Raport 3

Paweł Matławski album 249732

13 marca 2021

Spis treści

1	Kla	syfikacja na bazie modelu regresji liniowej	1
	1.1	Wybór danych	1
	1.2	Podział danych na zbiór uczący i testowy	3
	1.3	Konstrukcja klasyfikatora i wyznaczenie prognoz	4
	1.4	Ocena jakości modelu	6
	1.5	Budowa modelu liniowego dla rozszerzonej przestrzeni cech	6
2		ównanie metod klasyfikacji	9
	2.1	Wybór danych	9
	2.2	Podział danych na zbiór uczący i testowy	13
	2.3	Metoda k-najbliższych sąsiadów	14
	2.4	Drzewa klasyfikacyjne	17
	2.5	Naiwny klasyfikator Bayesowski	21
	2.6	Wnioski	22

1 Klasyfikacja na bazie modelu regresji liniowej

1.1 Wybór danych

Zadanie wykonamy dla ramki danych **iris** z pakietu **datasets**. Przyjrzyjmy się jej:

```
library("datasets")
data("iris")
attach(iris)

#liczba kolumn
ncol(iris)

## [1] 5

#liczba wierszy
nrow(iris)

## [1] 150
```

```
#brakujące dane
sum(is.na(iris))

## [1] 0

#etykietki klas
etykietki.klas <- iris$Species

#liczba obiektów
(n <- length(etykietki.klas))

## [1] 150

#liczba klas
(K <- length(levels(etykietki.klas)))

## [1] 3</pre>
```

plot(etykietki.klas)

Rysunek 1: Przynależność do poszczególnych gatunków

```
plot(as.numeric(etykietki.klas))
```


Rysunek 2: Przynależność do poszczególnych gatunków

Wnioski:

- Obiekty są uporządkowane ze względu na przynależność do poszczególnych gatunków po 50 z każdego.
- Mamy 3 klasy i 150 obiektów.

1.2 Podział danych na zbiór uczący i testowy

Podzielimy dane w proporcji:

- $\frac{2}{3}$ -zbiór uczący
- $\frac{1}{3}$ -zbiór testowy.

```
#losowanie obiektów
learning.indx <- sample(1:n,2/3*n)

#zbiór uczący
learning.set <- iris[learning.indx,]

#zbiór testowy
test.set <- iris[-learning.indx,]</pre>
```

1.3 Konstrukcja klasyfikatora i wyznaczenie prognoz

Wyznaczamy macierze eksperymentu X.ucz oraz X.test, które zawierają wartości poszczególnych zmiennych. W pierwszych kolumnach umieszczamy jedynki, by uwzględnić wyrazy wolne:

	rep(1, 100)	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
100	1.00	5.70	2.80	4.10	1.30
136	1.00	7.70	3.00	6.10	2.30
88	1.00	6.30	2.30	4.40	1.30
126	1.00	7.20	3.20	6.00	1.80
73	1.00	6.30	2.50	4.90	1.50
94	1.00	5.00	2.30	3.30	1.00

Tabela 1: Początkowy fragment macierzy X.ucz

	rep(1, 50)	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
8	1.00	5.00	3.40	1.50	0.20
12	1.00	4.80	3.40	1.60	0.20
13	1.00	4.80	3.00	1.40	0.10
18	1.00	5.10	3.50	1.40	0.30
21	1.00	5.40	3.40	1.70	0.20
22	1.00	5.10	3.70	1.50	0.40

Tabela 2: Początkowy fragment macierzy X.test

Tworzymy macierze Y.ucz oraz Y.test, które zawierają zmienne binarne kodujące poszczególne klasy.

Następnie wyznaczymy prognozowane prawdopodobieństwa przynależności do poszczególnych klas.

	1	2	3
100	0.18	0.47	0.35
136	-0.11	0.17	0.95
88	0.08	0.61	0.31
126	-0.07	0.41	0.67
73	-0.02	0.60	0.42
94	0.22	0.65	0.13

Tabela 3: Wartości prognozowane

Graficzna prezentacja wyników dla obu zbiorów:

Zbiór uczacy 2.0 1 setosa 2 versicolor 1.5 3 virginica Y.ucz.hat 0.5 0.0 -0.5 80 100 0 20 40 60

Rysunek 3: Prognozy dla zbioru uczącego

id

Rysunek 4: Prognozy dla zbioru testowego

1.4 Ocena jakości modelu

	setosa	versicolor	virginica
setosa	35	0	0
versicolor	0	23	8
virginica	0	4	30

Tabela 4: Macierz pomyłek - zbiór uczący

```
# dokładność klasyfikacji - zbiór uczący
sum(diag(macierz.pomylek.ucz))/n.ucz
## [1] 0.88
```

	setosa	versicolor	virginica
setosa	15	0	0
versicolor	0	11	8
virginica	0	1	15

Tabela 5: Macierz pomyłek - zbiór testowy

```
# dokładność klasyfikacji - zbiór testowy
sum(diag(macierz.pomylek.test))/n.test
## [1] 0.82
```

Wnioski:

- Dokładność klasyfikacji stoi na przyzwoitym poziomie, choć z pewnością wciąż jest miejsce na poprawę.
- Gatunek setosa jest dobrze wydzielony od reszty, co widać zarówno na wykresie, jak i w macierzy pomyłek.
- W tym przypadku występuje problem maskowania klas, o którym była mowa na wykładzie.

1.5 Budowa modelu liniowego dla rozszerzonej przestrzeni cech

Tworzymy nowy model regresji uzupełniony o składniki wielomianowe stopnia 2 (tzn. PL^2 , PW^2 , SL^2 , SW^2 , PL*PW, PL*SW, PL*SL, PW*SL, PW*SW, SL*SW). Powtarzamy wszystkie kroki tak, jak w poprzednim przypadku.

	1	2	3
16	0.94	0.16	-0.10
12	0.96	0.10	-0.06
96	0.06	0.84	0.09
122	-0.02	0.16	0.85
5	1.06	-0.10	0.03
49	1.02	-0.04	0.02

Tabela 6: Wartości prognozowane - nowy zbiór

Nowy zbiór uczacy

Rysunek 5: Prognozy dla nowego zbioru uczącego

Nowy zbiór testowy

Rysunek 6: Prognozy dla nowego zbioru testowego

	setosa	versicolor	virginica
setosa	34	0	0
versicolor	0	32	0
virginica	0	0	34

Tabela 7: Macierz pomyłek - nowy zbiór uczący

```
# dokładność klasyfikacji - nowy zbiór uczący
sum(diag(macierz.pomylek.ucz.new))/n.ucz.new
## [1] 1
```

	setosa	versicolor	virginica
setosa	16	0	0
versicolor	0	17	1
virginica	0	1	15

Tabela 8: Macierz pomyłek - nowy zbiór testowy

```
# dokładność klasyfikacji - nowy zbiór testowy
sum(diag(macierz.pomylek.test.new))/n.test.new
## [1] 0.96
```

Wnioski:

- Dokładność klasyfikacji w nowym, uzupełnionym modelu jest wyraźnie wyższa niż w pierwotnym.
- W tym przypadku nie występuje już problem maskowania klas.

2 Porównanie metod klasyfikacji

2.1 Wybór danych

Zadanie wykonamy z użyciem ramki danych **Vehicle** z biblioteki **mlbench**. Dane zawierają informacje na temat czterech typów pojazdów: dwupiętrowego autobusu, vana marki Chevrolet, Saaba 9000 oraz Opla Manty 400. Celem stworzenia tej ramki była klasyfikacja sylwetek aut za pomocą różnych obserwacji. W teorii rozróżnienie autobusu oraz vana powinno być łatwe, w przeciwieństwie do odróżnienia od siebie dwóch różnych modeli aut.

```
library("mlbench")
data("Vehicle")
attach(Vehicle)

#liczba kolumn
ncol(Vehicle)

## [1] 19

#liczba wierszy
nrow(Vehicle)

## [1] 846

#brakujące dane
sum(is.na(Vehicle))

## [1] 0
```

Jak widać w ramce nie brakuje żadnych wartości (nie są one również kodowane w niestandardowy sposób).

Rysunek 7: Przynależność do poszczególnych klas

Zbadajmy zmienność poszczególnych cech:

Rysunek 8: Boxploty - badanie zmienności cech

Wariancje poszczególnych cech bardzo wyraźnie się od siebie różnią. Niezbędne będzie zatem zastosowanie standaryzacji.

Rysunek 9: Boxploty po standaryzacji

Postaramy się teraz wybrać cechy o najlepszej zdolności dyskryminacyjnej.

Rysunek 10: Zdolności dyskryminacyjne

Rysunek 11: Zdolności dyskryminacyjne

Rysunek 12: Zdolności dyskryminacyjne

Wybór zmiennej o największej zdolności dyskryminacyjnej nie jest w tym przypadku jednoznaczny. Zdecydowaliśmy, że "najbardziej obiecująca" będzie kombinacja zmiennych Elong oraz Holl.Ra (w pierwszej wyróżnia się van, a w drugiej bus). Już na tym etapie zauważamy, że różnice między Oplem a Saabem rzeczywiście nie są wyraźne.

2.2 Podział danych na zbiór uczący i testowy

Podobnie jak w zadaniu pierwszym tworzymy dwa zbiory. Ponadto robimy to samo dla wcześniej wyselekcjonowanych przez nas zmiennych.

2.3 Metoda k-najbliższych sąsiadów

```
#zbiór uczący - wszystkie cechy
blad.klasyf(etykietki.prog.learning.veh, etykietki.learning.veh)
## $macierz.pomylek
##
                 etykietki
## etykietki.prog bus opel saab van
            bus 150
                        3
##
                       93
                                  3
##
             opel
                   0
                            28
             saab
                   0
                           107
##
                       41
                                 1
##
             van
                   2
                       8
                             5 116
##
## $blad.klasyf
## [1] 0.1737589
#zbiór testowy - wszystkie cechy
blad.klasyf(etykietki.prog.test.veh, etykietki.test.veh)
## $macierz.pomylek
##
                 etykietki
## etykietki.prog bus opel saab van
                  64
##
            bus
                       1
                             3
                        26
                                 1
             opel
                   0
                            23
##
             saab 1
                                 3
##
                       32
                            42
##
            van
                   1
                       8 5 63
##
## $blad.klasyf
## [1] 0.3085106
```

Jak widać metoda k-najbliższych sąsiadów daj niezłe rezultaty. Zobaczmy jakie efekty da metoda cross-validation:

```
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "cv",
##
       est.para = control.errorest(k = 10), ile.sasiadow = 5)
##
##
##
     10-fold cross-validation estimator of misclassification error
## Misclassification error: 0.2742
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "boot",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 5)
##
```

```
Bootstrap estimator of misclassification error
     with 50 bootstrap replications
##
## Misclassification error: 0.3113
## Standard deviation: 0.0034
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 5)
##
##
    .632+ Bootstrap estimator of misclassification error
     with 50 bootstrap replications
##
## Misclassification error: 0.2675
```

Przetestujmy teraz tę metodę dla różnej liczby sąsiadów:

```
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 1)
##
##
    .632+ Bootstrap estimator of misclassification error
    with 50 bootstrap replications
## Misclassification error: 0.2307
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 10)
##
     .632+ Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
## Misclassification error: 0.2774
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 15)
##
##
     .632+ Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
##
## Misclassification error: 0.2923
```

```
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
## model = my.ipredknn, predict = my.predict, estimator = "632plus",
## est.para = control.errorest(nboot = 50), ile.sasiadow = 20)
##
## .632+ Bootstrap estimator of misclassification error
## with 50 bootstrap replications
##
## Misclassification error: 0.2994
```

Jak widać w naszym przypadku wraz ze wzrostem liczby sąsiadów rośnie też błąd klasyfikacyjny.

2.4 Drzewa klasyfikacyjne

Rysunek 13: Drzewo klasyfikacyjne - wszystkie cechy

Rysunek 14: Drzewo klasyfikacyjne - wybrane cechy

```
# zbiór uczący - wszystkie
conf.mat.learning <- table(pred.labels.learning, learning.set.veh$etykietki.veh)</pre>
conf.mat.learning
##
## pred.labels.learning bus opel saab van
                        140
                   bus
                               11
                                     17
##
                    opel
                           5
                               62
                                    18
                                          0
##
                           3
                               56
                                     95
                                          6
                    saab
##
                    van
                           4
                               16
                                    14 117
(error.rate.learning <- (nrow(learning.set.veh) - sum(diag(conf.mat.learning))) / nrow(l
## [1] 0.2659574
#zbiór testowy - wszystkie
conf.mat.test <- table(pred.labels.test, test.set.veh$etykietki.veh)</pre>
conf.mat.test
##
## pred.labels.test bus opel saab van
##
               bus
                      58
                           10
                                10
##
                       6
                           19
                                13
                                     0
               opel
                                    3
##
               saab
                       0
                           33
                                42
##
               van
                       2
                            5
                                 8
                                    73
(error.rate.test <- (nrow(test.set.veh) - sum(diag(conf.mat.test))) / nrow(test.set.veh)</pre>
## [1] 0.3191489
# zbiór uczący - wybrane
conf.mat.learning.wybrane <- table(pred.labels.learning.wybrane, learning.set.wybrane$et
conf.mat.learning.wybrane
##
## pred.labels.learning.wybrane bus opel saab van
##
                                        21
                            bus
                                111
                                             25
##
                                        31
                                             7
                                                  0
                            opel
                                   7
                                             76
##
                            saab
                                   3
                                        45
                                                0
##
                            van
                                  34
                                        42
                                             40 122
(error.rate.learning.wybrane <- (nrow(learning.set.wybrane) - sum(diag(conf.mat.learning
## [1] 0.3971631
# zbiór testowy - wybrane
conf.mat.test.wybrane <- table(pred.labels.test.wybrane, test.set.wybrane$etykietki.veh)</pre>
```

conf.mat.test.wybrane

```
##
## pred.labels.test.wybrane bus opel saab van
##
                               41
                                     13
                         bus
##
                                 2
                                           3
                         opel
                                     15
                                                0
##
                                4
                                     30
                                           33
                                                0
                         saab
                                              77
##
                                     15
                                          19
                         van
                               16
(error.rate.test.wybrane <- (nrow(test.set.wybrane) - sum(diag(conf.mat.test.wybrane)))</pre>
## [1] 0.4113475
```

W przypadku drzew klasyfikacynych zbiory złożone ze wszystkich cech sprawdzają się lepiej od tych zawierające jedynie wybrane wcześniej cechy.

```
# Zmiana parametrów -- konstruujemy złożone drzewo
veh.tree.complex <- rpart(model, data=learning.set.veh, control=rpart.control(cp=.01, n</pre>
# Wybór parametru złożoności (cp)
printcp(veh.tree.complex)
##
## Classification tree:
## rpart(formula = model, data = learning.set.veh, control = rpart.control(cp = 0.01,
       minsplit = 5, maxdepth = 20))
##
## Variables actually used in tree construction:
## [1] Comp
                    Elong
                                 Kurt.Maxis
                                               Max.L.Ra
                                                           Max.L.Rect
## [6] Sc. Var. maxis Scat. Ra
                                  Skew.Maxis
## Root node error: 412/564 = 0.7305
## n = 564
##
           CP nsplit rel error xerror
## 1 0.211165
                   0
                      1.00000 1.05583 0.024210
## 2 0.172330
                   1
                       0.78883 0.86893 0.027755
## 3 0.092233
                   2
                       0.61650 0.70874 0.028803
## 4 0.075243
                       0.52427 0.60922 0.028647
                   3
## 5 0.026699
                       0.44903 0.48058 0.027513
                   4
## 6 0.016990
                   5
                       0.42233 0.45874 0.027209
## 7 0.014563
                   6
                       0.40534 0.48544 0.027576
## 8 0.013350
                   7
                       0.39078 0.48058 0.027513
## 9 0.010000
                       0.36408 0.47087 0.027382
bestcp <- veh.tree.complex$cptable[which.min(veh.tree.complex$cptable[,"xerror"]),"CP"]</pre>
bestcp # najmniejszy błąd
## [1] 0.01699029
```


Rysunek 15: Wybór parametru złożoności

Rysunek 16: Drzewo oryginalne i przycięte

2.5 Naiwny klasyfikator Bayesowski

```
#zbiór uczący - wszystkie cechy
blad.klasyf(etykietki.prog.learning.veh, etykietki.learning.veh)
## $macierz.pomylek
               etykietki
##
## etykietki.prog bus opel saab van
           bus
                 34 1
                          3
                               2
            opel 22 73 38
##
            saab 9 28 58 4
##
            van
                 87 43 45 111
##
##
## $blad.klasyf
## [1] 0.5106383
#zbiór testowy - wszystkie cechy
blad.klasyf(etykietki.prog.test.veh, etykietki.test.veh)
## $macierz.pomylek
##
               etykietki
## etykietki.prog bus opel saab van
           bus 14 1 2 6
##
                               3
            opel 8
                      33
                          23
##
            saab 7 13 27 2
##
                 37 20 21 65
##
           van
##
## $blad.klasyf
## [1] 0.5070922
#zbiór uczący - wybrane cechy
blad.klasyf(etykietki.prog.learning.wybrane, etykietki.learning.wybrane)
## $macierz.pomylek
##
               etykietki
## etykietki.prog bus opel saab van
                 90 9 15 19
##
           bus
            opel 17
                      59 48 8
##
            saab 33 35 54
                              8
##
           van 15 36 31 87
##
##
## $blad.klasyf
## [1] 0.4858156
#zbiór testowy - wybrane cechy
blad.klasyf(etykietki.prog.test.wybrane, etykietki.test.wybrane)
```

```
## $macierz.pomylek
##
                  etykietki
## etykietki.prog bus opel saab van
##
              bus
                     38
                           8
                                 5
                                    15
                     7
                          36
                                     3
##
              opel
                                31
                                     5
##
              saab
                      8
                          18
                                21
##
                     10
                          11
                                12
                                    54
              van
##
## $blad.klasyf
## [1] 0.4716312
```

Naiwny klasyfikator Bayesowski w naszym przypadku sprawdza się słabo - błąd klasyfikacyjny oscylujący wokół 50% cięzko uznać choćby za zadowalający. Zbiory z wybranymi cechami dają zbliżone rezultaty do tych ze wszystkimi.

2.6 Wnioski

- W naszym przypadku najlepsza okazała się metoda k-najbliższych sąsiadów.
- Zadowalające wyniki udało się uzyskać również dzięki metodzie drzew klasyfikacyjnych.
- Zdecydowanie najsłabiej wypadł naiwny klasyfikator Bayesa.