4/ 16

Serial No. 10/618053

Page 2

Amendments to the Claims:

The listing of the claims will replace all the prior versions, and listings, of claims in the applications:

Listing of Claims:

Claims 2-6, 9-11, 17 and 18 are canceled.

Claim 23 is withdrawn.

- 1. (Currently amended) A process for manufacturing a lightweight, high bulk coated paper, comprising the steps of:
 - (a) creating a fiber furnish comprising mechanical pulp and chemical pulp;
 - (b) forming a paper web from the fiber furnish;
 - (c) removing water from said web;
 - (d) applying a coating having a weight of at least 2.0 pounds per 3300 square feet per side onto each surface of said web to form a coated web having a moisture content greater than 5.5%, and a caliper greater than 2.6 mils;
 - (e) passing the coated web through two extended-nip calenders, with each side of the paper facing a heated roll and treated with one of said calender nips, and wherein each calendering nip is formed by a calender roll having a surface temperature of at least 300° F and a backing shoe having a width of at least 30 mm, the nip providing loading of at least 1000 pounds per linear inch; and [whereby the] to form a calendered paper [has] having a caliper preservation greater than 75% and wherein a ratio of the caliper multiply

Page 3

by 1000 to a basis weight per 3300 ft² of the coated paper is at least equal to or greater than 71%.

Claims 2-6. (Canceled).

- 7. (Currently amended) A process as in Claim 1 wherein said coated <u>paper</u> web has a moisture content greater than 7.0%.
- 8. (Currently amended) A process as in Claim 1 wherein said coating <u>composition</u> comprises a hollow plastic pigment; a kaolin pigment; a ealeined kaolin elay; a titanium dioxide pigment; and a synthetic latex binder; and a synthetic thickener, or a co-binder including earboxymethyleellulose or aerylic acid based or associative based thickeners.

Claims 9-11. (Canceled).

- 12. (Original) A process as in Claim 8 wherein said kaolin pigment has a fine particle size distribution characterized in that at least 85% of said particles are less than 2 microns and at least 50% of said particles are less than 0.5 microns, based upon particle counting using a Sedigraph particle size analyzer.
- 13. (Original) A process as in Claim 8 wherein said kaolin pigment has a platy morphology characterized as both fine and coarse particles having a shape factor greater than 15.
- 14. (Original) A process as in Claim 8 wherein said kaolin pigment has a platy

Page 4

27.

morphology characterized as both fine and coarse particles having a shape factor of about 20 to

- 15. (Original) A process as in Claim 8 wherein said kaolin pigment is present in an amount of at least 70% by weight of the total amount of pigment.
- 16. (Original) A process as in Claim 8 wherein said kaolin pigment is present in an amount of 80% to 100% by weight of the total amount of pigment.
- 17. (Canceled).
- 18. (Canceled).
- 19. (Currently amended) A process as Claim 1 wherein the coating is preferably applied using a blade coater or a metering size press.
- 20. (Original) A process as Claim 1 wherein the calender is a shoe nip calender, said shoe nip width being in the range of from about 40 mm to about 80 mm, and calendering temperature is at least 300° F, and nip loading at 1700-2400 pli.
- 21. (Currently amended) A process as in Claim 1 wherein said calendered paper has a the basis weight of 28 to 38 pounds per 3300 square feet and exhibits a 75 degree TAPPI gloss of 35% or above and a caliper of at least 2.15 mils.
- 22. (Currently amended) The process of Claim 1 for manufacturing a super high bulk,

Serial No. 10/618053 Page 5 offset lightweight coated paper, comprising (a) — creating a fiber-furnish comprising at least 40% mechanical pulp; (b) forming a paper web from the fiber furnish; (c) removing water from said web; (d) applying a coating using a blade coater at coat weights of at least 2.0 pounds per 300 square feet, per side onto each surface of said web to form a coated web having a moisture content of at least 5.5%; and (e) passing the coated web through two extended nip calenders, with each side of paper facing a heated roll and treated with one of said calender nips; whereby each calendering nip is formed by a calender roll having a surface temperature of at least 300° F and a backing shoe nip having a width of at least 30 mm, the nip providing loading of at least 1000 pounds per linear inch (pli), and whereby the calendered paper has a caliper preservation greater than 75%, wherein the coating comprises:

- (i) hollow plastic pigment, in an amount of at least about 2% by weight of the total amount of pigment;
- (ii) kaolin pigment in an amount of at least about 70% by weight of the total amount of pigment, said kaolin pigment having a fine particle size distribution characterized by at least 85% of said particles are less than 2 microns and at least 50% of said particles are less than 0.5 microns, and a platy morphology characterized as both fine and coarse particles having a shape factor greater than 15, preferably 20 27;
 - (iii) titanium dioxide in an amount of at least about 2% by weight of the total

Page 6

amount of pigment;

- (iv) calcined kaolin in an amount of at least 5% by weight of the total amount of pigment;
- (v) synthetic latex in a concentration of at least about 12 or more parts by weight of the total amount of pigment;
- (vi) synthetic thickener in a concentration of at least about 0.05 or more parts by weight of the total amount of pigment; and wherein the finished coated paper has a basis weight of 28 to 38 pounds per 33 square feet, exhibits a 75° TAPPI gloss of 35% or above, has a caliper of at least 2.15 mils, gives a 17-27% higher caliper, has up to 22% bulk improvement relative to a supercalendered 30 pounds/3300 square feet LWC, and has improved brightness, opacity and printing gloss.
- 23. (Canceled).
- 24. (Currently amended) A lightweight, high bulk coated paper coated paper made by a process of Claim 1.
- 25. (New) A process for manufacturing a lightweight, high bulk coated paper, comprising the steps of:
 - (a) creating a fiber furnish comprising mechanical pulp and chemical pulp;

Page 7

- (b) forming a paper web from the fiber furnish;
- (c) removing water from said web;
- (d) applying a coating composition comprising one or more pigments or clays and one or more binders the coating having a weight of at least 2.0 pounds per 3300 square feet per side onto each surface of said web to form a coated web having a moisture content greater than 5.5%, and a caliper greater than 2.6 mils;
- (e) passing the coated web through two extended-nip calenders, with each side of the paper facing a heated roll and treated with one of said calender nips, and wherein each calendering nip is formed by a calender roll having a surface temperature of at least 300° F and a backing shoe having a width of at least 30 mm, the nip providing loading of at least 1000 pounds per linear inch, and wherein the finished coated paper has a basis weight of 28 to 38 pounds per 33 square feet, exhibits a 75° TAPPI gloss equal to or greater than 35% and wherein the finished coated paper has a caliper of at least 2.15 mils.
- 26. (New) The process of claim 25 wherein at least one of the clays or pigments is a platy kaolin.
- 27. (New) The process of claim 25 wherein the lightweight, high bulk coated paper exhibits 4% higher brightness, 3.3% higher opacity, and 22% higher caliper when compared to a supercalendered coated paper of having the same basis weight.
- 28. (New) The process of claim 25 wherein the lightweight, high bulk coated paper exhibits lesser weight per roll of the same roll diameter.

Page 8

- 29. (New) A process for manufacturing a lightweight, high bulk coated paper, comprising the steps of:
 - (a) creating a fiber furnish comprising mechanical pulp and chemical pulp;
 - (b) forming a paper web from the fiber furnish;
 - (c) removing water from said web;
 - (d) applying a coating composition comprising a platy kaolin pigment, the coating having a weight of at least 2.0 pounds per 3300 square feet per side onto each surface of said web to form a coated web having a moisture content greater than 5.5%, and a caliper greater than 2.6 mils;
 - (e) passing the coated web through two extended-nip calenders, with each side of the paper facing a heated roll and treated with one of said calender nips, and wherein each calendering nip is formed by a calender roll having a surface temperature of at least 300° F and a backing shoe having a width of at least 30 mm, the nip providing loading of at least 1000 pounds per linear inch and to form a calendered paper having a caliper preservation greater than 75%.
- 30. (New) The process of claim 29 further comprising a ratio of caliper by 1000 to a basis weight per 3300 ft² of the coated paper is at least equal to or greater than 71%.
- 31. (New) The process of claim 29 wherein said kaolin pigment has a fine particle size distribution characterized in that at least 85% of said particles are less than 2 microns and

Page 9

- at least 50% of said particles are less than 0.5 microns, based upon particle counting using a Sedigraph particle size analyzer.
- 32. (New) The process of claim 29 wherein said kaolin pigment has a platy morphology characterized as both fine and coarse particles having a shape factor greater than 15.
- 33. (New) The process of claim 29 wherein said kaolin pigment has a platy morphology characterized as both fine and coarse particles having a shape factor of about 20 to 27.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES

☐ REFERENCE(S)	OK EXHIBIT(S)	SUBMITTED	ARE POOR	QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS

LINES OR MARKS ON ORIGINAL DOCUMENT

☐ GRAY SCALE DOCUMENTS

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.