Stochastic Processes - Homework Brownian Motion

Yuri F. Saporito

In what follows, $(B_t)_{t\geq 0}$ is a Brownian motion.

- 1. Show that $X_t = \frac{1}{c}B_{c^2t}$ is also a Brownian motion, for any constant c.
- 2. Let $(W_t)_{t\geq 0}$ be another Brownian motion independent of B. Prove that for any $\rho \in [-1,1]$, the process $\rho B_t + \sqrt{1-\rho^2}W_t$ is also a Brownian motion.
- 3. Let $X_t = B_t tB_1$, for $0 \le t \le 1$. This process is called *Brownian Bridge*. Compute the mean and covariance functions of X. What is the distribution of X_t ?
- 4. Find $\mathbb{P}(B_r \leq B_s \leq B_t)$, for 0 < r < s < t.
- 5. Compute $\mathbb{E}[B_r B_s B_t]$, for 0 < r < s < t.
- 6. Let τ be an exponential r.v. with parameter λ and assume it is independent of B. What is the characteristic function of B_{τ} ?