IONA PRESENTATION COLLEGE PATR PA

Year 12 3A Chemistry 2011

Year 11 (2A/2B) Revision Test

Name:		
Total:	/60	

For each question shade the box to indicate your answer. Use **only** a blue or black **pen** to shade the boxes.

For example, if b is your answer: 🛮 a 📕 b 🗓 c 🖺 d

If you make a mistake, place a cross through that square, \bf{do} not erase or use correction fluid and shade your new answer.

1	🏻 a	□ b	□ c	□ d
2	🛚 a	□ b	□ c	□ d
3	🛚 a	□ b	□ c	□ d
4	□ a	□ b	□ c	□ d
5	🛚 a	□ b	□ c	□ d
6	🏻 a	□ b	Ос	□ d
7	🏻 a	□ b	Ос	□ d
8	🏻 a	□ b	Ос	□ d
9	🏻 a	□ b	Ос	□ d
10	🏻 a	□ b	Ос	□ d
11	I a	□ b	□ c	□ d
12	I a	□ b	□ c	□ d

PART 1 (24 marks)

Answer ALL questions on the separate multiple choice answer sheet provided. Each question in this part is worth 2 marks.

- (a) 2.8.7 and 2.7
- (b) 2.8.4 and 2
- (c) 2.8.1 and 2.8.7
- (d) 2.8 and 2.6
- 2. What is the conjugate acid of HSO₄⁻?
 - (a) H_2SO_4
 - (b) SO_4^{2-}
 - (c) H⁺
 - (d) H_2O
- 3. Which of the following aqueous solution combinations will form precipitates? (an equal number of moles of each of the substances are present)
 - (a) Sodium chloride, barium nitrate, and potassium hydroxide
 - (b) Tin (II) nitrate, caesium nitrate, sodium sulfate
 - (c) Copper (II) sulfate, sodium hydroxide, and hydrochloric acid
 - (d) Barium hydroxide, sodium chloride, and iron (II) sulfate
- 4. Which species would be found in a 2M H₃PO₄ solution?
 - (a) H_3PO_4 , $H_2PO_4^-$, H^+ , PO_4^{3-} , OH^-
 - (b) $H_2PO_4^-$, PO_4^{3-} , H_2O , H^+ , H_3PO_3
 - (c) H_2O , OH^- , H^+ , PO_3^{2-} , $H_2PO_4^{-}$
 - (d) $H_2PO_4^+$, H_3PO_4 , H^+ , H_2O

- 5. Which of the following lists contain only strong electrolytes?
 - I BaSO₄, AgCl, HCl
 - II glucose, ethanol, tartaric acid
 - III HCI, CH₃COOH, HNO₃
 - IV NH₃, NaCl, KNO₃
 - (a) IV only
 - (b) II and III
 - (c) I and III and IV
 - (d) I only
- 6. Which of the following reactions is NOT a redox reaction?
 - (a) $K(s) + O_2(g) \square KO_2(s)$
 - (b) $2Na(s) + 2H_2O(l) \ \square \ 2NaOH(aq) + H_2(g)$
 - (c) $\text{Li}_2\text{O}(s) + \text{H}_2\text{O}(l)$ 2LiOH(aq)
 - (d) $2Na(s) + H_2(l) \square 2NaH(s)$
- 7. Consider the following reactions:

I
$$NH_3(g) + H_2O(1) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

II
$$HCO_3(aq) + H_2O(1) \leftrightarrow H_2CO_3(aq) + OH(aq)$$

III
$$H_2O(1) + NH_4^+(aq) \leftrightarrow NH_3(g) + H_3O^+(aq)$$

IV
$$HSO_4^-(aq) + H_2O(1) \leftrightarrow H_3O^+(aq) + SO_4^{2-}(aq)$$

In which of the above forward reactions is water acting as a base?

- (a) I and II.
- (b) III and IV.
- (c) I, II, III and IV.
- (d) None of the above since water is a neutral substance.

8.	8. The combustion of natural gas (mainly methane) can be represented			
		$CH_4(g) + O_2(g)$ $CO_2(g) + H_2O(g)$; $\Delta H = -ve$		
	Which	of the following would decrease the rate of the reaction?		
	(a)	Increasing the volume at constant temperature.		
	(b)	Increasing the temperature at constant volume.		
	(c)	Passing the gases over the surface of a catalyst.		
	(d)	Increasing the concentration of reactants at constant temperature.		
9.		nt X is in group 2, and element Y in group 7, of the periodic table. Which ill be present in the compound formed when X and Y react together?		
	(a)	X^+ and Y^-		
	(b)	X^{2+} and Y^{-}		
	(c)	X^+ and Y^{2-}		
	(d)	X^{2-} and Y^+		
10.	What o	change(s) occur(s) as a liquid boils?		
	average kinetic energy of the particles increases. attractive forces between the particles become stronger. e spacing between the particles increases.			
	(a)	I only		
	(b)	III only		
	(c)	II and III only		
	(d)	I and III only		
11.	predict	he relative positions of the elements in the Periodic Table, it may be ted that removal of a second electron, after previous removal of one on, would require most energy in the case of:		
	(a)	aluminium.		
	(b)	magnesium.		
	(c)	sodium.		
	(d)	silicon		

12. Typical energy distribution curves for a gas system at two different temperatures (T_1 and T_2) can be represented as:

Consider the following statements:

- I As temperature increases the kinetic energy of all molecules increase.
- II At T_2 more molecules have a higher kinetic energy than at T_1 .
- III Those molecules with higher kinetic energy will collide more frequently.
- IV In a gas system with reacting gases, at T_1 less molecules will have the required activation energy (Ea) for chemical change.

The **correct** statements are:

- (a) II, III, and IV
- (b) I, II, and III
- (c) II, and III
- (d) I, II, III, and IV

PART 2 (36 marks)

(a) Solid sodium chloride i	s added to ar	aqueous solution of silve	r nitrate.
(b) A solution of hydrochlo carbonate.	oric acid is ac	lded to and aqueous soluti	on of potassium
(c) Solid zinc powder is ad	ded to a copp	per (II) sulphate solution.	
(d) Chlorine gas is bubbled	l through an	aqueous solution of sodiui	n iodide.
(e) Bromine water is added only).	d to cyclo-he	xene (for the product, prov	ride the name
			[10 marks]
2. Classify the following solids as: ionic (I), metallic (M), covalent molecu (CM), or covalent network (CN)			
Bronze		Iodine	
		3.6 . 10.4	
Diamond		Magnesium sulfate	
Diamond Silicon dioxide Dry ice (CO ₂)		Hydrogen peroxide Benzene	
	no reaction occurs write (a) Solid sodium chloride is (b) A solution of hydrochlocarbonate. (c) Solid zinc powder is added only). Classify the following solution (CM), or covalent networks.	no reaction occurs write "no reaction" (a) Solid sodium chloride is added to an occurs write "no reaction" (b) A solution of hydrochloric acid is accarbonate. (c) Solid zinc powder is added to a copp (d) Chlorine gas is bubbled through an only). (e) Bromine water is added to cyclo-heronly). Classify the following solids as: ioni (CM), or covalent network (CN)	(c) Solid zinc powder is added to a copper (II) sulphate solution. (d) Chlorine gas is bubbled through an aqueous solution of sodium (e) Bromine water is added to cyclo-hexene (for the product, proviously). Classify the following solids as: ionic (I), metallic (M), covaler (CM), or covalent network (CN)

[4 marks]

3. Write **observations** for any reactions that occur in the following procedures. If no change is observed, then you should state this. **NO chemical equations are required to be written.**

(a) Burning magnesium is placed in a gas jar full of carbon dioxide gas.
(b) A citric acid/tartaric acid solution combination is added to an aqueous solution of baking soda.
(c) Copper (II) oxide is added to a beaker containing an aqueous solution of sulfuric acid.
(d) Solid aluminium hydroxide is added to a 5M solution of sodium hydroxide.
[8 marks]

4.	For each chemical species listed in the table below, draw an electron of	lot diagram
	showing all valence electrons.	[4 marks]

Species	Electron dot diagram
Sodium chloride	
Carbon monoxide	
Ammonia	
Nitrate ion	

5. **Draw** and **name** the following:

(i) Three structural isomers of C_5H_{12}	(ii) Two geometric isomers of C ₄ H ₆ Cl ₂

Answer ALL questions in Part 3. The calculations are to be set out in detail in this Question/Answer Booklet. Marks will be allocated for correct equations and clear setting out, even if you cannot complete the problem.

car radiators and as a de-icing substance for aircraft windshields. It contains the elements carbon, hydrogen and oxygen. Combustion of a 3.10 g sample of ethylene glycol produced 4.40 g of carbon dioxide and 2.70 g of water. Using either a "mole method" or a "percentage composition method", determine the empirical formula of ethylene glycol.

Ethylene glycol has a multitude of uses, including antifreeze and anti-boil agent in

[5 marks]

SOLUTIONS: Section 1 - Multiple Choice

- 1. c
- 2. a
- 3. d
- 4. a
- 5. d
- 6. c

- 7. b
- 8. a
- 9. b
- 10. d
- 11. c
- 12. a

Section 2 - Short Answer

1. [1 mark for correct species, 1 mark for balanced equation]
Do not penalise for missing or incorrect state symbols
Maximum 1 mark if molecular or formula equation used

(a)
$$Ag^+ + NaCl \rightarrow AgCl + Na^+$$
 [2]

(b)
$$2 H^+ + CO_3^{2-} \rightarrow CO_2 + H_2O$$
 [2]

(c)
$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$$
 [2]

(d)
$$Cl_2 + 2l^- \rightarrow 2Cl^- + l_2$$
 [2]

(e)
$$Br_2 + C_6H_{10} \rightarrow 1,2$$
-dibromocyclohexane [2]

2.

Bronze	M	Iodine	СМ
Diamond	CN	Magnesium sulfate	I
Silicon dioxide	CN	Hydrogen peroxide	СМ
Dry ice (CO ₂)	СМ	Benzene	СМ

[4 marks]

3. Majority of observations required.

- (a) Flame disappears/goes out. [1]
- (b) A colourless gas is evolved. [1]
- (c) Black solid dissolves to form a blue/green coloured solution. [1]
- (d) White solid dissolves to form a colourless Hsolution.

[1]

[4

 $0 \equiv c$ marks]

H – N 8

Na

Sodium chloride

Carbon monoxide

Ammonia

Nitrate ion [8 marks]

(iii) **Three** structural isomers of C_5H_{12}

$$\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3$$

[1]

pentane

[1]

$$\begin{array}{c} \mathrm{CH_3}\mathrm{--CH}\mathrm{--CH_2}\mathrm{--CH_3} \\ | \\ \mathrm{CH_3} \end{array}$$

[1]

methylbutane

[1]

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3---} \operatorname{CH---} \operatorname{CH_3} \\ | \\ \operatorname{CH_3} \end{array}$$

[1]

dimethylpropane

[1]

(iv) Two geometric isomers of
$$C_4H_6Cl_2$$

$$\begin{array}{ccc}
C & C \\
C & C
\end{array}$$

$$\begin{array}{cccc}
CH_3 & CH_3
\end{array}$$

[1]

cis-2,3-dichloro-2-butene

[1]

$$\begin{array}{c}
C + C \\
C + C
\end{array}$$

$$CH_3 \qquad CH_3$$

[1]

trans-2,3-dichloro-2-butene

[1]

Section 3 – Calculation

1.
$$m(C) = 12.01 / 44.01 \times 4.40 = 1.2008 g$$

 $%C_{in 3.10 g} = 1.2008 / 3.10 \times 100\% = 38.73\%$ [1]
 $m(H) = 2 \times 1.008 / 18.016 \times 2.70 = 0.3021 g$

$$\% H_{in 3.10 g} = 0.3021 / 3.10 \times 100\% = 9.75\%$$
 [1]
$$\% O = 100 - 38.74 - 9.75 = 51.52\%$$
 [1]
$$C : H : O \\ 38.73 / 12.01 = 9.75 / 1.008 = 51.52 / 16.00$$
 n 3.225 9.673 3.220 (÷ 3.22) [1] n 1 3 1

 $EF = CH_3O$ [1]