Arithmetic Circuits

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology, IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Subtractors

- Two's complement subtraction is easy:
 - Invert the second number and add

(a)

Comparators

 \Box 0's detector: A = 00...000

☐ 1's detector: A = 11...111

■ Equality comparator: A = B, A != B

■ Magnitude comparator: A < B, etc.</p>

1's and 0's Detector

- □ 1's detector: N-input AND gate
- □ 0's detector: NOTs + 1's detector (N-input NOR)

Equality detector

- ☐ Check if each bit is equal (XNOR, aka equality gate)
- 1's detect on bitwise equality

Magnitude Comparator

- □ Compute B-A and look at sign
- □ B-A = B + ~A + 1
- □ For unsigned numbers, carry out is sign bit

A+B=K Comparison

- Determining if A + B = K is easier than adding!
- Knowing bits, determine what carry in would be necessary if the sum is correct

A_i	B _i	Ki	c _{i-1} (required)	c _i (produced)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	1

A+B=K Comparator Circuit

 Check if actual and required carries are equal

Multi-input Adders

■ Suppose we want to add k N-bit words

Multi-Input Adders

- Suppose we want to add k N-bit words
 - Ex: 0001 + 0111 + 1101 + 0010 = 10111
- Straightforward solution: k-1 N-input CPAs
 - Large and slow

Carry Save Adders

- A full adder sums 3 inputs and produces 2 outputs
 - Carry output has twice weight of sum output
- N full adders in parallel are called carry save adder
 - Produce N sums and N carry outs

Carry Save Adders

- Use k-2 stages of CSAs
 - Keep result in carry-save redundant form
- □ Final CPA computes actual result

Multiplication

□ Example: $1100 : 12_{10}$ $0101 : 5_{10}$

175

General Form of Multiplication

- ☐ Multiplicand: $Y = (y_{M-1}, y_{M-2}, ..., y_1, y_0)$
- ☐ Multiplier: $X = (x_{N-1}, x_{N-2}, ..., x_1, x_0)$

Dot diagram

■ Each dot represents a bit

Array Multiplier

Rectangular Array

■ Squash array to fit rectangular floorplan

Fewer Partial Products

- Array multiplier requires N partial products
- If we looked at groups of r bits, we could form N/r partial products.
 - Faster and smaller?
 - Called radix-2^r encoding
- \square Ex: r = 2: look at pairs of bits
 - Form partial products of 0, Y, 2Y, 3Y
 - First three are easy, but 3Y requires adder ⊗

Booth Encoding

- Instead of 3Y, try –Y, then increment next partial product to add 4Y
- ☐ Similarly, for 2Y, try –2Y + 4Y in next partial product

Inputs			Partial Product	Booth Selects		
X _{2i+1}	X _{2i}	X _{2i-1}	PP _i	X _i	2X _i	M_{i}
0	0	0	0	0	0	0
0	0	1	Υ	1	0	0
0	1	0	Υ	1	0	0,
0	1	1	2Y	0	1	0
1	0	0	-2Y	0	1	1
1	0	1	-Y	1	0	1
1	1	0	-Y	1	0	1
1	1	1	-0	0	0	1

Booth Hardware

- Booth encoder generates control lines for each PP
 - Booth selectors choose PP bits

Booth Example

Sign Extension

- Partial products can be negative
 - Require sign extension, which is cumbersome
 - High fanout on most significant bit

Simplified Sign Extension

- Sign bits are either all 0's or all 1's
 - Note that all 0's is all 1's + 1 in proper column
 - Use this to reduce loading on MSB

Even simpler sign extension

- No need to add all the 1's in hardware
 - Precompute the answer!

Higher Radix Booth Encoding

- Booth-8 reduces partial products by factor of 3
 - Requires +/- 3Y multiples which need a CPA

x _{i+2}	x_{i+1}	X _i	x_{i-1}	Partial Product
0	0	0	0	0
0	0	0	1	Y
0	0	1	0	Y
0	0	1	1	2Y
0	1	0	0	2Y
0	1	0	1	3Y
0	1	1	0	3Y
0	1	1	1	4Y
1	0	0	0	-4Y
1	0	0	1	-3Y
1	0	1	0	-3Y
1	0	1	1	-2Y
1	1	0	0	-2Y
1	1	0	1	-Y
1	1	1	0	-Y
1	1	1	1	-0

Column Addition

- Add up all the dots in a column in carry-save form
- ☐ Then use CPA to convert to nonredundant binary
- □ CSAs act as "1's counters"

Α	В	С	Carry	Sum	Number of 1's
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	1	0	2
1	0	0	0	1	1
1	0	1	1	0	2
1	1	0	1	0	2
1	1	1	1	1	3

Array multiplier CSAs

- N-2 CSAs to sum N partial products
 - Ex: 16 x 16 Booth-4 multiplier with 9 PPs
 - Remember carries actually cross columns

Wallace Tree

- Reduce number of levels using a tree
 - log_{3/2}N levels

4:2 Compressor

- Wallace tree routing is irregular and long
 - Use 4:2 compressors instead

Compressor Design

- ☐ 3:2 CSA
 - 2 XOR delays
 - X is fast input
 - C is fast output

- 4:2 Compressor
 - 23:2 CSAs
 - Note horizontal carry t

Improved 4:2 Compressor

- □ Arrange inputs carefully for only 3 XOR delays
 - Connect slow output to fast input

5:3 Compressor

S. Roy Chowdhury, A. Banerjee, A. Roy, H. Saha, IEEE VDAT 2008

15:4 Compressor

Multiplier Floorplans

Comparison of different multiplier architectures

- ☐ Arrays
 - + shortest wiring
 - + most compact layout
 - Most levels of CSAs
- Wallace tree
 - + fewest levels of CSAs
 - not fewest levels of XORs
 - long, irregular wiring
- ☐ 4:2 Trees
 - + nearly minimal levels of XORs
 - + few irregular wires

Final Addition

- Take advantage of irregular arrival times
 - First and last columns have fewer PPs
 - Reduce power of noncritical early inputs

Serial Multiplication


```
Step Shift Req
               Notes
    0000|0101
               initialize
               add 1*Y
0a
    1100|0101
    01100|010
               shift right
              add 0*Y
1a
    01100|010
               shift right
1b
    001100|01
2a
   111100|01 add 1*Y
2b
    0111100|0
               shift right
    0111100|0 add 0*Y
3a
3b
    00111100|
               shift right
```


Division

- \square Compute X/Y = Q, R
 - Where X = QY + R
 - |R| < |Y|
- X: Dividend (M+N bits in range [0, 2^NY-1]
- ☐ Y: Divisor (M bits)
- Q: Quotient (N bits)
- □ R: Remainder (M bits)

Division Example

Division Algorithm

```
PR[0] = X

for i = 0 to N-1

D[i] = 2PR[i] - (Y << N)

if D[i] < 0 then QN-i-1 = 0, PR[i+1] = 2PR[i]

else QN-i-1 = 1, PR[i+1] = D[i]

R = PR[N] >> N
```


Division Example

Iteration	<i>PR</i> [/]	<i>D</i> [/]	$\mathbf{Q}_{\mathbf{i}}$
0	01011001	010110010 -1101 101100010	0
1	10110010	101100100 -1101 010010100	1
2	10010100	100101000 -1101 001011000	1
3	01011000	010110000 -1101 111100000	0
4	10110000		

Iterative Approximation

- Make initial guess, then iteratively improve
- □ Common method: Newton-Ralphson
 - Method of finding root of f(z)

$$z_{i+1} = z_i - \frac{f(z_i)}{f'(z_i)}$$

Signed Division

- Magnitude of Q and R are independent of signs
- Quotient is negative if X and Y have different signs
- Remainder satisfies X = QY + R
 - Hence, sign of remainder matches sign of X
- Examples:
 - 89/13 = 6 remainder 11
 - 89/-13 = -6 remainder 11
 - -89/13 = -6 remainder -11
 - .89/-13 = 6 remainder -11
- Convert to unsigned division, correct signs at end

Thank You