

UNITED STATES PATENT APPLICATION

for

DELAYED DECISION DOT PLACEMENT FOR
PLANE-DEPENDENT CMYK ERROR DIFFUSION

106201-56635001

Inventor:
NIRANJAN DAMERA-VENKATA

Prepared by:

WAGNER, MURABITO & HAO LLP
Two North Market Street
Third Floor
San Jose, CA 95113
(408) 938-9060

DELAYED DECISION DOT PLACEMENT FOR
PLANE-DEPENDENT CMYK ERROR DIFFUSION

TECHNICAL FIELD

5 The present invention relates to a printing method and system for determining color dot placement in a printed image. More specifically, the present invention pertains to a printing method and system that jointly considers three color planes when making decisions with regard to dot placement.

10

BACKGROUND ART

Rendered images (e.g., displayed or printed images) may be represented as a two-dimensional array of picture elements (pixels). The color intensity level of each pixel is chosen according to the output (rendering) device. For example, a computer monitor used for displaying an image may have 256 or more levels of intensity for each color. Computer monitors typically use the primary colors red, green and blue, which can be combined to produce millions of different colors including black.

20

Printers (and other hardcopy output devices) are commonly provided with three ink colors (cyan, magenta and yellow) or four ink colors (cyan, magenta, yellow and black). Many types of printers, such as inkjet printers, eject droplets of ink to form dots on a print medium. Such printers are typically binary devices, meaning that for each pixel or possible dot location on the print medium, the printer can only print at two levels per color; that is, it can either print a dot at the intensity level of the ink, or it cannot print a dot. Thus, a pixel in an image displayed on a monitor can have an intensity value in the range of 0-255, while a pixel in a printed image can have an intensity value of either zero or 255. Because binary-type printers cannot print colors at 256 levels of color intensity, some type of technique is needed to convert the monitor (displayed) version of the image into the binary version used for printing.

Conversion techniques are known in the art as halftoning. One halftoning approach known in the art is error diffusion. With error diffusion, a decision about whether or not to print a dot of a particular color at a

10011356/JPH/WAZ

particular location, or how many overlapping dots of a color to print at a location, is based not only on the "ideal" or original intensity (0-255) at that location but also on what happened at neighboring locations. The objective is to intelligently place dots on the print medium so that, to the human visual system, the printed image is a visually accurate enough representation of the actual or displayed image.

5 When printing a color image, dots for the three primary colors (e.g., cyan, magenta and yellow) are printed in various combinations that, along with the locations at which no dot is printed, achieve the color tones needed to reproduce the original color image. Some prior art error diffusion techniques operate on one of the color planes (e.g., the cyan, magenta or yellow plane) at a time. These types of error diffusion techniques generate a pattern of dots for each color independently of the pattern of dots for each of the other colors. Although computationally efficient, such techniques can unintentionally overlap dots from different color planes or inappropriately place (clump) dots from different color planes in adjacent locations, creating an undesirable color combination or resulting in a displeasing pattern.

10 15 20 25 Other prior art error diffusion techniques attempt to address these shortcomings by considering more than one color plane at time. These techniques employ sophisticated error diffusion algorithms to consider all of the color planes jointly. However, the complexity of these techniques can consume a significant portion of the computational resources available and can slow down the printing process.

One such prior art technique is described in US Patent 5,949,965 by Jay S. Gondek, "Correlating Cyan and Magenta Planes for Error Diffusion Halftoning," issued September 7, 1999, assigned to the assignee of the present invention and hereby incorporated by reference. In the reference, the cyan and magenta planes are treated independently, such that the placement of cyan dots and magenta dots is determined together so that undesirable combinations of these colors do not occur. The reference states that the techniques described therein may be extended so that the cyan, magenta and yellow planes are considered together. However, consideration of the yellow plane together with consideration of the cyan

TO6307-5663001

plane and the magenta plane substantially increases the complexity of the calculations that are involved and the amount of computational resources required. Generally speaking, if the technique described in the reference is used to consider the cyan, magenta and yellow planes together, the

5 computational effort increases by an order of magnitude, with an attendant increase in the computational resources required.

Complexity is often reduced in prior art methods by observing that the unintended overlap or clumping of cyan and magenta dots, producing a blue tone, is the most undesirable. Prior art techniques (including the Gondek 10 reference) therefore halftone only the cyan and magenta planes dependently, thereby reducing the number of instances in which cyan and magenta are overlapped or clumped.

15 Nevertheless, this approach is not completely satisfactory because it remains deficient with regard to the placement of yellow dots. That is, the prior art attempts to strike a compromise between the quality of the printed image and computational efficiency by treating only the cyan and magenta planes dependently. Because of the complexity associated with treating 20 three planes dependently, the yellow plane is left to independent treatment. As a result of treating the yellow plane independently, interference can occur between yellow dots and cyan dots (producing inadvertent green dots) or between yellow dots and magenta dots (producing inadvertent red dots), which could cause unpleasant color fluctuations in the printed image.

25 Accordingly, what is needed is a method and/or system that can properly consider the yellow plane as well as the cyan and magenta planes, but without substantially increasing the complexity of the calculations or the amount of computational resources required. The present invention 30 provides a novel solution to the above needs.

1003299-102901

DISCLOSURE OF THE INVENTION

The present invention provides a method and system thereof that consider the cyan, magenta and yellow planes together without substantially increasing computational complexity and without consuming significant

5 computational resources.

The present embodiment of the present invention pertains to a printing method and system thereof that can be used to halftone images in binary print devices. In accordance with the present invention, the positions

10 in a printed image for a plurality of first color (e.g., cyan) dots and the positions in the printed image for a plurality of second color (e.g., magenta) dots are determined. Positions in the printed image for a plurality of third color dots (e.g., yellow) are then determined. The positions for the yellow dots are dependent on the positions of the cyan dots and the positions of the magenta dots. The decision on where to place yellow dots is thus made

15 after, rather than together with, the decision on where to place cyan dots and magenta dots.

In one embodiment, a determination is made with regard to the placement of a cyan dot and/or a magenta dot at a particular print location. After this determination is made, a determination is made with regard to whether a yellow dot is to be printed at the same particular location. In this embodiment, the printing of a yellow dot at the same particular location is dependent on satisfying one or more conditions. In their essence, the

20 conditions are used to decide when a yellow dot can be acceptably overlapped with a dot of another color (e.g., a cyan and/or magenta dot) when a dot of another color has been placed at a location. If the condition(s) are satisfied, a yellow dot is printed at the location; otherwise, a yellow dot is not printed.

25

In one embodiment, the conditions for printing a yellow dot are summarized as follows:

A yellow dot may be printed at a particular location when neither a cyan dot nor a magenta dot are to be printed at that location. In some

30 instances, a yellow dot may not be printed based on a threshold value determined using an error diffusion technique.

10032695-5662600T

A yellow dot may not be printed at a particular location when both a cyan dot and a magenta dot are to be printed at that location.

When either a cyan dot or a magenta dot is to be printed at a particular location, a yellow dot may be printed depending on other factors. If the

5 amount of fill at that location is less than 100 percent, a yellow dot cannot be printed. If the amount of fill is greater than or equal to 100 percent, a yellow dot may be printed based when other conditions determined using an error diffusion technique are satisfied. These conditions are described in greater detail later herein.

10

In summary, the present invention introduces a method and system in which decisions about third color (e.g., yellow) dot placement are delayed instead of being made at the same time as decisions about first color (e.g., cyan) and second color (e.g., magenta) dot placement. Accordingly, 15 decisions about where to place a yellow dot can be made based on the decisions already made about where to place cyan and/or magenta dots.

The present invention introduces dependent treatment of the cyan, magenta and yellow planes without introducing undue computational

20 complexity. By treating the cyan, magenta and yellow planes dependently, the present invention minimizes color fluctuations in the printed image, resulting in superior color smoothness and improving the quality of the printed image. These and other objects and advantages of the present 25 invention will become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments that are illustrated in the various drawing figures.

1003295.102001

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:

5

FIGURE 1 is a functional block diagram of a computer system and printer upon which embodiments of the present invention may be implemented.

10

FIGURE 2 is a flowchart of a process for converting a monitor (displayed) image into a print image in accordance with one embodiment of the present invention.

15

FIGURE 3 is a flowchart of one embodiment of the general method implemented in accordance with the present invention.

FIGURE 4 is a flowchart of one embodiment of a method for considering yellow dot placement dependent on cyan and magenta dot placement in accordance with the present invention.

20

FIGURE 5 is a flowchart of one embodiment of a method for considering yellow dot placement with cyan dot placement in accordance with the present invention.

TOP SECRET//COMINT

BEST MODE FOR CARRYING OUT THE INVENTION

Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the

5 preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the
10 present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.

Some portions of the detailed descriptions that follow are presented in terms of procedures, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These

20 descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, logic block, process, or the like, is conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring
25 physical manipulations of physical quantities. Usually, although not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as
30 transactions, bits, values, elements, symbols, characters, fragments, pixels, or the like.

It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely
35 convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that

TO62070 - 5692200

throughout the present invention, discussions utilizing terms such as "determining," "satisfying," "performing," "limiting" or the like, refer to actions and processes (e.g., processes 200, 300, 400 and 442 of Figures 2 through 5, respectively) of a computer system or similar electronic computing device.

5 The computer system or similar electronic computing device manipulates and transforms data represented as physical (electronic) quantities within the computer system memories, registers or other such information storage, transmission or display devices. The present invention is well suited to the use of other computer systems.

10

Figure 1 is a functional block diagram of a computer system 10 and printer 20 upon which embodiments of the present invention may be implemented. Computer system 10 includes a controller 14 (e.g., a processor) coupled to a memory unit 16. Computer system 10 is coupled to (or incorporates) a display monitor 12. Controller 14 is for processing information and instructions and memory unit 16 is for storing information and instructions for controller 14. Display monitor 12 is for displaying information to a computer user. Display monitor 12 uses the primary colors red (R), green (G) and blue (B), and their combinations, to produce different colors in a displayed image. It is understood that computer system 10 may also include other elements not illustrated.

Printer 20 is a binary print device. In one embodiment, printer 20 includes a controller 24 coupled to a memory unit 26. Controller 24 is for controlling the printing of an image and memory unit 26 is for storing information and instructions for controller 24. Memory unit 26 may also be used for storing information received from computer system 10. In one embodiment, printer 20 is a color inkjet printer. Color inkjet printers are known in the art.

25

In various embodiments, printer 20 incorporates one or more ink cartridges 28 containing cyan (C), magenta (M), and yellow (Y) inks (or inks substantially the same as those colors). In one embodiment, these colors are combined (that is, dots of different colors can be overlapped during printing) to form different colors including black (composite black). In another embodiment, black (K) ink is provided in addition to the cyan,

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845

magenta and yellow inks. The colors may separately reside in a single ink cartridge, or in multiple separate ink cartridges. The print cartridges may print at any resolution, typically measured in dots-per-inch (dpi).

5 For simplicity of discussion, the present invention is described in terms of a four-color printer (e.g., CMYK); however, it is appreciated that the present invention can also be used for three-color printers (CMK). As will be seen, the present invention can also be extended for use with printers using more than four primary colors.

10 Figure 2 is a flowchart of a process 200 for converting a monitor (displayed) image into a print image in accordance with one embodiment of the present invention. Process 200 can be implemented on computer system 10 or on printer 20 (Figure 1), or some aspects of process 200 can be implemented on computer system 10 while other aspects are implemented on printer 20.

15 In step 210 of Figure 2, in the present embodiment, an image is introduced to or created in memory unit 16 of computer system 10 so that it can be displayed on monitor 12 (Figure 1). In order to be displayed on display monitor 12, this image is represented in additive RGB color space. In one embodiment, each pixel location on the screen of display monitor 12 can be illuminated in red, green and blue at any one of 256 (0-255) levels of intensity. An original color intensity value (0-255) is associated with each 20 pixel in the displayed image. For each of the primary colors red, green and blue, eight (8) bits are needed to represent the 256 possible color intensity levels. It is worth noting that, although the present invention is described for the case in which there are 256 levels of intensity in the displayed image, the present invention is well-suited for more or less than 256 intensity levels.

25 30 In step 220 of Figure 2, the image in memory unit 16 is converted to an RGB image at the resolution (dpi) of the printer 20 (Figure 1). In step 230, the RGB image is converted to CMYK color space using a known conversion technique. The colors cyan, magenta, yellow and black are represented by 35 8 bits per color at this point in the process.

In step 240 of Figure 2, the CMYK image is halftoned to convert the image from 8 bits per color to one bit per color (binary color) that can be printed using binary printer 20. In other words, the RGB color and 256-level intensity at each pixel location is converted into a pattern of C, M, Y or K

5 dots, each dot having an intensity level of zero (no dot) or 255, represented as a binary zero and a binary one. It is understood that only a portion of the image may be halftoned at a time. The halftoned image is stored in memory (e.g., memory unit 16 of computer system 10 of Figure 1).

10 In the present embodiment, halftoning is achieved using an error diffusion technique. Error diffusion techniques recognize that, for each point representing a potential dot position, there is usually a difference (an error) between the actual image intensity and what the hardcopy output device (e.g., printer 20) will print. The error term is calculated by considering the 15 difference between a pixel's modified intensity (0-255 plus or minus any error terms accumulated from previously processed pixels) and the intensity of the pixel that will be printed (0 or 255) using binary printer 20. If a dot is printed (the dot having an intensity level of 255) and the modified pixel intensity is less than 255, the error is positive. If no dot is printed and the 20 modified pixel intensity is greater than zero, the error is negative.

Error diffusion techniques diffuse the error to neighboring pixels using some type of diffusion scheme that is known in the art. That is, a certain fraction of the error is added to the original intensity value of one of the 25 neighboring pixels, another fraction of the difference is added to the original intensity value of another neighboring pixel, and so on. A pixel may receive an error term from more than one neighboring pixel. The error is accumulated for each pixel and added to the pixel's original intensity value. The pixel's original intensity value plus the accumulated error (if any) is 30 compared to a threshold value that has been specified for the print location corresponding to the pixel. If the intensity value (including any error) is greater than the threshold, then a dot will be printed at that print location; if the intensity value (including any error) is not greater than the threshold, a dot will not be printed. In either case, the difference between the intensity 35 value that is assigned (either zero or 255) and the modified image intensity

10032995.102901

(0-255 adjusted for any error) is derived, and this difference is apportioned to selected neighboring pixels.

5 Continuing with reference to Figure 2, in accordance with the present invention, the halftoning step 240 considers the yellow dot placement after the placement of cyan and magenta dots has been determined.

Significantly, yellow dot placement is dependent on placement of the cyan and magenta dots. The present invention determines when it is appropriate to overlap a yellow dot with a cyan dot or with a magenta dot, and when it is 10 not appropriate to do so. For example, cyan and yellow dot overlap is justified if a green color tone is desired, and magenta and yellow dot overlap is justified if a red color is desired. In a three color printer in which there is no black color ink, the overlap of cyan, magenta and yellow may be justified to produce a composite black color.

15 While the present invention is described for the placement of yellow dots dependent on the placement of cyan and magenta dots, it is understood that the present invention can be generally applied to the placement of dots of a third color dependent on the placement of dots of a first color and the 20 placement of dots of a second color. It is also understood that the present invention can be extended for use with more than three colors.

Figure 3 is a flowchart of one embodiment of the general method 300 implemented in accordance with the present invention. Method 300 can be 25 implemented on computer system 10 or on printer 20 (Figure 1), or some aspects of method 300 can be implemented on computer system 10 while other aspects are implemented on printer 20.

In step 310 of Figure 3, the positions in a printed image for a plurality 30 of first color dots and the positions in the printed image for a plurality of second color dots are determined. In one embodiment, the first color and the second color are cyan and magenta (or like colors).

In step 320, positions in the printed image for a plurality of third color 35 dots are then determined. In one embodiment, the third color is yellow or a like color. Thus, according to the present invention, the positions for the third

TO6201-56625007

color dots are dependent on the positions of the first color dots and the positions of the second color dots. The decision on where to place third color dots is thus made after, rather than together with, the decision on where to place first color dots and second color dots.

5

In accordance with the present invention, third color (e.g., yellow) dot placement is decided dependent on the placement of the first color (e.g., cyan) and second color (e.g., magenta) dots; however, decisions regarding the placement of yellow dots are not made jointly with decisions about the placement of cyan and magenta dots. Instead, decisions about yellow dot placement are delayed until after decisions are made about the placement of the cyan and magenta dots. The placement of cyan and magenta dots is not changed to accommodate yellow dots. Rather, yellow dot placement is decided on the basis of when overlap of a yellow dot with a cyan and/or magenta dot is justified. As a result of these improvements, the complexity of the computations, and the computational resources required for the computations, are not unduly increased.

10

By placing the yellow dots after, but dependent on, the placement of the cyan and magenta dots, superior color smoothness with reduced color fluctuation is achieved by the present invention. The present invention reduces the number of instances in which interference occurs between a yellow dot and a cyan dot (this would produce a green dot) and between a yellow dot and a magenta dot (this would produce a red dot), creating a more pleasing color pattern.

15

Figure 4 is a flowchart of one embodiment of a method 400 for considering yellow dot placement dependent on cyan and magenta dot placement in accordance with the present invention. Although described for four colors in particular (cyan, magenta, yellow and black), it is appreciated that the method 400 can be implemented for different colors, and that method 400 can be implemented for more than four colors. Method 400 can be implemented on computer system 10 or on printer 20 (Figure 1), or some aspects of method 400 can be implemented on computer system 10 while other aspects are implemented on printer 20.

20

25

30

TO6201 5662001

In step 410 of Figure 4, the RGB image converted to CMYK color space is received for each pixel (as in step 230 of Figure 2). Also, for each potential print location, the threshold value (Y_{th}) is specified for the color yellow. In steps 412, 414, 416 and 418, the intensity values are determined

5 for the colors cyan, magenta, yellow and black, respectively. At this point in method 400, the intensity values for these colors are represented as 8 bits per color, and so the intensity values are halftoned (converted to binary values) as described above (refer to step 240 of Figure 2).

10 In accordance with the present embodiment of the present invention, the cyan (C), magenta (M) and yellow (Y) planes are halftoned in a dependent manner using an error diffusion technique. Using a known error diffusion technique in combination with the method of the present invention introduced herein, modified input values C_m , M_m , and Y_m are determined for

15 each print location (or pixel) by including the error(s) (C_e , M_e , and Y_e , respectively) accumulated from the processing of neighboring pixels. For example, $C_m = C + C_e$, where C_e is the accumulated error. In the case in which a pixel is the first pixel to be processed, the error term may be set to zero or to a low level random value.

20 In the present embodiment, the color black is halftoned independently of the C, M and Y planes; however, in an alternate embodiment, the black plane can be halftoned with the C, M and Y planes in a dependent manner.

25 In step 420 of Figure 4, based on the values of C, C_m , M and M_m , a decision is made whether to place a cyan dot, magenta dot, both a cyan and a magenta dot, or neither a cyan nor a magenta dot at the current print location. This decision can be made using a known technique, such as the technique described in US Patent 5,949,965 (Gondek) referenced

30 previously herein. Another technique for making this decision is described in US Patent 6,057,933 by Kevin R. Hudson et al. and entitled "Table Based Fast Error Diffusion Halftoning Technique," issued May 2, 2000, assigned to the assignee of the present invention and hereby incorporated by reference. Other techniques can be used.

The remaining steps of method 400 are concerned with a decision about whether or not to place a yellow dot at the current print location, dependent on the decision of whether or not a cyan dot and/or a magenta dot has been placed at the current print location. There are four cases that

5 need to be considered for each print location: 1) neither a cyan nor a magenta dot has been placed; 2) only a cyan dot has been placed; 3) only a magenta dot has been placed; and 4) both a cyan dot and a magenta dot have been placed.

10 In step 432 of Figure 4, the determination is made with regard to whether a cyan and/or a magenta dot has been placed at the current print location (that is, cases 2, 3 and 4 above). If so, method 400 proceeds to step 434; otherwise, method 400 proceeds to step 450.

15 In step 434, the determination is made with regard to whether only a cyan dot has been placed at the current print location. If so, method 400 proceeds to step 442; otherwise, method 400 proceeds to step 436. In step 436, it is determined whether only a magenta dot has been placed at the current print location. If so, method 400 proceeds to step 442; otherwise, 20 method 400 proceeds to step 444. It is worth noting that the determination of whether a magenta dot has been placed can be made before or simultaneously with the determination of whether a cyan dot has been placed.

25 In step 442, the determination has been made that only a cyan dot or only a magenta dot has been placed at the current print location (e.g., cases 2 and 3 above). Therefore, a yellow dot may be placed at that location, depending on whether or not additional conditions are satisfied. Any error is diffused to selected neighboring pixels. These additional conditions are 30 described in conjunction with Figure 5, below.

In step 444, the determination has been made that both a cyan dot and a magenta dot have been placed at the current print location (e.g., case 4 above). In this case, printing a yellow dot would result in a composite black dot. With a four color printer, as in the present embodiment, a composite black dot is generally undesirable and the halftoning of the black

10032695-102901

plane (step 418) takes care of instances in which a black dot is needed. As a result, a yellow dot is not placed when both a cyan dot and a magenta dot have been placed at the current print location. Any error is diffused to selected neighboring pixels.

5

In step 450, the determination has been made that neither a cyan dot nor a magenta dot have been placed at the current print location (e.g., case 1 above). Thus, a yellow dot can be placed without interfering with a cyan dot or a magenta dot. In this case, the determination of whether or not to place a yellow dot at the current print location is made by comparing the modified yellow input value (Y_m) to a specified threshold.

In the present embodiment of the present invention, Y_m is limited to a certain specified range of values, and so Y_m is "clipped" (reduced in value)

15 by an amount needed to put Y_m in that range. This is done to prevent the accumulated error (Y_e) from growing without limit. That is, as described above, there may be instances in which, using a conventional error diffusion technique, a yellow dot may be placed because Y_m is above Y_{th} but, using the method of the present invention, the decision is made to not print the yellow dot. The error term arising from this decision is diffused to neighboring pixels. At another pixel subsequently processed, Y_m may again be above Y_{th} , but again the method of the present invention results in the yellow dot not being printed at that location, and again the error is diffused. Therefore, because the decision to print a yellow dot is deferred one or more time, the accumulated error arising from each decision would continue to grow unless it is limited. In addition, unless Y_m is limited, decisions may be made to print a yellow dot in several adjacent or proximate locations before Y_m is ultimately reduced to a value less than Y_{th} , manifesting a yellow saturation effect.

20

25 Therefore, in step 450, Y_m is clipped to a specified range in order to prevent yellow saturation artifacts from manifesting a dominating yellow hue that would occur if the clipping was not performed. In the present embodiment, the range of values defined for Y_m is [-128, 255+128].

30

35

In step 460, Y_m is compared to Y_{th} . In the present embodiment, if Y_m is greater than or equal to the threshold, method 400 proceeds to step 462, and a yellow dot is placed. If Y_m is less than the threshold, method 400 proceeds to step 464, and no yellow dot is placed. In both cases, any error 5 is diffused to selected neighboring pixels.

Figure 5 is a flowchart of one embodiment of a method 442 for 10 considering yellow dot placement with cyan dot placement in accordance with the present invention. Although described for the case in which a cyan dot has been placed, method 442 is equally applied to the case in which a magenta dot has been placed.

In step 434, as described above, only a cyan dot has been placed. In 15 step 510, in the present embodiment, a determination is made whether the initial values of Y and C (that is, the intensity values of yellow and cyan without including any accumulated error), when added together, are less than 255. If $C + Y$ is less than 255, then there is not more than 100 percent fill in the input tone with the cyan and yellow planes considered together. As a result, because the cyan dot has already been placed, a yellow dot is not 20 placed and any error is diffused (step 512). Thus, in accordance with the present invention, if a cyan dot has been placed, and the fill at that print location is not more than 100 percent, then a yellow dot is not placed at that location.

If $C + Y$ is greater than or equal to 255, then there is more than 100 25 percent fill in the input tone, indicating that a green dot may be required. Accordingly, method 442 proceeds to step 520 to allow a decision to be made about whether a green dot is required.

In step 520, if Y_m is greater than C_m , then a yellow dot is placed and any remaining error is diffused to selected neighboring pixels (step 540). Otherwise, method 442 proceeds to step 522.

In step 522, in the present embodiment, the sum of Y_m and C_m is 30 compared to Y_{th} to determine if the sum is substantially greater than the threshold. Specifically, in the present embodiment, the sum of Y_m and C_m ,

minus 255, is compared to Y_{th} . If the sum of Y_m and C_m , minus 255, is greater than Y_{th} , then method 442 proceeds to step 526. Otherwise, no yellow dot is printed and any error is diffused (step 524).

5 In step 526, in the present embodiment, a determination is made with regard to whether the difference between Y_m and C_m is sufficiently small to justify printing a yellow dot. Specifically, in the present embodiment, the determination is made whether $Y_m > C_m$ minus 255. If not, no yellow dot is placed, and any error is diffused (step 528). If so, a yellow dot is placed and 10 any remaining error is diffused (step 530). Thus, as a result of steps 522 and 526, a yellow dot is placed only if the sum of Y_m and C_m is sufficiently large, and the difference between Y_m and C_m is sufficiently small.

15 In summary, embodiments of the present invention provide a method and system thereof that can consider the cyan, magenta and yellow planes together without substantially increasing computational complexity and without consuming significant computational resources. By treating the cyan, magenta and yellow planes dependently, the present invention minimizes color fluctuations in the printed image, resulting in superior color 20 smoothness and improving the quality of the printed image. In accordance with the present invention, instances of undesirable red and green dots can be eliminated, resulting in a smoother pattern in the printed image.

25 The preferred embodiment of the present invention, delayed decision dot placement for plane-dependent CMYK error diffusion, is thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the following claims.