Algoritmos

Algoritmos voraces

Alberto Valderruten

Dept. de Computación, Universidade da Coruña

alberto.valderruten@udc.es

Contenido

- Características / El problema de la mochila I
- Ordenación topológica
- Árbol expandido mínimo
- Caminos mínimos

Índice

- Características / El problema de la mochila I
- Ordenación topológica
- Árbol expandido mínimo
- Caminos mínimos

Devolver el cambio (1)

fin función

- Sistema monetario M: monedas de denominación (valor) 1,2,5,10,20,50,100,200
- Problema: pagar exactamente n unidades de valor con un mínimo de monedas:

Devolver el cambio (2)

- ¿Por qué funciona?
 - ⇒ *M* adecuado y número suficiente de monedas
- No funciona con cualquier M:

```
Ejemplo: M = \{1,4,6\}, n = 8 \rightarrow \{6,1,1\} en vez de \{4,4\}
Este problema se resolverá con Programación Dinámica
```

- La función Devolver cambio es voraz (algoritmos ávidos, greedy)
 ¿Por qué voraz?
 - Selecciona el mejor candidato que puede en cada iteración, sin valorar consecuencias.
 - Una vez seleccionado un candidato, decide definitivamente:
 - aceptarlo, o
 - rechazarlo

sin evaluación en profundidad de alternativas, sin retroceso...

→ Algoritmos sencillos tanto en su diseño como implementación. Cuando la técnica es adecuada, se obtienen algoritmos eficientes.

Características de los algoritmos voraces

- Resuelven problemas de optimización:
 - En cada fase, toman una decisión (selección de un *candidato*), satisfaciendo un óptimo local según la información disponible, esperando así, en conjunto, satisfacer un óptimo global.
- Manejan un conjunto de candidatos C:
 - En cada fase, retiran el candidato seleccionado de C, y si es aceptado se incluye en S, el conjunto donde se construye la solución \equiv candidatos aceptados
- 4 funciones (no todas aparecen explícitamente en el algoritmo):
 - \bigcirc \mathcal{S} es **Solución**?
 - ¿S es Factible? (¿nos lleva hacia una solución?)
 - Selección: determina el mejor candidato
 - **Objetivo**: valora *S* (está relacionada con *Selección*)
 - → Encontrar S: Solución que optimiza Objetivo (max/min)

Esquema de los algoritmos voraces

- Diseño de un algoritmo voraz:
 - adaptar el esquema al problema
 - introducir mejoras (ejemplo: en Devolver cambio, añadir div)
- Problema: Asegurarse (demostrar) que la técnica funciona
 No siempre funciona ejemplo: "tomar la calle principal"

El problema de la mochila I (1)

- n objetos: $i = 1..n \begin{cases} \text{peso } w_i > 0 \\ \text{valor } v_i > 0 \end{cases}$ **Problema**: cargar una *mochila* de capacidad W (unidades de
- peso), maximizando el valor de su carga.

 Varsión I: los objetos so pueden fraccionar y no so pierdo valor
- Versión I: los objetos se pueden fraccionar, y no se pierde valor
 - \equiv fracción $x_i, 0 \le x_i \le 1$
 - \Rightarrow el objeto *i* contribuye:
 - en $x_i w_i$ al peso de la carga, limitado por W;
 - en $x_i v_i$ al valor de la carga, que se quiere maximizar.

$$\Rightarrow max \sum_{i=1}^{n} x_i v_i$$
 con la restricción $\sum_{i=1}^{n} x_i w_i \leq W$

- + Hipótesis: $\sum_{i=1}^{n} w_i > W$, sino la solución es trivial
 - \Rightarrow en óptimo, $\sum_{i=1}^{n} x_i w_i = W$

El problema de la mochila I (2)

```
función Mochila 1 ( w[1..n], v[1..n], W): objetos[1..n]
   para i := 1 hasta n hacer
       x[i] := 0;
                             {la solución se construye en x}
   peso := 0;
   {bucle voraz:}
   mientras peso < W hacer
       i := el mejor objeto restante; {1}
       si peso+w[i] <= W entonces</pre>
           x[i] := 1:
           peso := peso+w[i]
       sino
           x[i] := (W-peso)/w[i];
           peso := W
       fin si
   fin mientras:
   devolver x
fin función
```

El problema de la mochila I (3)

Ejemplo: mochila de capacidad W = 100 y 5 objetos:

	1	2	3	4	5	
Vi	20	30	66	40	60	
Wi	10	20	30	40	50	$(\sum_{i=1}^n w_i > W)$

¿Cuál es la función de Selección adecuada? (sólo una es correcta!)

- **1** ¿Objeto más valioso? $\leftrightarrow v_i$ max
- ② ¿Objeto más ligero? $\leftrightarrow w_i$ min
- **3** ¿Objeto más rentable? $\leftrightarrow v_i/w_i$ max

Objetos	1	2	3	4	5	Objetivo $(\sum_{i=1}^{n} x_i v_i)$
Vi	20	30	66	40	60	
Wi	10	20	30	40	50	
v_i/w_i	2,0	1,5	2,2	1,0	1,2	
x_i (v_i max)	0	0	1	0,5	1	146
x_i (w_i min)	1	1	1	1	0	156
$x_i (v_i/w_i \text{ max})$	1	1	1	0	0,8	164

El problema de la mochila I (4)

- Teorema: Si los objetos se seleccionan por orden decreciente de v_i/w_i, el algoritmo Mochila 1 encuentra la solución óptima.
 Demostración por absurdo.
- Análisis:

```
inicialización: \Theta(n); bucle voraz: O(1)*n (peor caso) \to O(n)
```

+ ordenación: O(nlogn)

• **Mejora**: con un montículo inicialización: +O(n) (Crear montículo); bucle voraz: O(logn)*n (peor caso) $\to O(nlogn)$

 \rightarrow pero mejores T(n)

Ejercicio: pseudocódigo de ambas versiones

Índice

- 1 Características / El problema de la mochila
- Ordenación topológica
- Árbol expandido mínimo
- Caminos mínimos

Ordenación topológica (1)

Definición:

Ordenación de los nodos de un grafo dirigido acíclico:

- \exists camino $v_i, ..., v_j \Rightarrow v_j$ aparece después de v_i
- Aplicación: sistema de prerrequisitos (llaves) en una titulación
 (u, v) ≡ u debe aprobarse antes de acceder a v
 → grafo acíclico, sino la ordenación no tiene sentido
- Observación: La ordenación topológica no es única.
- **Definición**: Grado de entrada de v = número de aristas (u, v)
- Algoritmo: en cada iteración, buscar nodo de grado 0, enviarlo a la salida y eliminarlo junto a las aristas que partan de él.
 - + Hipótesis: el grafo ya está en memoria, listas de adyacencia

$$G = (N, A), |N| = n, |A| = m, 0 \le m \le n(n-1)$$

Ordenación topológica (2)

```
función Ordenación topológica 1 (G:grafo): orden[1..n]
   Grado Entrada [1..n] := Calcular Grado Entrada (G);
   para i := 1 hasta n hacer Número Topológico [i] := 0;
   cont.ador := 1:
   mientras contador <= n hacer
       v := Buscar nodo de grado 0 sin número topológico asignado; {*}
       si v no encontrado entonces
           devolver error "el grafo tiene un ciclo"
       sino
           Número Topológico [v] := contador;
           incrementar contador:
           para cada w adyacente a v hacer
               Grado Entrada [w] := Grado Entrada [w] - 1
       fin si
   fin mientras:
   devolver Número Topológico
fin función
```

Ordenación topológica (3)

- Mejora: estructura para nodos cuyo grado de entrada sea 0
 - {*} puede devolver cualquiera de ellos
 - al decrementar un grado, decidir si se incluye el nodo
 - \rightarrow pila o *cola*
- Ejemplo: evolución de Grado Entrada

nodo							
1	0						
2	1	0					
3	2	1	1	1	0		
4	3	2	1	0			
5	1	1	0				
6	3	3	3	3	2	1	0
7	2	2	2	1	0		
Insertar	1	2	5	4	3,7	-	6
Eliminar	1	2	5	4	3	7	6

Ordenación topológica (4)

```
función Ordenación topológica 2 (G:grafo): orden[1..n]
   Grado Entrada [1..n] := Calcular Grado Entrada (G);
 { para i := 1 hasta n hacer Número Topológico [i] := 0; }
   Crear Cola (C); contador := 1;
   para cada nodo v hacer
       si Grado Entrada [v] = 0 entonces Insertar Cola (v, C);
   mientras no Cola Vacía (C) hacer
       v := Eliminar Cola (C);
       Número Topológico [v] := contador; incrementar contador;
       para cada w advacente a v hacer
           Grado Entrada [w] := Grado Entrada [w] - 1;
           si Grado Entrada [w] = 0 entonces Insertar Cola (w, C)
       fin para
   fin mientras;
   si contador <= n entonces devolver error "el grafo tiene un ciclo"
   sino devolver Número Topológico
fin función
```

Ordenación topológica (5)

- Análisis: O(n+m) con listas de adyacencia Peor caso: grafo denso $[m \to n(n-1)]$ y visita todas las aristas Mejor caso: grafo disperso $[m \to 0, m \to n]$
- **Ejercicios**: ¿Calcular Grado Entrada (G) es O(n+m)? Contrastar el algoritmo con la función voraz.

Índice

- Características / El problema de la mochila I
- Ordenación topológica
- Árbol expandido mínimo
- Caminos mínimos

Árbol expandido mínimo (1)

- a. e. m., árbol de expansión, árbol de recubrimiento mínimo
- Sea G = (N, A) conexo, no dirigido, pesos ≥ 0 en las aristas
 Problema: T subconjunto de A tal que G' = (N, T) conexo, peso (∑ pesos de T) mínimo y |T| mínimo.
- $|N| = n \Rightarrow |T| \ge n 1$; pero, si $|T| > n - 1 \Rightarrow \exists$ ciclo \rightarrow podemos quitar una arista del ciclo
- Aplicación: instalación de cableado: ¿solución más económica?
- Técnica voraz:
 - *Candidatos*: aristas \rightarrow *S*: conjunto de aristas

 $\Rightarrow |T| = n - 1 \land G' \text{ conexo} \Rightarrow \text{ arbol (e. m.)}$

- Solución?: S = T?
- Factible?: (N, S) sin ciclos (ej: S vacío es Factible)

Árbol expandido mínimo (2)

- Definición: una arista parte de un conjunto de nodos
 ⇔ uno de sus extremos está en el conjunto
 (no parte ⇔ sus 2 extremos están dentro/fuera del conjunto)
- Lema: sean G = (N, A) un grafo conexo, no dirigido, pesado;
 B un subconjunto (estricto) de N;
 T un subconjunto (estricto) de A, Factible,
 sin aristas que partan de B;
 (u, v): la arista más corta que parte de B
 ⇒ TU{(u, v)} es Factible
- → Algoritmos de Kruskal y Prim

Algoritmo de Kruskal (1)

- Inicialmente: T vacío
- Invariante: (N, T) define un conjunto de componentes conexas
 (i. e. subgrafos, árboles)
- Final: sólo una componente conexa: el a. e. m.
- Selección: lema → arista más corta...
- Factible?: ...que una componentes conexas distintas
- Estructuras de datos:
 - "grafo": aristas ordenadas por peso
 - árboles: Conjuntos Disjuntos (buscar(x), fusionar(A, B))

Algoritmo de Kruskal (2)

Ejemplo:

arista	(1,2)	(2,3)	(4,5)	(6,7)	(1,4)	(2,5)	(4,7)	(3,5)		
peso	1	2	3	3	4	4	4	5		
	paso	S	elección	1	comp	onentes	conexa	ıs		
	ini		-		1 2	3 4	5 6	7		
	1		(1,2)		1,2	3 4	5 6	7		
	2		(2,3)		1,2,3 4 5 6 7					
	3		(4,5)		1,2	,3 4,5	6 7]		
	4		(6,7)		1,	2,3 4,5	6,7			
	5		(1,4)		1	,2,3,4,5	6,7			
	6	(2,5)	rechaz	ada	1	,2,3,4,5	6,7			
	7		(4,7)			1,2,3,4,5	,6,7			

Algoritmo de Kruskal (3)

```
función Kruskal ( G = (N, A) ) : árbol
   Ordenar A según longitudes crecientes;
   n := |N|:
   T := conjunto vacío;
   inicializar n conjuntos, cada uno con un nodo de N;
   {bucle voraz:}
   repetir
       a := (u,v) : arista más corta de A aún sin considerar;
       Conjunto U := Buscar (u);
       Conjunto V := Buscar (v);
       si Conjunto U <> Conjunto V entonces
           Fusionar (Conjunto U, Conjunto V);
           T := T U \{a\}
       fin si
   hasta |T| = n-1;
   devolver T
fin función
```

Algoritmo de Kruskal (4)

- Teorema: Kruskal calcula el árbol expandido mínimo.
 Demostración: inducción sobre |T|, utilizando el lema anterior
- Análisis: $|N| = n \land |A| = m$ ordenar A: $O(mlogm) \equiv O(mlogn)$: $n-1 \le m \le n(n-1)/2$ + inicializar n conjuntos disjuntos: $\Theta(n)$ + 2m buscar (peor caso) y n-1 fusionar (siempre): $O(2m\alpha(2m,n)) = O(mlogn)$ + resto: O(m) (peor caso)
 - $\Rightarrow \boxed{T(n) = O(mlogn)}$
- Mejora: utilizar un montículo de aristas en vez de ordenarlas No cambia la complejidad del peor caso pero se obtienen mejores tiempos (ejercicio).

Algoritmo de Prim (1)

Kruskal: bosque que crece hasta convertirse en el a. e. m.

Prim: un único árbol

que va creciendo hasta alcanzar todos los nodos.

- Inicialización: $B = \{ \text{nodo arbitrario} \} = \{ 1 \}, T \text{ vacío} \}$
- Selección: arista más corta que parte de B:

$$(u,v), u \in B \land v \in N-B$$

 \Rightarrow se añade (u,v) a T y v a B

Invariante:

T define en todo momento un a.e.m. del subgrafo (B, A)

• Final: B = N (Solución?)

Algoritmo de Prim (2)

Algoritmo de Prim (3)

• Ejemplo (el mismo que para Kruskal):

paso	selección	В
ini	-	1
1	(1,2)	1,2
2	(2,3)	1,2,3
3	(1,4)	1,2,3,4
4	(4,5)	1,2,3,4,5
5	(4,7)	1,2,3,4,5,7
6	(7,6)	1,2,3,4,5,6,7 = N

- Observación: No se producen rechazos.
- Teorema: Prim calcula el árbol expandido mínimo.
 Demostración: inducción sobre |T|, utilizando el lema anterior

Algoritmo de Prim (4)

Implementación:

```
L: matriz de adyacencia \equiv L[i,j] = \left\{ egin{array}{l} \operatorname{distancia\ si} \ \exists (i,j) \\ \infty \ \operatorname{sino} \end{array} 
ight. 
ight.
```

Algoritmo de Prim (5)

```
función Prim 2 ( L[1..n,1..n] ) : árbol
   Distancia Mínima [1] := -1;
   T := conjunto vacío;
   para i := 2 hasta n hacer
       Más Próximo [i] := 1;
       Distancia Mínima [i] := L[i,1]
   fin para;
                                                  {bucle voraz}
   repetir n-1 veces:
       min := infinito;
       para j := 2 hasta n hacer
            si 0 <= Distancia Mínima [j] < min entonces</pre>
               min := Distancia Mínima [j];
               k := i
            fin si
       fin para;
       T := T U \{ (Más Próximo [k], k) \};
       Distancia Mínima [k] := -1;
                                                   {añadir k a B}
```

Algoritmo de Prim (6)

Análisis:

inicialización =
$$\Theta(n)$$

bucle voraz: $n-1$ iteraciones, cada para anidado = $\Theta(n)$
 $\Rightarrow T(n) = \Theta(n^2)$

• ¿Posible mejora con un montículo?

 \rightarrow O(mlogn), igual que Kruskal (ejercicio)

Árbol expandido mínimo (3)

Comparación:

	Prim	Kruskal
	$\Theta(n^2)$	O(mlogn)
Grafo denso: $m \rightarrow n(n-1)/2$	$\Theta(n^2)$	$O(n^2 \log n)$
Grafo disperso: $m \rightarrow n$	$\Theta(n^2)$	O(nlogn)

Tabla: Complejidad temporal de los algoritmos de Prim y Kruskal

Observaciones:

- Existen algoritmos más eficientes, más sofisticados...
 más recientes (Kruskal es de 1956, Prim de 1957 [1930]).
- Son ejemplos importantes de aplicación de la técnica voraz.
- Ejercicios: Contrastar Prim y Kruskal con la función voraz.
 Completar Prim y Kruskal para que devuelvan el peso del a. e. m.

Índice

- Características / El problema de la mochila I
- Ordenación topológica
- Árbol expandido mínimo
- Caminos mínimos

Caminos mínimos (1)

- **Problema**: Dado un grafo G = (N, A) dirigido, con longitudes en las aristas ≥ 0 , con un nodo distinguido como *origen* de los caminos (el nodo 1):
 - → encontrar los caminos mínimos entre el nodo origen y los demás nodos de N

⇒ algoritmo de Dijkstra

- Técnica voraz:
 - 2 conjuntos de nodos:

```
S \equiv seleccionados: camino mínimo establecido C \equiv candidatos: los demás
```

- invariante: N = SUC
- inicialmente, $S = 1 \rightarrow$ final: S = N: función solución
- Selección: nodo de C con menor distancia conocida desde 1
 → existe una información provisional sobre distancias mínimas

Caminos mínimos (2)

Definición:

Un camino desde el origen a un nodo *v* es *especial* **ssi** todos sus *nodos intermedios* están en *S*.

- ⇒ D: vector con longitudes de caminos especiales mínimos;
 Selección de v ↔ el camino especial mínimo 1..v
 es también camino mínimo (se demuestra!).
 - Al final, *D* contiene las longitudes de los caminos mínimos.

Implementación:

•
$$N = 1, 2, ..., n$$
 (1 es el origen)
•
$$\begin{cases}
L[i,j] \ge 0 \text{ si } (i,j) \in A \\
= \infty \text{ sino}
\end{cases}$$
 Matriz de adyacencia, no simétrica

Algoritmo de Dijkstra (1)

```
función Dijkstra (L[1..n,1..n]): vector[1..n]
   C := \{ 2, 3, ..., n \};
   para i := 2 hasta n hacer
       D[i] := L[1,i];
                                                      {1}
   {bucle voraz:}
   repetir n-2 veces:
       v := nodo de C que minimiza D[v];
       C := C - \{v\};
       para cada w en C hacer
           D[w] := min (D[w], D[v]+L[v,w])
                                                      {2}
   fin repetir;
   devolver D
fin función
```

Algoritmo de Dijkstra (2)

• Ejemplo:

paso	selección	С	D[2]	D[3]	D[4]	D[5]
ini	-	2,3,4,5	50	30	100	10
1	5	2,3,4	50	30	20	10
2	4	2,3	40	30	20	10
3	3	2	35	30	20	10

Tabla: Evolución del conjunto C y de los caminos mínimos

• Observación: 3 iteraciones = n-2

Algoritmo de Dijkstra (3)

- ¿Calcular también los nodos intermedios?
 - \rightarrow vector P[2..n]:
 - $P[v] \equiv$ nodo que *precede* a v en el camino mínimo
 - ightarrow Seguir precedentes hasta el origen

... y devolver P junto con D.

Algoritmo de Dijkstra (4)

 Teorema: Dijkstra encuentra los caminos mínimos desde el origen hacia los demás nodos del grafo.

Demostración por inducción.

- Análisis: |N| = n, |A| = m, L[1..n, 1..n]Inicialización $= \Theta(n)$ ¿Selección de v? \rightarrow "implementación rápida": recorrido sobre C \equiv examinar n-1, n-2, ..., 2 valores en $D, \sum = \Theta(n^2)$ Para anidado: n-2, n-3, ..., 1 iteraciones, $\sum = \Theta(n^2)$
- **Mejora**: si el grafo es disperso ($m << n^2$), utilizar listas de adyacencia
 - ightarrow ahorro en para anidado: recorrer lista y no fila o columna de L

Algoritmo de Dijkstra (5)

- Análisis (Cont.):
 - ¿Cómo evitar $\Omega(n^2)$ en selección?
 - \rightarrow C: montículo min, ordenado según D[i]
 - \Rightarrow inicialización en O(n)

$$C := C - v \text{ en } O(logn)$$

Para anidado: modificar $D[w] = O(logn) \equiv flotar$

¿Nº de veces? Máximo 1 vez por arista (peor caso)

En total:

- extraer la raíz n − 2 veces (siempre)
- modificar un máximo de m veces un valor de D (peor caso)

$$\Rightarrow T(n) = O((m+n)\log n)$$

Ejercicio: escribir el pseudocódigo

Observación: "implementación rápida" preferible si grafo denso