9.2

Propriété du produit scalaire

Spé Maths 1ère - JB Duthoit

9.2.1 Produit scalaire et orthogonalité

Définition 9.21

- Dire que deux vecteurs $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont orthogonaux signifie que les droites (AB) et (AC) sont perpendiculaires.
- Par convention, le vecteur nul $\vec{0}$ est orthogonal à tout vecteur.

Propriété 9. 25

Pour tous vecteurs \vec{u} et \vec{v} , \vec{u} est orthogonal à \vec{v} équivaut à $\vec{u}.\vec{v}=0$

∠Démonstration 9.7

Dans le cas où $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont non nuls, montrons que \vec{u} est orthogonal à \vec{v} équivaut à $\vec{u}.\vec{v} = 0$.

9.2.2 règles de calculs

Propriété 9. 26

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , pour tout nombre réel λ :

$$1. \ \vec{u}.\vec{v} = \vec{v}.\vec{u}$$

2.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w}$$

3.
$$(\vec{u} + \vec{v}).\vec{w} = \vec{u}.\vec{w} + \vec{v}.\vec{w}$$

4.
$$\vec{u}.(\lambda \vec{v}) = \lambda \times (\vec{u}.\vec{v})$$

5.
$$(\lambda \vec{u}) \cdot \vec{v} = \lambda \times (\vec{u} \cdot \vec{v})$$

Exemple

$$\vec{u} \cdot (2\vec{v} - 3\vec{w}) =$$

Savoir-Faire 9.30

SAVOIR UTILISER LA RELATION DE CHASLES POUR CALCULER UN PRODUIT SCALAIRE ABCD est le trapèze rectangle ci-dessous avec AB=5 et AD=2 et CD=3. Calculer $\overrightarrow{AC}.\overrightarrow{DB}$

9.2.3Carré scalaire

Définition 9.22

Le carré scalaire d'un vecteur \vec{u} , noté \vec{u}^2 , est le produit scalaire $\vec{u}.\vec{u}$.

Conséquence 9.27

- Pour tout vecteur \vec{u} , $\vec{u}^2 = \|\vec{u}\|^2$. Pour tous points A et B, $\overrightarrow{AB}^2 = \|\overrightarrow{AB}\|^2 = AB^2$

9.2.4Identités remarquables

Propriété 9. 28

Pour tous vecteurs \vec{u} et \vec{v} :

- $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2$ $(\vec{u} \vec{v})^2 = \vec{u}^2 2\vec{u}.\vec{v} + \vec{v}^2$ $(\vec{u} + \vec{v})(\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2$

✓ Démonstration 9.8

→ Démontrer les 3 identités remarquables.

Savoir-Faire 9.31

SAVOIR DÉMONTRER L'ORTHOGONALITÉ DE DEUX VECTEURS - MÉTHODE 1 ABCD est le rectangle ci-dessous avec $\overrightarrow{AB}=5$ et $\overrightarrow{BC}=2$. E et F sont les points tels que $\overrightarrow{AE}=\frac{1}{5}\overrightarrow{AB}$ et $\overrightarrow{DF}=\frac{4}{5}\overrightarrow{DC}$. Monter que (AF) et (DE) sont perpendiculaires.

