I. Rappels

Définitions

Définir une fonction f sur un intervalle [a;b[, c'est fournir une **relation** qui à chaque valeur x de l'intervalle [a;b[associe un nombre appelé **image** et noté f(x). On dit que x a pour **antécédent** le nombre x.

II. Variations et parité d'une fonction

1) Fonction croissante

Définition

Si une fonction f est croissante sur un intervalle I alors les images sont rangées dans le même ordre que leur antécédent; c'est à dire que f(x) augmente quand x augmente.

La fonction $f(x) = \frac{1}{2}x + 3$ est croissante sur $]-\infty; +\infty[$.

- a et b appartiennent à $]-\infty$; $+\infty[$, on a $a \leq b$ donc $f(a) \leq f(b)$.
- $-2 \le 10$ donc $f(-2) \le f(10)$ $(2 \le 8)$.

2) Fonction décroissante

Définition

Si une fonction f est **décroissante** sur un intervalle I alors les images sont rangées dans l'ordre inverse de leur antécédent; c'est à dire que f(x) diminue quand x augmente.

La fonction f(x) = -x + 1 est décroissante sur $]-\infty$; $+\infty$ [.

- a et b appartiennent à $]-\infty$; $+\infty[$, on a $a \leq b$ donc $f(a) \geq f(b)$.
- $-4 \le 3$ donc $f(-4) \ge f(3)$ $(5 \ge -2)$.

3) Fonction paire

Définition

Si une fonction f est paire sur un intervalle I, alors pour tout x de I f(-x) = f(x)

La fonction f(x) = |x| (valeur absolue de x) est définie et paire sur $]-\infty$; $+\infty[$.

On a f(-5) = f(5) = 5.

4) Fonction impaire

Définition

Si une fonction f est **impaire** sur un intervalle I, alors pour tout x de I on a f(-x) = -f(x).

Exemple

La fonction f(x) = x est définie et impaire sur $]-\infty; +\infty[$.

On a f(-4) = -f(4) = -4.

III. Fonctions de référence

1) Fonction carré

Définition

La fonction carré est définie par $x \mapsto x^2$.

Propriétés

La fonction carré est :

- définie sur $]-\infty;+\infty[.$
- décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$.
- paire.

Illustration

Courbe représentative de la fonction $f(x)=x^2$ et tableau de variations associé :

5

2) Fonction inverse

Définition

La fonction inverse est définie par $x \mapsto \frac{1}{x}$.

Propriétés

La fonction inverse est :

- définie sur $]-\infty$; $0[\cup]0$; $+\infty[$.
- décroissante sur $]-\infty$; 0[et sur $]0; +\infty[$.

Illustration

Courbe représentative de la fonction $f(x) = \frac{1}{x}$ et tableau de variations associé :

\boldsymbol{x}	$-\infty$ ($+\infty$
$\frac{1}{x}$		

3) Fonction racine

Définition

La fonction racine carrée est définie par $x \mapsto \sqrt{x}$.

6

Propriétés

Elle est définie et croissante sur $[0; +\infty[$.

Illustration

Courbe représentative de la fonction $f(x) = \sqrt{x}$ et tableau de variations associé :

4) Fonction cube

Définition

La fonction cube est définie par $x \mapsto x^3$.

Propriétés

Elle est définie et croissante sur l'intervalle $]-\infty;+\infty[.$

Illustration

Courbe représentative de la fonction $f(x) = x^3$ et tableau de variations associé :

\boldsymbol{x}	$-\infty$	$+\infty$
x^3		y

IV. Opérations avec les fonctions

1) Somme d'une fonction et d'un nombre

Propriété

Lorsque l'on ajoute une constante k à une fonction f, on obtient une nouvelle fonction notée f+k qui a le même sens de variation que f.

Exemple

Soit la fonction f, telle que $f(x) = x^2$. f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0;+\infty[$.

Donc la fonction $f + k(x) = x^2 + 2$ est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0;+\infty[)$.

2) Somme de deux fonctions

Propriété

Si on ajoute deux fonctions f et g qui possèdent le même sens de variation, on obtient alors une fonction f+g qui a le même sens de variation que f ou g.

Exemple

Soient les fonctions f et g, telles que $f(x) = x^2$ et g(x) = 2x + 1.

f et g sont croissantes sur l'intervalle $[0; +\infty[$.

Donc la fonction $f + g(x) = x^2 + 2x + 1$ est croissante sur $[0; +\infty[$.

3) Produit d'une fonction et d'un nombre

Propriétés

- Lorsque l'on multiplie une fonction f par une constante positive k, on obtient alors une fonction kf qui a le même sens de variation que f.
- Lorsque l'on multiplie une fonction f par une constante négative k, on obtient alors une fonction kf qui varie en sens contraire de f.

9

Soit la fonction f, telle que $f(x) = x^2$.

f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0;+\infty[$. Donc la fonction $kf(x)=0,5\times x^2$ est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0; +\infty[$.

Exemple

Soit la fonction f, telle que $f(x) = x^2$. fest décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0; +\infty[$. Donc la fonction $kf(x) = -2 \times x^2$ est croissante sur l'intervalle $]-\infty;0]$ et décroissante sur $[0;+\infty[.$

