回归应用:葡萄酒价格的解释

By: 仇昊晨 20140910204 Class of Econometrics

Oct. 2017

1 Introduction

这篇文章是三年级计量课的作业,作者探究葡萄酒价格的影响因素,使用 MIT 提供的数据,该数据显示了葡萄酒(Chateau Latour) 在 1986 年伦敦拍卖会上的价格。这些酒的封装年份从 1952 年到 1983 年不等。同时数据包括在该酒在生产地法国 Chateau Latour 每年的的气温与降水。此外基本的回归模型和 R 语言的应用构成的探究的主要手段。

尽管有很多因素,葡萄酒的酿造期是决定酒的质量的关键。这意味着酒保存的时间越长,酒的价格越高。此外,用以酿造的葡萄质量不可忽视,葡萄的质量取决于当地的气候,主要表现在降水与气温上,一般来说:上等的葡萄来自干燥且温热的环境。

2 Outline of model

2.1 我们先通过标准的一元回归模型来介入问题,即探究葡萄酒价格和酒的珍藏时间的关系。

令 t 为酒封装的时间 (年),令 T 为酒卖出的时间 (年)。x = T - t, x 则是酒的珍藏时间 (年) 令 y 是酒卖出的价格 构建总体回归模型:

$$\log(y) = \beta_0 + \beta_1 x + \epsilon$$

2.2 我们试图加入降水变量 此时总体回归模型:

$$\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 \log(x_2) + v$$

2.3 再加入气温变量时,总体回归模型:

$$\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 \log(x_2) + \beta_3 \log(x_3) + u$$

- 3 Run the Regression
- 3.1 总体回归模型 1:

$$\log(y) = \beta_0 + \beta_1 x + \epsilon$$

运行结果: hat(log(y)) = 5.49129 + 0.02194x

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.49129 0.23705 23.165 <2e-16 ***
TIME 0.02194 0.01147 1.913 0.0657.

Signif. codes:

Residual standard error: 0.5984 on 29 degrees of freedom Multiple R-squared: 0.112, Adjusted R-squared: 0.0814

F-statistic: 3.658 on 1 and 29 DF, p-value: 0.06571

3.2 总体回归模型 2:

$$\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 \log(x_2) + v$$

运行结果: hat(log(y)) = 7.98122 + 0.02411 x1 + -0.61067 log(x2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.98122 0.82188 9.711 1.83e-10 ***
TIME 0.02411 0.01007 2.394 0.02359 *
log(RAIN) -0.61067 0.19503 -3.131 0.00405 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5241 on 28 degrees of freedom

Multiple R-squared: 0.3423, Adjusted R-squared: 0.2953

F-statistic: 7.286 on 2 and 28 DF, p-value: 0.002834

3.3 总体回归模型 3:

$$\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 \log(x_2) + \beta_3 \log(x_3) + u$$

运行结果: hat(log(y)) = -8.495372 + 0.034924x1 + -0.704211log(x2) + 5.618405(x3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.495372 5.113723 -1.661 0.108225

TIME 0.034924 0.009306 3.753 0.000848 ***

log(RAIN) -0.704211 0.170775 -4.124 0.000319 ***

log(TEMP) 5.618405 1.726885 3.253 0.003060 **

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4524 on 27 degrees of freedom

Multiple R-squared: 0.5275, Adjusted R-squared: 0.475

F-statistic: 10.05 on 3 and 27 DF, p-value: 0.0001281

4 Test

4.1 经济意义检验

通过 的知识,我们判断出各系数符号大小与实际相符,因此通过经济意义检验。

4.2 计量检验

4.2.1 异方差性

通过绘制残差的分布图,发现并没有显著异方差性。详见7.1图 1.3。

4.2.2 多重共线性

4.2.2.1 X2,x3 对 x1 回归:

运行结果:

Call:

 $Im(formula = TIME \sim log(RAIN) + log(TEMP), data = m5)$

Residuals:

Min 1Q Median 3Q Max -13.352 -7.303 -0.463 6.593 16.999

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 205.57 96.31 2.13 0.042 * log(RAIN) 2.27 3.44 0.66 0.515 log(TEMP) -66.26 32.76 -2.02 0.053 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 9.19 on 28 degrees of freedom Multiple R-squared: 0.132, Adjusted R-squared: 0.0696

F-statistic: 2.12 on 2 and 28 DF, p-value: 0.139

VIF1= 1.15 < 10

4.2.2.2 X1,x3 对 x2 回归:

运行结果:

Call:

 $Im(formula = Iog(RAIN) \sim TIME + Iog(TEMP), data = m5)$

Residuals:

Min 1Q Median 3Q Max -1.2013 -0.2417 -0.0673 0.3096 0.9023

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.03056 5.65558 -0.18 0.86 TIME 0.00673 0.01022 0.66 0.52 log(TEMP) 1.70236 1.88372 0.90 0.37

Residual standard error: 0.501 on 28 degrees of freedom Multiple R-squared: 0.033, Adjusted R-squared: -0.0361

F-statistic: 0.477 on 2 and 28 DF, p-value: 0.626

VIF2= 1.03 < 10

4.2.2.3 X1,x2 对 x3 回归:

运行结果:

Call:

Im(formula = log(TEMP) ~ TIME + log(RAIN), data = m5)

Residuals:

Min 1Q Median 3Q Max -0.08948 -0.04150 0.00265 0.03838 0.08283

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.932611 0.077631 37.78 <2e-16 ***
TIME -0.001924 0.000951 -2.02 0.053 .
log(RAIN) 0.016648 0.018422 0.90 0.374

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0495 on 28 degrees of freedom Multiple R-squared: 0.143, Adjusted R-squared: 0.082

F-statistic: 2.34 on 2 and 28 DF, p-value: 0.115

VIF3= 1.17 < 10

因此各变量没有强烈的多重共线性。

4.3 统计检验

4.3.1 R^2

比较三次回归的 $adjusted R^2$, 0.0814 < 0.2953 < 0.475,不难发现,模型三能够解释 47.5%被解释变量 log(y) 的差异,比前两种模型解释得更多。

4.3.2 t 检验

在模型三中, t 值分别为 3.753, -4.124, 3.253, 对应的 p 值 0.000848, 0.000319, 0.003060, 在 99%的置信水平下拒绝原假设(系数为 0), 它们都具有统计意义的重要性。

4.3.3 F 检验

此处检验降水和气温是否共同具有显著影响。

运行结果:

Model 1: log(PRICE) ~ TIME

Model 2: log(PRICE) ~ TIME + log(RAIN) + log(TEMP)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 10.3851

2 27 5.5256 2 4.8595 11.873 0.0001998 ***

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

运行结果显示: f 值 11.873,p 值 0.0001998,因此在 99%的置信水平下拒绝原假设(系数同时 0),它们都具有统计意义的重要性。

并且模型三在所有系数=0 的 F 检验中, p 值为 0.0001281, 故拒绝原假设,它们总体具有统计意义重要性。

5 Conclusion

通过以上比较与检验,不难发现,模型三有较好的适用性。我们因此以模型三

$$log(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

进行预测。

6 Prediction

6.1 均值预测

由于 1984 年的价格是缺失值, 我们预测该年卖出的葡萄酒的平均价格:

代入 x1= 2, x2 = 72.5 x3 = 20.15

得出 hat(logy) =5.43

下计算 hat(logy) 区间:

♦ Hat(logy) = w

1984 的预测式子

$$\mathbf{w} = \widehat{\beta_0} + \widehat{\beta_1}c_1 + \widehat{\beta_2}c_2 + \widehat{\beta_3}c_3$$

原模型

$$\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

变形得

$$log(y) = w + \beta_1(x_1 - c_1) + \beta_2(x_2 - c_2) + \beta_3(x_3 - c_3) + \varepsilon$$

回归后得 se(w) = 0.16471

Hat(logy)5.43 \pm 1.96 * 0.16471

= 5.11 ~ 5.75

Y: 116 ~ 314

故在 95%置信水平下,1984 年葡萄酒平均价格在 116~314(£)之间。

6.2 个体预测

我们预测一瓶 1984 年卖出的酒的价格区间:

此时

$$se(w_2)^2 = se(w)^2 + \sigma^2$$

又

$$\widehat{\sigma^2} = SSR/(n-k-1)$$

= 5.5256/27 = 0.02465

因此

 $se(w_2) = 0.4814$

所以:

 w_2 = 5.43 \pm 1.96 * 0.4814

= 4.4865~6.3735

Y:88.8062~586.1314

在 95%的置信水平下一瓶在 1984 年卖出的酒的价格区间是: 88.81~586.13(£)之间。

7 Appendi x

7.1 回归可视化

图 1.1 一元回归,时间对价格的影响

图 1.2 二元回归:时间,降水对价格的影响

图 1.3 异方差性检查

7.2 主要 R语言代码

[Workspace loaded from ~/.RData]

```
> #simple regression
```

- > setwd("G:/R/jl1")
- > m4 <- read.csv("wine3.csv")
- > m5 <- m4[,c(15,16,17,18)]
- > attach(m5)
- > f3<- Im(log(PRICE) ~ TIME, data = m5)
- > library(ggplot2)
- > qplot(TIME, log(PRICE), data = m5, geom = c("point", "smooth"),
- + method = "Im")

Warning: Ignoring unknown parameters: method

> summary(f3)

Call:

Im(formula = log(PRICE) ~ TIME, data = m5)

Residuals:

Min 1Q Median 3Q Max -0.88996 -0.48280 0.01658 0.43467 1.43725

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.49129 0.23705 23.165 <2e-16 ***
TIME 0.02194 0.01147 1.913 0.0657.

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5984 on 29 degrees of freedom Multiple R-squared: 0.112, Adjusted R-squared: 0.0814

F-statistic: 3.658 on 1 and 29 DF, p-value: 0.06571

- > detach(m5)
- > #second regression
- > attach(m5)
- > f4<- Im(log(PRICE) ~ TIME + log(RAIN), data = m5)
- > #plot(TIME, log(PRICE))
- > library("Rcmdr")

载入需要的程辑包: splines

载入需要的程辑包: RcmdrMisc

载入需要的程辑包: car

载入需要的程辑包: sandwich

载入需要的程辑包: effects 载入需要的程辑包: carData

载入程辑包: 'carData'

The following objects are masked from 'package:car':

Guyer, UN, Vocab

lattice theme set by effectsTheme() See ?effectsTheme for details.

RcmdrMsg: [1] 注意: R Commander 版本 2.4-0: Thu Oct 19 15:20:04 2017

Rcmdr 版本 2.4-0

> attach(m5)

The following objects are masked from m5 (pos = 10):

PRICE, RAIN, TEMP, TIME

> scatter3d(TIME,log(PRICE), log(RAIN))

Loading required namespace: rgl

> summary(f4)

Call:

Im(formula = log(PRICE) ~ TIME + log(RAIN), data = m5)

Residuals:

Min 1Q Median 3Q Max -0.77328 -0.38124 -0.03878 0.41021 1.24390

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.98122 0.82188 9.711 1.83e-10 ***
TIME 0.02411 0.01007 2.394 0.02359 *
log(RAIN) -0.61067 0.19503 -3.131 0.00405 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5241 on 28 degrees of freedom Multiple R-squared: 0.3423, Adjusted R-squared: 0.2953

F-statistic: 7.286 on 2 and 28 DF, p-value: 0.002834

> detach(m5)

```
> #last regression
> attach(m5)
The following objects are masked from m5 (pos = 10):
    PRICE, RAIN, TEMP, TIME
> f5<- Im(log(PRICE) ~ TIME + log(RAIN) + log(TEMP), data = m5)
> summary(f5)
Call:
Im(formula = log(PRICE) ~ TIME + log(RAIN) + log(TEMP), data = m5)
Residuals:
     Min
                 10
                       Median
                                      3Q
                                                Max
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.495372
                       5.113723 -1.661 0.108225
TIME
              0.034924
                           0.009306
                                       3.753 0.000848 ***
log(RAIN)
                        0.170775 -4.124 0.000319 ***
            -0.704211
log(TEMP)
              5.618405
                          1.726885
                                      3.253 0.003060 **
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4524 on 27 degrees of freedom
Multiple R-squared: 0.5275,
                               Adjusted R-squared: 0.475
F-statistic: 10.05 on 3 and 27 DF, p-value: 0.0001281
> detach(m5)
> #F test
> anova(f3, f5)
Analysis of Variance Table
Model 1: log(PRICE) ~ TIME
Model 2: log(PRICE) ~ TIME + log(RAIN) + log(TEMP)
  Res.Df
             RSS Df Sum of Sq
                                    F
                                          Pr(>F)
1
      29 10.3851
2
      27 5.5256 2
                         4.8595 11.873 0.0001998 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

7.3 使用数据

YEAR	PRI CE	RAIN	TEMP	TIME
1983	390	59.5	21.7	3
1982	525	81	20.1	4
1981	294	55.5	19. 95	5
1980	180	37	18.8	6
1979	284	61	19. 35	7
1978	439	25.5	18.8	8
1977	191	43.5	18.3	9
1976	338	123.5	20. 95	10
1975	508	85.5	20.85	11
1974	165	92	19. 55	12
1973	236	61.5	20. 35	13
1972	151	79	18.6	14
1971	378	56	20.3	15
1970	644	44.5	19.3	16
1969	157	122	20. 15	17
1968	150	146	19. 35	18
1967	319	59	19.8	19
1966	720	43	18. 15	20
1964	494	48	20.2	22
1963	165	77.5	18. 45	23
1962	538	26	19.3	24
1961	1767	19	18. 95	25
1960	249	145	18.1	26
1959	1218	93.5	20.4	27
1958	332	93.5	18. 75	28
1957	270	55	19	29
1956	260	70	17. 9	30
1955	784	65	20.6	31
1954	390	90	17.4	32
1953	786	40	19.3	33
1952	520	80	20	34