

	Backward Substitution:
	System of equations is now in trangular form and be solved by backward substitution.
	Rz: Oc=0 (nothing to learn here)
144 ⁸	R2: -26+0-e=0 => 6=0
	R,: 1-a -1.(0) +1-c = 0
	=) ca=-c
	oo as before

Example	(zero	pivot	eler	nent	(3)		
		1 7	-1	2	-8		
		2	-2	3	-20		
			1	X	-2		
		A La	, př				
		Ty S			7	Pivo	+
				. /			-

R₂-²R₁ 0 0 -1 -4 Tswitch/exchange R₃-¹R₁ 0 2 -1 b Switch/exchange

02-16

General procedure for Gaussian Etiminat an an bi aji ajz oo ajn. bj (an an oo an bn) Provided an +0, do: $R \leftarrow R - \frac{\alpha_{i}}{\alpha_{i}}R$ yielding a new augmented matrix: [an an -- am b] ajz -- ajn. bj. 0 anz -- ann | bn .) Note: entries in nous 2-n are expected to have changed. Repeat, ie. for i= 2,...,n: If air == v' R; where i is first index
R; After i st. air =0.

Rge Rj - Gir Note: "asi/ai is called a "multiplier" Note 2: PriorAL: multipliers can be stored in the lower part of the upper-triangular matrix that results from Gaussian (Forward) elimination, in case more than one system Areb needs to be solved of some matrix A.

	Beneral procedure for Backsubstitution
a_{i}	$+ a_n x_n + o_n a_n + a_m x_n = b_1$ $a_{22}x_2 + a_{22}a_{22} + a_{23}x_2 + a_{24}x_3 = b_2$
	+ anny Xny + any n xn = bny
	$a_{n,n} \times_n = b_n$
Q,	$n \times n = b_n$
an	$a_{n-1} \times a_{n-1} = b_{n-1} - a_{n-1} \times a_{n-1} \times a_{n-1}$
	C. n 11
11	P
	- 4 ₃
	acz acz
	anx, = 5, - anx, anx

ie. $x := -\frac{1}{ait}b_i - \frac{1}{2}-a_{ij} \times j$ for $i = n, n-1, \dots, 2, 1$

cf. Algorithm 6.1 in the TEXT.