Low-energy spectrum of Toeplitz Operators

Alix Deleporte Advisor : Nalini Anantharaman

Institut de Recherche Mathématique Avancée Université de Strasbourg

October 5, 2017

Plan

- 1 Toeplitz opreators
 - Toeplitz operators on \mathbb{C}^n
 - Toeplitz operators on compact manifolds
- 2 Spin systems in the semiclassical limit
- 3 Melin estimate and localization
 - General result
 - Localization of the ground state

Bargmann spaces

 Original idea: express Quantum Mechanics directly in phase space.

[1] Bargmann, V. Comm. Pure Appl. Math. 14, no. 3 (1961): 187–214.

Bargmann spaces

- Original idea: express Quantum Mechanics directly in phase space.
- The standard $L^2(\mathbb{R}^n)$ is replaced with the *Bargmann* space, with parameter N>0:

$$B_N=L^2(\mathbb{C}^n)\cap\left\{e^{-\frac{N}{2}|\cdot|^2}f\text{, f is holomorphic on }\mathbb{C}^n\right\}.$$

[1] Bargmann, V. Comm. Pure Appl. Math. 14, no. 3 (1961): 187–214.

Bargmann spaces

- Original idea: express Quantum Mechanics directly in phase space.
- The standard $L^2(\mathbb{R}^n)$ is replaced with the *Bargmann* space, with parameter N > 0:

$$B_N = L^2(\mathbb{C}^n) \cap \left\{ e^{-\frac{N}{2}|\cdot|^2} f, \text{ f is holomorphic on } \mathbb{C}^n
ight\}.$$

 \blacksquare This is a closed subspace of $L^2(\mathbb{C}^n),$ with reproducing kernel

$$\Pi_N(x,y) = \left(\frac{N}{\pi}\right)^n \exp\left(-\frac{N}{2}|x-y|^2 + iN\Im(x\cdot\overline{y})\right).$$

[1] Bargmann, V. Comm. Pure Appl. Math. 14, no. 3 (1961): 187–214.

Szegő kernel

Hilbert basis indexed by \mathbb{N}^n .

$$e_{\nu} = \frac{N^{|\nu|}}{\nu_1!\nu_2!\dots\nu_n!} z^{\nu} e^{-\frac{N|z|^2}{2}}.$$

Szegő kernel

Hilbert basis indexed by \mathbb{N}^n .

$$e_{\nu} = \frac{N^{|\nu|}}{\nu_1! \nu_2! \dots \nu_n!} z^{\nu} e^{-\frac{N|z|^2}{2}}.$$

From there one recovers Π_N with

$$\Pi_{N}(x,y) = \sum_{\nu \in \mathbb{N}^{n}} e_{\nu}(x) \overline{e_{\nu}}(y).$$

The Szegő kernel decays exponentially fast away from the diagonal.

Let $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$ bounded. The Toeplitz operator associated with f is the bounded operator

$$\begin{array}{cccc} T_N(f): B_N(\mathbb{C}^n) & \mapsto & B_N(\mathbb{C}^n) \\ & u & \mapsto & fu \ . \end{array}$$

Let $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$ bounded. The Toeplitz operator associated with f is the bounded operator

$$\begin{split} T_N(f) : B_N(\mathbb{C}^n) & \mapsto & B_N(\mathbb{C}^n) \\ u & \mapsto & \Pi_N(fu). \end{split}$$

Let $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$ bounded. The Toeplitz operator associated with f is the bounded operator

$$T_{N}(f): B_{N}(\mathbb{C}^{n}) \mapsto B_{N}(\mathbb{C}^{n})$$

 $u \mapsto \Pi_{N}(fu).$

If f has polynomial growth then $T_N(f)$ is an unbounded operator with dense domain.

Let $f\in C^\infty(\mathbb{C}^n,\mathbb{C})$ bounded. The Toeplitz operator associated with f is the bounded operator

$$T_{N}(f): B_{N}(\mathbb{C}^{n}) \mapsto B_{N}(\mathbb{C}^{n})$$

 $u \mapsto \Pi_{N}(fu).$

If f has polynomial growth then $T_N(f)$ is an unbounded operator with dense domain.

- If f is real-valued then $T_N(f)$ is ess. self-adjoint.
- If moreover $f \ge 0$ then $T_N(f) \ge 0$.

Composition of Toeplitz operators

- If f is holomorphic then $T_N(f) = f$.
- If f is anti-holomorphic then $T_N(f) = f(N^{-1}\partial + \frac{z}{2})$.

Composition of Toeplitz operators

- If f is holomorphic then $T_N(f) = f$.
- If f is anti-holomorphic then $T_N(f) = f(N^{-1}\partial + \frac{z}{2})$.
- The Toepliz quantization is anti-Wick: if f is anti-holomorphic and h is holomorphic then

$$T_{N}(fgh) = T_{N}(f)T_{N}(g)T_{N}(h).$$

Composition of Toeplitz operators

- If f is holomorphic then $T_N(f) = f$.
- If f is anti-holomorphic then $T_N(f) = f(N^{-1}\partial + \frac{z}{2})$.
- The Toepliz quantization is anti-Wick: if f is anti-holomorphic and h is holomorphic then

$$T_N(fgh) = T_N(f)T_N(g)T_N(h).$$

More generally, composition yields a formal series:

$$T_N(f)T_N(g) = T_N\left(fg + N^{-1}C_1(f,g) + N^{-2}C_2(f,g) + \cdots\right)$$

 C_j is a bidifferential operator of total order 2j.

- Geometrical setting: compact Kähler manifold M.
 - Symplectic form
 - Complex structure

- Geometrical setting: compact Kähler manifold M.
 - Symplectic formCompatibility condition

- Geometrical setting: compact Kähler manifold M.
 - Symplectic formCompatibility condition
- lacksquare Complex line bundle L o M with curvature $-i\omega$.

- Geometrical setting: compact Kähler manifold M.
 - Symplectic formCompatibility condition
- lacksquare Complex line bundle L o M with curvature $-i\omega$.
- Hardy space $H_N(M, L)$ of holomorphic sections of $L^{\otimes N}$.

- Geometrical setting: compact Kähler manifold M.
 - Symplectic formCompatibility condition
- lacksquare Complex line bundle L o M with curvature $-i\omega$.
- Hardy space $H_N(M, L)$ of holomorphic sections of $L^{\otimes N}$.
- Szegő projector $S_N : L^2(M, L^{\otimes N}) \to H_N(M, L)$.

- Geometrical setting: compact Kähler manifold M.
 - Symplectic formCompatibility condition
- \blacksquare Complex line bundle $L \to M$ with curvature $-i\omega.$
- Hardy space $H_N(M, L)$ of holomorphic sections of $L^{\otimes N}$.
- $\blacksquare \text{ Szegő projector } S_N: L^2(M,L^{\otimes N}) \to H_N(M,L).$

The spaces $H_N(M,L)$ are finite-dimensional in that case. The line bundles $L^{\otimes N}$ correspond to the weights $e^{-\frac{N}{2}|\cdot|^2}$ in the flat case.

■ The Szegő kernel S_N has a full expansion near the diagonal, and decays far from it.

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Kordyukov, Y. ArXiv Preprint ArXiv:1703.04107, 2017.

- The Szegő kernel S_N has a full expansion near the diagonal, and decays far from it.
- Indeed S_N can be seen as the N-th Fourier mode of a Fourier Integral Operator with the diagonal as critical set.

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Kordyukov, Y. ArXiv Preprint ArXiv:1703.04107, 2017.

- The Szegő kernel S_N has a full expansion near the diagonal, and decays far from it.
- Indeed S_N can be seen as the N-th Fourier mode of a Fourier Integral Operator with the diagonal as critical set.
- The dominant term is always Π_N .

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Kordyukov, Y. ArXiv Preprint ArXiv:1703.04107, 2017.

- The Szegő kernel S_N has a full expansion near the diagonal, and decays far from it.
- Indeed S_N can be seen as the N-th Fourier mode of a Fourier Integral Operator with the diagonal as critical set.
- The dominant term is always Π_N .
- Toeplitz operators form a C*-algebra as previously.

- [3] Boutet de Monvel, L, Sjöstrand, J. Journées EDP 34–35 (1975): 123–64.
- [4] Charles, L. Comm. Math. Phys. 239, no. 1–2 (2003): 1–28.
- [5] Berman, R., Berndtsson, B., Sjöstrand, J., Arkiv För Matematik 46, no. 2 (2008).
- [6] Kordyukov, Y. ArXiv Preprint ArXiv:1703.04107, 2017.

An example: the 2D sphere

Here $M = \mathbb{S}^2$. In the stereographic projection, L corresponds to the weight $z \mapsto \frac{1}{1+|z|^2}$, so that

$$\begin{split} H_N(M,L) &\simeq \left\{ f \text{ holomorphic in } \mathbb{C}, \int_{\mathbb{C}} \frac{|f|^2}{(1+|z|^2)^{N+2}} < \infty \right\} \\ &= \mathbb{C}_N[X]. \end{split}$$

An example: the 2D sphere

Here $M=\mathbb{S}^2$. In the stereographic projection, L corresponds to the weight $z\mapsto \frac{1}{1+|z|^2}$, so that

$$\begin{split} H_N(M,L) &\simeq \left\{ f \text{ holomorphic in } \mathbb{C}, \int_{\mathbb{C}} \frac{|f|^2}{(1+|z|^2)^{N+2}} < \infty \right\} \\ &= \mathbb{C}_N[X]. \end{split}$$

In the canonical basis $\binom{N}{k}^{-\frac{1}{2}}X^k$, the Toeplitz quantization of the three base coordinates on \mathbb{S}^2 are the Spin matrices with spin $S=\frac{N-1}{2}$.

Plan

- 1 Toeplitz opreators
 - Toeplitz operators on \mathbb{C}^n
 - Toeplitz operators on compact manifolds
- 2 Spin systems in the semiclassical limit
- 3 Melin estimate and localization
 - General result
 - Localization of the ground state

General spin systems

- Systems with n spins correspond to the Kähler manifold $(\mathbb{S}^2)^n$.
- We are interested in *antiferromagnetic* systems. Let G=(V,E) a finite graph, the antiferromagnetic symbol on $(\mathbb{S}^2)^{|V|}$ is set to

$$h_{AF} = \sum_{(i,j) \in E} x_i x_j + y_i y_j + z_i z_j.$$

General spin systems

- Systems with n spins correspond to the Kähler manifold $(\mathbb{S}^2)^n$.
- We are interested in *antiferromagnetic* systems. Let G=(V,E) a finite graph, the antiferromagnetic symbol on $(\mathbb{S}^2)^{|V|}$ is set to

$$h_{AF} = \sum_{(i,j) \in E} x_i x_j + y_i y_j + z_i z_j.$$

If the graph is bipartite, then the minimum is reached when two neighbours always have opposite values.

Frustrated systems

• In frustrated systems, the previous solution is not possible.

[7] Douçot, B., and Simon, P., J. Physics A: Math and General 31, no. 28 (1998)

Frustrated systems

- In frustrated systems, the previous solution is not possible.
- If the graph is "made with triangles", then on each triangle the sum of the vectors should be zero.

[7] Douçot, B., and Simon, P., J. Physics A: Math and General 31, no. 28 (1998)

Frustrated systems

- In frustrated systems, the previous solution is not possible.
- If the graph is "made with triangles", then on each triangle the sum of the vectors should be zero.
- This yields a degenerate minimal set, which is not a manifold.
- What behaviour should one expect for the eigenvectors with minimal eigenvalue of $T_N(h_{AF})$?

[7] Douçot, B., and Simon, P., J. Physics A: Math and General 31, no. 28 (1998)

Plan

- 1 Toeplitz opreators
 - Toeplitz operators on \mathbb{C}^n
 - Toeplitz operators on compact manifolds
- 2 Spin systems in the semiclassical limit
- 3 Melin estimate and localization
 - General result
 - Localization of the ground state

Characteristic value

Can one improve the lower bound $f \ge 0 \Rightarrow T_N(f) \ge 0$?

• If q is a quadratic form in \mathbb{C}^n , the minimal eigenvalue of $T_N(q)$ is $N^{-1}\mu(q)$ with

$$\mu(q) = N^{-1}(Tr^{+}(q) + \frac{1}{2}tr(q)).$$

Characteristic value

Can one improve the lower bound $f \ge 0 \Rightarrow T_N(f) \ge 0$?

If q is a quadratic form in \mathbb{C}^n , the minimal eigenvalue of $T_N(\mathfrak{q})$ is $N^{-1}\mu(\mathfrak{q})$ with

$$\mu(q) = N^{-1}(Tr^{+}(q) + \frac{1}{2}tr(q)).$$

■ Here, up to a symplectomorphism,

$$q = \sum_{i=1}^{r} \lambda_i (q_i^2 + p_i^2) + \sum_{i=r+1}^{r+r'} p_i^2,$$

SO

$$Tr^+(q) = \sum_{i=1}^r \lambda_i.$$

Melin estimate

■ Local result: for sections $\mathfrak u$ sufficiently concentrated around a minimal point of $\mathfrak f$ where the Hessian matrix is $\mathfrak q$, one has $\langle \mathfrak u, \mathsf T_N(\mathfrak f)\mathfrak u\rangle \geqslant N^{-1}\mathfrak \mu(\mathfrak q) + CN^{-1-\epsilon}$.

[8] Melin, A. Arkiv För Matematik 9, no. 1 (1971): 117-140

Melin estimate

- Local result: for sections $\mathfrak u$ sufficiently concentrated around a minimal point of f where the Hessian matrix is $\mathfrak q$, one has $\langle \mathfrak u, \mathsf T_N(f)\mathfrak u \rangle \geqslant N^{-1}\mathfrak \mu(\mathfrak q) + \mathsf C N^{-1-\epsilon}$.
- Global result: if μ_{inf} is the infimum of μ over all minimal points, then

$$T_N(f)\geqslant N^{-1}\mu_{\text{inf}}+N^{-1-\varepsilon}.$$

[8] Melin, A. Arkiv För Matematik 9, no. 1 (1971): 117–140

Ideas for the proof

■ Local result: use the fact that the Szegő kernel is equivalent to the \mathbb{C}^n case near the diagonal, as $N \to +\infty$.

Ideas for the proof

- Local result: use the fact that the Szegő kernel is equivalent to the \mathbb{C}^n case near the diagonal, as $N \to +\infty$.
- Global result: pick a covering of the manifold with small open sets corresponding to the section, and ask that the section is relatively smaller at the intersection of the open sets than elsewhere.

A general localization result

Theorem

Let $f \in C^\infty(M,\mathbb{R})$ with min(f)=0. Then any sequence (\mathfrak{u}_N) of normalized ground states of $T_N(f)$ is such that

$$\int_{f(x)\geqslant N^{-1+\delta}} |u_N(x)|^2 dVol = O(N^{-\infty}).$$

A general localization result

Theorem

Let $f \in C^\infty(M,\mathbb{R})$ with min(f)=0. Then any sequence (\mathfrak{u}_N) of normalized ground states of $T_N(f)$ is such that

$$\int_{f(x)\geqslant N^{-1+\delta}} |u_N(x)|^2 dVol = O(N^{-\infty}).$$

Indeed, the first eigenvalue is $O(N^{-1})$, so that $\langle u_N$, $fu_N \rangle = O(N^{-1}).$

A general localization result

Theorem

Let $f \in C^\infty(M,\mathbb{R})$ with min(f)=0. Then any sequence (\mathfrak{u}_N) of normalized ground states of $T_N(f)$ is such that

$$\int_{f(x)\geqslant N^{-1+\delta}} |u_N(x)|^2 dVol = O(N^{-\infty}).$$

Indeed, the first eigenvalue is $O(N^{-1})$, so that $\langle u_N, f u_N \rangle = O(N^{-1})$. By induction, $\langle u_N, f^k u_N \rangle = O(N^{-k})$, hence the claim.

Subprincipal effects on localization

Theorem

Let $f \in C^\infty(M,\mathbb{R})$ with min(f)=0. Let V at positive distance from $\{\mu=\mu_{min}\}$. Then, with (u_N) as previously one has

$$\int_V |u_N|^2 dVol = O(N^{-\infty}).$$

Subprincipal effects on localization

Theorem

Let $f \in C^{\infty}(M,\mathbb{R})$ with min(f)=0. Let V at positive distance from $\{\mu=\mu_{min}\}$. Then, with (u_N) as previously one has

$$\int_V |u_N|^2 dVol = O(N^{-\infty}).$$

The proof uses the Melin estimates.

Expansions in the regular case

The regular case is a generalization of Helffer-Sjöstrand's "miniwells". If μ is only minimal at one point x_0 near which $\{f=0\}$ is an isotropic submanifold, and the minimum is non-degenerate, then

- The first eigenvalue is simple and admits an expansion in powers of $N^{-\frac{1}{4}}$.
- The first eigenvector concentrates at speed $N^{-\frac{1}{2}+}$ on $\{f=0\}$ and at speed $N^{-\frac{1}{4}+}$ on x_0 along $\{f=0\}$.
- [9] Helffer, B., Sjöstrand, J. Current Topics in PDEs, 1986, 133-186.

Tools for the regular case

For the regular case we use quantizations of symplectic maps: If $\sigma:U\to V$ is a local symplectomorphism between two Kähler manifolds M and N, then there is a sequence of maps $\mathfrak{S}_N:M\to N, \text{ such that, when it acts on sequences of sections microlocalizing on }U,$

• \mathfrak{S}_N is an isometry modulo $O(N^{-\infty})$ error.

Tools for the regular case

For the regular case we use quantizations of symplectic maps: If $\sigma:U\to V$ is a local symplectomorphism between two Kähler manifolds M and N, then there is a sequence of maps $\mathfrak{S}_N:M\to N, \text{ such that, when it acts on sequences of sections microlocalizing on }U,$

- lacksquare \mathfrak{S}_N is an isometry modulo $O(N^{-\infty})$ error.
- $\mathfrak{S}_{N}\mathsf{T}_{N}(h)\mathfrak{S}_{N}^{-1} = \mathsf{T}_{N}(\sigma \circ h + N^{-1}g_{1} + N^{-2}g_{2} + \cdots).$

Tools for the regular case

For the regular case we use quantizations of symplectic maps: If $\sigma:U\to V$ is a local symplectomorphism between two Kähler manifolds M and N, then there is a sequence of maps $\mathfrak{S}_N:M\to N$, such that, when it acts on sequences of sections microlocalizing on U,

- lacksquare \mathfrak{S}_N is an isometry modulo $O(N^{-\infty})$ error.
- $\mathfrak{S}_{N}\mathsf{T}_{N}(h)\mathfrak{S}_{N}^{-1} = \mathsf{T}_{N}(\sigma \circ h + N^{-1}g_{1} + N^{-2}g_{2} + \cdots).$

At the minimal points, the subprincipal symbol g_1 is prescribed by the Melin estimates on both sides.

A singular toy model

- Consider the following symbol on \mathbb{C}^n : $y_1^2 + y_2^2 + x_1^2x_2^2$.
- The minimal set is a union of two lines $(x_1, 0, 0, 0)$ and $(0, x_2, 0, 0)$. Along the first, $\mu = |x_1|$.

A singular toy model

- Consider the following symbol on \mathbb{C}^n : $y_1^2 + y_2^2 + x_1^2x_2^2$.
- The minimal set is a union of two lines $(x_1, 0, 0, 0)$ and $(0, x_2, 0, 0)$. Along the first, $\mu = |x_1|$.
- For this model the concentration speed on 0 is $N^{-\frac{1}{3}+}$.

A singular toy model

- Consider the following symbol on \mathbb{C}^n : $y_1^2 + y_2^2 + x_1^2x_2^2$.
- The minimal set is a union of two lines $(x_1, 0, 0, 0)$ and $(0, x_2, 0, 0)$. Along the first, $\mu = |x_1|$.
- For this model the concentration speed on 0 is $N^{-\frac{1}{3}+}$.
- What is the rate of decay along the minimal set?