Logical Notation	S-Expression
P	P
$\neg \varphi$	$(\text{not }\varphi)$
$\varphi \wedge \psi \wedge \ldots \wedge \chi$	$(\text{and }\varphi\ \psi\ldots\chi)$
$\varphi \lor \psi \lor \ldots \lor \chi$	(or $\varphi \ \psi \dots \chi$)
$\varphi o \psi$	(implies $\varphi \psi$)
$\varphi \leftrightarrow \psi$	$(\text{iff }\varphi\ \psi)$
R(a,bz)	$(R \ a \ b \dots z)$
$\varphi \Leftrightarrow \psi$	[EQUIVALENT $\varphi \psi$]
$\varphi \Rightarrow \psi$	[SUBSUMES $\varphi \psi$]
φ is a tautology	[IS φ TAUTOLOGY]
φ is a contradiction	[IS φ CONTRADICTION]
φ is a contingency	[IS φ CONTINGENCY]
φ and ψ are contradictory	[CONTRADICTORY $\varphi \psi$]
φ and ψ are contrary	[CONTRARY $\varphi \psi$]
φ and ψ are subcontrary	[SUBCONTRARY $\varphi \psi$]