Kahoot!

MAT224 TUT0101/0102 Summer 2021, Kahoot#1

O favorites 1 play 9 players					
A private kahoot					
Ques	Questions (19)				
1-Q	1 - Quiz				
	V be a vector space, v, w be vectors in V and k_1 , k_2 be scalar in the field. The definition of did not said	60 sec			
	V+W=W+V	×			
•	$k_1(w+v)=k_1w+k_1v$	×			
	vw=wv	✓			
	$k_1k_2w = k_2k_1w$	×			
2 - C	Quiz S = {v1,, vn} be a linear independent set, which of the following statement is incorrect?	60 sec			
	The equation alvl++anvn=0 has only the trivial solution with all ai = 0	×			
\blacklozenge	Then we know that alvl++anvn = 0 and al = = an = 0	✓			
	None of the vi can be written as linear combination of the other vectors.	×			
	If one of the ai is not equal to 0, then alvl++anvn=0 can not be true	×			
	rue or false				
If {v	w} is a basis of a given a vector space V, then {kv, w} is also a basis for any scalar k,	20 sec			
	True	×			
•	False	✓			
	rue or false				
	et of vectors is linearly dependent if and only if one of the vector is a scalar multiple of ther one vector	20 sec			
	True	×			
•	False	~			

If T is	rue or false s a linear transformation from V to W, then there exists a matrix A, such that T(v)=Av for v in V.	20 sec
	True	×
•	False	✓
If T is	rue or false s a linear transformation from R ⁿ to R ^m , then there always exists a matrix A, such that = Av for all v in R ⁿ	20 sec
	True	✓
•	False	×
	rue or false B is invertible, then A is invertible and B is invertible	20 sec
	True	×
•	False	✓
	rue or false B is invertible, then A is invertible or B is invertible	20 sec
	True	×
•	False	✓
	euiz S = {v1,, vn} be a spanning set of the vector space V. Let v be a vector in V. It is not essarily true that	60 sec
	{v1,, vn, v} must be a linearly dependent set	×
•	v = alvl + + anvn for some al,, an in the field.	×
	Only one way to represent v as a linear combination of the vectors in S	✓
	span(S) is a subset of V	×

10 - Q Let T	uiz be a linear transformation from V to W, which of the following is not correct	60 sec
	$T(O_{V}) = O_{W}$	×
\blacklozenge	T(v+w) = T(v) + T(w) for all v and w in V	×
	T(kv) = T(k)T(v) for all scalar k in the field and vector v in V	✓
	For every v in V, there is only one unique T(v)	×
	ue or false be a vector space and let v,w be vectors in V, let k be a scalar. Then if kv=kw, then v=w	20 sec
	True	×
♦	False	✓
	ue or false tor space may have more than one zero vector	20 sec
	True	×
•	False	✓
	ue or false et contains the zero vector, then it must be linearly dependent.	20 sec
	True	✓
•	False	×
	rue or false vn are linearly independent directly said alvl++anvn=0 for some scalars al,, an.	20 sec
	True	×
	False	./

15 - True or false					
Assume alv1+a2v2+a3v3=0 and v1,v2 are linearly independent, then alv1+a2v2=0					
	True	×			
•	False	✓			
16 - True or false					
Known $M_4(R)$ is a vector space. The zero vector is the 4x4 matrix with all zero entries.		20 sec			
	True	✓			
♦	False	×			
17 - 7	17 - True or false				
Known $M_4(R)$ is a vector space. In the definition, one of the axiom said $1v=v$. The 1 here is the $4x4$ identity matrix.					
	True	×			
	False	~			
18 - Quiz Known V = $P_4(R)$ is a vector space, which of the following statement is correct?		60 sec			
1	. 4(., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				
	1+x is not a vector in V because it has only degree 1	×			
•	$\{1, x\}$ are linearly dependent vectors in V because we can pick x=-1	X			
	V has dimension 4, i.e. if S is a basis of V, then S has 4 elements.	X			
	$\{1, 1+x, 1+x+x^2, 1+x+x^2+x^3, 1+x+x^2+x^3+x^4\}$ is a spanning set of V	✓			
19 - Quiz					
Consider the set of all complex number as a real vector space, call it V, which of the following statement is correct?					
	The scalars are complex numbers	×			
•	{1, i} are linearly independent vectors in V	✓			
	The zero vector in the definition of vector space is 0+i in V	×			
	{1} is a spanning set of V	×			

Resource credits

Description: Imgorthand/E+/Getty Images