# Generierung des Eingangssingals für Barrier Bucket RF Systeme and der GSI



Jonas Christ, Artem Moskalew, Maximilian Nolte Jens Harzheim, M.Sc.

Projektseminar Beschleunigertechnik



## **Outline**

- 1 Einführung
  - Problemstellung
  - Zielsetzung
- 2 Erreichtes
  - Gerätekommunikation
  - Code : das Design
  - Gegeben
  - Code : Evaluierung
- 3 Ausblick

# **Problemstellung**

# Zielsetzung

# **Erreichtes: das VISA-Handbuch**









Uout\_ideal = generate\_BBsignal ( fq\_rep, fq\_bb, vpp )



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
```

```
U_{?,ideal} H(\omega)
```

```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured , H )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )

H = measure_H ( )

Uquest_ideal = compute_Uquest ( Uout_ideal , H )

Uin = Uquest_ideal

Uout_measured = measure_Uout ( Uin )

Uquest_measured = compute_Uquest ( Uout_measured , H )

a = compute_a ( Uin , Uquest_measured , N )

K = compute_K ( a )

Uin = compute_Uin ( Uquest_ideal , K )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )

H = measure_H ( )

Uquest_ideal = compute_Uquest ( Uout_ideal , H )

Uin = Uquest_ideal

Uout_measured = measure_Uout ( Uin )

Uquest_measured = compute_Uquest ( Uout_measured , H )

a = compute_a ( Uin , Uquest_measured , N )

K = compute_K ( a )

Uin = compute_Uin ( Uquest_ideal , K )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uin = Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute_K ( a )
Uin = compute_Uin ( Uquest_ideal, K )
Uin = set_Vpp ( Uin, Vpp )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured , H )
a = compute_a ( Uin , Uquest_measured , N )
K = compute_K ( a )
Uin = compute_Uin ( Uquest_ideal , K )
Uin = set_Vpp ( Uin , Vpp )
Uout = measure_Uout ( Uin )
```

```
generate_BBsignal
measure_H
compute_Uquest
compute_Uin
measure_Uout
compute_a
compute_K
```

```
generate_BBsignal : musste implementiert werden
measure_H
compute_Uquest
compute_Uin
measure_Uout
compute_a
compute_K
```

```
generate_BBsignal : musste implementiert werden
measure_H : bereits gegeben in Python
compute_Uquest
compute_Uin
measure_Uout
compute_a
compute_K
```

```
generate_BBsignal : musste implementiert werden
measure_H : bereits gegeben in Python
compute_Uquest : bereits gegeben in Matlab und Python
compute_Uin
measure_Uout
compute_a
compute_K
```

```
generate_BBsigna1 : musste implementiert werden
measure_H : bereits gegeben in Python
compute_Uquest : bereits gegeben in Matlab und Python
compute_Uin : bereits gegeben in Matlab
measure_Uout
compute_a
compute_K
```

 ${\tt generate\_BBsignal: muss te implementiert werden}$ 

 ${\tt measure\_H}$  : bereits gegeben in Python

compute\_Uquest : bereits gegeben in Matlab und Python

compute\_Uin : bereits gegeben in Matlab

measure\_Uout : writeAWG.py und writeDSO.py waren gegeben

compute\_a
compute\_K

 ${\tt generate\_BBsignal: muss te implementiert werden}$ 

 ${\tt measure\_H}$  : bereits gegeben in Python

compute\_Uquest : bereits gegeben in Matlab und Python

compute\_Uin : bereits gegeben in Matlab

 ${\tt measure\_Uout} \ : write AWG.py \ und \ write DSO.py \ waren \ gegeben$ 

compute\_a : geben in Matlab

compute\_K

 ${\tt generate\_BBsignal: muss te implementiert werden}$ 

 ${\tt measure\_H}$  : bereits gegeben in Python

compute\_Uquest : bereits gegeben in Matlab und Python

compute\_Uin : bereits gegeben in Matlab

measure\_Uout : writeAWG.py und writeDSO.py waren gegeben

compute\_a : geben in Matlab

compute\_K: bereits gegeben in Matlab und Python

generate\_BBsignal : musste implementiert werden

measure\_H: bereits gegeben in Python

compute\_Uquest: bereits gegeben in Matlab und Python

compute\_Uin: bereits gegeben in Matlab

measure\_Uout: writeAWG.py und writeDSO.py waren gegeben

compute\_a: geben in Matlab

compute\_K: bereits gegeben in Matlats





# Vorgehensweise

■ Refactoring / Anpassung der Matlab-Funktionen an unser Design

- Refactoring / Anpassung der Matlab-Funktionen an unser Design
- Portierung der Matlab-Funktionen nach Python

- Refactoring / Anpassung der Matlab-Funktionen an unser Design
- Portierung der Matlab-Funktionen nach Python
- Überprüfung der portierten Funktionen mithilfe von TDD

- Refactoring / Anpassung der Matlab-Funktionen an unser Design
- Portierung der Matlab-Funktionen nach Python
- Überprüfung der portierten Funktionen mithilfe von TDD
  - Momentan jeweils 10 korrespondierende **Unit Tests** in Matlab und Python

- Refactoring / Anpassung der Matlab-Funktionen an unser Design
- Portierung der Matlab-Funktionen nach Python
- Überprüfung der portierten Funktionen mithilfe von TDD
  - Momentan jeweils 10 korrespondierende **Unit Tests** in Matlab und Python
- Maximale Vorbereitung der Funktionen ohne die Geräte dank TDD

- Refactoring / Anpassung der Matlab-Funktionen an unser Design
- Portierung der Matlab-Funktionen nach Python
- Überprüfung der portierten Funktionen mithilfe von TDD
  - Momentan jeweils 10 korrespondierende **Unit Tests** in Matlab und Python
- Maximale Vorbereitung der Funktionen ohne die Geräte dank TDD
  - Nur fürs Testen von measure\_Uout sind Geräte notwendig





Uout\_ideal = generate\_BBsignal ( fq\_rep, fq\_bb, vpp )





```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
```





```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
```









```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
```







```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured , H )
```





```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured , H )
a = compute_a ( Uin , Uquest_measured , N )
K = compute_K ( a )
```





```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )

H = measure_H ( )

Uquest_ideal = compute_Uquest ( Uout_ideal , H )

Uin = Uquest_ideal

Uout_measured = measure_Uout ( Uin )

Uquest_measured = compute_Uquest ( Uout_measured , H )

a = compute_a ( Uin , Uquest_measured , N )

K = compute_K ( a )

Uin = compute_Uin ( Uquest_ideal , K )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute_K ( a )
Uin = compute_Uin ( Uquest_ideal, K )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uin = Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute_K ( a )
Uin = compute_Uin ( Uquest_ideal, K )
Uin = set_Vpp ( Uin, Vpp )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured , H )
a = compute_a ( Uin , Uquest_measured , N )
K = compute_K ( a )
Uin = compute_Uin ( Uquest_ideal , K )
Uin = set_Vpp ( Uin , Vpp )
Uout = measure_Uout ( Uin )
```

## **Ausblick**