On Duistermaat-Heckman localisation Theorem II

Here we will give a formulation (with supermathematics flavor), the proof and concrete calculations for DH (Dustermaat-Heckman) localisation formula. This etude is essentially based on the papers of Armen Nersessian [1], and of Oleg Zaboronsky and Albert Schwarz [2], my etude [4] (see the previous etude on this topic) which was based on calculations of A.Belavin.) It is interesting also to note the paper [3]. This etude is a developed exposition of my talk on the Geometry seminars in Manchester (17 October and 23 October, 2013).

If a form, is invariant with respect to odd vector field $Q = d \circ \iota_{\mathbf{K}} + \iota_{\mathbf{K}} \circ d = \sqrt{\mathcal{L}_{\mathbf{K}}}$ where $\mathcal{L}_{\mathbf{K}}$ is Lie derivative with respect to U(1)-vector field \mathbf{K} , then integral of this form over manifold M is localised at the zero locus of vector field K. This is the meaning. of Dustermaat-Heckman localisation formula.

§0 Recallings

Recall briefly the DH (Duistermaat-Heckman) localisation formula and perform some calculations based on calculations in [4].

Let (M,Ω) be compact symplectic supermanifold (Ω) is non-degenerate closed two form, dim M=2n). Let H be a Hamiltonian and $\mathbf{K}=D_H$: $dH=-\iota_{\mathbf{K}}\Omega$, its Hamiltonian vector field. Let vector field K obeys the following conditions:

$$\mathbf{K} = D_H$$
 is compact vector field, i.e. it defines $U(1)$ -action on $M^{(1)}$ (0.1)

Zero locus of vector field
$$\mathbf{K}$$
, $\mathbf{K}(x_i) = 0$, is a set $\{x_i\}$ of isolated points (0.2)

DH-localisation formula states that if conditions (0.1) and (0.2) are obeyed then

$$\int e^{iH} dV_{\Omega} = \int e^{i(H+\Omega)} = \sum_{x_i} \frac{e^{iH} \sqrt{\det \Omega_{ik}}}{\sqrt{\det \operatorname{Hess} H}} \Big|_{x_i} = \sum_{x_i} \frac{e^{iH(x_i)}}{\sqrt{\det \left(\frac{\partial K(x)}{\partial x}\big|_{x=x_i}\right)}}.$$
 (0.3)

Comments to this formula:

- 1. Here and later we often omit all the coefficients proportional to π^a , n!, i^n ,
- 2. x_i : $\mathbf{K}(x_i) = 0$, is a locus (zero locus) of Hamiltonian vector field \mathbf{K} , i.e. stationary points of Hamiltonian H,
 - 3. dV_{Ω} is invariant volume form:

$$dV_{\Omega} = \Omega^n = \underbrace{\Omega \wedge \ldots \wedge \Omega}_{n\text{-times}}$$
 is Lioville volume form,

in local coordinates $dV_{\Omega} = \operatorname{Pfaf} \Omega d^{2n}x = \sqrt{\det \Omega} d^{2n}x$, $\operatorname{Hess} H = \frac{\partial^{2} H}{\partial x^{i} \partial x^{k}}$ is bilinear form at stationary points; as well as $\frac{\partial K}{\partial x}$ is linear operator at zero locus of vector field **K**.

Shortly show how to calculate (0.3) using ideas of [4].

Let ω be an arbitrary **K**-invariant 1-form:

$$\mathcal{L}_{\mathbf{K}}\omega = d \circ \iota_{\mathbf{K}}\omega + \iota_{\mathbf{K}} \circ d\omega = 0. \tag{0.4}$$

Consider 'partition function

$$Z(t) = \int_{M} e^{i((H+\Omega)+td_{\mathbf{K}}\omega)}, \qquad (0.5)$$

where $d_{\mathbf{K}} = d + \iota_{\mathbf{K}}$. One can see that condition (0.4) and condition $d_{\mathbf{K}}(H + \Omega) = 0$ imply that this partition function does not depend on t:

$$\frac{dZ(t)}{dt} = i \int_{M} d_K \left(\omega e^{i((H+\Omega) + t d_{\mathbf{K}}\omega)} \right) = 0, \qquad (0.6)$$

because for an arbitrary differential form F, $\int_M dF = 0$ (Stokes Theorem) and $\int_M \iota_{\mathbf{K}} F = 0$ also, since form $\iota_{\mathbf{K}} F$ has order less than equal 2n (2n is the dimension of M is an order of top form.)

Partition function Z(t) at t=0 is the left hand side of equation (0.3), the initial integral; this function at $t\to\infty$ can be calculated using stationary phase method. So using (0.6) we reduce calculations of the integral to quasiclassical calculations for $t\to\infty$:

$$Z(0) = \lim_{t \to \infty} Z(t) = \sum_{k,r} \frac{t^r}{k!r!} \int_M e^{i(H+th)} \tilde{\Omega}^r \Omega^m , \qquad (0.7)$$

where $\tilde{\Omega} = d\omega$, $h = \iota_{\mathbf{K}}\omega$. Now calculate partition function at $t \to \infty$. $dh = d(\iota_{\mathbf{K}}\omega) = -\iota_{\mathbf{K}}\tilde{\Omega}$. Hence at zero locus of \mathbf{K} , i.e. dh = 0 we have

$$\operatorname{Hess} H\big|_{x_i} = \frac{\partial^2 H}{\partial x^m \partial x^n}\big|_{x_i} = \tilde{\Omega}_{mn}\big|_{x_i}. \tag{0.8}$$

Hence using the fact that for symmetric bilinear form $A(\mathbf{x}, \mathbf{x})$ in k-dimensional Euclidean space \mathbf{R}^k

$$\int_{\mathbf{R}^k} e^{itA(\mathbf{x},\mathbf{x})} d^k x = \int_{\mathbf{R}^k} e^{itA_{ij}x^ix^j} d^k x = \frac{e^{\frac{i\pi k}{4}}\sqrt{\pi^k}}{t^{\frac{k}{2}}\sqrt{\det A}},$$

we obtain that at the quasiclassical limit for partition function Z(t) in (0.7) is equal to

$$\lim_{t \to \infty} Z(t) = \sum_{r=0}^{n} \frac{t^r}{(n-r)!r!} \int_M e^{i(H+th)} \tilde{\Omega}^r \Omega^{n-r} =$$

$$\lim_{t \to \infty} \sum_{r=0}^{n} \sum_{x_i} \frac{t^r}{(n-r)!r!} \frac{e^{iH} \sqrt{\det \tilde{\Omega}_{ik}}}{t^n \sqrt{\det \operatorname{Hess} H}} \Big|_{x_i} = \sum_{x_i} \frac{e^{iH} \sqrt{\det \tilde{\Omega}_{ik}}}{\sqrt{\det \operatorname{Hess} H}} \Big|_{x_i}$$

Now choose ω such that $\tilde{\Omega} = d\omega$ is non-degenerate at locus of K. We have $dh = \iota_{\mathbf{K}} \tilde{\Omega}$. Hence at locus of \mathbf{K}

$$\operatorname{Hess} H = \frac{\partial^2 H(x)}{\partial x^m x^n} = \tilde{\Omega}_{mr} \frac{\partial K^r}{\partial x^n} ,$$

and we have finally that

$$\lim_{t \to \infty} Z(t) = \sum_{x_i} \frac{e^{iH} \sqrt{\det \tilde{\Omega}_{ik}}}{\sqrt{\det \operatorname{Hess} H}} \Big|_{x_i} \sum_{x_i} \frac{e^{iH}}{\sqrt{\det \frac{\partial K}{\partial x}}} \Big|_{x_i}$$

Thus due to relation (0.6) leads to (0.3).

Remark 1 The form $\tilde{\Omega} = d\omega$ and new Hamiltonian $h = \iota_{\mathbf{K}}\omega$ define the same Hamiltonian vector field \mathbf{K} as a pair (Ω, H) . On the other hand the pair $(\tilde{\Omega}, \omega)$ is more suitable for calculation of quasiclassical approximation. The U(1)-vector field \mathbf{K} is fundamental object of DH-localisation formula, not the pair which produces this field (see in detail §2).

Remark 2

One of the way to produce **K**-invariant form ω is the following: One can take ω -covector **K** with respect to U(1)-invariant metric: $\omega = \omega_i dx^i$, $w_i = g_{ik}K^k$ and g_{ik} is U(1)-invariant Riemannian metric (average over group U(1)). It is crucial for calculation that $\tilde{\Omega} = d\omega$ is non-degenerate at zero locus of **K**. Is it an additional condition, or it follows from the fact that vector field **K** generates U(1)-action (and M is even-dimensional manifold)? On one hand I cannot prove this completely, on the other hand natural counterexamples deal with non-compact vector field.

§1 DH-formula and supersymmetric mechanics. Nersessian's approach.

The considerations of this paragraph are based on the work [2]

The calculations above can be put in supersymmetric framework. Differential form on M can be considered as a function on ΠTM —tangent bundle to M with reversed parity of fibers $w_i(x)dx^i \to w_i(x)\xi^i,\ldots$ Integral of form over M is the integral of a function over supermanifold ΠTM with invariant volume form $dx^1 \ldots dx^{2n}d\xi^1 \ldots d\xi^{2n}$.

In the very nice paper [1] Armen Nersessian suggested the supersymmetric framework of the calculations above. I will try to explain it here. Recall that for an arbitrary Poisson manifold M (manifold with Poisson bracket $\{\ ,\ \}$) one can consider odd Koszul bracket $[\ ,\]$ on ΠTM such that for arbitrary functions f,g on M we have that

$$[f,g] = 0, [f,dg] = \{f,g\} [df,dg] = d\{f,g\}.$$
 (1.1)

In local coordinates $[x^i, x^k] = 0$, $[x^i, \xi^k] = \Omega^{ik}$, $[\xi^i, \xi^k] = \xi^r \partial_r \Omega^{ik}$.

If Poisson structure is symplectic one then

$$[\Omega, F] = dF, \qquad (\Omega = \Omega_{ik} \xi^i \xi^k)$$
(1.2)

If H is an arbitrary Hamiltonian on M and $\mathbf{K} = D_H$ Hamiltonian vector field then

$$[H, F] = \iota_{\mathbf{K}} F \tag{1.3}$$

We see that

$$(d + \iota_k)F = [\Omega + H, F]$$

and

$$\mathcal{L}_{\mathbf{K}}F = (d + \iota_{\mathbf{K}})^2 = [H + \Omega, [H + \Omega, F]] = [[H, \Omega], F].$$

Thus we come to core of Dustermaat-Heckman formalism:

Form F is invariant with respect to odd vector field $d_{\mathbf{K}} = d + \iota_{\mathbf{K}}$ if it is integral of motion of 'Hamiltonian' $H + \Omega$, form F is invariant with respect to Hamiltonian vector field $\mathbf{K} = D_H$ if it is integral of motion of 'Hamiltonian' G = [H, F].

The partition function (0.5) can be rewritten as

$$Z(t) = \int e^{i(H-\Omega-t[H+\Omega,\tilde{G}])}$$
.

Remark 3 Hamiltonians $\{H + \Omega, H - \Omega, \Omega\}$ form superalgebra.

§2Schwarz-Zaboronsky supersymmetric formalism

In this paragraph we will speak about approach developed in the paper [2], where supergeometry is powerfully used for formulating localisation formula in a more general case.

It will always be assumed that M is compact manifold and \mathbf{K} is compact vector field on it, i.e. vector field which generates U(1) action. We denote by

$$Q_{\mathbf{K}} = d + \iota_{\mathbf{K}}$$
, in "supernotations" $Q_{\mathbf{K}} = \xi^{i} \frac{\partial}{\partial x^{i}} + K^{i}(x) \frac{\partial}{\partial \xi^{i}}$,

where $x^i, \xi^i = dx^i$ are local coordinates on ΠTM .

Odd vector field $Q_{\mathbf{K}}$ is a "square root" of a Lie derivative $\mathcal{L}_K = \iota_{\mathbf{K}} \circ d + d \circ \iota_{\mathbf{K}}$:

$$\mathcal{L}_{\mathbf{K}} = Q_{\mathbf{K}}^2 = \left(\xi^i \frac{\partial}{\partial x^i} + K^i(x) \frac{\partial}{\partial \xi^i}\right)^2 = K^i(x) \frac{\partial}{\partial x^i} + \xi^r \frac{\partial K^i}{\partial \xi^r} \frac{\partial}{\partial \xi^i}, \tag{1}$$

or in classical notations

$$\mathcal{L}_{\mathbf{K}} = Q_{\mathbf{K}}^2 = (d + \iota_k)^2 = d \circ \iota_{\mathbf{K}} + \iota_{\mathbf{K}} \circ d.$$

We formulate the following version of DH localisation theorem:

Theorem Let H = H(x, dx) be a $Q_{\mathbf{K}}$ -invariant form on M, i.e.

$$dH + \iota_{\mathbf{K}} H = 0. (2)$$

Then the integral $\int_M H(x, dx)$ is localised at locus of K. This means follows: let U_K be an arbitrary U(1)-invariant* tubular neighborhood of locus of K and let $G_U = G_U(x, dx)$ be a

^{*} the condition to be U(1)-invariant may be is not necessary. We will use it for constructing U(1)-invariant partition of unity. This condition is absent in the paper [1].

 $Q_{\mathbf{K}}$ -invariant form such that it is equal to 1 at the locus of vector field \mathbf{K} and it vanishes out of neighborhood $U_{\mathbf{K}}$:

$$Q_{\mathbf{K}}G_U = 0$$
, (i.e. $dG_U + \iota_{\mathbf{K}}G_U = 0$), $G_U\big|_{locus\ of\ \mathbf{K}} = 1$, $G_U\big|_{M\setminus U_K} = 0$. (3)

(Bump-form of zero locus of K.) (We will prove the existence of such a bump-form)

Then

$$\int_{M} H = \int_{M} HG_{U} \,. \tag{4}$$

Example Let M be a symplectic manifold, i.e. non-degenerate closed two-form Ω is defined on M (M is even-dimensional). Let h = h(x) be a Hamiltonian such that its Hamiltonian vector field D_h (D_h : $\iota_{D_h}\Omega = -dh$) is compact, i.e. it defines U(1) action. Consider the form

$$H(x, dx) = \exp i (\Omega + h) . (5)$$

This form is $Q_{\mathbf{K}}$ -invariant. Indeed since K is Hamiltonian vector field D_h hence

$$\iota_{\mathbf{K}}\Omega + dh = 0$$
.i.e. $Q_{\mathbf{K}}(h + \Omega) = 0 \Rightarrow Q_{\mathbf{K}}H = 0$.

Then

$$\int H(x, dx) = \int \exp i (\Omega + h) = \frac{i^n}{n!} \int \exp i h \underbrace{\Omega \wedge \ldots \wedge \Omega}_{n \text{ times}}$$

is localised.

Remark 4 Note that this example is a basic example in classical background. Compact vector field $\mathbf K$ appears naturally in this example as Hamiltonian vector field of Hamiltonian h. In Schwarz-Zaboronsky approach the vector field $\mathbf K$ appears independently without symplectic structure and Hamiltonian. In this approach the localisation formula is stated for a function H(x,dx) on ΠTM (sum of differential forms of different orders). The classical condition that sum of differential forms is invariant with respect to equivariant differential $d_{\mathbf K}=d+\iota_{\mathbf K}$ becomes the condition that "function" 2

H(x, dx) is invariant with respect to odd vector field $Q_{\mathbf{K}}$ which is the square root of Lie derivative along the vector field $\mathbf{K}: Q_K^2 = \mathcal{L}_{\mathbf{K}}$.

Remark 5 'Super-language' becomes essentially important for constructing of partition of unity for forms.

Proof of Theorem First we prove the existence of a form $G_U = G_U(x, dx)$ which obeys the condition (3), then we will show that an arbitrary $Q_{\mathbf{K}}$ -invariant "function" (form) which obeys conditions (3) yields the localisation formula (4).

Using partition of unity arguments consider a function F = F(x) such that

$$F(x)|_{\text{locus of }\mathbf{K}} = 0, \quad F(x)|_{M \setminus U_K} = 1.$$
 (6)

 $[\]overline{}^2 \overline{H(x,dx)}$ is non-homogeneous differential form on M. It is a function on tangent bundle ΠTM with reversed parity of fibers.

(We may consider partition of unity which is subordinate to covering $V_1 \cup V_2$, where $V_1 = U_{\mathbf{K}}$ and $V_2 = M \setminus \mathrm{locus}$ of K.

We may assume that F(x) is **K**-invariant function. (Here we use the U(1)-invariance of neighbourhood of locus (see the footnote.)).

It is useful to consider the differential 1-form

$$\omega_{\mathbf{K}}: \omega_{\mathbf{K}}(\mathbf{x}) \langle \mathbf{K}, \mathbf{x} \rangle, \omega_i = g_{im} K^m dx^i, \tag{7}$$

where $\langle \mathbf{K}, \mathbf{x} \rangle$ is U(1)-invariant Riemannian metric on M. Now we are ready to define form G_U which obeys the condition (3):

$$G_U(x, dx) = 1 - Q_{\mathbf{K}} \left(\frac{\omega_{\mathbf{K}}(x, dx)}{Q_{\mathbf{K}} \omega_{\mathbf{K}}} F(x) \right)$$
 (8)

Straightforward calculations show that this function obeys conditions (3). Indeed F(x) = 0 if x belongs to locus of K (and in a vicinity of the locus), hence the right hand side of equation (8) is well-defined on the locus of \mathbf{K} , where the form $\omega_{\mathbf{K}}$ is not defined. Using the fact that $Q_{\mathbf{K}}\left(\frac{\omega_{\mathbf{K}}(x,dx)}{Q_{\mathbf{K}}\omega_{\mathbf{K}}}\right) = 1$ (if $\mathbf{K}(x) \neq 0$) we immediately come to the condition (3).

Let $\tilde{G}_U = \tilde{G}_U(x, dx)$ be an arbitrary $Q_{\mathbf{K}}$ -invariant form which obeys the condition (3). Then consider the difference $L(x, dx) = \tilde{G}_U - G_U$. The form L(x, dx) is $Q_{\mathbf{K}}$ -invariant and it is equal to 0 at the locus of K, Hence

$$L(x, dx) = Q_{\mathbf{K}} \left(\frac{\omega_{\mathbf{K}}(x, dx)}{Q_{\mathbf{K}}\omega_{\mathbf{K}}} L(x, dx) \right). \tag{9}$$

Thus we see that $Q_{\mathbf{K}}$ -invariant form $G_U(x, dx)$ in (8) which obeys the condition (3) as well as an arbitrary $Q_{\mathbf{K}}$ -invariant form $\tilde{G}_U(x, dx)$ which obeys the condition (3) obey the condition that

$$G_U(x, dx) = 1 + Q_{\mathbf{K}}(...)$$

$$\tilde{G}_U(x, dx) = 1 + Q_{\mathbf{K}}(...)$$

This immediately implies the relation (4):

$$\int_{M} H(x,dx)G_{U}(x,dx) = \int_{M} H(x,dx)(1+Q_{\mathbf{K}}(\ldots)) = \int_{M} H(x,dx)$$

since
$$\int_M Q_{\mathbf{K}}(\ldots) = 0^{**}$$

Concrete calculations

Now based on the Theorem we present concrete calculations. which are very similar to calculations in paragraph 0.

^{**} since $Q_K = d + \iota_K$, and $\iota_K \omega$ 'does not contain' top form. This follows also from the vanishing of divergence of odd vector field $Q_{\mathbf{K}}$ with respect to canonical volume form in ΠTM

Let H = H(x, dx) be $Q_{\mathbf{K}}$ invariant form and locus (zero locus) of U(1)-invariant vector field \mathbf{K} is a set $\{x_i\}$ of isolated points.

Using bump-form G_U , the form which vanishes out vicinities of points $\{x_i\}$ (see the considerations above) we calculate $\int_M H(x, dx)$.

Lemma For an arbitrary $Q_{\mathbf{K}}$ -invariant form H(x, dx) the integral

$$Z(t) = \int H(x, dx) e^{itQ_{\mathbf{K}}(\omega_{\mathbf{K}})},$$

where $\omega_{\mathbf{K}}$ is U(1)-invariant form (7) does not depend on t.

Proof:

$$\frac{dZ(t)}{dt} = i \int_{M} H(x, dx) Q_{\mathbf{K}} \omega_{\mathbf{K}} e^{itQ_{\mathbf{K}}(\omega_{\mathbf{K}})} = i \int_{M} Q_{\mathbf{K}} \left(H(x, dx) e^{itQ_{\mathbf{K}}(\omega_{\mathbf{K}})} \right) = 0.$$

Now using lemma and bump-form which localises integrand in vicinity of points $\{x_i\}$ we come to

$$\int_{M} H(x, dx) = \int_{M} H(x, dx) G_{U}(x, dx) = \left(\int_{M} H(x, dx) G_{U}(x, dx) e^{itQ_{\mathbf{K}}(\omega_{\mathbf{K}})} \right) \Big|_{t=0}$$
$$= \left(\int_{M} H(x, dx) G_{U}(x, dx) e^{itQ_{\mathbf{K}}(\omega_{\mathbf{K}})} \right) \Big|_{t\to\infty}$$

Using method of stationary phase and assuming that $d\omega$ is non-degenerate at locus of \mathbf{K}^* we calculate the last integral (see [4]) and come to the answer

$$\int_{M} H(x, dx) == \left(\int_{M} H(x, dx) G_{U}(x, dx) e^{itQ_{\mathbf{K}}(\omega_{\mathbf{K}})} \right) \Big|_{t \to \infty} = \sum_{x_{i}} \frac{i^{n}}{n!} \frac{H(x, dx) \Big|_{x_{i}}}{\sqrt{\frac{\partial K}{\partial x} \Big|_{x_{i}}}}$$

If $H(x, dx)|_{x_i} = H_0(x_i)$, where $H(x, dx) = H_0(x) + H_1(x, dx) + \dots$ is a sum of differential forms.

References

- [1] A. Nersessian Antibrackets and localisation of (path) integrals arXix: hep-th/9305181, published in JETP)
- [2] Albert Schwarz and Oleg Zaboronsky. Supersymmetry and localisation. arXiv: hep-th/951112v1, (published in CMP)
- [3] On the Duistermaat-Heckman localisation formula and Integrable systems arXiv: hep-th/9402041v1
- [4] homepage: maths.manchester.ac.uk/khudian/Etudes/Geometry/Dustermaat-Heckman localisation formula. Etude based on the fragment of the lecture of A.Belavin in Bialoveza, summer 2012.

^{*} See the remark 2