Review 2nd Midterm

• Hedge

• Dilation: $HA(x) = (A(x))^{1/2} \rightarrow \text{more or less of } A$

• Concentration: $HA(x) = (A(x))^2 \rightarrow \text{very } A$

• Plus: $HA(x) = (A(x))^{1.25}$

• Intensification:

$$HA(x) = \begin{cases} 2A(x)^2 & \text{if } A(x) \in \left[0, \frac{1}{2}\right] \\ 1 - 2(1 - A(x))^2 & \text{otherwise} \end{cases} \rightarrow \text{slightly}$$

• Vague

$$HA(x) = \begin{cases} \sqrt{\frac{A(x)}{2}} & \text{if } A(x) \le 0.5\\ 1 - \sqrt{\frac{1 - A(x)}{2}} & \text{if } A(x) > 0.5 \end{cases} \Rightarrow \text{seldom}$$

• Generalized modus ponen

implication:

If χ is A, then Y is B

premise:

 χ is A'

conclusion:

Y is B'

$$\begin{array}{c}
Y \\
B \\
\hline
\end{array}$$

 $\chi = x$ we get Y = y = f(x)

 χ is in A we get Y in $B = \{ y \in Y \mid y = f(x), x \in A \}$

Relation R on $X \times Y$ if $\chi = u$ and R we get $Y \in B$ where $B = \{ y \in Y \mid \langle x, y \rangle \in R \}$ (left image)

And if $\chi \in A$ we get $Y \in B$ where $B = \{ y \in Y \mid \langle x, y \rangle \in R, x \in A \}$ (right image)

$$X_B(y) = \sup_{x \in X} \min [X_A(x), X_R(x, y)]$$

If R is a fuzzy relation on $X \times Y$ where A and A' are fuzzy sets on X, B and B' are fuzzy sets on Y

If R (relation between A and B) and A' are given, we can find B' using

$$B'(y) = \sup_{x \in X} \min [A'(x), R(x, y)]$$

Or $B'=A' \bullet R$ operator \bullet is a composition operator Hence, this is called compositional rule of inference

• Example

implication: if x and y are approximately equal

premise: x is little

conclusion: ?

Suppos little $\rightarrow A = \{(1,1), (2,0.6), (3,0.2), (4,0)\}$

Suppose

$$R = \begin{bmatrix} 1.0 & 0.5 & 0.0 & 0.0 \\ 0.5 & 1.0 & 0.5 & 0.0 \\ 0.0 & 0.5 & 1.0 & 0.5 \\ 0.0 & 0.0 & 0.5 & 1.0 \end{bmatrix}$$

from
$$\mathbf{B} = \mathbf{A} \bullet \mathbf{R}$$

$$B = \begin{bmatrix} 1.0 & 0.6 & 0.2 & 0.0 \end{bmatrix} \bullet \begin{bmatrix} 1.0 & 0.5 & 0.0 & 0.0 \\ 0.5 & 1.0 & 0.5 & 0.0 \\ 0.0 & 0.5 & 1.0 & 0.5 \\ 0.0 & 0.0 & 0.5 & 1.0 \end{bmatrix} \longrightarrow B = \begin{bmatrix} 1.0 & 0.6 & 0.5 & 0.2 \end{bmatrix}$$
Max-min composition

• p: If χ is A, then Y is B for $x \in X$ and $y \in Y$, relation will be R(x,y) = I(A(x), B(y))

Where I is fuzzy implication

- Lukasiewicz: $I(A(x),B(y)) = \min[1, 1-A(x)+B(y)]$
- Zadeh: $I(A(x),B(y)) = \max((1-A(x)), \min(A(x),B(y)))$
- Kleen-Dienes: $I(A(x),B(y)) = \max((1-A(x)),B(y))$
- Mamdani (correlation-min): I(A(x),B(y)) = min(A(x),B(y))
- Correlation-product: $I(A(x),B(y)) = A(x) \times B(y)$
- Goedel:

$$I(A(x),B(y)) = \begin{cases} 1 & \text{if } A(x) \le B(y) \\ B(y) & \text{if } A(x) > B(y) \end{cases}$$

• If χ is A, then Y is $B \rightarrow$ If χ is A, then Y is B else V is UNKNOWN where χ , Y and V are variables in X, Y and V and A, B and UNKNOWN are fuzzy sets on X, Y and V

$$R = A \times B + \overline{A} \times UNKNOWN$$

- $\times \rightarrow$ minimum, $+ \rightarrow$ maximum
- If χ is A, then Y is B else Z is $C \rightarrow$

$$R = A \times B + \overline{A} \times C$$

• Example

$$A = 1/1 + 0.4/2$$
, $B = 0.4/2 + 1/3$ and $C = 1/1 + 0.6/2$

If χ is A, then Y is B else Z is $C \rightarrow$

$$R = \begin{bmatrix} 1.0 \\ 0.4 \\ 0.0 \end{bmatrix} \begin{bmatrix} 0.0 & 0.4 & 1.0 \end{bmatrix} + \begin{bmatrix} 0.0 \\ 0.6 \\ 1.0 \end{bmatrix} \begin{bmatrix} 1.0 & 0.6 & 0.0 \end{bmatrix} \qquad R = \begin{bmatrix} 0.0 & 0.4 & 1.0 \\ 0.0 & 0.4 & 0.4 \\ 0.0 & 0.0 & 0.0 \end{bmatrix} + \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.6 & 0.6 & 0.0 \\ 1.0 & 0.6 & 0.0 \end{bmatrix} \qquad R = \begin{bmatrix} 0.0 & 0.4 & 1.0 \\ 0.6 & 0.6 & 0.0 \\ 1.0 & 0.6 & 0.0 \end{bmatrix}$$

If χ is A, then Y is $B \rightarrow$

$$R = \begin{bmatrix} 1.0 \\ 0.4 \\ 0.0 \end{bmatrix} \begin{bmatrix} 0.0 & 0.4 & 1.0 \end{bmatrix} + \begin{bmatrix} 0.0 \\ 0.6 \\ 1.0 \end{bmatrix} \begin{bmatrix} 1.0 & 1.0 & 1.0 \end{bmatrix} \qquad R = \begin{bmatrix} 0.0 & 0.4 & 1.0 \\ 0.0 & 0.4 & 0.4 \\ 0.0 & 0.0 & 0.0 \end{bmatrix} + \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.6 & 0.6 & 0.6 \\ 1.0 & 1.0 & 1.0 \end{bmatrix} \qquad R = \begin{bmatrix} 0.0 & 0.4 & 1.0 \\ 0.6 & 0.6 & 0.6 \\ 1.0 & 1.0 & 1.0 \end{bmatrix}$$

• Example: Inverted pendulum

input: angle θ and angular velocity $\Delta\theta$

output: current v_t

membership functions \rightarrow same name for θ , $\Delta\theta$ and v_t

negative large (NL), negative medium (NM), negative small (NS), zero (ZE), positive small (PS), positive medium (PM), and positive large (PL)

rule j: if θ is A_j and $\Delta \theta$ is B_j then v_t is C_j e.g. if θ is NL and $\Delta \theta$ is NL then v_t is $PL \rightarrow (NL,NL;PL)$ or if θ is ZE and $\Delta \theta$ is ZE then v_t is $ZE \rightarrow (ZE,ZE;ZE)$

θ	NL	NM	NS	ZE	PS	PM	PL
Δθ							
NL				PL			
NM				PM			
NS				PS			
ZE	PL	PM	PS	ZE	NS	NM	NL
PS				NS			
PM				NM			
PL				NL			

Total number of rules \rightarrow 7 × 7 × 7 = 343 but some of rules do not make sense. Hence, the number of usable rules will be less than that

• Fuzzy associative memory (FAM)

rule 1: If χ is A_1 , then Y is $B_1 \rightarrow (A_1, B_1) \rightarrow R_1$

rule 2: If χ is A_2 , then Y is $B_2 \rightarrow (A_2, B_2) \rightarrow R_2$

•

rule n: If χ is A_n , then Y is $B_n \rightarrow (A_n, B_n) \rightarrow R_n$

premise: χ is A'

conclusion: Y is B'

 $B' = w_1 B_1' + w_2 B_2' + ... + w_n B_n'$ where $B_i' = A' \cdot R_i$

Supposed:
$$A_i = a_1/x_1 + a_2/x_2 + ... + a_m/x_m \rightarrow A_i = [a_1, a_2, ..., a_m]$$

Supposed:
$$A_i = a_1/x_1 + a_2/x_2 + ... + a_m/x_m \rightarrow$$

Correlation-min \rightarrow
 $R_i = A_i^T \circ B_i \rightarrow$
 $R_i = \begin{bmatrix} a_1 \wedge B_i \\ a_2 \wedge B_i \\ \vdots \\ a_m \wedge B_i \end{bmatrix}$

$$\mathbf{R}_{i} = \begin{bmatrix} b_{1} \wedge \mathbf{A}_{i}^{\mathsf{T}} & b_{2} \wedge \mathbf{A}_{i}^{\mathsf{T}} \cdots b_{p} \wedge \mathbf{A}_{i}^{\mathsf{T}} \end{bmatrix}$$

Correlation-product \rightarrow

-product
$$\rightarrow$$

$$R_{i} = A_{i}^{T} \circ B_{i} \rightarrow R_{i} = \begin{bmatrix} a_{1}B_{i} \\ a_{2}B_{i} \\ \vdots \\ a_{m}B_{i} \end{bmatrix}$$

$$\mathbf{R}_{i} = \begin{bmatrix} b_{1} \mathbf{A}_{i}^{\mathsf{T}} & b_{2} \mathbf{A}_{i}^{\mathsf{T}} & \cdots & b_{p} \mathbf{A}_{i}^{\mathsf{T}} \end{bmatrix}$$

Conclude
$$\rightarrow B' = A' \bullet R$$

$$= A' \bullet \bigcup_{j \in \mathbb{N}_n} R_j$$

$$= A' \bullet \sup_{j \in \mathbb{N}_n} R_j$$

$$= \sup_{j \in \mathbb{N}_n} (A' \bullet A_j^{\mathsf{T}} \circ B_j)$$

$$= \sup_{j \in \mathbb{N}_n} ((A' \bullet A_j^{\mathsf{T}}) \circ B_j)$$

$$= \sup_{j \in \mathbb{N}_n} ((A' \bullet A_j^{\mathsf{T}}) \circ B_j)$$

$$B = \sup \left[\left(A' \bullet A_1^{\mathsf{T}} \right) \circ B_1, \left(A' \bullet A_2^{\mathsf{T}} \right) \circ B_2, ..., \left(A' \bullet A_i^{\mathsf{T}} \right) \circ B_i, ..., \left(A' \bullet A_n^{\mathsf{T}} \right) \circ B_n \right]$$

• $\mathbf{A}' = 0/x_1 + 0/x_2 + ... + 1/x_i + 0/x_{i+1} + ... + 0/x_m$ Correlation-min \rightarrow $(\mathbf{A}' \bullet \mathbf{A}_i^T) \circ \mathbf{B}_i = \min(\mathbf{A}_i(x_i), \mathbf{B}_i)$

Correlation-product \rightarrow $(A' \bullet A_j^T) \circ B_j = A_i(x_i)B_j$

• Example

$$A' = 0/x_1 + 0/x_2 + ... + 1/x_i + 0/x_{i+1} + ... + 0/x_m$$

Supposed that there are 2 rules $(A_1; B_1)$ and $(A_2; B_2)$

$$\mathbf{\textit{B}}' = \sup \left[(\mathbf{\textit{A}}' \bullet \mathbf{\textit{A}}_1^{\mathsf{T}}) \circ \mathbf{\textit{B}}_1, (\mathbf{\textit{A}}' \bullet \mathbf{\textit{A}}_2^{\mathsf{T}}) \circ \mathbf{\textit{B}}_2 \right]$$

where $(\mathbf{A}' \bullet \mathbf{A}_1^T) = a_{i1}$ and $(\mathbf{A}' \bullet \mathbf{A}_2^T) = a_{i2}$

• Example

A' is a fuzzy set not crisp set

Supposed that there are 2 rules(A_1 ; B_1) and (A_2 ; B_2)

$$\mathbf{B}' = \sup [(\mathbf{A}' \bullet \mathbf{A}_1^{\mathrm{T}}) \circ \mathbf{B}_1, (\mathbf{A}' \bullet \mathbf{A}_2^{\mathrm{T}}) \circ \mathbf{B}_2]$$

where

$$r_j(A') = (A' \bullet A_j^T) = \sup_{x \in X} \min[A'(x), A_j(x)]$$

• If there are more than 1 input $\rightarrow (A,B;C)$

$$A = a_1/x_1 + a_2/x_2 + ... + a_m/x_m$$
 and $B = b_1/y_1 + b_2/y_2 + ... + b_m/y_m$ split into $(A; C)$ และ $(B; C) \rightarrow$

$$M_{AC} = A^T \circ C$$
 and $M_{BC} = B^T \circ C$

fact:
$$A' = I_x^i = 0/x_1 + 0/x_2 + ... + 1/x_i + 0/x_{i+1} + ... + 0/x_m$$
 and $B' = I_y^j = 0/y_1 + 0/y_2 + ... + 1/y_j + 0/j_{i+1} + ... + 0/y_m$ compute:
$$F(A', B') = C' = [A' \bullet M_{AC}] \cap [B' \bullet M_{BC}]$$
 where $A' \bullet M_{AC} = I_x^i \bullet M_{AC}$

$$=\mathbf{I}_{x}^{i} \bullet \begin{bmatrix} a_{1} \wedge c \\ a_{2} \wedge c \\ \vdots \\ a_{m} \wedge c \end{bmatrix} = a_{i} \wedge \mathbf{C}$$

and $B' \bullet M_{BC} = I_y^{\ j} \bullet M_{BC}$

$$=\mathbf{I}_{y}^{j}ullet egin{bmatrix} b_{1}\wedge c\ b_{2}\wedge c\ dots\ b_{m}\wedge c \end{bmatrix} =b_{j}\wedge oldsymbol{C}$$

Hence, the conclusion will be $C' = (a_i \land C) \cap (b_j \land C) = (\min(a_i, b_j)) \land C$

If use correlation-product

$$C' = (a_i C) \cap (b_j C) = (\min(a_i, b_j))C$$

Mamdani model

If ξ_1 is $A^{(1)}$, and ξ_2 is $A^{(2)}$ and ... and ξ_n is $A^{(n)}$ then η is B

where $A^{(1)}$, $A^{(2)}$ and ... and $A^{(n)}$ are linguistic terms in $T(x_i)$ for $1 \le i \le n$ and B is linguistic term in T(y) and suppose there are more than 1 rule

Let
$$T(x_1) \rightarrow A_1^{(1)}, A_2^{(1)}, \dots, A_{N1}^{(1)}$$

 $T(x_2) \rightarrow A_1^{(2)}, A_2^{(2)}, \dots, A_{N2}^{(2)}$

$$T(x_n) \to A_1^{(n)}, A_2^{(n)}, \dots, A_{Nn}^{(n)}$$

and $T(y) \rightarrow B_1, B_2, \dots, B_{N0}$

rule j: If ξ_1 is $A_{i1,j}^{(1)}$, and ξ_2 is $A_{i2,j}^{(2)}$ and ... and ξ_n is $A_{in,j}^{(n)}$ then η is $\boldsymbol{B}_{i,j}$ where $i1 \in \{1,2,...,N1\}$, $i2 \in \{1,2,...,N2\}$,..., $in \in \{1,2,...,Nn\}$ and $i \in \{1,2,...,N0\}$

Firing strength of rule *j* will be

$$\alpha_j = \min\{A_{i1,j}^{(1)}(x_1), A_{i2,j}^{(2)}(x_2), \dots, A_{in,j}^{(n)}(x_n)\}$$

Output of rule *j* will be

$$out_{X_1,X_2,...,X_n}^{(j)}(y) = \min \left[A_{i1,j}^{(1)}(x_1), A_{i2,j}^{(2)}(x_2),..., A_{in,j}^{(n)}(x_n), B_{i,j}(y) \right]$$

Overall output

$$OUT_{X_1,X_2,...,X_n}(y) = \max_{j \in \{1,2,...,k\}} \min \left[A_{i1,j}^{(1)}(x_1), A_{i2,j}^{(2)}(x_2),..., A_{in,j}^{(n)}(x_n), B_{i,j}(y) \right]$$

- Defuzzification
 - Max membership \rightarrow select de_y where $B'(de_y) \ge B'(de_y')$ for all $de_y' \in Y$ if $M = \{y \in [y_1, y_2] | B'(y) = h(B')\}$ where h(B') is a height of B'

$$de \underline{\hspace{0.1cm}} y = \frac{\sum_{y_k \in M} y_k}{|M|}$$

• Center of area (centroid)

$$de_{y} = \frac{\sum_{k} B'(y_{k}) y_{k}}{\sum_{k} B'(y_{k})}$$

• Simplified centroid

$$de_{-}y = \frac{\sum_{j \in N_n} c_j y_{B_j}^0}{\sum_{j \in N_n} c_j} \quad \text{where } c_j \text{ is firing strength (} a_{ij} \text{ or } r_j(\mathbf{A'}) \text{) and } y_{\mathbf{B}j}^0 \text{ is the mode}$$
of output of rule j

• Example

rule 1: If x_1 is L_1 และ x_2 is H_2 , then y is L rule 2: If x_1 is M_1 และ x_2 is M_2 , then y is H input (-4,3)

 $\alpha_1 = \min(\mathbf{L}_1(-4), \mathbf{H}_2(3)) = \min(0.67, 0.5) = 0.5$ $\alpha_2 = \min(\mathbf{M}_1(-4), \mathbf{M}_2(3)) = \min(0.33, 0.5) = 0.5$

• Takagi-Sugeno model

If ξ_1 is $A^{(1)}$, and ξ_2 is $A^{(2)}$ and ... and ξ_n is $A^{(n)}$ then η is B

where $A^{(1)}$, $A^{(2)}$ and ... and $A^{(n)}$ are linguistic terms in $T(x_i)$ for $1 \le i \le n$ and B is linguistic term in T(y) and suppose there are more than 1 rule

Let
$$T(x_1) \rightarrow A_1^{(1)}, A_2^{(1)}, \dots, A_{N1}^{(1)}$$

 $T(x_2) \rightarrow A_1^{(2)}, A_2^{(2)}, \dots, A_{N2}^{(2)}$

$$T(x_n) \rightarrow A_1^{(n)}, A_2^{(n)}, \dots A_{Nn}^{(n)} \bullet$$

rule j : If ξ_1 is $A_{i1,j}^{(1)}$, and ξ_2 is $A_{i2,j}^{(2)}$ and ... and ξ_n is $A_{in,j}^{(n)}$ then $\eta_j = f_j(\xi_1, \xi_2, \dots, \xi_n)$
where $i1 \in \{1, 2, \dots, N1\}, i2 \in \{1, 2, \dots, N2\}, \dots, in \in \{1, 2, \dots, Nn\}$ and

$$f_{j}(x_{1}, x_{2},..., x_{n}) = a_{1}^{j}x_{1} + a_{2}^{j}x_{2} + ... + a_{n}^{j}x_{n} + a_{0}^{j}$$
overall output $\rightarrow \eta = \frac{\sum_{j=1}^{k} \alpha_{j} f_{j}(x_{1}, x_{2},...x_{n})}{\sum_{j=1}^{k} \alpha_{j}}$

• Example → turning steering wheel control system

input: $\xi_1, \xi_2, \xi_3 \text{ and } \xi_4$

universal set: $X_1 = [0, 150]$ cm, $X_2 = [0, 150]$ cm,

 $X_3 = [-90, 90]$ degree and $X_4 = [0, 150]$ cm

output: rotation speed (η) of the steering wheel

Rule j: If ξ_1 is $A_{i1,j}{}^{(1)}$, was ξ_2 is $A_{i2,j}{}^{(2)}$ was ξ_3 is $A_{j3,j}{}^{(3)}$ was ξ_4 is $A_{j4,j}$ then $\eta = p_0 + p_1 \xi_1 + p_2 \xi_2 + p_3 \xi_3 + p_4 \xi_4$

rule	ξ,	ξ,	ξ,	ξ_{Δ}	p _o	p ₁	p ₂	p ₃	p₄
1	_	_	outward s	smal I	3.000	0.00	0.00	- 0.04 5	- 0.00 4
2	-	_	forward	smal I	3.000	0.00	0.00	- 0.03 0	- 0.09 0
3	small	small	outward s	-	3.000	- 0.04 1	0.00	0.00	0.00
4	small	small	forward	-	0.303	- 0.02 6	0.06	- 0.05 0	0.00
5	small	small	inwards	-	0.000	- 0.02 5	0.07	- 0.07 5	0.00
6	small	big	outward s	_	3.000	- 0.06 6	0.00	- 0.03 4	0.00
7	small	big	forward	-	2.990	- 0.01 7	0.00	- 0.02 1	0.00
8	small	big	inwards	-	1.500	0.02 5	0.00	- 0.05 0	0.00
9	medium	small	outward s	_	3.000	- 0.01 7	0.00 5	- 0.03 6	0.00
10	medium	small	forward	-	0.053	- 0.03 8	0.08	- 0.03 4	0.00

rule	ξ,	ξ,	ξ3	ξ,	p _o	p ₁	p ₂	p ₃	p_4
11	mediu m	small	inwards	-	- 1.22 0	- 0.01 6	0.04 7	- 0.01 8	0.00
12	mediu m	big	outwards	_	3.00	- 0.02 7	0.00	- 0.04 4	0.00
13	mediu m	big	forward	_	7.00	- 0.04 9	0.00	- 0.04 1	0.00
14	mediu m	big	inwards	_	4.00	- 0.02 5	0.00	- 0.10 0	0.00
15	big	small	outwards	_	0.37	0.00	0.00	- 0.00 7	0.00
16	big	small	forward	_	- 0.90 0	0.00	0.03	- 0.03 0	0.00
17	big	small	inwards	-	- 1.50 0	0.00	0.00 5	- 0.10 0	0.00
18	big	big	outwards	-	1.00	0.00	0.00	- 0.01 3	0.00
19	big	big	forward	_	0.00	0.00	0.00	- 0.00 6	0.00
20	big	big	inwards	_	0.00	0.00	0.00	- 0.01 0	0.00

Input

 $\xi_1=10$ cm, $\xi_2=30$ cm, $\xi_3=0$ degree (straight forward) and $\xi_4=50$ cm

Only rule 4 and $7 \rightarrow$ fire

$$\alpha_4 = 0.25$$
 and $\eta_4 = 0.303 - 0.026(10) + 0.061(30) - 0.050(0) + 0.000(50) = 1.873$

$$\alpha_7 = 0.167$$
 and $\eta_7 = 2.990 - 0.017(10) + 0.000(30) - 0.021(0) + 0.000(50) = 2.820$

Output of the system will be

$$\eta = \frac{0.25(1.873) + 0.167(2.820)}{0.25 + 0.167} = 2.252$$

• Fuzzy measure

Address the ambiguity axis of uncertainty \rightarrow how likely can the answer to a question be found in various subsets of the sources of information

$$X = \{x_1, x_2, \dots x_n\}, g: 2^X \rightarrow [0,1]$$

Properties

1.
$$g(\phi) = 0$$

2.
$$g(A) \le g(B)$$
 if $A \subseteq B$

 $g^i = g\{x_i\} \rightarrow$ fuzzy density function \rightarrow importance of the single information source x_i in determine the answer to a particular question

- Sugeno Lambda measure \rightarrow satisfy 2 properties with additional one
 - 3. For all A,B \subseteq X with A \cap B = ϕ

$$g_{\lambda}(A \cap B) = g_{\lambda}(A) + g_{\lambda}(B) + \lambda g_{\lambda}(A)g_{\lambda}(B) \quad \exists \lambda > -1$$

From
$$X = \bigcup_{i=1}^{n} x_i$$
 and $g_{\lambda}(X) = 1$

$$(1+\lambda) = \prod_{i=1}^{n} (1+\lambda g^{i})$$

$$=1+\lambda\sum_{j=1}^{n}g^{j}+\lambda^{2}\sum_{j=1}^{n-1}\left(\sum_{k=j+1}^{n}g^{j}g^{k}\right)+\lambda^{3}\sum_{j=1}^{n-2}\left(\sum_{k=1}^{n-1}\sum_{i=1}^{n}g^{j}g^{k}g^{i}\right)+...+\lambda^{n}g^{1}g^{2}...g^{n}$$

• Example

 $X=\{x_1, x_2, x_3\} \rightarrow \text{ fuzzy densities } g^1=0.2, g^2=0.3, g^3=0.1$

Subset	g_{λ}	
ф	0→ from property	
$\{x_1\}$	0.2	
$\{x_2\}$	0.3	
$\{x_3\}$	0.1	
$\{x_1, x_2\}$	0.69	
$\{x_1, x_3\}$	0.36	
$\{x_2, x_3\}$	0.5	
$\{x_1, x_2, x_3\}$	1 → from property	

find
$$\lambda$$
 using $(1+\lambda) = (1+0.2\lambda)(1+0.3\lambda)(1+0.1\lambda)$
 $0.006\lambda^2 + 0.11\lambda - 0.4 = 0$
 $\lambda = \frac{-0.11 \pm \sqrt{0.11^2 - 4(0.006)(-0.4)}}{2(0.006)} = 3.2,-21.44$
Hence $\lambda = 3.2$
 $g(\{x_1, x_2\}) = 0.2 + 0.3 + 3.2(0.2)(0.3) = 0.69$
 $g(\{x_1, x_3\}) = 0.2 + 0.1 + 3.2(0.2)(0.1) = 0.36$
 $g(\{x_2, x_3\}) = 0.3 + 0.1 + 3.2(0.3)(0.1) = 0.5$
 $g(\{x_1, x_2, x_3\}) = 0.69 + 0.1 + 3.2(0.69)(0.1) = 1.01 \approx 1$

• Fuzzy integral

• Sugeno fuzzy integral

Continuous case:
$$\int h(x) \circ g = \sup_{\alpha \in [0,1]} \min[\alpha, g(A_{\alpha})]$$
 where $A_{\alpha} = \{x | h(x) \ge \alpha\}$

Finite case:
$$X = \{x_1, x_2, ..., x_n\} \rightarrow \text{reorder } X = \{x_{()}, x_{(2)}, ..., x_{(n)}\} \text{ so that } h(x_{(1)}) \ge h(x_{(2)}) \ge ... \ge h(x_{(n)})$$

Hence, sugeno fuzzy integral
$$\rightarrow$$
 $S_g(h) = \max_{i=1}^n \min[h(x_{(i)}), g(A_{(i)})]$ where $A_{(i)} = \{x_{(1)}, x_{(2)}, ..., x_{(i)}\}$

• Example

 $X=\{x_1, x_2, x_3\} \rightarrow h(x_1) = 0.7, h(x_2) = 0.9, h(x_3) = 0.2$ and assume that g are the same as previous example

Reorder
$$h(x_2) > h(x_1) > h(x_3)$$

$$S_g = (0.9 \land g(\{x_2\})) \lor (0.7 \land g(\{x_1, x_2\})) \lor (0.2 \land g(\{x_1, x_2, x_3\})) = 0.69$$

• Choquet fuzzy integral

Contiuous case:

$$\int_X h(x) \circ g = \int_0^1 g(A_\alpha) d\alpha \quad \text{where } A_\alpha = \{x | h(x) \ge \alpha\}$$

Finite case: $X = \{x_1, x_2, ..., x_n\} \rightarrow \text{reorder } X = \{x_{()}, x_{(2)}, ..., x_{(n)}\} \text{ so that } h(x_{(1)}) \ge h(x_{(2)}) \ge ... \ge h(x_{(n)})$

Hence, choquet fuzzy integral $\rightarrow C_g(h) = \sum_{i=1}^n [h(x_{(i)}) - h(x_{(i+1)})]g(A_{(i)})$ where $A_{(i)} = \{x_{(1)}, x_{(2)}, ..., x_{(i)}\}$ and $h(x_{(n+1)}) = 0$ Let $\delta_i(g) = g(A_i) - g(A_{i-1}) \rightarrow$

$$C_{g}(h) = \sum_{i=1}^{n} [h(x_{(i)}) - h(x_{(i+1)})]g(A_{(i)})$$

$$= [h(x_{(1)}) - h(x_{(2)})]g(A_{(1)}) + [h(x_{(2)}) - h(x_{(3)})]g(A_{(2)}) + \dots + [h(x_{(n)}) - h(x_{(n+1)})]g(A_{(n)})$$

$$= h(x_{(1)})g(A_{(1)}) + h(x_{(2)})[g(A_{(2)}) - g(A_{(1)})] + \dots + h(x_{(n)})[g(A_{(n)}) - g(A_{(n-1)})] - h(x_{(n+1)})g(A_{(n)})$$

Hence $C_g(h) = \sum_{i=1}^n \delta_i(g) h(x_{(i)})$ where $\delta_i(g) = [g(A_{(i)}) - g(A_{(i-1)})]$

We can have linear order statistic

$$LOS_{w_{k}}(h(x)) = \sum_{x_{k} \in w_{k}} w_{k} h(x_{(k)})$$
where $\{w_{1}, w_{2}, ..., w_{n}\}$ satisfy $w_{i} \in [0,1]$ and $\sum_{k=1}^{n} w_{k} = 1$

• Example

 $X=\{x_1, x_2, x_3\} \rightarrow h(x_1) = 0.7, h(x_2) = 0.9, h(x_3) = 0.2$ and assume that g are the same as previous example

Reorder
$$h(x_2) > h(x_1) > h(x_3)$$

$$C_g = (0.9-0.7)(0.3) + (0.7-0.2)(0.69 + (0.2-0.1)(1) = 0.605$$

Optimization training

Let training set \rightarrow T={(o_j, α_j)|j=1,2,...,m} where o_j=jth object and α_j = desired output of jth object, and there are m training samples

Suppose \rightarrow there are *n* sensors/algorithms

Output from choquet integral of j^{th} object will be

$$C_{g}(h(o_{j})) = \sum_{i=1}^{n} \left[h(o_{j}; x_{(i)}) - h(o_{j}; x_{(i+1)})\right] g(A_{(i)})$$

$$\begin{bmatrix} g_{1} \end{bmatrix}$$

Want to find fuzzy measure

$$\vec{g} = \begin{bmatrix} g_1 \\ g_2 \\ \dots \\ g_{n} \\ g_{12} \\ g_{13} \\ \dots \\ g_X \end{bmatrix}$$

No	$h(x_1)$	$h(x_2)$	•••	$h(x_n)$	α
1					
2					
•••					
m					

Training set with m samples each has desired output (α). There are n sensors/algorithms

such that
$$C_g(h(o_j))$$
 is close to $\alpha_j \rightarrow E^2 = \sum_{j=1}^m \left[C_g(h(o_j)) - \alpha_j \right]^2$

Let
$$v_{j,A} = \begin{cases} h(o_j; x_{(i)}) - h(o_j; x_{(i+1)}) & \text{if } A = A_i \ \exists i \end{cases}$$
 else

We have

$$\vec{v}_{j} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ h(o_{j}; x_{(1)}) - h(o_{j}; x_{(2)}) \\ \vdots \\ h(o_{j}; x_{(n-1)}) - h(o_{j}; x_{(n)}) \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $\vec{v}_j \in R^{2n-2}$ with only n-1 possible nonzero

Then

$$C_g(h(o_j)) = \vec{v}_j^T \vec{g} + h(o_j; x_{(n)})$$

Objective function

$$\begin{split} E^{2} &= \frac{1}{2} \sum_{j=1}^{m} \left[C_{g} \left(h(o_{j}) \right) - \alpha_{j} \right]^{2} \\ &= \frac{1}{2} \sum_{j=1}^{m} \left[\vec{v}_{j}^{T} \vec{g} + h(o_{j}; x_{(n)}) - \alpha_{j} \right]^{T} \left[\vec{v}_{j}^{T} \vec{g} + h(o_{j}; x_{(n)}) - \alpha_{j} \right] \\ &= \frac{1}{2} \sum_{j=1}^{m} \left[\vec{g}^{T} \vec{v}_{j} \vec{v}_{j}^{T} \vec{g} + 2 \left[h(o_{j}; x_{(n)}) - \alpha_{j} \right] \vec{v}_{j}^{T} \vec{g} + \left[h(o_{j}; x_{(n)}) - \alpha_{j} \right]^{2} \right] \\ &= \frac{1}{2} \vec{g}^{T} \left[\sum_{j=1}^{m} \vec{v}_{j} \vec{v}_{j}^{T} \right] \vec{g} + \left[\sum_{j=1}^{m} \left[h(o_{j}; x_{(n)}) - \alpha_{j} \right] \vec{v}_{j}^{T} \right] \vec{g} + \frac{1}{2} \sum_{j=1}^{m} \left[h(o_{j}; x_{(n)}) - \alpha_{j} \right]^{2} \end{split}$$

Hence

$$E^{2} = \frac{1}{2} \vec{g}^{T} \mathbf{D} \vec{g} + \vec{v}^{T} \vec{g} + \beta^{2} \text{ where } \mathbf{D} = \sum_{j=1}^{m} \vec{v}_{j} \vec{v}_{j}^{T}, \vec{v} = \sum_{j=1}^{m} \left[h(o_{j}; x_{(n)}) - \alpha_{j} \right] \vec{v}_{j}^{T} \text{ and } \beta^{2} = \frac{1}{2} \sum_{j=1}^{m} \left[h(o_{j}; x_{(n)}) - \alpha_{j} \right]^{2}$$

Similar to

minimize
$$\frac{1}{2} \vec{g}^T \mathbf{D} \vec{g} + \vec{v}^T \vec{g}$$

subject to $\mathbf{A} \vec{g} \le \vec{b}$ and $\vec{0} \le \vec{g} \le \vec{1}$

From

$$g_1 - g_{12} \le 0$$

$$g_1 - g_{13} \le 0$$

$$g_1 - g_{12...n} \le 0$$

...

$$g_{123...n-1} - g_{123...n} \le 0$$

. . .

$$g_{23...n} - g_{123...n} \le 0$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ \vdots & & & & & \\ 0 & 0 & \cdots & 0 & \cdots & 0 & 1 \\ \vdots & & & & & \\ 0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\ \vdots & & & & & \\ 1 & \vdots &$$

• Example

Let

No	$h(x_1)$	$h(x_2)$	$h(x_3)$	α
1	0.68	0.53	0.81	0.743
2	0.74	0.99	0.86	0.926
3	0.45	0.07	0.08	0.301

$$\vec{g} = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \\ g_{12} \\ g_{13} \\ g_{23} \end{bmatrix}$$

such that E^2 is minimized

$$O_1$$
: $C_g(O_1) = (0.81 - 0.68) g_3 + (0.68 - 0.53) g_{13} + (0.53) = 0.13 g_3 + 0.15 g_{13} + 0.53$

$$O_2$$
: $C_g(O_2) = (0.99 - 0.86) g_2 + (0.86 - 0.74) g_{23} + (0.74) = 0.13 g_2 + 0.12 g_{23} + 0.74$

$$O_3$$
: $C_g(O_3) = (0.45 - 0.08) g_1 + (0.08 - 0.07) g_{13} + (0.07) = 0.37g_3 + 0.01 g_{13} + 0.07$

Hence

$$\vec{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 0.13 \\ 0 \\ 0.15 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 0.13 \\ 0 \\ 0 \\ 0 \\ 0.12 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0.37 \\ 0 \\ 0 \\ 0 \\ 0.01 \\ 0 \end{bmatrix}$$

And
$$\mathbf{D} = \sum_{j=1}^{3} \vec{v}_{j} \vec{v}_{j}^{T} = \begin{bmatrix} 0.14 & 0 & 0 & 0.004 & 0 \\ 0 & 0.017 & 0 & 0 & 0.016 \\ 0 & 0 & 0.017 & 0 & 0.02 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.004 & 0 & 0.02 & 0 & 0.023 & 0 \\ 0 & 0.016 & 0 & 0 & 0 & 0.014 \end{bmatrix} \qquad \vec{v} = \sum_{j=1}^{3} \left[h(o_{j}; x_{(n)}) - \alpha_{j} \right] \vec{v}_{j}^{T} = \begin{bmatrix} 0.024 \\ -0.028 \\ 0 \\ -0.034 \\ -0.022 \end{bmatrix}$$

$$\vec{v} = \sum_{j=1}^{3} \left[h(o_j; x_{(n)}) - \alpha_j \right] \vec{v}_j^T = \begin{bmatrix} 0.034 \\ -0.024 \\ 0 \\ -0.034 \\ -0.022 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Now we can compute

$$\underset{\vec{g}}{\text{minimize}} \frac{1}{2} \vec{g}^T \mathbf{D} \vec{g} + \vec{v}^T \vec{g}$$

subject to
$$\mathbf{A} \ \vec{g} \le \vec{b}$$
 and $\vec{0} \le \vec{g} \le \vec{1}$

Evolutionary computing

• Genetic Algorithm

Algo

- 1. Set *t*=0
- 2. Initial population P(t)
- 3. Calculate each individual fitness value
- 4. While not converge do
 - 1. Select individual to P^1 (intermediate population) \rightarrow Mating Pool (MP)
 - 2. Select from MP to mate $\rightarrow P^2 \rightarrow$ mutate chromosome in $P^2 \rightarrow P^3$
 - 3. Select chromosome in P^3 and P(t) for replacement $\rightarrow P(t+1)$
 - 4. Set t = t + 1
- 5. End while

If $(|P^3|)=N$ then P^3 become P(t+1) else if $(|P^3|) \le N$ select q missing chromosome from P(t) or P^1

• Example

Chromosome $A, B, C, D \rightarrow$ each with 8 genes Fitness function: number of 1 in the string

chromosome label	chromosome string	fitness value
Α	00000110	2
В	11101110	6
С	1	
D	00110100	3
Average fit	12/4	

Crossover
B and D
at crossing site: 1 get E and F
And B and C are copied

chromosome	chromosome	fitness value
label	string	
В	11101110	6
С	00100000	1
Е	10110100	4
F	o 1101110	5

P(t)

B is mutated at 1st bit *E* is mutated at 6th bit

chromosome | chromosome | fitness value

	Cilioniosonic	Cilioniosonic	Titiless value
	label	string	
D/++1\	Β'	o 1101110	5
<i>P</i> (<i>t</i> +1)	С	00100000	1
	E'	10110000	3
	F	o 1101110	5
	Avoraga fi	tnoss valuo	1.4./4

Initial population

- random gene values of each gene in each chromosome \(\rightarrow\) uniform representation of the entire search space
- Small population → small part of search space, time complexity is low, need more generations to converge→EA force to explore a larger search space by increasing the rate of mutation
- Large population → large area of search space, less generation to converge, time complexity is increased

• Selection operation

- Selection techniques exist
 - Explicit fitness remapping \rightarrow fitness values is mapped into a new range, e.g., normalization to [0,1]
 - Implicit fitness remapping use actual fitness values for selection several selection operators

Random selection

random→no reference to fitness→ each individual has an equal chance of being selected

• Proportional selection

$$P(t) = \left\{ x^1, x^2, \dots, x^N \right\} \text{ total fitness} \qquad F = \sum_{i=1}^N f(x^i) \qquad \text{where } f(x^i) \to \text{fitness}$$

value of chromosome $x^i \rightarrow$ selection probability of x^i

$$p_i = \frac{f(x^i)}{F} \quad \text{for } i = 1, 2, ..., N$$

Expected number of copied of x^i $n_i = Np_i$ for i = 1, 2, ..., N

Or
$$n_{i} = N \frac{f(x^{i})}{F} = \frac{f(x^{i})}{\overline{f}} \quad \text{for } i = 1, 2, ..., N$$

```
• Algo
For i=1 to N
Calculate q_i = \sum_{k=1}^{i} p_k for i=1,2,...,N
End for
For i=1 to N
random \xi \in [0,1] \rightarrow uniform distribution
If 0 \le \xi \le q_1, chromosome x^1 is selected
If q_{i-1} \le \xi \le q_i for i=1,2,...N then chromosome x^i is selected
End for
```

• Example

 $\max_{x} f(x) = \max_{x} x^{2} \text{ with } x \text{ is varied between 0-31,}$ assume random ξ 4 times with the value of 0.8, 0.5, 0.1 and 0.6

No	Chromosom e	x (in real number)	f(x)	p _i	q _i	N _i	Number of copies
1	01101	13	169	0.14	0.14	0.58	1
2	11000	24	576	0.49	0.63	1.97	2
3	01000	8	64	0.06	0.69	0.22	0
4	10011	19	361	0.31	1.00	1.23	1
		Total	1170	1.00			
		Average	293	0.25			
		maximum	576	0.49			

Crossover $\rightarrow x^1$ and x^2 at crossover site 4 x^3 and x^4 at crossover site 2

Mutation probability is $0.001 \rightarrow$ there are 20 bits \rightarrow expected number of bit undergoes mutation is 20(0.001) = 0.02 bits \rightarrow suppose no mutation

Hence, New population will be

No	Chromosome (x)	mate	Crossover site	New population	X (in real number)	f(x)
1	01101	2	4	01100	12	144
2	11000	1	4	11001	25	625
3	11000	4	2	11011	27	729
4	10011	3	2	10000	16	256
					Total	1754
					Average	439
					maximum	729

- Disadvantage
 - Premature convergence
 - Slow convergence