Probabilidade (PPGECD00000001)

Programa de Pós-Graduação em Estatística e Ciência de Dados (PGECD)

Sessão 6

Raydonal Ospina

Departamento de Estatística Universidade Federal da Bahia Salvador/BA

Conjuntos de Borel em R

Consideremos a coleção de todos os intervalos abertos (a, b) de \mathbb{R} , em que a < b. A menor σ -álgebra gerada por esta coleção se chama σ -álgebra de Borel de $\mathbb R$ e a denotamos por $\mathcal{B}(\mathbb{R})$ (em honor ao matemático Francês Félix É. J. Émile Borel).

Definição: σ -álgebra de Borel

$$\mathcal{B}(\mathbb{R}) = \sigma\{(a,b) \subseteq \mathbb{R} : a \le b\}$$

Os elementos de $\mathcal{B}(\mathbb{R})$ são chamados de conjuntos de Borel, Borelianos ou conjuntos Borel mensuráveis.

Para quaisquer $a, b \in \mathbb{R}$ com a < b, os intervalos seguintes são conjuntos de Borel: $[a, b], (a, \infty), (-\infty, b), [a, b), (a, b] \in \{a\}.$ De fato:

Defato:
•
$$[a,b] = \bigcup_{n=1}^{\infty} (a-1/n,b+1/n) \in \mathcal{B}(\mathbb{R}).$$

• $(a,\infty) = \bigcup_{n=1}^{\infty} (a,a+n) \in \mathcal{B}(\mathbb{R}).$
• $(-\infty,b) = \bigcup_{n=1}^{\infty} (b-n,b) \in \mathcal{B}(\mathbb{R}).$
• $[a,\infty) = \bigcap_{n=1}^{\infty} (a-1/n,\infty) \in \mathcal{B}(\mathbb{R}).$
• $(-\infty,b] = \bigcap_{n=1}^{\infty} (-\infty,b+1/n) \in \mathcal{B}(\mathbb{R}).$
• $\{a\} = \bigcap_{n=1}^{\infty} (a-1/n,a+1/n) \in \mathcal{B}(\mathbb{R}).$

•
$$(a, \infty) = \bigcup_{n=1}^{\infty} (a, a+n) \in \mathcal{B}(\mathbb{R}).$$

$$\bullet \ (-\infty,b) = \bigcup_{n=1}^{\infty} (b-n,b) \in \mathcal{B}(\mathbb{R}).$$

•
$$[a,\infty) = \bigcap_{n=1}^{\infty} (a-1/n,\infty) \in \mathcal{B}(\mathbb{R})$$

•
$$(-\infty, b] = \bigcap_{n=1}^{\infty} (-\infty, b+1/n) \in \mathcal{B}(\mathbb{R})$$

•
$$\{a\} = \bigcap_{n=1}^{\infty} (a-1/n, a+1/n) \in \mathcal{B}(\mathbb{R})$$

Raydonal Ospina (UFBA) 2/48

Extensão para \mathbb{R}^n

A σ -álgebra de Borel em \mathbb{R}^n é definida pela σ -álgebra geradora do produto cartesiano,

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots \times \mathcal{B}(\mathbb{R})) = \sigma\{\text{retângulos abertos em } \mathbb{R}^n\}.$$

Nota 1

O produto cartesiano de duas σ -álgebras não é, em geral, uma σ -álgebra de subconjuntos do espaço produto. Devemos aplicar a operação σ (gerador) na coleção para obtermos uma σ -álgebra pois ela deve ser fechada sob complementação e sob uniões contáveis. Se consideramos como contraexemplo o conjunto diagonal em \mathbb{R}^2 :

$$D = \{(x, x) : x \in \mathbb{R}\}.$$

ele é um conjunto de Borel em \mathbb{R}^2 , mas não pode ser escrito como uma união contável de retângulos da forma $A \times B$ com $A, B \in \mathcal{B}(\mathbb{R})$. Prove !!

Raydonal Ospina (UFBA) Probabilidade 3/48

Vetores Aleatórios

Objetivo e Definição

- Estudar o comportamento conjunto de duas ou mais variáveis aleatórias.
- Estender o conceito de variável aleatória de valores reais a variáveis com valores em \mathbb{R}^n .

Definição 1 (Vetor aleatório)

Um vetor aleatório é uma função $\vec{X}:\Omega\to\mathbb{R}^n$ tal que, para qualquer conjunto de Borel B em $\mathcal{B}(\mathbb{R}^n)$, temos:

$$\vec{X}^{-1}(B) \in \mathcal{F}$$
.

Aqui, \vec{X} está definido em um espaço de probabilidade (Ω, \mathcal{F}, P) , com:

- Ω: Espaço amostral,
- F: σ-álgebra de eventos,
- P: Medida de probabilidade.

Representação e Coordenadas

Dado que \vec{X} é uma função de Ω para \mathbb{R}^n , ela pode ser representada como:

$$\vec{X}=(X_1,\ldots,X_n),$$

em que

$$\vec{X}(w) = (X_1(w), X_2(w), \dots, X_n(w)), \quad \forall w \in \Omega,$$

i.e. cada coordenada $X_i:\Omega\to\mathbb{R}$, para $i=1,\ldots,n$, é uma variável aleatória univariada.

Proposição 1

Uma função $\vec{X} = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$ é um vetor aleatório se, e somente se, cada coordenada X_i for uma variável aleatória.

Prova 1

Se (X_1,\ldots,X_n) é vetor aleatório, a imagem inversa de qualquer conjunto de Borel $B\in\mathcal{B}(\mathbb{R}^n)$ pertence a \mathcal{F} . Em particular, para $B=B_1\times\Omega\times\dots\times\Omega$, a imagem inversa é $X_1^{-1}(B_1)$. Assim, X_1 é uma variável aleatória. O mesmo argumento vale para cada X_i . Agora, se cada X_i é uma variável aleatória, definimos a família $B=\{B\in\mathcal{B}(\mathbb{R}^n): \vec{X}^{-1}(B)\in\mathcal{F}\}$, e B é uma σ -álgebra, pois

$$\mathcal{B}(\mathbb{R}) \times \cdots \times \mathcal{B}(\mathbb{R}) \subseteq \mathcal{B} \subseteq \mathcal{B}(\mathbb{R}^n),$$

i.e., $B = \mathcal{B}(\mathbb{R}^n)$, e \vec{X} é vetor aleatório.

4□→ 4ਰ→ 4글→ 4글→ 글 900

Espaço de Probabilidade Gerado

Probabilidade induzida

Dado um vetor aleatório \vec{X} , pode-se definir uma probabilidade induzida $P_{\vec{X}}$ no espaço mensurável $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ da seguinte maneira: para todo $A\in\mathcal{B}(\mathbb{R}^n)$, definimos $P_{\vec{X}}(A)=P(\vec{X}^{-1}(A))$. Por definição de vetor aleatório, tem-se que $\vec{X}^{-1}(A)\in\mathcal{A}$, então $P_{\vec{X}}$ está bem definida.

Ou seja, o vetor $\vec{X}: \Omega \to \mathbb{R}^n$ gera o espaço de probabilidade:

$$(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n),P_{\vec{X}})$$

onde:

- $\mathcal{B}(\mathbb{R}^n)$: σ -álgebra de Borel,
- $P_{\vec{X}}$: Medida de probabilidade induzida por \vec{X} , tal que:

$$P_{\vec{X}}(B) = P(\vec{X} \in B), \quad \forall B \in \mathcal{B}(\mathbb{R}^n).$$

 $P_{\vec{x}}$ é chamada de **distribuição do vetor aleatório**.

Um evento é Boreliano em \mathbb{R}^n pertence a menor σ -álgebra que contem todas regiões da seguinte forma: $C_{\vec{a}} = \{(X_1, X_2, \dots, X_n) : X_i \leq a_i, 1 \leq i \leq n\}.$

6/48

Raydonal Ospina (UFBA) Probabilidade

Variáveis Aleatórias Multidimensionais

Muitas vezes estamos interessados na descrição probabilística de mais de um característico numérico de um experimento aleatório. Por exemplo, podemos estar interessados na distribuição de alturas e pesos de indivíduos de uma certa classe. Para tanto precisamos estender a definição de variável aleatória para o caso multidimensional.

Definição 2

Seja (Ω, \mathcal{A}, P) um espaço de probabilidade. Uma função $\vec{X} : \Omega \to R^n$ é chamada de um vetor aleatório se para todo evento B Boreliano de \mathbb{R}^n , $\vec{X}^{-1}(B) \in \mathcal{A}$.

Onde um evento é Boreliano em \mathbb{R}^n pertence a menor σ -álgebra que contem todas regiões da seguinte forma: $C_{\vec{a}} = \{(X_1, X_2, \dots, X_n) : X_i \leq a_i, 1 \leq i \leq n\}.$

Dado um vetor aleatório \vec{X} , pode-se definir uma probabilidade induzida $P_{\vec{X}}$ no espaço mensurável $(\mathbb{R}^n,\mathcal{B}^n)$ da seguinte maneira: para todo $A\in\mathcal{B}^n$, definimos $P_{\vec{X}}(A)=P(\vec{X}^{-1}(A))$. Por definição de vetor aleatório, tem-se que $\vec{X}^{-1}(A)\in\mathcal{A}$, então $P_{\vec{X}}$ está bem definida. Para um vetor aleatório \vec{X} , uma maneira simples e básica de

descrever a probabilidade induzida $P_{\vec{\chi}}$ é utilizando sua função de distribuição acumulada conjunta.

7/48

Função de Distribuição Acumulada Conjunta

A medida de probabilidade $P_{\vec{\chi}}$ pode ser estudada usando a função de distribuição conjunta.

Definição 3

A função de distribuição acumulada conjunta de um vetor aleatório \vec{X} , representada por $F_{\vec{x}}$ ou simplesmente por F, é definida por

$$F_{\vec{X}}(\vec{x}) = P(C_{\vec{x}})$$

= $P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n), \forall \vec{x} \in \mathbb{R}^n.$

Propriedades da Função de Distribuição Acumulada Conjunta e Cálculo da Probabilidade em um Hipercubo *n*-dimensional

Consideremos um vetor aleatório $\vec{X}=(X_1,X_2,\ldots,X_n)$ definido em um espaço de probabilidade, com função de distribuição acumulada conjunta dada por:

$$F_{\vec{X}}(\vec{x}) = P(X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n), \quad \forall \vec{x} \in \mathbb{R}^n.$$

A função $F_{\vec{x}}$ satisfaz as seguintes propriedades:

F1. (Monotonicidade) Se $x_i \leq y_i$, $\forall i \leq n$, então $F_{\vec{X}}(\vec{X}) \leq F_{\vec{X}}(\vec{Y})$.

Prova: Para cada i, $x_i \le y_i$ implica que o evento $\{X_i \le x_i\}$ está contido em $\{X_i \le y_i\}$, ou seja:

Considerando a interseção desses eventos para todos os i:

$$C_{\vec{x}} = \bigcap_{i=1}^n \{X_i \leq x_i\} \subseteq \bigcap_{i=1}^n \{X_i \leq y_i\} = C_{\vec{y}}.$$

Como $C_{\vec{x}} \subseteq C_{\vec{v}}$ e a probabilidade é uma medida não negativa e aditiva, temos:

$$P(C_{\vec{x}}) \leq P(C_{\vec{v}}),$$

o que implica:

$$F_{\vec{X}}(\vec{X}) \leq F_{\vec{X}}(\vec{y}).$$

F2. (Continuidade à Direita em cada variável (coordenada)) A função $F_{\vec{X}}(\vec{x})$ é contínua à direita em cada uma das variáveis, ou seja, para cada $i \leq n$ e para toda sequência $y_m \downarrow x_i$ (com $y_m > x_i$ e $y_m \to x_i$):

$$\lim_{V_m \downarrow X_i} F_{\vec{X}}(x_1, \dots, x_{i-1}, y_m, x_{i+1}, \dots, x_n) = F_{\vec{X}}(\vec{x}).$$

Prova: Considere uma sequência y_m tal que $y_m \downarrow x_i$. Para cada m, temos:

$$\{X_i \leq x_i\} \subseteq \{X_i \leq y_m\}.$$

Assim, os eventos $C_m = \bigcap_{j \neq i} \{X_j \leq x_j\} \cap \{X_i \leq y_m\}$ formam uma sequência decrescente de conjuntos $C_{m+1} \subset C_m$.

Pela continuidade da medida de probabilidade em sequências decrescentes de conjuntos (continuidade monótona), temos:

$$\lim_{m\to\infty} P(C_m) = P\left(\bigcap_{j\neq i} \{X_j \leq x_j\} \cap \{X_i \leq x_i\}\right) = F_{\vec{X}}(\vec{x}).$$

Portanto:

$$\lim_{y_m \downarrow x_i} F_{\vec{X}}(x_1, \dots, x_{i-1}, y_m, x_{i+1}, \dots, x_n) = F_{\vec{X}}(\vec{x}).$$

F3a. (Comportamento em $x_i \to -\infty$) Se para algum $i \le n, x_i \to -\infty$, então:

$$\lim_{x_i\to-\infty}F_{\vec{X}}(\vec{x})=0.$$

Prova: À medida que $x_i \to -\infty$, o evento $\{X_i \le x_i\}$ se torna o conjunto vazio, pois X_i não pode assumir valores menores do que $-\infty$. Assim, a interseção dos eventos Δ

$$C_{\vec{X}} = \bigcap_{i=1}^n \{X_i \le x_i\} = \emptyset.$$

Como a probabilidade do conjunto vazio é zero: $F_{\vec{x}}(\vec{x}) = P(\emptyset) = 0$. Portanto:

$$\lim_{x_i \to -\infty} F_{\vec{X}}(\vec{x}) = 0.$$

F3b. (Comportamento em $x_i \to \infty$) Se $x_i \to \infty$, então:

$$\lim_{x_i \to \infty} F_{\vec{X}}(\vec{x}) = F_{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n).$$

Prova: À medida que $x_i \to \infty$, o evento $\{X_i \le x_i\}$ se torna o espaço inteiro, pois $X_i < \infty$ é sempre verdadeiro. Assim, a restrição sobre X_i é removida, e temos:

$$\bigcap_{j=1}^{n} \{X_j \leq x_j\} = \left(\bigcap_{j \neq i} \{X_j \leq x_j\}\right) \cap \{X_i \leq x_i\} \xrightarrow{x_i \to \infty} \bigcap_{j \neq i} \{X_j \leq x_j\}.$$

Portanto, a função de distribuição tende a:

$$\lim_{x_{i}\to\infty} F_{\vec{X}}(\vec{x}) = P\left(\bigcap_{j\neq i} \{X_{j} \leq x_{j}\}\right) = F_{X_{1},...,X_{i-1},X_{i+1},...,X_{n}}(x_{1},...,x_{i-1},x_{i+1},...,x_{n}).$$

Isso mostra que a função de distribuição conjunta de n variáveis tende para a função de distribuição conjunta das n-1 variáveis restantes quando $x_i \to \infty$.

Observação: Em particular, quando todos os $x_i \to \infty$, temos:

$$\lim_{\vec{x}\to\infty}F_{\vec{X}}(\vec{x})=1,$$

pois estamos considerando o evento certo (todo o espaço de probabilidade).

Raydonal Ospina (UFBA) Probabilidade 11/48

O próximo exemplo mostra que para $n \ge 2$ as propriedades F1, F2, e F3 não são suficientes para que F seja uma função de distribuição.

Exemplo 1

Seja $F_0: \mathbb{R}^2 \to \mathbb{R}$ uma função definida no plano tal que $F_0(x,y)=1$ se $x\geq 0, y\geq 0$, e $x+y\geq 1$, e $F_0(x,y)=0$, caso contrário.

F1. Se $x_1 \le x_2$ e $y_1 \le y_2$, então:

$$F_0(x_1,y_1) \leq F_0(x_2,y_2)$$

- Caso 1: Se $F_0(x_1, y_1) = 0$, então $F_0(x_1, y_1) \le F_0(x_2, y_2)$, pois $F_0(x_2, y_2) \ge 0$.
- Caso 2: Se $F_0(x_1, y_1) = 1$, então temos que $x_1 \ge 0$, $y_1 \ge 0$ e $x_1 + y_1 \ge 1$.

Como $x_1 \le x_2$ e $y_1 \le y_2$, temos que: $x_2 \ge x_1 \ge 0$, $y_2 \ge y_1 \ge 0$ e $x_2 + y_2 \ge x_1 + y_1 \ge 1$. Portanto, $F_0(x_2, y_2) = 1$. Assim, em ambos os casos, $F_0(x_1, y_1) \le F_0(x_2, y_2)$, o que prova a propriedade F1.

F2. Analisemos a continuidade pela direita em x:

- Se x₀ < 0: Como F₀(x₀, y) = 0 para qualquer y, e F₀(x, y) = 0 para x próximo de x₀, a função é constante e, portanto, contínua.
- Se $x_0 + y \ge 1$: Então $F_0(x, y) = 1$ para x próximo de x_0 à direita, mantendo y fixo. Portanto, o limite pela direita é $1 = F_0(x_0, y)$.
- Se $x_0 + y < 1$: Como $x \downarrow x_0$, mas $x_0 + y < 1$, $F_0(x, y) = 0$, e $F_0(x_0, y) = 0$. Logo, a função é contínua pela direita.

O mesmo raciocínio vale para y. Portanto, $F_0(x,y)$ é contínua pela direita em cada variável, comprovando a propriedade F2.

F3. Quando $x \to -\infty$ ou $y \to -\infty$, temos:

$$\lim_{x\to -\infty} F_0(x,y) = \lim_{y\to -\infty} F_0(x,y) = 0$$

Como $F_0(x,y)=0$ para x<0 ou y<0, quando $x\to-\infty$ ou $y\to-\infty$, a função tende a zero. Agora, para $x\to\infty$, mantendo y fixo e $y\ge0$: Se $y\ge0$ e $x+y\ge1$, então $F_0(x,y)=1$. Logo, $\lim_{x\to\infty}F_0(x,y)=1$ para $y\ge0$. Similarmente para $y\to\infty$. Portanto, a função F_0 possui limites adequados nos infinitos, satisfazendo a propriedade F3.

É claro que F1, F2, e F3 são satisfeitas, mas F_0 não é função de distribuição de nenhum vetor aleatório (X,Y). De fato, calculemos a probabilidade do retângulo bidimensional

$$0 \le P(0 < X \le 1, 0 < Y \le 1)$$

= $F_0(1, 1) - F_0(1, 0) - F_0(0, 1) + F_0(0, 0)$
= $1 - 1 - 1 + 0 = -1$

F4. (Cálculo da Probabilidade em um Hipercubo n-dimensional) Calcular a probabilidade de um evento retangular definido em termos de um vetor aleatório bidimensional $\vec{X} = (X_1, X_2)$ e generalizar o resultado para um vetor aleatório n-dimensional $\vec{X} = (X_1, X_2, \dots, X_n)$.

Prova: Caso Bidimensional Considere um espaço de probabilidade (Ω, \mathcal{F}, P) e um vetor aleatório $\vec{X}: \Omega \to \mathbb{R}^2$. Definimos os seguintes eventos: Para i=1,2: $A_i(x_i)=\{X_i \leq x_i\}$; $B_i=A_i(y_i)\setminus A_i(x_i)=\{x_i < X_i \leq y_i\}$, com $x_i < y_i$ As probabilidades são:

$$P(B_i) = F_{X_i}(y_i) - F_{X_i}(x_i)$$

O evento retangular de interesse é:

$$B = B_1 \cap B_2 = \{x_1 < X_1 \le y_1, \ x_2 < X_2 \le y_2\}$$

Logo

$$P(B) = [F_{\vec{X}}(y_1, y_2) - F_{\vec{X}}(x_1, y_2)] - [F_{\vec{X}}(y_1, x_2) - F_{\vec{X}}(x_1, x_2)]$$

Para mostrar isto, podemos reescrever o evento ${\it B}$ em termos de eventos cumulativos (Borelianos convenientes) da seguinte forma pelo princípio da inclusão-exclusão para eventos :

$$B = (X_1 \leq y_1, X_2 \leq y_2) \setminus [(X_1 \leq x_1, X_2 \leq y_2) \cup (X_1 \leq y_1, X_2 \leq x_2)] \cup (X_1 \leq x_1, X_2 \leq x_2)$$

Utilizando o princípio da inclusão-exclusão, podemos escrever:

$$P(B) = P(X_1 \leq y_1, X_2 \leq y_2) - P(X_1 \leq x_1, X_2 \leq y_2) - P(X_1 \leq y_1, X_2 \leq x_2) + P(X_1 \leq x_1, X_2 \leq x_2) + P(X_1 \leq x$$

e substituindo as probabilidades pelas funções de distribuição acumulada conjunta temos:

$$P(B) = F_{\vec{X}}(y_1, y_2) - F_{\vec{X}}(x_1, y_2) - F_{\vec{X}}(y_1, x_2) + F_{\vec{X}}(x_1, x_2)$$

Podemos reorganizar a expressão de forma que

$$P(B) = [F_{\vec{X}}(y_1, y_2) - F_{\vec{X}}(x_1, y_2)] - [F_{\vec{X}}(y_1, x_2) - F_{\vec{X}}(x_1, x_2)]$$

Generalizemos para o caso *n*-dimensional:

Consideremos um vetor aleatório $\vec{X} = (X_1, X_2, \dots, X_n)$. Para cada $i = 1, 2, \dots, n$, definimos: $A_i(x_i) = \{X_i \le x_i\}$, $B_i = A_i(y_i) \setminus A_i(x_i) = \{x_i < X_i \le y_i\}$, com $x_i < y_i$. Desta forma, o evento retangular é:

$$B = \bigcap_{i=1}^{n} B_i = \{x_i < X_i \le y_i, \ \forall i = 1, 2, \dots, n\}$$

Precisamos mostrar que

$$P(B) = \sum_{\vec{\delta} \in \{0,1\}^n} (-1)^{\delta_1 + \delta_2 + \dots + \delta_n} F_{\vec{X}}(t_1, t_2, \dots, t_n)$$

Para cada i: $t_i = x_i$ se $\delta_i = 1$ e $t_i = y_i$ se $\delta_i = 0$ em quer a soma é sobre todos os 2^n vetores binários $\vec{\delta} = (\delta_1, \delta_2, \dots, \delta_n)$.

Note que $B_i = \{X_i \le y_i\} \setminus \{X_i \le x_i\}$ Portanto, B pode ser escrito como:

$$B = \left(\bigcap_{i=1}^{n} \{X_i \leq y_i\}\right) \setminus \left(\bigcup_{S \subseteq \{1,\dots,n\}, S \neq \emptyset} \left(\bigcap_{i \in S} \{X_i \leq x_i\} \cap \bigcap_{j \notin S} \{X_j \leq y_j\}\right)\right)$$

Se aplicamos o princípio da inclusão-exclusão para a probabilidade da união de eventos. A probabilidade do evento B é:

$$P(B) = P\left(\bigcap_{i=1}^{n} \{X_{i} \leq y_{i}\}\right) - \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} P\left(\bigcap_{l=1}^{k} \{X_{i_{l}} \leq x_{i_{l}}\} \cap \bigcap_{j \notin \{i_{1}, \dots, i_{k}\}} \{X_{j} \leq y_{j}\}\right)$$

Cada termo da soma pode ser escrito como uma função de distribuição acumulada conjunta avaliada em pontos específicos: Para cada subconjunto $S \subseteq \{1,2,\ldots,n\}$ definimos $t_i = x_i$ se $i \in S$ e $t_i = y_i$ se $i \notin S$. O tamanho do subconjunto $S \in |S|$ Assim, a probabilidade pode ser escrita como:

$$P(B) = \sum_{S \subseteq \{1,2,...,n\}} (-1)^{|S|} F_{\vec{X}}(t_1,t_2,...,t_n)$$

em que a soma é sobre todos os 2^n subconjuntos de $\{1, 2, ..., n\}$.

Nota sobre os sinais: O expoente |S| em $(-1)^{|S|}$ provém da aplicação do princípio da inclusão-exclusão, onde cada interseção de k eventos é somada ou subtraída de acordo com $(-1)^k$.

Para n = 2, os subconjuntos S são:

1. $S = \emptyset$, |S| = 0, $t_i = y_i$ para todos i:

$$(-1)^0 F_{\vec{X}}(y_1, y_2) = +F_{\vec{X}}(y_1, y_2)$$

2. $S = \{1\}, |S| = 1, t_1 = x_1, t_2 = y_2$:

$$(-1)^1 F_{\vec{X}}(x_1, y_2) = -F_{\vec{X}}(x_1, y_2)$$

3. $S = \{2\}, |S| = 1, t_1 = y_1, t_2 = x_2$:

$$(-1)^1 F_{\vec{X}}(y_1, x_2) = -F_{\vec{X}}(y_1, x_2)$$

4. $S = \{1, 2\}, |S| = 2, t_i = x_i \text{ para todos } i$:

$$(-1)^2 F_{\vec{x}}(x_1, x_2) = +F_{\vec{x}}(x_1, x_2)$$

Somando todos os termos:

$$P(B) = F_{\vec{X}}(y_1, y_2) - F_{\vec{X}}(x_1, y_2) - F_{\vec{X}}(y_1, x_2) + F_{\vec{X}}(x_1, x_2)$$

Que coincide com o resultado obtido no caso bidimensional.

Raydonal Ospina (UFBA)

Seguindo a mesma lógica, para *n* dimensões, a probabilidade é:

$$P(B) = \sum_{\vec{\delta} \in \{0,1\}^n} (-1)^{\delta_1 + \delta_2 + \dots + \delta_n} F_{\vec{\chi}}(t_1, t_2, \dots, t_n)$$

em que: $\vec{\delta}=(\delta_1,\delta_2,\ldots,\delta_n)$ é um vetor binário representando se usamos x_i ou y_i em cada posição. Para cada i, temos $t_i=x_i$ se $\delta_i=1$, $t_i=y_i$ se $\delta_i=0$ e o sinal $(-1)^{\delta_1+\delta_2+\ldots+\delta_n}$ resulta da aplicação do princípio da inclusão-exclusão.

Assim, a probabilidade do evento retangular B em n dimensões é expressa em termos das funções de distribuição acumulada conjunta avaliadas em todos os pontos possíveis combinando x_i e y_i , com os sinais determinados pelo número de x_i na combinação.

Note que se a propriedade F4 é válida temos que

$$P(x_1 < X_1 \le x_1, \dots, x_n < X_n \le y_n) = \sum_{\vec{\delta} \in \{0,1\}^n} (-1)^{\delta_1 + \delta_2 + \dots + \delta_n} F_{\vec{X}}(t_1, t_2, \dots, t_n) \ge 0$$

Distribuição marginal

A função de distribuição acumulada de X_i que se obtém a partir da função acumulada conjunta de

 X_1,\ldots,X_n fazendo $x_j\to\infty$ para $j\neq i$ é conhecida como função de distribuição marginal de X_i .

Exemplo

Seja $F_{X_1,X_2}(x_1,x_2)$ a função de distribuição acumulada conjunta de uma variável aleatória normal bivariada com vetor de médias $\mu=(0,0)$ e matriz de covariância:

 $\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$, onde $\rho = 0.5$ é o coeficiente de correlação. Para encontrar a distribuição marginal acumulada de X_1 , usamos o limite:

$$F_{X_1}(x_1) = \lim_{x_2 \to \infty} F_{X_1, X_2}(x_1, x_2).$$

A distribuição acumulada conjunta é:

$$F_{X_1,X_2}(x_1,X_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(u^2 - 2\rho uv + v^2\right)\right) du \, dv.$$

Tomando o limite $x_2 \to \infty$, temos:

$$F_{X_1}(x_1) = \int_{-\infty}^{x_1} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du,$$

que é a função de distribuição acumulada da normal padrão univariada:

$$F_{X_1}(x_1)=\Phi(x_1),$$

onde $\Phi(x)$ é a CDF da normal padrão. Analogamente, para a marginal acumulada de X_2 :

$$F_{X_2}(x_2) = \lim_{x_1 \to \infty} F_{X_1, X_2}(x_1, x_2).$$

Tomando o limite, obtemos:

$$F_{X_2}(x_2)=\Phi(x_2).$$

Tipos de Vetores Aleatórios

Os tipos discretos e contínuos de variáveis aleatórias têm os seguintes análogos no caso multivariado.

(a) Se \vec{X} for um vetor aleatório discreto, ou seja assumir um número enumerável de valores $\{\vec{x}_1, \vec{x}_2, \dots, \}$, podemos definir a função:

$$f_{\vec{X}}(\vec{x}) = f(x_1, x_2, \dots, x_n) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n),$$

(chamada de função probabilidade de massa conjunta), tal que

- $f(\vec{x}_i) \geq 0$. (não negatividade).
- $\sum_{i=1}^{\infty} f(\vec{x}_i) = 1. \text{ (normalização)}.$

Neste caso, pode-se definir a função probabilidade de massa marginal de X_i como sendo

$$f_{X_i}(x_i) = \sum_{x_1} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_n} f(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n).$$

A função de distribuição acumulada conjunta pode ser obtida a partir da função de probabilidade conjunta:

$$F_{\vec{X}}(\vec{x}) = P(X_1 \leq x_1, \dots, X_n \leq x_n) = \sum_{t_1 \leq x_1} \dots \sum_{t_n \leq x_n} f(t_1, \dots, t_n).$$

Exemplo: Função de Probabilidade Conjunta

Considere a função:

$$f(x,y) = \frac{1}{4}$$
, para $x, y \in \{1,2\}$.

Verificamos as propriedades:

- Não negatividade: $f(x, y) \ge 0$.
- Normalização:

$$\sum_{x=1}^{2} \sum_{y=1}^{2} f(x,y) = \sum_{x=1}^{2} \sum_{y=1}^{2} \frac{1}{4} = \frac{4}{4} = 1.$$

Logo, f(x, y) é uma função de probabilidade conjunta e a correspondente função de distribuição conjunta é:

$$F(x,y) = \sum_{u \le x} \sum_{v \le y} f(u,v). = \begin{cases} 0, & \text{se } x < 1 \text{ ou } y < 1, \\ \frac{1}{4}, & \text{se } 1 \le x < 2 \text{ e } 1 \le y < 2, \\ \frac{2}{4}, & \text{se } 1 \le x < 2 \text{ e } y \ge 2, \\ \frac{2}{4}, & \text{se } x \ge 2 \text{ e } 1 \le y < 2, \\ 1, & \text{se } x \ge 2 \text{ e } y \ge 2. \end{cases}$$

(b) Seja $\vec{X} = (X_1, \dots, X_n)$ um vetor aleatório e F sua função de distribuição. Se existe uma função $f(x_1, \dots, x_n) > 0$ tal que

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} f(t_1,\ldots,t_n) dt_1 \ldots dt_n,$$

$$\forall (x_1,\ldots,x_n) \in \mathbb{R}^n,$$

então f é chamada de densidade conjunta das variáveis aleatórias X_1,\ldots,X_n , e neste caso, dizemos que \vec{X} é (absolutamente) contínuo. Neste caso, define-se a densidade marginal de X_i como sendo

$$f_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} \int f(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n.$$

Comentário: Distribuição condicional de X dada Y discreta

Seja X uma variável aleatória no espaço de probabilidade (Ω, \mathcal{A}, P) , e seja A um evento aleatório tal que P(A) > 0. Usando o conceito de probabilidade condicional, podemos definir a distribuição condicional de X dado o evento A por

$$P(X \in B|A) = \frac{P([X \in B] \cap A)}{P(A)},$$

para B boreliano. Pode-se verificar facilmente que isto define uma probabilidade nos borelianos verificando-se os axiomas de Kolmogorov. Podemos interpretar a distribuição condicional de X dado A como a nova distribuição que se atribui a X quando sabe-se da ocorrência do evento A. A função de distribuição associada à distribuição condicional é chamada função distribuição condicional de X dado A:

$$F_X(x|A) = P(X \le x|A).$$

Agora suponhamos que os eventos aleatórios A_1, A_2, \ldots formem uma partição (finita ou enumerável) de Ω . Pelo Teorema da Probabilidade Total, temos

$$P(X \in B) = \sum_{n} P(A_n)P(X \in B|A_n), \forall B \in \mathcal{B},$$

е

$$F_X(x) = P(X \le x) = \sum_n P(A_n)P(X \le x|A_n)$$
$$= \sum_n P(A_n)F_X(x|A_n), \forall x.$$

Em outras palavras, a distribuição de X (resp., função de distribuição) é uma média ponderada da distribuição condicional (resp., função de distribuição condicional) de X dado A_n , onde os pesos são as probabilidades dos membros A_n da partição.

Consideremos agora o caso em que a partição do espaço amostral é gerada por uma variável aleatória discreta. Para tanto, seja Y uma variável aleatória discreta em (Ω, \mathcal{A}, P) , tomando somente os valores y_1, y_2, \ldots Então, os eventos $A_n = [Y = y_n]$ formam uma partição de Ω . Neste caso, a distribuição

$$P(X \in B|Y = y_n) = P(X \in B|A_n),$$

para B boreliano, é chamada de distribuição condicional de X dado que $Y = y_n$, e valem as fórmulas

$$P(X \in B) = \sum_{n} P(Y = y_n) P(X \in B | Y = y_n), \ B \text{ boreliano}$$

$$F_X(X) = \sum_{n} P(Y = y_n) F_X(X | Y = y_n).$$

Independência entre Variáveis Aleatórias

Sejam X_1, X_2, \ldots, X_n variáveis aleatórias definidas no mesmo espaço de probabilidade (Ω, \mathcal{A}, P) . Informalmente, as variáveis aleatórias X_i 's são independentes se, e somente se, quaisquer eventos determinados por qualquer grupo de variáveis aleatórias distintas são independentes. Por exemplo, $[X_1 < 5]$, $[X_2 > 9]$, e $0 < X_5 \le 3$ são independentes. Formalmente,

Definição 4

Um conjunto de variáveis aleatórias $\{X_1, \ldots, X_n\}$ é mutuamente independente se, e somente se, para quaisquer eventos borelianos A_1, \ldots, A_n ,

$$P(X_1 \in A_1, \ldots, X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i).$$

O próximo teorema estabelece três critérios para provar que um conjunto de variáveis aleatórias é mutuamente independente.

Teorema 1

As seguintes condições são necessárias e suficientes para testar se um conjunto $\{X_1, \ldots, X_n\}$ de variáveis aleatórias é mutuamente independente:

- (a) $F_{\vec{X}}(\vec{x}) = \prod_{i=1}^{n} F_{X_i}(x_i)$.
- (b) Se \vec{X} for um vetor aleatório discreto,

$$p_{\vec{X}}(\vec{x}) = \prod_{i=1}^n p_{X_i}(x_i).$$

(c) Se \vec{X} for um vetor aleatório contínuo,

$$f_{\vec{X}}(\vec{x}) = \prod_{i=1}^n f_{X_i}(x_i), \forall (x_1,\ldots,x_n) \in \mathbb{R}^n.$$

Demonstração

Para parte (a), note que se $\{X_1, \ldots, X_n\}$ são variáveis aleatórias mutuamente independentes, então

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$$

$$= \prod_{i=1}^n P(X_i \le x_i) = \prod_{i=1}^n F_{X_i}(x_i), \forall (x_1,...,x_n)$$

A prova da suficiência da parte (a) será omitida pois envolve argumentos de teoria da medida. Para parte (b), se $\{X_1, \ldots, X_n\}$ são variáveis aleatórias mutuamente independentes, então

$$p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

= $\prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p_{X_i}(x_i), \forall (x_1,...,x_n)$

Reciprocamente, se a função de probabilidade de massa conjunta fatora e se $\{x_{i1}, x_{i2}, \ldots, x_{in}, \ldots\}$ são os possiveis valores assumidos pela variável aleatória X_i , temos que

$$P(X_{1} \in B_{1}, X_{2} \in B_{2}, ..., X_{n} \in B_{n})$$

$$= \sum_{i:x_{1i} \in B_{1}} ... \sum_{i:x_{ni} \in B_{n}} P(X_{1} = x_{1i}, ..., X_{n} = x_{ni})$$

$$= \sum_{i:x_{1i} \in B_{1}} ... \sum_{i:x_{ni} \in B_{n}} p_{X_{1}, ..., X_{n}}(x_{1i}, ..., x_{ni})$$

$$= \sum_{i:x_{1i} \in B_{1}} ... \sum_{i:x_{ni} \in B_{n}} \prod_{j=1}^{n} p_{X_{j}}(x_{ji}) = \prod_{j=1}^{n} P(X_{j} \in B_{j})$$

A parte (c) é uma consequência direta da parte (a) e da definição de função de densidade. Omitimos os detalhes.

Nota 2

É fácil observar que utilizando, a definição de probabilidade condicional que se X e Y são independentes, então para todo A e B boreliano tal que $P(Y \in B) > 0$:

$$P(X \in A | Y \in B) = P(X \in A),$$

ou seja, se X e Y são independentes o conhecimento do valor de Y não altera a descrição probabilística de X.

Raydonal Ospina (UFBA) Probabilidade 31/48

Exemplos de Distribuições Multivariadas

A Distribuição Multinomial

Esta distribuição pode ser considerada como uma generalização da distribuição binomial. Considere um experimento aleatório qualquer e suponha que o espaço amostral deste experimento é particionado em k eventos $\{A_1,A_2,\ldots,A_k\}$, onde o evento A_i tem probabilidade p_i . Suponha que se repita este experimento n vezes de maneira independente e seja X_i o número de vezes que o evento A_i ocorreu nestas n repetições. Então,

$$P(X_1 = n_1, X_2 = n_2, \dots, X_k = n_k)$$

$$= \frac{n!}{n_1! n_2! \cdots n_k!} p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k},$$
(1)

onde $\sum_{i=1}^k n_i = n$. (Relembre que o número de maneiras de arranjar n objetos, n_1 dos quais é de uma espécie, n_2 dos quais é de uma segunda espécie, . . . , n_k dos quais são de uma k-ésima espécie é dado pelo coeficiente multinomial $\frac{n!}{n_1!n_2!\cdots n_k!}$)

Raydonal Ospina (UFBA)

Exemplos de Distribuições Multivariadas

A Distribuição Normal Bivariada

O vetor aleatório (X,Y) possui distribuição normal bivariada quando tem densidade dada por

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \times \exp\{-\frac{1}{2(1-\rho^2)}[(\frac{x-\mu_1}{\sigma_1})^2 -2\rho(\frac{x-\mu_1}{\sigma_1})(\frac{y-\mu_2}{\sigma_2}) + (\frac{y-\mu_2}{\sigma_2})^2]\},$$

onde $\sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1, \mu_1 \in \mathbb{R}, \mu_2 \in \mathbb{R}.$

Se $\rho=0$, esta densidade fatora e temos que X e Y são independentes. Se $\rho\neq 0$, esta densidade não fatora e X e Y não são independentes.

Funções de Variáveis Aleatórias

- Muitas vezes sabemos a distribuição de probabilidade que descreve o comportamento de uma variável aleatória X definida no espaço mensurável (Ω, A), mas estamos interessados na descrição de uma função Y = H(X).
- Nosso problema é determinar $P(Y \in A)$, onde A é um evento Boreliano, dado P_X . Para determinarmos esta probabilidade, estaremos interessados na imagem inversa da função H, ou seja, a probabilidade do evento $\{Y \in A\}$ será por definição igual a probabilidade do evento $\{X \in H^{-1}(A)\}$, onde $H^{-1}(A) = \{x \in \mathbb{R} : H(x) \in A\}$.
- Precisamos restringir H tal que $H^{-1}(A)$ seja um evento boreliano para todo A boreliano, caso contrário não poderemos determinar $P(\{X \in H^{-1}(A)\})$; uma função que satisfaz esta condição é conhecida como *mensurável com respeito a* A e B. Note que Y também pode ser vista como uma função do espaço amostral Ω , $Y(\omega) = H(X(\omega))$ para todo $\omega \in \Omega$.
- Visto dessa maneira Y é uma variável aleatória definida em (Ω, \mathcal{A}) , pois para todo boreliano A, $Y^{-1}(A) = X^{-1}(H^{-1}(A))$ e como por suposição $H^{-1}(A)$ é boreliano e X é uma variável aleatória, temos que $X^{-1}(H^{-1}(A)) \in \mathcal{A}$ e portanto satisfaz a definição de uma variável aleatória.

Funções de Variáveis Aleatórias

Caso Discreto

Neste caso, para qualquer função H, temos que Y = H(X) é uma variável aleatória discreta.

Suponha que X assuma os valores x_1, x_2, \ldots e seja H uma função real tal que Y = H(X) assuma os valores y_1, y_2, \ldots Vamos agrupar os valores que X assume de acordo os valores de suas imagens quando se aplica a função H, ou seja, denotemos por $x_{i1}, x_{i2}, x_{i3}, \ldots$ os valores de X tal que $H(x_{ij}) = y_i$ para todo j. Então, temos que

$$P(Y = y_i) = P(X \in \{x_{i1}, x_{i2}, x_{i3}, \dots\})$$

= $\sum_{j=1}^{\infty} P(X = x_{ij}) = \sum_{j=1}^{\infty} p_X(x_{ij}),$

ou seja, para calcular a probabilidade do evento $\{Y=y_i\}$, acha-se o evento equivalente em termos de X, isto é, todos os valores x_{ij} de X tal que $H(x_{ij})=y_i$ e somam-se as probabilidades de X assumir cada um desses valores.

35/48

Funções de Variáveis Aleatórias

Exemplo 2

Caso Discreto Admita-se que X tenha os valores possíveis $1, 2, 3, \ldots$ e suponha que $P(X = n) = (1/2)^n$. Seja Y = 1 se X for par e Y = -1 se X for impar. Então, temos que

$$P(Y=1) = \sum_{n=1}^{\infty} (1/2)^{2n} = \sum_{n=1}^{\infty} (1/4)^n = \frac{1/4}{1 - 1/4} = 1/3.$$

Consequentemente,

$$P(Y = -1) = 1 - P(Y = 1) = 2/3.$$

Funções de Variáveis Aleatórias

Caso Discreto Vetorial

Podemos estender este resultado para uma função de um vetor aleatório \vec{X} de forma análoga. Neste caso se $\vec{Y} = H(\vec{X})$, denotemos por $\vec{x}_{i1}, \vec{x}_{i2}, \vec{x}_{i3}, \ldots$ os valores de \vec{X} tal que $H(\vec{x}_{ij}) = \vec{y}_i$ para todo j. Então, temos que

$$P(\vec{Y} = \vec{y_i}) = P(\vec{X} \in {\{\vec{x}_{i1}, \vec{x}_{i2}, \vec{x}_{i3}, \dots\}})$$

$$= \sum_{j=1}^{\infty} P(\vec{X} = \vec{x}_{ij}) = \sum_{j=1}^{\infty} p_{\vec{X}}(\vec{x}_{ij}),$$

ou seja, para calcular a probabilidade do evento $\{\vec{Y}=\vec{y_i}\}$, acha-se o evento equivalente em termos de \vec{X} , isto é, todos os valores $\vec{x_{ij}}$ de \vec{X} tal que $H(\vec{x_{ij}})=\vec{y_i}$ e somam-se as probabilidades de \vec{X} assumir cada um desses valores.

Funções de Variáveis Aleatórias

Caso Contínuo

Vamos ver agora um exemplo no caso em que \vec{X} é contínuo.

Exemplo 3

Se $X \sim U[0, 1]$, qual a distribuição de $Y = -\log(X)$? Como

$$0 < Y < \infty \Leftrightarrow 0 < X < 1$$

e P(0 < X < 1) = 1, temos $F_Y(y) = 0$, $y \le 0$. Se y > 0, então

$$P(Y \le y) = P(-\log(X) \le y) = P(X \ge e^{-y}) = 1 - e^{-y},$$

ou seja, $Y \sim Exp(1)$.

Dado um conjunto de n equações em n variáveis x_1, \ldots, x_n ,

$$y_1 = f_1(x_1,...,x_n),...,y_n = f_n(x_1,...,x_n),$$

a matriz Jacobiana é definida por

$$J = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_n} \end{pmatrix}$$

O determinante de *J* é chamado de *Jacobiano*.

Raydonal Ospina (UFBA)

Pode-se provar que o módulo Jacobiano nos dá a razão entre volumes n-dimensionais em \vec{y} e \vec{x} quando a maior dimensão Δx_i tende a zero. Deste modo, temos que o módulo do Jacobiano aparece quando queremos mudar as variáveis de integração em integrais múltiplas, ou seja, existe um teorema do cálculo que afirma que se $f:G_0\to G$ for uma bijeção entre G_0 e G, f e as derivadas parciais que aparecem na matriz Jacobiana forem funções contínuas em G_0 , e o Jacobiano for diferente de zero para todo $x\in G_0$

$$\int \cdots \int_{A} g(y_1, \dots, y_n) dy_1 \cdots dy_n$$

$$= \int \cdots \int_{f^{-1}(A)} g(f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n)) |J| dx_1 \cdots dx_n,$$

para qualquer função g integrável em $A \subseteq G$.

Vamos agora utilizar mudança de variáveis para resolver o seguinte exemplo da soma de duas variáveis aleatórias.

Exemplo

Suponha que (X, Y) tenha densidade conjunta f(x, y) e seja Z = X + Y. Neste caso,

$$F_Z(z) = P(Z \le z) = P(X + Y \le z) = P((X, Y) \in B_z),$$

onde $B_z = \{(x, y) : x + y \le z\}$. Portanto,

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f(x,y) dx dy.$$

Exemplo (cont.)

Fazendo a mudança de variáveis s = x + y, t = y, que tem jacobiano igual a 1, temos

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(s-t,t) ds dt = \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(s-t,t) dt ds.$$

Logo, $\int_{-\infty}^{\infty} f(s-t,t)dt$ é a densidade da soma Z=X+Y, ou seja,

$$f_Z(z) = \int_{-\infty}^{\infty} f(z-t,t)dt = \int_{-\infty}^{\infty} f(s,z-s)ds,$$

onde fizemos a troca de variáveis s = z - t para obter a última expressão.

Raydonal Ospina (UFBA)

Exemplo (cont.)

Se X e Y forem variáveis aleatórias independentes com densidades f_X e f_Y , temos que $f(x,y) = f_X(x)f_Y(y)$, então,

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(z-t) f_{Y}(t) dt$$

=
$$\int_{-\infty}^{\infty} f_{X}(t) f_{Y}(z-t) dt = f_{X} * f_{Y},$$

onde $f_X * f_Y$ é conhecida como a *convolução das densidades* f_X e f_Y .

Vamos agora descrever o método do Jacobiano para funções mais gerais H. Suponha que $G_0\subseteq\mathbb{R}^n$, $G\subseteq\mathbb{R}^n$ sejam regiões abertas, e que $H:G_0\to G$ seja uma bijeção entre G_0 e G. Logo, existe a função inversa H^{-1} em G, de modo que $\vec{X}=H^{-1}\vec{Y}$. Suponha ainda que f é a densidade conjunta de \vec{X} e que $P(\vec{X}\in G_0)=1$. Se as derivadas parciais de H^{-1} existirem e o Jacobiano J de H^{-1} for diferente de zero para todo $\vec{y}\in G$, podemos utilizar o teorema da mudança de variáveis e obter que para $B\subseteq G$, B boreliano, temos

$$P(\vec{Y} \in B) = P(\vec{X} \in H^{-1}(B))$$

$$= \int_{H^{-1}(B)} \dots \int_{H^{-1}(B)} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$= \int_{B} \dots \int_{B} f(H_1^{-1}(y_1, \dots, y_n), \dots, H_n^{-1}(y_1, \dots, y_n)) |J| dy_1 \dots dy_n.$$

Como $P(\vec{Y} \in G) = P(\vec{X} \in H^{-1}(G)) = P(\vec{X} \in G_0) = 1$, temos que para todo boreliano B no \mathbb{R}^n ,

$$P(\vec{Y} \in B) = P(\vec{Y} \in B \cap G)$$

$$= \int_{B \cap G} \dots \int_{B \cap G} f(H_1^{-1}(y_1, \dots, y_n), \dots, H_n^{-1}(y_1, \dots, y_n)) |J| dy_1 \dots dy_n.$$

Esta última integral é igual a integral sobre o conjunto ${\it B}$ da função que toma o valor

$$f(H_1^{-1}(y_1,\ldots,y_n),\ldots,H_n^{-1}(y_1,\ldots,y_n))|J|,$$

para $\vec{y} \in \textit{G}$, e zero no caso contrário. Portanto, pela definição de densidade temos que

$$f_{\vec{Y}}(y_1,\ldots,y_n) = \begin{cases} f(H_1^{-1}(y_1,\ldots,y_n),\ldots,H_n^{-1}(y_1,\ldots,y_n))|J|, \\ \text{se } \vec{y} \in G, \\ 0, \text{ caso contrário.} \end{cases}$$

Observação

(a) Note que J é o Jacobiano da função inversa H⁻¹, em alguns casos pode ser útil obter J a partir do Jacobiano J' da função H através da relação

$$J=\frac{1}{J'}|_{\vec{X}=H^{-1}(\vec{y})}.$$

(b) Para obter a distribuição de $\vec{Y}=H(\vec{X})$ quando a dimensão de \vec{Y} é menor que a dimensão de \vec{X} muitas vezes é possível definir outras variáveis aleatórias Y_1',\ldots,Y_m' , utilizar o método do Jacobiano para determinar a densidade conjunta de \vec{Y},Y_1',\ldots,Y_m' e, finalmente, obter a densidade marginal conjunta de \vec{Y} . Considere o seguinte exemplo:

Observação

Exemplo 4

Suponha que X_1 , X_2 tem densidade conjunta dada por f(x,y) e que estamos interessados na distribuição de $Y_1 = X_1^2 + X_2$. Como esta não é uma transformação 1-1, ela não possui inversa. Vamos definir uma nova variável $Y_2 = X_1$ de modo que a função $(Y_1, Y_2) = H(X_1, X_2) = (X_1^2 + X_2, X_1)$ possua uma função inversa diferenciável,

$$(X_1, X_2) = H^{-1}(Y_1, Y_2) = (Y_2, Y_1 - Y_2^2)$$
. Deste modo temos que

$$J = det \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -2y_2 \end{pmatrix} = -1$$

Então temos que, $f_{Y_1,Y_2}(y_1,y_2) = f(y_2,y_1-y_2^2)$. Finalmente, para encontrarmos f_{Y_1} integramos sobre todos os possíveis valores da variável Y_2 que introduzimos:

$$f_{Y_1} = \int_{-\infty}^{\infty} f(y_2, y_1 - y_2^2) dy_2.$$

Raydonal Ospina (UFBA)

Observação

(c) Podemos utilizar o método do Jacobiano em outros casos em que a função H não é 1-1. Para tanto, suponha que G, G₁,..., G_k sejam subregiões abertas do ℝⁿ tais que G₁,..., G_k sejam disjuntas e P(X ∈ ∪^k_{i=1} G_i) = 1, tais que a função H|_{Gi}, a restrição de H a G_i, seja um correspondência 1-1 entre G_i e G, para i = 1,..., k. Suponha que para todo I, a função inversa de H|_{Gi}, satisfaça as hipóteses do caso anterior, e seja J_i o Jacobiano da inversa de H|_{Gi}. Pode-se provar que

$$f_{\vec{Y}}(y_1,\ldots,y_n) = \left\{ \begin{array}{l} \sum_{l=1}^k f(H|_{G_l}^{-1}(y_1,\ldots,y_n))|J_l|, \\ \text{se } \vec{y} \in G, \\ 0, \text{ caso contrário.} \end{array} \right.$$