Surface Tension Measurements by Detachment and Partial Immersion Methods

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Surface and Colloid Science

Surface tension can be measured from force methods

- Detachment method (du Noüy ring)
 - Force required to pull a solid completely through a fluid interface
- Partial immersion method (Wilhelmy slide)
 - Force required to maintain the position of a solid which penetrates a fluid interface
- Force balance
 - Down = Weight Buoyancy + Surf. Tension

$$F_{\downarrow} = F_g - F_b + F_{\sigma}$$
 perimeter $F_{\downarrow} = mg -
ho g V_{
m disp} + P \sigma$

Assumes: uniform σ , fully wetted $\theta = 0$

Wilhelmy slide

du Noüy ring can be used to measure σ by the detachment method

• Force balance $F_{\downarrow} = mg -
ho g V_{
m disp} + P \sigma$ $= mg - 0 + 2\pi [(R+r) + (R-r)] \sigma$ $= mg + 4\pi R \sigma$

• Uncorrected surface tension σ^*

$$\sigma^* = rac{F_{\downarrow} - mg}{4\pi R}$$

• Correction factor *F* [cgs unit]

$$egin{align} F_{\downarrow} &= mg + rac{4\pi R\sigma}{F} \ &= 0.725 + \sqrt{rac{0.01425\sigma^* L}{(2\pi R)^2(
ho_l -
ho_{
m air})}} + 0.04534 - rac{1.679}{R/\hat{r}} \ &= 0.725 + \sqrt{rac{0.01425\sigma^* L}{(2\pi R)^2(
ho_l -
ho_{
m air})}} + 0.04534 - rac{1.679}{R/\hat{r}} \ &= 0.725 + \sqrt{rac{0.01425\sigma^* L}{(2\pi R)^2(
ho_l -
ho_{
m air})}} + 0.04534 - rac{1.679}{R/\hat{r}} \ &= 0.725 + \sqrt{rac{0.01425\sigma^* L}{(2\pi R)^2(
ho_l -
ho_{
m air})}} + 0.04534 - rac{1.679}{R/\hat{r}} \ &= 0.725 + \sqrt{rac{0.01425\sigma^* L}{(2\pi R)^2(
ho_l -
ho_{
m air})}} + 0.04534 - rac{1.679}{R/\hat{r}} \ &= 0.725 + \sqrt{rac{0.01425\sigma^* L}{(2\pi R)^2(
ho_l -
ho_{
m air})}} + 0.04534 - rac{1.679}{R/\hat{r}} \ &= 0.725 + \sqrt{\frac{0.01425\sigma^* L}{(2\pi R)^2(
ho_l -
ho_{
m air})}} + 0.04534 - rac{1.679}{R/\hat{r}} \ &= 0.004534 - \frac{1.679}{R/\hat{r}} \ &= 0.004534 - \frac{1.679}{$$

du Noüy ring

Wilhelmy slide can be used to measure σ by the partial immersion method

• Force balance $(d = 0, t \ll w)$

$$egin{align} F_{\downarrow} &= mg -
ho g V_{ ext{disp}} + P \sigma & \sim \ &= mg -
ho g t w d + 2 (w + t) \sigma \ &= mg + 2 w \sigma \end{array}$$

Tensiometer is used to measure force on du Noüy rings and Wilhelmy slides

