Übungsblatt 4 zur Algebra I

Abgabe bis 13. Mai 2013, 17:00 Uhr

Aufgabe 1. Lage der Lösungen von Polynomengleichungen

Sei $X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 = 0$ eine normierte Polynomgleichung mit komplexen Koeffizienten. Zeige, dass jede komplexe Lösung z höchstens die Entfernung $1 + \max\{|a_0|, \ldots, |a_{n-1}|\}$ zum Ursprung hat.

Aufgabe 2. Stetigkeit von Polynomfunktionen

Sei $f: \mathbb{C} \to \mathbb{C}, z \mapsto a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ eine Polynomfunktion mit Koeffizienten $a_0, \ldots, a_n \in \mathbb{C}$. Zeige, dass f in folgendem starken Sinn stetig ist:

$$\forall C > 0 \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall z, z' \in \mathbb{C} \text{ mit } |z|, |z'| \leq C : \ |z - z'| < \delta \Longrightarrow |f(z) - f(z')| < \epsilon$$

Aufgabe 3. Rechenregeln

- a) Seien f und g Polynome mit $\deg f \leq n$ und $\deg g \leq m$. Zeige, dass $\deg(f+g) \leq \max\{n,m\}$ und $\deg(fg) \leq n+m$.
- b) Beweise oder widerlege: Für alle Polynome f und Zahlen x, y gilt f(xy) = f(x)f(y).
- c) Sei q eine komplexe Zahl ungleich Eins. Zeige: $\sum_{k=0}^{n} q^k = \left(q^{n+1}-1\right)/\left(q-1\right)$.

Aufgabe 4. Teiler von Polynomen

- a) Ist $X + \sqrt{2}$ ein Teiler von $X^3 2X$?
- b) Besitzt $X^7 + 11X^3 33X + 22$ einen Teiler der Form (X a)(X b) mit $a, b \in \mathbb{Q}$?
- c) Sei $f = 3X^4 X^3 + X^2 X + 1$ und $g = X^3 2X + 1$. Finde Polynome q und r mit f = qg + r und $\deg r < \deg g$.
- d) Sei d ein gemeinsamer Teiler zweier Polynome f und g und seien p und q weitere Polynome. Zeige, dass d dann auch ein Teiler von pf + qg ist.
- e) Seien f, g und h Polynome mit ganzzahligen Koeffizienten und f = gh. Zeige, dass für jede ganze Zahl g(n) ein Teiler von f(n) ist.

Lösung.

- a) Variante 1: Ja, denn $-\sqrt{2}$ ist eine Nullstelle von X^3-2X (wieso?). Variante 2: Ja, denn es gilt: $X^3-2X=X(X^2-2)=X(X-\sqrt{2})(X+\sqrt{2})$.
- b) Nach Blatt 0, Aufgabe 3b) und Blatt 1, Aufgabe 1 können rationale Nullstellen des gegebenen Polynoms nur Teiler von 22 sein. Einsetzen zeigt aber, dass keine der Zahlen

$$\pm 1, \quad \pm 2, \quad \pm 11, \quad \pm 22$$

Nullstellen sind. Also besitzt das Polynom keinerlei rationale Nullstellen und daher insbesondere keine Teiler der Form (X - a)(X - b) mit $a, b \in \mathbb{Q}$.

Aufgabe 5. Polynomielle Ausdrücke

- a) Schreibe $\frac{1}{\sqrt{2}+5\sqrt{3}}$ als polynomiellen Ausdruck in $\sqrt{2}$ und $\sqrt{3}$ mit rat. Koeffizienten.
- b) Sei z eine komplexe Zahl mit $\mathbb{Q}(z) = \mathbb{Q}[z]$. Zeige, dass z algebraisch ist.
- c) Inwiefern kann man ein Polynom in zwei Unbestimmten X und Y als Polynom in einer einzigen Unbestimmten Y, dessen Koeffizienten Polynome in X sind, auffassen?

Lösung.

a) Wir bedienen uns desselben Tricks, den man auch beim Dividieren durch komplexe Zahlen verwendet:

$$\frac{1}{\sqrt{2}+5\sqrt{3}} = \frac{\sqrt{2}-5\sqrt{3}}{(\sqrt{2}+5\sqrt{3})(\sqrt{2}-5\sqrt{3})} = \frac{\sqrt{2}-5\sqrt{3}}{2-25\cdot 3} = \frac{-1}{73}\sqrt{2} + \frac{5}{73}\sqrt{3}.$$

b) Wir beweisen die Behauptung zunächst für den Fall, dass $z \neq 0$. Dann ist nämlich 1/z ein Element von $\mathbb{Q}(z)$ und daher auch von $\mathbb{Q}[z]$; also gibt es ein Polynom f(X) mit rationalen Koeffizienten und $\frac{1}{z} = f(z)$. Dieses Polynom kann nicht das Nullpolynom sein (wieso?) und hat daher mindestens Grad 0. Die Zahl z ist also Lösung der Polynomgleichung

$$f(X) \cdot X - 1 = 0$$

mit rationalen Koeffizienten. Diese ist nichttrivial (wegen der Multiplikation mit X ist ihr Grad mindestens 1) und enttarnt daher nach Normierung z als algebraisch.

Nun wollen wir den allgemeinen Fall behandeln. In klassischer Logik ist das einfach, denn da ist z null oder nicht null; im ersten Fall ist z sowieso algebraisch, im zweiten Fall haben wir das gerade gesehen. Intuitionistisch ist diese Fallunterscheidung nicht zulässig, trotzdem können wir den Beweis retten: Denn auch konstruktiv gilt

$$|z| > 0$$
 oder $|z| < 1$.

Im ersten Fall folgt $z \neq 0$ und daher die Algebraizität nach obigem Argument. Im zweiten Fall ist z' := z + 1 nicht null; wegen $\mathbb{Q}(z) = \mathbb{Q}(z')$ und $\mathbb{Q}[z] = \mathbb{Q}[z']$ (wieso?) zeigt obige Argumentation, dass z' algebraisch ist. Also ist auch z = z' - 1 algebraisch.

Aufgabe 6. Beweis des Fundamentalsatzes

Im Beweis des Fundamentalsatzes der Algebra tritt die Zahl 3 immer wieder auf. Kann sie durch eine kleinere Zahl $3-\epsilon$ ersetzt werden?