Vecteurs

I Translations - Vecteurs associés

Activité **Télécabine**

Dessiner ci-dessus la télécabine lorsqu'elle sera arrivée au terminus B. On appelle ce déplacement une de A vers B.

Correction

Déplacer une figure par **translation**, c'est faire glisser cette figure sans la faire tourner. Pour décrire ce déplacement, on utilise une flèche (sur la figure en rouge) donnant la **direction**, le **sens** et la **longueur** de ce parcours. Cette flèche est un nouvel outil mathématique appelé **vecteur**.

Définition Translation -

Soit A et B deux points du plan.

On appelle translation qui transforme A en B la transformation qui, à tout point C du plan, associe l'unique point D tel que ABDC est un parallélogramme (éventuellement aplati).

Vocabulaire

- Le point M' est appelé **image** du point M.
- On dit également que M est le **translaté** de M'.

Remarque

Une transformation sert à modéliser mathématiquement un mouvement.

- La **symétrie centrale** est la transformation qui modélise le demi-tour.
- La **translation** est la transformation qui modélise le glissement rectiligne. Pour la définir, on indique la direction, le sens et la longueur du mouvement.

Proposition Diagonales du parallélogramme

On considère quatre points A, B, C et D.

La translation, qui transforme A en B, transforme C en D, si et seulement si [AD] et [BC] ont même milieu.

Démonstration

C'est la conséquence de la propriété : un quadrilatère est un parallélogramme si et seulement si ses diagonales se coupent en leur milieu ».

Définition Vecteurs associés

A chaque translation est associé un vecteur.

Pour A et B deux points, le vecteur \overline{AB} est associé à la translation qui transforme A en B. Le vecteur \overline{AB} est défini par :

- 1. la direction (celle de la droite (AB)),
- 2. le sens (de A vers B)
- 3. la longueur AB.

A est l'origine du vecteur et B son extrémité.

Définition Égalité entre vecteurs

Deux vecteurs qui définissent la même translation sont dits **égaux**.

Deux vecteurs égaux ont :

- 1. même direction;
- 2. même sens;
- 3. même longueur.

Propriété **Parallélogramme**

 $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme (éventuellement aplati).

Méthode Construire un vecteur

Soit A, B et C trois points non alignés.

Pour placer le point D tel que $\overrightarrow{CD} = \overrightarrow{AB}$, on construit le parallélogramme ABDC.

Remarque

Une translation peut être définie par un point quelconque et son translaté.

Il existe donc une **infinité** de vecteurs associés à une translation. Ils sont tous égaux.

Le vecteur choisi pour définir la translation est un **représentant** de tous ces vecteurs.

La translation ne dépend pas du représentant choisi pour la définir. On le note souvent \vec{u} .

Définition Vecteur nul -

Le vecteur associé à la translation qui transforme un point quelconque en lui-même est le vecteur nul, noté $\vec{0}$.

Ainsi, $\overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{CC} = \dots = \overrightarrow{0}$

Définition Vecteur opposé —

Le vecteur \overrightarrow{BA} de la translation qui transforme B en A est appelé vecteur opposé à \overrightarrow{AB} .

Remarque

- Le vecteur opposé à \overrightarrow{AB} se note $-\overrightarrow{AB}$ et on a l'égalité $\overrightarrow{BA} = -\overrightarrow{AB}$.
- La notation \overleftarrow{AB} n'existe pas.

Remarque

Deux vecteurs **opposés** ont même direction, même longueur mais sont de sens contraires.

II Opérations sur les vecteurs

A Additions

Propriété Enchaînement de translations .

L'enchaînement de deux translations est également une translation.

Définition-Proposition Relation de Chasles

Soit A, B, C trois points.

L'enchaînement de la translation de vecteur \overrightarrow{AB} puis de la translation de vecteur \overrightarrow{BC} est la translation de vecteur \overrightarrow{AC} et on a :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.

Le vecteur \overrightarrow{AC} est le vecteur somme.

Proposition Diagonale du parallélogramme -

Soit A, B, C, D quatre points.

 $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$ si et seulement si ABDC est un parallélogramme.

Démonstration

On a:

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$\Leftrightarrow \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{AC}$$
 d'après la relation de Chasles
$$\Leftrightarrow \overrightarrow{CD} = \overrightarrow{AB}$$

 $\Leftrightarrow ABDC$ est un parallélogramme

Méthode Construire la somme de deux vecteurs

On remplace l'un des deux vecteurs par un représentant :

- soit de même origine afin d'utiliser la règle du parallélogramme;
- soit d'origine l'extrémité de l'autre afin d'utiliser la relation de Chasles.

Remarque

 $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{0}$ si et seulement si A est le milieu du segment [BC].

B Soustraction

Définition Soustraction ———

Soustraire un vecteur, c'est additionner son opposé.

Exemple

Soit trois points A, B et C non alignés.

Donner un représentant du vecteur $\vec{u} = \overrightarrow{AB} - \overrightarrow{AC}$.

On a:

 $\vec{u} = \overrightarrow{AB} - \overrightarrow{AC}$

 $\vec{u} = \overrightarrow{AB} + \overrightarrow{CA}$

 $\vec{u} = \overrightarrow{CA} + \overrightarrow{AB}$

 $\vec{u} = \overrightarrow{CB}$ en utilisant la relation de Chasles.

III Coordonnées d'un vecteur

Définition Coordonnées d'un vecteur

Dans un repère (O; I, J), on considère la translation de vecteur \vec{u} qui translate l'origine O en un point M de coordonnées (a; b).

Les coordonnées du vecteur \vec{u} sont les coordonnées du point M tel que $\vec{u} = \overrightarrow{OM}$.

On note $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$.

Proposition Égalité des coordonnées

Deux vecteurs sont égaux si et seulement si ces vecteurs ont les mêmes coordonnées.

Proposition Coordonnées de \overrightarrow{AB}

Dans un repère (O; I, J), les coordonnées du vecteur \overrightarrow{AB} sont $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Démonstration

Soit A, B et M de coordonnées respectives $(x_A; y_A)$, $(x_B; y_B)$ et $(x_M; y_M)$ dans un repère (O; I, J) tels que $\overrightarrow{OM} = \overrightarrow{AB}$ et OMBA est un parallélogramme.

Donc
$$[AM]$$
 et $[OB]$ ont même milieu.
$$\begin{cases} \frac{x_A + x_M}{2} = \frac{x_B + x_O}{2} \\ \frac{y_A + y_M}{2} = \frac{y_B + y_O}{2} \end{cases}$$
 soit
$$\begin{cases} x_A + x_M = x_B \\ y_A + y_M = y_B \end{cases}$$
 soit
$$\begin{cases} x_A + x_M = x_B \\ y_A + y_M = y_B \end{cases}$$

Méthode Lire les coordonnées d'un vecteur

Lire les coordonnées du vecteur \vec{u} sur la figure ci-dessous.

Les coordonnées de \vec{u} sont $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ car

Méthode Construire un vecteur à partir de ses coordonnées -

Dans un repère orthonormé, construire le représentant d'origine A(6;2) du vecteur \vec{u} de coordonnées $\begin{pmatrix} -4 \\ 2 \end{pmatrix}$.

On a:

Méthode Repérer un point défini par une égalité vectorielle -

Dans un repère orthogonal (O; I, J), on a les points A(-2; 3), B(4; -1) et C(5; 3). Calculer les coordonnées

- 1. du vecteur \overrightarrow{AB} ;
- 2. du point D tel que $\overrightarrow{AB} = \overrightarrow{CD}$.

On a

- 1. Les coordonnées du vecteur \overrightarrow{AB} sont $\begin{pmatrix} x_B x_A \\ y_B y_A \end{pmatrix}$ soit $\begin{pmatrix} 4 (-2) \\ -1 3 \end{pmatrix}$. Donc \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$.
- 2. On cherche $(x_D; y_D)$, les coordonnées du point D tel que $\overrightarrow{AB} = \overrightarrow{CD}$. Or, si deux vecteurs sont égaux alors ils ont mêmes coordonnées. Donc le couple $(x_D; y_D)$ est la solution du système :

$$\begin{cases} x_D - x_C = x_B - x_A \\ y_D - y_C = y_B - y_A \end{cases}$$

soit
$$\begin{cases} x_D - 5 = 6 \\ y_D - 3 = -4 \end{cases}$$
 soit $\begin{cases} x_D = 6 + 5 = 11 \\ y_D = -4 + 3 = -1 \end{cases}$ Les coordonnées du point D sont $(11; -1)$.

Proposition Somme de deux vecteurs

Si \vec{u} et \vec{v} sont deux vecteurs de coordonnées respectives $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \end{pmatrix}$, alors les coordonnées du **vecteur** somme, $\vec{u} + \vec{v}$, sont $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Méthode Repérer un point défini par une somme vectorielle -

Dans un repère orthogonal (O; I, J), on place les points A(2; 3), B(4; -1), C(5; 3) et D(-2; -1). Quelles sont les coordonnées du point E tel que $\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{CB}$?

On cherche les coordonnées $(x_E; y_E)$ du point E tel que $\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{CB}$.

Donc le couple
$$(x_E; y_E)$$
 est solution du système :
$$\begin{cases} x_E - x_A = (x_D - x_A) + (x_B - x_C) \\ y_E - y_A = (y_D - y_A) + (y_B - y_C) \end{cases}$$
 soit
$$\begin{cases} x_E - 2 = (-2 - 2) + (4 - 5) \\ y_E - 3 = (-1 - 3) + (-1 - 3) \end{cases}$$
 soit
$$\begin{cases} x_E - 2 = -5 \\ y_E - 3 = -8 \end{cases}$$
 soit
$$\begin{cases} x_E - 2 = -5 \\ y_E - 3 = -8 + 3 = -5 \end{cases}$$
 Les coordonnées du point E sont $(-3; -5)$.

IV Multiplication par un réel

Définition Multiplication par un réel -

Soit \vec{u} un vecteur de coordonnées (x; y) et λ un réel.

La multiplication de \vec{u} par λ est le vecteur $\lambda \vec{u}$ de coordonnées $(\lambda x; \lambda y)$.

8

Méthode Repérer le produit d'un vecteur par un réel

Dans un repère orthogonal, construire le représentant d'origine A(1;4) du vecteur $-0,5\vec{u}$ avec $\vec{u} \begin{pmatrix} 2\\-3 \end{pmatrix}$.

On a:

 \vec{u} a pour coordonnées $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$. Donc $-0,5\vec{u}$ a pour coordonnées $\begin{pmatrix} -0,5\times 2 \\ -0,5\times (-3) \end{pmatrix}$ soit $\begin{pmatrix} -1 \\ 1,5 \end{pmatrix}$.

Proposition Sens en fonction du signe de λ

Soient deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} et λ un réel tels que $\overrightarrow{AB} = \lambda \overrightarrow{CD}$.

- si $\lambda > 0$, \overrightarrow{AB} et \overrightarrow{CD} sont de même sens.
- si $\lambda < 0$, \overrightarrow{AB} et \overrightarrow{CD} sont de sens contraires.

Remarque

 \vec{u} et $\lambda \vec{u}$ ont la même direction. Leurs sens et leurs longueurs dépendent de λ .

V Colinéarité

Définition Colinéaire

On dit que deux vecteurs non nuls sont colinéaires si leurs coordonnées dans un même repère sont proportionnelles.

Remarque

Par convention, le vecteur nul est colinéaire à tout vecteur \vec{u} . En effet, $\vec{0}=0.\vec{u}$.

Proposition

Deux vecteurs \vec{u} et \vec{v} non nuls sont colinéaires lorsqu'il existe un réel λ tel que $\vec{v} = \lambda \vec{u}$.

V Colinéarité 9

Méthode Vérifier la colinéarité de deux vecteurs

Pour vérifier que deux vecteurs non nuls $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont colinéaires, il suffit de :

- 1. trouver un réel λ non nul tel que $x' = \lambda x$ et $y' = \lambda y$;
- 2. vérifier que les produits en croix, xy' et x'y, sont égaux.

Soit (O; I, J) un repère orthogonal. Les vecteurs suivants sont-ils colinéaires?

1.
$$\vec{u} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -6 \\ -18 \end{pmatrix}$.

2.
$$\vec{w} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$
 et $\vec{z} \begin{pmatrix} 12 \\ -7 \end{pmatrix}$.

On a:

- 1. $-6 = -3 \times 2$ et $-18 = -3 \times 6$ donc $\vec{v} = -3\vec{u}$. \vec{u} et \vec{v} sont donc colinéaires.
- 2. $-5 \times (-7) = 35$ et $3 \times 12 = 36$. Les produits en croix ne sont pas égaux. Donc \vec{w} et \vec{z} ne sont pas colinéaires.

Proposition Caractérisation vectorielle des droites parallèles

- Deux droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires;
- Trois points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Exemple

Les points A(1,2), B(3,1) et C(5,3) sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} puis les produits en croix :

$$(x_B - x_A)(y_C - y_A) = (3-1)(3-2) = 2 \times 1 = 2.$$

et ainsi:

$$(y_B - y_A)(x_C - x_A) = (1 - 2)(5 - 1) = -1 \times 4 = -4.$$

Les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas proportionnelles. Donc A, B, C ne sont pas alignés.