CS 181 HW8 2021 CS181

CHARLES ZHANG

TOTAL POINTS

12 / 12

QUESTION 1

1 Two left-most reductions in CFG 4 / 4

- √ 0 pts Perfectly correct
 - 1.5 pts One of your reductions is wrong
 - 3 pts Both of your reductions are wrong
 - 1 pts Reduction is correct, but one of your

reductions is not left-most

- 2 pts Reduction is correct, but both of your reductions are not left-most
 - 4 pts Did not answer this question

QUESTION 2

TM (mixed) Construction 8 pts

2.1 a. Procdure 6/6

- √ + 6 pts Correct
 - + 4 pts Partially correct
 - + 2 pts Attempted
 - + 5 pts Almost Correct
 - + 0 pts Not attempted

2.2 b. Brief explanation 2/2

- √ + 2 pts Correct
 - + 1 pts Attempted, partially correct
 - + 0 pts Not attempted or wrong

CS 181 Homework 8

Charles Zhang, 305-413-659

May 26, 2021

Problem 1

Leftmost Reduction #1:

<u>b</u>aabba

B<u>a</u>abba

 $BA\underline{a}bba$

BAAbba

<u>BC</u>bba

Abba

AB<u>b</u>a

ABBa

<u>AD</u>a

 \overline{Ba}

<u>и</u>

<u>BA</u>

Leftmost Reduction #2:

baabba

Baabba

 $BA\underline{a}bba$

 $BAA\underline{b}ba$

BAABba

B<u>AS</u>ba

BA<u>b</u>a

B<u>AB</u>a

<u>BS</u>a

B<u>a</u>

<u>BA</u>

S

1 Two left-most reductions in CFG 4/4

√ - 0 pts Perfectly correct

- 1.5 pts One of your reductions is wrong
- 3 pts Both of your reductions are wrong
- 1 pts Reduction is correct, but one of your reductions is not left-most
- 2 pts Reduction is correct, but both of your reductions are not left-most
- **4 pts** Did not answer this question

Problem 2

a) Proof (by construction):

- Let M_P be a Turing Machine that recognizes L_P .
- Let M_A be a Turing Machine that decides L_A .
- Construct M for $L_P \cup L_A$.
- Use UTM to simulate M_A on a given input w.
 - Since M_A decides a language, it's guaranteed to halt.
- If M_A halts and accepts, M halts and accepts.
- Else (M_A has halted and rejected):
 - Use UTM to simulate M_P on w (this may enter an infinite loop).
 - If M_P halts and accepts, M halts and accepts.
 - If M_P halts and rejects, M halts and rejects.

b) Justification:

By definition, a machine that recognizes the language $L_P \cup L_A$, must recognize every string in L_P . Since L_P is an RE language, we cannot guarantee that all strings recognized by M_P cause M_P to halt. As a result, we must account for the possibility that some strings in L_P cannot be decided, only recognized. Therefore, the language $L_P \cup L_A$ cannot be assumed to be recursive, it must be RE.

2.1 a. Procdure 6/6

- √ + 6 pts Correct
 - + 4 pts Partially correct
 - + 2 pts Attempted
 - + 5 pts Almost Correct
 - + **0 pts** Not attempted

2.2 b. Brief explanation 2/2

- √ + 2 pts Correct
 - + 1 pts Attempted, partially correct
 - + O pts Not attempted or wrong