Lista nr 5 z matematyki dyskretnej

- 1. Oblicz, ile jest liczb naturalnych między 1 i n (włącznie z tymi liczbami), które są podzielne przez 2 lub 3, ale nie dzielą się ani przez 5, ani przez 7.
- 2. (D) Wśród liczb naturalnych 1, 2, ..., 800, ile jest takich, które nie są podzielne przez 7, ale są podzielne przez 6 lub przez 9.
- 3. (D) Nieporządkiem nazywa się taką permutację elementów, w której żaden element nie znajduje się na swoim miejscu. Niech d_n oznacza liczbę nieporządków utworzonych z n kolejnych liczb naturalnych. Wyprowadź wzór na d_n stosując zasadę włączania i wyłączania.
- 4. (a) Liczby Lucasa definiuje się jako $L_1 = 1, L_2 = 3$ i $L_{n+1} = L_n + L_{n-1}$. Oblicz kilka kolejnych wartości.
 - (b) Wykaż zależności: $F_{2n} = F_n L_n$, $2F_{k+n} = F_k L_n + F_n L_k$, $2L_{k+n} = 5F_k F_n + L_n L_k$
- 5. Wykaż, że dwie kolejne liczby Fibonacciego są względnie pierwsze. Wskazówka: Skorzystaj z algorytmu Euklidesa.
- 6. Udowodnij indukcyjnie, że $NWD(F_m, F_n) = F_{NWD(m,n)}$.
- 7. (D)
 - (a) Wykaż, że $F_{2n} = F_n(F_n + 2F_{n-1})$
 - (b) Podaj podobną zależność dla F_{2n+1} zawierającą liczby Fibonacciego o mniejszych indeksach.
- 8. Podwójna wieża Hanoi składa się z 2n krążków n różnych rozmiarów, po 2 krążki każdego rozmiaru. W jednym kroku przenosimy dokadnie jeden krążek i nie możemy kłaść większego krążka na mniejszym. Ile kroków jest potrzebnych, aby przenieść wieżę z palika A na palik B, posługując się przy tym palikiem C, gdy krążki równej wielkości nie są rozróżnialne?
- 9. (D) Na płaszczyźnie danych jest n okręgów. Jaka jest maksymalna liczba obszarów, na które dzielą one płaszczyznę. Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.

- 10. (*) Na ile maksymalnie obszarów można podzielić trójwymiarową przestrzeń za pomocą n płaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.
- 11. (**) Przestrzeń R^n to zbiór wszystkich punktów (x_1, x_2, \ldots, x_n) o n rzeczywistych współrzędnych. Hiperpłaszczyzna w R^n zadana jest wzorem $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$, gdzie przynajmniej jedno a_i jest niezerowe. Na ile maksymalnie obszarów można podzielić n-wymiarową przestrzeń R^n za pomocą n hiperpłaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej. (Wskazówka: przyda się rozwiązanie poprzedniego zadania.)
- 12. (D) Ile rozwiązań wśród liczba naturalnych ma równanie $x_1 + x_2 + x_3 + x_4 = 70$, jeśli dodatkowo $x_1 \le 6, x_2 \le 6$ oraz $x_3 \le 6$?
- 13. Na ile sposobów można rozdać 6 różnych zabawek trójce dzieci tak, aby każde dziecko dostało przynajmniej jedną zabawkę?

Katarzyna Paluch