ANÁLISE DINÂMICA DE UMA GUITARRA ELÉTRICA DE CORPO SÓLIDO POR MEIO DE SIMULAÇÃO NUMÉRICA

LUCAS ANDRÉ DE CARVALHO

RAFAEL DA SILVA INACIO

PO: Prof. Dr. Marcio Henrique de Avelar Gomes

PCO: Prof. Dr. Ivan Moura Belo

AGENDA

- 1. APRESENTAÇÃO DA OPORTUNIDADE
- 2. FUNDAMENTAÇÃO TEÓRICA
- 3. METODOLOGIA
- 4. DESENVOLVIMENTO
- 5. RESULTADOS E DISCUSSÕES
- 6. CONCLUSÕES E FUTUROS TRABALHOS

Apresentação de oportunidade Como é fabricada

- História da guitarra
- Materiais mais utilizados
- Mitos
- Falta de método científico

Apresentação de oportunidade Justificativas

- Auxílio na escolha de materiais;
- Contribuição científica para a discussão sobre os materiais de construção;
- Enquadramento na Engenharia Mecânica:
 - Vibrações;
 - Mecânica dos sólidos;
 - Ensaios de materiais;
 - Métodos dos elementos finitos.

Fundamentação teórica Componentes da guitarra

- Componentes importantes para o trabalho;
- Não inclui os componentes elétricos;
- Conexão entre braço e corpo:
 - Parafusado;
 - Colado;
 - Inteiriço.

Fundamentação teórica Materiais utilizados

Propriedade	Acer	Mogno	Tília americana	Populus	Unid.
Densidade	668,5	504	375,3	442,5	kg/m³
Módulo de elasticidade na direção X	13860	10670	11110	10340	MPa
Módulo de elasticidade na direção Y	1829,5	1184,4	733,2	858,2	MPa
Módulo de elasticidade na direção Z	900,9	533,5	299,9	186,1	MPa
Coeficiente de Poisson XY	0,424	0,297	0,364	0,344	-
Coeficiente de Poisson YZ	0,774	0,604	0,912	0,875	-
Coeficiente de Poisson XZ	0,476	0,641	0,406	0,42	-
Módulo de cisalhamento XY	1538,4	938,9	622,1	785,8	MPa
Módulo de cisalhamento YZ	13,8	224,0	11,1	10,3	MPa
Módulo de cisalhamento XZ	873,1	629,5	511,0	537,6	MPa

Fundamentação teórica Análise modal

A guitarra é um sistema contínuo, ou seja, simplificar o sistema oscilatório para poucos pontos de massa, elasticidade e amortecedor é impossível.

Entretanto, podemos ter uma boa aproximação do resultado, caso o modelo for corretamente discretizado.

Em sistemas contínuos o número de frequências naturais é infinito.

Fundamentação teórica Método de elementos finitos

- Escolha do tipo de elemento
 3D para simulação da guitarra
- Condições de contorno aplicadas nos elementos
- Relação tempo / precisão
- $\lambda = v/f = 4m$

Metodologia Realização do modelo CAD

Criação do modelo:

- Utilizado FreeCAD e SolidWorks para realização da malha;
- Modelo de guitarra utilizado: Fender,
 Stratocaster;
- Simplificações e premissas de modelo;
- Definição da modelagem dos pontos de fixação;

Metodologia Inserção do modelo matemático

- Criação da malha
 - Malha inicial.
 - Aprovação da malha.
- Software de análise
 - Utilizado os módulos: Modal; *Transient Structural*; *Harmonic Response* do *software* Ansys.
 - Inserção das propriedades da madeira.
 - Retirada dos dados de saída para tratamento.

Malha [mm]		Modo 2 [Hz]				
2,5	38,7	62,2	94,3	187,6	221,3	296,7
5	38,8	62,5	94,4	187,9	221,6	297,3
10	38,9	62,6	94,5	188,1	222	297,5
20	39	63	95	188,6	222,7	298,0
Default (~17)	39	63	95	188,2	222,0	297,6

Desenvolvimento Análise Modal

- Aplicado restrições nos pontos de conexão com a correia
- Análise até vibração de 1500 Hz (análise harmônica de 1000 Hz), totalizando 32 modos de vibração.

Desenvolvimento Análise Harmônica

- Como não é dependente do tempo, a análise teve forças contínuas como condições de contorno.
- Mesmos pontos de fixação da análise modal.
- Coeficiente de amortecimento de 0,06.
- Frequência de 0 Hz a 1000 Hz.

Desenvolvimento Análise Transiente

- Como é dependente do tempo, foi aplicado uma força de excitação no centro da ponte da guitarra. Força de 5000 N durante 0,001 s.
- Coeficiente de amortecimento de 0,06.
- Foi analisado 2,5 s de resposta.

Resultados e discussões Análise modal

Os modos de vibrar de cada madeira deram dentro da ordem de grandeza esperada.

As frequências de vibração para cada

modelo se diferenciam.

	Acer (Maple)	Mogno (Mahogany)	Tília americana (Basswood)	Populus (Cottonwood)
Modo	Frequência [Hz]	Frequência [Hz]	Frequência [Hz]	Frequência [Hz]
1	32,93	38,99	34,5	31,75
2	55,71	62,73	62,39	56,19
3	89,33	94,55	103,55	92,3
4	150,81	188,33	163,6	150,55
5	195,19	222,25	211,26	189,01
6	254,91	297,78	266,68	231,08
7	288,38	325,51	291,97	249,55
8	323,22	397,04	352,71	324,69
9	373,01	451,78	398,32	353,55
10	415,65	512,25	461,68	412,27

Resultados e discussões Resposta em frequência

Os resultados de amplitude entre as quatro madeiras foram próximos, entretanto, diferentes.

Em frequências de vibração maiores, os picos e vales do gráficos ficam cada vez mais distintos.

Resultados e discussões Resposta ao impulso

Apesar das frequências de vibração serem diferentes, o resultado do tempo de vibração entre as quatro madeiras foi muito semelhante (mesmo coeficiente de amortecimento).

Conclusão e futuros trabalhos

O trabalho demonstra que tem diferença nas respostas às diferentes frequências de excitação realizadas.

A falta de informações sobre o fator de amortecimento é altamente relevante, um estudo levantando essa propriedade nos dará maior riqueza de resultados quanto ao tempo de reverberação.

