© Laurent Garcin MP Dumont d'Urville

DEVOIR À LA MAISON N°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Solution 1

1. On remarque que pour $P \in GL_n(\mathbb{R})$,

$$M^{2} + pM + qI_{n} = 0$$

$$\iff P(M^{2} + pM + qI_{n})P^{-1} = 0$$

$$\iff (PMP^{-1})^{2} + pPMP^{-1} + qI_{n} = 0$$

On en déduit bien que si M est solution de $(\mathcal{E}_{p,q})$, alors toute matrice de $\mathrm{E}(\mathrm{M})$ l'est également.

- 2. a. Soit M une solution de $(\mathcal{E}_{-(a+b),ab})$. On constate que $X^2 (a+b)X + ab = (X-a)(X-b)$ est un polynôme annulateur de M. Comme $a \neq b$, ce polynôme est scindé à racines simples. Ainsi M est diagonalisable.
 - **b.** On peut également affirmer que si M est solution de $(\mathcal{E}_{-(a+b),ab})$, alors $\mathrm{Sp}(\mathrm{M}) \subset \{a,b\}$. Posons $\mathrm{M}_k = \begin{pmatrix} a\mathrm{I}_k & 0 \\ 0 & b\mathrm{I}_{n-k} \end{pmatrix}$ pour $k \in [\![0,n]\!]$. On vérifie aisément que M_k est effectivement solution de l'équation $(\mathcal{E}_{-(a+b),b})$. Les questions

pour $k \in [0, n]$. On verine assement que M_k est effectivement solution de 1 equation $(\mathcal{E}_{-(a+b),b})$. Les questi précédentes montrent alors que l'ensemble des solutions de $(\mathcal{E}_{-(a+b),ab})$ est

$$\bigsqcup_{k=0}^{n} \mathrm{E}(\mathrm{M}_{k})$$

- 3. a. Puisque $M^2 = 0$, $f^2 = 0$. On en déduit immédiatement que Im $f \subset Ker f$.
 - **b.** Le théorème du rang stipule que si
 - E et F sont deux K-espaces vectoriels;
 - E est de dimension finie
 - $f \in \mathcal{L}(E, F)$;

alors

- f est de rang fini;
- $\dim E = \operatorname{rg} f + \dim \operatorname{Ker} f$.
- **c.** Puisque Im $f \subset \text{Ker } f$, rg $f \leq \dim \text{Ker } f$. Ainsi

$$n = \dim \operatorname{Erg} f + \dim \operatorname{Ker} f \ge 2\operatorname{rg} f$$

ou encore $\operatorname{rg} f \leq \frac{n}{2}$.

d. Notons S un supplémentaire de Ker f dans \mathbb{R}^n . D'après le théorème du rang

$$\dim S = \dim \mathbb{R}^n - \dim \operatorname{Ker} f = \operatorname{rg} f = p$$

Donnons-nous une base $\mathcal{B}_1 = (e_1, \dots, e_p)$ de S. Puisque $f^2 = 0$, $(f(e_1), \dots, f(e_p))$ est une famille de vecteurs de Ker f. De plus, on sait que f induit un isomorphisme de S sur Im f: notamment f est injectif sur S. On en déduit que $(f(e_1), \dots, f(e_n))$ est une famille libre de Ker f. On peut alors la compléter en une base \mathcal{B}_2 de Ker f. Puisque $\mathbb{R}^n = \mathbb{S} \oplus \mathrm{Ker} f$, la concaténation des bases \mathcal{B}_1 et \mathcal{B}_2 forme une base \mathcal{B} de \mathbb{R}^n . Par construction, la matrice de f dans cette base est

$$J_p = \left(\begin{array}{c|c} 0 & 0 \\ \hline I_p & 0 \end{array}\right)$$

e. Les questions précédentes montrent qu'une solution de $(\mathcal{E}_{0,0})$ est nécessairement semblable à une matrice J_p où p est un entier naturel inférieur ou égal à n/2. De plus, on vérifie que J_p pour $p \le n/2$ est effectivement solution de $(\mathcal{E}_{0,0})$ (l'endomorphisme f canoniquement associé vérifie clairement $f^2 = 0$). On en déduit que l'ensemble des solutions de $(\mathcal{E}_{0,0})$ est

$$\bigsqcup_{0 \le p \le n/2} \mathrm{E}(\mathrm{J}_p)$$

4. a. C'est évident puisque

$$N^2 = (M - aI_n)^2 = M^2 - 2aM + a^2I_n$$

b. D'après la question précédente, M est solution de (\mathcal{E}_{-2a,a^2}) si et seulement si $M - aI_n$ est solution de $\mathcal{E}_{0,0}$. On en déduit donc que l'ensemble des solutions de (\mathcal{E}_{-2a,a^2}) est

$$\bigsqcup_{0 \le p \le n/2} \left(a \mathbf{I}_n + \mathbf{E}(\mathbf{J}_p) \right)$$

Enfin, on remarque que pour $P \in GL_n(\mathbb{R})$,

$$aI_n + PMP^{-1} = P(aI_n + M)P^{-1}$$

de sorte que $aI_n + E(M) = E(aI_n + M)$. On peut donc affirmer que l'ensemble des solutions de (\mathcal{E}_{-2a,a^2}) est

$$\bigsqcup_{0 \le p \le n/2} \left(\mathbb{E}(a\mathbf{I}_n + \mathbf{J}_p) \right)$$

5. Supposons que $M \in \mathcal{M}_n(\mathbb{R})$ soit solution de $M^2 + I_n = 0$. Alors

$$\det(\mathbf{M})^2 = \det(\mathbf{M}^2) = \det(-\mathbf{I}_n)^2 = (-1)^n$$

Comme $det(M)^2 \ge 0$, *n* est pair.

Par contraposition, si n est impair, l'équation $M^2 + I_n = 0$ n'admet pas de solution.

- **6. a.** Soit M une solution de $(\mathcal{E}_{0,1})$. Alors le polynôme $X^2 + 1 = (X i)(X + i)$ annule M et est scindé sur \mathbb{C} donc M est diagonalisable sur \mathbb{C} .
 - **b.** La question précédente montre également que $Sp(M) \subset \{i, -i\}$. Puisque M est à coefficients réels, son polynôme caractéristique χ_M l'est également. Ainsi i et -i ont la même multiplicité en tant que racines de χ_M . On en déduit que M est semblable à $D = \begin{pmatrix} iI_p & 0 \\ 0 & -iI_p \end{pmatrix}$ dans $\mathcal{M}_n(\mathbb{C})$.

Un calcul par blocs montre que la matrice $J = \begin{pmatrix} 0 & -I_p \\ \hline I_p & 0 \end{pmatrix}$ vérifie également $J^2 + I_n = 0$. De même que M, J est

donc semblable à D dans $\mathcal{M}_n(\mathbb{C})$. Par transitivité de la similitude, M est semblable à J dans $\mathcal{M}_n(\mathbb{C})$.

On montre alors classiquement que, M et J étant à coefficients réels, elles sont alors semblables dans $\mathcal{M}_n(\mathbb{R})$. On sait qu'il existe $Q \in GL_n(\mathbb{C})$ telle que $Q^{-1}MQ = J$ i.e. MQ = QJ. On peut affirmer qu'il existe $(R,S) \in \mathcal{M}_n(\mathbb{R})^2$ tel que Q = R + iS. Comme M et J sont à coefficients réels, on obtient alors MR = RJ et MS = SJ. La fonction $x \in \mathbb{C} \mapsto \det(R + xS)$ est polynomiale d'après l'expression du déterminant d'une matrice en fonction de ses coefficients. De plus, $\varphi(i) = \det(P) \neq 0$ car P est inversible. Ainsi φ n'est pas contamment nulle et ne possède alors qu'un nombre fini de racines puisqu'elle est polynomiale. Notamment, φ ne peut pas être constamment nulle sur \mathbb{R} . Il existe donc $\alpha \in \mathbb{R}$ tel que $\varphi(\alpha) \neq 0$. On a alors $P = R + \alpha S \in GL_n(\mathbb{R})$. Comme MR = RJ et MS = SJ, $M(R + \alpha S) = (R + \alpha S)J$ i.e. $P^{-1}MP = J$.

c. La question précédente montre que l'ensemble des solutions de l'équation $(\mathcal{E}_{0,1})$ est $\mathrm{E}(\mathrm{J})$.