Використання глибокого навчання для обернених задач

Середович Віктор

Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики

11 травня 2021 р.

Зміст

Постановка задачі

Структура обернених задач

Генерація шуму та оцінка пошкоджень

Модель для автоенкодера

Автоенкодер для розв'язування обернених задач Автоенкодер Автоенкодер для видалення шуму

Аналіз результатів

Постановка задачі

Оберненими задачами будемо вважати такі задачі, в яких невідомим є n- піксельне зображення $\mathbf{x} \in \mathbb{R}^n$ яке було отримане з m вимірювань $\mathbf{y} \in \mathbb{R}^m$ відповідно до рівняння 1.1.

$$\mathbf{y} = \mathcal{A}\left(\mathbf{x}\right) + \boldsymbol{\varepsilon} \tag{1.1}$$

де \mathcal{A} - це прямий оператор вимірювання та ε є певним вектором шуму.

Якщо розподіл шуму відомий, x можна відновити розв'язавши задачу оцінки максимальної ймовірності (maximum likelihood) 2.1.

$$\hat{\mathbf{x}}_{\mathrm{ML}} = \arg\max_{\mathbf{z}} p(\mathbf{y}|\mathbf{x}) = \arg\min_{\mathbf{z}} -\log p(\mathbf{y}|\mathbf{x})$$
 (2.1)

де $p(y \mid x)$ це ймовірність спостереження y за умови якщо x є справжнім зображенням.

В залежності від умов задачі, можуть бути відомі попередні дані про те яким має бути x. Ці умови можна використати для формулювання задачі оцінки максимальної апостеріорної ймовірності (maximum a posteriori), що приводить до задачі 2.2.

$$\hat{\boldsymbol{x}}_{\text{MAP}} = \arg\max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y}) = \arg-\max_{\boldsymbol{x}} p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x}) = \arg\min_{\boldsymbol{x}} - \ln p(\boldsymbol{y}|\boldsymbol{x}) - \ln p(\boldsymbol{y}|\boldsymbol{x})$$

Для випадку білого гаусівського шуму, цільову функцію можна сформулювати як:

$$\hat{x} = \arg\min_{\mathbf{x}} \frac{1}{2} \| \mathcal{A}(\mathbf{x}) - \mathbf{y} \|_{2}^{2} + \lambda \mathbf{R}(\mathbf{x})$$
 (2.3)

Більш об'єктивною альтернативою є SSIM (structural similarity index measure) метрика яка була представлена в роботі.

SSIM
$$(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$
 (3.1)

де

- $ightharpoonup \mu_{x}, \, \mu_{y}$ середнє значення $x, \, y$
- $ightharpoonup \sigma_x^2$, σ_y^2 дисперсія x, y
- $ightharpoonup \sigma_{xy}$ коваріація x та y
- $ightharpoonup c_1 = (k_1 L)^2, c_2 = (k_2 L)^2$
- ▶ L динамічний діапазон пікселів
- $k_1 = 0.01$ та $k_2 = 0.03$ константи.

Шар мережі (активаційна функція)	э мережі (активаційна функція) Розмірність			
Енкодер				
Dense (Relu)	784 × 64			
Dense (Relu)	64 × 32			
Декодер				
Dense (Sigmoid)	32 × 784			

Табл.: Архітектура щільної нейронної мережі для автоенкодера.

Постановка задачі Структура обернених задач Генерація шуму та оцінка пошкоджень Модель для автоенкодера \circ \circ

Автоенкодер

О	новка задачі	Структура обернених задач О	Генерація шуму та оцінка пошкоджень О	Модель для автоенкодера О			
Автоенкодер							

 ${\tt ../resources/presentation-autoencoder.pdf}$

Постановка задачі О	Структура обернених задач о	Генерація шуму та оцінка пошкоджень О	Модель для автоенкодера
Автоенкодер для в	идалення шуму		

../resources/presentation-dae.pdf

Рис.: Графік залежності усередненої SSIM оцінки для тестового датасету від кількості ітерацій тренування. σ відповідає середньоквадратичному відхиленню гаусівського шуму.

Результати натренованих моделей автоенкодера для видалення шуму можна бачити на зображенні 3.

Рис.: Порівняння точності реконструкції зображень автоенкодером для різної величини стандартного відхилення σ білого шуму Гауса.

Рис.: Порівняння видалення шуму за допомогою автоенкодера з класичним методом основаним на регуляризації.

- Gregory Ongie та ін. Deep Learning Techniques for Inverse Problems in Imaging. 2020. arXiv: 2005.06001 [eess.IV].
- Ian Goodfellow, Yoshua Bengio τα Aaron Courville. *Deep Learning*. http://www.deeplearningbook.org. MIT Press, 2016.
- Jonas Adler τα Ozan Öktem. "Solving ill-posed inverse problems using iterative deep neural networks". B: Inverse Problems 33.12 (πματοπ. 2017), c. 124007. ISSN: 1361-6420. DOI: 10.1088/1361-6420/aa9581. URL: http://dx.doi.org/10.1088/1361-6420/aa9581.
- Dor Bank, Noam Koenigstein τa Raja Giryes. *Autoencoders*. 2021. arXiv: 2003.05991 [cs.LG].