UNIVERSITY OF ILLINOIS DEPARTMENT OF NUCLEAR, PLASMA AND RADIOLOGICAL ENGINEERING NPRE 349 – Introduction to NPRE Heat Transfer

Homework 1

- 1. B&L (8th edition): 1.4
- 2. B&L (8th edition): 1.5
- 3. B&L (8th edition): 1.14
- 4. B&L (8th edition): 1.17
- 5. Heat is being generated uniformly inside a plate at a rate of q-dot W/m^3 . Plate is of thickness 2a, and infinite in the other two directions. Both surfaces are at temperature T_s . Assume **steady-state** conditions.
 - a. What is the heat flux on the surface of the plate $(q'' W/m^2)$.
 - b. If the plate is being cooled by a fluid at temperature T_h what is the heat transfer coefficient h. (Units)
 - c. What is the slope dT/dx at the surface, if the plate is made of: a) metallic U, b) UO2, c) Cu?

q-dot =
$$10 \text{ MW/m}^3$$
; $a = 0.005 \text{ m}$, $T_f = 325 \text{ C}$, $T_s = 350 \text{ C}$

6. Repeat problem 5 for a sphere of radius *R*. (R = 0.01 m)

 T_s