Cheat Sheet

isakhammer

2020

- 1 Introduction
- 2 Continious maps
- 3 Topological spaces

Definition 3.1 (Topological spaces.). Recall that a topological space is a set X together with a collection Y of subsets of X that are open in X s.t.

- $T1. \emptyset, X \in \tau$
- **T2.** τ is closed under union if $U_{\lambda} \in \tau$ for all $\lambda \in \Lambda$, then

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \tau$$

• **T3.** τ is under finite intersections if $U_1, U_2, \dots, U_n \in \tau$, then

$$U_1 \cap U_2 \cap \ldots \cap U_n \in \tau$$

Definition 3.2 (Open and closed sets). Let (X, τ) , $U \subseteq X$

- Open set. If $U \in \tau$, then is U open.
- Closed set. If $U^c = X U \in \tau$, then is U closed

Remark. Let $X = \{a, b, c\}$ and let $U = \{a, b\}$. Then if $\tau = \{X, \emptyset\}$, U is not open nor closed.

Definition 3.3 (Neighbourhoods). Let X be a topological space, U a subset

of X and $x \in X$. We say U is a neighborhood of x if $x \in U$ and U is open in X.

Theorem 3.1. Continuity between topological spaces. Let X, Y be topological spaces. A map $f: X \to Y$ is said to be continious if preimages of open sats are open, i.e., if V is an open set in Y then the preimage $f^{-1}(V)$ of V is open in X.

4 Generating topologies

4.1 Generating topologies from subsets

Theorem 4.1 (The intersection of two topologies is a topology). Let X be a set, and let τ_1 and τ_2 be two topologies on X. Then $\tau_1 \cap \tau_2$ is also a topology on X.

Definition 4.1 (Topology generated by a collection of subsets). Let X be a set, and let $\mathscr S$ be a collection of subsets of X. The topology generated by $\mathscr S$ is the topology

$$\langle \mathscr{S} \rangle = \bigcap_{\substack{\tau \text{ topology} \\ S \subseteq \tau}} \tau$$

4.2 Basis for a topology

Definition 4.2 (Basis). Let X be a set. a **basis** for a topology on X is a collection \mathcal{B} of subsets of X such that

- B1: for each $x \in X$, there is a $B \in \mathcal{B}$ such that $x \in B$
- **B1:** if B_1, B_2 and $x \in B_1 \cap B_2$, then there is a $B_3 \in B$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Theorem 4.2. Let X be a set, and let $\mathscr B$ be basis for a topology on X. The collection τ generated by $\mathscr B$ of subsets U of X with the property that for each $x \in U$ there is a basis element $B \in \mathscr B$ with $x \in B \subseteq U$ is a topology on X.

Theorem 4.3. Let X be a set, and let \mathscr{B} be a basis for a topology τ on X. Then τ is equal to the collection of all unions of elements of \mathscr{B} .

Theorem 4.4. Let X be a set, and let \mathcal{B}_1 and \mathcal{B}_2 be bases for topologies τ_1 and τ_2 , respectively, on X. Then the following are equivalent.

- (i) τ_2 is finer than τ_1 , i.e., $\tau \subseteq \tau_2$.
- (ii) For each $B_1 \in \mathcal{B}_1$ and each $x \in B_1$, there is a $B_2 \in \mathcal{B}_2$ such that $x \in B_2 \subseteq B_1$.

4.3 Subbasis for a topology

Definition 4.3 (Subbasis). Let X be a set. A **subbasis** for a topology on X is a collection $\mathcal S$ whose union equals X.

Lemma 4.1. Let X be a set, and let $\mathscr S$ be a subbasis for a topology on X. The collection $\mathscr B$ consisting of all finite intersections of elements of $\mathscr S$ is a basis for a topology on X and is called the basis associated to $\mathscr S$.

Definition 4.4 (Standard topology). (Not in compendium.) The standard topology on \mathbb{R} is the topology generated by a basis consisting of all open intervals of \mathbb{R} .

Lemma 4.2. Let X be a set, and let $\mathscr S$ be a subbasis for a topology on X. The collection τ generated by $\mathscr S$ consisting of all unions of all basis elements of the associated basis $\mathscr B$ is a topology on X.

Theorem 4.5. Let X be a set, and let $\mathscr S$ be a subbasis for a topology on X. Then there exists a unique topology $\langle \mathscr S \rangle$ generated by $\mathscr S$ which is smaller than any other topology containing $\mathscr S$, where

$$\langle \mathscr{S} \rangle = \left\{ \bigcup_{\lambda \in \Lambda} \bigcap_{i=1}^{n_{\lambda}} S_{\lambda,i} \mid S_{\lambda,i} \in \mathscr{S} \right\}$$

Theorem 4.6. Let X and Y be topological spaces, and let \mathscr{B} (resp., \mathscr{S}) be a basis (resp., subbasis). Then a map $f: X \to Y$ is continious if and only if for each $B \in \mathscr{B}$ (resp. $S \in \mathscr{S}$) the preimage $f^{-1}(B)$ (resp., $f^{-1}(S)$) is open in X.

5 Constructing topological spaces

5.1 Subspaces

Definition 5.1 (Substance topology). Let X be a topological space, and let A be a subset of X. The collection

$$\tau_A = \{ A \cap U \mid U \text{ is open in } X \}$$

of substs of A is called the topology on A.

Lemma 5.1. Let X be a topological space, and let A be a subsets of X. Then the collection

$$\tau_A$$
) $\{A \cap U \mid U \text{ is open in } X\}$

is a topology on A.

Theorem 5.1. Let X be a topological space, and let \mathscr{B} be a basis for the topology on X. If A is a subset X, the collection

$$\mathscr{B}_A = \{ A \cap B \mid B \in \mathscr{B} \}$$

is a basis for the subsapace topology on A.

Theorem 5.2. Let X be a topological space, and let A be a subset of X. Then the subspace topology on A is the only topology on A with the following universal property: for every topological space Y and every map:

$$f: Y \to A$$

f is continious if and only if $i \circ f: Y \to X$ is continious where $i: A \to X$ is the inclusion map given by i(x) = x for $x \in A$.

5.2 Products

Definition 5.2 (Product topology). Let X and Y be topological spaces. The product topology on $X \times Y$ is the topology generated by the basis

$$\mathscr{B} = \{ U \times V \mid U \text{ is open in } X \text{ and } V \text{ is open in } Y \}$$

Lemma 5.2. Let X and Y be topological spaces. Then the collection

$$\mathscr{B}$$
) { $U \times V \mid U$ is open in X and V is open in Y }

is a bsis for a topology on $X \times Y$.

Theorem 5.3. Let X and Y be topological paces. If \mathcal{B}_X is a basis for a the topology on X and \mathcal{B}_Y is a basis for the topology on Y, then the collection

$$\mathscr{B}_{X\times Y} = \{B_X \times B_Y \mid B_X \in \mathscr{B}_X \text{ and } B_Y \in \mathscr{B}_Y\}$$

is a bsis for the product topology on $X \times Y$.

Theorem 5.4. Let X and Y be topological spaces. Let $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ be the projections of $X \times Y$ onto its first and second factors, respectively. The product topology is the only topology on $X \times Y$ with the following universial property: for every topological space Z and every map $f: Z \to X \times Y$, f is continious if and only if $\pi_1 \circ f: Z \to X$ and $\pi_2 \circ f: Z \to Y$ are continious.

5.3 Quotient spaces

Definition 5.3 (Equivalence classes). Let X be a set, and let \sim be an equivalence relation on X. The equivalence class of $x \in X$ is the subset

$$[x] = \{ y \in X \mid x \sim y \}$$

of X . Let

$$X/\sim = \{[x] \mid x \in X\}$$

Lemma 5.3. Let X and A be sets, and let $\pi: X \to A$ be a surjective map. Then the map

$$\phi: X/\sim \to A$$

given by $\phi([x]) = \pi(x)$, where $x_1 \sim x_2$ if and only if $\pi(x_1) = \pi(x_2)$, is a bijection.

Definition 5.4 (Quotient space). Let X be a topological space, let A be a set, and elt $\pi: X \to A$ be a surjective map. The quotient topology on A induced by π is the collection of subsets U of A such that $\pi^{-1}(U)$ is open in X. We say that π is a quotient map if A is given the quotient topology, and we call A the quotient space.

Lemma 5.4. Let X be a topological space, let A be a set, and let $\pi: X \to A$ be a surjective map. Then the quotient topology on A induced by π is a topology and it is the finest topology on A such that π is continuous.

Definition 5.5 (Open and closed maps). Let X and Y be topological spaces, and let $f: X \to Y$ be a continious map. We say that f is an open map for each suchset U of X that is open in X the image f(U) is open in Y. Likewise, we say that f is a closed map if for each subset V of X that is closed in X the image f(V) is closed in Y.

Lemma 5.5. Let X and Y be topological spaces, and let $\pi: X \to Y$ be a surjective continious map.

- (i) If π is in addition open then it is a quotient map.
- (ii) If π is in addition closed then it is a quotient map.

Theorem 5.5. Let X be a topological space, let A be a set, and let $\pi: X \to A$ be a surjective map. The quotient topology is the only topology on A with the following universal property: for every topological space Y and every map $f: A \to Y$, f is continious if and only if $f \circ \pi: X \to Y$ is continious.

6 Topological properties

6.1 Connected spaces

Definition 6.1 (Connected space). Let X be a topological space. A **seperation** of X is a pair of non-empty subsets U and V that are open in X, disjoint and whose union equal X. We say that X is **connected** if there are no seperations of X. Otherwise it is **disconnected**.

Theorem 6.1 (Closed and open subsets). Let X be a topological space. Then X is connected if and only if the are no non-empty proper subsets of X that are both open and closed in X.

Lemma 6.1 (Disconnectivity). Let X be a disconnected space with seperation U and V, and et A be a connected subspace of X. Then $A \subseteq U$ and $A \subseteq V$.

Theorem 6.2 (Collection connectivity). Let X be a topological space, and let $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of connected subspaces of X such that $\bigcap_{{\lambda}\in\Lambda}A_{\lambda}$ is non-empty. Then $\bigcup_{{\lambda}\in\Lambda}A_{\lambda}$ is connected.

Definition 6.2 (Path connected space). Let X be a topological space, and let $x, y \in X$. A path from x to y is a continious map: $f: [a,b] \to X$.t. f(a) = x and f(b) = y where [a,b] is a subspace of $\mathbb R$ with the standard topology. We say that X is **path connected** if every pair of points of X can be joined by a path in X.

Theorem 6.3 (Connectivity in product spaces). Let $X_1, X_2, ..., X_n$ be connected spaces. Then the product space $X_1 \times X_2 \times ... \times X_n$ is connected.

Theorem 6.4 (The real numbers are connected). Let \mathbb{R} be the set of real numbers equipped with the standard topology. Then \mathbb{R} is connected.

Theorem 6.5 (Generalized intermediate value theorem). Let X be a connected space and let $f: X \to \mathbb{R}$ be a continuous map where \mathbb{R} is given the standard topology. If $a, b \in X$ and if r is a real number that lies between f(a) and f(b), there is a $c \in X$ such that f(c) = r

Theorem 6.6 (Connectivity). Let X be a topological space. Then X is connected if and only if the are no non-empty proper subsets of X that are both open and closed.

Theorem 6.7 (Path connectedness implies connectedness). Let X be a path connectedness space. Then X is connected.

6.2 Hausdorff spaces

Definition 6.3 (Hausdorff). Let X be a topological space. We say that X is **Hausdorff** if for each part of points $x,y \in X$ with $x \neq y$, there are disjoint neighborhoods U and V of x and y, respectively. In other words, for each pair of distinct point $x,y \in X$ there are open subsets U and V of X with $x \in U$ $y \in V$ where $U \cap V = \emptyset$

Theorem 6.8. Every metric space is Hausdorff

Theorem 6.9. Let X be a Hausdorff space. Then for each $x \in X$ the subset $\{x\}$ of X is closed in X.

Theorem 6.10. Let $X_1, X_2, ..., X_n$ be Hausdorff spaces. Then the product space $X_1 \times X_2 \times ... \times X_n$ is Hausdorff.

Theorem 6.11. Let X be a topological space. Then X is Hausdorff if and only if the diagonal

$$\Delta = \{(x, x) \mid x \in X\}$$

is closed in the product space $X \times X$.

6.3 Compact spaces

Definition 6.4 (Cover of a space). Let X be a topological space, and let \mathscr{A} be the collection of subsets of X. We say that \mathscr{A} is a cover of X, or covering of X if $X = \bigcap_{A \in \mathscr{A}} A$. If A is also open in X for each $A \in \mathscr{A}$, we

say that \mathscr{A} is an **open** cover of X, or open covering of X. We say that \mathscr{A}' is a subcover of \mathscr{A} if \mathscr{A}' is another cover of X that satisfies $\mathscr{A}' \subseteq \mathscr{A}$.

Definition 6.5 (Compact spaces). Let X be a topological space. We say that X is **compact** if every open cover $\mathscr A$ of X contains a finite subcover.

Definition 6.6 (Compact subspaces). Let X be a topological space, and let A be a subset of X. We say that A is compact in X if A is compact in the subspace topology.

Lemma 6.2. Let X be a topological space, and let A be a subspace of X. Then A is compact in X if and only if every cover of A by open subsets of X contains a finite subcollection that covers A.

Theorem 6.12. Let X be a compact space, and let A be a closed subset of X. Then A is compact in X.

Theorem 6.13. Let X be a Hausdorff space, and let K be a subset of X which is compact in X. Then K is closed in X.

Theorem 6.14. Let X be a compact space, Y a topological space and let $f: X \to Y$ be a surjective continious map. Then Y is compact.

Lemma 6.3 (Tube lemma). Let X be a topological space, and let Y be a compact space. If $x \in X$ and U is an oppen set in the product space $X \times Y$ containing $\{x\} \times Y$, then there is a neighborhood W of x in X such that $W \times Y \subseteq U$

Theorem 6.15. Let X_1, X_2, \ldots, X_n be compact spaces. Then the product space $X_1 \times X_2 \times \ldots \times X_n$ is compact.

Theorem 6.16. Let \mathbb{R} be the set of real numbers equipped with the standard topology. Then every closed interval $[a,b] \in \mathbb{R}$ is compact in \mathbb{R} .

Definition 6.7 (Bounded subsets). Let (X,d) be a metric space, and let A be a subset of X. We say that A is bounded if there is an $M \in \mathbb{R}$ such that $d(a_1, a_2) \leq M$ for all $a_1, a_2 \in A$.

Theorem 6.17 (Heine- Borel). Let \mathbb{R}^n be given the (Euclidian) metric topology and the Euclidian metric. A subset A of \mathbb{R}^n if and only if it is closed and bounded.

Theorem 6.18 (Generalized extreme value theorem). Let X be compact space, and let $f: X \to \mathbb{R}$ be a continious map where \mathbb{R} is given the standard topology. Then there are $m, M \in X$ such that

$$f(m) \le f(x) \le f(M)$$

for all $x \in X$.

- 7 The fundamental group
- 8 The fundamental group of the circle

9 References

References