

advanced search :: customize preferences :: submit site :: help protection switching mechanism" "multiplexe SEARCH

Results in: O Any Language <u>English</u>

Web News Pictures

1 - 1 of 1 Results for "protection switching mechanism" "multiplexer" Offensive content filter: On - Off

Audio

Web Results (What's this?)

Patent 4633246: Time divison multiplex ring

... Outputs of each **multiplexer**/demultiplexer are transmitted through **redundant** paths by bridging the ... In order for this inherent **protection switching mechanism** to work, an alternate ... more hits from: http://www.freepatentsonline.com/4633246.html - 46 KB

Result Page: 1

"protection switching mechanism" "multiplexe

Video

SEARCH

search within your results

OPERA compliant

Home :: Submit Site :: About Us :: Help

Copyright © 2005 Overture Services, Inc.

Refine Search

Search Results -

Term	Documents
SELECTED	2108256
SELECTEDS	3
PATH	1006502
PATHS	333252
(54 AND (PATH NEAR SELECTED)).PGPB,USPT.	0
(L54 AND SELECTED NEAR PATH).PGPB,USPT.	0

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database

Database:

US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins

Search:

Search History

DATE: Tuesday, August 09, 2005 Printable Copy Create Case

Set Name side by side	Query	<u>Hit</u> Count	Set Name result set
DB=P	GPB, USPT; PLUR = YES; OP = ADJ		
<u>L56</u>	L54 and selected near path	0	<u>L56</u>
<u>L55</u>	L51 and selectively near path	0	<u>L55</u>
<u>L54</u>	L51 and select near path	8	<u>L54</u>
<u>L53</u>	L52 and path	9	<u>L53</u>
<u>L52</u>	L51 and selectively	9	<u>L52</u>
<u>L51</u>	L50 and remote	12	<u>L51</u>
<u>L50</u>	L49 and redundant and faulty	14	<u>L50</u>

<u>L49</u>	L47 and transmission adj path	166	<u>L49</u>
<u>L48</u>	L47 and faulty adj path and redundant adj path	0	L48
<u>L47</u>	protection near switch and multiplexer	582	<u>L47</u>
<u>L46</u>	12 and multiplexer and remote and redundant near path and faulty near path	1	<u>L46</u>
<u>L45</u>	L44 and remote	3	<u>L45</u>
<u>L44</u>	L42 and select	9	<u>L44</u>
<u>L43</u>	L42 and selectively	1	L43
<u>L42</u>	L40 and protection	9	<u>L42</u>
<u>L41</u>	L40 and redirect	0	<u>L41</u>
<u>L40</u>	multiplexer and redundant near path and faulty near path	11	<u>L40</u>
<u>L39</u>	L38 and protection	2	<u>L39</u>
<u>L38</u>	multiplexer and redundant near transmission and faulty near transmission	4	<u>L38</u>
<u>L37</u>	L34 and redirect	0	<u>L37</u>
<u>L36</u>	L35 and redirect	0.	L36
<u>L35</u>	L33 and protection near switch	15	<u>L35</u>
<u>L34</u>	L33 and protection near switching	18	<u>L34</u>
<u>L33</u>	multiplexer and redundant near path and remote and selectively	53	<u>L33</u>
<u>L32</u>	selectively near redundant near path	0	<u>L32</u>
<u>L31</u>	selectively near redundant near transmission	0	<u>L31</u>
<u>L30</u>	remote near selectively near redundant near transmission	0	<u>L30</u>
<u>L29</u>	remote near selectively near switch near redundant near transmission	0	<u>L29</u>
<u>L28</u>	L27 and remote	. 2	<u>L28</u>
<u>L27</u>	L26 and path near selectively	7	<u>L27</u>
<u>L26</u>	multiplexer and redundant near transmission near path	24	<u>L26</u>
<u>L25</u>	multiplexer and multiplexer	104938	<u>L25</u>
<u>L24</u>	L23 and protection	2	<u>L24</u>
<u>L23</u>	L22 and switching	4	<u>L23</u>
<u>L22</u>	L21 and selectively	4	<u>L22</u>
<u>L21</u>	L20 and multiplexer	4	<u>L21</u>
<u>L20</u>	redundant near transmission and faulty near transmission	12	<u>L20</u>
<u>L19</u>	redirect near redundant near transmission	0	<u>L19</u>
<u>L18</u>	L17 and redirect	1	<u>L18</u>
<u>L17</u>	L16 and protection near switching	7	<u>L17</u>
<u>L16</u>	multiplexer and remote and redundant near transmission near path	13	<u>L16</u>
<u>L15</u>	L14 and switch near redundant	1	<u>L15</u>
<u>L14</u>	remote near circuit and selectively near switch	84	<u>L14</u>
<u>L13</u>	L12 and selectively near switch	2	L13
<u>L12</u>	redundant near transmission and faulty near transmission	12	<u>L12</u>
<u>L11</u>	L10 and protection near switching	2	<u>L11</u>
L10	selectively near switch and redundant near transmission	7	L10

<u>L9</u>	selectively near switch .	18255	<u>L9</u>
<u>L8</u>	15 and remote near selectively	0	<u>L8</u>
<u>L7</u>	L5 and remote near selectivly	0	<u>L7</u>
<u>L6</u>	L5 and remote	2	<u>L6</u>
<u>L5</u>	L3 and protection near switching near mechanism	5	<u>L5</u>
<u>L4</u>	L3 and protection near switching	93	<u>L4</u>
<u>L3</u>	L2	435	<u>L3</u>
<u>L2</u>	370/228.ccls.	435	<u>L2</u>
DB =	USPT; PLUR=YES; OP=ADJ		
L1	370/228.ccls.	364	<u>L1</u>

END OF SEARCH HISTORY

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library O The Guide

+protection +switching +mechanism multiplexer

SEARCH

Feedback Report a problem Satisfaction survey

Terms used protection switching mechanism multiplexer

Found 3,320 of 158,639

Sort results by

results

relevance Display

expanded form v

Save results to a Binder Search Tips Open results in a new

Try an Advanced Search Try this search in The ACM Guide

Results 21 - 40 of 200

window

Result page: previous 1 2 3 4 5 6 7 8 9 10

Best 200 shown

Relevance scale

²¹ Report on the Workshop on Quality of Service Issues in High Speed Networks

S. Keshav

October 1992 ACM SIGCOMM Computer Communication Review, Volume 22 Issue 5

Full text available: pdf(1.28 MB)

Additional Information: full citation, index terms

22 Generalized loop-back recovery in optical mesh networks Muriel Médard, Richard A. Barry, Steven G. Finn, Wenbo He, Steven S. Lumetta February 2002 IEEE/ACM Transactions on Networking (TON), Volume 10 Issue 1

Full text available: pdf(243.86 KB)

Additional Information: full citation, abstract, references, citings, index

Current means of providing loop-back recovery, which is widely used in SONET, rely on ring topologies, or on overlaying logical ring topologies upon physical meshes. Loop-back is desirable to provide rapid preplanned recovery of link or node failures in a bandwidthefficient distributed manner. We introduce generalized loop-back, a novel scheme for performing loop-back in optical mesh networks. We present an algorithm to perform recovery for link failure and one to perform generalized loop-back ...

Keywords: WDM, loop-back, mesh networks, network restoration

²³ Coupling compiler-enabled and conventional memory accessing for energy efficiency Raksit Ashok, Saurabh Chheda, Csaba Andras Moritz

May 2004 ACM Transactions on Computer Systems (TOCS), Volume 22 Issue 2

Full text available: pdf(1.41 MB)

Additional Information: full citation, abstract, references, index terms

This article presents Cool-Mem, a family of memory system architectures that integrate conventional memory system mechanisms, energy-aware address translation, and compiler-enabled cache disambiguation techniques, to reduce energy consumption in general-purpose architectures. The solutions provided in this article leverage on interlayer tradeoffs between architecture, compiler, and operating system layers. Cool-Mem achieves power reduction by statically matching memory operations with energy-eff ...

Keywords: Energy efficiency, translation buffers, virtually addressed caches

	,	
24	The next generation of internetworking	
	Gurudatta M. Parulkar December 1989 ACM SIGCOMM Computer Communication Review, Volume 20 Issue 1	
	Full text available: pdf(1.86 MB) Additional Information: full citation, abstract, citings, index terms	
	This paper describes a research effort concerned with the design of the next generation of internet architecture, which has been necessitated by two emerging trends. First, there will be at least a few orders of magnitude increase in data rates of communication networks in the next few years. For example, researchers are already prototyping networks with data rates of up to a few hundred Mbps, and are planning networks with data rates up to a few Gbps. Second, researchers from all disciplines of	
25	Transporting compressed video over ATM networks with explicit-rate feedback control T. V. Lakshman, P. P. Mishra, K. K. Ramakrishnan October 1999 IEEE/ACM Transactions on Networking (TON), Volume 7 Issue 5	
	Full text available: pdf(232.17 KB) Additional Information: full citation, references, citings, index terms	
	Keywords: ATM, congestion control, packet video	
26	Papers: Context-agile encryption for high speed communication networks Lyndon G. Pierson, Edward L. Witzke, Mark O. Bean, Gerry J. Trombley January 1999 ACM SIGCOMM Computer Communication Review, Volume 29 Issue 1	
	Full text available: pdf(1.43 MB) Additional Information: full citation, abstract, references	
	Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if the hardware implementation is key-agile, key length-agile, mode-agile, and algorithm-agile. Hence, context-agile encryption provides enhanced solutions to the secrecy, interoperability, and	
27	Computer Communication Networks: Approaches, Objectives, and Performance	
	Considerations Stephen R. Kimbleton, G. Michael Schneider September 1975 ACM Computing Surveys (CSUR), Volume 7 Issue 3	
	Full text available: pdf(3.99 MB) Additional Information: full citation, references, citings, index terms	
28	Reservation-based bandwidth allocation in a radio ATM network	
•	George M. Stamatelos, Vassilios N. Koukoulidis	

George M. Stamatelos, Vassilios N. Koukoulidis

June 1997 IEEE/ACM Transactions on Networking (TON), Volume 5 Issue 3

Full text evaluable: Additional Information full citation, references, citizens

Full text available: pdf(300.68 KB) Additional Information: full citation, references, citings, index terms

Keywords: bandwidth aloocation, broadband ATM networks, radio LANs, wireless multimedia

Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks

Brahim Bensaou, Danny H. K. Tsang, King Tung Chan October 2001 IEEE/ACM Transactions on Networking (TON), Volume 9 Issue 5

Full text available: pdf(282.71 KB)

Additional Information: full citation, abstract, references, citings, index terms

This paper proposes a simple rate-based scheduling algorithm for packet-switched networks. Using a set of counters to keep track of the credits accumulated by each traffic flow, the bandwidth share allocated to each flow, and the size of the head-of-line (HOL) packets of the different flows, the algorithm decides which flow to serve next. Our proposed algorithm requires on average a smaller complexity than the most interesting alternative ones while guaranteeing comparable fairness, delay, and d ...

Keywords: Fair queueing, packet scheduling, quality of service, traffic control

30 Transaction papers: Traffic equivalence and substitution in a multiplexer with applications to dynamic available capacity estimation

Costas A. Courcoubetis, Antonis Dimakis, George D. Stamoulis

April 2002 IEEE/ACM Transactions on Networking (TON), Volume 10 Issue 2

Full text available: pdf(486.52 KB)

Additional Information: full citation, abstract, references, citings, index

For a multiplexer fed by a large number of sources, we derive conditions under which a given subset of the sources can be substituted for a single source while preserving the buffer overflow probability and the dominant timescales of buffer overflows. This notion of traffic equivalence is stronger than simple effective bandwidth equality and depends on the multiplexing context. We propose several applications of the above traffic substitution conditions. First, we show that fractional Brownian m ...

Keywords: available capacity, call admission control, effective bandwidth, many-sources asymptotic, on-line estimation, traffic modeling

31 The SHRIMP performance monitor: design and applications

Margaret Martonosi, Douglas W. Clark, Malena Mesarina

January 1996 Proceedings of the SIGMETRICS symposium on Parallel and distributed tools

Full text available: pdf(1.01 MB)

Additional Information: full citation, references, citings, index terms

32 Telecommunications: Satellite communications representation in network simulation Kenneth Y. Jo

December 2001 Proceedings of the 33nd conference on Winter simulation

Full text available: pdf(412.32 KB) Additional Information: full citation, abstract, references, index terms

This paper presents methodologies to represent satellite communications (SATCOM) behaviors in network simulation. This paper is based on tasks performed for generic network warfare simulation that employs traditional network simulation models. The methodologies also include the integration issues of SATCOM tools and the network simulation models. We first characterize space segments and assets involved in warfare operations and exercises, and then analyze system behaviors to measure space-link p ...

33 Redundant trees for preplanned recovery in arbitrary vertex-redundant or edgeredundant graphs

Muriel Médard, Steven G. Finn, Richard A. Barry

October 1999 IEEE/ACM Transactions on Networking (TON), Volume 7 Issue 5
Full text available: pdf(251.44 KB) Additional Information: full citation, references, citings, index terms

Keywords: graph theory, multicasting, network recovery, network robustness, routing, trees

34 Early experience with message-passing on the SHRIMP multicomputer Edward W. Felten, Richard D. Alpert, Angelos Bilas, Matthias A. Blumrich, Douglas W. Clark, Stefanos N. Damianakis, Cezary Dubnicki, Liviu Iftode, Kai Li May 1996 ACM SIGARCH Computer Architecture News, Proceedings of the 23rd

annual international symposium on Computer architecture, Volume 24 Issue 2

Full text available: pdf(1.39 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

The SHRIMP multicomputer provides virtual memory-mapped communication (VMMC), which supports protected, user-level message passing, allows user programs to perform their own buffer management, and separates data transfers from control transfers so that a data transfer can be done without the intervention of the receiving node CPU. An important question is whether such a mechanism can indeed deliver all of the available hardware performance to applications which use conventional message-passing I ...

35 The Multics kernel design project

Michael D. Schroeder, David D. Clark, Jerome H. Saltzer

November 1977 Proceedings of the sixth ACM symposium on Operating systems principles

Full text available: pdf(1.31 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>

We describe a plan to create an auditable version of Multics. The engineering experiments of that plan are now complete. Type extension as a design discipline has been demonstrated feasible, even for the internal workings of an operating system, where many subtle intermodule dependencies were discovered and controlled. Insight was gained into several tradeoffs between kernel complexity and user semantics. The performance and size effects of this work are encouraging. We conclude that verifi ...

Keywords: Multics, Operating systems, Protection, Security, Security kernel, Supervisors, Type extension, Verifiable systems

36 Design and realization of MLM: a multilingual machine

F. M G Franca, N. Q. Vasconcelos, E. S T Fernandes

December 1986 ACM SIGMICRO Newsletter, Proceedings of the 19th annual workshop on Microprogramming, Volume 17 Issue 4

Full text available: pdf(986.59 KB) Additional Information: full citation, abstract, references, index terms

This paper describes the design and realization of MLM, a Multi-Lingual machine whose main goal is to provide support for teaching and research in Microprogramming and Computer Architecture. MLM is based on a standard (non-microprogrammable) minicomputer whose microarchitecture has been modified in order to satisfy the requirements of a multi-lingual environment. The resulting machine is microprogrammable, offers facilities for interpreting different target repertoires, and has m ...

³⁷ A comparative analysis of fuzzy versus conventional policing mechanisms for ATM networks

Vincenzo Catania, Giuseppe Ficili, Sergio Palazzo, Daniela Panno June 1996 IEEE/ACM Transactions on Networking (TON), Volume 4 Issue 3

Full text available: pdf(1.72 MB)

Additional Information: full citation, references, citings, index terms

38 ARPS: a new real-time computer

Kenneth J. Thurber

October 1976 ACM SIGARCH Computer Architecture News, Volume 5 Issue 4

Full text available: pdf(1.14 MB)

Additional Information: full citation, references, citings

39 A comparative study of fuzzy versus "fixed" thresholds for robust queue management in cell-switching networks

Allen R. Bonde, Sumit Ghosh

August 1994 IEEE/ACM Transactions on Networking (TON), Volume 2 Issue 4

Full text available: pdf(976.98 KB) Additional Information: full citation, references, citings, index terms

40 Trunking of TDM and narrowband services over IP Networks

James Aweya

January 2003 International Journal of Network Management, Volume 13 Issue 1

Full text available: pdf(418.58 KB)

Additional Information: full citation, abstract, references, citings, index terms

The recent interest in IP as the vehicle for transporting TDM and narrowband services stems from the possibility of using a common transport network for voice, video, and data, and the flexibility with which new services can be introduced. A key step in the evolution of networks towards a 'broadband' IP-based environment is the 'graceful' interworking of the IP networks with the existing networks and services, particularly with the circuit switched telephone network. A &I ...

Results 21 - 40 of 200

Result page: previous 1 **2** 3 4 5 6 7 8 9 10 next

The ACM Portal is published by the Association for Computing Machinery. Copyright @ 2005 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player

Patent Assignment Abstract of Title

Total Assignments: 1

Application #: 09990023 **Filing Dt:** 11/21/2001 Patent #: NONE **Issue Dt:**

Publication #: <u>US20030095502</u> Pub Dt: 05/22/2003 PCT #: NONE

11/21/2001

Inventors: Donald J. Glaser, Anthony Barrera, William W. Lu, Dennis P. Miller

Title: Protection switching mechanism

Assignment: 1

Mailed: Recorded: Pages: Reel/Frame: 012324/0212 01/23/2002

Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).

Assignors: GLASER, DONALD. J. Exec Dt: 11/21/2001 Exec Dt: 11/21/2001 BARRERA, ANTHONY

> LU, WILLIAM W. **Exec Dt:** 11/21/2001

> MILLER, DENNIS P. Exec Dt: 11/21/2001

Assignee: ADC DSL SYSTEMS, INC.

13525 TECHNOLOGY DRIVE

EDEN PRAIRIE, MINNESOTA 55344

Correspondent: FOGG SLIFER & POLGLAZE, P.A.

SCOTT V. LUNDBERG P.O. BOX 581009

MINNEAPOLIS, MN 55458-1009

Search Results as of: 8/9/2005 11:58:16 A.M.

If you have any comments or questions concerning the data displayed, contact OPR / Assignments at 703-308-9723 Web interface last modified: Oct. 5, 2002