Københavns Universitet LinAlgDat - Project A

Victor Vangkilde Jørgensen - kft410 kft410@alumni.ku.dk Hold 13 Mach

26. april 2025

Indhold

1	Opgave
	1.a
	1.b
	1.c
	1.d
2	Opgave
	2.a
	2.b
	2.c
	2.d
3	Opgave
	3.a
	3.b
	3.c
4	Opgave

1 Opgave

1.a

Vi omskriver ligningssystemet til totalmatrix-form:

$$\left[\begin{array}{ccc|c}
1 & 2 & 8 & a \\
a & a & 4a & a \\
2 & 2 & 2a^2 & 0
\end{array} \right]$$

Vi benytter Gauss-Jordan elimination til at omskrive totalmatrix'en til en reduceret rækkeeechelonform.

Først vælger vi, at tilføje $-ar_1$ til r_2 :

$$\begin{bmatrix}
1 & 2 & 8 & a \\
0 & -a & -4a & a - a^2 \\
2 & 2 & 2a^2 & 0
\end{bmatrix}$$

Herefter tilføjer vi $-2r_1$ til r_3 :

$$\begin{bmatrix} 1 & 2 & 8 & a \\ 0 & -a & -4a & a - a^2 \\ 0 & -2 & 2a^2 - 16 & -2a \end{bmatrix}$$

Vi tilføjer $\frac{2r_2}{-a}$ til r_3 :

$$\begin{bmatrix} 1 & 2 & 8 & a \\ 0 & -a & -4a & a - a^2 \\ 0 & 0 & 2a^2 - 8 & -2a - \frac{2(a-a^2)}{a} = -2 \end{bmatrix}$$

Vi tilføjer $\frac{2r_2}{a}$ til r_1 :

$$\begin{bmatrix}
1 & 0 & 0 & 2-a \\
0 & -a & -4a & a-a^2 \\
0 & 0 & 2a^2-8 & -2
\end{bmatrix}$$

Vi tilføjer $\frac{2ar_3}{a^2-4}$ til r_2 :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & 2a^2 - 8 \end{bmatrix} \begin{vmatrix} 2 - a \\ a - a^2 - \frac{4a}{(a^2 - 4)} \\ -2 \end{bmatrix}$$

Vi dividerer $r_3 \mod 2a^2 - 8$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} 2-a \\ a-a^2 - \frac{4a}{(a^2-4)} \\ -\frac{2}{2a^2-8} = -\frac{2}{2(a^2-4)} = \frac{1}{(4-a^2)} \end{bmatrix}$$

Til sidst dividerer vi $r_2 \mod -a$:

$$\begin{bmatrix} 1 & 0 & 0 & 2-a \\ 0 & 1 & 0 & \frac{(a^3-a^2-4a+8)}{(a^2-4)} \\ 0 & 0 & 1 & \frac{1}{(4-a^2)} \end{bmatrix} \square$$

Vi har nu fået den løsning vi ledte efter, så vi er dermed færdige.

1.b

Vi opskriver igen vores ligningssystem som en totalmatrix, og erstatter denne gang a med 0:

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & 0 & 4 \cdot 0 & 0 \\ 2 & 2 & 2 \cdot 0^{2} & 0 \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \end{bmatrix} r_{2} \text{ bytttes med } r_{3} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - 2r_{1} \text{ til } r_{2} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} r_{2} \cdot \left(-\frac{1}{2}\right) \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & -2 & -16 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} r_{2} \cdot \left(-\frac{1}{2}\right) \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - 2r_{2} \text{ til } r_{1} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 0 & -8 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Vi kan nu aflæse løsningerne til:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 8 \\ -8 \\ 1 \end{bmatrix}$$

Vi ser nu, hvad vi får, når vi bruger den rækkereducerede totalmatrix fra tidligere, når vi erstatter $a \mod 0$:

$$\begin{bmatrix} 1 & 0 & 0 & 2 - a \\ 0 & 1 & 0 & \frac{(a^3 - a^2 - 4a + 8)}{(a^2 - 4)} \\ 0 & 0 & 1 & \frac{1}{(4 - a^2)} \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 - 0 \\ 0 & 1 & 0 & \frac{(0^3 - 0^2 - 4 \cdot 0 + 8)}{(0^2 - 4)} \\ 0 & 0 & 1 & \frac{1}{(4 - 0^2)} \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & \frac{1}{4} \end{bmatrix}$$

Denne matrix antyder en unik løsning, hvilket ikke afspejler hvad vi fandt lige før, hvor vi fandt uendelig mange løsninger. Dette skete sandstnligvis fordi at den rækkereducerede totalmatrix er lavet ud fra antagelsen, at $a \neq 0$.

1.c

Vi opskriver igen vores ligningssystem som en totalmatrix, og erstatter denne gang a med 2:

$$\begin{bmatrix} 1 & 2 & 8 & | & 2 \\ 0 & 0 & 4 \cdot 2 & | & 2 \\ 2 & 2 & 2 \cdot 2^2 & | & 0 \end{bmatrix} \sim \\ \begin{bmatrix} 1 & 2 & 8 & | & 2 \\ 0 & 0 & 8 & | & 2 \\ 2 & 2 & 8 & | & 0 \end{bmatrix} r_2 \ bytttes \ med \ r_3 \sim \\ \begin{bmatrix} 1 & 2 & 8 & | & 2 \\ 2 & 2 & 8 & | & 0 \\ 0 & 0 & 8 & | & 2 \end{bmatrix} - 2r_1 \ til \ r_2 \sim \\ \begin{bmatrix} 1 & 2 & 8 & | & 2 \\ 0 & -2 & -8 & | & -4 \\ 0 & 0 & 8 & | & 2 \end{bmatrix} - r_3 \ til \ r_1 \sim \\ \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 0 & -2 & -8 & | & -4 \\ 0 & 0 & 8 & | & 2 \end{bmatrix} + r_3 \ til \ r_2 \sim \\ \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 0 & -2 & 0 & | & -2 \\ 0 & 0 & 8 & | & 2 \end{bmatrix} + r_2 \ til \ r_1 \sim \\ \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 0 & -2 & 0 & | & -2 \\ 0 & 0 & 8 & | & 2 \end{bmatrix} r_2 \cdot \left(-\frac{1}{2} \right) \sim \\ \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 8 & | & 2 \end{bmatrix} r_3 \cdot \left(\frac{1}{8} \right) \sim \\ \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & \frac{1}{4} \end{bmatrix}$$

Vi kan nu aflæse løsningen til:

$$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} -2 \\ 1 \\ \frac{1}{4} \end{array}\right]$$

Lad os nu se, hvad vi får, når vi bruger den rækkereducerede totalmatrix fra tidligere, når vi erstatter $a \mod 2$:

$$\begin{bmatrix} 1 & 0 & 0 & 2 - 2 \\ 0 & 1 & 0 & \frac{(2^3 - 2^2 - 4 \cdot 2 + 8)}{(2^2 - 4)} \\ 0 & 0 & 1 & \frac{1}{(4 - 2^2)} \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{4}{0} \\ 0 & 0 & 1 & \frac{1}{0} \end{bmatrix} \rightsquigarrow$$
Vi ser nu at vi far division me

Vi ser nu, at vi får division med 0, hvilket må betyde, at vi ikke kan bruge den rækkereducerede totalmatrix til at finde løsningerne når a=2.

- **1.**d
- 2 Opgave
- **2.a**
- **2.**b
- 2.c
- **2.d**
- 3 Opgave
- 3.a
- **3.**b
- 3.c
- 4 Opgave