Graph Analytics in Spark

2015-06-08 • Scala Days • Amsterdam

Paco Nathan, @pacoid

Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Spark Overview

		ur.	spark		Spark 1 PB	
	Hadoop 1	Mix	Record		1000 TE	3
	Record		100 TB		234 mins	
	102.5 TF	3	23 min	ns	-4	
Data Size	72 min	5			190	
Elapsed Time			206		od 6080	virtualized
# Nodes	2100	o physi	cal 659	2 virtualiz) GB/s
# Cores			61	8 GB/s	13,	
chister disk	1100	0 GB/s t.)			IN	10
throughput			/4	e5	1	······································
Sort Bench Daytona R	wark / Ye	25	1100	virtualize	Of Irea	virtualized (EC2) 10Gbps networ
Daytona		dedicat	60 gaes	10Gbps	netwo	4.27 TB/min
Network	1	center	, 10Gops	4.27 TE	3/min	an/min
Nerwo		1,42 TB/min		20.7 GB/min		22.5 GB/min
Sort rate/node		0.67 GB/min		20.7	Dimi	
		0.61	GD ₁ .			
Sortie						

Spark Overview: Components

Spark Overview: Key Distinctions vs. MapReduce

- generalized patterns
 ⇒ unified engine for many use cases
- lazy evaluation of the lineage graph
 ⇒ reduces wait states, better pipelining
- generational differences in hardware
 ⇒ off-heap use of large memory spaces
- functional programming / ease of use
 ⇒ reduction in cost to maintain large apps
- lower overhead for starting jobs
- less expensive shuffles

TL;DR: Smashing The Previous Petabyte Sort Record

databricks.com/blog/2014/11/05/spark-officiallysets-a-new-record-in-large-scale-sorting.html

	Hadoop MR Record	Spark Record	Spark 1 PB	
Data Size	102.5 TB	100 TB	1000 TB	
Elapsed Time	72 mins	23 mins	234 mins	
# Nodes	2100	206	190	
# Cores	50400 physical	6592 virtualized	6080 virtualized	
Cluster disk throughput	3150 GB/s (est.)	618 GB/s	570 GB/s	
Sort Benchmark Daytona Rules	Yes	Yes	No	
dedicated data center, 10Gbps		virtualized (EC2) 10Gbps network	virtualized (EC2) 10Gbps network	
Sort rate	ort rate 1.42 TB/min		4.27 TB/min	
Sort rate/node 0.67 GB/min		20.7 GB/min	22.5 GB/min	

TL;DR: Sustained Exponential Growth

Spark is one of the most active Apache projects ohloh.net/orgs/apache

Number of contributors who made changes to the project source code each month.

TL;DR: Spark Expertise Tops Median Salaries within Big Data

oreilly.com/data/free/2014-data-sciencesalary-survey.csp

TL;DR: Spark on StackOverflow

twitter.com/dberkholz/status/ 568561792751771648

Big Data activity on Stack Overflow

TL;DR: Spark Survey 2015 by Databricks + Typesafe

databricks.com/blog/2015/01/27/big-data-projects-arehungry-for-simpler-and-more-powerful-tools-surveyvalidates-apache-spark-is-gaining-developer-traction.html

GraphX examples

GraphX:

spark.apache.org/docs/latest/graphxprogramming-guide.html

Key Points:

- graph-parallel systems
- emphasis on integrated workflows
- optimizations

GraphX: Further Reading...

PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs J. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin graphlab.org/files/osdi2012-gonzalez-low-gu-bickson-guestrin.pdf

Pregel: Large-scale graph computing at Google
Grzegorz Czajkowski, et al.
googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html

GraphX: Graph Analytics in Spark

Ankur Dave, Databricks

spark-summit.org/east-2015/talk/graphx-graphanalytics-in-spark

Topic modeling with LDA: MLlib meets GraphX

Joseph Bradley, Databricks

databricks.com/blog/2015/03/25/topic-modeling-withlda-mllib-meets-graphx.html

GraphX: Compose Node + Edge RDDs into a Graph

```
val nodeRDD: RDD[(Long, ND)] = sc.parallelize(...)
val edgeRDD: RDD[Edge[ED]] = sc.parallelize(...)
val g: Graph[ND, ED] = Graph(nodeRDD, edgeRDD)
```

GraphX: Example – simple traversals

```
// http://spark.apache.org/docs/latest/graphx-programming-guide.html
import org.apache.spark.graphx.
import org.apache.spark.rdd.RDD
case class Peep(name: String, age: Int)
val nodeArray = Array(
  (1L, Peep("Kim", 23)), (2L, Peep("Pat", 31)),
  (3L, Peep("Chris", 52)), (4L, Peep("Kelly", 39)),
  (5L, Peep("Leslie", 45))
val edgeArray = Array(
  Edge(2L, 1L, 7), Edge(2L, 4L, 2),
  Edge(3L, 2L, 4), Edge(3L, 5L, 3),
  Edge(4L, 1L, 1), Edge(5L, 3L, 9)
val nodeRDD: RDD[(Long, Peep)] = sc.parallelize(nodeArray)
val edgeRDD: RDD[Edge[Int]] = sc.parallelize(edgeArray)
val q: Graph(Peep, Int) = Graph(nodeRDD, edgeRDD)
val results = g.triplets.filter(t => t.attr > 7)
for (triplet <- results.collect) {</pre>
  println(s"${triplet.srcAttr.name} loves ${triplet.dstAttr.name}")
}
```

GraphX: Example – routing problems

What is the cost to reach **node 0** from any other node in the graph? This is a common use case for graph algorithms, e.g., Dijkstra

GraphX: code examples...

Let's check some code!

Graph Analytics

Graph Analytics: terminology

- many real-world problems are often represented as graphs
- graphs can generally be converted into sparse matrices (bridge to linear algebra)
- eigenvectors find the stable points in a system defined by matrices – which may be more efficient to compute
- beyond simpler graphs, complex data may require work with tensors

Graph Analytics: example

Suppose we have a graph as shown below:

We call x a vertex (sometimes called a node)

An edge (sometimes called an arc) is any line connecting two vertices

Graph Analytics: representation

We can represent this kind of graph as an adjacency matrix:

- label the rows and columns based on the vertices
- entries get a 1 if an edge connects the corresponding vertices, or 0 otherwise

	u	V	w	x
u	0	1	0	1
v	1	0	1	1
w	0	1	0	1
x	1	1	1	0

Graph Analytics: algebraic graph theory

An adjacency matrix always has certain properties:

- it is symmetric, i.e., $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$
- it has real eigenvalues

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Therefore algebraic graph theory bridges between linear algebra and graph theory

Graph Analytics: beauty in sparsity

Sparse Matrix Collection... for when you **really** need a wide variety of sparse matrix examples, e.g., to evaluate new ML algorithms

University of Florida
Sparse Matrix Collection
cise.ufl.edu/
research/sparse/
matrices/

Graph Analytics: resources

Algebraic Graph Theory
Norman Biggs
Cambridge (1974)
amazon.com/dp/0521458978

Graph Analysis and Visualization
Richard Brath, David Jonker
Wiley (2015)
shop.oreilly.com/product/9781118845844.do

See also examples in: Just Enough Math

Graph Analytics: tensor solutions emerging

Although tensor factorization is considered problematic, it may provide more general case solutions, and some work leverages Spark:

The Tensor Renaissance in Data Science

Anima Anandkumar @UC Irvine radar.oreilly.com/2015/05/the-tensor-renaissance-in-data-science.html

Spacey Random Walks and Higher Order Markov Chains

David Gleich @Purdue

slideshare.net/dgleich/spacey-random-walksand-higher-order-markov-chains

Data Preparation

Data Prep: Exsto Project Overview

- insights about dev communities, via data mining their email forums
- works with any Apache project email archive
- applies NLP and ML techniques to analyze message threads
- graph analytics surface themes and interactions
- results provide feedback for communities, e.g., leaderboards

Data Prep: Exsto Project Overview - four links

https://github.com/ceteri/spark-exercises/tree/master/exsto/dbc

http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf

http://mail-archives.apache.org/mod_mbox/spark-user/

https://class01.cloud.databricks.com/#notebook/67011

Data Prep: Scraper pipeline

github.com/ceteri/spark-exercises/tree/master/exsto/dbc

Data Prep: Scraper pipeline

Typical data rates, e.g., for dev@spark.apache.org:

- ~2K msgs/month
- ~18 MB/month parsed in JSON

Six months' list activity represents a graph of:

- 1882 senders
- 1,762,113 nodes
- 3,232,174 edges

A large graph?! In any case, it satisfies definition of a graph-parallel system – lots of data locality to leverage

Data Prep: Microservices meet Parallel Processing

not so big data...

relatively big compute...

Data Prep: Scraper pipeline

Data Prep: Scraper pipeline

Data Prep: Parser pipeline

Data Prep: Parser pipeline

```
"date": "2014-10-01T00:16:08+00:00",
"id": "CA+B-+fyrBUlyGZAYJM u=gnBVtzB=sXoBHkhmS-6Lln8K5Hhbw",
"next thread": "CALEj8eP5hpQDM=p2xryL-JT-x VhkRcD59Q+9Qr9LJ9sYLeLVg",
"next url": "http://mail-archives.apache.org/mod mbox/spark-user/201410.mbox/%3cCALEj8eP5hpQDM=p
"prev thread": "",
"sender": "Debasish Das <debasish.da...@gmail.com>",
"subject": "Re: memory vs data_size",
"text": "\nOnly fit the data in memory where you want to run the iterative\nalgorithm....\n\nFor
                                                  Text Blob
                                                               Text Blob
                                                                            TextBlbb
                                                                              sen timen t
                                                                                           generate
                                                                 lem matize
                                                   sentences
                                                                              analysis
                                                                                           skip-grams
                                                                                            parsed
                                                   message
                                                    JSON
                                                                                            JSON
                                                                Treebank,
                                                                 Word Net
"graf": [ [1, "Only", "only", "RB", 1, 0], [2, "fit", "fit", "VBP", 1, 1 ] ... ],
 "id": "CA+B-+fyrBUlyGZAYJM u=gnBVtzB=sXoBHkhmS-6Lln8K5Hhbw",
 "polr": 0.2,
 "sha1": "178b7a57ec6168f20a8a4f705fb8b0b04e59eeb7",
 "size": 14,
 "subj": 0.7,
 "tile": [[1, 2], [2, 3], [3, 4] ...]
```

Data Prep: code examples...

Let's check some code!

TextRank in Spark

TextRank: original paper

TextRank: Bringing Order into Texts

Rada Mihalcea, Paul Tarau

Conference on Empirical Methods in Natural Language Processing (July 2004)

https://goo.gl/AJnA76

http://web.eecs.umich.edu/~mihalcea/papers.html

http://www.cse.unt.edu/~tarau/

TextRank: other implementations

Jeff Kubina (Perl / English): http://search.cpan.org/~kubina/Text-Categorize-Textrank-0.51/lib/Text/Categorize/Textrank/En.pm

Paco Nathan (Hadoop / English+Spanish): https://github.com/ceteri/textrank/

Karin Christiasen (Java / Icelandic): https://github.com/karchr/icetextsum

TextRank: Spark-based pipeline

TextRank: raw text input

Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear Diophantine equations, strict inequations, and nonstrict inequations are considered. Upper bounds for components of a minimal set of solutions and algorithms of construction of minimal generating sets of solutions for all types of systems are given. These criteria and the corresponding algorithms for constructing a minimal supporting set of solutions can be used in solving all the considered types systems and systems of mixed types.

TextRank: data results

```
1:
      "Compatibility of systems of linear constraints"
2:
      [{'index': 0, 'stem': 'compat', 'tag': 'NNP', 'word': 'compatibility'},
      {'index': 1, 'stem': 'of', 'tag': 'IN', 'word': 'of'},
       {'index': 2, 'stem': 'system', 'tag': 'NNS', 'word': 'systems'},
       {'index': 3, 'stem': 'of', 'tag': 'IN', 'word': 'of'},
       {'index': 4, 'stem': 'linear', 'tag': 'JJ', 'word': 'linear'},
       {'index': 5, 'stem': 'constraint', 'tag': 'NNS', 'word': 'constraints'}]
3:
        compat
                                              linear
                                                               constraint
                           system
```

TextRank: dependencies

TextRank: how it works

https://en.wikipedia.org/wiki/PageRank

TextRank: code examples...

Let's check some code!

Social Graph

Social Graph: use GraphX to run graph analytics

```
// run graph analytics
val g: Graph[String, Int] = Graph(nodes, edges)
val r = g.pageRank(0.0001).vertices
r.join(nodes).sortBy(_._2._1, ascending=false).foreach(println)
// define a reduce operation to compute the highest degree vertex
def max(a: (VertexId, Int), b: (VertexId, Int)): (VertexId, Int) = {
  if (a._2 > b._2) a else b
// compute the max degrees
val maxInDegree: (VertexId, Int) = g.inDegrees.reduce(max)
val maxOutDegree: (VertexId, Int) = g.outDegrees.reduce(max)
val maxDegrees: (VertexId, Int) = g.degrees.reduce(max)
// connected components
val scc = g.stronglyConnectedComponents(10).vertices
node.join(scc).foreach(println)
```

Social Graph: PageRank of top dev@spark email, 4Q2014

```
(389, (22.690229478710016, Sean Owen <so...@cloudera.com>))
(857, (20.832469059298248, Akhil Das <ak...@sigmoidanalytics.com>))
(652,(13.281821379806798,Michael Armbrust <mich...@databricks.com>))
(101, (9.963167550803664, Tobias Pfeiffer < ... @preferred.jp>))
(471, (9.614436778460558, Steve Lewis < lordjoe2...@gmail.com>))
(931, (8.217073486575732, shahab < shahab.mok...@gmail.com>))
(48, (7.653814912512137, 11 <duy.huynh...@gmail.com>))
(1011, (7.602002681952157, Ashic Mahtab <as...@live.com>))
(1055, (7.572376489758199, Cheng Lian < lian.cs....@gmail.com>))
(122, (6.87247388819558, Gerard Maas <gerard.m...@gmail.com>))
(904, (6.252657820614504, Xiangrui Meng <men...@gmail.com>))
(827, (6.0941062762076115, Jianshi Huang < jianshi.hu...@gmail.com>))
(887, (5.835053915864531, Davies Liu <dav...@databricks.com>))
(303, (5.724235650446037, Ted Yu < yuzhih...@gmail.com>))
(206, (5.430238461114108, Deep Pradhan < pradhandeep1...@gmail.com>))
(483, (5.332452537151523, Akshat Aranya <aara...@gmail.com>))
(185, (5.259438927615685, SK < skrishna...@gmail.com > ))
(636, (5.235941228955769, Matei Zaharia <matei.zaha...@gmail.com>))
// seaaaaaaaaaan!
maxInDegree: (org.apache.spark.graphx.VertexId, Int) = (389,126)
maxOutDegree: (org.apache.spark.graphx.VertexId, Int) = (389,170)
maxDegrees: (org.apache.spark.graphx.VertexId, Int) = (389,296)
```

Social Graph: code examples...

Let's check some code!

Misc., Etc., Maybe:

Feature learning with Word2Vec

Matt Krzus

www.yseam.com/blog/WV.html

features... insights...

Resources

Spark Developer Certification

- go.databricks.com/spark-certified-developer
- defined by Spark experts @Databricks
- assessed by O'Reilly Media
- establishes the bar for Spark expertise

Developer Certification: Overview

- 40 multiple-choice questions, 90 minutes
- mostly structured as choices among code blocks
- expect some Python, Java, Scala, SQL
- understand theory of operation
- identify best practices
- recognize code that is more parallel, less memory constrained

Overall, you need to write Spark apps in practice

community:

spark.apache.org/community.html

events worldwide: goo.gl/2YqJZK

YouTube channel: goo.gl/N5Hx3h

video+preso archives: spark-summit.org

resources: databricks.com/spark/developer-resources

workshops: databricks.com/spark/training

MOOCs:

Anthony Joseph
UC Berkeley
early June 2015
edx.org/course/uc-berkeleyx/uc-berkeleyx-cs100-1xintroduction-big-6181

Introduction to Big Data with Apache Spark

Learn how to apply data science techniques using parallel programming in Apache Spark to explore big (and small) data.

Ameet Talwalkar UCLA late June 2015

edx.org/course/uc-berkeleyx/ uc-berkeleyx-cs190-1xscalable-machine-6066

Resources: Spark Packages

Looking for other libraries and features? There are a variety of third-party packages available at:

http://spark-packages.org/

Resources: Spark Summit conferences

http://spark-summit.org/

discount code datamining 15 for 15% off registration

Resources: Strata + Hadoop World conferences

New York, NY | Sept 29-Oct 1, 2015

Singapore | December 1-3, 2015

San Jose, CA | March 29–31, 2016 Visit the Strata + Hadoop World San Jose 2015 website

London, UK | June 1–3, 2016 Visit the Strata + Hadoop World in London 2015 website

http://strataconf.com/

Resources: O'Reilly Podcast

O'REILLY®

The Data Show

New Ideas. True Stories. Blistering Insights.

https://itunes.apple.com/podcast/id944929220

books+videos:

Learning Spark
Holden Karau,
Andy Konwinski,
Parick Wendell,
Matei Zaharia
O'Reilly (2015)
shop.oreilly.com/
product/
0636920028512.do

Intro to Apache Spark
Paco Nathan
O'Reilly (2015)
shop.oreilly.com/
product/
0636920036807.do

Advanced Analytics
with Spark
Sandy Ryza,
Uri Laserson,
Sean Owen,
Josh Wills
O'Reilly (2015)
shop.oreilly.com/
product/
0636920035091.do

Data Algorithms

Mahmoud

Parsian

O'Reilly (2014)

shop.oreilly.com/
product/
0636920033950.do

presenter:

monthly newsletter for updates, events, conf summaries, etc.:

liber118.com/pxn/

Just Enough Math O'Reilly (2014)

justenoughmath.com preview: youtu.be/TQ58cWgdCpA Enterprise Data Workflows with Cascading O'Reilly (2013)

shop.oreilly.com/product/ 0636920028536.do