

IN THE CLAIMS:

This Listing of Claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (currently amended) An intrusion detector including a sensor arrangement for detecting a liquid (C) applied on an exposed a-surface (100, 120, 160, 170) to render the intrusion detector inoperable, the sensor arrangement comprising:

at least one transparent elevation (12, 22, 32, 42, 52, 62, 72) formed on the exposed surface (100, 120, 160, 170), wherein the transparent elevation (12, 22, 32, 42, 52, 62, 72) is made of a first transparent material (B), wherein at least one first facet (110, 111, 171, 172, 181) of the transparent elevation (12, 22, 32, 42, 52, 62, 72) defines a first angle (α, β) with the exposed surface (100, 120, 160, 170), and wherein the first angle (α, β) is larger than an angle at which a total reflection occurs at an interface of the first transparent material (B) and air (A) and is smaller than an angle at which a total reflection occurs at an interface of the first transparent material (B) and the liquid (C) applied on the exposed surface to render the intrusion detector inoperable;

at least one second elevation (12, 22, 32, 42, 52, 62, 72; 79) having a second facet (179) formed adjacent to the first facet (110, 111, 171, 172, 181) of the transparent elevation (12, 22, 32, 42, 52, 62, 72), wherein the second facet

(179) defines a second angle with the exposed surface (100, 120, 160, 170), which second angle is larger than 75° in order to enhance capillarity effects of the a-liquid (C) applied on the exposed surface to render the intrusion detector inoperable thereon;

a light source (13, 23, 33, 43, 53, 63, 73) arranged for emitting an incident ray (r) into a first direction such that the incident ray (r) passes through the exposed surface (100, 120, 160, 170) into one of the transparent elevation (12, 22, 32, 42, 52, 62, 72) and the second elevation (12, 22, 32, 42, 52, 62, 72; 79), such that in a presence of the liquid (C) at one of the first facet (110, 111, 171, 172) and the second facet (179), the incident ray is transmitted through the first facet (110, 111, 171, 172) or the second facet (179), wherein in an absence of the liquid (C), the incident ray is reflected due to a total reflection at the first facet (110, 111, 171, 172) or the second facet (179); and

a light detector (14, 24, 34, 44, 54, 64, 74) for detecting the reflected incident ray (r') at one of the first facet and the second facet and recognize that the liquid (C) is applied to the exposed surface to render the intrusion detector inoperable.

2. (cancelled)

3. (original) The sensor arrangement according to claim 1 characterized in that the elevation (12, 22, 32, 42, 52, 62, 72) has a tetrahedron-shape and three first facets.

4. (original) The sensor arrangement according to claim 1 characterized in that the elevation (12, 22, 32, 42, 52, 62, 72) is formed with a triangular or trapezoid cross-section.

5. (cancelled)

6. (previously presented) The sensor arrangement according to claim 1 characterized in that the second transparent material (B) has a refractive index of more than about 1.5 and the first angle is in the range of 42° to 60°.

7. (cancelled)

8. (previously presented) The sensor arrangement according to claim 1 characterized in that an angle defined by two adjacent first facets of at least one elevation is different to 90°.

9. (previously presented) The sensor arrangement according to claim 1 characterized in that first direction is substantially perpendicular to the surface (100, 120, 160, 170).

10. (previously presented) The sensor arrangement according to claim 5 characterized in that the second elevations (12, 22, 32, 42, 52, 62, 72; 79) are provided with a top facet being substantially parallel to the surface (100, 120, 160, 170) or regions such that a ray emitted via a signalizing optical light source passes the elevation at the top facet.

11. (previously presented) The sensor arrangement according to claim 1 characterized in that a second light detector (55) is provided for detecting a ray (t) reflected at an object placed (S) in front of the elevations (12, 22, 32, 42, 52, 62, 72).

12. (previously presented) The sensor arrangement according to claim 1 characterized in that the light source (22, 32) and/or the light detector (24, 34) comprises a wave guide (26, 36, 37).