「CTT 2021 Day 1」末日魔法少女计划

出题人: 李欣隆。

Solution

题目等价于区间半群查询,限制查询的代价(合并的区间个数)不超过 k,求一个预处理方案,最小化预处理代价 m。在预处理时,初始有区间 [i,i+1),可以从区间 [a,b),[b,c) 合并得到 [a,c),合并次数为 m。

部分分的设置和以下算法有关。

算法1

对 k=1, 需要合并出所有 [l,r) 满足 r-l>1。

算法2

对 k=2, 可以使用分治:

对 [l,r) 合并得到每个 [x,m) 和 [m,x), 然后递归合并 [l,m) 和 [m,r)。

$$m(n)=2m(\frac{n}{2})+O(n)=O(n\log n)$$
.

算法3

对 k=3,可以使用递归分块:

将序列分为 \sqrt{n} 大小的块,合并出每个块区间,以及每个块的前后缀,块内递归处理。每个区间可以表示为块区间和左边的块前缀和右边的块后缀。

$$m(n) = \sqrt{n} \cdot m(\sqrt{n}) + O(n) = O(n \log \log n)$$
.

算法4

对 k=4,可以使用递归分治:

将序列分为 $\log n$ 大小的块,块内递归处理,块间用算法2处理,另外处理每个块的前后缀和。

$$m = rac{n}{\log n} m(\log n) + O(n) = O(n \log^* n)$$
 .

算法5

对足够大的 k, 可以构造线段树, 叶子已经有了, 只需合并出内部结点。

$$m(n) = O(n)$$
;

$$k \geq 2\log_2 n - O(1)$$
.

算法6

算法 5 使用线段树导致只适用于较大的 k。 将线段树靠近根的 n_0 个结点换为其它适用于 k=k' 的算法 预处理,可以增大 m 并适用于更小的 k。

$$m_k(n)=O(n)+m_{k'}(n_0)$$
 ; $k\geq 2\log_2(rac{n}{n_0})+k'-O(1)$,

算法7

观察算法 1,2,3,4 的特性,可以得到适用于所有 k 的算法:

对序列分块,块内递归处理,块间递归到 k-2 的情况处理,另外处理每个块的前后缀和,边界情况为 k=1,2 。

$$m_k(n) = rac{n}{B(k,n)} m_k(B(k,n)) + O(n)$$
 .

这里需要块大小 B,可以使用动态规划求出一个好的分块方案。 对每个 k,有 $B=O(\frac{m_{k-2}(n)}{n})$,这可以减小动态规划的时间复杂度。

算法8

算法 7 的实现不够精细,可以和算法 6 结合使用,在线段树上层用算法 7 的方案,下层用普通的线段树结构。

算法9

可以更精细地实现算法 7。

 $m_k(n)$ 表示长度 n 的序列,支持查询时只用 k 个区间,预处理的代价;

 $m_{k,1}(n)$ 表示长度 n 的序列,支持查询时只用 k 个区间,且查前缀只需 1 个区间,预处理的代价;

 $m_{k,2}(n)$ 表示长度 n 的序列,支持查询时只用 k 个区间,且查前后缀只需 1 个区间,预处理的代价;边界情况为 k=0,1 和 $n\leq k$ 。

对于 $m_{k,2}(n)$,需要用动态规划求出一个分块方案,其中第一个块和最后一个块内为 $m_{k,1}$,其它块内为 $m_{k,2}$;除了第一个块和最后一个块,块间递归到 $m_{k-2,2}$;前后缀和可以复用第一个块和最后一个块的结果。

 $m_{k,1}(n)$ 和 $m_k(n)$ 类似处理。可以发现这样求出的方案比更简单的实现好很多。

所有子任务都保证算法9能通过。

「CTT 2021 Day 1」 魔塔 OL

出题人: 陈松杨。

魔塔游戏,每个怪物有五个属性:它在魔塔的第x 层,两个实力分别为y,z,并且打掉它要扣a 滴血,之后会回b 滴血。

现在你需要支持以下操作:

- 1 x y z a b: 增加一个怪物。这个怪物的标号是上一次怪物的标号 +1;
- 2 id:删除标号为 id 的怪物;
- 3 X Y Z : 提取出所有 $x \le X, y \le Y, z \le Z$ 的怪物 (即偏序) ,求击杀它们初始最少需要多少血量。

 $1 \le q \le 10^5$, 怪物个数 $\le 5 \cdot 10^4$ 。

Solution

无。

反思

场上一直在码平衡树,贼难写,还被卡常。事实上,扩展到 k 维(本题 k=4),维度较高且数据范围为 5×10^4 时,不妨考虑下 bitset,块内四毛子预处理所有状态的答案,然后用"逐块处理"的 trick 做到空间线性。

「CTT 2021 Day 1」基因编辑

出题人: 陈鸿基。

给定一个长为 n 的序列 a,以及 L,R。你需要找到最短的 l,r 满足 $l \le L \le R \le r$,并且不存在别的 l',r' 满足 $(a_l,a_r)=(a_l',a_r')$ 。

 $1 < n < 10^6$.

Solution

金签到题。

「CTT 2021 Day 2」简单数据结构

出题人:钱易。

给定一个长为 n 的序列 a, 执行 q 次询问, 询问有如下三种:

• 1 x: 将所有 a_i 对 x 取 min;

2:将所有 a_i 变为 a_i + i;

• 3 1 r: 查询区间 [l, r] 的 a_i 和。

 $1 \leq n,q \leq 2 imes 10^5, 0 \leq a_i,v \leq 10^{12}$.

时间限制 3000ms, 空间限制 512MB。

Solution

我们将被取过 min 的点为特殊点,则有如下性质:

特殊点的值随 i 的增大单调不降。

证明:

考虑归纳证明。一开始特殊点集为空,先进行若干次 2 操作,再进行一次 1 操作,此时所有 $a_i \geq x$ 的点加入特殊点集,值均变为 x。

紧接着又进行若干次 2 操作,再进行一次 1 操作,有一些新点被加入特殊点集。我们只需说明这些点在特殊点集中的前驱 $\leq x$ 且后继 $\geq x$ 即可。

对于前驱而言,因为执行了 1 操作,它的值显然 $\leq x$;对于后继而言,它每次 2 操作 + 的值比该点多,所以后继必然也变成了 x。

接下来,问题转化为如下两个任务:

- 计算出每个位置变成特殊点的时刻;
- 给特殊点集开个线段树,每次线段树二分找出后缀,并进行区间覆盖。

前者可以用整体二分 + 李超树做到 $\mathcal{O}(n\log_{\text{值域}}\log n)$,也可以用 KTT 做到**实际效果** $\mathcal{O}(n\log_{\text{值域}})$,或者是整体二分时建凸包,然后用指针在凸包上单调移动做到 $\mathcal{O}(n\log n)$ 。

后者显然可以做到 $\mathcal{O}(n \log n)$ 。

时间复杂度 $\mathcal{O}(n \log n)$ 。

[CTT 2021 Day 2] Datalab

出题人: 周雨扬。

交互题,有一个长为 k=13 的序列 sgn_i 满足 $\mathrm{sgn}_i \in \{-1,1\}$ 。

假如给定一个长为 k 的 bitset s ,它对应的数为 $\sum\limits_{i=0}^{k-1}[s_i=1]\mathrm{sgn}_i\cdot 2^i$ 。

我们定义 $a \oplus b$, 每次交互给出 a,b, 交互库返回 $g(f(A) \oplus f(B))$ 。

你需要在不超过 140 次询问内求出 sgn 数组。

Solution

无。

反思

对于交互题,我总是无从下手。我们可以采取"从一般到特殊"的思想,将 Add(a, b) 特殊化成 Add(a, a),并从简单的情形入手,比如我们可以让 $a=100\ldots0$,发现这可以找到下一个 $=a_0$ 的位置 i,并且只有 [1,i] 这一段为 1。紧接着考虑并行,将若干次询问压缩至 1 次,并对边界(相邻块撞一起)进行分析。

「CTT 2021 Day 2」随机游走

出题人:潘骏跃。

给定一张 n 个点的有向图,初始有边 $i \to i+1$ $(i \in [1,n))$,你需要额外添加 m 条边(可以重边、自环),使得从 1 走到 n 的期望步数最大。

你需要求出期望值。

 $1 \le n, m \le 10^9$, 模数 p 保证为质数, 且 $2 \le p \le 10^9 + 7$ 。

Solution

场切,找规律题。

「CTT 2021 Day 3」小明的树

出题人: 余快。

给定一棵 n 个点的以 1 为根的树,以及一个 2 $\sim n$ 的排列 p。

我们依次将 p_i 点点亮。我们定义一个局面是好的,当且仅当每个点亮的点的子树全是亮的,并且它的 贡献是亮连通块个数。

现在有q次修改,每次删掉一条边,再加入一条边(保证仍然是树),求每次的贡献和。

 $1 < n, q < 5 \cdot 10^5$

Solution

无。

反思

场上看到"每次删边再加边",心里一发慌:哎我不会 LCT 死定了。于是敲暴力把前面 subtask 全拼满,就跑路了。

事实上,我们观察到"点亮的点的子树全亮"这个条件很别扭,不妨反面考虑:那没点亮的点不就是以1为根的连通块吗?进而联想到倒过来考虑问题,每次拼成以1为根的连通块,贡献是"两端点状态不同的边数"。

对于树上连通块而言,我们显然可以通过 V-E=C 来判断。由于 V-E 始终 ≥ 1 ,所以我们在线段树维护区间最小值即可。于是我们发现这跟 LCT 半毛钱关系没有,"删边加边仍是一棵树"是出题人所要保证的条件,我们只需要利用它进行线段树操作即可。

「CTT 2021 Day 3」出题高手

出题人: 陈奇之。

给定一个序列 a,满足 a_i 在 [-1000,1001] 内随机生成。我们定义区间 [l,r] 的权值为 $\frac{\sum\limits_{i=l}^{n}a_i^2}{r-l+1}$ 。

有 q 次询问,每次查询 [L,R] 内所有区间的权值最大值。

- $1 \le n, q \le 10^5$;
- $n = 5 \cdot 10^5, q = 1$.

Solution

场切,印象里是对于每个前缀,取单调栈里的栈顶 2000 个元素,得到 2000n 个候选区间。然后瞎几把 预处理一下,查询是平凡的。卡卡常、调调参就过了。

「CTT 2021 Day 3」扑克比大小

给定字符串 s,我们定义两个字符串 a,b 的大小为 $aa\cdots a$ 和 $bb\cdots b$ (即循环串)的大小。 $\label{eq:control} 6 \ q$ 次查询,每次问 $s_l\cdots s_r$ 在 s 的所有本质不同子串里的排名。 $1 \le n,q \le 10^6 \, .$

「CTT 2021 Day 4」算术

题意见原题面。

Solution

【模板】阶。

反思

对于猜结论,看到如此复杂的转换方式,可以大胆猜想它背后有很简洁的规律。

我们可以列一些特殊情况去猜出结论来,比如找到第一个可以截成两段的数 $\lceil \frac{b^k}{p} \rceil p$,它被截成 $1 \mid \lceil \frac{b^k}{p} \rceil p - b^k$,变成 $(\lceil \frac{b^k}{p} \rceil - b^k)b - 1 \equiv 0 \pmod p$,即 $b^{k+1} \equiv -1 \pmod p$ 。