

Introducción a R program

B. OPERACIONES

- 0. ¿Qué es R?
- 1. R y R Studio
- 2. Paquetes de R
- 3. Empezar a trabajar con R
- 4. Operaciones básicas
- 5. Operaciones lógicas
- 6. Asignaciones, variables, númericos y caracteres
- 7. Vectores y factores
- 8. Matrices
- 9. Dataframe
- 10. Mis listas
- 11. Importar datos
- 12. Gráficos
- 13. Análisis estadístico

¿Qué son las operaciones básicas?

```
+ Sumar
- Restar
* Multiplicar
/ Dividir
^ Calculo de Potencia
```


Comenzamos ;-)

Suma y resta 3+5-1

> 3+5-1

```
## Suma y resta 3+5-1
```

Multiplica 3*5

> 3*5

```
## Multiplica 3*5
```

```
> 3*5
[1] 15
```

```
## Divide 5/2
```

> 5/2

```
## Divide 5/2
```

```
> 5/2
[1] 2.5
```

Calcula 4^2

> 4^2

```
## Calcula 4^2
```

```
> 4^2
[1] 16
```

```
## Calcula 5x10/2 > 5*10/2
```

```
## Calcula 5x10/2
```

```
> 5*10/2
[1] 25
```


¿Qué son las operaciones lógicas?

```
Menor que
Mayor que

Igual

Menor que o igual

Mayor que o igual

Mayor que o igual
```

Escribe 5<3

> 5<3

```
## Escribe 5<3
```

```
> 5<3
[1] FALSE</pre>
```

Escribe 5>3

> 5>3

```
## Escribe 5>3
```

```
> 5>3
[1] TRUE
```


6. Asignaciones, Variables numéricas y de caracteres

¿Qué son las asignaciones?

Dan valor al resultado de una operación

¿Qué son las asignaciones?

$$=$$
 a $=$ 1 $<$ - c $<$ - 3

R - Global Environment -	
Values	
a	1
C	3

Tips: Usar <- puede evitar futuras confusiones

Variable de tipo númerico

```
> c <- 25
[1] 25
```

```
## class()
```

> class(c)

```
## class()
```

```
> class(c)
[1] "numeric"
```

```
## Variable de tipo caracter
```

- > nombre <- "Maria"</pre>
- > nombre

```
## class()
> class(nombre)
[1] "character"
```


Ahora los ejercicios ;-)


```
> x <- 7 + 3
> y <- 20 / 2
> x == y
[1]
```

```
> x <- 7 + 3
> y <- 20 / 2
> x == y
[1] TRUE
```

```
> x <- 7 + 3
> y <- 15 / 2
> z <- 7-3
¿Cómo calculo x > y > z?
```

```
> x <- 7 + 3
> y <- 15 / 2
> z <- 7-3
> resultado <- (x > y) & (y > z)
[1] TRUE
```


EJERCICIO 3 La señora de los gatos

- -Asigna una variable por cada gato
- -Ponle a cada gato un nombre usando cada una de las variables

La señora de los gatos

- > gatete1 <- "Agustin"
- > gatete2 <- "Jennifer"
- > gatete3 <- "Pedro"
- > gatete4 <- "Mantequilla"
- > gatete5 <- "Xurxo"

7. Vectores y Factores

7a. Vectores

¿Qué son los vectores?

- Estructura de datos
- Se usa para guardar información
- Almacena varios objetos

¿Vectores o variables?

- Variable: contenedor de datos.
- Vector: estructura de datos que se almacenan en una variable

Vectores en R

yacimiento <- c(2,5,8,10,12,23,25)</pre>

variable

vector

¿Un juego?

Saw

2004

107.358

James Wan

Cary Elwes, Leigh Whannell, Danny Glover, Monica Potter, Dina Meyer ...

2005

Saw II

2005

54.200 🌡

Darren Lynn Bousman

Donnie Wahlberg, Shawnee Smith, Tobin Bell, Franky G., Glenn Plummer ...

¿Qué saw tuvo mejor crítica en filmaffinity?

VECTOR 1

VECTOR 2

VECTOR 3

NOMBRE

AÑO

PUNTUACIÓN

"Saw 1"

2003

7.5
"Mala"

VECTOR NÚMERICO

VECTOR TIPO CARACTER

VECTOR LÓGICOS

7.2,6.2

"Saw1",
"Saw2"

TRUE FALSE

Tips: Los vectores NO se mezclan!

Vectores numéricos

> score <-c(7.5,5,8.7)

Vectores numéricos

```
> score <- c(7.5,5,8.7)
> score
[1] 7.5 5.0 8.7
```


Vectores no numéricos

```
> pelicula <- c("Saw", "Saw2", "Saw4")
```


Vectores lógicos

- > prueba <- c(TRUE, FALSE, TRUE)
- > prueba

Vectores lógicos

```
> prueba <- c(TRUE, FALSE, TRUE)
```

> prueba

[1] TRUE FALSE TRUE

Función length

#cuántos elementos tiene un vector

> length(pelicula)

Función length

#cuántos elementos tiene un vector

> length(pelicula)
[1] 4

Función seq()

#crea secuencias de números

> seq(1,50)

Ahora los ejercicios ;-)

Yacimiento	Localidad	Ánforas	Monedas
La Dehesilla	Écija	120	5
El Alamo	Cordoba	12	2
El Cachopo	Vigo	52	35
El desmadre	Girona	96	10
La Penumbra	Valencia	200	25

EJERCICIO 4 Crear vectores

- 1. Crea un vector con los yacimientos
- 2. Crea un vector con las ánforas

Yacimiento	Localidad	Ánforas	Monedas
La Dehesilla	Écija	120	5
El Alamo	Cordoba	12	2
El Cachopo	Vigo	52	35
El desmadre	Girona	96	10
La Penumbra	Valencia	200	25

MODULO B. OPERACIONES --> data_A

Crear vectores

- 1. Crea un vector con los yacimientos
- 2. Crea un vector con las ánforas

```
yacimientos <- c("La Dehesilla", "El Alamo", "El Cachopo", "El desmadre", "La Penumbra")
yacimientos

anforas <- c(120,12,52,96,200)
anforas
```

Unir vectores (names)

3. Unir ambos vectores (un objeto)

```
names(anforas) <- c("La Dehesilla", "El Alamo", "El Cachopo", "El desmadre", "La Penumbra")
```

Selección un yacimiento

4. Selecciona el yacimiento "La Penumbra"

> anforas[]

Selección un yacimiento

4. Selecciona el yacimiento "La Penumbra"

> anforas[5]

Selección varios

5. Selecciona tres yacimientos

> Muestra_selected <- c(anforas[1], anforas[3],
anforas[5])</pre>

Función sort()

6. Ordena de mayor a menor

> sort(muestra_selected, decreasing =
TRUE)

Agregar un nuevo vector

- 7. Crea un nuevo vector de monedas
- 8. Agregalo al vector los yacimientos

Yacimiento	Localidad	Ánforas	Monedas
La Dehesilla	Écija	120	5
El Alamo	Cordoba	12	2
El Cachopo	Vigo	52	35
El desmadre	Girona	96	10
La Penumbra	Valencia	200	25

Agregar un nuevo vector

- 7. Crea un nuevo vector de monedas
- 8. Agregalo al vector los yacimientos

```
> monedas <- c(5,2,35,10,25)
> names(monedas) <- c("La Dehesilla", "El Alamo", "El Cachopo", "El desmadre", "La Penumbra")
> I
```


Guarda el script, por favorr

7b.Operaciones con Vectores

Operación de suma

- > sum(monedas)
- > sum(monedas+anforas)

```
> sum(anforas)
[1] 480
> sum(monedas)
[1] 77
> sum(anforas+monedas)
[1] 557
```


Resumen de las propiedades

- > summary(monedas)
- > summary(anforas)

```
> summary(anforas)
Min. 1st Qu. Median Mean 3rd Qu. Max.
12 52 96 96 120 200
> summary(monedas)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 5.0 10.0 15.4 25.0 35.0
```

mean() & median()

Resumen de las propiedades

- > mean(anforas)
- > median(monedas)

```
> mean(anforas)
[1] 96
> median(monedas)
[1] 10
```


7c.Factores

¿Qué son los factores?

Datos no numéricos (variable categórica)

```
> ciudades <- c("Sevilla", "Vigo", "Barcelona",
"Málaga")
> ciudades <- factor(ciudades)
> class(ciudades)
```

¿Qué son los factores?

Datos no numéricos (variable categórica)

```
> ciudades <- c("Sevilla", "Vigo", "Barcelona", "Málaga")
> ciudades
[1] "Sevilla" "Vigo" "Barcelona" "Málaga"
> ciudades <- factor(ciudades)
> ciudades
[1] Sevilla Vigo Barcelona Málaga
Levels: Barcelona Málaga Sevilla Vigo
> class(ciudades)
[1] "factor"
```


Ahora los ejercicios ;-)

EJERCICIO 5

Yacimiento	número de materiales	Cronologia
La Dehesilla	150	romano
El Alamo	200	medieval
El Cachopo	450	paleolítico
El desmadre	552	romano
La Penumbra	20	medieval

EJERCICIO 5

Crea un vector con los yacimientos
 Crea un vector con los materiales
 Crear un vector con la cronologia

EJERCICIO 5

Yacimiento	número de materiales	Cronologia
La Dehesilla	150	romano
El Alamo	200	medieval
El Cachopo	450	paleolítico
El desmadre	552	romano
La Penumbra	20	medieval

MODULO B. OPERACIONES --> data_B

Crear vectores

```
> yacimiento <- c("La Dehesilla", "El Alamo", "El Cachopo", "El desmadre", "La Penumbra")
> yacimiento
[1] "La Dehesilla" "El Alamo" "El Cachopo" "El desmadre" "La Penumbra"
> materiales <- c(150, 200,450,552,20)
> materiales
[1] 150 200 450 552 20
> cronologia <- c("romano", "medieval", "paleolitico", "romano", "medieval")
> cronologia
[1] "romano" "medieval" "paleolitico" "romano" "medieval"
```

Unir vectores cbind()

2. Une los vectores usando cbind()

> material_arqueologico <cbind(yacimiento, materiales, cronologia)</pre>

> material_arqueologico <- cbind(yacimiento,materiales,cronologia)

Unir vectores cbind()

2. Une los vectores usando cbind()

```
> material_arqueologico
    yacimiento materiales cronologia
[1,] "La Dehesilla" "150" "romano"
[2,] "El Alamo" "200" "medieval"
[3,] "El Cachopo" "450" "paleolitico"
[4,] "El desmadre" "552" "romano"
[5,] "La Penumbra" "20" "medieval"
> |
```

Visualiza usando View()

3. Visualiza la base de datos usando View()

View(material_arqueologico)

Primer plot!

4. Prueba a hacer un plot de materiales

> plot(materiales)

> plot(cronologia)

¿¿¿QUÉ OCURRE?¿¿¿

Formar categorias (factor)

5. Usa factor para etiquetar una categoría y a plotear!

- > crono <- factor(cronologia)</pre>
- > plot(crono)

Formar categorias (factor)

Guarda el script, por favorr

¿Alguna pregunta?