1 Midterm - Empirical Analysis, Spring 2019

For this exercise, use the data set -DahlLochner2012AER.dta- available on Canvas. Include your code after the main text, tables and figures. Please be brief, but precise in your answers. Note that you do not have to report more in the text than is asked for.

In a recent study published in AER, Dahl and Lochner (DL) study how children's school performance depends on family income. They posit the following model of the relationship:

$$y_{ia} = \mathbf{x}_i' \boldsymbol{\alpha}_a + \mathbf{w}_{ia}' \boldsymbol{\beta} + \delta I_{ia} + u_{ia} \tag{1}$$

where y_{ia} and I_{ia} are the performance and family income, respectively, of child i at age a; \mathbf{x} and \mathbf{w} are permanent and time-varying characteristics listed below, while u_{ia} reflects unobserved determinants of school performance.

Problem 1.1. There are three performance measures in the data set -math-, -readingcomp- and -readingrecog-. Create a new variable -score- as the average of these variables, and standardize it to mean equal zero and standard deviation equal one.

Solution. I implement this using Stata using the following code

```
gen score_raw = (math + readingcomp + readingrecog) / 3
egen score = std(score_raw)
replace score_raw = score
```

Problem 1.2. How much of the variation in -score- and -faminc- is coming from comparisons across individuals and how much is coming from comparisons within individuals over time?

Solution. For -score-, we obtain the following analysis of variance:

			Number of R-squ	obs = ared =	7,280 0.9160
Source	SS	df	MS	F	Prob > F
Between id Within id	6667.6768 611.32316	•	1.8064689 .17037992	10.60	0.0000
Total	7279	7,279	1		

 \triangleright We find that 91.59% of the variation is coming from comparisons across individuals and 8.41% of the variation is coming from comparisons within individuals.

For -famine-, we obtain the following analysis of variance:

			Number of	obs = ared =	7,280 0.9167
Source	SS	df	MS	F	Prob > F
Between id	2619146.5	3,691	709.60349	10.69	0.0000
Within id	238142.89	3,588	66.372044		
Total	2857289.4	7,279	392.53872		

 \triangleright We find that 91.66% of the variation is coming from comparisons across individuals and 8.34% of the variation is coming from comparisons within individuals.

Problem 1.3. Graph the mean of -score- and -faminc- over time, and include a 95% confidence interval. (Hint: You want to graph one observation per year(try -collapse- if you use Stata). Also, you need to generate new variables for the confidence interval using the standard error of the mean.)

Solution. I implement this using Stata. We obtain the following graphs:

⊳ Both the means of score and family income are increasing over time in general, but the average score dipped in the most recent period.

Problem 1.4. Estimate model (1) using OLS with -score- as the dependent variable, controlling for variables 9–26 below (i.e. -black- through -sib3-). Use robust standard errors. Interpret the coefficient on -faminc-.

Solution. I implement this using Stata.

Linear regressi	on			Number of	obs =	7,280
				F(18, 7261) =	173.93
				Prob > F	=	0.0000
				R-squared	=	0.2871
				Root MSE	=	.84538
		Robust				
score	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
black	2523694	.0296207	-8.52	0.000	3104346	1943042
hispanic	0532542	.0319945	-1.66	0.096	1159728	.0094643
male	0398039	.0198723	-2.00	0.045	0787594	0008483
age	0798643	.005195	-15.37	0.000	090048	0696807
agemom	0046219	.0036137	-1.28	0.201	0117058	.002462
edlage23	0	(omitted)				
ed2age23	.1975649	.0299453	6.60	0.000	.1388635	.2562663
ed3age23	.3097689	.0373332	8.30	0.000	.2365849	.3829529
ed4age23	.3688812	.0518731	7.11	0.000	.2671949	. 4705675
afqt	.2918538	.0156725	18.62	0.000	.261131	.3225765
afqt_miss	.0639619	.0605968	1.06	0.291	0548254	.1827492
married	1095284	.1067756	-1.03	0.305	3188396	.0997828
spouseage	.0054564	.0029109	1.87	0.061	0002498	.0111627
spouseage_miss	1352716	.48424	-0.28	0.780	-1.084523	.8139796
famsize	0301376	.0172245	-1.75	0.080	0639026	.0036274
famsize_miss	1914412	.0976819	-1.96	0.050	3829261	.0000438
sibl	.1984667	.0363853	5.45	0.000	.1271409	.2697924
sib3	1131375	.0212114	-5.33	0.000	1547181	0715569
faminc	.0051668	.0007034	7.35	0.000	.003788	.0065456
_cons	.9441016	.1281926	7.36	0.000	. 6928067	1.195396

⊳ \$1000 increase in family income is associated with a 0.00517 standard deviation increase in the average score. Note that we cannot interpret this as a causal estimate for reasons discussed in the next question as well as throughout the problem set.

Problem 1.5. Do you think that the OLS estimates may be biased? Explain your answer. In which direction do you think δ is biased?

Solution. Yes, it is likely biased due to omitted variables. For example, ability may be positively correlated with both family income (if we assume ability is hereditary and income is correlated with ability) and score (since ability affects test-taking results). In this case, this would introduce an upward bias in the estimate of δ . Another similar example would be access to private tutorship due to similar series of reasoning.

We have panel data with information on school performance of each child in several years. Assume that the error term above has an individual-specific component μ_i that is fixed over time, such that

$$u_{ia} = \mu_i + \epsilon_{ia}$$

where ϵ_{ia} is random residual.

Problem 1.6. Explain how you can use the panel structure of the data to get a more reliable estimate of δ . Estimate this model using first differences for -score- and -faminc-. Include as control variables -black-, -hispanic-, -male-, -age-, -sib1-, and -sib3- (not differenced).

Solution. Recall the original model:

$$y_{ia} = \mathbf{x}_i' \boldsymbol{\alpha}_a + \mathbf{w}_{ia}' \boldsymbol{\beta} + \delta I_{ia} + u_{ia}$$

and rewrite the error term to obtain:

$$y_{ia} = \mathbf{x}_i' \boldsymbol{\alpha}_a + \mathbf{w}_{ia}' \boldsymbol{\beta} + \delta I_{ia} + (\mu_i + \epsilon_{ia})$$
$$y_{i(a+2)} = \mathbf{x}_i' \boldsymbol{\alpha}_{(a+2)} + \mathbf{w}_{i(a+2)}' \boldsymbol{\beta} + \delta I_{i(a+2)} + (\mu_i + \epsilon_{i(a+1)})$$

which implies a regression of the following form:

$$\Delta y_{ia} = \mathbf{x}_{i}' \left(\boldsymbol{\alpha}_{a+2} - \boldsymbol{\alpha}_{a} \right) + \left(\mathbf{w}_{i(a+2)} - \mathbf{w}_{ia} \right)' \boldsymbol{\beta} + \delta \Delta I_{ia} + \underbrace{\Delta u_{ia}}_{=\Delta \epsilon_{ia}}$$

Therefore, we can obtain a more reliable estimate of δ using first-differences. In implementing this regression, we assume that w's do not vary with age as we are told to include control variables not differenced. Running this in Stata, we obtain:

linear regress	sion			Number	of obs	=	3,445
incur regree.	22011			F(7, 34		=	3.0
				Prob >		=	0.003
				R-squar		=	0.006
				Root MS		=	.5414
	05	Robust		Do I to I	1050	a 5	Tt
score_d	Coef.	Std. Err.	t	P> t	[95%	coni.	Interval
faminc d	.0010299	.0009071	1.14	0.256	0007	486	.002808
black	0720681	.0209105	-3.45	0.001	1130	663	031069
hispanic	0002503	.0286675	-0.01	0.993	0564	573	.0559568
male	.0331323	.0185027	1.79	0.073	0031	452	.069409
age	.0068856	.0059166	1.16	0.245	0047	148	.018486
sib1	.0085307	.0336405	0.25	0.800	0574	267	.074488
sib3	.0360153	.0195716	1.84	0.066	0023	579	.0743884
cons	1943313	.0741695	-2.62	0.009	339	752	0489107

▶ We find that a \$1,000 increase in family income is associated with a 0.0010299 standard deviation increase in the average score. The estimate, however, is not significant.

Problem 1.7. Estimate the model with fixed effects including the same controls. Why does Stata exclude the variables -black-, -hispanic-, and -male? How would you interpret the coefficient on these variables in the model in first differences?

Solution. We obtain the following results:

I						
Fixed-effects	(within) reg	ression		Number o	of obs =	7,280
Group variable	e: id			Number o	of groups =	3,692
R-sq:				Obs per	group:	
within =	= 0.0657				min =	1
between :	= 0.0905				avg =	2.0
overall :	= 0.0667				max =	4
				F(4,3584	1) =	63.04
corr(u_i, Xb)	= 0.1590			Prob > E	· =	0.0000
score	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
faminc	.0001726	.000828	0.21	0.835	0014508	.001796
black	0	(omitted)				
hispanic	0	(omitted)				
male	0	(omitted)				
age	0521711	.0033484	-15.58	0.000	0587362	0456061
sibl	.0897478	.0692599	1.30	0.195	046045	.2255406
sib3	.013605	.0440047	0.31	0.757	0726717	.0998817
_cons	.5672455	.0493478	11.49	0.000	.4704928	.6639981
sigma u	. 97093666					
sigma e	.39919725					
rho	.85540164	(fraction	of waria	nce due to	n 11 i)	
	.00040104	(114001011	or varia	noc due bi	~ ~+/	
F test that a	11 n i=0. F/3	691 3584\ =	= 9 26		Prob >	F = 0.0000
r cest that a.	11 u_1-0: r(3	091, 3304) -	3.20		< d014	F - 0.0000

- ⊳ The three variables drop out due to collinearity because once you know the ID of the person, you can perfectly determine the values for -black-, -hispanic-, and -male. They do not vary over time and are fixed for each individual.
- Since we are asked to interpret coefficient on these variables (black, hispanic, and male) in the model with first differences:
 - * Over a general two-year time period, blacks experience additional decrease in test scores of 0.0720681 times its standard deviation than non-blacks do over a general two-year time period.
 - * Over a general two-year time period, hispanics experience additional decrease in test scores of 0.00025 times its standard deviation than non-hispanics do over a general two-year time period.
 - * Over a general two-year time period, males experience additional increase n test scores of 0.03313 times its standard deviation than females do over a general two-year time period.

Problem 1.8. Why may we be worried about omitted variables bias also in the panel data models? (Hint: What is driving changes in family income?)

Solution. Omitted variable bias will be an issue here if the omitted variables are correlated with our regressor (ΔI_{ia}) . Specifically, we are concerned about the possibility that changes in unobserved factors affecting child development $(\Delta \epsilon_{ia})$ are correlated with changes in family income (ΔI_{ia}) and with changes in score (Δy_{ia}) .

One example may be environmental factors that may impede child's development as well as decrease productivity, yielding lower family income. Another example may be economic expansion, which may increase the change in family income as well as improve the quality of education, thereby increasing the average score.

This concern is legitimate for both the first-differences and the fixed effects model. In the first-differences, we are subtracting subsequent observations; in the fixed-effects, we are de-meaning for the specified group. For both cases, omitted variables is a legitimate estimate.

The Earned Income Tax Credit (EITC) is a major US transfer program that provides direct transfers to working families depending on their income and the number of children. The following figure shows how the EITC changes the budget constraint:

While the EITC and other tax schedules do not generally vary with the child's age in any given year, they do sometimes change over time (that is: with the age of the child a). The following figure illustrates this for the 1986 and 1988 EITC in the US:

Total net family income is therefore given by

$$I_{ia} = P_{ia} + \chi_{ia}P_{ia} - \tau_{ia}P_{ia}$$

where P_{ia} is family income prior to taxes and transfers, and χ_{ia} and τ_{ia} are the EITC and tax schedules respectively.

Problem 1.9. Explain why

$$\Delta \chi_{ia}(P_{i,a-1}) = \chi_{ia}(P_{i,a-1}) - \chi_{i,a-2}(P_{i,a-2})$$

may be an instrument for ΔI_{ia} . Do you think

$$\Delta \chi_{ia} = \chi_{ia} \left(P_{ia} \right) - \chi_{i,a-2} \left(P_{i,a-2} \right)$$

would be a better or worse instrument for ΔI_{ia} ?

Solution. The instrument is based on the observation that low- and middle-income families benefited substantially from expansions of the EITC in the late-1980s and mid-1990s, whereas higher-income families did not. So to the extent that income affects achievement, we should be able to observe relative improvements in the test scores of children from families that benefit most from these EITC expansions. Ultimately, we want the instrument to capture only the changes in I_{ia} deriving from changes in EITC and avoid incorporating general changes in family income. We verify the conditions for ΔI_{ia} to be a valid instrument:

- \triangleright Exclusion: This is likely satisfied if we use $\Delta \chi_{ia} \left(P_{i,a-1} \right)$ but not if we use $\Delta \chi_{ia}$. The reason is that I_{ia} is by construction correlated to P_{ia} so $\Delta \chi_{ia}$ will be endogenous for the same reason we argued I_{ia} is endogenous. By letting $\chi_{ia} \left(P_{i,a-1} \right)$, we can get away from this problem.
- \triangleright Relevance: $\Delta \chi_{ia} (P_{i,a-1})$ needs to be correlated with the instrumented variable, I_{ia} . We show in question 11 that this is indeed the case, verified by the first-stage regression.

Essentially, we are only exploiting variation in EITC income due to government changes in EITC schedules over time and not due to changes in family structure. Instead, suppose we used:

$$\Delta \chi_{ia} = \chi_{ia} \left(P_{ia} \right) - \chi_{i,a-2} \left(P_{i,a-2} \right)$$

as our instrument. In this case, the proposed instrument depends on P_{ia} . Then the exclusion restriction may not be satisfied since P_{ia} may be correlated with macro trends (as discussed in the previous section) which may affect I_{ia} directly. Therefore, this will be a worse instrument.

Problem 1.10. In the data, $\chi_{ia}(P_{ia}) = \text{eitc}$ and $\chi_{ia}(P_{i,a-1}) = \text{eitc_sim}$. Estimate the model in first differences (as in 6 above) using $\Delta \chi_{ia}(P_{i,a-1})$ as an instrument.

Solution. We will estimate the following model:

$$\Delta y_{ia} = \mathbf{x}_i' \boldsymbol{\alpha}_a + \mathbf{w}_{ia}' \boldsymbol{\beta} + \delta \Delta I_{ia} + \Delta \epsilon_{ia}$$

and use $\Delta \chi_{ia} (P_{i,a-1})$ as our instrument for ΔI_{ia} . We obtain the following results:

Instrumental	variables	(2SLS)	regression	Number of obs	=	3,445
				Wald chi2(7)	=	21.43
				Prob > chi2	=	0.0032
				R-squared	=	
				Root MSE	=	.55142

score_d	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	. Interval]
faminc d	.0113712	.0076042	1.50	0.135	0035327	.0262751
black	0721035	.0212255	-3.40	0.001	1137048	0305021
hispanic	.0057273	.0292529	0.20	0.845	0516072	.0630619
male	.0317945	.0188753	1.68	0.092	0052005	.0687895
age	.00807	.00607	1.33	0.184	0038271	.019967
sib1	.0030757	.0339889	0.09	0.928	0635413	.0696926
sib3	.0343756	.0200056	1.72	0.086	0048346	.0735859
_cons	2173203	.0771009	-2.82	0.005	3684353	0662054

Instrumented: faminc_d
Instruments: black hispanic male age sib1 sib3 inst_d

Problem 1.11. Should we be worried about $\Delta \chi_{ia}(P_{i,a-1})$ being a weak instrument?

Solution. We can test for relevance by regressing -faminc- on the instrument.

. reg faminc_d	inst_d black	hispanic	male age sibl	sib3		
Source	SS	df	MS	Number of obs	=	3,445
				F(7, 3437)	=	7.34
Model	5526.88529	7	789.555042	Prob > F	=	0.0000
Residual	369734.024	3,437	107.574636	R-squared	=	0.0147
				Adj R-squared	1 =	0.0127
Total	375260.91	3,444	108.960775	Root MSE	=	10.372
faminc_d	Coef.	Std. Err.	t P	> t [95% C	onf.	Interval]
inst_d black hispanic male age sib1 sib3 _cons	2.5266 5973676 6928083 .1661264 1384597 .7175039 .0827349 2.284736	.3638152 .4110474 .5226354 .3540098 .1143552 .6304075 .3759061 1.428687	-1.45 0. -1.33 0. 0.47 0. -1.21 0. 1.14 0. 0.22 0.	.000 1.8132 146 -1.4032 185 -1.7175 639 -52796 22636267 225551856 82665428 11051642	189 516 545 707 173 869	3.239916 .2085543 .331899 .8602174 .0857513 1.953515 .8197568 5.085897

ightharpoonup Since the coefficient is significant and sizable, we are not concerned about $\Delta\chi_{ia}\left(P_{i,a-1}\right)$ being a weak instrument.

We may be worried that also $P_{i,a-1}$ is endogenous, since it may be associated with $P_{i,a}$ by e.g. serially correlated shocks. By including in our IV model flexible controls for $P_{i,a-1}$, we may more plausibly incorporate in our instrument only the changes in I_{ia} deriving from changes in EITC, and avoid incorporating general changes in family income.

Problem 1.12. Reestimate the IV model in 10 above, including as control variables the dummy -laborpart- and a fifth-order polynomial in -faminc_L1-. Compare the estimates to those you got above.

Solution. Now we construct a modified model:

$$\Delta y_{ia} = \mathbf{x}_{i}' \boldsymbol{\alpha}_{a} + \mathbf{w}_{ia}' \boldsymbol{\beta} + \delta \Delta I_{ia} + \Phi \left(P_{i,a-1} \right) + \Delta \epsilon_{ia}$$

where $\Phi(P_{i,a-1})$ represents a flexible controls for $P_{i,a-1}$. Adding the dummy -laborpart- and a fifth-order polynomial in -faminc_L1-, we have the following estimates:

Instrumental variables (2SLS) regression

						= = =	14.90 0.3138 .77961
score_d	Coef.	Robust Std. Err.	z	P> z	[95% C	onf.	Interval]
faminc_d black hispanic male age sib1 sib3 laborpart faminc_L1_2 faminc_L1_2 faminc_L1_4 faminc_L1_4 faminc_L1_5 _cons	.0568364 .0351855 .0681735 .0231602 .0187135 .042029 .0057888 -11984162 .0730289 0038857 .0001094 -1.49e-06 7.76e-09 897299	.0361477 .070458 .0589273 .0276339 .0113947 .0492368 .0346476 .1189039 .0710664 .0040168 .0001091 1.38e-06 6.61e-09 .5800846	1.57 0.50 1.16 0.84 1.64 0.85 0.17 -1.67 1.03 -0.97 1.00 -1.08 1.17 -1.55	0.116 0.618 0.247 0.402 0.101 0.393 0.867 0.095 0.304 0.333 0.316 0.281 0.240 0.122	01401 10290 0473 03100 00361 05447 06211 43146 06625 01175 00010 -4.20e -5.20e	95 92 97 93 92 93 93 94 94 96 97 98 99 99 90 90 90 90 90 90 90 90	.1276847 .1732806 .1836689 .0773217 .0410467 .1385313 .0736969 .0346311 .2123165 .0039872 .0003233 1.22e-06 2.07e-08
Instrumented: Instruments:		nic male age faminc L1 3					

▷ Compared to the results from part 10, the point estimate is much larger (about five times as large). It still remains insignificant, however.

Problem 1.13. Using this final model, create a loop that estimates the model repeatedly, setting as the dependent variable one of the test-score variables: -score-, -math-, -readingcomp-, and -readingrecog-.

Solution. We obtain the following estimates for each dependent variable.

□ Using -score- as dependent variable:

Instrumental va	ariables (2SL) regression	Number of obs	=	3,445
			Wald chi2(13)	=	14.90
			Prob > chi2	=	0.3138
			R-squared	=	
			Root MSE	=	.77961

score_d	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
faminc d	.0568364	.0361477	1.57	0.116	0140119	.1276847
black	.0351855	.070458	0.50	0.618	1029095	.1732806
hispanic	.0681735	.0589273	1.16	0.247	047322	.1836689
male	.0231602	.0276339	0.84	0.402	0310014	.0773217
age	.0187135	.0113947	1.64	0.101	0036197	.0410467
sib1	.042029	.0492368	0.85	0.393	0544733	.1385313
sib3	.0057888	.0346476	0.17	0.867	0621192	.0736969
laborpart	1984162	.1189039	-1.67	0.095	4314636	.0346311
faminc_L1	.0730289	.0710664	1.03	0.304	0662587	.2123165
faminc L1 2	0038857	.0040168	-0.97	0.333	0117585	.0039872
faminc L1 3	.0001094	.0001091	1.00	0.316	0001044	.0003233
faminc L1 4	-1.49e-06	1.38e-06	-1.08	0.281	-4.20e-06	1.22e-06
faminc L1 5	7.76e-09	6.61e-09	1.17	0.240	-5.20e-09	2.07e-08
_cons	897299	.5800846	-1.55	0.122	-2.034244	.239646

Instrumented: faminc_d
Instruments: black hispanic male age sib1 sib3 laborpart faminc_L1
faminc_L1_2 faminc_L1_3 faminc_L1_4 faminc_L1_5 inst_d

□ Using -math- as dependent variable:

Instrumental v	variables (2S)	LS) regressi	on	Wald		= = =	3,445 18.98 0.1238
				ROOT	MSE	=	.80023
		Robust					
math_d	Coef.	Std. Err.	Z	P> z	[95% (Conf.	Interval]
faminc d	.0156222	.0373226	0.42	0.676	05752	288	.0887732
black	0215768	.072233	-0.30	0.765	1631	509	.1199973
hispanic	.004982	.0603307	0.08	0.934	113	264	.1232279
male	.015157	.0281364	0.54	0.590	03998	393	.0703032
age	0242366	.0116973	-2.07	0.038	0471	629	0013104
sib1	0047992	.0533983	-0.09	0.928	1094	579	.0998595
sib3	.0291927	.0343121	0.85	0.395	0380	578	.0964433
laborpart	0969815	.1226859	-0.79	0.429	3374	414	.1434785
faminc_L1	.0090187	.0740802	0.12	0.903	1361	758	.1542131
faminc_L1_2	0002302	.0042105	-0.05	0.956	00848	326	.0080223
faminc_L1_3	7.13e-06	.0001147	0.06	0.950	0002	176	.0002319
faminc_L1_4	-1.53e-07	1.46e-06	-0.11	0.916	-3.01e	-06	2.70e-06
faminc_L1_5	1.13e-09	6.97e-09	0.16	0.872	-1.25e	-08	1.48e-08
_cons	.1729458	.5991561	0.29	0.773	-1.001	379	1.34727
minc_L1_2 minc_L1_3 minc_L1_4 minc_L1_5	0002302 7.13e-06 -1.53e-07 1.13e-09	.0042105 .0001147 1.46e-06 6.97e-09	-0.05 0.06 -0.11 0.16	0.956 0.950 0.916 0.872	00848 00023 -3.01e -1.25e	326 176 -06 -08	.0080223 .0002319 2.70e-06 1.48e-08

□ Using -readingcomp- as dependent variable:

readingcom~d	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	. Interval]
faminc d	.1035712	.056624	1.83	0.067	0074097	.2145521
black	.11028	.1123766	0.98	0.326	1099741	.3305342
hispanic	.0861164	.0967558	0.89	0.373	1035215	.2757543
male	.0426549	.0453679	0.94	0.347	0462646	.1315744
age	.0451407	.0184709	2.44	0.015	.0089384	.0813429
sib1	.0855219	.0808045	1.06	0.290	0728521	.2438959
sib3	.0117355	.0557384	0.21	0.833	0975098	.1209807
laborpart	2910437	.1887374	-1.54	0.123	6609622	.0788747
faminc L1	.1362923	.1094578	1.25	0.213	078241	.3508256
faminc L1 2	0074337	.0062315	-1.19	0.233	0196472	.0047799
faminc_L1_3	.0002097	.0001708	1.23	0.220	0001251	.0005445
faminc_L1_4	-2.82e-06	2.18e-06	-1.29	0.197	-7.10e-06	1.47e-06
faminc_L1_5	1.43e-08	1.05e-08	1.36	0.173	-6.26e-09	3.49e-08
_cons	-1.845645	.8990838	-2.05	0.040	-3.607817	0834731

□ Using -readingrecog- as dependent variable:

		Robust				
readingrec~d	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
faminc d	.0276106	.0321791	0.86	0.391	0354594	.0906805
black	.0021783	.0614186	0.04	0.972	1182	.1225565
hispanic	.0849884	.0504264	1.69	0.092	0138454	.1838223
male	.002009	.023632	0.09	0.932	0443089	.048327
age	.0274315	.0100527	2.73	0.006	.0077286	.0471343
sib1	.027835	.0428026	0.65	0.515	0560566	.1117265
sib3	025976	.0291986	-0.89	0.374	0832042	.0312521
laborpart	1244686	.1054807	-1.18	0.238	331207	.0822698
faminc_L1	.0433171	.0627532	0.69	0.490	0796769	.1663111
faminc_L1_2	0023725	.0035749	-0.66	0.507	0093791	.004634
faminc L1 3	.0000658	.0000975	0.68	0.500	0001253	.000257
faminc L1 4	-8.83e-07	1.24e-06	-0.71	0.476	-3.31e-06	1.55e-06
faminc_L1_5	4.59e-09	5.93e-09	0.77	0.439	-7.04e-09	1.62e-08
_cons	6449549	.5067719	-1.27	0.203	-1.63821	.3482997

In all of these cases, we find that faminc_d is not a significant predictor of these individual test scores.

```
3
    Empirical Analysis III - MIDTERM
    Simon Sangmin Oh
    University of Chicago, Booth School of Business
7
8
9
    sysuse auto, clear
10
    set scheme s2color
11
12
     * -----
13
    * Import Data
    use "C:\Users\Simon Oh\Dropbox\7. PHD\Year 1\Empirical Analysis III\Exams\Take-Home
14
    Midterm\DahlLochner2012AER.dta"
15
16
     * ______
    * Q1 - Describe the data
17
    gen score raw = (math + readingcomp + readingrecog) / 3
18
    egen score = std(score raw)
19
20
    replace score raw = score
21
22
     * -----
23
    * Q2 - Describe the data
24
    loneway score id
25
    loneway faminc id
26
27
28
    * Q3 - Graphing the means over time including 95% confidence interval
29
    * 1. Score
30
    preserve
31
    collapse (mean) mean score = score (semean) semean score = score, by (year)
    serrbar mean score semean score year, scale(1.96) title("Mean of score over time")
33
    restore
34
35
    * 2. Faminc
36
    preserve
37
    collapse (mean) mean faminc = faminc (semean) semean faminc = faminc, by (year)
38
    serrbar mean faminc semean faminc year, scale(1.96) title("Mean of Family Income over time")
39
    restore
40
    * -----
41
    * Q4 - Estimate model using score as dependent variable
42
43
    reg score faminc black hispanic male age agemom ed1age23 ed2age23 ed3age23 ed4age23 ///
44
              afqt afqt miss married spouseage spouseage miss famsize famsize miss sib1 sib3 ///
              , robust
45
46
47
    * -----
48
    * Q6 - First Differences
49
    xtset id year
50
    gen score d = score - L2.score
51
    gen faminc d = faminc - L2.faminc
52
53
    reg score d faminc d black hispanic male age sib1 sib3, robust
54
55
     * ______
    * Q7 - Fixed Effects
56
57
    xtreg score faminc black hispanic male age sib1 sib3, i(id) fe robust
58
59
     * -----
60
    * Q10 - First Differences with Instruments
    gen inst d = eitc sim - L2.eitc
61
    ivregress 2sls score d (faminc d = inst d) black hispanic male age sib1 sib3, robust
62
63
64
     * -----
65
    * Q11 - Test Relevance
    reg faminc_d inst_d black hispanic male age sib1 sib3
66
67
     * -----
68
69
    * Q10 - Full Model
```

Midterm Script - Simon Oh - Printed on 5/14/2019 7:20:13 AM

```
gen faminc L1 2 = faminc L1 * faminc L1
71
    gen faminc L1 3 = faminc L1 2 * faminc L1
72
    gen faminc_L1_4 = faminc_L1_3 * faminc_L1
    gen faminc_L1_5 = faminc_L1_4 * faminc_L1
73
74
    ivregress 2sls score_d (faminc_d = inst_d) black hispanic male age sib1 sib3 laborpart
     faminc L1 faminc L1 2 faminc L1 3 faminc L1 4 faminc L1 5, robust
75
76
77
     * Q13 - Create a a loop
78
    gen math d = math - L2.math
79
    gen readingcomp d = readingcomp - L2.readingcomp
80
    gen readingrecog d = readingrecog - L2.readingrecog
81
    foreach var of varlist score math readingcomp readingrecog {
82
     ivregress 2sls `var' d (faminc d = inst d) black hispanic male age sib1 sib3 laborpart
     faminc L1 faminc L1 2 faminc L1 3 faminc L1 4 faminc L1 5, robust
83
84
```