Social network modeling and applications

Tutor: Lisette Espín-Noboa

Who are we?

Fariba Karimi

- Assistant Professor
 Vienna University of
 Technology (TU Wien)
- Team lead
 Complexity Science Hub
 Vienna
- PhD. in Physics
 Umea University
- Research
 Network inequalities,
 computational social science

www.networkinequality.com

Tiago Peixoto

- Associate Professor
 Central European University
 (CEU)
- PhD. in Physics
 University of São Paulo
- Research
 Complex networks, network inference, Bayesian modeling

skewed.de

Lisette Espín-Noboa

Postdoc Complexity Science Hub Vienna (CSH) & Central European University (CEU)

- PhD. in Computer Science
 University of Koblenz-Landau
- Research
 Network fairness, social network analysis, algorithmic auditing, computational social science

www.lisetteespin.info

Why do we need this tutorial?

Because social networks are everywhere!

Social networks in the era of big data

Before

Field observations and surveys

"Designed" data covering few people in small geographical areas

Now

Digital footprints from social media, phones, online surveys

"Organic" data covering almost the entire world

Social networks in the era of big data and machine learning

Problem #1

Traditional methods do not scale

We need new tools to characterize edge formation

Problem #2

ML algorithms are not transparent

classification

ranking

ML algorithms need to be interpretable and explainable

What we will cover in this tutorial

Network inequalities & algorithmic bias

(i.e., sampling and ranking)

What you will learn today

Useful when real networks are too big, How to generate more and for data protection realistic synthetic graphs How? Using netin and graph-tool How to study social How do networks (edges) form? phenomena when no real How to disentangle homophily and triadic closure network is available What-if scenarios via simulations To audit network-based To audit network-based algorithms algorithms When does my model fail?

What this tutorial is NOT about

Extensive review of all existing random network models

 Here we focus on models that help replicating the most important properties and mechanisms found in real-world social networks such as preferential attachment, homophily, and triadic closure.

Extensive review of network-based algorithms

- Here we show the main ingredients of how to use synthetic data to audit your own algorithm. Due to time limitations we will cover only sampling biases and ranking inequalities. But the same logic applies to any other algorithm.
- graph-tool "101"
 - Exercise #2 covers model inference and selection using graph-tool, however, participants should know already the basic concepts and syntax of this package.
 Participants should familiarize with graph-tool by reading the quick start guide: https://graph-tool.skewed.de/static/doc/quickstart.html

Agenda

Sunday, April 30

10:00 - 17:00 (CDT)

AT&T Hotel and Conference Center Classroom #103

10:30 - 12:30	Paradigm 1: From social theories to models Tutor: Fariba Karimi Social theories Network properties and structure Network models
12:30 - 13:30	Lunch break
13:30 - 15:30	Paradigm 2: From data to models Tutor: Tiago Peixoto Model fitting / inference Model selection Disentangling homophily & triadic closure
15:30 - 16:40	Applications Tutor: Lisette Espín-Noboa Biases in sampling subgraphs Ranking inequalities
16:40 - 17:00	Challenges & open questions Tutor: Lisette Espín-Noboa

Exercises

Please make sure your python environment is ready to go!

Note that if you prefer to run the exercises directly from Google Colab you can skip this info, but recall that you need a Google account.

- Download and install conda conda.io/projects/conda/en/stable/user-guide/install/download.html
- 2. Create an environment with python 3.9 or later conda create -n "snma" python=3.9 jupyterlab
- Activate your newly created conda environment conda activate snma
- 4. Clone the tutorial in your computer
 git clone
 https://github.com/snma-tutorial/www2023.git
- 5. Install graph-tool conda install -c conda-forge graph-tool
- 6. Install the additional dependencies conda install pip pip install -r requirements.txt

Material

All required information is on the tutorial's website:

https://bit.ly/snma2023