MATH 3310

Grading Rubric for Homework Assignment #3: A non-intersection graph, an intersection graph, tournaments.

Author: Jared Smith

1.	$G = ({2}$	2-sets of [5]}, E), where, for $x, y \in V$, $xy \in E$ if and only if $x \cap y = \emptyset$.			
	(a)	[5] $\setminus \{a, b\}$ leaves 3 elements and $\binom{3}{2} = 3$	0	1	2
	(b)	Author uses part (a) and the $FTGT^*$ to conclude $ E =15$	0	1	2
	(c)	Author argues G has a $K_3 \implies [5] \ge 6$	0	1	2
	(d)	Author uses Euler's formula and deduces $35 \leq 30^{\dagger},$ showing G ain't planar	0	1	2
	(d)	Author mentions (1 point) or argues (2 points) $deg(any face) \geq 5$	0	1	\bigcirc
	(e)	Author shows G contains a subgraph homeomorphic to $K_{3,3}$	0	1	2
	•	Readability: Seem to've found a K_{3,3} subgraph, but there isn't one in this graph.	0	1	2
	•	Fluency:	0	1	2
2.	$\Gamma = (\{3$	-sets of [5]], E), where, for $x, y \in V$, $xy \in E$ if and only if $ x \cap y = 2$.			
	(a)	Author claims $deg(v) = 6$	0	1	2
	(a)	\dots arguing from Γ 's definition and set relationships	0	1	2
	(b)	Author claims $ E = 30 \dots$	0	1	2
	(b)	using (a) and the FTGT	0	1	2
	(c)	Author correctly argues Γ has a K_4 (probably displaying a correctly constructed K_4 subgraph)	0	1	\bigcirc
	•	Readability:	0	1	2
	•	Fluency:	0	1	2
3.	There i	is no 4-vertex tournament in which every vertex is a queen.			
	•	proof attempt is general: no examples, and all 4-tournaments are accounted for	0	1	2
	•	Author rules out vertices with score 0 and with score 3	0	1	2
	•	and forces the construction of the 4-tournament	0	1	2
	•	and finds a vertex that is not a queen	0	1	2
	•	Readability:	0	1	\bigcirc
	•	Fluency:	0	1	2
4.	and	rtex in a tournament is beaten, it is beaten by a queen. A common error is to consider $I_{\nu} \neq \emptyset$, and use the theorem which guarantees a queen in any flock to find a queen of I_{ν} , vertex is a queen of F.			
	•	Author assumes ν is beaten, $I(\nu) \neq \emptyset$.	0	1	2
	•	Author finds q a queen of $I(\nu)$	0	1	2
	•	\dots and proves q is a queen of T	0	1	2
	•	Readability:	0	1	2
	•	Fluency:	0	1	2
		Subtotal $X = 50$ /52; Scale: $\left[X \times \frac{30}{52}\right] = 1$	29		<u>.</u> /30

^{*}Fundamental Theorem of Graph Theory: For any graph G, $\sum_{x \in V(G)} deg(x) = 2|E(G)|$.

 $^{^{\}dagger}$ Or some other contradiction.