高等数学 I 练习卷(4)参考答案

- 一、填空题 (将答案写在答题纸相应的位置。每小题 3 分, 共 18 分.)
- **I.** 极限 $\lim_{x\to\infty} \frac{x+\sin x}{x+\cos x} = \underline{1}$.
- 2. 设 $f(x) = \sin^2 x$, 则 $f''(x) = 2\cos 2x$.
- 3. 曲线 $\begin{cases} x = \frac{t^2}{2} \\ 2 \end{cases}$ 在参数 t = 1 相应的点处的切线方程为 $x + y \frac{1}{2} = 0$.
- 4. $\forall y = 1 + x + \frac{x^2}{2} + \dots + \frac{x^{2020}}{2020}$, $\forall y^{(2020)} = \underline{2019!}$.
- 5. 不定积分 $\int \frac{1}{1+4x^2} dx = \frac{1}{2} \arctan 2x + C .$
- 6. 定积分 $\int_0^{2021\pi} \sin x dx = 2$.
- 二、单项选择题 (将答案写在答题纸相应的位置。每小题 3 分, 共 18 分.)
- 1. 下列极限值为1的是(A)

A.
$$\lim_{x\to\infty}e^{-\frac{1}{x}}$$

$$B. \lim_{x\to\infty}\frac{\sin^2 x}{x^2}$$

A.
$$\lim_{x\to\infty} e^{-\frac{1}{x}}$$
 B. $\lim_{x\to\infty} \frac{\sin^2 x}{x^2}$ C. $\lim_{x\to 0} \frac{\ln(1-x)}{x}$ D. $\lim_{x\to 0} e^{-\frac{1}{x}}$

D.
$$\lim_{x\to 0} e^{-\frac{1}{x}}$$

- 2. 曲线 $y = \frac{x \arctan x}{x-1}$ 的渐近线条数为(D)

- C. 2
- D. 3
- 3. 设 f(x) 在 x = 1 处连续,且 $\lim_{x \to 1} \frac{f(x)}{x-1} = 2$,则(C)
 - A. f'(1) = -1
- B. f'(1) = 1
- C. f'(1)=2 D. f'(1)不存在
- 4. 若 $f(-x) = -f(x)(-\infty < x < +\infty)$,在 (-%) 内有 f'(x) > 0,f''(x) < 0,则() $+\infty$ 内有(A)

 - A. f(x) 单增,曲线 f(x) 为凹弧
- B. f(x) 单减,曲线 f(x) 为凹弧
- C. f(x) 单减,曲线 f(x) 为凸弧
- D. f(x) 单增,曲线 f(x) 为凸弧
- 5. 己知 $f(e^x) = e^{2x}$,则 $\int f(x)dx = (D)$

 - A. $e^x + C$ B. $\frac{1}{2}e^{2x} + C$ C. $\frac{x^2}{2} + C$
- D. $\frac{x^3}{3} + C$
- 6. 关于函数(曲线) f(x)=|x| 叙述错误的是(C)

A.
$$在x=0$$
处连续

B. 在
$$x=0$$
处不可导

$$C.$$
 在 $x=0$ 处可微

三、计算题 (要求写出主要计算步骤及结果;每小题 8 分,共 16 分.)

1. 求极限
$$\lim_{x\to 0} \frac{1}{x} \left[1 - \frac{1}{x} \ln(1+x) \right]$$
.

解: 原式 =
$$\lim_{x \to 0} \frac{x - \ln(1+x)}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \frac{1}{1+x}}{2x}$$

$$= \lim_{x \to 0} \frac{1}{2(1+x)}$$

$$= \frac{1}{2}$$
8

$$\ln y_1 = x \ln \frac{x}{1+x} = x \left[\ln x - \ln(1+x) \right], \qquad \frac{y_1'}{y_1} = \ln \frac{x}{1+x} + \frac{1}{1+x} + \dots +$$

四、解答题 (要求写出主要解答步骤及结果;每小题 8 分,共 16 分.)

1. 讨论函数
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
 在 $x = 0$ 处连续性与可导性.

 $:: f(x) \to x = 0$ 处不可导.

2. 求函数(曲线) $I(x) = \int_0^x t e^{-t^2} dt$ 的单调区间与极值, 凹凸区间与拐点.(要求列表).

$$\diamondsuit I'(x) = 0 \ \ \exists x = 0 \ \ \exists x = \pm \frac{\sqrt{2}}{2} \ .$$

列表讨论如下:

X	$(-\infty,0)$	0	(0,+∞)	x	$(-\infty, -\frac{\sqrt{2}}{2})$	$-\frac{\sqrt{2}}{2}$	$(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$	$\frac{\sqrt{2}}{2}$	$(\frac{\sqrt{2}}{2},+\infty)$
I'(x)	-	0	+	I''(x)	_	0	+	0	_
I(x)	单减		単增	I(x)	Д		Щ		Д

凸区间(
$$-\infty$$
, $-\frac{\sqrt{2}}{2}$)、($\frac{\sqrt{2}}{2}$, $+\infty$),凹区间($-\frac{\sqrt{2}}{2}$, $\frac{\sqrt{2}}{2}$);拐点为($\pm\frac{\sqrt{2}}{2}$, $\frac{1}{2}$ - $\frac{1}{2}$ e ^{$-\frac{1}{2}$}). ……8'

五、计算积分 (要求写出主要计算步骤;每小题 8 分, 共 16 分.)

1. 计算不定积分 $\int \frac{1}{1+\sqrt[3]{3x}} dx$.

$$= \frac{1}{2} (1 + \sqrt[3]{3x})^2 - 2(1 + \sqrt[3]{3x}) + \ln\left|1 + \sqrt[3]{3x}\right| + C$$

2. 计算定积分 $\int_0^1 xe^{-2x} dx$.

六、证明题(要求写出主要证明步骤;每小题 8 分, 共 16 分.)

1. 设 f(x) 在[2,3]上连续,在(2,3) 内可导,且 f(2)=3, f(3)=2. 证明:存在点 $\xi \in (2,3)$,使得 $f(\xi)=-\xi f'(\xi)$.

2. 证明不等式: 当x > 4时, $2^x > x^2$.