Lie Algebras & their Relation to Conformal Field Theory Alec Lau

Root System

A hyperplane is a plane with dimension 1 less than its ambient space, e.g. sheets in \mathbb{R}^3 , a line in a sheet, etc.

Let E be a finite-dimensional Euclidean vector space with the Euclidean inner product (\cdot, \cdot) . A root system Φ is a set of nonzero vectors called roots in E such that:

The roots span E.

The only scalar multiples of a root $\alpha \in \Phi$ are α and $-\alpha$.

 $\forall \alpha \in \Phi, \Phi \text{ is closed under reflection through the hyperplane perpendicular to } \alpha.$

For any roots $\alpha, \beta \in \Phi$, the projection of β through the span of α is either an integer or half-integer multiple of α .

Weyl Group

The *Isometry Group* on a metric space is the set of distance-preserving bijective maps from the space to itself, with composition the group operation.

Example 1. The isometry group of S^2 is O(3). (group of $n \times n$ matrices where $M^TM = MM^T = Id$)

The Weyl Group is a subgroup of the isometry group of the root system, generated by reflections of the hyperplanes orthogonal to the roots.

Lie Algebras

A Lie Algebra is an algebra \mathfrak{g} where the binary operation is bilinear,

$$[ax + by, z] = a[x, z] + b[y, z], [x, ay + bz] = a[x, y] + b[x, z]$$

alternative,

$$[x,x]=0, \forall x\in\mathfrak{g}$$

and satisfies the Jacobi Identity

$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0$$

Remark 1. We can show that [x, y] = -[y, z] by considering [x + y, x + y].

Example 2. $\mathfrak{g} = \{X \in Mat(n,\mathbb{C}) | \forall t \in \mathbb{R}, e^{tX} \in G\}, \text{ for } G \text{ a lie group.}$

Example 3. $SL(n, \mathbb{R})$, the matrix group with real entries and determinant 1, has lie algebra $n \times n$ matrices with real values and trace 0.

Physics Flash

The angular momentum operators have the same commutation relations as $\mathfrak{so}(3)$ of SO(3) < O(3), where SO(3) is the group of othorgonal matrices of determinant 1.

Representations of Lie Algebras

Given a vector space V, $\mathfrak{gl}(V)$ is the lie algebra of linear automorphisms on V, with the bracket given by [X,Y]=XY-YX.

A representation of a Lie algebra $\mathfrak g$ is a Lie algebra homomorphism

$$\pi: \mathfrak{g} \to \mathfrak{gl}(V) \tag{1}$$

A representation is called faithful if its kernel is is 0. We can construct a representation for any Lie algebra \mathfrak{g} :

$$ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$$
 (2)

$$ad(x)(y) \mapsto [x, y]$$
 (3)

This representation is called the adjoint representation.

Semi-Simple Lie Algebras

A lie algebra is *simple* if it is not abelian and has no non-trivial ideals. (recall a left ideal is a subset of our algebraic object such that the subset is closed under addition, scalar multiplication, and LEFT multiplication from another vector)

A lie algebra is *semi-simple* if it can be expressed as a (is isomorphic to a) direct sum of simple lie algebras.

In this way one can think of a simple lie algebra as being one-dimensional.

The Cartan Subalgebra is the maximal abelian ideal of our lie algebra (generated by all H^i , i = 1, ..., r such that $[H^i, H^j] = 0$) denoted \mathfrak{h} .

Root System of a Semi-Simple Lie Algebra

The remaining generators of \mathfrak{g} are chosen such that $[H^i, E^{\alpha}] = \alpha^i E^{\alpha}$, (recall angular momentum operators/spin operators in quantum mechanics) and α^i is a component of the vector $\alpha = (\alpha^1, ..., \alpha^r)$. α is called a root and E^{α} is the corresponding ladder operator. α is therefore a nonzero element of \mathfrak{h}^* . The roots are the nonzero weights for the adjoint representation. These roots form, if you can believe it, a root system.

Remark 2. Because \mathfrak{h} is the maximal subalgebra, of \mathfrak{g} , the roots are non-degenerate.

In the adjoint representation we have

$$ad(H^i)E^{\alpha} = \alpha^i E^{\alpha} \mapsto H^i |\alpha\rangle = \alpha^i |\alpha\rangle$$

The one-to-one correspondence with between the states $|\alpha\rangle$ and E^{α} reflect the nondegenerate character of roots. In this representation, the zero eigenvalue has degeneracy r for each state $|H^{i}\rangle$. The adjoint representation is a representation using the Lie algebra itself as the vector space. We define an inner product using the Killing Form

$$\tilde{K}(X,Y) = Tr(adXadY) \tag{4}$$

$$K(X,Y) = \frac{1}{2g}Tr(adXadY)$$
 (5)

where g is the dual coxeter number of the algebra.

Weights

For an arbitrary representation, a basis $\{|\lambda\rangle\}$ can always be found such that $H^i |\lambda\rangle = \lambda^i |\lambda\rangle$ eigenvalues exist. These eigenvalues build the vector $\lambda = (\lambda^1, ..., \lambda^r)$ called a weight. The weight space with weight λ is a subspace of V:

$$V_{\lambda} = \{ v \in V : \forall H^i \in \mathfrak{h}, H \cdot v = \lambda(H^i)v \}$$

$$\tag{6}$$

where $\lambda(H^i)$ is the weight associated to V_{λ} . A weight of the representation is a linear functional λ such that the corresponding V_{λ} is nonzero. The nonzero elements of the weight space are weight vectors.

(This is to say the weight vectors are the simulataneous eigenvectors for the action of the elements of \mathfrak{h} with weight $\lambda = (\lambda^1, ..., \lambda^r)$)

A simple root can be written as a linear combination of a set of fundamental weights (weights that satisfy $\omega_i(H^{\alpha_j}) = \delta_{ij}$)

Examples

Let $E_{jk} \in \mathbb{C}^{3\times 3}$ be the 3×3 matrix whose j,k^{th} element is equal to 1 and the rest are equal to 0, for $j,k\in\{1,2,3\}$.

For the lie group $SL_3(\mathbb{C})$ we define for the lie algebra $H_{jk}=E_{jj}-E_{kk}$

$$\mathfrak{h} = \mathbb{C}H_{12} + \mathbb{C}H_{13} + \mathbb{C}H_{23} \tag{7}$$

is a Cartan subalgebra. Define L_i be the following:

$$L_i: \mathfrak{h} \to \mathbb{C}$$
 (8)

$$\begin{pmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{pmatrix} \mapsto x_i \tag{9}$$

With this notation we can see that $[H_{jk}, E_{rs}] = ((L_r - L_s)(H_{jk}))E_{rs}$, so $L_r - L_s$ are the roots of the representation, drawn with a dot.

Letting e_i be the i^{th} unit vector, we see that $H_{jk}e_i = \delta_{ji}e_i - \delta_{ki}e_i = L_i(H_{jk})e_i$, so the weights are L_i , shown in the diagram below with a dot:

(images from Clara Loh's notes: "Representation theory of Lie algebras") Here's another example explaining these diagrams:

Simple Roots and Fundamental Weights for SU(3)

(image from notes of Peter Woit)