Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

Amendments to the Specification:

Please add the following paragraph following the title on page 1:

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Application No. 09/783,249, which claims the benefit to provisional application number 60/182,712, filed February 15, 2000.

Please rewrite the paragraph beginning on page 23, line 4 with the following paragraph:

 R^{19} and R^{20} are each independently selected from the group: a bond to L_n , a bond to Q, hydrogen, C_{1-10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , \mathbf{C}_{1-10} eyeloalkyl \mathbf{C}_{3-10} eyeloalkyl substituted with 0-3 \mathbf{R}^{23} , heterocyclo- \mathbf{C}_{1-10} alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, R^{23} 0-3 C_{6-10} aryl- C_{1-10} with S, and alkyl substituted C_{1-10} alkyl- C_{6-10} aryl-substituted with 0-3 R²³, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

Please rewrite the paragraph beginning on page 35, line 21 with the following paragraph:

R¹⁹ and R²⁰ are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, hydrogen, C₁-C₁₀ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₁₋₁₀eyeloalkyl C₃₋₁₀eyeloalkyl substituted with 0-3 R²³, heterocyclo-C₁₋₁₀alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R²³, C_{1-10} alkyl- C_{6-10} aryl-substituted with 0-3 R²³, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³, and an electron, provided that when one of R¹⁹ or R²⁰ is an electron, then the other is also an electron:

Please rewrite the paragraph beginning on page 37, line 11 with the following paragraph:

A diagnostic agent according to any one of embodiments 1-32, (33)wherein:

```
x is 0;
Z is aryl substituted with 0-3 R<sup>16</sup>;
k is 1;
g' is 1;
R^{13a}R^{14a} are independently H;
W^{2} is NHC(=O) or -(OCH<sub>2</sub>CH<sub>2</sub>)<sub>76-84</sub>-; and
x' is 1.
```

Please rewrite the paragraph beginning on page 77, line 18 with the following paragraph:

Examples of heterocycles include, but are not limited to, 1H-indazole, 2-pyrrolidonyl, 2H,6H-1,5,2-dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aH-carbazolyl, -carbolinyl, **β-carbolinyl**, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolyl, imidazolyl, imidazolyl, indolenyl, indolenyl, indolenyl,

Application No.: Filed herewith

Preliminary Amendment - First Action N t Yet Received

indolizinyl, indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinylperimidinyl, phenanthridinyl, oxazolidinyl., oxazolyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, piperidonyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridoxazole, pyridoimidazole, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl, pyridothiazole, pyridinyl, 4*H*-quinolizinyl, quinoxalinyl, quinuclidinyl, quinazolinyl, quinolinyl, carbolinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, xanthenyl. heterocycles include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, indolyl, benzimidazolyl, 1*H*-indazolyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

Please rewrite the paragraph beginning on page 78, line 34 with the following paragraph:

A "cyclodextrin" is a cyclic oligosaccharide. Examples of cyclodextrins include, but are not limited to, ——cyclodextrin, ——hydroxyethyl——cyclodextrin, hydroxypropyl——cyclodextrin, ——hydroxypropyl——cyclodextrin, carboxymethyl—cyclodextrin, — dihydroxypropyl——cyclodextrin, — hydroxyethyl—cyclodextrin, 2,6 di-O-methyl—cyclodextrin, sulfated——cyclodextrin, — cyclodextrin, hydroxypropyl——cyclodextrin, — hydroxyethyl—cyclodextrin, and sulfated——cyclodextrin

 α -cyclodextrin, hydroxyethyl- α -cyclodextrin, hydroxypropyl- α -cyclodextrin, β -cyclodextrin, hydroxypropyl- β -cyclodextrin, carboxymethyl- β -cyclodextrin, dihydroxypropyl- β -cyclodextrin, hydroxyethyl- β -cyclodextrin, 2,6 di-O-methyl-

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

<u>β-cyclodextrin, sulfated-β-cyclodextrin, γ-cyclodextrin, hydroxypropyl-γ-cyclodextrin, dihydroxypropyl-γ-cyclodextrin, hydroxyethyl-γ-cyclodextrin, and sulfated γ-cyclodextrin.</u>

PATENT

Please rewrite the paragraph beginning on page 139, line 26 with the following paragraph:

Initiate assay by adding 2 nM TACE to buffered solutions containing 10 □M μM
 MCA peptide substrate in the presence of increasing concentrations of compound.

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

PATENT

Claims 1 to 103 (cancelled)

104. (new) A method of detecting, imaging or monitoring congestive heart failure in a patient, comprising the steps of:

administering a diagnostic agent to the patient; and

acquiring an image of a site of concentration of the diagnostic agent in the patient by a diagnostic imaging technique;

wherein the diagnostic agent comprises a diagnostic metal and a compound of the formula:

$$(Q)_{d}$$
- $(L_{n})_{x}$ "- K

or a pharmaceutically acceptable salt thereof;

wherein

Q is a matrix metalloproteinase inhibitor of formula (Ia) or (Ib):

RHN
$$\stackrel{\stackrel{\stackrel{\scriptstyle R^1}}{\underset{\scriptstyle \stackrel{\scriptstyle \stackrel{\scriptstyle }{\stackrel{\scriptstyle }}{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }}{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{\stackrel}}{\stackrel{\scriptstyle }{\stackrel}}{\stackrel{\scriptstyle }{\stackrel}}{\stackrel}}}}}}}} ;$$

L_n is an optional linking group having the formula:

$$((W^{1})_{h}-(CR^{13}R^{14})_{g})_{x}-(Z)_{k}-((CR^{13a}R^{14a})_{g},-(W^{2})_{h})_{x};$$

K is a chelator having a formula selected from the group:

PATENT

Preliminary Amendment - First Action N t Yet Received

$$E^{1}$$
 A^{1}
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{4}
 A^{1}
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 A^{4}
 E^{5}
 E^{6}
 A^{1}
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 A^{4}
 E^{5}
 E^{6}
 E^{5}
 E^{6}
 E^{7}
 E^{7}
 E^{8}
 E^{8}
 E^{4}
 E^{8}
 E^{8}
 E^{4}
 E^{3}
 E^{3}
 E^{5}
 E^{6}
 E^{6}
 E^{7}
 E^{7}
 E^{7}
 E^{8}
 E^{7}
 E^{7}
 E^{7}

R is independently OH or -CH₂SH;

R¹ is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;

R² is independently C₁₋₂₀alkyl;

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

X is independently C=O or SO₂, provided when X is C=O, R³ is

PATENT

 R^4 R^5 , and when X is SO_2 , provided when X is C=O, R is R^4 R^5 , and when X is SO_2 , R^3 is independently selected from the group: aryl substituted with 0-2 R^6 , and heterocycle substituted with 0-2 R^6 ;

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

 R^5 is independently at each occurrence from the group: NH(C₁₋₆alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to L_n or a bond to K;

R⁶ is independently aryloxy substituted with 0-3 R⁷;

R⁷ is independently halogen or methoxy; or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl-CH₂-, optionally substituted with a bond to L_n or a bond to K; or alternatively,

 R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -NH-, optionally substituted with a bond to L_n or a bond to K; or

 R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a saturated ring system containing 5-7 carbon atoms substituted with one or more substituents selected from the group consisting of: a bond to L_n , a bond to K, and $-C(=O)-NR^{29}R^{30}$;

 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to L_n or a bond to K, provided that when R^8 is phenyl, R^{10} is $-C(=O)-CR^{12}-NH-CH(CH_3)-COOH$;

 R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the carbon atom to which R^9 and $R^{9'}$ are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to L_n or a bond to K;

 R^{10} and R^{11} are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R^{10} and R^{11} are attached, 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} , a bond to L_n or a bond to K; or alternatively,

 R^9 and R^{10} are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R^{10} is attached, 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with a bond to L_n or a bond to K;

 R^{12} is independently C_{1-20} alkyl;

 R^{27} is =0, C_{1-4} alkyl, or phenyl substituted with R^{28} ;

R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups;

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a saturated ring system containing 5-7 carbon atoms substituted with R^{31} ;

 R^{31} is a benzyloxy group substituted with C_{1-4} alkyl;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

 W^1 and W^2 are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, SO₂NH, -(OCH₂CH₂)₇₆₋₈₄, (OCH₂CH₂)₈, (CH₂CH₂O)₈, (OCH₂CH₂CH₂O)₈, and (aa)₁;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R 16 , C $_{3-10}$ cycloalkyl substituted with 0-3 R 16 , and a 5-10 membered heterocyclic ring system containing

Applicati n No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} ;

PATENT

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁₋₅alkyl substituted with 0-3 R^{16} , aryl substituted with 0-3 R^{16} , benzyl substituted with 0-3 R^{16} , and C₁₋₅alkoxy substituted with 0-3 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R^{17} , and a bond to K;

 R^{16} is independently selected at each occurrence from the group: a bond to K, COOR 17 , C(=O)NHR 17 , NHC(=O)R 17 , OH, NHR 17 , SO₃H, PO₃H, -OPO₃H₂, -OSO₃H, aryl substituted with 0-3 R 17 , C₁₋₅alkyl substituted with 0-1 R 18 , C₁₋₅alkoxy substituted with 0-1 R 18 , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R 17 ;

R¹⁷ is independently selected at each occurrence from the group: H, alkyl substituted with 0-1 R¹⁸, aryl substituted with 0-1 R¹⁸, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁸, C₃₋₁₀cycloalkyl substituted with 0-1 R¹⁸, polyalkylene glycol substituted with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸, cyclodextrin substituted with 0-1 R¹⁸, amino acid substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with 0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide substituted with 0-1 R¹⁸, wherein the peptide is comprised of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl, bis(phosphonomethyl)glycine, and a bond to K;

R¹⁸ is a bond to K;

k is selected from 0, 1, and 2;

h is selected from 0, 1, and 2;

h' is selected from 0, 1, and 2;

g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; x is selected from 0, 1, 2, 3, 4, and 5; x' is selected from 0, 1, 2, 3, 4, and 5; x" is selected from 0 and 1;

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: N, NR²⁶, NR¹⁹, NR¹⁹R²⁰, S, SH, -S(Pg), O, OH, PR¹⁹, $PR^{19}R^{20}$, $-O-P(O)(R^{21})-O-$, $P(O)R^{21}R^{22}$, a bond to Q and a bond to L_n ;

Pg is a thiol protecting group;

 E^1 , E^2 , E^3 , E^4 , E^5 , E^6 , E^7 , and E^8 are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C_{1-16} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl-substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

 R^{19} and R^{20} are each independently selected from the group: a bond to L_n , a bond to Q, hydrogen, $C_{1\text{-}10}$ alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , $C_{3\text{-}10}$ cycloalkyl substituted with 0-3 R^{23} , heterocyclo- $C_{1\text{-}10}$ alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, $C_{6\text{-}10}$ aryl- $C_{1\text{-}10}$ alkyl substituted with 0-3 R^{23} , $C_{1\text{-}10}$ alkyl- $C_{6\text{-}10}$ aryl-substituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

selected from N, S, and O and substituted with 0-3 R^{23} , and an electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

 R^{21} and R^{22} are each independently selected from the group: a bond to L_n , a bond to Q, -OH, $C_{1\text{-}10}$ alkyl substituted with 0-3 R^{23} , $C_{1\text{-}10}$ alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , $C_{3\text{-}10}$ cycloalkyl substituted with 0-3 R^{23} , heterocyclo- $C_{1\text{-}10}$ alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, $C_{6\text{-}10}$ aryl- $C_{1\text{-}10}$ alkyl substituted with 0-3 R^{23} , $C_{1\text{-}10}$ alkyl- $C_{6\text{-}10}$ aryl-substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

 R^{23} is independently selected at each occurrence from the group: a bond to L_n , a bond to Q, =0, F, Cl, Br, I, $-CF_3$, -CN, $-CO_2R^{24}$, $-C(=O)R^{24}$, $-C(=O)N(R^{24})_2$, -CHO, $-CH_2OR^{24}$, $-OC(=O)R^{24}$, $-OC(=O)OR^{24a}$, $-OR^{24}$, $-OC(=O)N(R^{24})_2$, $-NR^{25}C(=O)R^{24}$, $-NR^{25}C(=O)R^{24a}$, $-NR^{25}C(=O)N(R^{24})_2$, $-NR^{25}SO_2R^{24a}$, $-SO_3H$, $-SO_2R^{24a}$, $-SR^{24}$, $-S(=O)R^{24a}$, $-SO_2N(R^{24})_2$, $-N(R^{24})_2$, $-NHC(=S)NHR^{24}$, $=NOR^{24}$, NO_2 , $-C(=O)NHOR^{24}$, $-C(=O)NHNR^{24}R^{24a}$, $-OCH_2CO_2H$, 2-(1-morpholino)ethoxy, C_{1-5} alkyl, C_{2-4} alkenyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkylmethyl, C_{2-6} alkoxyalkyl, aryl substituted with 0-2 R^{24} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 or R^{23} is a bond to L_n or Q;

 R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to L_n , a bond to Q, H, C_{1-6} alkyl, phenyl, benzyl, C_{1-6} alkoxy, halide, nitro, cyano, and trifluoromethyl; and

R²⁶ is a co-ordinate bond to a metal or a hydrazine protecting group; or

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

a pharmaceutically acceptable salt thereof.

105. (new) A method according to claim 104, wherein:

R is OH;

 R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;

PATENT

R² is independently C₁₋₆alkyl;

X is C=O;

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

R⁸ is OH;

 R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the carbon atom to which R^9 and $R^{9'}$ are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with a bond to L_n or a bond to K;

 R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R^{10} and R^{11} are attached, 0-1 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} , a bond to L_n or a bond to K; or alternatively,

 R^9 and R^{10} are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R^{10} is attached, 0-1 heteroatoms selected from O, N, SO_2 , and S, said ring system optionally substituted with a bond to L_n or a bond to K; and

R¹² is independently C₁₋₆alkyl.

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

106. (new) A method according to claim 104, wherein:

R is -OH;

R² is C₁₋₆alkyl;

X is C=0;

$$R^3$$
 is R^4 R^5

 R^1 and R^4 are taken together to form a bridging group of formula $-(CH_2)_3$ -O-phenyl- CH_2 -; and

PATENT

 R^5 is NH(C₁₋₆alkyl), substituted with a bond to L_n or a bond to K.

107. (new) A method according to claim 104, wherein:

R is -OH;

R⁹ is C₁alkyl substituted with a bond to L_n; and

 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said ring system substituted with 0-3 R^{27} .

108. (new) A method according to claim 104, wherein:

R is -OH; and

 R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a saturated ring system containing 5-7 carbon atoms substituted with one or more substituents selected from the group consisting of: a bond to L_n , a bond to K, and $-C(=O)-NR^{29}R^{30}$.

109. (new) A method according to claim 104, wherein:

Z is selected from the group: aryl substituted with 0-1 R^{16} , C_{3-10} cycloalkyl substituted with 0-1 R^{16} , and a 5-10 membered heterocyclic ring system containing

Application N .: Filed herewith

Preliminary Amendment - First Action Not Yet Received

1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁶;

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, C₁₋₅alkyl substituted with 0-1 R^{16} , aryl substituted with 0-1 R^{16} , benzyl substituted with 0-1 R^{16} , and C₁₋₅alkoxy substituted with 0-1 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R^{17} , and a bond to K;

```
k is 0 or 1;
s is selected from 0, 1, 2, 3, 4, and 5;
s' is selected from 0, 1, 2, 3, 4, and 5;
s" is selected from 0, 1, 2, 3, 4, and 5; and
t is selected from 0, 1, 2, 3, 4, and 5.
```

110. (new) A method according to claim 104, wherein:

```
W<sup>1</sup> is C(=O)NR<sup>15</sup>;
h is 1;
g is 3;
R<sup>13</sup> and R<sup>14</sup> are independently H;
x is 1;
k is 0;
g' is 0;
h' is 1;
W<sup>2</sup> is NH; and
x' is 1.
```

111. (new) A method according to claim 104, wherein:

x is 0; k is 1; Z is aryl substituted with 0-3 R¹⁶; g' is 1;

```
DOCKET NO.: PH-7108 (BMS-2301)
                                                                                                    PATENT
Application No.: Filed herewith
Preliminary Amendment - First Action Not Yet Received
                  W<sup>2</sup> is NH;
                  R^{13a} and R^{14a} are independently H;
                  h' is 1; and
                  x' is 1.
112. (new)
                  A method according to claim 104, wherein:
                  W^{1} is C(=0)NR<sup>15</sup>;
                 h is 1;
                 g is 2;
                 R^{13} and R^{14} are independently H;
                 x is 1;
                 k is 0;
                 g' is 1;
                 R^{13a} and R^{14a} are independently H; or C_{1\text{--}5} alkyl substituted with 0-3 R^{16};
                 R<sup>16</sup> is SO<sub>3</sub>H;
                 W<sup>2</sup> is NHC(=O) or NH;
                 h' is 1; and
                 x' is 2.
                 A method according to claim 104, wherein:
113. (new)
                 W^{1} is C(=O)NH;
                 h is 1;
                 g is 3;
                 R<sup>13</sup> and R<sup>14</sup> are independently H;
                 k is 0;
```

Page 16 of 42

W² is -NH(C=O)- or -(OCH₂CH₂)₇₆₋₈₄-;

g' is 0; x is 1;

h' is 2; and

x' is 1.

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

114. (new) A method according to claim 104, wherein:

x is 0;

k is 0;

g' is 3;

h' is 1;

W² is NH; and

x' is 1.

115. (new) A method according to claim 104, wherein

x is 0;

Z is aryl substituted with 0-3 R^{16} ;

k is 1;

g' is 1;

R^{13a} and R^{14a} are independently H;

 W^2 is NHC(=O) or -(OCH₂CH₂)₇₆₋₈₄-; and

x' is 1.

116. (new) A method according to claim 104, wherein:

 W^1 is C=O;

g is 2;

R¹³ and R¹⁴ are independently H;

k is 0;

g' is 0;

h' is 1;

W² is NH; and

x' is 1.

117. (new) A method according to claim 104, wherein:

h' is 1;

PATENT

DOCKET NO.: PH-7108 (BMS-2301)

Application No.: Filed herewith

Preliminary Amendment - First Action N t Yet Received

W² is NH; and x' is 1.

118. (new) A method according to claim 104, wherein:

x is 0;

Z is aryl substituted with 0-3 R¹⁶;

k is 1;

g' is 1;

 R^{13a} and R^{14a} are independently H;

 W^{2} is NHC(=O) or -(OCH₂CH₂)₇₆₋₈₄-; and

x' is 1.

119. (new) A method according to claim 104, wherein:

 W^1 is C=O;

g is 2;

R¹³ and R¹⁴ are independently H;

k is 0;

g' is 0;

h' is 1;

W² is NH; and

x' is 1.

120. (new) A method according to claim 104, wherein

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: NR^{19} , $NR^{19}R^{20}$, S, SH, OH, a bond to Q and a bond to L_n ;

 E^1 , E^2 , E^3 , E^4 , E^5 , E^6 , E^7 , and E^8 are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C_{1-10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

0-3 R²³, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;

PATENT

 R^{19} and R^{20} are each independently selected from the group: a bond to Q, a bond to L_n , hydrogen, C_{1-10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an electron;

 $R^{23} \text{ is independently selected at each occurrence from the group: a bond to } Q,$ a bond to L_n , =0, F, Cl, Br, I, -CF3, -CN, -CO2 R^{24} , -C(=0) R^{24} , -C(=0)N(R^{24})₂, -CH₂OR²⁴, -OC(=0)R²⁴, -OC(=0)OR^{24a}, -OR²⁴, -OC(=0)N(R^{24})₂, -NR²⁵C(=0)R²⁴, -NR²⁵C(=0)N(R^{24})₂, -NR²⁵SO₂N(R^{24})₂, -NR²⁵SO₂R^{24a}, -SO₃H, -SO₂R^{24a}, -S(=0)R^{24a}, -SO₂N(R^{24})₂, -N(R^{24})₂, -NHC(=S)NHR²⁴, =NOR²⁴, -C(=0)NHNR²⁴R^{24a}, -OCH₂CO₂H, and 2-(1-morpholino)ethoxy; and

 R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to L_n , H, and C_{1-6} alkyl.

121. (new) A method according to claim 104, wherein K is:

 A^{1} is a bond to L_{n} ;

 A^2 , A^4 , and A^6 are each N;

 A^3 , A^5 , A^7 and A^8 are each OH;

 E^1 , E^2 , and E^4 are C_2 alkyl;

 E^3 , E^5 , E^7 , and E^8 are C_2 alkyl substituted with 0-1 R^{23} ; and Page 19 of 42

DOCKET NO.: PH-7108 (BMS-2301) **Application N .:** Filed herewith

Preliminary Amendment - First Action Not Yet Received

$$R^{23}$$
 is =0.

122. (new) A method according to claim 104, wherein K is:

$$A^{1} \xrightarrow{E^{1}} A^{2} \xrightarrow{E^{2}} A^{4} \xrightarrow{E^{4}} A^{6} \xrightarrow{E^{7}} A^{7}$$

$$A^{3} \xrightarrow{A^{5}} A^{5} \xrightarrow{A^{8}} \vdots$$

PATENT

wherein:

A⁵ is a bond to Ln;

 A^{1} , A^{3} , A^{7} and A^{8} are each OH;

A², A⁴ and A⁶ are each N;

 E^{1} , E^{3} , E^{5} , E^{7} , and E^{8} are C_{2} alkyl substituted with 0-1 R^{23} ;

 E^2 and E^4 are C_2 alkyl; and

 R^{23} is =0.

123. (new) A method according to claim 104, wherein K is:

PATENT

DOCKET NO.: PH-7108 (BMS-2301)

Application No.: Filed herewith

Preliminary Amendment - First Acti n N t Yet Received

$$E^{5}$$
 A^{1}
 E^{4}
 A^{2}
 E^{4}
 A^{2}
 E^{4}
 E^{3}
 E^{7}
 E^{7}

 A^1 , A^2 , A^3 and A^4 are each N; A^5 , A^6 and A^8 are each OH; A^7 is a bond to L_n ; E^1 , E^2 , E^3 , E^4 are each independently C_2 alkyl; and E^5 , E^6 , E^7 , E^8 are each independently C_2 alkyl substituted with 0-1 R^{23} ; and

124. (new) A method according to claim 104, wherein K is:

$$E^1 - A^2$$

 A^1 is NR^{26} ;

 R^{23} is =0.

 R^{26} is a co-ordinate bond to a metal or a hydrazine protecting group;

E¹ is a bond;

A² is NHR¹⁹;

R¹⁹ is a heterocycle substituted with R²³, the heterocycle being selected from pyridine and pyrimidine;

 R^{23} is selected from a bond to L_n , $C(=O)NHR^{24}$ and $C(=O)R^{24}$; and Page 21 of 42

PATENT

DOCKET NO.: PH-7108 (BMS-2301)

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

 R^{24} is a bond to $L_{n.}$

125. (new) A method according to claim 104, wherein Wherein K is:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{4}
 A^{5}

wherein:

 A^1 and A^5 are each -S(Pg);

 E^1 and E^4 are C_2 alkyl substituted with 0-1 R^{23} ;

 R^{23} is =0;

A² and A⁴ are each –NH;

E2 is CH2;

 E^3 is C_{1-3} alkyl substituted with 0-1 R^{23} ; and

A³ is a bond to Ln.

126. (new) A method according to claim 104, wherein K is:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{6}

wherein:

A¹ is a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

A² is NH;

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

 E^2 is C_2 alkyl substituted with 0-1 R^{23} ; A^3 is $-O-P(O)(R^{21})-O-$; E^3 is C_1 alkyl; A^4 and A^5 are each -O-; E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0-1 R^{23} ; E^5 is C_1 alkyl; R^{21} is -OH; and R^{23} is =O.

127. (new) A method according to claim 104, wherein the compound is:

2-{[5-(3-{2-[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-amino]-acetylamino}-propylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-benzenesulfonic acid;

2-{[5-(4-{[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-amino]-methyl}-benzylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-benzenesulfonic acid;

2-[7-({N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}acetylamino)propyl]carbamoyl}methyl)-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl]acetic acid;

2-{7-[(N-{[4-({[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-carbonylamino}methyl)phenyl]methyl}carbamoyl)methyl]-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl}acetic acid;

2-(7-{[N-(1-{N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}acetylamino)propyl]carbamoyl}-2-sulfoethyl)carbamoyl]methyl}-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl)acetic acid;

2-[7-({N-[1-(N-{[4-({[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-

PATENT

DOCKET NO.: PH-7108 (BMS-2301)

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

carbonylamino}methyl)phenyl]methyl}carbamoyl)-2-sulfoethyl]carbamoyl}methyl)-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl]acetic acid;

2-({2-[({N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}acetylamino)propyl]carbamoyl}methyl)(carboxymethyl)amino}ethyl){2-[bis(carboxymethyl)amino]ethyl}amino]acetic acid;

 $2-[(2-\{[(N-\{[4-(\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-carbonylamino\}methyl)phenyl]methyl\}carbamoyl)methyl](carboxymethyl)amino}ethyl)\{2-[bis(carboxymethyl)amino]ethyl\}amino]acetic acid;$

N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}acetylamino)propyl]-4,5-bis[2-(ethoxyethylthio)acetylamino]pentanamide;

N-{[4-({[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}methyl)-phenyl]methyl}-4,5-bis[2-(ethoxyethylthio)acetylamino]-pentanamide;

1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)- α , ω -dicarbonylPEG3400-2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}-N-(3-aminopropyl)acetamide;

 $1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha, \omega-dicarbonylPEG3400-[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-N-{[4-(aminomethyl)phenyl]methyl} carboxamide conjugate;}$

2-[2-({5-[N-(5-(N-hydroxycarbamoyl)(5R)-5-{3-[4-(3,4-dimethoxyphenoxy)phenyl]-3-methyl-2-oxopyrrolidinyl}pentyl)carbamoyl](2-pyridyl)} amino)(1Z)-2-azavinyl]benzenesulfonic acid;

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

2-(2-{[5-(N-{3-[3-(N-hydroxycarbamoyl)(4S)-4-({4-[(4-

methylphenyl)methoxy]piperidyl}carbonyl)piperidyl]-3-oxopropyl}carbamoyl)(2-pyridyl)]amino}(1Z)-2-azavinyl)benzenesulfonic acid;

PATENT

or

a pharmaceutically acceptable salt thereof.

128. (new) A method according to claim 104, wherein the compound is:

pharmaceutically acceptable salt thereof.

129. (new) A method according to claim 104, wherein the diagnostic metal is selected from the group consisting of: a paramagnetic metal, a ferromagnetic metal, a gamma-emitting radioisotope, positron-emitting radioisotope and an x-ray absorber.

Page 25 of 42

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

130. (new) A method according to claim 129, wherein the diagnostic metal is a gamma-emitting radioisotope selected from the group consisting of ^{99m}Tc, ⁹⁵Tc, ¹¹¹In, ⁶²Cu, ⁶⁴Cu, ⁶⁷Ga, and ⁶⁸Ga.

PATENT

- 131. (new) A method according to claim 130, further comprising a first ancillary ligand and a second ancillary ligand capable of stabilizing the gamma-emitting radioisotope.
- 132. (new) A method according to claim 130, wherein the gamma-emitting radioisotope is 99 m_{Tc}.
- 133. (new) A method according to claim 130, wherein the gamma-emitting radioisotope is

 111 In.
- 134. (new) A method according to claim 129, wherein the paramagnetic metal ion is selected from the group consisting of Gd(III), Dy(III), Fe(III), and Mn(II).
- 135. (new) A method according to claim 129, wherein the x-ray absorber is a metal is selected from the group consisting of: Re, Sm, Ho, Lu, Pm, Y, Bi, Pd, Gd, La, Au, Au, Yb, Dy, Cu, Rh, Ag, and Ir.
- 136. (new) A method of detecting, imaging or monitoring congestive heart failure in a patient, comprising the steps of:

administering a diagnostic agent to the patient; and

acquiring an image of a site of concentration of the diagnostic agent in the patient by a diagnostic imaging technique;

wherein the diagnostic agent comprises an echogenic gas and a compound of the formula:

$$(Q)_d$$
- $(L_n)_x$ "- K

or a pharmaceutically acceptable salt thereof;

wherein

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

Q is a matrix metalloproteinase inhibitor of formula (Ia) or (Ib):

 L_n is an optional linking group having the formula:

$$((W^{1})_{h} - (CR^{13}R^{14})_{g})_{x} - (Z)_{k} - ((CR^{13a}R^{14a})_{g} - (W^{2})_{h})_{x};$$

K is a surfactant capable of forming an echogenic gas filled lipid sphere or microbubble, wherein the surfactant is a lipid or a compound having a formula selected from the group:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{5}
 A^{5}
 E^{6}
 E^{6}

R is independently OH or -CH₂SH;

 R^1 is independently selected at each occurrence from the group: H, OH, $C_{1.3}$ alkyl, $C_{2.3}$ alkenyl, $C_{2.3}$ alkynyl, and heterocycle-S-CH₂-;

 R^2 is independently C_{1-20} alkyl;

X is independently C=O or SO_2 , provided when X is C=O, R^3 is $\stackrel{R^4}{\longrightarrow} \stackrel{R^5}{\longrightarrow} \stackrel{R^5}{\longrightarrow} \stackrel{R^5}{\longrightarrow} \stackrel{R^5}{\longrightarrow} \stackrel{R^6}{\longrightarrow} \stackrel{R^6}{$

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

Application No.: Filed herewith

Preliminary Amendment - First Acti n N t Yet Received

 R^5 is independently at each occurrence from the group: NH(C_{1-6} alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to L_n or a bond to K;

R⁶ is independently aryloxy substituted with 0-3 R⁷;

R⁷ is independently halogen or methoxy; or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl-CH₂-, optionally substituted with a bond to L_n or a bond to K; or alternatively,

 R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -NH-, optionally substituted with a bond to L_n or a bond to K; or

 R^{1} and R^{2} taken together with the nitrogen and carbon atom through which they are attached form a saturated ring system containing 5-7 carbon atoms substituted with one or more substituents selected from the group consisting of: a bond to L_{n} , a bond to K, and $-C(=O)-NR^{29}R^{30}$;

 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to L_n or a bond to K, provided that when R^8 is phenyl, R^{10} is $-C(=O)-CR^{12}-NH-CH(CH_3)-COOH$;

 R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the carbon atom to which R^9 and $R^{9'}$ are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to L_n or a bond to K;

 R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R^{10} and R^{11} are attached, 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} , a bond to L_n or a bond to K;

DOCKET NO.: PH-7108 (BMS-2301) **Applicati n No.:** Filed herewith

Preliminary Amendment - First Action Not Yet Received

or alternatively,

 R^9 and R^{10} are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R^{10} is attached, 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with a bond to L_n or a bond to K;

 R^{12} is independently C_{1-20} alkyl;

 R^{27} is =0, C_{1-4} alkyl, or phenyl substituted with R^{28} ;

R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups;

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a saturated ring system containing 5-7 carbon atoms substituted with R^{31} ;

 R^{31} is a benzyloxy group substituted with C_{1-4} alkyl;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

 W^1 and W^2 are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, SO₂NH, -(OCH₂CH₂)₇₆₋₈₄, (OCH₂CH₂)₈, (CH₂CH₂O)₈, (OCH₂CH₂CH₂O)₈, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R^{16} , C_{3-10} cycloalkyl substituted with 0-3 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} ;

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁₋₅alkyl substituted with 0-3 R^{16} , aryl substituted with 0-3 R^{16} , benzyl substituted with 0-3 R^{16} , and C₁₋₅alkoxy substituted with 0-3 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R^{17} , and a bond to K;

PATENT

Application N .: Filed herewith

Preliminary Amendment - First Action Not Yet Received

R¹⁶ is independently selected at each occurrence from the group: a bond to K, COOR¹⁷, C(=O)NHR¹⁷, NHC(=O)R¹⁷, OH, NHR¹⁷, SO₃H, PO₃H, -OPO₃H₂, -OSO₃H, aryl substituted with 0-3 R¹⁷, C₁₋₅alkyl substituted with 0-1 R¹⁸, C₁₋₅alkoxy substituted with 0-1 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;

R¹⁷ is independently selected at each occurrence from the group: H, alkyl substituted with 0-1 R¹⁸, aryl substituted with 0-1 R¹⁸, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁸, C₃₋₁₀cycloalkyl substituted with 0-1 R¹⁸, polyalkylene glycol substituted with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸, cyclodextrin substituted with 0-1 R¹⁸, amino acid substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with 0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide substituted with 0-1 R¹⁸, wherein the peptide is comprised of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl, bis(phosphonomethyl)glycine, and a bond to K;

```
R<sup>18</sup> is a bond to K;
k is selected from 0, 1, and 2;
h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s'' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x is selected from 0, 1, 2, 3, 4, and 5;
x' is selected from 0, 1, 2, 3, 4, and 5;
x'' is selected from 0 and 1;
```

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

 A^1 , A^2 , A^3 , A^4 , A^5 , and A^6 are independently selected at each occurrence from the group: N, NR 26 ,NR 19 , NR 19 R 20 , S, SH, -S(Pg), O, OH, PR 19 , PR 19 R 20 , -O-P(O)(R 21)-O-, P(O)R 21 R 22 , a bond to Q and a bond to L_n ;

A⁹ is selected from the group: OH and OR³²;

 A^{10} is OR^{32} ;

 R^{32} is C(=O)C₁₋₂₀alkyl;

Pg is a thiol protecting group;

 E^1 , E^2 , E^3 , E^4 , and E^5 are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C_{1-16} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl-substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

 E^9 is C_{1-10} alkylene substituted with 1-3 R^{33} ;

 R^{33} is independently selected at each occurrence from the group: R^{35} , $-PO_3H-R^{35}$, =O, $-CO_2R^{34}$, $-C(=O)R^{34}$, $-C(=O)N(R^{34})_2$, $-CH_2OR^{34}$, $-OR^{34}$, $-N(R^{34})_2$, $-C_{1-5}$ alkyl, and $-C_{2-4}$ alkenyl;

 R^{34} is independently selected at each occurrence from the group: R^{35} , H, C_{1-6} alkyl, phenyl, benzyl, and trifluoromethyl;

 R^{35} is a bond to L_n ;

 R^{19} and R^{20} are each independently selected from the group: a bond to L_n , a bond to Q, hydrogen, C_{1-10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl-substituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

 R^{21} and R^{22} are each independently selected from the group: a bond to L_n , a bond to Q, -OH, C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl-substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

 R^{23} is independently selected at each occurrence from the group: a bond to L_n , a bond to Q, =0, F, Cl, Br, I, $-CF_3$, -CN, $-CO_2R^{24}$, $-C(=O)R^{24}$, $-C(=O)N(R^{24})_2$, -CHO, $-CH_2OR^{24}$, $-OC(=O)R^{24}$, $-OC(=O)OR^{24a}$, $-OR^{24}$, $-OC(=O)N(R^{24})_2$, $-NR^{25}C(=O)R^{24}$, $-NR^{25}C(=O)R^{24}$, $-NR^{25}C(=O)R^{24}$, $-NR^{25}SO_2R(R^{24})_2$, $-NR^{25}SO_2R^{24a}$, $-SO_3H$, $-SO_2R^{24a}$, $-SR^{24}$, $-S(=O)R^{24a}$, $-SO_2N(R^{24})_2$, $-N(R^{24})_2$, $-NHC(=S)NHR^{24}$, $=NOR^{24}$, NO_2 , $-C(=O)NHOR^{24}$, $-C(=O)NHNR^{24}R^{24a}$, $-OCH_2CO_2H$, 2-(1-morpholino)ethoxy, C_{1-5} alkyl, C_{2-4} alkenyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkylmethyl, C_{2-6} alkoxyalkyl, aryl substituted with 0-2 R^{24} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 or R^{23} is a bond to L_n or Q;

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

 R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to L_n , a bond to Q, H, C_{1-6} alkyl, phenyl, benzyl, C_{1-6} alkoxy, halide, nitro, cyano, and trifluoromethyl; and

R²⁶ is a co-ordinate bond to a metal or a hydrazine protecting group.

137. (new) A method according to claim 136, wherein:

R is OH;

 R^1 is independently selected at each occurrence from the group: H, OH, $C_{1,3}$ alkyl, $C_{2,3}$ alkenyl, $C_{2,3}$ alkynyl, and heterocycle-S-CH₂-;

 R^2 is independently C_{1-6} alkyl;

X is C=O;

 R^4 is independently selected at each occurrence from the group: $C_{1-\delta}$ alkyl, phenyl, and benzyl;

R⁸ is OH:

 R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the carbon atom to which R^9 and $R^{9'}$ are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with a bond to L_n or a bond to K;

 R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to L_n or a bond to K, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R^{10} and R^{11} are attached, 0-1 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} , a bond to L_n or a bond to K; or alternatively,

R⁹ and R¹⁰ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing, in addition to the nitrogen atom to which R¹⁰ is attached, 0-1 heteroatoms selected

Application N .: Filed herewith

Preliminary Amendment - First Action Not Yet Received

from O, N, SO₂, and S, said ring system optionally substituted with a bond to L_n or a bond to K;

PATENT

 R^{12} is independently C_{1-6} alkyl.

138. (new) A method according to claim 136, wherein:

R is -OH;

R² is C₁₋₆alkyl;

X is C=0;

$$R^3$$
 is R^4 R^5

 R^{1} and R^{4} are taken together to form a bridging group of formula -(CH₂)₃-O-phenyl-CH₂-; and

 R^{5} is NH(C₁₋₆alkyl), substituted with a bond to L_n or a bond to K.

A method according to claim 136, wherein: 139. (new)

R is -OH;

 R^9 is C₁alkyl substituted with a bond to L_n; and

 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said ring system substituted with 0-3 R^{27} .

A method according to claim 136, wherein: 140. (new)

R is -OH;

 R^{1} and R^{2} taken together with the nitrogen and carbon atom through which they are attached form a saturated ring system containing 5-7 carbon atoms substituted with one or more substituents selected from the group consisting of: a bond to L_n, a bond to K, and $-C(=O)-NR^{29}R^{30}$;

Application No.: Filed herewith

Preliminary Amendment - First Action N t Yet Received

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a saturated ring system containing 5-7 carbon atoms substituted with R^{31} ; and

PATENT

 R^{31} is a benzyloxy group substituted with C_{1-4} alkyl.

141. (new) A method according to claim 136, wherein:

 W^1 and W^2 are independently selected at each occurrence from the group: O, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, -(CH₂CH₂O)₇₆₋₈₄-, (OCH₂CH₂O)_s, (CH₂CH₂O)_s, (OCH₂CH₂O)_s, (CH₂CH₂O)_t, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-1 R^{16} , C_{3-10} cycloalkyl substituted with 0-1 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{16} ;

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, C_{1-5} alkyl substituted with 0-1 R^{16} , aryl substituted with 0-1 R^{16} , benzyl substituted with 0-1 R^{16} , and C_{1-5} alkoxy substituted with 0-1 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R^{17} , and a bond to K;

k is 0 or 1; s is selected from 0, 1, 2, 3, 4, and 5; s' is selected from 0, 1, 2, 3, 4, and 5; s'' is selected from 0, 1, 2, 3, 4, and 5; and t is selected from 0, 1, 2, 3, 4, and 5.

142. (new) A method according to claim 136, wherein:

W¹ is C(=O)NR¹⁵;

h is 1;

```
DOCKET NO.: PH-7108 (BMS-2301)
                                                                                                        PATENT
Application No.: Filed herewith
Preliminary Amendment - First Action Not Yet Received
                  g is 3;
                  R<sup>13</sup> and R<sup>14</sup> are independently H;
                  x is 1;
                  k is 0;
                  g' is 0;
                  h' is 1;
                  W<sup>2</sup> is NH; and
                  x' is 1.
 143. (new)
                  A method according to claim 136, wherein:
                  x is 0;
                  k is 1;
                  Z is aryl substituted with 0-3 R<sup>16</sup>;
                  g' is 1;
                  W<sup>2</sup> is NH;
                  R<sup>13a</sup> and R<sup>14a</sup> are independently H;
                  h' is 1; and
                  x' is 1.
                  A method according to claim 136, wherein:
144. (new)
                  W^{1} is C(=O)NR^{15};
                  h is 1;
                  g is 2;
                  R<sup>13</sup> and R<sup>14</sup> are independently H;
                  x is 1;
                  k is 0;
                  g' is 1;
                  R^{13a} and R^{14a} are independently H; or C_{1-5} alkyl substituted with 0-3 R^{16};
                  R<sup>16</sup> is SO<sub>3</sub>H;
                  W<sup>2</sup> is NHC(=O) or NH;
```

Page 36 of 42

Application No.: Filed herewith

Preliminary Amendment - First Action Not Yet Received

h' is 1; and x' is 2.

145. (new) A method according to claim 136, wherein:

 W^1 is C(=O)NH;

h is 1;

g is 3;

R¹³ and R¹⁴ are independently H;

k is 0;

g' is 0;

x is 1;

 W^{2} is -NH(C=O)- or -(OCH₂CH₂)₇₆₋₈₄-;

h' is 2; and

x' is 1.

146. (new) A method according to claim 136, wherein:

x is 0;

k is 0;

g' is 3;

h' is 1;

W² is NH; and

x' is 1.

147. (new) A method according to claim 136, wherein

x is 0;

Z is aryl substituted with 0-3 R¹⁶;

k is 1;

g' is 1;

R^{13a}R^{14a} are independently H;

 W^{2} is NHC(=O) or -(OCH₂CH₂)₇₆₋₈₄-; and

Application N .: Filed herewith

Preliminary Amendment - First Action Not Yet Received

x' is 1.

148. (new) A method according to claim 136, wherein:

$$W^1$$
 is $C=O$;

g is 2;

R¹³ and R¹⁴ are independently H;

k is 0;

g' is 0;

h' is 1;

W² is NH; and

x' is 1.

149. (new) A method according to claim 136, wherein:

h' is 1;

W² is NH; and

x' is 1.

150. (new) A method according to claim 136, wherein:

x is 0;

Z is aryl substituted with 0-3 R^{16} ;

k is 1;

g' is 1;

R^{13a}R^{14a} are independently H;

W² is NHC(=O) or -(OCH₂CH₂)₇₆₋₈₄-; and

x' is 1.

151. (new) A method according to claim 136, wherein:

g is 2;

 R^{13} and R^{14} are independently H;

Page 38 of 42

Application N .: Filed herewith

Preliminary Amendment - First Action Not Yet Received

k is 0;

g' is 0;

h' is 1;

W² is NH; and

x' is 1.

152. (new) A method according to claim 136, wherein K is a lipid or a compound of the formula:

PATENT

$$E^9 - A^{10}$$

wherein:

 A^9 is OR^{32} ;

A¹⁰ is OR³²;

 R^{32} is C(=O)C₁₋₁₅alkyl;

 E^9 is C_{1-4} alkylene substituted with 1-3 R^{33} ;

 R^{33} is independently selected at each occurrence from the group: R^{35} , $-PO_3H-R^{35}$, =O, $-CO_2R^{34}$, $-C(=O)R^{34}$, $-CH_2OR^{34}$, $-OR^{34}$, and C_{1-5} alkyl; and

 R^{34} is independently selected at each occurrence from the group: R^{35} , H, C_{1-6} alkyl, phenyl, and benzyl.

153. (new) A method according to claim 136, wherein K is a compound of the formula:

wherein:

Application No.: Filed herewith

Preliminary Amendment - First Action N t Yet Received

 A^1 is a bond to L_n ;

 E^1 is C_1 alkyl substituted by R^{23} ;

A² is NH;

E² is C₂alkyl substituted with 0-1R²³;

 A^{3} is $-O-P(O)(R^{21})-O-$;

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -O-;

 E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0-1 R^{23} ;

PATENT

or

E⁵ is C₁ alkyl;

 A^5 is -O-;

R²¹ is -OH; and

 R^{23} is =0.

154. (new) A method according to claim 136, wherein the compound is:

HOHN
$$\begin{pmatrix} 0 \\ 13 \end{pmatrix}$$
 $\begin{pmatrix} 0 \\ 13 \end{pmatrix}$
 $\begin{pmatrix} 0 \\ 13 \end{pmatrix}$

pharmaceutically acceptable salt thereof.

- 155. (new) A method according to claim 136, wherein the echogenic gas is a perfluorocarbon gas or sulfur hexafluoride.
- 156. (new) A method according to claim 155, wherein said perfluorocarbon gas is selected from the group consisting of perfluoromethane, perfluoroethane,

Page 40 of 42

DOCKET NO.: PH-7108 (BMS-2301)
Application No.: Filed herewith
Preliminary Amendment - First Action N t Yet Received

perfluoropropane, perfluorobutane, perfluorocyclobutane, perfluoropentane, and perfluorohexane.

PATENT