HOMEWORK SET #2Based on lectures 1-2.

- 1. Let $X_1 \sim \Gamma(\alpha_1, 1)$ and $X_2 \sim \Gamma(\alpha_2, 1)$ be independent. Use the two-dimensional change of variables formula to show that $Y_1 = X_1 + X_2$ and $Y_2 = X_1/(X_1 + X_2)$ are independent with $Y_1 \sim \Gamma(\alpha_1 + \alpha_2, 1)$ and $Y_2 \sim \beta(\alpha_1, \alpha_2)$.
- 2. (a) Using integration by parts, show that the gamma function $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ satisfies the relation $\Gamma(t+1) = t\Gamma(t)$ for t > 0.
 - (b) Use the Hölder's inequality to show that $g(x) = \log \Gamma(x)$ is convex for $x \in (0, \infty)$.
- 3. Prove or disprove: If X has a cdf F and $a \ge 0$ then $P(F(X) \le a) \le a$. Under what condition on F will you get $P(F(X) \le a) = a$?
- 4. Use Jensen's inequality to show that for a, b > 0 and $p \ge 1$,

$$(a+b)^p \le 2^{p-1}[a^p + b^p].$$

Verify this inequality in case p = 2 by a direct calculation.

5. From the book 5.12.