HAX501X – Groupes et anneaux 1

Examen (session 1)

- Durée: 3h.
- Tout matériel électronique est interdit ainsi que les documents de cours.
- Une partie du barème sera consacrée à la clarté de la rédaction ainsi qu'à la propreté/lisibilité de la copie.

Questions diverses (5 pts).

- 1) Dans le groupe $\mathbb{Z}/1200\mathbb{Z}$, quel est l'ordre du groupe engendré par $\overline{486}$? On justifiera.
- 2) Dans le groupe \mathbb{C}^* , lister les éléments d'ordre 6. (Sans démonstration.)
- 3) Dans \mathbb{R}^2 , soit r la rotation d'angle $\frac{\pi}{3}$ et soit s la réflexion par rapport à l'axe des ordonnées $\mathbb{R}(0,1)$. Décrire précisément la composée $s \circ r$. (Sans démonstration.)
- 4) Dans l'anneau $\mathbb{R}[X]$, décrire concrètement l'idéal $(X^2, X^2 2X + 1)$. On justifiera.
- 5) Soient A, B des anneaux commutatifs, $f: A \to B$ un morphisme d'anneaux, et J un idéal de B. Montrer que l'image réciproque $f^{-1}(J)$ est un idéal de A. (On montrera notamment que c'est un sous-groupe de A.)

Exercice 1 : autour du groupe produit (6 pts). Pour un groupe G et deux sous-groupes H, K de G, on considère les conditions suivantes.

- (i) Pour tout $x \in G$, il existe $y \in H$ et $z \in K$ tels que x = yz.
- (ii) $H \cap K = \{e\}.$
- (iii) Les éléments de H et K commutent entre eux : $\forall y \in H, \forall z \in K, yz = zy$. Les quatre questions sont indépendantes.
- 1) Soit $G = (\mathbb{Z}/11\mathbb{Z})^{\times}$, soit H le sous-groupe engendré par $\overline{3}$, et K le sous-groupe engendré par $\overline{10}$. Lister les éléments de H et K, et démontrer que H et K vérifient les conditions (i), (ii), (iii).
- 2) Soient G_1 , G_2 deux groupes, et soit $G = G_1 \times G_2$ leur produit. On note e_1 et e_2 les éléments neutres respectifs de G_1 et G_2 . Montrer que les ensembles $H = G_1 \times \{e_2\}$ et $K = \{e_1\} \times G_2$ sont deux sous-groupes de G qui vérifient les conditions (i), (ii), (iii).
- 3) Soit G un groupe et H, K deux sous-groupes qui vérifient les conditions (i), (ii), (iii).
 - a) Démontrer que pour un élément $x \in G$, l'écriture x = yz avec $y \in H$ et $z \in K$ est unique.
 - b) Démontrer qu'il existe un isomorphisme entre le groupe produit $H \times K$ et G.
- 4) On pose $G = D_4$, le groupe diédral à 8 éléments. Trouver deux sous-groupes H, K de G, différents de $\{e\}$ et G, pour lesquels (i) et (ii) sont vrais mais pas (iii). On justifiera soigneusement ces faits.

Exercice 2 : sous-anneaux de \mathbb{Z}^2 **(6 pts).** On se place dans l'anneau \mathbb{Z}^2 . Pour tout $n \in \mathbb{N}$ on définit

$$A_n = \{(x, y) \in \mathbb{Z}^2 \mid x \equiv y \pmod{n}\}.$$

- 1) Montrer que A_n est un sous-anneau de \mathbb{Z}^2 .
- 2) Soit A un sous-anneau de \mathbb{Z}^2 . On veut montrer qu'il existe $n \in \mathbb{N}$ tel que $A = A_n$.
 - a) Montrer que pour $k \in \mathbb{Z}$ on a : $(k, k) \in A$.
 - b) Montrer que pour $k \in \mathbb{Z}$ on $a:(k,0) \in A \iff (0,k) \in A$.
 - c) On suppose qu'il n'existe pas d'élément de A de la forme (0, y) avec $y \neq 0$. Montrer que $A = A_0$. (Avant cela il est conseillé de réfléchir quelques instants à ce qu'est le sous-anneau A_0 .)
 - d) On suppose qu'il existe un élément de A de la forme (0, y) avec $y \neq 0$. Soit n le plus petit entier ≥ 1 tel que $(0, n) \in A$. Montrer que $A = A_n$.

Exercice 3: un anneau intègre qui n'est pas factoriel (4 pts). On définit

$$\mathbb{Z}[i\sqrt{3}] = \{a + bi\sqrt{3} , a, b \in \mathbb{Z}\} .$$

Pour gagner du temps, on admettra que $\mathbb{Z}[i\sqrt{3}]$ est un sous-anneau de \mathbb{C} . (Vous pouvez aussi le vérifier rapidement au brouillon.)

1) Pour un élément $z = a + bi\sqrt{3} \in \mathbb{Z}[i\sqrt{3}]$ on définit sa norme

$$N(z) = z\overline{z} = |z|^2 = a^2 + 3b^2$$
.

- a) Montrer que pour tous $z, z' \in \mathbb{Z}[i\sqrt{3}]$ on a N(zz') = N(z)N(z').
- b) Montrer qu'un $z \in \mathbb{Z}[i\sqrt{3}]$ est inversible si et seulement si N(z) = 1. Décrire le groupe $\mathbb{Z}[i\sqrt{3}]^{\times}$.
- 2) Dresser les listes des éléments de norme 2 et de norme 4 dans $\mathbb{Z}[i\sqrt{3}]$.
- 3) Montrer que tous les éléments de norme 4 sont irréductibles dans $\mathbb{Z}[i\sqrt{3}]$.
- 4) En déduire que $\mathbb{Z}[i\sqrt{3}]$ n'est pas un anneau factoriel. (Indication : multiplier entre eux les éléments de norme 4.)
- 5) (Question bonus) On a vu en TD que $\mathbb{Z}[i]$ est un anneau euclidien (et donc principal, donc factoriel). Si l'on essaye de copier la preuve de ce fait dans le cas de $\mathbb{Z}[i\sqrt{3}]$, qu'est-ce qui ne fonctionne pas?