LAB004 - Python em SS:

Transformada de Fourier - FT

O livro apresenta a Transformada de Fourier – FT através da representação da Serie de Fourier – FS. Usando os coeficientes da FS e sua envoltória para a onda quadrada periódica da Figura.

Onde é demonstrado que ao diminuir a relação T/T1 o sinal se torna mais parecido com o sinal aperiódico, de forma que os coeficientes da FS ficam mais densos. O programa FT_ondaQuadrada.py apresenta um demonstração dessa ideia. Execute o programa!

Figura 1 - Gráfico gerado pelo programa FT_ondaQuadrada

Figura 2 – Destaque dos gráficos gerado pelo programa

Aproximando a FT:

A FT aplica-se a sinais não periódicos de tempo contínuo. A DTFS é computada usandose N valores de um sinal de tempo discreto. Para se usar a DTFS para aproximar a FT devemos amostrar o sinal de tempo contínuo e reter, no máximo, N amostras. Supondo que Tam é o intervalo de amostragem e que M < N amostras do sinal do tempo continuo são capturados.

Então temos o esquema mostrado:

O *janelamento* é a quantidade de amostras do sinal contínuo e como deve ser finito provoca que o sinal seja multiplicado (no domínio da frequência) pela figura abaixo.

O problema em questão é determinar quão bem os coeficientes Y[k] da DTFS aproxima $X(j\omega)$, que é a FT de x(t). Tanto a operação de amostragem como o de janelamento são fontes potenciais de erros na aproximação.

Temos que ter cuidado para que:

- O sinal deve ser amostrado em uma frequência de forma que não se tenha o aliasing, ou de forma que o efeito seja desprezível;
- E o sinal deve ter uma quantidade de amostras suficiente para que o janelamento não atrapalhe.

Assim a aproximação com DTFS estará relacionada com o espectro de sinal original de acordo com

$$Y[k] = \frac{1}{N \cdot Tam} \cdot X(jk \frac{\omega_s}{N})$$
DTFS FT

Se o intervalo de amostragem na frequência desejada for no mínimo $\Delta\omega$ necessitamos que

$$N \geq \frac{\omega_s}{\Delta \omega}$$

Exemplo 1): Use a DTFS para aproximar a FT do sinal

$$x(t) = e^{t/10}u(t)(\cos(10t) + \cos(12t))$$

Suponhamos que a faixa de frequência de interesse seja -20 < ω < 20 e que o intervalo de amostragem na frequência seja $\Delta\omega$ = $\pi/20$. Solução:

Primeiro vamos avaliar a FT de x(t).

$$X(j\omega) = \frac{\frac{1}{10} + j\omega}{\left(\frac{1}{10} + j\omega\right)^2 + 10^2} + \frac{\frac{1}{10} + j\omega}{\left(\frac{1}{10} + j\omega\right)^2 + 12^2}$$

Que tem a figura:

Figura 3 - FT

Analisando a equação percebemos que o sinal não tem uma limitação em frequência e da sua figura percebemos que depois de ω >>12 a magnitude de X(j ω) decresce rapidamente. (proporcionalmente a 1/ ω). Com isso vamos escolher uma frequência máxima para o sinal de forma que o *aliasing* seja desprezível.

Assim escolhemos a $\omega_{m\acute{a}x}$ = 500, o que provoca um período de amostragem de

$$Tam < \frac{2\pi}{500} = 0.0125$$

Escolhemos Tam = 0.01, e consequentemente ω_{am} = ω_s = 200 π . E com $\Delta\omega$ = π /20 temos

$$N \ge \frac{200 \,\pi}{\Delta \,\omega}$$

$$N \ge 4000$$

Escolhemos $N = 2^{12} = 4096$. E vamos computar a DTFS com dois janelamentos (valores de M):

Figura 4 – M = 128 amostras ($|X(j\omega)|$ - da equação, |Y[k]| - Aproximação da FT)

Note que |Y[k]| não consegue apresentar os dois picos, pois falta resolução nos dados amostrados, pois M é pequeno.

Figura 5 - M = 2048 amostras ($|X(j\omega)|$ - da equação, |Y[k]| - Aproximação da FT)

Note que com o aumento de M o gráfico de |Y[k]| melhorou bastante ao conseguir acompanhar o gráfico de $|X(j\omega)|$.

Vamos agora aumentar o valor de N e vamos comparar os gráficos:

Figura 6 - Mantendo M = 2048, porém aumentando o tamanho da DTFS N = 16384

Note que a aproximação com DTFS da FT melhora à medida que N aumenta.

Exemplo 2) Considere o sinal

$$y(t)=e^{-|t|}\cdot\cos(10t)$$

Encontre a FT com o Python:

Solução: Exemplo2_lab007.py

Analisando a equação percebemos devido ao fator $e^{-|t|}$ que o sinal decai rapidamente quando se afasta de zero tanto ao $+\infty$ quanto a $-\infty$. Quando t=4,60 o termo $e^{-|t|}$ provoca uma atenuação de 100 vezes o valor em t=0. Dessa forma vamos escolher os limites do vetor de tempo entre -5 e 5.

Agora temos escolher o período de amostragem, da equação o termo cos(10t) implica que o sinal tem um componente forte na frequência ω = 10. Então primeiramente vamos escolher a frequência de amostragem duas vezes maior que maior frequência.

Ficando:

• ω_{am} = 20 rad/s o que implica que T_{am} = $2\pi/20$ = 0.3142

E vamos escolher um N = 4096, para plotar a figura.

Figura 7 - Com M = 32, N = 4096, $\omega_{am} = 2*10 \text{ rad/s}$, $T_{am} = 0.3142$.

Note que o gráfico da frequência não consegue mostrar corretamente as frequências maiores de 10 rad/s. Então vamos aumentar um pouco a taxa de amostragem.

Figura 8 - Com M = 40, N = 4096, ω_{am} = 2.5*10 rad/s, T_{am} = 0.251.

Note que o gráfico da frequência já consegue mostrar o pico de frequência esperado. Note que a quantidade de amostra *M* aumentou muito pouco. Mas vamos novamente aumentar a frequência de amostragem.

Com o aumento para 100 vezes a frequência máxima do sinal, temos agora um gráfico muito bom tanto para o tempo como para a frequência. Porem o número de amostras *M* necessárias aumentou.

A conclusão é que a aproximação com DTFS da FT melhora à medida que T_{am} diminui, (M^*T_{am}) aumenta e N aumenta. Na pratica, as limitações de memórias e custo de hardware geralmente limitam estes parâmetros.

Exercício 1) O sinal y(t) é igual ao sinal da portadora

$$p(t) = \cos(10t)$$

sendo modulada pelo sinal modulante

$$x(t)=0.2[r(t+5)-2r(t)+r(t-5)]$$

Em r(t) é um sinal rampa unitário

- a) Plote o sinal modulante x(t) no tempo e a magnitude da FT no domínio da frequência.
- b) Plote o sinal y(t) no tempo e a magnitude da FT no domínio da frequência.

Escolha cuidadosamente os intervalos de frequência e de tempo dos gráficos.

Exercício 2) Plote o sinal no tempo, a magnitude e fase da FT de:

a) Na mesma figura com cores diferentes:

$$x_{1a}(t)=u(t)-u(t-2)$$

 $x_{1b}(t)=u(t)-u(t-1)$
 $x_{1c}(t)=u(t)-u(t-0.35)$

$$x_2(t) = e^{-t}u(t)$$

$$x_3(t) = sen(350t)$$

$$x_4(t) = \sum_{k=-\infty}^{+\infty} \delta(t - k \cdot 10)$$

Escolha cuidadosamente os intervalos de frequência e de tempo dos gráficos.