EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_V}$.

SUBIECTUL I -

- Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1. Următoarea mărime fizică NU este mărime fizică fundamentală în S.I.:
- a. temperatura absolută
- **b.** masa
- c. cantitatea de substanță

d. volumul. (2p)

- 2. Într-o incintă se amestecă 10^{23} molecule de heliu ($\mu_{He} = 4 \cdot 10^{-3}$ kg/mol) cu $4 \cdot 10^{23}$ molecule de O_2 ($\mu_{\rm O_2} = 32 \cdot 10^{-3} {\rm kg/mol}$). Masa molară a amestecului este:
- **a.** $16,4 \cdot 10^{-3}$ kg/mol
- **b.** $22,4 \cdot 10^{-3}$ kg/mol
- **c.** $26,4 \cdot 10^{-3}$ kg/mol
- **d.** $34,4 \cdot 10^{-3}$ kg/mol
- (3p)
- 3. O cantitate dată de gaz ideal este comprimată adiabatic. În acest proces lucrul mecanic schimbat de gaz cu exteriorul și temperaturile corepunzătoare stărilor inițială și finală ale gazului satisfac relațiile:
- **a.** $L > 0; T_f > T_i$
- **b.** $L < 0; T_f > T_i$
- **c.** L > 0; $T_f < T_i$
- **d.** L < 0; $T_f < T_i$ (5p)

- 4. Prin "motor termic" se întelege:
- a. un sistem termodinamic ce realizează transformarea integrală a energiei termice în energie mecanică
- b. un sistem termodinamic cu funcționare ciclică, ce transformă integral energia termică în energie mecanică
- c. un sistem termodinamic ce realizează transformarea integrală energiei mecanice în energie termică
- d. un sistem termodinamic cu funcționare ciclică, ce realizează transformarea parțială a energiei termice în energie mecanică. (3p)
- **5**. Un mol de gaz ideal efectuează transformarea $1 \rightarrow 2$, reprezentată în pcoordonate p-V în graficul alăturat. Pentru încălzirea gazului cu 100 c este necesară o căldură egală cu 207,75 J. Căldura molară izocoră a gazului este egală

- **a.** 1,5 · R
- **b.** 1,75 · R
- c. 2 · R
- **d.** 2,25 · R