Announcements

- Homework #1 is due on Tuesday, 2/14/06
- Reading: SIGGRAPH 2001 Course Notes on Physically-based Modeling

Disclaimer

The following slides reuse materials from SIGGRAPH 2001 Course Notes on Physically-based Modeling (copyright © 2001 by Andrew Witkin at Pixar).

A Bead on a Wire

Desired Behavior

- The bead can slide freely along the circle.
- It can never come off no matter how hard we pull.

So, how do we make this happen?

Penalty Constraints

- How about using a spring to hold the bead to the wire?
- Problem
 - Weak springs ⇒sloppy constraints
 - Strong springs ⇒ instability

Basic Ideas

- Convert each constraint into a force imposed on a particle (system)
- Use principle of virtual work constraint forces do not add or remove energy
- Solve the constraints using Lagrange multipliers, λ 's
 - For particle systems, need to use the derivative matrix, J, or the Jacobian Matrix.

Geometric Interpretation

- 1st order world.
- Legal velocity: tangent to circle $(N \cdot v = 0)$.
- Project applied force f onto tangent: $f' = f + f_c$ $f_c = -\frac{f \cdot N}{N \cdot N}N$
- Added normal-direction force f_c: constraint force.
- No tug-of-war, no stiffness.

Basic Formulation (F = ma)

- Curvature(k) has to match
- k depends on both a & v:
 - The faster the bead is going, the faster it has to turn
- Calculate f_c to yield a legal combination of a & v

Implicit Representation of Constraints

$$\mathbf{C}(\mathbf{x}) = |\mathbf{x}| - \mathbf{r} = 0$$

Maintaining Constraints

- Start with legal position and velocity.
- Use constraint forces to ensure legal curvature.

 $\dot{C} = 0$ legal position $\dot{C} = 0$ legal velocity

legal curvature

M. C. Lin **UNC Chapel Hill**

Constraint Gradient

Implicit:

$$\mathbf{C}(\mathbf{x}) = |\mathbf{x}| - \mathbf{r} = 0$$

Differentiating C gives a normal vector.

This is the direction our constraint force will point in.

Constraint Forces

Constraint force: gradient vector times a scalar, λ.

Just one unknown to solve for.

Assumption: constraint is passive—no energy gain or loss.

Derivation

$$\dot{\mathbf{C}} = \mathbf{N} \cdot \dot{\mathbf{x}}
\ddot{\mathbf{C}} = \frac{\partial}{\partial t} [\mathbf{N} \cdot \dot{\mathbf{x}}]
= \dot{\mathbf{N}} \cdot \dot{\mathbf{x}} + \mathbf{N} (\ddot{\mathbf{x}})
\mathbf{f_c} = \frac{\dot{\mathbf{f}} + (\mathbf{f_c})}{m}$$
Set $\ddot{\mathbf{C}} = \mathbf{C}$

Notation:
$$\mathbf{N} = \frac{\partial \mathbf{C}}{\partial x}, \ \dot{\mathbf{N}} = \frac{\partial^2 \mathbf{C}}{\partial \mathbf{x} \partial t}$$

Set $\ddot{\mathbf{C}} = \mathbf{0}$, solve for λ :

$$\lambda = -m \frac{\dot{\mathbf{N}} \cdot \dot{\mathbf{x}}}{\mathbf{N} \cdot \mathbf{N}} - \frac{\mathbf{N} \cdot \mathbf{f}}{\mathbf{N} \cdot \mathbf{N}}$$

Constraint force is λN .

Example: A Bead on a Wire

$$\mathbf{C} = |\mathbf{x}| - r$$

$$\mathbf{N} = \frac{\partial \mathbf{C}}{\partial \mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|}$$

$$\dot{\mathbf{N}} = \frac{\partial^2 \mathbf{C}}{\partial \mathbf{x} \partial t} = \frac{1}{\mathbf{x}} \left[\dot{\mathbf{x}} - \frac{\mathbf{x} \cdot \dot{\mathbf{x}}}{\mathbf{x} \cdot \mathbf{x}} \right]$$
 | Substitute into general temperature into general temperature in the general temperat

Write down the constraint equation.

Take the derivatives.

Substitute into generic

$$\lambda = -m \frac{\dot{\mathbf{N}} \cdot \dot{\mathbf{x}}}{\mathbf{N} \cdot \mathbf{N}} - \frac{\mathbf{N} \cdot \mathbf{f}}{\mathbf{N} \cdot \mathbf{N}} = \left[m \frac{\left(\mathbf{x} \cdot \dot{\mathbf{x}} \right)^{2}}{\mathbf{x} \cdot \mathbf{x}} - m \left(\dot{\mathbf{x}} \cdot \dot{\mathbf{x}} \right) - \mathbf{x} \cdot \mathbf{f} \right] \frac{1}{|\mathbf{x}|}$$

Drift and Feedback

- In principle, clamping C at zero is enough.
- Two problems:
 - Constraints might not be met initially.
 - Numerical errors can accumulate.
- A feedback term handles both problems:

$$\ddot{C} = -\alpha C - \beta \dot{C}$$
, instead of $\ddot{C} = 0$

 α and β are magic constants.

Constrained Particle Systems

- Multiple constraints:
 - each is a function $C_i(x_1,x_2,...)$
 - Legal state: $C_i = 0, \forall i$.
 - Simultaneous projection.
 - Constraint force: linear combination of constraint gradients.
- Matrix equation.

Compact Notation

$$\ddot{\mathbf{q}} = \mathbf{W}\mathbf{Q}$$

q: 3n-long state vector.

Q: 3n-long force vector.

M: 3n x 3n diagonal mass matrix.

W: M-inverse (elementwise reciprocal)

```
\mathbf{q} = [\mathbf{x}_1, \mathbf{x}_2, , \mathbf{x}_n]
\mathbf{Q} = [\mathbf{f}_1, \mathbf{f}_2, , \mathbf{f}_n]
                                                    m_1
  \mathbf{M} =
                                                                        m_n
                                                                                  m_n
                                                                                             m_n
 \overline{\mathbf{W}} = \overline{\mathbf{M}}^{-1}
```

Particle System Constraint Equations

Matrix equation for λ

$$[\mathbf{J}\mathbf{W}\mathbf{J}^{\mathrm{T}}]\boldsymbol{\lambda} = -\dot{\mathbf{J}}\dot{\mathbf{q}} - [\mathbf{J}\mathbf{W}]\mathbf{Q}$$

Constrained Acceleration

$$\ddot{\mathbf{q}} = \mathbf{W} [\mathbf{Q} + \mathbf{J}^{\mathrm{T}} \boldsymbol{\lambda}]$$

Derivation: just like bead-on-wire.

More Notation

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_1, \mathbf{C}_2, & , \mathbf{C}_m \end{bmatrix}$$

$$\boldsymbol{\lambda} = \begin{bmatrix} \lambda_1, \lambda_2, & , \lambda_m \end{bmatrix}$$

$$\mathbf{J} = \frac{\partial \mathbf{C}}{\partial \mathbf{q}}$$

$$\dot{\mathbf{J}} = \frac{\partial^2 \mathbf{C}}{\partial \mathbf{q} \partial t}$$

Implementations

A global matrix equation

Matrix block structure with sparsity

 Each constraint adds its own piece to the equation

Mathematical Formulation

Matrix Block Structure

- Each constraint contributes one or more blocks to the matrix.
- Sparsity: many empty blocks.
- Modularity: let each constraint compute its own blocks.
- Constraint and particle indices determine block locations.

Take a Closer Look

Constraint Structure

Constrained Particle Systems

M. C. Lin

Other Modification

Constraint Force Evaluation

After computing ordinary forces:

- Loop over constraints, assemble global matrices and vectors.
- Call matrix solver to get λ , multiply by J^T to get constraint force.
- Add constraint force to particle force accumulators.

Parametric Representation of Constraints

 $\mathbf{x} = \mathbf{r} \left[\cos \theta, \sin \theta \right]$

Parametric Constraints

Parametric:

$$\mathbf{x} = \mathbf{r} \left[\cos \theta, \sin \theta \right]$$

- Constraint is always met exactly.
- One DOF: θ.
- Solve for θ .

Parametric bead-on-wire (F = mv)

x is not an independent variable.

First step—get rid of it:

$$\dot{\mathbf{x}} = \frac{\mathbf{f} + \mathbf{f}_{\mathbf{c}}}{\mathbf{m}}$$

$$\dot{\mathbf{x}} = \mathbf{T}\dot{\boldsymbol{\theta}}$$

$$\mathbf{T}\dot{\boldsymbol{\Theta}} = \frac{\mathbf{f} + \mathbf{f_c}}{\mathbf{m}}$$

f = mv (constrained)

chain rule

combine

Some Simplification.....

For our next trick...

As before, assume f_c points in the normal direction, so

$$\mathbf{T} \cdot \mathbf{f}_{\mathbf{c}} = 0$$

We can nuke f_c by dotting T into both sides:

$$\mathbf{T}\dot{\boldsymbol{\theta}} = \frac{\mathbf{f} + \mathbf{f}_c}{\mathbf{m}}$$

$$\mathbf{T} \cdot \mathbf{T} \dot{\mathbf{\theta}} = \frac{\mathbf{T} \cdot \mathbf{f} + \mathbf{T} \cdot \mathbf{f_c}}{\mathbf{m}}$$

$$\dot{\boldsymbol{\theta}} = \frac{1}{m} \frac{\mathbf{T} \cdot \mathbf{f}}{\mathbf{T} \cdot \mathbf{T}}$$

from last slide

blam!

rearrange.

Lagrangian Dynamics

- Advantages
 - Fewer DOF's
 - Constraints are always met

- Disadvantages
 - Difficult to formulate constraints
 - Hard to combine constraints