

ခ်က္ကာနား ទូមခ်ိန္မာ

រយៈពេល: ៩០នានី

ពិឆ្ចុ: ៧៥

I. (90 ពិឆ្នុ)

- **ទា**. ដូចម្ដេចដែលហៅថាម៉ូទ័រចំហេះក្នុង និងចំហេះក្រៅ? **ខ**. ដូចម្ដេចដែលហៅថារលកតម្រុត ឬរលកលីនេអ៊ែរ?
- II. (១០ ចិន្ត្) គណនាមាឌធុងដែលផ្ទុកឧស្ម័នអុកស៊ីសែន 9.6g នៅសម្ពាធ $10^5 Pa$ និងសីកុណ្ណភាព 300 K។ ថេរសកលនៃឧស្ម័ន $R=8.31 J/mol\cdot K$ និងម៉ាសម៉ូលនៃអុកស៊ីសែនគឺ 32 g/mol។
- III. (១០ ពីខ្លុ) លំយោលពីរមានទិសដៅ និងប្រេកង់ដូចគ្នាបង្កើតបានជាលំយោលតម្រុតដែលលំយោលនីមួយៗមានសមីការ $y_1=10\sin{(100\pi t)}$ (cm) និង $y_2=10\sin{\left(100\pi t+rac{\pi}{3}
 ight)}$ (cm) ។
 - **ទា**. សរសេរសមីការតម្រូតនៃលំយោលទាំងពីរខាងលើ។
 - ខ. ចូរកំណត់អំព្លីទុត ខ្ទប ប្រេកង់ និងមុំផាសដើមនៃលំយោលតម្រួតនេះ។
- IV. (១៥ កិន្តុ) គេធ្វើឲ្យរលកពីរមានទិសដៅផ្ទុយគ្នា ដាលកាត់មជ្ឈដ្ឋានតែមួយបង្កើតបានជារលកជញ្ជ្រំមួយ។ សមីការ រលកនីមួយៗគឺ៖ $y_1=4.0\sin{(3.0x-2.0t)}$ (cm) និង $y_2=4.0\sin{(3.0x+2.0t)}$ (cm)។
 - 🥱. គណនាបម្លាស់ទីអតិបរមា របស់សមីការចលនារលកនៅត្រង់ x = 2.3cm។
 - ១. កណនាទីតាំងថ្នាំងត្រង់អំព្លីទុតស្មើសូន្យ និងពោះត្រង់អំព្លីទុតអតិបរមារបស់សមីការចលនារលក។ បើរលកចាប់ផ្តើមដាលពីទីតាំងថ្នាំង x = 0។ គេឲ្យៈ sin 6.9 = 0.5775
- v. (១៥ តិន្ទុ) ម៉ូទ័រម៉ាស៊ូតមួយទទួលកម្ដៅ 3.83MJ។ វាមានទិន្នផលកម្ដៅ 0.45។
 - 😝. គណនាកម្មន្តមេកានិចដែលផ្តល់ដោយពិស្តុង។
 - តើកម្ដៅដែលបញ្ចេញទៅក្នុងបរិយាកាសមានតម្លៃប៉ុន្មាន?
 - 🕿. ទិន្នផលគ្រឿងបញ្ចូនគឺ ០.85។ គណនាកម្មន្តដែលបញ្ចូនដោយភ្លៅម៉ូទ័រ។
- VI. (១៥ កិទ្ចុ) ក្នុងស៊ីឡាំងមួយមានឧស្ម័នបរិសុទ្ធម៉ូណូអាតូម $1.0 \mathrm{mol}$ នៅសីតុណ្ហភាព $27 ^{\circ}\mathrm{C}$ ។ ដោយរក្សាសីតុណ្ហភាពឲ្យ ថេរ ឧស្ម័ននោះរីកមាឌពី $\mathrm{V_1} = 300 \mathrm{dm}^3$ ទៅ $\mathrm{V_2}$ ។ គេឲ្យ $\mathrm{R} = 8.31 \mathrm{J/mol}\mathrm{K}$ ។
 - 🤧 គណនាបម្រែបម្រួលថាមពលក្នុងនៃឧស្ម័ន។
 - កម្មន្តដែលបំពេញដោយឧស្ម័នគឺ 997.2J។ គណនាកម្ដៅស្រួបដោយប្រព័ន្ធ។
 - pprox. គណនាមាឌស្រេច V_2 នៃឧស្ម័ន។ គេឲ្យ $\ln 1 = 0$, $\ln 1.5 = 0.40$, $\ln 2 = 0.69$

ម្រែធ្យួខនស្គមលើតខ្លួរ ស្គាត់ខ្លួរ ២(ខ្លួនស្គាស្ត្រពិត)

ခ်က္ကာနာ: န့ဗခ်ီအျာ

រយៈពេល: ៩០នានី

ពិឆ្ច: ៧៥

អង្រាន់លោ

I. (90 ពិឆ្នូ)

- 🛪. ម៉ូទ័រចំហេះក្នុង និងម៉ទ័រចំហេះក្រៅ
 - ម៉ូទ័រចំហេះក្រៅ ជាប្រភេទម៉ូទ័រដែលបន្ទប់ចំហេះស្ថិតនៅក្រៅកន្លែង ដែលកម្ដៅត្រូវបានធ្វើទៅជា កម្មន្ត។
 - ម៉ទ័រចំហេះក្នុង ជាប្រភេទម៉ូទ័រដែលបន្ទប់ចំហេះស្ថិតនៅក្នុងកន្លែង ដែលកម្ដៅត្រូវបានធ្វើទៅជា កម្មន្ត។
- ១. រលកតម្រក ឬរលកលីនេអ៊ែរ កើតមានកាលណារលកពីរ ឬច្រើនដាលឆ្លងកាត់ក្នុងមជ្ឈដ្ឋានតែមួយ បម្លាស់ទីសរុប រាល់ចំណុចណាក៏ដោយនៃរលក ស្មើនឹងផលបូកវ៉ិចទ័រនៃបណ្ដាចំណុចបម្លាស់ទីរលកទោលទាំងនោះ។
- II. (១០ តិន្ទុ) គណនាមាឌធុងដែលផ្ទុកឧស្ម័នអុកស៊ីសែន

តាមរូបមន្ត :
$$PV = nRT$$
 នោះ $V = \frac{nRT}{P}$

ព្រែ :
$$n = \frac{m}{M}$$

ពេប្បន
$$: V = \frac{mRT}{PM}$$

ដោយ :
$$P = 10^5 Pa$$
, $m = 9.6g$, $R = 8.31 J/mol \cdot K$, $T = 300 K$, $M = 32 g/mol$

ពេហ្នេន :
$$V = \frac{9.6 \times 8.31 \times 300}{10^5 \times 32} = 7479 \times 10^{-6} \text{m}^3$$

ដូចនេះ :
$$V = 7479 \times 10^{-6} \text{m}^3$$

III. (**១០** ពិន្ទុ)

🥦 សរសេរសមីការតម្រតនៃលំយោលទាំងពីរ

ពេមាន :
$$y_1 = 10\sin{(100\pi t)}$$
 និង $y_2 = 10\sin{\left(100\pi t + \frac{\pi}{3}\right)}$ ប្រើរូបមន្ត : $\sin{p} + \sin{q} = 2\sin{\frac{p+q}{2}}\cos{\frac{p-q}{2}}$ ពេបន : $y = y_1 + y_2 = 10\sin{(100\pi t)} + 10\sin{\left(100\pi t + \frac{\pi}{3}\right)}$: $y = 10\left[2\sin{\left(\frac{100\pi t + 100\pi t + \frac{\pi}{3}}{2}\right)}\cos{\left(\frac{100\pi t - 100\pi t - \frac{\pi}{3}}{2}\right)}\right]$: $y = 20\sin{\left(100\pi t + \frac{\pi}{6}\right)}\cos{\left(-\frac{\pi}{6}\right)}$

$$: y = 20 \left(\frac{\sqrt{3}}{2} \right) \sin \left(100\pi t + \frac{\pi}{6} \right)$$

ដូចនេះ :
$$y = 10\sqrt{3}\sin\left(100\pi t + \frac{\pi}{6}\right)$$
 (cm)

🧈. ចូរកំណត់អំព្លីទុត ខ្ទុប ប្រេកង់ និងមុំផាសដើមនៃលំយោលតម្រត

ើងមាន :
$$y = 10\sqrt{3}\sin\left(100\pi t + \frac{\pi}{6}\right)$$
 (cm)

មានរាង :
$$y = A \sin(\omega t + \Phi)$$
 គេហ៊ុន

អំព្លីទុត :
$$A = 10cm$$

$$2$$
្ឃ : $T = \frac{2\pi}{\omega}$ ដែល $\omega = 100\pi \text{rad/s}$

:
$$T = \frac{2\pi}{100\pi} = \frac{1}{50}s$$

ប្រកាង់ :
$$f = \frac{1}{T} = \frac{1}{\frac{1}{T}} = 50$$
Hz

មុំផាសដើម :
$$\Phi = \frac{\pi}{6}$$
rad

IV. (១៥ ពិន្ទុ)

🥱. គណនាបម្លាស់ទីអតិបរមា របស់សមីការចលនារលកនៅត្រង់ x = 2.3cm

ពេ៌មាន :
$$y_1 = 4\sin(3x - 2t)$$
 (cm) និង $y_2 = 4\sin(3x + 2t)$ (cm)

ព្រេស្ត :
$$y = y_1 + y_2 = 4\sin(3x - 2t) + 4\sin(3x + 2t)$$

:
$$y = 4 [\sin (3x - 2t) + \sin (3x + 2t)]$$

$$: \quad y = 8\sin\left(\frac{3x - 2t + 3x + 2t}{2}\right)\cos\left(\frac{3x - 2t - 3x - 2t}{2}\right)$$

$$y = 8\sin(3x)\cos(-2t)$$

នាំឲ្យ :
$$y = 8 \sin 3x \cos 2t$$
 (cm)

បម្លាស់ទីអតិបរមាត្រង់ x = 2.3cm ពី

:
$$y_{\text{max}} = 8 \sin (3 \times 2.3)$$

ដូចនេះ :
$$y_{max} = 4.62cm$$

- ខ. គណនាទីតាំងថ្នាំងត្រង់អំព្លីទុតស្មើសូន្យ និងពោះត្រង់អំព្លីទុតអតិបរមារបស់សមីការចលនារលក
 - ត្រង់ទីតាំងថ្នាំងដែលមានអំព្លីទុកស្មើសូន្យ

ពេមាន :
$$y = 8 \sin 3x \cos 2t$$

កន្សោមអំព្លីទុត :
$$A = 8 \sin 3x = 0$$

$$: \quad \sin 3x = \sin (0 + n\pi)$$

:
$$3x = n\pi \Rightarrow x = n\frac{\pi}{3}$$
 (cm)

ដូចនេះ :
$$x = n\frac{\pi}{3}$$
 (cm) ដែល (n = 0, 1, 2, 3, ...)

• ត្រង់ទីតាំងពោះដែលមានអំព្លីទុតអតិបរមា

កន្សោមអំព្លីទុត : $A = 8 \sin 3x$ មានតម្លៃអតិបរមាកាលណា: $\sin 3x = \pm 1$

ពេញន :
$$\sin 3x = \sin \left(n\pi + \frac{\pi}{2} \right)$$

:
$$3x = n\pi + \frac{\pi}{2} \implies x = (2n+1)\frac{\pi}{6}$$
 (cm)

ដូចនេះ :
$$x = (2n+1)\frac{\pi}{6}$$
 (cm) ដែល $(n = 0, 1, 2, 3, \dots)$

V. (១៥ ពិន្ទ)

🤧 គណនាកម្មន្តមេកានិចដែលផ្តល់ដោយពិស្តង

តាមរូបមន្ត :
$$e_c = \frac{W_M}{Q_h} \Rightarrow W_M = Q_h \times e_c$$

ដោយ :
$$Q_h = 3.83 MJ = 3.83 \times 10^6 J$$
, $e_c = 0.45$

ពេហ្នេ :
$$W_M = 3.83 \times 10^6 \times 0.45 = 1.72 \times 10^6 J$$

ដូចនេះ :
$$W_{\rm M}=1.72\times 10^6 {
m J}$$

ខ. គណនាកម្ដៅដែលបញ្ចេញទៅក្នុងបរិយាកាស

តាមរូបមន្ត :
$$W_M = Q_h - Q_c \Rightarrow Q_c = Q_h - W$$

ដោយ :
$$W_M = 1.72 \times 10^6 J$$
, $Q_h = 3.83 \times 10^6 J$

ពេហ្ ន :
$$Q_c = (3.83 - 1.72) \, 10^6 = 2.11 \times 10^6 J$$

ដូចនេះ :
$$Q_c = 2.11 \times 10^6 J$$

🕿. គណនាកម្មន្តដែលបញ្ជូនដោយភ្លៅម៉ូទ័រ។

តាមរូបមន្ត :
$$e_M = \frac{W_U}{W_M} \Rightarrow W_U = W_M \times e_M$$

ដោយ :
$$W_{\mathrm{M}} = 1.72 \times 10^6$$
, $e_{\mathrm{M}} = 0.85$

ពេហ្ ន :
$$W_U = 1.72 \times 10^6 \times 0.85 = 1.462 \times 10^6 J$$

ដូចនេះ :
$$W_U = 1.462 \times 10^6 J$$

VI. (១៥ ពិឆ្នូ)

ទា. គណនាបម្រែបម្រួលថាមពលក្នុងនៃឧស្ម័ន

ពាមរូបមន្ត :
$$\Delta U = \frac{3}{2} nR\Delta T$$

ដោយឧស្ម័នមានសីពុណ្ណភាពថេរ :
$$T_1 = T_2 \Rightarrow \Delta T = 0$$

ដូចនេះ :
$$\Delta U = 0J$$

🧿 កណនាកម្ដៅស្របដោយប្រព័ន្ធ

ដោយ :
$$W = 997.2J$$
, $\Delta U = 0J$

ពេហន :
$$Q = 997.2 + 0 = 997.2J$$

🖀. កណនាមាឌស្រេច V_2 នៃឧស្ម័ន

តាមរូបមន្ត : $W = nRT \ln \left(\frac{V_2}{V_1} \right) \Rightarrow V_2 = V_1 \times e^{\frac{W}{nRT}}$

ដោយ : W = 997.2 J, $V_1 = 300 dm^3$, $R = 8.31 J/mol \cdot K$, n = 1 mol, T = 27 + 273 = 300 K

កេហ្ ន : $V_2 = 300 \times 10^{\frac{997.2}{1 \times 8.31 \times 300}} = 300 \times e^{0.40} = 300 \times 1.50 = 450 dm^3$

ដូចនេះ : $V_2 = 450 dm^3$