Kursus 02402/02323 Introduktion til statistik

Forelæsning 13: Et overblik over kursets indhold

Peder Bacher

DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby – Denmark e-mail: pbac@dtu.dk

31. januar 2018

1 /

or. januar 2010

eNote 1: Simple plots og deskriptive statistik

eNote 1: Simple plots og deskriptiv statistik

Engelsk

- Teknikker til at "se" på data! (deskriptiv statistik)
- Opsummerende størrelser for stikprøve
 - Gennemsnittet (\bar{x})
 - ullet Empirisk standard afvigelse (s)
 - Empirisk varians (s^2)
 - Fraktiler og percentiler (f.eks. 15% af data ligger under 0.15 fraktil)
 - Median, øvre- og nedre kvartiler
 - Empririsk korrelation (r) (mellem to stikprøver)
- Simple plots
 - Scatter plot (xy plot)
 - Histogram (empirisk tæthed)
 - Kumulativ fordeling (empirisk fordeling)
 - Boxplots, søjlediagram, cirkeldiagram (lagkagediagram)

Overview

- 1: Simple plots og deskriptive statistik
- 2 eNote 2: Diskrete fordelinger
- eNote 2: Kontinuerte fordelinger
- 4 eNote 3: Konfidensintervaller for én gruppe/stikprøve
- 6 eNote 3: Hypotesetests for én gruppe/stikprøve
- 6 eNote 3: Statistik for to grupper/stikprøver
- eNote 4: Statistik ved simulation
- 🔞 eNote 5: Simpel lineær regressions analyse
- eNote 6: Multipel lineær regressions analyse
- o eNote 8: Envejs variansanalyse (envejs ANOVA)
- eNote 8: Tovejs variansanalyse (ANOVA)
- eNote 7: Inferens for andele

31. januar 2018 2

1. januar 2018 – 2

eNote 2: Diskrete fordelinger

eNote2: Diskrete fordelinger

Engelsk

- Grundlæggende koncepter:
 - Stokastisk variabel (den får værdi afhængigt af udfald af endnu ikke udført eksperiment)
 - Tæthedsfunktion: f(x) = P(X = x) (pdf)
 - Fordelingsfunktion: $F(x) = P(X \le x)$ (cdf)
 - Middelværdi: $\mu = E(X)$
 - ullet Standard afvigelse: σ
 - Varians: σ^2
- Specifikke distributioner:
 - Binomial (terningekast)
 - Hypergeometrisk (trækning uden tilbagelægning)
 - Poisson (antal hændelser i interval)

eNote 2: Kontinuerte fordelinger

Engelsk

- Grundlæggende koncepter:
 - Tæthedsfunktion: f(x) (pdf)
 - Fordelingsfunktion: $F(x) = P(X \le x)$ (cdf)
 - Middelværdi (μ) og varians (σ^2)
 - Regneregler for stokastiske variabler
- Specifikke fordelinger:
 - Normal
 - Log-Normal
 - Uniform
 - Exponential
 - t
 - χ^2 (Chi-i-anden)
 - F

31. januar 2018

8 / 3

eNote 3: Hypotesetests for én gruppe/stikprøve

eNote 3: Hypotesetests for én gruppe/stikprøve

Engelsk

- Grundlæggende koncepter:
 - Hypoteser $(H_0 \text{ vs. } H_1)$
 - p-værdi (sandsynlighed for observeret værdi eller mere ekstremt af teststørrelsen, hvis H_0 er sand, e.g. $P(T > t_{\rm obs})$)
 - Type I fejl: (i virkeligheden ingen effekt, men H_0 afvises) $P(\mathsf{Type\ I}) = \alpha$
 - Type II fejl: (i virkeligheden effekt, men H_0 afvises ikke) $P(\mathsf{Type\ II}) = \beta$
 - ullet Testens styrke er eta
- Specifikke metoder, én gruppe:
 - t-test for middelværdiniveau
 - Stikprøvestørrelse for ønsket styrke
 - Modelkontrol med normal qq-plot

eNote 3: Konfidensintervaller for én gruppe/stikprøve

eNote 3: Konfidensintervaller for én gruppe/stikprøve

Engelsk

- Grundlæggende koncepter
 - Population og tilfældig stikprøve
 - Estimation (f.eks. $\hat{\mu}$ er estimat af μ)
 - ullet Signifikans niveau lpha
 - Konfidensintervaller (fanger rigtige prm. 1α af gangene)
 - Stikprøvefordelinger (stikprøvegennemsnit (t) og empirisk varians (χ^2))
 - Centrale grænseværdisætning
- Specifikke metoder, én gruppe/stikprøve:
 - Konfidensintervaller for middelværdi (t-fordeling) og varians (χ^2 fordeling)
 - \bullet Forsøgsplanlægning: beregn stikprøvestørrelsen n for den ønskede præcision

31. januar 2018 10

eNote 3: Statistik for to grupper/stikprøver

eNote 3: Statistik for to grupper/stikprøver

Engelsk

- Specifikke metoder, to grupper:
 - Test og konfidensintervaller for forskel i middelværdi (t-test)
 - Forsøgsplanlægning: Beregn sample størrelsen for den ønskede styrke
- Specifikke metoder, to PARREDE grupper:
 - "Tag differencen for hver måling"⇒ "statistik for én gruppe"

31. januar 2018 12 / 3

14 / 39

(Beregn statistik mange gange)

• Fejlforplantning (error propagation rules)

(F.eks. igennem ikke-lineær funktion)

- Bootstrapping:
 - Parametrisk (Simuler mange udfald af stokastisk var.)
 - Ikke-parametrisk (Træk direkte fra data)
 - Konfidensintervaller (og derfor også hypotesetest)
- Specifikke setups: (4 versioner af konfidensintervaller)
 - Èn gruppe/stikprøve og to grupper/stikprøver data
 - Parametrisk vs. ikke-parametrisk

31. januar 2018 16 / 3

eNote 6: Multipel lineær regressions analyse

eNote 6: Multipel lineær regressions analyse

Engelsk

- Flere variabler: y, x_1 , x_2 , ... (y afhængig/respons var. og x'er er forklarende/uafhængige var.)
- Mindstekvadraters rette plan (et plan da der er >2 dimensioner)
- Inferens for en multipel lineær regressionmodel
 - Statistisk model: $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \ldots + \varepsilon_i$
 - \bullet Estimation af konfidensintervaller og tests for β 'er
 - Konfidensintervaller for modellen (For det forventede plan)
 - Prædiktionsintervaller for nye punkter
- \bullet R^2 er andelen af den totale variationen som er forklaret af modellen

eNote 5: Simpel lineær regressions analyse

Engelsk

- To variable: $x \circ y$
- Beregn mindstekvadraters estimat af ret linje
- Inferens med simpel lineær regressionsmodel
 - Statistisk model: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - ullet Estimation af konfidensintervaller og tests for eta_0 og eta_1
 - Konfidensintervaller for linjen (95% gange ligger linjen indenfor)
 - Prædiktionsintervaller for punkter (95% af nye punkter ligger indenfor)
- $\bullet \rho$, $R \circ R^2$
 - ρ er korrelationen (= $sign_{\beta_1}R$) beskriver graden af lineær sammenhæng mellem x og y
 - \bullet R^2 er andelen af den totale variation som er forklaret af modellen
 - Afvises $H_0: \beta_1=0$ så afvises også $H_0: \rho=0$

31. januar 2018 18 / 3

eNote 8: Envejs variansanalyse (envejs ANOVA)

eNote 8: Envejs variansanalyse (envejs ANOVA)

Engelsk

- k UAFHÆNGIGE grupper
- Specifikke metoder, envejs variansanalyse:
 - Test der sammenligner middelværdien af grupperne
 - ANOVA-tabel: SST = SS(Tr) + SSE
 - F-test
 - Post hoc test(s): Parvise t-test med poolet varians estimat
 - Hvis planlagt på forhånd, så uden Bonferroni korrektion
 - Hvis alle sammenligninger udføres, så med Bonferroni korrektion

eNote 7: Inferens for andele

eNote 8: Tovejs variansanalyse (tovejs ANOVA)

Engelsk

- Blokdesign giver to faktorer
- ANOVA-tabel: SST = SS(Tr) + SS(Bl) + SSE
 - ullet SST, SS(Tr) og SS(Bl) beregnes som ved envejs ANOVA
 - SSE = SST SS(Tr) SS(Bl)
- \bullet F-test
- Post hoc test(s): Parvise t-test med poolet varians estimat
 - Hvis planlagt på forhånd, så uden Bonferroni korrektion
 - Hvis alle sammenligninger udføres, så med Bonferroni korrektion

31. januar 2018 24 / 39

eNote 7: Inferens for andele

Overview

- eNote 1: Simple plots og deskriptive statistik
- eNote 2: Diskrete fordelinger
- eNote 2: Kontinuerte fordelinger
- 4 eNote 3: Konfidensintervaller for én gruppe/stikprøve
- 5 eNote 3: Hypotesetests for én gruppe/stikprøve
- o eNote 3: Statistik for to grupper/stikprøver
- eNote 4: Statistik ved simulation
- 8 eNote 5: Simpel lineær regressions analyse
- eNote 6: Multipel lineær regressions analyse
- o eNote 8: Envejs variansanalyse (envejs ANOVA)
- eNote 8: Tovejs variansanalyse (ANOVA)
- eNote 7: Inferens for andele

eNote 7: Inferens for andele

Engelsk

- Andel: $p = \frac{x}{n}$ (x successer ud af n observationer)
- Specifikke metoder, én, to og k>2 grupper Binær/kategorisk respons
- Estimation og konfidensintervaller for andele
 - Metoder til store stikprøver vs. til små stikprøver
- Hypoteser for en and (p)
- Hypoteser for to andele
- Analyse af antalstabeller (χ^2 -test) (Alle forventede antal > 5)

31. januar 2018 26 /

•

eNote 1: Simple Graphics and Summary Statistics

eNote 1: Simple Graphics and Summary Statistics

Dansk

- Look at data as it is! (descriptive statistics)
- Summary statistics
 - ullet Sample mean: $ar{x}$
 - \bullet Sample standard deviation: s
 - ullet Sample variance: s^2
 - Quantiles and percentiles (e.g. 15% of data is below 0.15 quantile)
 - Median, upper- and lower quartiles
 - Sample correlation (r) (between two samples)
- Simple graphics
 - Scatter plot (xy plot)
 - Histogram (empirical density)
 - Cumulative distribution (empirical distribution)
 - Boxplots, Bar charts, Pie charts

eNote 2: Discrete Distributions

Dansk

- General concepts:
 - Random variable (Gets it value dependent on outcome of yet not carried out experiment)
 - Density function: f(x) = P(X = x) (pdf)
 - Distribution function: $F(x) = P(X \le x)$ (cdf)
 - Mean: $\mu = E(X)$
 - Standard deviation: σ
 - Variance: σ^2
- Specific distributions:
 - The binomial distribution (Dice roll)
 - The hypergeometric distribution (Draw without replacement)
 - The Poisson distribution (Number of events in interval)

31. januar 2018

eNote 3: One sample confidence intervals

eNote 3: One sample confidence intervals

Dansk

- General concepts
 - Population and a random sample
 - Estimation (e.g. $\hat{\mu}$ is estimate of μ)
 - Significance level α
 - Confidence intervals (Catches true value 1α times)
 - Sampling distributions (sample mean (t) and sample valance (χ^2))
 - Central Limit Theorem
- Specific methods, one sample:
 - Confidence intervals for the mean (t-distribution) and variance (χ^2 distribution)
 - Design of experiments: calculating the sample size n for wanted precision

eNote 2: Continuous Distributions

Dansk

- General concepts:
 - Density function: f(x) (pdf)
 - Distribution: $F(x) = P(X \le x)$ (cdf)
 - Mean (μ) and variance (σ^2)
 - Calculation rules for random variables
- Specific distributions:
 - Normal
 - Log-Normal
 - Uniform
 - Exponential

 - χ^2 (Chi-square)
 - F

31. januar 2018

eNote 3: One sample hypothesis testing

eNote 3: One sample hypothesis testing

General concepts:

Dansk

- Hypotheses $(H_0 \text{ vs. } H_1)$
- p-value (Probability for observing the test value or more extreme, if H_0 is true, e.g. $P(T > t_{obs})$
- Type I error: (No effect in reality, but H_0 is rejected) $P(\mathsf{Type}\;\mathsf{I}) = \alpha$
- Type II error: (In reality an effect, but H_0 is not rejected) $P(\mathsf{Type}\;\mathsf{II}) = \beta$
- Power of a test is β
- Specific methods, one sample:
 - t-test for mean difference
 - Sample size for wanted power
 - Model validation with normal gg-plot

eNote 3: Two Samples

Dansk

- Specific methods, two samples:
 - Test and confidence interval for the mean difference (t-test)
 - Planning: calculating the sample size for wanted power
- Specific methods, two PAIRED samples:
 - "Take difference"⇒ "One sample"

31. januar 2018 33 / 39

eNote 5: Simple linear Regression Analysis

eNote 5: Simple linear Regression Analysis

Dansk

- \bullet Two quantitative variables: x and y
- Calculating least squares line
- Inferences for a simple linear regression model
 - Statistical model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Interval estimation and test for β_0 and β_1 .
 - Confidence interval for the line (95% times the line will be inside)
 - Prediction interval for punkter (95% times new points will be inside)
- ρ , $R \circ R^2$
 - ρ is the correlation (= $sign_{\beta_1}R$) describes the strength of linear relation between x and y
 - ullet R^2 is the fraction of the total variation explained by the model
 - If $H_0: \beta_1=0$ is rejected, then $H_0: \rho=0$ is also rejected

eNote 4: Statistics by simulation

eNote 4, Statistics by simulation

Dansk

Introduction to simulation

(Calculate the statistic many times)

• Error propagation rules

(e.g. through a non-linear function)

- Bootstrapping:
 - Parametric (Simulate many outcomes of random var.)
 - Non-parametric (Draw values directly from data)
 - Confidence intervals (and hence also hypothesis testing)
- Specific situations: (4 versions of confidence intervals)
 - One-sample and Two-sample data
 - Parametric vs. non-parametric

31. januar 2018 34

--- **,**------

eNote 6: Multiple linear Regression Analysis

eNote 6: Multiple linear Regression Analysis

• Many quantitative variables: y, x_1, x_2, \ldots (y is the dependent/response var. and x's are explanatory/independent var.)

- Calculating least squares plane (A plane since there are >2 dimensions)
- Inferences for a the multiple linear regression model
 - Statistical model: $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \ldots + \varepsilon_i$
 - ullet Confidence interval estimation and test for the eta's
 - Confidence interval for the expected fit (fitted line)
 - Prediction interval for new points
- ullet R^2 expresses the proportion of the total variation explained by the linear fit

eNote 8: One-way Analysis of Variance

eNote 8: One-way Analysis of Variance

Dansk

- \bullet Specific methods, k INDEPENDENT samples
- One-way analysis of variance
 - Test for comparing the means of the groups
 - ANOVA-table: SST = SS(Tr) + SSE
 - F-test
 - Post hoc test(s): pairwise *t*-test with pooled variance estimate
 - If planned on beforehand, then without Bonferroni correction
 - If all samples are compared, then with Bonferroni correction

31. januar 2018 37 / 3

eNote 7: Inferences for Proportions

eNote 7: Inferences for Proportions

Dansk

- Proportion: $p = \frac{x}{n}$ (x successes out of n observations)
- Specific methods, one, two and k > 2 samples
 - Binary/categorical response
- Estimation and confidence interval of proportions
 - Large sample vs. small sample methods
- Hypotheses for one proportion
- Hypotheses for two proportions
- Analysis of contingency tables (χ^2 -test) (All expected > 5)

31. januar 2018 39 / 3

eNote 8: Two-way Analysis of Variance

eNote 8: Two-way Analysis of Variance

Dansk

- Block design two-way analysis of variance
- ANOVA-tabel: SST = SS(Tr) + SS(Bl) + SSE
 - \bullet SST, SS(Tr) and SS(Bl) calculated as one-way ANOVA
 - SSE = SST SS(Tr) SS(Bl)
- F-test.
- Post hoc test(s): pairwise *t*-test with pooled variance estimate
 - If planned on beforehand, then without Bonferroni correction
 - If all samples are compared, then with Bonferroni correction