\aleph_0 Weekly Problem

Ravi Dayabhai & Conrad Warren 2024-07-22

Problem

Show that if n has an odd divisor greater than 1, then $2^n + 1$ is not prime.

Solution

Proof. We assume n has an odd divisor greater than 1 and show that $2^n + 1$ is not prime.

By the Fundamental Theorem of Arithmetic, n has a unique prime factorization $n=2^{k_0}3^{k_1}5^{k_2}\cdots$. Let $P_{\mathrm{odd}}=3^{k_1}5^{k_2}\cdots>1$ and $b=2^{2^{k_0}}$, then $2^n=b^{P_{\mathrm{odd}}}$. Notice that P_{odd} is odd. Therefore, $2^n+1=b^{P_{\mathrm{odd}}}+1\equiv -1+1\equiv 0\pmod{b+1}$. Hence, if n has an odd divisor greater than 1, then 2^n+1 is not prime.