- Ex 1. Write down all Brauer tree with 5 edges and trivial exceptional multiplicity.
- **Ex 2.** Let $(T, v_0, m_0 = 1)$ be the multiplicity-free Brauer star with 3 edges.
 - (1) Write down quiver Q_{T,v_0,m_0} and the admissible ideal I_{T,v_0,m_0} .
 - (2) Write down all 9 strings of $(Q_{T,v_0,m_0},I_{T,v_0,m_0})$; you can write the associated module diagram instead if you prefer.
- Ex 3. Repeat the previous question for the multiplicity-free Brauer line with 3 edges.
- **Ex 4.** Let $(T, v_0, m_0 = 1)$ be the multiplicity-free Brauer star with 3 edges. Draw the curves on the 4-punctured disk associated to the 9 strings of $(Q_{T,v_0,m_0}, I_{T,v_0,m_0})$.

Ex 5. Recall the construction of trivial extension algebra $\Lambda \ltimes D\Lambda$ from Lecture 8. Let Λ be the lower triangular matrix ring

$$\begin{pmatrix} K & 0 \\ K & K \end{pmatrix} \cong K(1 \xrightarrow{\alpha} 2).$$

Note that $D\Lambda \cong \binom{K}{0} \binom{K}{K}$ as (left or right or bi-) module. Show that the induced trivial extension algebra is isomorphic to the multiplicity-free Brauer tree algebra with 2 edges

$$B(T, v_0, m_0 = 1) = K(1 \underbrace{\alpha}_{\alpha^*} 2) / (\alpha \alpha^* \alpha, \alpha^* \alpha \alpha^*).$$