MATH 131A: HOMEWORK 4

Lana Lim 105817312

May 11, 2025

Problem 1. Solution.

Ross 9.4

(a)
$$s_1 = 1, s_2 = \sqrt{2}, s_3 = \sqrt{\sqrt{2} + 1}, s_4 = \sqrt{\sqrt{\sqrt{2} + 1} + 1}.$$

(b) Let $s_1 = 1$ and for $n \ge 1$ let $s_{n+1} = \sqrt{s_n + 1}$.

Lemma 1 (Monotonicity of (s_n)). We will prove that (s_n) is increasing by induction. Let

$$P_n: "s_n \le s_{n+1} \text{ for all } n \ge 1." \tag{1}$$

Base Case: $s_1 \leq s_2$ implies $1 \leq \sqrt{2}$ and this is true.

Inductive Step: assume P_n holds for some $n \ge 1$. We will then show that this is true for P_{n+1} . To show $s_{n+1} \le s_{n+2}$, we need

$$\sqrt{s_n + 1} \le \sqrt{s_{n+1} + 1}$$

$$\implies s_n + 1 \le s_{n+1} + 1$$

$$\implies s_n \le s_{n+1}.$$

 $s_n \leq s_{n+1}$ is given by our hypothesis so (1) holds for n+1 whenever (1) holds for n. Hence (1) holds for all $n \geq 1$ by induction. Thus we have shown that (s_n) is increasing.

Assume (s_n) converges. Let $\lim s_n = s$ for some $s \in \mathbb{R}$. We want to prove $s = \frac{1}{2}(1 + \sqrt{5})$. We know $\lim s_n = \lim s_{n+1} = s$. Then consider the following

$$\lim s_n = \lim s_{n+1}$$

$$\Rightarrow \lim s_n = \lim \sqrt{s_n + 1}$$

$$\Rightarrow (\lim s_n)^2 = (\lim \sqrt{s_n + 1})^2$$

$$\Rightarrow s^2 = \lim (s_n + 1)$$

$$\Rightarrow s^2 = \lim s_n + \lim 1$$

$$\Rightarrow s^2 = s + 1$$

$$\Rightarrow s^2 - s - 1 = 0.$$
(*)

Proof of (*): Given that $(\sqrt{s_n+1})$ converges to s, we can write

$$(\lim \sqrt{s_n+1})^2 = (\lim \sqrt{s_n+1})(\lim \sqrt{s_n+1}) = \lim (\sqrt{s_n+1}\sqrt{s_n+1}) = \lim (\sqrt{s_n+1})^2 = \lim (s_n+1).$$
(Theorem 9.4)

Proof of ()**: Given that (s_n) converges to s and constant sequences converge to their constant, we can write

$$\lim(s_n + 1) = \lim s_n + \lim 1.$$
 (Theorem 9.3)

Possible solutions to $s^2 - s - 1 = 0$ are $\frac{1}{2}(1 \pm \sqrt{5})$. (s_n) is increasing which implies $1 \le s_n$ for all $n \ge 1$. Therefore $s = \frac{1}{2}(1 + \sqrt{5})$. Thus we have proven $\lim s_n = \frac{1}{2}(1 + \sqrt{5})$.

Ross 9.10

- (a) Let M > 0 and k > 0. Since $\lim s_n = +\infty$ and $\frac{M}{k} > 0$, there exists $N \in \mathbb{N}$ such that n > N implies $s_n > \frac{M}{k}$, hence $ks_n > M$. So there exists N such that n > N implies $ks_n > M$ for all M > 0. Thus we have shown $\lim ks_n = +\infty$ given $\lim s_n = +\infty$ and k > 0.
- (b) Suppose $\lim s_n = +\infty$. Let M < 0. Then there exists $N \in \mathbb{N}$ such that n > N implies $s_n > -M$, hence $-s_n < M$. For sequence $(-s_n)$, we write $\lim -s_n = -\infty$ since we have shown for all M < 0 there exists N such that n > N implies $-s_n < M$. Thus $\lim (-s_n) = -\infty$ given $\lim s_n = +\infty$.

Suppose $\lim(-s_n) = -\infty$. Let M > 0. Then there exists $N \in \mathbb{N}$ such that n > N implies $-s_n < -M$, hence $s_n > M$. For sequence (s_n) , we write $\lim s_n = +\infty$ since we have shown for all M > 0 there exists N such that n > N implies $s_n > M$. Thus $\lim s_n = +\infty$ given $\lim(-s_n) = -\infty$.

Problem 2. Solution.

Ross 10.6

(a) Let $\epsilon > 0$. We want to find a N such that m, n > N implies $|s_m - s_n| < \epsilon$. Without loss of generality, assume $m \ge n$. We can write

$$|s_{m} - s_{n}| = |(s_{m} - s_{m-1}) + (s_{m-1} - s_{m-2}) + \dots + (s_{n+1} - s_{n})|$$

$$\leq |s_{m} - s_{m-1}| + |s_{m-1} - s_{m-2}| + \dots + |s_{n+1} - s_{n}|$$
 (Triangle inequality)
$$< \frac{1}{2^{m-1}} + \frac{1}{2^{m-2}} + \dots + \frac{1}{2^{n}}$$

$$< \frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots$$

$$= \frac{1}{2^{n}} \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right)$$
 (Geometric sequence $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$)
$$= \frac{1}{2^{n}} \cdot 2$$
 ($S = \frac{a}{1-r}$ where $a = 1$ and $r = \frac{1}{2}$)
$$= \frac{1}{2^{n-1}}.$$

Then let $N > 1 + log_2(\frac{1}{\epsilon})$ such that $m, n \ge N$ implies $|s_m - s_n| < \frac{1}{2^{n-1}} < \frac{1}{2^{n-1}} < \epsilon$ hence $2^{N-1} > \frac{1}{\epsilon}$ hence $N - 1 > log_2(\frac{1}{\epsilon})$ hence $N > 1 + log_2(\frac{1}{\epsilon})$.

Therefore we have proven that (s_n) is a Cauchy sequence, thus a convergent sequence.

(b) The result in (a) is false if we only assume $|s_{n+1} - s_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$. We will prove this by a counterexample. Let (s_n) be a sequence such that $s_{n+1} = s_n + \frac{1}{2^n}$ where $s_1 = 0$. This implies $s_{n+1} - s_n = \frac{1}{2^n}$ hence

$$|s_{n+1} - s_n| = \frac{1}{2^n} < \frac{1}{n}.$$
(*)

Proof of (*): We will prove $\frac{1}{2^n} < \frac{1}{n}$ for all $n \in \mathbb{N}$ by induction. The base case $\frac{1}{2} < 1$ is true. Assume $\frac{1}{2^n} < \frac{1}{n}$ is true for some n. We want to show that it is also true for n+1. Do this by writing

$$\frac{1}{2^{n+1}} < \frac{1}{n+1} \implies \frac{1}{2} \frac{1}{2^n} < \frac{1}{n+1}.$$

We know $\frac{1}{2}\frac{1}{2^n} < \frac{1}{2}\frac{1}{n}$ by our hypothesis, so we can write

$$\frac{1}{2}\frac{1}{2^n} < \frac{1}{2}\frac{1}{n} = \frac{1}{n+n} < \frac{1}{n+1}.$$

Therefore we have shown $\frac{1}{2^{n+1}} < \frac{1}{n+1}$. It follows by induction $\frac{1}{2^n} < \frac{1}{n}$ for all $n \in \mathbb{N}$. We will prove that (s_n) is divergent, therefore not Cauchy. Define (s_n) as

$$s_n = \frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i}$$

where $s_1 = 0, s_2 = \frac{1}{2}(1), s_3 = \frac{1}{2}\left(1 + \frac{1}{2}\right)$, and so on. Thus we have shown (s_n) diverges given that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Therefore we have shown there exists (s_n) satisfying $|s_{n+1} - s_n| < \frac{1}{n}$ that diverges and hence not Cauchy. Thus the result in (a) is false if we only assume $|s_{n+1} - s_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$.

Problem 3. Solution.

(a) We will prove $a_n < 2$ for all $n \in \mathbb{N}$ by induction. Let

$$P_n: "a_n < 2 \text{ for all } n \in \mathbb{N}."$$
 (2)

Base Case: $a_1 < 2 \Rightarrow 1 < 2$ is true.

Inductive Step: we assume P_n holds for some $n \ge 1$. To show that P_{n+1} holds, consider the following

$$a_{n+1} < 2$$

$$\implies \sqrt{a_n + 2} < 2$$

$$\implies a_n + 2 < 4$$

$$\implies a_n < 2$$

 $a_n < 2$ is given by our hypothesis so (2) holds for n + 1 whenever (2) holds for n. Hence (2) holds for all $n \in \mathbb{N}$ by induction. Thus we have shown that $a_n < 2$ for all $n \in \mathbb{N}$. That is, (a_n) is bounded above.

(b) We will prove that the sequence (a_n) is increasing by induction. Let

$$P_n: "a_n \le a_{n+1} \text{ for all } n \in \mathbb{N}."$$
 (3)

Base Case: $a_1 \le a_2 \Rightarrow 1 \le \sqrt{3}$ and this is true.

Inductive Step: we assume P_n holds for some $n \ge 1$. We will show P_{n+1} holds by the following

$$a_{n+1} \le a_{n+2}$$

$$\implies \sqrt{a_n + 2} \le \sqrt{a_{n+1} + 2}$$

$$\implies a_n + 2 \le a_{n+1} + 2$$

$$\implies a_n \le a_{n+1}$$

 $a_n \le a_{n+1}$ is given by our hypothesis so (3) holds for n+1 whenever (3) holds for n. Hence (3) holds for all n by induction. Thus we have shown that $a_n \le a_{n+1}$ for all $n \in \mathbb{N}$. That is, (a_n) is increasing.

(c) We have shown that (a_n) is increasing and bounded above. Therefore (a_n) converges. Let $\lim a_n = a$ for some $a \in \mathbb{R}$. We will prove that a = 2. We know $\lim a_n = \lim a_{n+1}$. Then consider the following

$$\lim a_n = \lim a_{n+1}$$

$$\implies \lim a_n = \lim \sqrt{a_n + 2}$$

$$\implies (\lim a_n)^2 = (\lim \sqrt{a_n + 2})^2$$

$$\implies a^2 = \lim (a_n + 2)$$

$$\implies a^2 = \lim a_n + \lim 2$$

$$\implies a^2 = a + 2$$

$$\implies a^2 - a - 2 = 0.$$
(*)

Proof of (*): Given that $(\sqrt{a_n+2})$ converges to a, we can write

$$(\lim \sqrt{a_n+2})^2 = (\lim \sqrt{a_n+2})(\lim \sqrt{a_n+2}) = \lim (\sqrt{a_n+2}\sqrt{a_n+2}) = \lim (\sqrt{a_n+2})^2 = \lim (a_n+2).$$
(Theorem 9.4)

Proof of ()**: Given that (a_n) converges to a and constant sequences converge to their constant, we can write

$$\lim(a_n + 2) = \lim a_n + \lim 2.$$
 (Theorem 9.3)

Possible solutions to $a^2 - a - 2 = 0$ are 2 and -1. (a_n) is increasing which implies $1 \le a_n$ for all $n \ge 1$. Therefore a = 2. Thus we have proven $\lim a_n = 2$.

Problem 4. Solution.

Lemma 2 $((a_n)$ and (b_n) are strictly positive). We will prove that (a_n) and (b_n) are strictly positive such that $a_n > 0$ and $b_n > 0$ for all $n \in \mathbb{N}$. The base case is proven given 0 < a < b. Assume $a_n > 0$ and $b_n > 0$ for some n. To prove the n + 1 case, consider

$$a_{n+1} > 0$$
 $b_{n+1} > 0$
 $\Rightarrow \sqrt{a_n b_n} > 0$ $\Rightarrow \frac{a_n + b_n}{2} > 0$
 $\Rightarrow a_n b_n > 0$ $\Rightarrow a_n + b_n > 0$

 $a_nb_n>0$ and $a_n+b_n>0$ is true given our hypothesis. Thus we have shown $a_{n+1}>0$ and $b_{n+1}>0$ is true whenever $a_n>0$ and $b_n>0$ is true. Thus $a_n>0$ and $b_n>0$ is true for all $n\in\mathbb{N}$ by induction. That is, (a_n) and (b_n) are strictly positive sequences.

Lemma 3 $((a_n)$ and (b_n) are bounded monotonic sequences). We want to prove that (a_n) is increasing and bounded above by b and (b_n) is decreasing and bounded below by a. That is, we will prove $b_n \geq b_{n+1} \geq a_{n+1} \geq a_n$ is true for all $n \in \mathbb{N}$ by induction. Let

$$P_n: "b_n > b_{n+1} > a_{n+1} > a_n \text{ for all } n \in \mathbb{N}."$$
 (4)

Base Case: $b_1 \ge b_2 \ge a_2 \ge a_1$ implies $b \ge \frac{a+b}{2} \ge \sqrt{ab} \ge a$. There are three inequalities to prove:

- (1) $b \ge \frac{a+b}{2}$ implies $2b \ge a+b$ which is $b+b \ge a+b$ and this is true given a < b. This establishes the first inequality.
- (2) $\frac{a+b}{2} \ge \sqrt{ab}$ implies $a+b \ge 2\sqrt{ab}$. This is true given 0 < a < b. Thus we obtain $\frac{a+b}{2} \ge \sqrt{ab}$.
- (3) $\sqrt{ab} \ge a$ implies $ab \ge a^2$ and this is true given a < b. Therefore we have verified the base case.

Inductive Step: assume P_n is true for some $n \ge 1$. We want to prove P_{n+1} such that $b_{n+1} \ge b_{n+2} \ge a_{n+2} \ge a_{n+1}$. There are three inequalities to prove:

- (1) $b_{n+1} \ge b_{n+2}$ implies $b_{n+1} \ge \frac{a_{n+1}+b_{n+1}}{2}$ which is $2b_{n+1} \ge a_{n+1} + b_{n+1}$. From our hypothesis we know $b_{n+1} \ge a_{n+1}$ so we have shown that the first inequality holds.
- (2) $b_{n+2} \ge a_{n+2}$ implies $\frac{a_{n+1}+b_{n+1}}{2} \ge \sqrt{a_{n+1}b_{n+1}}$ which is $a_{n+1}+b_{n+1} \ge 2\sqrt{a_{n+1}b_{n+1}}$. This is true since $a_n > 0$ and $b_n > 0$ for all $n \in \mathbb{N}$ (Lemma 2). Thus we obtain $b_{n+2} \ge a_{n+2}$.
- (3) $a_{n+2} \ge a_{n+1}$ implies $\sqrt{a_{n+1}b_{n+1}} \ge a_{n+1}$ which is $a_{n+1}b_{n+1} \ge (a_{n+1})^2$. This is given by our hypothesis because we assume $b_{n+1} \ge a_{n+1}$. Thus we have shown $a_{n+2} \ge a_{n+1}$ holds.

Therefore we have shown (4) holds for n+1 whenever (4) holds for n. Hence (4) holds for all $n \in \mathbb{N}$ by induction. Therefore we state the following:

- $b_n \ge b_{n+1}$ implies that (b_n) is decreasing and $a_{n+1} \ge a_n$ implies (a_n) is increasing.
- $a_{n+1} \ge a_n$ implies $a_n \ge a$. Since $a_n \le b_n$ for all $n \in \mathbb{N}$, we say $a \le b_n$ is true for all $n \in \mathbb{N}$. Therefore we have shown (b_n) is bounded below by a.
- $b_n \ge b_{n+1}$ implies $b \ge b_n$. Since $b_n \ge a_n$ for all $n \in \mathbb{N}$, we say $b \ge a_n$ is true for all $n \in \mathbb{N}$. Therefore we have shown (a_n) is bounded above by b.

It follows that (a_n) and (b_n) converge since we have proven that they are bounded monotonic sequences (Lemma 4). Now we want to show that (a_n) and (b_n) converge to the same limit. Let $\lim a_{n+1} = L_a$ and $\lim b_{n+1} = L_b$. Then we can write

$$\lim a_{n+1} = L_a$$

$$\Rightarrow \lim \sqrt{a_n b_n} = L_a$$

$$\Rightarrow (\lim \sqrt{a_n b_n})^2 = L_a^2$$

$$\Rightarrow \lim a_n b_n = L_a^2 \qquad (*)$$

$$\Rightarrow (\lim a_n)(\lim b_n) = L_a^2$$

$$\Rightarrow L_a L_b = L_a^2$$

$$\Rightarrow L_b = L_a.$$

Proof of (*): Given that (a_n) converges to L_a and (b_n) converges to L_b , we can write

$$(\lim \sqrt{a_n b_n})^2 = (\lim \sqrt{a_n b_n})(\lim \sqrt{a_n b_n}) = \lim (\sqrt{a_n b_n} \sqrt{a_n b_n}) = \lim (\sqrt{a_n b_n})^2 = \lim a_n b_n.$$
(Theorem 9.4)

Proof of ()**: Given that (a_n) converges to L_a and (b_n) converges to L_b , (a_nb_n) converges to L_aL_b . That is,

$$(\lim a_n)(\lim b_n) = \lim a_n b_n = L_a L_b.$$
 (Theorem 9.4)

Then $L_a = L_b$ implies $\lim a_{n+1} = \lim b_{n+1}$ which implies $\lim a_n = \lim b_n$. Thus we have shown (a_n) and (b_n) converge to the same limit.