

High-throughput GW

M.J. van Setten Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Belgium

High-throughput *GW*

from a structure

without any human intervention

to converged GW results

- Automatic calculations
- Screening for new compounds
- Database building
- Uniform results
- No human bias

The Problem

- 'additional' difficulties as compared to DFT
 - Pseudo potentials
 - 4 step calculation
 - N⁴ scaling
 - No 'safe' parameter set (converged results for all)
 - No 'safe' computational settings (# cpu's, memory, time, ...)

The convergence problem

BN

The memory problem

GW tasks that finish at a given memory limit

Our solution

Convergence study

On a low k-point density (2x2x2):

- (pw cutoff, ...)
- Set of single parameter ground state convergence studies
- Grid of nbands X encuteps
 - For each nbands find converged encuteps
- For the converged encuteps find the converged nbands
- if not found > extend grid and retest =
- On the final high k-point density:
 - Test derivatives.
 (in most cases the high density derivatives turn out smaller)
 - Post process
 (create scissor, apply scissor, plots, statistical analysis...)

Transferring parameters over k-grids

Transferring parameters over k-grids

Some results

Collaborators

- Matteo Giantomassi
- Geoffroy Hautier
- Gian-Marco Rignanese
- Don Hamann
- Xavier Gonze

