Relations

Relation

A relation R between A and B is a subset of AXB

Recall AxB = (a,b) | a + A, b + B3 | order pairs If A,B are finite, then [AXB] = [Al· |B] A: domain of R. B= codomain of R If A=B, then Ris a relation on A If ADB, then R is a relation on A Notation: Laib) ER on aRb

How many relations on A are there if |A| = n? i.e. $|Y(A \times A)|$ $= \frac{|A|^2}{2} = 2^{n^2}$

Examples

The examples below are relations on integers (i.e., A = Z) unless otherwise specified.

- $R_1 = \{ (1, 1), (1, 2), (2, 1), (3, 3), (2, 2) \}$
- $R_1 = \{(1, 1), (1, 2), (2, 1), (3, 3), (2, 2)\}$ $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$ f A= $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$
- $R_3 = \{ (a, b) | a \le b \}$
- $R_4 = \{ (a, b) | a > b \}$
- $R_5 = \{ (a, b) | a = b \text{ or } a = -b \}$
- $R_6 = \{(a,b) \mid a \mid b\} \rightarrow a$ divides b i.e $\exists k \in \mathbb{Z}$, Sit. $b = a \cdot k$.
- $R_7 = \{ (a, b) \mid a + b \le 3 \}$
- $R_8 = \{ (a, b) \mid a = 4 b \}$ where $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Congruence modulo *m*

A=b(mod m) or a=mb

(A-b)

a mod $M = b \mod M$ i.e. a and b have the same remainder when divided by MExample $A : \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Representing relations

Bipartite graph

RI line from a on the left to b on the right means (aib) ER

Directed graph only when A=B.

Rg (=4)

Properties of relations

reflexive: A releation R on a set A is reflexive iff (+a +A) aRa i.e (a, a) +R

00 00 every node has suf loop

antireflexive: A releation R on a set A is antireflexive iff (& a & A) 9 (aRa) ine (a, a) & R.

direct graph has no self loops at all.

symmetric: A releation R on a set A is symmetric iff (\frac{1}{4}, b \in A) aRb = bRa i.e (a,b) \in R \in (b,a) \in R

antisymmetric : A releation R on a set A is antisymmetric iff

transitive: A releation R on a set A is transitive iff

netric: A releation R on a set A is antisym...

(\forall a, b \operatorname A)(\text{a}\text{b} \text{A}) \text{ (a \operatorname b)} \text{i.e.} \text{(a \operatorname b)} \text{A}.

(\forall a, b \operatorname A)(\text{a}\text{b}) \text{ \operatorname b)} \text{Consider BD both symmetric}

(\text{D}) \text{ \operatorname b} \text{ \operat **Examples**: Consider the examples above where we further restrict the domain of R_1 to A = {1, 2, 3} and the domain of R_2 to A = {1, 2, 3, 4}. Which of the examples are:

- RI, RZ R3, R5, R6, A8 Z R7 is neither reflexive

- antireflexive
 - R, R, R, R7, R8
- symmetric • antisymmetric $R > R3 / R4 / (R6 if A > Z^{+})$
- transitive

Ro: if A=Z, reitler symmetric or antisymmetric 2/-2, -2/2.
= Z+, assoisymmetric

Equivalence and Order Relations

Examples: The examples below are relations on integers (i.e., A = **Z**) unless otherwise specified.

- $R_1 = \{ (1, 1), (1, 2), (2, 1), (3, 3), (2, 2) \}$ where $A = \{1, 2, 3\}$
- $R_2 = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4) \}$ where $A = \{1, 2, 3, 4\}$
- $R_3 = \{ (a, b) | a \le b \}$
- $R_4 = \{ (a, b) | a > b \}$
- $R_5 = \{ (a, b) \mid a = b \text{ or } a = -b \}$
- $R_6 = \{ (a, b) | a | b \}$ where $A = Z^+$
- $R_7 = \{ (a, b) \mid a + b \le 3 \}$
- $R_8 = \{ (a, b) \mid a \equiv_4 b \}$ where $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Properties of relations

- Ku Rz, RS, R5, R6, R8 • reflexive : $(\forall a \in A)$ aRa
- antireflexive : (∀ a ∈ A) ¬(aRa) ¬(¬
- symmetric: $(\forall a, b \in A)$ aRb \iff bRa $(x_1, y_2, y_3, y_4, y_5)$
- antisymmetric : $(\forall a, b \in A)$ (aRb \land bRa) \Longrightarrow (a = b) (a = b)
- transitive : $(\forall a, b, c \in A)$ (aRb \land bRc) \Longrightarrow aRc R_1 R_2 , R_3 , R_4 , R_5 R_6 i.e (aib) eR 1 (bic) ER -> (a, c) ER.

Equivalence relations

equivalence relation (on A) = a relation which is reference - Gymethic & transive.

Examples: $R_1, R_5, R_1, = , = , = , =$

partition of a set A = collection of subsets of A1, A2 -- c.t. $V_{A_1} = A$ and $A_1 \cap A_2 = P$ if $i \neq j$. (i.e. A_1 are pairwise disjoint).

ench Ai is a cluster or a partition class

equivalence class (given an equivalent relation R) [a] = {b & A | a Rb }.

Examples: Comider = (R1) A = {0,11,213, 4, 5,6,7,8,9}.

Relationship between partitions and equivalence classes

- 1. Given a partition A_1 , A_2 , A_3 , ... of A. Let R be the relation: AR Lie (a,b) ER) iff a & b belong to the same partition class (same Ai). Then R is a equivalence relation
- 2. Given an equivalence relation R on A. Then $P = \{\{\{a\}\} \mid a \in A\}$ is a partition.
- 3. Given an equivalence relation R on A. Then

What are the equivalence classes for R_1 ?

$$\begin{array}{c|c}
\hline
1 & 2 \\
\hline
3 & 73 \\
\hline
3 & 73
\end{bmatrix} = \{1,12\} = 72].$$

What are the equivalence classes for R_5 ?

Order Relations

Rz, Rz, Rb, \leq , 7/, \subseteq consmical example \leq partially ordered set (poset) $(\varsigma, R) = \alpha$ set ς along with partial under R and ς .

(Z, ς) (Z^{\dagger} , 1) divides strict order

strict order = an order relation Hat is antireflexitive.

Ru, <, >, c curporical example: < total order = an maar relation R with the proporty

(tab EA) atb > (aRb V bRa).

i.e. all etts in A can be compared with each other win R.

& put "in order"

R3, R4 one total orders

Ro (divides) is not extend order:

Rx 7. No, because (2,3) & Rz and (3,2) & Rx.

"happens before" relation in computer systems. A-> B means memory written by start A 13 visible to start B

i.e. A	completes	its write +	o memory	before B	GAATTS HS	real
from	(menco	· y ·				