The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

PROBLEM SET 5

Due: Sunday, October 13, 2019.

- 1. Prove that the set $\{x: ||Ax+b||_2 \le c^T x + d\}$ is a convex set.
- 2. Suppose you are given a matrix $M \in \mathbb{R}^{n \times n}$. Prove that, or give a counter-example for each of the following.
 - (a) If $M \succeq 0$, then for every $i, j, M_{ii} \ge |M_{ij}|$.
 - (b) If $M_{ii} \geq |M_{ij}|$ for for all i, j, and M is symmetric, then $M \succeq 0$.
 - (c) If $M = \sum_i a_i a_i^T$ where $a_i \in \mathbb{R}^n$ are arbitrary vectors, $M \succeq 0$.
 - (d) If $M = \begin{bmatrix} M_1 & M_2 \\ M_2 & M_3 \end{bmatrix} \succeq 0$, then $\begin{bmatrix} M_1 & 0 \\ 0 & M_3 \end{bmatrix} \succeq 0$ where M_1, M_3 are square block matrices.
- 3. Recall that $\langle A, B \rangle = Tr(A^{\top}B)$ for matrices A and B. Prove that for a symmetric matrix M, $M \succeq 0$ if and only if $\langle M, Z \rangle \geq 0$ for all $Z \succeq 0$.
- 4. Consider the set $C = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b}^\top \mathbf{x} + c \leq 0 \}$ with $\mathbf{A} \in \mathbf{S}^n$, $\mathbf{b} \in \mathbb{R}^n$, and $c \in \mathbb{R}$.
 - (a) Show that C is convex if $A \succeq 0$.
 - (b) Is the converse of this statement true? (If \mathcal{C} is convex, then $\mathbf{A} \succeq \mathbf{0}$)
- 5. Show that if S_1 and S_2 are convex sets in $\mathbb{R}^{m \times n}$, then so is their partial sum defined as

$$\mathcal{S} = \{ (\mathbf{x}, \mathbf{y}_1 + \mathbf{y}_2) \mid \mathbf{x} \in \mathbb{R}^m, \ \mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^n, \ (\mathbf{x}, \mathbf{y}_1) \in \mathcal{S}_1, \ (\mathbf{x}, \mathbf{y}_2) \in \mathcal{S}_2 \}.$$