Search for Higgs boson in 4-muon final state

Federico Nardi
Presentation for
Data Analysis in High Energy
Physics

4-LEPTON INVARIANT MASS DISTRIBUTION

Hypothesis testing

- REJECTING hypothesis
- choose test statistic
- hypotheses H_i (i = 1, 2, ...)
- lacksquare p-values $p_i := \int_{t_{obs}}^{+\infty} g(t|H_i) dt$
- significance $Z(p) = \Phi^{-1}(1-p)$
- $H_0, H_1 \rightarrow$ background: 5σ , signal: $CL_{s+b} \rightarrow CL_s < 0.05$

- testing b-only hypothesis
- $t \rightarrow n$: counts in a mass window \Rightarrow Poisson
- How large?
- significance: Expected vs Observed

OPTIMAL MASS WINDOW

	width [GeV]	Z
expected	7.15	2.04
observed	2.85	3.91

Table: Optimal mass window and significance for expected and observed significance

increasing luminosity

Parameter estimation - MLE

- event distribution: $f_{s+b} = \alpha f_{SM} + \mu f_{Higgs}$
- $\blacksquare \mathscr{L}(\boldsymbol{\theta}) := \prod_{i=1}^{N_{tot}} f(n_i | \boldsymbol{\theta}) \rightarrow \text{ideal } \hat{\boldsymbol{\theta}}$
- Can also get (approx, gaussian) 1σ limits

The fitted background scale factor turns out to be

$$\alpha_{bgr} = 1.10^{+0.07}_{-0.06}$$

This leads to a scaling in the number of background events in the optimal 7.15GeV window around the signal peak:

$$N_{bgr} = 4.64$$
 \rightarrow $N_{bgr} = 5.12^{+0.32}_{-0.29}$.

In the same interval we expect $N_{sig} = 5.41$ signal events, and the observed events are $N_{obs} = 13$

■ Calculate again significance. 10⁶ MC cycles

Parameter estimation - signal and background scalefactors

$$\mu_s = 1.28^{+0.65}_{-0.53}$$
 $\alpha_{bgr} = 1.10^{+0.07}_{-0.06}$

Profile likelihood test statistic

■ Neyman-Pearson lemma. Simple hypotheses

■ 10⁶ toy datasets for H₀, H₁

Profile likelihood test statistic

TEST STATISTIC DISTRIBUTION

Profile likelihood. Discovery

	Λ_{obs}	CL_sb	$ ho_0$	Ζ [σ]
b-only	4.78	0.516	0.484	0.03
s+b	-5.69	0.993	0.007	2.46
data	-11.53	0.99988	1.2×10^{-4}	3.67

Table: b-only hypothesis. p-values and confidence levels for average b-only, average s+b experiments and measured value of Λ .

Federico Nardi Search for Higgs 15 / 21

Profile likelihood. Exclusion

	CL_b	p_1	CL_s
b-only	0.021	0.979	0.040
s+b	0.505	0.495	0.508
data	0.848	0.152	0.848

Table: s+b hypothesis. p-values and confidence levels for average b-only, average s+b experiments and measured value of Λ .

Federico Nardi Search for Higgs 16 / 21

- $\sqrt{n_{obs}} \rightarrow \text{not true mean}$
- $ightharpoonup \sum_{n=n_{obs}}^{+\infty} P(n|\mu_{low}) = 16\%$
- $\sum_{n=0}^{n_{obs}} P(n|\mu_{up}) = 16\%$

Use Bayes' theorem

$$P(\mu|n_o)d\mu = \frac{\mathscr{L}(n_o|\mu)\pi(\mu)d\mu}{\int_{D(\mu')}\mathscr{L}(n_o|\mu')\pi(\mu')d\mu'}.$$

If we then use a uniform prior in our domain $D(\mu)$

$$\pi(\mu) = \mathsf{const} \qquad \forall \mu \in D(\mu)$$

all the extra calculations are reduced to an overall normalization constant and we can write

$$P(\mu|n_o) \propto \mathcal{L}(n_o|\mu)$$
 (1)

Thank you!