8. ラプラス方程式、ポアソン方程式

- 1. 複素関数 $f(z) = e^{az}$ (a は実数の定数) について以下の問いに答えなさい。
 - (a) z = x + iy (実部がx, 虚部がy) と置いて, f(z) = u(x,y) + iv(x,y) と表す。(f(z) の実部がu(x,y), 虚部がv(x,y) ということ。) u(x,y) とv(x,y) を求めなさい。
 - (b) u(x,y) と v(x,y) が 2 次元のラプラス方程式を満たす(調和関数である)ことを確かめなさい。
- 2. p.40 の $E_3 = -\frac{1}{4\pi r}$ について。
 - (a) $r = \sqrt{x^2 + y^2 + z^2}$ であることを使って、 $\operatorname{grad} E_3 = \nabla E_3$ を求めなさい。
 - (b) $r \neq 0$ では $\Delta E_3 = \operatorname{div}(\operatorname{grad} E_3) = 0$ であることを示しなさい。
 - (c) ガウスの定理

$$\int_{V} \operatorname{div} \mathbf{A} dV = \int_{S} \mathbf{A} \cdot d\mathbf{S}$$

の $m{A}=\mathrm{grad}E_3=
abla E_3$ とする。原点を中心とする半径 a の球を V 、その表面を S として $\int_G
abla E_3 \cdot dm{S}$ を計算しなさい。

- (d) ΔE_3 が原点に中心を持つ 3 次元のデルタ関数であることを説明しなさい。
- 3. z 軸方向の一様な電場の中に半径 a の導体球を置くと、静電誘導によって導体球の表面に電荷が現れる。その結果、電場がどのように変化するかを考えよう。
 - (a) 導体球が無い状態で,z 軸方向を向いた大きさ E_0 の一様な電場のポテンシャル ϕ_0 は,x,y,z の座標ではどのように表せるか。また,極座標ではどのように表せるか。ただし,原点で $\phi_0=0$ とする。
 - (b) 導体球の表面に現れる電荷が作るポテンシャルを ϕ_1 とする。
 - 問題が軸対称で、球の外部のポテンシャルだから、p.44 の式 (51) の形

$$\phi_1(r,\theta) = \sum_{l=0}^{\infty} A_l \frac{P_l(\cos \theta)}{r^{l+1}}$$

になる。

• 実際のポテンシャルは $\phi=\phi_0+\phi_1$ であり、導体球の表面では、 θ によらず $\phi(a,\theta)=0$ でなければならない。この条件から、上の ϕ_1 の式は l=1 の項だけに なる。

以上のことを使って, r > a での $\phi(r, \theta)$ を求めなさい。

- (c) 導体表面のすぐ外側での電場を求めなさい。
- (d) 導体表面に現れる電荷の面密度 σ を θ の関数として求めなさい。

4. 2次元の正方形の領域 $0 \le x \le \pi, 0 \le y \le \pi$ のラプラス方程式 $\Delta u(x,y) = 0$ を,境界条件

$$u(0, y) = u(\pi, y) = u(x, 0) = 0$$

 $u(x, \pi) = x(\pi - x)$

のもとで解きたい。変数分離型を仮定する。 $x=0,\pi$ で u=0 なので x については正弦級数の次のような級数で表せると予想できる。

$$u(x,y) = \sum_{n=1}^{\infty} a_n(y) \sin nx$$

- (a) 上の式をラプラス方程式に代入して $a_n(y)$ についての方程式を導きなさい。
- (b) $x(\pi x)$ を正弦級数 $\sum_{n=1}^{\infty} b_n \sin nx$ に展開しなさい。
- (c) 境界条件から $a_n(0)$, $a_n(\pi)$ についての条件を導きなさい。
- (d) $a_n(y)$ についての方程式を解き、解 u(x,y) を求めなさい。
- 5. 半径 1 の円周上で $g(\theta)=T_0\cos^2\theta$ という温度分布を与えたとする。定常状態での,円の内部での温度分布 $T(r,\theta)$ を求めなさい。(ヒント:解は p.42 の式 (37) の形になるはずである。境界条件を満たすように係数 A_m,Bm を決めればよい。)