Clase 22

La sesión anterior la dedicamos a estudiar límites laterales, es decir, nos "acercamos" a un punto c con elementos del dominio de una función exclusivamente por la izquierda o exclusivamente por la derecha y vimos qué ocurría con las imágenes, bajo la función, de estos elementos. Entonces ¿sólo podemos "acercarnos" a un punto c por ambos lados al mismo tiempo, por la derecha exclusivamente o por la izquierda exclusivamente? La respuesta es no, qué tal si tenemos una sucesión que converge a c, donde ningún elemento es c, y esta sucesión está contenida en el dominio de nuestra función, en este caso podríamos preguntarnos por la sucesión de imágenes, bajo la función, de los elementos de dicha sucesión, ¿no?

¿Sucesiones en límites de funciones?

Figura 1: $\lim_{x\to c} f(x) = l$ si y sólo si para cualquier sucesión $\{a_n\}$ contenida en el dominio de f, cuyos elementos son distintos de c y tal que convrege a c, se tiene que la sucesión $\{f(a_n)\}$.

Teorema 1 Sean $l \in \mathbb{R}$, $f: A \longrightarrow \mathbb{R}$ una función $y \in \mathbb{R}$ tal que existe $(a,b) \subseteq \mathbb{R}$ con $c \in (a,b)$ $y \in \mathbb{R}$ (a,b) $f(c) \subseteq A$. Se tiene que $\lim_{x \to c} f(x) = l$ si y sólo si para cualquier sucesión f(a) que cumple:

- (a) $a_n \in A$, para toda $n \in \mathbb{N}$;
- (b) $a_n \neq c$, para toda $n \in \mathbb{N}$;
- (c) $\lim_{n \to \infty} a_n = c$.

se tiene que $\lim_{n\to\infty} f(a_n) = l$.

Demostración. \Longrightarrow] Sea $\varepsilon > 0$. Supongamos que $\lim_{x \to c} f(x) = l$ y sea $\{a_n\}$ una sucesión que cumple los incisos (a), (b) y (c). Como $\lim_{x \to c} f(x) = l$, existe $\delta > 0$ tal que para cualquier $x \in (a, b)$ que cumple que $0 < |x - c| < \delta$ se tiene que

$$|f(x) - l| < \varepsilon. \tag{1}$$

Ahora, por el inciso (c), para el número positivo δ , existe $N \in \mathbb{N}$ de tal manera que, si $n \geq N$, entonces $|a_n - c| < \delta$. Luego, del inciso (b), se sigue que, si $n \geq N$, entonces $0 < |a_n - c| < \delta$ y, por (1) y (a), se obtiene que

$$|f(a_n) - l| < \varepsilon.$$

Es decir, $\lim_{n\to\infty} f(a_n) = l$.

⇐—] Demostraremos esta implicación por contrapositiva. Supongamos entonces que $\lim_{x\to c} f(x) \neq l$, esto es, existe $\varepsilon_0 > 0$ de tal manera que para cualquier $\delta > 0$ existe $x \in (a,b)$ que cumple que $0 < |x-c| < \delta$, pero $|f(x)-l| \ge \varepsilon_0$. Como lo anterior vale para cualquier $\delta > 0$, tenemos, para cada $n \in \mathbb{N}$, que existe $x_n \in (a,b)$ que cumple que $0 < |x_n-c| < \frac{1}{n}$, pero $|f(x_n)-l| \ge \varepsilon_0$. Note que de esta manera obtenemos una sucesión $\{x_n\}$ que cumple los incisos (a), (b) y (c) (¿por qué?), pero $\lim_{n\to\infty} f(x_n) \neq l$, pues $|f(x_n)-l| \ge \varepsilon_0$ para toda $n \in \mathbb{N}$, con lo que concluimos nuestra demostración. ■

La forma de aplicar el Teorema 1 no es directa, pues no es fácil verificar que cada sucesión $\{a_n\}$ que cumple los incisos (a), (b) y (c) también cumple que $\{f(a_n)\}$ coverge a l. La forma más común de aplicar dicho teorema es para mostrar que no existe el límite de una función f en un punto c, pues basta exhibir una sucesión $\{a_n\}$ que cumple los incisos (a), (b) y (c), pero que la sucesión $\{f(a_n)\}$ no converge o bien exhibir dos sucesiones $\{a_n\}$ y $\{b_n\}$ que satisfacen los inicisos (a), (b) y (c), pero que las sucesiones $\{f(a_n)\}$ y $\{f(b_n)\}$ convergen a dos números distintos.

Ejemplo 2 Muestre que $\lim_{x\to 0} \operatorname{sen}\left(\frac{1}{x}\right)$ no existe.

Solución. Note que el dominio de la función $f(x) = \operatorname{sen}\left(\frac{1}{x}\right)$ es el conjunto $A = \mathbb{R} \setminus \{0\}$. Ahora, consideremos las sucesiones $\{a_n\} = \left\{\frac{1}{2n\pi}\right\}$ y $\{b_n\} = \left\{\frac{1}{2n\pi + \pi/2}\right\}$. Se tiene que $a_n, b_n \in A$ para toda $n \in \mathbb{N}$ y por lo tanto $a_n, b_n \neq 0$. También tenemos que $\lim_{n \to \infty} a_n = 0$ y $\lim_{n \to \infty} b_n = 0$ (¿puede argumentar estas afirmaciones?). Es decir, las sucesiones $\{a_n\}$ $\{b_n\}$ cumplen los incisos (a), (b) y (c) del enunciado del Teorema 1.

Así, si $\lim_{x\to 0} \operatorname{sen}\left(\frac{1}{x}\right) = l$, para algún $l \in \mathbb{R}$, por el Teorema 1, debería suceder que

$$\lim_{n \to \infty} f(a_n) = l \quad \text{y} \quad \lim_{n \to \infty} f(b_n) = l. \tag{2}$$

Veamos si esto es cierto. Por un lado, tenemos que

$$f(a_n) = sen\left(\frac{1}{a_n}\right) = sen\left(\frac{1}{\frac{1}{2n\pi}}\right) = sen\left(2n\pi\right) = 0,$$

para cada $n \in \mathbb{N}$. Por lo que

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} 0 = 0.$$

Ahora, por otro lado tenemos que

$$f(b_n) = \operatorname{sen}\left(\frac{1}{b_n}\right) = \operatorname{sen}\left(\frac{1}{\frac{1}{2n\pi + \pi/2}}\right) = \operatorname{sen}\left(2n\pi + \pi/2\right) = 1,$$

para cada $n \in \mathbb{N}$. Por lo que

$$\lim_{n \to \infty} f(b_n) = \lim_{n \to \infty} 1 = 1.$$

Como no ocurre (2), concluimos que $\lim_{x\to 0} \operatorname{sen}\left(\frac{1}{x}\right)$ no existe. \blacksquare

Figura 2: Se muestra la gráfica de la función $f(x) = \operatorname{sen}\left(\frac{1}{x}\right)$.