ML Course – Notation

Prof. Dr. Isabel Valera

1 Probabilistic Theory

X	random variable	e.g., probability of a random vari-
		able X taking value 1 is $P_X(X = 1) - n$
\mathcal{X}	feature space	1) = p values that X can assume, e.g.,
	3 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	$\mathcal{X}=\mathbb{R}$
x	value	value of a random variable X e.g.,
v	vector	X = x e.g. D -dimensional vector $\mathbf{x} =$
X	vector	e.g. D-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$, note: all vectors are
		assumed to be column vectors
\mathbf{x}^T	transpose	transpose of vector (or matrix),
A		e.g. row vector
$egin{array}{c} \mathbf{A} \ \mathbf{A}^{-1} \end{array}$	matrix	• • • • • • • • • • • • • • • • • • • •
	inverse	inverse of a matrix
Ω	sample space	set of all possible outcomes $\Omega =$
		$\{\omega_1, \dots, \omega_n\}$, e.g. tossing a coin $\Omega = \{H, T\}$
P, Pr	probability distribution, prob-	probability function that maps an
1,17	ability measure	event into the probability of the
	asino, measure	event, e.g., Bernoulli $P: 2^{\Omega} \rightarrow$
		[0,1]
$p_X, p(X)$	probability density function	e.g., probability that continuous
		variable X will lie in an interval
		(a,b) is $p(X \in (a,b)) = \int_a^b p(x) dx$
F(x)	(cumulative) distribution	e.g. $F(x) = \Pr(X \le x) =$
,	function	$\int_{-\infty}^{x} p(t)dt$
$\mathbb{E}_X[f(X,Y)]$	expectation	expectation of a function $f(X,Y)$
$\Delta X[J(12,1)]$	61- p 66646262	with respect to a random vari-
		able X , note: omitted, if no am-
		biguity as to which variable is be-
		ing averaged over, e.g., $\mathbb{E}[f(X)] =$
		$\mathbb{E}_X[f(X)]$

2 Supervised Learning notation

X	r.v. input features	
Y	r.v. target/output/outcome variable	
$D = (x_i, y_i)_{i=1}^n$	observed dataset	dataset containing fea-
		tures/outcome pairs with n
$D = (X_i, Y_i)_{i=1}^n$	dataset as r.v	observations. treats features and outcome as
$\sum_{i=1}^{n} (11i, 11)i \equiv 1$	dataset as IV	random variables.
$\hat{y}(x)$	(any) classification function	$f: \mathcal{X} \mapsto \{1, \dots, K\}$, with K be-
$\hat{y}^*(x)$	Bayes classifier	ing the number of classes. Provides the optimal classifica-
$g^{-}(x)$	Bayes classifier	tion rule for any x .
	regression function	$f: \mathcal{X} \mapsto \mathbb{R}$
$\phi(\mathbf{x}): \mathbb{R}^d \mapsto \mathbb{R}$	basis function	used to apply a non-linear trans- formation to the feature vector
		X.
$\Phi(\mathbf{x}): \mathbb{R}^d \mapsto \mathbb{R}^m$	vector of basis function	used to apply m non-linear
		transformations to the observed feature vectors $\mathbf{x} \in \mathbb{R}^d$.
$\mathbf{X} \in \mathbb{R}^{n imes d}$	observed feature matrix	matrix containing observed fea-
		ture vectors
Φ	transformed feature matrix	matrix containing transformed
		feature vectors using a set of basis functions Φ .
Y	vector containing observed values for the target vector	