	PAGE NO.: DATE: / /
	Amen Kumar Pandey RA1911003010685
	odrtificial Intelligence Lab
	dim-Implementation of constraint satisfaction problem- (ryphauthmetic problem (SEND+MORE: MONEY)
	Problem Formulation
	Given an empression where two words add to give a third word, assign some unique digit (0-9) to each letter where same letters cannot be assignate different digit.
	Sixplay the possible mappings to each of the letters S, E, N, D, M, O, R and Y
	Initial State
2	D=?, E=9, Y=?, N=9, k=?, O=?, S=?, M=?
	$C_1 = ?, C_2 = ?, C_3 = ?$
	C1, C2, C3 stands for carry variable respectively

use dissume that c2 (cany)=1 C2 (carry) (D E + O N 6 use get Nas 6 Further adding next two terms Mand R	
C2 (carry) D E + 0 N 6 ue get Nas 6 Further adding nent two terms Mand R	
· Further adding nent two terms Mand R	
+R X +8 ds F is already E 14 assigned value &	
ul consider C3=1 N 6 we get R=8 + R + 8 E 15	
· On adding last two terms I carry must be produced produced 7 † E 7 + S Y 12	
Keeping all constraints in mind the final sta	<u>ate is</u>

				PAGE NO.: DATE: / /	/
C3(0)	C2(1)	C1(1)		
5(9		$\mathcal{E}(\zeta)$	N(6)	D(7)	
1 M(()	0(0)	R(8)	£/5)	
M(1) O(o)	N(6)	E(5)	Y(2)	
					11
S	~q				
E	5				
$\tilde{\nu}$	6				
D	7				
M	1	<u> </u>			
 0	0				
 R	8				
 X	2				
				15 th	
				, Îr	
				3	

AMAN KUMAR PANDEY RA1911003010685 ARTIFICIAL INTELLIGENCE LAB LAB: 3

Implementation of Constraint Satisfaction Problems

(cryptarithmetic problemsend+more=money)

<u> Algorithm:</u>

Step 1: Start

Step 2: Accept a expression 'SEND+MORE=MONEY'

Step 3: Extract the words SEND, MORE and MONEY.

Step 4: Permute for different combination of values for S,E,N,D,M,O,R,Y.

Step5: Check if the sum of the left value i.e, SEND+MORE is equal to the right sum i.e, MONEY or not. If the sum value matches print the mapping.

Step 6: Continue for other permutations as well.

Step 7: Stop.

Source code:

import itertools

def get_value(word, substitution):

s = 0

factor = 1

for letter in reversed(word):

s += factor * substitution[letter]

```
factor *=10
  return s
def solve2(equation):
  left, right = equation.lower().replace(' ', ").split('=')
  left = left.split('+')
  letters = set(right)
  for word in left:
     for letter in word:
       letters.add(letter)
  letters = list(letters)
  digits = range(10)
  for perm in itertools.permutations(digits, len(letters)):
     sol = dict(zip(letters, perm))
     if sum(get_value(word, sol) for word in left) == get_value(right, sol):
       print(' + '.join(str(get_value(word, sol)) for word in left) + " = {}
(mapping: {})".format(get_value(right, sol), sol))
if__name__ == '__main__':
  solve2('SEND + MORE = MONEY')
```

<u>O</u>utput:

Result:

Hence, the implementation of the Cryptarithmetic Problem is done successfully.