Flight Prices Prediction Milestone 1

Anh Nguyen, Fiona Xu, Sadichchha Maharjan

Previous solutions

- Many solutions with traditional machine learning algorithms (KNN, Random Forest, Decision Tree)
- Challenges: not good at capturing intricate patterns and rapid changes in market, dynamic pricing

Previous solutions

 Can Deep Learning add value? Better at capturing temporal dependencies in flight data? Better at generalizing?

Deep-Learning-Powered GRU Model for Flight Ticket Fare Forecasting

by Worku Abebe Degife [□] and Bor-Shen Lin * □

Datasets

- <u>Main dataset</u>: Almost 6 million entries, US flights between 2022-04-17 and 2022-11-11
- Additional datasets:
 - + https://www.kaggle.com/datasets/iamavyukt/goibibo-flight-data (~300,000 entries, Indian flights, July-August 2023)
 - + https://www.kaggle.com/datasets/darjand/domestic-german-air-fare s.com/datasets/darjand/domestic-german-air-fare s.com/datasets/darjand/domestic-german-air-fare https://www.kaggle.com/datasets/darjand/domestic-german-air-fare s.com/datasets/darjand/domestic-german-air-fare s.com/datasets/darjand/datasets/darj

Data Visualization

Dataset Overview

- dataset contains flight ticket prices from
 Expedia between April 17, 2022 November 11,
 2022
- includes one-way flights from major U.S.
 airports like ATL, JFK, LAX, SFO, and more
- <u>Total Entries:</u> **5,999,739** flight ticket records
- Total Fields: 27 data attributes (destination, airline, flight duration, ticket price)

Trend of Ticket Prices Over Time

Distribution of Ticket Prices

Data Cleansing

- Handling Missing Data
 - Entries with missing data dropped

Challenges

Dataset is too large to process, do not have enough memory to run the data. Even in data preprocessing

Running everything takes 10+ minutes

Solution: use PySpark library for to work in distributed computing environment

Data Preparation

Feature Engineering

Converting string attribute to numerical variable
One-hot-encoding and binary encoding for categorical variables(eg. 16 airports)
Take out irrelevant/repeating columns such as ids, duplicates of cabin info
Create new columns: weekend indicator, holiday indicator

Splitting the Dataset

Train, validation, test 70%, 15%, 15%

Create Training Batches

Prepare mini batches for training

Future Challenges

Find a baseline to evaluate model performance.

using traditional ML choose right model for prediction: time series forecasting (ARIMA, RNNs)

Deal with outliers:

Want to use flight datasets on other geographic locations and dates: we might meet problems in **generalizing** the model in non US countries and different dates.

Overfitting

Thank you for listening! Questions or Suggestions?