Time Value of Money

- Would you prefer \$1,000 today or \$1,000 one year from now?
 - Today
 - Opportunity to invest
- Would you prefer \$1,000 today or \$1,200 one year from now?
 - Dependent upon interest rate or opportunity to invest
- Time value of money: value of money decreases over me

7 of 21

Net Present Value (NPV)

Converts future cash flow stream into today's dollars

- Cash flow by date
 - Investments: negav e numbers
 - Returns and savings: posiv e numbers
- Interest rate
- Net present value: what a given cash flow is worth to you today

14 of 21

NPV Interpretation

- Positive NPV: make more money than bank interest rate
 - Compare alternav es for highest NPV
- Negative NPV: lose money compared to bank interest rate

Internal Rate of Return (IRR)

- Measures the effecv e rate of return for your cash flow stream
- Calculates exact interest rate you're earning
- For example:
 - Posiv e NPV: goal of 7% interest rate converts to 7.3% IRR
 - Negav e NPV: goal of 7% interest rate converts to 3% IRR
- Calculates exact interest rate you would achieve if NPV is set to zero

8 of 14

Descriptive Statistics

- Simple measures of data
- Examples:
 - Mean: arithmec a verage
 - Median: middle point in distribuon
 - Mode: most common value (highest frequency of occurrence)
 - Kurtosis: height of data peak relav e to normal distribuon
 - Skewness: left or right posion of da ta relav e to normal distribuon
 - Standard deviaon: measur e of spread
 - Range: highest value minus lowest value

Correlations Overview

- The measure of how two variables are related
- Examples:
 - Educaon and earning pot enal (posiv e correlaon)
 - Product price and product demand (negav e correlaon)
- Posiv e correlaon: v ariables moving in same direcon
- Negav e correlaon: v ariables moving in opposite direcons

8 of 24

Types of Correlations

- Negav e
- Posiv e
- Zero

12 of 24

Zero Correlation

13 of 24

Positive Correlation

Negative Correlation

15 of 24

Correlation Measurements

- Measured on a scale from -1 to +1.
 - ∘ Perfectly negav e correlaon: -1
 - Perfectly posiv e correlaon: +1
- No relaonship be tween variables: 0
 Number reflects how strong the correlaon is.
- Correlaon does not mean c ausaon.
 - A much stronger relaonship is r equired to show causaon.

<u>View All</u> <u>View Keyframes</u>

Correlation: whether variables move together or in different directions

1 of 39

Regression

- Measure of change associated with one variable and its effect on another
- E.g., how much interest rates affect mortgage applicaons

3 of 39

4 of 39

10 of 39

11 of 39

13 of 39

Linear Regression Assumptions

- 1. Relaonship be tween X and Y is linear.
- 2. If there is more than one X variable, they are not correlated.
- 3. The error terms (distance from data point to predicted line):
 - Have zero mean and constant variance (no heteroscedascity)
 - Are independent (no serial correlaon)
 - Are normally distributed

Regression Measurements

- F-statistic: measures if we have confidence in the equaon
 - Should have **p-value** (likelihood of an error) of less than 0.05
- R-squared (R²): measures percent of variaon in Y v ariable explained by X variables
- Coefficient: measures relaonship be tween X and Y, or measures intercept
- T-statistic: measures if we have confidence in the coefficient of a variable
 - Should have p-value of less than 0.05 (95% confidence)

34 of 39

p-Values

- 90% confidence = 0.10 p-value
- 99% confidence = 0.01 p-value
- 95% confidence = 0.05 p-value

Univariate Linear Regression

- This regression has only one X variable.
- Excel can quickly generate these results from the graphing package.
- Trend lines, equaons, and R ² values can be added to sca erplots.
- This does not generate stas c al confidence levels.

6 of 21

7 of 21

Scatterplot of Data with Linear Regression

11 of 21

Fixed Costs and Variable Costs

- Fixed costs: expenses paid by factory independent of business acvity
- Variable costs: costs that vary depending on factory's producon v olume

Exponential Regression

- Not all data is linear.
- Nonlinear pa erns can be made evident by generang a sc a erplot.
- Exponenal gr owth is a form on nonlinear behavior.
 - E.g., Annual sales data for an organizaon 5 of 9

Scatterplot of Exponential Data

6 of 9

Scatterplot with Exponential Regression

Multivariate Regression

- Mulple X v ariables
- No sca erplots
- Form of a mulv ariate equaon:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \varepsilon$$

5 of 35

Results of a Multivariate Regression

Regressio	n Statistics				
Mulple R	0.803398744				
R^2	0.645449542				
Adjusted R ²	0.57453945				
Standard Error	1252.763898				
Observaons	19	_			
ANOVA					
	df	SS	MS	F	Significance F
Regression	3	42856229.89	14285409.96	9.102365067	0.001126532
Residual	15	23541260.74	1569417.383		
Total	18	66397490.63			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	35102.90045	1837.226911	19.10645889	6.11198E-12	
A Made	2.065953296	1.664981779	1.240826369	0.23372682	
B Made	4.176355531	1.681252566	2.484073849	0.025287785	
C Made	4.790641037	1.789316107	2.677358695	0.017222643	
11 of 35					

General Conclusions

- We have a significant equaon.
- It explains 64–65% of change in producon costs.
- We have confidence in our intercept (fixed cost).
- We have confidence in variable costs for B and C.

Simple Time Series: Moving Average

- Seasonality: when data experiences regular changes that occur every year
- Examples:
 - Holiday sales in the retail industry
 - Home sales during summer
 - Gasoline sales during summer vacaons
- Moving average: reduces effect of seasonality so true pa erns can be seen

7 of 13

8 of 13

Amazon.com: Seasonal Data With Connected Data

10 of 13

Amazon.com: Results of a Moving Average Model

