

#### UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA NÚCLEO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO



# 19VANETS: UM MODELO DE ARQUITETURA DE SOFTWARE PARA REDE VEICULAR EM NUVEM

**Discente: George Leite Junior** 

Orientação: Prof. Dr. Douglas D. J. de Macedo

Co-orientação: Prof. Dr. Rogerio P. C. do Nascimento

## Agenda

- Introdução
- Justificativa
- Problema de Pesquisa
- Objetivos
- Trabalhos Relacionados
- Processo de Avaliação
- Conclusões e Trabalhos Futuros;
- Contribuições
- Referências

## Introdução

Pesquisadores vem buscando nas redes veiculares ad-hoc (VANET) uma possível solução para os problemas referentes à mobilidade urbana. Contudo, VANETs ainda apresenta uma série de desafios que devem ser resolvidos para que seu uso seja consolidado.

## Introdução

### □ Estado da Arte:

Pesquisadores vem buscando nas redes veiculares ad-hoc (VANET) uma possível solução para os problemas referentes à mobilidade urbana. Contudo, VANETs ainda apresenta uma série de desafios que devem ser resolvidos para que seu uso seja consolidado.

### Problema

- Desafios
  - ■Alta mobilidade.
  - ■Alta e baixa densidade
  - ■Segurança e privacidade
  - Escalabilidade
  - Roteamento

### Justificativa

Pesquisar sobre redes veiculares e computação em nuvem, traz a possibilidade de construção de uma plataforma capaz de criar uma VANET com gerenciamento virtualizado em nuvem, facilitando a comunicação entre os nós virtuais da rede e simplificando a implementação dos algoritmos de roteamento, segurança e aplicações.

## Objetivos

#### Geral

Propor um modelo de arquitetura de software flexível e extensível, com capacidade de gerenciar nós de uma VANET, realizando a comunicação entre os elementos de forma virtual na tentativa de corroborar com a solução de alguns dos principais desafios relacionados às redes veiculares.

## Objetivos

### Específicos

- Elaborar um modelo de arquitetura de software aberta de maneira que permita a extensibilidade, flexibilidade e escalabilidade;
- Construir uma plataforma seguindo os requisitos da arquitetura definida;
- Realizar testes simulados para avaliar seu desempenho e capacidade operacional.

## Trabalhos Relacionados

| Propostas              | Foco em   | Algo. de    | Comp. em | Ad- | V2V | V2I | I2I | Sist. Dis- |
|------------------------|-----------|-------------|----------|-----|-----|-----|-----|------------|
|                        | Segurança | Roteamentos | Nuvem    | Hoc |     |     |     | tribuídos  |
| Liu et al.[12]         |           |             | X        |     |     |     |     |            |
| Hajji e Bargaoui [13]  |           | X           | X        |     |     |     |     |            |
| Eltoweissy et al. [14] |           |             | X        | X   |     |     |     |            |
| Yan et al [15]         | X         |             | X        | X   |     |     |     |            |
| Hussain et al. [16]    |           |             | X        |     |     |     |     |            |
| Qin et al. [17]        |           |             | X        |     |     |     |     |            |
| Falchetti et al. [11]  |           |             | X        |     | X   |     |     |            |
| Lee et al. [18]        |           |             | X        |     |     |     |     |            |
| Gerla [20]             |           |             | X        |     |     |     |     |            |
| Dorri et al. [21]      | X         |             | X        |     |     |     |     |            |
| I9VANET                | X         | X           | X        |     | X   | X   | X   | X          |

## Arquitetura de Software Proposta



- I2AV e V2AV –
  Comunicação entre dispositivo físico e seu agente em nuvem
- AV2AV, AV2AI e AI2AIComunicação entre
  - os agentes em nuvem.







COMUNICAÇÃO **APLICAÇÃO SEGURANÇA GEN. SERVIDOR ROTEAMENTO** Veículo conexão() criarChaveSecreta() Message movimentacao() autenticaDescriptografa() Loop checaServidor() checaRede() eventos() criptografaMensagem() converteProtocolo() enviarMensagem()

### □ Processo de Negócio



#### Definição

Analisar a plataforma I9VANET sob a o ótica da eficácia e eficiência.

#### Planejamento

O experimento tem como alvo, os desenvolvedores de soluções que visam melhorar a mobilidade urbana com o uso de VANETs.

#### Métricas

- Número Total de requisições por min (TR/min);
- Tempo de latência da comunicação (Lat);
- Tempo de processamento de cada requisição no servidor (PT)

- □ Cenário 1
  - □ Quantidade de veículos: 50,100, 200 e 400
  - □ Velocidades utilizadas: 2G, 3G, 4G e 5G
- □ Cenário 2
  - Quantidade de veículos: 800 e 1600
  - Velocidade utilizada: sem limite

#### □ Cenário 1



- □ Cenário 2
  - Uso de threads para simular cada veículo.

### Consumo por Link (Cenário 1)





#### □ Tempos Médios das Requisições por Link (Cenário 1)



### □ Coeficiente de Variação (Cenário 1)



### □ Processamento (Cenário 2 – 800 veículos)



### □ Processamento (Cenário 2 – 1600 veículos)

Processamento para o teste com 1600 veículos



### □ Percentual de Perda (Cenário 1 e 2)





## Conclusões

### □ Requisitos das Aplicações

| Aplicações                        | Tempo             | Latência         | Outros                   |  |
|-----------------------------------|-------------------|------------------|--------------------------|--|
| Alerta de Veículo Lento           | $500 \mathrm{ms}$ | 100ms            | Alcance: 300m, alta      |  |
|                                   |                   |                  | prioridade               |  |
| Alerta de Colisão em cruzamento   | 100ms             | 100ms            | Posicionamento pre-      |  |
|                                   |                   |                  | ciso em um mapa          |  |
|                                   |                   |                  | digital, alta prioridade |  |
| Pré Colisão                       | 100ms             | $50 \mathrm{ms}$ | Alcance 50m, priori-     |  |
|                                   |                   |                  | dade alta/média          |  |
| Gerenciamento de Cruzamento       | 1000ms            | $50 \mathrm{ms}$ | Precisão de posiciona-   |  |
|                                   |                   |                  | mento menor que 5m       |  |
| Download de Mídia                 | _                 | 500ms            | Acesso a internet e      |  |
|                                   |                   |                  | Gerência dos direitos    |  |
| Assitência para direção ecológica | 1000ms            | 500ms            | Acesso a internet e dis- |  |
|                                   |                   |                  | ponibilidade do serviço  |  |

### Trabalhos Futuros

- Alterar a organização dos servidores visando uma melhor distribuição dos veículos e diminuindo a carga com a operação ChangeServer;
- Novos protocolos de comunicação;
- Novas regras de segurança (BlockChain);
- Implementação de uma plataforma web de simulação (Sendo desenvolvido);
- Criando diversas aplicações como sistema de detecção e alerta de congestionamento em cruzamentos semaforizados;
- Controle de passagem livre para veículos de urgência e emergência.
- Comunicação entre seguradoras

## Contribuições

O modelo proposto permite montar uma rede veicular em nuvem e realizar todo gerenciamento e comunicação de maneira virtual, permitindo criar ambientes flexíveis capazes de oferecer o gerenciamento de uma rede veicular como serviço (VaaS).



#### UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA NÚCLEO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO



Muito obrigado!

Dúvidas?

george.junior@ifs.edu.br