

What is Artificial Intelligence?

- the automation of activities we associate with human thinking, like decision making, learning ... ?
- the art of creating machines that perform functions that require intelligence when performed by people?
- making computers that think?
- a field of study that seeks to explain and emulate intelligent behaviour in terms of computational processes?
- the study of mental faculties through the use of computational models ?
- a branch of computer science that is concerned with the automation of intelligent behaviour?

3

What is AI? (class built)

- Today?
 - Ferramenta para resolução de problemas complexos de forma autónoma (p.ex. pathfinding)
 - Funciona na base de probabilidades e encontrar padrões
 - Algo que é focado num desenvolvimento rápido e na aprendizagem
 - Usado experimentalmente/ focado em cenários
 - Tem interfaces fundamentalmente computacionais

- Tomorrow?
 - Tomará decisões de forma autónoma
 - Terá uma taxa de falhas menor
 - Não terá muito a aprender
 - Maior diversidade de interfaces
 - Pode ser "psicopata"

4

Δ

What is AI? (2024 class built)

- Today?
 - A machine that seems to act as a human being in some tasks
 - A machine that does calculations and decisions that a human would not be able to do as fast
 - A machine that does tasks autonomously
 - A process that behaves as a human being would behave.

Tomorrow?

- Robotic presences (e.g. Wall-e)
- Potential psicopath behaviour (simulate/lacking emotions)
- cyborgs

5

5

Artificial Intelligence

- Artificial
 - Produced by human art or effort, rather than originating naturally.
- Intelligence
 - is the ability to acquire knowledge and use it" [Pigford and Baur]
- So AI can be defined as:
 - AI is the study of ideas that enable computers to be intelligent.
 - AI is the part of computer science concerned with design of computer systems that exhibit human intelligence(From the Concise Oxford Dictionary)

AI Multiple Definitions/Scopes

- The study of how to make programs/computers do things that people do better
- The study of how to make computers solve problems which require knowledge and intelligence
- The effort to make computers think ... machines with
- The automation of activities that we associate with human thinking (e.g., decision-making, learning...)
- The art of creating machines that perform functions that
- require intelligence when performed by people
 The study of mental faculties through the use of
 computational models
- A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes
- The branch of computer science that is concerned with the automation of intelligent behavior

Thinking machines or machine intelligence

Studying cognitive faculties

7

Review: The Turing Test

- 1950 Alan Turing devised the Imitation Game
 - Ask questions of two entities, receive answers from both
 - If you can't tell which of the entities is human and which is a computer program, then you are fooled and we should therefore consider the computer to be intelligent

_

Searle's argument

- You were able to solve the problem of communicating with the person/user » you/the room passes the Turing Test
- But did you understand the Chinese messages being communicated?
 - since you do not speak Chinese, you did not understand the symbols in the question, the answer, or the storage
 - can we say that you actually used any intelligence?
- By analogy, since you did not understand the symbols that you interacted with, <u>neither does the computer understand the symbols</u> that it interacts with (input, output, program code, data)
- Searle concludes that the computer is not intelligent, it has no "semantics," but instead is merely a symbol manipulating device
 - the computer operates solely on <u>syntax</u>, not <u>semantics</u>
- He defines two categories of AI:
 - strong AI the pursuit of machine intelligence
 - weak AI the pursuit of machines solving problems in an intelligent way

Computers do Solve Problems

- Computers solve problems in a seemingly intelligent way
 - Where is the intelligence *coming* from?
- Different views against Searle's argument
 - The System's Response:
 - the hardware by itself is not intelligent, but a combination of the hardware, software and storage is intelligent
 - in a similar vein, we might say that a human brain that has had no opportunity to learn anything cannot be intelligent, it is just the hardware
 - The Robot Response:
 - a computer is void of senses and therefore symbols are meaningless to it, but a robot with sensors can tie its symbols to its senses and thus understand symbols
 - The Brain Simulator Response:
 - if we program a computer to mimic the brain (e.g., with a neural network) then the computer will have the same ability to understand as a human brain

11

14

- For Turing, the cognitive tasks include:
 - Natural language processing
 - for communication with human
 - Knowledge representation
 - to store information effectively & efficiently
 - Automated reasoning
 - to retrieve & answer questions using the stored information
 - Machine learning
 - to adapt to new circumstances
- Ideally it includes two more issues, currently:
 - Computer vision
 - to perceive objects (seeing)
 - Robotics
 - to move objects (acting)

16

- Cognitive modeling
 - Humans as observed from 'inside'
 - Cognitive Science
 - Introspection vs. psychological experiments
 - "The exciting new effort to make computers think ... machines with *minds* in the full and literal sense" (Haugeland)
 - "[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ..." (Bellman)

18

Systems that think 'rationally'

- "laws of thought"
 - Rational defined in terms of logic?
 - Logic can't express everything (e.g. uncertainty)
 - Logical approach is often not feasible in terms of computation time (needs 'guidance')
- "The study of mental facilities through the use of computational models" (Charniak and McDermott)
- "The study of the computations that make it possible to perceive, reason, and act" (Winston)

20

- AI as a rational agent
 - It is more general than using logic only
 - LOGIC + Domain knowledge
 - Logic → only part of a rational agent, not all of rationality
 - Sometimes logic cannot reason a correct conclusion
 - At that time, some <u>specific (in domain) human</u> <u>knowledge</u> or information is used
 - It allows extension of the approach with more scientific methodologies
 - Rational behavior: doing the right thing
 - The right thing: that which is expected to maximize goal achievement, given the available information

TECHNICAL ASPECTS OF AI

28

- Most AI has fallen into one of two categories
 - 1. Select a specific problem to solve
 - study the problem (perhaps how humans solve it)
 - come up with the proper representation for any knowledge needed to solve the problem
 - acquire and codify that knowledge
 - build a problem solving system
 - Select a category of problem or cognitive activity (e.g., learning, natural language understanding)
 - theorize a way to solve the given problem
 - build systems based on the model behind your theory as experiments
 - modify as needed
- Both approaches require
 - one or more representational forms for the knowledge
 - some way to select proper knowledge, that is, search

Artificial intelligence can be considered under a number of headings:

- Search (includes Game Playing).
- Representing Knowledge and Reasoning with it.
- Planning.
- Learning.
- Natural language processing.
- Expert Systems.
- (now) Interacting with the Environment (e.g. Vision, Speech recognition, Robotics)

30

- The state of the problem being solved = the values of the active variables
 - this will include any partial solutions, previous conclusions, user answers to questions, etc
 - while humans are often able to make intuitive leaps, or recall solutions with little thought, the computer must search through various combinations to find a solution
- To the right is a search space for a tic-tac-toe game

32

36

Main types of machine learning Supervised learning Unsupervised learning Reinforcement learning Two phases in the ML process: Training Evaluation/execution

38

Main types of machine learning Supervised learning Unsupervised learning Reinforcement learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

44

- Goal: Compute values for each state under policy
- Idea: Average together observed sample values
 - Act according to policy
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

48

Two AI Assumptions

- We can *understand and model* cognition without understanding the underlying mechanism
 - It is the model of cognition that is important not the physical mechanism that implements it
 - If this is true, then we should be able to create cognition (mind) out of a computer or a brain or even other entities that can compute such as a mechanical device
 - This is the assumption made by <u>symbolic</u> AI
- Cognition will emerge from the proper mechanism
 - The right device, fed with the right inputs, can learn and perform the problem solving that we, as observers, call intelligence
 - Cognition will arise as the result (or side effect) of the hardware
 - This is the assumption made by connectionist AI

While the two assumptions differ, neither is necessarily mutually exclusive and both support the idea **that cognition** is *computational*

What are AI problems (class built)

- Today?
 - Not 100% reliable
 - Associated costs (time, Money, CPU)
 - Loss of jobs
 - Deep fakes
 - Author/IPR rights

- Tomorrow?
 - Will reach the point in which is really indistinguishable from a reliable human
 - Create dependency on these systems
 - Even more loss of jobs
 - "cyborg" deep fakes

62

62

Learning

- If a system is going to act truly appropriately, then it must be able to change its actions in the light of experience:
 - how do we generate(?) new facts from old ?
 - how do we generate new concepts ?
 - how do we learn to distinguish different situations in new environments?
 - How do we learn while we are acting?

Examples of AI BIAS	
COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)	Used in the USA to predict which criminals are more likely to re-offend in the future.
97 million specialists needed in the AI industry by 2025	Predict where crimes will occur in the future based on the crime data collected b the police such as the arrest counts, number of police calls in a place, etc.
Amazon's Recruiting Engine – Biased against Women	Created to analyze the resumes of job applicants applying to Amazon and decide which ones would be called for further interviews and selection.
Google Photos Algorithm - Biases against black people	Found to be racist when it labeled the photos of a black software developer and his friend as gorillas.
Healthcare	An algorithm used on more than 200 million people in US hospitals to predict which patients would likely need extra medical care heavily favored white patient over black patients.

