Име:
група: фак. номер:
отговорите на $1, 2, 4, 5, 7, 8, 10$ и 11 се попълват на този лист, за $3, 6$ и 9 , както и пресмятане в 10 , се използват допълнителни листа.
1. (1 точка) Довършете дефиницията: Редицата $\{a_n\}_1^\infty$ се нарича сходяща, ако съществува число a такова, че за всяко
2. (1 точка) Довършете дефиницията: Казваме, че редицата $\{b_n\}_1^\infty$ клони към $+\infty$, ако за всяко
3. $(3\ moчкu)$ Нека $\lim_{n\to\infty}b_n=-\infty$ и $\lim_{n\to\infty}a_n=a<0$. Докажете, че $\lim_{n\to\infty}a_nb_n=+\infty$.
4. $(1+1\ mov\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x):\mathbb{R}\to\mathbb{R}$ има граница L , когато x клони към $-\infty$, ако: (Коши)
(Хайне)
5. (1 точка) Формулирайте теоремата на Вайерщрас за непрекъсната функция.
6. (4 точки) Нека $f(x)$ е непрекъсната в $(-\infty,0]$, $\lim_{x\to -\infty} f(x) = L$ и $f(0) < L$. Докажете, че: $f(x)$ ограничена в $(-\infty,0]$ и има най-малка стойност в $(-\infty,0]$.
7. (1 точка) Довършете дефиницията: Функцията $f(x)$ се нарича диференцируема в точката a , ако е дефинирана в
и

e

отговорите на 1, 2, 4, 5, 7, 8, 10 и 11 се попълват на този лист, за 3, 6 и 9, както и пресмятане в 10, се използват допълнителни листа.

- **8.** *(1 точка)* Формулирайте теоремата на Лагранж (за крайните нараствания):
- **9.** (6 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че f е намаляваща в \mathbb{R} тогава и само тогава, когато $f'(x) \le 0$ за всяко $x \in \mathbb{R}$.
- 10. (6 точки) Дадено е, че функцията

$$f(x) = \begin{cases} e^x \frac{\sin x}{x} &, \text{ sa } 0 < x \\ Ax \sqrt[3]{1+x} + B &, \text{ sa } x \le 0 \end{cases}$$

има производна в точката a=0 . Намерете A и B . Има ли f(x) втора производна в точката a=0 ? Omzo6op: $A=\ldots\ldots$, $B=\ldots\ldots$

11. (4 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{3x^4 + \sin x}{x^6 + x^4 + 2}$ в \mathbb{R} . Докажете, че F(x) е ограничена в \mathbb{R} .

Име:
група: фак. номер:
отговорите на $1, 2, 4, 5, 7, 8, 10$ и 11 се попълват на този лист, за $3, 6$ и $9,$ както и пресмятане в $10,$ се използват допълнителни листа.
1. $(1 \ mov ka)$ Довършете дефиницията: Редицата $\{a_n\}_1^\infty$ се нарича сходяща, ако съществува число a такова, че за всяко
2. $(1\ moчка)$ Довършете дефиницията: Казваме, че редицата $\{b_n\}_1^\infty$ клони към $-\infty$, ако за всяко
3. $(3\ moч\kappa u)$ Нека $\lim_{n\to\infty}b_n=+\infty$ и $\lim_{n\to\infty}a_n=a<0$. Докажете, че $\lim_{n\to\infty}a_nb_n=-\infty$.
4. $(1+1\ mov\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x):\mathbb{R}\to\mathbb{R}$ има граница L , когато x клони към $+\infty$, ако: (Коши)
(Хайне)
5. (1 точка) Формулирайте теоремата на Вайерщрас за непрекъсната функция.
6. (4 точки) Нека $f(x)$ е непрекъсната в $[0,+\infty)$, $\lim_{x\to+\infty}f(x)=L$ и $f(0)>L$. Докажете, че: $f(x)$ ограничена в $[0,+\infty)$ и има най-голяма стойност в $[0,+\infty)$.
7. $(1 \ moчка)$ Довършете дефиницията: Функцията $f(x)$ се нарича диференцируема в точката a , ако е дефинирана в
и

e

отговорите на 1, 2, 4, 5, 7, 8, 10 и 11 се попълват на този лист, за 3, 6 и 9, както и пресмятане в 10, се използват допълнителни листа.

- **8.** $(1 \ moчка)$ Формулирайте теоремата на Лагранж (за крайните нараствания):
- 9. $(6\ moч\kappa u)$ Нека $f:\mathbb{R}\to\mathbb{R}$ е навсякъде диференцируема. Докажете, че f е растяща в \mathbb{R} тогава и само тогава, когато $f'(x)\geq 0$ за всяко $x\in\mathbb{R}$.
- 10. (6 точки) Дадено е, че функцията

$$f(x) = \begin{cases} e^x \frac{\arctan x}{x} & , & \text{sa} \quad x < 0 \\ \\ Ax\sqrt{1+x} + B & , & \text{sa} \quad x \ge 0 \end{cases}$$

има производна в точката a=0 . Намерете A и B . Има ли f(x) втора производна в точката a=0 ? Отговор: $A=\ \dots$, $B=\ \dots$

11. (4 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{4x^4 + \cos x}{x^6 + x^4 + 5}$ в \mathbb{R} . Докажете, че F(x) е ограничена в \mathbb{R} .