Greedy Method and Dynamic Programming

Instructor: Dr Om Prakash

IIITDM Kancheepuram

Greedy Method—Formal Setup

ullet An optimization problem P is a tuple:

$$P = (I, \mathcal{F}, f, opt)$$

Where,

- ullet I is the set of all instances of the problem
- ullet For each instance $\,x\in I\,$, ${\cal F}(x)$ is the set of all feasible solutions for $\,x\,$.
- $f: \bigcup_{x \in I} \mathcal{F}(x) \to \mathbb{R}$ is the objective function that assigns a value to each feasible solution.
- $opt \in \{min, max\}$ specifies whether the problem is **minimization** or **maximize**

Greedy Method—Formal Setup

• The goal is to find, for a given instance $x \in I$, a feasible solution

$$S^* \in \mathcal{F}(x)$$

Such that,

$$f(S^*) = opt\{f(S) \mid S \in \mathcal{F}(x)\}\$$

Greedy Algorithm

- A greedy algorithm for an optimization problem $\,P\,\,$ is an algorithms that constructs a solution incrementally as follows:
- 1. Start with the empty solution $S_0 = \phi$.
- 2. At each iteration t, given a partial solution S_t , choose an element $c_t \in \mathcal{F}(x)$

That is feasible to add and maximizes or (minimizes) a **local selection** criterion $g(c_t, S_t)$.

- 3. Extend the solution: $S_{t+1} = S_t \cup \{c_t\}$
- 4. Continue until a complete feasible solution is obtained.

The algorithm never revises earlier choices (irrevocability)

Greedy Algorithm – Correctness Condition

- A greedy algorithm yields an optimal solution if:
- 1. Optimal Substructure: An optimal solution to the problem can be composed from optimal solution to its subproblems.

2. Greedy-Choice Property: A global optimum can be obtained by choosing a local optimum at each step.

Coin Change Problem

 A child buys candy valued at less than \$1 and gives a \$1 bill to the cashier.

 The cashier wishes to return change using the fewest number of coins.

 Assume that an unlimited supply of quarters, dimes, nickels, and pennies is available.

Coin Change Problem

- Example: Suppose the worth of candy was 33 cents.
- The solution to this problem is (2 quarters, 1 dime, 1 nickel and 2 pennies).

• Show that the greedy algorithm for the coin-change problem generates change with the fewest number of coins when the cashier has an unlimited supply of quarters, dimes, nickels, and pennies.

Coin Change Problem

- Canonical system= {quarter, dime, nickel, penny}
- Non-canonical system = {1,3,4} check for 6!

- Prove the greedy choice property using contradiction.
- Let (x_1, x_2, \ldots, x_n) be the greedy solution and (y_1, y_2, \ldots, y_n) Be the optimal solution.

Coin Change Problem--Correctness

- Clearly, if the optimal solution is different from the greedy solution
- Choose the least index i such that $\exists i, x_i \neq y_i$
- Observation: $x_i > y_i$
- Construct a new feasible solution y' from y by incrementing y_i to x_i decrementing the added value by removing coins of least denominations than coin c_i

Coin Change Problem--Correctness

- Thus, we obtained a new feasible solution whose number of coins is less than the optimal solution.
- This is a contradiction and hence our assumption was false and the greedy solution is in-fact the optimal solution.

Container Loading Problem

- A large ship is to be loaded with cargo. The cargo is containerized, and all containers are the same size.
- Different containers may have different weights.

- Let w_i be the weight of the ith container $1 \le i \le n$.
- ullet The cargo capacity of the ship is $\,c\,$.
- We wish to load the ship with the maximum number of containers.

Container Loading Problem

• Let x_i be a variable whose value can be either 0 or 1. If we set x_i to 0, then container i is not to be loaded. If x_i is 1 then the container is to be loaded.

$$\sum_{i=1}^{n} w_i x_i \le c \qquad x_i \in \{0, 1\} \ 1 \le i \le n$$

- The optimization function is $\sum_{i=1}^{n} x_i$
- Every set of x_i 's that satisfy the constraints is a feasible solution.
- Every feasible solution that maximizes $\sum_{i=1}^{n} x_i$ is an optimal solution.

Container Loading Problem—Greedy Strategy

• From the remaining containers, select the one with least weight.

Container Loading Problem

Example: Suppose that

$$n=8, [w_1, \ldots, w_8] = [100, 200, 50, 90, 150, 50, 20, 80]$$
 , and $c=400$

When the greedy algorithm is used, the containers are considered for loading in the order [7,3,6,8,4,1,5,2] and the greedy solution we have $[x_1,\ldots,x_8]=[1,0,1,1,0,1,1,1]$ and $\sum x_i=6$

Container Loading—Greedy Algorithm

Container Loading (c, capacity, number Of Containers, x)

```
Sort(c, number Of Containers)
    n := numberOfContainers
    for i = 1 to n
           do
 5
             x[i] = 0
    i = 1
    while (i \le n \text{ and } c[i] \cdot weight \le capacity)
8
           do
 9
               x[c[i], id] = 1
               capacity - = c[i] \cdot weight
10
              i + +
```

- Theorem 4.1: The greedy algorithm generates optimal loadings.
- Proof: Let $x = [x_1, x_2, \dots, x_n]$ be the solution produced by the greedy algorithm and let $y=[y_1,y_2,\ldots,y_n]$ be any feasible solution. We will show that $\sum_{i=1}^n x_i \geq \sum_{i=1}^n y_i$. Without loss of generality we may assume that the containers have been ordered so that $w_i \leq w_{i+1}$,

 $1 \le i < n$

• From the way greedy algorithm works $\exists k, 0 \leq k \leq n$ such that $x_i = 1, i \le k \text{ and } x_i = 0, i > k$

- The proof is by induction on the number p of positions i such that $x_i \neq y_j$.
- Base Case: p=0 and so x and y are the same. So,

$$\sum_{i=1}^{n} x_i \ge \sum_{i=1}^{n} y_i$$

ullet Induction Hypothesis: Let $\,m\,$ be the arbitrary natural number

$$\sum_{i=1}^{n} x_i \ge \sum_{i=1}^{n} y_i \text{ whenever } p \le m$$

- Induction Step: We show that $\sum\limits_{i=1}^n x_i \geq \sum\limits_{i=1}^n y_i \text{ when } p=m+1$
- Find the least integer j , $1 \le j \le n$ such that $x_j \ne y_j$.
- Since, $p \neq 0$ such a j exists.

• Also, $j \le k$, as otherwise y is not a feasible solution. Since, $x_j \ne y_j$ and $x_j = 1, y_j = 0$. Set y_j to 1.

ullet If the resulting $\ y$ is a feasible solution, let $\ z$ denote the resulting $\ y$

- If the resulting y denotes a infeasible solution, there must be ℓ in the range [k+1,n] for which $y_\ell=1$. Set $y_\ell=0$.
- Let z denote the resulting y. As $w_j \leq w_l$, z is a feasible solution.
- In either case, $\sum\limits_{i=1}^n z_i \geq \sum\limits_{i=1}^n y_i$ and z differs from x in at most p-1=m positions. From the Induction Hypothesis it follows that $\sum\limits_{i=1}^n x_i \geq \sum\limits_{i=1}^n z_i \geq \sum\limits_{i=1}^n y_i$

- Given n objects and a knapsack or bag.
- ullet Object i has a weight w_i and the knapsack has a capacity m .
- If a fraction $x_i, 0 \le x_i \le 1$ of object i is placed into the knapsack, then a profit of $p_i x_i$ is earned.

• The objective is to obtain a filling of the knapsack that maximizes the total profit earned.

maximize
$$\sum_{1 \le i \le n} p_i x_i$$

subject to
$$\sum_{1 \le i \le n} w_i x_i \le m$$

and
$$0 \le x_i \le 1, 1 \le i \le n$$

Example: Consider the following instance of the knapsack problem:

$$n=3, m=20, \ (p_1,p_2,p_3)=(25,24,15)$$
 and $(w_1,w_2,w_3)=(18,15,10)$. Four feasible solutions are:

(x_1, x_2, x_3)	$\sum w_i x_i$	$\sum p_i x_i$
(1/2, 1/3, 1/4)	16.5	24.25
(1, 2/15, 0)	20	28.2
(0, 2/3, 1)	20	31
(0, 1, 1/2)	20	31.5

• **Lemma**: In case the sum of all the weights is $\leq m$, then $x_i=1, 1\leq i\leq n$ is an optimal solution.

• Lemma: All optimal solutions will fill the knapsack exactly.

Knapsack Greedy Algorithm

```
GreedyKnapsack(m, n)
     //p[1:n] and w[1:n] contain the profits and weights respectively
    // of the n objects ordered such that \frac{p[i]}{w[i]} \geq \frac{p[i+1]}{w[i+1]}
    //m is the knapsack size and x[1:n] is the solution vector...
    for i = 1 to n
           do
              x[i] = 0.0
    U := m;
    for i = 1 to n
           do
              if (w[i] > U)
                 then break;
                       x[i] := 1.0; U := U - w[i];
10
    if (i \leq n)
        then x[i] := U/w[i]
```

- **Theorem:** If $\frac{p_1}{w_1} \ge \frac{p_2}{w_2} \ge \cdots \frac{p_n}{w_n}$ then GreedyKnapsack generates an optimal solution to the given instance of the knapsack problem.
- **Proof of Correctness:** Let $x=(x_1,x_2,\ldots,x_n)$ be the solution generated by GreedyKnapsack. If all the x_i equal one, then clearly the solution is optimal.
- Let j be the least index such that $x_j \neq 1$. From the algorithm it follows that

$$x_i = 1$$
 for $1 \le i < j$ $x_i = 0$ for $j < i \le n$ and $0 \le x_i < 1$

• Let $y=(y_1,y_2,\ldots,y_n)$ be an optimal solution. From earlier Lemma, we can assume that $\sum w_i y_i = m$

• Let k be the least index such that $y_k \neq x_k$. Clearly, such a k must exist. It also follows that $y_k < x_k$.

Consider three possiblilities:

$$k < j, k = j, \text{ or } k > j$$

- 1. If k < j, then $x_k = 1$. But, $y_k \neq x_k$, and so $y_k < x_k$
- 2. If k=j, then since $\sum w_i x_i = m$ and $y_i = x_i$ for $1 \le i < j$ it follows that either $y_k < x_k$ or $\sum w_i y_i > m$
- 3. If k>j , then $\sum w_iy_i>m$, and this is not possible.

- Now suppose we increase y_k to x_k and decrease as many of (y_{k+1},\dots,y_n) as necessary so that the total capacity used is still m
- This results in a new solution $z=(z_1,\ldots,z_n)$ with $z_i=x_i, 1\leq i\leq k$ and $\sum_{k< i\leq n} w_i(y_i-z_i)=w_k(z_k-y_k)$

Then, for z we have,

$$\sum_{1 \le i \le n} p_i z_i = \sum_{1 \le i \le n} p_i y_i + (z_k - y_k) w_k \frac{p_k}{w_k} - \sum_{k < i \le n} (y_i - z_i) w_i \frac{p_i}{w_i}$$

$$\ge \sum_{1 \le i \le n} p_i y_i + \left[(z_k - y_k) w_k - \sum_{k < i \le n} (y_i - z_i) w_i \right] \frac{p_k}{w_k}$$

$$= \sum_{1 \le i \le n} p_i y_i$$

- If $\sum p_i z_i > \sum p_i y_i$ then y could not have an optimal solution. If these sums are equal, then either z=x and x is optimal, or $z \neq x$
- In the latter case, repeated use of the above argument will either show that y is not optimal, or transform y into x and thus show that x too is optimal.

- ${f \cdot}$ You are given n tasks and an infinite supply of machines on which those tasks can be performed.
- Each task has a start time s_i and a finish time f_i , $s_i < f_i$, $[s_i, f_i]$ is the processing interval for task i.
- Two tasks i and j overlap iff their processing intervals overlap at a Point other than the interval start or end.

• A feasible task-to-machine assignment is an assignment in which no machine is assigned two overlapping tasks.

 An optimal assignment is a feasible assignment that utilizes the fewest number of machines.

• Greedy Choice: If an old machine becomes available by the start time of the task to be assigned, assign the task to this machine; if not, assign it to a new machine.

i = i + 1

13

GREEDYSCHEDULING(m)//p[1:m] sorted in non-decreasing order of start time such that $s[j] \leq s[j+1], 1 \leq j \leq m$ //Assume an infinite supply of machines $M[1...\infty]$ Schedule P[1] on M[1]2 M[1].availaible = f[1]3 i = 2, j = 1while P[m] is not scheduled 5 do 6 if $\exists 1 \leq k \leq j \ M[k].availaible \leq s[i]$ then Schedule P[i] on M[k]; 8 i = i + 19 else 10 j=j+1Schedule P[i] on M[j]11 M[j].available = f[i]12

Job Scheduling without Deadline--Correctness

- Proof by Induction on number of machines
- Base Case: Prove that the largest number of tasks that can be scheduled on the machine is given by the following greedy algorithm:

From the Remaining tasks, select the one that has the least finish time and does not overlap with any of the already selected tasks.

• We are given a set of n jobs. Associated with job i is an integer deadline $d_i>0$ and a profit $p_i>0$.

• For any job i the profit p_i is earned iff the job is completed by its deadline.

- To complete a job, one has to process the job on a machine for one unit of time.
- Only one machine is available for processing jobs.

• Example: Let n=4 , $(p_1,p_2,p_3,p_4)=(100,10,15,27)$ and $(d_1,d_2,d_3,d_4)=(2,1,2,1)$. The feasible solutions and their values

are:

	Feasible Solution	Processing Sequence	Value
1	(1, 2)	2,1	110
2	(1, 3)	1,3 or 3,1	115
3	(1, 4)	4, 1	127
4	(2, 3)	2, 3	25
5	(3, 4)	4, 3	42
6	(1)	1	100
7	(2)	2	10
8	(3)	3	15
9	(4)	4	27

• Greedy Choice Property: Choose $\sum_{i \in J} p_i$ as our optimization measure.

Using this measure, the next job to include is the one that increases $\sum_{i \in J} p_i$ the most, subject to the constraint that the resulting J is a feasible solution.

• Thus consider jobs in non-increasing order of the $p_i s$

• Theorem: Let J be a set of k jobs and $\sigma = i_1, i_2, \ldots, i_k$ a permutation of jobs in J such that $d_{i1} \leq d_{i2} \leq \ldots d_{ik}$. Then J is a feasible solution iff the jobs in J can be processed in the order σ without violating any deadline.

• Clearly, if the jobs in J can be processed in the order σ without violating any deadline, then J is a feasible solution.

• Enough to show that if J is feasible then σ represents a possible order in which the jobs can be processed.

• Idea is to transform any other feasible processing order to σ .

- If J is feasible, then there exists $\sigma'=r_1,r_2,\ldots,r_k$ such that $d_{r_q}\geq q, 1\leq q\leq k$
- Assume $\sigma' \neq \sigma$. Then let a be the least index such that $r_a \neq i_a$.
- Let $r_b = i_a$. Clearly, b > a .
- In σ' we can interchange r_a and r_b . Since $d_{r_a} \geq d_{r_b}$

• The resulting permutation $\sigma'' = s_1, s_2, \dots, s_k$ represents an order in which the jobs can be processed without violating a deadline.

 Theorem: The greedy method described before always obtains an optimal solution to the job sequencing problem.

Job Scheduling with Deadline—Greedy Choice

• Let | be the set of jobs in the greedy solution and ∫ be the set of Jobs in the optimal solution

• Observation: $I \neq J$ and $I \not\subset J$ and $J \not\subset I$

• Consider jobs $a \in I \setminus J \text{ and } b \in J \setminus I$

Job Scheduling with Deadline—Greedy Choice

- Consider a particular schedule S_I for I and S_J for J
- Show that the common jobs in I and J can be scheduled at the same time in both the schedules while preserving feasibility.

• Now, choose job 'a' as before but with highest profit. Show that $p_a \geq p_b$

• Replace b from the transformed schedule S_j' with a.

Job Scheduling with Deadline—Greedy Choice

Repeat the above steps to transform J to I.

Job Scheduling with Deadline--Algorithm

```
GREEDYJOB(d,J,n)
//J \text{ is a set of jobs that can be completed by their deadline}
1 \quad J := \{1\};
2 \quad \text{for } i := 2 \text{ to } n
3 \quad \text{do}
4 \quad \text{if (all jobs in } J \cup \{i\} \text{ can be completed by their deadlines})}
5 \quad \text{then}
6 \quad J := J \cup \{i\};
```

```
JS(d, j, n)
     //d[i] \ge 1, 1 \le i \le n are the deadlines, n \ge 1. The jobs
    // are ordered such that p[1] \geq p[2] \geq \cdots \geq p[n].J[i]
    // is the ith job in the optimal solution, 1 \le i \le k
    //Also, at termination d[J[i]] \leq d[J[i+1]], 1 \leq i < k
 1 d[0] := J[0] := 0//Initialize
 2 J[1] := 1//Include Job 1
3 \quad k := 1;
 4 for i := 2 to n // Consider jobs in nonincreasing order of p[i].
     //Find position for i and check feasibility of insertion
 5
           do
 6
               r := k
               while ((d[J[r]] > d[i]) and (d[J[r]] \neq r))
 8
                    do r = r - 1
               if ((d[J[r]] \le d[i]) \text{ and } (d[i] > r))
 9
10
                  then
11
                        for q = k to r + 1 Step -1
                             do J[q+1] = J[1]
12
    return k;
```

Dynamic Programming -- Introduction