Ważne modele.md 2024-01-20

Proces Uczenia

Ważne modele i ich innowacje

Model	Data powstania	Charakterystyka
LesNet	1989	Pierwsza sieć konwolucyjna, składa się z 7 warstw, 2 konwolucyjne 3, pełni połączonych warstw oraz 2 warstw redukujących wymiar.
AlexNet	2012	Pierwsza sieć neuronowa na której zaczęto korzystać z funkcji aktywacji ReLu oraz MaxPooling'u . Wykorzystywałą również w warstwach pełni połączonych funkcję Dropout . Spopularyzowała deep learning poprzez osiąganie dobrych w wyników w klasyfikacji obrazów.
ZFNet	2013	podobny do alexnet, użył konwolucję 7x7 zamiast 11x11, zaproponowali odwróconą konwolucję dzięki czemu potrafili zwizualizować warstwy wewnątrz modelu - mogli zobaczyć na jakim fragmencie obrazka sieć się skupiała, podejmowała decyzję
VGGNet	2014	spopularyzował sposób, w jaki zmieniają się rozmiar obrazka i liczba filtrów między kolejnymi warstwami (2x mniejszy obrazek, 2x więcej filtrów, aż do rozmiaru 1x1xdużo). Zauważyli, że im więcej warstw, tym lepiej (do pewnego momentu). Ten model miał już same konwolucje 3x3

Ważne modele.md 2024-01-20

Model	Data powstania	Charakterystyka
GoogleNet/Inception	2014	Rozwiązałą problem z zanikiem gradientu w głebokich sieciach neuronowych za pomocą Auxiliary Classifiers . Wprowadziły moduły inception, które zezwalały na liczenie konwolucji z różnymi rozmiarami filtrów w bloku. Zezwoliły one na tworzenie głębszej sieci która dalej pozostaje efektywna obliczeniowo
Inception V3	2016	Udoskonalenie poprzedniej wersji poprzez stworzenie bardziej zaawansowanych modułów inception. Zastosowanie faktoryzacji konwolucji czyli zamiast jednej konwolucji 3x3 użyć dwóch konwolucji (3x1 i 1x3). Regularyzacja danych dla każdej wejściowej warstwy poprzez technikę batch normalization .
Inception V4	2016	Wprowadzenie połączeń rezydualnych z ResNeta tak aby móc tworzyć jeszcze bardziej głębokie sieci bez utraty gradientu.
ResNet	2015	Skip Connections (skrócone połączenia), które pozwalają sygnałom na przeskakiwanie jednej lub więcej warstw. Dzięki temu gradienty mogą płynąć bezpośrednio przez sieć, co zmniejsza problem zanikającego gradientu w głębokich sieciach. Głęboka Architektura: sieci o znacznej głębokości, z wersjami zawierającymi od 18 do nawet 152 warstw, co było nieosiągalne w poprzednich architekturach
Unet	2015	U-Net składa się z dwóch głównych części: enkodera, który koncentruje się na przechwytywaniu kontekstu obrazu (downsampling), i dekodera, który umożliwia precyzyjną lokalizację (upsampling).
Xception	2017	Zastosowanie Depthwise Separable Convolutions (separowalnych konwolucji głębokich): każdy kanał z osobna konwolujemy, a potem konwolucją 1x1 łączymy te wyniki - znacząco zmniejsza liczbę operacji.
ResNetXt	2017	Grupowane konwolucje (grouped convolutions). W przeciwieństwie do standardowej konwolucji, gdzie każdy filtr jest stosowany do wszystkich kanałów wejściowych, grupowane konwolucje dzielą wejście na grupy, a każdy filtr jest stosowany tylko do swojej grupy kanałów.
DenseNet	2017	każda warstwa jest bezpośrednio połączona ze wszystkimi innymi warstwami, które są głębiej, czyli wyjście z każdej warstwy jest używane jako wejście do wszystkich kolejnych warstw. To podejście ułatwia liczenie gradientu i zmniejsza ryzyko Jego zaniku
Dual path networks	2017	integruje koncepcję rezydencyjnych (residual) połączeń z ResNet z gęstymi (dense) połączeniami z DenseNet. Pozwala to na efektywne przekazywanie informacji i gradientów przez sieć.

Ważne modele.md 2024-01-20

Model	Data powstania	Charakterystyka
Squeeze-and- excitation networks - SENet	2018	: Moduły SE, które skutecznie modelują zależności między kanałami w mapach cech. Moduły te pozwalają sieci na dynamiczne dostosowanie wag poszczególnych kanałów, co zwiększa jej zdolność do wyłapywania użytecznych informacji. Część squeeze agreguje informacje globalne z mapy cech, część excitation (pobudzenie) wykorzystuje te informacje do modulacji wag kanałów.
NASNet	2018	Użyto sieci rekurencyjnych i reinforced learning. Pozwolono modelowi, aby sam dobierał parametry (wybierał dwa ukryte stany, potem wybierał operacje, jakie wykonać na tych stanach, a potem operację do połączenia tych stanów - te operacje powtarza dla losowo wybranych nowych i starych ukrytych stanów).
AmoebaNet	2019	użycie algorytmu ewolucyjnego zamiast reinforced learning (w NASNet). Sieć cechuje problem z pamięcią bo przechowujemy kolejne generacje algorytmu.
EfficientNet	2019	(Compound Scaling) zastosowanie metody skalowania wielowymiarowego, która jednocześnie zwiększa głębokość, szerokość i rozdzielczość sieci w zbilansowany sposób.
Vision Transformer ViT	2020	podział obrazka na kilka części (patch), przetworzenie każdej na słowo, użycie otrzymanego zdania w Transformer Encoder. Model wymaga bardzo dużego zbioru danych aby być w stanie się nauczyć.