SEQUENCE LISTING

<110> Wei, Zhong-Min Leon, Ernesto Oviedo, Agustin

<120> METHODS OF INHIBITING DESICCATION OF CUTTINGS REMOVED FROM ORNAMENTAL PLANTS

<130> 21829/111

<140>

<141>

<150> 60/248,169 <151> 2000-11-13

<160> 14

<170> PatentIn Ver. 2.1

<210> 1

<211> 338

<212> PRT

<213> Erwinia chrysanthemi

<400> 1

Met Gln Ile Thr Ile Lys Ala His Ile Gly Gly Asp Leu Gly Val Ser 1 5 10 15

Gly Leu Gly Ala Gln Gly Leu Lys Gly Leu Asn Ser Ala Ala Ser Ser 20 25 30

Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr 35 40 45

Ser Ala Leu Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu 50 60

Gly Ala Ser Ser Lys Gly Leu Gly Met Ser Asn Gln Leu Gly Gln Ser
65 70 75 80

Phe Gly Asn Gly Ala Gln Gly Ala Ser Asn Leu Leu Ser Val Pro Lys 85 90 95

Ser Gly Gly Asp Ala Leu Ser Lys Met Phe Asp Lys Ala Leu Asp Asp 100 105 110

Leu Leu Gly His Asp Thr Val Thr Lys Leu Thr Asn Gln Ser Asn Gln 115 120 125

Leu Ala Asn Ser Met Leu Asn Ala Ser Gln Met Thr Gln Gly Asn Met 130 135 140

Asn Ala Phe Gly Ser Gly Val Asn Asn Ala Leu Ser Ser Ile Leu Gly 145 150 155 160

Asn Gly Leu Gly Gln Ser Met Ser Gly Phe Ser Gln Pro Ser Leu Gly
165 170 175

Ala Gly Gly Leu Gln Gly Leu Ser Gly Ala Gly Ala Phe Asn Gln Leu 180 185 190

Gly Asn Ala Ile Gly Met Gly Val Gly Gln Asn Ala Ala Leu Ser Ala 195 200 205

Leu Ser Asn Val Ser Thr His Val Asp Gly Asn Asn Arg His Phe Val 210 215 220

Asp Lys Glu Asp Arg Gly Met Ala Lys Glu Ile Gly Gln Phe Met Asp 225 230 235 240

Gln Tyr Pro Glu Ile Phe Gly Lys Pro Glu Tyr Gln Lys Asp Gly Trp \$245\$ \$250\$

Ser Ser Pro Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser Lys 260 265 270

Pro Asp Asp Gly Met Thr Gly Ala Ser Met Asp Lys Phe Arg Gln 275 280 285

Ala Met Gly Met Ile Lys Ser Ala Val Ala Gly Asp Thr Gly Asn Thr 290 295 300

Asn Leu Asn Leu Arg Gly Ala Gly Gly Ala Ser Leu Gly Ile Asp Ala 305 310 315 320

Ala Val Val Gly Asp Lys Ile Ala Asn Met Ser Leu Gly Lys Leu Ala 325 330 335

Asn Ala

<210> 2 <211> 2141 <212> DNA <213> Erwinia chrysanthemi

<400> 2 cgattttacc cgggtgaacg tgctatgacc gacagcatca cggtattcga caccgttacg 60 gcgtttatgg ccgcgatgaa ccggcatcag gcggcgcgct ggtcgccgca atccggcgtc 120 gatctggtat ttcagtttgg ggacaccggg cgtgaactca tgatgcagat tcagccgggg 180 cagcaatate ceggcatgtt gegeacgetg etegetegte gttateagea ggeggeagag 240 tgcgatggct gccatctgtg cctgaacggc agcgatgtat tgatcctctg gtggccgctg 300 ccgtcggatc ccggcagtta tccgcaggtg atcgaacgtt tgtttgaact ggcgggaatg 360 acgttgccgt cgctatccat agcaccgacg gcgcgtccgc agacagggaa cggacgcgcc 420 cgatcattaa gataaaggcg gcttttttta ttgcaaaacg gtaacggtga ggaaccgttt 480 caccytcggc gtcactcagt aacaagtatc catcatgatg cctacatcgg gatcggcgtg 540 ggcatccgtt gcagatactt ttgcgaacac ctgacatgaa tgaggaaacg aaattatgca 600 aattacgatc aaagcgcaca tcggcggtga tttgggcgtc tccggtctgg ggctgggtgc 660 teagggactg aaaggactga atteegegge tteategetg ggtteeageg tggataaact 720 gagcagcacc atcgataagt tgacctccgc gctgacttcg atgatgtttg gcggcgcgct 780 ggcgcagggg ctgggcgcca gctcgaaggg gctggggatg agcaatcaac tgggccagtc 840 tttcggcaat ggcgcgcagg gtgcgagcaa cctgctatcc gtaccgaaat ccggcggcga 900 tgcgttgtca aaaatgtttg ataaagcgct ggacgatctg ctgggtcatg acaccgtgac 960 caagetgact aaccagagea accaactgge taatteaatg etgaacgeea geeagatgae 1020 ccagggtaat atgaatgcgt tcggcagcgg tgtgaacaac gcactgtcgt ccattctcgg 1080 caacggtete ggccagtega tgagtggett eteteageet tetetggggg caggeggett 1140 gcagggcctg agcggcgcgg gtgcattcaa ccagttgggt aatgccatcg gcatgggcgt 1200 ggggcagaat gctgcgctga gtgcgttgag taacgtcagc acccacgtag acggtaacaa 1260 ccgccacttt gtagataaag aagatcgcgg catggcgaaa gagatcggcc agtttatgga 1320 tcagtatccg gaaatattcg gtaaaccgga ataccagaaa gatggctgga gttcgccgaa 1380 gacggacgac aaatcctggg ctaaagcgct gagtaaaccg gatgatgacg gtatgaccgg 1440 cgccagcatg gacaaattcc gtcaggcgat gggtatgatc aaaagcgcgg tggcgggtga 1500 taccggcaat accaacctga acctgcgtgg cgcgggcggt gcatcgctgg gtatcgatgc 1560 ggctgtcgtc ggcgataaaa tagccaacat gtcgctgggt aagctggcca acgcctgata 1620 atctgtgctg gcctgataaa gcggaaacga aaaaagagac ggggaagcct gtctcttttc 1680 ttattatgcg gtttatgcgg ttacctggac cggttaatca tcgtcatcga tctggtacaa 1740 acgcacattt tecegtteat tegegtegtt acgegeeaca ategegatgg catetteete 1800 gtcgctcaga ttgcgcggct gatggggaac gccgggtgga atatagagaa actcgccggc 1860 cagatggaga cacgtctgcg ataaatctgt gccgtaacgt gtttctatcc gcccctttag 1920 cagatagatt geggtttegt aateaacatg gtaatgeggt teegeetgtg egeeggeegg 1980 gatcaccaca atattcatag aaagctgtct tgcacctacc gtatcgcggg agataccgac 2040 aaaatagggc agtttttgcg tggtatccgt ggggtgttcc ggcctgacaa tcttgagttg 2100 2141 gttcgtcatc atctttctcc atctgggcga cctgatcggt t

```
<210> 3
<211> 403
<212> PRT
<213> Erwinia amylovora
```

<400> 3

Met Ser Leu Asn Thr Ser Gly Leu Gly Ala Ser Thr Met Gln Ile Ser 1 5 10 15

Ile Gly Gly Ala Gly Gly Asn Asn Gly Leu Leu Gly Thr Ser Arg Gln
20 25 30

Asn Ala Gly Leu Gly Gly Asn Ser Ala Leu Gly Leu Gly Gly Gly Asn 35 40 45

Gln Asn Asp Thr Val Asn Gln Leu Ala Gly Leu Leu Thr Gly Met Met 50 55 60

Met Met Met Ser Met Met Gly Gly Gly Gly Leu Met Gly Gly Leu 65 70 75 80

Gly Gly Gly Leu Gly Asn Gly Leu Gly Gly Ser Gly Gly Leu Gly Glu 85 90 95

Gly Leu Ser Asn Ala Leu Asn Asp Met Leu Gly Gly Ser Leu Asn Thr
100 105 110

Leu Gly Ser Lys Gly Gly Asn Asn Thr Thr Ser Thr Thr Asn Ser Pro 115 120 125

Leu Asp Gln Ala Leu Gly Ile Asn Ser Thr Ser Gln Asn Asp Asp Ser 130 135 140

Thr Ser Gly Thr Asp Ser Thr Ser Asp Ser Ser Asp Pro Met Gln Gln 145 150 155 160

Leu Leu Lys Met Phe Ser Glu Ile Met Gln Ser Leu Phe Gly Asp Gly
165 170 175

Gln Asp Gly Thr Gln Gly Ser Ser Ser Gly Gly Lys Gln Pro Thr Glu 180 185 190

Gly Glu Gln Asn Ala Tyr Lys Lys Gly Val Thr Asp Ala Leu Ser Gly
195 200 205

Leu Met Gly Asn Gly Leu Ser Gln Leu Leu Gly Asn Gly Gly Leu Gly 210 215 220

Gly Gly Gln Gly Gly Asn Ala Gly Thr Gly Leu Asp Gly Ser Ser Leu 225 230 235 240

Gly Gly Lys Gly Leu Gln Asn Leu Ser Gly Pro Val Asp Tyr Gln Gln 245 250 255

Leu Gly Asn Ala Val Gly Thr Gly Ile Gly Met Lys Ala Gly Ile Gln 260 265 270 Ala Leu Asn Asp Ile Gly Thr His Arg His Ser Ser Thr Arg Ser Phe 275 280 285 Val Asn Lys Gly Asp Arg Ala Met Ala Lys Glu Ile Gly Gln Phe Met 295 Asp Gln Tyr Pro Glu Val Phe Gly Lys Pro Gln Tyr Gln Lys Gly Pro 305 310 315 Gly Gln Glu Val Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser 330 325 335 Lys Pro Asp Asp Asp Gly Met Thr Pro Ala Ser Met Glu Gln Phe Asn 340 345 350 Lys Ala Lys Gly Met Ile Lys Arg Pro Met Ala Gly Asp Thr Gly Asn 355 360 365 Gly Asn Leu Gln Ala Arg Gly Ala Gly Gly Ser Ser Leu Gly Ile Asp 370 375 380 Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu 390 395

Gly Ala Ala

<210> 4

<211> 1288

<212> DNA

<213> Erwinia amylovora

<400> 4

aagcttegge atggeacgtt tgacegttg gteggeaggg taegtttgaa ttatteataa 60 gaggaataeg ttatgagtet gaatacaagt gggetgggag egteaaegat geaaatttet 120 ateggeggtg eggeegaaa taaegggttg etgggtaeea gtegeeagaa tgetgggttg 180 ggtggeaatt etgeactggg getgggegge ggtaateaaa atgataeegt eaateagetg 240 getggettae teaeeggeat gatgatgat atgageatga tgggeeggtg tgggeegge getaaggatg eetgggegge geteaggtgg tgggeegatg 300 ggeeggtget taggeeggtg ettaaggtaat ggeettgggt geteaggtgg eetgggegaa 360 ggaetgtega aegegetgaa egatatgtta ggeggttege tgaaeaeget gggetegaa 420 ggeggeaaea ataeeaette aaeaaeaaat teeeeggtgg aeeaggeget gggtattaae 480 teaaegtee aaeaegaega tteeaeetee ggeaeagaet eeaeeteet tggtgatgg 600 eaagatggea eeeagggeag tteetetggg ggeaageage egaeegaag egageagaae 660

gectataaaaaaggagteactgatgegettegggeetgatgggtaatggtetgageeag720cteettggeaaegggggaetgggaggtggteagggeggtaatgetggeacgggtettgac780ggttegtegetgggeggeaaagggetgeaaaacetgagegggeeggtggaetaceageag840ttaggtaacgcegtgggtaceggtateggtatgaaagegggetateaggcgetgaatgat900ateggtaegaaeaggeacaagtetttegteaataaaggegategggegatg960gegaaaggaaateggteagtacatggaecaagtateetgaggtgtttggeaageegaagtac1020cagaaaaggeeegggteagaaggetgaaaaecgataaggaeagtteaacaaagceaaggge1140atgateaaaaggeceatggetgatgeeatgatggeeggtatgeeattaaeastatggea1260ettggeaagetgggegeggttaagettatggeeggtatgeeattaaeastatggea1288

<210> 5

<211> 447

<212> PRT

<213> Erwinia amylovora

<400> 5

Met Ser Ile Leu Thr Leu Asn Asn Asn Thr Ser Ser Ser Pro Gly Leu

1 5 10 15

Phe Gln Ser Gly Gly Asp Asn Gly Leu Gly Gly His Asn Ala Asn Ser 20 25 30

Ala Leu Gly Gln Gln Pro Ile Asp Arg Gln Thr Ile Glu Gln Met Ala 35 40 45

Gln Leu Leu Ala Glu Leu Leu Lys Ser Leu Leu Ser Pro Gln Ser Gly
50 55 60

Asn Ala Ala Thr Gly Ala Gly Gly Asn Asp Gln Thr Thr Gly Val Gly 65 70 75 80

Asn Ala Gly Gly Leu Asn Gly Arg Lys Gly Thr Ala Gly Thr Thr Pro 85 90 95

Gln Ser Asp Ser Gln Asn Met Leu Ser Glu Met Gly Asn Asn Gly Leu
100 105 110

Asp Gln Ala Ile Thr Pro Asp Gly Gln Gly Gly Gln Ile Gly Asp 115 120 125

Asn Pro Leu Leu Lys Ala Met Leu Lys Leu Ile Ala Arg Met Met Asp 130 135 140

Gly Gln Ser Asp Gln Phe Gly Gln Pro Gly Thr Gly Asn Asn Ser Ala 145 150 155 160 Ser Ser Gly Thr Ser Ser Ser Gly Gly Ser Pro Phe Asn Asp Leu Ser Gly Gly Lys Ala Pro Ser Gly Asn Ser Pro Ser Gly Asn Tyr Ser Pro Val Ser Thr Phe Ser Pro Pro Ser Thr Pro Thr Ser Pro Thr Ser Pro Leu Asp Phe Pro Ser Ser Pro Thr Lys Ala Ala Gly Gly Ser Thr Pro Val Thr Asp His Pro Asp Pro Val Gly Ser Ala Gly Ile Gly Ala Gly Asn Ser Val Ala Phe Thr Ser Ala Gly Ala Asn Gln Thr Val Leu His Asp Thr Ile Thr Val Lys Ala Gly Gln Val Phe Asp Gly Lys Gly Gln Thr Phe Thr Ala Gly Ser Glu Leu Gly Asp Gly Gly Gln Ser Glu Asn 280 285 Gln Lys Pro Leu Phe Ile Leu Glu Asp Gly Ala Ser Leu Lys Asn Val Thr Met Gly Asp Asp Gly Ala Asp Gly Ile His Leu Tyr Gly Asp Ala Lys Ile Asp Asn Leu His Val Thr Asn Val Gly Glu Asp Ala Ile Thr Val Lys Pro Asn Ser Ala Gly Lys Lys Ser His Val Glu Ile Thr Asn Ser Ser Phe Glu His Ala Ser Asp Lys Ile Leu Gln Leu Asn Ala Asp Thr Asn Leu Ser Val Asp Asn Val Lys Ala Lys Asp Phe Gly Thr Phe Val Arg Thr Asn Gly Gly Gln Gln Gly Asn Trp Asp Leu Asn Leu Ser

His Ile Ser Ala Glu Asp Gly Lys Phe Ser Phe Val Lys Ser Asp Ser

1

```
Glu Gly Leu Asn Val Asn Thr Ser Asp Ile Ser Leu Gly Asp Val Glu
            420
                                425
Asn His Tyr Lys Val Pro Met Ser Ala Asn Leu Lys Val Ala Glu
                            440
        435
                                                445
<210> 6
<211> 1344
<212> DNA
<213> Erwinia amylovora
<400> 6
atgtcaattc ttacgcttaa caacaatacc tcgtcctcgc cgggtctgtt ccagtccggg 60
ggggacaacg ggcttggtgg tcataatgca aattctgcgt tggggcaaca acccatcgat 120
cggcaaacca ttgagcaaat ggctcaatta ttggcggaac tgttaaagtc actgctatcg 180
ccacaatcag gtaatgcggc aaccggagcc ggtggcaatg accagactac aggagttggt 240
aacqctqqcq qcctqaacqq acqaaaaqqc acaqcaggaa ccactccqca gtctgacagt 300
cagaacatgc tgagtgagat gggcaacaac gggctggatc aggccatcac gcccgatggc 360
cagggcgcg ggcagatcgg cgataatcct ttactgaaag ccatgctgaa gcttattgca 420
cqcatqatqq acqqccaaaq cqatcaqttt qqccaacctq qtacqqqcaa caacaqtqcc 480
tetteeggta ettetteate tggeggttee eettttaaeg atetateagg ggggaaggee 540
cetteeggea acteceette eggeaactae tetecegtea gtacettete acceceatee 600
acqccaacqt cccctacctc accqcttgat ttcccttctt ctcccaccaa aqcaqccggg 660
ggcagcacgc cggtaaccga tcatcctgac cctgttggta gcgcgggcat cggggccgga 720
aatteggtgg cetteaceag egeeggeget aateagaegg tgetgeatga caccattace 780
gtgaaagegg gteaggtgtt tgatggeaaa ggacaaaeet teaeegeegg tteagaatta 840
qqcqatqqcq qccaqtctqa aaaccaqaaa ccqctqttta tactqqaaqa cqqtqccaqc 900
ctgaaaaacg tcaccatggg cgacgacggg gcggatggta ttcatcttta cggtgatgcc 960
aaaatagaca atctgcacgt caccaacgtg ggtgaggacg cgattaccgt taagccaaac 1020
agcgcgggca aaaaatccca cgttgaaatc actaacagtt ccttcgagca cgcctctgac 1080
aagateetge agetgaatge egatactaae etgagegttg acaaegtgaa ggecaaagae 1140
tttggtactt ttgtacgcac taacggcggt caacagggta actgggatct gaatctgagc 1200
catatcagcg cagaagacgg taagttctcg ttcgttaaaa gcgatagcga ggggctaaac 1260
gtcaatacca gtgatatctc actgggtgat gttgaaaacc actacaaagt gccgatgtcc 1320
                                                                  1344
gccaacctga aggtggctga atga
<210> 7
<211> 341
<212> PRT
<213> Pseudomonas syringae
<400> 7
```

5

Met Gln Ser Leu Ser Leu Asn Ser Ser Ser Leu Gln Thr Pro Ala Met

10

15

Ala Leu Val Leu Val Arg Pro Glu Ala Glu Thr Thr Gly Ser Thr Ser
20 25 30

Ser Lys Ala Leu Gln Glu Val Val Lys Leu Ala Glu Glu Leu Met 35 40 45

Arg Asn Gly Gln Leu Asp Asp Ser Ser Pro Leu Gly Lys Leu Leu Ala 50 55 60

Lys Ser Met Ala Ala Asp Gly Lys Ala Gly Gly Gly Ile Glu Asp Val 65 70 75 80

Ile Ala Ala Leu Asp Lys Leu Ile His Glu Lys Leu Gly Asp Asn Phe
85 90 95

Gly Ala Ser Ala Asp Ser Ala Ser Gly Thr Gly Gln Gln Asp Leu Met 100 105 110

Thr Gln Val Leu Asn Gly Leu Ala Lys Ser Met Leu Asp Asp Leu Leu 115 120 125

Thr Lys Gln Asp Gly Gly Thr Ser Phe Ser Glu Asp Asp Met Pro Met 130 135 140

Leu Asn Lys Ile Ala Gln Phe Met Asp Asp Asn Pro Ala Gln Phe Pro 145 150 155 160

Lys Pro Asp Ser Gly Ser Trp Val Asn Glu Leu Lys Glu Asp Asn Phe 165 170 175

Leu Asp Gly Asp Glu Thr Ala Ala Phe Arg Ser Ala Leu Asp Ile Ile 180 185 190

Gly Gln Gln Leu Gly Asn Gln Gln Ser Asp Ala Gly Ser Leu Ala Gly
195 200 205

Thr Gly Gly Gly Leu Gly Thr Pro Ser Ser Phe Ser Asn Asn Ser Ser 210 215 220

Val Met Gly Asp Pro Leu Ile Asp Ala Asn Thr Gly Pro Gly Asp Ser 225 230 235 240

Gly Asn Thr Arg Gly Glu Ala Gly Gln Leu Ile Gly Glu Leu Ile Asp
245 250 255

Arg Gly Leu Gln Ser Val Leu Ala Gly Gly Gly Leu Gly Thr Pro Val 260 265 270

Met 1	Ser	Ile	Gly	Ile 5	Thr	Pro	Arg	Pro	Gln 10	Gln	Thr	Thr	Thr	Pro 15	Leu
Asp	Phe	Ser	Ala 20	Leu	Ser	Gly	Lys	Ser 25	Pro	Gln	Pro	Asn	Thr 30	Phe	Gly
Glu	Gln	Asn 35	Thr	Gln	Gln	Ala	Ile 40	Asp	Pro	Ser	Ala	Leu 45	Leu	Phe	Gly
Ser	Asp 50	Thr	Gln	Lys	Asp	Val 55	Asn	Phe	Gly	Thr	Pro 60	Asp	Ser	Thr	Val
Gln 65	Asn	Pro	Gln	Asp	Ala 70	Ser	Lys	Pro	Asn	Asp 75	Ser	Gln	Ser	Asn	Ile 80
Ala	Lys	Leu	Ile	Ser 85	Ala	Leu	Ile	Met	Ser 90	Leu	Leu	Gln	Met	Leu 95	Thr
Asn	Ser	Asn	Lys 100	Lys	Gln	Asp	Thr	Asn 105	Gln	Glu	Gln	Pro	Asp 110	Ser	Gln
Ala	Pro	Phe 115	Gln	Asn	Asn	Gly	Gly 120	Leu	Gly	Thr	Pro	Ser 125	Ala	Asp	Ser
Gly	Gly 130	Gly	Gly	Thr	Pro	Asp 135	Ala	Thr	Gly	Gly	Gly 140	Gly	Gly	Asp	Thr
Pro 145	Ser	Ala	Thr	Gly	Gly 150	Gly	Gly	Gly	Asp	Thr 155	Pro	Thr	Ala	Thr	Gly 160
Gly	Gly	Gly	Ser	Gly 165	Gly	Gly	Gly	Thr	Pro 170	Thr	Ala	Thr	Gly	Gly 175	Gly
Ser	Gly	Gly	Thr 180	Pro	Thr	Ala	Thr	Gly 185	Gly	Gly	Glu	Gly	Gly 190	Val	Thr
Pro	Gln	Ile 195	Thr	Pro	Gln	Leu	Ala 200	Asn	Pro	Asn	Arg	Thr 205	Ser	Gly	Thr
Gly	Ser 210	Val	Ser	Asp	Thr	Ala 215	Gly	Ser	Thr	Glu	Gln 220	Ala	Gly	Lys	Ile
Asn 225	Val	Val	Lys	Asp	Thr 230	Ile	Lys	Val	Gly	Ala 235	Gly	Glu	Val	Phe	Asp 240
Gly	His	Gly	Ala	Thr 245	Phe	Thr	Ala	Asp	Lys 250	Ser	Met	Gly	Asn	Gly 255	Asp

Gln Gly Glu Asn Gln Lys Pro Met Phe Glu Leu Ala Glu Gly Ala Thr $260 \\ \hspace{1.5cm} 265 \\ \hspace{1.5cm} 270 \\ \hspace{1.5cm}$

Leu Lys Asn Val Asn Leu Gly Glu Asn Glu Val Asp Gly Ile His Val 275 280 285

Lys Ala Lys Asn Ala Gln Glu Val Thr Ile Asp Asn Val His Ala Gln 290 295 300

Asn Val Gly Glu Asp Leu Ile Thr Val Lys Gly Glu Gly Gly Ala Ala 305 310 315 320

Val Thr Asn Leu Asn Ile Lys Asn Ser Ser Ala Lys Gly Ala Asp Asp 325 330 335

Lys Val Val Gln Leu Asn Ala Asn Thr His Leu Lys Ile Asp Asn Phe 340 345 350

Lys Ala Asp Asp Phe Gly Thr Met Val Arg Thr Asn Gly Gly Lys Gln 355 360 365

Phe Asp Asp Met Ser Ile Glu Leu Asn Gly Ile Glu Ala Asn His Gly 370 380

Lys Phe Ala Leu Val Lys Ser Asp Ser Asp Asp Leu Lys Leu Ala Thr 385 390 395 400

Gly Asn Ile Ala Met Thr Asp Val Lys His Ala Tyr Asp Lys Thr Gln
405 410 415

Ala Ser Thr Gln His Thr Glu Leu
420

<210> 10

<211> 1729

<212> DNA

<213> Pseudomonas syringae

<400> 10

tccacttcgc tgatttgaa attggcagat tcatagaaac gttcaggtgt ggaaatcagg 60 ctgagtgcgc agatttcgtt gataagggtg tggtactggt cattgttggt catttcaagg 120 cctctgagtg cggtgcgag caataccagt cttcctgctg gcgtgtgcae actgagtcgc 180 aggcataggc atttcagttc cttgcgttgg ttgggcatat aaaaaaagga acttttaaaa 240 acagtgcaat gagatgccgg caaaacggga accggtcgct gcgctttgcc actcacttcg 300 agcaagctca accccaaaca tccacatccc tatcgaacgg acagcgatac ggccacttgc 360 tctggtaaac cctggagctg gcgtcggtcc aattgcccac ttagcgaggt aacgcagcat 420 gagcatcggc atcacaccc ggccgcaaca gaccaccacg ccactcgatt tttcggcgct 480

aagcggcaag agtcctcaac caaacacgtt cggcgagcag aacactcagc aagcgatcga 540 cccgagtgca ctgttgttcg gcagcgacac acagaaaqac gtcaacttcg gcacgcccqa 600 cagcaccgtc cagaatccgc aggacgccag caagcccaac gacagccagt ccaacatcgc 660 taaattgatc agtgcattga tcatgtcgtt gctgcagatg ctcaccaact ccaataaaaa 720 gcaggacacc aatcaggaac agectgatag ccaggeteet ttecagaaca acggeggget 780 eggtacaceg teggeegata gegggggegg eggtacaceg gatgegacag gtggeggegg 840 cggtgatacg ccaagcgcaa caggcggtgg cggcggtgat actccgaccg caacaggcgg 900 tggcggcagc ggtggcggcg gcacacccac tgcaacaggt ggcggcagcg gtggcacacc 960 cactgcaaca ggcggtggcg agggtggcgt aacaccgcaa atcactccgc agttggccaa 1020 ccctaaccgt acctcaggta ctggctcggt gtcggacacc gcaggttcta ccgagcaagc 1080 cggcaagatc aatgtggtga aagacaccat caaggtcggc gctggcgaag tctttgacgg 1140 ccacqqcqca accttcactq ccqacaaatc tatqqqtaac qqaqaccaqq qcqaaaatca 1200 gaagcccatg ttcgagctgg ctgaaggcgc tacgttgaag aatgtgaacc tgggtgagaa 1260 cgaggtcgat ggcatccacg tgaaagccaa aaacgctcag gaagtcacca ttgacaacgt 1320 gcatgcccag aacgtcggtg aagacctgat tacggtcaaa ggcgagggag gcgcagcggt 1380 cactaatctq aacatcaaga acaqcaqtqc caaaqqtqca qacqacaaqq ttqtccaqct 1440 caacgccaac actcacttga aaatcgacaa cttcaaggcc gacgatttcg gcacgatggt 1500 tegeaceaac ggtggeaage agtttgatga catgageate gagetgaaeg geategaage 1560 taaccacggc aagttcgccc tggtgaaaag cgacagtgac gatctgaagc tggcaacggg 1620 caacategee atgacegaeg teaaacaege etaegataaa acceaggeat egaceeaaca 1680 caccgagett tgaatccaga caagtagett gaaaaaaggg ggtggacte 1729

<210> 11 <211> 344 <212> PRT <213> Ralstonia solanacearum

<400> 11

Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln
1 5 10 15

Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser
20 25 30

Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly 50 55 60

Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala 65 70 75 80

Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser 85 90 95

Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met

			100					105					110		
Gln	Ala	Leu 115	Met	Gln	Leu	Leu	Glu 120	Asp	Leu	Val	Lys	Leu 125	Leu	Lys	Ala
Ala	Leu 130	His	Met	Gln	Gln	Pro 135	Gly	Gly	Asn	Asp	Lys 140	Gly	Asn	Gly	Val
Gly 145	Gly	Ala	Asn	Gly	Ala 150	Lys	Gly	Ala	Gly	Gly 155	Gln	Gly	Gly	Leu	Ala 160
Glu	Ala	Leu	Gln	Glu 165	Ile	Glu	Gln	Ile	Leu 170	Ala	Gln	Leu	Gly	Gly 175	Gly
Gly	Ala	Gly	Ala 180	Gly	Gly	Ala	Gly	Gly 185	Gly	Val	Gly	Gly	Ala 190	Gly	Gly
Ala	Asp	Gly 195	Gly	Ser	Gly	Ala	Gly 200	Gly	Ala	Gly	Gly	Ala 205	Asn	Gly	Ala
Asp	Gly 210	Gly	Asn	Gly	Val	Asn 215	Gly	Asn	Gln	Ala	Asn 220	Gly	Pro	Gln	Asn
Ala 225	Gly	Asp	Val	Asn	Gly 230	Ala	Asn	Gly	Ala	Asp 235	Asp	Gly	Ser	Glu	Asp 240
Gln	Gly	Gly	Leu	Thr 245	Gly	Val	Leu	Gln	Lys 250	Leu	Met	Lys	Ile	Leu 255	Asn
Ala	Leu	Val	Gln 260	Met	Met	Gln	Gln	Gly 265	Gly	Leu	Gly	Gly	Gly 270	Asn	Gln
Ala	Gln	Gly 275	Gly	Ser	Lys	Gly	Ala 280	Gly	Asn	Ala	Ser	Pro 285	Ala	Ser	Gly
Ala	Asn 290	Pro	Gly	Ala	Asn	Gln 295	Pro	Gly	Ser	Ala	Asp 300	Asp	Gln	Ser	Ser
Gly 305	Gln	Asn	Asn	Leu	Gln 310	Ser	Gln	Ile	Met	Asp 315	Val	Val	Lys	Glu	Val 320
Val	Gln	Ile	Leu	Gln 325	Gln	Met	Leu	Ala	Ala 330	Gln	Asn	Gly	Gly	Ser 335	Gln

Gln Ser Thr Ser Thr Gln Pro Met 340

```
<210> 12
<211> 1035
<212> DNA
<213> Ralstonia solanacearum
<400> 12
atgtcagtcg gaaacatcca gagcccgtcg aacctcccgg gtctgcagaa cctqaacctc 60
aacaccaaca ccaacagcca gcaatcgggc cagtccgtgc aagacctgat caagcaggtc 120
gagaaggaca tootcaacat catogoagco otogtgoaga aggoogcaca qtoggoggo 180
ggcaacaccg gtaacaccgg caacgcgccg gcgaaggacg gcaatgccaa cgcgggcgcc 240
aacgacccga gcaagaacga cccgagcaag agccaggctc cgcagtcggc caacaagacc 300
qqcaacqtcq acqacqccaa caaccaqqat ccqatqcaaq cqctqatqca qctqctqqaa 360
gacctggtga agctgctgaa ggcggccctg cacatgcagc agcccggcgg caatgacaag 420
ggcaacggcg tgggcggtgc caacggcgcc aagggtgccg gcggccaggg cggcctggcc 480
gaagegetge aggagatega geagatecte geeeageteg geggeggegg tgetggegee 540
ggcggcgcgg gtggcggtgt cggcggtgct ggtggcgcgg atggcggctc cggtgcgggt 600
ggcgcaggcg gtgcgaacgg cgccgacggc qqcaatqqcq tqaacqqcaa ccaqqcqaac 660
ggcccgcaga acgcaggcga tgtcaacggt gccaacggcg cggatqacgg cagcgaaqac 720
cagggcggcc tcaccggcgt gctgcaaaag ctgatgaaga tcctgaacgc gctgqtqcag 780
atgatgcagc aaggeggect eggeggegge aaceaggege agggeggete gaagggtgee 840
ggcaacgcct cgccggcttc cggcgcgaac ccgggcgcga accagcccgg ttcgqcqqat 900
gatcaatcgt ccggccagaa caatctgcaa tcccagatca tggatgtggt gaaggaggtc 960
gtccagatcc tgcagcagat gctggcggcg cagaacggcg gcagccagca gtccacctcg 1020
acgcagccga tgtaa
                                                                  1035
<210> 13
<211> 114
<212> PRT
<213> Xanthomonas campestris
<400> 13
Met Asp Ser Ile Gly Asn Asn Phe Ser Asn Ile Gly Asn Leu Gln Thr
                  5
                                     10
                                                         15
Met Gly Ile Gly Pro Gln Gln His Glu Asp Ser Ser Gln Gln Ser Pro
             20
                                 25
                                                     30
Ser Ala Gly Ser Glu Gln Gln Leu Asp Gln Leu Leu Ala Met Phe Ile
         35
                             40
Met Met Leu Gln Gln Ser Gln Gly Ser Asp Ala Asn Gln Glu Cys
     50
                         55
                                             60
Gly Asn Glu Gln Pro Gln Asn Gly Gln Glu Gly Leu Ser Pro Leu
                     70
                                         75
```

Thr Gln Met Leu Met Gln Ile Val Met Gln Leu Met Gln Asn Gln Gly

90 95

Gly Ala Gly Met Gly Gly Gly Gly Ser Val Asn Ser Ser Leu Gly Gly 100 105 110

Asn Ala

<210> 14

<211> 342

<212> DNA

<213> Xanthomonas campestris

<400> 14

atggactcta teggaaacaa ettttegaat ateggeaace tgeagaega gggeateggg 60 eetecageaa aegaggaete eageeagag tegeettegg etggeteega geageagetg 120 gateagttge tegeeatgtt cateatgatg atgetgeaac aggaceaggg eageggatgea 180 aateaggagt gtggeaacga acaacegeag aacggteaac aggaaggeet gagteegttg 240 aegeggtgge gtteggteaa eageageetg ggeggeaacg eec sageageag 300 ggeggtggeg gtteggteaa eageageetg ggeggeaacg eec sageageag 342