Problema 819 de triánguloscabri. Sean un triangulo ABC y un punto cualquiera D de la circunferencia circunscrita a ABC.

Las rectas AB y CD se cortan en un punto E.

Las rectas BC y AD se cortan en un punto F.

Las rectas EF y AC se cortan en un punto G.

Cuando D recorre la circunferencia circunscrita a ABC, hallar el lugar del centro del círculo circunscrito al triángulo CDG.

Propuesto por Philippe Fondanaiche.

Solución de Francisco Javier García Capitán. Vamos a razonar que el lugar geométrico del circuncentro T de CDG es una recta, que determinaremos.

- 1. En primer lugar, cuando D=C, el punto E es la intersección con AB de la tangente en C a la circunferencia circunscrita y evidentemente tenemos F=C y también G=C, por lo que en este caso el circuncentro del triángulo CDG es C, y en consecuencia el vértice C pertenece al lugar geométrico buscado.
- **2**. Ahora sea Y el punto medio de CA y D_1 el punto en que la mediana BY vuelve a encontrar a la circunferencia circunscrita.

Consideremos los puntos $E_1 = CD_1 \cap AB$ y $F_1 = AD_1 \cap BC$. Por construcción de la polar aplicada al cuadrilátero $ABCD_1$, E_1F_1 es la polar de Y, por lo que E_1F_1 es perpendicular a OY y, por tanto, paralela a CA. En consecuencia $G_1 = E_1F_1 \cap CA$ es el punto del infinito de la recta CA. Entonces en el caso de que $D = D_1$ tenemos $E = E_1$, $F = F_1$ y $G = G_1$, que es infinito. El circuncentro de la "circunferencia" CD_1G_1 sería el punto del infinito de la mediatriz de CD_1 .

3. El resto de la demostración consiste en razonar que el lugar geométrico es una recta. Para ello usaremos que los circuncentros T de los triángulos CDG se obtienen como intersección de las mediatrices de los segmentos CD y CG al variar D.

Teniendo en cuenta que todas las mediatrices de los segmentos CD pasan por O y todos las mediatrices de los segmentos CG pasan por

el punto del infinito J_b de la mediatriz de CA, tenemos definida una homografía $\varphi: O^* \to J_b^*$ entre los haces de rectas con bases O y J_b , siendo los circuncentros T los puntos de intersección de las rectas homólogas.

Observemos, para precisar que la homografía φ queda definida de la siguiente forma. Para cualquier recta r que pasa por O, se halla la perpendiculular por C y que vuelve a encontrar la circunferencia circunscrita en D. A partir de ahí se obtienen los puntos E, F y G del enunciado y finalmente definimos $\varphi(r)$ como la mediatriz de CG. Por la forma de definirla se trata de una homografía.

La recta OJ_b , es decir, la mediatriz del lado CA, pertenece a los dos haces. El teorema de Chasles-Steiner nos dice que cuando la recta que une los puntos base de los haces se transforma en sí misma, el conjunto de puntos $r \cap \phi(r)$ es una recta.

Ahora podemos observar que cuando D = A, también es E = A y por tanto también G = A. Entonces las mediatrices de CG y CD son ambas la mediatriz de CA, la recta OJ_b , por lo que esta recta se transforma en sí misma y así el lugar geométrico de las intersecciones de rectas homólogas es una recta.

Como hemos razonado antes, la recta pasa por C y es perpendicular a la recta CD_1 .