Практическая работа №2

Отображение информации на семисегментных индикаторах

1. Семисегментные индикаторы

Семисегментные индикаторы удобны в управлении, имеют высокую яркость, широкий диапазон рабочих температур и низкую стоимость.

Устройство состоит из семи светодиодов размещенных таким образом, чтобы, зажигая их в разных сочетаниях, можно было бы отобразить любую десятичную арабскую цифру от 0 до 9. Такой индикатор обычно имеет 8 или 9 выводов: 7 выводов используются для задания состояния семи сегментов, 1 вывод для подачи питания на устройство. В индикаторах с 9 выводами дополнительный вывод предназначен для отображения десятичной точки.

По внутренней схеме включения семисегментные индикаторы подразделяются на индикаторы с общим анодом и индикаторы с общим катодом. В первом случае на общий вывод светодиодов подается плюс источника питания, а во втором – минус.

Схема подключения семисегментного индикатора с общим анодом к МК приведена на рисунке 1. Индикатор подключается непосредственно к выводам МК, для чего используется 7 линий порта Р2. В данном примере на индикатор последовательно выводятся цифры от 9 до 1. Для преобразования цифрового кода в код семисегсентного индикатора программно задается таблица преобразования.

Для индикаторов с общим катодом коды цифр необходимо инвертировать.

Рис. 1. Схема подключения семисегментного индикатора

2. Средства управления

Для взаимодействия пользователя с МПС и управления ее работой можно использовать кнопки. В БД Multisim есть несколько вариантов: ключи (с двумя и более положениями), кнопки, и клавиатуры.

Все эти средства управления работают аналогично и представляют собой ключ или матрицу ключей в случае клавиатуры.

3. Создание проекта и программного файла

Создайте новый проект и соберите схему, приведенную на рис. 1. Схема содержит МК 8051 (МСU->805х), семисегментный индикатор (Indicators->HEX_DISPLAY->SEVEN_SEG_COM_A), кнопка (Electro_Mechanical->SUPPLEMENTARY_SWITCHES->PB_NO), семисегментный индикатор подключается через резисторы 270 Ом (Basic->RESISTORS).

Программа на языке С для данного приложения приведена ниже.

```
#include <8051.h>
void main()
{
unsigned char i,j; // 8-битные переменные
```

```
unsigned char massiv [11]=
{
0хС0, //массив кодов семисегментного индикатора
0xF9,
0xA4,
0xB0,
0x99,
0x92,
0x82,
0xF8,
0x80,
0x90,
0xFF //код выключения
};
P1=massiv [10]; //сначала выключим индикатор
for(i=0;i<10;i++) //затем выводим код в цикле в порт 2
P2=massiv[i]; //коды от 0 до 9
for(j=0;j<100;j++)
//временная задержка для устойчивого горения каждой цифры
continue;
P2=massiv[10]; //выключить индикатор
while(1);
}
```

Добавьте в схему кнопку, подключите ее к выводу 1 порта РЗ. Переделайте код проекта таким образом, чтобы при нажатии на кнопку выполнялось действие в соответствии с вариантом (табл. 1).

Вариант	Поведение системы при нажатии второй кнопки
1	На семисегментном индикаторе последовательно отображаются
	числа от 9 до 0
2	По каждому нажатию значение на семисегментном индикаторе
	увеличивается на единицу
3	На семисегментном индикаторе отображаются числа в
	следующей последовательности 5, 4, 6, 3, 7, 2, 8,1,
4	На семисегментном индикаторе отображаются числа в
	следующей последовательности 3, 7, 9, 1, 6, 2, 8, 4, 5
5	По каждому нажатию значение на семисегментном индикаторе
	уменьшается на единицу
6	9На семисегментном индикаторе последовательно отображаются
	нечетные числа от 0 до 9
7	На семисегментном индикаторе последовательно отображаются
	четные числа от 0 до 8
8	На семисегментном индикаторе последовательно отображаются
	числа от 0 до 9 с шагом 3.
9	На семисегментном индикаторе последовательно отображаются
	числа от 9 до 0 с шагом 2.
10	На семисегментном индикаторе отображаются числа в
	следующей последовательности от 0 до 9, после каждой цифры
	отображается цифра 1.
11	На семисегментном индикаторе отображаются числа в
	следующей последовательности от 9 до 0, после каждой цифры
	отображается цифра 3.
12	На семисегментном индикаторе отображаются числа в
	следующей последовательности 9 1 2 3 8 4 5 6 7
13	На семисегментном индикаторе отображаются числа в
	следующей последовательности 1 9 2 8 3 7 4 6 5

14	При каждом нажатии кнопки значение на семисегментном
	индикаторе увеличивается на 2, начиная с 1.
15	При каждом нажатии кнопки значение на семисегментном
	индикаторе уменьшается на 2, начиная с 9.
16	Шаг счетчика увеличивается на единицу.
17	Счет останавливается, на индикатор выводится последнее число.
	При повторном нажатии счет продолжается.
18	Меняется направление счета.
19	По каждому нажатию значение на семисегментном индикаторе
	увеличивается на единицу начиная с 3.
20	По каждому нажатию значение на семисегментном индикаторе
	уменьшается на единицу начиная с 9.