2.4 放大电路的动态分析

在静态分析基础上,分析电路中的交流分量之间 关系。主要求出各种动态参数。

常用的分析方法~

图解法

微变等效电路法

图解法的特点:

- (1)便于观察。
- (2)作图烦琐, U_{i} 很小时难以作图。
- (3)放大电路一些性能指标无法由图解法求得。

- 2.4.2 微变等效电路法在放大电路动态分析中的应用
 - 1.晶体管的H参数微变等效电路
 - (1) 晶体管线性化的条件: 电路工作在小信号状态。
 - (2)晶体管可线性化的主要依据:
 - a. $\Delta i_{\rm B}$ 与 $\Delta u_{\rm BE}$ 之间具有线性关系
 - b. β值恒定

晶体管共射极接法线性化原理

晶体管

NPN型或PNP型

等效图

$$\begin{cases} u_{\text{be}} = h_{\text{ie}}i_{\text{b}} + h_{\text{re}}u_{\text{ce}} \\ i_{\text{c}} = h_{\text{fe}}i_{\text{b}} + h_{\text{oe}}u_{\text{ce}} \end{cases}$$

式中

$$h_{\rm ie} = \frac{\partial u_{
m BE}}{\partial i_{
m B}}\Big|_{U_{
m ce}=0} = \frac{\Delta u_{
m BE}}{\Delta i_{
m B}}\Big|_{\Delta U_{
m CE}=0}$$

$$h_{\mathrm{fe}} = \frac{\partial i_{\mathrm{C}}}{\partial i_{\mathrm{B}}}\Big|_{U_{\mathrm{ce}}=0} = \frac{\Delta i_{\mathrm{C}}}{\Delta i_{\mathrm{B}}}\Big|_{\Delta u_{\mathrm{CE}}=0}$$

$$h_{\rm re} = \frac{\partial u_{\rm BE}}{\partial u_{\rm CE}}\Big|_{I_{\rm b}=0} = \frac{\Delta u_{\rm BE}}{\Delta u_{\rm CE}}\Big|_{\Delta i_{\rm B}=0}$$

$$h_{\text{oe}} = \frac{\partial i_{\text{C}}}{\partial u_{\text{CE}}}\Big|_{I_{\text{b}}=0} = \frac{\Delta i_{\text{C}}}{\Delta u_{\text{CE}}}\Big|_{\Delta i_{\text{B}}=0}$$

$$\begin{cases} u_{\text{be}} = h_{\text{ie}} i_{\text{b}} + h_{\text{re}} u_{\text{ce}} \\ i_{\text{c}} = h_{\text{fe}} i_{\text{b}} + h_{\text{oe}} u_{\text{ce}} \end{cases}$$

$$h_{\mathrm{ie}} = \frac{\partial u_{\mathrm{BE}}}{\partial i_{\mathrm{B}}} \Big|_{U_{\mathrm{ce}}=0} = \frac{\Delta u_{\mathrm{BE}}}{\Delta i_{\mathrm{B}}} \Big|_{\Delta U_{\mathrm{CE}}=0}$$

$$\begin{cases} u_{\text{be}} = h_{\text{ie}} i_{\text{b}} + h_{\text{re}} u_{\text{ce}} \\ i_{\text{c}} = h_{\text{fe}} i_{\text{b}} + h_{\text{oe}} u_{\text{ce}} \end{cases}$$

$$h_{\rm re} = \frac{\partial u_{\rm BE}}{\partial u_{\rm CE}}\Big|_{I_{\rm b}=0} = \frac{\Delta u_{\rm BE}}{\Delta u_{\rm CE}}\Big|_{\Delta i_{\rm B}=0}$$

$$\begin{cases} u_{\text{be}} = h_{\text{ie}}i_{\text{b}} + h_{\text{re}}u_{\text{ce}} \\ i_{\text{c}} = h_{\text{fe}}i_{\text{b}} + h_{\text{oe}}u_{\text{ce}} \end{cases}$$

$$h_{\rm fe} = \frac{\partial i_{\rm C}}{\partial i_{\rm B}} \Big|_{U_{\rm ce}=0} = \frac{\Delta i_{\rm C}}{\Delta i_{\rm B}} \Big|_{\Delta u_{\rm CE}=0}$$

$$\begin{cases} u_{\text{be}} = h_{\text{ie}}i_{\text{b}} + h_{\text{re}}u_{\text{ce}} \\ i_{\text{c}} = h_{\text{fe}}i_{\text{b}} + h_{\text{oe}}u_{\text{ce}} \end{cases}$$

$$h_{\text{oe}} = \frac{\partial i_{\text{C}}}{\partial u_{\text{CE}}}\Big|_{I_{\text{b}}=0} = \frac{\Delta i_{\text{C}}}{\Delta u_{\text{CE}}}\Big|_{\Delta i_{\text{B}}=0}$$

由
$$\begin{cases} u_{\text{be}} = h_{\text{ie}}i_{\text{b}} + h_{\text{re}}u_{\text{ce}} \\ i_{\text{c}} = h_{\text{fe}}i_{\text{b}} + h_{\text{oe}}u_{\text{ce}} \end{cases}$$
 可画出等效电路

晶体管的微变等效电路

图中

+
$$r_{be} = h_{ie} = r_{bb'} + (1+\beta) \frac{U_T}{|I_{EQ}|}$$
1/ $h_{oe} u_{ce}$

称为晶体管的输入交流 等效电阻

 $U_{\rm T}$ 一热电压 在室温 ($T=300{\rm K}$)时, $U_{T}\approx 26{\rm mV}$

式中 $r_{bb'} = 300\Omega$ 称为晶体管的基区体电阻

交流输入电阻的计算:

$$u_{be} = i_b r_{bb'} + (1 + \beta) i_b r_{b'e}$$

$$r_{\text{be}} = \frac{u_{\text{be}}}{i_{\text{b}}} = r_{\text{bb'}} + (1 + \beta)r_{\text{b'e}}$$

P19,公 式 (1.2.6)

$$r_{\mathrm{b'e}} = \frac{U_{\mathrm{T}}}{I_{\mathrm{EQ}}}$$

上页

下页

后退

当信号很小时,将输入特性 在小范围内近似线性。

$$r_{\mathrm{be}} = \frac{\Delta u_{\mathrm{be}}}{\Delta i_{\mathrm{b}}}$$

对输入的小交流信号而言, 三极管相当于电阻_{rbe}。

$$r_{\text{be}} = r_{\text{bb'}} + (1+\beta) \frac{U_T}{|I_{\text{EQ}}|}$$
$$= 300\Omega + (1+\beta) \frac{26(\text{mV})}{|I_{\text{EQ}}|(\text{mA})}$$

 $r_{\rm be}$ 的量级从几百欧到1~ $4{
m k}\Omega$ 。

图中

$$r_{\text{be}} = h_{\text{ie}} = r_{\text{bb'}} + (1 + \beta) \frac{U_T}{|I_{\text{EQ}}|}$$

称为晶体管的交流等效 输入电阻

h_{re}—反向传输电压比

$$\beta = h_{\rm fe}$$
 电流放大系数

$$h_{\text{oe}} = \frac{1}{r_{\text{ce}}} = \frac{\left|I_{\text{CQ}}\right|}{U_{\text{A}}}$$

称为晶体管共射极输出电导

 $h_{\rm re}$ 、 $h_{\rm oe}$ 一般比较小,可忽略不计

晶体管微变等 效简化电路

2. 微变等效电路法在放大电路动态分析中的应用

(1)画出放大电路的交流通路

交流通路

(2) 将晶体管微变等效

放大电路的微 变等效电路

微变等效电路画法:

先中间,后两边

(2) 放大电路的主要性能指标的计算

a. 电压放大倍数

式中

$$\dot{A}_u = \frac{\dot{U}_o}{\dot{U}_i}$$

$$\dot{U}_{\mathrm{i}} = \dot{I}_{\mathrm{b}} r_{\mathrm{be}}$$

$$\dot{U}_{\rm o} = -\beta \dot{I}_{\rm b} (R_{\rm C} /\!/ R_{\rm L})$$

故

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$$

$$= \frac{-\beta \dot{I}_{b} (R_{C} /\!/ R_{L})}{\dot{I}_{b} r_{be}}$$

$$= -\frac{\beta R'_{L}}{\dot{I}_{b} r_{be}}$$

l'be

u。与ui相位相反

式中
$$R'_{\rm L} = R_{\rm L} // R_{\rm C}$$

b、输入电阻R_i

定义:

$$R_{\rm i} = \frac{U_{\rm i}}{I_{\rm i}}$$

放大电路一定要有前级(信号源)为其提供信号,那么就要从信号源取电流。输入电阻是衡量放大电路从其前级取电流大小的参数。输入电阻越大,从 其前级取得的电流越小,对前级的影响越小。

即: R_i 越大, I_i 就越小, u_i 就越接近 u_S

b.输入电阻
$$\mathbf{R}_{\mathsf{i}} \; R_{\mathsf{i}} = \frac{U_{\mathsf{i}}}{I_{\mathsf{i}}}$$

由于
$$U_{\rm i} = \frac{R_{\rm i}}{R_{\rm S} + R_{\rm i}} U_{\rm S}$$

 R_i 越大, U_i 也就越大, $U_0 = A_u U_i$ 也就越大电路的放大能力越强。

$$\dot{A}_{us} = \frac{\dot{U}_{o}}{\dot{U}_{s}}$$

$$= \frac{\dot{U}_{o}}{\dot{U}_{i}} \frac{\dot{U}_{i}}{\dot{U}_{s}} = \frac{R_{i}}{R_{s} + R_{i}} \dot{A}_{u}^{i}$$

b. 输入电阻R_i

$$oldsymbol{R_i} = rac{oldsymbol{U_i}}{oldsymbol{I_i}}$$

$$I_{\rm i} = \frac{U_{\rm i}}{R_{\rm B}} + \frac{U_{\rm i}}{r_{\rm be}}$$

故

$$R_{
m i} = rac{U_{
m i}}{I_{
m i}} = rac{U_{
m i}}{rac{U_{
m i}}{R_{
m B}} + rac{U_{
m i}}{r_{
m be}}} = rac{1}{rac{1}{R_{
m B}} + rac{1}{r_{
m be}}} = R_{
m B} \, / \! / \, r_{
m be}$$

通常 $R_{\rm B} >> r_{\rm be}$

$$R_{\rm i} \approx r_{\rm be}$$

c. 输出电阻R。

放大电路对其负载而言,相当于负载的信号源,我们可以 将它等效为戴维南等效电路,这个等效电路的内阻就是放 大电路的输出电阻。

c. 输出电阻R_o

定义:
$$R_{0} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{1} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{2} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{3} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{4} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{5} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{6} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{1} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{2} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{3} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{4} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{5} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{6} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{1} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{2} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{3} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{4} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{5} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{6} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{1} = \frac{U}{I} \Big|_{U_{i}=0}$$

$$R_{2} = \frac{U}{I} \Big|_{U_{i}=0}$$

定义:

$$R_{0} = \frac{U}{I} \Big|_{\substack{U_{i} = 0 \\ R_{L} = \infty}}$$

由图可知

$$u_{\rm i}=0$$

$$i_{\rm b}=0$$

$$u_{\rm i}=0$$

$$R_{0} = \frac{U}{I}\Big|_{\substack{U_{i}=0 \ P_{i}=\infty}} = R_{C}$$

阻的等效电路

上页

下页

后退

小 结

直流通路:只考虑直流信号的分电路。

交流通路:只考虑交流信号的分电路。

信号的不同分量可以分别在不同的通路分析。

共射极放大电路的基本分析步骤:

耦合电容开路

耦合电容短路, 直流电源接地

三步法估算

 I_{BO}

- 1.直流分析用直流通路分析静态工作点
- 2.交流分析 用微变等效电路分析动态指标

三步法

a.画出微变等效电路

U_{CEQ}

r_{be} b.求出。 c.求出3个指标(R_i, R_o)

[例]

在图示电路中,已知: V_{CC} =12V, R_{C} =2 $k\Omega$, R_{B} =360 $k\Omega$; 晶体管T为锗管 β 其 = β =60, r_{bb} =300 Ω ; C_{1} = C_{2} =10 μ F, R_{L} =2 $k\Omega$ 。试求:

- (a) 晶体管的 I_{BQ} , I_{CQ} 及 U_{CEQ} ;
- (b) 放大电路的A_u,R_i,R_o及 U_{o pp}。

[解] (a) 画出放大电路的直流通路

曲图可知:
$$I_{BQ} = \frac{-V_{CC} - U_{BEQ}}{R_{B}}$$

$$= \frac{-12 - (-0.3)}{360 \times 10^{3}}$$

$$= -32.5 \mu A$$

$$I_{CQ} = \overline{\beta}I_{B}$$

$$= 60 \times (-32.5 \times 10^{-6})$$

$$= -1.95 \text{ mA}$$

$$U_{\text{CEQ}} = -V_{\text{CC}} - I_{\text{CQ}} R_{\text{C}}$$

= -12 - (-1.95) \times 2
= -8.1 V

(b) 首先画出放大电路的交流通路

图中

$$r_{\text{be}} = r_{\text{bb'}} + (1 + \beta) \frac{U_T}{|I_{\text{EQ}}|}$$

= 300 + (1 + 60) × $\frac{26}{1.95}$

≈ 1.1kΩ

由微变等效电路得

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = -\frac{\beta(R_{L}//R_{C})}{r_{be}} = -\frac{60 \times (2//2)}{1.1} = -54.5$$

$$R_{\rm i} = \frac{U_{\rm i}}{I_{\rm i}} = R_{\rm B} //r_{\rm be} \approx r_{\rm be} = 1.1 \mathrm{k}\Omega$$

$$R_{\rm o} = \frac{U}{I}\Big|_{\substack{U_{\rm i}=0\\R_{\rm L}=\infty}} = R_{\rm c} = 2k\Omega$$

因为
$$2|I_{CQ}|R_L' = 2 \times 1.95 \times (2/2) = 3.9 \text{ V}$$

数 $2U_{CEQ} = 2 \times 8.1 = 16.2V$

 $U_{o pp}$ = min[2 U_{CEQ} , 2 | I_{CQ} | R_L '] = 3.9 V

图解法

小 结:

思考题

- 1. 晶体管用微变等效电路来代替,条件是什么?
- 2. 电压放大倍数 A_u 是不是与 β 成正比?
- 3. 为什么说当 β 一定时通过增大 I_E 来提高电压放大倍数是有限制的?试从 I_C 和 r_{be} 两方面来说明。
- 4. 能否增大 $R_{\rm C}$ 来提高放大电路的电压放大倍数?当 $R_{\rm C}$ 过大时对放大电路的工作有何影响?设 $I_{\rm B}$ 不变。
- $5. r_{be}$ 、 R_i 、 R_o 是交流电阻,还是直流电阻?在 R_o 中包括不包括负载电阻 R_L ?
- 6. 如果输出波形失真,静态工作点不合适吗?

