Mixed precision arithmetic for HPC

Theo Mary (CNRS)

HPCA course, Sorbonne Université (2020 version)

Slides available at

https://www-pequan.lip6.fr/~tmary/doc/HPCA.pdf

Intro

Mixed precision hardware

Mixed precision algorithms
FABsum
Iterative refinement
Mixed precision LU factorization
Mixed precision GMRES
Half-half arithmetic

Challenges in HPC

- Increasingly large problems $(10^7 10^9)$ unknowns)
- Increasingly parallel computers
- Heterogeneity in the computing units: CPUs, GPUs, other accelerators
- Increasing gap between speed of computations and communications
- Increasing power consumption
- \Rightarrow A promising idea to tackle these challenges: work with **lower** precision arithmetics

Basics of floating-point arithmetic

Topic of this lecture: mixed precision arithmetic, with a focus on **floating-point** arithmetic

A floating-point number is represented by

$$x = \pm m \times \beta^{e-t}, \quad m \in [0, \beta^t - 1]$$

A floating-point number system is thus charaterized by

- Base β (usually 2)
- Precision t
- Exponent range: $e \in [e_{\min}, e_{\max}]$

which are encoded with a finite number of bits assigned to the mantissa and exponent

Basics of floating-point arithmetic (cont'd)

The unit roundoff $u=\beta^{1-t}/2$ (= 2^{-t} in base 2) determines the relative accuracy any number in the representable range can be approximated with:

If
$$x \in \mathbb{R}$$
 belongs to $[e_{\min}, e_{\max}]$, then $\mathsf{fl}(x) = x(1+\delta), \quad |\delta| \leq u$

Moreover the standard model of arithmetic is

$$\mathsf{fl}(\mathsf{x}\,\mathsf{op}\,\mathsf{y}) = (\mathsf{x}\,\mathsf{op}\,\mathsf{y})(1+\delta), \quad |\delta| \leq \mathsf{u}$$
 , for $\mathsf{op} \in \{+,-,\times,\div\}$

Some common arithmetics in HPC

	Number of bits Mantissa Exponent		Range	Unit roundoff u
-	Maillissa	Lxponem		
fp128	113	15	$10^{\pm 4932}$	1×10^{-34}
fp64	53	11	$10^{\pm 308}$	1×10^{-16}
fp32	24	8	$10^{\pm 38}$	6×10^{-8}
tfloat32	11	8	$10^{\pm 38}$	5×10^{-4}
fp16	11	5	$10^{\pm 5}$	5×10^{-4}
bfloat16	8	8	$10^{\pm 38}$	4×10^{-3}

- Originally fp64 and fp32
- fp128 usually not available in hardware, only in software
- Rise of half precision on modern hardware, driven by Al

Lower precisions

Benefits of lower precisions

 Storage, data movement and communications are all proportional to total number of bits (mantissa + exponent)
 ⇒ lower precisions reduce them

Until now, speed of computations was also generally proportional

 \Rightarrow on most architectures, fp32 is twice faster than fp64

CELL processor

A notable exception: CELL processor (2006–2008)

 $1 \text{ CELL} = 1 \text{ PPE} + 8 \times \text{ SPE}$

PPE peak (GFLOPS): 6.4 (fp64) \rightarrow 25.6 (fp32) 4× speedup!

SPE peak (GFLOPS): 1.8 (fp64) \rightarrow 25.6 (fp32) $14\times$ speedup!!

CELL processor

A notable exception: CELL processor (2006–2008)

 $1 \text{ CELL} = 1 \text{ PPE} + 8 \times \text{ SPE}$

PPE peak (GFLOPS): 6.4 (fp64) \rightarrow 25.6 (fp32) 4× speedup! SPE peak (GFLOPS): 1.8 (fp64) \rightarrow 25.6 (fp32) 14× speedup!!

Paper from 2008: E Kurzak et al (2008)

The PlayStation 3 for High-Performance Scientific Computing

Publisher: IEEE

Jakub Kurzak; Alfredo Buttari; Piotr Luszczek; Jack Dongarra All Authors

Paper from 2008: E Kurzak et al (2008)

The PlayStation 3 for High-Performance Scientific Computing

Publisher: IEEE

Cite This

Jakub Kurzak; Alfredo Buttari; Piotr Luszczek; Jack Dongarra All Authors

Condor Cluster (peak: 500 TFLOPS) Made of 1760 PS3s ! Paper from 2008: E Kurzak et al (2008)

The PlayStation 3 for High-Performance Scientific Computing

Publisher: IEEE

Cite This

Jakub Kurzak; Alfredo Buttari; Piotr Luszczek; Jack Dongarra All Authors

Condor Cluster (peak: 500 TFLOPS) Made of 1760 PS3s !

IBM Roadrunner (peak: 1.7 PFLOPS) 1st on TOP500 ranking in 2008 First computer to surpass 1 PFLOP on LINPACK benchmark!

The exception is becoming the rule for half precision on modern hardware NVIDIA Tesla GPUs

Peak performance (TFLOPS)

		fp64	fp32	tfloat32	fp16	bfloat16
P100	2016	5	9	-	19	-
V100	2017-2019	8	16	_	125*	_
A100	2020	19*	19	156*	312*	312*

^{*} with tensor cores

Power consumption

 Power consumption of supercomputers has exploded with time and is today a primary concern

- Power consumption is proportional to the square of the number of mantissa bits. Thus:
- fp16 and tfloat32 (11 bits) consume $5\times$ less energy than fp32 (24 bits)
- bfloat16 (8 bits) consumes $2\times$ less energy than fp16/tfloat32 and $9\times$ less than fp32!

- fp16 has a very narrow range: $[6.1 \times 10^{-5}, 6.5 \times 10^4]$
- ⇒ high risk of underflow/overflow. Some examples:

- fp16 has a very narrow range: $[6.1 \times 10^{-5}, 6.5 \times 10^4]$
- ⇒ high risk of underflow/overflow. Some examples:

```
>> A = gallery('randsvd', 5, 1e12, 3);
>> s1 = svd(A); s2 = svd(fp16(A));
>> err = abs(s1-s2)./s1;
>> [s1 s2 err]
```

077				
s1	s2	err		
1.0000e+00	9.9999e-01	9.0588e-06		
1.0000e-03	9.8917e-04	1.0832e-02		
1.0000e-06	4.2918e-05	4.1918e+01		
1.0000e-09	9.5870e-06	9.5860e+03		
9.9999e-13	8.0750e-06	8.0751e+06		

- fp16 has a very narrow range: $[6.1 \times 10^{-5}, 6.5 \times 10^4]$
- \Rightarrow high risk of underflow/overflow. Some examples:

```
"Large" dot products
>> x = rand(n,1); y = rand(n,1); fp16(x'*y)
\Rightarrow returns Inf for n \ge 300,000
Chain matrix-vector products (example: neural network
backpropagation)
>> A = rand(n); x = rand(n);
for i=1:p
x = fp16(A*x);
end
\Rightarrow overflows even for small n when p \ge 7
```

- fp16 has a very narrow range: $[6.1 \times 10^{-5}, 6.5 \times 10^4]$
- ⇒ high risk of underflow/overflow. Some examples:

```
LU factorization of mode-2 randsvd matrices >> A = gallery('randsvd', n, kappa, 2); >> [L,U] = lu(A); \Rightarrow Inf entries appear in U for n \gtrsim 60,000 (don't try this at home!) \Rightarrow caused the HPL-Al benchmark to fail \blacksquare Higham, Higham, and Pranesh (2020)
```

Risks of lower precisions (2/4): absorption

 Even in absence of underflow, small elements can often be absorbed. Example: the harmonic series

$$\sum_{k=1}^{\infty} 1/k = \infty$$

is well-known to diverge ...

Risks of lower precisions (2/4): absorption

 Even in absence of underflow, small elements can often be absorbed. Example: the harmonic series

$$\sum_{k=1}^{\infty} 1/k = \infty$$

is well-known to diverge ...

Value of $\sum_{k=1}^{n} 1/k$ in floating-point arithmetic:

>>
$$s(1) = 1$$
;
for $i=2:n$
 $s(i) = s(i-1) + 1/i$;
end

Malone (2013)

Risks of lower precisions (3/4): accumulation

Consider the computation of $s = \sum_{i=1}^{n} x_i$ by recursive summation:

In total n-1 errors δ_i are accumulated, with $|\delta_i| \leq u$

$$\Rightarrow$$
 $|\widehat{s} - s| \leq (n-1)u \sum_{i=1}^{n} |x_i|$

- For the same reason, most numerical algorithms involving n-vectors, n × n matrices, etc. satisfy error bounds ∝ nu
- In fp16, $u = 5 \times 10^{-4} \Rightarrow nu > 1$ for n > 2048!!
- Even worse for bfloat16: $u = 4 \times 10^{-3} \Rightarrow nu > 1$ for n > 256
- nu is a **worst-case bound**: in practice, can expect \sqrt{nu} instead $\stackrel{\square}{=}$ Higham and Mary (2019) Still, with half precision, $\sqrt{nu} > 1$ for typical target sizes

- For the same reason, most numerical algorithms involving n-vectors, n × n matrices, etc. satisfy error bounds ∝ nu
- In fp16, $u = 5 \times 10^{-4} \Rightarrow nu > 1$ for n > 2048!!
- Even worse for bfloat16: $u = 4 \times 10^{-3} \Rightarrow nu > 1$ for n > 256
- nu is a **worst-case bound**: in practice, can expect \sqrt{nu} instead $\stackrel{\square}{=}$ Higham and Mary (2019) Still, with half precision, $\sqrt{nu} > 1$ for typical target sizes

Error in computing a $10 \times n \times 10$ product X^TY

Risks of lower precisions (4/4): ill conditioning

We have shown
$$\Rightarrow$$
 $|\widehat{s} - s| \le (n-1)u \sum_{i=1}^{n} |x_i|$

But what if $|s| = |\sum_{i=1}^{n} x_i| \ll \sum_{i=1}^{n} |x_i|$??

This happens in case of **cancellation**. We also say the sum is **ill conditioned**, the condition number being defined as

$$\kappa = \frac{\sum_{i=1}^{n} |x_i|}{\left|\sum_{i=1}^{n} x_i\right|}$$

Example: s = 10.8 + 0.4 - 11.1 = 0.1In bfloat16, $\hat{s} \approx 0.0874 \Rightarrow |\hat{s} - s| > 0.1|s|$ Even though we have only done 3 operations! More generally, ill-conditioned data is ubiquitous in scientific computing

Example: condition number of a matrix A is

$$\kappa(A) = \|A\| \|A^{-1}\| \quad \Big(= \sigma_1/\sigma_n \text{ with } \|\cdot\|_2 \Big)$$

Let Ax = b be solved by Gaussian elimination (LU factorization) in precision u. Then the computed solution \hat{x} satisfies

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le f(n)\kappa(A)u$$

Highly ill-conditioned matrices ($\kappa(A)$) of several orders of magnitude) routinely arise in many applications!

Mixed precision arithmetic

Recap so far: low precisions present...

- great opportunities to tackle today's HPC challenges (speed, scalability, energy, ...)
- significant risks to the numerical stability and accuracy of the computation

Mixed precision arithmetic: an approach to preserve the benefits while avoiding risks?

Main idea: combine low and high precisions together in a strategic way.

Two main approaches to employ mixed precision arithmetic:

- at the hardware level
- at the algorithm level

Intro

Mixed precision hardware

Mixed precision algorithms
FABsum
Iterative refinement
Mixed precision LU factorization
Mixed precision GMRES
Half-half arithmetic

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a 4×4 matrix multiplication in 1 clock cycle:

Element-wise multiplication of matrix A and B is performed with at least single precision. When .ctype or .dtype is .f32, accumulation of the intermediate values is performed with at least single precision. When both .ctype and .dtype are specified as .f16, the accumulation is performed with at least half precision. The accumulation order, rounding and handling of subnormal inputs is unspecified.

On A100, support for bfloat16 and tfloat32 was added

Google TPUs

- MXUs (matrix units) from Google's TPUs (Tensor Processing Units) carry out a MAC (Multiply and Accumulate) on 256×256 or 128×128 matrices
- Intel Cooper Lake CPUs will also have similar capabilities for dot products

Block FMA: a general framework

We consider the following framework 🖹 Blanchard et al. (2020)

• $A \in \mathbb{R}^{b_1 \times b}$, $B \in \mathbb{R}^{b \times b_2}$, and $C \in \mathbb{R}^{b_1 \times b_2}$,

$$\underbrace{D}_{u_{\text{low}} \text{ or } u_{\text{high}}} = \underbrace{C}_{u_{\text{low}} \text{ or } u_{\text{high}}} + \underbrace{A}_{u_{\text{low}}} \underbrace{B}_{u_{\text{low}}}$$

• AB is computed in precision \overline{u} , and then rounded to precision $u_{\rm FMA}=u_{\rm high}$ or $u_{\rm low}$

$$|\widehat{D} - D| \lesssim u_{\mathsf{FMA}}(|C| + |A||B|) + b\overline{u}|A||B|$$

- What choice of \overline{u} ?
 - $\circ \ \overline{u} = 0$: true FMA (only 1 rounding error per element of D)
 - $\circ \ \overline{u} = u_{low}$: not an FMA in terms of accuracy, just speed
 - $\circ \overline{u} = u_{high}$: not a true FMA, but close to one (FMA to first order)

Examples of block FMA units (present and future)

	b_1	b	b_2	u_{low}	U _{high}
Google TPU v1	256	256	256	bfloat16	fp32
Google TPU v2	128	128	128	bfloat16	fp32
NVIDIA Volta	4	4	4	fp16	fp32
NVIDIA Ampere	4	4	4	fp16	fp32
NVIDIA Ampere	4	4	4	bfloat16	fp32
NVIDIA Ampere	4	4	4	tfloat32	fp32
Intel NNP-T	32	32	32	bfloat16	fp32
Armv8-A	2	4	2	bfloat16	fp32

Matrix multiplication with block FMA

This algorithm computes C = AB using a block FMA, where $A, B, C \in \mathbb{R}^{n \times n}$, and returns C in precision u_{FMA}

```
\widetilde{A} \leftarrow \mathrm{fl_{low}}(A) \text{ and } \widetilde{B} \leftarrow \mathrm{fl_{low}}(B) \text{ (if necessary)} for i=1\colon n/b_1 do for j=1\colon n/b_2 do C_{ij}=0 for k=1\colon n/b do Compute C_{ij}=C_{ij}+\widetilde{A}_{ik}\widetilde{B}_{kj} using a block FMA end for end for
```

Matrix multiplication: error analysis

Let A and B already be given in precision u_{low} . For any row x of A and any column y of B, computing $s = c + x^T y$ classically produces

$$\widehat{s} = c(1 + \theta_n) + x_1 y_1 (1 + \theta_{n+1}) + x_2 y_2 (1 + \theta'_n) + x_3 y_3 (1 + \theta_{n-1}) + \dots + x_n y_n (1 + \theta_2),$$

where $z_k = x_k y_k$ and $|\theta_k| \lesssim ku$.

Matrix multiplication: error analysis

Let A and B already be given in precision u_{low} . For any row x of A and any column y of B, computing $s = c + x^T y$ classically produces

$$\widehat{s} = c(1 + \theta_n) + x_1 y_1 (1 + \theta_{n+1}) + x_2 y_2 (1 + \theta'_n) + x_3 y_3 (1 + \theta_{n-1}) + \dots + x_n y_n (1 + \theta_2),$$

where $z_k = x_k y_k$ and $|\theta_k| \lesssim ku$. With a block FMA, we have instead

$$\widehat{s} = \left(z_1 \left(1 + \theta_b^{(1)}\right) + \dots + z_b \left(1 + \theta_2^{(1)}\right)\right) \prod_{i=1}^{n/b} (1 + \delta_i) + \dots + \left(z_{n-b+1} \left(1 + \theta_b^{(n/b)}\right) + \dots + z_n \left(1 + \theta_2^{(n/b)}\right)\right) (1 + \delta_{n/b})$$

where $|\theta_k| \lesssim k\overline{u}$, and $|\delta_k| \leq u_{\text{FMA}}$

Overall:
$$|s - \widehat{s}| \lesssim (\frac{n}{b}u_{\text{FMA}} + b\overline{u})|x|^T|y|$$

Matrix multiplication: error analysis (cont'd)

If A and B are already given in precision u_{low} :

$$\widehat{C} = AB + \Delta C, \quad |\Delta C| \lesssim \left(\frac{n}{b}u_{\text{FMA}} + b\overline{u}\right)|A||B|$$

If not, we must account for the initial conversion:

$$\begin{split} \widetilde{A} &= \mathrm{fl_{low}}(A) = A + \Delta A, \quad |\Delta A| \leq u_{\mathrm{low}}|A|, \\ \widetilde{B} &= \mathrm{fl_{low}}(B) = B + \Delta B, \quad |\Delta B| \leq u_{\mathrm{low}}|B|. \end{split}$$

$$\begin{split} \widehat{C} &= \widetilde{A}\widetilde{B} + \Delta C, \qquad |\Delta C| \lesssim \left(\frac{n}{b}u_{\text{FMA}} + b\overline{u}\right)|\widetilde{A}||\widetilde{B}|, \\ &= AB + \Delta AB + A\Delta B + \Delta A\Delta B + \Delta C \\ &= AB + E, \qquad |E| \lesssim \left(2u_{\text{low}} + \frac{n}{b}u_{\text{FMA}} + b\overline{u}\right)|A||B| \end{split}$$

Matrix multiplication: error analysis (cont'd)

If A and B are already given in precision u_{low} :

$$\widehat{C} = AB + \Delta C, \quad |\Delta C| \lesssim (\frac{n}{b}u_{\text{FMA}} + b\overline{u})|A||B|$$

If not, we must account for the initial conversion:

$$\begin{split} \widetilde{A} &= \mathrm{fl_{low}}(A) = A + \Delta A, \quad |\Delta A| \leq u_{\mathrm{low}}|A|, \\ \widetilde{B} &= \mathrm{fl_{low}}(B) = B + \Delta B, \quad |\Delta B| \leq u_{\mathrm{low}}|B|. \end{split}$$

$$\begin{split} \widehat{C} &= \widetilde{A}\widetilde{B} + \Delta C, \qquad |\Delta C| \lesssim \left(\frac{n}{b}u_{\text{FMA}} + b\overline{u}\right)|\widetilde{A}||\widetilde{B}|, \\ &= AB + \Delta AB + A\Delta B + \Delta A\Delta B + \Delta C \\ &= AB + E, \qquad |E| \lesssim \left(\underbrace{\frac{2u_{\text{low}}}{\text{Conversion}}} + \underbrace{\frac{n}{b}u_{\text{FMA}} + b\overline{u}}_{\text{Accumulation}}\right)|A||B| \end{split}$$

Evaluation method			Bound
Stand	ard in precision	u_{low}	nu _{low}
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{low}$	$(n/b+b)u_{low}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{high}$	$(n/b)u_{low} + bu_{high}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = 0$	$(n/b)u_{low}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{low}$	$(b+2)u_{low} + (n/b)u_{high}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{high}$	$2u_{low} + (n/b + b)u_{high}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = 0$	$2u_{low} + (n/b)u_{high}$
Standa	ard in precision	U _{high}	<i>nu</i> _{high}

Evaluation method			Bound
Stand	ard in precision	u_{low}	nu _{low}
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{low}$	$(n/b+b)u_{low}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{high}$	$(n/b)u_{low} + bu_{high}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = 0$	$(n/b)u_{low}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{low}$	$(b+2)u_{low} + (n/b)u_{high}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{high}$	$2u_{low} + (n/b + b)u_{high}$
Block FMA	$MA u_{FMA} = u_{high} \overline{u} = 0$		$2u_{low} + (n/b)u_{high}$
Standa	ard in precision	U _{high}	nu_{high}

• $u_{\text{FMA}} = \overline{u} = u_{\text{low}} \Rightarrow \text{reduction by factor } b \text{ from blocked sum}$

Evaluation method			Bound
Stand	ard in precision	u_{low}	nu_{low}
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{low}$	$(n/b+b)u_{low}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{high}$	$(n/b)u_{low} + bu_{high}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = 0$	$(n/b)u_{low}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{low}$	$(b+2)u_{\text{low}} + (n/b)u_{\text{high}}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{high}$	$2u_{low} + (n/b + b)u_{high}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = 0$	$2u_{low} + (n/b)u_{high}$
Standa	ard in precision	U _{high}	<i>nu</i> _{high}

- $u_{\text{FMA}} = \overline{u} = u_{\text{low}} \Rightarrow \text{reduction by factor } b \text{ from blocked sum}$
- $u_{\rm FMA} = u_{\rm low}$, $\overline{u} \ll u_{\rm low} \Rightarrow {\rm smaller} \; \overline{u}$ not very useful

Evaluation method			Bound		
Stand	ard in precision	u_{low}	nu_{low}		
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{low}$	$(n/b+b)u_{low}$		
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{high}$	$(n/b)u_{low} + bu_{high}$		
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = 0$	$(n/b)u_{low}$		
Block FMA	$u_{\text{FMA}} = u_{\text{high}}$	$\overline{u} = u_{low}$	$(b+2)u_{\text{low}} + (n/b)u_{\text{high}}$		
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{high}$	$2u_{\text{low}} + (n/b + b)u_{\text{high}}$		
Block FMA	$u_{\rm FMA} = u_{\rm high}$	$\overline{u} = 0$	$2u_{low} + (n/b)u_{high}$		
Stand	Standard in precision u_{high} nu_{high}				

- $u_{\text{FMA}} = \overline{u} = u_{\text{low}} \Rightarrow \text{reduction by factor } b \text{ from blocked sum}$
- $u_{\rm FMA} = u_{\rm low}$, $\overline{u} \ll u_{\rm low} \Rightarrow {\rm smaller} \; \overline{u}$ not very useful
- $u_{\text{FMA}} = u_{\text{high}} \Rightarrow \text{reduction by factor } \min(n/2, u_{\text{low}}/u_{\text{high}}),$ $\overline{u} \ll u_{\text{low}} \text{ useful, } \overline{u} = 0 \text{ not useful}$

Evaluation method			Bound
Stand	ard in precision	u_{low}	nu _{low}
Block FMA	$u_{\text{FMA}} = u_{\text{low}}$ $\overline{u} = u_{\text{low}}$		$(n/b+b)u_{low}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = u_{high}$	$(n/b)u_{low} + bu_{high}$
Block FMA	$u_{FMA} = u_{low}$	$\overline{u} = 0$	$(n/b)u_{low}$
Block FMA $u_{\text{FMA}} = u_{\text{high}}$ $\overline{u} = u_{\text{low}}$		$(b+2)u_{\text{low}} + (n/b)u_{\text{high}}$	
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = u_{high}$	$2u_{\text{low}} + (n/b + b)u_{\text{high}}$
Block FMA	$u_{FMA} = u_{high}$	$\overline{u} = 0$	$2u_{\text{low}} + (n/b)u_{\text{high}}$
Stand	ard in precision	<i>nu</i> _{high}	

- $u_{\text{FMA}} = \overline{u} = u_{\text{low}} \Rightarrow \text{reduction by factor } b \text{ from blocked sum}$
- $u_{\text{FMA}} = u_{\text{low}}$, $\overline{u} \ll u_{\text{low}} \Rightarrow \text{smaller } \overline{u} \text{ not very useful}$
- $u_{\text{FMA}} = u_{\text{high}} \Rightarrow \text{reduction by factor } \min(n/2, u_{\text{low}}/u_{\text{high}}),$ $\overline{u} \ll u_{\text{low}} \text{ useful, } \overline{u} = 0 \text{ not useful}$

Conclusion: choice of $u_{\rm FMA}$ critical, \overline{u} less so

Standard	Tensor core TC16	Tensor core TC32	Standard
fp16	$(u_{FMA} = \overline{u} = u_{16})$	$(u_{FMA} = \overline{u} = u_{32})$	fp32
<u>nu</u> ₁₆	$(n/4)u_{16}$	$\frac{2}{2}u_{16} + (n/4)u_{32}$	nu_{32}

Standard	Tensor core TC16	Tensor core TC32	Standard
fp16	$(u_{FMA} = \overline{u} = u_{16})$	$(u_{FMA} = \overline{u} = u_{32})$	fp32
<u>nu</u> ₁₆	$(n/4)u_{16}$	$2u_{16} + (n/4)u_{32}$	nu_{32}

Standard	Tensor core TC16	Tensor core TC32	Standard
fp16	$(u_{FMA} = \overline{u} = u_{16})$	$(u_{FMA} = \overline{u} = u_{32})$	fp32
<u>nu</u> ₁₆	$(n/4)u_{16}$	$\frac{2}{2}u_{16} + (n/4)u_{32}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

Standard	Tensor core TC16	Tensor core TC32	Standard
fp16	$(u_{FMA} = \overline{u} = u_{16})$	$(u_{FMA} = \overline{u} = u_{32})$	fp32
<u>n</u> u ₁₆	$(n/4)u_{16}$	$2u_{16} + (n/4)u_{32}$	nu_{32}

Standard	Tensor core TC16	Tensor core TC32	Standard
fp16	$(u_{FMA} = \overline{u} = u_{16})$	$(u_{FMA} = \overline{u} = u_{32})$	fp32
nu ₁₆	$(n/4)u_{16}$	$\frac{2}{2}u_{16} + (n/4)u_{32}$	nu_{32}

Conclusion: TC32 significantly more accurate than TC16, with almost no performance loss

Intro

Mixed precision hardware

Mixed precision algorithms FABsum

Iterative refinement
Mixed precision LU factorization
Mixed precision GMRES
Half-half arithmetic

Reducing accumulation without tensor cores?

Existing algorithms to avoid error accumulation are expensive. For example, **compensated summation** B Kahan (1965)

$$s = 0$$
; $e = 0$;
for $i = 1$: n do
 $y = x_i + e$;
 $t = s$; $s = t + y$;
 $e = (t - s) + y$;
end for

yields an **error bound** 2u but is $4 \times$ **more expensive**

 \Rightarrow Not suited for low precisions: simply using higher precision would be cheaper!

Can we design more accurate algorithms while preserving high performance?

Blocked summation

Classical Blocked summation algorithm:

for
$$i=1$$
: n/b do
Compute $s_i=\sum_{j=(i-1)b+1}^{ib}x_j$.
end for
Compute $s=\sum_{i=1}^{n/b}s_i$.

$$\underbrace{x_1 \cdots x_b}_{s_1} \underbrace{\cdots}_{m} \underbrace{\cdots}_{s_{n/b}}$$

- Widely used in NLA libraries (BLAS, LAPACK, ...)
- Error bound $nu \rightarrow (b + n/b)u$

Blocked summation

Fast Accurate Blocked summation algorithm (FABsum):

for
$$i=1$$
: n/b do
 Compute $s_i=\sum_{j=(i-1)b+1}^{ib}x_j$ with FastSum.
 end for
 Compute $s=\sum_{i=1}^{n/b}s_i$ with AccurateSum.

$$\underbrace{x_1 \cdots x_b}_{s_1} \quad \underbrace{\cdots}_{m} \quad \underbrace{x_{n-b+1} \cdots x_n}_{s_{n/b}}$$

- Widely used in NLA libraries (BLAS, LAPACK, ...)
- Error bound $nu \rightarrow (b + n/b)u \rightarrow bu$ with FABsum
- Only n/b additions with AccurateSum
- 🖹 Blanchard, Higham, and Mary (2020)

Backward error for summing random uniform [0,1] data

Implementation of FABsum in PLASMA library (tiled matrix NLA operations)

• First approach: set b equal to tile size t

Implementation of FABsum in PLASMA library (tiled matrix NLA operations)

- First approach: set b equal to tile size t
- Improved approach: allow $b \neq t$ ($b \gg t$ interesting here)

Intro

Mixed precision hardware

Mixed precision algorithms

FABsum

Iterative refinement

Mixed precision LU factorization Mixed precision GMRES

Half-half arithmetic

Solving Ax = b

Standard method to solve Ax = b:

- 1. Factorize A = LU, where L and U are lower and upper triangular
- 2. Solve Ly = b and Ux = y

Solving Ax = b

Standard method to solve Ax = b:

- 1. Factorize A = LU, where L and U are lower and upper triangular
- 2. Solve Ly = b and Ux = y

An algorithm to refine the solution: **iterative refinement** (IR)

```
Solve Ax_1 = b as above

for i = 1: nsteps do

r_i = b - Ax_i

Solve Ad_i = r_i via d_i = U^{-1}(L^{-1}r_i)

x_{i+1} = x_i + d_i

end for
```

- Newton's method for f(x) = Ax b
- Many variants over the years, depending on choice of precisions and solver for Ad_i = r_i

Error analysis of general IR

Carson and Higham (2018) analyze the most general version of IR to date:

```
Solve Ax_1 = b by LU factorization at precision u_f for i = 1: nsteps do r_i = b - Ax_i at precision u_r Solve Ad_i = r_i such that \|\widehat{d}_i - d_i\| \le \phi_i \|d_i\| x_{i+1} = x_i + d_i at precision u end for
```

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_i < 1$, the forward error is reduced at each step by a factor ϕ_i until it reaches its limiting value

$$\frac{\|\widehat{x} - x\|}{\|x\|} \le u_r \kappa(A) + u$$

Choice of solver determines ϕ_i :

• LU solver: $d_i = U^{-1}L^{-1}r_i \implies \|\widehat{d}_i - d_i\| \le \kappa(A)u_f\|d_i\|$

$$\Rightarrow \phi_i < 1 \Leftrightarrow \kappa(A)u_f < 1$$

Choice of solver determines ϕ_i :

- LU solver: $d_i = U^{-1}L^{-1}r_i \implies \|\widehat{d}_i d_i\| \le \kappa(A)u_f\|d_i\|$
- $\Rightarrow \phi_i < 1 \Leftrightarrow \kappa(A)u_f < 1$

- **GMRES solver:** solve $Ad_i = r_i$ via GMRES preconditioned by LU factors
- $\kappa(U^{-1}L^{-1}A) \leq (1 + \kappa(A)u_f)^2 \Rightarrow$ potentially much lower than $\kappa(A)$
- Precise value of ϕ_i depends on precisions used within GMRES
- Best possible condition: $\kappa(A)^2 u_f^2 u < 1$

```
Solve Ax_1 = b by LU factorization in precision u_f

for i = 1: nsteps do

r_i = b - Ax_i in precision u_r

Solve Ad_i = r_i

x_{i+1} = x_i + d_i in precision u_r

end for
```

 Uf	и	u _r	$\max \kappa(A)$	Forward error

Solve
$$Ax_1 = b$$
 by LU factorization $u_f =$ double for $i = 1$: $nsteps$ do $v_i = b - Ax_i$ $u_r =$ quadruple Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $u_i =$ double end for

Traditional

🖹 Wilkinson (1948)				Moler (1967)	
	Uf	и	Ur	$\max \kappa(A)$	Forward error
Traditional	D	D	Q	10^{16}	10^{-16}

Solve
$$Ax_1 = b$$
 by LU factorization $u_f =$ double for $i = 1$: $nsteps$ do $r_i = b - Ax_i$ $u_r =$ double Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$ $u =$ double end for

Fixed-precision

Solve
$$Ax_1 = b$$
 by LU factorization $u_f =$ single for $i = 1$: $nsteps$ do $v_i = b - Ax_i$ $u_r =$ double Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $u_i =$ double end for

Low precision factorization

Langou et al (2006)

	Uf	и	u _r	$\max \kappa(A)$	Forward error
Traditional Fixed	D D	D D	Q D	10^{16} 10^{16}	10^{-16} $\kappa(A) \cdot 10^{-16}$ $\kappa(A) \cdot 10^{-16}$
LP factorization	S	D	D	108	$\kappa(A) \cdot 10^{-10}$

Solve
$$Ax_1 = b$$
 by LU factorization $u_f = \mathbf{single}$ for $i = 1$: $nsteps$ do $r_i = b - Ax_i$ $u_r = \mathbf{quadruple}$ Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $u = \mathbf{double}$ end for

Three precisions

Carson and Higham (2018)

	U_f	и	u _r	$\max \kappa(A)$	Forward error
Traditional	D	D	Q	10^{16}	10^{-16}
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
LP factorization	S	D	D	10^{8}	$\kappa(A) \cdot 10^{-16}$
3 precisions	S	D	Q	10^{8}	10^{-16}

Solve
$$Ax_1 = b$$
 by LU factorization $u_f =$ single for $i = 1$: $nsteps$ do $v_i = b - Ax_i$ $u_r =$ quadruple Solve $Ad_i = r_i$ via preconditioned GMRES $v_{i+1} = v_i + d_i$ $v_i =$ quadruple end for

GMRES-based

Carson and Higham (2017)

	U_f	и	u _r	$\max \kappa(A)$	Forward error
Traditional	D	D	Q	10^{16}	10^{-16}
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
LP factorization	S	D	D	10^{8}	$\kappa(A) \cdot 10^{-16}$
3 precisions	S	D	Q	10^{8}	10^{-16}
GMRES-based	S	D	Q	Up to 10^{16}	10^{-16}

```
Solve Ax_1 = b by LU factorization u_f = \mathbf{half} for i = 1: nsteps do r_i = b - Ax_i u_r = \mathbf{quadruple} Solve Ad_i = r_i x_{i+1} = x_i + d_i u = \mathbf{double} end for
```

	Uf	и	Ur	$\max \kappa(A)$	Forward error
Traditional	D	D	Q	10^{16}	10^{-16}
Fixed	D	D	D	10^{16}	$\kappa(A) \cdot 10^{-16}$
LP factorization	Н	D	D	10^{4}	$\kappa(A) \cdot 10^{-16}$
3 precisions	Н	D	Q	10^{4}	10^{-16}
GMRES-based	Н	D	Q	Up to 10^{12}	10^{-16}

Many new variants possibe with half precision!

IBM Cell 3.2 GHz Ax = b Performance

Langou et al (2006)

Intro

Mixed precision hardware

Mixed precision algorithms

FABsum

Iterative refinement
Mixed precision LU factorization
Mixed precision GMRES
Half-half arithmetic

LU factorization (Gaussian elimination)

- Objective: given $A \in \mathbb{R}^{n \times n}$, compute lower and upper triangular matrices L and U such that A = LU
- $\forall i,j$ $a_{ij} = \sum_{k=1}^{\min(i,j)} \ell_{ik} u_{kj}$

```
for k = 1: n do
    u_{kk} = a_{kk} (\ell_{kk} = 1)
    for i = k + 1: n do
         \ell_{ik} = a_{ik}/u_{kk} and u_{ki} = a_{ki}
     end for
    for i = k + 1: n/b do
         for j = k + 1: n/b do
              a_{ii} \leftarrow a_{ii} - \ell_{ik} u_{ki}
         end for
    end for
end for
```

• $2n^3/3$ flops

Block LU factorization

Block version to use matrix-matrix operations

```
for k = 1: n/b do
    Factorize L_{kk}U_{kk} = A_{kk} (with unblocked alg.)
    for i = k + 1: n/b do
         Solve L_{ik}U_{kk} = A_{ik} and L_{kk}U_{ki} = A_{ki} for L_{ik} and U_{ki}
    end for
    for i = k + 1: n/b do
         for i = k + 1: n/b do
             A_{ij} \leftarrow A_{ii} - \widetilde{L}_{ik}\widetilde{U}_{ki}
         end for
    end for
end for
```

Block LU factorization with block FMA

- Block version to use matrix-matrix operations
- With a block FMA: $A \in \mathbb{R}^{n \times n}$ is given in precision u_{high} , and L and U are returned in precision u_{FMA}

```
for k = 1: n/b do
     Factorize L_{kk}U_{kk} = A_{kk} (with unblocked alg.)
     for i = k + 1: n/b do
          Solve L_{ik}U_{kk} = A_{ik} and L_{kk}U_{ki} = A_{ki} for L_{ik} and U_{ki}
     end for
     for i = k + 1: n/b do
         for j = k + 1: n/b do
              L_{ik} \leftarrow \mathsf{fl}_{\mathsf{low}}(L_{ik}) and U_{ki} \leftarrow \mathsf{fl}_{\mathsf{low}}(U_{ki})
              A_{ii} \leftarrow A_{ii} - L_{ik}U_{ki} using a block FMA
          end for
     end for
end for
```

 $_{43/60}^{ullet}$ $O(n^3)$ part of the flops done with block FMA

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds to first order Blanchard et al. (2020)

Standard fp16	Tensor core TC16	Tensor core TC32	Standard fp32
nu_{16}	$n/4u_{16}$	$\frac{2}{3}u_{16} + (n/4)u_{32}$	nu_{32}
	10 ⁻³ fp16 TC32 or 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶	TC16 - fp32	mmii

20,000

Matrix size: n

30,000

40,000

10,000

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds to first order Blanchard et al. (2020)

Standard	Tensor core	Tensor core	Standard
fp16	TC16	TC32	fp32
nu_{16}	$n/4u_{16}$	$\frac{2}{2}u_{16} + (n/4)u_{32}$	nu_{32}

Impact on iterative refinement

TC performance suboptimal here, improved version by
 Lopez and Mary (2020) surpasses 50 TFLOPS mark

Impact on iterative refinement

- TC performance suboptimal here, improved version by Lopez and Mary (2020) surpasses 50 TFLOPS mark
- TC accuracy boost sometimes critical!

Intro

Mixed precision hardware

Mixed precision algorithms

FABsum

Iterative refinement

Mixed precision LU factorization

Mixed precision GMRES

Half-half arithmetic

GMRES 101

- Krylov method to solve Ax = b: build orthogonal basis $B_k = \{r_0, Ar_0, A^2r_0, \dots, A^kr_0\}$
- At iteration k:
 - Add $q_k = A^{k-1}r_0 = Aq_{k-1}$ to the basis \Rightarrow matrix-vector product with A
 - Find $x_k \in B_k$ minimizing $r_k = Ax_k b$
 - Repeat if $||r_k||$ is not small enough
- Convergence strongly depends on matrix ⇒ preconditioning is needed
- Preconditioned GMRES: apply GMRES to MAx = Mb where $M \approx A^{-1}$
- Low precision LU preconditioner: $M = U^{-1}L^{-1} \Rightarrow$ requires triangular solves

GMRES solver in IR

- Goal: solve $Ad_i = r_i$ with GMRES and bound $\phi_i = \|\widehat{d}_i d_i\|/\|d_i\|$
- Theorem from Paige, Rozloznik, Strakos (2006): if unpreconditioned GMRES run in precision u converges to a solution \widehat{x} of Ax = b, then \widehat{x} satisfies $\|\widehat{x} x\| \lesssim u\kappa(A)\|x\| \Rightarrow \phi_i = \kappa(A)u$
- What about LU-preconditioned GMRES? Two key differences:
 - The system being solved is $\widetilde{A}x = b \Rightarrow$ bound becomes of order $\kappa(\widetilde{A})u$, where $\kappa(\widetilde{A}) \leq u_f^2 \kappa(A)^2$
 - $\circ~$ The matrix-vector products are performed with $\widetilde{A} = U^{-1}L^{-1}A$
 - $y = Ax \Rightarrow \|\widehat{y} y\| \le u\|A\|\|x\|$
 - $y = U^{-1}L^{-1}Ax \Rightarrow \|\hat{y} y\| \le u\|A\|\|U^{-1}\|\|L^{-1}\|\|x\| \lesssim \kappa(A)u\|\widetilde{A}\|\|x\|$
 - \Rightarrow extra $\kappa(A)$ term appears, it is as if GMRES was run in "precision" $\kappa(A)u$
- Overall: $\phi_i = \kappa(\widetilde{A})\kappa(A)u$

Five precision GMRES-IR

- Matrix-vector products bring extra κ(A) ⇒ perform them in higher precision?
- Conversely, we only need $\phi_i < 1$, can use lower precision?
- \Rightarrow General mixed precision GMRES: matvec in precision $u_p \leq u^2$, rest of GMRES in precision $u_q \leq u$
- $\Rightarrow \phi_i = \kappa(\widetilde{A}) (\kappa(A)u_p + u_g)u$

```
Solve Ax_1 = b by LU factorization at precision u_f for i = 1: nsteps do

r_i = b - Ax_i at precision u_r

Solve Ad_i = r_i with preconditioned GMRES in precision u_g except matvecs in precision u_p

x_{i+1} = x_i + d_i at precision u

end for
```

FIVE precisions in total!

Maximal $\kappa(A)$ for which convergence is guaranteed with $u_f=H$ and u=D

LU-IR condition: $\kappa(A) < 2 \times 10^3$

	$u_p = Q$	$u_p = D$	$u_p = S$
	2×10^{11}	3×10^{7}	4×10^{4}
9	8×10^6 9×10^4	8×10^6 9×10^4	4×10^4 4×10^4

Maximal $\kappa(A)$ for which convergence is guaranteed

with $u_{\rm f}=H$ and u=D LU-IR condition: $\kappa(A)<2\times10^3$

	$u_p = Q$	$u_p = D$	$u_p = S$
$u_g = D$	2×10^{11}	3×10^7	4×10^4
$u_g = S$	8×10^{6}	8×10^6	4×10^4
$u_g = H$	9×10^4	9×10^4	4×10^4

50/60

Maximal $\kappa(A)$ for which convergence is guaranteed

with $u_f=H$ and u=D LU-IR condition: $\kappa(A) < 2 \times 10^3$

		\ /	
	$u_p = Q$	$u_p = D$	$u_p = S$
J	2×10^{11}	3×10^7	4×10^4
$u_g = S$	8×10^{6}	8×10^{6}	4×10^4
$u_g = H$	9×10^4	9×10^{4}	4×10^4

50/60

Maximal $\kappa(A)$ for which convergence is guaranteed

with $u_f = H$ and u = DLU-IR condition: $\kappa(A) < 2 \times 10^3$

		(/	
	$u_p = Q$	$u_p = D$	$u_p = S$
$u_g = D$	2×10^{11}	3×10^7	4×10^4
$u_g = S$	8×10^{6}	8×10^6	4×10^4
$u_g = H$	9×10^4	9×10^4	4×10^4

50/60

Intro

Mixed precision hardware

Mixed precision algorithms

FABsum

Iterative refinement

Mixed precision LU factorization

Mixed precision GMRES

Half-half arithmetic

Half-half arithmetic

The idea: barring overflow/underflow, we can split A as

$$A = A_1 + A_2 + E$$
 with A_i in fp16 $\stackrel{\square}{\blacksquare}$ Markidis et al. (2018) $A = A_1 + A_2 + A_3 + E$ with A_i in bfloat16 $\stackrel{\square}{\blacksquare}$ Henry et al. (2019)

with $|E| \le cu_{32}|A|$. Split B similarly and compute C = AB as

$$C \approx \sum_{i,j} A_i B_j$$
 using tensor cores

Similar to double-double arithmetic, but different

- Typical use of double-double: input in quad, target accuracy is quad, computations in double with compensated techniques
- Here: input at least single, target is single, computations with tensor cores ⇒ requires converting input to half

For any $x \in \mathbb{R}$, let

$$\begin{split} x_1 &= \mathsf{fl}_{\mathsf{low}}(x) = x(1+\delta_1), \quad |\delta_1| \leq u_{\mathsf{low}} \\ x_2 &= \mathsf{fl}_{\mathsf{low}}(x-x_1) = -x\delta_1(1+\delta_2), \quad |\delta_2| \leq u_{\mathsf{low}} \end{split}$$

Thefore

$$x_1 + x_2 = x - x\delta_1\delta_2 = x(1+\delta), \quad |\delta| \le u_{low}^2.$$

Applying this idea recursively:

$$x = \sum_{i=1}^{p} x_i + \Delta x, \quad |\Delta x| \le u_{\text{low}}^p |x|.$$

Using this representation elementwise on A and B:

$$A = \sum_{i=1}^{p} A_i + \Delta A, \quad |\Delta A| \le u_{\text{low}}^p |A|,$$

$$B = \sum_{i=1}^{p} B_i + \Delta B, \quad |\Delta B| \le u_{\text{low}}^p |B|.$$

Then the product C = AB is given by

$$C = \sum_{i=1}^{p} \sum_{j=1}^{p} A_i B_j + A \Delta B + \Delta A B - \Delta A \Delta B.$$

Compute the p^2 products A_iB_j by chaining calls to the block FMA:

$$\widehat{C} = C + \Delta C, \quad |\Delta C| \le \gamma_{n+\rho^2}^{\mathsf{high}} |A||B|.$$

The precise constant is very dependent on implementation: up to p^2n with recursive summation, $n + p^2$ is for blocked summation (each A_iB_j is computed independently). Overall

$$\widehat{C} = AB + E$$
, $|E| \le \left(2u_{\text{low}}^p + u_{\text{low}}^{2p} + \gamma_{n+n^2}^{\text{high}}\right)|A||B|$.

Small p is enough for practical choices of u_{low} and u_{high} :

- p=2 for fp16 and fp32 ($u_{\rm low}^2=4u_{\rm high}$). Minor improvement for $p\geq 3$ because $\gamma_{n+p^2}^{\rm high}$ starts dominating
- $\stackrel{\bullet}{p} = 2$ and p = 3 both of interest for bfloat16 and fp32

Not all p^2 products A_iB_j need be computed!

$$|A_i| \le u_{\text{low}}^{i-1}(1 + u_{\text{low}})|A|, \quad i = 1 : p$$

 $|B_j| \le u_{\text{low}}^{j-1}(1 + u_{\text{low}})|B|, \quad j = 1 : p$

and thus

$$|A_i||B_j| \le u_{\text{low}}^{i+j-2} (1 + u_{\text{low}})^2 |A||B|.$$

Therefore we can skip any product A_iB_j such that i+j>p+1 and obtain the modified bound $\widehat{C}=AB+E_i$

$$|E| \le \left(2u_{\text{low}}^p + u_{\text{low}}^{2p} + \gamma_{n+p^2}^{\text{high}} + \sum_{i=1}^{p-1} (p-i)u_{\text{low}}^{p+i-1} (1+u_{\text{low}})^2\right)|A||B|.$$

- error to order u_{low}^p : constant $2 \to p+1$
- number of products: $p^2 \rightarrow p(p+1)/2$
- further reducing the number of products: not useful (similar error as p-1 splits)

Experiments with V100 (credits: Mantas Mikaitis)

Conclusions

- Low precision arithmetics provide great opportunities to tackle today's HPC challenges, but also put at risk the stability and accuracy of computations
- ⇒ Mixed precision arithmetic has emerged as a highly successful compromise
 - More and more hardware possess intrinsic mixed precision capabilities

 crucial to understand them and exploit them effectively
 - Mixed precision variants being developed for a wide range of numerical algorithms

```
Slides available at https://www-pequan.lip6.fr/~tmary/doc/HPCA.pdf
```

Sujet de stage 1

Topic: mixed precision sparse matrix-vector product (SpMV)

SpMV y = Ax: core kernel of numerous applications: PDE solution, graph problems, machine learning, etc.

SpMVs are memory bound: goal is to reduce number of accesses to A

- 🖹 Ahmad, Sundar, and Hall (2019) : split $A = A_d + A_s$
 - \circ A_d contains "large" elements and is in double precision
 - \circ A_s contains "small" elements and is in single precision
 - Accesses to A_s take half the time
 - o Based on the idea that "small" elements matter "less"

Questions:

- Error analysis? What is "large", what is "small"?
- Vector x is not taken into account!
- o Impact on convergence of iterative linear solvers?
- Use of half precision?

Sujet de stage 2

Topic: mixed precision GMRES-based iterative refinement on GPUs

- Goal: solve real-life, ill-conditioned linear systems on modern GPUs
- Main tool: GMRES-based iterative refinement with half precision factorization
- Work direction 1, in collaboration with Univ. of Tennessee (USA): implement variant of ☐ Lopez and Mary (2020) that reduces data movement ⇒ compromise between speed and accuracy
- Work direction 2, in collaboration with IRIT (France): implement five-precision variant on GPUs ⇒ compromise between speed and robustness