BECA / Dr. Huson / Geometry
September 30, 2016

Name:

Test: Constructions, vocabulary, and geometric properties

Section 1: Show your knowledge of Euclid's Elements.

Make the required construction using only a compass and straightedge
Extra: State the steps of the construction

Construct a perpendicular bisector of the given line segment

Construct an angle bisector of the given angle.

BECA / Dr. Huson / Geometry
September 30, 2016

Name:

Section 2: **Vocabulary** Write the term that best completes each statement.

1.	Points that are all located on the same line are
2.	A flat surface is a(n)
3.	The sum of the measures of supplementary angles is
4.	Two angles with a common side and vertex, but no overlap are called In other words, they are next to each other.
5.	Two or more line segments of equal measure are
6.	A(n) is a portion of a line that includes two points and all of the collinear points between the two points.
7.	A(n) is a portion of a line that begins with a single point and extends infinitely in one direction.
8.	The measures of complementary angle sum to
9.	Two or more lines located in the same plane are

Section 3: Logical reasoning

10. In the figure, given that $\overline{AB} \cong \overline{BC}$, AB = x + 9, BC = 14. Solve for x, AB, and BC. Show each step.

Geometry (1 pt):

Substitute (1 pt):

Solve algebra:

$$x =$$
 (1 pt)

$$AB =$$
 (1 pt)

$$BC = (1 pt)$$

Check (1 pt):

11. Given two complementary angles, $\angle ABC$ and $\angle DEF$. If $m\angle DEF = 55^{\circ}$ then solve for the measure of $\angle ABC$. Show the steps.

Geometry (1 pt):

Substitute (1 pt):

Solve algebra (1 pt):

 $m\angle ABC =$

Check (1 pt):

13. Given the figure, $m \angle ABE = 2x$ and $m \angle DBE = 2x + 30$. Solve for x and the angle measures. Show each the step.

Geometry (1 pt):

Substitute (1 pt):

Solve algebra:

$$x = (1 \text{ pt})$$

$$m\angle ABE = (1 \text{ pt})$$

$$m\angle DBE = (1 \text{ pt})$$

Check (1 pt):

14. Given that JK = 3x, KL = x + 2, and JL = 18. Find the value of x, JK, and KL. Show steps.

Geometry (1 pt):

Substitute (1 pt):

Solve algebra:

$$x = (1 \text{ pt})$$

$$JK =$$
 (1 pt)

$$KL =$$
 (1 pt)

Check (1 pt):

15.	$\angle ABC$	and.	∠DEF	are	congruent	angles.	$m\angle ABC$	=3x-	- 20 ,	and	m∠DE	EF = 2	2x+10	. Find	x and
the	measur	e of ea	ach ang	le.											

Geometry:

Substitute:

Solve algebra:

$$x =$$

$$m\angle ABC =$$

$$m\angle DEF =$$

Check:

16. Given $m \angle 1 = 10x + 40$, $m \angle 2 = 2x + 20$ as shown in the figure. Solve for x and the measures of the two angles. Show the steps and check your result.

Geometry:

Substitute:

Solve algebra:

$$x =$$

$$m \angle 1 =$$

$$m\angle 2 =$$

Check:

BECA / Dr. Huson / Geometry September 30, 2016	Name:
17. Given $PQ = 17$ and $QR = 3x + 2$. Points P , Q , and R are	e collinear and Q bisects \overline{PR} . Solve, check.
Geometry:	
Substitute:	
Solve algebra:	
	x =

Check:

PQ =

QR =

BECA / Dr. Huson /	Geometry
September 30, 2016	-

Name:

The following pairs do not mean the same thing. Explain what they mean and what the difference is. Use complete sentences.

18.
$$\overline{AB}$$
 , AB

19.
$$\angle ABC \cong \angle DEF$$
 , $m \angle ABC = m \angle DEF$

10. When you _____ a geometric figure, you use tools such as a ruler, straightedge, compass, or protractor.

BECA / Dr. Huson / Geometry September 30, 2016

Name: