教材:

《数字电子技术基础》第六版高等教育出版社

王玲: wangling@cuc.edu.cn

办公室: 主楼 905

概述

取指令,译码,取数,算数逻辑运算,存储

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3. 集成门电路
- 6.时序逻辑电路
- 7.脉冲波形的产生和整形电路
- 8.A/D, D/A转换

1.数制与码制

```
十进制: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,...
二进制: 0. 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010
(10)_2 = (2)_{10}
(1001)_2 = (9)_{10}
(10101.101)_2 = (?)_{10}
3进制、4进制、5进制、…16进制…
r进制, ( )<sub>r</sub> = (?)<sub>10</sub>
```

1.数制与码制

十进制: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,...

二进制: 0, 1, 10,

生活中丰富的信息如何用0,1二进制数表示?编码

- 1.数制与码制
- 2.逻辑代数基础

模拟电路数学工具 **微分方程**

$$\begin{array}{c|c}
R \\
+ \\
V(t) \\
\hline
i(t) \\
C \\
\hline
- \\
\end{array}$$

$$v(t) = R \cdot i(t) + v_c(t) = R \cdot C \cdot \frac{dv_c(t)}{dt} + v_c(t)$$

- 1.数制与码制
- 2.逻辑代数基础

数字电路数学工具:逻辑代数

逻辑运算规律逻辑函数化简

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路

组合逻辑电路 分析与设计

编码器,译码器,比较器,选通器

模拟电路 分析与设计 ①

放大器,滤波器,振荡器

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路

$$v_c(t) = v_c(0) + \frac{1}{C} \int_0^t I \cdot dt$$

有记忆 JK 触发器

J	K	Qn+1
1	0	1
0	1	0
0	0	Qn
1	1	(Q ⁿ)'

RS触发器, D 触发器, T 触发器

有记忆

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3. 集成门电路
- 6.时序逻辑电路
- 7.脉冲波形的产生及整形电路
- 8.A/D, D/A转换

问题1: 低电平---0; 高电平---1

几伏为高电平? 几伏为低电平?

问题2:输出跟着输入变化,能变多快?

1MHz? 500MHz?1GHz?

问题3: 理想情况,一个门能驱动无数个负载,实际上不能,为什么?

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3.集成门电路

计数器必须使用有记忆 能力的触发器,纯组合 电路是无法计数的

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3.集成门电路
- 6.时序逻辑电路

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3.集成门电路
- 6.时序逻辑电路
- 7.脉冲波形的产生和 整形电路
- 8.A/D, D/A转换

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 6.时序逻辑电路
- 3. 集成门电路
- 7.脉冲波形的产生和整形电路

问题1:如何使波形较为理想?

问题2: 如何改变脉冲宽度?

问题3: 时钟信号从哪里来?

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 6.时序逻辑电路
- 3.集成门电路
- 7.脉冲波形的产生和 整形电路
- 8.A/D, D/A转换

Mp3 player

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3. 集成门电路
- 6.时序逻辑电路
- 7.脉冲波形的产生和 整形电路
- 8.A/D, D/A转换

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3.集成门电路
- 6.时序逻辑电路
- 7.脉冲波形的产生和 整形电路
- 8.A/D, D/A转换

解决方法1: 用多个门电路组合而成

解决方法2:用PLD

成绩计算

总成绩 = 平时成绩 (30%) + 期末成绩 (70%)

-考勤 (0.5 X 24 = 12)

-作业(0.5 X 16 = 8)

-期中考试(10)

交作业

周次	周二	周四
1	2 学时	2 学时
2	2 学时	2学时
3	2 学时	2学时
4	2 学时	2学时
5	2 学时	2学时
6	2 学时	2学时
7	2 学时	2学时
8	2 学时	2学时
9	2 学时	
10	2 学时	
11	2 学时	
12	2 学时	
13	2 学时	
14	2 学时	
15	2 学时	
16	2 学时	

- 1. 几种常用的数制及转换
- 2. 二进制算数运算
- 3. 几种二进制编码

```
10进制: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,...
7 进制: 0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13...
2 进制: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010...
16讲制:
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
         2 进制:B(Binary)
        10进制: D (Decimal)
         8进制: O (Octal)
      16讲制: H (Hexadecimal)
```

• 1. 数制及转换

二进制	十进制
0	0
01	1
10	2
11	3
100	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

• 1. 数制及转换

$$(Number)_{r} = (?)_{10}$$

$$(110110)_2 = (?)_{10}$$

$$(236)_7 = (?)_{10}$$

二进制	十进制
0	0
01	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

$$(D)_{10} = (k_{n-1} \dots k_1 k_0 . k_{-1} \dots k_{-m})_{10}$$

$$= (k_{n-1} 10^{n-1} + \dots + k_1 10^1 + k_0 10^0 + k_{-1} 10^{-1} + \dots + k_{-m} 10^{-m})_{10}$$

$$= (\sum k_i \times 10^i)_{10}$$

$$(123.456)_{10} = (1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + \frac{4}{10^{1}} + \frac{5}{10^{2}} + \frac{6}{10^{3}})_{10} = (123.456)_{10}$$

$$(123.456)_{7} = (1 \times 7^{2} + 2 \times 7^{1} + 3 \times 7^{0} + \frac{4}{7^{1}} + \frac{5}{7^{2}} + \frac{6}{7^{3}})_{10} = (66.691)_{10}$$

$$(111.111)_{2} = (1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}})_{10} = (7.875)_{10}$$

$$(Number)_r \longrightarrow (?)_{10}$$

$$(123.456)_{10} = (1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + \frac{4}{10^1} + \frac{5}{10^2} + \frac{6}{10^3})_{10} = (123.456)_{10}$$

$$(123.456)_7 = (1 \times 7^2 + 2 \times 7^1 + 3 \times 7^0 + \frac{4}{7^1} + \frac{5}{7^2} + \frac{6}{7^3})_{10} = (66.691)_{10}$$

$$(111.111)_2 = (1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3})_{10} = (7.875)_{10}$$

$$(11010.011)_2 = (?)_{10}$$

$$(437.25)_8 = (?)_{10}$$

$$(3BE.C)_{16} = (?)_{10}$$

$$(123.456)_{10} = (1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + \frac{4}{10^{1}} + \frac{5}{10^{2}} + \frac{6}{10^{3}})_{10} = (123.456)_{10}$$

$$(123.456)_{7} = (1 \times 7^{2} + 2 \times 7^{1} + 3 \times 7^{0} + \frac{4}{7^{1}} + \frac{5}{7^{2}} + \frac{6}{7^{3}})_{10} = (66.691)_{10}$$

$$(111.111)_{2} = (1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}})_{10} = (7.875)_{10}$$

$$(11010.011)_{2} = (1x2^{4} + 1x2^{3} + 0x2^{2} + 1x2^{1} + 0x2^{0} + 0x2^{-1} + 1x2^{-2} + 1x2^{-3})_{10}$$
$$= (16 + 8 + 0 + 2 + 0 + 0 + 0.25 + 0.125)_{10} = (26.375)_{10}$$

$$(437.25)_8 = (4 \times 8^2 + 3 \times 8^1 + 7 \times 8^0 + 2 \times 8^{-1} + 5 \times 8^{-2})_{10}$$

= $(256 + 24 + 7 + 0.25 + 0.078125)_{10} = (287.328125)_{10}$

$$(3BE.C)_{16} = (3 \times 16^{2} + 11 \times 16^{1} + 14 \times 16^{0} + 12 \times 16^{-1})_{10}$$

= $(768 + 176 + 14 + 0.75)_{10} = (958.75)_{10}$

```
(Number)<sub>r</sub> \longrightarrow (?)<sub>10</sub>

(?)<sub>r</sub> \longleftarrow (Number)<sub>10</sub>

(??)<sub>7</sub> = (125)<sub>10</sub>
```

$$(0.1)_{10} = (?)_{7}$$

 $(0.1)_{10} = (0.k_{-1}k_{-2}k_{-3}...k_{-m})_{7}$
 $(0.1)_{10} = \frac{k_{-1}}{7} + \frac{k_{-2}}{7^{2}} + \frac{k_{-3}}{7^{3}} + ... + \frac{k_{-m}}{7^{m}}$

$$k_{-4}$$
 $(0.0462)_7 = (0.1)_{10}$

$$()_r \Leftrightarrow ()_{10}$$

所有的转换都要以十进制为媒介吗?

2位二进制	四进制
00	0
01	1
10	2
11	3

3位二进制数	八进制(O)
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

()4,	()8,	() ₁₆
			1/	×	
		()2		

4位二进制数	十六进制(H)
0000	0
0001	1
0010	3
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

二进制与八进制间的相互转换

□ 二进制→八进制 从小数点开始,分别向左、向右三位一组,最后不足三位的加 0 补足三位,按顺序写出各组对应的八进制数。

$$(745.361)_8 = (111100101.0111110001)_2$$

二进制和十六进制间的相互转换

□ 二进制→十六进制: 从小数点开始,分别向左、向右四位一组, 最后不足四位的加 0 补足四位,再按顺序写出各组对应的十六进制数。

$$(3BE5.97D)_{16} = (111011111100101.1001011111101)_2$$

- 1. 几种常用的数制及转换
- 2. 二进制算数运算
- 3. 几种二进制编码

- 1. 几种常用的数制及转换
- 2. 二进制算数运算
- 3. 几种二进制编码

$$\begin{array}{ccc}
7 & 111 \\
\underline{-4} & \longrightarrow & \underline{-100} \\
\hline
3 & 011
\end{array}$$

- 1. 几种常用的数制及转换
- 2. 二进制算数运算

Char a; //
Short b; //16bit

位数 $M = 2^n$ $00 \quad n=2, M=2^2=4$ $01 \quad n=3, M=2^3=8$ $10 \quad n=4, M=2^4=16$ $11 \quad n=8, M=2^8=256$

 $(n) + 2^n - n$ 4 bit

2. 二进制算数运算

二进制数<u>最高位</u>来表示正负号,用0表示正,1表示负,其余位表示数的绝对值,两部分合起来构成带符号的二进制数。

例如: 模 = 24 = 16

<mark>(-7)</mark> 1111	0000	0001	正数:	X _原 =X _反 =	:X _{ネト}
(-6) 1110 15	U	001	0		
(-5) 1101 $\sqrt{3}$		230	011		
(-6) 1110 15 (-5) 1101 13 (-4) 1100 12		4	0100		
(-3) 1011 \(\frac{11}{10} \)		5/0	101		
1010 9	0	011	0		
(-2) 1001 (-1)	1000	0111	<mark>负数:</mark>	X _补 =X _反	<mark>+1</mark>
	(-0)				

十进制	补码
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

2. 二进制算数运算

例如: 模 =24 = 16

2. 二进制算数运算

例如: 模 =24 = 16

2. 二进制算数运算

例如: 模 =24 = 16

2. 二进制算数运算 例如,每个数用8比特存储

两个补码表示的二进制数相加时的符号位

例:用二进制补码运算求出

结论:将两个加数的符号位和来自最高位数字位的进位相加,结果就是和的符号

- 1. 几种常用的数制及转换
- 2. 二进制算数运算
- 3. 几种二进制编码

 - 自然二进制码 **す**直接 转換 ぬい 进制
 - 二 十进制码(BCD) (即 Binary Coded Decimal) ☆ → 砂
 - 格雷码
 - 奇偶检验码
 - ASCII 码(美国信息交换标准代码)

8421 BCD 763 0 ... 9

常用BCD码

十进		无权码			
		有 权 码			
制数	8421码	5421 码	2421 (A)	2421 (B)	余3码
0	0000	0000	0000	0000	0011
1	0001	0001	0001	0001	0100
2	0010	0010	0010	0010	0101
3	0011	0011	0011	0011	0110
4	0100	0100	0100	0100	0111
5	0101	1000	0101	1011	1000
6	0110	1001	0110	1100	1001
7	0111	1010	0111	1101	1010
8	1000	1011	1110	1110	1011
9	1001	1100	1111	1111	1100

权为8、4、2、1

比 8421BCD 码多余 3

8421BCD码:二进制表示的十进制码 Binary Coded Decimal

* 练习:用 BCD 码表示十进制数举例:

$$(36)_{10} = (00110110)_{8421BCD}$$
 $(4.79)_{10} = (0100. \ 01111 \ 1001)_{8421BCD}$
 $(01010000)_{8421BCD} = (50)_{10}$

ASCII 码 (美国信息交换标准代码)

page15

作业 1.4、1.5、1.6、1.9 1.12 (2) (4) (6) 1.15 (2) (4) (6) (8)

补充题: 将下列数码作为自然二进制码和8421BCD码时,分别求出相应的十进制数。

- $(10010111)_{B} = (15/)_{D} 7 + 9 \times 16$ $(10010111)_{8421BCD} = (97)_{D}$
- $(2)(100010010011)_{B} = (19)_{D}$ $(100010010011)_{8421BCD} = (893)_{D}$