Pattern Formation

Necessary and Sufficient Condition on the Set of Initial Configurations (with chirality)

Pattern formation (with chirality)

If we know the initial configuration is not symmetric, can we form a pattern that is not a regular n-gon?

Pattern formation (with chirality)

If we know the initial configuration is not symmetric, can we form a pattern that is not a regular n-gon?

Yes!

Pattern formation (with chirality)

If we know the initial configuration is not symmetric, can we form a pattern that is not a regular n-gon?

Yes!

What are the conditions on the initial configuration and on the pattern so that the problem is solvable?

More symmetry here than here

Definition: the symmetricity ρ of a configuration is the number of rotations for which the configuration is invariant. if a robot is in the center of the SEC, then the symmetricity is one.

Definition: the symmetricity ρ of a configuration is the number of rotations for which the configuration is invariant. if a robot is in the center of the SEC, then the symmetricity is one.

Necessary condition

Theorem: The pattern formation problem is solvable in FSYNC **only if** the symmetricity of the initial configuration divides the symmetricity of the pattern