Planning and Scheduling: Complexity of Classical Planning

Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Acknowledgements

- These slides refer to Chapter 3 of the textbook: Malik Ghallab, Dana Nau, and Paolo Traverso: Automated Planning: Theory and Practice Morgan Kaufmann, 2004
- These slides are an adaptation of slides by Dana Nau
- The contributions of these authors are gratefully acknowledged

Review: Classical Representation

- Function-free first-order language L
- Statement of a classical planning problem: $P = (s_0, g, O)$
- lacksquare s_0 initial state a set of ground atoms of L
- ullet goal formula a set of literals
- lacksquare operator(name, preconditions, effects)

```
take(crane1,loc1,c3,c1,p1)

;; crane crane1 at location loc1 takes c3 off c1 in pile p1
precond: belong(crane1,loc1), attached(p1,loc1),
empty(crane1), top(c3,p1), on(c3,c1)
effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),
¬top(c3,p1), ¬on(c3,c1), top(c1,p1)
```

Classical planning problem: $P = (\Sigma, s_0, S_g)$

Review: Set-Theoretic Representation

- Like classical representation, but restricted to propositional logic
- State: a set of propositions these correspond to ground atoms
 - { on-c-1-pallet, on-c1-r1, on-c1-c2, . . . , at-r1-l1, . . . }
- No operators, just actions

```
take-crane1-loc1-c3-c1-p1
  precond: belong-crane1-loc1, attached-p1-loc1
  empty-crane1, top-c3-p1, on-c3-c1
  delete: empty-crane1, on-c3-p1, top-c3-p1, on-c3-p1
  add: holding-crane1-c3, top-c1-p
```

- Weaker representational power than classical representation
 - Problem statement can be exponentially larger

Review: State-Variable Representation

- A state variable is like a record structure in a computer program
 - Instead of on(c1, c2) we might write cpos(c1) = c2
- Load and unload operators:

```
 \begin{aligned} &\text{load}(c,r,l) \\ &\text{;; robot } r \text{ loads container } c \text{ at location } l \\ &\text{precond: } \mathsf{rloc}(r) = l, \mathsf{cpos}(c) = l, \mathsf{rload}(r) = \mathsf{nil} \\ &\text{effects: } \mathsf{rload}(r) \leftarrow c, \mathsf{cpos}(c) \leftarrow r \end{aligned}   \begin{aligned} &\mathsf{unload}(c,r,l) \\ &\text{;; robot } r \text{ unloads container } c \text{ at location } l \\ &\text{precond: } \mathsf{rloc}(r) = l, \mathsf{rload}(r) = c \\ &\text{effects: } \mathsf{rload}(r) \leftarrow \mathsf{nil}, \mathsf{cpos}(c) \leftarrow l \end{aligned}
```

- Equivalent power to classical representation
 - Each representation requires a similar amount of space
 - Each can be translated into the other in low-order polynomial time
- Classical representation is more popular, mainly for historical reasons
 - In practice, state-variable representation is probably more convenient

Motivation and Outline

- Recall that in classical planning even simple problems can have huge search spaces, e.g.
 - States of DWR with 5 locations, 3 piles, 3 robots and 100 containers is
 10²⁷⁷
 - Largest estimates of particles in universe is only about 10⁸⁷
- How difficult is it to solve classical planning problems?

Outline

- Background on complexity analysis
- Restrictions (and a few generalizations) of classical planning
- Decidability and undecidability
- Tables of complexity results
 - Classical representation
 - Set-theoretic representation
 - State-variable representation

Complexity Analysis

- Complexity analyses are done on language-recognition problems
 - A language is a set L of strings over some alphabet A
 - Recognition procedure for L
 - \blacksquare A procedure R(x) that returns "yes" iff the string x is in L
 - If x is not in L, then R(x) may return "no" or may fail to terminate
- Translate classical planning into a language-recognition problem
- Examine the language-recognition problem's complexity

Planning as a Language-Recognition Problem

We will consider two language-recognition problems:

```
Plan-Existence = \{P \mid P \mid \text{ is the statement of a planning } \\ \text{problem that has a solution}\}  \text{Plan-Length} = \{(P,n) \mid P \mid \text{ is the statement of a planning } \\ \text{problem that has a solution of } length \leq n\}
```

 Look at complexity of PLAN-EXISTENCE and PLAN-LENGTH under different conditions

Complexity of Language-Recognition Problems

- Suppose R is a recognition procedure for D
- Complexity of R
 - $T_R(n) = \text{worst-case runtime for R on strings in D of length n}$
 - $S_R(n) = \text{worst-case space requirement for R on strings in D of length n}$
- Complexity of D
 - $T_D =$ best asymptotic time complexity of any recognition procedure for D

Series I

Series2

Series3

Series4

Complexity Classes

```
NLOGSPACE ⊆ (nondeterministic procedure, logarithmic space)
⊆ P (deterministic procedure, polynomial time)
⊆ NP (nondeterministic procedure, polynomial time)
⊆ PSPACE (deterministic procedure, polynomial space)
⊆ EXPTIME (deterministic procedure, exponential time)
⊆ NEXPTIME (nondeterministic procedure, exponential time)
⊆ EXPSPACE (deterministic procedure, exponential space)
```

- Let C be a complexity class and p be a language-recognition problem
 - p is C-hard if for every problem q in C, q can be reduced to p in a polynomial amount of time
 - NP-hard, PSPACE-hard, etc.
 - p is C-complete if p is C-hard and p is also in C
 - NP-complete, PSPACE-complete, etc.

Possible Conditions

- Do we give the operators as input to the planning algorithm, or fix them in advance?
- Do we allow infinite initial states?*
- Do we allow function symbols?*
- Do we allow negative effects?
- Do we allow negative preconditions?
- Do we allow more than one precondition?
- Do we allow operators to have conditional effects?*
 - i.e., effects that only occur when additional preconditions are true
- Question marked with * and answered "yes" take us outside of classical planning

Decidability of Planning

Next: Analyze complexity for the decidable cases

 $^{^{\}alpha}$ This is ordinary classical planning.

 $^{^{\}beta}$ True even if we make several restrictions (see text).

Complexity of Planning: Classical Representation

PSPACE-complete or NP-complete for some sets of operators

100		~			
Kind of	How the	Allow	Allow	Complexity	Complexity
represen-	operators	negative	negative	of PLAN-	of PLAN-
tation	are given	effects?	precon-	EXISTENCE	LENGTH
			ditions?		
		yes	yes/no	EXPSPACE-	NEXPTIME-
classical				complete	complete
rep.	in the		yes	NEXPTIME-	NEXPTIME-
	input			complete	complete
		no	no	EXPTIME-	NEXPTIME-
				complete	complete
no operator has >1 precondition			no^{α}	PSPACE-	PSPACE-
				complete	complete
		yes	yes/no	PSPACE $^{\gamma}$	PSPACE $^{\gamma}$
	in		yes	NP $^{\gamma}$	NP ^{\gamma}
	advance	no	no	P	NP ^{γ}
			no^{α}	NLOGSPACE	NP

Caveat: Worst-Case Results

Kind of represen-	 Caveat: these are worst-case results Individual planning domains can be much easier Example: both DWR and Blocks World fit here , but neither is that hard For them, PLAN-EXISTENCE is in P and PLAN-LENGTH is NP-complete 						
tation	are given	effects?	precon- ditions?	EXISTENCE	LENGTH		
classical		yes	yes/no	EXPSPACE- complete	NEXPTIME- complete		
rep.	in the input	no	yes	NEXPTIME- complete	NEXPTIME- complete		
			no	EXPTIME- complete	NEXPTIME- complete		
			no^{α}	PSPACE- complete	PSPACE- complete		
	in advance	yes	yes/no	PSPACE $^{\gamma}$	PSPACE $^{\gamma}$		
		no	yes	NP γ	NP γ		
			no	P	NP ⁷		
			no^{α}	NLOGSPACE	NP		

Plan-Length vs Plan-Existence

Kind of	How the	Allow	Allow	Complexity	Complexity
represen-	operators	negative	negative	of PLAN-	of PLAN-
tation	are given	effects?	precon-	EXISTENCE	LENGTH
			ditions?		
		yes	yes/no	EXPSPACE-	NEXPTIME-
classical				complete	complete
rep.	in the		yes	NEXPTIME-	NEXPTIME-
	input			complete	complete
		no	no	EXPTIME-	NEXPTIME-
				complete	complete
			no^{α}	PSPACE-	PSPACE-
■ Here, Pl AN-I	ENGTH is easie	complete	complete		
EXISTENCE		PSPACE $^{\gamma}$	PSPACE $^{\gamma}$		
	reason as in the	NP ^{\gamma}	NP ^{γ}		
• Can cut off e	very search path at	P	NP ^{γ}		
	no^{lpha}			NLOGSPACE	NP

Equivalences

- Set-theoretic representation and ground classical representation are basically identical
 - For both, exponential blowup in the size of the input
 - Thus complexity looks smaller as a function of the input size
- Classical and state-variable representations are equivalent, except that some of the restrictions aren't possible in state-variable representations
 - Hence, fewer lines in the table

Complexity of Planning: Set-Theoretic and State-Variable Representations

	Kind of	How the operators	Allow negative	Allow negative	Complexity of Plan-	Complexity of PLAN-
no operator has >1 precondition	represen- tation	are given	effects?	precon- ditions?	EXISTENCE	LENGTH
	set-		yes	yes/no	PSPACE- complete	PSPACE- complete
	theoretic	in the		yes	NP-complete	NP-complete
every operator with >1	or ground classical	input	no	no no^{α}/no^{β}	P NLOGSPACE- complete	NP-complete NP-complete
precondition is the composition of other operators	rep.	in advance	yes/no	yes/no	constant	constant
	state- variable	in the input	yes^δ	yes/no	EXPSPACE- complete	NEXPTIME- complete
Like classical rep, but fewer lines in	rep.	in advance	yes^{δ}	yes/no	PSPACE $^{\gamma}$	PSPACE $^{\gamma}$
the table	ground state-	in the input	yes^{δ}	yes/no	PSPACE- complete	PSPACE- complete
	variable rep.	in advance	yes^{δ}	yes/no	constant time	constant time