Základy kombinatorické a výpočetní geometrie 1. série, domácí část

Pavel Mikuláš (Lord) 16.10.2020

Příklad 1

Najděte príklad monžiny $M \subset \mathbb{R}^2$, která je sjednocením dvou konvexních množin a jejíž doplněk se skládá z 5 navzájem oddělených oblastí (přesněji komponent souvislosti).

Mojí myšlenkou je zadefinovat M jako sjednocení dvou "nekonečných trojůhelníků", které rovinu takto rozdělí jako na obrázku:

Korektně pak tyto množiny můžeme definovat jako konvexní obal sjednocení přimky rovnoběžné s osou y a polopřímky vedoucí k $\pm \infty$. Tedy formálně zapsáno:

$$M_1 = conv(\{(x,y)|x=1,y\in\mathbb{R}\} \cup \{(x,y)|x\geq 1,y=0\})$$

$$M_2 = conv(\{(x,y)|x=-1,y\in\mathbb{R}\} \cup \{(x,y)|x\leq -1,y=0\})$$

$$M = M_1 \cup M_2$$

Doplněk množiny M je poté množina mezi dvěmi svislými přímkami a poté 4 množiny určené trojúhelníky jako na obrázku, protože konvexní obaly M_1 a M_2 jsou otevřené množiny, neboť body ležící na svislé přímce "v nekonečnu" nejsou v těchto konvexních obalech kromě bodů na průniku s osou x a tedy každá z těchto hraničních polopřímek tvoří jednu množinu v doplňku M.

Příklad 2

Dokažte Carathéodoryho větu (můžete použít Radonovu věto nebo část postupu jejího důkazu).

Věta (Carathéodory)

Nechť $X \subseteq \mathbb{R}^d$, $x \in conv(X)$, pak je x konvexní kombinací nejvýše d+1 bodů z X.

Ekvivalentně (až na opačnou implikaci, která je triviální)

Nechť
$$X \subseteq \mathbb{R}^d$$
, pak $conv(X) = \left\{ \alpha_1 a_1 + \dots + \alpha_{d+1} a_{d+1} | a_i \in X, \alpha_i \ge 0, \sum_{i=1}^{d+1} \alpha_i = 1 \right\}$.

Tyto formulace jsou ekvivalentní, neboť platí, že $x \in conv(X) \iff x$ je konvexní kombinací bodů z X. Ukážeme tedy, že všechny body v conv(X) jsou tedy konvexní kombinace nějaké (d+1)-tice bodů z X, kde nějaké koeficienty mohou být nulové.

Důkaz (ekvivalentní formulace Carathéodoryho věty).

Nechť $x \in conv(X)$, napíšeme x jako konvexní kombinaci k+1 bodů $x = \alpha_1 a_1 + \cdots + \alpha_{k+1} a_{k+1}$, kde pro každé i platí $a_i \in X$, $\alpha_i \ge 0$, $\sum_{i=1}^{k+1} \alpha_i = 1$ tak, aby k bylo co nejmenší.

Pro spor předpokládejme, že k > d. Jinak můžeme kombinaci doplnit o členy s nulovým koeficientem.

Pak z afinní závislosti $\exists (\beta_1, \dots, \beta_{k+1})(\beta_1 a_1 + \dots + \beta_{k+1} a_{k+1} = 0 \land \sum_{i=1}^{k+1} \beta_i = 0 \land \exists i (\beta_i \neq 0))$, protože v d dimenzionálním prostoru můžeme mít nejvýše d+1 afinně nezávislých bodů. Nyní chceme ukázat, že některý člen α_i můžeme vynechat tak, že stále dostaneme konvexní kombinaci určující x. Sečteme tedy koeficienty α a β a dostaneme:

$$(\alpha_1 + \beta_1)a_1 + (\alpha_2 + \beta_2)a_2 + \ldots + (\alpha_{k+1} + \beta_{k+1})a_{k+1} = x$$

To platí, protože $\sum_{i=1}^{k+1} \beta_i a_i = 0$. Protože ale $\sum_i \beta_i = 0$ a $\exists \beta_i \neq 0$ aspoň jeden z koeficientů β_i je záporný. Myšlenkou tedy je odečítat tyto záporné koeficienty od příslušných α_i , dokud jeden z nově definovaných koeficientů x nebude nulový. Neboli definujeme $\gamma \geq 0$ maximální takové, že $(\forall i)(\alpha_i + \gamma \beta_i) \geq 0$ pro:

$$(\alpha_1 + \gamma \beta_1)a_1 + (\alpha_2 + \gamma \beta_2)a_2 + \ldots + (\alpha_{k+1} + \gamma \beta_{k+1})a_{k+1} = x$$

To stále platí, neboť nula po vynásobení konstantou zůstane nulou. Konstanta γ je ale maximální právě tehdy, když jeden z koeficientů $\alpha_i + \gamma \beta_i$ je nulový, protože vetší hodnota γ by už porušila požadavek na nezápornost koeficientů. Protože ale platí, že $\sum_{i=1}^{k+1} \alpha_i + \gamma \beta_i = 1$ a $\alpha_i + \gamma \beta_i \geq 0$ a aspoň jeden z koeficientů $\alpha_i + \gamma \beta_i$ je nulový, dostáváme x jako konvexní kombinaci $\leq k$ bodů, čímž se dostáváme do sporu s minimalitou k.

Příklad 3

Uvažujme množinu 2d+2 bodů $M=\{x_1,y_1,x_2,y_2,\ldots,x_{d+1},y_{d+1}\}$ v \mathbb{R}^d . Dokažte, že M se dá rozdělit na dvě podmnožiny A a B, z nichž každá obsahuje pro každé $i=1,2,\ldots,d+1$ právě jeden bod z $\{x_i,y_i\}$, tak, aby se konvexní obaly A a B protínaly.

Nechť $A = \{x_0, x_1, \dots, x_d\}$ a $B = \{y_0, y_1, \dots, y_d\}$. Uvažujeme (d+1)-tici vektorů $x_i - y_i$. Ta je v \mathbb{R}^d lineárně závislá, tedy existují nějaká $\alpha_0, \dots, \alpha_d \in \mathbb{R}$ taková, že:

$$\sum_{i=0}^{d} \alpha_i (x_i - y_i) = 0$$

Můžeme předpokládat, že $\forall i: \alpha_i \geq 0$. Pokud existuje i, pro které $\alpha_i < 0$, vyjdeme ze vztahu $\alpha_i(x_i - y_i) = -\alpha_i(y_i - x_i)$ za α_i použijeme $-\alpha_i$ a bod x_i přesuneme do množiny B a bod y_i do množiny A. Formálně $\alpha_i = -\alpha_i$, $A = (A \setminus x_i) \cup y_i$ a $B = (B \setminus y_i) \cup x_i$. Tím zachováme podmínku, aby každá z množin A a B obsahovala pro každé $i = 1, 2, \ldots, d+1$ právě jeden bod z $\{x_i, y_i\}$. Dostáváme tedy vztah pro $a_i \in A$ a $b_i \in B$:

$$\sum_{i=0}^{d} \alpha_i (a_i - b_i) = 0, \ kde \ \forall i : \alpha_i \ge 0$$
 (1)

Nahlédneme, že $S = \sum_{i=0}^{d} \alpha_i > 0$, neboť $\alpha_i \ge 0$ a $\exists i : \alpha_i \ne 0$. Rovnici (1) si upravíme následovně:

$$\sum_{i=0}^{d} \alpha_i a_i = \sum_{i=0}^{d} \alpha_i b_i \tag{2}$$

Aby každá z těchto sum byla konvexní kombinace, potřebovali bychom, aby $\sum_{i=0}^{d} \alpha_i = 1$. Protože ale S > 0, můžeme sumu koeficientů α znormalizovat pomocí S tedy $\beta_i = \frac{\alpha_i}{S}$:

$$\sum_{i=0}^{d} \frac{\alpha_i}{S} = \sum_{i=0}^{d} \beta_i = 1, \ kde \ \forall i : \beta_i \ge 0$$

$$\tag{3}$$

Koeficienty β_i poté můžeme dosadit za α_i do rovnice (2). Protože jde o vynásobení obou stran rovnice číslem > 0, bude rovnost zachována. Dostáváme tedy:

$$x = \sum_{i=0}^{d} \beta_i a_i = \sum_{i=0}^{d} \beta_i b_i \tag{4}$$

Z vztahu (3) vidíme, že $x \in conv(A)$ a $x \in conv(B)$, protože x je konvexní kombinací bodů z A i konvexní kombinací bodů z B. Platí tedy, že $conv(A) \cap conv(B) \neq \emptyset$

Příklad 4

Nechť M je konečná množina alespoň čtyř bodů v rovině, z nichž některé jsou červené a zbylé jsou modré. Navíc platí, že pro libovolnou čtveřici V bodů z M existuje přímka, která ostře odděluje červené body z V od modrých bodů z V. Dokažte, že pak existuje přímka ostře oddělující všechny červené body z M od všech modrých bodů z M. Nejprve dokážeme pomocné tvrzení:

Lemma

Nechť M_1 a M_2 konečné, uzavřené a omezené. Množiny M_1 , M_2 lze oddělit přímkou \iff $conv(M_1)$, $conv(M_2)$ lze oddělit přímkou.

Důkaz.

 \Leftarrow triviální, protože $M_1 \subset conv(M_1)$ a $M_2 \subset conv(M_2)$

 \Rightarrow množiny M_1 a M_2 lze oddělit, tedy existuje nadrovina h tak, že každá z množin M_1 a M_2 leží v různých otevřených poloprostorech H_1, H_2 určených h. Nechť $M_1 \subset H_1$ a $M_2 \subset H_2$, potom ale i $conv(M_1) \subset H_1 \subseteq conv(H_1)$ a $conv(M_2) \subset H_2 \subseteq conv(H_2)$. A protože $conv(H_1) \cap conv(H_2) = \emptyset$, potom i $conv(M_1) \cap conv(M_2) = \emptyset$ a z věty o oddělování tedy $conv(M_1)$ a $conv(M_2)$ lze oddělit.

Označíme B jako množinu modrých bodů z M a R jako množinu červených bodů z M. Rozlišíme případy pro množinu V. Nechť $R' = R \cap V$ a $B' = B \cap V$:

- |B'| = 0, |R'| = 4, pak lze B' oddělit od R' libovolnou přímkou, která neleží v conv(R').
- |B'| = 1, |R'| = 3, pak bod $b \in B'$ buď leží v conv(R') a tedy z pomocného lemmatu R' a B' nelze oddělit. Nebo $conv(R') \cap conv(B') = \emptyset$ a R' a B' lze oddělit.
- |B'| = 2, |R'| = 2, potom B' a R' lze oddělit pokud $conv(B') \cap conv(R') = \emptyset$. Tedy pokud neexistuje Radonův rozklad takový, že $B' = A_1$ a $R' = A_2$.
- pro zbylé případy |R'| = 0 a |R'| = 1 analogicky.

Aby tedy bylo možné všechny $V \subset M$ oddělit musí platit:

$$\forall V \subset M, |V| = 4, R' = R \cap V, B' = B \cap V : conv(R') \cap conv(B') = \emptyset$$
 (5)

Předpokládejme nyní, že $|R| \geq 2$ a $|B| \geq 2$. Z věty oddělování conv(R) a conv(B) nelze oddělit právě tehdy, když se protínají. Aby se konvexní obaly množin protínaly, musí se protínat některé z úseček tvořící hranice těchto konvexních obalů. Tedy musí existovat $r_1, r_2 \in R$ a $b_1, b_2 \in B$ tak, že $conv(\{r_1, r_2\}) \cap conv(\{b_1, b_2\}) \neq \varnothing$. To ale není možné, tedy nutně $conv(R) \cap conv(B) = \varnothing$ a protože obě R i B jsou konečné, uzavřené a omezené lze je podle věty o oddělování ostře oddělit přímkou.