Conjunctive Queries

Formal Methods

Giuseppe De Giacomo

Sapienza Università di Roma MSc in Engineering in Computer Science

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

$$\exists \vec{y}.conj(\vec{x},\vec{y})$$

where $conj(\vec{x}, \vec{y})$ is a conjunction (i.e., an "and") of atoms and equalities, over the free variables \vec{x} , the existentially quantified variables \vec{y} , and possibly constants.

Note:

- ► CQs contain no disjunction, no negation, no universal quantification, and no function symbols besides constants.
- ► Hence, they correspond to relational algebra select-project-join (SPJ) queries.
- CQs are the most frequently asked queries.

Conjunctive queries and SQL – Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: find the name and the age of the persons who live in the same city as their boss.

Conjunctive queries and SQL - Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: find the name and the age of the persons who live in the same city as their boss.

Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Conjunctive queries and SQL – Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: find the name and the age of the persons who live in the same city as their boss.

Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Expressed as a CQ:

```
\exists b, e, p_1, c_1, p_2, c_2. \mathsf{Person}(n, a) \land \mathsf{Manages}(b, e) \land \mathsf{Lives}(p1, c1) \land \mathsf{Lives}(p2, c2) \land n = p1 \land n = e \land b = p2 \land c1 = c2
```


Conjunctive queries and SQL – Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: find the name and the age of the persons who live in the same city as their boss.

Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Expressed as a CQ:

```
\exists b, e, p_1, c_1, p_2, c_2. \mathsf{Person}(n, a) \land \mathsf{Manages}(b, e) \land \mathsf{Lives}(p1, c1) \land \mathsf{Lives}(p2, c2) \land n = p1 \land n = e \land b = p2 \land c1 = c2

Or simpler: \exists b, c. \mathsf{Person}(n, a) \land \mathsf{Manages}(b, n) \land \mathsf{Lives}(n, c) \land \mathsf{Lives}(b, c)
```

Datalog notation for CQs

A CQ $q = \exists \vec{y}.conj(\vec{x}, \vec{y})$ can also be written using datalog notation as

$$q(\vec{x_1}) \leftarrow conj'(\vec{x_1}, \vec{y_1})$$

where $conj'(\vec{x}_1, \vec{y}_1)$ is the list of atoms in $conj(\vec{x}, \vec{y})$ obtained by equating the variables \vec{x} , \vec{y} according to the equalities in $conj(\vec{x}, \vec{y})$.

As a result of such an equality elimination, we have that $\vec{x_1}$ and $\vec{y_1}$ can contain constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

- $ightharpoonup q(\vec{x_1})$ the head;
- $ightharpoonup conj'(\vec{x}_1, \vec{y}_1)$ the body;
- ▶ the variables in \vec{x}_1 the distinguished variables;
- ▶ the variables in $\vec{y_1}$ the non-distinguished variables.

Conjunctive queries – Example

- ▶ Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$, where $E^{\mathcal{I}}$ is a binary relation note that such interpretation is a (directed) graph.
- ► The following CQ q returns all nodes that participate to a triangle in the graph:

$$\exists y, z.E(x, y) \land E(y, z) \land E(z, x)$$

► The query *q* in datalog notation becomes:

$$q(x) \leftarrow E(x, y), E(y, z), E(z, x)$$

▶ The query q in SQL is (we use Edge(f,s) for E(x,y):

```
SELECT E1.f
FROM Edge E1, Edge E2, Edge E3
WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f
```

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it by:

- 1. guessing a truth assignment for the non-distinguished variables;
- 2. evaluating the resulting formula (that has no quantifications).

```
boolean ConjTruth(\mathcal{I}, \alpha, \exists \vec{y}.conj(\vec{x}, \vec{y})) { GUESS assignment \alpha[\vec{y} \mapsto \vec{a}] { return Truth(\mathcal{I}, \alpha[\vec{y} \mapsto \vec{a}], conj(\vec{x}, \vec{y})); }
```

where $\mathtt{Truth}(\mathcal{I}, \alpha, \varphi)$ is defined as for FOL queries, considering only the required cases.

Nondeterministic CQ evaluation algorithm

```
boolean \operatorname{Truth}(\mathcal{I}, \alpha, \varphi) {
   if (\varphi \text{ is } t\_1 = t\_2)
     return \operatorname{TermEval}(\mathcal{I}, \alpha, t\_1) = \operatorname{TermEval}(\mathcal{I}, \alpha, t\_2);
   if (\varphi \text{ is } P(t\_1, \ldots, t\_k))
     return P^{\mathcal{I}}(\operatorname{TermEval}(\mathcal{I}, \alpha, t\_1), \ldots, \operatorname{TermEval}(\mathcal{I}, \alpha, t\_k));
   if (\varphi \text{ is } \psi \wedge \psi')
     return \operatorname{Truth}(\mathcal{I}, \alpha, \psi) \wedge \operatorname{Truth}(\mathcal{I}, \alpha, \psi');
}
\Delta^{\mathcal{I}} \text{ TermEval}(\mathcal{I}, \alpha, t) \text{ {}}
   if (t \text{ is a variable } x) \text{ return } \alpha(x);
   if (t \text{ is a constant } c) \text{ return } c^{\mathcal{I}};
}
```

CQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

 $\{\langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is NP-complete — see below for hardness

time: exponentialspace: polynomial

Theorem (Data complexity of CQ evaluation)

 $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models q\}$ is LogSpace

time: polynomialspace: logarithmic

Theorem (Query complexity of CQ evaluation)

 $\{\langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q\}$ is *NP-complete* — see below for hardness

time: exponentialspace: polynomial

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k colors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem

Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

3-colorability

A graph is k-colorable if it is possible to assign to each node one of kcolors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem

Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query evaluation.

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph. We define:

- An Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$ where:

 - $\Delta^{\mathcal{I}} = \{ \mathbf{r}, \mathbf{g}, \mathbf{b} \}$ $E^{\mathcal{I}} = \{ (\mathbf{r}, \mathbf{g}), (\mathbf{g}, \mathbf{r}), (\mathbf{r}, \mathbf{b}), (\mathbf{b}, \mathbf{r}), (\mathbf{g}, \mathbf{b}), (\mathbf{b}, \mathbf{g}) \}$
- ▶ A conjunctive query: Let $V = \{x_1, ..., x_n\}$, then consider the boolean conjunctive query defined as:

$$q_G = \exists x_1, \ldots, x_n. \bigwedge_{(x_i, x_j) \in E} E(x_i, x_j) \wedge E(x_j, x_i)$$

Theorem

G is 3-colorable iff $\mathcal{I} \models q_G$.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the actual graph. Hence, the reduction provides also the lower-bound for query complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.

Exercise

Consider the following interpretation \mathcal{I} :

- ▶ $Person^{\mathcal{I}} = \{(john, 30), (paul, 60), (george, 35), (mick, 35)\}$
- ightharpoonup Lives $^{\mathcal{I}} = \{(john, ny), (paul, ny), (george, london), (mick, london)\}$
- ► $Manages^{\mathcal{I}} = \{(paul, john), (george, mick), (paul, mick)\}$

In relational notation:

 $Person^{\mathcal{I}}$

name	age
john	30
paul	60
george	35
mick	35

 $Lives^{\mathcal{I}}$

name	city
john	ny
paul	ny
george	london
mick	london

 $Manages^{\mathcal{I}}$

boss	emp. name
paul	john
george	mick
paul	mick

Evaluate the following query:

$$q() \leftarrow P(john, z), M(x, john), L(x, y), L(john, y)$$

"There exists a manager that has john as an employee and lives in the same city of him?"

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q of arity k. Then

$$\mathcal{I}, \alpha \models q(x_1, \dots, x_k)$$
 iff $\mathcal{I}_{\alpha, \vec{c}} \models q(c_1, \dots, c_k)$

where $\mathcal{I}_{\alpha,\vec{c}}$ is identical to \mathcal{I} but includes new constants c_1,\ldots,c_k that are interpreted as $c_i^{\mathcal{I}_{\alpha,\vec{c}}} = \alpha(x_i)$.

That is, we can reduce the recognition problem to the evaluation of a boolean query.

Homomorphism

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$ and $\mathcal{J} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$ be two interpretations over the same alphabet (for simplicity, we consider only constants as functions).

Def.: A homomorphism from \mathcal{I} to \mathcal{J}

is a mapping $h: \Delta^{\mathcal{I}} \to \Delta^{\mathcal{J}}$ such that:

- $h(c^{\mathcal{I}}) = c^{\mathcal{J}}$
- $lackbox{(}o_1,\ldots,o_k)\in P^\mathcal{I}$ implies $(h(o_1),\ldots,h(o_k))\in P^\mathcal{I}$

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic.

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query $\exists x_1, \ldots, x_n.conj$

Def.: The canonical interpretation \mathcal{I}_q associated with q

is the interpretation $\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, P^{\mathcal{I}_q}, \dots, c^{\mathcal{I}_q}, \dots)$, where

- ▶ $\Delta^{\mathcal{I}_q} = \{x_1, \dots, x_n\} \cup \{c \mid c \text{ constant occurring in } q\}$, i.e., all the variables and constants in q;
- $ightharpoonup c^{\mathcal{I}_q} = c$, for each constant c in q;
- $ightharpoonup (t_1,\ldots,t_k) \in P^{\mathcal{I}_q}$ iff the atom $P(t_1,\ldots,t_k)$ occurs in q.

Canonical interpretation of a (boolean) CQ - Example

Consider the boolean query q

$$q(c) \leftarrow E(c, y), E(y, z), E(z, c)$$

Then, the canonical interpretation \mathcal{I}_q is defined as

$$\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, E^{\mathcal{I}_q}, c^{\mathcal{I}_q})$$

where

- $ightharpoonup E^{\mathcal{I}_q} = \{(c, y), (y, z), (z, c)\}$
- $ightharpoonup c^{\mathcal{I}_q} = c$

Homomorphism theorem

Theorem ([CM77])

For boolean CQs, $\mathcal{I}\models q$ iff there exists a homomorphism from \mathcal{I}_q to $\mathcal{I}.$

Proof.

" \Rightarrow " Let $\mathcal{I} \models q$, let α be an assignment to the existential variables that makes q true in \mathcal{I} , and let $\hat{\alpha}$ be its extension to constants. Then $\hat{\alpha}$ is a homomorphism from \mathcal{I}_q to \mathcal{I} .

" \Leftarrow " Let h be a homomorphism from \mathcal{I}_q to \mathcal{I} . Then restricting h to the variables only we obtain an assignment to the existential variables that makes q true in \mathcal{I} .

Illustration of homomorphism theorem - Interpretation

Consider the following interpretation \mathcal{I} :

- $ightharpoonup \Delta^{\mathcal{I}} = \{ john, paul, george, mick, ny, london, 0, \dots, 110 \}$
- ▶ $Person^{\mathcal{I}} = \{(john, 30), (paul, 60), (george, 35), (mick, 35)\}$
- ▶ $Lives^{\mathcal{I}} = \{(john, ny), (paul, ny), (george, london), (mick, london)\}$
- ► $Manages^{\mathcal{I}} = \{(paul, john), (george, mick), (paul, mick)\}$

In relational notation:

$Person^{\mathcal{I}}$

name	age
john	30
paul	60
george	35
mick	35

$Lives^{\mathcal{I}}$

name	city
john	ny
paul	ny
george	london
mick	london

$\mathit{Manages}^{\mathcal{I}}$

boss	emp. name
paul	john
george	mick
paul	mick

Illustration of homomorphism theorem - Query

Consider the following query q:

$$q() \leftarrow Person(john, z), Manages(x, john), Lives(x, y), Lives(john, y)$$

"There exists a manager that has john as an employee and lives in the same city of him?"

The canonical model \mathcal{I}_q is:

- ightharpoonup $john^{\mathcal{I}} = john$
- ▶ $Person^{\mathcal{I}_q} = \{(john, z)\}$
- $Lives^{\mathcal{I}_q} = \{(john, y), (x, y)\}$
- $ightharpoonup Manages^{\mathcal{I}_q} = \{(x, john)\}$

In relational notation:

 $Person^{\mathcal{I}_q}$

CISOII	
name	age
john	Z

 $Lives^{\mathcal{I}_q}$

name	city
john	у
X	у

 $Manages^{\mathcal{I}_q}$

boss	emp. name
X	john

Illustration of homomorphism theorem – If-direction

Hp: $\mathcal{I} \models q$. **Th**: There exists an homomorphism $h : \mathcal{I}_q \to \mathcal{I}$. If $\mathcal{I} \models q$, then there exists an assignment $\hat{\alpha}$ such that $\langle \mathcal{I}, \alpha \rangle \models body(q)$:

- $ightharpoonup \alpha(x) = paul$
- ▶ $\alpha(z) = 30$
- $ightharpoonup \alpha(y) = ny$

Let us extend $\hat{\alpha}$ to constants:

 $ightharpoonup \hat{\alpha}(john) = john$

 $h = \hat{\alpha}$ is an homomorphism from \mathcal{I}_{q_1} to \mathcal{I} :

- \blacktriangleright $h(john^{\mathcal{I}_q}) = john^{\mathcal{I}}$? Yes!
- ▶ (john, z)) ∈ $Person^{\mathcal{I}_q}$ implies $(h(john), h(z)) \in Person^{\mathcal{I}}$? Yes: $(john, 30) \in Person^{\mathcal{I}}$;
- ▶ $(john, x) \in Lives^{\mathcal{I}_q}$ implies $h(john), h(x)) \in Lives^{\mathcal{I}}$? Yes: $(john, ny) \in Lives^{\mathcal{I}}$;
- ► $(x, y) \in Lives^{\mathcal{I}_q}$ implies $(h(x), h(y)) \in Lives^{\mathcal{I}}$? Yes: $(paul, ny) \in Lives^{\mathcal{I}}$;
- ▶ $(x, john) \in Manages^{\mathcal{I}_q}$ implies $(h(x), h(john)) \in Manages^{\mathcal{I}}$? Yes: $(paul, john) \in Manages^{\mathcal{I}}$.

Illustration of homomorphism theorem - Only-if-direction

Hp: There exists an homomorphism $h: \mathcal{I}_q \to \mathcal{I}$. **Th**: $\mathcal{I} \models q$. Let $h: \mathcal{I}_q \to \mathcal{I}$:

- h(john) = john;
- h(x) = paul;
- ► h(z) = 30;
- h(y) = ny.

Let us define an assignment α by restricting h to variables:

- $ightharpoonup \alpha(x) = paul;$
- $\alpha(z) = 30;$
- $ightharpoonup \alpha(y) = ny.$

Then $\langle \mathcal{I}, \alpha \rangle \models body(q)$. Indeed:

- ▶ $(john, \alpha(z)) = (john, 30) \in Person^{\mathcal{I}};$
- $(\alpha(x), john) = (paul, john) \in Manages^{\mathcal{I}};$
- $(\alpha(x), \alpha(y)) = (paul, ny) \in Lives^{\mathcal{I}};$
- ▶ $(john, \alpha(y)) = (john, ny) \in Lives^{\mathcal{I}}.$

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational structures) is also known as solving a Constraint Satisfaction Problem (CSP), a problem well-studied in AI – see also [KV98].

Observations

Theorem

 $\mathcal{I}_q \models q$ is always true.

Proof. By Chandra Merlin theorem: $\mathcal{I}_q \models q$ iff there exists homomorph. from \mathcal{I}_q to \mathcal{I}_q . Identity is one such homomorphism. \square

Theorem

Let h be a homomorphism from \mathcal{I}_1 to \mathcal{I}_2 , and h' be a homomorphism from \mathcal{I}_2 to \mathcal{I}_3 . Then $h \circ h'$ is a homomorphism form \mathcal{I}_1 to \mathcal{I}_3 .

Proof. Just check that $h \circ h'$ satisfied the definition of homomorphism: i.e. $h'(h(\cdot))$ is a mapping from $\Delta^{\mathcal{I}_1}$ to $\Delta^{\mathcal{I}_3}$ such that:

- $lackbox{(}o_1,\ldots,o_k)\in P^{\mathcal{I}_1}$ implies $(h'(h(o_1)),\ldots,h'(h(o_k)))\in P^{\mathcal{I}_3}.$

The CQs characterizing property

Def.: Homomorphic equivalent interpretations

Two interpretations \mathcal{I} and \mathcal{J} are homomorphically equivalent if there is homomorphism $h_{\mathcal{I},\mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J},\mathcal{I}}$ from \mathcal{J} to \mathcal{I} .

Theorem (model theoretic characterization of CQs)

CQs are unable to distinguish between interpretations that are homomorphic equivalent.

Proof. Consider any two homomorphically equivalent interpretations \mathcal{I} and \mathcal{J} with homomorphism $h_{\mathcal{I},\mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J},\mathcal{I}}$ from \mathcal{J} to \mathcal{I} .

- ▶ If $\mathcal{I} \models q$ then there exists a homomorphism h from \mathcal{I}_q to \mathcal{I} . But then $h \circ h_{\mathcal{I},\mathcal{J}}$ is a homomorphism from \mathcal{I}_q to \mathcal{J} , hence $\mathcal{J} \models q$.
- ▶ Similarly, if $\mathcal{J} \models q$ then there exists a homomorphism g from \mathcal{I}_q to \mathcal{J} . But then $g \circ h_{\mathcal{J},\mathcal{I}}$ is a homomorphism from \mathcal{I}_q to \mathcal{I} , hence $\mathcal{I} \models q$. \square

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ , denoted $\varphi \subseteq \psi$, if for all interpretations $\mathcal I$ and all assignments α we have that

$$\mathcal{I},\alpha\models\varphi\quad\text{implies}\quad\mathcal{I},\alpha\models\psi$$

(In logical terms: $\varphi \models \psi$.)

Note: Query containment is of special interest in query optimization.

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ , denoted $\varphi \subseteq \psi$, if for all interpretations $\mathcal I$ and all assignments α we have that

$$\mathcal{I},\alpha\models\varphi\quad\text{implies}\quad\mathcal{I},\alpha\models\psi$$

(In logical terms: $\varphi \models \psi$.)

Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.

Query containment for CQs

For CQs, query containment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ can be reduced to query evaluation.

- 1. Freeze the free variables, i.e., consider them as constants. This is possible, since $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff
 - $ightharpoonup \mathcal{I}, \alpha \models q_1(\vec{x}) \text{ implies } \mathcal{I}, \alpha \models q_2(\vec{x}), \text{ for all } \mathcal{I} \text{ and } \alpha; \text{ or equivalently}$
 - $\mathcal{I}_{\alpha,\vec{c}} \models q_1(\vec{c})$ implies $\mathcal{I}_{\alpha,\vec{c}} \models q_2(\vec{c})$, for all $\mathcal{I}_{\alpha,\vec{c}}$, where \vec{c} are new constants, and $\mathcal{I}_{\alpha,\vec{c}}$ extends \mathcal{I} to the new constants with $c^{\mathcal{I}_{\alpha,\vec{c}}} = \alpha(x)$.
- 2. Construct the canonical interpretation $\mathcal{I}_{q_1(\vec{c})}$ of the CQ $q_1(\vec{c})$ on the left hand side . . .
- 3. ... and evaluate on $\mathcal{I}_{q_1(\vec{c})}$ the CQ $q_2(\vec{c})$ on the right hand side, i.e., check whether $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])

For CQs, $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$, where \vec{c} are new constants. Proof.

" \Rightarrow " Assume that $q_1(\vec{x}) \subseteq q_2(\vec{x})$.

▶ Since $\mathcal{I}_{q_1(\vec{c})} \models q_1(\vec{c})$ it follows that $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.

" \Leftarrow " Assume that $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.

- ▶ By [CM77] on hom., for every \mathcal{I} such that $\mathcal{I} \models q_1(\vec{c})$ there exists a homomorphism h from $\mathcal{I}_{q_1(\vec{c})}$ to \mathcal{I} .
- ▶ On the other hand, since $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$, again by [CM77] on hom., there exists a homomorphism h' from $\mathcal{I}_{q_2(\vec{c})}$ to $\mathcal{I}_{q_1(\vec{c})}$.
- ▶ The mapping $h \circ h'$ (obtained by composing h and h') is a homomorphism from $\mathcal{I}_{q_2(\vec{c})}$ to \mathcal{I} . Hence, once again by [CM77] on hom., $\mathcal{I} \models q_2(\vec{c})$.

So we can conclude that $q_1(\vec{c}) \subseteq q_2(\vec{c})$, and hence $q_1(\vec{x}) \subseteq q_2(\vec{x})$.

Query containment for CQs

For CQs, we also have that (boolean) query evaluation $\mathcal{I} \models q$ can be reduced to query containment.

Let
$$\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$$
.

We construct the (boolean) CQ $q_{\mathcal{I}}$ as follows:

- $ightharpoonup q_{\mathcal{I}}$ has no existential variables (hence no variables at all);
- the constants in $q_{\mathcal{I}}$ are the elements of $\Delta^{\mathcal{I}}$;
- for each relation P interpreted in \mathcal{I} and for each fact $(a_1, \ldots, a_k) \in P^{\mathcal{I}}$, $q_{\mathcal{I}}$ contains one atom $P(a_1, \ldots, a_k)$ (note that each $a_i \in \Delta^{\mathcal{I}}$ is a constant in $q_{\mathcal{I}}$).

Theorem

For CQs, $\mathcal{I} \models q$ iff $q_{\mathcal{I}} \subseteq q$.

Query containment for CQs - Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Query containment for CQs - Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above result can be strengthened:

Theorem

Containment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ of CQs is NP-complete, even when q_1 is considered fixed.

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form

$$\bigvee_{i=1,\ldots,n} \exists \vec{y}_i.conj_i(\vec{x},\vec{y}_i)$$

where each $conj_i(\vec{x}, \vec{y_i})$ is a conjunction of atoms and equalities with free variables \vec{x} and $\vec{y_i}$, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive queries.

Datalog notation for UCQs

A union of conjunctive queries

$$q = \bigvee_{i=1,...,n} \exists \vec{y}_i.conj_i(\vec{x},\vec{y}_i)$$

is written in datalog notation as

$$\{ q(\vec{x}) \leftarrow conj'_1(\vec{x}, \vec{y'_1})$$

$$\vdots$$

$$q(\vec{x}) \leftarrow conj'_n(\vec{x}, \vec{y'_n}) \}$$

where each element of the set is the datalog expression corresponding to the conjunctive query $q_i = \exists \vec{y_i}.conj_i(\vec{x}, \vec{y_i})$.

Note: in general, we omit the set brackets.

Evaluation of UCQs

From the definition "\v" in FOL we have that:

$$\mathcal{I}, \alpha \models \bigvee_{i=1,\ldots,n} \exists \vec{y}_i.conj_i(\vec{x}, \vec{y}_i)$$

if and only if

$$\mathcal{I}, \alpha \models \exists \vec{y_i}.conj_i(\vec{x}, \vec{y_i})$$
 for some $i \in \{1, ..., n\}$.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

UCQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)

 $\{\langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is *NP*-complete.

time: exponential

space: polynomial

Theorem (Data complexity of UCQ evaluation)

 $\{\langle \mathcal{I}, q \rangle \mid \mathcal{I}, \alpha \models q\}$ is LogSpace-complete (query q fixed).

time: polynomial

space: logarithmic

Theorem (Query complexity of UCQ evaluation)

 $\{\langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is NP-complete (interpretation \mathcal{I} fixed).

time: exponential

space: polynomial

Query containment for UCQs

Theorem

For UCQs, $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots, q'_n\}$ iff for each q_i there is a q'_j such that $q_i \subseteq q'_i$.

Proof.

" \Rightarrow " If the containment holds, then we have $\{q_1(\vec{c}), \ldots, q_k(\vec{c})\} \subseteq \{q'_1(\vec{c}), \ldots, q'_n(\vec{c})\}$, where \vec{c} are new constants:

- Now consider $\mathcal{I}_{q_i(\vec{c})}$. We have $\mathcal{I}_{q_i(\vec{c})} \models q_i(\vec{c})$, and hence $\mathcal{I}_{q_i(\vec{c})} \models \{q_1(\vec{c}), \dots, q_k(\vec{c})\}.$
- ▶ By the containment, we have that $\mathcal{I}_{q_i(\vec{c})} \models \{q'_1(\vec{c}), \dots, q'_n(\vec{c})\}$. I.e., there exists a $q'_i(\vec{c})$ such that $\mathcal{I}_{q_i(\vec{c})} \models q'_i(\vec{c})$.
- ▶ Hence, by [CM77] on containment of CQs, we have $q_i \subseteq q'_i$.

Query containment for UCQs - Complexity

From the previous result, we have that we can check $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots, q'_n\}$ by at most $k \cdot n$ CQ containment checks.

We immediately get:

Theorem

Containment of UCQs is NP-complete.

References

[CM77] A. K. Chandra and P. M. Merlin.

Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC'77), pages 77–90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.

Conjunctive-query containment and constraint satisfaction.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'98), pages 205–213, 1998.

[Var82] M. Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC'82), pages 137–146, 1982.

