CSC 320 - Tutorial 5

- 1. Context Free Grammars
- 2. Context Free Languages

Context Free Grammar

A context free grammar is a 4-tuple (V, Σ , R, S)

- V: is a finite set of **variables**
- Σ: is a finite set of **terminals** disjoint from V
- R: finite set of **rules**
- $S \in V$ the start variable

uAv **yields** uwv, written as $uAv \Rightarrow uwv$

Means you can get from uAv to uwv in one "step" by applying a rule on A u derives v, written as $u \stackrel{*}{\Rightarrow} v$

Means either u = v

Or starting at u then applying a series of rules, you can get to v (ie. there exists a sequence $u_1, u_2, u_3, \dots, u_k$ for $k \ge 0$ such that

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow u_3 \Rightarrow ... \Rightarrow u_k \Rightarrow v$$
)

Questions

1. For each of the following languages over alphabet $\Sigma = \{0, 1\}$ define the CFG (4-tuple) that recognizes the language

context free τ a. L₁ = { $w \mid w$ starts and ends with the same symbol }

consider some strings in the language:

L(O(DVI)*O or I(DVI)*I or 1 or 0)

Rules:

 $s \rightarrow 0A0 \mid 1A1 \mid 1 \mid 0 \mid \epsilon$

 $A \rightarrow 1A \mid 0A \mid \epsilon$

4-tuple:

V = ES, A3

 $\Sigma = E0, 13$ $\star E$ is never in Σ

R

S = S

b. $L_2 = \emptyset$

starting at the start variable we never derive a string

Rule:

S -> S * inhinite loop : never derives a shing

H-hple:

V = 883

Σ = Ø

R

S = S

c. $L_3 = \{0^n 1^m | m, n \ge 0 \text{ and } n \le m\}$

Consider some strings in the language:

if add a zero > need to add a 1 can add as many 1s as I want

Rules:

H-tuple:

d.
$$L_4 = \{0^n 1^m \mid 2n \le m \le 3n\}$$

* similar to 1c

 $N=0 \Rightarrow M=0$

 $n=1 \Rightarrow 2 \leq m \leq 3$ if 1 add a zero \Rightarrow need to add two or three 1s

Rules:

4-hple:

R

e.
$$L_5 = \{w^r w\}$$

Rules:

4-wple:

R

2. Derive/generate the string "aabaa" for the following grammar:

 $(S) \rightarrow aAS \mid aSS \mid \varepsilon$

Start @ the start variable

 $A \rightarrow SbA \mid ba$

(if not explicitly told the variable on LHS of 1st rule)

 $S \rightarrow ass \rightarrow aaASs$

is the string above derived ambiguously?

3. Complete the state diagram by adding transitions so that the constructed PDA recognizes the language L $(read, pop \rightarrow pus N)$

L =
$$\{a^m b^n \mid m, n \ge 0 \text{ and (either } m = n \text{ or } m = n + 2 \text{)}$$

