CEE384

Interpolation

 $Interpolation\ of\ discrete\ datasets$

ARIZONA STATE UNIVERSITY

Brian Badahdah

Updated: October 12, 2018

Contents

1	Quadratic Splines		
	1.1	Continuous Functions	1
	1.2	Smooth Functions	2

1 Quadratic Splines

A quadratic spline is a set of piecewise quadratic functions which intersect all points in a dataset. There are three conditions that mathematically govern these functions. The first condition is that the functions must be *continuous*. The second condition is that the functions must be *smooth*, meaning that the derivatives are continuous.

There are 3n unknowns, where n is the number of data points in the dataset. This is because there is an a_i , b_i , and c_i , for each i data point. We will look at a particular example with 4 points (shown in table 1), and three connecting splines.

Table 1: Example dataset for quadratic spline

\boldsymbol{x}	x_0	x_1	x_2	x_3
y	$f(x_0)$	$f(x_1)$	$f(x_2)$	$f(x_3)$

Figure 1: Example dataset plot with splines

1.1 Continuous Functions

The spline equations should be continuous and go through all the points in the dataset. This means that the

$$f(x) = \begin{cases} a_1 x^2 + b_1 x + c_1 & x_0 < x < x_1 \\ a_2 x^2 + b_2 x + c_2 & x_1 < x < x_2 \\ a_3 x^2 + b_3 x + c_3 & x_2 < x < x_3 \end{cases}$$
(1)

The first spline equation must be equal at the start of the interval, x_1 , to the value of dataset $f(x_0)$. As an equation this is:

$$f(x_0) = a_1 x_0^2 + b_1 x_0 + c_1 (2)$$

At the point, x_1 , the first spline equation must be equal to the output value from the dataset, $f(x_1)$. The second equation must *also* be equal to this. Therefore this generates two additional equations:

$$f(x_1) = a_1 x_1^2 + b_1 x_1 + c_1 (3)$$

$$f(x_1) = a_2 x_1^2 + b_2 x_1 + c_2 (4)$$

At the second data point, x_2 , the second and thrid spline must be equal to $f(x_2)$. This generates two additional equation.

$$f(x_2) = a_2 x_2^2 + b_2 x_2 + c_2 (5)$$

$$f(x_2) = a_3 x_2^2 + b_3 x_2 + c_3 (6)$$

Finally, the last spline must go through the last point, generating one more continuity equation:

$$f(x_3) = a_3 x_3^2 + b_3 x_3 + c_3 (7)$$

This results in 6 equations total leaving 3 more unknowns that must be found. To generalize this pattern: for every n points the continuity condition generates 2(n-1) equations.

1.2 Smooth Functions

Pseudocode

- 1. Define dataset or take dataset as input if programmed as a stand alone function
- 2. Initialize **A** as a matrix of zeros (3n,3n)
- 3. Loop through number of points and use continuous function information
 - (a) Set values for first equation
- 4. Loop through number of points and use continuous derivatives information
 - (a) Use interior points

Brian Badahdah

2

Brian Badahdah 3