1.1 复变函数

1.1.1 函数的定义

给定 $G \in \mathbb{C}$ 及从 G 到 \mathbb{C} 的对应法则 f,满足 $\forall z = x + iy \in G$,都有一个或多个 $\omega = u + iv \in \mathbb{C}$ 与之对应,则称 ω 为关于 z 的函数。

1.1.2 极限的定义

设 $\omega=f(z)$ 在 $B_{\varphi}^{*}(z_{0})\triangleq\{z\in\mathbb{C}\big|0<|z-z_{0}|<\rho\}$ 上有定义,若 $\exists A\in\mathbb{C},\forall\varepsilon>0,\exists\delta=\delta(\varepsilon)>0, \mathrm{s.t.}0<|z-z_{0}|<\delta\to|f(z)-A|<\varepsilon$,则称 $z\to z_{0}$ 时,f(z) 以 A 为极限。注意这意味着沿任意路径逼近得到的极限都是 A。

1.1.3 连续性的定义

若 f 在实心邻域 B_{φ} 上有定义,且 $\lim_{z\to z_0} f(z) = f(z_0)$,则称 f(z) 在 z_0 连续。

- 1. 连续函数的和、差、积、商仍是连续函数
- 2. 设 g=g(z) 连续, $\omega=f(g)$ 在 $g_0=g(z_0)$ 处连续,则 $\omega=(g\circ f)(z)$ 在 z_0 连续。
- 3. 闭区域 $\overline{\mathcal{D}}$ 上的连续函数一定能在 $\overline{\mathcal{D}}$ 上取到最小(大)模长。

1.1.4 区域、曲线的定义

点集 ② 称为一个区域,如果它是一个<u>开集</u> 且它连通。没有重点的连续曲线称为简单曲线 或 **Jordan 曲线**;若仅有曲线起点与终点重合,则为简单闭曲线,曲线以<mark>逆时针</mark>为正向。若一个区域内任意一条闭曲线的内部都属于该区域,那么该区域为单连通域。

1.1.5 复数的辐角

对于 $z \in \mathbb{C} \setminus \{0\}$,定义 $\arg(z) \in (-\pi, \pi]$ 为辐角的主值; $\operatorname{Arg}(z) = \arg(z) + 2k\pi, k \in \mathbb{Z}$ 为负数的辐角函数。

1.2 解析函数

1.2.1 导数的定义

若极限 $\lim_{z\to z_0} \frac{f(z_0+\Delta z)-f(z_0)}{\Delta z}$ 存在且有限,则 f(z) 在 z_0 可导。

1.2.2 可微与微分

若 $\omega = f(z)$ 在 z_0 的某个邻域内有表达式

$$\Delta\omega = f(z_0 + \Delta z) - f(z_0) = \mathcal{A}\Delta z + \rho(\Delta z)\Delta z \tag{1.1}$$

$$\mathscr{A} \in \mathbb{C}, \lim_{|z_0| \to 0} \rho(z) = 0$$
 (1.2)

则称 f(z) 在 z_0 可微, Δz 称为 f(z) 在 z_0 的微分,记为 $d\omega = \Delta z = f'(z_0)dz$ 。 函数在一点可导和可微是等价的。

1.2.3 解析函数(或全纯函数、正则函数)

 $\forall z_0 \in \mathbb{C}$,若 $\omega = f(z)$ 在 z_0 的某邻域内处处可导,则称 f(z) 在 z_0 处解析, z_0 为解析点; 否则 z_0 为 f(z) 的奇点。注意可能函数在某一点可导,在其任意邻域上均不可导。在整个 \mathbb{C} 上都解析的函数称为整函数。

★Lemma

- 1. 两个解析函数的和、差、积、商仍是解析函数
- 2. 设 g = g(z) 在 \mathcal{D} 上解析, $\omega = f(g)$ 在 $g(\mathcal{D})$ 上解析,则 $\omega = (f \circ g)(z)$ 在 \mathcal{D} 上解析。

1.2.4 函数可导的充要条件

Cauchy-Riemann 方程: 设 $z=x+iy\in D, \omega=f(z)=u(x,y)+iv(x,y)$,则 f(z) 在 z 可导的充要条件 是 u(x,y) 与 v(x,y) 在 (x,y) 可微 且

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{1.3}$$

导数为

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$
 (1.4)

形式导数: 用形式变元
$$z, \overline{z}$$
 表示 x, y ,则
$$\begin{cases} x = \frac{1}{2}(z + \overline{z}) \\ y = \frac{1}{2i}(z - \overline{z}) \end{cases}$$
,则
$$\begin{cases} x_z = x_{\overline{z}} = \frac{1}{2} \\ y_z = -y_{\overline{z}} = \frac{1}{2i} \end{cases}$$
 进而

可以求出 $u_z, u_{\overline{z}}, v_z, v_{\overline{z}}$, 可以发现

$$f_z = u_z + iv_z = \frac{1}{2}(u_x + u_y) + \frac{i}{2}(v_x - u_y)$$
 (1.5)

$$f_{\overline{z}} = u_{\overline{z}} + iv_{\overline{z}} = \frac{1}{2}(u_x - v_y) + \frac{i}{2}(u_y + v_x)$$
 (1.6)

注意到 $f_{\overline{z}} = 0 \iff f$ 满足柯西-黎曼方程。

1.2.5 初等函数

指数函数

定义指数函数为

$$e^z = \exp(z) = e^x(\cos y + i\sin y) \tag{1.7}$$

该函数为整函数, $\exp z' = \exp z$, 周期为 $2k\pi i$, 值域为 $\mathbb{C}\setminus\{0\}$, 满足 $\exp(z_1+z_2) = \exp z_1 \exp z_2$, $|\exp z| = e^x$, $\arg(\exp z) = y$.

对数函数

定义为指数函数的反函数,即

$$\ln(z) = \ln|z| + i\arg(z), \ln(z) = \ln(z) + 2k\pi i$$
 (1.8)

,导数 $\frac{\mathrm{d} \ln z}{\mathrm{d} z} = \frac{1}{z}$ 。

幂函数

定义幂函数为

$$z^{b} \triangleq \exp(b \cdot \operatorname{Ln} z) = e^{b \ln z} \cdot e^{2bk\pi i}, k \in \mathbb{Z}$$
(1.9)

多值性讨论

- $b \in \mathbb{Z}$, $e^{2bk\pi i} \equiv 1$, 单值
- $b \in \mathbb{Q} \backslash \mathbb{Z}$, $e^{2k\pi i \frac{m}{n}}$, n f
- $b \in \mathbb{R} \setminus \mathbb{Q}$, $e^{2(bk)\pi i}$, 无穷多值
- $b \in \mathbb{C} \setminus \mathbb{R}$, $e^{2(\alpha+i\beta)k\pi i} = e^{-2\beta k\pi} \cdot e^{2\alpha k\pi i}$, 仅模长部分便有无穷多值

取同一个第 k 支的情况下有 $(z^b)'=bz^{b-1}, z^{a+b}=z^a\cdot z^b, z^{-a}=\frac{1}{z^a}$

三角函数

根据指数函数的定义进行"逆推",有

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \tag{1.10}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} \tag{1.11}$$

 $\sin z$ 与 $\cos z$ 都是整函数,导数性质、和角公式与实数下相同。注意该函数**无界**。

1.3 复变函数积分

1.3.1 积分的计算

设 f(z) 沿 C 连续,弧上第 k 段取点 $\zeta_k = \xi_k + i\eta_k$,记 $\delta = \max\{|\Delta x_k + i\Delta y_k|\}$ 。

$$I_{n} = \sum_{i=1}^{n} [u(\xi_{k} + i\eta_{k}) + iv(\xi_{k} + i\eta_{k})](\Delta x_{k} + i\Delta y_{k})$$

$$= \sum_{k=1}^{n} [(u\Delta x_{k} - v\Delta y_{k}) + i(u\Delta y_{k} + v\Delta x_{k})]$$

$$\xrightarrow[n \to \infty]{} \int_{c} [(udx - vdy) + i(udy + vdx)]$$
(1.12)

1.3.2 积分的性质

积分的复共轭:

$$\overline{\int_{c} f(z) dz} = \int_{c} \overline{f}(z) \overline{dz}$$
(1.13)

若曲线 C 上有 $|f(z)| \leq M(<+\infty)$,C 的弧长为 L,则

$$\left| \int_{\mathcal{C}} f(z) \mathrm{d}z \right| \le ML \tag{1.14}$$

(积分控制)。

一个重要的积分 $(n \in \mathbb{Z})$

$$I_n = \oint_c \frac{\mathrm{d}z}{(z - z_0)^{n+1}} = \frac{i}{R^n} \int_0^{2\pi} e^{in\theta} \mathrm{d}\theta$$
$$= \frac{i}{R^n} \int_0^{2\pi} (\cos n\theta - i \sin n\theta) \mathrm{d}\theta = 2\pi i [n = 0]$$
(1.15)

1.3.3 柯西-古萨 (Cauchy-Goarsat) 定理

若函数 f(z) 在**单连通区域** \mathscr{B} 内**处处解析**,那么函数 f(z) 沿 \mathscr{B} 内的任何一条封闭曲线 C 的积分为 0。

一种不严谨的理解:基于(??),使用格林公式,以实部为例,变为 $\iint_D (-u_y-v_x) \mathrm{d}x\mathrm{d}y$ 。若处处解析,则处处满足柯西-黎曼方程,故 $u_y=-v_x$,因此实部被积变量恒为 0。虚部同理。(由于 u,v 不一定有一阶**连续**偏导数,故不一能使用 Green 公式。)

1.3.4 复合闭路定理

连续变形原理

在区域内一个解析函数沿闭曲线的积分,不因闭曲线在区域内做连续变形而改变它的值。

复合闭路定理

设 Jordan 闭曲线 $\gamma=\gamma_0+\gamma_1^-+\cdots+\gamma_n^-$ 围成一个 (n+1)-连通区域 \mathscr{D} , $\omega=f(z)$ 在其上解析,在 $\overline{\mathscr{D}}$ 上连续,则 $\oint_{\gamma}f(z)\mathrm{d}z=0$ 。

1.3.5 原函数与不定积分

设 $\omega = f(z)$ 在单连通域 \mathcal{D} 上解析, 定义原函数

$$F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$$

,则 F(z) 在 \mathcal{D} 上解析,且 $F'(z) = f(z), \forall z \in \mathcal{D}$ 。原函数可以有多个,但它们的差恒为常数。

Newton-Leibniz 定理

设 $\omega = f(z)$ 在单连通域 \mathcal{D} 上解析,G(z) 为 f(z) 在 \mathcal{D} 上的一个原函数,则

$$\int_{z_0}^{z_1} f(z) dz = G(z) \Big|_{z_0}^{z_1}$$
(1.16)

分步积分公式

设 $\omega = f(z), \sigma = g(z)$ 在单连通域 D 上解析

$$\int_{z_0}^{z_1} f'(z)g(z)dz = f(z)g(z)\Big|_{z_0}^{z_1} - \int_{z_0}^{z_1} f(z)g'(z)dz$$
(1.17)

三个等价命题

设 $\omega = f(z)$ 在 n-连通区域 D 上解析,则

- (1) $\forall C \subseteq D \ f(z) dz = 0$
- (2) f(z) 在 D 上有积分路径无关性
- (3) f(z) 在 D 上有原函数

等价,且任意一条成立,牛顿-莱布尼茨定理即可使用。

1.3.6 Cauchy 积分公式

设 $\omega = f(z)$ 在单连通域 D 上解析,在 \overline{D} 上连续,则 $\forall z_0 \in D, C \subseteq D$

$$f(z_0) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(z)}{z - z_0} dz$$
 (1.18)

$$= \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(z)}{z - z_0} \mathrm{d}z \tag{1.19}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$
 (1.20)

$$= \frac{1}{\pi R^2} \iint_{|z-z_0| < R} f(z) dx dy$$
 (1.21)

1.3.7 高阶导数

定理:解析函数 f(z) 的任意阶导数仍为解析函数,其 n 阶导数满足

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1.22)

其中 C 为围绕 z_0 的任意一条正向简单闭曲线,且 C 在单连通的解析区域 \mathcal{D} 上。

莫雷拉 (Morera) 定理 (柯西定理的逆定理)

若 f(z) 在单连通区域 \mathcal{D} 内连续,且沿 \mathcal{D} 内任意闭合曲线积分为 0 (路径无关),则 f(z) 在 \mathcal{D} 内解析。(在任意一个解析函数上修改一个点,函数仍然路径无关,因此连续是必要的。)

1.3.8 代数基本定理

 $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 (a_n \neq 0)$ 在 \mathbb{C} 上恰有 n 个零点(记重数)。 只要证明 $\forall n \in \mathbb{N}_+, P_n$ 存在零点即可(从而可以不断地分离因式降阶)。

刘维尔(Liouville)定理

一个有界的正函数必然是常函数

证明. 设 |f(z)| < M,根据(??)

$$|f'(z_0)| \le \frac{1}{2\pi} \oint_{|z-z_0|-R} \frac{M}{R^2} dl = \frac{M}{R} \xrightarrow{R \to +\infty} 0$$

故 $f(z_0)$ 为常数

代数基本定理证明

假设 $P_n(z)$ 在 $\mathbb C$ 上没有零点,设 $f(z)=\frac{1}{P_n(z)}$,则 f(z) 为整函数。在 $|z|\to +\infty$ 时,显然 $|f(z)|\to \frac{1}{a_n|z|^n}\to 0$ 故存在 R 使得 $\forall |z|>R, f(|z|)<1$,则在 $\mathbb C$ 上,

$$|f(z)| \le \max\{1, \max_{|z| \le R} \{|f(z)|\}\}$$

不等式右侧显然不等于 ∞ (有界闭域上连续函数有界), 故 f(z) 为常函数, $P_n(z)$ 为常数, 这 与 $a_n \neq 0$ 矛盾。故 $P_n(z)$ 必有零点。

1.3.9 解析函数与调和函数

调和函数

设 $\varphi=\varphi(x,y)\in C^2(\mathscr{D})$ 且处处有 $\Delta\varphi=\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2}\equiv 0$,则 φ 为 \mathscr{D} 上的调和函数。

设 $\omega = f(z) = u + iv$ 在 \mathcal{D} 上解析,则 u,v 在 \mathcal{D} 上调和。称上述 u,v 为 \mathcal{D} 上的共轭调和函数。给出 \mathcal{D} 上调和函数 u,找出其共轭调和函数 \iff 找出解析函数 f(z) 使 $Re\ f(z) = u$ 。

设 u 为**单连通域**上的调和函数,则必然存在 f(z) 使 $Re\ f(z)=u$ 。注意多连通情况下不一定正确。

证明. 这样的 f(z) 必定满足 $f'(z) = u_x - iu_y = U(z)$,U(z) 显然是解析的,故 $f(z) = \int_{z_0}^z U(z) dz$ 即为满足条件的函数。

例:
$$u = x^3 - 3xy^2$$

₩不定积分法

$$f'(z)=(3x^2-3y^2)-i(-6xy)=3(x+iy)^2$$

$$f(z)=\int 3z^2\mathrm{d}z=z^3+c=(x+iy)^3+C=(x^3-3xy^2)+i(3x^2y-y^3)+C$$

$$v(x)=3x^2y-y^3-iC$$
 由于 $f(z)-u=iv$ 为虚数,故 C 必须为纯虚数。

←偏积分法

$$v_y = u_x = 3x^2 - 3y^2, v_x = -u_y = 6xy$$

v 先关于 y 积分,即 $v = 3x^2y - y^3 + g(x)$,则 $v_x = 6xy + g'(x) = 6xy \implies g(x) = C$

1.4 级数

1.4.1 复数项级数

复数项序列

设 $\{x_i\}$, $\{y_i\}$ 为实数序列,则 $z_n = x_n + iy_n$ 即为复数项序列。

级数

定义 $I = \sum_{n=0}^{\infty} z_n = \sum_{n=0}^{\infty} x_n + i \sum_{n=0}^{\infty} y_n$ (不论是否收敛都称为级数),级数的部分和定义为 $S_n = \sum_{k=0}^n z_k$ 。

- 1. 若 $\lim_{n \to \infty} S_n = A \in \mathbb{C}$,则称 I 收敛
- 2. 若 $\sum_{n=0}^{n\to\infty} |z_n|$ 收敛,则称 I 绝对收敛
- 3. 若 I 收敛但不绝对收敛,则称 I 条件收敛

复数项级数与常数项级数的关系

 $\lim_{n\to\infty} z_n = A = \alpha + i\beta \iff \lim_{n\to\infty} x_n = \alpha \wedge \lim_{n\to\infty} y_n = \beta$ $\lim_{n\to\infty} z_n = A = \alpha + i\beta$ 条件收敛或绝对收敛 $\iff \lim_{n\to\infty} x_n \lim_{n\to\infty} y_n$ 均条件收敛或绝对收敛

敛散判别法

- (I) Cauchy 根式判别法
 - $\sqrt[n]{|z_n|} < q < 1(\forall n > N)$,则 I 绝对收敛
 - 只要满足 $\sqrt[n]{|z_n|} \ge q \ge 1$ 的项有无穷多个,则 I 发散
 - 若 $\lim_{n\to\infty} \sqrt[n]{|z_n|} = q$,则 q<1 时 I 绝对收敛,q>1 时 I 发散。q=1 时无法确定,例如 $\frac{1}{n},\frac{(-1)^n}{n},\frac{1}{n^2}$ 三者收敛情况均不同
- (II) D'Alembert 判别法
 - $\left|\frac{z_{n+1}}{z_n}\right| < q < 1(\forall n > N) 则 I 绝对收敛$
 - $\left|\frac{z_{n+1}}{z_n}\right| \geq q \geq 1 (\forall n > N)$ 则 I 发散
 - 若 $\lim_{n\to\infty}\left|\frac{z_{n+1}}{z_n}\right|=q$,则 q<1 时绝对收敛,q>1 时绝对发散,q=1 时无法判断
- (III) Dirichlet 判别法

1.4.2 幂级数

(复变) 函数级数

定义 \mathscr{D} 上的函数列 $\{f_n(z)\}_{n=0}^{\infty}$,其级数为 $I=\sum_{n=0}^{\infty}f_n(z)$,当 z 固定时 I 就变成常数项级数。

幂级数

形如 $I(z) = \sum_{n=0}^{\infty} C_n (z-a)^n$ 或 $I(z) = \sum_{n=0}^{\infty} C_n z^n$ 的级数称为幂级数。

- 1. 若 i 在 z_0 处收敛,则 $\forall z : |z| < |z_0|$,I 在 z 处收敛
- 2. 若 i 在 z_0 处发散,则 $\forall z : |z| > |z_0|$, I 在 z 处发散

证明. (1)

易知 $\lim_{n\to\infty} |C_n z_0^n|$ 收敛到 0,故其必有 $|C_n z_0^n| < M(\forall n\in\mathbb{N})$,则 $\sum_{n=0}^{\infty} |C_n z_0^n| \left|\frac{z}{z_0}\right|^n$ 有界递增 (并因此收敛),因此 I(z) 绝对收敛。

收敛半径与收敛圆盘

 $I = \sum_{n=0}^{\infty} C_n z^n$ 的收敛半径 R 定义为

 $R \triangleq \sup\{|z| : I \text{ is convergent at } z\}$

 $= \sup\{|z| : I \text{ is absolutely convergent at } z\}$

 $=\inf\{|z|: I \text{ is divergent at } z\}$

 $(R=+\infty$ 时函数级数在 \mathbb{C} 上收敛。) 定义 $C_R:|z|=R$ 为收敛圆周, $D_R:|z|\leq R$ 为**收敛圆盘**, 考虑 C_R 上的点属于内外哪一侧:

- I(z) 在 C_R 上处处发散: $I(z) = \sum z^n$
- I(z) 在 C_R 上部分收敛: $I(z) = \sum_{n=0}^{\infty} \frac{z^n}{n}$, C_R 上仅 z = 1 处发散 I(z) 在 C_R 上全部收敛: $I(z) = \sum_{n=0}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n} z^n$
- I(z) 在 C_R 上全部绝对收敛: $I(z) = \sum_{n=0}^{\infty} \frac{z^n}{n^2}$, 一旦有一个点绝对收敛,则整个圆上所有点 都绝对收敛

收敛半径的计算

- $\ddot{\pi} \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lambda, \quad M R = \frac{1}{\lambda}$
- $\ddot{\pi} \lim_{n \to \infty} \sqrt[n]{|c_n|} = \lambda$ 或者 $\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \lambda$, 则 $R = \frac{1}{\lambda}$

幂级数的和函数

设 $I = \sum_{n>0} c_n (z-a)^n$ 的收敛半径为 R,则在 D: |z-a| < R 上有

- (a) 和函数 f(z) 为解析函数
- (b) f(z) 能够逐项求导

$$f'(z) = \sum_{n \ge 1} nc_n (z - a)^{n-1}$$

(c) f(z) 能够逐项积分

$$F(z) = \sum_{n \ge 0} \frac{c_n}{n+1} (z-a)^{n+1}$$

(d) f(z) 在 C_R 上至少存在一个奇点

1.4.3 Taylor 展开式

设 $\omega=f(z)$ 在单连通域 $\mathcal D$ 上解析, $z_0\in\mathcal D, d=\inf_{z\in\partial\mathcal D}|z-z_0|$,则 $\forall z\in B_d(z_0)$,有

$$f(z) = \sum_{n \ge 0} c_n (z - z_0)^n, c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (1.23)

且该展开式唯一。

1.4.4 解析函数的零点

设 $\omega = f(z)$ 在 \mathcal{D} 上解析

- 1. 若 $f(z_0) = 0$,则称 z_0 为 f(z) 的零点
- 2. 若 $f(z_0) = f'(z_0) = \cdots = f^{(m-1)}(z_0) = 0, f^{(m)}(z_0) \neq 0$,则称 z_0 为 m 级零点
- 3. 若 $f(z_0)=0$,且某个去心领域 $B^*_\delta(z_0)$ 上 f(z) 恒不为 0,则称 z_0 为 f(z) 的孤立零点

定理 z_0 为 f(z) 的 m 级零点 $\iff \exists B_{\delta}(z_0)$ 及其上的解析函数 $\varphi(z)$,满足

$$f(z) = (z - z_0)^n \varphi(z), \varphi(z_0) \neq 0$$

定理 设 f(z) 在 \mathcal{D} 上解析,则 f(z) 在 \mathcal{D} 上的所有零点都孤立,除非 $f(z) \equiv 0$ 。

1.4.5 解析函数的唯一性定理

设 f(z) 与 g(z) 在 \mathcal{D} 上解析,且 $a \in D$,若 $\exists \{z_n\} \in D$,满足

- 1. $z_n \neq a$
- $2. \lim_{n \to \infty} z_n = a$
- 3. $f(z_n) = g(z_n), \forall n \ge 0$

则 $f(z) = g(z), \forall z \in D$

1.4.6 一般常级数

形如 $I = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n\geq 0} c_n (z-z_0)^n + \sum_{n\geq 1} c_{-n} \zeta^n = I_+ + I_-, \zeta = \frac{1}{z-z_0}$ 的级数称为一般常级数。

若 I_+ 的收敛半径为 R_+ , I_- 的收敛半径为 R_- ,则称 $|\frac{1}{R_-}|<|z-z_0|<|R_+|$ 为 I 的收敛圆环域 $D(z_0,r_1,r_2)$ 。

洛朗级数 1.4.7

设 $\omega = f(z)$ 在 $D(z_0, r, R)$ 上解析,则 $\forall z \in D(z_0, r, R)$,有

$$f(z) = \sum_{n} c_n (z - z_0)^n, c_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(z - z_0)^{n+1}} d\zeta$$
 (1.24)

其中 C 为 D 上任意环绕的 Jordan 闭曲线。该展开唯一,称为**Laurent 级数**。 注意 f(z) 在 z_0 的导数一般不存在,故不能套用高阶导数公式。

留数 1.5

1.5.1孤立奇点

若 z_0 为 f(z) 的奇点,且在某个邻域 $B_{\delta}^*(z_0)$ 内 f(z) 解析,则称 z_0 为 f(z) 的孤立奇点。 若 $z_0 \in \mathbb{C}$ 为孤立奇点,且 f(z) 在上述领域中的洛朗级数为 $f(z) = \sum_{-\infty}^{\infty} c_n (z-z_n)^n$,则

- (A) z_0 为可去奇点,若级数中不含负幂项,且 $\lim_{z\to z_0}=c_0$ 。若补充定义 $f(z_0)=c_0$,则 f(z) 在 z₀ 解析,因而以下命题等价:
 - zn 为可取奇点

 - $\lim_{z\to z_0}f(z)=A\in\mathbb{C}$ f(z) 在某邻域 $B^*_\delta(z_0)$ 内有界
- (B) z_0 为 m 级极点,若展式中含有有限的负幂项,且最低负幂项为 $c_{-m}(z-z_0)^{-m}, c_{-m} \neq 0$ 。 若 $\lim_{z \to z_0} f(z) = \infty$, 则必定为极点而不是本性奇点。以下命题等价
 - z_0 为 f(z) 的 m 级极点
 - 存在某个 $B_0(z_0)$ 上的解析函数 g(z), 满足 $f(z) = g(z)(z-z_0)^{-m}$
 - $\lim_{z \to z_0} (z z_0)^n f(z) = A \in \mathbb{C} \setminus \{0\}$
 - z_0 为 $\frac{1}{f(z)}$ 的 m 级零点
- (C) z_0 为本性奇点,若展式中含有无穷个负幂项。注意 $\lim_{z\to z_0} f(z)$ 必不存在。

(Weierstress) $\forall A \in \overline{\mathbb{C}}$, 都存在 $\{z_n\}_{n=1}^{\infty} \subseteq B_{\delta}^*(z_0)$, 满足 $\lim_{n \to \infty} z_n = z_0$ 且 $\lim_{n \to \infty} f(z_n) = A$

若 f(z) 在 $R<|z|<\infty$ 内解析, 则称 ∞ 为 f(z) 的孤立奇点。设 $\zeta=\frac{1}{z}$, 则 $\varphi(\zeta)=\sum_n c_{-n}\zeta^n=$ f(z),若 0 为 $\varphi(\zeta)$ 的本性/可去奇点或 m 级极点,则 ∞ 为 f(z) 的本性/可去奇点或 m 级极 点。

1.5.2 留数

设 z_0 为 f(z) 的孤立奇点,f(z) 在 z_0 的洛朗级数为 $f(z)=\sum_{n=-\infty}^{\infty}c_n(z-z_0)^n$,C 为环绕 z_0 的正向简单曲线,则

$$\oint_C f(z) dz = 2\pi i c_{-1} \tag{1.25}$$

这是由(??)直接得到的。定义留数为

Res
$$[f(z), z_0] = \frac{1}{2\pi i} \oint_C f(z) dz = c_{-1}$$
 (1.26)

1.5.3 留数的计算规则

(A) 若 z_0 为 f(z) 的一级极点,则

Res
$$[f(z), z_0] = \lim_{z \to z_0} (z - z_0) f(z)$$

(B) 若 z_0 为 f(z) 的 m 级极点,则

$$\operatorname{Res}[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \{ (z - z_0)^m f(z) \}$$
 (1.27)

(C) 设 $f(z) = \frac{P(z)}{Q(z)}$, P(z), Q(z) 在 z_0 解析,若 $P(z_0) \neq 0$, $Q(z_0) = 0$, $Q'(z_0) \neq 0$,则 z_0 为 f(z) 的一级极点,且(可由 (A) 导出)

Res
$$[f(z), z_0] = \frac{P(z_0)}{Q'(z_0)}$$

(D) 若无穷远也为孤立极点,则无穷远处的留数定义为 $\frac{1}{2\pi i}\oint_{C^-}f(z)\mathrm{d}z$,不难发现,此即所有有限点的留数之和的负数

$$\operatorname{Res}[f(z), \infty] = -\operatorname{Res}\left[f\left(\frac{1}{z}\right)\frac{1}{z^2}, 0\right]$$
 (1.28)

1.5.4 留数的应用

(A) 形如 $\int_0^{2\pi} R(\cos\theta,\sin\theta) d\theta$ 的积分,对于 $z = \cos\theta + i\sin\theta$,可以用 z 反求 $\cos\theta,\sin\theta$ 。

$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta = \oint_{|z|=1} R\left[\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right] \frac{dz}{iz}$$
(1.29)

(B) 形如 $\sum_{-\infty}^{\infty} R(x) dx$ 的积分,其中 R(x) 为**有理函数**,且分母比分子的次数**至少高二次**,且在实轴上没有奇点。将其延拓到复数域上,并且沿路径 $(-R,0) \to (R,0)$ $\xrightarrow{x^2+y^2=R^2,y\geq 0}$ $(-R,0), R \to +\infty$ 进行积分,设 z_k 为虚部为正数的全部奇点,则

$$\int_{-\infty}^{\infty} R(x) dx = 2\pi i \sum_{k=0}^{\infty} \text{Res}[R(z), z_k]$$
(1.30)

(C) 形如 $\sum_{-\infty}^{\infty} R(x)e^{iax} dx (a>0)$ 的积分,其中 R(x) 为**有理函数**,且分母比分子的次数**至少高** 一次,且在实轴上没有奇点。将其延拓到复数域上,并且沿路径 $(-R,0) \to (R,0)$ $\xrightarrow{x^2+y^2=R^2,y\geq 0}$ $(-R,0),R\to +\infty$ 进行积分,设 z_k 为虚部为正数的全部奇点,则

$$\int_{-\infty}^{\infty} R(x)e^{iax} dx = 2\pi i \sum \text{Res}[R(z)e^{iaz}, z_k]$$
(1.31)