2 Asymptotic Cones and Functions 2.1 Definition of Asymptotic Cones

Ryota Iwamoto

March 27, 2023

We use the book; Asymptotic Cones and Functions in Optimization and Variational Inequalities (author: A.AUSLENDER and M.TEBOULLE), pp.25-31.

The set of natural numbers is denoted by \mathbb{N} , so that $k \in \mathbb{N}$ means $k = 1, 2, \ldots$ A sequence $\{x_k\}_{k \in \mathbb{N}}$ or simply $\{x_k\}$ in \mathbb{R}^n is said to converge to x if $||x_k - x|| \to 0$ as $k \to \infty$, and this will be indicated by the notation $x_k \to x$ or $x = \lim_{k \to \infty} x_k$. We say that x is a cluster point of $\{x_k\}$ if some subsequence converge to x. Recall that every bounded sequence in \mathbb{R}^n converges to x if and only if it is bounded and has x as its unique cluster point.

Let $\{x_k\}$ be a sequence in \mathbb{R}^n . We are interested in knowing how to handle convergence properties, we are led to consider direction $d_k := x_k \|x_k\|^{-1}$ with $x_k \neq 0$, $k \in \mathbb{N}$. From classical analysis, the Bolzano-Weierstrass theorem implies that we can extract a convergent subsequence $d = \lim_{k \in K} d_k$, $K \subset \mathbb{N}$, with $d \neq 0$. Now suppose that the sequence $\{x_k\} \subset \mathbb{R}^n$ is such that $\|x_k\| \to +\infty$. Then

$$\exists t_{k}\coloneqq\left\Vert x_{k}\right\Vert ,k\in K\subset\mathbb{N}\text{, such that }\lim_{k\in K}t_{k}=+\infty\text{and}\lim_{k\in K}\frac{x_{k}}{t_{k}}=d.$$

This leads us to introduce the following concepts.

Definition 2.1.1

A sequence $\{x_k\} \subset \mathbb{R}$ is said to converge to a direction $d \in \mathbb{R}^n$ if

$$\exists \{t_k\}, \text{ with } t_k \to +\infty \text{ such that } \lim_{k \to \infty} \frac{x_k}{t_k} = d.$$

Definition 2.1.2 -

Let C be a nonempty set in \mathbb{R}^n . Then the asymptotic cone of the set C, denoted by C_{∞} , is the set of vectors $d \in \mathbb{R}^n$ that are limits in direction of the sequences $\{x_k\} \subset C$, namely

$$C_{\infty} = \{ d \in \mathbb{R}^n \mid \exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d \}.$$

From the definition we immediately deduce the following elementary facts.

Proposition 2.1.1

Let $C \subset \mathbb{R}^n$ be nonempty. Then:

- (i) C_{∞} is a closed cone.
- (ii) $(\operatorname{cl} C)_{\infty} = C_{\infty}$.
- (iii) If C is a cone, then $C_{\infty} = \operatorname{cl} C$.

Proof. We will prove each part separately.

(i) C_{∞} is a closed cone.

We need to show two propositions: (i-a) C_{∞} is a cone and (i-b) C_{∞} is a closed set.

(i-a) We show that C_{∞} is a cone, that is, $\forall \alpha \geq 0, d \in C_{\infty}, \alpha d \in C_{\infty}$. Since $0 \in C_{\infty}$, it is clear in the case of $\alpha = 0$.

: Since C is nonempty, we can take a element x_0 from C. In addition we consider a sequence $\{t_k\}_{k=1}^{\infty}$ with $t_k \to +\infty$ as $k \to \infty$. Of course this sequence exists, for example $x_k := k$.

- (i-b) 二つ目
- (ii) $(\operatorname{cl} C)_{\infty} = C_{\infty}$.
- (iii) If C is a cone, then $C_{\infty} = \operatorname{cl} C$.

The importance of the asymptotic cone is revealed by the following key property, which is a immediate consequence of its definition.

Proposition 2.1.2

A set $C \subset \mathbb{R}^n$ is bounded if and only if $C_{\infty} = \{0\}$.