

CLAIMS

1. A benzenesulphonamide derivative compound, characterized in that it is selected from the group consisting of:

5 a) compounds of formula:

in which

- 10 - R₁, R₂, R₃, R₄ each independently represent one or more atoms or groups of atoms selected from a hydrogen atom, the halogens, C₁-C₃ alkyl groups, or C₁-C₃ alkoxy groups, CF₃ or OCF₃ groups,
- R_a represents a C₁-C₄ alkyl group,
- Y represents a saturated C₂-C₅ alkylene group, optionally interrupted by an oxygen atom, an unsaturated C₂-C₄ alkylene group, or a -CH₂-CO-NH-CH₂- group,
- X represents CH or a nitrogen atom,
- p represents 2 or 3,
- A represents a single bond, a nitrogen atom optionally substituted with a methyl group, or a straight or branched C₁-C₅ alkylene group optionally hydroxylated or of which one of the carbon atoms is oxidized into a ketone function, provided that A and X together do not represent a nitrogen atom,
- B represents a nitrogen-containing heterocycle or an amine group optionally substituted with one or two C₁-C₄ alkyl groups,

25 b) addition salts of the above formula I compounds with an acid.

2. A compound according to claim 1, characterized in that Y represents a C₃-C₅ alkylene group interrupted by an oxygen atom, preferably a -CH₂-CH₂-O-CH₂- group.

5

3. A compound according to claim 1 or 2, characterized in that R₂ and R₃ represent a methyl group at position 2,6 on the aromatic ring.

4. A method for preparing a formula I compound as defined in
10 claim 1, and its addition salts, comprising the steps consisting of:

a) allowing an acid of formula:

15 in which

R₁, R₂, R₃ and R₄ each independently represent a hydrogen or halogen atom, a C₁-C₃ alkyl group, or a C₁-C₃ alkoxy group, CF₃ or OCF₃ group,
R_a represents a C₁-C₄ alkyl group,

Y represents a saturated C₂-C₅ alkylene group, optionally interrupted by an
20 oxygen atom, an unsaturated C₂-C₄ alkylene group, or a -CH₂-CO-NH-CH₂- group,

to react with a nitrogen-containing heterocycle of formula:

25

III

in which

X represents CH or a nitrogen atom,

p represents 2 or 3,

A represents a single bond, a nitrogen atom optionally substituted with a methyl group (if X does not represent a nitrogen atom), or a straight or branched C₁-C₅ alkylene group, optionally hydroxylated or of which one of the carbon atoms is oxidized into a ketone function,

B represents a nitrogen-containing heterocycle or an amine group optionally substituted with one or two C₁-C₄ alkyl groups, on the understanding that, should a non-substituted nitrogen atom be present, this nitrogen atom is protected by an amino-protecting group, in a solvent, in the presence of activators, at a temperature lying between ambient temperature and the boiling point of the solvent, for approximately 2 to 15 hours, to obtain the amide of formula:

15

in which R₁, R₂, R₃, R₄, R_a, Y, p, X, A and B maintain the same meaning as in the starting products,

20 b) if necessary, removing the amino-protecting groups,
c) if necessary, obtaining an addition salt of the formula I compound with a mineral or organic acid.

5. A method for preparing a formula I compound as defined in claim
25 1, and its addition salts, comprising the steps consisting of:
a) allowing an acid of formula:

in which

- 5 R_1 , R_2 , R_3 and R_4 each independently represent a hydrogen or halogen atom, a C_1 - C_3 alkyl group, or a C_1 - C_3 alkoxy group, CF_3 or OCF_3 group,
- R_a represents a C_1 - C_4 alkyl group,
- Y represents a saturated C_2 - C_5 alkylene group, optionally interrupted by an oxygen atom, an unsaturated C_2 - C_4 alkylene group, or a $-CH_2-CO-NH-CH_2-$ group,
- 10 group,

to react with a chlorination agent, to obtain the acid chloride of formula:

- 15 in which R_1 , R_2 , R_3 , R_4 , R_a and Y have the same meaning as in the starting compound,
- b) allowing the acid chloride of formula IIa to react with an amine of formula III as defined in claim 4, to obtain the compound of formula I,
- c) if necessary, obtaining an addition salt of the formula I compound
- 20 with a mineral or organic acid.

6. A method for preparing a formula I compound such as defined in claim 1, and its addition salts, comprising the steps consisting of:

- a) allowing an acid compound of formula:

VII

in which Ra represents a C₁-C₄ alkyl group,

Y represents a saturated C₂-C₅ alkylene group, optionally interrupted by an

5 oxygen atom, and Z_a represents an amino-protecting group,

to react with a nitrogen-containing heterocycle of formula:

III

10

in which

X represents CH or a nitrogen atom,

p represents 2 or 3,

A represents a single bond, a nitrogen atom optionally substituted with a

15 methyl group (if X does not also represent a nitrogen atom) or a straight or branched C₁-C₅ alkylene group, optionally hydroxylated or of which one of the carbon atoms is oxidized into a ketone function,

B represents a nitrogen-containing heterocycle or an amine group optionally substituted with one or two C₁-C₄ alkyl groups, on the

20 understanding that, should a non-substituted nitrogen atom be present on said nitrogen-containing heterocycle, this nitrogen atom is protected by a different amino-protecting group to the amino-protecting group used for acid compound VII,

in a solvent, in the presence of activators, at a temperature generally

25 lying between ambient temperature and the boiling point of the solvent, for approximately 2 to 15 hours, to obtain the amide of formula:

in which Z_a , R_a , Y , p , X , A and B maintain the same meaning as in the starting compounds,

5 b) removing the Z_a amino-protecting group to obtain the secondary amine of formula:

10 in which R_a , Y , p , X , A and B maintain the same meaning as in the preceding compound,
 c) allowing this secondary amine IX to react with a benzenesulphonyl chloride of formula:

15 IV

in which R_1 , R_2 , R_3 and R_4 each independently represent a hydrogen or halogen atom, a C_1-C_3 alkyl group, or a C_1-C_3 alkoxy group, CF_3 or OCF_3 group,

in a solvent, in the presence of an aprotic organic base, at a temperature between approximately 0 and 50°C, for approximately 1 to 3 hours, to obtain the sulphonamide of formula:

5

in which R₁, R₂, R₃, R₄, R_a, Y, p, X, A and B maintain the same meaning as in the starting compounds,

- d) if necessary, removing the amino-protecting groups,
- e) if necessary, obtaining an addition salt of the formula I compound
10 with a mineral or organic acid.

7. A therapeutic composition, characterized in that, in association with at least one physiologically acceptable excipient, it contains at least one formula I compound according to any of claims 1 to 3, or one of its
15 pharmaceutically acceptable addition salts with an acid.

8. Use of a formula I compound according to any of claims 1 to 3, or of one of its pharmaceutically acceptable addition salts with an acid, for the preparation of a medicinal product intended to treat pain.

20

9. Use of a formula I compound according to any of claims 1 to 3, or of one of its pharmaceutically acceptable addition salts with an acid, for the preparation of a medicinal product intended to treat inflammatory diseases.