Introduction

Introduction

MTH2302: Les tests d'hypothèses

Wissem Maazoun

École Polytechnique de Montréal

Département de Mathématiques et de génie industriel

MTH2302: Les tests d'hypothèses

formulés et un test statistique est ensuite exécuté.

MTH2302: Les tests d'hypothèses

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Hypothèses, tests, erreurs et risques

Définition

Une hypothèse statistique H est une affirmation concernant :

- La valeur d'un paramètre (moyenne, variance, proportion, etc.)
- L'égalité des paramètres de deux distributions (deux moyennes, deux variances, etc.)
- La forme d'une distribution (la normalité par exemple).

Précisions et remarques

- Dans les deux premiers cas, on dit qu'on a une hypothèse paramétrique.
- Dans le troisième cas, on a une hypothèse non paramétrique.

Wissem Maazoun

Il s'agit d'une méthode statistique permettant de vérifier, entre

autres, la valeur d'un paramètre, la forme d'une distribution, etc. Pour cela, des hypothèses décrivant la situation doivent être

2/43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

MTH2302: Les tests d'hypothèses Wissem Maazoun

Wissem Maazoun

MTH2302: Les tests d'hypothèses

Hypothèses, tests, erreurs et risques

Comment écrire un test paramétrique

- On suppose que la distribution de la variable étudiée X dépend d'un paramètre θ .
- Les hypothèses attribuent alors une ou plusieurs valeurs à θ .
- On distingue deux types d'hypothèses :
 - L'hypothèse nulle H_0 : $\theta = \theta_0$, (où θ_0 est une valeur donnée);
 - La contre hypothèse H_1 qui, selon le problème, peut prendre l'une des trois formes suivantes
 - $H_1: \theta \neq \theta_0$ (bilatéral);
 - $H_1: \theta < \theta_0$ (unilatéral à gauche);
 - $H_1: \theta > \theta_0$ (unilateral à droite).

<ロ> <回> <回> < 重> < 重> < 重 > の q @

MTH2302: Les tests d'hypothèses

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Hypothèses, tests, erreurs et risques

C'est quoi un test d'hypothèse

Un test d'hypothèse est une procédure ou règle de décision qui permet de rejeter ou accepter l'hypothèse H_0 en se basant sur les observations d'un échantillon aléatoire de la v.a X.

Deux types d'erreurs sont possibles :

- 1'erreur de type I qui consiste à rejeter H_0 alors que H_0 est vraie;
- 2 l'erreur de type II qui consiste à accepter H_0 alors que H_0 est fausse.

$Décision \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	H_0 est vraie	H_0 est fausse		
H_0 est rejetée	Erreur de type I	Bonne décision		
H_0 est acceptée	Bonne décision	Erreur de type II		

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Hypothèses, tests, erreurs et risques

Exemple

Supposons qu'une machine produit des pièces dont le diamètre moyen (ou nominal) doit être de 5 mm. Si nous pensons que les pièces produites ont diamètre inférieur à cette valeur, une façon de le vérifier consiste à confronter les hypothèses

$$H_0: \mu = 5 \text{ contre } H_1: \mu < 5.$$

Par contre, pour vérifier si 5mm est bien la valeur moyenne des diamètres, on confronte alors les hypothèses

 $H_0: \mu = 5 \text{ contre } H_1: \mu \neq 5.$

MTH2302: Les tests d'hypothèses

5 / 43

Probabilité d'erreur

La probabilité de commettre une erreur est qualifiée de risque. On distingue deux types de risques α et β .

- $\alpha = P(\text{Erreur de type}I) = P(\text{rejeter } H_0 | H_0 \text{ est vraie}) \equiv$ risque de première espèce.
- $\beta = P(\text{Erreur de type} | II) = P(\text{accepter } H_0 | H_0 \text{ est fausse}) \equiv$ risque de deuxième espèce.

Remarques

- La quantité 1β représente la puissance avec laquelle on rejette H_0 lorsque H_0 est fausse.
- Dans le bon test, α et β doivent être petits.
- Le risque du premier espèce α est donc généralement fixé à l'avance. On l'appelle le niveau ou le seuil critique du test. On le choisit très petit ($\alpha = 0, 10, \alpha = 0, 05, \alpha = 0, 01, \ldots$).

MTH2302: Les tests d'hypothèses

7 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'hypothèses à partir d'un seul échantillon

Test d'hypothèse sur une moyenne

Soit X_1, X_2, \dots, X_n un échantillon de taille n d'une v.a X de moyenne $\mu = E(X)$ et de variance $\sigma^2 = V(X)$. Pour un niveau critique α donné, les tests de l'hypothèse $H_0: \mu = \mu_0$ contre $H_1: \mu \neq \mu_0$ sont résumés dans les cas suivants :

- Si σ^2 est connue, alors on utilise la statistique $z_0 = \frac{X \mu_0}{\sigma t \sqrt{\rho}}$.
 - Rejeter H_0 si $|z_0| > z_{\alpha/2}$.
 - Ne pas rejeter H_0 si $|z_0| \le z_{\alpha/2}$.
- Si σ^2 est inconnue, alors on utilise la statistique $t_0 = \frac{\bar{X} \mu_0}{S/\sqrt{n}}$.
 - Rejeter H_0 si $|t_0| > t_{\alpha/2, n-1}$.
 - Ne pas rejeter H_0 si $|t_0| \le t_{\alpha/2:n-1}$.

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Hypothèses, tests, erreurs et risques

Région critique

Le principe général d'un test d'hypothèse repose sur la considération d'une statistique et d'une région critique. Une région critique est une région où il est peu probable que la statistique prenne des valeurs lorsque l'hypothèse H_0 est vraie. Le test consiste alors à :

- Rejeter H_0 si la valeur calculée de cette statistique est dans la région critique.
- Ne pas rejeter H_0 si la valeur calculée est en dehors de la région critique.

MTH2302: Les tests d'hypothèses

8 / 43

Test d'hypothèses à partir d'un seul échantillon

Détermination de β et n

- Si σ^2 est connue
 - Cas unilatéral à gauche $\beta(\mu) = \Phi(Z_{\alpha} + \frac{(\mu \mu_0)\sqrt{n}}{\sigma})$ et $n = \left(\frac{\sigma(Z_{\alpha} + Z_{\beta})}{\mu - \mu_{\mathbf{0}}}\right)^{2}$
 - Cas unilateral à droite $\beta(\mu) = \Phi(z_{\alpha} \frac{(\mu \mu_{0})\sqrt{n}}{\sigma})$ et $n = \left(\frac{\sigma(z_{\alpha} + z_{\beta})}{\mu - \mu_{\mathbf{0}}}\right)^{2}.$
 - Cas bilatéral $\beta(\mu) = \Phi(z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}) - \Phi(-z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}) \text{ et}$ $n \simeq \left(\frac{\sigma(z_{\alpha/2} + z_\beta)}{\mu - \mu_0}\right)^2.$
- Si σ^2 est inconnue
 - Le risque β peut être déterminé approximativement en fonction de $d = \frac{\delta}{\sigma} = \frac{|\mu - \mu_0|}{\sigma}$.
 - Les courbes caractéristiques VIe, VIf, VIg et VIh (pages 492 et 493) donnent β en fonction de d.

Wissem Maazoun

MTH2302: Les tests d'hypothèses

10 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'hypothèses à partir d'un seul échantillon

Calcul de "p-value" lors du test de H_0 : $\mu=\mu_0$

- Si σ^2 est connue
 - Cas unilatéral $(H_1: \mu < \mu_0 \text{ ou } H_1: \mu > \mu_0)$ "p - value" = $P(Z > |z_0|) = 1 - \Phi(|z_0|)$
 - Cas bilatéral $(H_1: \mu \neq \mu_0)$ "p - value" = $2P(Z > |z_0|) = 2[1 - \Phi(|z_0|)]$
- Si σ^2 est inconnue
 - Cas unilatéral $(H_1: \mu < \mu_0 \text{ ou } H_1: \mu > \mu_0)$ "p-value" = $P(T>|t_0|)$ avec $\nu=n-1$ d.d.l.
 - Cas bilatéral $(H_1: \mu \neq \mu_0)$ " p - value" = $2P(T > |t_0|)$ avec $\nu = n - 1$ d.d.l.

Test d'hypothèses à partir d'un seul échantillon

Niveau critique (valeur P, "p-level" ou "p-value")

Le tableau précédent nous montre que le niveau critique α est suffisant pour exécuter un test. Mais en pratique, on peut évaluer la probabilité que la statistique du test prenne une valeur aussi grande (sinon plus) que la valeur observée, lorsque H_0 est vraie. Cette probabilité constitue le seuil (ou niveau) critique observé et les logiciels de statistique (dont Statistica) la donne sous l'appellation de "p-level" ou "p-value". Lorsque cette probabilité est grande, on ne rejette pas H_0 ; lorsqu'elle est petite, l'hypothèse H_0 doit être rejetée, car les données, à travers la statistique calculée, sont en contradiction avec l'hypothèse.

MTH2302: Les tests d'hypothèses

11 / 43

Test d'hypothèses à partir d'un seul échantillon

Remarques

- Avantage: Une fois que "p-value" est connue, le décideur peut déterminer la décision du rejet ou non-rejet en utilisant n'importe quel seuil α. On rejette H₀ pour tout α > p value.
- Inconvénient : Malheureusement le calcul de la "p-value" exacte d'un test n'est pas toujours facile.
- En pratique, on a souvent recours à des logiciels pour le calcul de "p-value". Les tables du livre sont limitées à certaines valeurs uniquement.

Lien entre les tests d'hypothèse et les intervalles de confiance

Si [L, U] est un intervalle de confiance de niveau $1 - \alpha$ pour le paramètre θ ,

alors au niveau critique α , le test de $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_0$ conduit au rejet de H_0 si et seulement si $\theta_0 \notin [L, U]$.

Wissem Maazou

MTH2302: Les tests d'hypothèses

13 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'hypothèses à partir d'un seul échantillon

Test d'hypothèse sur la variance

Soit X_1, X_2, \ldots, X_n un échantillon de taille n d'une v.a X de moyenne $\mu = E(X)$ et de variance $\sigma^2 = V(X)$. Pour un niveau critique α donné, pour tester l'hypothèse $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 \neq \sigma_0^2$ on utilise la statistique

$$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

- Rejeter H_0 si $\chi_0^2 > \chi_{\alpha/2;n-1}^2$ ou $\chi_0^2 < \chi_{1-\alpha/2;n-1}^2$.
- Ne pas rejeter H_0 si $\chi^2_{1-\alpha/2;n-1} \leq \chi^2_0 \leq \chi^2_{\alpha/2;n-1}$.

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Exemple 1

Un procédé sert à mettre au point des pièces d'équipement. Le temps nécessaire pour la mise au point d'une pièce peut être approché par une variable X distribuée selon une loi normale de moyenne 15min. Afin d'améliorer la performance du procédé (rapidité), des modifications furent apportées. Les durées suivantes sont alors observées :

15,72 14,68 14,21 12,46 13,02 15,20 15,34 13,31 14,56 14,83

- Peut-on dire au seuil critique 5% que les modifications apportées ont omélioré la performance du procédé?
- Évaluer le niveau critique observé ("P-value") du test effectué.
- Déterminer la taille d'échantillon nécessaire pour que le test en (a) permette de détecter une amélioration lorsque la durée moyenne réelle du temps requis est de (15σ) minutes, avec une probabilité de 90%.

Wissem Maazour

MTH2302: Les tests d'hypothèses

14 / 43

Test d'hypothèses à partir d'un seul échantillon

Détermination de β et n

Tout comme le cas d'une moyenne, on peut calculer β et n en fonction de $\lambda=\frac{\sigma}{\sigma_0}$ en consultant les courbes caractéristiques VIi, VIj, VIk, VII, VIm, VIn pages 494 à 496 du livre.

MTH2302: Les tests d'hypothèses

16 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'hypothèses à partir d'un seul échantillon

Test d'hypothèse sur une proportion p

Soit p la proportion de "succès" dans une population et \hat{p} la proportion de "succès" dans un échantillon aléatoire de taille *n* tiré de cette population. Pour un niveau critique α donné, pour tester l'hypothèse $H_0: p = p_0$ contre $H_1: p \neq p_0$ on utilise la statistique

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- Rejeter H_0 si $|z_0| > z_{\alpha/2}$.
- Ne pas rejeter H_0 si $|z_0| \le z_{\alpha/2}$.

Test d'hypothèses à partir d'un seul échantillon

Exemple 4

On dispose des donnée suivantes sur le temps X nécessaire pour la mise au point d'une pièce.

15,72 14,68 14,21 12,46 13,02

15, 20 15, 34 13, 31 14, 56 14, 83

On peut considérer que $X \sim N(\mu, \sigma^2)$

- Peut-on dire au seuil critique $\alpha = 0,05$ que $\sigma^2 < 1,5$
- Évaluer la probabilité d'accepter l'hypothèse

 $H_0: \sigma^2 = 1.5$ si en réalité $\sigma^2 = 0.5$

MTH2302: Les tests d'hypothèses

17 / 43

Détermination de β et n

- Cas unilatéral à gauche $\beta=1-\Phi\left(\frac{p_0-p-z_{\alpha}\sqrt{\frac{p_0(1-p_0)}{n}}}{\sqrt{\frac{p(1-p)}{n}}}\right)$ et $n = \left(\frac{z_{\alpha}\sqrt{p_0(1-p_0)} + z_{\beta}\sqrt{p(1-p)}}{p-p_0}\right)^2$
- ② Cas unilatéral à droite $\beta = \Phi\left(\frac{p_0 p + z_\alpha \sqrt{\frac{p_0(1 p_0)}{n}}}{\sqrt{\frac{p(1 p)}{n}}}\right)$ et $n = \left(\frac{z_\alpha \sqrt{p_0(1 p_0)} + z_\beta \sqrt{p(1 p)}}{p p_0}\right)^2$
- Cas bilatéral $\beta = \Phi\left(\frac{p_0 - p + z_{\alpha/2}\sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p(1 - p)}{n}}}\right) - \Phi\left(\frac{p_0 - p - z_{\alpha/2}\sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p(1 - p)}{n}}}\right) \text{ et }$ $n \simeq \left(\frac{z_{\alpha/2}\sqrt{p_0(1-p_0)}+z_{\beta}\sqrt{p(1-p)}}{p-p_0}\right)$

Wissem Maazoun MTH2302: Les tests d'hypothèses

19 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'hypothèses à partir de deux échantillons

Test d'hypothèse sur deux moyennes

Soient X_1 et X_2 deux variables de moyennes $\mu_1 = E(X_1)$ et $\mu_2 = E(X_2)$ inconnues, et de variances $\sigma_1^2 = V(X_1)$ et $\sigma_2^2 = V(X_2)$. Et soient X_{11}, \dots, X_{1n_1} et X_{21}, \dots, X_{2n_2} deux échantillons indépendants provenant de X_1 et X_2 respectivement, de moyennes \bar{X}_1 et \bar{X}_2 et de variances S_1^2 et S_2^2 respectivement. Pour un seuil critique α , pour tester H_0 : $\mu_1 = \mu_2$ contre $H_1: \mu_1 \neq \mu_2$, on utilise:

- Si σ_1^2 et σ_2^2 sont connues $z_0 = \frac{\bar{X}_1 \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{\rho_1} + \frac{\sigma_2^2}{\rho_2}}}$
- Si σ_1^2 et σ_2^2 sont inconnues et $X_i \sim N(\mu_i, \sigma_i^2)$
 - Si $\sigma_1^2 = \sigma_2^2 \ t_0 = \frac{\bar{X}_1 \bar{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$
 - Si $\sigma_1^2 \neq \sigma_2^2$ $t_0^* = \frac{\bar{X_1} \bar{X_2}}{\sqrt{s_1^2 s_2^2}}$

Exemple

On veut tester $H_0: p = 0.20$ contre $H_1: p > 0.20$ Un échantillon de taille n = 50 donne 11 "succès".

Test d'hypothèses à partir d'un seul échantillon

- Que peut-on conclure au niveau $\alpha = 0.05$?
- 2 Quelle taille supplémentaire doit-on prélever afin que H_0 soit rejetée 9 fois sur 10 lorsque p = 0, 24?

MTH2302: Les tests d'hypothèses

20 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

21 / 43

Test d'hypothèses à partir de deux échantillons

Test d'hypothèse sur deux moyennes (suite)

- Si σ_1^2 et σ_2^2 sont inconnues, $X_i \sim N(\mu_i, \sigma_i^2)$ et n_1 et n_2 sont grands $z_0 = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
- Si les données sont couplées (appariées) $t_0 = \frac{\overline{D}}{S_D/\sqrt{n}}$

$$\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n}, \quad S_D = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2}, \quad D_i = X_{1i} - X_{2i}$$

<ロ> <回> <回> < 重> < 重> < 重 > の q @

MTH2302: Les tests d'hypothèses

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'hypothèses à partir de deux échantillons

Détermination de β et n

- Cas de variances connues :
 - Lorsque les tailles n_1 et n_2 sont connues, on peut calculer β en chacun des points (μ_1, μ_2) de H_1 .
 - Inversément, si β est fixé en un point (μ_1, μ_2) de H_1 , on peut déterminer la taille d'échantillon nécessaire commune aux deux échantillons $(n_1 = n_2 = n)$.

Remarque: Les courbes VIa, VIb, VIc et VId de l'annexe (p. 490-491) permettent d'évaluer β et n pour $\alpha=0,05$ et $\alpha=0,01$, en fonction de $d=\frac{|\mu_1-\mu_2|}{\sqrt{\sigma_1^2+\sigma_2^2}}$

Test d'hypothèses à partir de deux échantillons

Décisions

- Si σ_1^2 et σ_2^2 sont connues ou n_1 et n_2 sont grands
 - Rejeter H_0 si $|z_0| > z_{\alpha/2}$
 - Ne pas rejeter H_0 si $|z_0| \le z_{\alpha/2}$
- σ_1^2 et σ_2^2 sont inconnues $X_i \sim N(\mu_i, \sigma_i^2)$
 - Si $\sigma_1^2 = \sigma_2^2$
 - Rejeter H_0 si $|t_0| > t_{\alpha/2;\nu}$
 - Ne pas rejeter H_0 si $|t_0| < t_{\alpha/2}$
 - Si $\sigma_1^2 \neq \sigma_2^2$
 - Rejeter H_0 si $|t_0^*| > t_{\nu}(\alpha/2)$
 - Ne pas rejeter H_0 si $|t_0^*| \leq t_{\nu}(\alpha/2)$

où
$$\nu = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 + 1} + \frac{(S_2^2/n_2)^2}{n_2 + 1}} - 2.$$

Si les données sont couplées

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

- Rejeter H_0 si $|t_0| > t_{\alpha/2 \cdot n-1}$
- Ne pas rejeter H_0 si $|t_0| \le t_{\alpha/2, n-1}$

Wissem Maazoun

MTH2302: Les tests d'hypothèses

23 / 43

Test d'hypothèses à partir de deux échantillons

Détermination de β et n

• Cas de variances inconnues : Lorsque σ_1^2 et σ_2^2 sont inconnues, on utilise généralement l'un des tests t pour effectuer le test de l'hypothèse H_0 : $\mu_1 = \mu_2$. Le calcul de β et de n se fait à l'aide des courbes caractéristiques VIe, VIf, VIg et VIh de l'annexe du livre (p. 492-493), uniquement dans le cas $\sigma_1^2 = \sigma_2^2 = \sigma$ et $n_1 = n_2 = n$, avec $d = \frac{|\mu_1 - \mu_2|}{2\sigma}$. Les courbes sont consultés en considérant $n^* = 2n - 1$

Test d'hypothèses à partir de deux échantillons

Tests d'hypothèses sur deux variances

Soient X_1 et X_2 deux variables de moyennes $\mu_1 = E(X_1)$ et $\mu_2 = E(X_2)$ inconnues, et de variances $\sigma_1^2 = V(X_1)$ et $\sigma_2^2 = V(X_2)$. Soient X_{11}, \dots, X_{1n_1} et X_{21}, \dots, X_{2n_2} deux échantillons indépendants provenant de X_1 et X_2 respectivement, de moyennes \bar{X}_1 et \bar{X}_2 et de variances S_1^2 et S_2^2 respectivement. Pour un seuil critique α donné, pour tester l'hypothèse $H_0: \sigma_1^2 = \sigma_2^2$ contre $H_1: \sigma_1^2 \neq \sigma_2^2$, on utilise la statistique $f_0 = \frac{S_1^2}{S_2^2}$

- On rejette H_0 si $f_0 < f_{1-\alpha/2;n_1-1,n_2-1}$ ou $f_0 > f_{\alpha/2;n_1-1,n_2-1}$.
- On ne rejette pas H_0 si $f_{1-\alpha/2;n_1-1,n_2-1} < f_0 < f_{\alpha/2;n_1-1,n_2-1}$.

◆ロト ◆問ト ◆意ト ◆意ト 意 めくで

Wissem Maazoun

MTH2302: Les tests d'hypothèses

26 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test sur la normalité

Contexte et but

Il est souvent important en pratique de vérifier si des données d'un échantillon X_1, \ldots, X_n proviennent d'une population de forme (distribution) données. Précisément la distribution normale. Il existe des méthodes graphiques et des tests.

Méthode graphique

Les données rangées dans lórdre croissant $X_{(1)},\ldots,X_{(n)}$ sont comparées aux centiles d'une loi normale. Précisément, on trace dans le plan les points $\left(X_{(i)},\Phi^{-1}\left(\frac{i-0.5}{n}\right)\right),i=1,\ldots,n$ (diagramme quantile-normal ou droite de Henry, ou graphique de probabilité normal). Lorsque l'hypothèse de normalité est plausible, les points s'alignent alors le long d'une droite.

Wissem Maazoun

MTH2302: Les tests d'hypothèses

25 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'hypothèses à partir de deux échantillons

Détermination de β et n

- Lorsque les tailles n_1 et n_2 sont connues, on peut calculer β en chacun des points (σ_1, σ_2) de H_1 .
- Inversément, si β est fixé en un point (σ_1, σ_2) de H_1 , on peut déterminer la taille d'échantillon nécessaire n, commune aux deux échantillons $(n_1 = n_2 = n)$.

Remarque : Les courbes Vlo, Vlp, Vlq, Vlr de l'annexe (p. 497-498) permettent d'évaluer β et n pour $\alpha = 0,05$ et $\alpha = 0,01$, en fonction de $\lambda = \frac{\sigma_1}{\sigma_2}$.

Test sur la normalité

Les tests

Il s'agit du test des hypothèses

 $H_0: X \sim \text{Normale contre } H_1: X \sim \text{ non Normale}$

Il existe plusieurs méthodes pour effectuer un test de ces hypothèses. Ces tests sont généralement réalisés à l'aide d'un logiciel (tel que Statistica); les logiciels calculent la statistique du test et la probabilité "p-value" correspondante. On distingue, entre autre : le test d'Anderson-Darling, le test d'Agostino-Pearson, le test de Geary, le test du Khi-deux, le test de Kolmogorov-Smirnov (statisque D) et le test de Shapiro-Wilk (statistique W). Les deux dernier sont faits dans Statistica. Nous nous intéressons en particulier au test de Shapiro-Wilk.

> イロト (例) (意) (意)

MTH2302: Les tests d'hypothèses

29 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test sur la normalité

Remarques

- 1 Le logiciel Statistica calcule w et surtout "p - value" = P(W < w) qui est nécessaire pour la décision.
- 2 Lorsque l'hypothèse de normalité est acceptée (un grand "p - value") il est important de confirmer l'hypothèse à l'aide des différents graphiques (quantile-quantile. etc.). Car, comme dans tout test statistique, l'acceptation de H_0 n'est pas une preuve que l'hypothèse soit vraie.

<ロ> <回> <回> < 重> < 重> < 重 > の へ で

MTH2302: Les tests d'hypothèses

28 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test sur la normalité

Le test de Shapiro-Wilk

Dans le contexte d'un test de normalité, la statistique du test de Shapiro-Wilk est de la forme $W = \frac{\left[\sum_{i=1}^n a_{n,i} X_{(i)}\right]^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$, où $X_{(i)}$ représente la $i^{\text{ème}}$ statistique d'ordre et les $a_{n,i}$ sont les coefficients de Shapiro (non disponibles dans le manuel de cours). Il est démontré que c < W < 1, où $c \simeq 0.70$. La statistique W représente essentiellement le carré d'un coefficient de corrélation entre les quantiles observés $X_{(i)}$ et les quantiles théoriques $Z_{(i)}$ d'une N(0,1). La règle de décision est de rejeter l'hypothèse de normalité H_0 si la valeur observée w de W est petite. Précisément, on rejette H_0 si le niveau critique observé "p - value" = P(W < w) est petit.

Introduction

Nous avons vu les tests paramétriques sur un ou deux échantillons. Nous allons voir certains tests non paramétriques (tests d'ajustements et d'indépendance)

- Test d'ajustement du Khi-deux;
- Test d'indépendance entre deux variables (test du Khi-deux);

<ロ> <回> <回> < 重> < 重> < 重 > の へ で

MTH2302: Les tests d'hypothèses

31 / 43

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

MTH2302: Les tests d'hypothèses

32 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Définition

Le but de ce test est de vérifier des hypothèses, de type non paramétriques, portant sur la forme de la distribution des probabilités d'une variable (i.e. une population).

À titre d'exemple, on peut chercher à vérifier si les données, x_1, \dots, x_n , dont on dispose proviennent d'une population distribuée selon une loi particulière $F(x, \theta)$.

La méthode utilisée ici est celle du Khi-deux. À partir d'un échantillon aléatoire X_1, \ldots, X_n de taille n d'une variable X, pour tester l'hypothèse

 $H_0: X \sim F(x, \theta)$

Méthode

• On procède (si nécessaire) à un regroupement des observations selon k valeurs (ou intervalles). On obtient ainsi un tableau dont la forme générale est

Valeurs (x_i)	V_1	V_2	 V_k	Total
Effectifs observés (O _i)	O_1	<i>O</i> ₂	 O_k	n
Effectifs attendus (E_i)	E_1	E_2	 E_k	n

Les O_i sont les effectifs observés, tandis que les E_i sont les effectifs attendus lorsque H_0 est vraie.

• On calcule les effectifs attendus $E_i = n \times p_i^{(0)}$ où $p_i^{(0)} = P(X \in V_i | H_0 \text{ est vraie}), i = 1, 2, ..., k \text{ et}$ $\sum_{i} p_i^{(0)} = 1.$

Test d'ajustement du Khi deux

Méthode

• On calcule la statistique du test

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}.$$

- La statitistique χ_0^2 représente une sorte de «distance» globale entre les effectifs observés et les effectifs attendus. Plus elle est grande moins l'hypothèse H_0 est plausible.
- Lorsque H_0 est vraie, χ_0^2 est distribuée selon une loi khi-deux à $\nu = k - p - 1$ degrés de liberté, où
 - k est le nombre de classes retenues :
 - p est le nombre de paramètres estimés.
- Pour un niveau critique α donné, le test consiste à rejeter H_0 si $\chi_0^2 > \chi_{\alpha:\nu}^2$.

₹ •99€

MTH2302: Les tests d'hypothèses

35 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

<ロ> <回> <回> < 重> < 重> < 重 > の へ で

MTH2302: Les tests d'hypothèses

34 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Exemple

On dispose des données suivantes sur une variable X:

Valeurs (x_i)	1	2	3	Total
Effectifs observés (O _i)	28	18	12	58

Tester l'hypothèse selon laquelle les données proviennent d'une population distribuée selon une loi géométrique i.e. $H_0: X \sim G(p)$. Utiliser $\alpha = 0.05$.

Exemple

On dispose des données suivantes sur une variable X:

Intervalle	[0, 0,5[[0,5 1,0[[1,0 1,5[[1,5 2,0[[2,0 2,5[[2,5 3,0[[3,0,∞[
Nombre observé	2	23	17	4	2	0	2

Tester l'hypothèse selon laquelle les données proviennent d'une population distribuée selon une loi normale i.e. $H_0: X \sim N(\mu, \sigma^2)$. Utiliser $\alpha = 0.05$.

La moyenne et l'écart type de l'échantillon sont : $\bar{X} = 1,168$ et s = 0.591.

Définition

Il arrive en pratique que l'on étudie plusieurs variables simultanément. Dans le cas particulier de deux variables, on peut être amené à vérifier s'il existe un lien entre les deux. La méthode du khi-deux permet d'effectuer ce test.

Exemples

- On aimerait vérifier si, dans une population donnée, les hommes et les femmes ont la même opinion au sujet du tabagisme. On dit Alors qu'on effectue le test de l'indépendance entre le sexe (X) et l'opinion (Y).
- On veut vérifier si le type de pneu (X) est dépendant du kilométrage parcouru avant usure (Y).

MTH2302: Les tests d'hypothèses

37 / 43

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

MTH2302: Les tests d'hypothèses

38 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Le tableau de contingence de la forme suivante :

X Y	y_1	y_2		y_j		y_c	Total
x_1	O_{11}	O_{12}		O_{1j}		O_{1c}	$\sum_{j=1}^{c} O_{1j}$
x_2	O_{21}	O_{22}		O_{2j}		O_{2c}	$\sum_{j=1}^{c} O_{2j}$
:	:	:	:	:	:	:	:
x_i	O_{i1}	O_{i2}		O_{ij}		O_{ic}	$\sum_{j=1}^{c} O_{ij}$
:	:	:	:	:	:	:	:
x_r	O_{r1}	O_{r2}		O_{rj}		O_{rc}	$\sum_{j=1}^{c} O_{rj}$
Total	$\sum_{i=1}^{r} O_{i1}$	$\sum_{i=1}^{r} O_{i2}$		$\sum_{i=1}^{r} O_{ij}$		$\sum_{i=1}^{r} O_{ic}$	n

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Méthode

Il s'agit dans ces cas d'un test non paramétrique des hypothèses $H_0: X$ et Y sont indépendants VS $H_1: X$ et Y sont dépendants Afin d'effectuer un tel test, on prélève un échantillon de taille n de la population que l'on classe conjointement selon les r modalités de X et les c modalités de Y. On obtient alors un tableau de contingence.

Méthode

Tout comme le cas du test d'ajustement, le principe du test du Khi-deux consiste à comparer les effectifs observés O_{ii} aux effectifs attendus E_{ii} si H_0 est vraie. Si les deux variables sont indépendantes, les effectifs attendus E_{ij} , $i=1,\ldots,r; j=1,\ldots,c$ sont calculés à partir du tableau de contigence :

$$E_{ij} = \frac{1}{n} \left(\sum_{k=1}^{c} O_{ik} \right) \times \left(\sum_{l=1}^{r} O_{lj} \right).$$

La statistique du test est

$$\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}.$$

<ロ> <回> <回> < 重> < 重> < 重 > の へ で

MTH2302: Les tests d'hypothèses

40 / 43

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

MTH2302: Les tests d'hypothèses

41 / 43

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Test d'ajustement du Khi deux Test d'indépendance entre deux variables

Exemple

Une flotte d'autobus est équipée de 4 types de pneus (A, B, C, D). On mesure le kilométrage parcouru avant usure de pneu. On construit 3 classes de kilométrage (en milliers), (<20; [20,30]; >30). On a obtenu les résultats suivants :

Observé	Α	В	С	D	Total
< 20	26	23	15	32	96
[20, 30]	118	93	116	121	448
> 30	56	84	69	47	256
Total	200	200	200	200	800

Tester si les deux variables sont indépendantes au seuil critique $\alpha = 0,05.$

Méthode

Lorsque H_0 est vraie, la statistique χ_0^2 suit une loi Khi-deux à $\nu = (r-1) \times (c-1)$ degrés de liberté.

Pour un niveau critique α donné, le test consiste à rejeter H_0 si $\chi_0^2 > \chi_{\alpha;\nu}$.

42 / 43