a)

Για να σχηματίζουν τα σημεία Α, Β και Γ τρίγωνο θα πρέπει να μην βρίσκονται στην ίδια ευθεία ή αλλιώς τα διανύσματα \overrightarrow{AB} , $\overrightarrow{A\Gamma}$ να μην είναι παράλληλα.
Είναι \overrightarrow{AB} = (λ, 1+1) = (λ, 2) και $\overrightarrow{A\Gamma}$ = (λ-2, λ-3+1) = (λ-2, λ-2) . Γνωρίζουμε ότι : \overrightarrow{AB} // $\overrightarrow{A\Gamma}$ ⇔ det (\overrightarrow{AB} , $\overrightarrow{A\Gamma}$) = 0 ⇔ $\begin{vmatrix} \lambda & 2 \\ \lambda - 2 & \lambda - 2 \end{vmatrix}$ = 0 ⇔ λ(λ-2) – 2 (λ-2) = 0 ⇔ (λ - 2)² = 0 ⇔ λ = 2.

Δηλαδή τα διανύσματα \overrightarrow{AB} , $\overrightarrow{A\Gamma}$ είναι παράλληλα \Leftrightarrow λ = 2. Οπότε τα σημεία Α, Β και Γ σχηματίζουν τρίγωνο για κάθε τιμή του λ που είναι διαφορετική από το 2.

ii. Αν το τρίγωνο ΑΒΓ είναι ορθογώνιο με \widehat{A} = 90°, το εσωτερικό γινόμενο $\overrightarrow{AB} \cdot \overrightarrow{A\Gamma}$ θα ισούται με μηδέν.

$$O\mu\omega\varsigma$$
 \overrightarrow{AB} · $\overrightarrow{A\Gamma}$ = 0 \Leftrightarrow λ (λ – 2) + 2 (λ – 2) = 0 \Leftrightarrow (λ + 2) (λ – 2) = 0 \Leftrightarrow λ + 2 = 0 $\acute{\eta}$ λ – 2 = 0 \Leftrightarrow λ = 2 $\acute{\eta}$ λ = -2.

Στο ερώτημα αi) δείξαμε ότι για $\lambda = 2$ τα σημεία A , B και Γ δεν σχηματίζουν τρίγωνο, οπότε το τρίγωνο ABΓ είναι ορθογώνιο με $\widehat{A} = 90^\circ$ μόνο για την τιμή $\lambda = -2$.

- β) Για $\lambda = -2$, $\overrightarrow{AB} = (-2, 2)$, $\overrightarrow{A\Gamma} = (-4, -4)$ και από ερώτημα αii) τα σημεία A(0, -1), B(-2, 1) και Γ(-4, -5) σχηματίζουν ορθογώνιο τρίγωνο με $\widehat{A} = 90^\circ$.
 - i. $\overrightarrow{AB} \cdot \overrightarrow{A\Gamma} = 0$.

ii.
$$(AB\Gamma) = \frac{1}{2} \left| \det (\overrightarrow{AB}, \overrightarrow{A\Gamma}) \right|$$
, αλλά
$$\det (\overrightarrow{AB}, \overrightarrow{A\Gamma}) = \begin{vmatrix} -2 & 2 \\ -4 & -4 \end{vmatrix} = (-2)(-4) - 2(-4) = 16$$
, οπότε $(AB\Gamma) = \frac{1}{2} \cdot 16 = 8$. Ή εναλλακτικά B' τρόπος : $(AB\Gamma) = \frac{1}{2} \left| \overrightarrow{AB} \right| \left| \overrightarrow{A\Gamma} \right|$, όμως
$$\left| \overrightarrow{AB} \right| = \sqrt{(-2)^2 + 2^2} = 2\sqrt{2} \quad \text{και} \quad \left| \overrightarrow{A\Gamma} \right| = \sqrt{(-4)^2 + (-4)^2} = 4\sqrt{2}$$
, οπότε $(AB\Gamma) = \frac{1}{2} 2\sqrt{2} 4\sqrt{2} = 8$.