Yijing Xiao

Problem 1: In what order does A* expand the nodes for the graph?

Frontier	Path cost	Heuristic	f = g + h	CurrNode
S	0	5	5	
ь	1	3	4	0
a	1	4	5	3
c	3	1	4	
d	3	1	4	h
a	1	4	5	U
g	5	0	5	
d	3	1	4	
a	1	4	5	c
g	5	0	5	
g	4	0	4	4
a	1	4	5	a
a	1	4	5	g

Extra explanation: the frontier is a priority queue in alphabetical order and after popping out a node, it will check the f value and sort queue from smallest to largest so that is why the node a behind node g in the penultimate row. In the last step, since we've already reached out to node g, we don't need to explore even though the frontier is not empty.

Problem 2: Which of the following are true and which are false? Explain your answers.

a) Depth-first search always expands at least as many nodes as A* search with an admissible heuristic.

False. Depth-first search always expands node as deep as possible; it might only expand some nodes to reach out the goal. However, A* may check other more nodes to make sure the path is optimal.

b) h(s) = 0 is an admissible heuristic for the 8-puzzle.

True. An admissible heuristic must have $0 \le h(s) \le h^*(s)$. The $h^*(s)$ is always positive and h(s) = 0, thus it satisfied all conditions.

c) An admissible heuristic must be consistent.

False. In the lecture we have an example of admissible but inconsistent heuristic (Informed

Consistent heuristics

Example of admissible but inconsistent heuristic (rare in practice!)

Figure 1 problem 2 (c)

search, PowerPoint page 79, showed on above). Therefor this statement is false.

- d) A* with an admissible heuristic is always the best choice for finding a reasonably short path quickly (in terms of computation time), because it is optimal.
 False. A* is optimal if heuristic is admissible only in tree search. For graph search, A* is optimal if heuristic is consistent.
- e) Assume that a rook can move on a chessboard any number of squares in a straight line, vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an admissible heuristic for the problem of moving the rook from square A to square B in the smallest number of moves.

 False. According to the AIMA book, there are three relaxed problems: If a rook can move from square A to square B if A is adjacent to B, we can derive Manhattan distance. If A rook can move from square A to square B if B is blank, we can derive Gaschnig heuristic. If A rook can move from square A to square B, we can derive misplaced titles. Hence, the cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.

Problem 3 Extra Credit: Explain why Gaschnig's heuristic is at least as accurate as the number-of-misplaced-tiles heuristic.

Since the misplaced-titles heuristic is for a tile can move from square A to square B which is a relaxation of the condition for a tile can move from square A to square B if B is blank. Thus, the number-of-misplaced-tiles heuristic cannot bigger than Gaschnig's heuristic. Since both are also admissible (because the cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem), then we have $0 \le$ the number of misplaced tiles \le Gaschnig's heuristic \le h*. Therefore, why Gaschnig's heuristic is at least as accurate as the number-of-misplaced-tiles heuristic.