EINSTEIN ATTACKS QUANTUM THEORY

The New York Times, 4. Mai 1935

Das Einstein-Podolsky-Rosen-Paradoxon

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

Mathurin Choblet choblet@stud.uni-heidelberg.de

Seminar: Quantenverschränkung

8. Mai 2018

Gliederung

1 Die Veröffentlichung von EPR

2 Die Bohr-Einstein-Debatte Bohrs Replik Einsteins Neuformulierung

3 Bohms Vereinfachung

Aufbau der Arbeit

MAY 15. 1935

PHYSICAL REVIEW

VOLUME 4.7

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

- Definitionen & Annahmen des QM-Formalismus
- erste Schlüsse
- 3 Gedankenexperiment
- Widerspruch

Anforderungen an eine physikalische Theorie

- Korrektheit √
- Vollständigkeit?

Definition

In einer vollständigen Theorie muss jedes Element der physikalischen Realität seine Entsprechung in der physikalischen Theorie haben.

Realität

Wenn wir, ohne auf irgendeine Weise ein System zu stören, den Wert einer physikalischen Größe mit Sicherheit vorhersagen können, dann gibt es ein Element der physikalischen Realität, das dieser physikalischen Größe entspricht.

Realität im QM-Formalismus

- Observablen ≡ lineare Operatoren
- Messwerte ≡ Eigenwerte des Operators

$$\hat{A} |\psi\rangle = a |\psi\rangle$$

Beispiel

$$\begin{split} |\psi_p\rangle &= e^{\frac{i}{\hbar}p_0x} \\ \hat{p} &= -i\hbar\frac{\partial}{\partial x} \\ \hat{p}|\psi_p\rangle &= -i\hbar\frac{\partial|\psi_p\rangle}{\partial x} = p_0|\psi_p\rangle \end{split}$$

 $\rightarrow p_0$ erfüllt Realitätskriterium

Wann ist das Realitätskriterium nicht erfüllt?

Messung des Orts im Impulseigenzustand

$$\hat{x}\left|\psi_{p}\right\rangle \neq x\left|\psi_{p}\right\rangle$$

Wahrscheinlichkeitsinterpretation

$$P(a,b) = \int_{a}^{b} |\psi_{p}|^{2} dx = b - a$$

Definitive Aussage nur durch Messung möglich

Störung:
$$\hat{x}|\psi_p\rangle \rightarrow x|\psi_x\rangle$$

→ Ortskoordinate x kann keine Realität zugesprochen werden

Unbestimmtheitsrelation für zwei Observablen \hat{A} und \hat{B}

$$\langle \Delta A^2 \rangle \langle \Delta B^2 \rangle \ge -\frac{1}{4} \langle [\hat{A}, \hat{B}] \rangle^2$$

EPRs unvereinbare Schlüsse:

- 1 Vollständige Beschreibung der QM
- Zwei nichtkommutierenden Größen kann zugleich Realität zu kommen

Gedankenexperiment

Betrachtung zweier Systeme ① und ② zum Zeitpunkt t

- t < 0 Systeme unabhängig, ψ_1 und ψ_2 bekannt
- $0 \le t < T$ Systeme in WW, gemeinsame Wellenfunktion
- t ≥ T Separation der Systeme, Lokalitätsannahme

gemeinsame Wellenfunktion

$$\psi(x_1,x_2)\neq\psi_1(x_1)\cdot\psi_2(x_2)$$

→ Verschränkung

Messungen an $\psi(x_1, x_2)$

Größe an System ①

- Mess-/Eigenwerte a₁, a₂, a₃...
- Eigenzustände $u_1(x_1), u_2(x_1), u_3(x_1)...$

$$\Rightarrow \psi(x_1, x_2) = \sum_{n=1}^{\infty} \varphi_n(x_2) u_n(x_1)$$

Messwert a_k

Reduktion der Wellenfunktion

$$\psi(x_1, x_2)' = \varphi_k(x_2) u_k(x_1)$$

$$\Rightarrow \varphi_k(x_2) \text{ real}$$

Größe \hat{B} an System ①

- Mess-/Eigenwerte $b_1, b_2, b_3...$
- Eigenzustände $v_1(x_1), v_2(x_1), v_3(x_1)...$

$$\Rightarrow \psi(x_1, x_2) = \sum_{n=1}^{\infty} \vartheta_n(x_2) v_n(x_1)$$

Messwert b_r

$$\psi(x_1,x_2)^{\prime\prime}=\vartheta_r(x_2)v_r(x_1)$$

 $\Rightarrow \varphi_k(x_2)$ und $\vartheta_r(x_2)$ können der *gleichen Realität* zugeordnet werden!

Orts-und Impulsmessung zweier Teilchen

$$\psi(x_1, x_2) = \int_{-\infty}^{\infty} e^{\frac{i}{\hbar}p(x_1 - x_2 + x_0)} dp = h \delta(x_1 - x_2 + x_0)$$

	Impulsmessung	Ortsmessung
$\psi(x_1,x_2)$	$\int_{-\infty}^{\infty} \varphi_p(x_2) u_p(x_1) dp$	$\int_{-\infty}^{\infty} \vartheta_x(x_2) v_x(x_1) dx$
Teilchen 1	$\hat{p_1} = -(i\hbar)\partial/\partial x_1$ $u_p(x_1) = e^{ipx_1/\hbar}$ p	$ \begin{aligned} \hat{x_1} \\ v_x(x_1) &= \delta(x_1 - x) \\ x \end{aligned} $
Teilchen 2	$\hat{p}_2 = -(i\hbar)\partial/\partial x_2$ $\varphi_p(x_2) = e^{ip(x_2 - x_0)/\hbar}$ $-p$	$ \hat{x_2} $ $ \vartheta_x(x_2) = h\delta(x - x_2 + x_0) $ $ x + x_0 $

Mathurin Choblet Das EPR-Paradoxon 8. Mai 2018 13 / 21

Finale Schlüsse

- $\varphi_{D}(x_{2})$ und $\vartheta_{X}(x_{2})$ Teil derselben Realität
- Kommutator: $[\hat{x}_2, \hat{p}_2] = [x_2, -(i\hbar)\partial/\partial x_2] = i\hbar$

Annahme der Vollständigkeit ⇒ gleichzeitige Realität

⇒ Quantenmechanische Beschreibung der Realität ist nicht vollständig!

Ein verschärftes Realitätskriterium?

Zwei physikalische Größen sind nur dann zugleich Elemente der Realität, wenn sie gleichzeitig gemessen oder vorhergesagt werden können.

- Realität von $\hat{p_2}$ oder $\hat{x_2}$ wäre von Messung an Teilchen 1 abhängig!
- Für EPR «keine vernünftige Definition der Realität»

Bohrs Replik

OCTOBER 15, 1935

PHYSICAL REVIEW

VOLUME 48

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?

N. Bohr, Institute for Theoretical Physics, University, Copenhagen

- QM-Beschreibung ist vollständig
- «Mehrdeutigkeit»
 des Realitätskriteriums

- sich ausschließende Messapparaturen
 - → Komplementarität

Einsteins spätere Sicht

Aufsatz 1948: Quantenmechanik und Wirklichkeit

- I: Wissen über konjugierte Variablen
- a) Teilchen hat bestimmten Ort und Impuls, nicht gleichzeitig messbar
- b) Scharfer Ort/Impuls erst durch Messung
- II: Bedeutung der Lokalität
- III: Konstruktion eines EPR-Paradoxons
- ightarrow Vollständigkeit von ψ nur mit Aufgabe der Lokalität

Der Spin als diskrete Größe

•
$$[\hat{S}_i, \hat{S}_j] = i\hbar\epsilon_{ijk}\hat{S}_k$$

Antikorellierte Spins zweier Teilchen

z-Achse:
$$+\hbar/2 \rightarrow -\hbar/2$$

Mögliche Zustände bez. beliebiger Achse:

$$|\psi_{a}\rangle = |\uparrow\rangle_{1} \otimes |\uparrow\rangle_{2} \qquad \qquad |\psi_{b}\rangle = |\downarrow\rangle_{1} \otimes |\downarrow\rangle_{2}$$

$$|\psi_{c}\rangle = |\uparrow\rangle_{1} \otimes |\downarrow\rangle_{2} \qquad \qquad |\psi_{d}\rangle = |\downarrow\rangle_{1} \otimes |\uparrow\rangle_{2}$$

• Operator der Spinmessung (1 Teilchen)
$$\hat{S} = \frac{\hbar}{2} \vec{\sigma}$$

- Gesamtspinmessung $\vec{\sum}$: $\hat{\Sigma}_i = \hat{S}_i \otimes \hat{I} + \hat{I} \otimes \hat{S}_i$
- Eigenzustand zu \sum_z und $\overrightarrow{\sum}$ mit Eigenwert 0

$$|\psi\rangle = |00\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle)$$

Alternative Achsenwahl

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\rightarrow\rangle\otimes|\leftarrow\rangle - |\leftarrow\rangle\otimes|\rightarrow\rangle)$$

⇒ EPR-Argumentation möglich!

Fazit

• Ein 5-Minuten Thema?

Zitierungsverlauf der EPR-Arbeit bis 2002

Quellen

Literatur

- Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? A. Einstein, B. Podolsky, und N. Rosen Phys. Rev. 47, 777 Veröffentlicht am 15. Mai 1935
- Can Quantum-Mechanical Description of Physical Reality be Considered Complete? N. Bohr Phys. Rev. 48, 696 –
 Veröffentlicht am 15. Oktober 1935
- Quanten-Mechanik und Wirklichkeit A. Einstein dialectica November 1948
- Albert Einstein, Boris Podolsky, Nathan Rosen K. Kiefer Hrsg. Springer 2015 (ausführliche Einordnung und Kommentierung der Arbeit)
- Alber Einstein als Philosoph und Naturforscher P. Schilpp Hrsg. Vieweg 1955 (u.A. mit Autobiographischen Notizen und einem Beitrag von Bohr zu ihrer epistemischen Debatte)
- Quantum Theory D. Bohm Prentice Hall –1952 (S.611 ff.)
- Quantenmechanik F. Schwabl Springer 2007 (Kapitel 20.4.1)
- Theoretische Physik IV: Quantenmechanik M. Bartelmann Vorlesungsskript

Bildquellen:

- EPR in der NYT: https://www.ias.edu/ideas/2013/epr-fallout (letzter Zugriff 29.04.18)
- Bohr und Einstein Foto von Paul Ehrenfest: Wikimedia Commons (letzter Zugriff 29.04.18)
- Zitierungsverlauf https://onlinelibrary.wiley.com/doi/pdf/10.1002/phbl.20010571012 (letzter Zugriff 29.04.18)