Apellido y Nombre:	—
Carrera: DNI:	
Llenar con letra mavúscula de imprenta GRANDE	

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática

Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. 2do Parcial. Tema: 1A. [23 de mayo de 2006]

- [Ej. 1] [clases (20 puntos)] Escribir la implementación en C++ del TAD Arbol Ordenado Orientado (clase tree). Para la clase tree implemente: insert(p,x), find(x) y clear(). Para la clase iterator implemente operator!=, operator==, lchild() y right() (u operator++). Declare además la clase cell. Observaciones:
 - Debe declarar los miembros privados de las clases a declarar o implementar. Ayuda: use la figura 1.
 - Si opta por la interfase "estilo" STL, implemente la forma **prefija** del operador operator++ (++p).

Figura 1: Entorno local de un iterator sobre árboles.

[Ej. 2] [programación (total = 45 puntos)]

a) [longest-path (25 puntos)]

Escribir una función void longest_path(btree<int> &A,list<int> &L); que, dado un árbol binario A retorna en L la lista de valores en el camino más largo en el árbol. Por ejemplo, si A=(3 (4 2 .) (6 7 (8 9 5))), entonces longest_path debe retornar L=(3 6 8 9). Si hay más de un camino con la longitud más larga, entonces puede retornar cualquiera de ellos. Por ejemplo, en el caso anterior puede retornar también L=(3 6 8 5). Notas: se puede usar list<int>::size() y todas las funciones de lista en STL sin restricciones (asignación, constructor por copia...).

b) [path-of-largest (20 puntos)]

Escribir una función void path_of_largest(tree<int> &A,list<int> &L); que, dado un árbol ordenado orientado A, retorna en L el camino que se obtiene recorriendo el árbol hacia abajo, siempre por el hijo más grande. Por ejemplo, si A=(3 (4 6 (7 8 9)) (5 2 4 6)) entonces path_of_largest debe retornar L=(3 5 6). Si para un nodo el valor más grande de los hijos está repetido, entonces el camino puede seguir por cualquiera de ellos. Por ejemplo si A=(3 (4 5 6) 4 2) entonces path_of_largest() puede retornar L=(3 4 6) o L=(3 4).

[Ej. 3] [operativos (total = 25 puntos)]

- a) [huffman (10 ptos)] Dados los caracteres siguientes con sus correspondientes probabilidades, contruir el código binario y encodar la palabra PAPELERAS P(P) = 0.1, P(A) = 0.1, P(L) = 0.3, P(E) = 0.1, P(R) = 0.2, P(B) = 0.05, P(Q) = 0.05, P(S) = 0.1 Calcular la longitud promedio del código obtenido. Justificar si cumple o no la condición de prefijos.
- b) [rec-arbol (5 ptos)] Dibujar el árbol ordenado orientado cuyos nodos, listados en orden previo y posterior son

Apellido y No	DNI:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
	a mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
c) d)	binario (3 (4 . 2) (1 . 7)). (Restricciones: [modificar-arbol (5 ptos)] Escribir la secuen ordenado orientado A = (3 (4 5 6) (7 8 9))	cia de secuencia necesarias para modificar el árbol
cho	reguntas (total = 10 puntos, 2.5 puntos por ice", es decir marcar con una cruz el casillero aprencionalmente "descabelladas" y tienen puntajes	• •
a)	Dado el árbol (a (b e f) (c (g h)) d)), ma árbol. (e b f) (f b a) (c g h) (a c g h) (d)	arcar cuáles de los siguientes son <i>caminos</i> válidos en el
b)	¿Cuál es el tiempo de ejecución para splice(tello $O(\log n)$ $O(n)$ $O(\sqrt{n})$ $O(1)$	o, from) en árboles binarios?
c)	Dado el árbol a=(1 3 (5 7 (9 11))), después n = a.find(5); a.erase(n); ¿Como queda el árbol? a=(1 3 (9 7 11)) a=(1 3 (. 7 (9 11))) a=(1 3) a=(1 3 (7 (9 11)))	de aplicar las siguientes sentencias:
	Marcar cuáles de los siguientes son árboles bina (1 2 (3 . 5)) (1 2 3) (1 . (3 4 5)) (1 2 (3 4 5)) (1 (7 8 9) (3 4 5))	arios completos (ABC):