

MULTIPLEXER

COMBINATIONAL LOGIC CIRCUITS

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Synthesis of Logic Functions

Shannon's Expansion Theorem

SYNTHESIS OF LOGIC FUNCTIONS

MULTIPLEXER

4-to-1 Multiplexer

A <u>multiplexer</u> circuit has several data inputs, one or more select inputs, and <u>one output</u>. It passes the signal value on one of the data inputs to the output.

A multiplexer that has n data inputs $(D_0, D_1, \dots D_{n-1})$, requires $[\log_2 n]$ select inputs.

2-TO-1 MUX

Graphical Symbol

Truth Table

S	f
0	D_0
1	D_1

Sum-of-Products Implementation

4-TO-1 MUX

Graphical Symbol

Truth Table

s_1	s_0	f
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Sum-of-Products Implementation

USING 2-TO-1 MUX

Using 2-to-1 MUX to build a 4-to-1 MUX

Using 2-to-1 MUX to build a 16-to-1 MUX

XOR LOGIC GATE

Implementation using 4-to-1 MUX

D_1	D_0	f
0	0	0
0	1	1
1	0	1
1	1	0

Minterm
\overline{D}_1D_0
$D_1\overline{D}_0$

Implementation using 2-to-1 MUX

D_1		f
>	0	D_0
>	1	\overline{D}_0

Modified Truth Table

Implement the logic function described by the truth table using a 4-to-1 multiplexer configuration.

D_2	D_1	D_0	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Implement the logic function described by the truth table using a 2-to-1 multiplexer configuration.

Implement the three-input XOR described by the truth table using a 4-to-1 multiplexer configuration.

D_2	D_1	D_0	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Implement the three-input XOR described by the truth table using a 2-to-1 multiplexer configuration.

SHANNON'S EXPANSION THEOREM

SHANNON'S EXPANSION THEOREM

Shannon's expansion theorem states that any

Boolean function $f(x_0, x_1 ..., x_{n-1})$ can be written in the form:

$$f(x_0, x_1, \dots x_{n-1}) = \overline{x}_1 f_{\overline{x}_1} + x_1 f_{x_1}$$

<u>where</u>

 $f_{\bar{x}_1}$ = the cofactor of f with respect to \bar{x}_1 = $(x_0, \mathbf{0}, \dots x_{n-1})$

 f_{x_1} = the cofactor of f with respect to x_1 = $(x_0, \mathbf{1}, ... x_{n-1})$

Expanding the given function with respect to x_1

$$f(x_0, x_1, x_2) = x_0 x_1 + x_0 x_2 + x_1 x_2$$

$$f(x_0, x_1, x_2) = \bar{x}_1(x_0 \cdot 0 + x_0 x_2 + 0 \cdot x_2)$$

$$+ x_1(x_0 \cdot 1 + x_0x_2 + 1 \cdot x_2)$$

$$f(x_0, x_1, x_2) = \bar{x}_1(x_0 x_2) + x_1(x_0 + x_0 x_2 + x_2)$$

$$f(x_0, x_1, x_2) = \bar{x}_1(x_0 x_2) + x_1(x_0 + x_2)$$

Implement the logic function described by the truth table using Shannon's decomposition method.

D_2	D_1	D_0	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Implement the three-input XOR described by the truth table using a Shannon's decomposition method.

D_2	D_1	D_0	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Design a full-adder circuit using Shannon's decomposition method and simulate it in Multisim using the 74151 multiplexer.

A	В	C_{in}	C_{out}	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

LABORATORY

