1 By definition,

1a) Show that $1^k+2^k+3^k+....+n^k$ is $O(n^{k+1})$, where k is a positive integer?

g(n) is an asymptotic upper bound for f(n) if there exist constants C and n_0 such that 0 <= f(n) <= cg(n) for $n >= n_0$

Here
$$f(n) = 1^{k} + 2^{k} + 3^{k} + \dots + n^{k}$$
, $g(n) = n^{k+1}$

$$1^{k}+2^{k}+3^{k}+....+n^{k} <= c.n^{k+1}$$

As k,n are positive integers, replace 1k,2k,3k with nk

$$n^k+n^k+n^k+....+n^k \le c.n^{k+1}$$

There are n terms

$$n.n^k \le c.n^{k+1}$$

$$n^{k+1} \le c.n^{k+1} =$$
 This is true for all $c \ge 1$ and $n_0 \ge 1$

Therefore, $1^k+2^k+3^k+....+n^k$ is $O(n^{k+1})$

Solution:
$$1^k+2^k+3^k+....+n^k = O(n^{k+1})$$

1b) Show that $(n^3+2n)/(2n+1)$ is $O(n^2)$

g(n) is an asymptotic upper bound for f(n) if there exist constants C and n_0 such that 0 <= f(n) <= cg(n) for $n >= n_0$

Here
$$f(n) = (n^3+2n)/(2n+1)$$
, $g(n) = n^2$

$$(n^3+2n)/(2n+1) \le c. n^2$$

$$\frac{n^2}{2} - \frac{n}{4} + \frac{9}{8} - \frac{9}{8(2n+1)} \le c.n^2$$

By Ignoring the lower order terms we get

$$\Rightarrow$$
 n²/2 <= c. n² => This is true for all c>=1 and n₀>=1 \Rightarrow O(n²)

Solution:
$$(n^3+2n)/(2n+1) = O(n^2)$$

1c) Prove that
$$(n+3)^3 = \Theta(n^3)$$

g(n) is an asymptotic tight bound for f(n) if there exist constants c_1 , c_2 and n_0 such that $0 <= c_1.g(n) <= f(n) <= c_2.g(n)$ for $n >= n_0$

Here,
$$f(n) = (n+3)^3$$
, $g(n) = n^3$

$$(n+3)^3 \le c.n^3$$

$$c_1.n^3 \le n^3 + 9n^2 + 27n + 27 \le c_2.n^3$$

$$c_1.n^3 \le n^3 + 9n^3 + 27n^3 + 27n^3 \le c_2.n^3$$

$$c_1.n^3 \le 64n^3 \le c_2.n^3 =$$
 This is true for $c_1 \le 63$, $c_2 = >65$ $n_0 > =1$

$$\Rightarrow \Theta(n^3)$$

$$\Rightarrow$$
 Therefore, $(n+3)^3 = \Theta(n^3)$

Solution: $(n+3)^3 = \Theta(n^3)$

2.

2a) Is
$$2^{n+1} = 0(2^n)$$
? Why?

g(n) is an asymptotic upper bound for f(n) if there exist constants C and n_0 such that 0 <= f(n) <= cg(n) for $n >= n_0$

Here
$$f(n)=2^{n+1}$$
, $g(n)=2^n$

$$2^{n+1} \le c. 2^n$$

$$2^{n}.2 \le c.2^{n} = >$$
 This is true for all $c>=2$, $n_0>=0$

Solution: $O(2^n)$

2b) Is
$$2^{2n} = O(2^n)$$

g(n) is an asymptotic upper bound for f(n) if there exist constants C and n_0 such that 0 <= f(n) <= cg(n) for $n >= n_0$,

Here,
$$f(n)=2^{2n}$$
, $g(n)=2^n$

$$2^{2n} \le c.2^n$$

$$(2^n)^2 < = c.2^n$$

$$2^{n}.2^{n} \le c.2^{n}$$

 $2^n \le c \Rightarrow n$ is not bounded by c.

Therefore f(n) is not $O(2^n)$

Solution: $2^{2n} != O(2^n)$

- 3. Order the following functions into a list such that if f(n) comes before g(n) in the list then
- f(n) = O(g(n)). If any two (or more) of the same asymptotic order, indicate which.
- 3a) Start with these basic functions

n, 2ⁿ, nlgn, n³, lgn, n-n³+7n⁵, n²+lgn

lgn - logarithmic

n-linear

nlgn – linear multiplied by log

n²+logn – By ignoring lower order terms we get n² (Polynomial)

n³ – polynomial with higher degree than n²

 $n-n^3+7n^5$ - By ignoring lower order terms we get $7n^5$ (Polynomial with higher degree than n^2 , n^3)

solution: $lgn \le n \le nlgn \le n^2 + lgn \le n^3 \le n - n^3 + 7n^5$

3b) Combine the following functions into your answer for part (a). Assume that $0 < \epsilon < 1$.

en, \sqrt{n} , 2^{n-1} , lglgn, $(\sqrt{2})^{lgn}$, lnn, $(lgn)^2$, n!, $n^{1+\epsilon}$, 1

- $(\sqrt{2})^{\lg n} => (2^{1/2})^{\lg n} => (2)^{\log_2 \sqrt{n}} => \sqrt{n}$ $\circ \sqrt{n}$, $(\sqrt{2})^{\lg n}$ has same asymptotic order.
- $2^{n-1} = > \frac{1}{2}2^n$
 - \circ 2ⁿ⁻¹,2ⁿ has same asymptotic order
- $lgn^2 => 2.lgn$; $lnn => log_2e(log_2n)$
 - o lgn², lnn, lgn has same asymptotic order
- lgn, lnn, lgn² -> Same asymptotic order
- \sqrt{n} , $(\sqrt{2})^{\log n}$ -> Same asymptotic order
- 2ⁿ⁻¹, 2ⁿ Same asymptotic order

Solution:

$$\begin{split} 1 \leq lglgn \leq &lgn \leq lnn \leq (lgn)^2 \leq \{(\sqrt{2})^{lgn}, \sqrt{n}\} \leq n \leq nlgn \leq n^{1+\epsilon} \leq n^2 + lgn \leq n^3 \\ \leq &n-n^3 + 7n^5 \leq 2^{n-1} \leq 2^n \leq e^n \leq n! \end{split}$$

4. Find the solution for each of the following recurrences, and then give tight bounds (i.e., in $\Theta(\cdot)$) for T (n).

4a)
$$T(n)=T(n-1)+1/n$$
 with $T(0)=0$

$$T(n-1)=T(n-2)+1/(n-1)$$

$$T(n-2)=T(n-3)+1/(n-2)$$

$$T(n-3)=T(n-4)+1/(n-3)$$

$$T(n)=T(n-1)+1/n$$

$$T(n)=T(n-2)+[1/(n-1)]+[1/n]$$

$$T(n)=T(n-3)+[1/(n-2)]+[1/(n-1)]+[1/n]$$

$$T(n)=T(n-k)+[1/n-(k-1)]+[1/n-(k-2)].....+[1/(n-2)]+[1/(n-1)]+1/n$$

Put n-k=0

$$T(n)=T(0)+1+(1/2)+(1/3)+....(1/n)$$

$$T(n)=T(0)+\sum_{k=1}^{n}\frac{1}{n}$$

$$T(n)=0+\log(n)$$

$$T(n) = \Theta(\log(n))$$

4b)
$$T(n)=T(n-1)+c^n$$
 with $T(0)=1$, where $c>1$

$$T(n-1)=T(n-2)+c^{n-1}$$

$$T(n-2)=T(n-3)+c^{n-2}$$

$$T(n-3)=T(n-4)+c^{n-3}$$

$$T(n)=T(n-1)+c^n$$

$$\Rightarrow$$
 T(n-2)+cⁿ⁻¹+cⁿ

$$\Rightarrow$$
 T(n-3)+cⁿ⁻²+cⁿ⁻¹+cⁿ

$$T(n)=T(n-k)+c^{n-(k-1)}+c^{n-(k-2)}+....+c^{n-2}+c^{n-1}+c^n$$

$$T(n) = T(0) + c^1 + c^2 + \dots + c^n$$

$$T(n)=1+c^1+c^2+.....c^n$$

$$T(n)=c^0+c^1+c^2+.....c^n$$

$$T(n) = \frac{c^{n+1}-1}{c-1}$$

g(n) is an asymptotic tight bound for f(n) if there exist constants k_1 , k_2 and n_0 such that $0 <= k_1.g(n) <= f(n) <= k_2.g(n)$ for $n >= n_0$

 $let g(n) = c^n$

$$0 \le k_1.c^n \le \frac{c^{n+1}-1}{c-1} \le k_2.c^n$$

- $^{\Rightarrow}$ 0 <= (c-1). $k_1.c^n$ <= c^{n+1} -1<=(c-1). $k_2.c^n$
- $^{\Rightarrow}$ 0 <= ((c-1).k₁.cⁿ) +1<=cⁿ⁺¹<=((c-1). k₂.cⁿ)+1 this is true for k₁=1, k₂=2, n₀=1

Solution: $T(n) = \Theta(c^n)$

4c)
$$T(n)=2T(n-1)+1$$
 with $T(0)=1$

$$T(n-1)=2T(n-2)+1$$

$$T(n-2)=2T(n-3)+1$$

$$T(n-3)=2T(n-4)+1$$

$$T(n)=2T(n-1)+1$$

- \Rightarrow 2[2T(n-2)+1]+1
- \Rightarrow 4T(n-2)+2+1
- $\Rightarrow 4[2T(n-3)+1]+2+1$
- \Rightarrow 8T(n-3)+4+2+1
- $\Rightarrow 2^{k}.T(n-k)+2^{k-1}+2^{k-2}+2^{k-3}+...4+2+1$

Put n-k=0

$$\Rightarrow 2^{k}T(0)+\sum_{k=0}^{n-1}2^{k}$$

n=k

$$\Rightarrow$$
 2ⁿ+(2ⁿ-1)

$$\Rightarrow 2^{n+1}-1$$

g(n) is an asymptotic tight bound for f(n) if there exist constants c_1 , c_2 and n_0 such that $0 <= c_1 \cdot g(n) <= f(n) <= c_2 \cdot g(n)$ for $n >= n_0$

$$let g(n) = 2^n$$

$$0 <= c_1.2^n <= 2^{n+1}-1 <= c_2.2^n$$

$$\Rightarrow 0 <= c_1.2^n+1 <= 2^{n+1} <= c_2.2^n+1$$

$$\Rightarrow 0 <= \frac{c_1.2^n+1}{2} <= 2^n <= \frac{c_2.2^n+1}{2} \text{ this is true for } c_1=1, c_2=4, n_0=1$$

$$T(n) = \Theta(2^n)$$

5. Find the solutions of the following recurrence relations

5a)
$$f_n = f_n - 1 + f_n - 2$$
 with $f_0 = 0$ and $f_1 = 1$.

$$f_{n=} f_{n-1} + f_{n-2}$$

$$f_n - f_n - 1 + f_n - 2 = 0$$

The characteristic equation is

$$x^2-x-1=0$$

Roots are:

$$\Rightarrow x_1 = \frac{1+\sqrt{5}}{2}; x_2 = \frac{1-\sqrt{5}}{2}$$

 x_1 , x_2 are distinct real roots,

$$f_n = c_1(x_1)^n + c_2(x_2)^n$$

Substitute n=0

$$\Rightarrow$$
 $f_0=c_1+c_2$

$$\Rightarrow$$
 $c_1 = -c_2$

Substitute n=1

$$f_1 = c_1 \left[\frac{1+\sqrt{5}}{2} \right] + c_2 \left[\frac{1-\sqrt{5}}{2} \right]$$

$$\Rightarrow c_1 \left[\frac{1+\sqrt{5}}{2} \right] - c_1 \left[\frac{1-\sqrt{5}}{2} \right]$$

$$\Rightarrow c_1 \left[\frac{1+\sqrt{5}}{2} \right] + c_1 \left[\frac{\sqrt{5}-1}{2} \right]$$

$$\Rightarrow c_1 \left[\frac{2\sqrt{5}}{2} \right]$$

$$\Rightarrow c_1 \cdot \sqrt{5}$$

$$f_1 = c_1 \cdot \sqrt{5}$$

$$1=c_1.\sqrt{5}$$
 (Since $f_1=1$)

$$c_1 = 1/\sqrt{5}$$

$$c_2 = -1/\sqrt{5}$$

$$f_n = \frac{1}{\sqrt{5}} (x_1)^n - \frac{1}{\sqrt{5}} (x_2)^n$$

$$f_{n} \!\!=\!\! \frac{1}{\sqrt{5}} \big[\frac{1+\sqrt{5}}{2} \, \big]^{n} \!\!-\! \frac{1}{\sqrt{5}} \big[\frac{1-\sqrt{5}}{2} \, \big]^{n}$$

5b) $a_n=6a_{n-1}-9a_{n-2}$ with $a_0=1$ and $a_1=6$

$$a_{n}$$
-6 a_{n-1} -9 a_{n-2} =0

The

$$x^2 - 6x + 9 = 0$$

Roots are:

$$\Rightarrow x_1=3, x_2=3$$

$$a_n = c_1(x_1)^n + c_2(x_2)^n \cdot n$$

$$a_n = c_1(3)^{n} + c_2(3)^{n}$$

Substitute n=0 in $a_n=c_1(3)^{n}+c_2(3)^{n}$.n

$$a_0=c_1(3)^0+c_2(3)^0.0$$

$$a_0 = c_1 + 0$$

$$a_0=c_1$$

$$\Rightarrow$$
 c₁=1

substitute n=1 in $a_n=c_1(3)^{n}+c_2(3)^{n}$.n

$$a_0=c_1(3)^1+c_2(3)^1.1$$

$$6 = 3c_1 + 3c_2$$

$$6=3(1)+3c_2$$

$$6=3(1+c_2)$$

$$\Rightarrow$$
 c₂=1

$$a_n = c_1(3)^{n} + c_2(3)^{n}$$

$$\Rightarrow$$
 $c_1(3)^n + c_2(3)^n \cdot n$

$$\Rightarrow$$
 (3) n +(3) n . n

$$\Rightarrow$$
 3ⁿ(1+n)

$$a_n = 3^n(1+n)$$

6.

$$T(n) = 3.T(n/2) + cn$$

$$T(n/2) = 3.T(n/4) + cn/2$$

$$T(n/4)=3.T(n/8)+cn/4$$

$$T(n)=3.T(n/2)+cn$$

$$T(n)=3[3.T(n/4)+cn/2]+cn$$

$$\Rightarrow$$
 32.T(n/4)+3cn/2+cn

$$\Rightarrow 3^{2}[3.T(n/8)+cn/4]+3cn/2+cn$$

$$\Rightarrow$$
 33.T(n/8)+32cn/4+3cn/2+cn

$$\Rightarrow 3^{k}T(n/2^{k}) + \sum_{k=1}^{n} \frac{3^{k-1}.c.n}{2^{k-1}}$$

$$\Rightarrow 3^{k}T(n/2^{k}) + \sum_{k=1}^{n} \frac{3^{k-1}.c.n}{2^{k-1}}$$

$$\Rightarrow 3^{k}T(n/2^{k}) + c. n. \sum_{k=1}^{n} \frac{3^{k-1}}{2^{k-1}}$$

$$\Rightarrow 3^{k}T(n/2^{k})+c. n. \sum_{k=1}^{n} (3/2)^{k-1}$$

$$\Rightarrow 3^{k}T(n/2^{k})+c.n.\frac{1-(3/2)^{k-1}}{1-3/2}$$

$$\Rightarrow 3^{k}T(n/2^{k})+c.n.\frac{(3/2)^{k-1}-1}{(\frac{3}{2})-1}$$

$$\Rightarrow 3^{k}T(n/2^{k})+c.n.\frac{(3/2)^{k-1}-1}{\binom{3}{2}-1}$$

$$\Rightarrow 3^{k}T(n/2^{k})+c.n.\frac{(3/2)^{k-1}-1}{1/2}$$

$$\Rightarrow 3^{k}T(n/2^{k})+2. c. n. ((3/2)^{k-1}-1)$$
Plugging in k=logn we get,

$$\Rightarrow$$
 3kT(n/2k)+2. c. n. ((3/2)^{k-1} - 1)

$$\Rightarrow 3^{\log n}T(1)+2. c. n. ((3/2)^{\log n-1}-1)$$

$$\Rightarrow n^{\log 3} + 4c.n. \left(\frac{\frac{3^{\log n}}{n} - \frac{3}{2}}{3}\right)$$

$$\Rightarrow n^{\log 3} + \frac{4}{3} \cdot c(n^{\log 3} - (3n/2))$$

$$\Rightarrow \Theta(n^{\log 3})$$

Solution:

a) General kth term =
$$3^{k}T(n/2^{k})+2$$
. c. n . $((3/2)^{k-1}-1)$

b) k=logn (k should be logn)

7. Use the master theorem to give tight asymptotic bounds for the following recurrences.

a)
$$T(n)=2T(n/2)+\sqrt{n}$$

It is in the form of T(n)=aT(n/b)+f(n) where a>=1, b>1, f(n)>0

Here
$$a=2,b=2, \log_b a = \log_2 2=1, f(n) = \sqrt{n}$$

Compare $n^{\log_2 2}$ with $f(n) = \sqrt{n}$

Case 1:

$$f(n)=O(n^{(\log_2 2-\epsilon)})$$

$$f(n) = O(n^{(1-\epsilon)})$$
 for some $\epsilon > 0$

Solution: $T(n) = \Theta(n)$

b)
$$T(n) = 3T(n/2) + cn$$

It is in the form of T(n)=aT(n/b)+f(n) where a>=1, b>1, f(n)>0

Here
$$a=3$$
, $b=2$, $f(n)=n$, $log_23=1.58$

Compare $n^{\log_2 3}$ with f(n) = n

Case 1:

$$f(n) = O(n^{\log_b a - \varepsilon})$$

$$f(n) = O(n^{1.58-\epsilon})$$

Solution: $T(n) = \Theta(n^{\log_2 3})$

c)
$$T(n)=27T(n/3)+cn^3$$

It is in the form of T(n)=aT(n/b)+f(n) where a>=1, b>1, f(n)>0

Here
$$a=27$$
, $b=3$, $f(n) = n^3$, $log_3 27 = 3$

Compare $n^{\log_3}27$ with $f(n)=n^3$

Case 2:

$$f(n) = \Theta(n^{\log_b a}. \log n)$$

$$f(n) = \Theta(n^{\log_3 27} \cdot logn)$$

$$T(n) = \Theta(n^3 \log n)$$

d) $T(n)=5T(n/4)+cn^2$

It is in the form of T(n)=aT(n/b)+f(n) where a>=1, b>1, f(n)>0

Here,
$$a=5$$
, $b=4$, $log_b a = log_4 5 = 1.16$, $f(n)=n^2$

Compare f(n) with $n^{\log_b a}$

Case 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$

$$f(n) = \Omega(n^{\log_4 5 + \varepsilon})$$

Regularity condition:

$$a.f(n/b) \le k.f(n)$$
 for some k<1,

$$5f(n/4) \le k.n^2$$

$$5.n^2/16 <= k.n^2$$

$$5/16 \le k$$

$$\Rightarrow$$
 k=0.31 is a solution (k<1)

Therefore, $T(n) = \Theta(n^2)$

Solution:
$$T(n) = \Theta(n^2)$$

8. Use the master theorem to give tight asymptotic bounds for the following recurrences

8a)
$$T(n) = 2T(n/4)+1$$

It is in the form of T(n) = aT(n/b) + f(n)

Where a=2, b=4,
$$\log_b a = \log_4 2 = \frac{1}{2}$$

Compare $n^{\log_4 2}$ with f(n) = 1

Case 1:
$$f(n) = O(n^{(\log_b a - \epsilon)})$$

$$f(n) = O(n^{(1/2 - \varepsilon)})$$

$$f(n) = O(n^{\log_b a})$$

$$\Rightarrow$$
 $O(n^{\log_4 2})$

$$\Rightarrow 0(\sqrt{n})$$

Solution: $T(n) = \Theta(\sqrt{n})$

8b)
$$T(n) = 2T(n/4) + \sqrt{n}$$

It is in the form of T(n) = aT(n/b) + f(n) where as $a \ge 1$, $b \ge 1$ and $f(n) \ge 0$

Where a=2, b=4, $\log_b a = \log_4 2 = \frac{1}{2}$

Compare $n^{\log_4 2}$ with $f(n) = \sqrt{n}$

Case 2:

$$f(n) = \Theta(n^{\log_b a}. \log n)$$

$$\Rightarrow \Theta((n^{\log_4 2}).\log n)$$

$$\Rightarrow \Theta(\sqrt{n.logn})$$

Solution: $T(n) = \Theta(\sqrt{n \log n})$

8c)
$$T(n) = 2T(n/4) + n$$

It is in the form of T(n) = aT(n/b) + f(n) where as $a \ge 1$, $b \ge 1$ and $f(n) \ge 0$

Here,
$$a=2$$
, $b=4$, $f(n) = n$, $log_b a = log_4 2 = \frac{1}{2}$

Compare $n^{\log_4 2}$ with f(n)=n

Case 3:
$$f(n) = \Omega(n^{1+\epsilon})$$

Verify regularity condition:

$$a.f(n/b) \le c.f(n)$$
 for some $c \le 1$

$$2.f(n/4) \le c.n$$

$$=> n/2 <= c.n => c >= 1$$

Solution: $T(n) = \Theta(n)$

8d)
$$T(n) = 2T(n/4) + n^2$$

It is in the form of T(n) = aT(n/b) + f(n)

Here, a=2, b=4, $f(n)=n^2$, $\log_b a = \log_4 2 = > \frac{1}{2}$

Compare $n^{\log_4 2}$ with $f(n) = n^2$

Case 3: $f(n) = \Omega(n^{1+\epsilon})$

Verify regularity condition:

 $a.f(n/b) \le c.f(n)$ for some $c \le 1$

 $2.f(n/4) \le c.n^2$

 $=> n^2/8 <= c.n^2$ for c>=1

Solution: $T(n) = \Theta(n^2)$