There are no Banach function spaces, only weighted L^2

Seminari Informal de Matemàtiques de Barcelona

Sergi Baena i Miret

Universitat de Barcelona

June 23, 2020

SIMBa

23/06/2020

Abstract

An important property of the A_p weights is the extrapolation theorem of Rubio de Francia. It was announced in 1982^1 and given with a detailed proof in 1984^2 , both by J.L. Rubio de Francia. In its original version, reads as follows: if $\mathcal T$ is a sublinear operator which satisfies the strong type boundedness

$$T: L^2(v) \to L^2(v)$$

for every weight $v \in A_2$ with constant only depending on v, then for 1 ,

$$T: L^p(v) \to L^p(v)$$

is bounded for every $v \in A_p$, with constant depending only on v. We will make a review of some of the different versions over Banach function spaces that have been appeared since then.

Sergi Baena i Miret (UB) SIMBa 23/06/2020 1

¹J.L Rubio de Francia: Factorization and extrapolation of weights. *Bull. Amer. Math. Soc.* **7** (1982), 393–395.

²J.L Rubio de Francia: Factorization theory and A_p weights. *Amer. J. Math.* **106** (1984), no. 3, 533–547.

Definition 1 (Banach Function Spaces)

A Banach function norm ρ is a mapping $\rho: \mathcal{M}^+ \to [0, \infty]$ such that the following properties hold:

Definition 1 (Banach Function Spaces)

A Banach function norm ρ is a mapping $\rho:\mathcal{M}^+\to[0,\infty]$ such that the following properties hold:

•
$$\rho(f) = 0 \Leftrightarrow f = 0$$
 μ -a.e.; $\rho(f+g) \leq \rho(f) + \rho(g)$; $\rho(af) = a\rho(f)$, for $a > 0$;

Definition 1 (Banach Function Spaces)

A Banach function norm ρ is a mapping $\rho: \mathcal{M}^+ \to [0, \infty]$ such that the following properties hold:

- $\rho(f)=0 \Leftrightarrow f=0$ μ -a.e.; $\rho(f+g)\leq \rho(f)+\rho(g); \ \rho(af)=a\rho(f),$ for $a\geq 0;$
- if $0 \le f \le g$ μ -a.e. $\Rightarrow \rho(f) \le \rho(g)$;

Sergi Baena i Miret (UB)

Definition 1 (Banach Function Spaces)

A Banach function norm ρ is a mapping $\rho: \mathcal{M}^+ \to [0, \infty]$ such that the following properties hold:

- $\rho(f)=0 \Leftrightarrow f=0$ μ -a.e.; $\rho(f+g)\leq \rho(f)+\rho(g)$; $\rho(af)=a\rho(f)$, for $a\geq 0$;
- if $0 \le f \le g$ μ -a.e. $\Rightarrow \rho(f) \le \rho(g)$;
- if $0 \le f_n \nearrow f$ μ -a.e. $\Rightarrow \rho(f_n) \nearrow \rho(f)$;

Definition 1 (Banach Function Spaces)

A Banach function norm ρ is a mapping $\rho: \mathcal{M}^+ \to [0, \infty]$ such that the following properties hold:

- $\rho(f)=0 \Leftrightarrow f=0$ μ -a.e.; $\rho(f+g) \leq \rho(f)+\rho(g)$; $\rho(af)=a\rho(f)$, for $a\geq 0$;
- if $0 \le f \le g$ μ -a.e. $\Rightarrow \rho(f) \le \rho(g)$;
- if $0 \le f_n
 f \mu$ -a.e. $\Rightarrow \rho(f_n)
 \rho(f)$;
- if E is such that $\mu(E) < \infty \Rightarrow \begin{cases} \rho(\chi_E) < \infty, \text{ and } \\ \int_E f \ d\mu \le C_E \rho(f) \end{cases}$

Definition 1 (Banach Function Spaces)

A Banach function norm ρ is a mapping $\rho: \mathcal{M}^+ \to [0, \infty]$ such that the following properties hold:

- $\rho(f)=0 \Leftrightarrow f=0$ μ -a.e.; $\rho(f+g)\leq \rho(f)+\rho(g)$; $\rho(af)=a\rho(f)$, for $a\geq 0$;
- if $0 \le f \le g$ μ -a.e. $\Rightarrow \rho(f) \le \rho(g)$;
- if $0 \le f_n \nearrow f$ μ -a.e. $\Rightarrow \rho(f_n) \nearrow \rho(f)$;
- if E is such that $\mu(E) < \infty \Rightarrow \begin{cases} \rho(\chi_E) < \infty, \text{ and } \\ \int_E f \ d\mu \le C_E \rho(f) \end{cases}$

The collection

$$\mathbb{X} = \mathbb{X}(\rho) := \{ f \in \mathcal{M} : ||f||_{\mathbb{X}} := \rho(|f|) < \infty \}$$

is called a Banach function space.

- 4 ロ ト 4 週 ト 4 速 ト 4 速 ト - 速 - り 9 G

Definition 2

The associate space of a Banach function space $\ensuremath{\mathbb{X}}$ is

$$X' = \{ f \in \mathcal{M}(\mathbb{R}^n) : ||f||_{X'} < \infty \}$$

where

$$||f||_{\mathbb{X}'} = \sup_{g \in \mathbb{X}} \frac{1}{||g||_{\mathbb{X}}} \int_{\mathbb{R}^n} |f(x)g(x)| dx, \quad f \in \mathcal{M}(\mathbb{R}^n).$$

Definition 2

The associate space of a Banach function space $\mathbb X$ is

$$\mathbb{X}' = \{ f \in \mathcal{M}(\mathbb{R}^n) : ||f||_{\mathbb{X}'} < \infty \}$$

where

$$||f||_{\mathbb{X}'} = \sup_{g \in \mathbb{X}} \frac{1}{||g||_{\mathbb{X}}} \int_{\mathbb{R}^n} |f(x)g(x)| dx, \quad f \in \mathcal{M}(\mathbb{R}^n).$$

Definition 3

We say that

$$T: \mathbb{X} \to \mathbb{X}$$

is bounded if there exists C > 0 such that

$$||Tf||_{\mathbb{X}} \leq C ||f||_{\mathbb{X}}.$$

Definition 4 (Weighted Lebesgue Spaces)

Let v be a weight, i.e., v>0 and for every compact set $K\subseteq \mathbb{R}^n$,

$$\int_{K} v(x) dx < \infty.$$

(i.e., $v \in L^1_{loc}(\mathbb{R}^n)$).

Definition 4 (Weighted Lebesgue Spaces)

Let v be a weight, i.e., v > 0 and for every compact set $K \subseteq \mathbb{R}^n$,

$$\int_{K} v(x) \, dx < \infty.$$

(i.e., $v \in L^1_{loc}(\mathbb{R}^n)$). For v a weight and $1 \le p < \infty$, $f \in L^p(\mathbb{R}^n, v) := L^p(v)$ if

$$||f||_{L^p(v)} := \left(\int_{\mathbb{R}^n} |f(x)|^p v(x) \, dx\right)^{1/p} < \infty.$$

If $p = \infty$,

$$||f||_{L^{\infty}(v)} := \operatorname{ess sup}|f| < \infty.$$

Definition 4 (Weighted Lebesgue Spaces)

Let v be a weight, i.e., v>0 and for every compact set $K\subseteq\mathbb{R}^n$,

$$\int_{K} v(x) \, dx < \infty.$$

(i.e., $v \in L^1_{\mathrm{loc}}(\mathbb{R}^n)$). For v a weight and $1 \le p < \infty$, $f \in L^p(\mathbb{R}^n, v) := L^p(v)$ if

$$||f||_{L^p(v)} := \left(\int_{\mathbb{R}^n} |f(x)|^p v(x) \, dx\right)^{1/p} < \infty.$$

If $p = \infty$,

$$||f||_{L^{\infty}(v)} := \operatorname{ess sup}|f| < \infty.$$

Example 5

If n = 1 and v = 1, $t^{-1/p} \in L^2(0, 1)$ whenever p > 2.

Proposition 6

For $1 , the associate space of <math>L^p(v)$ is $(L^p(v))' = L^{p'}(v^{1-p'})$ where $1 < p' < \infty$ is the conjugate exponent of p, i.e.

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Proposition 6

For $1 , the associate space of <math>L^p(v)$ is $(L^p(v))' = L^{p'}(v^{1-p'})$ where $1 < p' < \infty$ is the conjugate exponent of p, i.e.

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Example 7

 $(L^2(v))' = L^2(v^{-1})$. In particular, $(L^2(\mathbb{R}^n))' = L^2(\mathbb{R}^n)$.

Figure 1: Examples of functions in $L^2(0,1)$ except for the limit function $\frac{1}{\sqrt{t}}$.

Definition 8 (Weighted Lorentz Spaces)

For v a weight and $1 , <math>1 \le q < \infty$,

$$f \in L^{p,q}(\mathbb{R}^n, v) \text{ if } ||f||_{L^{p,q}(v)} := \left(p \int_0^\infty y^{q-1} \lambda_f^{\nu}(y)^{q/p} \, dy\right)^{1/q} < \infty,$$

$$f \in L^{p,\infty}(\mathbb{R}^n, v) \text{ if } ||f||_{L^{p,\infty}(v)} := \sup_{y>0} y \lambda_f^{\nu}(y)^{1/p} < \infty,$$

where
$$\lambda_f^v(y) := \int_{\{|f(x)| > y\}} v(x) dx$$
.

Sergi Baena i Miret (UB)

Definition 8 (Weighted Lorentz Spaces)

For v a weight and $1 , <math>1 \le q < \infty$,

$$f \in L^{p,q}(\mathbb{R}^n, v) \text{ if } \|f\|_{L^{p,q}(v)} := \left(p \int_0^\infty y^{q-1} \lambda_f^v(y)^{q/p} \, dy\right)^{1/q} < \infty,$$

$$f \in L^{p,\infty}(\mathbb{R}^n, v) \text{ if } \|f\|_{L^{p,\infty}(v)} := \sup_{y>0} y \lambda_f^v(y)^{1/p} < \infty,$$

where $\lambda_f^v(y) := \int_{\{|f(x)| > y\}} v(x) dx$.

Remark 9

- $L^{p,p}(v) = L^p(v)$, 1 .
- $\bullet \ L^{p,1}(v) \hookrightarrow L^p(v) \hookrightarrow L^{p,\infty}(v).$

←ロト ←団ト ← 重ト ← 重 ・ り へ ○

Figure 2: Level set of the function f.

Given 0 and <math>w a weight: $w \in B_p = B_p(\mathbb{R}^+)$ if exists C > 0 such that

$$\|w\|_{B_p} := t^p \int_t^\infty \frac{w(r)}{r^p} dr \le C \int_0^t w(r) dr < \infty, \quad \forall t > 0.$$

Given 0 and <math>w a weight: $w \in B_p = B_p(\mathbb{R}^+)$ if exists C > 0 such that

$$\|w\|_{B_p} := t^p \int_t^\infty \frac{w(r)}{r^p} dr \le C \int_0^t w(r) dr < \infty, \quad \forall t > 0.$$

Definition 10 (Classical Weighted Lorentz Spaces)

For $0 and <math>w \in B_p$,

$$f \in \Lambda^p(\mathbb{R}_+, w) \text{ if } \|f\|_{\Lambda^p(w)} := \left(\int_0^\infty f^*(t)^p w(t) dt\right)^{1/p} < \infty,$$

$$f \in \Lambda^{p,\infty}(\mathbb{R}_+, w) \text{ if } \|f\|_{\Lambda^{p,\infty}(w)} := \sup_{t>0} f^*(t) \left(\int_0^t w(r)\right)^{1/p} < \infty,$$

where $f^*(t) = \inf\{y > 0 : \lambda_f^1(y) \le t\}$.

Given 0 and <math>w a weight: $w \in B_p = B_p(\mathbb{R}^+)$ if exists C > 0 such that

$$\|w\|_{B_p} := t^p \int_t^\infty \frac{w(r)}{r^p} dr \le C \int_0^t w(r) dr < \infty, \quad \forall t > 0.$$

Definition 10 (Classical Weighted Lorentz Spaces)

For $0 and <math>w \in B_p$,

$$f \in \Lambda^p(\mathbb{R}_+, w) \text{ if } \|f\|_{\Lambda^p(w)} := \left(\int_0^\infty f^*(t)^p w(t) dt\right)^{1/p} < \infty,$$

$$f \in \Lambda^{p,\infty}(\mathbb{R}_+, w) \text{ if } \|f\|_{\Lambda^{p,\infty}(w)} := \sup_{t>0} f^*(t) \left(\int_0^t w(r)\right)^{1/p} < \infty,$$

where $f^*(t) = \inf\{y > 0 : \lambda_f^1(y) \le t\}$.

Remark 11

If w = 1 then $\Lambda^p(w) = L^p$ and $\Lambda^{p,\infty}(w) = L^{p,\infty}$.

Figure 3: Symmetric decreasing rearrangement of the function f.

Figure 4: Examples of functions in $L^{2,1}(0,1)$ and $L^{2,\infty}(0,1)$.

Definition 12

Given $f \in L^1_{loc}(\mathbb{R}^n)$. The Hardy-Littlewood maximal function of f is defined by

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| \, dy, \quad \ \forall x \in \mathbb{R}^{n}.$$

Definition 12

Given $f \in L^1_{loc}(\mathbb{R}^n)$. The Hardy-Littlewood maximal function of f is defined by

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| \, dy, \quad \forall x \in \mathbb{R}^{n}.$$

Example 13

• If $f \equiv c \in \mathbb{R}$, then $Mf(x) \equiv |c|$, $\forall x \in \mathbb{R}^n$.

Definition 12

Given $f \in L^1_{loc}(\mathbb{R}^n)$. The Hardy-Littlewood maximal function of f is defined by

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| \, dy, \quad \forall x \in \mathbb{R}^{n}.$$

Example 13

- If $f \equiv c \in \mathbb{R}$, then $Mf(x) \equiv |c|$, $\forall x \in \mathbb{R}^n$.
- If $E \subseteq \mathbb{R}^n$,

$$M\chi_E(x) = \sup_{Q \ni x} \frac{|E \cap Q|}{|Q|}, \quad \forall x \in \mathbb{R}^n.$$

Definition 12

Given $f \in L^1_{loc}(\mathbb{R}^n)$. The Hardy-Littlewood maximal function of f is defined by

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| \, dy, \quad \forall x \in \mathbb{R}^{n}.$$

Example 13

- If $f \equiv c \in \mathbb{R}$, then $Mf(x) \equiv |c|$, $\forall x \in \mathbb{R}^n$.
- If $E \subseteq \mathbb{R}^n$,

$$M\chi_E(x) = \sup_{Q \ni x} \frac{|E \cap Q|}{|Q|}, \quad \forall x \in \mathbb{R}^n.$$

In particular, for $E = (a, b) \subseteq \mathbb{R}$,

$$M\chi_{E}(t) = \sup_{I \ni t} \frac{|E \cap I|}{|I|} = \begin{cases} \frac{b-a}{b-t}, & t \leq a, \\ 1, & a < t < b, \\ \frac{b-a}{t-a}, & t \geq b. \end{cases}$$

Figure 5: The Hardy-Littlewood maximal function of $\chi_{(0,1)}$.

Hardy-Littlewood Maximal Operator and A_p weights

B. Muckenhoupt³ characterized the boundedness of

$$M: L^p(v) \to L^p(v)$$
,

1 ,

Sergi Baena i Miret (UB) SIMBa 23/06/2020

³B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function, *Transactions* of the American Mathematical Society **165** (1972), 207–226.

Hardy-Littlewood Maximal Operator and A_p weights

B. Muckenhoupt³ characterized the boundedness of

$$M: L^p(v) \to L^p(v)$$
,

 $1 , with the condition <math>v \in A_p = A_p(\mathbb{R}^n)$.

 Sergi Baena i Miret (UB)
 SIMBa
 23/06/2020

³B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function, *Transactions of the American Mathematical Society* **165** (1972), 207–226.

Hardy-Littlewood Maximal Operator and A_p weights

B. Muckenhoupt³ characterized the boundedness of

$$M: L^p(v) \to L^p(v)$$
,

 $1 , with the condition <math>v \in A_p = A_p(\mathbb{R}^n)$.

Definition 14

We say that a weight v is in the A_p -class if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} v \right) \left(\frac{1}{|Q|} \int_{Q} v^{\frac{1}{1-p}} \right)^{p-1} < +\infty.$$

Sergi Baena i Miret (UB) SIMBa 23/06/2020

³B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function, *Transactions* of the American Mathematical Society **165** (1972), 207–226.

Proposition 15

For
$$1 ,$$

$$v \in A_p \iff v^{1-p'} \in A_{p'}.$$

Proposition 15

For
$$1 ,$$

$$v \in A_p \iff v^{1-p'} \in A_{p'}.$$

In particular, since $(L^p(v))' = L^{p'}(v^{1-p'})$,

$$M: L^p(v) \to L^p(v) \iff M: (L^p(v))' \iff (L^p(v))'.$$

Lemma 16

 $v(x) := |x|^{\alpha}$ $(x \in \mathbb{R}^n)$ is an A_p weight for $-n < \alpha < n(p-1)$ (also for $\alpha = 0$ if p = 1).

Figure 6: Examples of A_2 weights for n = 1.

Sergi Baena i Miret (UB)

Starting point

Assume that

$$T: L^2(v) \to L^2(v)$$

is bounded for every $v \in A_2$. Then,

$$T:L^p(v)\to L^p(v)$$

is bounded for $1 and <math>v \in \mathcal{A}_p$

Starting point

Assume that

$$T: L^2(v) \to L^2(v)$$

is bounded for every $v \in A_2$. Then,

$$T: L^p(v) \to L^p(v)$$

is bounded for $1 and <math>v \in A_p$ (Rubio de Francia Extrapolation theorem).

Starting point

Assume that

$$T:L^2(v)\to L^2(v)$$

is bounded for every $v \in A_2$. Then,

$$T:L^p(v)\to L^p(v)$$

is bounded for $1 and <math>v \in A_p$ (Rubio de Francia Extrapolation theorem).

In the proof it is needed that

$$M: L^p(v) \to L^p(v)$$
 and $M: (L^p(v))' \Longleftrightarrow (L^p(v))'$.

Goal

Assume that

$$T:L^2(v)\to L^2(v)$$

is bounded for every $v \in A_2$. Then, if X is a Banach function space, for which conditions in X

$$T: \mathbb{X} \to \mathbb{X}$$

is bounded?

Answer

Assume that

$$T: L^2(v) \to L^2(v)$$

is bounded for every $v \in A_2$. Then, if X is a Banach function space, such that

$$M: \mathbb{X} \to \mathbb{X}$$
 and $M: \mathbb{X}' \to \mathbb{X}'$

are bounded, then

$$T: \mathbb{X} \to \mathbb{X}$$

is bounded.

Weighted Lebesgue Spaces

Corollary 17 (Rubio De Francia Extrapolation Theorem)

Assume that

$$T: L^2(v) \to L^2(v)$$

is bounded for every $v \in A_2$. Then,

$$T: L^p(v) \to L^p(v)$$

is bounded for every $v \in A_p$.

• The trivial one: T = Id.

- The trivial one: T = Id.
- "The trivial second": T = M.

- The trivial one: T = Id.
- "The trivial second": T = M.
- Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\epsilon \to 0^+} \int_{|x-y| > \epsilon} \frac{f(y)}{x-y} \, dy, \quad \forall x \in \mathbb{R}^n,$$

whenever this limit exists almost everywhere.

Sergi Baena i Miret (UB)

- The trivial one: T = Id.
- "The trivial second": T = M.
- Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} \frac{f(y)}{x-y} \, dy, \quad \forall x \in \mathbb{R}^n,$$

whenever this limit exists almost everywhere.

 Singular integrals (as Calderón-Zygmund opeartors or Rough operators), some multipliers operators (as the Hörmander multipliers or Bochner-Riesz multipliers over the critical index), commutators, sparse operators... the so-called Rubio de Francia operators.

Sergi Baena i Miret (UB)

Weighted Lorentz Spaces

Lemma 19

For
$$1 and $1 \le p < \infty$,$$

$$M: L^{p,q}(v) \to L^{p,q}(v)$$

is bounded if and only if $v \in A_p$.

Weighted Lorentz Spaces

Lemma 19

For $1 and <math>1 \le p < \infty$,

$$M: L^{p,q}(v) \to L^{p,q}(v)$$

is bounded if and only if $v \in A_p$.

Lemma 20

For $1 and <math>1 \le p < \infty$,

$$M: (L^{p,q}(v))' \to (L^{p,q}(v))'$$

is bounded if and only if $v \in A_p$.

Weighted Lorentz Spaces

Corollary 21

Assume that

$$T: L^2(v) \to L^2(v)$$

is bounded for every $v \in A_2$. Then,

$$T:L^{p,q}(v)\to L^{p,q}(v)$$

is bounded for every $v \in A_p$.

Lemma 22

For
$$0 ,$$

$$M:\Lambda^p(w)\to\Lambda^p(w)$$

is bounded if and only if $w \in B_p$.

Lemma 22

For
$$0 ,$$

$$M: \Lambda^p(w) \to \Lambda^p(w)$$

is bounded if and only if $w \in B_p$.

Lemma 23

For
$$0 ,$$

$$M: (\Lambda^p(w))' \to (\Lambda^p(w))'$$

is bounded if and only if $w \in B_{\infty}^*$, where

$$w \in B_{\infty}^* \Longleftrightarrow \sup_{t>0} \frac{1}{\int_0^t w(r) dr} \int_0^t \frac{1}{r} \left(\int_0^r w(s) ds \right) dr < \infty.$$

Corollary 24

Assume that

$$T: L^2(v) \to L^2(v)$$

is bounded for every $v \in A_2$. Then,

$$T:\Lambda^p(w)\to\Lambda^p(w)$$

is bounded for every $w \in B_p \cap B_{\infty}^*$.

Proposition 25

Let 0 . Then,

$$H:\Lambda^p(w)\to\Lambda^p(w)$$

is bounded if and only if $w \in B_p \cap B_{\infty}^*$.

• Which operators satisfies the hypothesis.

- Which operators satisfies the hypothesis.
- Change of the hypothesis.

- Which operators satisfies the hypothesis.
- Change of the hypothesis.
- $\bullet \ \ T: \mathbb{X} \to \mathbb{Y}.$

- Which operators satisfies the hypothesis.
- Change of the hypothesis.
- $T: \mathbb{X} \to \mathbb{Y}$.
- $\bullet \ \ T: \mathbb{X}_1 \times \mathbb{X}_2 \to \mathbb{Y}.$

- Which operators satisfies the hypothesis.
- Change of the hypothesis.
- $T: \mathbb{X} \to \mathbb{Y}$.
- $T: \mathbb{X}_1 \times \mathbb{X}_2 \to \mathbb{Y}$.
- Which inequalities do we obtain for f^* ?

- Which operators satisfies the hypothesis.
- Change of the hypothesis.
- $T: \mathbb{X} \to \mathbb{Y}$.
- $\bullet \ \ \mathcal{T}: \mathbb{X}_1 \times \mathbb{X}_2 \to \mathbb{Y}.$
- Which inequalities do we obtain for f^* ?
- $T: \mathbb{X} \to \mathbb{X}$ such that $\mathbb{Y} = (\mathbb{X})^r$ Banach (e.g., $L^p = (L^1)^p$).

- Which operators satisfies the hypothesis.
- Change of the hypothesis.
- $T: \mathbb{X} \to \mathbb{Y}$.
- $\bullet \ \ \mathcal{T}: \mathbb{X}_1 \times \mathbb{X}_2 \to \mathbb{Y}.$
- Which inequalities do we obtain for f^* ?
- $T: \mathbb{X} \to \mathbb{X}$ such that $\mathbb{Y} = (\mathbb{X})^r$ Banach (e.g., $L^p = (L^1)^p$).
- $\bullet \ T: \mathbb{X}(v) \to \mathbb{X}(v).$

- Which operators satisfies the hypothesis.
- Change of the hypothesis.
- $T: \mathbb{X} \to \mathbb{Y}$.
- $T: \mathbb{X}_1 \times \mathbb{X}_2 \to \mathbb{Y}$.
- Which inequalities do we obtain for f^* ?
- $T: \mathbb{X} \to \mathbb{X}$ such that $\mathbb{Y} = (\mathbb{X})^r$ Banach (e.g., $L^p = (L^1)^p$).
- $\bullet \ T: \mathbb{X}(v) \to \mathbb{X}(v).$
- ...

Thank you for your attention SIMBaddicts!

