QUANTUM CRYPTOGRAPHY

Master of Logic, University of Amsterdam, 2018
TEACHERS: Jan Czajkowski, Yfke Dulek, and Christian Schaffner

Homework problem set 1

Please hand in your solutions to these exercises in digital form (typed, or scanned from a neatly hand-written version) through Moodle no later than **Friday June 15**, **2018**, **20:00h**.

Problem 1: Purity

The purity of a quantum state is defined as $\text{Tr}\rho^2$. Consider a d-dimensional quantum state $\rho \in \mathbb{C}^{d \times d}$.

- (a) What is the maximal value of purity and what class of states achieves this value? Prove your answer.
- **(b)** What is the minimal value of purity, what state achieves this value? Prove your answer.
- (c) Any qubit density matrix can be represented by the Bloch vector \vec{r} , satisfying $|\vec{r}| \leq 1$. For any quantum state $\tau \in \mathbb{C}^{2 \times 2}$ we have that $\tau = \frac{1}{2} (\mathbb{1} + \vec{r} \cdot \vec{\sigma})$, where $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)^T$ is the vector of Pauli matrices. How does the purity of τ relate to \vec{r} ?

Problem 2: Parity measurements (Exercise 1.5.1)

Use a projective measurement to measure the parity, in the Hadamard basis, of the state $|00\rangle\langle00|$. Compute the probabilities of obtaining measurement outcomes "even" and "odd", and the resulting post-measurement states. What would the post-measurement states have been if you had first measured the qubits individually in the Hadamard basis, and then taken the parity?

Problem 3: Robustness of GHZ and W states (Problem 6.1 of Week 1 and Problem 2 of Week 2)

Remember that $|W_N\rangle:=rac{1}{\sqrt{N}}\sum_{i=1}^N\underbrace{|0\cdots 010\cdots 0
angle}_{1 ext{ at the } i ext{-th place}}$ is an equal superposi-

tion of all N-bit strings with exactly one 1 and N-1 0's and $|GHZ_N\rangle:=\frac{1}{\sqrt{2}}(|0\rangle^{\otimes N}+|1\rangle^{\otimes N}).$

In the second module you learned to distinguish product states from (pure) entangled states by calculating the Schmidt rank of $|\Psi\rangle_{AB}$, i.e. the rank of the reduced state $\rho_A={\rm Tr}_B|\Psi\rangle\langle\Psi|$. In particular $|\Psi\rangle$ is pure if and only if its Schmidt rank is 1. In the following, we denote by ${\rm Tr}_N$ the operation of tracing out only the last of N qubits.

- (a) What is the overlap $\operatorname{Tr}\Big(\ket{GHZ_{N-1}}\bra{GHZ_{N-1}}\operatorname{Tr}_N(\ket{GHZ_N}\bra{GHZ_N})\Big)$ in the limit $N\to\infty$?
- **(b)** What is the overlap $\mathrm{Tr}\Big(\ket{W_{N-1}}\bra{W_{N-1}}\mathrm{Tr}_N\left(\ket{W_N}\bra{W_N}\right)\Big)$ in the limit $N\to\infty$?
- (c) What are the ranks of ${\rm Tr}_N |GHZ_N\rangle \langle GHZ_N|$ and of ${\rm Tr}_N |W_N\rangle \langle W_N|$, respectively? (Note that these are the Schmidt ranks of $|GHZ_N\rangle$ and $|W_N\rangle$ if we partition each of them between the first N-1 qubits and the last qubit.)
- (d) Let us now introduce a more discriminating (in fact, continuous) measure of the entanglement of a state $|\Psi\rangle_{AB}$: namely, the *purity of the reduced* state ρ_A given by $\text{Tr}\rho_A^2$.

Consider again the behavior of the N-qubit GHZ and W states with one qubit discarded (i.e. traced out): What is the purity of ${\rm Tr}_N |GHZ_N\rangle\langle GHZ_N|$ in the limit $N\to\infty$?

(e) What is the purity of $\operatorname{Tr}_N|W_N\rangle\langle W_N|$ in the limit $N\to\infty$?

Problem 4: Relation between min-entropy and ignorance

Let K be a classical (key) register, and let E be Eve's quantum register. Prove the following statement for arbitrary classical-quantum states ρ_{KE} : Eve is ignorant about K if and only if $H_{min}(K|E) = \log |K|$.