Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005518

International filing date: 25 March 2005 (25.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2005-055271

Filing date: 01 March 2005 (01.03.2005)

Date of receipt at the International Bureau: 09 June 2005 (09.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2005年 3月 1日

出 願 番 号 Application Number: 特願2005-055271

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2005-055271

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

人

東京エレクトロン株式会社

出 願
Applicant(s):

2005年 4月14日

特許庁長官 Commissioner, Japan Patent Office

ページ: 1/E

【書類名】

特許願

【整理番号】

JPP051006

【あて先】

特許庁長官殿

【国際特許分類】

H01L 21/00

【発明者】

【住所又は居所】

東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレ

クトロン株式会社内

【氏名】

浅利 聡

【発明者】

【住所又は居所】

東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレ

クトロン株式会社内

【氏名】

三原 勝彦

【発明者】

【住所又は居所】

東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレ

クトロン株式会社内

【氏名】

菊池 浩

【特許出願人】

【識別番号】

000219967

【氏名又は名称】

東京エレクトロン株式会社

【代理人】

【識別番号】

100093883

【弁理士】

【氏名又は名称】

金坂 憲幸

【電話番号】

03-3846-0961

【先の出願に基づく優先権主張】

【出願番号】

特願2004-89515

【出願日】

平成16年 3月25日

【手数料の表示】

029285

【納付金額】

【予納台帳番号】

16,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9304982

【書類名】特許請求の範囲

【請求項1】

下部に炉口を有する熱処理炉と、その炉口を密閉する蓋体と、該蓋体上に設けられ多数 枚の被処理体をリング状支持板を介して上下方向に所定間隔で保持する保持具と、前記蓋 体を昇降させて保持具を熱処理炉に搬入搬出する昇降機構と、複数枚の被処理体を所定間 隔で収納する収納容器と前記保持具との間で被処理体の移載を行う複数枚の基板支持具を 所定間隔で有する移載機構とを備え、該移載機構の各基板支持具下に被処理体を上掴みす る上掴み機構を設け、該上掴み機構は基板支持具の先端部に設けられ被処理体の前縁部を 係止する固定係止部と、基板支持具の後端側に設けられ被処理体の後縁部を着脱可能に係 止する可動係止部とを有していることを特徴とする縦型熱処理装置。

【請求項2】

前記基板支持具には該基板支持具の下面と被処理体の上面との間に隙間を存するように 被処理体の前後周縁部を受ける受け部が設けられていることを特徴とする請求項1記載の 縦型熱処理装置。

【請求項3】

前記リング状支持板には前記固定係止部及び可動係止部との干渉を避けるための切欠部 が設けられていることを特徴とする請求項1記載の縦型熱処理装置。

【請求項4】

前記基板支持具の先端部にはその両側間に張られた光線を遮るように基板保持具を移動 させることにより被検出物の位置を検出するマッピングセンサが設けられていることを特 徴とする請求項1記載の縦型熱処理装置。

【請求項5】

前記固定係止部及び可動係止部が耐熱性樹脂材からなっていることを特徴とする請求項 1記載の縦型熱処理装置。

【請求項6】

下部に炉口を有する熱処理炉と、その炉口を密閉する蓋体と、該蓋体上に設けられ多数 枚の被処理体をリング状支持板を介して上下方向に所定間隔で保持する保持具と、前記蓋 体を昇降させて保持具を熱処理炉に搬入搬出する昇降機構と、複数枚の被処理体を所定間 隔で収納する収納容器と前記保持具との間で被処理体の移載を行うための複数枚の基板支 持具を所定間隔で有する移載機構とを備え、該移載機構の各基板支持具下に被処理体を上 掴みする上掴み機構を設け、該上掴み機構は基板支持具の先端部に設けられ被処理体の前 縁部を係止する固定係止部と、基板支持具の後端側に設けられ被処理体の後縁部を着脱可 能に係止する可動係止部とを有する縦型熱処理装置における被処理体の移載方法であって 、前記移載機構の各基板支持具下に設けた上掴み機構により被処理体を上掴みして前記移 載を行うことを特徴とする被処理体移載方法。

【書類名】明細書

【発明の名称】縦型熱処理装置及び被処理体移載方法

【技術分野】

[0001]

本発明は、縦型熱処理装置及び被処理体移載方法に係り、特にリング状支持板を有する保持具に対して被処理体を複数枚ずつ移載可能に移載機構の構造を改良した縦型熱処理装置及び被処理体移載方法に関する。

【背景技術】

[0002]

半導体装置の製造においては、被処理体例えば半導体ウエハに例えば酸化、拡散、CVD、アニール等の各種の熱処理を施す工程があり、これらの工程を実行するための熱処理装置の一つとして多数枚のウエハを一度に熱処理することが可能な縦型熱処理装置が用いられている。

[0003]

この縦型熱処理装置は、下部に炉口を有する熱処理炉と、その炉口を密閉する蓋体と、この蓋体上に設けられ多数枚のウエハをリング状支持板を介して上下方向に所定間隔で保持する保持具(ウエハボートともいう)と、前記蓋体を昇降させて保持具を熱処理炉に搬入搬出する昇降機構と、複数枚のウエハを所定間隔で収納する収納容器(キャリア、カセットともいう)と前記保持具との間でウエハの移載を行う複数枚の基板支持具(フォークともいう)を所定間隔で有する移載機構とを備えている。前記リング状支持板は高温熱処理時にウエハの周縁部に発生するスリップ(結晶欠陥)を抑制ないし防止する対策として用いられている。

[0004]

前記移載機構としては、図12に示すように移載用基板支持具50と、突き上げ用基板支持具51とを備えた突き上げ式の移載機構(移載機構Aという)が用いられている(例えば特開平5-13547号公報参照)。移載用基板支持具50はウエハwの下面と対接する上面を有する板状体からなり、突き上げ用基板支持具51はその上面にウエハwの下面と対接する3本の支持ピン52を有する板状体からなる。

[0005]

ウエハを保持具に移載する場合、先ずウエハwを支持した移載用基板支持具50を保持具9内の所定のリング状支持板15の上方に挿入すると共に、突き上げ用基板支持具51を前記リング状支持板15の下方に挿入する〔図12の(a)〕。次に、突き上げ用基板支持具51を上昇させて移載用基板支持具50上からウエハwを持ち上げ、この状態で移載用基板支持具50を保持具9から退去させる〔図12の(b)〕。次に、突き上げ用基板支持具51を下降させてウエハwをリング状支持板15上に支持させた後、突き上げ用基板支持具51を保持具9から退去させることにより1枚のウエハの移載作業が完了するようになっている〔図12の(c)〕。

[0006]

なお、移載機構としては、ウエハ周縁部における下側面に係止してウエハを吊下げ状態で支持する複数の係止部材を備え、各係止部材が、ウエハを吊下げ状態で支持するウエハ支持位置と、ウエハの外形周縁の外側まで移動してウエハの支持状態を解除するウエハ解除位置との間で往復移動できるように構成されると共に、各係止部材が、ウエハ支持位置とウエハ解除位置の範囲でアクチュエータにより往復駆動されるように構成されているもの(移載機構Bという)が知られている(特開2003-338531号公報)。

[0007]

【特許文献1】特開平5-13547号公報

【特許文献2】特開2003-338531号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

しかしながら、従来の縦型熱処理装置においては、いずれの移載機構A、Bも、ウエハ を1枚ずつしか移載することができないため、移載時間が多くかかるという問題がある。 また、移載機構の構造上、保持具のリング状支持板間のピッチを大きく(16mm程度) 必要とし、保持具に搭載し得るウエハの枚数(処理枚数)は最大50枚程度が限界であり 、スループットの低下を余儀なくされていた。特に、移載機構Bの場合、フォーク(基板 支持具)の先端側及び後端側に配置した係止部材がいずれも可動する構造であるため、構 造の複雑化及び肉厚寸法の増大を招き、保持具のリング状支持板間のピッチを小さくする ことが難しい。

[0009]

本発明は、上記事情を考慮してなされたものであり、リング状支持板を有する保持具に 対して被処理体を複数枚ずつ移載することができ、移載時間の短縮、処理枚数の増大及び スループットの向上が図れる縦型熱処理装置及び被処理体移載方法を提供することを目的 とする。

【課題を解決するための手段】

[0010]

本発明のうち、請求項1の発明は、下部に炉口を有する熱処理炉と、その炉口を密閉す る蓋体と、該蓋体上に設けられ多数枚の被処理体をリング状支持板を介して上下方向に所 定間隔で保持する保持具と、前記蓋体を昇降させて保持具を熱処理炉に搬入搬出する昇降 機構と、複数枚の被処理体を所定間隔で収納する収納容器と前記保持具との間で被処理体 の移載を行う複数枚の基板支持具を所定間隔で有する移載機構とを備え、該移載機構の各 基板支持具下に被処理体を上掴みする上掴み機構を設け、該上掴み機構は基板支持具の先 端部に設けられ被処理体の前縁部を係止する固定係止部と、基板支持具の後端側に設けら れ被処理体の後縁部を着脱可能に係止する可動係止部とを有していることを特徴とする。

[0011]

請求項2の発明は、前記基板支持具には該基板支持具の下面と被処理体の上面との間に 隙間を存するように被処理体の前後周縁部を受ける受け部が設けられていることを特徴と する。

[0012]

請求項3の発明は、前記リング状支持板には前記固定係止部及び可動係止部との干渉を 避けるための切欠部が設けられていることを特徴とする。

[0013]

請求項4の発明は、前記基板支持具の先端部にはその両側間に張られた光線を遮るよう に基板支持具を移動させることにより被処理体の位置を検出するマッピングセンサが設け られていることを特徴とする。

[0014]

請求項5の発明は、前記固定係止部及び可動係止部が耐熱性樹脂材からなっていること を特徴とする。

[0015]

請求項6の発明は、下部に炉口を有する熱処理炉と、その炉口を密閉する蓋体と、該蓋 体上に設けられ多数枚の被処理体をリング状支持板を介して上下方向に所定間隔で保持す る保持具と、前記蓋体を昇降させて保持具を熱処理炉に搬入搬出する昇降機構と、複数枚 の被処理体を所定間隔で収納する収納容器と前記保持具との間で被処理体の移載を行うた めの複数枚の基板支持具を所定間隔で有する移載機構とを備え、該移載機構の各基板支持 具下に被処理体を上掴みする上掴み機構を設け、該上掴み機構は基板支持具の先端部に設 けられ被処理体の前縁部を係止する固定係止部と、基板支持具の後端側に設けられ被処理 体の後縁部を着脱可能に係止する可動係止部とを有する縦型熱処理装置における被処理体 の移載方法であって、前記移載機構の各基板支持具下に設けた上掴み機構により被処理体 を上掴みして前記移載を行うことを特徴とする。

【発明の効果】

[0016]

本発明のうちの請求項1の発明によれば、前記移載機構が複数枚の各基板支持具下に被 処理体を上掴みする上掴み機構を具備しているため、リング状支持板を有する保持具に対 して被処理体を複数枚ずつ移載することができ、移載時間の短縮化が図れる。特に、前記 上掴み機構が、基板支持具の先端部に設けられ被処理体の前縁部を係止する固定係止部と 、基板支持具の後端側に設けられ被処理体の後縁部を着脱可能に係止する可動係止部とを 有しているため、構造の簡素化が図れ、これにより保持具のリング状支持板間のピッチを 小さくすることができて処理枚数の増大が図れ、もってスループットの向上が図れる。

[0017]

請求項2の発明によれば、前記基板支持具には該基板支持具の下面と被処理体の上面と の間に隙間を存するように被処理体の前後周縁部を受ける受け部が設けられているため、 被処理体を上掴みする際に基板支持具の下面で被処理体の上面を擦って傷付けるのを防止 することができる。

[0018]

請求項3の発明によれば、前記リング状支持板には前記固定係止部及び可動係止部との 干渉を避けるための切欠部が設けられているため、上掴み機構がリング状支持板と干渉す ることなく被処理体を確実に上掴みすることができる。

[0019]

請求項4の発明によれば、前記基板支持具の先端部にはその両側間に張られた光線を遮 るように基板支持具を移動させることにより被処理体の位置を検出するマッピングセンサ が設けられているため、保持具内に多段に保持された被処理体に沿って上下方向に走査す ることにより保持具内における被処理体の有無を検出して位置情報として記録(マッピン グ) することができると共に、処理前後の被処理体の飛び出しの有無を検出して被処理体 の破損等の事故を未然に防止することができる。

[0020]

請求項5の発明によれば、前記固定係止部及び可動係止部が耐熱性樹脂材からなってい るため、耐久性の向上が図れると共に被処理体の汚染源にならない。

[0021]

請求項6の発明によれば、前記移載機構の各基板支持具下に設けた上掴み機構により被 処理体を上掴みして前記移載を行うため、移載時間の短縮化が図れると共に、保持具のリ ング状支持板間のピッチを小さくして処理枚数の増大が図れ、もってスループットの向上 が図れる。

【発明を実施するための最良の形態】

[0022]

以下に、本発明を実施するための最良の形態について、添付図面を基に詳述する。図1 は本発明の実施の形態である縦型熱処理装置を概略的に示す縦断面図、図2は移載機構を 示す図、図3は図2の同移載機構を一側から見た図、図4は移載機構の要部を示す図、図 5はリング状支持板の一例を示す図である。

[0023]

図1に示すように、この縦型熱処理装置1は外郭を形成する筐体2を有し、この筐体2 内の上方に被処理体(被処理基板ともいう)例えば薄板円板状の半導体ウエハwを収容し て所定の処理例えばCVD処理等を施すための縦型の熱処理炉3が設けられている。この 熱処理炉3は、下部が炉口4として開口された縦長の処理容器例えば石英製の反応管5と 、この反応管5の炉口4を開閉する昇降可能な蓋体6と、前記反応管5の周囲を覆うよう に設けられ、反応管5内を所定の温度例えば300~1200℃に加熱制御可能なヒータ (加熱機構) 7とから主に構成されている。

[0024]

前記筐体2内には、熱処理炉3を構成する反応管5やヒータ7を設置するための例えば SUS製のベースプレート8が水平に設けられている。ベースプレート8には反応管5を 下方から上方に挿入するための図示しない開口部が形成されている。

[0025]

反応管5の下端部には外向きのフランジ部が形成され、このフランジ部をフランジ保持部材にてベースプレート8に保持することにより、反応管5がベースプレート8の開口部を下方から上方に挿通された状態に設置されている。反応管5は、洗浄等のためにベースプレート8から下方に取外せるようになっている。反応管5には反応管5内に処理ガスやパージ用の不活性ガスを導入する複数のガス導入管や反応管5内を減圧制御可能な真空ポンプや圧力制御弁等を有する排気管が接続されている(図示省略)。

[0026]

前記筐体 2 内におけるベースプレート 8 より下方には、蓋体 6 上に設けられた保持具(ボート) 9 を熱処理炉 3 (すなわち反応管 5)内に搬入(ロード)したり、熱処理炉 3 から搬出(アンロード)したり、或いは保持具 9 に対するウエハwの移載を行うための作業領域(ローディングエリア) 1 0 が設けられている。この作業領域 1 0 にはボート 9 の搬入、搬出を行うべく蓋体 6 を昇降させるための昇降機構 1 1 が設けられている。蓋体 6 は炉口 4 の開口端に当接して炉口 4 を密閉するように構成されている。蓋体 6 の下部には保持具を回転するための図示しない回転機構が設けられている。

[0027]

図示例の保持具9は、例えば石英製であり、大口径例えば直径300mmの多数例えば75枚程度のウエハwをリング状支持板15を介して水平状態で上下方向に所定間隔例えば11mmピッチで多段に支持する本体部9aと、この本体部9aを支持する脚部9bとを備え、脚部9bが回転機構の回転軸に接続されている。本体部9aと蓋体6との間には炉口4からの放熱による温度低下を防止するための図示しない下部加熱機構が設けられている。なお、保持具9としては、本体部9aのみを有し、脚部9bを有せず、蓋体6上に保温筒を介して載置されるものであってもよい。前記保持具9は複数本の支柱12と、この支柱12の上端及び下端に設けられた天板13及び底板14と、支柱12に所定間隔で設けられた凹部又は凸部に係合させて多段に配置されたリング状支持板15と備えている。リング状支持板15は、例えば石英製又はセラミック製であり、厚さが2~3mm程度であり、ウエハwの外径よりも若干大きい外径に形成されている。

[0028]

筐体2の前部には、複数例えば25枚程度のウエハを所定間隔で収納した収納容器(キャリア、カセットともいう)16を載置して筐体2内への搬入搬出を行うための載置台(ロードポート)17が設置されている。収納容器16は前面に図示しない蓋を着脱可能に備えた密閉型収納容器とされている。作業領域10内の前後には収納容器16の蓋を取外して収納容器内を作業領域10内に連通開放するドア機構18が設けられ、作業領域10には収納容器16と保持具9の間でウエハwの移載を行う複数枚の基板支持具(フォーク)20を所定間隔で有する移載機構21が設けられている。

[0029]

作業領域10外の前部上側には、収納容器16をストックしておくための保管棚部22 と、載置台17から保管棚部22へ又はその逆に収納容器16を搬送するための図示しない搬送機構とが設けられている。なお、作業領域10の上方には蓋体6を開けた時に炉口4から高温の炉内の熱が下方の作業領域10に放出されるのを抑制ないし防止するために炉口4を覆う(又は塞ぐ)シャッター機構23が設けられている。

[0030]

前記移載機構21は、複数枚例えば5枚のウエハwを上下方向に所定間隔で支持する複数枚例えば5枚の基板支持具(支持板)20(20a~20e)を有している。この場合、中央の基板支持具20aは単独で前方に進退移動可能とされ、中央以外の基板支持具(一枚目、二枚目、四枚目及び五枚目)20b,20c,20d,20eは図示しないピッチ変換機構により中央の基板支持具20aを基準として上下方向に無段階でピッチ変換可能とされている。これは、収納容器16内のウエハの収納ピッチと、保持具9内のウエハの搭載ピッチとが異なる場合があるので、その場合でも収納容器16と保持具9との間でウエハwを複数枚ずつ移載可能とするためである。

[0031]

移載機構21は、昇降可能な昇降アーム24と、この昇降アーム24に水平旋回可能に 設けられた箱型の基台25とを有し、この基台25上には中央の1枚の基板支持具20a を前方へ移動可能とする第1の移動体26と、中央の基板支持具20aを挟んで上下に2 枚ずつ配された計4枚の基板支持具20b~20eを前方へ移動可能とする第2の移動体 27とが基台25の長手方向に沿って進退移動可能に設けられている。これにより、第1 の移動体26の単独動により1枚のウエハを移載する枚葉移載と、第1及び第2の移動体 26,27の共動により複数枚例えば5枚のウエハを同時に移載する一括移載とを選択的 に行えるようになっている。第1及び第2の移動体26,27を移動操作するために、基 台25の内部には図示しない移動機構が設けられている。この移動機構及び前記ピッチ変 換機構は、例えば特開2001-44260号公報に記載のものが用いられている。

$[0\ 0\ 3\ 2\]$

基板支持具20は例えばアルミナセラミックにより縦長薄板状に形成されている。基板 支持具20は先端が二股に分岐された平面略 U字状に形成されていることが好ましい (図 4, 図6, 図7参照)。移載機構21は、各基板支持具20下にウエハwを一枚ずつ上掴 みすることが可能な上掴み機構28を具備している。この上掴み機構28は、図8~図1 0にも示すように基板支持具20の先端部に設けられウエハwの前縁部を係止する固定係 止部30と、基板支持具20の後端側に設けられウエハwの後縁部を着脱可能に係止する 可動係止部31と、この可動係止部31を駆動する駆動部例えばエアシリンダ32とを備 えている。

[0033]

エアシリンダ32で可動係止部31を前進させることにより固定係止部30との間でウ エハwを前後から挟む (掴む) ことができ、可動係止部31を後退させることによりウエ ハwを解放することができるようになっている。基板支持具20の基端部には可動係止部 31との干渉を避けるための切欠部33が設けられていることが好ましい。

[0034]

固定係止部30及び可動係止部31はウエハwの周縁部を自重で離脱しないように支え るために傾斜面30a、31aを有していることが好ましい。また、前記基板支持具20 には該基板支持具20の下面とウエハwの上面との間に隙間gを存するようにウエハwの 前後周縁部を受けるスペーサとしての受け部34,35が設けられていることが好ましい 。図示例の場合、前部の受け部34と後部の受け部35が左右2個ずつ設けられている。 また、前部の受け部34と前記固定係止部30が一体的に形成されており、コンパクト化 が図られている。固定係止部30、可動係止部31、受け部34,35の材質としては、 耐熱性樹脂材例えばPEEK (Poly Ether Ether Ketone) 材が耐久性の向上が図れると 共にウエハの汚染源にならない点で好ましい。

[0035]

前記リング状支持板15においては、ウエハwよりも外径が大きい場合には、図4ない し図5に示すように前記固定係止部30及び可動係止部31、場合によっては基部側の受 け部35との干渉を避けるための切欠部36,37が設けられていることが好ましい。な お、リング状支持板15は、ウエハwよりも外径が小さい場合には、必ずしも切欠部36 , 37を設ける必要はない。

[0036]

上下のリング状支持板15,15間の隙間に1枚の基板支持具20を挿入し得るように 、前記基板支持具20の上面と前部の固定係止部30の下面との間の厚さ寸法 h は、上部 のリング状支持板15の下面と下部のリング状支持板15上のウエハw上面との間の隙間 寸法k (7. 7mm程度)よりも小さい寸法例えば5. 95mm程度に形成されているこ とが好ましい。なお、枚葉移載が可能な基板支持具20aの先端部には、例えば移載機構 21のティーチング作業時にマッピングを行うためのマッピングセンサ40が設けられて いる。

[0037]

図示例では、基板支持具20の一方の先端部に赤外光線の出入光が可能なマッピングセ 出証特2005-3033748

ンサ40のセンサヘッド40aが設けられ、他方の先端部にはマッピングセンサ40のセ ンサヘッド40aから出光された赤外光線を反射させてマッピングセンサ40のセンサヘ ッド40aに入光させる反射鏡41が設けられており、移載機構21のティーチング移動 時に被検出物により赤外光線が遮られることによりその被検出物の位置を検出できるよう になっている。図示例のマッピングセンサ40は、センサヘッド40aと図示しない検出 機構側の発光素子及び受光素子を光ファイバ42で接続して構成されている。移載機構2 1は、図5に示すように前記マッピングセンサ40を、保持具9内に多段に保持されたウ エハwに沿って上下方向(図5の紙面垂直方向)に走査することにより、保持具9内の各 段におけるウエハwの有無を検出して位置情報として記録(マッピング)することができ ると共に、処理前後のウエハwの状態(例えば飛び出しの有無)を検出可能に構成されて いる。

[0038]

基板支持具20の一方の先端部には赤外光線の出光及び入光が可能なマッピングセンサ ヘッド40が設けられ、他方の先端部にはマッピングセンサヘッド40から出光された赤 外光線を反射させてマッピングセンサヘッド40に入光させる反射鏡41が設けられてお り、移載機構21のティーチング移動時に被検出物により赤外光線が遮られることにより その被検出物の位置を検出できるようになっている。マッピングセンサヘッド40には光 ファイバ42を介して図示しない検出機構側の発光素子及び受光素子が接続されている。

[0039]

以上の構成からなる縦型熱処理装置1における移載機構21の動きないし移載方法を説 明すると、先ず基板支持具20を収納容器内に挿入して基板支持具20下の上掴み機構2 8の固定係止部30に対して可動係止部31を閉じることによりウエハwを掴み、収納容 器から搬出し、この状態で基板支持具20をリング状支持板15の上方に挿入する〔図1 1の(a)]。次に、上掴み機構28の固定係止部30に対して可動係止部31を開くこ とによりウエハwを解放してリング状支持板15上に配置する〔図11の(b)〕。次に 、この状態で基板支持具20を上昇させ、更に基板支持具20を保持具9から退去させれ ばよい〔図11の(c)〕。

[0040]

このように、前記縦型熱処理装置1によれば、複数枚例えば5枚の基板支持具20(2 0 a ~ 2 0 e) を有する移載機構 2 1 が各基板支持具 2 0 下にウエハwを上掴みする上掴 み機構28を具備しているため、リング状支持板15を有する保持具9に対してウエハw を複数枚例えば5枚ずつ移載することができ、移載時間の大幅な短縮が図れる。特に、上 . 掴み機構28が、基板支持具20の先端部に設けられウエハwの前縁部を係止する固定係 止部30と、基板支持具20の後端側に設けられウエハ2の後縁部を着脱可能に係止する 可動係止部31とからなり、基板支持具20の先端部の係止部を固定としたので、フォー ク(基板支持具)の先端側及び後端側に配置した係止部材がいずれも可動である従来の移 載機構Bと比べて基板支持具20の構造の簡素化及びの薄肉化が図れ、これにより保持具 9のリング状支持板15間のピッチを従来の16mm程度から11mm程度に小さくして 処理枚数を従来の50枚程度からその1.5倍の75枚程度に増大することができ、もっ てスループットの向上が図れる。

[0041]

また、前記上掴み機構28によりウエハwを容易に上掴みすることができる。更に、前 記基板支持具20には該基板支持具20の下面とウエハwの上面との間に隙間を存するよ うにウエハwの前後周縁部を受ける受け部34、35が設けられているため、ウエハwを 上掴みする際に基板支持具20の下面でウエハwの上面を擦って傷付けるのを防止するこ とができる。また、前記リング状支持板15には前記固定係止部30及び可動係止部31 との干渉を避けるための切欠部36,37が設けられているため、上掴み機構28がリン グ状支持板15と干渉することなくウエハwを確実に上掴みすることができる。

$[0\ 0\ 4\ 2\]$

前記基板支持具20の先端部にはその両側間に張られた光線を遮るように基板支持具2

0を移動させることにより被処理体wの位置を検出するマッピングセンサ40が設けられ ているため、保持具9内に多段に保持された被処理体wに沿って上下方向に走査すること により保持具9内における被処理体wの有無を検出して位置情報として記録(マッピング) することができると共に、処理前後の被処理体wの飛び出しの有無を検出して被処理体 wの破損等の事故を未然に防止することができる。また、基板支持具20の先端部には固 定係止部30が設けられているが、可動構造でないため互いに干渉することなくマッピン グセンサ40を容易に設けることができ、基板支持具20の肉厚の増大を来たさない。

[0043]

以上、本発明の実施の形態ないし実施例を図面により詳述してきたが、本発明は前記実 施の形態ないし実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲での種 々の設計変更等が可能である。

【図面の簡単な説明】

$[0\ 0\ 4\ 4\]$

- 【図1】本発明の実施の形態である縦型熱処理装置を概略的に示す縦断面図である。
- 【図2】移載機構を示す図である。
- 【図3】図2の同移載機構を一側から見た図である。
- 【図4】移載機構の要部を示す図である。
- 【図5】リング状支持板の一例を示す図である。
- 【図6】 基板支持具の一例を示す下面図である。
- 【図7】 基板支持具の他の例を示す下面図である。
- 【図8】基板支持具先端部の固定係止部及び受け部を示す概略的側面図である。
- 【図9】基板支持具基端側の可動係止部及び受け部を示す概略的側面図である。
- 【図10】基板支持具基端側の可動係止部及び駆動部を示す概略的側面図である。
- 【図11】移載機構の作用を説明する図である。
- 【図12】従来の縦型熱処理装置における移載機構の一例を説明する図である。

【符号の説明】

[0045]

- 縦型熱処理装置
- w 半導体ウエハ(被処理体)
- 3 熱処理炉
- 4 炉口
- 6 蓋体
- 9 保持具
- 1 1 昇降機構
- リング状支持板 1 5
- 16 収納容器
- 20 基板支持具
- 2 1 移載機構
- 2.8 上掴み機構
- 30 固定係止部
- 31 可動係止部
- 34,35 受け部
- 36,37 切欠部
- 40 マッピングセンサ

【書類名】図面【図1】

【図2】

【図3】

【図5】

【図7】

【図8】

【図11】

【書類名】要約書

【要約】

【課題】 リング状支持板を有する保持具に対して被処理体を複数枚ずつ移載可能とし、 移載時間の短縮、処理枚数の増大及びスループットの向上を図る。

【解決手段】 熱処理炉3の炉口4を密閉する蓋体6と、該蓋体6上に設けられ多数枚の被処理体wをリング状支持板15を介して所定間隔で保持する保持具9と、該保持具9を熱処理炉3に搬入搬出する昇降機構11と、複数枚の被処理体wを所定間隔で収納する収納容器16と保持具9との間で被処理体wの移載を行う複数枚の基板支持具20を所定間隔で有する移載機構21とを備え、該移載機構21の各基板支持具20下に被処理体wを上掴みする上掴み機構28を設け、該上掴み機構28は基板支持具20の先端部に設けられ被処理体wの前縁部を係止する固定係止部30と、基板支持具20の後端側に設けられ被処理体wの後縁部を着脱可能に係止する可動係止部31とを有している。

【選択図】

図 2

ページ: 1/E

認定・付加情報

特許出願の番号 特願2005-055271

受付番号 50500356827

書類名 特許願

担当官 第五担当上席 0094

作成日 平成17年 3月 4日

<認定情報・付加情報>

【提出日】 平成17年 3月 1日

【特許出願人】

【識別番号】 000219967

【住所又は居所】 東京都港区赤坂五丁目3番6号

【氏名又は名称】 東京エレクトロン株式会社

【代理人】 申請人

【識別番号】 100093883

【住所又は居所】 東京都墨田区両国2丁目21番5号 両国ダイカ

ンプラザ809 金坂特許事務所

【氏名又は名称】 金坂 憲幸

特願2005-055271

出願人履歴情報

識別番号

[000219967]

1. 変更年月日 [変更理由] 住 所

氏 名

2003年 4月 2日

住所変更

東京都港区赤坂五丁目3番6号

東京エレクトロン株式会社