```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
titanic=pd.read_csv('titanic.csv')
```

In [3]:

```
titanic.info()
```

```
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
           Non-Null Count Dtype
# Column
               _____
O PassengerId 891 non-null int64
1 Survived 891 non-null int64
    Pclass
               891 non-null
                             int64
                           object
3 Name
              891 non-null
              891 non-null object
4 Sex
5 Age
              714 non-null float64
6 SibSp
              891 non-null int64
              891 non-null
891 non-null
                             int64
   Parch
8 Ticket
                             object
9 Fare
              891 non-null float64
10 Cabin
              204 non-null object
11 Embarked 889 non-null
                           object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

<class 'pandas.core.frame.DataFrame'>

In [4]:

titanic

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
222	ନ୍ଦର	n	3	Johnston, Miss. Catherine	female	NaN	1	2	W /C 6607	23 4500	NaN	9

000	Passengerld	Survived	Pclass	Helen "Carrie" Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [5]:

titanic.describe()

Out[5]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [6]:

titanic.dtypes

Out[6]:

PassengerId int64 Survived int64 Pclass int64 object Name Sex object float64 Age int64 SibSp int64 Parch Ticket object Fare float64 Cabin object Embarked object dtype: object

In [7]:

titanic=titanic.drop(['Name','Ticket','Cabin','PassengerId'],axis=1)

In [8]:

titanic

Out[8]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S
886	0	2	male	27.0	0	0	13.0000	S
227	1	1	famala	10 N	Λ	Λ	30 0000	9

001	1	1			U	U	30.0000	J
	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
888	0	2	fomolo	NaN	<u> </u>	2	23.4500	0
000	0	J	lemale	IVAIV		2	23.4300	9
889	1	1	male	26.0	0	0	30.0000	С
	•			_0.0			00.000	
890	0	3	male	32.0	0	0	7.7500	Q

891 rows × 8 columns

In [9]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['Sex','Embarked']
for val in list1:
    titanic[val]=le.fit_transform(titanic[val].astype(str))
```

In [10]:

titanic

Out[10]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	2
1	1	1	0	38.0	1	0	71.2833	0
2	1	3	0	26.0	0	0	7.9250	2
3	1	1	0	35.0	1	0	53.1000	2
4	0	3	1	35.0	0	0	8.0500	2
886	0	2	1	27.0	0	0	13.0000	2
887	1	1	0	19.0	0	0	30.0000	2
888	0	3	0	NaN	1	2	23.4500	2
889	1	1	1	26.0	0	0	30.0000	0
890	0	3	1	32.0	0	0	7.7500	1

891 rows × 8 columns

In [11]:

 ${\it \#to~understand~it~has~two~or~more~unique~variables~and~is~it~regression~or~classification~titanic.} Survived.unique()$

Out[11]:

array([0, 1], dtype=int64)

In [12]:

```
# identifing null values
sns.heatmap(titanic.isnull(),annot=True)
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x21293837108>

In [13]:

```
titanic.isnull().sum()
```

Out[13]:

Survived 0
Pclass 0
Sex 0
Age 177
SibSp 0
Parch 0
Fare 0
Embarked 0
dtype: int64

In [14]:

```
#filling null values with mean
from sklearn.impute import SimpleImputer
imp=SimpleImputer(strategy='mean')
titanic['Age']=imp.fit_transform(titanic['Age'].values.reshape(-1,1))
```

In [15]:

titanic

Out[15]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.000000	1	0	7.2500	2
1	1	1	0	38.000000	1	0	71.2833	0
2	1	3	0	26.000000	0	0	7.9250	2
3	1	1	0	35.000000	1	0	53.1000	2
4	0	3	1	35.000000	0	0	8.0500	2
886	0	2	1	27.000000	0	0	13.0000	2
887	1	1	0	19.000000	0	0	30.0000	2
888	0	3	0	29.699118	1	2	23.4500	2
889	1	1	1	26.000000	0	0	30.0000	0
890	0	3	1	32.000000	0	0	7.7500	1

891 rows × 8 columns

In [16]:

```
sns.heatmap(titanic.isnull(),annot=True)
```

Out[16]:

```
<matplotlib.axes._subplots.AxesSubplot at 0x21293fbaa48>
```


In [17]:

```
titanic.skew()
```

Out[17]:

Survived 0.478523
Pclass -0.630548
Sex -0.618921
Age 0.434488
SibSp 3.695352
Parch 2.749117
Fare 4.787317
Embarked -1.246689
dtype: float64

In [18]:

```
for col in titanic.columns:
    if titanic.skew().loc[col]>0.55:
        titanic[col]=np.log1p(titanic[col])
```

In [19]:

```
#reduced skewness
titanic.skew()
```

Out[19]:

Survived 0.478523
Pclass -0.630548
Sex -0.618921
Age 0.434488
SibSp 1.661245
Parch 1.675439
Fare 0.394928
Embarked -1.246689
dtype: float64

In [20]:

```
titanic.corr()
```

Out[20]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
Survived	1.000000	-0.338481	-0.543351	-0.069809	0.029430	0.114999	0.329862	-0.163517
Pclass	-0.338481	1.000000	0.131900	-0.331339	0.022021	-0.002530	-0.661022	0.157112
Sex	-0.543351	0.131900	1.000000	0.084153	-0.165302	-0.256638	-0.263276	0.104057
Age	-0.069809	-0.331339	0.084153	1.000000	-0.231168	-0.231807	0.102485	-0.022239
SibSp	0.029430	0.022021	-0.165302	-0.231168	1.000000	0.473259	0.375371	0.036131
Parch	0.114999	-0.002530	-0.256638	-0.231807	0.473259	1.000000	0.363261	0.025070
Fare	0.329862	-0.661022	-0.263276	0.102485	0.375371	0.363261	1.000000	-0.197567

In [21]:

```
plt.figure(figsize=(10,6))
sns.heatmap(titanic.corr(),annot=True)
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x2129bc7a148>

In [22]:

```
col=titanic.columns.values
ncol=5
nrow=5
plt.figure(figsize=(ncol,5*ncol))
for i in range(1,len(col)):
    plt.subplot(nrow,ncol,i+1)
    sns.boxplot(titanic[col[i]],color='blue',orient='v')
    plt.tight_layout()
```



```
1.25 - 4 - 1.05 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 -
```

In [23]:

```
#Removing outliers
from scipy.stats import zscore
z_score=abs(zscore(titanic))
print(titanic.shape)
tit=titanic.loc[(z_score<3).all(axis=1)]
print(tit.shape)</pre>
```

(891, 8) (844, 8)

In [24]:

tit

Out[24]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.000000	0.693147	0.000000	2.110213	2
1	1	1	0	38.000000	0.693147	0.000000	4.280593	0
2	1	3	0	26.000000	0.000000	0.000000	2.188856	2
3	1	1	0	35.000000	0.693147	0.000000	3.990834	2
4	0	3	1	35.000000	0.000000	0.000000	2.202765	2

886	0	2	1	27.000000	0.000000	0.000000	2.639057	2
887	1	1	0	19.000000	0.000000	0.000000	3.433987	2
888	0	3	0	29.699118	0.693147	1.098612	3.196630	2
889	1	1	1	26.000000	0.000000	0.000000	3.433987	0
890	0	3	1	32.000000	0.000000	0.000000	2.169054	1

844 rows × 8 columns

In [25]:

```
tit=pd.DataFrame(data=tit)
```

In [26]:

```
#x and y values allocation for training and testing
x=tit.iloc[:,1:-1]
```

In [27]:

```
x
```

Out[27]:

ALL OTTO BUILD FOR

```
22.000000
                                   0.000000
  1
              0 38.000000 0.693147 0.000000 4.280593
  2
              0 \quad 26.000000 \quad 0.000000 \quad 0.000000 \quad 2.188856
              0 35.000000 0.693147 0.000000 3.990834
         1
         3
              1 35.000000 0.000000 0.000000 2.202765
              1 27.000000 0.000000 0.000000 2.639057
 886
              0 19.000000 0.000000 0.000000 3.433987
 887
         1
 888
              0 29.699118 0.693147 1.098612 3.196630
 889
              1 26.000000 0.000000 0.000000 3.433987
         1
890
              1 32.000000 0.000000 0.000000 2.169054
844 rows × 6 columns
In [28]:
x.shape
Out[28]:
(844, 6)
In [29]:
y=tit.iloc[:,0]
In [30]:
У
Out[30]:
0
        0
2
        1
3
        1
        0
886
887
       1
888
       0
889
890
        0
Name: Survived, Length: 844, dtype: int64
In [31]:
y.shape
Out[31]:
(844,)
In [32]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.30,random_state=40)
In [33]:
```

#we are using follwing models for prediction

#LogisticRegression
#KNeighborsClassifier

#GaussianNB

```
#DecisionTreeClassifier
#RandomForestClassifier
#AdaBoostClassifier
```

In [34]:

```
lr=LogisticRegression()
lr.fit(x_train,y_train)
lr.score(x_train,y_train)
pred=lr.predict(x_test)
print(accuracy_score(y_test,pred))
print(confusion_matrix(y_test,pred))
print(classification_report(y_test,pred))
```

0.7992125984251969

[[132 17]

[34 71	L]]				
		precision	recall	f1-score	support
	0	0.80	0.89	0.84	149
	1	0.81	0.68	0.74	105
accui	racy			0.80	254
macro	avg	0.80	0.78	0.79	254
weighted	avg	0.80	0.80	0.80	254

In [35]:

```
lrscores=cross_val_score(lr,x,y,cv=5)
print(lrscores.mean(),lrscores.std())
```

[0.79289941 0.76923077 0.75739645 0.77514793 0.80952381] 0.7808396731473654 0.018357364834250496

In [36]:

```
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
knn.score(x_train,y_train)
predknn=knn.predict(x_test)
print(accuracy_score(y_test,predknn))
print(confusion_matrix(y_test,predknn))
print(classification_report(y_test,predknn))
```

0.8031496062992126

[[137 12] [38 67]]

[30 0/]]	precision	recall	f1-score	support
0	0.78	0.92	0.85	149
1	0.85	0.64	0.73	105
accuracy			0.80	254
macro avg	0.82	0.78	0.79	254
weighted avg	0.81	0.80	0.80	254

In [37]:

```
knnscores=cross_val_score(knn,x,y,cv=5)
print(knnscores)
print(knnscores.mean(),knnscores.std())
```

[0.75147929 0.74556213 0.76923077 0.76923077 0.80357143] 0.767814877430262 0.020221654866068396

```
III [JO].
mnb=MultinomialNB()
mnb.fit(x_train,y_train)
mnb.score(x_train,y_train)
predmnb=mnb.predict(x test)
print(accuracy_score(y_test,predmnb))
print(confusion_matrix(y_test,predmnb))
print(classification report(y test,predmnb))
0.7244094488188977
[[139 10]
 [ 60 45]]
             precision recall f1-score support
                        0.93
          0
                  0.70
                                     0.80
                                                 149
                           0.43
                                     0.56
          1
                  0.82
                                                 105
                                     0.72
                                                 254
   accuracy
                        0.68
                  0.76
                                      0.68
                                                 254
  macro avq
weighted avg
                  0.75
                            0.72
                                      0.70
                                                 254
In [39]:
mnbscores=cross_val_score(mnb,x,y,cv=5)
print(mnbscores)
print(mnbscores.mean(),mnbscores.std())
[0.67455621 0.76331361 0.74556213 0.72781065 0.76785714]
0.7358199492814876 0.03374785164419144
In [40]:
svc=SVC(kernel='rbf')
svc.fit(x_train,y_train)
svc.score(x_train,y_train)
predsvc=svc.predict(x test)
print(accuracy_score(y_test,predsvc))
print(confusion_matrix(y_test,predsvc))
print(classification_report(y_test,predsvc))
0.6141732283464567
[[145 4]
 [ 94 11]]
             precision recall f1-score support
```

```
0
               0.61
                     0.97
                               0.75
                                         149
                      0.10
         1
               0.73
                               0.18
                                         105
                               0.61
                                       254
  accuracy
                    0.54
           0.67
                            0.47
  macro avg
                                         254
                                         254
weighted avg
               0.66
                               0.51
```

In [41]:

```
svcscores=cross_val_score(svc,x,y,cv=5)
print(svcscores.mean(),svcscores.std())
```

[0.63905325 0.70414201 0.66272189 0.63313609 0.66666667] 0.6611439842209073 0.02511677693054297

In [42]:

```
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
dtc.score(x_train,y_train)
preddtc=dtc.predict(x_test)
print(accuracy_score(y_test,preddtc))
```

```
| print(confusion matrix(y test,preddtc))
print(classification report(y test,preddtc))
0.7795275590551181
[[125 24]
 [ 32 73]]
             precision recall fl-score support
                        0.84
          Ω
                 0.80
                                    0.82
                                                 149
          1
                  0.75
                           0.70
                                     0.72
                                                 105
                                     0.78
                                                254
   accuracy
                  0.77
                        0.77
                                    0.77
  macro avq
                                                254
weighted avg
                  0.78
                           0.78
                                     0.78
                                                 254
In [43]:
dtcscores=cross_val_score(dtc,x,y,cv=5)
print(dtcscores)
print(dtcscores.mean(),dtcscores.std())
[0.71597633 0.77514793 0.82248521 0.75739645 0.76785714]
0.7677726120033812 0.0341713035774167
In [44]:
rf=RandomForestClassifier()
rf.fit(x train,y train)
rf.score(x_train,y_train)
predrf=rf.predict(x_test)
print(accuracy score(y test,predrf))
print(confusion matrix(y test,predrf))
print(classification report(y test,predrf))
0.8188976377952756
[[133 16]
 [ 30 75]]
             precision recall f1-score support
          0
                 0.82 0.89
                                    0.85
                                                 149
          1
                 0.82
                           0.71
                                     0.77
                                                105
                                     0.82
                                                254
   accuracy
                0.82 0.80
0.82 0.82
                                   0.81
0.82
                0.82
                                               2.54
  macro avg
                                                254
weighted avg
In [45]:
rfscores=cross_val_score(rf,x,y,cv=5)
print(rfscores)
print(rfscores.mean(),rfscores.std())
[0.75739645 0.79881657 0.84615385 0.76923077 0.85119048]
0.8045576218653141 0.03849673064870086
In [46]:
from sklearn.ensemble import AdaBoostClassifier
ad=AdaBoostClassifier()
ad.fit(x train,y train)
ad.score(x_train,y_train)
predad=ad.predict(x_test)
print(accuracy score(y test, predad))
print(confusion matrix(y test,predad))
print(classification report(y test,predad))
```

0.7874015748031497

[[133 16]

```
[ 38 67]]
            precision
                        recall f1-score support
                0.78 0.89 0.83
0.81 0.64 0.71
                                               149
                                               105
          1
                                           254
                                     0.79
   accuracy
             0.79 0.77 0.77
0.79 0.79 0.78
  macro avg
                                               254
weighted avg
In [47]:
adscores=cross_val_score(ad,x,y,cv=5)
print(adscores)
print(adscores.mean(),adscores.std())
[0.73964497 0.79881657 0.81656805 0.81656805 0.83928571]
0.8021766694843618 \ 0.03380179992055992
In [48]:
#RandomForestClassifier is the best model among all models
import joblib
joblib.dump(rf,'titanic.pkl')
Out[48]:
['titanic.pkl']
In [ ]:
```