SCAN EDGE BUNDLE PROBLEM IN THE SPACE PROGRAM

S. de Graaf

Circuits and Systems Group Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology The Netherlands

> Report EWI-ENS 04-03 June 8, 2004

Copyright © 2004 by the author.

Last revision: June 10, 2004.

1. INTRODUCTION

By the substrate resistance extraction of the "infineon/coilgen" layout with the *space* program, i get the following problem:

For testing, i changed something to the layout with the *dali* program, and after that the extraction results where completely different. What happens? The *dali* program uses a horizontal scan technique and saves the layout elements, like the internal vertical data structure used. This layout database storage is different than the initial storage used by the *cgi* program, that a gds2 file converts to the internal database format.

Thus, the *space* extraction result is depending on the method of internal layout storage used. This is, of coarse, not an allowed feature.

I thought that this could not happen, because of the layout expansion tools *makeboxl* and *makegln* used. I thought that *makegln* always produces the same general line segment data independent from the internal layout storage used. However, this seems not be the case. Yes, the *makegln* program shall not always bundle touching line segments and does not make the line segments as long as possible. And it is not a good idea, to fix the problem in the *makegln* program. Because touching edges (line segments) can also happen by reading two edges of different masks.

Thus, to solve the *space* problem, we need to change the input scanning technique of the *space* program. Thus, the *space* program must also bundle touching edges. However, not for the special substrate prepass, where there is read another data format by the scanner and touching edges have a special meaning. Note, that i already had the idea before, that it was better to bundle also touching edges. But i could not make it hard, why it was a better choice. And after implementing the special substrate prepass, it seems not more to be a good idea.

1.1 Layout example as seen by dali

1.2 Layout extraction before using dali

126 substrate contact tiles

1.3 Layout extraction after using dali

132 substrate contact tiles

1.4 Layout extraction before using dali (detail)

1.5 Layout extraction after using dali (detail)

2. APPENDICES

APPENDIX A -- File scan/scan.c version 4.55

```
/* Comment added NvdM, 891213
* the comparison with e1 -> xr is (probably!!!) necessary because
* the ordering in the stateruler can become wrong
 ^{\star} in cases where an edge under +45 straddles the scanline
* in say, (x,y) and an edge under -45 ends in (x,y).
\mbox{\scriptsize \star} This can, however give other problems because horizontal
 * edges ending and starting at (x,y) will not be bundled.
#define equalAtX(e1, e2) \
   (e2 -> xl == thisX && e2 -> yl == thisY && \
    compareSlope (e1, ==, e2) && e1 \rightarrow xr \rightarrow thisX)
void scan ()
{
    while (thisX < INF) {
       nextX = INF;
        while (edge -> yr < INF || newEdge -> xl == thisX || termX == thisX) {
            thisY = Y (edge, thisX);
            if (edge -> xc == thisX && edge -> bundle) unbundle (edge);
            if (smallerAtX (edge, newEdge)) {
            termSplit = 0;
            if (equalAtX (edge, newEdge)) {
                     if (optOnlyPrePassB1 && !(newEdge -> cc & 0xc00)) termSplit = 1;
                    bundle (newEdge, edge);
                    newEdge = fetchEdge ();
                } while (equalAtX (edge, newEdge));
            }
            . . .
        }
        tileAdvanceScan (edge);
        thisX = nextX;
    tileStopScan (head);
}
```

APPENDIX B -- Diffs between file scan.c 4.55 and 4.56

```
82c82
<    compareSlope (e1, ==, e2) && e1 -> xr > thisX)
---
>    compareSlope (e1, ==, e2) && (!optOnlyPrePassB1 || e1 -> xr > thisX))
```

APPENDIX C -- Byte compare of the layout files

coilgen	coilgen_ok	coilgen_bad
1002	1002	1002
6	6	6
48	264	264
738	2462	2462
410	399	399
360	416	416
360	406	406
72	72	72
3569	3569	3737
45	45	45
29337	29337	32159
	1002 6 48 738 410 360 360 72 3569 45	1002 1002 6 6 6 48 264 738 2462 410 399 360 416 360 406 72 72 3569 3569 45 45

Note that with *dali* the terminal "WU1" is deleted from cell "coilgen". The used *space* command and parameter file are:

APPENDIX D -- Layout files compare: m5_gln

```
7c7
< -216000 -89480 89480 216000
> -216000 -113480 89480 192000
< -180000 -74560 74560 180000
> -180000 -94560 74560 160000
> -113480 -89480 192000 216000
> -94560 -74560 160000 180000
< 66280 160000 -160000 -66280
> 66280 151720 -160000 -74560
< 79520 192000 -192000 -79520
> 79520 182040 -192000 -89480
30c32.33
< 160000 192000 -9040 22960
> 151720 160000 -74560 -66280
> 160000 182080 -9040 13040
32a36,37
> 182040 192000 -89480 -79520
> 182080 192000 13040 22960
```

APPENDIX E -- Layout files compare: m6_gln

```
< -216000 -89480 89480 216000
> -216000 -113480 89480 192000
< -180000 -74560 74560 180000
> -180000 -94560 74560 160000
13a14,15
> -113480 -89480 192000 216000
> -94560 -74560 160000 180000
22c24
< 66280 160000 -160000 -66280
> 66280 151720 -160000 -74560
26c28
< 79520 192000 -192000 -79520
> 79520 182040 -192000 -89480
29a32
> 151720 160000 -74560 -66280
> 182040 192000 -89480 -79520
```

APPENDIX F -- SLS files compare

Note that dali has also reversed the order of the terminals!

APPENDIX G -- SLS files compare

```
5,7c5,7
< network coilgen (terminal NL1, port1, port2, NR1, SL1, SE1, SW1, NW1, WU1, NW2,</pre>
                   SR1, SW2, EL2, SE2, EU1, WL2, WU2, NE2, NL2, NR2, WL1, EU2,
                   SL2, SR2, NE1, EL1)
> network coilgen_bad (terminal EL1, NE1, SR2, SL2, EU2, WL1, NR2, NL2, NE2, WU2,
                   WL2, EU1, SE2, EL2, SW2, SR1, NW2, NW1, SW1, SE1, SL1, NR1,
                    port2, port1, NL1)
9d8
     net {WU1, WL1};
222,224c221,225
    res 32.03603k (28, 36);
     res 49.94359k (28, 30);
<
     res 21.2964k (28, SUBSTR);
     res 324.9656k (28, 37);
     res 2.95531M (28, 38);
     res 35.51792k (28, 36);
     res 50.45982k (28, 30);
>
     res 21.49582k (28, SUBSTR);
      . . .
     res 155.8914k (127, 130);
     res 1.755393M (127, 128);
     res 15.44246k (127, 131);
     res 146.7762k (127, 129);
>
     res 36.94201k (127, 132);
     res 51.06337k (127, SUBSTR);
     res 412.3315k (128, 130);
     res 238.5612k (128, 129);
     res 1.063029M (128, 131);
     res 739.5815k (128, SUBSTR);
     res 936.5488k (129, 130);
    res 406.6347k (129, 131);
     res 794.9208k (129, SUBSTR);
```

```
res 17.70576k (130, 131);
     res 276.6507k (130, 132);
     res 63.39213k (130, SUBSTR);
     res 201.2622k (131, 132);
     res 76.90137k (131, SUBSTR);
     res 25.52495k (132, SUBSTR);
1202c1319
     res 259.3106m (SL2, SR2);
     res 259.3105m (SL2, SR2);
1204,1224c1321,1341
     res 256.9423m (SR2, SE2);
     res 1.975785 (EL1, EU2);
     res 65.20366m (EL1, SE1);
     res 299.3041m (NW1, NL1);
     res 8.86235m (NW1, WU1);
     res 8.86235m (WU1, SW1);
     res 299.3041m (SW1, SL1);
     res 263.668m (SL1, SR1);
     res 190.576m (SR1, SE1);
     res 181.1799m (port1, NW2);
     res 208.8902m (port1, WU2);
     res 59.42574m (WU2, NW2);
     res 206.8129m (NW2, NL2);
     res 259.3741m (NL2, NR2);
     res 196.5181m (NR2, NE2);
     res 76.90015m (NE2, EU2);
     res 263.7301m (NL1, NR1);
     res 178.3569m (NR1, NE1);
     res 93.04827m (EU1, EL2);
     res 56.56543m (EU1, NE1);
     res 99.7248m (SE2, EL2);
     res 256.9156m (SR2, SE2);
     res 1.928016 (EL1, EU2);
     res 69.0132m (EL1, SE1);
     res 299.6124m (NW1, NL1);
     res 8.862246m (NW1, WL1);
     res 8.862367m (WL1, SW1);
     res 299.304m (SW1, SL1);
     res 263.6346m (SL1, SR1);
     res 198.0689m (SR1, SE1);
     res 181.1801m (port1, NW2);
     res 208.89m (port1, WU2);
     res 59.42614m (WU2, NW2);
     res 206.8358m (NW2, NL2);
     res 259.3658m (NL2, NR2);
     res 196.5183m (NR2, NE2);
     res 76.89902m (EU2, NE2);
     res 263.6521m (NL1, NR1);
     res 178.3565m (NR1, NE1);
     res 93.05616m (EU1, EL2);
     res 56.56493m (EU1, NE1);
     res 99.74066m (SE2, EL2);
```