河西区 2017—2018 学年度初中毕业生学业考试模拟试卷 (一)

化 学

- 1. 本试卷分为第 [卷(选择题)和第 []卷(非选择题)两部分。第 [卷第]页至第 3 页, 第11卷第4页至第8页。试卷满分100分。考试时间60分钟。
 - 2. 考生务必将答案写在"答题纸"上,答案答在试卷上无效。 祝各位考生考试顺利!

第I卷

注意事项:

- 1. 用黑色墨水的钢笔或签字笔将答案写在"答题纸"上对应的表格中。
- 2. 本卷共 15 题, 共 30 分。
- 3. 可能用到的相对原子质量: H1 C12 N14 O16 Na23 S32 Cu64
- 一、选择题(本大题共 10 题,每小题 2 分,共 20 分。每小题给出的四个选项中,只有一 个最符合题意)
- 1. 下列成语或典故中,蕴含化学变化的是
 - A. 海市蜃楼 B. 刻舟求剑
- C. 火烧赤壁

- 2. 下列物质中,没有列入空气质量监测的是

 - A. SO₂ B. CO₂
- C. NO₂ . D. PM_{2.5}
- 3. 下列生活中常见的物质与水混合,充分搅拌,不能形成溶液的是
 - A. 酒精
- B. 面粉
- C. 蔗糖
- 4. 下列人体所必需的元素中, 缺乏后会导致佝偻病、骨质疏松的是
 - A. 铁
- B. 锌

5. 下列实验操作中。错误的是

A. 滴加液体

B. 闻气体

C. 加热液体

- 6. 将盖严的空矿泉水瓶从高原地区带到平原,瓶子变瘪,瓶内气体
 - A. 分子体积变小

B. 分子数目减少

C. 分子质量变小

D. 分子间隔变小

九年級化学试卷 第 1 页 (共 8 页) (一)

- 7. 下列物质由原子直接构成的是
 - A. 氯化钠
- B. 氮气
- .C. 汞
- D. 蒸馏水

- 8. 下列灭火方法中,不恰当的是
 - A. 油锅起火——用锅盖盖灭
- B. 酒精灯着火——用湿抹布盖灭
- C. 汽车油箱着火——用水浇灭 D. 森林起火—
 - D. 森林起火——砍伐树木形成隔离带
- 9. 下列课外实验与物质的化学性质无关的是
 - A. 用石墨做导电实验
 - B. 用灼烧法区别棉纤维与羊毛纤维
 - C. 用白糖、小苏打、柠檬酸等自制汽水
 - D. 用紫甘蓝的酒精浸取液检验苹果汁与石灰水的酸碱性
- 10. 某化学反应的微观示意图如下,下列说法正确的是

- A. Y 是由四种原子构成的分子
- B. 参加反应的 X 和 Y 两种物质的质量比为 12: 17
- C. 生成的 Z和 W 两种物质的分子个数比为 1:1
- D. 参加反应的 Y 中氮元素的质量一定等于生成 Z 的质量
- 二、选择题(本大题共5题,每小题2分,共10分。每小题给出的四个选项中,有1~2个符合题意)
- 11. "侯氏制碱法"是我国著名科学家侯德榜发明的一种连续生产纯碱与氯化铵的联合制碱工艺。 ①生产原理: 反应 I---NaCl(饱和溶液) + NH₃ + CO₂ + H₂O=NaHCO₃(固体) + NH₄Cl ②主要生产流程如下图所示:

下列叙述错误的是

- A. 生产流程中,操作 I 的名称是过滤
- B. 反应 I 中, 涉及的物质氮元素的化合价发生了改变
- C. 反应 I 中, 碳酸氢钠晶体析出后, 剩余的液体中不会含有碳酸氢钠
- D. 反应 II 的化学方程式是 2NaHCO₃ △ Na₂CO₃ + CO₂↑+ H₂O
 九年级化学试卷 第 2 页 (共 8 页) (一)

- 12. 下列实验方案或操作能达到目的的是
 - A. 用点燃的方法除去 CO2 中的少量 CO
 - B. 用滴加无色酚酞溶液的方法鉴别石灰水和纯碱溶液
 - C. 用检验燃烧后产物的方法鉴别 H2、CO 和 CH4
 - D. 用将粗盐研碎、溶解、蒸发的方法除去粗盐中的可溶性杂质
- 13. 某同学对下列四个实验都设计了两种方案,两种方案均合理的是

选项	A	В	C	. D
实验目的	除去氯化钠溶液 中的少量盐酸	鉴别盐酸、氢氧化钙、 氯化钠三种溶液	证明 CO ₂ 中混 有少量 O ₂	分离铜粉和碳粉
方案1	滴加适量 Na ₂ CO ₃ 溶液	滴加紫色石蕊溶液	通过热铜网	滴加稀硫酸
方案 2	滴加适量 NaOH 溶液	滴加碳酸钠溶液	通入澄清石灰水	在氧气中加热

14. 下列四个图像中,能正确反映对应变化关系的是

- A. 图①表示将浓硫酸露置在空气中
- B. 图②表示在恒温条件下,将饱和的 NaCl 溶液蒸发适量水
- C. 图③表示向一定量的氢氧化钠溶液中滴加 pH = 2 的稀盐酸至过量
- D. 图④表示向一定质量的 AgNO₃ 和 Cu(NO₃)₂ 的混合溶液中不断加入铁粉
- 15. 有一包白色粉末,可能含有氮化铵、氯化钡、碳酸钙、无水硫酸铜、氯化钠、氢氧化钠中的一种或几种。为确定其组成,进行如下实验:

①取少量该粉末置于研钵中研磨,未嗅到任何气味;②取少量该粉末置于烧杯中,向烧杯中加入适量的水,充分搅拌,静置后,观察到上层溶液呈无色,烧杯底部有蓝白色沉淀,过滤得到滤液和滤渣;③向上述滤液中滴加几滴硝酸银溶液,溶液变浑浊;④向上述滤渣中加入足量稀盐酸,充分搅拌,仍有白色沉淀且其质量未减少。下列说法正确的是

- A. 白色粉末中可能有氯化钠和氢氯化钠
- B. 白色粉末中一定有氯化钡、氢氧化钠、无水硫酸铜
- C. 白色粉末中一定没有碳酸钙、氢氧化钠、氯化铵,可能有氯化钠
- D. 白色粉末中一定有氢氧化钠和无水硫酸铜,且二者的质量比可能为 1:2 九年级化学试卷 第 3 页 (共 8 页) (一)

河西区 2018 年初中毕业生学业考试模拟试卷 (一) 第 II 卷

A. 18 经基本股票 自由 (1)

	-	-	4897	
注	-300	H	1171	s
1-1-	First.	-837	يوس	ð

- 1. 用黑色墨水的钢笔或签字笔将答案写在"答题纸"上。
- 2. 本卷共11题, 共70分。
- 3. 可能用到的相对原子质量: H1 C12 O16 S32 Fe56 Cu64 Zn65
- 三、填空题(本大题共3小题 共20分)
- 16. (5分) 我们的生活离不开化学。现有①金刚石 ②氮气 ③熟石灰 ④纯碱 ⑤干冰 ⑥烧碱,选择适当的物质填空(填序号)。
 - (1) 可作保护气的是____;
 - (2) 可用于人工降雨的是_____
 - (3) 可用于切割大理石的是_____
 - (4) 可用于改良酸性土壤的是_____
 - (5) 广泛应用于肥皂、石油、造纸等工业的是_____
- 17. (5分)元素周期表是学习和研究化学的重要工具, 澳元素的相关信息如图一所示回答下列问题:

(1) 澳的相对原子质量是___

(2) 溴元素的原子在化学反应中	容易电子	(填	"得到"	或	"失去")	
其化学性质与图二中	(填序号) 元素的化学性	质相	似。				

- (3) 溴元素与图二中 B 元素形成化合物的化学式是_____
- (4) 图二中 A 元素的原子形成离子, 其符号是_____

九年级化学试卷 第 4 页 (共 8 页) (一)

		人们利用最多					
		上醇汽油可 足				E上减少为	车尾气的
		式为				でも機能が	
		、是硬水还是					
		<u>0.2</u> godd y -			*Cyr		
(.4) 卜表5	三种物质在	不同温度	付的溶解度	A COUNTY OF THE PARTY OF		
	温度	€/°C	20	30	50	60	
		KNO ₃	31.6	45.8	85.5	110	169
	溶解度/g	K ₂ CO ₃	110	114	121	126	
		Ca(OH) ₂	0. 17	0. 16	0.14	0.12	0. 09
② 的质量	50℃时,2 是	KNO3的溶解 000g饱和Kg g。 O℃的Ca(OH	CO ₃ 溶液泵	蒸发 10 g 水	后,再降温	且到50℃,	可析出
②的质量。 ③ "变大	50℃时,2 是 将 100 g 60 "、"不到	00 g 饱和 K ₁ g。 0°C的 Ca(OH E" 或 "变小	(CO ₃ 溶液素 () ₂ 饱和溶剂 ()")。	蒸发 10 g 水 変降温至 20	后,再降溢 ℃,溶液中	盖到 50℃, 溶质的质量	可析出
②的质量 ③: "变大"	50℃时,2 是	00 g 饱和 Kg g。)℃的 Ca(OH	(CO ₃ 溶液素 () ₂ 饱和溶液 、")。 有相同质:	蒸发 10 g 水 変降温至 20 量的 KNO ₃	后,再降溢 ℃,溶液中	盖到 50℃, 溶质的质量	可析出
② 的质量: ③ "变大 ① 充分溶解 下3	50℃时,2 是	00 g 饱和 K; g。 0℃的 Ca(OH で"或"变小 可两个分别盛 至 40℃,其 长中,正确的	CO ₃ 溶液液 () ₂ 饱和溶液 (***)。 有相同质 (结果如右 有	蒸发 10 g 水 変降温至 20 量的 KNO ₃ 图所示。	后,再降选 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。	盖到 50℃, 溶质的质量	可析出
② 的质量: ③: "变大 ① 充分溶解 下3 A.	50℃时,2 是	00 g 饱和 K; g。 0℃的 Ca(OH 更"或"变小 可两个分别盛 更至 40℃,其 长中,正确的 溶质是 KNO	(CO ₃ 溶液系 () ₂ 饱和溶液、")。 有相同质 、结果如右 有 () ₃ ,烧杯 b	蒸发 10 g 水 変降温至 20 量的 KNO ₃ 图所示。 (填 中溶质是 I	后,再降选 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。	盖到 50℃, 溶质的质量	可析出] 各加入] [] []
② 的质量: 3): "变大 介容的 充分溶的 不分容的 A. B.	50℃时,2 是	00g饱和 Kg。 © C的 Ca(OH E"或"变小 可两个分别盛 至 40℃,其 法中,正确的 溶质是 KNC	(CO ₃ 溶液液 () ₂ 饱和溶液 (**) 。 有相同质 (结果如右 有 () ₃ ,烧杯 b 不饱和溶液	蒸发 10 g 水 変降温至 20 量的 KNO ₃ 图所示。 (填 中溶质是 I	后,再降选 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。 K ₂ CO ₃	證到 50℃,溶质的质量的烧杯中,	可析出] 各加入] [] []
②的质量: ③**变大 ④ 充分溶解 下3 A. B.	50℃时,2 是	00 g 饱和 Kg。 ②°C的 Ca(OH) ②"或"变小司两个分别盛至40°C,其实中,正确的溶质是 KNC	CO3溶液剂 ()2饱和溶剂 ()2饱和溶剂 ()3,相同质 (结果如右 有 ()3,烧杯 b ()4种 ()4种 ()4种 ()5种 ()5种 ()5种 ()5种 ()5种 ()5种 ()5种 ()5	蒸发 10 g 水 変降温至 20 量的 KNO ₃ 图所示。 (填 中溶质是 F 5 b 中析出版	后,再降益 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。 S ₂ CO ₃	溜到50℃,溶质的质量的烧杯中,	可析出 】
② 的质量 ③ "变大 充分溶解 下3 A. B. C.	50℃时,2 是 将 100 g 60 "、"不好"。 好 60℃时, 6 好 60 好 7 好 7 好 7 好 7 好 7 好 7 好 7 好 7 好 7 好 7	00 g 饱和 Kg。 ② C 的 Ca(OH ② 或 "变小 可两个分别盛至 40℃,其 性中,正确的 溶液一定是不 或蒸发都液。 或蒸发都液。 或本中的溶液。	(CO3 溶液液 (D2 饱和溶液、")。 有相果如后, 有一层, 体和溶液和 不饱, 使物, 不饱, 使物, 不饱, 使物, 不够, 不够, 不够, 不够, 不够, 不够, 不够, 不够, 不够, 不够	繁发 10 g 水 変降温至 20 置的 KNO3 图所示。 中溶质是 F 6 中析出版 1溶液,溶液	后,再降益 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。 S ₂ CO ₃	溜到50℃,溶质的质量的烧杯中,	可析出 】
②的质量。 ③**变大。 ④**交子。 第一个。 第一个。 第一个。 第一个。 第一个。 第一个。 第一个。 第一个	50℃时,2 是 将100g60 "、"不好"。 好同,关系。 烧杯。 将加入。 将加入。 将加入。 将加入。 将加入。 将加入。 将加入。 将加入	00 g 饱和 Kg。 © Ch Ca(OH Ca(OH Cy) 可两个分别盛至 40℃,其实中,正是 KNC 溶液 发发 改善 在 中,是 KNC 溶液 发发 改善 大 C 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不	(CO3 溶液剂 ()2 饱和溶剂 ()2 饱和溶剂 ()3 ,同质石 有一烧和溶剂 不饱使物和 大切的,不能使物和 大块 20 分	繁发 10 g 水 変降温至 20 量的 KNO ₃ 图所示。 中溶质是 F 6 中析出區 1溶液,溶液)	后,再降益 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。 S ₂ CO ₃	溜到50℃,溶质的质量的烧杯中,	可析出 各加入
②的质量。 "变 ④ 充分 下3 A. B. C. D. 简智 19.	50℃时,2 是 将100g60 "、"时度" 好所,关系。 将有有杯。 将有种。 将他, 将他, 将他, 将他, 将他, 将他, 将他, 将他, 将他, 将他,	00 g 饱和 K, g。 ○ C 的 Ca(OH ca	(CO3 溶液剂 (CO3 red) (CO3 re	繁发 10 g 水 変降温至 20 图的 KNO3 图所示。 中溶质 是 B 6 b 中析,溶液, 2 c b 中析,溶液, 2 c b 中析,溶液, 2 c c c c c c c c c c c c c c c c c c c	后,再降选 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。 K ₂ CO ₃ 個体 核中溶质质	溜到50℃,溶质的质量的烧杯中,	可析出 各加入
②的质量。 "变 ④ 充分下3 A. B. C. D. 简智 19. (1)	50℃时,2 是 将100g60 ""你,你 好你 好你 好你 好你 好你 好你 好你 好你 好你 好你 好你 好你 好你	00 g 饱和 Kg。 © Ch Ca(OH Ca(OH Cy) 可两个分别盛至 40℃,其实中,正是 KNC 溶液 发发 改善 在 中,是 KNC 溶液 发发 改善 大 C 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不	(CO3 溶液剂)。 (CO3 rather)。 (CO3 rather)	繁发 10 g 水 変降温至 20 图 图	后,再降选 ℃,溶液中 和 K ₂ CO ₃ 的 序号)。 ≤ ₂ CO ₃ 切体 液中溶质质	溜到50℃,溶质的质量的烧杯中,	可析出 各加入

April 1

63

20. (8分)金属在日常生活、工农业生产和科学研究方面应用广泛。
(1) 铜可用来制作导线,是因为其具有良好的延展性和。
(2) 天津的解放桥是一座全钢结构可开启的桥梁,它是天津的标志性建筑物之一。
①钢属于(填"单质"、"纯净物"或"混合物")。
②工业上用一氧化碳和赤铁矿炼铁的原理是(写化学方程式)。
③建造这座桥大约用了 112 t 铁, 理论需要含氧化铁 80%的赤铁矿t。
(3) 为探究铁、铜、银的金属活动性顺序,同学们设计了如下图所示的两步实验。
①第1步实验的目的是。
②第2步实验中,为了达到实验目的,
溶液甲可以是(填序号)。
A. 稀盐酸 B. FeSO4溶液 —AgNO3溶液 溶液甲
C. CuSO4溶液 D. ZnSO4溶液 第1步 第2步
21. (6分) A、B、C是初中化学常见的物质。在以下两种情况下, A、B、C中均有
两种物质为氧化物。
(1) 若向 A 中加入 B 物质,则生成 C, C 溶液 pH>7, A、C 含有相同的金属元素,
该反应的化学方程式为。若将 A 放入饱和的 C 溶液中,出现白色浑浊,该白
色浑浊物为。
(2) 若 A 含四种元素, A 可以通过发生复分解反应同时生成 B 和 C, 则 A 的俗名
为,该反应的化学方程式为。
五、实验题(本大题共3小题 共20分)
22. (4分)根据下列实验示意图回答相关问题。
n b
液 a b 酚酞溶液 碳
* T
A B C
(1) 实验 A 中发生反应的化学方程式为。
(2) 实验 B 中的实验现象是。
(3) 实验 C 中将紫色石蕊溶液浸泡并晾干的小花,一半喷水后放入集气瓶 C 中,该

九年级化学试卷 第 6 页 (共 8 页) (一)

23. (8分)下图为实验室常用的制取和收集气体的装置,请回答下列问题。

- (1) 仪器 a 的名称是_
- (2) 实验室用 A 装置制备氧气时,反应的化学方程式为 燥的氧气,应选用的收集装置是_____(填序号),验满的方法是
 - (3) 实验室制取 CO₂ 的化学方程式是_____,发生装置应选用_
- 24. (8分)甲、乙、丙、丁、戊、己六种初中化学常见的物质都是由 C、H、O、 Na、Ca中的元素组成,其中甲~戊是由两种或三种元素组成的化合物,己是非金属固体 单质, 甲和乙是常用的灭火剂, 丁可发生中和反应。它们转化关系如图一所示(反应条 件、部分反应物或生成物略去)。

- (1) 物质乙的化学式为
- (2) 生成物质丁的化学方程式为
- (3) 下列物质既能与丙又能与戊发生化学反应的是
 - A. 锌 B. 稀硫酸 C. 氧化铁 D. 氯化钡
- (4) 室温下,将稀盐酸慢慢滴入盛有丁溶液的烧杯中,溶液温度随加入盐酸的质量 而变化的曲线如右图二所示。
 - ①请解释 ab 段温度变化的原因_
 - ②表示恰好完全反应的点是_
- (5) 现有物质己与氧化铜两种粉末的混合物 30 g, 其中氧元素的质量分数为 19%, 放 入带有气体导管的大试管中,高温加热该混合物一段时间后,产生4.4g二氧化碳,则剩余固 体中氧元素的质量分数是_____(计算结果保留至 0.1%)。

九年级化学试卷 第 7 页 (共 8 页) (一)

六、计算题(本大题共2小题 共10分)

- 25. (4分) 阿司匹林是一种常见的解热镇痛药,其化学式为 C9H8O4,。
- (1) 阿司匹林由 种元素组成。
 - (2) 每个阿司匹林分子由 个原子构成。
- (3) 阿司匹林中氢、氧元素的质量比为。
 - (4) 阿司匹林中氧元素的质量分数_____(计算结果精确至 0.1%)。
- 26. (6分)某化学兴趣小组同学为回收一块质量为 26 g 的铜锌合金中的铜。将该合金放入烧杯中,滴加稀硫酸至不再产生气泡时,恰好用去稀硫酸 100 g,过滤,得滤渣和滤液,将滤渣洗涤晾干称重为 19.5 g。再向反应后的滤液中加入 54.7 g 水进行稀释。

请计算:

- (1) 黄铜中锌的质量;
- (2) 所用稀硫酸中溶质的质量分数:
- (3) 滤液加水稀释后,所得溶液中溶质的质量分数。

河西区 2018 年初中毕业生学业考试模拟试卷 (一) 化学参考答案及评分标准

(20分)	每題2	分。		, ,				Tall	10
TI	2	3	4	5	6	7	8	19	D
C	В	В	D	_ A .	D	C	C	A	<u>D</u>

二、(10分)每题2分。

	12	13	14	15
BC	С	AB	D	BD

- 三、(20分)(每个化学方程式2分,标注的2分,其余每空1分。)
- 16. (5分)
 - (1) ② (2) ⑤ (3) ① (4) ③ (5) ⑥

17. (5分)

- (1) 79.90 (2) 得到 C (3) MgBr₂ (4) O²⁻

18. (10分)

- (1) 天然气
- (2) C₂H₅OH+3O₂ 点燃 2CO₂+3H₂O
- (3) 肥皂水 煮沸
- (4) ①> ②12.1 ③不变 ④AC (2分)

四、(20分)(每个化学方程式2分,标注的2分,其余每空1分。)

19. (6分)

- (1) S+O₂ 点燃 SO₂
- (2) $Cu + 2AgNO_3 = 2Ag + Cu(NO_3)_2$
- (3) $Fe_2O_3 + 3H_2SO_4 = Fe_2(SO_4)_3 + 3H_2O$

20. (8分)

- (1) 导电性
- (2) ①混合物 ② Fe₂O₃+3CO 高温 2Fe+3CO₂ ③200 (2分)
- (3) ①探究铜、银的金属活动性顺序 2ABC

21. (6分)

- (1) $CaO + H_2O = Ca(OH)_2$ $Ca(OH)_2$
- (2) 小苏打 NaHCO₃+HCl=NaCl+H₂O+CO₂↑ (答案合理均给分)

九年级化学答案第 1 页(共 2 页)(一)

```
五、(20分)(每个化学方程式2分,标注的2分,其余每空1分。)
22. (4分)
   (1) 2H<sub>2</sub>O <u>通电</u> 2H<sub>2</sub>↑+ O<sub>2</sub>↑
    (2) 烧杯 b 中无色酚酞溶液变红色
    (3)证明二氢化碳能与水反应
23. (8分)
    (1) 长颈漏斗
    (2) 2KMnO_4 \stackrel{\triangle}{=} K_2MnO_4 + MnO_2 + O_2\uparrow E
        将带火星的木条靠近集气瓶口。复燃则氧气已满
    (3) CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2\uparrow B
24. (8分)
    (1) H<sub>2</sub>O
    (2) Na_2CO_3 + Ca(OH)_2 = CaCO_3 \downarrow + 2NaOH
    (3) B
    (4) ①氢氧化钠与盐酸反应放热
    (5) 9.8% (2分)
六、(10分)
25. (4分)
            (2) 21 (3) 1:8 (4) 35.6%
   (1) 3
26. (6分)
    解: (1) 黄铜中, 锌的质量为: 26 g-19.5 g=6.5 g
        (2) 设: 稀硫酸中溶质的质量为x, 生成硫酸锌的质量为y。
             Zn + H_2SO_4 = ZnSO_4 + H_2\uparrow
                           161
             65 98
              6.5g x
                                                                 (1分)
                                  x = 9.8 \, \text{g}
             6.5:98 = 6.5 g:x
                                                                 (1分)
                                   y = 16.1g
             6.5:161=6.5 g: y
                                                                 (1分)
             稀硫酸中溶质的质量分数: 9.8g ×100% = 9.8%
         (3) 稀释后所得溶液的质量: 16.1 g+100 g-9.8 g+54.7 g=161 g
                                                                 (1分)
             稀释后所得溶液中溶质的质量分数: 16.1g ×100%=10%
                                                                (1分)
      答: (1) 黄铜中锌的质量是 6.5 g;
          (2) 所用稀硫酸中溶质的质量分数是9.8%;
           (3) 滤液加水稀释后,所得溶液中溶质的质量分数是10%。
                      九年级化学答案第 2 页 (共 2 页) (一)
```

海下