Homework 9

Mason Wright

March 18, 2013

1.i

True.

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$
$$\|\vec{u}\|^2 + \|\vec{v}\|^2 = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v}$$

Therefore,

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 \to 2\vec{u} \cdot \vec{v} = 0$$

Thus, \vec{u} and \vec{v} are orthogonal if $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$.

1.ii

False. Counterexample: Let $\vec{u} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$, and let $\vec{v} = \begin{vmatrix} 0 \\ 2 \end{vmatrix}$.

$$\vec{u} + \vec{v} = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$$

$$\vec{u} - \vec{v} = \begin{vmatrix} 1 \\ -2 \end{vmatrix}$$

$$\|\vec{u} + \vec{v}\| = \|\vec{u} - \vec{v}\| = \sqrt{5}$$
$$\|\vec{u}\| = 1 \neq \|\vec{v}\|$$

1.iii

True. Any $\vec{w} \in W^{\perp}$ must be in V^{\perp} , because any $\vec{w} \in W^{\perp}$ is orthogonal to all vectors in W, including all vectors in V.

1.iv

True. Any $\vec{w} \in W$ must be in V, because any $\vec{w} \in W$ is orthogonal to all vectors in W^{\perp} , which includes all vectors in V^{\perp} , which means that all $\vec{w} \in W$ are in $(V^{\perp})^{\perp}$, which is just V.

1.v

False. Counterexample: Let V be the span of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and let W be the span of $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, with V and W in \mathbf{R}^2 . Then V^{\perp} is the span of $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and W^{\perp} is the span of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Thus, $V^{\perp} \cap W^{\perp} = \{\vec{0}\}$. So $(V^{\perp} \cap W^{\perp})^{\perp}$ is all of \mathbf{R}^2 . All of \mathbf{R}^2 is not contained in $V \cup W$, so the statement is false.

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 $\vec{v_1} = \begin{vmatrix} 1\\2\\0\\2 \end{vmatrix}$, so $||\vec{v_1}||$ is 3. Thus, $\vec{u_1} = \begin{vmatrix} 1/3\\2/3\\0\\2/3 \end{vmatrix}$

$$\vec{v_2}^{\perp} = \begin{vmatrix} 2\\2\\-1\\6 \end{vmatrix} - \left(\begin{vmatrix} 2\\2\\-1\\6 \end{vmatrix}, \frac{1/3}{2/3}\\0\\2/3 \end{vmatrix} \right) \begin{vmatrix} 1/3\\2/3\\0\\2/3 \end{vmatrix}$$
$$= \begin{vmatrix} 0\\-2\\-1\\2 \end{vmatrix}$$

$$\vec{u_2} = \vec{v_2}^{\perp} / ||\vec{v_2}^{\perp}|| = \vec{v_2}^{\perp} / 3 = \begin{vmatrix} 0 \\ -2/3 \\ -1/3 \\ 2/3 \end{vmatrix}$$

$$\vec{v_3}^{\perp} = \vec{v_3} - (\vec{v_3} \cdot \vec{u_1})\vec{u_1} - (\vec{v_3} \cdot \vec{u_2})\vec{u_2}$$

$$= \begin{vmatrix} 5 \\ 3 \\ 1 \\ -1 \end{vmatrix} - \begin{pmatrix} \begin{vmatrix} 5 \\ 3 \\ 1 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 1/3 \\ 2/3 \\ 0 \\ 2/3 \end{vmatrix} - \begin{pmatrix} \begin{vmatrix} 5 \\ 3 \\ 1 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 5 \\ -2/3 \\ -1/3 \\ 2/3 \end{vmatrix} - \begin{pmatrix} \begin{vmatrix} 5 \\ 3 \\ 1 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} -1/3 \\ 2/3 \end{vmatrix} - \begin{vmatrix} 0 \\ -2/3 \\ -1/3 \\ 2/3 \end{vmatrix}$$

$$= \begin{vmatrix} 4 \\ -1 \\ 0 \\ -1 \end{vmatrix}$$

$$\vec{u_3} = \vec{v_3}^{\perp} / ||\vec{v_3}^{\perp}|| = \vec{v_3}^{\perp} / \sqrt{18} = \begin{vmatrix} 2\sqrt{2}/3 \\ -\sqrt{2}/6 \\ 0 \\ -\sqrt{2}/6 \end{vmatrix}$$

2.ii

Q is
$$[\vec{u_1} \ \vec{u_2} \ \vec{u_3}]$$
, or
$$\begin{bmatrix} 1/3 & 0 & 2\sqrt{2}/3 \\ 2/3 & -2/3 & -\sqrt{2}/6 \\ 0 & -1/3 & 0 \\ 2/3 & 2/3 & -\sqrt{2}/6 \end{bmatrix}$$
.

R is
$$\begin{bmatrix} \|\vec{v_1}\| & \vec{u_1} \cdot \vec{v_2} & \vec{u_1} \cdot \vec{v_3} \\ 0 & \|\vec{v_2}^{\perp}\| & \vec{u_2} \cdot \vec{v_3} \\ 0 & 0 & \|\vec{v_3}^{\perp}\| \end{bmatrix}.$$

$$\|\vec{v_1}\| = 3. \|\vec{v_2}^{\perp}\| = 3. \|\vec{v_3}^{\perp}\| = \sqrt{18}.$$

$$\vec{u_1} \cdot \vec{v_2} = \begin{vmatrix} 1/3 \\ 2/3 \\ 0 \\ 2/3 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 2 \\ -1 \\ 6 \end{vmatrix} = 6$$

$$\vec{u_1} \cdot \vec{v_3} = \begin{vmatrix} 1/3 \\ 2/3 \\ 0 \\ 2/3 \end{vmatrix} \cdot \begin{vmatrix} 5 \\ 3 \\ 1 \\ -1 \end{vmatrix} = 3$$

$$\vec{u_2} \cdot \vec{v_3} = \begin{vmatrix} 0 \\ -2/3 \\ -1/3 \\ 2/3 \end{vmatrix} \cdot \begin{vmatrix} 5 \\ 3 \\ 1 \\ -1 \end{vmatrix} = -3$$

$$R = \begin{bmatrix} 3 & 6 & 3 \\ 0 & 3 & -3 \\ 0 & 0 & 3\sqrt{2} \end{bmatrix}$$

2.iii

$$proj_{V}(\vec{x}) = (\vec{u}_{1} \cdot \vec{x})\vec{u}_{1} + (\vec{u}_{2} \cdot \vec{x})\vec{u}_{2} + (\vec{u}_{3} \cdot \vec{x})\vec{u}_{3}$$

$$A = \begin{bmatrix} proj_{V}(\vec{e}_{1}) & proj_{V}(\vec{e}_{2}) & proj_{V}(\vec{e}_{3}) & proj_{V}(\vec{e}_{4}) \end{bmatrix}$$

$$proj_{V}(\vec{e}_{1}) = 1/3\vec{u}_{1} + 2\sqrt{2}/3\vec{u}_{3} = \begin{vmatrix} 1\\0\\0\\0 \end{vmatrix}$$

$$proj_{V}(\vec{e}_{2}) = 2/3\vec{u}_{1} - 2/3\vec{u}_{2} - \sqrt{2}/6\vec{u}_{3} = \begin{vmatrix} 0\\17/18\\2/9\\1/18 \end{vmatrix}$$

$$proj_{V}(\vec{e}_{3}) = -1/3\vec{u}_{2} = \begin{vmatrix} 0\\2/9\\1/9\\-2/9 \end{vmatrix}$$

$$proj_{V}(\vec{e}_{3}) = -1/3\vec{u}_{2} - \sqrt{2}/6\vec{u}_{3} = \begin{vmatrix} 0\\1/18\\-2/9\\17/18 \end{vmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0\\0 & 17/18 & 2/9 & 1/18\\0 & 2/9 & 1/9 & -2/9\\0 & 1/18 & -2/9 & 17/18 \end{bmatrix}$$

3.i

 $T(\vec{x} - T(\vec{x})) = T(\vec{x}) - T(T(\vec{x}))$, because T is a linear transformation. It is given that $T(T(\vec{x})) = T(\vec{x})$. So $T(\vec{x} - T(\vec{x})) = T(\vec{x}) - T(\vec{x}) = \vec{0}$. Therefore, $(\vec{x} - T(\vec{x})) \in Ker(T)$.

$$\vec{x} = \vec{x} + T(\vec{x}) - T(\vec{x})$$
$$= T(\vec{x}) + (\vec{x} - T(\vec{x}))$$

But $T(\vec{x}) \in Im(T)$, and $(\vec{x} - T(\vec{x})) \in Ker(T)$. So any \vec{x} can be written as the sum of some $\vec{y} \in Ker(T)$, and some $\vec{z} \in Im(T)$.

3.ii

$$f(t) = ||t\vec{y} + \vec{z}||^{2}$$

$$= (t\vec{y} + \vec{z}) \cdot (t\vec{y} + \vec{z})$$

$$= t^{2}(\vec{y} \cdot \vec{y}) + 2t(\vec{y} \cdot \vec{z}) + \vec{z} \cdot \vec{z}$$

$$= t^{2}||\vec{y}||^{2} + 2t(\vec{y} \cdot \vec{z}) + ||\vec{z}||^{2}$$

3.iii

Because T is a linear transformation and \vec{y} is in the kernel of T:

$$T(t\vec{y} + \vec{z}) = tT(\vec{y}) + T(\vec{z}) = \vec{0} + T(\vec{z}) = T(\vec{z})$$

Because $||T(\vec{x})|| \le ||\vec{x}||$ for all \vec{x} , $||T(\vec{z})|| \le ||t\vec{y} + \vec{z}||$. Therefore, since sizes are non-negative, $||T(\vec{z})||^2 \le ||t\vec{y} + \vec{z}||^2$. Because $\vec{z} = T(\vec{x})$ for some \vec{x} , $T(\vec{z}) = T(T(\vec{x})) = T(\vec{x}) = \vec{z}$. So $T(\vec{z}) = \vec{z}$. Therefore, $||\vec{z}||^2 \le ||t\vec{y} + \vec{z}||^2$.

But $f(t) - f(0) = ||t\vec{y} + \vec{z}||^2 - ||\vec{z}||^2$, since $f(0) = ||\vec{z}||^2$. So f(t) - f(0) is always non-negative, meaning that f(0) is a global minimum.

3.iv

f(t) is a quadratic function, because $f(t) = at^2 + bt + c$, where $a = ||\vec{y}||^2$, $b = 2(\vec{y} \cdot \vec{z})$, and $c = ||\vec{z}||^2$. So because there is a global minimum at 0, f'(0) = 0. $f'(t) = 2||\vec{y}||^2t + 2(\vec{y} \cdot \vec{z})$, so $f'(0) = 2(\vec{y} \cdot \vec{z})$. This means that $\vec{y} \cdot \vec{z} = 0$, so \vec{y} and \vec{z} are orthogonal.

3.v

An orthogonal projection onto vector subspace V is a function $L(\vec{x})$ such that $L(\vec{x}) = \vec{x}^{\parallel}$, where $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$, \vec{x}^{\perp} is orthogonal to all $\vec{v} \in V$, and $\vec{x}^{\parallel} \in V$, for any \vec{x} in the domain.

We have shown that any $\vec{y} \in Ker(T)$ is orthogonal to any $\vec{z} \in Im(T)$, and that $\vec{x} - T(\vec{x}) \in Ker(T)$. Therefore, $\vec{x} - T(\vec{x})$ is orthogonal to any

 $\vec{v} \in Im(T)$. We know that any $\vec{x} = (\vec{x} - T(\vec{x})) + T(\vec{x})$. $T(\vec{x}) \in Im(T)$ by definition of the image. We know that the image of T is a linear subspace, because it is the image of a linear transformation.

Thus, T is the orthogonal projection onto Im(T), where $T(\vec{x}) = \vec{x}^{\parallel}$ and $\vec{x} - T(\vec{x}) = \vec{x}^{\perp}$.