RENTAL LISTING INQUIRIES

Team:

Akash Dobaria

Anamika Paul

Khushbu Durge

Akhauri Prateek Shekhar

Swapnil Sagar

Urvi Patel

Problem Statement

- PROBLEM: Apartment Rental Listing Inquiry
- DATA SOURCE: Kaggle
- EXPECTED OUTPUT: Interest Level (High, Medium, Low)

DATA FIELDS

- **bathrooms:** number of bathrooms
- bedrooms: number of bathrooms
- building id
- created
- description
- display address
- features: a list of features about this apartment
- latitude
- listing id
- longitude
- manager_id
- photos: a list of photo links
- price: in USD
- street address
- interest_level

APPROACH 1:

Selecting only features having quantitative values and initially ignoring categorical values.

	bathrooms	bedrooms	latitude	longitude	price
10	1.5	3	40.7145	-73.9425	3000
10000	1.0	2	40.7947	-73.9667	5465

K-NN Classifier: Precision: 0.57

Recall: 0.49

F-score: 0.52

SVM_RBF_Kernel Classifier:

Precision: 0.63 **Recall**: 0.70

F-score: 0.64

Multinoulli_Naive_Based Classifier:

Precision: 0.58 **Recall**: 0.39

F-score: 0.44

Multinomial Naive Bayes:

Precision: 0.58 **Recall**: 0.39

F-score: 0.44

SVM_Poly_Kernel Classifier: Precision: 0.58

Recall: 0.47

F-score: 0.55

SVM Linear Kernel Classifier: Precision: 0.57

Recall: 0.69

F-score: 0.57

♦ APPROACH 2:

Expanding on the features column. Here, "**features**" contains a list of several attributes corresponding to every listing ID.

Adding each individual attribute as a column to the main data frame and assigning binary values:

- 0- if the listing ID does not contain that feature.
- 1- if the Listing ID contains that feature.

```
10
                                                           10000
          [Doorman, Elevator, Fitness Center, Cats Allow...
100004
          [Laundry In Building, Dishwasher, Hardwood Flo...
100007
                                   [Hardwood Floors, No Fee]
100013
                                                    [Pre-War]
100014
100016
          [prewar, elevator, Dogs Allowed, Cats Allowed,...
100020
          [Doorman, Elevator, Pre-War, Terrace, Laundry ...
          [Cats Allowed, Dogs Allowed, Elevator, Laundry...
100026
100027
                               [Dishwasher, Hardwood Floors]
Name: features, dtype: object
```

ADDING NEW FEATURES TO THE TRAINING DATA FRAME

Extracting Individual fields from these features and adding them to the main data frame, the new data frame was a **49000 x 300** matrix which looked something like this:

diplomat s ok	(T)	month & no-fee	common backyard	small dogs	part-time doorman		700 sf	e fireplace	small dog ok on	entrance s	20	private balcony
actual photos	exclusive	private garden	washer/d ryer	outdoor space	!!!!low fee!!!!	1/2 bath	specialis t! harry	outdoor space	washer in unit	jacuzzi	sofa bed in living	hi rise
hi rise	playroom /nursery		gym/fitne ss	pool	1 5 To	renovate d 1 bed		gas included	outdoor areas	service garage	case by case.	roofdeck

Random Forests Precision: 0.92

F-Score: 0.90

Recall.

0.91

Ada Boost

Precision: 0.92

Recall: 0.90 **F-score**: 0.90

Precision: 0.96 **Recall**: 0.95

F-score: 0.95

Logistic Regression

PROBLEMS ENCOUNTERED:

- **High Variance:** Several columns with '0' values
- **Overfitting**: The model highly overfit the training data, giving the above scores
- Classifier did not perform well when the data was split into 70% training, 15% validation and 15% testing data.

ENSEMBLE APPROACH

- Two ensemble approaches used:
 - Random Forest
 - Boosting (Adaboost)
- Two different classifiers for text based and numerical features.
- * Take the weighted mean or the best of both classifiers.
- Classifier for text based features:
 - "Features" and "Description" columns merged
 - Preprocessing: removed HTML tags, delimiters and stop words.
 - **TF-IDF Vectorization** of resulting column and using it in classifier

	Rando	m Fore	est	0
	precision	recall	f1-score	support
0	0.63	0.03	0.05	960
1	0.71	0.99	0.83	8571
2	0.54	0.08	0.14	2807
avg/total	0.67	0.71	0.61	12338

	AdaBoost							
	precision	recall	f1-score	support				
0	0.32	0.17	0.22	960				
1	0.77	0.81	0.79	8571				
2	0.35	0.35	0.35	2807				
avg/total	0.64	0.66	0.65	12338				

♦ ENSEMBLE APPROACH

- Classifier for numerical features:
 - Features used: bathrooms, bedrooms, display_address, latitude, longitude, manager_id, No_of_photos, price
 - Every listing has certain number of photos. Added a new column **number_of_photos** for each listing.
 - Treat all features as categorical

5	Rando	m Fore	est	0
	precision	recall	f1-score	support
0	0.64	0.15	0.24	960
1	0.74	0.96	0.84	8571
2	0.43	0.16	0.23	2807
avg/total	0.67	0.72	0.65	12338

AdaBoost							
	precision	recall	f1-score	support			
0	0.44	0.3	0.36	960			
1	0.8	0.83	0.81	8571			
2	0.38	0.38	0.38	2807			
avg/total	0.68	0.69	0.68	12338			

HURDLES

- 1. Data is very skewed with the following class distribution: Low Interest Level: 70%; Medium Interest Level: 23%; High Interest Level: 7%
- 2. Training data was split into 75% of the total data and Test data constituted 25% of the entire data.
- 3. Stratified Sampling was used while splitting Training and Test data
- 4. Feature expansion:
 - a. Lots of noise in features column.
 - b. Difficult to identify similar columns like pets allowed, cats/dogs allowed, cats allowed, dogs allowed both in training and testing data-set.
 - c. Number of expanded features not same in training and testing data-set.
 - d. Hence, we moved forward with the ensemble approach.

CONCLUSIONS

- Due to the skewed dataset, the best results could be achieved by the below two classifiers: AdaBoost and Random Forests
- 2. A large number of features in a dataset causes the model to be biased and thus overfits the data.
- 3. High number of features results in overfitting of classifier.
- 4. Dimensionality Reduction (using **Variance Threshold** where the features having high variance are dropped) does not solve overfitting problem.
- 5. It is efficient to convert all categorical data to quantitative values to better analyse and classify. **For example**: The columns "Latitude" and "Longitude" were converted to numerical codes and the class labels "interest_level" containing categorical values "high", "medium", "Low" were converted to quantitative values "0". "1" and "2".

Thank You

Questions?

