§1.2 行列式的定义与性质

数学系 梁卓滨

2017 - 2018 学年 I

Outline of §1.2

1. 行列式的基本性质——从二三阶行列式讲起

2. n 阶行列式的公理化定义

3. 四阶行列式的计算(初步)

4. 转置行列式

We are here now...

1. 行列式的基本性质——从二三阶行列式讲起

2. n 阶行列式的公理化定义

3. 四阶行列式的计算(初步)

4. 转置行列式

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

副对角线: 从右上角到左下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

单位行列式: 主对角线上元素为1其他元素为0的行列式

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

副对角线: 从右上角到左下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

单位行列式: 主对角线上元素为1其他元素为0的行列式

 例
 二阶
 三阶

 单位行列式
 单位行列式

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

副对角线: 从右上角到左下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

单位行列式: 主对角线上元素为1其他元素为0的行列式

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

副对角线: 从右上角到左下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

单位行列式: 主对角线上元素为1其他元素为0的行列式

主对角线: 从左上角到右下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

副对角线: 从右上角到左下角的对角线

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

单位行列式: 主对角线上元素为1其他元素为0的行列式

性质 1 (规范性) 单位行列式的值为 1。

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

性质 2 (反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} \qquad \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \quad \begin{vmatrix} a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \\ a_2 & b_2 & c_2 \end{vmatrix} \quad \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \qquad \begin{vmatrix} a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \\ a_2 & b_2 & c_2 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \qquad \begin{vmatrix} a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \\ a_2 & b_2 & c_2 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

例已知行列式
$$\begin{vmatrix} 3 & 5 \\ 1 & 4 \end{vmatrix} = 7$$
,则 $\begin{vmatrix} 1 & 4 \\ 3 & 5 \end{vmatrix} =$ ____

性质 2(反称性) 行列式交换两行(列)后,它的值变号。

$$\begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \qquad \begin{vmatrix} a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \\ a_2 & b_2 & c_2 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

例已知行列式
$$\begin{vmatrix} 3 & 5 \\ 1 & 4 \end{vmatrix} = 7$$
,则 $\begin{vmatrix} 1 & 4 \\ 3 & 5 \end{vmatrix} = -7$

性质 3(数乘性) 行列式某行(列)每个元素都乘以 k 倍后,它的值变为原来的 k 倍。

$$a_{11}$$
 a_{12} a_{13} a_{21} a_{22} a_{23} a_{31} a_{32} a_{33}

性质 3(数乘性) 行列式某行(列)每个元素都乘以 k 倍后,它的值变为原来的 k 倍。

a_{11}	a ₁₂ ka ₂₂ a ₃₂	a_{13}	a_{11}	a_{12}	a_{13}
ka ₂₁	ka ₂₂	<i>k</i> α ₂₃	a_{21}	a_{22}	a_{23}
a ₃₁	a_{32}	a_{33}	a_{31}	a_{32}	a_{33}

性质 3(数乘性) 行列式某行(列)每个元素都乘以 k 倍后,它的值变为原来的 k 倍。

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例已知
$$\begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28$$
, 则 $\begin{vmatrix} 1 & -1 & 3k \\ 0 & 5 & 4k \\ 1 & 6 & 3k \end{vmatrix} =$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例已知
$$\begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28$$
,则 $\begin{vmatrix} 1 & -1 & 3k \\ 0 & 5 & 4k \\ 1 & 6 & 3k \end{vmatrix} = k \begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} =$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例已知
$$\begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28$$
, 则 $\begin{vmatrix} 1 & -1 & 3k \\ 0 & 5 & 4k \\ 1 & 6 & 3k \end{vmatrix} = k \begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28k$

例
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
例 已知
$$\begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28, \text{则} \begin{vmatrix} 1 & -1 & 3k \\ 0 & 5 & 4k \\ 1 & 6 & 3k \end{vmatrix} = k \begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28k$$
例 已知
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -1 & 0 & 6 \end{vmatrix} = -58, \text{则} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -3 & 0 & 18 \end{vmatrix} =$$

例
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
例 已知
$$\begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28, \text{ } \text{ } \text{ } \text{ } \begin{vmatrix} 1 & -1 & 3k \\ 0 & 5 & 4k \\ 1 & 6 & 3k \end{vmatrix} = k \begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28k$$

例已知
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -1 & 0 & 6 \end{vmatrix} = -58$$
,则 $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -3 & 0 & 18 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -1 & 0 & 6 \end{vmatrix} =$

例
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
例 已知
$$\begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28, \text{ } \text{ } \text{ } \begin{vmatrix} 1 & -1 & 3k \\ 0 & 5 & 4k \\ 1 & 6 & 3k \end{vmatrix} = k \begin{vmatrix} 1 & -1 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = -28k$$
例 已知
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -1 & 0 & 6 \end{vmatrix} = -58, \text{ } \text{ } \text{ } \text{ } \begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -3 & 0 & 18 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 4 & 0 & 5 \\ -1 & 0 & 6 \end{vmatrix} = -174$$

例
$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 1 & -1 & 3 \end{vmatrix}$$

例
$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & \\ 1 & -1 & 3 \end{vmatrix}$$

例
$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 \\ 1 & -1 & 3 \end{vmatrix}$$

例
$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 & 5 \\ 1 & -1 & 3 \end{vmatrix}$$

例
$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 & 5 \\ 1 & -1 & 3 \end{vmatrix}$$
例
$$\begin{vmatrix} 13 & 3 & -1 \\ -2 & 8 & 0 \\ 4 & 7 & 2 \end{vmatrix} + \begin{vmatrix} 13 & 3 & 21 \\ -2 & 8 & 9 \\ 4 & 7 & 2 \end{vmatrix} =$$

例
$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 & 5 \\ 1 & -1 & 3 \end{vmatrix}$$
例
$$\begin{vmatrix} 13 & 3 & -1 \\ -2 & 8 & 0 \\ 4 & 7 & 2 \end{vmatrix} + \begin{vmatrix} 13 & 3 & 21 \\ -2 & 8 & 9 \\ 4 & 7 & 2 \end{vmatrix} =$$

$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 & 5 \\ 1 & -1 & 3 \end{vmatrix}$$

例
$$\begin{vmatrix} 13 & 3 & -1 \\ -2 & 8 & 0 \\ 4 & 7 & 2 \end{vmatrix} + \begin{vmatrix} 13 & 3 & 21 \\ -2 & 8 & 9 \\ 4 & 7 & 2 \end{vmatrix} = \begin{vmatrix} 13 & 3 & 20 \\ -2 & 8 & 9 \\ 4 & 7 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} + \begin{vmatrix} 2 & -1 & 3 \\ 5 & 7 & 6 \\ 8 & -2 & 9 \end{vmatrix} =$$

$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix}$$
 $\begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix}$
 $\begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 & 5 \\ 1 & -1 & 3 \end{vmatrix}$

例
$$\begin{vmatrix} 13 & 3 & -1 \\ -2 & 8 & 0 \\ 4 & 7 & 2 \end{vmatrix} + \begin{vmatrix} 13 & 3 & 21 \\ -2 & 8 & 9 \\ 4 & 7 & 2 \end{vmatrix} = \begin{vmatrix} 13 & 3 & 20 \\ -2 & 8 & 9 \\ 4 & 7 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} + \begin{vmatrix} 2 & -1 & 3 \\ 5 & 7 & 6 \\ 8 & -2 & 9 \end{vmatrix} =$$

$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 & 5 \\ 1 & -1 & 3 \end{vmatrix}$$

例
$$\begin{vmatrix} 13 & 3 & -1 \\ -2 & 8 & 0 \\ 4 & 7 & 2 \end{vmatrix} + \begin{vmatrix} 13 & 3 & 21 \\ -2 & 8 & 9 \\ 4 & 7 & 2 \end{vmatrix} = \begin{vmatrix} 13 & 3 & 20 \\ -2 & 8 & 9 \\ 4 & 7 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} + \begin{vmatrix} 2 & -1 & 3 \\ 5 & 7 & 6 \\ 8 & -2 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} - \begin{vmatrix} -1 & 2 & 3 \\ 7 & 5 & 6 \\ -2 & 8 & 9 \end{vmatrix} =$$

$$\begin{vmatrix} 2 & 0 & 5 \\ 3 & 2 & 6 \\ 1 & -1 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 & 5 \\ 4 & 7 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ 7 & 9 & 5 \\ 1 & -1 & 3 \end{vmatrix}$$

例
$$\begin{vmatrix} 13 & 3 & -1 \\ -2 & 8 & 0 \\ 4 & 7 & 2 \end{vmatrix} + \begin{vmatrix} 13 & 3 & 21 \\ -2 & 8 & 9 \\ 4 & 7 & 2 \end{vmatrix} = \begin{vmatrix} 13 & 3 & 20 \\ -2 & 8 & 9 \\ 4 & 7 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} + \begin{vmatrix} 2 & -1 & 3 \\ 5 & 7 & 6 \\ 8 & -2 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} - \begin{vmatrix} -1 & 2 & 3 \\ 7 & 5 & 6 \\ -2 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 3 \\ -3 & 5 & 6 \\ 9 & 8 & 9 \end{vmatrix}$$

$$\begin{vmatrix} 13 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} =$$

$$\begin{vmatrix} 13 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} = \begin{vmatrix} 13 & 0 & 0 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} + \begin{vmatrix} 0 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix}.$$

$$\begin{vmatrix} 13 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} = \begin{vmatrix} 13 & 0 & 0 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} + \begin{vmatrix} 0 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix}.$$

$$\begin{vmatrix} a_1 + x_1 & a_2 + x_2 & a_3 + x_3 \\ b_1 + y_1 & b_2 + y_2 & b_3 + y_3 \\ c_1 + z_1 & c_2 + z_2 & c_3 + z_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

$$\begin{vmatrix} 13 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} = \begin{vmatrix} 13 & 0 & 0 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} + \begin{vmatrix} 0 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix}.$$

但以下的拆分是错误:

$$\begin{vmatrix} a_1 + x_1 & a_2 + x_2 & a_3 + x_3 \\ b_1 + y_1 & b_2 + y_2 & b_3 + y_3 \\ c_1 + z_1 & c_2 + z_2 & c_3 + z_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

$$\begin{vmatrix} 13 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} = \begin{vmatrix} 13 & 0 & 0 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix} + \begin{vmatrix} 0 & 5 & -1 \\ -2 & 8 & 3 \\ 4 & 7 & 6 \end{vmatrix}.$$

但以下的拆分是错误:

$$\begin{vmatrix} a_1 + x_1 & a_2 + x_2 & a_3 + x_3 \\ b_1 + y_1 & b_2 + y_2 & b_3 + y_3 \\ c_1 + z_1 & c_2 + z_2 & c_3 + z_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

每次拆分只能针对一行或一列!

行列式基本性质总结

规范性 单位行列式的值为 1 反称性 交换两行 (列) 后,值变号 数乘性 某行 (列) 乘 k 倍,值变 k 倍 可加性 两式仅一行 (列) 不同可相加

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0 \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0 \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0 \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 2 & 0 & 5 \\ 7 & 0 & 9 \\ 1 & 0 & 3 \end{vmatrix} = __$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0 \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 2 & 0 & 5 \\ 7 & 0 & 9 \\ 1 & 0 & 3 \end{vmatrix} = \underline{0}$$

推论 若行列式其中两行(列)对应元素相同,则它的值为零

| a b c | u v w | u v w

```
    a
    b
    c

    u
    v
    w

    u
    v
    w
```

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} \xrightarrow{\underline{\phi \not\models 2,3 \, f_{\top}}} \quad \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix},$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{\cancel{\hat{\text{$\not$$}}} \cancel{\hat{\text{$\not$$}}} \cancel{\hat{\text{$\not$$}}} \cancel{\hat{\text{$\not$$}}} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix},$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{\overline{2} + 2,3}{1} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{2 \times 2,377}{2} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 1 & -1 & 3 \\ 7 & 9 & 6 \\ 1 & -1 & 3 \end{vmatrix}$$

推论 若行列式其中两行(列)对应元素相同,则它的值为零

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{\overline{2} + 2,3}{\overline{7}} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 1 & -1 & 3 \\ 7 & 9 & 6 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

推论 若行列式其中两行(列)对应元素相同,则它的值为零

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{\overline{2} + 2,3}{\overline{1}} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 1 & -1 & 3 \\ 7 & 9 & 6 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ ku & kv & kw \end{vmatrix} =$$

推论 若行列式其中两行(列)对应元素相同,则它的值为零

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} \xrightarrow{\underline{\phi \oplus 2,3 \uparrow 7}} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 1 & -1 & 3 \\ 7 & 9 & 6 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ ku & kv & kw \end{vmatrix} = k \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} =$$

推论 若行列式其中两行(列)对应元素相同,则它的值为零

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{\overline{2} + 2,3}{\overline{1}} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 1 & -1 & 3 \\ 7 & 9 & 6 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ ku & kv & kw \end{vmatrix} = k \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

推论 若行列式其中两行(列)对应元素相同,则它的值为零

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{\widehat{\Sigma} \cancel{\cancel{+}} \cancel{\cancel{+}} \cancel{\cancel{+}} \cancel{\cancel{+}} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 1 & -1 & 3 \\ 7 & 9 & 6 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ ku & kv & kw \end{vmatrix} = k \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 2 & 0 & 6 \\ 7 & 9 & 21 \\ 1 & -1 & 3 \end{vmatrix} =$$

推论 若行列式其中两行(列)对应元素相同,则它的值为零

$$\begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = \frac{\widehat{\Sigma} \cancel{\cancel{+}} \cancel{\cancel{+}} \cancel{\cancel{+}} \cancel{\cancel{+}} - \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix}, \quad \therefore \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 1 & -1 & 3 \\ 7 & 9 & 6 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

$$\begin{vmatrix} a & b & c \\ u & v & w \\ ku & kv & kw \end{vmatrix} = k \begin{vmatrix} a & b & c \\ u & v & w \\ u & v & w \end{vmatrix} = 0$$

例如,
$$\begin{vmatrix} 2 & 0 & 6 \\ 7 & 9 & 21 \\ 1 & -1 & 3 \end{vmatrix} = 0$$

推论! 行列式的某行(列)加上另一行(列)的 k 倍,它的值不变。

推论! 行列式的某行(列)加上另一行(列)的 k 倍,它的值不变。例如:

推论! 行列式的某行(列)加上另一行(列)的 k 倍,它的值不变。例如:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix} \begin{vmatrix} a & b & c \\ u & v & w \\ x+ku & y+kv & z+kw \end{vmatrix}$$

推论! 行列式的某行(列)加上另一行(列)的 k 倍,它的值不变。例如:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x + ku & y + kv & z + kw \end{vmatrix}$$

推论! 行列式的某行(列)加上另一行(列)的 k 倍,它的值不变。例如:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x + ku & y + kv & z + kw \end{vmatrix}$$

这是因为:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x + ku & y + kv & z + kw \end{vmatrix} =$$

推论! 行列式的某行(列)加上另一行(列)的 k 倍,它的值不变。例如:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x + ku & y + kv & z + kw \end{vmatrix}$$

这是因为:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x + ku & y + kv & z + kw \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix} + \begin{vmatrix} a & b & c \\ u & v & w \\ ku & kv & kw \end{vmatrix} =$$

推论! 行列式的某行(列)加上另一行(列)的 k 倍,它的值不变。例如:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x + ku & y + kv & z + kw \end{vmatrix}$$

这是因为:

$$\begin{vmatrix} a & b & c \\ u & v & w \\ x + ku & y + kv & z + kw \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix} + \begin{vmatrix} a & b & c \\ u & v & w \\ ku & kv & kw \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix}$$

这是:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{vmatrix} =$$

这是:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{vmatrix} =$$

这是:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{vmatrix} = 0$$

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- $C_i + kC_i$ 表示第 i 列加上第 j 列的 k 倍

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- $C_i + kC_i$ 表示第 i 列加上第 j 列的 k 倍
- 例 |1 2 3 |4 5 6 |7 8 9

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- C_i + kC_j 表示第 i 列加上第 j 列的 k 倍

例
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{r_3 - 2r_2}$$

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- C_i + kC_j 表示第 i 列加上第 j 列的 k 倍

例
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{r_3 - 2r_2} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & -2 & -3 \end{vmatrix}$$

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- C_i + kC_j 表示第 i 列加上第 j 列的 k 倍

例
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{r_3 - 2r_2} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & -2 & -3 \end{vmatrix}$$

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- C_i + kC_j 表示第 i 列加上第 j 列的 k 倍

$$\begin{vmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{vmatrix}
\xrightarrow{r_3 - 2r_2}
\begin{vmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
-1 & -2 & -3
\end{vmatrix}
\xrightarrow{c_1 \leftrightarrow c_3}$$

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- *C_i* + *kC_j* 表示第 *i* 列加上第 *j* 列的 *k* 倍

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{r_3 - 2r_2} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & -2 & -3 \end{vmatrix} \xrightarrow{c_1 \leftrightarrow c_3} \begin{vmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ -3 & -2 & -1 \end{vmatrix}$$

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- r_i + kr_j 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_j$ 表示交换第 i 列和第 j 列
- C_i + kC_j 表示第 i 列加上第 j 列的 k 倍

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{r_3 - 2r_2} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & -2 & -3 \end{vmatrix} \xrightarrow{c_1 \leftrightarrow c_3} \begin{vmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ -3 & -2 & -1_0 \end{vmatrix}$$

行(row)变换记号

- r_i × k 表示第 i 行乘以 k 倍
- $r_i \leftrightarrow r_j$ 表示交换第 i 行和第 j 行
- $r_i + kr_j$ 表示第 i 行加上第 j 行的 k 倍

- C_i × k 表示第 i 列乘以 k 倍
- $C_i \leftrightarrow C_i$ 表示交换第 i 列和第 j 列
- C_i + kC_j 表示第 i 列加上第 j 列的 k 倍

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{r_3 - 2r_2} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & -2 & -3 \end{vmatrix} \xrightarrow{c_1 \leftrightarrow c_3} - \begin{vmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ -3 & -2 & -1 \end{vmatrix}$$

练习用行列式的性质证明 $\begin{vmatrix} a_1+kb_1 & b_1+c_1 & c_1 \\ a_2+kb_2 & b_2+c_2 & c_2 \\ a_3+kb_3 & b_3+c_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

练习用行列式的性质证明
$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix}$$

练习用行列式的性质证明
$$\begin{vmatrix} a_1+kb_1 & b_1+c_1 & c_1 \\ a_2+kb_2 & b_2+c_2 & c_2 \\ a_3+kb_3 & b_3+c_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} \xrightarrow{c_2 - c_3}$$

练习用行列式的性质证明
$$\begin{vmatrix} a_1+kb_1 & b_1+c_1 & c_1 \\ a_2+kb_2 & b_2+c_2 & c_2 \\ a_3+kb_3 & b_3+c_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} \xrightarrow{c_2 - c_3} \begin{vmatrix} a_1 + kb_1 & b_1 & c_1 \\ a_2 + kb_2 & b_2 & c_2 \\ a_3 + kb_3 & b_3 & c_3 \end{vmatrix}$$

练习用行列式的性质证明
$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} \xrightarrow{c_2 - c_3} \begin{vmatrix} a_1 + kb_1 & b_1 & c_1 \\ a_2 + kb_2 & b_2 & c_2 \\ a_3 + kb_3 & b_3 & c_3 \end{vmatrix}$$

$$c_1-kc_2$$

练习用行列式的性质证明
$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} \xrightarrow{c_2 - c_3} \begin{vmatrix} a_1 + kb_1 & b_1 & c_1 \\ a_2 + kb_2 & b_2 & c_2 \\ a_3 + kb_3 & b_3 & c_3 \end{vmatrix}$$

$$\frac{c_1 - kc_2}{a_3 + b_3 + c_3} \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

练习用行列式的性质证明
$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 + kb_1 & b_1 + c_1 & c_1 \\ a_2 + kb_2 & b_2 + c_2 & c_2 \\ a_3 + kb_3 & b_3 + c_3 & c_3 \end{vmatrix} \xrightarrow{\underbrace{c_2 - c_3}} \begin{vmatrix} a_1 + kb_1 & b_1 & c_1 \\ a_2 + kb_2 & b_2 & c_2 \\ a_3 + kb_3 & b_3 & c_3 \end{vmatrix}$$

$$\xrightarrow{\underbrace{c_1 - kc_2}} \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

练习 用行列式的性质证明

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 \\ b_2 + c_2 & c_2 + a_2 \\ b_3 + c_3 & c_3 + a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 \\ b_2 + c_2 & c_2 + a_2 \\ b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 \\ b_2 + c_2 & c_2 + a_2 \\ b_3 + c_3 & c_3 + a_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 & b_1 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 & b_1 \\ b_3 + c_3 & c_3 +$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 & a_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 & a_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 & c_1 & a_1 \\ b_2 & c_2 & a_2 \\ b_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 & a_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 & c_1 & a_1 \\ b_2 & c_2 & a_2 \\ b_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & a_1 & b_1 \\ c_2 & a_2 & b_2 \\ c_3 & a_3 & b_3 \end{vmatrix} =$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 & a_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 & c_1 & a_1 \\ b_2 & c_2 & a_2 \\ b_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & a_1 & b_1 \\ c_2 & a_2 & b_2 \\ c_3 & a_3 & b_3 \end{vmatrix} = - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 & a_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix} = - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 & c_1 & a_1 \\ b_2 & c_2 & a_2 \\ b_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & a_1 & b_1 \\ c_2 & a_2 & b_2 \\ c_3 & a_3 & b_3 \end{vmatrix} = - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 & a_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix} = - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix} - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix}$$

 $= \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} +$ $= 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

$$\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 \end{vmatrix} + \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & b_1 \\ b_2 + c_2 & c_2 + a_2 & b_2 \\ b_3 + c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 + c_1 & c_1 & a_1 \\ b_2 + c_2 & c_2 & a_2 \\ b_3 + c_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & c_1 + a_1 & b_1 \\ c_2 & c_2 + a_2 & b_2 \\ c_3 & c_3 + a_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} b_1 & c_1 & a_1 \\ b_2 & c_2 & a_2 \\ b_3 & c_3 & a_3 \end{vmatrix} + \begin{vmatrix} c_1 & a_1 & b_1 \\ c_2 & a_2 & b_2 \\ c_3 & a_3 & b_3 \end{vmatrix} = - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix} - \begin{vmatrix} a_1 & c_1 & b_1 \\ a_2 & c_2 & b_2 \\ a_3 & c_3 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

We are here now...

1. 行列式的基本性质——从二三阶行列式讲起

2. n 阶行列式的公理化定义

3. 四阶行列式的计算(初步)

4. 转置行列式

从二三阶行列式到 n 阶行列式

回忆二、三阶行列式的基本性质:

规范性 单位行列式的值为 1 反称性 交换两行 (列) 后,值变号 数乘性 某行 (列) 乘 k 倍,值变 k 倍 可加性 两式仅一行 (列) 不同可相加

从二三阶行列式到 n 阶行列式

回忆二、三阶行列式的基本性质:

规范性 单位行列式的值为 1 反称性 交换两行 (列) 后,值变号 数乘性 某行 (列) 乘 *k* 倍,值变 *k* 倍 可加性 两式仅一行 (列) 不同可相加

我们希望 n 阶行列式也要满足这些基本性质。

从二三阶行列式到n阶行列式

回忆二、三阶行列式的基本性质:

规范性 单位行列式的值为1

反称性 交换两行(列)后,值变号

数乘性 某行 (列) 乘 k 倍,值变 k 倍

可加性 两式仅一行(列)不同可相加

我们希望 n 阶行列式也要满足这些基本性质。干脆,把这一要求写到行列式的定义中。

定义 记号

```
\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
```

表示对其中的 n 行 n 列的共 n^2 个元素 α_{ij} $(i,j=1,\cdots,n)$,进行运算得到一个数值。

定义 记号

```
\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
```

表示对其中的 n 行 n 列的共 n^2 个元素 α_{ij} ($i,j=1,\cdots,n$),进行运算得到一个数值。并且要求这种运算满足四个基本性质:

规范性、反称性、数乘性、可加性

定义 记号

```
\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
```

表示对其中的 n 行 n 列的共 n^2 个元素 α_{ij} ($i,j=1,\cdots,n$),进行运算得到一个数值。并且要求这种运算满足四个基本性质:

规范性、反称性、数乘性、可加性

则称上述记号为n 阶行列式。

定义 记号

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

表示对其中的 n 行 n 列的共 n^2 个元素 α_{ij} ($i,j=1,\cdots,n$),进行运算得到一个数值。并且要求这种运算满足四个基本性质:

规范性、反称性、数乘性、可加性

则称上述记号为n 阶行列式。

定理 满足 4 个基本性质的运算是存在、唯一!

定义 记号

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

表示对其中的 n 行 n 列的共 n^2 个元素 α_{ij} ($i,j=1,\cdots,n$),进行运算得到一个数值。并且要求这种运算满足四个基本性质:

规范性、反称性、数乘性、可加性

则称上述记号为n 阶行列式。

定理 满足 4 个基本性质的运算是存在、唯一!

注任意一个行列式的值均可通过以上四个基本性质算出。

规范性是指, n 阶单位行列式的值应为 1。

规范性是指, n 阶单位行列式的值应为 1。即

$$\begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{vmatrix} = 1$$

规范性是指, n 阶单位行列式的值应为 1。即

规范性是指, n 阶单位行列式的值应为 1。即

规范性是指,n 阶单位行列式的值应为 1。即

$$\begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1t} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2t} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nt} & \cdots & a_{nn} \end{vmatrix}$$

规范性是指, n 阶单位行列式的值应为 1。即

$$\begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1t} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2t} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nt} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{c_s \leftrightarrow c_t}$$

规范性是指,n 阶单位行列式的值应为 1。即

$$\begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1t} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2t} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nt} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{c_s \leftrightarrow c_t} \begin{vmatrix} a_{11} & \cdots & a_{1t} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2t} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nt} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

规范性是指,n 阶单位行列式的值应为 1。即

$$\begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1t} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2t} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nt} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{\underline{c_s \leftrightarrow c_t}} - \begin{vmatrix} a_{11} & \cdots & a_{1t} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2t} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nt} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

可加性,譬如(以行为例)

a_{11}	$a_{12} \cdots$	a_{1n}	a	11	a_{12}	• • •	a_{1n}
:	:	÷		:	÷		:
b _{s1}	$b_{s2} \cdots$	b _{sn}	C	<i>s</i> 1	<i>C</i> ₅₂	• • •	Csn
:	÷	:		:	÷		:
a_{n1}	$a_{n2} \cdots$	a_{nn}	a	n1	a_{n2}	• • •	a_{nn}

可加性,譬如(以行为例)

```
\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ c_{s1} & c_{s2} & \cdots & c_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
```

可加性,譬如(以行为例)

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ c_{s1} & c_{s2} & \cdots & c_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{s1} + c_{s1} & b_{s2} + c_{s2} & \cdots & b_{sn} + c_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

可加性,譬如(以行为例)

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} c_{s1} & c_{s2} & \cdots & c_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{s1} + c_{s1} & b_{s2} + c_{s2} & \cdots & b_{sn} + c_{sn} \end{vmatrix}$$

注 对列也有类似可加性

可加性,譬如(以行为例)

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} c_{s1} & c_{s2} & \cdots & c_{sn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{s1} + c_{s1} & b_{s2} + c_{s2} & \cdots & b_{sn} + c_{sn} \end{vmatrix}$$

注 对列也有类似可加性

注 可加性也可以理解成把行列式拆分

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

$\begin{vmatrix} a_{11} & \cdots & ka_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2s} & \cdots & a_{2n} \end{vmatrix}$	$\begin{vmatrix} a_{11} \\ a_{21} \end{vmatrix}$	$\cdots a_{1s} \cdots a_{2s}$	$\cdots a_{1n}$ $\cdots a_{2n}$
$\begin{vmatrix} \vdots & \vdots & \vdots \\ a_{n1} & \cdots & ka_{ns} & \cdots & a_{nn} \end{vmatrix}$	1 1	a _{ns}	: a _{nn}

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

$$\begin{vmatrix} a_{11} & \cdots & ka_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2s} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & ka_{ns} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

$$\begin{vmatrix} a_{11} & \cdots & ka_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2s} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & ka_{ns} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

注1也可理解成:一行(列)元素的公倍数可以提出来。

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

$$\begin{vmatrix} a_{11} & \cdots & ka_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2s} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & ka_{ns} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

注1也可理解成:一行(列)元素的公倍数可以提出来。

注2若行列式某行(列)全为零,则值为零。

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

$$\begin{vmatrix} a_{11} & \cdots & ka_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & ka_{ns} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

注1也可理解成:一行(列)元素的公倍数可以提出来。

注2若行列式某行(列)全为零,则值为零。

如

$$\begin{vmatrix} 2 & 54 & 3 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ -4 & 3 & 2 & -7 & 30 \\ 1 & -8 & 3 & 2 & 2 \\ 4 & 3 & 5 & 2 & -1 \end{vmatrix} =$$

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

$$\begin{vmatrix} a_{11} & \cdots & ka_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & ka_{ns} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

注1也可理解成:一行(列)元素的公倍数可以提出来。

注2若行列式某行(列)全为零,则值为零。

如

$$\begin{vmatrix} 2 & 54 & 3 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ -4 & 3 & 2 & -7 & 30 \\ 1 & -8 & 3 & 2 & 2 \\ 4 & 3 & 5 & 2 & -1 \end{vmatrix} = 0 \cdot \begin{vmatrix} 2 & 54 & 3 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ -4 & 3 & 2 & -7 & 30 \\ 1 & -8 & 3 & 2 & 2 \\ 4 & 3 & 5 & 2 & -1 \end{vmatrix} =$$

数乘性指用数 k 乘行列式某行(列)每个元素,等于以数 k 乘此行列式

$$\begin{vmatrix} a_{11} & \cdots & ka_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & ka_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & ka_{ns} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2s} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix}$$

注1也可理解成:一行(列)元素的公倍数可以提出来。

注2若行列式某行(列)全为零,则值为零。

如

$$\begin{vmatrix} 2 & 54 & 3 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ -4 & 3 & 2 & -7 & 30 \\ 1 & -8 & 3 & 2 & 2 \\ 4 & 3 & 5 & 2 & -1 \end{vmatrix} = 0 \cdot \begin{vmatrix} 2 & 54 & 3 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ -4 & 3 & 2 & -7 & 30 \\ 1 & -8 & 3 & 2 & 2 \\ 4 & 3 & 5 & 2 & -1 \end{vmatrix} = 0$$

下面就利用行列式的四个性质

规范性、反称性、数乘性、可加性

去计算一些特殊行列式的值。最后还会总结出计算一般行列式的方法。

下面就利用行列式的四个性质

规范性、反称性、数乘性、可加性

去计算一些特殊行列式的值。最后还会总结出计算一般行列式的方法。

注 这些计算方法,并不需要知道一般 n 阶行列式的显式表达式,而关键 是如何利用上述的四个性质。

	0	1	0	0
四丛谷四水	0	0	1	0
外订界四阶	1	0	0	0
例 计算四阶	0	0	0	1

ł	0	1	0	0
	0	0	1	0
	1	0	0	0 0 0 1
1	0	0	0	1

$$\begin{vmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{vmatrix}
 \frac{r_2 \leftrightarrow r_3}{}$$

$$\begin{vmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
\xrightarrow{r_2 \leftrightarrow r_3}
-
\begin{vmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
= \begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
\xrightarrow{r_2 \leftrightarrow r_3}
-
\begin{vmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \xrightarrow{r_2 \leftrightarrow r_3} - \begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1$$

$$\begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \xrightarrow{\underline{r_2 \leftrightarrow r_3}} - \begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1$$

例证明
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \xrightarrow{r_2 \leftrightarrow r_3} - \begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1$$

例 证明
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
(这说明:公理化定义的行列

式,在阶数为2时,和最开始定义的二阶行列式是一样。)

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \frac{\exists \text{mith}}{\begin{vmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{vmatrix}} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

|
$$a_{11} \quad a_{12} \mid \frac{\neg \text{ mht}}{a_{21}} \mid a_{11} \quad 0 \mid a_{22} \mid a_{21} \quad a_{22} \mid a_{22} \mid a_{21} \quad a_{21} \quad a_{21} \mid a_{21} \quad a_{21} \mid a_{21} \mid a_{21} \mid a_{21} \mid a_{22} \mid a_{21} \mid a_{21} \mid a_{21} \mid a_{21} \mid a_{21} \mid a_{22} \mid a_{22}$$

解
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \frac{\text{可加性}}{\begin{vmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{vmatrix}} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
$$= \frac{\text{可加性}}{\begin{vmatrix} 0 & a_{11} & 0 \\ 0 & a_{22} \end{vmatrix}} + \begin{vmatrix} a_{11} & 0 \\ a_{21} & 0 \end{vmatrix} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & 0 \end{vmatrix} + \begin{vmatrix} 0 & a_{22} \\ a_{22} \end{vmatrix}$$

例 证明 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$ (说明:公理化定义的行列

式,在阶数为2时,和最开始定义的二阶行列式是一样。)

解
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \frac{\exists m \text{ m} \text{ m}}{\begin{vmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{vmatrix}} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$= \frac{\exists m \text{ m} \text{ m}}{\begin{vmatrix} 0 & a_{11} & 0 \\ 0 & a_{22} \end{vmatrix}} + \begin{vmatrix} a_{11} & 0 \\ a_{21} & 0 \end{vmatrix} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & 0 \end{vmatrix} + \begin{vmatrix} 0 & a_{12} \\ 0 & a_{22} \end{vmatrix}$$

$$= \frac{3 \text{ m} \text{ m}}{\begin{vmatrix} 0 & a_{12} \\ 0 & a_{22} \end{vmatrix}} + \frac{3 \text{ m}}{\begin{vmatrix} 0 & a_{12} \\ 0 & a_{21} \end{vmatrix}} + \frac{3 \text{ m}}{\begin{vmatrix} 0 & a_{12} \\ 0 & a_{21} \end{vmatrix}}$$

例证明
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
(说明:公理化定义的行列

式,在阶数为2时,和最开始定义的二阶行列式是一样。)

|
$$a_{11}$$
 | a_{12} | a_{11} | a_{11} | a_{11} | a_{11} | a_{21} | a_{22} | a_{21} | a_{22} | a_{21} | a_{21}

|
$$a_{11}$$
 | a_{12} | a_{11} | a_{11} | a_{11} | a_{11} | a_{12} | a_{21} | a_{22} | a_{21} | a_{22} | a_{22} | a_{22} | a_{21} | a_{21} | a_{21} | a_{22} | a_{21} | a_{21}

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \frac{\exists n m t}{\begin{vmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{vmatrix}} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$= \frac{\exists n m t}{\begin{vmatrix} a_{11} & 0 \\ 0 & a_{22} \end{vmatrix}} + \begin{vmatrix} a_{11} & 0 \\ 0 & a_{22} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & 0 \end{vmatrix} + \begin{vmatrix} 0 & a_{12} \\ a_{21} & 0 \end{vmatrix} + \begin{vmatrix} 0 & a_{12} \\ 0 & a_{22} \end{vmatrix}$$

$$= \frac{\exists n m t}{\begin{vmatrix} a_{11} & 0 \\ 0 & a_{22} \end{vmatrix}} + \begin{vmatrix} a_{11} & 0 \\ 0 & a_{22} \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ a_{21} & 0 \end{vmatrix}$$

$$= \frac{\exists n m t}{\begin{vmatrix} a_{11} & 0 \\ 0 & a_{22} \end{vmatrix}} + \begin{vmatrix} a_{11} & 0 \\ 0 & 1 \end{vmatrix} + a_{12} a_{21} \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$$

$$= \frac{\exists n m t}{\begin{vmatrix} a_{11} & a_{22} \\ 0 & 1 \end{vmatrix}} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - a_{12} a_{21} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$

$$= \frac{\exists n m t}{\begin{vmatrix} a_{11} & a_{22} \\ 0 & 1 \end{vmatrix}} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - a_{12} a_{21} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$

主对角线之外都为零的行列式称为对角行列式。

主对角线之外都为零的行列式称为对角行列式。

$$\begin{vmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

主对角线之外都为零的行列式称为对角行列式。

主对角线之外都为零的行列式称为对角行列式。由数乘性,它的值为:

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} =$$

$$= a_{11}a_{22}\cdots a_{nn}$$

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11}a_{22}\begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11}a_{22}\cdots a_{nn}$$

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11}a_{22}\begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \cdots$$

$$= a_{11}a_{22}\cdots a_{nn}$$

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11}a_{22}\begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \cdots$$

$$= a_{11}a_{22}\cdots a_{nn} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix}$$

 $= a_{11}a_{22}\cdots a_{nn}$

例 计算四阶行列式 3 9 7 -2 0 -1 3 6 0 0 1 4 0 0 0 2

例 计算四阶行列式 3 9 7 -2 0 -1 3 6 0 0 1 4 0 0 0 2

$$\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

例 计算四阶行列式
$$\begin{vmatrix} 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$
(想法: 利用行列式的性质,将其化为对角行列式)
$$\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

§1.2

行列式的定义与性质

例 计算四阶行列式
$$\begin{vmatrix} 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$
(想法: 利用行列式的性质,将其化为对角行列式)
$$\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

§1.2

例 计算四阶行列式
$$\begin{vmatrix} 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$
 (想法: 利用行列式的性质,将其化为对角行列式) $\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$ $= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$ $= 3 \cdot (-1) \cdot 1 \cdot 2 = 0$

例 计算四阶行列式
$$\begin{vmatrix} 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$
 (想法: 利用行列式的性质,将其化为对角行列式) $\begin{vmatrix} 3 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 9 & 7 & -2 \\ 0 & -1 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix}$ $= \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 3 \cdot (-1) \cdot 1 \cdot 2 = -6$

28/39 < ▷

§1.2

行列式的定义与性质

三角行列式

一般地, 上三角行列式

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}
```

三角行列式

一般地, 上三角行列式

```
\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}a_{33}\cdots a_{nn}
```

三角行列式

一般地, 上三角行列式

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}a_{33}\cdots a_{nn}$$

同理, 下三角行列式

$$\begin{vmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

三角行列式

一般地, 上三角行列式

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}a_{33}\cdots a_{nn}$$

同理, 下三角行列式

$$\begin{vmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}a_{33}\cdots a_{nn}$$

We are here now...

1. 行列式的基本性质——从二三阶行列式讲起

2. n 阶行列式的公理化定义

3. 四阶行列式的计算(初步)

4. 转置行列式

利用行列式的性质,可以知道:

利用行列式的性质,可以知道:

```
a_{11} \quad a_{12} \cdots a_{1n}
\vdots \quad \vdots \quad \vdots
a_{i1} \quad a_{i2} \cdots a_{in}
\vdots \quad \vdots \quad \vdots
a_{j1} \quad a_{j2} \cdots a_{jn}
\vdots \quad \vdots \quad \vdots
a_{n1} \quad a_{n2} \cdots a_{nn}
```

利用行列式的性质,可以知道:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{r_i + kr_j}$$

利用行列式的性质,可以知道:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{r_i + kr_j} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} + ka_{j1} & a_{i2} + ka_{j2} & \cdots & a_{in} + ka_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

利用行列式的性质,可以知道:

$ a_{11} $	a ₁₂	$\cdots a_{1n}$		a_{11}	a_{12}	• • •	a_{1n}
:	:	:		:	:		:
a_{i1}	a_{i2}	$\cdots a_{in}$		$a_{i1} + ka_{j1}$	$a_{i2} + ka_{j2}$	•••	$a_{in} + ka_{jn}$
1:	:	:	r_i+kr_j	:	:		:
a_{j1}	a_{j2}	$\cdots a_{jn}$		a_{j1}	a_{j2}	• • •	a_{jn}
:	:	:		:	÷		:
a_{n1}	a_{n2}	$\cdots a_{nn}$		a_{n1}	a_{n2}	• • •	a_{nn}

• 计算一般行列式的想法: 利用变换

$$r_i \longleftrightarrow r_j$$
, $r_i + kr_j$, $c_s \longleftrightarrow c_t$, $c_s + kc_t$

• 计算一般行列式的想法: 利用变换

$$r_i \leftrightarrow r_j$$
, $r_i + kr_j$, $c_s \leftrightarrow c_t$, $c_s + kc_t$

• 计算一般行列式的想法: 利用变换

$$r_i \leftrightarrow r_j$$
, $r_i + kr_j$, $c_s \leftrightarrow c_t$, $c_s + kc_t$

• 计算一般行列式的想法: 利用变换

$$r_i \leftrightarrow r_j$$
, $r_i + kr_j$, $c_s \leftrightarrow c_t$, $c_s + kc_t$

a_{11}	a_{12}	a_{13}	• • •	a_{1n}		b_{11}	b_{12}	b_{13}	• • •	b_{1n}
a_{21}	a_{22}	a_{23}	• • •	a_{2n}		0	b_{22}	b_{23}	• • •	b_{2n}
a_{31}	a_{32}	a_{33}	•••	a_{3n}	(一系列变换) 二··· = •·· =	0	0	b_{33}	• • •	b_{2n}
;	:	:	٠	:		:	:	:	٠	:
ı		а _{п3}				0				b_{nn}

• 计算一般行列式的想法: 利用变换

$$r_i \leftrightarrow r_j$$
, $r_i + kr_j$, $c_s \leftrightarrow c_t$, $c_s + kc_t$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix} = \underbrace{\begin{vmatrix} b_{11} & b_{12} & b_{13} & \cdots & b_{1n} \\ 0 & b_{22} & b_{23} & \cdots & b_{2n} \\ 0 & 0 & b_{33} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_{nn} \end{vmatrix}}$$

$$= b_{11}b_{22}b_{33}\cdots b_{nn}$$

• 计算一般行列式的想法: 利用变换

$$r_i \leftrightarrow r_j$$
, $r_i + kr_j$, $c_s \leftrightarrow c_t$, $c_s + kc_t$

化行列式为三角形行列式,从而算出行列式,图示:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix} = \begin{matrix} b_{11} & b_{12} & b_{13} & \cdots & b_{1n} \\ 0 & b_{22} & b_{23} & \cdots & b_{2n} \\ 0 & 0 & b_{33} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_{nn} \end{matrix}$$

$$= b_{11}b_{22}b_{33}\cdots b_{nn}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} =$$

$$= \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} =$$

$$= \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = = = \begin{vmatrix} 1 & 0 & -1 & 2 \\ & & & & \\ & & & & \\ & & & & \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow{r_2 + r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ \\ \\ \\ \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow{r_2 + r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & & & & \\ & & & & & \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow{r_2 + r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & & & \\ & & & & \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = r_2 + r_1 = \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & \\ & & & \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_3-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_3-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & & & & \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_3-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_3 - 2r_1]{r_2 + r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_3-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & & & & \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & -1 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

相

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_4-2r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & 1 & -3 \end{vmatrix} = = \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 1 & -1 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

相

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

相

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

相等

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

相等

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_4-2r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & 1 & -3 \end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 0 \end{vmatrix}$$

相等

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_4-2r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & 1 & -3 \end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_4-2r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & 1 & -3 \end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 2 & -6 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

具体做法
$$\begin{vmatrix}
1 & 0 & -1 & 2 \\
-1 & 1 & 0 & 1 \\
2 & 2 & 1 & 1 \\
2 & 1 & -1 & 1
\end{vmatrix} \xrightarrow{r_2+r_1} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 2 & 3 & -3 \\
0 & 1 & 1 & -3
\end{vmatrix} \xrightarrow{r_3-2r_2} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 5 & -9 \\
0 & 0 & 2 & -6
\end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

具体做法
$$\begin{vmatrix}
1 & 0 & -1 & 2 \\
-1 & 1 & 0 & 1 \\
2 & 2 & 1 & 1 \\
2 & 1 & -1 & 1
\end{vmatrix} \xrightarrow[r_4-2r_1]{r_4-2r_1} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 2 & 3 & -3 \\
0 & 1 & 1 & -3
\end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 5 & -9 \\
0 & 0 & 2 & -6
\end{vmatrix}$$

$$\frac{r_4 - \frac{2}{5}r_3}{=} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 5 & -9 \\
0 & 0 & & & &
\end{vmatrix} =$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

具体做法
$$\begin{vmatrix}
1 & 0 & -1 & 2 \\
-1 & 1 & 0 & 1 \\
2 & 2 & 1 & 1 \\
2 & 1 & -1 & 1
\end{vmatrix} \xrightarrow[r_4-2r_1]{r_4-2r_1} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 2 & 3 & -3 \\
0 & 1 & 1 & -3
\end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 5 & -9 \\
0 & 0 & 2 & -6
\end{vmatrix}$$

$$\frac{r_4 - \frac{2}{5}r_3}{\begin{array}{c|cccc} & & & & & & & & & & & \\ \hline & 1 & 0 & -1 & & 2 & & \\ 0 & 1 & -1 & & 3 & & \\ 0 & 0 & 5 & & -9 & & \\ 0 & 0 & 0 & & & & \\ \end{array}} =$$

想法

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\frac{r_4 - \frac{2}{5}r_3}{=} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 0 & -\frac{12}{5} \end{vmatrix} =$$

相

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_2+r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & 1 & -3 \end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 2 & -6 \end{vmatrix}$$

$$\frac{r_4 - \frac{2}{5}r_3}{=} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 0 & -\frac{12}{5} \end{vmatrix} = 1 \times 1 \times 5 \times (-\frac{12}{5}) =$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_4-2r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & 1 & -3 \end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 2 & -6 \end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & -1 & 2 \\
-1 & 1 & 0 & 1 \\
2 & 2 & 1 & 1 \\
2 & 1 & -1 & 1
\end{vmatrix} \xrightarrow[r_4-2r_1]{r_2+r_1} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 2 & 3 & -3 \\
0 & 1 & 1 & -3
\end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix}
1 & 0 & -1 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 5 & -9 \\
0 & 0 & 0 & -\frac{12}{E}
\end{vmatrix} = 1 \times 1 \times 5 \times (-\frac{12}{5}) = -12$$

 $\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{vmatrix}$ $\begin{vmatrix} 1 & 0 & -1 & 2 \\ -1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & -1 & 1 \end{vmatrix} \xrightarrow[r_4-2r_1]{r_2-2r_1} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 1 & 1 & -3 \end{vmatrix} \xrightarrow[r_4-r_2]{r_3-2r_2} \begin{vmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 5 & -9 \\ 0 & 0 & 2 & -6 \end{vmatrix}$

§1.2

$$\begin{vmatrix}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{vmatrix}
\underbrace{\frac{r_2+r_1}{r_3+r_1}}
\begin{vmatrix}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{vmatrix}
\frac{r_2 + r_1}{r_3 + r_1}
\begin{vmatrix}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
0 & 0 & 2 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{vmatrix}
\frac{r_2 + r_1}{r_4 + r_1}
\begin{vmatrix}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
0 & 0 & 2 & 2
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{vmatrix} \xrightarrow[\substack{r_2+r_1\\r_4+r_1}\\r_4+r_1} \begin{vmatrix}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 2
\end{vmatrix} = 1 \times 2 \times 2 \times 2$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-系列变换)}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ & & & & \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \cdots = \cdots = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \cdots = \cdots = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = (-\overline{S}\overline{M}\overline{g}\underline{h}) = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 1 & 2 & -2 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \cdots = \cdots = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & & & & \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \cdots = \cdots = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

§1.2 行列式的定义与性质

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_3 - 5r_1}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \cdots = \cdots = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

4

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & & & & \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-系列变换)}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_3 - 5r_1}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & & \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_3 - 5r_1}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \cdots = \cdots = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

列式的定义与性

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_3 + 2r_2}{} = \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-系列变换)}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_3 - 5r_1}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{2} = \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & & & \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-系列变换)}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_3 - 5r_1}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_3+2r_2}{} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-系列变换)}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_3+2r_2}{} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}-3r_{2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-系列变换)}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}-3r_{2}} - \begin{vmatrix} 1 & 0 & 2 & 2\\ 0 & 1 & 2 & -2\\ 0 & 0 & -3 & -13\\ 0 & & & \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-系列变换)}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_3 + 2r_2}{r_4 - 3r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -3 & -13 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-系列变换)}_{(-系列变换)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_3 + 2r_2}{r_4 - 3r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = (-系列变换) = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_3 + 2r_2}{r_4 - 3r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix}$$

目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \stackrel{(-\overline{\mathrm{S}}\overline{\mathrm{M}}\overline{\mathrm{S}}\underline{\mathrm{H}}}{\cdots} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}-3r_{2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \end{vmatrix}$$
目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = (- \underline{S} \underline{M} \underline{\Sigma} \underline{B}) = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_3 - 5r_1}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}-3r_{2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix} = \frac{r_{4}-4r_{3}}{-1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \end{vmatrix}$$
目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = (-\overline{N}) \oplus (-\overline{N}) \oplus$$

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{\underline{r_3 - 5r_1}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}-3r_{2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix} \xrightarrow{r_{4}-4r_{3}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -3 & -13 \end{vmatrix}$$
目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \xrightarrow{(-\overline{N}) \oplus (+)} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

● 點点

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}-3r_{2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix} = \frac{r_{4}-4r_{3}}{-1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & 0 \end{vmatrix}$$
目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \frac{(-\overline{S}\overline{M}\overline{g}\overline{g})}{-1} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

▲ 整角

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

$$\frac{r_{3}+2r_{2}}{r_{4}-3r_{2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix} = \underbrace{\begin{vmatrix} r_{4}-4r_{3} \\ 0 & 0 & -3 & -13 \\ 0 & 0 & 0 & 47 \end{vmatrix}}_{= \cdots = \cdots = -1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & 0 & 47 \end{vmatrix}$$
目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = \underbrace{(-\overline{N}\overline{M}\overline{D}\overline{D}\overline{D}\overline{D}\overline{D}}_{= 0} = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

● 暨南

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 + 2r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix} \xrightarrow{r_4 - 4r_3} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & 0 & 47 \end{vmatrix}$$

$$= (-1) \times 1 \times 1 \times (-3) \times 47 =$$
目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = (-系列变换) = \begin{vmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{vmatrix}$$

@ ₩ ħ

$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} \xrightarrow{r_3 - 5r_1} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & -2 & -7 & -9 \\ 0 & 3 & -6 & -11 \end{vmatrix}$$

 $\underline{\frac{r_3+2r_2}{r_4-3r_2}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & -12 & -5 \end{vmatrix} = \underline{\frac{r_4-4r_3}{}} - \begin{vmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -3 & -13 \\ 0 & 0 & 0 & 47 \end{vmatrix}$

$$= (-1) \times 1 \times 1 \times (-3) \times 47 = 141$$
目标:
$$\begin{vmatrix} 0 & 1 & 2 & -2 \\ 1 & 0 & 2 & 2 \\ 5 & -2 & 3 & 1 \\ 5 & 3 & 4 & -1 \end{vmatrix} = (-50)$$

● 整角

 练习通过化为三角形行列式, 计算
 |-3
 1
 4
 -2 | 1

 1
 0
 -1
 1 | 2

 0
 -2
 1
 2

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

 练习通过化为三角形行列式, 计算
 |-3
 1
 4
 -2

 1
 0
 -1
 1

 2
 1
 0
 -3

 0
 -2
 1
 2

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$r_2 + 3r_1$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\frac{r_2+3r_1}{r_3-2r_1} = \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$
$$\frac{r_2 + 3r_1}{r_3 - 2r_1} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_3 - r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 3 & 4 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$
$$\frac{r_2 + 3r_1}{r_3 - 2r_1} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_3 - r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 3 & 4 \end{vmatrix}$$

$$r_4 - 3r_3$$

 练习通过化为三角形行列式, 计算
 -3
 1
 4
 -2

 1
 0
 -1
 1

 2
 1
 0
 -3

 0
 -2
 1
 2

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\frac{r_2 + 3r_1}{r_3 - 2r_1} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix} = \frac{r_3 - r_2}{r_4 + 2r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 3 & 4 \end{vmatrix}$$

$$\frac{r_4 - 3r_3}{r_4 - 3r_3} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 22 \end{vmatrix}$$

练习通过化为三角形行列式, 计算 | -3 1 4 -2 | 1 0 -1 1 | 2 1 0 -3 | 0 -2 1 2 | 解

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ -3 & 1 & 4 & -2 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\frac{r_{2}+3r_{1}}{r_{3}-2r_{1}} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix} = \frac{r_{3}-r_{2}}{r_{4}+2r_{2}} - \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 3 & 4 \end{vmatrix}$$

$$\frac{r_{3}-2r_{1}}{0} = \begin{vmatrix} 0 & 1 & 2 & 3 \\ 0 & -2 & 1 & 2 \end{vmatrix} = -22$$

$$\frac{r_{4}-3r_{3}}{0} = \begin{vmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 22 \end{vmatrix} = -22$$

练习通过化为三角形行列式, 计算 1 2 3 0 2 3 0 1 3 0 1 2 0 1 2 3

 练习通过化为三角形行列式,计算
 1 2 3 0 2 3 0 1 3 0 1 2 0 1 2 3

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \frac{r_2 - 2r_1}{r_3 - 3r_1}$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_3 - 6r_2} \frac{r_3 - 6r_2}{r_4 + r_2}$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow[r_3 - 3r_1]{} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow[r_3 - 6r_2]{} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 28 & -4 \\ 0 & 0 & -4 & 4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_3 - 6r_2} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 28 & -4 \\ 0 & 0 & -4 & 4 \end{vmatrix}$$

$$= 4 \times 4 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_3 - 6r_2} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 28 & -4 \\ 0 & 0 & -4 & 4 \end{vmatrix}$$

$$= 4 \times 4 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix} \xrightarrow{r_3 \leftrightarrow r_4}$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_3 - 6r_2} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 28 & -4 \\ 0 & 0 & -4 & 4 \end{vmatrix}$$

$$= 4 \times 4 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix} \xrightarrow{r_3 \leftrightarrow r_4} -16 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 7 & -1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_3 - 6r_2} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 28 & -4 \\ 0 & 0 & -4 & 4 \end{vmatrix}$$

$$= 4 \times 4 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix} \xrightarrow{\underline{r_3 \leftrightarrow r_4}} - 16 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 7 & -1 \end{vmatrix}$$

 $r_4 + 7r_3$

 练习通过化为三角形行列式, 计算
 1 2 3 0 1 3 0 1 2 0 1 2 3 0 1

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_3 - 6r_2} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 28 & -4 \\ 0 & 0 & -4 & 4 \end{vmatrix}$$

$$= 4 \times 4 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix} \xrightarrow{\underline{r_3 \leftrightarrow r_4}} -16 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 7 & -1 \end{vmatrix}$$
$$\frac{\underline{r_4 + 7r_3}}{-16} -16 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 6 \end{vmatrix}$$

练习通过化为三角形行列式, 计算 | 1 2 3 0 | 2 3 0 1 3 0 1 2 0 1 2 3 |

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \\ 0 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_3 - 6r_2} \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 28 & -4 \\ 0 & 0 & -4 & 4 \end{vmatrix}$$

$$= 4 \times 4 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & 7 & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix} = -16 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 7 & -1 \end{vmatrix}$$
$$= \frac{r_4 + 7r_3}{0} - 16 \begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 6 \end{vmatrix} = -96$$

We are here now...

1. 行列式的基本性质——从二三阶行列式讲起

2. n 阶行列式的公理化定义

3. 四阶行列式的计算(初步)

4. 转置行列式

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式,记为 D^T

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式。记为 D^T

例 设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
 ,则转置行列式为 $D^T =$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式,记为 D^T

例 设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
 ,则转置行列式为 $D^T = \begin{vmatrix} 1 & -4 & 3 \\ 1 & 6 & 3 \end{vmatrix}$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式。记为 D^T

例设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
,则转置行列式为 $D^T = \begin{vmatrix} 1 \\ -4 \\ 3 \end{vmatrix}$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式。记为 D^T

例设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
,则转置行列式为 $D^T = \begin{vmatrix} 1 & 0 \\ -4 & 5 \\ 3 & 4 \end{vmatrix}$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式,记为 D^T

例设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
,则转置行列式为 $D^T = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix}$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式。记为 D^T

例设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
,则转置行列式为 $D^T = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix}$

练习 分别计算上述的 D. 及转置 D^T :

$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = \underline{\qquad}, \qquad D^T = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix} = \underline{\qquad}$$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式。记为 D^T

例设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
,则转置行列式为 $D^T = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix}$

练习 分别计算上述的 D. 及转置 D^T :

$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = \underline{-40}, \qquad D^{T} = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix} = \underline{---}$$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式。记为 D^T

例设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
,则转置行列式为 $D^T = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix}$

练习 分别计算上述的 D. 及转置 D^T :

$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = \underline{-40}, \qquad D^{T} = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix} = \underline{-40}$$

定义 将行列式 D 的行和列互换,所得的新的行列式称为 D 的转置行列式。记为 D^T

例设
$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix}$$
,则转置行列式为 $D^T = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix}$

练习 分别计算上述的 D,及转置 D^T :

$$D = \begin{vmatrix} 1 & -4 & 3 \\ 0 & 5 & 4 \\ 1 & 6 & 3 \end{vmatrix} = \underline{-40}, \qquad D^{T} = \begin{vmatrix} 1 & 0 & 1 \\ -4 & 5 & 6 \\ 3 & 4 & 3 \end{vmatrix} = \underline{-40}$$

性质 对任何 n 阶行列式,其转置之后的值不变,即 $D = D^T$

