## ВЕРОЈАТНОСТ И СТАТИСТИКА (II колоквиум, 22.12.2012)

|    | 1 група                                                                                                                                                                                                                                                                                                          |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Им | е и презиме: бр. индекс:                                                                                                                                                                                                                                                                                         |  |  |  |
| 1. | (3) Нека $X_i$ се независни случајни променливи со Пуасонови распределби $\operatorname{Po}(\lambda_i)$ . Функцијата изводница на Пуасонова случајна променлива $X{\sim}\operatorname{Po}(\lambda)$ е $M_X(t)=e^{-\lambda(1-e')}$ . Да се определи распределбата на случајната променлива $Y=\sum_{i=1}^n X_i$ . |  |  |  |
| 2. | а) (1) Да се дефинира математичко очекување на случајна променлива од апсолутно непрекинат тип. б) (4) Нека X и Y се независни случајни променливи со нормални распределби, $N(\mu_1, {\sigma_1}^2)$ и $N(\mu_2, {\sigma_2}^2)$ соодветно. Да се определи $E(3X\text{-}2XY\text{+}Y^2)$ .                        |  |  |  |

- **3.** а) (1) Да се наведе класичното неравенство на Чебишев. b) (3) Нека X е случајна променлива со Биномна распределба со B(n,1/4). Да се процени веројатноста  $P(|X-EX|>\sqrt{3n})$

| 4. | (4) Даден е следниот примерок од набљудувања на обележје X на дадена популација:1,2,2,3,4,4,5 |
|----|-----------------------------------------------------------------------------------------------|
|    | Да се премета $\min_{c \in R} \sum_{i=1}^{7} (x_i - c)^2$ .                                   |

**5.** (4) Нека 
$$\overline{X}$$
 и  $S^2$  се просекот и дисперзија на случаен примерок со обем n од обележје X со  $E(X)=a$  и  $D(X)=\sigma^2$ . Наведете ги својствата на овие две статистики.

- **6.** (2) Кои од следните искази се точни за непристрасен оценувач на параметарот на обележјето на популацијата? (Да се заокружи точниот одговор)
  - а) Се приближува до вредноста на параметарот со зголемување на големината на популацијата.
  - b) Неговото математичко очекување е исто со параметарот кој го оценува
  - с) Со иста веројатност ќе биде поголем или помал од параметарот на популацијата
- **A**. Само a) **B**. Само c). **Г**. a), b) и c). Д. Точниот одговор не е даден со A, Б, В или Г
  - 7. (2) Кој е основниот принцип на оценување по метод на максимална подобност? (Да се заокружи точниот одговор)
    - а) Са се избере вредност на параметарот за која набљудуваните податоци имаат најголема можна веројатност или густина.
    - b) Да се избере вредност на параметарот така што математичкото очекување на оценувачот ќе биде исто со параметарот что се оценува.
    - с) Да се најде вредност на параметарот најблиска до податоците.
    - d) Да се максимизира функцијата на подобност над просторот на примерокот.
    - е) Да се најде оценувач со најмала дисперзија.
  - **8.** (2) Кои од следните искази се точни за 95% интервал на доверба за математичкото очекување на дадено обележје на популацијата? (Да се заокружи точниот одговор)
    - а. Интервалот во просек вклучува 95% од вредностите во популацијата
    - b. Интервалот во просек вклучува 95% од набљудувањата во примерокот
    - с. Интервалот има шанси од 95% да го соджи просекот на примерокот
- **А**. Само a) **Б**. Само b) **В**. Само c). Г. a), b) и c). Д. Точниот одговор не е даден со A, Б, В или Г

**9.** (4) На сликата е дадена распределбата на една тест статистика U кога е точна  $H_0$  и кога е точна  $H_1$ . Ако критичниот домен со ниво на значајност  $\alpha$  е U>c, да се дефинира веројатноста од тип I и веројатноста од тип II грешка и да се означи областа која одговара на веројатноста од тип II и веројатноста од тип II грешка.



**10.** (5) Нека  $(X_1, X_2, ..., X_n)$  е случаен примерок од обележје X што има распределба F со конечно математичко очекување  $\mu$  и конечна дисперзија  $\sigma 2$ . Да се изведе тест за тестирање на хипотезата  $H_0$ :  $\mu = \mu_0$  наспроти алтернативната хипотеза Ha:  $\mu > \mu_0$  кај голем примерок.

- **11.** Нека се дадени парови на точки на податоци  $(x_1, y_1), (x_2, y_2), ...., (x_n, y_n)$ , добиени со набљудување на независна променлива X и зависна променлива Y.
  - а) (1) Како гласи регресиониот модел на популацијата?
  - b) (4) Наведете ги претпоставките за моделот.

## ВЕРОЈАТНОСТ И СТАТИСТИКА (II колоквиум, 22.12.2012)

| II група |
|----------|
|----------|

бр. индекс:\_\_\_\_\_

**1.** (3) Нека  $X_i$  се независни случајни променливи со гама распределби  $(\Gamma(\alpha_i, \beta))$ . Функцијата изводница на Гама случајна променлива  $X \sim \Gamma(\alpha, \beta)$  е  $M_X(t) = \frac{1}{(1-\beta t)^{\alpha}}$ . Да се определи распределбата на случајната променлива  $Y = \sum_{i=1}^{n} X_i$ .

**2.** а) (1) Да се дефинира математичко очекување на дискретна преброива случајна променлива . б) (4) Нека X и Y се независни случајни променливи со Биномни распределби B(m,p) и B(n,p) соодветно. Да се определи  $E(X^2-3XY+2Y)$ .

3. а) (1) Да се наведе централната гранична теорема.

Име и презиме:\_

b) (3) Ако е дадена низа од независни сл. променливи  $\{Xn\}$ , n>0, со Пуасонова распределба Po(4), да се процени веројатноста  $\sum_{i=1}^{36} X_i > 120$ 

| 4. | (4) Даден е следниот примерок од набљудувања на обележје X на дадена популација:1,2,2,3,4,4,5 |
|----|-----------------------------------------------------------------------------------------------|
|    | Да се премета $\min \sum_{i=1}^{7}  x_i - c ^2$ .                                             |

**5.** (4) Нека 
$$\overline{X}$$
 и  $S^2$  се просекот и дисперзија на случаен примерок со обем n од обележје X со Нормална распределба  $N(\mu, \sigma 2)$ . Наведете ги распределбите на овие две статистики.

- **6.** (2) Кои од следните искази се точни за непристрасен оценувач на параметарот на обележјето на популацијата? (Да се заокружи точниот одговор)
  - а) Со иста веројатност ќе биде поголем или помал од параметарот на популацијата
  - b) Неговото математичко очекување е исто со параметарот кој го оценува
  - с) Се приближува до вредноста на параметарот со зголемување на големината на популацијата.
- **А**. Само a) **Б**. Само b) **В**. Само c). Г. a), b) и c). Д. Точниот одговор не е даден со A, Б, В или Г
  - **7.** (2) Кој е основниот принцип на оценување по метод на максимална подобност? (Да се заокружи точниот одговор)
    - а) Да се максимизира функцијата на подобност над просторот на примерокот.
    - b) Са се избере вредност на параметарот за која набљудуваните податоци имаат најголема можна веројатност или густина.
    - с) Да се избере вредност на параметарот така што математичкото очекување на оценувачот ќе биде исто со параметарот что се оценува.
    - d) Да се најде оценувач со најмала дисперзија.
    - е) Да се најде вредност на параметарот најблиска до податоците.
  - **8.** (2) Кои од следните искази се точни за 95% интервал на доверба за математичкото очекување на дадено обележје на популацијата? (Да се заокружи точниот одговор)
    - а) Интервалот во просек вклучува 95% од набљудувањата во примерокот
    - b) Интервалот во просек вклучува 95% од вредностите во популацијата
    - с) Интервалот има шанси од 95% да го соджи просекот на примерокот
- **А**. Само a) **Б**. Само b) **В**. Само c). Г. a), b) и c). Д. Точниот одговор не е даден со A, Б, В или Г

**9.** (4) На сликата е дадена распределбата на една тест статистика U кога е точна  $H_0$  и кога е точна  $H_1$ . Ако критичниот домен со ниво на значајност  $\alpha$  е U<c, да се дефинира веројатноста од тип I и веројатноста од тип II грешка и да се означи областа која одговара на веројатноста од тип I и веројатноста од тип II грешка.



**10.** (5) Нека  $(X_1, X_2, ..., X_n)$  е случаен примерок од обележје X што има Нормална распределба  $N(\mu, \sigma^2)$  со непознати параметри  $\mu$  и  $\sigma^2$ . Да се изведе тест за тестирање на хипотезата  $H_0$ :  $\mu = \mu_0$  наспроти алтернативната хипотеза  $H_a$ :  $\mu < \mu_0$  кај мал примерок.

- **11.** Нека се дадени парови на точки на податоци  $(x_1, y_1), (x_2, y_2), ...., (x_n, y_n)$ , добиени со набљудување на независна променлива X и зависна променлива Y.
  - с) (1) Како гласи регресиониот модел на примерокот?
  - d) (4) Ако r е коефициентот на корелација на податоците, да се интерпретираат неговите вредности.