Black-Box Attacks on Sequential Recommenders via Data-Free Model Extraction RecSys '21

Zhenrui Yue Huimin Zeng Zhankui He Julian McAuley

Alumnos: Benjamín Varela, Francisco Meza, Vicente Navarro

17 de junio de 2025

Contexto: Seguridad en recomendadores secuenciales

- Los **Sistemas de Recomendación Secuenciales (SRS)** predicen el *próximo ítem* a partir del historial ordenado de cada usuario (Netflix, Amazon, Steam).
- Se entrenan con modelos de aprendizaje profundo (RNN, SASREC, BERT4REC) sobre datos privados y costosos \Longrightarrow alto valor comercial.
- ullet Muchas plataformas exponen el SRS como servicio **black-box** vía $API \Longrightarrow$ sólo accesible mediante consultas.
- Preocupación emergente: Un atacante consultando la API, puede reconstruir un clon del modelo sin conocer datos ni código fuente.
- Esto abre la puerta a ataques como: manipulación de rankings, promoción de productos maliciosos o robo de propiedad intelectual.

Problema de recomendación:

¿Qué se recomienda?

Dado un historial ordenado de interacciones de un usuario $\mathbf{s}_t = (i_1, i_2, \dots, i_t)$, el sistema atacado f_b devuelve el **próximo ítem** más probable.

$$\mathcal{I}_k = f_b(\mathbf{s}_t) = \{i_{t+1}^{(1)}, i_{t+1}^{(2)}, \dots, i_{t+1}^{(k)}\}$$

Ejemplo: $\mathbf{s}_t = [\mathsf{Toy} \ \mathsf{Story}, \ \mathsf{Nemo}] \to \mathcal{I}_3 = [\mathsf{Toy} \ \mathsf{Story} \ 2, \ \mathsf{Frozen}, \ \mathsf{Shrek}]$

(PUC)

Estado del arte: evolución de ataques por extracción

Línea de tiempo: extracción de modelos en IA								
Año	Dominio	Hito clave						
2018	Visión	Knockoff Nets (Orekondy): extracción de CNNs mediante consultas aleatorias.						
2019	NLP	BERT-Stealing (Krishna): distilación de Transformers con pseudo-datos.						
2021	RS secuenciales	Este paper : extracción <i>data-free</i> con generación autoregresiva y ataques transferibles.						

4/23

Contribuciones del estudio

- Primer análisis sistemático de extracción de modelos en recomendadores secuenciales (NARM, SASRec y BERT4Rec) en tres datasets reales.
- Estrategia data-free inédita: Generación autoregresiva de secuencias + destilación hacia un modelo clonado, eliminando la necesidad de datos de usuarios.
- Dos ataques transferidos: Profile Pollution y Data Poisoning.

Solución – Paso 1: Generar datos sintéticos

Generar secuencias

- **Objetivo**: imitar sesiones reales *sin* datos privados.
- Elegir un start item al azar.
- **Query**: enviar la secuencia parcial $\hat{\mathbf{s}}_{1:t}$ al modelo f_b . \rightarrow recibir top-k: $\hat{\mathbf{r}}_b^{(k)}$.
- **Sample**: tomar 1 ítem del top-*k* (mayor score, mayor prob.).
- **Append**: añadirlo y repetir hasta longitud *T* o agotar presupuesto *B*.

(a) Autoregressive Data Generation

Solución: extracción del modelo black-box

Destilación

- Input: pares $(\hat{\mathbf{s}}_{1:t}, \hat{\mathbf{r}}_b^{(k)})$.
- Objetivo:

$$f_w^* = \arg\min_{f_w} \sum_{i=1}^{|\mathcal{X}|} \mathcal{L}_{\mathsf{dis}}(\hat{\mathbf{r}}_b^{(k)(i)}, f_w(x^{(i)})).$$

Pérdida:

$$\mathcal{L}_{\mathsf{dis}} = rac{1}{k-1} \sum_{i=1}^{k-1} \mathsf{máx}ig(0, \hat{\mathsf{s}}_{\mathsf{w}}^k[i+1] - \hat{\mathsf{s}}_{\mathsf{w}}^k[i] + \lambda_1ig) + rac{1}{k} \sum_{i=1}^k \mathsf{máx}ig(0, \hat{\mathsf{s}}_{\mathsf{neg}}^k[i] - \hat{\mathsf{s}}_{\mathsf{w}}^k[i] + \lambda_2ig)$$

(b) Model Extraction via Distillation

Ataques downstream

★ Profile Pollution

- El atacante usa el clon \hat{f} para generar una secuencia que incluya el ítem objetivo ℓ .
- Se calculan gradientes / similitud de embeddings para construir secuencias más efectivas.
- Esa secuencia se inyecta en el perfil del usuario, elevando la probabilidad de recomendar ℓ .
- Intuición: "contaminar" el historial para que f_b crea que el usuario desea ℓ .
- Objetivo formal:

$$z^* = \arg \max_{z} E_t(f_b([\mathbf{x}; z]))$$

Maximizar la exposición esperada del ítem obietivo ℓ .

(a) Profile pollution attack with white-box model

17 de junio de 2025

Ataques downstream

★ Data Poisoning

- Crea usuarios ficticios con historiales sintéticos obtenidos mediante \hat{f} .
- Inyecta estos historiales en el dataset de entrenamiento degrada NDCG y Recall globales.
- Intuición: sembrar ruido estructurado que empuje al modelo hacia malas representaciones.
- Objetivo formal:

$$Z^* = \arg \max_{Z} \sum_{i=1}^{|\mathcal{X}|} E_t(f_b'(x^{(i)}))$$

s. a.
$$f_b' = rg \min_{f_b} \mathcal{L}_{\mathsf{rec}} ig(f_b, \ Z \cup \mathcal{X} ig)$$

Maximizar la exposición del objetivo tras el re-training.

(b) Data poisoning attack via adversarial co-visitation

Datasets y Modelos

Datasets	Users	Items	Avg. len	Max. len	Sparsity
ML-1M	6,040	3,416	166	2277	95.16%
Steam	334,542	13,046	13	2045	99.90%
Beauty	40,226	54,542	9	293	99.98%

Table 1. Data Statistics

Model	Basic Block	Training Schema
NARM [25]	GRU	Autoregressive
SASRec [17]	TRM	Autoregressive
BERT4Rec [37]	TRM	Auto-encoding

Table 2. Sequential Model Architecture

JC) Seminario

Preguntas de investigación

- RQ1 Viabilidad de la extracción ¿Es posible obtener los pesos del modelo black-box sin los datos reales?
- RQ2 Factores que influyen en la extracción del modelo black-box ¿Como afecta la data sparsity y el presupuesto de consultas en la extracción del modelo?
- RQ3 Viabilidad del ataque Profile Pollution ¿Podemos realizar ataques de Profile Pollution mediante el modelo extraído?
- RQ4 Viabilidad del ataque Data Poisoning ¿Podemos realizar ataques de Data Poisoning mediante el modelo extraído?

11/23

Métricas utilizadas en la evaluación

★ Ranking Performance

- Recall@K (Hit Rate HR@K)
- NDCG@K (Normalized Discounted Cumulative Gain)

★ Agreement Measure – Agr@K

$$\mathrm{Agr} @\mathrm{K} \; = \; \frac{\mid \mathit{B}_{\mathsf{top} \mathcal{K}} \; \cap \; \mathit{W}_{\mathsf{top} \mathcal{K}} \mid}{\mathit{K}}, \qquad 0 \leq \mathrm{Agr} @\mathrm{K} \leq 1$$

- B_{topK} : lista top-K del modelo **black-box** (víctima).
- W_{topK} : lista top-K del modelo **white-box** extraído.

Resultados RQ1 - Viabilidad de la extracción

		Black-Box			White-Box-Random				White-Box-Autoregressive			
Dataset	Option	N@10	R@10	N@10	R@10	Agr@1	Agr@10	N@10	R@10	Agr@1	Agr@10	
ML-1M	NARM	0.625	0.820	0.598	0.809	0.389	0.605	0.615	0.812	0.571	0.747	
	SASRec	0.625	0.817	0.578	0.796	0.270	0.516	0.602	0.802	0.454	0.662	
	BERT4Rec	0.602	0.806	0.565	0.794	0.241	0.488	0.571	0.791	0.339	0.593	
	NARM	0.628	0.848	0.625	0.849	0.679	0.642	0.601	0.806	0.743	0.722	
Steam	SASRec	0.627	0.850	0.579	0.802	0.434	0.556	0.593	0.805	0.668	0.702	
	BERT4Rec	0.622	0.846	0.609	0.838	0.199	0.490	0.585	0.793	0.708	0.667	
	NARM	0.356	0.518	0.319	0.477	0.356	0.511	0.272	0.380	0.344	0.425	
Beauty	SASRec	0.344	0.494	0.304	0.459	0.251	0.213	0.347	0.505	0.343	0.357	
	BERT4Rec	0.349	0.515	0.200	0.352	0.026	0.043	0.300	0.454	0.178	0.291	

Table 4. Extraction performance under identical model architecture and 5k budget, with Black-box original performance.

Resultados RQ1 - Viabilidad de la extracción

(a) Data Distribution for original and generated data.

Resultados RQ2 – Factores que influyen en la extracción del modelo

		Black-Box				
Model	k-core	N@10	R@10	N@10	R@10	Agr@10
	5	0.360	0.536	0.331	0.488	0.559
NARM	6	0.372	0.562	0.352	0.539	0.614
NARWI	7	0.386	0.630	0.369	0.597	0.726
	8	0.347	0.597	0.362	0.643	0.690
	5	0.351	0.514	0.332	0.479	0.651
SASRec	6	0.380	0.558	0.373	0.547	0.744
SASRec	7	0.424	0.640	0.427	0.648	0.782
	8	0.415	0.675	0.410	0.672	0.791
	5	0.346	0.509	0.351	0.520	0.561
BERT4Rec	6	0.366	0.547	0.374	0.555	0.652
DEK 14Kec	7	0.402	0.643	0.399	0.650	0.682
	8	0.403	0.694	0.383	0.659	0.717

Table 5. Influence of data sparsity. Model extraction on k-core Beauty

Resultados RQ2 - Factores que influyen en la extracción del modelo

Table 6. Influence of query budgets on ML-1M (top), Steam (middle) and Beauty (bottom).

Resultados RQ3 – Viabilidad del ataque Profile Pollution

Fig. 5. Profile pollution attacks performance comparisons with different methods.

C) Seminario 17 de junio de 2025 17 / 2

Resultados RQ3 – Viabilidad del ataque Profile Pollution

		ML-1M			Steam			Beauty		
Popularity	Attack	NARM	SASRec	BERT4Rec	NARM	SASRec	BERT4Rec	NARM	SASRec	BERT4Rec
head	before ours	0.202 0.987	0.217 0.981	0.201 0.968	0.313 0.850	0.327 0.745	0.311 0.714	0.261 0.650	0.246 0.825	0.260 0.521
middle	before ours	0.037 0.902	0.034 0.876	0.036 0.901	0.012 0.341	0.012 0.585	0.009 0.152	0.023 0.106	0.030 0.556	0.027 0.105
tail	before ours	0.005 0.701	0.008 0.760	0.009 0.760	0.000 0.017	0.000 0.160	0.000 0.000	0.002 0.001	0.009 0.557	0.002 0.010

Table 7. Profile pollution attacks to different sequential models for items with different popularity, reported in N@10.

JC) Seminario

Resultados RQ4 – Viabilidad del ataque Data Poisoning

Fig. 6. Data poisoning attacks performance comparisons with different methods

Resultados RQ4 – Viabilidad del ataque Data Poisoning

		ML-1M			Steam			Beauty		
Popularity	Attack	NARM	SASRec	BERT4Rec	NARM	SASRec	BERT4Rec	NARM	SASRec	BERT4Rec
head	before	0.202	0.217	0.201	0.313	0.327	0.311	0.261	0.246	0.260
	ours	0.205	0.351	0.213	0.347	0.352	0.324	0.425	0.477	0.364
medium	before	0.037	0.034	0.036	0.012	0.012	0.009	0.023	0.030	0.027
	ours	0.053	0.067	0.048	0.026	0.021	0.014	0.217	0.309	0.135
tail	before	0.005	0.008	0.009	0.000	0.000	0.000	0.002	0.009	0.002
	ours	0.016	0.032	0.017	0.004	0.004	0.004	0.086	0.235	0.036

Table 8. Data poisoning attacks to different sequential models for items with different popularity, reported as N@10.

Conclusiones principales

Hallazgos esenciales

- La extracción data-free es factible. Con un número moderado de consultas se obtiene un clon muy similar al modelo original.
- **El clon habilita ataques efectivos.** Inyectar perfiles o datos sintéticos sesga de forma apreciable la calidad de las recomendaciones.
- La vulnerabilidad varía según arquitectura y densidad. Modelos más simples y datasets más densos se clonan con mayor fidelidad.

Referencias

- ▶ Yue et al. Black-Box Attacks on Sequential Recommenders via Data-Free Model Extraction. RecSys '21.
- ▶ Orekondy et al. *Knockoff Nets*. CVPR '19.
- ▶ Krishna et al. Thieves on Sesame Street! Model Extraction of BERT-based APIs. ICLR '20.
- ▶ Zhang et al. LOKI: Practical Data Poisoning Attack against Next-Item Recommendation. WWW '20.
- ► Tramèr et al. Stealing ML Models via APIs. USENIX '16.

github.com/Yuceeeeeee/RecSys-Extraction-Attack

JC) Seminario 17 de junio de 2025 22 /

¡Gracias por su atención! ¿Preguntas?