$10_{150} (K10n_9)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 5218u^{16} - 13845u^{15} + \dots + 24209b - 23873, \ 14691u^{16} - 23006u^{15} + \dots + 24209a - 62170, \\ u^{17} - 2u^{16} + \dots - 3u - 1 \rangle$$

$$I_2^u = \langle b - 1, \ -u^2 + a + u - 1, \ u^3 - u^2 + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 20 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5218u^{16} - 13845u^{15} + \dots + 24209b - 23873, \ 14691u^{16} - 23006u^{15} + \dots + 24209a - 62170, \ u^{17} - 2u^{16} + \dots - 3u - 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_1 &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_4 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_3 &= \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_2 &= \begin{pmatrix} -u^2+1 \\ -u^2 \end{pmatrix} \\ a_7 &= \begin{pmatrix} -0.606840u^{16} + 0.950308u^{15} + \cdots - 2.86026u + 2.56805 \\ -0.215540u^{16} + 0.571895u^{15} + \cdots - 0.628196u + 0.986121 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} u \\ -u^3 + u \end{pmatrix} \\ a_6 &= \begin{pmatrix} -0.650337u^{16} + 1.05824u^{15} + \cdots - 2.69995u + 2.65839 \\ -0.137841u^{16} + 0.712421u^{15} + \cdots - 0.487215u + 1.05552 \end{pmatrix} \\ a_5 &= \begin{pmatrix} -0.788178u^{16} + 1.77066u^{15} + \cdots - 3.18716u + 3.71391 \\ -0.137841u^{16} + 0.712421u^{15} + \cdots - 0.487215u + 1.05552 \end{pmatrix} \\ a_8 &= \begin{pmatrix} 0.421785u^{16} - 1.78739u^{15} + \cdots - 0.282003u - 1.72217 \\ -0.844603u^{16} + 0.281053u^{15} + \cdots - 2.71804u - 0.861209 \end{pmatrix} \\ a_9 &= \begin{pmatrix} -0.396877u^{16} + 1.39225u^{15} + \cdots - 0.955099u + 1.13198 \\ 0.271015u^{16} + 0.327482u^{15} + \cdots + 1.53959u + 0.667892 \end{pmatrix} \end{aligned}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{76049}{24209}u^{16} + \frac{104431}{24209}u^{15} + \dots \frac{330360}{24209}u \frac{115800}{24209}u^{16}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{17} - 2u^{16} + \dots + u - 1$
c_2	$u^{17} + 12u^{16} + \dots + 7u + 1$
c_3, c_{10}	$u^{17} - 2u^{16} + \dots - 3u - 1$
c_4, c_7	$u^{17} - 4u^{16} + \dots + 16u - 1$
<i>C</i> ₅	$u^{17} + 22u^{16} + \dots + 256u + 1$
c_{6}, c_{9}	$u^{17} + 3u^{16} + \dots + 20u + 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{17} + 18y^{15} + \dots + 7y - 1$
c_2	$y^{17} - 12y^{16} + \dots + 155y - 1$
c_3,c_{10}	$y^{17} - 12y^{16} + \dots + 7y - 1$
c_4, c_7	$y^{17} - 22y^{16} + \dots + 256y - 1$
<i>C</i> ₅	$y^{17} - 50y^{16} + \dots + 60796y - 1$
c_{6}, c_{9}	$y^{17} + 21y^{16} + \dots + 976y - 64$

(vi) Complex Volumes and Cusp Shapes

u = 0.876782 + 0.644726I $a = 0.092257 - 0.124101I$ $2.13008 - 2.53959I$	I = 0.76560 + 1.98769I
	I = 0.76560 + 1.98769I
1 0 FC0071 + 0 104001 I	
b = -0.568271 + 0.184291I	
u = 0.876782 - 0.644726I	
$a = 0.092257 + 0.124101I \qquad 2.13008 + 2.53959$	I = 0.76560 - 1.98769I
b = -0.568271 - 0.184291I	
u = -1.089060 + 0.132960I	
$a = -0.02578 - 2.03485I \qquad -3.18058 + 0.67411.$	I = -10.63151 + 5.49435I
b = 0.834229 - 0.235726I	
u = -1.089060 - 0.132960I	
a = -0.02578 + 2.03485I $-3.18058 - 0.67411.$	$I \mid -10.63151 - 5.49435I$
b = 0.834229 + 0.235726I	
u = -0.026050 + 1.128120I	
a = -1.354380 + 0.277932I -8.13487 + 4.20505	$I \mid -7.98094 - 2.47792I$
b = -1.63657 + 0.18009I	
u = -0.026050 - 1.128120I	
a = -1.354380 - 0.277932I $-8.13487 - 4.20505$	I = -7.98094 + 2.47792I
b = -1.63657 - 0.18009I	
u = -0.819663	
a = 0.742247 -1.19406	-8.42610
b = -0.0636841	
u = 1.229710 + 0.222583I	
a = -0.189457 + 1.004150I $-4.39628 - 4.117458$	$I \mid -11.29745 + 5.99012I$
b = 0.83094 + 1.19370I	
u = 1.229710 - 0.222583I	
a = -0.189457 - 1.004150I $-4.39628 + 4.11745$	$I \mid -11.29745 - 5.99012I$
b = 0.83094 - 1.19370I	
u = 1.26347	
$a = -0.266454 \qquad -6.78936$	-15.0240
b = 1.87117	

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
\overline{u}	= 1.39748 + 0.52974I		
a	= -0.069718 - 1.260110I	-12.6337 - 10.0814I	-9.96961 + 5.13034I
b	= -1.72864 - 0.39180I		
\overline{u}	= 1.39748 - 0.52974I		
a	= -0.069718 + 1.260110I	-12.6337 + 10.0814I	-9.96961 - 5.13034I
b	= -1.72864 + 0.39180I		
\overline{u}	= -1.39973 + 0.55866I		
a	= -0.294421 + 0.977752I	-12.44690 + 1.83083I	-10.41430 - 0.85064I
b	= -1.71162 + 0.05597I		
\overline{u}	= -1.39973 - 0.55866I		
a	= -0.294421 - 0.977752I	-12.44690 - 1.83083I	-10.41430 + 0.85064I
b	= -1.71162 - 0.05597I		
\overline{u}	= -0.057966 + 0.464686I		
a	= 1.90019 - 0.95414I	-0.61170 + 1.48793I	-4.64409 - 4.66231I
b	= 0.504075 - 0.513259I		
\overline{u}	= -0.057966 - 0.464686I		
a	= 1.90019 + 0.95414I	-0.61170 - 1.48793I	-4.64409 + 4.66231I
b	= 0.504075 + 0.513259I		
\overline{u}	=-0.306131		
a	= 3.40681	-2.29521	-1.20570
_ <i>b</i>	= 1.14424		

II.
$$I_2^u = \langle b-1, -u^2 + a + u - 1, u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - u + 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} - u + 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - u + 2 \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 + 8u 16$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^3 + u^2 + 2u + 1$
c_{2}, c_{8}	$u^3 - u^2 + 2u - 1$
c_3	$u^3 - u^2 + 1$
c_4	$(u-1)^3$
c_5, c_7	$(u+1)^3$
c_{6}, c_{9}	u^3
c_{10}	$u^3 + u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_8	$y^3 + 3y^2 + 2y - 1$
c_3, c_{10}	$y^3 - y^2 + 2y - 1$
c_4, c_5, c_7	$(y-1)^3$
c_{6}, c_{9}	y^3

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0.337641 + 0.562280I	1.37919 - 2.82812I	-9.19557 + 4.65175I
b = 1.00000		
u = 0.877439 - 0.744862I		
a = 0.337641 - 0.562280I	1.37919 + 2.82812I	-9.19557 - 4.65175I
b = 1.00000		
u = -0.754878		
a = 2.32472	-2.75839	-22.6090
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^3 + u^2 + 2u + 1)(u^{17} - 2u^{16} + \dots + u - 1) $
c_2	$ (u^3 - u^2 + 2u - 1)(u^{17} + 12u^{16} + \dots + 7u + 1) $
<i>c</i> ₃	$(u^3 - u^2 + 1)(u^{17} - 2u^{16} + \dots - 3u - 1)$
C4	$((u-1)^3)(u^{17}-4u^{16}+\cdots+16u-1)$
<i>c</i> ₅	$((u+1)^3)(u^{17}+22u^{16}+\cdots+256u+1)$
c_6, c_9	$u^3(u^{17} + 3u^{16} + \dots + 20u + 8)$
C ₇	$((u+1)^3)(u^{17}-4u^{16}+\cdots+16u-1)$
<i>C</i> ₈	$(u^3 - u^2 + 2u - 1)(u^{17} - 2u^{16} + \dots + u - 1)$
c_{10}	$(u^3 + u^2 - 1)(u^{17} - 2u^{16} + \dots - 3u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$(y^3 + 3y^2 + 2y - 1)(y^{17} + 18y^{15} + \dots + 7y - 1)$
c_2	$(y^3 + 3y^2 + 2y - 1)(y^{17} - 12y^{16} + \dots + 155y - 1)$
c_3,c_{10}	$(y^3 - y^2 + 2y - 1)(y^{17} - 12y^{16} + \dots + 7y - 1)$
c_4, c_7	$((y-1)^3)(y^{17}-22y^{16}+\cdots+256y-1)$
<i>c</i> ₅	$((y-1)^3)(y^{17}-50y^{16}+\cdots+60796y-1)$
c_6, c_9	$y^3(y^{17} + 21y^{16} + \dots + 976y - 64)$