Deep Generative Models

Lecture 5

Roman Isachenko

2024, Spring

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$, Monte Carlo estimation

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(\phi, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, \phi)
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, \phi). \end{aligned}$$

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta})$, reparametrization trick

$$\nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}) = \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon), \boldsymbol{\theta}) d\epsilon - \nabla_{\phi} \mathsf{KL}$$

$$pprox
abla_{m{\phi}} \log p(\mathbf{x}|g_{m{\phi}}(\mathbf{x}, m{\epsilon}^*), m{ heta}) -
abla_{m{\phi}} \mathsf{KL}$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(0, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= g_{\phi}(\mathbf{x}, \epsilon) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Final EM-algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$egin{aligned} oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); & \mathbf{z}^* = g_{oldsymbol{\phi}}(\mathbf{x}, oldsymbol{\epsilon}^*); \end{aligned} \ \mathcal{L}(oldsymbol{\phi}, oldsymbol{ heta}) pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, oldsymbol{\phi})||p(\mathbf{z}^*)). \end{aligned}$$

lacktriangle compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}(\phi, \theta) pprox
abla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon^*), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})); \\
\nabla_{\theta} \mathcal{L}(\phi, \theta) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp):

$$\phi := \phi + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

$$\theta := \theta + \eta \nabla_{\theta} \mathcal{L}(\phi, \theta).$$

Variational autoencoder (VAE)

- ▶ VAE learns stochastic mapping between **x**-space, from $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$.

Let our data y comes from discrete distribution $\Pi(y)$.

- ▶ Use **discrete** model (e.x. $P(\mathbf{y}|\boldsymbol{\theta}) = \mathsf{Cat}(\boldsymbol{\pi}(\boldsymbol{\theta}))$) and minimize any suitable divergence measure $D(\Pi, P)$.
- Use **continuous** model, but **dequantize** data (make the data continuous): transform $\Pi(y)$ to $\pi(x)$.

Uniform dequantization bound

Let dequantize discrete distribution $\Pi(\mathbf{y})$ to continuous distribution $\pi(\mathbf{x})$ in the following way: $\mathbf{x} = \mathbf{y} + \mathbf{u}$, where $\mathbf{u} \sim U[0,1]$.

Theorem

Fitting continuous model $p(\mathbf{x}|\theta)$ on uniformly dequantized data is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{y}|\boldsymbol{\theta}) = \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$$

1. Normalizing flows as VAE model

- 2. ELBO surgery
- 3. Learnable VAE prior

1. Normalizing flows as VAE model

- 2. ELBO surgery
- 3. Learnable VAE prior

VAE vs Normalizing flows

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
	stochastic	deterministic $\mathbf{z} = f_{m{ heta}}(\mathbf{x})$
Encoder	$z \sim q(z x,\phi)$	$q(\mathbf{z} \mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - f_{\boldsymbol{\theta}}(\mathbf{x}))$
		deterministic
	stochastic	$x = g_{m{ heta}}(z)$
Decoder	$\mathbf{x} \sim p(\mathbf{x} \mathbf{z}, oldsymbol{ heta})$	$p(\mathbf{x} \mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - g_{\boldsymbol{\theta}}(\mathbf{z}))$
Parameters	$oldsymbol{\phi},oldsymbol{ heta}$	$oldsymbol{ heta} \equiv oldsymbol{\phi}$

Theorem

MLE for normalizing flow is equivalent to maximization of ELBO for VAE model with deterministic encoder and decoder:

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - f^{-1}(\mathbf{z}, \boldsymbol{\theta})) = \delta(\mathbf{x} - g_{\boldsymbol{\theta}}(\mathbf{z}));$$

$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - f_{\boldsymbol{\theta}}(\mathbf{x})).$$

Nielsen D., et al. SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows, 2020

Normalizing flow as VAE

Proof

1. Dirac delta function property

$$\mathbb{E}_{\delta(\mathbf{x}-\mathbf{y})}f(\mathbf{x}) = \int \delta(\mathbf{x}-\mathbf{y})f(\mathbf{x})d\mathbf{x} = f(\mathbf{y}).$$

2. CoV theorem and Bayes theorem:

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z})|\det(\mathbf{J}_f)|;$$

$$p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}) = \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})p(\mathbf{z})}{p(\mathbf{x}|\boldsymbol{\theta})}; \quad \Rightarrow \quad p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_f)|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))}{\mathcal{L}(\boldsymbol{\theta})} = \mathcal{L}(\boldsymbol{\theta}).$$

Normalizing flow as VAE

Proof

ELBO objective:

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - \log \frac{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{p(\mathbf{z})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} + \log p(\mathbf{z}) \right].$$

1. Dirac delta function property:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log p(\mathbf{z}) = \int \delta(\mathbf{z} - f_{\boldsymbol{\theta}}(\mathbf{x}))\log p(\mathbf{z})d\mathbf{z} = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})).$$

2. CoV theorem and Bayes theorem:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log\frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log\frac{p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_f)|}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} = \log|\det\mathbf{J}_f|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det \mathbf{J}_f|.$$

1. Normalizing flows as VAE mode

2. ELBO surgery

Learnable VAE prior

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\boldsymbol{\theta}) = \frac{1}{n}\sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})}\log p(\mathbf{x}_{i}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z}))\right].$$

Theorem

$$\frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}];$$

- ▶ $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ mutual information between \mathbf{x} and \mathbf{z} under empirical data distribution and distribution $q(\mathbf{z}|\mathbf{x})$.
- First term pushes $q_{agg}(z)$ towards the prior p(z).
- Second term reduces the amount of information about x stored in z.

ELBO surgery

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}].$$

Proof

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n} \mathit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = \frac{1}{n}\sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})}d\mathbf{z} = \\ &= \frac{1}{n}\sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\mathrm{agg}}(\mathbf{z})q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})q_{\mathrm{agg}}(\mathbf{z})}d\mathbf{z} = \int \frac{1}{n}\sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\mathrm{agg}}(\mathbf{z})}{p(\mathbf{z})}d\mathbf{z} + \\ &+ \frac{1}{n}\sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q(\mathbf{z}|\mathbf{x}_{i})}{q_{\mathrm{agg}}(\mathbf{z})}d\mathbf{z} = \mathit{KL}(q_{\mathrm{agg}}(\mathbf{z})||p(\mathbf{z})) + \frac{1}{n}\sum_{i=1}^{n} \mathit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||q_{\mathrm{agg}}(\mathbf{z})) \end{split}$$

Without proof:

$$\mathbb{I}_q[\mathbf{x},\mathbf{z}] = \frac{1}{n} \sum_{i=1}^n KL(q(\mathbf{z}|\mathbf{x}_i)||q_{\text{agg}}(\mathbf{z})) \in [0,\log n].$$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

ELBO surgery

ELBO revisiting

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) \right] =$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Prior distribution $p(\mathbf{z})$ is only in the last term.

Optimal VAE prior

$$KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior $p(\mathbf{z})$ is the aggregated posterior $q_{agg}(\mathbf{z})$!

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

Variational posterior

ELBO decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

- ho $q(\mathbf{z}|\mathbf{x},\phi) = \mathcal{N}(\mathbf{z}|\mu_{\phi}(\mathbf{x}),\sigma_{\phi}^{2}(\mathbf{x}))$ is a unimodal distribution.
- ▶ The optimal prior p(z) is the aggregated posterior $q_{agg}(z)$.

It is widely believed that mismatch between p(z) and $q_{agg}(z)$ is the main reason of blurry images of VAE.

Rezende D. J., Mohamed S. Variational Inference with Normalizing Flows, 2015

1. Normalizing flows as VAE mode

- 2. ELBO surgery
- 3. Learnable VAE prior

Optimal VAE prior

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, I) \Rightarrow$ over-regularization;
- $p(z) = q_{agg}(z) = \frac{1}{n} \sum_{i=1}^{n} q(z|x_i) \Rightarrow \text{overfitting and highly}$ expensive.

Non learnable prior p(z) Learnable prior $p(z|\lambda)$

ELBO revisiting

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\boldsymbol{\theta}) = \mathsf{RL} - \mathsf{MI} - \mathcal{KL}(q_{\mathsf{agg}}(\mathbf{z})||p(\mathbf{z}|\boldsymbol{\lambda}))$$

It is Forward KL with respect to $p(\mathbf{z}|\lambda)$.

NF-based VAE prior

NF model in latent space

$$\log p(\mathbf{z}|\boldsymbol{\lambda}) = \log p(\mathbf{z}^*) + \log \left| \det \left(\frac{d\mathbf{z}^*}{d\mathbf{z}} \right) \right| = \log p(f(\mathbf{z}, \boldsymbol{\lambda})) + \log \left| \det(\mathbf{J}_f) \right|$$
$$\mathbf{z} = g_{\boldsymbol{\lambda}}(\mathbf{z}^*) = f_{\boldsymbol{\lambda}}^{-1}(\mathbf{z}^*)$$

- RealNVP with coupling layers.
- Autoregressive NF (fast $f_{\lambda}(\mathbf{z})$, slow $g_{\lambda}(\mathbf{z}^*)$).

ELBO with NF-based VAE prior

$$\begin{split} & \mathcal{L}(\phi, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}|\lambda) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \\ & = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \underbrace{\left(\log p(f_{\lambda}(\mathbf{z})) + \log \left| \det(\mathbf{J}_{f}) \right| \right)}_{\text{NF-based prior}} - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \end{split}$$

1. Normalizing flows as VAE mode

- 2. ELBO surgery
- 3. Learnable VAE prior

Discrete VAE latents

Motivation

- Previous VAE models had continuous latent variables z.
- ▶ **Discrete** representations **z** are potentially a more natural fit for many of the modalities.
- Powerful autoregressive models (like PixelCNN) have been developed for modelling distributions over discrete variables.
- All cool transformer-like models work with discrete tokens.

ELBO

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \mathcal{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})) \to \max_{\phi, \theta}.$$

- Reparametrization trick to get unbiased gradients.
- Normal assumptions for $q(\mathbf{z}|\mathbf{x}, \phi)$ and $p(\mathbf{z})$ to compute KL analytically.

Discrete VAE latents

Assumptions

- ▶ Define dictionary (word book) space $\{\mathbf{e}_k\}_{k=1}^K$, where $\mathbf{e}_k \in \mathbb{R}^C$, K is the size of the dictionary.
- Let $c \sim \mathsf{Categorical}(\pi)$, where $\pi = (\pi_1, \dots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^K \pi_k = 1.$
- ▶ Let VAE model has discrete latent representation c with prior p(c) = Uniform{1,..., K}.

How it should work?

- Our variational posterior $q(c|\mathbf{x}, \phi) = \text{Categorical}(\pi_{\phi}(\mathbf{x}))$ (encoder) outputs discrete probabilities vector.
- We sample c^* from $q(c|\mathbf{x}, \phi)$ (reparametrization trick analogue).
- Our generative distribution $p(\mathbf{x}|\mathbf{e}_{c^*}, \boldsymbol{\theta})$ (decoder).

Discrete VAE latents

ELBO

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|c, \theta) - \mathcal{KL}(q(c|\mathbf{x}, \phi)||p(c)) \to \max_{\phi, \theta}.$$

KL term

$$KL(q(c|\mathbf{x}, \phi)||p(c)) = \sum_{k=1}^{K} q(k|\mathbf{x}, \phi) \log \frac{q(k|\mathbf{x}, \phi)}{p(k)} =$$

$$= \sum_{k=1}^{K} q(k|\mathbf{x}, \phi) \log q(k|\mathbf{x}, \phi) - \sum_{k=1}^{K} q(k|\mathbf{x}, \phi) \log p(k) =$$

$$= -H(q(c|\mathbf{x}, \phi)) + \log K.$$

- ▶ Is it possible to make reparametrization trick? (we sample from discrete distribution now!).
- Entropy term should be estimated.

Summary

- ▶ NF models could be treated as VAE model with deterministic encoder and decoder.
- ► The ELBO surgery reveals insights about a prior distribution in VAE. The optimal prior is the aggregated posterior.
- It is widely believed that mismatch between p(z) and $q_{agg}(z)$ is the main reason of blurry images of VAE.
- ▶ We could use NF-based prior in VAE (even autoregressive).
- Discrete VAE latents is a natural idea, but we have to avoid non-differentiable sampling operation.