Introdução à Teoria de Probabilidades

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 01 de abril de 2022

Sumário 5

1 Continuidade da medida de probabilidade

Exemplos

- Da linha de produção de uma fábrica são retirados três artigos, e cada um é classificado como bom (B) ou defeituoso (D).
 - (a) Descreva o espaço amostral associado a este experimento.
 - (b) Qual a probabilidade de obter exatamente dois artigos defeituosos?
 - (c) Qual a probabilidade de obter pelo menos um defeituoso?
 - (d) Qual a probabilidade de que nenhum seja defeituoso?
 - (e) Qual a probabilidade de que no máximo 2 sejam defeituosos?

Exemplos

- Um dado equilibrado é lançado duas vezes. Descreva o espaço amostral associado a este experimento e determine a probabilidade dos seguintes eventos:
 - (a) a soma dos pontos é par;
 - (b) a soma dos pontos é ímpar;
 - (c) primeiro lançamento menor do que o segundo;
 - (d) primeiro lançamento menor do que o segundo e soma par.

Exemplos

• De um lote de 18 bovinos cinco são machos e com mais de dois anos de idade, quatro são machos e com menos de dois anos, seis são fêmeas com mais de dois anos e três são fêmeas com menos de dois anos de idade. Definem-se os seguintes eventos:

 $A = \{$ o bovino tem mais de dois anos $\},$

 $B = \{$ o bovino tem menos de dois anos $\}$, $C = \{$ o bovino é macho $\}$ e $D = \{$ o bovino é fêmea $\}$. Nestas condições, determine a probabilidade dos seguintes eventos:

- (a) $A^c \cap C^c$.
- (b) $B \cup D$.

Exemplos

- Peças que saem de uma linha de produção são marcadas defeituosa (D) ou não defeituosa (N). As peças são inspeciondas e sua condição registrada, até que duas peças defeituosas consecutivas sejam fabricadas ou que quatro peças tenham sido inspecionadas, aquilo que ocorra em primeiro lugar.
 - (a) Descreva o espaço amostral associado a este experimento.
 - (b) Qual a probabilidade de serem observadas exatamente duas peças defeituosas.
 - (c) Qual a probabilidade de serem observadas pelo menos duas peças defeituosas.
 - (d) Qual a probabilidade de serem observadas no máximo duas peças defeituosas.
 - (e) Qual a probabilidade de que nenhuma peça defeituosa seja observada.

Sumário 5

1 Continuidade da medida de probabilidade

Propriedades

- Dado $(\Omega, \mathcal{F}, \mathbb{P})$ um espeço de probabilidade então vale:
- Subaditividade: para quaisquer eventos $A_1, A_2, A_3, \dots \in \mathcal{F}$ temos

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mathbb{P}\left(A_n\right)$$

- Continuidade Monótona: Seja $\{A_n\} \in \mathcal{F}$ então
 - (i) Se $A_n \uparrow A$ então $\mathbb{P}(A_n) \uparrow \mathbb{P}(A)$.
 - (ii) Se $A_n \downarrow A$ então $\mathbb{P}(A_n) \downarrow \mathbb{P}(A)$.

Propriedades

• Lema de Fatou:

$$\mathbb{P}\left(\liminf_{n\to\infty} A_n\right) \leq \liminf_{n\to\infty} \mathbb{P}\left(A_n\right)$$

$$\leq \limsup_{n\to\infty} \mathbb{P}\left(A_n\right) \leq \mathbb{P}\left(\limsup_{n\to\infty} A_n\right).$$

• Se $A_n \to A$, então $\mathbb{P}(A_n) \to \mathbb{P}(A)$