NC STATE UNIVERSITY

Unsupervised Learning: Clustering

Justin Post

Unsupervised Learning

Unsupervised learning - no response variable

Aside from PCA, *clustering* is widely used

- Clustering Find subgroups in the data
 - Groups should have members that are "similar" to one another
 - # of subgroups subjective most of the time
- Two major methods
 - K-Means clustering
 - Hierarchical clustering

Visual of K Means Clustering (Clusters not Always the Same!)

Iris k-means clustering

Details of K Means Clustering

Look at within-cluster variation

• For kth cluster, sum all pairwise squared Euclidean distances between the observations in the kth cluster. Divide by # of observations.

$$\frac{1}{\text{# of obs in cluster}} \sum_{\substack{\text{all pairs of obs} \\ \text{in cluster}, i_1, i_2}} \sum_{\substack{\text{all variables,} \\ j=1}}^{p} (x_{i_1,j} - x_{i_2,j})^2$$

- Essentially, average of distances between all pairs of points!
- Find for each cluster, sum all and minimize

Details of K Means Clustering

- Difficult problem to find optimal clusters
- Common algorithm used finds local min for the function

Algorithm:

- 1. Randomly assign a number, from 1 to K, to each of the observations. (These serve as initial cluster assignments for the observations.)
- 2. Iterate until the cluster assignments stop changing:
 - For each of the K clusters, compute the mean for each variable across the values in that cluster (called a centroid).
 - Assign each observation to the cluster whose centroid is closest (where closest is defined using Euclidean distance).

Details of K Means Clustering

Since (probably) local min found each time

- leads to different clusters when run repeatedly
- Run algorithm many times and take the one with overall smallest objective function (sum of average cluster distances)

Visual of K Means Clustering (Initial choice done intelligently)

Iris k-means clustering

K Means Clustering, Multiple Starting Points

Hierarchical Clustering

Bottom up clustering can be used.

- No need to specify # of clusters
- Start with all observations in own cluster
- · Join 'closest' observations (lessing clusters each time), until 1 cluster.
- Can be visualized with a dendogram

hierClust <- hclust(dist(data.frame(iris\$Sepal.Length, iris\$Sepal.Width)))
plot(hierClust, xlab = "")</pre>

Cluster Dendrogram

hclust (*, "complete")

Hierarchical Clustering

Clusters are nested in some sense (hence hierarchical)

· Different methods can be used to *join* observations

Linkage	Description
Complete	Maximal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>largest</i> of these dissimilarities.
Single	Minimal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>smallest</i> of these dissimilarities. Single linkage can result in extended, trailing clusters in which single observations are fused one-at-a-time.
Average	Mean intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the <i>average</i> of these dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean vector of length p) and the centroid for cluster B. Centroid linkage can result in undesirable $inversions$.

TABLE 10.2. A summary of the four most commonly-used types of linkage in hierarchical clustering.

Complete Linkage Example

Determine Cluster Membership Using 'Horizontal Line'

Cluster Dendrogram

Clustering Recap

KMeans

- · knn() function in R
- Must specify # of clusters
- Usually run multiple starting points (nstart option in knn)

Hierarchical

- hclust() function in R
- Specify distance matrix as main argument
- Specify dissimilarity measure (many options: ward.D, ward.D2, single, complete, average, mcquitty, median Or centroid
- Dendrogram for visualization