Capítulo 11 — Introdução à Regressão

Modelo de Regressão Linear Simples

Um modelo de regressão deste tipo traduz a relação entre uma variável quantitativa independente, X, e uma variável quantitativa dependente, Y, nos termos seguintes:

$$Y_n = \alpha + \beta \cdot (X_n - \bar{X}) + E_n \qquad \qquad \text{(modelo alternativo: } Y_n = \alpha' + \beta \cdot X_n + E_n, \text{com } \alpha' = \alpha - \beta \cdot \bar{X} \text{)}$$

n: índice denotando as observações do par de variáveis X e Y (n=1,2,...,N)

 \overline{X} : média aritmética das observações X_n

 E_n : erro aleatório associado ao valor observado Y_n

Estimativas de α e β

$$\hat{\alpha} = a = \frac{1}{N} \cdot \sum_{n} y_{n} = \bar{y}$$

$$\hat{\beta} = b = \frac{s_{XY}}{s_{XX}}$$

$$\hat{\beta} = b = \frac{S_{XY}}{S_{XX}}$$

com,

$$S_{XY} = \sum_{n} [(X_n - \bar{X}) \cdot (Y_n - \bar{Y})] \qquad S_{XX} = \sum_{n} (X_n - \bar{X})^2 \qquad S_{YY} = \sum_{n} (Y_n - \bar{Y})^2$$

$$S_{YY} = \sum_{n} (X_n - \bar{X})^2$$

$$S_{VV} = \sum_{n} (Y_n - \overline{Y})^2$$

Intervalos de Confiança a $(1-\gamma)\cdot 100\%$ para os parâmetros $\alpha^{'}$, α e β

Parâmetro α	$A \pm t_{N-2}(\gamma/2) \cdot S \cdot \sqrt{\frac{1}{N}}$
Parâmetro α' (ordenada na origem do eixo dos XX)	$(A - \bar{X} \cdot B) \pm t_{N-2}(\gamma/2) \cdot S \cdot \sqrt{\frac{1}{N} + \frac{\bar{X}^2}{S_{XX}}}$
Parâmetro β	$B \pm t_{N-2}(\gamma/2) \cdot S \cdot \sqrt{\frac{1}{S_{XX}}}$

Notas: A e B são os estimadores de α e β , respectivamente;

 S^2 é um estimador de σ^2 e é dado por $S^2 = \frac{1}{N-2} \cdot \sum_n [Y_n - A - B \cdot (X_n - \bar{X})]^2$

 σ^2 pode também ser estimado a partir do *DQMR* da tabela ANOVA (ver detalhes mais abaixo): $DQMR = \frac{S_{YY} - B \cdot S_{XY}}{N-2}$

Testes de Hipóteses aos parâmetros α' , α e β			
Hipóteses	Estatística de Teste		
$H_0: \alpha = \alpha_0$ $H_1: \alpha \neq \alpha_0, \alpha > \alpha_0 \text{ ou } \alpha < \alpha_0$	$ET=rac{A-lpha_0}{S/\sqrt{N}}$ Quando H_0 é verdadeira, ET segue uma distribuição t_{N-2}		
Hipóteses	Estatística de Teste		
$H_0: \alpha' = \alpha'_0$ $H_1: \alpha' \neq \alpha'_0, \alpha' > \alpha'_0 \text{ ou } \alpha' < \alpha'_0$	$ET = rac{(A - ar{X} \cdot B) - lpha_0'}{S \cdot \sqrt{rac{1}{N} + rac{ar{X}^2}{S_{XX}}}}$ Quando H_0 é verdadeira, ET segue uma distribuição t_{N-2}		
Hipóteses	Estatística de Teste		
H_0 : $\beta = \beta_0$ H_1 : $\beta \neq \beta_0$, $\beta > \beta_0$ ou $\beta < \beta_0$	$ET=rac{B-eta_0}{S/\sqrt{S_{XX}}}$ Quando H_0 é verdadeira, ET segue uma distribuição t_{N-2}		

Teste de Hipótese ao parâmetro $oldsymbol{eta}$ baseado na tabela ANOVA (ver tabela ANOVA no final do formulário)			
Hipóteses	Estatística de Teste		
$H_0: \beta = \beta_0 H_1: \beta \neq \beta_0$	$ET=rac{DQMDR}{DQMR}$ Quando H_0 é verdadeira, ET segue uma distribuição $F_{1,N-2}$		

Previsões com base no modelo de regressão linear simples

O valor de uma variável dependente, Y, pode ser obtida a partir do novo valor da variável X dependente. Para isto recorre-se à seguinte expressão para a melhor previsão de Y:

$$\hat{Y} = \hat{\mu}_Y = A + B \cdot (X - \bar{X})$$

A variância do erro de previsão (δ) é dada por:

$$Var(\delta) = \left[1 + \frac{1}{N} + \frac{(X - \bar{X})^2}{S_{XX}}\right] \cdot \sigma^2$$

Intervalos de Confiança a $(1-\gamma)\cdot 100\%$ para a previsão

Para valores de Y	$\hat{Y} \pm t_{N-2}(\gamma/2) \cdot S \cdot \sqrt{1 + \frac{1}{N} + \frac{(X - \bar{X})^2}{S_{XX}}}$
Para valores de μ_Y	$\hat{Y} \pm t_{N-2} (\gamma/2) \cdot S \cdot \sqrt{\frac{1}{N} + \frac{(X - \bar{X})^2}{S_{XX}}}$

Correlação entre Variáveis

A análise da correlação entre variáveis é uma técnica muito semelhante à regressão no que se refere aos objectivos. No entanto, esta é menos potente, não indicando a forma como as variáveis estão relacionadas.

Coeficiente de Correlação Amostral	$R_{XY} = \frac{S_{XY}}{\sqrt{S_{XX}} \cdot \sqrt{S_{YY}}}$
Coeficiente de Correlação Populacional	$\rho_{XY} = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sqrt{E[(X - \mu_X)^2] \cdot E[(Y - \mu_Y)^2]}}$
Coeficiente de Determinação	$R_{XY}^2 = \frac{B^2 \cdot S_{XX}}{S_{YY}}$

Regressão Não Linear

Os modelos não lineares que traduzem relações entre a variável dependente e uma só variável independente podem ser convertidos em modelos lineares por aplicação de transformações às variáveis dependente ou independente. Seguem-se exemplos de modelos onde a linearização é facilmente obtida:

Modelo Original	Novas Variáveis	Modelo Linearizado	
$Y_n = \alpha' + \frac{\beta}{X_n} + E_n$	$U_n = \frac{1}{X_n}$	$Y_n = \alpha' + \beta \cdot U_n + E_n$	
Modelo Exponencial $Y_n = e^{\alpha' + \beta \cdot X_n + E_n}$	$Z_n = \ln Y_n$	$Z_n = \alpha' + \beta \cdot X_n + E_n$	
Modelo "Curva em S" (com $\alpha' > 0$ e $\beta < 0$) $Y_n = e^{\alpha' + \beta/X_n + E_n}$	$U_n = \frac{1}{X_n} \qquad Z_n = \ln Y_n$	$Z_n = \alpha' + \beta \cdot U_n + E_n$	

Tabela ANOVA para Teste de Hipótese ao parâmetro $oldsymbol{eta}$ baseado na tabela ANOVA

	Tabeta ANOVA para Teste de Impotese ao parametro pi baseado na tabeta ANOVA			
Fontes de Variação	Variações	Graus de Liberdade	Desvios Quadráticos	Valores Esperados
Polites de Variação	(Somas de desvios quadráticos)	(Nº de termos independentes)	Médios (DQMs)	valores Esperados
Devida à Regressão (DR)	(Variação "explicada" pela regressão) $VDR = B^2 \cdot S_{XX}$ $= B \cdot S_{XY}$ (Variação residual	$GL_1=1$	DQMDR = VDR	$E[DQMDR] = \sigma^2 + \beta^2 \cdot S_{XX}$
Residual (R)	"não explicada") $VR = S_{YY} - B \cdot S_{XY}$	$GL_2 = N - 2$	$DQMR = \frac{VR}{GL_2}$	$E[DQMR] = \sigma^2$
Total (T)	$egin{aligned} (Variação\ total) \ m{VT} = m{S_{YY}} \end{aligned}$	$GL = GL_1 + GL_2 = N - 1$		

Formulário adaptado de:

Estatística

Rui Campos Guimarães, José A. Sarsfield Cabral Verlag Dashöfer