Agent Cerdas

Agent & environment

Sumber: S. Russel, P. Norving, Artificial Inttelligencen: A Modern Approach

- Percepts: masukan yang ditangkap dari sensor
- Actions : tindakan yang dilakukan oleh Agent
- Environments : lingkungan dimana si *Agent* berada
- Agents: humans, robots, softbots, thermostats, etc.

Agent & environment

 Agent function memetakan dari rekaman inputan (percept histories) ke tindakan (actions):

$$[f: \mathcal{P}^{\star} \to \mathcal{A}]$$

ullet Agent program menjalankan architecture untuk menghasilkan f

Contoh: Vacuum-cleaner world

Sumber: S. Russel, P. Norving, Artificial Intelligence: A Modern Approach

- Percepts: lokasi dan kondisi, mis: [A, Kotor]
- Actions: Kiri, Kanan, Menghisap, Berhenti

Konsep rational agents

- Agent seharusnya berupaya melakukan tindakan yang benar agar berhasil
- Kriteria untuk keberhasilan perilaku agent disebut performance measure
- Contoh: A vacuum-cleaner agent
 - jumlah kotoran yang dibersihkan
 - jumlah waktu yang dibutuhkan
 - jumlah konsumsi listrik
 - jumlah kebisingan yang dihasilkan
 - dll

Rational agents

- Definisi:
- Rational agent: suatu agent yang selalu bertindak memaksimalkan ukuran kinerja, mengingat apa yang ia amati tentang lingkungan dan pengetahuan lain yang dimilikinya.
- Rasionalitas berbeda dari kemahatahuan (mengetahui segala sesuatu tanpa batas)
- Agent melakukan tindakan → memperbaiki wawasan kedepan untuk memperoleh informasi penting (information gathering, exploration)
- Agent disebut autonomous jika perilaku ditentukan oleh pengalaman sendiri (kemampuan untuk belajar dan beradaptasi)

PEAS

- Definisi
- PEAS: Performance measure, Environment, Actuators, Sensors
- Ketika merancang sebuah agent, harus mendefinisikan lingkungan masalah (task environment), yakni:
 - Performance measure : apa saja komponen pengukur keberhasilan si agent?
 - Environment : kondisi apa saja yang ada disekitar si agent?
 - Actuators: apa saja yang bisa dilakukan si agent?
 - Sensors : apa saja yang menjadi input si agent?

Contoh: Taksi Otomatis

- Sebuah agent taksi otomatis yang menerima penumpang dan mengantarkannya ke tujuan :
- Performance measure: sampai tujuan, tidak melanggar aturan lalu lintas, perjalanan nyaman, hemat bensin
- Environment: jalan, lalu lintas, pejalan kaki, pelanggan
- Actuators: arah stir, gas, rem, klakson, sinyal kiri atau kanan
- Sensors: video, speedometer, GPS, keyboard

Contoh: Medical diagnosis system

- Sebuah agent *Medical diagnosis system* yang mendiagnosa pasien secara otomatis:
- Performance measure: pasien sembuh, biaya murah, tidak menyalahi hukum
- Environment: pasien, rumah sakit, suster, dokter
- Actuators: layar monitor (pertanyaan, tes, diagnosa, treatment, petunjuk
- Sensors: keyboard (masukan gejala penyakit, jawaban pasien)

Contoh: Robot pabrik penjamin mutu

- Sebuah robot yang melakukan pemisahan komponen yang bermutu tinggi pada ban berjalan ke dalam kotak berbeda
- Performance measure:
- Environment:
- Actuators:
- Sensors:

Contoh: Robot pabrik penjamin mutu

- Sebuah robot yang melakukan pemisahan komponen yang bermutu tinggi pada ban berjalan ke dalam kotak berbeda
- Performance measure: prosentase jumlah komponen yg diletakkan pada kotak yang benar
- Environment: ban berjalan, komponen yang diuji, kotak
- Actuators: gerak lengan dan tangan robot
- Sensors: kamera, sensor fisik

Contoh: Interactive English tutor

- Sebuah agent tutor yang memberikan latihan english secara interaktif
 - Performance measure:
 - Environment:
 - Actuators:
 - Sensors:

Contoh: Interactive English tutor

- Sebuah agent tutor yang memberikan latihan english secara interaktif
 - Performance measure: nilai skor maksimal
 - Environment: para siswa
 - Actuators: layar monitor (latihan, saran koreksi)
 - Sensors: keyboard

Jenis Environment

- Fully observable (vs. partially observable): apakah semua informasi diketahui?
- Deterministic (vs. stochastic): apakah *next state* ditentukan dari *current state* dan *action*?
- Episodic (vs. sequential): apakah tergantung pada pengalaman
- Static (vs. dynamic): apakah *environment* berubah ketika agent tidak bertindak?
- Discrete (vs. continuous):
- Single agent (vs. multiagent): apakah agent bertindak sendiri atau ada lawan?

Contoh: Jenis Environment

	Agent		
	Catur dgn waktu	Catur tanpa waktu	Taxi driving
Fully observable	Ya	Ya	Tidak
Deterministic	Strategic	Strategic	Tidak
Episodic	Tidak	Tidak	Tidak
Static	Semi	Ya	Tidak
Discrete	Ya	Ya	Tidak
Single agent	Tidak	Tidak	Tidak

- Jenis environment menentukan desain seorang agent
- Di dunia nyata pada umumnya partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Jenis-jenis Agent

- Simple reflex agents: berdasarkan persepsi yg terakhir
- Model-based reflex agents: memiliki representasi internal tentang keadaan sekitar
- Goal-based agents: memiliki informasi tentang tujuan, memilih tindakan yang mencapai tujuan
- Utility-based agents: melakukan penilaian kuantitatif terhadap suatu keadaan lingkungan → utility function
- Learning agents: belajar dari pengalaman, meningkatkan kinerja

Simple reflex agents:

berdasarkan persepsi yg terakhir

Sumber: S. Russel, P. Norving, Artificial Intelligence: A Modern Approach

Model-based reflex agents

memiliki representasi internal tentang keadaan sekitar

Sumber: S. Russel, P. Norving, Artificial Intelligence: A Modern Approach

Goal-based agents

memiliki informasi tentang tujuan, memilih tindakan yang mencapai tujuan

Utility-based agents

melakukan penilaian kuantitatif terhadap suatu keadaan lingkungan → utility function

Learning agents

belajar dari pengalaman, meningkatkan kinerja

Nank Jons

81