Considering Viral Load in Epidemic Forecasting Learning the Variation of Infectiousness Over Time

A Gaussian Process Approach

Andre Ehrlich^{1*}, Nikos Demiris¹, Petros Dellaportas^{1,2}, & Michel F. C. Haddad³

¹ Department of Statistics, Athens University of Economics and Business,

³ School of Business & Management, Queen Mary University of London

² Statistical Science, University College London. *ehrlich@aueb.gr

Introduction

- 1. Epidemic models seek to infer reproduction, prepare health system and assess efficacy of interventions.
- 2. Reproduction $R_t = \beta_t$ (individual infection rate) × τ (mean infectious period)
- 3. Reported Positive Case counts ($C_t \in [0, 1)$) offer binary measure of infectiousness, symptomdriven testing bias
- 4. Deaths (D_t) are more trustworthy source but delayed.
- 5. Flaxman et al. (2020) retrospectively estimate total cases (C_t) & Ascertainment Rate (C_t/C_t)

(a) Estimated under-(b) Various Incidence ascertainment (Brazil) Measures

- 6. Viral Load $VL \in [0,1]$ provides a continuous measure of infectiousness
- 7. Begin with standard epidemic model (Compartmental, SIR) using discrete-time, Chain-Binomial-like approach.

(a) Fixed Transmission Rate Model

 $\beta \sim \mathcal{HN}(0, 10)$ $C_{t+1} \sim NegBin(S_t * p_t, \phi)$ $t=1,\ldots,T$

Goal #1: Time-varying Transmission

Prior Work: Brownian Motion (Bouranis et al., 2022), Multiphasic Bayesian Non-parametric (Barmpounakis and Demiris, 2024).

Gaussian Process (GP) Framework

• Covariance Matrix: Specify global relationships, control smoothness, e.g. SE, Mattern

$$\mathbf{K_{SE}}(b_i, b_j | \alpha, \rho) = \alpha^2 \exp\left(\frac{-(b_i - b_j)^2}{2\rho^2}\right)$$
 (2)

- Costly inversion $K' = \mathcal{O}(n^3)$
- Constrained, noisy observation process limits model complexity
- Stochastic Epidemic Model with log-GP prior on transmission rate, overdispersed NegBin incidence generation (NB-GP):

 $R_t = \beta_t \times \tau$ $C_{t+1} \sim \text{NegBin}(S_t * p_t, \phi)$ $p_t = 1 - \exp\left(-\beta_t I_t / N_{pop}\right)$ $\boldsymbol{\beta} = \exp(\boldsymbol{\lambda})$ $\lambda \sim \mathcal{GP}(0, K_{SE})$ $t=1,\ldots,T$

Figure 3: Infer Reproduction R_t from Cases C_t

 $t \in 1 \dots T$ $\rho, \alpha \sim \mathcal{IG}(5,5)$ $\phi \sim \mathcal{G}(5,20)$ (3)

Goal #2: Include Viral Load

(c) Viral Load Kinetics

Days since infection

Symptom onset

Recovery

Loss of detectabilit

Peak viral load

Figure 4: How PCR measures viral load

- 1. Hay et al. (2021) PCR Threshold value (TV) identifies growing/waning periods epidemic, small-community, consistent testing.
- 2. Growing epidemic has higher proportion of recent infections, ergo higher viral loads.
- 3. Does this hold on nationional level of testing? Inconsistent, biased testing.
- 4. How to scale viral load measurements? VL = $(1-TV)^a$
- 5. Should we anchor this to reported positive cases? $R_t^{VL} = bR_t^C$

Case Study: COVID in Brazil

- $1.N_{pop} = 212M$. By end of pandemic, 75% of Brazilians vaccinated.
- 2. Cumulative Measured Incidence: Reported Cases: 38.7M, Positive PCR: 250k+.
- 3. Total Deaths: 700k. At worst periods, 4000+ COVID-related deaths/day reported.

Infer Case Reproduction

- 1. The Gaussian Process model shows best calibration,
- 2. R_t fluctuates ≈ 1 . Pandemic grows \implies contacts reduce, and visa versa.
- 3. Spikier Cov structure (Matern) might identify interventions more precisely.

(d) $\beta_t \sim GP$ (Gaussian Process with NB)

Figure 5: Comparison of Fixed vs Time-Varying Infection Rate

Forecast Deaths with Viral Load & GP

- . Deaths useful ground truth important epidemic and quantity
- 2. Forecast deaths from real-time cases using observed Case- (CFR_t) , given Fatality-Ratio onset-to-death time (ψ)

Figure 6: Death Forecast

 $D_{t+\psi} = C_t \times CFR_t \qquad (4)$

3. Validate with Leave-Future-Out Prequential Analysis

Table 1: Death Forecast by Incidence Measure

	Deaths (4WA)			Incidence (1WA)		
Incidence	E	MAE	RMSE	E	MAE	RMSE
cases	4506	5947	18633	1.3e5	6.3e5	1.8e5
cases_x_VL_mean	7457	10126	29357	94376	4.6e5	1.4e5
VL_sum_scale	11270	14012	62664	4.0e5	1.9e6	5.0e5

Figure 7: Forecasting Errors: 1WA Cases (top), 4WA Deaths (bottom). Zoom 3rd wave (b,d)

Key Findings

- 1. Inclusion of viral load shows promise to improve forecasts 1WA of incidence and 4WA of deaths,
- 2. GP provides natural and rich way to model time-varying dynamics within epidemic model

Further Work

- 1. More sophisticated scaling of VL may show more consistent improvement.
- 2. Make best use of other important sources of data: hospitalization, mobility.
- 3. Incorporate heterogeneity, social structure e.g. age stratification, spatiality
- 4. Analyse how social interventions may have affected reproduction