1. Use the CFL pumping lemma to show following language not to be context-free: $\{a^ib^jc^k|i< j< k\}$.

反证法。假设 L= $\{a^ib^jc^k|i< j< k\}$ 是 CFL,由 CFL 泵引理,存在正整数 N,使长度超过 N 的串符合 CFL 泵引理。取 $s=a^Nb^{N+1}c^{N+2}$ 则 s=uvwxy中,因为 $|vwx|\leq N$ vwx 可能几种分布:

- i) 都在 a 或 b 中,取 i=2 则 $s'=uv^iwx^iy$ 中 a 或 b 可能不小于 c
- ii) 在c中,取i=0
- iii) 在 ab 之间,取 i=2
- iv) 在 bc 之间, 取 i=0

无论何种情况,都与假设矛盾。得证

2. Consider the CFG G defined by productions:

$$S \rightarrow aS|Sb|a|b$$

Prove by induction on the string length that no string in L(G) has ba as a substring.

对 |w| 归纳, 首先 |w|=1 显然成立

假设,对所有 $|w| \le k-1$ 命题成立

考查 |w|=k 有 $w=aw_1$ 或 $w=w_2b$ 而由归纳假设知 w_1,w_2 都成立,显然无论如何无法增加 ba 子串,所以 w 成立

3. Convert the PDA $P = (\{p,q\}, (0,1), \{X,Z_0\}, \delta, q, Z_0)$ to a CFG, if δ is given by:

2) $[qAr_n] \to a[pA_1r_1][pA_2r_2] \cdots [pA_nr_n]$ if $(p, A_1A_2 \cdots A_n) \in \delta(q, A, a)$ $n \ge 0$

- (1) $\delta(q, 1, Z_0) = \{(q, XZ_0)\}$
- (4) $\delta(q, \varepsilon, Z_0) = \{(q, \varepsilon)\}$
- (2) $\delta(q, 1, X) = \{(q, XX)\}$
- (5) $\delta(p, 1, X) = \{(p, \varepsilon)\}\$ (6) $\delta(p, 0, Z_0) = \{(q, Z_0)\}\$
- (3) $\delta(q, 0, X) = \{(p, X)\}$ 1) $S \to [qZx]$ for each x in Q;
 -);

0	$S \rightarrow [qZq]$				
	$S \rightarrow [qZp]$	2[qZp]	step 2, 消掉 $[qZp]$,	因与自己循环	
1	$[qZq] \rightarrow 1[qXq][qZq]$	4[qXq]			
	$ [qZq] \to 1[qXp][pZq] $		✓		
	$[qZp] \rightarrow 1[qXq][qZp]$	4[qXq]	step $4, \ldots$		
	$[qZp] \rightarrow 1[qXp][pZp]$	3[pZp]	step 3, 因生成 step 2 中的 $[qZp]$,		
2	$[qXq] \rightarrow 1[qXq][qXq]$	4[qXq]			
	$[qXq] \rightarrow 1[qXp][pXq]$	1[pXq]	step 1, 消掉 $[pXq]$, 因无此产生式		
	$[qXp] \rightarrow 1[qXq][qXp]$	4[qXq]			
	$[qXp] \to 1[qXp][pXp]$		✓	$S \to [qZq]$	$S \to A$
3	$[qXq] \rightarrow 0[pXq]$	1[pXq]		$[qZq] \rightarrow 1[qXp][pZq]$	$A \rightarrow 1BC$
	$[qXp] \rightarrow 0[pXp]$		✓	$[qXp] \rightarrow 1[qXp][pXp]$	$B \rightarrow 1BD$
4	$[qZq] o \varepsilon$		✓	$[qXp] \to 0[pXp]$	$B \to 0D$
5	$[pXp] \rightarrow 1$		✓	$[qZq] o \varepsilon$	$A \to \varepsilon$
6	$[pZp] \to 0[qZp]$	3[pZp]		$[pXp] \to 1$	D o 1
	$[pZq] \rightarrow 0[qZq]$		✓	$[pZq] \to 0[qZq]$	$C \to 0A$

4. Design Turing machine for the language: $\{ ww^R \mid w \text{ is any string of 0's and 1's } \}$.

