2.8 Autocorrelation

Just as correlation measures the extent of a linear relationship between two variables, autocorrelation measures the linear relationship between *lagged values* of a time series.

There are several autocorrelation coefficients, corresponding to each panel in the lag plot. For example, r_1 measures the relationship between y_t and y_{t-1} , r_2 measures the relationship between y_t and y_{t-2} , and so on.

The value of r_k can be written as

$$r_k = rac{\sum\limits_{t=k+1}^T (y_t - ar{y})(y_{t-k} - ar{y})}{\sum\limits_{t=1}^T (y_t - ar{y})^2},$$

where T is the length of the time series.

The first nine autocorrelation coefficients for the beer production data are given in the following table.

r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9
-0.102	-0.657	-0.060	0.869	-0.089	-0.635	-0.054	0.832	-0.108

These correspond to the nine scatterplots in Figure 2.13. The autocorrelation coefficients are plotted to show the *autocorrelation function* or ACF. The plot is also known as a *correlogram*.

ggAcf(beer2)

Figure 2.14: Autocorrelation function of quarterly beer production.

In this graph:

- r_4 is higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be four quarters apart and the troughs tend to be four quarters apart.
- r_2 is more negative than for the other lags because troughs tend to be two quarters behind peaks.
- The dashed blue lines indicate whether the correlations are significantly different from zero. These are explained in Section 2.9.

Trend and seasonality in ACF plots

When data have a trend, the autocorrelations for small lags tend to be large and positive because observations nearby in time are also nearby in size. So the ACF of trended time series tend to have positive values that slowly decrease as the lags increase.

When data are seasonal, the autocorrelations will be larger for the seasonal lags (at multiples of the seasonal frequency) than for other lags.

When data are both trended and seasonal, you see a combination of these effects. The monthly Australian electricity demand series plotted in Figure 2.15 shows both trend and seasonality. Its ACF is shown in Figure 2.16.

```
aelec <- window(elec, start=1980)
autoplot(aelec) + xlab("Year") + ylab("GWh")</pre>
```


Figure 2.15: Monthly Australian electricity demand from 1980-1995.

Figure 2.16: ACF of monthly Australian electricity demand.

The slow decrease in the ACF as the lags increase is due to the trend, while the "scalloped" shape is due the seasonality.