Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

17	Giu	gno	2021	-	14:00
1	ES A	ME	ONI	TT	JE.

1. Sia assegnata la matrice

$$\mathbf{B} = \begin{bmatrix} 0.98 & 0.02 & 0 & 0.04 & 0 \\ 0.08 & 0.93 & 0.08 & -0.07 & -0.03 \\ 0.04 & 0.01 & 0.97 & -0.07 & -0.04 \\ 0.02 & -0.03 & 0 & 1.03 & 0 \\ 0.07 & 0.04 & 0 & -0.08 & 1.01 \end{bmatrix}.$$

Scrivere lo script Matlab/Python es1.m in cui

	- ' '	
a)	si costruisca la matrice $\mathbf{A} = \mathbf{I} - \mathbf{B}$, si calcoli $M = \max_{i,j=1,\dots,5} a_{i,j} $ e si verifichi che M	$M<\frac{1}{5};$
		Punti: 2
b)	essendo $M < \frac{1}{5}$ condizione sufficiente per garantire che $\sum_{k=0}^{+\infty} \mathbf{A}^k$ converga e abbia so si calcoli un'approssimazione dell'inversa di \mathbf{B} mediante l'espressione $\sum_{k=0}^{3} \mathbf{A}^k$;	mma $(\mathbf{I} - \mathbf{A})^{-1}$, Punti: 3
c)	si dica se la matrice ${\bf B}$ assegnata ammette fattorizzazione LU senza pivoting;	Punti: 3
d)	se dal punto c) la sua esistenza è confermata, si calcoli la fattorizzazione LU di ${\bf B}$ se caso contrario si calcoli la fattorizzazione LU di ${\bf B}$ con pivoting parziale;	enza pivoting; in Punti: 4
e)	sfruttando la fattorizzazione calcolata al punto d) si costruisca l'inversa di ${\bf B}$ e la l'approssimazione ottenuta al punto b). Quale delle due risulterà più accurata?	si confronti con Punti: 4

Totale:	16	
---------	----	--