Introduction au DNS

420-2S5-EM

Serveur 1 – Services intranet

Rencontre 7 – H25

Le problème avec les adresses IP

- Une adresse IP est difficile à retenir.
- Un serveur pourrait changer d'adresse IP à tout moment.
- Une même adresse IP pourrait héberger plusieurs applications (Un serveur web avec plus d'un site).

Résolution de noms

Résolution de noms

Mécanisme permettant de traduire des noms en adresses IP et inversement.

Protocoles:

- Le fichier HOSTS
- NetBIOS (Désuet)
- WINS (Désuet)
- DNS

Internet est utilisable grâce à DNS!

Le fichier hosts

Le fichier hosts associe un nom à une adresse IP

N'a d'effet que sur la machine locale

Emplacement:

> Linux /etc/hosts

> Windows

For example:

102.54.94.97 rhino.acme.com # source server

38.25.63.10 x.acme.com # x client host

localhost name resolution is handled within DNS itself.

127.0.0.1 localhost

::1 localhost

205.151.253.208 lechat.local

205.151.253.208 www.lechat.local

205.151.253.208 www.tva.ca

C:\Windows\System32\drivers\etc\hosts

Une fausse bonne idée

- Il existe des milliards de sites web sur internet et de nouveaux apparaissent chaque minute.
- Le nombre d'appareils connectés est de même envergure.
- Il faudrait donc modifier des milliards de fichiers hosts de plusieurs milliards d'entrées à chaque minute.

Le DNS

C'est l'annuaire d'internet.

- C'est une base de données distribuée qui contient les associations nom de domaine : adresse IP.
- Respecte une convention de nommage hiérarchique.
- Essentiel pour rendre internet viable.

Base de données DNS

Hiérarchique

- Pour fournir des réponses rapides aux requêtes.
- DNS possède une racine, des branches et des nœuds.

Distribuée

- Pour offrir un accès rapide aux serveurs.
- La base de données DNS est répandue dans des milliers de systèmes à travers le monde.

Répliquée

- Pour offrir un service fiable.
- Plusieurs systèmes connaissent la même information, ce qui en fait un système résilient en cas de panne.

FQDN

Fully Qualified Domain Name (FQDN)

Espace de noms de domaine

Processus de résolution

Serveur de type cache

- Un serveur DNS de type cache ne gère aucune zone.
 Son principal objectif est d'accélérer la résolution des requêtes DNS qu'il reçoit.
- Lorsqu'on installe Bind (sous Linux), celui-ci est automatiquement configuré en mode cache.

La cache des clients

 Tout comme les serveurs, les clients ont aussi une cache pour éviter de solliciter à répétition le serveur DNS.

Windows

- Afficher le contenu de la cache: ipconfig /displaydns
- Vider la cache: ipconfig /flushdns

Linux

- Afficher la cache: sudo resolvectl show-cache
- Vider la cache: sudo resolvect lflush-caches
- Certaines applications ont leur propre cache également, comme les navigateurs web.

Le redirecteur

 Lorsqu'un serveur DNS n'a pas la réponse à une requête DNS, celui-ci peut transmettre la requête à un autre serveur DNS plutôt que d'entreprendre une résolution itérative à partir du serveur racine.

C'est ce que l'on nomme un redirecteur. Le principe de renvoyer la requête initiale à un autre serveur susceptible de connaître la réponse à la requête.

Avantages (redirecteur)

- Profiter de la cache d'un serveur DNS plus fortement sollicité (FSI, DNS public, etc.)
- Filtrer le trafic vers certains sites au moyen de services comme OpenDNS.

Liste de recherche

Lorsqu'on fait une requête sur un nom qui n'a aucun point, le résolveur ajoute automatiquement le ou les suffixes présents dans la liste de recherche.

Outils d'interrogation

- Powershell
 - resolve-dnsname
- CMD et BASH
 - nslookup
- BASH
 - dig

Consultez le site du cours pour des exemples

