SMART HOME AUTOMATION

Pet feeder automation system

By-Vaneesha sinha

PET FEEDER **AUTOM**TION SYSTEM

SMART HOME AUTOMATION PROJECT

To create a system that automatically dispenses pet food at scheduled times or when triggered manually or via a mobile app.

The objective of the **Pet Feeder Automation System** is to:

Automate the Feeding Process

Dispense pet food automatically at scheduled times without manual effort.

Ensure Proper Portion Control

Deliver the right amount of food to avoid overfeeding or underfeeding.

Improve Convenience for Pet Owners

• Help busy or traveling owners manage pet feeding remotely or hands-free.

Enhance Pet Health and Routine

Maintain consistent feeding times to support a healthy lifestyle for pets.

CIRCUIT OVERVIEW

- Servo connected to pin D9 of Arduino
- Optional push button connected to digital pin with pull-up
- System runs on external adapter or 9V battery
- Can use ESP32 for IoT features (mobile control)

COMPONENTS USED

- Arduino Uno or ESP32
- Servo Motor (SG90 or MG995)
- Push Button
- LCD Display (optional)
- Buzzer or LED (optional)
- Power Supply
- Jumper Wires, Breadboard

CIRCUIT

(Before simulation)

(After simulation)


```
#include <Servo.h>
Servo feederServo:
const int buttonPin = 2;
const int ledPin = 7;
int buttonState = 0;
void setup() {
 feederServo.attach(9); // Attach servo to pin 9
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);
 feederServo.write(0); // Start at 0 degrees
void loop() {
 buttonState = digitalRead(buttonPin);
if (buttonState == HIGH) {
  digitalWrite(ledPin, HIGH); // Turn ON LED
  feederServo.write(90); // Rotate to 90° (drop food)
  delay(1000); // Wait for servo to rotate
  feederServo.write(0); // Return to start position
  digitalWrite(ledPin, LOW); // Turn OFF LED
  delay(3000); // Delay to avoid multiple triggers
```

WORKING PRINCIPLE

The pet feeder smart automation system works by using a microcontroller such as an Arduino or NodeMCU to control the feeding mechanism based on programmed time intervals.

- When the predefined interval passes—such as every 6 or 8 hours
- —the microcontroller activates a motor (usually a servo or stepper) which rotates a container or gate to dispense a fixed amount of pet food.
- Once the food is dispensed, the motor resets to its original position, and the timer is restarted
- . The system may also include a manual feed button that allows the user to trigger food dispensing on demand.
- While this method is effective for simple automation, it lacks real-time accuracy and resets every time
- the power is turned of making it more suitable for short-term or demonstration purposes.

SCHEMATIC DIAGRAM

ADVANTAGES

Convenience

Eliminates the need for manual feeding, saving time and effort.

Remote Access (in IoT-enabled versions)

Allows users to monitor and control feeding schedules using a smartphone or web interface.

Timely Feeding

Automatically feeds pets at regular intervals, even when the owner is busy or not at home

Consistent Routine for Pets

Maintains a steady feeding schedule, which helps improve pets' digestion and overall health.

Portion Control

Dispenses a fixed amount of food, preventing overfeeding or underfeeding.

APPLICATIONS AND FUTURE SCOPE

- Ideal for homes with pets (dogs, cats, birds)
- Can include camera to monitor pet
- Add mobile notifications or voice alerts
- Include food level sensing for refilling reminders

CONCLUSION

- The smart pet feeder is a simple yet effective solution for pet care.
- It brings convenience, reliability, and better health management for pets.
- A practical example of home automation improving daily life.

THANKOU