Matematická logika

Rostislav Horčík

horcik@math.feld.cvut.cz
 horcik@cs.cas.cz
 www.cs.cas.cz/~horcik

Rezoluce v predikátové logice

- Minule jsme viděli, že k ukázání nesplnitelnosti množiny klausulí S v predikátové logice stačí použít výrokovou rezoluční metodu na ground instancích klausulí z S.
- Nicméně resoluční pravidlo funguje i na obecných klausulích.
- V důsledku toho je možné přeskočit krok s generováním ground instancí a odvozovat rezolventy rovnou.
- Nicméně občas budeme muset klausule trochu upravit před použitím rezolučního pravidla.

Příklad I

- Mějme klausule $C_1 = P(x) \vee \neg Q(x, y)$ a $C_2 = Q(x, y) \vee R(y)$.
- Vidíme, že C_1 obsahuje negativní literál $\neg Q(x, y)$ a C_2 pozitivní Q(x, y).
- V tomto případě můžeme najít rezolventu C_1 a C_2 analogicky jako ve výrokové logice, tj. $C = P(x) \vee R(y)$.
- Navíc {C₁, C₂} ⊨ C. Tzn. že každý model množiny {C₁, C₂} je i model C.
- Z toho také plyne, že $\{C_1, C_2\}$ je ekvisplnitelná s $\{C_1, C_2, C\}$.

Příklad II

- Mějme klausule $C_1 = P(x) \vee \neg Q(x)$ a $C_2 = Q(a) \vee R(b)$.
- C_1 obsahuje negativní literál $\neg Q(x)$ a C_2 pozitivní Q(a).
- Predikát Q není použit na stejné termy, tudíž nemůžeme postupovat jako v minulém příkladě.
- Nicméně substituce termu a za proměnnou x v C₁ nám dá klausuli P(a) ∨ ¬Q(a).
- Nyní již můžeme postupovat obdobně najít rezolventu $C = P(a) \vee R(b)$.
- Stejně jako předtím {C₁, C₂} je ekvisplnitelná s {C₁, C₂, C}.

Příklad III

- Nechť $C_1 = \neg P(x, y) \lor Q(x, y, a), C_2 = \neg Q(g(v), z, z) \lor R(v, z).$
- C_1 obsahuje pozitivní literál Q(x, y, a) a C_2 negativní $\neg Q(g(v), z, z)$.
- Podobně jako předtím je třeba najít substituci, která oba literály sjednotí. Možností je obecně víc. Nás bude zajímat tzv. neobecnější substituce (zachovávající pokud možno, co nejvíce proměnných).
- Uvažujme následující substituci z/a, y/a, x/g(v), která oba literály sjednotí.
- Pak výsledná rezolventa je $C = \neg P(g(v), a) \lor R(v, a)$.
- Uvedená substituce je "nejobecnější". Příklad jiné, která však již není "nejobecnější" je např. z/a, y/a, v/a, x/g(a).

Substituce

Definice

Nechť x_1, \ldots, x_n jsou navzájem různé proměnné a t_1, \ldots, t_n termy takové, že $x_i \neq t_i$. Substituce je množina $\{x_1/t_1, \ldots, x_n/t_n\}$.

Definice

Nechť φ je formule a $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ substituce. Pak symbolem $\varphi \sigma$ značíme formuli, která vznikne z φ současným nahrazením proměnných x_i ve formuli φ termy t_i . Podobně pro term t definujeme $t\sigma$.

Příklad

Nechť
$$\varphi = \neg P(x,y) \lor Q(x,y,a)$$
 a $\sigma = \{z/a,y/a,x/g(v)\}$. Pak
$$\varphi \sigma = \neg P(g(v),a) \lor Q(g(v),a,a).$$

Složená substituce

Definice

Mějme substituce $\theta = \{x_1/t_1, \dots, x_n/t_n\}$ a $\sigma = \{y_1/s_1, \dots, y_k/s_k\}$. Označme $X = \{x_1, \dots, x_n\}$ a $Y = \{y_1, \dots, y_k\}$. Složená sustituce $\theta \sigma$ je definována

$$\theta\sigma = \{x_i/t_i\sigma \mid x_i \in X, x_i \neq t_i\sigma\} \cup \{y_j/s_j \mid y_j \in Y, y_j \notin X\}.$$

Tvrzení

Nechť *E* je formule nebo term a θ , σ substituce. Pak $E(\theta\sigma) = (E\theta)\sigma$.

Mějme substituce

$$\theta = \{x/f(y), y/f(a), z/u\} \text{ a } \sigma = \{y/g(a), u/z, v/f(f(a))\}.$$

- Pak $X = \{x, y, z\}$ a $Y = \{y, u, v\}$.
- Dále $f(y)\sigma = f(g(a)), f(a)\sigma = f(a), u\sigma = z.$
- Tedy $\theta \sigma = \{x/f(g(a)), y/f(a), u/z, v/f(f(a))\}.$
- Mějme dále atomickou formuli E = P(u, v, x, y, z).
- Pak

$$E(\theta\sigma) = P(z, f(f(a)), f(g(a)), f(a), z),$$

$$E\theta = P(u, v, f(y), f(a), u),$$

$$(E\theta)\sigma = P(z, f(f(a)), f(g(a)), f(a), z).$$

Unifikace

Definice

Sustituce σ je pro atomické formule $\varphi_1, \ldots, \varphi_n$ unifikace, pokud $\varphi_1 \sigma = \cdots = \varphi_n \sigma$. Podobně se definuje pro termy.

Definice

Unifikaci σ nazýváme nejobecnější unifikace (mgu), pokud pro každou unifikaci θ existuje substituce μ taková, že $\theta = \sigma \mu$.

- Unifikovat lze samozřejmě jen některé atomické formule.
- Nutná podmínka unifikace atomických formulí $\varphi_1, \ldots, \varphi_n$ je zřejmě to, že všechny obsahují stejný predikátový symbol.
- Pokud atomické formule $\varphi_1, \ldots, \varphi_n$ splňují tuto podmínku, pak existence unifikace již záleží jen na argumentech onoho stejného predikátového symbolu.

Termové rovnice

Příklad

Uvažujme atomické formule $\varphi = P(f(x), g(y))$ a $\psi = P(f(f(a)), g(x))$. Pak existence unifikace φ a ψ lze vyjádřit pomocí následujících termových rovnic:

$$f(x) = f(f(a)), \qquad g(y) = g(x).$$

Definice

Řekneme, že množina termových rovnic je ve vyřešeném tvaru, pokud

- každá rovnice má tvar $x_i = t_i$, kde x_i je proměnná a t_i term;
- každá proměnná vyskytující se na levé straně některé z rovnic se nevyskytuje nikde jinde.

Množina termových rovnic ve vyřešeném tvaru definuje substituci $\{x_1/t_1,\ldots,x_n/t_n\}$.

Unifikační algoritmus

Vstup: množina termových rovnic

Výstup: množina termových rovnic ve vyřešeném tvaru nebo "unifikace neexistuje"

- Otoč rovnici t = x na x = t, kde t není proměnná.
- ② Vymaž rovnici x = x.
- **3** Pro rovnici t = t', kde t, t' nejsou proměnné, tj. $t = f(s_1, \ldots, s_n)$ a $t' = g(s'_1, \ldots, s'_k)$; pokud $f \neq g$ vrať "unifikace neexistuje", jinak nahraď rovnici t = t' rovnicemi $s_1 = s'_1, \ldots, s_n = s'_n$.
- **9** Pro rovnici x = t; pokud t obsahuje x vrať "unifikace neexistuje", jinak nahraď všechny výskyty proměnné x termem t.

Věta

Unifikační algoritmus skončí po konečně mnoha krocích a pokud vrátí množinu termových rovnic ve vyřešeném tvaru, pak tato definuje hledanou nejobecnější unifikaci.

Uvažujme termové rovnice

$$g(y) = x,$$

$$f(x, h(x), y) = f(g(z), w, z).$$

Uvažujme termové rovnice

$$g(y) = x,$$

 $f(x, h(x), y) = f(g(z), w, z).$

Pravidlo 1:

$$x = g(y),$$

$$f(x, h(x), y) = f(g(z), w, z).$$

Uvažujme termové rovnice

$$g(y) = x,$$

$$f(x, h(x), y) = f(g(z), w, z).$$

Pravidlo 3:

$$x = g(y),$$

$$x = g(z),$$

$$h(x) = w,$$

$$y = z.$$

Uvažujme termové rovnice

$$g(y) = x,$$

 $f(x, h(x), y) = f(g(z), w, z).$

Pravidlo 4 na 2. rovnici:

$$g(z) = g(y),$$

 $x = g(z),$
 $h(g(z)) = w,$
 $y = z.$

Uvažujme termové rovnice

$$g(y) = x,$$

$$f(x, h(x), y) = f(g(z), w, z).$$

Pravidlo 3 na 1. rovnici:

$$z = y,$$

$$x = g(z),$$

$$h(g(z)) = w,$$

$$y = z.$$

Uvažujme termové rovnice

$$g(y) = x,$$

 $f(x, h(x), y) = f(g(z), w, z).$

Pravidlo 4 na 4. rovnici:

$$z = z,$$

$$x = g(z),$$

$$h(g(z)) = w,$$

$$y = z.$$

Uvažujme termové rovnice

$$g(y) = x,$$

 $f(x, h(x), y) = f(g(z), w, z).$

Pravidlo 2 na 1. rovnici:

$$x = g(z),$$

$$h(g(z)) = w,$$

$$y = z.$$

Uvažujme termové rovnice

$$g(y) = x,$$

 $f(x, h(x), y) = f(g(z), w, z).$

Pravidlo 1 na 2. rovnici:

$$x = g(z),$$

 $w = h(g(z)),$
 $y = z.$

Uvažujme termové rovnice

$$g(y) = x,$$

$$f(x, h(x), y) = f(g(z), w, z).$$

Pravidlo 1 na 2. rovnici:

$$x = g(z),$$

 $w = h(g(z)),$
 $y = z.$

Výsledná unifikace $\{x/g(z), w/h(g(z)), y/z\}$.

Obecné rezoluční pravidlo

Rezoluční pravidlo

Nechť $C_1=\varphi\vee\alpha_1\vee\dots\vee\alpha_n$ a $C_2=\psi\vee\neg\beta_1\vee\dots\vee\neg\beta_k$ jsou klausule neobsahující stejné proměnné, $\alpha_1,\dots,\alpha_n,\beta_1,\dots,\beta_k$ literály, které je možné unifikovat. Pak rezolventou klausulí C_1 a C_2 nazýváme klausuli

$$\mathbf{C} = \varphi \sigma \vee \psi \sigma \,,$$

kde σ je neobecnějsí unifikace pro $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_k$.

Poznámka

Rezoluční pravidlo vyžaduje, aby dané klausule neměli společné proměnné (uvažme např. $\{P(a,x),\neg P(x,b)\}$). Takže před použitím většina implementací rezolučního pravidla přejmenuje proměnné u jedné z klausulí. Přejmenování nemění nic na splnitenosti nebo nesplnitelnosti množiny klausulí.

Rezoluční algortimus pro predikátovou logiku

Vstup: množina klausulí *S* Výstup: "splnitelná" nebo "nesplnitelná" (algoritmus nemusí skončit!)

- Pokud S obsahuje prázdnou klausuli, vrať "nesplnitelná".
- Pokud neexistují klausule $C_1, C_2 \in S$, které mají rezolventu, vrať "splnitelná".
- $S_0 = S$.
- Předpokládejme, že S_i bylo již zkonstruováno.
- Pokud $F \in S_i$, pak vrať "nesplnitelná".
- Pokud existují klausule $C_1, C_2 \in S_i$, ke kterých je možné najít rezolventu $C \notin S_i$, pak $S_{i+1} = S_i \cup \{C\}$.
- Pokud neexistují, pak vrať "splnitelná".

Korektnost a úplnost

Věta

Množina klausulí S je nesplnitelná právě tehdy když existuje $n \in \mathbb{N}$ takové, že prázdná klausule F patří do množiny S_n z rezolučního algoritmu.

Poznámka

- Pokud je množina klausulí S nesplnitelná, pak rezoluční algoritmus skončí.
- Nicméně u některých splnitelných množin klausulí rezoluční algoritmus nemusí nikdy skončit.

Uvažujme množinu klausulí 1-7:

- T(a)
- P(a)

- \bigcirc $\neg T(x) \lor \neg S(x)$
- **3** $\neg Q(a)$; (3,6,{x/a})

- **9** $Q(a) \vee S(f(a)); (2,4,\{x/a\})$
- S(f(a)); (8,9)
- **1** $Q(a) \vee R(a, f(a)); (1,4,\{x/a\})$
- R(a, f(a)); (8,11)
- **1** $T(f(a)); (5,12,\{y/f(a)\})$
- **6** *F*; (10,14)

Uvažujme množinu klausulí 1-4:

$$P(x,y) \vee \neg P(y,z) \vee P(x,z)$$

$$P(x, f(x))$$

$$P(x', f(x')); (přejmenování 3)$$

6
$$P(f(x), x);$$
 $(1,5, \{y/f(x), x'/x\})$

$$P(f(x'), x'); (přejmenování 6)$$

9
$$P(x,x)$$
; $(7,8,\{z/x,x'/x\})$

1
$$F$$
; (9,10,{ x'/x })

Všechny kroky, které přejmenovávají proměnné, je možné v tomto příkladě vynechat.