A B	ook of Abstract Algeb	ra	(2nd Ed	lition)
	Chapter 33, Problem 4EC		Bookmark	Show all steps: ON
	Problem			
	Let p be a prime number, and ω a primitive p th Use part 3 to prove that $b^p = a^m$.	root of	unity in the field	F.
	Step-by-s	tep s	olution	
Step 1 of 4				
	Here, objective is to prove that $b^p = a^m$			
	Consider degree $p(x) = m$			
	Comment			
	Step 2 of 4			
	Consider the polynomial $x^p - a$.			
	$x^p - a = 0$			
	$x = \sqrt[p]{a} \omega$			
	Then, the root $d = \sqrt[p]{a}$, ω is the p^{th} root of unity			
	Comment			
	Step :	3 of 4		
	Consider the polynomial $x^p - a \in F(x)$			

P is a prime and $x^p - a$ is reducible in F(x)

Let us assume d_1, d_2, \dots, d_p are the roots of $x^p - a$

Then,

$$x^{p} - a = (x - d_{1})(x - d_{2}).....(x - d_{p})$$

 $p(x) = (x - d_1)(x - d_2).....(x - d_m)$ p(x) is equal to the product of m number of these factors. Since, degree p(x) = m

Comment

Step 4 of 4

Let the Constant term of above equation is \emph{b} , is the product of $\emph{d}_{1},\emph{d}_{2},.....\emph{d}_{\textit{m}}$

$$b = (d_1 d_2 d_m)$$

$$b = \sqrt[p]{a} \dots \sqrt[p]{a}$$

$$b = \omega^k (\sqrt[p]{a})^m$$

$$b=\omega^k d^m$$

$$b = \left(\sqrt[p]{a}\right)^m \qquad (\because \omega^k = 1)$$

$$b=a^{m/p}$$

$$b = \left(a^m\right)^{1/p}$$

$$b^p = a^m$$

Hence, proved

Comment