PSALTer results panel

$$S = \iiint \left(\mathcal{R}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} + \frac{1}{2} \lambda \cdot \left(4 \, \partial_{i} \mathcal{R}^{\alpha i}_{\alpha} - 4 \, \mathcal{R}^{\ \theta}_{\alpha \theta} \, \partial_{i} f^{\alpha i} + 4 \, \mathcal{R}^{\ \theta}_{i \theta} \, \partial^{i} f^{\alpha}_{\alpha} - 2 \, \partial_{i} f^{\theta}_{\theta} \, \partial^{i} f^{\alpha}_{\alpha} - 4 \, \mathcal{R}^{\alpha i}_{\alpha \theta} \, \partial_{i} f^{\alpha i}_{\alpha} + 4 \, \mathcal{R}^{\alpha i}_{i \theta} \, \partial^{i} f^{\alpha}_{\alpha} - 2 \, \partial_{i} f^{\theta}_{\alpha} \, \partial^{i} f^{\alpha}_{\alpha} - 2 \, \partial_{i} f^{\theta}_{\alpha} \, \partial^{i} f^{\alpha}_{\alpha} - 2 \, \partial_{i} f^{\theta}_{\alpha} \, \partial^{i} f^{\alpha}_{\alpha} - 2 \, \partial_{i} f^{\alpha}_{\alpha} \, \partial_{i} f^{\alpha}_{\alpha} - 2 \, \partial_{i} f^{$$

 $0 -2 k^2 \lambda. \quad 0$

0^+ τ^{\parallel} + 0 $-\frac{1}{2 k^2 \lambda}$ 0

⁰⁻σ^{||} † 0

			-								
	$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	Θ	0	0	0	0	0			
	$^{1^{+}}\sigma^{\perp}$ $^{+}$	0	0	0	0	0	0	0			
	$1^{+}\tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
	$^{1^{-}}\sigma^{\parallel}$ $^{\alpha}$	0	0	0	0	0	0	0			
	1 σ^{\perp} \dagger^{α}	0	0	0	0	0	Θ	0			
	$^{1^{-}}\tau^{\parallel}$ $^{\alpha}$	0	0	0	0	0	Θ	0			
	$\frac{1}{\cdot}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0			$2^{+}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
								$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	Θ	Θ	0
								$2^{+}_{\bullet}\tau^{\parallel} \uparrow^{\alpha\beta}$	0	$\frac{1}{k^2 \lambda}$.	0
								$^{2^{-}}\sigma^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	0
<u>Source co</u>	<u>nstr</u>	<u>rair</u>	<u>nts</u>								

 $\begin{vmatrix} \mathbf{1}^{+} \boldsymbol{\sigma} \|_{\alpha\beta} & \mathbf{1}^{+} \boldsymbol{\sigma}^{\perp}_{\alpha\beta} & \mathbf{1}^{+} \boldsymbol{\tau} \|_{\alpha\beta} & \mathbf{1}^{-} \boldsymbol{\sigma} \|_{\alpha} & \mathbf{1}^{-} \boldsymbol{\sigma}^{\perp}_{\alpha} & \mathbf{1}^{-} \boldsymbol{\tau} \|_{\alpha} & \mathbf{1}^{-} \boldsymbol{\tau}^{\perp}_{\alpha} \end{vmatrix}$

Spin-parity form		Multiplicities	
^{Θ−} σ == Θ	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} = 0$	1	
^{Θ+} τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1	
⁰⁺ σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1	
1- _t = 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3	
1- _{\tau} \alpha == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
1-σ ¹ α == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} = 0$	3	
1- 0 == 0	$\partial_{\delta} \partial^{\alpha} \sigma_{\chi}^{\chi \delta} + \partial_{\delta} \partial^{\delta} \sigma_{\chi}^{\chi \alpha} = \partial_{\delta} \partial_{\chi} \sigma^{\chi \alpha \delta}$	3	
1, T \(\alpha \beta \) == 0	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==$	3	
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$		
1 _• σ ¹ αβ == 0	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3	
1 _• σ αβ == Θ	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$	3	
$2^{-}_{\bullet}\sigma^{\parallel}^{\alpha\beta\chi} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ $	5	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + \\$		
	$3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\ \delta}{}^{\epsilon} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\ \delta} =$		
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$		
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} +$		
	$3 \ \eta^{\alpha\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\ \ \delta}^{\ \epsilon} + 3 \ \eta^{\beta\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \ \eta^{\alpha\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\ \ \delta}$		
2 ⁺ _• σ ^{αβ} == 0	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} =$	5	
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma_{\chi}^{\chi}^{\delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$		
Total expected gauge generators:			

(There are no massive particles)

Massive spectrum

Massless spectrum

Polarisations:

(Not yet implemented in PSALTer)

<u>Gauge symmetries</u>

Unitarity conditions

$\lambda . > 0$

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)