Examples on $V = \mathbb{R}^n$

• 2-norm
$$\|v\|_{L} = \sqrt{\vec{v} \cdot \vec{v}}$$

•
$$|-norm ||v||_1 = ||v_1|| + \cdots + |v_n|$$

Properties of norms.

O when n=1, these are all identical to the abs value.

3 All are invariant under permutations of the entries.

e.g.
$$\|(v_1, v_2)\| = \|(v_2, v_1)\|$$

If P is a permutertion matrix, $\|PV\| = \|V\|$

max { 121, 141} =1

Justification of "
$$P = \infty$$
"

If $V \neq 0$, and let $\tilde{V} = \frac{V}{\|V\|_{\infty}}$ so $\|\tilde{V}_i\| \leq |$ and $\max_i \|\tilde{V}_i\| = |$
 $\|\tilde{V}\|_P = (|\tilde{V}_i|^P + |\tilde{V}_2|^P + \dots + |\tilde{V}_n|^P)^{\frac{1}{P}}$

at least $i = 1$, sum

Matrix norms

Def. Given a norm $\|\cdot\|$ on \mathbb{R}^n , the corresponding matrix norm on \mathbb{R}^{min} (aka. matrix norm) subordinate to the norm $\|\cdot\|$ on \mathbb{R}^n is defined as: $\|A\| = \max_{V \neq 0} \frac{\|AV\|}{\|V\|} = \max_{\|V\| = 1} \|AV\|.$

II All is the maximum scaling factor when A is applied to v.

Ex. 11.112 in R2

טספד ססטר

Properties of meetrix norms.

1. proof.
$$||I|| = \max_{V \neq 0} \frac{||IVI||}{||VI||} = \max_{V \neq 0} \frac{||IVI||}{||VI||} = 1$$

2. If $v = 0$ $||Av|| = 0$
 $||Av|| = 0$

Inequality is just 050.

Otherwise
$$\frac{||Av||}{||M||} = \max_{u \neq 0} \frac{||Au||}{||u||} = ||A||$$

 $\Rightarrow ||Av|| \leq ||A|| ||v||$

3.
$$\|AB\| = \max_{V \neq 0} \frac{\|ABV\|}{\|V\|}$$

by $a_{1} \leq \max_{V \neq 0} \frac{\|A\|\|BV\|}{\|V\|}$
 $= \|A\| \max_{V \neq 0} \frac{\|BV\|}{\|V\|}$
 $= \|A\| \|B\|$

why are matrix norms actually norms on Rnxn?

if A=0, then ||A||=0, since ||OV||=||O||=0, conversely, if ||A||=0. then we must have ||AV||=0. $\forall \overrightarrow{V} \Rightarrow A\overrightarrow{V}=0 \ \forall V \Rightarrow A=0$.

2.
$$\|\lambda A\| = \max_{V \neq D} \frac{\|\lambda Av\|}{\|V\|} = |\lambda| \max_{\lambda \neq D} \frac{\|Av\|}{\|V\|} = |\lambda| \|A\|$$

3.
$$\|A+B\| = \max_{V\neq 0} \frac{\|Av+Bv\|}{\|v\|} \leq \max_{V\neq 0} \frac{\|Av\|+\|Bv\|}{V} \leq \max_{U\neq 0} \frac{\|Au\|}{\|u\|} + \max_{U\neq 0} \frac{\|Bu\|}{\|u\|}$$

Matrix p_noms.
Thm
$$\|A\|_{\infty} = \max_{\hat{i}=1,...,n} \sum_{j=1}^{n} |a_{ij}|$$
 max, absolute row sum.

Proof. Show
$$C \le \|Aoo\| \le C$$
 (trick to me in Analysis).
For each $i=1,...,n$ and $V \in \mathbb{R}^n$ $|(Av)i| =$