

OpenOCD CLI user guide

About this document

Scope and purpose

This user guide provides technical information for the ModusToolbox™ version of the OpenOCD command line tool, including how to use it in stand-alone mode. OpenOCD is an Open Source programmer/debugger software that is installed as part of either the ModusToolbox™ Programming tools or ModusToolbox™ tools packages.

Intended audience

This document is intended for anyone who wants to use the OpenOCD CLI as a stand-alone tool.

Document conventions

Convention	nvention Explanation	
Bold	Emphasizes heading levels, column headings, menus and sub-menus	
Italics	Denotes file names and paths.	
Courier New	Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder names, directories, command line inputs, code snippets	
File > New Indicates that a cascading sub-menu opens when you select a menu item		

Abbreviations and definitions

The following define the abbreviations and terms used in this document:

- OpenOCD Open On-Chip Debugger. An open-source tool that allows programming internal and external flash memories of a wide range of target devices.
- CLI Command-line interface.
- Tcl Tool command language. A high-level, general-purpose, interpreted, dynamic programming language.
- MPN Marketing part number. This number is associated with each specific device and used to order a
 device or find information about a device from Infineon. For example, CY8C616FMI-BL603, CY8C616FMIBL673.
- SWD Serial wire debug interface.
- JTAG Joint Test Action Group. Specifies the use of a dedicated debug port implementing a serial communication interface for low-overhead access without requiring direct external access to the system address and data buses.
- TAP JTAG test access port.
- PSOC[™] A family of microcontroller integrated circuits by Infineon. These chips include a CPU core and mixed-signal arrays of configurable integrated analog and digital peripherals.
- MCU Microcontroller unit.
- AP Access port register of Arm® Cortex® CPU. Used for programming and debugging, along with the corresponding SWD address bit selections.
- DP Debug port register of Arm® Cortex® CPU. Used for programming and debugging, along with the corresponding SWD address bit selections.

OpenOCD CLI user guide

About this document

- Region A logical area within the target device the programmer operates on.
- WFA 'Wait for action' special inner mechanism of bootloader to execute non-standard actions.
- mp4/kp3 MiniProg4/KitProg3 external and on-board Infineon brand probes.

Reference documents

Refer to the following documents for more information as needed:

- OpenOCD v0.12.0 user guide: http://openocd.org/doc-release/pdf/openocd.pdf
- ModusToolbox[™] tools package installation guide
- ModusToolbox™ Programming tools release notes
- ModusToolbox™ Programmer GUI user guide

(infineon

Table of contents

Table of contents

1	Introduction	5
1.1	Overview	5
1.2	Supported OS	
1.3	Supported devices	
1.4	Supported hardware (probes)	
1.5	Installation	
1.6	Error codes	
2	Getting started	7
2.1	Connect the device	7
2.2	List the connected targets	7
2.3	Program the PSOC™ 6 MCU target	8
2.4	Program the PSOC™ 64 "Secure Boot" MCU target	9
2.5	Program the PSOC™ 4 MCU target	9
2.6	Program the device using the configuration file only	9
2.7	Program the device using the configuration file and command line	9
2.8	Remote debugging	10
3	Supported target configurations	12
4	Command-line options	14
4.1	file (-f)	14
4.2	search (-s)	15
4.3	command (-c)	15
4.4	debug (-d)	15
4.5	log_output (-l)	16
4.6	help (-h)	
4.7	version (-v)	16
5	OpenOCD commands overview	17
6	OpenOCD commands description	19
6.1	General OpenOCD commands	
6.2	KitProg3/MiniProg4 driver commands	
6.3	Flash driver commands	
6.4	cmsis_flash flash driver commands	
6.5	Other commands	
6.6	CYW4390x commands	
6.7	AIROC™ CYW20829 Wi-Fi & Bluetooth® combo chip commands	46
7	Global variables	47
7.1	PSOC™ 6 MCU global variables	47
7.2	PSOC™ 4 MCU global variables	
7.3	AIROC™ CYW20829 Wi-Fi & Bluetooth® combo chip global variables	
7.4	XMC7xxx/XMC5xxx and TRAVEO™ T2G global variables	
7.5	PSOC™ Control C3 global variables	50
8	Usage examples	52

Table of contents

8.1	Erase main flash rows 010 of PSOC™ 6 MCU	52
8.2	Display memory contents (32 words at address 0x08000000) of PSOC™ 6 MCU	53
8.3	Program the PSOC™ 6 MCU with verification (Intel HEX file)	54
8.4	Program the EFuse region of PSOC™ 6 MCU	54
8.5	Modify individual bytes of PSOC™ 6 MCU in main flash and display results	55
8.6	Read the memory of PSOC™ 6 MCU to binary file	
8.7	Start the GDB server and leave it running	

Introduction

1 Introduction

1.1 Overview

The ModusToolbox™ OpenOCD command-line interface (CLI) is based on the Open On-Chip Debugger (OpenOCD) product. OpenOCD is a powerful tool whose interface interacts with the target device via the JTAG/SWD debug ports. OpenOCD allows programming internal and external flash memories of a wide range of target devices, CFI-compatible flashes, and some CPLD/FPGA devices.

This document covers the ModusToolbox™-specific CLI extensions of OpenOCD. See the official documentation at:

http://openocd.org/documentation/

The latest released version of ModusToolbox™ OpenOCD is available from the GitHub repository:

https://github.com/Infineon/openocd/releases

1.2 Supported OS

- Windows 10 (x64), Windows 11 (x64)
- Ubuntu 20.04 "Focal Fossa", Ubuntu 22.04 "Jammy Jellyfish", Ubuntu 24.04 "Noble Numbat"
- macOS 12 "Monterey", macOS 13 "Ventura", macOS 14 "Sonoma" (Intel processors and Arm processors via Rosetta)

1.3 Supported devices

- AIROC™ CYW20809 Bluetooth® LE system on chip
- PSOC™ 6 and PSOC™ 64
- PSOC[™] 4, PSOC[™] 4 HVPA, PSOC[™] 4 HVMS
- PMG1, CCGx
- CYW4390x [1]
- XMC7xxx/XMC5xxx
- TRAVEO™ T2G Body High
- TRAVEO™ T2G Body Entry
- TRAVEO™ T2G Cluster 6M MCU
- FX3G2 and FX2G3
- PAG2S
- PSOC™ Control C3

1.4 Supported hardware (probes)

- SEGGER J-Link
- Infineon KitProg3 on-board programmer

¹ Currently, OpenOCD does not provide a "built-in" Flash driver for the CYW4390x chip. All Flash-related operations are fully implemented in the TCL scripts. The behavior of the TCL-based driver is slightly different from the built-in one. Refer to the CYW4390x.commands section for details.

infineon

Introduction

- Infineon MiniProg4 standalone programmer
- FTDI-based adapter on CYW954907AEVAL1F / CYW943907AEVAL1F kits

1.5 Installation

The ModusToolbox™ OpenOCD CLI software is installed as part of either ModusToolbox™ Programming tools or ModusToolbox™ tools packages. Refer the either ModusToolbox™ tools package installation guide or ModusToolbox™ Programming tools release notes for details.

You can also download the latest version from the GitHub repository:

https://github.com/Infineon/openocd/releases

1.6 Error codes

The OpenOCD tool returns '0' as the response code on successful completion; on a failure, it returns '1'.

Getting started

2 Getting started

2.1 Connect the device

Connect the host computer to a probe or kit device; e.g. KitProg3 kit with the PSOC™ 6 MCU target, used in the following examples. Make sure that the target MCU is attached to your probe.

2.2 List the connected targets

This example displays the target names available for the PSOC™ 6 MCU connected to the KitProg3 programmer. The programmer communicates with the PSOC™ 6 MCU over the SWD interface.

2.2.1 **Windows:**

1. On a command-line window, enter the following command to change the directory to the ModusToolbox™ Programming tools or ModusToolbox™ tools installation folder:

```
cd %installation folder%\openocd\bin
```

2. Run the following command:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "targets; shutdown"
```

```
icensed under GNU GPL v2
Fire bug reports, read

http://openocd.org/doc/doxygen/bugs.html

Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
 dapter srst delay: 25
 dapter srst pulse_width: 25
* Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
   rtex_m reset_config sysresetreq
rtex_m reset_config sysresetreq
      argetName
                                Туре
                                               Endian TapName
                                                                                    State
     psoc6.cpu.cm0
                                cortex_m
                                                little psoc6.cpu
     psoc6.cpu.cm4
                                cortex_m
                                               little psoc6.cpu
                                                                                    unknown
```

The command output displays the list of target names (JTAG TAPs) defined for/attached to the programming device.

2.2.2 **Linux:**

- 1. On the terminal window, go to the directory where ModusToolbox™ Programming tools or ModusToolbox™ tools is installed (for example, ~/openocd/bin).
- 2. Run the following command:

```
./openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "targets; shutdown"
```

The command output displays the list of target names (JTAG TAPs) defined for/attached to the programming device.

2.2.3 **macOS**:

1. One the terminal window, go to the directory where ModusToolbox™ Programming tools or ModusToolbox™ tools is installed (for example, ~/openocd/bin).

Getting started

2. Run the following command:

```
./openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg
-c "targets; shutdown"
```

The command output displays the list of target names (JTAG TAPs) defined for/attached to the programming device.

2.3 Program the PSOC™ 6 MCU target

This example initializes the KitProg3 probe with the PSOC[™] 6 MCU, programs the flash with the *firmware.hex* file, verifies the programmed data, and finally shuts down the OpenOCD programmer.

Run the following command:

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxa.cfg -c "program c:/hex/firmware.hex verify exit"

```
Licensed under GNU GPL V2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'
adapter speed: 2000 kHz
adapter srst delay: 25
  adapter srst pulse_width: 25
** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
Info: Using CRISIS-DAPv2 interface with VID:PID=0x04b4:0xf155, serial=180715C900020400
 Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : CHSIS-DAP: Interface Initialised (SWU)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
 Info : VTarget = 3.302 V
 Info : kitprog3: acquiring the device (mode: reset)...
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x6ba02477
Info : [psoc6.cpu.cm0] Cortex-M0+ r0p1 processor detected
Info : [psoc6.cpu.cm0] target has 4 breakpoints, 2 watchpoints
 ** Silicon: 0xE453, Family: 0x102, Rev.: 0x12 (A1)
** Detected Device: CY8C624ABZI-S2D44
 ** Detected Main Flash size, kb: 2048
** Flash Boot version: 3.1.0.378
  ** SFlash version: 0x47530
** Chip Protection: NORMAL
Info : [psoc6.cpu.cm4] Cortex-M4 r0p1 processor detected
Info : [psoc6.cpu.cm4] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for psoc6.cpu.cm0 on 3333
Info : Listening on port 3333 for gdb connections
Info: Listening on port 3333 for gdb connections
Info: starting gdb server for psoc6.cpu.cm4 on 3334
Info: Listening on port 3334 for gdb connections
Info: SWD DPIDR 0x6ba02477
Info: kitprog3: acquiring the device (mode: reset)...
[psoc6.cpu.cm0] halted due to debug-request, current mode: Thread
xPSR: 0x41000000 pc: 0x00000190 msp: 0x080ff800
** Device acquired successfully
** Device acquired successfully

** psoc6.cpu.cm4] halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x0000012a msp: 0x080ff800

** Programming Started **
auto erase enabled

Info: Flash write discontinued at 0x100017c8, next section at 0x10002000

Info: Padding image section 0 at 0x100017c8 with 56 bytes (bank write end alignment)
[100%] [################################## | Programming |
Info : Padding image section I at 0x1000b704 with 252 bytes (bank write end alignment)
[100%] [############################## | Erasing |
[100%] [################################ | Programming |
wrote 45056 bytes from file c:/hex/firmware.hex in 0.838178s (52.495 KiB/s)
** Programming Finished **

** Verify Started **
verified 44748 bytes in 0.106248s (411.295 KiB/s)

** Verified 04748
   * Verified OK **
             lown command invoked
    nfo : psoc6.dap: powering down debug domain
```

Getting started

2.4 Program the PSOC™ 64 "Secure Boot" MCU target

This example initializes the KitProg3 probe with the PSOC[™] 64 MCU, programs the flash with the *firmware.hex* file, verifies the programmed data, and finally shuts down the OpenOCD programmer.

Run the following command:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cyxx64x7.cfg -c "program d:/firmware.hex verify exit"
```

Note:

The psoc6_secure.cfg configuration file programming of the internal flash is performed via the SYS_AP access port. OpenOCD will not affect CM0_AP and CM4_AP by default, so both cores will not be visible to OpenOCD. Choose the access port using the <u>TARGET_AP</u> variable.

Programming of the external memory is done by the flash loader, so the CM4 access port must be used for QSPI memory programming. After choosing the CM4 access port, the QSPI memory bank will be exposed automatically.

Note: See <u>Supported target configurations</u> for the list of available target configurations.

2.5 Program the PSOC™ 4 MCU target

This example initializes the KitProg3 probe with the PSOC™ 4 MCU, programs the flash with the *firmware.hex* file, verifies programmed data, and finally shuts down the OpenOCD programmer.

Execute the following command:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/psoc4.cfg -c "program d:/firmware.hex verify exit"
```

2.6 Program the device using the configuration file only

The whole configuration is stored in a single *sample.cfg* configuration file. For example, the following configuration file describes the PSOC™ 6 MCU connected using the KitProg3 debug probe. This file initializes the target device, programs the flash with the *firmware.hex* file, verifies programmed data, and finally shuts down the OpenOCD programmer.

```
source [find interface/kitprog3.cfg]
transport select swd
source [find target/infineon/cy8c6xxx.cfg]
program d:/firmware.hex verify exit
```

Execute the following command:

```
openocd -s ../scripts -f path/to/sample.cfg
```

2.7 Program the device using the configuration file and command line

A significant part of the configuration file specifies the debug adapter, transport type, target chip, SWD frequency, reset type, etc. This part of the file reflects the hardware configuration and thus stays unchanged between sessions. In some cases, a combined method of passing the Tcl commands is more convenient.

The example *sample.cfg* file contents:

```
source [find interface/kitprog3.cfg]
transport select swd
source [find target/infineon/cy8c6xxx.cfg]
```


Getting started

Execute the following command:

openocd -s ../scripts -f path/to/sample.cfg -c "program d:/firmware.hex verify exit"

2.8 Remote debugging

OpenOCD is a server application which implements the remote *gdbserver* protocol and, as such, supports remote debugging out of the box. All communication between the debugger (GDB) and OpenOCD is done via TCP connections, even when debugging a locally connected target. Remote debugging works for all devices supported in OpenOCD.

This example shows how to configure ModusToolbox[™] tools for remote debugging and launch a remote debug session of the PSOC[™] 6 MCU target. The example uses two PCs: a local PC where ModusToolbox[™] tools will be running and a remote PC with the CY8CPROTO-062-4343W kit connected. The remote PC runs OpenOCD and acts as a server; both machines will communicate via TCP protocol.

On a local machine:

- 1. Start the ModusToolbox™ tools. Create and build a project for CY8CPROTO-062-4343W.
- 2. Open the **Debug Configurations** window and select the **Debug (KitProg3_MiniProg4)** configuration.
- 3. Do the following on the **Debugger** tab:
 - a. Copy the contents of the **Config options** text box and paste them to a text editor.
 - b. Replace all new lines with spaces because all configuration options should be in a single line separated by spaces.
 - c. Copy the contents to the clipboard. You will need to specify these options in the OpenOCD command line on a remote machine later.

- 4. Disable the **Start OpenOCD locally** checkbox.
- 5. Specify the **Host name or IP address** of the remote machine in the **Remote Target** group box.

6. Navigate to the **Startup** tab and make sure that the **Initial Reset** checkbox is checked and the **Reset Type** is set to **init**.

7. Click **Apply** to save changes to the launch configuration.

OpenOCD CLI user guide

Getting started

On a remote machine:

1. Type the following command in the command prompt, and then paste the configuration options from the clipboard to complete the command line (see step 3 above).

```
openocd -c "bindto 0.0.0.0"
```

2. Replace the \${openocd path} with the full path to the OpenOCD executable on the remote machine.

The completed command line should look similar to the following:

```
openocd.exe -c "bindto 0.0.0.0" -s "../scripts" -s "../libs/TARGET_CY8CPROTO-062-4343W/COMONENT_BSP_DESIGN_MODUS/GeneratedSource" -c "source [find interface/kitprog3.cfg]" -c "puts stderr {Started by GNU MCU Eclipse}" -c "source [find target/infineon/cy8cxxa.cfg]" -c "psoc6.cpu.cm4 configure -rtos auto -rtos-wipe-on-reset-halt 1" -c "gdb_port 3332" -c "psoc6 sflash_restrictions 1" -c "init; reset init"
```

- 3. Press [Enter] to start the OpenOCD session.
- 4. Switch back to a local machine and start the modified Debug (KitProg3_MiniProg4) launch configuration.

Supported target configurations

3 Supported target configurations

Target configuration files are in the *target*/directory of the OpenOCD tree. To connect ModusToolbox[™] OpenOCD CLI to a device, pass one of the following configuration files as the argument for the <u>--file</u> command-line option; for example, -f target/infineon/psoc4.cfg.

Note: Old target config files will be removed in the future releases of OpenOCD, consider using new config files.

#	Old Target Config	Target config	Description
1	psoc6.cfg	infineon/cy8c6xxx.cfg	CY8C6xx7, CY8C6xx6 target configuration
2	psoc6_2m.cfg	infineon/cy8cxxa.cfg	CY8C6xxA, CY8C6xx8 target configuration
3	psoc6_512k.cfg	infineon/cy8cxx5.cfg	CY8C6xx5 target configuration
4	psoc6_256k.cfg	infineon/cy8cxx4.cfg	CY8C6xx4 target configuration
5	psoc6_secure.cfg	infineon/cyxx64x7.cfg	CYB06447, CYB06447-BL target configuration
6	psoc6_2m_secure.cfg	infineon/cyxx64xa.cfg	CYS0644A, CYB0644A target configuration
7	psoc6_512k_secure.cfg	infineon/cyxx64x5.cfg	CYB06445 target configuration
8	psoc4.cfg	infineon/psoc4.cfg	Configuration for all PSOC™ 4 MCU, CCGx targets except PSOC™ 4500H MCU
9	psoc4500.cfg	infineon/psoc4500h.cfg	Configuration file for PSOC™ 4500H MCU
10	pag2s.cfg	infineon/pag2s.cfg	Configuration file for PAG2S MCU
11	cyw208xx.cfg	infineon/cyw20829.cfg	Configuration file for the AIROC™ CYW208xx Wi-Fi & Bluetooth® combo chips
12	N/A	bcm4390x.cfg [2]	Configuration file for CYW4390x family of devices
13	cat1c.cfg	infineon/xmc7xxx.cfg	Configuration file for XMC7100/XMC7200 series of devices
14	cat1c.cfg	infineon/cytxbb.cfg	Configuration file for CYT3BB/CYT4BB series of TRAVEO™ T2G Body High MCU devices
15	cat1c.cfg	infineon/cyt4bf.cfg	Configuration file for CYT4BF series of TRAVEO™ T2G Body High MCU devices
16	cat1c.cfg	infineon/cyt4dn.cfg	Configuration file for CYT4DN series of TRAVEO™ T2G Cluster 6M MCU devices
17	traveo2_1m_a0.cfg	infineon/cyt2b7.cfg	Configuration file for CYT2B7 series of TRAVEO™ T2G Body Entry MCU devices
18	traveo2_2m.cfg	infineon/cyt2b9.cfg	Configuration file for CYT2B9 series of TRAVEO™ T2G Body Entry MCU devices
19	traveo2_be_4m.cfg	infineon/cyt2bl.cfg	Configuration file for CYT2BL series of TRAVEO™ T2G Body Entry MCU devices
20	traveo2_512k_a0.cfg	infineon/cyt2b6.cfg	Configuration file for CYT2B6 series of TRAVEO™ T2G Body Entry MCU devices
21	psoc4hv_a0.cfg	infineon/psoc4hv_a0.cf g	Configuration file for PSOC4-HV devices
22	fx3g2.cfg	infineon/fx3gx.cfg	Configuration file for FX3G2 and FX2G3 series of devices
23	macaw.cfg	infineon/macaw.cfg	Configuration file for Macaw series of devices

The CYW9WCD1EVAL1 kit is equipped with an onboard FTDI-based JTAG adapter. OpenOCD provides board-level configuration file for this kit which will configure the JTAG adapter and the CYW4390x chip automatically. Use single board/cyw9wcd1eval1.cfg configuration file for the CYW9WCD1EVAL1 board (instead of separate files for the probe and chip).

Supported target configurations

#	Old Target Config	Target config	Description
24	cyw55500.cfg	infineon/ cyw55500.cfg	Configuration file for cyw55500 devices
25	N/A	infineon/psc3.cfg	Configuration file for PSOC™ Control C3 devices
26	N/A	infineon/xmc5100.cfg	Configuration file for XMC5100 devices
27	N/A	infineon/xmc5200.cfg	Configuration file for XMC5200 devices
28	N/A	infineon/xmc5300.cfg	Configuration file for XMC5300 devices

Command-line options

4 Command-line options

OpenOCD command-line options can be combined in a single command-line.

The most important options and commands:

Option	Description	
file (-f)	Specifies the configuration file to use	
search (-s)	Specifies the directory to search for configuration files	
command (-c)	Executes an OpenOCD command. See OpenOCD Commands Overview for details.	
debug (-d)	Specifies the debug level	
log_output (-1)	Redirects the log output to the file	
help (-h)	Displays the help message	
version (-v)	Displays the OpenOCD version	

4.1 --file (-f)

Specifies the configuration file to use.

Multiple configuration files can be specified from a command line. They are interpreted in the order they are specified in the command line.

```
openocd -f <filename.cfg>
openocd -f interface/ADAPTER.cfg -f target/TARGET.cfg
```

Example:

```
openocd -s ../scripts -f interface/jlink.cfg -c "transport select jtag" -f target/infineon/cy8cxxa.cfg
```

The output should appear similar to the following:

OpenOCD CLI user guide

Command-line options

The "tap/service found" message should appear with no warnings, which means the JTAG communication is working.

4.2 --search (-s)

Specifies the directory to search for configuration files.

Multiple -s options can be specified. Configuration files and scripts are searched for in the following paths:

- the current directory
- any search directory specified on the command line using the -s option
- any search directory specified using the add_script_search_dir command
- \$HOME/.openocd (not on Windows)
- a directory in the OPENOCD SCRIPTS environment variable (if set)
- the site-wide script library \$pkgdatadir/site
- the OpenOCD-supplied script library \$pkgdatadir/scripts.

The file first found with a matching file name is used.

```
openocd -s <directory>
```

Example:

```
openocd -s ../scripts -f interface/jlink.cfg -f target/infineon/cy8cxxa.cfg
```

In this example, the -s option specifies the relative path to the directory where the interface and target configurations are located.

4.3 --command (-c)

Executes the Tcl command(s).

Multiple commands can be executed by either specifying the multiple -c options or passing several commands to the single -c options. In the latter case, separate the commands with a semicolon.

```
openocd -c <command>
openocd -c <"command1; command2; ...">
```

Example:

```
openocd -s ../scripts -f interface/jlink.cfg -f target/infineon/cy8cxxa.cfg -c "targets; shutdown"
```

4.4 --debug (-d)

Specifies the debug level. The debug level is 2 by default.

```
openocd -d<n>
```

This affects the kind of messages sent to the server log:

- Level 0: Error messages only
- Level 1: Level 0 messages + warnings
- Level 2: Level 1 messages + informational messages
- Level 3: Level 2 messages + debugging messages

OpenOCD CLI user guide

Command-line options

Example:

openocd -d1

--log_output (-l) 4.5

Redirects the log output to the file *logfile.txt*.

```
openocd -l <logfile.txt>
```

Example:

```
openocd -s ../scripts -f interface/jlink.cfg -f target/infineon/cy8cxxa.cfg -l
d:/log.txt -c "targets; shutdown"
```

--help (-h) 4.6

Displays the help message.

```
openocd -h
```

--version (-v) 4.7

Displays the OpenOCD version.

```
openocd -v
```

OpenOCD commands overview

OpenOCD commands overview 5

The available OpenOCD Tcl commands are listed in the following table. You can combine several commands in a single command-line or pass them via the configuration file.

The command can be invoked with the -c command option.

Command	Description
version	Displays a string identifying the OpenOCD version
help	With no parameters, prints the help text for all commands
shutdown	Closes the OpenOCD server, disconnecting all clients
log output	Redirects logging to the filename; the initial log output channel is <i>stderr</i> .
debug_level	Displays the debug level
reset_config	Displays or modifies the reset configuration of your combination of the board and target
adapter speed	Sets the non-zero speed in kHz for the debug adapter
adapter serial	Sets the serial_number of the adapter to use
transport list	Displays the names of the transports supported by this version of OpenOCD
transport select	Selects a supported transport to use in this OpenOCD session
targets	Displays a table of all known targets, or sets the current target to a given target with a given name
scan_chain	Displays the TAPs in the scan chain configuration and their status
md(w)(h)(b)	Displays the contents of the address as 32-bit words (mdw), 16-bit halfwords (mdh), or 8-bit bytes (mdb)
mw(w)(h)(b)	Writes the specified word (32 bits), half-word (16 bits), or byte (8-bit) value, at the specified address
init	Terminates the configuration stage and enters the run stage
reset [run] [halt] [init]	Performs as hard a reset as possible, using SRST if possible
program	Programs a given programming file in the HEX, SREC, BIN, or ELF formats into flash
erase all	Erases the flash memory
flash banks	Prints a one-line summary of each flash bank of the target device
flash list	Retrieves a list of associative arrays for each device that was declared using a flash bank numbered from zero
flash info	Prints info about the flash bank, a list of protection blocks, and their status
flash protect	Enables (on) or disables (off) protection of flash blocks
flash erase sector	Erases sectors in a given bank
flash erase address	Erases sectors starting at a given address
flash write bank	Writes the binary file to a given flash bank
flash write image	Writes the image file to the current target's flash bank(s)
flash fill(w)(h)(b)	Fills the flash memory with the specified word (32 bits), half-word (16 bits), or byte
flash read bank	Reads bytes from the flash bank and writes the contents to the binary file
flash verify bank	Compares the contents of the binary file with the contents of the flash

OpenOCD commands overview

Command	Description
flash padded value	Sets the default value used for padding-any-image sections
flash rmw	Can be used to modify flash individual bytes
add verify range	Allows specifying the memory regions to be compared during the <i>verify</i> operation
show verify ranges	Displays all active verify ranges for all targets that were added using the add_verify_range command. This command does not take any arguments.
<pre>clear_verify_ranges</pre>	Deletes all verify ranges for the specified target that were added using the add_verify_range command
verify image	Verifies a file against the target memory starting at a given address
verify_image_checksum	Verifies a file against the target memory starting at a given address
load_image	Loads an image from a file to the target memory offset from its load address
dump_image	Dumps bytes of the target memory to a binary file
kitprog3 acquire_config	Controls device acquisition parameters, and optionally enables acquisition during the early initialization phase
kitprog3 acquire psoc	Performs device acquisition
kitprog3 power_config	Controls KitProg3/MiniProg4 internal power supply parameters and optionally enables power
kitprog3 power_control	Turns on or off the KitProg3/MiniProg4 internal power supply
kitprog3 led_control	Controls KitProg3/MiniProg4 LEDs
kitprog3 get_power	Reports the target voltage in millivolts
<pre>psoc6/cat1c/traveo2/xmc5xxx sflash restrictions</pre>	Enables or disables writes to dedicated SFlash regions
<pre>psoc6/cat1c/traveo2/xmc5xxx allow efuse program</pre>	Allows or disallows writes to the EFuse region
<pre>psoc6/cat1c/traveo2/xmc5xxx reset halt</pre>	Simulates a broken vector catch on MCU
<pre>psoc4/cat1c/traveo2/xmc5xxx ecc error reporting</pre>	Enables or disables the ECC error reporting
cat1c/traveo2/xmc5xxx wflash blank map	Displays per-word validity map of the given sectors of Fork Flash
<pre>cat1c/traveo2/xmc5xxx wflash write image</pre>	Programs individual 32-bit words from given file to the Work Flash
cat1c/traveo2/xmc5xxx wflash write words	Modifies individual 32-bit words in Work Flash
psoc6 secure acquire	Performs acquisition of PSOC™ 64 "Secure Boot" MCUs
psoc4 reset halt	Performs the alternate acquire sequence
psoc4 mass erase	Performs a mass erase operation on the given flash bank
psoc4 chip_protect	Changes chip protection mode to PROTECTED
source	Reads a file and executes it as a Tcl script
find	Finds and returns the full path to a file with the Tcl script
set	Creates a Tcl variable
add script search dir	Adds a directory to the file/script search path
sleep	Waits for a given number of milliseconds before resuming

OpenOCD CLI user guide

OpenOCD commands description

6 OpenOCD commands description

This section includes all relevant OpenOCD commands along with their descriptions and usage examples.

All examples described in this section can be executed against different PSOC[™] 6 or PSOC[™] 64 MCU targets. See <u>Supported Target Configurations</u> for the detailed list of available target devices and corresponding OpenOCD configuration files.

6.1 General OpenOCD commands

6.1.1 **version**

Displays a string identifying the OpenOCD version.

Example:

```
openocd -c "version; shutdown"
```

6.1.2 **help**

With no parameters, prints help text for all commands. Otherwise, prints each help-text-containing string. Not every command provides help text.

```
help [string]
```

Example:

```
openocd -c "help; shutdown"
```

6.1.3 **shutdown**

Closes the OpenOCD server, disconnecting all clients (GDB, telnet, other). If the error option is used, OpenOCD will return non-zero exit code to the parent process.

```
shutdown [error]
```

Example:

```
openocd -c "shutdown error"
```

6.1.4 **log_output**

Redirects logging to the filename; the initial log output channel is stderr.

```
log output [filename]
```

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxa.cfg -c "log output d:/log.txt; targets; shutdown"
```

6.1.5 **debug_level**

Displays the debug level. If n (from 0..3) is provided, set it to that level.

This affects the kind of messages sent to the server log:

- Level 0: Error messages only
- Level 1: Level 0 messages + warnings

OpenOCD CLI user guide

- **OpenOCD commands description**
- Level 2: Level 1 messages + informational messages
- Level 3: Level 2 messages + debugging messages

The default is Level 2, but that can be overridden on the command line along with the location of that log file (which is normally the server's standard output).

```
debug level [n]
```

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxa.cfg -c "debug level 1; targets; shutdown"
```

6.1.6 **reset_config**

Displays or modifies the reset configuration of your combination of the board and target.

```
reset_config <mode_flag> ...
```

The mode_flag options can be specified in any order, but only one of each type - signals, combination, gates, trst_type, srst_type and connect_type - may be specified at a time. If you don't provide a new value for a given type, its previous value (perhaps the default) remains unchanged.

For example, do not say anything about TRST just to declare that if the JTAG adapter should want to drive SRST, it must explicitly be driven HIGH (srst push pull).

The signals option specifies which of the reset signals is/are connected.

For example, If the board doesn't connect SRST provided by the JTAG interface properly, OpenOCD cannot use it. The possible values are:

none (default)

```
trst_only
srst_only
trst and srst
```

See the OpenOCD documentation for details.

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxa.cfg -c "reset config trst and srst; targets; shutdown"
```

OpenOCD commands description

6.1.7 adapter speed

Sets a non-zero speed in kHz for the debug adapter. Therefore, to specify 3 MHz, provide 3000.

```
adapter speed <max speed kHz>
```

JTAG interfaces usually support a limited number of speeds. The speed actually used will not be faster than the speed specified. Chip datasheets generally include a top JTAG clock rate. The actual rate is often a function of a CPU core clock, and is normally lower than that peak rate.

For example, most Arm® cores accept up to one sixth of the CPU clock. Speed 0 (kHz) selects the RTCK method. If your system uses RTCK, you will not need to change the JTAG clocking after a setup.

Example:

```
openocd -s ../scripts -f interface/jlink.cfg -c "transport select jtag; adapter speed 2000; shutdown"
```

6.1.8 adapter serial

Specifies the serial number of the adapter device to use. If not specified, serial numbers are not considered. Command can be used to specify which device to use if multiple devices are connected to the host PC.

```
adapter serial <serial number>
```

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -c "adapter serial 1A1509F301237400; shutdown"
```

6.1.9 transport list

Displays the names of the transports supported by this version of OpenOCD.

Example:

```
openocd -c "transport list; shutdown"
```

6.1.10 transport select

Selects which of the supported transports to use in this OpenOCD session.

```
transport select < transport name>
```

When invoked with the transport_name option, OpenOCD attempts to select the named transport. The transport must be supported by the debug adapter hardware and by the version of OpenOCD you are using (including the adapter's driver). If no transport has been selected and no transport_name is provided, transport select auto-selects the first transport supported by the debug adapter. transport select always returns the name of the session's selected transport, if any.

Example:

```
openocd -s ../scripts -f interface/jlink.cfg -c "transport select jtag"
```

OpenOCD commands description

6.1.11 targets

With no parameter, this command displays a table of all known targets in a user-friendly form. With a parameter, this command sets the current target to a given target with a given *name*; this is relevant only to boards with more than one target.

```
targets [name]
```

Examples:

Displays all available targets of the connected PSOC™ 6 MCU:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxa.cfg -c "targets; shutdown"
```

Selects the CM4 core of the PSOC[™] 6 MCU as the current target:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxa.cfg -c "targets psoc6.cpu.cm4; target current"
```

6.1.12 **scan_chain**

Displays the TAPs in the scan chain configuration, and their status. (Do not confuse this with the list displayed by the targets command. That only displays TAPs for CPUs configured as debugging targets.)

Example:

Displays TAPs of the PSOC™ 6 MCU.

```
openocd -s ../scripts -f interface/jlink.cfg -c "transport select jtag; adapter speed 1000; init; scan chain; shutdown"
```

```
Licensed under GNU GPL v2
 or bug reports, read
        http://openocd.org/doc/doxygen/bugs.html
adapter speed: 1000 kHz
Info : J-Link V11 compiled Mar 15 2023 11:20:48
Info : Hardware version: 11.00
Info : VTarget = 3.306 V
Info : clock speed 1000 kHz
Warn : There are no enabled taps. AUTO PROBING MIGHT NOT WORK!!
Info : JTAG tap: auto0.tap tap/device found: 0x6ba00477 (mfg: 0x23b (ARM Ltd), part: 0xba00, ver: 0x6)
Info : JTAG tap: auto1.tap tap/device found: 0x1e453069 (mfg: 0x034 (Cypress), part: 0xe453, ver: 0x1)
Warn : AUTO auto0.tap - use "jtag newtap auto0 tap -irlen 4 -expected-id 0x6ba00477"
Warn : AUTO auto1.tap - use "jtag newtap auto1 tap -irlen 18 -expected-id 0x1e453069"
Warn : gdb services need one or more targets defined
   TapName
                         Enabled IdCode
                                               Expected
                                                            IrLen IrCap IrMask
                                   0x6ba00477 0x00000000
                                                                4 0x01 0x03
 0 auto0.tap
                                   0x1e453069 0x00000000
   auto1.tap
                                                               18 0x01
                                                                         0x03
```

6.1.13 **md(w)(h)(b)**

Displays the contents of address addr, as 32-bit words (mdw), 16-bit half-words (mdh), or 8-bit bytes (mdb).

```
mdw [phys] <addr> [count]
mdh [phys] <addr> [count]
mdb [phys] <addr> [count]
```

When the current target has a present and active MMU, addr is interpreted as a virtual address. Otherwise, or if the optional phys flag is specified, addr is interpreted as a physical address. If count is specified, displays that many units.

(infineon

OpenOCD commands description

Example:

Displays two 32-bit words of memory of the PSOC[™] 6 MCU.

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxx.cfg -c "init; reset init; mdw 0x10000000 2; shutdown"
```

```
Info: psoc6.cpu.cm0: hardware has 4 breakpoints, 2 watchpoints
Info: psoc6.cpu.cm4: hardware has 6 breakpoints, 4 watchpoints
Info: Listening on port 3333 for gdb connections
Info: Listening on port 3334 for gdb connections
Warn: Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or configure hardware srst support.
Info: kitprog3: acquiring PSoC device...
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x00001f2c msp: 0x080477a8
*** Device acquired successfully
*** SFlash SiliconID: 0xE2062200
*** Flash Boot version: 0x021D8001
*** Chip Protection: 0x021D8001
*** Chip Protection: NORMAL
*** psoc6.cpu.cm4: Ran after reset and before halt...
target halted due to debug-request, current mode: Thread
xPSR: 0x61000000 pc: 0x1600400c msp: 000000000
0x100000000: 08024000 100014b9
shutdown command invoked
```

6.1.14 mw(w)(h)(b)

Writes the specified word (32 bits), halfword (16 bits), or byte (8-bit) value at the specified address addr.

```
mww [phys] <addr> <word>
mwh [phys] <addr> <halfword>
mwb [phys] <addr> <byte>
```

When the current target has a present and active MMU, addr is interpreted as a virtual address. Otherwise, or if the optional phys flag is specified, addr is interpreted as a physical address.

Example:

Write a 32-bit word to the memory of the PSOC[™] 6 MCU.

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxx.cfg -c "init; reset init; mww 0x8000000 0xABCD1234; mdw 0x8000000; shutdown"
```

```
Info: kitprog3: acquiring PSoC device...
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x000001f2c msp: 0x080477a8
** Device acquired successfully
** SFlash SiliconID: 0xE2062200
** Flash Boot version: 0x021D8001
** Flash Boot version: 0x021D8001
** Chip Protection: NORMAL
** psoc6.cpu.cm4: Ran after reset and before halt...
target halted due to debug-request, current mode: Thread
xPSR: 0x61000000 pc: 0x1600400c msp: 00000000
0x08000000: abcd1234
shutdown command invoked
```

6.1.15 **init**

This command terminates the configuration stage and enters the run stage. This helps to have the startup scripts manage tasks such as resetting the target and programming flash. To reset the CPU upon a startup, add init and reset at the end of the config script or at the end of the OpenOCD command line using the -c command line switch.

If this command does not appear in any startup/configuration file, OpenOCD executes the command for you after processing all configuration files and/or command-line options.

Note:

This command normally occurs at or near the end of your config file to force OpenOCD to initialize and make the targets ready. For example: If your config file needs to read/write memory on your target, initialization must occur before the memory read/write commands.

OpenOCD CLI user guide

OpenOCD commands description

Example (KitProg3 + PSOC™ 6 MCU target):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxx.cfg -c "init; shutdown"
```

6.1.16 reset [run] [halt] [init]

Performs as hard a reset as possible, using SRST if possible. All defined targets will be reset, and target events will fire during the reset sequence.

The optional parameter specifies what should happen after a reset. If there is no parameter, a reset run is executed. The other options will not work on all systems. See reset_config.

- run Let the target run
- halt Immediately halt the target
- init Immediately halt the target, and execute the reset-init script

Example:

Reset and initialize the KitProg3 + PSOC[™] 6 MCU target:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxx.cfg -c
"init; reset init; shutdown"\
```

6.1.17 **program**

Programs a given programming file in the HEX, SREC, ELF, or BIN formats into the flash of the target device.

```
program <filename> [preverify] [verify] [reset] [exit] [offset]
```

The only required parameter is filename; others are optional.

- preverify Performs the verification step before flash programming. Programming will be skipped if the flash contents match the data file.
- verify Compares the contents of the data file filename with the contents of the flash after flash programming
- reset "reset run" is called if this parameter is given (see reset for details)
- exit OpenOCD is shut down if this parameter is given.
- offset If relocation offset is specified, it is added to the base address for each section in the image.

Example:

The next example connects ModusToolbox[™] OpenOCD CLI to the KitProg3 probe with the PSOC[™] 6 MCU target, programs flash with the *firmware.hex* file, verifies programmed data, and finally shuts down the OpenOCD programmer.

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxx.cfg -c "program d:/firmware.hex verify exit"
```

ModusToolbox[™] software OpenOCD CLI user guide

OpenOCD commands description

6.1.18 erase_all

This command erases the flash memory. Some SFlash rows could be skipped due to restrictions, see psoc6/cat1c/traveo2/xmc5xxx sflash_restrictions command.

Example (KitProg3 + PSOC™ 6 MCU target):

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxx.cfg -c "init; reset init; erase all; exit"

```
Device acquired successfully
** psoc6.cpu.cm4: Ran after reset and before halt...
[psoc6.cpu.cm4] halted due to debug-request, current mode: Thread xPSR: 0x01000000 pc: 0x0000012a msp: 0x080ff800
Erasing flash bank "psoc6_efuse_cm4" (1 of 8)...
skipped (virtual)
rasing flash bank "psoc6_super_cm4" (2 of 8)...
skipped (virtual)
Erasing flash bank "psoc6_work_cm4" (3 of 8)...
skipped (virtual)
Erasing flash bank "psoc6_main_cm4" (4 of 8)...
skipped (virtual)
Erasing flash bank "psoc6_efuse_cm0" (5 of 8)...
Info : Erase operation for EFuse bank is not supported, skipping
erased sectors 0 through 0 on flash bank 3 in 0.003909s
Warn : Some SFlash rows were skipped during erase, see 'sflash_restrictions' command
erased sectors 0 through 63 on flash bank 2 in 0.102286s
Erasing flash bank "psoc6_work_cm0" (7 of 8)...
[100%] [######################## [ Erasing
erased sectors 0 through 63 on flash bank 1 in 0.022333s
Erasing flash bank "psoc6_main_cm0" (8 of 8)...
[100%] [############################# [ Erasing
erased sectors 0 through 4095 on flash bank 0 in 0.190425s
Info : psoc6.dap: powering down debug domain..
```

infineon

OpenOCD commands description

6.1.19 flash banks

Prints a one-line summary of each flash bank of the target device.

Example (KitProg3 + PSOC™ 6 MCU):

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8cxxa.cfg -c "init; flash probe 0; flash probe 1; flash probe 2; flash probe 3; flash banks; shutdown"

```
Licensed under GNU GPL v2
 or bug reports, read
        http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf155, serial=180715C900020400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : VTarget = 3.295 V
Info : kitprog3: acquiring the device (mode: reset)...
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x6ba02477
Info : [psoc6.cpu.cm0] Cortex-M0+ r0p1 processor detected
Info : [psoc6.cpu.cm0] target has 4 breakpoints, 2 watchpoints
************
** Silicon: 0xE453, Family: 0x102, Rev.: 0x12 (A1)
** Detected Device: CY8C624ABZI-S2D44
** Detected Main Flash size, kb: 2048
** Flash Boot version: 3.1.0.378
** SFlash version: 0x47530
** Chip Protection: NORMAL
***********
Info : [psoc6.cpu.cm4] Cortex-M4 r0p1 processor detected
Info : [psoc6.cpu.cm4] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for psoc6.cpu.cm0 on 3333
Info : Listening on port 3333 for gdb connections
Info : starting gdb server for psoc6.cpu.cm4 on 3334
Info : Listening on port 3334 for gdb connections
flash 'psoc6_2m' found at 0x10000000
flash 'psoc6_2m' found at 0x14000000
flash 'psoc6_2m' found at 0x16000000
flash 'psoc6_2m_efuse' found at 0x90700000
#0 : psoc6_main_cm0 (psoc6_2m) at 0x10000000, size 0x00200000, buswidth 4, chipwidth 4
#1 : psoc6_work_cm0 (psoc6_2m) at 0x14000000, size 0x00008000, buswidth 4, chipwidth 4
#2 : psoc6_super_cm0 (psoc6_2m) at 0x16000000, size 0x00008000, buswidth 4, chipwidth 4
#3 : psoc6_efuse_cm0 (psoc6_2m_efuse) at 0x90700000, size 0x00000400, buswidth 1, chipwidth 1
#4 : psoc6_main_cm4 (virtual) at 0x10000000, size 0x00000000, buswidth 0, chipwidth 0
#5 : psoc6_work_cm4 (virtual) at 0x14000000, size 0x00000000, buswidth 0, chipwidth 0
#6 : psoc6_super_cm4 (virtual) at 0x16000000, size 0x00000000, buswidth 0, chipwidth 0
#7 : psoc6_efuse_cm4 (virtual) at 0x90700000, size 0x00000400, buswidth 1, chipwidth 1
shutdown command invoked
Info : psoc6.dap: powering down debug domain...
```

infineon

OpenOCD commands description

6.1.20 flash list

Retrieves a list of associative arrays for each device that was declared using a flash bank numbered from zero.

Example (KitProg3 + PSOC[™] 6 MCU):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash list"
```

```
adapter_nsrst_delay: 200

{name psoc6 base 268435456 size 1048576 bus_width 0 chip_width 0 {name psoc6 base 335544320 size 0 bus_width 0 chip_width 0 } {name psoc6 base 369098752 size 0 bus_width 0 chip_width 0 } {name psoc6_efuse base 2423259136 size 1024 bus_width 1 chip_width 1 } {name virtual base 268435456 size 1048576 bus_width 0 chip_width 0 } {name virtual base 335544320 size 0 bus_width 0 chip_width 0 } {name virtual base 369098752 size 0 bus_width 0 chip_width 1 chip_width 1 } {nfo: Listening on port 6666 for tcl connections
```

6.1.21 flash info

```
flash info <num> [sectors]
```

Prints info about the flash bank *num*, a list of protection blocks and their status. Uses sectors to show a list of sectors instead. The *num* parameter is a value shown by flash banks. This command will first query the hardware; it does not print cached and possibly stale information.

Example:

Prints the information about flash bank 0 of the KitProg3 + PSOC™ 6 MCU:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash info 0; shutdown"
```

```
#2042: 0x000ff400 (0x200 0kB) not protected
#2043: 0x000ff600 (0x200 0kB) not protected
#2044: 0x000ff800 (0x200 0kB) not protected
#2045: 0x000ffa00 (0x200 0kB) not protected
#2046: 0x000ffc00 (0x200 0kB) not protected
#2047: 0x000ffc00 (0x200 0kB) not protected
#2047: 0x000ffc00 (0x200 0kB) not protected
Protection: NORMAL
```

6.1.22 **flash protect**

Enables (on) or disables (off) protection of flash blocks in flash bank num, starting at protection block first and continuing up to and including last.

Note: This command is applicable for $PSOC^{TM} 4 MCU$ only.

```
flash protect num first last (on|off)
```

Providing a last block of last specifies "to the end of the flash bank". The num parameter is a value shown by flash banks. The protection block is usually identical to a flash sector. Some devices may utilize a protection block distinct from the flash sector. See flash info for a list of protection blocks.

infineon

OpenOCD commands description

Example:

Protects all sectors from being written in flash bank 0 of the KitProg3 + PSOC™ 4 MCU:

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/psoc4.cfg -c "init; reset init; flash protect 0 0 last on; shutdown"

6.1.23 **flash erase_sector**

Erases sectors in the bank num, starting at Sector first up to and including Sector last.

```
flash erase sector <num> <first> <last>
```

Sector numbering starts at 0. Providing the last sector of last specifies "to the end of the flash bank". The num parameter is a value shown by flash banks.

Note:

On $PSOC^{\mathsf{TM}}4$, $PSOC^{\mathsf{TM}}4$ HVPA, and $PSOC^{\mathsf{TM}}4$ HVMS MCU devices, per-sector erase operation is not supported, only mass-erase is available. This command is ignored on the device unless a full erase of the flash is requested (flash erase sector 0 0 last).

Example:

Erases all sectors in flash bank 0 of the KitProg3 + PSOC™ 6 MCU:

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash erase sector 0 0 last; shutdown"

6.1.24 flash erase_address

Erases the sectors starting at address for the length bytes.

```
flash erase address [pad] [unlock] <address> <length>
```

Unless pad is specified, address must begin a flash sector, and address + length - 1 must end a sector. Specifying pad erases the extra data at the beginning and/or end of the specified region, as needed to erase only full sectors. The flash bank to use is inferred from the address, and the specified length must stay within that bank. As a special case, when length is zero and address is the start of the bank, the whole flash is erased. If unlock is specified, the flash is unprotected before erase starts.

OpenOCD commands description

Note:

On $PSOC^{TM}4$, $PSOC^{TM}4$ HVPA, and $PSOC^{TM}4$ HVMS MCU devices, per-sector erase operation is not supported, only mass-erase is available. This command is ignored on the device unless a full erase of the flash is requested (e.g. flash erase address 0 65536 for 64 KB parts).

Example:

Erases the 2-KB block starting at address 0x10000000 of KitProg3 + PSOC™ 6 MCU:

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash erase address 0x10000000 2048; shutdown"

6.1.25 **flash write_bank**

Writes the binary filename to flash bank num, starting at offset bytes from the beginning of the bank.

```
flash write bank <num> <filename> <offset>
```

The num parameter is a value shown by flash banks.

Example:

Writes the binary file *firmware.bin* to flash bank 0 of KitProg3 + PSOC[™] 6 MCU starting at offset 0:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash write bank 0 d:/firmware.bin 0x0; shutdown"
```

6.1.26 flash write_image

Writes the image filename to the current target's flash bank(s).

```
flash write image [erase] [unlock] <filename> [offset] [type]
```

Only loadable sections from the image are written. If a relocation offset is specified, it is added to the base address for each section in the image. The file [type] can be specified explicitly as bin (binary), ihex (Intel hex), elf (ELF file), or s19 (Motorola s19). The relevant flash sectors will be erased prior to programming if the erase parameter is given. If unlock is provided, the flash banks are unlocked before erase and program. The flash bank to use is inferred from the address of each image section.

Attention: Be careful using the erase flag when the flash is holding data you want to preserve. Portions of the flash outside those described in the image's sections might be erased with no notice.

 When a section of the image being written does not fill out all the sectors it uses, the unwritten parts of those sectors are necessarily also erased, because sectors cannot be partially erased.

OpenOCD CLI user guide

OpenOCD commands description

• Data stored in sector "holes" between image sections are also affected. For example, flash write_image erase ... of an image with one byte at the beginning of a flash bank and one byte at the end erases the entire bank – not just the two sectors being written.

Also, when flash protection is important, you must reapply it after it has been removed by the unlock flag.

Example:

Writes the ELF image *firmware.elf* to KitProg3 + PSOC[™] 6 MCU:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash write image erase d:/firmware.elf; shutdown"
```

```
*** SFlash SiÎiconID: 0xE2062Ž00

*** Flash Boot version: 0x021D8001

*** Chip Protection: NORMAL

*** protection: NORMAL

*** protection: Norman

***
```

6.1.27 flash fill(w)(h)(b)

Fills the flash memory with the specified word (32 bits), half-word (16 bits), or byte (8-bit) pattern, starting at address and continuing for length units (word/half-word/byte).

```
flash fillw <address> <word> <length>
flash fillh <address> <halfword> <length>
flash fillb <address> <byte> <length>
```

No erase is done before writing; when needed, that must be done before issuing this command. Writes are done in blocks of up to 1024 bytes, and each write is verified by reading back the data and comparing it to what was written. The flash bank to use is inferred from the address of each block, and the specified length must stay within that bank.

Example:

Fills the 32-KB block of the PSOC[™] 6 MCU memory starting at address 0x10000000 with the pattern 0x5A:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash fillw 0x10000000 0x5A5A5A 0x2000; shutdown"
```

6.1.28 flash read bank

Reads the length bytes from the flash bank num starting at offset and writes the contents to the binary filename. The num parameter is a value shown by flash banks.

```
flash read bank <num> <filename> <offset> <length>
```

(infineon

OpenOCD commands description

Example:

Reads the 32-KB block of bank #0 from the PSOC[™] 6 MCU memory and writes it to the binary file:

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash read bank 0 d:/read bank 0.bin 0x0 0x8000; shutdown"

```
** SFlash SificonID: 0xE2062200

** Flash Boot version: 0x021D8001

** Flash Boot version: NORMAL

** Chip Protection: NORMAL

** psoc6.cpu.cm4: Ran after reset and before halt...

target halted due to debug-request, current mode: Thread

xPSR: 0x61000000 pc: 0x1600400c msp: 00000000

Info: MainFlash size overridden: 1024 kB

urote 32768 bytes to file d:/read_bank_0.bin from flash bank 0 at offset 0x00000000 in 0.437262s (73.183

KiB/s)

shutdown command invoked
```

6.1.29 **flash verify_bank**

Compares the contents of the binary file filename with the contents of the flash num starting at offset. Fails if the contents do not match. The num parameter is a value shown by flash banks.

```
flash verify bank <num> <filename> <offset>
```

Example:

Verifies the content of bank #0 of the PSOC[™] 6 MCU:

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash verify bank 0 d:/firmware.bin 0x0; shutdown"

```
** SFlash SiliconID: 0xE2062200

** Flash Boot version: 0x021D8001

** Chip Protection: NORMAL

** psoc6.cpu.cm4: Ran after reset and before halt...

target halted due to debug-request, current mode: Thread

xPSR: 0x61000000 pc: 0x1600400c msp: 00000000

Info: MainFlash size overridden: 1024 kB

read 32768 bytes from file d:/firmware.bin and flash bank 0 at offset 0x00000000 in 0.427213s (74.904 Ki
B/s)

contents match

shutdown command invoked
```

6.1.30 **flash padded_value**

Sets the default value used for padding-any-image sections.

```
flash padded value <num> <value>
```

This should normally match the flash bank erased value. If not specified by this command or the flash driver, it defaults to 0xff.

Example:

Sets a padded value to 0xFF for bank #0 of the PSOC[™] 6 MCU.

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash padded value 0 0xFF; shutdown"

```
*** Device acquired successfully

** SFlash SiliconID: 0xE2062200

** Flash Boot version: 0x021D8001

** Flash Boot version: NORMAL

** Chip Protection: NORMAL

** psoc6.cpu.cm4: Ran after reset and before halt...

target halted due to debug-request, current mode: Thread

xPSR: 0x61000000 pc: 0x1600400c msp: 00000000

Info: MainFlash size overridden: 1024 kB

Default padded value set to 0xff for flash bank 0

shutdown command invoked
```

OpenOCD commands description

6.1.31 **flash rmw**

The command is intended to modify flash individual bytes.

```
flash rmw <address> <data>
```

The command can be used to program the data to an arbitrary flash address preserving all data that belongs to the same flash sector.

- address The start address for the programming.
- data The hexadecimal string with data to be programmed. The format of the string is shown in the following example:

Note:

flash rmw is a custom command implemented in ModusToolboxTM OpenOCD CLI to extend its functionality.

Example:

Modifies 8 bytes of the PSOC™ 6 MCU flash at address 0x10001234.

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; flash rmw 0x10001234 DEADBEEFBAADC0DE; shutdown"

6.1.32 add_verify_range

The command allows specifying memory regions to be compared during the verify operation.

```
add verify range <target> <address> <size>
```

By default, when no regions are defined, all the regions present in the firmware image file are compared with the corresponding target memory. This breaks the verification process for some non-memory-mapped regions such as EFuses. When the target has at least one <code>verify</code> region specified, only data that belongs to that <code>verify</code> region is verified.

- target The target device to assign verify regions.
- address The start address of the region.
- size The size of the region, in bytes.

Note:

The add_verify_range command is a custom command implemented in ModusToolbox $^{\text{\tiny{M}}}$ OpenOCD CLI to extend its functionality.

OpenOCD commands description

6.1.33 **show_verify_ranges**

This command displays all active verify ranges for all targets that were added using the add_verify_range command. This command does not take any arguments.

Example output:

```
bin\openocd.exe -s scripts -f interface/kitprog3.cfg -f
target/infineon/cy8c6xxx.cfg -c "init; show verify ranges; exit"
```

```
Info : Listening on port 3333 for gdb connections
Info : Listening on port 3334 for gdb connections
psoc6.cpu.cm0 0x088000000 0x00200000
psoc6.cpu.cm0 0x10000000 0x00200000
psoc6.cpu.cm0 0x16000000 0x00200000
psoc6.cpu.cm0 0x16000000 0x00200000
psoc6.cpu.cm0 0x90700000 0x00200000
psoc6.cpu.cm0 0x90700000 0x00200000
psoc6.cpu.cm4 0x08000000 0x00200000
psoc6.cpu.cm4 0x10000000 0x00200000
psoc6.cpu.cm4 0x14000000 0x00200000
psoc6.cpu.cm4 0x16000000 0x00200000
psoc6.cpu.cm4 0x16000000 0x00200000
psoc6.cpu.cm4 0x16000000 0x00200000
psoc6.cpu.cm4 0x16000000 0x00200000
```

Note:

The $show_verify_ranges$ command is a custom command implemented in ModusToolboxTM OpenOCD CLI to extend its functionality.

6.1.34 **clear_verify_ranges**

This command deletes all verify ranges for the specified target that were added using the add_verify_range command.

```
clear verify ranges <target>
```

Example output:

```
bin\openocd.exe -s scripts -f interface/kitprog3.cfg -f
target/infineon/cy8c6xxx.cfg -c "init; clear_verify_ranges psoc6.cpu.cm4;
show verify ranges; exit"
```

Note:

The $clear_verify_ranges$ command is a custom command implemented in ModusToolbox^M OpenOCD CLI to extend its functionality.

6.1.35 **verify_image**

Verifies filename against the target memory starting at address. The file format may optionally be specified (bin, ihex, or elf). This will first attempt a comparison using a CRC checksum; if that fails, it will try a binary compare.

```
verify image <filename> <address> [bin|ihex|elf]
```

infineon

OpenOCD commands description

Example:

Verifies a *firmware.elf* image against the target memory the PSOC[™] 6 MCU.

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; verify_image d:/firmware.elf 0x0; shutdown"

```
** SFlash SiliconID: 0xE2062200

** Flash Boot version: 0x021D8001

** Chip Protection: NORMAL

** psoc6.cpu.cm4: Ran after reset and before halt...

target halted due to debug-request, current mode: Thread

xPSR: 0x61000000 pc: 0x1600400c msp: 000000000

Info: MainFlash size overridden: 1024 kB

verified 72412 bytes in 0.275165s (256.991 KiB/s)

shutdown command invoked
```

6.1.36 verify_image_checksum

Verifies *filename* against the target memory starting at *address*. The file format may optionally be specified (bin, ihex, or elf). This perform a comparison using a CRC checksum only.

```
verify image checksum <filename> <address> [bin|ihex|elf]
```

Example:

Verifies a *firmware.elf* image against the target memory of the PSOC™ 6 MCU using the CRC checksum only.

```
openocd -s ../scripts -f interface/jlink.cfg -c "transport select swd" -f target/infineon/cy8c6xxx.cfg -c "init; reset init; verify_image_checksum d:/firmware.elf 0x0; shutdown"
```

6.1.37 **load_image**

Loads an image from file filename to the target memory offset by address from its load address. The file format may optionally be specified (bin, ihex, elf, or s19). Also, the following arguments may be specified:

- min addr Ignore the data below min_addr (this is w.r.t. to the target's load address + address)
- max_length Maximum number of bytes to load load image filename address [[bin|ihex|elf|s19] min addr max length]

Example:

Loads the binary file *firmware.bin* to the RAM of the PSOC[™] 6 MCU.

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; load image d:/firmware.bin 0x8000000; shutdown"
```


OpenOCD commands description

```
** SFlash SiliconID: 0xE30021PF

** Flash Boot version: 0x102E8001

** Chip Protection: VIRGIN

target halted due to debug-request, current mode: Handler HardFault

xPSR: 0x81000003 pc: 0x00000048 msp: 0xab503ca0

target halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x0000010c msp: 0x0801f800

32768 bytes written at address 0x08000000

downloaded 32768 bytes in 0.640384s (49.970 KiB/s)

shutdown command invoked
```

6.1.38 **dump_image**

Dumps size bytes of the target memory starting at address to the binary file named filename.

```
dump image <filename> <address> size
```

Example:

Dumps 8 KB of the PSOC[™] 6 MCU memory to the file *dump_mem.bin*.

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; dump image d:/dump mem.bin 0x10001234 0x2000; shutdown"
```

6.2 KitProg3/MiniProg4 driver commands

The KitProg3/MiniProg4 probe implements the CMSIS-DAP protocol defined by Arm® with some extensions. Consequently, the KitProg3/MiniProg4 driver in OpenOCD is a wrapper around the native CMSIS-DAP driver that extends its functionality with the KitProg3-specific extensions.

A full list of the CMSIS-DAP-specific configuration commands can be found in the OpenOCD official documentation.

Besides the standard CMSIS-DAP options, the KitProg3 driver exposes several custom Tcl configuration commands. All commands in this section must be prefixed with the name of the driver – "kitprog3".

6.2.1 kitprog3 acquire_config

The command controls device acquisition parameters and optionally enables acquisition during the early initialization phase. Can be called at any time.

```
acquire_config <status> [target_type] [mode] [attempts] [timeout] [ap]
```

- status A mandatory parameter, enables or disables the acquisition procedure during the initialization phase. The possible values: On, Off.
- target_type Specifies the target device type. This parameter is mandatory only if status=on. The
 possible values:
 - 0 PSOC 4
 - 1 PSOC 5
 - 2 PSOC 6
 - 3 T2G, XMC7xxx and XMC5xxx
 - 4 AIROC
- mode Specifies the acquisition mode. This parameter is mandatory only if status=on. The possible values: 0 Reset, 1 Power Cycle. The mode affects only the first step(how to reset the part at the start of the acquisition flow).
 - Reset mode: To start programming, the host toggles the XRES line and then sends SWD/JTAG commands

OpenOCD CLI user guide

OpenOCD commands description

 Power Cycle mode: To start programming, the KitProg3-based probe powers on the MCU and then starts sending the SWD/JTAG commands. The XRES line is not used. Power Cycle mode support is optional and should be used only if the XRES pin is not available on the part's package.

Note: Before using Power Cycle acquisition, make sure that the target is not powered externally!

- attempts The number of attempts to acquire the target device. This parameter is mandatory only if status=on.
- timeout (Optional) Timeout value in seconds. The maximum value for the timeout is 30 seconds.
- ap Access port to use for the acquisition. The value of this parameter should be in range 0...255. This parameter is mandatory if the timeout parameter is specified.

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "kitprog3 acquire config on 2 0; init; reset init; shutdown"
```

6.2.2 kitprog3 acquire_psoc

Performs device acquisition. Called only after the initialization phase. The acquisition procedure must be configured using acquire config before calling this command.

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "kitprog3 acquire_config on 2 0; init; kitprog3 acquire_psoc; reset init; shutdown"
```

6.2.3 kitprog3 power_config

Controls the KitProg3-internal power supply parameters and optionally enables power during the early initialization phase. Can be called at any time.

```
kitprog3 power config <status> [voltage]
```

- status Mandatory; enables or disables power supply during the initialization phase. Possible values: on | off.
- voltage The power supply voltage in millivolts. This parameter is optional. Either default (2.5 volts) or kit-specific voltage will be applied if this parameter is not specified.

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "kitprog3 power config on 3300; init; shutdown"
```


OpenOCD commands description

```
Licensed under GNU GPL v2
For bug reports, read
        http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf151, serial=0711062303210400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: JTAG supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 1 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : kitprog3: powering up target device using KitProg3 (VTarg = 3300 mV)
Info : VTarget = 3.292 V
```

6.2.4 kitprog3 power_control

This command is deprecated, please use kitprog3 power config instead.

6.2.5 kitprog3 led_control

Controls the KitProg3 LEDs. Can be called only after the initialization phase.

```
kitprog3 led_control <type>
```

- type Mandatory; specifies the type of the LED indication. The possible values:
 - 0 Ready
 - 1 Programming
 - 2 Success
 - 3 Error

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; kitprog3 led_control 2"
```

6.2.6 kitprog3 get_power

Reports the target voltage in millivolts. Can be called only after the initialization phase.

Example:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; kitprog3 get_power; shutdown"
```


OpenOCD commands description

```
Licensed under GNU GPL v2
 or bug reports, read
        http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
 ** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf151, serial=0711062303210400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: JTAG supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : VTarget = 3.297 V
```

6.3 Flash driver commands

This section contains a list of custom commands exposed by the target MCU's Flash driver.

6.3.1 psoc6/cat1c/traveo2/xmc5xxx sflash_restrictions

The command enables or disables writes to SFlash regions other than USER, NAR, TOC2, and KEY.

```
psoc6 sflash_restrictions <mode>
cat1c sflash_restrictions <mode>
traveo2 sflash_restrictions <mode>
xmc5xxx sflash_restrictions <mode>
```

The command can be called at any time.

- mode Mandatory; specifies the behavior of SFlash programming. The possible values:
 - 0 Erase/Program of SFlash is prohibited.
 - 1 Erase and Program of USER/TOC/KEY is allowed.
 - 2 Erase of USER/TOC/KEY and program of USER/TOC/KEY/NAR is allowed.

Be aware that the NAR sub-region cannot be overwritten or erased if the new data is less restrictive than the existing data. **Unintentional writing to this region may corrupt your device!**

• 3 – Erase of USER/TOC/KEY and program of the whole SFlash region is allowed.

Writes to SFlash regions other than USER/TOC/KEY/NAR is possible only on the VIRGIN silicon, so the mode=3 option is mostly intended for internal use. It is useful for flash boot developers and validation teams. Note that erase (programming with 0x00 for PSOC[™] 6, or 0xFF for XMC7xxx and TRAVEO[™] T2G MCUs) is performed only for the USER, TOC2, and KEY regions; it is skipped for other SFlash regions regardless of this command.

Example (KitProg3 + PSOC™ 6 MCU):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; psoc6 sflash restrictions 2; shutdown"
```

```
** SFlash SiliconID: 0xE2062200

** Flash Boot version: 0x02108001

** Chip Protection: NORMAL

** Chip Protection: NORMAL

** psoc6.cpu.cm4: Ran after reset and before halt...

target halted due to debug-request, current mode: Thread

xPSR: 0x61000000 pc: 0x1600400c msp: 000000000

Warn : SFlash programming allowed for regions: USER, TOC, KEY, NAR

shutdown command invoked
```

OpenOCD commands description

6.3.2 psoc6/cat1c/traveo2/xmc5xxx allow_efuse_program

Allows or disallows writes to the EFuse region. Can be called any time. Writes to the EFuse region are skipped by default. Be aware that EFuses are one-time programmable. Once an EFuse is blown, there is no way to revert its state. EFuse programming must be allowed for lifecycle transitions to work.

```
psoc6 allow_efuse_program <on|off>
cat1c allow_efuse_program <on|off>
traveo2 allow_efuse_program <on|off>
xmc5xxx allow efuse program <on|off>
```

Example:

Writes 1 bit to the EFuse region at address 0x907003FF of the PSOC™ 6 MCU:

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; psoc6 allow_efuse_program on; flash fillb 0x907003FF 1 1; flash read_bank 3 d:/dump_efuse.bin 0x3FF 0x1; shutdown"

```
Warn : Programming of efuses now ALLOWED
Info : MainFlash size overridden: 1024 kB
Info : MainFlash size overridden: 1024 kB
Info : Start address 0x907003ff breaks the required alignment of flash bank psoc6_efuse_cm0
Info : Padding 1023 bytes from 0x90700000
Info : The Life Cycle stage is not present in the programming file
wrote 1 bytes to 0x907003ff in 0.062402s (0.016 KiB/s)
wrote 1 bytes to file d:/dump_efuse.bin from flash bank 3 at offset 0x000003ff in 0.015601s (0.063 KiB/s)
shutdown command invoked
```

6.3.3 psoc6/cat1c/traveo2/xmc5xxx reset_halt

The command simulates a broken vector catch on PSOC™ 6, XMC7xxx, TRAVEO™ T2G and XMC5xxx MCUs.

```
psoc6 reset_halt <mode>
cat1c reset_halt <mode>
traveo2 reset_halt <mode>
xmc5xxx reset_halt <mode>
```

The command retrieves the address of the vector table from the VECTOR_TABLE_BASE registers, detects the location of the application entry points, sets a hardware breakpoint at that location, and performs a reset of the target. The type of the reset can be specified by the optional mode parameter.

Parameters:

• mode – (Optional) The type of reset to be performed. Possible values are sysresetreq and vectreset. If not specified, SYSRESETREQ is used for the CMO core and VECTRESET is used for other cores in the system.

Example (KitProg3 + PSOC™ 6 MCU):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; psoc6 reset halt vectreset; shutdown"
```

```
** SFlash SiliconID: 0xE2062200

** Flash Boot version: 0x021D8001

** Chip Protection: NORMAL

** psoc6.cpu.cm4: Ran after reset and before halt...

target halted due to debug-request, current mode: Thread

xPSR: 0x61000000 pc: 0x1600400c msp: 00000000

Info : psoc6.cpu.cm0: bkpt @0x100014B9, issuing VECTRESET

shutdown command invoked
```

IIIII

OpenOCD commands description

6.3.4 psoc4/cat1c/traveo2/xmc5xxx ecc_error_reporting

Enables or disables the ECC error reporting during OpenOCD operations.

```
psoc4 ecc_error_reporting <on|off>
cat1c ecc_error_reporting <on|off>
traveo2 ecc_error_reporting <on|off>
xmc5xxx ecc error_reporting <on|off>
```

OpenOCD supports the detection and reporting of ECC errors during the flash *read* operation. In the current implementation, OpenOCD reads word-by-word a requested amount of data and checks for the ECC status after each Read. This ensures all ECC errors for all memory locations are properly detected. If an ECC error occurs, OpenOCD retrieves the address of the faulty location from the hardware. All ECC errors along with their locations are reported to the user by means of warning messages. This process will be performed until all requested data has been read.

Example (XMC7xxx device):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cytxbb.cfg -c "init; reset init; cat1c ecc error reporting on; shutdown"
```

6.3.5 cat1c/traveo2/xmc5xxx wflash blank_map [first_sector [last_sector | 'last']]

Displays per-word validity map of the given sectors of work flash. It accepts two optional parameters with the following rules:

- If no parameters are given, command displays validity map for all sectors
- If one parameter is given, parameter means sector number and the command displays validity map for given sector
- If two parameters are given, command displays validity map for range of sectors (param1 ... param2). The word 'last' can be used as a parameter #2 (same as erase_sector)

Example output for cat1c on WFlash sector 0:

OpenOCD commands description

6.3.6 cat1c/traveo2/xmc5xxx wflash write_image <filename> [offset]

Programs individual 32-bit words from given file to the work flash. All data in the file that does not belong to WFlash region is skipped. All unaligned data is trimmed to make the starting address and length of the data aligned on 32-bit boundaries. Appropriate warnings are displayed in this case. Command works with elf, hex, srec and bin files. Optional offset can be specified (same as flash write_image).

Example output for cat1c (file contains unaligned data and also data which does not belong to WFlash region):

```
> cat1c wflash write_image foo.hex
Warn : Section [0x13fff950, 0x13fff991) will be skipped
Warn : Section [0x13fffdac, 0x13fffe19) will be skipped
Warn : Section [0x13fffff0, 0x1400005d) will be truncated to [0x14000000,
0x1400005c)
Warn : Section [0x14000290, 0x14000299) will be truncated to [0x14000290,
0x14000298)
Warn : Section [0x140003b0, 0x140003e5) will be truncated to [0x140003b0,
0x140003e4)
[100%] [###################################] [ Programming ]
```

6.3.7 cat1c/traveo2/xmc5xxx wflash write_words <address> <word_1> [word_2] ... [word_N]

Command is similar to 'flash rmw' except:

- Starting address must be aligned on 32-bit boundary
- Command works with 32-bit words which must be separated with a space

Example output for cat1c:

```
> cat1c wflash write words 0x14000004 0xDEADBEEF 0xBAADF00D 0xBAADC0DE
> cat1c wflash write words 0x14000014 0x01234567
> cat1c wflash write words 0x1400001C 0x89ABCDEF
> cat1c wflash blank map 0
[100%] [#################### [ Programming ]
[100%] [###################### [ Programming ]
[100%] [###################### [ Programming ]
WorkFlash word validity map:
0x14000000 (#000): -+++-+----
0x14000100 (#000): ------
0x14000200 (#000): -----
0x14000300 (#000): -----
0x14000400 (#000): -----
0x14000500 (#000): -----
0x14000600 (#000): -----
0x14000700 (#000): -----
```

OpenOCD commands description

6.3.8 psoc6 secure_acquire

Performs acquisition of PSOC™ 64 "Secure Boot" MCUs.

```
psoc6 secure acquire <magic num addr> <mode> <handshake> <timeout>
```

Parameters:

- magic_num_addr Address in RAM to poll for the magic number. This address is different across different PSOC™ 6 MCU devices:
 - CYB06447, CYB06447-BL 0x08044804
 - CYS0644A, CYB0644A 0x080FE004
 - CYB06445 0x0803E004
- mode -Mode of acquisition. Possible values: run, halt.
 - In run mode, the command will perform reset and will wait for the "secure" application to open the corresponding access port.
 - In halt mode, a "secure" handshake will be performed right after reset to prepare the device for flash programming.
- handshake Specifies whether full or short acquisition procedure should be executed. The short acquisition procedure simply waits until "secure" FW opens the given access port. This is intended for multi-core configuration when full acquisition has already been done with the other CPU core.
 - Possible values: handshake full acquisition, no handshake short acquisition
- timeout -Timeout in milliseconds

6.3.9 psoc4 reset halt

Performs the alternate acquire sequence as described in the PSOC™ 4 MCU programming specification.

```
psoc4 reset halt
```

The command detects the location of the application entry points, sets a hardware breakpoint at that location, and issues a SYSRESETREQ reset.

Example (KitProg3 + PSOC™ 4 MCU):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/psoc4.cfg -c "init; reset init; psoc4 reset halt; shutdown"
```

6.3.10 psoc4 mass_erase

Performs mass erase operation on the given flash bank. The list of all flash banks can be obtained using flash banks command. This command is a shortcut and performs the same operation as the flash erase_sector

<bank_id> 0 last command. The peculiarity of this command is that erasing of the mflash bank also erases the flashp bank. If the chip is in PROTECTED state, this command moves the protection state of the device from PROTECTED to OPEN and erases the entire flash device.

```
psoc4 mass erase <bank id>
```

Example (KitProg3 + PSOC™ 4 MCU):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/psoc4.cfg -c "init; reset init; psoc4 mass_erase 0; shutdown"
```

OpenOCD commands description

6.3.11 psoc4 chip_protect

Changes the chip protection mode to PROTECTED. This mode disables all debug access to the user code or memory. Access to most registers is still available; debug access to registers to reprogram flash is not available. Protection mode can be changed back to OPEN by performing the mass erase operation described above.

```
psoc4 chip protect
```

Example (KitProg3 + PSOC™ 4 MCU):

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/psoc4.cfg -c "init; reset init; psoc4 chip protect; shutdown"
```

6.4 cmsis flash flash driver commands

The "cmsis_flash" is a generic driver which uses the standard CMSIS flash loaders to program the flash. On Infineon devices, this driver is typically used for external flash programming but it also can be used for other purposes.

6.4.1 cmsis_flash init

Some types of flash banks are not mapped to the CPU address space right after reset. For example, the external flash connected to an SMIF peripheral requires special configuration of the MCU's hardware blocks in order to be mapped to the CPU address space. Usually, the flash loader's Init() function is responsible for enabling such mapping.

```
cmsis flash init [bank num]
```

This command loads the flash loader to the RAM and executes the Init() function. Beware that this function is intrusive. It requires that the MCU is acquired in "good-state" and all CPUs are halted (e.g., reset init is performed) before it can be called.

This command takes one optional argument – the number of the flash bank to be initialized. This command will initialize all cmsis flash banks if no argument is specified.

6.4.2 cmsis_flash prefer_sector_erase

Controls driver strategy used during mass-erase of the flash bank. There are two possible strategies:

- Use the EraseChip API (if available)
- Use per-sector erase using the EraseSector API

The EraseChip method is used by default. This method is usually faster but it does not display the progress of the erase operation. The EraseChip API is optional; the driver will fall back to per-sector erase if the EraseChip API is not implemented in the flash loader. The other downside of this method is that depending on the flash loader implementation, it may erase all external memory banks, not only the bank specified in the erase sector command.

Per-sector erase is usually slower but it displays the progress information and always erases the single flash bank specified in the <code>erase sector</code> command.

```
cmsis_flash prefer_sector_erase [bank_num] <0/1|false/true>
```

Command takes two arguments:

• bank_num - (Optional) Flash bank number to enable/disable the per-sector erase strategy. This option will be applied to all cmsis_flash banks if this argument is omitted.

ModusToolbox™ software

OpenOCD CLI user guide

OpenOCD commands description

 parameter_value - Mandatory boolean value specifying whether per-sector strategy should be enabled or disabled.

6.5 Other commands

6.5.1 **source**

Reads a file and executes it as a script. It is usually used with the result of the find command.

```
source [find FILENAME]
```

Example (KitProg3 + PSOC™ 6 MCU):

```
openocd -s ../scripts -c "source [find interface/kitprog3.cfg]; source [find target/infineon/cy8c6xxx.cfg]; targets; shutdown"
```

6.5.2 **find**

Finds and returns a full path to a file with a given name. It is usually used as an argument of the source command. This command uses an internal search path. (Do not try to use a filename which includes the "#" character. That character begins Tcl comments.)

```
source [find FILENAME]
```

Example:

```
openocd -s ../scripts -c "source [find interface/kitprog3.cfg]; source [find target/infineon/cy8c6xxx.cfg]; targets; shutdown"
```

6.5.3 **set**

Stores a value to a named variable, first creating the variable if it does not already exist.

```
set VARNAME value
```

Example:

```
openocd -s ../scripts -c "set ENABLE_CMO 0; source [find interface/kitprog3.cfg];
source [find target/infineon/cy8c6xxx.cfg]; targets; shutdown"
```

6.5.4 **sleep**

Waits for at least msec milliseconds before resuming. Useful in a combination with script files.

```
sleep msec
```

Example:

```
openocd -c "sleep 1000; shutdown"
```

OpenOCD commands description

6.5.5 add_script_search_dir

Adds a directory to a file/script search path. Equivalent to the --search command-line option.

```
add script search dir [directory]
```

Example:

```
openocd -c "add_script_search_dir ../scripts; source [find
interface/kitprog3.cfg]; source [find target/infineon/cy8c6xxx.cfg]; targets;
shutdown"
```

6.6 CYW4390x commands

The CYW4390x chip supports only limited subset of flash-related commands. Currently, the following flash programming commands are supported:

6.6.1 **program**

Programs a given binary programming into the flash of the target device.

```
program <filename> [reset] [exit]
```

The only required parameter is filename; the others are optional.

- reset Calls reset run (see reset for details)
- exit Shuts down OpenOCD

Limitations compared to standard program command:

- Only binary files are supported. Files in any format other than binary will be programmed as a binary data. For example, if a HEX file is programmed, the flash will contain textual representation of the file.
- The preverify, verify, and offset parameters are not supported. Verification is done automatically during programming.

Example:

The next example connects ModusToolbox™ OpenOCD CLI to the CYW9WCD1EVAL1 board with the CYW4390x MCU target, programs the flash with the *firmware.bin* file, resets the target, and finally shuts down the OpenOCD programmer.

```
openocd -s ../scripts -f board/cyw9wcdleval1.cfg -c "program d:/firmware.bin reset exit"
```

Note: For erasing CYW4390x chip use the erase all command.

OpenOCD commands description

6.7 AIROC™ CYW20829 Wi-Fi & Bluetooth® combo chip commands

6.7.1 **provision_no_secure**

Performs a transition from NORMAL to NORMAL_NO_SECURE lifecycle. CYW20829 devices come from a factory in the NORMAL lifecycle stage. In this stage, the boot code will not launch the programmed application after reset. The lifecycle must be changed to either SECURE or NORMAL_NO_SECURE stage to use the device. Normally, this task is performed using *cysecuretools*; this command is just a shortcut which simplifies the process. Transition to the SECURE lifecycle is not supported by this command and must be performed using *cysecuretools*.

Note: This command must be executed before the init command.

```
provision_no_secure <service_app> <app_params> [service_app_addr] [params_addr]
```

Required parameters:

- service app File name of the binary service application image, with path
- app params File name of the service application's parameters image, with path

Optional parameters:

service_app_addr - Address in the RAM where the service application will be loaded; 0x20004000 by default.

params_addr - Address in the RAM where the service application's parameters will be loaded; 0x2000D000 by default.

Example:

The next example connects ModusToolbox™ OpenOCD CLI to the CYW9WCD1EVAL1 board with the CYW4390x MCU target, programs the flash with the *firmware.bin* file, resets the target, and finally shuts down the OpenOCD programmer.

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cyw20829.cfg -c "provision no secure D:/service app.bin D:/app params.bin; exit"
```

Global variables

7 Global variables

The global variables listed in this section control the behavior of a target configuration file (e.g., *psoc6.cfg*). They are set in the command-line before any configuration file such as *kitprog3.cfg* or *psoc6.cfg*. See the command <u>set</u> for details.

7.1 PSOC™ 6 MCU global variables

7.1.1 **ENABLE_ACQUIRE**

Enables or disables the acquisition of the target device in test mode.

Possible values:

- 1 Reset acquisition enabled (default with KitProg3/MiniProg4)
- 2 <u>Power Cycle</u> acquisition enabled. The voltage level can be controlled by using <u>ENABLE_POWER_SUPPLY</u>.
- 0 Acquisition disabled (default for other debug adapters)

7.1.2 **ENABLE_POWER_SUPPLY**

Controls the internal power supply of KitProg3/MiniProg4 adapters. If this command is specified, the KitProg3 driver enables the power supply, thus powering on the target during initialization.

Possible values:

- 0 Power supply disabled
- Any other value defines target voltage in millivolts.
- default Sets the last used voltage before KitProg3/MiniProg4 was powered off.

7.1.3 **ENABLE_CM0, ENABLE_CM4**

Allows specifying the CPU cores to be visible to OpenOCD. OpenOCD never affects disabled cores.

Possible values:

- 1 Corresponding core is enabled.
- 0 Core is disabled.

7.1.4 **TARGET AP**

Applicable for "secure" (PSOC™ 64) MCUs only. Enables the choice of DAP access port that will be used for programming.

Possible values:

- sys_ap SYS_AP (AP #0, default)
- cm0_ap CM0_AP (AP #1)
- cm4_ap CM4_AP (AP #2). Choosing this access port will enable external SMIF memory banks.

Global variables

7.1.5 **FLASH_RESTRICTION_SIZE**

Applicable for "secure" (PSOC™ 64) MCUs only. Use this variable to limit the size of accessible flash so OpenOCD will not affect flash locations where the "secure" CyBootloader is located. The default value of this variable varies across different PSOC™ 64 MCUs.

7.1.6 **ENABLE_WFLASH, ENABLE_SFLASH, ENABLE_EFUSE**

Applicable for "secure" (PSOC 64) MCUs only. Enables the corresponding flash bank when set to a non-zero value. The WorkFlash is enabled by default on PSOC™ 64 CYS0644A, CYB0644A, CYB06447 and CYB06447-BL MCU devices. SFlash and eFuse banks are disabled by default on all PSOC™ 64 MCU targets.

7.1.7 **SMIF_BANKS**

Defines QSPI memory banks. This variable is a two-dimensional associative Tcl array of the following format:

```
set SMIF_BANKS {
   1 {addr <XIPaddr1> size <BankSz1> psize <ProgramSz1> esize <EraseSz1>}
   2 {addr <XIPaddr2> size <BankSz2> psize <ProgramSz2> esize <EraseSz2>}
   ...
   N {addr <XIPaddrN> size <BankSzN> psize <ProgramSzN> esize <EraseSzN>}
}
```

Where:

- XIPaddrN XIP mapping address
- BankSzN Total size of this flash bank, in bytes
- ProgramSzN Minimal programming granularity (program block size), in bytes
- EraseSzN Minimal erase granularity (erase block size), in bytes

7.2 PSOC™ 4 MCU global variables

7.2.1 **PSOC4_USE_ACQUIRE**

Enables or disables the acquisition of the target device in test mode.

Possible values:

- 1 Reset acquisition enabled (default with KitProg3/MiniProg4)
- 2 <u>Power Cycle</u> acquisition enabled. The voltage level can be controlled by using <u>ENABLE_POWER_SUPPLY</u>.
- 0 Acquisition disabled (default for other debug adapters)

7.3 AIROC™ CYW20829 Wi-Fi & Bluetooth® combo chip global variables

7.3.1 **DEBUG CERTIFICATE**

Allows to specify the location of the debug certificate binary file. This variable is used to configure a secure debug session. OpenOCD checks the status of the CM33 access port during the initialization phase and after each reset. It will attempt to reopen the CM33 AP by sending a debug certificate to a target and issuing WFA request #2.

This variable should contain the full path to the debug certificate binary file.

(infineon

Global variables

7.3.2 **DEBUG_CERTIFICATE_ADDR**

(Optional) Allows to specify the location in the RAM where the debug certificate will be loaded. The default address 0x2000FC00 will be used if this variable is not set by the user.

7.3.3 **SMIF_BANKS**

See SMIF_BANKS section under PSOC 6™ MCU.

7.4 XMC7xxx/XMC5xxx and TRAVEO™ T2G global variables

7.4.1 **ENABLE_ACQUIRE**

Enables or disables the acquisition of the target device in test mode.

Possible values:

- 1 Reset acquisition enabled (default with KitProg3/MiniProg4)
- 0 Acquisition disabled (default for other debug adapters)

7.4.2 **ENABLE_POWER_SUPPLY**

Controls the internal power supply of KitProg3/MiniProg4 adapters. If this command is specified, the KitProg3 driver enables the power supply, thus powering on the target during initialization.

Possible values:

- 0 Power supply disabled
- Any other value defines target voltage in millivolts.
- default Sets the last used voltage before KitProg3/MiniProg4 was powered off.

7.4.3 **ENABLE_CM71**

Allows specifying the CPU cores to be visible to OpenOCD. Useful for single core XMC7xxx devices. OpenOCD never affects disabled cores.

Possible values:

- 1 CM71 core is enabled.
- 0 Core is disabled.

Global variables

7.4.4 **SMIF BANKS**

Defines QSPI memory banks. This variable is a two-dimensional associative Tcl array of the following format:

```
set SMIF_BANKS {
   1 {addr <XIPaddr1> size <BankSz1> psize <ProgramSz1> esize <EraseSz1>}
   2 {addr <XIPaddr2> size <BankSz2> psize <ProgramSz2> esize <EraseSz2>}
   ...
   N {addr <XIPaddrN> size <BankSzN> psize <ProgramSzN> esize <EraseSzN>}
}
```

Where:

- XIPaddrN XIP mapping address
- BankSzN Total size of this flash bank, in bytes
- ProgramSzN Minimal programming granularity (program block size), in bytes
- EraseSzN Minimal erase granularity (erase block size), in bytes

7.5 PSOC™ Control C3 global variables

7.5.1 **ENABLE_ACQUIRE**

Enables or disables the acquisition of the target device in test mode.

Note: Test mode acquisition is an Infineon method for acquiring or 'unbricking' device in case of critical

user application misbehavior; for example, repurposing debug pins or disablement critical clocks.

Test mode is a sequence of reset and requesting bootloader for not launching user application.

Note: For PSOC™ Control C3, Test mode acquisition works for mp4/kp3/jlink and swd/jtag but in the most

harsh cases described it is recommended to use mp4/kp3 + swd.

Possible values:

- 1 <u>Test mode acquisition</u> enabled (default).
- 0 <u>Test mode acquisition</u> disabled.

7.5.2 **DEBUG_CERTIFICATE**

Specifies location of the debug certificate binary file. This file is needed to configure a secure debug session in cases when CM33 access port is closed due to policies applies. OpenOCD checks status of the CM33 access port during initialization phase and after each reset. If it's closed, It attempts to reopen the CM33 AP by sending a debug certificate to target and issuing WFA request. This variable should contain the full path to the debug certificate binary file.

Note: Debug certificate is of no use if policy for CM33 AP is 'permanent disable'.

infineon

Global variables

7.5.3 **ENABLE_CM33**

Allows specifying the CPU cores to be visible to OpenOCD. Useful for cases when only SYS-AP needed. OpenOCD never affects disabled cores.

Note: Flash operations are done only with enabled CM33 core.

Possible values:

- 1 CM33 core is enabled (default).
- 0 Core is disabled.

Usage examples

Usage examples 8

All the examples in this chapter assume that you have a PSOC[™] 6 MCU target connected to the PC via the KitProg3/MiniProg4 or J-Link debug probe. The current working directory is the default install directory (for example, c:\Infineon\Tools\ModusToolboxProgtools-1.3\openocd\bin on Windows).

For convenience, the psoc6_kp3_board.cfg config file has been created in the same directory as the OpenOCD executable. The file contains the default configuration suitable for the majority of PSOC™ 6 MCU kits:

```
source [ find interface/kitprog3.cfg ]
source [ find target/infineon/cy8c6xxx.cfg]
init
reset init
```

See Supported target configurations for a detailed list of available target devices and corresponding OpenOCD configuration files.

8.1 Erase main flash rows 0...10 of PSOC™ 6 MCU

```
openocd -s ../scripts -f psoc6 kp3 board.cfg -c "flash erase sector 0 0 10; exit"
```

```
http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'
 dapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
 * Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
===== Start: "init" ====
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf155, serial=1D1612C800287400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : VTarget = 4.712 V
Info : kitprog3: acquiring the device (mode: reset)...
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x6ba02477
Info : [psoc6.cpu.cm0] Cortex-M0+ r0p1 processor detected
Info : [psoc6.cpu.cm0] target has 4 breakpoints, 2 watchpoints
 ************
** Chip Protection: NORMAL
 **********
 Info : [psoc6.cpu.cm4] Cortex-M4 r0p1 processor detected
Info : [psoc6.cpu.cm4] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for psoc6.cpu.cm0 on 3333
Info : Listening on port 3333 for gdb connections
Info : starting gdb server for psoc6.cpu.cm4 on 3334
Info : Listening on port 3334 for gdb connections
===== End: "init" ====
  ==== Start: "reset init" ====
Info : SWD DPIDR 0x6ba02477
Info : kitprog3: acquiring the device (mode: reset)...
[psoc6.cpu.cm0] halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x00001f34 msp: 0x080477a8
** Device acquired successfully
** psoc6.cpu.cm4: Ran after reset and before halt...
[psoc6.cpu.cm4] halted due to debug-request, current mode: Thread
xPSR: 0x61000000 pc: 0x1600400c msp: 0x00000000
===== End: "reset init" ====
 ===== Start: "adapter speed 1000" ====
adapter speed: 1000 kHz
===== End: "adapter speed 1000" ====
[100%] [###############################] [ Erasing ]
erased sectors 0 through 10 on flash bank 0 in 0.061242s
Info : psoc6.dap: powering down debug domain...
```


Usage examples

8.2 Display memory contents (32 words at address 0x08000000) of PSOC™ 6 MCU

openocd -s ../scripts -f psoc6 kp3 board.cfg -c "mdw 0x08000000 32; exit"

```
Licensed under GNU GPL v2
 or bug reports, read
        http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
 ** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
 ==== Start: "init" ===
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf155, serial=1D1612C800287400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : VTarget = 4.712 V
Info : kitprog3: acquiring the device (mode: reset)...
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x6ba02477
Info : [psoc6.cpu.cm0] Cortex-M0+ r0p1 processor detected
Info : [psoc6.cpu.cm0] target has 4 breakpoints, 2 watchpoints
**********
** Silicon: 0xE206, Family: 0x100, Rev.: 0x23 (B2)
** Detected Device: CY8C6247BZI-D54
** Detected Main Flash size, kb: 1024
** Flash Boot version: 1.20.1.42
** Chip Protection: NORMAL
************
Info : [psoc6.cpu.cm4] Cortex-M4 r0p1 processor detected
Info : [psoc6.cpu.cm4] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for psoc6.cpu.cm0 on 3333
Info : Listening on port 3333 for gdb connections
Info : starting gdb server for psoc6.cpu.cm4 on 3334
Info : Listening on port 3334 for gdb connections
 ==== End: "init" ===
 ==== Start: "reset init" ====
Info : SWD DPIDR 0x6ba02477
Info : kitprog3: acquiring the device (mode: reset)...
[psoc6.cpu.cm0] halted due to debug-request, current mode: Thread
xPSR: 0x21000000 pc: 0x00001f34 msp: 0x08047790
** Device acquired successfully
** psoc6.cpu.cm4: Ran after reset and before halt...
[psoc6.cpu.cm4] halted due to debug-request, current mode: Thread
xPSR: 0x61000000 pc: 0x1600400c msp: 0x00000000
 ==== End: "reset init" ==
 ==== Start: "adapter speed 1000" ====
adapter speed: 1000 kHz
 ==== End: "adapter speed 1000" ====
0x08000000: b085b5f0 b6629101 492a26f0 680b0136 40334d29 41b31e5e 33102601 682c409e
0x08000020: d1014226 602c4334 240327a0 063f2601 d1012a00 e7fdbe00 469c6843 459c6803
0x08000040: 6843d0fa 001d681b 2d014025 2d02d02c 2d00d02c 4d19d12c 25f09502 930343a3
0x08000060: 012d680b 1e5d402b 4d1541ab 015b195b 2d00681d ad02dafc 609e60dd 2d00691d
Info : psoc6.dap: powering down debug domain..
```

Usage examples

Program the PSOC™ 6 MCU with verification (Intel HEX file) 8.3

OpenOCD supports programming of the ELF, Intel HEX, Motorola SREC, and binary file formats. For binary files, the relocation offset must be specified as an argument to the program command.

```
openocd -s ../scripts -f psoc6 kp3 board.cfg -c "program c:/hex/Blink.hex verify
reset; exit"
```

A possible output of OpenOCD:

```
** Programming Started **
auto erase enabled
Info : Flash write discontinued at 0x10001894, next section at 0x10002000
Info : Padding image section 0 at 0x10001894 with 364 bytes (bank write end alignment)
Info : Padding image section 1 at 0x1000b7c4 with 60 bytes (bank write end alignment)
[100%] [############################## ] [ Erasing ]
[100%] [########################### ] [ Programming ]
wrote 45568 bytes from file c:/hex/Blink.hex in 1.243223s (35.794 KiB/s)
** Programming Finished **
** Verify Started **
verified 45144 bytes in 0.191967s (229.654 KiB/s)
* Verified OK **
** Resetting Target **
Info : SWD DPIDR 0x6ba02477
Info : psoc6.dap: powering down debug domain...
```

8.4 Program the EFuse region of PSOC™ 6 MCU

This example writes a single bit of data to the EFuse region of the PSOC[™] 6 MCU at address 0x907003FE:

```
openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c
"init; reset init; psoc6 allow efuse program on; flash fillb 0x907003FE 1 1; flash
read bank 3 d:/dump efuse.bin 0x3FE 0x1; exit"
```


Usage examples

Modify individual bytes of PSOC™ 6 MCU in main flash and display 8.5 results

openocd -s ../scripts -f psoc6 kp3 board.cfg -c "mdw 0x10000000 8; flash rmw 0x10000002 11223344; mdw 0x10000000 8; exit"

```
Licensed under GNU GPL v2
For bug reports, read
        http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
 ==== Start: "init" ===
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf155, serial=1D1612C800287400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : VTarget = 4.712 V
Info : kitprog3: acquiring the device (mode: reset)...
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x6ba02477
Info : [psoc6.cpu.cm0] Cortex-M0+ r0p1 processor detected
Info : [psoc6.cpu.cm0] target has 4 breakpoints, 2 watchpoints
************
** Silicon: 0xE206, Family: 0x100, Rev.: 0x23 (B2)
** Detected Device: CY8C6247BZI-D54
** Detected Main Flash size, kb: 1024
** Flash Boot version: 1.20.1.42
** Chip Protection: NORMAL
***********
Info : [psoc6.cpu.cm4] Cortex-M4 r0p1 processor detected
Info : [psoc6.cpu.cm4] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for psoc6.cpu.cm0 on 3333
Info : Listening on port 3333 for gdb connections
Info : starting gdb server for psoc6.cpu.cm4 on 3334
Info : Listening on port 3334 for gdb connections
 ==== End: "init" ==
 ==== Start: "reset init" ====
Info : SWD DPIDR 0x6ba02477
Info : kitprog3: acquiring the device (mode: reset)...
[psoc6.cpu.cm0] halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x00001f34 msp: 0x080477a8
** Device acquired successfully
** psoc6.cpu.cm4: Ran after reset and before halt...
[psoc6.cpu.cm4] halted due to debug-request, current mode: Thread
xPSR: 0x61000000 pc: 0x1600400c msp: 0x000000000 ===== End: "reset init" ====
 ==== Start: "adapter speed 1000" ====
adapter speed: 1000 kHz
===== End: "adapter speed 1000" ====
0x10000000: 08002000 1000012b 0000000d 1000018d 00000000 00000000 00000000 00000000
[100%] [################################ [ Erasing ]
[100%] [################################ [ Programming ]
 odified 4 byte(s) in 512 byte region at 0x10000000 in 0.071757s (6.968 KiB/s)
9x10000000: 22112000 10004433 0000000d 1000018d 00000000 00000000 00000000 00000000
Info : psoc6.dap: powering down debug domain..
```

ModusToolbox[™] software OpenOCD CLI user guide

Usage examples

Read the memory of PSOC™ 6 MCU to binary file 8.6

The example reads 32 KB of the PSOC™ 6 MCU memory to a file named dump_mem.bin.

openocd -s ../scripts -f interface/kitprog3.cfg -f target/infineon/cy8c6xxx.cfg -c "init; reset init; dump image d:/dump mem.bin 0x10000000 0x8000; exit"

```
Licensed under GNU GPL v2
For bug reports, read
       http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf155, serial=1D1612C800287400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : VTarget = 4.712 V
Info : kitprog3: acquiring the device (mode: reset)...
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x6ba02477
Info : [psoc6.cpu.cm0] Cortex-MO+ rOp1 processor detected
Info : [psoc6.cpu.cm0] target has 4 breakpoints, 2 watchpoints
***********
** Silicon: 0xE206, Family: 0x100, Rev.: 0x23 (B2)
** Detected Device: CY8C6247BZI-D54
** Detected Main Flash size, kb: 1024
** Flash Boot version: 1.20.1.42
** Chip Protection: NORMAL
***********
Info : [psoc6.cpu.cm4] Cortex-M4 r0p1 processor detected
Info : [psoc6.cpu.cm4] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for psoc6.cpu.cm0 on 3333
Info : Listening on port 3333 for gdb connections
Info : starting gdb server for psoc6.cpu.cm4 on 3334
Info : Listening on port 3334 for gdb connections
Info : SWD DPIDR 0x6ba02477
Info : kitprog3: acquiring the device (mode: reset)...
[psoc6.cpu.cm0] halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x00001f34 msp: 0x080477a8
** Device acquired successfully
** psoc6.cpu.cm4: Ran after reset and before halt...
[psoc6.cpu.cm4] halted due to debug-request, current mode: Thread
xPSR: 0x61000000 pc: 0x1600400c msp: 0x00000000
dumped 32768 bytes in 0.255386s (125.301 KiB/s)
```


Usage examples

Start the GDB server and leave it running 8.7

openocd -s ../scripts -f psoc6_kp3_board.cfg

```
Licensed under GNU GPL v2
For bug reports, read
       http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
adapter speed: 2000 kHz
adapter srst delay: 25
adapter srst pulse_width: 25
** Auto-acquire enabled, use "set ENABLE_ACQUIRE 0" to disable
cortex_m reset_config sysresetreq
cortex_m reset_config sysresetreq
==== Start: "init" ====
Info : Using CMSIS-DAPv2 interface with VID:PID=0x04b4:0xf155, serial=1D1612C800287400
Info : CMSIS-DAP: SWD supported
Info : CMSIS-DAP: Atomic commands supported
Info : CMSIS-DAP: FW Version = 2.0.0
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : KitProg3: FW version: 2.60.1443
Info : KitProg3: Pipelined transfers enabled
Info : KitProg3: Asynchronous USB transfers enabled
Info : VTarget = 4.713 V
Info : kitprog3: acquiring the device (mode: reset)...
Info : clock speed 2000 kHz
Info : SWD DPIDR 0x6ba02477
Info : [psoc6.cpu.cm0] Cortex-M0+ r0p1 processor detected
Info : [psoc6.cpu.cm0] target has 4 breakpoints, 2 watchpoints
***********
** Silicon: 0xE206, Family: 0x100, Rev.: 0x23 (B2)
** Detected Device: CY8C6247BZI-D54
** Detected Main Flash size, kb: 1024
** Flash Boot version: 1.20.1.42
** Chip Protection: NORMAL
**********
Info : [psoc6.cpu.cm4] Cortex-M4 r0p1 processor detected
Info : [psoc6.cpu.cm4] target has 6 breakpoints, 4 watchpoints
Info : starting gdb server for psoc6.cpu.cm0 on 3333
Info : Listening on port 3333 for gdb connections
Info : starting gdb server for psoc6.cpu.cm4 on 3334
Info : Listening on port 3334 for gdb connections
 ==== End: "init" ====
 ==== Start: "reset init" ====
Info : SWD DPIDR 0x6ba02477
Info : kitprog3: acquiring the device (mode: reset)...
[psoc6.cpu.cm0] halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x00001f34 msp: 0x080477a8
** Device acquired successfully
** psoc6.cpu.cm4: Ran after reset and before halt...
[psoc6.cpu.cm4] halted due to debug-request, current mode: Thread
xPSR: 0x61000000 pc: 0x1600400c msp: 0x00000000
 ==== End: "reset init" ====
==== Start: "adapter speed 1000" ====
adapter speed: 1000 kHz
==== End: "adapter speed 1000" ====
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
```

Revision history

Revision history

figuration. lear_verify_ranges, and psoc6 secure_app
figuration.
8
lear_verify_ranges, and psoc6 secure_app
formation
ogrammer 2.2 OpenOCD CLI User Guide to
allation.
ble.
SSH_RESTRICTION_SIZE" variables.
psoc6 secure_app" commands.
tion.
BLE_SFLASH, ENABLE_EFUSE variables.
of Cypress OpenOCD is located on GitHub: /openocd/releases
ations"
nfig" and "psoc6 secure_acquire" commands
ommand
e_address" sections – document limitations
ACQUIRE", "kitprog3 acquire_config" sition mode
oftware OpenOCD CLI user guide
and related commands
vith CYW20829 target
-
itations
configuration
ow deprecated
High devices
is no longer required
global variables
commands

Revision history

Revision	Date	Description
*M	2024-04-30	Updated list of supported operating systems
		Updated "About this document" and "Overview", "Installation", "List the connected targets" sections with relevant info on how to install ModusToolbox™ software OpenOCD
		Updated section "Supported devices"
		Updated section "Supported target configurations"
		Updated section "OpenOCD commands overview"
		Added description for "adapter serial" command
		Removed description of the deprecated "cmsis_dap_serial " command
		Updated "psoc4/cat1c ecc_error_reporting" command title
*N	2024-08-07	Updated section "Supported target configurations"
		Updated section "Supported devices"
*0	· ·	Updated list of supported operating systems
		Updated section "Supported devices"
		Updated section "Supported target configurations"
		Updated section "OpenOCD commands overview"
		Updated section "Flash driver commands"
		Added sections on PSOC™ Control C3
		Updated section "CYW4390x commands"
		Updated section "Remote debugging"
		Updated PSoC™ product category trademark to PSOC™

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-10-04 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference 002-26234 Rev. *O

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.