

EXPERIMENTO 8 CIRCUITO RL RESPOSTAS TEMPORAL E EM FREQUÊNCIA

OBJETIVOS: Analisar o comportamento **transiente** de um circuito **RL** em **série** submetido a uma onda quadrada (pulso de tensão). Medir o tempo de meia vida $T_{1/2}$ e a constante de tempo τ deste circuito. Analisar o mesmo circuito com tensão alternada.

MATERIAL UTILIZADO: osciloscópio, indutor, resistor e gerador de sinais.

FUNDAMENTOS TEÓRICOS

O indutor é um elemento do circuito que, como o capacitor, armazena e devolve energia. No capacitor, a energia é armazenada em um campo elétrico, enquanto que no indutor ela é armazenada no campo magnético.

O indutor consiste basicamente de um fio enrolado e às vezes este enrolamento pode conter pode conter um núcleo de ferro. Quando o indutor é ligado a uma fonte de tensão, a tendência do indutor é manter a corrente constante.

Se for aplicada uma variação na corrente, o indutor tentará mantê-la constante, induzindo uma força eletromotriz (ϵ_L) ou tensão (ν_L) contrária à variação da corrente. Esta força eletromotriz é dada em módulo por :

$$\varepsilon_L = v_L = L \frac{di}{dt}$$
 Equação (8.1)

onde **L** é a **indutância** do elemento. Sua unidade é o Henry (**H**), definido por: $1 H = \frac{1 V . 1 s}{1 A}$

Consideremos o indutor associado em série a um resistor em um circuito tal como na figura 8.1a. Estudaremos os casos no qual o circuito RL em série é alimentado por uma tensão contínua e por uma tensão senoidal. Para a tensão contínua, consideraremos que a alimentação é realizada por uma onda quadrada. O gerador desta onda quadrada é visto como um sistema de chaveamento que produz uma excitação pulsada que assume alternadamente uma tensão contínua V₀ e uma tensão de zero Volt, de mesma duração, como mostra a figura 8.1b.

Figura 8.1 – Circuito RL em série alimentado por uma onda quadrada pode ser entendido como um sistema de chaveamento no qual quando a chave S está conectada ao terminal 1 temos uma tensão contínua V_0 aplicada e quando na posição 2, não temos alimentação.

POSIÇÃO 1: CIRCUITO LIGADO NA FONTE CONTÍNUA

Quando o sistema é conectado à tensão ${\bf V_0}$, a soma de todas as tensões é $V_0 = v_R + v_L$, onde ${\bf v_R}$ é a tensão no resistor dada por ${\bf v_R} = {\bf R}$ i sendo i a corrente no circuito e ${\bf v_L}$ a tensão no indutor, dada pela definição de indutância na equação 8.1. Substituindo os valores:

$$V_0 = R \, i + L \, \frac{d \, i}{d \, t}$$

$$\frac{di}{dt} + \frac{Ri}{L} - \frac{V_0}{L} = 0$$

Esta é uma equação diferencial que podemos resolver através da substituição de variável $y=\frac{R\ i-V_0}{I_c}$, obtendo a solução(verifique!):

$$i(t) = \frac{V_0}{R} (1 - e^{-\frac{R}{L}t})$$
 Equação (8.2)

Substituindo i(t), nas equações de v_R e v_L , temos:

$$v_R = V_0 (1 - e^{-\frac{R}{L}t})$$
 e $v_L = V_0 e^{-\frac{R}{L}t}$. Equações(8.3)

O quociente $\frac{L}{R}$ tem a dimensão de tempo e recebe o nome de constante de tempo indutiva do circuito au .

$$au = rac{L}{R}$$
 Equação (8.4)

Quando ${\bf t}={\bf T}$, a tensão no indutor, que no tempo ${\bf t}={\bf 0}$ era ${\bf v_L}={\bf V_0}$, cai para um valor $v_L(\tau)=\frac{V_0}{e}=0,3679~V_0$ e a tensão no resistor, que em ${\bf t}={\bf 0}$ era ${\bf v_R}={\bf 0}$, aumenta para $v_R(\tau)=0,6312~V_0$.

POSIÇÃO 2: CIRCUITO EM CURTO

Quando a tensão no gerador é mudada para zero (posição **2** da chave na **Figura 8.1a**), a lei de Kirchhoff no circuito se reduz a:

$$\mathbf{0} = \mathbf{v}_{R} + \mathbf{v}_{L}$$
 ou $R i + L \frac{d i}{d t} = 0$.

Esta equação diferencial é facilmente integrável, e, supondo que na primeira parte houve tempo suficiente para a corrente no circuito atingir o seu valor máximo, obtém-se a solução:

$$i = \frac{V_0}{R} e^{-\frac{R}{L}t}$$
 Equação (8.5)

Substituindo i, nas equações de \mathbf{v}_R e \mathbf{v}_L :

$$v_R = V_0 e^{-\frac{R}{L}t}$$
 e $v_L = -V_0 e^{-\frac{R}{L}t}$ Equações (8.6)

A equação (8.5) mostra que o indutor tenta impedir a variação da corrente quando a chave é mudada de posição. A corrente vai decaindo lentamente, mantendo o sentido que ela tinha quando a bateria estava conectada.

Para medir a constante de tempo indutiva do circuito, pode-se usar o tempo de meia-vida $T_{1/2}$, que é o tempo no qual a corrente (ou a tensão em $\bf R$) cai pela metade do seu valor inicial:

$$V_R\left(T_{\frac{1}{2}}\right) = V_0 \cdot exp\left(-T_{1/2} \cdot \frac{R}{L}\right) = \frac{V_0}{2}$$

$$exp\left(-T_{1/2}\cdot\frac{R}{L}\right) = \frac{1}{2}$$

Aplicando logaritmo neperiano (In) nos dois lados da equação acima nos fornece:

$$T_{1/2} = \frac{L}{R} \ln 2$$
 \Rightarrow $T_{1/2} = \tau \ln 2$ Equação (8.7)

CIRCUITO LIGADO NA CORRENTE ALTERNADA

Consideremos agora que o circuito **RL** ligado em série é alimentado por uma tensão alternada de forma senoidal $v_g = V_0$ $sen(\omega t + \phi)$. Logo, a corrente no circuito possui a forma $i = I_0$ $sen(\omega t)$. Aplicando a lei de Kirchhoff ao circuito da figura 8.2, obtemos:

Figura 8.2 – Circuito RL em série alimentado por um gerador de funções (tensão alternada).

$$V_0$$
 sen $(\omega t + \phi) = R I_0$ sen $\omega t + \omega L I_0 \cos \omega t$

Para obter os valores de I_0 e ϕ basta utilizar o mesmo procedimento usado para o filtro RC , de forma que

$$sen \omega t (V_0 \cos \phi - R I_0) + \cos \omega t (V_0 sen \phi - \omega L I_0) = 0$$

A relação é válida desde que os termos entre parênteses sejam nulos, logo:

$$V_0 \cos \phi = R I_0$$
 e $V_0 \operatorname{sen} \phi = \omega L I_0$ Equações (8.8)

O valor de
$$\phi$$
 é obtido dividindo-se **as equações 8.8:** $tg \ \phi = \frac{\omega \ L}{R}$ \Rightarrow $\phi = arc \ tg \left(\frac{\omega \ L}{R} \right)$.

Elevando-se ao quadrado as equações (8.8) e somando-as, obtemos o valor de Io:

$$V_0^2 (\cos^2 \phi + \sin^2 \phi) = [R^2 + (\omega L)^2]I_0^2$$

mas
$$(\cos^2 \phi + sen^2 \phi) = 1$$
, então: $I_0^2 = \frac{V_0^2}{R^2 + (\omega L)^2}$, ou seja,
$$I_0 = \frac{V_0}{\sqrt{R^2 + (\omega L)^2}}$$
 Equação (8.9)

onde I₀ é a amplitude (ou valor máximo) da corrente e V₀ é a amplitude da tensão no gerador.

Note que ωL tem dimensão de resistência (Ω) e depende da frequência. Esta grandeza recebe o nome de **Reatância Indutiva X**_L.

A **defasagem no tempo** entre a corrente no circuito e a tensão aplicada recebe o nome de **fase** e é representada por ϕ . Como a tensão no resistor é diretamente proporcional à corrente **i** então ϕ pode ser visto como a defasagem no tempo entre a tensão \mathbf{v}_R e a tensão aplicada \mathbf{v}_g . A tensão no resistor \mathbf{v}_R e tensão no indutor \mathbf{v}_L são dadas por

$$v_R = R I_0 = R I_0 \operatorname{sen} \omega t$$
 e $v_L = L \frac{di}{dt} = \omega L I_0 \cos \omega t = \omega L I_0 \operatorname{sen} (\omega t + \frac{\pi}{2})$

Os valores de pico das tensões no resistor e no indutor podem ser calculados usando a equação 8.9:

$$V_{R} = R I_{0} = \frac{V_{0} R}{\sqrt{R^{2} + (\omega L)^{2}}}$$
 e
$$V_{L} = V_{0} \omega \frac{L}{\sqrt{R^{2} + (\omega L)^{2}}} = \frac{V_{0}}{\sqrt{\frac{R^{2}}{(\omega L)^{2}} + 1}}$$
 Equações (8.10)

Analisando os limites de frequência, temos que:

- ightharpoonup Quando ${\bf \omega}$ tende para ${\bf 0}$ \longrightarrow $V_R=V_0$, $V_L=0$ e $\phi=0$
- ightharpoonup Quando $\mbox{\bf ω}$ tende para ∞ $\mbox{\bf \rightarrow}$ $V_R=0$, $V_L=V_0$ e $\phi=\frac{\pi}{2}$

O ângulo de defasagem ϕ_R entre a tensão no gerador e a tensão no resistor é dado por

$$\phi_R = -\arccos\left(\frac{V_R}{V_0}\right)$$

e o ângulo de defasagem ϕ_L entre a tensão no gerador V_G e a tensão no indutor \boldsymbol{V}_L é

$$\phi_L = arc \cos \left(\frac{V_L}{V_0} \right).$$

FREQUÊNCIA DE CORTE: Existe uma frequência chamada freqüência de corte $ω_c$, na qual a tensão de pico no indutor é igual à tensão de pico no resistor: V_R ($ω_c$) = V_L ($ω_c$) Utilizando as expressões de $\mathbf{V_R}$ e $\mathbf{V_L}$, em $ω_c$ teremos

$$\frac{V_0 R}{\sqrt{R^2 + (\omega_c L)^2}} = \frac{V_0}{\sqrt{\frac{R^2}{(\omega_c L)^2} + 1}}$$

Resolvendo esta igualdade:

$$\omega_c = \frac{R}{L}$$

ou, usando a relação entre freqüência **f** e freqüência angular $\omega \left(f = \frac{\omega}{2\pi} \right)$

$$f_c = \frac{R}{2\pi L}$$
 Equação (8.11)

Substituindo a expressão de \mathbf{f}_{c} em V_{R} (ω_{c}) = V_{L} (ω_{c}):

$$V_R(\omega_c) = V_L(\omega_c) = \frac{V_0}{\sqrt{2}} = 0.707 V_0$$

PROCEDIMENTO EXPERIMENTAL

Montaremos o circuito da figura 8.3, ajustando o gerador de sinais conforme o tipo de estudo que realizarmos. Trabalharemos com um indutor de (100±5)mH já incluso na caixa de montagens (protoboard). Este indutor possui uma resistência R_L de aproximadamente 65 Ω . Utilize um resistor R estipulado pelo professor. Nosso objetivo é estudar o comportamento de V_R e posteriormente V_L do ponto de vista temporal, através de uma onda quadrada e em função de um grande intervalo de frequências quando alimentados por uma onda senoidal. Um dos canais do osciloscópio deve ser mantido no gerador de sinais de forma a verificar que o valor de V_0 é mantido constante. Sempre que V_0 variar, ajuste o gerador para manter V_0^{PP} constante.

A) CIRCUITO RL – RESPOSTA TEMPORAL:

Devido ao fato deste circuito apresentar uma constante de tempo muito pequena (estime o valor de τ), não é possível acompanhar no multímetro os transientes de corrente e de tensão. As tensões serão medidas com o osciloscópio e a tensão de alimentação será fornecida por um gerador de sinais ajustado para onda quadrada com V_0^{PP} =2,0V. Ajustaremos o osciloscópio para medir primeiro V_R e depois V_L conforme ilustra a figura 8.3.

Para medir-se um componente, digamos R, mantemos um de seus extremos aterrado junto ao terra do osciloscópio. Para medir L, trocamos R e L de lugar.

Figura 8.3 – Circuito RL em série alimentado por uma onda quadrada. Nas medidas a serem realizadas, é importante manter as conexões relativas ao "terra" comuns ao gerador de sinais e ao osciloscópio. Desta maneira, a figura à esquerda representa o circuito para medir-se V_R . Para medir-se V_L , trocamos R e L de lugar (direita).

- **A.1**) A partir das figuras visualizadas no osciloscópio, desenhar as formas das tensões observadas, no resistor $v_R x$ t e no indutor $v_L X$ t.
- **A.2**) Medir a partir das figuras obtidas na tela do osciloscópio a meia vida do circuito $T_{1/2}$ e a partir destas, calcular as duas constantes de tempo τ .
- A.3) Comparar as duas constantes de tempo T. O que se pode concluir?
- **A.4**) Compare os valores experimental e teórico de $\tau \pm u(\tau)$.
- A.5) Nomeie como circuito integrador ou diferenciador as tensões de saída V_R e V_L . Para a solução deste problema, consulte os exercícios disponíveis da disciplina no *MOODLE*.

B) CIRCUITO RL – RESPOSTA EM FREQUÊNCIA

Ajuste a saída do gerador com uma função **senoidal** com V_0^{PP} **=4,0V.** Mude a frequência do gerador e observe a variação da tensão no osciloscópio. Escolha uma faixa de frequências com uma variação na tensão de pico-a-pico medida entre **0,4V** e **3,8V**. Verifique sempre o valor da tensão V_0^{PP} e ajuste quando for necessário.

B.1) Com o auxílio do osciloscópio, **meça** a tensão de **pico-a-pico** no resistor V_R^{PP} em função da **frequência f e** construa uma tabela de V_R^{PP} versus **f** com pelo menos **20** pontos. Na mesma tabela, coloque o valor do ângulo de fase ϕ_R entre V_R^{PP} e V_0^{PP} para cada frequência

Repita o procedimento, medindo a tensão V_L no indutor e calcule o ângulo de fase ϕ_L para cada frequência.

- **B.2**) Com base nas tabelas obtidas, construa em **uma folha** de papel **monolog**, os gráficos de V_R e V_L em função da frequência **f** (lance **f** em escala logarítmica na horizontal).
- **B.3**) A partir deste gráfico, encontre a frequência de corte f_C do circuito. Compare com o valor teórico estimado.
- **B.4**) Construa os gráficos de ϕ_R e ϕ_L em função da frequência **f** em **uma folha** de papel **mono-log**, com **f** no eixo **log** na horizontal. Marque $\mathbf{0}^{\mathbf{o}}$ na metade do eixo vertical.
- **B.5**) O que se pode concluir sobre o ângulo de fase entre V_R e V_L ?

A.2) Medidas no osciloscópio:

EXPERIMENTO 8 CIRCUITO RL

RESPOSTAS TEMPORAIS E EM FREQUÊNCIA

TURMA: ___ DATA: __/__/___ NOME RA RESUMO:_____ MATERIAL UTILIZADO (MARCA/MODELO quando for o caso): **RESULTADOS:** A) CIRCUITO RL – RESPOSTA TEMPORAL: **A.1**) Tensão de Saída V_R Tensão de Saída V_L CH1:____ CH2:____ T:____ CH1:____ CH2:____ T:____

Tensão de Saída V _R	T _{1/2} ±u(T _{1/2}):	τ±u(τ):
Tensão de Saída V _L	T _{1/2} ±u(T _{1/2}):	τ±u(τ):
A.3) Comparação das duas constantes de tempo:		

A.4) Confronto experimental e teórico:		
A.5) Em um circuito RL em Série:		
A saída V_R é chamada de circuito		
A Saída V_L é chamada de circuito		
B) CIRCUITO RL – RESPOSTA EM FREQUÊNCIA:		
B.1) Tabela com os valores de V_R , V_L , φ_R e φ_L em função da frequência.		
B.2) Gráficos de V_R e V_L em função da frequência f .		
B.3) Frequência de corte do circuito.		
$f_{C \text{ (experimental)}} =; f_{C \text{ (teórico)}} =$		
B.4) Gráficos de ϕ_R e ϕ_L em função da frequência f .		
B.5) Conclusão a respeito do ângulo de fase entre V _R e V _L :		
CONCLUSÕES		