2018年秋季凸优化期中考试试题

1. (10分)令A和C都是方阵。假设对称矩阵M可以写成

$$M = \begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}.$$

证明:矩阵M > 0当且仅当C > 0和 $A - BC^{-1}B^{T} > 0$.

- 2. (10分)证明集合 $K = \{(t;x) \mid ||x||_2 \le t, t \in \mathbb{R}, x \in \mathbb{R}^n\}$ 为凸锥(convex cone),写出并证明其对偶锥(dual cone)的具体形式。
- 3. (20分)
 - (a) 证明: $f(x,t) = -\log(t^2 x^T x)$ 在定义域 $dom f = \{(t,x) \mid ||x||_2 \le t, t \in \mathbb{R}, x \in \mathbb{R}^n\}$ 上是凸函数。
 - (b) 证明函数 $f(X) = -\log \det X$ 在定义域 $dom f = S_{++}^n$ 上是凸函数,并写出其共轭函数 (conjugate function)。
- 4. (30分)
 - (a) 给定 $A \in \mathbb{R}^{m \times n}$, $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $Q \in S_+^n$ (半正定矩阵), $\mu > 0$, $\beta \in \mathbb{R}$. 将下列问题明确写成二次 锥(second-order cone)规划形式:

$$\min_{x} \quad \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1}$$

s.t.
$$x^{T} Qx + a^{T} x + \beta \le 0$$

(b) $\diamondsuit h(x) = \sum_{i=1}^{n} x_i \log x_i (domh = \mathbb{R}_{++}^n)$, 其Bregman距离定义为

$$D(x, y) = h(x) - h(y) - \nabla h(y)^{T} (x - y).$$

给定 $a \in \mathbb{R}^n \pi_{\tau} > 0$, 求解下列问题的最优解:

$$\min_{x \in \mathbb{R}^n} \ a^{\top} x + \frac{1}{\tau} D(x, y); \text{ s.t. } \sum_{i=1}^n x_i = 1, x \ge 0.$$

(c) 给定 $B \in S_+^n$, $c \in \mathbb{R}^n$, v > 0. 令 B^{\dagger} 为B的广义逆矩阵, 讨论如下问题的最优解:

$$\min_{x} \quad c^{\top} x, \text{ s.t. } \quad x^{\top} B^{\dagger} x \leq \nu, \quad x \in \text{Range}(B)$$

- 5. (30分)
 - (a) 写出下面问题的对偶问题及其最优性条件:

$$\min_{w,b,\xi} \quad \frac{1}{2} ||w||_2^2 + C_1 \sum_{i=1}^n \xi_i + C_2 \sum_{i=1}^n \xi_i^2$$
s.t. $y_i \cdot (a_i^\top w + b) \ge 1 - \xi_i, \forall i = 1, \dots, n$

$$\xi_i > 0, \forall i = 1, \dots, n$$

(b) 给定实对称矩阵 $A \in \mathbb{R}^{n \times n}$ 和 $b \in \mathbb{R}^n$,写出下面问题的对偶问题,以及该对偶问题的对偶问题:

$$\min_{x} x^{\mathsf{T}} A x - 2b^{\mathsf{T}} x, \quad \text{s.t. } x^{\mathsf{T}} x = 1$$