Zjawisko fotoelektryczne

Programy użytkowe

Natalia Serwin Tomasz Targiel Kacper Mordarski Styczeń 2021

Fizyka komputerowa, Wydział Fizyki i Astronomii, Uniwersytet Wrocławski

Spis treści

- 1. Fotony
- 2. Cechy efektu fotoelektrycznego
- 3. Kwantowa teoria Einsteina zjawiska fotoelektrycznego

Fotony

Odrobina historii

Albert Einstein

Albert Einstein wykazał, że światło nie tylko jest emitowane porcjami, ale rozchodzi się w przestrzeni jako zbiór cząstek – fotonów – i jest pochłaniane również porcjami.

Było to niezwykłe odkrycie, gdyż do tej pory uważano, że światło to fala elektromagnetyczna, a wszystkie zjawiska optyczne doskonale wyjaśniała falowa teoria światła.

Doświadczalne przedstawienie zjawiska fotoelektrycznego

W szklanej bańce, w której panuje wysoka próżnia, znajdują się dwie metalowe elektrody A i B. Światło pada na metalową płytkę A i uwalnia z niej elektrony, które nazywamy fotoelektronami.

Fotoelektrony są rejestrowane jako prąd elektryczny płynacy miedzy płytka A oraz elektrodą zbierającą B przy przyłożonym napieciu U.

Schemat układu doświadczalnego do badania tego ziawiska

Cechy efektu fotoelektrycznego

Brak opóźnienia

Gdy promieniowanie pada na metalową płytkę elektrody, elektrony emitowane są natychmiast, nawet przy bardzo niewielkim natężeniu promieniowania. Brak opóźnienia stoi w sprzeczności z fizyką klasyczną, w ramach której przewiduje się, że zwłaszcza przy niskim natężeniu padającego światła powinno minąć nieco czasu, zanim elektrony pobiorą wystarczającą ilość energii, aby uwolnić się z powierzchni metalu. Takie opóźnienie nie jest jednak obserwowane.

Natężenie padającego promieniowania, a energia kinetyczna elektronów

Zależność prądu fotoelektrycznego od przyłożonego napięcia U

Opuszczający powierzchnię płytki fotoelektron ma energię kinetyczną E_{k0} , którą uzyskał od padającego promieniowania. Jego energia potencjalna zmienia się o $q\Delta V$, gdzie ΔV jest różnicą potencjałów, a q=-e.

Z zasady zachowania energii wynika więc, że $\Delta E_k - e\Delta V = 0J$ (ΔE_k -zmiana energii kinetyczej fotoelektronu). Gdy przyłożymy napięcie hamowania $-\Delta V_h$, fotoelektron traci całą swoją energię kinetyczną E_{ki} i zatrzymuje się.

Natężenie padającego promieniowania, a energia kinetyczna elektronów

Zależność prądu fotoelektrycznego od przyłożonego napięcia U

Bilans energetyczny wyraża się wtedy następująco: $(0J - E_{k0}) - e(-\Delta V_h) = 0J$, z czego wynika, że $E_{k0} = e\Delta V_h$. Napięcie hamowania pozwala nam więc wyznaczyć maksymalną energie kinetyczną E_{kmax} emitowanych elektronów

$$E_{kmax} = e\Delta V_h$$

Napięcie hamowania, a więc i maksymalna wartość energii kinetycznej fotoelektronów nie zależą od natężenia światła.

Częstotliwość progowa

Dla każdej metalowej powierzchni, na którą pada promieniowanie, istnieje pewna częstotliwość tego promieniowania, poniżej której nie rejestruje się fotoprądu – innymi słowy zjawisko fotoelektryczne nie zachodzi. Wielkość taką nazywamy częstotliwością progową i jest ona charakterystyczna dla danego metalu.

Dane eksperymentalne pokazują liniową zależność – maksymalna energia kinetyczna fotoelektronów rośnie liniowo ze zwiększającą się częstotliwością padającego promieniowania.

Częstotliwość progowa

Liniowy wzrost energii kinetycznej ze zwiększającą się częstotliwością podającego promieniowania

Pomiary dokonywane dla różnych metali dają liniowa zależność z tym samym nachyleniem wykresu. Żadna z tych obserwacji nie daje sie pogodzić z fizyka klasyczna(energia kinetyczna fotoelektronów powinna zależeć od natężenia padającego światła). Fizyka klasyczna nie przewiduje istnienia czestotliwości progowej. W klasycznym obrazie elektrony pobierają energie od promieniowania w sposób ciągły, ich energia kinetyczna powinna zależeć tylko od nateżenia padającego światła, a efekt powinien zachodzić zawsze, niezależnie od czestotliwości.

Kwantowa teoria Einsteina zjawiska fotoelektrycznego

Historia

Efekt fotoelektryczny został wyjaśniony w 1905 roku przez Alberta Einsteina. Założył on, że skoro hipoteza Plancka o kwantach energii poprawnie opisywała wymianę energii między promieniowaniem elektromagnetycznym i ścianami wnęki, to powinna być ona także zastosowana do opisu absorpcji promieniowania przez fotoelektrodę. Zapostulował on tezę, że fala elektromagnetyczna niesie energię w dyskretnych porcjach. Einstein rozszerzył hipotezę Plancka, postulując, że samo światło składa się z kwantów promieniowania (fotonów). Innymi słowy, że fale elektromagnetyczne są skwantowane.

Energia pojedynczego fotonu

W podejściu Einsteina wiązka monochromatycznego światła o częstotliwości $\mathcal V$ złożona jest z fotonów, czyli foton jest cząstką światła. Każdy foton porusza się z prędkością światła i niesie kwant energii E_f . Energia fotonów zależy tylko od częstotliwości $\mathcal V$ i dana jest wzorem:

$$E_f = h\mathcal{V} \tag{1}$$

gdzie h jest stałą Plancka.

Efekt fotoelektryczny

Jeżeli do wyrwania elektronu z metalu potrzebna jest energia \mathcal{W} , to wówczas:

$$h\mathcal{V} = \mathcal{W} + E_{kmax} \tag{2}$$

Wielkość ${\mathcal W}$ charakterystyczna dla danego metalu nazywana jest pracą wyjścia.

Zgodnie z powyższą zależnością energia $h\mathcal{V}$ fotonu, w części (\mathcal{W}) zostaje zużyta na wyrwanie elektronu z materiału (jego przejście przez powierzchnię), a ewentualny nadmiar energii $(h\mathcal{V}-\mathcal{W})$ elektron otrzymuje w postaci energii kinetycznej, przy czym część z niej może być stracona w zderzeniach wewnętrznych (przed opuszczeniem materiału).

DZIĘKUJEMY ZA UWAGĘ

CZY MACIE JAKIEŚ PYTANIA?