7ND-A152 548 MM2 LRSLA TESTING STAGE III PROPELLANT(U) OGDEN AIR LOGISTICS CENTER HILL AFB UT PROPELLANT LAB SECTION E M DALABA JAN 85 MANPA-501(85) 1/2 UNCLASSIFIED F/G 21/8, 2 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

HEADQUARTERS OGDEN AIR LOGISTICS CENTER UNITED STATES AIR FORCE HILL AIR FORCE BASE, UTAH 84056

MM2 LRSLA TESTING
STAGE III PROPELLANT

PROPELLANT LAB SECTION

MANPA REPORT NR 501(85)

January 1985

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

85 03 28 182

MM2 LRSLA TESTING

STAGE II PROPELLANT

Author

ELIZABETH M. DALABA, Chemist Component & Combustion Test Unit

Engineering & Statistical Review By

JOHN K. SCAMBIA, Project Engineer Engineering & Reliability Branch EDWARD ERICKSON, Mathematician Data Analysis Unit

Recommended Approval By

DAN TANAKA, Chief Propellant Test Units

Approved By

ANTHONY S INVERSO, Chief
Propellant Analysis Laboratory

January 1985

Directorate of Maintenance Ogden Air Logistics Center United States Air Force Hill Air Force Base, Utah 84056

ABSTRACT

Data in this report is a continuation of LRSLA testing on Stage III Dissected Motors. Problems in testing C-7 bonds were not alleviated by changing specimen size as previously suggested.

The data variation that has been observed has prompted a closer analysis of testing for variance.

The plotted points used on the regression plots are a combined average of test results at a designated test period.

The data variance within test periods is now demonstrated with the addition of separating the test results into individual plotted points on the regressions for each test period.

Data variance between motors is demonstrated by the use of unique motor plot symbols in the multi-motor regressions. These unique symbols are data mean values and the number of samples per mean can be found with its minimum and maximum values in the sample size summary.

Statistically, these multi-motor regressions are inappropriate for analysis use and should be used for visual display only to show motor-to-motor relationship.

Solar Solar (a. 11) store principle of the test of the

TABLE OF CONTENTS

Section		Page
	Abstract	ii
	List of Figures	iv
I	Introduction	1-1
	Statistical Analysis	1-2
II	Stress Relaxation	2-1
III	Hardness	3-1
IA	Tensile Testing	4-1
V	Fracture Toughness	5-1
VI	Short Beam Shear Aft-Boot-to-Flap	6-1
VII	Summary and Recommendation	7-1
	Distribution List	8-1
	DD 1473	8-2

LIST OF FIGURES

Figure Nr		Page
	Regression Plot, Stress Relaxation, 2% Strain	
2-1	Modulus at 10 sec	2-2
2-2	Modulus at 50 sec	2-4
2-3	Modulus at 100 sec	2-6
2-4	Modulus at 1000 sec	2-8
	Regression Plot, Hardness, Shore A	
3-1	Multi-motor	3-2
3-2	Motor 0031064	3-4
3-3	Motor 0031134	3-6
3-4	Motor 0032434	3-8
3-5	Motor 0032831	3-10
3-6	Motor 0033174	3-12
	Regression Plot, Hardness, Shore C	
3-7	Multi-motor	3-14
3-8	Motor 0031064	3-16
3-9	Motor 0031134	3-18
3-10	Motor 0032434	3-20
3-11	Motor 0032831	3-22
3-12	Motor 0033174	3-24
	Regression Plot, Tensile, 2.0 in/min, Multi-mo	tor
4-1	Maximum Stress	4-3
4-2	Strain at Max Stress	4-4
4-3	Strain at Rupture	4-5
4-4	Stress at Rupture	4-6
4-5	Modulus	4-7

LIST OF FIGURES (cont)

Figure Nr	, ,	Page
	Regression Plot, Tensile, 2.0 in/min, Motor 0031064	
4-6	Maximum Stress, Mean Point Data	4-8
4-7	Strain at Max Stress, Mean Point Data	4-10
4-8	Strain at Rupture, Mean Point Data	4-12
4-9	Stress at Rupture, Mean Point Data	4-14
4-10	Modulus, Mean Point Data	4-16
4-11	Maximum Stress, Individual Data Point	4-18
4-12	Strain at Max Stress, Individual Data Point	4-19
4-13	Strain at Rupture, Individual Data Point	4-20
4-14	Stress at Rupture, Individual Data Point	4-21
4-15	Modulus, Individual Data Point	4-22
	Regression Plot, Tensile, 2.0 in/min, Motor 0031134	
4-16	Maximum Stress, Mean Point Data	4-23
4-17	Strain at Max Stress, Mean Data Point	4-25
4-18	Strain at Rupture, Mean Point Data	4-27
4-19	Stress at Rupture, Mean Point Data	4-29
4-20	Modulus, Mean Point Data	4-31
4-21	Maximum Stress, Individual Data Point	4-33
4-22	Strain at Max Stress, Individual Data Point	4-34
4-23	Strain at Rupture, Individual Data Point	4-35
4-24	Stress at Rupture, Individual Data Point	4-36
4-25	Modulus, Individual Data Point	4-37
	Regression Plot, Tensile, 2.0 in/min, Motor 0032434	
4-26	Maximum Stress, Mean Point Data	4-38
4-27	Strain at Max Stress, Mean Point Data	4-40
4-28	Strain at Runture Mean Point Data	4-42

LIST OF FIGURES (cont)

Figure Nr		Page
4-29	Stress at Rupture, Mean Point Data	4-44
4-30	Modulus, Mean Point Data	4-46
4-31	Maximum Stress, Individual Data Point	4-48
4-32	Strain at Max Stress, Individual Data Point	4-49
4-33	Strain at Rupture, Individual Data Point	4-50
4-34	Stress at Rupture, Individual Data Point	4-51
4-35	Modulus, Individual, Individual Data Point	4-52
	Regression Plot, Tensile, 2.0 in/min, Motor 0032831	
4-36	Maximum Stress, Mean Point Data	4-53
4-37	Strain at Max Stress, Mean Point Data	4-55
4-38	Strain at Rupture, Mean Point Data	4-57
4-39	Stress at Rupture, Mean Point Data	4-59
4-40	Modulus, Mean Point Data	4-61
4-41	Maximum Stress, Individual Data Point	4-63
4-42	Strain at Max Stress, Individual Data Point	4-64
4-43	Strain at Rupture, Individual Data Point	4 - 65
4-44	Stress at Rupture, Individual Data Point	4-66
4-45	Modulus, Individual Data Point	4-67
	Regression Plot, Tensile, 2.0 in/min, Motor 0033174	
4-46	Maximum Stress, Mean Point Data	4-68
4-47	Strain at Max Stress, Mean Point Data	4-70
4-48	Strain at Rupture, Mean Point Data	4-72
4-49	Stress at Rupture, Mean Point Data	4-74
4-50	Modulus, Mean Point Data	4-76
4-51	Maximum Stress, Individual Data Point	4-78
4~52	Strain at Max Stress Individual Data Point	4-79

LIST OF FIGURES (cont)

Figure Nr		Page
4-53	Strain at Rupture, Individual Data Point	4-80
4-54	Stress at Rupture, Individual Data Point	4-81
4-55	Modulus, Individual Data Point	4-82
	Regression Plot, Biaxial Tensile, 0.2 in/min, Six Mot	ors
4-56	Maximum Stress	4-83
4-57	Strain at Max Stress	4-85
4-58	Strain at Rupture	4-87
4-59	Stress at Rupture	4-89
4-60	Modulus	4-91
	Regression Plot, Biaxial Tensile, 200 in/min, Six Mot	ors
4-61	Maximum Stress	4=92
4-62	Strain at Max Stress	4-93
4-63	Strain at Rupture	4-94
4-64	Stress at Rupture	4-95
4-65	Modulus	4-96

SECTION I

INTRODUCTION

In 1968, 00-ALC began testing dissected motors. Changes to the Aging and Surveillance program reduced the number of test motors to five per year. In 1983, one additional motor was added to the program.

In 1976, humidity conditioning at 50 $^+$ 5 percent relative humidity for 48 hours was introduced into the program. Longer conditioning times, depending upon the thickness of the test specimen, began in 1981. At that same time changes were also made in several test parameters (GTD-30, Rev 2, 1 April 1981).

The motor serial numbers, lot numbers, cast dates and symbols used in the computer plots are shown below.

Motor S/N	Lot Number	<u>Cast Date</u>	Symbol Symbol
0031064	SR-56-62	62294	•
0031134	SR-65-62	63328	0
0032434	RAD-1-1-63	64021	Δ
0032619	RAD-1-4-64	64258	*
0032831	RAD-1-1-65	65176	+
0033174	RAD-1-10-66	67020	X

STATISTICAL APPROACH

Regression analysis has been selected as the method for projecting aging trends and demonstrating data variation in the propellant. The linear model Y = a + bX was found to have the best fit throughout the data for this report.

A unique plot symbol is used for each motor tested. Analysis of covariance results indicate that the combined motor regression plots are to be used for visual display only.

Most points on the regression plots represent a data mean value at its particular age at test. The remaining points are single valued as shown in figures 4-11 thru 4-15, 4-21 thru 4-25, 4-31 thru 4-35, 4-41 thru 4-45, and 4-51 thru 4-55. The single valued points have multipoints per its particular age at test. Sample sizes per the mean values can be found in the Sample Size Summary. All regressions are calculated on single data values.

The data variance about each regression line was used to compute a tolerance interval such that at 90% confidence 90% of the sample distribution will fall within this interval. This tolerance interval is extrapolated 24 months beyond the age of the last test date.

The F value and student 't' values with their significance are recorded at the top of each regression. The significance gives an indication of the regression statistical significance of the trend line slope as compared to a line of zero slope.

SECTION II

STRESS RELAXATION

Stress relaxation specimens $(0.5" \times 0.5" \times 4")$ were tested in the 00-ALC program at 3% strain and $77^{\circ}F$. In 1978, under the LRSLA program, an evaluation program tested two types of specimens at 2% strain, at $77^{\circ}F$. At the same time, specimens were tested at $-30^{\circ}F$ under 300 psi. The severe conditions could not be reproduced and testing was dropped.

Visual display for six motors and two test periods is shown in figures 2-1 thru 2-4. These combined data show a significant decrease in strain at rupture. The trend is not obvious for the two oldest motors for stress at rupture, but shows clearly for the RAD motors.

Individual regressions should be available for inclusion in the next report.

A MARK LOTT MARKET SOUTH AND YOUR AREA

*** ALALYSIS OF TIME SEEDED ***

PEGALSSTON Y	+3, 10,235,320°+01 +6, 1,574,1670 +01 +8, 1,280,4220°+01 +8, 1,094,5890,001 +9, 00835,750,+01 +3, 00,150,200°+01 +4, 0,365,040,101 +3, 0,192,0930°+01 +7, 80,90,7460,+01 +7, 83,514,550+01
A MOUTHIN	+7, 95999905+01 +3,4399932+61 +8,100000005+01 +8,100000005+01 +3,200000005+01 +7,700000005+01 +7,800000005+01 +7,800000005+01
Y 2004 X X1	+7.559595951+01 +3.45595951+01 +8.5000001+01 +6.4000001+01 +6.4000001+01 +6.0000001+01 +7.90000001+01 +7.90000001+01 +7.90000001+01
STANDARD	+u. u0000 u001 +07 +0. u000 u000 L +07 +7. 071 u0 78F -01 +1. 032 78556 + u0 +1. 140 1754F +00 +1. 30 33404E +00 +3. 3650 u02E -01 +5. 1639 777F -01 +6. 44+271 H -01
\$ \$100 Hz	+7.95999001 +01 +0.438999301 +01 +6.26003000F+01 +0.3390300001 +01 +7.61999964 +01 +7.61999964 +01 +7.61999964 +01 +7.61999964 +01 +7.61999964 +01
ACCORDING SALEGISTES SALEGISTES FOR COLUMN	n <u>j</u> a a a a a a a
A) (

ALCOLUMN II, STASE III, PISSECTED MIR

< 00 31134>

3 - 7

Figure 3-3

THE MERCHANCE CONTROL AND YOUR STREET

*** ADALYSIS OF TIGE SERIES ***

A NDISSHEDJE	+3, 3134124£+01 +3, 2778594£+01 +8, 2368392£+01 +8, 2094624£+01 +8, 1766754£+01 +8, 1411239£+01 +8, 06095851 +01 +7, 8645139£+01
A MOVINIE	+3.000000000000000000000000000000000000
44×1 404 Y	+ C + CO D C C C C + O I
STANDARD OFVIATION	+0,00000001 +07 +0,00000001 +07 +1,00540151 +00 +1,00540155 +00 +0,9442719f-01 +1,1401754 +00 +1,3600000 +00 +1,3744046 +00 +1,3744046 +00
X 24 10	+ 0 + 0 > 0 > 0 > 0 0 0 0 0 0 0 0 0 0 0
34 (101.315 2 b sattl	
A ALCOHOLON	22/20/20/20/13

3 -

ATHUTCHAR II. STAGE III. DISSECTED MIR

<00351064>

3 - 5

Figure 3-2

** SA for CITE SO MARKY ***

X	is.	a	J7	-23	S	J.	Ş	. ;	.;	<i>•</i>	0	ũ	s	10	,•											
AGE	(MONTHS)	130.3	133.0	140.0	152.0	155.0	103.0	0.102	0.30	219.0	230.0	234.0	237.0	243.0	0.523											
<u>:</u>	CAMPLES	-	4	~	21	S		7	S	-	٠ 1	~	S	-	J	n	ឆា	ιΩ	S	ťΩ	3.0	0.1	ç	s	.ე	ឋ
74.03	(30,1200)	5.45	0.10	ال • ١٠ و	0 • • • • • • • • • • • • • • • • • • •	3 • 1	0.7.0	(·•) (·	3 •	6.07	0.07	0.0	0.7	٥٠٠٠	つ・すぐ	0.70	0.75) • // ·	5. 0 € 0.5	1.04.1	0.0.0	1.00.0	110.0	, · · . I I	0.0.1	-

Thereby 11, SIAGE 111, DISECTED 1125/06/1004.0031134.0032434.0032831.0033174

Figure 3-1

SECTION III

HARDNESS

The Shore A and Shore C hardness testing were performed on dogbone ends.

Figure 3-1 is a visual display of the 5 motor data. Figures 3-2 thru 3-6 show Shore A hardness on individual motors. All regressions show a significant decrease in hardness.

Shore C hardness is shown in figure 3-7 as a visual display. Figures 3-8 thru 3-12 show a significant decrease in each of the motors.

**** LINEAR REGALSSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

REGRESSION Y	+9.1785058E+02	+8.8868017E+02	+8.8705957E+02	+8.5950976E+02	+8.5626855E+02	+8.4168334E+02	+8.4006298E+02	+8.3520117E+02	+8, 28718756, +02	+8.1089233E+02	+8.0603076E+02
MINIMUM Y	+8.7000000E+02	+7.4000000E+02	+9.1000000E+02	+9.5000000E+02	+8.1000000E+02	+7.4500000E+02	+8.4000000E+02	+8.6000000E+02	+7.2500000E+02	+7.4000000E+02	+3.0500000E+02
NAXIMUM Y	+9.0500000E+02	+7.7500000E+02	+1.0150000E+03	+1.070000E+03	+8.9500000E+02	+8.0500000E+02	+8.6000000E+02	+9.3000000E+02	+7.850J000E+U2	+8.300000E+02	+8.7000000E+02
STANDARD DEV LAT LON	+1 • 44 04 360E+01	+1.5572411E+01	+4.3214580E+01	+4.7381430E+01	+3.7815340E+01	+2.4135036E+01	+7.4161984E+00	+2.6645325E+01	+2.5396450E+01	+3.8503246[+01	+2.3075961E+01
MEAN Y	+8.9200000E+02	+7.5400000E+02	+9.8100000E+02	+1.0330000E+03	+8.4900000E+02	+7.7700000E+02	+8.4900000E+02	+8.8000000E+02	+7.4800000E+02	+7.6200000£+02	+8.380000E+02
SPECIMENS PCK GROUP	ທ	S	5	S	ទ	ß	3	9	S	u)	S
A ULT (MULTAS)	163.0	201.0	202.0	219.0	221.0	230.0	231.0	234.0	238.0	0.645	252.0

STRESS PELAXATION MUDULUS AT 1000 SEC AND 2% STRAIN. SIX MUTOR VISUAL DISPLAY

Figure 2-4

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

	SION Y	1E+03	8E+03	5E+03	2E+03	7E+03	0E+03	7E+03	9E+03	6E+03	4E+03	E O 4 : 45.
	REGRESSION Y	+1.1527011E+03	+1.1247778E+03	+1.1232265E+03	+1.0968542E+03	+1.0937517E+03	+1.0797900E+03	+1.07823876+03	+1.0735849E+03	+1.0673796E+03	+1.0503154E+03	41 005561 34:402
	MININUM Y	+1.0950000E+03	+9.7000000E+02	+1.1400000E+03	+1.2000000E+03	+1.0750000E+03	+9.6500000E+02	+1.0300000E+03	+1 - 1 0000000 E+03	+9.4000000E+02	+9.8000000E+02	F0+30000000 1+
	MAXIMUNIY	+1 • 14 00000E+03	+1.00500000+03	+1.2e0000E+03	+1.3400000E+03	+1.1500000E+03	+1.0250000E+03	+1.0550000E+03	+1.1950000E+03	+8.9000000E+02	+1.0653000E+03	#1 - 14 00000 F + 03
STANDARD	DEVIATION	+1.6431676E+01	+1.5247950E+01	+5.8672821E+01	+5.3455589E+01	+3.0822070E+01	+2.509980UE+01	+1.0245950E+01	+3.6193922E+01	+1.9811612E+01	+3.5812009E+01	+2.14.30.483F.+01
	MCAN Y	+1.1140000E+03	+9.8700000E+02	+1.2360000F+03	+1.2520000E+03	+1.1050000E+03	+9.9600000E+02	+1.0460000E+03	+1.1300000E+03	+9.5600000E+02	+1.002000E.+03	+1 - 1 0 70000F +0 3
SPLCIMENS	PLK GROUP	S	જ	ឆ	S	5	S	ဌ	J	ß		u.
A UL	(MUNTHS)	183.0	201.0	202.0	219.0	221.0	230.0	231.0	234.0	238.0	240.0	0.636
												2

STRESS RELAXATION MODULUS AT 100 SEC AND 2% STRAIN, SIX MOTOR VISUAL DISPLAY

STRESS RELAXATION MODULUS AT 100 SEC AND 2% STRAIN, SIX MOTOR VISUAL DISPLAY

**** LINEAR REGRESSION ANALYSIS ***

*** ANALYSIS OF TIME SEKIES ***

REGRESSION Y	+1.2480292E+03	+1.2201975F+03	+1.2186513E+03	+1.1923654E+03	+1.1892731F+03	+1-1753571£+03	+1.1738110E+03	+1.1691723E+03	+1.1629875E+03	+1.1459790E+03	+1.1413403E+03
MINIMUM Y	+1.1800000E+03	+1.0600000E+03	+1.2350000E+03	+1.3050000E+03	+1.1700000E+03	+1.0600000E+03	+1.1150000E+03	+1.1900000E+03	+1.030000E+03	+1.070000E+03	+1 • 1800000E+03
MAXIMUM Y	+1.2350000E+03	+1.090000E+03	+1.3900000E+03	+1-4600000£+03	+1.23500005+03	+1.1150000E+03	+1.1500000E+03	+1.3000000000000000000000000000000000000	+1.0800000£+03	+1-1550000E+03	+1 •2450000E+03
STANDARD DEVIATION	+1.9999999E+01	+1.2247448E+01	+6.4710895E+01	+5.8630196E+01	+2.7054737E+01	+2.1965882F+01	+1.3416407E+01	+4.0712405E+01	+2.0310096E+01	+3,5951356E+01	+2.3611437E+01
MEAN Y	+1.2100000E+03	+1.075000000+03	+1.3400000E+03	+1.4050000L+03	+1.1970000E+03	+1.087000E+03	+1.130000E+03	+1.2275000E+03	+1.0450000E+03	+1.09100006+03	+1.2120000E+03
SPECIMENS PLM GALUP	5	2	ទ	S	S	တ	\$	·S	S	ស	S
A OL. (MUNTHS)	183.0	201.0	202.0	219.0	221.6	2 50 • 0	231.0	234.0	238.0	249.0	252.0

STRESS RELAXATION MODULUS AT 50 SEC AND 2% STRAIN, SIX MOTOR VISUAL DISPLAY

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

	REGRESSION Y	+1.5841303E+03	+1.5490808E+03	+1.5471335E+03	+1.5140310E+03	+1.5101367F+03	+1.4926118E+03	+1.4906645E+03	+1.4848229E+03	+1.4770341E+03	+1.4556149E+03	+1.44977346+03	
	MINIMUM Y	+1.4950000E+03	+1.3750000E+03	+1.5550000E+03	+1.6450000E+03	+1.5150000E+03	+1.3400000E+03	+1.3950000E+03	+1.5050000E+03	+1.295000E+03	+1.3750000E+03	+1.5250000E+03	
	MAXIMUM Y	+1.505000E+03	+1.410000UE+03	+1.7u50000E+03	+1.4550000E+03	+1.5850000£+03	+1-4350000E+03	+1.4400000E+03	+1.6550000E+03	+1.3400000E+03	+1.4450000E+03	+1.58500000+03	
STANDARD	DEVIATION	+2.5592967E+01	+1.4832396E+01	+8.6631403E+01	+7.8549347E+01	+2.7477263E+01	+3.8013155E+01	+1.9170289E+01	+5.5354915E+01	+1.7677669E+01	+3.0331501E+01	+2.2472205E+01	
	MLAN Y	+1.5260000E+03	+1.3920000E+03	+1.0940000E+03	+1.7770000E+03	+1.5440000E+03	+1.3720000E+03	+1.4240000E+03	+1.5558332E+03	+1.3100000E+03	+1.3920000E+03	+1.5540000E+03	
SPECIMENS	PLR GRUUP	S	ລ	w)	ß	ى د	ຜ	လ	9	ن ا	G	5	
A 6.	(MUNTHS)	1 53.0	201.0	202.0	219.0	221.0	730.0	231.0	2 34 . 0	238.0	24.3.0	255°0	_

STRESS RELAXATION MUDULUS AT 10 SEC AND 2% STRAIN, SIX MOTOR VISUAL DISPLAY

Figure 3-4

ARREA LINEAR AFON COLLIA ARABATION ARRE

ANA MANLYSIS OF TIME OFFICE ANA

PECKFSSION Y	+8, 59P9 730E+01	+6.5127120E+01	+3.4065444E+01	+8.3468246F+01	+8.26719976+01	+8.18093876+01	+8.094c 762E+01	+8. 0349578F.+01	+7,3913162[+01
Y MUMBINE	+0+079993478+01	+0.07999476+01	+3.5000000E+01	+8.500000000+01	+8.300000000+01	+7.70000005+01	+7.90000006+7+	10+30000000001+	+7.400000000+1
Y SHE TAKE	+0+37929871+01	48.0799987; +01	+3.00000000+01	+8,000000E+31	10+30000000048+	10+300000000+01	+8.10000001+01	10+ 300000000000+01	+7.500000308 +01
STANDARD DEVTATION	+0.00000000 +0.	+0*00000000+0+	+5.4772255E-01	+9.47722555-01	+1 - 3374935E +00	+1-14017348+00	+1-00244215+00	+5.47722550-01	+5-4772255L-01
X NV IE	+3.07998871-401	45.0794787C+01	10+185555535+8+	48 - 3 3 5 5 6 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	+3.42975876+01	+7.03999936+01	+8.01999966+01	104 3565665 0.24	+7.40999993(+01
PECHINE	1	-	'n	5	0.1	S	ິ	J	₫)
MACCINE)	0 • 00	3.67	3 • • • • • • • • • • • • • • • • • • •	0.7.	10%	0.011	0 • 1; 1	140.0	2.57.0

SHAULTAIL II, STACE III, DISSECTED ATR

<0032434>

3 ~ 9

Figure 3-5

01

PARAMETER

SECOND

HUBDNESS

SAXA LI LAN MIGRESSION ANALYSIS FREX

*** ANALYSIS OF TIME SENIES ***

REGEISSION Y	+6.4429763E+01 +6.4121444E+01 +8.3765701E+01 +9.326534E+01 +8.2413864E+01 +8.2413864F+01 +8.0540267E+01
A ROBINIO	+8.1399943E+01 +8.2599940E+01 +3.3000030E+01 +3.4000000E+01 +7.5000000E+01 +7.9000000E+01
Y FURITAR	+3.1359393C+01 +3.2599993L+01 +3.3000000E+01 +3.0000000E+01 +3.0000000E+01 +5.0000000E+01 +8.1000000E+01 +8.2000000E+01
STANDARD DEVIAFION	+0.0000000E+07 +3.0000000E+07 +3.3000000E-01 +7.6331003E-01 +5.4772255L-01 +2.0733441C+00 +9.1643036E-01
SEAN Y	+8,139993E+01 +0,255999E+01 +3,4799937E+01 +0,4799990E+01 +7,8599998E+01 +7,9509999E+01 +8,7000000E+01
SPECIALNS PLE SKOOP	C O T S S S
10 K (310 k l o b	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

<000 52831>

3 - 11

ALKUTLMAR II. STAGE III. DISSECTED MIR

Figure 3-6

Free Lind An Industrial Collect Anal You seem

*** ANALYSIS OF TIME SERIES ***

RL GRESSION Y	+6, 191c 152F+01 +3, 1663330£+01 +2, 1364517£+01 +8, 0458840£+01 +7, 904 3029£+01
AINIMOM Y	+4,2000000E+01 +6,2000000E+01 +7,8000000E+01 +7,6000000E+01 +7,7000000E+01
JAXISED Y	+6000000000000000000000000000000000000
STAMDAKU	+1.1005049F +00 +5.4772255L-01 +4.4721359E-01 +1.3033434F +00 +1.1090451E +00 +3.9442719E-01
ALARI Y	10 +6, 38,7993E+01 5 +0,259993L+01 5 +7,8799987F+01 5 +7,719999E+01 c +7,083,320E+01 5 +8,039993E+01
ANT FOR THE	ວັນ ນັ້ນ ກ່າ
Act Greature	

MILLIAME II. STASE III. SISECTED MTK

< 0033174>

Figure 3-7

*** SAMPLE SIZE SUSHARY ***

X Z	SAMPLES	ភ	·,	J	S	S	2	ψ)	ن	Ģ	9	ç	. 5	S	S											
AGE	(MUNTHS)	130.0	133.0	140.0	152.0	155.0	183.0	201.0	202.0	219.0	230.0	234.0	237.0	248.0	252.0											
ž	SAMPLES	~	7	~	01	S	~	7	ى	~	01	~	5		ຜ	5	S	5	S	2	20	10	S	2	2	5
10 1	(MUNTHS)	34.0	0.10	0.30	0.36	0.33	0.70	6.30	0.50	70.0	76.0	0.00	82.0	33.0	84.0	6.78	0.06	75.0	0.87	104.0	0.001	100.0	116.0	0.411	0.0.1	1

LNUTE MAN II. STAGE III. DISSECTED ATRS/00 31004, 0031134,0032434,0032831,0033174

Figure 3-8

SERVE LINEAR DESIGNATION AND YOLD 4 ***

*** ANALYSIS OF ITHE SCRIES ***

F. GPESSTON Y	+F. 5231765f +01 +5.471545t +01 +5.4240524E+01 +5.346f520F+01 +5.34ct700t +01 +5.3001480f+01 +5.9227656F+01 +4.6788726E+01
A MONTO IN	+3.1000000F+01 +4.2000000E+01 +5.2000000E+01 +5.8000000E+01 +5.4000000E+01 +4.50000000E+01 +4.40000000E+01
Y adalate	+5.10030000 + 01 +2.00000000 + 01 +5.3000000 + 01 +6.0000000 + 01 +6.7000000 + 01 +4.7000000 + 01 +5.4000000 + 01
STANDARD DEVTALTUR	+0.00000000 +07 +0.30000000 +07 +2.20070002E-01 +8.3000002E-01 +1.3410407(+00 +1.51607500+00 +1.51607500+00
ACAN Y	+5.1000000 +01 +4.3000000 +01 +4.3799387 +01 +5.3199990 +01 +5.3599990 +01 +4.0759987 +01 +4.0759987 +01
SPECIAL IIS	
(i.e., 111.)	

THEOTE AND IT STANE HIS DISSULTED WITH

< 10.31 J64>

3 - 17

Figure 3-9

**** CI CONTROP COICE AND TO A ***

*** ANALYSIS OF TIME SCHIES 4**

PEGPESSIUM Y	11 +5.2958810L+01	11 +5.2668137F+01	11 +5.23328706+01	1 +5.21093296+01	1 +5.1863418[+01	11 +5 - 15 50 44 51 + 01	11 +5, 1058639F+01	11 +4.9314955E+01	11 +4.8912507F+01
Y EUMINIM	+5.1000000E+01	+5+2197936E+01	+5.0000000L+01	+5.20000001+01	+5.2000006+01	+5.200000E+01	+ # • 0 0 0 0 0 0 0 0 + c I	+4.90000001+01	+4.9000000E+01
A FORTY	+5-10000001+01	+5•212-24cf + 01	+8 • 20 0 0 0 0 0 C + 01	+5.00000000+01	+5 - 50 00 000 + 01	+5 - 50 00 000E +01	++* 7000000F+C1	10+ 3000000000+01	+5.10300001.+01
STAILDARD DEVTATTUN	+0+00000000+04	+0.000000000+07	+7.07106780-01	+1-393+117E+00	+1+51057500+00	+1.41421356+00	+2.77448730+00	+5.1639777E-01	+1.00000006 +00
Y MKJE	+5.1000000E+01	+5+2169996(+01	45.1000000E+01	+5.3799937£+01	10+30666668.3+	+5.30000001+01	+4.47359871.+01	+4. +9000050t +01	+5.00000000 +01
A M. OPECTACION (C. CATRO) P.S. CLUDP	1	-	s	10	J	Đ	<u>ټ</u>	ວ	Ş
A M. (Creatin)	3./3	o • 0 °	0 • 35	1 C - 3 O L	110.0	1 -0 - 0	5 • Gr. 1	3.0.7	2.4.5.

AIRUIEMAR II, STAGE III, DISSECTED WIR

<00351134>

Figure 3-10

4844 LIME SECTION OF THE ANALYSIS 4889

** ANALYSIS OF THE SEKILS 844

P! GPUS310H Y	+5. 85476936 +31	+0.549c017F+01	+5+4548950L+01	+5, 328č193 <u>L</u> +01	+5 - 1918197F + 01	+4.96031341+01	+ 3. 9.195 7825 + 01
Y MUTTAIN	+5. 050 4000F+01 +4. 7 799087E+01	+8.4000000F+8+	+5.50303040+01	+5. 300000000+01	+5.2000000F+01	10+300000005*64	+3.300000000+31
Y due Y	10.00000000010101	10+3000000000+01	+9. 10000000 +01	+5.**(3.0.3.0.00]; +61	+8. 5000000F +01	+4 . 1000000F +01	+4.20000000401
J. N. D. A. D. D. V. L. A. L. L. L. D. V. L. A. L.	/ 0+ 300000000*0+	11.45323961+00	+1+ 395+4510+00	+1.61 /3277E +00	+1.30384048+00	+1-14017540+00	+1.04316762+30
ALAN Y	10+0000000000+0+	+5.01 /0 Pol. +01	10.130990f ±01	10 + 12 4 7999871 + 01	+5.31970555+01	+4.059990E+01	+ 3 • 9199990F + 01
of relative		`	S	0.1	73	٦.	S
A.S. (11 at 1.15.)	3 5 1 5	•) •	100.0	140	1.40.0	0.0

3 - 21

ATHAUTUARA II. SIASE III. SISSECIED ATR

< 0.03 524 545

**** LINEAR REORF SSIGN ANALYSIS ****

*** ANALYSIS OF TIME SEKIES ***

MINIMUM Y REGRESSION Y	2 +4.1200000F+02 +4.5247583F+02 2 +3.900000E+02 +4.4789990E+02 2 +4.500000E+02 +4.4367553F+02 2 +4.1300000E+02 +4.3945141F+02 2 +3.7539990E+02 +4.3487524E+02 12 +4.9400000E+02 +4.3487524E+02 13 +4.4400000F+02 +4.2572314E+02 14.136298BE+02 +4.2555493E+02 14.3645097E+02 +3.9474609E+02 15.8615991E+02 +3.9474609E+02 15.86450976E+02 +3.8840991E+02
MAXIMUM Y	+4.4500000E+02 +4.1000000E+02 +4.8000000E+02 +4.53000000E+02 +5.30000000E+02 +5.30000000E+02 +1.2130998E+03 +4.1811987E+02 +4.1170977E+02 +4.1170977E+02
STANDARD DEVIATION	+1.0726913E+01 +5.6764621E+00 +6.2360956E+00 +1.3554826E+01 +7.2799715E+00 +1.9731531E+01 +2.6587161E+02 +3.1991114E+00 +2.8941651E+00 +2.8445475E+00
MEAN Y	+4.2519995L+02 +4.0100000L+02 +4.3019980E+02 +3.8395971E+02 +5.1660650E+02 +5.5602978E+02 +4.1547475E+02 +4.0242651E+02 +2.8990234E+02
SPECTMENS PER GRUUP	2 5 2 5 3 3 3 4 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
A O.C. (HUN IHS)	0.525 0.525 0.525 0.525 0.525 0.526

UNIAXIAL TENSILE, MAXIMUM JIRESS, 2.0

2.0 IN/MIN AT 77 DEG F, M0T0R=0031064 UNIAXIAL TENSILE, MAXIMUM STRESS,

Figure 4-6

77 DEG F. SIX MOTOR DISPLAY UNIAXIAL TENSILE, MODULUS, 2.0 IN/MIN AT

Figure 4-5

R

F, AMB

DEG

11

CONDITIONS

TEST

(-2.5460750E-01 SIGNIFICANT SIGNIFICANT SIGNIFICANT = 325

+4.0312 SIGNIFIC SIGNIFIC SIGNIFIC SIGNIFIC DEGREES

7 = -2.4178842E-01 +4.4921905E+00

14 11 11 11

4 × 2

STORAGE CONDITIONS

00.52

101

22.00

RUPTURE

F. SIX MOTOR DISPLAY 2.0 IN/MIN AT 77 DEG UNIAXIAL TENSILE, STRESS AT RUP,

11 NU 12 · 00

QE

PARAMETER

4-4

Figure

28.00

SIRESS

129 = 32.00

42.00

ΤA

NEASURE 22.00

UNIAXIAL TENSILE, STRAIN AT MAX, 2.0 IN/MIN AT 77 DEG F, SIX MOTOR DISPLAY

Figure 4-2

SIX MOTOR DISPLAY Ŀ 2.0 IN/MIN AT 77 DEG UNIAXIAL TENSILE, MAXIMUM STRESS.

from the test program's inception should be available for regressions.

C. A change in testing rails under pressure was made in GTD-30, REV 2, April 1981. This required rails to be tested at 200 in/min under 300 psi pressure. These data are shown as a visual display in figures 4-61 thru 4-65. Strains show a significant increase and there appears to be a significant decrease in modulus.

SECTION IV

TENSILE TESTING

A. Uniaxial JANNAF dogbones were tested at 77°F and 2.0 in/min. The data are show in three sets of figures. Figures 4-1 thru 4-5 represent the visual display of data from six motors. The next set of figures represent averages of data on the individual motors and a third set represent individual data points for each test period.

Figures 4-1 and 4-5 show a significant decrease in maximum stress and stress at rupture. These figures depict a visual display of six motors.

Figures 4-6 thru 4-15 represent motor S/N 0031064. The average values show a non-significant trend in any parameter. The maximum stress shows a significant decrease when individual specimen values are used.

Figures 4-16 thru 4-25 represent motor S/N 0031134. The strain at maximum stress shows a significant increase (figures 4-17 and 4-22).

Figures 4-26 thru 4-35 represent motor S/N 0032434. The maximum stress and stress at rupture show a significant decrease. The modulus for individual points also shows a significant decrease (figure 4-35).

Figures 4-36 thru 4-45 represent motor S/N 0032831. Only strain at rupture (figure 4-38) shows a non-significant trend. With one less time point, the individual data plots show a significant decrease in strain at maximum stress, stress at rupture (figures 4-42 and 4-44) and a significant increase in modulus (figure 4-45).

Figures 4-46 thru 4-55 represent motor S/N 0033174. Only strain at rupture and modulus shows a non-significant trend (figures 4-48 and 4-50).

B. Biaxial rails at low rate, 0.2 in/min, are shown in figures 4-56 thru 4-60. Strains show a significant increase. This data represents the data from the last three test periods. In the next report, data acquired

**** LINEAC REDRESSION ANALYSIS ****

*** ANALYSIS OF TIME SENIES ***

PEGPESSION Y	+5.0732162E+01	+5.05182958+01	+5,02655331,+01	+4.98377836+01	+4.8.501803t +01	+4.79518431.+01
MINIMON Y	+5.0000000F+01	+5 + 1 000000F+01	+5.1000000E+01	+4.200000000+01	10+30000000 * 5+	+4.700000er+01
TAX J MULG Y	10+ 30000000 +01	+5. >00000000 +01	+5.20300001+01	10+100000000+01	10+30000002+3+	+4.00000000+41
STANDARD OFVIAFION	+1+07490708 +00	+6.3000001-01	+4.4721359101	+1.30384045+00	+8 • 1649e5df -01	+5.47722555-01
¥ NE∃E	10 +5.1099330E+01	0 + 10 + 179 59 871 + 01	+5.17999871.+01	+4.019990L+01	+5.03332df +01	5 +4.7599990L+01
SPECIALIS FOR CALUD	o 1	3	c	a	J	ټ
A 04 (GLOF, 1915.)	• • • • •	0 • 2.7	•	104.0	1.350	3.10

JUNUTERAR II. STAGE III. DISSECTED MIR

<0033174>

3 - 25

Figure 3-12

**** LDDLAF REGNESSION NOALYSIS ****

*** ANALYSIS OF TIME SEATE

PEGRESSION Y	+5, 3905131; +01 +5, 36773075 +01 +5, 3414 3421 +01 +5, 3239105[+01 +5, 304c,245 +01 +5, 2415,2831 +01 +5, 1030563; +01 +5, 0732574; +01
MINIMA	+5.1000000E+01 +4.019449EF+01 +5.3003030EF+01 +5.2003030E+01 +5.0000030E+01 +4.5000030E+01 +5.0000030E+01
GAXIBUA Y	+5.1000000000000000000000000000000000000
STANDARD DFV IATIUN	+0.000000E+07 +0.0010000E+07 +3.9442719E-01 +1.2800039E+00 +1.0000000E+00 +1.0000000E+00 +1.0000000E+00
ALAN Y	+5.1000000E+01 +4.91999900E+01 +5.40999900L+01 +5.7000006E+01 +4.7000000E+01 +5.0000000E+01
Authorities are chicks (condities) Per Sector	
Auf Gerriffe)	20.00 20.00

AINOTUAAN II. STAGE III. DISSECTED MIR

<0032831>

*** LINEAR REGALSSION ANALYSIS ***

*** ANALYSIS UF TIME SERIES ***

>												
PEGRESSION Y	+4.4910496F-01	+4.4878977E-01	+4.4849884E-01	+4.4820797E-01	+4.4789278E-01	+4.4757765E-01	+4.4726246E-01	+4.4704431F-01	+4.4512909F-01	+4.4469273E-01	+4.4445031E-01	
MINIMUM Y	+4.5799994E-01	+4.3999999E-01	+4.2999994E-01	+4.2999994E-01	+4.3999999E-01	+4.4999998E-01	+2.1999999E-02	+4.5239996E-01	+4.3829995E-01	+4.7399997E-01	+4.4019997E-01	
MAXIMUM Y	+4.79995951-01	+4.6199995E-01	+4.6199995E-01	+4.6399998E-01	+4.53999996-01	+4.05999966-01	+4.68¥9998L-01	+4.5499998E-01	+4.5079994E-01	+4.7869998E-01	+4.5469996-01	
STANDARD JUVIATION	+6.6136148E-03	+ 6 • 664 0446L - 03	+9.3880207E-03	+9.0731777E-03	+5.7021084E-03	+4.0091578E-03	+1.5405605L-01	+1.8371599E-03	+5.5927591F-03	+2.2210520E-03	+5.85830235-03	
MLAN Y	+4.0909952E-01	+4 • 4739967E-01	+4.4729971E-01	+4.4879966F-G1	+4.4839972L-01	+4.5799982E-01	+4.0242409E-01	+4.5369994E-01	+4.4319963E-01	+4.7712469E-01	+4 • 4 71 3973F-01	
SPITCINENS PER GROUP	01	01	70	0.1	5	7	æ	2	د	4	S	
AGE (MCNTHS)	70.07	63.0	0.5%	107.0	120.0	133.0	146.0	155.0	2.34.0	252.0	0.502 4	-

UNIAXIAL TENSILE, STRAIN AT MAX, 2.0 IN/MIN AT 77 DEG F, MOTUR=0031064.

**** LINEAR REGRESSION ANALYSIS ***

*** ANALYSIS OF TIME SERIES ***

REGRESSION Y	+5.0633311E-01 +5.0592279E-01 +5.0554406E-01 +5.0516527E-01 +5.0475496E-01 +5.0434464E-01 +5.0393432E-01 +5.0365030E-01 +5.0115680E-01 +5.0058871E-01
MINIMUM	+5.1699995E-01 ++ +4.599997E-01 ++ +5.0099995E-01 ++ +5.0099995E-01 ++ +4.7599995E-01 ++ +4.9909996E-02 ++ +4.8769998E-01 ++ +5.4519999E-01 ++ +4.8769998E-01 ++
MAXIMUM Y	+5.3899997E-01 +5.4199999E-01 +5.1999998E-01 +5.1099997E-01 +5.0499999E-01 +5.2499997E-01 +5.2499997E-01 +5.2499997E-01
STANDARD DEVIATION	+8.2680051E-03 +7.8170340E-03 +1.7798327E-02 +8.0655454E-03 +1.4648017E-02 +1.6671396E-01 +8.2045966E-03 +7.0328638E-03 +1.8494879E-02
MEAN Y	+5.2699953E-01 +4.3039968E-01 +4.9349951E-01 +4.9166643E-01 +4.9166643E-01 +4.4144952L-01 +5.0489997L-01 +5.0159960E-01
SPECIMENS PLR GROUP	01111
A GE (MUNTHS)	0.502 0.502 0.621 0.621 0.621 0.621 0.621 0.621 0.621

UNIAXIAL TENSILE, STRAIN AT RUP, 2.0 IN/MIN AT 77 DEG F, MOTOR=0031064.

**** LINEAR REGRESSION ABALYSIS ****

*** ANALYSIS DF TINE SERIES ***

>	e:	٥.	01	0:	٥i	n.i	e:	01	ο.	٥.	۸ı	
F F GP ESS 10N	+4.3.138342F+02	+4.28404871.+02	+4.2397802F+02	+4.19460936+02	+4.1456738E+02	+4.0967407E+02	+4.0478076E+02	+4.0139232F+02	+3,71656000+02	+3.64880018.+02	+3.0111045 [+02	
HINIMUMY	+3.9200000F+02	+3.50000001+02	+4.3000000E+02	+4.0300000E+02	+3.2000000E+02	+4.72000001+02	+4.2862988F+02	+3+8769995E+02	+3.04329335+02	+2.5911987E+02	+ 3. 2989990E+02	
JAKITRUS Y	++*1700000F+02	+3+9200000+02	++ • co and and 1+05	+4 • 30 00 000E + 02	+3+8200000F+02	+8+3460000E+02	+1,21300000+03	+3.4575976E+02	+5+ J2219976+02	+2.079,9941 +02	+3.0450976L+02	
STANDARU DEVIATION	+1.044 3498E+01	+1.2323870E+01	+9.0005178E+00	+2+53555437[+01	+1 + 18553231 +01	+1.79257725+01	+2.71172955+02	+5.7117353L+00	+1.0121482E+01	+4.31715076+00	+1.401 5345E+01	
at Ara Y	+4 • 04 L9305 E+02	+3+7c39999E+02	±4 +46000001 +02	44.2559985E+02	+3.43009910+02	+4.42500501.402	+6 • 4 29 34571 + 02	+3.9172975[+02	+3.78073121+02	+2.03704438 +02	+3.4732503L+02	
SPECIM NO PER GRAUP	10	01	0 1	01	S	~)	ສ	7.7	J	7	J	
A OL. (1111.)	0.01	J • 20	0.000	107.01	1:00	0.8.	U	1:50	0 • + 11 5.	0.1.	0.707	15

DELIAKLAL TERSILE, STRESS AT EUP, 2.0 INZAIN AT 77 DEG F, MOTORE 3031064.

**** LINEAR REGRESSION ANALYSIS ***

*** ANALYSIS OF TIME SERIES ***

REGRESSIUN Y	+1. 5742131E+03 +1. 5733063E+03 +1. 5724694E+03 +1. 5716323E+03 +1. 5707255E+03 +1. 5698188E+03 +1. 5689121E+03 +1. 5682844E+03 +1. 5615187E+03 +1. 5615187E+03
MINIMUM	+1.4140000E+03 +1.2700000E+03 +1.6800000E+03 +1.5200000E+03 +1.1760000E+03 +1.7500000E+03 +1.5740000E+03 +1.650000E+03
MAXIMUM Y	+1.6050000E+03 +1.3900000E+03 +1.68000000E+03 +1.7300000E+03 +1.6720000E+03 +1.8600000E+03 +1.5840000E+03 +1.7510000E+03 +1.7510000E+03 +1.38900000E+03
ST ANDAKU DEV I AT I ON	+6.0491964E+U1 +3.347c359E+01 +7.2541176E+01 +3.4929709E+01 +5.8c24227E+01 +9.8657657E+01 +1.9445436E+02 +1.9445436E+02 +5.9948807E+01 +3.1573987E+01
MEAN Y	+1.5165000E+03 +1.3110000E+03 +1.7880000E+03 +1.6265000E+03 +1.6143999E+03 +1.5312500E+03 +1.8875000E+03 +1.0552500E+03 +1.7315998E+03
SPECIMENS PER GALIUP	31111 3000 3000 3000 3000 3000
A OL.	0.02 83.0 95.0 107.0 135.0 135.0 135.0 135.0 135.0 120.0 120.0 135.0 135.0

UNIAXIAL TENSILE, MÜBJEUS, 2.0 INZMIN AT 77 DEG F, MOTOR=0031064.

Figure 4-11

Figure 4-12

Figure 4-13

STROT III. STRESS BT RUPTURE, LOW RATE TENSILE IEST, CHS-2.0

Figure 4-14

Figure 4-15

UNIAXIAL TENSILE, MAXIMUM STRESS, 2.0 IN/MIN AT 77 DEG F, MOTOR=0031134

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF 11ME SERIES ***

REGRESSIUN Y	+4.1312207E+02 +4.1254125F+02 +4.1200483E+02 +4.1146875E+02 +4.1093261F+02 +4.1030712E+02 +4.0932421E+02 +4.0932421E+02 +4.0583911F+02 +4.0458813E+02
MINIMOMY	+2.8700000E+02 +4.1500000E+02 +4.5500000E+02 +3.6000000E+02 +4.5200000E+02 +4.0447998E+02 +3.9068994E+02 +3.7658984E+02 +3.8692993E+02
Y EUMIXEM	+3,3000000E+02 +4,0000000E+02 +4,7300000E+02 +3,0319995E+02 +4,7200000E+02 +5,2239990E+02 +5,2239990E+02 +5,3975000E+02 +3,9975000E+02 +3,9975000E+02
STANDARD DEVIATION	+1.5434809E +01 +1.8841207E +01 +5.8925505L +00 +2.3C02447E +01 +9.1243210E +00 +7.7974354L +00 +4.8467680E +01 +4.7279058E +00 +5.6911173E +00 +7.5887701E +00
MEAN Y	+3.0769935E+02 +4.3433325E+02 +4.6250000E+02 +4.4089990E+02 +3.7087988E+02 +4.5821118E+02 +4.5821118E+02 +3.9598315E+02 +3.8650152L+02 +3.7834375E+02
SPECIMENS PER GROUP	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A OL (MUNTHS)	0.000 0.000

ULIAXIAL TEHSILE, MAXIMUM STRESS, 2.0 IN/MIN AT 77 DEG F. MUTOR=0031134.

Figure 4-26

3 7.

. -3 -4

10.00 +3.00 -0.00

Figure 4-25

endayETER = MODUL

800:00

X XXXXX

నే*గ్*గా

CLANT THACT OF PACE OF THE NEW TOTAL OF

TURE I DEALE

SSE

-2-2

Figure 4-24

STRAIN AT RUPTURE. LOW RATE TENSITE TEST. CHS-2-0 3196L [11].

Figure 4-22

Figure 4-21

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SFRIES ***

	PEGRESSION Y	+1.6084995E+03	+1.6044455E+03	+1.60070336+03	+1.5969611E+03	+1.5932189E+03	+1.58885306+03	+1.5847990E+03	+1.5819924F+03	+1.5576682E+03	+1.55174316+03	+1.5489365E+03	
	MINIMUM A	+1.1170000E+03	+1.4900000F+03	+1.6800000E+03	+1.5600000000	+1.5200000E+03	+1.4400000E+03	+1.4280000E+03	+1.7010000 +03	+1.4490000E+03	+1.3700000F+03	+1.3540000E+03	
	MAXIMUM Y	+1 • 29 cu 00 0E + 03	+1.76000005+03	+1.96000000+03	+2.1200000E+03	+1 • 84 00000E+03	+1.5600000000000	+1.83800006+03	+1.73000006+03	+1.59500005+03	+1.6900000E+03	+1.4340000F+03	
STANDARD	DEVIATION	+5.1415518E+01	+7.8751366E+01	+8.3982802E+01	+1.7769683E+02	+1.2837445E+02	+4.8230915[+01	+1.5194665E+02	+1.5947831E+01	+5.8776696E+01	+1.2503079E+02	+3.1141612E+01	
	MEAN Y	10 +1.2180000E+03	+1.0044443E+03	+1.81900005+03	+1.8335000E+03	+1.6240000F+03	+1.48159986+03	+1.0155712E+03	+1.7193332E+03	+1.5415000E+03	+1.5577998E+03	+1.38459980+03	
SHICIMING	PER GROUP	01	6	01	01	အ	J	7	7	J	ស	S	
۸ دار	(MUNTHS)	0.79	0 • 0a	55° U	104.0	116.0	130.0	143.0	152.0	230.0	0.642 4	1 258.0	32

UNIAXIAL TENSILE, MUDULUS, 2.0 INZMIN AT 77 DEG F, MGTOR=0031134.

Figure 4-20

*** LIM 4/ KIGA TOTEL ANALYDIS ***

* + ANALYSIS OF TIME SECTES **

M Y PEGRESSION Y	E+U2 +3.9042700E+02 E+O2 +3.8961279E+02 E+U2 +3.886132E+02 E+U2 +3.8810986E+02 E+U2 +3.8735815E+02 E+O2 +3.866C723E+02 E+O2 +3.896C723E+02 E+O2 +3.8510375F+02 E+U2 +3.8021875E+02 E+U2 +3.7962880F+02 E+U2 +3.7846533E+02
Y MUMINIA	+2,66000006+02 +3,90000006+02 +4,203000006+02 +3,820000006+02 +4,03000006+02 +3,8799906+02 +3,71239996+02 +3,51239906+02 +3,6195906+02
AAXIMUS Y	+3.19000001 + 02 +4.3000000000000000000000000000000000000
STANDARD DEVIALLER	+1.74223455±401 +1.43277555±401 +1.03949775±01 +2.7595497±11 +1.51113115±401 +1.36421055±401 +4.7433711±401 +1.08703495±00 +7.8439047±400 +3.53976091±00
MLAN Y	10 +2.3600000L.102 9 +4.1333256 +02 10 +4.40560006C.62 10 +4.3029930L.102 5 +3.23029316 +02 5 +4.2479930f.402 7 +4.3485596 +02 7 +4.3485596 +02 6 +3.06.136.47L.102 5 +3.06.1393796 +02 5 +3.51393796 +02 5 +3.06.34790E.102
PLR OF COT	01 01 01 01 01 01 01 01 01 01 01 01 01 0
A J. (FIREN THE)	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

OKIANIAL TERSILE, STALSS AT KUP, 2.0 INZATR AT 77 OLG F. GDIUF=0031134.

**** LINEAR REGRESSIUN ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

REGRESSION Y	+5.0207930E-01	+5.0271344E-01	+5.0329881E-01	+5.0388425E-01	+5.0446963E-01	+5.0515258E-01	+5.0578677E-01	+5.0622582E-01	+5.1003080E-01	+5.1095771E-01	+5.1139676E-01
MINIMUM Y	+4.5899999E-01	+4.7999995E-01	+4.8999994E-01	+4.5299994E-01	+5.1499998E-01	+5.2599996E-01	+4.8399996E-01	+5.0359994E-01	+4.8429995E-01	+5.1199996E-01	+4.8999994E-01
MAXIMUM Y	+5.2199995E-01	+5.2499997L-01	+5.1999998E-01	+5.06999965-01	+5.3299999E-01	+5.4799997E-01	+5.2399998E-01	+5.1099995E-01	+5.18995995-01	+5.2759999E-01	+5.2339994E-01
STANDARD DEVIATION	+1.8627096E-02	+1.3313103E-02	+9.6415934E-03	+1.4387741E-02	+7.6926053E-03	+9.3947854E-03	+1-60740845-02	+6.8253874E-03	+1.4488414E-02	+6.8153711L-03	+1.2365844E-02
MEAN Y	+5.0469958E-01	+5.04221916-01	+4.9919962E-01	+4.7909963E-01	+5.2399957L-01	+5.3479969E-01	+5.0805664F-01	+5.108coloL-01	+4.9684953E-01	+5.202794cF-01	+5.0755977E-01
SPECIMENS PEK GROUP	01	3	10	01	ស	s	7	m	Ş	S	w.
A GE (MUN THS)	0.7.0	0.00	92.0	104.0	116.0	130.0	143.0	152.0	230.0	249.0	n•852 4

UNIAXIAL TENSILE, STRAIN AT RUP, 2.0 IN/MIN AT 77 DEG F, MOTOR=0031134.

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

REGRESSION Y	+4.3861281E-01 +4.399475E-01 +4.4127029E-01 +4.4254589E-01 +4.4530969E-01 +4.4669157E-01 +4.4669157E-01 +4.5593953E-01 +4.5691588E-01
MINIMUM Y	+4.1199994E-01 +4.3499994E-01 +4.1999995E-01 +4.4199995E-01 +4.7999995E-01 +4.3599998E-01 +4.3989998E-01 +4.3989998E-01 +4.3989998E-01
MAXIMUM Y	+4.349994E-01 +4.45199996E-01 +4.6099996E-01 +4.4499996E-01 +4.3599994E-01 +4.7029995E-01 +4.6149998E-01 +4.6309995E-01
STANDARD	+6.538533E-03 +3.8898424E-03 +9.4774412E-03 +1.144890E-02 +1.5780289E-03 +2.2278151E-03 +1.2331770E-02 +4.2207913E-03 +3.0737838E-03 +8.4506896E-03
MEAN Y	10 +4.2e69951E-01 9 +4.41999b1E-01 10 +4.3879956E-01 5 +4.4339978E-01 5 +4.8359966E-01 7 +4.5838546E-01 3 +4.5c73304E-01 6 +4.4186639E-01 5 +4.5883959E-01 5 +4.5883959E-01
SPECIMENS PUR GEOUP	01 01 00 00 00 00 00 00 00 00 00 00 00 0
AUE (MURTHS)	0.645 0.645

UNIAXIAL TENSILE. STRAIN AT MAX. 2.0 IN/MIN AT 77 DEG F. MOTOR=0031134.

*** LINLAR KEGRESSIUN ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

REGRESSION Y	+4.1057177E+02 +4.0600732E+02 +4.0179370E+02 +3.9758007E+02 +3.9301562E+02 +3.8845092E+02 +3.8353515E+02 +3.8072607E+02 +3.4566699E+02 +3.4566699E+02	
Y MUMINIM	+3.5300000E+02 +4.1200000E+02 +4.0000000E+02 +3.4859985E+02 +4.0000000E+02 +3.9369995E+02 +3.6489990E+02 +3.6489990E+02 +3.5150000E+02	THATAYTAL TENSTLE, MAXIMUM STRESS. 2.0 IN/MIN AT 77 DEG F. MOTOR=0032434.
MAXIMUM Y	+3.7800000E+02 +4.2500000E+02 +4.3500000E+02 +4.2600000E+02 +3.6769995E+02 +4.4400000E+02 +4.1407983E+02 +3.7547998E+02 +3.7547998E+02 +3.3164990E+02	WIN AT 77 DEG F
STANDARD DEVIATION	+7.4206917E+00 +4.3584949E+00 +5.6764621E+00 +9.6234666E+00 +7.6270894E+30 +1.6828547E+01 +7.6758767E+01 +5.6246394E+00 +5.1658409E+00 +5.1658409E+00	M STRESS, 2.0 IN
MEAN Y	10 +3.6519995E+02 9 +4.1766650E+02 10 +4.2600000E+02 9 +4.1011108E+02 5 +3.5493994E+02 5 +4.2479980E+02 7 +4.0461132E+02 7 +4.0461132E+02 9 +3.7386474E+02 9 +3.7386474E+02 5 +2.8734179E+02 5 +3.5542773E+02	THE RELEASE MAXIME
SPECIMENS PER GROUP	0	IATAXIAL
A OE (MUN THS)	0.445 0.455 0.615 0.615 0.615 0.616 0.811 0.811 0.851	19

UNIAXIAL TENSILE, MAXIMUM STRESS, 2.0 IN/MIN AT 77 DEG F, MDTDR=0032434.

UNIAXIAL TENSILE, STRAIN AT MAX, 2.0 IN/MIN AT 77 DEG F, MOTOR=0032434

Figure 4-27

**** LINEAR REGRESSION ANALYSIS ***

*** ANALYSIS OF TIME SERIES ***

A GE (MUNTHS)	_	SPECIMENS PER GROUP	MEAN Y	STANDARD DEVIATION	MAXIMUM Y	MINIMUM Y	REGRESSION
55	55.0	01	+3,9259964E-01	+9.2447333E-03	+4.1199994E-01	+3.8199996E-01	+3.8595801E-01
ЫÚ	0.8 0	20	+3.7788856E-01	+6.3218515E-03	+3.8599997E-01	+3.6799997E-01	+3.8578981E-01
80	80° u	10	+3.8299947E-01	+5.9690495E-03	+3.9499998E-01	+3.7500000E-01	+3.8563460E-01
55	92.0	9	+3.8277751E-01	+1.0257653E-02	+3.9799994E-01	+3.6299997E-01	+3.8547933E-01
1 05	1 05.0	S	+3.6459976E-01	+3.5242881E-03	+3.6999994E-01	+3.6099994E-01	+3.8531118E-01
118	118.0	S	+3.9999979E-01	+1.2089275E-02	+4.1199994E-01	+3.7999999E-01	+3.8514298E-01
132.0	0 • :	7	+4.0061390E-01	+9.1882850E-03	+4.0899997E-01	+3.8249999E-01	+3.8496184E-01
140.0	٥•٥	n	+3.9236640E-01	+9.0313813E-04	+3.9279997E-01	+3.9149999E-01	+3.8485836E-01
219.0	ى• د	9	+3.6753284E-01	+3.0124252E-03	+3.7199997E-01	+3.6409997E-01	+3.8383632E-01
237	237.0	ហ	+4.0459972E-01	+7.8216063E-03	+4.0989995E-01	+3.9089995E-01	+3.8360345E-01
0.945 4	0 •	5	+3.7255972E-01	+1.7066662E-03	+3.7409996E-01	+3.7019997E-01	+3.8348704E-01
-							
4:							
ı	118	IAXIA	TENSTIE STRAIN	AT MAX 2.0 IN/	DIVIDACIA! TENSTIE, STRAIN AT MAY, 2.0 INVMIN AT 72 DEC E. MOTOBLOGGES	AFACE OO - GOT ON	

UNIAXIAL TENSILE. STRAIN AT MAX. 2.0 IN/MIN AT 77 DEG F. MOTOR=0032434.

Figure 4-28

2.0 IN/MIN AT 77 DEG F, MOTOR=0032434

UNIAXIAL TENSILE, STRAIN AT RUP,

=

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

	REGRESSION Y	+4.5438301E-01	+4.5479553E-01	+4.5517641E-01	+4.5555722E-01	+4.5596975E-01	+4.5638233E-01	+4.5682662E-01	+4.5708048E-01	+4.5958751E-01	+4.6015876E-01	+4.6044439E-01			
	MINIMUM Y	+4.5099997E-01	+3.7999999E-01	+4.3499994E-01	+4.2299997E-01	+4.3599998E-01	+4.1399997E-01	+4.4549995E-01	+4.6409994E-01	+4.2699998E-01	+4.5309996E-01	+4.4489997E-01			
	MAXIMUM Y	+4.3299998E-01	+4.5499998E-01	+4.6499997E-01	+4.819999E-01	+4.6599996E-01	+4.7999995E-01	+4.9199998E-01	+4.7439998E-01	+4.5309996E-01	+5.0709998E-01	+4.5969998E-01			
STANDARD	DEVIATION	+1.0355348E-02	+2.3943043E-02	+8.8202296E-03	+1.7345953E-02	+1.0942681E-02	+2.6514381E-02	+2.1198064E-02	+5.2236655E-03	+9.4050625E-03	+2.1911117E-02	+5.7274727E-03			
	MEAN Y	+4.7279953E-01	+4.4233310E-01	+4.4979971E-01	+4,4355517E-01	+4.519996úE-01	+4.5959967E-01	+4.6807098E-01	+4.69699855-01	+4.3948298E-01	+4.9031943E-01	+4.4979971E-01			
SP LC I MENS	PLK GROUP	0 7	6	10	6	S	2	7	'n	9	2	S			
A GL	(MUNTHS)	55.0	0.80	80°0	92.0	105.0	118.0	132.0	140.0	219.0	237.0	0.345 4	-	4:	3

UNIAXIAL TLNSILE, STRAIN AT RUP, 2.0 IN/MIN AT 77 DEG F, MDTGR=0032434.

- 44

**** LINLAR OF USSION ANALYSIS ****

*** ANALYSIS OF TIME SFEILS ***

PEGRESSION Y	+3,8737280E+02 +3,8177636F+02 +3,761059E+02 +3,7144454F+02 +3,6584814F+02 +3,6025170L+02 +3,5028100F+02 +3,078100F+02 +3,0507319E+02 +3,0507319E+02 +3,0507319E+02
MINIMUM Y	+3.1900000E+02 +3.8500000E+02 +3.8000000E+02 +3.7800000E+02 +3.720000E+02 +3.370000E+02 +3.0614990E+02 +3.2377978E+02 +2.3602999E+02 +3.1362988E+02
A EUMIXAL	+3.6200000E+02 +4.1000000E+02 +4.2000000E+02 +4.3900000L+02 +4.0300000C+02 +3.4500000E+02 +3.4507563E+02 +3.0797598E+02 +3.0797598E+02
STANDARD DEVIATION	+1.2025897E+01 +7.3421935E+00 +1.3550317E+01 +4.1321234L+01 +1.0209525E+01 +1.3440169E+01 +2.3099068L+01 +1.4503175E+01 +1.0050703E+01 +3.3092872E+01
BLAN Y	10 +3,3079980t +42 9 +3,9766650t +02 10 +4,056000t +02 9 +4,1577758L+92 5 +3,0491792E+02 5 +3,0491792E+02 7 +5,6491792E+02 7 +5,64313415E+02 3 +0,2003320F+02 6 +3,5743310E+02 5 +2,5543193E+02 5 +3,1782788E+02
SPECTIMENS PLA. GRAUP	<u> </u>
A GE	30000000000000000000000000000000000000

UNIAXIAL TLUSILL, STRLSS AT RUP, 2.0 INZMIN AT 77 DEG F. MLTUR=0032434.

45

**** LINEAR REGRESSION ANALYSIS ****

*** ANALYSIS OF TIME SERIES ***

	Y REGRESSION Y	+03 +1.9903920E+03	+03 +1.9900476E+03	+03 +1.9897297E+03	+03 +1.9894118E+03	+03 +1,9890673E+03	+03 +1,9887231E+03	+03 +1.9883522E+03	+03 +1.9881401E+03	+03 +1.9860473E+03	+03 +1.9855705E+03.	+03 +1,9853320E+03
	MINIMUM Y	+1.6120000E+03	+1 - 9000000E+03	+2.0400000E+03	+2.1550000E+03	+1.920000E+03	+1.9100000E+03	+1.7130000E+03	+1.9920000E+03	+1.9980000E+03	+1.1140000E+03	+2,3880000E+03
	MAXIMUM Y	+1.9130000E+03	+2.2200000E+03	+2,2000000E+03	+2.3500000E+03	+2.0000000E+03	+2.1100000E+03	+1.9460000E+03	+2.042000E+03	+2.2190000E+03	+1.5980000E+03	+2.7300000E+03
SIANDARD	DEVIATION	+1.0883606E+02	+9.5751994E+01	+5.8581377E+01	+7.5920188E+01	+3.4129166E+01	+8.7338422E+01	+9.6931861E+01	+2.6274195E+01	+7.6217233E+01	+1.8377567E+02	+1.5353110E+02
	MEAN Y	10 +1.7457998E+03	+2.0177775E+03	+2.1310000E+03	+2.2450000E+03	+1.96635995+03	+1.9760000E+03	+1.8184284E+03	+2.0216665E+03	+2.0746665E+03	+1.2900000E+03	+2.5243999E+03
SPECIMENS	PER GROUP	01	σ	10	6	ឆ	ទ	~	٣	٥	ស	2
AGE	(MONTHS)	55.0	0.80	0.08	92.0	105.0	118.0	132.0	140.0	219.0	237.0	0.345 4

UNIAXIAL TENSILE, MODULUS, 2.0 IN/MIN AT 77 DEG F, MOTOR=0032434.

Figure 4-31

Figure 4-32

STACH III. STRAIN AT RUPTURE, LOW RATE HINSLIE 1851. CHS 2

Figure 4-33

Figure 4-34

Figure 4-35