Билет 24

Правосторонний и левосторонний пределы функции в точке. Свойства пределов функций

Определение правостороннего и левостороннего пределов функции в точке

Пусть функция f определена на $(a; x_0)$

 $g \in \overline{\mathbb{R}}$ называется пределом f в точке x_0 слева, если

$$\forall \{x_n\} : ((\forall n \in \mathbb{N}) \ x_n \in (a; x_0) \land \lim_{n \to \infty} x_n = x_0) \ \lim_{n \to \infty} f(x_n) = g$$

Обозначение: $\lim_{x \to x_0 - 0} f(x) = g$ или $f(x_0 - 0) = g$

Пусть функция f определена на $(x_0; a)$

 $g \in \overline{\mathbb{R}}$ называется пределом f в точке x_0 справа, если

$$\forall \{x_n\} : ((\forall n \in \mathbb{N}) \ x_n \in (x_0; a) \land \lim_{n \to \infty} x_n = x_0) \ \lim_{n \to \infty} f(x_n) = g$$

Обозначение: $\lim_{x \to x_0 + 0} f(x) = g$ или $f(x_0 + 0) = g$

Теорема

f определена на $X := (a; x_0) \cup (x_0; b)$

$$\lim_{x\to x_0+0} f(x) = g \wedge \lim_{x\to x_0-0} f(x) = g \Leftrightarrow \lim_{x\to x_0} f(x) = g$$

Необходимость

Возьмём последовательность $\{x_n\} \subset X$, сходящуюся к g

 $\{x_{a_n}\}$ — подпоследовательность всех $x_n < x_0$

 $\{x_{b_n}\}$ — подпоследовательность всех $x_n > x_0$

$$\lim_{x \to x_0 \to 0} f(x) = g \Rightarrow \lim_{n \to \infty} f(x_{a_n}) = g \qquad \qquad \lim_{x \to x_0 \to 0} f(x) = g \Rightarrow \lim_{n \to \infty} f(x_{b_n}) = g$$

Иными словами:

$$\forall \varepsilon > 0 \; \exists k : (\forall m > k) \; |f(x_{a_m}) - g| < \varepsilon \wedge |f(x_{b_m}) - g| < \varepsilon \Rightarrow (\forall n > \max\{a_m, b_m\}) \; |f(x_n) - g| < \varepsilon \; \square.$$

Достаточность

Определение предела по Гейне распространяется в том числе и на последовательности из $(a; x_0) \subset X$ и $(x_0; a) \subset X \square$.

Свойства пределов функций

Арифметические свойства, свойства, связанные с операциями сравнения и принцип сжатой переменной доказываются через поледовательности

Аналогично эти свойства доказываются и для односторонних пределов