Fonctions exponentielles

EL KYAL MOHAMED

> Fonction exponentielle népérienne :

• <u>Définition</u>:

La fonction **exponentielle népérienne**, notée \exp , est la fonction réciproque de la fonction \ln . On pose $: \forall x \in \mathbb{R} \quad \exp \ x = e^x$

Conséquences et propriétés :

$\forall x \in \mathbb{R} \qquad e^x > 0$ $\forall x \in \mathbb{R} \qquad \ln e^x = x$	$\forall x \in \mathbb{R} \forall y \in \mathbb{R} e^x \times e^y = e^{x+y}$
$\forall x \in \left]0, +\infty\right[e^{\ln x} = x$	$\forall x \in \mathbb{R} \qquad e^x \stackrel{r}{=} e^{rx} \qquad r \in \mathbb{Q}$
$\forall x \in \mathbb{R} \forall y \in \left] 0; +\infty \right[$ $e^x = y \Leftrightarrow x = \ln y$	$\forall x \in \mathbb{R} \qquad \frac{1}{e^x} = e^{-x}$
$\forall x, y \in \mathbb{R}^2 \qquad e^x = e^y \Leftrightarrow x = y$ $e^x > e^y \Leftrightarrow x > y$	$\forall x \in \mathbb{R} \forall y \in \mathbb{R} \frac{e^x}{e^y} = e^{x-y}$

• Domaine de définition :

$m{f}$ une fonction numérique de la variable réelle $m{x}$ définie par :	Domaine de définition de $f:$
$f x = e^x$	$D_f = \mathbb{R}$
$f x = e^{u x}$	$D_f = x \in \mathbb{R} / x \in D_u$

Limites usuelles :

$$\lim_{x \to +\infty} e^x = +\infty \qquad \lim_{x \to +\infty} \left(\frac{e^x}{x^n} \right) = +\infty$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to -\infty} x^n e^x = 0$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

• Continuité:

La fonction $x \mapsto e^x$ est continue sur l'intervalle $\mathbb R$

Si u est une fonction continue sur un intervalle I alors la fonction $x \mapsto e^{u \ x}$ est continue sur I

Dérivabilité :

la fonction
$$x\mapsto e^x$$
 est dérivable sur $\mathbb R$ et on a: $\forall x\in\mathbb R$ $e^x=e^x$

Si u est une fonction est dérivable sur un intervalle I alors la fonction $x \mapsto e^{u \cdot x}$ est dérivable sur I

et on a:
$$\forall x \in I$$
 $\left(e^{u\ x}\right)' = u'\ x\ \times e^{u\ x}$

• Représentation graphique de exp :

ightharpoonup Fonction exponentielle de base a \in $]0;+\infty[$:

• <u>Définition</u>:

La fonction exponentielle de base a est la fonction définie par :

$$\forall x \in \left] 0; +\infty \right] \qquad a^x = e^{x \ell \log x}$$

• Conséquences et propriétés :

$\forall x; y \in \mathbb{R}^2 \qquad a^x \times a^y = a^{x+y}$	$\forall x \in \mathbb{R} a^x = e^{x \ln a}$ $ \log_a \ a^x = x$
$\forall x \in \mathbb{R} \qquad a^x = a^{rx} \qquad r \in \mathbb{Q}$	$\forall x \in]0; +\infty[\qquad a^{\ell og_a \ x} = a$
$\forall x \in \mathbb{R} \qquad \frac{1}{a^x} = a^{-x}$	$\forall x; y \in \mathbb{R}^2 \qquad a^x = a^y \Leftrightarrow x = y$
$\forall x; y \in \mathbb{R}^2 \qquad \frac{a^x}{a^y} = a^{x-y}$	$\forall x \in \mathbb{R} \qquad \forall y \in \left] 0; +\infty \right[$ $a^x = y \Leftrightarrow x = \ell o g_a \ y$

0 < a < 1	a>1	
$a^x > a^y \Leftrightarrow x < y$	$a^x > a^y \Leftrightarrow x > y$	
$\lim_{x \to +\infty} a^x = 0$	$\lim_{x \to +\infty} a^x = +\infty$	
$\lim_{x \to -\infty} a^x = +\infty$	$\lim_{x \to -\infty} a^x = 0$	
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$		
$a^{x'} = \ln a \times a^x$		