$\begin{array}{c} \textbf{IE 203 - Operations Research II} \\ \textbf{Quiz II} \end{array}$

İ. Kuban Altınel May 08, 2025

Duration: 40 minutes This is a CLOSED BOOK exam.

Question I (60 pts.)

Consider the following integer programming problem

$$\begin{array}{cccc} \max & z = & 40x_1 + 50x_2 \\ & \text{s.t.} & 2x_1 + 3x_2 & \leq 12 \\ & & 3x_1 + x_2 & \leq 9 \\ & & x_1, x_2 & \geq 0 \\ & & x_1, x_2 & integer \end{array}$$

- **a.** Show graphically the feasible solution set.
- **b.** Show graphically the convex hull of the feasible solution set and give its algebraic description (using equalities and inequalities).
- c. Solve the LP relaxation of the problem using simplex algorithm and obtain optimal tableau.
- **d.** Generate the Gomory cut corresponding to the basic variable whose optimal value has the largest fractional part in the optimal tableau obtained in part (c).
- e. Add the new cut to the obtained optimal tableau and reoptimize it using dual simplex algorithm for finding the next LP solution.
- f. Show graphically the generated Gomory cut on the feasible solution graphic drawn in part (a).

Question II (40 pts.)

Find the stationary points of the following problem using KKT first order necessary conditions.

$$\max xy(x-y)$$
s. t. $x+y=8$

$$x \ge 0, y \ge 0$$