TP 5.1 - Aritmética Modular

▼ 1. Hallar los resultados de las siguientes operaciones realizadas entre enteros módulo 4 y 5:

Los elementos estarán en $\mathbb{Z}_4=\{\bar{0},\bar{1},\bar{2},\bar{3}\}$ y $\mathbb{Z}_5=\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4}\}.$

 $\bar{3} + \bar{1}$

• En módulo 4

 $\bar{3}+\bar{1}=\bar{4}=\bar{0}$

• En módulo 5

 $\bar{3} + \bar{1} = \bar{4}$

 $\bar{5}-\bar{9}$

• En módulo 4

Reducimos los términos

 $\bar{5} \equiv \bar{1} \mod(4)$

 $\bar{9} \equiv \bar{1} \mod(4)$

 $\bar{5} - \bar{9} = \bar{1} - \bar{1} = \bar{0}$

• En módulo 5

Reducimos los términos

 $\bar{5} \equiv \bar{0} \mod(5)$

 $\bar{9} \equiv \bar{4} \mod(5)$

 $\overline{5} - \overline{9} = \overline{0} - \overline{4} = \overline{-4} = \overline{1}$

 $\bar{40}.\bar{3}$

• En módulo 4

 \circ Reducimos $\overline{40}$

• $\overline{40} \equiv \overline{0} \ mod(4)$

 $\overline{40}\cdot\bar{3}=\bar{0}\cdot\bar{3}=\bar{0}$

• En módulo 5

 \circ Reducimos $\overline{40}$

 $\overline{40} \equiv \overline{0} \ mod(5)$

 $\overline{40}\cdot \bar{3} = \bar{0}\cdot \bar{3} = \bar{0}$

 $(\bar{3}+\bar{2})\cdot(\bar{6}\cdot\bar{8})$

• En módulo 4

 \circ Reducimos $\bar{6}$ y $\bar{8}$

 $\bar{6} \equiv \bar{2} \mod(4)$

 $\overline{8} \equiv \overline{0} \ mod(4)$

 $(\bar{3} + \bar{2}) \cdot (\bar{6} \cdot \bar{8}) = (\bar{5}) \cdot (\bar{2} \cdot \bar{0}) = \bar{1} \cdot \bar{0} = \bar{0}$

• En módulo 5

 \circ Reducimos $\bar{6}$ y $\bar{8}$

 $\bar{6} \equiv \bar{1} \mod(5)$

 $\bar{8} \equiv \bar{3} \mod(5)$

 $(\bar{3} + \bar{2}) \cdot (\bar{6} \cdot \bar{8}) = (\bar{5}) \cdot (\bar{1} \cdot \bar{3}) = \bar{0} \cdot \bar{3} = \bar{0}$

▼ 2. Construir las tablas de sumar y multiplicar de los enteros módulo 2 y 5

Módulo 2

 $\mathbb{Z}_2=\{\bar{0},\bar{1}\}$

Tabla de suma

Tabla de multiplicar

+	$\bar{0}$	ī
ō	$\bar{0}$	ī
ī	ī	ō

•	Ō	Ī.
$\bar{0}$	ō	$\bar{0}$
ī	ō	ī

Módulo 5

$$\mathbb{Z}_5=\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4}\}$$

Tabla de suma

Tabla de multiplicación

+	ō	Ī	$\bar{2}$. 3	ō	$\bar{4}$	Ī	$\bar{2}$
ō	ō	ī	$\bar{2}$	$\bar{0}$ $\bar{3}$	ō	$\bar{4}$	ō	Ō
ī	ī	$ar{2}$	$\bar{3}$	$\bar{1}$ $\bar{4}$	ō	ō	ī	$\bar{2}$
$ar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{2}$ $\bar{0}$	ō	Ī	$ar{2}$	$\bar{4}$
$\bar{3}$	3	$\bar{4}$	ō	$\bar{3}$ $\bar{1}$	ō	$\bar{2}$	3	ī
$\bar{4}$	$\bar{4}$	ō	ī	$\bar{4}$ $\bar{2}$	ō	$\bar{3}$	$\bar{4}$	$\bar{3}$

▼ 3. Analizar si las siguientes son estructuras de grupo:

Para ver si cada estructura es un grupo, debe:

- · Estar bien definida.
- · Ser asociativa.
- · Debe tener un elemento neutro.
- Cada elemento del conjunto debe tener su inverso.

(a) $(\mathbb{Z}_4,+)$ enteros módulo 4 con la suma modular

¿Esta bien definida?

• La suma de dos elementos de \mathbb{Z}_4 sigue en \mathbb{Z}_4 , ejemplo.

$$\circ \ \bar{3} + \bar{2} = \bar{1} \in \mathbb{Z}_4$$

¿Es asociativa?

• La suma de enteros es asociativa, dicha propiedad se conserva bajo \mathbb{Z}_4 .

¿Tiene elemento neutro?

- El elemento neutro para la suma es $ar{0}$, ya que para cualquier $ar{a}\in\mathbb{Z}_4:ar{a}+ar{0}=ar{a}$

¿Cada elemento del conjunto tiene su inverso?

- El inverso de $\bar{0}$ es si mismo $\bar{0}+\bar{0}=\bar{0}.$
- El inverso de $\bar{1}$ es $\bar{3}{:}\ \bar{1}+\bar{3}=\bar{0}$
- El inverso de $\bar{2}$ es si mismo: $\bar{2}+\bar{2}=\bar{0}$
- El inverso de $\bar{3}$ es $\bar{1}$: $\bar{3}+\bar{1}=\bar{0}$

Demostramos las cuatro propiedades, por lo tanto, $(\mathbb{Z}_4,+)$ es grupo.

(b) (\mathbb{Z}_4,\cdot) enteros módulo 4 con el producto modular

¿Esta bien definida?

- El producto de dos elementos en \mathbb{Z}_4 es otro elemento en \mathbb{Z}_4 .
- Ejemplo: $ar{2}\cdot ar{3} = ar{2} \in \mathbb{Z}_4$

¿Es asociativa?

• La multiplicación de enteros es asociativa y esta propiedad se mantiene bajo \mathbb{Z}_4 .

¿Tiene elemento neutro?

• El elemento neutro es $ar{1}$, ya que para cualquier $ar{a}\in\mathbb{Z}_4:ar{a}\cdotar{1}=ar{a}.$

¿Cada elemento del conjunto tiene su inverso?

CONSULTAR

- $ar{0}$ no tiene inverso, ya que $ar{0}\cdot ar{a}=ar{0}$, para cualquier $ar{a}\in \mathbb{Z}_4$.
- $ar{2}$ tampoco tiene inverso, para cualquier $ar{a} \in \mathbb{Z}_4$, $ar{2} \cdot ar{a}$ nunca da $ar{1}$.
- Entonces, no todos los elementos de \mathbb{Z}_4 tienen inverso.

Como no todos los elementos tienen inverso, (\mathbb{Z}_4,\cdot) no es grupo.

(c) (\mathbb{Z}_3,\cdot) enteros módulo 3 con el producto modular

¿Esta bien definida?

• El producto de dos elementos en \mathbb{Z}_3 es otro elemento en \mathbb{Z}_3 .

¿Es asociativa?

• La multiplicación es asociativa, dicha propiedad también está en \mathbb{Z}_3 .

¿Tiene elemento neutro?

• El elemento neutro es $\bar{1}$, ya que para cualquier $\bar{a} \in \mathbb{Z}_3 : \bar{a} \cdot \bar{1} = \bar{a}$.

¿Cada elemento del conjunto tiene su inverso?

CONSULTAR

• $ar{0}$ no tiene inverso, porque para cualquier $ar{a} \in \mathbb{Z}_3: ar{a} \cdot ar{0} = ar{0}.$

Como no todos los elementos tienen inverso, (\mathbb{Z}_3,\cdot) no es grupo.

$$lacklass$$
 4. Sean $A_1=\{ar{0},ar{5}\}$ y $A_2=\{ar{0},ar{2},ar{4},ar{6},ar{8}\}$ subconjuntos de

 \mathbb{Z}_{10}

Probar que A_1 y A_2 son subgrupos de \mathbb{Z}_{10}

Para que A_1 y A_2 sean subgrupos deben:

- · Deben tener elemento neutro.
- Debe estar bien definida y probar el inverso en uno de sus elementos.

¿Es A_1 subgrupo de \mathbb{Z}_{10} ?

- El elemento neutro en \mathbb{Z}_{10} es $ar{0}$ y está en A_1 .
- Si sumamos dos elementos en A_1 , el resultado está en A_1 . Por lo tanto está bien definida.

$$\bar{0}+\bar{0}=\bar{0}\in A_1$$

$$ar{0}+ar{5}=ar{5}\in A_1$$

$$\bar{5} + \bar{5} = \bar{0} \in A_1$$

- Podemos ver que el inverso de $\bar{0}$ es si mismo (trivialmente para $\bar{5}$), ya que la suma con ellos nos da el neutro.
- Por lo tanto, A_1 es subgrupo de $\mathbb{Z}_{10}.$

¿Es A_2 subgrupo de \mathbb{Z}_{10} ?

- El elemento neutro en \mathbb{Z}_{10} es $\bar{0}$ y está en A_2 .
- Podemos ver que la suma entre dos elementos cualquieras de A_2 nos da un elemento de A_2 , por lo tanto está bien definida
- El inverso de $\bar{2}$ es $\bar{8}$, puesto que $\bar{2}+\bar{8}=\bar{0}$. El inverso de $\bar{4}$ es $\bar{6}$, puesto que $\bar{4}+\bar{6}=\bar{0}$.

• Por lo tanto, A_2 es subgrupo de \mathbb{Z}_{10} .

Mostrar que todo elemento de \mathbb{Z}_{10} puede escribirse como suma de elementos de A_1 y A_2 (es decir, para todo x de \mathbb{Z}_{10} , $x=x_1+x_2$ con $x_1\in A_1$ y $x_2\in A_2$)

Primero, los elementos de \mathbb{Z}_{10} son $\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4},\bar{5},\bar{6},\bar{7},\bar{8},\bar{9}\}.$

- Para cada $x\in\mathbb{Z}_{10}$, la expresamos como $x=x_1+x_2$, siendo $x_1\in A_1\wedge x_2\in A_2.$

▼ 5. Mostrar que $\bar{3}$ es un generador del grupo cíclico $(\mathbb{Z}_8,+)$. Cuál es el orden del subgrupo cíclico generado por $\bar{2}$?

Para que $\bar{3}$ sea generador del grupo cíclico $(\mathbb{Z}_8,+)$ debemos ver si sus potencias generan todos los elementos de \mathbb{Z}_8 .

Partiendo de que $\mathbb{Z}_8=\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4},\bar{5},\bar{6},\bar{7}\}$

$$\begin{array}{c} \bar{3}^1 = \bar{3} \\ \bar{3}^2 = \bar{3} + \bar{3} = \bar{6} \\ \bar{3}^3 = \bar{3} + \bar{6} = \bar{9} = \bar{1} \\ \bar{3}^4 = \bar{3} + \bar{1} = \bar{4} \\ \bar{3}^5 = \bar{3} + \bar{4} = \bar{7} \\ \bar{3}^6 = \bar{3} + \bar{7} = \bar{10} = \bar{2} \\ \bar{3}^7 = \bar{3} + \bar{2} = \bar{5} \\ \bar{3}^8 = \bar{3} + \bar{5} = \bar{8} = \bar{0} \end{array}$$

• Podemos ver que obtuvimos todos los elementos de \mathbb{Z}_8 , por lo tanto $\bar{3}$ es generador de \mathbb{Z}_8 .

Para encontrar el orden del subgrupo generado por $\bar{2}$ en \mathbb{Z}_8 tenemos que ver sus múltiplos:

$$\begin{split} \bar{2}^1 &= \bar{2} \\ \bar{2}^2 &= \bar{2} + \bar{2} = \bar{4} \\ \bar{2}^3 &= \bar{2} + \bar{4} = \bar{6} \\ \bar{2}^4 &= \bar{2} + \bar{6} = \bar{0} \end{split}$$

• El subgrupo generado por $\bar{2}$ es $\{\bar{0},\bar{2},\bar{4},\bar{6}\}$, que posee 4 elementos, por lo tanto su orden es 4.

▼ 6. Encontrar los generadores del grupo cíclico $(\mathbb{Z}_6,+)$.

Partiendo de que los elementos de \mathbb{Z}_6 son $\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4},\bar{5}\}$, tenemos que ver cuáles de esos elementos pueden generar a todos los de \mathbb{Z}_6 .

- Un elemento $\bar{a} \in \mathbb{Z}_6$ será un generador si es de orden 6, esto pasa si a y 6 son coprimos.
- Los números que son coprimos con 6 son 1 y 5.

Para $\bar{1}$:

$$\begin{array}{l} \bar{1}^1 = \bar{1} \\ \bar{1}^2 = \bar{2} \\ \bar{1}^3 = \bar{3} \\ \bar{1}^4 = \bar{4} \\ \bar{1}^5 = \bar{5} \\ \bar{1}^6 = \bar{0} \end{array}$$

- Obtenemos todos los elementos de \mathbb{Z}_6 , por lo tanto $\bar{1}$ es generador.

Para $\bar{5}$:

$$\begin{array}{c} \bar{5}^1 = \bar{5} \\ \bar{5}^2 = \bar{5} + \bar{5} = \bar{4} \\ \bar{5}^3 = \bar{5} + \bar{4} = \bar{3} \\ \bar{5}^4 = \bar{5} + \bar{3} = \bar{2} \\ \bar{5}^5 = \bar{5} + \bar{2} = \bar{1} \\ \bar{5}^6 = \bar{5} + \bar{1} = \bar{0} \end{array}$$

- Obtenemos todos los elementos de \mathbb{Z}_6 , por lo tanto $\bar{5}$ también es generador.

Por lo tanto, los generadores de $(\mathbb{Z}_6,+)$ son $\bar{1}$ y $\bar{5}.$

▼ 7. Si reparto en partes iguales m caramelos entre 3 personas, me sobran 2, mientras que si los reparto entre 7, me sobran 4. Sabiendo que m está entre 30 y 70. ¿Cuántos caramelos tengo para repartir? (Usar aritmética modular)

CONSULTAR (me volví mono haciendo esto)

Del enunciado tenemos que:

- Al repartir m caramelos entre 3 personas, sobran 2, o sea:

$$m \equiv_3 2$$

• Al repartir m caramelos entre 7 personas, sobran 4, o sea:

$$m \equiv_7 4$$

• Se nos da que m está entre 30 y 70, o sea:

Queremos encontrar un valor de m que satisfaga:

$$\begin{cases} m \equiv_3 2 \\ m \equiv_7 4 \end{cases}$$

• Teniendo $m \equiv_7 4$, es lo mismo que:

$$m=7k+4$$

- Sustituyendo m=7k+4 en la primera congruencia nos quedaría:

$$7k+4\equiv_3 2$$

• Simplificamos 7k+4 en mod(3):

$$\circ \ \ 7 \equiv_3 1$$
 , por lo que $7k \equiv_3 k$

$$\circ$$
 $4 \equiv_3 1$.

• Así, la congruencia nos quedaría como:

$$k+1\equiv_3 2$$

• Restamos 1 en ambos lados:

$$k \equiv_3 1$$

• Esto significa que k=3j+1. Sustituimos en m=7k+4:

$$m = 7(3j + 1) + 4 = 21j + 7 + 4 = 21j + 11$$

· Por lo tanto:

$$m\equiv_{21}11$$

- Tenemos que buscar valores m que satisfagan $m \equiv_{21} 11$ y que estén en el intervalo 30 < m < 70.
- Esos posibles valores de m son:

$$m = 21(0) + 11 = 11$$

 $m = 21(1) + 11 = 32$
 $m = 21(2) + 11 = 53$
 $m = 21(3) + 11 = 74$

- Descartamos $m=11\ {
 m y}\ m=74\ {
 m porque}\ {
 m se}\ {
 m salen}\ {
 m del}\ {
 m rango}.$
- ullet Para m=32
 - $\circ \ \ \frac{32}{3}=10$, con resto 2, por lo tanto $32\equiv_3 2.$
 - $\circ \frac{32}{7} = 4$, con resto 4, por lo tanto $32 \equiv_7 4$.
- ullet Entonces, m=32 es un valor que satisface todas las condiciones.
- $\bullet \ \ \mathsf{Para} \ m = 53$
 - $\circ \ \ \frac{53}{3}=17$, con resto 2, por lo tanto $53\equiv_3 2$.
 - $\circ \frac{53}{7} = 7$, con resto 4, por lo tanto $53 \equiv_7 4$.
- ullet Entonces, m=53 es un valor que satisface todas las condiciones.

Por lo tanto, los posibles valores que satisfacen las condiciones son:

- m = 32
- m = 53

▼ 8. Averiguar qué día de la semana cayó 05/11/1968, fecha del natalicio de Ricardo Fort

CONSULTAR

Partiendo de 01/11/2024 (viernes) como fecha base, vamos a obtener los siguientes resultados cuando hagamos módulo 7 (7 por los días de la semana):

- 0. Viernes
- 1. Sábado
- 2. Domingo
- 3. Lunes
- 4. Martes
- 5. Miércoles
- 6. Jueves

Para ir desde el 1/11/2024 hasta el 5/11/1968:

- Retrocedemos 56 años. (1/11/1968 1/11/2024)
- · Restamos 4 días adicionales.

Sabemos que entre 1/11/1968 y 1/11/2024 hay 56 años, es decir, 14 ciclos completos de 4 años (4*14=56).

- Cada ciclo de 4 años tiene 1461 días (3*365+366).
- 14 ciclos * 1461 = 20454 días.
- Si restamos 4 días: 20454 + 4 = 20458
- Entonces $20450 \ mod \ 7 = 3$

Por lo tanto, Ricardo Fort nació un martes

▼ 9. Mostrar que \mathbb{Z}_m para m natural y las operaciones de suma y producto tienen estructura de anillo

CONSULTAR

Un anillo es una estructura $(\mathbb{R},+,\cdot)$ que cumple las siguientes propiedades:

- (R,+) es abeliano.
- La multiplicación es cerrada y asociativa.
- La multiplicación se distribuye sobre la suma.

Vamos a ver si $(\mathbb{Z}_m,+,\cdot)$ es un anillo.

¿Es abeliano?

- Sean $a,b \in \mathbb{Z}_m$, sabemos que $a+b \ mod(m) \in \mathbb{Z}_m$, ya que el resultado de sumar dos enteros módulo m es otro entero módulo m. Por lo tanto, está bien definida.
- Para cualquier $a\in\mathbb{Z}_m$, el elemento neutro para la suma es el $\bar{0}$, ya que $a+\bar{0}=a\ mod(m)$. Por lo tanto, el elemento neutro de la suma en \mathbb{Z}_m es $\bar{0}$.
- Para cualquier $a,b,c\in\mathbb{Z}_m:(a+b)+c\equiv_m a+(b+c)$. Entonces, la suma en \mathbb{Z}_m es asociativa.
- Para cada $a \in \mathbb{Z}_m$, existe un elemento $a^{-1} \in \mathbb{Z}_m$ tal que a^{-1} es el inverso de a, es decir, $a + (-a) \equiv_m 0$. Por lo tanto, cada elemento de \mathbb{Z}_m tiene su inverso.
- Para cualquier $a,b\in\mathbb{Z}_m$, se cumple que $a+b\equiv_m b+a$. Por lo tanto, la suma en \mathbb{Z}_m es conmutativa.
- Demostramos que $(\mathbb{Z}_m, +)$ está bien definida, tiene elemento neutro, es asociativa, cada elemento tiene su inverso y es conmutativa, por lo tanto es abeliano.

¿El producto es cerrado y asociativo para \mathbb{Z}_m ?

- Sean $a,b\in\mathbb{Z}_m$, sabemos que $a\cdot b\ mod(m)\in\mathbb{Z}_m$, ya que el producto de dos enteros módulo m es otro entero módulo m. Por lo tanto, el producto en \mathbb{Z}_m está bien definido.
- Para cualquier $a,b,c\in\mathbb{Z}_m$, se cumple que $a\cdot(b\cdot c)\equiv_m(a\cdot b)\cdot c$. Por lo tanto, el producto en \mathbb{Z}_m está bien definido.

¿El producto se distribuye sobre la suma?

- La distribución del producto sobre la suma se cumple (tanto en izquierda como en derecha) ya que es una propiedad heredada de los números enteros bajo la operación módulo m.
- Para cualquier $a,b,c\in\mathbb{Z}_m$

$$a\cdot (b+c)\equiv_m (a\cdot b)+(a\cdot c)\ (b+c)\cdot a\equiv_m (b\cdot a)+(c\cdot a)$$

Demostramos las 3 propiedades para $(\mathbb{Z}_m,+,\cdot)$, por lo tanto, tiene estructura de anillo.

lacktriangledown 10. Dar todos los elementos invertibles de \mathbb{Z}_6

CONSULTAR

Los elementos invertibles en \mathbb{Z}_6 son aquellos que tienen un inverso multiplicativo. Es decir, hallar todos los elementos $a\in\mathbb{Z}_6$ tales que existe un $b\in\mathbb{Z}_6$: $a\cdot b\equiv_6 1$.

- Un elemento $a \in \mathbb{Z}_m$ es invertible si el máximo común divisor con m (en nuestro caso 6) es 1, o sea, los coprimos con 6.
- Sabiendo que $\mathbb{Z}_6=\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4},\bar{5}\}$
 - mcd(0,6) = 6
 - mcd(1,6) = 1
 - mcd(2,6) = 2
 - omega mcd(3,6) = 3
 - mcd(4,6) = 2
 - mcd(5,6) = 1
 - $\circ~$ Podemos ver que los candidatos a elementos invertibles son $\bar{1}$ y $\bar{5}.$
- Para $\bar{1}$, su inverso es $\bar{1}$, ya que $1 \cdot 1 \equiv_6 1$.
- Para $\bar{5}$, su inverso es $\bar{5}$, ya que $5\cdot 5=25\equiv_6 1$.

Por lo tanto, los elementos invertibles de \mathbb{Z}_6 son $\{\bar{1},\bar{5}\}$.

lacklash 11. Sea m un entero impar, probar que $m^2\equiv_4 1$

Del enunciado sabemos que m es un entero impar, lo podemos escribir como:

$$m=2k+1 \ k\in \mathbb{Z}$$

Elevamos m al cuadrado:

$$m^2 = (2k+1)^2$$

Binomio al cuadrado:

$$m^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$$

Podemos ver que $4(k^2+k)$ es múltiplo de 4, por lo tanto:

$$m^2 \equiv_4 1$$

Demostramos que si m es impar, entonces $m^2\equiv_4 1$, debido a que el resto de m^2 dividido 4 es 1, para cualquier m impar.

lackloss 12. Dar todos los elementos invertibles de \mathbb{Z}_6

Ver inciso 10.

▼ 13. Si \bar{a} es invertible entonces no es divisor de cero

Sea $\bar{a}\in\mathbb{Z}_n$, \bar{a} es invertible si existe algún $\bar{b}\in\mathbb{Z}_n$ tal que $\bar{a}\cdot\bar{b}=\bar{1}.$

• Esto es posible si a y n son coprimos, es decir, mcd(a, n) = 1.

Decimos que $\bar{a} \in \mathbb{Z}_n$ es un divisor de cero si existe un $\bar{c} \in \mathbb{Z}_m$ distinto de $\bar{0}$ tal que $\bar{a} \cdot \bar{c} = \bar{0}$.

• El producto de \bar{a} con algún elemento no nulo da $\bar{0}$.

Si \bar{a} es invertible, entonces existe un $\bar{b}\in\mathbb{Z}_n$: $\bar{a}\cdot\bar{b}=\bar{1}$. Supongamos que \bar{a} es un divisor de cero, es decir, que existe un $\bar{c}\in\mathbb{Z}_n$ no nulo que $\bar{a}\cdot\bar{c}=\bar{0}$.

Entonces, tenemos dos igualdades:

- $\bar{a} \cdot \bar{b} = \bar{1}$
- $\bar{a} \cdot \bar{c} = \bar{0}$

Multiplicamos $ar{b}$ en ambos lados de la segunda igualdad

$$\bar{b} \cdot (\bar{a} \cdot \bar{c}) = \bar{b} \cdot \bar{0}$$

Asociatividad:

$$(\bar{b}\cdot\bar{a})\cdot\bar{c}=\bar{0}$$

Como \bar{b} es el inverso de \bar{a} :

$$\bar{1} \cdot \bar{c} = \bar{0}$$
 $\bar{c} = \bar{0}$

Llegamos a una contradicción, ya que si \bar{a} es divisor de cero, necesariamente $\bar{c} \neq \bar{0}$. Por lo tanto, la suposición de que \bar{a} es un divisor de cero es errónea.

Entonces, podemos decir que si \bar{a} es invertible en \mathbb{Z}_n , entonces no puede ser un divisor de cero en \mathbb{Z}_n .

lacktriangledown 14. Probar que (t,m)=1 si y solo si t es invertible módulo

m

Si (t,m)=1, entonces t es invertible módulo m.

• Si (t,m)=1, significa que el MCD de ambos es 1. A partir de Bezout podemos decir que:

$$tx + my = 1$$

 $x, y \in \mathbb{Z}$

• Tomando esa ecuación módulo m obtenemos:

$$tx \equiv_m 1$$

- Esto muestra que x es un inverso de t. Por lo tanto, t es invertible módulo m cuando (t,m)=1.

Si t es invertible módulo m, entonces (t, m) = 1.

- Que t sea invertible módulo m significa que existe un $x \in \mathbb{Z}$ tal que:

$$tx \equiv_m 1$$

· Lo que implica que:

$$tx-1=my$$

• Para algún $y \in \mathbb{Z}$:

$$tx + m(-y) = 1$$

• Esta es una combinación lineal de t y m que resulta ser 1, esto es similar al teorema de Bezout:

$$tx+m(-y)=1\to mcd(t,m)=1$$

Entonces, demostramos ambas implicaciones y podemos concluir con que el enunciado es verdadero.

▼ 15. Si p es primo entonces \mathbb{Z}_p es un cuerpo

Para que \mathbb{Z}_p sea un cuerpo debe cumplir:

- Ser un abeliano para la suma.
- Ser un abeliano para el producto.

· Distributiva del producto con respecto a la suma.

¿Es abeliano para la suma?

- Sean $a,b\in\mathbb{Z}_p$, sabemos que $a+b\ mod(p)\in\mathbb{Z}_p$, ya que el resultado de sumar dos enteros módulo p es otro entero módulo p. Por lo tanto, está bien definida.
- Para cualquier $a,b,c\in\mathbb{Z}_p:(a+b)+c\equiv_p a+(b+c)$, ya que se hereda esa propiedad de \mathbb{Z} . Entonces, la suma en \mathbb{Z}_p es asociativa.
- El elemento neutro para la suma en \mathbb{Z}_p es $\bar{0}$, ya que para cualquier $\bar{a} \in \mathbb{Z}_p : \bar{a} + \bar{0} = \bar{a}$. Por lo tanto, el elemento neutro para la suma en \mathbb{Z}_p es $\bar{0}$.
- Para cada $\bar{a} \in \mathbb{Z}_p$, existe un inverso $\bar{a}^{-1} \in \mathbb{Z}_p$ tal que $\bar{a} + \bar{a}^{-1} = \bar{0}$. Por lo tanto, cada elemento de \mathbb{Z}_p tiene su inverso.
- Entonces, podemos decir que \mathbb{Z}_p para la suma es abeliano.

¿Es abeliano para el producto?

- Sean $a, b \in \mathbb{Z}_p$, sabemos que $a \cdot b \ mod(p) \in \mathbb{Z}_p$, ya que el resultado de multiplicar dos enteros módulo p es otro entero módulo p. Por lo tanto, está bien definida.
- Para cualquier $a,b,c\in\mathbb{Z}_p:(a\cdot b)\cdot c\equiv_p a\cdot (b\cdot c)$, ya que se hereda esa propiedad de \mathbb{Z} . Entonces, la suma en \mathbb{Z}_p es asociativa.
- El elemento neutro para el producto en \mathbb{Z}_p es $\bar{1}$, ya que para cualquier $\bar{a} \in \mathbb{Z}_p : \bar{a} \cdot \bar{1} = \bar{a}$. Por lo tanto, el elemento neutro para el producto en \mathbb{Z}_p es $\bar{1}$.
- Si p es primo, por Euclides sabemos que mcd(a,p)=1, para cualquier $a\neq 0$ en \mathbb{Z}_p . Es decir, para cada $\bar{a}\in\mathbb{Z}_p:\bar{a}\neq\bar{0}$ existe un $\bar{b}\in\mathbb{Z}_p:\bar{a}\cdot\bar{b}=\bar{1}$
 - \circ Este inverso es garantizado porque a y p son coprimos, permitiéndonos aplicar Bézout

$$ax + py = 1$$

- $\circ~$ De esto obtenemos $ax\equiv_p 1$, lo que muestra que x es el inverso de a para la multiplicación.
- Entonces, es válido decir que \mathbb{Z}_p con el producto es abeliano.

¿El producto se distribuye para la suma?

- El producto es distributivo respecto a la suma en \mathbb{Z}_p , es decir:

$$ar{a}\cdot(ar{b}+ar{c})=ar{a}\cdotar{b}+ar{a}\cdotar{c}$$

Demostramos que \mathbb{Z}_p cumple todas las propiedades, por lo tanto es un cuerpo cuando p es primo.

TP 5.1 - Aritmética Modular