LÓGICA / MATEMÁTICA DISCRETA II ^{2a} chamada

CURSOS: Engenharia Informática / Engenharia de Sistemas e Informática

Duração: 2 horas

Justifique convenientemente cada uma das suas respostas.

Responda às partes I e II em folhas separadas.

Parte I

1. Seja T o conjunto de fórmulas do Cálculo Proposicional dado pela seguinte definição indutiva determinista:

$$\frac{\varphi \in T \quad \psi \in T}{\varphi \to \psi \in T} \quad i \quad (i \in \mathbb{N}_0) \qquad \frac{\varphi \in T \quad \psi \in T}{\varphi \to \psi \in T} \vee_1 \qquad \frac{\varphi \in T \quad \psi \in T}{\neg \varphi \to \psi \in T} \vee_2 \qquad \frac{\varphi \in T \quad \psi \in T}{\neg \varphi \to \neg \psi \in T} \vee_3$$

(a) Dê um exemplo de um elemento φ de T cuja árvore de formação (como elemento de T) tenha 3 nodos. Quantos nodos tem a árvore de formação de φ como elemento de \mathcal{F}^{CP} ?

R: A árvore de formação de $(p_1 \to p_1) \to (p_0 \to p_0)$ como elemento de T tem 3 nodos:

$$\frac{p_1 \to p_1 \in T}{(p_1 \to p_1) \to (p_0 \to p_0) \in T} \overset{0}{\vee_1}$$

A sua árvore de formação como elemento de \mathcal{F}^{CP} tem 7 nodos:

$$\frac{\overline{p_1 \in \mathcal{F}^{CP}} \quad p_1}{\underline{p_1 \in \mathcal{F}^{CP}}} \quad \frac{\overline{p_1} \in \mathcal{F}^{CP}}{f} \quad f_{\rightarrow} \quad \frac{\overline{p_0 \in \mathcal{F}^{CP}} \quad p_0}{\underline{p_0 \to p_0 \in \mathcal{F}^{CP}}} \quad f_{\rightarrow} \\
\underline{(p_1 \to p_1) \to (p_0 \to p_0) \in \mathcal{F}^{CP}} \quad f_{\rightarrow}$$

(b) Defina, por recursão estrutural em T, a função $f:T\to\mathbb{N}$ que a cada $\varphi\in T$ faz corresponder o número de ocorrências de conectivos lógicos em φ .

 \mathbf{R} : f é a única função de T em \mathbb{N} tal que $\forall_{i \in \mathbb{N}_0}$, $f(p_i \to p_i) = 1$, e $\forall_{\varphi, \psi \in T}$, $f(\varphi \to \psi) = f(\varphi) + f(\psi) + 1$, $f(\neg \varphi \rightarrow \psi) = f(\varphi) + f(\psi) + 2 e f(\neg \varphi \rightarrow \neg \psi) = f(\varphi) + f(\psi) + 3.$

(c) Prove, por indução estrutural em T, que todos os elementos de T são tautologias.

R: 1 - $\models p_i \to p_i$, $\forall_{i \in \mathbb{N}_0}$: dada uma valoração v qualquer, $v(p_i \to p_i) = 1$, pois para $v(p_i \to p_k)$ ser zero é necessário que $v(p_i) = 1$ e $v(p_k) = 0$, e em particular que $v(p_i) \neq v(p_k)$, o que evidentemente é absurdo para $p_i = p_k = p_i$.

2 - $\forall_{\varphi,\psi\in T}$, $\models \varphi \in \models \psi \Rightarrow \models \varphi \rightarrow \psi \in \models \neg\varphi \rightarrow \psi$.

Sejam φ e ψ elementos quaisquer de T, e admitamos que $\models \varphi$ e $\models \psi$.

Seja ainda v uma valoração qualquer. Por hipótese de indução, $v(\psi) = 1$, logo, por definição de valoração, $v(\varphi \to \psi) = v(\neg \varphi \to \psi) = 1$.

 $3 - \forall_{\varphi, \psi \in T}, \models \varphi \in \models \psi \Rightarrow \models \neg \varphi \rightarrow \neg \psi.$

Sejam φ e ψ elementos quaisquer de T, e admitamos que $\models \varphi$ e $\models \psi$.

Seja ainda v uma valoração qualquer. Por hipótese de indução, $v(\varphi) = 1$, donde $v(\neg \varphi) = 0$; logo, por definição de valoração, $v(\neg \varphi \rightarrow \neg \psi) = 1$.

De 1, 2 e 3, e do Teorema de Indução Estrutural para T, resulta que $\models \varphi$, $\forall_{\varphi \in T}$.

2. Considere as seguintes fórmulas do Cálculo Proposicional:

$$\varphi = (\neg p_0 \land p_1) \leftrightarrow (p_0 \land p_2)$$
$$\psi = p_1 \land (p_0 \to p_2)$$

(a) Indique uma forma normal conjuntiva logicamente equivalente a φ .

$$\mathbf{R}: \varphi = (\neg p_0 \land p_1) \leftrightarrow (p_0 \land p_2) \Leftrightarrow ((\neg p_0 \land p_1) \rightarrow (p_0 \land p_2)) \land ((p_0 \land p_2) \rightarrow (\neg p_0 \land p_1)) \Leftrightarrow (\neg (\neg p_0 \land p_1) \lor (p_0 \land p_2)) \land (\neg (p_0 \land p_2) \lor (\neg p_0 \land p_1)) \Leftrightarrow (((p_0 \lor \neg p_1) \lor p_0) \land ((p_0 \lor \neg p_1) \lor p_2)) \land (((\neg p_0 \lor \neg p_2) \lor \neg p_0) \land ((\neg p_0 \lor \neg p_2) \lor p_1))$$

Esta última fórmula é uma forma normal conjuntiva.

[Pode ser um pouco simplificada para $((p_0 \vee \neg p_1) \wedge ((p_0 \vee \neg p_1) \vee p_2)) \wedge ((\neg p_0 \vee \neg p_2) \wedge ((\neg p_0 \vee \neg p_2) \vee p_1))$.]

(b) O conjunto $\{\varphi, \psi\}$ é consistente?

R: Não. Suponhamos que v é uma valoração que satisfaz ψ . Então, como $v(\psi) = 1$, vem que $v(p_1) = v(p_0 \to p_2) = 1$, e portanto $v(p_0) = 0$ ou $v(p_2) = 1$.

Se $v(p_0) = 0$, podemos concluir que $v(\neg p_0 \land p_1) = \min(1 - v(p_0), v(p_1)) = \min(1, 1) = 1$ e que $v(p_0 \land p_2) = \min(v(p_0), v(p_2)) = 0$; logo $v(\varphi) = 0$.

Resta a hipótese de $v(p_2) = 1$. Mas então $v(\neg p_0 \land p_1) = \min(1 - v(p_0), v(p_1)) = \min(1 - v(p_0), 1) = 1 - v(p_0)$ e $v(p_0 \land p_2) = \min(v(p_0), v(p_2)) = \min(v(p_0), 1) = v(p_0)$; logo $v(\varphi) = 0$.

De qualquer das formas, v não satisfaz φ .

(c) Será verdade que qualquer fórmula do Cálculo Proposicional é derivável a partir de $\{\varphi, \psi\}$?

R: Sim, por $\{\varphi, \psi\}$ ser inconsistente. Imaginemos que existia uma fórmula σ não derivável a partir de $\{\varphi, \psi\}$. Então, pelo Teorema da Completude, σ não seria consequência semântica de $\{\varphi, \psi\}$. Mas isso quereria dizer que existiria uma valoração que satisfaria $\{\varphi, \psi\}$ mas não σ , o que é impossível, visto que nenhuma valoração satisfaz $\{\varphi, \psi\}$.

- 3. Apresente derivações em DNP para provar que:
 - (a) i. $\neg(\neg p_0 \lor p_1) \vdash p_0$ ii. $\neg(\neg p_0 \lor p_1) \vdash \neg p_1$;

 \mathbf{R} :

$$\frac{\neg \cancel{p}_{0}^{(1)}}{\neg p_{0} \lor p_{1}} \ I \lor_{1} \quad \neg (\neg p_{0} \lor p_{1})}{\frac{\bot}{p_{0}} \ (RAA)(1)} \ E \neg \qquad \qquad \frac{\cancel{p}_{1}^{(2)}}{\neg p_{0} \lor p_{1}} \ I \lor_{2} \quad \neg (\neg p_{0} \lor p_{1})}{\frac{\bot}{\neg p_{1}} \ I \neg (2)} \ E \neg$$

(b) $\vdash (p_0 \to p_1) \to (\neg p_0 \lor p_1)$ (sugestão: pode utilizar abreviaturas para as derivações da alínea a)).

 \mathbf{R} : (Chamando D_1 e D_2 às derivações de (a)i. e (a)ii., respectivamente)

$$\frac{D_{1}}{p_{0}} \xrightarrow{p_{0} \neq p_{1}^{(2)}} E \rightarrow \frac{D_{2}}{p_{1}} E \rightarrow \frac{D_{2}}{p_{1}} E \rightarrow \frac{L}{p_{0} \vee p_{1}} E \rightarrow \frac{L}{p_{0} \vee p_{1}} E \rightarrow \frac{L}{p_{0} \vee p_{1}} (RAA)(1) \\
\frac{L}{(p_{0} \rightarrow p_{1}) \rightarrow (\neg p_{0} \vee p_{1})} I \rightarrow (2)$$

Parte II

Seja $L_0 = (\{0, D, +\}, \{P, >\}, \mathcal{N})$ a linguagem em que $\mathcal{N}(0) = 0$, $\mathcal{N}(D) = \mathcal{N}(P) = 1$, e $\mathcal{N}(+) = \mathcal{N}(>) = 2$. Seja ainda $E_0 = (\mathbb{N}_0, \overline{})$ a L_0 -estrutura onde $\overline{0}$ é o número inteiro zero, \overline{D} é a função $\mathbb{N}_0 \to \mathbb{N}_0$ que a cada n faz corresponder $2n, \overline{+}$ é a operação de adição em $\mathbb{N}_0, \overline{P}$ é o conjunto dos números pares e $\overline{>}$ é a relação "maior" em \mathbb{N}_0 .

- (a) Indique uma atribuição a_0 em E_0 tal que $(D(x_1) + x_2)[a_0] = 5$.
 - \mathbf{R} : $(D(x_1) + x_2)[a_0] = 5$ se e só se $2 a_0(x_1) + a_0(x_2) = 5$. Assim, por exemplo, podemos tomar para a_0 a atribuição que à variável x_2 atribui o valor 5 e que às restantes variáveis atribui o valor 0.
- (b) Indique uma L_0 -fórmula φ_0 tal que $\varphi_0[t/x] = \varphi_0$, para qualquer L_0 -termo t e qualquer variável x.
 - **R**: A condição acima é satisfeita se e só se φ_0 não tem qualquer ocorrência livre de variáveis. Uma L_0 -fórmula nestas condições é, por exemplo, P(0).
- (c) Represente as seguintes afirmações como L_0 -fórmulas:

- i. Cada número ímpar é maior do que um número par.
- ii. A soma de dois números pares é um número ímpar.

 \mathbf{R} :

(i)
$$\forall_{x_0}(\neg P(x_0) \to \exists_{x_1}(P(x_1) \land x_0 > x_1))$$

(ii)
$$\forall_{x_0} \forall_{x_1} ((P(x_0) \land P(x_1)) \rightarrow \neg P(x_0 + x_1))$$

- (d) Indique uma L_0 -estrutura onde a fórmula correspondente à segunda frase da alínea anterior seja falsa. **R**: A própria L-estrutura E_0 invalida a segunda fórmula, uma vez que a soma de dois números pares é ainda um número par.
- (e) Prove que a fórmula $(\neg \exists_{x_0} P(x_0)) \rightarrow (\neg P(0))$ é universalmente válida (ou, equivalentemente, prove que a fórmula $(\neg \exists_{x_0} P(x_0)) \rightarrow (\neg P(0))$ é derivável em DNQ).

R: A construção abaixo é uma derivação da fórmula, que não tem hipóteses por cancelar. Fica assim provado que a fórmula é um teorema de DNQ.

$$\frac{P(0)^{(2)}}{\exists_{x_0} P(x_0)} I \exists^{(a)} \neg \exists_{x_0} P(x_0)^{(1)} E \neg \frac{\bot}{\neg P(0)} I \neg^{(2)} E \neg \frac{\bot}{(\neg \exists_{x_0} P(x_0)) \rightarrow (\neg P(0))} I \rightarrow^{(1)}$$

(a) x_0 é substituível por 0 em $P(x_0)$ sem captura de variáveis (por exemplo, observe-se que $P(x_0)$ não tem qualquer quantificação).

Cotação:

Parte I **1.** 4,5 valores **2.** 4,5 valores **3.** 3 valores

Parte II 8 valores