Cardiovascular Diagnosis Using Federated Learning

Department of CSE

Jyothi Engineering College

Thrissur

June 9, 2021

Department Mission & Vision

Vision

 Creating eminent and ethical leaders in the domain of computational sciences through quality professional education with a focus on holistic learning and excellence.

Mission

- To create technically competent and ethically conscious graduates in the field of Computer Science & Engineering by encouraging holistic learning and excellence.
- To prepare students for careers in Industry, Academia and the Government.
- To instill Entrepreneurial Orientation and research motivation among the students of the department
- To emerge as a leader in education in the region by encouraging teaching, learning, industry and societal connect.

OUR TEAM

GROUP MEMBERS

- ANN MARIYA (JEC16CS026)
- ② RAHUL M (JEC16CS092)
- MANEESH MANOJ (JEC17CS063)
- RASHI M (JEC17CS079)

Guide

Mrs. NAMITHA T N Assistant Professor, Dept. of CSE

Project Github Repository github.com/mnshmnu/group18

Project Abstract

 Uses decentralized, privacy preserving Federated Learning to diagnose and detect abnormalities in cardiovascular system by observing heart sound.

Project Objectives

The System Aims to:

- Privacy oriented approach to conventional Machine Learning
- 2 Implementing Federated Learning in the healthcare sector
- Discovering effective ways to implement Federated Learning technology

Literature Papers Reviewed

- Classification of normal/abnormal heart sound recordings: The physionet-computing in cardiology challenge 2016, Gari D Clifford, Chengyu Liu et.al, 2016
- Pederated machine learning: Concept and applications Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong, 2019
- Federated learning for healthcare informatics, Jie Xu, Benjamin S Glicksberg et.al, 2020
- Introduction to federated learning and challenges, Kelvin, 2020
- Classification of heart sounds using convolutional neural network, Fan Li, Hong Tang et.al, 2020
- Spectral images based environmental sound classification using cnn with meaningful data augmentation, Zohaib Mushtaq, Shun-Feng Su, and Quoc-Viet Tran, 2020
- Lung and heart sounds analysis: state-of-the-art and future trends, Ana L Padilla-Ortiz and David Ibarra. 2018

Existing System

- Base Paper: Classification of Heart Sounds Using CNN
- Key Points:
 - Uses CNN to classify PCG signals of heart sound samples
 - Produced 86% validation accuracy in classifying normal vs abnormal heart sounds
 - Single learning entity

Software Requirement Specifications(SRS)

- Functional Requirements
 - Detect abnormalities from heart sound and diagnose the disease
- Non-Functional Requirements
 - System should maintain Security and Privacy of training data

Overall Architecture

Modules

- Pre-Processing √
- Sequential Deep Learning Model √
- Federated Architecture
- User Interface

Pre-processing

- Converting digital audio signal from electronic stethoscope to spectrogram image
- Overt image from RGB to Grayscale
- Resizes the spectrogram image

Workflow - Pre-processing

Output - Pre-processing

CRATING TECHNOLOGY LEADERS OF TOMORROW

Figure: Audio signal generated spectrogram

Deep Learning Model

- Model analyses the spectrogram images to predict the heart conditions
- Sequential model with Gated Recurrent Unit(GRU)
- Uses TensorFlow

Workflow - Deep Learning model

Deep Learning Model Architecture

Model:	"ceque	ential"
MUUCT.	Seque	HLTGI

Layer (type)	Output	Shape	Param #
reshape (Reshape)	(None,	234, 698)	0
conv1d (Conv1D)	(None,	55, 196)	2052316
batch_normalization (BatchNo	(None,	55, 196)	784
dropout (Dropout)	(None,	55, 196)	0
gru (GRU)	(None,	55, 128)	125184
dropout_1 (Dropout)	(None,	55, 128)	0
batch_normalization_1 (Batch	(None,	55, 128)	512
gru_1 (GRU)	(None,	55, 128)	99072
dropout_2 (Dropout)	(None,	55, 128)	0
batch_normalization_2 (Batch	(None,	55, 128)	512
dropout_3 (Dropout)	(None,	55, 128)	0
time_distributed (TimeDistri	(None,	55, 4)	516
flatten (Flatten)	(None,	220)	0
dense_1 (Dense)	(None,	2)	442

Total params: 2,279,338
Trainable params: 2,278,434
Non-trainable params: 904

Contribution of Each Member

- Ann Mariya (JEC16CS026)
 - Documentation
- Rahul M (JEC16CS092)
 - User Interface
- Maneesh Manoj (JEC17CS063)
 - Deep Learning Model
- Rashi M (JEC17CS079)
 - Dataset Organizing & Pre-Processing

Future Developments - Timeline

- Federated Architecture 20-April-2021
 - Implement Federated Learning
- User Interface 28-April-2021
 - UI for Doctors to interact with the system
 - Ul for Patients to access their prescription

CONCLUSION

- Spectrogram dataset created after pre-processing Audio dataset
- Conventional Machine Learning model implemented

REFERENCES

- Gari D Clifford, Chengyu Liu, Benjamin Moody, David Springer, Ikaro Silva, Qiao Li, andRoger G Mark.
 Classification of normal/abnormal heart sound recordings
- Peter Kairouz, H. Brendan McMahan et. al Advances and Open Problems in Federated Learning CoRR, abs/1912.04977, 2019
- Yang, Qiang and Liu, Yang and Chen, Tianjian and Tong, Yongxin

 Federated machine learning: Concept and applications, ACM TIST, abs/1902.04885, 2019
- Li, Fan and Tang, Hong and Shang, Shang and Mathiak, et.al Classification of Heart Sounds Using Convolutional Neural Network, Applied Sciences, MDP
- 2018. [Online].
 Availablehttps://www.tensorflow.org/federated

Thank You

Any Query?

