Inferência Estatística I

Lista 2

AUTOR

Paulo Cerqueira Jr 🖂 📵

AFILIAÇÕES

Faculdade de Estatística - FAEST

Universidade Federal do Pará - UFPA

Exercício 1 Seja X_1, \ldots, X_n uma amostra aleatória da v.a. $X \sim \text{Poisson}(\theta)$. Considere os seguintes estimadores para θ :

$$\hat{ heta}_1 = ar{X} \quad ext{e} \quad \hat{ heta}_2 = rac{X_1 + X_2}{2}$$

Verifique se os estimadores são não viciados e consistentes, e compare seus EQMs.

Exercício 2 Seja X_1, \ldots, X_n uma amostra aleatória da v.a. $X \sim \mathrm{Bernoulli}(\theta)$. Considere os seguintes estimadores para θ :

$$\hat{ heta}_1 = 2ar{X} \quad ext{e} \quad \hat{ heta}_2 = rac{1}{2}$$

- a. Verifique se os estimadores são não viciados e consistentes.
- b. Faça um gráfico dos seus EQMs e compare-os.

Exercício 3 Seja X_1, \ldots, X_n uma amostra aleatória da v.a. $X \sim \text{Normal}(\mu, 4)$. Considere os seguintes estimadores para θ :

$$\hat{ heta}_1 = ar{X}$$
 e $\hat{ heta}_2 = 8$

- a. Verifique se os estimadores são não viciados e consistentes.
 - b. Faça um gráfico dos seus EQMs e compare-os.

Exercício 4 Seja X uma única observação da $Bernoulli(\theta)$. Considere os estimadores:

$$T_1(X) = X$$
 e $T_2(X) = \frac{1}{2}$

- a. $T_1(X)$ e $T_2(X)$ são estimadores não viciados para θ ? \
 - b. Calcule o erro quadrático médio de $T_1(X)$ e $T_2(X)$.

Exercício 5 Seja X_1, \ldots, X_n uma a.a. da v.a. com f.d.p. $f(x|\theta) = \exp{-(x-\theta)}, \ x>\theta, \ \theta>0$. Considere:

$$\hat{ heta}_1 = ar{X}$$
 e $\hat{ heta}_2 = X_{(1)}$

- a. Verifique se os estimadores são não viciados.
- b. Faça um gráfico dos EQMs e compare-os.

Exercício 6 Seja X_1, \ldots, X_n uma a.a. da v.a. com f.d.p. $f(x|\theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$. Mostre que:

$$\hat{\theta} = \bar{X}$$

é um estimador não-viciado para θ .

Exercício 7 Seja X_1,\ldots,X_n uma a.a. da v.a. $X\sim \mathrm{Normal}(\mu,1)$. Mostre que T é não viciado para $g(\mu)=\mu^2$.

Exercício 8 Seja X_1, \ldots, X_n uma a.a. com f.d.p. $f(x|\theta) = \frac{2x}{\theta^2}$, $0 < x < \theta$, $\theta > 0$. Considere:

$$\hat{ heta}_1 = c_1 ar{X} \quad ext{e} \quad \hat{ heta}_2 = c_2 X_{(n)}.$$

- a. Verifique se são não-viciados.
- b. Compare os EQMs.

Exercício 9 Seja $X_1,\ldots,X_n \sim \mathrm{Normal}(0,\sigma^2)$ e $V^2 = \sum_{i=1}^n X_i^2$, considere:

$$\hat{\sigma}_c^2 = cV^2$$

- a. Encontre o EQM.
 - b. Determine c que minimiza o EQM.

Exercício 10 Sejam X_1, \ldots, X_n uma a.a. da v.a. X, com função de densidade:

$$f(x)= heta x^{ heta-1}I_{(0,1)}(x),\quad heta>0$$

- a. Mostre que X pertence à Família Exponencial.
- b. Encontre o limite inferior da variância dos estimadores não viciados de θ .
- c. Encontre uma estatística suficiente para θ .
- d. Calcule o valor esperado desta estatística.

Exercício 11 Seja X_1, \ldots, X_n uma amostra aleatória da distribuição:

$$f(x) = \exp\left\{-(x- heta)\right\} I_{(heta,\infty)}(x), \quad heta > 0$$

- a. Obtenha uma estatística suficiente para θ .
- b. Obtenha um estimador não viciado que seja função da estatística suficiente.

Exercício 12 Mostre que as seguintes distribuições pertencem à família exponencial:

- a. $Gama(\alpha, \gamma)$ com α e γ desconhecidos.
- b. $Gama(\alpha, \gamma)$ com α conhecido e γ desconhecido.
- c. Beta(a, b) com a e b desconhecidos.
- d. Beta(a, b) com a conhecido e b desconhecido.
- e. Poisson(θ).
- f. Binomial Negativa com número de sucessos r conhecido e 0 desconhecido.

Exercício 13 Para cada item da questão 14, encontre uma estatística suficiente para os parâmetros de interesse.

Exercício 14 Seja X_1, \ldots, X_n uma amostra da distribuição:

$$f(x_i| heta) = rac{1}{2i heta}, \quad -i(heta-1) < x_i < i(heta+1), \; heta > 0$$

Encontre uma estatística suficiente bidimensional para θ .

Exercício 15 Seja $X_1,\ldots,X_n \sim \operatorname{Gama}(2,1/\theta)$.

- a. Mostre que X pertence à Família Exponencial.
- b. Obtenha uma estatística suficiente para θ .

Exercício 16 Seja $X_1,\ldots,X_n\sim N(0,\sigma^2)$.

- a. Encontre o limite inferior da variância dos estimadores não viciados de σ^2 .
- b. Obtenha uma estatística suficiente para σ^2 .
- c. Obtenha um estimador não viciado que seja função da estatística suficiente.
- d. Verifique se este estimador é eficiente.

Exercício 17 Seja $X_1, \ldots, X_n \sim \text{Bin}(2, \theta)$.

- a. Encontre o limite inferior da variância dos estimadores não viciados de θ .
- b. Obtenha uma estatística suficiente para θ .
- c. Obtenha um estimador não viciado que seja função da estatística suficiente.
- d. Verifique se este estimador é eficiente.

Exercício 18 Sejam Y_1, \ldots, Y_n independentes com $Y_i \sim N(\beta x_i, \sigma^2)$.

- a. Obtenha uma estatística suficiente para β e σ^2 .
- b. Obtenha o ENVVUM para β e σ^2 .

Exercício 19 Seja X_1, \ldots, X_n da v.a. com densidade:

$$f(x| heta) = rac{2x}{ heta^2}, \quad 0 < x < heta, \; heta > 0$$

Obtenha uma estatística suficiente para θ .

Exercício 20 Seja $X_1, \ldots, X_n \sim \mathrm{Bernoulli}(\theta)$.

- a. Obtenha o ENVVUM para θ .
- b. Obtenha o ENVVUM para $\theta(1-\theta)$..

Exercício 21 Seja X_1, \ldots, X_n com densidade:

$$f(x|\mu,\sigma) = rac{1}{\sigma} \mathrm{exp} \left\{ -rac{(x-\mu)}{\sigma}
ight\}, \quad \mu < x < \infty, \; 0 < \sigma < \infty$$

Encontre uma estatística bidimensional para o vetor (μ, σ) .

Exercício 22 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. $X\sim \mathrm{Gama}(2,1/\theta)$.

- a.Obtenha o EMV para θ .
- b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).

Exercício 23 Seja X_1, \ldots, X_n uma amostra aleatória da v.a. X_n com função de densidade dada por:

$$f(x\mid heta) = rac{x+1}{ heta(heta+1)} \mathrm{exp}\left\{-rac{x}{ heta}
ight\}, \quad x>0, heta>0.$$

a.Obtenha o EMV para θ .

b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).

c. Obtenha um estimador via método de momentos.

Exercício 24 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. $X\sim \mathrm{Poisson}(\theta)$. Seja $g(\theta)=\exp\{-\theta\}$.

a.Obtenha o EMV para $g(\theta)$.

b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).

Exercício 25 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. X, com função de densidade dada por:

$$f(x\mid heta)= heta(1+x)^{-(1+ heta)}I_{(0,\infty)}(x),\quad heta>0.$$

a.Obtenha o EMV para $1/\theta$.

b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).

c. Obtenha um estimador via método de momentos.

Exercício 26 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. X, com função de densidade dada por:

$$f(x \mid heta) = rac{2x}{ heta^2}, \quad 0 < x < heta, heta > 0.$$

a. Obtenha o EMV para $g(\theta) = \theta + \theta^2.$

b. Obtenha um estimador para θ via métodos de momentos.

Exercício 27 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. X, com função de densidade dada por:

$$f(x\mid heta)=rac{ heta}{x^2},\quad x> heta, heta>0.$$

a.Obtenha o EMV para θ .

b. Obtenha o EMV para $g(\theta) = E\left(\frac{1}{X}\right)$.

Exercício 28 Seja X_1,\ldots,X_n uma amostra aleatória obtida a partir da distribuição:

$$f(x)=\exp\{-(x-\theta)\}I_{(\theta,\infty)}(x),\quad \theta>0.$$

a.Obtenha o EMV para θ .

b. Obtenha um estimador para θ via métodos de momentos.

Exercício 29 Seja Y_1,\ldots,Y_n variáveis aleatórias independentes com $Y_i\sim N(\alpha+\beta x_i,\sigma^2)$, em que x_i é conhecido para todo $i=1,\ldots,n$.

Encontre o EMV para α , β e σ^2 .

Exercício 30 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. $X\sim \mathrm{Ber}(heta)$.

a.Encontre o EMV para Var(X).

b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).