Scaletta presentazione

- 1. Il metodo ABCD
- 2. Validazione su campione mixato Wmunu+gamma e W+jets di purezza nota
- R_MC e ci calcolati direttamente sul campione mixato (ci sul segnale e R_MC sul fondo)
- purezze non pesate: inizialmente abbastanza lontane (91% invece di 97%)
- -> formula non approssimata e derivate con Mathematica (le purezze tornano, l'approssimazione evidentemente non era buona)
 - purezze pesate: tornano anche senza formula non approssimata
 - 3. Calcolo del coefficiente di correlazione
 - calcolato su campioni Zjets e Wjets
- il calcolo sul campione di gamma+jet non è possibile perché nel campione a nostra disposizione non sono salvate le variabili di isolamento dell'oggetto subleading (jet fake photon)
 - grossi problemi di statistica per via dei pesi negativi
- -> mc_only_weight > 100 posto a 1, rimozione della track isolation e merging delle CR in cui un singolo campione è dominante, in tutti e due i campioni la gammajetCR è trattata separatamente Zjets: SR + 2muCR + 2eCR

Wjets: SR + 1muCR

- per ogni campione si ottengono 5+1 valori di R, 5 per ogni divisione in MET + 1 per della gammajet. I risultati dei due campioni sono quasi sempre incompatibili (entro una sigma) , il valore di R in ogni divisione di MET è quindi calcolato come media (semplice?), mentre l'errore è la sistematica calcolata come massima differenza tra i due valori
 - il calcolo finale non è ancora stato fatto
- R prime: si calcola R_prime per validare il Montecarlo, per ora è molto stabile intorno a 1 ma ci sono delle correzioni ancora da fare
 - 4. Calcolo dei coefficienti di signal leakage
 - calcolato su campioni Wgamma, Zgamma, Znunugamma e gammajets
- coefficienti più grandi rispetto all'analisi precedente per via della generazione Montecarlo:
- -> precedentemente la generazione degli eventi avveniva con un taglio molto più vicino a quello usato poi nell'analisi, mentre i nuovi campioni sono generati con un taglio molto più loose, quindi ci si aspetta più leakage.
 - sistematiche nelle regioni con diversi tagli di MET: lo spettro in pt dei

fotoni si sposta sistematicamente verso valori più alti all'aumentare della MET

- sistematiche per campioni diversi: come per R sono state mergiate le regioni in cui dominano diversi processi, ed è stato possibile popolare molto di più la gammajetCR. Nelle regioni di controllo con diversi tagli in MET c1 e c3 sono sistematicamente più alti (e incompatibili) per Wgamma che per Zgamma e Znunugamma, mentre i risultati della gammajetCR sono compatibili per i primi tre campioni ma totalmente diversi da quelli calcolati con il campione di gammajets, tuttavia questo campione popola molto di più la regione e dovrebbe essere più attendibile

ATTENZIONE!

È regolare merigiare le popolazioni di campioni diversi? (ad esempio Znunugamma domina su Zgamma perché molto più grande)

Non ho capito se lo spettro in pt può essere considerato come prova per la sistematica del leakage