Final Exam

Started: Apr 28 at 5:23pm

Quiz Instructions

Question 1 5 pts

Consider the flow network below, with the flow and capacity values indicated in the graph. Take the cut(S,T), where $S = \{s,a,b,d\}$ and $T = \{c,e,h,g,t\}$. What is the value of f(S,T)?

- **12**
- 6
- **14**
- 9
- 8
- O 5
- O 20

Question 2

Select all the statements below which are TRUE:

- ✓ Integer Linear Programming is NP-hard.
- **4**

tab	le. All fu	ture calls ι	use the precomputed value.				
Le	X= ALG	ORITHM	and Y = LEGOTHM. Then $\{(1,2),(2,1),(3,3),(4,4),(7,5),(8,6),(9,7)\}$ is a possible alignment.				
 ✓ Let G be a flow network. Consider two cuts (S₁,T₁) and (S₂,T₂). Then f(S₁,T₁) ≤ c(S₂,T₂). □ 0-1 Knapsack Problem is solved optimally using Greedy. 							
Quest	tion 3			5 p			
Ve are	solving t	he Fraction	nal Knapsack Problem using the Greedy algorithm discussed in class. The number of objects	is n =			
obiect	value v _i	weight w _i					
1	12	8					
2	15	11					
3	9	3					
4	20	15					
5	12	6					
he kna	ıpsack w	eight is W	= 35. Which object is selected first?				
O obj	ect 2						
O obj	ect 4						
obj	ect 3						
O obj	ect 1						
O obj	ect 5						
				10 p			
Quest	ion 4						
		itements b	elow which are TRUE:				
Quest		itements b	elow which are TRUE:				

Consider the graph G below. {a,b,c,e,f} is a clique of size 5.

- A cycle with 6 vertices is 2-colorable.
- \blacksquare The boolean formula \oplus below is 3-CNF.

$$\Phi\left(x_{1}, x_{2}, x_{3}\right) = \left(x_{1} \vee \overline{x_{3}} \vee x_{2}\right) \wedge \left(x_{2} \vee \overline{x_{1}}\right)$$

- The following is a decision problem: Given an undirected graph G and two vertices u and v, find the shortest path from u to v.
- ☐ The Closest Pair problem is "tractable".

Question 5

10 pts

What is an optimal alignment for the sequences X = CATGA and Y = AACT?

Take δ = 2 and consider the following matching/mismatching costs:

	Α	С	G	Т
Α	0	3	3	2
С		0	4	4
G			0	1
Т				0

- (7 points) Fill out the table A.
- (1 point) What is the cost of an optimal alignment?
- (2 points) Write the optimal alignment of X and Y.

Upload Final-04.pdf

 \otimes

Question 6	10 pts
------------	--------

Consider the reduction algorithm discussed in class for showing that the CLIQUE problem is NP-hard. Show how this reduction algorithm works for the 3-CNF:

$$\Phi(x_1,x_2,x_3) = (x_1 \vee x_2 \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$$

- a) (6 points) Draw the graph obtained as result of applying the reduction algorithm.
- b) (2 points) Find a satisfying assignment for Φ .
- c) (2 points) Based on the satisfying assignment from b) and following the algorithm, compute a clique of the graph.

Upload

Choose a File

Quiz saved at 6:28pm

Submit Quiz