INF554: Data challenge

Dimitri DELPECH de SAINT GUILHEM Matthieu SOUDA

Introduction

Table of contents

- I. Features utilization
- II. Models
- III. Results and critics

I. Features utilization

Features

Neural Networks

Text features:

- Tokenization
- Embeddings of words or sentences

Type feature:

• Encoded as a 16 dimensions vector

For Naive Bayes and Random Forest

- sentence length (character wise)
- sentence length (word wise)
- discourse type (as a number or as weight based on proportions)
- speaker
- number of child in graph

Feature selection

n_words & sentence length

Feature selection

type of sentence (from the graph)

Feature selection

n_childs in the graph & speaker

Graph feature

Normalised adjacency matrix Subgraph for smaller batch

Sentence embeddings as node features.

II. Models

Naive Bayes and Random Forest

- → Our own baseline models (fast to train)
- → See the influence of the extracted features
- → Thought about combining it with NN models

Results:

- NB: around 0.48 f1 score
- RandomForest: around 0.40 f1 score

A range of models

Simple MLP LSTM (Bidirectional) Transformer <u>Encoder</u>

LSTM

- → Recurrent Neural Network
- → Bidirectional layers : understanding the context before <u>and</u> after each word
- → Recurrent to understand sequences of sentences
- → LSTM specific : cell state to understand long term trends in the discourse

Transformer Encoder

- → From Attention is all you need (2017) Transformer implementation
- → Multiple Encoder layers
- → Frequently used in NLP tasks
- → Self-Attention

Encoder Layer architecture

BERT

Bidirectional Encoder Representations from Transformers.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

BERT based models

BERT + MLP: based on the classifier token.

- Best results with one layer of size (Bert hidden size, 2)
- Combined with a simple MLP for types

BERT + LSTM (two versions):

- LSTM layer based on the classification token
- LSTM that uses the sentence embedding created by averaging the word embeddings given.

DiscoBert

SpanExt: create Elementary Discourse Units

We used the sentence embedding as a mean of the word embeddings.

Coreference Graph and Discourse Graph.

We used only the discourse graph.

III. Results and critics

Results

Model	F1 score
Bert Classifier	0.576
Bert LSTM (on classifier tokens)	0.523
Bert Classifier + types MLP	0.497
Naive Bayes	0.48
LSTM	0.55
Random Forest	0.40
Transformer	0.568

BERT LSTM on sentence embeddings and Adaptation of DiscoBERT : GPU out of memory

Critics

Technical difficulties on training.

Not enough variety on GCN implementation. Not adapted to trees?

If we had to continue:

- Fine tune BERT and then use it in preprocessing (gain in memory and time)
- Combine models and methods
- As in DiscoBert try to create a coreference graph.

Conclusion