기본 알고리즘 제8장

2017-Fall

국민대학교 컴퓨터공학부 최준수

String Matching

- Substring search
 - Find pattern of length M in a text of length N. (typically $N \gg M$)

- Naïve Algorithm 1
 - Check for pattern starting at each text position

- Naïve Algorithm 2
 - Check for pattern starting at each text position

- Naïve Algorithm 2
 - Check for pattern starting at each text position

```
i j i+j 0 1 2 3 4 5 6 7 8 9 10

txt → A B A C A D A B R A C

0 2 2 A B R A pat

1 0 1 A B R A entries in red are
2 1 3 A B R A entries in gray are
3 0 3 A B R A entries in gray are
4 1 5 entries in black A B R A

6 4 10

return i when j is M

A B R A

A B R A

A B R A

A B R A

A B R A

A B R A

A B R A

A B R A

A B R A
```


- Naïve Algorithm 2
 - Naïve algorithm can be slow if text and pattern are repetitive

- Improvement
 - Develop a linear time algorithm
 - Avoid backup
 - Naïve algorithm needs backup for every mismatch
 - Thus naïve algorithm cannot be used when input text is a stream.

Knuth-Morris-Pratt(KMP) Algorithm

- KMP algorithm
 - Clever method to always avoid backup problem.

Deterministic Finite Automaton

- DFA(Deterministic Finite State Automaton)
 - Finite number of states (including start and accept states)
 - Exactly one transition for each char
 - Accept if sequence of transitions leads to accept state

DFA for pattern ABABACA

DFA

DFA for pattern ABABACA

DFA

DFA for pattern ABABACA

Simplified Diagram: remove transitions to state 0

Algorithm with DFA

- Difference from naïve algorithm
 - Precomputation of DFA[][] from pattern
 - Text pointer i never decrements (no backup)

simulation of DFA on text with no backup

- How to build DFA efficiently?

Algorithm with DFA

DFA for pattern ABABACA

Interpretation of DFA

- The state of DFA represents
 - the number of characters in pattern that have been matched

- DFA Construction:
 - Suppose that all transitions from state 0 to state j-1 are already computed
 - Match transition:
 - If in state j and next char c == pat[j], then transit to state j+1.

Pattern: ABABACA

State 5

- DFA Construction:
 - Mismatch transition:
 - If in state j and next char c != pat[j], then which state to transit?

Pattern: ABABACA

State 5

- The same as $pat[1] \sim pat[j-1]$
- Roll-back and transit to some state X by matching
 pat[1] ~ pat[j-1] from state 0 on DFA.
- Transit to the next state DFA['A'][X] for the mismatched char 'A'.

- DFA Construction:
 - Mismatch transition:
 - If in state j and next char c != pat[j], then the last j-1 characters of input text are pat[1] ~ pat[j-1], followed by c.
 - Compute DFA[c][j]:
 - Simulate pat[1] ~ pat[j-1] on DFA from state 0 and let X be the current state
 - Then DFA[c][j] = DFA[c][X]

- DFA Construction:
 - Mismatch transition:
 - DFA[c][j] = DFA[c][X]

$$DFA['A'][5] = DFA['A'][3] = 1$$

 $DFA['B'][5] = DFA['B'][3] = 4$

Pattern: ABABACA

• DFA Construction:

- Mismatch transition:
 - If in state j and next char c != pat[j], then the last j-1 characters of input text are pat[1] ~ pat[j-1], followed by c.
- To compute DFA[c][j]:
 - Simulate pat[1] ~ pat[j-1] on DFA (*still under construction*) and let the current state X.
 - take a transition c from state X.
 - Running time: require j steps.
 - But, if we maintain state X, it takes only constant time!

• DFA Construction:

- Maintaining state X:
 - Finished computing transitions from state j.
 - Now, now move to next state j+1.
 - Then what the new state(X') of X be?

- DFA Construction: A Linear Time Algorithm
 - For each state j:
 - Match case: set DFA[pat[j]][j]=j+1
 - Mismatch case: Copy DFA[][X] to DFA[][j]
 - Update X

```
int DFA[MAX_SIZE][MAX_SIZE]; /* initially all elements are 0 */
// int R; /* text character set size */

void constructDFA(char pat[])
{
   int patLength = strlen(pat);
   DFA[pat[0]][0] = 1;
   for(int X=0, j=0; j<patLength; j++)
   {
      for(int c=0; c<R; c++) // copy mismatch cases
        DFA[c][j] = dfa[c][X];

   DFA[pat[j]][j] = j+1; // copy match case
   X = DFA[pat[j]][X]; // update X
}
</pre>
```


• DFA Construction: Example

0123456

Pattern: ABABACA

Algorithm with DFA

• Question:

- Text에 나타나는 모든 pattern 을 찾을 수 있는가?

Text: AAAAAAAAA

• Pattern: AAAAA

해답: 0, 1, 2, 3, 4, 5

Prefix/Suffix

• Prefix / Suffix of a Text

bananada

	Prefix	Suffix
NULL string ——	bananada	bananada
	bananada	oaranada
	bananada	bananada
	bananada	ranada
	bananada	bananada

• Naïve algorithm again:

• Avoid roll-backs in naïve algorithm:

• Avoid roll-backs in naïve algorithm:

Prefix and Proper Suffix of the Prefix

Proper Suffix of the Prefix "AAAABAA"

```
A A A B A A X Y Z
A A A B A A X Y Z
A A A B A A X Y Z
A A A B A A X Y Z
A A A B A A X Y Z
A A A B A A X Y Z
A A A B A A X Y Z
```

Not a *proper* suffix of the prefix (the same as the prefix)

- Maximum Overlap of a Prefix
 - the longest proper suffix that is equal to prefix of the prefix

- Maximum Overlap of a Prefix
 - the longest proper suffix that is equal to prefix of the prefix

• Example:

Prefix	refix Maximum Overlap	
AAAAA	AAAA	not AAAAA
AABA	Α	
AAAB		NULL String
ABABABAB	ABABAB	

- Reuse of prefix information when there is a mismatch
 - Mismatch at text[i] and pattern[j]

Note that if the mismatched *location* is pattern[j], then *prefix* is: pattern[0]~pattern[j-1]

- Then we can slide the pattern so that the *suffix and prefix aligns without missing out on a match*:

- Fast sliding algorithm:
 - Psuedo program:

```
// mismatch found at text[i], pattern[j]
prefix = pattern[0] ~ pattern[j-1];
k = Length of maximum overlap of prefix;
j = k;
// i is unchanged !
// Matched position i0 in text starts from (i - j);
i0 = i - j;
```


- Fast sliding algorithm:
 - Example:

- Failure function:
 - m: the length of a pattern
 - For 0 < k < m, the failure function fail(k) is the length of maximum overlap of a prefix pattern[0] ~ pattern[k]
 - Note that fail(0) = 0

banabana	k	prefix	fail(k)
	0	b	0
	1	ba	0
	2	ban	0
	3	bana	0
	4	banab	1
	5	banaba	2
	6	banaban	0
학교 IVERSITY	7	banabana	4

Knuth-Morris-Pratt(KMP) Algorithm

```
vector<int> kmp(string text, string pattern)
   vector<int> ans;
   fail = getFail(pattern);  // failure function
   int n = (int) text.size(), m = (int) pattern.size();
   int j = 0;
                                  // j : index of pattern
   for(int i = 0; i < n; i++) // i: index of text
       while(j>0 && text[i] != pattern[j])
           i = fail[i-1];
       if(text[i] == pattern[j])
                                  // pattern matching is found
           if(j==m-1)
               ans.push back(i-j); // save the matched position
               j = pi[j];
           else
               j++;
   return ans;
```


porithmic gineering borgtory

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

$$\rightarrow$$
 j = fail[j-1]

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

$$\rightarrow$$
 j = fail[j-1]

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

•	•
	$\neg \bot \bot$
	T + 1

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

– Example:

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

– Example:

i	0	1	2	3	4	5
fail(i)	0	0	1	0	1	2

- Knuth-Morris-Pratt(KMP) Algorithm
 - Why?

i	0	1	2	3	4	5	6	7
fail(i)	0	0	1	2	3	4	5	0

- Knuth-Morris-Pratt(KMP) Algorithm
 - Why?

$$\rightarrow$$
 j = fail[j-1]

i	0	1	2	3	4	5	6	7
fail(i)	0	0	1	2	3	4	5	0

- Knuth-Morris-Pratt(KMP) Algorithm
 - Why?

$$\rightarrow$$
 j = fail[j-1]

i	0	1	2	3	4	5	6	7
fail(i)	0	0	1	2	3	4	5	0

- Knuth-Morris-Pratt(KMP) Algorithm
 - Why?

$$\rightarrow$$
 j = fail[j-1]

i	0	1	2	3	4	5	6	7
fail(i)	0	0	1	2	3	4	5	0

- Knuth-Morris-Pratt(KMP) Algorithm
 - Why?

$$\rightarrow$$
 j = fail[j-1]

i	0	1	2	3	4	5	6	7
fail(i)	0	0	1	2	3	4	5	0

- Knuth-Morris-Pratt(KMP) Algorithm
 - Why?

$$\rightarrow$$
 j = fail[j-1]

i	0	1	2	3	4	5	6	7
fail(i)	0	0	1	2	3	4	5	0

- Knuth-Morris-Pratt(KMP) Algorithm
 - Why?

j==0 && text[i] != pattern[j]

i	0	1	2	3	4	5	6	7
fail(i)	0	0	1	2	3	4	5	0

