

3 Case Studies

Machine Learning in OCI

3rd December 2024

Žiga Vaupot

Žiga Vaupot

ziga.vaupot@version1.com

zigavaupot.blogspot.com

linkedin.com/in/zigavaupot

Version 1 at a glance

The Oracle ACE Program

400+ technical experts helping peers globally

- The Oracle ACE Program recognizes and rewards community members for their technical and community contributions to the Oracle community
- 3 membership levels: Director, Pro, and Associate
- Nominate yourself or a colleague at <u>ace.oracle.com/nominate</u>
- Learn more at <u>ace.oracle.com</u>

Now, let's talk about the 3 Cases

ML/Al in OCI Data Lakehouse

Case Study #1

Customer #1

The largest manufacturer in the world of forgings for personal vehicle steering mechanisms. They are also known for their hand tools.

Business problem:

• Current sales planning and forecasting for its hand tools programme is still excel based or at best is using existing business analytics system.

Idea:

Improve sales planning and forecasting with AI.

Existing Technical Architecture

- 1st Oracle Autonomous Data Warehouse + Oracle Analytics Cloud implementation in Europe in 2018/2019
- Using (on-premises) Oracle E-Business Suite as a main data source Business Analytics System. The following business areas have been implemented:
 - Financials (GL, AP, AR, FA)
 - Procurement
 - Order Management
 - Inventory Management
 - Projects/Project Management
 - HR
 - Manufacturing (planned)

TASK: How can we use machine learning to improve sales planning in Hand Tools department?

Oracle Machine Learning (OML)

Time Series

Regression

- OML is part of any Oracle database for at least 2 decades now.
- It's free option at no additional cost.
- Development options:
 - PL/SQL → OML4SQL
 - → OML4R
 - Python → OML4Py
- Provides support for
 - supervised learning (regression, classification),
 - unsupervised learning (clusters, outliers),
 - plus, some other methods like time series, anomaly detection or market basket analysis.

Classification Customer LTV prediction Loan prepayment prediction Probability of default Demand forecasting **Association Rules** Next best offer Sales and revenue forecasting Product cross sell/upsell Predictive maintenance ATM withdrawal forecasting Product bundling Customer loyalty/churn Customer acquisition Employee retention **Customer Segmentation** Fraud detection **Document Classification** Network intrusion detection Biological species classification Unusual case identification Location-based house value analysis Exploratory data analysis **Anomaly detection** Clustering

Key value proposition for the client

- all data stay in database
- no data movements is needed
- no additional tools (costs!) are required

Updated Technical Architecture*

*Architecture is actually unchanged, except it is using OML as additional service in ADW.

- **Machine Learning script** is prepared and stored in Oracle Autonomous Data Warehouse using Zeppelin Notebooks:
 - SQL script is used to analyse and prepare data.
 - Prediction model is trained using Random Forest algorithm in Python.
 - Additional script is prepared to be executed via REST API call from ODI.

ODI process

- Prepares data in database.
- No data movement beyond database.
- Calls machine learning script using REST API call.
- Uses "prediction" results to populate data warehouse tables for predictive planning.

3 ML Script Call

- Runs python "REST API" script that calculates "predictions" for all SKUs (20000 SKUs).
- Parallel ML pipelines are executed to improve performance of model training.
- In case there is not enough data available, 12-month average is taken as predicted value
- For predictions model, default scikit-learn library (random forest) is used.
- Results are stored back into database tables.

Case Study #2

Customer #2

Top 5 European manufacturer of fuses, electrical switches and disconnectors.

Business problem:

 Inventory levels are too high and tie up too much cash, which significantly affects cash flow.

Idea:

 Provide sales teams tools that would improve sales planning which would consequently affect inventory levels.

Existing Technical Architecture

- Business intelligence solution (started with OBIEE 10g, OAS today) since 2009.
- Analytics system comprises of
 - Oracle Analytics Server is used for reporting.
 - 30+ subject areas live and are constantly updated/added
 - Data Warehouse with data from key data sources:
 - INFOR ERP
 - Hyperion Financial Management (HFM)
 - Hyperion Planning
- Current sales planning process:
 - Everything is done manually in Hyperion Planning.
 - Data, that sales planners are using as help for planning, resides in company's Analytics System (Oracle Analytics Server)

TASK: Create additional Scenario dimension member *Prediction* that is a result of a machine learning solution that predicts future sales for 12 months ahead by all SKUs by all markets

OCI Data Science

OUK

- Accelerate and automate the entire end-to-end data science lifecycle
- Use favorite open-source Python tools and frameworks
- Fine-tune and deploy Large Language Models (LLMs) without writing code
- Enterprise-grade MLOps with flexible interfaces and unlimited scale
- Collaborate with teammates on shareable and reproducible data science assets
- Run large-scale workloads with access to GPUs and distributed data processing and model training
- Pay only for on demand infrastructure with no additional markeup or overhead

Key value proposition for the client

- Low cost of deployment
- Flexible and comprehensive data science platform for the future.

Oracle Cloud Infrastructure Data Science

Develop & Experiment

Model Catalog

Manage, Share, & Reproduce

Operationalize with MLOps

Jobs

LLMs

Fine-tune, deploy, evaluate (Code & No-Code)

Data Management

Database - Data Lake - Access - Integration - Preparation

Infrastructure

CPU – GPU – Storage – Network

*Coming soon

Updated Technical Architecture and ML process

- **Python script** is prepared using OCI Data Science Jupyter Notebook and "attached" in ML Job as job artifact.
- 2 ODI process
 - Prepares data in database.
 - Uploads data to Object Storage.
 - Calls ML Job to run "predictions"
 - Retrieves data from object storage after "predictions" are prepared.
 - Populates tables in data warehouse, staging area and Hyperion Planning in the end.
- 3 ML Job Run
 - Runs python script that calculates "predictions" for all SKUs across all markets
 - Script reads data from Object Storage
 - For prediction, we are using Darts library which is dedicated time series predictions library.
 - At the end of the process, "predictions" are stored back to Object Storage.

Case Study #3

Customer #3

One of the leading producers of stainless steel and special steels in Europe.

Business problem:

 As part of company's digital transformation, the company wants to measure key manufacturing data in real-time to be able to react to anomalies on time.

Idea:

 Implement solution that would capture MES and sensor data, analyze it in real time, and take action in case of predicted anomalies.

After initial assessment ...

Three are main **business requirements** and **focus areas**:

- Replicate MES data to the cloud in real time.
- Connect to "brokers" and capture real-time data from sensors and meters in manufacturing process.
- Develop ML/AI solutions that would help them to optimise use of their resources, identify anomalies or make predictions (i.e. water consumption or electricity usage)

Proposed solution

- Use of Golden Gate for MES data replication.
- OCI Streaming for stream data capture and processing that data with GoldenGate Stream Analytics

 OCI Data Science for development and deployment of ML/AI models

Oracle GoldenGate Stream Analytics

P Data products

AI/ML Service Integrations

Ingest Events

100+ supported sources

Select Processing Patterns

Pre-build patterns to improve developer efficiency and time-to-value

Build Event Pipelines

Leverage geo-fencing, machine learning and other reference data within the stream

Serve Data Downstream

Data can be delivered to Kafka, databases, or can be staged for external ETL jobs.

... and after Solution Design

- It's not just some OCI products, but we are talking about full OCI Data Lakehouse implementation that includes several services such as:
 - Oracle Autonomous Database
 - OCI Compute
 - OCI Object Storage
 - OCI Streaming
 - OCI Data Flow
 - OCI GoldenGate (replications)
 - OCI GoldenGate Stream Analytics
 - OCI Data Science
 - OCI Functions
 - Kubernetes
 - (unfortunately, no Oracle Analytics Cloud)
- Services are organised into logical layers which are planned to support MES and sensor data real-time streaming and ML/Al analysis.
- The 1st phase of the project is about data management platform rather than data analysis, which is planned for the 2nd phase.

Key value proposition for the client

- They already use EBS in OCI, this project is natural extension of their OCI usage.
- Enterprise-level services in one place.

ML/Al Layer

- Advanced tools for machine learning
 - Model lifecycle management
 - Jupyter Notebooks for interactive development
 - Support for popular libraries:
 - TensorFlow
 - Scikit-Learn
 - PyTorch
- Oracle OCI Cloud SDK for connectivity with other services in Oracle OCI Cloud:
 - Data Catalog
 - Feature Store
 - Object Storage, Functions, Data Flow, etc.
- Easy collaboration for multiple analysts' teams.
- Serverless Docker and Kubernetes technology for running models and notebooks.
- REST API for easy calls and responses of ML/AI models, suitable for integration into event-based streaming systems.

Conclusion

- Use machine learning in Oracle Cloud Infrastructure for its powerful, scalable, and secure environment that simplifies model development and deployment.
- Use Oracle Machine Learning (OML) for integrated, scalable, and automated machine learning directly within Oracle databases and cloud environment.
- Use OCI Data Science for its seamless, high-performance platform that simplifies and accelerates the entire machine learning lifecycle.
- Use machine learning in Oracle GoldenGate Stream Analytics to make real-time predictions and automate actions based on streaming data.

