Engineering Safer Roads: A Clustering Analysis of Road Accident Data in Canada

Aki Okuyama

CEE 512 Dec 13, 2023

Research Overview & Methodology

- Every day, almost 3,700 people are killed globally in car accidents (WHO, 2018)
- Significant possibilities that engineering can mitigate the risk of car accidents
 - e.g., road conditions, driver-support system

Figure 1: Motor Vehicle Crash Death in 10 High-Income Countries (WHO, 2015)

The value indicates deaths per 100,000 people in 2013.

- I aim to investigate car accidents in Canada from 1999 to 2014 to identify trends and inform effective engineering perspective intervention to reduce the number of car accidents
- Simply looking at the mode value of the variable does not provide insightful information
- Use principal component analysis (PCA) and k-means clustering to analyze 10,000 incidents selected from a dataset of over 3.8 million collisions
- Variables:
 - Collision hour, collision configuration, roadway configuration, weather conditions, road surface, road alignment, traffic control, vehicle type, vehicle model year, driver sex, and driver age.

Results

Analysis Process:

- PCA to decrease dimension to 2 dimensions
- 4 clusters are used after checking the silhouette score
- Clusters 0 & 1: rear-end collision on sunny days at peak hour
- Cluster 2: rear-end collision on snowy conditions at peak hour
- Cluster 3: rear-end collision on rainy conditions at the end of

peak hour

Table 1: Most Frequent Value in each Clusters

Figure 2: Clustering Results

Cluster	Hour	Collision Configuration	Road Configuration	Weather	Road Surface	Road Alignment	Traffic Control	Vehicle Type	Vehicle Year	Driver Sex	Driver Age
0	16	Rear-end Collision	Non- intersection	Clear & Sunny	Dry Normal	Straight & Level	No Controlled Traffic	Light Duty Vehicle	2002	Female	18
1	16	Rear-end Collision	Intersection	Clear & Sunny	Dry Normal	Straight & Level	Traffic Signal	Light Duty Vehicle	2002	Female	17
2	16	Rear-end Collision	Non- intersection	Snowing	Wet	Straight & Level	No Controlled Traffic	Light Duty Vehicle	2000	Female	19
3	17	Rear-end Collision	Intersection	Raining	Wet	Straight & Level	Traffic Signal	Light Duty Vehicle	2000	Male	18

Discussion & Conclusion

• Technologies to reduce the risk of rear-end collision must be a priority

- Recent technologies have shown the potential to mitigate the risk of rear-end collision
- A potential issue is their workability in severe weather conditions

Figure 3: Rear Collision Warming System source: https://www.autonationvolvocarssanjose.com/research/rear-collision-warning.htm

Prevent slips and provide better visuals in severe weather conditions

- Camera & sensor technology
- Advanced road surface material
- Improvement in tire technology
- Out of engineering scope...
 - It is not true that females drive worse than males
 - Young drivers (17 19 years old) are the most dangerous drivers

Figure 4: Camera Technology in Rainy Condition source: Jhung and Kim 2021

