Homework 7

Non-compositional Verification

Diagram for assertion network and communication invariants

Explanation of auxiliary variables

AFR method is used to prove that $\{True\}P_1||P_2||P_3\{y=v-1\}$ holds.

Firstly, three variables corresponding to the three channels are defined, which are k_A , k_B , k_C respectively. $k_{channel} = 0$ is defined as the default state while $k_{channel} = 1$ implies that certain value has been sent into the channel.

Also, we defined k_2 to indicate whether process 2 has already received a variable from B. Finally, k_3 is defined to record the "stage" of process 3 where $k_3 = k_A + k_C$.

Communication invariant

$$I: \mathbf{k}_3 = \mathbf{k}_A + \mathbf{k}_C \wedge \mathbf{k}_C \leq \mathbf{k}_2 \wedge \mathbf{k}_2 = \mathbf{k}_B \wedge \mathbf{k}_B \leq \mathbf{k}_A$$

Notice that $k_c \le k_2 \land k_2 = k_b \land k_B \le k_A$ implies that $k_C \le k_A$, which is useful for discharging proof obligation.

Termination

1. prove $x \ge 0$ -convergence

Diagram for assertion network, well founded set and ranking function

For $x \ge 0$, the program is convergent.

This program terminates when x = 0 at t_1 .

2. Is this program *⊤*-convergent?

No, because for x < 0, this program will stay in the loop $s \leftrightarrow l_1$ forever and x will keep going far away the terminate state therefore it never converges.

2. Is this program ⊥ -convergent?

No, because for $x \ge 0$, this program will converge.