Math 1610 Hanework 5 Solutions

1.(a)
$$E(W) = \sum_{N} 2^{N} P(\text{first hand on } N^{\text{th}} \text{flip})$$

$$= \sum_{N} 2^{N} 2^{-N}$$

$$= \sum_{N} 2^{0} = +\infty$$
b) $E(W) = \sum_{N} 2^{N} 2^{-N} + \sum_{N} 2^{30} 2^{-N}$

(b)
$$E(W) = \sum_{N=1}^{29} 2^N 2^{-N} + \sum_{N=30}^{20} 2^{30} 2^{-N}$$

= $29 + 2 = 31$

(c)
$$E(U) = \sum_{N=1}^{\infty} \sqrt{2^N} 2^{-N} = \sum_{N=1}^{\infty} 2^{-N/2} = \frac{2^{-1/2}}{1 - 2^{-1/2}} = \frac{1}{\sqrt{2+1}}$$

2. Let
$$P(X = k) = \frac{\lambda^{k} e^{-\lambda}}{k!}$$
. Then
$$E(X) = \sum_{k=0}^{\infty} \frac{k \lambda^{k}}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k-1)!}$$

$$= \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{2!} e^{-\lambda}$$

$$= \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{2!}$$

$$= \lambda$$

3.
$$Var(X+Y) = E((X+Y)^2)$$

 $= EX^2 + EXY + EY^2$
 $Var(X-Y) = EX^2 - EXY + EY^2$,
So $E(XY) = 0$. Also, $EX = E(X+Y) = E(X)TE(Y)$,
So $E(X) = 0$ and similarly for $E(Y) = 0$.
Also,
 $Var(X+Y) = Var(X+Y) = 0$
 $E(X+Y) = 0$

$$VarX = Var(X+Y) \Rightarrow$$

$$EX^{2} = EX^{2} + EXY + EY^{2} \Rightarrow$$

$$EY^{2} = 0,$$

and some for $EX^2=0$. Now $EX^2=0 \Rightarrow X=0$, Since if X + O with prob. greater than zero, then wed have EX2>0.

4. $ES_n = \sum_{j=1}^{n} p_j = \frac{7}{10}n$ is our constraint on p_j . The variance of S_n is $\sum_{j=1}^{n} p_j(1-p_j)$. We can solve this constrained optimization problem using Jagrange multipliers: $f(z) = \sum_{j=1}^{\infty} P_j(1-p_j), g(z) = \sum_{j=1}^{\infty} P_j,$ $\nabla f = \lambda \nabla g \Rightarrow \langle 1-2p_1, \dots, 1-2p_n \rangle = \langle \lambda p_1, \dots, \lambda p_n \rangle \Rightarrow$

5. Let X1 be the index of the first head, X2 the number of flips from the first to the second, etc. then the desired random variable equals $X_1 + X_2 + \cdots + X_n$, and the X_i 's are iid, Geom(p).

$$E(\text{uidex of uth head}) = E(X_1 + \dots + X_n)$$

$$= E(X_1 + \dots + EX_n)$$

$$= \frac{1}{p} + \dots + \frac{1}{p} = \frac{n}{p}$$
and
$$Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n)$$

$$= \frac{1-p}{p^2} + \dots + \frac{1-p}{p^2}$$

$$= \frac{n(1-p)}{p^2}$$

6. We calculate $\phi'(a) = -2EX + Za$, Since $\phi(a) = EX^2 - ZaEX + a^2$, and $\phi'(a) = 0 \Rightarrow a = EX$.

7. $E(XY) = \int_0^1 \int_0^1 x^y dxdy = \int_0^1 \frac{x^{y+1}}{y+1} \int_0^1 dy = \log(y+1) \int_0^1 \frac{1}{y+1} dy = \log(y$

8.(a)
$$cov(X,Y) = E((X - M_X)(Y - M_Y))$$

$$= E(XY - M_X EY - M_Y EX + M_XM_Y)$$

$$= E(XY - EX)(EY).$$

(b) If X, Y are independent, then E(XY) = E(X) E(Y), so the expression in (a) vanishes.

(c)
$$Var(X+Y) = EX^2 + 2E(XY) + EY^2 - (EX)^2 - 2EXEY (EY)$$

$$= \pi \quad VarX + VarY + 2cov(X,Y)$$

$$= 2cov(x,y)$$

$$= 2cov(x,y)$$

9. (a) Var $\left(\frac{X}{\sigma(X)} + \frac{Y}{\sigma(Y)}\right) = var\left(\frac{X}{\sigma(X)}\right) + var\left(\frac{Y}{\sigma(X)}\right) + var\left(\frac{X}{\sigma(X)}\right) + var$

$$= 2 + 2 p(X,Y).$$

(b) same as (a) sobut with a negative sign.

(c)
$$z(1+p(x,y)) = 0 \Rightarrow p(x,y) = 1$$

 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
10. $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 1.$ Equiportion $z(1-p(x,y)) = 0$
 $z(1-p(x,y)) = 0 \Rightarrow p(x,y) = 0.$ Equiportion $z(1-p(x,y)) = 0.$ Equiportio