

Basics of biological Chemistry

Assignment

January 2015 Finals

Author: Cedric Lood

Supervisors:
Prof. J. VANDERLEYDEN
dr. H. STEENACKERS
Prof. B. SELS
Prof. J. VANDERLEYDEN

Contents

1	Pro	f. J. Vanderleyden – dr. H. Steenackers	2
	1.1	Chemical reaction equation	2
		a.) Balance the equation	2
		b.) Reactants and products	2
		c.) Lewis structure, VESPR	2
		d.) Oxidation states	3
		e.) Mass	3
	1.2	DNA sequence analysis	3
		a.) DNA Replication	3
		b.) Translated Protein	4
		c.) Mutated exon	4
		d.) Interactions with antibiotics	4
		e.) Comparison of error rates	4
	1.3	tRNA 3D-Structure	4
2	Pro	f. B. Sels	4
	2.1	Biopolymer organisation	4
	2.2	Chemical structure of proteins and proteins separation	4
	2.3	Chemical structure of disaccharides	5
3	Pro	f. D. De Vos	5
	3.1	Functional groups	5
	3.2	Water and oil solubility factors	5

1 Prof. J. Vanderleyden – dr. H. Steenackers

1.1 Chemical reaction equation

Consider the following reaction: $(NH_4)_2CO_3 + Zn(NO_3)_2 \rightarrow NH_4NO_3 + ZnCO_3$

a.) Balance the equation

$$(\mathrm{NH_4})_2\mathrm{CO_3} \,+\, \mathrm{Zn}(\mathrm{NO_3})_2 \,\rightarrow\, 2\,\,\mathrm{NH_4NO_3} \,+\, \mathrm{ZnCO_3}$$

b.) Reactants and products

Q: Name all reactants and reaction products.

A:

• $(NH_4)_2CO_3$: Ammonium carbonate

• $Zn(NO_3)_2$: Zinc nitrate

• NH₄NO₃ : Ammonium nitrate

• ZnCO₃ : Zinc carbonate

c.) Lewis structure, VESPR

Q: Construct the Lewis structures of the polyatomic ions you recognize and predict their molecular structure using the VSEPR theory.

A:

• Lewis Structure of the ions:

Ammonium	Carbonate	Zinc	Nitrate
H—N+—H	.;o.—c;o;.	:Zn ²⁺	O. N+

• Molecular structure prediction:

Ammonium	Carbonate	Zinc	Nitrate
H H H	O=C O-	Zn ²⁺	O-N+

d.) Oxidation states

Q: Determine the oxidation state of all the atoms in all the compounds. Is this an oxidation-reduction reaction?

A: Ammonium Carbonate and Zinc Nitrate (the reactants) are very soluble in water and will thus move freely. The Zinc and Carbonate ions will then precipitate.

- Zn has an oxidation state of 2: Zn \rightarrow Zn²⁺ + 2 e⁻
- (CO₃) has an oxidation state of 4: (CO₃)²⁻ + 2 e⁻ \rightarrow CO₃

e.) Mass

 \mathbb{Q} : How many grams of ZnCO3 can be prepared from 400g Zn(NO3)2 by using sufficient(NH4)2CO3?

A: Let's start by computing the molecular weight of the 2 reactants:

Molecular weigth of Zn(NO₃)₂ 189.36 g/mol

Molecular weigth of (NH₄)₂CO₃ 96.09 g/mol

Given that there are 400g of $Zn(NO_3)_2$, we can calculate the number of moles of reactant (and ignore that of $(NH_4)_2CO_3$ since it is in excess):

Moles of $Zn(NO_3)_2$ 400 g / 189.36 g/mol = 2.11237 moles

From this last figure, we can infer that the number of moles of $ZnCO_3$ will be 2.11237. Given the molecular mass of $ZnCO_3$, we can compute the amount of $ZnCO_3$ produced to be: 2.11237 mol * 125.3889 g/mol = 264.8678 g.

1.2 DNA sequence analysis

The following diagram shows part of a template DNA strand, with sections X,Y and Z being the exons of a gene:

a.) DNA Replication

Q: What is the corresponding sequence on the new daughter strand made from the given parent strand during replication?

A: Given the principle of base pairing, we can determine the daughter sequence to be (here in the 3' to 5' direction):

b.) Translated Protein

Q: What polypeptide sequence will be synthesized from the given template DNA? Give a short overview of the different processes (and enzymes) involved in the synthesis of polypeptides from template DNA. Where in the cell do these processes take place?

A: The synthesized polypeptide will consist of the amino acids VCIH.

c.) Mutated exon

Q: What polypeptide sequence will be synthesized if the ATC in exon Y is mutated to TTC? What polypeptide sequence will be synthesized if the ATC in exon Y is mutated to ATG? Which of those substitution mutations is likely to be more harmful? Why?

A:

d.) Interactions with antibiotics

Q: Which steps in polypeptide synthesis are affected by resp. the macrolide antibiotics and the tetracycline antibiotics?

A:

e.) Comparison of error rates

Q: The error rate in RNA synthesis is much higher than the error rate of DNA replication. What is the origin of this difference? Motivate why this is not a serious problem.

A:

1.3 tRNA 3D-Structure

Q: All tRNA molecules have a particular 3D-structure. Which functional groups and which chemical bonds/interactions contribute to this particular structure? Why is this particular structure of importance for the biological function?

A:

2 Prof. B. Sels

2.1 Biopolymer organisation

Q: The course and the textbook systematically organize four important biopolymers mainly according to their chemical structure. Attempt a complete reorganization of the various biopolymer structures (and subfamilies!) according to the following three physiological functions: energy, structure, and communication. Explain the physiological function of each biopolymer type with regard to its chemical structure and/or physical properties.

A:

2.2 Chemical structure of proteins and proteins separation

Q: Draw the chemical structure of the following two oligopeptide structures, a) Gln-Ser-Lys-Lys-Ser and b) Cys-Asp-Asp-Glu-Lys, determine its net charge in physiological conditions. How would you separate the two peptides?

A:

2.3 Chemical structure of disaccharides

Q: Draw the chemical structure of the following disaccharides: a) the β -anomer of $\alpha(1 \rightarrow 6)$ galactoglucose and b) $\beta, \alpha(1 \rightarrow 2)$ glucofructose.

3 Prof. D. De Vos

Considering the following molecule:

3.1 Functional groups

 ${\tt Q}\colon {\rm Name} \ {\rm all} \ {\rm functional} \ {\rm groups} \ {\tt A}\colon$

3.2 Water and oil solubility factors

 $\mathbb{Q}\colon \mathrm{Indicate}$ which groups make the molecule rather water-soluble than oil-soluble $\mathbb{A}\colon$