4 Calculus

4.1 Differentiation

• If the limit of the denominator of a rational function is zero, you cannot substitute to find the limit: either 'juggle' or use l'Hopital's rule, e.g:

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = \lim_{x \to 0} \left(\frac{\cos x}{1} \right) = 1$$

• The definition of the derivative:

$$f'(x) = \lim_{\delta x \to 0} \left(\frac{f(x + \delta x) - f(x)}{\delta x} \right)$$

• Special derivatives:

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(a^x) = a^x \ln a$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

• f(x) is an increasing function on (a, b) if $\frac{dy}{dx} \ge 0$ on that interval, or a strictly increasing function if $\frac{dy}{dx} > 0$.

• f(x) is **concave upwards** on (a,b) if $\frac{d^2y}{dx^2} > 0$.

• If the derivative at a point is zero, the function is stationary.

• If the derivative at a point is ∞ , there is a vertical line.

• For a point of inflexion, $\frac{d^2y}{dx^2} = 0$ AND the sign of $\frac{d^2y}{dx^2}$ changes, i.e concativity changes.

- Sketching the graph of f'(x) given f(x):
 - Stationary point $\rightarrow x$ -intercept.
 - f(x) increasing $\to f'(x)$ above x-axis.
 - Point of inflexion \rightarrow turning point.
- The gradient at any point on the curve: $m = \frac{dy}{dx}|_{x=x_0}$.
- The equation of a tangent to the curve at (x_0, y_0) : $y y_0 = m(x x_0)$.
- If two variabels are related, their rates of change are also related:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

• In kinematics especially:

$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{ds}{dt} = v\frac{dv}{ds}$$

4.2 Integration

$$\int (px+q)^n dx = \frac{(px+q)^{n+1}}{p(n+1)} + C$$

$$\int f'(x)(f(x))^n dx = \frac{(f(x))^{n+1}}{n+1} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int \frac{1}{x \ln x} dx = \int \frac{x^{-1}}{\ln x} + C = \ln|\ln|x|| + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

$$\int \frac{1}{(x+k)^2 + a^2} \, dx = \frac{1}{a} \arctan(\frac{x+k}{a}) + C$$

$$\int \frac{1}{\sqrt{a^2 - (x+k)^2}} \, dx = \arcsin(\frac{x+k}{a}) + C$$

- To integrate $\sin^2 x$ or $\cos^2 x$, we expand $\cos(2x)$ and rearrange.
- To integrate $\sin^3 x$, split into $\int \sin x (\sin^2 x) dx$, then use $\sin^2 x + \cos^2 x = 1$.
- If the integral is of the form:

$$\int \frac{px+q}{\sqrt{Ax^2+Bx+C}} dx \quad \text{or} \quad \int \frac{px+q}{Ax^2+Bx+C} dx$$

use sorcery to change it into $\int \frac{f'(x)}{f(x)} dx$ or $\int f'(x)(f(x))^n dx$.

- Integration by substitution:
 - 1. Replace dx by $\frac{dx}{dt} \cdot dt$.
 - 2. Substitute by replacing all x with g(t).

Then:
$$\int f(x) dx = \int f(g(t)) \frac{dx}{dt} \cdot dt$$

• Integration by parts:

$$\int u dv = uv - \int v du$$

• To choose which one to differentiate, use LIATE: Logs, Inverse trig, Algebraic, Trig, Exponentials.

4.3 Definite integrals

- $\int_a^b f(x)dx = -\int_b^a f(x)dx$
- The definite integral $\int_a^b f(x)dx$ can only be found if f(x) is defined for all $x \in (a,b)$.
- \bullet The area between a curve and the y-axis: $\int_a^b f(y) dy$
- \bullet If a function is difficult to integrate, try integrating its inverse w.r.t y then subtract from a rectangle. e.g.

$$\int_0^{\sqrt{3}}\arctan x\ dx = \frac{\pi\sqrt{3}}{3} - \int_0^{\frac{\pi}{3}}\tan y\ dy$$

- The area between the curve and the axis is always $\int_a^b |f(x)| dx$.
- The area between two curves is always $\int_a^b y_1 y_2 dx$.
- The volume of revolution:

$$V = \pi \int_{a}^{b} y^{2} dx$$

• The volume of revolution of the area enclosed by two curves:

$$V = \pi \int_{a}^{b} (y_1)^2 dx - \pi \int_{a}^{b} (y_2)^2 dx$$