

非参数统计分析

作者: Lollins

时间: December 14, 2023

改变人生的事情, 你必须冒险; 意义非凡的事情, 大多碰巧发生; 不重要的事, 才有周全的计划。

前言

非参数统计分析笔记,一些图片的代码在 code 文件夹下。

Lollins
December 14, 2023

目录

第1章	绪论	1
1.1	序	1
	1.1.1 非参数统计概念及学习意义	1
	1.1.2 非参数统计的历史及发展	1
1.2	引言	1
	1.2.1 参数统计方法与非参数统计方法的区别	1
	1.2.2 非参数统计方法的特点	1
kk a sk	LH-VD.1d.73-VI	•
第 2 章 2.1	描述性统计 图表法	2
	图表法	2
2.2	数值方法 · · · · · · · · · · · · · · · · · · ·	2
	2.2.2 表示离散程度的数值	3
	2.2.3 标准误	3
	2.2.4 偏度	3
	2.2.5 峰度	3
	2.2.3 岬皮)
第3章	符号检验法	5
3.1	符号检验	5
	3.1.1 具体操作方法	5
	3.1.2 注意事项	5
	3.1.3 中位数的估计	5
3.2	符号检验在定性数据分析中的应用	6
3.3	成对数据的比较问题	6
第4章	符号秩和检验法	7
4.1	对称中心为原点的检验问题	7
1.1	4.1.1 符号秩和检验统计量 W ⁺	7
	4.1.2 符号秩和检验	7
4.2	符号秩和检验统计量 W ⁺ 的性质	8
	4.2.1 概率分布	8
	4.2.2 W ⁺ 分布的对称性	8
4.3	符号秩和检验统计量 W^+ 的渐进正态性 \dots	8
	4.3.1 期望与方差	8
	4.3.2 W ⁺ 渐进正态性	9
4.4	平均秩法	9
	4.4.1 定义	9
	4.4.2 性质	9
4.5	对称中心的点估计	9
hh = -l-	77 LV L 201 FIG	
-	7411-11-13-6	11
5.1	Mood 中位数检验法 (2×2列联表检验法)	
	5.1.1 Mood 中位数检验法	11

	日	录
5.2	5.1.2 大样本情形 Wilcoxon 秩和检验法 5.2.1 秩 5.2.2 Wilcoxon 秩和检验统计量的性质 5.2.3 Wilcoxon 秩和检验的备择假设 5.2.4 Wilcoxon 秩和检验的平均秩	11 11 11 12
5.3	5.2.5 位置参数差的检验与估计	14 14
5.4	5.3.2 Mann-Whitney U 统计量 (W_{xy}) 和 Wilcoxon 秩和检验统计量 (W_y)	16 16
第 6 章 6.1	多样本问题 Kruskal-Wallis 检验法	18 18

第1章 绪论

1.1 序

1.1.1 非参数统计概念及学习意义

1.1.1.1 意义

1.1.1.2 概念

- **参数统计方法**:数据样本被视为从分布族的某个参数族抽取出来的总体的代表,未知的仅仅是总体分布具体数值,这样推断问题就转化为分布族的若干未知参数的估计问题,用样本来对这些参数进行估计或进行假设检验,从而得知背后的分布,这类推断方法称为参数统计方法。
- **非参数统计方法**:不假定总体分布的具体形式,尽量从数据(或样本)本身获得所需要的信息,通过估计 而获得分布的结构,并逐步建立对事物的数学描述和统计模型的方法。

1.1.2 非参数统计的历史及发展

1.2 引言

1.2.1 参数统计方法与非参数统计方法的区别

- **参数统计方法**: 假定总体的分布形式,既利用样本的数据信息,又利用产生数据总体的信息,是一个有效的数据分析方法,针对性强,但可能出现大的错误。
- 非参数统计方法: 不假定总体的分布形式, 更接近大多数实际情况, 故不会出现大的错误。

1.2.2 非参数统计方法的特点

- (1) 有广泛的适用性(广)
- (2) 样本方法是非参数统计的基本方法(样本)
- (3) 计算简单(简)
- (4) 良好的稳定性(稳)

第2章 描述性统计

定义 2.1 (描述性统计)

是在对产生数据的总体的分布不作任何假设的情况下,整理数据、显示数据、分析数据,将数据中有用的信息提取出来的统计方法。本章介绍常用的描述性统计方法:表格法、图形法和数值方法。

2.1 图表法

表格法、图形法描述统计数据主要是频数 (率)分布表和直方图。

2.2 数值方法

数值方法主要是用数值来表示数据的中心位置和离散程度等的方法。

2.2.1 表示中心位置的数值

我们要求数据的中心位置满足这样一个**条件**:它到各个数据点的距离的和比较小。表示中心位置的数值有平均数、中位数、众数、切尾平均数。

2.2.1.1 平均数

如果用平方值距离法,则点 a 到各数据点 $x_1, x_2, ..., x_n$ 的距离的和可以用 $\sum_{i=1}^n (x_i - a)^2$ 来衡量。平均数 $\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$ 满足条件:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \min_{a} \sum_{i=1}^{n} (x_i - a)^2$$
 (2.1)

上式表示**平均数这一点到各个数据点的平方值距离和最短**。所以在**平方值距离方法下**,数据中心位置的代表是**平均数**。

2.2.1.2 中位数

如果用绝对值距离法,则点 a 到各数据点 $x_1, x_2, ..., x_n$ 的距离的和可以用 $\sum_{i=1}^n |x_i - a|$ 来衡量,中位数 me 满足条件:

$$\sum_{i=1}^{n} |x_i - \max| = \min_{a} \sum_{i=1}^{n} |x_i - a|$$
 (2.2)

上式表示**中位数这一点到各个数据点的绝对值距离和最短**。所以在**绝对值距离方法下**,数据中心位置的代表是**中位数**。

注:

- 中位数是非线性规划选址问题的解;
- 中位数不受极大(小)的影响,有时能较好地表示数据的中心位置。

2.2.1.3 众数

众数:一组数据中出现频数最高的数据。

注:

- 众数也能描述数据的中心位置。特别是定性数据;
- 一组数据有偏时,若数据右偏 (Positively Skewed),通常有 $mo < me < \bar{x}$,若数据左偏 (Negatively Skewed),通常有 $\bar{x} < me < mo$,见图2.1。

2.2.1.4 切尾平均数

设 $X_{(1)},...,X_{(n)}$ 是来自总体 X 的简单随机样本 $X_1,...,X_n$ 的次序统计值,称

$$T_{nk} = \frac{1}{n - 2k} (x_{(k+1)} + \dots + x_{(n-k)})$$
(2.3)

为原样本的的切尾均值。

2.2.2 表示离散程度的数值

样本方差、标准差、全距(范围)、四分位数间距。

2.2.3 标准误

$$se = \frac{s}{\sqrt{n}}, s$$
为样本标准差 (2.4)

2.2.4 偏度

偏度反映单峰分布对称性,常用 β_s 表示总体偏度,

$$\beta_s = E[(\frac{x-\mu}{\sigma})^3] = \frac{\mu_3}{\sigma^3}, \sharp + \mu_3 = E(x-\mu)^3$$
 (2.5)

注: 对称分布的偏度 $\beta_s=0$; 反之不成立,即 $\beta_s=0$,不一定是对称分布。

样本偏度用 b_s 表示,

$$b_s = \frac{m_3}{m_2^{\frac{3}{2}}}, \sharp + m_j = \frac{1}{n} \sum_i (x_i - \overline{x})^j$$
 (2.6)

注: $b_s > 0$ 时,倾向于认为数据分布右偏; $b_s < 0$ 时,倾向于认为数据分布左偏; $b_s \approx 0$ 时,倾向认为数据分布是对称的。

2.2.5 峰度

峰度反映分布峰的尖峭程度,常用 β_k 表示总体峰度。

$$\beta_k = E[(\frac{x-\mu}{\sigma})^4] = \frac{\mu_4}{\sigma^4}$$
 (2.7)

注: 若 $X \sim N(\mu, \sigma^2)$,则 $\beta_k = 3$ 。当 $\beta_k > 3$ 时,该分布具有过度的峰度 (厚尾分布),当 $\beta_k < 3$ 时,该分布具有不足的峰度 (薄尾分布),

样本峰度用 b_k 表示,

$$b_k = \frac{m_4}{(m_2)^2} (2.8)$$

第3章 符号检验法

在非参数检验中,总体的中心位置的数通常用中位数表示,本章主要讨论中位数、p分位数检验问题的符号检验方法,中位数的点估计、区间估计等。

3.1 符号检验

3.1.1 具体操作方法

符号检验问题的原假设和备择假设有三种情况。这三种情况的原假设 H_0 都是 $me = me_0$,其中 me_0 是给定的常数,备择假设 H_1 分别是 $me > me_0$, $me < me_0$ 和 $me \neq me_0$ 。

由于 P(X = me) = 0,所以不妨假设样本单元 $x_1, x_2, ..., x_n$ 都不等于 me_0 。符号检验的检验统计量为

$$S^{+} = {}^{\#}G = {}^{\#}\{x_i : x_i - me_0 > 0, i = 1, 2, \cdots, n\},$$
(3.1)

记号#表示计数, 即 S^+ 是集合G中元素的个数。 S^+ 也可以等价的表示为

$$S^{+} = \sum_{i=1}^{n} u_{i}, u_{i} = \begin{cases} 1, & x_{i} - me_{0} > 0\\ 0, & \text{ } \downarrow \downarrow, \end{cases}, \quad i = 1, 2, \cdots, n$$
(3.2)

由于在 $me = me_0$ 时, $S^+ \sim b(n, \frac{1}{2})$.

考虑备择假设 $H_1: me > me_0$,我们用 p 值来度量 S^+ 是否足够大,让我们拒接原假设。p 值等于二项分布 $b(n, \frac{1}{2})$ 的随机变量大于等于 S^+ 的概率 $P(b(n, \frac{1}{2}) \geq S^+)$,p 值越小, S^+ 越大。

如果 p 值 $\leq \alpha$,则在显著性水平 α 下拒接原假设,认为备择假设 H_1 成立;如果 p 值 $> \alpha$,则在显著性水平 α 下不拒绝原假设。

3.1.2 注意事项

在实际问题中,可能出现一些观察值正好等于 me₀,这时有以下两种处理方法:

- 1、 将这些正好等于 me_0 的观察值去掉,并相应的减少样本容量 n 的值。
- 2、(不常用,不写了)

3.1.3 中位数的估计

3.1.3.1 点估计

引理 3.1

设 $x_1, x_2, ..., x_n$ 是来自总体 X 的样本, t_n 为总体 X 的 p 分位数, m_{np} 为样本的 p 分位数, 则

$$P(\lim_{n \to \infty} m_{np} = t_p) = 1 \tag{3.3}$$

根据引理3.1, 我们可以结论

$$\hat{t}_p = m_{np} = \begin{cases} x_{([np]+1)}, & np \text{ if } p \text{ if$$

3.1.3.2 区间估计

设 $x_1, x_2, ..., x_n$ 是来自总体 X 的样本, $S^+ = {}^\#\{x_i: x_i - \mathsf{me}_0 > 0, i = 1, 2, \cdots, n\} \sim b(n, \frac{1}{2})$ 那么有

$$P(x_{(r)} \le me \le x_{(n-r+1)}) = 1 - P(me < x_{(r)}) - P(me > x_{(n-r+1)}) = 1 - \sum_{i=0}^{r-1} \binom{n}{i} (\frac{1}{2})^{n-1}$$
(3.5)

3.2 符号检验在定性数据分析中的应用

根据中心极限定理, 当 n 很大时,且 $S^+ \sim b(n,p)$,那么 $z = \frac{S^+ - np}{\sqrt{np(1-p)}} \sim N(0,1)$ 。

- 对于 $x \sim b(n,p)$,做连续性修正:

 1、 $P(X \le k) \approx \Phi(\frac{k+\frac{1}{2}-np}{\sqrt{np(1-p)}}), P(X < k) \approx \Phi(\frac{k-\frac{1}{2}-np}{\sqrt{np(1-p)}})$ 2、 $P(X \ge k) \approx \Phi(\frac{np-k+\frac{1}{2}}{\sqrt{np(1-p)}}), P(X > k) \approx \Phi(\frac{np-k-\frac{1}{2}}{\sqrt{np(1-p)}})$

3.3 成对数据的比较问题

定义 3.1 (配对数据)

两样本间配偶成对,每一对样本除随机给予的不同处理外,其他试验条件尽量一致。

第4章 符号秩和检验法

本章主要讨论对称中心的检验及估计问题。

4.1 对称中心为原点的检验问题

4.1.1 符号秩和检验统计量 W^+

符号检验统计量

$$S^{+} = \sum_{i=1}^{n} u_{i}, u_{i} = \begin{cases} 1, & x_{i} > 0, \\ 0, & \text{ if } 1, 2, \cdots, n. \end{cases}$$

$$(4.1)$$

注: S+ 仅使用样本数据量的正负信息,未使用样本数据量的大小信息。

符号秩和统计量

设 $|x_1|, |x_2|, \cdots, |x_n|$ 互不相等,由大到小排列为 $z_{(1)} < z_{(2)} < \cdots < z_{(n)}$,若 $|x_i| = z_{(R_i)}$,则称 $|x_i|$ 的秩为 $R_i, R_i = 1, 2, \cdots, n$ 。符号秩和统计量为

$$W^{+} = \sum_{i=1}^{n} u_i R_i \tag{4.2}$$

此处的 u_i 定义与式4.1中相同。

注: W⁺ 不仅使用样本数据量的符号信息,还是使用了样本数据量的大小信息。

在表4.1中给出了10个观察值以及它们的10个观察值的符号,绝对值和绝对值的秩。这10个观察值的符号

观察值 -7.6 | -5.5 | 4.3 | 2.7 -4.8 -8.5 符号 + 绝对值 2.7 4.3 8.5 7.6 5.5 4.8 2.1 1.2 3.3 6.6 绝对值的秩 10

表 4.1: 10 个观察值的符号,绝对值和绝对值的秩

检验统计量 $S^+ = 3$, 符号秩和统计量 $W^+ = 5 + 3 + 2 = 10$ 。

4.1.2 符号秩和检验

检验统计量: W^+ , 原假设 $H_0: \theta = 0$

1、备择假设 $H_1: \theta > 0$,若备择假设 H_1 成立,则 $\forall a > \theta$,有 P(x > a) > P(x < -a)。如图4.1所示,代 码见 im4 1.r。

图 4.1

给定置信水平 α , 拒绝域为 $W^+ \geq c$, 其中

$$c = \inf\{c^* : P(W^+ \geqslant c^+) \leqslant \alpha\}$$

2、备择假设 $H_1: \theta < 0$, 拒绝域为 $W^+ \leq d$, 其中

$$d = \sup\{d^* : P(W^+ < d^*) \le \alpha\}$$

3、备择假设 $H_1 \neq 0$,拒绝域为 $W^+ \geq c$ 或 $W^+ \leq d$,其中

$$c = \inf\{c^* : P(W^+ \ge c^*) \le \alpha/2\}, d = \sup\{d^* : P(W^+ \le d^*) \le \alpha/2\}.$$

4.2 符号秩和检验统计量 W^+ 的性质

4.2.1 概率分布

命题 4.1

令 $S = \sum_{i=1}^{n} iu_i$, 则在总体关于原点对称时, W^+ 和 S 同分布, 即 $W^+ \stackrel{d}{=} S$ 。

注: 总体 X 的分布关于原点对称时, $u_1,u_2,...,u_n$ 相互独立同分布,且 $P(u_i=0)=P(u_i=1)=\frac{1}{2},i=1,2,...,n$ 。故 $S=\sum_{i=1}^n iu_i$ 为离散型分布,它的取值范围为 $0,1,...,\frac{n(n+1)}{2}$,并且

$$P(S=d) = P(\sum_{i=1}^{n} iu_i = d) = \frac{t_n(d)}{2^n}, d = 0, 1, 2, \dots, \frac{n(n+1)}{2}$$
(4.3)

其中 $t_n(d)$ 表示从 1,2,...,n 中任取若干个数,其和恰为 d 的取法数量 (其中 $t_n(d) = t_n(\frac{n(n+1)}{2} - d)$)。

4.2.2 W⁺ 分布的对称性

命题 4.2

在总体的分布关于原点 0 对称时, W^+ 服从对称分布,对称中心为 $0,1,...,rac{n(n+1)}{2}$ 的中点 $rac{n(n+1)}{4}$

注: 当 $n \leq 30$ 时,可查表得到符号秩和检验临界值 c_{α} ,使 $P(W^+ \geq c_{\alpha}) = \alpha$,故当 $d = \frac{n(n+1)}{2} - c_{\alpha}$ 时, $P(W^+ \leq d_{\alpha}) = \alpha$ 。

4.3 符号秩和检验统计量 W+ 的渐进正态性

4.3.1 期望与方差

$$H_0$$
 成立时, $W^+ \stackrel{d}{=} S = \sum_{i=1}^n i u_i$, $u_i \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ 。 再根据 $E(u_i) = \frac{1}{2}, D(u_i) = \frac{1}{4}$,求得 S 的期望与方差为
$$E(S) = \frac{1}{2} \sum_{i=1}^n i = \frac{n(n+1)}{4},$$

$$D(S) = \frac{1}{4} \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{24}.$$
 (4.4)

由于 W^+ 与 S 有相同的分布,所以我们求得了 W^+ 的均值与方差。

命题 4.3

在总体分布关于原点 0 对称时,

$$E(W^{+}) = \frac{n(n+1)}{4},$$

$$D(W^{+}) = \frac{n(n+1)(2n+1)}{24}.$$
(4.5)

4.3.2 W⁺ 渐进正态性

由 liapunov 中心极限定理知 S 渐进服从正态分布,而 W^+ 与 S 有相同的分布,所以 W^+ 也有渐进正态性。

命题 4.4

如果总体的分布关于原点0对称,则在样本容量n趋于无穷大时, W^+ 也有渐进正态性,即

$$\frac{W^{+} - E(W^{+})}{\sqrt{D(W^{+})}} = \frac{W^{+} - n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}} \xrightarrow{L} N(0,1)$$
(4.6)

该渐进正态性简记为

$$W^{+} \dot{\sim} N(\frac{n(n+1)}{4}, \frac{n(n+1)(2n+1)}{24})$$
 (4.7)

4.4 平均秩法

4.4.1 定义

定义 4.1

设 $x_1, x_2, ..., x_n$ 为取自总体 X 的样本,其中相等的 x_i 组成一个结,结中 x_i 的个数称为该结的结长 $\tau (\geq 2)$,结的个数记为 g。

秩的定义方式: 随机秩, 平均秩。

4.4.2 性质

命题 4.5

若总体 X 的分布关于原点对称,有结数据取平均秩,则

$$E(W^{+}) = \frac{n(n+1)}{4},$$

$$D(W^{+}) = n(n+1)\left((2n+1)/24 - \sum_{j=1}^{g} \left(\tau_{j}^{3} - \tau_{j}\right)/48.$$
(4.8)

4.5 对称中心的点估计

- 1、样本的均值估计对称中心 θ 。
- **2**、样本的中位数估计对称中心 θ 。
- 3、样本的切尾均值估计对称中心 θ 。
- **4**、Winsort 化样本的均值估计对称中心 θ 。

定义 4.2

设 $x_1, x_2, ..., x_n$ 的次序统计量为 $x_{(1)}, x_{(2)}, ..., x_{(n)}$, 称

$$W_{nk} = \frac{1}{n} \left(\sum_{i=k+1}^{n-k} x_{(1)} + kx_{(k+1)} + kx_{(n-k)} \right)$$
(4.9)

为对称中心的 Winsort 化均值估计。

注: Winsort 化均值估计为切尾均值的一个修正,它加重了端头值在估计中的权重。

5、Hodges Lehmann(H-L) 估计

H-L 估计对称中心步骤如下:

- (i) 先构造统计量 $T = T(x_1, x_2, ..., x_n)$ 满足一下性质:
 - $\theta = 0$ 时, T 的分布关于某点 c 对称, 且与 x 分布函数 F(x)。
 - 任意 $x_1, x_2, ..., x_n \in R$ 时, $T(x_1 + \theta, x_2 + \theta, ..., x_n + \theta)$ 关于 θ 非降。
- (ii) 定义:

$$\hat{\theta}_1 = \sup\{a : T(x_1 - a, x_2 - a, ..., x_n - a) > c\}$$

$$\hat{\theta}_2 = \sup\{a : T(x_1 - a, x_2 - a, ..., x_n - a) < c\}$$
(4.10)

一般有 $\hat{\theta}_1 \leq \hat{\theta}_2$ 。

常用对称中心 H-L 估计量如下:

- (1) 当 T 统计量为 $T = \frac{\sqrt{n}\bar{x}}{S}$ 时, $\hat{\theta} = \bar{x}$;
- (2) 当 T 统计量为 $T = S^+ = \{x_i > 0, i = 1, 2, ..., n\}$ 时, $\hat{\theta} = m_n$ (中位数);
- (3) 当 T 统计量为 $T=W^+$ 时,将 $\{\frac{x_i+x_j}{2},1\leq i\leq j\leq n\}$,共有 $N=\frac{n(n+1)}{2}$ 个值,从小到大排序为 $W_{(1)}^+\leq W_{(2)}^+\leq ...\leq W_{(N)}^+$,则称对称中心 θ 的 H-L 估计为 $\{\frac{x_i+x_j}{2},1\leq i\leq j\leq n\}$ 的中位数。

第5章 两样本问题

5.1 Mood 中位数检验法 (2×2列联表检验法)

5.1.1 Mood 中位数检验法

样本 $x_1,...,x_m$ 和 $y_1,...,y_n$ 分别来自相互独立的连续型总体 X 和 Y,分别记其中位数为 me_x,me_y 。($H_0:me_x=me_y$)

首先将样本 $x_1,...,x_m$ 和 $y_1,...,y_n$ 合在一起,并从小到大排列,计算混合样本中位数 m_n ,得四格表

表 5.1

	$\leq m_n$	$\geq m_n$	合计
X样本	N_{11}	N_{12}	N_{1+}
Y样本	N_{21}	N_{22}	N_{2+}
	N_{+1}	N_{+2}	N

1、备择假设为 $H_1: me_x > me_y$ 当 N_{11} 较小时,拒绝 H_0 ,检验 p 值为

$$\sum_{k \le N_{11}} P(k, N_{1+}, N_{+1}, N)$$

2、备择假设为 $H_1 : me_x < me_y$ 当 N_{11} 较大时,拒绝 H_0 ,检验 p 值为

$$\sum_{k \ge N_{11}} P(k, N_{1+}, N_{+1}, N)$$

其中
$$P(k, N_{1+}, N_{+1}, N) = \frac{\binom{N+1}{N_{11}}\binom{N+2}{N_{12}}}{\binom{N}{N_{1+}}}$$
。

5.1.2 大样本情形

当样本容量较大时,超几何分布可以近似服从正态分布,过程与上一章大样本情形类似,此处过程省去。

5.2 Wilcoxon 秩和检验法

5.2.1 秩

定义 5.1

设 $x_1,...,x_N$ 是取自总体X的简单随机样本,我们定义 x_i 的秩 R_i 为

$$R_i = \sum_{j=1}^{N} I_{(x_j \le x_i)} \tag{5.1}$$

定义 5.2

设 $x_1,...,x_N$ 是取自总体 X 的简单随机样本, R_i 为 x_i 的秩, 则 $R = (R_1,R_2,...,R_N)$ 或部分分量 $(R_1,R_2,...,R_m)(1 \le m \le N)$ 或由 R 构成的统计量统称为秩统计量。

命题 5.1

对于简单随机样本 $x_1,...,x_N$, 秩统计量 $R = (R_1,R_2,...,R_N)$ 等可能的取 (1,2,...,N) 的任意 N! 个排列 之一,且 R 是由在 (1,2,...,N) 的所有可能的排列组成的空间 R 上的均匀分布,即

$$P(R = (r_1, r_2, ..., r_N)) = \frac{1}{N!}$$
(5.2)

注: 对于简单随机样本, R 的边缘分布也是均匀分布, 如

$$P(R_i = r) = \frac{1}{N}, r = 1, 2, ..., N$$

$$P(R_i = r_1, R_j = r_2) = \frac{1}{N(N-1)}, r_1(\vec{x}_2) = 1, 2, ..., N, r_1 \neq r_2$$
(5.3)

定理 5.1

对 $\forall i = 1, 2, ..., N$, 有

$$E(R_i) = \frac{N+1}{2}, \ V(R_i) = \frac{N^2 - 1}{12}$$
 (5.4)

定理 5.2

对 $\forall i \neq j$,有

$$Cov(R_i, R_j) = -\frac{N+1}{12}$$
 (5.5)

5.2.2 Wilcoxon 秩和检验统计量的性质

设两样本 $x_1, x_2, ..., x_m$ 和 $y_1, y_2, ..., y_n (m \ge n)$,样本容量 N = m + n。

Wilcoxon 秩和检验原假设 $H_0: X 与 Y$ 同分布。 H_0 成立时,

$$P(R_1 = r_1, R_2 = r_2, \dots, R_n = r_n) = \frac{1}{N(N-1)\cdots(N-n+1)}$$

其中 $(r_1, r_2, ..., r_n)$ 是从 1, 2, ..., N 中取出的 n 个数的一个排列。

记Y样本 $y_1, y_2, ..., y_n$ 的秩和为 W_y ,即

$$W_y = \sum_{j=1}^n R_j \tag{5.6}$$

1、概率分布

 W_y 服从离散型分布,最小值为 $1+2+\cdots+n=\frac{n(n+1)}{2}$,最大值为 $(m+1)+(m+2)+\cdots+(m+n)=mn+\frac{n(n+1)}{2}$ 。

命题 5.2

当 H_0 成立时,

$$P(W_y = d) = P(\sum_{j=1}^n R_j = d) = \frac{t_{m,n}(d)}{C_N^n}$$

$$P(W_y \le d) = P(\sum_{j=1}^n R_j \le d) = \frac{\sum_{j \le d} t_{m,n}(j)}{C_N^n}$$
(5.7)

其中 $t_{m,n}(d)$ 表示从 1,2,...,N 中任取 n 个数, 其和恰为 d 的取法总数。

2、对称性

假设从 1,2,...,N 中任取 \mathbf{n} 个数为 $a_1,a_2,...,a_n$,其和为 \mathbf{d} ,若令 $b_i=N+1-a_i$,则 $1\leq b_i\leq N,\ i=1,2,...,n$,其和为 n(N+1)-d,则 $t_{m,n}(d)=t_{m,n}(n(N+1)-d)$ 。

故有以下结论:

$$P(W_y = d) = P(W_y = n(N+1) - d)$$

$$P(W_y \le d) = P(W_y \ge n(N+1) - d)$$
(5.8)

其中 $d = \frac{n(n+1)}{2}, 1 + \frac{n(n+1)}{2}, ..., mn + \frac{n(n+1)}{2}$ 。

特别地,我们可以推出

$$P(W_y = n(N+1)/2 - d) = P(W_y = n(N+1)/2 + d)$$

$$P(W_y \le n(N+1)/2 - d) = P(W_y \ge n(N+1)/2 + d)$$
(5.9)

命题 5.3

当 H_0 成立时, W_y 服从对称分布,对称中心为 $\frac{n(N+1)}{2}$ 。

3、W_y 的期望和方差

命题 5.4

当 H_0 成立时,

$$E(W_y) = \frac{n(N+1)}{2}$$

$$D(W_y) = \frac{mn(N+1)}{12}$$
(5.10)

4、渐进正态性

命题 5.5

 H_0 成立时,若 $min\{m,n\} \to \infty$,且 $\frac{m}{N} \to \lambda \in (0,1)$, λ 为常数,则

$$\frac{W_y - E(W_y)}{\sqrt{D(W_y)}} = \frac{W_y - n(N+1)/2}{\sqrt{mn(N+1)/12}} \xrightarrow{L} N(0,1).$$
 (5.11)

5.2.3 Wilcoxon 秩和检验的备择假设

原假设 H_0 :X 和 Y 同分布。而 Wilcoxon 秩和检验的备择假设有四种定量描述方法。

- **1**、备择假设: $H_1: P(X > Y) > \frac{1}{2}; P(X > Y) < \frac{1}{2}; P(X > Y) \neq \frac{1}{2}$ 。
- **2**、设总体 X 和 Y 的分布函数、密度函数为 F(x), G(x), f(x), g(x), 则 $H_1: F < G; F > G; F \neq G$ 。

定理 5.3

设总体 X 和 Y 相互独立, $\forall c \in \mathbb{R}$, 都有 F(c) < G(c), 则 $P(X > Y) > \frac{1}{2}$ 。

3、若 X+a 和 Y 同分布,则 a 为位置参数, $H_1: a > 0; a < 0; a \neq 0$ 。

定理 5.4

X+a 与 Y 同分布, 当且仅当 $\forall c \in \mathbb{R}$, 有 G(c) = F(c-a)。

4. $H_1: me_x > me_y; me_x < me_y; me_x \neq me_y$.

定理 5.5

- (1) $\forall c \in \mathbb{R}$, 都有 F(c) < G(c), 则 $me_x > me_y$ 。
- (2) 假设 $X + a \stackrel{d}{=} Y$ 或 $\forall c \in \mathbb{R}$, 都有 F(c a) = G(c), 则 $me_x + a = me_y$ 。

注: 以上四种备择假设的关系: $3 \rightarrow 2 \rightarrow 1$, $3 \rightarrow 2 \rightarrow 4$ 。

5.2.4 Wilcoxon 秩和检验的平均秩

 $W_y = \sum_{i=1}^n a(R_i)$, 其中 a(r), r = 1, 2, ..., n 为计分函数。结长为 1 时, a(r) = r; 结长大于 1 时, a(r) 为结 长的平均秩。

1、计分函数 $a(R_i)$ 的性质

$$E(a(R_i)) = \bar{a}$$

$$D(a(R_i)) = \frac{1}{N} \sum_{i=1}^{N} (a(i) - \bar{a})^2$$

$$Cov(a(R_i), a(R_j)) = -\frac{1}{N(N-1)} \sum_{i=1}^{N} (a(i) - \bar{a})^2$$
(5.12)

其中 $\bar{a} = \frac{\sum_{i=1}^{N} a(i)}{N}$ 。

定理 5.6 在 X 和 Y 同分布时,有

$$E(\sum_{i=1}^{n} a(R_i)) = n\overline{a}$$

$$D(\sum_{i=1}^{n} a(R_i)) = \frac{nm}{N(N-1)} \sum_{i=1}^{n} (a(i) - \overline{a})^2$$
(5.13)

2、 W_y 的数字特征及渐进分布

$$E(\alpha(R_i)) = \alpha = \frac{n(N+1)}{2}$$

$$D(\alpha(R_i)) = \frac{nm(N+1)}{12} - \frac{nm}{12N(N-1)} \sum_{j=1}^{g} (\tau_j^3 - \tau_j)$$
(5.14)

5.2.5 位置参数差的检验与估计

若 $\exists a$,对 $\forall c \in \mathbb{R}$,都有 G(c) = F(c-a),则 X+a 与 Y 同分布。

1、位置参数差的检验

$$H_0: a = \eta \text{ vs } H_1: a < \eta; a \neq \eta; a > \eta$$

若 H_0 成立,则 $X + \eta$ 与 Y 同分布。

- 2、位置参数差的估计
- (1) 点估计:
 - (a) 样本均值差估计位置参数差: $\hat{a} = \bar{y} \bar{x}$;
 - (b) 样本中位数差估计位置参数差: $\hat{a} = me_y me_x$;
 - (c) H-L 估计: $\hat{a} = me(Y X)$, 即 $\{y_j x_i, i = 1, ..., m, j = 1, ..., n\}$ 的中位数。
- (2) 区间估计。

5.3 Mann-Whitney U 檢驗

5.3.1 U 统计量

1、单样本 U 统计量

定义 5.3

设 $x_1, x_2, ..., x_n$ 为取自总体 X 的样本,h 为 m 元函数 $(m \le n)$,若 $h(x_1, x_2, ..., x_m)$ 为总体分布参数 θ 的 无偏估计,即

$$E(h(x_1, x_2, ..., x_m)) = \theta (5.15)$$

则称 $U_n = U_n(x_1,x_2,...,x_n) = \frac{1}{A_n^m} \sum_{1 \leq i_1 \neq i_2 \neq ... \neq i_m \leq n} h(x_{i_1},...x_{i_m})$ 为 U 统计量,或称其是以函数 h 为核的基于样本 $x_1,x_2,...,x_n$ 的参数 θ 的 U 统计量。

注:

- (i) U 统计量是 θ 的无偏估计,即 $E(U_n) = \theta$;
- (ii) 若核函数 h 为对称核函数,即任一(1,2,...,m) 的排列 $\alpha_1,\alpha_2,...,\alpha_m$,有 $h(x_{\alpha_1},x_{\alpha_2},...,x_{\alpha_m}) = h(x_1,x_2,...,x_m)$,则 U 统计量可以简写为:

$$U_n = \frac{1}{C_n^m} \sum_{1 \le i_1 \ne i_2 \ne \dots \ne i_m \le n} h(x_{i_1}, \dots x_{i_m})$$
 (5.16)

(iii) 若核函数 h 不是对称核函数, 可以构造等价的对称核函数

$$h^*(x_1, \dots, x_m) = \frac{1}{m!} \sum_{1 \le i_1 \ne i_2 \ne \dots \ne i_m \le m} h(x_{i_1}, \dots, x_{i_m})$$
(5.17)

其中 $(i_1, i_2, ..., i_m)$ 为 (1, 2, ..., m) 的任意排列。

2、两样本 U 统计量

定义 5.4

设 $x_1, x_2, ..., x_m$ 和 $y_1, y_2, ..., y_n$ 分别为取自分布为 F(x) 的总体 X 和分布为 G(y) 的总体 Y 的样本,h 为 $m_1 + m_2$ 元函数。若 $h(x_1, x_2, ..., x_{m_1}, y_1, y_2, ..., y_{m_2})$ 为总体分布参数 θ 的无偏估计,即 $E(h(x_1, x_2, ..., x_{m_1}, y_1, y_2, ..., y_{m_2})) = \theta(F, G)$,则以 h 为核基于两样本 $(x_1, x_2, ..., x_m, y_1, y_2, ..., y_n)$ 的参数 θ 的 U 统计量为

$$U_{mn} = \frac{1}{A_m^{m_1} A_n^{m_2}} \sum_{(1 \le i_1 \ne \dots \ne i_{m_1} \le m)} \sum_{(1 \le j_1 \ne \dots \ne j_{m_2} \le n)} h(x_{i_1}, \dots, x_{i_{m_1}}, y_{j_1}, \dots, y_{j_{m_2}})$$
(5.18)

注:

- 1. U 统计量是 θ 的无偏估计,即 $E(U_{mn}) = \theta$;
- 2. 若核函数 h 为对称核函数,即任一 $(1,2,...,m_1)$ 的排列 $(\alpha_1,\alpha_2,...,\alpha_{m_1})$ 和 $(1,2,...,m_2)$ 的排列 $(\beta_1,\beta_2,...,\beta_{m_2})$,

$$U_{mn} = \frac{1}{C_m^{m_1} C_n^{m_2}} \sum_{\substack{(1 \le i_1 \ne \dots \ne i_{m_1} \le m) \ (1 \le j_1 \ne \dots \ne j_{m_2} \le n)}} h(x_{i_1}, \dots, x_{i_{m_1}}, y_{j_1}, \dots, y_{j_{m_2}})$$
(5.19)

3. 若核函数 h 不是对称核函数, 构造等价的对称核函数

$$h^*(x_1, \dots, x_{m_1}, y_1, \dots, y_{m_2}) = \frac{1}{m_1! m_2!} \sum_{(1 \le i_1 \ne \dots \ne i_{m_1} \le m_1)} \sum_{(1 \le j_1 \ne \dots \ne j_{m_2} \le m_2)} h(x_{i_1}, \dots, x_{i_{m_1}}, y_{j_1}, \dots, y_{j_{m_2}})$$
(5.20)

5.3.2 Mann-Whitney U 统计量 (W_{xy}) 和 Wilcoxon 秩和检验统计量 (W_y)

1、Mann-Whitney U 统计量

$$\Phi(x_i, y_j) = \begin{cases} 1, & x_i - y_j < 0 \\ 0, & \text{其他} \end{cases}$$
(5.21)

 $\mathbb{M} W_{xy} = \sum_{i=1}^{m} \sum_{j=1}^{n} \Phi(x_i, y_j).$

2、 W_{xy} 和 W_y

定理 5.7

$$W_{xy} \stackrel{}{ au} W_y$$
 仅相差一个常数,即: $W_{xy} = W_y - rac{n(n+1)}{2}; W_{yx} = W_x - rac{m(m+1)}{2}$ 。

注: "用 Mann-Whitney U 统计量作检验统计量"等价于"用 Wilcoxon 秩和统计量作检验统计量"。

5.3.3 Mann-Whitney U 统计量的性质

1、小样本情形

命题 5.6

若原假设 H_0 成立,则 W_{xy} 服从对称分布,分布中心为 $\frac{mn}{2}$ 。由此可以推导出如下结论:

$$P(W_y \le d_\alpha) = \alpha$$

$$P(W_{xy} \le d_\alpha - \frac{n(n+1)}{2}) = \alpha$$

$$P(W_{xy} \ge mn - d_\alpha + \frac{n(n+1)}{2}) = \alpha$$

2、大样本情形

命题 5.7

若原假设 H_0 成立,则有

$$\begin{split} EW_{xy} &= EW_y - n(n+1)/2 = mn/2 \\ DW_{xy} &= DW_y = mn(N+1)/12 \end{split} \tag{5.22}$$

且若 $min\{m,n\} \to \infty$, 且 $\frac{m}{N} \to \lambda \in (0,1)$, λ 为常数,则 W_{xy} 有渐进正态性。

5.4 两样本尺度参数的秩检验方法

5.4.1 尺度参数

1、定义

定义 5.5

设总体 X 和 Y 的分布函数分别为 F(x) 和 G(x),若 $F(0)=G(0)=\frac{1}{2}$,且对任意实数 c,有 $G(c)=F(\frac{c}{b})$,则称 b 为 X 与 Y 的尺度参数 (b>0)。

定理 5.8

设总体 X 和 Y 的分布函数分别为 F(x) 和 G(x),若 $F(0)=G(0)=\frac{1}{2}$,且对任意实数 c,都有 $G(c)=F(\frac{c}{b})\Longleftrightarrow$ bX 与 Y 同分布。

2、尺度参数 b 取值大小的意义

- (1) b > 1, 因为 p(Y > c) = p(bX > c) = p(X > c/b), 则若 b > 1
 - $\pm c > 0$ 时, p(Y > c) > p(X > c);
 - $\pm c < 0$ 时, p(Y < c) > p(X < c).
- (2) b < 1,分析与上面的类似。

3,

若 b 为 X 与 Y 的尺度参数,则有

$$\sigma_y^2 = b^2 \sigma_x^2, IQR_y = b(IQR_x)$$
(5.23)

5.4.2 尺度参数的检验问题

$$H_0: b = 1 \ vs \ H_1: b > 1; b < 1; b \neq 1$$

定义 5.6

积分函数 $\alpha(r)$, r=1,2,...,n, y_i 的秩为 R_i 时, y_i 的得分为 $\alpha(R_i)$ 。

1、Mood 检验

取 $\alpha(r) = (r - \frac{N+1}{2})^2, r = 1, 2, ..., N$,此时 $\alpha(r)$ 为单谷函数,记 $M_y = \sum_{i=1}^n \alpha(R_i)$ 。则当 H_0 成立时,有 $E(M_y) = \frac{n(N^2 - 1)}{12}, \ D(M_y) = \frac{nm(N+1)(N^2 - 4)}{180} \tag{5.24}$

且若 $minm, n \to \infty$,且 $\frac{m}{N} \to \lambda \in (0,1)$, λ 为常数,则 M_y 有渐进正态性。

- 2、Siegal-Turkey 检验
- 3、Ansari-Bradley 检验

取 $\alpha(r)$ 为单峰函数, 令 $\alpha(r) = \frac{N+1}{2} - \|r - \frac{N+1}{2}\|, r = 1, 2, ..., N$,记 $A = \sum_{i=1}^{N} \alpha(R_i)$ 。

4、Klotz 检验

记标准正态分布的分布函数为 $\Phi(x)$,取 $\Phi(x)$ 的反函数 $\Phi^{-1}(x)$,取 $\alpha(r)=[\Phi^{-1}(\frac{r}{N+1})]^2, r=1,2,...,N$,则 $\alpha(r)$ 为单谷函数,记 $K_y=\sum_{i=1}^N\alpha(R_i)$ 。

第6章 多样本问题

6.1 Kruskal-Wallis 检验法

6.1.1 Kruskal-Wallis 检验

1、H的分析

• 组间平方和: $SSB = \sum_{j=1}^{k} n_j (\bar{x}_j - \bar{x})^2;$ • 组内平方和: $SSW = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2;$ • 总平方和: $SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2.$

Bibliography

- [1] 孙山泽. 非参数统计讲义. 北京大学出版社
- [2] 陈希孺. 非参数统计. 中国科学技术大学出版社
- [3] 李裕奇. 非参数统计方法. 西南交通大学出版社