Final Year Project Report

CRIME DETECTION & PREVENTION SYSTEM

Project Advisor:

SIR MUSTAHSAN HAMMAD NAQVI

Submitted By:

MUHAMMAD ARSHMAN NOOR (21001376003)
ARSHAD MEHMOOD (21001376002)
AHMED NADEEM BUTT (21001376004)

Session

Fall 2021-2025

UNIVERSITY OF MANAGEMENT AND TECHNOLOGY SIALKOT

DEDICATION

We've had lots of people helping us out with our project, and we can't thank them enough. First off, we're grateful to God for giving us the strength and showing us how to make things better. Big shoutout to our folks too, who've been there for us through thick and thin, especially when this project got us feeling stressed.

And let's not forget our teachers! They've been like guiding stars, showing us new ways to do things and always cheering us on. We owe them a huge debt of gratitude for believing in us and keeping us on track.

FINAL APPROVAL

•	Head of Department Department of AI School of Systems & Technology UMT Sialkot	
•	Director (Final Year Projects-AI) Department of AI. School of Systems & Technology UMT Sialkot	
•	Supervisor Department of AI. School of Systems & Technology UMT Sialkot	
•	Co-Supervisor	

ACKNOWLEDGMENT

We are deeply grateful to God for blessing us with a beautiful life and granting us the wisdom and knowledge needed for this journey. A huge thank you to all the incredible teachers in the AI & CS department at UMT for being our guiding lights. Your support and dedication have shaped our learning experience and given us the opportunity to work on this project.

A special note of appreciation goes to Sir Hammad Naqvi. His unwavering guidance, encouragement, and support have been invaluable to us throughout this study, and we truly appreciate everything he has done.

Project Title:

Crime Detection & Prevention System

Undertaken by:

MUHAMMAD ARSHMAN NOOR (21001376003) AHMED NADEEM BUTT (21001376004) ARSHAD MEHMOOD (21001376002)

Supervised by:

Mr. Mustahsan Hammad Naqvi

Starting Date:

15 October 2024

Completion Date:

Tools Used:

- 1. **Programming Languages:** Python
- 2. AI Libraries/Frameworks: TensorFlow, OpenCV, NLTK, Pytorch, scikit-learn etc
- 3. **Database:** sqlite3
- 4. **Version Control:** GitHub

Operating System:

Microsoft Windows

Android

Thesis Similarity Report Learning Resource Center, UMT. Sialkot

, Turnitin Originality Report

- Processed on: 16-Jun-2025 11:51 PKT
- ID: 2700249520
- Word Count: 4255
- · Submitted: 1

CRIME DETECTION & PREVENTION SYSTEM By Muhammad Arshman Noor

Similarity Index 4% AI*% Similarity by Source Internet Sources: 3% Publications: 1% Student Papers: include quoted include bibliography exclude small print refresh download quickview (classic) report matches mode: 2% match (Internet from 19-Nov-2024) https://www.coursehero.com/file/p7dovd5/PharmaDoc-Pharmacy-Application-V-10-Page-60-Table-24-Test-Case-02-signin-button/ <1% match (Internet from 07-Nov-2024) https://WWW.coursehero.com/file/238023837/mini-project-crop-recominaditionpdf/ <1% match (student papers from 02-Apr-2018) Submitted to UNITEC Institute of Technology on 2018-04-02 <1% match (student papers from 12-Apr-2024) Submitted to University of Greenwich on 2024-04-12 <1% match (Internet from 04-Jul-2024)

Checked by

Note:

- Sometimes the overall similarity index may be a smaller than the repository percentages combined. This
 would be due to overlapping text within the repositories.
- It is a system generated report.

ABSTRACT

Traditional crime detection and prevention methods rely on constant human surveillance, making them inefficient, costly, and prone to human error. The primary goal of this project is to reduce the need for continuous human monitoring by utilizing AI-powered automation. Our Crime Detection & Prevention System (CDPS) leverages machine learning, computer vision, and natural language processing (NLP) to analyze real-time surveillance feeds, detect suspicious activities, weapon detection and automatically alert monitoring personnel to specific cameras requiring attention. This ensures that human operators only review relevant, high-risk footage, significantly reducing workload while improving response times.

The system is designed to identify unusual behaviors, unauthorized access to restricted areas, and potential threats such as loitering, sudden movements, weapon detection or attempts to breach security zones. Once an anomaly is detected, an alert is instantly sent to the monitoring room, where personnel can verify the feed and deploy law enforcement teams as needed. This targeted approach not only enhances security efficiency but also prevents crimes before they escalate.

Additionally, an AI-driven chatbot is integrated to assist victims in reporting crimes securely, especially for those hesitant to speak directly to law enforcement. The system also supports automated alerts for red-alert license plates, ensuring rapid intervention when necessary.

By minimizing human workload, reducing monitoring fatigue, and enabling specific threat detection, CDPS enhances law enforcement capabilities and raises safer communities through intelligent, data-driven crime prevention.

REVISION CHART

Version	Primary Author(s)	Description of Version	Date Completed
Database & Research for Chatbot	Ahmed Nadeem	Started researching on chatbot and built the database schema.	12 February 2025
UI Design for Chatbot	Arshman Noor	Designed UI for Chatbot.	28 January 2025
Chatbot Development & AI Integration	Arshad Mehmood	Developed backend for chatbot and integrated database and API in it.	17 February 2025
Chatbot Frontend	Arshad Mehmood	Developed the frontend for Chatbot.	19 February 2025
Data Collection	Ahmed Nadeem	Collected data available over the internet for training	6 May 2025
Surveillance Development	Arshad Mehmood	Developed backend for surveillance system.	19 May 2025
Design Frontend	Arshman Noor	Designed Frontend Idea for surveillance system	22 May 2025
Surveillance Frontend	Arshad Mehmood	Developed frontend for surveillance system	27 May 2025
Data Collection	Ahmed Nadeem	Collected Data for testing	2 June 2025
Complete Documentation	Arshman Noor	Completed Documentation	14 June 2025

CONTENTS

CON	ITENTS	1
	OF TABLES	
	OF FIGURES	
	INITIONS AND ACRONYMS	
1.	INTRODUCTION	6
1.1	MOTIVATIONS	6
1.2	,	
1.3		
1.4	l Objectives	7
2.	DOMAIN ANALYSIS	8
2.1	Customer	8
2.2		
TA	BLE 2: LIST OF STAKEHOLDERS	
2.3		
2.4		
2.5		
	2.5.1 Related Projects	
	•	
3.]	REQUIREMENTS ANALYSIS	11
3.1	REQUIREMENTS	11
	3.1.1 End Users, Operators, and Support Functions	
	3.1.2 Performance Requirements	
	3.1.3 Design Constraints	
	3.1.4 Programming Language and Technologies	
3.2	3.1.5 Interface Requirements	
3.2		
3.4		
3.5		
3.6	USER INTERFACES (MOCK SCREENS)	17
4.	SYSTEM DESIGN	21
4.1 4.2		
	CLASS DIAGRAM	
4.3		
4.4	~	
4.5	OTHER UMLS	26
4.6		
4.7	DATA DICTIONARY	30
5.]	IMPLEMENTATION DETAILS	32
5.1		
5.1		
5.3		

5	5.4	Cons	STRAINTS	33
	5.4	4.1	Assumptions	33
	5.4	4.2	System constraints	33
	5.4	4.3	Restrictions	33
	5.4	4.4	Limitations	33
6.	TE	ESTIN	NG (IN PROGRESS)	35
6	5.1	EXTE	INDED TEST CASES	35
6	5.2	DECI	SION TABLE	37
	6.2	2.1	Code snippet	37
	6.2	2.2	Decision coverage table	
6	5.3	TRAC	CEABILITY MATRIX	37
	6.3	3.1	RID vs UCID (requirements vs use cases)	37
	6.3	3.2	Test Cases (RID vs TID)	37
	6.3	3.3	Coverage (UCID vs TID)	38
7.	RI	ESUL	TS/OUTPUT/STATISTICS	39
7	7.1	100%	COMPLETION	39
7	7.2	92%	ACCURACY	39
7	7.3	92%	CORRECTNESS	39
8.	CC	ONCI	LUSION	40
9.	FU	JTUR	E WORK	41
10.		BIBI	LIOGRAPHY	42
1	0.1	RI	ESEARCH PAPERS	42
11.		APP	ENDIX	43
1	1.1	G	LOSSARY OF TERMS	43

LIST OF TABLES

Table 1: Table of acronyms and definitions	5
Table 2: list of stakeholders	8
Table 3: features comparison	10
Table 4: system functions	12
Table 5: list of actors	12
Table 6: list of usecase	13
Table 7: extended usecase CDPS-UC-1.1	14
Table 8: extended usecase CDPS-UC-2.1	16
Table 9: data dictionary	30
Table 10: Decision Coverage	37
Table 11: RID vs UCID	37
Table 12: RID vs TID	38
Table 13: UCID vs TID	38

LIST OF FIGURES

Figure 1: use case diagram	14
Figure 2: system architecture diagram	21
Figure 3: class diagram	22
Figure 4: surveillance sequence diagram	23
Figure 5: chatbot sequence diagram	24
Figure 6: chatbot collaboration diagram	25
Figure 7: surveillance collaboration diagram	25
Figure 8: surveillance system uml	26
Figure 9: component diagram	27
Figure 10: deployment diagram	28
Figure 11: erd diagram	29

DEFINITIONS AND ACRONYMS

Table 1: Table of acronyms and definitions

ACRONYM	DEFINITION		
CDPS	Crime Detection & Prevention System		
UMT	University of Management and Technology		
GUI	Graphic User Interface		
ML	Machine learning		
CV	Computer Vision		
CNN	Convolutional Neural Networks		
DNN	Deep Neural Network		
FYP	Final Year Project		
POF	Proof of Work		
HOG	Histogram of Oriented Gradient		
SLCV	Surveillance & logging Using Computer Vision		
NLP	Natural Language Processing		

1. Introduction

1.1 Motivations

The main motivation behind this project is to reduce crime rates by imposing artificial intelligence (AI) systems. This project aims to introduce an inventive solution which enhances the efficiency of crime detection and prevention through real-time alerts about anything suspicious. By automating the monitoring process, this system reduces the need for humans to observe each and every surveillance camera. AI generated alerts enable targeted monitoring of specific cameras which allow the quick verification through surveillance footage.

This system will enhance efficiency, saves time, workforce required to monitor cameras and reduces human errors. Further, to support victims of crimes especially those who are not comfortable in talking or sharing consequences with authorities directly, integrating a chatbot. So, victims can communicate in a safer way and update the authorities about the situation.

This solution aims to create safer communities by timely detection of crime and compassionate victim support.

1.2 Project Overview

This project aims to introduce an inventive solution which enhances the efficiency of crime detection and prevention through real-time alerts about anything suspicious. By automating the monitoring process, this system reduces the need for humans to observe each and every surveillance camera. AI generated alerts enable targeted monitoring of specific cameras which allow the quick verification through surveillance footage. This system will enhance efficiency, saves time, workforce required to monitor cameras and reduces human errors. Further, to support victims of crimes especially those who are not comfortable in talking or sharing consequences with authorities directly, integrating a chatbot. So, victims can communicate in a safer way and update the authorities about the situation. This solution aims to create safer communities by timely detection of crime and compassionate victim support.

1.3 Problem Statement

Now a days crime has become a big problem to control, especially when it takes too long to detect and respond to it. In Traditional crime prevention methods authorities watch each & every security camera, which can be slow, costly, and sometimes human error can occur. If a crime is not detected on time, the police may take longer to respond, which makes harder to stop the situation in time.

To overcome this problem, we are introducing an AI-powered crime detection system that works in real-time. It uses security cameras to automatically spot suspicious activities and quickly alert the authorities by sending an alert in seconds. Further, to support victims of crimes especially those who are not comfortable in talking or sharing consequences with authorities directly, integrating a chatbot. So, victims can communicate in a safer way and update the authorities about the situation. By making crime detection faster, it reduces the human error and workforce required to monitor cameras, supporting victims resulting into a safer community.

1.4 Objectives

The main goal of CDPS is to detect & prevent crime on time which results into public safety, lowering the workforce cost, reducing human errors by surveillance monitoring and detecting anything suspicious like fire, weapon detection, gunshot, red alert number plates in real-time and sending an immediate alert to the authorities.

When the authorities receive an alert, an officer monitoring the screen check that specific camera for confirmation and after confirmation he will send the team at location to stop the crime, saving the victims and investigating the situation. In this way, CDPS helps the authorities to prevent the crime from happening or any big loss.

An AI Chatbot is also integrated with the system which help the victims, especially those who don't feel comfortable in talking directly to a human. In this way, victims can talk about the situation, their feelings, what actually happened at the spot without communicate directly to a human.

In this way CDPS makes the community safer, reducing human errors, helping victims and lowering the cost.

2. Domain Analysis

2.1 Customer

The primary heirs of this project are government & private security organizations, law enforcement agencies and those individuals who want to secure their homes, buildings and private properties to enhance safety and security. Furthermore, this project offers a secure platform to hesitant victims to report crime and seek help without direct communication to any other human person.

2.2 Stakeholders

Table 2: list of stakeholders

Stakeholder	Role in System	
Project development team	A team of three members that are executing the development of the project	

2.3 Affected Groups with social or economic impact

1. Law Enforcement Agencies:

The system enhances crime detection by reducing human errors, response time and optimize resource allocation.

2. Private Security Firms:

Firms managing Large-Scale surveillance and responsible for any public, private security get advantage by reducing workforce and improved security operations.

3. Crime Victims:

The Chabot provide a secure way of communication, helps in understanding the situation of victims.

4. Business Owners & Institutions:

The system helps to prevent theft, vandalism and other crimes resulting fewer financial losses.

5. Government & Policy Makers:

Crime detection system support better law enforcement strategies which improves the public safety.

2.4 Dependencies/ External Systems

This project relies on several external systems and technologies to function effectively:

1. Surveillance Camera Systems:

For real-time monitoring CDPS requires an integration with existing surveillance cameras.

2. AI and Machine Learning Models:

Advance AI & ML models are necessary for detecting something abnormal and generating real-time alerts

3. Cloud Services:

Cloud based storage and processing power require for better data handling and remote access to surveillance feeds.

4. Network Infrastructure:

A fast and stable internet connection is required for the transmission for video feeds, alerts and chatbot interaction.

5. Law Enforcement Databases:

An access to criminal records and database may enhance he system efficiency and helps in detecting people, automobiles which are on red alert.

6. Chatbot Frameworks:

The victim support chatbot relies on Natural Language Processing (NLP) technology for effective communication and responses.

7. Mobile and Web Applications:

User-friendly interface is required for authorities and victims to interact with system efficiently.

2.5 Reference Documents

2.5.1 Related Projects

- 1. AI-Based Automatic Crime Detection System [1]
- 2. Chatbots for Crime Reporting [2]
- 3. AI-Driven Surveillance Systems [3]
- 4. AI-Powered Financial Crime Prevention [4]

2.5.2 Feature Comparison

Table 3: features comparison

SR NO.	Features	CDPS	AI-Based Automatic Crime Detection System	Chatbots for Crime Reporting	AI-Driven Surveillance Systems	AI-Powered Financial Crime Prevention	REMARKS
1	Real-time Crime Detection	YES	YES	NO	YES	NO	Our AI-Powered Crime Detection System offers an efficient and victim centric approach compared to other existing solutions.
2	Automated Alert System	YES	YES	NO	YES	YES	Where most of the AI driven focus only on surveillance and law enforcement, our
3	AI Chatbot for Victims Assistance	YES	NO	YES	NO	NO	project provides real- time crime detection, analysis & an AI chatbot for victims.
4	Reduced Human Monitoring Effort	YES	YES	NO	YES	YES	By automating alerts, it reduces human errors and workforce to monitor each &
5	Integration with CCTV & Existing Systems	YES	YES	NO	YES	YES	single surveillance cameras. In this way, CDPS reduces human error, workforce cost
6	Facial & Behavioral Recognition	YES	YES	NO	YES	NO	and improves efficiency.
7	Crime Detection via AI Prediction	YES	NO	NO	NO	YES	
8	Cost & Workforce Efficiency	YES	YES	NO	YES	YES	-
9	User Friendly Interface	YES	NO	YES	YES	NO	

3. REQUIREMENTS ANALYSIS

3.1 Requirements

This section summaries the system's functional & non-functional requirements, capabilities and data handling specifications.

3.1.1 End Users, Operators, and Support Functions

• End Users:

- 1. Law Enforcement Agencies.
- 2. Victim Support Organizations.
- 3. Security Agencies.
- 4. Private Security Departments.

• Operators:

- 1. System Administrators.
- 2. AI System Managers.

• Support & Integration Functions:

- 1. Automated Alerts.
- 2. AI-driven Video Analysis.
- 3. Chatbot for victim support.

3.1.2 Performance Requirements

- 1. Real-time processing of surveillance footage with an accuracy of 85%.
- 2. AI chatbot for victim support response time > 3 seconds per query.

3.1.3 Design Constraints

- 1. AI models should ensure minimal false positives/negatives.
- 2. Secure storage and processing of sensitive data.
- 3. System should be scalable for different crime detection scenarios.

3.1.4 Programming Language and Technologies

- 1. **Programming Languages:** Python
- 2. AI Libraries: TensorFlow, OpenCV, NLTK, PyTorch, scikit-learn
- 3. **Database:** Supabase with Postgre SQL
- 4. Version Control: GitHub

3.1.5 Interface Requirements

- 1. Web-based dashboard for law enforcement.
- 2. Mobile-friendly interface of Chatbot for victim support.
- 3. Integration with existing surveillance infrastructure.

Table 4: system functions

RID	Description	Category	Attribute	Details & boundary constraints
R1.1	AI-based real-time crime detection through video surveillance	Functional	Response time	Anomaly detection in <5 seconds
R1.2	Automated alert system for suspicious activities	Functional	Notification speed	Alert generation <3 seconds
R1.3	AI chatbot for victim support	Functional	Response speed	Chatbot replies within 3 seconds
R1.4	Secure data storage	Non- functional	Compliance	Follows privacy regulations

3.2 List of Actors

The actors represent users or external entities that will input data, receive alerts and interact with system.

Table 5: list of actors

Law Enforcement Officer	Monitors real-time crime alerts, verifies incidents, and takes necessary action.
Surveillance System Administrator Manages the AI-powered smart surveillance system, including configur feeds and monitoring analytics.	
Crime Victim Uses the AI chatbot for reporting crimes and receiving emotional or prosupport.	
Security Personnel	Monitors private security infrastructure and receives alerts from the system for potential threats.
System Operator	Oversees the general system functionality, maintenance, and updates
External Law Enforcement Database	Provides historical crime records to enhance AI decision-making.
Public Safety Organization	Uses crime data to develop crime prevention strategies.
IT Administrator	Ensures the system remains functional, secure, and up-to-date.

3.3 List of use cases

Table 6: list of usecase

Use Case ID	Use Case Name	Description
UC-1	Crime Detection & Alerting	AI system monitors surveillance feeds & detect abnormal activities.
UC-2	Automated Alert Notification	When any criminal activity detected, real-time alert will send to the law enforcement officers.
UC-3	Victim Crime Reporting	Victims can use Chatbots to report crime securely without interacted to any human being.
UC-4	User Authentication	To access system functionalities, a login is required of law enforcement and administrators.
UC-5	System Configuration	Surveillance administrators can adjust AI parameters, monitoring rules and sensitivity.
UC-6	Data Storage & Retrieval	For future references, stores reported crimes and evidence securely.
UC-7	Surveillance Feed Monitoring	Users can review live surveillance footage manually alongside AI detected alerts for confirmation.
UC-8	Chatbot Assistance	Provides support to victims and collect necessary information.
UC-9	Integration with Law Enforcement Database	Connection with external crime databases to increase AI accuracy and crime pattern recognition.
UC-10	User Role Management	Administrator can assign different roles, boundaries and permissions for different types of users.
UC-11	System Maintenance & Updates	Administrator can monitor system health, updates and resolve technical issues.

3.4 System use case diagram

Figure 1: use case diagram

3.5 Extended use cases

Table 7: extended usecase CDPS-UC-1.1

Use Case ID:	CDPS-UC-1.1		
Use Case Name:	Detect and Alert Suspicious Activities		
Created By:	Arshman Noor	Last Updated By:	Arshman Noor
Date Created:	19 January, 2025	Last Revision Date:	18 February, 2025
Actors:	Law Enforcement Officer, System Administrator		
Description:	The AI system analyzes live footage of surveillance using advanced pattern recognition to detect abnormal activities. An alert will automatically be generated including timestamp, location, camera number, and a classification of the threat/crime and sent to law enforcement officers or headquarters on the detection and identification of a threat. This enables rapid assessment and response by authorities. The system logs all the detected incidents in a safe and secure database for future needs, contributing to improve prevention strategies and more efficient law enforcement operations.		
Trigger:	The AI system continuously cans surveillance feeds, recognizing patterns and detecting abnormalities that may specify criminal activities, which then triggers an alert for further investigation.		
Preconditions:		neras should be active an be trained and operationa	d connected to the system.

	3. For real-time processing system must have stable and high speed network	
	connectivity. 4. Law enforcement workforce must be registered and authenticated in the	
	system.	
D 4 1141	5. An access to historical crime database for AI pattern analysis.	
Post conditions:	 An alert is generated and forwarded to headquarters and law enforcement officers. 	
	2. Surveillance feed is stored for future needs.	
	3. A report generated and made available to law enforcement.	
	4. Surveillance feed stored which may help in further investigation.	
Normal Flow:	1. The system continuously processes live feeds.	
	2. Based on predefined patterns, AI detects abnormal activity.	
	On detecting abnormal activities, the system generates an alert and notifies the headquarters.	
	 Officers verifies the alert and responds accordingly. 	
Alternative	AF1: False Positive Detection	
Flows:	1. If an alert is determined to be a false positive, the officer marks it as	
	resolved.	
	2. The AI model is retrained to improve accuracy.	
	AEQ. Low Confidence Alant	
	AF2: Low Confidence Alert 1. In step 3 of the normal flow, if the AI system is unsure about an alert, it	
	sends it for manual review.	
	2. A human operator validates or dismisses the alert before notifying law	
	enforcement.	
	ATC 110-1. Delegate Legate 4	
	AF3: High-Priority Incident	
	 In step 3 of the normal flow, if a detected activity matches a high-priority crime pattern, an urgent alert is sent. 	
	2. Law enforcement receives immediate notifications with live video feed	
	access.	
	AFA G A D A'	
	AF4: System Downtime 1. If the system goes offline, an automatic alert is sent to the IT administrator.	
	2. The system attempts to restart, and a backup mode is activated for basic	
	surveillance.	
	AF5: Restricted Area Breach	
	1. If AI detects unauthorized access to a restricted area, a specific security	
	protocol is triggered. 2. Security personnel are alerted, and automated lockdown procedures may be	
	initiated.	
Exceptions:	1. The system logs an error and sends a system health alert if the surveillance	
	system gets offline.	
	2. An emergency mode with human monitoring activated if AI fails to process	
	video feeds due to any error like poor image quality and connection error.	
	The system forwards an alert to higher authorities if the alert is not acknowledged within a set time.	
	4. Alerts and logs will store temporarily in a local backup in case of database	
	inaccessibility.	
	5. If the chatbot fails to interpret victim input correctly, it redirects to a human	
	operator for assistance.	
Includes:	User Authentication (UC-4), Data Storage & Retrieval (UC-6)	
D •		
Frequency of	Continuous operation.	
Use:		

	Real-time processing, Stable Network, High computational power, Access to Law
Requirements:	enforcement database.
Assumptions:	The AI model is accurate enough to minimize false positives and false negatives.
Notes and Issues:	What is the threshold for detecting suspicious activities?

Table 8: extended usecase CDPS-UC-2.1

Use Case ID:	CDPS-UC-2.1		
Use Case Name:	Report Crime via Chatbot		
Created By:	Arshman Noor Last Updated By: Ahmed Nadeem		
Date Created:	3 February, 2025 Last Revision Date: 19 February, 2025		
Actors:	Crime Victim (Primary), Law Enforcement Officer (Secondary)		
Description:	The AI chatbot offer user-friendly interface for a victim to report a crime and talks about the situation to authorities without direct human interaction. It systematically collects the details like location, time, type of crime, and any relevant evidence before filing the report. The system verifies the provided data, cross-referencing it with existing records for accuracy and consistency. After verification, the report is forwarded to law enforcement with the categorization tags, sensitivity level and relevant data. This ensures fast and secure communication and help those victims who don't feel comfortable in talking to an officer or human being directly.		
Trigger:	A victim starts communication with Chatbot to report a crime.		
Preconditions:	 The chatbot must be active and operational. The victim must have an internet access and compatible device to start chat with chatbot. Law enforcement officer's registration is required for receiving reports. A secure data storage must be available to log crime reports. AI chatbot must be trained to interpret different types of crime reports. 		
Post conditions:	The system has successfully recorded the crime report.		
	 The victim is provided with emergency contacts or appropriate guidance. Law enforcement is informed of pertinent case information. A preliminary criminal report is created by the system for a further inquiry. An officer is tasked with following up with the victim if required. 		
Normal Flow:	 The victim uses his mobile app or website to access the chatbot. The chatbot prompts the victim for crime details, location and urgency. The victim provides details about the crime. The system verifies and logs the crime details into the database. Law enforcement is notified and assigned to review the report. The chatbot provides further assistance, such as legal advice or emergency numbers. 		
Alternative	AF1: Victim Disconnects Before Completing Report		
Flows:	 The chatbot saves important details for future sessions. The chatbot resumes the report from the last recorded step on the return of victim. 		
	 AF2: Emergency Case Detection The chatbot immediately directs the victim to emergency services if it identifies an emergency (e.g., ongoing assault). For immediate response a high-priority alert will be sent to law enforcement. 		
Exceptions:	 The victims are redirected to an alternative manual reporting method if chatbot service is offline. The chatbot requests clarification or offers human assistance if the victim 		
	provides unclear responses. 3. The system forwarded the report if the law enforcement fails to acknowledge		

	the report.	
Includes:	User Authentication (UC-4), Data Storage & Retrieval (UC-6)	
Frequency of Use:	On demand.	
Special Requirements:	For data privacy use secure encryption, for better accessibility it should be multilingual.	
Assumptions:	Victims will provide honest and accurate crime reports.	
Notes and Issues:	 How will the system ensure chatbot responses remain sensitive and accurate? What measures are in place for false reports or misuse of the chatbot? 	

3.6 User interfaces (mock screens)

1. Crime Reporting Chatbot (P1)

Victims interact with AI powered Chatbot.

Prototype 1: Login Screen

Prototype 2: Asking a query

2. Surveillance System (P2):

Prototype 3: Admin Dashboard

Prototype 4: Access Control

Prototype 5: Facial Recognition

Prototype 6: Analytics

4.1 System Architecture Diagram

Figure 2: system architecture diagram

4.2 Class Diagram

Figure 3: class diagram

4.3 Sequence Diagrams

SURVEILLANCE SEQUENCE DIAGRAM

Figure 4: surveillance sequence diagram

CHATBOT SEQUENCE DIAGRAM

Figure 5: chatbot sequence diagram

4.4 Collaboration Diagrams

Figure 6: chatbot collaboration diagram

Figure 7: surveillance collaboration diagram

4.5 Other UMLs

Figure 8: surveillance system uml

Figure 9: component diagram

Figure 10: deployment diagram

4.6 ERD

Figure 11: erd diagram

4.7 Data Dictionary

Table 9: data dictionary

Element Name	Type	Validation	Mandatory	Remarks	
Username	Text Field	Must be a valid email format (user@example.com)	Yes	For Authentication	
Password	Password Minimum 8 characters, at least one digit and special character		Yes	Encrypted for security	
Login Button	Button	Enable only if fields are valid	Yes	Initiates authentication process	
Crime Type	Dropdown	Predefined categories (e.g., Theft, Assault, Fraud)	Yes	Helps in classification of crimes	
Location	Text Field	Must be valid address or GPS coordinates	Yes	Autofill (if GPS enabled)	
Incident Timestamp	Date / Time Picker	Must be a valid date- time format	Yes	Captures exact time of incident reporting	
videos (50 ME		Accepts images, videos (50 MB, JPG, PNG, MP4, MOV)	No	Optional but helps in investigation	
Submit Report	Button	Enabled if mandatory fields are filled	Yes	Sends crime report to database	
Chatbot Input	bot Input Text Field No offensive words allowed No		No	Auto-correct enabled for user clarity	
AI Alert Notification	Pop-Up	Pop-Up Displays real-time Yes alerts		Visible to only Authorized users	
Law Enforcement Dashboard	Ui Panel	Displays reports, alerts & crime analytics	Yes	Only accessible to authorized users	
System Logs	Hidden Field	Stores user actions & Yes timestamps		For security monitoring	
Case Status	Dropdown	Open, Under Investigation, Closed	Yes	Helps to track progress of case reported	
Suspect Description	Text Field	Minimum 5 characters requires	No	Provide details of suspects	
Emergency Contact	Text Field	Must be a valid phone number (e.g., +92 304 9990123)	No	To enable quick communication with victims	
Altrima Production '		Uses past data to predict crime trends	No	Helps law enforcement in crime prevention	

Incident Report ID	Auto- generated	Unique identifier for each crime report	Yes	Automatically assigned upon report submission
Case Assignment	Dropdown List of officers assigned to the case		Yes	Ensures accountability and tracking
Evidence Review	UI Panel	Allows law enforcement to view submitted evidence	Yes	Used for validation and case building
User Role Management	Admin Panel	Allows assignment of roles & permissions	Yes	Managed by system administrators

5.1 Development Setup

1. Programming Language:

- Python
 - Used as primary language for backend development, integration of AI and system logics.

2. AI Libraries / Frameworks:

- TensorFlow, Keras, Pytorch
 - Used for building and training deep learning models (eg. For behaviour analysis).
- OpenCV, Pillow, Yolo
 - Used for image and video processing.
 - Object detection & loitering detection.
- SciPy, Scikit-image
 - Used for NLP tasks in ChatBot module and pattern recognition.
- Matplotlib, Seaborn
 - Used for visualization and analysis.

3. <u>Database:</u>

- Supabase with PostgreSQL
 - For structured data storage like user logs, reports and chat integractions.

4. Version Control:

GitHub

5. Operating Systems:

Microsoft Windows, Android

5.2 Deployment setup

- Integration with Existing Surveillance Systems.
- A web dashboard for law enforcement officers.
- A mobile accessible chatbot app or interface for victims.

Problems Faced & How They Were Overcome:

- **System Downtime** (as mentioned in alternative flows):
 - o Handled by sending alerts and switching to backup surveillance mode.

- Chatbot Errors:
 - o Redirected to human operators if AI failed to interpret input.
- False Positives in Detection:
 - o Officer marks alerts as resolved.

5.3 Algorithms

Suspicious Activity Detection Algorithm:

- Uses pattern and behavioral analytics on live camera feeds.
- Triggers alerts with time stamps, camera IDs and threat classification. (YOLOv8, Tensorflow/Keras, Buffalo)

Chatbot Crime Reporting Flow:

- NLP models for understanding and processing user inputs.
- Maps input to crime types, location, urgency and generates structured reports.

Red Alert Recognition (License Plates, etc.):

Use object recognition and database matching to detect flagged elements. (FastANPR)

5.4 Constraints

5.4.1 Assumptions

- AI models are assumed to sufficiently accurate to minimize false positive/negatives.
- Stable and highspeed internet will be available for real-time video feed processing.
- Victims will provide accurate and honest information to chatbot.
- Officers will be registered and available to respond to alerts.

5.4.2 System constraints

- System must work in real-time with anomaly detection under 5 seconds.
- Chatbot must response in less than 3 seconds per query.
- Must be compatible with existing infrastructures.
- Must maintain data privacy and security as per legal standards.

5.4.3 Restrictions

- No real-time integration with external accounting or financial system.
- Only registered users can access sensitive data or features.
- Only predefined crime types and suspects can be selected from dropdowns.

5.4.4 Limitations

- Cannot operate without active surveillance cameras.
- Cannot operate without stable internet.
- Chatbot may misunderstand victim inputs.
- System cannot autonomously enforce or take legal action.

•	Only works with CCTV footage format (.AVI, .MOV, .TS).	

6. TESTING (IN PROGRESS)

6.1 Extended Test Cases

Test Case	Test Case ID: TC_01		Test Design by: Arshad Mehmood				
Test Module Name:		Test Design Date: 17/5/2025					
Test Prior	ity:		Test Execut	ed by: Arshad Meh	mood		
Test Title/	Name:		Test Execut	ed Date: 12/6/2025			
Descriptio	n:						
Pre-condit	ion:						
Dependen	cies						
Step	Test Step	Test Data	Expected Result	Actual Result	Status (Pass/Fail)	Notes	
1	Turn on the system						
2							
3							
4]	
Post Cond	ition:	1	1			1	

Test Case ID: TC_01 Test Module Name:		Test Design by: Arshad Mehmood				
		Test Design Date: 19/5/2025				
Test Prior	rity:		Test Execut	ed by: Arshad Meh	mood	
Test Title/	Name:		Test Execut	ed Date: 13/6/2025		
Descriptio	on:					
	-					
Pre-condit	tion:		•			
Dependen	cies					
Step	Test Step	Test Data	Expected Result	Actual Result	Status (Pass/Fail)	Notes
1	Turn on the system				PASS	
2						
3						
4						
			I	1	1	1

6.2 Decision Table

6.2.1 Code snippet

6.2.2 Decision coverage table

Decision Condition	True Action	False Action
Is suspicious activity detected?	Generate alert and notify officers	Continue monitoring
Is the user authenticated?	Allow access to system	Show error or deny access
is it a nign-priority emergency report?	enforcement	Process as normal priority
Is the chatbot able to understand victim input?	Proceed with crime report flow	Redirect to human operator
	Send real-time alerts	Store locally and retry later
Is the law enforcement officer available to respond?	Assign task and show report	Store alert and retry later

Table 10: Decision Coverage

6.3 Traceability Matrix

6.3.1 RID vs UCID (requirements vs use cases)

Requirement ID	Use Case ID	Description
R1	UC-1	Detect and alert suspicious activity via AI
R2	UC-2	Send alerts to law enforcement in real-time
R3	UC-3, UC-8	Chatbot for crime reporting and emotional support
R4	UC-6, UC-9	Evidence storage and integration with external databases
R5	UC-4, UC-6, UC-11	Secure login, case logs, and system maintenance

Table 11: RID vs UCID

6.3.2 Test Cases (RID vs TID)

Requirement ID	Test Case ID	Test Case Description
R1.1	T1	Test if the system detects a person loitering
R1.2	T2	Test if alert is generated within 3 seconds
R1.3	Т3	Test chatbot response time < 3 seconds
R1.4	T4	Test if evidence is processed in < 10 seconds

Requirement ID	Test Case ID	Test Case Description
R1.5	T5	Check secure data storage and privacy compliance

Table 12: RID vs TID

6.3.3 Coverage (UCID vs TID)

Use Case ID	TID Test Case ID	Test Case Description
UC-1	T1, T2	Detect & alert suspicious activity
UC-2	T2	Automated real-time alert
UC-3	Т3	Victim reports crime via chatbot
UC-4	T5	User authentication flow
UC-6	T4, T5	Store and retrieve crime reports and evidence
UC-8	T3	AI Chatbot assisting victims

Table 13: UCID vs TID

7. RESULTS/OUTPUT/STATISTICS

- **7.1 100% completion**
- 7.2 92% accuracy
- 7.3 92% correctness

8. CONCLUSION

The Crime Detection & Prevention System (CDPS) use AI-driven technologies to successfully addresses some key challenges in traditional surveillance and crime reporting. The system is capable of detecting suspicious behavior in real-time and notifying law enforcement within seconds, reducing human workforce, response time and error rates by the integration of machine learning, computer vision and natural language processing.

For supporting victims to report crimes, especially for those who feel uncomfortable with face-to-face interactions, an AI- powered chatbot offers a secure and private channel. This system not only help to detect and prevent crimes but also support victims to report and assists law enforcement in acting swiftly and efficiently.

This project validates how smart surveillance and automated alert system can contribute to building safer communities with lower manpower dependency and improved situational awareness.

9. FUTURE WORK

Future work for the CDPS system could involve several aspects:

- Use Cloud Services for better storage, speed and access from anywhere.
- **Mobile App for Police** Officers can get alerts and updates on their phones.
- Add More Languages So more people can use the chatbot easily.
- **Voice Chatbot** So victims speak instead of typing, with emotion detection.
- **Work without Internet** Use edge devices for areas with poor network.
- Crime Prediction Show areas where crimes might happen next.
- **Allow Public Tips** Let people report suspicious activity anonymously.
- Connect with Police Databases To improve face and license plate recognition.

10. BIBLIOGRAPHY

- AI-Based Automatic Crime Detection System, "AI-Based Automatic Crime Detection System," International Journal of Advanced Research in Management and Social Sciences, Aug. 2023. [Online]. Available: https://garph.co.uk/IJARMSS/Aug2023/1.pdf.
- 2. The Associated Press, "Police Officers Are Starting to Use AI Chatbots to Write Crime Reports," AP News, 2024. [Online]. Available: https://www.ap.org/news-highlights/spotlights/2024/police-officers-are-starting-to-use-ai-chatbots-to-write-crime-reports-will-they-hold-up-in-court/.
- 3. Innefu Labs, "How Artificial Intelligence in Policing Helps Crime Detection," Innefu Blog, 2024. [Online]. Available: https://www.innefu.com/blog/how-artificial-intelligence-in-policing-helps-crime-detection.
- 4. International Journal of Scientific Research and Applications, "AI-Powered Financial Crime Prevention," IJSRA, 2024. [Online]. Available: https://ijsra.net/sites/default/files/IJSRA-2024-2143.pdf.

10.1 Research papers

- 1. **Apene, O.Z., Blamah, N.V., & Aimufua, G.I.O.** (2024). Advancements in Crime Prevention and Detection: From Traditional Approaches to Artificial Intelligence Solutions. European Journal of Applied Science, Engineering and Technology, 2(2), 285-297.
- 2. **Shah, N., Bhagat, N., & Shah, M.** (2021). *Crime Forecasting: A Machine Learning and Computer Vision Approach to Crime Prediction and Prevention.* Visual Computing for Industry, Biomedicine, and Art, 4(9).
- 3. **Jenga, K., Catal, C., & Kar, G.** (2023). *Machine Learning in Crime Prediction*. Journal of Ambient Intelligence and Humanized Computing, 14, 2887–2913.
- 4. Palanivinayagam, A., Gopal, S.S., Bhattacharya, S., Anumbe, N., Ibeke, E., & Biamba, C. (2021). *An Optimized Machine Learning and Big Data Approach to Crime Detection*. Wireless Communications and Mobile Computing, 2021, Article ID 5291528.

11. APPENDIX

11.1 Glossary of terms

• CDPS Crime Detection & Prevention System

• UMT University of Management and Technology

• **GUI** Graphic User Interface

• ML Machine learning

• CV Computer Vision

• CNN Convolutional Neural Networks

• **DNN** Deep Neural Network

• FYP Final Year Project

• **POF** Proof of Work

• **HOG** Histogram of Oriented Gradient

• SLCV Surveillance & logging Using Computer Vision

• NLP Natural Language Processing