Review of Basic Electronics

Mark Colton

Department of Mechanical Engineering
Brigham Young University

Voltage, Current, and Power

Voltage:

- Electromotive force that drives flow of electrons
- Measured relative to some point
- Fluid analogy: pressure
- Unit: volts (V)

• Current:

- Rate of flow of electrons
- Fluid analogy: flow rate
- Unit: ampere/amp (A)

Power:

- Rate of energy expenditure/dissipation
- -P=VI
- Unit: watts (W)

The Laws

- Kirchoff's Current Law (KCL):
 - The sum of all currents entering and exiting a node is zero

$$\sum_{k=1}^{N} I_k = 0$$

- Kirchoff's Voltage Law (KVL):
 - The sum of the voltage drops around a closed loop in a circuit is zero

$$\sum_{k=1}^{N} V_k = 0$$

Resistors

- Dissipate energy
- Resistance in Ohms (Ω)
- Trades current for voltage or vice versa
- Most used and lowest cost discrete passive component

Ohm's Law

$$V = RI$$

$$P = VI = I^2R = \frac{V^2}{R}$$

My Favorite Resistor Applications: Current Limiter

- Integrated circuits (and other components) can only sink or source a finite amount of current
- Use resistors to limit the current
- Example: Driving an LED with the digital output of an IC
 - Digital output generates 5 V, but can only source 10 mA of current
 - LED has a forward voltage drop of 2 V
 - Select current-limiting resistor

My Favorite Resistor Applications: Voltage Divider

$$V_{out} = \frac{R_2}{R_1 + R_2} V_{in}$$

- Used to set a voltage level
- Big assumption: No current flowing out at V_{out} (no I_{out})
- Example: Set the pin on a microcontroller to 1.8 V, given a 5 V power supply

My Favorite Resistor Applications: Others

- Pull-up and pull-down
- Biasing
- Set gains in amplifiers
- Filter time constants
- Measure currents
- Discharge capacitors

Real Resistors

http://commons.wikimedia.org/wiki/File:Arduino_led-1.jpg

http://commons.wikimedia.org/wiki/File:Resistors.jpg

Resistor Specs

- Resistance
- Power dissipation
- Tolerance
- Temperature coefficient
- Parasitic inductance/capacitance
- Example: Choose a resistor to limit the current flow to 20 mA

Capacitors

- Store charge
- Capacitance in Farads (F)
- Change in voltage causes current

$$I = C \frac{dV}{dt}$$

 Medium cost discrete passive component

My Favorite Capacitor Applications: Bypass Capacitors

- Bypass capacitors smooth out power source
- Capacitors store charge that can be delivered to respond to transient changes
- Bulk bypassing:
 - Placed at circuit's power connection
 - Large capacitors (10's-100's μF)
 - Aluminum electrolytic or tantalum
- Local bypassing:
 - Placed at each integrated circuit
 - As close to power and ground pins as possible
 - Small capacitors (0.01-0.1 μ F)
 - Ceramic

My Favorite Capacitor Applications: AC Coupling

 Only lets the varying component of a signal pass through – sort of like highpass filtering

Real Capacitors

Туре	Capacitance range	Maximum voltage	Accuracy	Temperature stability	Leakage	Comments
Mica	1pF-0.01 <i>μ</i> F	100-600	Good		Good	Excellent; good at RF
Tubular ceramic	0.5pF-100pF	100-600		Selectable		Several tempcos (including zero)
Ceramic	10pF–1 μ F	50-30,000	Poor	Poor	Moderate	Small, inexpen- sive, very popular
Polyester (Mylar)	0.001 μ F–50 μ F	50-600	Good	Poor	Good	Inexpensive, good, popular
Polystyrene	10pF–2.7 <i>μ</i> F	100–600	Excellent	Good	Excellent	High quality, large; signal filters
Polycarbonate	100pF–30 μ F	50-800	Excellent	Excellent	Good	High quality, small
Polypropylene	100pF–50 μ F	100–800	Excellent	Good	Excellent	High quality, low dielectric absorption
Teflon	1000pF–2 <i>μ</i> F	50–200	Excellent	Best	Best	High quality, lowest dielectric absorption
Glass	10pF-1000pF	100-600	Good		Excellent	Long-term stability
Porcelain	100pF–0.1 μ F	50–400	Good	Good	Good	Good long-term stability
Tantalum	0.1μ F–500 μ F	6–100	Poor	Poor	- -	High capaci- tance; polarized, small; low inductance
Electrolytic	0.1 μ F–1.6F	3–600	Terrible	Ghastly	Awful	Power-supply filters; polarized; short life
Double layer	0.1F-10F	1.5–6	Poor	Poor	Good	Memory backup; high series resistance
Oil	0.1 μ F–20 μ F	200–10,000			Good	High-voltage filters; large, long life
Vacuum	1pF-5000pF	2000-36,000			Excellent	Transmitters

My Favorite Capacitor Applications: Analog Filters

Low-Pass Filter

High-Pass Filter

$$\omega = \frac{1}{RC}$$