



## **TEST REPORT**

| Applicant | Particle Industries,Inc                               |
|-----------|-------------------------------------------------------|
| Address   | 325 9th Street, San Francisco, CA 94103 United States |

| Oth Street, San Francisco, CA 94103 and States |                                                                 |
|------------------------------------------------|-----------------------------------------------------------------|
| i Module                                       |                                                                 |
|                                                | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |
| cle                                            | · · · · · · · · · · · · · · · · · · ·                           |
|                                                | 8.5 Th                                                          |
|                                                | 8 ( 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
| 21, 2021 ~ Apr. 06, 2022                       |                                                                 |
|                                                | 21, 2021 ~ Apr. 06, 2022                                        |

The submitted sample of the above equipment has been tested according to the requirements of the following standards:

**EN 300 328 V2.2.2 (2019-07)** 

### CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

| Tested by Lucas Chen              | Approved by Glyn He                |
|-----------------------------------|------------------------------------|
| Project Engineer / EMC Department | Assistant Manager / EMC Department |

Date: May 19, 2022

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <a href="https://www.cps.bureauveritas.com/terms-conditions">https://www.cps.bureauveritas.com/terms-conditions</a> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## **TABLE OF CONTENTS**

| RELEASE CONTROL RECORD                                                | 4  |
|-----------------------------------------------------------------------|----|
| 1. SUMMARY OF TEST RESULTS                                            | 5  |
| 1.1. TEST INSTRUMENTS                                                 | F  |
| 1.2. MEASUREMENT UNCERTAINTY                                          |    |
| 1.3. MAXIMUM MEASUREMENT UNCERTAINTY                                  |    |
| 2. GENERAL INFORMATION                                                |    |
| 2.1. GENERAL DESCRIPTION OF EUT                                       |    |
| 2.2. DESCRIPTION OF TEST MODES                                        |    |
| 2.2.1. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL              |    |
| 2.3. GENERAL DESCRIPTION OF APPLIED STANDARDS                         |    |
| 2.4. DESCRIPTION OF SUPPORT UNITS                                     |    |
| 3 TEST PROCEDURES AND RESULTS                                         |    |
| TRANSMITTER PARAMETERS                                                | 16 |
| 3.1. RF OUTPUT POWER                                                  |    |
| 3.1.1. LIMITS OF RF OUTPUT POWER                                      | 16 |
| 3.1.2. TEST PROCEDURE                                                 |    |
| 3.1.3. DEVIATION FROM TEST STANDARD                                   |    |
| 3.1.4. TEST SETUP                                                     |    |
| 3.1.5. TEST RESULTS                                                   | 17 |
| 3.2. POWER SPECTRAL DENSITY                                           |    |
| 3.2.1. LIMIT OF POWER SPECTRAL DENSITY                                | 18 |
| 3.2.2. TEST PROCEDURE                                                 | 18 |
| 3.2.3. DEVIATION FROM TEST STANDARD                                   |    |
| 3.2.4. TEST SETUP                                                     |    |
| 3.2.5. TEST RESULTS                                                   |    |
| 3.3. OCCUPIED CHANNEL BANDWIDTH                                       |    |
| 3.3.1. LIMIT OF OCCUPIED CHANNEL BANDWIDTH                            |    |
| 3.3.2. TEST PROCEDURE                                                 |    |
| 3.3.4. TEST SETUP                                                     |    |
| 3.3.5. TEST RESULTS                                                   |    |
| 3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN         |    |
| 3.4.1. LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND    | 20 |
| DOMAIN                                                                | 23 |
| 3.4.2. TEST PROCEDURE                                                 |    |
| 3.4.3. DEVIATION FROM TEST STANDARD                                   |    |
| 3.4.4. TEST SETUP                                                     |    |
| 3.4.5. TEST RESULTS                                                   | 24 |
| 3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)                              | 26 |
| 3.5.1. APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LIMIT FOR WIDE BAND |    |
| MODULATION TECHNIQUES                                                 |    |
| 3.5.2. TEST PROCEDURES                                                |    |
| 3.5.3. TEST SETUP CONFIGURATION                                       |    |
| 3.5.4. INTERFERENCE THRESHOLD LEVEL                                   |    |
| 3.5.5. LIST OF MEASUREMENTS                                           |    |
| 3.5.6. TEST RESULT                                                    |    |
| 3.5.6.1. ADAPTIVE RESULT                                              |    |
| 3.5.6.2. THE CHANNEL OCCUPANCY TIME RESULT                            | 34 |

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China. Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



|   | 3.6. TR | ANSMITTER SPURIOUS EMISSIONS                                   | 37    |
|---|---------|----------------------------------------------------------------|-------|
|   | 3.6.1.  | LIMITS OF TRANSMITTER SPURIOUS EMISSIONS                       | 37    |
|   | 3.6.2.  | TEST PROCEDURE                                                 |       |
|   | 3.6.3.  | DEVIATION FROM TEST STANDARD                                   | 38    |
|   | 3.6.4.  | TEST SETUP                                                     | 38    |
|   | 3.6.5.  | TEST RESULTS                                                   | 39    |
|   | RECEIVE | R PARAMETERS                                                   | 43    |
|   | 3.7. RE | CEIVER SPURIOUS RADIATION                                      | 43    |
|   | 3.7.1.  | LIMITS OF RECEIVER SPURIOUS RADIATION                          | 43    |
|   | 3.7.2.  | TEST PROCEDURE                                                 | 43    |
|   | 3.7.3.  | DEVIATION FROM TEST STANDARD                                   | 43    |
|   | 3.7.4.  | TEST SETUP                                                     |       |
|   | 3.7.5.  | TEST RESULTS                                                   | 44    |
|   | 3.8. RE | CEIVER BLOCKING                                                |       |
|   | 3.8.1.  | LIMITS OF RECEIVER BLOCKING                                    |       |
|   | 3.8.2.  | TEST PROCEDURE                                                 | 48    |
|   | 3.8.3.  | DEVIATION FROM TEST STANDARD                                   | 48    |
|   | 3.8.4.  | TEST SETUP CONFIGURATION                                       | 49    |
|   | 3.8.5.  | TEST RESULT                                                    | 50    |
| 4 | РНОТО   | GRAPHS OF THE TEST CONFIGURATION                               | 51    |
| 5 | APPENI  | DIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THI | E EUT |

523942. People's Republic of China.

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## **RELEASE CONTROL RECORD**

| ISSUE NO.       | REASON FOR CHANGE | DATE ISSUED  |
|-----------------|-------------------|--------------|
| RE2202WDG0092-2 | Original release  | May 19, 2022 |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 1. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

|          | EN 300 328 V2.2.2                                     |                |  |
|----------|-------------------------------------------------------|----------------|--|
| Clause   | Test Parameter                                        | Results        |  |
|          | TRANSMITTER PARAMETERS                                |                |  |
| 4.3.2.2  | RF Output Power                                       | Pass           |  |
| 4.3.2.3  | Power Spectral Density                                | Pass           |  |
| 4.3.2.6  | Adaptivity                                            | Pass           |  |
| 4.3.2.7  | Occupied Channel Bandwidth                            | Pass           |  |
| 4.3.2.8  | Transmitter unwanted emission in the OOB domain       | Pass           |  |
| 4.3.2.9  | Transmitter unwanted emissions in the spurious domain | Pass           |  |
| 4.3.2.12 | Geo-location capability                               | Not Applicable |  |
|          | RECEIVER PARAMETERS                                   |                |  |
| 4.3.2.10 | Receiver Spurious Emissions                           | Pass           |  |
| 4.3.2.11 | Receiver Blocking                                     | Pass           |  |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 1.1. TEST INSTRUMENTS

| Equipment                              | Manufacturer  | Model No.                        | Serial No.  | Next Cal.   |
|----------------------------------------|---------------|----------------------------------|-------------|-------------|
| EMI Test Receiver                      | Rohde&Schwarz | ESU40                            | 100449      | Mar. 07, 23 |
| Signal and Spectrum<br>Analyzer        | Rohde&Schwarz | FSV40                            | 101094      | Jan. 16, 23 |
| Bilog Antenna                          | Teseq         | CBL 6111D                        | 30643       | May 21, 22  |
| Horn Antenna                           | ETS-Lindgren  | 3117                             | 00062558    | May 21, 22  |
| GPS Generator+ Antenna                 | TOJOIN        | GNSS-5000A                       | E1-010119   | N/A         |
| 3m Semi-anechoic<br>Chamber            | ETS-LINDGREN  | 9m*6m*6m                         | NSEMC003    | May 22, 22  |
| Test Software                          | ADT           | ADT_Radiated_V<br>7.6.15.9.2     | N/A         | N/A         |
| Test software                          | ADT           | ADT_RF Test<br>Software V6.6.5.3 | N/A         | N/A         |
| Horn Antenna<br>(15GHz-40GHz)          | SCHWARZBECK   | BBHA 9170                        | BBHA9170147 | May 14, 22  |
| Amplifier                              | Burgeon       | BPA-530                          | 100220      | Mar. 13, 23 |
| Broadband Preamplifier<br>(1GHz~18GHz) | SCHWARZBECK   | BBV9718                          | 305         | May 12, 22  |
| Pre-Amplifier<br>(18GHz-40GHz)         | EMCI          | EMC 184045                       | 980102      | Jan. 10, 23 |
| Power Sensor                           | Keysight      | U2021XA                          | MY57320002  | Feb.23.23   |
| Power Sensor                           | Keysight      | U2021XA                          | MY55060018  | May 09, 22  |
| Digital Multimeter                     | FLUKE         | 15B                              | A1220009DG  | Aug. 07, 22 |
| Humid & Temp<br>Programmable Tester    | Haida         | HD-2257                          | 110807201   | Nov. 03, 22 |
| Oscilloscope                           | Agilent       | DSO9254A                         | MY51260160  | Aug. 11, 22 |
| Signal and Spectrum<br>Analyzer        | Rohde&Schwarz | FSV7                             | 102331      | May 09, 22  |
| Spectrum Analyzer                      | Keysight      | N9020A                           | MY55400499  | Jan. 16, 23 |
| MXG-B RF Vector Signal<br>Generator    | Keysight      | N5182B                           | MY56200288  | Sep. 14, 22 |
| Wireless Connectivity<br>Tester        | Rohde&Schwarz | CMW270                           | 100908      | May 09. 22  |
| Vector Signal Generator                | Rohde&Schwarz | SMBV100A                         | 257579      | Sep. 04, 22 |
| Attenuator                             | MINI          | BW-S10W2+                        | S130129FGE2 | N/A         |

#### NOTES:

- 1. The test was performed in 966 Chamber and RF Oven room. (Chenwu)
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



For Receiver Blocking test and Adaptivity test:

| Equipment                           | Manufacturer  | Model No.             | Serial No.   | Next Cal.   |
|-------------------------------------|---------------|-----------------------|--------------|-------------|
| Wireless Connectivity<br>Tester     | Rohde&Schwarz | CMW270                | 100908       | May. 09, 22 |
| Signal Analyzer                     | Rohde&Schwarz | FSV7                  | 102331       | May 09, 22  |
| Spectrum Analyzer                   | Keysight      | N9020A                | MY55400499   | Jan. 16, 23 |
| Signal Generator                    | Agilent       | N5183A                | MY50140980   | Mar 23, 23  |
| MXG-B RF Vector Signal<br>Generator | Keysight      | N5182B                | MY56200288   | Sep. 12, 22 |
| Power Sensor                        | Keysight      | U2021XA               | MY55060016   | N/A         |
| Power Sensor                        | Keysight      | U2021XA               | MY55060018   | May 09, 22  |
| Vector Signal Generator             | Rohde&Schwarz | SMBV100A              | 257579       | Sep. 04, 22 |
| Agile Signal Generator              | Agilent       | 8645A                 | Agilent      | N/A         |
| Shield Box                          | TOJOIN        | MS4345-C              | SZA18A 3038  | N/A         |
| Attenuator                          | TOJOIN        | CHB-8-90-1-B<br>50SMA | 0803002      | N/A         |
| COM Power Splitter                  | TOJOIN        | PS-TX-2B              | 020801       | N/A         |
| COM Power Splitter                  | TOJOIN        | PS-TX-2B              | 020802       | N/A         |
| Test software                       | TonScend      | JS1120-3-1            | V2.6.88.0330 | N/A         |

## NOTES:

- 1. The test was performed in RF Oven room. (Chenwu)
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.



#### 1.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Parameter                         | Uncertainty |
|-----------------------------------|-------------|
| Occupied Channel Bandwidth        | ±1.132 %    |
| RF output power, conducted        | ±0.56dB     |
| Power Spectral Density, conducted | ±1.017dB    |
| Unwanted Emissions, conducted     | ±1.017dB    |
| All emissions, radiated           | ±4.84dB     |
| Temperature                       | ±0.23°C     |
| Supply voltages                   | ±0.1 %      |
| Time                              | ±4 %        |

#### 1.3. MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1 [4] and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

## Maximum measurement uncertainty

| Parameter                         | Uncertainty |
|-----------------------------------|-------------|
| Occupied Channel Bandwidth        | ±5 %        |
| RF output power, conducted        | ±1,5 dB     |
| Power Spectral Density, conducted | ±3 dB       |
| Unwanted Emissions, conducted     | ±3 dB       |
| All emissions, radiated           | ±6 dB       |
| Temperature                       | ±3 °C       |
| Supply voltages                   | ±3 %        |
| Time                              | ±5 %        |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 2. GENERAL INFORMATION

#### 2.1. GENERAL DESCRIPTION OF EUT

| PRODUCT                     | Wi-Fi Module                                                                                                                                                                                                    |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEST MODEL                  | P2                                                                                                                                                                                                              |
| ADDITIONAL MODELS           | N/A                                                                                                                                                                                                             |
| NOMINAL VOLTAGE             | DC 3.3V                                                                                                                                                                                                         |
| OPERATING TEMPERATURE RNAGE | -20 ~ +70°C                                                                                                                                                                                                     |
| MODULATION TECHNOLOGY       | DSSS, OFDM                                                                                                                                                                                                      |
| MODULATION TYPE             | CCK, DQPSK, DBPSK for DSSS<br>64QAM, 16QAM, QPSK, BPSK for OFDM                                                                                                                                                 |
| OPERATING FREQUENCY         | 2412-2472MHz for 11b/g/n(HT20)                                                                                                                                                                                  |
| ADPTIVE/NON-ADPTIVE         | <ul> <li>□ non-adaptive Equipment</li> <li>☑ adaptive Equipment without the possibility to switch to a non-adaptive mode</li> <li>□ adaptive Equipment which can also operate in a non-adaptive mode</li> </ul> |
| EIRP POWER                  | 19.80dBm (Measured Max.)                                                                                                                                                                                        |
| ANTENNA TYPE                | PCB Antenna, 2.41dBi Gain<br>External PCB Antenna, 1.55dBi Gain                                                                                                                                                 |
| CABLE SUPPLIED              | N/A                                                                                                                                                                                                             |

#### Notes:

- 1. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.
- 2. For the test results, the EUT had been tested with all conditions, but only the worst case was shown in test report.
- 3. Please refer to the EUT photo document (Reference No.: 2202WDG0092) for detailed product
- 4. The Wi-Fi Module uses two antennas, but couldn't transmit simultaneously, only the antenna type and gain are different. EIRP, PSD and radiation spurious emission have been evaluated for both antennas respectively. EIRP data and PSD data for both antennas are shown in the report, but only the worst antenna data (PCB antenna) is shown in the test report for the radiation spurious emission test.
- The EUT provides completed transmitters and receivers, the EUT uses only one antenna at any time.

| MODULATION MODE | TX FUNCTION |
|-----------------|-------------|
| 802.11b         | 1TX/1RX     |
| 802.11g         | 1TX/1RX     |
| 802.11n (HT20)  | 1TX/1RX     |



## 2.2. DESCRIPTION OF TEST MODES

13 channels are provided for 802.11b, 802.11g and 802.11n (HT20):

| CHANNEL | FREQUENCY | CHANNEL | FREQUENCY |  |
|---------|-----------|---------|-----------|--|
| 1       | 2412 MHz  | 8       | 2447 MHz  |  |
| 2       | 2417 MHz  | 9       | 2452 MHz  |  |
| 3       | 2422 MHz  | 10      | 2457 MHz  |  |
| 4       | 2427 MHz  | 11      | 2462 MHz  |  |
| 5       | 2432 MHz  | 12      | 2467 MHz  |  |
| 6       | 2437 MHz  | 13      | 2472 MHz  |  |
| 7       | 2442 MHz  |         |           |  |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



#### 2.2.1. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

| EUT               | APPLICABLE TO |          |          |     |          | DECORIDEION |        |          |                                                         |  |
|-------------------|---------------|----------|----------|-----|----------|-------------|--------|----------|---------------------------------------------------------|--|
| CONFIGURE<br>MODE | ROP           | PSD      | AD       | ОСВ | ООВ      | RSE<1G      | RSE≥1G | RB       | DESCRIPTION                                             |  |
| А                 | <b>√</b>      | <b>√</b> | <b>√</b> | √   | <b>√</b> | √           | √      | <b>√</b> | Powered by DC 3.3V from PCB base support with WIFI link |  |

Where ROP: RF Output Power PSD: Power Spectral Density

AD: Adaptivity (Channel Access Mechanism) OCB: Occupied Channel Bandwidth

OOB: Transmitter unwanted emissioin in the RSE<1G: Spurious Emissions below 1GHz

out-of-band domain

RSE≥1G: Spurious Emissions above 1GHz RB: Receiver Blocking

#### **RF OUTPUT POWER TEST:**

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE | DATA RATE<br>(Mbps) |
|----------------|----------------------|-------------------|--------------------------|--------------------|---------------------|
| 802.11b        | 1 to 13              | 1, 7, 13          | DSSS                     | DBPSK              | 1.0                 |
| 802.11g        | 1 to 13              | 1, 7, 13          | OFDM                     | BPSK               | 6.0                 |
| 802.11n (HT20) | 1 to 13              | 1, 7, 13          | OFDM                     | BPSK               | 6.5                 |

#### **POWER SPECTRAL DENSITY TEST:**

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE | DATA RATE<br>(Mbps) |
|----------------|----------------------|-------------------|--------------------------|--------------------|---------------------|
| 802.11b        | 1 to 13              | 1, 7, 13          | DSSS                     | DBPSK              | 1.0                 |
| 802.11g        | 1 to 13              | 1, 7, 13          | OFDM                     | BPSK               | 6.0                 |
| 802.11n (HT20) | 1 to 13              | 1, 7, 13          | OFDM                     | BPSK               | 6.5                 |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## **ADAPTIVITY TEST:**

Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY |  |
|----------------|----------------------|-------------------|--------------------------|--|
| 802.11b        | 1 to 13              | 1, 13             | DSSS                     |  |
| 802.11g        | 1 to 13              | 1, 13             | OFDM                     |  |
| 802.11n (HT20) | 1 to 13              | 1, 13             | OFDM                     |  |

#### **OCCUPIED CHANNEL BANDWIDTH TEST:**

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ⊠ Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE | DATA RATE<br>(Mbps) |
|----------------|----------------------|-------------------|--------------------------|--------------------|---------------------|
| 802.11b        | 1 to 13              | 1, 13             | DSSS                     | DBPSK              | 1.0                 |
| 802.11g        | 1 to 13              | 1, 13             | OFDM                     | BPSK               | 6.0                 |
| 802.11n (HT20) | 1 to 13              | 1, 13             | OFDM                     | BPSK               | 6.5                 |

#### TRANSMITTER UNWANTED EMISSION IN THE OUT-OF-BAND DOMAIN TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE | DATA RATE<br>(Mbps) |
|----------------|----------------------|-------------------|--------------------------|--------------------|---------------------|
| 802.11b        | 1 to 13              | 1, 13             | DSSS                     | DBPSK              | 1.0                 |
| 802.11g        | 1 to 13              | 1, 13             | OFDM                     | BPSK               | 6.0                 |
| 802.11n (HT20) | 1 to 13              | 1, 13             | OFDM                     | BPSK               | 6.5                 |



#### SPURIOUS EMISSIONS TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

| MODE     | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE | DATA RATE<br>(Mbps) |
|----------|----------------------|-------------------|--------------------------|--------------------|---------------------|
| 802.11b  | 1 to 13              | 1                 | DSSS                     | DBPSK              | 1                   |
| Receiver | 1 to 13              | 1                 | -                        | -                  | -                   |

#### **SPURIOUS EMISSIONS TEST (ABOVE 1 GHz):**

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE | DATA RATE<br>(Mbps) |
|----------------|-------------------|-------------------|--------------------------|--------------------|---------------------|
| 802.11b        | 1 to 13           | 1, 13             | DSSS                     | DBPSK              | 1.0                 |
| 802.11g        | 1 to 13           | 1, 13             | OFDM                     | BPSK               | 6.0                 |
| 802.11n (HT20) | 1 to 13           | 1, 13             | OFDM                     | BPSK               | 6.5                 |
| Receiver       | 1 to 13           | 1, 13             | -                        | -                  | -                   |

#### **RECEIVER BLOCKING TEST:**

Following channel(s) was (were) selected for the final test as listed below.

| MODE    | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE | DATA RATE<br>(Mbps) |
|---------|----------------------|-------------------|--------------------------|--------------------|---------------------|
| 802.11b | 1 to 13              | 1, 13             | DSSS                     | DBPSK              | 1.0                 |



## **TEST CONDITION:**

| APPLICABLE<br>TO | ENVIRONMENTAL CONDITIONS              | INPUT POWER                   | TESTED BY |
|------------------|---------------------------------------|-------------------------------|-----------|
| ROP              | 25deg. C, 60%RH                       | DC 3.3V from PCB base support | Vincent   |
| PSD              | 25deg. C, 60%RH                       | DC 3.3V from PCB base support | Vincent   |
| AD               | 25deg. C, 60%RH DC 3.3V from F suppor |                               | Vincent   |
| ОСВ              | 25deg. C, 60%RH                       | DC 3.3V from PCB base support | Vincent   |
| ООВ              | 25deg. C, 60%RH                       | DC 3.3V from PCB base support | Vincent   |
| RSE<1G           | 27deg. C, 56%RH                       | DC 3.3V from PCB base support | Jelly     |
| RSE≥1G           | 27deg. C, 56%RH                       | DC 3.3V from PCB base support | Jelly     |
| RB               | 25deg. C, 60%RH                       | DC 3.3V from PCB base support | Yoyo      |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



#### 2.3. GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

## EN 300 328 V2.2.2 (2019-07)

All test items have been performed and recorded as per the above standards.

#### 2.4. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| NO. | PRODUCT          | BRAND   | MODEL NO.        | SERIAL NO. | FCC ID |
|-----|------------------|---------|------------------|------------|--------|
| 1   | Notebook         | DELL    | Inspiron 13-7378 | GMSJZD2    | N/A    |
| 2   | Wireless Router  | TP-LINK | TL-WVR1200G      | N/A        | N/A    |
| 3   | PCB base support | N/A     | N/A              | N/A        | N/A    |

| NO. | SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------|
|     | AC Line: Unshielded, Detachable 0.8m; DC Line: Unshielded, Non-detachable 1.8m<br>USB Cable: Shielded, Detachable, 0.5m |
| 2   | AC Line: Unshielded, Detachable 1.0m                                                                                    |
| 3   | N/A                                                                                                                     |

Page 15 of 53

Tel.: +86 769 8998 2098

Fax: +86 769 8593 1080



## 3 TEST PROCEDURES AND RESULTS

#### TRANSMITTER PARAMETERS

## 3.1. RF OUTPUT POWER

#### 3.1.1. LIMITS OF RF OUTPUT POWER

| CONDITION                 | FREQUENCY BAND    | LIMIT (e.i.r.p.) |
|---------------------------|-------------------|------------------|
| Under all test conditions | 2400 ~ 2483.5 MHz | AV: 20dBm        |

#### 3.1.2. TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2.

| Measurement            |                        |  |  |  |
|------------------------|------------------------|--|--|--|
| ⊠Conducted measurement | ☐ Radiated measurement |  |  |  |

#### 3.1.3. DEVIATION FROM TEST STANDARD

No deviation.

#### 3.1.4. TEST SETUP

The measurement was performed at both normal environmental conditions and at the extremes of the operating temperature. The measurement was performed at the lowest, the middle, and the highest channel. The equipment was configured to operate under its worst case situation with respect to output power. (In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator.) Controlling software has been activated to set the EUT on specific channel and power level.



## 3.1.5. TEST RESULTS

| TEST CONDITION          |         |                     | EIRP POWER (dBm)  |                   |                    |  |  |
|-------------------------|---------|---------------------|-------------------|-------------------|--------------------|--|--|
|                         |         |                     | (CH1)<br>2412 MHz | (CH7)<br>2442 MHz | (CH13)<br>2472 MHz |  |  |
| 802.11b                 | PCB An  | tenna               |                   |                   |                    |  |  |
| T <sub>nom</sub> (°C)   | +25     |                     | 18.32             | 18.33             | 18.34              |  |  |
| T <sub>min</sub> (°C)   | -20     | $V_{\text{nom}}(v)$ | 17.91             | 17.79             | 18.06              |  |  |
| T <sub>max</sub> (°C)   | +70     |                     | 18.48             | 18.65             | 18.67              |  |  |
| 802.11b                 | Externa | I PCB Anten         | na                |                   |                    |  |  |
| T <sub>nom</sub> (°C)   | +25     |                     | 17.45             | 17.46             | 17.47              |  |  |
| T <sub>min</sub> (°C)   | -20     | $V_{\text{nom}}(v)$ | 17.14             | 16.96             | 17.14              |  |  |
| T <sub>max</sub> (°C)   | +70     |                     | 17.89             | 17.83             | 17.72              |  |  |
| 802.11g PCB Antenna     |         |                     |                   |                   |                    |  |  |
| T <sub>nom</sub> (°C)   | +25     |                     | 19.40             | 19.27             | 19.26              |  |  |
| T <sub>min</sub> (°C)   | -20     | $V_{\text{nom}}(v)$ | 18.96             | 18.94             | 18.82              |  |  |
| T <sub>max</sub> (°C)   | +70     |                     | 19.80             | 19.60             | 19.54              |  |  |
| 802.11g                 | Externa | I PCB Anten         | na                |                   |                    |  |  |
| T <sub>nom</sub> (°C)   | +25     |                     | 18.48             | 18.35             | 18.34              |  |  |
| T <sub>min</sub> (°C)   | -20     | $V_{\text{nom}}(v)$ | 18.15             | 17.83             | 17.99              |  |  |
| T <sub>max</sub> (°C)   | +70     |                     | 18.90             | 18.70             | 18.57              |  |  |
| 802.11n (H <sup>-</sup> | T20) F  | PCB Antenna         | a                 |                   |                    |  |  |
| T <sub>nom</sub> (°C)   | +25     |                     | 19.30             | 19.44             | 19.28              |  |  |
| T <sub>min</sub> (°C)   | -20     | $V_{\text{nom}}(v)$ | 18.99             | 19.29             | 19.10              |  |  |
| T <sub>max</sub> (°C)   | +70     |                     | 19.52             | 19.57             | 19.42              |  |  |
| 802.11n (H              | T20) E  | External PCE        | 3 Antenna         |                   |                    |  |  |
| T <sub>nom</sub> (°C)   | +25     |                     | 18.43             | 18.57             | 18.41              |  |  |
| $T_{min}(^{\circ}C)$    | -20     | $V_{\text{nom}}(v)$ | 18.10             | 18.05             | 18.06              |  |  |
| $T_{max}(^{\circ}C)$    | +70     |                     | 18.86             | 18.93             | 18.65              |  |  |

**NOTE:** EIRP = Conducted output power + ANT Gain.

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



#### 3.2. POWER SPECTRAL DENSITY

#### 3.2.1. LIMIT OF POWER SPECTRAL DENSITY

| CONDITION               | FREQUENCY BAND    | LIMIT (e.i.r.p.) |
|-------------------------|-------------------|------------------|
| Under normal conditions | 2400 ~ 2483.5 MHz | 10dBm / 1MHz     |

#### 3.2.2. TEST PROCEDURE

Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2.

| Measurement Method                                                                                                                                                                     |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                        |  |  |  |  |  |
| Option 2: For equipment with continuous transmission capability or for equipment operating (or with the capability to operate) with a constant duty cycle (e.g. Frame Based equipment) |  |  |  |  |  |

#### 3.2.3. DEVIATION FROM TEST STANDARD

No deviation.

#### 3.2.4. TEST SETUP

The measurement was performed at normal environmental conditions only. The measurement was performed at the lowest, the middle, and the highest channel. The equipment was configured to operate under its worst case situation with respect to output power. (In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator.) Controlling software has been activated to set the EUT on specific status.



## 3.2.5. TEST RESULTS

#### 802.11b PCB Antenna

| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | POWER DENSITY<br>(dBm/1MHz)<br>(E.I.R.P) | LIMIT<br>(dBm/1MHz)<br>(E.I.R.P) | PASS/FAIL |
|---------|-------------------------------|------------------------------------------|----------------------------------|-----------|
| 1       | 2412.00                       | 9.74                                     | 10                               | PASS      |
| 7       | 2442.00                       | 9.73                                     | 10                               | PASS      |
| 13      | 2472.00                       | 9.77                                     | 10                               | PASS      |

#### 802.11b External PCB Antenna

| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | POWER DENSITY<br>(dBm/1MHz)<br>(E.I.R.P) | LIMIT<br>(dBm/1MHz)<br>(E.I.R.P) | PASS/FAIL |
|---------|-------------------------------|------------------------------------------|----------------------------------|-----------|
| 1       | 2412.00                       | 8.87                                     | 10                               | PASS      |
| 7       | 2442.00                       | 8.86                                     | 10                               | PASS      |
| 13      | 2472.00                       | 8.90                                     | 10                               | PASS      |

## 802.11g PCB Antenna

| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | POWER DENSITY<br>(dBm/1MHz)<br>(E.I.R.P) | LIMIT<br>(dBm/1MHz)<br>(E.I.R.P) | PASS/FAIL |
|---------|-------------------------------|------------------------------------------|----------------------------------|-----------|
| 1       | 2412.00                       | 7.81                                     | 10                               | PASS      |
| 7       | 2442.00                       | 7.65                                     | 10                               | PASS      |
| 13      | 2472.00                       | 7.59                                     | 10                               | PASS      |

## 802.11g External PCB Antenna

| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | POWER DENSITY<br>(dBm/1MHz)<br>(E.I.R.P) | LIMIT<br>(dBm/1MHz)<br>(E.I.R.P) | PASS/FAIL |
|---------|-------------------------------|------------------------------------------|----------------------------------|-----------|
| 1       | 2412.00                       | 6.89                                     | 10                               | PASS      |
| 7       | 2442.00                       | 6.73                                     | 10                               | PASS      |
| 13      | 2472.00                       | 6.67                                     | 10                               | PASS      |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 802.11n (HT20) PCB Antenna

| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | POWER DENSITY<br>(dBm/1MHz)<br>(E.I.R.P) | LIMIT<br>(dBm/1MHz)<br>(E.I.R.P) | PASS/FAIL |
|---------|-------------------------------|------------------------------------------|----------------------------------|-----------|
| 1       | 2412.00                       | 7.52                                     | 10                               | PASS      |
| 7       | 2442.00                       | 7.62                                     | 10                               | PASS      |
| 13      | 2472.00                       | 7.42                                     | 10                               | PASS      |

## 802.11n (HT20) External PCB Antenna

| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | POWER DENSITY<br>(dBm/1MHz)<br>(E.I.R.P) | LIMIT<br>(dBm/1MHz)<br>(E.I.R.P) | PASS/FAIL |
|---------|-------------------------------|------------------------------------------|----------------------------------|-----------|
| 1       | 2412.00                       | 6.65                                     | 10                               | PASS      |
| 7       | 2442.00                       | 6.75                                     | 10                               | PASS      |
| 13      | 2472.00                       | 6.55                                     | 10                               | PASS      |



#### 3.3. OCCUPIED CHANNEL BANDWIDTH

#### 3.3.1. LIMIT OF OCCUPIED CHANNEL BANDWIDTH

|             | CONDITION                                                                               | LIMIT                                                     |
|-------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|
|             | All types of equipment                                                                  | Shall fall completely within the band 2400 to 2483.5 MHz. |
| Additional  | For non-adaptive using wide band modulations other than FHSS system and e.i.r.p >10dBm. | Less than 20MHz                                           |
| requirement | For non-adaptive Frequency<br>Hopping system and e.i.r.p<br>>10dBm.                     | Less than 5MHz                                            |

#### 3.3.2. TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2.

| Measur                 | ement                  |
|------------------------|------------------------|
| ⊠Conducted measurement | ☐ Radiated measurement |

### 3.3.3. DEVIATION FROM TEST STANDARD

No deviation.

#### 3.3.4. TEST SETUP

The measurement was performed at normal environmental conditions only. This measurement was performed at the lowest and the highest channel. The equipment was configured to operate under its worst case situation with respect to output power. (In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator.) Controlling software has been activated to set the EUT on specific status.



## 3.3.5. TEST RESULTS

#### 802.11b

| CHANNEL | CHANNEL<br>FREQUENCY | OCCUPIED<br>BANDWIDTH | Measured f | requencies | LIMIT                | PASS/FAIL   |  |
|---------|----------------------|-----------------------|------------|------------|----------------------|-------------|--|
| OHAMILE | (MHz)                | (MHZ)                 | FL (MHz)   | FH (MHz)   | LIIVIIII             | I AOO/I AIL |  |
| 1       | 2412                 | 14.80                 | 2404.64    | 2419.44    | FL > 2400 MHz<br>and | PASS        |  |
| 13      | 2472                 | 14.88                 | 2464.56    | 2479.44    | FH < 2483.5 MHz      | PASS        |  |

## 802.11g

| CHANNEL | CHANNEL<br>FREQUENCY | OCCUPIED<br>BANDWIDTH | Measured f | ured frequencies |                      | PASS/FAIL   |
|---------|----------------------|-----------------------|------------|------------------|----------------------|-------------|
| OHARRE  | (MHz)                | (MHZ)                 | FL (MHz)   | FH (MHz)         | Limit                | I AOO/I AIL |
| 1       | 2412                 | 17.04                 | 2403.52    | 2420.56          | FL > 2400 MHz<br>and | PASS        |
| 13      | 2472                 | 17.04                 | 2463.52    | 2480.56          | FH < 2483.5 MHz      | PASS        |

## 802.11n (HT20)

| CHANNEL | CHANNEL<br>FREQUENCY | OCCUPIED<br>BANDWIDTH | Measured f | requencies | LIMIT                | PASS/FAIL   |  |
|---------|----------------------|-----------------------|------------|------------|----------------------|-------------|--|
| OTAMEL  | (MHz)                | (MHZ)                 | FL (MHz)   | FH (MHz)   | LIMIT                | I ASS/I AIL |  |
| 1       | 2412                 | 18.16                 | 2402.96    | 2421.12    | FL > 2400 MHz<br>and | PASS        |  |
| 13      | 2472                 | 18.16                 | 2462.96    | 2481.12    | FH < 2483.5 MHz      | PASS        |  |

Note: FL is the lowest frequency of the 99% occupied bandwidth of power envelope. FH is the highest frequency of the 99% occupied bandwidth of power envelope.

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



#### 3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

## 3.4.1. LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND **DOMAIN**

| CONDITION | LIMIT                                                                                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure. |



## B: -20 dBm/MHz e.i.r.p.

C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

## 3.4.2. TEST PROCEDURE

Refer to chapter 5.4.8.2 of ETSI EN 300 328 V2.2.2.

| Measure | ement                  |
|---------|------------------------|
|         | ☐ Radiated measurement |

#### 3.4.3. DEVIATION FROM TEST STANDARD

No deviation.

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



#### 3.4.4. TEST SETUP

The measurement was performed at normal environmental conditions only. This measurement was performed at the lowest and the highest channel. The equipment was configured to operate under its worst case situation with respect to output power. (In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator.) The frequency has to be recorded for the right and left end above threshold of highest and lowest channel respectively.

#### 3.4.5. TEST RESULTS

#### 802.11b

| CHANNE                                     | CHANNEL FREQ.(MHz) 2412          |         |                |                    |                                       | 2472           |                |                    |                |                |  |
|--------------------------------------------|----------------------------------|---------|----------------|--------------------|---------------------------------------|----------------|----------------|--------------------|----------------|----------------|--|
|                                            |                                  |         | 00             | OOB Emission (MHz) |                                       |                |                | OOB Emission (MHz) |                |                |  |
| TEST (                                     | 2385.2 2370.4<br>~ 2400 ~ 2385.2 |         |                |                    | 2483.5 2498.38<br>~ 2498.38 ~ 2513.26 |                |                |                    |                |                |  |
| <b>Temperature</b> Volt                    |                                  | Voltage | Freq.<br>(MHz) | Power<br>(dBm)     | Freq.<br>(MHz)                        | Power<br>(dBm) | Freq.<br>(MHz) | Power<br>(dBm)     | Freq.<br>(MHz) | Power<br>(dBm) |  |
| Tnorm(°C) 25 Normal 2399.50 -38.33 2383.70 |                                  | -52.25  | 2487.00        | -43.68             | 2498.80                               | -51.49         |                |                    |                |                |  |
| Limit (dBm/MHz)                            |                                  | -10.00  |                | -20.00             |                                       | -10.00         |                | -20.00             |                |                |  |
| PAS                                        | SS/FAII                          |         | PAS            | SS                 | PAS                                   | SS             | PAS            | SS                 | PASS           |                |  |

#### 802.11a

| 602.11g         |                                                                |                                     |     |                |                |                                       |                    |         |        |  |  |
|-----------------|----------------------------------------------------------------|-------------------------------------|-----|----------------|----------------|---------------------------------------|--------------------|---------|--------|--|--|
| CHANNE          | L FREG                                                         | Q.(MHz)                             |     | 24             | 12             |                                       | 2472               |         |        |  |  |
|                 |                                                                |                                     | 00  | OB Emis        | sion (MHz      | )                                     | OOB Emission (MHz) |         |        |  |  |
| TEST (          | CONDIT                                                         | 2382.96 2365.92<br>~ 2400 ~ 2382.96 |     |                | -              | 2483.5 2500.54<br>~ 2500.54 ~ 2517.58 |                    |         |        |  |  |
| Tempera         | TemperatureVoltageFreq. (MHz)Power (dBm)Freq. (MHz)Power (dBm) |                                     |     | Freq.<br>(MHz) | Power<br>(dBm) | Freq.<br>(MHz)                        | Power<br>(dBm)     |         |        |  |  |
| Tnorm(℃)        | Tnorm(°C) 25 Normal 2399.50 -31.88 2382.46 -48.65              |                                     |     |                | -48.65         | 2484.00                               | -31.76             | 2501.04 | -49.51 |  |  |
| Limit (dBm/MHz) |                                                                | -10.00                              |     | -20.00         |                | -10.00                                |                    | -20.00  |        |  |  |
| PAS             | SS/FAII                                                        | _                                   | PAS | SS             | PAS            | SS                                    | PASS               |         | PASS   |  |  |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 802.11n (HT20)

| 002.1111 (1120)         |                                                                |        |                |                                     |                       |                |                    |             |               |        |  |
|-------------------------|----------------------------------------------------------------|--------|----------------|-------------------------------------|-----------------------|----------------|--------------------|-------------|---------------|--------|--|
| CHANNEL FREQ.(MHz) 2412 |                                                                |        |                |                                     | 2472                  |                |                    |             |               |        |  |
|                         |                                                                |        | 00             | OB Emis                             | sion (MHz             | )              | OOB Emission (MHz) |             |               |        |  |
| TEST (                  | TEST CONDITION                                                 |        |                | 2381.84 2363.68<br>~ 2400 ~ 2381.84 |                       |                |                    | 3.5<br>1.66 | 2501<br>~ 251 |        |  |
| Tempera                 | TemperatureVoltageFreq. (MHz)Power (dBm)Freq. (MHz)Power (dBm) |        | Freq.<br>(MHz) | Power<br>(dBm)                      | Freq.<br>(MHz)        | Power<br>(dBm) |                    |             |               |        |  |
| Tnorm(℃)                | 25                                                             | Normal | 2399.50        | -33.06                              | -33.06 2381.34 -49.80 |                | 2484.00            | -31.16      | 2502.16       | -49.01 |  |
| Limit (dBm/MHz)         |                                                                | -10.00 |                | -20.00                              |                       | -10.00         |                    | -20.00      |               |        |  |
| PA                      | SS/FAII                                                        | _      | PAS            | SS                                  | PAS                   | SS             | PAS                | SS          | PASS          |        |  |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

# 3.5.1. APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LIMIT FOR WIDE BAND MODULATION TECHNIQUES

|                                                | Operational Mode                                                             |                          |                                                           |                                                                                 |  |  |  |  |
|------------------------------------------------|------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
|                                                |                                                                              | LB                       | LBT based Detect and Avoid                                |                                                                                 |  |  |  |  |
| Requirement                                    | Non-LBT<br>based<br>Detect and<br>Avoid                                      | Frame Based<br>Equipment | Load Based<br>Equipment<br>(CCA using 'energy<br>detect') | Load Based Equipment (CCA not using any of the mechanisms referenced as note 2) |  |  |  |  |
| Minimum Clear Channel<br>Assessment (CCA) Time | NA                                                                           | 18 us (see note 1)       | (see note 2)                                              | 18 us (see note 1)                                                              |  |  |  |  |
| Maximum Channel<br>Occupancy (COT) Time        | 40 ms                                                                        | 1 ms to 10 ms            | (see note 2)                                              | 13 ms                                                                           |  |  |  |  |
| Minimum Idle Period                            | 5us                                                                          | 5% of COT                | (see note 2)                                              | 18us (see note 3)                                                               |  |  |  |  |
| Extended CCA check                             | NA                                                                           | NA                       | (see note 2)                                              | 18us~160us                                                                      |  |  |  |  |
| Short Control Signalling Transmissions         | Maximum duty cycle of 10 % within an observation period of 50 r (see note 4) |                          |                                                           |                                                                                 |  |  |  |  |

NOTE 1: The CCA time used by the equipment shall be declared by the supplier.

NOTE 2:Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear ChannelAssessment (CCA) mode using energy detect, as described in IEEE 802.11™-2012 clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4™-2011 [i.4], clause 4, clause 5 and clause 8

NOTE 3: The Idle Period in between transmissions is considered to be the CCA or the Extended CCA check as there are no transmissions during this period.

NOTE 4: Adaptive equipment may or may not have Short Control Signalling Transmissions

## Interference threshold level

| Maximum transmit power (P <sub>H</sub> ) EIRP dBm | Threshold level (TL)<br>(see notes 1 and 2) |
|---------------------------------------------------|---------------------------------------------|
| 20                                                | -70 dBm / MHz                               |

NOTE 1: For a 20 dBm e.i.r.p. transmitter the CCA threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G)

NOTE 2: For power levels less than 20 dBm e.i.r.p. the CCA threshold level may be relaxed to:  $TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW} / \text{Pout})$ ; (Pout in mW e.i.r.p.)

| Wanted signal mean power from companion device | Unwanted signal frequency (MHz) | Unwanted signal power (dBm) |
|------------------------------------------------|---------------------------------|-----------------------------|
| sufficient to maintain the link                | 2 395 or 2 488,5                | -35                         |
| (see note 2)                                   | (see note 1)                    | (see note 3)                |

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.

NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.



## 3.5.2. TEST PROCEDURES

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2.

| Measurement |             |  |                      |  |
|-------------|-------------|--|----------------------|--|
|             | measurement |  | Radiated measurement |  |

## 3.5.3. TEST SETUP CONFIGURATION





## 3.5.4. INTERFERENCE THRESHOLD LEVEL

## **Detection Threshold Level**

The maximum EIRP power is 19.80dBm and antenna gain is 2.41dBi. Detection Threshold level= -70 dBm/MHz + 10 × log10 (100 mW / (19.80dBm))+2.41= -67.37dBm/MHz, The interference signal level to the UUT is -67.37dBm/MHz

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 3.5.5. LIST OF MEASUREMENTS

|                                                                   |                | Limit                                    |                                   |  |
|-------------------------------------------------------------------|----------------|------------------------------------------|-----------------------------------|--|
| UUT Operational<br>Mode                                           | Applica<br>ble | The Maximum<br>Channel Occupancy<br>Time | The Minimum idle<br>Period        |  |
| Frame Based<br>Equipment                                          |                | meet in 1ms ~ 10ms                       | >5% x channel occupancy time      |  |
| Load Based Equipment (Base on 'Spectrum Sharing' mechanisms)      |                | Follow IEEE 802.11<br>Less thanms        | Follow IEEE 802.11<br>More thanms |  |
| Load Based Equipment (Not using any of the mechanisms referenced) | V              | 13ms                                     | 18us                              |  |

| Clause        | Test Parameter                            | Remarks        | Pass/Fail |
|---------------|-------------------------------------------|----------------|-----------|
| 4.3.2.6.3.2.2 | Adaptive (Frame Based Equipment)          | Not Applicable | NA        |
| 4.3.2.6.3.2.3 | Adaptive (Load Based Equipment)           | Applicable     | Pass      |
| 4.3.2.6.4     | Short Control Signalling<br>Transmissions | Applicable     | Pass      |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 3.5.6. TEST RESULT

## 3.5.6.1. ADAPTIVE RESULT

## OPERATING FREQUENCY BANDS AND MODE OF EUT

| Operational Mode | Operating Frequency<br>- Low Channel<br>(MHz) | Operating Frequency<br>-High Channel<br>(MHz) | Test Result |
|------------------|-----------------------------------------------|-----------------------------------------------|-------------|
| 802.11b          | 2412                                          | 2472                                          | PASS        |
| 802.11g          | 2412                                          | 2472                                          | PASS        |
| 802.11n (HT20)   | 2412                                          | 2472                                          | PASS        |



## 802.11b

## 2412MHz



## 2472MHz





Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 802.11g

## 2412MHz



## 2472MHz







Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China. Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080

Email: <a href="mailto:customerservice.dg@bureauveritas.com">customerservice.dg@bureauveritas.com</a>



## 802.11n (HT20)

## 2412MHz



## 2472MHz







Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China. Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 3.5.6.2. THE CHANNEL OCCUPANCY TIME RESULT

## 802.11b mode

## The Channel occupancy Time: 12.628ms



## Minimum idle time: 0.07ms



Page 34 of 53

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 802.11g mode

## The Channel occupancy Time: 12.627ms



## Minimum idle time: 0.14ms



Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 802.11nHT20 mode

## The Channel occupancy Time: 12.947ms



## Minimum idle time: 0.108ms



Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 3.6. TRANSMITTER SPURIOUS EMISSIONS

## 3.6.1. LIMITS OF TRANSMITTER SPURIOUS EMISSIONS

Transmitter limits for narrowband spurious emissions:

| Frequency Range     | Maximum Power Limit<br>(e.r.p. (≤ 1 GHz)<br>e.i.r.p. (> 1 GHz)) | Bandwidth |
|---------------------|-----------------------------------------------------------------|-----------|
| 30 MHz to 47 MHz    | -36dBm                                                          | 100kHz    |
| 47 MHz to 74 MHz    | -54dBm                                                          | 100kHz    |
| 74 MHz to 87,5 MHz  | -36dBm                                                          | 100kHz    |
| 87,5 MHz to 118 MHz | -54dBm                                                          | 100kHz    |
| 118 MHz to 174 MHz  | -36dBm                                                          | 100kHz    |
| 174 MHz to 230 MHz  | -54dBm                                                          | 100kHz    |
| 230 MHz to 470 MHz  | -36dBm                                                          | 100kHz    |
| 470 MHz to 694 MHz  | -54dBm                                                          | 100kHz    |
| 694 MHz to 1 GHz    | -36dBm                                                          | 100kHz    |
| 1GHz ~ 12.75GHz     | -30dBm                                                          | 1MHz      |

Note: These limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

## 3.6.2. TEST PROCEDURE

Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2.

| Measurement                                                                                                                                                                                                                                                                                         |                                                                                              |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| ☐ Conducted measurement                                                                                                                                                                                                                                                                             | ☐ Radiated measurement                                                                       |  |  |  |  |  |
| For Conducted measurement:                                                                                                                                                                                                                                                                          |                                                                                              |  |  |  |  |  |
| The level of unwanted emissions shall be measured as their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation). |                                                                                              |  |  |  |  |  |
| Conducted measurement (For equipment with multiple transmit chains):                                                                                                                                                                                                                                |                                                                                              |  |  |  |  |  |
| <ul> <li>Option 1: The results for each of the transmit chains for the corresponding 1MHz<br/>segments shall be added and compared with the limits.</li> </ul>                                                                                                                                      |                                                                                              |  |  |  |  |  |
| Option 2: The results for each of the transm the limits after these limits have been reduce chains)                                                                                                                                                                                                 | it chains shall be individually compared with ced by 10 x log (N) (number of active transmit |  |  |  |  |  |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



#### 3.6.3. DEVIATION FROM TEST STANDARD

No deviation.

#### 3.6.4. TEST SETUP

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The equipment was configured to operate under its worst case situation with respect to output power.
- 3. The measurement was performed at normal environmental conditions only. Controlling software has been activated to set the EUT on specific status.
- 4. This measurement was performed at the lowest and the highest channel.

Report Format Version A

Tel.: +86 769 8998 2098



# 3.6.5. TEST RESULTS

#### **BELOW 1GHz WORST-CASE DATA**

#### 802.11b

| FREQUENCY RANGE 30MHz ~ 1GI | OPERATING CHANNEL | 1 |
|-----------------------------|-------------------|---|
|-----------------------------|-------------------|---|

| SPURIOUS EMISSION LEVEL |                         |                |                |                |  |  |
|-------------------------|-------------------------|----------------|----------------|----------------|--|--|
| Frequency<br>(MHz)      | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |  |
| 62.27                   | Н                       | -69.52         | -54.00         | -15.52         |  |  |
| 153.06                  | Н                       | -71.22         | -36.00         | -35.22         |  |  |
| 176.02                  | Н                       | -69.01         | -54.00         | -15.01         |  |  |
| 234.19                  | Н                       | -70.55         | -36.00         | -34.55         |  |  |
| 322.88                  | Н                       | -66.80         | -36.00         | -30.80         |  |  |
| 714.30                  | Н                       | -60.17         | -36.00         | -24.17         |  |  |



Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



| FREQUENCY RANGE | 30MHz ~ 1GHz | OPERATING CHANNEL | 1 |
|-----------------|--------------|-------------------|---|
|-----------------|--------------|-------------------|---|

|                    | SPURIOUS EMISSION LEVEL |                |                |                |  |  |  |
|--------------------|-------------------------|----------------|----------------|----------------|--|--|--|
| Frequency<br>(MHz) | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |  |  |
| 63.17              | V                       | -66.90         | -54.00         | -12.90         |  |  |  |
| 166.61             | V                       | -59.30         | -36.00         | -23.30         |  |  |  |
| 313.43             | V                       | -61.74         | -36.00         | -25.74         |  |  |  |
| 332.83             | V                       | -61.95         | -36.00         | -25.95         |  |  |  |
| 395.04             | V                       | -62.38         | -36.00         | -26.38         |  |  |  |
| 716.70             | V                       | -68.64         | -36.00         | -32.64         |  |  |  |





## **ABOVE 1GHz DATA**

## 802.11b

| FREQUENCY RANGE 1GHz ~ 12.75GHz OPERATING CHANNEL 1, 13 |
|---------------------------------------------------------|
|---------------------------------------------------------|

| SPURIOUS EMISSION LEVEL |                    |                         |                |                |                |
|-------------------------|--------------------|-------------------------|----------------|----------------|----------------|
| Channel                 | Frequency<br>(MHz) | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                         | 4824.00            | Н                       | -46.36         | -30.00         | -16.36         |
| 1                       | 4824.00            | V                       | -48.20         | -30.00         | -18.20         |
|                         | 7236.00            | Н                       | -49.61         | -30.00         | -19.61         |
|                         | 7236.00            | V                       | -52.26         | -30.00         | -22.26         |
|                         | 4944.00            | Н                       | -44.10         | -30.00         | -14.10         |
| 13                      | 4944.00            | V                       | -46.36         | -30.00         | -16.36         |
|                         | 7416.00            | Н                       | -46.51         | -30.00         | -16.51         |
|                         | 7416.00            | V                       | -48.71         | -30.00         | -18.71         |

## 802.11g

| FREQUENCY RANGE | 1GHz ~ 12.75GHz | OPERATING CHANNEL | 1, 13 |
|-----------------|-----------------|-------------------|-------|
|-----------------|-----------------|-------------------|-------|

| SPURIOUS EMISSION LEVEL |                    |                         |                |                |                |
|-------------------------|--------------------|-------------------------|----------------|----------------|----------------|
| Channel                 | Frequency<br>(MHz) | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                         | 4824.00            | Н                       | -45.51         | -30.00         | -15.51         |
| 1                       | 4824.00            | V                       | -47.51         | -30.00         | -17.51         |
|                         | 7236.00            | Н                       | -50.10         | -30.00         | -20.10         |
|                         | 7236.00            | V                       | -51.02         | -30.00         | -21.02         |
| 13                      | 4944.00            | Н                       | -46.51         | -30.00         | -16.51         |
|                         | 4944.00            | V                       | -47.10         | -30.00         | -17.10         |
|                         | 7416.00            | Н                       | -48.51         | -30.00         | -18.51         |
|                         | 7416.00            | V                       | -49.97         | -30.00         | -19.97         |



## 802.11n (HT20)

| FREQUENCY RANGE 1GHz ~ 12.75GHz | OPERATING CHANNEL | 1, 13 |
|---------------------------------|-------------------|-------|
|---------------------------------|-------------------|-------|

| SPURIOUS EMISSION LEVEL |                    |                         |                |                |                |
|-------------------------|--------------------|-------------------------|----------------|----------------|----------------|
| Channel                 | Frequency<br>(MHz) | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                         | 4824.00            | Н                       | -46.36         | -30.00         | -16.36         |
| 1                       | 4824.00            | V                       | -48.51         | -30.00         | -18.51         |
|                         | 7236.00            | Н                       | -48.15         | -30.00         | -18.15         |
|                         | 7236.00            | V                       | -50.14         | -30.00         | -20.14         |
|                         | 4944.00            | Н                       | -44.25         | -30.00         | -14.25         |
| 13                      | 4944.00            | V                       | -46.25         | -30.00         | -16.25         |
|                         | 7416.00            | Н                       | -45.15         | -30.00         | -15.15         |
|                         | 7416.00            | V                       | -48.62         | -30.00         | -18.62         |

c of China. Email: <a href="mailto:customerservice.dg@bureauveritas.com">customerservice.dg@bureauveritas.com</a>



#### **RECEIVER PARAMETERS**

#### 3.7. RECEIVER SPURIOUS RADIATION

## 3.7.1. LIMITS OF RECEIVER SPURIOUS RADIATION

| Frequency Range | Maximum Power Limit<br>(e.r.p. (≤ 1 GHz)<br>e.i.r.p. (> 1 GHz)) |
|-----------------|-----------------------------------------------------------------|
| 30MHz ~ 1GHz    | -57dBm                                                          |
| 1GHz ~ 12.75GHz | -47dBm                                                          |

Note: These limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

#### 3.7.2. TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2.

| Measurement                                                                                                                                                                                              |                                        |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| ☐ Conducted measurement                                                                                                                                                                                  | ☐ Radiated measurement                 |  |  |  |
| For Conducted measurement: The level of unwanted emissions shall be measu (conducted spurious emissions) and their effective cabinet or structure of the equipment with the an load (cabinet radiation). | ve radiated power when radiated by the |  |  |  |
| •                                                                                                                                                                                                        | nit chains for the corresponding 1MHz  |  |  |  |

#### 3.7.3. DEVIATION FROM TEST STANDARD

No deviation.

#### 3.7.4. TEST SETUP

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurement was performed at normal environmental conditions only. Controlling software has been activated to set the EUT on specific status.
- 4. This measurement was performed at the lowest and the highest channel.

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 3.7.5. TEST RESULTS

#### **RX BELOW 1GHz WORST-CASE DATA**

| FREQUENCY RANGE   30MHz ~ 1GHz   OPERATING CHANNEL   1 |
|--------------------------------------------------------|
|--------------------------------------------------------|

| SPURIOUS EMISSION LEVEL |                         |                |                |                |
|-------------------------|-------------------------|----------------|----------------|----------------|
| Frequency<br>(MHz)      | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 62.46                   | Н                       | -70.87         | -57.00         | -13.87         |
| 153.29                  | Н                       | -69.54         | -57.00         | -12.54         |
| 240.10                  | Н                       | -70.91         | -57.00         | -13.91         |
| 319.19                  | Н                       | -63.11         | -57.00         | -6.11          |
| 665.51                  | Н                       | -67.83         | -57.00         | -10.83         |
| 711.04                  | Н                       | -63.83         | -57.00         | -6.83          |



Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



| FREQUENCY RANGE 30MHz ~ 1GHz O | OPERATING CHANNEL | 1 |
|--------------------------------|-------------------|---|
|--------------------------------|-------------------|---|

| SPURIOUS EMISSION LEVEL |                         |                |                |                |
|-------------------------|-------------------------|----------------|----------------|----------------|
| Frequency<br>(MHz)      | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 62.17                   | V                       | -65.86         | -57.00         | -8.86          |
| 166.19                  | V                       | -65.31         | -57.00         | -8.31          |
| 239.91                  | V                       | -73.68         | -57.00         | -16.68         |
| 331.70                  | V                       | -65.90         | -57.00         | -8.90          |
| 393.26                  | V                       | -67.89         | -57.00         | -10.89         |
| 714.72                  | V                       | -66.56         | -57.00         | -9.56          |





## **RX ABOVE 1GHz WORST-CASE DATA**

| FREQUENCY RANGE | 1GHz ~ 12.75GHz | OPERATING CHANNEL | 1, 13 |
|-----------------|-----------------|-------------------|-------|
|-----------------|-----------------|-------------------|-------|

| SPURIOUS EMISSION LEVEL |                    |                         |                |                |                |
|-------------------------|--------------------|-------------------------|----------------|----------------|----------------|
| Channel                 | Frequency<br>(MHz) | Antenna<br>Polarization | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                         | 4824.00            | Н                       | -52.71         | -47.00         | -5.71          |
| 1                       | 4824.00            | V                       | -53.62         | -47.00         | -6.62          |
|                         | 7236.00            | Н                       | -54.16         | -47.00         | -7.16          |
|                         | 7236.00            | V                       | -56.62         | -47.00         | -9.62          |
|                         | 4944.00            | Н                       | -52.10         | -47.00         | -5.10          |
| 40                      | 4944.00            | V                       | -52.84         | -47.00         | -5.84          |
| 13                      | 7416.00            | Н                       | -53.96         | -47.00         | -6.96          |
|                         | 7416.00            | V                       | -54.15         | -47.00         | -7.15          |

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



#### 3.8. RECEIVER BLOCKING

#### 3.8.1. LIMITS OF RECEIVER BLOCKING

This requirement applies to all receiver categories

| Receiver Category                                                                                                                                                          |                                             |                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|--|--|
| ⊠Category 1(EIRP>10dBm)                                                                                                                                                    | ☐Category 2(EIRP≦10dBm)                     | □Category 3(EIRP≦0dBm) |  |  |
|                                                                                                                                                                            | ⊠PER ≦ 10%                                  |                        |  |  |
| Minimum performance criterion                                                                                                                                              | Alternative performance criteria (See note) |                        |  |  |
| Note: The manufacturer was declared the minimum performance criterion shall be no loss of the wireless transmission function needed for the intended use of the equipment. |                                             |                        |  |  |

| Receiver Category 1 Equipment                                                       |                                                    |                          |                  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|------------------|--|
| Wanted signal mean power from companion                                             | Blocking Signal<br>Frequency                       | Blocking<br>Signal Power | Type of blocking |  |
| device (dBm)(See note 1 and 4)                                                      | (MHz)                                              | (dBm) (See note 4)       | signal           |  |
| (-133dBm+10xlog <sub>10</sub> (OCBW)<br>Or -68dBm whichever is less<br>(See note 2) | 2 380<br>2 504                                     |                          |                  |  |
| (-139dBm+10xlog <sub>10</sub> (OCBW)<br>Or -74dBm whichever is less<br>(See note 3) | 2 300<br>2 330<br>2 360<br>2 524<br>2 584<br>2 674 | -34                      | CW               |  |

NOTE 1: OCBW is in Hz.

- NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.
- NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.
- NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 47 of 53

Tel.: +86 769 8998 2098

Fax: +86 769 8593 1080



| Receiver Category 2 Equipment                                                                  |                                       |                                                |                         |  |
|------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|-------------------------|--|
| Wanted signal mean power from companion device (dBm)(See note 1 and 3)                         | Blocking Signal<br>Frequency<br>(MHz) | Blocking<br>Signal Power<br>(dBm) (See note 3) | Type of blocking signal |  |
| (-139dBm+10xlog <sub>10</sub> (OCBW)+10dB)<br>Or -74dBm+10dB) whichever is<br>less(See note 2) | 2 380<br>2 504<br>2 300<br>2 584      | -34                                            | CW                      |  |

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

| Receiver Category 3 Equipment                                                                  |                                  |                          |                  |  |
|------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|------------------|--|
| Wanted signal mean power from companion                                                        | Blocking Signal<br>Frequency     | Blocking<br>Signal Power | Type of blocking |  |
| device (dBm) (See note 1 and 3)                                                                | (MHz)                            | (dBm) (See note 3)       | signal           |  |
| (-139dBm+10xlog <sub>10</sub> (OCBW)+20dB)<br>Or -74dBm+20dB) whichever is<br>less(See note 2) | 2 380<br>2 504<br>2 300<br>2 584 | -34                      | CW               |  |

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to  $P_{min} + 30 \text{ dB}$  where  $P_{min}$  is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

#### 3.8.2. TEST PROCEDURE

Refer to chapter 5.4.11.2. of ETSI EN 300 328 V2.2.2.

| Measurement             |                        |  |  |  |  |
|-------------------------|------------------------|--|--|--|--|
| □ Conducted measurement | ☐ Radiated measurement |  |  |  |  |

#### 3.8.3. DEVIATION FROM TEST STANDARD

No deviation.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China. Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



# 3.8.4. TEST SETUP CONFIGURATION



Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## 3.8.5. TEST RESULT

## 802.11b

# **Receiver Category 1 Equipment**

| Receiver blocking performance when operating at the lowest operating channel(CH1) |                                 |                                        |                           |           |  |  |  |
|-----------------------------------------------------------------------------------|---------------------------------|----------------------------------------|---------------------------|-----------|--|--|--|
| OCBW <sub>min</sub> : 14.80MHz                                                    |                                 | antenna gain(G): 2.42dBi               |                           |           |  |  |  |
| The actual blocking signal power(Note1)                                           |                                 | at the antenna connector               |                           |           |  |  |  |
| The actual blocking signal power (Note )                                          |                                 |                                        | ☐ in front of the antenna |           |  |  |  |
| Note1: For the conducted measurements, the level shall be corrected as follows:   |                                 |                                        |                           |           |  |  |  |
| the actual blocking signal power = blocking signal power + antenna gain           |                                 |                                        |                           |           |  |  |  |
| The actual wanted signal mean power from companion device (dBm)                   | Blocking<br>signal<br>frequency | The actual blocking signal power (dBm) | PER(%)                    | Pass/Fail |  |  |  |
| -65.58                                                                            | 2380                            | -31.58                                 | 1.7                       | PASS      |  |  |  |
| -71.58                                                                            | 2300                            |                                        | 1.4                       | PASS      |  |  |  |
|                                                                                   | 2330                            |                                        | 2.7                       | PASS      |  |  |  |
|                                                                                   | 2360                            |                                        | 2                         | PASS      |  |  |  |

| Receiver bloo                                                                                                                                           | king performa                            | nce when operating a                   | t the lowest operating                                   | channel(CH13) |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------------------|---------------|--|--|
| OCBW <sub>min</sub> : 14.88MHz                                                                                                                          |                                          | antenna gain(G): 2.42dBi               |                                                          |               |  |  |
| The actual blocking signal power(Note1)                                                                                                                 |                                          |                                        | □ at the antenna connector     □ in front of the antenna |               |  |  |
| Note1: For the conducted measurements, the level shall be corrected as follows: the actual blocking signal power = blocking signal power + antenna gain |                                          |                                        |                                                          |               |  |  |
| The actual wanted signal mean power from companion device (dBm)                                                                                         | Blocking<br>signal<br>frequency<br>(MHz) | The actual blocking signal power (dBm) | PER(%)                                                   | Pass/Fail     |  |  |
| -65.58                                                                                                                                                  | 2504                                     | -31.58                                 | 1.6                                                      | PASS          |  |  |
| -71.58                                                                                                                                                  | 2524                                     |                                        | 1.9                                                      | PASS          |  |  |
|                                                                                                                                                         | 2584                                     |                                        | 2.1                                                      | PASS          |  |  |
|                                                                                                                                                         | 2674                                     |                                        | 2.9                                                      | PASS          |  |  |

Tel.: +86 769 8998 2098



# 4 PHOTOGRAPHS OF THE TEST CONFIGURATION

SPURIOUS EMISSION TEST BELOW 1GHz



SPURIOUS EMISSION TEST ABOVE 1GHz



Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China. Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



## **ADAPTIVITY TEST**



## RECEIVING BLOCKING



Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China. Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080



# 5 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications were made to the EUT by the lab during the test.

--- END ---

Tel.: +86 769 8998 2098 Fax: +86 769 8593 1080