

Lecture 3: Neural Networks

Slides based off of Machine Learning at Berkeley https://github.com/mlberkeley/Machine-Learning-Decal-Fall-2018

Today's Lesson Plan

Linear and Logistic Regression Review

Motivation

The Perceptron

Feed-forward Neural Networks

Learning In NNs

Coding Demo

Linear Regression

$$Y = f(X, \mathbf{w_1}, \mathbf{b_1})$$
$$f(x, w, b) = x \cdot w + b$$

$$Y = f(X, \mathbf{w_1}, b_1)$$
 $(x) = f(X, \mathbf{w_1}, b_1)$
 $(x) = f(X, \mathbf{w_1},$

Let
$$\hat{y}_i = h(x) = b_0 + b_1 x$$

$$RSS(w) = \sum_{i=1}^{N} (y_i - w^T x_i)^2$$

$$J(b_0, b_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Logistic Regression

$$Z = f(X, \mathbf{w_1}, \mathbf{b_1})$$
$$Y = g(Z)$$

$$g(x) = \frac{1}{1 + e^{-x}}$$

$$J(b) = -\sum_{i=1}^{m} \left(y^{(i)} \cdot \ln z^{(i)} + (1 - y^{(i)}) \cdot \ln (1 - z^{(i)}) \right)$$

Motivation

What I see

What a computer sees

- Ability to learn complex, non-linear functions
- Does not impose fixed relationships in data
- Does not assume the inherent data distribution
 Better at modeling non-constant variance

Biological Inspiration

Biological Inspiration

- Inputs to the neuron are multiplied by weights
- Bias then summed with weighted inputs
- Non-linear activation function applied on wTx +b

Biological Inspiration - A Layered Architecture

Input Layer: takes in input data (size corresponds to input space)
Hidden Layer: neurons hidden from view (this is where the magic happens)
Output Layer: neurons in this layer provide the output of the network

The Perceptron

<u>Image Credits From StackExchange</u>

Perceptron Decision Boundary

Activation Functions

For gradient descent to work, we need activation functions that are:

- Continuous
- Differentiable
- Monotonically Increasing

Sigmoid/Logistic

Hyperbolic tangent (tanh)

Rectified Linear Unit (ReLU)

$$f(x) = \max(0, x)$$

Neural Networks

Input Layer: takes in input data (size corresponds to input space)
Hidden Layer: neurons hidden from view (this is where the magic happens)
Output Layer: neurons in this layer provide the output of the network

Neural Networks in Matrix Form

Neural Network Expressivity

Neural Network Expressivity

Neural Network Expressiveness

- Neural networks approximate functions without assuming an initial data distribution
- NNs learn function approximations (anything that maps an input, to a single output)

$$f: X \to Y$$

Universal Approximation Theorem

"Every bounded continuous function can be approximated with arbitrary precision by a single-layer neural network" (Hornik, 1991)

Learning in Neural Networks

Optimization Via Gradient Descent

Gradient Descent

Define a differentiable, convex objective to minimize:

$$C(x, \text{parameters}) = \frac{1}{2}(y - \hat{f}(x))^2$$

Where:

- y is the actual output
- f_hat is our hypothesis function (output of the network) dependent on our learned parameters and inputs

$$J(\mathbf{w}) = \frac{1}{2}(y - h_{\mathbf{w}}(\mathbf{x}))^2 = \frac{1}{2}(y - o_{N+H+1})^2$$

We use gradient descent to allow us to find a local minima of C given the derivative of C with respect to its parameters

Backpropagation

Neural network:

$$\begin{split} h_{\Theta}(x) \in \mathbb{R}^{K} \quad & (h_{\Theta}(x))_{i} = i^{th} \text{ output} \\ J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log(h_{\Theta}(x^{(i)}))_{k} + (1 - y_{k}^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_{k}) \right] \\ + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^{2} \end{split}$$

Stochastic Gradient Descent

Initialize all weights to small random numbers.

- Repeat until convergence:
 - Pick a training example.
 - Feed example through network to compute output $o = o_{N+H+}$

Forward pass

- For the output unit, compute the correction:

$$\delta_{N+H+1} \leftarrow o(1-o)(y-o)$$

For each hidden unit h, compute its share of the correction:

Backpropagation

$$\delta_h \leftarrow o_h(1-o_h)w_{N+H+1,h}\delta_{N+H+1}$$

Update each network weight:

$$w_{h,i} \leftarrow w_{h,i} + \alpha_{h,i} \delta_h x_{h,i}$$

Gradient descent

Forms of Gradient Descent

Stochastic Gradient Descent: compute error using a single sample at a time, update weights, repeat

Batch Gradient Descent: compute error on all examples, update weights based on error, repeat

Mini-batch Gradient Descent: randomly select a subset from the training data, calculate error on subset, update weights, repeat

Picking α - Adaptive Learning Rates

ADAM, RMSProp, Adagrad, etc.

<u>More Information on Stochastic Gradient Descent and Different Optimization Methods</u>

Coding Demo

Thanks!

Any questions?

Reminders:

Homework 2 due before next lecture.

