

Chapitre VI – Géométrie repérée

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES I - Le produit scalaire 1 1. Définition 1 2. Calcul 2				
3.	Théorème d'Al-Kashi	4		
II - G 6 1. 2. 3. 4.	Éométrie Équation cartésienne d'une droite Vecteurs directeurs d'une droite Vecteurs normaux à une droite Équation cartésienne d'un cercle	5 5 6 9		

I - Le produit scalaire

1. Définition

Soient $\overrightarrow{u} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ deux vecteurs du plan (c'est-à-dire possédant chacun deux coordonnées). Le **produit scalaire** entre u et v, noté $\overrightarrow{u} \cdot \overrightarrow{v}$ est le réel suivant :

À RETENIR 💡

$$\overrightarrow{u}\cdot\overrightarrow{v}=x_1\times x_2+y_1\times y_2$$

De plus, soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} des vecteurs du plan et $\lambda \in \mathbb{R}$ on a les propriétés suivantes :

À RETENIR 💡

$$\begin{array}{ll}
 -\overrightarrow{u}\cdot\overrightarrow{v} = \overrightarrow{v}\cdot\overrightarrow{u} \\
 -\overrightarrow{u}\cdot(\overrightarrow{v}+\overrightarrow{w}) = \overrightarrow{u}\cdot\overrightarrow{v} + \overrightarrow{u}\cdot\overrightarrow{w} \\
 -\lambda(\overrightarrow{u}\cdot\overrightarrow{v}) = (\lambda\overrightarrow{u})\cdot\overrightarrow{v} = \overrightarrow{u}\cdot(\lambda\overrightarrow{v})
\end{array}$$

À l'aide du produit scalaire, il est possible de calculer la **norme** d'un vecteur. Ainsi, soit \overrightarrow{u} un vecteur du plan, sa norme notée $||\overrightarrow{u}||$ vaut :

À RETENIR 🖁

$$||\overrightarrow{u}|| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}}$$

À LIRE 00

On rappelle qu'un vecteur possède 3 caractéristiques :

- Une **norme** (sa longueur, par exemple si $\overrightarrow{u} = \overrightarrow{AB}$ alors $||\overrightarrow{u}|| = AB$)
- Un **sens** (exemple : "de *A* vers *B*" ou "de haut en bas")
- Une **direction** (la direction de la droite que porte le vecteur)

2. Calcul

Il existe plusieurs méthode pour calculer le produit scalaire en fonction de la situation dans laquelle on se trouve. Ainsi, soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs du plan et θ l'angle orienté entre les deux. On a :

À RETENIR 📍

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\theta)$$

Soient A, B et C trois points distincts du plan. On pose P le projeté orthogonal de C sur (AB). Alors :

À RETENIR 💡

Si P ∈ [AB) alors
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AP$$
 Si P ∉ [AB) alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AP$

Si on ne possède que les normes de nos vecteurs, il est possible d'utiliser la formule de polarisation. Ainsi, soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan :

À RETENIR 💡

$$\overrightarrow{u}\cdot\overrightarrow{v}=\frac{1}{2}(||\overrightarrow{u+v}||^2+||\overrightarrow{u}||^2+||\overrightarrow{v}||^2)$$

À LIRE 99

Il faut vraiment trouver la formule à utiliser selon l'énoncé de l'exercice.

Par exemple, si on se trouve dans un repère et que l'on a les coordonnées des vecteurs, on pourra utiliser la formule de la définition. À l'inverse, si on ne possède pas de coordonnées de nos vecteurs mais que l'on possède leur normes, il est possible d'utiliser la formule de polarisation.

Voici un tableau récapitulatif pour \overrightarrow{u} et \overrightarrow{v} vecteurs du plan :

Paramètres	Formule	À utiliser si on pos- sède
	$\overrightarrow{u} \cdot \overrightarrow{v} = x_1 \times x_2 + y_1 \times y_2$ (Calcul à partir des coordonnées.)	Les coordonnées de \overrightarrow{u} et \overrightarrow{v} .
θ est l'angle orienté entre \overrightarrow{u} et \overrightarrow{V} .	$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \times \overrightarrow{v} \times \cos(\theta) \text{ (Calcul à partir des normes et d'un angle.)}$	La norme de \overrightarrow{u} , la norme de \overrightarrow{v} et l'angle entre les deux vecteurs.
On note A et B les deux extrémités de \overrightarrow{u} (idem pour A et C avec \overrightarrow{v}), P est le projeté orthogonal de C sur (AB) .	$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AP$; + si $P \in [AB)$ et – sinon. (Calcul à partir d'une projection orthogonale.)	3 points distincts.
	$\frac{ \overrightarrow{u}+\overrightarrow{v} ^2 + \overrightarrow{u} ^2 + \overrightarrow{v} ^2}{2}$ (Calcul à partir des normes.)	On possède la norme de \overrightarrow{u} , celle de \overrightarrow{v} mais surtout celle de $\overrightarrow{u}+\overrightarrow{v}$.

3. Théorème d'Al-Kashi

Le **théorème d'Al-Kashi** permet de calculer la longueur des côtés de n'importe quel triangle, qu'il soit rectangle ou non. Ainsi, soient A, B et C trois points du plan non alignés (formant donc un triangle) :

À RETENIR 🖁

On pose
$$a = BC$$
, $b = CA$ et $c = AB$. Alors : $c^2 = a^2 + b^2 - 2 \times a \times b \times \cos(\widehat{ACB})$

DÉMONSTRATION 🥮

```
En reprenant les notations de l'énoncé : c^2
= ||\overrightarrow{AB}||^2
= ||\overrightarrow{CB} - \overrightarrow{CA}||^2
= ||\overrightarrow{CB}||^2 - 2(\overrightarrow{CB} \cdot \overrightarrow{CA}) + ||\overrightarrow{CA}||^2 \text{ (par la formule de polarisation)}
= CB^2 - 2(CB \times CA \times \cos(\widehat{ACB})) + CA^2
= a^2 + b^2 - 2 \times a \times b \times \cos(\widehat{ACB})
```

II - Géométrie

1. Équation cartésienne d'une droite

Soit \mathcal{D} une droite. Il est possible de décrire tous les points appartenant à \mathcal{D} par une équation appelée **équation cartésienne**.

À RETENIR 💡

Une équation cartésienne de \mathcal{D} est de la forme ax + by + c = 0 avec $a \neq 0$, $b \neq 0$ et c réels.

x et y sont des coordonnées de points.

À LIRE 99

Il est très facile de dire si oui ou non un point appartient à une droite si l'on possède l'équation cartésienne de cette droite.

Par exemple, on définit la droite \mathcal{D} par l'équation y = x - 1.

Est-ce-que A=(0;1) appartient à \mathcal{D} ? Remplaçons x et y par les coordonnées de A: 1=-1: c'est faux donc A n'appartient pas à \mathcal{D} car les coordonnées de A ne vérifient par l'équation cartésienne de \mathcal{D} .

Est-ce-que B=(4;3) appartient à $\mathcal D$? Remplaçons x et y par les coordonnées de B:3=3: c'est vrai donc B appartient à $\mathcal D$ car les coordonnées de B vérifient l'équation cartésienne de $\mathcal D$.

2. Vecteurs directeurs d'une droite

Soient \mathcal{D} une droite et \overrightarrow{u} un vecteur du plan non nul :

À RETENIR

 \overrightarrow{u} est un **vecteur directeur** de \mathcal{D} si et seulement s'il existe deux points A et B appartenants à \mathcal{D} et tels que $\overrightarrow{u} = \overrightarrow{AB}$.

De plus, on a la propriété suivante qui peut s'avérer très utile :

À RETENIR 📍

 \overrightarrow{v} est un vecteur directeur de \mathcal{D} si et seulement s'il est colinéaire au vecteur \overrightarrow{u} précédent.

Tous les vecteurs d'une droite sont donc colinéaires entre-eux.

À LIRE 00

Exemple : Soit \mathcal{D} la droite définie par l'équation y = 2x + 1, montrer que $\overrightarrow{V} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ est un vecteur directeur de \mathcal{D} .

Prenons deux points au hasard situés sur cette droite :

x = 0 donne y = 1, donc le point A = (0, 1) appartient à \mathcal{D} .

x = 1 donne y = 3, donc le point B = (1, 3) appartient à \mathcal{D} .

Ainsi, un vecteur directeur de \mathcal{D} est $\overrightarrow{u} = \overrightarrow{AB} = \begin{pmatrix} 1 - 0 \\ 3 - 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Il reste à vérifier que \overrightarrow{u} et \overrightarrow{v} sont bien colinéaires, pour cela on peut utiliser la formule vue en seconde :

 $2 \times 2 - 1 \times 4 = 0$: \overrightarrow{u} et \overrightarrow{v} sont bien colinéaires et donc \overrightarrow{v} est un vecteur directeur de \mathcal{D} .

Il est facile de trouver un vecteur directeur d'une droite dont on connait l'équation cartésienne. Soit $\mathcal D$ une droite définie par l'équation ax+by+c=0. Alors :

À RETENIR 💡

 $\overrightarrow{u} = \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de \mathcal{D} .

À LIRE 99

Exemple : Déterminer l'équation cartésienne de la droite \mathcal{D} de vecteur directeur $\overrightarrow{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et passant par A = (1;0).

On a déjà a et b par la propriété précédente :

$$-b=1 \iff b=-1$$

a=2

Une équation cartésienne de la droite est 2x - y + c = 0. Il reste à trouver c. Mais comme \mathcal{D} passe par A, les coordonnées de A vérifient l'équation cartésienne de \mathcal{D} .

Remplaçons x et y par les coordonnées de A dans l'équation cartésienne : $2+c=0 \iff c=-2$.

L'équation cartésienne recherchée est donc 2x - y - 2 = 0 ou encore y = 2x - 2.

Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites respectivement de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} . Alors :

À RETENIR 💡

- \mathcal{D}_1 est parallèle à \mathcal{D}_2 si et seulement si \overrightarrow{u} et \overrightarrow{v} sont colinéaires.
- \mathcal{D}_1 est perpendiculaire à \mathcal{D}_2 si et seulement si $\overrightarrow{u}\cdot\overrightarrow{v}=0$.

À RETENIR 💡

Si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ alors \overrightarrow{u} et \overrightarrow{v} sont dits **orthogonaux**.

3. Vecteurs normaux à une droite

Soient \mathcal{D} une droite de vecteur directeur \overrightarrow{u} et \overrightarrow{n} un vecteur du plan non nul :

À RETENIR \$

 \overrightarrow{n} est un **vecteur normal** à \mathcal{D} si et seulement si \overrightarrow{u} et \overrightarrow{n} sont normaux entre-eux.

De plus, on a la propriété suivante qui peut s'avérer très utile :

À RETENIR

 \overrightarrow{m} est un vecteur normal à \mathcal{D} si et seulement s'il est colinéaire au vecteur \overrightarrow{n} précédent.

Tous les vecteurs normaux d'une droite sont donc colinéaires entre-eux.

Il est facile de trouver un vecteur normal à une droite dont on connaît l'équation cartésienne. Soit \mathcal{D} une droite définie par l'équation ax + by + c = 0. Alors :

À RETENIR 💡

$$\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 est un vecteur normal à \mathcal{D} .

Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites respectivement de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} . Alors :

À RETENIR 🦞

 \mathcal{D}_1 est perpendiculaire à \mathcal{D}_2 si et seulement si \overrightarrow{u} est normal à \mathcal{D}_2 .

À LIRE 99

Exemple : Déterminer l'équation cartésienne de la droite \mathcal{D} admettant pour vecteur normal $\overrightarrow{n} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ et passant par l'origine O = (0;0).

On a déjà a et b par la propriété précédente :

$$a = -1$$

$$b = -1$$

Une équation cartésienne de la droite est -x-y+c=0. Il reste à trouver c. Mais comme $\mathcal D$ passe par l'origine, les coordonnées de O vérifient l'équation cartésienne de $\mathcal D$.

Remplaçons x et y par les coordonnées de O dans l'équation cartésienne : c=0. L'équation cartésienne recherchée est donc -x-y=0 ou encore y=-x.

4. Équation cartésienne d'un cercle

De la même manière que pour les droite, il est possible de décrire l'ensemble des points appartenant à un cercle à l'aide d'une équation. Soit \mathcal{C} un cercle de centre $O=(x_O;y_O)$ et de rayon R.

À RETENIR 💡

Une équation cartésienne de C est de la forme $(x - x_O)^2 + (y - y_O)^2 = R^2$ avec x et y qui sont des coordonnées de points.

Soient A et B deux points du plan. Alors :

À RETENIR 💡

L'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est le cercle de diamètre [AB].

DÉMONSTRATION 🧠

On pose $A = (x_A; y_A)$, $B = (x_B; y_B)$ et on cherche les points M = (x; y) tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

Soit O le milieu de [AB]:

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$$

$$\iff (\overrightarrow{MO} + \overrightarrow{OA}) \cdot (\overrightarrow{MO} + \overrightarrow{OB}) = 0$$

$$\iff (\overrightarrow{MO} + \overrightarrow{OA}) \cdot (\overrightarrow{MO} - \overrightarrow{OA}) = 0$$

$$\iff (\overrightarrow{MO} \cdot \overrightarrow{MO}) - (\overrightarrow{OA} \cdot \overrightarrow{OA}) = 0$$

$$\iff MO^2 - OA^2 = 0$$

$$\iff MO = OA$$

Donc l'ensemble cherché est l'ensemble des points situés à une distance OA du point O, c'est bien le cercle de centre O et de diamètre [AB].

En réalité, les deux points précédents sont deux manières différentes de décrire un cercle.