Formal Languages Grammar and Types

N Geetha AM & CS PSG Tech

Formal Language

- Considers Language as a mathematical object
- An alphabet is a finite set of symbols.
- Examples
- $\Sigma_1 = \{a, b, c, d, ..., z\}$: the set of letters in English
- $\Sigma_2 = \{0, 1, ..., 9\}$: the set of (base 10) digits
- $\Sigma_3 = \{a, b, ..., z, \#\}$: the set of letters plus #
- $\Sigma_4 = \{ (,) \}$: the set of open and closed brackets
- A language is a set of strings over an alphabet.

String

- A string over alphabet Σ is a finite sequence of symbols in Σ .
- The empty string will be denoted by ε
- Examples
- abfbz is a string over $\Sigma_1 = \{a, b, c, d, ..., z\}$
- 9021 is a string over $\Sigma_2 = \{0, 1, ..., 9\}$
- ab#bc is a string over $\Sigma_3 = \{a, b, ..., z, \#\}$
-))()() is a string over $\Sigma_4 = \{ (,) \}$

Language

- Lover V is any subset of $V^* \subset V^*$
- $L_1 =$ The set of all strings over $\Sigma_1 = \{a, b, c, d, ..., z\}$ that contain the substring "fool"
- $L_2 =$ The set of all strings over $\Sigma_2 = \{0, 1, ..., 9\}$ that are divisible by $\mathbf{7} = \{7, 14, 21, ...\}$
- $L_3 =$ The set of all strings of the form s#s where s is any string over $\{a, b, ..., z\}$
- $L_4=$ The set of all strings over $\Sigma_4=\{\ (,\)\}$ where every (can be matched with a subsequent)

Grammar

- Is related to studies in natural languages
- Concerned with
 - Defining valid sentences of a language
 - Providing a structural definition of such valid sentences
- Provides a set of rules by which all valid strings can be generated

Formal Grammar

- Introduced by the linguist Noam Chomsky in 1950s, now a Professor of Emeritus at MIT
- A Grammar is a 4-tuple G = (N, T, S,P) where
- N : set of finite non-terminal symbols
- T : set of finite terminal symbols
- S: S \in N is the start symbol
- P : finite set of production rules : $\{\alpha \rightarrow \beta / \alpha, \beta\}$ are combinations of N and T $\}$

Notion of derivation

- To characterize a Language starting from a Grammar we need to introduce the notion of Derivation.
- The notion of Derivation uses Productions to generate a string starting from another string.
- Direct Derivation (in symbols \Rightarrow). If $\alpha \to \beta \in P$ and $\gamma, \delta \in V^*$, then, $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$.
- Derivation (in symbols \Rightarrow *). If $\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, ..., \alpha_{n-1} \Rightarrow \alpha_n$, then, $\alpha_1 \Rightarrow$ * α_n .

Language of Grammar

Let G = (V, T, S, P) be a phrase-structure grammar. The *language generated by G* (or the *language of G*), denoted by L(G), is the set of all strings of terminals that are derivable from the starting state S. In other words,

$$L(G) = \{ w \in T^* \mid S \stackrel{*}{\Rightarrow} w \}.$$

Let G be the grammar with vocabulary $V = \{S, A, a, b\}$, set of terminals $T = \{a, b\}$, starting symbol S, and productions $P = \{S \to aA, S \to b, A \to aa\}$. What is L(G), the language of this grammar?

Let G be the grammar with vocabulary $V = \{S, 0, 1\}$, set of terminals $T = \{0, 1\}$, starting symbol S, and productions $P = \{S \to 11S, S \to 0\}$. What is L(G), the language of this grammar?

Word of L(G)

Determine whether the word *cbab* belongs to the language generated by the grammar G = (V, T, S, P), where $V = \{a, b, c, A, B, C, S\}$, $T = \{a, b, c\}$, S is the starting symbol, and the productions are

 $S \rightarrow AB$

 $A \rightarrow Ca$

 $B \rightarrow Ba$

 $B \rightarrow Cb$

 $B \rightarrow b$

 $C \rightarrow cb$

 $C \rightarrow b$.

Example

Example 1. Let us consider the following Grammar, $G = (V_T, V_N, S, P)$:

- $V_T = \{0, 1\};$
- $V_N = \{S\};$
- P = $\{S \rightarrow 0S1, S \rightarrow \epsilon\}$;

Then:

- $S \Rightarrow^* 0^n 1^n$;
- L(G) = $\{0^n 1^n \mid n \ge 0\}$.

Example

Example 2. Let us consider the following Grammar, $G = (V_T, V_N, S, P)$:

- $V_T = \{a, b\};$
- $V_N = \{S, A, B\};$
- S = S.

With Productions in P:

- $r1. S \rightarrow AB$
- $r2. A \rightarrow aA$
- $r3. A \rightarrow \epsilon$
- r4. $B \rightarrow bB$
- r5. $B \rightarrow \epsilon$

Then:

•

$$S \Rightarrow^{r1} AB \Rightarrow^{r2} aAB \Rightarrow^{r2} aaAB \Rightarrow^{r2} aaaAB \Rightarrow^{r3} aaaB \Rightarrow^{r4} aaabB \Rightarrow^{r4} aaabbB \Rightarrow^{r5} aaabb$$

• L(G) = $\{a^m b^n \mid m, n \ge 0\}$

Example

Example 3. Let us consider the following Grammar with more than one symbol on the left side of Productions, $G = (V_T, V_N, S, P)$:

- $V_T = \{a\};$
- $V_N = \{S, N, Q, R\};$
- \bullet S = S.

With Productions in P:

$$r1.$$
 $S \rightarrow QNQ$

$$r2. QN \rightarrow QR$$

$$r3. RN \rightarrow NNR$$

r4.
$$RQ \rightarrow NNQ$$

$$r5.$$
 $N \rightarrow a$

r6.
$$Q \rightarrow \epsilon$$

Then:

•
$$S \Rightarrow^{r1} QNQ \Rightarrow^{r2} QRQ \Rightarrow^{r4}$$

 $QNNQ \Rightarrow^{r2} QRNQ \Rightarrow^{r3}$
 $QNNRQ \Rightarrow^{r4} QNNNNQ \Rightarrow^*$
 $aaaa$

• L(G) =
$$\{a^{(2^n)} \mid n \ge 0\}$$

The Chomsky Hierachy

• A containment hierarchy of classes of formal languages

Chomsky Hierarchy

Chomsky Language Class	Grammar	Recognizer
3	Regular	Finite-State Automaton
2	Context-Free	Push-Down Automaton
1	Context-Sensitive	Linear-Bounded Automaton
0	Unrestricted	Turing Machine

Table 2.1. The Chomsky Hierarchy of languages and automata.

Type 3 or Regular Grammar (RG)

- G = (N,T,S,P); N = {A,B,S}; T = {a}
- Can have rules as left hand side single NonTerminal and RHS is a Terminal or Terminal followed by a NonTerminal; N -> T or N -> TN
 - **Type 3.** $A \rightarrow aB$, or $A \rightarrow a$ Furthermore, a rule of the following form is allowed: $S \rightarrow \epsilon$ if S does not appear on the right side of any rule.
 - The above define the Right-Regular Grammars. The following Productions:
 - $A \rightarrow Ba$, or $A \rightarrow a$ define Left-Regular Grammars.
 - Right-Regular and Left-Regular Grammars define the same set of Languages.

Type 2 or Context Free Grammar(CFG)

 Can have productions only of the form u -> v where u is a single non-terminal and v is (NUT)*

```
Type 2. A \rightarrow \beta with A \in V_N and \beta \in V^*.
```

- The term "Context-Free" comes from the fact that the non-terminal A can always be replaced by β , in no matter what context it occurs.
- Context-Free Grammars are important because they are powerful enough to describe the syntax of programming languages; in fact, almost all programming languages are defined via Context-Free Grammars.

Type 1 or Context Sensitive Grammar (CSG)

V = N U T

```
Type 1. \alpha A \gamma \to \alpha \beta \gamma
with \alpha, \gamma \in V^*, \beta \in V^+ and A \in V_N.
Furthermore, a rule of the following form is allowed:
S \to \epsilon
if S does not appear on the right side of any rule.
```

- A in the context of α and γ can be replaced by β
- Also know as length-increasing or noncontracting Grammar

Type 0 or Phrase Structure Grammar(PSG)

No restriction in the productions of the grammar

```
Type 0. \alpha \to \beta with \alpha \in V^* \cdot V_N \cdot V^* and \beta \in V^*.
```

Example for RG

- $G = (N,T,S,P); N = \{S, A\}; T = \{a,b\},$
- $P = \{S->aS, S->aA, A->b\}$

Example for CFG

Example 1. Let us consider the following Grammar, $G = (V_T, V_N, S, P)$:

- $V_T = \{0, 1\};$
- $V_N = \{S\};$
- P = $\{S \rightarrow 0S1, S \rightarrow \epsilon\}$;

Then:

- $S \Rightarrow^* 0^n 1^n$;
- $L(G) = \{0^n 1^n \mid n \ge 0\}.$

Example for CFG

Example 2. Let us consider the following Grammar, $G = (V_T, V_N, S, P)$:

- $V_T = \{a, b\};$
- $V_N = \{S, A, B\};$
- S = S.

With Productions in P:

- $r1. S \rightarrow AB$
- $r2. A \rightarrow aA$
- $r3. A \rightarrow \epsilon$
- r4. $B \rightarrow bB$
- r5. $B \rightarrow \epsilon$

Then:

•

$$S \Rightarrow^{r1} AB \Rightarrow^{r2} aAB \Rightarrow^{r2} aaAB \Rightarrow^{r2} aaaAB \Rightarrow^{r3} aaaB \Rightarrow^{r4} aaabB \Rightarrow^{r4} aaabbB \Rightarrow^{r5} aaabb$$

• L(G) = $\{a^m b^n \mid m, n \ge 0\}$

Example for CSG

 G = ({S,A,B},{a,b}, S, {S ->aAB, AB -> bB, B ->b, B ->aB})

Example for PSG

Example 3. Let us consider the following Grammar with more than one symbol on the left side of Productions, $G = (V_T, V_N, S, P)$:

- $V_T = \{a\};$
- $V_N = \{S, N, Q, R\};$
- \bullet S = S.

With Productions in P:

$$r1.$$
 $S \rightarrow QNQ$

$$r2. QN \rightarrow QR$$

$$r3. RN \rightarrow NNR$$

r4.
$$RQ \rightarrow NNQ$$

$$r5.$$
 $N \rightarrow a$

r6.
$$Q \rightarrow \epsilon$$

Then:

•
$$S \Rightarrow^{r1} QNQ \Rightarrow^{r2} QRQ \Rightarrow^{r4}$$

 $QNNQ \Rightarrow^{r2} QRNQ \Rightarrow^{r3}$
 $QNNRQ \Rightarrow^{r4} QNNNNQ \Rightarrow^{*}$
 $aaaa$

• L(G) =
$$\{a^{(2^n)} \mid n \ge 0\}$$