Algèbre VI - Introduction progressive à la théorie des représentations

Notes extraites du cours de Mr Philippe Caldero Contributeur(s) Mr Payet Thibault Benjamin

Sommaire

Sommaire		
I Algèbre linéaire - Compléments form	nes linéaires	1
1 Dualité		3
2 Orthogonalité		5
Table des matières		7

Première partie

Algèbre linéaire - Compléments formes linéaires

Dualité

1.1 Applications linéaires et matrices

 \mathbb{K} est un corp quelconque (après ce sera \mathbb{R} ou \mathbb{C}). Soient E, F deux espaces vectoriels sur \mathbb{K} $\varphi \in L(E, F)$ (application linéaire de E dans F). E, F de dimension finie. On fixe une base \mathscr{B} de E et une base \mathscr{C} de F. $\mathscr{B} = (e_1, \ldots, e_n)$, $\mathscr{C} = (f_1, \ldots, f_n)$

Définition $\operatorname{Mat}_{\mathscr{CB}}(\varphi) = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$, avec a_{ij} tel que $\varphi(e_j) = \sum_{i=1}^m a_{ij} f_i$, et on a $\dim E = n$ et $\dim F = m$. $\operatorname{M}_{\mathscr{CB}}(\varphi) \in \operatorname{M}_{m,n}(\mathbb{K})$

Exemple

$$u \colon \mathbb{R}_3[X] \to \mathbb{R}_3[X], P \mapsto P(X+1)$$

u est bien linéaire, $\mathscr{C}=(1,X,X(X-1),X(X-1)(X-2))$, $\mathscr{B}=(1,X,X^2,X^3)$ et on a :

$$\mathbf{M}_{\mathscr{C}\mathscr{B}}(u) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Remarque Une matrice se lit en colone

Définition Dualité

$$E^* = \mathcal{L}(E, \mathbb{K})$$

Une forme linéaire est un élément de E^* , i.e une application de E dans \mathbb{K}

Remarque

$$\dim_{\mathbb{K}} E^* = \dim_{\mathbb{K}} \mathscr{L}(E, \mathbb{K}) = \dim_{\mathbb{K}} E \cdot \dim_{\mathbb{K}} \mathbb{K} = \dim_{\mathbb{K}} E$$

Proposition 1.1.1 On fixe une base $\mathscr{B} = (e_1, \dots, e_n)$ de E. Alors on a:

$$\mathscr{L}(E,F) = E^* \xrightarrow{\sim} M_{1n}(\mathbb{K}), \varphi \mapsto Mat_{(1)\beta}(\varphi) = (\varphi(e_j))_{1 \le j \le n}$$

Preuve Vrai car on a toujours un isomorphisme : $\mathscr{L}(E,F) \xrightarrow{\sim} \mathrm{M}_{m,n}(\mathbb{K}), \varphi \mapsto \mathrm{Mat}_{\mathscr{CB}}(\varphi)$ Description de $\mathrm{Mat}_{(1)\mathscr{B}}(\varphi)$ pour $\varphi \in E^*$.

$$\operatorname{Mat}_{(1)\mathscr{B}}(\varphi) = (a_{ij})_{\substack{1 \le i \le 1 \\ 1 \le j \le n}}, f_i = 1$$

$$\varphi(e_j) = \sum_{i=1}^{1} a_{ij} \Rightarrow \varphi(e_j) = a_{1j}$$

Utilisation Soit $x \in E, X = \text{Mat}_{\mathscr{B}}(x)$, vecteur colonne des coordonnés de x dans la base \mathscr{B} .

$$X = (x_{i1})_{1 \le i \le n}, x = \sum_{i=1}^{n} x_{i1} \cdot e_i$$

On pose $x_i = x_{i1}$, alors on a:

$$\varphi(x) = \varphi(\sum_{i=1}^{n} x_i \cdot e_i) = \sum_{i=1}^{n} x_i \cdot \varphi(e_i)$$

Soit $L = (\varphi(e_i)) = \text{Mat}_{(1)\mathscr{B}}(\varphi)$, alors on a :

$$\varphi(x) = L \cdot X = (\varphi(e_1) \dots \varphi(e_n)) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \varphi(x) \in \mathbb{K}$$

Ainsi, on peut associer:

$$\left(\underbrace{\varphi}_{\text{forme linéaire}}, \underbrace{x}_{\text{vecteur}}\right) \longmapsto \varphi(x)$$

A :

$$\left(\underbrace{L}_{\text{matrice ligne matrice colone}}, \underbrace{X}_{\text{multiplication matricielle}}\right) \longmapsto \underbrace{L \cdot X}_{\text{multiplication matricielle}}$$

Définition Base duale

Soit $\mathscr{B} = (e_i)$ une base de E. On appelle base duale la famille (e_i^*) de E^* tel que $e_i^*(x) = x_i$

Remarque e_i^* est l'application qui envoie un vecteur sur sa i-ème coordonnée. Les e_i^* sont appelés formes coordonnées.

Proposition 1.1.2 (AOC)

Les e_i^* sont bien dans E^* et la famille $(e_i^*)_{1 \leq i \leq n}$ est une base de E^*

Preuve Montrer que : $e_i^* \in E^*, e_i^* : E \to \mathbb{K}, x \mapsto x_i$

On vérifie qu'il est linéaire.

$$e_i^*(\lambda x + \mu y) = e_i^*(\lambda \sum_{j=1}^n x_j e_j + \mu \sum_{j=1}^n y_j e_j) = e_i^*(\sum_{j=1}^n (\lambda x_j + \mu y_j) e_j)$$

 $=\lambda x_i + \mu y_i$ (On prend la *i*-ème coordonnée)

$$= \lambda e_i^*(x) + \mu e_i^*(y)$$

On a donc bien $e_i^* \in E^*$. On veut montrer que $(e_i^*)_{1 \le i \le n}$ est une base. Comme il y en a n et que $n = \dim E^*$, il suffit de montrer que la famille est libre.

$$\sum_{i=1}^{n} \underbrace{\lambda_i}_{\in \mathbb{K}} \underbrace{e_i^*}_{\in E^*} = \underbrace{0}_{\in E^*}$$

On applique cette égalité à $e_i \in E$

$$\left(\sum_{i=1}^{n} \lambda_i e_i^*\right) (e_j) = 0(e_j) \Leftrightarrow \sum_{i=1}^{n} \lambda_i e_i^*(e_j) = 0(e_j) \Leftrightarrow \sum_{i=1}^{n} \lambda_i \delta_{i,j} = 0, (e_i^*(e_j) = \delta_{i,j}) \Leftrightarrow 1 \cdot \lambda_j = 0$$

Donc, comme on a pris λ_j quelconque(enfin e_j quelconque), tous les λ_j sont nuls, la famille est libre.

Hyperplans 2.1

Lemme 2.1.1 Soit $F \subset E$

$$\dim F = \dim E - 1 \Leftrightarrow \exists \varphi \in E^* \setminus \{0\}, F = \ker \varphi$$

Dans ce cas, on dit que F est un hyperplan.

Preuve $\subseteq \varphi : E \to \mathbb{K}$ Si $\varphi \neq 0$, $\underbrace{\operatorname{Im} \varphi}_{\neq \{0\}} \subset \mathbb{K}$.

Forcément, $\dim \operatorname{Im} \varphi = 1$, d'où $\operatorname{Im} \varphi = \mathbb{K}$ or, $\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim E$

On a donc dim ker $\varphi = n - 1$

 \implies Soit F un sous-espace vectoriel de dimension dim E-1

On a une base de $F:(e_1,\ldots,e_{n-1})$, on complète en une base de E grâce au théorème de la base incomplète.

$$\underbrace{\left(\overbrace{e_1,\ldots,e_{n-1}}^{\text{base de }F},e_n\right)}_{\text{base de }F}$$

 $\varphi = e_n^*$ est l'élément cherché.

- $\begin{array}{l} --\varphi \neq 0 \text{ , en effet } e_n^* \text{ fait partie d'une base(duale) donc non nul;} \\ --F = \ker \varphi \text{ , en effet : } F_{\dim n-1} \subset \ker \varphi \\ \end{array}$ Soit $x \in F$, alors $\varphi(x) = e_n^* \left(\sum_{i=1}^{n-1} x_i e_i \right) = 0$, et donc $x \in \ker \varphi$

Orthogonalité de E* vers E 2.2

On part d'un sous espace vectoriel G de E^* . On va voir G comme un ensemble d'équations.

Explication

"Dual"
$$x^2 + y^2 = 1$$
, équation implicite
"Espace"
$$\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases}$$

Soit $\varphi \in E^*$, une équation dans $E : \varphi(X) = 0$.

Equation implicite: ax + by + cz = 0, on a $L = (a, b, c), L \cdot X = 0$

OPS(On peut supposer) $a \neq 0$, on a alors le système suivant :

$$\begin{cases} x = -\frac{b}{a}y - \frac{c}{a}z \\ y = y \\ z = z \end{cases}$$

6

Alors on a:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -\frac{b}{a} \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -\frac{c}{a} \\ 0 \\ 1 \end{pmatrix}$$

Soit $G \subset E^*$

Définition On pose $G^o \subset E$ l'ensemble

$$G^o = \{x \in E, \varphi(x) = 0, \forall \varphi \in G\}$$

 G^o est appelé l'orthogonal de G, on vérifie en exercice que G^o est bien un sous espace vectoriel de E

Proposition 2.2.1 Soient $G, G_1, G_2 \subset E^*$, alors on a les propriété suivantes :

1.
$$\dim G^o + \dim G = \dim E$$

2.
$$G_1 \subset G_2 \Leftrightarrow G_1^o \supset G_2^o$$

3.
$$(G_1 + G_2)^o = G_1^o \cap G_2^o$$

4.
$$(G_1 \cap G_2)^o = G_1^o + G_2^o$$

Table des matières

So	ommaire	iii
Ι	Algèbre linéaire - Compléments formes linéaires	1
1	Dualité 1.1 Applications linéaires et matrices	3
2	Orthogonalité 2.1 Hyperplans	5 5
Ta	able des matières	7