

โครงการอบรม โปรแกรม
คอมพิวเตอร์ Python เพื่อการ
ทำงานวิจัยด้านวิทยาการข้อมูล

การเขียนโปรแกรมภาษาไพธอน

(Python) เบื้องต้น

Python and Google's colab

จัดการข้อมูลที่เป็นตาราง (เช่น ไฟล์ excel) กรองข้อมูล (data filtering)

สร้างเว็บไซต์

การประมวลผลภาพและวิดีโอ (Image and Video Processing)

การคำนวณทาง คณิตศาสตร์, matrix

Google's colab

https://colab.research.google.com (ตัอง login Google Account)

Setting

ตัวอย่าง code ใน Google's colab

!git clone https://github.com/wanchaloem-n/Binance-API.git

Python - Basic Syntax

ตัวแปร (Variables)

```
a = 3.21

A = 1.23

num_1 = 5
```

```
# python code
a=3.21
A=1.23
Num=5
print(a)
print(A)
print(a+A)
```

Reserved keywords

False	None	True	and
as	assert	break	class
continue	def	del	elif
else	except	finally	for
from	global	if	import
in	is	lambda	nonlocal
not	or	pass	raise
return	try	while	with
yield	5000 O. •		EST MONTOCOTO ALLAN LINE

Variable Types

Туре	Example
integer	age = 12
float	height = 103.5
complex	C = 5+2j
string	gender = "male"
boolean	single = False

```
# python code
age=12
height=103.5
C=5+2j
gender='male'
single=True
single=False
print(age, type(age))
```

Form Field


```
1 # =====
2 in1 = "test" #@param {type:"string"}
3 in2 = "b" #@param ["a", "b", "c"]
4 in3 = 14 #@param {type:"slider", min:0, max:100,
5 print(in1,in2,in3)

in3:

test b 14
```

ตัวดำเนินการพื้นฐานทางคณิตศาสตร์

+ , - , * , /	บวก ลบ คูณ หาร
a ** b หรือ pow(a, b)	a^b
pow(a, b, m)	$a^b \mod m$
//	หารตัดเศษ
%	เศษจากการหาร

การเปรียบเทียบ

==	เท่ากับ
>	มากกว่า
<	น้อยกว่า
>=	มากกว่าหรือเท่ากับ
<=	น้อยกว่าหรือเท่ากับ
!=	ไม่เท่ากับ

สัญลักษณ์ทางตรรกศาสตร์

Logical operation	Bitwise operation
and	&
or	
not	~

0.1 + 0.2 =___?

0.30000000000000004

1
$$(0.1+0.2)==0.3$$

False

$$10^{3} \quad 10^{2} \quad 10^{1} \quad 10^{0}. \quad 10^{-1} \quad 10^{-2} \quad 10^{-3} \quad 10^{-4}$$

$$\quad 2 \quad 2 \quad 0 \quad . \quad 5$$

$$\quad 2^{7} \quad 2^{6} \quad 2^{5} \quad 2^{4} \quad 2^{3} \quad 2^{2} \quad 2^{1} \quad 2^{0}. \quad 2^{1} \quad 2^{-2}$$

$$\quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0. \quad 1 \quad 0$$

128 + 64 + 16 + 8 + 4 + 0.5 = 220.5

$$0.1_{10} = 0.000\dot{1}10\dot{0}_2$$

$$0.2_{10} = 0.00\dot{1}10\dot{0}_2$$

Ref: <a href="https://stackpython.medium.com/0-1-0-2-%E0%B8%88%E0%B8%B6%E0%B8%87%E0%B9%84%E0%B8%A1%E0%B9%88%E0%B8%B0-88%

การลบตัวแปร

del var1, var2, var3

การติดตั้ง packages

!pip install (fin package)

```
# python code
!pip install pythainlp
```

การ import packages

```
# python code
import math
from math import *
form math import sqrt
import math.sqrt as sqt
```

การใช้ help และ dir ใน python

?function name

ตัวอย่าง

การใช้ฟังก์ชันทางคณิตศาสตร์

abs(a)	a
math.sin(a)	sin(a)
math.floor(a)	$\lfloor a \rfloor$
math.ceil(a)	$\lceil a \rceil$
round(a)	[a]
math.exp(a)	e^a
math.e	е
math.pi	π
math.sqrt(a)	\sqrt{a}
math.log(a)	ln(a)
math.log(a,b)	$\log_b(a)$

แบบฝึกหัด จงเขียน code เพื่อหาค่า Y

$$Y=rac{1}{\sqrt{2\pi\sigma^2}}~e^{-rac{(x-\mu)^2}{2\sigma^2}}$$


```
# python code
x=1
mu=0.5
sigma=1.5
...
y=___?
```

List, Tuple, Set, และ Dictionary

List

```
X = ["red", "blue", "red"]
Y= [1,3,2,5]
```

code	output
Z=X+Y	["red", "blue", "red",1,3,2,5]
Y.append(1)	[1,3,2,5,1]
len(X)	3
X.insert(2,'a')	["red" , "blue" , "a","red"]
Y.sort()	[1,2,3,5]
Y.reverse()	[5,2,3,1]

List

Index of elements

code	output
X[2]	'blue'
X[-2]	'r'
X[1:4]	['red', 'blue', 'red']
X[4:]	['r', 'b']
X[:3]	[1, 'red', 'blue']

Nested List

$$X = [1,[2,3],[4,5,6],[[7,8]]]$$

code	output
X[1]	[2,3]
X[1][0]	2
X[3][0][1]	8

Set

```
X = {"red" , "blue" , "red"}
Y= {"red" , "green"}
```

code	output
X == {"red" , "blue"}	True
"red" in X	True
len(X)	3
X.union(Y)	{"red", "green", "blue"}
X.intersection(Y)	{"red"}
X-Y	{"blue"}

Tuple

```
X = (30, 20000, "male")
Y= (25, 16000, "male")
```

code	output
Z=X+Y	(30, 20000, 'male', 25, 16000, 'male')
Z=(X,Y)	((30, 20000, 'male'), (25, 16000, 'male'))
Z=X*2	(30, 20000, 'male', 30, 20000, 'male')
len(X)	3
tuple('male')	('m', 'a', 'l', 'e')

Dictionary

X = {'Name': 'A', 'Income': 12000, 'Gender': 'Male'}

code	output
X["name"]	'A'
X.keys()	{'Name', 'Income', 'Gender'}

Condition and Loop

if, else, for, while

Condition and loop

Condition (if ... else ...)


```
# python code
score=47
if score>50:
    print("ผ่าน")
else:
    print("ไม่ผ่าน")
```

```
# python code
score=2
if score>50:
    print("ผ่าน")
elif score>10:
    print("สอบอีกรอบ")
else:
    print("ไม่ผ่าน")
```

Condition and loop

Loop (while loop)

while condition: do something

```
while True:
do something
if condition:
break
```

```
# python code
scores=[2,47,0,52]
i=0
while scores[i]>0:
    print(scores[i])
    i=i+1
```

```
# python code
scores=[2,47,0,52]
i=0
while True:
    print(scores[i])
    i=i+1
    if scores[i]<=0:
        break</pre>
```

Condition and loop

Loop (For loop)

for i in [1,2,4]: do something

for i in range(2,5): do something

```
# python code

for score in [2,47,50,52]:

   if score>50:
      print("ผ่าน")

   else:
      print("ไม่ผ่าน")
```

```
# python code
scores=[2,47,50,52]
for i in range(len(scores)):
    if scores[i]>50:
        print(i,"ผ่าน")
    else:
        print(i,"ไม่ผ่าน")
```

แบบฝึกหัด

จงเขียน code เพื่อหาตัวประกอบเฉพาะทั้งหมด

ของ N1, N2

เมื่อกำหนด

N1 = 2475115831,

N2=166153499473114472511703242428645381

การสร้าง

custom function

custom function

คณิตศาสตร์

$$z = f(x, y)$$

python

```
def function_name(x, y):
    do something
    return z
```

function_name = lambda x, y : z

$$f(x) = 2x^2 + 1$$

```
# python code
def f1(x):
    return 2*x**2+1
def f2(x):
    y=2*x**2+1
    return y
f3 = lambda x: 2*x**2+1
print(f1(2))
print(f2(2))
print(f3(2))
```

```
gaussian(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
```

```
# python code
import math
def gaussian(x,mu,sigma):
    coef=1/(math.sqrt(2*math.pi*(s
igma**2)))
    expo=-((x-mu)**2)/(2*sigma**2)
    return coef*math.exp(expo)
print(gaussian(1,0,1))
```

Numpy array

import numpy as np

code	
V=np.array([1,2,3,5])	สร้าง vector
M=np.array([[1,2],[3,5]])	สร้าง matrix

Numpy array

ตัวดำเนินการพื้นฐาน

M1=np.array([[1,2],[3,5]]) M2=np.array([[5,-4],[3,5]])

A.4	
M1*M2	การคูณที่ละสมาชิก
np.dot(M1,M2)	การคูณเมทริกซ์
M1+M2	
M1-M2	
np.log(M1)	
np.diag([1,2,3])	สร้าง diagonal matrix
np.diag(M1)	diagonal matrix ของ M1
np.eye(4)	
np.random.rand(4,5)	random matrix
np.zeros((2,3))	
np.ones((2,3))	
M1.transpose()	
M1.shape	dimension ของ M1

Numpy.linalg

from numpy import linalg as LA

Matrix eigenvalues				
linalg.eig(a)	Compute the eigenvalues and right eigenvectors of a square array.			
linalg.eigh(a[, UPLO])	Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.			
linalg.eigvals(a)	Compute the eigenvalues of a general matrix.			
linalg.eigvalsh(a[, UPLO]) Compute the eigenvalues of a complex Hermitian or real symmetric matrix. Norms and other numbers				
Norms and othe	er numl	pers		
Norms and other		Ders Matrix or vector norm.		
linalg.norm(x[, ord, axis, kee		Matrix or vector norm.		
<pre>linalg.norm(x[, ord, axis, kee linalg.cond(x[, p])</pre>	pdims])	Matrix or vector norm. Compute the condition number of a matrix.		

Solving equations and inverting matrices			
linalg.solve(a, b)	Solve a linear matrix equation, or system of linear scalar equations.		
<pre>linalg.tensorsolve(a, b[, axes])</pre>	Solve the tensor equation $a \times = b$ for x.		
linalg.lstsq(a, b[, rcond])	Return the least-squares solution to a linear matrix equation.		
linalg.inv(a)	Compute the (multiplicative) inverse of a matrix.		
linalg.pinv(a[, rcond, hermitian])	Compute the (Moore-Penrose) pseudo-inverse of a matrix.		
<pre>linalg.tensorinv(a[, ind])</pre>	Compute the 'inverse' of an N-dimensional array.		
Exceptions ¶			
linalg.LinAlgError Generic Python-exception-derived object raised by linalg functions.			

https://numpy.org/doc/stable/reference/routines.linalg.html

Example code

```
# python code
import numpy as np
import numpy.linalg as LA
V=np.array([1,2])
print("2-norm: ", LA.norm(V, ord=2))
M=np.array([[1,2],[3,4]])
print("inv: ", LA.inv(M))
print("eig values & vectors: ", LA.eig(M))
print("det: ", LA.det(M))
```

Numpy array: broadcasting

$$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix} = \underline{}?$$

© Matt Eding

© Matt Eding

แบบฝึกหัด จงเขียน python code เพื่อหา A^+

Moore—Penrose inverse (ref: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse)

$$AX = B \rightarrow X \approx A^{+}B$$
$$A^{+} = (A^{T}A)^{-1} A^{T}$$

```
# python code
import numpy as np
A=np.array([[1,2],[3,4],[5,6]])
B=np.array([[1],[2],[3]])
...
X=__?
```

Slicing and Filtering

```
# python code
import numpy as np
M1=np.array([[1,2],[3,4],[5])
,6],[7,8]])
M2=np.array([[1,2,3,4]])
print("1st: ",M1)
print("2nd: ",M1[1:,:])
print("3rd: ",M1[1:3,:])
print("4th: ",M1[:3,:])
print("5th: ",M1[2,1])
print("6th: ",M1[[1,3],:])
print("7th: ",M1[0:4:2,:])
```

```
# python code
import numpy as np
M1=np.array([[1,2],[3,4],[5,6])
1, [7,8]])
M2=np.array([[1,2,3,4]])
M3=np.array([[1,2,3],[3,4,5],
[5,6,7],[7,8,9]]
print("1st: ",M1[M1[:,1]>5])
[print("2nd: ", M2[M2>=3])]
print("3rd: ",M3[M1[:,1]>5])
```

Scipy stats

T-test, F-test, p-value

PANDAS

ใช้สำหรับจัดการข้อมูลในตาราง

import pandas as pd

```
import pandas as pd
df=pd.DataFrame({
"ID":[6,7,8,9],
"AGE":[14,16,18,20],
"GENDER":["M","F","F","M"]
})
```

	ID	AGE	GENDER
0	6	14	М
1	7	16	F
2	8	18	F
3	9	20	M

Matplotlib and Seaborn

การพอร์ตกราฟ

OOP Object Oriented Programming

Object Oriented Programming (OOP)

โครงสร้าง class

```
class ClassName:
  # Attributes
  var1="some values"
  def __init__(self, var1):
    self.var1 = var1
  # Methods
  def function1(self,val2):
    self.var1 = var2
Obj1 = ClassName(val1)
```

Inheritance Class

ยอดเงินใน wallet (attribute)

ถอนเงิน (method)

Class Customer

ซื้อสินค้า (method)

Class Seller

รายการสินค้า (attribute)

เพิ่มรายการสินค้า (method)

```
# python code
class User:
    def init (self, wallet):
        self.wallet=wallet
    def withdraw(self,amount):
        self.wallet=self.wallet-amount
class Customer (User):
    def init (self, wallet):
        super(). init (wallet)
        self.cart=[]
    def buy(self,product,price):
        self.cart.append(product)
        self.wallet=self.wallet-price
```

```
U1=User(500)
print(U1.wallet)
U1.withdraw(30)
print(U1.wallet)
C1=Customer (5000)
print(C1.wallet)
C1.buy("cat", 10)
C1.buy("dog", 10)
print(C1.cart)
print(C1.wallet)
print("\n==== withdraw====")
C1.withdraw(100)
print(C1.cart)
print(C1.wallet)
```

Simple Linear Regression

ref: https://home.kku.ac.th/nikom/regsimp nk2559.pdf

$$\hat{y}_i = a + bx_i$$

$$a = \overline{y} - b\overline{x}$$

$$b = \left[\frac{\sum_{i} x_{i} y_{i} - \frac{(\sum_{i} x_{i})(\sum_{i} y_{i})}{n}}{\sum_{i} x_{i}^{2} - \frac{(\sum_{i} x_{i})^{2}}{n}} \right]$$

Thank you