Experimental Analysis of Optimization Algorithms: Tuning and Beyond

January 17, 2020

Outline

- Introduction
- 2 Towards an Experimental Methodology
- 3 Active Experimentation
- 4 Severity
 - Severe tests
- 5 Meta-statistical Principles
 - Results from Default, Random, and Tuned Settings
 - Spurious Effects
- 6 Exploratory Landscape Analysis
 - Exploratory Testing
- 7 Conclusion

Introduction

- As in many sciences, research on metaheuristics and especially evolutionary computation (EC) mainly rests on two pillars: theory and practice.
- It seems that during the last decades, two motivations for experimental works have been predominant:
 - Solving a real-world problem or at least showing that it could be solved by some EC based method
 - Demonstrating the ability of a (preferably new and self-defined) algorithm
- Performing experiments in computer science can address the following (related) tasks:
 - Find the best parameters or algorithms given k sets of random numbers representing the outcome of some experiments
 - Find the best assignment for a set of real variables representing the parameters of the algorithm (within a given range) for a problem class
 - Given m possible ways to modify algorithm a (e.g., by using extra operators) find the best combination for a problem class

Introduction

4

Thomas Bartz-Beielstein and Mike Preuß

Fig. 1 Steps and contexts of performing an experiment from research question to scientific result

Towards an Experimental Methodology

- In theoretical computer science, are very important pessimistic generalizations, in knowing what an algorithm does in the worst possible case. Experimental results are considered with a certain amount of skepticism. This may have two reasons:
 - Many experimental works of the past are not very well crafted
 - Experimental investigations rarely care for worst cases

Towards an Experimental Methodology

- The following questions or aspects of questions are fundamental for experiments in computer science and may serve as a guideline for setting up new experiments. The experimenter should clearly state if experiments are performed to:
 - Demonstrate the performance of one algorithm
 - Verify the robustness of one algorithm on several problem instances
 - Compare two (or several) known algorithms
 - Explain and understand an observed behavior
 - Detect something new
- Each of these five research goals, which can also be characterized as demonstration, robustness, comparison, understanding, and novelty detection, requires a different experimental setup.

Active Experimentation

- Active experimentation (AEX) is a framework for tuning and understanding of algorithms. AEX employs methods from error statistics to obtain reliable results. It comprises the following elements:
 - AEX-1: Scientific questions
 - AEX-2: Statistical hypotheses
 - AEX-3: Experiments
 - AEX-4: Scientific meaning

Active Experimentation

- These elements can be explained as follows. Starting point of the investigation is a scientific question (AEX-1). This question often deals with assumptions about algorithms, e.g., influence of parameter values or new operators. This (complex) question is broken down into (simple) statistical hypotheses (AEX- 2) for testing. Next, experiments can be performed for each hypothesis:
 - Select a model, e.g., a linear regression model to describe a functional relationship.
 - Select an experimental design.
 - Generate data, i.e., perform experiments.
 - Refine the model until the hypothesis can be accepted/rejected.

Finally, to assess the scientific meaning of the results from an experiment, conclusions are drawn from the hypotheses. This is step (AEX-4) in the active experimentation framework

Severity - Motivation

- Severity provides a meta-statistical principle for evaluating proposed statistical inferences.
- Severity should be calculated after the test procedure is finished.

Severe tests

Definition 3 (Severe Test). A statistical hypothesis H passes a severe test T with data x_0 if:

- S-1 x_0 agrees with H
- S-2 with very high probability, test T would have produced a result that accords less well with H than x_0 does, if H were false.

Severity in the Case of Acceptance of the Null:

$$SEV(\mu \le \mu_1) = 1 - \Phi(\frac{\bar{x_0} - \mu_0}{\sigma_x})$$

Severity in the Case of Rejection of the Null Hypothesis:

$$SEV(\mu > \mu_1) = 1 - SEV(\mu \le \mu_1)$$

In case of a rejection of the alternative, the power of a test provides a lower bound for the severity.

Severe tests

Fig. 5 Severity for three different results \bar{x}_0 : 12.1, 12.3, and 12.39. These curves can be interpreted as follows: consider, e.g., $\bar{x}_0 = 12.3$, which gives $d(\mathbf{x}_0) = 1.5$: the assertion that $\mu \leq 13$ severely passes because SEV($\mu \leq 13$) = 0.9998

Results from Default, Random, and Tuned Settings

- Experiments are performed at this stage (step AEX-3 from the active experimentation framework)
- We run SANN 100 times, first with default parameters (tmax = temp = 10), and second, with randomly chosen parameter values from the interval [1, 50]

Table 1 SANN results. Results from n = 100 repeats. Smaller values are better. The optimal function value is $y^* = 0.3979$

Model Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Default 0.3982	0.4037	0.4130	0.8281	0.5032	6.1120
Random 0.3988	0.5326	1.2160	2.0720	2.9820	8.8800
Tuned 0.3979	0.3987	0.4000	0.4010	0.4022	0.4184

Spurious Effects

Following Cohen, we define spurious effects as effects that suggest that a treatment is:

- effective when it is not
- not effective when it is

Two prominent examples for spurious effects are: *ceiling effect* and *floor effect*. If one wants to investigate performance differences between different methods, it is important to select the test problems so these differences indeed can occur.

- ceiling effect: the test problems are too easy, all algorithms "crash into the ceiling". (success rates of 100%)
- floor effect: test problems are too hard, most algorithms never obtain measurable progress. (all remain on "the floor")

Exploratory Landscape Analysis

Exploratory Landscape Analysis detects problem's properties first in order to make a reasonably information decision for some optimization algorithm. Important Problem Properties:

- Multimodality: In case of few local optima (Schwefel) a niching or time parallel method is suited and in case of many local optima (Rastrigin) one has to rely on multistarts or using large populations.
- Global basin structure: Rastrigin has a huge amount of local optima, but also a global basin structure due to the quadratic term. (it appears as a parabola). Problems without global structure are more difficult, we have to "look in every corner".
- **Separability**: If a problem is fully or partly separable, it may be partitioned into subproblems easier to solve.

Problem properties

- Variable scaling: The problem may behave very different in the single dimensions. It is important to perform small steps in some dimensions and large ones in others. CMA-ES algorithm handles this problems well.
- Search space homogeneity: Most benchmark sets are created by a structured, simple formula. Real-world problems don't behave like this.
- Basin size homogeneity: The basin size of the global optimum influences the hardness of a problem. Most niching EA methods assume similar basin sizes, so these methods are doomed to fail.
- Size of plateaus: Plateaus make optimization problems harder as they do not provide any information about the directions to turn to.

Exploratory Testing

- Attempts of experimentally acquiring property knowledge on expensive functions are usually performed manually.
- Sampling, dimension reduction techniques and especially visualisation are important techniques to obtain problem knowledge.
- Exploratory testing can focus either on global or local features of a problem. Global sampling may employ any space filling design which is useful to understand the nature of the problem.
- Testing locally makes sense if one needs to find out which properties of the problem lead to stagnation in the optimization process. However, for high-dimensional problems, running grid tests in all possible combinations is not feasible.

Conclusion

- If the problem properties are unknown, employing an exploratory landscape analysis is a good first step.
- Visualization has a key role in better understanding the algorithm performance.
- As a general conclusion, some more emphasis on experimental methodology is needed and much work is still left undone in this area.
- The cooperation between theory and practice should be improved. Theory should consider current experimental results as starting points, and established theory should be validated by means of structured experimental analysis.