Angewandte Datenanalyse mit R

Tag 4 - Überlebenszeitanalysen

Andreas Mock

Abteilung für Medizinische Onkologie & Abteilung für Translationale Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

Sommersemester 2019

Kaum eine klinische Studie kommt ohne Überlebenszeitanalysen aus. Deshalb sollte die sachkundige Durchführung und Interpretation dieser zum Rüstzeug jedes Mediziners gehören.

Terminologie

- Hazard Ratio (HR)
- Censor
- univariat
- multivariat

Terminologie

- ► Hazard Ratio (HR): Relative Wahrscheinlichkeit zwischen den Gruppen innerhalb eines Zeitintervalls (z.B. innerhalb eines Monats oder Jahres) ein Event zu haben (z.B. Tod oder Progress)
- Censor: 1 = Event eingetroffen (z.B. Tod oder Progress), 0 = Event noch nicht eingetroffen
- univariat: Es wird nur der Einfluss eines Faktors (z.B. Geschlecht) auf den Endpunkt (z.B. Gesamtüberleben) untersucht.
- multivariat: Es wird nur der Einfluss mehrerer Faktoren auf den Endpunkt untersucht.

Pakete

- survival: Paket für statistischen Berechnungen
- survminer: Paket für Visualisierung der Kaplan-Meier-Kurven auf Basis von ggplot2
- broom: Paket für Ergebnisstabellen

Datensatz

Wir werden wieder mit dem hnscc-Datensatz arbeiten.

Für eine vergleichende Überlebenszeitanalysen benötigen wir drei Informationen:

- 1. die Zeit bis zu einem Event (z.B. Tod oder Progress)
- 2. der Censor (binäre Info ob Event eingetroffen ist, z.B. 1 = tod, 0 = lebend)
- 3. den zu untersuchenden Einflussfaktor (diskrete oder kontinuierliche Daten)

```
# 1. Zeit bis zum Tod
summary(hnscc$days_to_death)
     Min. 1st Qu. Median Mean 3rd Qu.
##
                                              Max.
                                                      NA's
       0.0
            218.8 443.0
                             789.0 999.2 6416.0
##
# 2. Censor
table(hnscc$vital status)
##
## DECEASED
              LIVING
        116
                 163
##
# 3. den zu untersuchenden Einflussfaktor
colnames(hnscc)[-c(1.4.11)]
                       "alcohol"
                                       "gender"
## [1] "age"
                                                       "neoplasm site"
## [5] "grade"
                       "pack years"
                                       "tabacco group" "tumor stage"
```

Datentransformation für Überlebenszeitanalyse

- Der Censor muss ein numerischer Vektor aus 0 (=Event nicht eingetreten) und 1 (=Event eingetreten) sein.
- 2. Die Zeit bis zu einem Event (z.B. Tod) muss numerisch sein.

Diese Datentransformation entspricht der Übung 1 des heutigen Tages. Hierbei werden wir für die weitere Analyse ein eigenes Objekt hnscc_survival erstellen.

Erstellung eines survival Objektes

Für Überlebenszeitanalysen in R gilt es von so genannten survival Objekten gebrauch zu machen. Diese sind Teil des survival Pakets.

Die Syntax ist straightforward:

```
head(Surv(hnscc_survival$0S, hnscc_survival$Censor))
```

```
## [1] 461 415 1134 276 248+ 190+
```

Kaplan-Meier-Kurve

Der Klassiker der Visualisierung von Überlebenszeitanalysen ist die so genannte Kaplan-Meier-Kurve.

Wichtig: Überlebenszeitanalysen können auch für kontinuierliche Einflussfaktoren durchgeführt werden. Hier macht natürlich eine Visualisierung mittels Kaplan-Meier-Kurve keinen Sinn.

Für diese müssen wir noch die Gruppenzugehörigkeit angeben, und das Objekt für den Plot mit survfit herstellen:

```
median(hnscc survival$age)
## [1] 61
fit <- survfit(Surv(OS, Censor)~age>61, data=hnscc survival)
fit
## Call: survfit(formula = Surv(OS, Censor) ~ age > 61, data = hnscc survival)
##
     1 observation deleted due to missingness
##
                   n events median 0.95LCL 0.95UCL
##
## age > 61=FALSE 139
                                              3314
                         50
                              1591
                                      1037
## age > 61=TRUE 139 66
                                       572
                                              2166
                               822
```

Kaplan-Meier-Kurve

Univariate Überlebenszeitanalyse

```
library(broom)
# Beispiel 1: Alter dichotomisiert nach > Median (= 61 Jahre)
tidy(coxph(Surv(OS, Censor)~age>61, data=hnscc survival),
     exponentiate = TRUE)
## # A tibble: 1 x 7
                 estimate std.error statistic p.value conf.low conf.high
##
    term
##
    <chr>
                    <dbl>
                              <dbl>
                                        <dbl>
                                                <dbl>
                                                         <dbl>
                                                                   <db1>
## 1 age > 61TRUE 1.54
                              0.189
                                        2.27 0.0229
                                                         1.06
                                                                   2.23
# Beispiel 2: Alter als kontiniuerliche Variable
tidy(coxph(Surv(OS, Censor)~age, data=hnscc_survival),
     exponentiate = TRUE)
## # A tibble: 1 x 7
    term estimate std.error statistic p.value conf.low conf.high
##
##
    <chr>
             <dbl>
                       <dbl>
                                 <dbl> <dbl>
                                                  <dbl>
                                                            <dbl>
             1.02
                                  2.69 0.00718
                                                   1.01
                                                             1.04
## 1 age
                     0.00827
Estimate = HR
```

Univariate Überlebenszeitanalyse

```
# Bespiel 3: Tabacco Group
table(hnscc survival$tabacco group)
##
## Current reformed smoker for < or = 15 years
##
                                          81
##
       Current reformed smoker for > 15 years
##
                                          49
                              Current smoker
##
##
                                          90
##
                          Lifelong Non-smoker
##
                                          52
tidy(coxph(Surv(OS, Censor)~tabacco_group, data=hnscc_survival),
    exponentiate = TRUE)
## # A tibble: 3 x 7
##
                      estimate std.error statistic p.value conf.low conf.high
    term
##
    <chr>>
                         <dbl>
                                  <dbl>
                                            <dbl>
                                                    <dbl>
                                                            <db1>
                                                                      <db1>
## 1 tabacco groupCur~
                         0.572
                                  0.290
                                           -1.93 0.0542
                                                            0.324
                                                                      1.01
## 2 tabacco_groupCur~
                       1.14
                                  0.234
                                          0.551 0.582
                                                            0.719
                                                                      1.80
## 3 tabacco groupLif~
                                  0.307
                                           -2.38 0.0173
                                                            0.264
                                                                      0.879
                        0.482
```

Multivariate Überlebenszeitanalyse

In der multivariaten Überlebenszeitanalyse kombinieren wir die Einflussfaktoren zusammen, die univariat signifikant waren. Wir wollen herausfinden, ob diese unabhängige Einflussfaktoren sind.

```
## # A tibble: 4 x 7
##
    term
                     estimate std.error statistic p.value conf.low conf.high
    <chr>>
                        <fdb1>
                                  <db1>
                                           <dbl>
                                                   <dbl>
                                                           <1db1>
                                                                     <db1>
##
## 1 age
                        1.02
                               0.00931
                                           2.58 0.00986
                                                           1.01
                                                                     1.04
## 2 tabacco_groupCur~
                        0.520
                               0.292
                                          -2.23 0.0255
                                                           0.293
                                                                    0.923
## 3 tabacco_groupCur~
                        1.22
                               0.235
                                           0.838 0.402
                                                           0.768
                                                                    1.93
## 4 tabacco_groupLif~
                        0.553
                                0.309
                                          -1.92 0.0552
                                                           0.301
                                                                     1.01
```