№2. Векторы. Теория

Понятие вектора

Рассмотрим произвольный отрезок AB. На нём можно указать два направления: от A к B и наоборот.

Чтобы выбрать одно из этих направлений, одну из точек A и B назовём началом отрезка, а вторую — концом отрезка и будем считать, что отрезок направлен от начала к концу.

<u>Определение</u> Отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом, называется направленным отрезком, или вектором.

Любая точка плоскости также является вектором. В этом случае вектор называется **нулевым.** Начало нулевого вектора совпадает с его концом. Нулевой вектор обозначается символом $\vec{0}$.

Длиной, или **модулем** ненулевого вектора \overrightarrow{AB} , называется длина отрезка AB. Длина вектора \overrightarrow{AB} обозначается так: $|\overrightarrow{AB}| = AB$. Длина нулевого вектора считается равной нулю: $|\overrightarrow{0}| = 0$.

Коллинеарные векторы

Два ненулевых вектора называются **коллинеарными**, если они лежат на параллельных прямых или на одной прямой.

Пусть две пунктирные прямые параллельны. Тогда \vec{a} , \vec{b} , \vec{c} и \vec{d} коллинеарны, а вот \vec{f} не коллинеарен ни одному из них, так как он не находится ни на одной из пунктирных прямых, ни на прямой, параллельной им.

Коллинеарные векторы можно разбить на две группы: **сонаправленные** и **противоположно направленные** ные векторы. В нашем примере сонаправленными являются векторы \vec{a} , \vec{b} и \vec{d} ; векторы \vec{c} и \vec{d} являются противоположно направленными; векторы \vec{c} и \vec{b} являются противоположно направленными; векторы \vec{c} и \vec{d} являются противоположно направленными.

Равенство векторов

Определение Векторы называются равными, если они сонаправлены и их длины равны.

Сложение векторов

Пусть точка переместилась из точки A в точку B, а затем из точки B в точку C. В результате этих двух перемещений, которые можно представить векторами \overrightarrow{AB} и \overrightarrow{BC} , точка переместилась из точки A в точку C. Поэтому результат перемещения можно представить как вектор \overrightarrow{AC} .

Поскольку перемещение из A в C складывается из перемещения из A в B и перемещения из B в C, то

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Правило треугольника

Пусть \vec{a} и \vec{b} —два вектора. Обозначим начало вектора \vec{a} за точку A, его конец за точку B и параллельно перенесем начало вектора \vec{b} в точку B. Пусть получился вектор \overrightarrow{BC} , равный \vec{b} . Тогда вектор \overrightarrow{AC} называется суммой векторов \vec{a} и \vec{b} . Такое правило сложения векторов называется **правилом треугольника.**

Правило параллелограмма

Рассмотрим случай, когда векторы \vec{a} и \vec{b} выходят из одной точки. В таком случае мы можем достроить эту конструкцию до параллелограмма и получить из каждой пары противоположных сторон пары равных векторов.

Тогда по правилу треугольника $\vec{a} + \vec{b} = \vec{c} = \vec{b} + \vec{a}$.

Вычитание векторов

Для начала поймем, что «-» перед вектором просто меняет его направление. Таким образом, векторы \vec{b} и $-\vec{b}$ равны по длине, коллинеарны и противоположно направлены.

$$\frac{\vec{b}}{-\vec{b}}$$

Пусть есть векторы \vec{a} и \vec{b} , при этом пусть вектор \vec{c} такой, что $\vec{a} - \vec{b} = \vec{c}$. Тогда $\vec{c} = \vec{a} - \vec{b} = \vec{a} + \left(-\vec{b} \right)$. Таким образом, можем изобразить вектор \vec{c} :

На это можно смотреть с другой стороны. Выразив вектор \vec{a} , получим, что $\vec{a} = \vec{c} + \vec{b}$. Таким образом, \vec{a} — результат сложения вектора \vec{b} с каким-то вектором \vec{c} .

Значит, нам нужен такой вектор, который перенесет точку B в точку C. Очевидно, это и есть вектор \vec{c} .

Умножение вектора на число

Возьмем вектор \vec{a} . Попробуем найти вектор $2\vec{a}$. Переместить точку на вектор $2\vec{a}$ — это тоже самое, что и дважды переместить её на вектор \vec{a} . Также можем разделить вектор \vec{a} на два равных вектора и получить вектор $\frac{1}{2}\vec{a}$:

Правила умножения вектора на число

Пусть α и β — некоторые числа, \vec{a} и \vec{b} — некоторые векторы. Тогда

- 1. $(\alpha + \beta) \cdot \vec{a} = \alpha \cdot \vec{a} + \beta \cdot \vec{a}$;
- 2. $\alpha \cdot (\vec{a} + \vec{b}) = \alpha \cdot \vec{a} + \alpha \cdot \vec{b};$
- 3. $(\alpha \cdot \beta) \cdot \vec{a} = \alpha \cdot (\beta \cdot \vec{a})$.

Разложение по единичным векторам

Рассмотрим декартову систему координат. Обозначим единичные векторы как $\vec{e_1}$ и $\vec{e_2}$. Тогда $|\vec{e_1}| = 1 = |\vec{e_2}|$. Вектор, выходящий из начала координат, называется **радиус-вектором.** Возьмем радиус-вектор \vec{a} , конец которого находится в точке (3; 2).

Мы знаем, что любой вектор можно разложить по двум неколлинеарным векторам. Тогда мы можем разложить \vec{a} по векторам $\vec{e_1}$ и $\vec{e_2}$:

$$\vec{a} = 3 \cdot \vec{e_1} + 2 \cdot \vec{e_2}.$$

Значит, радиус-вектор \vec{a} имеет координаты (3; 2), то есть координаты точки его конца.

Таким образом, любой вектор мы можем воспринимать как движение по горизонтали + движение по вертикали, при этом перемещение по горизонтали и вертикали будет соответственно равно координатам вектора по осям абсцисс и ординат.

Длина вектора по его координатам

Так как система координат прямоугольная, то, разложив вектор по базису, мы получаем прямоугольный треугольник, поэтому длина вектора по теореме Пифагора равна $|\vec{a}| = \sqrt{3^2 + 2^2} = \sqrt{13}$.

Обобщая, получаем следующую формулу длины вектора \vec{b} с координатами (x;y) :

$$|\vec{b}| = \sqrt{x^2 + y^2}$$

Координаты вектора

Сложение, вычитание, умножение на число

• При сложении векторов $\vec{a}\left(x_{1};y_{1}\right)$ и $\vec{b}\left(x_{2};y_{2}\right)$ их координаты складываются, то есть

$$\vec{a}(x_1; y_1) + \vec{b}(x_2; y_2) = \vec{c}(x_1 + x_2; y_1 + y_2).$$

• При вычитании из вектора $\vec{a}(x_1; y_1)$ вектора $\vec{b}(x_2; y_2)$ их координаты вычитаются, то есть

$$\vec{a}(x_1; y_1) - \vec{b}(x_2; y_2) = \vec{c}(x_1 - x_2; y_1 - y_2).$$

• При умножении вектора $\vec{a}(x_1;y_1)$ на число k его координаты уножаются на k :

$$k \cdot \vec{a}(x_1; y_1) = \vec{\alpha}(kx_1; ky_1).$$

Связь координат вектора с координатами его начала и конца

Пусть есть вектор \vec{a} с началом в точке $(x_1; y_1)$ и концом в точке $(x_2; y_2)$.

Вектор — последовательное перемещение по горизонтали и вертикали. Тогда для перемещения из начала вектора, точки $(x_1;y_1)$, в его конец, точку $(x_2;y_2)$, надо сначала сместиться по горизонтали на x_2-x_1 , а затем по вертикали на y_2-y_1 . Таким образом координаты вектора \vec{a} равны $(x_2-x_1;y_2-y_1)$, то есть для получения координат вектора нужно вычесть из координат его конца координаты его начала.

Задача про медиану треугольника

Вспомним правило параллелограмма. Возьмем два вектора \vec{a} и \vec{b} . Пусть $\vec{a} + \vec{b} = \vec{c}$.

Скалярное произведение

Определение Скалярным произведением двух векторов \vec{a} и \vec{b} (обозначается $\vec{a} \cdot \vec{b}$ или (\vec{a}, \vec{b})) с углом φ между ними называют следующее выражение:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \varphi,$$

где $|\vec{a}|$ и $|\vec{b}|$ — длины соответствующих векторов.

Свойства скалярного произведения:

1.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
;

2.
$$k\vec{a} \cdot \vec{b} = k(\vec{a} \cdot \vec{b});$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$
;

4.
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$
;

5.
$$(\vec{a} + \vec{b})^2 = \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2$$
;

6.
$$\vec{a} \cdot \vec{b} = \frac{1}{4}((\vec{a} + \vec{b})^2 - (\vec{a} - \vec{b})^2);$$

7. В декартовой системе координат, если
$$\vec{a}=(x_1;y_1;z_1),\, \vec{b}=(x_2;y_2;z_2):$$
 $\vec{a}\cdot\vec{b}=x_1x_2+y_1y_2+z_1z_2;$

8.
$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$
.

