

MACHINE LEARNING

Learning from Data

Yliess HATI
PHD Student - Computer Science
yliess.hati@devinci.fr

|00 INTRODUCTION

Pattern Recognition Study Correlations Between Data Domains Tune a Parametric Model with Data

|00 INTRODUCTION

SUPERVISED

Learn parameters from **Labeled Data**

Regression

Classification

UNSUPERVISED

Learn parameters from **Unlabeled Data**

Clustering

Latent Space

REINFORCEMENT

Autonomous Agent Learning from **Experience**

Q-Learning

01

LINEAR ALGEBRA

The Last Space Bender

LENGTH

$$ec{v} = \left(egin{array}{c} v_x \ v_y \end{array}
ight)$$

$$\|ec{v}\|=\sqrt{v_x^2+v_y^2}$$

01 LINEAR ALGEBRA

ADDITION / SUBTRACTION

$$ec{v} = \left(egin{array}{c} v_x \ v_y \end{array}
ight)$$

$$ec{u} = \left(egin{array}{c} u_x \ u_y \end{array}
ight)$$

$$ec{v}+ec{u}=\left(egin{array}{c} v_x+u_x\ v_y+u_y \end{array}
ight)$$

SCALAR (DOT) PRODUCT

$$ec{v} = \left(egin{array}{c} v_x \ v_y \end{array}
ight)$$

$$ec{u} = \left(egin{array}{c} u_x \ u_y \end{array}
ight)$$

$$ec{v}.\,ec{u}=v_xu_x+v_yu_y=|v|\,|u|\,cos heta$$

01 LINEAR ALGEBRA

VECTOR

$$ec{u} = egin{pmatrix} u_x \ u_y \ u_z \end{pmatrix}$$

$$ec{v} imes ec{u} = egin{pmatrix} v_y u_z - v_z u_y \ v_z u_x - v_x u_z \ v_x u_y - v_y u_x \end{pmatrix}$$

ADDITION / SUBTRACTION

$$A=\left(egin{array}{cc} a_{1,1} & a_{1,2}\ a_{2,1} & a_{2,2} \end{array}
ight)$$

$$B = egin{pmatrix} b_{1,1} & b_{1,2} \ b_{2,1} & b_{2,2} \end{pmatrix}$$

$$A+B=egin{pmatrix} a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} \ a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} \end{pmatrix}$$

01 LINEAR ALGEBRA

HADAMARD PRODUCT

$$A=\left(egin{array}{cc} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \end{array}
ight)$$

$$B = egin{pmatrix} b_{1,1} & b_{1,2} \ b_{2,1} & b_{2,2} \end{pmatrix}$$

$$A\odot B=egin{pmatrix} a_{1,1}b_{1,1} & a_{1,2}b_{1,2}\ a_{2,1}b_{2,1} & a_{2,2}b_{2,2} \end{pmatrix}$$

101 LINEAR ALGEBRA

$$A = egin{pmatrix} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \end{pmatrix}$$

$$B = egin{pmatrix} b_{1,1} & b_{1,2} \ b_{2,1} & b_{2,2} \end{pmatrix}$$

$$A\cdot B = egin{pmatrix} a_{1,1}b_{1,1} + a_{1,2}b_{2,1} & a_{1,1}b_{1,2} + a_{1,2}b_{2,2} \ a_{2,1}b_{1,1} + a_{2,2}b_{2,1} & a_{2,1}b_{1,2} + a_{2,2}b_{2,2} \end{pmatrix}$$

EYE

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

MATRIX

SCALE

$$egin{pmatrix} s_x & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

MATRIX

ROTATION

$$R_x(heta) = egin{pmatrix} 1 & 0 & 0 & 0 \ cos(heta) & -sin(heta) & 0 & 0 \ sin(heta) & cos(heta) & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_y(heta) = egin{pmatrix} cos(heta) & 0 & sin(heta) & 0 \ 0 & 1 & 0 & 0 \ -sin(heta) & 0 & cos(heta) & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_z(heta) = egin{pmatrix} cos(heta) & -sin(heta) & 0 & 0 \ sin(heta) & cos(heta) & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

MATRIX

SHEAR

$$\begin{pmatrix} 1 & 0 & \lambda & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{pmatrix}$$

TRANSLATION

$$egin{pmatrix} 1 & 0 & 0 & t_x \ 0 & 1 & 0 & t_y \ 0 & 0 & 1 & t_z \ 0 & 0 & 0 & 1 \end{pmatrix}$$

02

Roll the Dice

RANDOM VARIABLES

$$B = \left\{ egin{array}{ll} r & ext{if Box is red} \ b & ext{if Box is blue} \end{array}
ight.$$

$$F = egin{cases} a & ext{if Fruit is an apple} \ o & ext{if Fruit is an orange} \end{cases}$$

$$p(B=r)=rac{ ext{\# red boxes picked}}{ ext{\# total boxes picked}} \in [0;1]$$

$$p(B=r) + p(B=b) = 1$$

02 PROBABILITIES

JOINT & CONDITIONAL

Sum Rule

Joint probabilties p(B=r, F=a)

Marginal probabilty p(B=r)=p(B=r,F=a)+p(B=r,F=o)

Product Rule

Conditional probabilties p(B = r | F = o)

$$p(B=r,F=o)=p(F=o|B=r)\;p(B=r)$$

$$p(B=r|F=o)=rac{p(F=o|B=r)p(B=r)}{p(F=o|B=r)p(B=r)+p(F=o|B=b)p(B=b)}$$

DENSITY

$$p(x\in(a,b))=\int_a^b p(x)dx$$
 $\int_{-\infty}^{+\infty} p(x)dx=1$ $p(x)\geq 0$

EXPECTATION & COVARIANCE

$$egin{aligned} \mathbb{E}[f] &= \int p(x)f(x)dx \ var[f] &= \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] \ var[f] &= \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2 \ cov[x,y] &= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y] \end{aligned}$$

03|

OPTIMIZATION

One Method to Rule them All

f(x+h) f(x-h) Δx x-h x+h x

DERIVATIVES

$$f'(x) = \lim_{h o 0} rac{\Delta f}{\Delta x} = \lim_{h o 0} rac{f(x+h) - f(x-h)}{2h}$$

First order Derivative

Direction of the Slope

Second order Derivative

Rate of Changes in the Slope

GRADIENTS

$$abla f = \left(egin{array}{c} rac{\partial f}{\partial x} \ rac{\partial f}{\partial y} \end{array}
ight)$$

103 OPTIMIZATION

LEAST SQUARES

Objective Function

Minimize Squared Distances from Expected Value

$$\hat{y} = ax + b$$

$$\sum_i (y_i - \hat{y}_i)^2 = 0$$

CHAIN RULE

$$h=g\circ f$$

$$h'(x) = g'(f(x))f'(x)$$

Error Landscape

Parameter 1

GRADIENT DESCENT

Steps

- 1) Forward Propagate Through the Chain
- 2) Compute Output **Error**
- 3) **Backpropagate** Error Through the Chain
- 4) **Update** Weights w/ Learning Rate
- 5) Repeat Until Convergence Threshold

Test

alid

ain

DATASET SPLIT

Training Set

Samples used to Fit/Train the Model

Validation Set

Samples used to provide an Unbiased Evaluation of the Model Becomes Biased during Training

Testing Set

Samples used to provide an Unbiased Evaluation of the Model after Training

CROSS-VALIDATION

Method

- 1) Split Dataset into **k-Folds**
- 2) **Train on k-1 Folds** and Validate w/ Last
- 3) **Repeat** k-times
- Use Ensemble Method for Inference or Retrain on all Dataset

04

DIMENSIONALITY REDUCTION

Small Worlds are Filled with Things to See

Paul Safranek

|04 DIMENSIONALITY REDUCTION

PCA

$$C = egin{pmatrix} Var(x) & Cov(x,y) & Cov(x,z) \ Cov(y,x) & Var(y) & Cov(y,z) \ Cov(z,x) & Cov(z,y) & Var(z) \end{pmatrix}$$

$$egin{array}{cccc} v_1 & \lambda_1 & & \mathsf{Big} \ v_2 & \lambda_2 & & & \ v_3 & \lambda_3 & & \mathsf{Small} \end{array}$$

04 DIMENSIONALITY REDUCTION

t-SNE

Steps

- Use Normal Distribution to EstimateSimilarity b/ Data Points
- Create another Distribution
 (t-distribution) Capturing the Same
 Similarity Between Data Points using
 Gradient Descent on KL-divergence

