$$\int \sec^3 x \, dx = \frac{1}{2} (\sec x \tan x + \ln|\sec x + \tan x|) + C$$

Integrales como la del ejemplo anterior podrían parecer muy complejas, pero ocurren con frecuencia en aplicaciones de la integración, como se verá en el capítulo 8. Integrales de la forma $\int \cot^m x \csc^n x \, dx$ se pueden determinar mediante métodos similares utilizando la identidad $1 + \cot^2 x = \csc^2 x$.

Por último, es posible hacer uso de otro conjunto de identidades trigonométricas:

Para evaluar las integrales (a) $\int \operatorname{sen} mx \cos nx \, dx$, (b) $\int \operatorname{sen} mx \operatorname{sen} nx \, dx$ o (c) $\int \cos mx \cos nx \, dx$, utilice la identidad correspondiente:

(a)
$$\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)]$$

(b) sen A sen
$$B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

(c) $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$

Estas identidades producto se discuten en el apéndice D.

EJEMPLO 9 Evalúe $\int \sin 4x \cos 5x \, dx$.

SOLUCIÓN Esta integral podría evaluarse utilizando integración por partes, pero es más fácil utilizar la identidad en la ecuación 2(a) como sigue:

$$\int \operatorname{sen} 4x \cos 5x \, dx = \int \frac{1}{2} [\operatorname{sen}(-x) + \operatorname{sen} 9x] \, dx$$
$$= \frac{1}{2} \int (-\operatorname{sen} x + \operatorname{sen} 9x) \, dx$$
$$= \frac{1}{2} (\cos x - \frac{1}{9} \cos 9x) + C$$

7.2 EJERCICIOS

1–49 Evalúe la integral.

$$1. \int \sin^3 x \, \cos^2 x \, dx$$

$$\int \sin^2 x \cos^2 x \, dx$$

$$3. \int_0^{\pi/2} \sin^7 \theta \, \cos^5 \theta \, d\theta$$

5.
$$\int \sin^5(2t) \cos^2(2t) dt$$

7.
$$\int_{0}^{\pi/2} \cos^2\theta \ d\theta$$

9.
$$\int_0^{\pi} \cos^4(2t) dt$$

11.
$$\int_0^{\pi/2} \sin^2 x \, \cos^2 x \, dx$$
 12. $\int_0^{\pi/2} (2 - \sin \theta)^2 \, d\theta$

13.
$$\int \sqrt{\cos \theta} \, \sin^3 \theta \, d\theta$$

12.
$$\int_0^{\pi/2} (2 - \sin \theta)^2 d\theta$$

8. $\int \frac{\sin^3(\sqrt{x})}{\sqrt{x}} dx$

14.
$$\int \frac{\sin^2(1/t)}{t^2} dt$$

 $2. \int \sin^6 x \, \cos^3 x \, dx$

4. $\int_{0}^{\pi/2} \sin^{5}x \, dx$

 $6. \int t \cos^5(t^2) dt$

10. $\int x \sin^3 x \, dx$

$$15. \int \cot x \cos^2 x \, dx$$

$$17. \int \sin^2 x \sin 2x \, dx$$

$$19. \int t \sin^2 t \, dt$$

21.
$$\int \tan x \sec^3 x \, dx$$

23.
$$\int \tan^2 x \, dx$$

$$25. \int \tan^4 x \, \sec^6 x \, dx$$

$$27. \int \tan^3 x \sec x \, dx$$

29.
$$\int \tan^3 x \sec^6 x \, dx$$

$$\mathbf{16.} \int \tan^2 x \cos^3 x \, dx$$

18.
$$\int \operatorname{sen} x \cos(\frac{1}{2}x) \, dx$$

20.
$$\int \cos \theta \cos^5(\sin \theta) d\theta$$

22.
$$\int \tan^2 \theta \, \sec^4 \theta \, d\theta$$

24.
$$\int (\tan^2 x + \tan^4 x) \, dx$$

26.
$$\int_0^{\pi/4} \sec^6 \theta \tan^6 \theta \ d\theta$$

$$28. \int \tan^5 x \, \sec^3 x \, dx$$

30.
$$\int_0^{\pi/4} \tan^4 t \, dt$$

$$\mathbf{31.} \int \tan^5 x \, dx$$

$$32. \int \tan^2 x \sec x \, dx$$

33.
$$\int x \sec x \tan x \, dx$$

34.
$$\int \frac{\sin \phi}{\cos^3 \phi} d\phi$$

35.
$$\int_{\pi/6}^{\pi/2} \cot^2 x \, dx$$

$$36. \int \csc^4 x \cot^6 x \, dx$$

37.
$$\int_{\pi/4}^{\pi/2} \cot^5 \phi \ \csc^3 \phi \ d\phi$$

38.
$$\int_{\pi/4}^{\pi/2} \csc^4 \theta \cot^4 \theta \ d\theta$$

39.
$$\int \csc x \, dx$$

40.
$$\int_{\pi/6}^{\pi/3} \csc^3 x \, dx$$

41.
$$\int \text{sen } 8x \cos 5x \, dx$$

42.
$$\int \operatorname{sen} 2\theta \operatorname{sen} 6\theta d\theta$$

43.
$$\int_0^{\pi/2} \cos 5t \cos 10t \ dt$$

44.
$$\int \operatorname{sen} x \operatorname{sec}^5 x \, dx$$

45.
$$\int_{0}^{\pi/6} \sqrt{1 + \cos 2x} \ dx$$

$$\mathbf{46.} \int \frac{\cos x + \sin x}{\sin 2x} \, dx$$

$$47. \int \frac{1 - \tan^2 x}{\sec^2 x} \, dx$$

48.
$$\int \frac{dx}{\cos x - 1}$$

49.
$$\int x \tan^2 x \, dx$$

- **50.** Si $\int_0^{\pi/4} \tan^6 x \sec x \, dx = I$, exprese el valor de $\int_0^{\pi/4} \tan^8 x \sec x \, dx$ en términos de I.
- **51–54** Evalúe las integrales indefinidas siguientes. Ilustre y verifique que su respuesta es razonable, al trazar la gráfica del integrando y su antiderivada (tome C=0).

51.
$$\int x \sec^2(x^2) dx$$

$$52. \int \sin^5 x \cos^3 x \, dx$$

53.
$$\int \operatorname{sen} 3x \operatorname{sen} 6x \, dx$$

54.
$$\int \sec^4(\frac{1}{2}x) \, dx$$

- **55.** Encuentre el valor promedio de la función $f(x) = \sin^2 x \cos^3 x$ sobre el intervalo $[-\pi,\pi]$.
- **56.** Evalúe $\int \sin x \cos x \, dx$ por cuatro métodos:
 - (a) al sustituir $u = \cos x$
 - (b) al sustituir u = sen x
 - (c) con la identidad sen $2x = 2 \operatorname{sen} x \cos x$
 - (d) al integrar por partes

Explique las diferencias aparentes en las respuestas.

57–58 Encuentre el área de la región acotada por las curvas dadas.

57.
$$y = \sin^2 x$$
, $y = \sin^3 x$, $0 \le x \le \pi$

58.
$$y = \tan x$$
, $y = \tan^2 x$, $0 \le x \le \pi/4$

59-60 Utilice la gráfica del integrando para intuir el valor de la integral. Después use el método de esta sección para probar que su intuición sea correcta.

59.
$$\int_0^{2\pi} \cos^3 x \, dx$$

60.
$$\int_0^2 \sin 2\pi x \cos 5\pi x \, dx$$

61–64 Encuentre el volumen obtenido al rotar la región acotada por las curvas dadas alrededor del eje especificado.

61.
$$y = \operatorname{sen} x$$
, $y = 0$, $\pi/2 \le x \le \pi$; alrededor del eje x

62.
$$y = \text{sen}^2 x$$
, $y = 0$, $0 \le x \le \pi$; alrededor del eje x

63.
$$y = \operatorname{sen} x$$
, $y = \cos x$, $0 \le x \le \pi/4$; alrededor de $y = 1$

64.
$$y = \sec x$$
, $y = \cos x$, $0 \le x \le \pi/3$; alrededor de $y = -1$

- **65.** Una partícula se mueve sobre una línea recta de acuerdo con la función velocidad $v(t) = \sec \omega t \cos^2 \omega t$. Encuentre su posición s = f(t) si f(0) = 0.
- **66.** La electricidad doméstica se suministra en la forma de corriente alterna que varía de 155 V a −155 V con una frecuencia de 60 ciclos por segundo (Hz). El voltaje está dado por la ecuación

$$E(t) = 155 \text{ sen}(120 \pi t)$$

donde t es el tiempo en segundos. Los voltímetros leen el voltaje RMS, por sus siglas en inglés (raíz media cuadrática), que es la raíz cuadrada del valor promedio de $[E(t)]^2$ sobre un ciclo.

- (a) Calcule el voltaje RMS de la corriente doméstica.
- (b) Muchas estufas eléctricas requieren un voltaje RMS de 220 V. Encuentre la amplitud A correspondiente necesaria para el voltaje $E(t) = A \operatorname{sen}(120\pi t)$.

67–69 Demuestre las fórmulas siguientes, donde m y n son enteros positivos.

$$\mathbf{67.} \int_{-\pi}^{\pi} \sin mx \cos nx \, dx = 0$$

68.
$$\int_{-\pi}^{\pi} \operatorname{sen} mx \operatorname{sen} nx \, dx = \begin{cases} 0 & \text{si } m \neq n \\ \pi & \text{si } m = n \end{cases}$$

69.
$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & \text{si } m \neq n \\ \pi & \text{si } m = n \end{cases}$$

70. Una serie finita de Fourier está dada por la suma

$$f(x) = \sum_{n=1}^{N} a_n \operatorname{sen} nx$$

= $a_1 \operatorname{sen} x + a_2 \operatorname{sen} 2x + \dots + a_N \operatorname{sen} Nx$

Demuestre que el m-ésimo coeficiente a_m está dado por la fórmula

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{sen} mx \, dx$$