COM1002: Foundations of Computer Science

Proof Strategies

Paul Watton

WEEK	8	9	10	11
Mon	Lecture Hand in Ex 5 Handout Ex6 (Assessed 5%)	Lecture Hand in Ex 6	Lecture Hand out ex 7 (Assessed 5%)	Lecture Hand in Ex 7
Wed	Lecture	Revision Lecture	Lecture	Revision Lecture
Thurs	Tut (ex 6)	Revision Tutorial QUIZ 2 (25%) Diamond 101 4pm-5:30pm	Tut (ex 7)	Revision Tutorial QUIZ 3 (25%) Diamond 101 4pm-5:30pm

We are nearly there...

Learning Objective 1: To understand which rule of inference is used in each argument below?

Modus Ponens Conjunction elimination Hypothetical syllogism Disjunctive syllogism Disjunction introduction Modus Tollens

Alice is a waitress. Therefore, Alice is either a waitress or an astronaut.

Jerry is a waiter and an astronaut. Therefore, Jerry is a waiter.

If it is rainy, then I will not get out of bed. It is rainy. Therefore, I will not get out of bed.

If it snows today, I will miss my lectures. I did not miss my lectures today. Therefore, it did not snow today.

If it is Friday, I will drink too much beer. If I drink too much beer, then I will have a hangover the next morning. If it is Friday I will have a hangover the next morning.

I don't get up or I go to my lecture. I didn't go to my lecture. Therefore, I didn't get up.

Learning Objective 2:

Show that the hypotheses:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming, then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

lead to the conclusion:

We will be home by sunset.

Learning Objective 3:

In each of following cases, some **premises** (statements that are assumed to be true) are given, as well as a statement to prove. Use inference rules to prove the statement from the premises.

(i)
$$\left\{ \neg A \Rightarrow (C \land D) \right\}$$
 (iii) $\left\{ P \land Q \right\}$ (iiii) $\left\{ \neg (A \lor B) \Rightarrow C \\ \neg A \\ \neg B \\ \neg C \right\}$ Prove C Prove $\neg S$ Prove \Box Prove \Box

Proof strategies: Motivation

A method to evaluate predicates:

- and to do it systematically;
- for (parts of) specifications:
 to determine the conditions where they are true:
- and in software verification:

to show that a software implementation matches its specification.

Types of Proof Strategy - 1

Common Features:

A proof starts with some assumptions:

sometimes called premises, conditions, or preconditions;

A proof has a goal:

Strategies attempt to:

- produce intermediate assumptions which are closer to the goal or simplify the goal.
- Introduction strategies & Elimination strategies

Types of Proof Strategy - 2

Intermediate Assumptions:

- May involve introducing a logical element:
 - e.g. assuming P, and proving Q from it
 - introduces ⇒ between P and Q;
 - Proves: $P \Rightarrow Q$
 - e.g. proving Q(x) for an arbitrary x
 - introduces a universal quantification;
- ☐ These are called *introduction strategies*.

Types of Proof Strategy 3

Intermediate Assumptions:

May involve eliminating a logical element; So as to reduce the "distance" to the goal:

These are called *elimination strategies*.

Types of Proof Strategy 4

Proofs Typically Involve:

- □ Applying *elimination strategies* to the assumptions: either the initial or intermediate ones;
- □ Applying introduction strategies to the goal: or to intermediate assumptions;
- ☐ So as to get the intermediate steps closer to each other.

Strategy to prove $P \Rightarrow Q$

Implication Introduction:

Strategy 1:

- assume P,
- use this assumption in a proof of Q,
- this proves $P \Rightarrow Q$ (ie it introduces \Rightarrow);

Strategy 2:

- assume Q
- use this assumption in a proof of ¬ P;
- this proves $\neg Q \Rightarrow \neg P$ and thus proves $P \Rightarrow Q$

Modus Ponens and Modus Tollens

Elimination strategies for implication:

```
If P \Rightarrow Q and P is true, then Q is true:
```

known as modus ponens,

```
If P \Rightarrow Q and \neg Q, then \neg P follows:
```

-known as modus tollens.

Negation:

Introduction strategy:

- assume P,
- •• from this, derive a contradiction, i.e. $Q \land \neg Q$
- ❖ this proves ¬ P (ie it introduces ¬);

Elimination strategy:

- ❖ which proves P (ie it eliminates ¬).

Conjunction:

Introduction strategy:

- prove P,
- prove Q,
- \diamond which proves $P \land Q$ (ie it introduces \land);

Elimination strategy:

- ❖ Given P ∧ Q is true
- ❖ then P and Q are true (can eliminate ∧).

Equivalence:

Introduction strategy.

- \bullet prove $P \Rightarrow Q$,
- \diamond prove $Q \Rightarrow P$,
- \diamond which proves $P \Leftrightarrow Q$ (ie it introduces \Leftrightarrow);

□ *Elimination strategy*

- ❖ Given P ⇔ Q,
- \clubsuit we can infer both $P \Rightarrow Q$ and $Q \Rightarrow P$ (eliminates \Leftrightarrow).

Disjunction:

- ☐ Introduction strategy:
 - ❖ prove one of P or Q,
 - ❖ which proves P ∨ Q (ie it introduces ∨);
- ☐ Often used with case analysis:
 - for the two cases of some property R,
 - ❖ prove P from R, and Q from ¬ R,
 - ❖ which proves P ∨ Q.

Universal Quantification:

Treat as a (potentially infinite) conjunction;

Universal Introduction strategy:

- ❖ P(a) for any arbitrary a,
- \Leftrightarrow therefore $\forall x P(x)$ (ie it introduces \forall);

Universal Elimination strategy:

- $\Leftrightarrow \forall x P(x),$
- therefore P(a) if a is in the universe for P.

Existential Quantification:

Treat as a (potentially infinite) disjunction;

Existential Introduction strategy:

- ❖ P(a) for some element a,
- \Leftrightarrow therefore $\exists x P(x)$ (ie it introduces \exists);

Existential Elimination strategy:

- $\Rightarrow \exists x P(x),$
- therefore P(a) for some element a

Uniqueness:

- □Either the *separate aspect approach*:
 - using the appropriate strategies,
 - \diamond prove existence, ie $\exists x P(x)$, and
 - then prove uniqueness, ie

$$\forall y \forall z ((P(y) \land P(z)) \Rightarrow y = z);$$

- □Or the *combined approach*:
 - ❖ prove $\exists x (P(x) \land \forall y (P(y) \Rightarrow y = x)),$
 - using the appropriate strategies.

$$p\Rightarrow (p\vee q) \quad \text{Disjunction introduction} \\ ((p\Rightarrow q)\wedge (r\Rightarrow q)\wedge (p\vee r))\Rightarrow q \quad \text{Disjunction elimination} \\ (p\wedge q)\Rightarrow p \quad \text{Conjunction elimination} \\ (p\wedge q)\Rightarrow q \quad \text{Conjunction elimination} \\ (p)\wedge (q)\Rightarrow (p\wedge q) \quad \text{Conjunction introduction} \\ ((p\Rightarrow q)\wedge p)\Rightarrow q \quad \text{Modus Ponens} \\ ((p\Rightarrow q)\wedge \neg q)\Rightarrow \neg p \quad \text{Modus Tollens} \\ (\neg p\wedge (p\vee q))\Rightarrow q \quad \text{Disjunctive syllogism} \\ ((p\Rightarrow q)\wedge (q\Rightarrow r))\Rightarrow (p\Rightarrow r) \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (q\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (q\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism} \\ (p\Rightarrow q)\wedge (p\Rightarrow r)\Rightarrow p \quad \text{Hypothetical syllogism}$$

Which rule of inference is used in each argument below?

Alice is a waitress. Therefore, Alice is either a waitress or an astronaut.

Disjunction introduction

Jerry is a waiter and an astronaut. Therefore, Jerry is a waiter.

Conjunction elimination

If it is rainy, then I will not get out of bed. It is rainy. Therefore, I will not get out of bed.

Modus Ponens

If it snows today, I will miss my lectures. I did not miss my lectures today. Therefore, it did not snow today.

Modus Tollens

If it is Friday, I will drink too much beer. If I drink too much beer, then I will have a hangover the next morning. If it is Friday I will have a hangover the next morning.

Hypothetical syllogism

I don't get up or I go to my lecture. I didn't go to my lecture. Therefore, I didn't get up.

Disjunctive syllogism

DG = Don't get up L = Go to Lecture

I don't get up or I go to my lecture.

$$(DG \vee L)$$

I didn't go to my lecture.

$$\neg L$$

Disjunctive syllogism

$$(\neg p \land (p \lor q)) \Rightarrow q$$
$$((p \lor q) \land \neg q) \Rightarrow p$$

Therefore, I didn't get up.

$$((DG \vee L) \wedge \neg L) \Rightarrow DG$$

EXAMPLE: In each of following cases, some **premises** (statements that are assumed to be true) are given, as well as a statement to prove. Use inference rules to prove the statement from the premises.

(i)
$$\begin{cases} \neg A \Rightarrow (C \land D) \end{cases}$$
 (iii)
$$\begin{cases} (P \land Q) \\ A \Rightarrow B \\ \neg B \end{cases}$$

$$\begin{cases} P \Rightarrow \neg (Q \land R) \\ S \Rightarrow R \end{cases}$$

$$\begin{cases} \neg (A \lor B) \Rightarrow C \\ \neg A \\ \neg C \end{cases}$$
 Prove C Prove $\neg S$ Prove B

$$\begin{cases}
\neg A \Rightarrow (C \land D) \\
A \Rightarrow B \\
\neg B
\end{cases}$$

Prove C

1.
$$A \rightarrow B$$
 Premise

2.
$$\sim B$$
 Premise

3.
$$\sim A$$
 Modus tollens (1,2)

4.
$$\sim A \rightarrow (C \land D)$$
 Premise

5.
$$C \wedge D$$
 Modus ponens (3,4)

(ii)
$$\begin{cases} (P \land Q) \\ P \Rightarrow \neg (Q \land R) \\ S \Rightarrow R \end{cases}$$

Prove ¬S

1.
$$P \wedge Q$$
 Premise

- 2. *P* Conjunctio n eliminatio n (1)
- 3. *Q* Conjunctio n eliminatio n (1)
- 4. $P \Rightarrow \neg (Q \land R)$ Premise
- 5. $\neg (Q \land R)$ Modus Ponens (3,4)
- 6. $\neg Q \lor \neg R$ DeMorgan (5)
- 7. $\neg R$ Disjunctiv e syllogism (3,6)
- 8. $S \Rightarrow R$ Premise
- 9. $\neg S$ Modus Tollens (7,8)

$$\begin{cases}
\neg(A \lor B) \Rightarrow C \\
\neg A \\
\neg C
\end{cases}$$

Prove B

1.
$$\sim (A \vee B) \rightarrow C$$
 Premise
2. $\sim C$ Premise
3. $A \vee B$ Modus tollens (1,2)
4. $\sim A$ Premise
5. B Disjunctive syllogism (3,4)

Negate each quantified statement, simplifying so that only the simple statements are negated. Show each step of your work.

(a)
$$\forall x (\sim P(x) \land \sim Q(x))$$

(b)
$$\exists x(Q(x) \rightarrow \sim P(x))$$