VE215 2022Fall Assignment 8

Due Date: 23:59, Dec.11 ,2022

Exercise 8.1 (30%)

For the circuit shown below, find the transfer function

(a) (15%) $I_0(\omega)/I_s(\omega)$, and its zeros and poles.

(b) (15%) $V_s(\omega)/I_s(\omega)$, and its zeros and poles.

VE215 2022Fall Assignment 8

Exercise 8.2 (30%)

Find $H(s) = \dot{V_0}(s)/\dot{V_i}(s)$, where $s = j\omega$ in both circuits. Assume that $R_1 = R_2 = R_3 = 100\Omega$, L = 1H and C = 1mF for (a) and (b),

Exercise 8.3 (40%)

Obtain the Bode plots $(H - \omega \text{ and } \psi - \omega \text{ relationship})$ for

$$(a)H(j\omega) = \frac{0.1(20 + j\omega)}{j\omega(5 + j\omega)}$$

$$(b)H(j\omega) = \frac{100(1+j\omega)}{j\omega(-\omega^2 + 10j\omega + 25)}$$

(a)

(b)

