# Natural Language Processing: Syntactic Parsing

### Context Free Grammars (CFG)

- N a set of non-terminal symbols (or variables)
- $\Sigma$  a set of *terminal symbols* (disjoint from N)
- R a set of *productions* or *rules* of the form  $A \rightarrow \beta$ , where A is a non-terminal and  $\beta$  is a string of symbols from  $(\Sigma \cup N)^*$
- S, a designated non-terminal called the *start symbol*

### Simple CFG

#### Grammar

 $S \rightarrow NP VP$ 

 $S \rightarrow Aux NP VP$ 

 $S \rightarrow VP$ 

**NP** → **Pronoun** 

**NP** → **Proper-Noun** 

 $NP \rightarrow Det Nominal$ 

**Nominal** → **Noun** 

**Nominal** → **Nominal Noun** 

**Nominal** → **Nominal PP** 

 $VP \rightarrow Verb$ 

 $VP \rightarrow Verb NP$ 

 $VP \rightarrow VP PP$ 

**PP** → **Prep NP** 

#### Lexicon

Det  $\rightarrow$  the | a | that | this

Noun → book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$ 

**Pronoun**  $\rightarrow$  I | he | she | me

**Proper-Noun** → **Houston** | **NWA** 

 $Aux \rightarrow does$ 

**Prep**  $\rightarrow$  from | to | on | near | through

#### Sentence Generation

• Sentences are generated by recursively rewriting the start symbol using the productions until only terminals symbols remain.



### Parsing

- Given a string of terminals and a CFG, determine if the string can be generated by the CFG.
  - Also return a parse tree for the string
  - Also return all possible parse trees for the string
- Must search space of derivations for one that derives the given string.
  - Top-Down Parsing: Start searching space of derivations for the start symbol.
  - Bottom-up Parsing: Start search space of reverse deivations from the terminal symbols in the string.

## Parsing Example



### Simple CFG

#### Grammar

 $S \rightarrow NP VP$ 

 $S \rightarrow Aux NP VP$ 

 $S \rightarrow VP$ 

**NP** → **Pronoun** 

**NP** → **Proper-Noun** 

 $NP \rightarrow Det Nominal$ 

**Nominal** → **Noun** 

**Nominal** → **Nominal Noun** 

**Nominal** → **Nominal PP** 

 $VP \rightarrow Verb$ 

 $VP \rightarrow Verb NP$ 

 $VP \rightarrow VP PP$ 

**PP** → **Prep NP** 

#### Lexicon

Det  $\rightarrow$  the | a | that | this

Noun → book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$ 

**Pronoun**  $\rightarrow$  I | he | she | me

**Proper-Noun** → **Houston** | **NWA** 

 $Aux \rightarrow does$ 

**Prep**  $\rightarrow$  from | to | on | near | through













































### Simple CFG

#### Grammar

 $S \rightarrow NP VP$ 

 $S \rightarrow Aux NP VP$ 

 $S \rightarrow VP$ 

**NP** → **Pronoun** 

**NP** → **Proper-Noun** 

 $NP \rightarrow Det Nominal$ 

**Nominal** → **Noun** 

**Nominal** → **Nominal Noun** 

**Nominal** → **Nominal PP** 

 $VP \rightarrow Verb$ 

 $VP \rightarrow Verb NP$ 

 $VP \rightarrow VP PP$ 

**PP** → **Prep NP** 

#### Lexicon

Det  $\rightarrow$  the | a | that | this

Noun → book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$ 

**Pronoun**  $\rightarrow$  I | he | she | me

**Proper-Noun** → **Houston** | **NWA** 

 $Aux \rightarrow does$ 

**Prep**  $\rightarrow$  from | to | on | near | through

book that flight











































## Top Down vs. Bottom Up

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.
- Relative amounts of wasted search depend on how much the grammar branches in each direction.

## **Dynamic Programming Parsing**

- To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.
- Caching (memoizing) critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs.
- Dynamic programming algorithms based on both top-down and bottom-up search can achieve  $O(n^3)$  recognition time where n is the length of the input string.

## Dynamic Programming Parsing Methods

- **CKY** (Cocke-Kasami-Younger) algorithm based on bottom-up parsing and requires first normalizing the grammar.
- Earley parser is based on top-down parsing and does not require normalizing grammar but is more complex.
- More generally, **chart parsers** retain completed phrases in a chart and can combine top-down and bottom-up search.

### **CKY**

- First grammar must be converted to Chomsky normal form (CNF) in which productions must have either exactly 2 non-terminal symbols on the RHS or 1 terminal symbol (lexicon rules).
- Parse bottom-up storing phrases formed from all substrings in a triangular table (chart).

### **Grammar Conversion**

#### **Original Grammar**

 $S \rightarrow NP VP$ 

 $S \rightarrow Aux NP VP$ 

 $S \rightarrow VP$ 

**NP** → **Pronoun** 

**NP** → **Proper-Noun** 

 $NP \rightarrow Det Nominal$ 

**Nominal** → **Noun** 

**Nominal** → **Nominal Noun** 

**Nominal** → **Nominal PP** 

 $VP \rightarrow Verb$ 

 $VP \rightarrow Verb NP$ 

 $VP \rightarrow VP PP$ 

**PP** → **Prep NP** 

#### **Chomsky Normal Form**

 $S \rightarrow NPVP$ 

 $S \rightarrow X1 VP$ 

 $X1 \rightarrow Aux NP$ 

 $S \rightarrow book \mid include \mid prefer$ 

 $S \rightarrow Verb NP$ 

 $S \rightarrow VP PP$ 

 $NP \rightarrow I \mid he \mid she \mid me$ 

**NP** → **Houston** | **NWA** 

 $NP \rightarrow Det Nominal$ 

Nominal → book | flight | meal | money

**Nominal** → **Nominal Noun** 

**Nominal** → **Nominal PP** 

 $VP \rightarrow book \mid include \mid prefer$ 

 $VP \rightarrow Verb NP$ 

 $VP \rightarrow VP PP$ 

 $PP \rightarrow Prep NP$ 

## Simple CFG

#### Grammar

 $S \rightarrow NP VP$ 

 $S \rightarrow Aux NP VP$ 

 $S \rightarrow VP$ 

**NP** → **Pronoun** 

**NP** → **Proper-Noun** 

 $NP \rightarrow Det Nominal$ 

**Nominal** → **Noun** 

**Nominal** → **Nominal Noun** 

**Nominal** → **Nominal PP** 

 $VP \rightarrow Verb$ 

 $VP \rightarrow Verb NP$ 

 $VP \rightarrow VP PP$ 

**PP** → **Prep NP** 

#### Lexicon

Det  $\rightarrow$  the | a | that | this

Noun → book | flight | meal | money

 $Verb \rightarrow book \mid include \mid prefer$ 

**Pronoun**  $\rightarrow$  I | he | she | me

**Proper-Noun** → **Houston** | **NWA** 

 $Aux \rightarrow does$ 

**Prep**  $\rightarrow$  from | to | on | near | through







| Book                        | the  | flight           | through | Houston |
|-----------------------------|------|------------------|---------|---------|
| S, VP, Verb <del>&lt;</del> |      | -\$              |         |         |
| Nominal,<br>Noun            | None | VP               |         |         |
|                             |      | NP               |         |         |
|                             | Det  |                  |         |         |
|                             |      | Nominal,<br>Noun |         |         |
|                             |      |                  |         |         |
|                             |      |                  |         |         |
|                             |      |                  |         |         |

| Book                     | the  | flight           | through | Houston |
|--------------------------|------|------------------|---------|---------|
| S, VP, Verb,<br>Nominal, |      | S<br>VP          |         |         |
| Noun                     | None |                  |         |         |
|                          |      | NP               |         |         |
|                          | Det  |                  |         |         |
|                          |      | Nominal,<br>Noun |         |         |
|                          |      |                  |         |         |
|                          |      |                  |         |         |
|                          |      |                  |         |         |
|                          |      |                  |         |         |

| Book                             | the  | flight           | through | Houston |
|----------------------------------|------|------------------|---------|---------|
| S, VP, Verb,<br>Nominal,<br>Noun |      | S<br>VP          | None    |         |
| Noun                             | None |                  | None    |         |
|                                  | Det  | NP               | None    |         |
|                                  |      | Nominal,<br>Noun | None    |         |
|                                  |      |                  | Prep    |         |
|                                  |      |                  |         |         |

| Book                             | the  | flight           | through | Houston          |
|----------------------------------|------|------------------|---------|------------------|
| S, VP, Verb,<br>Nominal,<br>Noun | None | S<br>VP          | None    |                  |
|                                  | Det  | NP               | None    |                  |
|                                  |      | Nominal,<br>Noun | None    |                  |
|                                  |      |                  | Prep←   | <del>- P</del> P |
|                                  |      |                  |         | NP<br>ProperNoun |

| Book                             | the  | flight            | through | Houston          |
|----------------------------------|------|-------------------|---------|------------------|
| S, VP, Verb,<br>Nominal,<br>Noun | None | S<br>VP           | None    |                  |
|                                  | Det  | NP                | None    |                  |
|                                  |      | Nominal,—<br>Noun | None    | – Nominal<br>/   |
|                                  |      |                   | Prep    | PP               |
|                                  |      |                   |         | NP<br>ProperNoun |

| Book                             | the  | flight           | through | Houston          |
|----------------------------------|------|------------------|---------|------------------|
| S, VP, Verb,<br>Nominal,<br>Noun | None | S<br>VP          | None    |                  |
|                                  | Det⁵ | NP               | None    | NP               |
|                                  |      | Nominal,<br>Noun | None    | Nominal          |
|                                  |      |                  | Prep    | PP               |
|                                  |      |                  |         | NP<br>ProperNoun |

| Book                              | the  | flight           | through | Houston          |
|-----------------------------------|------|------------------|---------|------------------|
| S, VP, Verb,≼<br>Nominal,<br>Noun | None | S<br>VP          | None    | <b>_</b> VP      |
|                                   | Det  | NP               | None    | ŇΡ               |
|                                   |      | Nominal,<br>Noun | None    | Nominal          |
|                                   |      |                  | Prep    | PP               |
|                                   |      |                  |         | NP<br>ProperNoun |

| Book             | the  | flight           | through | Houston          |
|------------------|------|------------------|---------|------------------|
| S, VP, Verb,     |      | S<br>VP          |         |                  |
| Nominal,<br>Noun | None | V1 —             | None    | - S<br>VP        |
|                  |      | NP               |         | ŇР               |
|                  | Det  |                  | None    |                  |
|                  |      | Nominal,<br>Noun | None    | Nominal          |
|                  |      |                  | Prep    | PP               |
|                  |      |                  |         | NP<br>ProperNoun |

| Book             | the  | flight           | through | Houston          |
|------------------|------|------------------|---------|------------------|
| S, VP, Verb,     |      | S<br>VP          |         | – VP             |
| Nominal,<br>Noun | None | VI               | None    | S<br>VP          |
|                  |      | NP               |         | NP               |
|                  | Det  |                  | None    |                  |
|                  |      | Nominal,<br>Noun | None    | Nominal          |
|                  |      |                  | Prep    | PP               |
|                  |      |                  |         | NP<br>ProperNoun |

| Book                     | the  | flight           | through | Houston          |
|--------------------------|------|------------------|---------|------------------|
| S, VP, Verb,<br>Nominal, |      | S<br>VP          | None    | - S<br>VP        |
| Noun                     | None | <u> </u>         | None    | VP               |
|                          | Det  | NP               | None    | NP               |
|                          |      | Nominal,<br>Noun | None    | Nominal          |
|                          |      |                  | Prep    | PP               |
|                          |      |                  |         | NP<br>ProperNoun |



### **CKY Parser**



# Complexity of CKY (recognition)

- There are  $(n(n+1)/2) = O(n^2)$  cells
- Filling each cell requires looking at every possible split point between the two non-terminals needed to introduce a new phrase.
- There are O(n) possible split points.
- Total time complexity is  $O(n^3)$

# Complexity of CKY (all parses)

- Previous analysis assumes the number of phrase labels in each cell is fixed by the size of the grammar.
- If compute all derivations for each non-terminal, the number of cell entries can expand combinatorially.
- Since the number of parses can be exponential, so is the complexity of finding all parse trees.

## Syntactic Ambiguity

- Just produces all possible parse trees.
- Does not address the important issue of ambiguity resolution.
- CKY does not tell which parse is more probable in case if multiple parse tree is generated through CKY.

# Syntactic Ambiguity



# Syntactic Ambiguity



### Issues with CFGs

- Addressing some grammatical constraints requires complex CFGs that do no compactly encode the given regularities.
- Some aspects of natural language syntax may not be captured at all by CFGs and require context-sensitivity (productions with more than one symbol on the LHS).

### Agreement

- Subjects must agree with their verbs on person and number.
  - I am cold. You are cold. He is cold.
  - \* I are cold \* You is cold. \*He am cold.
- Requires separate productions for each combination.
  - S → NP1stPersonSing VP1stPersonSing
  - S → NP2ndPersonSing VP2ndPersonSing
  - NP1stPersonSing → ...
  - VP1stPersonSing → ...
  - NP2ndPersonSing → ...
  - VP2ndPersonSing → ...

### Probabilistic Context-free grammars

- It's an extension of simple Context Free Grammars, where in addition of CFG, each rule is also assigned some probability.
- From a given non-terminal on the left hand side, the probability which is generating anything should adapt to one.
- Example, If there are five possibility for NP then probability for all five NP should be one.

## Probabilistic Context-free grammars

#### PCFG: G = (T, N, S, R, P)

- T: set of terminals
- N: set of non-terminals
  - For NLP, we distinguish out a set  $P \subset N$  of pre-terminals, which always rewrite as terminals
- S : start symbol
- R: Rules/productions of the form  $X \to \gamma$ ,  $X \in N$  and  $\gamma \in (T \cup N)*$
- P(R) gives the probability of each rule.

$$\forall X \in N, \sum_{X \to \gamma \in R} P(X \to \gamma) = 1$$

# A Simple PCFG (in CNF)

| S  | $\rightarrow$ | NP VP | 1.0 | NP → | NP PP       | 0.4  |
|----|---------------|-------|-----|------|-------------|------|
| VP | $\rightarrow$ | V NP  | 0.7 | NP → | astronomers | 0.1  |
| VP | $\rightarrow$ | VP PP | 0.3 | NP → | ears        | 0.18 |
| PP | $\rightarrow$ | P NP  | 1.0 | NP → | saw         | 0.04 |
| Р  | $\rightarrow$ | with  | 1.0 | NP → | stars       | 0.18 |
| V  | $\rightarrow$ | saw   | 1.0 | NP → | telescope   | 0.1  |

### Example Tree (t1)



### Example Tree (t2)



## Probability of trees and strings

- P(t): The probability of tree is the product of the probabilities of the rules used to generate it
- P(w<sub>1n</sub>): The probability of the string is the sum of the probabilities of the trees which have that string as their yield

$$w_{15} = astronomers saw stars with ears$$
 $P(t_1) = 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18$ 
 $* 1.0 * 1.0 * 0.18$ 
 $= 0.0009072$ 
 $P(t_2) = 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18$ 
 $* 1.0 * 1.0 * 0.18$ 
 $= 0.0006804$ 
 $P(w_{15}) = P(t_1) + P(t_2)$ 
 $= 0.0009072 + 0.0006804$ 
 $= 0.0015876$ 

### Book the dinner flight



### Book the dinner flight



# Book the dinner flight

### **Probabilities**

- Parse tree 1:  $.05 \times .20 \times .30 \times .20 \times .60 \times .20 \times .75 \times .10 \times .30 = 1.62 \times 10^{-6}$
- Parse tree 2:  $.05 \times .05 \times .30 \times .20 \times .60 \times .75 \times .10 \times .15 \times .75 \times .30 = 2.28 \times 10^{-7}$

### Features of PCFGs

- As the number of possible trees for a given input grows, a PCFG gives some idea of the plausibility of a particular parse.
- The probability estimates area based purely on structural factors, and do not factor in lexical co-occurrence. Thus, PCFG does not give a very good idea of the plausibility of the sentence.
- Real text tends to have grammatical mistakes.
   PCFG avoids this problem by ruling out nothing, but by giving implausible sentences a low probability

### Features of PCFGs

- In practice, a PCFG is a worse language model for English than an n-gram model
- All else being equal, the probability of a smaller tree is greater than a larger tree

Currently we can use PCFGs to check, what are all the probabilities for different parse trees.