Exercise 1 (Geofluids – Part III)

Mass action and mass conservation equations and their use for chemical equilibrium calculations

Lecturer: Dr. Svetlana Kyas

May 4, 2021

Consider the following chemical species in three different phases, and the chemical elements that compose them:

Index	Species			
1	$CO_2(aq)$			
2	$CO_3^{-2}(aq)$		Index	Element
3	$Cl^-(aq)$	•	1	C
4	$H^+(aq)$		2	Cl
5	$H_2O(1)$		3	Н
6	$HCO_3^-(aq)$		4	Na
7	$Na^+(aq)$		5	Ol
8	$OH^{-}(aq)$	•		
9	$CO_2(g)$			
10	NaCl(s)			

The following system of linearly independent reactions can be written for this chemical system:

$$H_2O(aq) \rightleftharpoons H^+(aq) + OH^-(aq) \tag{1}$$

$$HCO_3^-(aq) + H^+(aq) \rightleftharpoons CO_2(aq) + H_2O(aq) \tag{2} \label{eq:2}$$

$$H_2O(aq) + CO_2(aq) \rightleftharpoons CO_3^{-2}(aq) + 2H^+(aq)$$
 (3)

$$CO_2(g) \rightleftharpoons CO_2(aq)$$
 (4)

$$NaCl(s) \rightleftharpoons Na^{+}(aq) + Cl^{-}(aq)$$
 (5)

Exercise

- a) Write the **system of mass action equations** for these reactions.
- b) Write the **system of mass conservation equations** for the elements.
- c) Discuss whether the combination of these systems of equations are enough to compute $n = (n_1, \dots, n_{10})$ and, if so, what kind of algorithm would you use for this.

Considerations:

- Use n_1 , ..., n_{10} to denote the amounts of the species (unknown);
- Use b_1 , ..., b_5 to denote the amounts of the elements (*known*);
- Use a_1 , ..., a_{10} to denote the activities of the species (*unknown*, *function of n*);
- Use K_1 , ..., K_5 to denote the equilibrium constants of the reactions (*known*).

Remarks:

- In the next classes, we will see how activities, a_i , are calculated for aqueous, gaseous and mineral species. For now, know that activities are non-linear functions that depend on the amounts of the species, $n = (n_1, ..., n_{10})$, temperature T and pressure P. Thus, $a_i = a_i(n; T, P)$, where T and P are given and n is what we want to find.
- To write the mass conservation equations, determine the chemical formula coefficients A_{ji} below:

$$\sum_{i=1}^{10} A_{ji} n_i = b_j \qquad (j = 1, \dots, 5).$$

For example, $A_{O,HCO_3^-} \equiv A_{2,6} = 3$.

• To write the mass action equations, use the general mass action equation:

$$K_m = \frac{\prod_p a_p^{\nu_p}}{\prod_r a_r^{\nu_r}} \qquad (m = 1, \dots, 5),$$

for the reaction written in general form:

$$\sum_{r} \nu_r A_r \Longrightarrow \sum_{p} \nu_p A_p.$$

For example, for reaction (1), we have:

$$K_1 = \frac{a_2 a_3}{a_1}.$$

2