u Mu ucun (a -> When we won to many test type ! Type I error rejecting the null hypothesis. when its actually true - The scere of testing many pairs of groups is called multiple comparisons -> The Boreleroni correction suggests that a more strigent significance lul is more appropriate for these tests where K is the no. of comparison being the groups then succelly all -) If there are are compared and possible pars K= K(K-1)

Date:	21
 Dillerence in two means: of tex AMONA	三 十
$SE = \begin{cases} G_1^2 + G_2^2 & \bowtie \end{cases} \qquad \begin{cases} mSE + mSE \\ mSE \end{cases}$ Residuals	
Tate = $(X_1 - X_2)$ This = $(X_1 - X_2)$	
Quantilying the relationship e;= y; -9;	8
-> Correlation describes the strength of the linear association by two variable	E
-> It takes values blu -1 (perleatly ney) and to (perleatly pos)	
-) A value of o indicates no linear association	7
Fitting a line by least So regression -> Minimize the sum of mag	
-> Minimize the sum of mag (abs valves) of residuals	
10,1+1021+	

Date: is Minimize the sum of sq of residuely least squares er + e22+ ... + en2 The Least Sq line g = BO + BIX pred y intercept slope emplanator Intercept Slope · Parameter: Bi · Parameter , Bo · Point estimak: b. · Point estimale: bo 10 34 74 20 14 14 14 16 Conditions The relation blw euplanatory and the response variable should be linear Hearly Normal residuals The residuals should be nearly normal. 1 11 C THE THE STATE OF THE STA 3) (onstant variability The variability of points around **글A25**글

Date:	
the least sq line should be roughly const. This	
implies that the variability of residuels	
around the o time should be roughly const.	
also called homoscedasticity	
7	
SUPE	6 10
	6 1 30
The slope of a regression can be calculate	d e i
as	
bi = Sy R	
$b_1 = \frac{Sy}{Sn} R$	
	275 Kr
Intercept	a la ma
Amaret 1	
The intercept is where the regression lin	
The intercept is	H
intersects the y-ans.	H
bo = y - b, v	
	Ī
	8
-> when 1=0, y is expected to eyel the intercept	8
in trace Ot	
the water	
in un is puperted	to
increase I decrease on average by the sla	-17)-
increase (decrease on average by the ste	PC .
	<u>k</u>

Date:
Prediction
I using linear model to pred the value of responser variable for a given value of the emplanatory variables is called predictiony simply plussing in the u value in the linear model eq
Extra polation
-) Applying a model estimate to values obtained of the realm of the original data is called entrapolation
R ²
The strength of the fit of a linear model is commonly evaluted using R2
-> 22 ii calculated by the syd correlation coefficie
least sy regression line formyly
B = SS My SSHENN
Bò = 5- Bin
SSux = Zu2 - 1 (Zu)2

BASE

Date: 55 mg = 5 mg - + (5 m) (2g) 42 BIN + BO Euample verily that it lits the data better than the line g= { u-1 100 10 68 23 9 208 Total 29 22 MX = ZN5 - T (ZN) = 508-T (58/5

Date:

图772层

E Date: E IT SSE = SSyy - B. SSwy = 2008 - 0.342X2X 17.6 = 2001 - G.05 2 0.75 Slope 2 155 NX /n-1 E MALE My J. P. M. Sel = 5-1 * 0.9452 J 51.2 31 = 56.8 \$ 0.9432 512 1.30 + 0.9452 3.58 0.36 \$ 0.9432 0.34

· ·		en fortier order sommer statementer og som til statementer signing i statemente		
lypes	of Other			
-> O.Hie	are po	int the	at lie awar	lam
the cl	ong of bou	ups -		1 1,000
- Outlie	ers that he arter of the	e rorizon	tally awa	I from
the ce	nter of the	e cloud	are called	PER S
high le	verage po	ints		
11-1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· · · · · · · · · · · · · · · · · · ·
-) High	leverage p	soints tha	of actually	interce
the	slope of +	the regre	estion live	and de
01	£ _ 0			
influen	hal points			
influen	hal points			
influen	had points			
influen	tial points		Us	
influen	t Evample			
influen	t Evample	Chapz.	Us Grap 3	
influen	t Evample	· UL	Us Grap 3	
influen	t Evample Ui Chroup 1	Chapz.	Us Grap 3	
influen	t Evample Group 1 2 8 6	3 4	Us Grap 3	
influen	Frample Li Chroup 1 2 8 6 10	Chapz.	Us 6rrap 3 12 15 2	
influen	Frample Li Chroup 1 2 8 6 10 20	3 4 11	Us 6 vap 3 12 15 2	
influen	Frample Li Chroup 1 2 8 6 10	3 4	Us 6rrap 3 12 15 2	
ANOVA	Frample Li Chroup 1 2 8 6 10 20	3 4 11 13 17 24 = 9.6	Us 6 vap 3 12 15 2	8.4

图208

20-1 29

Date:____

$$SSG = \left[\left(5 \times (9.2 - 9.07)^{2} \right) + \left(5 \times (9.64 - 9.07)^{2} \right) + \left(5 \times (9.64 - 9.07)^{2} \right) \right]$$

$$= \left[5 \times (0.13)^{2} + 5 \times (0.53) + 5 \times (-0.67)^{2} \right]$$

$$SST = \frac{|2-9.07|^2 + (3-9.07)^2 + (12-9.07)^2 + (8-9.07)^2}{+(4-9.07)^2 + (15-9.07)^2 + (6-9.07)^2 + (13-9.07)^2}$$

$$+(7-(9.01)^2 + (2-9.07)^2 + (10-9.07)^2 + (17-9.07)^2$$

$$+(8-9.07)^2$$

Date:

3

1

3

3

13

3

3

7

3

3

3

-3

3

3

3

3

3

3

3

3

3

1

198

-

115

3

3

1

1

= 49 \$ 9849 + 36. 8449 + 8. 5 849 + 1.1449 + 25.7049 + 35 1649 + 9.4249 + 3. 7249 + 49. 9849 + 0. 8649 + 15.4449 + 16. 5649 + 11 9 4649 + 62. 8849 + 1.1449

= 372.9078+62.8849+1.1449 = 436.9076

SSE = 436.9076- 3.7335 = 433.1741

= 3.7335/2 1.8(675

= SSE | dre = UB3-1741 112 = 36.60

L = W2U = 1.88012 = 0.02