Aprendizado de Máquina

Aula 3: Algoritmos baseados em distância

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Aprendizado baseado em instâncias
- 1-vizinho mais próximo
- Medidas de distância
- Similaridade e dissimilaridade
- K-vizinhos mais próximos
- Raciocínio baseado em casos

AM e Geometria

- Medidas de distância
 - Podem ser usadas para
 - Classificar novos dados
 - Ex.: K-NN
 - Agrupar dados
 - Ex.: K-médias
 - Existem várias medidas

- Versão simples do algoritmo k-NN
 - K-Nearest neighbour
 - Geralmente usado para classificação
- Algoritmo lazy (preguiçoso)
 - o Olha os dados de treinamento apenas quando vai classificar um novo objeto
 - o Não constrói um modelo explicitamente
 - o Diferente de algoritmos eager (ansioso)
 - Induzem um modelo
 - Ex.: Algoritmos de indução de árvores de decisão, redes neurais, máquinas de vetores de suporte,

Métodos baseados em distância

- Consideram proximidade entre dados
 - Medidas de similaridade
 - o Medidas de dissimilaridade (distância)

- Medidas mais usadas:
 - Euclidiana
 - Norma máxima
 - Bloco-cidade (Manhattan)

Distância de Minkowski

Medida de distância generalizada

$$dist = (\sum_{k=1}^{m} |p_k - q_k|^r)^{\frac{1}{r}}$$

- Valor de r leva a diferentes distâncias:
 - 1 (L₁): Distância bloco cidade (Manhattan)
 - Hamming (valores binários)
 - o 2 (L₂): Distância Euclidiana

Medidas de distância

- Distância Euclidiana
 - Sistema de coordenadas cartesianas

$$dist = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

- Distância de norma máxima
 - o Menor complexidade (e exatidão)

$$dist = MAX(|p_k - q_k|)$$

Medidas de distância

Distância Euclidiana

Distância Bloco Cidade (Manhattan)

Proximidade entre valores

- Similaridade (s)
 - o Mede o quanto dois objetos são parecidos
 - Quanto mais parecidos, maior o valor
- Dissimilaridade (d)
 - Mede o quanto dois objetos s\(\tilde{a}\) o diferentes
 - Distância
 - Quanto mais diferentes, maior o valor
- Medida de proximidade pode ser usada

$$d(a,b) = \begin{cases} 1, \text{ se a } \neq b \\ 0, \text{ se a } = b \end{cases}$$

$$d(a,b) = \frac{|pos_a - pos_b|}{n-1} \quad \text{n = #valores} \\ \text{n > 1}$$

$$d(a,b) = |a-b|$$

Similaridade entre vetores binários

- Algumas vezes, objetos p e q têm apenas valores binários
 - o Ex.: 0110 e 1100
- Similaridades podem ser computadas usando:
 - \circ M₀₁ = número de atributos em que p = 0 e q = 1
 - \circ M₁₀ = número de atributos em que p = 1 e q = 0
 - \circ M₀₀ = número de atributos em que p = 0 e q = 0
 - M₁₁ = número de atributos em que p = 1 e q = 1

Similaridade entre vetores binários

• Coeficiente de Casamento Simples

CCS =
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

Coeficiente Jaccard

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11})$$

Similaridade cosseno

- Muito usada quando dados são textos
 - Bag of words
 - Grande número de atributos
 - Esparsos
- Sejam p e q vetores representando documentos
 - \circ cos(p, q) = (p· q) / ||p|| ||q||
 - : produto interno entre vetores
 - ||x||: tamanho (norma) do vetor x

- Generalização do 1-vizinho mais próximo
- Algoritmo de AM baseado distância muito simples
 - o Baseado em memória
- Número de vizinhos (k) pode variar

Quantos vizinhos?

- K muito grande
 - Vizinhos podem ser muito diferentes
 - Aumenta incerteza na classificação
 - o Predição tendenciosa para classe majoritária
- K muito pequeno
 - o Considera apenas objetos muito próximos
 - Não usa quantidade suficiente de informação
 - o Previsão pode ser instável
 - Ruído

Quantos vizinhos?

Quantos vizinhos?

Seja k o número de vizinhos mais próximos
Para cada novo exemplo x
Retornar a classe dos k exemplos
(vizinhos) mais próximos
Classificar x na classe majoritária
dentre as retornadas

- Abordagem local
- Processo de teste pode ser lento
 - Seleção de atributos
 - Eliminação de exemplos
 - Guardar conjunto de protótipos para cada classe
 - Algoritmos iterativos
 - Eliminação sequencial
 - Inserção sequencial

- Algoritmos iterativos para eliminação
 - Selecionam protótipos
 - Eliminação sequencial
 - Conjunto inicial começa com todos os exemplos
 - Descarta exemplos corretamente classificados pelos protótipos (- protótipos)
 - Inserção sequencial
 - Conjunto inicial inclui apenas os protótipos
 - Inclui exemplos incorretamente classificados pelos protótipos (+ protótipos)

- Normalizar atributos
- Ponderar atributos pela importância
- Ponderar votos pela distância entre exemplos
- Regressão
- Naturalmente incremental

Raciocínio baseado em casos (RBC)

- Sistemas Baseados em Regras
 - Populares no passado
 - o Dificuldade de especialistas em transformar experiência em regras

REGRAS

EXPERIÊNCIA

Raciocínio baseado em casos (RBC)

BASE DE EXPERIÊNCIAS

Mais que uma Base de Dados!

Como funciona

 Resolve novos problemas adaptando soluções de problemas anteriores semelhantes

Ciclo de um sistema de RBC

O que é um caso?

- Existem dois tipos de casos
 - Casos de entrada:
 - Descrições de características (situações) de problemas específicos
 - Casos armazenados:
 - Possuem descrições de características (situações) de problemas anteriores junto com soluções e resultados

O que é um caso?

- Um caso armazenado geralmente tem duas partes:
 - o Uma parte caso
 - Descrição do problema
 - Usada para identificar o caso
 - Indexação e recuperação
 - Uma parte solução
 - Explica como este caso foi resolvido anteriormente de forma bem (mal) sucedida
 - Adaptada quando o caso é recuperado

Raciocínio baseado em casos

Conclusão

- Aprendizado baseado em distância
- Conceitos básicos
- Medidas de distância
- K-vizinhos mais próximos
- Variações
- Exemplos
- Raciocínio baseado em casos

Final da

Spresentação

- Qual das três medidas resulta na maior e na menor distância entre os exemplos abaixo?
 - Manhattan
 - Euclidiana
 - Norma máxima

$$Ex1 = (3, 1, 10, 2)$$

$$Ex2 = (2, 5, 3, 2)$$

- Utilizando distância de Manhattan, definir:
 - Qual par dos números binários abaixo tem a distância mais semelhante à diferença entre a quantidade de seus valores na base decimal?
 - 110000, 111001, 000111, 001011, 100111, 101001

- Para cada medida de distância
 - Quais são os dois exemplos da tabela abaixo mais próximos e os dois mais distantes?
 - o Usar distâncias Euclidiana, bloco cidade e norma máxima

Estado	Escolaridade	Altura	Salário	Classe
SP	Médio	180	3000	Α
RJ	Superior	174	7000	В
RJ	Fundamental	100	2000	Α

• Seja o seguinte cadastro de pacientes

Nome	Febre	Enjôo	Manchas Dores	Diagnóstico
João	sim	sim	pequenas sim	doente
Pedro	não	não	grandes não	saudável
Maria	sim	sim	pequenas não	saudável
José	sim	não	grandes sim	doente
Ana	sim	não	pequenas sim	saudável
Leila	não	não	grandes sim	doente

- Usar K-NN e os exemplos anteriores para definir as classes dos exemplos de teste
 - \circ Usar k = 1, 3 e 5
- Exemplos de teste
 - o (Luis, não, não, pequenas, sim)
 - (Laura, sim, sim, grandes, sim)

- Dada a tabela abaixo, com k =1 e 3, definir a classe dos exemplos:
 - o (RJ, Médio, 178, 2000)
 - (SP, Superior, 200, 800)

Estado	Escolaridade	Altura	Salário	Classe
SP RJ RS RJ SP RJ	Médio Superior Médio Superior Fundamental Fundamental	180 174 180 100 178 188	3000 7000 600 2000 5000 1800	A B B A A

• Coeficiente de Casamento Simples

CCS =
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

• Coeficiente Jaccard

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11})$$

