PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-092720

(43)Date of publication of application: 06.04.1999

(51)Int.Cl.

C09J 7/02

(21)Application number: 09-258103

(71)Applicant: NITTO DENKO CORP

(22) Date of filing:

24.09.1997 (72)Inventor

(72)Inventor: YAMANAKA TAKESHI

ANDO MASAHIKO

TOKUNAGA YASUYUKI

HIKOSAKA WAKA

(54) DOUBLE FACE ADHESIVE SHEET

(57)Abstract:

5 to 150 μ m—thick adhesive layer 2 formed on the polyolefin film 1 by application of a adhesive. The surface roughness of the polyolefin film 1 on its main side release face 11 and the surface roughness of the polyolefin film 1 on its backside release face 12 are such that the surface roughness is in the range of 0.1 to 1.0 μ m in terms of the center line average height [Ra], and the release face in contact with the adhesive layer 2 has increased peel force by virtue of biting effect attained by the pressure—sensitive adhesive. The adhesive layer 2 is

formed of a polymer having a polycarbonate structure, with a wt. average mol.wt. of not less than 10,000, comprising repeated units, represented by formula (wherein R represents a 2-20C hydrocarbon), synthesized from a diol, such as polyhexamethylene carbonate diol, and a dicarboxylic acid, such as succinic acid.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-92720

(43)公開日 平成11年(1999)4月6日

(51) Int.Cl.⁸

識別記号

FΙ

C 0 9 J 7/02

C 0 9 J 7/02

Z

審査請求 未請求 請求項の数6 OL (全 8 頁)

(21)出願番号

特顧平9-258103

(22)出顧日

平成9年(1997)9月24日

(71)出願人 000003964

日東電工株式会社

大阪府茨木市下穂積1丁目1番2号

(72)発明者 山中 剛

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

(72)発明者 安藤 雅彦

大阪府茨木市下穂積1丁目1番2号 日東

重工株式会社内

(72)発明者 徳永 泰之

大阪府淡木市下穂積1丁目1番2号 日東

電工株式会社内

(74)代理人 弁理士 袮▲ぎ▼元 邦夫

最終頁に続く

(54) 【発明の名称】 両面粘着シート類

(57)【要約】

【課題】 シリコーン処理を施していない剥離ライナを 用い、電子機器などの用途にも使用可能な両面粘着シート類であつて、上記剥離ライナの剥離性にすぐれるもの を提供することを目的とする。

【解決手段】 粘着剤層2とその両面側に接触するシリコーン処理を施していない剥離ライナ1とを有する両面粘着シート類Xにおいて、上記の剥離ライナ1はポリオレフイン系フイルムにより構成され、かつこのフイルムの表面粗さを中心線平均表面粗さ (Ra)で0.1~1.0μmの範囲に設定する。

1:ポリオレフイン系フィルム(剝離ライナ)

11:主面例剝離面

12:背面侧剝離面

2:粘着剂層

21:粘着剤層の主面

22: 粘着剤層の背面

X:両面粘着シート類

【特許請求の範囲】

【請求項1】 粘着剤層とその両面側に接触するシリコ 一ン処理を施していない剥離ライナとを有する両面粘着 シート類において、上記の剝離ライナはポリオレフイン 系フイルムにより構成され、かつこのポリオレフイン系 フイルムの表面相さが中心線平均表面粗さ〔Ra〕で 0. 1~1. 0 μ m の範囲にあることを特徴とする両面 - (O-R-O-C) n-

(Rは炭素数2~20の直鎖状または分枝状の炭化水素 基である)で表される繰り返し単位を有するポリカ―ボ ネート構造を持つポリマーを主成分とする粘着剤からな

【請求項4】 ポリカーボネート構造を持つポリマー が、ポリカーボネートジオールを必須としたジオール成 分と炭素数が2~20の脂肪族または脂環族の炭化水素 基を分子骨格とするジカルボン酸成分とから合成される 重量平均分子量1万以上のポリエステルである請求項3 に記載の両面粘着シート類。

る請求項1または2に記載の両面粘着シート類。

【請求項5】 シリコーン処理を施していない剥離ライ ナが、粘着剤層の両面側に接触する2枚のポリオレフイ ン系フイルムにより構成されてなる請求項1~4のいず れかに記載の両面粘着シート類。

【請求項6】 シリコーン処理を施していない剝離ライ ナが、1枚のポリオレフイン系フイルムにより構成さ れ、このフイルムとこれに設けた粘着剤層とを一体に巻 回してなる請求項1~4のいずれかに記載の両面粘着シ ート類。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、粘着剤層とその両 面側に接触するシリコ―ン処理を施していない剥離ライ ナとを有する両面粘着シート類に関する。

[0002]

【従来の技術】電気、電子、建築、自動車などの業界で は、製品が多品種化した部品群から成り立つている。こ れら部品の接着接合は、従来では、液状接着剤などでの 接着が一般的であつたが、最近では、作業環境の向上、 作業性の点より、両面粘着シート類を用いて接着接合す 40 ることが多くなつてきた。

【0003】この両面粘着シート類は、速接着、性能保 持などの点より、髙タツク(短時間接着)、髙接着力、 高疑集力を有して、各種の材料に対して良好に接着でき るように設計されている。これに伴い、粘着剤層の両面 に接触させて、この粘着剤層を支持するとともに粘着面 を保護する剥離ライナには、その剥離を容易とするた め、接着性の低いシリコーン処理を施したものを用いて いる。

[0004]

粘着シート類。

【請求項2】 ポリオレフイン系フイルムが、ポリエチ レン、ポリプロピレン、エチレンープロピレン共重合体 またはこれらの混合物からなるフイルムであるか、ある いは表面が上記同様のポリオレフインにより加工された フイルムである請求項1に記載の両面粘着シート類。

【請求項3】 粘着剤層が、つぎの式(1):

0

... (1)

【発明が解決しようとする課題】 しかるに、シリコーン 処理を施した剝離ライナは、上記処理に用いたシリコ― ンが粘着剤層に移行する現象があり、これは通常の使用 には問題とならないが、電子業界でコンピュ―タ関連部 品の接着接合に用いる場合、シロキサンガスの発生原因 となり、電子機器内部の腐食や誤動作を引き起こすおそ れがあつた。

【0005】このため、上記のような用途、とくにハー ドデイスクドライブ(以下、HDDという)、パソコ ン、ワープロなどの電子機器内部に密閉した形で用いる 両面粘着シート類は、粘着剤組成中にシリコーンを含ま ないことはもちろん、この粘着剤層に接触させる剥離ラ イナについても、ポリオレフイン系フィルムなどの、シ リコーン処理を施していない剥離ライナの使用が望まれ

【0006】本発明は、このような事情に照らし、シリ コーン処理を施していない剥離ライナを用い、電子機器 などの用途にも使用可能な両面粘着シート類であつて、 上記剥離ライナの剥離性にすぐれるものを提供すること を目的とする。

[0007]

30

【課題を解決するための手段】本発明者らは、上記の目 的を達成するために、鋭意検討した結果、シリコーン処 理を施していない剥離ライナとして、ポリエチレンフイ ルムなどのポリオレフイン系フイルムを用いるにあた り、このフイルムの表面粗さを適正範囲に設定すること により、上記剥離ライナの剥離性にすぐれる両面接着シ 一ト類が得られることを知り、本発明を完成するに至つ

【0008】すなわち、本発明は、粘着剤層とその両面 側に接触するシリコーン処理を施していない剥離ライナ とを有する両面粘着シート類において、上記ライナはポ リオレフイン系フイルムにより構成され、かつこのフイ ルムの表面粗さが中心線平均表面粗さ [Ra] で0.1 ~1. 0 μ m の範囲にあることを特徴とする両面粘着シ ート類(請求項1)、とくに上記のフイルムが、ポリエ チレン、ポリプロピレン、エチレンープロピレン共重合 体またはこれらの混合物からなるフイルムであるか、あ るいは表面が上記同様のポリオレフインにより加工され 50 たフイルムである上記構成の両面粘着シート類(請求項

2) に係るものである。

【0009】また、本発明は、上記の粘着剤層が、つぎ — (O-R-O-C) n-|| ···· (1) O

(Rは炭素数2~20の直鎖状または分枝状の炭化水素基である)で表される繰り返し単位を有するポリカーボネート構造を持つポリマーを主成分とする粘着剤からなる上記両面粘着シート類(請求項3)、とくに上記のポリカーボネート構造を持つポリマーが、ポリカーボネー 10トジオールを必須としたジオール成分と炭素数が2~20の脂肪族または脂環族の炭化水素基を分子骨格とするジカルボン酸成分とから合成される重量平均分子量1万以上のポリエステルである上記両面粘着シート類(請求項4)に係るものである。

【0010】さらに、本発明は、このような両面粘着シート類として、シリコーン処理を施していない剥離ライナが、粘着剤層の両面側に接触する2枚のポリオレフイン系フイルムにより構成されてなる上記両面粘着シート類(請求項5)と、シリコーン処理を施していない剥離 20ライナが、1枚のポリオレフイン系フイルムにより構成され、このフイルムとこれに設けた粘着剤層とを一体に巻回してなる上記両面粘着シート類(請求項6)とに係

加するようにしてもよい。

(Rは炭素数2~20の直鎖状または分枝状の炭化水素基である)で表される繰り返し単位を有するポリカーポネート構造を持つポリマーを主成分としたものが挙げられる。上記ポリマーの分子量は、重量平均分子量1万以30上、好ましくは3万以上(通常30万まで)であるのがよい。分子量が低すぎると、このポリマーを架橋した際に架橋間分子量が小さく、粘着剤の弾性率が高くなつて硬い粘着剤層となり、接着特性に好結果が得られにくい。

【0013】このようなポリカーボネート構造を持つポリマーとしては、ポリカーボネートジオールとジカルボン酸とから合成されるポリエステル、ポリカーボネートジカルボン酸とジオールとから合成されるポリエステル、ポリカーボネートジオールとジイソシアネートとから合成されるポリウレタンなどを挙げることができる。これらの中でも、ポリカーボネートジオールとジカルボン酸とから合成されるポリエステルが、とくに好ましく用いられる。

【0014】上記のポリエステルは、ポリカーボネートジオールを必須としたジオール成分と炭素数が2~20の脂肪族または脂環族の炭化水素基を分子骨格とするジカルボン酸を必須としたジカルボン酸成分とを、常法にしたがい、無触媒または適宜の触媒などを用いて、縮合反応(エステル化反応)させることにより、得ることが 50

るものである。 【0011】

の式(1);

【発明の実施の形態】以下、本発明の実施の形態を、図面を参考にして説明する。図1は、シリコーン処理を施していない剥離ライナとして、1枚のポリオレフイン系フイルム1を使用し、このポリオレフイン系フイルム1上に粘着剤層2を設けた構成の両面粘着シート類Xを示したものであり、使用前の形態として、このフイルム1と粘着剤層2とを後者が内側となるように一体に巻回して、粘着剤層2の主面21側に接触する剥離面(以下、主面側剥離面という)11と粘着剤層2の背面22側に接触する剥離面(以下、背面側剥離面という)12とからなる、ふたつの剥離面が構成されるようになつている。

【0012】この両面粘着シート類Xにおいて、粘着剤 層2には、種々の粘着剤を選択使用できるが、とくに好 ましい粘着剤として、つぎの式(1);

できる。この反応に際し、ジオール成分とジカルボン酸成分とは、得られる分子量が前記範囲となるように、当モル反応とするのが望ましいが、反応を促進するため、どららかを過剰に用いて反応させてもよい。

【0015】ポリカーボネートジオールとしては、数平 均分子量が400以上、好ましくは900以上(通常1 万まで)であるものが好ましく用いられる。このような ポリカーボネートジオールには、ポリヘキサメチレンカ ーボネートジオール、ポリ (3-メチルペンテンカーボ ネート)ジオール、ポリプロピレンカーボネートジオー ルなどや、それらの混合物、またはそれらの共重合物な どがある。市販品としては、ダイセル化学工業(株)製 の「PLACCEL CD208PL」、「同CD21 OPL」、「同CD220PL」などが挙げられる。 【0016】ジオール成分としては、必要により、エチ レングリコール、プロピレングリコール、ブタンジオー ル、ヘキサンジオール、オクタンジオール、デカンジオ ール、オクタデカンジオールなどの直鎖状のジオール や、各種分枝状のジオールなどの成分を適宜混合して使 用してもよい。これら他のジオールの使用量としては、 ジオール成分全体の50重量%以下、好ましくは30重 量%以下であるのがよい。また、ポリエステルを高分子 畳化するために、3官能以上のポリオ─ル成分を少量添

4

【0017】ジカルボン酸成分は、炭素数が2~20の脂肪族または脂環族の炭化水素基を分子骨格としたもので、上記の炭化水素基は直鎖状のものであつても、分枝状のものであつてもよい。具体的には、コハク酸、メチルコハク酸、アジピン酸、ピメリツク酸、アゼライン酸、セバシン酸、1,12ードデカン二酸、1,14ーテトラデカン二酸、テトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、これらの酸無水物や低級アルキルエステルなどが挙げられる。

【0018】このようなポリエステルをはじめとするポ 10 リカーボネート構造を持つポリマーを使用し、これを通常架橋処理して、接着性と剥離ライナの剥離性を満足する粘着剤とする。架橋処理は任意でよいが、架橋剤としてポリイソシアネート系化合物、エポキシ系化合物、アジリジン化合物、金属キレート化合物、金属アルコキシド化合物などの多官能性化合物を用い、これと上記ポリマー(に含まれる水酸基ないしカルボキシル基)と反応させて架橋する方法が一般的である。多官能性化合物は、とくにポリイソシアネート系化合物が好ましい。

【0019】このポリイソシアネート系化合物としては、エチレンジイソシアネート、ブチレンジイソシアネートなどの低級脂肪族ポリイソシアネート類、シクロペンチレンジイソシアネート、イソホロンジイソシアネートなどの脂環族ポリイソシアネート 類、2,4ートリレンジイソシアネート、4,4 ~ - ジフエニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族ポリイソシアネート特別、トリメチロールプロパンのトリレンジイソシアネート付加物などが挙げられる。これらの架橋剤は、その1種を単独でまたは2種以上の混合系で使用できる。使用量としては、前記のポリマー100重量部に対して、通常0.5~5重量部とするのがよい。

【0020】このような粘着剤には、通常使用される添加剤、たとえば、ガラス繊維、金属粉などの充填剤、顔料、着色剤などを添加してもよい。さらに、老化防止剤の添加により、耐久性の向上を図ることもできる。

【0021】粘着剤層2は、シリコーン処理を施していない剥離ライナであるポリオレフイン系フイルム1上に 40上記のような粘着剤を塗設することにより、形成されるが、その厚さは通常5~150μm、好ましくは10~130μmである。この粘着剤層2は単層構造のほか、2層以上の多層構造としてもよく、またポリエステルフイルムなどのプラスチツクフイルムや、紙、不織布などの多孔質材料などからなる基材を埋設した構造であつてもよい。

【0022】ポリオレフイン系フイルム1は、ポリエチレン、ポリプロピレン、エチレンープロピレン共重合体またはこれらの混合物からなるフイルムであるか、ある 50

いは表面が上記同様のポリオレフインにて加工されたフィルムから構成されている。後者の例としては、紙類や他のフイルムと上記ポリオレフイン系フイルムとの積層物などが挙げられる。このようなポリオレフイン系フイルム1の厚さは、とくに規定されないが、通常は30~250μmであるのがよい。

6

【0023】このように構成されるポリオレフイン系フィルム1は、その表面粗さが、中心線平均表面粗さ [Ra〕で $0.1\sim1.0\mu m$ 、好ましくは $0.3\sim0.8\mu m$ の範囲に設定されている。このように設定されていることにより、このフイルム1上に粘着剤を塗設して粘着剤層 2 を形成したときに、背面側剥離面 12、つまり、粘着剤層 2 の背面 22 側に接触する剥離面では、フィルム租面(凹部)への粘着剤の食い込み効果だより、その剥離力(Fb)が大きくなる。

【0024】一方、主面側剥離面11、つまり、巻回状態において粘着剤層2の主面21側に接触する剥離面では、粘着剤が既に乾燥状態にあつて、粘着剤層2に対する接触面積がフイルムの表面荒れで十分に得られないた か、その剥離力(Fa)が小さくなる。とくにこの傾向は、前記したポリエステルをはじめとするポリカ―ボネート構造を持つポリマ―のような弾性率の高い粘着剤を使用したときに、この粘着剤層が上記表面荒れに馴染みにくいため、より顕著に現れる。

【0025】その結果、上記フイルム1の主面側剥離面11の剥離力(Fa)が背面側剥離面12の剥離力(Fb)より小さく、通常は、両者の比【Fb/Fa】が1.5~25、好ましくは1.8~20、より好ましくは2.0~15となり、このフイルム1からなる剥離ライナを粘着剤層2の主面21側でより軽い力で剥離できるようになり、剥離作業をスムースに行うことができる

【0026】ここで、剥離力が小さくなる主面側剥離面11の剥離力(Fa)としては、1~300g/20mm幅、好ましくは3~250g/20mm幅、より好ましくは5~200g/20mm幅であり、また剥離力が大きくなる背面側剥離面12の剥離力(Fb)としては、10~500g/20mm幅、好ましくは30~400g/20mm幅、より好ましくは50~300g/20mm幅である。

【0027】なお、上記の表面粗さは、ポリオレフイン系フイルム1の作製工程での表面平滑化処理の程度を適宜調整するか、フイルム作製後に適宜の表面処理を施すことなどにより、容易に設定可能である。この設定が不十分で、中心線平均表面粗さ [Ra]で0.1 μ m未満となると、主面側剥離面11の剥離力 (Fa)が大きくなり、これと背面側剥離面12の剥離力 (Fb)とがほとんど変わらなくなり、この場合、主面2側での剥離作業がスムースにいかず、粘着面に乱れを生じ、粘着剤が剥離ライナに付着するなどの不都合を招きやすい。ま

た、中心線平均表面粗さ〔Ra〕で1.0μmを超えて しまうと、被着体の適用に際して、棚面が荒れすぎて、 接着力の低下などの不都合を招きやすい。

【0028】図2は、上記とは別の両面粘着シート類であつて、シリコーン処理を施していない剥離ライナとして2枚のポリオレフイン系フイルム101、102を用い、一方のフイルム102とに粘着剤層2を設け、その上に他方のフイルム101を設けた構成の両面粘着シート類Yを示したものである。使用前の形態としては、これをそのまま巻回して、粘着剤層2の主面21側にフイルム101を、背面22側にフイルム102を接触させ、これにより、主面側剥離面11、つまり、フイルム101の粘着剤層2の主面21側に接触する剥離面11と、背面側剥離面12、つまり、フイルム102の粘着剤層2の背面22側に接触する剥離面12とからなる、ふたつの剥離面が構成されている。

【0029】ここで、粘着剤層2の材料構成などについては、前記の図1に示したものと同じであり、その形成は、フイルム101または102のいずれかに登設するなどの方法により行われる。また、フイルム101およ 20 び102は、それぞれ、前記の図1に示したポリオレフイン系フイルム1と同じであつて、表面粗さが、中心線平均表面粗さ [Ra]で0.1~1.0μm、好ましくは0.3~0.8μmの範囲に設定されている。

【0030】また、上記設定により、主面側剥離面11の剥離力(Fa)が背面側剥離面12の剥離力(Fb)よりも小さく、通常は、両者の比〔Fb/Fa〕が1.5~25、好ましくは1.8~20、より好ましくは2.0~15の範囲となるようにされている。さらに、剥離力が小さくなる主面側剥離面11の剥離力(Fa)は、1~300g/20mm幅、好ましくは3~250g/20mm幅、より好ましくは5~200g/20mm幅であり、また剥離力が大きくなる背面側剥離面12の剥離力(Fb)は、10~500g/20mm幅、好ましくは30~400g/20mm幅、より好ましくは50~300g/20mm幅である。

【0031】本発明の両面粘着シート類は、上記のように構成されていることにより、その使用前の形態では、粘着剤層2は剥離ライナであるポリオレフイン系フイルム1(101,102)により支持されて、このフイルムにより上記層2の主面21側と背面22側との両粘着面が保護されている。一方、使用時には、以下のように、上記フイルム1(101,102)の剥離面を、粘着剤層2の主面21側と接触する主面側剥離面11、背面22側と接触する背面側剥離面12の順に剥離して、各種被着体の接着固定の用に供される。

【0032】まず、図1に示す両面粘着シート類Xでは、巻回状態を解くことにより、フイルム1の主面側剝離面11を剥離する。また、図2に示す両面粘着シート類Yでは、巻回状態を解きながらフイルム101を引き 50

しの主面側剥離i

剥がし、このフイルム101の主面側剥離面11を剥離する。ここで、既述のとおり、主面側剥離面11の剥離力(Fa)が背面側剥離面12の剥離力(Fb)より小さくなつているため、上記の各剥離はスムースに行える。つぎに、このように露出させた粘着剤層2の主面21側を被着体にあてがい、フイルム1(102)を引き剥がして、このフイルム1(102)の背面側剥離面12も剥離する。

【0033】このように、本発明では、ポリオレフイン系フイルム1 (101,102)の表面粗さを特定したことにより、この表面粗さの設定によつて剥離力の小さくなる主面側剥離面11の剥離を作業性良好に行うことができ、しかもその後の背面側剥離面12の剥離作業も容易である。これに対して、上記両剥離面の剥離力が同じであると、この剥離力が小さくても、主面側剥離面11の剥離がスムースにいかず、粘着面に乱れを生じ、粘着剤がポリオレフイン系フイルムからなる剥離ライナに付着するなどの不都合を招きやすい。

【0034】このように被着体に適用された両面粘着シート類は、上記の例に示すようなポリカーボネート構造を持つポリマーを主成分とした粘着剤などの使用により、被着体の接着固定という目的を十分に果たす。また、ポリオレフイン系フイルム1(101,102)がシリコーン処理を施していない剥離ライナのために、シリコーンの移行現象がなく、HDD、パソコン、ワープロなどの電子機器などの用途に適用しても、シロキサンガスによる電子機器内部の腐食や誤動作などの問題は生じないなどの利点がもたらされる。

【0035】なお、上記実施の形態では、ポリオレフイン系フイルム1(101, 102)の表面粗さを、両面ともに、中心線平均表面粗さ [Ra] で $0.1\sim1.0$ μ m、好ましくは $0.3\sim0.8$ μ mの範囲に設定しているが、これとは別の実施の形態として、上記フイルム1(101, 102)の片面だけが中心線平均表面粗さ[Ra]で $0.1\sim1.0$ μ m、好ましくは $0.3\sim0.8$ μ mの範囲とし、他面側が0.1 μ m未満の平滑面となるようにしてもよい。

【0036】上記別の実施の形態では、平滑面側が背面側剥離面12、つまり粘着剤層2の背面22に接触する剥離面となるように構成して、剥離力(Fb)を大きくし、表面粗さを[Ra]で0.1~1.0μmに設定した側が主面側剥離面11、つまり粘着剤層2の主面21に接触する剥離面となるように構成して、その剥離力(Fb)を小さくすると、前記と同様に剥離作業性に好結果が得られ、しかも、上記背面側剥離面12が平滑しなり、接着力の保持性の面でも好結果が得られる。ただし、糊面の平滑性があまり問題とならず、またFb>Faの関係を満たす限りにおいて、上記とは逆に、平滑面側が主面側剥離面11、表面粗さを[Ra]で0.1~1.0

μmに設定した側が背面側剥離面12となるように構成することも可能である。

[0037]

【実施例】つぎに、本発明の実施例を記載して、より具体的に説明するが、本発明の範囲は以下の実施例によりなんら制限を受けるものではない。なお、以下、部とあるのは重量部を意味するものとする。

【0038】実施例1

四ツロセパラブルフラスコに攪拌機、温度計および水分 離管を付け、これに、ポリカーボネートジオール〔ダイ 10 セル化学工業 (株) 製の「PLACCEL CD220 PL」、水酸基価: 56.1KOHmg/g] 250g、 セバシン酸25.28g、触媒としてのジブチルスズオ キシド62gを仕込み、反応水排出溶剤としての少量の トルエンの存在下、攪拌しながら180℃まで昇温し、 この温度で保持した。しばらくすると水の流出分離が認 められ、反応が進行しはじめた。約25時間反応を続 け、重量平均分子量が56,000のポリエステルを得 た。このポリエステルをトルエンで固形分濃度50重量 %に希釈し、固形分(ポリエステル) 100部あたり、 20 架橋剤としてトリメチロ―ルプロパンのヘキサメチレン ジイソシアネート付加物 〔日本ポリウレタン(株)製の 「コロネートHL」 3 部を配合し、よく攪拌混合し て、粘着剤組成物を調製した。

【0039】つぎに、シリコーン処理を施していない剥離ライナとして、厚さが100μmで表面粗さが中心線平均表面粗さ〔Ra〕で0.61μmのポリエチレンフイルムを使用し、このフイルム上に、アプリケータにより、上記の粘着剤組成物を塗布し、90℃で5分間乾燥して、厚さが60μmの粘着剤層を形成した。この粘着剤層上に、上記同様のシリコーン処理を施していない剥離ライナとして、厚さが100μmで表面粗さが中心線平均表面粗さ〔Ra〕で0.61μmのポリエチレンフイルムを貼り合わせ、50℃の雰囲気中で5日間のエージングを行い、両面粘着シートを作製した。

【0040】また、剥離ライナの背面側剥離面の剥離力測定用および接着力測定用の試験シートとして、上記と同様にして厚さが 100μ mで表面粗さが中心線平均表面粗さ [Ra]で0.6 1μ mのポリエチレンフイルムからなる剥離ライナ上に粘着剤層を形成したのち、この40上に厚さが 38μ mのポリエチレンテレフタレートフイルムを貼り合わせて、上記測定用の試験シート①を作製した。

【0041】さらに、これとは別に、剥離ライナの主面側剥離面の剥離力測定用として、厚さが38μmのポリエチレンテレフタレートフイルム上に上記と同様にして粘着剤層を形成したのち、この上に厚さが100μmで表面粗さが中心線平均表面粗さ【Ra】で0.61μmのポリエチレンフイルムを貼り合わせて、上記測定用の試験シート②を作製した。

【0042】比較例1

実施例1と同様にして、シリコーン処理を施していない 剥離ライナである厚さが 100μ mで表面粗さが中心線 平均表面粗さ $\{Ra\}$ で 0.05μ mのポリエチレンフ イルムの上に、厚さが 60μ mの粘着剤層を形成したの ち、この粘着剤層上に、上記と同様のシリコーン処理を 施していない剥離ライナとして、厚さが 100μ mで表面粗さが中心線平均表面粗さ $\{Ra\}$ で 0.05μ mの ポリエチレンフイルムを貼り合わせて、50での雰囲気中で5日間のエージングを行い、両面粘着シートを作製した。

10

【0043】また、剥離ライナの背面側剥離面の剥離力 測定用および接着力測定用の試験シートとして、上記と 同様にして厚さが100μmで表面粗さが中心線平均表 面粗さ〔Ra〕で0.05μmのポリエチレンフイルム からなる剥離ライナ上に粘着剤層を形成したのち、この 上に厚さが38μmのポリエチレンテレフタレートフイ ルムを貼り合わせて、上記測定用の試験シート①を作製 した。

【0044】さらに、これとは別に、剝離ライナの主面側剝離面の剥離力測定用として、厚さが38μmのポリエチレンテレフタレートフイルム上に上記と同様にして粘着剤層を形成したのち、この上に厚さが100μmで表面粗さが中心線平均表面粗さ [Ra]で0.05μmのポリエチレンフイルムを貼り合わせて、上記測定用の試験シート②を作製した。

【0045】上記の実施例1および比較例1の各試験シート①,②を用いて、剥離ライナであるポリエチレンフイルムの剥離力試験と、さらに接着力試験を行つた。また、上記の実施例1および比較例1の各両面粘着シートを用いて、剥離作業性試験を行つた。これらの結果は、後記の表1に示されるとおりであつた。なお、上記の各試験は、下記の方法にて行つたものである。

【0046】<剥離ライナの剥離力試験>試験シート①を用い、これを20m×100mの大きさに切断し、ポリエチレンテレフタレートフイルム側を市販の両面粘着テープによりステンレス板に固定したのち、23℃の雰囲気中で、剥離ライナ(ポリエチレンフイルム)を剥離速度300m/分の条件で、180°剥離したときの剥離力を測定し、これを剥離ライナの背面側剥離面の剥離力(Fb)とした。また、試験シート②を用いて、上記と同様にして、剥離ライナの主面側剥離面の剥離力(Fa)を測定した。これらの測定値より、上記剥離力の比〔Fb/Fa〕を求めた。

【0047】<接着力試験>試験シート①を用い、これを20mm×100mmの大きさに切断したのち、剥離ライナ (ポリエチレンフイルム)を剥離し、この剥離面側を被着体であるアルミニウム板に23℃の雰囲気中で貼り付けた。30分後に、引張速度300mm/分の条件で180°剥離したときの剥離接着力を測定した。

11

【0048】<剥離作業性試験>両面側に剥離ライナ (ポリエチレンフイルム)を有する両面粘着シートを用 い、これを100m×100mの大きさに10枚切断し た。各切断片について、両面側の剥離ライナ(ポリエチ レンフイルム)を指でつまんで剥離し、粘着剤層の浮き や破れがなく、剥離ライナを良好に剥離できるかどうか を調べた。このときの剥離作業性を、下記の基準で評価 した。

〇:10枚すべてが良好に剥離することができた

△:5~9枚は良好に剥離できたが、残りの5~1枚は 剥離ライナの両側に粘着剤が残りきれいに剥離できなか つた

12

×:6枚以上が剥離ライナの両側に粘着剤が残りきれい に剥離できなかつた

[0049]

表1

			実施例1	比較例1
剥離ライナの 剥離力試験	剥離力 (g/20㎜幅)	Fa	5. 5	2 0
		Fb	15	2 0
	剥離力比 (Fb/Fa)		2. 7	1. 0
接着力試験 (Kg/20㎜幅)		1. 3	1. 3	
剥離作業性試験			0	×

【0050】上記の表1の結果から、本発明の実施例1 の両面粘着シートは、シリコーン処理を施していない剥 離ライナとして、表面粗さが中心線平均表面粗さ〔R a] で0.61µmである2枚のポリエチレンフイルム を用いたことにより、これらの剥離ライナを作業性良好 に剝離できることがわかる。これに対して、表面粗さが 中心線平均表面粗さ〔Ra〕で0.05 μmであるポリ エチレンフイルムを2枚用いた比較例1では、この剥離 30 ライナを良好に剥離できなかつた。

【0051】実施例2

シリコーン処理を施していない剥離ライナとして、厚さ が100μm、表面粗さが中心線平均表面粗さ〔Ra〕 で0.61µmの1枚のポリエチレンフイルムを用い、 その片面側に、実施例1と同様の粘着剤組成物を、アプ リケータで塗布し、90℃で5分間乾燥して、厚さが6 · 0 μ mの粘着剤層を形成した。これを粘着剤層が内側と なるように巻回し、ロール状の両面粘着シートとした。 【0052】この両面粘着シートは、上記の巻回状態に 40 おいて、剥離ライナであるポリエチレンフイルムの主面 側剝離面の剝離力と背面側剝離面の剥離力とが、それぞ れ、実施例1の2枚のポリエチレンフイルムからなる剝 離ライナとほぼ同じであり、使用に際し、ロール状の両 面粘着シートを巻きほぐす作業と、これを被着体にあて がつて剥離ライナを引き剥がす作業を、ともに良好に行 えた。

[0053]

【発明の効果】以上のように、本発明は、シリコーン処 理を施していない剥離ライナとして、ポリオレフイン系 フイルムを用い、このフイルムの表面粗さを中心線平均 表面粗さ〔Ra〕で0.1~1.0μmの範囲となるよ うに設定したことにより、剥離ライナの剥離性にすぐれ る両面粘着シ―ト類を得ることができ、とくにシリコ― ンを実質的に含まないものとして、通常の用途はもちろ ん、HDD、パソコン、ワープロなどの電子機器などの 用途にも、有利に使用できる。

【図面の簡単な説明】

【図1】本発明の両面粘着シート類の一例を示す断面図 である。

【図2】本発明の両面粘着シ―ト類の他の例を示す断面 図である。

【符号の説明】

- 1 (101, 102) ポリオレフイン系フイルム (剥 離ライナ)
- 11 主面側剥離面
- 12 背面側剥離面
- 2 粘着剤層
- 21 粘着剤層の主面
- 22 粘着剤層の背面
- X, Y 両面粘着シート類

【図1】

1:ポリオレフイン系フイルム(剝離ライナ)

1.1:主面侧剝離面

12:背面倒剝離面

2:粘着剤醫

21:粘着剤層の主面

22:粘着剤暦の背面

X:両面粘着シート類

【図2】

101, 102:ポリオレフイン系フイルム (剝離ライナ)

Y: 両面粘着シート類

フロントページの続き

(72)発明者 彦坂 和香

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内