JOHNSON I

Thm I(Sg) is fin. gen. by Dehn twists for 973.

Basic Strategy 1. List prospective generators {9i}. s.t. g, is a BP map of genus 1. 2. Show $\langle g_i \rangle \leq Mod(Sq)$.

This suffices since (49:>> Mod(Sq) = I(Sg).

Chains and BP maps.

~> BP map.

Given a chain, can resolve intersections to get another chain. Can also take Subchains.

Given a chain ch (c1,..., cn) ch (i, 12 ··· 1 k+1)

denotes the chain you get by combining Ci, ..., Ciz-1 Ciz,..., Ciz-1 etc. dropping CK+1,...,Cn. "Subchain"

Denote the BP-map [1,12...1k+1]

LISTING THE GENERATORS

Consider the chains: (C1, ..., C2g) straight chain (CB, C5,..., C2g) B-chain

Use same notation for subchains of B-chain: (Bi,) = surger CB, Cs,..., Ci,-1

Theorem. For 973 the odd subchain maps of Straight chain & B-chain generate I(Sg)

Since $I(S_g) \longrightarrow I(S_g)$ this gives closed case as well.

SETUP.

Humpries generators:

Let $J(S_g)$ & $J(S_g)$ denote groups gen by Johnson's generators.

As above, need to show $T_{x} * y = T_{x} y T_{x}^{-1} \in J(S_{g})$

¥ x ε Humphries set y ε Johnson set

In many cases Tx * y equals y or is another Johnson gen:

Lemma,

j in {i1,}	j+1 in {11,}	Tc; *[i, i2]
	✓	[11 12]
×	×	[i, i2]
im	×	[i,i_n-1 i_m+1]
*	Ìm	[i, im-1]

The lemma completely characterizes commuting among Straight Johnson & Humphnies gens.

Pf (by examples)

Example j=2 [2356]

Example j=2 [14 5 6]

Example j=2 [1345]

[1245]

Third case Similar.

GENERATING THE KERNEL OF I(Sg) - I(Sg)

Define
$$W_i = [1 \ 2 \ 3 \cdots \hat{i} \ \cdots \ 2g+1]$$
 for $i \in \{1, ..., 2g+1\}$.

"maximal odd subchain maps"

Fact. # of curves in a subchain is one less than # indices.

By change of coords, each lies in TI, UT(Sg)

Lemma. Tr, UT (Sg) is gen by W1,...,W2g, Tb * W1

Pf. The corresponding push maps are

tangentially framed.

These clearly generate M. Need to get the fiber of M. UT - M.

Claim. Tb * W1 = W4W3 W2 Td