11月6日上机实习安排

使用MS软件DMol3模块完成:

Locate the transition state (TS) of Hydrogen Shift

Reaction:

by using LST/QST method:

- Geometry optimizations of initial state (IS) and final state (FS)
- 2. Transition state search
- 3. Transition state confirmation
- 4. TS further optimization

1. Geometry Optimization of IS

H_CH

- 1 Put $_{0}^{\parallel}$ as IS into a crystal cell with the volume of 30 Å×30 Å×30 Å
- ② DMol3 Geometry Optimization setting:
 - ✓ Geometry optimization quality: Fine
 - √PBE-D (Grimme) functional
 - √ Charge "0"
 - ✓ Integration accuracy: Fine
 - ✓ SCF tolerance: Medium (1e-5)
 - √K points: Gamma
 - ✓ Core treatment: Effective Core Potentials
 - ✓ Basis set: DNP (4.4)
 - ✓ Orbital cutoff: 5.0 Å

1. Geometry Optimization of FS

Copy IS to new xsd file

Keep the sequence of atomic coordination as the same as IS

2. Transition State (TS) Search

- ① Open IS.xsd and FS.xsd files
- Tools → Reaction Preview, import two *.xsd files as IS and FS
- Match atoms

Determine how many frames (8) to be generated Find Equivalent Atoms X ⑸ Press "Preview" 🤽 IS-opt. xsd 🔻 🐫 FS-opt. xsd Reaction Preview \times 4 matched atoms 0 unmatched atoms 0 unmatched atoms 🦥 IS. xsd Reactant: Product: 🦥 FS. xsd Have two valid documents Number of frames

All items matched

2. Transition State (TS) Search

- 1 Obtain IS-FS.xtd file and open it
- ② DMol3 TS Search setting:
 - √ Search protocol: Complete LST/QST
 - ✓ Quality: Fine
 - ✓ Properties Tab: mark "Frequency"
- ③ After TS search, check *.outmol file for reaction barrier and frequency results or open *.xsd file Tools → Vibrational Analysis → Calculate

3. TS Confirmation

- ① Open TS.xtd file
- ② DMol3 TS Confirmation setting:
 - ✓ Quality: Fine
 - ✓ Path quality: Medium
 - ✓ Max. images: The number of intermediate NEB images used during the transition state confirmation.
 - ✓ Properties Tab: Mark "Frequency"!!!
- 3 After TS confirmation, check *.xcd and *.xtd files for further information

Hydrogen Shift Reaction (Gaussian)

➤ Computational level: B3LYP/6-31G(d)

4. TS Further Optimization (if TS search fail)

- 1 Open TS.xsd file
- ② DMol3 TS Optimization setting:
 - ✓ Quality: Fine
 - ✓ Properties Tab: mark "Frequency"

Done by VASP

VASP Calculations

- >INCAR (input parameter setting)
- ➤ KPOINTS (k-point setting)
- ➤POSCAR (coordination for structure, cif (from MS)→*.vasp generated by VESTA software)
- ➤ POTCAR (PW-PP information)

INCAR for Geometry Optimization

```
ALGO = Fast
PREC = Normal
                          Output: CONTCAR (final structure)
ENCUT = 500
                                    OUTCAR (summary file)
EDIFF = 1E-5
EDIFFG = -0.05
ISMEAR = 0
                #smearing method for the Gaussian smearing
SIGMA = 0.02
               #determines the width of the smearing in eV
LREAL = Auto
               #determines the projection operators evaluated in real or
reciprocal space
NELM = 100
               #the maximum number of electronic SC (self-consistency) steps
#optimization setting
               #optimization method for the conjugate gradient algorithm
IBRION = 2
ISIF = 3
                #update lattice parameters, atomic position, force
NSW = 600
               #optimization cycle
#print control
LORBIT = 11
LWAVE = .FALSE.
LCHARG = .FALSE.
#add vdW corrections
IVDW = 11
               #D3
```

E亚明学院

11

KPOINTS File

Automatic-mesh 0 Monkhorst-Pack 12 12 1 0. 0. 0.

POSCAR File

```
CIF file
1.0
    2.4600000381
                     0.000000000
                                       0.000000000
   -1.2300000191
                      2.1304225263
                                       0.000000000
                     0.000000000
    0.000000000
                                      20.0000000000
Direct
                   0.00000000
  0.000000000
                                   0.00000000
  0.666670024
                   0.333330005
                                   0.00000000
```

POTCAR File

```
PAW_PBDC_GW 28Sep2005
  4.000000000000000
 parameters from PSCTR are:
  VRHFIN =C: s2p2
  LEXCH = PE
  EATOM = 147.1560 \text{ eV}, 10.8157 \text{ Ry}
  TITEL = PAW_PBE C_GW 28Sep2005
  LULTRA = F use ultrasoft PP?
  IUNSCR = 0 unscreen: 0-lin 1-nonlin 2-no
  RPACOR = 0.000 partial core radius
  POMASS = 12.011; ZVAL = 4.000 mass and valenz
  RCORE = 1.500 outmost cutoff radius
  RWIGS = 1.630; RWIGS = 0.863 wigner-seitz radius (au A)
  ENMAX = 413.992; ENMIN = 310.494 eV
  ICORE = 2 local potential
  LCOR = T correct aug charges
  LPAW =
             T paw PP
```

• • • • • •

INCAR for High-Accuracy Single-Point Calculation (Charge Density)

ALGO = Normal

Enlarge K points

ENCUT = 500**Output: CHGCAR**

PREC = Accurate

LREAL = Auto

ISTART = 0 #determines whether to read the file WAVECAR or not

ICHARG = 2 #determines how to construct the 'initial' charge density

ISMEAR = 0

SIGMA = 0.02

LORBIT = 11

LWAVE = .TRUE.

LCHARG = .TRUE.

IVDW = 11

NELM = 300

EDIFF = 10E-6

INCAR for Band Structure

```
ALGO = Normal
```

ENCUT = 500 **Output: EIGENVAL**

PREC = Accurate

LREAL = Auto

LORBIT = 11

LWAVE = .FALSE.

LCHARG = .FALSE.

IVDW = 11

ISTART = 1

ICHARG = 11 #for a given charge density read from CHGCAR

ISMEAR = 0

SIGMA = 0.02

NELM = 300

EDIFF = 10E-6

KPOINTS for Band Structure

```
k-points along high symmetry lines
30 ! 30 intersections
Line-mode
rec
0.000 0.000 0.000 ! GM
0.500 0.000 0.000 ! M
0.500 0.000 0.000 ! M
0.500 0.000 0.500 ! L
0.500 0.000 0.500 ! L
0.667 0.333 0.500 ! H
0.667 0.333 0.500 ! H
0.667 0.333 0.000 ! K
0.667 0.333 0.000 ! K
0.000 0.000 0.000 !GM
```

INCAR for DOS

Output: DOSCAR

ALGO = Normal

ENCUT = 500

PREC = Accurate

LREAL = Auto

LORBIT = 11

LWAVE = .FALSE.

LCHARG = .FALSE.

IVDW = 11

ISTART = 1

ICHARG = 11

ISMEAR = 0

SIGMA = 0.02

NELM = 300

EDIFF = 10E-6

#control DOS

EMIN = -5.24 #minimum energy for evaluation of DOS

EMAX = **4.76** #maximum energy for evaluation of DOS

NEDOS = 301 #number of grid points in DOS

Determined by Fermi Level

INCAR for PDOS

ALGO = Normal

ENCUT = 500

PREC = Accurate

LREAL = Auto

IVDW = 11

ISTART = 1

ICHARG = 11

ISMEAR = 0

SIGMA = 0.02

NELM = 300

EDIFF = 10E-6

LORBIT = 11

LWAVE = .FALSE.

LCHARG = .FALSE.

VB and CB partial charge

LPARD = .TRUE. #Evaluate partial (band and/or k-point) decomposed charge density

 $IBAND = 261\ 262$

NBMOD = 2 #Number of values in the array IBAND

LSEPB = .TRUE. #Specifies the charge density calculated for every band separately

Output: PARCHG.261.ALLK PARCHG.262.ALLK

INCAR for Magnetism

```
#open the spin-orbital
                                          Output: OUTCAR
LSORBIT = .TRUE.
LNONCOLLINEAR = .TRUE.
                                #perform fully non-collinear magnetic
structure calculations
SAXISR = 0.1.0
                                  #direction of the magnetic field
RWIGS = 1.630 1.100 1.400 2.200
                                  #Wigner Seitz radius read from
POTCAR
MAGMOM = 216*0.0 0.866 - 0.5 0.0 0.866 0.5 0.0 0.0 1.0 0.0
LMAXMIX = 4
                                #for d elements
GGA\_COMPAT = .FALSE.
                                 #apply spherical cutoff on gradient field
```