# **Entity Relationship Diagram**

An Entity-Relationship Diagram (ERD) is a visual representation of a database's structure that shows the entities (objects, things, or concepts of interest), their attributes (properties or details), and the relationships (associations or connections) between them.

### Basic constructs of the E-R model:

### 1. Entities:

- Definition: An entity represents a real-world object, person, place, event, or concept that the business needs to track or store information about.
- In Databases: Usually corresponds to a table.
- Examples:
  - Person → Student, Employee, Customer
  - Place → Branch, Warehouse, Country
  - Object → Product, Car, Book
  - Event → Order, Payment, Appointment
  - Concept → Subject, Policy, Course

### 2. Attributes:

- Definition: An attribute is a property or characteristic that describes an entity.
- In Databases: Usually corresponds to a column (field) in a table.
- Types of Attributes:
  - Simple: Cannot be divided further (Age, Name).
  - $\circ$  Composite: Can be broken down (Full Name  $\rightarrow$  First Name, Last Name).
  - Derived: Calculated from other attributes ( Age derived from Date of Birth).
  - Key Attribute: Uniquely identifies each entity (Student ID).
- Example: For entity Student → Attributes: Student ID, Name, Age, Email.

# 3. Relationships

- Definition: A relationship shows how two or more entities are connected to each other.
- In Databases: Implemented through primary key foreign key links between tables.
- Cardinality (types of relationships):
  - One-to-One (1:1) → Each person has one passport.
  - One-to-Many (1:M) → A customer can place many orders.
  - Many-to-Many (M:N) → Students enroll in many courses, and each course has many students.
- Example: Relationship between Student and Course → "Enrolled In".



### **Strong Entity Vs Weak Entity:**

### 1. Strong Entity:

• Definition: An entity that can exist independently in the database and is uniquely identified by its own primary key.

#### Key Features:

- Has a primary key that uniquely identifies each record.
- Does not depend on any other entity for its identification.
- Represented by a **single rectangle** in ER diagrams.

#### • Example:

- Student(Student ID, Name, Age, Email)
- $\circ$  Student ID is the primary key  $\rightarrow$  uniquely identifies each student.

### 2. Weak Entity:

• Definition: An entity that cannot exist independently and depends on a strong entity for its identification.

### Key Features:

- Does not have a complete primary key of its own.
- Identified using a partial key (discriminator) + the primary key of the related strong entity.
- Existence depends on a strong entity.
- Represented by a **double rectangle** in ER diagrams.

#### • Example:

- Dependent(Dependent\_Name, Relation, Student\_ID)
- Here, Dependent\_Name alone may not uniquely identify a record, but together with Student\_ID (from Student, a strong entity), it does.
- A dependent cannot exist in the system without a student.

## **Types of Attributes in DBMS:**

# 1. Simple Attribute:

- Definition: Attributes that cannot be divided into smaller sub-parts.
- Example: Age, Gender, Employee\_ID.
- ERD Representation: ellipse shape directly linked to the entity.



# 2. Composite Attribute:

- Definition: Attributes that can be broken down into smaller, meaningful parts.
- Example:
  - Full Name → First Name, Middle Name, Last Name
  - Address → Street, City, State, ZIP Code
- ERD Representation: **ellipse** with sub-**ellipse** (parts).



#### 3. Multi-Valued Attribute:

- Definition: Attributes that can hold multiple values for a single entity.
- Example:
  - Phone Numbers (a person can have more than one).
  - Skills (a programmer may have many).
- ERD Representation: Double ellipse connected to the entity.



#### 4. Derived Attribute:

- Definition: Attributes whose values can be derived from other attributes.
- Example:
  - Age (derived from Date of Birth).
  - o Total Price (derived from Quantity × Unit Price).
- ERD Representation: Dashed ellipse.

### 5. Complex Attribute:

- Definition: Attributes formed by combining composite and multi-valued attributes together.
- Example:
  - Address (Composite: Street, City, State) + may also allow multi-values (multiple addresses: Home, Work).
- ERD Representation: Hierarchical nesting of attributes (composite + multi-valued).

### **Relationship:**

#### • Definition:

A **relationship** represents an **association between two or more entities**. It describes how entities are **connected** in the real world and how they interact with each other in the database.

#### • In Databases:

Relationships are implemented using **Primary Key – Foreign Key** connections between tables.

#### • ERD Representation:

Represented by a **diamond shape** connecting the related entities.

### Types of Relationships (Cardinality):

### 1. One-to-One (1:1):

- Each entity instance in one set is related to one entity instance in another set.
- Example: One person  $\rightarrow$  one passport.

### 2. One-to-Many (1:M):

- One entity instance in a set is related to many in another set.
- $\circ$  Example: One customer  $\rightarrow$  many orders.

#### 3. Many-to-Many (M:M):

- Many entities in one set can be related to many in another set.



# **Degree of Relationships**

**Unary (Recursive)**  $\rightarrow$  Relationship within the same entity. Example: Employee "manages" Employee.

 ${f Binary} 
ightarrow {f Relationship}$  between two entities (most common). Example: Student "enrolls in" Course.

**Ternary**  $\rightarrow$  Relationship among three entities. Example: Doctor "prescribes" Medicine to Patient.



# **Participation Constraint (in ER Model):**

#### **Definition:**

The participation constraint specifies whether all or only some entity occurrences participate in a given relationship.

It defines the minimum number of times an entity must participate in a relationship.

# **Types of Participation:**

### 1. Total Participation(Mandatory):

- Definition: Every entity in the entity set must participate in the relationship.
- Representation in ERD: **Double line** between entity and relationship.
- Example:
  - Every employee must belong to a department.
  - $\circ \rightarrow$  All employees are linked to at least one department.

#### 2. Partial Participation(Optional):

- Definition: Only some entities in the entity set participate in the relationship.
- Representation in ERD: **Single line** between entity and relationship.
- Example:
  - Not every student has a scholarship.
  - → Some students participate, others don't.



