Graph Theory

1	Graphs		
		Graphs	
	1.2	Paths	3
	1.3	Connectivity	4
2	Pla	nar Graphs	5
	2.1	Topological Prerequisites	5
	2.2	Plane Graphs	6

Chapter 1

Graphs

1.1 Graphs

Definition 1.1. A graph is a pair

$$G = (V, E)$$

of finite sets, where E consists of unordered pairs of elements in V. The elements of V are called **vertices** of G, and the elements of E are called **edges** of G.

1.2 Paths

Definition 1.2. A path is a graph P = (V, E) with

$$V = \{x_1, x_2, \dots, x_{n+1}\}$$
 and $E = \{x_1 x_2, x_2 x_3, \dots, x_n x_{n+1}\}.$

The **length** of a path is defined as the number of edges.

Definition 1.3. A cycle is a graph C = (V, E) with

$$C = \{x_1, x_2, \dots, x_n\}$$
 and $E = \{x_1 x_2, x_2 x_3, \dots, x_{n-1} x_n, x_n x_1\}.$

The **length** of a cycle is defined as the number of edges.

1.3 Connectivity

Definition 1.4. A graph is **connected** if any two vertices can be linked by a path. A graph is **disconnected** if it is not connected.

Definition 1.5. Let G = (V, E) be a graph. We say that a set $S \subseteq V$ separates G if $G[V \setminus S]$ is disconnected.

Definition 1.6. Let G = (V, E) be a graph and let k be a nonnegative integer. We say that G is k-connected if |V| > k and every subset S of V with |S| < k does not separate G.

Chapter 2

Planar Graphs

2.1 Topological Prerequisites

Definition 2.1. Let $x, y \in \mathbb{R}^2$ be different points.

• A straight line segment between x and y is a set $\ell \subseteq \mathbb{R}^2$ with

$$\ell = \{x + \lambda(y - x) : 0 \le \lambda \le 1\}.$$

• A **polygonal arc** between x and y is a set $\alpha \subseteq \mathbb{R}^2$ which is a union of finitely many straight line segments such that there is a homeomorphism $\varphi : [0,1] \to \alpha$ with $\varphi(0) = x$ and $\varphi(1) = y$.

Definition 2.2. Let $S \subseteq \mathbb{R}^2$ beopen and let \sim be the equivalence relation of being connected by a polygonal arc. The members of S/\sim are called the **regions** of S.

Definition 2.3. Let $S \subseteq \mathbb{R}^2$. The **boundary** of S is the set of points whose every neighborhood consists of both a point in S and a point not in S.

2.2 Plane Graphs

Definition 2.4. A plane graph is a pair G = (V, E) of finite sets such that the following properties hold, where the elements of V and those of E are called **vertices** and **edges**, respectively.

- V is a finite subset of \mathbb{R}^2 .
- ullet E is a finite set of simple curves between vertices.
- Different edges in E have different set of endpoints.
- The interior of an edge contains no vertex and no point of any other edge.

The **faces** of G are the regions of $\mathbb{R}^2 \setminus (V \cup \bigcup E)$, and we denote the set of faces of G by F(G).

Remark. A plane graph defines a graph in a natural way. Thus, we usually use the same notation for both a plane graph and its corresponding graph.