Lecture Notes: Spin-1/2 Ensemble

Le Bin Ho

Tohoku University, June 2025

Contents

1	Introduction to Group Theory and Representations			
	1.1	Basic Definitions	2	
	1.2	Lie Groups: $SU(2)$ and $SO(3)$	2	
	1.3	Clebsch-Gordan Decomposition	2	
2	Spin-1/2 Systems			
	2.1	Hilbert Space and Basis	2	
	2.2	Spin Operators and Pauli Matrices	2	
	2.3	Eigenstates of \hat{S}_z	2	
3	Two Spin-1/2 Systems			
	3.1	Tensor Product Basis	3	
	3.2	Total Spin Operator	3	
	3.3	Clebsch-Gordan Basis	3	
4	N Spin-1/2 Systems			
	4.1	Hilbert Space Dimension	3	
	4.2	Symmetric Subspace	3	
	4.3	Angular Momentum Decomposition	3	
	4.4	Dicke States	3	
5	Dimension Reduction via Clebsch-Gordan and Dicke Basis			
	5.1	Motivation	4	
	5.2	Clebsch-Gordan Trees	4	
	5.3	Collective Angular Momentum Operators	4	
	5.4	Example: Three Spins	4	
	5.5		Δ	

1 Introduction to Group Theory and Representations

Group theory provides a mathematical framework to study symmetries in physical systems, especially in quantum mechanics.

1.1 Basic Definitions

A **group** G is a set with a binary operation satisfying:

• Closure: $a, b \in G \Rightarrow ab \in G$

• Associativity: (ab)c = a(bc)

• **Identity**: There exists $e \in G$ such that ae = ea = a

• **Inverse**: For each $a \in G$, there exists $a^{-1} \in G$ with $aa^{-1} = e$

1.2 Lie Groups: SU(2) and SO(3)

• SU(2): Set of 2×2 unitary matrices with determinant 1. Describes spin-1/2 systems.

• SO(3): 3×3 real orthogonal matrices with determinant 1. Describes spatial rotations.

SU(2) is the double cover of SO(3), meaning each $R \in SO(3)$ corresponds to two elements in SU(2).

1.3 Clebsch-Gordan Decomposition

Combining angular momenta j_1 and j_2 :

$$j_1 \otimes j_2 = |j_1 - j_2| \oplus \cdots \oplus (j_1 + j_2)$$

2 Spin-1/2 Systems

2.1 Hilbert Space and Basis

The state space for a spin-1/2 particle is two-dimensional:

$$\mathcal{H}_{1/2} = \operatorname{span}\{|\uparrow\rangle, |\downarrow\rangle\}$$

2.2 Spin Operators and Pauli Matrices

$$\hat{S}_i = \frac{\hbar}{2} \sigma_i \quad (i = x, y, z)$$

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2.3 Eigenstates of \hat{S}_z

$$\hat{S}_z|\uparrow
angle = rac{\hbar}{2}|\uparrow
angle, \quad \hat{S}_z|\downarrow
angle = -rac{\hbar}{2}|\downarrow
angle$$

2

3 Two Spin-1/2 Systems

3.1 Tensor Product Basis

$$\mathscr{H} = \mathscr{H}_{1/2} \otimes \mathscr{H}_{1/2}$$

Basis:

$$\{|\uparrow\uparrow\rangle,|\uparrow\downarrow\rangle,|\downarrow\uparrow\rangle,|\downarrow\downarrow\rangle\}$$

3.2 Total Spin Operator

$$\hat{\mathbf{J}} = \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2$$

3.3 Clebsch-Gordan Basis

• Triplet states (j = 1):

$$|1,1\rangle = |\uparrow\uparrow\rangle \tag{1}$$

$$|1,0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \tag{2}$$

$$|1, -1\rangle = |\downarrow\downarrow\rangle \tag{3}$$

• Singlet state (j = 0):

$$|0,0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

4 N Spin-1/2 Systems

4.1 Hilbert Space Dimension

$$\dim(\mathcal{H}) = 2^N$$

4.2 Symmetric Subspace

The totally symmetric states span a subspace of dimension N + 1.

4.3 Angular Momentum Decomposition

Using recursive Clebsch-Gordan decomposition:

$$\left(\frac{1}{2}\right)^{\otimes N} = \bigoplus_{j} d_{j} \cdot \mathscr{H}_{j}$$

where d_j is the multiplicity of spin-j irrep.

4.4 Dicke States

 $|D(N,m)\rangle$ = symmetrized combination of m spin-ups and N-m spin-downs

5 Dimension Reduction via Clebsch-Gordan and Dicke Basis

5.1 Motivation

The full space 2^N grows exponentially. Group symmetry helps reduce to a manageable form.

5.2 Clebsch-Gordan Trees

Build total angular momentum via repeated addition of spin-1/2 particles.

5.3 Collective Angular Momentum Operators

$$\hat{J_z}|j,m\rangle=\hbar m|j,m\rangle,\quad \hat{J}^2|j,m\rangle=\hbar^2j(j+1)|j,m\rangle$$

5.4 Example: Three Spins

$$\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$$
$$1 \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{3}{2}$$

Total decomposition:

$$\left(\frac{1}{2}\right)^{\otimes 3} = \frac{1}{2}^{\oplus 2} \oplus \frac{3}{2}$$

5.5 Summary

We presented a group-theoretic view of spin systems, introducing SU(2), Clebsch-Gordan decomposition, and the Dicke basis to systematically reduce the Hilbert space of many-spin systems.