MCE/EEC 647/747: Robot Dynamics and Control

Lecture 9: Introduction to Euler-Lagrange Modeling

Reading: SHV Ch.7

Mechanical Engineering

Hanz Richter, PhD

MCE647 - p.1/1

Lagrangian mechanics

- Energy-based approach
- Eliminates forces of constraints and conservative forces from the formulation
- Kinetic Energy (simple case)
 - ♦ Translational: $T = \frac{1}{2}mv^2$
 - Rotational : $T = \frac{1}{2}Iw^2$
- Potential Energy
 - Gravitational: U = mgz
 - Elastic: $U = \frac{1}{2}k(\Delta x)^2$

The Euler-Lagrange equation

$$\left| \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} \right| = 0$$

- Lagrangian L = T U
- $\blacksquare L = f(q_1, q_2...q_n, \dot{q}_1, \dot{q}_2, ... \dot{q}_n)$
- \blacksquare q_i are the generalized coordinates
- $lacktriangle q_i$ can be distances, angles or arbitrary combinations of geometric and physical quantities
- The set of q_i , i = 1..n must completely specify the state of the system.

MCE647 - p.3/11

Validity of E-L equation

NOTES: The E-L equation is valid only if

- 1. Forces are conservative (they are the gradient of a potential: $\exists U$ s.t. $\vec{F} = -\nabla U$.
- 2. Forces of constraint are non-dissipative and do no virtual work

Forces arising from gravitation are conservative (U = mgz)

Forces arising from ideal springs are conservative $(U = 0.5k(\Delta x)^2)$

Normal forces and tension satisfy (2)

Friction forces (dry or viscous) do not satisfy (1) or (2), but terms can be added to E-L equation.

Extended E-L equation

- In control applications we have external (non-conservative) forces: control inputs
- Damping is usually present in our models
- Extended equation:

$$\frac{1}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} + \frac{\partial R}{\partial \dot{q}_i} = F_i$$

- - Rayleigh's dissipation function: $\mathcal{R}(\dot{q}) = \sum rac{b_i \dot{q}_i^2}{2}$

MCE647 - p.5/11

Simple example: quarter-car suspension

Find the I/O differential equation (x, y)

Solution

MCE647 - p.7/1

More difficult example

Find the I/O differential equation (F,y)

Solution

MCE647 - p.9/1

Solution

Verify that the required equation is

$$\left(M + \frac{I}{r^2}\right)\ddot{y} + b\dot{y} + \left(k_M + \frac{k}{4}\right)y = \frac{F}{2}$$

Example on E-L equations

Coupled pendulum, small oscillations

* 2.d.o.f. ** 2.d.o.f. ** Assume eq. position (unstretched spring) is $\Theta_1 = \Theta_2 = 0$

MCE647 - p.11/1