2020年10月高等教育自学考试全国统一命题考试

线性代数

(课程代码 02198)

注意事项:

- 1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
- 2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
- 3. 涂写部分、画图部分必须使用 2B 铅笔, 书写部分必须使用黑色字迹签字笔。

说明:在本卷中, A^{T} 表示矩阵 A 的转置矩阵, A^{*} 表示矩阵 A 的伴随矩阵,E 是单位矩阵,A 表示方阵 A 的行列式,A 表示矩阵 A 的秩.

第一部分 选择题

一、单项选择题:本大题共 5 小题,每小题 2 分,共 10 分。在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1. 设行列式
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = m$$
,则 $\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} - 2a_{11} & a_{22} - 2a_{12} & a_{23} - 2a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{vmatrix} = m$

- A. -2m
- R _ w
- C m
- D. 2m

2. 设向量 $\alpha = (1,3,4)^T$, 矩阵 $A = \alpha \alpha^T$, 则r(A) =

- A. 0
- B. 1
- C. 2
- D. 3

3. 设A为3阶矩阵,则|A|=0的充分必要条件是

- A. A 的列向量组线性无关
- B. A 的行向量组线性相关

C. A的秩为2

D. A 中有两行元素对应成比例

线性代数试题第1页(共4页)

4. 设线性方程组 $\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ 有无穷多个解,则数 a =

A. -2

B. -1

C. 1

D. 2

5. 设2阶矩阵A满足|2E+3A|=0, |E-A|=0, 则|A+E|=

A. $-\frac{3}{2}$

B. $-\frac{2}{3}$

C. $\frac{2}{3}$

D. $\frac{3}{2}$

第二部分 非选择题

- 二、填空题: 本大题共10小题, 每小题2分, 共20分。

则 $A_{11} - A_{21} + 2A_{31} =$ _____

- 7. 设矩阵 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 0 \\ 5 & -1 & 0 \\ 2 & 3 & 1 \end{pmatrix}$, 则行列式 |AB| =______.
- 8. 已知n阶矩阵A满足 $A^2 A E = O$,则 $A^{-1} =$ ______. (用矩阵A表示.)
- 9. 设A为 2 阶矩阵,若存在矩阵 $P = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$,使得 $P^{-1}AP = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$,

则 A =

- 10. 设向量组 $\alpha_1 = (1, 0, 0)^T$, $\alpha_2 = (0, 2, 4)^T$, $\alpha_3 = (-1, 3, t)^T$ 线性无关,则数t 的取值应满足
- 11. 设 $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 4 \\ 3 & 2 & t \end{pmatrix}$, 若 3 阶非零矩阵 B 满足 AB = 0,则数 t =______
- 12. 设 4 元非齐次线性方程组 $Ax = \beta$ 的增广矩阵经初等行变换化为

$$(A,\beta) \to \begin{pmatrix} 1 & -1 & 1 & 0 & 2 \\ 0 & 1 & 2 & 3 & -3 \\ 0 & 0 & a-1 & 0 & a-1 \\ 0 & 0 & 0 & 0 & c \end{pmatrix}$$

若该方程组有无穷多解且其导出组的基础解系有 1 个向量,则数 a,c 的取值应分别满足

- 13. 设 3 阶可逆矩阵 A 有特征值为 2,则矩阵 $(A^2)^{-1}$ 必有一个特征值为_____.
- 14. 已知 $A = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 2 & -1 \\ 3 & 1 & -1 \end{pmatrix}$, $\alpha = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ 是其一个特征向量,则 α 对应的特征值为______
- 15. 二次型 $f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 3x_1x_2$ 经可逆线性变换 $\begin{cases} x_1 = y_1 + 3y_2 \\ x_2 = y_2 \end{cases}$ 化为______.

线性代数试题第3页(共4页)

- 三、计算题: 本大题共7小题, 每小题9分, 共63分。
- 16. 设 $\alpha_1, \alpha_2, \alpha_3$ 为 2 维列向量,令 $A = (\alpha_1, \alpha_3), B = (2\alpha_2, 3\alpha_3)$,且已知 $|A| = \frac{1}{4}, |B| = -3$,求行列式|A B| 的值.
- 17. 已知矩阵 $\mathbf{A} = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 5 & 7 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 7 & 5 & -2 \\ 5 & 1 & 9 \end{pmatrix}$, 求
 - (1) 矩阵 X, 使得 A+2X=B; (2) AX^{T} .
- 18. 设 3 阶矩阵 $A \cap B$ 满足关系式 A + B = AB, 其中 $B = \begin{pmatrix} 2 & 2 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, 求矩阵 A.
- 19. 求向量组 $\alpha_1 = (1, 4, 1, 0)^T$, $\alpha_2 = (2, 1, -1, -3)^T$, $\alpha_3 = (1, 0, -3, -1)^T$, $\alpha_4 = (0, 2, -6, 3)^T$ 的 秩和一个极大无关组,并把其余向量用该极大无关组线性表出.
- 20. 确定数 k 的值,使线性方程组 $\begin{cases} x_1 + x_2 x_3 = -1 \\ 2x_1 + kx_2 2x_3 = 0 有无穷多解,并求出其通解(要求 <math display="block">kx_1 + 2x_2 + x_3 = k \end{cases}$

用其一个特解和导出组的基础解系表示).

- 21. 已知矩阵 $A = \begin{pmatrix} 1 & b & 0 \\ -2 & a & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 的特征值为 $\lambda_1 = \lambda_2 = 3, \lambda_3 = 0$,
 - (1) 求数 a 与 b 的值;
 - (2) A 是否可以相似对角化? 若可以,求可逆矩阵 P 及对角矩阵 Λ ,使得 $P^{-1}AP = \Lambda$.
- 22. 求正交变换 x = Py ,将二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 4x_1x_2 4x_2x_3$ 化为标准形 $f = -y_1^2 + 2y_2^2 + 5y_3^2.$
- 四、证明题:本题7分。
- 23. 设A为2阶矩阵,已知|A|<0,证明A一定可相似对角化.

线性代数试题第4页(共4页)