```
In [4]: ;ls
```

Correlation.G5.G.C.txt

Correlation.G5.G.J.txt

Correlation.G5.G.JC.txt

Correlation.G5.G.PBLUP.txt

G0.Genotype.ID

G0.ID

G0.noGenotype.ID

G1.Genotype.ID

G1.ID

G1.noGenotype.ID

G2.Genotype.ID

G2.ID

G2.noGenotype.ID

G3.Genotype.ID

G3.ID

G3.noGenotype.ID

G4.Genotype.ID

G4.ID

G4.noGenotype.ID

G5.Genotype.ID

G5.ID

G5.noGenotype.ID

GenNF.txt

PedAll.txt

Phe.txt

PheAll.txt

Regression.G5.G.C.txt

Regression.G5.G.J.txt

Regression.G5.G.JC.txt

Regression.G5.G.PBLUP.txt

all.ID

alphaEstimates

genotype.ID

meanOfSNPGAll

meanOfSNPGG0

meanOfSNPGG1

meanOfSNPGG2

meanOfSNPGG3

meanOfSNPGG4

meanOfSNPGG5

noGenotype.ID

sim.bv
sim.phenotype

```
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]: ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
 In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]: |;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: | ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: ;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: | ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ; join G3.ID genotype.ID > G3.Genotype.ID
In [20]: | ;join G4.ID genotype.ID > G4.Genotype.ID
```

```
In [21]: |;join G5.ID genotype.ID > G5.Genotype.ID
In [22]: ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
        ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [27]:
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
          7800 7800 46800 GO.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800
                7800 46800 G3.noGenotype.ID
               7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
```

```
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
         nothing
         df
                = read genotypes("GenNF.txt", numSSBayes)
         M Mats = make MMats(df,A Mats,ped);
                                                                                  # without centering
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z Mats = make ZMats(ped, y Vecs, numSSBayes)
         X Mats, W Mats = make XWMats(Z Mats, M Mats, numSSBayes)
                                                                                  # no J
         nothing
In [31]: vG
                = 0.754
         vRes
                = 1.760
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2506.338752 seconds (23.04 G allocations: 723.454 GB, 7.42% gc time)
        betaHat
In [32]:
Out[32]: 1-element Array{Float64,1}:
          10.006
         using DataFrames
In [33]:
```

```
In [34]:
         df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", reg1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.882
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.988
Out[35]: 0.8819010258506501
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: 1.553484512094109
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.967
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.083
Out[37]: 0.9669393078374612
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: 2.7069077876210206
```

```
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.831
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.978
Out[39]: 0.8310839539255807
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.2873099100494372
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.703
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 1.132
Out[41]: 0.7031190660702248
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: 0.13037355250398097
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.692
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 1.051
Out[43]: 0.6919522338207673
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: 0.8819830698034118
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.692
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.039
Out[45]: 0.6921191813670369
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: 1.3855809115191182
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.698
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 1.031
Out[47]: 0.6978494625322859
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: 1.8397477523688415
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.738
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.062
Out[49]: 0.7379170580045016
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: 2.334349633503708
```

```
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.965
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.081
Out[51]: 0.9646692432955962
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 2.7488721528655935
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.960
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.073
Out[53]: 0.9597007922065071
In [54]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[54]: 1.6665981393007483
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         #reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.959
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.057
Out[55]: 0.9588982532815956
         GEBV = aHat1[posAi]
In [56]:
         mean(GEBV)
Out[56]: 1.9263233736706156
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.960
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.059
Out[57]: 0.9601867891919262
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: 2.30572277487486
```

```
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.961
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.092
Out[59]: 0.9609465476329305
In [60]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[60]: 2.825672608133218
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.946
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.038
Out[61]: 0.9464240598410941
In [62]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[62]: 3.1316474323427355
```

```
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.965
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.081
Out[63]: 0.9646692432955962
In [64]: writedlm("Correlation.G5.G.N.txt",cor13)
In [65]: writedlm("Regression.G5.G.N.txt",reg13)
In [66]: | TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 12.715014125
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: 2.7488721528655935
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.685
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 1.218
Out[68]: 0.6845037160633005
```

```
In [69]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[69]: 0.09098317848355106
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.674
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 1.069
Out[70]: 0.6742849942484349
In [71]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[71]: 0.8552051132939962
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.675
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.043
Out[72]: 0.6748130609376377
In [73]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[73]: 1.3619875304074323
```

```
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.677
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 1.029
Out[74]: 0.677378850257846
In [75]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[75]: 1.8144676278620628
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.725
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 1.062
Out[76]: 0.725131653891102
In [77]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[77]: 2.3139061002001435
In [78]: numSSBayes
Out[78]: SSBR.NumSSBayes(54883,45883,9000,40000,39000,1000,200)
```