

Sumário

- 1. Definição e Nomenclaturas
- 2. Propriedades dos Paralelogramos
- 3. Propriedades do Retângulo
- 4. Propriedades do Losango

Definição e Nomenclaturas

Definição

1

Definição 1

Denominamos de quadrilátero ao polígono de quatro lados.

Estudaremos apenas os quadriláteros convexos.

Definição 2

O quadrilátero cujos lados opostos (que não possuem vértices em comum) são paralelos é denominado **paralelogramo**.

Definição 3

Um paralelogramo cujos ângulos são retos é denominado retângulo.

Definição 4

Um retângulo cujos lados são congruentes é dito um **quadrado**.

Definição 5

Um paralelogramo cujos lados são congruentes é denominado losango.

Propriedades dos Paralelogramos

Teorema

Teorema 1

Em todo paralelogramo:

- a) os lados opostos são congruentes;
- b) os ângulos opostos são congruentes;
- c) as diagonais se bissecam.

- a) Qual teorema de paralelas garante a veracidade deste item?
- b) Qual teorema de paralelas e secantes garante a veracidade deste item?
- c) De fato, na figura abaixo

pode-se demonstrar que $\triangle BIC = \triangle AID$ (mostre!).

ightharpoonup Com isso, teremos BI = ID e CI = IA (Por quê?)

Teorema

Teorema 2

Reciprocamente, um quadrilátero convexo:

- a) cujos lados opostos são congruentes é um paralelogramo;
- b) cujos ângulos opostos são congruentes é um paralelogramo;
- c) cujas diagonais se bissecam é um paralelogramo.

a) Trace uma das diagonais do quadrilátero, dividindo-o em dois triângulos: △ABD e △BCD. Mostre que eles são congruentes.

Conclua que $\angle CBD = BDA$ e mostre que os segmentos \overline{BC} e \overline{AD} são paralelos.

▶ Do mesmo modo, conclua que $A\hat{B}D = B\hat{D}C$ e mostre que os segmentos \overline{AB} e \overline{DC} são paralelos.

•

b) Trace uma das diagonais do quadrilátero.

- Por hipótese, $\hat{A} = \hat{C} e A \hat{B} D = A \hat{D} C$.
- Na figura acima, temos que $\alpha + \beta = \rho + \theta$ (por hipótese).
- ► Além disso, pela Lei Angular de Tales:

$$\beta + \theta = \alpha + \rho$$
 (confira!)

- Some estas equações, membro a membro, e conclua que $\alpha = \theta$.
- Mostre que, por isso, os segmentos \overline{BC} e \overline{AD} são paralelos.
- Analogamente, conclua que $\beta=\rho$ e, com isso, mostre que os segmentos \overline{AB} e \overline{DC} são paralelos.
- ▶ Portanto, *ABDC* é um paralelogramo.

c) Trace as diagonais do quadrilátero.

- ▶ Qual caso de congruência garante que $\triangle BIC = \triangle AID$?
- Dessa congruência, como podemos relacionar os ângulos *CBD* e *BDA*?
- ► Conclua que $\overline{BC} = \overline{AD}$.

Analogamente, conclua a congruência dos triângulos AIB e DIC.

- Dessa congruência, relacione os ângulos ABD e BDC.
- ► Conclua que $\overline{AB} = \overline{DC}$.

Do exposto acima, conclui-se que ABCD é um paralelogramo.

Teorema

Teorema 3

O quadrilátero que em dois lados paralelos e congruentes é um paralelogramo.

Trace uma das diagonais do quadrilátero.

► Temos $\hat{CBD} = \hat{BDA}$ (justifique!) e, assim,

$$\triangle CBD = \triangle BDA$$
 (qual congruência?).

- ▶ Dessa forma, AB = DC (por quê?).
- ▶ Pelo item a), do Teorema 2, segue-se que *ABCD* é um paralelogramo.

Propriedades do Retângulo

Teorema

Teorema 4

As diagonais de um retângulo são congruentes.

Figura 1: Se *EFGH* é um retângulo, então EG = HF.

Demonstração: Exercício.

Teorema

Teorema 5

Reciprocamente, o paralelogramo que tem as diagonais congruentes é um retângulo.

Figura 2: Se AC = BD, então ABCD tem que ser um retângulo.

Trace as diagonais do paralelogramo, obtendo os triângulos abaixo:

- Qual caso de congruência garante que $\triangle ADC = \triangle BCD$?
- ► Conclua que $\hat{ACD} = \hat{BDC}$.

► Considere as paralelas \overrightarrow{AD} e \overrightarrow{BC} cortadas pela transversal \overrightarrow{DC} .

- ► Os ângulos *AĈD* e *BDC* são colaterais internos. Qual relação entre os dois podemos tirar dessa informação?
- ▶ Use a informação acima, junto ao fato de que $A\hat{C}D = B\hat{D}C$ para concluir que $A\hat{C}D = B\hat{D}C = 90^{\circ}$.

► Então, as paralelas \overrightarrow{AD} e \overrightarrow{BC} cortadas por uma transversal \overrightarrow{DC} perpendicular às duas.

► Como $\overline{AB} \parallel \overline{DC}$, \overline{AB} também é perpendicular às paralelas \overrightarrow{AD} e \overrightarrow{BC} , sendo \overrightarrow{ABCD} um retângulo.

Corolários

Corolário 1

Num triângulo retângulo, a mediana traçada do vértice do ângulo reto vale a metade da hipotenusa.

Demonstração: Exercício.

Corolário 2

Num triângulo retângulo, o cateto oposto ao um ângulo de 30° vale a metade da hipotenusa.

Demonstração: Exercício.

Propriedades do Losango

Teorema

Teorema 6

Em todo losango:

- a) as diagonais são perpendiculares;
- b) as diagonais são bissetrizes dos ângulos do quadrilátero.

- ▶ Na figura acima, $\triangle MIN = \triangle OIN$ (por quê?)
- ► Com isso, conclua que $\hat{MIN} = \hat{NIO}$.
- Qual a relação entre esses dois ângulos? Como podemos checar que $\hat{MlN} = \hat{NlO} = 90^{\circ}$?
- Conclua a prova do item a).

Para o item b), observe que:

 $ightharpoonup N\hat{M}I = I\hat{O}N$ (ângulos opostos a lados congruentes)

 $ightharpoonup I\hat{O}P = N\hat{M}I$ (alternos internos)

•

 $ightharpoonup PMI = I\hat{O}N \text{ (por quê?)}$

► Com isso, \overline{MN} é bissetriz dos ângulos \hat{M} e \hat{O} .

Para concluir a demonstração do item b), mostre que \overline{NP} é bissetriz dos ângulos \hat{P} e \hat{N} .

Teorema

Teorema 7

Reciprocamente, se as diagonais de um quadrilátero se bissecam e são perpendiculares, então o quadrilátero é um losango.

- Pelo Teorema 2, se as diagonais de um quadrilátero se bissecam, então ele é um paralelogramo.
- ▶ Logo, MN = PO e MP = NO (por quê?).

Para concluir a demonstração, precisamos mostrar que os quatro lados são iguais.

▶ Verifique que $\triangle PMI = \triangle MIN$

ightharpoonup Conclua que MP = MN e, portanto, MN = PO = MP = NO, c.q.d.

Teorema

Teorema 8

As três medianas de um triângulo concorrem no mesmo ponto, situado a dois terços de cada uma delas a partir do vértice.

Figura 3: $AI = BI = CI = \frac{2}{3}AD = \frac{2}{3}BE = \frac{2}{3}CF$

Pelos pontos médios M e N trace um segmento de reta que, pelo Teorema 13 (Retas Paralelas), é paralelo ao lado \overline{BC} . Além disso, $MN = \frac{BC}{2}$.

▶ Pelos pontos médios de BI e CI, trace um segmento \overline{PO} . Por que esse segmento também é paralelo ao lado \overline{BC} ?

▶ Ainda pelos pontos médios *P* e *O*, trace as paralelas (por quê?) *MP* e *NO*.

- Conclua que os lados paralelos são congruentes.
- O quadrilátero MNOP é um paralelogramo (Teorema 3).

ightharpoonup Se é um paralelogramo, suas diagonais se bissecam, então MI = IO e NI = IP.

ightharpoonup Como IP = BP, BN = BP + IP + IN = IP + IP + IP = 3IP, segue que

$$IP = \frac{BN}{3} \Rightarrow BI = BP + IP = 2IP = \frac{2}{3}BN$$

Por outro lado, se G é o ponto de interseção entre as medianas \overline{BN} e \overline{AD} , então

$$BG = \frac{2}{3}BN = BI.$$

► Como *BI* e *BG* estão sobre o mesmo segmento, com o mesmo ponto inicial, podemos concluir que

$$BI = BG$$
,

ou seja, os pontos *l* e *G* coincidem e as três medianas concorrem num mesmo ponto.

Referencias I

