Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών

Κινητά Δίκτυα Επικοινωνιών

Μέρος Α: Τηλεπικοινωνιακά Θέματα:

Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης

- Διαμόρφωση: Η διαδικασία του «μετασχηματισμού» της πληροφορίας μιας πηγής ώστε να είναι κατάλληλη για μετάδοση.
- Στη γενική περίπτωση περιλαμβάνει τη μετάδοση της πληροφορίας σε ζωνοπερατό δίαυλο (passband). Το σήμα βασικής ζώνης (baseband) είναι το «διαμορφώνον» σήμα ενώ το ζωνοπερατό σήμα που προκύπτει είναι το διαμορφωμένο.
- Αποδιαμόρφωση: Η διαδικασία εξαγωγής του σήματος βασικής ζώνης από το ζωνοπερατό σήμα.
- Η ανάπτυξη τεχνικών διαμόρφωσης για κινητά συστήματα είναι αντικείμενο εντατικής έρευνας ιδιαίτερα κατά την τελευταία δεκαπενταετία.

- Στο περιβάλλον της κινητής επικοινωνίας πρέπει να λαμβάνονται υπόψη κάποιες σημαντικές ιδιαιτερότητες, όπως:
 - Το φαινόμενο της πολυδιόδευσης και τα προβλήματα που προκαλεί (κυρίως λόγω επιλεκτικής ή/και γρήγορης απόσβεσης)
 - Το πρόβλημα των παρεμβολών από άλλους χρήστες
 - Η ανάγκη για την καλύτερη δυνατή εκμετάλλευση της ενέργειας (constant envelop / power efficiency)
 - Η επιτακτική ανάγκη για αποδοτική εκμετάλλευση του φάσματος (Spectral efficiency)
- * Power efficiency: Ρυθμός μεταδιδόμενης πληροφορίας ανά Watt ισχύος (άλλοι δείκτες: CNR, $E_{\rm s}/N_{\rm o}$)
- * Spectral efficiency: Ρυθμός μεταδιδόμενης πληροφορίας ανά Ηz του χρησιμοποιούμενου εύρους ζώνης (bits/sec/Hz).

- Η διαμόρφωση συνίσταται στην κατάλληλη τροποποίηση κάποιων χαρακτηριστικών της φέρουσας (πλάτος, συχνότητα, φάση).
- Διακρίνονται σε αναλογικές και ψηφιακές διαμορφώσεις.
- Αναλογικές διαμορφώσεις χρησιμοποιούνται ακόμη και σήμερα (π.χ. IS-95).

Παράδειγμα ΑΜ διαμόρφωσης

- Πλεονεκτήματα ψηφιακής διαμόρφωσης και μετάδοσης :
 - Ανθεκτικότητα στο θόρυβο και στις ατέλειες του καναλιού
 - Ευελιξία σε πολυπλεξία διαφόρων μορφών πληροφορίας
 - Ενσωμάτωση διαδικασιών ελέγχου σφαλμάτων, ισοστάθμισης, κωδικοποίησης πηγής
 - Ευελιξία σε ότι αφορά την υλοποίηση σε H/W και S/W.
- Βασικές τεχνικές: ASK (Amplitude Shift Keying)

 FSK (Frequency Shift Keying)

 PSK (Phase Shift Keying)

- Σύμφωνες ή ομόδυνες (coherent) : Τέλειος συγχρονισμός πομπού και δέκτη.
- Ασύμφωνες ή ετερόδυνες (incoherent): Τα σύμφωνα σχήματα πρέπει να τροποποιηθούν ώστε να γίνεται ανίχνευση (detection) ακόμη και όταν δεν υπάρχει συγχρονισμός.
- PSK → DPSK (διαφορική κωδικοποίηση πριν την διαμόρφωση PSK)
- Incoherent FSK (βλ. σχήμα)

$$\cos(2\pi f_i t - \varphi) =$$

$$\cos(\varphi)\cos(2\pi f_i t) + \sin(\varphi)\sin(2\pi f_i t)$$

Αποδοτικές τεχνικές με μεγάλο spectral efficiency:

■ Quadrature Amplitude Modulation (QAM – M)

$$s(t) = A_m g_T(t) \cos(2\pi f_t t + \theta_n)$$

$$s(t) = A_{mc} g_T(t) \cos(2\pi f_t t) + A_{ms} g_T(t) \sin(2\pi f_t t), \quad m=1,2...M$$

- Quadrature Phase Shift Keying (QPSK)
- Είναι ειδική περίπτωση QAM με M=4.

Διάγραμμα βαθμίδων του πομπού ενός συστήματος QPSK

Διάγραμμα βαθμίδων του δέκτη ενός συστήματος QPSK

- Βελτιωμένη παραλλαγή: Offset QPSK (OQPSK)
- Το πλάτος του QPSK είναι σταθερό όταν ο παλμός βασικής ζώνης είναι ορθογώνιος και οι συνθήκες ιδανικές. Αυτή η ιδιότητα όμως παύει να ισχύει όταν υπάρχει pulse shaping (δηλαδή σχεδόν πάντα!)
- Στο σύστημα OQPSK οι άρτιες και περιττές δυαδικές ακολουθίες (δηλ. οι συνιστώσες I και Q) είναι μετατοπισμένες η μια σχετικά με την άλλη κατά T_b (και όχι χρονικά ευθυγραμμισμένες όπως στο QPSK). Με τον τρόπο αυτό συμβαίνουν αλλαγές φάσης κάθε T_b (και όχι κάθε $2T_b$) αλλά η μέγιστη δυνατή αλλαγή περιορίζεται σε 90^o (και όχι στις 180^o).

Οι διακυμάνσεις της περιβάλλουσας όταν υπάρχει pulse shaping

- Μια ακόμη παραλλαγή του QPSK: (π/4)-QPSK
- Είναι μια λύση που βρίσκεται ανάμεσα στο QPSK και στο OQPSK
- Η μέγιστη δυνατή αλλαγή φάσης είναι 135°. Έτσι διατηρεί την επιθυμητή ιδιότητα σταθερής περιβάλλουσας καλύτερα από το QPSK αλλά όχι τόσο καλά όσο το OQPSK.
- Έχει σίγουρα αλλαγή φάσης κάθε Τ_s πράγμα που οδηγεί σε καλύτερη ανάκτηση χρονισμού και σε δυνατότητα σχεδιασμού ετερόδυνου δέκτη.
- Εχει επίσης καλύτερη συμπεριφορά από το OQPSK σε συνθήκες πολυδιόδευσης.

Ο πομπός ενός (π/4)-QPSK συστήματος

- Στις τεχνικές αυτές η ιδιότητα σταθερής περιβάλλουσας διατηρείται ανεξάρτητα από τις μεταβολές του διαμορφώνοντος σήματος.
- Τέτοιου είδους διαμορφώσεις είναι οι τύπου FM και FSK.

Πλεονεκτήματα:

- Εύκολη μετατροπή για ασύμφωνη ανίχνευση
- Ευκολία υλοποίησης (σε ορισμένες περιπτώσεις χωρίς καν τη χρήση υποσυστήματος carrier recovery)
- Ανοσία σε μη-γραμμικότητες λόγω σταθερής περιβάλλουσας

Μειονεκτήματα:

- Περισσότερη απαιτούμενη ισχύς για το ίδιο BER (στη δυαδική περίπτωση)
- Για μεγάλα Μ έχουμε spectral inefficiency (όσο μεγαλώνει το Μ τόσο εκτείνεται το απαιτούμενο έυρος ζώνης)
- Δύσκολη υλοποίηση ζωνοπερατών ισοσταθμιστών (επειδή το σήμα FSK είναι μηγραμμική συνάρτηση του σήματος βασικής ζώνης)
- Δύσκολη ανάλυση (φάσμα, ΒΕΚ κλπ)

- Το M-FSK πρέπει να σχεδιαστεί έτσι ώστε να διασφαλίζονται η συνέχεια φάσης και η ορθογωνιότητα των συναρτήσεων βάσης
- Η ελάχιστη απόσταση που απαιτείται μεταξύ δύο διαδοχικών συχνοτήτων ώστε να έχουμε ορθογωνιότητα είναι minΔf = 1/2Ts
- \blacksquare Όμως η ελάχιστη απόσταση ώστε να έχουμε συνέχεια φάσης είναι $min\Delta f = 1/Ts$
- Καλύτερη εκμετάλλευση του εύρους ζώνης επιτυγχάνεται με τις τεχνικές τύπου CPFSK (continuous phase frequency shift keying)
- Μια ειδική (αλλά σημαντική) περίπτωση CPFSK είναι η MSK (minimum shift keying). Μπορεί να θεωρηθεί ως τροποποιημένη μορφή OQPSK. Η τροποποίηση έγκειται στο ότι οι Ι και Q συνιστώσες πριν πολλαπλασιαστούν με τις αντίστοιχες φέρουσες διαμορφώνονται με παλμό ημιτονικής μορφής (sinusoidal pulse shaping)

$$f(t) = a_n \sin\left(\frac{2\pi t}{4T_b}\right) \cos 2\pi f_c t + b_n \cos\left(\frac{2\pi t}{4T_b}\right) \sin 2\pi f_c t$$

Δημιουργία του σήματος MSK

^{*} Ερμηνεύεται επίσης ως ένα σύστημα με μνήμη ενός συμβόλου

Σύγκριση των φασμάτων διαφόρων συστημάτων διαμόρφωσης

* FFSK (Fast FSK): Παραλλαγή του MSK με διαφορική προκωδικοποίηση

Διάγραμμα βαθμίδων του αποδιαμορφωτή ενός συστήματος τύπου MSK

- Παραλλαγή του MSK: GMSK (Gaussian MSK)
- Χάρη στη μορφή του παλμού προ-διαμόρφωσης (που έχει μορφή κατανομής Gauss) επιτυγχάνεται ακόμα καλύτερη εκμετάλλευση του φάσματος

- * B_b: Bandwidth of the premodulation pulse shaping filter
- * T_o: Symbol period

Σύγκριση φασμάτων MSK και GMSK

- OFDM: Orthogonal Frequency Division Multiplexing
- \blacksquare Η τεχνική OFDM μπορεί να θεωρηθεί ως σχήμα διαμόρφωσης στο οποίο η πληροφορία μεταδίδεται (παράλληλα) πάνω σε N ορθογώνιες φέρουσες που έχουν απόσταση $1/T_{\rm s}$, όπου $T_{\rm s}$ είναι η διάρκεια ενός συμβόλου OFDM.

Μέσω της παράλληλης μετάδοσης επιτυγχάνουμε σημαντική μείωση έως και εξουδετέρωση της διασυμβολικής παρεμβολής (ISI) που προκαλείται από τη χρονική διασπορά του καναλιού και τα πολυδρομικά φαινόμενα

Δύο βασικές κατηγορίες συστημάτων παράλληλης μετάδοσης:

Multicode Transmission

Multicarrier Transmission

■ Στο σύστημα OFDM τα φάσματα των υπο-φερουσών επικαλύπτονται χωρίς όμως αυτό να προκαλεί το φαινόμενο inter-carrier interference. Για να επιτευχθεί αυτό πρέπει οι υπο-φέρουσες να είναι μαθηματικά ορθογώνιες.

FDM

OFDM

* Συνθήκη ορθογωνιότητας:

$$\int_{a}^{b} \psi_{p}(t) \psi_{q}^{*}(t) dt = \begin{cases} K & \text{for } p = q \\ 0 & \text{for } p \neq q \end{cases}$$

■ Στο σχήμα (α) βλέπουμε το φάσμα ενός OFDM sub-channel ενώ στο σχήμα (β) το φάσμα του συνολικού σήματος OFDM.

■ Βασικά πλεονεκτήματα:

- Καλύτερη αξιοποίηση του φάσματος
- Διάχυση του προβλήματος της επιλεκτικής και γρήγορης απόσβεσης. Έτσι αποφεύγονται burst errors.

■ Μειονεκτήματα:

- Ευαισθησία σε carrier frequency offset (λόγω jitter και Doppler)
- Δεν διασφαλίζεται η σταθερή περιβάλλουσα και συνεπώς η τεχνική είναι ευαίσθητη σε μη γραμμικές παραμορφώσεις του διαύλου

Η μορφή του φάσματος ισχύος ενός τυπικού σήματος OFDM

■ Αποδοτική υλοποίηση του συστήματος OFDM με χρήση του IDFT. Οι συναρτήσεις βάσης του IDFT αντιστοιχούν στις ορθογώνιες υπο-φέρουσες

Σήμα προς μετάδοση:

$$s(t) = \sum_{k=-\infty}^{\infty} \sum_{i=0}^{N-1} d_i(k) \exp \left(j2\pi f_i(t - kT_s)\right) f(t - kT_s)$$

Όπου f; είναι η συχνότητα της i-οστής υπο-φέρουσας και f(t) είναι το pulse waveform

$$i-o\sigma \tau \eta \varsigma$$
 υπο-φέρουσας και $f(t)$ είναι το pulse veform

$$f(t) = \begin{cases} 1 & (0 \le t \le T_s) \\ 0 & (\text{otherwise}) \end{cases}$$

Τεχνική μετάδοσης (διαμόρφωσης) τύπου OFDM Ο ρόλος του IDFT

$$x(n) = \sum_{n=0}^{K-1} X(k)e^{j\frac{2\pi}{K}k \cdot n}$$

$$x(0) = X(0)e^{j\frac{2\pi}{4}0 \cdot 0} + X(1)e^{j\frac{2\pi}{4}1 \cdot 0} + X(2)e^{j\frac{2\pi}{4}2 \cdot 0} + X(3)e^{j\frac{2\pi}{4}3 \cdot 0}$$

$$x(1) = X(0)e^{j\frac{2\pi}{4}0 \cdot 1} + X(1)e^{j\frac{2\pi}{4}1 \cdot 1} + X(2)e^{j\frac{2\pi}{4}2 \cdot 1} + X(3)e^{j\frac{2\pi}{4}3 \cdot 1}$$

$$x(2) = X(0)e^{j\frac{2\pi}{4}0 \cdot 2} + X(1)e^{j\frac{2\pi}{4}1 \cdot 2} + X(2)e^{j\frac{2\pi}{4}2 \cdot 2} + X(3)e^{j\frac{2\pi}{4}3 \cdot 2}$$

$$x(3) = X(0)e^{j\frac{2\pi}{4}0 \cdot 3} + X(1)e^{j\frac{2\pi}{4}1 \cdot 3} + X(2)e^{j\frac{2\pi}{4}2 \cdot 3} + X(3)e^{j\frac{2\pi}{4}3 \cdot 3}$$

- Οι έξοδοι του IDFT αποστέλλονται μία-προς-μία (P/S) και το σήμα που προκύπτει είναι ένα σύμβολο OFDM (το οποίο ουσιαστικά είναι η υπέρθεση των διαμορφωμένων (με τα QAM σύμβολα) υπο-φερουσών)
- Παρατηρούμε ότι κάθε αρχικό σύμβολο QAM μεταδίδεται μέσω μίας συγκεκριμένης υποφέρουσας (γινόμενο της αντίστοιχης συνάρτησης βάσης του IDFT με μία κοινή φέρουσα) για Κ-πλάσιο χρόνο

Η επίδραση της εισαγωγής του Guard Interval

Bit Error Probability Curves for OFDM and QPSK

Διάγραμμα βαθμίδων του πλήρους συστήματος με χρήση του κυκλικού προθέματος (cyclic prefix).

