TEMA 5. APLICACIONES LINEALES.

1. DEFINICIONES

Aplicación entre dos conjuntos.
Aplicación exhaustiva.
Aplicación inyectiva.
Aplicación biyectiva.

- 2. APLICACIONES LINEALES
- 3. NUCLEO E IMAGEN DE UNA APLICACION LINEAL. RANGO
- 4. CLASIFICACION DE APLICACIONES LINEALES
- 5. MATRIZ DE UNA APLICACIÓN LINEAL
- 6. ECUACIÓN MATRICIAL DE UNA APLICACIÓN LINEAL. TEOREMAS.

1. DEFINICIONES

D 1.1- APLICACIÓN ENTRE DOS CONJUNTOS.

Sean A y B dos conjuntos dados, una correspondencia que a cada elemento $x \in A$ le asocia un elemento $y \in B$, y solo uno, se llama una aplicación de A en B.

Ejemplos de correspondencias no aplicaciones:

D 1.2— APLICACIÓN EXHAUSTIVA

Sea $f:A\longrightarrow B$ una aplicación; f es exhaustiva ssi f(A)=B es decir si todos los elementos de B tienen anti-imagen o antecedente (todo elemento de B resulta ser imagen de uno o varios elementos de A). Se dice que f es una aplicación de A sobre B.

D 1.3- APLICACIÓN INYECTIVA

Sea $f:A \longrightarrow B$ una aplicación, f es inyectiva, si elementos distintos de A tienen distinta imagen, $x \neq y \Rightarrow f(x) \neq f(y)$

o lo que es lo mismo si cada elemento $y \in f(A)$ es imagen de un solo elemento $x \in A$:

$$f(x) = f(y) \implies x = y$$

De la definición anterior se desprende que cada elemento de B tendrá a lo sumo un solo antecedente, es decir que la anti-imagen de un elemento de B es un solo elemento de A o el conjunto vacio.

D 1.4— APLICACIÓN BIYECTIVA

Sea $f:A\longrightarrow B$ una aplicación; si f es inyectiva y exhaustiva le diremos biyectiva o biunívoca.

2. APLICACIONES LINEALES

Ejemplo 2.1: Consideremos un espacio E y la aplicación identidad que transforma a cada vector de E en él mismo:

$$I: E \longrightarrow E$$

$$x \longrightarrow x$$

En primer lugar vamos a estudiar si existe relación entre la imagen de una suma de vectores Iig(x+yig)

y las imágenes de cada sumando: I(x), I(y)

Por definición de aplicación identidad: I(x+y) = x+y

$$\begin{array}{c} I(x) = x \\ I(y) = y \end{array} \Rightarrow I(x) + I(y) = x + y$$

Por lo que podemos escribir I(x+y) = x + y = I(x) + I(y)

$$I(x+y) = I(x) + I(y)$$

La imagen de la suma es la suma de las imágenes

En segundo lugar vamos a estudiar si existe relación entre la imagen de escalar por vector $I(\lambda x)$

y la imagen del vector I(x)

por definición de aplicación identidad: $I(\lambda x) = \lambda x$

$$I(x) = x$$

Por lo que podemos escribir $I(\lambda x) = \lambda x = \lambda I(x)$

La imagen de escalar por vector es

$$I(\lambda x) = \lambda I(x)$$

el escalar por la imagen del vector.

Ejemplo 2.2: Ahora vamos a estudiar la aplicación definida en R que transforma a cada nº real en el n° real 2.

$$f: R \longrightarrow R$$
$$x \longrightarrow 2$$

Análogamente al ejemplo anterior estudiamos la imagen de una suma de vectores f(x+y)

y las imágenes de cada sumando: f(x), f(y)

Por definición de f: f(x+y)=2

$$\begin{cases}
f(x) = 2 \\
f(y) = 2
\end{cases} \Rightarrow f(x) + f(y) = 2 + 2 = 4$$

En este caso deberemos escribir $f(x+y)=2 \neq 4=f(x)+f(y)$

$$f(x+y) \neq f(x) + f(y)$$

La imagen de la suma NO es la suma de las imágenes

Estudiaremos también la imagen de escalar por vector $f(\lambda x)$

y la imagen del vector f(x)

por definición de $f: f(\lambda x) = 2$

$$f(x) = 2$$
 \Rightarrow $\lambda f(x) = 2\lambda$

Por lo que podemos escribir $f(\lambda x) = 2 \neq 2\lambda = \lambda f(x)$

$$f(\lambda x) \neq \lambda f(x)$$

La imagen de escalar por vector NO es el escalar por la imagen del vector.

Diremos que la aplicación del ejemplo 1 es una aplicación lineal

Diremos que la aplicación del ejemplo 2 NO es una aplicación lineal

$$f[\lambda(x,y)] = f(\lambda x, \lambda y) = \lambda x = \lambda f(x,y)$$
 D 2.1– APLICACIÓN LINEAL

Sean E y F dos espacios vectoriales sobre R. Sea $f:E\longrightarrow F$ una aplicación, diremos que f es lineal si verifica:

i)
$$\forall \vec{x}, \vec{y} \in E$$
 $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$

ii)
$$\forall \lambda \in R \quad \forall x \in E \quad f(\lambda \vec{x}) = \lambda f(\vec{x})$$

Estas dos condiciones son equivalentes a una tercera.

$$\forall x, y \in E$$
 $\forall \lambda, \mu \in R$ $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$

pprox **ER 2.1** Estudiar la siguiente aplicación y comprobar que es lineal: $f:R^2 \longrightarrow R$

$$(x,y) \longrightarrow x$$

1)
$$f[(x_1, y_1) + (x_2, y_2)] = f(x_1 + x_2, y_1 + y_2) = x_1 + x_2$$
 $f(x_1, y_1) = x_1$ $f(x_2, y_2) = x_2$ $f[(x_1, y_1) + (x_2, y_2)] = x_1 + x_2 = f(x_1, y_1) + f(x_2, y_2)$

2)
$$f[\lambda \circ (x, y)] = f(\lambda x, \lambda y) = \lambda x$$
 $f(x, y) = x$
 $f[\lambda \circ (x, y)] = \lambda x = \lambda \circ f(x, y)$

Vamos a intentar responder a las siguientes preguntas:

- Si tenemos una aplicación lineal $f: E \longrightarrow F$
- a) ¿cuál será la imagen del elemento neutro de E?

b) ¿Existe relación entre la imagen de un vector $f(\vec{x})$ y la de su opuesto $f(-\vec{x})$?

Veámoslo en primer lugar en un ejemplo:

Dada la aplicación lineal
$$f: R^2 \longrightarrow R$$
 del **ER 2.1** calcular $f(\vec{0}_E)$, $f(x,y)$, $f(-x,-y)$ $(x,y) \longrightarrow x$

La aplicación asocia cada vector con el nº real igual a su primera coordenada.

$$\vec{0}_E = (0,0)$$
 \longrightarrow La primera coordenada del vector nulo vale 0 \longrightarrow $f(0,0) = 0$

En este caso la imagen del vector nulo de \mathbb{R}^2 es el vector nulo de \mathbb{R} . ¿Será siempre así?

$$f(-x,-y) = -x$$

$$f(x,y) = x \longrightarrow f(-x,-y) = -f(x,y)$$

En este caso la imagen del vector opuesto de un vector \vec{v} es el v. opuesto de la imagen de \vec{v} ¿Será siempre así?

1- CONSECUENCIAS DE LA DEFINICIÓN

Tenemos una aplicación lineal $f: E \longrightarrow F$; entonces

a) La imagen del vector nulo de E es el vector nulo de $F: f\left(ec{m{0}}_{E}
ight) = ec{m{0}}_{F}$

Demostración:

El vector nulo $\vec{0}_E$ es el elemento neutro de la suma por tanto $\forall \vec{x} \in E$ $\vec{x} + \vec{0}_E = \vec{x}$

Como
$$\vec{x} + \vec{0}_E = \vec{x}$$
 \Rightarrow $f(\vec{x} + \vec{0}_E) = f(\vec{x})$ (1)

Por ser
$$f$$
 lineal $f(\vec{x} + \vec{0}_E) = f(\vec{x}) + f(\vec{0}_E)$ (2)

De (1) y (2) se desprende $f(\vec{x}) + f(\vec{0}_E) = f(\vec{x})$ Luego $f(\vec{0}_E)$ es el e. neutro de la suma en F .

$$f(\vec{0}_E) = \vec{0}_F$$

b)
$$f(-\vec{x}) = -f(\vec{x})$$

Demostración:

La suma de un vector y su opuesto es el e. neutro por tanto $\forall \vec{x} \in E \quad \vec{x} + (-\vec{x}) = \vec{0}_E$

Como
$$\vec{x} + (-\vec{x}) = \vec{0}_E \implies f(\vec{x} + (-\vec{x})) = f(\vec{0}_E)$$
 (1)

Por ser
$$f$$
 lineal
$$f(\vec{x} + (-\vec{x})) = f(\vec{x}) + f(-\vec{x})$$
 (2)

De (1) y (2) se desprende
$$f(\vec{x}) + f(-\vec{x}) = f(\vec{0}_E)$$

Por apartado **a)** sabemos
$$f(\vec{0}_E) = \vec{0}_F$$
 \Rightarrow $f(\vec{x}) + f(-\vec{x}) = \vec{0}_F$

Por la propiedad del elemento opuesto necesariamente $f(-\vec{x})$ ha de ser el opuesto de $f(\vec{x})$ es decir $f(-\vec{x}) = -f(\vec{x})$

3. NUCLEO E IMAGEN DE UNA APLICACION LINEAL. RANGO

D3.1-NÚCLEO

Sea $f: E \longrightarrow F$ una aplicación lineal. Se llama núcleo de f y se denota por Ker(f) o Nuc(f), al conjunto de elementos de E cuya imagen es el cero de $F: Ker(f) = \left\{ \vec{x} \in E / f(\vec{x}) = \vec{0}_F \right\}$

5.1-TEOREMA

Sea $f: E \longrightarrow F$ una aplicación lineal, Ker(f) es un s. e. v. de E.

≈ ER 3.1: Sea $f: R^3 \longrightarrow R^2$ tal que f(x, y, z) = (x + y - 2z, x - y + z). Buscar Ker(f) Cálculo del núcleo: vectores de R^3 cuya imagen es el vector (0,0)

$$f(x,y,z) = (x+y-2z, x-y+z) = (0,0) \text{ es decir } \begin{cases} y-2z+x=0 \\ -y+z+x=0 \end{cases} \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & -2 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$
$$\begin{cases} y-2z=-x \\ -z=-2x \end{cases} \begin{cases} x=x \\ y=3x \\ z=2x \end{cases}$$

Son los vectores de la forma (x,3x,2x). Una base sería $\{(1,3,2)\}$

5.2-TEOREMA

Una aplicación lineal $f: E \longrightarrow F$ es inyectiva ssi el núcleo se reduce al elemento neutro de E . $f \text{ inyectiva} \Leftrightarrow \textit{Ker}(f) = \left\{ \vec{0}_{\scriptscriptstyle E} \right\}$

5.3-TEOREMA

Sea $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ un conjunto de vectores L.I. pertenecientes a E y $f: E \longrightarrow F$ una aplicación lineal inyectiva

Entonces $f(\vec{x}_1), f(\vec{x}_2), \dots, f(\vec{x}_n)$ son vectores L.I. pertenecientes a F

D3.2-IMAGEN

Dada una aplicación lineal $f: E \longrightarrow F$ llamamos imagen de f y se designa por $\operatorname{Im}(f)$ al conjunto formado por los elementos de F que tienen anti-imagen: $\operatorname{Im}(f) = \left\{ y \in F / \exists \vec{x} \in E \quad con \quad f(\vec{x}) = \vec{y} \right\}$

5.4-TEOREMA

Sea $f: E \longrightarrow F$ una aplicación lineal, $\operatorname{Im}(f)$ es un s. e. v. de F .

≈ ER 3.2 Sea $f: R^3 \longrightarrow R^2$ tal que f(x, y, z) = (x + y - 2z, x - y + z). Buscar Im(f) Cálculo de la imagen $\text{Im}(f) = \{y \in F / \exists x \in E \ con \ f(x) = y\}$ f(x, y, z) = (x + y - 2z, x - y + z) = (x, x) + (y, -y) + (-2z, z) = x(1, 1) + y(1, -1) + z(-2, 1) (1,1),(1,-1),(-2,1) forman un sistema generador de Im(f).

En R^2 el número máximo de vectores L.I. es 2. Una base estaría formada por ig(1,1ig),ig(1,-1ig)

5.5-TEOREMA

Si E es un e. v. de dimensión n y $f: E \longrightarrow F$ una aplicación lineal $\Rightarrow \operatorname{Im}(f)$ es de dimensión finita menor o igual que n: dim $\operatorname{Im}(f) \leq n$.

5.6—TEOREMA (núcleo-imagen)

Sean E y F espacios vectoriales sobre R y $f: E \longrightarrow F$ una aplicación lineal. Si dim E es finita, podemos asegurar que:

- $\dim Ker(f)$, $\dim Im(f)$ son finitas
- $\dim E = \dim Ker(f) + \dim Im(f)$

D3.3- RANGO DE UNA APLICACIÓN LINEAL

Sea $f: E \longrightarrow F$ una aplicación lineal, dim E finita. Se llama rango de f a la dimensión del subespacio vectorial Im(f): rango(f) = dim Im(f).

4. CLASIFICACION DE APLICACIONES LINEALES

D4.1-MONOMORFISMO - EPIMORFISMO - ISOMORFISMO

Sea $f: E \longrightarrow F$ aplicación lineal: Si f es inyectiva diremos que es monomorfismo

Si f es exhaustiva diremos que es **epimorfismo**

Si f es biyectiva diremos que es **isomorfismo**

D4.2- ENDOMORFISMO

Sea $f: E \longrightarrow E$ aplicación lineal; Entonces f es endomorfismo.

D4.3— AUTOMORFISMO

Es un endomorfismo biyectivo.

5.7—TEOREMA

Sean E y F espacios vectoriales de dimensión finita sobre R , $f:E\longrightarrow F$ una aplicación lineal. Las siguientes proposiciones son equivalentes:

a) f es isomorfismo

b)
$$\dim E = \dim F$$
 y $Ker(f) = \{0_E\}$

5. MATRIZ DE UNA APLICACIÓN LINEAL

Antes de dar una definición general vamos a ilustrarla con los siguientes ejemplos.

Ejemplo 5.1 Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ la aplicación lineal tal que $f(x, y)_c = (x + y, y - 2x, x + y)_c$.

a) Obtener las imágenes de los vectores de la base canónica de R^2

$$B_C = \{(1,0), (0,1)\}$$

$$f(1,0) = (1+0,0-2,1+0)_C = (1,-2,1)_C$$

$$f(0,1) = (1,1,1)_C$$

Colocando las coordenadas de f(1,0) y de f(0,1) como columnas de una matriz obtendremos:

$$\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \qquad f \underbrace{\begin{pmatrix} 1, 0 \\ 0, 1 \end{pmatrix}} = \begin{pmatrix} 1, -2, 1 \\ 0, 1 \end{pmatrix} c \qquad \qquad \left(f \begin{pmatrix} 1, 0 \\ 0, 1 \end{pmatrix} \right) = \begin{pmatrix} (1, 0, 0), (0, 1, 0), (0, 0, 1) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

Se calculan las imágenes de los vectores de la base canónica de \mathbb{R}^2 y estas imágenes vienen expresadas en base canónica de \mathbb{R}^3

b) Obtener las imágenes de los vectores de la base $B_E = \{(1,-1),(2,1)\}$ de R^2 expresadas en base canónica de R^3

$$f(\mathbf{1}, -\mathbf{1}) = (1 + (-1), -1 - 2, 1 + (-1))_{C} = (0, -3, 0)_{C}$$
$$f(\mathbf{2}, \mathbf{1}) = (2 + 1, 1 - 4, 2 + 1)_{C} = (3, -3, 3)_{C}$$

Colocando las coordenadas de f(1,-1) y de f(2,1) como columnas de una matriz obtendremos:

$$\begin{pmatrix} 0 & 3 \\ -3 & -3 \\ 0 & 3 \end{pmatrix} \qquad f \begin{pmatrix} 1, -1 \\ 2, 1 \end{pmatrix} = \begin{pmatrix} 0, -3, 0 \\ 2, 1 \end{pmatrix} c$$

$$(f(1, -1), f(2, 1)) = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) \begin{pmatrix} 0 & 3 \\ -3 & -3 \\ 0 & 3 \end{pmatrix}$$

Se calculan las imágenes de los vectores de la base B_E de R^2 y estas imágenes vienen expresadas en base canónica de R^3

c) Obtener las imágenes de los vectores de la base canónica de \mathbb{R}^2 expresadas en base \mathbb{B}_F de \mathbb{R}^3

$$B_{C} = \{(1,0),(0,1)\}$$

$$B_{F} = \{(1,-1,0),(1,0,-1),(1,1,1)\}$$

$$B_{C} \xrightarrow{P} B_{F}$$

$$f(0,1) = (1,1,1)_{C}$$

Hay que hacer un cambio de base para obtener las coordenadas en B_F :

$$\begin{array}{ccc}
B_C & \xrightarrow{P} & B_F \\
(1,-2,1)_C & \xrightarrow{P} & (a,b,c)_{B_F} \\
(1,1,1)_C & \xrightarrow{P} & (m,n,p)_{B_R}
\end{array}$$

Según la definición de matriz cambio de base P sería la matriz cuyas columnas son las coordenadas de los vectores de B_C expresados en la base B_F .

Dado que lo que conocemos es justo lo contrario, es decir las coordenadas de B_F expresados en B_C , calcularemos la matriz cambio de base $B_F \xrightarrow{Q} B_C$

La matriz P será la inversa de la matriz Q.

$$Q = P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \qquad P = \frac{1}{3} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\frac{1}{3} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{1} \\ -\mathbf{2} \\ \mathbf{1} \end{pmatrix}_{C} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{B_{E}} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}_{B_{E}}$$

$$P \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}_{C} = \begin{pmatrix} m \\ n \\ p \end{pmatrix}_{B_{E}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{B_{E}}$$

$$P\begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}_{C} = \begin{pmatrix} m \\ n \\ p \end{pmatrix}_{B_{F}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{B_{I}}$$

Colocando las coordenadas de f(1,0) y de f(0,1) como columnas de una matriz obtendremos:

$$\begin{pmatrix} 2 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad f \underbrace{\begin{pmatrix} 1, 0 \\ 0, 1 \end{pmatrix}}_{B_F} = \begin{pmatrix} 2, -1, 0 \\ 0, 0, 1 \end{pmatrix}_{B_F}$$

$$\begin{pmatrix} 2 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad f \underbrace{\begin{pmatrix} 1, 0 \\ 0, 1 \end{pmatrix}}_{B_F} = \begin{pmatrix} 2, -1, 0 \\ 0, 1 \end{pmatrix}_{B_F} = \begin{pmatrix} 0, 0, 1 \\ 0 \\ 0 \end{pmatrix}_{B_F} \qquad \begin{pmatrix} f(1, 0), f(0, 1) \end{pmatrix} = \begin{pmatrix} 1, 0 \\ 0, 1 \end{pmatrix} = \begin{pmatrix} 1, 0 \\ 0, 1 \end{pmatrix}_{B_F} = \begin{pmatrix} 1, 0 \\ 0, 1 \end{pmatrix}_{$$

Se calculan las imágenes de los vectores de la base canónica de R^2 y estas imágenes vienen expresadas en base B_F de R^3

Hay que hacer un cambio de base para obtener las coordenadas en B_F :

d) Obtener las imágenes de los vectores de la base B_E de R^2 expresadas en base B_F de R^3

 $\boldsymbol{B}_{F} = \{(1,-1,0), (1,0,-1), (1,1,1)\}$

$$B_E = \{(1,-1),(2,1)\}$$

$$f(1,-1) = (0,-3,0)_C$$

$$f(2,1) = (3,-3,3)_C$$

$$P\begin{pmatrix} 0 \\ -3 \\ 0 \end{pmatrix}_{C} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}_{B_{E}} \qquad P\begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}_{C} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}_{B_{E}}$$

Colocando las coordenadas de f(1,-1) y de f(2,1) como columnas de una matriz obtendremos:

$$\begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix} \qquad f \begin{pmatrix} 1, -1 \\ 2, 1 \end{pmatrix} = \begin{pmatrix} 2, -1, -1 \\ 4, -2, 1 \end{pmatrix}_{B_F}$$

$$\begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix} \qquad f \begin{pmatrix} 1, -1 \\ 2, 1 \end{pmatrix} = \begin{pmatrix} 2, -1, -1 \\ 2, 1 \end{pmatrix} = \begin{pmatrix} 2, -1, -1 \\ 2, 1 \end{pmatrix} = \begin{pmatrix} 4, -2, 1$$

Se calculan las imágenes de los vectores de la base B_E de R^2 y estas imágenes vienen expresadas en base B_F de R^3

En todos los casos hay que calcular las imágenes de los vectores de una base del espacio origen, y estas imágenes se expresan en una cierta base del espacio correspondiente.

Estas matrices son matrices asociadas a la aplicación lineal:

En caso a)
$$\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1, 0 \\ -2, 1 \\ f(0,1) = \begin{pmatrix} 1, -2, 1 \\ 0, 1 \end{pmatrix} c$$
 respecto a las bases canónica de R^2 y canónica de R^3

$$(f(1,0), f(0,1)) = ((1,0,0), (0,1,0), (0,0,1))\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$(f(1,-1),f(2,1)) = ((1,0,0),(0,1,0),(0,0,1)) \begin{pmatrix} 0 & 3 \\ -3 & -3 \\ 0 & 3 \end{pmatrix}$$
 En caso c)
$$\begin{pmatrix} 2 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} f(1,0) \\ 0,1 \end{pmatrix} = \begin{pmatrix} 2 & -1,0 \\ 0,0,1 \end{pmatrix}_{B_F}$$
 respect oa las bases canónica de R^2 y B_F de R^3
$$(f(1,0),f(0,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 En caso d)
$$\begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1,-1 \\ 2 & 1 \end{pmatrix}_{B_F}$$
 respect oa las bases B_E de R^2 y B_F de R^3
$$(f(1,-1),f(2,1)) = ((1,-1,0),(1,0,-1),(1,1,1)) \begin{pmatrix} 2 & 4 \\ -1 & -2 \\ -1 & 1 \end{pmatrix}$$

D5.1- MATRIZ DE UNA APLICACIÓN LINEAL

Sean E y F espacios vectoriales de dimensión p y q respectivamente: $B_E = \left\{ \vec{u}_1, \vec{u}_2, \ldots, \vec{u}_p \right\}$ una base de E y $B_F = \left\{ \vec{g}_1, \vec{g}_2, \ldots, \vec{g}_q \right\}$ una base de F y sea $f : E \longrightarrow F$ una aplicación lineal:

Llamamos matriz de f respecto de las bases B_E, B_F a aquella cuyas columnas son las coordenadas de los vectores $\left[f\left(\vec{u}_1\right), f\left(\vec{u}_2\right),, f\left(\vec{u}_p\right)\right]$ en la base $B_F = \left\{\vec{g}_1, \vec{g}_2,, \vec{g}_q\right\}$.

$$f(\vec{u}_{1}) \in F \implies f(\vec{u}_{1}) = a_{11}\vec{g}_{1} + a_{21}\vec{g}_{2} + \dots + a_{q1}\vec{g}_{q}$$

$$f(\vec{u}_{2}) \in F \implies f(\vec{u}_{2}) = a_{12}\vec{g}_{1} + a_{22}\vec{g}_{2} + \dots + a_{q2}\vec{g}_{q}$$

$$\dots + a_{qp}\vec{g}_{q}$$

$$f(\vec{u}_{p}) \in F \implies f(\vec{u}_{p}) = a_{1p}\vec{g}_{1} + a_{2p}\vec{g}_{2} + \dots + a_{qp}\vec{g}_{q}$$

Estas son las imágenes de los vectores de la base $B_{\scriptscriptstyle E}$ expresadas en la base $B_{\scriptscriptstyle F}$. Si expresamos estas igualdades en forma matricial se escribiría:

$$\left[f\left(\vec{u}_{1}\right), f\left(\vec{u}_{2}\right), \dots, f\left(\vec{u}_{p}\right) \right] = \left[\vec{g}_{1}, \dots, \vec{g}_{q} \right] \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \vdots \\ a_{q1} & a_{q2} & \dots & a_{qp} \end{pmatrix}$$

La columna i son las coordenadas del vector $\,f\left(ec{u}_{i}
ight)$ en base $\,B_{\scriptscriptstyle F}$

El tamaño de la matriz A será $q \times p$ La igualdad (1) se puede escribir

$$q$$
: dimensión de F , p : dimensión de E

$$\boxed{f\left(\vec{u}_1\right), f\left(\vec{u}_2\right), \dots, f\left(\vec{u}_p\right)} = \left[\vec{g}_1, \dots, \vec{g}_q\right] A}$$

≈ ER5.1 Sean $B_1 = \{(1,1,0),(-1,1,2),(0,2,1)\}$ una base de R^3 y $B_2 = \{(1,1),(-1,1)\}$ una base de R^2 . Sea $f:R^3 \longrightarrow R^2$ la aplicación lineal tal que f(x,y,z) = (x+y-2z,x-y+z). Obtener la matriz asociada a f respecto de las bases B_1 de R^3 y B_2 de R^2 .

Por lo tanto hay que:

$$f(1,1,0) = (1+1-0,1-1+0) = (2,0)_C$$

Calcular imágenes de los vectores de B_1 : $f(-1,1,2) = (-1+1-4,-1-1+2) = (-4,0)_C$ $f(0,2,1) = (0+2-2,0-2+1) = (0,-1)_C$

Expresarlas en la base B_2 :

Hay que hacer un cambio de base, de base canónica a base $B_2 = \{(1,1),(-1,1)\}$

Conocemos los vectores de B_2 en base canónica: $B_2 \xrightarrow{\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right)} B_c$

 $\text{Matriz cambio de base:} \qquad B_2 = B_C \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ por tanto } B_C = B_2 \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1} = B_2 \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

$$\vec{x} = B_C \begin{pmatrix} 2 \\ 0 \end{pmatrix}_C = B_2 \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}_C \\ \vec{x} = B_2 \begin{pmatrix} a \\ b \end{pmatrix}_{B_2} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}_C$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}_C = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{B_2} \qquad \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 0 \end{pmatrix}_C = \begin{pmatrix} -2 \\ 2 \end{pmatrix}_{B_2} \qquad \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix}_C = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}_{B_2}$$

Formamos una matriz con las coordenadas calculadas $\begin{pmatrix} 1 & -2 & -\frac{1}{2} \\ -1 & 2 & -\frac{1}{2} \end{pmatrix}_{B_1(R^3),B_2(R^2)}$

$$(f(1,1,0), f(-1,1,2), f(0,2,1)) = ((1,1), (-1,1)) \begin{pmatrix} 1 & -2 & -\frac{1}{2} \\ -1 & 2 & -\frac{1}{2} \end{pmatrix}_{B_1(R^3), B_2(R^2)}$$

6. ECUACION MATRICIAL DE UNA APLICACIÓN LINEAL

Sea $f:E \longrightarrow F$, A la matriz asociada a f respecto a dos bases B_E y B_F de E y F respectivamente. Vamos a encontrar una relación entre las coordenadas en base B_E de un vector $\vec{x} \in E$ y las

coordenadas en base $B_{\scriptscriptstyle F}$ del vector $f(\vec{x})\!\in\!F$

Comenzaremos con un ejemplo.

Ejemplo 6.1 Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ la aplicación lineal tal que su matriz asociada en bases canónica de \mathbb{R}^2 y canónica de \mathbb{R}^3 es $\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$. Calcular las coordenadas del vector imagen de $\vec{x} = (2, -1)_C \in \mathbb{R}^2$ expresado

en base canónica.

$$(2,-1)_{c} = 2 \circ (1,0) + (-1) \circ (0,1) = ((1,0),(0,1)) \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Aplicamos f a los dos miembros de la igualdad; como ambos miembros son iguales y f es aplicación (un mismo origen no puede tener dos imágenes distintas) sus imágenes también serán iguales.

$$f\left(2,-1\right)_{C} = f\left(2\circ(1,0) + (-1)\circ(0,1)\right) = \text{ por ser } f \text{ lineal } = 2\circ f\left(1,0\right) + (-1)\circ f\left(0,1\right)$$
$$f\left(2,-1\right)_{C} = \left(f\left(1,0\right), f\left(0,1\right)\right) \begin{pmatrix} 2\\ -1 \end{pmatrix} \qquad (6.1)$$

Por definición de matriz asociada a $\,f\,$ respecto a dos bases $\,B_{\!\scriptscriptstyle E}\,y\,\,B_{\!\scriptscriptstyle F}\,$ sabemos que

$$(f(1,0), f(0,1)) = ((1,0,0), (0,1,0), (0,0,1)) \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$$
 (6.2)

Sustituyendo (6.2) en (6.1)

$$f(2,-1)_{C} = ((1,0,0),(0,1,0),(0,0,1))\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Llamando Y_{c} a las coordenadas del vector $f\left(2,-1\right)_{c}$ en base canónica de R^{3} podemos escribir:

$$\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \mathbf{Y}_C \qquad \qquad \mathbf{Y}_C = \begin{pmatrix} 1 \\ -5 \\ 1 \end{pmatrix}_C$$

Planteamiento general: $f: E \longrightarrow F$, A matriz asociada a f respecto a $\mathbf{B}_{\mathbf{E}}$ y $\mathbf{B}_{\mathbf{F}}$.

 $oldsymbol{X_{BE}}$: coordenadas en base $oldsymbol{B_E}$ de un vector $ec{x} \in E$

 $\mathbf{Y}_{\mathbf{BF}}$: coordenadas en base $\mathbf{B}_{\mathbf{F}}$ del vector $f(\vec{x}) \in F$

Se puede demostrar que

$$A \cdot X_{RE} = Y_{RE}$$

D6.1- ECUACIÓN MATRICIAL DE LA APLICACIÓN LINEAL

 $A \cdot X_{BE} = Y_{BF}$ es la ecuación matricial de la aplicación lineal que relaciona las coordenadas de un vector \vec{x} de E en una base B_E con las coordenadas de $f(\vec{x})$ en una base B_F .

5.8-TEOREMA

Sea $A \in M_n(R)$, una matriz cuadrada tamaño n, las condiciones siguientes son equivalentes

- i) A es invertible
- ii) Los vectores columna de la matriz A son base de R^n .
- ii) La aplicación lineal definida por $f_A: R^n \longrightarrow R^n$ es biyectiva $X \longrightarrow AX$

5.9-TEOREMA

Sea la aplicación lineal $f: E \longrightarrow F$.

A es la matriz de la aplicación lineal en las bases ${\it B_E}$ y ${\it B_F}$

C es la matriz de la aplicación lineal en otras bases $m{B}_E'$ y $m{B}_F'$

Sea P la matriz de cambio de base B_E' a $B_E: B_E' \longrightarrow B_E$

Sea Q la matriz de cambio de base ${m B}_F'$ a ${m B}_F:$ ${m B}_F'$ \longrightarrow ${m B}_F$

Entonces se cumple que $Q^{-1} \bullet A \bullet P = C$

Ecuación matricial de la aplicación lineal para A , B_E y B_F : $A \cdot X_{BE} = Y_{BF}$

Ecuación matricial de la aplicación lineal para C , $m{B}_E'$ y $m{B}_F':m{C}ullet m{X}_{BE}'=m{Y}_{BF}'$

Ecuación del cambio de base $B_E' \xrightarrow{P} B_E X_{BE} = P \cdot X_{BE}'$

Ecuación del cambio de base $B_F' \xrightarrow{Q} B_F \qquad Y_{BF} = Q \cdot Y_{BF}'$

$$\begin{vmatrix}
A \cdot X_{BE} = Y_{BF} \\
X_{BE} = P \cdot X'_{BE}
\end{vmatrix} \rightarrow A \cdot (P \cdot X'_{BE}) = Y_{BF} \\
Y_{BF} = Q \cdot Y'_{BF}$$

$$A \cdot (P \cdot X'_{BE}) = Q \cdot Y'_{BF}$$

Multiplicando ambos miembros por \mathcal{Q}^{-1} y aplicando propiedad asociativa del producto de matrices:

 $m{B}_E$ obtenemos $m{Q}^{-1} ullet A ullet P ig) ullet X'_{BE} = Y'_{BF}$ que es la ecuación matricial de f en $m{B}'_E$ y $m{B}'_F$

Por lo tanto $Q^{-1} \bullet A \bullet P$ será la matriz asociada a f en esas bases: $Q^{-1} \bullet A \bullet P = C$

5.9-COROLARIO

Sea la aplicación lineal $f: E \longrightarrow E$

A es la matriz de la aplicación lineal en la base B_E

C es la matriz de la aplicación lineal en otra base B_E^\prime

Sea P la matriz de cambio de base B_E' a $B_E: B_E' \xrightarrow{P} B_E$

Entonces se cumple que $P^{-1} \bullet A \bullet P = C$

≈ ER 6.1 Sea $f: R^2 \longrightarrow R^3$ tal que f(x,y) = (x+y,y-2x,x+y). Encontrar la matriz de f respecto a la base canónica de R^2 y la base $B_F = \{(1,1,0),(0,1,1),(0,0,-2)\}$ de R^3 .

Aplicando el esquema del teorema 5.8

A es la matriz asociada en bases canónicas. ${m P}$ es la matriz identidad de orden 2 y

Calculada en Ejemplo 5.1 c) $\begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix}$

 ${m Q}$ es la matriz de cambio de base ${m B}_F$ a ${m B}_C$ en ${m R}^3$.

$$B_F \xrightarrow{Q} B_C$$

$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix}$$

$$C = Q^{-1} A P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 0 \\ -2 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -\mathbf{3} & \mathbf{0} \\ -2 & -\frac{1}{2} \end{pmatrix}$$