```
title: "R Data Types and Data Structures"
output: html_notebook
**Everything in R is an object**
```{r}
Create an R object
my_obj = 48
Basic data types in R:
1.
 Character
 Numeric (real or decimal)
3.
 Integer
4.
 Logical
5. Complex
```{r}
# Create objects of simple data types
my_char = 'a'
print(my_char)
my_int = 10L
print(my_int)
my_numeric = 10.09
print(my_numeric)
my_logic = TRUE
print(my_logic)
**Data structures in R**:
   Atomic vector
1.
   List
2.
   Matrix
3.
4.
   Data frame
   Factor
We will look at atomic vectors, also referred simply to as vectors, first. A vector is
a collection of objects of the same data type.
```{r}
Create a vector
 my_{vec1} = c(1L, 2L, 3L)
 my_{vec2} = 1:3
 my_vec3 = seq(from = 1, to = 3, by = 1)
 print(my_vec1)
 print(my_vec2)
 print(my_vec3)
Functions on objects
 length(my_vec1)
 class(my_vec1)
 class(my_vec2)
 class(my_vec3)
 typeof(my_vec3)
 str(my_vec3)
Access elements of a vector
 my_vec1[1]
Modify element of a vector
 my_vec1[1] = 10L
```

```
print(my_vec1)
Missing data
 my_{vec4} = c(1, 2, NA, 4)
 print(my_vec4)
 is.na(my_vec4)
 anyNA(my_vec4)
Special values
1/0
0/0
A list is a special type of a vector which can contain objects of possibly different
data types.
```{r}
# Create an empty list
my_list1 = list(5)
print(my_list1)
class(my_list1)
# Create a list with values
my_list2 = list(1, 'Name', c('a', 'b', 'c'))
print(my_list2)
class(my_list2)
# Assign names to slots of list
names(my_list2) = c('first', 'second', 'third')
str(my_list2)
# Coerce a vector into a list
Accessing and modifying elements of a list
```{r}
Access elements of a list
my_list2[1]
my_list2[2]
my_list2[3]
my_list2$first
my_list2$second
my_list2$third
Modify elements of a list
my_list2[1] = 10
print(my_list2)
A matrix is an atomic vector with one or two dimesions.
```{r}
# Create a matrix
my_matrix1 = matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2)
print(my_matrix1)
my_matrix2 = matrix(c(1,2,3,4,5,6), nrow = 2, ncol = 3, byrow = TRUE)
print(my_matrix2)
# Assign row and column names
rownames(my_matrix2) = c('row1', 'row2')
colnames(my_matrix2) = c('col1', 'col2', 'col3')
str(my_matrix2)
# Access elements of a matrix
my_matrix2[1, 2]
```

` ` `

```
A data frame is a list of lists with each sublist of same length; think of it as a
rectangular list. A data frame is typically used to store data that are read from
text/CSV files by retaining the underlying structure such as row names, column names
etc. A data frame can also be created manually.
# Create a dataframe manually
ID = c('A', 'B', 'C')
Age = c(21, 22, 20)
Height = c(150, 160, 170)
sData = data.frame(ID, Age, Height)
print(sData)
# Assign names to the rows and columns of the data frame
rownames(sData) = c('Ajith', 'John', 'Bob')
colnames(sData) = c('ID', 'Age', 'Height')
print(sData) # Prints the DataFrame sData
In-built functions on data frame
```{r}
Structure of the data frame
str(sData)
Print 1st five rows
head(sData, 2)
Print last five rows
tail(sData, 2)
Get the dimension of the data frame
dim(sData)
Number of rows in the data frame
nrow(sData)
Number of columns in the data frame
ncol(sData)
Accessing elements of a data frame
```{r}
# Access a particular column
sData$Age
sData[['Age']]
sData['Age']
# Access a particular row
sData['John', ]
# Access multiple columns
sData[c('ID', 'Age')]
A factor is a vector that can contain only predefined values, and is used to store
categorical data.
```{r}
Create a factor for storing a list of genders
gender = factor(c('Male', 'Male', 'Female', 'Female'))
print(gender)
In-built functions on factors
```

```
levels(gender)

Modify a gender
gender[1] = 'Female'
print(gender)
```