

Document Title

128K x16 bit 2.5 V Low Power Full CMOS slow SRAM

Revision History

Revision No	<u>History</u>	Draft Date	Remark
00	Initial	Apr.07.2001	Preliminary
01	Correct Pin Connection	Apr.25.2001	•
02	Correct Marking Information	May.08.2001	
03	Correct Pin Configuration	May.10.2001	
	DNU -> NC		
04	Part Number Revision	May. 15.2001	
	Power Supply 2.5V : Q -> L		
05	Add another PKG Size	Apr. 16.2002	
	48-TSOP1(12mm x 14mm)		

DESCRIPTION

The HY62LF16206A is a high speed, super low power and 2Mbit full CMOS SRAM organized as 128K words by 16bits. The HY62LF16206A uses high performance full CMOS process technology and is designed for high speed and low power circuit technology. It is particularly well-suited for the high density low power system application. This device has a data retention mode that guarantees data to remain valid at a minimum power supply voltage of 1.2V.

FEATURES

- Fully static operation and Tri-state output
- TTL compatible inputs and outputs
- Battery backup(L-part)
 - -. 1.2V(min) data retention
- · Standard pin configuration
 - -. 48-TSOP1(12mm X 14mm, 12mm X 18mm)

Product	Voltage	Speed	Operation	Standby Current(uA)	Temperature
No.	(V)	(ns)	Current/Icc(mA)	L	(°C)
HY62LF16206A	2.3~2.7	120	3	100	0~70

Notes:

1. Current value is max.

PIN CONNECTION

BLOCK DIAGRAM

PIN CONNECTION

Pin Name	Pin Function	Pin Name	Pin Function
/CS1	Chip Select 1	I/O1~I/O16	Data Inputs / Outputs
CS2	Chip Select 2	A0~A16	Address Inputs
/WE	Write Enable	Vcc	Power(2.3V~2.7V)
/OE	Output Enable	Vss	Ground
/LB	Lower Byte Control(I/O1~I/O8)	NC	No Connection
/UB	Upper Byte Control(I/O9~I/O16)		

ORDERING INFORMATION

Part No.	Speed	Power	Temp.	Package
HY62LF16206A-LT12C	120	L-part	0; É~ 70; É	48-TSOP1

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit	Remark
Vin, Vout	Input/Output Voltage	-0.3 to 3.3	V	
Vcc	Power Supply	-0.3 to 3.3	V	
TA	Operating Temperature	0 to 70	°C	
Tstg	Storage Temperature	-40 to 125	°C	
Pd	Power Dissipation	1.0	W	
TSOLDER	Ball Soldering Temperature & Time	260 • 10	°C•sec	

Note:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and the functional operation of the device under these or any other conditions above those indicated in the operation of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect reliability.

TRUTH TABLE

/CS1	CS2	/WE	/OE	/LB	/UB	Mode	I,	0	Power
/631	CSZ	/VV	/OL	/LD	705	Wode	I/O1~I/O8	I/O9~I/O16	rowei
Н	Х	Χ	Χ	Х	Х		High-Z	High-Z	
Χ	L	Χ	Χ	X	X	Deselected	High-Z	High-Z	Standby
Χ	Χ	Χ	Χ	Н	Н		High-Z	High-Z	
L	Н	Н	Н	L	X	Output Disabled	High-Z	High-Z	
L	Н	Н	Н	X	L	Output Disabled	High-Z	High-Z	
				L	Н		Dout	High-Z	
L	Н	Н	L	Н	L	Read	High-Z	Dout	Active
				L	L		Dout	Dout	Active
				L	Н		DIN	High-Z	
L	Н	L	X	Н	L	Write	High-Z	DIN	
				L	Ĺ		DIN	DIN	

Note:

- 1. H=VIH, L=VIL, X=don't care(Vil or Vih)
- 2. UB, LB(Upper, Lower Byte enable)

These active LOW inputs allow individual bytes to be written or read.

When LB is LOW, data is written or read to the lower byte, I/O 1 -I/O 8.

When UB is LOW, data is written or read to the upper byte, I/O 9 -I/O 16.

RECOMMENDED DC OPERATING CONDITION

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	2.3	2.5	2.7	V
Vss	Ground	0	0	0	V
VIH	Input High Voltage	2.0	-	Vcc+0.3	V
VIL	Input Low Voltage	-0.3(1)	-	0.4	V

Note:

1. VIL = -1.5V for pulse width less than 30ns

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 2.3V \sim 2.7V$, TA = 0°C to 70°C

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
I⊔	Input Leakage Current	Vss ≤ VIN ≤ Vcc	-1	-	1	uA
ILO	Output Leakage Current	Vss ≤ Vout ≤ Vcc, /CS1 = ViH or CS2= ViL, /OE = ViH or /WE = ViL, or /UB = /LB = ViH	-1	-	1	uA
Icc	Operating Power Supply Current	/CS1 = VIL, CS2 = VIH, VIN = VIH or VIL, II/O = 0mA	-	-	3	mA
ICC1	Average Operating Current	Cycle Time=Min.100% duty, /CS1 = 0.2V, CS2 = Vcc-0.2V, /WE = Vcc-0.2V, II/O = 0mA Other Inputs = Vcc-0.2V/0.2V	-	-	20	mA
		Cycle time = 1us, /CS1 \leq 0.2V, CS2; \tilde{W} cc-0.2V, VIN<0.2V or Vin; \tilde{W} cc-0.2V, II/O = 0mA	-	-	4	mA
ISB	Standby Current (TTL Input)	/CS1 = VIH, CS2 = VIL /UB = /LB = VIH, VIN = VIH or VIL	-	-	0.3	mA
ISB1	Standby Current (CMOS Input)	$/CS1 \ge Vcc - 0.2V$ or $CS2 \le Vss + 0.2V$ or $/UB = /LB \ge Vcc - 0.2V$, $VIN \ge Vcc - 0.2V$ or $VIN \le Vss + 0.2V$	-	-	100	uA
Vol	Output Low Voltage	IOL = 1.0mA	-	-	0.4	V
Voн	Output High Voltage	IOH = -0.5mA	1.8	-	-	V

Notes:

- 1. Typical values are at Vcc = 2.5V, TA = 25°C
- 2. Typical values are sampled and not 100% tested

CAPACITANCE

 $(Temp = 25^{\circ}C, f= 1.0MHz)$

Symbol	Parameter	Condition	Max.	Unit
CIN	Input Capacitance(Add, /CS, /WE, /OE)	VIN = 0V	10	pF
Соит	Output Capacitance(I/O)	VI/O = 0V	10	pF

Note:

1. These parameters are sampled and not 100% tested

AC CHARACTERISTICS

 $Vcc = 2.3V \sim 2.7V$, TA = 0°C to 70°C, unless otherwise specified

# Symbol		Peremeter		12	Unit
#	Syllibol	Parameter	Min.	Max.	Unit
READ CYCLE					
1	tRC	Read Cycle Time	120	-	ns
2	tAA	Address Access Time	-	120	ns
3	tACS	Chip Select Access Time	-	120	ns
4	tOE	Output Enable to Output Valid	-	80	ns
5	tBA	/LB, /UB Access Time	-	120	ns
6	tCLZ	Chip Select to Output in Low Z	10	-	ns
7	tOLZ	Output Enable to Output in Low Z	5	-	ns
8	tBLZ	/LB, /UB Enable to Output in Low Z	10	-	ns
9	tCHZ	Chip Deselection to Output in High Z	0	45	ns
10	tOHZ	Out Disable to Output in High Z	0	45	ns
11	tBHZ	/LB, /UB Disable to Output in High Z	0	45	ns
12	tOH	Output Hold from Address Change	10	-	ns
	WRITE C	YCLE			
13	tWC	Write Cycle Time	120	-	ns
14	tCW	Chip Selection to End of Write	100	-	ns
15	tAW	Address Valid to End of Write	100	-	ns
16	tBW	/LB, /UB Valid to End of Write	100	-	ns
17	tAS	Address Set-up Time	0	-	ns
18	tWP	Write Pulse Width	85	-	ns
19	tWR	Write Recovery Time	0	-	ns
20	tWHZ	Write to Output in High Z	0	35	ns
21	tDW	Data to Write Time Overlap	60	-	ns
22	tDH	Data Hold from Write Time	0	-	ns
23	tOW	Output Active from End of Write	10	-	ns

AC TEST CONDITIONS

 $TA = 0^{\circ}C$ to $70^{\circ}C$, unless otherwise specified

	Parameter	Value
Input Pulse Le	evel	0.4V to 2.2V
Input Rise and	I Fall Time	5ns
Input and Out	out Timing Reference Level	1.1V
Output Load	tCLZ,tOLZ,tBLZ,tCHZ,tOHZ,tBHZ,tWHZ,tOW	CL = 5pF + 1TTL Load
	Others	CL = 30pF + 1TTL Load

AC TEST LOADS

Note:

1. Including jig and scope capacitance

Rev.05 /Apr. 2002 4

TIMING DIAGRAM

READ CYCLE 1(Note 1.4)

READ CYCLE 2(Note 2,3,4)

READ CYCLE 3(Note 1,2,4)

Notes:

- 1. A read occurs during the overlap of a low /OE, a high /WE, a low /CS1, a high CS2 and low /UB and/or /LB.
- 2. /OE = VIL
- 3. Transition is measured <u>+</u> 200mV from steady state voltage. This parameter is sampled and not 100% tested.
- 4. /CS1 in high for the standby, low for active. CS2 in low for the standby, high for active. /UB and /LB in high for the standby, low for active

Notes:

- 1. A write occurs during the overlap of a low /WE, a low /CS1, a high CS2 and low /UB and/or /LB.
- 2. tWR is measured from the earlier of /CS, /LB, /UB, or /WE going high or CS2 going low to the end of write cycle.
- 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the output must not be applied.
- 4. If the /CS1, /LB and /UB low transition with CS2 high transition occur simultaneously with the /WE low transition or after the /WE transition, outputs remain in a high impedance state.
- 5. Q(data out) is the same phase with the write data of this write cycle.
- 6. Q(data out) is the read data of the next address.
- 7. Transition is measured; 200mV from steady state. This parameter is sampled and not 100% tested.
- 8. /CS1 in high for the standby, low for active. CS2 in low for the standby, high for active. /UB and /LB in high for the standby, low for active

DATA RETENTION ELECTRIC CHARACTERISTIC

 $TA = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vdr	Vcc for Data Retention	/CS1 ≥ Vcc - 0.2V or CS2 ≤ Vss+0.2V	1.2	-	2.7	V
		or /UB = /LB \geq Vcc-0.2V,				
		VIN ≥ Vcc - 0.2V or VIN < Vss + 0.2V				
ICCDR	Data Retention Current	Vcc=1.5V, /CS1 ≥ Vcc - 0.2V,	-	-	100	uA
		CS2 <u><</u> Vss+0.2V,				
		/UB = /LB ≥ Vcc-0.2V or				
		$VIN \ge VCC - 0.2V$ or $VIN \le VSS + 0.2V$				
tCDR	Chip Deselect to Data	See Data Retention Timing Diagram	0	-	-	ns
	Retention Time					
tR	Operating Recovery Time		tRC(3)	-	-	ns

Notes:

- 1. Typical values are under the condition of $TA = 25^{\circ}C$.
- 2. Typical Values are sampled and not 100% tested
- 3. tRC is read cycle time.

DATA RETENTION TIMING DIAGRAM 1

DATA RETENTION TIMING DIAGRAM 2

PACKAGE INFORMATION

48pin Thin Small Outline Package Forward(12mm X 14mm)

48pin Thin Small Outline Package Forward(12mm X 18mm)

MARKING INSTRUCTION

- Top Side

Marking Example Package 0 h i X K O R E A у n TSOP-I 6 A 2 0 HY 6 2 L F 1 6 (Forward) L T 1 2 С y y w w p

Index		
• hynix • KOREA	: Hynix Logo : Origin Country	
• HY62LF16206A HY 62 L F 16 20 6 A	: Part Name : HYNIX : Product Group : Operating Voltage : Tech. + Classification : Organization : Density : Mode : Version	: Slow SRAM : 2.5V(2.3V ~ 2.7V) : Full CMOS : x16 : 2M : 2CS with /UB,/LB;tCS : 2 nd Generation
• yy • ww • p	: Year (ex : 00 = year 20 : Work Week (ex : 12 = v : Process Code - A - B	
• L • T • 12 • C	: Power Consumption : Package Type : Speed : Temperature	: Low Power : TSOP-I : 120ns : Commercial (0 ~ 70 °C)
Note - Capital Letter - Small Letter	: Fixed Item : Non-fixed Item	

Bottom Side

Package

Marking Example

TSOP-I (Forward)

Index

• xxxxxxxx : FAB Run No.

Note

Capital Letter : Fixed ItemSmall Letter : Non-fixed Item