Examen Parcial de PROBABILIDAD Y ESTADÍSTICA

Ingeniería del Software		19 NOVIEMBRE 2019		Tad
CURSO	2º	HORA 17.00	Mod	CENTRO UNIVERSITARIO
GRUPO	INSO2_PRES_Y	DURACIÓN	Α	DE TECNOLOGÍA Y ARTE DIGITAL
		1H 45m		
ALUMNO				
DNI				

Problema 1 (1 punto cada apartado)

Un abogado se desplaza todos los días a su oficina situada en el centro de una ciudad. El tiempo que tarda en llegar a la oficina cada día desde su casa sigue una distribución Normal de media 24 minutos y desviación típica 3,8 minutos.

- a) Si debe comenzar su trabajo a las 9.00 y sale de casa a las 8.45 h ¿Qué porcentaje de días llegará tarde?
- b) ¿Cuál es la duración mínima del trayecto para que ese día esté entre el 15% de días en que más tarda en llegar?
- c) Si a lo largo de un año se desplaza 300 días hasta la oficina, ¿cuál es la probabilidad de que más de 20 días haya tardado más de media hora en llegar?

Problema 2 (2 puntos) Razonarlo y resolverlo de dos formas distintas.

Un centro de mantenimiento recibe un promedio de 2,7 llamadas por minuto.

- a) ¿cuál es la probabilidad de que haya más de 40 llamadas en un cuarto de hora?
- b) ¿y cuál es la probabilidad de que en un cuarto de hora se produzcan exactamente 25 llamadas?

Ingeniería del Software		19 NOVIEMBRE 2019		Tad
CURSO	2º	HORA 17.00	Mod	CENTRO UNIVERSITARIO
GRUPO	INSO2_PRES_Y	DURACIÓN 1H 45m	Α	DE TECNOLOGÍA Y ARTE DIGITAL
ALUMNO				
DNI				

Problema 3 (0,6 puntos cada apartado)

Un fabricante de neumáticos quiere determinar si el diámetro interior de un neumático tiene relación con el número de pinchazos en un período de 5 años. Tenemos los datos sobre el diámetro interior (X) y el nº de pinchazos en los últimos 5 años de 5 vehículos (Y):

X_i	57	56	59	55	61
Y_i	3	2	1	4	1

- a) ¿Qué diámetro tendrán los neumáticos de un vehículo que no ha sufrido pinchazos en los últimos 5 años? ¿y con qué grado de fiabilidad?
- b) ¿Cuál de las dos variables presenta mayor dispersión?
- c) Representar los datos de X mediante un box plot
- d) Dar una medida de la interdependencia entre las variables e interpretarla
- e) Calcular la varianza explicada de Y; explica su significado en el contexto del problema

Problema 4 (2 puntos)

La policía municipal tiene instalados cuatro sistemas de radar en cuatro puntos L_1 , L_2 , L_3 , y L_4 . Las trampas de radar en cada uno de los puntos operarán un 40%, un 30%, un 20% y un 30% respectivamente. Si una persona que excede el límite de velocidad cuando va al trabajo tiene probabilidades 0,2, 0,1, 0,5 y 0,2 respectivamente de pasar por esos lugares.

- a) ¿qué porcentaje de días le ponen una multa por exceso de velocidad?
- b) Sabiendo que un día ha sido multado, ¿cuál es la probabilidad de que haya pasado por L₄?