Def 5.2: $plim_{n\to\infty}X_n = X \leftrightarrow \lim_{n\to\infty} P(|X_n - X_n|)$ **Thm 1.3 (LTP)**: $A_1,...,A_2$ partition of S and $X|<\epsilon$) = 1. $B \subset S$, then $P(B) = \sum_{i=1}^{\infty} P(B|A_i)P(A_i)$. **Def 5.4**: $\{X_n\}_{n=1}^{\infty}$ converges in *distribution* to *X* Thm 1.4(Bayes' rule): $A_1, A_2, ...$ partition of S, B any set. Then for each i = 1, 2, ...,ty point of x of $F_X(\cdot)$. $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{\infty} P(B|A_i)P(A_i)}$

 $\emptyset \in \mathcal{B}$, (2) If $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$, and (3) if $A_1, A_2, \ldots \in \mathcal{B} \text{ then } \cup_{i=1}^{\infty} A_i \in \mathcal{B}.$ Mutual independence ⇒ pairwise independence, 2 Random Variables

Def. 1.5 (Sigma Algebra): Collection of sub-

sets of S is a sigma algebra \mathcal{B} if it satisfies: (1)

Econometrics Year 1 Cheat-sheet

Julian Budde, Page 1 of 2

1 Probability Theory

Thm 2.5 (Jensen's inequalities): Suppose g(x)convex, then $E(g(X)) \geq g(E(X))$ if existent. Strict unless X degenerate or g linear. **Def 2.10 (MGF)**: $X \sim F_X$, $t \in \mathbb{R}$. Then $M_X(t) =$ $E(e^{tX})$ given it exists in some nbh of 0. **Thm 2.7**: If $M_X(t)$ exists, then $E(X^n) =$

3.1 Bivariate Random Vectors Define probability functions on Borel sigma algebra of \mathbb{R}^2 . Need to assume $E(|g(X,Y)|) < \infty$. Joint \Rightarrow Marginal: $F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$

Def 3.1: *n*-dimensional rvec is $f: S \to \mathbb{R}^n$.

3.2 Continuous Distributions Conditional Expectation: E(g(Y)|X = x) = $\sum_{y \in (Y)} g(y) f_{Y|X}(y|x) \text{ or } = \int_{-\infty}^{\infty} g(y) f_{Y|X}(y|x) dy.$

and $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,v) dv$.

3 Multivariate Distributions

 $\frac{\partial^n}{\partial t^n} M_X(0)$.

Thm 3.1 (LIE): Y, X rvs, then E(Y) = $E_X(E_{Y|X}(Y|X)).$ Law of iterated variance: Var(Y) =E(Var(Y|X)) + Var(E(Y|X)).

3.3 Independence **Def 3.4**: (X,Y) rvec, X,Y independent if $\forall x \in \mathbb{R}, y \in \mathbb{R}$ we have $f_{X,Y}(x,y) = f_X(x)f_Y(y)$. **Thm 3.2**: X, Y independent \Leftrightarrow for any two bounded $g,h: \mathbb{R} \to \mathbb{R}$ we have E(g(X)g(Y)) = E(g(X))E(h(Y)).

Thm 3.3: X, Y independent, g(X) and g(Y)independent. 4 Sampling

4.1 Distribution of the t-ratio With $\{X_i\}_{i=1}^{\infty}$ rs of $X_i \sim N(\mu, \sigma^2)$ we have $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sqrt{n}} \sim N(0, 1)$. Then the *t-ratio* Thm 5.11 (CMT): Let $\{X_n\}_{n=1}^{\infty}$ be a sequence

 $\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\overline{\sigma} / \sqrt{n}}{\sigma / \sqrt{n}}$ $\sim t_{n-1}$. Invert to construct CI using t-quantiles.

5 Asymptotic Theory

5.1 Inequalities Thm 5.1 (Markov's Inequality): X r.v., g: $\mathbb{R} \to [0, \infty)$, then $\forall \epsilon > 0$, $P(g(X) > \epsilon) \leq \frac{E(g(X))}{2}$.

 $\leftrightarrow \lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ for every continui-Def 5.5: $\{X_n\}_{n=1}^{\infty}$ converges in mean square to

 $X \leftrightarrow \lim_{n \to \infty} E[(X_n - X)^2] = 0.$

5.2 Modes of Convergence

then $\forall \epsilon > 0$, $P(|X - E(X)| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$.

Thm 5.2: $X_n \xrightarrow{m.s.} X_n \xrightarrow{p} X$. Proof by Chebyshev's inequality. The reverse is not true, consider $X_n \in 0$, \sqrt{n} with probabilities 1 - 1/n, 1/n. **Thm 5.3:** $X_n \xrightarrow{p} \Rightarrow X_n \xrightarrow{d} X$. Proof uses de-

finition of \xrightarrow{P} and continuity. The reverse is

Cor 5.1 (Chebyshev's Inequality): X r.v., $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c \in \mathbb{R}$, then $X_n + Y_n \xrightarrow{d} X + c$

generally not true, consider $X_n = Z \sim N(0,1)$ and $X, Z \sim N(0,1)$, have $F_{X_n}(x) = F_X(x)$ but $P(|Z-X| \ge \epsilon) > 0$. Exception: $X_n \xrightarrow{d} c \in \mathbb{R} \Rightarrow$ 5.3 Law of Large Numbers Thm 5.6 (LLN i.i.d): $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs

from F_X with $\mu = E(X)$ exist and finite. Then Convergence Criteria: Need a combination of three assumptions: (1) finite mean and/or variance (no LLN for Cauchy), (2) bounds on asymptotic variance (e.g. not growing too fast with i), (3) restricted dependence.

Thm 5.7 (Lindeberg-Levy CLT): $\{X_i\}_{i=1}^{\infty}$ seq.

of iid rvs from F_X , μ and σ^2 finite. Then

5.4 Central Limit Theorem

 $\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2).$ Thm 5.9 (Berry-Esseen): $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs from F_X , μ and σ^2 finite and $\lambda =$ $E(|X - E(X)|^3)$ exist and finite. Let $Z \sim N(0, 1)$. Then $|P\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le x\right) - P(Z \le x)| \le \frac{C\lambda}{\sigma^3 \sqrt{n}}$

Def 5.7: $\mathbf{X}_n \xrightarrow{p} \mathbf{X} \leftrightarrow \lim_{n \infty} P(\|\mathbf{X}_n - \mathbf{X}\| < \epsilon) = 1.$ **Def 5.8:** $\mathbf{X}_n \xrightarrow{ms} \mathbf{X} \leftrightarrow \lim_{n \infty} E(\|\mathbf{X}_n - \mathbf{X}\|^2) = 0.$

5.5 Convergence of Random Vectors

Def 5.9: $X_n \xrightarrow{a} X \leftrightarrow \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ for every continuity point x of $F_{\mathbf{X}}(\cdot)$. Thm 5.10 (Cramér-Wold): $\{X_n\}_{n=1}^{\infty}$ seq. of K-

dimensional random vectors. Then, $\forall \lambda \in \mathbb{R}^{\mathbb{K}}$ we have $\lambda' \mathbf{X}_n \xrightarrow{d} \lambda' \mathbf{X} \leftrightarrow \mathbf{X}_n \xrightarrow{d} \mathbf{X}$. 5.6 CMT and Slutzky's

of K-dim. rvecs **X** K-dim rvec, and $g: \mathbb{R}^{\mathbb{K}} \to \mathbb{R}$ with discontinuity points D such that $P(X \in$ (a) $X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X)$. (b) $\mathbf{X}_n \xrightarrow{d} \mathbf{X} \Rightarrow g(\mathbf{X}_n) \xrightarrow{d} g(\mathbf{X}).$

Implication: Sums and products of convergent sequences converge. Does not hold for mean square convergence. Thm 5.12 (Slutzky's): X_n , Y_n seq of rvs with

Thm 6.1: Suppose X is a random vector with pdf or pmf $\bar{f}(\mathbf{x};\theta_0)$. Then $E(\log(f(\mathbf{x};\theta))) \geq$ $E(ln(f(\mathbf{X};\theta))), \forall \theta in\Theta.$ **Thm 6.2**: For $\tau(\theta)$ and $\hat{\theta}_n$ MLE of θ , we have $\tau(\hat{\theta}_n)$ is MLE of $\tau(\theta)$. 6.1 Distribution of the MLE MLE Limit Distribution: $\sqrt{n}(\hat{\theta}_n \xrightarrow{d} N(0, A^{-1}BA^{-1})$ $E_{\theta}[-\frac{\partial^2}{\partial\theta\partial'\theta}ln(f(\mathbf{X}_i);\theta)]$

and $X_n Y_n \xrightarrow{d} cX$, and if $c \neq 0$, $X_n/Y_n \xrightarrow{d} X/c$.

 $\mathbb{R}^{K \times K}$, C invertible, then $\mathbf{Y}_n^{-1} \mathbf{X}_n \xrightarrow{d} \mathbf{C}^{-1} \mathbf{X}$.

Extension to rvecs: $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} C \in$

Example CMT: $\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}\right)^2 \xrightarrow{d} N(0, 1)^2 = \chi_1^2$.

Thm 5.13 (Delta-Method): X_n seq of rvs with

LL-CLT applying. $g : \mathbb{R} \to \mathbb{R}$ continuously diff.

at μ with $g'(\mu) \neq 0$. Then $\sqrt{n}(g(X_n) - g(\mu)) \stackrel{\mu}{=}$

lied to Taylor's/intermediate value theorem.

5.7 Interval Estimation

cont. diff.).

Moment-based

 $\prod_{i=1}^n f(\mathbf{x}_i;\theta)$.

6.2 CRLB

tion as $\log(L_n(\theta))$.

 $N(0, g'(\mu)^2 \sigma^2)$. Proof: CMT and Slutzky's app-

Suppose $\{X_i\}_{i=1}^n$ is a seq of iid random varia-

bles with μ , σ^2 finite. Then an asymptotically

valid CI for μ is given by $CI = \overline{X}_n \pm \frac{z_{1-\alpha/2}}{\overline{C}} S_n$

where S_n is a consistent estimator of σ and

 $P(\mu \in CI) \rightarrow 1 - \alpha$. Proof: CLT, CMT, Slutzky.

Parameter of interest: $\theta = h(E(g(X)))$ (simple

case: X, θ scalars and $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$

 $h\left(\frac{1}{n}\sum_{i=1}^{n}g(X_i)\right)$. Consistency: LLN and CMT.

Large-sample distribution: If $Var(g(X)) < \infty$

CLT applies so $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} g(X_i) - E(g(X)) \right) \xrightarrow{a}$

N(0, Var(g(X))). By the delta-method if

 $h'(g(E(X))) \neq 0$ we have $\sqrt{n}(\hat{\theta}_n - \theta) = \xrightarrow{d}$

Def 6.1 (likelihood function): $L_n(\theta) =$

Equivalently, we define the *log-likelihood func*-

6 Maximum Likelihood Estimation

estimator:

 $\hat{\theta}_n$

5.8 Moment-Based Estimation

 $N(0,h'(E(g(X))^2Var(g(X)))).$

 $E_{\theta}\left[\frac{\partial}{\partial \theta}ln(f(\mathbf{X}_{i};\theta))\frac{\partial}{\partial \theta'}ln(f(\mathbf{X}_{i};\theta))\right]$. B varcov matrix of the score. A is Fisher information. Thm 6.3: Under weak reg. cond. (diff; interch. integr./diff.) we have A = B.

Progress: Focus on unbiased estimators. **Thm 6.4**: $\{X_i\}$ rs from $f(\mathbf{x};\theta)$, $\hat{\theta}_n$ estimator of θ . Then under some reg conds $(\frac{\partial}{\partial \theta} E_{\theta}[\hat{\theta}_n])^2$

We could try to define best estimator in terms

of MSE. However, MSE might depend on θ

(e.g. X_n vs. 1, the latter dominates for $\theta = 1$).

 $nE_{\theta}[(\frac{\partial}{\partial \theta}\log(f(\mathbf{X};\theta)))^2]$ Relative efficiency: $E_{\theta}[(\hat{\theta}_{1,n} - \theta)^2] \leq$

Def 7.4 (**Power function**): $\beta(\theta) =$ $P_{\theta}(rejectH_0)$. **T-I error rate**: $\beta(\theta)$ for any $\theta \in \Theta_0$. **T-II error rate**: $\beta(\theta)$ for any $\theta \in \Theta_1$. Y = m(X) + e**Def 7.5/7.6**: For $\alpha \in [0,1]$, a test is level α if $\sum_{\theta \in \Theta_0} \beta(\theta) \le \alpha$ (*size*: equality). 7.3 Test statistics and critical values **Goal**: Derive statistic T and reject iff $T > c_{\alpha}$ controlling $\sup_{\theta \in \Theta_0} P_{\theta}(T > c_{\alpha}) \Rightarrow \text{need } F_T(t)$. Saturated model: Includes an indicator for Ex 7.2 (Two-sided T): $X \sim N(\mu, \sigma^2)$ so $\theta =$ each level of the regressor(s). In this case, the (μ, σ^2) . Test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ use

Asymptotic efficiency: Asymptotic distribu-

tion often implies asymptotically unbiased,

efficiency than means attaining CRLB asym-

Def 7.1: A hypothesis is a statement about the

hypothesis: Θ_1 more than one value.

T-I error: Reject H_0 although in fact true.

T-II error: *Not* reject H_0 although in fact false.

Error rates: Probabilities of making these er-

rors (errors are random because they depend

on the sample). Usually trade-off between I

 $T = \frac{\sqrt{n}|\overline{X}_n - \mu_0|}{S_n} |t_{n-1}|$ and reject for $T > c_\alpha =$

 $t_{n-1,1-\alpha/2}$. By construction $\sup_{\theta\in\Theta_0}P_{\theta}(T>$

 c_{α}) = α . Note this holds for all $\sigma^2 \in \Gamma$ thus

Ex (One-sided T): $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S_n}$ with $c_\alpha =$

 $t_{n-1,1-\alpha}$ or Z=-T and c_{α} unchanged (symme-

p-value with simple H_0 : If F_0 is strictly incre-

asing, $p* = 1 - F_0(T*)$ (again: $p_{H_0}Unif[0,1]$).

Test-inversion: Assume test H_0 : $\theta = \theta_0$

7 Hypothesis Testing

population distribution.

7.2 Size and Power

7.1 Basics

try). Intuition: want to reject for large $\mu > \mu_0$. **Deriving** $\beta(\theta)$: (1) add and subtract (true) μ , (2) look at behavior as μ changes. **Def (p-value):** For any realization T^* , $p^* =$ $\inf\{p \in [0,1]: T^* > c_p\}$. Intuition: smallest α for which we would still reject. Under H_0 , $p \sim Unif[0,1]$ (require $P(p^* < \alpha) =$ α , i.e. want $Pr_{\theta}(rejectH_0) < \alpha$), but holds $\forall \alpha$.

7.4 Hypothesis Testing and CIs

a test of level and size α .

 $P_{\theta_0}(rejectH_0) = \alpha$ (size α). Assume can per-

We can also do the reverse: From any CS with coverage rate $1 - \alpha$ can construct sizé α test as $E_{\theta}[(\hat{\theta}_{2,n}-\theta)^2]$ for all $\theta\in\Theta$ and strict $reject\Leftrightarrow\theta_0\notin CS$. $E[Y|X] = X(\beta_1 + \gamma_1) + (\beta_2 + \gamma_2).$

7.5 Asymptotic Approximations Asymptotic argument: No parametric model $f_X(x;\theta)$, but, e.g., moments: $H_0: E(X) = \mu$. $T \xrightarrow{d} |N(0,1)|$ and we can use $\Phi^{-1}(x)$ to

have $CS = \{\mu_0 \in [\overline{X}_n - \frac{t_{1-\alpha,n-1}}{\sqrt{t_n}} S_n, \infty)\}.$

Ex. one-sided CI: Testing H_0 : $\mu = \mu_0$ against

 $H_1: \mu > \mu_0$ (or $H_0: \mu \le \mu_0$) for normal case we

control α asymptotically. In particular, **Def 7.2:** H_0 (null hypothesis) and H_1 (alter- $P(T > z_{1-\alpha/2}) \rightarrow \alpha \text{ under } H_0.$

native hypothesis) are the complementary **Hypotheses**: Set of distributions \mathcal{P} with hypothesis. We write $H_0: \theta \in \Theta_0$ and $\mathcal{P}_0 \subset \mathcal{P}$ set of distributions consistent with H_0 . $H_1: \theta \in \Theta_1$ with Θ_k mutually exclusive and Def 7.7 (Asymptotic power function): $\beta^{\alpha}(P) = \lim_{n \to \infty} \beta_n(P).$ Simple hypothesis: Θ_0 is singleton. Composite **Def 7.8/7.9**: test with $\beta^a(P)$ is asymptotic level α if $\sup_{P \in P_0} \beta^a(P) \leq \alpha$ (size: equality). **Def 7.3**: A hypothesis test is a rule when to reject H_0 (in favor of H_1) given the data. (Accepting H_0 is weird, e.g. what about $\theta_0 + \epsilon$?.)

Def 7.10: Test consistent against alternative $P \in P_1$ if $\beta^a(P) = 1$. **Example:** $\mathcal{P} = \{P : E(X), E(X^2) < \infty\}$ and $\mathcal{P}_0 = \{P : E(X) = 1\} \subset \mathcal{P}$ and $\mathcal{P}_1: \{P: E(X) \neq 1\} \subset \mathcal{P}.$ **Problem:** $\beta^a(P)$ might not be informative about finite sample (e.g. $H_0: \mu = \mu_0 + \epsilon$).

8 Regression, Causality, and Identifica-8.1 Basics Conditional mean function: m(X) = E[Y|X]. **Error**: e = Y - E[Y|X], which implies

By definition: E[e|X] = 0. 8.2 Linear Regression Model **Linear m(X)**: $m(X) = X_1 \beta_1 + X_2 \beta_2 + ... + X_k \beta_k +$ Linear means linear in the parameters.

model is the CEF. 8.3 Causality Outcome Y, observed regressors X, and

E[g(x, U)].

unobserved variables U. Then Y = g(X, U)where *g* is the *structural function*.

Causal effect: Change of X_i from x_0 to x_1

holding U_i fixed, i.e. $g(x_1, U_i) - g(x_0, U_i)$. Marginal causal effect: $\frac{\partial}{\partial u}g(x_0, U_i)$ if x is Heterogenous causal effects: Generally, ef-

fects depend on value of U_i , implying a distribution of causal effects. Average marginal effects: $E\left[\frac{\partial}{\partial x}g(x_0,U)\right]$. Average treatment effect: $E[g(x_1, U)]$ - $E[g(x_0, U)]$ when x is discrete.

Average structural function: ASF(x) =

In general, $ASF(x) \neq E[Y|X = x] =$

E[g(x,U)|X = x] because X, U might not be independent. Potential outcome: Y(x) = g(x, U).

(note: this is some H_0) and have test s.t. 8.4 Causality in the Linear Model

Suppose scalar x, so $Y = g(X, U) = X\beta_1 + \beta_2 + U$.

form for any $\theta_0 \in \Theta$. Then we have $CS = \{\theta_0 \in \Theta\}$

Then β_1 is the marginal and average treatment Θ : $notrejectH_0: \theta = \theta_0$ } with $P_{\theta}(\theta \in CS) =$

effect. Does *not* require mean independence. But: m(X) might have a different slope coefficient. Suppose $E[U|X] = X\gamma_1 + \gamma_2$ implying

Econometrics Year 1 Cheat-sheet Julian Budde, Page 2 of 2

Three assumptions required:

(1) Linearity: Marginal effect does not depend on value of *x*.

(2) Homogeneity/additivity: Marginal effect does not depend on U; X, U enter additively. (3) Exogeneity: Mean of U independent of X, E[U|X] = c = 0.

Relaxation: (1) Interaction terms, polynomials, (3) additional regressors/IV/panel.

For (2): introduce individual slope coefficients $\beta_{1,i}$. Could try to estimate distribution (difficult), never individual slopes. Different target: $E[\beta_{1,i}]$.

Assume $E[U_i|X_i] = 0$ and $E[\beta_{1,i}] = E[\beta_{1,i}]$, then $E[Y_i|X_i] = X_i E[\beta_{1,i}] + \beta_2$.

8.5 Identification

What does the joint distribution of observables tell about parameters?

Regression model: $Y = X_1 \beta_1 + ... + X_{k-1} \beta_{k-1} + \beta_k + e = X'\beta + e$ with E[e|X] = 0.

Identification of β : $E[Xe] = 0 \Leftrightarrow E[X(Y - X'\beta)] = 0 \Leftrightarrow E[XY] = E[XX']\beta \Leftrightarrow \beta = E[XX']^{-1}E[XY]$, where E[XX'] needs full rank.

Underidentification: E[XX'] not full rank, $\exists \gamma \in \mathbb{R}, \gamma \neq 0$ s.t. $E[XX']\gamma = 0 \Rightarrow \gamma' E[XX']\gamma = 0 \Rightarrow E[(X'\gamma)^2] = 0$, i.e. $X'\gamma = 0$ with probability 1. Thus $\forall c \in \mathbb{R}, Y = X'\beta + e = X'(\beta + c\gamma) + e$. Violations of full rank: X_k linear combination of other X_i .

Distributions

Normal: $E(X) = \mu$, $Var(X) = \sigma^2$. Sum of two independent Normals is Normal.

MVN: $\sim N(\mu, \Sigma)$. Any linear combinations are Normal. $(X, Y) \sim N(\mu, \Sigma)$, then $X \perp \!\!\!\perp Y \Leftrightarrow Cov(X, Y) = 0$.

Uniform: $X \sim Unif(a,b)$, $F_X(x) = \frac{x-a}{b-a}$, $f_X(x) = \frac{1}{b-a}$, $E(X) = \frac{1}{2(b-a)}$, $Var(X) = \frac{1}{12}(b-a)^2$. $\hat{b}_{MLE} = max\{X_1,...,X_n\}$ (min for a); $\hat{b}_{MM} = \frac{1}{2}(a+a)^2$.

 $2X_n$. Uniform Order Statistics: $U_{(k)} \sim Beta(k, n+1-k)$

with $E(U_{(k)}) = \frac{k}{n+1}$. Exponential: $X \sim Expo(\theta)$ then $E(X^k) = k!\theta^k$, so $E(X) = \theta$ and $Var(X) = \theta^2$. $\hat{\theta}_{MLE} = \overline{X}_n$.

Pareto: $X \sim Pareto(\alpha)$ then $E(X^k)$ only exists if $\alpha > k$. Given that, $E(X) = \frac{\alpha}{\alpha - 1}$ and $Var(X) = \frac{\alpha}{(1 - \alpha)^2(\alpha - 2)}$. Y = log(X) $Expo(\alpha)$. 20-80 rule: $\alpha = \frac{\ln 5}{\ln 4} \approx 1.16$.

t: If $Y \sim N(0,1)$ and $Z \sim \chi^2_{n-1}$ and $X \perp \!\!\! \perp Z$ then $\frac{N}{Z} t_{n-1}$.

Cauchy: $X, Y \sim N(0,1)$ with $X \perp \!\!\! \perp Y$, then $\frac{X}{Y}$ Cauchy(0,1). Expectation and variance undefined. $X \sim Cauchy(0,1)$ then $X \sim t_1$.

9 Least Squares

9.1 Interpretations

Y scalar outcome, $X \in \mathbb{R}^k$, with E[XX'] full rank, then $\beta = E[XX']E[XY]$. We can write $Y = X'\beta + e$ with $e = Y - X'\beta$. (1) Slope of conditional mean: $Y = X'\beta + e$, E[e|X] = 0. β purely *descriptive*.

(2) Marginal causal effect: U scalar r.v. Causal relationship with structural function $Y = X'\beta + U$. Then β is marginal causal effect. Requires: linearity, homogeneity/additivity. Under exogeneity (E[U|X] = 0) we have $E[Y|X] = X'\beta$ and β is identified under full rank.

(3) Average causal effect: U scalar r.v., but $B \in \mathbb{R}^k$ random vector. Model causal relationship Y = X'B + U. Marginal causal effect B is random. Assume $E[B|X] = E[B] = \beta$ and E[U|X] = 0. Then β is average causal effect. $E[Y|X] = X'\beta$ and identified under full rank.

(4) **Best linear approximation**: Suppose m(X) = E[Y|X] may be non-linear, want best linear approximation. Solve $\min_{b \in \mathbb{R}^k} E[(m(X) - X'b)^2]$. Can show solution coincides with BLP of Y given X solving $\min_{b \in \mathbb{R}^k} E[(Y - X'b)^2]$. Solution: $b* = \beta = E[XX']^{-1}E[XY]$ (given full rank). (5) **Projection**: Let $\beta = E[XX']^{-1}E[XY]$ and define $e = Y - X'\beta$. If m(X) non-linear, E[e|X] may depend on X. However, E[Xe] = 0 (FOC). Then $X'\beta$ is the projection of Y onto the space spanned by linear combinations of X, and β is the *projection coefficient* (under full rank).

9.2 Estimation: Sample analogues

 $\beta = E[XX']^{-1}E[XY]$ under full rank. Replace expectations by sample analogues:

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} X_i X_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i Y_i\right).$$

Consistency follows from a LLN (with i.i.d sample) and CMT.

9.3 Estimation: Least squares estimator

 $\{Y_i, X_i\}_{i=1}^n$ random sample.

 $\hat{\beta} := \arg\min_{b \in \mathbb{R}^k} \sum_{i=1}^n (Y_i - X_i'b)^2.$

The unique solution under full rank is the sample analogue estimator.

Fitted values: $\hat{Y}_i = X_i'\hat{\beta}$.

Residuals: $\hat{e} = Y_i - \hat{Y}_i$.

No full rank: No unique solution. Then $\exists c \in \mathbb{R}^k$ s.t. $X_i'c = 0 \forall i, c \neq 0$. Interpretation: $Y_i = X_i'\beta + \alpha + e_i$. Then

$$\hat{\beta} = \frac{\frac{1}{n}\sum_{i=1}^n(X_i - \overline{X}_n)(Y_i - \overline{Y}_n)}{\frac{1}{n}(X_i - \overline{X}_n)^2}$$

i.e. sample covariance over variance.

9.4 Algebraic Properties

Projection: Decomposition of Y into $X'\beta$ and $Y - X'\beta$ with $E[X'\beta(Y - X'\beta)] = 0$. Analogues results for sample version.

Residuals orthogonal to regressors: $\sum_{i=1}^{n} X_i \hat{e}_i = 0$ (by FOCs).

Residuals some to zero: If X_i contains a constant, we have $\sum_{i=1}^n \hat{e}_i = 0$ (by FOC). **Residuals orthogonal to fitted values:** $\sum_{i=1}^n \hat{Y}_i \hat{e}_i = 0$ (by FOCs).

Thus can decompose Y into two orthogonal components.

R-squared: $\sum_{i=1}^{n} (Y_i - \overline{Y}_n)^2 = \sum_{i=1}^{n} (\hat{Y}_i - \overline{\hat{Y}}_i)^2 + \sum_{i=1}^{n} \hat{e}_i^2$, so sample variance is fitted variance plus residual variance. R^2 := fitted variance over sample variance.

Drawback: increases trivially when adding regressors \Rightarrow *Adjusted* R^2 : $1 - \frac{n-1}{n-k}(1 - R^2)$.

9.5 Matrix Notation

Then write $Y = X\beta + e$, a system of n equations. Also, $\sum_{i=1}^{n} X_i Y_i = X'Y$ and $\sum_{i=1}^{n} X_i X_i' = X'X$. **OLS estimator** $\hat{\beta} = (X'X)^{-1}X'Y$. **Decomposition**: $Y = \hat{Y} + \hat{e} = X\hat{\beta} + (Y - \hat{Y})$.

Y and e are $n \times 1$ vectors, and X an $n \times k$ matrix.

Projection: $\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y = PY$ where *P* is projection matrix.

Intuition: For any $z \in \mathbb{R}^n$, PZ returns $n \times 1$ vector that is linear combination of columns of X (i.e. regressors). P symmetric (P' = P) and idempotent (PP = P). Also, PX = X, thus for any $y \in \mathbb{R}^k$, PXy = Xy.

Annihilator: $Y = \hat{Y} + \hat{e} = PY + MY$ where $M = I_n - P$. M symmetric and idempotent and MX = 0, MP = 0.

Thus $\hat{Y}'\hat{e} = (PY)'(MY) = YPMY = 0$. Useful property: $tr(P) = tr(X(X'X)^{-1}X') = tr(X'X(X'X)^{-1}) = tr(I_k) = k$.

9.6 Small Sample Properties