(1) Offenlegungsschrift

① DE 3820038 A1

DEUTSCHES PATENTAMT

② Aktenzeichen:

P 38 20 038.4

2 Anmeldetag:

13. 6.88

43 Offenlegungstag:

14. 12. 89

(f) Int. Cl. 4; H 04 N 7/137

H 04 N 7/12 H 04 N 11/04 H 04 N 11/02 // H04N 7/14, H04M 11/00

(7) Anmelder:

ANT Nachrichtentechnik GmbH, 7150 Backnang, DE

(72) Erfinder:

Grotz, Karlheinz, Dipl.-Ing., 7012 Fellbach, DE; Mayer, Jörg, Dipl.-Ing., 7000 Stuttgart, DE; Süßmeier, Georg, Dipl.-Ing., 7150 Backnang, DE

(ii) Verfahren zur Aufbereitung und Übertragung einer Bildsequenz

Verfahren zur Aufbereitung und Übertragung einer Bildsequenz.

Für die Übertragung von Bildinformation über einen Kanal mit begrenzter Datenkapazität sind verschiedene Verfahren zur Redundanz- und Irrelevanzverninderung bekannt. So werden Bewegungsvektoren für Tellbildbereiche ermittelt und codiert. Die Tellbildbereiche selbst werden ebenfalls einer Codierung unterzogen, z. S. einer disierter Coeinus-Transformation DCT. Es wird ein Verfahren angegeben, welches eine zuverlässige Bildrekonstruktion ermöglicht.

Beim Verfahren nach der Erfindung werden Verschiebungsvektoren (D) teilbildbereichsweise für ein bewegungskompensiertes Schätzbild (K+3*) ermittelt und übertragen. Anhand der Bildpunkt-zu-Bildpunkt-Differenzen (DFD) zwischen Schätzbild (K+3*) und dem dem Schätzbild entsprechenden neuen Bild (K+3) werden Teilbildbereiche mit hohem Bewegungsanteil DCT-transformiert und übertragen. Nur jedes dritte Bild wird übertragen. Zwischenbilder werden bewegungskompensiert extrapoliert (Fig. 4).

Beschreibung

Die Erfindung betrifft ein Verfahren zur senderseitigen Aufbereitung einer Bildsequenz für die Übertra-

und deren empfangsseitige Rekonstruktion.

Für Bildinformationen, die über einen Übertragungskanal mit begrenzter Datenkapazität ühertragen werden sollen, gibt es zahlreiche Verfahren zur Redundanzund Irrelevanzverminderung. In Esprit '86 Results and 10 Achievements, Commission of the European Communities, Directorate General XIII, 1987, North-Holland, Seiten 413 bis 422, werden einige solcher Verfahren vorgeschlagen. Beim DPCM (Differential Pulse Code Modulation)-Verfahren wird anstelle aktueller Abtastwerte 15 die Differenz zwischen dem aktuellen Wert und einem Prädiktionswert übertragen. Die Datenkompression wird durch Quantisierung erreicht. Bei der adaptiven DPCM wird anhand eines Bewegungskriteriums die Prädiktion und der Quantisierungsgrad gesteuert. Beim 20 ABTC (Adaptive Block Truncation Coding)-Verfahren wird die Codierung je nach Bewegungsanteil von Bildbereichen in 3 Moden gesteuert. Das HPC (Hierarchical Predictive Coding)-Verfahren basiert auf der Kombination von Prädiktionscodierung und Interpolation. Bei 25 der Transformationscodierung, z. B. der ADCT (Adaptive Cosine Transform)-Codierung werden die örtlichen Abtastwerte eines Bildblocks mittels einer mathematischen Vereinbarung transformiert zur Gewinnung von entkorrelierten Koeffizienten. Die Datenkompression 30 wird durch Abschneiden vom Koeffizienten und nichtlinearer Quantisierung erreicht. Bei der Vektorquantisierung wird das Bild in eine große Zahl kleiner Zellen unterteilt, z. B. 2 × 2 oder 4 × 4 Bildelemente. Jede Zelle von K Bildelementen wird dann als Vektor im K 35 dimensionalen Raum aufgefaßt. Eine Anzahl von repräsentativen Vektoren wird für die Übertragung ausgewählt. Für die Codierung werden die aktuellen Bildvektoren durch die repräsentativen Vektoren in ihrer Nachbarschaft beschrieben.

Aus der DE-PS 37 04 777 ist es bekannt, die Bewegungsvektoren für Teilbildbereiche zu ermitteln und diese zu codieren. Bei stark bewegten Bereichen werden bildpunktabhängige Informationen für diese Teilbildbe-

reiche übertragen.

Aus SPIE (International Society for Optical Engineering), Seiten 119 bis 128, ist es bekannt, für ein ganzes sich bewegendes Objekt Verschiebungsvektoren zu ermitteln und zu übertragen. Prädiktionsfehler werden blockweise codiert, beispielsweise mittels einer DCT 50 (discrete cosine transform)-Transformation und übertragen. Ausgelassene Zwischenbilder werden empfangsseitig bewegungsadaptıv interpoliert.

Aufgabe der Erfindung ist es ausgehend vom Oberbegriff des Patentanspruchs 1 ein anderes Verfahren anzu- 55 geben, welches insbesondere eine gute empfangsseitige Bildrekonstruktion ermöglicht. Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Die Unteransprüche zeigen vorteilhafte Weiterbildungen

dieses Verfahrens auf.

Die Erfindung weist folgende Vorteile auf: Es wird eine hohe Bildqualität erreicht, was insbesondere durch die Ermittlung eines bewegungskompensierten Schätzbildes und der aktivitätsgesteuerten Codierung von Teilbildbereichen ermöglicht wird.

Durch eine bewegungskompensierte empfängerseitige Bildextra-(-inter)-polation wird eine ruckartige Bilddarstellung vermieden. Der Übertragungskanal wird

optimal ausgenutzt. Im Gegensatz zur Realisierung gemaß SPIE, Seiten 119 bis 128, wo ein ganzes Objeke durch einen Verschiebungsvektor beschrieben wird und demnach in den Randbereichen dieses Objekts ein grogung aubergeinen Kanalamit begrenzter Datenkapazität 5. Ber Unsicherheitsbereich entsteht, der nur durch Übertragung von Prädiktionsfehlern im gesamten Unsicherheitsbereich klein gehalten werden kann, muß beim Verfahren nach der Erfindung nur bei ganz wenigen Teilbildbereichen/Blöcken Originalbildinhalt bzw. Prädiktionsfehler übertragen werden. Durch die Auswahl der zu übertragenden transformierten Teilbildbereiche/ Blöcke anhand der Differenzen (Fehler) zu vorhergehenden Teilbildbereichen/Blöcken läßt sich bereits mit wenig Übertragungsdaten ein bezüglich eines Bewegungsablaufes sicheres Bild rekonstruieren. Das Verfahren nach der Erfindung bzw. ein danach ausgeführter Codec erlaubt folgende Betriebsarten:

> - Übertragung der Kopf-Schulterdarstellung einer Person mit einer zeitlichen Auflösung von 25 (30) Bildern pro Sekunde,

Übertragung von Standbildern mit hoher Orts-

auflösung und daraus abgeleitet:

Standbild mit eingefrorenem Bewegtbild, - Standbild mit eingeblendetem Bewegtbild.

Anhand der Zeichnungen wird ein Ausführungsbeispiel der Erfindung nun näher erläutert. Es zeigt

Fig. 1 ein Blockschaltbild für ein Bildtelefon über ISDN, bei welchem das Verfahren nach der Erfindung eingesetzt wird,

Fig. 2 das Prinzip der bewegungskompensierten Prä-

diktion.

Fig. 3 das Prinzip der blockorientierten Bildextrapolation,

Fig. 4 ein Video-Coder mit Codierung der Quellbild-

Fig. 5 ein Video-Coder mit Codierung des Prädiktionsfehlers,

Fig. 6 eine Bitmaske zur Adressierung der Verschiebungsvektoren,

Fig. 7 eine Kennlinie zur Dämpfung kleiner Differen-

Fig. 8 eine Sortiertabelle für die DFD,

Fig. 9 ein Video-Decoder,

Fig. 10 einen Datenrahmen für die Übertragung, Fig. 11 die Vektor- und DCT-Maske bei einer Bild-

vorlage mit Bewegungsanteil,

Fig. 12 eine Übersicht über die DCT-Codierung,

Fig. 13 die DCT-Klassifikation.

Das Bildtelefon nach Fig. 1 besteht aus getrennten Codern und Decodern für die Bild- und Tonübertragung. Damit ist z. B. eine Übertragung über 2 B-Kanäle in einem ISDN-Netz möglich. Eine Übertragung von Bild und Ton über einen B-Kanal ist nach geeigneter Quellcodierung des Tones ebenfalls möglich, ohne daß sich am Prinzip der Bildcodierung etwas ändert. Die Eingangsbildsequenz R, G, E wird z. B. nach der digitalen Fernsehnorm CCIR 601 abgetastet (A/D-Wandlung und Taktableitung). Die Toninformation wird ebenfalls A/D gewandelt und einer Kompandierung unterworfen. Die Digitalabtastung erfolgt gemäß CCIR 601 folgen-

Luminanz (Y)-Abtastfrequenz: 13,5 MHz 8 Bit linear 65 Chrominanz (U/V) -Abtastfrequenz: 6,75 MHz 8 Bit li-

Bits/Pixel (Farbe): 16

Aktiver Bildinhalt: 720 • 576 Pixel

864 • 625 • 25 • 16 -- 216 MBit/s

Die hohe Qualität dieser Abtastung erlaubt die Speicherung hochauflösender Standbilder, wie sie für die vorgenannte zweite Betriebsart vorgesehen ist.

Zur Anpassung dieser Quellbildsequenz an den nachfolgenden Video-Coder wird diese folgendermaßen vorbehandelt (Preprocessing):

Halbieren der Auflösung des Elides in horizontaler und vertikaler Richtung.

Reduktion der Chrominanzauflösung in vertikaler Richtung auf 1/2.

Nutzung der Austastlücke zur Übertragung.

Somit 352 • 288 aktive Bildpunkte; 25 Hz Bildwechsel.

YAbtastfrequenz: 6,75 MHz 8 Bit linear U/VAbtastfrequenz: 3,375 MHz 8 Bit linear

Bits/Pixel: 12

Bildwechsel: 25 (30) Hz ohne Zeilensprung

Datenrate: 30,41 (36, 49) MBit/s

Reduktion: Faktor 7

Diese Maßnahme reduziert die Quelldatenrate von 216 Mbit/s auf 30.41 (36.49) MBit/s. Die weitere Reduzierung geschieht im Video-Coder, der in Fig. 4 bzw. 25 Fig. 5 dargestellt ist. Mit sender- und empfängerseitigen ISDN-Interface Schaltungen wird die Übertragung auf 64 kBit/s ISDN-Kanälen ermöglicht. Empfängerseitig erfolgt eine zur senderseitigen Aufbereitung entsprechende Decodierung. Die Fig. 9 zeigt den entsprechen- 30 den Video-Decoder. Eine Signalnachverarbeitung (Post-Processing) stellt wieder ein gemäß CCIR 601 normgerechtes Bildformat her, welches nach D/A-Wandlung und Hinzufügung von Synchroninformation Die Schaltungsblöcke FECC (Forward Error Correction Control) und ECC (Error Correction Control) sind Einheiten zur bedarfsweisen Fehlerkorrektur. Übertragungsfehler können damit erkannt und soweit möglich korrigiert werden.

Die Grundidee des Codecs wird nun anhand der Fig. 2 und 3 erläutert. Sie besteht darin, nach dem Bildaufbau nur jedes 3. Bild (Fig. 2) zu codieren. Hierzu wird von dem Bild K+3 im Coder ein bewegungskompensiertes Schätzbild K+3 aus Bild K gebildet. Die Vek-45 toren, mit den $K+3^{\circ}$ gebildet wird, werden übertragen, so daß der Decoder das gleiche Schätzbild erzeugen kann. Es werden dann die Pixel zu Pixel Differenzen DFD zwischen dem Schätzbild $K+3^{\circ}$ und dem neuen Bild K+3 blockweise addiert (DFD = Displaced Fra- 50 me Difference). Die DFD innerhalb eines Blocks/Teilbildbereichs von 8 • 8 Pixel ergibt sich zu

$$DFD = \Sigma \sum p_{K+3} \cdot (x, y) - p_{K+3}(x, y)$$

mit Blockkordinaten: x = 1.8 y = 1.8und Pixelintensität p.

Für die Teilbildbereiche/Blöcke mit großen Summen, die Stellen mit großen Abweichungen kennzeichnen, wird entweder der Originalbildinhalt (Fig. 4) oder das 60 Differenzbild (Fig. 5) mit einer wahrnehmungsadaptiven DCT (Discrete Cosine Transform) codiert. Im Empfänger wird die inverse DCT gebildet und in das bewegungskompensierte Schätzbild eingesetzt. Die fehlenden Zwischenbilder werden mit den übertragenen Ver- 65 schiebungsvektoren D bewegungskompensiert extrapoliert oder interpoliert, so daß wieder ein weicher Bewegungsablauf entsteht (Fig. 3). Wie aus Fig. 3 ersichtlich ist, wird das Bild K + 1 aus dem Bild K extrapoliert (Verschiebungsvektor + $1/3 D_K$) und das Bild K + 2 aus dem Bild K+3 (Verschiebungsvektor $-\frac{1}{3}D_{K+3}$).

Um einen schnellen Bildaufbau am Anfang der Ver-5 bindung zu gewährleisten, wird zuerst ein um den Faktor 4 planar tiefpaßgefiltertes erstes Bild übertragen. Danach wird der Bildinhalt ergänzt, der um den Faktor 2 planar tiefpaßgefiltert ist. Schließlich wird ungefilterter Bildinhalt ergänzt. Das Maß zur Steuerung dieser drei Betriebsarten wird aus der mittleren DFD MDFD - gewonnen. Das Verfahren garantiert, daß der Bildinhalt auch bei großen Änderungen konsistent bleibt. Das heißt, ein willkürliches "Einfrieren" von Bildinhalten bei großen Änderungen wird vermieden. Zur 15 Ermittlung dieser mittleren DFD werden die Bildpunktzu-Bildpunkt-Differenzen aller Blöcke zu je 8 • 8 Pixel herangezogen. Es ergibt sich demnach:

MDFD =
$$\Sigma\Sigma$$
 DFD (i, j)
20 $i = 1,44$
 $j = 1,36$

Die Funktion des Video-Coders wird am Beispiel der Luminanzbildverarbeitung (Fig. 4 und Fig. 5) beschrieben, da in der Chrominanzbildverarbeitung Ergebnisse aus dem Luminanzzweig übernommen werden. Beim Video-Coder nach Fig. 4 wird die Quellbildsequenz DCT transformiert, wohingegen beim Video-Coder nach Fig. 5 ein Differenzbild DCT transformiert wird. Da der Aufbau dieser beiden Video-Coder-Versionen sehr ähnlich ist, wird nur eine Ausführungsform ausführlich erläutert und für die andere nur die davon abweichende Realisierung beschrieben.

Jedes dem Eingang des Video-Coders als Y-PCM Sizur Wiedergabe auf einem RGB-Monitor geeignet ist. 35 gnal zugeführte neue Bild K +3 wird mehrfach weiterverarbeitet:

> a) Das Bild K+3 wird in der Stufe TP1 um den Faktor 2 planar tiefpaßgefiltert und die Abtastfrequenz halbiert. Am Ausgang erscheint ein Bild (K+3)'. Dieser, in der Ortsauflösung reduzierte Bildinhalt, wird verwendet, wenn die mittlere DFD einen Grenzwert TH2 überschreitet (Spatiales Subsampling bei großen Änderungen). Die Verkleinerung wird im Decoder und für die Prädiktion durch Interpolation wieder aufgehoben (Stufe

> b) Das Bild K + 3' wird in der Stufe TP2 noch einmal um den Faktor 2 planar tiefpaßgefiltert und die Abtastfrequenz halbiert. Am Ausgang der Stufe TP2 erscheint das Bild (K+3)". Dieses Bild wird im Falle des Verbindungsaufbaus oder eines Schnitts verwendet und vollständig mit Hilfe der DCT übertragen. Als Kriterium hierfür wird ebenfalls die mittlere DFD (wie in a), jedoch mit einer Schwelle TH4 > TH2 herangezogen. Damit erhält man einen schnellen Bildaufbau. Die Verkleinerung wird im Decoder und für die Prädiktion durch Interpolation wieder aufgehoben (Stufen TP3 und TP4).

> c) Mit Hilfe des in einem Bildspeicher FST2 gespeicherten Bildes K' und dem Bild K+3' wird im Bewegungsvektorschätzer ME ein Satz von Verschiebungsvektoren Dermittelt. Ein Vektor gilt für einen Bereich von 16 • 16 Pixel.

d) Das Bild K+3 wird mit dem im Bildspeicher FST1 gespeicherten Bild K verglichen. Das Bild K wird durch eine inverse DTC-Transformation

DCT-1 und gegebenenfalls Aufhebung der Tiefpaßfilterung (Stufen TP3, TP4) erstellt. Mit Hilfe der Frame-Differenz-Stufe FD werden dabei blockweise geänderte Bildbereiche von ungeänderten unterschieden. Die Bildung der Frame-Differenz geschieht nach der Beziehung:

$$FD = \sum_{x \in [p_K(x, y) - p_K + 3(x, y)]} - p_K + 3(x, y)$$

 $x = 1.8$
 $y = 1.8$

Für die geänderten Bildbereiche werden Verschiebungsvektoren D zur Bewegungskompensation zum Decoder übertragen. Im Coder und Decoder wird damit im Extrapolator zur Bewegungskompensation MCFE 15 (Motion Compensated Frame Interpolator) ein bewegungskompensiertes Schätzbild $K+3^{\circ}$ aus Bild K gebildet. Die Adressierung der Verschiebungsvektoren geschieht mit einer Bitmaske (Fig. 6), die VWL (Variable word length) codiert wird. Die Verschiebungsvektoren 20 werden als Differenzen zum jeweils vorhergehenden Wert statistisch codiert, wobei pro Bild nur der erste Verschiebungsvektor als Absolutwert übertragen wird. Im Noise Limiter NL wird die Differenz zwischen dem neuen Bild K+3 und dem Schätzbild $K+3^*$ bildpunkt- 25 weise gebildet. Diese wird einer nichtlinearen Kennlinie (Fig. 7) unterworfen, die kleine Differenzen dämpft und große ungeändert läßt. Wesentlich dafür, daß kleine Differenzen nicht im Bild stehenbleiben, sondern abgebaut werden können, ist, daß die kleinen Differenzen nur 30 gedämpft, aber nicht zu Null gesetzt werden (Fig. 7). Auf diese Weise wird zum einen das Grundrauschen des neuen Quelibildes gedämpft und zum anderen kleine rauschartige Störungen durch Fehler in der bewegungskompensierten Prädiktion und der DCT-Codierung vermindert. Dies führt zu einer Senkung des Bitbedarfs bei der DCT-Codierung. Die DFD wird blockweise für 8 • 8 Pixel gebildet (Stufe DFD) und mit fallender Größe gemäß einer Tabelle (Fig. 8) sortiert. Zusätzlich wird in diese Tabelle die jeweils für die DCT-Codierung des 40 Blocks (Block No.) erforderliche Anzahl der Bits eingetragen. Außerdem ist die Chrominanz-Signalisierung (Chrom. Flag) und die DCT-Bitzahl DCT'COSTS'eingetragen.

Alle diese Informationen werden durch die Steuerung 45 CONTROL zu einem Übertragungssignal aufbereitet. Diese Informationen werden aus der DCT-Codierung des DFD-Bildes (Prädiktionsfehler Fig. 5) oder des Quellbildes (Fig. 4) gewonnen. Die freie Kanalbitrate wird zur Übertragung von DCT-Blöcken genutzt. Dabei 50 werden die Blöcke mit der größten DFD übertragen, bis der Kanal ausgefüht ist. Die Bitmaske zur Adressierung

der DCT-Blöcke wird VWL codiert (Fig. 6).

Für die Prädiktion wird im Coder die inverse DCT-Transformation DCT-1 gebildet. Ferner befinden sich 55 hier Interpolationsfilter, die verkleinerten Bildinhalt wieder vergrößern (TP3 und TP4). Im Bildspeicher FST1 wird das rekonstruierte Bild \acute{K} gespeichert. Den Daten können als Übertragungsfehlerschutz zusätzlich Informationen eines FEC-Codes (FEC = Forward er- 60 ror correction) beigefügt werden. Die Steuerung (Control) überwacht alle Funktionen des Codes und schaltet es gemäß den Randbedingungen in die entsprechende Betriebsart. Die ISDN-Schnittstelle verbindet das Codec mit dem Netz. Die Auswahl der zu übertragenden 65 Bildinformation wird durch Multiplexer MUX gesteuert, die wiederum von der Steuerung (Control) ihre Umschaltbefehle erhalten.

In Abweichung zur Realisierung gemäß Fig. 4 wird in Fig. 5 nicht das Bild K+3 über den Multiplexer MUXzur DCT-Transformationsstufe geführt, sondern die Differenz zwischen dem Bild K+3 und dem Schätzbild $K+3^*$ (Stufe Σ 1). Hierdurch werden nur die Prädiktionsfehler DCT transformiert. Der 'Noise Limier' NL ist hier vor den Eingang des Multiplexers MUX geschaltet. Um für die Prädiktion wieder ein Quellbild zur Verfügung zu haben, muß die Differenzbildung nach der DCT-Rücktransformation DCT^{-1} wieder rückgängig

gemacht werden (Stufe Σ 2).

Im Video-Decoder (Fig. 9) — nur der Luminanzteil ist dargestellt - werden nach der ISDN-Schnittstelle die Steuerinformationen aus dem Datenstrom gewonnen (SYNC, CONTROL'). Die optionale Fehlerkorrektur EC erkennt Übertragungsfehler und korrigiert sie soweit möglich. Der Demultiplexer DEMUX trennt Verschiebungsvektoren, DCT-Koeffizienten und den Chrominanzanteil. Die Verschiebungsvektoren werden gespeichert, die Bitmasken werden decodiert. Mit Hilfe der decodierten Vektoren D' und dem im Bildspeicher FST gespeicherten Bild K wird mit Hilfe des Extrapolators zur Bewegungskompensation MCFE1 ein bewegungskompensiertes Schätzbild K+3 des aktuellen Bildes gebildet. Die übertragenen Bildblöcke aus dem Bild K+3 werden einer inversen DCT-Transformation DCT^{-1} unterworfen und in das Schätzbild K+3 mittels der Summierstufe £3 eingesetzt. Ein weiterer Extrapolator zur Bewegungskompensation MCFE 2 extrapoliert die ausgelassenen Bilder K+1 und K+2 gemäß Fig. 3 bewegungskompensiert.

Nach Fig. 3 wird das Bild K+1 aus Bild K durch Umrechnen der Vektoren, die zu Bild K geführt haben, extrapoliert. Bild K + 2 wird aus Bild K + 3 durch Umrechnen der Vektoren, die zu Bild K+3 geführt haben, extrapoliert. Auf diese Weise wird die Originalbildfrequenz von 25 (30) Bildern/s wiederhergestellt. Das Bildsignal kann mit einem rekursiven zeitlichen Filter von kleinen Bewegungsdefekten befreit werden (nicht dar-

gestellt).

Der Wert eines Pixels p(x, y) berechnet sich dabei nach der Formel:

$$p(x,y) = p - 1(x,y) + \frac{1}{2}(p(x,y) - p - 1(x,y)).$$

Schnelle Änderungen werden so auf mehrere Bilder verzögert; es entsteht ein Überblendeffekt, der sich z.B. bei Augen und Mundbewegungen, die nicht durch Vektoren beschreibbar sind, vorteilhaft auswirkt.

Fig. 10 zeigt einen Datenrahmen für die Übertragung. Die Daten werden seriell in sieben verschiedenen Zeit-

schlitzen übertragen:

Synchronwort (Sync.), Vektor Maske (Vector Mask.), Steuerinformation (Contr. Inform.), Vektorinformation (Vector. Inform.), Luminanz- und Chrominanz-DCT Lum. DCT, Chrom. DCT) und Aktualisierungsinformation (Update Mask).

In Fig. 11 ist die Vektormaske (Außenkonturen schraffiert) und die DCT-Maske (flächig schraffiert) für eine bewegte Bildvorlage dargestellt. Wie aus Fig. 11 ersichtlich, müssen nur stark bewegte Bereiche im Gesichts- und Schulterbereich mittels DCT übertragen

Für den Bewegungsschätzer ME kann ein Gradientenverfahren insbesondere gemäß EP 2 36 519 A1 verwendet werden, welches mit drei Iterationsschritten auskommt. Als Startwert der Schätzung wird vom ortsgleichen Block aus dem vorhergehenden Vektorfeld ausgegangen. Nichtganzzahlige Vektoren können bilinear interpoliert werden. Ein vollständiges Bild kann durch 396 Vektoren beschrieben werden.

Als Extrapolationsfilter MCFE können die ebenfalls aus EP 2 36 519 A1 bekannten FIR (finite impulse response)-Filterstrukturen benutzt werden. Eine planare Interpolation nichtganzzahliger Vektoren ist mit solchen Filtern folgendermaßen möglich:

Luminanz: 2fach-Überabtastung mit sieben Koeffizien-

ten

Chrominanz: 4fach-Überabtastung mit elf Koeffizienten.

Für die DCT-Transformation wird wie bereits geschildert eine feste Blockgröße von 8 • 8 Bildpunkten verwendet. Je nach Betriebszustand verarbeitet die 15 mittelt. DCT Bildblöcke von 8 • 8 Bildpunkten

* in voller Auflösung (normaler Mode) nach Tabelle 1

(Fig. 8) oder

* mit halber Auflösung in beiden Richtungen bei drohendem Bufferüberlauf (entspricht einem Bildausschnitt 20 piecodiert: von 16 • 16 Punkten). *Die selek

* mit einem viertel der Auflösung bei Bildaufbau und Szenenschnitt (entspricht einem Bildausschnitt von

32 • 32 Punkten).

Für alle Betriebsarten wird der gleiche DCT-Algo- 25 rithmus verwendet. Der DCT-Coder erreicht eine mitt-

lere Datenrate von < 1 bit/Bildpunkt.

Eine zweidimensinale DCT-Transformation von 8 • 8 Bildpunkten wird durch zwei aufeinanderfolgende eindimensionale DCT-Transformationen von jeweils acht 30 Bildpunkten erreicht. Für Hin- und Rücktransformation wird der gleiche Algorithmus verwendet. Eine Übersicht über die gesamte DCT-Codierung gibt Fig. 12, die ausführlich in der DE 37 09 094.1 beschrieben ist. Hier nur eine Kurzerläuterung der Funktionsblöcke gemäß 35 Fig. 12:

Kantendetektion und Adaption der spektralen Schwellen

Durch die Kantendetektion wird eine lokale Adaption der spektralen Sichtbarkeitsschwellen erreicht. Werden in einem Block diagonale Kanten detektiert, so werden auch Koeffizienten berücksichtigt, die ihre Sichtbarkeitsschwelle nur zur Hälfte erreichen.

Klassifikation

Die Koeffizienten, die die Sichtbarkeitsschwelle überschreiten, werden nach Klassen eingeteilt und übertragen (Fig. 13). Die Klasse gibt an, welche Koeffizienten in welcher Reihenfolge übertragen werden (Koeffizientenadressierung). Die Klasseninformation wird als Zusatzinformation entropiecodiert übertragen.

Luminanz-Block

* Unterdrückung singulärer Koeffizienten.

* Relevante Koeffizientengruppen auswählen. Eine Koeffizientengruppe wird nur dann berücksichtigt, wenn mindestens die Hälfte ihrer Koeffizienten die Sichtbarkeitsschwelle überschreitet. Alle Koeffizienten einer relevanten Koeffizientengruppe werden übertragen (z. B. 18 Koeffizientengruppen).

*Alle relevanten Koeffizientengruppen werden zu einer 65 Klasse zusammengefaßt, z. B. 16 Klassen (Fig. 13).

Chrominanz-Block

Da hier nur wenige Koeffizienten übertragen werden müssen, können die Koeffizienten direkt zu Klassen zusammengefaßt werden (z. B. 8 Klassen bei max. 7 Koeffizienten).

Quantisierung

Nur die durch die Klassifikation eines Blocks ausgewählten Koeffizienten werden quantisiert. Jeder Koeffizient wird entsprechend seiner Sichtbarkeitsschwelle quantisiert. Die Wahrnehmbarkeitsschwellen für die einzelnen Koeffizienten wurden durch visuelle Tests ermittelt.

Entropiecodierung

Die gesamte Daten- und Steuerinformation ist entropiecodiert:

*Die selektierten und quantisierten AC(Wechselanteil)-Koeffizienten.

*Der Prädiktionsfehler für die DC(Gleichanteil)-Koeffizienten.

*Die Klasseninformation.

Die besonders häufigen Werte der AC- und DC-Koeffizienten sind optimal codiert, die selten vorkommenden Werte werden mit einem Präfix/Postfix-Binär-Code codiert.

Folgende Variationen des Codec sind möglich:

 Einsatz einer anderen Transformationscodierung an Stelle von DCT.

 Einsatz einer Vektorquantisierung an Stelle der DCT. Bei h\u00f6heren Bitraten auch DPCM.

 Bewegungsschätzer: Es kann an Stelle eines Gradientenschätzverfahrens auch ein Blockmatching Suchverfahren angewendet werden. (z. B. Hierarchische Blockmatching Displacementschätzverfahren nach EP 2 36 519 A1.

- Im Decoder kann an Stelle der Extrapolation ausgelassener Bilder eine Interpolation erfolgen.

— Die zeitliche Tiefpaßfilterung der rekonstruierten Bilder ist sowohl mit Hilfe einer FIR-Struktur als auch mittels einer IIR (infinite impulse response) möglich.

Patentansprüche

1. Verfahren zur senderseitigen Aufbereitung einer Bildsequenz für die Übertragung über einen Kanal mit begrenzter Datenkapazität und deren empfangsseitige Rekonstruktion, dadurch gekennzeichnet, daß für die Bildsequenz nach einer Bildaufbauphase folgendermaßen behandelt wird:

- senderseitig werden Daten der Einzelbilder der Bildsequenz unter Auslassung mindestens zweier Zwischenbilder folgendermaßen aus-

gewertet:

55

a) teilbildbereichsweises Ermitteln und Übertragen der Verschiebungsvektoren für ein bewegungskompensiertes Schätzbild $(k + 3^{\circ})$ aus dem Bild (k) vor den letzten ausgelassenen Zwischenbildern, b) Bilden der Bildpunkt-zu-Bildpunkt-Differenzen (DFD) zwischen dem Schätzbild $(k + 3^{\circ})$ und dem dem Schätzbild entsprechenden neuen Bild (k + 3),

c) teilbildbereichsweises Aufsummieren dieser Bildpunkt-zu-Bildpunkt-Differenzen (DFD),

d) Codieren und Übertragen jener Teilbildbereiche oder Differenzen zwischen 5

zeitlich aufeinanderfolgenden Teilbildbereichen im Sinne einer Redundanzreduktion, für die das Aufsummieren große Werte liefert,

empfangsseitig wird

e) eine zur senderseitigen Codierung inverse Decodierung vorgenommen, f) die durch die Decodierung gewonnenen Daten werden in das mit den Verschiebungsvektoren empfangsseitig erstellte 15 bewegungskompensierte Schätzbild eingesetzt.

g) jedes fehlende Zwischenbild wird mit den übertragenen Verschiebungsvektoren bewegungskompensiert extrapoliert 20

oder interpoliert.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die senderseitige Bildsequenz zur Datenreduktion folgendermaßen vorbehandelt wird:

a) Reduzieren der Bildauflösung in horizonta- 25 Ier und vertikaler Richtung,

b) Reduzieren der Chrominanzauflösung in vertikaler Richtung auf mindestens 1/2,

c) Unterabtastung des Luminanzsignals,

d) Unterabtastung der Chrominanz-Signale, und daß die empfangsseitige Bildsequenz invers zur senderseitigen Vorbehandlung wieder aufbereitet wird.

3. Verfahren nach Anspruch I oder 2, dadurch gekennzeichnet, daß die Austastlücke mit zur Über- 35

tragung herangezogen wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die senderseitigen Bilder progressiv, d. h. ohne Zeilensprung, abgetastet werden.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Codierung der Teilbildbereiche oder Differenzen von Teilbildbereichen durch eine wahrnehmungsadaptive Transformationscodierung, beispielsweise einer diskre- 45 ten Cosinus-Transformation, erfolgt.

6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Codierung der Teilbildbereiche oder Differenzen von Teilbildbereichen durch eine Vektorquantisierung erfolgt.

1. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Codierung der Teilbildbereiche oder Differenzen von Teilbildbe-

reichen durch DPCM-Codierung erfolgt.

8. Verfahren nach einem der Ansprüche 1 bis 7, 55 dadurch gekennzeichnet, daß die Verschiebungsvektoren zur Übertragung als Differenzen zum jeweils vorhergehenden Wert statistisch codiert werden, wobei pro Bild nur der erste Verschiebungsvektor als Absolutwert übertragen wird.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß bei der Übertragung von Differenzen von Teilbildbereichen eine Wichtung in dem Sinne vorgenommen wird, daß kleine Differenzen gedämpft und große Differenzen un- 65 verändert übertragen werden.

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die empfangsseitig rekonstruierte Bildsequenz mittels eines rekursiven zeitlichen Filters von ruckartigen Bewegungsdefekten befreit wird.

NACHOEREICHT

3820038

FIG. 3

D V 00

FIG. 6

NACHOLLLOHE

FIG. 7

	BLOCK NO.		CHROM.	00	[BIT]	
OFD*	LUM.	CHROM.	FLAG	LUM.	CHROM.	TOTAL
1116	552	30	1	20	18	38
1020	432	24	1	39	32	71
987	416	24	0	13	32	29
878	336	20	1	15	28	43
			•			
	•		•		•	

DFD * = DFDLUM + DFDCHROM

FIG. 8

SYNC.	VECTOR MASK	CONTR. Inform.	VECTOR Inform.	LUM. DCT	CHROM. DCT	UPDATE MASK
-------	-------------	-------------------	-------------------	-------------	---------------	----------------

FIG. 10

FIG. 11

D = 1 = 1/1 1/ = =		
U	AUCE CIMENI	CUPOUDDEN
REIEVNRIE	AUP	PNISKUPPPN
	KOEFFIZIENT	1 1111111111111111

1	2	3	4	5	6	6	
7	8	9	10	11			
12	13	14	15	11			
16	17	11	11				
17	15	11				,	
18							

FIG. 13

KLASSENAPPROXIMATION