Progettazione e sviluppo di applicazioni web

Azienda Speciale di Formazione "Scuola Paolo Borsa" Ing. Masciadri Andrea masciadri.andrea@gmail.com

Design di una base di dati

Ingredienti dei modelli concettuali

- ASTRAZIONI: capacità di evidenziare caratteristiche comuni ad insiemi di oggetti.
- Tre ASTRAZIONI di base per la rappresentazione della conoscenza:
 - classificazione;
 - aggregazione;
 - generalizzazione.

Classificazione

- Capacità di definire classi di oggetti o fatti del mondo reale:
 - LIBRO;
 - BICICLETTA;
 - PERSONA;
 - APPARTAMENTO .
- Per ogni classe esiste un implicito "test di appartenenza" che consente di dire se un oggetto o fatto del mondo reale è una istanza della classe.

Aggregazione

- Costruzione di una classe complessa aggregando classi più semplici (componenti):
 - BICICLETTA;
 - RUOTE;
 - PEDALI:
 - MANUBRIO.
- Per ogni componente si indica quante istanze sono presenti in una istanza della classe aggregata.

Generalizzazione

Stabilisce legami di sottoinsieme fra classi:

- FEMMINA < PERSONA
- MASCHIO < PERSONA</p>

Modello Entità-Relazione

- Il modello Entity-Relationship "ER" (Peter P. Chen 1976) si è affermato come standard industriale di buona parte delle metodologie e degli strumenti per il progetto concettuale di basi di dati.
- Attenzione: Relationship = Associazione (però poi si dice informalmente "relazione")

Entità

- Rappresenta una classe di oggetti (es. automobili, impiegati, studenti) o di fatti (es. conti correnti, corsi universitari).
- Devono essere oggetti rilevanti per la applicazione.
- Ogni entità è caratterizzata da un nome.

Simbologia grafica per rappresentare entità

nome dell'entità esempio:

studente

Relazione (o associazione)

- Rappresenta una aggregazione di entità di interesse per l'applicazione.
- Ogni istanza di una associazione è una ennupla tra istanze di entità (es. legame tra un automobile e il suo proprietario).
- Ogni associazione è caratterizzata da un nome.

Simbologia grafica per rappresentare associazioni

Attributi

- Rappresentano caratteristiche delle entità e delle associazioni di interesse per l'applicazione.
- Ogni attributo è caratterizzato da un nome.

Simbologia grafica per rappresentare attributi

Linee guida per il progetto

- Se il concetto è significativo per il contesto applicativo: entità.
- Se il concetto è descrivibile tramite un dato elementare: attributo.
- Se il concetto definisce un legame tra entità: associazione.

Esempio: gestione viaggi

Esempio: gestione magazzino

Esempio: gestione fatture

Cardinalità delle associazioni

- Per cardinalità si intende un vincolo sul numero di istanze di associazione cui ciascuna istanza di entità deve partecipare.
- È una coppia (MIN-CARD, MAX-CARD):

```
MIN-CARD = 0 (opzionale)= 1 (obbligatoria)- MAX-CARD = 1 (uno)= N (molti)
```

 In base alla sola cardinalità massima si hanno associazioni uno-uno, uno-molti, molti-molti.

Associazione 1:1

- un reparto deve essere diretto da uno e un solo direttore (1,1)
- un direttore deve dirigere uno ed un solo reparto (1,1)

Associazione 1:1 con opzionalità

- un reparto può essere diretto da uno e uno solo direttore (0,1)
- un direttore deve dirigere uno ed un solo reparto (1,1)

Associazione 1:N

- un ripiano può contenere molti oggetti (0,n)
- un oggetto può essere contenuto al più su un ripiano (O,1)

Associazione N:M

- un progetto può essere fatto da molti ingegneri (0,n)
- un ingegnere deve partecipare ad uno o più progetti (1,m)

Auto-associazioni

 Associazioni aventi come partecipanti istanze provenienti dalla stessa entità (chiamate anche "ad anello").

Auto-associazioni 1:1

può essere riportato il "ruolo" sul ramo

Auto-associazioni 1:N

Auto-associazioni N:M

Associazioni ternarie

Esempio: università

Esempio: gestione autobus

Esempio: gestione autobus

Cardinalità degli attributi

Una prima classificazione:

- attributo scalare (semplice, ad un sol valore)
 - es.: matricola, cognome, voto

- attributo multiplo (sono ammessi n valori)
 - es.: qualifica, titolo, specialità

(1,n)

• il simbolo (n,m) esprime la cardinalità dell'attributo.

Attributi composti

- Attributo composto
 - es.: data (gg,mm,aaaa), indirizzo (via, numero civico, città, provincia, cap)

- Attributo multiplo composto
 - es.: telefono (stato, città, numero)

Opzionalità

- Attributo opzionale (è ammessa la "non esistenza del valore").
 - es.: tel., qualifica, targa

Esempio

Esempio:

Identificatore

- Un identificatore:
 - caratterizza in modo univoco ciascuna singola istanza di entità
 - non è modificabile (in generale…)
 - -ha il simbolo -o

Identificatori composti

 L'identificatore di un'entità può essere composto.

Gerarchie di generalizzazione

- Una gerarchia di generalizzazione è un legame logico tra un'entità padre E ed alcune entità figlie E₁ E₂ .. En dove:
 - E è la generalizzazione di E₁ E₂ .. E_n
 - E₁ E₂ .. En sono specializzazioni di E

tale per cui:

- ogni istanza di E_kè anche istanza di E
- una istanza di E può essere una istanza di E_k
- Le entità figlio ereditano le proprietà (attributi, relazioni, identificatori) dell'entità padre.

Esempio di gerarchia

 Un'azienda si avvale dell'opera di professionisti esterni, quindi il suo personale si suddivide in esterni e dipendenti.

Proprietà delle gerarchie

- t sta per totale: ogni istanza dell'entità padre deve far parte di una delle entità figlie:
 - nell'esempio il personale si divide (completamente) in esterni e dipendenti.
- p sta per parziale: le istanze dell'entità padre possono far parte di una delle entità figlie:
 - nell'esempio i cacciatori e pescatori sono un sottoinsieme dei cittadini.

Proprietà delle gerarchie

- e sta per esclusiva: ogni istanza dell'entità padre non può far parte di più di una delle entità figlie:
 - nell'esempio si esclude che una istanza di personale possa appartenere ad entrambe le sottoclassi.
- O sta per overlapping: ogni istanza dell'entità padre può far parte di più entità figlie:
 - nell'esempio un cittadono può essere al tempo stesso cacciatore e pescatore.

Default: (t,e)

Indicazione della proprietà

Esempio: parco mezzi meccanici

Esempio: università

Esempio: personale d'azienda

Domande?

masciadri.andrea@gmail.com

Ora provate voi..

References