1}.$$

Puisque $\int_0^1 x^{\alpha} dx = \frac{1}{\alpha+1}$ on obtient le résultat $S_n \underset{n \to +\infty}{\sim} \frac{n^{\alpha+1}}{\alpha+1}$

On sait aussi obtenir ce résultat par une comparaison avec une intégrale pour la fonction $x \mapsto x^{\alpha}$, croissante sur $[1, +\infty[$.

Exercice 2. Maximum de deux variables aléatoires.

Dans cet exercice, n est un entier naturel fixé.

Sur un espace probabilisé (Ω, P) , on considère deux variables aléatoires X et Y indépendantes et de même loi uniforme sur [1, n]. On note $Z = \max(X, Y)$.

1. $Z(\Omega) \subset [1, n]$. Fixons k dans cet ensemble. On a

$$\begin{split} P(Z \leq k) &= P(X \leq k, Y \leq k) \\ &= P(X \leq k) P(Y \leq k) \quad \text{(indépendance)} \\ &= \left(\frac{k}{n}\right)^2 \end{split}$$

Puisque $(Z \le k) = (Z = k) \cup (Z \le k - 1)$ (union disjointe), on a

$$P(Z=k) = P(Z \le k) - P(Z \le k-1) = \frac{k^2}{n^2} - \frac{(k-1)^2}{n^2} : P(Z=k) = \frac{2k-1}{n^2}$$

2. On utilise la formule des probabilités totales pour les système complet d'événements $(X=k)_{k\in \llbracket 1,n\rrbracket}$:

$$P(X = Y) = \sum_{k=1}^{n} P(X = k, Y = k) = \sum_{k=1}^{n} P(X = k) P(Y = k) = \sum_{k=1}^{n} \frac{1}{n^2} = \frac{1}{n}.$$

Puisque $Z = \max(X, Y)$, l'événement (X = Z) est égal à $(Y \le X)$. En utilisant à nouveau la formule des probabilité totales,

$$P(X \le Y) = \sum_{k=1}^{n} P(X = k, Y \le k) = \sum_{k=1}^{n} P(X = k) P(Y \le k)$$

On a donc

$$P(X = Z) = \sum_{k=1}^{n} \frac{1}{n} \cdot \frac{k}{n} = \frac{n(n+1)}{2n^2}$$
 donc $P(X = Z) = \frac{n+1}{2n}$.

- 3. L'énoncé a fixé $k \in [1, n]$. On considère un entier $i \in [1, n]$.
 - Pour i > k, on a

$$P(X = i | Z = k) = \frac{P(X = i, \max(X, Y) = k)}{P(Z = k)} = 0.$$

• Pour $i \leq k-1$,

$$P(X = i | Z = k) = \frac{P(X = i, Z = k)}{P(Z = k)} = \frac{P(X = i, Y = k)}{P(Z = k)} = \frac{P(X = i)P(Y = k)}{P(Z = k)}.$$

On a donc

$$P(X = i | Z = k) = \frac{\frac{1}{n} \cdot \frac{1}{n}}{\frac{2k-1}{n^2}} = \frac{1}{2k-1}.$$

• Enfin, pour i = k,

$$P(X = k | Z = k) = \frac{P(X = k, Y \le k)}{P(Z = k)} = \frac{P(X = i)P(Y \le k)}{P(Z = k)}.$$

On a donc

$$P(X = k | Z = k) = \frac{\frac{1}{n} \cdot \frac{k}{n}}{\frac{2k-1}{n^2}} = \frac{k}{2k-1}.$$

La loi de X conditionnellement à (Z = k) est donc donnée par

i	1	2	• • •	k-1	k
$P(X = i \mid Z = k)$	$\frac{1}{2k-1}$	$\frac{1}{2k-1}$		$\frac{1}{2k-1}$	$\frac{k}{2k-1}$

On se rassure sur les calculs précédents en vérifiant que la distribution de probabilités donnée ici somme bien à 1...

Exercice 3. Loi des événements rares : une apparition de la loi de Poisson.

- 1. $p_n(k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 \frac{\lambda}{n}\right)^{n-k}$.
- 2. On a

$$p_n(k) = \binom{n}{k} \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n} \right)^{-k} \left(1 - \frac{\lambda}{n} \right)^n.$$

On rappelle que k est $\mathit{fix\'e}$ ici. On a

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{1}{k!} \prod_{i=0}^{k-1} (n-i) = \frac{n!}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right).$$

Le nombre de facteur dans le produit est fixe (égal à k) et chacun des facteurs tend vers 1 lorsque n tend vers $+\infty$. On a donc

$$\prod_{i=0}^{k-1} \left(1 - \frac{i}{n} \right) \underset{n \to +\infty}{\longrightarrow} 1 \quad \text{d'où} \quad \binom{n}{k} \underset{n \to +\infty}{\sim} \frac{n^k}{k!}$$

De plus,

$$\left(1-\frac{\lambda}{n}\right)^n = \exp\left(n\ln\left(1-\frac{\lambda}{n}\right)\right) = \exp\left(n\cdot\left(-\frac{\lambda}{n}+o\left(\frac{1}{n}\right)\right)\right) = \exp\left(-\lambda+o(1)\right),$$

ce qui démontre que

$$\left(1 - \frac{\lambda}{n}\right)^n \underset{n \to +\infty}{\longrightarrow} e^{-\lambda}.$$

De plus, la fonction $x \mapsto x^{-k}$ étant continue en 1, on a $\left(1 - \frac{\lambda}{n}\right)^{-k} \xrightarrow[n \to +\infty]{} 1$. Finalement,

$$p_n(k) \underset{n \to +\infty}{\longrightarrow} p(k)$$
 avec $p(k) := e^{-\lambda} \frac{\lambda^k}{k!}$

3. (a) On a

$$Y_n = \sum_{i=1}^n \mathbf{1}_{\{U_i = c_i\}}.$$

- (b) L'indépendance des U_i donne celle des variables $\mathbf{1}_{\{U_i=c_i\}}$ qui sont toutes de loi de Bernoulli de paramètre p, où $p=P(U_i=c_i)=\frac{1}{365}$. Nous savons donc que Y_n suit la loi binomiale de paramètre $(n,\frac{1}{365})$.
- (c) Dans le cas où n=240, on a $\frac{1}{365}=\frac{\lambda}{240}$, où $\lambda=\frac{240}{365}\approx\frac{2}{3}$. On cherche à calculer $P(Y_n\geq 2)$, avec n=240 et $p=\frac{\lambda}{240}$. On a

$$P(Y_n \ge 2) = 1 - P(Y_n = 0) - P(Y_n = 1)$$

$$\approx 1 - p(0) - p(1)$$

$$\approx 1 - e^{-2/3} \frac{\lambda^0}{0!} - e^{-2/3} \frac{\lambda^1}{1!}$$

$$\approx 1 - \frac{1}{2} - \frac{1}{2} \cdot \frac{2/3}{1!}$$

$$\approx \frac{1}{6}$$

Évidemment, cette approximation repose sur l'hypothèse que pour n=240, les probabilités $p_n(k)$ sont déjà proches de leur limite p(k). On estime généralement que pour λ de l'ordre de 1, l'approximation de la binomiale $\mathcal{B}(n,\frac{\lambda}{n})$ par la loi de Poisson de paramètre λ est bonne dès que $n \geq 50$.