iTMO

GAMLET — фреймворк для экспериментов по мета-обучению графов в AutoML и не только

Пётр Шевченко, лаборатория автоматического MO, NSS Lab

Коротко про мета-обучение

"learning how to learn"

ITMO

ITMO

ITMO

(не является официальным логотипом)

Блочная структура компонентов

Кэширование данных

Тёплый старт оптимизации по схожим датасетам

Похожим данным – похожие решения.

маленький текст

Графовые нейронные сети. Эмбеддинги пайплайнов

ITMO

Оценка качества ML-пайплайнов на датасете без их обучения.

В процессе получаются векторные представления пайплайнов, которые можно утащить в другие задачи.

описание датасета

Суррогатная модель

прогноз качества

Команда Егора Шикова, Telegram: @ShikovEgor

Эволюция пайплайнов – игра для обучения с подкреплением

Агент учится управлять изменением пайплайнов вместо «слепого» перебора эволюцией.

Для этого он использует эмбеддинги, полученные графовой нейросетью с предыдущего подхода.

Команда Григория Киргизова, Telegram: @jregory

Проблема 1: совместимость экспериментов

Блочная структура компонентов способствует организации кода.

Проектируя текущие эксперименты, мы закладываем фундамент для будущих.

Проблема 2: большой объём вычислений

Блоки умеют выполнять кэширование вычислений.

При повторном запуске эксперимента все датасеты будут доступны локально, все уже рассчитанные мета-признаки будут взяты из кэша.

Ты уже просил посчитать это. Вот что получилось в прошлый раз.

Проблема 3: недостаток данных

iTMO

GAMLET использует наработки открытого AutoML фреймворка FEDOT.

Истории оптимизации FEDOT хранят много уже оцененных графов.

В масштабах нейронных сетей и этого мало. Синтетические данные? Возможно.

Проблема 4: вы ещё не работаете вместе с нами

GAMLET GitHub

Руководитель проекта: Николай Никитин Telegram: <u>@nicl_nno</u>

FEDOT GitHub

Для чего применим GAMLET?

- Получение векторных представлений графов для предметной области
- Мета-обучение для улучшения AutoML (в том числе для прогнозирования временных рядов) (в разработке)
- Мета-обучение для улучшения иных алгоритмов оптимизации (в разработке)
- Утилита для поиска похожих датасетов по открытым базам, например, OpenML (запланировано)

Графовые нейронные сети. Эмбеддинги пайплайнов

Графовые нейронные сети. Эмбеддинги пайплайнов

Эволюция пайплайнов как игра для обучения с подкреплением

