Chapter 5: Graphics with R

Contents

1	Scatterplot	1
2	Adding to a figure 2.1 Adding titles and labels to a figure	4
	2.2 Setting up the coordinate system and axes of a graph	5
	2.3 Plotting points, line types, 2.4 Adding information to a plot	
	2.5 Adding lines to a graph	
3	Multiple plots on one graphical window	13
4	Histogram with usual R graphics 4.1 General	
5	Boxplots	16
6	Exercises	19

From 2005 on, the library ggplot2 was started. It is an attempt to take the good things about base and lattice graphics and improve on them (see later topic).

1 Scatterplot

Syntax:

```
plot(Y ~ X, ...)
```

Create a two-dimensional scatterplot of X versus Y in R as: plot(X, Y) or plot(Y~X) with possible arguments:

- main: plot title
- xlab: label for the x-axis
- ylab: label for the y-axis
- col: color of what is plotted
- xlim: limits for the x-axis
- $\bullet\,$ ylim: limits for the y-axis
- cex: magnification factor
- type: p for points, 1 for lines, or h for histogram-like vertical lines, ...
- pch: style of the points
- lty: type of the line
- lwd: thickness of the line

High-level graphic functions will set up the plot figure.

Low-level graphic functions add to the existing figure.

Function	High- or low-level function	Description
plot(x, y) or plot(y ~ x)	High-level	Function to create a plot
points()	Low-level	Function for drawing points
lines()	Low-level	Function for joining points with
		line segments
abline()	Low-level	Function for adding lines to a
		figure
curve()	Low- or high-level. It depends	Function for drawing a curve
	on the argument add = TRUE or	corresponding to a function.
	add = FALSE	
text()	Low-level	Adds text to a figure or to
		special points
title()	Low-level	Adds a title to a figure
legend()	Low-level	Adds a legend to a figure

Consider the airquality data (package datasets)

airquality {datasets}

New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

airquality

Format

A data frame with 153 observations on 6 variables.

```
[,1] Ozone numeric Ozone (ppb)
```

[,2] Solar.R numeric Solar R (lang)

[,3] Wind numeric Wind (mph)

 $\hbox{\tt [,4] Temp} \qquad \hbox{numeric Temperature (degrees F)}$

[,5] Month numeric Month (1--12)

[,6] Day numeric Day of month (1--31)

```
library(datasets)
names(airquality)
```

```
## [1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"
plot(Ozone~Temp, data = airquality)
```


plot(airquality\$Temp, airquality\$Ozone)

2 Adding to a figure

2.1 Adding titles and labels to a figure

Adding a overall title, a sub title and adjust the label of the x-axis:

```
plot(Ozone~Temp, data = airquality, main = 'Temp versus Ozone',
    sub = 'Airquality data', xlab = 'Temperature')
```

Temp versus Ozone

2.2 Setting up the coordinate system and axes of a graph

```
xlim = c(xmin, xmax)
ylim = c(ymin, ymax)
plot(Ozone~Temp, data = airquality, xlim = c(70, 80), ylim = c(0, 150))
```


2.3 Plotting points, line types,...

	Argument		
What to visualize?	type =		
Line types	lty =		
Plotting characters	pch =		
Plotting colors	col =		
Rescale the size of the symbol	cex =		
Rescale the thickness of the line	$lwd = \dots$		

2.3.1 Options for type = ...

What to visualize?	type =
Points	type = 'p'
Lines	type = '1'
Points and lines	type = 'b'
"Overstruck" points and lines	type = 'o'
Vertical lines	type = 'h'
Stairstep plot	type = 's'
Empty plot	type = 'n'

2.3.2 Options for lty = ... (line type)

You can select the line type by using the corresponding value for the option lty = The default version of R is lty = 1 (solid line).

The following possibilities for the line type are available in R:

2.3.3 Options for pch = ... (plotting character)

To select the plot symbol, you can use option pch =

The default version of R is pch = 1 (circle). The following symbols are available in R:

2.3.4 Options for col = ... (color of the plot)

R stores a current palette that allows for reference of colors by a number.

Every color has its own number:

Color	col	=	
Black	col	=	1
Red	col	=	2
Green	col	=	3
Blue	col	=	4
Cyan	col	=	5
Magenta	col	=	6
Yellow	col	=	7
Gray	col	=	8

For more info about using colors in R, click here

2.3.5 Options for cex = ... (scale of the size of the symbol)

The default version of R is cex = 1. For cex = x, the size of the symbol is x times larger than the default. For instance, if cex = 2, the size of the symbol is 2 times larger than the default.

2.3.6 Options for lwd = ... (thickness of the line)

The line width can be adjusted with the argument $1 wd = \dots$ The default version of R is 1 wd = 1. Other values represent the line width relative to the default. For instance, the line is twice as wide than the default if 1 wd = 2.

2.3.7 Several arguments

```
plot(Ozone ~ Temp, data = airquality, type = 'p', col = 2, pch = 6, lty = 3, cex = 2)
```


2.4 Adding information to a plot

Adding points or text to a figure

```
plot(Ozone ~ Temp, data = airquality, pch = '*', cex = 3, col = 2)
points(65, 100, col = 3, cex = 5)
text(locator(1), 'new point', cex = 1.5)
text(65, 110, 'this is a new point')
```


Remark:

By using the locator() you can add text interactively, after clicking the chosen location on the graph.

2.5 Adding lines to a graph

You can use the function lines or abline (or curve when you work with functions) to add a line to a graph.

2.5.1 Function abline

- Description: This function adds one or more straight lines through the current plot.
- Usage:

```
abline(a = NULL, b = NULL, h = NULL, v = NULL, ...)
```

- Some arguments:
 - a, b \rightarrow the intercept and slope, single values.
 - $h \rightarrow \text{the y-value(s)}$ for horizontal line(s).

```
plot(Ozone~Temp, data = airquality, pch = "*", cex = 3, xlim = c(0,150), ylim = c(0,200)) abline(150, -1, lty = 1, col = 6, lwd = 4)
```



```
plot(Ozone~Temp, data = airquality, pch = "*", cex = 3)
mean_ozone <- mean(airquality$Ozone, na.rm = T)
abline(h = mean_ozone, lty = 1, col = 2, lwd = 3)

# Adding extra wind measurements
lines(Wind~Temp, data = airquality, pch = 6, col = 3, cex = 2, type = 'p')

# Adding a regression line for Ozone versus Temp
result.lm <- lm(Ozone~Temp, data = airquality)
abline(result.lm, lty = 3, col = 4, lwd = 5)

# Adding a regression line for Wind versus Temp
result2.lm <- lm(Wind~Temp, data = airquality)
abline(result2.lm, lty = 4, col = 3, lwd = 5)</pre>
```


Remark:

The function lm(formula, data) is used to fit linear models. The argument formula is a symbolic description of the model to be fitted. A typical model has the form response ~ terms. The function lm returns a list that contain the coefficients, the residuals, the fitted mean values, etc.

2.6 Adding a legend to a plot

```
legend(locator(1), c('mean ozone', 'Wind', 'regression line Ozone', 'regression line Wind'),
    lty = c(1, 1, 3, 4), col = c(2, 3, 4, 3))
```


3 Multiple plots on one graphical window

Syntax:

```
par(mfrow = c(3,2))
```

This code tells R to split the graphical window into six equal pieces, with 3 rows and 2 columns.

```
# Multiple plots on same graphical window
par(mfrow = c(1,2))

# Scatterplot and regression line of Ozone versus Temp
plot(Ozone ~ Temp, data = airquality, pch = '*', cex = 3)
result.lm <- lm(Ozone ~ Temp, data = airquality)
abline(result.lm, lty = 3, col = 4, lwd = 5)

# Scatterplot and regression line of Wind versus Temp
plot(Wind ~ Temp, data = airquality, pch = '*', cex = 3)
result2.lm <- lm(Wind ~ Temp, data = airquality)
abline(result2.lm, lty = 4, col = 3, lwd = 5)</pre>
```


4 Histogram with usual R graphics

4.1 General

Syntax:

```
hist(x, ...)
```

Creating vectors (x, y, and z) of values for which a histogram will be created.

```
x <- rnorm(50)
y <- rexp(50, rate = 2)
range(y)</pre>
```

```
## [1] 0.01011667 1.72388573
```

```
z <- rchisq(50, 10)
range(z)
```

[1] 2.977256 18.341695

Split the graphical window in three equal pieces:

```
par(mfrow = c(1, 3))
```

By default, R draws a histogram of absolute frequencies. By setting the argument probability = TRUE, we ask for a histogram of relative frequencies.

The first two histogram graphics are a representation of absolute frequencies.

```
hist(x, nclass = 10, main = 'normal', col = 2)

hist(y, breaks = seq(0.0, 3.5, 0.5), main = 'exponential', col = 2)
```

In this third histogram, relative frequencies are plotted (since probability = T for this histogram).

```
hist(z, nclass = 7, probability = T, main = 'chisq', col = 2)
```

For the first and third histogram, nclass = ... determines the number of bars for the histogram (respectively 10 and 7).

In the second histogram, the vector seq(0.0, 3.5, 0.5) determines the breakpoints.

4.2 Creating a histogram with a density curve on it

The density() function will find a density estimate from the data. We then use the lines() to add the density estimate to the existing graph.

```
x <- rnorm(150)
hist(x, prob = TRUE, main = 'normal', col = 3)
lines(density(x))</pre>
```

normal

5 Boxplots

Syntax:

In this section, we use the data frame babies from the package UsingR. This data frame is about new born babies. Some important variables are

- Weight: Birth weight of the baby (in ounces)
- Smoke: Smoke behavior of the mother.

Does the mother smoke?

- 0 = never
- -1 = smokes now
- -2 = until current pregnancy
- -3 =once did, not now
- -9 = unknown

We are making a boxplot for the birth weight (wt) variable from the data set babies.

```
boxplot(babies$wt, ylab = 'birth weight', col = 4)
```



```
f <- fivenum(babies$wt)
f</pre>
```

[1] 55.0 108.5 120.0 131.0 176.0

The function fivenum(x, na.rm = TRUE) returns Tukey's five number summary for the input data x, i.e.,

- 1. minimum
- 2. lower-hinge (= lower quantile, Q1)
- 3. median
- 4. upper-hinge (= upper quantile, Q3)
- 5. maximum.

The text() function places the values of labels on the graph as specified. Syntax:

```
text(x, y, labels = ...)
```

```
boxplot(babies$wt, ylab = 'birth weight', col = 4)
text(rep(1.3, 5), f, labels = c('min', 'Q1', 'median', 'Q3', 'max'), cex = 0.8)
```


Remark:

1. Getting the outliers

Outliers are considered as data points which are not within $1.5 \cdot IQR$ (interquartile range) from the lower quartile Q1 or the upper quantile Q3.

Looking for outliers in birth weight of the babies (wt):

```
f <- fivenum(babies$wt)</pre>
IQR \leftarrow f[4] - f[2]
# What is the identification number of the outlier babies?
outliers <- babies$id[babies$wt > f[4] + 1.5*IQR | babies$wt < f[2] - 1.5*IQR]
outliers
   [1] 3906 5287 5845 6241 6343 6460 6534 6660 6760 6997 7080 7083 7109 7290 7334
## [16] 7524 7544 7722 7828 7884 7979 7984 8054 8187 8219 8369
# What is the weight of the outlier babies?
outliers wt <- babies$wt[babies$wt > f[4] + 1.5*IQR | babies$wt < f[2] - 1.5*IQR]
outliers_wt
                             71 174 170 176 166 167 71 174 165 62 72 58 55 169
   [1] 173
                 71
                     68
                         69
## [20] 65
             73
                 65 174
                         63
                             72
                                71
```

2. Grouped boxplots

We use the data set babies and compare the weight of the babies (wt) over the several smoking groups of the mothers (smoke).

```
smoke.names <- c("never", "yes", "UP", "LA", "NA")
boxplot(babies$wt ~ babies$smoke, col = 2, data = babies, names = smoke.names)</pre>
```


6 Exercises

In the first two exercises, the data tips from the package reshape will be used.

One waiter recorded information about each tip he received over a period of a few months working in one restaurant. He collected several variables:

- tip: tip in dollars
- total_bill: bill in dollars
- sex: sex of the bill payer
- smoker: whether there were smokers in the party
- day: day of the week
- time: time of the day
- size: size of the party

In all he recorded 244 tips.

1. Make a simple scatterplot of the tip (Y) versus bill (X). Add a regression line and add a horizontal reference line with average tip. Add a legend.

2. Make a grouped boxplot of tip by day of the week

3. Plotting multiple lines

This exercise is not using the ${\it tips}$ data frame

Create the graph of the functions \sin , \cos , and \tan in one figure. Plot the functions on the interval $[-2\pi, 2\pi]$ and separate the graphs by line style (add a legend).

