УДК 517.968.22

Н. Т. Немени

Топологически проективные, инъективные и плоские модули гармонического анализа

В работе изучаются гомологически тривиальные модули гармонического анализа на локально компактной группе G. Для $L_1(G)$ - и M(G)-модулей $C_0(G)$, $L_p(G)$ и M(G) даны критерии метрической и топологической проективности, инъективности и плоскости. В большинстве случаев модули обладающие этими свойствами должны быть конечномерными.

Библиография: 18 названий.

Ключевые слова: Банахов модуль, проективность, инъективность, плоскость, гармонический анализ.

§ 1. Введение

История банаховой гомологии начинается еще в 50-х годах прошлого века. Один из основных вопросов этой науки: является ли данный банахов модуль гомологически тривиальным, то есть проективным, инъективным или плоским? В качестве примера успешного ответа на этот вопрос можно привести работы Дейлса, Полякова, Рахера и Рамсдена [1, 2, 3], где они дали критерии гомологической тривиальности для классических модулей гармонического анализа. Следует сказать, что все эти результаты были получены для относительной банаховой гомологии. В этой статье мы ответим на те же самые вопросы, но для двух менее изученных версий банаховой гомологии — метрической и топологической. Метрическая банахова гомология была впервые рассматрена в работе Гравена [4], где он применяет передовые, на тот момент, гомологические и банахово-геометрические методы для изучения модулей гармонического анализа. Понятия топологической банаховой гомологии были определены в работе Уайта [5]. На первый взгляд, эта теория кажется намного менее ограничительной чем метрическая, но, как мы скоро увидим, это совсем не так.

§ 2. Предварительные сведения по банаховой гомологии

В дальнейшем, в предложениях мы будем использовать сразу несколько вариантов, последовательно перечисляя их и заключая в скобки таким образом: $\langle \ \dots \ / \ \dots \ \rangle$. Например, число x называется $\langle \$ положительным $/ \$ неотрицательным \rangle если $\langle \ x > 0 \ / \ x \geqslant 0 \ \rangle$.

Если не оговорено иначе, все банаховы пространства рассматриваются над полем комплексных чисел. Пусть E — банахово пространство, тогда через

Работа выполнена при поддержке РФФИ (грант No. 19-01-00447-а).

2 Н.Т. НЕМЕШ

 B_E мы будем обозначать замкнутый единичный шар в E. Если F — еще одно банахово пространство, то мы будем говорить, что линейный оператор $T:E\to F$ является \langle изометрическим / с-топологически инъективным \rangle если \langle $\|T(x)\|=\|x\|\ / c\|T(x)\|\geqslant \|x\|\ \rangle$ для всех $x\in E$. Аналогично, T называется \langle строго коизометрическим / строго с-топологически сторъективным \rangle если \langle $T(B_E)=B_F\ / cT(B_E)\supset B_F\ \rangle$. В некоторых случаях, мы будем опускать константу c. Для обозначения ℓ_p -суммы банаховых пространств мы будем использовать символ \bigoplus_p , и $\widehat{\otimes}$ для проективного тензорного произведения.

Далее, через A мы будем обозначать произвольную банахову алгебру. Символом A_+ мы обозначим стандартную унитализацию A. Мы будем рассматривать банаховы модули только с сжимающим билинейным оператором внешнего умножения. Банахов A-модуль X будем называть \langle существенным \rangle верным \langle аннуляторным \rangle если \langle линейная оболочка множетсва $A \cdot X$ плотна в $X \mid a \cdot X = \{0\}$ влечет $a = 0 \mid A \cdot X = \{0\}$ \rangle . Всякий ограниченный линейный оператор являющийся морфизмом A-модулей мы будем называть A-морфизмом. Символ A — \mathbf{mod} будет обозначать категорию левых банаховых A-модулей с A-морфизмами в качестве стрелок. Через A — \mathbf{mod}_1 мы обозначим подкатегорию A— \mathbf{mod} с теми же объектами, но лишь сжимающими A-морфизмами. Аналогичные категории для правых A-модулей будем обозначать через \mathbf{mod}_1 и \mathbf{mod}_1 — A, соответственно. Символом \cong мы будем обозначать изоморфизм объектов в категории. Через $\widehat{\otimes}_A$ мы обозначим функтор модульного тензорного произведения, а стандартный функтор морфизмов через Hom. Теперь мы можем дать наши основные определения.

Определение 1. Левый банахов A-модуль P называется \langle метрически / C-топологически / C-относительно \rangle проективным если функтор морфизмов \langle $\mathrm{Hom}_{A-\mathbf{mod}}(P,-)$ / $\mathrm{Hom}_{A-\mathbf{mod}}(P,-)$ \rangle переводит \langle строго коизометрические морфизмы / строго c-топологически сюръективные морфизмы / морфизмы c правым обратным оператором нормы не более c \rangle в \langle строго коизометрические / строго c-топологически сюръективные / строго c-топологически сюръективные / операторы.

Определение 3. Левый банахов A-модуль F называется \langle Mempuчески / C-топологически / C-относительно \rangle N-лоским если функтор - $\widehat{\otimes}_A F$ переводит \langle изометрические морфизмы / C-топологически инъективные морфизмы / морфизмы с левым обратным оператором нормы не более c \rangle в \langle изометрические / cC-топологически инъективные / операторы.

Для краткости мы будем называть банахов модуль \langle *топологически* / *относительно* \rangle проективным, инъективным или плоским если он \langle C-топологически

/ C-относительно \rangle проективный, инъективный или плоский для некоторого C>0.

Эти определения были изложены, в несколько иной форме, Гравеном для метрической теории [4], Уайтом для топологической теории [5] и Хелемским для относительной [6]. В работе Уайта топологически проективные инъективные и плоские модули назывались соответственно строго проективными, инъективными и плоскими. Следует отметить, что понятие строго плоского плоского и строго инъективного модуля еще раньше были даны Хелемским в [8; параграф VII.1]. Основы метрической, топологической и относительной теории можно найти в [7]. Мы будем активно использовать результаты этой статьи.

§ 3. Предварительные сведения по гармоническому анализу

Пусть G — локально компактная группа с единицей e_G . Левая мера Хаара на G будет обозначаться через m_G , а символ Δ_G будет использоваться для модулярной функции группы G. Для \langle бесконечной дискретной \rangle компактной \rangle группы G мы будем нормировать меру m_G так чтобы она была \langle считающей \rangle вероятностной \rangle мерой. В дальнейшем для всех $1 \leq p \leq +\infty$ через $L_p(G)$ мы будем обозначать лебегово пространство функций интегрируемых со степенью p по отношению к мере Хаара.

Мы будем рассматривать $L_1(G)$ как банахову алгебру со сверткой в качестве умножения. Эта банахова алгебра обладает сжимающей двусторонней аппроксимативной единицей [9; теорема 3.3.23]. Очевидно, алгебра $L_1(G)$ унитальна тогда и только тогда, когда группа G дискретна. В этом случае индикаторная функция e_G , обозначим ее δ_{e_G} , является единицей в $L_1(G)$. Аналогично, пространство комплексных конечных регулярных борелевских мер M(G) со сверткой в качестве умножения становится унитальной банаховой алгеброй. Роль единицы играет мера Дирака δ_{e_G} сосредоточенная на e_G . Более того, M(G) — это копроизведение, в смысле теории категорий, в $L_1(G)$ — \mathbf{mod}_1 (но не в M(G) — \mathbf{mod}_1) двустороннего идеала $M_a(G)$ мер абсолютно непрерывных по отношению к m_G и подалгебры $M_s(G)$ состоящей из мер сингулярных по отношению к m_G . Заметим, что $M_a(G) \cong L_1(G)$ в M(G) — \mathbf{mod}_1 и $M_s(G)$ — аннуляторный $L_1(G)$ -модуль. Наконец, $M(G) = M_a(G)$ тогда и только тогда, когда группа G дискретна.

Теперь приступим к обсуждению стандартных левых и правых модулей над алгебрами $L_1(G)$ и M(G). Отметим, что банахова алгебра $L_1(G)$ является двусторонним идеалом в M(G) посредством изометрического M(G)-морфизма левых и правых модулей $i:L_1(G)\to M(G):f\mapsto fm_G$. Следовательно, достаточно определить все модульные структуры над алгеброй M(G). Для любых $1\leqslant p<+\infty,\ f\in L_p(G)$ и $\mu\in M(G)$ положим по определению

$$(\mu *_p f)(s) = \int_G f(t^{-1}s) d\mu(t), \qquad (f *_p \mu)(s) = \int_G f(st^{-1}) \Delta_G(t^{-1})^{1/p} d\mu(t)$$

Эти внешние умножения превращают все банаховы пространства $L_p(G)$ для $1\leqslant p<+\infty$ в левые и правые M(G)-модули. Отметим, что для p=1 и

4 Н.Т. НЕМЕШ

 $\mu \in M_a(G)$ мы получаем обычное определение свертки. Для $1 <math>f \in L_p(G)$ и $\mu \in M(G)$ мы определим

$$(\mu \cdot_p f)(s) = \int_G \Delta_G(t)^{1/p} f(st) d\mu(t), \qquad (f \cdot_p \mu)(s) = \int_G f(ts) d\mu(t)$$

Эти внешние умножения задают на всех пространствах $L_p(G)$ для 1 структуру левых и правых <math>M(G)-модулей. Этот специальный выбор внешних умножений хорошо согласуется с двойственностью. Действительно, имеет место изоморфизм $(L_p(G), *_p)^* \cong (L_{p^*}(G), \cdot_{p^*})$ в $\mathbf{mod}_1 - M(G)$ для всех $1 \leqslant p < +\infty$. Тут мы полагаем по определению, что $p^* = p/(p-1)$ если $1 и <math>p^* = +\infty$ если p = 1. Наконец, банахово пространство $C_0(G)$ также становится левым и правым M(G)-модулей с \cdot_∞ в качестве внешнего умножения. Более того, $C_0(G)$ является левым и правым M(G)-подмодулем $L_\infty(G)$, причем $(C_0(G), \cdot_\infty)^* \cong (M(G), *)$ в $M(G) - \mathbf{mod}_1$.

Через \widehat{G} мы будем обозначать дуальную группу группы G. Любой характер $\gamma \in \widehat{G}$ задает непрерывный характер

$$\varkappa_{\gamma}^{L}: L_{1}(G) \to \mathbb{C}: f \mapsto \int_{G} f(s) \overline{\gamma(s)} dm_{G}(s), \quad \varkappa_{\gamma}^{M}: M(G) \to \mathbb{C}: \mu \mapsto \int_{G} \overline{\gamma(s)} d\mu(s).$$

на $L_1(G)$ и M(G) соответственно. Символом \mathbb{C}_{γ} мы будем обозначать левый и правый аугментационный $L_1(G)$ - или M(G)-модуль. Его внешние умножения определяются равенствами

$$f \cdot_{\gamma} z = z \cdot_{\gamma} f = \varkappa_{\gamma}^{L}(f)z, \qquad \mu \cdot_{\gamma} z = z \cdot_{\gamma} \mu = \varkappa_{\gamma}^{M}(\mu)z$$

для $f \in L_1(G), \, \mu \in M(G)$ и $z \in \mathbb{C}$.

Одно из многих определений аменабельной группы говорит, что локально компактная группа G является аменабельной если существует $L_1(G)$ -морфизм правых модулей $M:L_\infty(G)\to \mathbb{C}_{e_{\widehat{G}}}$ такой что $M(\chi_G)=1$ [8; раздел VII.2.5]. Мы даже можем предполагать, что функционал M сжимающий [8; замечание VII.1.54].

Все результаты этого раздела, для которых не было указано ссылок, подробно описаны в [9; раздел 3.3].

§ 4.
$$L_1(G)$$
-модули

Метрические гомологические свойства стандартных $L_1(G)$ -модулей гармонического анализа впервые были изучены в [4]. Мы обобщим эти идеи на случай топологической банаховой гомологии. Чтобы прояснить определения мы начнем с общего результата об инъективности. Будет поучительно доказать его по определению.

ПРЕДЛОЖЕНИЕ 1. Π усть A — банахова алгебра со сжимающей правой аппроксимативной единицей, тогда правый A-модуль A^* метрически инъективен.

Доказательство. Пусть $\xi: Y \to X$ — изометрический A-морфизм правых A-модулей X и Y и пусть задан сжимающий A-морфизм $\phi: Y \to A^*$. По предположению A обладает сжимающей аппроксимативной единицей, назовем ее

 $(e_{\nu})_{\nu\in N}$. Для каждого $\nu\in N$ определим ограниченный линейный функционал $f_{\nu}:Y\to\mathbb{C}:y\to\phi(y)(e_{\nu})$. По теореме Хана-Банаха существует ограниченный линейный функционал $g_{\nu}:X\to\mathbb{C}$ такой что $g_{\nu}\xi=f_{\nu}$ и $\|g_{\nu}\|=\|f_{\nu}\|$. Легко проверить, что $\psi_{\nu}:X\to A^*:x\mapsto (a\mapsto g_{\nu}(x\cdot a))$ есть A-морфизм правых модулей такой, что $\|\psi_{\nu}\|\leqslant \|\phi\|$ и $\psi_{\nu}(\xi(y))(a)=\phi(y)(ae_{\nu})$ для всех $y\in Y$ и $a\in A$. Поскольку направленность $(\psi_{\nu})_{\nu\in N}$ ограничена по норме, существует поднаправленность $(\psi_{\mu})_{\mu\in M}$ с таким же ограничением на нормы, которая сходится в слабо*-операторной топологии к некоторому оператору $\psi:X\to A^*$. Легко видеть, что ψ является морфизмом правых A-модулей причем $\psi\xi=\phi$ и $\|\psi\|\leqslant\|\phi\|$. Поскольку ϕ произвольно, отображение $\mathrm{Hom}_{\mathbf{mod}_1-A}(\xi,A^*)$ строго коизометрично. Следовательно, модуль A^* метрически инъективен.

ПРЕДЛОЖЕНИЕ 2. Пусть G — локально компактная группа. Тогда $L_{\infty}(G)$ метрически и топологически инъективен как $L_1(G)$ -модуль. Как следствие, $L_1(G)$ -модуль $L_1(G)$ метрически и топологически плоский.

Доказательство. Так как $L_1(G)$ обладает сжимающей аппроксимативной единицей, то по предложению 1 правый $L_1(G)$ -модуль $L_1(G)^*$ метрически инъективен. Как следствие, он топологически инъективен [7; предложение 2.14]. Осталось напомнить, что $L_{\infty}(G) \cong L_1(G)^*$ в $\mathbf{mod}_1 - L_1(G)$. Результат о плоскости $L_1(G)$ следует из [7; предложение 2.21].

ПРЕДЛОЖЕНИЕ 3. Пусть G — локально компактная группа $u \gamma \in \widehat{G}$. Тогда следующие условия эквивалентны:

- (i) G компактна;
- (ii) \mathbb{C}_{γ} метрически проективный $L_1(G)$ -модуль;
- (iii) \mathbb{C}_{γ} топологически проективный $L_1(G)$ -модуль.

Доказательство. (i) \Longrightarrow (ii), (iii) \Longrightarrow (i) Доказательство аналогично [4; теорема 4.2].

(ii) \Longrightarrow (iii) Импликация следует из [7; предложение 2.4].

ПРЕДЛОЖЕНИЕ 4. Пусть G — локально компактная группа $u \gamma \in \widehat{G}$. Тогда следующие условия эквивалентны:

- (i) G аменабельна;
- (ii) \mathbb{C}_{γ} метрически инъективный $L_1(G)$ -модуль;
- (iii) \mathbb{C}_{γ} топологически инъективный $L_1(G)$ -модуль;
- (iv) \mathbb{C}_{γ} метрически плоский $L_1(G)$ -модуль;
- (v) \mathbb{C}_{γ} топологически плоский $L_1(G)$ -модуль.

Доказательство. (i) \Longrightarrow (ii), (iii) \Longrightarrow (i) Доказательство аналогично [4; теорема 4.5].

- $(ii) \implies (iii)$ Импликация следует из [7; предложение 2.14].
- (ii) \Longrightarrow (iv), (iii) \Longrightarrow (v) Напомним, что $\mathbb{C}_{\gamma}^* \cong \mathbb{C}_{\gamma}$ в $\mathbf{mod}_1 L_1(G)$, поэтому все эквивалентности следуют из трех предыдущих пунктов и того факта что плоские модули это в точности модули чьи сопряженные модули инъективны [7; предложение 2.21].

В следующем предложении мы займемся изучением специальных идеалов банаховой алгебры $L_1(G)$, а именно идеалов вида $L_1(G)*\mu$ для некоторой идемпотентной меры μ . На самом деле, этот класс идеалов в случае коммутативной

группы совпадает с классом левых идеалов $L_1(G)$ обладающих правой аппроксимативной единицей.

ТЕОРЕМА 1. Пусть G — локально компактная группа и $\mu \in M(G)$ — идемпотентная мера, то есть $\mu*\mu=\mu$. Допустим, что левый идеал $I=L_1(G)*\mu$ банаховой алгебры $L_1(G)$ топологически проективен как $L_1(G)$ -модуль. Тогда $\mu=pm_G$ для некоторого $p\in I$.

Доказательство. Рассмотрим произвольный морфизм $L_1(G)$ -модулей $\phi:I\to L_1(G)$. Определим $L_1(G)$ -морфизм $\phi':L_1(G)\to L_1(G):x\mapsto \phi(x*\mu)$. По теореме Венделя [11; теорема 1], существует мера $\nu\in M(G)$ такая что $\phi'(x)=x*\nu$ для всех $x\in L_1(G)$. В частности, $\phi(x)=\phi(x*\mu)=\phi'(x)=x*\nu$ для любого $x\in I$. Отсюда следует, что $\psi:I\to I:x\mapsto \nu*x$ — морфизм правых I-модулей такой, что $\phi(x)y=x\psi(y)$ для всех $x,y\in I$. Из [10; лемма 2, пункт (ii)] следует, что идеал I обладает правой единицей, скажем $e\in I$. Тогда $x*\mu=x*\mu*e$ для всех $x\in L_1(G)$. Две меры равны если их свертки со всеми функциями из $L_1(G)$ совпадают [9; следствие 3.3.24], поэтому $\mu=\mu*em_G$. Так как $e\in I\subset L_1(G)$, то $\mu=\mu*em_G\in M_a(G)$. Положим $p=\mu*e\in I$, тогда $\mu=pm_G$.

Для случая метрической проективности наша гипотеза состоит в том, что левый идеал вида $L_1(G)*\mu$ для идемпотентной меры μ метрически проективен как $L_1(G)$ -модуль тогда и только тогда, когда $\mu=pm_G$ для $p\in I$ нормы 1. В [4] Гравен дал критерий метрической проективности $L_1(G)$ -модуля $L_1(G)$. Теперь мы можем получить этот результат как простое следствие.

ТЕОРЕМА 2. Пусть G — локально компактная группа. Тогда следующие условия эквивалентны:

- (i) G дискретна;
- $(ii)\ L_1(G)$ метрически проективный $L_1(G)$ -модуль;
- $(iii)\ L_1(G)$ топологически проективный $L_1(G)$ -модуль.

ДОКАЗАТЕЛЬСТВО. (i) \Longrightarrow (ii) Если группа G дискретна, то $L_1(G)$ — унитальная алгебра с единицей нормы 1. Из [10; предложение 7] мы получаем, что $L_1(G)$ метрически проективен как $L_1(G)$ -модуль.

- (ii) \implies (iii) Импликация следует из [7; предложение 2.4].
- (iii) \Longrightarrow (i) Очевидно, δ_{e_G} идемпотентная мера. Так как $L_1(G) = L_1(G) * \delta_{e_G}$ метрически проективный $L_1(G)$ -модуль, то из предложения 1 следует, что $\delta_{e_G} = fm_G$ для некоторого $f \in L_1(G)$. Это возможно только если группа G дискретна.

Стоит отметить, что $L_1(G)$ -модуль $L_1(G)$ относительно проективен для любой локально компактной группы G [8; упражнение 7.1.17].

ПРЕДЛОЖЕНИЕ 5. $\Pi y cm b \ G - локально компактная группа.$ Тогда следующие условия эквивалентны:

- (i) G дискретна;
- (ii) M(G) метрически проективный $L_1(G)$ -модуль;
- $(iii)\ M(G)\ -\ monoлогически проективный <math>L_1(G)$ -модуль;
- (iv) M(G) метрически плоский $L_1(G)$ -модуль.

Доказательство. (i) \Longrightarrow (ii) Как известно, $M(G) \cong L_1(G)$ в $L_1(G) - \mathbf{mod}_1$ когда группа G дискретна, поэтому результат следует из теоремы 2.

- $(ii) \Longrightarrow (iii)$ Импликация следует из [7; предложение 2.4].
- $(ii) \Longrightarrow (iv)$ Импликация следует из [7; предложение 2.26].
- (iii) \Longrightarrow (i) Так как $M(G)\cong L_1(G)\bigoplus_1 M_s(G)$ в $L_1(G)-\mathbf{mod}_1$, то модуль $M_s(G)$ топологически проективен как ретракт топологически проективного модуля [7; предложение 2.2]. Заметим, что $M_s(G)$ аннуляторный $L_1(G)$ -модуль, следовательно алгебра $L_1(G)$ обладает правой единицей [7; предложение 3.3]. Поскольку $L_1(G)$ также обладает двусторонней аппроксимативной единицей, то алгебра $L_1(G)$ унитальна. Отсюда следует, что группа G дискретна.
- (iv) \Longrightarrow (i) Поскольку $M(G)\cong L_1(G)\bigoplus_1 M_s(G)$ в $L_1(G)-\mathbf{mod}_1$, то $M_s(G)$ метрически плоский модуль как ретракт метрически плоского модуля [7; предложение 2.27]. Так как $M_s(G)$ является аннуляторным $L_1(G)$ -модулем над ненулевой алгеброй $L_1(G)$, то $M_s(G)$ должен быть нулевым модулем [7; предложение 3.6]. Это возможно только если G дискретная группа.

ПРЕДЛОЖЕНИЕ 6. Пусть G — локально компактная группа. Тогда $L_1(G)$ -модуль M(G) топологически плоский.

Доказательство. Напомним, что банахово пространство M(G) является L_1 -пространством и тем более \mathcal{L}_1^g -пространством [12; пункт 3.13, упражнение 4.7(b)]. Так как пространство $M_s(G)$ дополняемо в M(G), то $M_s(G)$ так же является \mathcal{L}_1^g -пространством [12; следствие 23.2.1(2)]. Более того $M_s(G)$ — аннуляторный $L_1(G)$ -модуль, значит он топологически плоский $L_1(G)$ -модуль [7; предложение 3.6]. По предложению 2 топологически плоским является и $L_1(G)$ -модуль $L_1(G)$. Снова используя изоморфизм $M(G) \cong L_1(G) \bigoplus_1 M_s(G)$ в $L_1(G)$ — \mathbf{mod}_1 , мы заключаем, что $L_1(G)$ -модуль M(G) топологически плоский как сумма топологически плоских модулей [7; предложение 2.27].

$\S 5. \ M(G)$ -модули

Мы приступаем к обсуждению стандартных M(G)-модулей гармонического анализа. Как мы увидим, большая часть результатов может быть получена из предыдущих теорем и утверждений для $L_1(G)$ -модулей.

ПРЕДЛОЖЕНИЕ 7. $\Pi y cm b \ G$ — локально компактная группа и X — $\langle \ cywe-cmbehhuŭ \ / \ ephhuŭ \ / \ cywecmbehhuŭ \ \rangle \ L_1(G)$ -модуль. Tогда,

- (i) X является метрически \langle проективным / интективным / плоским \rangle M(G)-модулем тогда и только тогда когда он метрически \langle проективный / интективный / плоский \rangle как $L_1(G)$ -модуль;
- (ii) X является топологически \langle проективным / интективным / плоским \rangle M(G)-модулем тогда и только тогда, когда он топологически \langle проективный / интективный / плоский \rangle как $L_1(G)$ -модуль.

Доказательство. Напомним, что $L_1(G)$ — двусторонний 1-дополняемый идеал алгебры M(G). Теперь утверждения пунктов (i) и (ii) следуют из $\langle [7;$ предложение 2.6] / [7; предложение 2.24] \rangle .

8 Н.Т. НЕМЕШ

Здесь следует упомянуть, что $L_1(G)$ -модули $C_0(G)$, $L_p(G)$ для $1\leqslant p<\infty$ и \mathbb{C}_γ для $\gamma\in \widehat{G}$ суть существенные модули, а $C_0(G)$, M(G), $L_p(G)$ для $1\leqslant p\leqslant\infty$ и \mathbb{C}_γ для $\gamma\in \widehat{G}$ суть верные $L_1(G)$ -модули.

ПРЕДЛОЖЕНИЕ 8. Пусть G — локально компактная группа. Тогда M(G) метрически и топологически проективен как M(G)-модуль. Как следствие, он является метрически и топологически плоским M(G)-модулем.

Доказательство. Так как M(G) — унитальная алгебра с единицей нормы 1, то \langle метрическая \rangle топологическая \rangle проективность M(G) следует из [10; предложение 7], поскольку M(G) можно рассмотреть унитальный как идеал алгебры M(G). Остается напомнить что всякий \langle метрически \rangle топологически \rangle проективный модуль также является \langle метрически \rangle топологически \rangle плоским [7; предложение 2.26].

§ 6. Ограничения банаховой геометрии

В этом разделе мы покажем, что многие модули гармонического анализа не могут быть метрически или топологически проективными, инъективными или плоским по причинам своей плохой банаховой геометрии. В метрической теории для бесконечномерных $L_1(G)$ -модулей $L_p(G)$, M(G) и $C_0(G)$ это было сделано в [4; теоремы 4.12-4.14].

ПРЕДЛОЖЕНИЕ 9. Пусть G- бесконечная локально компактная группа. Тогда

- (i) банаховы пространства $L_1(G)$, $C_0(G)$, M(G) и $L_{\infty}(G)^*$ не являются топологически инъективными;
- (ii) банаховы пространства $C_0(G)$ и $L_\infty(G)$ не дополняемы ни в одном L_1 -пространстве.

Доказательство. Так как G — бесконечная группа, то все рассматриваемые банаховы пространства бесконечномерны.

- (i) Если бесконечномерное банахово пространство топологически инъективно, то оно содержит копию $\ell_{\infty}(\mathbb{N})$ [13; следствие 1.1.4], и как следствие копию $c_0(\mathbb{N})$. Банахово пространство $L_1(G)$ слабо секвенциально полно [14; следствие III.C.14], поэтому из [15; следствие 5.2.11] мы знаем, что оно не может содержать копию $c_0(\mathbb{N})$. Таким образом, банахово пространство $L_1(G)$ не топологически инъективно. Допустим, что пространство M(G) топологически инъективно, тогда инъективно и его дополняемое подпространство $M_a(G)$, изоморфное $L_1(G)$. Это противоречит рассуждениям выше. Из [16; следствие 3] известно, что банахово пространство $C_0(G)$ не дополняемо в $L_{\infty}(G)$, следовательно оно не может быть топологически инъективным. Напомним, что пространство $L_1(G)$ дополняемо в $L_{\infty}(G)^*$, которое в свою очередь изометрически изоморфно $L_1(G)^{**}$ [12; предложение В10]. Следовательно, если банахово пространство $L_{\infty}(G)^*$ топологически инъективно, то $L_1(G)$ тоже будет инъективным. Это противоречит рассуждениям выше.
- (ii) Допустим, $C_0(G)$ является ретрактом некоторого L_1 -пространства, тогда пространство M(G), которое, как известно, изометрически изоморфно $C_0(G)^*$,

будет ретрактом некоторого L_{∞} -пространства. Следовательно, M(G) — топологически инъективное банахово пространство. Это противоречит пункту (i). Так как пространство $\ell_{\infty}(\mathbb{N})$ вкладывается в $L_{\infty}(G)$, то существует и вложение пространства $c_0(\mathbb{N})$. Если $L_{\infty}(G)$ ретракт некоторого L_1 -пространства, то такое L_1 -пространство будет содержать копию $c_0(\mathbb{N})$. Как было показано в пункте (i) это невозможно.

С этого момента через A мы будем обозначать одну из алгебр $L_1(G)$ или M(G). Напомним, что $L_1(G)$ и M(G) являются L_1 -пространствами.

ПРЕДЛОЖЕНИЕ 10. Пусть G- бесконечная локально компактная группа. Тогда

- (i) А-модули $C_0(G)$ и $L_{\infty}(G)$ не являются ни метрически ни топологически проективными;
- (ii) А-модули $L_1(G)$, $C_0(G)$, M(G) и $L_{\infty}(G)^*$ не являются ни метрически ни топологически инъективными;
- (iii) А-модули $L_{\infty}(G)$ и $C_0(G)$ не являются ни метрически ни топологически плоскими.
- (iv) А-модули $L_p(G)$ для 1 не являются ни метрически ни топологически проективными, инъективными или плоскими.

ДОКАЗАТЕЛЬСТВО. (i) Каждый метрически или топологически проективный A-модуль дополняем в некотором L_1 -пространстве [7; предложение 3.8]. Остается применить пункт (ii) предложения 9.

- (ii) Каждый метрически или топологически инъективный A-модуль является топологически инъективным банаховым пространством [7; предложение 3.8]. Теперь результат следует из пункта (i) предложения 9.
- (ііі) Напомним, что $C_0(G)^* \cong M(G)$ в $\mathbf{mod}_1 A$. Теперь достаточно скомбинировать результаты пункта (і) и тот факт, что модуль сопряженный к плоскому инъективен [7; предложение 2.21].
- (iv) Так как пространства $L_p(G)$ рефлексивны для 1 то достаточно применить [7; следствие 3.14].

Осталось рассмотреть метрические и топологические гомологические свойства A-модулей для конечной группы G.

Предложение 11. Пусть G — нетривиальная конечная группа и $1 \leqslant p \leqslant +\infty$. Тогда A-модуль $L_p(G)$ является метрически \langle проективным \rangle инъективным \rangle тогда и только тогда, когда \langle p=1 / $p=+\infty$ \rangle .

ДОКАЗАТЕЛЬСТВО. Допустим, что A-модуль $L_p(G)$ метрически \langle проективен \rangle инъективен \rangle . Поскольку пространство $L_p(G)$ конечномерно, то в силу \langle проективности \rangle инъективности \rangle должны существовать изометрические изоморфизмы $\langle L_p(G) \cong \ell_1(\mathbb{N}_n) / L_p(G) \cong \ell_\infty(\mathbb{N}_n) \rangle$ [7; предложение 3.8, пункты (i), (ii)], где $n = \operatorname{Card}(G) > 1$. Теперь воспользуемся результатом теоремы 1 из [17] для банаховых пространств над полем \mathbb{C} : если для $2 \leqslant m \leqslant k$ и $1 \leqslant r, s \leqslant \infty$, существует изометрическое вложение из $\ell_r(\mathbb{N}_m)$ в $\ell_s(\mathbb{N}_k)$, то либо $r = 2, s \in 2\mathbb{N}$ либо r = s. Таким образом, $\langle p = 1 / p = +\infty \rangle$. Обратная импликация легко следует из \langle теоремы $\langle p = 1 / p = +\infty \rangle$. Обратная импликация легко

ПРЕДЛОЖЕНИЕ 12. Пусть G — конечная группа. Тогда,

10 н. т. немеш

- (i) А-модули $C_0(G)$ и $L_{\infty}(G)$ метрически инъективны;
- (ii) А-модули $C_0(G)$ и $L_p(G)$ для 1 метрически проективны тогда и только тогда, когда группа <math>G тривиальна;
- (iii) А-модули M(G) и $L_p(G)$ для $1 \leqslant p < +\infty$ метрически инъективны тогда и только тогда, когда группа G тривиальна;
- (iv) А-модули $C_0(G)$ и $L_p(G)$ для 1 метрически плоские тогда и только тогда, когда группа <math>G тривиальна.

ДОКАЗАТЕЛЬСТВО. (i) Так как группа G конечна, то $C_0(G) = L_{\infty}(G)$. Теперь необходимый результат следует из предложения 2.

- (i) Если группа G тривиальна, то есть $G = \{e_G\}$, то $L_p(G) = C_0(G) = L_1(G)$. Осталось воспользоваться пунктом (i). Если группа G нетривиальна, то достаточно вспомнить, что $C_0(G) = L_\infty(G)$ и использовать предложение 11.
- (ііі) Если $G = \{e_G\}$, то $M(G) = L_p(G) = L_\infty(G)$ и можно снова использовать пункт (і). Если группа G нетривиальна, то можно применить предложение 11 поскольку в этом случае $M(G) = L_1(G)$.
- (iv) Из пункта (iii) следует, что для $1\leqslant p<+\infty$ модули $L_p(G)$ метрически инъективны тогда и только тогда, когда группа G тривиальна. Напомним, что банахов модуль плоский тогда и только тогда, когда его сопряженный модуль инъективен [7; предложение 2.21]. Теперь результат для модулей $L_p(G)$ следует из отождествления $L_p(G)^*\cong L_{p^*}(G)$ в $\mathbf{mod}_1-L_1(G)$ для $1\leqslant p^*<+\infty$. Аналогично используя характеризацию плоских модулей и изоморфизмы $C_0(G)^*\cong M(G)\cong L_1(G)$ в $\mathbf{mod}_1-L_1(G)$ мы получаем критерий инъективности для M(G).

Следует сказать, что если бы мы рассматривали все банаховы пространства над полем действительных чисел, то модули $L_{\infty}(G)$ и $L_1(G)$ были бы метрически проективны и инъективны соответственно, для группы G состоящей из двух элементов. Причина в том, что $L_{\infty}(\mathbb{Z}_2) \cong \mathbb{R}_{\gamma_0} \bigoplus_1 \mathbb{R}_{\gamma_1}$ в $L_1(\mathbb{Z}_2) - \mathbf{mod}_1$ и $L_1(\mathbb{Z}_2) \cong \mathbb{R}_{\gamma_0} \bigoplus_{\infty} \mathbb{R}_{\gamma_1}$ в $\mathbf{mod}_1 - L_1(\mathbb{Z}_2)$. Здесь, \mathbb{Z}_2 обозначает единственную группу из двух элементов и $\gamma_0, \gamma_1 \in \widehat{\mathbb{Z}_2}$ — ее характеры задаваемые равенствами $\gamma_0(0) = \gamma_0(1) = \gamma_1(0) = -\gamma_1(1) = 1$.

ПРЕДЛОЖЕНИЕ 13. Пусть G — конечная группа. Тогда $C_0(G)$, M(G) и $L_p(G)$ для $1 \leq p \leq +\infty$ являются топологически проективными, инъективными и плоскими A-модулями.

Доказательство. Для конечной группы G мы имеем $M(G)=L_1(G)$ и $C_0(G)=L_\infty(G)$, поэтому модули $C_0(G)$ и M(G) не требуют специального рассмотрения. Поскольку $M(G)=L_1(G)$, мы можем ограничиться случаем $A=L_1(G)$. Тождественное отображение $i:L_1(G)\to L_p(G):f\mapsto f$ является топологическим изоморфизмом банаховых пространств, так как $L_1(G)$ и $L_p(G)$ для $1\leqslant p<+\infty$ имеют одинаковую размерность. Так как группа G конечна, то она унимодулярна. Поэтому, совпадают внешние умножения в $(L_1(G),*)$ и $(L_p(G),*_p)$ для $1\leqslant p<+\infty$. Следовательно i изоморфизм в $L_1(G)$ — \mathbf{mod} и $\mathbf{mod}-L_1(G)$. Аналогично можно показать, что модули $(L_\infty(G),\cdot_\infty)$ и $(L_p(G),\cdot_p)$ для $1< p\leqslant +\infty$ изоморфны в $L_1(G)$ — \mathbf{mod} и $\mathbf{mod}-L_1(G)$. Наконец, легко проверить, что модули $(L_1(G),*)$ и $(L_\infty(G),\cdot_\infty)$ и изоморфны в $L_1(G)$ — \mathbf{mod} и $\mathbf{mod}-L_1(G)$ посредством изоморфизма j:

 $L_1(G) \to L_\infty(G): f \mapsto (s \mapsto f(s^{-1}))$. Таким образом, все рассматриваемые модули попарно изоморфны. Осталось вспомнить, что по теореме 2 и предложению 2 модуль $L_1(G)$ является топологически проективным и плоским, и по предложению 2 модуль $L_\infty(G)$ является топологически инъективным.

В таблице 1, приведенной ниже, собраны результаты о гомологических свойствах модулей гармонического анализа для метрической, топологической и относительной теории. Каждая ячейка таблицы содержит условие при котором модуль обладает соответствующим свойством и ссылки на доказательства. Стрелка \Longrightarrow обозначает, что на данный момент известно только необходимое условие. Стоит сказать, что результаты для модулей $L_p(G)$, где $1 , верны для обоих типов внешнего умножения <math>*_p$ и \cdot_p . Формулировки и доказательства теорем о гомологической тривиальности модулей \mathbb{C}_{γ} в случае относительной теории будут такими же как и в предложениях 3 и 4, но на самом деле эти результаты давно известны. Например, критерий о проективности \mathbb{C}_{γ} дан в [8; теорема IV.5.13], а инъективности в [18; теорема 2.5]. Для алгбер $L_1(G)$ и M(G) понятия \langle проективности \rangle инъективности \rangle плоскости \rangle совпадают во всех трех теориях для модулей $\langle M(G)$ и \mathbb{C}_{γ} / $L_{\infty}(G)$, $C_0(G)$ и \mathbb{C}_{γ} / $L_1(G)$ и \mathbb{C}_{γ} \rangle . Наконец, плоские M(G)-модули M(G) так же имеют одно и то же описание в метрической, топологической и относительной теории.

Таблица 1. Томологически тривиальные модули гармонического анализа						
	$L_1(G)$ -модули $M(G)$ -модули					
	Проективность	Инъективность	Плоскость	Проективность	Инъективность	Плоскость
Метрическая теория						
	G дискретна	$G = \{e_G\}$	G любая	G дискретна	$G = \{e_G\}$	G любая
$L_1(G)$	2	10, 12	2	2, 7	10, 12	2, 7
	$G = \{e_G\}$	$G = \{e_G\}$	$G = \{e_G\}$	$G = \{e_G\}$	$G = \{e_G\}$	$G = \{e_G\}$
$L_p(G)$	10, 11	10, 11	10, 12	10, 11	10, 11	10, 12
	$G = \{e_G\}$	G любая	$G = \{e_G\}$	$G = \{e_G\}$	G любая	$G = \{e_G\}$
$L_{\infty}(G)$	10, 11	2	10, 12	10, 11	2, 7	10, 12
	G дискретна	$G = \{e_G\}$	G дискретна	G любая	$G = \{e_G\}$	G любая
M(G)	5	10, 12	6	8	10, 12	8
	$G = \{e_G\}$	G конечна	$G = \{e_G\}$	$G = \{e_G\}$	G конечна	$G = \{e_G\}$
$C_0(G)$	10, 12	10, 12	10, 12	10, 12	10, 12	10, 12
	G компактна	G аменабельна	G аменабельна	G компактна	G аменабельна	G аменабельна
\mathbb{C}_{γ}	3	4	4	3, 7	4, 7	4, 7
Топологическая теория						
	G дискретна	G конечна	G любая	G дискретна	G конечна	G любая
$L_1(G)$	2	10, 13	2	2, 7	10, 13	2, 7
	G конечна	G конечна	G конечна	G конечна	G конечна	G конечна
$L_p(G)$	10, 13	10, 13	10, 13	10, 13	10, 13	10, 13
	G конечна	G любая	G конечна	G конечна	G любая	G конечна
$L_{\infty}(G)$	10, 13	2	10, 13	10, 13	2, 7	10, 13
	G дискретна	G конечна	G любая	G любая	G конечна	G любая
M(G)	5	10, 13	6	8	10, 13	8
	G конечна	G конечна	G конечна	G конечна	G конечна	G конечна
$C_0(G)$	10, 13	10, 13	10, 13	10, 13	10, 13	10, 13
	G компактна	G аменабельна	G аменабельна	G компактна	G аменабельна	G аменабельна
\mathbb{C}_{γ}	3	4	4	3, 7	4, 7	4, 7
Относительная теория G аменабельна G аменабельна						
	G любая	G аменабельна и дискретна	G любая	G любая	G аменабельна и дискретна	G любая
$L_1(G)$	[1], §6	[1], §6	[1], §6	[2], §3.5	[2], §3.5	[2], §3.5
-1(-)	G компактна	G аменабельна	G аменабельна	G компактна	G аменабельна	G аменабельна
$L_{\mathcal{D}}(G)$	[1], §6	[3]	[3]	[2], §3.5	[2], §3.5, [3]	[2], §3.5
	G конечна	G любая	G аменабельна	G конечна	G любая	G аменабельна
$L_{\infty}(G)$	[1], §6	[1], §6	[1], §6	[2], §3.5	[2], §3.5	(⇒) [2], §3.5
	G дискретна	G аменабельна	G любая	G любая	G аменабельна	G любая
M(G)	[1], §6	[1], §6	[2], §3.5	[2], §3.5	[2], §3.5	[2], §3.5
	G компактна	G конечна	G аменабельна	G компактна	G конечна	G аменабельна
$C_0(G)$	[1], §6	[1], §6	[1], §6	[2], §3.5	[2], §3.5	[2], §3.5
	G компактна	G аменабельна	G аменабельна	G компактна	G аменабельна	G аменабельна

Список литературы

- H. G. Dales, M. E. Polyakov, "Homological properties of modules over group algebras", *Proc. Lond. Math. Soc.*, 89:2 (2004), 390–426.
- [2] P. Ramsden, *Homological properties of semigroup algebras*, The University of Leeds, 2009.
- [3] G. Racher, "Injective modules and amenable groups", Comment. Math. Helv., 88:4 (2013), 1023–1031.
- [4] A. W. M. Graven, "Injective and projective Banach modules", Indag. Math., 82:1 (1979), 253-272.
- [5] M. C. White, "Injective modules for uniform algebras", Proc. London Math. Soc., 73:1 (1996), 155–184.
- [6] А. Я. Хелемский, "О гомологической размерности нормированных модулей над банаховыми алгебрами", *Матем. Сб.*, **81**:3 (1970), 430–444.
- [7] Н. Т. Немеш, "Геометрия проективных, инъективных и плоских банаховых модулей", Фундамент. и прикл. матем., **21**:3 (2016), 161–184.
- [8] А. Я. Хелемский, Банаховы и полинормированные алгебры: общая теория, представления, гомологии., Наука, 1989.
- [9] H. G. Dales, Banach algebras and automatic continuity, Clarendon Press, 2000.
- [10] Н. Т. Немеш, "Метрически и топологически проективные идеалы банаховых алгебр", Матем. заметки, 99:4, 526–536.
- [11] J. G. Wendel, "Left centralizers and isomorphisms of group algebras", Pacific J. Math., 2:3 (1952), 251–261.
- [12] A. Defant, K. Floret, Tensor norms and operator ideals, 176, Elsevier, 1992.
- [13] H. Rosenthal, "On relatively disjoint families of measures, with some applications to Banach space theory", Stud. Math., **37**:1 (1970), 13–36.
- [14] P. Wojtaszczyk, Banach spaces for analysts, 25, Cambridge University Press, 1996.
- [15] F. Albiac, N. J. Kalton, Topics in Banach space theory, 233, Springer, 2006.
- [16] A. T.-M. Lau, V. Losert, "Complementation of certain subspaces of $L_{\infty}(G)$ of a locally compact group", Pacific J. Math, 141:2 (1990), 295–310.
- [17] Yu. I. Lyubich, O. A. Shatalova, "Isometric embeddings of finite-dimensional ℓ_p -spaces over the quaternions", St. Petersburg Math. J., **16**:1 (2005), 9–24.
- [18] B. Johnson, Cohomology in Banach Algebras, Memoirs Series, 1972.

H. T. Немеш (N. T. Nemesh)

Московский государственный университет

им. М.В. Ломоносова

E-mail: nemeshnorbert@yandex.ru

Поступила в редакцию 31.10.2019