Exercice 1: Utiliser la forme canonique pour résoudre une équation du second degré

Résoudre dans R l'équation $2x^2 - x - 3 = 0$ sans utiliser le discriminant, mais en utilisant la forme canonique du polynôme.

On veut résoudre dans \mathbb{R} l'équation $2x^2 - x - 3 = 0$ (1).

On reconnaît une équation du second degré sous la forme $ax^2 + bx + c = 0$.

La consigne nous amène à commencer par écrire le polynôme du second degré sous forme canonique, c'est à dire sous la forme : $a(x - \alpha)^2 + \beta$,

On commence par diviser les deux membres de l'égalité par le coefficient a qui vaut ici 2.

(1)
$$\iff$$
 $x^2 - \frac{1}{2}x - \frac{3}{2} = 0$
On reconnaît le début d'une identité remarquable :

$$\left(x - \frac{1}{4}\right)^2 = x^2 - \frac{1}{2}x + \frac{1}{16}$$

On en déduit que :
$$x^2 - \frac{1}{2}x = \left(x - \frac{1}{4}\right)^2 - \frac{1}{16}$$

Il vient alors:
$$x^2 - \frac{1}{2}x - \frac{3}{2} = 0$$

$$\iff \left(x - \frac{1}{4}\right)^2 - \frac{1}{16} - \frac{3}{2} = 0$$

$$\iff \left(x - \frac{1}{4}\right)^2 - \frac{25}{16} = 0$$

On reconnaît l'identité remarquable
$$a^2-b^2$$
: avec $a=\left(x-\frac{1}{4}\right)$ et $b=\frac{5}{4}$ L'équation à résoudre est équivalente à :

$$\left(x - \frac{1}{4} - \frac{5}{4}\right) \left(x - \frac{1}{4} + \frac{5}{4}\right) = 0$$

$$\left(x - \frac{3}{2}\right) (x + 1) = 0$$
On applique la propriété du produit nul : Soit $x - \frac{3}{2} = 0$, soit $x + 1 = 0$
Soit $x = \frac{3}{2}$, soit $x = -1$

Soit
$$x - \frac{3}{2} = 0$$
 , soit $x + 1 = 0$

Soit
$$x = \frac{3}{2}$$
 , soit $x = -1$

$$S = \left\{-1; \frac{3}{2}\right\}$$