

FACULDADE ANHANGUERA DE JUNDIAÍ

Rua do Retiro, 3.000 * Retiro * Jundiaí (SP) * 13209-002 * (11) 3109-0600

Nome	Registro Acadêmico		
Professor (a) Rogério Moreira	Série/Turma/Período	Curso Ciência da Computação	
Disciplina Circuitos Digitais	Data	Assinatura	

LISTA DE EXERCÍCIOS No. 3

1)

Alguns aquecedores solares usam uma bomba para forçar a circulação da água. Nesses aquecedores, há dois sensores de temperatura: um localizado no interior de uma das placas e outro localizado no interior do boiler (reservatório de água quente). Um circuito lógico que controla o acionamento da bomba recebe quatro sinais nesse tipo de sistema:

sinal A: será nível ALTO sempre que a temperatura da placa estiver abaixo de 4 °C, servindo para evitar o congelamento;

sinal B: será nível ALTO sempre que a temperatura das placas estiver acima de 70 °C, servindo para evitar sobreaquecimento;

sinal C: será nível ALTO sempre que a diferença de temperatura entre a água das placas e a do boiler estiver acima de 5 °C, servindo para forçar a circulação;

sinal M: será nível BAIXO sempre que o sistema estiver operando em modo automático e será nível ALTO se estiver operando em modo manual.

O circuito lógico citado deverá enviar um sinal nível ALTO para o sistema de acionamento da bomba sempre que o sinal M estiver em modo automático, e ocorrer pelo menos um dos seguintes eventos: a temperatura das placas for inferior a 4 °C; a temperatura das placas for superior a 70 °C; a diferença entre ambas for superior a 5 °C.

Nessa situação, qual é a equação lógica do sinal de saída Y do circuito lógico?

No circuito acima, que possui cinco entradas – A, B, C, D e E – e uma saída f(A,B,C,D,E). Apresente a expressão lógica da saída do circuito.

3)

Deseja-se projetar um bloco lógico do tipo *look-up table* que fará parte de um dispositivo lógico programável. O bloco lógico, ilustrado abaixo, deve produzir em sua saída qualquer uma das diferentes funções lógicas possíveis envolvendo três entradas de dados, dependendo dos valores lógicos aplicados a *n* sinais binários de controle.

Para esse bloco lógico, qual é o menor valor de n que pode ser usado para selecionar uma das diferentes funções lógicas possíveis?

Projete um circuito lógico para abastecer três tanques (T1, T2 e T3) de glicose em pavimentos distintos em uma Indústria de Balas e Biscoitos, através do controle de duas bombas conforme esquematizado na figura. O abastecimento principal é feito por caminhão-tanque que fornece o produto diretamente ao T1 disposto no piso térreo localizado à entrada da empresa. Desenvolva o projeto supondo que o nível máximo de T1 seja controlado pelo caminhão, coloque os sensores de controle nas caixas, convencione as variáveis e desenhe o circuito final.

5)

Elabore um circuito lógico para encher ou esvaziar um tanque industrial por meio de duas eletroválvulas, sendo uma para a entrada do líquido e outra para o escoamento de saída. O circuito lógico, através da informação de um sensor de nível máximo no tanque e de um botão interruptor de duas posições, deve atuar nas eletroválvulas para encher o tanque totalmente (botão ativado) ou, ainda, esvaziá-lo totalmente (botão desativado).

Para solucionar, vamos traçar o esquema de ligação, determinar e convencionar as variáveis de entrada e saída do circuito lógico. Este esquema é visto na figura

Considere, a seguir, o circuito combinatório, a tensão analógica V_A definida pela tabela I, e a tabela lógica definida pela tabela II.

Tabela I

1000101							
V_A (em volts)	S2	S ₁	So				
v _A < 1	0	0	0				
$1 < v_A < 2$	0	0	1				
$2 < v_A < 3$	0	1	0				
$3 < v_A < 4$	0	1	1				
$4 < v_A < 5$	1	0	0				
5 < v _A < 6	1	0	1				
$6 < v_A < 7$	1	1	0				
v _A > 7	1	1	1				

Tabela II

1 010 0101 11									
Xa	X _b	X _c	X _d	X _e	X _f	X _q	S ₂	S ₁	So
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1
1	1	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	1	1
1	1	1	1	0	0	0	1	0	0
1	1	1	1	1	0	0	1	0	1
1	1	1	1	1	1	0	1	1	0
1	1	1	1	1	1	1	1	1	1

Analise o circuito, os dados das tabelas I e II e as seguintes asserções.

O circuito apresentado converte a tensão analógica $v_{\rm A}$ em uma palavra de três *bits* cujo valor binário é uma representação quantizada da tensão $v_{\rm A}$, conforme apresentado na tabela I

porque

o circuito combinatório formado pelas portas lógicas apresenta o comportamento dado pela tabela lógica II quando o circuito de comparação é excitado com uma tensão $v_{\rm A}$ adequada.

Assinale a opção correta, com relação às asserções acima.

- As duas asserções são proposições verdadeiras, e a segunda é uma justificativa correta da primeira.
- As duas asserções são proposições verdadeiras, mas a segunda não é uma justificativa correta da primeira.
- A primeira asserção é uma proposição verdadeira, e a segunda, uma proposição falsa.
- A primeira asserção é uma proposição falsa, e a segunda, uma proposição verdadeira.
- Tanto a primeira quanto a segunda asserções são proposições falsas.

RASCUNHO

Desenhe um circuito para, em um conjunto de três chaves, detectar um número par destas ligadas.

Para compensar o problema prático, principalmente da família TTL, do terminal de entrada em vazio equivaler a nível lógico 1 (veja capítulo relativo a "Família de Circuitos Lógicos"), vamos aterrar um lado das chaves, provocando no acionamento destas um nível lógico 0 no respectivo fio, ou seja, convencionar que chave fechada equivale a 0. O esquema, em blocos, é visto na figura.

8)

Elabore um circuito lógico que permita encher automaticamente um filtro de água de dois recipientes e vela, conforme desenho na figura

A eletroválvula permanecerá aberta quando tivermos nível 1 de saída do circuito, e permanecerá desligada quando tivermos nível 0. O controle será efetuado por dois sensores A e B, colocados nos recipientes a e b respectivamente.

A tabela a seguir apresenta a relação de mintermos e maxtermos para três variáveis.

Linha	x_1	x_1 x_2		Mintermo	Maxtermo		
0	0	0	0	$m_0=\overline{x}_1\overline{x}_2\overline{x}_3$	$M_0 = x_1 + x_2 + x$		
1	0	0	1	$m_1=\overline{x}_1\overline{x}_2x_3$	$M_1 = x_1 + x_2 + \overline{x}$		
2	0	1	0	$m_2=\overline{x}_1x_2\overline{x}_3$	$M_2 = x_1 + \overline{x}_2 + x$		
3	0	1	1	$m_3 = \overline{x}_1 x_2 x_3$	$M_3 = x_1 + \overline{x}_2 + \overline{x}$		
4	1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$	$M_4 = \overline{x}_1 + x_2 + x$		
5	1	0	1	$m_5=x_1\overline{x}_2x_3$	$M_5 = \overline{x}_1 + x_2 + \overline{x}_3$		
6	1	1	0	$m_6 = x_1 x_2 \overline{x}_3$	$M_6 = \overline{x}_1 + \overline{x}_2 + x$		
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$		

Analise o circuito de quatro variáveis a seguir.

Considerando esse circuito, as funções f e g são, respectivamente,

- \bigcirc $\sum m(0,1,2,3,6,7,8,9) \in \sum m(2,3,6,7,10,14).$
- \bigcirc $\sum m(4,5,10,11,12,13,14,15) e \sum m(0,1,4,5,8,9,11,12,13,15).$
- **6** $\prod M(0,1,2,3,6,7,8,9) \in \prod M(0,1,4,5,8,9,11,12,13,15).$
- **9** $\prod M(4,5,10,11,12,13,14,15) \in \prod M(2,3,6,7,10,14).$

10) Obter a expressão lógica da tabela verdade abaixo e desenhar o circuito resultante:

#	а	b	C	d	S
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0