Lemma & Theorem

Lemma: The equilibrium 0 of \sum is

Attractive iff

for each $t_0 \ge 0$, \exists a number $r(t_0) > 0$, and for each $\mathbf{x}_0 \in B_{r(t0)}$ a function $\sigma_{t0,x0}$ of class L s.t. $||s(t_0+t,t_0,\mathbf{x}_0)|| \le \sigma_{t0,x0}(\mathsf{t})$, \forall $t \ge 0$, \forall $\mathbf{x}_0 \in B_{r(t0)}$ (*). Uniformly attractive iff

 \exists a number r>0, and a function σ of class L s.t.

$$||s(t_0+t,t_0,\mathbf{x}_0)|| \le \sigma(t) , \forall t, t_0 \ge 0, \forall \mathbf{x}_0 \in B_r.$$

<u>Note</u>: If (*) holds, then 0 is attractive since $\sigma_{t0,x0} \rightarrow 0$ as $t \rightarrow \infty$.

Theorem: The equilibrium 0 of \sum is

Uniformly asymptotically stable iff

 \exists a number r > 0, and a function Φ of class K and a function σ of class L s.t. $||s(t_0+t,t_0,\mathbf{x}_0)|| \le \Phi(||\mathbf{x}_0||)\sigma(t)$, \forall t, $t_0 \ge 0$, \forall $\mathbf{x}_0 \in B_r$.

Exponential stability: $||s(t_0+t,t_0,\mathbf{x}_0)|| \le a||\mathbf{x}_0||e^{-bt}, \ \forall \ t, \ t_0 \ge 0, \ \forall \ \mathbf{x}_0 \in B_r$

Some Preliminaries (I)

Definition:

A function $V: \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}$

- Is said to be <u>locally positive definite</u> <u>function (l.p.d.f.)</u> if:
 - (i) it is continuous;
 - (ii) $V(t,0)=0 \ \forall t \geq 0$
 - (iii) \exists a constant r > 0, and a function α of class K s.t.

$$\alpha(||\mathbf{x}||) \leq V(t,\mathbf{x}), \ \forall \ t \geq 0, \ \forall \ \mathbf{x} \in B_r(^* *).$$

• V is a positive definite function (p.d.f.) if (* *) holds for all $x \in \mathbb{R}^n$ (i.e. if $r = \infty$).

Some Preliminaries (II)

• V is <u>decrescent</u> if \exists a constant r > 0, and a function β of class K s.t.

$$V(t, \mathbf{x}) \le \beta(||\mathbf{x}||), \forall t \ge 0, \forall \mathbf{x} \in B_r$$

This means

$$\sup_{\|x\| \le p} \sup_{t \ge 0} V(t, x) < \infty \quad \forall \ p \in (0, r)$$

V is <u>radially unbounded</u> if (*
 *) is satisfied for all x∈Rⁿ
 (not necessarily of class K)
 with the additional property
 that α(r) → ∞ as r → ∞.

Some Preliminaries (III)

- V is a <u>locally negative definite function</u> if -V is an l.p.d.f.
- V is a <u>negative definite function</u> if -V is a p.d.f.

Remark:

Using these definitions, it is rather difficult to determine whether or not a given continuous function $V: \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$ is p.d.f. or l.p.d.f..

The source of difficulty comes from the need to exhibit the function $\alpha(\bullet)$.

Conditions More Verifiable (I)

Lemma:

- A continuous function $W: \mathbb{R}^n \to \mathbb{R}$ is an l.p.d.f. iff it satisfies the following 2 conditions:
 - (i) W(0) = 0;
 - (ii) \exists a constant r > 0 s.t. $W(\mathbf{x}) > 0$, $\forall \mathbf{x} \in B_r \{0\}$.
- W is a p.d.f. iff it satisfies the following 3 conditions:
 - (iii) W(0) = 0;
 - (iv) W(x) > 0, $\forall x \in \mathbb{R}^n \{0\}$;
 - (v) \exists a constant r > 0 s.t. $\inf_{\|\mathbf{x}\| > r} = W(x) > 0$
- W is radially unbounded iff
 - (vi) $W(\mathbf{x}) \to \infty$ as $||\mathbf{x}|| \to \infty$ uniformly in \mathbf{x} .

Note: Condition (v) is important!

Consider:
$$W(\mathbf{x}) = \frac{x^2}{1+x^4}$$
 l.p.d.f but not p.d.f.

Conditions More Verifiable (II)

Lemma:

- A continuous function V: R⁺×Rⁿ→R is an I.p.d.f. iff:
 - (i) V(t,0) = 0, $\forall t$, and
 - (ii) \exists an l.p.d.f. $W: \mathbb{R}^n \rightarrow \mathbb{R}$ and a constant r > 0 s.t. $V(t,\mathbf{x}) \ge W(\mathbf{x}), \ \forall \ t \ge 0, \ \forall \ \mathbf{x} \in B_r$.
- *V* is a p.d.f. iff:
 - (i) V(t,0) = 0, $\forall t$, and
 - (ii) \exists a p.d.f. $W: \mathbb{R}^n \rightarrow \mathbb{R}$ s.t. $V(t,\mathbf{x}) \ge W(\mathbf{x}), \ \forall \ t \ge 0, \ \forall \ \mathbf{x} \in \mathbb{R}^n \ (*).$
- V is radially unbounded iff
 ∃ an radially unbounded function W: Rⁿ→R s.t (*) is satisfied.

Conditions More Verifiable (III)

Remarks:

- Basically, lemma shows that
 - A continuous function of t and x is an <u>l.p.d.f.</u> iff it dominates at each instant of time and over some ball in \mathbb{R}^n , an <u>l.p.d.f.</u> of x alone. Similarly,
 - A continuous function of t and x is a <u>p.d.f.</u> iff it dominates for all t and x, a <u>p.d.f.</u> of x alone.
- The conditions given in lemma are easier to verify.

Examples (I)

$$\rightarrow W_1(x_1, x_2) = x_1^2 + x_2^2$$

- W_1 is p.d.f. because
 - $W_1 = 0$;
 - $W_1(x_1, x_2) > 0$, $\forall x \neq 0$;
 - For r > 0, $\inf_{\|\mathbf{x}\| \ge r} = W(\mathbf{x}) > 0$
- W_1 is radially unbounded because

$$W_1(x_1, x_2) = ||\mathbf{x}||_2^2 \rightarrow \infty$$
 as $||\mathbf{x}||_2 \rightarrow \infty$ uniformly in \mathbf{x} .

$$\rightarrow V_1(t, x_1, x_2) = (1+t)(x_1^2 + x_2^2) \ge W_1$$

Since W_1 is p.d.f. $\Rightarrow V_1$ is p.d.f.;

Since W_1 is r.u. $\Rightarrow V_1$ is radially unbounded.

 V_1 decrescent? No.

Because for each $\mathbf{x}\neq 0$, the function $V_1(t,\mathbf{x})$ is unbounded as a function of t.

Examples (II)

- $\rightarrow V_2(t, x_1, x_2) = e^{-t}(x_1^2 + x_2^2)$
 - is NOT a p.d.f.: there doesn't exist a p.d.f. $W: \mathbb{R}^n \to \mathbb{R}$ which is dominated by V_2 as for each \mathbf{x} , $V_2(t, \mathbf{x}) \to 0$ as $t \to \infty$.
 - is decrescent as $V_2(t, x_1, x_2) \le ||\mathbf{x}||_2$
- $\longrightarrow W_2(x_1, x_2) = x_1^2 + \sin^2 x_2$
 - is an l.p.d.f
 - $W_2(0,0)=0$
 - $W_2(x_1, x_2) > 0$, whenever $\mathbf{x} \neq 0$ and $|x_2| < \pi$;
 - is NOT a p.d.f as it vanishes at points other than 0, for example, at $(0, \pi)$.

The Gradient Operator & Differentiation w.r.t. a vector (I)

• Let $f(x_1, x_2, ..., x_n)$ be a scalar-valued function of n variables x_i .

The *n* partial derivatives of f(x), $\frac{\partial f}{\partial x_i}$ are defined by $\nabla_x f$ or simply ∇f :

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

• 2-dim. example:

The Gradient Operator & Differentiation w.r.t. a vector (II)

- \rightarrow Equation $f(\mathbf{x})=c$, with c constant, specifies a locus of points in the plane.
- \rightarrow At a given point such as \mathbf{x}_0 , ∇f is a vector normal to the curve $f(\mathbf{x})=c$, and it points in the direction of increasing values of $f(\mathbf{x})$.
- \rightarrow The gradient defines the direction of maximum increase of the function $f(\mathbf{x})$.

Motivation to Lyapunov Stability (I)

- $\dot{\mathbf{x}} = f(\mathbf{x}), \ \mathbf{x}(t_0) = \mathbf{x}_0 \ \Sigma \text{ in } \mathbf{R}^2$ $s(t, t_0, x_0) = \text{ solution trajectory}$
- $W: \mathbf{R}^2 \to \mathbf{R}; \quad W = x_1^2 + x_2^2$
- A set of constant $c_i \ge 0$, i=1,2,... will define a set of closed curves (or level curves).

$$J_i = \{\mathbf{x} \in \mathbf{R}^2 : W(\mathbf{x}) = c_i\}$$

Motivation to Lyapunov Stability (II)

 A continium of constants will define a continium of level curves s.t.

 $c_i < c_j \Rightarrow J_i$ is in the interior of J_j .

Let's evaluate W(x) along a trajectory
 s(t, t₀, x₀):

$$W(\mathbf{x}) = W(s(t, t_0, \mathbf{x}_0)) = c(t).$$

where c(t) defines at a fixed t a closed curve J_t whose interior is

 $\sqrt{c(t)}$ neighborhood of zero.

• When c(t) as a function of time t decreases, i.e. $\frac{\mathrm{d}\,c(t)}{\mathrm{d}t} < 0$, $\Rightarrow J_{\mathrm{t}}$ shrinks. But since $s(t,\,t_0,\,\mathbf{x}_0) \in J_{\mathrm{t}}$, $\Rightarrow s(t,\,t_0,\,\mathbf{x}_0)$ moves toward 0.

Motivation to Lyapunov Stability (III)

• Let's evaluate $W(\mathbf{x})$ along a trajectory $s(t, t_0, \mathbf{x}_0)$:

$$W(\mathbf{x}) = W(s(t, t_0, \mathbf{x}_0)) \equiv c(t).$$

where c(t) defines at a fixed t a closed curve J_t whose interior is $\sqrt{c(t)}$ neighborhood of zero.

- When c(t) as a function of time t decreases, i.e. $\frac{\mathrm{d}\,c(t)}{\mathrm{d}t} < 0$, $\Rightarrow J_{\mathrm{t}}$ shrinks. But since $s(t,\,t_0,\,\mathbf{x}_0) \in J_{\mathrm{t}}$, $\Rightarrow s(t,\,t_0,\,\mathbf{x}_0)$ moves toward 0.
- If $\frac{\mathrm{d} c(t)}{\mathrm{d} t} < 0$ for any trajectory that originates in neighborhood B_r , then $s(t, t_0, \mathbf{x}_0) \to 0$ as $t \to \infty$

Motivation to Lyapunov Stability (IV)

Evaluate

$$\frac{\mathrm{d}c(t)}{\mathrm{d}t} = \frac{\mathrm{d}W(s(t, t_0, \mathbf{x}_0))}{\mathrm{d}t} = \frac{\mathrm{d}W(\mathbf{x})}{\mathrm{d}t}$$
$$= \nabla_x W(\mathbf{x}) \cdot \dot{\mathbf{x}}$$
$$= \nabla W(\mathbf{x}) \cdot f(\mathbf{x})$$

Hence,

if
$$\nabla W \cdot f < 0$$
,

 \Rightarrow $s(t, t_0, \mathbf{x}_0)$ crosses level curves $W(\mathbf{x})=c$ from outside

$$\rightarrow 0$$
 as $t \rightarrow \infty$.

Motivation to Lyapunov Stability - An Example

Let
$$\Sigma$$
:
$$\begin{cases} \dot{x}_1 = -x_1 \\ \dot{x}_2 = -x_2 \end{cases}$$

[verify 0 is a stable node]

$$W(\mathbf{x}) = \frac{1}{2}(x_1^2 + x_2^2).$$

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \nabla W \bullet f$$

$$= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} -x_1 \\ -x_2 \end{bmatrix}$$

$$= -(x_1^2 + x_2^2) < 0$$

for any $x_1 \neq 0, x_2 \neq 0$.

 \Rightarrow Any trajectory of $\Sigma \rightarrow 0$ as $t \rightarrow 0$.

Derivative of a Function along the Trajectory of an o.d.e.

Suppose $V: \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$ has continuous partial derivatives, and suppose $\mathbf{x}(\bullet)$ satisfies the d.e. Σ .

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}V[t,\mathbf{x}(t)] = \frac{\partial V}{\partial t}[t,\mathbf{x}(t)] + \nabla V[t,\mathbf{x}(t)] \bullet \underbrace{f[t,\mathbf{x}(t)]}_{\dot{x}}$$

Definition:

Let $V: \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable w.r.t. all of its arguments, and let ∇V denote the gradient of V w.r.t. \mathbf{x} (written as a row vector).

Then the function $\dot{V}: \mathbf{R}^+ \times \mathbf{R}^n \to \mathbf{R}$ is defined by

$$\dot{V}(t, \mathbf{x}) = \frac{\partial V}{\partial t}(t, \mathbf{x}) + \nabla V(t, \mathbf{x}) \bullet f(t, \mathbf{x})$$

and is called the derivative of V along the solution trajectories of Σ .

Remarks

- \dot{V} depends not only on the function V, but also on the system Σ .
- If we keep the same V but change the system Σ , the resulting \dot{V} will in general be different.
- The quantity $\dot{V}(t,\mathbf{x})$ can be interpreted as follows: Suppose a solution trajectory of \sum passes through \mathbf{x}_0 at time t_0 . Then,at the instant t_0 , the rate of change of the quantity $V[t,\mathbf{x}(t)]$ is $\dot{V}(t_0,\mathbf{x}_0)$.
- If $V=V[\mathbf{x}]$ (V independent of t) and the system \sum is autonomous, then $\dot{V}=\dot{V}(\mathbf{x})$ [\dot{V} independent of t] .

Lyapunov's Direct Method

Notation:

C¹: continuously differentiable;

Ipdf: locally positive definite function;

pdf: positive definite function.

Theorems on Stability:

Theorem 1: [Stability]

The equilibrium 0 of \sum is stable if :

 \exists a C¹ lpdf $V: \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}$ and a constant r > 0 s.t.:

$$\dot{V}(t, \mathbf{x}) \le 0, \quad \forall t \ge t_0, \forall \mathbf{x} \in B_r$$

where V is evaluated along the solution trajectories of Σ .

Proof of Theorem 1 (I)

Since V is an lpdf, \exists a function α of class K and a constant s > 0 s.t. $\alpha(||\mathbf{x}||) \le V(t,\mathbf{x}), \forall t \ge 0, \forall \mathbf{x}_0 \in B_s$

→ want to show that 0 is a stable equilibrium point, i.e.

$$\forall \varepsilon > 0, \exists \delta(t_0, \varepsilon) > 0 \text{ s.t. } ||\mathbf{x}_0|| < \delta(t_0, \varepsilon) \Rightarrow ||s(t, t_0, \mathbf{x}_0)|| \le \varepsilon, \forall t \ge t_0$$

1) Let $\varepsilon > 0$ and t_0 be given.

Choose s.t.

$$\sup_{\|\mathbf{x}\| < \delta} V(t_0, \mathbf{x}) \equiv \beta(t_0, \delta) < \alpha(\varepsilon_1)$$
 (2*)

such a δ can always be found because $\alpha(\epsilon_1)>0$ &

$$\beta(t_0, \delta) \rightarrow 0 \text{ as } \delta \rightarrow 0.$$

