Proofs Dominik Blank

Definition 1. Let $M, N \in \mathbb{N}$ and $V \in \mathbb{R}^{M \times N}$ be a matrix. Assume there are two pairs of indices $(i_{tlc}, j_{tlc}), (i_{brc}, j_{brc})$ with $1 \leq i_{tlc} \leq i_{brc} \leq M$ and $1 \leq j_{tlc} \leq j_{brc} \leq N$, such that

$$V(i,j) \neq 0$$
 if and only if $(i,j) \in \{i_{tlc}, \dots, i_{brc}\} \times \{j_{tlc}, \dots, j_{brc}\}$ (1)

We call $R = \{i_{tlc}, \dots, i_{brc}\} \times \{j_{tlc}, \dots, j_{brc}\}$ a rectangular region of interest (rROI) and say that V contains the rROI R.

Furthermore, we call (i_{tlc}, j_{tlc}) the top left corner and (i_{brc}, j_{brc}) the bottom right corner of the rROI.

Definition 2. Let $M, N \in \mathbb{N}$ and $c \in \mathbb{R} \setminus \{0\}$. Let $V \in \mathbb{R}^{M \times N}$ be a matrix, that only takes values in the set $\{0, \pm c\}$ and that contains a rectangular region of interest R. We say that R has a *checkerboard pattern*, if one of the following relations is true:

For all
$$(i, j) \in R : V(i, j) = c$$
 if and only if $i + j$ is odd. (2a)

For all
$$(i, j) \in R : V(i, j) = c$$
 if and only if $i + j$ is even. (2b)

Remark 1. If the first relation in the definition is true, that immediately implies, that

for all
$$(i, j) \in R : V(i, j) = -c$$
 if and only if $i + j$ is even,

since V takes only values in $\{0, \pm c\}$, but for $(i, j) \in R$ we have $V(i, j) \neq 0$. Similarly, if the second relation is true, it implies that

for all
$$(i, j) \in R : V(i, j) = -c$$
 if and only if $i + j$ is odd.

In both cases the values of V alternate between +c and -c along the rows and columns of R. This is similar to the classical checkerboard pattern.

Proofs Dominik Blank

Theorem 1. Assume the following statistical model:

Let $M, N \in \mathbb{N}$ and $G = \{1, ..., M\} \times \{1, ..., N\}$. We are given data

$$F(i,j) = c + V(i,j) + \varepsilon_{i,j} \tag{3}$$

where $(i,j) \in G$, $c \in \mathbb{R}$ is constant, $V(i,j) \in \{0,\pm c\}$ and $\varepsilon_{i,j} \sim \mathcal{N}(0,\sigma^2)$ are i.i.d. normal distributed random variables for some $\sigma > 0$ and for all $(i,j) \in G$.

Assume that V contains a rectangular region of interest R and that R has a checkerboard pattern.

Let $\varphi_{\alpha} \in \{0,1\}^{M \times N}$ be the binary matrix, that represents the decision of the testing procedure to a given statistical significance α .

Let $k \in \mathbb{N}$ be odd and B be a square structuring element with side length k. Then the following inequality holds:

$$\mathbb{P}((\varphi_{\alpha} \circ B)(i,j) = 1 \mid H_0(i,j)) \le k\alpha^{\frac{k+1}{2}}$$

Proof. We aim to find an upper bound for the probability

$$\mathbb{P}((\varphi_{\alpha} \circ B)(i,j) = 1 \mid H_0(i,j))$$

To do this, we first notice that $H_0(i,j)$ is equivalent to V(i,j) = 0, but since V contains a rectangular region of interest, this means that $i < i_{tlc}$ or $i > i_{brc}$ or $j < j_{tlc}$ or $j > j_{brc}$. We need to differentiate cases here. These four cases are not mutually exclusive, but have different implications for the row/column of the index (i,j) and a neighbouring row/column:

case	row/column of (i, j)	neighbouring row/column
$i < i_{tlc}$	$V(i,1) = \dots = V(i,N) = 0$	$V(i-1,1) = \cdots = V(i-1,N) = 0$
$i > i_{brc}$	$V(i,1) = \dots = V(i,N) = 0$	$V(i+1,1) = \cdots = V(i+1,N) = 0$
$j < j_{tlc}$	$V(1,j) = \dots = V(M,j) = 0$	$V(1, j-1) = \cdots = V(M, j-1) = 0$
$j > j_{brc}$	$V(1,j) = \dots = V(M,j) = 0$	$V(1, j + 1) = \cdots = V(M, j + 1) = 0$

Without loss of generality we assume the first case. This means that the null hypotheses $H(i, 1), \ldots, H(i, N)$ and $H(i - 1, 1), \ldots, H(i - 1, N)$ are true.

Proofs Dominik Blank

To be even more precise, it implies that $D^-(i,1)=\cdots=D^-(i,N)=0$. We have assumed the side length k of the structuring element B to be odd. We define the two index sets $K=\{-\frac{k-1}{2},-\frac{k-3}{2},\ldots,\frac{k-3}{2},\frac{k-1}{2}\}$ and $K_1=\{-\frac{k-1}{2},-\frac{k-5}{2},\ldots,\frac{k-5}{2},\frac{k-1}{2}\}$. This yields

$$\begin{split} &\mathbb{P}((\varphi_{\alpha} \circ B)(i,j) = 1 \mid H_{0}(i,j)) \\ &= \mathbb{P}\left(\bigcup_{\tilde{m},\tilde{n} \in K} \bigcap_{m,n \in K} \{\varphi_{\alpha}(i+m-\tilde{m},j+n-\tilde{n}) = 1\} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &= \sum_{\tilde{n} \in K} \mathbb{P}\left(\bigcup_{\tilde{m} \in K} \bigcap_{m \in K} \{\varphi_{\alpha}(i+m-\tilde{m},j+n-\tilde{n}) = 1\} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &\leq \sum_{\tilde{n} \in K} \mathbb{P}\left(\bigcup_{\tilde{m} \in K} \bigcap_{n \in K, m = \tilde{m}} \{\varphi_{\alpha}(i+m-\tilde{m},j+n-\tilde{n}) = 1\} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &= \sum_{\tilde{n} \in K} \mathbb{P}\left(\bigcup_{\tilde{m} \in K} \bigcap_{n \in K} \{\varphi_{\alpha}(i,j+n-\tilde{n}) = 1\} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &= \sum_{\tilde{n} \in K} \mathbb{P}\left(\bigcap_{n \in K} \{\varphi_{\alpha}(i,j+n-\tilde{n}) = 1\} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &\leq \sum_{\tilde{n} \in K} \mathbb{P}\left(\bigcap_{n \in K_{1}} \{\varphi_{\alpha}(i,j+n-\tilde{n}) = 1\} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &\leq \sum_{\tilde{n} \in K} \prod_{n \in K_{1}} \mathbb{P}\left\{\varphi_{\alpha}(i,j+n-\tilde{n}) \geq t_{\alpha} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &\leq \sum_{\tilde{n} \in K} \prod_{n \in K_{1}} \mathbb{P}\left(\tilde{D}^{-}(i,j+n-\tilde{n}) \geq t_{\alpha} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &\leq \sum_{\tilde{n} \in K} \prod_{n \in K_{1}} \mathbb{P}\left(\tilde{D}^{-}(i,j+n-\tilde{n}) \geq t_{\alpha} \mid D^{-}(i,1) = \dots = D^{-}(i,N) = 0\right) \\ &\leq \sum_{\tilde{n} \in K} \prod_{n \in K_{1}} \mathbb{P}\left(\tilde{D}^{-}(i,j+n-\tilde{n}) \geq t_{\alpha} \mid D^{-}(i,j+n-\tilde{n}) = 0\right) \\ &\leq \sum_{\tilde{n} \in K} \prod_{n \in K_{1}} \alpha \\ &= |K|\alpha^{|K|} \\ &= |K|\alpha^{|K|} \\ &= k\alpha^{\frac{k+1}{2}} \end{split}$$

The other three cases can be proven in a similar way by swapping the roles of m or \tilde{m} with n or \tilde{n} , respectively and/or by replacing D^- by D^+ .