TD6. Martingales.

Exercice 1. Soit $(M_n)_{n\geqslant 0}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\geqslant 0}$, telle que $\mathbb{E}(M_n^2)<+\infty$ pour tout $n\geqslant 0$. Soit

$$A_n = \sum_{i=1}^n \mathbb{E}([M_i - M_{i-1}]^2 | \mathcal{F}_{i-1})$$
(1)

Montrer que $M_n^2 - A_n$ est une $(\mathcal{F}_n)_{n \geqslant 0}$ -martingale.

Exercice 2. Soit $(Y_n)_{n\geqslant 1}$ une suite de v.a. i.i.d. avec $\mathbb{P}(Y_i=1)=p=1-P(Y_i=-1)$. Soit $S_n=\sum_{i=1}^n Y_i$ (et $S_0=0$). Montrer que les processus $(W_n)_{n\geqslant 0}$ et $(M_n)_{n\geqslant 0}$ definit par

$$W_n = S_n - (2p-1)n, \qquad W_0 = 0$$

et

$$M_n = \left(\frac{1-p}{p}\right)^{S_n}, \qquad M_0 = 1$$

sont des martingales par rapport à la filtration naturelle des Y_n : $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$ pour $n \ge 1$ et $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

Exercice 3. Soit G une fonction convexe et croissante, de derivée à droite g. On note $S_n = \sup_{0 \le k \le n} X_k$.

a) Montrer que si $(X_n)_{n\geqslant 0}$ est une sous-martingale positive,

$$H_n = G(S_n) - (S_n - X_n)g(S_n)$$

est une sous-martingale. Sugg: Pour établir cette propriété, on remarquera que

$$(S_{n+1}-X_{n+1})g(S_{n+1})=(S_{n+1}-X_{n+1})g(S_n).$$

et on en deduira que la différence $H_{n+1} - H_n$ est plus grande que $g(S_n)(X_{n+1} - X_n)$.

b) En déduire que si $(X_n)_{n\geqslant 0}$ est une sous-martingale positive nulle en 0, pour tout p>1

$$\mathbb{E}(S_N^p) \leqslant \frac{p}{p-1} \mathbb{E}[X_N S_N^{p-1}].$$

Puis en déduire (en utilisant l'inegalité de Hölder) qu'il existe une constante C_p qui ne depends pas de X telle que pour tout p>1

$$\mathbb{E}(S_N^p) \leqslant C_p \mathbb{E}[X_N^p].$$

c) En utilisant la fonction $G(x) = (x - K)_+$, montrer que si $(X_n)_{n \ge 0}$ est une sous-martingale positive

$$\mathbb{P}(S_N \geqslant K) \leqslant \frac{\mathbb{E}[X_N]}{K}.$$

Exercice 4. Urne de Polya: On dispose (d'une infinité) de boules rouges et vertes. A l'instant 0, une urne contient une boule de chaque couleur et on effectue une succession de tirages définis par la règle suivante: on tire une boule de l'urne "au hasard" et on la remet dans l'urne en ajoutant une boule du même couleur. Soit S_n le nombre de boules rouges au temps n, et $X_n = S_n/(n+2)$ la proportion de boules rouges au temps n.

a) Montrer que la suite $(S_n)_{n\geqslant 0}$ est une chaîne de Markov et que

$$\mathbb{E}[f(S_{n+1})|S_n] = f(S_n+1)\frac{S_n}{n+2} + f(S_n)\frac{n+2-S_n}{n+2}.$$

- b) Montrer que X_n est une martingale par rapport à sa filtration naturelle et calculer $\mathbb{E}(X_n)$.
- c) Montrer que $X_n \to X_\infty$ presque sûrement et dans L^1 .
- d) Pour tout $k \ge 1$ soit

$$Z_n^{(k)} = \frac{S_n(S_n+1)\cdots(S_n+k-1)}{(n+2)\cdots(n+k+1)}.$$

Montrer que $(Z_n^{(k)})_{n\geqslant 0}$ est une martingale pour tout $k\geqslant 1$ et calculer $\mathbb{E}[Z_n^{(k)}]$.

e) Montrer que

$$\mathbb{E}[X_{\infty}^k] = \mathbb{E}[Z_0^k] = \frac{1}{k+1}$$

f) Par un calcul de fonction caractéristique en déduire que la v.a. X_{∞} suive une loi uniforme sur [0,1].

Exercice 5. Soient $(Y_n)_{n\geqslant 1}$ v.a. i.i.d. , $Y_n\geq 0$ et $\mathbb{E}(Y_n)=1$. Soit $X_n=\prod_{k=1}^n Y_k$ pour tout $n\geqslant 1$ et $X_0=1$.

- a) Montrer que $(X_n)_{n\geqslant 0}$ est une martingale par rapport à la filtration engendrée par les $(Y_n)_{n\geqslant 1}$ $(\mathcal{F}_n=\sigma(Y_1,\ldots,Y_n)$ pour $n\geqslant 1$ et $\mathcal{F}_0=\{\emptyset,\Omega\}$)
- b) Supposons que $Y_n \ge \delta$ pour quelque $\delta > 0$. Montrer que $\mathbb{E}[\log Y_1] < 0$ et utiliser la loi des grandes nombres pour $\log X_n/n$ pour montrer que si $\mathbb{P}(Y_1 = 1) < 1$ alors

$$\lim_{n\to\infty} X_n = 0 \qquad p.s.$$

c) Soit maintenant $Z_n = \max(\delta, Y_n)$. Montrer qu'il existe $\delta > 0$ tel que $\mathbb{E}[\log Z_n] < 0$ et conclure que si $\mathbb{P}(Y_1 = 1) < 1$ alors

$$\lim_{n\to\infty} X_n = 0 \qquad p.s.$$

sans l'hypothèses supplémentaires sur $(Y_n)_{n\geq 0}$.

d) En déduire qu'en général la convergence de $X_n \to X_\infty$ dans le théorème de Doob n'a pas lieu dans $L^1(\Omega)$ mais seulement presque sûrement.