Test Case 14

Author <u>Luigi Pellegrino (RSE)</u>, <u>Riccardo Lazzari (RSE)</u>, <u>Salvador Ceballos (TEC)</u>, <u>Rodríguez Emilio (TEC)</u>, <u>Efren Guillo Sansano (UST)</u>, <u>Ha Nguyen (DTU)</u>

Project: <u>ERIGrid2.0</u> **Date**: <u>12/04/2021</u>

Name of the Test Case	Synthetic inertia and fast frequency response/control provided by converter-based resources
Narrative	The increasing penetration of DERs is reducing the inertia of existing power systems. However, power converters can provide services such as FFR and SI, in order to limit the frequency deviations. An assessment of the frequency dynamics requires multiple experiments to take into account the interaction between the traditional components and the converters as well as the specifications provided by different TSOs.
Function(s) under Investigation (<i>Ful</i>) "the referenced specification of a function realized (operationalized) by the object under investigation"	The Fuls are implemented in each converter controller. In this TC, several Fuls are investigated: Fast frequency response and Synthetic Inertia provided by converters, considering the specification of different countries.
	Fast Frequency Response Per Activation time Deactivation time Support duration before recovery Recovery time Activation instant Recovery time Activation instant Recovery time
	ENTSO-E specification ¹ : Main requirements: Activation threshold frequency and maximum full activation time (3 configurable values): • 49.7 Hz, 1.3 s • 49.6 Hz, 1 s • 49.5 Hz, 0.7 s Minimum support duration = 5 s Maximum power overshoot = 0.35*P _{pre} (being P _{pre} the prequalified FFR capacity) Deactivation rate = 0.2*P _{pre} /s (measured as the average rate over an integration window of one second) and with no power step higher than 0.2*P _{pre} Buffer + recovery time = 900 s Recovery maximum power = 0.25* P _{pre} Dead-band = +/-50 mHz

¹ <u>https://www.svk.se/siteassets/aktorsportalen/tekniska-riktlinjer/ovriga-instruktioner/technical-requirements-for-fast-frequency-reserve-provision-in-the-nordic-synchronous-area-1.pdf</u>

Italian specification:

Activation instant <= 300 ms

Activation time <= 1 s

Support duration = 30 s

Deactivation time = 300 s

Buffer time + Recovery time = 200 s

FFR Maximum Power = 5 ÷ 25 MW

Recovery Maximum Power = 2 MW (or more if the frequency

is within the dead-band)

Dead-band = \pm 50 mHz

 $\Delta P/\Delta f = tbd$

UK specification:

Dead-band: +/- 15 mHz

Small linear delivery: between 15 mHz and 200 mHz (maxi-

mum of 5% at 200 mHz)

Knee point activation: +/- 200 mHz Full delivery: +/- 500 mHz is 100% Linear delivery knee point: 200 mHz

Activation time <=1s (but no faster than 0.5 s)

Synthetic inertia

Hydro-Québec Transmission system²:

Inertial response requirements:

- Activated at a given frequency threshold (frequency deviation)
- An adjustable dead band from -0.1 Hz to -1.0 Hz (with respect to nominal frequency)
- Rise time (1-2): ≤ 1.5 s
- Maximum power overproduction (2-3): at least 6% of rated power
- Max. overproduction duration (1-4): at least 9s
- Transition time (3-5): ≥ 3.5 s

_

² http://www.hydroquebec.com/transenergie/fr/commerce/pdf/2_Requirements_generating_stations_D-2018-145_2018-11-15.pdf

³ https://www.nationalgrideso.com/document/10331/download

Functions under Test (FuT)

Functions relevant to the operation of the system under test, including Ful and relevant interactions btw. Oul and SuT.

Other frequency control such as Frequency Containment Reserve (FCR).

Other high-level controllers (i.e., active and reactive power control).

Test criteria (TCR)

Formulation of criteria for each Pol based on properties of SuT; encompasses properties of test signals and output measures.

For Pol 1:

Comparison between the FFR and SI specification requirements (listed in Function(s) under Investigation field) and the experiment results.

The test answers to the following question:

Is the power converter compliant with the FFR specification? Is the power converter compliant with the SI specification?

For Pol 2:

Evaluation of the ROCOF and the frequency deviation considering different system configuration in terms of DERs penetration.

The test answers to the following questions:

Is the system stable under the different configurations? Is the frequency and ROCOF maintained within the limits? Is there any interaction between the devices providing grid services?

Target Metrics (TM)

Measures required to quantify each identified test criteria

For Pol 1:

see Function(s) under Investigation field.

For Pol 2:

At power system level: Frequency variation (ROCOF, Frequency nadir, Steady State frequency, time recovery).

	At component level: Speed of response, Settling time, Power Overshoot, support duration, max power undershoot during recovery
Variability Attributes (VA) controllable or uncontrollable factors and the required variability; ref. to Pol.	For Pol 1: Frequency variation, power set-point, voltage and current harmonics, measures accuracy.
	For Pol 2: Mechanical Inertia, Non-controllable DER production and load consumption, grid parameters, communication and controller delay, interaction between each power converter providing FFR and SI and other components.
Quality Attributes (QA) threshold levels for test result quality as well as pass/fail criteria.	For Pol 1: Pass/fail criteria: All the specification listed in the Ful field. System fail (one or more components disconnected) Quality attributes: Sampling time: 100 µs Resolution: frequency 0.01 Hz, voltage 0.001 pu and current 0.01 pu Measurement point: one for each resource For Pol 2: Pass/fail criteria: Frequency nadir: 48 Hz System fail (one or more components disconnected) Quality attributes: Sampling time: 100 µs Resolution: frequency 0.01 Hz, voltage 0.001 pu and current 0.01 pu Measurement point: one for each resource

Qualification Strategy

Two test specifications will be implemented: one for verifying the FFR and SI control in case of the power converter is independent from other components and one for the verification of the OuI in case of interaction with other grid components and validation of the power system stability.

Test Specification TC14.TS1

Reference to Test Case	TC14
Title of Test	Synthetic inertia and fast frequency response/control provided by
	converter-based resources: validating the FFR and SI control.
Test Rationale	The validation of the FFR and SI control allows to evaluate the
	ability of the converter to provide these functions, considering also
	the variability attributes (Frequency variation, power set-point,
	voltage and current harmonics, measures accuracy).
Specific Test System	This TS requires a grid simulator and one power converter with
(graphical)	the Oul.
Target measures	Power and frequency measures time series of the power converter
	under test.
Input and output parameters	Frequency set-point, FCR, FFR and SI control mode ON/OFF,
	Power baseline.
Test Design	A simulation and/or a pure hardware experiment can be per-
	formed. A Pure hardware experiment is recommended but, with
	some assumption, also a simpler experiment can be performed.
	The first leader for a self-lead to Bold lead to fall a few
	The test design for verifying the Pol 1 is the following:
	Set the starting frequency to the grid simulator and the
	power baseline to the power converter.
	Change the frequency (with a fixed ramp rate and ampli-
	tude) and log the power converter measurements.
	Repeat the previous step until quality attributes will be
Initial anatom state	achieved.
Initial system state	Frequency: 50 Hz
	Power baseline: at least three different initial states; one with low-
	er power exchange, one with medium power exchange and one
Evolution of system state and	with high power exchange. From 50 Hz up to 51.5 Hz, then down to 47.5 Hz with different
Evolution of system state and test signals	step size (0.1 Hz, 0.25, 0.5 Hz).
Other parameters	See variability attributes.
Temporal resolution	At least 0.1 ms.
Source of uncertainty	Measures accuracy in case of non-simulation experiments.
Suspension criteria / Stopping	Disconnection of the power converter.
criteria	Disconnection of the power convertor.
Oritoria	

Test Specification TC14.TS2

Reference to Test Case	TC14
Title of Test	Synthetic inertia and fast frequency response/control provided by
	converter-based resources: power system stability assessment.
Test Rationale	The test aims to verify that power converters limit the ROCOF and the frequency deviation considering also the variability attributes (Frequency variation, voltage set-point, voltage and current harmonics, measures accuracy, interaction between each power converter providing FFR and SI and other components, grid parameter, communication and controller delay).
Specific Test System	IEEE 9 bus
(graphical)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Target measures	Power and frequency measures time series of each power converter.
Input and output parameters	Production and consumption profiles, FCR, FFR and SI control mode ON/OFF, power baseline, number of power converters, mechanical inertia.
Test Design	The test design is the same of the TC14.TS1 but consumption and non-controllable production will be change instead of frequency.
Initial system state	Frequency: 50 Hz Power baseline: at least three different initial states; one with lower power exchange, one with medium power exchange and one with high power exchange.
Evolution of system state and	Consumption or production change in order to have the same fre-
test signals	quency variation of the TC14.TS1.
Other parameters	See variability attributes.
Temporal resolution	At least 0.1 ms.
Source of uncertainty	Measures accuracy in case of non-simulation experiments.
Suspension criteria / Stopping criteria	Disconnection of one or more components and/or frequency instability.

Experiment Specification TC14.TS1.ES1

Reference to Test Specification	TS1
Title of Experiment	Pure Hardware test: validation of the FFR and SI functionalities
-	of a power converter.
Research Infrastructure	DER-TF (RSE, Milan)
Experiment Realisation	The power converter controller will be implemented on the DSpace controller that commands the power converter "Conv1_DCgrid". The control functions are developed in Simulink. Another power converter "Conv_Li-ion battery", connected to the "Conv1_DCgrid" through a line of 200 m, set voltage and frequency. No other electrical components are connected to this experiment setup. The voltage and current measurements are provided by two PMUs installed at the electrical output of each power converters. The power converter "Conv_Li-ion battery" will set different frequency values following the "Evolution of system state and test signals" description in TC14.TS1 with a pause between every change of about 20 s.
Experiment Setup (concrete lab equipment)	Communication domain Electrical domain L = 200m R = 38 mΩ X = 29 mΩ Measurements PMU PMU Frequency set-point Conviluogid
Experimental Design and	The Pure Hardware experiment aims to validate the ability of the
Justification	power converter "Conv1_DCgrid" to provide FFR and SI func-
	tionalities considering the real behavior of a controller and a
Description of anythereset and	power converter of medium size (100 kVA).
Precision of equipment and	PMU uncertainties: $u(I) = 1.5 \text{ A}$; $u(V) = 1 \text{ V}$; $u(f) = 5 \text{ mHz}$.
measurement uncertainty	Power converter precision: 0.5 V; 0.01 Hz.
Storage of experiment data	Data are collected on a local PC on a txt file every second with a
	sample time of 0.1 ms.

Experiment Specification TC14.TS1.ES2

Reference to Test Specification	TS1
Title of Experiment	Pure simulation test: Simulation for the validation of FFR and SI
·	functionalities of converter-based resources: Dynamic response
	and stability assessment
Research Infrastructure	Tecnalia
Experiment Realisation	Simulation model of grid connected power-electronics interfaced
	renewables and/or stationary battery energy systems following
	the schemes drafted in the figure below will be developed.
	vsc
	$V_{c,abc}$ Z_r i_c i_o Z_g SG
	V _{c,abc} ▼
	Controller including Vcf
	FFR and SI
	vsc vsc
	V _{cGS,abc} Z ₁ i _c i _g SG
	V* _{cos,abc} V* _{cos,abc}
	Controller including FFR and SI
	Two types of simulation studies will be performed:
	i) Dynamic simulations
	The objective of these simulations is to test the dynamic re-
	sponse of converter-based resources with FFR and SI function-
	alities under frequency deviations.
	The frequency of the grid will be changed following a profile simi-
	lar to that of the test signals for frequency injection described in
	previous work ⁴ .
	The current, voltage and power profiles of the power converter
	will be recorded and compared against those specified in the grid
	codes listed in the Ful of TC14.
	ii) <u>Stability due to converter interactions</u>
	One of the key issues in converter-dominated power systems are the interactions that can take place between the converter's con-
	trollers, filters, generators and the transmission network. If these
	interactions are not properly damped can lead to undamped os-
	cillatory modes that make the system unstable. Identification of
	critical oscillatory modes and their dependence and sensibility to
	the converter and transmission system parameters will be ad-
	dressed in this study. Combination of active damping schemes
	together with FFR and SI functionalities will be analyzed.
Experiment Setup	Simulations in Matlab/Simulink
(concrete lab equipment)	
Experimental Design and	This simulation analysis aims to validate the operation of the
Justification	controllers to provide FFR and SI functionality of converter-

⁴ <u>https://www.svk.se/siteassets/aktorsportalen/tekniska-riktlinjer/ovriga-instruktioner/technical-requirements-for-fast-frequency-reserve-provision-in-the-nordic-synchronous-area-1.pdf</u>

	based resources. Unitary converter validation is performed. It can be used as a reference for comparison with the hardware test validation in TC14.TS1.ES1 and as a preliminary stage before addressing power system stability assessment in TC14.TS2.ES2.
Precision of equipment and measurement uncertainty	Pure simulation analysis. Not applicable.
Storage of experiment data	Data is collected in a workspace while simulation is running and recorded in a local PC.

Experiment Specification TC14.TS2.ES1

Reference to Test Specification	TS2
Title of Experiment	PHIL simulation for frequency stability assessment of renewable-
	based systems using SI and FFR support from converter-based
	resources
Research Infrastructure	UST
Research Infrastructure Experiment Realisation	In this case a PHIL experiment is implemented for a more realistic assessment of the response of the converter interface resource to fast frequency changes. For consistency purposes, the same reference model (IEEE 9 bus) as used for the pure simulation experiment is simulated. This model is complemented with the addition of a converter interfaced hardware resource (in this case an ESS but could be of other type if required) in which the algorithms of SE and FFR will be implemented. Simulated System Hardware Components Different disturbances such as load increase or SG trip are car-
	Different disturbances such as load increase or SG trip are carried out to evaluate ROCOF and frequency deviation of the system with SI/FFR in services.

Experiment Specification TC14.TS2.ES2

Reference to Test Specification	TS2
Title of Experiment	Pure simulation test: frequency stability assessment of renewa-
	ble-based systems using SI and FFR support from converter-
	based resources
Research Infrastructure	DTU
Experiment Realisation	Simulation:
	IEEE 9 bus system with converter-based resources (CBR) (wind, PV, battery, etc.) as replacements for SGs is implemented in digital real-time simulator. CBRs are equipped with

	SI/FFR control based of specifications of grid codes.
	Different disturbances such as load increase or SG trip are carried out to evaluate ROCOF and frequency deviation of the system with SI/FFR in services. A delay can be added to emulate the communication latency.
	Comparison of SI/FFR based on different grid codes for frequency stability improvement.
	The interaction of SI/FFR of converters with SGs is also considered.
Experiment Setup	Pure simulation in RTDS
(concrete lab equipment)	
Experimental Design and	The pure simulation aims to evaluation frequency stability with SI
Justification	and FFR support from converter-based resources in terms of
	ROCOF and frequency deviation.
	It can be a reference for a comparison with the PHiL simulation
Precision of equipment and	PB5-based RTDS racks
measurement uncertainty	Time step of simulation: 50-60 µs
Storage of experiment data	Data is collected on run time of simulation in CSV extension file
	and stored at a local PC