Corrigé du contrôle continu 3

Exercice 1

- 1. La loi des grands nombres ne s'applique pas car les variables (X_n) ne sont pas identiquement distribuées.
- 2. On remarque tout d'abord que les variables Y_n sont à valeurs dans $\{-1,0,1\}$. On a :

$$\mathbb{P}[Y_n = -1] = \mathbb{P}[X_n = -1] = \frac{1}{2} \left(1 - \frac{1}{2^n} \right),$$

$$\mathbb{P}[Y_n = 0] = \mathbb{P}[X_n = 2^n] + \mathbb{P}[X_n = -2^n] = \frac{1}{2^n},$$

$$\mathbb{P}[Y_n = -1] = \mathbb{P}[X_n = -1] = \frac{1}{2} \left(1 - \frac{1}{2^n} \right).$$

On calcule ensuite la moyenne et la variance de $Y_n: \mathbb{E}[Y_n] = 0$ et $\mathbb{V}[Y_n] = 1 - \frac{1}{2^n}$.

3. On a $\frac{\mathbb{V}[Y_n]}{n^2} = \frac{1}{n^2} \left(1 - \frac{1}{2^n}\right) \leqslant \frac{1}{n^2}$ et $\sum \frac{1}{n^2}$ converge. Par comparaison, $\sum \frac{\mathbb{V}[Y_n]}{n^2}$ converge dans \mathbb{R} .

De plus, les variables Y_n sont indépendantes (car les X_n le sont) et centrées (d'après 2). En écrivant $\frac{\mathbb{V}[Y_n]}{n^2} = \mathbb{E}\left[\left(\frac{Y_n}{n}\right)^2\right]$, d'après le théorème des séries centrées, on a la convergence presque sûre de $\sum n^{-1}Y_n$ dans \mathbb{R} .

Alors, d'après le lemme de Kronecker, $\lim_{n\to +\infty}\frac{1}{n}\sum_{i=1}^n Y_i=0$ presque sûrement.

- 4. On a $\mathbb{P}[X_n \neq Y_n] = \mathbb{P}[Y_n = 0] = \frac{1}{2^n}$. Aussi, $\sum \mathbb{P}[X_n \neq Y_n]$ converge dans \mathbb{R} . Alors, d'après le lemme de Borel-Cantelli, $\mathbb{P}[\limsup\{X_n \neq Y_n\}] = 0$. Par passage au complémentaire, on a donc $\mathbb{P}[\liminf\{X_n = Y_n\}] = 1$.
- 5. D'après la question 3, il existe A_1 avec $\mathbb{P}[A_1] = 0$ tel que pour tout $\omega \notin A_1$, $\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n Y_i(\omega) = 0$. D'autre part, d'après la question 4, il existe A_2 avec $\mathbb{P}[A_2] = 0$ tel que pour tout $\omega \notin A_2$, $\omega \in \liminf \{X_n = Y_n\}$.

Fixons $\omega \notin A_1 \cup A_2$. Par définition de la lim inf, il existe n_0 (qui dépend de ω) tel que pour tout $n \ge n_0$, $X_n(\omega) = Y_n(\omega)$. Alors, pour tout $n \ge n_0$,

$$\frac{1}{n} \sum_{i=1}^{n} X_i(\omega) = \frac{1}{n} \sum_{i=1}^{n_0 - 1} X_i(\omega) + \frac{1}{n} \sum_{i=n_0}^{n} X_i(\omega) = \frac{1}{n} \sum_{i=1}^{n_0 - 1} X_i(\omega) + \frac{1}{n} \sum_{i=n_0}^{n} Y_i(\omega) \quad \text{car } \omega \notin A_2$$

$$= \frac{1}{n} \sum_{i=1}^{n_0 - 1} X_i(\omega) - \frac{1}{n} \sum_{i=1}^{n_0 - 1} Y_i(\omega) + \frac{1}{n} \sum_{i=0}^{n} Y_i(\omega).$$

Mais,
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n_0-1} X_i(\omega) = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n_0-1} Y_i(\omega) = 0$$
 et $\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n Y_i(\omega) = 0$ puisque $\omega \notin A_1$. Par conséquent, $\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n X_i(\omega) = 0$.

De plus,
$$\mathbb{P}[A_1 \cup A_2] \leqslant \mathbb{P}[A_1] + \mathbb{P}[A_2] = 0$$
. Finalement, $\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n X_i = 0$ p.s.

Exercice 2

1. (X_n) est une suite de v.a.i.i.d. de carré intégrable, donc d'après le théorème limite central on a : $\frac{X_1 + ... + X_n - n\mathbb{E}[X_1]}{\sqrt{n}\sqrt{\mathbb{V}[X_1]}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$. De plus, comme X_1 suit la loi de Poisson de paramètre 1, on a $\mathbb{E}[X_1] = 1$ et $\mathbb{V}[X_1] = 1$. La convergence précédente se réécrit alors de la façon suivante :

$$\frac{X_1 + \ldots + X_n - n}{\sqrt{n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

- 2. On va déterminer la loi de $X_1 + \ldots + X_n$ à l'aide des fonctions caractéristiques. Comme les X_i sont inépendantes, $\varphi_{X_1+\ldots+X_n} = \prod_{i=1}^n \varphi_{X_i}$. De plus, les X_i suivent toutes la loi de Poisson de paramètre 1, donc pour tout i, $\varphi_{X_i}(t) = e^{(e^{it}-1)}$, $\forall t \in \mathbb{R}$. Ainsi, $\varphi_{X_1+\ldots+X_n}(t) = e^{n(e^{it}-1)}$. On en déduit que $X_1 + \ldots + X_n$ suit la loi de Poisson de paramètre n.
- 3. D'après la question 1, $\frac{X_1 + \ldots + X_n n}{\sqrt{n}}$ converge en loi vers X, où X suit la loi normale centrée réduite. Notant F_X la fonction de répartition de X, on a $F_X(t) = \int_{-\infty}^t \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$. Cette fonction est continue sur \mathbb{R} , donc par propriété de la convergence en loi, on a convergence des fonctions de répartition en tout point de \mathbb{R} . En particulier, cette convergence a lieu pour t=0: $F_{X_1+\ldots+X_n-n}(0) \xrightarrow[n \to +\infty]{} F_X(0)$.

Reste à expliciter les fonctions de répartition. On a

$$F_{\frac{X_1 + \dots + X_n - n}{\sqrt{n}}}(0) = \mathbb{P}\left[\frac{X_1 + \dots + X_n - n}{\sqrt{n}} \leqslant 0\right] = \mathbb{P}\left[X_1 + \dots + X_n \leqslant n\right] = \sum_{k=0}^{n} e^{-n} \frac{n^k}{k!}$$

car, d'après la question $2, X_1 + \ldots + X_n$ suit la loi de Poisson de paramètre n. D'autre part, en utilisant successivement une propriété de parité et la définition de la densité de la gaussienne, on a

$$F_X(0) = \int_{-\infty}^0 \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \frac{1}{2}.$$

Finalement, on a la convergence cherchée : $e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \xrightarrow[n \to +\infty]{} \frac{1}{2}$.