

CS326 – Systems Security

Lecture 17 Introduction to Network Security

Elias Athanasopoulos athanasopoulos.elias@ucy.ac.cy

The Network: Game Changer

- Software exploitation over the network
 - Local vs Remote attacker
- Target resolution
 - Which hosts are good attack targets?
- Attacks at the network
 - Protocols, communication, and applications
 - Active and passive attackers
- Increased complexity
 - Different parameters interplay together

The beginning...

THE ARPA NETWORK

DEC 1969

4 NODES

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex McKenzie)

Couple of years ago...

Many apps

Internet of Things (IoT)

Network Layers (OSI Model)

L7 Application

L6 Presentation

HTTP, IMAP, SMTP, SSH, DNS, ...

L5 Session

L4 Transport

TCP, UDP, ...

L3 Network

IPv4, IPv6, ICMP, ...

L2 Data Link

Ethernet, ARP, 802.11, ...

L1 Physical

Network Communication

Sending Messages

Creating Sockets

IP Address

- Devices joining a network need to be addressable
 - IPv4 and IPv6 addresses
- IPV4 address
 - 4 bytes, a.b.c.d
 - E.g., 54.32.128.23
- Not all routable
 - Private addresses

IPv4 Private Addresses

	IP address range	number of addresses
24-bit block	10.0.0.0 – 10.255.255.255	16,777,216
20-bit block	172.16.0.0 – 172.31.255.255	1,048,576
16-bit block	192.168.0.0 – 192.168.255.255	65,536

Address Resolution Protocol (ARP)

- Associates Ethernet devices with IP addresses
 - A MAC address is paired with an IP address
- IP packets are sent over Ethernet frames
- Each Ethernet frame has a 48-bit address
- ARP broadcasts an IP address
 - Host with the IP address responds with an IP/Ethernet address pair

Ethernet Frame Link Layer


```
48 bits
 Destination Address
                            Source Address
Type (16 bits)
Payload (46-1500 bytes)
                     32 bits CRC
                 -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

ARP Spoofing

- ARP has no authentication
- A malicious host may claim to have several IP addresses
 - A malicious host that poisons the router with a fake IP address/MAC mapping, intercepts the traffic towards this IP address

Defense

- Static ARP mappings for critical services
- Heuristic-based, e.g., a MAC address that is associated with several IP addresses indicates a possible attack

Internet Protocol

- Hosts that have acquired an IP address can send IP packets to other hosts
- A packet may cross several routers until the destination is reached
- The forward path may be different with the return path
- Packets can be lost or re-ordered
- Packets can be split in smaller packets
 - They are reassembled by the receiving router

Internet Protocol (IPv4) Packet Network Layer

0	1	2	3			
0 1 2 3 4 5 6 7 8 9	9 0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6	7 8 9 0 1			
+-+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+			
Version IHL Typ	oe of Service	Total Length				
+-+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+			
Identification	Flags	Fragme	nt Offset			
+-+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+			
Time to Live	Protocol	Header Checks	um			
+-+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+			
Source Address						
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-						
Destination Address						
+-+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+			
	Options	Padd	ing			
+-+-+-+-+-+-+-+-	-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+			

Internet Control Message Protocol (ICMP)

- Protocol for sending error messages and operational information
 - E.g., host is down
- Used in ping and traceroute
 - -ping:sends ICMP ECHO_REQUEST packets to
 network hosts
 - traceroute: prints the route packets take to
 network host

Reliable Communication

- Applications may need some logic for dealing with
 - Lost packets, re-ordering, acknowledging of received packets
- TCP implements all these features
- TCP allows reliable communication between two end points

Transmission Control Protocol (TCP) *Transport Layer*

0	1	,	2	3	
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5	6 7 8 9 0	0 1 2 3 4 5	6 7 8 9 0 1	
+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+-	+-+-+-+-+-+	
Source Po	rt	1	Destinatio	n Port	
+-+-+-+-+-+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+-	+-+-+-+-+-+	
Sequence Number					
+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+-	+-+-+-+-+	
Acknowledgment Number					
+-+-+-+-+-+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+-	+-+-+-+-+-+	
Data	U A P R S F	'			
Offset Reserved	R C S S Y I	.	Window		
	G K H T N N	1			
+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+-	+-+-+-+-+-+	
Checksum		Urgent	Pointer		
+-+-+-+-+-+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+-	+-+-+-+-+-+	
Option	S			Padding	
+-+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-	-+-+-+-+-	+-+-+-+-+	
data					
+-+-+-+-+-+-+-	+-+-+-+-+-+	+-+-+-	-+-+-+-+-	+-+-+-+-+-+	

TCP Handshake

TCP Hijacking

Alice

Server

Malory

TCP Hijacking

TCP Handshake (hardened)

TCP Close

TCP Handshake Attacks

- TCP Connection Hijacking
 - CSEQ and SSEQ are random numbers
 - Predict the random numbers in the TCP handshake
 - Send packets using the predicted random numbers
- Denial of Service (DoS)
 - Send TCP SYN packets with fake IP addresses
- Backscatter traffic
 - Measure DoS attacks by monitoring SYN/ACK towards spoofed IP addresses

Domain Name System (DNS)

- Distributed tree-hierarchy with mapping names to IP addresses
 - What's the IP address of www.google.com?
- Several DNS attacks
 - The main goal of the attacks is to hijack a domain name and capture traffic
- Phishing
 - Fake web sites that look alike popular ones
 - E.g., <u>www.bankofvvest.com</u> and www.bankofwest.com

DNS tools

- whois
 - Internet domain name and network number directory service
- dig
 - DNS lookup utility
- nslookup
 - query Internet name servers interactively