

Question 27:

Total number of all possible outcomes = 52

(i) P(getting an ace) =
$$\frac{4}{52} = \frac{1}{13}$$

(ii) P(getting a '4' of spades) =
$$\frac{1}{52}$$

(iii) P(a '9' of a black suit) =
$$\frac{2}{52} = \frac{1}{26}$$

(iv) P(getting a red king) =
$$\frac{2}{52} = \frac{1}{26}$$

Question 28:

Total numbers of cards = 52

(i) There are 4 queen cards in a pack of cards

:. Probability of getting a queen card =
$$\frac{4}{52} = \frac{1}{13}$$

(ii) There are 13 cards of diamond in a pack of cards

$$\therefore$$
 probability of getting a diamond card = $\frac{13}{52} = \frac{1}{4}$

(iii) In a pack of cards there are 4 kings and 4 aces Number of such cards = 4 + 4 = 8

Probability of getting either a king or an ace = $\frac{8}{52} = \frac{2}{13}$

(iv) There are two red aces in a pack of cards

$$\therefore$$
 probability of getting a red ace = $\frac{2}{52} = \frac{1}{26}$

Question 29:

There are 26 red cards containing a 2 queens and 2 more black queens are there in a pack of cards

$$\therefore P(\text{getting a red card or a queen}) = \frac{28}{52} = \frac{7}{13}$$

:. P(getting neither a red card nor a queen) =
$$\left(1 - \frac{7}{13}\right) = \frac{6}{13}$$

Question 30:

Total number of cards = 52

There are 4 queens and 4 jacks in a pack of cards.

:. P(either a queen or a jack) = $\frac{8}{52} = \frac{2}{13}$

 \therefore P(neither a queen nor a jack) = $\left(1 - \frac{2}{13}\right) = \frac{11}{13}$

******* END *******