Audio Super Resolution

Chen Wang (cwang48), Junwen Bu (junwenbu), Xinying Wang (xinyinw)

CS221 Artificial Intelligence: Principles and Techniques, Stanford University

Introduction

Motivation:

 Audio Super Resolution (Bandwidth) Extension) is a challenge task yet valuable feature widely used in entertainment, education and telecommunication.

Goal:

Generates high-resolution audio from low-quality down-sampled input through increasing resolution temporally.

Input

4 kHz low-resolution audio patches

Output

• 16 kHz high-resolution audio patches

Method and Model

Dataset

Source and Format

- English speech audio from VCTK [2].
- Piano audio from MusicNet [3].

Preprocessing

- Perform 4X downsampling (low-pass filter) on original clips of 16kHz.
- Store 6k+ patches to .h5 to train U-Net.
- LSTM Model: Generate encoding matrix with a resolution of 28 for each step.

Training/Validation/Test (patches)

• Training: 5.4k, Validation: 0.3k, Test: 0.3k.

Training Training Curves: Train losses, LSD keep decreasing, SNR keeps increasing. **Train Loss of UN2 SNR Curve of UN1** Markey markey and a second of the second of **Train Loss of LSTM Model** LSD Curve of UN2 Legend Speech Music epoch

Results and Analysis

Model	Description	Speech		Piano	
		SNR (dB)	LSD	SNR (dB)	LSD
Baseline	Cubic B- spline	17.02	4.71	15.54	3.67
UN1	Block:4, Channel:524	19.70	1.65	21.58	1.54
UN2	Block:5, Channel:1024	19.30	1.63	20.99	1.73
LSTM	Input:32, dropout:0.7	17.66	1.72	19.39	1.83

Table 1 Performance comparison of baseline and our models

$$SNR(x, y) = 10 \log \frac{\|y\|_2^2}{\|x - y\|_2^2}$$

LSD
$$(x, y) = \frac{1}{L} \sum_{l=1}^{L} \sqrt{\frac{1}{K} \sum_{k=1}^{K} (X(l, k) - Y(l, k))^2}$$

where x is prediction signal, y is high-resolution reference signal, X and Y are log-spectral power magnitudes of x and y. I and k index frames and frequencies.

Conclusions

- We studied and addressed the problem of Audio Super Resolution by using U-Net and LSTM-based approaches.
- Multiple experiments are performed to compare the performance (Table 1).
- Our models outperforms baseline both qualitatively and quantitatively (LSD and SNR).

Future Work

- Investigate a new loss to reflect "Spectral Domain" inspired by the idea of TFNet [4].
- Better generalization: Try training data of multi-speaker and more instruments.
- Try approaches such as HMM, GAN.

Reference

Lost some details

frequency band.

Introduces some

aliasing in high

frequency band.

Few training data

variety limits the

generalization.

and contrast in high

[1] V. Kuleshov et al., Audio Super-Resolution Using Neural Nets. CoRR, abs/1708.00853, 2017. [2] CSTR VCTK Corpus.

https://datashare.is.ed.ac.uk/handle/10283/2651

[3] MusicNet: A curated collection of labeld classical music. https://homes.cs.washington.edu/~thickstn/musicnet.html [4] L.Teck-Yia et al, Time-Frequency Networks for Audio

Acknowledgements: CS221 Teaching Staff

Super-Resolution, ICASSP 2018.