BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI-Hyderabad Campus SECOND SEMESTER 2019 - 2020 COURSE HANDOUT (PART II)

Dt: 06-01-2020

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : EEE / ECE / INSTR F243

Course Title : Signals & Systems
Instructor-in-charge : BVVSN Prabhakar Rao

Instructors : BVVSN Prabhakar Rao, Ramakant, Rajesh Kumar

Tripathy, R. Venkateswaran

1. 1: Scope and Objective:

This course is a preparatory course in which the basics of signal processing are covered. It deals with the basic transforms used in signal processing & introduces the analog filters. For practical exposure **Matlab based assignments** are included.

The students are required to review following mathematical topics: Fourier Series, Fourier Transforms, Laplace Transform, Calculus, Complex variables and Statistics.

1.2: Learning outcomes:

On completion of this course, student should be able to:

- (1) **Represent** both continuous-time and discrete-time signals as a Fourier series.
- (2) **Use** the Fourier transform and the Laplace transform to analyze continuous-time signals and systems
- (3) **Explain** the importance of superposition and convolution in the analysis of linear time invariant systems.
- (4) **Demonstrate** an understanding of the relationship between the stability and causality of systems and the region of convergence of their Laplace transforms
- (5) Use the discrete-time Fourier transform and the z-transform to analyze discrete-time signals and systems
- (6) Use FFT algorithm

2. Text Book:

T1: Lathi B P, Principles of *Signal Processing & Linear Systems* Oxford University Press, 2009.

3. Reference Books:

R1: A V Oppenheim, A S Willsky, Nawab S N, "Signals & Systems", PHI, Second Edition, 2006
R2: Nagrath I J, Sharan S N, Ranjan Rakesh & Kumar S, Signals & Systems, Second Edition TMH, 2001.

4. Course Plan:

Lecture Learning Objectives No.		Topics to be covered	Chapter in the Text Book	
1	Importance of the signals & Systems course	Introduction to course		
2 - 4	Introduction about function, understanding different types of continuous time signals and performing different time signal operations	Classification of Signals & Signal operations	Class notes and T1: 1.1 - 1.5	
5 - 6	Signal representation using basis signals	Orthogonal Signal set & Fourier series	Class notes and T1:3.3 T1: 3.4 - 3.5 (self-study)	
7 - 9	Synthesize and analysis of various continuous time signals	Aperiodic Signal Representation, Fourier Transforms & its properties	Class notes and T1: 4.1-4.3 (exclude : 4.3-6)	
10	Defining various systems	Classification of Systems	Class notes and T1: 1.6 & 1.7	
11 - 12	Obtaining of LTI system output for any arbitrary input signal using impulse response	Linear convolution (LC) & LC using Fourier Transform	Class notes and T1: 2.4 & 4.3-6	
13 - 14	Studying exponentially growing signals and analyzing stable systems	Laplace transform & its properties	Class notes and T1: 6.1 - 6.2	
15	Analyzing stable systems	Solution of LTI continuous time systems using Laplace transforms	Class notes and T1: 6.3	
16 - 18	Sampling of continuous time signals and their recovery	Sampling & reconstruction	Class notes and T1: 5.1	
19 - 20	Understanding different types of discrete time signals and performing different time signal operations	Discrete-time signals & Signal operations	Class notes and T1: 8.1 - 8.4	
21 - 22	Synthesize and analysis of various discrete time signals	Discrete Time Fourier Transform & its properties	Class notes and T1: 10.2 - 10.5	
23 – 24	Analysis of discrete time systems	Z-transforms & its properties	Class notes and T1: 11.1 – 11.2	
25 – 26	z-transform solution of Linear difference equation	Z-transforms converting difference equations into algebraic equations	Class notes and T1: 11.3	
27 -28	Numerical computation of Discrete Fourier transform	DFT & its Properties	Class notes and T1: 5.2	
29- 30	Obtaining output for discrete time systems for any arbitrary discrete input signal	Discrete time systems, Discrete time convolution (graphical procedure)	Class notes and T1: 9.4-1	
31 - 33	DFT method using FFT algorithms	Fast Fourier Transform, DIT FFT & DIF FFT algorithms	Class notes and T1: 5.3	
34 - 37	DFT & IDFT using FFT algorithms	DFT using FFT & Inverse DFT, Discrete-time convolution using FFT	Class notes and T1: 10.6	

38- 42	Study of frequency response of	Introduction to analog filters	Class notes and
	different systems	_	T1: 7.1, 7.4 & 7.5

*The primary reference for the coverage (breadth and depth)/nomenclature/notations for a particular topic would be as per the lecturers/tutorials. Students are advised to take class notes during the lectures.

5. Evaluation Scheme (CB-Closed book and OB-Open Book)

EC No.	Evaluation Component	Time Duratio	Weightage (%)	Marks	Date & Time	Nature of Component
		n (min)				
1	Midsem Test	90	30	90		СВ
2	Quizzes		35	105	To be announced in Class	СВ
3	Comprehensive	180	35	105	12/05 AN	CB+OB (15% +20%)

6. Make-up Policy:

No Make-up for the quizzes.

Make-up for the midterm will be granted as per ID rules and regulations (in case of sickness it should be supported by a medical certificate endorsed by Hostel warden as per ID rules). In all cases prior intimation must be given to IC.

- 7. **Notices**: Displayed only on CMS
- **8.** Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge