EE210A: Microelectronics I - Mini-Quiz 4

NAME (in capital) Roll No

1

Time: 20 minutes

1) : For the transistor in the following circuit $\mu_n C_{ox} = 200 \mu A/V^2$, $V_{tn} = 1V$, Also, $V_{DD} = 5V$.

Fig. 1. Problem 1

a): Assume W/L=10 for both transistors. Find the minimum V_{B1} and V_{B2} such that a quiescent current of 1 mA flows through stack while keeping both transistors in saturation. [3]

For
$$M2 = V_{B2} = V_{fn} + \sqrt{\frac{210}{M_1 C_0 + (1/L)_2}}$$

$$= 1 + \sqrt{\frac{2 \times 1 m}{0.2 \times 10}} = 2 V$$

(for minimum V_{B1} , V_{S} has to be minimum.

$$V_{B1} - V_{S} = V_{fn} + \sqrt{\frac{210}{M_1 C_0 \times 10^2 L_0^2}}$$

$$= V_{B1}(m_1 m_1) = V_{Smin} + 2 V$$

$$V_{Smin} = V_{B2} - V_{fn} = 1 V \quad \text{op} \quad V_{B1}(m_1 m_1) = 3 V$$

b): What changes in the W/L would you do to ensure M2 is away from the edge of saturation region by $500\,\mathrm{mV}$ while maintaining $1\,\mathrm{mA}$ of quiescent current? [4]

Must increase
$$V_s = 1$$
 Must reduce V_{oV}/m_1

(00 V_{B1} is constant)

 $V_s = V_{B1} - (V_{fn} + V_{oV_1})$
 $V_s = V_{fn} - (V_{fn} + V_{oV_1})$
 $V_s = V_s - (V_{fn} + V_{oV_1})$