Deep Learning Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models

Jonathan PAYNE

Princeton

joint work with Zhouzhou Gu, Mathieu LAURIÈRE and Sebastian MERKEL

DSE 2023

August 24th 2023

Introduction

- ► Great progress in using deep learning to solve discrete time, heterogeneous agent economies.
- ▶ We focus on continuous time, heterogeneous agent economies ("mean field games"):
 - Consider economies with aggregate shocks, long-term assets, portfolio choice, illiquidity.
 - Consider different finite dimensional approximations to the distribution (finite agents, projection).
 - ► Solve the resulting high dimensional PDE(s) using neural network approximations.
- How do we test it? Compare to solutions for canonical economic models.
 (e.g. Aiyagari (1994), Krusell and Smith (1998), Basak and Cuoco (1998), and extensions).
- ▶ What economic question are we answering? The impact of housing policy on inequality. (in preliminary follow-up paper Gu & Payne (2023) "Housing Policy and Inequality").

Outline

1. Baseline Macroeconomic Model With Simple Asset Pricing (Krusell-Smith (1998))

2. Long-Term Illiquid Assets and Portfolio Choice (Gu-Payne (2023)

3. Conclusion

Outline

- 1. Baseline Macroeconomic Model With Simple Asset Pricing (Krusell-Smith (1998))
- 2. Long-Term Illiquid Assets and Portfolio Choice (Gu-Payne (2023)
- Conclusion

Environment

- Continuous time, infinite horizon economy.
- Populated by I = [0, 1] households who consume goods, supply labor, and save wealth.
- ▶ Representative firm rents capital and labor to produce goods by $Y_t = e^{z_t} K_t^{\alpha} L_t^{1-\alpha}$, where
 - $ightharpoonup K_t$ is capital hired, L_t is labor hired,
 - $ightharpoonup z_t$ is productivity (the exogenous aggregate state variable): follows $dz_t = \eta(\bar{z} z_t)dt + \sigma dB_t^0$
 - \triangleright B_t^0 is a common Brownian motion process; it generates filtration \mathcal{F}_t^0 .
- \triangleright Competitive markets for goods (numeraire), capital rental (return r_t), and labor (wage w_t).

Household Problem

- lacktriangle Household i has idiosyncratic state $x_t^i=(a_t^i,n_t^i)$, where a_t^i is wealth, n_t^i is labor endowment.
- lacktriangle Given belief about the price processes, household chooses consumption $c=\{c_t^i\}_{t\geq 0}$ to solve:

$$\begin{aligned} \max_{\{c_t^i\}_{t\geq 0}} \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} u(c_t^i) dt \right] \\ s.t. \quad da_t^i &= (\tilde{w}_t n_t^i + \tilde{r}_t a_t^i - c_t^i) dt =: \mu_t^a dt, \quad a_t^i \geq \underline{a} \\ n_t^i &\in \{n_1, n_2\}, \text{ switches at idiosyncratic Poisson rate } \lambda(n_t^i) \end{aligned} \tag{1}$$

- $u(c) = c^{1-\gamma}/(1-\gamma)$: utility function, ρ : discount rate,
- $(\tilde{r}, \tilde{w}) = {\{\tilde{r}_t, \tilde{w}_t\}_{t \geq 0}}$ are agent beliefs about prices processes,
- \underline{a} : borrowing limit.
- ▶ Let $G_t = \mathcal{L}(x_t^i | \mathcal{F}_t^0)$ and g_t be population distribution and density of $(x_t^i)_{i \in I}$, given history \mathcal{F}_t^0
 - Non degenerate because households get uninsurable idiosyncratic labor endowment shocks.

Equilibrium

Definition: Given an initial density g_0 , an equilibrium for this economy consists of a collection of \mathcal{F}_t^0 -adapted stochastic process, $\{c_t^i, g_t, z_t, q_t := [r_t, w_t] : t \geq 0, i \in I\}$, such that:

- 1. Given belief that price process is \tilde{q} , household consumption process, c_t^i , solves problem (3),
- 2. Given belief that price process is \tilde{q} , firm choose capital and labor optimally:

$$r_t = e^{z_t} \partial_K F(K_t, L) - \delta,$$
 $w_t = e^{z_t} \partial_L F(K_t, L)$

3. The price vector $q_t = [r_t, w_t]$ satisfies market clearing conditions:

$$K_t = \sum_{j \in \{1,2\}} \int ag_t(a, n_j) da,$$
 $L = \sum_{j \in \{1,2\}} \int n_j g_t(a, n_j) da$

4. Agent beliefs about the price process are consistent: $\tilde{q} = q$

Equilibrium (Combining Equations For Prices)

Definition: Given an initial density g_0 , an equilibrium for this economy consists of a collection of \mathcal{F}^0_t -adapted stochastic process, $\{c^i_t, g_t, q_t := [r_t, w_t], z_t : t \geq 0, i \in I\}$, such that:

- 1. Given belief that price process is \tilde{q} , household consumption process, c_t^i , solves problem (3),
- 2. The price vector $q_t = [r_t, w_t]$ satisfies:

$$q_t = \begin{bmatrix} r_t \\ w_t \end{bmatrix} = \begin{bmatrix} e^{z_t} \partial_K F(K_t, L) - \delta \\ e^{z_t} \partial_L F(K_t, L) \end{bmatrix} =: Q(z_t, g_t), \text{ where } K_t = \sum_{j \in \{1, 2\}} \int a g_t(a, n_j) da$$

3. Agent beliefs about the price process are consistent: $\tilde{q} = q$

Having a closed form expression for prices in terms of (z_t, g_t) makes problem very tractable.

Recursive Representation of Equilibrium

- Aggregate states: x = (z, g), individual states: (a, n), household value fn: V(a, n, z, g).
- Given a belief $dg_t(x) = \tilde{\mu}_g(z_t, g_t)dt$, household at x = (a, n) choose c to solve HJBE:

$$0 = \max_{c} \left\{ -\rho V(a, n, z, g) + u(c) + \partial_{a} V(a, n, z, g) (w(z, g)n + r(z, g)a - c) \right.$$
$$\left. + \lambda(n) \left(V(a, \check{n}, z, g) - V(a, n, z, g) \right) + \partial_{z} V(a, n, z, g) \mu^{z}(z) + 0.5 \left(\sigma^{z} \right)^{2} \partial_{zz} V(a, n, z, g) \right.$$
$$\left. + \int_{\mathcal{X}} \frac{\partial V}{\partial g} (y, z, g) \tilde{\mu}^{g}(y, z, g) dy \right\}, \quad s.t. \quad \text{BC: } \frac{\partial V}{\partial a} |_{a = \underline{a}} \ge u'(wn + r\underline{a})$$

where \check{n} is complement of n.

For optimal policy rule, $c^*(a, n, z, g; \tilde{\mu}^g)$, for z_t , population density, g, evolves by KFE:

$$dg_t(a,n) = \underbrace{\left[-\partial_a \left[\left(w(z,g)n + r(z,g)a - c^*\right)g_t(a,n)\right] - \lambda(n)g_t(a,n) + \lambda(\check{n})g_t(a,\check{n})\right]}_{=:\mu^g(a_t,n_t,z_t,q_t;\check{\mu}^g)} dt$$

In equilibrium $\tilde{\mu}^g = \mu^g$.

Recursive Representation of Equilibrium (Soft Borrowing Constraint)

- Aggregate states: x = (z, g), individual states: (a, n), household value fn: V(a, n, z, g).
- Given a belief $dg_t(x) = \tilde{\mu}_q(z_t, g_t)dt$, household at x = (a, n) choose c to solve HJBE:

$$0 = \max_{c} \left\{ -\rho V(a,n,z,g) + u(c) - \mathbf{1}_{a_{t} \leq \underline{a}} \psi(a_{t}) + \partial_{a} V(a,n,z,g) (w(z,g)n + r(z,g)a - c) \right.$$

$$\left. + \lambda(n) \left(V(a,\check{n},z,g) - V(a,n,z,g) \right) + \partial_{z} V(a,n,z,g) \mu^{z}(z) + 0.5 \left(\sigma^{z} \right)^{2} \partial_{zz} V(a,n,z,g) \right.$$

$$\left. + \int_{\mathcal{X}} \frac{\partial V}{\partial g} (y,z,g) \tilde{\mu}^{g}(y,z,g) dy \right\}, \quad s.t. \quad \underline{\mathrm{BC}} : \underbrace{\frac{\partial V}{\partial a}}_{a=\underline{a}} \geq \underline{u}'(\cdot), \ \psi(a) = -\frac{1}{2} \kappa(a-\underline{a})^{2}$$

$$\text{where } \check{n} \text{ is complement of } n.$$

For optimal policy rule, $c^*(a, n, z, g; \tilde{\mu}^g)$, for z_t , population density, g, evolves by KFE:

$$dg_t(a,n) = \underbrace{\left[-\partial_a[(w(z,g)n + r(z,g)a - c^*)g_t(a,n)] - \lambda(n)g_t(a,n) + \lambda(\check{n})g_t(a,\check{n})\right]}_{=:\mu_t^g(c_t^*,a_t,n_t,z_t,q_t;\check{\mu}^g)}dt$$

In equilibrium $\tilde{\mu}^g = \mu^g$.

"Master Equation" Representation of Equilibrium

- ► "Master equation" substitutes KFE, market clearing, and belief consistency into HJBE.
- \blacktriangleright Equilibrium value function V(a, n, z, g) characterized by one PDE:

$$0 = -\rho V(a, n, z, g) + u(c^*(a, n, z, g)) + \mathbf{1}_{a_t \leq \underline{a}} \psi(a_t)$$

$$+ \partial_a V(a, n, z, g) (\mathbf{w}(z, g)n + \mathbf{r}(z, g)a - c^*(a, n, z, g))$$

$$+ \lambda(x) (V(a, \check{n}, z, g) - V(a, n, z, g)) + \partial_z V(a, n, z, g) \mu^z(z) + 0.5 (\sigma^z)^2 \partial_{zz} V(a, n, z, g)$$

$$+ \int_{\mathcal{X}} \frac{\partial V}{\partial g} (y, z, g) \mu^g(c^*(y, z, g), y, z, g) dy =: \mathcal{L}V$$

where the optimal control c^* is characterised by:

$$u'(c^*(a, n, z, g)) = \partial_a V(a, n, z, g).$$

Solution Outline

- Goal: solve Master equation numerically
- ▶ Problem: Master equation contains an infinite dimensional derivative.
- ► Solution: three main ingredients:
 - 1. High but finite dimensional approximation to distribution and Master equation:
 - (i). Replace continuum of agents by a finite population of agents, or
 - (ii). Project distribution onto a finite dimensional set of basis functions (e.g. indicator functions, eigenfunctions, Chebyshev polynomials ...).
 - 2. Parameterize V by neural network, and
 - 3. Train the parameters to minimize the (approximate) master equation residual.

Ingredient 1: Comparing Finite Population and Projection

	Finite Population More	Projection More
Distribution approx.	Finite collection of agents	Finite projection coefficients
	$\hat{g} \approx \{(a_t^i, n_t^i) : i \leq N\}$	$\hat{g}_t(x) \approx \sum_{i=1}^N \alpha_t^i h^i(x)$
KFE approximation	Evolution of other agents' states	Evolution of projection coefficients α_t^i (complex)
Capital market	Sum up agent positions	Approximate the integral
	$K_t = \sum_{i}^{N} a_t^i$	$K_t = \sum_j \int a\hat{g}_t(a, n_j) da$

Finite agent approach introduces small sample error in aggregates. Projections have more complicated KFE approximations.

Ingredients 2 & 3: The Algorithm

Approximate value function by neural network $V(x, z, \hat{g}) \approx V(x, z, \hat{g}; \theta)$ with parameters θ .

Starting with an initial θ^0 . At iteration n with guess θ^n :

- 1. Randomly sample $S^n = \{(x_m, z_m, \hat{g}_m)\}_{m \leq M}$ from the state space.
- 2. Calculate the weighted average error:

$$\mathcal{E}(\theta^n, S^n) = \kappa^e \mathcal{E}^e(\theta^n, S^n) + \kappa^f \mathcal{E}^f(\theta^n, S^n), \text{ where}$$

- \triangleright $\mathcal{E}^e(\theta^n, S^n) := \frac{1}{M} \sum_{m \leq M} |\hat{\mathcal{L}}(x_m, z_m, \hat{g}_m)|$ is error in Master equation $\hat{\mathcal{L}}$
- $ightharpoonup \mathcal{E}^f(\theta^n,S^n)$ is penalty for "wrong" shape (e.g. penalty for non-concavity of V)
- 3. Update the NN parameters using "stochastic" gradient descent:

$$\theta^{n+1} = \theta^n - \alpha_n D_\theta \mathcal{E}(\theta^n, S^n)$$

4. Repeat until $\mathcal{E}(\theta^n, S^n) \leq \epsilon$ where ϵ is a precision threshold.

Neural Network Q & A

- ▶ *Q.* What type of network architecture do we use?
 - For finite population approximation, typically feed forward, 5 layers, 64 neurons
 - ► For projection, used "LSTM" neural network (following the "Deep Galerkin" architecture)
- **Q.** What are the main differences to discrete time?
 - ▶ Need to calculate derivatives rather than expectations (we do this with automatic differentiation)
 - Need to choose where to sample rather than always simulating economy (We follow [Gopalakrishna, 2021] and increase sampling where error in master equation is large)
- **Q.** Why do we need shape constraints?
 - Neural network can find "bad" approximate solutions, (E.g. consumption-saving problem has approximate solution $V \approx 0$ for high γ .) More
 - ▶ Option: penalize shape that correspond to known "bad" solutions.
 - Option: train ϕ satisfying $V(a, n, z, g) = \phi(a, n, z, g; \theta)(a \underline{a})^{1-\gamma}$ instead of training V

Neural Network Q & A

- **Q.** What about slowing down the updating?
 - For projection methods, we use "Howard improvement algorithm" to slow down the rate of updating (fix policy rule for some iterations and just update V).
 - ▶ [Duarte, 2018] and [Gopalakrishna, 2021] suggest introducing a "false" time step but so far we have not found this necessary (or found a way to implement at high scale).
 - ▶ We use shape constraints as a replacement.
- **Q.** What about imposing symmetry and/or dimension reduction?
 - ► [Han et al., 2021] and [Kahou et al., 2021] suggest feeding the distribution through a preliminary neural network that reduces the dimension and imposes symmetry.
 - ▶ We find we can solve the problem with and without this approach.
- ▶ **Q.** What if we have boundary conditions?
 - ▶ Then we sample separately from boundary and add a loss for the boundary condition.
 - ▶ But, we have found replacing inequality boundary conditions with penalties is helpful.

Related Literature

Machine learning for macro-economic models:

- ▶ Discrete time (e.g. [Azinovic et al., 2022], [Han et al., 2021], [Maliar et al., 2021], [Kahou et al., 2021], [Bretscher et al., 2022], [Wagner, 2023])
- Discrete time approximation to forward and backward differential stochastic equations (e.g. [Han et al., 2018], [Huang, 2022])
- ► Continuous time (e.g. [Duarte, 2018], [Gopalakrishna, 2021], [Fernandez-Villaverde et al., 2020])
- ▶ Portfolio choice and housing (e.g. [Azinovic and Žemlička, 2023], [Gaegauf et al., 2023])
- ► *This paper:* solve analytical formulation of continuous time model with distributions.

Machine learning for physics and mean field games:

- ➤ Controls or value functions in MFGs (e.g. [Perrin et al., 2022, Germain et al., 2022, Laurière, 2021], [Laurière, 2021, Carmona and Laurière, 2022, Hu and Lauriere, 2022])
- ▶ We build on the Deep Galerkin Method (DGM) and Physics Informed Neural Networks (PINNs) (e.g. [Sirignano and Spiliopoulos, 2018], [Raissi et al., 2017], [Li et al., 2022])
 - This paper: integrates market clearing conditions in DGM and PINN

Testing the Algorithm

► Test version of model with fixed aggregate productivity (Aiyagari (1994)):

	Finite Agent NN	Projection NN
Master equation MSE	3.135×10^{-5}	2.548×10^{-4}

- ▶ Neural network solutions match finite difference solution at steady state and on transition paths.
- Example plots: comparison to [Ahn et al., 2018] Plots
- ► Test version with stochastic aggregate productivity (Krusell-Smith (1998)):

	Finite Agent NN	Projection NN
Master equation MSE	3.037×10^{-5}	9.639×10^{-5}

- ▶ Neural network solutions generate similar output to traditional methods.
- Example plots: comparison to [Fernández-Villaverde et al., 2018]

KS: Numerical Results More Plots

Outline

1. Baseline Macroeconomic Model With Simple Asset Pricing (Krusell-Smith (1998))

2. Long-Term Illiquid Assets and Portfolio Choice (Gu-Payne (2023)

3. Conclusion

Environment

- ► Krusell-Smith has a very simple market clearing condition.
- ▶ We now consider how to work with more complicated market clearing.
- As an example, we use our paper Gu-Payne (2023), which studies how housing policy impacts inequality in a model with aggregate risk.
- ► Gu-Payne (2023) makes a number of changes to the previous model:
 - Introduces an illiquid asset, housing, and
 - ► Introduces long-term equity.

Environment

- ► Continuous time, infinite horizon economy.
- ► Consumption good produced by a "Lucas tree" according to stochastic process:

$$dy_t = \eta(\bar{y} - y_t)dt + \sigma dB_t^0, \tag{2}$$

- \triangleright Assets: short term bonds in zero net supply, equity in Lucas tree, housing in fixed supply H:
 - ightharpoonup "Liquid" competitive markets for goods, bonds (at interest rate r_t), and equity (at price q_t).
 - "Illiquid" housing; trading housing at rate $\iota_{i,t}$ incurs transaction cost: $\Psi(\iota_{i,t}, h_{i,t}) = \frac{1}{2} \psi \iota_{i,t}^2 / h_{i,t}$ (price of housing is p_t).
- ▶ Population approximated by *I* of agents (start with finite agent approximation):
 - ▶ Get flow utility $u(c_t^i)$ from consuming c_t^i goods and $\zeta_{i,t}\nu(h_{i,t},a_{i,t})$ from housing $h_{i,t}$, where
 - $ightharpoonup \zeta_{i,t} \in \{n_1,n_2\}$ is idiosyncratic housing need ("life-stage") , which switches at rate $\lambda(\zeta_t^i)$.
 - Face collateral borrowing constraint: $a_t \ge -\kappa p_t h_{i,t}$

Agent Problem

- ldiosyncratic states: $x_t^i = [a_t^i, h_t^i, \zeta_t^i], a_t^i$ is liquid wealth, h_t^i is housing, ζ_t^i is housing need.
- \triangleright Given their beliefs, agent i chooses (c_i, b_i, ι_i) to maximise utility s.t. state evolution:

$$V(x_0^i, z_0) = \max_{c^i, b^i, \iota^i} \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} (u(c_t^i) + \zeta_{i,t} \nu(h_{i,t}, a_{i,t}) + \mathbf{1}_{a_t \le -\kappa p_t h} \phi(a_t, h_t)) dt \right],$$

► FOCs give choices in terms of value function and derivatives:

s.t. $dz_t = \dots dx_t^i = \dots \Psi(a,h) := -0.5\psi(a + \kappa ph)^2$

$$[c_t^i]: c_t^i = (u')^{-1} \left(\partial V_i / \partial a_t^i\right)$$

$$[b_t^i]: b_t^i = \left[\frac{\partial^2 V}{\partial (a_t^i)^2} (\sigma_t^q)^2\right]^{-1} \left[-\frac{\partial V}{\partial a_i} \left(r_r - \mu_t^q - \frac{y}{q_t}\right) + \frac{\partial^2 V}{\partial (a_t^i)^2} a_t^i (\sigma_t^q)^2\right]$$

$$+ \frac{\partial^2 V}{\partial a_i \partial y} \sigma_t^q \sigma_t^y + \sum_j \frac{\partial^2 V}{\partial a_t^i \partial a_t^j} \sigma_t^q \tilde{\sigma}_t^{a_j^i}$$

$$[\iota_i^i]: \iota_i = \frac{h_i}{\psi} \left(\frac{\partial V_i / \partial h_t^i}{\partial V_i / \partial a_t^i} - p_t\right)$$

(4)

Equilibrium

Definition: Given an initial distribution, g_0 , an equilibrium for this economy consists a collection of \mathcal{F}_t^0 adapted stochastic processes $\{c_{i,t}, b_{i,t}, \iota_{i,t}, a_{i,t}, g_t, r_t, q_t, p_t, y_t : t \geq 0, i \in \mathcal{I}\}$ such that:

- 1. Given their belief about the price processes $(\tilde{r}, \tilde{q}, \tilde{p})$, individual *i*'s consumption decision $c_{i,t}$, bond holdings $b_{i,t}$, and rate of housing purchase, $\iota_{i,t}$ solve optimization problem,
- 2. Market clearing conditions are satisfied: (i) goods market $\sum_i c_{i,t} = y_t$, (ii) stock market $\sum_i (a_{i,t} b_{i,t}) = q_t$, (iii) bond market $\sum_i b_{i,t} = 0$, and (iv) housing market $\sum_i \iota_{i,t} = 0$.
- 3. Agent beliefs about the price process are consistent with the optimal behaviour of other agents in the sense that $(\tilde{r}, \tilde{q}_t, \tilde{p}_t) = (r_t, q_t, p_t)$.

Master Equation Formulation

- ▶ Define $\xi_a := \partial_a V_i(x, z, g)$ and $\xi_h := \partial_h V_i(x, z, g)$.
- ▶ Using market clearing and agent optimization:
 - We can get (r, p) in closed form in terms of (ξ_a, ξ_h, z, q) Derivation

$$r - \left(\mu^q + \frac{y}{q}\right) = \frac{q + \mathbf{1} \cdot (\mathbf{M}^{-1}\boldsymbol{\xi}_y)\sigma_q\sigma_y}{\mathbf{1} \cdot (\mathbf{M}^{-1}\boldsymbol{\xi})}, \quad p = \frac{1}{H} \left(\sum_i \frac{\xi_{h,i}}{\xi_{a,i}} h_i\right), \quad \mathbf{M}_{ij} := \sigma_q^2 \xi_{i,a_j}$$

- ▶ But we only have $q_t = q(z, g)$ implicitly; only know it must satisfy Ito's lemma. (Non-trivial market clearing condition implies a PDE for q)
- ► Substituting the equilibrium KFE, market clearing, and the (implict and explicit) pricing expressions, we are left with the following "implicit" master equations:

$$0 = -\rho + \frac{y}{q} + \mu^{q} + \mu^{\xi_{a}} + j^{\xi_{a}} + \sigma^{\xi_{a}} \sigma^{q} + \frac{1}{\xi_{a}} \frac{\partial \phi}{\partial a}, \tag{5}$$

$$0 = -\rho + \frac{\partial \Psi}{\partial h} + \mu^{\xi_h} + j^{\xi_h} + \frac{1}{\xi_h} \frac{\partial \phi}{\partial h}, \quad \mu^x, \sigma^x, j^x = \text{drift, volatility, jump in } x / \xi^x$$
 (6)

Modified Algorithm (new parts in red)

Approximate the value function derivatives (ξ_a, ξ_h) and price triplet (q, μ^q, σ^q) by neural networks with collective parameters θ_{ξ} , θ_q respectively.

Starting with an initial θ^0 . At iteration n with guess θ^n :

- 1. Sample $S^n = \{(x_m, z_m, \hat{g}_m)\}_{m \le M}$ from the state space.
- 2. Update θ_{ξ} using loss on master equation and then update θ_q using consistency conditions.
- 3. Repeat until $\mathcal{E}(\theta^n, S^n) \leq \epsilon$ where ϵ is a precision threshold.

Detail on Step 2: Updating θ_{ξ} and θ_{q}

2 i. **KFE Block**: Calculate the evolution of the distribution of liquid wealth and housing. (Use change of variable to evolution of wealth and housing shares $\{\eta_i = a_i/A, \varphi_i = h_i/H\}$

2 ii. Master Equation Block: Using KFE, evaluate the weighted average error:

$$\mathcal{E}^{\xi}(\theta_{\xi}^{n}, S^{ne}) = \frac{w^{a}}{M} \sum_{m \le M} |\mathcal{L}^{hm}/\xi_{h}^{m}| + \frac{w^{h}}{M} \sum_{m \le M} |\mathcal{L}^{am}/\xi_{a}^{m}|. \tag{7}$$

where \mathcal{L}^{am} and \mathcal{L}^{hm} are the error in sample m for the pdes for ξ_a and ξ_h respectively. Update parameters θ_{ξ}^n using stochastic gradient descent.

2 iii. Equilibrium consistency: Using KFE, evaluate the weighted average error by goods market clearing condition and Ito's lemma applied to q(z, g):

$$\mathcal{E}^{q}(\theta_{\xi}^{n}, S^{ne}) = \frac{1}{M} \left(\sum_{m \leq M} \epsilon_{c} |\sum_{i} c_{i} - y| + \epsilon_{\mu} |\mathcal{L}^{\mu m}| + \epsilon_{\sigma} |\mathcal{L}^{\sigma m}| \right). \tag{8}$$

where $\mathcal{L}^{\mu m}$ and $\mathcal{L}^{\sigma m}$ are the errors in sample m in the consistency equation by Itô's Lemma. Update θ_a^n using stochastic gradient decent.

Housing Purchases by Low/High Wealth Agents (High ζ , Recession)

Poor agents who need housing are forced to sell it recessions and buy it back in expansions

- ⇒ Average return on housing is low for poorer agents (high for wealthier agents)
- ⇒ Subsidies to encourage home ownership have complicated impact on inequality

Intuition: Revisiting the Housing First Order condition

► Revisit:

$$\iota_i = \frac{h_i}{\psi} \left(\frac{\partial V_i / \partial h}{\partial V_i / \partial a} - p \right)$$

- **Decreasing utility gain from housing:** negative ι for rich households
- **B**inded financially constraint: negative ι for poor households
- Unconstrained but lacking houses: positive ι for "mid-classes"

Results: Ergodic Distribution

Outline

- 1. Baseline Macroeconomic Model With Simple Asset Pricing (Krusell-Smith (1998))
- 2. Long-Term Illiquid Assets and Portfolio Choice (Gu-Payne (2023)

3. Conclusion

Conclusion

- ► *This talk:* showed how we use neural networks to solve continuous time, heterogeneous agent models with long-term and illiquid assets.
- ► How are we using the tools: Evaluating historical housing policy.
- Practical Lessons: for continuous time deep learning
 - 1. Working out the correct sampling approach is very important.
 - 2. Neural networks have difficulty dealing with inequality constraints.
 - 3. Enforcing shape constraints and/or rescaling functions is important.
 - 4. Need tighter tolerance than finite difference.

Thank You!

References I

```
[Achdou et al., 2022] Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L., and Moll, B. (2022). Income and wealth distribution in macroeconomics: A continuous-time approach. The Review of Economic Studies, 89(1):45–86.
[Ahn et al., 2018] Ahn, S., Kaplan, G., Moll, B., Winberry, T., and Wolf, C. (2018). When inequality matters for macro and macro matters for inequality. NBER macroeconomics annual, 32(1):1–75.
[Azinovic et al., 2022] Azinovic, M., Gaegauf, L., and Scheidegger, S. (2022). Deep equilibrium nets. International Economic Review, 63(4):1471–1525.
```

[Bretscher et al., 2022] Bretscher, L., Fernández-Villaverde, J., and Scheidegger, S. (2022). Ricardian business cycles.

[Azinovic and Žemlička, 2023] Azinovic, M. and Žemlička, J. (2023). Economics-inspired neural networks with stabilizing homotopies.

Available at SSRN.

arXiv preprint arXiv:2303.14802.

[Cardaliaguet et al., 2015] Cardaliaguet, P., Delarue, F., Lasry, J.-M., and Lions, P.-L. (2015). The master equation and the convergence problem in mean field games. *arXiv*.

References II

[Carmona, 2020] Carmona, R. (2020).

Applications of mean field games in financial engineering and economic theory.

To appear in: Machine Learning and Data Sciences for Financial Markets, Cambridge University Press.

[Carmona and Laurière, 2022] Carmona, R. and Laurière, M. (2022).

Deep learning for mean field games and mean field control with applications to finance.

Machine Learning in Financial Markets: A guide to contemporary practises, editors: A. Capponi and C.-A. Lehalle, Cambridge University Press.

[Duarte, 2018] Duarte, V. (2018).

Machine learning for continuous-time economics.

Available at SSRN 3012602.

[Fernández-Villaverde et al., 2018] Fernández-Villaverde, J., Hurtado, S., and Nuño, G. (2018).

Financial Frictions and the Wealth Distribution.

Working Paper, pages 1–51.

[Fernandez-Villaverde et al., 2020] Fernandez-Villaverde, J., Nuno, G., Sorg-Langhans, G., and Vogler, M. (2020).

Solving high-dimensional dynamic programming problems using deep learning.

Unpublished working paper.

References III

[Gaegauf et al., 2023] Gaegauf, L., Scheidegger, S., and Trojani, F. (2023).

A comprehensive machine learning framework for dynamic portfolio choice with transaction costs. *Available at SSRN 4543794*.

[Germain et al., 2022] Germain, M., Laurière, M., Pham, H., and Warin, X. (2022).

DeepSets and their derivative networks for solving symmetric PDEs.

Journal of Scientific Computing, 91(2):63.

[Gopalakrishna, 2021] Gopalakrishna, G. (2021).

Aliens and continuous time economies.

Swiss Finance Institute Research Paper, (21-34).

[Han et al., 2018] Han, J., Jentzen, A., and E, W. (2018).

Solving high-dimensional partial differential equations using deep learning.

Proceedings of the National Academy of Sciences, 115(34):8505–8510.

[Han et al., 2021] Han, J., Yang, Y., and E, W. (2021).

DeepHAM: A global solution method for heterogeneous agent models with aggregate shocks. *arXiv preprint arXiv:2112.14377*.

[Hu and Lauriere, 2022] Hu, R. and Lauriere, M. (2022).

Recent developments in machine learning methods for stochastic control and games. ssrn.4096569.

References IV

[Huang, 2022] Huang, J. (2022).

Available at SSRN 4122454.

[Laurière, 2021] Laurière, M. (2021).

Mean Field Games, 78:221.

```
Deep learning for solving dynamic economic models.

Journal of Monetary Economics, 122:76–101.

[Perrin et al., 2022] Perrin, S., Laurière, M., Pérolat, J., Élie, R., Geist, M., and Pietquin, O. (2022).

Generalization in mean field games by learning master policies.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 9413–9421.
```

A probabilistic solution to high-dimensional continuous-time macro-finance models.

[Kahou et al., 2021] Kahou, M. E., Fernández-Villaverde, J., Perla, J., and Sood, A. (2021).

Exploiting symmetry in high-dimensional dynamic programming. Technical report, National Bureau of Economic Research.

Numerical methods for mean field games and mean field type control.

[Li et al., 2022] Li, J., Yue, J., Zhang, W., and Duan, W. (2022).
The deep learning Galerkin method for the general stokes equations.

[Maliar et al., 2021] Maliar, L., Maliar, S., and Winant, P. (2021).

Journal of Scientific Computing, 93(1):1–20.

References V

[Raissi et al., 2017] Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017).

Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. *arXiv preprint arXiv:1711.10561*.

[Sirignano and Spiliopoulos, 2018] Sirignano, J. and Spiliopoulos, K. (2018).

DGM: A deep learning algorithm for solving partial differential equations.

 ${\it Journal\ of\ computational\ physics}, 375:1339-1364.$

ABH: Numerical Results Back

ABH: Numerical Results Back

7/24

ABH: Numerical Results Back

Training of the neural network (FA approach):

KS: Numerical Results Back

Household's HJB Equation in Housing Model

$$\rho V_{i}(x_{i}) = \max_{b_{i}, c_{i}, \iota_{i}} u(c_{i})
+ \zeta_{i,t} \nu(h_{i,t}, a_{i,t}) \frac{\partial V_{i}}{\partial a_{i}} \mu_{a_{i}}(b_{i}, c_{i}, \iota_{i}, \cdot) + \frac{\partial V_{i}}{\partial y} \mu^{y} + \lambda(\zeta_{i})(V_{i}(a_{i}, h_{i}, \tilde{\zeta}_{i}, \cdot) - V_{i}(a_{i}, h_{i}, \zeta_{i}, \cdot))
+ \frac{1}{2} \frac{\partial^{2} V_{i}}{\partial a_{i}^{2}} \sigma_{a_{i}}^{2}(b_{i}, \cdot) + \frac{1}{2} \frac{\partial^{2} V_{i}}{\partial y^{2}} \sigma_{y}^{2} + \frac{\partial^{2} V_{i}}{\partial a_{i} \partial y} \sigma_{a_{i}}(b_{i}, \cdot) \sigma_{y}
+ \sum_{j \neq i} \frac{\partial^{2} V_{i}}{\partial a_{i} \partial a_{j}} \sigma_{a_{i}}(b_{i}, \cdot) \hat{\sigma}_{a_{j}}(\cdot) + \sum_{j \neq i} \frac{\partial V_{i}}{\partial a_{j}} \hat{\mu}_{a_{j}}(\cdot) + \sum_{j \neq i} \frac{\partial^{2} V_{i}}{\partial a_{j} \partial y} \hat{\sigma}_{a_{j}}(\cdot) \sigma_{y}
+ \sum_{j \neq i} \lambda(\zeta_{j})(V_{i}(a_{i}, h_{i}, \zeta_{i}, \tilde{\zeta}_{j}\cdot) - V_{i}(a_{i}, h_{i}, \zeta_{i}, \zeta_{j}, \cdot))
+ \frac{1}{2} \sum_{i \neq i, i' \neq i} \frac{\partial^{2} V_{i}}{\partial a_{j} \partial a_{j'}} \hat{\sigma}_{a_{j}}(\cdot) \hat{\sigma}_{a'_{j}}(\cdot) + \phi(a_{i}, h_{i}, \kappa_{i})$$
(9)

Back

Derivations

The first order condition of optimal portfolio choice condition in (4) can be further written into a matrix form:

$$\mathbf{M}(\boldsymbol{a} - \boldsymbol{b}) = \boldsymbol{n} \tag{10}$$

By multiplying both sides with M^{-1} , the risky asset holding can be written as:

$$\boldsymbol{a} - \boldsymbol{b} = \mathbf{M}^{-1} \boldsymbol{n} \tag{11}$$

Further, the bond market clearing condition can be essentially written as: $\boldsymbol{\iota} \cdot \boldsymbol{b} = 0$, we have:

$$\boldsymbol{\iota} \cdot (\boldsymbol{a} - \boldsymbol{b}) = \boldsymbol{\iota} \cdot (\mathbf{M}^{-1} \boldsymbol{n}) = q. \tag{12}$$

Plug in the expression for n, then we can get the expression for risk-premium.

Closed form solution for housing price p_t with quadratic transaction cost: $\Psi(h_{i,t}, \iota_{i,t}) = \frac{1}{2} \kappa \frac{\iota_{i,t}^2}{h_{i,t}}$

$$p + \kappa \frac{\iota_i}{h_i} = \frac{\partial V_i / \partial h_i}{\partial V_i / \partial a_i} \to p = \frac{1}{H} \left(\int_i \frac{\xi_{h,i}}{\xi_{a,i}} h_i di \right)$$
 (13)

Results: Losses

Master Equation ξ_a	Master Equation ξ_h	Goods Market	q-Drift	q-Volatility
1.02×10^{-2}	2.31×10^{-3}	3.12×10^{-4}	8.10×10^{-4}	5.57×10^{-3}

Recursive Representation (Appendix)

- ightharpoonup Assume equilibrium exists that is recursive in aggregate states: $\{z, g\}$.
- Given a belief $dg_t(x) = \hat{\mu}_g(z_t, g_t)dt + \hat{\sigma}(z_t, g_t)dB_t^0$, household choose c to solve HJBE:

$$0 = \max_{c \in \mathcal{C}(x,z,g)} \left\{ \rho V(x,z,g) + u(c) + D_x V(x,z,g) \mu^x(c,x,z,Q(z,g)) \right.$$

$$\left. + \lambda(x) \left(V(x + \gamma^x(x), z, g) - V(x,z,g) \right) + \text{higher order terms} \right.$$

$$\left. + \partial_z V(x,z,g) \mu^z(z) + 0.5 \left(\sigma^z(z) \right)^2 \partial_{zz} V(x,z,g) \right.$$

$$\left. + \int_{\mathcal{X}} \left(\hat{\mu}_g(z_t,g_t) \frac{\partial V}{\partial g}(x,z,g)(y) + \text{higher order terms} \right) dy \right\}$$

$$s.t. \quad \text{BCs} \quad \Psi(V)(x) = 0, \Phi(V)(x) \ge 0$$

For optimal policy rule, $c^*(x, z, g)$, for z_t , population density, g, evolves by KFE:

$$dg_t(x) = \mu_g(c^*(x, z, g), z_t, g_t)dt - \text{div}[\sigma^x(c, s, z, q)g_t(x)]dB_t^0.$$

In equilibrium $\hat{\mu}_g = \mu_g$.

ABH: Master Equation

► The Master equation is:

$$0 = (\mathcal{L}V)(a, y, g) = (\mathcal{L}^{h}V)(a, y, g) + (\mathcal{L}^{g}V)(a, y, g)$$

where, in this ABH model, the operators are defined by:

$$\begin{split} (\mathcal{L}^h V)(a,y,g) &:= -\rho V(a,y,g) + u(c^*(a,y,g)) + \mathbf{1}_{a \leq \underline{a}} \psi(a) \\ &\quad + \partial_a V(a,y,g) s(a,y,c^*(a,y,g),r(\bar{g}),w(\bar{g})) \\ &\quad + \lambda(y) (V(a,\tilde{y},g) - V(a,y,g)) \\ (\mathcal{L}^g V)(a,y,g) &:= \int_{\mathbb{R}} \frac{\partial V}{\partial g}(a,y,g)(b) \left(\lambda(\tilde{y})g(b,\tilde{y}) - \lambda(y)g(b,y)\right) db \\ &\quad + \int_{\mathbb{R}} \partial_b \frac{\partial V}{\partial g}(a,y,g)(b) s\left(a,y,c^*(a,y,g),r(\bar{g}),w(\bar{g})\right) g(b,y) db \end{split}$$

▶ and the optimal control satisfies the following FOC:

$$\partial_a V(a, y, g) = u'(c^*(a, y, g))$$
 Back

ABH Model: Equilibrium

Equilibrium: We say that $q^* = [r^*, w^*]$ and c^* form an equilibrium if:

- 1. Given their belief q^* , the optimal control of a representative agent is c^*
- 2. Their belief is consistent with c^* :

$$q_t^* = Q(\bar{g}_t^*) = [r(\bar{g}_t^*), w(\bar{g}_t^*)]$$

where g^* is the distribution generated if everyone uses c^*

Value function:

- Agents want to know the equilibrium c^* for "any" possible distribution
- \blacktriangleright Value function of an agent depends on the current g_t

ABH: Derivative of Master Equation

• We will rather approximate $W(a, y, g) = \partial_a V(a, y, g)$, which solves the PDE:

$$0 = (\mathfrak{L}W)(a, y, g) = (\mathfrak{L}^h W)(a, y, g) + (\mathfrak{L}^g W)(a, y, g)$$

• where the operators \mathfrak{L}^h and \mathfrak{L}^g are defined by:

$$\begin{split} (\mathfrak{L}^h W)(x,g) &:= (r(\bar{g}) - \rho) W(a,y,g) + \mathbf{1}_{a \leq \underline{a}} \psi'(a) \\ &\quad + \partial_a W(a,y,g) s(a,y,c^*(a,y,g),r(\bar{g}),w(\bar{g})) \\ &\quad + \lambda(y) (W(a,\tilde{y},g) - W(a,y,g)) \\ (\mathfrak{L}^g W)(x,g) &:= \int_{\mathbb{R}} \frac{\partial W}{\partial g}(a,y,g)(b) \left(\lambda(\tilde{y})g(b,\tilde{y}) - \lambda(y)g(b,y)\right) db \\ &\quad + \int_{\mathbb{R}} \partial_b \frac{\partial W}{\partial g}(a,y,g)(b) s\left(a,y,c^*(a,y,g),r(\bar{g}),w(\bar{g})\right) g(b,y) db \end{split}$$

with the FOC:

$$W(a, y, g) = u'(c^*(a, y, g)).$$

▶ We apply the algorithm to this PDE for W.

Approach A: Finite Population

- ▶ Replace distribution g_t by finite number of agent $\hat{g}_t := \{x_t^i : i \leq I\}$.
 - Agent $i \leq I$ behaves as if their individual actions do not influence prices.
 - So, their belief is: $\hat{q}_t = \hat{Q}(z_t, \hat{g}_t^{-i})$, where $\hat{g}_t^{-i} := \{x_t^j : j \neq i\}$
- $$\begin{split} \blacktriangleright \ V(x^i,z,\hat{g}) \text{ solves } (\hat{\mathcal{L}}V)(x^i,z,\hat{g}) &= 0 \text{ subject to BCs, where } \hat{\mathcal{L}} := \hat{\mathcal{L}}^h + \hat{\mathcal{L}}^g \\ (\hat{\mathcal{L}}^hV)(x^i,z,\hat{g}) &:= (\mathcal{L}^hV)(x^i,z,\hat{g}) \\ (\hat{\mathcal{L}}^gV)(x^i,z,\hat{g}) &:= \sum_{j \leq I} \frac{\partial V}{\partial x^j}(x^i,z,\hat{g}) \mu^x (c^*(x^j,z,\hat{g}),x^j,z,\hat{Q}(z,\hat{g}^{-j})) \\ &+ \sum \lambda(x^j) \left(V(x^i,z,\{x^j+\gamma^x(x^j),\hat{g}^{-j}\}) V(x^i,z,\hat{g}^{-i})\right) \end{split}$$
 - $\hat{\mathcal{L}}^h$ stays the same; $\hat{\mathcal{L}}^g$ changes to capture impact of changes in other agent positions
 - ightharpoonup Converges to original model as $I \to \infty$ (see [Carmona, 2020])

Approach B: Projection Onto Basis

- Approximate the distribution $g_t(x)$ by $\sum_{i=1}^{N} \alpha_t^i h^i(x)$, where:
 - $ightharpoonup \alpha_t^i$ is a time varying coefficient, $h^i(x)$ is basis function, and
 - Example bases: Indicator Functions, Chebyshev polynomial, Eigenfunctions, ...
 - ightharpoonup Distribution characterized by coefficients: $\hat{g}_t := \{\alpha_t^1, ... \alpha_t^N\}$.
 - Substituting $\sum_{i=1}^{N} \alpha_t^i h^i(x)$ into KFE implicitly gives the law of motion for the coefficients:

$$d\alpha_t^i = \hat{\mu}_{\alpha}^i(z,\hat{g})dt, \quad \text{where } \hat{\mu}_{\alpha}^i(z,\hat{g}) \text{ solve } \sum_{i=1}^N \hat{\mu}_{\alpha}^i(z,\hat{g})h^i(x) = \hat{\mathcal{L}}^k \Big[\sum_{i=1}^N \alpha_i(t)h^i(x) \Big]$$

$$V(x^{i},z,\hat{g}) \text{ solves } (\hat{\mathcal{L}}V)(x^{i},z,\hat{g}) = 0 \text{ subject to BCs, where } \hat{\mathcal{L}} := \hat{\mathcal{L}}^{h} + \hat{\mathcal{L}}^{g}:$$

$$(\hat{\mathcal{L}}^{h}V)(x,z,\hat{g}) := (\mathcal{L}^{h}V)(x,z,\hat{g}), \quad (\hat{\mathcal{L}}^{g}V)(x,z,\hat{g}) := \sum_{i=1}^{N} \hat{\mu}_{\alpha}^{i}(z,\hat{g}) \frac{\partial V}{\partial \alpha_{i}}(x,z,\hat{g})$$

Discrete state space | Eigenvectors

Approach B.1: Project Onto Discrete State Space

- ▶ We approximate the distribution by a histogram:
 - ightharpoonup Basis is a collection of N^x points: x_1, \ldots, x_{N^x} , in \mathcal{X} .
 - We approximate g_t by a vector $\alpha_t \in \mathbb{R}^{N^x}$ of mass points at x_1, \dots, x_{N^x} .
- Law of motion of the mass points is the finite difference approximation to the KFE.

Approach B.2: Projection Onto Eigenfunctions

Let $\{e_i\}_{i\geq 1}$ be eigenfunctions of KFE operator $\hat{\mathcal{L}}_{z=0}^k$ without aggregate shocks:

$$\mathcal{L}_{z=0}^k e_i = \lambda_i e_i$$
, where λ_i are eigenvalues

Use finite subset of eigenfunctions of $\hat{\mathcal{L}}_{z=0}^k$ as basis:

$$g_t(x) \approx \sum_{i \leq I} \alpha_t^i e^i(x)$$
, so distribution characterized by $\hat{g} = \{\alpha_t^1, \dots, \alpha_t^I\}$

▶ Drifts of the coefficients $\{\hat{\mu}_{\alpha}^i\}_{i\leq I}$ satisfy a collection of equations for $i\leq I$:

$$\sum_{i \leq I} \hat{\mu}_{\alpha}^{i} \langle e_{i}, e_{j} \rangle = \underbrace{\sum_{i \leq I} \alpha_{t}^{i} \lambda_{i}^{A} \langle e_{i}, e_{j} \rangle}_{\text{Weighted } \mathcal{L}_{z=0}^{k} \text{ eigenvalues}} + \underbrace{\int_{\mathcal{X}} e_{j}(x) \Big((\mathcal{L}_{z}^{k} - \mathcal{L}_{z=0}^{k}) \Big(\sum_{i \leq I} \alpha_{t}^{i} e_{i} \Big) \Big)(x) dx}_{\text{Weighted difference between } \mathcal{L}_{z}^{k} - \mathcal{L}_{z=0}^{k}}$$

- **Remark:** We approximate operator difference $\hat{\mathcal{L}}_z^k \hat{\mathcal{L}}_{z=0}^k$:
 - Many papers perturb z or g(x) (e.g. [Cardaliaguet et al., 2015], [Alverez (2023)], [Bilal (2023])
 - We "perturb" $\hat{\mathcal{L}}_z^k$ in the operator space.

Approximate Solutions

Consider HJB equation for the Merton problem (consumption and portfolio choice):

$$\rho V(a) = \max_{c,\theta} u(c) + V'(a)((r + (\bar{R} - r)\theta)a - c) + \frac{1}{2}\sigma^2 \theta^2 a^2 V''(a)$$
(15)

Suppose V_0 is the exact solution of Merton's problem, we plug in a scaled solution $k^{-\gamma}V_0$:

$$\rho k^{-\gamma} V_0 = \frac{c^{1-\gamma} k^{1-\gamma}}{1-\gamma} + k^{-\gamma} V_0' ((r + (\bar{R} - r)\theta)a - kc) + \frac{1}{2} \sigma^2 \theta^2 a^2 k^{-\gamma} V_0''(a)$$
 (16)

Which implies that the loss function (with no loss of generality, we use L1 loss here) will be:

$$Loss = \left| \left(k^{1-\gamma} - k^{-\gamma} \right) \right| \cdot \underbrace{\left| -cV_0' + \frac{c^{1-\gamma}}{1-\gamma} \right|}_{\text{Finite value}}$$

- $ightharpoonup \gamma < 1$, no problem because $k^{1-\gamma}$ will explode while $k^{-\gamma}$ vanishes as $k \to \infty$.
- $ightharpoonup \gamma > 1$, a very large k can be problematic because both $k^{1-\gamma}$ and $k^{-\gamma}$ vanish as $k \to \infty$.
- Hence, in the economically relevant case $\gamma > 1$, computer is very good at finding "cheat solution" by simply push value function to be very close to zero.

Example: Projection of Distribution on Chebyshev Polynomials

Figure: Capital to Labor Ratio vs borrowing constraint \boldsymbol{a}_{lb}

Example: Projection of Distribution on Chebyshev Polynomials

Figure: Capital to Labor Ratio vs borrowing constraint \boldsymbol{a}_{lb}

ABH: Numerical Results with Projection

Results with projection technique based on 7 eigenvectors

iterations of SGD