CS 436 Cloud Computing Applications

07.03.2024

&

14.03.2024

Akıllı Kişisel Yardımcı Uygulamaları

(Intelligent Personal Assistant Software)

Functinality & Network Communication

- Speech processing
 - Analog-Digital conversion
 - Noise removal
- Speech to text
- Text interpretation
- Answer / reply
- Presenting it to the user

How much of it runs on handset? How much of it runs on cloud?

Now ve Siri Hesaplama Yükleri

(Now vs. Siri in terms of Computation Load)

Case Study: Amazon Appstream

AIM: Stream resource intensive applications (games) from the cloud

Run the application on cloud infrastructure

LATENCY!

Case Study: Amazon Appstream

Use the Amazon AWS infrastructure

Propritery STX protocol allows dynamic adjustment of encoding.

https://www.dropbox.com/scl/fi/8g8sobj5jxo6wmyfs 400d/Introduction-to-Amazon-AppStream.mp4?rlkey=bbefe42wq1bba7h5t7au99 n0c&dl=0

https://www.dropbox.com/scl/fi/ttm7mkh2cdt78z55 99ly4/CCP-Games-Uses-Amazon-AppStream-to-Enable-EVE-Online-Character-Generator.mp4?rlkey=mj5tjifynpx9u526giem7c41g &dl=0

Containers as Virtual Environments

Why?

- Containers are thinner and lighter weight than traditional VMs
- A portable & rapid way to push application workloads

from development, production

- No dependencies on hardware or OS
- Run several workloads on same platform: VM or bare

metal.

ref: https://www.backblaze.com/blog/vm-vs-containers/

Bin/Lib Dependencies

What?

- Lightweight OS level virtualization method
- Process with isolation,
- Shared resources, and layered filesystems

Containers vs VMs

- isolated machines vs isolated applications (processes)
- Applications running in a container environment share an underlying operating system
- Typically a VM will host multiple applications whose mix may change over time versus a container that will normally have a single application. However, it's possible to have a fixed set of applications in a single container.

Containers vs VMs

https://www.electronicdesign.com/dev-tools/what-s-difference-between-containers-and-virtual-machines

H/W Level vs OS Level Virtaulization

H/W Level vs OS Level Virtaulization

How?

Diagram of Process State

CPU Switch From Process

Process Control Block

(PCB)

Information associated with each process

(also called task control block)

- Process state running, waiting, etc
- Program counter location of instruction to next execute
- CPU registers contents of all processcentric registers
- CPU scheduling information- priorities, scheduling queue pointers
- Memory-management information memory allocated to the process
- Accounting information CPU used, clock time elapsed since start, time limits
- I/O status information I/O devices allocated to process, list of open files

process state
process number
program counter
registers
memory limits
list of open files

Computation Hardware

Simple Model of CPU & Memory

namespace

namespace: linux kernel feature that isolates and virtualizes system resources

for a collection of processes and their children

- PID: gives process own view of subset of system processes. ✓
- MNT: gives process mount table and allows process to have own filesystem
- NET: gives process own network stack. (Container can have virtual ethernet pairs to link to host or other containers.)
- UTS: gives process own view of system hostname and domain name
- IPC: isolates inter-process communications (i.e. message queues)
- USER: newest namespace that maps process UIDs to different set of UIDs on host (can map containers root uid to unprivileged UID on host)

cgroups

 control groups collect set of process tasks IDS together and apply

limits, such as for resource utilization

Layered File System

optimal way to make a copy of root filesystem for each container

Containers + VMs Together

ref: Actual Tech

A command line client (1) tells a process on the machine called the docker daemon (2) what to do. The daemon pulls images from a registry/repository (3). These images are cached (4) on the local machine and can be booted up by the daemon to run containers (5). Image Source: Docker