Package 'xVA'

August 28, 2022

Type Package

Title Calculates Credit Risk Valuation Adjustments

Version 1.1

Date 2022-08-27

Author Tasos Grivas

Maintainer Tasos Grivas <tasos@openriskcalculator.com>

Description Calculates a number of valuation adjustments including CVA, DVA,

FBA, FCA, MVA and KVA. A two-way margin agreement has been implemented. For the KVA calculation three regulatory frameworks are supported: CEM, (simplified) SA-CCR, OEM

and IMM. The probability of default is implied through the credit spreads curve.

The package supports an exposure calculation based on SA-

CCR which includes several trade types

and a simulated path which is currently available only for IRSwaps. The latest regulatory capital charge methodologies

have been implementing including BA-CVA & SA-CVA.

License GPL-3

Imports methods, SACCR, Trading, data.table

URL https://openriskcalculator.com/

Collate 'CalcNGR.R' 'CalcPD.R' 'CalcSimulatedExposure.R' 'CalcVA.R' 'GenerateTimeGrid.R' 'calcDefCapital.R' 'calcEADRegulatory.R' 'calcEffectiveMaturity.R' 'calcKVA.R' 'xVACalculator.R' 'xVACalculatorExample.R' 'onLoad.R' 'IS_ELIGIBLE_CCY.R'

'IS_IG.R' 'LoadSupervisoryCVAData.R' 'calcCVACapital.R'

NeedsCompilation no

RoxygenNote 7.1.1

Repository CRAN

Repository/R-Forge/Project ccr

Repository/R-Forge/Revision 65

Repository/R-Forge/DateTimeStamp 2022-08-27 16:52:51

Date/Publication 2022-08-27 22:20:02 UTC

2 calcCVACapital

R topics documented:

alcCVACapi alcDefCapit alcEADReg alcEffective	al ulatory .																													
alcEADReg alcEffective	ulatory .																													
alcEffective	-																													4
																														5
IICK VA																														5
																														6
alcPD																														7
alcSimulate	dExposu	re																												7
alcVA																														8
S_ELIGIBL	E_CCY																													9
S_IG																														9
oadSupervi	soryCVA	Data																												10
VACalculate	or																													11
VACalculate	orExampl	e																												12
																														13
	alcPD alcSimulate alcVA	alcPD	alcPD	alcPD	alcPD	alcPD	alcPD alcSimulatedExposure alcVA S_ELIGIBLE_CCY S_IG oadSupervisoryCVAData VACalculator	alcPD	alcPD alcSimulatedExposure alcVA S_ELIGIBLE_CCY S_IG oadSupervisoryCVAData VACalculator VACalculatorExample																					

calcCVACapital

Calculates the CVA Capital Charge

Description

Calculates the CVA capital charge based on the standardized approach

Usage

```
calcCVACapital(
  trades,
  EAD,
  reg_data,
  superv,
  effective_maturity,
  cva_sensitivities
)
```

Arguments

trades The full list of the Trade Objects

EAD Exposure-at-Default

reg_data A list containing data related to the regulatory calculations

superv A list containing supervisory data including correlations, risk weights etc

effective_maturity

The effective maturity of the trades of the netting set

cva_sensitivities

The effective maturity of the trades of the netting set

calcDefCapital 3

Value

The CVA capital charge of the trade set

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

calcDefCapital

Calculates the Default Capital Charge

Description

Calculates the default capital charge using the advanced IRB methodology and the stressed R

Usage

```
calcDefCapital(trades, EAD, reg_data, effective_maturity)
```

Arguments

trades The full list of the Trade Objects

EAD The Exposure-At-Default of the trades as per the selected regulatory framework

reg_data A list containing data related to the regulatory calculations (for example the

regulatory probability-of-default, the regulatory loss-given-default etc)

effective_maturity

The effective maturity of the trades of the netting set

Value

The default capital charge

Author(s)

4 calcEADRegulatory

calcEADRegulatory

Calculates the Exposure-At-Default (EAD)

Description

Calculates the Exposure-At-Default (EAD) based on the given regulatory framework. It supports the CEM, IMM and (simplified) SA-CCR frameworks

Usage

```
calcEADRegulatory(
  trades,
  framework,
  sa_ccr_simplified = "",
  CSA,
  collateral,
  EEE,
  time_points
)
```

Arguments

trades The full list of the Trade Objects

framework Specifies the regulatory framework used in the calculations. It can take the val-

ues of 'IMM', 'CEM', 'SA-CCR'

sa_ccr_simplified

(Optional) Specifies whether the standard SACCR or its simplified version or

the OEM will be implemented. It can take the values of ", 'simplified', 'OEM'

CSA The margin agreement with the counterparty

collateral The amount of collaterals currently exchanged with the counterparty

EEE A vector containing the effective expected exposure against the counterparty

Value

The Exposure-At-Default

Author(s)

calcEffectiveMaturity 5

calcEffectiveMaturity Calculates the Effective Maturity

Description

Calculates the effective maturity based on the specified regulatory framework

Usage

```
calcEffectiveMaturity(trades, time_points, framework, simulated_exposure)
```

Arguments

trades The full list of the Trade Objects

framework Specifies the regulatory framework used in the calculations. It can take the val-

ues of 'IMM', 'CEM', 'SA-CCR'

simulated_exposure

The exposure profile list containing the EE, EEE etc

Value

The effective maturity of the trade set

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

calcKVA

Calculates the Capital Valuation Adjustment (KVA)

Description

Calculates the capital valuation adjustment by computing the default capital charge and the CVA capital charge and applying the required return-on-capital

Usage

```
calcKVA(
   CSA,
   collateral,
   trades,
   reg_data,
   time_points,
   EAD,
   effective_maturity,
   ignore_def_charge = TRUE
)
```

6 CalcNGR

Arguments

CSA The margin agreement with the counterparty

collateral The current amount of collaterals currently exchanged with the counterparty

trades The full list of the Trade Objects

reg_data A list containing data related to the regulatory calculations (for example the

'framework' member variable can be 'IMM', 'SACCR', 'CEM')

time_points The timepoints that the analysis is performed on

EAD The Exposure-at-default calculated based on the prescribed framework as ap-

pearing in the 'reg_data'

effective_maturity

The effective maturity of the trades performed with a specific counterparty

ignore_def_charge

if set to true the default capital charge is set to zero

Value

The capital valuation adjustment (KVA)

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

CalcNGR Calculates the Net/Gross ratio (NGR)

Description

Calculates the Net/Gross ratio used under the CEM regulatory framework

Usage

CalcNGR(MtM_Vector)

Arguments

MtM_Vector A vector containing the trades to be netted

Value

The Net-Gross ratio (NGR)

Author(s)

CalcPD 7

CalcPD

Calculates the Probablity of Default

Description

Calculates the probablity of the default on specific time points by using the spread of the corresponding credit curve and the loss given default

Usage

```
CalcPD(spread, LGD, time_points)
```

Arguments

spread The spread based on the credit curve

LGD The loss-given-default

time_points The timepoints that the analysis is performed on

Value

A vector containing the probablity of default on the specified timepoints

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

CalcSimulatedExposure Calculated the Simulated Exposure Profile

Description

Calculates the simulated exposure profile (EE, NEE, PFE, EEE) by use of the Hull-White model. Two sets of results are provided: one after taking into account the marging agreement and one assuming that there is no marging agreement present

Usage

```
CalcSimulatedExposure(
  discount_factors,
  time_points,
  spot_curve,
  CSA,
  trades,
  sim_data,
  framework
)
```

8 CalcVA

Arguments

discount_factors

The discount curve derived from the spot curve

time_points The timepoints that the analysis is performed on

spot_curve The curve derived from interpolating the market spot rates

CSA The margin agreement trades The list of the trade objects

sim_data A list containing simulation-related data (model parameters and number of sim-

ulation)

framework regulatory framework can be 'IMM', 'SACCR', 'CEM'

Value

A list containing the exposure profile (both collateralized and uncollateralized)

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

CalcVA Calculates the Valuation Adjustment

Description

Calculates the Valuation Adjustment based on the exposure, the probability-of-default and the loss-given-default

Usage

```
CalcVA(exposure, discount_factors, PD, LGD)
```

Arguments

exposure A vector containing the exposure values on which the credit risk adjustment will

be calculated

discount_factors

The Discount Curve

PD The probability-of-Default LGD The Loss-Given-Default

Value

The Valuation Adjustment Value

Author(s)

IS_ELIGIBLE_CCY 9

IS_ELIGIBLE_CCY

Checks if specified currency is low risk

Description

Checks if the specified currency is eligible to receive reduced regulatory risk weights

Usage

```
IS_ELIGIBLE_CCY(ccy)
```

Arguments

ссу

The currency to be checked

Value

TRUE if the currency is is eligible to receive reduced regulatory risk weights

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://www.bis.org/basel_framework/chapter/MAR/50.htm?inforce=20230101&published=20200708

Examples

```
TRUE == IS_ELIGIBLE_CCY('EUR')
```

IS_IG

Checks if Credit rating is Investment Grade

Description

Checks if the credit rating is investment grade or not (if not rating not recognised will be unrated)

Usage

```
IS_IG(credit_rating)
```

Arguments

credit_rating The Credit Rating to be checked

Value

TRUE if Rating is Investment Grade

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://en.wikipedia.org/wiki/Credit_rating

Examples

```
TRUE == IS_IG('AAA')
```

 ${\tt LoadSupervisoryCVAData}$

Supervisory Data Loading

Description

Loads the supervisory data (factors, correlation and option volatility) for each Asset Class and SubClass

Usage

```
LoadSupervisoryCVAData()
```

Value

A list with the required data

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

MAR50 - Credit Value Adjustment Framework https://www.bis.org/basel_framework/chapter/MAR/50.htm?inforce=202301

xVACalculator 11

xVACalculator Calculates the xVA values

Description

Calculates the xVA values (CVA, DVA, FVA, FBA, MVA, KVA)

Usage

```
xVACalculator(
   trades,
   CSA,
   collateral,
   sim_data,
   reg_data,
   credit_curve_PO,
   credit_curve_cpty,
   funding_curve,
   spot_rates,
   cpty_LGD,
   PO_LGD,
   no_simulations
)
```

Arguments

trades	The full list of the Trade Objects
CSA	The margin agreement with the counterparty
collateral	The amount of collateral currently exchanged with the counterparty
sim_data	A list containing data related to the calculation of simulated exposures (for example the model parameters and the number of simulations)
reg_data	A list containing data related to the regulatory calculations (for example the 'ccr_framework' member variable can be 'IMM', 'SACCR', 'CEM')
credit_curve_PC	
	The credit curve of the processing organization
credit_curve_cp	pty
	The credit curve of the processing organization
funding_curve	A curve containing the credit spread for the funding of the collateral
spot_rates	The spot rates curve
cpty_LGD	The loss-given-default of the counterparty
PO_LGD	The loss-given-default of the processing organization
no_simulations	if true, no simulated exposure will be generated and the regulatory framework should be SA-CCR

Value

A list containing the xVA values and the cva capital charge

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

```
Gregory J., The xVA Challenge, 2015, Wiley
```

```
xVACalculatorExample xVA calculation example
```

Description

Calculates the xVA values for a simple example containing two IR swaps.

Usage

```
xVACalculatorExample()
```

Value

A list with the values of various valuations' adjustments

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```
## run the example
xVACalculatorExample()
```

Index

```
calcCVACapital, 2
calcDefCapital, 3
calcEADRegulatory, 4
calcEffectiveMaturity, 5
calcKVA, 5
CalcNGR, 6
CalcPD, 7
CalcSimulatedExposure, 7
CalcVA, 8

IS_ELIGIBLE_CCY, 9
IS_IG, 9

LoadSupervisoryCVAData, 10

xVACalculator, 11
xVACalculatorExample, 12
```