Parallel Adder Circuit:

'It is a chain of full adders

Connected Parallely Where the Cin of
a adder is the Cout of Prievious adder.'

* It is also Called as ripple Conry adder.

Parallel Subtractor using full adder

A Parallel Subhactor is a digital Circuit Capable to find the diff. b/w2, more than two bits.

$$A - B \rightarrow A + B + 1$$

$$= A + 2'S Complement of B$$

$$= A + [1'S Complement of B] + 1$$

$$= A + [1'S Complement of B] + 1$$

$$= A + [1'S Complement of B] + 1$$

B(+) 0 = B BO L= B

if Mode Input (k) = 0 hen it works as Parallel Adder.

Propagation delay in full adder:

Overall delay:

Cost = TXI + TAZ + TOR

Sum = Tx1+Tx2 + Tcin add the delay of Carry input

Code Converter

Is A Code Converter is a circuit that Convert the Binary Code to other Codes.

Magnitude Comparator

> greater than

→ equals to

It

* here A & B are not only a Single bit II On be multiple bit number

Single

$$A = 0$$
 $A = 10$
 $A = 10$

1 bit Magnitude Comparator

A & B holds Single Bit

	- 1	B	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
O	0	٥	6	<u>aā</u> l	0
1	0	Ŧ	1 ĀB	0	0
2	1	0	0	0	1 AB
3	1	1	0	1 AB	0

Expression

$$A < B$$
: $\overline{A}B$
 $A = B$: $AB + \overline{A}\overline{B} \rightarrow A \odot B$
 $A > B$: $A\overline{B}$

1 bit Magnitude Comparator

2 bit magnitude comparator

Compares two bit numbers

MSB	L8	R MBB	LSB			
\ INPUT		~ /	4	OUTPL	JT	
A1	A0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1mo	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1 ms	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1 m lo	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1 mis	0

$$A = B$$

$$A = A_{1} \quad A_{0}$$

$$B = B_{1} \quad B_{0}$$

$$A_{1} = B_{1} \quad B_{0}$$

$$A_{2} = B_{1} \quad B_{0}$$

$$A_{3} = B_{1} \quad B_{0}$$

$$A_{4} = B_{1} \quad A_{0} = B_{0}$$

$$A_{5} = B_{1} \quad A_{0} = B_{0}$$

$$A_{6} = B_{1} \quad A_{0} = B_{0}$$

$$A_{7} = B_{1} \quad A_{0} = B_{0}$$

$$A_{8} = B \quad B_{1} \quad B_{1} = B_{1}$$

$$A_{1} = B_{1} \quad A_{0} = B_{0}$$

$$A_{2} = B \quad B_{1} \quad B_{2} = B_{1}$$

$$A_{3} = B \quad B_{1} \quad B_{2} = B_{1}$$

$$A_{4} = B \quad B_{1} \quad B_{2} = B_{1}$$

$$A_{5} = B \quad B_{1} \quad B_{2} = B_{1}$$

$$A_{7} = B_{1} \quad B_{1} = B_{2} = B_{1}$$

$$A_{8} = B \quad B_{1} = B_{2} = B_{1}$$

$$A = A_1 A_0$$

$$B = B_1 B_0$$

$$A_1 \overline{B_1} + (A_1 OB_1) \cdot A_0 \overline{B_0}$$

$$A_1 \overline{B_1} + (A_1 OB_1) \cdot A$$

$$A = A_1$$
 A_0
 $B = B_1$ B_0
 $A_1B_1 + (A_1OB_1)$ A_0B_0
 $A_1 < B_1$ $A_1 < B_1$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_1 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$ $A_2 < B_2$

0/9=1

2 bits magnitude comparator circuit

BCD to XS-3 Converter

BCD to XS-3 Converter (also called BCD to Excess-3 code converter) is a combinational circuit that takes a 4-bit Binary Coded Decimal (BCD) input and produces the corresponding Excess-3 code as output.

Excess-3 code is a non-weighted code used to express decimal numbers. It is derived by adding 3

(i.e., 0011₂) to the BCD number.

		MIR		<u>, </u>	SB /				_
		BCD	Code		1	Excess-	-3 Code		- LSB
	B ₃	B ₂	B ₁	B ₀	X ₃	X ₂	X ₁	X₀ ►	
0	0	0	0	0	0	0	1	1	
$ \mathcal{T} $	0	0	0	1	0	1	0	0	
2	0	0	1	0	0	1	0	1	
3	0	0	1	1	0	1	1	0	
4	0	1	0	0	0	1	1	1	
2	0	1	0	1	1	0	0	0	
6	0	1	1	0	1	0	0	1	
1	0	1	1	1	1	0	1	0	
81	1	0	0	0	1	0	1	1	
9 1	1	0	0	1	1	1	0	0	
101	`.1	0	1	0	Х	Х	Х	х	<u></u>
11 1	1	. 0	1	1	Х	Х	Х	х	
121	1	ì	0	0	Х	х	х	х	1 1 1 1
131	1	1	``• O	1	Х	Х	х	х	b goult Care
14 1	1	1	1	. 0	х	х	х	х	
121	1	1	1	î.	х	х	х	х	0

$$X_{3} = \sum m(5,6,7,8,9)$$

$$X_{2} = \sum m(1,2,3,4,9) + d([0,11,12,13,13,14,15])$$

$$X_{1} = \sum m(0,3,4,7,8) + d([0,11,12,13,14,15])$$

$$X_{2} = \sum m(0,3,4,7,8) + d([0,11,12,13,14])$$

BCD+6XS-3 Gele Goverter

Binary to Gray Code

In Gray Code only one bit changes at a time.

In BCD, only 10 combinations can be made using 4 bits. (0 to 9).

For each Gray code output is D3, D2, D1 and D0.

		Binary	Code		Gray Code			
	B3	B2	B1	B0	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1 🗸
2	0	0	1	0	0	0	1 ′	1 🖊
3	0	0	1	1	0	0	1 🗸	0
ч	0	1	0	0	0	1	1~	0
2	0	1	0	1	0	1	1~	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	0	0
9	1	0	0	1	1	1	0	1 ~
ોઈ[1	. 0	1	0	1	1	1~	1
11	1	0	·1	1	1	1	1 🗸	0
12	1	1	0	0	1	0	1~	0
13	1	1	0	1	1	0	1~	1
14	1	1	1	0	1	0	0	1~
72 [1	1	1	1	1	0	0	····0·

$$\Im 3 = \sum_{m} (8,9) + d(10,11,12,13,14,15)$$

$$\Im 2 = \sum_{m} (4,5,6,7,8,9) + d(10,11,12,13)$$

$$\Im 1 = \sum_{m} (2,3,4,5) + d(10,11,12,13)$$

$$\Im 0 = \sum_{m} (1,2,5,6,9) + d(10,13,14)$$

BB

Binary to Gray Code -> It will also work for 4 Bit Binary to gray Gde Converter

Not only BCD.

Parity Circuit

A circuit that is used to check that the number of 1's are even or odd.

- --> It is used for error detection.
- --> It can detect only one bit error.

Parity Generator

If a creft n-1 bits and add 1 extra bit (at MSB)

Such that total number of 1's in the bit stream are even odd

Parity Checker

Check that the data

Bent by the Sender in

Correct or NOT

Even Parity / odd Parity

Even Parity Generator

If number of 1's are even then Y=0 and Number of 1's are odd the Y=1

$$f = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$\overline{B} (\overline{AC} + \overline{AC}) + \overline{B} (\overline{AC} + \overline{AC})$$

$$\overline{B} (\overline{ABC}) + \overline{B} (\overline{ABC})$$

$$\overline{B} (\overline{ABC}) + \overline{B} (\overline{ABC})$$

$$\overline{Z} = \overline{BX} + \overline{BZ} = \overline{BBX}$$

$$f = \overline{BBABC}$$

$$f = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$\overline{B} (\overline{ABC}) + \overline{B} (\overline{ABC})$$

$$\overline{Z} = \overline{BX} + \overline{BZ} = \overline{BBX}$$

Odd Parity Generator

If number of 1's are odd then Y=0 and Number of 1's are even the Y=1

Α	В	С	Y
0	0	0	1 -> Mo
0	0	1	O
0	1	0	0
0	1	1	4 -3 m3
1	0	0	0
1	0	1	1 -> ms
1	1	0	1 -m
1	1	1	0

$$f = \sum m(0,3,5,6)$$

for even Pointy, ADBOC then for odd Painty
the function will be $\overline{A \oplus B \oplus C}$

A
$$\Theta$$
 B Θ C Θ Θ Θ C Θ

•

1 arity Check

A BC	Peren	Padal
000	1	0
(ک ه	0	1
010	Ó	1
011	1	0
100	0	1
(6)	1	0
1 10	1	Q
ιιι	0	1

Peven =
$$\sum m(0,3,5,6) \rightarrow k map$$

Podd = $\sum m(1,2,4,7) \rightarrow k map$

Take 4 Bits for Parity Check

4-Variable K map