Analysis 2 Hausaufgabenblatt Nr. 1

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: October 30, 2023)

Problem 1. Sei (X, \mathcal{A}) ein messbarer Raum. Zeigen Sie, dass

$$\mu:A\to [0,\infty], A\to \begin{cases} 0, & A \text{ endlich oder abz\"{a}hlbar}\\ \infty & A \ \Bar{u} \text{berabz\"{a}hlbar} \end{cases}.$$

eine σ -additive Mengenfunktion, also ein Maß, und somit (X, \mathcal{A}, μ) ein Maßraum.

Proof. Weil \varnothing endlich ist, gilt $\mu(\varnothing) = 0$. Sei $(A_j)A_j \in \mathcal{A}$ eine Folge paarweise disjunkter Menge.

1. Zumindest eine A_k ist überabzählbar:

Die Vereinigung $\bigcup A_i$ ist dann überabzählbar, und $\mu(\bigcup A_i) = \infty$. Es gilt auch, dass $\sum \mu(A_i) = \infty$.

2. Keine A_i ist abzählbar. Die abzählbare Vereinigung von abzählbare Menge ist abzählbar, und es glit

$$0 = \mu\left(\bigcup A_i\right) = \sum \mu(A_i) = \sum 0 = 0.$$

Problem 2. Sei (A, \mathcal{A}) ein messbarer Raum und $\mu, \nu : \mathcal{A} \to [0, \infty]$ Maße über \mathcal{A} . Beweisen oder wiederlegen Sie:

- (a) Die Funktion $\eta: \mathcal{A} \to \overline{R}, \eta(A) = \max(\mu(A), \nu(A))$ is ein Maß über \mathcal{A} .
- (b) Die Funktion

$$\mu + \nu : \mathcal{A} \to \overline{R}, (\mu + \nu)(A) := \mu(A) + \nu(A)$$

ist ein Maß über \mathcal{A} .

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Proof. (a) Falsch. Sei $X = \{a, b\}$, und $\mathcal{A} = \{\emptyset, \{a\}, \{b\}, X\}$. Sei außerdem

$$\mu(\{a\}) = 5$$
 $\mu(\{b\}) = 1$
 $\nu(\{a\}) = 1$
 $\nu(\{b\}) = 5$

Daraus und aus der Additivität folgt

$$\nu(X) = \mu(X) = 6.$$

Daher ist $\eta(X) = 6$. Es gilt, aber $\eta(\{a\}) = \eta(\{b\}) = 5$, und

$$\eta(\{a\} \cup \{b\}) = \eta(X) = 6 \neq 10 = \eta(\{a\}) + \eta(\{b\}).$$

(b) Stimmt. Sei $\zeta = \mu + \nu$. $\zeta(\emptyset) = \mu(\emptyset) + \nu(\emptyset) = 0 + 0 = 0$. Sei $(A_j), A_j \in \mathcal{A}$ eine Folge paarweise disjunkte Mengen. Weil jede Folge positive Zahlen konvergiert (sogar absolut) in $\overline{\mathbb{R}}$, gilt

$$\zeta\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} A_i\right) + \nu\left(\bigcup_{i=1}^{\infty} A_i\right) = \left[\sum_{i=1}^{\infty} \mu(A_i)\right] + \left[\sum_{i=1}^{\infty} \nu(A_i)\right]$$
$$= \sum_{i=1}^{\infty} (\mu(A_i) + \nu(A_i)) = \sum_{i=1}^{\infty} \zeta(A_i)$$