PSY9511: Seminar 3

Regularization and variable selection

Esten H. Leonardsen 11.09.24

Outline

- 1. Assignment 2
- 2. Regularization
 - · Variable selection
 - Shrinkage (+ live coding 🥳)

Assignment 2

Assignment 2

Non-numeric horsepower: Expectations Interpretation of year-variable Type of prediction


```
In[1]: import pandas as pd

df = pd.DataFrame(...)
    train = df.sample(frac=0.8)
    test = df.sample(frac=0.2)
```



```
In[1]: import pandas as pd

df = pd.DataFrame(...)
    train = df.sample(frac=0.8)
    test = df.sample(frac=0.2)
```



```
In[1]:
        import pandas as pd
        df = pd.DataFrame(...)
        train = df.sample(frac=0.8)
        test = df.sample(frac=0.2)
```



```
In[1]:
        import pandas as pd
        df = pd.DataFrame(...)
        train = df.sample(frac=0.8)
        test = df.sample(frac=0.2)
```



```
In[1]:
        import pandas as pd
        df = pd.DataFrame(...)
        train = df.sample(frac=0.8)
        test = df.drop(train.index)
```



```
In[1]:
        import pandas as pd
        df = pd.DataFrame(...)
        train = df.sample(frac=0.8)
        test = df.drop(train.index)
```



```
In[1]:
        import pandas as pd
        df = pd.DataFrame(...)
        train = df.sample(frac=0.8)
        test = df.drop(train.index)
                                                        → MAE=3.5
```

```
In[1]:
        import pandas as pd
        df = pd.DataFrame(...)
        train = df.sample(frac=0.8)
        test = df.drop(train.index)
```



```
In[1]:
        import pandas as pd
        import numpy as np
        np.random.seed(42)
        df = pd.DataFrame(...)
        train = df.sample(frac=0.8)
        test = df.drop(train.index)
                                                         → MAE=3.5
```



```
model <- glm(muscle ~ year + weight, data=df, family='binomial')
predict(model, df)</pre>
```



```
model <- glm(muscle ~ year + weight, data=df, family='binomial')
predict(model, df)</pre>
```

```
1 2 3 4 5 6 7 8 9 10 11
1.2460 1.9245 1.0019 0.9911 1.0485 4.2506 4.1465 4.5522 2.4889 1.4578 1.6223
```



```
model <- glm(muscle ~ year + weight, data=df, family='binomial')
predict(model, df)</pre>
```

```
predict(model, df, type="response")
```

```
1 2 3 4 5 6 7 8 9 10 11
0.7766 0.8726 0.7314 0.7293 0.7405 0.9853 0.9844 0.9895 0.9233 0.8112 0.8352
```



```
In[1]:    model = LogisticRegression()
    model.fit(df[['year', 'weight']], df['muscle'])
    model.predict(df[['year', 'weight']])

Out[1]:    array([0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0])

In[1]:    model.predict_proba(df[['year', 'weight']])

Out[1]:    array([[0.14, 0.86], [0.08, 0.92], [0.17, 0.83], [0.18, 0.82]])
```


Assignment 2: Eye test

```
model <- glm(muscle ~ year + weight, data=df, family='binomial')
predict(model, df)</pre>
```

```
1 2 3 4 5 6 7 8 9 10 11 1.2460 1.9245 1.0019 0.9911 1.0485 4.2506 4.1465 4.5522 2.4889 1.4578 1.6223
```


Assignment 2: Eye test

```
model <- glm(muscle ~ year + weight, data=df, family='binomial')
predict(model, df)</pre>
```

```
1 2 3 4 5 6 7 8 9 10 11
1.2460 1.9245 1.0019 0.9911 1.0485 4.2506 4.1465 4.5522 2.4889 1.4578 1.6223
```

```
model <- lm(mpg ~ horsepower, df)
summary(model)</pre>
```

```
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59412 0.96187 20.371 < 2e-16 ***
horsepower102 0.40588 4.08087 0.099 0.920840
horsepower103 0.70588 4.08087 0.173 0.862789
horsepower105 0.90588 1.49529 0.606 0.545091
```


${\bf Regularization}$

$$y \sim \beta_0 + \beta_1 * x_1 + \beta_2 * x_2$$

$$y \sim \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$

$$y \sim \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \beta_3 * x_3 + \beta_4 * x_4 + \beta_5 * x_5 + \beta_6 * x_6$$


```
In[1]: import pandas as pd

df = pd.read_csv('/Users/esten/Downloads/Auto.csv')
    train = df.iloc[:int(len(df) * 0.8)]
    validation = df.iloc[int(len(df) * 0.8):]

print(f'Using len(train) samples for training')
    print(f'Using len(validation) samples for validation')
```

```
Out[1]: Using 317 samples for training
Using 80 samples for validation
```


- 1. Variable selection
 - a. Best subset selection
 - b. Forward stepwise selection
 - c. Backward stepwise selection
- 2. Shrinkage
 - a. LASSO
 - b. Ridge Regression
- 3. Dimensionality reduction: Lecture 6 and self-study

- 1. Variable selection
 - a. Best subset selection
 - b. Forward stepwise selection
 - c. Backward stepwise selection
- 2. Shrinkage
 - a. LASSO
 - b. Ridge Regression
- 3. Dimensionality reduction: Lecture 6 and self-study

The number of predictors we are using in our model directly impacts model complexity.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Motivation

To reduce model complexity (and therefore risk of overfitting), and to simplify subsequent interpretations.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Train models on all subsets *p* and select the best one.

```
In[1]:
         import numpy as np
         from itertools import chain, combinations
         from sklearn.linear model import LinearRegression
         subsets = list(chain.from iterable(combinations(predictors. r)
                        for r in range(len(predictors)+1)))
         best = 'mse': float('inf'), 'subset': None
         for subset in subsets:
             if len(subset) == 0:
                 continue
             model = LinearRegression()
             model.fit(train[list(subset)], train[target])
             predictions = model.predict(validation[list(subset)])
             mse = np.mean((predictions - validation[target]) ** 2)
             if mse < best['mse']:</pre>
                 best = {'mse': mse, 'subset': subset}
         print(f'MSE: {best["mse"]:.2f}, predictors: {best["subset"]}')
```

```
Out[1]: MSE: 29.68, predictors: ('cylinders', 'displacement', 'horsepower', 'weight', 'year')
```


Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Train models on all subsets p and select the best one.

+ Positives

Guaranteed to find the optimal solution. Simple implementation

- Drawbacks

Need to train many $(2^{|P|})$ models.

Variable selection: Forward stepwise selection

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with no predictors. Iteratively add the predictor that yields the best model until all are included.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

In[1]:

```
def fit and evaluate(train: pd.DataFrame, validation: pd.DataFrame,
                    predictors: List[str], target: str):
   model = LinearRegression()
   model.fit(train[predictors], train[target])
   train_predictions = model.predict(train[predictors])
   validation_predictions = model.predict(validation[predictors])
   return np.mean((train predictions - train[target]) ** 2).
           np.mean((validation predictions - validation[target]) ** 2)
predictors = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year']
target = 'mpg'
train['intercept'] = 1
validation['intercept'] = 1
train mse, validation mse = fit and evaluate(train, validation, predictors=['intercept'], target=target)
print(f'[]: {validation mse:.2f} ({train mse:.2f})')
chosen_predictors = []
while len(chosen_predictors) < len(predictors):
   best_predictor = {'train_mse': None, 'validation_mse': float('inf'),
                      'predictor': None}
   for predictor in set(predictors) - set(chosen predictors):
        train mse, validation mse = fit and evaluate(train, validation, predictors=chosen predictors + [predictor], target=target)
       if validation_mse < best_predictor['validation_mse']:
           best predictor = {'train mse': train mse, 'validation mse': validation mse, 'predictor': predictor}
   chosen_predictors.append(best_predictor['predictor'])
   print(f'{chosen predictors}: {best predictor["validation mse"]:.2f} ({best predictor["train mse"]:.2f})')
```


Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with no predictors. Iteratively add the predictor that yields the best model until all are included.

+ Positives

Need to train fewer models.

- Drawbacks

Not guaranteed to find the optimal solution.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with all predictors. Iteratively remove the predictor that yields the best model until all you have none left.

Problem

We have a set of predictors $P = \{x_0, x_1, ...\}$ and a target variable y, and we want to find the subset $p \subseteq P$ that yields the best (linear) model for predicting y.

Solution

Start with all predictors. Iteratively remove the predictor that yields the best model until all you have none left.

+ Positives

Need to train fewer models.

- Drawbacks

Not guaranteed to find the optimal solution.

Shrinkage

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_0 \to 0$

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_n \to 0$

1. $\beta_1 = 0 \implies$ One less degree of freedom in our function

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_0 \to 0$

1. $\beta_1 = 0 \implies$ One less degree of freedom in our function

mse=bias²+variance+irreducible error

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_0 \to 0$

1. $\beta_1 = 0 \implies$ One less degree of freedom in our function

mse=bias²+variance+irreducible error

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_n \to 0$

- 1. $\beta_1 = 0 \implies$ One less degree of freedom in our function
- 2. A little more bias \implies A lot less variance

$$y \sim \beta_0 + \frac{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6}{\beta_0 \rightarrow 0}$$

- 1. $\beta_1 = 0 \implies$ One less degree of freedom in our function
- 2. A little more bias \implies A lot less variance

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_n \to 0$

- 1. $\beta_1 = 0 \implies$ One less degree of freedom in our function
- 2. A little more bias \implies A lot less variance
- 3. Parameters depend on eachother \implies Fewer degrees of freedom

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$y \sim \beta 0 + \beta_1 x_1 + \beta_2 x_2, x_1 \in [0, 1], x_2 \in [0, 1000]$$

z-score standardization

z-score standardization

$$X = \frac{X - \mu_X}{\sigma_X}$$

z-score standardization

$$X = \frac{X - \mu_X}{\sigma_X}$$

```
In[1]:
         for col in predictors:
              print(f'{col}: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')
          # z-score standardization
          for col in predictors:
              df[col] = (df[col] - np.mean(df[col])) / np.std(df[col])
          for col in predictors:
              print(f'{col} after: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')
Out[1]:
         cylinders: 5.47 (1.70)
         displacement: 194.41 (104.51)
          horsepower: 104.47 (38.44)
          cylinders after: -0.00 (1.00)
         displacement after: -0.00 (1.00)
          horsepower after: -0.00 (1.00)
```


$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(\chi_{ij} \sum_{j=0}^{p} \beta_{j} \chi_{ij} \right)^{2} + \lambda \sum_{j=0}^{p} \beta_{j}^{2}$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

http://localhost:8888/notebooks/notebooks/Live%20coding.ipynb

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Regularization by shrinking the model covariates towards zero.

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{lasso} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |\beta_j|$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{lasso} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |\boldsymbol{\beta_j}|$$

Predictor	Ridge	LASSO
Intercept	23.44	23.44
Weight	-5.59	-4.78
Year	2.75	2.00
Acceleration	0.19	0
Displacement	0.66	0

A coefficient of 0 does not mean the predictor has no association with the outcome!

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

Fits the **best** model to the data.

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

Fits the **best** model to the data.

Fits the **best** model to the data while **shrinking** coefficients towards zero.

Shrinkage: Summary

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{lasso} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |\beta_j|$$

Fits the **best** model to the data.

Fits the **best** model to the data while **shrinking** coefficients towards zero.

Fits the **best** model to the data while **shrinking** coefficients towards zero such that some variables are effectively **removed**.

Assignment 3

Assignment 3

https://uio.instructure.com/courses/53357/assignments/118667?module_item_id=962921

Coding tips: Separation of concerns

In[1]:

```
# Read and clean data
path = '/Users/esten/Downloads/Auto.csv'
df = pd.read_csv(path)
# Solit data
train = df.iloc[:int(len(df) * 0.8)]
validation = df.iloc[int(len(df) * 0.8):]
# Define input and output variables
predictors = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year']
target = 'mpg'
# Define necessary data structures for state
chosen predictors = []
mses = []
while len(predictors) > 0:
   best_predictor = {'mse': float('inf'), 'predictor': None}
    for predictor in set(predictors) - set(chosen_predictors):
       potential_predictors = chosen_predictors + [predictor]
       # Fit and evaluate model
       model = LinearRegression()
       model.fit(train[potential predictors], train[target])
       predictions = model.predict(validation[potential predictors])
       test_mse = np.mean((validation[target] - predictions) ** 2)
       # Compare model with previous best
       if test_mse < best_predictor['mse']:
            best predictor = {'mse': test mse, 'predictor': predictor}
    # Update state
   chosen predictors.append(best predictor['predictor'])
   mses.append(best_predictor['mse'])
   predictors = [p for p in predictors if p != best_predictor['predictor']]
```


Coding tips: Separation of concerns

```
Tofil:
                                                                                                                                                        Setup
          # Read and clean data
          path = '/Users/esten/Downloads/Auto.csv'
          df = pd.read_csv(path)
          # Split data
          train = df.iloc[:int(len(df) * 0.8)]
          validation = df.iloc[int(len(df) * 0.8):]
          # Define input and output variables
          predictors = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year']
          target = 'mpg'
          # Define necessary data structures for state
          chosen predictors = []
          mses = []
          while len(predictors) > 0:
              best_predictor = {'mse': float('inf'), 'predictor': None}
              for predictor in set(predictors) - set(chosen_predictors):
                  potential_predictors = chosen_predictors + [predictor]
                                                                                                                                                  Modelling
                  # Fit and evaluate model
                  model = LinearRegression()
                  model.fit(train[potential predictors], train[target])
                  predictions = model.predict(validation[potential predictors])
                  test_mse = np.mean((validation[target] - predictions) ** 2)
                  # Compare model with previous best
                  if test_mse < best_predictor['mse']:
                      best predictor = {'mse': test mse, 'predictor': predictor}
              # Update state
              chosen predictors.append(best predictor['predictor'])
              mses.append(best_predictor['mse'])
              predictors = [p for p in predictors if p != best_predictor['predictor']]
```


Coding tips: Separation of concerns

```
In[1]:
```

```
# Read and clean data
path = '/Users/esten/Downloads/Auto.csv'
df = pd.read_csv(path)
# Solit data
train = df.iloc[:int(len(df) * 0.8)]
validation = df.iloc[int(len(df) * 0.8):]
# Define input and output variables
predictors = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year']
target = 'mpg'
# Define necessary data structures for state
chosen predictors = []
mses = []
def fit and evaluate(model: LinearRegression, train: pd.DataFrame, validation: pd.DataFrame, variables: List[str], target: str):
                                                                                                                                       Modelling
    """ Fit a given model on a training dataset using a given set of variables and return MSE from a validation dataset. """
   model.fit(train[potential_predictors], train[target])
   predictions = model.predict(validation[potential_predictors])
   return np.mean((validation[target] - predictions) ** 2)
while len(predictors) > 0:
    best predictor = 'mse': float('inf'), 'predictor': None
    for predictor in set(predictors) - set(chosen_predictors):
       potential_predictors = chosen_predictors + [predictor]
       test_mse = fit_and_evaluate(LinearRegression(), train, validation, variables=potential_predictors,target=target)
       # Compare model with previous best
       if test mse < best predictor['mse']:
            best predictor = 'mse': test mse, 'predictor': predictor
   # Update state
   chosen_predictors.append(best_predictor['predictor'])
   mses.append(best_predictor['mse'])
   predictors = [p for p in predictors if p != best_predictor['predictor']]
```

