CART Models

Introduction to CART Models

Machine learning trees are binary trees (usually called decision trees) that may be used for prediction and classification.

Their principle is to break the learning process into a set of decisions about a predictor in a sequential manner.

The process can be displayed by the help of a tree diagram.

The process starts at the root of the tree and moving down to the leaves, where the prediction or classification is made.

Tree diagram

Types of CART Models

Regression Trees

From sklearn.tree import DecisionTreeRegressor()

Classification Trees

From sklearn.tree import DecisionTreeClassifier()

Overview

- Difference
 - Linear Regression
 - Regression Tree
- How to use the Tree
 - For Prediction
 - For feature selection
- How to construct the Tree
- Notes
- Example Boston dataset

Multiple Linear Regression

Partitioning the Predictor Space

 Split the predictors space into non-overlapping regions R₁, R₂,..., R_k

Partition of predictors space

Partitioning the Predictor Space

- Split the predictors space into non-overlapping regions R₁, R₂,..., R_k
- For each region, the prediction is the average response of the observations in that region

If the observations in Region R₁
have average response 100,
we would predict 100,
for any new observation that falls in R₁

Linear Regression

Salary	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns
475	81	7	24	38	39	14	3449	835	69	321
480	130	18	66	72	76	3	1624	457	63	224
500	141	20	65	78	37	11	5628	1575	225	828
91.5	87	10	39	42	30	2	396	101	12	48
750	169	4	74	51	35	11	4408	1133	19	501
70	37	1	23	8	21	2	214	42	1	30
100	73	0	24	24	7	3	509	108	0	41
75	81	6	26	32	8	2	341	86	6	32
1100	92	17	49	66	65	13	5206	1332	253	784
517.143	159	21	107	75	59	10	4631	1300	90	702
512.5	53	4	31	26	27	9	1876	467	15	192
550	113	13	48	61	47	4	1512	392	41	205
700	60	0	30	11	22	6	1941	510	4	309
240	43	7	29	27	30	13	3231	825	36	376
775	158	20	89	75	73	15	8068	2273	177	1045
175	46	2	24	8	15	5	479	102	5	65
135	32	8	16	22	14	8	727	180	24	67
100	92	16	72	48	65	1	413	92	16	72

Example: Baseball Players dataset

Y

19 Predictors (features)

Salary	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns
475	81	L 7	24	38	39	14	3449	835	69	321
480	130	18	66	72	76	3	1624	457	63	224
500	141	20	65	78	37	11	5628	1575	225	828
91.5	87	7 10	39	42	30	2	396	101	12	48
750	169	9 4	74	51	35	11	4408	1133	19	501
70	37	7 1	23	8	21	2	214	42	1	30
100	73	0	24	24	7	3	509	108	0	41
75	81	6	26	32	8	2	341	86	6	32
1100	92	17	49	66	65	13	5206	1332	253	784
517.143	159	21	107	75	59	10	4631	1300	90	702
512.5	53	3 4	31	26	27	9	1876	467	15	192
550	113	13	48	61	47	4	1512	392	41	205
700	60	0	30	11	22	6	1941	510	4	309
240	43	7	29	27	30	13	3231	825	36	376
775	158	3 20	89	75	73	15	8068	2273	177	1045
175	46	5 2	24	8	15	5	479	102	5	65
135	32	2 8	16	22	14	8	727	180	24	67
100	92	16	72	48	65	1	413	92	16	72

Example: Baseball Players' features

```
AtBat
     Number of times at bat in 1986
Hits
     Number of hits in 1986
HmRun
     Number of home runs in 1986
Runs
     Number of runs in 1986
RBI
     Number of runs batted in in 1986
Walks
     Number of walks in 1986
Years
     Number of years in the major leagues
CAtBat
     Number of times at bat during his career
CHits
     Number of hits during his career
CHmRun
     Number of home runs during his career
```


Tree as a **Feature selection** tool

Tree as a Feature selection tool

Missing features may be dropped from model

How to build a Tree?

Linear Regression vs. Regression Tree

Linear Regression vs. Regression Tree

• SSE_{BEFORE} is the SSE that results from finding the average of all observations

- SSE₁ is the SSE that results from finding the average of observations falling in Region 1
- Similarly, SSE₂
 results from the observations falling in Region 2

 $SSE_{AFTER} = SSE_1 + SSE_2$

- Any split creates new SSE₁, SSE₂
- Try different splits on X₁

 $SSE_{AFTER} = SSE_1 + SSE_2$ Reduction = $SSE_{BFFORF} - SSE_{AFTER}$

- Any split creates new SSE₁, SSE₂
- Try different splits on X₁

 $SSE_{AFTER} = SSE_1 + SSE_2$ Reduction = $SSE_{BFFORF} - SSE_{AFTER}$

$$\boldsymbol{X}_1$$

- Any split creates new SSE₁, SSE₂
- Try different splits on X₁
- Select the boundary yielding the largest
 Reduction

 $SSE_{AFTER} = SSE_1 + SSE_2$ Reduction = $SSE_{BFFORF} - SSE_{AFTER}$

 X_1

- Repeat for X₂
- Selecting the boundary that results in the largest SSE reduction

- Compare best boundaries found for X₁ and X₂
- Choose one
- The boundary that results in the largest SSE reduction

- Compare best boundaries found for X₁ and X₂
- Choose one
- The boundary that results in the largest SSE reduction
- Split Tree using that predictor

1. First split on $X_1=t_1$

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$

 $oldsymbol{X}_1$

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$
- If $X_1 > t_1$, split on $X_1 = t_3$

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$
- If $X_1 > t_1$, split on $X_1 = t_3$
- 4. If $X_1 > t_3$, split on $X_2 = t_4$

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$
- If $X_1 > t_1$, split on $X_1 = t_3$
- If $X_1 > t_3$, split on $X_2 = t_4$
- 5. stop

Stopping criteria

As the number of splits increase, the regions become smaller, and the number of observations in the regions decrease

- Criteria 1: Fix (in advance) the number of splits
- Criteria 2: Stop when number of obs in regions is small enough
- Criteria 3: Stop when the resulting SSE decrease is small enough

Decision Tree

A Tree is a graphical representation of the splits

Decision Tree

Each region is defined by the inequalities leading to that region

Decision Tree

As the number of splits increases, the tree depth increases

Prunning a tree

- Large (deep) trees have a large number of regions T
- Large (deep) trees tend to overfit the data
- Adjust the tree loss function by adding a penalty term
- Let αT be the penalty for trees with T regions
- For each α find number of regions T minimizing

RSS =
$$\sum_{i \in R_1} (y_1 - \hat{y}_1)^2 + \sum_{i \in R_2} (y_2 - \hat{y}_2)^2 + \dots + \alpha T$$

Use CV to find the best number of regions T

Tree prunning

- Pruning a tree results from cutting a tree
- Cutting a tree is equivalent to merging region back

Pruned Tree

Pruning a tree reduces the number of regions

Display the tree performance: Yhat vs Y plot

Rectangular regions

CART models partition the predictor space into rectangular non-overlapping regions

Not possible

 This partitioning cannot result from a regression tree

 X_2

Region 9 is not rectangular

Regression Trees - Notes

- At each split the number of observations in the 2 new regions decrease
- If following a split, all observations in a splitted region have the same y-value then
 - prediction (ybar) is equal to that value
 - That region becomes terminal region
- No scaling is needed

Information of 506 houses in the area of Boston, Mass

Example – 13 predictors, 1 response

CRIM - per capita crime rate by town

ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS - proportion of non-retail business acres per town.

CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX - nitric oxides concentration (parts per 10 million)

RM - average number of rooms per dwelling

AGE - proportion of owner-occupied units built prior to 1940

DIS - weighted distances to five Boston employment centres

RAD - index of accessibility to radial highways

TAX - full-value property-tax rate per \$10,000

PTRATIO - pupil-teacher ratio by town

BLACK - proportion of blacks by town

LSTAT - % lower status of the population

MEDV - Median price of owner-occupied homes (000's)

Predict the price of houses and identify which variables are most useful for prediction.

- Divide the dataset into a training (50%) and a test set.
- Fit a regression tree. Plot the resulting tree.
- Plot the test MSPE as a function of the tree depth.
- Use cross validation to find the best number of regions.
- Which predictors are the most important?

```
from sklearn.model selection import KFold, cross val score
from sklearn.model selection import train test split
from sklearn.model selection import GridSearchCV
from sklearn.metrics import mean squared error
from sklearn.tree import DecisionTreeRegressor
# Choose one of the following:
# !pip install graphviz
# conda install python-graphviz
from sklearn.tree import export graphviz
import graphviz
# !pip install pydotplus
import pydotplus
from IPython.display import Image
```

```
boston_df = pd.read_csv('Boston.csv')
boston_df[:5]
```

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

```
y = boston_df.medv
X = boston_df.drop('medv', axis = 1)
```

Validation Approach

$max_depth = 2$

```
dot data = export graphviz(regr tree boston,
                                               feature names=col names,
                                              out file=None,
                                              filled=True,
                                               rounded=True)
            pydot graph = pydotplus.graph from dot data(dot data)
            pydot graph.set size('"6,6!"')
            pydot graph.write png('resized tree.png');
            Image(pydot graph.create png())
                                           Istat <= 7.81
                                           mse = 92.491
                                          samples = 253
root
                                          value = 23.049
                                                     False
                                        True
                                  rm <= 7.435
                                                    Istat <= 15.0
                                 mse = 84.345
                                                    mse = 27.121
depth 1
                                 samples = 86
                                                   samples = 167
                                 value = 32.492
                                                   value = 18.186
               mse = 41.903
                                 mse = 21.812
                                                    mse = 12.255
                                                                       mse = 17.363
depth 2
               samples = 68
                                 samples = 18
                                                    samples = 87
                                                                       samples = 80
              value = 28.978
                                 value = 45.767
                                                   value = 21.566
                                                                      value = 14.511
```

terminal nodes or leaves

Example – Inequalities (in all non-terminal nodes)

.

- samples = number of observations in the region
- value = average response Y in the region
- mse = train MSE in the region

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
0.00632	18.0	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98

regr_tree_boston.predict(newval)

array([28.97794118])

house price is predicted at 28977.97 dollars

Example – Test MSE and Tree depth

$max_depth = 2$

```
regr_tree_boston = DecisionTreeRegressor(max_depth = 2)
regr_tree_boston.fit(X_train, y_train)
pred = regr_tree_boston.predict(X_test)
mspe = mean_squared_error(y_test, pred)
mspe
```

28.80154486445794

$max_depth = 4$

```
regr_tree_boston = DecisionTreeRegressor(max_depth = 4)
regr_tree_boston.fit(X_train, y_train)
pred = regr_tree_boston.predict(X_test)
mspe = mean_squared_error(y_test, pred)
mspe
```

23.81737151382862

Example – Tree depth = 4

```
regr_tree_boston = DecisionTreeRegressor(max_depth = 4)
regr_tree_boston.fit(X_train, y_train)
```


Example – Display the Tree

Example – Compare Trees


```
dot data = export graphviz(regr tree boston,
                                                            feature names=col names,
                                                           out file=None,
                                                           filled=True,
                                                           rounded=True)
pydot graph = pydotplus.graph from dot data(dot data)
pydot graph.set size('"11,11!"')
pydot graph.write png('resized tree.png');
Image(pydot graph.create png())
                                                                                      Istat <= 7.81
                                                                                      mse = 92.491
                                                                                     samples = 253
                                                                                     value = 23.049
                                                                  True
                                                       rm <= 7.435
                                                                                                                      Istat <= 15.0
                                                                                                                     mse = 27.121
                                                      mse = 84.345
                                                      samples = 86
                                                                                                                     samples = 167
                                                      value = 32.492
                                                                                                                     value = 18.186
                  dis <= 1.485
                                                                                                                      rm <= 6.53
                                                      ptratio <= 15.4
                                                                                                                                                                     dis <= 1.918
                 mse = 41.903
                                                      mse = 21.812
                                                                                                                      mse = 12.255
                                                                                                                                                                     mse = 17.363
                  samples = 68
                                                       samples = 18
                                                                                                                      samples = 87
                                                                                                                                                                     samples = 80
                                                       value = 45.767
                                                                                                                     value = 21.566
                                                                                                                                                                     value = 14.511
                 value = 28.978
                  rm <= 6.556
                                             black <= 394.805
                                                                                                            ptratio <= 18.65
                                                                                                                              ptratio <= 19.3
                                                                                                                                                                     tax <= 551.5
                                                                                                                                                                                             crim <= 0.593
    mse = 0.0
                 mse = 22,499
                                                               mse = 13.714
                                                                                                              mse = 6.248
                                                                                                                                                                     mse = 13.188
                                                                                                                                                                                              mse = 8.79
                 samples = 65
                                              samples = 11
                                                               samples = 7
                                                                                                             samples = 74
                                                                                                                              samples = 13
                                                                                                                                                                     samples = 36
                                                                                                                                                                                             samples = 44
                 value = 28.008
                                                                                                                              value = 26.015
                                                                                                                                                                    value = 11.672
                                              value = 48.636
                                                                                                             value = 20.784
                                                                                                                                                                                             value = 16.834
                                                               value = 41.257
  mse = 2.618
                 mse = 16.496
                                                mse = 0.0
                                                               mse = 1.749
                                                                              mse = 5.902
                                                                                               mse = 6.745
                                                                                                              mse = 4.466
                                                                                                                              mse = 10.304
                                                                                                                                             mse = 10.302
                                                                                                                                                              mse = 3.129
                                                                                                                                                                              mse = 9.131
                                                                                                                                                                                              mse = 5.269
                                                                                                                                                                                                              mse = 5.061
 samples = 25
                  samples = 40
                                                                                              samples = 31
                                                                                                              samples = 43
                                                                                                                              samples = 10
                                                                                                                                                              samples = 9
                                                                                                                                                                             samples = 27
                                                                                                                                                                                             samples = 16
                                                                                                                                                                                                             samples = 28
                                                samples = 1
                                                               samples = 3
                                                                              samples = 4
                                                                                                                                             samples = 3
 value = 23.748
                  value = 30.67
                                 value = 49.27
                                                value = 42.3
                                                              value = 44.833
                                                                              value = 38.575
                                                                                              value = 21.855
                                                                                                              value = 20.012
                                                                                                                              value = 27.98
                                                                                                                                             value = 19.467
                                                                                                                                                             value = 15.756
                                                                                                                                                                             value = 10.311
                                                                                                                                                                                             value = 19.362
                                                                                                                                                                                                            value = 15.389
```

depth = 4, results in 15 Terminal Regions

Example – Boston dataset

Some terminal nodes with MSE = 0

Example – Boston dataset

depth = 4, results in 15 predictions

Holdout Cross Validation

Example – MSPE of a tree with depth = 4

from sklearn.metrics import mean_squared_error

$max_depth = 4$

```
regr_tree_boston = DecisionTreeRegressor(max_depth = 4)
regr_tree_boston.fit(X_train, y_train)
pred = regr_tree_boston.predict(X_test)
mspe = mean_squared_error(y_test, pred)
mspe
```

Holdout Validation - tuning hyperparameter max_depth

```
X_nontest, X_test, y_nontest, y_test = train_test_split(X, y,
                                                     train size = 0.60,
                                                     test size = 0.40.
                                                     random_state = 0)
X_train, X_validation, y_train, y_validation = train_test_split(X_nontest,
                                                                 y_nontest,
                                                     train size = 0.5.
                                                     test_size = 0.5,
                                                     random_state = 0)
model = DecisionTreeRegressor(random state=1)
validation_mspe = []
for i in range(2,22):
    model.set_params(max_depth = i,random_state=1)
    model.fit(X train, y train)
    pred = model.predict(X validation)
    mspe = mean_squared_error(y_validation, pred)
    validation mspe.append(mspe)
```

Holdout Cross Validation for max_depth

```
df = pd.DataFrame(validation_mspe,columns = ['MSPE'])
df.index = depths
df.index.name = 'depth'
df
```

	MSPE		MSPE			MSPE
depth		depth		de	epth	
2	32.807268	9	28.091195		16	27.264539
3	27.436607	10	31.524097		17	27.264539
4	25.529841	11	27.713525		18	27.264539
5	28.941534	12	28.942931		19	27.264539
6	31.648445	13	27.231859		20	27.264539
7	29.914798	14	27.264539		21	27.264539
8	32.354046	15	27.264539			

Holdout Cross Validation for max_depth

```
df.plot(grid=True, legend=False, xlim = (0,22))
plt.ylabel('Validation MSPE');
```


Holdout Cross Validation for max_depth

- What is the importance of X₁?
- The most X₁ is used, the more important it is
- How much SSE decreases due to splits due to X₁
- Feature importance is between 0 and 1
 - 0 (if X_1 is not used for splits)
 - 1 (if X_1 is used for all splits)

15.279743835776737

Feature Importances for best model

```
model6. feature_importances_
array([0.03035261, 0. , 0. , 0. , 0. 0.00636331, 0.27144691, 0.00194428, 0.04951238, 0. , 0.00494618, 0.02941881, 0. , 0.60601552])
```

```
predictors with zero
Feature Importances for best model
                                                       feature importance
model6.feature_importances_
array([0.03035261, 0.
                                                     , 0.00636331,
                             , 0.
       0.27144691, 0.00194428, 0.04951238, 0.
                                                     . 0.00494618.
       0.02941881, 0.
                             , 0.60601552])
df9 = pd.DataFrame(100*model6.feature_importances_,
                   index = X.columns.
                   columns=['importance'])
df9 = df9.sort_values(by = 'importance',axis=0,
                      ascending=False)
```

importance

Istat	60.601552
rm	27.144691
dis	4.951238
crim	3.035261
ptratio	2.941881
nox	0.636331
tax	0.494618
age	0.194428
zn	0.000000
indus	0.000000
chas	0.000000
rad	0.000000
black	0.000000

K-Fold Cross Validation

Kfold cross validation

5-fold cross validation with max_depth = 6

Kfold cross validation – no hyperparameters

Training data

5 test sets

Kfold cross validation hyperparameter tuning

X_train,X_test,y_train,y_test = train_test_split(X,y)
model = DecisionTreeRegressor(random_state = 1)
parameters = {' ',:[],... }
grid = GridSearchCV(model,parameters,cv=5)
grid.fit(X_train,y_train)
grid.score(X_test,y_test)

Only 1 test set

Test data

K-fold cross – hyperparameter tuning

K-fold cross – hyperparameter tuning

K-fold cross – hyperparameter tuning

both are equivalent

```
# Test MSE
-grid.score(X_test,y_test)
```

24.229018548709014

```
# Test MSE
```

```
best_model = grid.best_estimator_
best_model.fit(X_train, y_train)
ypred = best_model.predict(X_test)
mean_squared_error(y_test, ypred)
```

K-fold cross validation – Feature importance

```
best_model = grid.best_estimator_
best_model.fit(X_train, y_train)
ypred = best_model.predict(X_test)
mean_squared_error(y_test, ypred)
```

24.229018548709014

Feature Importances for best model

K-fold cross validation – Feature importance

importance
60.032354
23.605734
8.366883
2.521014
1.565828
1.446142
1.006972
0.762343
0.243003
0.218774
0.097239
0.067524
0.066191

