Difference Equations

SEBASTIAN THOMAS

Differential Equations

The 'source code' of the universe is written in the language of differential equations i.e mathematical relationships between derivatives

Name	Describes
Schrödinger's Equation	Evolution of a QM wave function
Newton's 2 nd Law	Motion of macroscopic objects
Navier-Stokes Equation	Behavior of Fluids
Einstein's Field Equations	Geometry of spacetime

Differential Equations

Not all differential equations have analytical solutions!

$$ml^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -mgl \sin(\theta)$$

$$ml^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -mgl\theta$$

$$ml^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -mgl \sin(\theta)$$

$$ml^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -mgl \sin(\theta)$$

VS

$$ml^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -mgl\theta$$

$$ml^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -mgl \sin(\theta)$$

VS

$$ml^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -mgl\theta$$

1D Heat Equation

1D Heat Equation

"Boundary Condition"

$$T_i^{n+1} = T_i^n + \left(\frac{\alpha \Delta t}{\Delta x^2}\right) \left(T_{i+1}^n - 2T_i^n + T_{i-1}^n\right)$$

Code Extension

- 1. Rerun the code with different timestep sizes
- Replace the second-order accurate spatial scheme with a fourth-order spatial scheme

Explicit vs Implicit Methods

SEBASTIAN THOMAS

$$T_i^{n+1} = T_i^n + \left(\frac{\alpha \Delta t}{\Delta x^2}\right) \left(T_{i+1}^{n+1} - 2T_i^{n+1} + T_{i-1}^{n+1}\right)$$

$$-KT_{i-1}^{n+1} + (1+2K)T_i^{n+1} - KT_{i+1}^{n+1} = T_i^n$$

Implicit method updates have multiple 'coupled' unknowns

1D Heat Equation

"Boundary Condition"

$$-KT_{i-1}^{n+1} + (1+2K)T_i^{n+1} - KT_{i+1}^{n+1} = T_i^n$$

When
$$i = 2$$
:

When
$$i = 2$$
: $-KT_1^{n+1} + (1 + 2K)T_2^{n+1} - KT_3^{n+1} = T_2^n$

When
$$i = 3$$
:

When
$$i = 3$$
: $-KT_2^{n+1} + (1 + 2K)T_3^{n+1} - KT_4^{n+1} = T_3^n$

When
$$i = 4$$
:

When
$$i = 4$$
: $-KT_3^{n+1} + (1 + 2K)T_4^{n+1} - KT_5^{n+1} = T_4^n$

When
$$i = 5$$

When
$$i = 5$$
: $-KT_4^{n+1} + (1 + 2K)T_5^{n+1} - KT_6^{n+1} = T_5^n$

When
$$i = 6$$
:

When
$$i = 6$$
: $-KT_5^{n+1} + (1 + 2K)T_6^{n+1} - KT_7^{n+1} = T_6^n$

When
$$i = 7$$
:

When
$$i = 7$$
: $-KT_6^{n+1} + (1 + 2K)T_7^{n+1} - KT_8^{n+1} = T_7^n$

 T_2^{n+1} 1 + 2K $T_2^n + KT_1$ -K T_3^{n+1} T_3^n -K1 + 2K-K T_4^{n+1} T_4^n 1 + 2K - K0 -K T_5^{n+1} T_5^n 0 -K1 + 2K-K T_6^{n+1} T_6^n 1 + 2K0 -K T_7^{n+1} -K 1 + 2K $T_7^n + KT_8$

Von Neumann Stability

SEBASTIAN THOMAS

Explicit

$$T_i^{n+1} = T_i^n + \left(\frac{\alpha \Delta t}{\Delta x^2}\right) \left(T_{i+1}^n - 2T_i^n + T_{i-1}^n\right)$$

Why go through the effort of creating an implicit scheme when the explicit approach is so much easier?

Implicit

$$T_i^{n+1} = T_i^n + \left(\frac{\alpha \Delta t}{\Delta x^2}\right) (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$

Recurrence Relations

$$F_{n+2} = F_{n+1} + F_n$$

$$X_{n+1} = r^* X_n (1 - X_n)$$

$$X_{n+2} = \frac{5}{2}X_{n+1} + \frac{3}{2}X_n$$

$$x_n = a(-2)^{-n} + b(3)^n$$

Representing a number on a finite precision machine often requires truncation which introduces roundoff error

$$X_{n+2} = \frac{5}{2} X_{n+1} + \frac{3}{2} X_n$$

$$X_n = a(-2)^{-n} + b(3)^n$$

 $\sqrt{2} = 1.4142135623730950488016887242096980785696718753769480731766797379907324784621...$

$$x_0 = \sqrt{2} + \varepsilon_0$$

$$x_1 = -0.5\sqrt{2} + \varepsilon_1$$

$$a(-2)^{-0} + b(3)^0 = \sqrt{2} + \varepsilon_0$$

$$a(-2)^{-1} + b(3)^1 = -0.5\sqrt{2} + \varepsilon_1$$

$$a \qquad \left(\sqrt{2} + \varepsilon_0\right) - \left(\frac{\varepsilon_0 + 2\varepsilon_1}{7}\right)$$

$$b \qquad \left(\frac{\varepsilon_0 + 2\varepsilon_1}{7}\right)$$

$$x_n = a(-2)^{-n} + b(3)^n$$

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \alpha \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

T

Approximate solution on a machine with finite precision

 \boldsymbol{E}

Exact solution of the difference equation

3

Roundoff error, *E* - *T*

$$\frac{(E_i^{n+1} - \varepsilon_i^{n+1}) - (E_i^n - \varepsilon_i^n)}{\Delta t} = \alpha \frac{(E_{i+1}^n - \varepsilon_{i+1}^n) - 2(E_i^n - \varepsilon_i^n) + (E_{i-1}^n - \varepsilon_{i-1}^n)}{\Delta x^2}$$

$$\frac{E_i^{n+1} - E_i^n}{\Delta t} - \frac{\varepsilon_i^{n+1} - \varepsilon_i^n}{\Delta t} = \alpha \frac{E_{i+1}^n - 2E_i^n + E_{i-1}^n}{\Delta x^2} - \alpha \frac{\varepsilon_{i+1}^n - 2\varepsilon_i^n + \varepsilon_{i-1}^n}{\Delta x^2}$$

 \boldsymbol{E}

Exact solution of the difference equation

$$\frac{E_i^{n+1} - E_i^n}{\Delta t} = \alpha \frac{E_{i+1}^n - 2E_i^n + E_{i-1}^n}{\Delta x^2}$$

$$\frac{\varepsilon_i^{n+1} - \varepsilon_i^n}{\Delta t} = \alpha \frac{\varepsilon_{i+1}^n - 2\varepsilon_i^n + \varepsilon_{i-1}^n}{\Delta x^2}$$

The roundoff error satisfies the difference equation!

Any variation can be decomposed into an infinite series of sinusoids

$$\boldsymbol{\varepsilon}^n = \sum_{1}^{\infty} A_k e^{jkx}$$

$$\varepsilon^n = A_k e^{jkx}$$

$$\boldsymbol{\varepsilon}^{n+1} = (A_k e^{jkx}) e^{a\Delta t}$$

"Make sure the amplification factor stays below ONE!"

Consider just one component of the Fourier decomposition

A straightforward derivation to show that stability requires $(\alpha \Delta t / \Delta x^2) <= 1/2$

ϵ_i^n	$A_k e^{jkx}$
ϵ_{i-1}^n	$A_k e^{jk(x-\Delta x)}$
ε_{i+1}^n	$A_k e^{jk(x+\Delta x)}$
ε_i^{n+1}	$(Ake^{jkx})e^{a\Delta t}$

f(x-ct)

1D (One-Way) Wave Equation

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -c \frac{u_i^n - u_{i-1}^n}{\Delta x}$$

A straightforward derivation to show that stability requires $CFL \le 1$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -c \frac{u_i^n - u_{i-1}^n}{\Delta x}$$

$$u_{i-1}^n = u_i^n - \frac{\partial u}{\partial x} \Delta x + \frac{\partial^2 u}{\partial x^2} \frac{(\Delta x)^2}{2!} - \frac{\partial^3 u}{\partial x^3} \frac{(\Delta x)^3}{3!} + \dots$$

$$u_i^{n+1} = u_i^n + \frac{\partial u}{\partial t} \Delta t + \frac{\partial^2 u}{\partial t^2} \frac{(\Delta t)^2}{2!} + \frac{\partial^3 u}{\partial t^3} \frac{(\Delta t)^3}{3!} + \dots$$

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x}$$
 Equation we set out to solve

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} + c \frac{\partial^2 u}{\partial x^2} \frac{(\Delta x)}{2!} (1 - CFL)$$

Equation we are actually solving (i.e the modified equation)

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} + c \frac{\partial^2 u}{\partial x^2} \frac{(\Delta x)}{2!} (1-CFL)$$

Assume solution is summation of terms like $(A_k e^{jkx})e^{\alpha t}$

$$\alpha(A_k e^{jkx})e^{\alpha t} = -cjk(A_k e^{jkx})e^{\alpha t} + c(jk)^2(A_k e^{jkx})e^{\alpha t} \frac{(\Delta x)}{2!}(1 - CFL)$$

$$\alpha = -cjk - ck^2 \frac{(\Delta x)}{2!} (1 - CFL)$$

$$u(x,t) = A_k e^{jk(x-ct)} e^{-(1-CFL)(ck^2)\Delta x/2}$$

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} + R \frac{\partial^{n} u}{\partial x^{n}}$$

Assume solution is summation of terms like $(A_{\nu}e^{jkx})e^{\alpha t}$

$$\alpha(A_k e^{jkx})e^{\alpha t} = -cjk(A_k e^{jkx})e^{\alpha t} + R(jk)^n(A_k e^{jkx})e^{\alpha t}$$

$$\alpha = -cjk + R(jk)^n$$

$$u(x,t) = A_k e^{jk(x - [c \pm (Rk^n)]t)}$$

$$u(x,t) = A_k e^{jk(x-ct)} e^{\pm (Rk^n)}$$

Wave speeds are going to be 'wrong' (DISPERSIVE ERROR)

$$\alpha = -cjk + R(jk)^n$$

$$u(x,t) = A_k e^{jk(x - [c \pm (Rk^n)]t)}$$

$$u(x,t) = A_k e^{jk(x-ct)} e^{\pm (Rk^n)}$$

Wave amplitudes are going to be 'wrong' (DISSIPATIVE ERROR)

MacCormack's Method

An example of a predictor-corrector method that produces 'dispersive error'

$$\left(\frac{\partial u}{\partial t}\right)_{av} = \frac{1}{2} \left\{ \left(\frac{\partial u}{\partial t}\right)_{c1} + \left(\frac{\partial u}{\partial t}\right)_{c2} \right\}$$

$$u_i^{n+1} = u_i^n + \left(\frac{\partial u}{\partial t}\right)_{\text{av}} \Delta t$$

$$\frac{1}{2} \left\{ \left(\frac{\partial u}{\partial t}\right)_{\text{c1}} + \left(\frac{\partial u}{\partial t}\right)_{\text{c2}} \right\}$$

$$-c \frac{u_i^n - u_{i-1}^n}{\Delta x}$$

$$\tilde{u}_i^{n+1} = u_i^n - \left(\frac{c\Delta t}{\Delta x}\right) \left(u_i^n - u_{i-1}^n\right)$$

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} + \frac{c(\Delta x)^2}{6} \frac{\partial^3 u}{\partial x^3} - \frac{c^3(\Delta t)^2}{6} \frac{\partial^3 u}{\partial x^3} + \text{H.O.T}$$

MacCormack's method is second order accurate in time and space!

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} + \frac{c(\Delta x)^2}{6} \frac{\partial^3 u}{\partial x^3} \left[1 - (CFL)^2 \right] + \text{H.O.T}$$

Dispersive quality of MacCormack will vanish when CFL = 1