Symbolic Model Checking

Konkuk University
Department of Computer Science & Engineering
Kunha Kim

Fixed Point

- The set P(S) of all subsets of S forms a lattice under the set inclusion ordering
- Each element of S' of the lattice can also be thought of as a predicate on S, where the predicate is viewed as being true for exactly the states in S'
- The least element in the lattice is the empty set, denoted as False, and the greatest element in the lattice is the set S, denoted as True
- A function τ that maps P(S) to P(S) will be called a predicate transformer

Fixed Point

- τ is monotonic provided that $P \subseteq Q$ implies $\tau(P) \subseteq \tau(Q)$
- τ is $\cup -continuous$ provided that $P_1 \subseteq P_2 \subseteq \cdots$ implies $\tau(\cup_i P_i) = \cup_i \tau(P_i)$ (Upward Continuous)
- τ is $\cap -continuous$ provided that $P_1 \subseteq P_2 \subseteq \cdots$ implies $\tau(\cap_i P_i) = \cap_i \tau(P_i)$ (Downward Continuous)
- We write $\tau^i(Z)$ to denote i applications of τ to Z ($\tau^0(Z)=Z,\ \tau^{i+1}(Z)=\tau(\tau^i(Z)$)

Fixed Point

- Let $\tau: P(S') \to P(S')$ be a set valued function and S' a subset of S
- S' is called a fixed point of τ if $\tau(S') = S'$
- S' is called a least fixed point of τ if for all other fixed points U of τ the relation $S'\subseteq U$ is true
- Also denoted as μZ . $\tau(Z) = \cap \{Z \mid \tau(Z) \subseteq Z\}$ when τ is monotonic
- S' is called a greatest fixed point of τ if for all other fixed points U of τ the relation $U\subseteq S'$ is true
- Also denoted as vZ. $\tau(Z) = \bigcup \{Z \mid \tau(Z) \supseteq Z\}$ when τ is monotonic

Finite Fixed Point Lemma

- If S is finite and τ is monotonic, then there is a least fixed point and greatest fixed point
- $\bigcup_{n>1} \tau^n(\emptyset)$ is a least fixed point of τ … (a)
- $\bigcap_{n>1} \tau^n(True)$ is a greatest fixed point of τ ... (b)
- τ is also \cup continuous and \cap continuous \cdots (c)

Proof of (c)

- Let $P_1 \subseteq P_2 \subseteq \cdots$ be a sequence of subset of S. Since S is finite, there is j_0 such that for every $j \geq j_0$, $P_j = P_{j_0}$. For every $j < j_0$, $P_j \subseteq P_{j_0}$.
- Thus, $\bigcup_i P_i = P_{j_0}$ and as a result, $\tau(\bigcup_i P_i) = \tau(P_{j_0})$
- Because τ is monotonic, $\tau(P_1)\subseteq \tau(P_2)\subseteq \cdots$. Thus, for every $j< j_0,\ \tau(P_j)\subseteq \tau(P_{j_0})$ and for every $j\geq j_0,\ \tau(P_j)=\tau(P_{j_0})$
- Therefore, $\bigcup_i \tau(P_i) = \tau(P_{i_0})$. It means τ is $\bigcup -continuous$
- Intuitively, there must be an i such that $\tau^i(\emptyset)=\tau^{i+1}(\emptyset)$ and $\tau^i(\emptyset)$ will be a fixed point of τ

Tarski-Knaster Theorem

- Let $\tau:P(G)\to P(G)$ be a monotone function. Then τ has a least and greatest fixed point
- Note that G not need to be finite

Let $L = \{S \subseteq G \mid f(S) \subseteq S\}$, e.g., $G \in L$. Let $U = \bigcap L$. Show f(U) = U!

For all $S\in L$ by the property of an intersection: $U\subseteq S$. By monotonicity and definition of L $f(U)\subseteq f(S)\subseteq S$. Thus $f(U)\subseteq\bigcap L=U$ and we have already established half of our claim.

By monotonicity $f(U) \subseteq U$ implies $f(f(U)) \subseteq f(U)$ which yields $f(U) \in L$ and futhermore $U \subseteq f(U)$.

We thus have indeed U = f(U).

Procedure for computing least fixed point

```
function Lfp(Tau: PredicateTransformer): Predicate
  Q := False;
 Q' := Tau(Q);
  while (Q \neq Q') do
Q := Q';
Q' := Tau(Q');
  end while;
  return(Q);
end function
```

Procedure for computing least fixed point

- When the loop does terminates, we will have that $Q = \tau(Q)$ and that $Q \subseteq \mu Z \cdot \tau(Z)$
- Because Q is also a fix point, μZ . $\tau(Z) \subseteq Q$ and hence $Q = \mu Z$. $\tau(Z)$
- The invariant for the while loop in the body of the procedure is given by the assertion $(Q' = \tau(Q)) \land (Q' \subseteq \mu Z \cdot \tau(Z))$

Quantified Boolean Formula

- Given a propositional variable set $V=\{v_0,v_1,\cdots,v_{n-1}\},\,QBF(V)$ is the smallest set of formulas such that
- ullet Every variable in V is a formula
- If f and g is a formulas, then $\neg f, f \lor g$, and $f \land g$ are formulas
- If f is a formula and $v \in V$, then $\exists v f$ and $\forall v f$ are formulas
- A truth assignment is a function $\sigma: V \to \{false, true\}$ and we will equate each QBF formula with the set of truth assignments that satisfy the formulas
- We will use the notation $\sigma < v \leftarrow a >$ for the truth assignment defined by $\sigma < v \leftarrow a > (w) = a$ if v = w, otherwise $\sigma(w)$

Some terminologies

- If f is a formula in QBF(V) and σ is a truth assignment, we will write $\sigma \vDash f$ to denote that f is true under the assignment σ
- $\sigma \vDash v \text{ iff } \sigma(v) = 1$
- $\sigma \models \neg f \text{ iff } \sigma \not\models f$
- $\sigma \models f \lor g \text{ iff } \sigma \models f \text{ or } \sigma \models g$
- $\sigma \models f \land g \text{ iff } \sigma \models f \text{ and } \sigma \models g$
- $\sigma \vDash \exists v f \text{ iff } \sigma < v \leftarrow 0 > \vDash f \text{ or } \sigma < v \leftarrow 1 > \vDash f$
- $\sigma \models \forall v f \text{ iff } \sigma < v \leftarrow 0 > \models f \text{ and } \sigma < v \leftarrow 1 > \models f$