2.2. Kidge Regression /
$$\ell^2$$
 regularization.
Setting: given sample points $\chi^{(i)}$, $\chi^{(i)}$ with $\chi^{(i)} \in \mathbb{R}^p$.
Form $\chi = \left[\chi^{(i)} \right] \cdot \left[\chi^{(i)} \right] \in \mathbb{R}^p \times n$
Recall: if $\chi = \left[\chi^{(i)} \right] \cdot \left[\chi^{(i)}$

The approximation error is $\beta^{ls} - \beta^* = (\chi \chi^T)^T \chi \gamma - \beta^*$

$$= (x x^{T})^{-1} \chi (x^{T} \beta^{*} + \epsilon) - \beta^{*}$$

$$= (x x^{T})^{-1} \chi \chi^{T} \beta^{*} + (x x^{T}) \chi \epsilon$$

$$= (x x^{T})^{-1} \chi \epsilon$$

$$= (x x^{T})^{-1} \chi \epsilon$$

Example: Take
$$\chi = \begin{bmatrix} 0.707607 & 0.706607 \\ 0.706607 & 0.707607 \end{bmatrix}$$

 $\chi \chi^{T} = \begin{bmatrix} 1 & 0.999999 \\ 0.999999 \end{bmatrix}$

 $XX^{T} = \begin{bmatrix} 1 & 0.999999 \\ 0.999999 \end{bmatrix}$ and $(XX^{T})^{1}X = \begin{bmatrix} 500000 & -499 \\ -499999 & 5000 \end{bmatrix}$ -499 9997 500 000]

Observation: the difference (XXT) X & can be huge for some X. In this

Case;
(1) B is not a reasonable approximation
\mathcal{A}^{\star}
(2) the noise takes too much weight
in β^{ls} , i.e. the model fits
too much to the woise.
Idea to reduce overfitting:
$\beta^{\text{ridge}} = \arg\min\left(\left(\left(y - \chi^T \beta \right)^2 + \lambda \left(\left(\beta \right)^2\right)\right)$
where 220 is a constant.
This is called the ridge vegression/
This is called the ridge vegression/ l' regularization/ Tikhonov regularization
2-2. Math Rep.

Lemma: If C_1 and C_2 are convex sets. then $C_1 \cap C_2$ is convex.

Proof: $\forall x, y \in C_1 \cap C_2$, $\forall t \in [0,1]$ Let of convexty C_1 is convex $\Rightarrow t \times t + (1-t)y \in C_1$

C2 is convex => tx + (1+t) y ∈ C2

 \Rightarrow $\pm x + (1-t)y \in C_1 \cap C_2$ def of convexity $C_1 \cap C_2$ is convex

Pef: A func $f: D(f) \rightarrow \mathbb{R}$ is called convex if the domain D(f) is convex and $\forall x, y \in D(f)$, $\forall t \in [0,1]$ we have

f(tx+(1-t)y) < tf(x) + (1-t)f(y)

Reman	da:	Geom	etrica	lly,_	fig	S CON	vex	moans
	the	Geom graph segme	of)	hes	below	7 4	le
	line	segMa	ent	Coml	ting	f(x)	and	fly).