Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

ARQUITECTURA DEL COMPUTADOR

Representación computacional de datos

Alumno:

Demagistris, Santiago Ignacio

1 Ejercicio 9

Utilizando el sistema de numeración binario en complemento a dos para los números enteros y la norma IEEE 754 para los números con parte fraccionaria. Comparando con los resultados anteriores, ¿Qué conclusiones se pueden sacar?:

- 1. 29
- 2. 0.625
- 3. 0.1
- 4. 5.75
- 5. -138
- 6. -5.125

Analizar en cada caso cuántos dígitos son necesarios para poder representar cada uno de los números.

1) $[(29)_{10}]$ Como es un número entero tenemos que representar $(29)_{10}$ en complemento a 2.

$$C_2^{29} = (29)_{10} \rightarrow binario$$

$$b_0$$
: $29/2 = 14$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $14/2 = 7$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $29/2 = 3$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_3 = 1$

$$b_4$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_4 = 1$

Por lo tanto $(29)_{10} \simeq (011\ 101)_2 \Rightarrow C_2^{29} = (011\ 101)_2$. Al estar trabajando con una representación en complemento a 2 necesitamos almenos 6 bits, ya que el bit más significativo terminaría otorgando el signo (por lo demostrado en la entrega anterior sobre los rangos y propiedades de la representación en complemento a 2).

2) $(0.625)_{10}$ Como es un número con parte fraccionaria tenemos que representar $(0.625)_{10}$ en la norma IEEE 754.

- Convertir la parte entera a binario: $(0)_{10} \simeq (0)_2$
- Convertir la parte fraccional a binario:

$$b_{-1}$$
: $0.625 \cdot 2 = 1.25 \Rightarrow b_{-1} = 1$

$$b_{-2}$$
: $0.25 \cdot 2 = 0.5 \Rightarrow b_{-2} = 0$

$$b_{-3}$$
: $0.5 \cdot 2 = 1.0 \Rightarrow b_{-3} = 1$

Por lo tanto $(0.6250)_{10} \simeq (.101)_2$.

• Normalizar número obtenido (tenemos que dejar el 1 en b_{-1} de forma implícita para obtener así el significante 1.f)

• Corregir el exponente sumando el sesgo correspondiente (sesgo=127):

$$-1 = e = E - 127 \Rightarrow E = 127 + e = 127 - 1 = 126$$

Por lo tanto E=126

• Convertir el exponente a binario:

Sabemos que
$$log_2(128) = 7 \Rightarrow (128)_{10} = (2^7)_{10} = (10000000)_2$$
.

Sabemos que
$$(126)_{10} = (128)_{10} - (2)_{10} = (128)_{10} - (1)_{10} - (1)_{10} \simeq (10000000)_2 - (00000001)_2 - (00000001)_2 = (011111111)_2 - (00000001)_2 = (011111110)_2$$

Por lo tanto $(126)_{10} \simeq (011111110)_2$

- El número es positivo por lo tanto el bit de signo s = (0)
- Finalmente el número 0.625 representado en formato IEEE 754 simple presición es:

3) $(0.1)_{10}$ Como es un número con parte fraccionaria tenemos que representar $(0.1)_{10}$ en la norma IEEE 754.

- Convertir la parte entera a binario: $(0)_{10} \simeq (0)_2$
- Convertir la parte fraccional a binario:

 b_{-1} : $0.1 \cdot 2 = 0.2 \Rightarrow b_{-1} = 0$

 b_{-2} : $0.2 \cdot 2 = 0.4 \Rightarrow b_{-2} = 0$

 b_{-3} : $0.4 \cdot 2 = 0.8 \Rightarrow b_{-3} = 0$

 b_{-4} : $0.8 \cdot 2 = 1.6 \Rightarrow b_{-4} = 1$

 b_{-5} : $0.6 \cdot 2 = 1.2 \Rightarrow b_{-5} = 1$

 b_{-6} : $0.2 \cdot 2 = 0.4 \Rightarrow b_{-6} = 0$

Observamos una periodicidad en la búsqueda de la representación fraccionaria

por lo tanto $(0.1)_{10} \simeq (0.00011001100110011001100)_2$

• Normalizar número obtenido (tenemos que buscar el significante 1.f)

 $(0.00011001100110011001100)_2 = (0.00011001100110011001100)_2 \times 2^0 =$

= $(1.100110011001100110011000000)_2 \times 2^{(-4)} \Rightarrow f = 10011001100110011000000$, donde f es la mantisa.

Por lo tanto el significante resulta: (1.10011001100110011000000)₂

• Corregir el exponente sumando el sesgo correspondiente (sesgo=127):

$$-4 = e = E - 127 \Rightarrow E = 127 + e = 127 - 4 = 123$$

Por lo tanto E=123

• Convertir el exponente a binario:

$$123/2 = 61$$
, resto = $1 \Rightarrow b_0 = 1$

$$61/2 = 30$$
, resto = $1 \Rightarrow b_1 = 1$

$$30/2 = 15$$
, resto = $0 \Rightarrow b_2 = 0$

$$15/2 = 7$$
, resto = $1 \Rightarrow b_3 = 1$

$$7/2 = 3$$
, resto $= 1 \Rightarrow b_4 = 1$

$$3/2 = 1$$
, resto $= 1 \Rightarrow b_5 = 1$

$$1/2 = 0$$
, resto = $1 \Rightarrow b_6 = 1$

$$0/2 = 0$$
, resto $= 0 \Rightarrow b_7 = 0$

Por lo tanto $E = (123)_{10} \simeq (01111011)_2$

- $\bullet\,$ El número es positivo por lo tanto el bit de signo s=(0)
- \bullet Finalmente el número 0.1 representado en formato IEEE 754 simple presición es:

 $(0\ 01111011\ 100110011001100110011000000)_2$

- 4) $(5.75)_{10}$ Como es un número con parte fraccionaria tenemos que representar $(5.75)_{10}$ en la norma IEEE 754.
 - Convertir la parte entera a binario:

$$b_0$$
: $5/2 = 2$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_1 = 0$

$$b_2$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_2 = 1$

Por lo tanto $(5)_{10} \simeq (101)_2$

• Convertir la parte fraccional a binario:

$$b_{-1}$$
: $0.75 \cdot 2 = 1.5 \Rightarrow b_{-1} = 1$

$$b_{-2}$$
: $0.5 \cdot 2 = 1.0 \Rightarrow b_{-2} = 1$

Por lo tanto $(0.75)_{10} \simeq (0.1100\ 0000\ 0000\ 0000\ 0000\ 000)_2$

y $(5.75)_{10} \simeq (101.1100\ 0000\ 0000\ 0000\ 0000\ 000)_2$

• Normalizar número obtenido (tenemos que buscar el significante 1.f)

 $(101.1100\ 0000\ 0000\ 0000\ 0000\ 000)_2 = (101.1100\ 0000\ 0000\ 0000\ 0000\ 000)_2 \times 2^0 = (101.1100\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000)_2 \times 2^0 = (101.1100\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000)_2 \times 2^0 = (101.1100\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

= $(1.0111\ 0000\ 0000\ 0000\ 0000\ 000)_2 \times 2^{(2)} \Rightarrow f = 0111\ 0000\ 0000\ 0000\ 0000\ 000,$ donde f es la mantisa.

Por lo tanto el significante resulta: (1.0111 0000 0000 0000 0000 000)₂

• Corregir el exponente sumando el sesgo correspondiente (sesgo=127):

$$2 = e = E - 127 \Rightarrow E = 127 + e = 127 + 2 = 129$$

Por lo tanto E=129

• Convertir el exponente a binario:

Sabemos que
$$log_2(128) = 7 \Rightarrow (128)_{10} = (2^7)_{10} = (10000000)_2$$
.

Tambien sabemos que $(129)_{10} = (128)_{10} + (1)_{10} \simeq (10000000)_2 + (1)_2 = (1000\ 0001)_2$

Por lo tanto $E = (129)_{10} \simeq (1000\ 0001)_2$

- El número es positivo por lo tanto el bit de signo s = (0)
- Finalmente el número 0.1 representado en formato IEEE 754 simple presición es:

 $(0\ 1000\ 0001\ 0111\ 0000\ 0000\ 0000\ 0000\ 000)_2$

5) $(-138)_{10}$ Como es un número entero tenemos que representar $(-138)_{10}$ en complemento a 2.

• Método alternativo

$$b_0$$
: $138/2 = 69$ $resto = 0 \Rightarrow b_0 = 0$

$$b_1$$
: $69/2 = 34$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $34/2 = 17$ $resto = 0 \Rightarrow b_2 = 0$

$$b_3$$
: $17/2 = 8$ $resto = 1 \Rightarrow b_3 = 1$

$$b_4$$
: $8/2 = 4$ $resto = 0 \Rightarrow b_4 = 0$

$$b_5$$
: $4/2 = 2$ $resto = 0 \Rightarrow b_5 = 0$

$$b_6$$
: $2/2 = 1$ $resto = 0 \Rightarrow b_6 = 0$

$$b_7$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_7 = 1$

$$b_8$$
: $0/2 = 0$ $resto = 0 \Rightarrow b_8 = 0$

Por lo tanto
$$(138)_{10} \simeq (0\ 10001010)_2 \Rightarrow C_2^{-138} = (1\ 0111\ 0110)_2$$

|N| tiene representación $C_2^{|N|}$ sí y solo sí $C_2^{-|N|}$ también la tiene, con la única excepción del mínimo número. Sabemos que $log_2(138) \simeq 7.11$ por lo tanto necesitaremos almenos 9 bits para poder representar $(138)_{10}$ en complemento a 2, ya que con 9 bits podemos representar como máximo entero positivo a $2^8-1=255$ y por lo tanto el mínimo número representable con 9 bits es -256

6) $(-15.125)_{10}$ Como es un número con parte fraccionaria tenemos que representar $(-15.125)_{10}$ en la norma IEEE 754.

• Convertir la parte entera a binario:

$$b_0$$
: $15/2 = 7$ $resto = 1 \Rightarrow b_0 = 1$

$$b_1$$
: $7/2 = 3$ $resto = 1 \Rightarrow b_1 = 1$

$$b_2$$
: $3/2 = 1$ $resto = 1 \Rightarrow b_2 = 1$

$$b_3$$
: $1/2 = 0$ $resto = 1 \Rightarrow b_2 = 1$

Por lo tanto $(15)_{10} \simeq (1111)_2$

• Convertir la parte fraccional a binario:

$$b_{-1}$$
: $0.125 \cdot 2 = 0.25 \Rightarrow b_{-1} = 0$

$$b_{-2}$$
: $0.25 \cdot 2 = 0.5 \Rightarrow b_{-2} = 0$

$$b_{-3}$$
: $0.5 \cdot 2 = 1.0 \Rightarrow b_{-3} = 1$

Por lo tanto $(0.125)_{10} \simeq (0.001)_2$

$$y(15.125)_{10} \simeq (1111.001)_2$$

• Normalizar número obtenido (tenemos que buscar el significante 1.f)

$$(1111.001)_2 = (1111.001\ 0000\ 0000\ 0000\ 0000\ 0000)_2 \times 2^0 =$$

= $(1.1110\ 0100\ 0000\ 0000\ 0000\ 000)_2 \times 2^{(3)} \Rightarrow f = 1110\ 0100\ 0000\ 0000\ 0000\ 000,$ donde f es la mantisa.

Por lo tanto el significante resulta: (1.1110 0100 0000 0000 0000 000)₂

• Corregir el exponente sumando el sesgo correspondiente (sesgo=127):

$$3 = e = E - 127 \Rightarrow E = 127 + e = 127 + 3 = 130$$

Por lo tanto E=130

• Convertir el exponente a binario:

Sabemos que
$$log_2(128) = 7 \Rightarrow (128)_{10} = (2^7)_{10} = (10000000)_2$$
.

Tambien sabemos que $(130)_{10} = (128)_{10} + (1)_{10} + (1)_{10} \simeq (10000000)_2 + (1)_2 + (1)_2 = (1000\ 0010)_2 + (1)_2 = (1000\ 0010)_2$

Por lo tanto $E = (130)_{10} \simeq (1000\ 0010)_2$

- El número es negativo por lo tanto el bit de signo s = (1)
- Finalmente el número -15.125 representado en formato IEEE 754 simple presición es:

 $(1\ 1000\ 0010\ 1110\ 0100\ 0000\ 0000\ 0000\ 000)_2$

Analizando características

$\beta = 10$	C_2^N	IEEE 754 (simple presición)	Representación binaria estandar
$(29)_{10}$	$(011\ 101)_2$	-	$(011\ 101)_2$
$(0.625)_{10}$	-	$(0 \ 0111 \ 1110 \ 0100 \ 0000 \ 0000 \ 0000 \ 0000 \ 000)_2$	$(0.101)_2$
$(0.1)_{10}$	-	$(0 \ 0111 \ 1011 \ 1001 \ 1001 \ 1001 \ 1001 \ 1000 \ 000)_2$	$(0.000\ 110)_2$
$(5.75)_{10}$	-	$(0\ 1000\ 0001\ 0111\ 0000\ 0000\ 0000\ 0000\ 000)_2$	$(101. \ 110)_2$
$(-138)_{10}$	$(1\ 0111\ 0110)_2$	-	$(1\ 1000\ 1010)_2$
$(-15.125)_{10}$	-	$(1\ 1000\ 0010\ 1110\ 0100\ 0000\ 0000\ 0000\ 000)_2$	$(1\ 1111.001)_2$

${\bf Conclusiones:}$

- Los números enteros positivos que no tienen parte fraccionaria se representan igual en complemento a 2 que en binario estandar.
- Los números enteros utilizan como mínimo la misma cantidad de bits tanto en la representación complemento a 2 como en binario estandar
- Todos estos números podrían haber sido representado en forma IEEE 754

2 Ejercicio 12

Dados los siguientes números representados en punto flotante IEEE 754 simple precisión, indicar a qué número en formato decimal corresponden y analizar si son números normalizados:

Al estar trabajando con representación IEEE 754 simple precisión sabemos que:

- Sesgo = 127
- N. de bits = 32
- Bits para exp = 8
- Bits para mantisa = 23
- Bits para signo = 1
- a) $N_1 = (1\ 1000\ 0101\ 1101\ 1010\ 1000\ 0000\ 0000\ 000)_2$
- Separar el número en las diferentes partes

Signo =
$$(1)_2 \Rightarrow$$
 el número es negativo.

Exponente =
$$(1000 \ 0101)_2$$

 $Mantisa = (1101 \ 1010 \ 1000 \ 0000 \ 0000 \ 000)_2$

• Convertir el exponente a decimal

$$E = (1000\ 0101)_2 = 2^7 + 2^2 + 2^0 = 128 + 4 + 1 = (133)_{10}$$

• Restar al exponente el sesgo correspondiente (sesgo=127)

$$e = E - sesgo = E - 127 = 133 - 127 = 6$$

• Convertir la mantisa a decimal

$$(1101\ 1010\ 1000\ 0000\ 0000\ 000)_2 = 2^{-1} + 2^{-2} + 2^{-4} + 2^{-5} + 2^{-7} + 2^{-9} = (0.853515625)_{10}$$
 Por lo tanto $1.f = (1.853515625)_{10}$

• Finalmente el número convertido a decimal es:

$$N = (-1)^s (1.f)_{10} 2^e = (-1) (1.853515625)_{10} 2^6 = (-118.625)_{10}$$

• ¿El número es normalizado?

 $i_{c}e_{min} \leq e \leq e_{max}$?, es decir, $i_{c}-126 \leq 6 \leq 127$? Sí, por lo tanto es un número normalizado.

b) $N_2 = (40600000)_{16}$

En primera instancia hay que realizar el pasaje a binario:

Hexadecimal	4	0	6	0	0	0	0	0
Binario	0100	0000	0110	0000	0000	0000	0000	0000

Por lo tanto $(40600000)_{16} \simeq (0\ 1000\ 0000\ 1100\ 0000\ 0000\ 0000\ 0000\ 000)_2$

• Separar el número en las diferentes partes

Signo = $(0)_2 \Rightarrow$ el número es positivo.

Exponente = $(1000\ 0000)_2$

 $Mantisa = (1100\ 0000\ 0000\ 0000\ 0000\ 000)_2$

• Convertir el exponente a decimal

$$E = (1000\ 0000)_2 = 2^7 = (128)_{10}$$

• Restar al exponente el sesgo correspondiente (sesgo=127)

$$e = E - sesgo = E - 127 = 128 - 127 = 1$$

• Convertir la mantisa a decimal

 $(1100\ 0000\ 0000\ 0000\ 0000\ 000)_2 = 2^{-1} + 2^{-2} = (0.75)_{10}$

Por lo tanto $1.f = (1.75)_{10}$

• Finalmente el número convertido a decimal es:

$$N = (-1)^s (1.f)_{10} 2^e = (1) (1.75)_{10} 2^1 = (3.5)_{10}$$

• ¿El número es normalizado?

 $i_c e_{min} \le e \le e_{max}?$, es decir, $i_c - 126 \le 1 \le 127?$ Sí, por lo tanto es un número normalizado.

c) $N_3 = (0060\ 0000)_{16}$

En primera instancia hay que realizar el pasaje a binario:

Hexadecimal	0	0	6	0	0	0	0	0
Binario	0000	0000	0110	0000	0000	0000	0000	0000

Por lo tanto $(00600000)_{16} \simeq (0\ 0000\ 0000\ 1100\ 0000\ 0000\ 0000\ 0000\ 000)_2$

• Separar el número en las diferentes partes

Signo = $(0)_2 \Rightarrow$ el número es positivo.

Exponente = $(0000\ 0000)_2$

 $Mantisa = (1100\ 0000\ 0000\ 0000\ 0000\ 000)_2$

• Convertir el exponente a decimal

$$E = (0000\ 0000)_2 = 2^7 = (0)_{10}$$

• Restar al exponente el sesgo correspondiente (sesgo=127)

$$e = E - sesgo = E - 127 = 0 - 127 = -127.$$

Aquí observamos que estamos en un caso especial, como la mantisa es distinta a 0 nos encontramos frente a un número desnormalizado y por lo tanto e=-126

• Convertir la mantisa a decimal

$$(1100\ 0000\ 0000\ 0000\ 0000\ 000)_2 = 2^{-1} + 2^{-2} = (0.75)_{10}$$

Por lo tanto $0.f = (0.75)_{10}$ (ya que estamos frente a un número desnormalizado)

• Finalmente el número convertido a decimal es:

$$N = (-1)^s (0.f)_{10} 2^e = (1) (0.75)_{10} 2^{-126} = (8.816207631 \times 10^{-39})_{10}$$

• ¿El número es normalizado?

Ya observamos que el número no es normalizado