BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 12 – Aritmética computacional: adição e subtração em complemento de 2; Somador de alto desempenho

Exemplos de Adição:

Subtração

A Subtração pode ser efetuada usando um circuito Somador

Minuendo
- Subtraendo
Subtração

Usa o Complemento de 2 do Subtraendo e soma-o ao Minuendo

Circuito Somador/Subtrator em Complemento de 2

Obs: Para obter o circuito somador/subtrator em complemento de 2 vamos usar a porta XOR

TV da Porta XOR

Entradas		Salda
А	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Símbolo da Porta XOR

Circuito Somador/Subtrator em Complemento de 2

TV da Porta XOR

Entradas		Saída
Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Se fixar uma entrada em 0

Deixando uma entrada de controle em 0, o dado "X" é copiado para a saída

Circuito Somador/Subtrator em Complemento de 2

TV da Porta XOR

Se fixar uma entrada em 1

Para obter o complemento de 2 precisa somar 1 ao bit menos significativo do dado

Deixando uma entrada de controle em 1, o dado "X" é complementado na saída: $S=\overline{X}$

Circuito Somador/Subtrator em

Complemento de 2

C=Controle da Operação $C_0=0 \Rightarrow A_i+B_i$

 $C_0=1 \Rightarrow A_i-B_i$

Lembrete: Cin = 1, Soma "1" em B

Complemento

W

Exercícios

- 1. Projete um circuito somador/subtrator em complemento de 2 usando um MUX para fazer o controle da geração do complemento de 2 do dado (subtraendo).
- 2. O custo do "novo" circuito somador/subtrator é maior ou menor que o do circuito anterior?

Soluções

1. Projete um circuito somador/subtrator em complemento de 2 usando um MUX para fazer o controle da geração do complemento de 2 do dado (subtraendo).

Soluções

1. O custo do "novo" circuito somador/subtrator é maior ou menor que o do circuito anterior?

Para circuitos de 4 bits:

Circuito 1: 4 Portas XOR

Circuito 2: 4x5=20 Portas

Decisão de Projeto:

Arquitetura: decide se vai oferecer adição em Complemento de 2

Organização: decide como implementar (escolhe entre o circuito 1 e o circuito 2)

Somador Convencional

Somador Convencional: Atrasos para propagar o *carry*

Somador Carry Lookahead

Aritmética Computacional

Entradas		Saídas			
Α	В	C _{in}	S	C _{out}	C _{out}
0	0	0	0	0	"nada" 0
0	0	1	1	0	"nada" 0
0	1	0	1	0	"propaga" C _{in}
0	1	1	0	1	"propaga" C _{in}
1	0	0	1	0	"propaga" C _{in}
1	0	1	0	1	"propaga" C _{in}
1	1	0	0	1	"gera" 1
1	1	1	1	1	"gera" 1

Α	В	C-out	
0	0	0	"nada"
0	1	C-in	"propaga"
1	0	C-in	"propaga"
1	1	1	"gera"

Expressão do Carry do Somador

$$C_{i+1} = A_i B_i + A_i C_i + B_i C_i$$

1. Fatorando a expressão

$$C_{i+1} = A_i B_i + C_i (A_i + B_i)$$

Α	В	C-out	
0	0	0	"nada"
0	1	C-in	"propaga"
1	0	C-in	"propaga"
1	1	1	"gera"

2. Chamando A_iB_i de G_i e A_i+B_i de P_i

$$C_{i+1} = G_i + P_i C_i$$

3. Substituindo os índices para obter os carries para um somador de 4 bits

$$C_1 = G_0 + P_0 C_0$$

4. Para simplificar a análise, vamos considerar C₀=0 para soma

$$C_1 = G_0$$

Expressão do Carry do Somador

4. Para simplificar a análise, vamos considerar C₀=0 para soma

$$C_1 = G_0$$

$$C_2 = G_1 + P_1C_1$$

5. Substituindo C₁=G₀

$$C_2 = G_1 + P_1G_0$$

6. Obtendo C₃

$$C_3 = G_2 + P_2C_2$$

7. Substituindo $C_2 = G_1 + P_1G_0$

$$C_3 = G_2 + P_2(G_1 + P_1G_0) \Rightarrow C_3 = G_2 + P_2G_1 + P_2P_1G_0$$

Expressão do Carry do Somador

8. Obtendo C₄

$$C_4 = G_3 + P_3C_3 \Rightarrow C_4 = G_3 + P_3(G_2 + P_2G_1 + P_2P_1G_0) \Rightarrow C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2G_0$$

Exercício prático

- 1. Faça o diagrama de blocos do circuito somador de 4 bits com a Lógica *Carry Lookahead* somador de alto desempenho no Logisim.
- 2. Calcule o atraso para gerar os carries.

Próxima aula

 \rightarrow Circuitos sequenciais