วิธีทำ: กำหนดให้ x= จำนวนแหวนที่จะผลิต และ y= จำนวนต่างหูที่จะผลิต และจาก quiz 1 เราได้โจทย์กำหนดการ เชิงเส้นออกมาให้รูป

$$\max \quad 2000x + 1000y$$
 subject to
$$3x + y \le 18$$

$$3x + 5y \le 30$$

$$x \ge 0, \quad y \ge 0$$

และจะแปลงเป็นรูปมาตรฐานได้ดังนี้

$$\max \quad 2000x + 1000y + \boxed{(0)} s_1 + \boxed{(0)} s_2$$
 s.t.
$$3x + y + s_1 = 18$$

$$3x + 5y + s_2 = 30$$

$$x \ge 0, \quad y \ge 0, \quad s_1 \ge 0, \quad s_2 \ge 0$$

และเมื่อนำมาเขียนตารางซิมเพลกซ์ตั้งต้นจะได้ดังนี้

Pivot	x	x y		s_2	s_2 RHS	
s_1	3	1	1	0	(18)	
s_2	(3)	(5)	(0)	(1)	(30)	
z	(-2000)	(-1000)	(0)	(0)	(0)	

ต่อมาเป็นขั้นตอนการเปลี่ยนตัวแปรฐาน โดย

- \diamond **ตัวแปรขาเข้า** โดยเลือกใช้ตัวแปรของคอลัมน์ที่มีค่าตัวเลขในแถว z ติดลบมากที่สุด ซึ่งคือตัวแปร (x)
- ตัวแปรขาออก โดยเลือกใช้ตัวแปรที่มีอัตราส่วนระหว่างค่าด้านขวามือ (RHS) กับสัมประสิทธิ์ของตัวแปรขาเข้าค่า บวกที่น้อยที่สุด

Pivot	x	y	s_1	s_2	RHS	อัตราส่วน
s_1	3	1	1	0	(18)	$\boxed{(18)} / \boxed{(3)} = 6$
s_2	(3)	(5)	(0)	(1)	(30)	(30) / (3) = 10
z	(-2000)	(-1000)	(0)	(0)	(0)	

ดังนั้น จึงได้ว่าตัวแปรขาออกคือ (s_1)

และเมื่อทำการดำเนินการตามแถวเพื่อเปลี่ยน pivot ตามขั้นตอนด้านล่างจะได้ตารางซิมเพลกซ์ใหม่ดังนี้

1. หารแถวของตัวแปรฐานใหม่ด้วยสัมประสิทธิ์ของตัวแปร ฐานดังกล่าวในแถวนั้น

2.	ดำเนินการตามแถว	เพื่อให้สัมประสิ	หิทธิ์ของตัวแเ	ปรฐานใน
ll E	าวอื่นเป็น 0			

แถวอื่นเป็น 0	
และถ้าทำซิมเพลกซ์ขั้นถัดไปจะได้ว่าต้องใช้ y เป็น	
ตัวแปรฐานขาเข้า และใช้ s_2 เป็นตัวแปรขาออก จะได้ตาราง	

Pivot	x	y	s_1	s_2	RHS
x	1	1/3	1/3	0	6
s_2	0	4	-1	1	12
z	0	-1000/3	2000/3	0	12000

Pivot	x	y	s_1	s_2	RHS
x	1	0	5/12	-1/12	5
y	0	1	-1/4	1/4	3
z	0	0	1750/3	250/3	13000

ซึ่งไม่มีสมาชิกในแถว z ติดลบแล้วจึงได้ว่ากระบวนการจบสิ้น ซึ่งจะได้ว่าผลเฉลยที่ทำให้ค่ามากสุดคือ x=5 และ y=3 (ที่ได้จากคอลัมน์ RHS ในตารางสุดท้าย) และได้ z=

โบนัสพิเศษ +1 คะแนน

ซิมเพลกซ์เป็น

จงใช้ตาราง simplex สุดท้ายแปลงให้เป็นระบบสมการของตัวแปร x,y,s_1,s_2 และระบุเหตุผลว่าทำไม x=5 และ y=3 โดยอาศัยตัวระบบสมการที่ได้ (คำใบ้: ตัวแปรที่ไม่ใช่ฐานคือตัวแปรที่โดนกำหนดให้ค่าเป็น 0 ดังนั้นต้องระบุให้ได้ ก่อนว่าในตารางสุดท้ายใครถูกตั้งบทบาทให้เป็นตัวแปรฐาน)

$$x + \frac{5}{12}s_1 + \frac{-1}{12}s_2 = 5$$
$$y + \frac{-1}{4}s_1 + \frac{1}{4}s_2 = 3$$
$$z + \frac{1750}{3}s_1 + \frac{250}{3}s_2 = 13000$$

โดยที่มี x,y เป็นตัวแแปรฐาน ดังนั้น s_1,s_2 ที่ไม่ใช่ตัวแปรฐานจึงมีค่าเท่ากับ 0 จึงได้ว่า

$$x + \frac{5}{12}(0) + \frac{-1}{12}(0) = 5 \qquad \Rightarrow x = 5$$

$$y + \frac{-1}{4}(0) + \frac{1}{4}(0) = 3 \qquad \Rightarrow y = 3$$

$$z + \frac{1750}{3}(0) + \frac{250}{3}(0) = 13000 \qquad \Rightarrow z = 13000$$