

CS432 - Computation Theory Assignment #1 4CS-S5

ID	Name
20190041	Ahmed Tarek Fawzy Ibrahem
20190562	Mo'men Hatem Mohamed Ali

Regular Expressions

- Find a regular expression to describe each of the following five languages

Solution

- 1. $\wedge +a (b.b)^*$
- 2. $\wedge + (a^* + b^* + c^*)$
- 3. $\wedge + (c^* \cdot a + b \cdot c^*)$
- 4. $(a.a)^* + b.(b.b)^*$
- 5. $a^*.b.c^*$
- Find a regular expression over the alphabet (0, 1) to describe the set of all binary numerals without leading zeros (except 0 itself). So, the language is the set (0, 1, 10, 11, 100, 101, 110, 111, ...).

Solution

$$0+1.(0+1)^*$$

- Find a regular expression for each of the following languages over the alphabet (a,b).

- a. $(aa + bb + ab + ba)^*$
- b. $((a + b) \cdot (a + b) \cdot (a + b))^*$
- c. $(a + ba + bba)^*(b + bb + \wedge)$
- $d.(a.(aa+bb)^*b) + (b.(aa+bb)^*a)$

- Describe in English phrases the languages associated with the following regular expression:

Solution

- a. Strings must include an **odd number of b's**.
- b. String's length must be $\{3x + b : x \ge 0 \text{ and } b \in [0, 1]\}$.
- c. String in which the letters b, a is never doubled, This means that **no word contains the substring aa**.
- Construct a regular expression defining each of the following languages over the alphabet {a b}:

Solution

$$(b^*.ab^*.ab^*.ab^*)^*$$

- Describe (in English phrases) the languages associated with the following regular expressions:

- a) Strings must include at **least a** and will never end with any number of b's **excluding 4 b's**.
- b) Strings may be **empty** or , **start with a and end with a or bb.**
- c) Strings may be **empty** or **start with a and have odd number of a's and b's**.
- d) Strings may be **empty** or have **an odd number of a's**.
- e) Strings may be **empty** or **consist of a's only or b's only** or consist of a's and b's **but occurrences of contagious a's and contagious b's are not even**.
- f) Strings may be empty or have even length and end with a

- Show that the following pairs of regular expressions define the same language over the alphabet {a,b}:

- a) These regular expressions are equals and match the same strings that consist of ababab....aba, match with first regular expression as: (ab)(ab)(ab)....(ab)a, match with second regular expression as: a(ba)(ba)(b....a)(ba)
- b) These regular expressions are equals and match the same strings that consist of any number of a's and b's in any order as: aaabbaa match first regular expression as: (aaa)(b)(b)(aa) and match second regular expression as: (a)(a)(a)(b)(b)(a)(a)
- c) These regular expressions are equals and match the same strings that consist of any number of a's and b's in any order as: aaabbaa match first regular expression as: (aaa)(bb)(aa) and match second regular expression as: (a)(a)(a)(b)(b)(a)(a)
- d) These regular expressions are equals and match the same strings that consist of any number of a's and followed by number of b's divisible by 3 then followed by any number of a's as: aaaabbbbbbbaa match with first regular expression as: ((aaaa)bbb)(bbb)(aa) and match second regular expression as: (aaaa)(bbb)(bbb(aa))

Finite Automata

DFA

Transform each of the following regular expressions into a DFA.

$$- a * b *$$

$$- (a + b)$$

$$-(a*+b*)$$

Design a DFA that accepts all strings over {a, b}

- All strings that do not end with aa.

Regular expression : $\ni +a+b+(a+b)*(ab+bb+ba)$

- All strings that contain an even number of b's

Regular expression : a * (b a * b a*) *

- All strings which do not contain the substring ba

Regular expression : a * b *

NFA

Draw NFA for each of the following languages over the alphabet {a,b}

- All strings that contain two a's separated by a substring whose length is a multiple of 3.

Regular expression : (a + b) * a((a + b)(a + b)(a + b)) * a(a + b) *

- All strings that contain an even number of b's.

Regular expression : a * (b a * b a *) *

- All strings which do not contain the substring ba.

Regular expression : a * b *

NFA to DFA

Q1

NFA

14174		
	а	b
Q_0	Q_0	Q_0 , Q_1
Q_1		_

	а	b
Q_0	Q_0	Q_0,Q_1
Q_0 , Q_1	Q_0	Q_0,Q_1
Q_1	_	_

DFA

<u>Q2</u>

NFA

	а	b
Q_0	Q_1	Q_1
Q_1	Q_2	_
Q_2	Q_1	Q_1

DFA

	а	b
Q_0	Q_1	Q_1
Q_1	Q_2	Q_4
Q_2	Q_1	Q_1

<u>Q3</u>

NFA

	а	b
Q_0	Q_1	_
Q_1	Q_1	Q_1Q_2
Q_2	_	Q_3
Q_3	_	_

DFA

	а	b
Q_0	Q_1	Q_4
Q_1	Q_1	Q_1Q_2
Q_1Q_2	Q_1	$Q_1Q_2Q_3$
$Q_1Q_2Q_3$	Q_1	$Q_1Q_2Q_3$

NFA

	а	b
Q_0	$Q_0Q_1Q_2$	Q_0
Q_1	-	_
Q_2	Q_1	Q_1

DFA

	а	b
Q_0	$Q_0Q_1Q_2$	Q_0
$Q_0Q_1Q_2$	$Q_0Q_1Q_2$	Q_0Q_1
Q_0Q_1	$Q_0Q_1Q_2$	Q_0

