

Logistic Regression

Machine Learning - Day 2

Techaxis

Review - Day 2

- Machine Learning
- Supervised vs Unsupervised Learning
- Regression and Classification
- Linear Regression
- Train test split
- Loss function Curves

General Steps:

- Split data into "training" and "test" sets.
- Use regression/classification results from "training" set to predict"test" set
- Compare "Predicted Y" to "Actual Y"

X ₁	X ₂	Хp	Υ	
				<pre>train_test_split()</pre>

X_train

y_train

Y

X_test

y_test

X ₁	X ₂	Хp

Logistic Regression is used when the dependent variable(target) is categorical.

Spam vs Ham (Non-spam)

Other Examples

- Whether a person will pass in the exam or not
- Whether a person is suffering from a disease
- Whether a person likes a movie or not
- Whether a person will buy a stuff or not
- Whether a tumor is malignant or not

TechAxis

LOCUS 2024 20th National Technological Full Degistic Regression Curve Software Fellowship Curve

1. Dataset Preparation Fellowship

Let's say we have a dataset

Study hours (X)	Exam result (y)
2	O
3	O
4	0
5	1
6	1

2. Model Training

We fit a logistic regression model to the dataset to predict the probability of passing exam based on number of study hours.

Logistic regression model:

z=a1+a2*x

Our goal: estimate values of a1 and a2 so that data is fitted best.

At first, assume a1 and a2 to any value

3. Apply the sigmoid function

$$P(Y = 1|x) = \sigma(z) = h(theta) = 1 / (1 + e^{-z})$$

The sigmoid function maps z to a value between 0 and 1, representing the probability of the positive class (passing the exam).

TechAxis

Sigmoid Function

4. Parameter Estimation

Now we will estimate the parameters a1 and a2 using optimization algorithms.

Cost function for logistic regression:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

$$a1 = a1 - \alpha * \frac{\partial J}{\partial a1}$$

Updates:

$$a2 = a2 - \alpha * \frac{\partial J}{\partial a2}$$

FYI

Cost function for logistic regression is also called Binary cross-entropy or log loss.

Techaxis

FYI

$$\frac{\partial J}{\partial a1} = (h(\theta) - y)x$$

$$\frac{\partial J}{\partial a2} = h(\theta) - y$$

5. Making prediction

Using the estimated parameters, we now make predictions for new examples.

What is the probaility to pass the exam if I study for 4 hours?

$$z=a1+a2*x$$

$$=a1+a2*4$$

Now,
$$P(Y=1|x=4)=\sigma(z) = 1 / (1 + e^{-0.8}) \approx 0.689$$

6. Binary Classification

Now, we use threshold (0.5) to make binary classification.

Predicted probability > threshold: Passing (1)

Predicted probability < threshold : Failing (0)

Since the obtained probability is 0.689 > 0.5, the student is passing(1).

Congrats! You finished the module!

Techaxis

