4 estim_ncpMCA

Value

ncp the number of components retained for the FAMD

criterion the criterion (the MSEP) calculated for each number of components

Author(s)

Vincent Audigier <audigier@agrocampus-ouest.fr>, Francois Husson <husson@agrocampus-ouest.fr> and Julie Josse <Julie.Josse@agrocampus-ouest.fr>

References

Audigier, V., Husson, F. & Josse, J. (2014). A principal components method to impute mixed data. Advances in Data Analysis and Classification

See Also

```
imputeFAMD
```

Examples

```
## Not run:
data(ozone)
result <- estim_ncpFAMD(ozone)
## End(Not run)</pre>
```

estim_ncpMCA

Estimate the number of dimensions for the Multiple Correspondence Analysis by cross-validation

Description

Estimate the number of dimensions for the Multiple Correspondence Analysis by cross-validation

Usage

```
estim_ncpMCA(don, ncp.min=0, ncp.max=5, method = c("Regularized","EM"),
    method.cv = c("Kfold","loo"), nbsim=100, pNA=0.05, threshold=1e-4,
    verbose = TRUE)
```

Arguments

don	a data.frame with categorical variables; with missing entries or not
ncp.min	integer corresponding to the minimum number of components to test
ncp.max	integer corresponding to the maximum number of components to test
	UD 1 1 101 1 C 1 UDD 40

method "Regularized" by default or "EM"

estim_ncpMCA 5

method.cv "Kfold" for cross-validation or "loo" for leave-one-out nbsim number of simulations, useful only if method.cv="Kfold"

pNA percentage of missing values added in the data set, useful only if method.cv="Kfold"

threshold the threshold for assessing convergence

verbose boolean. TRUE means that a progressbar is writtent

Details

For leave-one-out cross-validation (method.cv="loo"), each cell of the data matrix is alternatively removed and predicted with a MCA model using ncp.min to ncp.max dimensions. The number of components which leads to the smallest mean square error of prediction (MSEP) is retained. For the Kfold cross-validation (method.cv="Kfold"), pNA percentage of missing values is inserted at random in the data matrix and predicted with a MCA model using ncp.min to ncp.max dimensions. This process is repeated nbsim times. The number of components which leads to the smallest MSEP is retained. More precisely, for both cross-validation methods, the missing entries are predicted using the imputeMCA function, it means using it means using the regularized iterative MCA algorithm (method="Regularized") or the iterative MCA algorithm (method="EM"). The regularized version is more appropriate to avoid overfitting issues.

Value

ncp the number of components retained for the MCA

criterion the criterion (the MSEP) calculated for each number of components

Author(s)

Francois Husson https://www.husson@agrocampus-ouest.fr and Julie Josse <Julie Josse@agrocampus-ouest.fr

References

Josse, J., Chavent, M., Liquet, B. and Husson, F. (2010). Handling missing values with Regularized Iterative Multiple Correspondence Analysis, Journal of Clcassification, 29 (1), pp. 91-116.

See Also

```
imputeMCA
```

Examples

```
## Not run:
data(vnf)
result <- estim_ncpMCA(vnf,ncp.min=0, ncp.max=5)
## End(Not run)</pre>
```

6 estim_ncpPCA

estim_ncpPCA	Estimate the number of dimensions for the Principal Component Analysis by cross-validation

Description

Estimate the number of dimensions for the Principal Component Analysis by cross-validation

Usage

Arguments

Χ	a data.frame with continuous variables; with missing entries or not
ncp.min	integer corresponding to the minimum number of components to test
ncp.max	integer corresponding to the maximum number of components to test
method	"Regularized" by default or "EM"
scale	boolean. TRUE implies a same weight for each variable
method.cv	string with the values "gcv" for generalised cross-validation, "loo" for leave-one-out or "Kfold" cross-validation
nbsim	number of simulations, useful only if method.cv="Kfold"
pNA	percentage of missing values added in the data set, useful only if method.cv="Kfold"
threshold	the threshold for assessing convergence

Details

verbose

For leave-one-out (loo) cross-validation, each cell of the data matrix is alternatively removed and predicted with a PCA model using ncp.min to ncp.max dimensions. The number of components which leads to the smallest mean square error of prediction (MSEP) is retained. For the Kfold cross-validation, pNA percentage of missing values is inserted and predicted with a PCA model using ncp.min to ncp.max dimensions. This process is repeated nbsim times. The number of components which leads to the smallest MSEP is retained.

boolean. TRUE means that a progressbar is writtent

For both cross-validation methods, missing entries are predicted using the imputePCA function, it means using the regularized iterative PCA algorithm (method="Regularized") or the iterative PCA algorithm (method="EM"). The regularized version is more appropriate when there are already many missing values in the dataset to avoid overfitting issues.

Cross-validation (especially method.cv="loo") is time-consuming. The generalised cross-validation criterion (method.cv="gcv") can be seen as an approximation of the loo cross-validation criterion which provides a straightforward way to estimate the number of dimensions without resorting to a computationally intensive method.