Exame 1a Chamada / 1st Call Exam - 13/01/2020

Início Segunda, 13 de Janeiro de 2020 às 09:06 **Estado** Prova submetida Data de Segunda, 13 de Janeiro de 2020 às 10:38 submissão: **Tempo gasto** 1 hora 31 minutos **Nota** 5,4/6,0 **Nota 17,9** de um máximo de 20,0 (**90**%)

Pergunta 1

Parcialmente correta Pontuou 0,70 de 1,00

Considere a seguinte função real de variável real, cujos zeros pretendemos determinar:

$$f(x) = sin(x) + x^5 - 0.2x + 0.5$$

- a. Quantos zeros tem a função f(x)?
- b. Qual dos seguintes intervalos contém a menor raíz da equação f(x)=0 ? ☐ 1,0[◆ ✓
- c. Preencha o quadro com o valor mais aproximado da raiz \mathbf{R} , do erro absoluto $\mathbf{\epsilon_{abs}}$ e do erro relativo $\mathbf{\epsilon_{rel}}$ ao fim de seis iterações, usando o **método da bissecção sucessiva**, partindo do intervalo escolhido na alínea anterior:

As respostas numéricas são:

- números decimais em vírgula flutuante, com pelo menos 5 decimais na mantissa, no formato ±xxx.xxxxx E±xxx
- números decimais em vírgula fixa, com pelo menos 5 decimais, no formato ±xxx.xxxxx

Comentário:

"Terminada deste modo a iteração, qual o valor que deve ser escolhido como melhor aproximação à raiz:

- o meio m do intervalo final, que conduz ao menor erro absoluto máximo?
- o extremo do intervalo que corresponde ao menor valor absoluto da função, sujeito à verificação da derivada na vizinhança, mas não esquecendo o caráter fundamental desta verificação!"

Erros calculados de forma incorrecta, pois o valor "exacto" seria o valor pedido como melhor aproximação da raíz.

Considere o seguinte sistema de equações não lineares:

$$\begin{cases} x^2 - y - a &= 0\\ -x + y^2 - b &= 0 \end{cases}$$

Usando os seguintes valores para os parâmetros

а	b			
1.2	0.5			

Calcule duas iterações pelo **método de Newton**, partindo do ponto dado.

Preencha o quadro com os valores corretos.

x _n		Уn			
1.10000		1.10000			
1,82604	~	1,60729	~		
1,64430	✓	1,47070	✓		

As respostas numéricas são:

- números decimais em vírgula flutuante, com pelo menos 5 decimais na mantissa, no formato ±xxx.xxxxx E±xxx;
- números decimais em vírgula fixa, com pelo menos 5 decimais, no formato ±xxx.xxxxx .

Comentário:

bónus 15%

O comprimento \mathbf{L} do arco, entre as abcissas $\mathbf{x} = \mathbf{a}$ e $\mathbf{x} = \mathbf{b}$, de uma curva de equação é dado por:

$$y = f(x)$$
 é dado por:

$$L = \int_a^b \sqrt{1 + (y')^2} \, dx$$

Recorrendo aos métodos numéricos de **Simpson** e dos **Trapézios**, pretendemos determinar o comprimento do arco entre $\mathbf{x} = \mathbf{a}$ e $\mathbf{x} = \mathbf{b}$, da curva

$$y = e^{kx}$$

Partindo dos seguintes dados:

k	a	b	Passo de integração h
2	0	1	0.125

Estime o valor do erro absoluto, independentemente do valor obtido para o quociente de convergência. Preencha a tabela com os valores correctos:

	M. Trapézios		M. Simpson	
h	0.125		0.125	
h'	0,0625	•	0,0625	~
h''	0,03125	~	0,03125	~
L	1,065498	×	0,71033	×
Ľ	0,53275	×	0,35517	×
L"	0,26637	×	0,17758	×
Quociente de convergência QC	2,0	×	2,0	×
Erro estimado absoluto ε	-0,08879	×	-0,01184	×

As respostas numéricas são:

- números decimais em vírgula flutuante, com pelo menos 5 decimais na mantissa, no formato ±xxx.xxxxx E±xxx
- números decimais em vírgula fixa, com pelo menos 5 decimais, no formato ±xxx.xxxxx

Comentário:

n está mal calculado

$$rac{dT}{dt} = -0.25 \left(\, T - T_a \,
ight)$$

em que T_a é a temperatura do meio envolvente.

Supondo as seguintes condições iniciais:

$$T = 17$$

$$t = 4$$

$$T_a = 49$$

Usando o Método de Euler com passo temporal **0,3**, calcule o valor da temperatura do corpo ao fim de **dois** passos de tempo

As respostas numéricas são:

- números decimais em vírgula flutuante, com pelo menos 5 decimais na mantissa, no formato ±xxx,xxxxx E±xxxx
- números decimais em vírgula fixa, com pelo menos 5 decimais, no formato ±xxx,xxxxx

Resposta: 21,62

A resposta correta é: 21,62

Pergunta 5

Parcialmente correta Pontuou 0,88 de 1,00

Os resultados de uma experiência ajustam-se bem à expressão

$$y = 2\sin x - 10\cos x$$

no intervalo de $0 \le x \le 6$.

Use o **método da Secção Áurea** para pesquisar o **máximo** da função.

Preencha as células em branco com o valor numérico adequado.

X	1	x ₂	х ₃	x ₄	f(x ₁)	f(x ₂)	f(x ₃)	f(x ₄)
2		4	2.76393	3.23606	5.9801	5.0228	10.0328	9.7667
2	~	3,23607	2,47213	2,76393	5,98006	9,76674	9,08271	10,03279
		~	~	~	~	~	✓	✓
2,47214		3,23607	2,76393	3,05573	9,08271	9,76674	10,03279	10,13468
~		~	~	×	~	~	~	×

As iterações apresentadas permitem enquadrar o extremo num intervalo em x com a amplitude 0,47214

As respostas numéricas são números decimais em vírgula fixa, com pelo menos 5 decimais.

Comentário:

x3 = x1 + B*(x4-x1) sinal trocado?

bónus 10%

Considere a função não linear que se pretende minimizar, por aplicação do **Método do Gradiente**.

$$Z(x,y) = 6x^2 - xy + 12y + y^2 - 8x$$

Complete o quadro com os valores em falta, para um passo efectivo de minimização. Escolha o melhor valor para λ .

Nº Itera	ıção	X_n		$Z(X_n)$		Gradiente		λ	
0		0		0	~	-8	~	0.25 🗢 🗸	
		0				12	~		
1		2	~	-13	~				
		-3	~						

As respostas numéricas são números decimais em vírgula fixa, com pelo menos 5 decimais.

■ Goals and objectives for 1st call exam 13th Jan Ir para...

\$