Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

Experiments

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Centre for Digital Music, Queen Mary University of London, UK

11 Aug 2016, ISMIR 2016, NY

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

architectures

Experiments

1 Problem definition

- What is auto-tagging?
- 2 The proposed architectures
 - But why?
- 3 Experiments
 - MagnaTagATune
 - MSD: Reported (and incorrect) results
 - MSD: Correct results
 - Conclusions

Problem definition

What is auto-tagging?

Automatic
Tagging Using
Deep
Convolutional
Neural
Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition
What is auto-tagging?

The proposed architectures

xperiments

Tags

Descriptive keywords that people (just) put on music

- Multi-label nature
 - E.g. {rock, guitar, drive, 90's}
- Music tags include Genres (rock, pop, alternative, indie), Instruments (vocalists, guitar, violin), Emotions (mellow, chill), Activities (party, drive), Eras (00's, 90's, 80's).
- Collaboratively created (Last.fm 🖸) → noisy and ill-defined (of course)
 - false negative
 - synonyms (vocal/vocals/vocalist/vocalists/voice/voices. guitar/guitars)
 - popularity bias
 - typo (harpsicord)
 - irrelevant tags (abcd, ilikeit, fav)

Problem definition

What is auto-tagging?

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @gmul.ac.uk

Problem

What is auto-tagging?

The proposed architectures

xperiments

- Multi-label classification
- Criteria: AUC-ROC (Area Under an ROC Curve)
 - 0.5 <= AUC-ROC <= 1.0
 - Robust to unbalanced datasets
 - Higher if lower false positive rate
 - Higher if higher true positive rate

The proposed architectures

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures
But why?

Experiments

- $1 \times 96 \times 1366$ melgram \rightarrow conv's/pooling's \rightarrow $2048 \times 1 \times 1$
- All ReLU
- All 3x3 convolutions
- 2048 feature maps at the end
- 3,4,5,6,7 layers

Assumptions

Why (I think) would it work?

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @amul.ac.uk

But why?

conv-MP-conv-MP-conv-MP...

- \blacksquare N \times M Convolution: There are some useful patterns in input and feature maps that are local, location-invariant, and equal or smaller than $N \times M$.
- $L \times K$ Max-Pooling: We are generous up to $L \times K$ so we allow variances within this range.

Which means,

We see big picture, some macroscopic patterns

...assuming/hoping that they are related to tag

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

Experiments

MagnaTagATune

MSD: Reported (and incorrect) results MSD: Correct

results
Conclusions

	MTT	MSD	
# tracks	25k	214K (out of total 1M)	
# songs	5-6k	214K (out of total 1M)	
Length	29.1s	30-60s	
Benchmarks	10+	0	
Labels	Tags, genres	Tags, genres, EchoNest features, bag-of-word lyrics,	

Automatic
Tagging Using
Deep
Convolutional
Neural
Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

Experiments MagnaTagATune

(and incorreresults

MSD: Corre

MSD: Correct results
Conclusions

For	Dataset	Specificaions
Input representation	MTT	STFT/MFCC/Melgram
# Layers	MTT	3/4/5/6/7
Benchmark	MTT	FCN-4 vs 5 previous methods
# Layers ¹	MSD	3/4/5
# Layers ²	MSD	3/4/5, Narrower structure

¹Different from the paper

²Not in the paper

MagnaTagATune - Input representations

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

Experiments

MSD: Reported (and incorrect) results MSD: Correct

MSD: Correct results Conclusions ■ Same depth (I=4), melgram>MFCC>STFT

melgram: 96 mel-frequency bins

■ STFT: 128 frequency bins

■ MFCC: 90 (30 MFCC, 30 MFCCd, 30 MFCCdd)

Methods	AUC
FCN-4, mel-spectrogram	.894
FCN-4, STFT	.846
FCN-4, MFCC	.862

- Still, ConvNet may outperform frequency aggregation than mel-frequency (if there's more data). But not yet.
- ConvNet outperformed MFCC

MagnaTagATune - Number of layers

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @amul.ac.uk

MagnaTagATune

Methods	AUC
FCN-3, mel-spectrogram	.852
FCN-4, mel-spectrogram	.894
FCN-5, mel-spectrogram	.890
FCN-4, STFT	.846
FCN-4, MFCC	.862

- FCN-4>FCN-3: Depth worked!
- FCN-4>FCN-5 by .004
 - Deeper model might make it equal after ages of training
 - Deeper models requires more data
 - Deeper models take more time (deep residual network[4])
 - 4 layers are enough vs. matter of size(data)?

Experiments and discussions MagnaTagATune

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @amul.ac.uk

MagnaTagATune

Methods	AUC
The proposed system, FCN-4	.894
2015, Bag of features and RBM [5]	.888
2014, 1-D convolutions[2]	.882
2014, Transferred learning [6]	.88
2012, Multi-scale approach [1]	.898
2011, Pooling MFCC [3]	.861

- All deep and NN approaches are around .88-.89
- Are we touching the glass ceiling?
 - Perhaps due to the noise of MTT, but tricky to prove it
 - 26K tracks are not enough for millions of parameters

Million Song Dataset - on the paper

Automatic
Tagging Using
Deep
Convolutional
Neural
Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

MagnaTagATune
MSD: Reported
(and incorrect)

MSD: Correct results

AUC
.786
.808
.848
.851
.845

WARNING!

Automatic
Tagging Using
Deep
Convolutional
Neural
Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

MagnaTagATun
MSD: Reported
(and incorrect)

MSD: Correct results
Conclusions

- The MSD results are not reproduced.
 - I suspect a incorrect learning rate controlling
 - and this is why we shouldn't rush before deadline..
- Ran the experiments again
 - without weird learning rate controlling,
 - \blacksquare and more epochs (240 \rightarrow 480)

Million Song Dataset - re-run

Automatic
Tagging Using
Deep
Convolutional
Neural
Networks

Keunwoo.Choi @gmul.ac.uk

Problem definition

The proposed architectures

MagnaTagATune MSD: Reported (and incorrect)

MSD: Correct results

Methods	AUC
FCN-3, mel-spectrogram	.839
FCN-4, —	.852
FCN-5, —	.855

Smaller (narrower) convnet

Automatic
Tagging Using
Deep
Convolutional
Neural
Networks

Keunwoo.Choi @gmul.ac.uk

Problem definition

The proposed architectures

MagnaTagATur MSD: Reported (and incorrect) results

MSD: Correct results Conclusions No. of feature maps: $[128@1 - 2048@5] \rightarrow [32@1 - 256@5]$, i.e. narrower network, because there's no difference between FCN-4 and FCN-5.

Conclusions

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @amul.ac.uk

Conclusions

- Assumptions about macroscopic view seems fine
- In general, the behaviour agrees with computer vision community, which are..
 - the deeper, the better (or equal)
 - the wider, the better (or equal), but not as much as depth
- Melgram+feature learning > MFCC
- Melgram > STFT
 - At some point, we will argue STFT + learning > melgram
- MTT is too small, even MSD might be small
- Future work: More investigation, variable input length, better dataset, re-thinking the problem...

Thank you for listening and...

You can plug-and-predict

Automatic Tagging Using Deep Convolutional Neural

Networks Keunwoo.Choi @amul.ac.uk

Conclusions

https://github.com/keunwoochoi/music-auto_tagging-keras

References I

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

Experiments

(and incorrect) results MSD: Correct results

Conclusions

- Dieleman, S., Schrauwen, B.: Multiscale approaches to music audio feature learning. In: ISMIR. pp. 3–8 (2013)
 - Dieleman, S., Schrauwen, B.: End-to-end learning for music audio. In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. pp. 6964–6968. IEEE (2014)
- Hamel, P., Lemieux, S., Bengio, Y., Eck, D.: Temporal pooling and multiscale learning for automatic annotation and ranking of music audio. In: ISMIR. pp. 729–734 (2011)
- He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

References II

Automatic Tagging Using Deep Convolutional Neural Networks

Keunwoo.Choi @qmul.ac.uk

Problem definition

The proposed architectures

Experiments
MagnaTagATu

results
MSD: Correct

Conclusions

Nam, J., Herrera, J., Lee, K.: A deep bag-of-features model for music auto-tagging. arXiv preprint arXiv:1508.04999 (2015)

Van Den Oord, A., Dieleman, S., Schrauwen, B.: Transfer learning by supervised pre-training for audio-based music classification. In: Conference of the International Society for Music Information Retrieval (ISMIR 2014) (2014)