Proyecto final: Diseño y análisis de un sistema de control realimentado

Modelo de caja negra inestable

Profesor a cargo: Helbert Menéses

III-2019

Autores:

Ignacio Mora Calderón, B64657

Belinda Brown Ramírez, B61254

Luis González Martínez, B63060

Escuela de Ingeniería Eléctrica IE-0431 Sistemas de control

Introducción

$$P(s) = \frac{1,131}{(0,016s+1)(0,025s-1)}$$

Escuela de Ingeniería Eléctrica IE-0431 Sistemas de control

Identificación de modelos a lazo cerrado

$$P(s) = \frac{Ke^{-Ls}}{(Ts - 1)}$$

Método de Alfaro VM

Valores obtenidos:

$$K = 1.131$$
; $T = 0.0264$; $L = 0.016$

Método de Chidambaram y Ananth

Valores obtenidos:

$$K = 1.1331$$
; $T = 0.0274$; $L = 0.020$

Método de Ziegler & Nichols

Valores obtenidos:

Kpu = 239126.8795; Tu = 0.000125 s;

K = 1.1303; T= 10.453182; L= 0.00006075

Criterio de IAE

El IAE (Integral Absolute Error) se utiliza para evaluar el mejor modelo.

$$f_{IAE} = \int_{0}^{t} \left| e(t) \right| dt$$

Planta	Alfaro VM	Chidambaram a lazo cerrado	Ziegler & Nichols
0.7898	0.6831	0.7438	3.41

Regla de Alfaro y Vilanova (2013)

Característica	Valor	
$\overline{K_c}$	1.244917247797333	
$T_{m{i}}$	0.395926857827521	
Td	0.006738387160565	
lpha	0.027666910161702	
$oldsymbol{eta}$	0	
γ	0	

Regla de Jhunjhunwala y Chidambaram (2001)

Característica	Valor	
$\overline{K_c}$	1.570602493877289	
$T_{m{i}}$	0.104274715683164	
Td	0.011491500000000	

Regla de Sree, Srinivas y Chidambaram (2004)

Característica	Valor	
$\overline{K_c}$	1.669391377923877	
$T_{m{i}}$	0.319241868613139	
$T_{m{d}}$	0.009834000000000	

Integral del error absoluto (IAE) para las sintonizaciones

	IAE servocontrol	IAE regulatorio
Alfaro y Vilanova	0.01428	0.03958
Jhunjhunwala y Chidambaram	0.01277	0.01089
Sree, Srinivas y Chidambaram	0.01887	0.01712

Respuesta en el tiempo al escalón

Esfuerzo de control

Escuela de Ingeniería Eléctrica IE-0431 Sistemas de control

Sensibilidad del controlador de 1 grado y 2 grados de libertad

$$S(jw) = \frac{1}{1 + C_y(jw)P(jw)}$$

Regla	Valor
Alfaro y Vilanova	3.71
Jhunjhunwala y Chidambaram	2.66
Sree, Srinivas y Chidambaram	1.77

Escuela de Ingeniería Eléctrica IE-0431 Sistemas de control

Conclusiones

IE-0431 Sistemas de control

Elección del controlador para un proceso inestable

Escuela de Ingeniería Eléctrica IE-0431 Sistemas de control

Elección final del controlador

Controlador elegido

Controlador diseñado utilizando la de Regla de Sree, Srinivas y Chidambaram

Referencias Bibliográficas

- [1] Instructivo IE0431 (2019), Sistemas de Control: Proyecto Final: Diseño y Análisis de un Sistema de Control Realimentado, Versión 03.2019, Universidad de Costa Rica. Escuela de Ingeniería Eléctrica.
- [2] V. M. Alfaro, Identificación de modelos de orden reducido a par- tir de La curva de reacción del proceso, Departamento de Automática. Escuela de Ingeniería Eléctrica Universidad de Costa Rica. 2060 Costa Rica, 2006, Obtenido el día 17 de febrero del 2020 de: http://www.kerwa.ucr.ac.cr/bitstream/handle/10669/14623/2647-4127- 1-PB.pdf?seguence=1&isAllowed=y.
- [3] A. Chidambaram, Closed-loop identification of transfer function model for unstable systems, Journal of the Franklin Institute, no. 336, pp. 1055- 1061, 1999.
- [4] V.Alfaro, Evaluación de los modelos utilizados en los estudios del control PID, Ingeniería: Revista de la Universidad de Costa Rica, ISSN 1409-2441, Vol. 17, No. 4, pp. 117-129, 2011.
- [5] C. Sankar & M. Chidambaram, Subspace Identification of Unstable Transfer Function Model for a Magnetic Levitation System. IFAC Proceedings Volumes, Vol. 47, No. 1, pp. 394-399, 2014, Obtenido el día 17 de febrero del 2020 de: https://www.sciencedirect.com/science/ arti- cle/pii/S1474667016326866
- [6] A. O'Dwyer, Handbook of PI and PID controller tuning rules, 3rd ed, Londres: Imperial College Press, pp. 440-480, 2017.
- [7] Manoj K. Jhunjhunwala & M. Chidambaram (2001) PID Controller tuning for unstable systems by optimization method, Chemical Engineering Communications, 185:1, 91-113, DOI: 10.1080/00986440108912857
- [8] V. M. Alfaro & R. Vilanova, Robust tuning of 2DoF PID controllers with filter for unstable first-order plus dead-time processes":, 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, 2013, pp. 1-8.
- [9] R. PadmaSree, M. N. Srinivas & M.Chidambaram, "Asimplemethodof tuning PID controllers for stable and unstable FOPTD systems", Computers and Chemical Engineering 28, Madras, 2004, pp. 2201–2218.
- [10] Ziegler, J.B. y N.B. Nichols Optimum Settings for Automatic Controls", ASME Transactions (EUA), Vol. 64, pág. 759- 768, 1942.

Escuela de Ingeniería Eléctrica

IE-0431 Sistemas de control