Advanced Time Series

Lecture 6: Representation learning

Gleb Ivashkevich

Today

T. t. e. \rightarrow representation learning:

- survival analysis modeling and DL formulation
- representation learning setup
- time-lagged autoencoder
- VAMPnets
- wrap-up

Survival analysis and predictive maintenance

Survival analysis

Concept 1:

- **survival function:** probability of surviving past t

$$S(t) = P(T > t)$$

Survival analysis

Concept 2:

- hazard function: conditioned event rate

$$\lambda(t) = -rac{S'(t)}{S(t)}$$

Hazard function deciphered

Concept 2:

- hazard function: conditioned event rate

$$\lambda(t) = -rac{P(T>t+dt)-P(T>t)}{S(t)dt}$$

Hazard function deciphered

Concept 2:

- hazard function: conditioned event rate

$$\lambda(t) = -rac{P(T>t+dt)-P(T>t)}{S(t)dt}$$

Proportional hazards

Concept 3:

- **proportional** hazards model (Cox regression)

$$\lambda(t) = \lambda_0(t) \exp(a_i X_i)$$

Hazards and s. f.

Concept 4:

- **cumulative** hazard

$$\Lambda(t) = \int_0^t \lambda(au) d au o S(t) = \exp(-\Lambda(t))$$
 cumulative hazard

Survival models

non-parametric	semi-parametric	parametric	ML
Kaplan-Meier	Cox PH	AFT models	survival trees, etc.
Nelson-Aalen			

Survival data

Covariates X_i^k : a vector (i) per object (k)

Lifespan T^k

Event was observed? C^k

Notes:

- one vector of covariates for entire lifespan
- some events are **censored** (object "died", but for a different reason)

Survival data: extensions

Covariates may vary with time $X_i^k(t)$

For example:

- each object is measured multiple times

Cox regression: likelihood

How can we train Cox PH?

Full likelihood is not specified (because of baseline hazard). Partial

likelihood (for individual object and no ties):

$$L_i = rac{\lambda(t^i|X^i)}{\sum_{t^j \geq t^i} \lambda(t^i|X^j)} = rac{\expig(a_lpha X^i_lphaig)}{\sum_{t^j \geq t^i} \expig(a_lpha X^j_lphaig)}$$

$$L = \prod L_i$$

PdM data setup: slices

PdM data setup: sessions

One vector of covariates for entire session.

No need for time varying covariates.

Realistic PdM

Some considerations:

- model each type of failure **separately** (slices/sessions ended with a different failure are censored)
- session-based analysis for post-mortem analysis
- try session-based models for real-time predictions
 with expanding windows (may work for frequent failures)

DL and survival analysis

Some considerations:

- (partial) likelihoods are known for semi-parametric and parametric models
- encode time series: encoder
- push them into the appropriate model
- use Cox or something else as a baseline

DL and survival analysis

For example, for CoxPH:

- if you're lucky, you may train encodings, which work well in PH model:

$$\lambda(t) = \lambda_0(t) \exp(a_i X_i)$$

DL and survival analysis

Non-specific to time series:

- <u>DeepSurv</u>
- DeepHit

Representation learning

Representations for t.s.

When:

- highly dimensional time series with complex patterns
- barely interpretable

Why:

- denser
- hopefully, provide some insights into structure
- simplify forecasting, classification and t.t.e.: substitute for pre-training

Representations for t.s.

Applications:

- manufacturing data
- molecular dynamics data
- various medical data

Naive: PCA

When:

- simple linear dependencies between (pointwise!) covariates

Why not:

- you never know if it's linear or not
- temporal information is not used (neither short-term, nor long-term)

Reasonable: TICA

Time-lagged Independent Component Analysis: temporal extension of PCA

How:

- instead of solving eigenvalue problem for covariance matrix, solve it for auto-covariance matrix:

$$C_{ij}(au) = rac{1}{T- au-1} \sum_{t=1}^{t=T- au} x_i(t) x_j(t+ au)$$

Reasonable: TICA

Pros:

- temporal information is partially included
- more meaningful components

Cons:

- still linear
- no patterns are accounted for: it's pointwise

Windowed representation

original

representation

Time-lagged autoencoder

encoder

decoder

Time-lagged autoencoder

Pros:

- conceptually simple
- can contain any blocks needed (CNN, RNN, etc.)
- trained with MSE

Cons:

- may not find problem-specific representation
- no fundamental guarantees

TLA with propagator

encoder decoder

TLA with propagator

Pros:

- attempts to estimate (non-linear) dynamics

Cons:

- can be hard to train
- must be trained with several lags (as it's impossible to separate propagator from encoder and decoder)
- still ad hoc

Pros:

- fundamentally validated (Koopman operator, etc.)
- provides hierarchy of relaxation times
- filters noisy, uncorrelated components

Cons:

- can be hard to train
- selection of parameters may be problematic

VAMP-2 score:

- covariance matrices are calculated over transformed coordinates
- can be optimized directly

$$R = ||C_{00}^{-1/2}C_{0 au}C_{ au au}^{-1/2}||$$

<u>VAMPnets: Deep learning of molecular kinetics</u>

Molecular dynamics:

- collective variables are important for modeling

Wrap-up

What we've learned

- forecasting: simple ED, probabilistic, transformers
- classification
- survival analysis
- some representations learning

Next:

- generative models, etc.

questions?