Deep Reinforcement Learning Scratching the surface

Deep Reinforcement Learning

Deep Reinforcement Learning: AI = RL + DL

Scenario of Reinforcement Learning

Learning to paly Go

Learning to paly Go

Agent learns to take actions to maximize expected reward.

Learning to paly Go

- Supervised v.s. Reinforcement
- Supervised: Learning from teacher

Next move: **"5-5"**

Next move: **"**3-3"

Reinforcement Learning

Learning from experience

First move many moves

(Two agents play with each other.)

Alpha Go is supervised learning + reinforcement learning.

Sequence-to-sequence learning

LSTM Encoder

LSTM Decoder

- Supervised v.s. Reinforcement

Reinforcement

- Reinforcement Learning
- Let two agents talk to each other (sometimes generate good dialogue, sometimes bad)

How old are you?

How old are you?

See you.

I though you were 12.

- Reinforcement Learning

- By this approach, we can generate a lot of dialogues.
- Use some pre-defined rules to evaluate the goodness of a dialogue

Machine learns from the evaluation

Deep Reinforcement Learning for Dialogue Generation https://arxiv.org/pdf/1606.01541v3.pdf

More applications

Interactive retrieval

More applications

- Flying Helicopter
 - https://www.youtube.com/watch?v=0JL04JJjocc
- Driving
 - https://www.youtube.com/watch?v=0xo1Ldx3L5Q
- Google Cuts Its Giant Electricity Bill With DeepMind-Powered AI
 - http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai
- Text generation
 - Hongyu Guo, "Generating Text with Deep Reinforcement Learning", NIPS, 2015
 - Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016

- Widely studies:
 - Gym: https://gym.openai.com/
 - Universe: https://openai.com/blog/universe/

Machine learns to play video games as human players

- What machine observes is pixels
- Machine learns to take proper action itself

Space invader

Termination: all the aliens are killed, or your spaceship is destroyed.

- Space invader
 - Play yourself: http://www.2600online.com/spaceinvaders.htm
 - How about machine: https://gym.openai.com/evaluations/eval_Eduo zx4HRyqgTCVk9ltw

Usually there is some randomness in the environment

Start with observation s_1

Observation s_2

Observation s_3

After many turns

Game Over (spaceship destroyed)

Obtain reward r_T

This is an *episode*.

Learn to maximize the expected cumulative reward per episode

Action a_T

Difficulties of Reinforcement Learning

- Reward delay
 - In space invader, only "fire" obtains reward
 - Although the moving before "fire" is important
 - In Go playing, it may be better to sacrifice immediate reward to gain more long-term reward
- Agent's actions affect the subsequent data it receives
 - E.g. Exploration

Outline

Alpha Go: policy-based + value-based + model-based

Asynchronous Advantage Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning", ICML, 2016

To learn deep reinforcement learning

- Textbook: Reinforcement Learning: An Introduction
 - https://webdocs.cs.ualberta.ca/~sutton/book/thebook.html
- Lectures of David Silver
 - http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.ht ml (10 lectures, 1:30 each)
 - http://videolectures.net/rldm2015_silver_reinforcement_learning/ (Deep Reinforcement Learning)
- Lectures of John Schulman
 - https://youtu.be/aUrX-rP_ss4

Policy-based Approach Learning an Actor

Machine Learning ≈ Looking for a Function

Three Steps for Deep Learning

Deep Learning is so simple

Neural network as Actor

 Input of neural network: the observation of machine represented as a vector or a matrix

 Output neural network : each action corresponds to a neuron in output layer

What is the benefit of using network instead of lookup table?

generalization

Three Steps for Deep Learning

Deep Learning is so simple

Goodness of Actor

Total Loss:

$$L = \sum_{n=1}^{N} l_n$$

• Review: Supervised learning

Training Example

Find <u>the network</u> <u>parameters</u> θ^* that minimize total loss L

Goodness of Actor

- Given an actor $\pi_{\theta}(s)$ with network parameter θ
- Use the actor $\pi_{\theta}(s)$ to play the video game
 - Start with observation s_1
 - Machine decides to take a_1
 - Machine obtains reward r_1
 - Machine sees observation s₂
 - Machine decides to take a₂
 - Machine obtains reward r_2
 - Machine sees observation s₃
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_t$

Even with the same actor, R_{θ} is different each time

Randomness in the actor and the game

We define \overline{R}_{θ} as the expected value of R_{θ}

 \bar{R}_{θ} evaluates the goodness of an actor $\pi_{\theta}(s)$

Goodness of Actor

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{t=1}^{T} r_t$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau|\theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$$

Sum over all possible trajectory

Use π_{θ} to play the game N times, obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$ Sampling τ from $P(\tau|\theta)$

N times

Three Steps for Deep Learning

Deep Learning is so simple

Problem statement

$$\theta^* = arg \max_{\theta} \bar{R}_{\theta}$$

$$\theta^* = arg \max_{\theta} \bar{R}_{\theta} \quad \bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta)$$

- Gradient ascent
 - Start with θ^0

•
$$\theta^1 \leftarrow \theta^0 + \eta \nabla \bar{R}_{\theta^0}$$

•
$$\theta^2 \leftarrow \theta^1 + \eta \nabla \bar{R}_{\theta^1}$$

$$\theta = \{w_1, w_2, \cdots, b_1, \cdots\}$$

$$\nabla \bar{R}_{\theta} = \begin{bmatrix} \partial \bar{R}_{\theta} / \partial w_1 \\ \partial \bar{R}_{\theta} / \partial w_2 \\ \vdots \\ \partial \bar{R}_{\theta} / \partial b_1 \\ \vdots \end{bmatrix}$$

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta) \quad \nabla \bar{R}_{\theta} = ?$$

$$\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla P(\tau | \theta) = \sum_{\tau} R(\tau) P(\tau | \theta) \frac{\nabla P(\tau | \theta)}{P(\tau | \theta)}$$

 $R(\tau)$ do not have to be differentiable. It can even be a black box.

$$= \sum_{\tau} R(\tau) P(\tau|\theta) \nabla log P(\tau|\theta)$$

$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \underline{\nabla log P(\tau^n | \theta)} \quad \text{Use } \pi_\theta \text{ to play the game N times,} \\ \text{Obtain } \{\tau^1, \tau^2, \cdots, \tau^N\}$$

 $\nabla log P(\tau | \theta) = ?$

$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

$$P(\tau|\theta) =$$

$$p(s_1)p(a_1|s_1, \theta)p(r_1, s_2|s_1, a_1)p(a_2|s_2, \theta)p(r_2, s_3|s_2, a_2) \cdots$$

$$= p(s_1)\prod_{t=1}^{T} p(a_t|s_t, \theta)p(r_t, s_{t+1}|s_t, a_t)$$

$$p(a_t = \text{"fire"}|s_t, \theta) = 0.7$$

$$= 0.7$$

$$\text{Actor } \text{right } \text{o.1} \text{right } \text{o.2} \text{fire } \text{o.2} \text{fir$$

$$\nabla log P(\tau|\theta) = ?$$

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

$$P(\tau|\theta) = p(s_1) \prod_{t=1}^{r} p(a_t|s_t, \theta) p(r_t, s_{t+1}|s_t, a_t)$$

 $logP(\tau|\theta)$

$$= logp(s_1) + \sum_{t=1}^{I} logp(a_t|s_t, \theta) + logp(r_t, s_{t+1}|s_t, a_t)$$

$$\nabla log P(\tau|\theta) = \sum_{t=1}^{r} \nabla log p(a_t|s_t, \theta)$$

Ignore the terms not related to heta

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$= \sum_{t=1}^{T} \nabla log P(\tau | \theta)$$

$$= \sum_{t=1}^{T} \nabla log p(a_t | s_t, \theta)$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n} | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla log p(a_{t}^{n} | s_{t}^{n}, \theta)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p(a_t^n | s_t^n, \theta)$$

What if we replace $R(\tau^n)$ with r_t^n

If in τ^n machine takes a^n_t when seeing s^n_t in

 $R(\tau^n)$ is positive

Tuning θ to increase $p(a_t^n|s_t^n)$

 $R(\tau^n)$ is negative

Tuning θ to decrease $p(a_t^n|s_t^n)$

It is very important to consider the cumulative reward $R(\tau^n)$ of the whole trajectory τ^n instead of immediate reward r_t^n

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla log P(\tau | \theta)$$

$$= \sum_{t=1}^{T} \nabla log p(a_t | s_t, \theta)$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla log p(a_t^n | s_t^n, \theta)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \underline{logp}(a_t^n | s_t^n, \theta) \qquad \frac{\nabla p(a_t^n | s_t^n, \theta)}{p(a_t^n | s_t^n, \theta)}$$

Why divided by $p(a_t^n|s_t^n, \theta)$?

e.g. in the sampling data ... s has been seen in au^{13} , au^{15} , au^{17} , au^{33}

In
$$au^{13}$$
, take action a $R(au^{13})=2$ In au^{15} , take action b $R(au^{15})=1$

In
$$\tau^{17}$$
, take action b $R(\tau^{17})=1$ In τ^{33} , take action b $R(\tau^{33})=1$

Add a Baseline

It is possible that $R(\tau^n)$ is always positive.

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla log p(a_t^n | s_t^n, \theta)$$

Value-based Approach Learning a Critic

Critic

- A critic does not determine the action.
- Given an actor, it evaluates the how good the actor is

http://combiboilersleeds.com/picaso/critics/critics-4.html

Three kinds of Critics

- A critic is a function depending on the actor π it is evaluated
 - The function is represented by a neural network
- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation (state) s

 $V^{\pi}(s)$ is smaller

Three kinds of Critics

- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

for discrete action only

How to estimate $V^{\pi}(s)$

- Monte-Carlo based approach
 - The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_h

$$s_b \longrightarrow V^{\pi} \longrightarrow V^{\pi}(s_b) \longrightarrow G_b$$

How to estimate $V^{\pi}(s)$

• Temporal-difference approach $\cdots s_a, a, r, s_b \cdots$

Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

How to estimate $V^{\pi}(s)$

[Sutton, v2, Example 6.4]

The critic has the following 8 episodes

•
$$s_a, r = 0, s_b, r = 0$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_b, r = 0$$
, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) = ? 0? 3/4?$$

Monte-Carlo:
$$V^{\pi}(s_a) = 0$$

Temporal-difference:

$$V^{\pi}(s_a) + r = V^{\pi}(s_b)$$

3/4 0 3/4

(The actions are ignored here.)

Deep Reinforcement Learning Actor-Critic

Actor-Critic

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta)$$
 Evaluated by critic

Advantage Function: $\underline{r_t^n} - (V^{\pi_\theta}(s_t^n) - V^{\pi_\theta}(s_{t+1}^n))$

Baseline is added

The reward r_t^n we truly obtain when taking action a_t^n

Expected reward r_t^n we obtain if we use actor π_{θ}

Positive advantage function

Increasing the prob. of action a^n_t

Negative advantage function

decreasing the prob. of action a_t^n

Actor-Critic

Tips

• The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$

- Use output entropy as regularization for $\pi(s)$
 - Larger entropy is preferred → exploration

Asynchronous

Source of image:

https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta \theta$

Worker 1

Environment 1

 $\Delta heta$

 θ^1

1. Copy global parameters

2. Sampling some data

3. Compute gradients

4. Update global models

Demo of A3C

• DeepMind https://www.youtube.com/watch?v=nMR5mjCFZCw

Demo of A3C

• DeepMind https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Conclusion of This Semester

Learning Map

Acknowledgment

• 感謝 Larry Guo 同學發現投影片上的符號錯誤