软件学院图形学与人机交互实验课题目

题目:编写图形应用程序,实现题目的功能要求

内容及要求:

- 1、 创建单文档应用程序,项目名称为 CGWORKxxxx (xxxx 为学号的后四位);
- 2、 为应用程序创建如下结构菜单项(直接在应用程序默认菜单上创建):

一级菜单	二级菜单	三级菜单	安任应用程序系统采车工的建产。 功能要求
	一级术中	绘制矩形	选择后可用鼠标绘制矩形(详见 3.1)
图形应用	图形绘制	绘制圆形	选择后可用鼠标绘制圆形(详见 3.2)
		设置颜色	设置绘制矩形和圆形的颜色(详见
		以且灰口	3.3)
	区域填充	<u></u> 绘制多边形	选择后可用鼠标绘制用学号后四位
		坛则多处// 	做内部填充的多边形(详见 3.4)
		设置颜色	设置填充的学号的颜色(详见 3.4)
		7 	<u> </u>
	三维变换	绘制立方体	绘制空间中一立方体(详见 3.6)
		延x轴方向平移	通过键盘按键将空间中立方体延x轴
			方向平移并绘制平移后结果(详见
		77 41 11 77 77 77	3.7)
		延y轴方向平移	通过键盘按键将空间中立方体延y轴
			方向平移并绘制平移后结果(详见
			3.8)
		延z轴方向平移	通过键盘按键将空间中立方体延z轴
			方向平移并绘制平移后结果(详见
			3.9)
		绕x轴旋转	通过键盘按键将空间中立方体绕x轴
			旋转并绘制旋转后结果(详见 3.10)
		绕y轴旋转	通过键盘按键将空间中立方体绕y轴
			旋转并绘制旋转后结果(详见 3.11)
		绕z轴旋转	通过键盘按键将空间中立方体绕z轴
			旋转并绘制旋转后结果(详见 3.12)
		设置数据	设置平移步长及每次旋转的度数(详
			见 3.13)
	绘制曲线	绘制 Bezier 曲线	通过鼠标点击控制点方式绘制 4 阶 3
			次 Bezier 曲线(详见 3.14)
		绘制 B 样条曲线	通过鼠标点击控制点方式绘制 4 阶 3
			次等距 B 样条曲线(详见 3.15)

- 3、功能要求详细说明
 - 3.1 绘制矩形: 选择此菜单项后,可利用鼠标在视图区绘制矩形;
 - 3.2 绘制圆形:选择此菜单项后,可利用鼠标在视图区绘制圆形;
 - **3.3** <u>设置颜色</u>: 选择此菜单项后,显示对话框,在此对话框中设置绘制的矩形和圆形的颜色(可以分别设置 RGB 三颜色分量值),默认颜色为黑色(RGB 三颜色分量值均为 0);

3.4 <u>绘制多边形</u>:选择此菜单项后,可通过鼠标输入顶点的方法绘制多边形,并实现边标志算法完成对该多边形的填充,要求完成使用自己学号的后四位数字对多边形内部进行填充。完成效果如下图所示:

- 3.5 <u>设置颜色</u>: 选择此菜单项后,显示对话框,在对话框中设置 3.4 中所绘制 多边形中填充的学号的颜色和边界颜色(如效果图中学号颜色为绿色,边界颜色为蓝色,可以分别设置 RGB 三颜色分量值),默认颜色为黑色(RGB 三颜色分量值均为 0);
- **3.6** <u>绘制立方体</u>: 建立立方体的数据模型,选择此菜单项后,将该立方体在视图区中绘制出来,要求采用透视投影(投影中心自行确定,选择显示效果较好的投影中心),因为后面的功能 3.7 至 3.12 是对该立方体的变换,所以该菜单项也具有恢复立方体原始数据的效果,即不论后面的变换将立方体变换到哪个位置,都可以通过选择此项功能把立方体恢复到最初位置;
- 3.7 <u>延 x 轴方向平移</u>: 选择此菜单项后,可以通过键盘按键 "A" 和 "L" 分别 使立方体延 x 轴正方向和负方向做指定步长的平移,每次平移后都要将平移后的立方体绘制在视图区中(只保留最新位置的立方体的绘制结果,不能多次变换后,视图区出现多个立方体的投影结果),要求使用的投影为透视投影,投影中心为 3.6 中所使用的投影中心;
- 3.8 <u>延 y 轴方向平移</u>:选择此菜单项后,可以通过键盘按键"A"和"L"分别使立方体延 y 轴正方向和负方向做指定步长的平移,每次平移后都要将平移后的立方体绘制在视图区中(只保留最新位置的立方体的绘制结果,不能多次变换后,视图区出现多个立方体的投影结果),要求使用的投影为透视投影,投影中心为 3.6 中所使用的投影中心:

- 3.9 <u>延 z 轴方向平移</u>: 选择此菜单项后,可以通过键盘按键 "A"和 "L"分别 使立方体延 z 轴正方向和负方向做指定步长的平移,每次平移后都要将平移后的立方体绘制在视图区中(只保留最新位置的立方体的绘制结果,不能多次变换后,视图区出现多个立方体的投影结果),要求使用的投影为透视投影,投影中心为 3.6 中所使用的投影中心;
- 3.10 <u>绕 x 轴旋转</u>: 选择此菜单项后,可以通过键盘按键 "A"和 "L"分别使立方体绕 x 轴做指定角度数的正向和反向旋转,每次旋转后都要将旋转后的立方体绘制在视图区中(只保留最新位置的立方体的绘制结果,不能多次变换后,视图区出现多个立方体的投影结果),要求使用的投影为透视投影,投影中心为 3.6 中所使用的投影中心:
- 3.11 绕 y 轴旋转: 选择此菜单项后,可以通过键盘按键 "A"和 "L"分别使立方体绕 y 轴做指定角度数的正向和反向旋转,每次旋转后都要将旋转后的立方体绘制在视图区中(只保留最新位置的立方体的绘制结果,不能多次变换后,视图区出现多个立方体的投影结果),要求使用的投影为透视投影,投影中心为 3.6 中所使用的投影中心:
- 3.12 <u>绕 z 轴旋转</u>: 选择此菜单项后,可以通过键盘按键 "A"和 "L"分别使立方体绕 z 轴做指定角度数的正向和反向旋转,每次旋转后都要将旋转后的立方体绘制在视图区中(只保留最新位置的立方体的绘制结果,不能多次变换后,视图区出现多个立方体的投影结果),要求使用的投影为透视投影,投影中心为 3.6 中所使用的投影中心:
- **3.13** <u>设置数据</u>: 选择此菜单项后,显示对话框,设置功能 3.7 至 3.9 的平移步长,默认步长为 1,以及设置功能 3.10 至 3.12 的每次旋转角度,默认角度为 10 度:
- 3.14 <u>绘制 Bezier 曲线</u>:选择此菜单项后,可在视图区用鼠标左键单击的方式顺序输入控制点,控制点数量为 4 时绘制以鼠标输入的点为控制点的 4 阶 3 次 Bezier 曲线,要求绘制出控制多边形,并标记控制点的位置(以控制点为中心绘制一个小黑色实心矩形,矩形边长为 5):
- 3.15 <u>绘制 B 样条曲线</u>:选择此菜单项后,可在视图区用鼠标左键单击的方式顺序输入控制点,鼠标左键双击代表结束,绘制以鼠标输入的点为控制点的 4 阶 3 次等距 B 样条曲线,要求绘制出控制多边形,并标记控制点的位置(标记方法与功能 3.14 相同),同时曲线要以控制点序列的第一个点和最后一点为起点和终点,以控制多边形的第一条边和最后一条边为起点和终点的切线;
- 4、附加要求:
 - 4.1 应用程序中除 SetPixel 绘图函数以外,不使用其他绘图函数;
 - **4.2** 同组功能(功能所处的二级菜单相同)所绘制的图形要能够同时在视图 区存在,不同组功能在调用前先清屏(清屏功能可设置成主动调用);
 - 4.3 用于绘制图形的功能在绘制图形时实现橡皮线功能,即可实时看到绘制效果(针对功能 3.1、3.2、3.4、3.14 和 3.15,对于 3.14 和 3.15 是实时看到控制多边形);
 - **4.4** 实现视图重画功能,即在窗口最小化或被其它窗口遮挡后,恢复窗口时视图区中绘制的图形仍然应该存在;

实验要求:

1、实验课题目必须独立完成:

- 2、要求实现的系统分为 4 组功能(功能所处的二级菜单相同): 图形绘制、区域填充,三维变换和绘制曲线。按个人能力选择实现功能及满足附加要求,系统完成后提交指导老师检查,检查完毕后提交《图形学与人机交互实验报告》。每人一份报告,按要求说明自己实现系统所采用的算法及交互方式的实现方法等;
- 3、实验课应按时出席,如有事不能参加应向指导老师提交学院正式假条。

评分标准:

- 1、满分100分,按下面标准评分:
- 2、 系统为单文档应用程序,并且项目名称满足题目要求[2分];
- 3、按要求实现了系统菜单[3分];
- 4、满足了附加要求 4.1[10 分];满足了附加要求 4.2[5 分];
- 5、图形绘制功能[15 分],包括: 功能 3.1[4 分],功能 3.2[4 分],功能 3.3[3 分],满足附加要求 4.3[2 分],满足附加要求 4.4[2 分];
- 6、区域填充功能[25 分],包括:功能 3.4[15 分],功能 3.5[3 分],满足附加要求 4.3[3 分],满足附加要求 4.4[4 分];
- 7、三维变换功能[20 分],包括:功能 3.6 到功能 3.13 共 8 个功能,每个功能[2分],共[16 分],满足附加要求 4.4[4 分];
- 8、绘制曲线功能[20 分],包括:功能 3.14[5 分],功能 3.15[8 分],满足附加要求 4.3[3 分],满足附加要求 4.4[4 分];
- 9、功能实现要求正确。