Scientific I/O: more than hard drives and

file systems

- Scientists think about data in terms of their science problem: molecules, atoms, grid cells, particles
- Ultimately, physical disks store bytes of data
- Layers in between, the application and physical disks are at various levels of sophistication

Images from David Randall, Paola Cessi, John Bell, T Scheibe

Example: FLASH Astrophysics

- FLASH is an astrophysics code for studying events such as supernovae
 - Adaptive-mesh hydrodynamics
 - Scales to 1000s of processors
 - MPI for communication
- Frequently checkpoints:
 - Large blocks of typed variables from all processes
 - Portable format
 - Canonical ordering (different than in memory)
 - Skipping ghost cells

Example: FLASH's HDF5 requirements

- FLASH AMR structures do not map directly to HDF5 multidimensional arrays
- Must create mapping of the in-memory FLASH data structures into a representation in HDF5 multidimensional arrays
- Chose to
 - Place all checkpoint data in a single file
 - Impose a linear ordering on the AMR blocks
 - Use 4D variables
 - Store each FLASH variable in its own HDF5 variable
 - Skip ghost cells
 - Record attributes describing run time, total blocks, etc.

FLASH HDF5 Usage

Annotations describing data, experiment

```
attribute_id = H5Acreate(group_id,
    "iteration",H5T_NATIVE_INT, dataspace_id, H5P_DEFAULT);
status = H5Awrite(attribute_id, H5T_NATIVE_INT, temp);
```

HDF5 variables for each FLASH variable

```
ierr = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET,
    start_4d, stride_4d, count_4d, NULL);
status = H5Dwrite(dataset, H5T_NATIVE_DOUBLE, memspace,
    dataspace, dxfer template, unknowns);
```


HACC: understanding cosmos via simulation

- "Cosmology = Physics + Simulation" (Salman Habib)
- Sky surveys collecting massive amounts of data
 - (~100 PB)
- Understanding of these massive datasets rests on modeling distribution of cosmic entities
- Seed simulations with initial conditions
- Run for 13 billion (simulated) years
- Comparison with observed data validates physics model.
- I/O challenges:
 - Checkpointing
 - analysis

