EXAMPLE 5.2 ECI-Frame Inertial Navigation Update Cycle using First-order Approximations

Body frame to ECI frame coordinate transformation matrix:

From (2.24),
$$\mathbf{C}_{b}^{i} = \begin{bmatrix}
\cos \theta_{ib} \cos \psi_{ib} & \left(-\cos \phi_{ib} \sin \psi_{ib} \\
+\sin \phi_{ib} \sin \theta_{ib} \cos \psi_{ib} \right) & \left(\sin \phi_{ib} \sin \psi_{ib} \\
+\cos \phi_{ib} \sin \phi_{ib} \cos \psi_{ib} \\
+\sin \phi_{ib} \sin \theta_{ib} \sin \psi_{ib} & \left(-\sin \phi_{ib} \cos \psi_{ib} \\
+\sin \phi_{ib} \sin \theta_{ib} \sin \psi_{ib} \right) & \left(-\sin \phi_{ib} \cos \psi_{ib} \\
+\cos \phi_{ib} \sin \theta_{ib} \sin \psi_{ib} \right) \\
\cos \phi_{ib} \cos \phi_{ib} & \cos \phi_{ib}
\end{bmatrix}$$

$$\mathbf{C}_{b}^{i}(-) = \begin{bmatrix} 0.866025404 & -0.5 & 0\\ 0.5 & 0.866025404 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Update Attitude

From (5.13), $\mathbf{C}_{b}^{i}(+) \approx \mathbf{C}_{b}^{i}(-)(\mathbf{I}_{3} + \mathbf{\Omega}_{ib}^{b}\tau_{i})$ Assuming a constant angular rate

$$\mathbf{\Omega}_{ib}^{b} \boldsymbol{ au}_{i} = egin{bmatrix} 0 & -7.29212 \text{E-07} & 0 & \text{rad} \\ 7.29212 \text{E-07} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 rad

$$\mathbf{C}_{b}^{i}(+) = egin{array}{cccc} 0.866025039 & -0.500000632 & 0 \\ 0.500000632 & 0.866025039 & 0 \\ 0 & 0 & 1 \\ \end{array}$$

Set of Euler angles describing rotation from ECI frame to body frame

From (2.25),	$\phi_{ib} = \arctan_2(C_{b3,2}^i, C_{b3,3}^i)$
	$\theta_{ib} = -\arcsin C_{b3,1}^i$
	$\psi_{ik} = \arctan_2(C_{k21}^i, C_{k11}^i)$

Note: The arguments of the Excel ATAN2 function are the opposite way round

		, , , , , , , , , , , , , , , , , , , ,			
Roll	ϕ_{ib}	0	radians	0.00000	degrees
Pitch	$ heta_{\it ib}$	0	radians	0.00000	degrees
Yaw	ψ_{ib}	0.523599505	radians	30.00004	degrees

Specific Force Frame Transforation

From (5.16),
$$\mathbf{f}_{ib}^i \approx \frac{1}{2} \left(\mathbf{C}_b^i(-) + \mathbf{C}_b^i(+) \right) \mathbf{f}_{ib}^b$$

$$\mathbf{f}_{ib}^{i} = \begin{bmatrix} 1.732050443 & \text{m s}^{-2} \\ 1.000000632 & \text{m s}^{-2} \\ 9.832 & \text{m s}^{-2} \end{bmatrix}$$

Update Velocity

From (5.18),
$$\mathbf{a}_{ib}^{i} = \mathbf{f}_{ib}^{i} + \gamma_{ib}^{i} (\mathbf{r}_{ib}^{i})$$

$$\gamma_{ib}^{i}(\mathbf{r}_{ib}^{i}) = \begin{bmatrix} 0 & \text{m s}^{-2} \\ 0 & \text{m s}^{-2} \\ -9.832 & \text{m s}^{-2} \end{bmatrix} \mathbf{a}_{ib}^{i} = \begin{bmatrix} 1.73205 & \text{m s}^{-2} \\ 1.000001 & \text{m s}^{-2} \\ 0 & \text{m s}^{-2} \end{bmatrix}$$

From (5.20),
$$\mathbf{v}_{ib}^{i}(+) = \mathbf{v}_{ib}^{i}(-) + \mathbf{a}_{ib}^{i}\tau_{i}$$

$$\mathbf{v}_{ib}^{i}(+) = \begin{bmatrix} 0.017320504 & \text{m s}^{-1} \\ 0.010000006 & \text{m s}^{-1} \\ 0 & \text{m s}^{-1} \end{bmatrix}$$

Update Position

From (5.23),
$$\mathbf{r}_{ib}^{i}(+) = \mathbf{r}_{ib}^{i}(-) + (\mathbf{v}_{ib}^{i}(-) + \mathbf{v}_{ib}^{i}(+)) \frac{\tau_{i}}{2}$$

$$\mathbf{r}_{ib}^{i}(+) = \begin{bmatrix} 8.66025E-05 & m \\ 5E-05 & m \\ 6356760 & m \end{bmatrix}$$