Universidad del Valle de Guatemala Minería de Datos Sección 10

Hoja de Trabajo 5

Brian Carrillo - 21108 Diego Alonzo - 20172 Carlos López - 21666

- 1. Use los mismos conjuntos de entrenamiento y prueba que utilizó en las dos hojas anteriores.
- 2. Elabore un modelo de regresión usando bayes ingenuo (naive bayes), el conjunto de entrenamiento y la variable respuesta SalesPrice. Prediga con el modelo y explique los resultados a los que llega. Asegúrese que los conjuntos de entrenamiento y prueba sean los mismos de las hojas anteriores para que los modelos sean comparables.

/ prediction																
[1] 142500	205000	132500	142000	112500	142500	142500	112500	215000	203000	159000	208900	189000	223500	116000	113000	131500
[18] 192000	142500	142500	149900	124000	142500	223500	208900	112000	219500	114500	161500	168500	203000	224900	133900	113000
[35] 174000	142500	159500	213500	219500	174000	203000	201000	203000	117500	208900	228500	142500	142500	113000	167000	152000
[52] 112500	112000	113000	205000	262500	180500	156000	112500	131000	189000	205000	203000	142500	131500	142000	188000	203000
[69] 213500	192000	137000	187500	167000	189000	153000	186500	211000	208900	142500	192000	142000	137000	203000	203000	116000
[86] 142500	112000	142500	186500	116000	174000	188000	161500	219500	131000	125500	125500	211000	156000	131000	187500	112500
[103] 208900	186500	117500	112500	118000	116000	208900	205000	189000	186500	128500	203000	189000	266000	167000	142500	112500
[120] 189000	118000	142000	167000	174000	148500	159000	142500	167000	187500	237000	131500	167000	112000	131000	178000	221000
[137] 203000	142000	125500	156000	117000	203000	144500	112500	186500	208900	142500	223500	142500	203000	208900	228500	129500
[154] 219500	203000	186500	136500	177500	189000	120500	175900	112500	142500	224900	219500	196000	189000	116000	224900	167000
[171] 159500	142500	186500	186500	131000	142500	112000	132000	142500	113000	180500	169000	112000	142500	131000	168000	142500
[188] 219500	132500	197000	208900	112000	142500	142000	197000	232000	152000	112500	142500	205000	142500	197000	219500	203000
[205] 124000	188000	142000	136500	208900	159500	197000	136500	136500	132000	174000	203000	175900	113000	112000	196000	239000
[222] 167000	212000	142500	197000	196000	131000	142500	112500	142000	203000	186500	224900	132000	125500	132500	142500	168000
[239] 112500	189000	174000	113000	189000	208900	215000	113000	188000	167500	112500	113000	113000	187500	171000	112500	187500
[256] 142500	197000	113000	213500	142500	186500	186500	112000	208900	197000	203000	186500	142500	136500	112500	203000	117500
[273] 197000	208900	203000	223500	142500	134500	197000	203000	142500	113000	224900	180500	112500	123000	119500	256000	142500
[290] 224900	131000	208900	203000	174000	133900	186500	174000	159500	112500	191000	186500	224900	168000	136500	186500	117500
[307] 196000	125500															

3. Analice los resultados del modelo de regresión. ¿Qué tan bien le fue prediciendo?

MSE: 1.98 RMSE: 1.41 R^2: -0.99

A partir del coeficiente de determinación obtenido, se puede decir que el modelo de regresión generado es totalmente inadecuado para los datos. El MSE y RMSE determinan que el error del modelo es alto, puesto que el conjunto de datos utilizados se encuentra normalizado. Lo idóneo es que estos valores se encuentren lo más cerca de 0 posible. Algunas mejoras podrían ser:

- 1. Probar con otros modelos.
- 2. Validación cruzada.
- 3. Desnormalizar los datos, puesto que el uso de decimales perjudica ya que Naive Bayes es utilizado para modelos de clasificación.

MSE: 974292879 RMSE: 31213.66

R^2: 0.35

A partir del coeficiente de determinación obtenido, se puede decir que el árbol de regresión logra explicar solamente el 35% de la varianza de los datos. El MSE y RMSE determinan que el error del modelo es alto, puesto que el conjunto de datos utilizados se encuentra normalizado. Lo idóneo es que estos valores se encuentren lo más cerca de 0 posible. Algunas mejoras podrían ser:

- 1. Probar con otros modelos.
- 2. Validación cruzada.

4. Compare los resultados con el modelo de regresión lineal y el árbol de regresión que hizo en las hojas pasadas. ¿Cuál funcionó mejor?

El coeficiente de determinación del modelo de regresión lineal univariado de la hoja #3 es de 0.5, mientras que el coeficiente de determinación del modelo de regresión lineal multivariado es de 0.79. Finalmente, el coeficiente de determinación del modelo de regresión de la hoja anterior es de 0.62. Por lo tanto se puede afirmar que el modelo de regresión generado en esta hoja es peor que todos los modelos anteriores.

5. Haga un modelo de clasificación, use la variable categórica que hizo con el precio de las casas (barata, media y cara) como variable respuesta.

La variable de respuesta es la misma que fue generada en la hoja anterior.

- 6. Utilice los modelos con el conjunto de prueba y determine la eficiencia del algoritmo para predecir y clasificar.
- 7. Haga un análisis de la eficiencia del modelo de clasificación usando una matriz de confusión. Tenga en cuenta la efectividad, donde el algoritmo se equivocó más, donde se equivocó menos y la importancia que tienen los errores.

```
Confusion Matrix and Statistics
            Reference
Prediction
             Cara Economica Intermedia
  Intermedia
Overall Statistics
                Accuracy: 0.4768
    95% CI : (0.4212, 0.5328)
No Information Rate : 0.4768
    P-Value [Acc > NIR] : 0.5219
                   Kappa: 0.2874
 Mcnemar's Test P-Value: <2e-16
Statistics by Class:
                      Class: Cara Class: Economica Class: Intermedia
Sensitivity
                           0.9419
                                                              0.012987
                                             0.8554
Specificity
                           0.4557
                                             0.8417
                                                              0.988166
Pos Pred Value
                                                              0.500000
                           0.3857
                                             0.6514
Neg Pred Value
                           0.9558
                                                              0.523511
                                             0.9439
Prevalence
                           0.2663
                                             0.2570
                                                              0.476780
Detection Rate
                           0.2508
                                             0.2198
                                                              0.006192
Detection Prevalence
                           0.6502
                                                              0.012384
Balanced Accuracy
                           0.6988
                                             0.8485
                                                              0.500576
```

Según los resultados de la matriz de confusión, el modelo tuvo una exactitud de 0.48. Tuvo mayor cantidad de errores al predecir una casa como categoría intermedia. Esto concuerda con la observación realizada en la hoja anterior, en la que se veía una clara tendencia en clasificaciones de tipo "intermedia". En general, el modelo parece tener un rendimiento bajo con una exactitud del 48% y un valor de kappa de 0.2874. La sensibilidad es más alta para la clase "Cara", lo que indica que el modelo es mejor identificando esta clase correctamente en comparación con las otras. La especificidad es alta para la clase "Intermedia", lo que sugiere que el modelo es bueno para identificar las no intermedias.

8. Analice el modelo. ¿Cree que pueda estar sobre ajustado?

```
Confusion Matrix and Statistics
            Reference
Prediction
             Cara Economica Intermedia
              82
                                     14
  Economica
  Intermedia
                                     13
Overall Statistics
               Accuracy: 0.3715
   95% CI : (0.3368, 0.4072)
No Information Rate : 0.4953
    P-Value [Acc > NIR] : 1
                  Kappa: 0.154
 Mcnemar's Test P-Value : <2e-16
Statistics by Class:
                     Class: Cara Class: Economica Class: Intermedia
Sensitivity
                           0.4271
                                            0.9840
                                                              0.03495
Specificity
                           0.9732
                                            0.2057
                                                              0.97625
Pos Pred Value
                          0.8454
                                            0.2911
                                                              0.59091
Neg Pred Value
                          0.8318
                                            0.9748
                                                              0.50754
                          0.2557
                                            0.2490
                                                              0.49534
Prevalence
                          0.1092
                                            0.2450
                                                              0.01731
Detection Rate
Detection Prevalence
                          0.1292
                                            0.8415
                                                              0.02929
Balanced Accuracy
                           0.7001
                                            0.5948
                                                              0.50560
```

Al comparar la exactitud del modelo utilizando los datos de entrenamiento con la exactitud utilizando los datos de prueba, es posible inducir que que el modelo no está sobre ajustado y en su lugar, podría estar sub ajustado.

9. Haga un modelo usando validación cruzada, compare los resultados de este con los del modelo anterior. ¿Cuál funcionó mejor?

```
Confusion Matrix and Statistics
                  Reference
Prediction Cara Economica Intermedia
Cara 62 0 14
                                                     14
49
   Economica
                                     68
Overall Statistics
     Accuracy : 0.7059
95% CI : (0.6529, 0.755)
No Information Rate : 0.4985
P-Value [Acc > NIR] : 3.037e-14
                          Kappa : 0.55
 Mcnemar's Test P-Value: 8.712e-08
Statistics by Class:
                               Class: Cara Class: Economica
Sensitivity
Specificity
                                      0.7126
0.9407
Pos Pred Value
Neg Pred Value
                                      \begin{array}{c} 0.8158 \\ 0.8988 \end{array}
                                                               0.5714
0.9657
Prevalence
                                      0.2693
0.1920
                                                               0.2322
0.2105
Detection Rate
                                                               0.3684
Detection Prevalence
                                      0.2353
Balanced Accuracy
                                     0.8267
                               Class: Intermedia
0.6087
0.8148
Sensitivity
Specificity
Pos Pred Value
Neg Pred Value
                                               0.7656
0.6769
Prevalence
Detection Rate
                                               0.4985
0.3034
Detection Prevalence
Balanced Accuracy
```

Según la matriz de confusión, este modelo posee una exactitud de 0.71 y un valor de kappa de 0.55. Funcionó mejor que el modelo de clasificación realizado anteriormente.

10. Tanto para los modelos de regresión como de clasificación,pruebe con varios valores de los hiperparámetros, use el mejor modelo del tunneo, ¿Mejoraron los modelos? Explique

Modelo de clasificación

```
Confusion Matrix and Statistics
             Reference
Prediction Cara Economica Intermedia
  Cara
                 58
                             1
                                         46
  Economica
                            81
  Intermedia
                             4
                                         76
Overall Statistics
    Accuracy : 0.6656
95% CI : (0.6113, 0.7169)
No Information Rate : 0.5077
P-Value [Acc > NIR] : 6.903e-09
                    Kappa: 0.5074
 Mcnemar's Test P-Value: 8.025e-12
Statistics by Class:
                       Class: Cara Class: Economica Class: Intermedia
Sensitivity
Specificity
                             0.8120
                                                0.8059
                                                                     0.9057
Pos Pred Value
                             0.5524
                                                0.6378
                                                                     0.8352
Neg Pred Value
                             0.9312
                                                0.9745
                                                                     0.6207
Prevalence
                             0.2260
                                                0.2663
                                                                     0.5077
Detection Rate
                             0.1796
                                                0.2508
                                                                     0.2353
                                                 0.3932
Detection Prevalence
                             0.3251
                                                                     0.2817
Balanced Accuracy
                             0.8033
                                                0.8739
                                                                     0.6845
```

La exactitud obtenida tras modificar el parámetro de laplace en el modelo de clasificación es de 0.67, por lo que el modelo mejoró respecto al modelo original, en el que la exactitud era de 0.48.

Modelo de regresión

```
> tune_grid <- expand.grid(
+ usekernel = c(TRUE, FALSE),
+ fL = seq(0, 1, length = 10), # Explora valores entre 0 y 1
+ adjust = 1 # Puedes variar esto si 'usekernel' es TRUE
+ )
> 
> ct<-trainControl(method = "cv",number=10, verboseIter=T)
> modeloCaret<-train(SalePrice~.,data=train_copy,method="nb",trControl = ct,tuneGrid=tune_grid)
Error: wrong model type for regression</pre>
```

No se pudo realizar el tuneo del parámetro laplace, puesto que la librería caret identifica que la variable de respuesta es numérica. El utilizar naiveBayes directamente no produce este error, puesto que los datos numéricos son considerados como categóricos, por lo que para la evaluación de dicho modelo únicamente se casteó la predicción a un valor entero.

11. Compare la eficiencia del algoritmo con el resultado obtenido con el árbol de decisión (el de clasificación) y el modelo de random forest que hizo en la hoja pasada. ¿Cuál es mejor para predecir? ¿Cuál se demoró más en procesar?

Comparando todos los modelos realizados hasta ahora en esta hoja y la hoja anterior, el mejor modelo para predecir es el generado con Random Forest con una exactitud de 0.78. Sin embargo, la exactitud del modelo generado a partir de validación cruzada con Naive Bayes, posee un valor cercano al de Random Forest, por lo que también se puede considerar como un buen modelo para predecir si una casa es considerada cara, económica o intermedia. El modelo generado a partir de validación cruzada en esta hoja demoró más que el modelo generado con Random Forest.