MODELOS Y BASES DE DATOS Diseño Físico. SQL-DTL-TCL 2025-1 Laboratorio 5/6

OBJETIVOS

Evaluar el logro de las competencias adquiridas para:

- 1. Realizar el diseño físico de una base de datos
- 2. Implementar una base de datos relacional a partir de un diseño físico
- 3. Definir e implementar índices y vistas para optimizar el funcionamiento
- 4. Definir e implementar los componentes transaccionales de la base de datos
- 5. Implementar los mecanismos para empaquetar los servicios de la base de datos
- 6. Usar el ambiente SQL Developer

ENTREGA

Publiquen los resultados en un archivo .zip , el nombre de este archivo debe ser la concatenación en orden alfabético de los primeros apellidos de cada uno de los miembros. Deben entregar los archivos: lab05.doc, mananitas.asta y mananitas.sql.

Para organizar el archivo .sql incluyan como comentarios los títulos señalados. No olviden dar nombres significativos a cada uno de los elementos de la implementación.

CICLO UNO. Mañanitas

A. Extendiendo, Clientes

Los datos de algunos clientes de mañanitas los vamos a importar de la tabla DATA de la cuenta mbda (mbda.DATA)

- 1. Consulte la información que actualmente está en la tabla. ¿Cuántos datos tiene?
- 2. Inclúyanse como Clientes (data). Capture pantalla de esta información en DATA.
- **3.** Traten de modificarse o borrarse. ¿qué pasa?
- **4.** Escriban la instrucción necesaria para otorgar los permisos que actualmente tiene esa tabla. ¿quién la escribió?
- **5.** Escriban las instrucciones necesarias para importar los datos de esa tabla a su base de datos como Clientes. Los datos deben insertados en las tablas de su base de datos, considerando:
 - El porcentaje de descuento será del 10%, si no se indica
 - El correo será cedula@mananitas.com, si el cliente no lo reporta
- **6.** Para esta nueva funcionalidad, adicionen este nuevo caso de uso a funciones COMO Administrador QUIERO importar Clientes de una fuente externa PARA PODER contar con esta información

B. Modelo físico. Datos.

1. Diseñe el modelo físico de datos (ingeniería reversa) del CRUD FACTURAS. (No olvide incluir todos las tablas de ese CRUD)

C. Modelo físico. Componentes.

1. Diseñe e implemente el paquete correspondiente al CRUD FACTURAS (PC_FACTURAS) En el paquete deben incluir los subprogramas necesarios para atender los escenarios del caso de uso de funciones y los casos de uso de las consultas asociadas a este gran concepto. (No incluyan la consulta de las canciones más solicitadas)

CRUDE (Especificacion)
CRUDI (Implementación)

XCRUD

__

-2. Prueben el paquete con los casos más significativos: 5 éxito y 3 de fracaso.

CRUDOK CRUDNoOK

D. Modelo físico. Seguridad.

- **1.** Diseñen e implementen los paquetes que ofrezcan las operaciones válidas para cada uno de los siguientes actores:
 - 1. Usuario (PA VENDEDOR)
 - 2. Administrador(PA ADMINISTRADOR

ActoresE

Actores

- **2.** Creen los dos roles anteriores y otorguen los permisos correspondientes a cada uno de esos.
- **3.** Asignen el rol de auditor al miembro del equipo que no creo la base de datos y el rol de administrador a un compañero del curso (no del equipo). Prueben la ejecución desde esas cuentas.

Seguridad

(Autorizaciones)

__

XSeguridad

4. Prueben el esquema de seguridad con los casos más significativos: 5 éxito y 3 de fracaso.

SeguridadOK

SeguridadNoOK

D. Pruebas

Las pruebas de aceptación son historias de varios pasos (10 aprox) que cuentan un uso posible del sistema.

Las siguientes son algunas reglas de construcción:

- 1) se diseñan con base en los casos de uso de funciones y consultas
- 2) para cada paso se presenta una descripción en lenguaje natural seguida de la instrucción SQL correspondiente.
- 3) las instrucciones SQL son únicamente llamados a métodos de los paquetes de actores.
- 4) se ilustran acciones de éxito, consultas y la protección sobre acciones no permitidas.
- 5) el éxito de las acciones se confirma con un paso siguiente.

Es necesario que la historia tenga un buen argumento e ilustre las mejores zonas de implementación del sistemas.

1. Diseñen e implementen una prueba de aceptación.

Pruebas

RETROSPECTIVA

- 1. ¿Cuál fue el tiempo total invertido en el laboratorio por cada uno de ustedes? (Horas/Hombre)
- 2. ¿Cuál es el estado actual del laboratorio? ¿Por qué?
- 3. ¿Cuál consideran fue el mayor logro? ¿Por qué?
- 4. ¿Cuál consideran que fue el mayor problema técnico? ¿Qué hicieron para resolverlo?
- 5. ¿Qué hicieron bien como equipo? ¿Qué se comprometen a hacer para mejorar los resultados?
- 6. ¿Qué referencias usaron? ¿Cuál fue la más útil? Incluyan citas con estándares adecuados.