R for data analysis

Clinical Research Support Unit

- 1 Data import
- 2 R Markdown
- 3 Data merging
- 4 Creating variables
- 5 Chi-square test
- 6 T-test
- 7 Correlation Analysis
- 8 Linear Regression
- 9 Logistic Regression
- 10 ANOVA

Importing dataset (csv file)

```
# Importing data set in CSV file named 'data1'
# Check your file extensions!! What type of file do you have?
getwd()
data1 <- read.csv("location of the data/data1.csv", header = TRUE)
Install.packages("readxl")
library(readxl)
data1 <- read excel (location of the data/data1.xlsx")
```


Import Excel Data

File/URL:

~/Dropbox/Teaching/USask/Intro to R/2023 Intro To R/data1.xlsx

Data Preview:

id (double)	sex (double)	ethgrp (double)	weight (double)	age (double)	cvd (double) "	stroke (double)	smoking (double)	Cancer (double)	ldl1 (double) "	ldl2 (double)	gender (character)
1	1	3	34	39	0	0	0	1	107	106	f
2	1	3	39	42	0	1	0	1	110	109	f
3	0	2	63	63	1	1	0	0	111	109	m
4	1	2	44	39	0	1	1	0	107	108	f
5	0	2	47	45	1	1	0	0	107	106	m
6	1	2	47	40	0	1	1	1	108	106	f
7	0	2	57	47	1	1	0	1	108	109	m
8	1	2	39	44	0	0	0	0	109	109	f
9	0	3	48	44	1	1	0	0	110	107	m
10	1	1	47	53	0	1	0	0	108	110	f
11	0	2	34	39	0	1	0	1	108	110	m
12	0	3	37	39	0	1	1	1	106	108	m
13	1	3	47	47	1	0	0	1	107	109	f
14	0	2	47	42	1	1	0	0	111	109	m
15	0	3	39	26	1	1	0	0	106	107	m
16	0	3	47	36	1	1	1	0	110	108	m

Previewing first 50 entries.

Import Options:

Code Preview:

library(readxl)
data1 <- read_excel("~/Dropbox/Teaching/USask/Intro to R/2023 Intro To R/data1.xlsx")
View(data1)</pre>

? Reading Excel files using readxl

Import

R Markdown – Killer feature

User created things are amazing

https://rmarkdown.rstudio.com/

Basic idea of R Markdown is to integrate statistical code, output, and interpretation into one generic, reproducible, and transferable file format

If you use it people will think you are magic

Default standard for R users doing exploratory data analysis

R Markdown – Killer feature

Based on generic Markdown # Very simple document formatting language

Markdown Quick Reference

R Markdown is an easy-to-write plain text format for creating dynamic documents and reports. See <u>Using R Markdown</u> to learn more.

Emphasis

```
*italic* **bold**
_italic_ __bold__
```

Headers

```
# Header 1
## Header 2
### Header 3
```

Lists

Unordered List

```
* Item 1
* Item 2
+ Item 2a
+ Item 2b
```


atoumpen weembing torms. Combine torms in a regression model

Setup a new Markdown File

```
# Importing data set in CSV file named 'data2'
data2 <- read.csv("location of the data/data2.csv", header = TRUE)
# merging data1 and data2
data1 <- dplyr::select(data1, id, sex, ethgrp, weight, age, cvd)
data2 <- dplyr::select(data2, id, stroke, smoking, Cancer, ldl1, ldl2, gender)
### joining/merging data
data merge <- dplyr::full join(data1, data2)
data merge1 <- dplyr::full join(data1, data2, by = join by(id))
data merge2 <- dplyr::full join(data1, data2,by = join by(id == id))
```


Importing dataset, Data merging

```
# Importing data set in CSV file named 'data2'
data2 <- read.csv("location of the data/data2.csv", header = TRUE)
# merging data1 and data2
data1 <- dplyr::select(data1, id, sex, ethgrp, weight, age, cvd)
data2 <- dplyr::select(data2, id, stroke, smoking, Cancer, ldl1, ldl2, gender)
### joining/merging data
data merge <- dplyr::full join(data1, data2)
data merge1 <- dplyr::full join(data1, data2, by = join by(id))
data merge2 <- dplyr::full join(data1, data2,by = join by(id == id))
```


Importing data named 'test'

```
test <- read.csv("location of the data/test.csv", header = TRUE)
```

##test

head(test,10)

tail(test,10)

Summary statistics

Need package vtable to describe summary statistics # if vtable is already installed, need to run library only

library(vtable)

st(test)

Creating categorical variables

```
# to create categorial variable 'agecat' using age
summary(test$age)
test <- test %>%
     mutate(age cat = case when(
      age < 45 ~ "<45",
      age >= 45 \& age < 50 \sim "45-49",
      age >= 50 \& age < 59 \sim "50-59",
      age >= 60 \& age < 65 \sim "60-64",
      TRUE ~ "65+"
count(test, age cat)
table(test$age, test$age cat)
```


Chi-square test

```
# Check frequency distribution of a categorical variable
# Cross tabulation
# Chi-square test
# Check frequency distribution of gender
table(test$gender)
# Output:
# gender
# 117 103
```


Chi-square test

m 24 79

Cross tabulation of gender and stroke

table(test\$gender, test\$stroke)

Output

stroke

gender 0 1

f 50 67

Chi-square test

Chi-square test between gender and stroke

chisq.test(test\$gender, test\$stroke)

```
# Output
# Pearson's Chi-squared test with Yates' continuity
correction
```

```
# data: gender and stroke
# X-squared = 8.4179, df = 1, p-value = 0.003715
```


Fisher's exact test

fisher.test(test\$gender, test\$stroke)

```
# Output
# Fisher's Exact Test for Count Data
# data: gender and stroke
# p-value = 0.002674
# alternative hypothesis: true odds ratio is not equal to 1
# 95 percent confidence interval:
# 1.318319 4.628560
# sample estimates:
# odds ratio
# 2.446347
```


T-test (for two independent samples)

```
# First, we check if data follow Normal distribution
# Normality test (if p>0.05: data are normally distributed)
# Want to compare mean ages between male and female
test data female <- filter(test, gender == "f")
shapiro.test(test data female$age)
test data male <- filter(test, gender == "m")
shapiro.test(test data male$age)
# Also check histogtam
hist age gender <- ggplot(test, aes(age)) +
 geom histogram() +
 facet_wrap(~ gender)
```

T-test (for two independent samples)

```
help(t.test)
t.test(age ~ gender, data = test)
Welch Two Sample t-test
data: age by gender
t = -1.9624, df = 200.25, p-value = 0.05111
alternative hypothesis: true difference in means between group f and group m is
not equal to 0
95 percent confidence interval:
-5.26625331 0.01274738
sample estimates:
mean in group f mean in group m
                 53.73786
    51.11111
```

#by default, unequal variance

T-test (for two independent samples)

```
#check variance
var.test(age ~ gender, data = test)
F test to compare two variances
data: age by gender
F = 0.70681, num df = 116, denom df = 102, p-value = 0.07034
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.4830964 1.0293364
sample estimates:
ratio of variances
    0.7068141
```


T-test (for two independent samples

```
# variances are equal based on the test
t.test(age ~ gender, data = test, var.equal = TRUE)
Two Sample t-test
data: age by gender
t = -1.984, df = 218, p-value = 0.04851
alternative hypothesis: true difference in means between group f and group m is
not equal to 0
95 percent confidence interval:
-5.23613291 -0.01737302
sample estimates:
mean in group f mean in group m
                53.73786
   51.11111
```


Wilcoxon non-parametric test for independent samples

#non-parametric test if data are not normally distributed

wilcox.test(age ~ gender, data = test)

Wilcoxon rank sum test with continuity correction

data: age by gender

W = 5020, p-value = 0.03246

alternative hypothesis: true location shift is not equal to 0

Paired t-test for two dependent samples test

#paired t-test for two dependent samples

```
t.test(test$|d|1, test$|d|2, paired = TRUE)
```

Paired t-test

```
data: test$ldl1 and test$ldl2
t = -0.5298, df = 219, p-value = 0.5968
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-0.3003634 0.1730907
sample estimates:
mean difference
-0.06363636
```


Correlation analysis

Pearson correlation coefficient

```
cor.test(test$IdI1, test$IdI2, method = "pearson")
```

```
Pearson's product-moment correlation
data: test$|d|1 and test$|d|2
t = 4.1684, df = 218, p-value = 4.425e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1446265 0.3899574
sample estimates:
    cor
0.2717003
```


Correlation Analysis

#Spearman correlation coefficient

```
cor.test(test$IdI1, test$IdI2, method = "spearman")
```

```
Spearman's rank correlation rho
data: test$|d|1 and test$|d|2

S = 1339899, p-value = 0.0002436
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.2449701
```


Linear Regression

Conduct linear regression model between dependent and independent variables # age is continuous, gender is categorical, ldl is continuous variable linear_model <- lm(age ~ as.factor(gender) + ldl1, data = test) summary(linear model) ### Old School Way install.packages("gtsummary") *library(gtsummary)* tbl_regression(linear_model)

Logistic regression model

```
logistic_model <- glm(Cancer ~ as.factor(gender) + ldl1 + smoking, data = test, family =
"binomial")
summary(logistic model)
## odds ratios and 95% CI (Old School Way)
exp(cbind(OR = coef(logistic model), confint(logistic model)))
## odds ratios and 95% CI (New School way)
tbl regression(logistic model, exponentiate = TRUE)
```


Analysis of variance (ANOVA)

```
# One-way ANOVA
# Pass arguments to aov() function for an ANOVA test
```

```
one.anova <- aov(age ~ ethgrp, data = test)
summary(one.anova)
```


Analysis of variance (ANOVA)

Non-parametric ANOVA

kruskal.test(age ~ ethgrp, data = test)

Kruskal-Wallis rank sum test

data: age by ethgrp

Kruskal-Wallis chi-squared = 15.426, df = 2, p-value = 0.000447

Acknowledgment Jiwon Yoon Prosanta Mondal

