# NOTICE D'UTILISATION

# GÉNÉRATEUR DE FONCTIONS / ARBITRAIRE

# RIGOL SÉRIE DG1012/DG1022



#### **CONSIGNES DE SÉCURITÉ**

Lire attentivement les mesures de sécurité suivantes avant d'utiliser l'instrument pour éviter toutes blessures ou d'endommager l'instrument et les matériels qui pourraient lui être reliés.

Pour éviter tous risques, utilisez l'instrument de la façon indiquée dans cette notice d'utilisation.

L'instrument devra être utilisé et vérifié uniquement par du personnel qualifié **pour éviter tout risque d'incendie ou de blessures**.

**Utiliser la tension appropriée.** Seule la tension secteur indiquée par le fabricant devra être utilisée pour alimenter l'instrument.

Mise à la terre de l'instrument. Cet instrument est relié à la terre par le cordon secteur. Pour éviter toute décharge électrique, le cordon secteur doit être mis à la terre. Assurez-vous que l'instrument est correctement relié à la terre avant de relier les bornes d'entrées ou de sorties.

Reliez les sondes de mesures et câbles de liaison correctement. Reliez correctement les bornes d'entrées et sorties de l'instrument à d'autres équipements périphériques par le biais d'accessoires conformes aux normes de sécurité en vigueur. Assurez-vous que la différence de potentiel entre la borne reliée à la masse, du signal d'entrée ou de sortie, et la terre est inférieure 40Vcc. Ne portez pas les bornes de terre à une tension élevée.

**Observez toutes les indications relatives aux bornes.** Pour éviter tout risque de feu ou choc électrique, observez tous les indications et symboles qui sont marquées sur l'instrument. Lisez le manuel d'utilisateur attentivement avant d'établir des connections sur l'instrument.

**N'utilisez pas l'appareil sans boîtier.** N'utilisez pas votre générateur si une partie du boîtier est enlevée.

**Utilisez le fusible approprié.** Employez seulement le type de fusible indiqué pour ce produit.

**Evitez le contact avec les circuits ou les fils exposés.** Ne pas toucher les connections ou composants exposés lorsque l'appareil est sous tension.

**N'utilisez pas l'appareil en cas de défauts suspectés.** Si vous suspectez des dommages sur ce produit, le faire vérifier sans attendre par le personnel qualifié mandaté par la société OVIO INSTRUMENTS.

Assurez-vous que l'instrument fonctionne dans des conditions correctes de ventilation.

Ne pas utiliser l'appareil dans un environnement humide.

Ne pas utiliser l'appareil dans une atmosphère explosive.

Maintenez les surfaces de l'appareil propres et sèches.

#### **AVERTISSEMENT**

Les produits **RIGOL** sont protégés par le droit des brevets à l'intérieur et à l'extérieur de la R.P.C.

**RIGOL TECHNOLOGIES, INC.** se réserve le droit de modifier ou changer une partie des ou toutes les caractéristiques de ses appareils.

RIGOL est la marque déposée de RIGOL TECHNOLOGIES, INC.

Cette notice a été conçue pour vous aider à utiliser simplement et rapidement un générateur de formes d'ondes standards et arbitraires. Vous trouverez dans ce livret, quelques exemples de génération de signaux simples et élaborés.

Mettre l'appareil en marche en commutant tout d'abord l'interrupteur noir placé à l'arrière de l'appareil en dessous de l'embase alimentation secteur, puis exercer une pression sur l'interrupteur **( )** Marche/Arrêt) en face avant.

## **SOMMAIRE**

| Modification de la configuration par défaut                     | p. 5       |
|-----------------------------------------------------------------|------------|
| Exemple 1 : Générer un Signal Sinusoïdal                        | p. 6-7     |
| Exemple 2 : Générer un Signal Carré                             | p. 8-9     |
| Exemple 3 : Générer une Rampe                                   | p. 10-11   |
| Exemple 4 : Générer un Signal Impulsionnel                      | . p. 12-13 |
| Exemple 5 : Générer un Bruit                                    | p. 14-15   |
| Exemple 6 : Générer un Signal Arbitraire (sin x/x)              | . p. 16-19 |
| Exemple 7 : Créer une Forme d'Onde Arbitraire (point à point)   | . p. 20-23 |
| Exemple 8 : Générer un Signal Modulé en Amplitude (AM)          | p. 24-25   |
| Exemple 9 : Générer un Signal FSK                               | p. 26-27   |
| Exemple 10 : Générer un Balayage de Fréquence (Sweep)           | . p. 28-29 |
| Exemple 11 : Générer un Signal en « Rafale » (Burst)            | p. 30-31   |
| Exemple 12 : Mesurer les Paramètres d'un Signal (mode compteur) | . p. 32-33 |
| Exemple 13 : Régénérer un Signal via l'Interface USB            | . р. 34-35 |
| Programmation de la voie CH2                                    | p. 36-38   |
| Spécifications techniques et caractéristiques du Générateur     | . p. 40-47 |



Face ARRIÈRE Générateur RIGOL Série DG1012/DG1022



# MODIFICATION DE LA CONFIGURATION PAR DÉFAUT

#### Mise sous tension de l'appareil :

Mettre l'appareil en marche en commutant tout d'abord l'interrupteur noir placé à l'arrière de l'appareil en dessous de l'embase alimentation secteur, puis exercer une pression sur l'interrupteur ( (M/A) en face avant.

#### Inhibition de la mise en veille automatique de l'afficheur :

- 1. Appuyez sur la touche « 8 » Utility
- 2. Appuyez sur la touche « 6 »
- 3. Appuyez sur la touche « 1 » System
- 4. Appuyez par pressions successives sur la touche « 4 » Svron(Svroff) pour faire apparaître à l'affichage « Screen Savers Off ». Sortir des réglages en appuyant sur la touche Utility pour faire disparaître la surbrillance de cette touche.

#### Sauvegarde de la dernière configuration utilisée :

- 1. Appuyez sur la touche « 8 » Utility
- 2. Appuyez sur la touche « 6 »
- 3. Appuyez sur la touche « 1 » System puis sur la touche « 6 » Setting
- Appuyez sur la touche « 1 » PowOn puis sur la touche « 2 » Latest. Sortir des réglages en appuyant sur la touche Utility pour faire disparaitre la surbrillance de cette touche.



# Exemple 1 : Générer un Signal Sinusoïdal



Comment générer un signal sinusoïdal d'une fréquence de 20 KHz avec une amplitude de 10  $V_{PP}$  et une tension d'offset (décalage du zéro) de 0  $V_{DC}$  sur le canal « CH1 ».

#### Etapes de l'opération :

#### Réglage de la Fréquence :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- Pressez la touche Sine (Sinus). Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence).
- 3. Entrez sur le clavier numérique le nombre « 20 » puis appuyez sur la touche « 4 » correspondant à l'unité KHz. La fréquence est maintenant réglée à 20 KHz.

## Réglage de la tension de sortie :

- 1. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (amplitude).
- 2. Entrez « 10 » avec le clavier numérique et appuyez sur la touche «  $\mathbf{2}$  » correspondant à l'unité  $\mathbf{V}_{PP}$  (tension pic à pic). L'amplitude est maintenant réglée à 10  $\mathbf{V}_{PP}$ .

#### Réglage de la tension de décalage du zéro (Offset) :

- 1. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (décalage du zéro).
- 2. Entrez « 0 »avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité V<sub>DC</sub>. La tension d'offset est maintenant réglée à 0 V<sub>DC</sub>.



# Exemple 2 : Générer un Signal Carré



Comment générer un signal carré d'une fréquence de 1 MHz avec une amplitude de  $2.0~V_{PP}$ , une tension d'offset (décalage du zéro) de  $10~mV_{DC}$  et un rapport cyclique de 30% sur la voie CH1.

#### Etapes de l'opération :

### Réglage de la Fréquence :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche **Square** (Carré)
- 3. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence).
- 4. Entrez sur le clavier numérique le nombre « 1 » puis appuyez sur la touche « 5 » correspondant à l'unité MHz. La fréquence est maintenant réglée à 1 MHz.

### Réglage de la tension de sortie :

- 1. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (amplitude).
- 2. Entrez « 2 » avec le clavier numérique et appuyez sur la touche « 2 » correspondant à l'unité VPP (tension pic à pic). L'amplitude est maintenant réglée à 2 VPP.

## Réglage de la tension de décalage du zéro (Offset) :

- 1. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (décalage du zéro).
- 2. Entrez « 10 »avec le clavier numérique puis appuyez sur la touche « 4 » correspondant à l'unité  $mV_{DC}$ . La tension d'offset est maintenant réglée à 10  $mV_{DC}$ .

#### Réglage du rapport cyclique :

- 1. Appuyez sur la touche « 4 » afin d'accéder au réglage du paramètre DtyCyc (Rapport cyclique).
- 2. Entrez « 30 » avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité 2. Le rapport cyclique est maintenant réglé à 30%.



# Exemple 3 : Générer une Rampe



Comment générer une rampe d'une période de 10 ms avec une amplitude de 100 m $V_{PP}$ , une tension d' offset (décalage du zéro) de 20 m $V_{DC}$  et une symétrie de 80% sur la voie CH1.

#### Etapes de l'opération :

## Réglage de la Période :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche Ramp (Rampe)
- 3. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Period (Période).
- 4. Entrez sur le clavier numérique le nombre « 10 » puis appuyez sur la touche « 4 » correspondant à l'unité ms. La période est maintenant réglée à 10 ms.

### Réglage de la tension de sortie :

- 1. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (amplitude).
- 2. Entrez « 100 » avec le clavier numérique et appuyez sur la touche « 1 » correspondant à l'unité mV<sub>PP</sub> (tension pic à pic). L'amplitude est maintenant réglée à 100 mV<sub>PP</sub>.

## Réglage de la tension de décalage du zéro (Offset) :

- 1. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (décalage du zéro).
- 2. Entrez « 20 »avec le clavier numérique puis appuyez sur la touche «  $\bf 4$  » correspondant à l'unité  $\bf mV_{DC}$ . La tension d'offset est maintenant réglée à 20  $\bf mV_{DC}$ .

#### Réglage de la symétrie :

- 1. Appuyez sur la touche « 4 » afin d'accéder au réglage du paramètre Symm (Symétrie).
- 2. Entrez « 80 » avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité %. La symétrie est maintenant réglée à 80%.



# Exemple 4 : Générer un Signal Impulsionnel



Comment générer un signal impulsionnel d'une fréquence de 5 KHz avec un niveau haut de 50 mV, un niveau bas de -5 mV, une largeur d'impulsion de 20  $\mu$ s sur la voie CH1.

#### Etapes de l'opération :

## Réglage de la Fréquence :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche **Pulse** (Impulsion)
- 3. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence).
- 4. Entrez sur le clavier numérique le nombre « 5 » puis appuyez sur la touche « 4 » correspondant à l'unité KHz. La fréquence est maintenant réglée à 5 KHz.

#### Réglage de la valeur de la tension du niveau haut :

- 1. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre HiLev (Niveau haut).
- 2. Entrez « 50 » avec le clavier numérique et appuyez sur la touche « 4 » correspondant à l'unité mV. La valeur du niveau haut est maintenant réglée à 50 mV.

### Réglage de la valeur de la tension du niveau bas :

- 1. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre LoLev (Niveau bas).
- 2. Entrez « -5 » avec le clavier numérique et appuyez sur la touche « 4 » correspondant à l'unité mV. La valeur du niveau bas est maintenant réglée à -5 mV.

#### Réglage de la largeur d'impulsion :

- 1. Appuyez par pressions successives sur la touche « 4 » afin de faire apparaître le paramètre Width (Impulsion).
- 2. Entrez « 20 » avec le clavier numérique puis appuyez sur la touche « 3 » correspondant à l'unité us. La largeur d'impulsion est maintenant réglée à 20 µs.



# Exemple 5 : Générer un Bruit



Comment générer un Bruit avec une amplitude de 30 m $V_{PP}$  et une tension d'offset (décalage du zéro) de 10 m $V_{DC}$  sur la voie CH1.

#### Etapes de l'opération :

#### Réglage de l'amplitude :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche **Noise** (Bruit). Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre **Ampl** (Amplitude).
- 3. Entrez sur le clavier numérique le nombre « 30 » puis appuyez sur la touche « 1 » correspondant à l'unité est maintenant réglée à 30 mV<sub>PP</sub>. L'amplitude

## Réglage de la valeur de la tension d'offset (décalage du zéro) :

- 1. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (Décalage du zéro).
- 2. Entrez « 10 » avec le clavier numérique et appuyez sur la touche « 4 » correspondant à l'unité mV<sub>DC</sub>. La tension d'offset est maintenant réglée à 10 mV<sub>DC</sub>.



# Exemple 6 : Générer un Signal Arbitraire (sin x/x)



Comment générer un signal arbitraire « rampe négative » (NegRamp) à une fréquence de 2 MHz, une amplitude de 5  $V_{\text{RMS}}$  et une tension d'offset de 0  $V_{\text{DC}}$ .

#### Etapes de l'opération :

#### Sélection du signal arbitraire (NegRamp) :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche **Arb** (Arbitraire)
- 3. Appuyez sur la touche « 4 » Load
- 4. Appuyez sur la touche « 1 » correspondant à BuiltIn (Intégrée). (48 formes d'ondes prédéfinies sont résidantes dans l'appareil)
- 5. Appuyez sur la touche « 1 » correspondant à Common
- 6. Tournez la mollette en haut à droite de la face avant afin de déplacer la surbrillance sur Neg Ramp



7. Appuyez sur la touche « 6 » correspondant à **Select** pour valider ce signal.

#### Réglage de la fréquence du signal :

- 1. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence).
- Entrez sur le clavier numérique le nombre « 2 » puis appuyez sur la touche « 5 » correspondant à l'unité MHz. La fréquence est désormais réglée à 2 MHz

#### Réglage de la tension de sortie :

- 1. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (amplitude).
- 2. Entrez « 5 » avec le clavier numérique puis appuyez sur la touche « 4 » correspondant à l'unité  $V_{RMS}$  (tension efficace). L'amplitude est maintenant réglée à 5  $V_{RMS}$ .

### Réglage de la tension de décalage du zéro (Offset) :

- 1. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (décalage du zéro).
- 2. Entrez « 0 »avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité V<sub>DC</sub>. La tension d'offset est maintenant réglée à 0 V<sub>DC</sub>.

# Tableau des différents signaux prédéfinis en mode arbitraire

| Menu                 | Settings                                                                                                                                                                                                                                                                                                                                                   | Commentaires                                                  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Touche « 1 »  Common | NegRamp (rampe négative) / AttALT (sinus amorti) AmpALT (sinus amorti) / StairDown (marches escalier) StairUp (marches escalier) / StairUD (marches escalier) CPulse (train d'impulsions) / PPulse (impulsions +) NPulse (impulsions -) / Trapezia (trapèze) RoundHalf (demi-cercle) / AbsSine AbsSineHalf / SineTra (sinus écrêté) SineVer (sinus amputé) | Touche d'accès<br>aux formes<br>d'ondes en mode<br>« Common » |
| Touche « 2 »  Maths  | ExpRise (exponentielle +) / ExpFall (exponentielle -) Tan (tangente) / Cot (Cotangente) Sqrt / X \( \) 2 Sinc (sin x/x) / Gauss (gaussien) HaverSine / Lorentz Dirichlet / GaussPulse Airy                                                                                                                                                                 | Touche d'accès<br>aux formes<br>d'ondes en mode<br>« Maths »  |
| Touche « 3 »  Engine | Cardic (impulsion cardiaque) / Quake<br>Gamma / Voice (voix)<br>TV (signal video) / Combin<br>BandLimited / StepResp<br>Butterworth / Chebyshev1<br>Chebyshev2                                                                                                                                                                                             | Touche d'accès<br>aux formes<br>d'ondes en mode<br>« Engine » |
| Touche « 4 » Window  | Boxcar / Barlett<br>Triang / Blackman<br>Hamming / Hanning<br>Kaiser                                                                                                                                                                                                                                                                                       | Touche d'accès<br>aux formes<br>d'ondes en mode<br>« Window » |
| Touche « 5 »  Others | RounsPM (carré avec modulation d'amplitude)<br>DC (continu)                                                                                                                                                                                                                                                                                                | Touche d'accès<br>aux formes<br>d'ondes en mode<br>« Others » |
| Touche « 6 »  Select |                                                                                                                                                                                                                                                                                                                                                            | Touche de<br>validation de la<br>forme d'onde<br>sélectionnée |



Exemple 7 : Créer une Forme d'Onde Arbitraire



Comment générer un signal arbitraire sur la voie CH1 à partir d'une figure. Le signal choisi (voir figure ci-dessous) est une rampe définie par 4 points.



#### Etapes de l'opération :

#### Création d'une forme d'onde arbitraire :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche **Arb** (Arbitraire)
- 3. Appuyez sur la touche « 5 » (Edit)
- 4. Appuyez sur la touche « 1 » correspondant à Creat

#### Réglage de la période du signal :

- 1. Appuyez sur la touche « 1 » afin d'accéder au réglage du paramètre Period (Période).
- 2. Entrez sur le clavier numérique le nombre « 12 » puis appuyez sur la touche « 3 » correspondant à l'unité μs. La période est maintenant réglée à 12 μs.

#### Réglage du niveau haut de la tension de sortie :

1. Appuyez sur la touche « 2 » afin d'accéder au réglage du paramètre LevelHi (niveau haut).

2. Entrez « 4 » avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité **V** (Volt). Le niveau haut est maintenant réglé à 4 Volts.

#### Réglage du niveau bas de la tension de sortie :

- 1. Appuyez la touche « 3 » afin d'accéder au réglage du paramètre Levelo (niveau bas).
- 2. Entrez « -2 » avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité ▼ (Volt). Le niveau bas est maintenant réglé à -2 Volts.

#### Choisir la méthode d'interpolation entre les points :

Appuyez par pressions successives sur la touche « 4 » Interp pour faire apparaître à l'écran "Interpolation On". Le mode d'interpolation linéaire est maintenant validé.

#### Déterminer le nombre de points qui définiront la courbe :

Appuyez sur la touche « 5 » correspondant à **Points**. Entrez sur le clavier numérique « 4 » et validez en appuyant sur la touche « 5 » **Enter**. Le nombre de points, définissant la forme d'onde arbitraire, est maintenant programmé à 4 points.

# Edition des points définissant la forme d'onde :

| Point | Time (Temps) | Voltage (Tension) |
|-------|--------------|-------------------|
| 1     | 0 s          | 0 V               |
| 2     | 4 µs         | 4 V               |
| 3     | 8 µs         | 0 V               |
| 4     | 10 μs        | -2 V              |

- 1. Appuyez sur la touche « 6 » EditPt (Edition des points).
- 2. Appuyez sur la touche « 1 » Point#. Vous voyez apparaître à l'écran le numéro du point à définir.
- 3. Appuyez sur la touche « 3 » Voltage. Tapez « 0 » avec le clavier numérique puis appuyez sur la touche « 5 » V. Le premier point est défini comme suit : Temps = 0 s, Voltage = 0 V. Ce point étant le point de départ de la courbe, le « temps » correspondant est égal à 0 seconde.
- 4. Appuyez sur la touche « 1 » Point# puis tapez sur le clavier numérique le chiffre « 2 » pour accéder au deuxième point et validez en appuyant sur la touche « 5 » Enter. Appuyez ensuite sur la touche « 2 » Time, tapez « 4 » sur le clavier numérique puis appuyez sur la touche « 3 » Us. Appuyez sur la touche « 3 » Voltage, tapez « 4 » sur le clavier numérique puis appuyez sur la touche « 5 » V. Le deuxième point est programmé comme suit : Temps = 4 μs, Voltage = 4 V
- 5. Appuyez sur la touche « 1 » Point# puis tapez sur le clavier numérique le chiffre « 3 » pour accéder au troisième point et validez en appuyant sur la touche « 5 » Enter. Appuyez ensuite sur la touche « 2 » Time, tapez « 8 » sur le clavier numérique puis appuyez sur la touche « 3 » Us. Appuyez sur la touche « 3 » Voltage, tapez « 0 » sur le clavier numérique puis appuyez sur la touche « 5 » V. Le troisième point est programmé comme suit : Temps = 8 μs, Voltage = 0 V
- 6. Appuyez sur la touche « 1 » Point# puis tapez sur le clavier numérique le chiffre « 4 » pour accéder au quatrième point et validez en appuyant sur la touche « 5 » Enter. Appuyez ensuite sur la touche « 2 » Time, tapez « 10 » sur le clavier numérique puis appuyez sur la touche « 3 » Us. Appuyez sur la touche « 3 » Voltage, tapez « -2 » sur le clavier numérique puis appuyez sur la touche « 5 » V. Le quatrième point est programmé comme suit : Temps = 10 μs, Voltage = -2 V



# Exemple 8 : Générer un Signal Modulé en Amplitude (AM)



Comment générer un signal sinusoïdal de 2.5 KHz modulé à 70% de son amplitude totale (depth) par un sinus d'une fréquence de 150 Hz.

#### Etapes de l'opération :

### Réglage de la Fréquence, Amplitude et Offset :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche Sine (Sinus)

- Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence). Entrez sur le clavier numérique le nombre « 2.5 » puis appuyez sur la touche « 4 » correspondant à l'unité KHz. F est réglée à 2.5 KHz.
- 3. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (amplitude). Entrez « 2 » avec le clavier numérique et appuyez sur la touche « 2 » correspondant à l'unité V<sub>PP</sub> (tension pic à pic). L'amplitude est maintenant réglée à 2 V<sub>PP</sub>.
- Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (décalage du zéro). Entrez « 0 » avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité V<sub>DC</sub>. La tension d'offset = 0 V<sub>DC</sub>.

#### Choisir une modulation type AM (modulation d'amplitude) :

- 1. Appuyez sur la touche **Mod** (modulation)
- 2. Appuyez sur la touche « 1 » Type, puis sur la touche « 1 » AM Vous voyez apparaître à l'écran « AM » (modulation amplitude)
- 3. Appuyez sur la touche « 6 » pour revenir au menu.

# Réglage de la Depth (% de la modulation / amplitude VCC du signal) :

Appuyez sur la touche « 3 » Depth , entrez « 70 » avec le clavier numérique puis appuyez sur la touche « 5 » 26. L'amplitude de la modulation est maintenant réglée à 70%.

# Choisir la forme et la fréquence du signal de modulation d'amplitude :

- 1. Appuyez sur la touche « 4 » AMFreq, entrez « 150 » sur le clavier numérique et appuyez sur la touche « 3 » Hz. La fréquence de modulation d'amplitude est réglée à 150 Hz.
- 2. Appuyez sur la touche « 5 » Shape, appuyez sur la touche « 1 » Sine pour valider la forme du signal choisi. « Sine » apparaît sur l'écran d'affichage. Pour stopper la modulation d'amplitude, appuyez sur la touche Mod pour éteindre le rétro-éclairage.



# Exemple 9 : Générer un Signal FSK



La modulation FSK permet de faire alterner la fréquence du signal de sortie entre deux valeurs prédéfinies. Le rythme auquel la sortie bascule entre les deux fréquences ("fréquence porteuse" et "fréquence de saut") est déterminé par le générateur de rythme interne. Pour cet exemple la « fréquence porteuse » est réglée à 10 KHz et la « fréquence de saut » (Hop Frequency) à 800 Hz avec une cadence « FSK » de 200 Hz.

### Etapes de l'opération :

#### Réglage de la Fréquence porteuse :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche **Sine** (Sinus)
- 3. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence).
- 4. Entrez sur le clavier numérique le nombre « 10 » puis appuyez sur la touche « 4 » correspondant à l'unité KHz.
- 5. La fréquence est désormais réglée à 10 KHz.

#### Réglage de l'amplitude de la fréquence porteuse :

- 1. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (Amplitude).
- 2. Entrez « 2 » avec le clavier numérique et appuyez sur la touche « 2 » correspondant à l'unité V<sub>PP</sub>. L'amplitude est réglée à 2 V<sub>PP</sub>.

### Réglage de l'offset (décalage du zéro) :

- 1. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (Décalage du zéro).
- 2. Entrez « 0 » avec le clavier numérique et appuyez sur la touche « 5 » correspondant à l'unité V<sub>DC</sub>. A présent Voffset = 0 V<sub>DC</sub>.

# Réglage de la modulation type FSK et de la « fréquence de saut » :

- 1. Appuyez sur la touche **Mod** (modulation)
- 2. Appuyez sur la touche « 1 » Type, appuyez sur la touche « 3 » FSK, retour au menu précédent en pressant la touche « 6 »
- 3. Appuyez sur la touche « 4 » FskRate, tapez sur le clavier numérique « 200 » puis appuyez sur la touche « 3 » Hz.
- Appuyez sur la touche « 3 » HopFreq, tapez « 800 » sur le clavier numérique puis appuyez sur la touche « 3 » Hz. Pour stopper la modulation FSK, appuyez sur la touche Mod pour faire disparaître le rétro-éclairage



# Exemple 10 : Générer un Balayage de Fréquence



En mode Sweep (balayage) de fréquence, le générateur fait varier la fréquence du signal de sortie entre une fréquence initiale et une fréquence finale à un rythme de balayage que vous déterminez. Selon que la fréquence finale est supérieure ou inférieure à la fréquence initiale, le balayage peut être croissant ou décroissant avec un espacement linéaire ou logarithmique. Dans cet exemple, vous allez créer un signal sinusoïdal balayé entre 100 Hz et 10 kHz, mode de déclenchement interne, balayage linéaire et durée du balayage de 1s.

# Etapes de l'opération :

#### Réglage de la Fréquence, amplitude et offset (décalage du zéro) :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Pressez la touche **Sine** (Sinus)
- 3. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence).
- 3. Entrez sur le clavier numérique le nombre « 5 » puis appuyez sur la touche « 4 » correspondant à l'unité KHz. La fréquence est désormais réglée à 5 KHz.
- 4. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (Amplitude).
- 5. Entrez « 2 » avec le clavier numérique et appuyez sur la touche « 2 » correspondant à l'unité V<sub>PP</sub>. (V<sub>PP</sub> = 2 Volts)
- 6. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (décalage du zéro).
- 7. Entrez « 0 » avec le clavier numérique et appuyez sur la touche « 5 » correspondant à l'unité V<sub>DC</sub>. (Voffset = 0 V<sub>DC</sub>)

### Mise en marche du « Sweep » (balayage) et réglage de la durée (time) :

- 1. Pressez la touche **Sweep** (balayage)
- 2. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Linear (linéaire). Le mot "Linear" apparaît à l'affichage.
- 3. Appuyez sur la touche « 4 » Time, entrez « 1 » avec le clavier numérique puis appuyez sur la touche « 5 » correspondant à l'unité s. La durée du balayage est réglée à 1 seconde.

# Réglage de la fréquence initiale et de la fréquence finale :

- Appuyez sur la touche « 2 » Start, tapez « 100 » sur le clavier numérique et appuyez sur la touche « 3 » Hz. La fréquence initiale est maintenant réglée à 100 Hz.
- Appuyez sur la touche « 3 » Stop, tapez « 10 » sur le clavier numérique et appuyez sur la touche « 4 » KHz. La fréquence finale est maintenant réglée à 10 KHz.



# Exemple 11 : Générer un Signal en « Rafale » (Burst)



Comment configurer le générateur de fonctions pour émettre un signal avec un nombre déterminé de cycles (Rafale) à une vitesse déterminée par l'horloge interne de l'appareil ou par un signal appliqué sur le connecteur « Trig In » sur la face arrière de l'appareil. Dans cet exemple, vous allez obtenir une rafale de « 3 » cycles avec une périodicité de 10 ms.

#### Etapes de l'opération :

Appuyez sur la touche **Square** (Carré) de la face avant.

#### Réglage de la Fréquence, de l'amplitude et de l'offset (décalage du zéro) :

- 1. Appuyez par pressions successives sur la touche « 7 » pour faire apparaître en haut à droite de l'afficheur le canal « CH1 ».
- 2. Appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre Freq (Fréquence).
- 2. Entrez sur le clavier numérique le nombre « 5 » puis appuyez sur la touche « 4 » correspondant à l'unité KHz. Fréq. = 5 KHz.
- 3. Appuyez par pressions successives sur la touche « 2 » afin de faire apparaître le paramètre Ampl (Amplitude).
- 4. Entrez « 5 » avec le clavier numérique et appuyez sur la touche « 2 » correspondant à l'unité V<sub>PP</sub>. (V<sub>PP</sub> = 2 Volts)
- 5. Appuyez par pressions successives sur la touche « 3 » afin de faire apparaître le paramètre Offset (décalage du zéro).
- 6. Entrez « 0 » avec le clavier numérique et appuyez sur la touche « 5 » correspondant à l'unité V<sub>DC</sub>. (Voffset = 0 V<sub>DC</sub>)

## Choisir le mode Rafale (Burst) et régler sa période (Period) :

- Pressez la touche Burst (Rafale), appuyez par pressions successives sur la touche « 1 » afin de faire apparaître le paramètre NCycle (N cycles). "N Cycle" apparaît à l'affichage.
- Appuyez sur la touche « 4 » Period (Période), entrez « 10 » avec le clavier numérique puis appuyez sur la touche « 4 » correspondant à l'unité ms. La durée de la Rafale est de 10 ms.

#### Réglage du point de départ de la phase, du cycle de la rafale et du retard :

- Appuyez sur la touche « 3 » Phase, tapez « 0 » sur le clavier numérique et appuyez sur la touche « 5 » °. (pt de départ = 0°)
- 2. Appuyez par pressions successives sur la touche « 2 » pour faire apparaître Cycles, tapez « 3 » sur le clavier numérique puis appuyez sur la touche « 5 » Cyc. Le nombre est réglé à 3 cycles.
- 3. Appuyez sur la touche « 5 » **Delay**, tapez « 200 » sur le clavier numérique puis appuyez sur la touche « 3 » µs. Le retard par rapport à la référence de phase 0° est réglé à 200 µs.



# Exemple 12 : Mesurer les Paramètres d'un Signal



#### Etapes des opérations :

#### Réaliser une mesure en mode automatique :

- Appuyez sur la touche Utility puis sur la touche « 5 » Count
- 2. Entrez le signal à mesurer sur l'embase BNC « CH2/Counter » en face avant de l'appareil.
- 3. Appuyer sur la touche « 5 » Auto, dans ce mode le couplage est en mode AC. Le compteur ajuste automatiquement le niveau de trigger et de sensibilité.

#### Consulter les paramètres mesurés sur le signal :

- Pour consulter la valeur de la fréquence, appuyez sur la touche « 1 » Freq
- 2. Pour consulter la valeur de la période « T » (T=t1+t2), appuyez sur la touche « 2 » Period
- 3. Pour consulter la valeur du rapport cyclique, appuyez sur la touche « 3 » DutyCyc
- Pour consulter la valeur de la période « t1 » PWidth et « t2 » NWidth, appuyez successivement sur la touche « 4 »

#### Configurer manuellement les critères de mesures :

- 1. Appuyez sur la touche « 6 » Setup
- 2. Appuyez successivement sur la touche « 1 » pour choisir le mode de couplage de l'entrée du compteur AC (alternatif) ou DC (continu)
- 3. Appuyez sur la touche « 2 » Sens pour choisir la sensibilité de l'entrée du compteur Low (faible), Medium (moyen), High (haut). Revenir au menu précédent en appuyant sur la touche « 6 »
- 4. Appuyez sur la touche « 3 » TrigLev pour déterminer le niveau de déclenchement. La gamme du trigger est : +/-3 V (0% à 99.9%). Tapez la valeur choisie sur le clavier numérique entre « 0 » et « 99.9 ». Validez en appuyant sur la touche « 5 ».
- 5. Appuyez successivement sur la touche « 4 » pour choisir HFROff ou HFROn (filtre HF « Off » arrêt ou « On » marche)

# Exemple 13 : Régénérer un Signal via l'Interface USB

Comment régénérer un signal capturé avec un oscilloscope RIGOL série DS1000 ou stocké après acquisition sur une clef USB.

#### Etapes des opérations :

Faire une acquisition avec un oscilloscope RIGOL série DS1000 :

Stopper l'acquisition de l'oscilloscope configuré en mode « trigger auto » (déclenchement automatique) en appuyant sur la touche **RUN/STOP** pour la faire devenir « rouge » ou bien faire l'acquisition d'un phénomène transitoire en configurant l'oscilloscope en mode « trigger single » (mono-coup). Dans ce cas, la touche **RUN/STOP** passe automatiquement de la couleur verte à rouge après acquisition.





- Raccordez l'oscilloscope au générateur avec un câble USB (voir schéma ci-dessus). L'oscilloscope passe alors en mode « remote ». (« Rmt » apparaît en haut à droite sur l'écran)
- 2. Appuyez sur la touche **Store/Recall** du générateur pour faire passer celle-ci en surbrillance verte.
- 3. Appuyez par pressions successives sur la touche « 1 » Disk afin de mettre le petit curseur noir en face de la référence du scope qui apparaît sur l'écran du générateur (ex.: DS10022C). Vous voyez également sur l'écran du générateur l'état des voies « CH1 » et « CH2 » du scope (ex.: CH1: ON et CH2: OFF).
- Appuyez ensuite sur la touche « 3 » Recall, le générateur « rejoue » la courbe acquise sur la sortie Output du générateur. S'assurer que le générateur est en mode Arb.

#### Régénération du signal via une clef USB :



FACE AVANT GENERATEUR SERIE DG1012/DG1022

- 1. Enficher la clef USB sur la face avant du générateur.
- 2. Appuyez sur la touche **Store/Recall** du générateur pour faire passer celle-ci en surbrillance verte.
- 3. Appuyez par pressions successives sur la touche « 1 » Disk afin de mettre le petit curseur noir en face de la ligne « UDisk » qui apparaît sur l'écran du générateur.
- 4. Appuyez successivement sur la touche « 2 » Type du générateur afin de mettre le curseur noir en face de Data.
- 5. Appuyez successivement sur la touche « 9 » afin de sélectionner la courbe choisie (xxxxxx.rdf), appuyez ensuite sur la touche « 3 » Recall pour régénérer la courbe. Mettez le générateur en mode Arb. Le signal régénéré est disponible sur Output (sortie CH1).

Appuyez sur la touche « Output » (Cde Sortie CH1) pour délivrer le signal.

#### Face AVANT Générateur RIGOL Série DG1012/DG1022



### Programmation de la voie CH2

Appuyez successivement sur la touche « 7 » pour voir apparaître en haut à droite de l'écran LCD « CH2 ».

Pour programmer un signal sur la sortie « CH2 », appliquez les mêmes procédures que celles évoquées pour la voie « CH1 » au début de cette notice. Pour délivrer le signal en sortie, appuyez sur la touche « cde Sortie CH2 ».

#### Différences entre les sorties « CH1 » et « CH2 »

| Signal Arbitraire        | CH1                        | CH2                    |
|--------------------------|----------------------------|------------------------|
| Longueur de forme d'onde | 4k points                  | 1k points              |
| Précision de l'amplitude | 14 bits (signe inclus)     | 10 bits (signe inclus) |
| Sortie                   | CH1                        | CH2                    |
| Amplitude                | 2 mVpp ~ 10 Vpp (50Ω)      | 2 mVpp ~ 3 Vpp (50Ω)   |
|                          | 4 mVpp ~ 20 Vpp (haute     | 4 mVpp ~ 6 Vpp (haute  |
|                          | impédance)                 | impédance)             |
| Protection               | Protection contre les      | Pas de protection      |
|                          | courts-circuits,           |                        |
|                          | désactivation de la sortie |                        |
|                          | en cas de surcharge.       |                        |
| Décalage du zéro         | CH1                        | CH2                    |
| Gamme (AC+DC)            | ± 5V (50Ω)                 | ± 1.5 V (50Ω)          |
|                          | ± 10V (Z infinie)          | ± 3V (Z infinie)       |
| Modulation               | CH1                        | CH2                    |
| AM, FM, PM, FSK, Sweep,  | OUI                        | NON                    |
| Burst                    |                            |                        |
| Synchronisation Sortie   | CH1                        | CH2                    |
|                          | OUI                        | NON                    |

#### Génération de deux signaux déphasés de 90°:

#### 1. Afficher l'écran de contrôle des deux voies simultanément :

Appuyez successivement sur la touche **View** en face AVANT afin d'afficher un écran permettant de visualiser simultanément les paramètres des voies « CH1 » et « CH2 ». Pour accéder aux réglages de la voie « CH1 » ou « CH2 », appuyez successivement sur la touche « **7** » afin de mettre en surbrillance la voie désirée.

#### Exemple de visualisation avec la voie « CH1 » sélectionnée :



- 2. Faire apparaître la voie « CH1 » en surbrillance à l'écran grâce à la touche « 7 », effectuez les réglages des différents paramètres désirés (fréquence, amplitude, offset, etc.). Appuyez sur la touche « 4 » Phase, puis tapez sur le clavier numérique de l'appareil « 0 », validez ensuite cette valeur en degré en appuyant sur la touche « 5 » °.
- 3. Faire apparaître la voie « CH2 » en surbrillance à l'écran grâce à la touche « 7 », effectuez les réglages des différents paramètres désirés (fréquence, amplitude, offset, etc.). Appuyez sur la touche « 4 » Phase, puis tapez sur le clavier numérique de l'appareil « 90 », validez ensuite cette valeur en degré en appuyant sur la touche « 5 » •
- 4. Validez le déphasage de « 90° » entre les deux voies en appuyant sur la touche « 5 » AligPha.

La voie « CH2 » est à présent déphasée de 90° par rapport à la voie « CH1 ».

Il est possible d'avoir un déphasage constant entre les deux voies après avoir déterminé la voie « maître » et la voie « esclave » en procédant de la manière suivante. Le déphasage de la voie maître sera lui par rapport à la synchro interne de l'appareil.

Appuyez sur la touche **Utility**, ensuite appuyez sur la touche « **4** » **Coupling**, puis appuyez successivement sur la touche « **1** » **Switch** afin de faire apparaître à l'écran « Coupling On ».

Appuyez successivement sur la touche « 2 » BaseCH afin de faire apparaître à l'écran le canal « maître » souhaité. Appuyez ensuite sur la touche « 3 » PhaDev et réglez la valeur du déphasage souhaitée entre les deux canaux en tapant la valeur sur le clavier numérique de l'appareil, validez ensuite la valeur en degré en appuyant sur la touche « 5 » ©.

Sortir du menu en appuyant à nouveau sur la touche **Utility** pour faire disparaître la surbrillance de la touche.

# CARACTERISTIQUES TECHNIQUES

| Caractéristiques en Fréquence (DG1022) |                                                                    |
|----------------------------------------|--------------------------------------------------------------------|
| Formes d'ondes                         | Sinus, Carré, Rampe, Triangle, Impulsion, Bruit, DC,<br>Arbitraire |
| Sinus                                  | 1 μHz à 20 MHz                                                     |
| Carré                                  | 1 μHz à 5 MHz                                                      |
| Impulsion                              | 500 μ <b>Hz</b> à 3 MHz                                            |
| Rampe, Triangle                        | 1 μ <b>Hz</b> à 150 KHz                                            |
| Bruit Blanc                            | Bande Passante 5 MHz (-3dB)                                        |
| Résolution                             | 1 μHz                                                              |
| Arbitraire                             | 1 μ <b>Hz</b> à 5 MHz                                              |
|                                        | Durant une période de 90 jours : ±50 ppm                           |
| Précision                              | Durant une période de 1 an : ±100 ppm                              |
|                                        | 18°C - 28°C                                                        |
| Indice Température                     | < 5 ppm/°C                                                         |

| Caractéristiques en Fréquence (DG1012) |                                                                    |  |
|----------------------------------------|--------------------------------------------------------------------|--|
| Formes d'ondes                         | Sinus, Carré, Rampe, Triangle, Impulsion, Bruit, DC,<br>Arbitraire |  |
| Sinus                                  | 1 μHz à 15 MHz                                                     |  |
| Carré                                  | 1 μHz à 4 MHz                                                      |  |
| Impulsion                              | 500 μHz à 2 MHz                                                    |  |
| Rampe, Triangle                        | 1 μHz à 150 KHz                                                    |  |
| Bruit Blanc                            | Bande Passante 5 MHz (-3dB)                                        |  |
| Résolution                             | 1 μHz                                                              |  |
| Arbitraire                             | 1 μHz à 4 MHz                                                      |  |
|                                        | Durant une période de 90 jours : ±50 ppm                           |  |
| Précision                              | Durant une période de 1 an : ±100 ppm                              |  |
|                                        | 18°C - 28°C                                                        |  |
| Indice Température                     | < 5 ppm/°C                                                         |  |

| Pureté Spectrale (Sinus) |                                         |            |         |
|--------------------------|-----------------------------------------|------------|---------|
|                          |                                         | < 1 VPP >  | · 1 VPP |
| Distorcion               | DC à 20 KHz                             | -75 dBc -  | 70 dBc  |
| Distorsion Harmonique    | 20 KHz à 100 KHz                        | -70 dBc -  | 60 dBc  |
| Harmonique               | 100 KHz à 1 MHz                         | -55 dBc -5 | 50 dBc  |
|                          | 1 MHz à 10 MHz                          | -45 dBc -4 | 40 dBc  |
| Distorsion               | DC à 20 KHz, 1VPP : <0.2%               |            |         |
| Harmonique Totale        |                                         |            |         |
| Parasite                 | DC à 1 MHz : < -70 dBc                  |            |         |
| (non harmonique)         | 1 MHz à 10 MHz : < -70 dBc +6 dB/octave |            |         |
| Bruit de Phase           | 10 KHz Offset -115 dBc/Hz, typique      |            |         |

| Caractéristiques en Carré                  |                                         |                    |
|--------------------------------------------|-----------------------------------------|--------------------|
| Temps de montée ou descente                | < 20 ns (10% à 90%), typique, 1KHz 1Vpp |                    |
| Dépassement (Overshoot)                    | < 5% (typique, 1KHz                     | 1V <sub>PP</sub> ) |
| Rapport Cyclique                           | 1 μHz à 3 MHz                           | 20% à 80%          |
|                                            | 3 MHz (non inclus) à 4 MHz              | 40% à 60%          |
|                                            | 4 MHz (non inclus) à 5MHz               | 50%                |
| Asymétrie (pour un rapport cyclique < 50%) | 1% de la période +                      | 20ns               |
| Gigue (Jitter)                             | 6ns + 0.1% de la période                |                    |

| Caractéristiques en Rampe |                                                                            |
|---------------------------|----------------------------------------------------------------------------|
| Linéarité                 | < 0.1% de la valeur crête en sortie (typique, 1KHz, 1VPP, symétrie à 100%) |
| Symétrie                  | 0% à 100%                                                                  |

| Caractéristiques en Impulsion                              |                            |
|------------------------------------------------------------|----------------------------|
| Largeur Impulsion période max : 2000s / période min : 20ns |                            |
| résolution : 1ns                                           |                            |
| Dépassement (Overshoot)                                    | < 5%                       |
| Gigue (Jitter)                                             | 6ns + 100ppm de la période |

| Caractéristiques en Arbitraire       |                   |                   |
|--------------------------------------|-------------------|-------------------|
|                                      | CH1               | CH2               |
| Longueur de la forme d'onde          | 4k points         | 1k points         |
| Résolution verticale (signe compris) | 14 bits           | 10 bits           |
| Fréquence d'échantillonnage          | 100 MSa/s         | 100 MSa/s         |
| Temps de montée / descente min       | 35ns              | 35ns              |
| Gigue RMS (Jitter RMS)               | 6 ns + 30ppm      | 6 ns + 30ppm      |
| Sauvegarde non-volatile (total=10)   | 10 formes d'ondes | 10 formes d'ondes |

| Caractéristiques de la Sortie |                           |                        |
|-------------------------------|---------------------------|------------------------|
|                               | CH1                       | CH2                    |
| Amplitude de sortie           | 2 mVpp ~ 10 Vpp (50Ω)     | 2 mVpp ~ 3 Vpp (50Ω)   |
|                               | 4 mVpp ~ 20 Vpp (haute    | 4 mVpp ~ 6 Vpp (haute  |
|                               | impédance)                | impédance)             |
| Précision de la tension       | ±1% de la valeur ± 1 mVpp | ±1% de la valeur ± 1   |
| de sortie à 100 KHz           |                           | m <b>V</b> pp          |
| Planéité (Flatness)           | < 100 KHz - 0.1 dB (±     | < 100 KHz - 0.1 dB (±  |
| d'amplitude (sinus relatif    | 1%)                       | 1%)                    |
| à 100 kHz)                    | 100 KHz à 5 MHz - 0.15    | 100 KHz à 5 MHz - 0.15 |
|                               | dB (± 1.5%)               | dB (± 1.5%)            |
|                               | 5 MHz à 20 MHz - 0.3 dB   | 5 MHz à 20 MHz - 0.3   |
|                               | (± 3.5%)                  | dB (± 3.5%)            |

| Tension de Décalage (Offset) |                                                                                                       |                                                                                                       |
|------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                              | CH1                                                                                                   | CH2                                                                                                   |
| Gamme                        | ±5V (50Ω)                                                                                             | ±1.5V (50Ω)                                                                                           |
| (AC+DC crête)                | ±10 V (sur haute impédance)                                                                           | ±3 V (sur haute impédance)                                                                            |
| Précision                    | ±2% de la valeur de la<br>tension de décalage<br>(Offset)<br>±0.5% ( Voffset ) de<br>l'amplitude ±2mV | ±2% de la valeur de la<br>tension de décalage<br>(Offset)<br>±0.5% ( Voffset ) de<br>l'amplitude ±2mV |

| Formes d'Ondes en Sortie |                                                                                                   |             |
|--------------------------|---------------------------------------------------------------------------------------------------|-------------|
|                          | CH1                                                                                               | CH2         |
| Impédance                | 50Ω typique                                                                                       | 50Ω typique |
| Protection               | Protection contre les courts-circuits, désactivation automatique de la sortie en cas de surcharge | Aucune      |

| Modulation d'Amplitude AM (CH1) |                                                                                              |  |
|---------------------------------|----------------------------------------------------------------------------------------------|--|
| Forme d'onde de base            | Sinus, Carré, Rampe, Arbitraire (DC exclus)                                                  |  |
| Source                          | Interne ou externe                                                                           |  |
| Forme d'onde de modulation      | Sinus, Carré, Rampe montante et descendante,<br>Triangle, Bruit, Arbitraire (2 mHz à 20 KHz) |  |
| Profondeur (Depth)              | 0% - 120%                                                                                    |  |

| Modulation de Fréquence FM (CH1)                                 |                                                                                              |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Forme d'onde de base Sinus, Carré, Rampe, Arbitraire (DC exclus) |                                                                                              |  |
| Source                                                           | Interne ou externe                                                                           |  |
| Forme d'onde de modulation                                       | Sinus, Carré, Rampe montante et descendante,<br>Triangle, Bruit, Arbitraire (2 mHz à 20 KHz) |  |
| Variation en Fréquence                                           | DC à 5 MHz                                                                                   |  |

| Modulation de Phase PM (CH1)                                     |                                                                                              |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Forme d'onde de base Sinus, Carré, Rampe, Arbitraire (DC exclus) |                                                                                              |  |  |
| Source                                                           | Interne ou externe                                                                           |  |  |
| Forme d'onde de modulation                                       | Sinus, Carré, Rampe montante et descendante,<br>Triangle, Bruit, Arbitraire (2 mHz à 20 KHz) |  |  |
| Variation de Phase                                               | 0 à 360°                                                                                     |  |  |

| Modulation FSK (CH1)                                             |                                       |  |  |
|------------------------------------------------------------------|---------------------------------------|--|--|
| Forme d'onde de base Sinus, Carré, Rampe, Arbitraire (DC exclus) |                                       |  |  |
| Source                                                           | Interne ou externe                    |  |  |
| Forme d'onde de                                                  | Carré avec un rapport cyclique de 50% |  |  |
| modulation                                                       | (2 mHz à 50 KHz)                      |  |  |

| Balayage en Fréquence « Sweep » (CH1)                            |                            |  |  |
|------------------------------------------------------------------|----------------------------|--|--|
| Forme d'onde de base Sinus, Carré, Rampe, Arbitraire (DC exclus) |                            |  |  |
| Туре                                                             | Linéaire ou Logarithmique  |  |  |
| Direction                                                        | Montant ou descendant      |  |  |
| Temps de balayage                                                | 1 ms à 500 s ± 0.1%        |  |  |
| Source                                                           | Interne / Externe / Manuel |  |  |

| Rafale « Burst » (CH1)  |                                                    |  |
|-------------------------|----------------------------------------------------|--|
| Forme d'onde            | Sinus, Carré, Rampe, Impulsion,                    |  |
|                         | Bruit, Arbitraire DC exclus)                       |  |
| Туре                    | Salve (1 à 50.000 périodes), infini, porte (Gated) |  |
| Phase de départ         | -360° à +360°                                      |  |
| Période interne         | 1 μs – 500 s ±1%                                   |  |
| Déclenchement par porte | Déclenchement (Trigger) externe                    |  |
| Source de déclenchement | Interne / Externe / Manuel                         |  |

| Connecteurs en Face Arrière                                        |                           |  |
|--------------------------------------------------------------------|---------------------------|--|
| Modulation AM externe $\pm 5 \text{ Vpk} = 100\%$ de la modulation |                           |  |
|                                                                    | Impédance d'entrée : 5 KΩ |  |
| Déclenchement externe                                              | TTL - Compatible          |  |

| Entrée Déclenchement (Trigger) |                                        |  |
|--------------------------------|----------------------------------------|--|
| Niveau de l'entrée             | TTL - compatible                       |  |
| Pente (Slope)                  | Montant ou descendant (sélectionnable) |  |
| Largeur d'impulsion            | > 100 ns                               |  |
| Impédance d'Entrée             | > 10 KΩ, couplage DC                   |  |
| Balayage linéaire              | < 500 µs (typique)                     |  |
| Latence du balayage            | < 500 ns (typique)                     |  |

| Sortie Déclenchement (Trigger Output) |                                     |  |
|---------------------------------------|-------------------------------------|--|
| Niveau                                | TTL - compatible avec >1 K $\Omega$ |  |
| Largeur d'Impulsion                   | > 400 ns (typique)                  |  |
| Impédance de sortie                   | 50 Ω (typique)                      |  |
| Taux maximum                          | 1 MHz                               |  |

| Sortie Synchro « Sync Output » (CH1) |                                     |  |
|--------------------------------------|-------------------------------------|--|
| Niveau                               | TTL - compatible avec >1 K $\Omega$ |  |
| Largeur d'Impulsion                  | > 50 ns (typique)                   |  |
| Impédance de sortie                  | 50 Ω (typique)                      |  |
| Taux maximum                         | 1 MHz                               |  |

| Spécification du Compteur en Fréquence                                                     |                             |  |
|--------------------------------------------------------------------------------------------|-----------------------------|--|
| Valeurs mesurées Fréquence, période, largeur d'impulsion positi négative, rapport cyclique |                             |  |
|                                                                                            | riegative, rapport cyclique |  |
| Gammes de Fréquences                                                                       | 1 voie : 100 mHz à 200 MHz  |  |
| Résolution de l'affichage                                                                  | 6 digits                    |  |

| Gammes de Tensions et Sensibilité (signal non modulé) |                                                                                       |                                                       |                                   |                                                                           |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------|--|
| Mode AUTO                                             | 1 Hz à 200 MHz                                                                        |                                                       | Z                                 | 200 mVpp à 5 Vpp                                                          |  |
|                                                       | DC                                                                                    | Gamme tension                                         | n Offset                          | ± 1.5 VDC                                                                 |  |
|                                                       | DC                                                                                    | 100 mHz à 10                                          | OO MHz                            | 20 mV <sub>RMS</sub> à ±5 VAC+DC                                          |  |
| Mode Manuel                                           |                                                                                       | 100 MHz à 20                                          | 00 MHz                            | 40 mV <sub>RMS</sub> à ±5 VAC+DC                                          |  |
|                                                       | A.C.                                                                                  | 1 Hz à 100                                            | MHz                               | 50 mVpp à ±5 Vpp                                                          |  |
|                                                       | AC                                                                                    | 100 MHz à 20                                          | 00 MHz                            | 100 mVpp à ±5 Vpp                                                         |  |
| Largeur d'impuls                                      | ion & ra                                                                              | ipport cyclique                                       | 1 Hz à 10 MHz (100 mVpp à 10 Vpp) |                                                                           |  |
|                                                       | Impé                                                                                  | dance d'entrée                                        |                                   | 1 ΜΩ                                                                      |  |
|                                                       | Couplage Filtre Haute Fréquence Sensibilité                                           |                                                       |                                   | AC & DC                                                                   |  |
| Entrée                                                |                                                                                       |                                                       |                                   | Filtre réducteur de bruit HF (HFR)<br>Node HFOn (marche) ou HFOff (arrêt) |  |
|                                                       |                                                                                       |                                                       | Basse, Moyenne, Haute             |                                                                           |  |
| Mode de                                               | Le niveau de déclenchement (Trigger) peut être ajusté manuellement ou automatiquement |                                                       |                                   |                                                                           |  |
| déclenchement                                         | Gamı                                                                                  | Gamme du niveau du « Trigger » : ± 3 V (0.1% to 100%) |                                   |                                                                           |  |
| (Trigger)                                             | Résolution : 6 mV                                                                     |                                                       | n : 6 mV                          |                                                                           |  |

## CARACTERISTIQUES GÉNÉRALES

| Affichage           |                              |  |
|---------------------|------------------------------|--|
| Type                | Ecran LCD Noir & Blanc       |  |
| Résolution          | 256 Horizontal x 64 Vertical |  |
| Degré de Gris       | 4 Degré de niveau de gris    |  |
| Contraste (typique) | 150 : 1                      |  |
| Luminance (typique) | 300 nit (nt)                 |  |

| Alimentation |                                                  |  |  |
|--------------|--------------------------------------------------|--|--|
| Tension      | 100 - 240 VAC <sub>RMS</sub> ,45 – 440 Hz,CAT II |  |  |
| Consommation | < 40W                                            |  |  |
| Fusible      | 2 A Temporisé, 250V                              |  |  |

| Environnement        |                                              |  |  |
|----------------------|----------------------------------------------|--|--|
| Gamme de Température | Fonctionnement: 10°C à +40°C                 |  |  |
|                      | Stockage: -20°C à +60°C                      |  |  |
| Refroidissement      | Ventilation naturelle                        |  |  |
| Gamme Humidité       | En dessous de +35°C : ≤90% humidité relative |  |  |
|                      | +35°C à +40°C : ≤60% humidité relative       |  |  |
| Fonctionnement en    | Opérationnel : en dessous de 3.000 m         |  |  |
| altitude             | Non-opérationnel : en dessous de 15.000 m    |  |  |

| Spécifications |                  |         |  |
|----------------|------------------|---------|--|
| Dimension      | Largeur          | 232 mm  |  |
|                | Hauteur          | 108 mm  |  |
|                | Profondeur       | 288 mm  |  |
| Poids          | Emballage exclus | 2.65 Kg |  |
|                | Emballage inclus | 4 Kg    |  |

| Protection IP             |  |  |
|---------------------------|--|--|
| IP2X                      |  |  |
| Intervalle de Calibration |  |  |
| 1 An (suggestion)         |  |  |

### **NOTES**

