BERT:


```
[45] new_input = ["i have a big butt"]
    new_val = bert_encode(new_input, tokenizer, max_len=max_len)
    print(model.predict(new_val))

[[1.8674208e-06]]
```

```
[47] new_input = ["I fantasise about big butts at work"]
    new_val = bert_encode(new_input, tokenizer, max_len=max_len)
    print(model.predict(new_val))
[[0.99968445]]
```

```
new_input = ["I want to see your big boobies"]
new_val = bert_encode(new_input, tokenizer, max_len=max_len)
print(model.predict(new_val))

[0.9999051]]
```

```
[50] new_input = ["boobies is an offensive word"]
   new_val = bert_encode(new_input, tokenizer, max_len=max_len)
   print(model.predict(new_val))
   [[2.1722178e-06]]
```

```
[42] new_input = ["lick my hairy balls"]
    new_val = bert_encode(new_input, tokenizer, max_len=max_len)
    print(model.predict(new_val))

[[0.99990785]]
```

```
[37] new_input = ["i wanna eat your ass"]
    new_val = bert_encode(new_input, tokenizer, max_len=max_len)
    print(model.predict(new_val))
    [[0.9999126]]
```

```
new_input = ["bite me in the ass"]
new_val = bert_encode(new_input, tokenizer, max_len=max_len)
print(model.predict(new_val))

[0.9996673]]
```

```
new_input = ["i am an ass"]
new_val = bert_encode(new_input, tokenizer, max_len=max_len)
print(model.predict(new_val))

[[2.245538e-06]]
```

```
new_input = ["i am a hairy person and i like playing with tennis balls"]
new_val = bert_encode(new_input, tokenizer, max_len=max_len)
print(model.predict(new_val))

[8.212096e-05]]
```

```
[39] new_input = ["a donkey can also be called an ass"]
    new_val = bert_encode(new_input, tokenizer, max_len=max_len)
    print(model.predict(new_val))

[[0.00032227]]
```

CNN-BiLSTM:

C→	Model: "sequential_11"				
	Layer (type)	0utput	Shape	e 	Param #
	embedding_7 (Embedding)	(None,	300,	300)	6000000
	conv1d_11 (Conv1D)	(None,	298,	32)	28832
	max_pooling1d_11 (MaxPooling	(None,	149,	32)	0
	dropout_22 (Dropout)	(None,	149,	32)	0
	bidirectional_11 (Bidirectio	(None,	149,	256)	164864
	flatten_11 (Flatten)	(None,	3814	4)	0
	dense_22 (Dense)	(None,	30)		1144350
	dropout_23 (Dropout)	(None,	30)		0
	dense_23 (Dense)	(None,	2)		62
	Total params: 7,338,108 Trainable params: 1,338,108 Non-trainable params: 6,000,6	300			

ML CLASSIFIERS:

Linear SVC:

0.9784585926280517

0.7571701720841301

Gaussian NB:

0.8879846816658689

0.6347992351816444

Logistic Regression:

0.8736237434179033

0.7571701720841301

Random Forest:

- 0.9784585926280517
- 0.7112810707456979

BILSTM:

Accuracy decreased from 71% to 67% on removing the stop words from which we can conclude that stop words have valuable info for our task.

CNN

[1.1398638486862183, 0.7269700169563293]
The loss of the model on the test set : 1.1398638486862183
The accuracy of the model on the test set : 72.69700169563293%

