Dynamic Design Analysis

ECU 1: -

• State Machine Design for ECU 1:

• Sequence Diagram of ECU 1: -

• CPU Load for ECU 1: -

We have three tasks: (Assume Execution Time)

 T_1 : {Periodicity: 10ms, Execution Timer: 1ms}

T₂: {Periodicity: 5ms, Execution Timer: 1ms}

T₃: {Periodicity: 20ms, Execution Timer: 1ms}

Hyperperiod = 20 ms

CPU Load = Σ E/H = ((1*2+1*4+1*1) /20)*100 = 35%

ECU 2: -

• State Machine Design for ECU 2:

• Sequence Diagram of ECU 2:

• CPU Load for ECU 2:

We have just one task: (Assume Execution Time)

T₁: {Periodicity: 5ms, Execution Timer: 2ms}

Hyperperiod = 5 ms

CPU Load = Σ E/H = (2/5) *100 = 40%

CAN Bus Load

1 CAN frame contains around 125 bits.

Assume we are using a 500 kb/s bit rate:

:. Bit time = 1 / bit rate => 1 / (500 * 1000) =
$$2\mu$$
s.

This means 1 bit will take $2\mu s$ to transfer on the bus.

The approximate time to transfer one frame is 250µs.

The total number of frames = 350 frames every 1000ms.

Bus Load = (((350*250)/(1000*100))/100) = 8.75%