Ch1. Experiments, Models, and Probability

School of Electronics Engineering

[REVIEW] SET THEORY

Basic notations

```
Sets are represented by { }
```

$$\checkmark$$
 ex) $C = \{1, 4, 9, 16, 25\}, D = \{x^2 \mid x = 1, 2, 3, 4, 5\}$

 $x \in A$: x is an *element* of the set A (c.f., $x \notin A$)

 $A \subset B$: set A is a *subset* of B

 $\checkmark A \subset B$ if $x \in A$ and then $x \in B$

A = B: sets A and B are equal

 $\checkmark A = B$ if and only if $A \subset B$ and $B \subset A$

S: universal set, ϕ : null (empty) set

Basic set operations

 $A \cup B$: the *union* of sets A and B

 $x \in A \cup B$ if and only if $x \in A$ or $x \in B$

 $A \cap B$: the *intersection* of sets A and B

 $x \in A \cap B$ if and only if $x \in A$ and $x \in B$

A - B: Set *minus* or set *subtraction*

If $x \in A - B$, then $x \in A$ but $x \notin B$

A^c: the *complement* of a set A

 $x \in A^c$ if and only if $x \notin A$

De Morgan's law

$$(A \cup B)^c = A^c \cap B^c$$

Mutually exclusive sets

A collection of sets $A_1, ..., A_n$ is mutually exclusive if and only if

$$A_i \cap A_j = \phi, \qquad i \neq j$$

mutually exclusive ≈ disjoint

Collectively exhaustive sets

A collection of sets $A_1, ..., A_n$ is *collectively exhaustive* if and only if

$$A_1 \cup A_2 \cup \cdots \cup A_n = S$$

Partitions

A collection of sets $A_1, ..., A_n$ is a partition if it is both mutually exclusive and collectively exhaustive

Applying Set Theory to Probability

Experiments

An experiment consists of a procedure and observations. There is *uncertainty* in what will be observed (model)

Some examples:

- ✓ Flip a coin. Did it land with heads or tails facing up?
- ✓ Walk to a bus stop. How long do you wait for the arrival of a bus?
- ✓ Give a lecture. How many students are attended?
- ✓ Transmit a signal into the air. What signal arrives at the receiver?

Experiment (cont.)

Coin flip example

- ✓ Procedure: flip a coin
- ✓ Observation: head or tail
- ✓ Model: head and tail are equally likely

Outcome

An outcome of an experiment is *any possible observation* of that experiment

Sample space

The sample space of an experiment is the *finest-grain*, *mutually exclusive*, *collectively exhaustive* set of all possible outcomes

Event

An event is a set of outcomes of an experiment

PROBABILITY AXIOMS

Probability measure: $P[\cdot]$

A function that maps events in the sample space to real numbers such that

Axiom 1 For any event A, $P[A] \ge 0$

Axiom 2 P[S] = 1

Axiom 3 For any *countable* collection $A_1, A_2, ...$ of *mutually*

exclusive events

$$P[A_1 \cup A_2 \cup \cdots] = P[A_1] + P[A_2] + \cdots$$

Theorem 1.2

For mutually exclusive events A_1 and A_2 ,

$$P[A_1 \cup A_2] = P[A_1] + P[A_2]$$

Theorem 1.3

If $A = A_1 \cup A_2 \cup \cdots \cup A_m$ and $A_i \cap A_j = \phi$ for $i \neq j$, then

$$P[A] = \sum_{i=1}^{m} P[A_i]$$

Theorem 1.4

The probability measure $P[\cdot]$ satisfies

- (a) $P[\phi] = 0$
- (b) $P[A^c] = 1 P[A]$
- (c) For any A and B (not necessarily mutually exclusive) $P[A \cup B] = P[A] + P[B] P[A \cap B]$
- (d) If $A \subset B$, then $P[A] \leq P[B]$

Theorem 1.5

The probability of an event $B = \{s_1, s_2, ..., s_m\}$ is the sum of probability of the outcomes contained in the event:

$$P[B] = \sum_{i=1}^{m} P[\{s_i\}]$$

Theorem 1.6

For an experiment with sample space $S = \{s_1, ..., s_n\}$ in which each outcome s_i is *equally likely*,

$$P[s_i] = \frac{1}{n}, \qquad 1 \le i \le n$$

Example

Roll a six-sided die in which all faces are equally likely. What is the probability of each outcome? Find the probabilities of the events: (a) roll 4 or higher, (b) roll an even number, and (c) roll the square of an integer.

CONDITIONAL PROBABILITY

Conditional Probability

Definition

The conditional probability of the event *A* given the occurrence of the event *B* is

$$P[A|B] = \frac{P[A \cap B]}{P[B]}$$

Note: P[A|B] is defined when P[B] > 0

Conditional Probability

Theorem 1.7

P[A|B] has the following properties corresponding to the axioms of probability

Axiom 1
$$P[A|B] \ge 0$$

Axiom 2
$$P[B|B] = 1$$

Axiom 3 If
$$A = A_1 \cup A_2 \cup \cdots$$
 with $A_i \cap A_j = \phi$ for $i \neq j$, then
$$P[A|B] = P[A_1|B] + P[A_2|B] + \cdots$$

Example of Probability

Monty Hall problem

You're given the choice of three doors: a car and two goats are behind the doors

Partitions and the Law of Total Probability

Theorem 1.8

For a partition $B = \{B_1, B_2, ...\}$ and any event A in the sample space, let $C_i = A \cap B_i$. Then C_i and C_j are mutually exclusive for $i \neq j$ and

$$A = C_1 \cup C_2 \cup \cdots$$

Partitions and the Law of Total Probability

Theorem 1.9

For any event A, and partition $\{B_1, B_2, ..., B_m\}$,

$$P[A] = \sum_{i=1}^{m} P[A \cap B_i]$$

Law of Total Probability

Theorem 1.10 (law of total probability)

For a partition $\{B_1, B_2, ..., B_m\}$ with $P[B_i] > 0$ for all i,

$$P[A] = \sum_{i=1}^{m} P[A|B_i]P[B_i]$$

Bayes' Theorem

Theorem 1.11 (Bayes' theorem)

$$P[B|A] = \frac{P[A|B]P[B]}{P[A]}$$

INDEPENDENCE

Definition 1.6 (two independent events)

Events A and B are independent if and only if

$$P[A \cap B] = P[A]P[B]$$

Definition 1.7 (three independent events)

 A_1, A_2 and A_3 are mutually independent if and only if

- (a) A_1 and A_2 are independent
- (b) A_2 and A_3 are independent
- (c) A_3 and A_1 are independent
- (d) $P[A_1 \cap A_2 \cap A_3] = P[A_1]P[A_2]P[A_3]$

Example 1.23

Consider a sample space $S = \{1, 2, 3, 4\}$, where all outcomes are equally likely. Are the events $A_1 = \{1, 3, 4\}$, $A_2 = \{2, 3, 4\}$, and $A_3 = \phi$ mutually independent?

Definition 1.8 (more then two independent events)

If $n \ge 3$, the events $A_1, A_2, ..., A_n$ are mutually independent if and only if

- (a) All collections of n-1 events chosen from $A_1, A_2, ..., A_n$ are mutually independent
- (b) $P[A_1 \cap A_2 \cap \dots \cap A_n] = P[A_1]P[A_2] \dots P[A_n]$

Independent vs. mutually exclusive

