Vertex of the Quadratic

 $r_1 = -\frac{b}{2a}$ namely $t(r_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at ${\sf r_{1^+}h}$, namely

Given a quadratic $t(r) = a r^2 + b r + c$ compute its value at

 $t(r_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = t(r_1 + h) - t(r_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $t(r) = 3 r^2 + 40$

