THESE HIGH-VOLTAGE, HIGH-CURRENT

D arlington arrays are comprised of seven silicon NPN darlington pairs on a common monolithic substrate. All units have open-collector outputs and integral diodes for inductive load transient suppression.

ULN2003 has a 2.7 k Ω series base resistor for each darlington pair, allowing operation directly with TTL or CMOS operating at a supply voltage of 5 V. These devices will handle numerous interface needs particularly those beyond the capabilities of standard logic buffers.

DEVICE NUMBER DESIGNATION

VCE(MAX)	50V
IC(MAX)	500mA

Logic	Type Number			
5V TTL, CMOS	ULN2003			
6-15V CMOS,PMOS	ULN2004			

ULN2004 has a $10.5\,\mathrm{k}\Omega$ series input resistor that permits operation directly from CMOS or PMOS outputs utilizing supply voltages of 6 to 15 V.

ULN2003/ULN2004 is the original high-voltage, high-current darlington array. The output transistors are capable of sinking 500 mA and will sustain at least 50 V in the off state. Output may be paralle-led for higher load-current capability.

ULN2003/ULN2004 darlington arrays are furnished in a 16-Pin dual in-line plastic package. These can also be supplyed in a hermetic dual in-line package for use in military and aerospace applications.

ALLOWABLE AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE

ABSOLUTE MAXIMUM RATINGS

at +25 °C Free - Air Temperature (unless otherwise noted)

Input Voltage, V_{IN} (ULN2003, ULN2004)				
Continuous Input Current, I_{IN}				
Power Dissipation, PD (one Darlington pair) · · · · · · · · · · · · · · · · · · ·				
(total package) · · · · · · · · · · · · · · · · · · ·				
Operating Ambient Temperature Range, $T_A \cdot \cdot$				
Storage Temperature Range, T_8 · · · · · · · · · · - 55 $ \mathfrak C $ to + 150 $ \mathfrak C $				
Debate at the rate of 16.67 mW/ \circ above + 25 \circ .				
Under normal operating conditions, these devices will sustain 350 mA per output with				
$V_{CE(STA)} = 1.6 \text{ V}$ at +70 °C with a pulse width of 20 ms and a duty cycle of 34%.				

PARTIAL SCHEMATICS

(each driver)

Series ULN2003

Series ULN2004

(each driver)

PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE

ELECTRICAL CHARACTERISTICS AT +25% (unless otherwise noted)

Characteristic Symb	Sumbol	Test Fig.	Applicable Devices	Test Conditions	Limits			
	3,11001				Min.	Тур.	Max.	Units
Output Leakage Current	ICEX	1A	All	V _{CE} =50V, T _A =25℃	-		50	μA
		1	1	V _{CE} =50V, T _A =70℃			100	μA
		1B	ULN2004	V _{CE} =50V, T _A =70℃, V _{IN} =1.0V	T -		500	μA
Collector - Emitter	V _{CE(SAT)}	2	 	Ic=100mA, Is=250µA	-	0.9	1.1	V
Saturation Voltage	VCE(SAI)		All	Ic=200mA, Is=350µA	_	1.1	1.3	V
				Ic=350mA, Is=500μA	T -	1.3	1.6	V
Input Current Incom	Invovo	3	IЛ.N2003	V _{IN} =3.85V	-	0.93	1.35	mA
	ZIM(ON)	1	ULN2004	V _{IN} =5.0V		0.35	0.5	m.A
	1			V _{IN} =12V		1.0	1.45	m.A
	I _{IN(OFF)}	4	All	1c=500μA, T _A =70℃	50	65	-	μА
	-in(OFF)			V _{CE} =2.0V, I _C =200mA	·		2.4	V
Input Voltage Vn	VINION	5	ULN2003	V _{CE} =2.0V, I _C =250mA	T -		2.7	V
	Y IN(ON)		0.2.1211	V _{CE} =2.0V, I _C =300mA	–		3.0	V
				V _{CE} =2.0V, I _C =125mA			5.0	V
	}	ł	ULN2004	V _{CE} =2.0V, I _C =200mA			6.0	V
				Vce=2.0V, Ic=275mA			7.0	V
		1	1	V _{CE} =2.0V, I _C =350mA			8.0	V
Input Capacitance	CIN	_	All			15.	25	pF
Turn-On Delay	tpLH		All	0.5 E _{in} to 0.5 E _{out}		0.25	1.0	μS
Turn-Off Delay	tpHL	_	All	0.5 E _{in} to 0.5 E _{out}		0.25	1.0	μS
Clamp Diode	IR	6	All	V _R =50V, T _A =25℃	_		50	μА
Leakage Current	"	1	ł	V _R =50V, T _A =70℃		-	100	μА
Clamp Diode Forward Voltage	V _F	7	All	I _F =350mA		1.7	2.0	V

COLLECTOR CURRENT AS A FUNCTION OF SATRATION VOLTAGE

COLLECTOR CURRENT AS A FUNCTION OF INPUT CURRENT

INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE

SERIES ULN2003

SERIES ULN2004

TTL TO LOAD

USE OF PULL-UP RESISTORS TO INCREASE DRIVE CURRENT

BUFFER FOR HIGH-CURRENT LOAD

TEST FIGURES

V_{DN} =

FIGURE 1A

V_{IN} = OPEN

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7