Banner of agnes(x = votes.repub, metric = "manhattan", stand = TF

Agglomerative Coefficient = 0.8

Dendrogram of agnes(x = votes.repub, metric = "manhattan", stand = TRU

votes.repub
Agglomerative Coefficient = 0.8

Banner of agnes(x = daisy(votes.re|m of agnes(x = daisy(votes.repub), diss = The sum of agnes(x = daisy(votes.repub), diss ="complete")

Height

Height

Agglomerative Coefficient = 0.88

250 help("agnes") 100 daisy(votes.repub)

"complete")

Banner of agnes(x = votes.repub, n = votes.repub, method = "flexible" 0.625)

Agglomerative Coefficient = 0.88

votes.repub Agglomerative Coefficient = 0.94

Banner of agnes(x = agriculture)

Agglomerative Coefficient = 0.78

Dendrogram of agnes(x = agriculture)

agriculture
Agglomerative Coefficient = 0.78

Dendrogram of agnes(x = agriculture)

agriculture agnes (*, "average")

Component 1 These two components explain 100 % of the point variability.

Banner of agnes(x = agriculture)

Agglomerative Coefficient = 0.78

Dendrogram of agnes(x = agriculture)

agriculture
Agglomerative Coefficient = 0.78

Banner of diana(x = agriculture)

Divisive Coefficient = 0.87

Dendrogram of diana(x = agriculture)

agriculture
Divisive Coefficient = 0.87

Banner of mona(x = animals)

Bannerplot

clusplot(clara(x = x, k = 2, samples = 50))

Component 1 These two components explain 100 % of the point variability.

Silhouette plot of clara(x = x, k = 2, samples = 50) n = 44

Average silhouette width: 0.78

clusplot(clara(x = xclara, k = 3))

Component 1
These two components explain 100 % of the point variability.

Silhouette plot of clara(x = xclara, k = 3) 3 clusters C_j n = 46 $j: n_j \mid ave_{i \in Cj} s_i$ 1 · 12 | 0.69 1: 12 | 0.69 2: 21 | 0.73 3: 13 | 0.81 0.0 0.4 1.0 0.2 0.6 8.0 Silhouette width si

Average silhouette width: 0.74

k

clusplot(pam(x = votes.diss, k = 2, diss = TRUE))

These two components explain 18.16 % of the point variability.

CLUSPLOT(votes.diss)

These two components explain 18.16 % of the point variability.

clusplot(pam(x = votes.diss, k = 2, diss = TRUE))

Component 1
These two components explain 18.16 % of the point variability.

CLUSPLOT(votes.diss)

Component 1
These two components explain 18.16 % of the point variability.

These two components explain 95.81 % of the

Component 1
These two components explain 100 % of the point variability.

Component 1
These two components explain 76.71 % of the point variability.

Banner of diana(x = votes.repub, metric = "manhattan", stand = TR

Dendrogram of diana(x = votes.repub, metric = "manhattan", stand = TRU

votes.repub
Divisive Coefficient = 0.89

Banner of diana(x = agriculture)

Divisive Coefficient = 0.87

Dendrogram of diana(x = agriculture)

agriculture
Divisive Coefficient = 0.87

ellipsoidhull(<Gauss data>) -- 'spanning points'

Component 1
These two components explain 100 % of the point variability.

Silhouette plot of fanny(x = x, k = 2)2 clusters C_i n = 28j: n_j | ave_{i∈Cj} s_i ("funt_{j"})djeų 10 | 0.88 18 | 0.80 0.0 0.2 0.4 0.6 8.0 1.0

Silhouette width si

Average silhouette width: 0.83

Component 1
These two components explain 100 % of the point variability.

Component 1
These two components explain 100 % of the point variability.

Silhouette plot of fanny(x = ruspini, k = 5) n = 75

5 clusters C_i

Banner of mona(x = animals)

Component 1
These two components explain 100 % of the point variability.

Component 1
These two components explain 100 % of the point variability.

Dendrogram of agnes(x = dai.b, method = "ward")

dai.b
Agglomerative Coefficient = 0.95

Agglomerative Coefficient = 0.95

Banner of agnes(x = iris[, 1:4])

Agglomerative Coefficient = 0.93

Dendrogram of agnes(x = iris[, 1:4])

iris[, 1:4]
Agglomerative Coefficient = 0.93

Banner of diana(x = votes.repub, metric = "manhattan", stand = TR

Dendrogram of diana(x = votes.repub, metric = "manhattan", stand = TRU

help("plot.diana")

votes.repub
Divisive Coefficient = 0.89

Banner of diana(x = agriculture)

Divisive Coefficient = 0.87

Dendrogram of diana(x = agriculture)

agriculture
Divisive Coefficient = 0.87

Banner of diana(x = votes.repub, metric = "manhattan", stand = Ti

Banner of diana(x = votes.repub, metric = "manhattan", star

Divisive Coefficient = 0.89

Component 1
These two components explain 100 % of the point variability.

clusplot(clara(x = xclara, k = 3, keep.data = FALSE))

Component 1
These two components explain 100 % of the point variability.

Silhouette plot of clara(x = xclara, k = 3, keep.data = FALSE) 3 clusters C_i n = 46

Dendrogram of agnes(x = votes.repub)

votes.repub agnes (*, "average")

agnes(x = votes.repub)

Histogram of apply(pluton, 1, sum)

non-normal data (N=200)

Χ

clusplot(pam(x = ruspini, k = 4))

Component 1
These two components explain 100 % of the point variability.

clusplot(fanny(x = ruspini, k = 5))

Component 1
These two components explain 100 % of the point variability.

Silhouette plot of fanny(x = ruspini, k = 5) 5 clusters C_i n = 75j: $n_j \mid ave_{i \in Cj} s_i$ $s_i = 1$ $s_$ 2: 12 | 0.50 3: 11 | 0.25 4: 17 | 0.62 5: 15 | 0.80

0.4

Silhouette width si

0.6

8.0

1.0

Average silhouette width: 0.61

0.2

0.0

Average silhouette width: 0.63

0.2

0.4

0.6

Silhouette width si

8.0

1.0

0.0

PAM(Ruspini) as in Kaufman & Rousseeuw, p.101

0.0

0.2

Average silhouette widthouette width si

0.4

0.6

8.0

1.0

Silhouette plot of clara(x = xc1k, k = 3) 3 clusters C_j n = 46 $j: n_j \mid ave_{i \in Cj} s_i$ 1: 10 | 0.74 1: 19 | 0.74 2: 18 | 0.65 3: 9 | 0.65 0.0 0.2 0.4 0.6 8.0 1.0 Silhouette width si

Silhouette plot of (x = cutree(ar, k = 5), dist = daisy(ruspini))5 clusters C_j n = 75j: $n_j \mid ave_{i \in Cj} s_i$ s_i "approving a superior of the superior of th 2: 23 | 0.74 3: 14 | 0.56 4: 3 | 0.78 5: 15 | 0.80 0.0 0.2 0.4 0.6 8.0 1.0

Silhouette width si

Average silhouette width: 0.71

Silhouette plot of (x = cutree(ar, k = 2), dist = daisy(ruspini))2 clusters C_i n = 75 $j: n_j \mid ave_{i \in C_j} s_i$ 1: 35 | 0.58 2: 40 | 0.59

0.4

0.6

Silhouette width si

8.0

1.0

Average silhouette width: 0.58

0.2

0.0

These two components explain 100 % of the point variability.

