2. Softmax regression gradient calculation

2(wij xi) + b

Consider a simple Softmax regression model,

sion model,
$$\hat{\mathbf{y}} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b}) - \mathbf{w}$$
 Multiplies classification problem

$$\mathbf{x} \in \mathbb{R}^d, \mathbf{W} \in \mathbb{R}^{k \times d}, \mathbf{b} \in \mathbb{R}^k$$

where d is the input dimension, k is the number of classes, σ is the softmax function:

$$\sigma(\mathbf{a})_i = \frac{\exp\left(a_i\right)}{\sum_j \exp\left(a_j\right)}$$

(a) Given the cross-entropy loss \rightarrow Between y true label and y softmax

$$l(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_i \log \hat{y}_i$$

y is the one-hot vector representing true labels $([0,0,\cdots,1,0,0,\cdots]^T$ with the 1 corresponding to the true label), derive $\frac{\partial l}{\partial W_{i,j}}$. (You can use your results from Assignment 1)

(b) What happens to the loss function and the gradients when $y_{c_1} = 1, \hat{y}_{c_2} = 1, c_1 \neq c_2$? Why there is no need to worry about this situation?

Rem	ember	Sign	mo: d is	used	for	binary	class	fication problems.
metl	od5	and 5	oftmax	is us	ed on	mult	iclass	problems.
Soft	max	is on	extens	to nois	thc	Sigmoi	func	tion.
5:	gmoid	,	1 e-x		Softm	iax	e×i	
F	enction	1+	e-x		funct:	iax	ΣK e	X;
2(a)	Find	91	deriv	ative o	f Scol	ar by	matrix	

