(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-121548 (P2000-121548A)

(43)公開日 平成12年4月28日(2000.4.28)

(51) Int.Cl. ⁷		識別記号	F I	テーマコード(参考)
G01N	21/15		G01N 21/15	2G057
C 0 2 F	1/30		C 0 2 F 1/30	2G059
	1/72	1 0 1	1/72	101 4D037
G 0 1 N	21/47		G 0 1 N 21/47	Z 4D050
	33/18	1 0 6	33/18	106Z
			審查請求 未請求 請	情求項の数5 OL (全 4 頁)
(21)出願番号		特願平 10-294846	(71)出願人 000006105	
			株式会社明	用電舎
(22)出願日		平成10年10月16日(1998.10.16)	東京都品川	区大崎2丁目1番17号
			(72)発明者 島崎 弘志	፰
			東京都品川	区大崎2丁目1番17号 株式会
			社明電 舎 内	4
			(72)発明者 鮫島 正-	-
			東京都品川	区大崎2丁目1番17号 株式会
			社明電舎内	4
			(74)代理人 100062199	
			弁理士 え	法賀 富士弥 (外1名)
				最終頁に続く

(54) 【発明の名称】 水質計測器

(57)【要約】

【課題】 検出部を小型化させるとともに、非接触で検 出部の洗浄を行って、検出部の耐久性を向上させる。

【解決手段】 検出部本体10の内部には、半導体レーザーダイオード11を収納し、このダイオード11から発光されたレーザー光12を、二酸化チタンコーティング膜14が被覆された透過窓15を透過させて試料水中に照射する。単色受光素子16は、レーザー光12と直交する検出部本体10内に設けられ、受光素子16には、二酸化チタンコーティング膜17が被覆された受光窓18が設けられる。受光素子16と対向配置された位置には、分光ランプ19が設けられ、このランプ19からの光線20をコーティング膜14、17で被覆されている透過窓15と受光窓18に照射して、光触媒反応を生じさせ、強い酸化力により膜に付着した物質を分解させて、両窓15、18の汚れを洗浄する。

実施の形態を示す構成説明図

2

【特許請求の範囲】

【請求項1】 浄水場のろ過池の水質を水質検出器で計測する水質計測器において、

1

水中に没せられる水質検出器の検出部本体内に設けられ、試料水中に光線を透過窓を介して照射する第1光源体と、前記検出部本体内に設けられ、前記第1光源体からの光線の照射により水中の粒子で散乱した散乱光を検出する受光素子と、この受光素子の散乱光受光側に設けられた受光窓と、この受光窓と前記透過窓のそれぞれの水中側に被覆された光触媒反応物質と、前記検出部本体10内に設けられ、前記光触媒反応物質に光触媒反応を起こさせる光線を発光する第2光源体とからなることを特徴とする水質計測器。

【請求項2】 前記第1光源体は、レーザー光源または 可視光源からなることを特徴とする請求項1記載の水質 計測器。

【請求項3】 前記第2光源体は、波長600m以下の光源からなることを特徴とする請求項1、2記載の水質計測器。

【請求項4】 前記受光素子は、波長600m以上の単色 波長だけに感度を有することを特徴とする請求項1記載 の水質計測器。

【請求項5】 前記光触媒反応物質は、二酸化チタンからなることを特徴とする請求項1記載の水質計測器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、水質検出器の光 学部の洗浄に改良を加えた浄水場の急速ろ過池における 水質計測器に関する。

[0002]

【従来の技術】日本の浄水場における現状の主プロセス は、凝集沈殿+砂ろ過+塩素消毒である。原水中に含ま れている濁質分や、近年問題となっているクリプトスポ リジウムなどの原虫は、凝集沈殿+砂ろ過で除去する必 要がある。その中でも、ろ過池は、マイクロフロックや 有機物の吸着、原虫などの漏出の安全弁的な機能を果た している重要なプロセスである。ろ過池は、これらの機 能を維持するため、洗浄を行う必要があり、この洗浄 は、ろ過池の運転管理上最も重要である。ろ過池の洗浄 は、一般的には、ろ過継続時間およびろ過抵抗値到達時 に実施しており、物理的な要因のみが指標として用いら れているのが実状である。一方、上述したとおり、クリ プトスポリジウムの混入といった問題点があり、水質的 な面からも、ろ過池の運転管理を行って行く必要が出て きている。厚生省では、このような背景の下、ろ過池の 水質やろ過池のろ過操作、洗浄操作などについて、以下 のような通達を出している。

【0003】(1)共通事項:各ろ過池ごとに、十分調整された濁度計を用いて濁度を測定すること、(2)ろ過池流出水の水質:ろ過池流出水の濁度の常時把握およ

びその濁度を0.1度に維持すること、(3)洗浄排水の 水質:最終濁度2度以下を目標とすること、(4)ろ過 開始直後の水質:ろ過池流出水0.1度になるまで捨て水 を実施すること。

【0004】ろ過機能を維持するには、適切な洗浄方法で、ろ過池を洗浄してやる必要がある。ろ過池洗浄方式には、表面洗浄、逆洗水による洗浄、両者の組み合わせがあり、ろ過池が砂層のみの単層ろ過か、砂層とアンスラサイトを組み合わせた複合ろ過かによって洗浄方法や時間、洗浄水流量が変わってくる。

[0005]

【発明が解決しようとする課題】上述した厚生省からの 通達によるクリプトスポリジウム暫定対策指針の概略 (1)~(4)の中で、特に(3)に示した洗浄排水濁 度の最終濁度を2度以下にするためには、プロセス用の 濁度計が必要になる。しかしながら、現状の急速ろ過池 の洗浄排水濁度を連続監視している例はほとんどない。 【0006】この理由としては、以下に示す問題点をク リアする必要があるためである。

- 20 (1)中塩素処理を行うと工程水中の鉄、マンガンが塩 素剤と反応して析出し、計測装置に付着して電極や光学 部が汚れる。
 - (2) ろ過池の構造上、洗浄排水を測定するためには、 ろ過池付近に水質検出器を設置しなければならない。 (投げ込み式、浸漬式)

上記検出器、特にプロセス用水質計測器では、検水中の 浮遊物質が付着したり、水温と測定器の温度差により、 光学面に気泡が付着し易くなるため洗浄機構を具備して いる。特に浸漬形の水質計測器には、ブラシ洗浄機構、 ワイパー洗浄機構などによって光学部を洗浄している。

しかしながら、洗浄機構を設けると装置全体が大きくなる割に、洗浄効果があまり期待できない問題がある。

【0007】この発明は上記の事情に鑑みてなされたもので、機械的洗浄機構に比較して検出部を小型化することができるとともに、非接触で検出部の洗浄を行って、検出部の耐久性の向上を図り、かつ検出部への気泡などの付着が防止できる水質計測器を提供することを課題とする。

[0008]

40 【課題を解決するための手段】この発明は、上記の課題を達成するために、第1発明は、浄水場のろ過池の水質を水質検出器で計測する水質計測器において、水中に没せられる水質検出器の検出部本体内に設けられ、試料水中に光線を透過窓を介して照射する第1光源体と、前記検出部本体内に設けられ、前記第1光源体からの光線の照射により水中の粒子で散乱した散乱光を検出する受光素子と、この受光素子の散乱光受光側に設けられた受光窓と、この受光素子の散乱光受光側に設けられた受光窓と、この受光窓と前記透過窓のそれぞれの水中側に被覆された光触媒反応物質と、前記検出部本体内に設けられ、前記光触媒反応物質と、前記検出部本体内に設けら

3

を発光する第2光源体とからなることを特徴とするもの である。

【0009】第2発明は、前記第1光源体が、レーザー 光源または可視光源からなることを特徴とするものであ る。第3発明は、前記第2光源体が、波長600m以下の 光源からなることを特徴とするものである。第4発明 は、前記受光素子が、波長600m以上の単色波長だけに 感度を有することを特徴とするものである。第5発明 は、前記光触媒反応物質が、二酸化チタンからなること を特徴とするものである。

[0010]

【発明の実施の形態】以下この発明の実施の形態を図面 に基づいて説明する。図1はこの発明の実施の形態を示 す構成説明図で、この実施の形態では、レーザーを光源 としたネフェロメトリー (側方散乱光法) の濁度計を例 にとって説明する。図1において、10は濁度計の検出 部本体で、この検出部本体10の内部には、半導体レー ザーダイオード (波長:670nm) 11が収納されてい る。このダイオード11は赤色レーザー光を発光し、そ のレーザー光12は、凸レンズ13、二酸化チタンコー ティング膜14が被覆されたレーザー透過窓15を透過 して試料水中に照射される。16はシリコンフォトセル からなる単色受光素子(単色波長650nmだけに分光感度 のある素子)で、この受光素子16は、レーザー光12 と直交する検出部本体10内に設けられる。受光素子1 6の受光部には、二酸化チタンコーティング膜17が被 覆された受光窓18を設ける。

【0011】19は受光素子16と対向配置された検出部本体10内に設けられる分光ランプ(例えば、低圧水銀ランプやブラックライト)で、この分光ランプ19は、波長600m以下の光線20を凹レンズ21を介して二酸化チタンコーティング膜14、17で被覆されている透過窓15と受光窓18に被覆されている二酸化チタンは、波長400m以下の光線により光触媒反応を起こし、強い酸化力により付着物質を分解する機能をもっている。

【0012】上記のように構成された濁度計において、 半導体レーザーダイオード11から細く収束された波長 670nmの赤色レーザー光線が試料中に照射される。試料 中に照射された光束内に捕捉された濁度成分粒子からの 反射/屈折による散乱光が光束と直角方向に配置された 受光素子16によって検出される。受光素子16は検出 した散乱光の強度に比例した電気出力を送出する。

【0013】受光素子16は単色波長650mがけに分光 感度のある素子であるため、600m以下の短い波長の光 は吸収できない。このため、分光ランプ19から発光さ れる波長600m以下の光が受光素子16に照射されても 吸収されないが、レーザー光12の光束内に捕捉された 濁度成分粒子からの反射/屈折による散乱光は選択的に 吸収でき、分光ランプ19を連続点灯下においても影響 50 4

(バックグランド)されることなく濁度測定ができる。 【0014】一方、分光ランプ19から発光される波長 600nm以下の光が、透過窓15と受光窓18に被覆され ている二酸化チタンコーティング膜14、17に照射さ れると、光触媒反応を起こし、強い酸化力によりコーティング膜に付着した物質を分解して、両窓15、18の 汚れを洗浄する。このため、濁度測定が常に良好の状態 で行うことができる。なお、上記実施の形態において は、光触媒反応を起こす物質として二酸化チタンを例に 掲げたが、波長600nmで光触媒反応を起こす物質であれ ばどのようなものでも良い。また、上記実施の形態で は、ネフェロメトリーの場合について述べて来たが、透 過光測定、前方散乱光測定、後方散乱光測定等の各方式 に適用することができる。

【0015】上記半導体レーザー光線を使用する水質計測器に代えて、ハロゲンランプ等の可視光を光源とした水質計測器を使用する場合において、透過窓と受光窓を具備している測定系では、受光素子16に影響を与えてしまうため、分光ランプ19の連続点灯照射はできない。従って、透過窓15と受光窓18の洗浄を行うときには、図示しない測定回路によって制限する。例えば、シーケンス上で洗浄開始時に、その毎正時の出力をホールド状態に分光ランプ19を必要時間点灯することで測定データに影響しないようにする。なお、この機能は、透過光測定、前方散乱光測定、後方散乱光測定等の各方式に適用することができる。

【0016】図2は濁度計をろ過池内に設置したときの 概略構成図で、図2において、31はろ過池、32は洗 浄排水用トラフ、33は前述した検出部本体10に設け られた遮光カバー、34は防水管、35は中継ボック ス、36は演算増幅器装置である。

[0017]

【発明の効果】以上述べたように、この発明によれば、透過窓と受光窓に二酸化チタンのコーティング膜を形成することにより、機械的洗浄機構を設ける必要がないために、検出部本体の小型化を図ることができるとともに、非接触で窓の洗浄ができるため、検出部の耐久性を向上させることができる。また、二酸化チタン膜は、分光ランプからの光照射により、表面が親水化され気泡等の付着が防止できる利点もある。

【図面の簡単な説明】

【図1】この発明の実施の形態を示す構成説明図。

【図2】濁度計をろ過池内に設置したときの概略構成図。

【符号の説明】

10…検出部本体

11…半導体レーザーダイオード

1 2…レーザー光

13…凸レンズ

14、17…二酸化チタンコーティング膜

5

- 15…レーザー透過窓
- 16…単色受光素子
- 18…受光窓

【図1】

実施の形態を示す構成説明図

19…分光ランプ

20…波長600m以下の光線

21…凹レンズ

【図2】

濁度計をろ過池内に設置したときの概略構成図

フロントページの続き

(72)発明者 池田 一治

東京都品川区大崎2丁目1番17号 株式会

社明電舎内

(72)発明者 小西 隆裕

東京都品川区大崎2丁目1番17号 株式会

社明電舎内

Fターム(参考) 2G057 AA01 AA02 AA10 AB01 AB06

AB08 AC01 BA01 BB01 CB01

DB08 DC01 JA20

2G059 AA02 BB05 CC19 EE01 EE02

FF07 GG02 GG03 HH02 JJ11

KK01 LL04 NN07

4D037 AA02 AB02 BA16 BB02 CA11

CA16

4D050 AA03 AB06 AB07 AB11 BB20

BC06 BC09 BD08 CA07 CA20