Verjetnost in statistika

Zapiski po predavanjih izr. prof. dr. Jaka Smrekarja Napisal: Jon Pascal Miklavčič

Kazalo

Ι	Ve	erjetnost	1			
1	1 Slučajni vektorji					
	1.1	Slučajni vektorji	3			
	1.2	Zvezni slučajni vektorji	8			
	1.3	Dvofazna normalna porazdelitev	10			
2	Nec	$\operatorname{odvisnost}$	15			

iv KAZALO

Del I

Verjetnost

Poglavje 1

Slučajni vektorji

1.1 Slučajni vektorji

Spomnimo se:

 $Slučajna\ spremenljivka$ na je taka funkcija $X:\Omega\to\mathbb{R}$, na verejetnostnem prostoru (Ω,\mathcal{F},P) , za katero so množice (praslike):

$$\{\omega \in \Omega : X(\omega) \le x\}$$

v \mathcal{F} , se pravi dogodki za vsak $x \in \mathbb{R}$

Oznaka:

$$\{\omega \in \Omega : X(\omega) \le x\} \equiv \{\omega \in \Omega \mid X(\omega) \in (-\infty, x]\} \equiv X^{-1}((-\infty, x])$$

Posledično je za slučajno spremenljivko X definirana komulativna porazdelitvena funkcija $F_X : \mathbb{R} \to [0, 1]$:

$$F_X(x) = P(X \le x) = P(X^{-1}((-\infty, x]))$$

Definicija 1. Slučajni vektor je taka preslikava $X = (X_1, ..., X_n) : \Omega \to \mathbb{R}^n$ na verejetnostnem prostoru (Ω, \mathcal{F}, P) , za katero so množice:

$$\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\} := \{\omega \in \Omega : X_1(\omega) \le x_1, \dots, X_n(\omega) \le x_n\}$$

v \mathcal{F} , se pravi dogodki za vse *n*-terice $x = (x_n, \dots, x_n) \in \mathbb{R}^n$.

Oznaka:

$$\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\} \equiv \{\omega \in \Omega : X_1(\omega) \le x_1, \dots, X_n(\omega) \le x_n\}$$

$$\equiv \{X_1 \in (-\infty, x_1], \dots, X_n \in (-\infty, x_n]\}$$

$$\equiv \{X \in (-\infty, x_1] \times \dots \times (-\infty, x_n]\}$$

$$\equiv X^{-1} ((-\infty, x_n] \times \dots \times (-\infty, x_n])$$

Definicija 2. Komulativna porazdelitvena funkcija slučajnega vektorja je funkcija $F_X : \mathbb{R}^n \to [0, 1]$:

$$F_X(x) \equiv F_{(X_1,...,X_n)}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$$

Lastnosti komulativne porazdelitvene funkcije:

1.
$$\lim_{x_1 \to -\infty} F_X(x_1, \dots, x_n) = \lim_{x_1 \to -\infty} P\left(X \in (-\infty, x_1] \times \underbrace{\dots \times (-\infty, x_n]}_K\right)$$

$$= \lim_{n \to \infty} P\left(X \in (-\infty, -n] \times K\right)$$

$$= P\left(\bigcap_{n=1}^{\infty} \{X \in (-\infty, -n] \times K\}\right)$$

$$= P\left(X \in \underbrace{\bigcap_{n=1}^{\infty} (-\infty, -n] \times K}_{=\emptyset}\right)$$

$$= 0$$

Kjer smo v (\star) vrstici uporabili zveznost P oziroma:

$$\lim_{n \to \infty} P(E_n) = P\left(\bigcup_{n=1}^{\infty} E_n\right) \quad \text{za} \quad E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$$

Ta limita velja, tudi če proti ∞ pošljemo poljuben x_i . Velja še:

$$\lim_{(x_1,\dots,x_n)\to(\infty,\dots,\infty)} F_X(x_1,\dots,x_n) = \lim_{n\to\infty} P(X \in (-\infty,n] \times \dots \times (-\infty,n])$$

$$= P\left(\bigcup_{n=1}^{\infty} \{X_1 \le n,\dots,X_n \le n\}\right)$$

$$= P(X \in \mathbb{R}^n)$$

$$= P(\Omega)$$

$$= 1$$

2. Monotnost: če je $x_i \leq y_i$ za vse $i \in \{1, ..., n\}$, potem je:

$$F_X(x) \le F_X(y)$$

Dokaz. Sledi iz monotonosti verjetnostne preslikave.

3. Zveznost z desne:

$$\lim_{y \downarrow x} F_X(y) = F_X(x)$$

Tukaj $y \downarrow x$ interpretiramo kot $y_i \downarrow x_i$ za vse $i \in \{1, \dots, n\}$.

Lastnosti 1., 2. in 3. karakterizirajo družino (abstraktnih) komulativnih porazdelitvenih funkcij v primeru slučajne spremenljivke t.j. n = 1. V večrazsežnem primeru to ne drži. Poglejmo si n = 2. Za a < b in c < d izračunajmo:

$$P((X,Y) \in (a,b] \times (c,d]) = F_{(X,Y)}(b,d) - F_{(X,Y)}(a,d) - F_{(X,Y)}(b,c) + F_{(X,Y)}(a,c)$$

Slika 1.1: $P((X,Y) \in (a,b] \times (c,d])$

Ker je to verjetnost mora veljati:

$$F_{(X,Y)}(b,d) - F_{(X,Y)}(a,d) - F_{(X,Y)}(b,c) + F_{(X,Y)}(a,c) \ge 0$$
(4)

Zgled.

$$F(x,y) = \begin{cases} 1 & ; x \ge 1, y \ge 1 \\ \frac{2}{3} & ; x \ge 1, y \in [0,1) \\ \frac{2}{3} & ; x \in [0,1), y \ge 1 \\ 0 & ; \text{sicer} \end{cases}$$

Slika 1.2: Verjetnost $P((X,Y) \in (a,b] \times (c,d])$ za to k.p.f. ¹

Funkcija sicer zadošča lastnostim 1., 2. in 3., ampak za pravokotnik $(a, b] \times (c, d]$, kot na skici velja:

$$F(b,d) - F(a,d) - F(b,c) + F(a,c) = 1 - \frac{2}{3} - \frac{2}{3} + 0 < 0$$

Torej ne more biti komulativna porazdelitvena funkcija.

Izrek 1. Če $F: \mathbb{R}^2 \to [0,1]$ zadošča lastnostim 1., 2., 3. in 4. (velja $F(b,d) - F(a,d) - F(b,c) + F(a,c) \geq 0$, za vse četverice a < b in c < d), potem je F komulativna porazdelitvena funkcija nekega slučajnega vektorja $(X,Y): \Omega \to \mathbb{R}^2$.

Očitna posplošitev velja tudi za $n \geq 3$.

Trditev 1. Če je $X = (X_1, ..., X_n)$ slučajni vektor, so vsi podvektorji tudi slučajni vektorji.

Dokaz. Na primer, za podvektor (X_1, \ldots, X_{n-1}) :

$$\{X_1 \le x_1, \dots, X_{n-1} \le x_{n-1}\} = \bigcup_{k=1}^{\infty} \{X_1 \le x_1, \dots, X_{n-1} \le x_{n-1}, X_n \le k\} \qquad (\star)$$

Posebej sledi, da so komponente slučajnih vektorjev, funkcije X_1, X_2, \ldots, X_n , slučajne spremenljivke. Iz (\star) je očitno tudi, da komulativne porazdelitvene funkcije podvektorjev dobimo tako, da ustrezne kooridante pošljemo proti ∞ :

$$F_{(X_1,\dots,X_{n-1})}(x_1,\dots,x_{n-1}) = \lim_{x_n \to \infty} F_{(X_1,\dots,X_n)}(x_1,\dots,x_n)$$

Komulativne porazdelitvene funkcije F_{X_i} imenujemo tudi *robne* ali *marginale* komulativne porazdelitvene funkcije (glede na $F_{(X_1,...,X_n)}$).

 \Diamond

¹k.p.f. je okrajšava za kumulativno porazdelitveno funkcijo. To se v skripti pojavi še večkrat.

Opomba. Naj bo $X:\Omega\to\mathbb{R}$ s.s.² Potem so naslednje množice dogodki:

•
$$\{X \in (a, b]\} = \{X \in (-\infty, b]\} \setminus \{X \in (-\infty, a]\}$$

= $\{X \in (-\infty, b]\} \cap \{X \in (-\infty, a]\}^c$

- $\{X \in (a,b)\}$, saj je to enako $\bigcup_{n=1}^{\infty} \{X \in (a,c_n]\}$ za $c_n \uparrow b$
- $\{X \in [a,b]\} = \bigcap_{n=1}^{\infty} \left\{ X \in \left(a \frac{1}{n}, b + \frac{1}{n}\right) \right\}$
- ${X = x} = {X \in (x 1, x]} \setminus {X \in (x 1, x)}$

Zgornje lahko "kombiniramo" (števne unije, komplementi, preseki). Izkaže se, da obstajajo verjetnosti $P(X \in \mathcal{B})$, kjer je $\mathcal{B} \subseteq \mathbb{R}$ poljubna Borelova množica.

Opomba. Pripomnimo, da podobno velja za slučajni vektor X. Množice:

$$\{X \in \mathcal{B}\} = X^{-1}(\mathcal{B}) \subseteq \Omega$$

so dogodki za Borelove množice $\mathcal{B} \subseteq \mathbb{R}^n$

Zgled (Borelove množice).

- $1. \subseteq \mathbb{R}$
 - $(a,b), (-\infty,b), \ldots$ vsi intervali;
 - $\{x\} = (x-1,x] \setminus (x-1,x)$ singeltoni;
 - Števne unije Borelovih množic;
 - Števni preseki Borelovih množic;
 - Komplementi Borelovih množic.
- $2. \subseteq \mathbb{R}^2$
 - Krogle;
 - Pravokotniki;
 - Enoelementne množice;
 - Unije, preseki, komplemeti kot v R;
 - Če je $G: \mathbb{R}^2 \to \mathbb{R}^2$ zvezno parcialno odvedljiva bijekcija, je $G(\mathcal{B})$ Borelova za vsako Borelovo množico \mathcal{B} .

²s.s. je okrajšava za slučajno spremenljivko. To se v skripti pojavi še večkrat.

1.2 Zvezni slučajni vektorji

Definicija 3. Slučajni vektor $X: \Omega \to \mathbb{R}^n$ ima zvezno gostoto, če obstaja taka "zvezna" funkcija $f_X: \mathbb{R}^n \to [0, \infty)$, da zanjo velja:

$$P(X \in \mathcal{B}) = \int_{\mathcal{B}} f_X(x_1, \dots, x_n) \ dx_1 \cdots dx_n = \int_{\mathcal{B}} f_X(x) \ dx$$

za vsako Borelovo množico $\mathcal{B} \subseteq \mathbb{R}^n$.

Mislimo si, da gre za posplošeni Reimannov integral. Zvezna funkcija $f_X : \mathbb{R}^n \to [0, \infty)$ je taka, pri kateri je množica točk nezveznosti zanemarljiva za n-terni integral. Če ima slučajni vektor X "zvezno" gostoto, pravimo, da je zvezen. V tem primeru je $F_X : \mathbb{R}^n \to [0, 1]$ zvezna funkcija.

Zgled. $X \sim \mathrm{U}(a,b)$ (enakomerna zvezna porazdelitev na (a,b)). Vse točke so "enako verjetne". Natančneje za $a \leq c < d \leq b$:

$$P(X \in (c,d)) = \int_{c}^{d} f_{U(a,b)}(x) dx, \quad \text{kjer je} \quad f_{U(a,b)}(x) = \frac{1}{b-a} \cdot \mathbb{1}_{(a,b)}(x)$$

$$= \begin{cases} \frac{1}{b-a} & ; x \in (a,b) \\ 0 & ; x \notin (a,b) \end{cases}$$

Slika 1.3: $f_X(x)$ za enakomerno porazdelitev

 \Diamond

Definicija 4. Za abstraktno množico M in $A \subseteq M$ je $\mathbb{1}_A : M \to \{0,1\}$ indikator množice A funkcija:

$$\mathbb{1}_{A}(m) = \begin{cases} 1 & ; m \in A \\ 0 & ; m \notin A \end{cases}$$

Opomba. Velja: $P(X \in A) = E(\mathbb{1}_A(X))$

Zgled. V primeru $X \sim \mathrm{U}(a,b)$ je gostota X tudi:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & ; x \in (a,b) \setminus \left\{ \frac{a+b}{2} \right\} \\ 42 & ; x = \frac{a+b}{2} \\ 0 & ; x \notin (a,b) \end{cases}$$

Slika 1.4: $f_X(x)$ za enakomerno porazdelitev

 \Diamond

Zgled. $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ odprt enotski krog. Pravimo, da $(X,Y) \sim \mathrm{U}(D)$, če ima gostoto:

$$f_{(X,Y)}(x,y) = \frac{1}{\pi} \cdot \mathbb{1}_D(x,y)$$

Množica točk nezveznosti zgornje gostote je enotska krožnica. To je zanemarljiva množica za $\int_{\mathbb{R}^2}$.

Oglejmo si dvorazsežen primer (n = 2):

Za $(X,Y):\Omega\to\mathbb{R}^2$ z gostoto $f_{(X,Y)}:\mathbb{R}^2\to[0,\infty)$ velja:

$$\begin{split} F_{(X,Y)}(x,y) &= P((X,Y) \in (-\infty,x] \times (-\infty,y]) \\ &= \int_{(-\infty,x] \times (-\infty,y]} f_{(X,Y)}(u,v) \, du dv \\ &= \int_{-\infty}^{x} \int_{-\infty}^{y} f_{(X,Y)}(u,v) \, dv du \\ &= \int_{-\infty}^{y} \int_{-\infty}^{x} f_{(X,Y)}(u,v) \, du dv \end{split} \tag{\star}$$

Kjer smo v (\star) vrstici uporabili Fubinijev izrek (integral mora biti absolutno konvergenten).

Robni komulativni porazdelitveni funkciji se glasita:

$$F_X(x) = \lim_{y \to \infty} F_{(X,Y)}(x,y)$$

$$= \lim_{y \to \infty} \int_{-\infty}^y \int_{-\infty}^x f_{(X,Y)}(u,v) \, du \, dv$$

$$= \int_{-\infty}^\infty \int_{-\infty}^x f_{(X,Y)}(u,v) \, du \, dv$$

$$= \int_{-\infty}^x \int_{-\infty}^\infty f_{(X,Y)}(u,v) \, dv \, du$$

$$F_Y(y) = \lim_{x \to \infty} F_{(X,Y)}(x,y)$$

$$= \lim_{x \to \infty} \int_{-\infty}^x \int_{-\infty}^y f_{(X,Y)}(u,v) \, du \, dv$$

$$= \int_{-\infty}^\infty \int_{-\infty}^y f_{(X,Y)}(u,v) \, du \, dv$$

$$= \int_{-\infty}^y \int_{-\infty}^\infty f_{(X,Y)}(u,v) \, dv \, du$$

Od tod sledita robni gostoti:

$$f_X(x) = F_X'(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,v) dv$$

$$f_Y(y) = F'_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(u,y) du$$

V točkah odevljivosti k.p.f. F, oz. za skoraj vse x oz. y.

1.3 Dvofazna normalna porazdelitev

Naj bo $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \in \mathbb{R}^2$ in naj bo $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$, kjer je $\sigma_1, \sigma_2 \in (0, \infty)$ in $\sigma_{12} \in \mathbb{R}$, simetična pozitivno definitna 2×2 matirka (\iff $\det(\Sigma) > 0$). Tedaj ima slučajni vektor (X,Y) dvorazsežno normalno porazdelitev s parametroma μ in Σ , če ima gostoto:

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} \frac{1}{\sqrt{\det \Sigma}} \cdot \exp\left(-\frac{1}{2} \left\langle \Sigma^{-1} \left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right), \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right\rangle \right)$$

Gostota $f_{X,Y}$ je zvezna povsod na \mathbb{R}^2 .

Opomba. Pišemo
$$(X,Y) \sim N(\mu,\Sigma) = N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}\right).$$

Seveda je:

$$\Sigma^{-1} = \frac{1}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \begin{bmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{12} & \sigma_1^2 \end{bmatrix}$$

Tako dobimo: $\left\langle \Sigma^{-1} \left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right), \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right\rangle = (\star)$ prepišemo v:

$$\left\langle \Sigma^{-1} \begin{bmatrix} x - \mu_1 \\ y - \mu_2 \end{bmatrix}, \begin{bmatrix} x - \mu_1 \\ y - \mu_2 \end{bmatrix} \right\rangle = \frac{1}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \left\langle \begin{bmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{12} & \sigma_1^2 \end{bmatrix} \begin{bmatrix} x - \mu_1 \\ y - \mu_2 \end{bmatrix}, \begin{bmatrix} x - \mu_1 \\ y - \mu_2 \end{bmatrix} \right\rangle$$

$$= \frac{1}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \left\langle \begin{bmatrix} \sigma_2^2 \left(x - \mu_1 \right) - \sigma_{12} \left(y - \mu_2 \right) \\ \sigma_1^2 \left(y - \mu_2 \right) - \sigma_{12} \left(x \mu_1 \right) \end{bmatrix}, \begin{bmatrix} x - \mu_1 \\ y - \mu_2 \end{bmatrix} \right\rangle$$

$$= \frac{\sigma_2^2 \left(x - \mu_1 \right)^2 - 2\sigma_{12} \left(x - \mu_1 \right) \left(y - \mu_2 \right) + \sigma_1^2 \left(y - \mu_2 \right)^2}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2}$$

Vpeljemo $\rho = \frac{\sigma_{12}}{\sigma_1 \sigma_2}$. Ker je det $\Sigma = \sigma_1^2 \sigma_2^2 (1 - \rho^2)$ je det $\Sigma > 0 \iff \rho^2 < 1$, oz. $\rho \in (-1, 1)$. S parametrom ρ lahko nadomestimo σ_{12} . Dobimo:

$$\left\langle \Sigma^{-1} \begin{bmatrix} x - \mu_1 \\ y - \mu_2 \end{bmatrix}, \begin{bmatrix} x - \mu_1 \\ y - \mu_2 \end{bmatrix} \right\rangle = \frac{1}{1 - \rho^2} \left(\left(\frac{x - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x - \mu_1}{\sigma_1} \right) \left(\frac{y - \mu_2}{\sigma_2} \right) + \left(\frac{y - \mu_2}{\sigma_2} \right)^2 \right)$$

Ekvivalentno lahko torej normalno porazdelitev parametriziramo s parametri:

$$\mu_1 \in \mathbb{R}, \mu_2 \in \mathbb{R}, \sigma_1 \in (0, \infty), \sigma_2 \in (0, \infty), \rho \in (-1, 1)$$

Dobimo:

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right) \right)$$

Vidimo, da so nivojnice funkcije $f_{(X,Y)}$ krivulje, ki so elipse s središčem v (μ_1, μ_2) .

Oglejmo si poseben primer $\mu_1 = \mu_2 = 0, \sigma_1 = \sigma_2 = 1$ (ekvivalentno, obravnavamo gostoto transformacije $U = \frac{X - \mu_1}{\sigma_1}, V = \frac{Y - \mu_2}{\sigma_2}$). Nivojnice se krivulje:

$$u^{2} - 2\rho uv + v^{2} = C\left(1 - \rho^{2}\right)$$

$$\left\langle \begin{bmatrix} 1 & -\rho \\ -\rho & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} u \\ v \end{bmatrix} \right\rangle = C\left(1 - \rho^{2}\right)$$

To je kvadratna forma oblike $q_A(x) = \langle Ax, x \rangle$. Izračunajmo lastni vrednosti matrike $A = \begin{bmatrix} 1 & -\rho \\ -\rho & 1 \end{bmatrix}$:

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -\rho \\ -\rho & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)^2 - \rho^2$$
$$= (1 - \lambda - \rho)(1 - \lambda + \rho)$$

Lastni vrednosti sta $1 \pm \rho$.

$$\lambda_{1} = 1 - \rho : \begin{bmatrix} \rho & -\rho \\ -\rho & \rho \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \text{lastni vektor je} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\lambda_{1} = 1 + \rho : \begin{bmatrix} -\rho & -\rho \\ -\rho & -\rho \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \text{lastni vektor je} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Slika 1.5: Nivojnica N
$$\left(\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1&\rho\\\rho&1 \end{bmatrix}\right)$$

V koordinatah $\begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$ dobimo enačbo:

$$(1-\rho)u'^2 + (1+\rho)v'^2 = C\left(1-\rho^2\right) \iff \frac{u'^2}{C(1+\rho)} + \frac{v'^2}{C(1-\rho)} = 1$$

 \Diamond

Naj bo $(X,Y) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}\right)$. Izkaže se, da za robni porazdelitvi velja:

$$X \sim N\left(\mu_1, \sigma_1^2\right)$$
 in $Y \sim N\left(\mu_2, \sigma_2^2\right)$

Nadalje se izkaže, da je $\sigma_{12}=K(X,Y)$. Posledično je ρ t.i. Pearsonov korelacijski koeficient.

Opomba. Pripomnimo, da sledi, da porazdelitev vektorja (X,Y) ni določena z robnima porazdelitvama.

Zgled. Oglejmo si primer $(X,Y) \sim N\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}1&\rho\\\rho&1\end{bmatrix}\right)$. Tedaj se gostota (X,Y) glasi:

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} \cdot e^{-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)}$$

 $\rho = 0 \implies$ standardna dvorazsežna normalna porazdelitev.

Posplošitev:

Pravimo, da ima vektor $X = (X_1, ..., X_n)$ n-razsežno normalno porazdelitev s parametroma $\mu \in \mathbb{R}^n$ in $\Sigma \in \mathbb{R}^{n \times n}$ (simetrična in poz. definitna), če ima gostoto:

$$f_X(x) = (2\pi)^{-\frac{n}{2}} (\det \Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \left\langle \Sigma^{-1}(x-\mu), x-\mu \right\rangle \right)$$

Poglavje 2

Neodvisnost

Definicija 5. Slučajne spremenljivke X_1, \ldots, X_n , so neodvisne, če velja:

$$F_X(x_1, \dots, x_n) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdots F_{X_n}(x_n)$$
 (*)

za vse realne *n*-terice $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Enakost (*) lahko prepišemo v:

$$P(X \in (-\infty, x_1] \times \ldots \times (-\infty, x_n]) = P(X_1 \in (-\infty, x_1]) \cdots P(X_n \in (-\infty, x_n])$$

Izkaže se, da so komponente vektorja X neodvisne natanko tedaj, ko velja:

$$P(X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n) = P(X_1 \in B_1) \cdot P(X_2 \in B_2) \cdot \dots \cdot P(X_n \in B_n)$$

za vse *n*-terice Borelovih množic $B_i \subseteq \mathbb{R}$.

Torej za slučajni spremenljivki X, Y velja, da sta neodvisni natanko tedaj, ko:

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$$

za vse intervale $A, B \subseteq \mathbb{R}$

Spomnimo se, da so dogodki E_1, E_2, \ldots, E_n neodvisni:

$$P(E_{i_1} \cap \cdots \cap E_{i_k}) = P(E_{i_1}) \cdots P(E_{i_k})$$

za $\forall k \in \{2, 3, \dots, n\}$ in vsako k-terico $i_1 < i_2 < \dots < i_k$.

Opomba. Če so X_1, \ldots, X_n neodvisne, so tudi paroma neodvisne, t.j. neodvisni sta X_i in X_j za vsak par $i \neq j$. Obratno ne velja v splošnem.

16 NEODVISNOST

Trditev 2. Naj ima slučajni vektor (X,Y) "zvezno" gostoto $f_{(X,Y)}: \mathbb{R}^2 \to [0,\infty)$. X in Y sta neodvisni \iff

$$f_{(X,Y)}(x,y) = f_X(x) \cdot f_Y(y)$$

za skoraj vse realne pare $(x, y) \in \mathbb{R}^2$.

Dokaz. Definicija neodvisnosti pravi:

$$P((X,Y) \in (-\infty,x] \times (-\infty,y]) = P(X \in (-\infty,x])P(Y \in (-\infty,y])$$

Oziroma:

$$\int_{(-\infty,x]\times(-\infty,y]} f_{(X,Y)}(u,v) \, du \, dv = \int_{(-\infty,x]} f_X(u) \, du \, \int_{(-\infty,y]} f_Y(v) \, dv$$
$$\int_{-\infty}^x \int_{-\infty}^y f_{(X,Y)}(u,v) \, dv \, du = \int_{-\infty}^x f_X(u) \, du \, \int_{-\infty}^y f_Y(v) \, dv$$

 (\Longrightarrow) Uporabimo osnovni izrek analize in odvajamo najprej po x:

$$\int_{-\infty}^{y} f_{(X,Y)}(x,y) \, dv = f_X(x) \int_{-\infty}^{y} f_Y(v) \, dv$$

Odvajati smemo skoraj v vseh točka $x \in \mathbb{R}$, saj gostote niso vedno povsod zvezne. Odvjamo še po y:

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y)$$

Velja za skoraj vse x in y.³

$$\int_{(-\infty,x]\times(-\infty,y]} f_{(X,Y)}(u,v) \, du dv = \int_{(-\infty,x]\times(-\infty,y]} f_X(u) \cdot f_Y(v) \, du dv$$

za vse⁴ x in y. Leva starn je $F_{(X,Y)}(x,y)$, na desni strani pa dvojni integral spremeninmo v dvakratnega:

$$\int_{(-\infty,x]\times(-\infty,y]} f_X(u) \cdot f_Y(v) \, du dv = \int_{(-\infty,x]} f_X(u) \int_{(-\infty,y]} f_Y(v) \, dv du$$

$$= \int_{(-\infty,x]} f_X(u) \, du \int_{(-\infty,y]} f_Y(v) \, dv$$

$$= F_X(x) \cdot F_Y(y)$$

 $^{^{3}}$ Enakost za skoraj vse x in y pomeni enakost za vse integrale po Borelovih množicah.

⁴Če sta funkciji skoraj povsod enaki je integral funkcij enak povsod.

NEODVISNOST 17

Posledica 1. Če je $(X,Y) \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}\right)$ potem sta X in Y neodvisni $\iff \sigma_{12} \iff \rho = 0$.

 $Dokaz.\ (\Longrightarrow)$ Spomnimo se, da ima(X,Y)gostoto:

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} \cdot \frac{1}{\sqrt{\det \Sigma}} \cdot e^{-\frac{1}{2} \langle \Sigma^{-1}(\vec{x}-\vec{\mu}), \vec{x}-\vec{\mu} \rangle}$$

Če za f_X f_Y izberemo "standardne" funkcije zaradi njihove zveznosti, dobimo neodvisnost natanko tedaj, ko velja:

$$f_{(X,Y)}(x,y) = f_X(x) \cdot f_Y(y)$$

za vse pare x, y, kjer sta:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{1}{2}\left(\frac{x-\mu_1}{\sigma_1}\right)^2}$$
 in $f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{1}{2}\left(\frac{y-\mu_2}{\sigma_2}\right)^2}$

To pomeni:

$$\frac{1}{2\pi} \cdot \frac{1}{\sqrt{\det \Sigma}} \cdot e^{-\frac{1}{2}\left\langle \Sigma^{-1}(\vec{x} - \vec{\mu}), \vec{x} - \vec{\mu} \right\rangle} = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{1}{2}\left(\frac{x - \mu_1}{\sigma_1}\right)^2} \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{1}{2}\left(\frac{y - \mu_2}{\sigma_2}\right)^2}$$

Če privzamemo veljavnost zgornjega razcepa in vstavimo $(x,y)=(\mu_1,\mu_2)$ dobimo:

$$\frac{1}{2\pi} \frac{1}{\sigma_1 \sigma_2 \sqrt{1 - \rho^2}} = \frac{1}{\sqrt{2\pi} \sigma_1} \frac{1}{\sqrt{2\pi} \sigma_2} \implies 1 - \rho^2 = 1 \implies \rho = 0$$

(
$$\iff$$
) Očitno. Vstavimo $\rho = 0$.

Opomba. Za $\mu \in \mathbb{R}^n$ in simetrično pozitivno definitno matriko $\Sigma \in \mathbb{R}^{n \times n}$ je slučajni vektor $X : \Omega \to \mathbb{R}^n$ porazdeljen normalno s parametroma μ in Σ $(X \sim N(\mu, \Sigma))$, če ima gostoto:

$$f_X(x) = (2\pi)^{-\frac{n}{2}} (\det \Sigma)^{-\frac{1}{2}} e^{-\frac{1}{2} \langle \Sigma^{-1}(x-\mu), x-\mu \rangle}$$

Izkaže se, da sledi:

$$X_i \sim N(\mu_i, \Sigma_{ii})$$
 in da je $\Sigma_{ij} = K(X_i, X_j)$ za $i \neq j$.

Dalje sledi, da so X_1, \ldots, X_n neodvisne $\iff \Sigma$ diagonalna. Posledično so komponente večrazsežno normalno porazdeljenega slučajnega vektorja neodvisne natanko tedaj, ko so paroma neodvisne.

18 NEODVISNOST

Posledica 2. Naj ima slučajni vektor (X,Y) "zvezno" gostoto $f_{X,Y}: \mathbb{R}^2 \to [0,\infty)$. X in Y neodvisni \iff

$$f_{(X,Y)}(x,y) = \phi(x) \cdot \psi(y)$$

za skoraj vse pare x in y in neki nenegativni integrabilni funkciji ϕ in ψ .

 $Dokaz.~(\implies)$ Že vemo.

(\iff) Iz razcepa $f_{(X,Y)}(x,y) = \phi(x) \cdot \psi(y)$ sledi:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \phi(u) du \int_{-\infty}^{y} \psi(v) dv$$

Zato:

$$\lim_{y \to \infty} F_{(X,Y)}(x,y) = \lim_{y \to \infty} \int_{-\infty}^{x} \phi(u) \, du \int_{-\infty}^{y} \psi(v) \, dv$$
$$F_{X}(x) = \int_{-\infty}^{x} \phi(u) \, du \int_{-\infty}^{\infty} \psi(v) \, dv$$

Posledično je po osnovnem izreku analize:

$$f_X(x) = \phi(x) \cdot \int_{-\infty}^{\infty} \psi(v) \, dv$$

Simetrično je:

$$f_Y(y) = \int_{-\infty}^{\infty} \phi(v) \, dv \cdot \psi(y)$$

Ker je $\int_{\mathbb{R}^2} f_{(X,Y)}(u,v) du dv = 1$ sledi:

$$\int_{-\infty}^{\infty} \phi(u) \, du \int_{-\infty}^{\infty} \psi(v) \, dv = 1$$

Sledi:

$$\phi(x) \cdot \psi(y) = \phi(x) \int_{-\infty}^{\infty} \psi(v) \, dv \int_{-\infty}^{\infty} \phi(u) \, du \, \psi(y) = f_X(x) \cdot f_Y(y)$$