		SET CODE: 12	
HALL TICKET NO.		BOOKLET SL. NO.	109378
NAME OF THE CANDIDATE	٠	BOOKLET CODE :	В
SIGNATURE OF THE CANDIDATE		INVIGILATOR'S SIGNATURE	

(CVL)

CIVIL ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand comer of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING BALL POINT PEN (BLUE/BLACK) ONLY ON
 THE OMR RESPONSE SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics,
 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using Ball Point Pen (Blue/Black) only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using Ball Point Pen (Blue/Black) only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate :
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- No loose sheets or papers will be allowed in the examination hall.
- Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

Booklet Code :

В

Note: (1) Answer all questions.

- (2) Each question carries I mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with Ball Point Pen (Blue/Black), only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using pencil or if more than one circle is shaded against each question.

MATHEMATICS

1.
$$\int \left(\frac{x+2}{x+1}\right) dx =$$

(1)
$$x \log (x+1) + c$$

(3)
$$x + \log(x+1) + c$$

(2)
$$x \log (x+1) + 2 \log (x+1) + c$$

$$(4) \quad \frac{1}{x}\log(x+1)+c$$

$$\int \frac{x^2}{\sqrt{1+x^6}} dx =$$

(1)
$$\frac{1}{2}\sin^{-1}(x^3) + c$$

(3)
$$\frac{1}{2}\cos h^{-1}(x^3) + c$$

(2)
$$2\cos^{-1}(x^3) + c$$

(4)
$$\frac{1}{3}\sin h^{-1}(x^3) + c$$

3.
$$\int 8x^3 e^{2x} dx =$$

(1)
$$(4x^3-6x^2+6x-3)e^{2x}+c$$

(3)
$$\left(\frac{4x^2}{3} - \frac{2}{3}x + \frac{1}{3}\right)e^{2x} + c$$

(2)
$$4x^3 + 6x^2 + 6x + 3e^{2x} + c$$

(4)
$$\left(\frac{4x^2}{3} + \frac{2}{3}x - \frac{1}{3}\right)e^{2x} + c$$

4.
$$\lim_{n\to\infty} \left[\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n} \right] =$$

(1)
$$\frac{\pi}{3}$$

(2)
$$\frac{\pi}{4}$$

5.
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx =$$

- (1) $\frac{\pi}{2}$
- (2) $\frac{\pi}{4}$
- (3) 0
- (4) 2
- The area of the region in the first quadrant enclosed by x-axis, y-axis, y = 3x-2 and y = 4 is 6.
 - (1) 16
- (2) 8
- $(3) \frac{16}{3}$
- The root mean square (RMS) value of $\log x$ over the range x = 1 to x = e is 7.
 - (1) $\frac{\sqrt{(e+1)}}{\sqrt{(e-2)}}$ (2) $\frac{\sqrt{(e-2)}}{\sqrt{(e-1)}}$ (3) $\frac{\sqrt{(e+2)}}{\sqrt{(e+1)}}$ (4) $\frac{\sqrt{(e+2)}}{\sqrt{(e-1)}}$

- The differential equation formed by eliminating the arbitrary constants a and b in the relation 8. $y = a \cos(nx+b)$ is
 - (1) $\frac{d^2y}{dx^2} + n^2y = 0$

(2) $\frac{d^3y}{dx^3} - x^3y = 0$

(3) $\frac{dy}{dx} + ny = 0$

(4) $\frac{d^2y}{dx^2} - y = 0$

- The solution of $\frac{dy}{dx} = e^{x-y}$ 9.

- The solution of the differential equation $\tan x \frac{dy}{dx} + y = \sec x$ is
 - (1) $y \sin x x = c$

(2) $y \cot x + x = c$

(3) $y = \tan x + c$

(4) v cosec x = x + c

Set Code:

Booklet Code:

The solution of the linear third order equation $\frac{d^3y}{dx^3} - 7\frac{d^2y}{dx^2} + 16\frac{dy}{dx} - 12y = 0$ is 11.

(1)
$$y = c_1 e^{3x} + c_2 e^x + c_3 e^{4x}$$

(2)
$$y = c_1 e^{3x} + c_2 x e^x + c_3 e^{4x}$$

(3)
$$y = c_1 e^{2x} + c_2 x e^{3x} + c_3 e^{4x}$$

(4)
$$y = c_1 e^{3x} + (c_2 + c_3 x) e^{2x}$$

12. If $y_1 = e^x$ and $y_2 = e^{-x}$ are two solutions of the homogeneous differential equation; then

(1)
$$y_3 = e^{2x}$$
 and $y_4 = e^{-2x}$ are also solutions of the equation

(2)
$$y_3 = xe^x$$
 and $y_4 = xe^{-x}$ are also solutions of the equation

(3)
$$y_3 = \cosh x$$
 and $y_4 = \sinh x$ are also solutions of the equation

(4)
$$y_3 = \cos x$$
 and $y_4 = \sin x$ are also solutions of the equation

13. The particular integral (P.I) of the equation $(D^2+D-6)y = 5e^{2x} + 6$ is

(1)
$$xe^{2x}-1$$

(2)
$$e^{2x} + 1$$

(3)
$$5xe^{2x} + 1$$

(4)
$$e^{2x} - 1$$

The particular integral of (D^2+16) $y=8\cos 4x$ is

(2)
$$x \sin 4x$$

(3)
$$-\frac{1}{4}\sin 4x$$

(4)
$$-\frac{1}{4}\cos 4x$$

15. If $A = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 2 \\ & & & 1 \end{bmatrix}$ then,

$$(1) \cdot A = A^{T}$$

(2) A is a diagonal matrix

(3) A is a singular matrix

(4) A is a nonsingular matrix

16. If
$$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 then

- (1) The minors of first row elements are respectively -3, -1, 5
- (2) The cofactors of second row elements respectively are 1, -1, 1
- (3) The cofactors of first row elements respectively are -3, -1, -5
- (4) The minors of second row elements respectively are 7, 5, -13
- 17. If A, B, C are non singular matrices of order 3 then

(1)
$$A(BC) \neq (AB)C$$

(2)
$$(ABC)^T = A^T B^T C^T$$

(3)
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

(4)
$$(ABC)^{-1} = 1/(ABC)$$

18. If
$$\begin{bmatrix} 3 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
, then

(1)
$$x = -1, y = 4$$

(2)
$$x = 2, y = -1$$

(3)
$$x = 4, y = -1$$

(2)
$$x = 2, y = -1$$

(4) $x = -1, y = 2$

19. If w is the cube root of unity then
$$\begin{bmatrix} 1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w \end{bmatrix} =$$

$$(3) -1$$

20. If
$$\frac{x^2 + 13x + 15}{(2x+3)(x+3)^2} = \frac{A}{2x+3} + \frac{B}{x+3} + \frac{C}{(x+3)^2}$$
 then C =

$$(3)$$
 3

21. If
$$\frac{2x+1}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1}$$
 then $A = \frac{C}{x^2+1}$

(2)
$$\frac{2}{3}$$

(3)
$$-\frac{3}{2}$$

$$(4) \cdot -\frac{2}{3}$$

30	WILL CAL	C-11	' THE LIP
ZZ.	which of the	following statement	IS I RUE

- (A) The period of sin x is π and the period of cosec x is 2π
- (B) The period of $\cos x$ is 2π and the period of $\sec x$ is 2π
- (C) The period of tan x is 2π and the period of cot x is π
- (D) The period of cosec x is π and the period of sec x is 3π
- (1) A

- (3) C
- (4) D

23. The range of
$$3\cos\theta - 4\sin\theta$$
 is

- (1) [-1,1]
- (2) [0,4]
- (3) [-5,5]
- (4) [-4,0]

24. If
$$A+B=45^\circ$$
, then $(1+\tan A)(1+\tan B)=$

- (1) 0
- (2) 1
- (3) $\frac{1}{2}$
- (4) 2

25.
$$\left(\frac{\sin 2A}{1-\cos 2A}\right) \left(\frac{1-\cos A}{\cos A}\right) =$$

- (1) $\tan \frac{A}{2}$ (2) $\cos \frac{A}{2}$
- (3) $\sec \frac{A}{2}$ (4) $\csc \frac{A}{2}$

26. The value of
$$\frac{\sin 70^\circ - \cos 40^\circ}{\cos 50^\circ - \sin 20^\circ} =$$

- (1) 1
- (2) $\frac{1}{\sqrt{2}}$
- (3) $\frac{1}{\sqrt{3}}$
- (4) 0

27.
$$4 \sin \frac{11\theta}{2} \cos \frac{11}{2}\theta \cos 5\theta$$
 expressed as sum or difference is

(1) $\sin 15 \theta - \sin 6 \theta$

(2) $\sin 16 \theta + \sin 6 \theta$

(3) $\sin 11 \theta + \sin 8 \theta$

(4) $\sin 11 \theta - \sin 8 \theta$

28. If
$$2\cos^2\theta + 11\sin\theta = 7$$
, the principal value of θ is

- (1) 60°
- (2) 45°
- (3) 30°
- (4) $22\frac{1}{2}$

Set Code :

Booklet Code :

29. Which one of the following equation is FALSE

(1) $\cos^{-1}(-x) = \pi - \cos^{-1}x$

- (2) $\sin^{-1}(-x) = \pi \sin^{-1} x$
- (3) If $-1 \le x \le 1$, then $\cos^{-1}x + \sin^{-1}x = \frac{\pi}{2}$ (4) $\sin^{-1}x \ne \frac{1}{\sin x}$
- 30. In any triangle ABC, $\Sigma(b+c)\cos A =$
 - (1) a+b+c
- (2) 2(a+b+c)
- (3) 3(a+b+c) (4) 0

31. With the usual notation, in a triangle ABC

$$s\left[\frac{r_1-r}{a}+\frac{r_2-r}{b}+\frac{r_3-r}{c}\right]=$$

- (1) $2(r_1+r_2+r_3)$ (2) $3(r_1+r_2+r_3)$ (3) $r_2+r_3+r_4$

32. The modulus amplitude form of $-\sqrt{3} + i$ is

- (1) $2 \operatorname{cis} \frac{5\pi}{6}$ (2) $2 \operatorname{cis} \frac{3\pi}{6}$ (3) $2 \operatorname{cis} \frac{\pi}{3}$ (4) $2 \operatorname{cis} \frac{\pi}{6}$

33. If
$$x = \cos\theta + i \sin\theta$$
, then the value of $x^6 + \left(\frac{1}{x^6}\right)$

- (1) 0
- (2) $2i\sin\theta\theta$
- (3) $2\cos 6\theta$ (4) $2(\cos 6\theta + \sin 6\theta)$

34. The most general second degree equation
$$ax^2+2hxy+by^2+2gx+2fy+c=0$$
 represents a circle if

(1) a+b=0, h=0

(2) a-b=0, b=0

(3) $a-b=0, h \neq 0$

(4) $a+b \neq 0, h \neq 0$

35. The equation of the circle whose radius is
$$\sqrt{(a^2-b^2)}$$
 and whose center is (-a, -b) is

- (1) $x^2+y^2+2ax+2by+2a^2=0$ (2) $x^2+y^2-2ax+2(a^2+b^2)=0$ (3) $x^2+y^2+2ax+2by+2(a^2-b^2)=0$ (4) $x^2+y^2+2ax+2bx+2b^2=0$

36. The coordinates of the parabola
$$y^2 = 18x$$
 such that the ordinate equals to three times of the abscissa is

- (1) (3, 9) (2) (2, 6)
- (3) (1, 3) (4) (162, 54)

With respect to the ellipse $5x^2+7y^2=11$, the point (4, -3)

(1) Is a focus

(2) lies with in the ellipse

(3) lies outside the ellipse

(4) lies on the ellipse

For the Hyperbola $4x^2-9y^2=36$, the coordinates of the foci are

- (1) $(\pm\sqrt{13},0)$ (2) $(\pm\sqrt{31},0)$ (3) (±6.0) (4) $(0,\pm6)$

Which of the following statements are FALSE

- (A) The equation of the tangent at the point (x', y') of the circle $x^2 + y^2 = a^2$ is $xx' + yy' = a^2$
- (B) The eccentricity of a parabola is unity
- (C) The eccentricity of an ellipse is greater than unity
- (D) The eccentricity of a hyperbola is less than unity
- (1) A,B
- (2) A,D
- (3) B.C
- (4) C, D

40. $\lim_{x \to \infty} \frac{3^{x+1} + 4}{3^{x+2} + 4} =$

- (1) 1
- (2) 0
- (3) $\frac{3}{4}$
- (4) $\frac{1}{3}$

41. Derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with reference to x is

- (1) $\frac{2}{1+x^2}$ (2) $\frac{1}{1-x^2}$ (3) 2x
- $(4) \quad \sqrt{1+x^2}$

42. If $y = x^{3x}$. (x > 0) then $\frac{dy}{dx} =$

- (1) $3.x^{3s-1}$ (2) $3x^{2s}$
- (3) $3y(1+\log x)$ (4) $\frac{3y}{\log x}$

43. If
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
 then $\frac{dy}{dx} =$

(1)
$$\left(\frac{x}{y}\right)^{\frac{1}{3}}$$
 (2) $-\left(\frac{y}{x}\right)^{\frac{1}{3}}$ (3) $-\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (4) $\left(\frac{y}{x}\right)^{\frac{1}{3}}$

- 44. The derivative of log sec x with respect to tan x is
 - (1) sec x . tan x
- (2) cos x. cot x
- (3) $\cos x \cdot \sin x$ (4) $\sec x \cdot \cot x$
- 45. The coordinates of the point P(x, y) on the curve of $y = x^2 4x + 5$ such that the tangent at P is parallel to y = 2x+4 are
 - (1) (3, 2)
- (2) (1, 2)
- (3) (2, 1) (4) (5, 4)
- 46. The function $f(x) = x \log^2 x$ has
 - (1) Maximum value occurs when $x = \frac{1}{2}$ (2) Maximum value occurs when x = e
 - (3) Maximum value occurs when $x = e^{-2}$ (4) Maximum value occurs when $x = e^2$
- 47. In a cube the percentage increase in side is 2 units. The percentage increases in the volume of the cube is
 - (1) 3
- (2) 6
- (3) 8
- (4) 16

- The curves $x = y^2$ and xy = m cut at right angle if
 - (1) m = 0
- (2) $m^2 = 8$
- (3) $8m^2 = 1$ (4) m = -1
- 49. If $u = e^{-x} \sin by$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} =$

- (1) $(a^2-b^2)u$ (2) a^2+b^2 (3) $(a^2+b^2)u$ (4) (a+b)u

$$50. \quad \int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx =$$

(1)
$$\sqrt{x} \sin \sqrt{x} + c$$
 (2) $2 \sin \sqrt{x} + c$ (3) $\sqrt{\cos x} + c$ (4) $\frac{\sin \sqrt{x}}{\sqrt{x}} + c$

Set Code : T2

Booklet Code : B

PHYSICS

51.	In th	ermodynamics,	dQ =	0 and dU = -dW	is true	e for			
	(1)	Isothermal pro	cess		(2)	Adiabatic proc	ess		
	(3)	Isochoric proc	ess		(4)	Isobaric proces	SS		
52.		mple of an ideal ne gas is m. The			sure P	and temperature	T. Th	e mass of each mol	ecule
		P/kVT		mkT	(3)	mP/kT	(4)	P/kT	
53.		as does 4.5 J of mal energy will			diaba	tic expansion. Its	s temp	perature falls by 2	K. Its
	(1)	increase by 4.5	5 J		(2)	increase by 9.0	J		
	(3)	decrease by 4.	5 J		(4)	decrease by 2.2	25 J		
54.		mole of an idea	l gas (†	$\gamma = 5/3$) is mixed	with c	one mole of diato	mic g	as (γ =7/5). The val	lue of
	(1)	3/2	(2)	4/3	(3)	23/15	(4)	35/23	
55.	In a given process on an ideal gas, $dW = 0$ and $dQ < 0$. Then for the gas								
	(1) the temperature will decrease								
		0.733			33	the temperature			
56.	The threshold wavelength for a metal whose work function is W_0 is λ_0 . The threshold wavelength for a metal whose work function is $W_0/2$								
		λ ₀ /4		$\lambda_0/2$	(3)	4λ ₀	(4)	$2\lambda_0$	
57.	The	propagation of	light th	rough an optical	l fiber	goes by the prin	ciple		
	2004040404					Total internal r			
	(3)				(4)	Diffraction			
58.	The	dimensions of a	ngula	mom entum are					
	(1)	MLT-'	(2)	ML-I T	(3)	ML ^o T-2	(4)	ML ² T-1	
5 9.	The	SI unit of unive	rsal ga	s constant R is _		_			
	(1)	(1) Newton K ⁻¹ mol ⁻¹				Joule K-I mol-	1		
	(3)	Watt K-I mol-I			(4)	erg K-1 mol-1			

								Set Code : T2
					¥3		Ì	Booklet Code : B
60.	The	magnitude of the	resul	tant of (A+B)	and (A-l	8) is		
	(1)	2.4			(2)	$\sqrt{\left(A^2+B^2\right)}$		
	(3)	2 <i>B</i>			(4)	$\sqrt{\left(A^2 + B^2\right)}$ $\sqrt{\left(A^2 - B^2\right)}$		(40)
61.	Give	en A.B = 0 and A	×C = (, the angle be	tween B	and C is		
	(1)	135° ·	(2)	90°	(3)	180°	(4)	45° .
62.	A pr	rojectile has a ma	ximur	n range of 200			t a tta ir	ned by it is
	(1)					100 m		
ĸ	(3)	25 m			(4)	50 m		
63.	to th	lock of mass M is the block and a fore the will be FM/(M-m)	lying o ce F is	on a horizontal applied at the	free end (2)	parallel to the st Fm/(M+m)	e end o orface.	of a rope mass m is fixed. The force acting on the
	(3)	FM/(M+m)			(4)	F		
64.	of l		angle		efficien		veen th	onstant speed by a force ne block and the surface 0.65
65.	the whi	weight of the bo ch the boy should	y. If g i clim	is the acceler b down the ro	ration du	e to gravity, the	um ter e mini (4)	nsion equal to two-thirds mum acceleration with
	(1)	g/3	(2)	28/3	(3)	Jy 2	(+)	8
66.		ullets each of ma in a wall. The read nNv/m Nmv/n			wall to th			of n bullets per second,
67.	A n	nachine gun fires exert a maximu ond is	ım foi	rce of 144 N	0 g with	a velocity of 1 gun. The numb	200 m er of (4)	n/s. The man holding it bullets he can fire per
	(1)	4	(2)	1	(5)		(+)	U

								Set C	ode: T2
	×							Booklet C	ode : B
6 8.	of fr	orizontal force Friction between to	he box	and the floor is					
		49 J			(2)	147 J			
	0.5000.000	196 J			3.000	98 J			
69.	of th	niform rod of ma ne rod in this po mgl/4	sition		,				ential energy
	(.,		(-)	6.2	(5)	6.	(1)	ing.	
70.	If m	omentum is inc	reased	by 20%, then k	inetic o	energy incre	ases by		
		44%		77%					
71.	the f	rticle is execution of kines 1/5	tic ene	ar SHM of amp rgy is 3/4			displaceme (4)		e amplitude
72.	For	a particle execu	ting S.	H.M starting fro	om equ	ili br ium pos	ition the pl	hase is $\pi/2$	when it has
		maximum disp							
	(3)					maximum			
73.	A pa T _i au (1)	erticle executes and to go from A/ $T_1 = 2 T_2$ $T_1 < T_2$	SHM b	etween $x = -A$	and x = (2)			it to go fro	n 0 to A/2 is
74.		sounds of wave			travelli	ing in a med	lium produ	ce 10 beats	per second.
		speed of sound			_	•	100		10
	(1)	300 m/s	(2)	320 m/s	(3)	350 m/s	(4)	1200 m/s	

75. An observer moves towards a stationary source of sound with a velocity one tenth the velocity of

(4) 10%

sound. The apparent increase in frequency_

(2) 0.1%

(1) 3%

								Poorier Code : B
84.	The	ion that is iso ele	ectror	nic with CO is				
		NO⁺		0,+	(3)	0,-	(4)	N ₂ *
85.	The	hydrogen bond i	s stro	ngest in				
	(1)	O-HS	(2)	S-HO	(3)	F-HF	(4)	F-HO
86.	The	molecule having	pyrar	nidal shape				
	(1)	PCl ₃	(2)	SO ₃	(3)	CO, 2-	(4)	NO ₃ -
87.	Crys	stals of a sodium	chlor	ride belong to the	syste	m		
		Orthorhombic				Trigonal	(4)	Monoclinic
88.	The	pH of 0.05 M ac	etic a	cid is $(K_s = 2 \times 10^{\circ})$	r ⁵)			
	(1)		(2)	Charles and the control of the contr		10-3	(4)	3
89.		volume in ml. of tion of H _e PO ₂ is	0.1 M	solution of NaO	H req	uired to complete	ly ne	utralize 100 ml of 0.3 M
	(I)		(2)	600	(3)	300	(4)	30
90.	The carb	P ^{ts} values of fou oxylic acid amor	r carb	oxylic acids are 4 m is the one havin	.76, 4 ng P ^{ka}	1.19, 0.23 and 3.4 value of	l res	pectively. The strongest
	(1)	4.19	(2)	3.41	(3)	0.23	(4)	4.76
91.	lfpH	l value of a solut	ion is	8, then its pOH v	alue	will be		
	(1)	7	(2)	1	(3)	6	(4)	10
92.	The 0.000	standard reducti 0 and +0.80 V re	ion po	otential for Li*/Lively. Which is th	i, Zn	⁺² /Zn; H*/H _, and ngest reducing a	l Ag*	/Ag are -3.05, -0.762,
	(1)		(2)		(3)	100	(4)	
93.	The	standard reduction	on pot	ential for the foll	owin	e half-cell reaction	ons ar	e
		$Zn^{+2} + 2e^{-}E^{\circ} =$						-
	Fe=	$Fe^{+2} + 2e^{-}E^{o} = -$	-0.44	V				
	The	FM F for the ce	ll res	ction Fe+2+7n	7-+2	+ Famili ha		

(3) +1.20 V

(4) -1.20 V

(2) +0.32 V

(1) -0.32 V

94.		it bridge, KCI is used			7					
	(1)	1) KCl is present in calomel electrode								
		K+ and Cl- ions are								
	(3)	K+ and Cl- ions have	the same trans	port num	ber					
,	(4)	KCl is an electrolyt	е							
95.	The	metal that cannot be	obtained by ele	ctrolysis	of aqueous solu	ition of its salt is				
	(1)	Ag (2)	Au	(3)	Cu	(4) Al				
96.	BOD	of raw municipal se	wage may be al	out						
	(1)	2-5 mg/lit		(2)	5-10 mg/lit					
	(3)	150-300 mg/lit		(4)	2000-3000 mg	/lit				
97.	The	pH value of potable v	vater should be	bet ween						
		1 to 1.5			6.5 to 8					
		13 to 14		(4)	4 to 5					
98.	Dea	eration of high press	ure boiler feed	water is c	ione to reduce					
-5000.0		Foaming from boil			Its dissolved or	xygen content				
3		Its silica content		(4)	Caustic embrit	tlement				
99.	Pres	ence of non-biodeg	radable substat	ices like	alkyl benzene s	sulphonate from de	etergents in			
		uted water stream ca			and the control of th					
		Fire hazards		(2)	Explosion haza	ards				
	(3)	Persistent foam		(4)	Depletion of d	issolved oxygen				
100	Pres	sence of soluble orga	mics in polluted	d water ca	nuses					
100	(1)	Undesirable plants		(2)	Depletion of o	xygen				
	3.5	Fire hazards	D. 0	(4)	Explosion haz					
	(3)	THE HAZAIUS		(1)	2.1p. Ostori naci		23413			

Set Code :	T2
Booklet Code :[В

(CVL)

CIVIL ENGINEERING

						100					
101.		technique use	ed to cr	oss a deep go	orge or v	vide stream,	while m	aintaining continuty of			
		Radical level	ing		(2)	Fly leveling					
		Profile level	_		(4)	Reciprocal l		a			
102.	Tang	gential method	oftach	ometry is							
	(1)	Slower than S	Stadia ha	air method							
	(2)	Faster than S	tadia hai	ir method							
	(3)	Preferred as	involvin	g less compu	tations to	get reduced	distances				
	(4)	Preferred as chances of operational error are less compared to Stadia hair method									
103.	Bear	nan's arc is		9 . 00							
	(1)	a device to il	luminate	triangulation	signals						
	(2)										
	(3)	a movable ha	ir tacho	meter							
	(4)	an attachmer	nt to theo	odolite for s <mark>i</mark> m	plifying	reduction of r	cadings i	in Stadia Surveying			
104.	The	rational metho	od of tria	ingulation adj	usti nen t i	nvolves the u	se of				
	(1)	Principle of		5	(2)	Weighted ar		mean			
	(3)	Chord gradie	- NO. 1		(4)	Parollox co					
105.	The	sign of combi	ned corr	ection for cur	vature ar	d refraction	for an ang	gle of elevation is			
	(1)	Zero	(2)	Negative	(3)	Positive	(4)	No correction needed			
106.	True	meridians at	differen	t places conve	erge			•			
	(1)	from South	Pole to 1	North Pole							
	(2)	from the equ	ator to n	orth and sout	h poles						
	(3)	from North	Pole to S	South Pole	recentered to the control of the co						
	(4)	from the equ	ator to e	east pole							
		•									

17-B

Electronic distance measurement is based on following approaches

- (1) Electro optic method and electro magnetic method
- (2) Electromagnetic method natural sextant
- (3) Electro optic method and spherical trigonometry
- (4) Electro optic method and method of least squares

108. Latitude of a place is the triangular distance

- (1) from the Greenwich to the place
- (2) from the equator
- (3) from the equator to the nearest pole
- (4) from the equator towards nearer pole along the meridian of the place

109. The absolute positioning of GPS

- relies upon single receiver station
- (2) relies upon second receiver known as reference point
- (3) differential geographical positioning system
- (4) realtime kinetic fixed

110. The coefficient of velocity is determined experimentally by using the relations

(1)
$$C_v = \sqrt{\frac{y^2}{4xH}}$$
 (2) $C_v = \sqrt{\frac{x^2}{4yH}}$ (3) $C_v = \sqrt{\frac{4xH}{y^2}}$ (4) $C_v = \sqrt{\frac{4yH}{x^2}}$

$$(2) \quad C_{\nu} = \sqrt{\frac{x^2}{4yH}}$$

$$(3) \quad C_{\nu} = \sqrt{\frac{4xH}{y^2}}$$

$$(4) \quad C_{\nu} = \sqrt{\frac{4yH}{x^2}}$$

Surface tension is expressed in

- (1) N/m
- (2) N/m^2
- (3) N/m³
- (4) N-m

112. The fundamental S.I unit of pressure is N/m²; this is also known as

- (1) Pascal
- (2) Stoke
- (3) Poise
- (4) Newton

Set Code :	T2
Booklet Code :	В

113.	Hot	wire Anemom	eter is u	sed for measur	ring				
		Viscosity			(2)	Velocity of gas	es		
	(3)	Pressure of g	ases		NATION	Velocity of flu			
114.	Flov	v in a pipe whe	re avera	ige flow paran	neters are	e considered for	analy	sis is an examp	le of
	(1)	Incompressib	le flow		(2)	One-Dimensio	nal flo)W	
	(3)	Two-Dimens	ional flo	w	(4)	Three Dimensi	onal f	low	
115.	The	total energy re	presente	ed by the Bern	oulli's e	quation has the t	ınits		
	(1)	N- m/séc	(2)	N- sec/m	(3)	N-m/m	(4)	N-m/N	
116.		error of 1% in		ring head (H)	will pro	duce	e	ror in discharg	ge ove
	(1)	1%	(2)	1.5%	(3)	2%	(4)	2.5%	
117.	Loss	s of head at exi	t of a pi	pe is given by					
	(1)	$\frac{v^2}{2g}$	(2)	$\frac{v^2}{g}$	(3)	$0.5\frac{v^2}{2g}$	(4)	$0.5\frac{v^2}{g}$	
118.	The	sum of potenti	al head	and the pressu	re head a	at any point is ca	lled		
		Velocity Head			(2)	_ •			
	(3)	Piezometric]	Head		(4)	Loss of Head		c	
119.	The	maximum effi	ciency c	corresponding	to maxir	num power trans	smissi	on through pip	es is
	(1)	66.7%	(2)	67.6%	(3)	76.6%	(4)	77.6%	
120.	The	water surface	slope d	olds in case of	uniform	flow in the char	nel is	equal to	
	(1)	0	(2)	1	(3)	0	(4)		

Set Code :	T2
Booklet Code :	В

121. If N is Mannings rugosity coefficient and R is hydraulic radius, the equation for chezy's constant (c) is

- (1) $C = NR^{1/6}$ (2) $C = \frac{1}{N}R^{1/6}$ (3) $C = \frac{N}{R^{1/6}}$ (4) $C = N^{1/6}R$

122. The cross section of a channel is said to be the best if the

- (1) Hydraulic mean depth is maximum
- (2) Section has the least perimeter for a given area
- (3) Roughness coefficient is maximum
- (4) Section gives maximum area for a given flow

123. If SHP is shaft horse power, Mechanical efficiency of a centrifugal pump is given by

- (1) Power at the impeller / SHP
- (2) SHP/Power at the impeller
- (3) Power possessed by water / Power at the impeller
- (4) Power possessed by water / SHP

124. The driving or motive force in a Francis turbine is attributed to

(1) Change in velocity

(2) Change in pressure

(3) Change in momentum

(4) Change in angular momentum

125. Find the delta for a crop when its duty is 864 hectares/ cumec on the field, the base period of this crop is 120 days.

- (1) 100cm
- (2) 110cm
- (3) 120cm
- (4) 125cm

126. Average water depth (Delta) required for Sugarcane is

- (1) 45cm
- (2) 60cm
- (3) 75cm
- (4) 90cm

127. The relation between Return period (T) and Exceedence Probability (P) is

(1) $P = e^T$

 $(2) T = e^{P}$

(3) T = 1/P

 $T = \log P$

Set Code :	T2
Booklet Code :	В

128.	Statio	on Year method is used		
,	(1)	To estimate the missing rainfall data		
	(2)	To estimate the average depth of rainfa	ll ove	r a basin
	(3)	To check the in consistency of rainfall	data .	**************************************
	(4)	To find annual rainfall data at a particul	lar sta	tion
129.		rise in the maximum flood level upstrea across the river is called	m of	the weir caused due to the construction of the
	(1)	Attenuation	(2)	Afflux
	(3)	Recuperation	(4)	Haunting
		7763		
130.	Trou	gh spillway or open channel spillway is	also k	nown as
	(1)	Ogee spillway	(2)	Chute spillway
	(3)	Shaft spillway	(4)	Syphon spillway
131.		revent the base material from passing of D ₁₅ of filter to D ₈₅ of base material		gh the pores of the filter of earthen dams the not exceed
	(1)	4 to 5	(2)	5 to 6
	(3)	6 to 7	(4)	7 to 8
132.		e allowable stress of the dam material is ific weight of the water is 1 t/m ³ , the lin		m ² , specific gravity of the dam material is 2.4, height of the dam is
	(1)	34m	(2)	98m
	(3)	100m	(4)	24m
133.		en the full supply level of the canal is at the canal water flows freely under the		eiently below the bottom of the train trough, rity, the structure is known as
	(1)	Aqueduct	(2)	Syphon Aqueduct
	(3)	Canal Syphon	(4)	Super passage

Set Code :	T2
Booklet Code :	В

134.	If'd	is average particle size in mm, the ed	quation	for Lacey's silt factor 'f' is given by
	(1)	f = 7.15d	(2)	$f = 1.75 \sqrt{d}$
	(3)	f = 1.75d	(4)	$f = 7.15 \sqrt{d}$
135.	Bull	k modulus is	€	
	(1)	Inversely proportional to modulus of	f Elastic	eity
		One third of the modulus of Elastic		
	(3)	Half of the modulus of Elasticity		
	(4)	Directly proportional to modulus of	f Elastic	ity
136.	For	a 12 mm diameter steel rod test speci	men, the	e suitable gauge length is
	(1)	77/	(2)	36 mm
		72 mm	(4)	60 mm
137.	of g	auge length is called as		manent extension equal to a defined percentage Proof stress
		Rupture stress		Allowable stress
	(3)	9 0		
138.	exte	nild steel specimen is tested under ension is obtained. A load at which stance is called	there is	and a continuous graph between load and considerable extension without increase in
			(2)	Breaking load
		Ultimate load	(4)	Upper yield load
	(3)	Lower yield load	(4)	Opper yield load
139	. The	strength of beam depends upon		
	(1)	Modulus of elasticity	(2)	Bending moment
	(3)	Section modulus	(4)	Radius of curvature
140		a certain material Poisson's ratio is dulus of rigidity for the material is	0.25. 7	hen the ratio of modulus of elasticity to the

(4) 0.5

(3) 4

(2) 2.5

(1) 0.4

								_	
								Set Code :	<u>T2</u>
•							6	Booklet Code :	В
141.	And	ther round bar I	B of the	same i	naterial but dia	meter 2I	and length (rce producing stress 0.5 L is also subjecte gy bar B is given by	ed to
	(1)	2.0			(2)	1.5			
	(3)	1.0			(4)	0.5		(*)	
142.	A lo	ad of 1kN sudd	lenly ac	ets on a	bar with 0.8 cr bar is	n² area o	f cross sectio	n a nd length 10c m.	The
	(1)	12.5 N/mm ²			(2)	25 N/m	im²		
	(3)	75 N/mm ²			(4)	125 N/t	mm^2		
143.		strain energy mm ² and lengt						The area of the ba	ar is
	(1)	0.05	(2)	0.5	(3)	5.0	(4)	.005	
144.	A m	aterial which h	as the	elastic	constants iden	tical in a	all directions	is called as	
	(1)	Isotropic			(2)	Homog			
	(3)	Elastic			(4)	Ductile			
145.	The	curvature of the	axis o	fa bean	under bending	zis		*	
	(1)	Inversely prop							
	(2)	Inversely prop			0				
	(3)	Directly propo			7	91			
	(4)	Doesn't relate				8			
					-				

146. A free body diagram is

- (1) the diagram of the body freed from all the forces that have been acting
- (2) the diagram of the body or a part of the body in isolated equilibrium
- (3) the diagram of the body with no supports at all
- (4) the diagram showing support reactions only

			•				Serv	Coue . 12
							Booklet (Code : B
147.	Com	pared to bending	deformation, she	ear deforma	ation is			
-	(1)	large		(2)	small			
	(3)	very large		(4)	zero			
148.	Shea	r stress is maxim	um, where					a a
	(1)	Bending stress is	s minimum	(2)	Bending stre	ess is max	kimum	
	(3)	Bending stress i	s zero	(4)	Bending stre	ess is neg	ative	
149.	Shea	r stress for a shaf	t being subjecte	d to torque	T is minimur	n		
	(1)	at half of radius	from the axis					
	(2)	at axis of the sha	aft					
	(3)	at equal radial d	istances from the	e axis				
	(4)	at its both ends						
150.	ther	mply supported e are two rectan base. The other are of the beam	gles of the size starting from th	$10 \text{ kN} \times 2$	m, one is sta	arting fr	om one er	nd and above
	(1)	60 kNm	(2) 50 kNm	(3)	30 kNm	(4)	20 kNm	
151	The	following section	is the most effi	cient in car	rving bending	o momen	ts	
131.	(1)	Rectangular sec		(2)	Elliptical se			
	(3)	I-section	don	(4)	T-section	, ct. c		
	(3)	1-section		(.)	. 500			
152.	. In th	e case of T section	on, the maximum	bending st	ress will occ	ur at		
	(1)	Junction of web	and flange	(2)	Extreme fib	re in the	flange	
	(3)	Extreme fibre in	the web	(4)	Neutral axis	S		
153	. For	a tria <mark>ngula</mark> r sectic	on, shear stress is	s maximum	Ĺ			
	(1)	at a height of H		(2)		of 2H/3		
	(3)	at a height of H		(4)	december 1		se .	
	200							

Set Code :	T2
Booklet Code :	В

154	'The number of	faquilibrium	equations for a	two dimensional	cuctem ic
134.	The number o	i equiliorium	equations for a	two difficusional	System is

- (1) 6
- (2) 3
- (3) 2
- (4) 1

155. A solid shaft of diameter d and length l is subjected to twisting moment T. Another shaft B of the same material and diameter d and length 0.51 is also subjected to the same twisting moment T. If the angular twist in shaft A is θ , the angular twist in shaft B is

- (1) 20

- (3) 0.50 (4) 0.250

156. A cantilever AB is subjected to a concentrated load at the free end the slope and deflection at the free end are WL²/2EI and WL³/3EI. If the same load is applied at mid span point, the deflection at the free end will be.

- (1) $\frac{5}{384} \frac{WL^3}{EI}$ (2) $\frac{5}{48} \frac{WL^3}{EI}$ (3) $\frac{WL^3}{6EI}$ (4) $\frac{WL^3}{16EI}$

157. A simply supported beam of span L carrying a u.d.l. registers a deflection of y cm at the centre. If the span of the beam is doubled, the deflection at the centre for the same u.d.l. would be

- (1) 4v
- (2) 6v
- (3) 8 ν
- (4) 16v

158. A simply supported beam of span 1 carrier a u.d.l. of w kg/m. What is the magnitude of concentrated load to be applied at the centre of this beam which would produce the same deflection as the u.d.l?

 $(1) \quad \frac{3}{8} wl$

 $(2) \quad \frac{w_l}{2}$

(3) $\frac{5}{8}$ wl

(4) $\frac{7}{9}$ wi

159. Columns of same length, cross section and material different values of buckling loads and different end conditions. The strongest column is one whose

- (1) One end is fixed and the other end is hinged
- (2) One end is fixed and the other end is free
- (3) Both the ends fixed
- (4) Both the ends hinged

								Set Cod	e : 12
88		¥		∴				Booklet Cod	le : B
60.	The	radius of gyra	ation of a	circular sec	tion of dia	meter 50mm	is		1)
	(1)	25mm	(2)	50mm	(3)	12.5mm	(4)	20mm	
61.	The	crippling stre	ss varies						
	(1)	directly prop	ortional	to slendern	ess ratio	•			
	(2)	inversely pro	oportiona	l to slender	ness ratio				
- 50	(3)	inversely pro	oportiona	l to the cub	ic power o	f slend erness	ratio		
	(4)	inversely pro	oportiona	l to the squ	are of slen	derness ratio			
62.	In th	ne case of long	g columns	s the maxim	um permis	sible stress d	epends o	n	-
	(1)	The ultimate	58						
	(2)	The maximu	20.00						
	(3)	Radius of gy							
	(4)	Effective les		Ē:					
163.	abou	ectangular sec ut x-axis passi entroid is equ	ing throu						
	(1)	8 .	(2)	4	(3)	6	(4)	2	
164.	If th	ne diameter of be	a long co	olumn is red	luced by 2	0%, the perce	entage re	duction in bu	cking load
	(1)	4	(2)	36	(3)	49	(4)	59	
165	The	minimum p	ercentas	e of reinfo	rcement i	in R.C.C. sh	ort colu	mn is	
		0.3		0.8		1.0	(4)	1.5	*
			2.2				• •		
166	Ties	s are load carr	ving men	nbers of a fr	ame, which	are subjected	d to		

(1) Transverse loads

(3) Axial compressive loads

(2) Axial tensile loads

(4) Torsional loads

167.	Fora	long column with hin	ged ends, the criti	cal s	section is	
	(1)	More than the yield st	tress	(2)	Less than the yield stress	•
	(3)	Equal to the yield stre	ess	(4)	Zero	
168.	The	moment of resistanc	e of an over-rei	nfor	rced section is determined on the ba	isis of
	(1)	Tensile force develop	ed in steel			
	(2)	Compressive force de	eveloped in concr	ete		
	(3)	Shear developed in ste	eel		· ·	•
	(4)	Tension and compress	sion developed in	steel	el	
169.	In L	imit state of collapse th	he maximum stra	in co	oncrete at the outer most compression e	dge in
	beno	ling is taken as				
	(1)	0.002		(2)	0.035	
	(3)	0.0035		(4)	0.02	
1 7 0.	The	ratio of ultimate load	d to the working	loa	ad is called as	
	(1)	safe load		(2)	factor of safety	
	(3)	load factor		(4)	partial safety factor	
1 7 1.	The	characteristic mean str	ength of M30 gra	de c	concrete in N/mm ² is	
-	(1)	15 (2)	20 .	(3)	30 (4) 25	
172.	Lim	iting percentage of st	eel for M25 grad	le co	oncrete for steel of $fy = 415 \text{ N/mm}^2 \text{ is}$	ļ
	(1)	0.72		(2)	20	
	(3)	1.20		(4)	1.44	
173.	Ifa	'p' is the net upward pre	essure on a square	footi	ting of side 'b' for square column of size	'a', the
	wid	th of footing is taken as				
	(1)	$pb^{2}/8$		(2)	<i>pba</i> ² /8	
	(3)	$p(b-a)^2/8$		(4)	$pb (b-a)^2/8$	

Set Code :	T2
Booklet Code:	В

		total area of the side reinforcement d	listribute	d equally	along the tw	o faces of a beam when				
10.0		epth of the web exceeds 750mm								
	(1)	Shall be 1.0 percent of the web area								
	(2)	Shall not be more than 0.10 percent of the web area								
	(3)	Shall not be less than 0.10 percent of								
	(4)	Shall not be more than 0.05 percent	t of the w	eb area						
175.		modular ratio of M30 grade concreting is	ete with	10 N /mm²	permissible	e compressive stress in				
	(1)	9.33 (2) 8.11	(3)	10.98	(4)	13.33				
176.	The	anchorage value of standard U type h	nooks sha	ill be equa	ıl to					
	(1)	4 times the diameter of the bar	(2)	8 times t	he di ameter	of the bar				
	(3)	12 times the diameter of the bar	(4)	16 times	the diamete	er of the bar				
1 77 .	The	maximum bond stress allowed in RC	C memb	ers depen	ds upon	3				
	(1)	Cement content in concrete	(2)	W/C rati	o in concret	e				
	(3)	Grade of the concrete	(4)	Shear rei	nforcement					
178.	As p	er IS 456-2000, for mix design of M	120 grad	e concrete	, the assume	ed standard deviation is				
	(1)	3.5 N/mm ²	(2)	4.5 N/mi	m²					
	(3)	5.6 N/mm ²	(4)	4.0 N/mi	m²					
179.		er I.S. 456 recommendations in a two	-way slal	b, the wid	th of the mid	dle strip along each span				
	(1)	3/8 of the width of the span in that	direction	l _{is}						
	(2)	3/8 of the width of the span at righ	t angles							
	(3)	3/4 of the shortest side of the slab				10				
	(4)	3/4 of the width of the span in that	direction	L.						
	, ,					-4				

								Set Code	:: T2
							1	Booklet Code	: B
180.	mod	R.C.C. beam, the color of the c	= 15 a	and the ratio r	naximum	stress deve	loped in s	teel and the n	na ximum
	(1)	20cm	(2)	18cm	(3)	15cm	(4)	12cm	
181.	31. As per IS 456, final deflection due to all loads including the effects of temperature, creep and shrinkage should not normally exceed								
	(1)	span/150	(2)	span/250	(3)	span/225	(4)	span/325	
182.		splicing of the re		cement bars in	R.C.C.	eams can be	e done at a	section where	•
	(1)	shear force is z		a suca		D 14	ek o kaom		
	(2)								
	(3)	bending momen			4L	num D M o	n the been	<u>.</u>	
	(4)	bending momen	nt is m	ore than hair	tne maxii	num B.M. o	n uie bean		
183.	The alon	maximum spacing the axis of the	ng of si memb	hear reinforce per shall not e	ment for l	beams in the	form of ve	ertical stirrups	measured
	(1)	0.65d	(2)	0.75d	(3)	0.775d	(4)	35 d	
184.	For	200mm² steel wi	ith mo	dular ratio as	19, the e	quivalent ar	ea of conc	rete is	
	(1)	3200 mm ²	(2)	3450 mm ²	(3)	3600 mm ²	(4)	2550 mm ²	•
185.	The	minimum eccen			esign of F	RCC column	ns is given	by	
	(1)	(1) (unsupported length)/500							

(lateral dimension)/30

(unsupported length)/500 + (lateral dimension)/30

(unsupported length)/500 - (lateral dimension)/30

(2)

(3)

(4)

						21		Ser Code. 12
						•		Booklet Code : B
186.	(1)		loads	s more uniformly	,	is		
	(2) (3) (4)			forcement in pos age and temperat				
187.		nominal cover force less than	r sev	ere exposure cor	ndition	ns to meet the du	rabili	ty requirements should
	(1)	20mm	(2)	30mm	(3)	40mm	(4)	45mm -
188.		ort column of 30 as 13.33 and sat						eel area, If the modula ne column is
	(1)	620.58KN .	(2)	738.724KN	(3)	730.495KN	(4)	525.52KN
189.	In a	simply supported	l slab,	, alternate b ars ar	e curta	ailed at		
	(1)	1/5 of the span	(2)	1/6 of the span	(3)	1/7 of the span	(4)	1/8 of the span
190.	A lo	ng column is one	who	se ratio of eA len	igth to	its least latteral	dime	nsial exceeds
	(1)	5	(2)	12	(3)	15	(4)	20
191.		partial safety fac Dead load + Live					onditi	on for load combination
	(1)	0.8 .	(2)	1.0	(3)	1.2	(4)	1.5
192		limiting momen	t of re	esistance for Fe 4	115 st	eel is		
	(1)	0.149 fck bd ²			(2)	0.138 fck bd ²		
	(3)	0.133 fck bd ²			(4)	0.123 fck bd ²		
193	The	angles measured	cloc	k wise from any i	refere	nce meridian are	calle	d as
	(1)				(2)	Reduced Bearing		
	1							

(4) Meridians

(3) Azimuths

Set Code : T2 Booklet Code : B
een it and a chosen reference line
lary, it is called as
surveying
stem
etween two points already fixed
ng (4) Ranging

194. The direction of a line is measured by the horizontal angle between is called as (2) Meridian (1) Azimuth (4) Traversing (3) Grid Meridian 195. If the area is covered by a series of survey lines near the bound (2) Theodolite s (1) Triangulation (4) Gridison sys (3) Traversing 196. Establishing a set of intermediate points on a straight line be on ground is called (2) Traversing (3) Resection in (1) Chaining 197. If the fore bearing of a line is N 26° 35' W, its back bearing will be (2) S 26° 35' W (1) S 26°35' E (4) N 53° 25' W (3) N 26° 35' E 198. The observed magnetic bearing of survey line is 25°30'E and the declination at the place is 2°30'E. The line bearing of the line is (4) 12°45' (3) 28°00' (2) 27°30' (1) 23°00' 199. The linear closing error that may occur when plotting a closed compass traverse is adjusted by (2) Triangulation (1) Bowditch rule (4) Radiation (3) Orienting by resection 200. In the methods to reduce levels, the method provides a better check on arithmetical work is (2) Raise and fall system (1) Height of collination (4) Ranging (3) Traversing method

(CVL)