NBA 4920/6921 Lecture 15 Elastic Net Application

Murat Unal

10/21/2021

```
rm(list=ls())
options(digits = 3, scipen = 999)
library(tidyverse)
library(ISLR)
library(ggplot2)
library(jtools)
library(caret)
library(leaps)
library(glmnet)
Hitters <- ISLR::Hitters</pre>
```

Hitters <- na.omit(Hitters)</pre>

set.seed(2)

- Let's create 2.order variables and interaction terms
- x=model.matrix(Salary~.,Hitters)[,-1]
- v=Hitters\$Salarv

x <- cbind(x, x.squared, x.interact)

rm(x.interact,x.squared)

dim(x)

[1] 263 209

x.squared <- sapply(as.data.frame(x), function(i) i^2)</pre>

colnames(x.squared) <- paste0(colnames(x),"_sq", sep ="")</pre>

 $x.interact = model.matrix(~.^2,as.data.frame(x))[,21:191]$

train=sample(1:nrow(x), 0.7*nrow(x))

ols.data <- as.data.frame(cbind(Salary=y[train],x[train,]))</pre>

Matrix to store RMSEs:

"rmse.elnet.lambdabest")

RMSE <- matrix(NA,ncol = 1, nrow = 6)
rownames(RMSE) <- c("rmse.ridge.lambda0",
"rmse.ridge.lambdabest"."rmse.lasso.lambda1s</pre>

"rmse.ridge.lambdabest", "rmse.lasso.lambda1se", "rmse.lasso.lambdabest", "rmse.elnet.lambda1se",

OLS

```
ols.mod <- lm(Salary~.,ols.data)</pre>
summ(ols.mod)
MODEL INFO:
Observations: 184
Dependent Variable: Salary
Type: OLS linear regression
MODEL FIT:
F(183,0) = NaN, p = NaN
R^2 = 1.00
Adj. R^2 = NaN
Standard errors: OLS
                                      Est. S.E. t val.
(Intercept)
                                   1323.31
```

Ridge Regression

[1] 3296

► Plot

plot(ridge.cv)


```
ightharpoonup Predictions for lambda = 0
```

```
ridge.pred.lambda0 = predict(ridge.cv, newx=x[-train,],
```

```
x=x[train,],y=y[train])
```

rmse.ridge.lambda0

[1] 556

```
s=0, exact=TRUE,
```

rmse.ridge.lambda0 <- sqrt(mean((y[-train]-</pre>

ridge.pred.lambda0)^2))

```
\triangleright Predictions for best \lambda
ridge.pred.lambdabest = predict(ridge.cv, newx=x[-train,],
                        s=bestlam, exact=TRUE,
                        x=x[train,],y=y[train])
```

ridge.pred.lambdabest)^2))

rmse.ridge.lambdabest <- sqrt(mean((y[-train]-</pre>

rmse.ridge.lambdabest

[1] 312

Store the values in the RMSE matrix

RMSE[1:2,] <- c(rmse.ridge.lambda0,rmse.ridge.lambdabest)</pre>

Lasso Regression

► Plot

plot(lasso.cv)

Prediction using both values of λ , **lambda.min** and **lambda.1se**, the value of λ that gives the most regularized model such that the cross-validated error is within one standard

error of the minimum.

Save the outputs as lasso.lambdabest and lasso.lambda1se

- Compute RMSE of the predictions rmse.lasso.lambdabest <- sqrt(mean((y[-train]-</pre>
- lasso.pred.lambdabest)^2))

rmse.lasso.lambdabest

[1] 361

[1] 287

- rmse.lasso.lambda1se <- sqrt(mean((y[-train]-</pre>
 - lasso.pred.lambda1se)^2))
- rmse.lasso.lambda1se

Store in RMSE

RMSE[3:4,] <- c(rmse.lasso.lambda1se,rmse.lasso.lambdabest)
RMSE</pre>

[,1]

rmse.ridge.lambda0 556
rmse.ridge.lambdabest 312
rmse.lasso.lambda1se 287
rmse.lasso.lambdabest 361
rmse.elnet.lambda1se NA
rmse.elnet.lambdabest NA

Elastic net

- Now, there are two parameters to tune: λ and α .
- ▶ The **glmnet** package allows to tune λ via cross-validation for a fixed α , but it does not support α -tuning.

- Let's write our own loop that does the tuning
- First, we create a common fold_id, which just allows us to apply the same CV folds to each model.
- \blacktriangleright We then create a tuning grid that searches across a range of αs from 0-1, and empty columns where we'll dump our model results into.

```
results into.
# maintain the same folds across all models
fold_id <- sample(1:10, size = length(y[train]),</pre>
```

replace=TRUE)

search across a range of alphas
tuning_grid <- data.frame(
 alpha = seq(0, 1, by = .1),</pre>

aning_grid <- data.frame(
alpha = seq(0, 1, by = .1),
mse_min = NA,mse_1se = NA,
lambda_min = NA,lambda_1se = NA)</pre>

Now we can iterate over each α value, apply a CV elastic net, and extract the minimum and one standard error MSE values and their respective λ values.

```
for(i in seq along(tuning grid$alpha) ) {
  # fit CV model for each alpha value
  fit <- cv.glmnet(x[train,], y[train],</pre>
                   alpha = tuning_grid$alpha[i],
                               foldid = fold id)
  # extract MSE and lambda values
  tuning_grid$mse_min[i] <- fit$cvm[fit$lambda==</pre>
                                          fit$lambda.min]
                            <- fit$cvm[fit$lambda==
  tuning_grid$mse_1se[i]
                                          fit$lambda.1sel
  tuning grid$lambda min[i] <- fit$lambda.min
  tuning grid$lambda 1se[i] <- fit$lambda.1se
```

tuning_grid %>% arrange(mse_min)

alpha	mse_min	mse_1se	lambda_min	lambda_1se
0.7	90193	108536	9.03	101.4
8.0	90290	108465	6.87	88.8
1.0	90428	109678	11.57	77.9
0.6	90454	108687	10.54	118.3
0.5	90880	110071	13.87	148.8
0.9	90992	109461	6.11	82.6
0.4	91105	109946	18.17	177.5
0.3	91258	109891	23.12	225.9
0.2	91314	110403	34.69	323.5
0.1	91535	110824	66.22	562.7
0.0	105378	122038	3295.63	11571.6

 \blacktriangleright Extract the optimum alpha and λ values

best.lambda.1se <- tuning_grid[best.index ,"lambda_1se"]</pre>

[1] 0.7

best.alpha

best.lambda

[1] 9.03

best.lambda.1se

[1] 101

Now that have identified the preferred model, we retrain the model and simply use predict to predict the same model on a new data set.

```
elnet.mod <- glmnet(x[train,], y[train],alpha=best.alpha)</pre>
elnet.pred.lambdabest <- predict(elnet.mod,</pre>
                     s=best.lambda,newx=x[-train,],
                     exact=TRUE,x=x[train,],y=y[train])
elnet.pred.lambda1se <- predict(elnet.mod,</pre>
                     s=best.lambda.1se,newx=x[-train,],
                     exact=TRUE,x=x[train,],y=y[train])
rmse.elnet.lambdabest<-sqrt(mean((y[-train] -</pre>
                                elnet.pred.lambdabest)^2))
rmse.elnet.lambda1se<-sqrt(mean((y[-train] -
                                elnet.pred.lambda1se)^2))
```

```
RMSE [,1]
rmse.ridge.lambda0 556
```

rmse.ridge.lambda0 556
rmse.ridge.lambdabest 312
rmse.lasso.lambda1se 287
rmse.lasso.lambdabest 361
rmse.elnet.lambda1se 295
rmse.elnet.lambdabest 357