Operations

1.1 Binary Operation

Definition 1.1 (Binary Operation). * is a binary operation if it denotes the mapping $*: S \times S \to S$ into some set S that obeys two rules

- 1. Exactly *one* element is assigned to each possible ordered pair of elements of S
- 2. For each ordered pair of elements of S, the element assigned to it is again in S

For example, addition on the reals is a binary operation as it is a mapping defined by

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R} : (a, b) \mapsto a + b.$$

Often in abstract algebra, imposing or analyzing structure provides the greatest insight. Therefore there are certain algebraic properties commonly used to identify binary operations. Consider for example the concept of *closure*.

Definition 1.2 (Closure). Let * be a binary operation on S. Let $H \subseteq S$. H is closed under * if for all $(u, v) \in H \times H$ that $u * v \in H$.

Example 1.1. Examine the normal addition and multiplication of integers

$$+, \cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}.$$

Consider the subset $H = \{2n+1 : n \in \mathbb{Z}\} \subseteq \mathbb{Z}$. Firstly one has to ask if either operations are indeed a binary operation on H. In the case of multiplication, one can consider two elemenets $a, b \in H$. Therefore $\exists m, n \in \mathbb{Z}$ such that a = 2n + 1 and b = 2m + 1. Multiplying them together results in $2(2m^2+2mn)+1$ which is indeed in H. For addition, $5 \in H$ and $3 \in H$, however $3+5=8 \notin H$.

Remark. Given an arbitrary binary operation *, it is not always the case that a * b = b * a. If a binary operation indeed does have a * b = b * a, it is *commutative*.

Definition 1.3 (Commutative Operation). A binary operation * on S is commutative if $\forall a, b \in S$ that a * b = b * a.

Pulling from other well known operations, we can generalize the notion of associativity from multiplication and addition to a general binary operation.

Definition 1.4 (Associativity). A binary operation * on S is associative if $\forall a, b, c \in S$ that (a*b)*c = a*(b*c).

Example 1.2. Consider a (potential) binary operation. Define the set $F = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$. Define the operation * by

$$f * g \mapsto f \circ g$$
.

It is fairly obvious that * is indeed a binary operation as the composition of two real

valued functions should still remain real valued. One may want to say * is commutative, however consider the following functions

$$f(x) = x + 1$$
$$g(x) = x^2.$$

It follows fairly quickly that $f \circ g \neq g \circ f$ in this instance, meaning * can not be commutative. Now a harder question is if * is associative. This would require that for all possible real valued functions f, g, h that $f \circ (g \circ h) = (f \circ g) \circ h$. Surprisingly this is true. Note that

$$f \circ (g \circ h) = f \circ (g(h(x)))$$
$$= f(g(h(x))).$$

and that

$$(f \circ g) \circ h = (f(g(x))) \circ h$$
$$= f(g(h(x))).$$

Hence both are equivalent meaning * is indeed associative.

1.1.1 Tabular Representation

If given a finite set S, a binary operation * on S can be defined by tabulating all possible combinations of elements $a, b \in S$. Consider for example $S = \{a, b\}$. The operation can then be defined as

$$\begin{array}{c|cccc} * & a & b \\ \hline a & b & b \\ \hline b & a & a \\ \end{array}$$

Consider then what the outcome of a * b would be. Using the table, the first element will index the row and the second element will index the column. Therefore a * b = b. Consider the following question:

How many possible binary operations can be defined on a finite set?

The tabular representation of a binary operation is useful in this instance. Given the set S that * is over, define n = |S|. The table will therefore have n^2 entries in it. Each entry has n choices as it can be any element of S. Therefore since you have n choices n^2 times, therefore

Number of possible relations = n^{n^2} .

Remark. Not every binary operation is well defined

Consider for example $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}: (a,b) \mapsto a^b$. Note that $-1 * \sqrt{2} = (-1)^{\sqrt{2}} \notin \mathbb{R}$, hence * in this case is not well defined.