Link to Github

Lab 05-counter

1. Preparation Tasks

Table with connection of push buttons on Nexys A7 board

Button	Pin	Voltage when disabled	Voltage when enabled
BTNL	P17	0 V	3,3 V
BTNR	M17	0 V	3,3 V
BTNU	M18	0 V	3,3 V
BTND	P18	0 V	3,3 V
BTNC	N17	0 V	3,3 V
BTNRES	C12	0 V	3,3 V

Table with Calculated Values

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1a80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"F_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17d_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2fa_f080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

2. Bidirectional counter

Listing of VHDL code of the process p_cnt_up_down

```
p_cnt_up_down : process(clk)
begin

if rising_edge(clk) then
    if (reset = '1') then
    s_cnt_local <= (others => '0');
    elsif (en_i = '1') then
        if (cnt_up_i = '1') then
        s_cnt_local <= s_cnt_local + 1;
        else
        s_cnt_local <= s_cnt_local - 1;
        end if;
    end if;
end process p_cnt_up_down;</pre>
```

Listing of VHDL reset and stimulus processes from testbench file tb cnt up down.vhd

```
p_reset_gen : process
begin
    s_reset <= '0';</pre>
    wait for 12 ns;
    s_reset <= '1'; -- reset</pre>
    wait for 73 ns;
    s_reset <= '0';</pre>
    wait;
end process p_reset_gen;
p_stimulus : process
begin
    report "Stimulus process started" severity note;
    s_en <= '1'; -- enable</pre>
    s_cnt_up <= '1';
    wait for 380 ns;
    s_cnt_up <= '0'; -- change direction</pre>
    wait for 220 ns;
    s en <= '0'; -- disable
    report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
```

Screenshot with simulated time waveforms

3. Top level

Listing of VHDL code from source file top.vhd with all instantiations for the 4-bit bidirectional counter

```
clk_en0 : entity work.clock_enable
    generic map(
         g_MAX => 100000000
    port map(
         clk
              => CLK100MHZ,
         reset => BTNC,
         ce_o => s_en
    );
bin_cnt0 : entity work.cnt_up_down
    generic map(
         g_CNT_WIDTH => 4
    )
    port map(
         clk
                 => CLK100MHZ,
         reset => BTNC,
         en_i => s_en,
         cnt_up_i \Rightarrow SW(0),
         cnt_o => s_cnt
    );
LED(3 downto 0) <= s_cnt;</pre>
hex2seg : entity work.hex_7seg
    port map(
                 => s_cnt,
         hex_i
         seg_o(6) \Rightarrow CA,
         seg_o(5) \Rightarrow CB,
         seg_o(4) \Rightarrow CC,
         seg_o(3) \Rightarrow CD,
         seg_o(2) \Rightarrow CE,
         seg_o(1) \Rightarrow CF,
         seg_o(0) \Rightarrow CG
    );
```

Image of the top layer including both counters

4-bit bidirectional counter diagram

16-bit bidirectional counter diagram

