Università degli studi di Bergamo Scuola di Ingegneria (Dolmine) CCS Ingegneria Edile

LM-24 Ingegneria delle Costruzioni Edili

Complementi di Scienza delle Costruzioni (ICAR/08-SdC; 6 CFU)

> prof. Egiolio RIZZI egiolio. zizzi@unibg.it

> > LEZIONE 04

Al geometrica - Esempi di vistemi articolati labili, con sportate e mappe di componenti di sport. (u,v) Sistema biella-manovella (vedi cilindro/pistone/biella voli un motore) [olue aste] spostete, meccamismo, rinematismo o catena einematica Pu = AB sind P_ = AB cosh 41 = 1= = 42 l2 hz = BQ sind 12= BSZ 6014

2) Sistema articolato con tre aste (n=3)

-Il sistema di congruenze ammette voluz. non bondi (
$$u_1 \neq 0$$
) sse det $C = 0$ det $C = l sin d - h cos d = 0 \Leftrightarrow condizione di labilità $2 \Rightarrow tan d = \frac{sin d}{cos d} = \frac{h}{l} = tan \beta \Rightarrow (d = \beta)$$

- In tel caso, la soluzione (non bande) risulta:

$$M_A = 0$$
 $V_A = 0$

(lsind-hosd)
$$P_{A} = 0 \rightarrow P_{A}$$
 orbitrario (mvece se lsmd-hosd $\neq 0$, alloza $P_{A} = 0$)
$$= 0$$

-Approcais rislotte con schema set albers (rimotione del solo earrelle in B):

operture della maglia chiusa che la struttura forma con la terra

unica eque sh' vincolo

$$= (lsink - hosd) P_{A} = 0$$

sisteme di conquenze ridotto

$$\sqrt{y} = (1 \cdot 1)^{2} = 0$$

$$1 \times 1 \quad 1 \times 1 \quad 1 \times 1$$

$$C \neq 0$$
 $\leq 4 = 0$ $(L=0)$

$$C = 0$$
 > $C = 0$ > $C = 0$. $C = 1$