Rank-65874 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1431725486

General information

Number of lines	3
Number of points	29
Number of singular points	0
Number of Eckardt points	0
Number of double points	3
Number of single points	9
Number of points off lines	17
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$2^3, 1^9, 0^{17}$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \mathbf{Pl}(1, 0, 1, 1, 1, 1)_{199}$$

$$\ell_1 = \begin{bmatrix} 1 & \omega^2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \mathbf{Pl}(0, 0, 1, 1, 2, 1)_{258}$$

$$\ell_2 = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \mathbf{Pl}(0, 0, 1, 1, 3, 1)_{318}$$

Rank of lines: (110, 80, 59)

Rank of points on Klein quadric: (199, 258, 318)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_{48} = (3, 2, 1, 1) = \ell_0 \cap \ell_1$$

 $P_{51} = (2, 3, 1, 1) = \ell_0 \cap \ell_2$

 $P_{38} = (0, 0, 1, 1) = \ell_1 \cap \ell_2$

Single Points

The surface has 9 single points:

The single points on the surface are:

$$0: P_5 = (1, 1, 0, 0)$$
 lies on line ℓ_0

$$1: P_6 = (2, 1, 0, 0)$$
 lies on line ℓ_1

$$2: P_7 = (3, 1, 0, 0)$$
 lies on line ℓ_2

$$3: P_{39} = (1,0,1,1)$$
 lies on line ℓ_0

4:
$$P_{42} = (0, 1, 1, 1)$$
 lies on line ℓ_0

The single points on the surface are:

5: $P_{43} = (2, 1, 1, 1)$ lies on line ℓ_1

6: $P_{44} = (3, 1, 1, 1)$ lies on line ℓ_2

7: $P_{46} = (1, 2, 1, 1)$ lies on line ℓ_2

8: $P_{50} = (1, 3, 1, 1)$ lies on line ℓ_1

Points on surface but on no line

The surface has 17 points not on any line:

The points on the surface but not on lines are:

$$0: P_8 = (1, 0, 1, 0)$$

$$1: P_9 = (2, 0, 1, 0)$$

$$2: P_{10} = (3, 0, 1, 0)$$

$$3: P_{16} = (1, 2, 1, 0)$$

$$4: P_{20} = (1, 3, 1, 0)$$

$$5: P_{26} = (0, 1, 0, 1)$$

$$0.1_{26} = (0, 1, 0, 1)$$

6:
$$P_{27} = (1, 1, 0, 1)$$

7: $P_{30} = (0, 2, 0, 1)$

$$8: P_{31} = (1, 2, 0, 1)$$

9:
$$P_{34} = (0, 3, 0, 1)$$

10:
$$P_{35} = (1, 3, 0, 1)$$

11:
$$P_{53} = (0, 0, 2, 1)$$

12:
$$P_{54} = (1, 0, 2, 1)$$

13:
$$P_{61} = (0, 2, 2, 1)$$

$$14: P_{69} = (0, 0, 3, 1)$$

15:
$$P_{70} = (1, 0, 3, 1)$$

16:
$$P_{81} = (0, 3, 3, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{48}	P_{51}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{48}	P_{38}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{51}	P_{38}

The surface has 29 points:

The points on the surface are:

$0: P_5 = (1, 1, 0, 0)$	$10: P_{30} = (0, 2, 0, 1)$	$20: P_{48} = (3, 2, 1, 1)$
$1: P_6 = (2, 1, 0, 0)$	$11: P_{31} = (1, 2, 0, 1)$	$21: P_{50} = (1,3,1,1)$
$2: P_7 = (3, 1, 0, 0)$	$12: P_{34} = (0, 3, 0, 1)$	$22: P_{51} = (2, 3, 1, 1)$
$3: P_8 = (1,0,1,0)$	$13: P_{35} = (1, 3, 0, 1)$	$23: P_{53} = (0,0,2,1)$
$4: P_9 = (2,0,1,0)$	14: $P_{38} = (0, 0, 1, 1)$	$24: P_{54} = (1,0,2,1)$
$5: P_{10} = (3,0,1,0)$	15: $P_{39} = (1,0,1,1)$	$25: P_{61} = (0, 2, 2, 1)$
$6: P_{16} = (1, 2, 1, 0)$	$16: P_{42} = (0, 1, 1, 1)$	$26: P_{69} = (0, 0, 3, 1)$
$7: P_{20} = (1, 3, 1, 0)$	$17: P_{43} = (2, 1, 1, 1)$	$27: P_{70} = (1, 0, 3, 1)$
$8: P_{26} = (0, 1, 0, 1)$	$18: P_{44} = (3, 1, 1, 1)$	$28: P_{81} = (0, 3, 3, 1)$
$9: P_{27} = (1, 1, 0, 1)$	19: $P_{46} = (1, 2, 1, 1)$	