Analiza danych

Postać danych (próba prosta, dane indywidualne): X_1, X_2, \dots, X_n . Niech $X_{1:n} \leq X_{2:n} \leq \dots \leq X_{n:n}$ będzie uporządkowanym ciągiem danych.

Postać danych (szereg rozdzielczy, dane skumulowane):

Przedział klasowy	Liczebność	Liczebność skumulowana			
$x_0 - x_1$	n_1	$n_{(1)} = n_1$			
$x_1 - x_2$	n_2	$n_{(2)} = n_1 + n_2$			
:	:	:			
•	•	•			
$x_{k-1} - x_k$	n_k	$n_{(k)} = n_1 + n_2 + \dots + n_k (= n)$			

Dla liczby p takiej, e $0 \le p \le 1$ niech x_p, n_p, h_p oznaczaj początek, liczebność i długość przedziału zawierającego obserwację o numerze $p \cdot n$ oraz niech $n_{(p)}$ oznacza liczebność skumulowaną przedziału poprzedzającego przedział o początku x_p . Niech \dot{x}_i oznacza środek i-tego przedziału.

Mierniki położenia

średnia \bar{x} mediana Medolny kwartyl Q_1 górny kwartyl Q_3 dominanta (moda) D minimum Min maksimum Max

Próba prosta $\frac{1}{n}\sum_{i=1}^k X_i$ $X_{(n+1)/2:n}(n \text{ nieparzyste})$ $(X_{n/2:n} + X_{n/2+1:n})/2(n \text{ parzyste})$ $X_{[n/4]:n}$ $X_{[3n/4]:n}$ najczęściej występująca wartość $X_{1:n}$ $X_{n:n}$

Szereg rozdzielczy
$$\frac{1}{n} \sum_{i=1}^{k} \dot{x}_{i} n_{i}$$

$$x_{0.5} + \frac{h_{0.5}}{n_{0.5}} \left(\frac{n}{2} - n_{(0.5)}\right)$$

$$x_{0.25} + \frac{h_{0.25}}{n_{0.25}} \left(\frac{n}{4} - n_{(0.25)}\right)$$

$$x_{0.75} + \frac{h_{0.75}}{n_{0.75}} \left(\frac{3n}{4} - n_{(0.75)}\right)$$

$$x_{D} + h_{D} \frac{n_{D} - n_{D-1}}{2n_{D} - n_{D+1} - n_{D-1}}$$

$$x_{0}$$

$$x_{k}$$

Mierniki rozproszenia

rozstęp R wariancja S^2 wariancja S^2 odchylenie standardowe S odchylenie standardowe S odchylenie przeciętne d odchylenie ćwiartkowe Q współczynnik zmienności V

Próba prosta
$$\frac{Max - Min}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{x})^2}$$

$$\frac{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{x})^2}{\sqrt{S^2}}$$

$$\sqrt{S^2}$$

$$\frac{\frac{1}{n} \sum_{i=1}^{n} |X_i - \bar{x}|}{\frac{Q_3 - Q_1}{\bar{x}}}$$

$$\frac{\underline{S}}{\bar{x}} 100\%$$

$$\frac{\underline{S}}{\bar{x}} 100\%$$

Szereg rozdzielczy
$$\begin{array}{l} Max - Min \\ \frac{1}{n} \sum_{i=1}^k n_i (X_i - \bar{x})^2 \\ \frac{1}{n-1} \sum_{i=1}^k n_i (X_i - \bar{x})^2 \\ \sqrt{S^2} \\ \sqrt{S^2} \\ \frac{1}{n} \sum_{i=1}^k n_i |X_i - \bar{x}| \\ \frac{Q_3 - Q_1}{2} \\ \frac{S}{\bar{x}} 100\% \\ \frac{S}{\bar{x}} 100\% \end{array}$$

Mierniki asymetrii

trzeci moment centralny współczynnik asymetrii pozycyjny współczynnik asymetrii współczynnik skośności

Próba prosta
$$e_3 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{x})^3$$
$$A = \frac{e_3}{S^3}$$
$$A_1 = \frac{Q_3 - 2Me + Q_1}{2Q}$$
$$A_3 = \frac{\bar{x} - D}{S}$$

Szereg rozdzielczy
$$e_3 = \frac{1}{n-1} \sum_{i=1}^k n_i (X_i - \bar{x})^3$$

$$A = \frac{e_3}{S^3}$$

$$A_1 = \frac{Q_3 - 2Me + Q_1}{2Q}$$

$$A_3 = \frac{\bar{x} - D}{S}$$

Koncentracja Lorentza

 Przedział	Liczebność	Częstość	Środek	t_i	z_i	$z_{(i)}$
 $x_0 - x_1$	n_1	$w_1 = n_1/n$	\dot{x}_1	$t_1 = n_1 \dot{x}_1$		
$x_1 - x_2$	n_2	$w_2 = n_2/n$	\dot{x}_2	$t_2 = n_2 \dot{x}_2$	$z_2 = t_2/t$	$z_{(2)} = z_1 + z_2$
÷	:	÷				
$x_{k-1} - x_k$	n_k	$w_k = n_k/n$	\dot{x}_k	$t_k = n_k \dot{x}_k$	$z_k = t_k/t$	$z_{(k)} = z_1 + z_2 + \dots + z_k$
Razem	n	1		t	1	

Współczynnik koncentracji Lorentza

$$K = 1 - \sum_{i=1}^{k} [z_{(i)} + z_{(i-1)}] w_i$$