Maths - Feuille d'exos n° 18 -

Matrices

I. Interprétations géométriques des matrices

$$\underline{\mathbf{Ex. 18.1}} \quad \operatorname{Soit} \phi : \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x;y) & \mapsto & (3x-y;-x) \end{array} \right. \text{ et } \mathcal{B} = \left((1;1); (-1;2) \right).$$

- a. Montrer que ϕ est un endomorphisme de \mathbb{R}^2 et que \mathcal{B} en est une
- b. Donner la matrice de ϕ dans \mathcal{B} .

Ex. 18.2 Soit
$$A = \frac{1}{3} \begin{pmatrix} -3 & 0 & 2 \\ -3 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
 et *s* l'endomorphisme de \mathbb{R}^3

canoniquement associé à /

Montrer que s est une symétrie dont on déterminera les sous-espaces caractéristiques.

Ex. 18.3 Soit
$$E = \mathbb{R}_3[X], \Delta : P \in E \mapsto P'$$
 et $\phi : P \in E \mapsto P - P'$.

- a. Montrer que Δ et ϕ sont des endomorphismes de E et donner eur matrice dans la base canonique.
- On note $A = \operatorname{Mat}_{\mathcal{C}}(\Delta)$ et $B = \operatorname{Mat}_{\mathcal{C}}(\phi)$ ces matrices.
- b. Que peut-on dire de $\Delta^4 = \Delta \circ \Delta \circ \Delta \circ \Delta$?
- c. Déduire de la question précédente que :
- A n'est pas inversible;
- \bullet B est inversible on donnera l'inverse de B sans utiliser la méthode du pivot de Gauss

II. Isomorphismes et changements de bases

Soit $M = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ la matrice d'un endomorphisme Ex. 18.4

 $f: E \to E$ dans la base $\mathcal{B} = (e_1, e_2)$

Donner la matrice de f dans $\mathcal{B}' = (e_1 + e_2, e_1 - e_2)$.

Ex. 18.5 [**] $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB = A + B. Montrer que A et B commutent. Ce résultat se généralise-t-il aux matrices telles qu'il existe $\lambda \in \mathbb{K}, \lambda AB = A + B$?

$$\underline{\mathbf{Ex. 18.6}} \quad \text{Soit } N = \begin{pmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) \text{ et } \psi \text{ l'endomorphisme}$$

de \mathbb{R}^3 canoniquement associé à N.

- a. Déterminer la nature géométrique de ψ .
- b. En déduire N^k pour $k \in \mathbb{Z}$.

Ex. 18.7 Soient E et F deux espaces vectoriels de dimension n rapportés aux bases $\mathcal{B} = (e_1; e_2; ...; e_n)$ et $\mathcal{B}' = (f_1; f_2; ...; f_n)$ Soit $\phi : E \to F$ dont la matrice est

$$M = \operatorname{Mat}_{\mathcal{B}, \mathcal{B}'}(\phi) = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 0 & 1 & \ddots & & n-1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 2 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

- \mathcal{B}' a. Exprimer, pour $j \in [\![1;n]\!], \ \phi(e_j)$ dans la base
- b. On pose $S_j = \sum_{k} f_k$. Montrer que pour tout $j \in [1; n-1]$ on a $\phi(e_{j+1}) = \phi(e_j) + S_{j+1}.$
- c. En déduire une expression de $\phi(e_i)$ comme une somme double.

- d. Montrer que $\phi(\mathcal{B})$ est une famille génératrice de F.
- e. Montrer que M est inversible et calculer M^{-1} .

III. Matrices de changement de bases

Ex. 18.8 Soit
$$E = \mathbb{C}_2[X]$$
, C sa base canonique et $\mathcal{B} = (X^2 + 1; X^2 + iX; X^2 - iX)$.

- a. Montrer que \mathcal{B} est une base de E.
- b. Donner les matrices $P_{\mathcal{C}}^{\mathcal{B}}$ et $P_{\mathcal{B}}^{\mathcal{C}}$.

Ex. 18.9 Soit $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$, C sa base canonique et $\mathcal{B} = (X^k(1-X)^{n-k})_{k \in [0;n]}$. On note P_k les polynômes de \mathcal{B} .

- a. Simplifier $S_0 = \sum_{k=0}^n \binom{n}{k} P_k$ puis $S_1 = \sum_{k=1}^n \binom{n-1}{k-1} P_k$.
- b. Montrer que \mathcal{B} est une base de E.
- c. Donner les matrices $P_{\mathcal{C}}^{\mathcal{B}}$ et $P_{\mathcal{B}}^{\mathcal{C}}$.

Ex. 18.10 Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par

$$\begin{cases} u_0 = 1 & \text{et} & \begin{cases} u_{n+1} = \frac{-7}{2}u_n + 6v_n \\ v_0 = 1 & \end{cases}$$

- a. Calculer u_1, u_2, v_1, v_2 .
- b. On pose pour tout entier $n \in \mathbb{N}$, $W_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R})$. Exprimer W_{n+1} en fonction de W_n .
- c. Soit $Q = \begin{pmatrix} \frac{-7}{2} & 6 \\ -3 & 5 \end{pmatrix}$ et ϕ l'endomorphisme canoniquement associé à Q.
 - Soit $\mathcal{B} = ((3; 2); (4; 3)).$
- Montrer que \mathcal{B} est une base de \mathbb{R}^2 .
 - Calculer $\operatorname{Mat}_{\mathcal{B}}(\phi)$.

- \bullet En déduire une expression simple de Q^n .
- d. À l'aide des deux questions précédentes, expliciter W_n en fonction de n.
- e. Montrer que les suites u et v convergent et donner leurs limites.

IV. Noyau, image et rang

Ex. 18.11

a. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{pmatrix}$$

Déterminer une base de Kerf, une base de Imf et le rang de A

b. Soit g l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 canoniquement associée à

$$B = \begin{pmatrix} -11 & 7 & 0 & 3\\ 0 & 1 & 11 & 2\\ 1 & 0 & 7 & 1 \end{pmatrix}$$

Déterminer une base et un système d'équations de Kerg, une base et une équation de Img et le rang de B.

- **Ex.** 18.12 Soit A une matrice réelle d'ordre n et de rang 1.
- a. Montrer qu'il existe X et Y dans $\mathcal{M}_{n,1}(\mathbb{R})$ tels que $A = X^{t}Y$.
- b. En déduire A^k en fonction de A pour $k \ge 1$.
- c. En déduire une condition nécessaire et suffisante pour que $A+I_n$ soit inversible et exprimer alors son inverse en fonction de A.

Ex. 18.13 Soient $p \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Quel est le rang de la matrice $\overline{((i+j+p)^2)_{1 \le i \le n}}$?

V. Divers

Ex. 18.14 Soit $E = \mathbb{R}_3[X]$, C sa base canonique, $\mathcal{B} = (1; X; X(X-1); X(X-1)(X-2))$ et

$$\phi: \begin{cases} E \to E \\ P \mapsto \sum_{k=0}^{3} P(k)X^{k} = P(0) + P(1)X + P(2)X^{2} + P(3)X^{3} \end{cases}$$

- a. Montrer que \mathcal{B} est une base de E et que $\phi \in \mathcal{L}(E)$.
- b. Donner $A = \operatorname{Mat}_{\mathcal{C}}(\phi)$.
- c. Donner $P = P_{\mathcal{C}}^{\mathcal{B}}$.
- d. Donner $B = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(\phi)$.
- e. Quelle formule relie les matrices A, B et P?
- f. Déduire des questions précédentes que ϕ est bijective.
- 5. Ce résultat peut-il se généraliser?

Ex. 18.15 Extrait écrit Centrale Math 1 2018 Soient n un

entier supérieur à 2, $(t_1, t_2, ..., t_n) \in \mathbb{C}^n$ et $M = \begin{pmatrix} 0 & 1 & 0 & ... & 0 \\ 0 & 0 & ... & ... & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & ... & 0 & 1 \\ 1 & 0 & ... & ... & 0 \end{pmatrix}$

$$A(t_1, t_2, ..., t_n) = \begin{pmatrix} t_1 & t_2 & \cdots & t_{n-1} & t_n \\ t_n & \ddots & \ddots & & t_{n-1} \\ \vdots & \ddots & \ddots & & \vdots \\ t_3 & & \ddots & & \vdots \\ t_2 & t_3 & \cdots & t_n & t_1 \end{pmatrix} \operatorname{dans} \mathcal{M}_n(\mathbb{C}).$$

a. Calculer M^2 , ..., M^n . Montrer que M est inversible, donner M^{-1}

- b. Donner un polynôme P de $\mathbb{C}_n[X]$ tel que P(M) = 0.
- c. Montrer qu'il existe un unique polynôme $Q_A \in \mathbb{C}_{n-1}[X]$ tel que $A(t_1,t_2,...,t_n)=Q_A(M)$.
- d. Réciproquement, soit $Q \in \mathbb{C}[X]$, montrer à l'aide d'une division euclidienne de Q par un polynôme bien choisi qu'il existe $(t_1,t_2,...,t_n)\in\mathbb{C}^n$ tel que $Q(M)=A(t_1,t_2,...,t_n)$.
- e. Montrer que $\mathcal{D}_n = \{A(t_1, t_2, ..., t_n) \in \mathcal{M}_n(\mathbb{C}), (t_1, t_2, ..., t_n) \in \mathbb{C}^n\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ stable par produit et transposition
- f. Donner une base de \mathcal{D}_n ainsi que sa dimension.

 $\overline{\mathbf{Ex. 18.16}}$ (Cor.) On considere l'application

$$\Phi: \left\{ \begin{array}{ccc} \mathbb{R}[\overline{X}] & \to & \mathbb{R}[X] \\ \\ P & \mapsto & \int_{X-1}^X P(t) \mathrm{d}t \end{array} \right.$$

- a. Montrer que Φ est linéaire.
- b. Montrer que $\forall P \in \mathbb{R}[X]$, $\deg \Phi(P) = \deg P$.
- c. En déduire Φ est un automorphisme d'espaces vectoriels.
- d. Étant donné $n \in \mathbb{N}$, on note Φ_n la restriction de Φ à $\mathbb{R}_n[X]$. On note $(P_0, P_1, ..., P_n)$ l'image réciproque de la base canonique de $\mathbb{R}_n[X]$ par Φ_n . Les polynômes P_k sont appelés **polynômes de Bernoulli**.

Calculer les quatre premiers polynômes de Bernoulli.

- e. Démontrer que pour tout $n, N \in \mathbb{N}$, $\sum_{k=1}^{N} k^n = \frac{P_{n+1}(N) P_{n+1}(0)}{n+1}.$
 - f. Que vaut $\sum_{k=1}^{N} k^3$?

Corrections

Cor. 18.16:

 $\Phi(\lambda P + Q) = \int_{X-1}^{\infty} \lambda P(t) + Q(t) dt = \lambda \int_{X-1}^{X} P(t) dt + \int_{X-1}^{X} Q(t) dt = \lambda \int_{X-1}^$ a. $\forall (P,Q) \in \mathbb{R}[X]^2, \forall \lambda \in \mathbb{R}$,

Ce qui s'énonce aussi plus simplement : Φ est linéarité de l'intégrale.

b. $\forall P \in \mathbb{R}[X], \exists n \in \mathbb{N}, P = \sum_{i=1}^{n} a_i X^i$. Or Φ étant linéaire, on a alors

polynômes de la base canonique, la somme de deux polynômes de degrés $\Phi(P) = \sum_{i=1}^{n} a_i \Phi(X^i)$. Il suffit donc de montrer que Φ conserve le degré des

distincts étant égale au plus grand des degrés des deux polynômes.

$$\Phi(X^{i}) = \int_{X^{-1}}^{X} t^{i} dt$$

$$= \frac{X^{i+1} - (X-1)^{i+1}}{i+1}$$
est de degré i .
$$- \sum_{k=0}^{i} \binom{i+1}{k} X^{k} (-1)^{i+1-k}$$

Donc $\forall i \in \mathbb{N}, \deg \Phi(X^i) = \deg X^i \Rightarrow \forall P \in \mathbb{R}[X], \deg \Phi(P) = \deg P$.

c. $\mathbb{R}[X]$ est un R-espace vectoriel de dimension infinie, ce qui pose quelques soucis supplémentaires que l'on aimerait éviter. On se restreint donc à d'après la question précédente. Démontrer que Φ est un automorphisme de $\mathbb{R}[X]$ revient donc à démontrer que pour tout entier $n \in \mathbb{N}$, Φ_n est un $\Phi_n: P \in \mathbb{R}_n[X] \mapsto \Phi_n(P) = \Phi(P)$ qui est aussi un polynôme de $\mathbb{R}_n[X]$ automorphisme de $\mathbb{R}_n[X]$.

Comme Φ_n est un endomorphisme d'un espace vectoriel de dimension finie, on peut alors utiliser le théorème :

 Φ_n est bijective $\Leftrightarrow \Phi_n$ est injective $\Leftrightarrow \Phi_n$ est surjective.

La question devient alors simple : on montre que Φ_n est injective en calculant son noyau:

$$\ker \Phi_n = \begin{cases} P \in \mathbb{R}_n[X], \Phi(P) = 0 \\ = \{ P \in \mathbb{R}_n[X], \deg \Phi(P) = -\infty \} = \{ P \in \mathbb{R}_n[X], \deg P = -\infty \} \\ = \{ 0 \} \end{cases}$$

Donc Φ est un automorphisme d'espace vectoriel.

d. $P_0=1, P_1=\frac{1}{2}+X, P_2=\frac{1}{6}+X+X^2, P_3=\frac{X}{2}+\frac{3X^2}{2}+X^3$ (ces résultats n'étant pas tout à fait immédiats puisqu'il faut pour les obtenir inverser une matrice (4,4) triangulaire supérieure de diagonale égale à 1).

D'une part, $\Phi(P_n(X) - P_n(X-1)) = X^n - (X-1)^n$ par linéarité de Φ

D'autre part, $\Phi\left(nX^{n-1}\right) = n\frac{X^n - (X-1)^n}{\tilde{z}} = X^n - (X-1)^n$ par définiet définition des polynômes de Bernoulli.

 Φ étant par ailleurs bijective, on en déduit que $P_n(X)-P_n(X-1)=nX^{n-1}$

$$\sum_{k=1}^{N} k^{n} = \frac{\sum_{k=1}^{N} P_{n+1}(k) - P_{n+1}(k-1)}{n+1}$$

$$= \frac{n+1}{n+1}$$
 par télescopage

f. Après calcul de P_4 , on obtient la formule classique $\sum_{k=1}^{N} k^3 = \left(\frac{N(N+1)}{2}\right)^2$.