Part 1:

```
3.For the selection sort:
public int selectionSort( )
{
                                                                              Statement
   int counter = 0;
int temp, index0fMax;
                                                                                 (1)
(2)
   for ( int i = 0; i < arr.length - 1; i++ )
                                                                                  (3)
     indexOfMax = 0;
                                                                                  (4)
     for ( int j = 1; j < arr.length - i; j++ )</pre>
                                                                                  (5)
                 if ( arr[j] > arr[index0fMax] )
                                                                                  (6)
                        index0fMax = j;
                                                                                  (7)
                 counter++;
                                                                                  (8)
     }
          temp = arr[index0fMax];
                                                                                  (9)
          arr[indexOfMax] = arr[arr.length - i - 1];
                                                                                  (10)
          arr[arr.length - i - 1] = temp;
                                                                                  (11)
   }
   return counter;
                                                                                  (12)
```

}		
Statement	#Time Executed	Operations
(1)	1	Assignment
(2)	0	
(3)	1+(n+1)+1+n = 2n+3	Assignment, comparison and array length, Math "-", variable increment
(4)	1	Assignment
(5)	n(1+n+1+1+n) = 2n^2 + 3n	Assignment, comparison and array length, Math "-", variable increment
(6)	3n*n	2 x Access array, comparison
(7)	0 to n*n	Assignment
(8)	n*n	Increment
(9)	2n	Assignment, access array
(10)	6n	Assignment,2 x access array, array length,2 x math "-"
(11)	5n	2 x Math "-", Array access, assignment, array length
(12)	1	Return

Worst case: 7n^2 + 18n + 6 Best case: 6n^2 + 18n + 6 Average case: 6.5n^2 + 18n +6

Its running time is O(n^2)

Part 2:

2.1 Algorithm A executes 10nlogn operations, while algorithm B executes n^2 operations. Determine the minimum integer value n0 such that A executes fewer operations than B for $n \ge n0$.

Firstly, $10n\log n < n^2$, which is equal to $10\log n < n$, if we divide both sides by n. So we can just compare $10\log n$ and n.

Secondly, because log is related to the power of 2 (log8 = 3, 2^3 = 8 for example), it will be easier to compare the runtimes using numbers which are the result of powers of 2. The table below shows where n finally becomes larger than 10logn.

n	n	10logn
2^0	1	0
	<u> </u>	U
2^1	2	10
2^2	4	20
2^3	8	30
2^4	16	40
2^5	32	50
2^6	64	60

From this table, we can see that when $n \le 32$, $10\log n > n$, and when n = 64, $10\log n < n$, so I can see that the minimum number "n" where $10\log n$ executes fewer operations than n is between 50 and 60.

Then I used log base 2 calculator:

n= 55:

 $10 \log 55 = 57.81 > 55$

n= 57:

 $10 \log 57 = 58.32 > 58$

n= 58:

10 log58 = 58.58 > 58

n= 59:

 $10 \log 59 = 58.83 < 59$

In the range of 50 to 60, I assigned different integer value to n. Finally, I got the minimum integer value is *59* that A executes fewer operations than B.

2.2 Comment and justify the running time of the following algorithm: Algorithm Foo $(a,\,n)$:

Input: two integers, a and n

Output: ? $k \leftarrow 0$ (1) $b \leftarrow 1$ (2)

while k < n do (3) $k \leftarrow k + 1$ (4) $b \leftarrow b * a$ (5)

return b (6)

The output is a^n

Statement	Time executed	Operations
(1)	1	Assignment
(2)	1	Assignment
(3)	n	Iterate the while loop
(4)	0 to 2n	Math "+", assignment
(5)	0 to 2n	Math "-", assignment
(6)	1	return

Best case: 3+5n. (when k = 0, it didn't have any operations after the while loop)

Worst case: 3+3n Average case: 3+4n

Its running time is *O(n)*

2.3 Comment and justify the running time of the following algorithm:

The output is a^n

Situation 1:

If n is even, it get halved, else it $\underline{\text{minus}}$ 1 and get halved in the next iteration. A number can only divided in half log n times (e.g. if n = 8, log 8 = 3, it can be halved 3 times, so the running time is logn), when n is even, the situation of "else" part's operation is constant, it is always 1, because the decrement only operates when k = 1.

Situation 2:

If a number n is odd, the divide part's running time is still logn, the decrement part's running time is constant, it is always 2, because the decrement only operates when k equals the odd number and 1 (e.g. if n = 9, 9-1 = 8, is an operation and then iterate the division process when n = 8). Then decrement when k=1.

Situation 3:

When a number needs to be decremented in between halving it, (e.g. n = 6. 6/2 is 3, so it will still do decrement once, and do another time when k = 1), the longest running time is still logn + 2.

Its running time is O(logn)