

Felicia | Simran | Sid Team #4

Background

West Nile Virus (WNV)

- Leading cause of mosquito-borne disease in continental United States
- 20% infected people develop severe symptoms
- Can only spread from mosquito → human

Chicago

- First human cases of WNV reported in 2002
- Established a comprehensive surveillance and control program by Chicago Department of Public Health (CDPH) by 2004
- Test mosquitos in traps across the city every week (late spring through the fall)

Problem Statement

Due to the recent epidemic of West Nile Virus in the Windy City, the data science team at Disease And Treatment Agency was tasked to derive an effective plan to deploy pesticides throughout the city.

Using various location, weather conditions and time lags, we will be analysing classification techniques to obtain the best model that can predict the presence of WNV across Chicago.

Workflow

Data Exploration

Collect and explore data from Kaggle

9 D

Data Cleaning & Analysis

Perform cleaning and visualizations

Modelling

Preprocess and build models.

GridSearch for
hyperparameter tuning

Evaluation

Results & discussion

Final thoughts & remarks

Data Exploration

Train Data Quality

Train data

Number of Mosquitos and Presence of Virus

- → Each row is capped at 50
- → Can be conflicting to train the model

	date	species	trap	latitude	longitude	num_mosquitos	wnv_present
4888	2009-07-24	CULEX PIPIENS/RESTUANS	T002	41.95469	-87.800991	50	0
4889	2009-07-24	CULEX PIPIENS/RESTUANS	T002	41.95469	-87.800991	25	0
4890	2009-07-24	CULEX PIPIENS/RESTUANS	T002	41.95469	-87.800991	50	1
4891	2009-07-24	CULEX PIPIENS/RESTUANS	T002	41.95469	-87.800991	50	0
4892	2009-07-24	CULEX PIPIENS/RESTUANS	T002	41.95469	-87.800991	40	0
4893	2009-07-24	CULEX RESTUANS	T002	41.95469	-87.800991	18	0
4894	2009-07-24	CULEX PIPIENS	T002	41.95469	-87.800991	4	0

Weather Data

Although there are no null values, they are represented differently as stated in the documentation.

'M' = missing values (for e.g. in Tavg column)	' ' = moderate (for CodeSum column)
'-' = missing values (for e.g. in Sunrise column)	'T' = trace values (for e.g. PrecipTotal column)

Daylight

→ Convert sunrise and sunset into daytime in mins

Relative Humidity

→ Moisture content in the atmosphere, at constant temperature and pressure.

Average of Stations

 \rightarrow Both stations are close to each other \rightarrow Merge station data

Exploratory Data Analysis

Initial investigation of data

Mosquito species that spread WNV

YoY WNV presence

Feature highlights from EDA

Selected features

- 1. Location (longitude and latitude)
- 2. Average temperature (lag 28)
- 3. Daylight
- 4. Week
- 5. Year
- 6. Species (one hot encoded)
- 7. Relative humidity (lag5)
- 8. Precipitation (lag 14)

Rejected features

- 1. Number of mosquitoes
- 2. Trap
- 3. Snow fall
- 4. Water1
- 5. **Sunrise-sunset**

Rolling features

We will use rolling average for the following features:

- 'tavg'
- 'precip_total'
- 'r_humid'

Mosquito Species	Temperature	Lifecycle (days)
CULEX	70° F	14
CULEX	80° F	10

Effect of spray on number of mosquitos

Spray locations in 2011 & 2013

Trend over the years

Seasonality in virus presence


```
# target distribution
y_train.value_counts(normalize=True)
```

0 0.9595 1 0.0405

Name: wnv_present, dtype: float64

- 96 4 | highly imbalance class
- Training this results in very poor performance
- Model predicted 0 instances of the positive class correctly

Solution?

- Oversample using SMOTE
- Synthetic Minority Oversampling TEchnique
- Post-operation distribution 50 50

Results

	Classifier	Train Acc Score	Val Acc Score	Train ROC-AUC	Val ROC-AUC	Recall	Precision	F1-Score
0	xgb	0.741312	0.792803	0.882247	0.729746	0.408072	0.188406	0.257790
1	et	0.710290	0.865164	0.848968	0.721504	0.147982	0.179348	0.162162
2	ab	0.708256	0.779359	0.848738	0.706233	0.295964	0.141328	0.191304
3	bc	0.798779	0.429419	0.916910	0.692877	0.905830	0.124384	0.218733
4	Ir	0.746228	0.783709	0.842807	0.687969	0.336323	0.158228	0.215208
5	rf	0.676894	0.850534	0.845842	0.680681	0.152466	0.152466	0.152466
6	dt	0.787930	0.827204	0.811114	0.623974	0.233184	0.163522	0.192237

ROC-AUC Curve

Feature importance

Cost Benefit Analysis

According to 'Economic Cost Analysis of West Nile Virus Outbreak (WNF): Sacramento County, California, USA, 2005'.

causing flu-like symptoms, mild compared to WNND

- 163 cases (117 WNF and 46 WNND cases)
- spray area of 477 km²

Summary				
Total medical, productivity, miscellaneous cost		\$136,839 (WNF)		
		\$2,140,409 (WNND)		
Total spray and labour cost		\$701,790		
Total economic cost		\$2,979,037		

West Nile neuroinvasive disease (WNND):

severe, affecting central nervous system symptom

Medical, productivity, miscellaneous cost per pax	\$1,170 (WNF)
iviedical, productivity, illiscendificous cost per pax	\$46,531 (WNND)
Spray and labour cost per km²	\$1,471

On to Chicago

The average number of WNV present in the traps for train dataset is 138.

Assuming each trap with WNV present could spread to 2-3 people

Cost benefit analysis on 325 WNV cases and 112.3km² of spray area in Chicago.

	Sacramento County		Chicago	
Population		1.36 million	2.71 million	
Area		2574 km²	606.1 km²	
Spray area		477 km ²	112.3 km²	
Total cases	otal cases		325	
Total cost of spray		\$701,790	\$165,193	
Total medical/productivity /miscellaneous cost		\$2,277,248	\$4,540,535	

The Annual Cost Projection for test set:

- Cost will keep increasing due to inflation rate
- Spray in areas with 12 or more WNV cases
- Currently no WNV vaccination available
- The article showed that spraying does help to an extent

Annual Cost Projection						
Year	Medical/productivity/misc cost	Spray cost	Inflation rate(%)			
2005	\$4,540,535	\$165,193	-			
2008	\$4,965,529	\$180,655	9.36			
2010	\$5,109,033	\$185,876	2.89			
2012	\$5,328,210	\$193,850	4.29			
2014	\$5,483,261	\$199,491	2.91			

Conclusions

Evaluation

XGBoost best ROC-AUC but resource-intensive

Time of year matters

Weather 2-4 weeks prior to peak

Recommendations

Spraying 2-3 weeks prior to "virus season"

Stagnant water during rainy seasons

Improvements

Detailed feature engineering

Collect/predict number of virus-carrying mosquitoes

THANKS