A Novel Approach to Automated Evaluation of Programming Assignments

Sujit Kumar Chakrabarti

IIITB

November 20, 2021

Outline for section 1

Introduction

AEPA System

Why Automated Evaluation?

- ▶ Online learning platforms: Coursera, Udacity, EdX ...
- ▶ Online programming contests: ACM ICPC, HakerEarth, HackerRank, CodeChef ...

Why Automated Evaluation?

- ▶ Online learning platforms: Coursera, Udacity, EdX ...
- ▶ Online programming contests: ACM ICPC, HakerEarth, HackerRank, CodeChef ...
- Introductory programming courses

Why Automated Evaluation?

- ▶ Online learning platforms: Coursera, Udacity, EdX ...
- ▶ Online programming contests: ACM ICPC, HakerEarth, HackerRank, CodeChef ...
- ► Introductory programming courses
- ► Error prone, labour intensive, repetitive

Automated Evaluation

- 1. Speed
- 2. Scalability
- 3. Objectivity
- 4. Transparency

Outline for section 2

Introduction

AEPA System

Automated Evaluation System

- ▶ Automatically evaluates programming assignments using testing
- ▶ Several human weeks → a few seconds
- ► Has enabled more frequent, deeper formative assessments with shorter feedback cycles

AEPA Workflow

Testing

A Test Setup

I_i	Test input
Ei	Expected output
Oi	Actual output
R_i	Test result

Assigning Marks:

$$M = \sum k_i R_i$$

System Architecture

Types of Programs

- Programs with input/output
- Programs using/computing values
- ► Functions returning values
- ► Functions with input/output
- Questions about structural properties

evaluate.py API¹

- equals
- ► eval_matfun
- eval_named_proc_1
- eval_named_proc_2
- eval_f_calls_g
- ► is_recursive
- ▶ is_inner_function
- num_of_classdefs
- num_of_classdefs

¹https://github.com/sujitkc/evaluate/

Experience

Advantages

- Simple setup
- Simple use
- ► Language independence. The system has already been used by us in two flavours: Python and OCaml.
- ▶ Data availability. Extensively used by us for our other related research work.
- Transparency
- Crowdsourced debugging
- ► Teaching by example

Demo Goal

- ► Showcase to intructors of programming (intensive) courses
- ► Seek feedback features, usability

Demo Goal

- Test case
- Test suite
- Running an individual test suite: eval_mathop.py
- Running all the test suites: eval_all.py
- Evaluating all the submissions: eval_all_rollnums.sh
- evaluate.py library
- Sharing feedback with the class: pack.sh and send-reports.sh

