1. Initialization
$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

Loop:
$$\Delta \leftarrow 0$$

Loop for each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

until
$$\Delta < \theta$$
 (a small positive number determining the accuracy of estimation)

3. Policy Improvement

policy-stable $\leftarrow true$

3. Policy Improvement policy- $stable \leftarrow true$ For each $s \in S$:

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

 $old\text{-}action \leftarrow \pi(s)$ $\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$