UNITED STATES DEPARTMENT OF COMMERCE.
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.usplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/650,622	08/28/2003	Andrew C. Glass	MS303288.1/MSFTP429US	7730
	7590 01/29/2008		EXAMINER AUGUSTINE, NICHOLAS ART UNIT PAPER NUMBER 2179	
24TH FLOOR,	CY & CALVIN, LLP NATIONAL CITY CENT	ER		
1900 EAST NI CLEVELAND	NTH STREET . OH 44114			
	, / /			
	•	•	C NOTIFICATION DATE	DELIVERY MODE
			NOTIFICATION DATE	DELIVERY MODE
			01/29/2008	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

docket1@thepatentattorneys.com hholmes@thepatentattorneys.com osteuball@thepatentattorneys.com

			_			
3	Application No.	Applicant(s)	-t			
	10/650,622	GLASS, ANDREW C.				
Office Action Summary	Examiner	Art Unit				
	Nicholas Augustine	2179				
The MAILING DATE of this communication app Period for Reply	pears on the cover sheet with the o	correspondence address				
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DATE - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period variety received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tir will apply and will expire SIX (6) MONTHS from , cause the application to become ABANDONE	N. nely filed the mailing date of this communication. ED (35 U.S.C. § 133).				
Status						
1) Responsive to communication(s) filed on 30 O	<u>ctober 2007</u> .	•				
·	·					
3) Since this application is in condition for allowar	nce except for formal matters, pro	osecution as to the merits is				
closed in accordance with the practice under E	Ex parte Quayle, 1935 C.D. 11, 4	53 O.G. 213.				
Disposition of Claims		•				
4) ⊠ Claim(s) 1-16,18-45 and 47-66 is/are pending 4a) Of the above claim(s) is/are withdray 5) □ Claim(s) is/are allowed. 6) ⊠ Claim(s) 1-16, 18-45 and 47-66 is/are rejected 7) □ Claim(s) is/are objected to. 8) □ Claim(s) are subject to restriction and/o	wn from consideration.					
Application Papers						
9) The specification is objected to by the Examine 10) The drawing(s) filed on is/are: a) accomplicated any not request that any objection to the Replacement drawing sheet(s) including the correct 11) The oath or declaration is objected to by the Example 11.	epted or b) objected to by the drawing(s) be held in abeyance. Se tion is required if the drawing(s) is ob	e 37 CFR 1.85(a). ejected to. See 37 CFR 1.121(d).				
Priority under 35 U.S.C. § 119						
12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority document 2. Certified copies of the priority document 3. Copies of the certified copies of the priority application from the International Bureau * See the attached detailed Office action for a list	s have been received. s have been received in Applicat rity documents have been receiv u (PCT Rule 17.2(a)).	ion No ed in this National Stage				
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail D 5) Notice of Informal I 6) Other:	ate				

10/650,622 Art Unit: 2179 Page 2

DETAILED ACTION

- A. This action is in response to the following communications: Request for Continued Examination filed 10/30/2007.
- B. Claims 1-16, 18-45 and 47-66 remains pending.

Continued Examination Under 37 CFR 1.114

C. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 10/30/2007 has been entered.

Claim Rejections - 35 USC § 101

1. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

2. Claims 54-62 are rejected under 35 U.S.C. 101 because claims 54-62 are directed to a program per se as they are directed to a graphical user interface, which as described in the specification is mere software; a computer program per se is not included in one of the statutory categories of invention and is believed to be non-statutory, more information about this matter is covered in the Annex IV of the Interim Guidelines for Subject matter Eligibility.

http://www.uspto.gov/web/offices/pac/dapp/opla/preognotice/guidelines101 20051026.pdf

Claim Rejections - 35 USC § 103

- 3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 4. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- 5. Claims 1, 3-6, 9-28, 38-41, 44-47, 49-54, 56-57 and 59-60 and 63-66 are rejected under 35 U.S.C. 103(a) as being unpatentable over Gray et al (US 6,674,403) in view of Tang et al (US 7,139,557) in further view of Smith et al (US 2003/0124977), herein referred to as "Gray", "Tang" and "Smith" respectively.

As to claim 1, Gray teaches a system that facilitates discovery and display of devices (Abstract; fig. 1, labels 120, 130, 140; col. 6, lines 26-43, lines 54-64), comprising: a detection component (fig. 1; col. 6, lines 26-64, col. 10, lines 35-42) that dynamically identifies a multi-dimensional location of one or more other wireless devices (fig. 1, label 120; col. 6, lines 31-38) of a network relative to the detection component (fig. 6; col. 13, lines 16-31, that with a ability to determine the location of the mobile devices, that the wireless devices can be identified within wireless network); and a display component that renders a multi-dimensional representation of respective locations of the devices on the detection component (fig. 1, label 140; col. 6, lines 56-64; fig. 7; col. 14, lines 47-59).

Gray does not explicitly teach the detection component located on a first wireless device.

However, Tang teaches the detection component located on a first wireless device (Abstract, line 1-10; col. 1, lines 15-21); fig. 1, label "C/D"; fig. 3, label "Communication and Detection Device", that "C/D" is the first detection wireless device; col. 5, lines 39-64; fig. 1, label "C"; col. 5, lines 5-37, that "C" is clients, which are wireless devices (for example, a cell phone, a PDA, a laptop, or a similar device).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Gray by having the detection component located on a first wireless device as taught by Tang in order to provide the wireless devices with the abilities to discover and directly/indirectly interact with each other over short-range wireless communication system utilizing the radio frequency spectrum.

10/650,622 Art Unit: 2179

Gray in view of Tang does not specifically teach the detection component automatically extends a sensing range to detect at least one of a predetermined type of the devices; however in the same field of endeavor Smith does. In paragraphs 32, 46, 49 and 50 Smith teaches an automatic extension of range to detect wireless nodes. A person of ordinary skill in the art at the time of the invention, upon reading the reference of Smith, would also have recognized the desirability of improved methods of having a greater range in a network for better signals within an area as well as to include more wireless devices with an extended range. Smith also inherently discloses to one of ordinary skill in the art that extending the range includes the benefit of detecting more wireless devices. Thus, it would have been obvious to a person of ordinary skill in the art to try the extension in range of Smith in an attempt to detect more wireless devices in an area for improved performance of the system of Gray in view of Tang, as a person with ordinary skill has good reason to pursue the known options within his or her technical grasp.

As to claim 3, Gray further teaches the respective locations of the one or more devices are displayed relative to the first device (fig. 1, label 120; Col. 6, lines 31-38; fig. 6; col. 13, lines 16-31, that using clustering statistics to group devices in different locations).

As to claim 4, Gray further teaches the respective locations of at least one of the devices and the first device are displayed on the first device relative to a fixed point (fig.

6; label 610; col. 13, lines 16-31, that using clustering statistics to group devices in different locations and fixed point is at label 610).

As to claim 5, Gray further teaches the respective locations of the devices whether moving or stationary (col. 4, lines 47-63) are displayed dynamically relative to the first device while the new device is moving (Abstract, that when a defined space is set, the first device can move or stationary; fig. 7; col. 14, lines 47-59).

As to claim 6, Gray further teaches the first device and one or more devices are moving such that the respective locations of the one or more moving devices (col. 4, lines 47-63) are presented dynamically via the display component (Abstract, that when a defined space is set, the device can move or stationary; fig. 7; col. 14, lines 47-59).

As to claim 9, Gray further teaches a filter that filters out barrier materials interstitial to one or more of the devices and the first device such that the devices may be sensed and displayed (col. 12, lines 8-29; col. 14, lines 47-59, that by adjusting the strength of the signal it will override the barriers and allow the devices to be sensed (located) and displayed via the graphical user interface).

10/650,622

Art Unit: 2179

As to claim 10, Gray further teaches a filter that accesses a lookup table of barrier material properties to facilitate sensing and presenting one or more of the devices that are located beyond the corresponding barrier materials (col. 12, lines 8-29 and lines 40-49; col. 14, lines 47-59, that by adjusting the strength of the signal it will override the barriers and allow the devices to be sensed (located) and displayed via the graphical user interface).

As to claim 11, Gray further teaches a filter that selects a subset of the devices according to at least one of frequency bandwidth and wireless technology (fig. 14, label 127; col. 6 lines 20-25, that IEEE 802.11 standard transmits on the 2.4 GHz frequency (band) and the Bluetooth transmits on the same (band) but has 79 channels each 1 MHz wide; col. 15, lines 61-67; col. 16, lines 1-4).

As to claim 12, Gray further teaches the detection component utilizes analytical results of radio wave characteristics to dynamically determine a location of walls, floors, and other barriers within a given space (col. 3, lines 42-50; col. 4. lines 37-45).

As to claim 13, Gray further teaches the devices include at least one of wireless input devices, wireless peripheral devices, and wireless network access points (col. 6, lines 21-26).

As to claim 14, Gray further teaches the input devices include at least one of a mouse and a keyboard (col. 6, lines 20-25 and 34-38, that a wireless laptop inherently has a keyboard and further a PDA can incorporate a keyboard and mouse with Bluetooth technology).

As to claim 15, Gray further teaches the first device communicates in at least one of a 2.4 GHz and 5 GHz radio band (col. 6, lines 20-25 that IEEE 802.11 standard transmits on the 2.4 GHz frequency (band)).

As to claim 16, Gray further teaches the first device communicates according to at least one of an IEEE 802.11 standard, an ultra wideband regime, and a radio frequency identification regime (col. 6, lines 20-25, that IEEE 802.11 standard transmits on the 2.4 GHz frequency (band)).

As to claim 17, Gray further teaches the detection component automatically extends a sensing range to detect at least one of a predetermined type of the devices. (col. 10, lines 35-42).

As to claim 18, Gray further teaches the detection component automatically extends a sensing range to detect a predetermined number of the devices (col. 10, lines 35-42).

As to claim 19, Gray further teaches a communication component that receives a map of device locations, which map is presented by the display component in the two-or three-dimensional representation (fig. 7; col. 14, lines .47-59).

As to claim 20, Gray further teaches the display component presents at least, one of a graphical representation of the devices and a corresponding textual identifier (col. 14, lines 38-51).

As to claim 21, Gray further teaches a portable terminal device according to the system of claim 1 (col. 6, lines 34-38, that the personal digital assistant (PDA) is a portable terminal).

As to claim 22, Gray further teaches a computer according to the system of claim 1 (col. 6, lines 34-38, describing a wireless laptop computer).

10/650,622 Art Unit: 2179

As to claim 23, Gray further teaches a classifier that automatically determines which of the devices is available for use by a user of the new device, and which of the available devices to direct the user (fig. 1, label 110; col. 6, lines 52-67; col. 7, lines 1-9, that the system manager provides an interface to other systems that are available).

As to claim 24, Gray further teaches the classifier directs the user of the first device to the available devices by presenting the two- or three-dimensional representation to the user (fig. 7; col. 6, lines 52-67; col. 7, lines 1-9; col. 14, lines 47-59, that the other devices are shown on a display).

As to claim 25, Gray further teaches the classifier is a support vector machine (col. 9, lines 1-14 and lines 41-46).

As to claim 26, Gray further teaches the available devices include data ports (fig. 1, labels, 110, 160; col. 9, lines 1-14, that the access points include data ports to collect data result).

As to claim 27, Gray further teaches the detection component conserves power by beginning at a low signal strength and automatically increasing the signal strength

until the desired result is reached (fig. 3b; col. 10, lines 5-59; col. 11, lines 6-9; col. 12, lines 8-23, that by training based on the strength of the signal the model is developed off the information to produce the desired results).

As to claim 28, Gray further teaches the result includes at least one of detecting a predetermined number of the devices, detecting a predetermined number of device types, and reaching a predetermined signal strength (fig. 1; fig. 6; col. 6, lines 26-64; col. 10, lines 35-42; col. 13. lines 16-31).

As to claim 38, Gray teaches a method of discovering and displaying devices (Abstract; fig. 1, labels 120, 130, 140; col. 61 lines 26-43, lines 54-64) comprising: dynamically detecting (fig. 1; col. 6, lines 26-64, col. 10, lines 35-42) a multi-dimensional location of a wireless device relative to the detection component (fig. 6; col. 13, lines 16-31, that with the ability to determine the location of the mobile device); and presenting a multi-dimensional representation of the locations of the devices on the portable terminal (fig. 1, label 140; col. 6, lines 56-64; fig. 7; col. 14, lines 47-59).

Gray does not explicitly teach the method of discovering and displaying devices (detection component) is employing a portable terminal.

However, Tang teaches the method of discovering and displaying devices (detection component) is employing a portable terminal (Abstract, line 1-10; col. 1, lines

15-21); fig. 1, label "C/D"; fig. 3, label "Communication and Detection Device", that "C/D" is the first detection wireless device (portable terminal); col. 5, lines 39-64; fig.1, label "C"; col. 5, lines 5-37, that "C" is clients, which are wireless devices (for example, a cell

phone, a PDA, a laptop, or a similar device).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Gray by having the method of discovering and displaying devices is employing a portable terminal as taught by Tang in order to provides the wireless devices abilities to directly and indirectly interact with each other over short-range, wireless communication system using Radio Frequency).

Gray in view of Tang does not specifically teach the detection component automatically extends a sensing range to detect at least one of a predetermined type of the devices; however in the same field of endeavor Smith does. In paragraphs 32, 46, 49 and 50 Smith teaches an automatic extension of range to detect wireless nodes. A person of ordinary skill in the art at the time of the invention, upon reading the reference of Smith, would also have recognized the desirability of improved methods of having a greater range in a network for better signals within an area as well as to include more wireless devices with an extended range. Smith also inherently discloses to one of ordinary skill in the art that extending the range includes the benefit of detecting more wireless devices. Thus, it would have been obvious to a person of ordinary skill in the art to try the extension in range of Smith in an attempt to detect more wireless devices in an area for

10/650,622 Art Unit: 2179

improved performance of the system of Gray in view of Tang, as a person with ordinary skill has good reason to pursue the known options within his or her technical grasp.

As to claim 39, Gray further teaches the location of the device is displayed relative to the portable terminal (fig. 6; col. 13, lines 16-31, that using clustering statistics to group devices in different locations).

As to claim 40, Gray further teaches dynamically displaying the multi\-dimensional representation of the location of the device relative to the portable terminal when the portable terminal is moving (Abstract, that when a defined space is set, the device can move or stationary; fig. 7; col. 14, lines 47-59).

As to claim 41, Gray further teaches dynamically displaying the multi\dimensional representation of the location of the device relative to the portable terminal
when both the device and the portable terminal are moving (Abstract, that when a
defined space is set, the devices can move or stationary; fig. 7; col. 14, lines 47-59).

As to claim 44, Gray further teaches the filtering out barrier materials interstitial to the devices and the new device such that the devices may be sensed (col. 12, lines 8-29; col.

10/650,622 Art Unit: 2179

14, lines 47-59, that by adjusting the strength of the signal it will override the barriers and allow the devices to be sensed (located)).

As to claim 45, Gray further teaches the device is one of a wireless input device, wireless peripheral device, and wireless network access (col. 6, lines 21-26).

As to claim 46, Gray further teaches automatically extending a sensing range to detect the device (col. 10, lines 35-42).

As to claim 47, Gray further teaches comprising automatically extending a sensing range to detect a predetermined number of the devices (col. 10, lines 35-42).

As to claim 49, Gray further teaches proxying the portable terminal through a device location system such that the location of the wireless device is obtained and presented on the portable terminal (col. 3, lines 31-41, that the mobile device can access to one or more networks).

10/650,622

Art Unit: 2179

As to claim 50, Gray further teaches generating at least one map in response to detecting the wireless device, the map presented on the portable terminal to show the location of the device (fig. 7; col. 14, lines 47-59).

As to claim 51, Gray further teaches the map is generated dynamically in at least one of a background and a foreground (col. 6, lines 65-67; col. 7 lines 1-10, that by generating the map in memory (background) and displaying the current location by

As to claim 52, Gray further teaches the map is presented while another map is being generated in the background (fig 7; col. 6, lines 4-6; col. 7, lines 1-10, that by generating the map in memory (background) and displaying the current location on the mobile device).

As to claim 53, Gray teaches a system that facilitates the discovery and display of devices (Abstract; fig. 1, labels 120, 130, 140; col. 6, lines 26-43, lines 54-64), comprising: means for dynamically detecting a multi-dimensional physical location of [[a]] one or more other wireless devices (fig. 1, label 120; col. 6, lines 24-64, col. 10, lines 35-42; fig. 6; col. 13, lines 16-31, that with the ability to determine the location of the mobile device that the device can be identified within a wireless network) on the network relative to a detection component (fig. 1, label 140; col. 6, lines 56-64);

and means for presenting on [[a]] the detection component a multi-dimensional representation of the physical location of the device relative to the portable terminal (fig. 7; col. 14, lines 47-59);

Gray does not explicitly teach the detection component is a portable terminal.

However, Tang teaches the detection component is a portable terminal (Abstract, line 1-10; col. 1, lines 15-21); fig. 1, label "C/D"; fig. 3, label "Communication and Detection Device", that "C/D" is the first detection wireless device (portable terminal); col. 5, lines 39-64; fig.1, label "C"; col. 5, lines 5-37, that "C" is clients, which are wireless devices (for example, a cell phone, a PDA, a laptop, or a similar device).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Gray by having the detection component is a portable terminal as taught by Tang in order to provide the wireless devices that is portable in nature with the ability to discover and directly/indirectly interact with each other over short-range wireless communication system using radio frequency spectrum.

Gray in view of Tang does not specifically teach the detection component automatically extends a sensing range to detect at least one of a predetermined type of the devices; however in the same field of endeavor Smith does. In paragraphs 32, 46, 49 and 50 Smith teaches an automatic extension of range to detect wireless nodes. A person of ordinary skill in the art at the time of the invention, upon reading the reference of Smith, would also have recognized the desirability of

10/650,622

Art Unit: 2179

improved methods of having a greater range in a network for better signals within an area as well as to include more wireless devices with an extended range. Smith also inherently discloses to one of ordinary skill in the art that extending the range includes the benefit of detecting more wireless devices. Thus, it would have been obvious to a person of ordinary skill in the art to try the extension in range of Smith in an attempt to detect more wireless devices in an area for improved performance of the system of Gray in view of Tang, as a person with ordinary skill has good reason to pursue the known options within his or her technical grasp.

As to claim 54, Gray teaches a graphical user interface of a computer that facilitates the discovery and display of wireless devices (Abstract; fig. 1, labels 120, 130, 140; coil 6, lines 26-43, lines 54-64), the interface comprising: an input component for processing management an input component for processing management (col. 14, lines 63-67; col. 15, lines 1-5, that the pop-up text message box or icon receive input function), the management information is associated with at least one of configuring the computer according to configuration information (fig. 6; col. 13, lines 16-31, that with a ability to determine the location of the mobile devices within wireless network) and detecting the device locations (fig. 1; col. 6, lines 26-64, col. 10, lines 35-42); and a presentation component for presenting a 2-D or 3-D representation of the locations of one or more of the detected devices based upon the management information (fig. 7; col. 14,~lines 47-59).

Art Unit: 2179

Gray does not explicitly teach on a network relative to a detected portable terminal.

However, Tang teaches on a network relative to a detected portable terminal.

(Abstract, line 1-10; col. 1, lines 15-21); fig. 1, label "C/D"; fig, 3, label "Communication and Detection Device", that "C/D" is the first detection wireless device (portable

terminal); col. 5, lines 39-64; fig.1, label "C"; col. 5, lines 5-37, that "C" is clients, which are wireless devices (for example, a cell phone, a PDA, a laptop, or a similar device).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Gray by having a network relative to a detected portable terminal as taught by Tang in order to provide the wireless devices with the abilities to discover and directly/indirectly interact with a network over short-range wireless communication system utilizing the radio frequency spectrum.

Gray in view of Tang does not specifically teach the detection component automatically extends a sensing range to detect at least one of a predetermined type of the devices; however in the same field of endeavor Smith does. In paragraphs 32, 46, 49 and 50 Smith teaches an automatic extension of range to detect wireless nodes. A person of ordinary skill in the art at the time of the invention, upon reading the reference of Smith, would also have recognized the desirability of improved methods of having a greater range in a network for better signals within an area as well as to include more wireless devices with an extended range. Smith also inherently discloses to

one of ordinary skill in the art that extending the range includes the benefit of detecting more wireless devices. Thus, it would have been obvious to a person of ordinary skill in the art to try the extension in range of Smith in an attempt to detect more wireless devices in an area for improved performance of the system of Gray in view of Tang, as a person with ordinary skill has good reason to pursue the known options within his or her technical grasp.

As to claim 56, Gray further teaches the filter criteria comprises at least one of wireless technology and frequency bandwidth (fig. 14, label 127; col. 6 lines 20-25, that IEEE 802.11 standard transmits on the 2.4 GHz frequency (band) and the Bluetooth transmits on the same (band) but has 79 channels each 1 MHz wide; col. 15, lines 61-67; col. 16, lines 1-4).

As to claim 57, Gray further teaches a mapping feature that maps a representative location in space of [[a]] the detected terminal [[devices]] relative to other detected devices (fig. 7; col. 14, lines 47-59).

As to claim 59, Gray further teaches a mapping feature that automatically maps device location information according to predetermined spatial criteria (col. 12, lines 8-33 and lines 40-49; col. 14, lines 47-59, that by adjusting the strength of the signal it will

sense and locate the devices that are selected based on data provided from being trained).

As to claim 60, Gray further teaches a graphical floor layout of individual device location graphics, wherein the floor layout and location graphics are selectable (fig. 7, labels 710, 720; col. 14, lines 47-59).

6. Claims 2, 55 and 62 are rejected under 35 U.S.C. 103(a) as being unpatentable over Gray in view of Tang and further in view of Miyake et al. (US Pub 2001/0042118), hereinafter "Miyake".

As to claim 2, Gray and Tang do not teach the multi-dimensional location is a three-dimensional location.

However, Miyake teaches the multi-dimensional location is a three-dimensional location (Abstract, lines 19-20; fig. 78, label 47; par [0233], lines 1-6).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having the multi-dimensional location is a three- dimensional location as taught by Miyake in order to view and manipulate the display in the respective display areas easily (Miyake: Abstract, lines 19-23).

As to claim 55, Gray and Tang not teach the configuration information includes at least one of an implementation, device type, environment, sensing range mode, and filter criteria.

However, Miyake teaches the configuration information includes at least one of an

10/650,622 Art Unit: 2179

implementation, device type, environment, sensing range mode, and filter criteria (par [0015] that the collecting device is for collecting information for the overall network environment).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having the configuration information includes at least one of an implementation, device type, environment, sensing range mode, and filter criteria as taught by Miyake in order to provide the overall status of the network.

As to claim 62, Gray and Tang do not teach a graphical means to display a color and/or a pattern corresponding to user preference information.

However, Miyake teaches a graphical means to display a color and/or a pattern corresponding to user preference information (par [0028]).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having a graphical means to display a color and/or a pattern corresponding to user preference information as taught by Miyake in order to give the user the ability to select his/her preferences.

7. Claims 7-8, 29-30, 42-43, 48, 58, 61 are rejected under 35 U.S.C. 103(a) as being unpatentable over Gray in view of Tang and Smith and further in view of Hollenberg (US Patent 6,091,956).

As to claim 7, Gray and Tang do not teach a filter that selects a subset of the devices the locations of which are presented by the display component.

10/650,622

Art Unit: 2179

However, Hollenberg teaches a filter that selects a subset of the devices the locations of which are presented by the display component (fig. 14, label 127; col. 15, lines 61-67; col. 16, lines 1-4).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having a filter that selects a subset of the devices

the locations of which are presented by the display component as taught by Hollenberg in order to display selected devices based on filtering out unwanted devices, providing a clearer display.

As to claim 8, Gray and Tang do not teach a filter that facilitates presenting a subset of the devices in a selected volume of space.

However, Hollenberg teaches a filter that facilitates presenting a subset of the devices in a selected volume of space (fig. 14, label 127; col. 15, lines 61-67; col. 16, lines 1-4).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having a filter that facilitates presenting a subset of the devices in a selected volume of space as taught by Hollenberg in order to provide a display of devices located only within an area by filtering out unwanted areas, providing a specific area for display.

10/650,622 Art Unit: 2179

As to claim 29, Gray and Tang do not teach the display component facilitates assigning a graphical representation of a vector to a displayed representation of one of the devices, which vector indicates at least one of distance and direction of the device relative to the first device.

However, Hollenberg teaches the display component facilitates assigning a graphical representation of a vector to a displayed representation of one of the devices, which vector indicates at least one of distance and direction of the device relative to the first device (fig. 4, labels 6g, 6f; col. 15, lines 2-4; col. 16, lines 17-21, that a feature could be a device), which vector indicates at least one of distance and direction of the device relative to the new device (fig. 11, col. 21, lines 39-51).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by teach the display component facilitates assigning a graphical representation of a vector to a displayed representation of one of the devices, which vector indicates at least one of distance and direction of the device relative to the first device as taught by Hollenberg in order to give a symbol representing a direction of an available device, making it easy for a user to locate (e.g., printer) in which he/she must use.

10/650,622 Art Unit: 2179

As to claim 30, Gray and Tang do not teach an input component that accommodates at least one of voice input, touch screen input, and input device signals.

However, Hollenberg teaches an input component that accommodates at least one of voice input, touch screen input, and input device signals (fig. 2, label 2a; col. 12, lines 12-22).

Therefore, it would have been obvious to one ordinary Skill in the art the time the invention to modify Gray and Tang by having an input component that accommodates at least one of voice input, touch screen input, and input device signals as taught byHollenberg in order to enhance the user's ability to provide speedy input via a touch screen.

As to claim 42, Gray and Tang do not teach filtering a plurality of detected remote wireless devices to select the device.

However, Hollenberg teaches filtering a plurality of detected remote wireless devices to select the device (fig. 14, label 127; col. 15, lines 61-67; col. 16, lines 1-4).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by filtering a plurality of detected remote wireless devices to select the device as taught by Hollenberg in order to for the user to filter out unwanted/unneeded devices to select the desired device by use of elimination.

As to claim 43, Gray and Tang do not teach filtering a plurality of detected wireless devices to present only those devices in a selected volume of space.

However, Hollenberg teaches filtering a plurality of detected wireless devices to present only those devices in a selected volume of space (fig. 14, label 127; col. 15, lines 61-67; col. 16, lines 1-4).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by filtering a plurality of detected wireless devices to present only those devices in a selected volume of space as taught by Hollenberg in order to provide a display of devices located only within an area by filtering out unwanted areas, providing a specific area for display.

As to claim 48, Gray further teaches the multi-dimensional representation includes at least one of a graphic representative of the device, a text identifier associated with the device (col. 14, lines 38-51).

Gray and Tang do not teach a location vector that corresponds to an approximate direction and distance of the device relative to the portable terminal (fig. 4, labels 6g, 6f; col. 15, lines 2-4; col. 16, lines 17-21, that a feature could be a device; fig. 11, col. 21, lines 39-51).

However, Hollenberg teaches a location vector that corresponds to an approximate direction and distance of the device relative to the portable terminal (fig. 4, labels 6g, 6f; col. 15, lines 2-4; col. 16, lines 17-21; fig. 11, col. 21, lines 39-51).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having a location vector that corresponds to an approximate direction and distance of the device relative to the portable terminal as taught by Hollenberg in order to give a graphical representation as a guide for the user to an available device.

As to claim 58, Gray and Tang do not teach the presentation component provides a graphical representation of a location vector that indicates a direction and distance of the computer from [[a]] the detected terminal [[device]].

However, Hollenberg teaches the presentation component provides a graphical representation of a location vector that indicates a direction and distance of the computer from [[a]] the detected terminal [[device]] (fig. 4, labels 6g, 6f; col. 15, lines 2-4; col. 16, lines 17-21, that a feature could be a device) that indicates a direction and distance of the computer from a detected device (fig. 11, col. 21, lines 39-51).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having the presentation component provides a graphical representation of a location vector as taught by Hollenberg in order to order to

10/650,622 Art Unit: 2179

give a symbol representing a direction of an available device, making it easy for a user to locate the respective device in which he/she must use.

As to claim 61, Gray and Tang do not teach the presentation component further comprises at least one of means for selecting a floor in the building and means for selecting one of the device locations.

However, Hollenberg teaches the presentation component further comprises at least one of means for selecting a floor in the building and means for selecting one of the device locations (fig. 2; col. 12, lines 22-32).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Tang by having the presentation component further comprises at least one of means for selecting a floor in the building and means for selecting one of the device locations as taught by Hollenberg in order to enhance the users ability to narrow down the amount of devices to a specific floor to easier locate a specific device.

As for independent claim 63, Gray in view of Tang in further view of Smith teaches system that facilitates discovery and display of devices, comprising: a recognition component located on a first wireless device that dynamically identifies a multi-dimensional location of one or more other wireless devices of a network relative to the first wireless device; a display component that

10/650,622

Art Unit: 2179

renders a multi-dimensional representation of respective locations of the devices on the first wireless device; and The recognition component automatically expanding a sensing range to detect a predetermined quantity of the devices (note the analysis of claims 1, 38, 53 and 54 above).

As for independent claim 64, Gray in view of Tang in further view of Smith teaches a system that facilitates discovery and display of devices,

comprising: a finding component located on a first wireless device that dynamically identifies a multi-dimensional location of one or more other wireless devices of a network relative to the first wireless device; a display component that renders a multi-dimensional representation of respective locations of the devices on the first wireless device; and The finding component saves power by starting at a low signal power and automatically raising the signal power upon reaching the desired result (note the analysis of claims 1, 38, 53 and 54 above).

As for independent claim 65, Gray in view of Tang in further view of Smith teaches a method of discovering and displaying devices, comprising: employing a portable terminal for dynamically detecting a multi-dimensional location of a wireless device relative to the portable terminal; and presenting a multi-dimensional representation of the locations of the devices on the portable terminal; and automatically extending a detecting range to detect a predetermined number of the

10/650,622 Art Unit: 2179

devices (note the analysis of claims 1, 38,53 and 54 above).

As for independent claim 66, Gray in view of Tang in further view of Smith teaches a method of discovering and displaying devices, comprising: employing a mobile terminal for dynamically detecting a multi-dimensional location of a wireless device relative to the mobile terminal; and presenting a multi-dimensional representation of the locations of the devices on the mobile terminal; and dynamically displaying the multi-dimensional representation of the location of the device relative to the mobile terminal when both the device and the mobile terminal are moving (note the analysis of claims 1, 38,53 and 54 above).

8. Claims 31-37 are rejected under 35 U.S.C. 103(a) as being unpatentable over Gray in view of Smith and Miyake and further in view of Hollenberg.

As to claim 31, Gray teaches a system that facilitates discovery and presentation of devices (Abstract fig. 1, labels 120, 130, 140; col. 6, lines 26-43, lines 54-64), comprising: a detection component (fig. 1; col. 6, lines 26-64, col. 10, lines 35-42) that dynamically identifies location data of wireless devices of a network relative to the new wireless device (fig. 1, label 120; col. 6, lines 31-38; fig. 6; col. 13, lines 16-31, that with the ability to determine the location of the mobile device, that the new device can be identified within a wireless network); and a

10/650,622 Art Unit: 2179

presentation component that presents via the new device a two- or three- dimensional graphical representation of respective locations of the devices (fig. 7; col. 14, lines 47-59).

Gray does not teach a three-dimensional location.

However, Miyake teaches the multi-dimensional location is a three-dimensional location (Abstract, lines 19-20; fig. 78, label 47; par [0233], lines 1-6).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray by having multi-dimensional location is a three-dimensional location in order to view and manipulate the enhanced display in the respective display areas (Miyake: Abstract, lines 19-23).

Gray and Miyake do not teach a filter component that filters the location data according to predetermined location criteria.

However, Hollenberg teaches a filter component that filters the location data according to predetermined location criteria (fig. 14, label 127; col. 15, lines 61-67; col. 16, lines 1-4).

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Miyake by having a filter component that filters the location data according to predetermined location criteria as taught by Hollenberg in order to provide a user with information on devices that are available in the specific location

showing the enhanced display with height and depth location information to easily identify and locate the exact device.

Gray does not specifically teach the detection component automatically extends a sensing range to detect at least one of a predetermined type of the devices; however in the same field of endeavor Smith does. In paragraphs 32, 46, 49 and 50 Smith teaches an automatic extension of range to detect wireless nodes. A person of ordinary skill in the art at the time of the invention, upon reading the reference of Smith, would also have recognized the desirability of improved methods of having a greater range in a network for better signals within an area as well as to include more wireless devices with an extended range. Smith also inherently discloses to one of ordinary skill in the art that extending the range includes the benefit of detecting more wireless devices. Thus, it would have been obvious to a person of ordinary skill in the art to try the extension in range of Smith in an attempt to detect more wireless devices in an area for improved performance of the system of Gray in view of Tang, as a person with ordinary skill has good reason to pursue the known options within his or her technical grasp.

As to claim 32, Gray and Miyake do not teach the respective locations of the devices are displayed relative to the new device, and include a floor identifier associated with the location of an identified device.

However, Hollenberg teaches the respective locations of the devices are displayed relative to the new device, and include a floor identifier associated with the location of an identified device (fig. 2, label 3c; col. 12, line 25).

10/650,622 Art Unit: 2179

Therefore, it would have been obvious to one ordinary skill in the art the time the invention to modify Gray and Miyake by having the respective locations of the devices are displayed relative to the new device, and include a floor identifier associated with the location of an identified device as taught by Hollenberg in order to provide the user upon introducing a device to an area it will identify the floor on which other devices are located enhances the ability of the user to locate devices with ease.

As to claim 33, Gray further teaches the presentation component includes at least one of audio and video capability (col. 14, lines 38-51).

As to claim 34, Gray further teaches the location criteria includes a predetermined volume of space (fig. 3B, labels A, B, C, D; fig. 4, label 410; col. 11, lines 6-9; col. 8, lines 1-14).

As to claim 35, Gray further teaches the location criteria includes analyzing and processing barrier materials that interfere with detecting the devices (col. 12, lines 8-29 and lines 40-49; col. 14, lines 47-59, that by adjusting the strength of the signal it will override the barriers and allow the devices to be sensed (located) through analysis of the barrier materials).

Application/Control Number: 10/650,622 Art Unit: 2179

As to claim 36, Gray further teaches the location criteria include a fixed detection range based upon a given implementation (fig. 2; col. 7, lines 30-43).

As to claim 37 Gray further teaches a communication component that receives a map of device locations, which map is presented by the presentation component in the two- or three-dimensional representation (fig. 7; col. 14, lines 47-59).

(Note:) It is noted that any citation to specific, pages, columns, lines, or figures in the prior art references and any interpretation of the references should not be considered to be limiting in any way. A reference is relevant for all it contains and may be relied upon for all that it would have reasonably suggested to one having ordinary skill in the art. In re Heck, 699 F.2d 1331, 1332-33, 216 USPQ 1038, 1039 (Fed. Cir. 1983) (quoting In re Lemelson, 397 F.2d 1006,1009, 158 USPQ 275, 277 (CCPA 1968)).

Response to Arguments

Applicant's arguments with respect to claims 1-16, 18-45 and 47-66 have been considered but are most in view of the new ground(s) of rejection.

Conclusion

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. Automatic detection of wireless nodes by using means of automatic increase in signal range to detect wireless nodes.

Inquires

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Nicholas Augustine whose telephone number is 571-270-1056. The examiner can normally be reached on Monday - Friday: 7:30- 5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Weilun Lo can be reached on 571-272-4847. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

N. Augustine

January 18, 2008

Nicholas Augustine

Examiner AU: 2179

BA HUYNY BAARYEXAMNEB