GAS GENERATER FOR AIR BAG AND AIR BAG DEVICE

Patent number:

JP10181516

Publication date:

1998-07-07

Inventor:

UEDA MASAYUKI; KATSUTA NOBUYUKI

Applicant:

DAICEL CHEM

Classification:

- international:

B60R21/26; B60R21/26; (IPC1-7): B60R21/26

- european:

Application number:

JP19970276215 19971008

Priority number(s):

JP19970276215 19971008; JP19960290349 19961031

Report a data error here

Abstract of JP10181516

PROBLEM TO BE SOLVED: To provide a small and light gas generater or an air bag. SOLUTION: In a gas generater where a nonazide-system gas generater 6 is accommodated in the inside of a housing, and a plurality of opening parts 11 for controlling the combustion of a gas generating agent 6 is provided in a direction where the gas generated from the gas generating agent passes through toward the air bag, the whole area of the opening parts 11 to the gas generation quantity of the gas generating agent 6 is set up as 0.50-3.50cm<2> / mol, and the maximum inner pressure during the operation of the gas generater is set up as 100-300kg/cm<2>.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-181516

(43)公開日 平成10年(1998)7月7日

(51) Int.Cl.6

B60R 21/26

識別記号

FΙ

B60R 21/26

審査請求 未請求 請求項の数14 OL (全 7 頁)

(21)出願番号

特願平9-276215

(22)出願日

平成9年(1997)10月8日

(31) 優先権主張番号 特願平8-290349

(32)優先日

平8 (1996)10月31日

(33)優先権主張国

日本 (JP)

(71)出願人 000002901

ダイセル化学工業株式会社

大阪府堺市鉄砲町1番地

(72)発明者 上田 正之

兵庫県姫路市網干区新在家940

(72)発明者 勝田 信行

兵庫県姫路市余部区上余部500-418

(74)代理人 弁理士 古谷 馨 (外3名)

(54) 【発明の名称】 エアバッグ用ガス発生器及びエアバッグ装置

(57)【要約】

【課題】 小型・軽量のエアバッグ用ガス発生器を提供

【解決手段】 ハウジング内部に非アジド系ガス発生剤 を収納し、該ガス発生剤から発生したガスがエアバッグ へと通過する方向にガス発生剤の燃焼を制御する複数の 開口部が設けられているガス発生器であって、ガス発生 剤のガス発生量に対する上記開口部の総面積を0.50~2. 50cm²/mo7、ガス発生器の作動時の最大内圧を100 ~300 kg/cm²としたエアバッグ用ガス発生器。

1

【特許請求の範囲】

【請求項1】ハウジング内部にガス発生剤を収納し、該ガス発生剤から発生したガスがエアバッグへと通過する方向にガス発生剤の燃焼を制御する複数の開口部が設けられているガス発生器であって、ガス発生剤のガス発生量に対する上記開口部の総面積を0.50~2.50cm²/mol、ガス発生器の作動時の最大内圧を100~300kg/cm²とすることを特徴とするエアバッグ用ガス発生器。

【請求項2】各開口部が円相当径2~5mmを有する請求項1記載のエアバッグ用ガス発生器。

[請求項3] 開口部総面積/ガス発生量が1.00~1.50cm / /mol、作動時の最大内圧が130~180kg/cm であることを特徴とする請求項1又は2に記載のエアバッグ用ガス発生器。

【請求項4】ハウジング内容積が120cc以内であることを特徴とする請求項1~3の何れか1項記載のエアバッグ用ガス発生器。

【請求項5】ガス発生剤が非アジド系ガス発生剤である ことを特徴とする請求項1~4の何れか1項記載のエア バッグ用ガス発生器。

【請求項6】ガス発生剤が、 70Kg/cm^2 の加圧下に於いて、線燃焼速度が30 mm/sec以下の非アジド系ガス発生剤であることを特徴とする請求項 $1\sim5$ の何れか1 項記載のエアバッグ用ガス発生器。

【請求項7】ガス発生剤の燃焼を制御する複数の開□部が、ハウジング及び/又はハウジング内部に収納したガス発生剤から発生したガスがエアバッグへと通過する方向の隔壁に設けられていることを特徴とする請求項1~6の何れか1項記載のエアバッグ用ガス発生器。

【請求項8】各開□部の開□面積が、1又は2以上の異 30 なった開□面積を有することを特徴とする請求項1~7 の何れか1項記載のエアバッグ用ガス発生器。

【請求項9】ハウジング又は隔壁毎に、開口部が合計12 ~24個周方向に配置されたことを特徴とする請求項1~ 8の何れか1項記載のエアバッグ用ガス発生器。

【請求項 10】ハウジング又は隔壁毎に、開口部が合計 12~20個周方向に配置されたことを特徴とする請求項 1 ~8の何れか 1 項記載のエアバッグ用ガス発生器。

【請求項 1 1 】 開口部に、防湿用のシールテープが貼付されたことを特徴とする請求項 1 ~ 1 0 の何れか 1 項記 40載のエアバッグ用ガス発生器。

【請求項12】シールテープが、開口部直径の2~3.5 倍の幅を有し、25~80μmの厚さを有するアルミニウムテープであることを特徴とする請求項1~11の何れか1項記載のエアバッグ用ガス発生器。

【請求項13】少なくとも、

エアバッグ用ガス発生器と、

衝撃を感知しその感知信号を出力する衝撃センサと、 前記ガス発生器で発生するガスを導入して膨張するエア バッグと、 前記エアバッグを収容するモジュールケースとからなり、前記エアバッグ用ガス発生器が、請求項1~12の何れか1項記載のエアバッグ用ガス発生器であることを特徴とするエアバッグ装置。

【請求項14】ハウジング内部にガス発生剤を収納し、該ガス発生剤から発生したガスがエアバッグへと通過する方向にガス発生剤の燃焼を制御する複数の開口部が設けられているガス発生器であって、ガス発生剤のガス発生量に対する上記開口部の総面積を調整することによりガス発生器の作動時の内圧を制御することを特徴とするエアバッグ用ガス発生器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、衝撃から乗員を保護するエアバッグ用ガス発生器、及びエアバッグ装置に関する。特に非アジド系ガス発生剤を安定して燃焼させることのできるエアバッグ用ガス発生器に関する。

[0002]

【従来の技術】従来のとの種のガス発生器においては、 20 ガス発生剤としてアジ化ナトリウムを基剤としたものが 使用されていたが、アジ化ナトリウムを使用する場合は 有害なスラグ及びミストを発生するため、最近は無機ア ジ化物を除く含窒素化合物と酸化剤を組み合わせた非ア ジド系ガス発生剤を用いることが提案されている。併し ながら、非アジド系ガス発生剤は70kg/cm² 圧力下での線 燃焼速度が30mm/sec以下であるものが多く、これを安 定して燃焼させ、バラツキのない出力性能を得ることは 困難であった。国際公開番号W○96/10494では、非ア ジ化系ガス発生剤を用いて安定に燃焼させるエアバッグ 用ガス発生器として、ガス発生剤からのガスの通過する 開口部に破裂板を設けて、この破裂板の強度と厚み並び に該開□部の大きさを調整することによりガス発生器内 の最大圧力を100bar以下に制御するガス発生器が提案さ れている。しかしながら、この様に破裂板によりガス発 生器の内部圧力を100bar以下に調整しようとすると、一 定の圧力が加わらないと破裂板が破裂しないため、ガス 発生器の立ち上がりの遅れを生じ易く、非アジド系ガス 発生剤が安定に燃焼せず、出力性能のバラツキが多いと と、またCOガスの発生が多いことが見出された。

0 [0003]

【発明が解決しようとする課題】本発明は上記従来技術の有する問題点を解消し、70kg/cm 圧力下での線燃焼速度が30mm/sec以下の非アジド系ガス発生剤を安定して燃焼させるに適したエアバッグ用ガス発生器及びエアバッグ装置を提供することを目的とする。

[0004]

【課題を解決するための手段】上記課題を解決するため 鋭意検討の結果、本発明者は上記非アジド系ガス発生剤 を安定して燃焼させるためには、ガス発生器内の最大圧 50 力が少なくとも100kg/cm 必要であること、そしてガス

発生器最大内圧が300kg/cm²を超えると容器(ハウジン グ) に過度な強度が必要とされ、ガス発生器が小型、軽 量にならないことを見出した。

[0005]しかしてこの様な最大内圧に対しては破裂 板による圧力制御は不必要であること、小型容器(内容 積120cc以内) において、最大内圧100~300kg/cm²、開 □部総面積/ガス発生量0.50~2.50cm²/mo1であればエ アバッグ展開にふさわしい出力カーブが得られることを 見出して、本発明に到ったものである。

【0006】即ち本発明は、ハウジング内部にガス発生 10 剤を収納し、該ガス発生剤から発生したガスがエアバッ グへと通過する方向にガス発生剤の燃焼を制御する複数 の開□部が設けられているガス発生器であって、ガス発 生剤のガス発生量に対する上記開口部の総面積を0.50~ 2.50cm /mol、ガス発生器の作動時の最大内圧を100~30 Okq/cm とすることを特徴とするエアバッグ用ガス発生 器に係わるものである。

【0007】本発明の実施にあたっては開口部が円相当 径2~5mmを有することが好ましい。ここで円相当径と は、開口部が円のみならず、円に近似できる形状を有す る場合もあるので、直径ではなく、円相当径とした。と れは各開口部と面積を等しくする真円とした場合の径で ある。 開口部の円相当径が2 mm未満では開口部総面積/ ガス発生量が2.50cm²/mol以下であっても、開口部出口 に存在するエアバッグ部品、例えば、開□部がハウジン グのディフューザーのガス排出口であればエアバッグ、 開口部がハウジング内部の燃焼室隔壁であればフィルタ ーやクーラント等を損傷させる。又これを防ぐため開口 部の数を増やすと孔数が多くなりすぎ、加工に費用がか かる。

【0008】本発明では内容積120cc以内の小型容器 で、最大内圧を100~300kg/cm²、好ましくは130~180kg /cm²、開口部総面積/ガス発生量を0.50~2.50cm²/mo 1、好ましくは0.05~2.00cm²/mo1、更に好ましくは1.00 ~1.50cm²/molに制御する様に非アジド系ガス発生剤組 成物を選択し、又開口部の孔径及び個数を決定する。と れによってエアバッグ展開にふさわしい出力カーブを得 るとができる。開口部総面積は(1つの孔面積)× (個数)で決まる。従って、バッグに対しての損傷を考 慮すれば孔径が決まり、従って個数も決まるととにな る。

【0009】本発明のガス発生器は、内部にガス発生剤 を収容し、該ガス発生剤からのガスが通過する方向に、 ガス発生剤の燃焼を制御する複数の開口部が、該発生器 のハウジング及び/又はガス発生剤から発生したガスが エアバッグへと通過する方向のハウジング内の隔壁(以 下、単にハウジング内の隔壁とする。)に形成されてい るものであればよい。上記開口部は、1つの開口部の開 口面積が、内径2~5mmの円面積に相当する大きさであ り、ハウジング、ハウジング内の隔壁、又はハウジング 50 管状に丸めて溶接した溶接管を用いて形成することがで

とハウジング内の隔壁との双方の何れかに、周方向に合 計12~24個、好ましくは12~20個形成されることが望ま しい。本発明に於いてガス発生器内の作動時の最大内圧 は、ハウジング又はハウジング内の隔壁の何れかに設け た開口部、或いはハウジングとハウジング内の隔壁との 双方に設けた開口部によって規制される。例えば、ハウ ジングとハウジング内の隔壁との双方に開口部を設け、 ハウジング又はハウジング内の隔壁の何れかの開口部で ハウジングの内圧を規制する場合には、他方の開口部は 更に内圧を規制することとならない範囲内に於いて、適

【0010】発生したガスが通過する開口部は、ハウジ ング及び/又はハウジング内の隔壁の円周方向に一列 に、或いは千鳥形に配置することができる。

宜形成するととができる。

【0011】ハウジングは、鋳造・鍜造によって形成す る他、ガスを排出するための開口部(以下、ガス排出口 とする。)を有するディフューザシェルと中央孔を有す るクロージャシェルとをプレス成形し、これらを各種溶 接法、例えばプラズマ溶接、摩擦溶接、プロゼクション 溶接、電子ビーム溶接、レーザ溶接、ティグ溶接などに より溶接して形成することができる。該ハウジングはガ ス排出口を有する。とのプレス形成によるハウジング は、その製造が容易になると共に、製造コストを低減す るととができる。 ディフューザシェルとクロージャシェ ルは、例えば、それぞれ厚さ1.2~3.0mm、好ましくは1. 2~2.0mmのステンレス鋼板を用いて、ディフューザシェ ルの外径を45~75mm、好ましくは65~70mm、クロージャ シェルの外径を45~75mm、好ましくは65~75mmとして形 成することができる。ステンレス鋼板の代わりに鋼板に 30 ニッケルメッキを施したものを使用してもよい。とのハ ウジングには取付用のフランジを形成すること、又ハウ ジング外周壁とクーラントとの間には、ガス流路として 機能する1.0~4.0mmの間隙を形成することが好ましい。 ハウジングの全高は、25~40mmとすることが好ましく、 30~35mmとすることが更に好ましい。

【0012】隔壁は、ハウジング内を2室以上に区画す るものであって、必要に応じてハウジング内に適宜形成 される。但し本発明に於いてガス発生剤の燃焼を制御す る複数の開口部が設けられる隔壁とは、ガス発生剤の燃 40 焼室で発生したガスが通過する方向にある隔壁である。 とのような隔壁としては、例えば、ハウジング内のガス 発生剤収納室とクーラントとの間に配置される隔壁の 他、コンバッションリングも含まれる。とのコンバッシ ョンリングは、燃焼室を囲むようにハウジング内に配置 され、その周壁にはガス発生剤燃焼時の最大内圧を制御 する開口部が多数設けられている。

【0013】なお、との隔壁は、ハウジング内に筒状部 材を収納して、その周壁を隔壁とすることもできる。筒 状部材は、例えば、厚さ1.2~2.0mmのステンレス鋼板を

きる。或いはプレス成形によって形成してもよく、鋼板 の厚さは適当に選定し得る。筒状部材を用いて隔壁とし た場合にも、該筒状部材には開口部が形成される。

[00]4]上記の開口部には、外気(湿気)の進入を 阻止する必要がある場合には、孔径の2~3.5倍の幅を 有するシールテープが貼付されることが望ましい。この シールテープは、専ら防湿の目的で開口部を閉塞するも のであり、発生したガスが開口部を通過するに際して何 等障害とはならず、一切、ハウジングの内圧を規制する ととはない。即ちシールテープがあってもなくても最大 10 内圧は変わらない。従って、本発明に於いてシールテー プの厚さは、湿気の進入を阻止することができる充分な 厚みを有すれば足り、例えばシールテープとしてアルミ ニウムテープを用いた場合には、該テープの厚さを25μ m以上とすることにより、テープ面からの湿気の進入を 阻止することができる。但し、本発明においては、迅速 にガス発生器を立ち上げる為にハウジング内最大内圧 は、専ら開口部総面積によって規制するから、該アルミ ニウムテープの厚さが80μm以上の場合には、ガス発生 剤の燃焼によって噴出ガスが発生しても、アルミニウム テープは破裂しにくいものとなり、アルミニウムテープ が破裂する迄の時間が必要となるので、エアバッグ装置 の立ち上がり動作が遅れ、所期の目的を達成することが できないおそれがある。従ってアルミニウムテープをシ ールテープとして用いた場合には、そのテープ厚は25~ 80μmであることが望ましい。アルミニウムテープは、 粘着性アルミニウムテープ、アクリル系接着剤、または ホットメルト系接着剤その他公知の接着剤等を用いて貼 付するととができる。

【0015】本ガス発生器に使用するガス発生剤は、非 30 アジド系ガス発生剤、例えば、テトラゾール、トリアゾ ール、又はこれらの金属塩等の含窒素有機化合物とアル カリ金属硝酸塩等の酸素含有酸化剤を主成分とするも の、トリアミノグアニジン硝酸塩、カルボヒドラジッ ド、ニトログアニジン等を燃料及び窒素源とし、酸化剤 としてアルカリ金属又はアルカリ土類金属の硝酸塩、塩 素酸塩、過塩素酸塩などを使用した組成物などが使用で き、その他にも、燃焼速度、非毒性及び燃焼温度の要求 に応じて、非アジド系ガス発生剤が適宜選定採用され る。ガス発生剤は、ペレット状、ウエハー状、中空円柱 40 状、多孔状、又はディスク状等の適当な形状に於いて使

【0016】更に本発明に於いては、ハウジング内に鋼 板を円筒状に形成した中央筒部材を配設し、該中央筒部 材内に、伝火薬と点火器とから成る点火手段を収納する 他、燃焼室外周には、発生したガスを冷却するクーラン トや燃焼残渣を捕集するフィルターやガス発生剤のクッ ション部材などを配設することもできる。

【0017】クーラント部材は、例えば平編の金網を半 径方向に重ね、半径方向及び軸方向に圧縮する等により 50 筒部材 1 6 は、厚さ1.2~3.0mm、好ましくは1.2~2.0m

空隙構造を複雑なものとした場合には、優れた捕集効果 をも有するので、冷却機能と捕集機能を兼ね備えたクー ラント/フィルター体型のクーラント部材を構成して、 フィルター部材を省略することができる。なお、このク ーラント部材と中央筒部材との間に、クーラント部材の 移動を阻止する為のクーラント支持部材を配置すること もできる。このクーラント支持部材は、例えば厚さ0.5 ~1.0mmのステンレス鋼板、鋼板などから形成し、その

内周部及び外周部に形成された屈曲部の弾力によって配 設するとともできる。更にとのクーラント支持部材に は、クーラント部材の内周面を火炎から保護する為の防 炎板部を設けるとともできる。

[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面 に基づき説明する。図1は本発明の一実施例のガス発生 器の断面図、図2は本発明の別の実施例のガス発生器の 断面図、図3は本発明のエアバッグ装置の構成図をそれ ぞれ示す。

【0019】「エアバッグ用ガス発生器」図1は、本発 明のエアバッグ用ガス発生器の一例の縦断面図である。 本ガス発生器は、ディフューザシェル1とクロージャシ ェル2からなるハウジング3と、このハウジング3内に 配設される中央筒部材16と、該中央筒部材16内の中 空部に配設される点火手段、すなわち点火器4及び伝火 薬5と、これらにより点火されて燃焼ガスを発生するガ ス発生手段、すなわち固形のガス発生剤6と、これらガ ス発生剤6の周囲に配設されるクーラント部材、すなわ ちクーラント・フィルタ7と、そしてこのクーラント・ フィルタ7の両側端部に配設されるクーラント支持部 材、即ちプレート部材32及び33と、クーラントの変 形を阻止する為に該クーラントの外周面に嵌合配置され る積層金網体からなる外層29とを含んでいる。

【0020】ディフューザシェル1は、ステンレス鋼板 をプレス加工により成形してなり、その周壁部10に円 相当径3㎜の開口部(ガス排出口11)が、周方向一列 に18個、等間隔に配設されている。ハウジングの最大 内圧はこの開口部11により制御されている。またクロ ージャシェル2もステンレス鋼板をプレス加工により成 形してなり、その底面中央部には中央孔15が形成され ている。との中央孔15には中央筒部材16が配置され ている。

【0021】上記ディフューザシェル1とクロージャシ ェル2は、それぞれフランジ部19、20を有し、とれ らフランジ部19及び20を重ね合わせてレーザ溶接2 1により接合しハウジング3を形成している。ハウジン グの内容積は120ccであり、ガス排出口総面積は1.13cm²

【0022】とのハウジング内には、中央筒部材16が 電子ビーム溶接22により一体化されている。との中央 /ガス発生量が0.50~2.50cm /mol、好ましくは0.50~

2.00cm²/mol、更に好ましくは1.00~1.50cm²/molとなる

様に調整し、ガス発生器の作動時の最大内圧が100~300

m、外径17~22mm、好ましくは17~20mmであって、その 両端を開放したステンレス鋼管よりなり、その周壁面に は直径2.5mmの貫通孔54が6個、等間隔に穿孔されて いる。中央筒部材16の内部は点火手段収納室となり、 該点火手段収納室23内には点火手段、センサ(図示せ ず)からの信号により作動する点火器4と、この点火器 4により着火される伝火薬5を充填した伝火薬容器53 とが収納されている。点火器4は、中央筒部材16の点 火器用保持部材27をかしめることによって固定されて いる。また、との中央筒部材16の外側は燃焼室28と なり、との燃焼室28内に中空円柱体の固形ガス発生剤 6が多数配設されている。ガス発生剤6が中空円柱体で あることから、燃焼が進行してもガス発生剤全体の表面 積はあまり変わらない。ガス発生剤としては非アジド系 ガス発生剤の種類及び量を適当に選択し、開口部総面積

kg/cm²、好ましくは130~180kg/cm²となる様にする。 【0023】クーラント・フィルタ7は、ガス発生剤6 を取り囲んで配設され、中央筒部材16の周囲に環状の 室、すなわち燃焼室28を画成している。とのクーラン ト・フィルタ7は、ステンレス鋼製平編の金網を半径方 向に重ね、半径方向及び軸方向に圧縮してなることから 空隙構造が複雑となり、優れた捕集効果をも有してい る。更にクーラント・フィルタ7の外側に積層金網体か らなる外層29が形成され、ガス圧によってクーラント ・フィルタ7が膨出し、間隙9が閉塞される事態を抑止 する。とのクーラント・フィルタ7により、燃焼室28 され、そして燃焼残渣が捕集される。ハウジングの開口 部でガス発生器の内圧を規制しない場合には、前記クー ラント・フィルタ7の内周に、多数の開口部を有するコ ンバッションリングを配設し、このコンバッションリン グの開口部で内圧を制御しても良い。とのクーラント・ フィルタ7は、ハウジングの外周壁8の角部に形成され た大きなアール(R)により、その位置決め及び半径方 向の移動が阻止されている。との内周面31に代わり、 クーラント・フィルタの端部にハウジングの外周壁8に 当接する突出部を設け、との突出部によりクーラント・ フィルタの位置決め及び半径方向移動阻止手段としても よい。更にクーラント・フィルタ7の上側端部にプレー ト部材32を、また下側端部にプレート部材33をそれ ぞれ配設し、クーラント・フィルタ7の移動を抑止して いる。上側端部のプレート部材32は周壁部34を有し ており、この周壁部34を、点火手段の火炎用貫通孔5 4に対向して配置し、貫通孔54付近のクーラント・フ ィルタ内周面4]をカバーしている。

【0024】ハウジングの外周壁8と、クーラント・フ ィルタ7外側に配設される外層29との間に間隙9が形 50 1、好ましくは0.50~2.00cm²/mo1、更に好ましくは1.00

成されており、この間隙9によりクーラント・フィルタ 7の周囲に半径方向断面が環状のガス通路が形成され

【0025】図1に示すガス発生器においては、外部か らハウジング3内に湿気が侵入するのを阻止するため に、ガス排出口11をアルミニウムテープ52で塞いで いる。このアルミニウムテープは、発生したガスを排出 する際に障害とならず、専ら防湿機能を果たし得るよう に、その厚さは例えば50μmである。

【0026】本ガス発生器を組み立てるときは、中央筒 部材16を接合したディフューザシェル1をその突出円 形部13を底にして置き、プレート部材32を中央筒部 材16に通し、プレート部材32の周壁部外側にクーラ ント・フィルタ7を嵌合し、これによりクーラント・フ ィルタ7の位置決めを行い、その内側に固形ガス発生剤 6を充填し、更にその上にプレート部材33を配設す る。その後、クロージャシェルの中央孔15を中央筒部 材16に挿通してクロージャシェルのフランジ部20を ディフューザシェルのフランジ部19に重ね、レーザ溶 20 接を行い、ディフューザシェル 1 とクロージャシェル 2. 及びクロージャシェル2と中央筒部材16とを接合 する。最後に、中央筒部材16内に伝火薬容器53及び 点火器4を挿入し、点火器用保持部材27をかしめてと れらを固定する。上記プレート部材33は、溶接の際、 溶接防護板としても機能している。

【0027】このように構成されたガス発生器は、衝撃 をセンサ(図示せず)が感知すると、その信号が点火器 4に送られて点火器4を作動させ、これによって伝火薬 容器53内の伝火薬5が着火して高温の火炎を生成す が画成されると共に、燃焼室で発生した燃焼ガスが冷却(30)る。との火炎は貫通孔54より噴出し、貫通孔54付近 のガス発生剤6に点火すると共に、周壁部34により進 路が曲げられて燃焼室下部のガス発生剤に点火する。と れによりガス発生剤が燃焼して高温・高圧のガスを生成 する。この生成したガスは、クーラント・フィルタ7の 全領域を通過し、その間に効果的に冷却され、また燃焼 残渣が捕集され、冷却・浄化された燃焼ガスは、ガス通 路(間隙9)を通り、アルミニウムテープ52の壁を破 ってガス排出口11より噴出し、エアバッグ内に流入す る。とれによりエアバッグが膨張し、乗員と堅い構造物 の間にクッションを形成して衝撃から乗員を保護する。 【0028】更に本発明は、図2に示すような他の例に よるエアバッグ用ガス発生器においても具体化すること ができる。

> 【0029】図2に示すエアバッグ用ガス発生器におい ても、図1に示すガス発生器同様に、ハウジングの最大 内圧は、ハウジング63に形成される開口部77で制御 される。との開口部は、図1の場合と同じくガス発生剤 としては非アジド系ガス発生剤の種類及び量を適当に選 択し、開口部総面積/ガス発生量が0.50~2.50cm²/mo

~1.50cm²/molとなる様に調整し、ガス発生器の作動時 の最大内圧が100~300kg/cm²、好ましくは130~180kg/c **㎡となる様に調整する。**

【0030】 このガス発生器は、ディフューザシェル6 1とクロージャシェル62からなるハウジング63と、 このハウジング63内の収容空間に配設される点火器6 4と、この点火器64により点火されて燃焼ガスを発生 する固形ガス発生剤66と、そしてこれらガス発生剤6 6を収容するガス発生剤収納室84を画成するクーラン ト・フィルタ67とを含んでいる。この例に於いても開 10 ト82に送られ、センサからの衝撃信号がある値を越え □部77を閉塞するシールテープ96は、専ら防湿の目 的で貼付されている。図2中、91はフィルタ支持部材 を示している。

【0031】 「エアバッグ装置」図3に、本発明のガス 発生器を有するエアバッグ装置の例を示す。このエアバ ッグ装置は、ガス発生器80と、衝撃センサ81と、コ ントロールユニット82と、モジュールケース83と、 そしてエアバッグ84からなっている。

【0032】ガス発生器80としては、図1に基づいて 説明したガス発生器が使用されている。

【0033】衝撃センサ81は、例えば半導体式加速度 センサからなることができる。この半導体式加速度セン サは、加速度が加わるとたわむようにされたシリコン基 板のビーム上に4個の半導体ひずみゲージが形成され、 これら半導体ひずみゲージはブリッジ接続されている。 加速度が加わるとビームがたわみ、表面にひずみが発生 する。とのひずみにより半導体ひずみゲージの抵抗が変 化し、その抵抗変化を加速度に比例した電圧信号として 検出するようになっている。

【0034】コントロールユニット82は、点火判定回 30 路を備えており、との点火判定回路に前記半導体式加速 度センサからの信号が入力するようになっている。セン サからの衝撃信号がある値を越えた時点でコントロール ユニット82は演算を開始し、演算した結果がある値を 越えたときガス発生器80の点火器18に作動信号を出 力する。

【0035】モジュールケース83は、例えばポリウレ タンから形成され、モジュールカバー85を含んでい る。このモジュールケース83内にエアバッグ84及び ガス発生器80が収容されてパッドモジュールとして構 40 28

成され、このバッドモジュールは自動車のステアリング ホイール87に取り付けられている。

【0036】エアバッグ84は、ナイロン(例えばナイ ロン66)、またはポリエステルなどから形成され、そ の袋口86がガス発生器のガス排出口7を取り囲み、折 り畳まれた状態でガス発生器のフランジ部14に固定さ れている。

【0037】自動車の衝突時に衝撃を半導体式加速度セ ンサ81が感知すると、その信号がコントロールユニッ た時点でコントロールユニット82は演算を開始し、演 算した結果がある値を越えたときガス発生器80の点火 器18に作動信号を出力する。これにより点火器18が 作動してガス発生剤に点火しガス発生剤は燃焼してガス を生成する。このガスはエアバッグ84内に噴出し、こ れによりエアバッグはモジュールカバー85を破って膨 出し、ステアリングホイール87と乗員の間に衝撃を吸 収するクッションを形成する。

[0038]

20

【発明の効果】本発明のガス発生器は、ガス発生剤、特 に非アジド系ガス発生剤を用い、その発生ガスがエアバ ッグへ通過する方向の開口部の孔径及び開口部総面積/ ガス発生器を制御することにより、破裂板を用いること なく、ガス発生剤を安定に燃焼させ、小型容器でエアバ ッグ展開にふさわしい出力カーブを得ることができる。 従ってエアバッグ用ガス発生器を小型・軽量化する際に 有利なものとなる。

【図面の簡単な説明】

【図1】本発明の一実施例のガス発生器の断面図。

【図2】本発明の別の実施例のガス発生器の断面図。

【図3】本発明のエアバッグ装置の構成図。

【符号の説明】

1	デ	1	フ	2	ーサ	シ	′ェル	/
---	---	---	---	---	----	---	-----	---

2 クロージャシェル

3 ハウジング

4 点火器

6 ガス発生剤

7 クーラント

ガス排出口(開口部) 1 1

燃焼室

【図2】

[図3]

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第2部門第5区分

[発行日] 平成11年(1999)11月2日

【公開番号】特開平10-181516 【公開日】平成10年(1998)7月7日 【年通号数】公開特許公報10-1816 【出願番号】特願平9-276215 【国際特許分類第6版】

B60R 21/26

[FI]

B60R 21/26

【手続補正書】

【提出日】平成11年2月24日 【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】ハウジング内部にガス発生剤を収納し、該ガス発生剤から発生したガスがエアバッグへと通過する方向にガス発生剤の燃焼を制御する複数の開口部が設けられているガス発生器であって、ガス発生剤のガス発生量に対する上記開口部の総面積を0.50~2.50cm²/mol、ガス発生器の作動時の最大内圧を100~300kq/cm²とすることを特徴とするエアバッグ用ガス発生器。

【請求項2】各開口部が円相当径2~5mmを有する請求項1記載のエアバッグ用ガス発生器。

【請求項3】開口部総面積/ガス発生量が1.00~1.50cm ²/mol、作動時の最大内圧が130~180kg/cm であることを特徴とする請求項1又は2に記載のエアバッグ用ガス発生器。

【請求項4】ハウジング内容積が120cc以内であることを特徴とする請求項1~3の何れか1項記載のエアバッグ用ガス発生器。

【請求項5】ガス発生剤が非アジド系ガス発生剤である ことを特徴とする請求項1~4の何れか1項記載のエア バッグ用ガス発生器。

【請求項6】ガス発生剤が、 70Kg/cm^3 の加圧下に於いて、線燃焼速度が30 mm/sec以下の非アジド系ガス発生剤であることを特徴とする請求項 $1\sim5$ の何れか1 項記載のエアバッグ用ガス発生器。

【請求項7】ガス発生剤の燃焼を制御する複数の開口部が、ハウジング及び/又はハウジング内部に収納したガス発生剤から発生したガスがエアバッグへと通過する方向の隔壁に設けられていることを特徴とする請求項1~6の何れか1項記載のエアバッグ用ガス発生器。

【請求項8】各開口部の開口面積が、1又は2以上の異

なった開口面積を有することを特徴とする請求項1~7 の何れか1項記載のエアバッグ用ガス発生器。

【請求項9】ハウジング又は隔壁毎に、開口部が合計12 ~24個周方向に配置されたことを特徴とする請求項1~ 8の何れか1項記載のエアバッグ用ガス発生器。

【請求項10】ハウジング又は隔壁毎に、開口部が合計 12~20個周方向に配置されたことを特徴とする請求項1 ~8の何れか1項記載のエアバッグ用ガス発生器。

【請求項11】開口部に、防湿用のシールテープが貼付されたことを特徴とする請求項1~10の何れか1項記載のエアバッグ用ガス発生器。

【請求項12】シールテープが、開□部直径の2~3.5 倍の幅を有し、25~80μmの厚さを有するアルミニウム テープであることを特徴とする請求項1~11の何れか 1項記載のエアバッグ用ガス発生器。

【請求項13】シールテープが該ガス発生剤の燃焼に応じて、該発生ガスにより該ハウジング内につくり出される最大内圧を制御するととなしに破裂する、請求項12記載のエアバッグ用ガス発生器。

【請求項14】少なくとも、

エアバッグ用ガス発生器と、

衝撃を感知しその感知信号を出力する衝撃センサと、 前記ガス発生器で発生するガスを導入して膨張するエア バッグと、

前記エアバッグを収容するモジュールケースとからなり、前記エアバッグ用ガス発生器が、請求項1~13の何れか1項記載のエアバッグ用ガス発生器であることを特徴とするエアバッグ装置。

【請求項15】ハウジング内部にガス発生剤を収納し、該ガス発生剤から発生したガスがエアバッグへと通過する方向にガス発生剤の燃焼を制御する複数の開□部が設けられているガス発生器であって、ガス発生剤のガス発生量に対する上記開□部の総面積を調整することによりガス発生器の作動時の内圧を制御することを特徴とするエアバッグ用ガス発生器。

【請求項16】開口部総面積/ガス発生量が0.50~2.50

cm²/molであることを特徴とする請求項15記載のエアバッグ用ガス発生器。

(請求項17) エアバッグ用ガス発生器に於て、ガス発生器からそれと組み合わせのエアバッグへのガス流を制御する方法であって、

ガス発生器ハウジングに、可燃性ガス発生剤と、該ガス 発生剤を収納し、且つ該ガス発生剤及び該エアバッグと 連通する複数のガス排出口を設け、

該ガス排出口の総面積及び該ガス発生剤の特性を、該総面積/発生ガス量が0.50~2.50cm²/molの範囲内にある様相関させること、からなる方法。

【請求項18】該ガス排出口の総面積及び該ガス発生剤の特性を該ガスにより該ハウジング内に生成される最大内圧が100~300kg/cm²の範囲内にある様相関させる請求項17の方法。

【請求項19】該総面積/発生ガス量が1.00~1.50cm²/molである請求項17又は18記載の方法。

【請求項20】該ガス排出口の総面積及び該ガス発生剤の特性を該ガスにより該ハウジング内に生成される最大内圧が130~180kq/cm²の範囲内にある様相関させる請求項17の方法。

【請求項21】該複数のガス排出口の寸法が円相当径2~5mmの範囲内である様調整される請求項17又は18の方法。

【請求項22】該ガス排出口を該ガス発生器のハウジング及び該ガス発生器内に設けられる隔壁の少なくとも一つに設ける請求項17又は18の方法。

【請求項23】該複数のガス排出口の寸法を少なくとも 二つの夫々の円相当径をもつグループに調整する請求項 17又は18の方法。

【請求項24】該ガス排出口が該ハウジングの周方向に 12~24個設けられる請求項17又は18の方法。

【請求項25】該ガス排出口が12~20個該ハウジングの周方向に設けられる請求項24の方法。

【請求項26】ガス排出□が該ガス発生剤の水分による 劣化を防止するため容易に破られる防湿層でシールされ る請求項17又は18の方法。

【請求項27】該防湿層として、該ガス排出□の直径の 2乃至3.5倍の巾と25~80μmの厚さを有するアルミニ ウムテープを用いる、請求項26の方法。

【請求項28】該防湿層として、該ガス発生剤の燃焼に 応答して、該発生ガスにより該ハウジング内につくり出 される最大内圧を制御することなしに破れる材料を準備 する請求項26の方法。

【請求項29】ガス発生剤が非アジド系ガス発生剤である請求項17又は18の方法。

【請求項30】70kg/cm³の加圧下に於て、線燃焼速度が30mm/sec以下の非アジド系ガス発生剤を選択する請求項29の方法。

【請求項31】火工式エアバッグインフレータハウジン

グ内につくり出された予定量のガスの内圧及び性質を制御する方法であって、

燃焼室及び該室と組み合わせの点火器を有するハウジングを用意し、

該燃焼室内に燃焼性ガス発生剤を用意し、

該燃焼室内に該ガス発生剤を包囲してクーラント/フィルタ構造を用意し、

該ハウジング内に、該ハウジングの外側にあるエアバッグへ向けて発生ガスを運ぶ複数のガス排出口を用意し、該複数のガス排出口の絵開口面積と該ガス発生剤の特性とを、該ハウジング内に該ガス発生剤の燃焼により発生された最大内圧を制御する様に相関させ、且つ更に該クーラント/フィルタ構造の特性を燃焼汚染物質をつくり出すガス発生剤の特性と、該クーラント/フィルタ構造内で燃焼残渣を予定の程度で捕捉する様相関させると、からなる方法。

【請求項32】該ガス発生剤が70kg/cm²の圧力下で30mm/秒以下の線燃焼速度を有する固体物質として選択される、請求項31の方法。

【請求項33】該ガス排出口の総開口面積が該ハウジング内で発生された最大内圧を100~300kg/cm²の範囲に制御するため、ガス発生剤1モル当たり0.5~2.50cm²/モルの範囲に選択される請求項32の方法。

【請求項34】該ガス排出口の各々が2~5mmの円相 当径を有する、請求項31~33の何れか1項の方法。 【請求項35】該ガス排出口の内部の該ハウジングの容 積が該ガス発生剤の燃焼特性と相関している、請求項3

【請求項36】該ガス排出口の絵面積が、該ハウジング内に発生した最大内圧を $100\sim300$ kg/cm²の範囲内に制御するため、該ハウジング内に発生したガスに対し $1.00\sim1.50$ cm²/モルである、請求項31又は32の方法。

1~33の何れか1項の方法。

【請求項37】該ガス排出口の各々が2~5mmの円相 当径を有する、請求項36の方法。

【請求項38】該ガス排出口の内部の該ハウジングの容積が該ガス発生剤の燃焼特性と相関している、請求項36の方法。

【請求項39】該ガス排出口の各々が2~5mmの円相 当径を有する、請求項38の方法。

【請求項40】該ガス排出口が少なくとも二つの異なる 寸法の開口の孔を含む様な寸法である、請求項31~3 3の何れか1項の方法。

【請求項41】更に該ガス排出口を、該最大内圧範囲に 実質上何ら制御効果を有しない防湿シールテープでシールすることを含む、請求項31~33の何れか1項の方
は

【請求項42】該ガス排出口が少なくとも二つの異なる 寸法の開口の孔を含む様な寸法である、請求項41の方 法。

【請求項43】該シールテープが該ガス排出口の直径の 2乃至3.5倍の幅と25~80 μ mの厚さを有するアルミニウムテープである、請求項41の方法。

【請求項44】該ガス排出口が少なくとも二つの異なる 寸法の開口の孔を含む様な寸法である、請求項36の方 法。

【請求項45】更に該ガス排出□を、該最大内圧範囲に 実質上何ら制御効果を有しない防湿シールテープでシー ルすることを含む、請求項36の方法。

【請求項46】該ガス排出口が少なくとも二つの異なる 寸法の開口の孔を含む様な寸法である、請求項45の方 法。

【請求項47】該シールテープが該ガス排出口の直径の 2乃至3.5倍の幅と25~80μmの厚さを有するア ルミニウムテープである、請求項45の方法。

【請求項48】ガス排出口の数が12~20の範囲で選択され、且つハウジング内の周囲にガス発生剤とハウジング外側に設置されたエアバッグとの間に位置する、請求項31~33の何れか1項の方法。

【請求項49】ガス排出口の数が12~20の範囲で選択され、且つハウジング内の周囲にガス発生剤とハウジング外側に設置されたエアバッグとの間に位置する、請求項36の方法。

【請求項50】該ガス排出口が少なくとも二つの異なる 寸法の開口の孔を含む様な寸法である、請求項48の方 法。

【請求項51】更に該ガス排出口を、該最大内圧範囲に 実質上何ら制御効果を有しない防湿シールテープでシー ルすることを含む、請求項48の方法。

【請求項52】該ガス排出口が少なくとも二つの異なる

寸法の開口の孔を含む様な寸法である、請求項51の方法。

【請求項53】該シールテープが該ガス排出□の直径の 2乃至3.5倍の幅と25~80μmの厚さを有するア ルミニウムテープである、請求項51の方法。

【請求項54】該ガス排出口が少なくとも二つの異なる 寸法の開口の孔を含む様な寸法である、請求項49の方法。

【請求項55】更に該ガス排出口を、該最大内圧範囲に 実質上何ら制御効果を有しない防湿シールテープでシー ルすることを含む、請求項49の方法。

【請求項56】該ガス排出口が少なくとも二つの異なる 寸法の開口の孔を含む様な寸法である、請求項55の方 注

【請求項57】該シールテープが該ガス排出□の直径の2乃至3.5倍の幅と25~80μmの厚さを有するアルミニウムテープである、請求項55の方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0038

【補正方法】変更

【補正内容】

[0038]

【発明の効果】本発明のガス発生器は、ガス発生剤、特に非アジド系ガス発生剤を用い、その発生ガスがエアバッグへ通過する方向の開口部の孔径及び開口部総面積/ガス発生量を制御することにより、破裂板を用いることなく、ガス発生剤を安定に燃焼させ、小型容器でエアバッグ展開にふさわしい出力カーブを得ることができる。従ってエアバッグ用ガス発生器を小型・軽量化する際に有利なものとなる。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.