Week 4: Introduction to Logistic Regression, Species Distribution and Habitat Selection

Lecture: Tuesday, 06 April 2021 and Thursday, 08 April 2021 8:30 am – 10:20 pm EDT

A Road Map for the Week

Tuesday

- Introduction to Logistic Regression
 - When Appropriate to Use (Presence/Absence Data)
 - Assessing Model Assumptions
- Creating a Spatial Database
 - Getting Raster Data into R
 - Manipulating Data Layers
 - Extract Remotely Sensed Data at Occurrence Locations

Thursday

- Full Example using Data on Addax Occurrence from Niger
 - Summarize Dataset
 - Apply Logistic Regression to Model Occurrence Probability
 - Graph Response Curves and Interpret Coefficients
 - Create a Predictive Surface

Instructors:

Ramiro Crego (<u>CregoRD@si.edu</u>) Jared Stabach (<u>StabachJ@si.edu</u>)

Week 4: Introduction to Logistic Regression, Species Distribution and Habitat Selection

Lecture: Tuesday, 06 April 2021 and Thursday, 08 April 2021 8:30 am – 10:20 pm EDT

Learning Objectives

- Understand the Basics of Logistic Regression
- Access Available Spatial Data in R
- Become Comfortable with Manipulating Spatial Data
- Understand How to Fit and Interpret Model Results
- Graph Variable Response Curves
- Predict a Surface for Visual Interpretation

Instructors:

Ramiro Crego (<u>CregoRD@si.edu</u>) Jared Stabach (<u>StabachJ@si.edu</u>)

Some basics about Generalized Linear Models

General Linear Models

 General linear models (regression, ANOVA, etc.) are restricted by the degree to which the residuals conform to normality. The residuals follow a normal distribution.

Empirical and theoretical dens.

Generalized Linear Models (GLM)

 A primary goal of basic ecological and applied conservation research is to understand how species are distributed across space and through time. Generally, animal locations or abundance data do not follow a normal distribution. As a result, other type of model structures are needed.

 Generalized linear models are used when the residuals are not normal, when there are non-linear relationships between dependent and independent variables, and/or when the variance in the dependent variable is not uniform across its range. E.g., presence-absence data.

Predicted values can exceed 0 t o1 range

Prediction lies within 0 to 1 range

The GLM consists of three elements:

- 1. A probability distribution from the exponential family
 - In a logistic regression is a binomial distribution
- 2. A linear predictor $\eta = X\beta$
 - It is the quantity which incorporates the information about the independent variables **\(\mathcal{\beta}\)** into the model.
- 3. A link function
 - It provides the relationship between the linear predictor and the expected value of the data
 - In a logistic regression we will use the **logit** link function

$$logit(p) = log(\frac{p}{1-p}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k.$$

$$p = \frac{exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}.$$

Practical Example: On the Brink of Extinction Habitat Selection of Addax Across the Tin Toumma desert, Niger

Jared A. Stabach¹, Thomas Rabeil², Vincent Turmine, Tim Wacher³, Peter Leimgruber¹

¹Conservation Ecology Center, National Zoological Park, Smithsonian Conservation Biology Institute, Front Royal, USA

²Sahara Conservation Fund, L'Isle, CH

³Zoological Society of London, London, UK

Addax/Dorcas gazelle

Critically endangered Formerly widespread across Sahelo-Saharan Africa Highly adapted to hyper-arid conditions Current population estimate: < 100 individuals

Main threats:
Overhunting

Vulnerable
Habitat generalist
Perceived affinity to Sahelian regions
Current population estimate: 35,000-40,000 individuals

Main threats:

Loss of habitat, disturbance, overhunting

Research Objectives

- 1) Identify the factors contributing to increased habitat suitability
- 2) Examine shared resource use (A question for Homework)
- 3) Predict habitat suitability guide future field surveys

Study Design

Line transect sampling (2008-2014) Vehicle surveys Plot locations – 5 km apart

Study Design

Line transect sampling (2008-2014) Vehicle surveys Plot locations – 5 km apart

Table 1. Occurrence and prevalence for Addax (*Addax nasomaculatus*) and Dorcas gazelle (*Gazella dorcas*) at sampling locations across the Tin Toumma desert, Niger.

(Gazelia	i aorcas j	at sampiinį	grocations	across tr	ie iin ioumr	na dese	rt, Niger.		
						Species		Site	
		Transect	Plot	Occurrence (n)		Prevalence (%)		Prevalence ² (%)	
Year	Season	ID^1	Locations	Addax	D.gazelle	Addax	D.gazelle	One	Both
2008	Cold	1-5	66	22	28	33.3	42.4	68.2	7.6
2009	Dry	1-5	66	6	16	9.1	24.2	28.8	4.6
2009	Wet	1-5	66	8	19	12.1	28.8	39.4	1.5
2009	Cold	1-5	66	16	33	24.2	50.0	63.6	10.6
2010	Dry	1-5	66	4	15	6.1	22.7	24.2	4.6
2010	Dry	1-5	66	8	19	12.1	28.8	37.9	3.0
2010	Wet	1-5	66	3	13	4.6	19.7	24.2	0.0
2010	Cold	1-5, 8-9	88	14	29	15.9	33.0	44.3	4.6
2011	Dry	4-5, 8-9	44	7	4	15.9	9.1	15.9	9.1
2011	Wet	1, 4-5, 8-9	66	10	12	15.2	18.2	24.2	9.1
2012	Cold	4-9	66	8	9	12.1	13.6	21.2	4.6
2013	Cold	1-5	66	16	35	24.2	53.0	60.6	16.7
2014	Dry	4-9	66	4	9	6.1	13.6	16.7	3.0
2014	Wet	4-9	66	4	8	6.1	12.1	18.2	0.0
2014	Cold	2-6, 8	66	1	34	1.5	51.5	51.5	1.5
					Mean:	13.2	28.1	35.9	5.4

Environmental Variables

Remotely sensed variables

Surface Roughness

Difference in elevation between min/max values of a cell and its 8 surrounding neighbors

NDVI – Normalized Difference Vegetation Index

Vegetation greenness

Field variables

Occurrence of Addax/Dorcas gazelle

Occurrence of Human disturbance

Occurrence of Perennials

Stipagrostis vulnerans

Stipagrostis acutiflora

Cornulaca monacontha

Survey Season (Cold/Dry/Wet)

Survey Year (2008-2014)

2015 01 01

Environmental Variables

Where to get Data? Many options

Remotely sensed variables

Surface Roughness

Difference in elevation between min/max values of a cell and its 8 surrounding neighbors

NDVI – Normalized Difference Vegetation Index

Vegetation greenness

Field variables

Occurrence of Addax/Dorcas gazelle

Occurrence of Human disturbance

Occurrence of Perennials

Stipagrostis vulnerans

Stipagrostis acutiflora

Cornulaca monacontha

Survey Season (Cold/Dry/Wet)

Survey Year (2008-2014)

Model Structure

Generalized linear model (GLM) framework Logistic regression

Addax models	Ka	AICc	ΔAIC _c ^b
Rough + Rough ² + NDVI + NDVI ² + Humans + D.gazelle + S.vulnerans + S.acutiflora + C.monacontha + Season + Year	18	642.9	0.00
Reduced Model Rough + Rough ² + NDVI + NDVI ²	5	744.6	101.7

^aNumber of estimable parameters.

^bDifference in value between Akaike's Information Criterion for small sample sizes (AIC_c) of the full and reduced variable model.

Results

Evaluate Parameter Responses

Results

Evaluate Parameter Responses

Results

Predictive Surface

Summary

- 1) Addax Year had the strongest effect in species occurrence model
- 2) Remote sensing data alone can help guide future field surveys
- 3) Urgent conservation action is required if this species is to persist into the future.

Acknowledgements

Funding and Support:

Sahara Conservation Fund
French Facility for Global Environment
European Union
Ministry of Environment – Niger
Directorate General of Water & Forestry – Niger

Department of Wildlife, Hunting and Protected Areas - Niger

The many local field assistants and staff members that made this research possible

