PDG Algebras and Modules

Michael Nelson

November 9, 2020

Contents

1	Intr	oduction	2				
	1.1	Notation and Conventions	2				
		1.1.1 Category Theory	2				
2 Basic Definitions							
	2.1	PDG R-Algebras	2				
	2.2	PDG <i>A</i> -Modules	3				
		2.2.1 Submodules	3				
		2.2.2 Hom	4				
		2.2.3 Tensor	4				
	2.3	Homology of $[M]$	4				
	2.4	\mathbf{PMod}_A is an Abelian Category	4				
		2.4.1 Kernels	4				
		2.4.2 Images	5				
		2.4.3 Cokernels	5				
	2.5	Associator Functor	5				
		2.5.1 The associator functor need not be exact	6				
3	Exa	mple	6				
4 Grobner Basis Computations							

1 Introduction

1.1 Notation and Conventions

Unless otherwise specified, let K be a field and let (R, \mathfrak{m}) be a local Noetherian ring.

1.1.1 Category Theory

In this document, we consider the following categories:

- The category of all sets and functions, denoted Set;
- The category of all rings and ring homomorphisms, denoted Ring;
- The category of all *R*-modules and *R*-linear maps, denoted **Mod**_{*R*};
- The category of all graded *R*-modules and graded *R*-linear maps, denoted **Grad**_{*R*};
- The category of all R-algebras R-algebra homorphisms, denoted \mathbf{Alg}_R ;
- The category of all R-complexes and chain maps, denoted $Comp_R$;
- The category of all R-complexes and homotopy classes of chain maps, denoted HComp_R
- The category of all DG R-algebras DG algebra homomorphisms, denoted \mathbf{DG}_R .

2 Basic Definitions

2.1 PDG R-Algebras

Let (A, d) be an R-complex algebra and let $\mu \colon A \otimes_R A \to A$ be a chain map. If $\sum_{i=1}^n a_i \otimes b_i$ is a tensor in $A \otimes_R A$, then we often denote its image under μ by

$$\mu\left(\sum_{i=1}^n a_i \otimes b_i\right) = \sum_{i=1}^n a_i \star_{\mu} b_i.$$

If μ is understood from context, then we also tend to drop μ from the subscript in \star_{μ} , or even drop \star altogether and write

$$\mu\left(\sum_{i=1}^n a_i \otimes b_i\right) = \sum_{i=1}^n a_i b_i.$$

Note that μ being a chain map implies it is a **graded-multiplication** which satisfies **Leibniz law**. Being a graded-multiplication means μ is an R-bilinear map which respects the grading. In particular, if $a \in A_i$ and $b \in A_j$, then $ab \in A_{i+j}$. Satisfying Leibniz law means

$$d(ab) = d(a)b + (-1)^{i}ad(b)$$

for all $a \in A_i$ and $b \in A_i$ for all $i, j \in \mathbb{Z}$. We can also impose other conditions on μ as follows:

1. We say μ is **associative** if

$$a(bc) = (ab)c$$

for all $a, b, c \in A$.

2. We say μ is **graded-commutative** if

$$ab = (-1)^i ba$$

for all $a \in A_i$ and $b \in A_j$ for all $i, j \in \mathbb{Z}$.

3. We say μ is **strictly graded-commutative** if it is graded-commutative and satisfies the following extra property:

$$aa = 0$$

for all $a \in A_i$ for all i odd.

4. We say μ is **unital** if there exists $1 \in A$ such that

$$a1 = a = 1a$$

for all $a \in A$.

The triple (A, d, μ) is called **differential graded** R-**algebra** (or **DG** R-**algebra**) if μ satisfies conditions 1-4. If (A, d, μ) only satisfies conditions 2-4, then it is called a **partial differential graded** R-**algebra** (or **PDG** R-**algebra**). To clean notation in what follows, we will often refer to a PDG R-algebra (A, d, μ) via its underlying graded R-module A. In particular, if we write "let A be a PDG R-algebra" without specifying its differential or multiplication, then it will be understood that it's differential is denoted d_A and its multiplication is denoted μ_A .

Given two PDG R-algebras A and A', a **morphism** between them is a chain map $\varphi \colon A \to A'$ which satisfies the following two properties

- 1. it respects the identity elements, that is, $\varphi(1) = 1$;
- **2**. it respects multiplication, that is, $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in A$.

It is straightforward to check that the collection of all PDG R-algebras algebras together with their morphisms forms a category, which we denote by PDG_R .

2.2 PDG A-Modules

Unless otherwise specificed, we fix A to be a PDG R-algebra. A (left) **partial differential graded** A-**module** (or **PDG** A-**module**) is a triple (M, d_M, μ_M) where (M, d_M) is an R-complex and where $\mu_M \colon A \otimes_R M \to M$ is a chain map which satisfies 1u = u for all $u \in M$. Here again we are using the convention that the image of a tensor $\sum_{i=1}^n a_i \otimes u_i$ in $A \otimes_R M$ under the map μ_M is denoted by

$$\mu_M\left(\sum_{i=1}^n a_i \otimes u_i\right) = \sum_{i=1}^n a_i \star_{\mu_M} u_i = \sum_{i=1}^n a_i u_i$$

where μ_M is understood from context. Also, as before, if we write "let M be a PDG A-module" without specifying its differential or scalar multiplication, then it will be understood that it's differential is denoted d_M and its multiplication is denoted μ_M . Note that μ_M being a chain map implies it is satisfies **Leibniz law**, which in this context says

$$d_M(au) = d_A(a)u + (-1)^i a d_M(u)$$

for all $a \in A_i$ and $u \in M$ for all $i \in \mathbb{Z}$. If in addition μ_M is **associative**, meaning (ab)u = a(bu) for all $a, b \in A$ and $u \in M$, then we say M is a **DG** A-**module**.

Given two PDG *A*-modules *M* and *N*, an *A*-linear map betweem them is a chain map $\varphi: M \to N$ which satisfies $\varphi(au) = a\varphi(u)$ for all $a \in A$ and $u \in M$. The collection of all PDG *A*-modules together with their *A*-linear maps forms a category, which we denote by **PMod**_A.

2.2.1 Submodules

Let M and N be two PDG A-modules. We say M is a PDG A-submodule of N if $M \subseteq N$. A PDG A-submodule of A is called an **ideal** of A. Given any collection $\{u_{\lambda}\}_{{\lambda}\in\Lambda}$ of elements of M, we denote by $\langle u_{\lambda}\rangle_{{\lambda}\in\Lambda}$ to be the smallest PDG A-submodule of M.

Warning: In the category of R-modules, we have the concept of annihilators. In particular, suppose M is an R-module and let $u \in M$. We define the **annihilator** with respect to u to be the subset of R given by

$$0: u = \{r \in R \mid ru = 0\}.$$

In fact, 0:u is in an ideal of R, but we need the associative law to get this: if $r \in R$ and $x \in 0:u$, then (rx)u = r(xu) = 0 implies $rx \in 0:u$.

Now let us consider the case where M is a PDG A-module and let $u \in M$. We can define the annihilator 0 : u with respect to u as a subset of A as before:

$$0: u = \{a \in A \mid au = 0\},\$$

however as noted above, 0: u need not be a PDG ideal of A. On the other hand, if $u \in Assoc M$, where

Assoc
$$M = \{ u \in M \mid [a, b, u] = 0 \text{ for all } a, b \in A \},$$

then there are no issues with the proof above, so 0:u is an ideal of R in this case.

2.2.2 Hom

Let M and N be two PDG A-modules. We denote by $\operatorname{Hom}_A(M,N)$ to be the set of all A-linear maps from M to N. The set $\operatorname{Hom}_A(M,N)$ as the structure of a PDG A-module via the

2.2.3 Tensor

2.3 Homology of [M]

Let *A* be a PDG *R*-algebra and let *M* be a PDG *A*-module. It is easy to see that μ_M is associative if and only if [M] = 0. Given that [M] is an *R*-complex, we have a weaker form of associativity:

Definition 2.1. We say μ_M is homologically associative if H([M]) = 0.

Clearly if μ_M is associative, then μ_M is homologically associative. It turns out that the converse is also true if M bounded below and is **minimal**, that is, if $d_M(M) \subseteq \mathfrak{m}M$ where \mathfrak{m} is the maximal ideal in the local ring R.

Proposition 2.1. Let A be a PDG R-algebra and let M and a PDG A-module. Assume that M is minimal and bounded below. Then the following conditions are equivalent

- 1. μ_M is associative.
- 2. μ_M is homologically associative.

Proof. Clearly 1 implies 2. To show 2 implies 1, we prove the contrapositive: assume μ_M is not associative, so $[M] \neq 0$. Choose $m \in \mathbb{Z}$ minimal so that $[M]_m \neq 0$ and $[M]_{m-1} = 0$. By Nakayama's Lemma, we can find a triple (a,b,u) such that |a|+|b|+|u|=m and such that $[a,b,u] \notin \mathfrak{m}[M]_m$. By minimality of m, we have $d_{[M]}[a,b,u]=0$. Also, since M is minimal, we have $d_M[M] \subseteq \mathfrak{m}[M]$. Thus [a,b,u] represents a nontrivial element in homology.

2.4 PMod_A is an Abelian Category

Throughout the rest of this subsection, we fix a PDG R-algebra A. We would like to talk about the concept of an exact sequence in $PMod_A$. For this, we just need to check that $PMod_A$ is abelian category. First let us check that it is a pre-additive category.

2.4.1 Kernels

Proposition 2.2. Let M and M' be two PDG A-modules and let $\varphi \colon M \to M'$ be an A-linear map. Then $(\ker \varphi, \widetilde{d}, \widetilde{\mu})$ is a PDG A-submodule of M, where $\widetilde{d} = d|_{\ker \varphi}$ and $\widetilde{\mu} = \mu|_{\ker \varphi \otimes_R \ker \varphi}$.

Proof. We just need to check that \tilde{d} and $\tilde{\mu}$ land in ker φ . Then it will follow that $(\ker \varphi, \tilde{d}, \tilde{\mu})$ is a a PDG A-submodule of M since it will inherit the properties needed to be a PDG A-module from M. First we show \tilde{d} lands in ker φ . Let $u \in \ker \varphi$. Then

$$\varphi d(u) = d\varphi(u) \\
= d(0) \\
= 0$$

implies $d(a) \in \ker \varphi$. It follows that \widetilde{d} lands in $\ker \varphi$. Now we show $\widetilde{\mu}$ lands in $\ker \varphi$. Let $u \otimes v$ be an elementary tensor in $\ker \varphi \otimes_R \ker \varphi$. Then

$$\varphi(\mu(u \otimes v)) = \varphi(uv)$$

$$= \varphi(u)\varphi(v)$$

$$= 0 \star 0$$

$$= 0.$$

It follows that $\widetilde{\mu}$ lands in ker φ .

2.4.2 Images

Proposition 2.3. Let $\varphi: (A, d, \mu) \to (A', d', \mu')$ be a morphism of R-complex algebras. Then $(\operatorname{im} \varphi, \widetilde{d}', \widetilde{\mu}')$ is an R-complex algebra, where $\widetilde{d}' = d'|_{\ker \varphi}$ and $\widetilde{\mu}' = \mu'|_{\operatorname{im} \varphi \otimes_R \operatorname{im} \varphi}$.

Proof. We just need to check that \widetilde{d}' and $\widetilde{\mu}'$ land in ker φ . Then it will follow that $(\ker \varphi, \widetilde{d}, \widetilde{\mu})$ is an R-complex algebra since it will inherit the properties needed to be an R-complex algebra from (A, d, μ) . First we show \widetilde{d}' lands in im φ . Let $\varphi(a) \in \operatorname{im} \varphi$. Then

$$d'(\varphi(a)) = d'\varphi(a)$$
$$= \varphi d(a)$$
$$= \varphi(d(a)).$$

It follows that \widetilde{d}' lands in im φ . Now we show $\widetilde{\mu}'$ lands in im φ . Let $\varphi(a) \otimes \varphi(b)$ be an elementary tensor in im $\varphi \otimes_R \operatorname{im} \varphi$. Then

$$\mu((\varphi(a) \otimes \varphi(b)) = \varphi(a) \star \varphi(b)$$

$$= \varphi(a \star b)$$

$$= \varphi(\mu(a \otimes b)).$$

It follows that $\widetilde{\mu}'$ lands in im φ .

2.4.3 Cokernels

As we've seen, both kernels and images exist in $\mathbf{CompAlg}_R$. The problem however is that cokernels do not necessarily exist in $\mathbf{CompAlg}_R$. To see what goes wrong, suppose $\varphi \colon (A, \mathsf{d}, \mu) \to (A', \mathsf{d}', \mu')$ be a morphism of R-complex algebras. A naive attempt at defining the cokernel of φ would go as follows: first we take the cokernel of the underlying R-complexes, namely $(\overline{A'}, \overline{\mathsf{d}'})$ where $\overline{A'} = A'/\operatorname{im} \varphi$ and $\overline{\mathsf{d}'}$ is defined by $\overline{\mathsf{d}'}(\overline{a'}) = \overline{\mathsf{d}'}(\overline{a'})$ for all $\overline{a'} \in \overline{A'}$. It is straightforward to check that $\overline{\mathsf{d}'}$ is well-defined and gives $\overline{A'}$ the structure of an R-complex. Next we define multiplication $\overline{\mu'} \colon \overline{A'} \otimes_R \overline{A'} \to \overline{A'}$ by

$$\overline{\mu'}(\overline{a'} \otimes \overline{b'}) = \overline{a' \star_{\mu'} b'} \tag{1}$$

for all elementary tensors $\overline{a'} \otimes \overline{b'}$ in $\overline{A'} \otimes_R \overline{A'}$ and extending $\overline{\mu'}$ everywhere else R-linearly. Unfortunately, upon further inspection, we see that (??) is note well-defined. Indeed, if $a' + \varphi(a)$ is another representative of the coset $\overline{a'}$ and $b' + \varphi(b)$ is another representative of the coset $\overline{b'}$, then we have

$$\overline{\mu'}(\overline{a'+\varphi(a)}\otimes \overline{b'+\varphi(b)}) = \overline{(a'+\varphi(a))\star(b'+\varphi(b))}$$

$$= \overline{a'\star b'} + \overline{a'\star\varphi(b)} + \overline{\varphi(a)\star b'} + \overline{\varphi(a)\star\varphi(b)}$$

$$= \overline{a'\star b'} + \overline{a'\star\varphi(b)} + \overline{\varphi(a)\star b'} + \overline{\varphi(a\star b)}$$

$$= \overline{a'\star b'} + \overline{a'\star\varphi(b)} + \overline{\varphi(a)\star b'}.$$

In particular, (??) is well-defined if and only if im φ is an ideal of A'.

2.5 Associator Functor

Let *A* be a PDG *R*-algebra and let *M* be a PDG *A*-module. Given a triple (a, b, u) where $a, b \in A$ and $u \in M$, its **associator triple** [a, b, u] is defined by

$$[a,b,u] = (ab)u - a(bu).$$
(2)

More generally, if $\alpha_{A,A,M}$: $(A \otimes_R A) \otimes_R M \to A \otimes_R (A \otimes_R M)$ denotes the unique chain map defined on elementary tensors by $(a \otimes b) \otimes u \mapsto a \otimes (b \otimes u)$, then we define the **associator** with respect to M to be chain map $[\cdot, \cdot, \cdot]_{\mu_M}$: $(A \otimes_R A) \otimes_R M \to M$ defined by

$$[\cdot,\cdot,\cdot]_{\mu_M}:=\mu_M(1\otimes\mu_M)\alpha_{A,A,M}-\mu_M(\mu_A\otimes 1).$$

If μ_M is understood from context, then we will simplify our notation by dropping μ_M from the subscript in $[\cdot,\cdot,\cdot]$. Thus, if $(a \otimes b) \otimes u$ is an elementary tensor in $(A \otimes_R A) \otimes_R M$, then $[\cdot,\cdot,\cdot]((a \otimes b) \otimes u) = [a,b,u]$ as defined above in (2). We denote by [A,A,M] to be the image of $[\cdot,\cdot,\cdot]$. If A is understood from context, then we will simplify our notation even further by writing [M] instead of [A,A,M]. Thus

$$[M] = \operatorname{span}_{R} \{ [a, b, u] \mid a, b \in A \text{ and } u \in M \}.$$

Since $[\cdot, \cdot, \cdot]$ is a chain map from $(A \otimes_R A) \otimes_R M$, we see that $[\cdot, \cdot, \cdot]$ is a graded trilinear map satisfies Leibniz law, where Leibniz law in this case is the equation

$$d_{[M]}[a,b,u] = [d_A(a),b,u] + (-1)^{|a|}[a,d_A(b),u] + (-1)^{|a|+|b|}[a,b,d_M(u)].$$
(3)

for all homogeneous $a, b \in A$ and $u \in M$.

Now suppose M' is another PDG A-module and $\varphi \colon M \to M'$ is an A-linear. We obtain an induced map of R-complexes $[\varphi] \colon [M] \to [M']$, where $[\varphi]$ is the unique chain map which satisfies

$$[\varphi][a,b,u] = \varphi((ab)u - a(bu))$$

$$= \varphi((ab)u) - \varphi(a(bu))$$

$$= (ab)\varphi(u) - a\varphi(bu)$$

$$= (ab)\varphi(u) - a(b\varphi(u))$$

$$= [a,b,\varphi(u)].$$

In particular, we have $[\varphi]$ is just the restriction of φ to [M]. It is straightforward to check that the assignment $M \mapsto [M]$ and $\varphi \mapsto [\varphi]$ gives rise to a functor

$$A \colon \mathbf{PMod}_A \to \mathbf{Comp}_R$$

which we call the associator functor.

2.5.1 The associator functor need not be exact

The associator functor $A \colon \mathbf{PMod}_A \to \mathbf{Mod}_R$ need not be exact. To see what goes wrong, let

$$0 \longrightarrow M_1 \stackrel{\varphi_1}{\longrightarrow} M_2 \stackrel{\varphi_2}{\longrightarrow} M_3 \longrightarrow 0 \tag{4}$$

be a short exact sequence of PDG A-modules. We obtain an induced sequence of R-complexes

$$0 \longrightarrow [M_1] \xrightarrow{[\varphi_1]} [M_2] \xrightarrow{[\varphi_2]} [M_3] \longrightarrow 0$$

We claim that we have exactness at $[M_1]$ and $[M_3]$. Indeed, this is equivalent to showing $[\varphi_1]$ is injective $[\varphi_3]$ is surjective, and this follows from the fact that $[\varphi_1]$ is restriction of the injective function φ_1 and $[\varphi_3]$ is the restriction of the surjective function φ_3 . Let us see what goes wrong when trying to prove exactness at $[M_2]$. Let $\sum_{i=1}^n [a_i,b_i,v_i] \in \ker[\varphi_2]$. In particular, we have $\sum_{i=1}^n [a_i,b_i,v_i] \in \ker[\varphi_2]$. By exactness of (4), there exists $u \in M_1$ such that $\varphi_1(u) = \sum_{i=1}^n [a_i,b_i,v_i]$. It is not at all clear however that $u \in [M_1]$.

3 Example

Let $R = \mathbb{F}_2[x, y, z, w]$, let $I = \langle x^2, w^2, zw, xy, y^2z^2 \rangle$, and let F be the free minimal resolution of R/I over R. The complex F is supported on the simplicial complex drawn below:

Consider the multiplication on *F* defined as follows: in degree 1 we have the multiplication table

	e_1	e_2	e_3	e_4	e_5
e_1	0	e_{12}	e_{13}	xe_{14}	$yz^2e_{14} + xe_{45}$
e_2	e_{12}	0	we_{23}	e_{24}	$y^2ze_{23} + we_{35}$
e_3	e_{13}	we ₂₃	0	e_{34}	ze ₃₅
e_4	xe_{14}	e_{24}	e ₃₄	0	ye_{45}
e_5	$yz^2e_{14} + xe_{45}$	$y^2ze_{23} + we_{35}$	ze_{35}	ye_{45}	0

in degree 3 we have the multiplication table

	e_{12}	e_{45}	e_3	e_4	e_5
e_1			e ₁₃	xe_{14}	$yz^2e_{14} + xe_{45}$
e_2		$yze_{234} + we_{345}$	we_{23}	e_{24}	$y^2ze_{23} + we_{35}$
e_3			0	e ₃₄	ze ₃₅
e_4			e ₃₄	0	ye_{45}
e_5	$y^2 z e_{123} + y z w e_{134} + x w e_{345}$		ze ₃₅	ye_{45}	0

4 Grobner Basis Computations