Directed hypergraph connectivity augmentation by hyperarc re-orientations

Combinatorial Optimization and Graph Theory

Benoît BOMPOL, Armand GRENIER

Thursday, Nov 23rd 2023

Table of contents

- Introduction
 - Connectivity problems, characterisations
 - Hypergraphs

- Nash-Williams, 1960 :
 - \triangleright G is 2k-edge connected \iff G admits a k-arc-connected orientation.

- Nash-Williams, 1960 :
 - ▶ *G* is 2k-edge connected \iff *G* admits a k-arc-connected orientation.
- Ito and al., 2023 :
 - Algorithmic proof of Nash-Williams, by flipping one arc at a time.
 - Exhibiting a sequence of orientations such that :
 - The arc-connectivity does not decrease, and the arc-connectivity of the last element of the sequence is k.
 - The next orientation in the sequence can be obtained from the previous one by flipping exactly one arc.
 - The sequence can be obtained in polynomial time (in the size of the directed graph).

- Nash-Williams, 1960 :
 - ▶ *G* is 2k-edge connected \iff *G* admits a k-arc-connected orientation.
- Ito and al., 2023 :
 - Algorithmic proof of Nash-Williams, by flipping one arc at a time.
 - Exhibiting a sequence of orientations such that :
 - The arc-connectivity does not decrease, and the arc-connectivity of the last element of the sequence is k.
 - The next orientation in the sequence can be obtained from the previous one by flipping exactly one arc.
 - The sequence can be obtained in polynomial time (in the size of the directed graph).

Goal of the article: Expanding the result of **Ito and al.** to hypergraphs.

3/19

- Nash-Williams, 1960 :
 - ▶ G is 2k-edge connected \iff G admits a k-arc-connected orientation.
- Ito and al., 2023:
 - Algorithmic proof of Nash-Williams, by flipping one arc at a time.
 - Exhibiting a sequence of orientations such that :
 - The arc-connectivity does not decrease, and the arc-connectivity of the last element of the sequence is k.
 - The next orientation in the sequence can be obtained from the previous one by flipping exactly one arc.
 - The sequence can be obtained in polynomial time (in the size of the directed graph).

Goal of the article: Expanding the result of **Ito and al.** to hypergraphs. Side note: This article generalise the results of **Ito and al.**, as directed graphs are special case of hypergraphs.

Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}(X)$ is the number of hyperedges intersecting both X and $V \setminus X$.

Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}(X)$ is the number of hyperedges intersecting both X and $V \setminus X$.

Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}(X)$ is the number of hyperedges intersecting both X and $V \setminus X$.

Orientation of an hypergraph

Orientation of an hypergraph

In-Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}^-(X)$ is the number of hyperarcs (Y, v) such that $: v \in X$, $\exists u \in Y \setminus X$.

In-Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}^-(X)$ is the number of hyperarcs (Y, v) such that $: v \in X$, $\exists u \in Y \setminus X$.

In-Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}^-(X)$ is the number of hyperarcs (Y, v) such that $: v \in X$, $\exists u \in Y \setminus X$.

Out-Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}^+(\mathsf{X})$ is the number of hyperarcs (Y, v) such that $v \not\in \mathsf{X}$ and $\exists u \in \mathsf{Y} \cap \mathsf{X}$.

Out-Degree of $\emptyset \neq X \subsetneq V$

 $d_{\mathcal{H}}^+(\mathsf{X})$ is the number of hyperarcs (Y, v) such that $v \not\in \mathsf{X}$ and $\exists u \in \mathsf{Y} \cap \mathsf{X}$.

Out-Degree of $\emptyset \neq X \subsetneq V$

 $d^+_{\mathcal{H}}(\mathsf{X})$ is the number of hyperarcs (Y, v) such that $v \not\in \mathsf{X}$ and $\exists u \in \mathsf{Y} \cap \mathsf{X}$.

- $\vec{\mathcal{H}}$ is k-hyperarc-connected, if, $\forall \varnothing \neq X \subsetneq V$, $d^+_{\vec{\mathcal{H}}}(X) \geq k$.
- The hyperarc-connectivity of a hypergraph, denoted $\lambda(\vec{\mathcal{H}})$, is the maximum value of k such that $\vec{\mathcal{H}}$ is k-hyperarc-connected.

- $\vec{\mathcal{H}}$ is k-hyperarc-connected, if, $\forall \varnothing \neq X \subsetneq V$, $d^+_{\vec{\mathcal{H}}}(X) \geq k$.
- The hyperarc-connectivity of a hypergraph, denoted $\lambda(\vec{\mathcal{H}})$, is the maximum value of k such that $\vec{\mathcal{H}}$ is k-hyperarc-connected.
- The previous orientation given was 2-hyperarc-connected.

- $\vec{\mathcal{H}}$ is k-hyperarc-connected, if, $\forall \varnothing \neq X \subsetneq V$, $d^+_{\vec{\mathcal{H}}}(X) \geq k$.
- The hyperarc-connectivity of a hypergraph, denoted $\lambda(\vec{\mathcal{H}})$, is the maximum value of k such that $\vec{\mathcal{H}}$ is k-hyperarc-connected.
- The previous orientation given was 2-hyperarc-connected. There is a 3-hyperarc-connected orientation of such an hypergraph.

- $\vec{\mathcal{H}}$ is k-hyperarc-connected, if, $\forall \varnothing \neq X \subsetneq V$, $d^+_{\vec{\mathcal{H}}}(X) \geq k$.
- The hyperarc-connectivity of a hypergraph, denoted $\lambda(\vec{\mathcal{H}})$, is the maximum value of k such that $\vec{\mathcal{H}}$ is k-hyperarc-connected.
- The previous orientation given was 2-hyperarc-connected.
- ullet Let ${\mathcal P}$ be a partition of V :
- ullet $e_{\mathcal{H}}(\mathcal{P})$ is the number of hyperedges intersecting at least 2 elements of \mathcal{P}

- $\vec{\mathcal{H}}$ is k-hyperarc-connected, if, $\forall \varnothing \neq X \subsetneq V$, $d^+_{\vec{\mathcal{H}}}(X) \geq k$.
- The hyperarc-connectivity of a hypergraph, denoted $\lambda(\vec{\mathcal{H}})$, is the maximum value of k such that $\vec{\mathcal{H}}$ is k-hyperarc-connected.
- The previous orientation given was 2-hyperarc-connected.
- ullet Let ${\mathcal P}$ be a partition of V :
- ullet $e_{\mathcal{H}}(\mathcal{P})$ is the number of hyperedges intersecting at least 2 elements of \mathcal{P}
- \mathcal{H} is (k, k)-partition-connected, if :
 - $ightharpoonup \forall \mathcal{P}, e_{\mathcal{H}}(\mathcal{P}) \geq k \times |\mathcal{P}|$

- $\vec{\mathcal{H}}$ is k-hyperarc-connected, if, $\forall \varnothing \neq X \subsetneq V$, $d^+_{\vec{\mathcal{H}}}(X) \geq k$.
- The hyperarc-connectivity of a hypergraph, denoted $\lambda(\vec{\mathcal{H}})$, is the maximum value of k such that $\vec{\mathcal{H}}$ is k-hyperarc-connected.
- The previous orientation given was 2-hyperarc-connected.
- ullet Let ${\mathcal P}$ be a partition of V :
- ullet $e_{\mathcal{H}}(\mathcal{P})$ is the number of hyperedges intersecting at least 2 elements of \mathcal{P}
- \mathcal{H} is (k, k)-partition-connected, if :
 - $\forall \mathcal{P}, e_{\mathcal{H}}(\mathcal{P}) \geq k \times |\mathcal{P}|$

We use a result of Frank : \mathcal{H} is (k, k)-partition-connected if and only if it admits a k-hyperarc-connected orientation.

Main result

Main result (Theorem 7)

Let $\mathcal{H}=(V,E)$ be a (k+1,k+1)-partition-connected hypergraph and $\vec{\mathcal{H}}$ is a k-hyperarc connected orientation of \mathcal{H} . Then there exists a sequence of hypergraphs $(\vec{\mathcal{H}}_i)_{i\in 0...\ell}$ such that $\vec{\mathcal{H}}_{i+1}$ is obtained from $\vec{\mathcal{H}}_i$ by reorienting exactly one hyperarc and $\lambda(\vec{\mathcal{H}}_{i+1}) \geq \lambda(\vec{\mathcal{H}}_i)$ and $\lambda(\vec{\mathcal{H}}_\ell) = k+1$. Such a sequence of orientations can be obtained with $\ell \leq |V|^3$ and found in polynomial time (in the size of \mathcal{H}).

Main result

Main result (Theorem 7)

Let $\mathcal{H}=(V,E)$ be a (k+1,k+1)-partition-connected hypergraph and $\vec{\mathcal{H}}$ is a k-hyperarc connected orientation of \mathcal{H} . Then there exists a sequence of hypergraphs $(\vec{\mathcal{H}}_i)_{i\in 0...\ell}$ such that $\vec{\mathcal{H}}_{i+1}$ is obtained from $\vec{\mathcal{H}}_i$ by reorienting exactly one hyperarc and $\lambda(\vec{\mathcal{H}}_{i+1}) \geq \lambda(\vec{\mathcal{H}}_i)$ and $\lambda(\vec{\mathcal{H}}_\ell) = k+1$. Such a sequence of orientations can be obtained with $\ell \leq |V|^3$ and found in polynomial time (in the size of \mathcal{H}).

Generalization of **Ito and al.**, as digraphs are special cases of hypergraphs.

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s, t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- Goto (2.)

- Take r in $V(\mathcal{H})$.
- 2 Compute sets of vertices.
- Stopping Criteria
- Select a set R (cf. 2.)
- Find an admissible (s,t)-hyperpath in R to reorient
- Reorient the corresponding hyperpath.
- **o** Goto (2.)

- Crucial segment of the algorithm.
- Three criterion for P to be an admissible (s, t)-hyperpath in R:
 - \bigcirc s is a safe source in $S \subseteq R$, t is a safe sink in $T \subseteq R$.
 - Reorient each hyperarc, one by one, does not decrease the hyperarc-connectivity.
 - After reorientation of P, there is a set whose cardinality is a guarantee that the algorithm will stop.

- Crucial segment of the algorithm.
- Three criterion for P to be an admissible (s, t)-hyperpath in R:
 - ① s is a safe source in $S \subseteq R$, t is a safe sink in $T \subseteq R$.
 - Reorient each hyperarc, one by one, does not decrease the hyperarc-connectivity.
 - After reorientation of P, there is a set whose cardinality is a guarantee that the algorithm will stop.

- Crucial segment of the algorithm.
- Three criterion for P to be an admissible (s, t)-hyperpath in R:
 - **1** s is a safe source in $S \subseteq R$, t is a safe sink in $T \subseteq R$.
 - Reorient each hyperarc, one by one, does not decrease the hyperarc-connectivity.
 - After reorientation of P, there is a set whose cardinality is a guarantee that the algorithm will stop.

- Crucial segment of the algorithm.
- Three criterion for P to be an admissible (s, t)-hyperpath in R:
 - **1** s is a safe source in $S \subseteq R$, t is a safe sink in $T \subseteq R$.
 - Reorient each hyperarc, one by one, does not decrease the hyperarc-connectivity.
 - After reorientation of P, there is a set whose cardinality is a guarantee that the algorithm will stop.

- Crucial segment of the algorithm.
- Three criterion for P to be an admissible (s, t)-hyperpath in R:
 - **1** s is a safe source in $S \subseteq R$, t is a safe sink in $T \subseteq R$.
 - Reorient each hyperarc, one by one, does not decrease the hyperarc-connectivity.
 - After reorientation of P, there is a set whose cardinality is a guarantee that the algorithm will stop.

- Crucial segment of the algorithm.
- Three criterion for P to be an admissible (s, t)-hyperpath in R:
 - lacksquare s is a safe source in $S \subseteq R$, t is a safe sink in $T \subseteq R$.
 - Reorient each hyperarc, one by one, does not decrease the hyperarc-connectivity.
 - After reorientation of P, there is a set whose cardinality is a guarantee that the algorithm will stop.

- Crucial segment of the algorithm.
- Three criterion for P to be an admissible (s, t)-hyperpath in R:
 - lacktriangledown s is a safe source in $S\subseteq R$, t is a safe sink in $T\subseteq R$.
 - Reorient each hyperarc, one by one, does not decrease the hyperarc-connectivity.
 - $oldsymbol{3}$ After reorientation of P, there is a set whose cardinality is a guarantee that the algorithm will stop.

What are safe sources and safe sinks?

A brief detour...

Remainder of the algorithm :

- Input : A k-hyperarc-connected orientation of a (k+1, k+1)-partition-connected hypergraph.
- Output : A k + 1-hyperarc-connected hypergraph.

In-Tight sets

•
$$\mathcal{T}_+ = \{X \subseteq V - r, d^+(X) = k\} \cup \{V\}$$

•
$$\mathcal{D}_{-} = \{X \subseteq V - r, d^{-}(X) = k + 1\}$$

•
$$\mathcal{D}_+ = \{X \subseteq V - r, d^+(X) = k + 1\}$$

Out-Tight sets

In-Dangerous sets

•
$$\mathcal{T}_+ = \{X \subseteq V - r, d^+(X) = k\} \cup \{V\}$$

•
$$\mathcal{D}_{-} = \{X \subseteq V - r, d^{-}(X) = k + 1\}$$

•
$$\mathcal{D}_+ = \{X \subseteq V - r, d^+(X) = k + 1\}$$

- ullet \mathcal{M}_- : Inclusion-wise minimal members of \mathcal{T}_-
- \mathcal{M}_{\perp} : Inclusion-wise minimal members of \mathcal{T}_{\perp}
- \mathcal{M}_+ : Inclusion-wise minimal members of \mathcal{M}_+ \mathcal{M} : Inclusion-wise minimal members of $\mathcal{M}_- \cup \mathcal{M}_+$

Out-Dangerous sets

In-Tight sets

•
$$\mathcal{T}_+ = \{X \subseteq V - r, d^+(X) = k\} \cup \{V\}$$

•
$$\mathcal{D}_{-} = \{X \subseteq V - r, d^{-}(X) = k + 1\}$$

•
$$\mathcal{D}_+ = \{X \subseteq V - r, d^+(X) = k + 1\}$$

Out-Tight sets

Minimal In-Tight sets

•
$$\mathcal{T}_+ = \{X \subseteq V - r, d^+(X) = k\} \cup \{V\}$$

•
$$\mathcal{D}_{-} = \{X \subseteq V - r, d^{-}(X) = k + 1\}$$

•
$$\mathcal{D}_+ = \{X \subseteq V - r, d^+(X) = k + 1\}$$

 \bullet \mathcal{M}_{-} : Inclusion-wise minimal members of \mathcal{T}_{-}

• \mathcal{M}_+ : Inclusion-wise minimal members of \mathcal{T}_+

ullet \mathcal{M} : Inclusion-wise minimal members of $\mathcal{M}_- \cup \mathcal{M}_+$

Minimal Out-Tight sets

Safe Sources and Safe Sinks

Definitions are symmetric (but proofs are not).

- For $S \in \mathcal{M}_-$, s is a safe source in S if :
 - a For every $s \in X \in \mathcal{T}_+$, we have $S \subsetneq X$.

b For every $s \in X \in \mathcal{D}_+$ such that $S \setminus X \neq \emptyset$, there exists $Y \in \mathcal{T}_+$ such that $s \notin Y \subseteq X$.

Finding a safe sink t in $T \in \mathcal{M}_+$ can be done by checking each vertex if they correspond to the definition.

Safe Sources and Safe Sinks

Definitions are symmetric (but proofs are not).

- For $S \in \mathcal{M}_{-}$, s is a safe source in S if :
 - a For every $s \in X \in \mathcal{T}_+$, we have $S \subseteq X$.
 - b For every $s \in X \in \mathcal{D}_+$ such that $S \setminus X \neq \emptyset$, there exists $Y \in \mathcal{T}_+$ such that $s \notin Y \subsetneq X$.

Condition (a)

Finding a safe sink t in $T \in \mathcal{M}_+$ can be done by checking each vertex if they correspond to the definition.

Safe Sources and Safe Sinks

Definitions are symmetric (but proofs are not).

- For $T \in \mathcal{M}_+$, t is a safe sink in T if:
 - c For every $t \in X \in \mathcal{T}_-$, we have $T \subseteq X$.
 - d For every $t \in X \in \mathcal{D}_-$ such that $T \setminus X \neq \emptyset$, there exists $Y \in \mathcal{T}_-$ such that $t \notin Y \subseteq X$.

Condition (c)

Finding a safe sink t in $T \in \mathcal{M}_+$ can be done by checking each vertex if they correspond to the definition.

Existence of a safe source (a safe sink)

Lemma 10

 $\forall S \in \mathcal{M}_{-}$, there is a safe source $s \in S$.

Likewise,

Lemma 11

 $\forall T \in \mathcal{M}_+$, there is a safe sink $t \in T$.

Quick sketch of a proof for Lemma 10:

- Let $S \in \mathcal{M}_{-}$.
- Considering a family of vertex sets (χ) that cover as many vertices of S as possible, but using as little as vertex sets possible.
- \bullet We can prove that, under given assumptions, χ cannot cover every vertex of ${\it S}.$
- ullet Vertices that are not covered by χ are "potential" safe sources, the last part of the proof is verifying that they are effectively safe sources.

Finding admissible (s, t)-hyperpaths in $R \in \mathcal{R}$

 $\mathcal{R}: R \subseteq V - r$ inclusion-wise minimal such that either :

- $R \in \mathcal{T}_{-}$, and contains a member of \mathcal{T}_{+}
- or $R \in \mathcal{T}_+$, and contains a member of \mathcal{T}_- .

Three criterion for P to be an admissible (s, t)-hyperpath in R:

- 1. s is a safe source in $S \subseteq R$, t is a safe sink in $T \subseteq R$.
- 2. Reorienting each hyperarc, **one by one**, does not decrease the hyperarc-connectivity
- 3. Let $\vec{\mathcal{H}}'$ the hypergraph obtained after reorientation of P.
 - $ightharpoonup \mathcal{M}'$: Inclusion-wise minimal members of $\mathcal{M}'_- \cup \mathcal{M}'_+$
 - ▶ Either $|\mathcal{M}'| < |\mathcal{M}|$, either $|\mathcal{M}'| = |\mathcal{M}|$ and \mathcal{M}' covers more vertices than \mathcal{M} .

Point 3. is the stopping criteria for the main algorithm :

- $\mathcal{M} = \{V\}$ implies both $\mathcal{M}_- = \{V\}$ and $\mathcal{M}_+ = \{V\}$.
- $\mathcal{T}_{-} = \{X \subseteq V r, d^{-}(X) = k\} \cup \{V\}$
- ullet \mathcal{M}_- : Inclusion-wise minimal members of \mathcal{T}_-
- Finally, if $\lambda(\vec{\mathcal{H}}) \geq k$ and $\mathcal{T}_{-} = \mathcal{T}_{+} = \{V\}$, $\vec{\mathcal{H}}$ is (k+1)-hyperarc-connected.

Introduction of Q_+^{ν}

Definition of Q_+^v

Consider the sets of \mathcal{T}_+ containing v. Q_+^v is **the** minimal (inclusion-wise) one.

Unicity of Q_+^v :

If it exists, Q_+^v is unique.

Let $Q_1^{\nu+}$, $Q_2^{\nu+}$ verifying the above definition.

Introduction of Q_+^v

Definition of Q_+^v

Consider the sets of \mathcal{T}_+ containing v. Q_+^v is **the** minimal (inclusion-wise) one.

Unicity of Q_+^v :

If it exists, Q_{+}^{v} is unique.

By definition, $Q_1^{v+} \not\subseteq Q_2^{v+}$ and $Q_2^{v+} \not\subseteq Q_1^{v+}$.

Introduction of Q_+^v

Definition of Q_+^v

Consider the sets of \mathcal{T}_+ containing v. Q_+^v is **the** minimal (inclusion-wise) one.

Unicity of Q_+^v :

If it exists, Q_{+}^{v} is unique.

Denote $u \in Q_1^{v+} \setminus Q_2^{v+}$, $w \in Q_2^{v+} \setminus Q_1^{v+}$.

Introduction of Q_+^{ν}

Definition of Q_+^v

Consider the sets of \mathcal{T}_+ containing v. Q_+^v is **the** minimal (inclusion-wise) one.

Unicity of Q_+^v :

If it exists, Q_+^v is unique.

As $r \notin Q_1^{v+}, Q_2^{v+}$, both are are crossing sets.

Introduction of Q_+^v

Definition of Q_+^v

Consider the sets of \mathcal{T}_+ containing v. Q_+^v is **the** minimal (inclusion-wise) one.

Unicity of Q_+^v :

If it exists, Q_+^{ν} is unique.

By submodularity, if $X, Y \in \mathcal{T}_+$, both $X \cup V \in \mathcal{T}_+$ and $X \cap V \in \mathcal{T}_+$.

Introduction of Q_+^{ν}

Definition of Q_+^v

Consider the sets of \mathcal{T}_+ containing v. Q_+^v is **the** minimal (inclusion-wise) one.

Unicity of Q_+^v :

If it exists, Q_+^v is unique.

 $Q_1^{\nu+}\cap Q_2^{\nu+}$ is smaller (inclusion-wise) than $Q_1^{\nu+}$ and $Q_2^{\nu+}$.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V, t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities

```
 d_{3}^{+}(Q_{+}^{s}) \geq d_{3}^{+}(Z)
```

- $ightharpoonup d_{\overline{\mathcal{H}}}^+(Z) \geq k$, as \mathcal{H} is k-hyperarc-connected.
- $k = d_{37}^+(Q_+^s)$ by definition
- We can deduce that $d^+_{\vec{\mathcal{H}}}(Z)=k$, which automatically implies that $Z\in\mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V$, $t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities
 - $d_{77}^+(Q_+^s) \ge d_{77}^+(Z)$
 - $d_{\vec{\mathcal{H}}}^+(Z) \geq k$, as \mathcal{H} is k-hyperarc-connected
 - $k = d_{\mathcal{I}}^+(Q_+^s)$ by definition.
- We can deduce that $d^+_{\vec{\mathcal{H}}}(Z)=k$, which automatically implies that $Z\in\mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V$, $t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities
 - $d_{11}^+(Q_+^s) \geq d_{11}^+(Z)$
 - $d_{\vec{x}}^+(Z) \ge k$, as \mathcal{H} is k-hyperarc-connected.
 - $k = d_{\vec{x}}^+(Q_+^s)$ by definition.
- We can deduce that $d^+_{\vec{\mathcal{H}}}(Z)=k$, which automatically implies that $Z\in\mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V$, $t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities
 - $d_{\vec{i}}^+(Q_+^s) \geq d_{\vec{i}}^+(Z)$
 - $d_{\vec{z}}^+(Z) \ge k$, as \mathcal{H} is k-hyperarc-connected.
 - $k = d_{\vec{\mathcal{H}}}^+(Q_+^s)$ by definition.
- We can deduce that $d^+_{\vec{\mathcal{H}}}(Z)=k$, which automatically implies that $Z\in\mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V$, $t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities
 - $d_{\vec{i}}^+(Q_+^s) \geq d_{\vec{i}}^+(Z)$
 - $d_{\vec{x}}^{+}(Z) \ge k$, as \mathcal{H} is k-hyperarc-connected.
 - $k = d_{\vec{x}}^+(Q_+^s)$ by definition.
- We can deduce that $d^+_{\vec{\mathcal{H}}}(Z)=k$, which automatically implies that $Z\in\mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V$, $t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities
 - $d_{\vec{i}}^+(Q_+^s) \ge d_{\vec{i}}^+(Z)$
 - $d_{\vec{i}}^+(Z) \ge k$, as \mathcal{H} is k-hyperarc-connected.
 - $k = d_{\vec{x}}^+(Q_+^s)$ by definition.
- We can deduce that $d^+_{\vec{\mathcal{H}}}(Z)=k$, which automatically implies that $Z\in\mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V$, $t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities
 - $d_{\vec{i}}^+(Q_+^s) \ge d_{\vec{i}}^+(Z)$
 - $d_{\vec{i}}^+(Z) \ge k$, as \mathcal{H} is k-hyperarc-connected.
 - $k = d_{\vec{x}}^+(Q_+^s)$ by definition.
- We can deduce that $d^+_{\vec{i}}(Z) = k$, which automatically implies that $Z \in \mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Lemma 12 (a)

 $\forall s \in V, \forall t \in Q_+^s$, there exists an (s,t)-hyperpath that does not leave Q_+^s .

- By contradiction, assume that there is $s \in V$, $t \in Q_+^s$ such that any (s, t)-hyperpath leaves Q_+^s .
- There is $s \in Z \subseteq Q_+^s \setminus \{t\}$ such that any hyperarc leaving Z will also leave Q_+^s .
- We have the following inequalities
 - $d_{\vec{x}}^+(Q_+^s) \ge d_{\vec{x}}^+(Z)$
 - $d_{\vec{i}}^+(Z) \ge k$, as \mathcal{H} is k-hyperarc-connected.
 - $k = d_{\vec{x}}^+(Q_+^s)$ by definition.
- We can deduce that $d^+_{\vec{i}}(Z) = k$, which automatically implies that $Z \in \mathcal{T}_+$.
- Q_{\perp}^{s} is not minimal, hence the contradiction.

Finding an admissible (s,t)-hyperpath in $R \in \mathcal{R} \cap \mathcal{T}_-$

Algorithm Admissible (s, t)-hyperpath in $R \in \mathcal{R} \cap \mathcal{T}$

- 1: Take a set $S \in \mathcal{M}_{-}$, with $S \subseteq R$, then a safe source $s \in S$.
- 2: $Z = \{s\}, F = (Z, \emptyset), V' = R$
- 3: while h = (X, v) exists such that $v \in V' Z$ and $X \cap Z \neq \emptyset$ do
- 4: Let $u \in X \cap Z$.
- 5: $Z \leftarrow Z \cup v$
- 6: $F \leftarrow F + uv$
- 7: if $Q_{+}^{v} \subseteq V'$ then
- 8: $V' \leftarrow Q^{v}$
- 9: end if
- 10: end while
- 11: T = V'
- 12: Take a safe sink $t \in T$
- 13: P' = F[s, t]
- 14: P is the corresponding hypergraph in $\vec{\mathcal{H}}$ with respect to P'.
- 15: **Return** *S*, *T*, *s*, *t*, *P*

