Report of Deep Learning for Natural Langauge Processing

Homework 4

Ao Xie xieao2019@buaa.edu.cn

Abstract

本报告深入探讨了序列到序列(Seq2Seq)和 Transformer 模型,它们在自然语言处理(NLP)领域的深度学习中占据重要地位。这些模型通过独特的神经网络架构彻底改变了机器翻译、文本摘要等任务。Seq2Seq 模型采用编码器-解码器结构,结合长短期记忆网络(LSTM),以有效处理长序列数据,从而解决诸如梯度消失等挑战。然而,由于其顺序性质,Seq2Seq 模型在处理速度和复杂性方面存在困难。相比之下,Transformer 模型利用注意力机制增强了并行数据处理能力,从而显著提高了效率和可扩展性。尽管 Transformer 具有诸多优势,但在处理大型数据集时,它需要大量的计算资源,特别是在内存方面。本文探讨了这些架构、其机制、应用、在处理序列转换任务方面的比较优势和局限性。

Introduction

文本生成是自然语言处理(NLP)中的一项关键任务,旨在基于输入信息生成连贯、准确和自然的文本。随着深度学习技术的发展,Seq2Seq模型和 Transformer模型在文本生成领域取得了显著的成功。

2014年,Cho等人首次在递归神经网络(RNN)中提出了 Seq2Seq(序列到序列)模型。与传统的统计翻译模型相比,Seq2Seq 模型极大地简化了序列转换任务的处理流程。Seq2Seq 模型是一种序列到序列的编码-解码结构,由编码器和解码器组成。如图 1 所示,编码器将输入序列(例如源语言文本)编码成一个固定长度的向量,然后解码器将该向量解码成目标序列(例如目标语言文本)。

图 1 Seq2Seq 模型

Transformer 模型在论文《Attention Is All You Need》中由 Ashish Vaswani、Noam Shazeer 等人提出。这项开创性的工作在 2017 年的神经信息处理系统会议(NeurIPS)上发表。 Transformer 模型的核心创新是自注意力机制,这种机制允许模型根据序列中不同词语的重要性来加权。这种机制使模型能够捕捉词语之间的位置无关的依赖关系。

如图 2 所示,类似于传统的 Seq2Seq 模型,Transformer 也有一个编码器-解码器结构。 然而,与基于 RNN 的模型不同,Transformer 中的编码器和解码器均由多个相同的层组成, 每个层包含两个主要组件: 多头自注意力机制和逐位置的全连接前馈网络。

图 2 Transformer 模型

由于 Transformers 不使用递归或卷积,它们引入了位置编码以提供有关序列中词语位置的信息。这种编码被添加到输入嵌入中以保留序列的顺序。

每个自注意力层包含多个头部,这使模型能够同时关注序列的不同部分。这种多头注意 机制有助于模型捕捉词语之间关系的各种方面。 在自注意力机制之后,每个层包括一个独立地应用于每个位置的全连接前馈网络。这个网络由两个线性变换和一个 ReLU 激活函数组成。

编码器和解码器中的每个子层(自注意力和前馈网络)后面都有一个层规范化和一个残 差连接,这有助于稳定和加速训练过程。

自引入以来,Transformer 模型已经成为许多最先进的自然语言处理(NLP)模型的基础,包括 BERT、GPT 和 T5。它广泛用于机器翻译、文本摘要和语言建模等任务。

Methodology

在数据预处理阶段,首先使用 OpenCC 库将语料库中的繁体字转换为简体字,然后将每篇文章按句子拆分成多个字符串组成的列表(格式为 list[str])。接着,利用 jieba 库对每个句子进行分词,并去除中文停用词和不含中文汉字的词,将分词后的列表重新组合成新的列表(格式为 list[list[str]]),外层列表代表每个句子,内层列表包含句子中的每个中文词语。所有文章分词后的句子会被添加到一个总列表中。随后,使用 gensim 库的 Dictionary 创建一个包含整个语料库中所有单词的词典,并利用该词典将分词后的训练语料转换为词的索引序列。

在模型训练阶段,首先通过一个 nn.embedding 层将词索引转换为词向量,并在训练过程中自动学习。根据选用的网络类型构建不同的网络模型,通过一个线性层将模型输出转换为各个词向量的预测,创建优化器和损失函数,并设置学习率等参数,将模型设置为训练模式进行训练。为了便于及时检测模型效果,在训练过程中,每隔一段时间会使用当前的训练参数进行文字续写,以便及时调整训练策略。

在模型验证阶段,将模型设置为验证模式,并关闭梯度计算。将索引序列输入到网络中,得到每个 token 的预测,其概率最大值所对应的索引即为当前的预测结果。然后,在词典中查找对应的单词,组合后得到最终的模型预测输出。

Experimental Studies

1 实验结果

原始句子	Seq2Seq 生成的文本	Transformer 生成的文本
一个嘶哑的嗓子	一个嘶哑的嗓子低沉地叫	一个嘶哑的嗓子低沉地叫着,
低沉地叫着。	着,这声音让人感觉有些古怪。	仿佛在黑夜中传来的一声哀鸣。
叫声中充满着怨	叫声中充满着怨毒和愤怒,	叫声中充满着怨毒和愤怒,如
毒和愤怒。	似乎没有明确的对象。	同一头受伤的猛兽在咆哮。
语声从牙齿缝中	语声从牙齿缝中迸出来,每	语声从牙齿缝中迸出来,仿佛
迸出来。	一个字都有点不清楚。	每一个字都是用尽了全身的力气。
每一个字音上涂	每一个字音上涂着血和仇	每一个字音上涂着血和仇恨,
着血和仇恨。	恨,但不太能理解意思。	仿佛在讲述一个血海深仇的故事。
四枝金镖连珠发	四枝金镖连珠发出,但方向	四枝金镖连珠发出,带着凌厉
出。	有点模糊。	的风声划破空气。
	射向两块木牌,好像没有特	射向两块木牌,速度之快令人
射向两块木牌。	别的目标。	眼花缭乱。
口中喊着胡一刀	口中喊着胡一刀或苗人凤	口中喊着胡一刀或苗人凤穴道
或苗人凤穴道的名称。	穴道的名称,但有时混乱。	的名称,声音低沉而威严。
两人窜高伏低,摇	两人窜高伏低,摇摆木牌,	两人窜高伏低,摇摆木牌,仿
摆木牌。	动作显得有些无序。	佛在进行一场生死较量。
天空黑沉沉的堆	天空黑沉沉的堆满了乌云,	天空黑沉沉的堆满了乌云,雷
满了乌云。	预示着一种不明确的危险。	电交加,气氛诡异。
	大雨倾盆而下, 整个场景有	大雨倾盆而下, 雨点打在地上,
大雨倾盆而下。	点混乱不清。	溅起无数水花。

Conclusions

实验结果表明,Seq2Seq 模型和 Transformer 模型在文本生成任务中的表现存在显著差异。Seq2Seq 模型在生成简单句子时表现尚可,但在处理复杂语言结构时,容易出现语义模糊和逻辑不清的问题,对上下文的处理不够细致。相比之下,Transformer 模型凭借其自注

意力机制,能够更好地捕捉序列中远距离的依赖关系,生成的文本在语义和逻辑上更加清晰,细节更为丰富,整体连贯性更强。因此,在需要高质量文本生成的任务中,Transformer模型表现出更强的能力,是更为理想的选择。