

 $\begin{bmatrix}
I_{1} = I_{2} + I_{4} - I_{3} \rightarrow I_{4} = I_{4} + I_{3} - I_{2} \\
I_{4} = I_{3} + I_{5} \rightarrow I_{5} = I_{4} - I_{3} = I_{4} - I_{2}
\end{bmatrix}$ $250I_{1} + 25I_{2} = 15$ $200I_{5} - 25I_{2} - 100I_{3} = 0$ $100I_{3} + 50I_{4} = 5$ $100I_{3} + 50I_{4} + 50I_{3} - 50I_{2} = 5$ $150I_{3} + 50I_{4} - 50I_{2} = 5$

P= R. I² = 200 A · 0,056 A = 0,6272 W P₂ = R₂ I² = 25 A · 0,037 A = 0,03423 W P₃ = R₃ I³ = 100 A · 0,027 A = 0,072 A W C₄ = R₄ I²₄ = 50 A · 0,046 A = 0,1058 W P₅ = R₅ I⁵₅ = 200 A · 0,046 A = 0,072 W B₆ = R₆ I²₁ = 50 A · 0,056 A = 0,1568 W

Psub = V, I, = 15V. 0,056A = 0,84W Psub2 = V2 I4 = 5V. 0,046A = 0,28W

M® MIQUELRIUS

Data:

09 OCT. 2019

Qualificació:

9,5

Mesura de resistències i forces electromotrius

$R_1(200\Omega) = 218,9\Omega$	$R_4(50\Omega) = 5\lambda,5\Omega$
$R_2(25\Omega) = 21.8\Omega$	$R_{5}(200\Omega) = 199\Omega$
$R_3(100\Omega) = 100,3\Omega$	$R_6(50\Omega) = 5$ A, 5 L

$$\varepsilon_1 (15 \text{ V}) = \lambda 5,03 \text{ V}$$

$$\varepsilon_2 (5 \text{ V}) = 5,03 \text{ V}$$

1. Intensitats teòriques i experimentals. Comprovació de la llei d'Ohm

$I_1^{te} = 0,056 \mathrm{M}$	$I_1^{ex} = 52,3 \text{ mA}$
$I_2^{te} = 0.038 \mathrm{A}$	$I_2^{ex} = 33,9 \text{ m} \text{ A}$
$I_3^{te} = 0,027 A$	I3 = 26, 5 mA
I10 = 0,046A	I= 44,3mA
I'e = 0,018 A	I = 18,0 mA

Viex = LLUAV	$R_1 I_1^{ex} = \lambda \lambda_1 45 \mathrm{V}$
$V_2^{ex} = 0.93 \text{ V}$	$R_2I_2^{ex} = 0.94V$
$V_3^{ex} = 2,71V$	$R_3I_3^{ex} = 2.66 $
$V_4^{ex} = 2.3 \text{AV}$	$R_4 I_4^{ex} = 2_1 28 \vee$
	$R_5 I_5^{ex} = 3.68 \text{ V}$
$V_6^{ex} = 2 7$	$R_6 I_6^{ex} = 2,69 \text{ V}$

2. Verificació de les regles de Kirchhoff

Regla dels nusos

Nus A	$I_1^{ex} + I_3^{ex} = 78.8 \text{ mA}$	$I_2^{ex} + I_4^{ex} = 78.2 \text{ mA}$	
Nus C	$I_5^{ex} + I_3^{ex} = 44,5 \text{ mA}$	$+I_3^{ex}=44.5$ mA $I_4^{ex}=44.3$ m/A	

Regla de les malles

Malla 1	$R_1 I_1^{ex} + R_2 I_2^{ex} + R_6 I_1^{ex} = 45.08 \text{ V}$	$\varepsilon_1 = \lambda 5,03V$
Malla 2	$R_2 I_2^{ex} + R_3 I_3^{ex} = 3.6 \text{ V}$	$R_5 I_5^{ex} = 3,58 \text{ V}$
Malla 3	$R_4 I_4^{ex} + R_3 I_3^{ex} = 4 4 $	$\varepsilon_2 = 5,01$

3. Comprovació del principi de conservació de l'energia

$P_{R_1} = 0.6 \text{ w}$	P _{R2} = 0,032 W	P _{R3} = 0,0+ w	P _{R4} = 0,1 w
PR, = 0,064 W	P _{R6} = 0,141 w	P = 0,786 W	$P_{\varepsilon_2} = 0,222 \omega$
$P_{R_1} + P_{R_2} + P_{R_3} + P_{R_4} + P_{R_5} + P_{R_6} = \lambda_1007\omega$		$P_{\varepsilon_1} + P_{\varepsilon_2} = \lambda_1008 \text{ w}$	