

Why word embeddings?

We need to represent words as numbers do to calculations.

Challenges of conventional methods:

- High-dimensionality (n=vocabulary)
- No representation of similar meaning between words.

"It turns out that dense vectors work better in every NLP task than sparse vectors" (Jurafsky, D. & Martin, J., 2024)

Word Embeddings

Word Embedding:

The transformation of words into vectors in a continuous vector space.

• Useful property: Semantically related words are located nearby each other.

Figure 2: Left panel shows vector offsets for three word pairs illustrating the gender relation. Right panel shows a different projection, and the singular/plural relation for two words. In high-dimensional space, multiple relations can be embedded for a single word.

"Linguistic Regularities in Continuous Space Word Representations" (Mikolov et al, NAACL 2013)

"Distributed Representations of Words and Phrases and their Compositionality" (Mikolov et al, 2013)

Example

Common Algorithms

Word2Vec:

Uses shallow neural networks to create word embeddings. Two variants: Skipgram and Continuous Bag of Words (CBOW).

GloVe:

Generates embeddings by factorizing the word co-occurence matrix. It is a count-based model that captures both local and global semantics.

BERT and ELMo:

Bidirectional models that translates words in context to vectors. ELMo uses LSTMs and BERT uses the Transformer architecture.

Word2Vec: Skip-Gram

• Task: Given a word, predict the context

Skip-Ngram input projection output W-2 W0 W1 W2

This is a visual comparison SkipGram

https://kavita-ganesan.com/comparison-between-cbow-skipgram-subword/

Word2Vec: Continuous Bag of Words

• Task: Given a context, predict the word

This is a visual comparison CBOW

https://kavita-ganesan.com/comparison-between-cbow-skipgram-subword/

Semantics vs. Syntax

- Show the most similar words to the word.
- Similarity by these models is both based on semantics and syntax
- Research shows that CBOW is better at modeling syntax and Skip-gram is better at modeling semantics.
 But the difference is very small.

Word: Negative

CBOW	Skip-gram		
Positive	Positive		
Logical	Psychological		
Rational	Particulate		
Superstitious	Substance		
Dangerous	Severity		
Subjective	Damaging		
Meaningless	Wildly		
Weak	Definite		
Trickier	Promiscuity		
Significant	Harmful		

Similarity Concepts

- Similarity is hard to define.
- Different Word2Vec models excess at different types of similarities

	a_word	b_word	concept_type	score_cbow	score_skipgram
0	friendly	staff	neighboring	0.114944	0.749117
1	shower	curtain	neighboring	0.262860	0.717065
2	very	clean	neighboring	0.397924	0.678147
3	hotel	property	synonymous	0.807957	0.667862
4	dirty	filthy	synonymous	0.865373	0.878625
5	washroom	bathroom	synonymous	0.766167	0.801310
6	staff	staffs	near_duplicates	0.830538	0.623231
7	calendar	calender	near_duplicates	0.209005	0.497958
8	bathrroom	bathrooms	near_duplicates	0.165828	0.506214

https://kavita-ganesan.com/comparison-between-cbow-skipgram-subword/

Sentence Similarity

phrase1 phras		similar	cbow_sim	skipgram_sim
polite staff	rude staff	0	1	1
friendly manager	rude manager	0	1	1
room was huge	large rooms	1	0	1
staff was friendly	very polite manager	1	1	1
bathroom was very dirty	filthy bathroom	1	1	1
clean and tidy rooms	the room was a mess	0	0	1
the views were awesome	the breakfast was nice	0	0	1
what lovely breakfast	friendly staff	0	0	0
would recommend	highly recommended	1	0	1
the manager was rude	staff were arrogant and rude	1	1	1
good breakfast selection	variety of breakfast items	1	1	1

https://kavita-ganesan.com/comparison-between-cbow-skipgram-subword/

Pre-trained vs self-trained word embeddings

Pre-trained embeddings

Advantages:

- + Captures broad range of language features, as it is trained on a large corpus.
- + Good for tasks requiring a broad language understanding

<u>Disadvantages</u>:

- Not tailored to specific domain
- Out-of-vocabulary words
- Memory inefficient

Self-trained embeddings

Advantages:

- + Domain specific representations
- + Little out-of-vocabulary words

Disadvantages:

- Trained on less data
- More computationally expensive

Creating Document Embeddings

- For many applications, document embeddings are needed instead of word embeddings.
- Averaging of word embeddings is the most popular and often effective method to calculate document embeddings, but min-pooling and max-pooling are sometimes used.
- In min- and max-pooling, the lowest or highest value for each dimension is taking.

Today

Train Word2Vec Embeddings on the 20Newsgroup dataset

```
from sklearn.datasets
import fetch_20newsgroups
from nltk.tokenize import word_tokenize
from gensim.models import Word2Vec
import re
# Fetch the 20 Newsgroups dataset
newsgroups = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))
```


Preprocessing

```
def preprocess_text(text):
         text = text.strip()
         words = word_tokenize(text.lower())
         alpha_words = [word for word in words if word.isalpha()]
         return alpha_words

preprocessed_data = [preprocess_text(document) for document in newsgroups.data]
```


Training the Word2Vec Model

For training TF-IDF embeddings, look at sklearn.feature_extraction.text.TfidfVectorizer

Accessing Embeddings

All embeddings can be obtained as follows:

```
Embeddings = cbow_model.wv.vectors
```

To get specific embeddings: model.wv["computer"]

Wv.index_to_key and wv.key_to_index map index to words

Index to key:

```
i2k= cbow_model.wv.index_to_key
for i in [0, 167, 503, 78527]:
    print(f'word {i} in vocabulary: {i2k[i]}')
>>> word 0 in vocabulary: the
>>> word 167 in vocabulary: data
>>> word 503 in vocabulary: science
>>> word 78527 in vocabulary: definate
```

Key to index:

```
k2i= cbow_model.wv.key_to_index
for i in ['data', 'science', 'the','definate']:
    print(f'word {i} in vocabulary: {k2i[i]}')
>>> word data in vocabulary: 167
>>> word science in vocabulary: 503
>>> word the in vocabulary: 0
>>> word definate in vocabulary: 78527
```

Calculating Similarity

>>> [[0.8103024]]
>>> [[0.2295769]]

 Similarity of vectors can be calculated on various ways, but cosine similarity is the most popular.

```
from sklearn.metrics.pairwise import cosine_similarity

vector_computer = cbow_model.wv['computer'].reshape(1,-1)
vector_network = cbow_model.wv["network"].reshape(1,-1)
vector_bird = cbow_model.wv['bird'].reshape(1,-1)

print(cosine_similarity(vector_computer, vector_network))
print(cosine_similarity(vector_computer, vector_bird))

- Angle 0 close to 90
- Cos(0) close to 1
- Cos(0) close to 1
- Cos(0) close to 1
- Opposite vectors
```

Cosine similarity can be used to calculate the similarity of all kinds of vectors.
 TF-IDF & Word2Vec, Word & Document Embeddings.

Gensim implementation

```
cbow_model.wv.most_similar("car")

[
('bike', 0.8462114334106445),
('battery', 0.7564215660095215),
('dealer', 0.7380539774894714),
('snazzy', 0.7085026502609253),
('oil', 0.7017979025840759),
('helmet', 0.69758540391922),
('bought', 0.6896640658378601),
...
]
```


Other Gensim Features

Vector Arithmetics:

```
Model.vw.most_similar(positive=['woman', 'king'], negative=["man"])
```

Closer than:

```
Model.wv.words_closer_than("lion", "cat")
```

Does not match:

```
Model.wv.doesnt_match(["breakfast", "lunch", "frog"])
```


Overview

- Train Word2Vec models on the provided datasets. The goal is to familiarize yourself with the periously discussed concepts.
- You will work with the following datasets:
 - AGNews
 - IMBD

Loading the data

```
import re
def read_and_preprocess_txt(file_path):
    """
    Reads a .txt file, preprocesses each line by lowercasing,
    keeping only alphabetic characters and filtering out words with length less than 3.
    Tokenizes the preprocessed line into a list of words.
    Returns a list of lists where each inner list is a tokenized and preprocessed line from the file.
    Parameters:
        - file_path (str): The path to the .txt file to be read.
    Returns:
        - list: A list of lists, where each inner list is a tokenized and preprocessed line from the
    file.
    """
    with open(file_path, 'r', encoding='utf-8') as file:
        return [[word for word in re.sub('[^a-zA-Z\s]', '', line.lower().strip()).split() if len(word) >= 3] for line in file]
```


Exercise

- Start training a word2vec model on the preprocessed AGNews dataset using CBOW and Skipgram.
 - For both models, what are the 10 words most similar to the words 'amsterdam'?
 - How do the results differ from each other?
- Now train a word2vec with both models on the imdb dataset and time your training.
 - Which training went faster?
 - In the IMDB dataset what is the resulting vector if you subtract 'man' from 'uncle' and add 'woman'? What about doing the same on the AGNews dataset? What causes the difference?
 - What are the differences between CBOW and Skipgram?
- Create a document embedding, using max-pooling, for the first 10 documents in the AGNews dataset.
 - Which document is most similar to the first document?

Contact

Niels Scholten

n.c.scholten@tue.nl

