Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

육현준

연구 계기

- 기존 CNN
 - Convolution Layer
 - Fully-Connected Layer → 고정된 크기의 입력 필요

연구 계기

Crop 또는 Warp을 통해 입력 이미지를 임의로 변형

▶ 이미지 변형으로 정보의 손실 발생

연구 계기

- Spatial Pyramid Pooling
 - ▶ 입력 이미지의 크기에 상관없이 항상 같은 크기의 벡터를 생성

입력 이미지 변형 불필요

➤ 정보의 손실 X

Bag of Visual Words

Feature Extraction → K-Means → histogram

Bag of Visual Words

단점: 위치정보를 잃는다.

Spatial Pyramid Matching

지역 위치정보 보존

Spatial Pyramid Pooling

- bin의 개수 고정 ▶ M
- 마지막 Convolution Layer의 filter의 개수 고정

 ➤ K

Fig. 3. A network structure with a *spatial pyramid pooling layer*. Here 256 is the filter number of the conv₅ layer, and conv₅ is the last convolutional layer.

• 결과적으로 KM 차원의 고정된 output을 얻을 수 있다.

SPP-net <Classification>

Multi-Size Training

- 1 epoch
 - ➤ (180 x 180) 크기의 이미지로 학습
- 2 epoch
 - ➤ (224 x 224) 크기의 이미지로 학습

TABLE 2 Error Rates in the Validation Set of ImageNet 2012

	top-1 error (%)			
	ZF-5	Convnet*-5	Overfeat-5	Overfeat-7
(a) no SPP	35.99	34.93	34.13	32.01
(b) SPP single-size trained	34.98 (1.01)	34.38 (0.55)	32.87 (1.26)	30.36 (1.65)
(c) SPP multi-size trained	34.60 (1.39)	33.94 (0.99)	32.26 (1.87)	29.68 (2.33)

		top-5 error (%)			
		ZF-5	Convnet*-5	Overfeat-5	Overfeat-7
(a)	no SPP	14.76	13.92	13.52	11.97
(b)	SPP single-size trained	14.14 (0.62)	13.54 (0.38)	12.80 (0.72)	11.12 (0.85)
(c)<	SPP multi-size trained	13.64 (1.12)	13.33 (0.59)	12.33 (1.19)	10.95 (1.02)

All the results are obtained using standard 10-view testing. In the brackets are the gains over the "no SPP" baselines.

SPP-net <Detection>

R-CNN

- Crop/Warp : 이미지 변형
- 이미지에서 Object가 존재할 후보영역 2000개 추출
- 한 이미지당 CNN을 2000번 반복 → 매우 느리다.

SPP-net

- 마지막 Convolution Layer의 Feature map에서 Selective Search 진행
- SPP Layer → 2000개의 동일한 크기의 벡터 생성
- ▶ 한 이미지당 CNN을 단 한번 통과 → 속도 향상

SPP-net <Detection>

TABLE 10
Detection Results (mAP) on Pascal VOC 2007, Using
the Same Pre-Trained Model of SPP (ZF-5)

	SPP (1-sc)	SPP (5-sc)	R-CNN	
	(ZF-5)	(ZF-5)	(ZF-5)	
ftfc ₇	54.5	<u>55.2</u>	55.1	
ftfc7 bb	58.0	59.2	59.2	
conv time (GPU)	0.053s	0.293s	14.37s	
fc time (GPU)	0.089s	0.089s	0.089s	
total time (GPU)	0.142s	0.382s	14.46s	
speedup (vs. RCNN)	102×	$38 \times$	_	

➤ R-CNN보다 매우 빠르고 비슷한 성능

참고문헌

Sakib, S.; Ahmed, N.; Kabir, A.J.; Ahmed, H. An Overview of Convolutional Neural Network: Its Architecture and Applications. Preprints 2018, 2018110546 (doi: 10.20944/preprints201811.0546.v4).

K. He, X. Zhang, S. Ren and J. Sun, "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904-1916, 1 Sept. 2015, doi: 10.1109/TPAMI.2015.2389824.

https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ce0fb

S. Lazebnik, C. Schmid and J. Ponce, "Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories," 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, pp. 2169-2178, doi: 10.1109/CVPR.2006.68.

