

VGGT: Visual Geometry Grounded Transformer

Y Best award

Paper Review

2025.09.04

Changseon Yu

Contents

- 1. Introduction
- 2. Purpose
- 3. Methodology
- 4. Result

5. Conclusion

Background(1)

3D reconstruction

• The process of creating a 3D model of a target object or scene using 2D images or other data (eg. Laser scan)

Robotics, Virtual Reality (VR), Autonomous Driving

Background(1)

❖ 3D reconstruction – Passive

Background(1)

❖ 3D reconstruction – Active

- A technique of using additional light
- Difficult to collect data because of using other devices like lasers and make data
- Reliability is high due to low impact on surrounding environment

Background(2)

Tracking-Any-Point

- Track points of interest throughout the video sequence, including dynamic movements
- Predict the 2D positions corresponding to these points in all different frames (Input video & 2D query points)

Background(2)

Tracking-Any-Point

- Track points of interest throughout the video sequence, including dynamic movements
- Predict the 2D positions corresponding to these points in all different frames (Input video & 2D query points)

Limitation of prior works

- Increasing complexity and computational cost of iterative optimization (eg. Bundle Adjustment)
- Processing images in pairs → Reconfigure multiple images with post-processing

Limitation of prior works

- All large scale 3D neural networks, but models each focused on a single 3D task
- Transformer based large scale foundation model

Method

❖ Overall Architecture

❖ Step1. – Input

- Input: N RGB image sequences as inputs (can be entered in any order)
- Input images are converted to tokens through Pretrained DINO
- Add a camera token to each image for camera parameter prediction

❖ Step1. – Input

- Input: N RGB image sequences as inputs (can be entered in any order)
- Input images are converted to tokens through Pretrained DINO
- Add a camera token to each image for camera parameter prediction

Step2. – Alternating Attention(AA)

- Perform attention on all tokens in all frames
- Synthesizes information between images, and learn relationships between images

Step3. – Prediction

- Camera Head : Predict of the camera's internal/external parameters from the camera token
- DPT: Perform Dense Prediction, such as Depth Map, Point Map, etc. from image token

Training Losses

$$\mathcal{L} = \mathcal{L}_{camera} + \mathcal{L}_{depth} + \mathcal{L}_{pmap} + \lambda \mathcal{L}_{track}.$$

Camera Loss

$$\mathcal{L}_{ ext{camera}} = \sum_{i=1}^{N} \left\| \hat{\mathbf{g}}_i - \mathbf{g}_i \right\|_{\epsilon}$$

Depth map Loss

$$\mathcal{L}_{\text{depth}} = \sum_{i=1}^{N} \|\Sigma_i^D \odot (\hat{D}_i - D_i)\| + \|\Sigma_i^D \odot (\nabla \hat{D}_i - \nabla D_i)\| - \alpha \log \Sigma_i^D$$

Point map loss

$$\mathcal{L}_{pmap} = \sum_{i=1}^{N} \|\Sigma_i^P \odot (\hat{P}_i - P_i)\| + \|\Sigma_i^P \odot (\nabla \hat{P}_i - \nabla P_i)\| - \alpha \log \Sigma_i^P$$

Tracking loss

$$\mathcal{L}_{\text{track}} = \sum_{j=1}^{M} \sum_{i=1}^{N} \|\mathbf{y}_{j,i} - \hat{\mathbf{y}}_{j,i}\|$$

Visualization of Point Map Estimation

- Point map visualization generated by the VGGT model
- VGGT works well in different kinds of scenes, such as buildings, indoor props, and outdoor environments
- Complex textures such as asphalt are also excellent

Camera Pose Estimation

- Red : Existing optimization-based method: longer than 10 seconds
- Blue: slightly run time improved model but still take a long time
- Green: Time has gotten a lot faster but AUC score is too low
- Purple (Our model): Runtime is very fast. + Bundle adjustment slows down time but increases AUC socre

Methods	Re10K (unseen) AUC@30↑	CO3Dv2 AUC@30↑	Time
Colmap+SPSG [92]	45.2	25.3	∼ 15s
PixSfM [66]	49.4	30.1	> 20s
PoseDiff [124]	48.0	66.5	$\sim 7s$
DUSt3R [129]	67.7	76.7	~ 7s
MASt3R [62]	76.4	81.8	$\sim 9s$
VGGSfM v2 [125]	78.9	83.4	∼ 10s
MV-DUSt3R [111] [‡]	71.3	69.5	~ 0.6s
CUT3R [127] [‡]	75.3	82.8	~ 0.6s
FLARE [156] [‡]	78.8	83.3	$\sim 0.5s$
Fast3R [141] [‡]	72.7	82.5	\sim 0.2s
Ours (Feed-Forward)	<u>85.3</u>	88.2	\sim 0.2s
Ours (with BA)	93.5	91.8	~ 1.8s

❖ Dense MVS Estimation

- 3D reconstruction task using multi view stereo images
- Competitive in performance with the latest MVS methods, even if you don't know the actual camera parameter.

Known GT camera	Method	Acc.↓	Comp.↓	Overall↓
/	Gipuma [40]	0.283	0.873	0.578
✓	MVSNet [144]	0.396	0.527	0.462
✓	CIDER [139]	0.417	0.437	0.427
✓	PatchmatchNet [121]	0.427	0.377	0.417
✓	MASt3R [62]	0.403	0.344	0.374
✓	GeoMVSNet [157]	0.331	0.259	0.295
Х	DUSt3R [129]	2.677	0.805	1.741
Х	Ours	0.389	0.374	0.382

Table 2. **Dense MVS Estimation on the DTU [51] Dataset.** Methods operating with known ground-truth camera are in the top part of the table, while the bottom part contains the methods that do not know the ground-truth camera.

Visualization of Rigid and Dynamic Point Tracking

- No matter input images sequence
- Dynamic: Follow the Keypoint's trajectory

Figure 5. Visualization of Rigid and Dynamic Point Tracking. Top: VGGT's tracking module \mathcal{T} outputs keypoint tracks for an unordered set of input images depicting a static scene. Bottom: We finetune the backbone of VGGT to enhance a dynamic point tracker CoTracker [56], which processes sequential inputs.

Conclusion

Limitation

- Does not support fisheye or panoramic images
- Performance degrades at extreme input rotation
- It can handle minor non-rigid body movements, but fails in scenes with large variations

https://github.com/facebookresearch/vg

Conclusion

• A feedforward neural network that can directly estimate all key 3D scene properties for hundreds of input views

State-of-the-art performance in camera parameter estimation, multi-view depth estimation, dense point cloud reconstruction, and

3d point tracking

Code

VGGT : Visual Geometry Grounded Transformer

감사합니다.

End of Document

