Lecture 5:

Random variables & their distributions - 2

Cumulative Distribution Functions (CDFs)

Definition 3.6.1 The cumulative distribution function (CDF) of an r.v. X is the function F_X given by $F_X(x) = P(X \le x)$. (Only discrete r.v.-s have PMFs, but all r.v.-s have CDFs).

Example 3.6.2 Let $X \sim \text{Bin}(4,1/2)$, here are the PMF and the CDF:

Cumulative Distribution Functions (CDFs)

For discrete r.v.-s, we can freely convert between CDF and PMF:

From PMF to CDF: to find $P(X \le 1.5)$, we sum the PDF over all values of the support that are ≤ 1.5

$$P(X \le 1.5) = P(X = 0) + P(X = 1) = \left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^4 = \frac{5}{16}$$

From CDF to PMF: the CDF of a discrete r.v. consists of jumps and flat regions. The (height of a jump at x) = (value of the PMF at x)

(Look at the plot from the example)

Cumulative Distribution Functions (CDFs)

Theorem 3.6.3 (Valid CDFs). Any CDF F has these properties:

- 1) Increasing: If $x_1 \le x_2$, then $F(x_1) \le F(x_2)$
- 2) **Right-continuous**: The CDF is continuous, except for having some jumps. At the point of a jump, the CDF is continuous from the **right** that is, for any a,

$$F(a) = \lim_{x \to a^+} F(x)$$

3) Convergence to 0 and 1 in the limits:

$$\lim_{x \to -\infty} F(x) = 0 \quad \text{and} \quad \lim_{x \to \infty} F(x) = 1$$

What if we take a function of a random variable: if X is an r.v, then X^2 , e^X , $\sin(X)$ – are also r.v.-s, as is g(X) for any function $g: \mathbb{R} \to \mathbb{R}$

Definition 3.7.1 (Function of an r.v). For an experiment with sample space S, an r.v. X and a function $g: \mathbb{R} \to \mathbb{R}$, g(X) is the r.v that maps s to g(X(s)) for all $s \in S$.

What's the PMF of Y = g(X)? If g is a **one-to-one** function, then

$$P(Y = g(x)) = P(X = x)$$

In general, if g is **not** one-to-one,

Theorem 3.7.3 (PMF of g(X)) Let X – discrete r.v. and $g: \mathbb{R} \to \mathbb{R}$. Then the support of $g(X) = \{y: g(x) = y \text{ for all } x \in \text{Supp}(X)\}$, and

$$P(g(X) = y) = \sum_{x:g(x)=y} P(X = x)$$

Definition 3.7.5 (Function of 2 r.v.-s). Given an experiment with sample space S, if X and Y are r.v.-s that map $s \in S$ to X(s) and Y(s) resp., then g(X, Y) is the r.v. that maps S to g(X(s), Y(s)).

Example 3.7.6 (Maximum of two die rolls). We roll two fair 6-sided dice, X = (number on the 1st die), Y = (number on the 2nd).

Part of the *S*:

\overline{S}	X	Y	max(X, Y)	· 	
(1,2)	1	2	2	z	$P(\max(X, Y) = z)$
(1,6)	1	6	6	1	1/36
(3,1)	3	1	3	2	3/36
				3	5/36
		So we have \rightarrow		4	7/36
				5	9/36
				6	11/36

Definition 3.8.1 (Independence of two r.v.-s). Random variables X and Y are said to be **independent** if

$$P(X \le x, Y \le y) = P(X \le x) P(Y \le y)$$
 for all $x, y \in \mathbb{R}$

In the discrete case, this is equivalent to the condition:

$$P(X = x, Y = y) = P(X = x) P(Y = y)$$

Definition 3.8.2 (Independence of many r.v.-s). Random variables X_1, \ldots, X_n are called **independent** if

$$P(X_1 \le x_1, ..., X_n \le x_n) = P(X_1 \le x_1)...P(X_n \le x_n)$$

for all $x_1, ..., x_n \in \mathbb{R}^n$

Theorem 3.8.5 (Functions of independent r.v.-s). If X and Y are independent r.v.-s, then **any** function of X is independent of **any** function of Y.

Definition 3.8.6 (i.i.d.). We will often work with r.v.-s that are 1) independent and 2) have the same distribution. We call such r.v.-s **independent and identically distributed**, or **i.i.d.** in short

Example: Let X be the result of a die roll, and let Y be the result of a second, independent die roll. Then X and Y are i.i.d.

Theorem 3.8.8 If $X \sim \text{Bin}(n,p)$ (the # of successes in n indep. Bernoulli trials with success probability p), then we can write $X = X_1 + \ldots + X_n$, where X_i -s are i.i.d. Bern(p).

Theorem 3.8.9 If $X \sim \text{Bin}(n,p)$ and $Y \sim \text{Bin}(m,p)$ and X is independent of Y, then $X + Y \sim \text{Bin}(n+m,p)$

Proof: Follows from LOTP by

$$P(X + Y = k) = \sum_{j=0}^{k} P(X + Y = k | X = j) P(X = j) =$$

$$= \sum_{j=0}^{k} P(Y = k - j) P(X = j) = \dots = p^{k} q^{n+m-k} \binom{n+m}{k}$$

Definition 3.8.10 (Conditional independence of r.v.-s). Random variables X and Y are **conditionally independent** given an r.v. Z if for all $x, y \in \mathbb{R}$ and all z in the support of Z,

$$P(X \le x, Y \le y | Z = z) = P(X \le x | Z = z) P(Y \le y | Z = z)$$

(for discrete r.v.-s, it is equivalent to same but with $\leq \rightarrow =$)

Definition 3.8.11 (Conditional PMF). For any discrete r.v.-s X and Z, the function $P(X=x\,|\,Z=z)$ – a function of x for fixed z, is called the **conditional PMF** of X given Z=z