Physics And Maths Tutor.com

Question Number	Markscheme	Marks
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(a)	CLM: $600 \times 4 - m \times 2 = (600 + m) \times 0.5$ $\Rightarrow m = 840 \text{kg}$	M1 A1 ↓ M1 A1 (4)
(b)	I = 600 (4 - 0.5) $= 2100 Ns$	$M1 \rightarrow M1$ $A1$ (3)
2 (a)	0.8 Ø 0.2	
	M(C): $P \times 1.8 + 100 \times 0.8 = 2200 \times 0.2$ $\Rightarrow P = \underline{200 \text{ N}}$	M1 A2, 1, 0 A1 (4)
(b)	$ \begin{array}{c c} 120 \downarrow & & \downarrow & x \\ \hline 100 & & & \downarrow \\ \end{array} $ $ \begin{array}{c} 2200 \\ \end{array} $	
	M(C): $120(2-x)+100(1-x)=2200 x$ $\Rightarrow 340 = 2420x \Rightarrow x \approx 14 \text{ cm}$ (Solve x)	M1 A2, 1, 0 ↓ M1 A1 (5)

Physics And Maths Tutor.com

Question Number	Markscheme	Marks
3 (a)	R F R	
	a	
	mg mg	
	$\mathbf{R}()$: $R = mg \cos 30$	B1
	$R(): ma = mg \sin 30 - F$	M1 A1
	F = 0.4 R used	B1
	Eliminate R $ma = mg \sin 30 - 0.4$. $mg \cos 30$	↓ M1 ↓
	Solve: $a = 4.9 - 0.4 \times 9.8 \times \sqrt{3}/2$	M 1
	$\approx 1.5 \text{ or } 1.51 \text{ m s}^{-2}$	A1
(b)	$v^2 = 2 \times 1.51 \times 3 \Rightarrow v = 3 \text{ or } 3.01 \text{ m s}^{-1}$	(7) M1 A1 (2)
(c)	$1.5/1.51 \mathrm{ms^{-2}}$ (same as (a))	®∕Î (1)
4 (a)	μR $2mg$ T $3mg$	
	$R \uparrow \text{ for } C: 2T \sin \theta = 3 mg$	M1 A1
	$\sin\theta = \frac{3}{5} \implies T = \frac{5}{2} mg (*)$	A1 (3)
(b)	$R \uparrow \text{ for } A \text{ or } B$: $R = 2mg + T \sin \theta$	M1 A1 ↓
	$=2mg+\frac{5}{2}mg.\frac{3}{5}=\frac{7}{2}mg$	M1 A1
	$R \rightarrow \text{for } A \text{ or } B : T \cos \theta = \mu R$	M1
	Solve to get μ as number: $\frac{5}{2} mg.\frac{4}{5} = \mu.\frac{7}{2} mg \Rightarrow \mu = \frac{4}{7}$ (Accept 0.57 awrt)	↓ ↓ M1 A1 (7)

Question Number	Markscheme	Marks
5 (a)	$A: T - 4g \sin 30 = 4a$	M1 A1
	$A: T - 4g \sin 30 = 4a$ $A: 3g - T = 3a$	M1 A1
	$3mg \checkmark \qquad \Rightarrow T = \frac{18g}{7} = \underline{25.2 \text{ N}}$	M1 A1 (6)
(b)	$R = 2T\cos 30$	M1 A1
	$\approx 44 \text{ or } 43.6 \text{ N}$	A1
		(3)
(c)	(i) String has no weight/mass	B1
	(ii) Tension in string constant, i.e. same at A and B	B1 (2)
6 (a)	After 10 s, speed = $1.2 \times 10 = 12 \text{ m s}^{-1}$	B1
	After next 24 s, $v = "u + at" = 12 + 0.75 \times 24 = 30 \text{ m s}^{-1}$	M1 A1 (3)
(b)	Shape $0 \le t \le 34$	B1
	Shape $t \ge 34$	B1
	300 Figures	В1
	10 34 t	
(c)	Distance = $\frac{1}{2} \times 10 \times 12$, $+\frac{1}{2} (30+12) 24$ = $60 + 504 = 564$ m	B1, M1 A1 A1
(d)	Distance travelled decelerating = 1 × 20 × 10	(4)
	Distance travelled decelerating = $\frac{1}{2} \times 30 \times 10$	В1
	$564 + 30T + \frac{1}{2} \times 30 \times 10 = 3000$	M1 A1√
	$\Rightarrow T = \underline{76.2 \text{ s}}$	A1 (4)

Physics And Maths Tutor.com

Question Number	Markscheme	Marks
7 (a)	$\tan \theta = \frac{3}{5} \Rightarrow \theta = 031^{\circ}$	M1 A1
(b)	$\mathbf{a} = 9t \; \mathbf{j}$	(2) B1
	$\mathbf{b} = (-10 + 3t)\mathbf{i} + 5t \mathbf{j}$	M1 A1
(c)	B south of A \Rightarrow $-10 + 3t = 0$	(3) M1
	$t = 3\frac{1}{3} \Rightarrow \underline{1520 \text{ hours}}$	A1 (2)
(d)	$AB = \mathbf{b} - \mathbf{a} = (3t - 10)\mathbf{i} + 5t \mathbf{j}$	M1 A1
	$d^{2} = \left \mathbf{b} - \mathbf{a} \right ^{2} = (3t - 10)^{2} + 16t^{2}$	M1
	$=25t^2-60t+100 (*)$	A1
(e)	$d = 10 \implies d^2 = 100 \implies 25t^2 - 60 t = 0$	(4) M1
	$\Rightarrow t = (0 \text{ or}) 2.4$	A1
	\Rightarrow time <u>1424 hours</u>	A1
		(3)