1. Computing Vertex Peel values:

1.a. Vanilla version (You have already done.)

1.b. Computing Vertex Peel values as well as connected components together

IN: ASCII format edge list <src>, <tgt>\n

OUT1: array of peel values for each vertex.

OUT2: array of connected component index for each vertex.

Note: when you compute peel value, you iterate all edges. You can insert a union-find while iterating all edges.

1.c. Binary version of 1.a.

IN: binary format edge list, where every 8 Bytes represent an edge, and first 4 Bytes are source, and the last 4 Bytes are target. They are coded as an uint32 (little-endian). Namely, <src><tgt>.

OUT: binary format list, where every 8 Bytes represent a vertex and its peel value, the first 4 Bytes are vertex index, and the last 4 Bytes are peel value. They are coded as an uint32 (little-endian). Namely, <vertex><peel>

1.d. Binary version of 1.b.

IN: binary format edge list, where every 8 Bytes represent an edge, and first 4 Bytes are source, and the last 4 Bytes are target. They are coded as an uint32 (little-endian). Namely, <src><tgt>.

OUT: binary format list, where every 12 Bytes represent a vertex and its peel value, the first 4 Bytes are vertex index, the middle 4 Bytes are peel value and the last 4 Bytes are connected component index. They are coded as an uint32 (little-endian). Namely, <vertex><peel><cc>

2. Computing peel connected component of each vertex using disjoint sets (You have already done.)

3. Computing meta node

3.a. Vanilla version (You have already done.)

3.b. Computing 2 as well as 3 together

IN: array of peel values for each vertex.

OUT1: ASCII list vertex, peel, peelCC

OUT2: ASCII list peelCCIdx, |V|, |E|

Note: In task 2 you iterate all edges, and you can keep two arrays of counters to record

the vertex and edge size of each peel connected component.

4. Computing Meta Edges for the Meta graph

We expect the processing rate to reach 2 million edges per second. As we discussed before, you may check peel value rather than peelCC index to speed up.