# Four Mistakes in Quantitative Finance Chapter 24

Twitter: @MFergal

• *Kurtosis* ≠ *Variance* 

- Variance
  - $\bullet \ \frac{\sum (x-\mu)^2}{n}$
  - "Average squared deviation"

#### • Kurtosis

• 
$$\frac{\sum (x-\mu)^4}{n} \div \left(\frac{\sum (x-\mu)^2}{n}\right)^2$$

- Average of "squared deviation squared"
- ÷
- Square of "average squared deviation"

#### • Kurtosis

• 
$$\frac{\sum (x-\mu)^4}{n} \div \left(\frac{\sum (x-\mu)^2}{n}\right)^2$$

A Jensen's inequality ratio

- Fatten the tails
  - Mix high and low variance
  - Overall variance unchanged



• SCFT ~p64 Fig 4.1

#### Option Greeks/Moments

Greeks <-> Payoff function <-> polynomials <-> moments

(See excel model for polynomial intuition)

#### Option Greek Moments

#### **Dynamic Hedging**

- P 202 moments explained
- P 264 4<sup>th</sup> moment trade example

2. Missing Jensen's Inequality

3. Inseparability of Insurance and Insured

"House insurance has negative returns"

• Insurance & Insured interact for compounding

4. Necessity of a Numeraire

## 3. Necessity of a Numeraire

Basic unit by which value is computed

#### Recap

- 1. Tails != Variance
- 2. Jensen's Inequality
- 3. Insurance + Insured
- 4. Numeraire

#### **EXTRA SLIDES**

## 3. Necessity of a Numeraire

• Stability relative to the basket of goods you care about

- Fatter Tails =>
  - More quiet times

#### LINK TO CODE

https://github.com/FergM/fattails/blob/main/notebooks/