Synthèse ; Fonction logarithme page 252

Courbe représentative

- Dans un repère orthonormé, les courbes représentatives des fonctions logarithme népérien et exponentielle sont symétriques l'une de l'autre par rapport à la droite d'équation y = x.
- L'axe des ordonnées est asymptote à la courbe de In.

Limites

$$\lim_{x \to +\infty} \ln(x) = +\infty \cdot \lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$$

Croissances comparées

$$\cdot \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

$$\lim_{\substack{x \to 0 \\ x > 0}} x \ln(x) = 0$$

Pour tout entier n strictement positif

$$\cdot \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\lim_{\substack{x \to 0 \\ x > 0}} x^n \ln(x) = 0$$

Lien avec la fonction exponentielle

- Pour tout réel x, $\ln(\exp(x)) = x$, ce qui s'écrit $\ln(e^x) = x$.
- Pour tout réel x strictement positif, $\exp(\ln(x)) = x$, ce qui s'écrit $e^{\ln(x)} = x$.
- In (1) = 0 ; In (e) = 1 et pour tout entier n, In (eⁿ) = n.

Logarithme népérien

- La fonction logarithme népérien que l'on note ln est la fonction réciproque de la fonction exponentielle.
- Pour x > 0, $y = \ln(x)$ équivaut à $e^y = x$. • La fonction ln est définie sur]0; $+\infty[$.

Fonction dérivée

- Pour tout réel x de]0; + ∞ [, $\ln'(x) = \frac{1}{x}$.
- Soit u une fonction dérivable sur un intervalle l telle que u(x) > 0.

Pour tout réel x de I, on a $(\ln (u))' = \frac{u'}{u}$.

Relation fonctionnelle Propriétés

Pour tous réels a et b strictement positifs et tout entier n:

- $\bullet \ln (ab) = \ln (a) + \ln (b)$
- $\cdot \ln \left(\frac{1}{a} \right) = -\ln \left(a \right)$
- $\cdot \ln \left(\frac{a}{b} \right) = \ln (a) \ln (b)$
- $\cdot \ln (a^n) = n \ln (a)$
- $\cdot \ln \left(\sqrt{a} \right) = \frac{1}{2} \ln \left(a \right)$

Variations et conséquences

- La fonction In est strictement croissante sur]0; +∞[.
- Pour tous réels a et b strictement positifs, $\ln(a) = \ln(b)$ équivaut à a = b.
- Pour tous réels a et b strictement positifs, $\ln(a) < \ln(b)$ équivaut à a < b.
- $\cdot 0 < x < 1$ équivaut à $\ln(x) < 0$.
- $\cdot x > 1$ équivaut à $\ln(x) > 0$.