표준강의계획서

* 강의계획서 입력이 되지 않은 경우 공란으로 표시될 수 있습니다.

과목정보					
연도 및 학기	2018학년도 2학기	교과목코드	EA0002	분반	1
교과목명	컴퓨터구조	교과목명(영문)	Computer	Architecture	
이수구분	1전선	학점	3	팀티칭여부	N
강의시간	월7,8,수6(G208)	수강대상학년(학과)	2(컴퓨	터과학과)	

과목개요			
*주강의언어	KR		
*교과목개요		이 과목의 목적은 학생들로 하여금 컴퓨터 구조 및 구성의 기본 원리를 이해케 함으로써 이들 원리를 디지털 시스템의 설 계 및 구현에 응용할 수 있도록 한다. 특별히 디지털 시스템(하드웨어 및 소프트웨어) 요소들과 성능/애플리케이션에의 연관성에 중점을 둔다.	
*교과목 목표	1. 컴퓨터 구조 이론을 적용하여 정보기술 분야의 문제를 해결할 수 있고, 수식을 풀기 위해 적절한 수학적 도구들을 사용할 수 있다. 2. 컴퓨터 구조의 시스템 설계를 위한 필요한 세부 사양과 제약 조건들을 결정하고, 이를 만족하는 시스템을 설계할 수 있다. 3. 컴퓨터 산업 정보기술 관련 실무에 필요한 기술, 방법, 최신 도구를 사용할 수 있는 능력을 갖추고, 시스템 설계에 이를 사용할 수 있다.		
*(CQI보고서)수업개선계획			
*주교재	한눈에 보이는 컴퓨터구조, 전중남 지음, 생능출판사개정판, 2017년		
부교재	Computer Organization and Design: The Hardware/Software Interface, D. A. Patterson and J. L. Hennessy, 5th edition, Elsevier		
참고자료	각종 전문 자료, RFC 등 인터넷 관련 문서		
선수과목명	논리회로	선수과목 필수여부	N
장애학생 수업 안내	개인별 수업참여가 힘든 경우 장애학생지원성 다.	센터에 요청하여 지정 좌석에서	너 도우미 학생과 합께 수업을 들을 수 있습니
교강사전달사항			
기타연락처	010-9530-5430	상담요일 및 시간	주 중 사전 연락후 면담
강의 소개 동영상			

교강사정보				
교수명	소속	연구실(전화)	연구실(위치)	이메일
민승욱	컴퓨터과학과	0222875339	G507	swmin@smu.ac.kr

교과유형		
항목	내용	
*수업유형	☑ 강의형 □ 실험/실습/실기 ☑ 발표형 □ 토론형 □ 프로젝트형 □ 세미나형 □ E-learning □ S-learning □ B-learning □ PBL □ 산학협력 □ 전문가 특강 □ 멀티미디어 활용 □ 신문읽기 □ 기타	
수업유형(기타)		
*과목유형	□ 융복합 ☑ 전공기초 □ 전공핵심 □ 전공심화 □ 현장실습 □ 캡스톤디자인 □ 계량연계 □ 학부(과)공 통	
과목유형(기타)		

성적평가				
평가문항	반영비율(%)	평가문항	반영비율(%)	평가유형
*중간고사	40	*발표	0	
*기말고사	40	*참여도	0	
*과제물	10	*퀴즈	0	상대평가I
*출석	10	*프로젝트	0	
*기타평가			0	

상명인이 갖추어야 할 5大 핵심역량별 비율 체계		
핵심역량 핵심역량 개요 핵심역량 반영비율(%)		핵심역량 반영비율(%)
① 전문지식 탐구 역 량	한 분야의 전문가가 되기 위해 전문적인 지식을 탐구하고 연마할 수 있는 역량	30
② 윤리실천 역량	다양한 사회와 영역에 관심을 가지며, 윤리의식과 정의감을 실행할 수 있는 역량	10
③ 다양성 존중 역량	다양성의 가치를 존중하며 자신과 다른 모든 사람을 배려 및 존중하는 역량	20

핵심역량	핵심역량 개요	핵심역량 반영비율(%)
④ 융복합 역량	자원/정보를 창의적, 효율적인 방법으로 융합하여 새로운 시너지를 창출할 수 있는 역량	20
⑤ 창의적 문제해결 역량	지식과 정보 기술이 중요한 사회에서 자원을 활용하여 창의적으로 문제를 해결하는 역 량	20

기타정보	
Career Development Roadmap(전문직군명)	네크워크보안관리자,플랫폼소프트웨어개발자

주차	항목	내용
1	*학습목표	과목소개, 교재, 강의 내용(전반), 평가 등
	*주요학습내용 및 방법	과목소개, 교재, 강의 내용(전반), 평가 등 소개
	교재범위	제1장: 컴퓨터 구조 소개
2	*학습목표	컴퓨터 구조의 개요
	*주요학습내용 및 방법	컴퓨터 구조의 개요
	교재범위	3장 컴퓨터 구조의 개요
3	*학습목표	중앙처리장치의 이해
	*주요학습내용 및 방법	중앙처리장치-구성요소, 레지스터, 인터럽트, 명령어 사이클
	교재범위	4 장 중앙처리장치
4	*학습목표	연산기의 이해
	*주요학습내용 및 방법	연산기 - 논리연산, 쉬프트연산, 정수/실수 연산
	교재범위	5장 연산기
5	*학습목표	명령어 집합의 이해(I)
	*주요학습내용 및 방법	명령어 집합 - 특성, 주소지정방식
	 교재범위	6장 명령어 집합
6	*학습목표	명령어 집합의 이해(2)
	*주요학습내용 및 방법	명령에 집합 - 명령에 종류,
	교재범위	6장 명령어 집합
7	*학습목표	중앙처리장치 설계 방법 이해 (1)
	*주요학습내용 및 방법	중앙처리장치 설계 방법 - 프로그래머 모델, 명령어 형식
	교재범위	7장 중앙처리장치 설계
8	*학습목표	중간고사
	*주요학습내용 및 방법	중간고사
9	*학습목표	중앙처리장치 설계 방법 이해 (2)
	*주요학습내용 및 방법	중앙처리장치 설계 방법 - 명령어집합, 명령어 사이클
-	교재범위	7장 중앙처리장치 설계
10	*학습목표	제어장치의 이해(1)
	*주요학습내용 및 방법	제어장치 - 기능, 종류
	교재범위	8장 제어장치
11	*학습목표	제어장치의 이해 (2)
	*주요학습내용 및 방법	제어장치 - 하드와이어드 제어장치, 마이크로프로그램 제어장치
	교재범위	8장 제어장치
12	*학습목표	기억장치
	*주요학습내용 및 방법	기억장치 - 특성, 반도체 기억장치,
	교재범위	9장 기억장치
13	*학습목표	입출력 장치의 이해
	*주요학습내용 및 방법	입출력 장치-개요, 프로그램의 입출력
	교재범위	10장 입출력
14	*학습목표	입출력 장치의 이해
	*주요학습내용 및 방법	입출력 장치-인터럽트 구동 입출력
	교재범위	10장 입출력
15	*학습목표	기말고사
-	*주요학습내용 및 방법	기말고사