Summary of Key Concepts

Quantum Networking

Week of March 24th, 2024

Resources	1
Key Terms	2
Lecture	3
Learning Objectives	3
Key Ideas	3
Lab	4
Learning Objectives	4
Key Ideas	4

Resources

- QXQ YLC Week 21 Lab [STUDENT].ipynb
- **NOTE**: Homework is just on Canvas this week, there is no notebook.
- QuTech: Quantum Network Explorer

Key Terms

Key Term	Definition
Quantum Network	A system in which quantum processors can communicate with each other.
End Node	A quantum processor (computer) connected within a network.
Communication Line (Channel)	A quantum channel connecting end nodes in a network.
Quantum Repeater	A general term for any device that connects multiple quantum communication lines, resulting in a larger overall network.
Entanglement Swapping	A quantum protocol that allows entanglement to be swapped between 2 out of 3 parties (ex: Alice, a repeater, and Bob).
Entanglement Distillation (Purification)	A protocol that uses many weakly entangled qubits to "distill" one highly entangled pair of qubits.

Lecture

Learning Objectives

- 1. Recognize what a quantum network is.
- 2. Recognize what an end node, communication line, and quantum repeater are.
- 3. Recognize the entanglement swapping protocol.
- 4. Recognize the current state of quantum networking from a technological and policy perspective.

Key Ideas

- 1. Quantum processors (ex: quantum computers) can communicate with each other in the following ways in order to implement a **quantum network**:
 - a. **Distributed Quantum Computing & Sensing**: Many quantum computers work together to solve a problem or increase sensing abilities.
 - b. **Quantum Internet**: Using the inherent quantum interconnections, this could allow for a highly secure quantum & classical internet with QKD built into every-day communications.
- 2. The structure of a quantum network consists of **end nodes** (quantum processors) and quantum channels. **Quantum channels** serve as the connecting link between end nodes also known as communication lines.

Quantum Networking

In order to allow quantum processors to communicate with each other through these quantum channels, **quantum protocols** must be used. Importantly, it is possible to implement these protocols with only 1-2 qubits at a time. This means that we <u>already have</u> the quantum processors necessary to build a quantum network!

- a. Protocols in a quantum network include:
 - Quantum teleportation: send a quantum state without physically sending qubits
 - Entanglement swapping: double the maximum distance over which entanglement can be shared.

However, we are still limited by **noise** — the longer a qubit spends on a communication line, the more exposed to noise it becomes. **Quantum Repeaters** provide a solution which connect multiple communication lines and allows us to build a quantum network as large as we want.

- 3. **Hardware for a Quantum Network:** Using the potential hardware for each of the key components of a quantum network is also a critical area in this field.
 - a. **End Node Hardware**: quantum processors being used within a network. This includes photons, NV centers (defects in diamond), and ion traps.
 - b. **Communication Line Hardware**: physical form of qubit does not need to be the same as the qubit at the end nodes. This allows for more flexible options

Quantum Networking

- however photons are currently the most likely candidate as it travels far in pre-existing/classical fiber optic networks.
- c. **Quantum Repeater Hardware**: the least developed of the hardware. The questions that still need to be answered are:
 - i. Can end nodes work as quantum repeaters?
 - ii. Should quantum repeater design inform end node & communication line design or the other way around?
 - iii. Is it better to use 1 really good repeater or many mediocre repeaters?
 - iv. Are there other better technologies to use as quantum repeaters?
- 4. **Standards & Policies** are vital to determine a set of fair policies for creation and use of quantum networks. The primary **policies** being:
 - a. Ensure building physical networks does not harm environments/communities.
 - b. Not forced to use one company or technology that may not actually eb the best or freezes technological progress.
 - c. Use of networks should not violate existing laws between countries.

Standards established by the ETSI & IEEE are being developed to establish common vocabulary, interfacing, and post-quantum cryptography. Policies are also being taken by many countries around the world, including (but certainly not limited to!):

- a. **USA** Developing initiatives such as NQI to improve quantum information science and NSA who work on both quantum & post-quantum cryptographic methods.
- b. **China** Made a 5 Year Science & Innovation Plan to achieve major breakthroughs by 2030.
- c. **EU** Identifying 4 main areas of quantum development: Communication, Computing, Simulation, and Sensing & Metrology.

