OPEN # DATA SCIENCE CONFERENCE

@ODSC

San Francisco | October 31 - Nov. 3 2018

Introduction to Clinical Natural Language Processing

Andrew Long

https://towardsdatascience.com/introduction-toclinical-natural-language-processing-predictinghospital-readmission-with-1736d52bc709

0,000+ 26M ANNUAL HEMODIALYSIS BERVED TREATMENT

26M 50+

ANNUAL STATES AND
HEMODIALYSIS TERRITORIES IN OUR
TREATMENT NETWORK

2,200+
U.S. DIALYSIS CLINICS

60,000+ U.S. EMPLOYEES

Clinical Notes

- Chest pain
- Shortness of breathe
- Nausea, vomiting, diarrhea
- Weakness
- Sick
- •
- •
- •

Build predictive models that incorporate freetext clinical notes

Workshop Overview

- Brief overview of clinical dataset (MIMIC III)
- How to prepare data for a machine learning project
- How to preprocess the unstructured notes
- How to build a simple predictive model using a bag-of-words approach
- How to assess the quality of your model
- How to decide the next step for improving the model
- Note: I created an artificial dataset based on Stanford's IMDB which you can use if you don't have MIMIC access for the workshop

Workshop Project Question

Scalable and accurate deep learning for electronic health records Rajkomar et al. (paper at https://arxiv.org/abs/1801.07860)

- in-hospital mortality (AUC = 0.93–0.94)
- 30-day unplanned readmission (AUC = 0.75–76)
- prolonged length of stay (AUC = 0.85–0.86)
- discharge diagnoses (AUC = 0.90)

AUC is a data science performance metric where closer to 1 is better

How good of a model can we get if use the discharge free-text summaries with a simple predictive model to predict readmission?

Classification Model Definition

 Predict which patients are at risk for 30-day unplanned readmission utilizing free-text hospital discharge summaries.

Part 0: MIMIC III dataset

MIMIC III dataset

 This database contains de-identified data from over 40,000 patients who were admitted to Beth Israel Deaconess Medical Center in Boston, Massachusetts from 2001 to 2012

Access:

https://mimic.physionet.org/gettingstarted/access/

https://towardsdatascience.com/getting-access-to-mimic-iii-hospital-database-for-data-science-projects-791813feb735

 Since dataset has restricted access, any single subject data shown in this workshop is artificially created.

- 1. checksum md5 zipped.txt (MD5 checksum for zipped files)
- 2. checksum md5 unzipped.txt (MD5 checksum for unzipped files)
- 3. ADMISSIONS.csv.gz (2.5M compressed, 12M decompressed)
- 4. CALLOUT.csv.gz (1.2M compressed, 6.1M decompressed)
- 5. CAREGIVERS.csv.gz (49K compressed, 199K decompressed)
- 6. CHARTEVENTS.csv.gz (4.0G compressed, 33G decompressed)
- 7. CPTEVENTS.csv.gz (4.8M compressed, 56M decompressed)
- 8. DATETIMEEVENTS.csv.gz (53M compressed, 502M decompressed)
- 9. DIAGNOSES ICD.csv.gz (4.5M compressed, 19M decompressed)
- 10. DRGCODES.csv.gz (1.7M compressed, 11M decompressed)
- 11. D CPT.csv.gz (3.9K compressed, 14K decompressed)
- 12. D ICD DIAGNOSES.csv.gz (279K compressed, 1.4M decompressed)
- 13. D ICD PROCEDURES.csv.gz (75K compressed, 305K decompressed)
- 14. D ITEMS.csv.gz (184K compressed, 933K decompressed)
- 15. D LABITEMS.csv.gz (12K compressed, 43K decompressed)
- 16. ICUSTAYS.csv.gz (1.9M compressed, 6.1M decompressed)
- 17. INPUTEVENTS CV.csv.gz (403M compressed, 2.3G decompressed)
- 18. INPUTEVENTS MV.csv.gz (144M compressed, 931M decompressed)
- 19. LABEVENTS.csv.gz (321M compressed, 1.8G decompressed)
- 20. MICROBIOLOGYEVENTS.csv.gz (7.3M compressed, 70M decompressed)
- 21. NOTEEVENTS.csv.gz (1.1G compressed, 3.8G decompressed)
- 22. <u>OUTPUTEVENTS.csv.gz</u> (56M compressed, 379M decompressed)
- 23. PATIENTS.csv.gz (559K compressed, 2.6M decompressed)
- 24. PRESCRIPTIONS.csv.gz (99M compressed, 735M decompressed)
- 25. PROCEDUREEVENTS MV.csv.gz (7.5M compressed, 47M decompressed
- 26. PROCEDURES ICD.csv.gz (1.8M compressed, 6.5M decompressed)
- 27. SERVICES.csv.gz (1.2M compressed, 3.4M decompressed)
- 28. TRANSFERS.csv.gz (5.3M compressed, 24M decompressed)

MIMIC III datasets for tutorial

https://physionet.org/works/MIMICIIIClinicalDatabase

- ADMISSIONS.csv.gz
- NOTEEVENTS.csv.gz
- placed in a 'data' folder in same folder as this workshop's notebook

```
import gzip
for filename in ["data/ADMISSIONS.csv.gz", "data/NOTEEVENTS.csv.gz"]:
    with gzip.open(filename, 'rt') as f:
        data = f.read()
    with open(filename[:-3], 'wt') as f:
        f.write(data)
```


Part 1: How to prepare data for a machine learning project

Load, clean, merge dataset

We skip this process to save some time In workshop.

See additional Jupyter Notebook (odsc_2018_mimic_pre) for tutorial on these steps.

Prepare data for ML Project

Remove next ELECTIVE admissions

df_adm_notes_clean

- SUBJECT_ID unique patient identifier
- HADM_ID- unique admission identifier
- ADMITTIME admission date
- DISCHTIME discharge date
- DEATHTIME death date
- DAYS_NEXT_ADMIT days until next admission if it exists
- TEXT discharge summary for this admission

Add OUTPUT_LABEL


```
In [3]: df_adm_notes_clean['OUTPUT_LABEL'] = (df_adm_notes_clean.DAYS_NEXT_ADMIT < 30).astype('int')
In [4]: print('Number of positive samples:', (df_adm_notes_clean.OUTPUT_LABEL == 1).sum())
    print('Number of negative samples:', (df_adm_notes_clean.OUTPUT_LABEL == 0).sum())
    print('Total samples:', len(df_adm_notes_clean))

Number of positive samples: 3004
    Number of negative samples: 48109
    Total samples: 51113</pre>
```


Make training/validation/test sets

70% Training 15% Validation 15% Test 70/15/15 is a design choice

- Training samples: these samples are used to train the model
- Validation samples: these samples are held out from the training data and are used to make decisions on how to improve the model
- Test samples: these samples are held out from all decisions and are used to measure the generalized performance of the model

Make training/validation/test sets

70% Training 15% Validation 15% Test 70/15/15 is a design choice

```
In [5]: # shuffle the samples
    df_adm_notes_clean = df_adm_notes_clean.sample(n = len(df_adm_notes_clean), random_state = 42)
    df_adm_notes_clean = df_adm_notes_clean.reset_index(drop = True)

# Save 30% of the data as validation and test data
    df_valid_test=df_adm_notes_clean.sample(frac=0.30,random_state=42)

df_test = df_valid_test.sample(frac = 0.5, random_state = 42)
    df_valid = df_valid_test.drop(df_test.index)

# use the rest of the data as training data
    df_train_all=df_adm_notes_clean.drop(df_valid_test.index)
```


Make training/validation/test sets

70% Training 15% Validation 15% Test 70/15/15 is a design choice

Verify that positive prevalence is approximately the same in the 3 groups

```
In [6]: print('Test prevalence(n = %d):%.3f'%(len(df_test),df_test.OUTPUT_LABEL.sum() / len(df_test)))
    print('Valid prevalence(n = %d):%.3f'%(len(df_valid),df_valid.OUTPUT_LABEL.sum() / len(df_valid)))
    print('Train all prevalence(n = %d):%.3f'%(len(df_train_all), df_train_all.OUTPUT_LABEL.sum() / len(df_train_all)))
    print('all samples (n = %d)'%len(df_adm_notes_clean))
    assert len(df_adm_notes_clean) == (len(df_test)+len(df_valid)+len(df_train_all)),'math didnt work'

Test prevalence(n = 7667):0.062
    Valid prevalence(n = 7667):0.057
    Train all prevalence(n = 35779):0.058
    all samples (n = 51113)

In [7]: df_train_all.to_csv('data/df_train_all.csv',index=False)
    df_valid.to_csv('data/df_valid.csv',index=False)
    df_test.to_csv('data/df_test.csv',index=False)
```


Artificial Dataset

- For those without MIMIC data, I created an artificial dataset based on IMDB dataset.
- data_artificial/df_train_all_imdb.csv
- data_artificial/df_valid_imdb.csv
- data_artificial/df_test_imdb.csv
- validation and test sets were created to have approximately same number and prevalence as the MIMIC sets

Imbalanced Classification

- Model that always guesses 'Not readmitted' → 94% accuracy, but never catches any readmissions (0% recall)
- To prevent this from happening, we need to balance the training set
 - sub-sample the more dominant class: use a random subset of the negatives
 - over-sample the imbalanced class: use the same positive samples multiple times
 - create synthetic positive data

Subsample Training Dataset

70% Training

Positive

Negative

Part 2: How to preprocess the unstructured notes

Pre-process Text Data

 Occasionally, need to modify the text to make useable (for example drop newlines, carriage returns, numbers, etc)

- Two Methods:
 - Modify the original dataframe TEXT column
 - Pre-process as part of the pipeline

Modify Original Text

Drop newline, carriage returns
Replace missing notes with a space

```
In [12]: def preprocess_text(df):
    # This function preprocesses the text by filling
    df.TEXT = df.TEXT.fillna(' ')
    df.TEXT =df.TEXT.str.replace('\n',' ')
    df.TEXT =df.TEXT.str.replace('\r',' ')
    return df

In [13]: # preprocess the text to deal with known issues
df_train = preprocess_text(df_train)
df_valid = preprocess_text(df_valid)
df_test = preprocess_text(df_test)
```


Bag-of-words

- Split a note into tokens

 (i.e. words) then 'count'
 the number of each
 token
- Use these 'counts' as feature columns
- Note: different techniques for 'counts'

Bag-of-words design choices

- How to preprocess the words into tokens
- How to count the tokens
- Which tokens to use

Build a tokenizer

```
In [14]: import nltk
    from nltk import word_tokenize
    word_tokenize('This should be tokenized. 11/01/2018 sentence has stars**')

Out[14]: ['This',
    'should',
    'be',
    'tokenized',
    '.',
    '11/01/2018',
    'sentence',
    'has',
    'stars**']
```

- Sentence is tokenized by spaces and some punctuation but not all.
- Numbers are also still included
- 'This' would be considered a different token than 'this'
- 'stars**' would be different than 'stars'

Build a custom tokenizer

- Replace punctuation with spaces
- Replace numbers with spaces
- Lowercase all words

```
In [15]: import string
    print(string.punctuation)

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

In [16]: def tokenizer_better(text):
    # tokenize the text by replacing punctuation and numbers with spaces and lowercase all words

    punc_list = string.punctuation+'0123456789'
    t = str.maketrans(dict.fromkeys(punc_list, " "))
    text = text.lower().translate(t)
    tokens = word_tokenize(text)
    return tokens

In [17]: tokenizer_better('This should be tokenized. 11/01/2018 sentence has stars**')

Out[17]: ['this', 'should', 'be', 'tokenized', 'sentence', 'has', 'stars']
```


Build a simple vectorizer

- CountVectorizer is the simplest method for bag-of-words
- Counts the number of occurrences of each word
- Other common method is TfidfVectorizer which takes into account frequency of word usage across notes

Build a simple vectorizer

```
In [18]: sample text = ['Open Data Science Conference is about learning',
                         'Data data DATA',
                         'Learning is part of data science']
In [19]: from sklearn.feature extraction.text import CountVectorizer
         vect = CountVectorizer(tokenizer = tokenizer better)
         vect.fit(sample text)
         # matrix is stored as a sparse matrix (since you have a lot of zeros)
         X = vect.transform(sample text)
In [201: X
Out[20]: <3x9 sparse matrix of type '<class 'numpy.int64'>'
                 with 14 stored elements in Compressed Sparse Row format>
In [21]: # we can visualize this small example if we convert it to an array
         X.toarray()
Out[21]: array([[1, 1, 1, 1, 1, 0, 1, 0, 1],
                [0, 0, 3, 0, 0, 0, 0, 0, 0],
                [0, 0, 1, 1, 1, 1, 0, 1, 1]], dtype=int64)
```

```
# get the column names
vect.get_feature_names()

['about',
   'conference',
   'data',
   'is',
   'learning',
   'of',
   'open',
   'part',
   'science']
```


Train clinical vectorizer

Good practice to specify the max_features (otherwise it could take a long time with big data set) Size of max_features is then a hyperparameter to tune

Stop words

"the", "is", "are", "and"

- Stop word commonly used words with little value to ML model
- Frequency of word use depends on domain (clinical, twitter, Wikipedia)

Stop words

https://www.linkedin.com/pulse/another-twitter-sentiment-analysis-python-part-2-ricky-kim/

```
In [24]: neg_doc_matrix = vect.transform(df_train[df_train.OUTPUT_LABEL == 0].TEXT)
    pos_doc_matrix = vect.transform(df_train[df_train.OUTPUT_LABEL == 1].TEXT)
    neg_tf = np.sum(neg_doc_matrix,axis=0)
    pos_tf = np.sum(pos_doc_matrix,axis=0)
    neg = np.squeeze(np.asarray(neg_tf))
    pos = np.squeeze(np.asarray(pos_tf))

term_freq_df = pd.DataFrame([neg,pos],columns=vect.get_feature_names()).transpose()
    term_freq_df.columns = ['negative', 'positive']
    term_freq_df['total'] = term_freq_df['negative'] + term_freq_df['positive']
    term_freq_df.sort_values(by='total', ascending=False).iloc[:10]
```

Fast technique for finding term frequency

Out[24]:

	negative	positive	total
the	71054	76756	147810
and	62455	71658	134113
to	53226	62085	115311
of	51303	60491	111794
was	48074	53521	101595
with	38036	44583	82619
a	35428	41629	77057
on	32290	39765	72055
mg	27718	39045	66763
in	29567	34755	64322

More medications predictive of readmission?

Stop words

Build a vectorizer removing stop words

```
In [27]: from sklearn.feature extraction.text import CountVectorizer
         vect = CountVectorizer(max features = 3000,
                                stop words = my stop words)
         # this could take a while
         vect.fit(df train.TEXT.values)
Out[27]: CountVectorizer(analyzer='word', binary=False, decode error='strict',
                 dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
                 lowercase=True, max df=1.0, max features=3000, min df=1,
                 ngram range=(1, 1), preprocessor=None,
                 stop words=['the', 'and', 'to', 'of', 'was', 'with', 'a', 'on', 'in', 'for', 'name', 'is', 'patient', 's', 'h
         e', 'at', 'as', 'or', 'one', 'she', 'his', 'her', 'am', 'were', 'you', 'pt', 'pm', 'by', 'be', 'had', 'your', 'this',
         'date', 'from', 'there', 'an', 'that', 'p', 'are', 'have', 'has', 'h', 'but', 'o', 'namepattern', 'which', 'every', '
         also'],
                 strip accents=None, token pattern='(?u)\\b\\w\\w+\\b',
                 tokenizer=<function tokenizer better at 0x000001CA1DA7A400>,
                 vocabulary=None)
```


Create X, y

```
In [28]: X_train_tf = vect.transform(df_train.TEXT.values)
    X_valid_tf = vect.transform(df_valid.TEXT.values)
```

Get labels

```
In [29]: y_train = df_train.OUTPUT_LABEL
y_valid = df_valid.OUTPUT_LABEL
```


Part 3: How to build a simple predictive model using a bag-of-words approach

Logistic Regression

- Traditional Machine Learning algorithm
- Works well with sparse matrices
- Fast to train
- Interpretable

Logistic Regression

Hyperparameter C is helps control the effect of regularization We will discuss how to optimize C

Tip: the same C usually doesn't work as well for both CountVectorizer and TfidfVectorizer

Predictions

```
In [31]: model = clf
    y_train_preds = model.predict_proba(X_train_tf)[:,1]
    y_valid_preds = model.predict_proba(X_valid_tf)[:,1]

In [32]: print(y_train[:10].values)
    print(y_train_preds[:10])

[1 1 0 1 1 1 0 0 1 1]
    [0.76307111 0.63114288 0.29772094 0.77926068 0.59694889 0.55643044
    0.36292154 0.90984735 0.47806099 0.67622763]
```


Part 4: How to assess the quality of your model

https://towardsdatascience.com/understanding-data-science-classification-metrics-in-scikit-learn-in-python-3bc336865019

Performance Metrics

Example: Positive = Hospitalized, Negative = Not Hospitalized Andrew Long • awlong20@gmail.com • linkedin.com/in/awlong/

Performance

Metric	Training	Validation	
Prevalence	50%	5.7 %	
Accuracy	69.5%	68.2 %	
Recall	66.6 %	64.8 %	
Precision	70.6 %	11.0 %	
Specificity	72.3 %	68.4 %	
Area Under ROC Curve (AUC)	0.757	0.704	

Example: Positive = Hospitalized, Negative = Not Hospitalized

Part 5: How to decide the next step for improving the model

Design decisions

 Which and how much data to use? Should we spend time collecting more data?

- How to tokenize?
 - Should we use stemming? ("stemming" → "stem")
- How to vectorizer?
 - Change number of words?
 - Switch to tfidfvectorizer?
- How to select hyperparameters in Logistic regression?
- Should we switch to a different ML model?

Learning Curve (diagnose bias/variance)

High Variance

Learning Curve (diagnose bias/variance)

Helpful techniques

- Techniques for reducing bias (underfitting)
 - Add new features
 - Increase model complexity
 - Reduce regularization
 - Change model architecture

- Techniques for reducing variance (overfitting)
 - Add more samples
 - Add regularization
 - Reduce number of features
 - Decrease model complexity
 - Add better features
 - Change model architecture

Helpful techniques

- Techniques for reducing bias (underfitting)
 - Add new features
 - Increase model complexity
 - Reduce regularization
 - Change model architecture

- Techniques for reducing variance (overfitting)
 - Add more samples
 - Add regularization
 - Reduce number of features
 - Decrease model complexity
 - Add better features
 - Change model architecture

Feature Importance

Helpful techniques

- Techniques for reducing bias (underfitting)
 - Add new features
 - Increase model complexity
 - Reduce regularization
 - Change model architecture

- Techniques for reducing variance (overfitting)
 - Add more samples
 - Add regularization
 - Reduce number of features
 - Decrease model complexity
 - Add better features
 - Change model architecture

Hyper parameter tuning

Regularization C

Stemming

(hospitalizations \rightarrow hospital)

CountVectorizer or Tfidfvectorizer

max_features

N grams

Source: https://airandspace.si.edu/multimedia-gallery/5128hjpg

Source: https://en.wikipedia.org/wiki/ Apollo_(spacecraft)

Hyper parameter tuning

Higher C = more overfitting

Higher max_features = more overfitting

Model Architecture

- Naïve Bayes
- Neural Networks (CNN, RNN) with Word2Vec

Final Model (excluding deaths)

Metric	Training	Validation	Test
Prevalence	50%	6.9%	6.6%
Accuracy	0.683	0.672	0.681
Recall	0.644	0.651	0.607
Precision	0.698	0.129	0.120
Specificity	0.722	0.674	0.686
Area Under ROC Curve (AUC)	0.745	0.709	0.704

30-day unplanned readmission (AUC = 0.75–76) (Rajkomar et al 2017)

Example: Positive = Hospitalized, Negative = Not Hospitalized

Introduction to Clinical Natural Language Processing

Andrew Long

https://towardsdatascience.com/introduction-toclinical-natural-language-processing-predictinghospital-readmission-with-1736d52bc709

