# Business Analytics (MIS171) Summary Notes

## **Topic 1 Revision Notes**

## **Business Analytics:**

#### **Definition:**

- -"Process of transforming data into actions through analysis and insights in the context of organisational decision making and problem solving"
- -It is the use of data, information technology, statistical analysis, quantitative methods, and mathematical or computer-based models to help managers gain an improved insight about their business operations and make better, fact-based decisions
- -Supported by various tools such as Microsoft excel, and other software packages

## **Importance of Analytics:**

- -Data, facts and analysis aid decision making, and that the decisions made on them are better than those made through gut instinct
- -Decision making today is even more complicated, due to overwhelming data and information
- -There is a strong relationship of use of analytics and profitability and revenye

## **Evolution of Business Analytics:**

-Modern evolution of analytics began with the introduction of computers, as they provided the ability to store and analyze data easily.

## Three major components of business analytics:

| 1. Descriptive Analysis  | -Most commonly used and most well understood type of analytics              |
|--------------------------|-----------------------------------------------------------------------------|
| (WANT TO KNOW            | -Use data to understand past and present performance to make important      |
| ABOUT PAST)              | decisions                                                                   |
|                          | -Summarizes data into meaningful charts and reports                         |
| 2. Predictive Analysis   | -Analyzes past performance in an effort to predict the future by examining  |
| (WANT TO KNOW            | historical data, detecting patterns or relationships in these data          |
| ABOUT FUTURE)            | -Techniques include: regression and forecasting                             |
| 3. Prescriptive Analysis | -Uses optimization to identify the best alternative to minimize or maximize |
| (MAKING DECISIONS-       | some objective                                                              |
| OPTIMIZATION)            | -Addresses questions such as:                                               |
|                          | How much should we produce to maximize profit?                              |
|                          | •What is the best way of shipping goods from our factory to minimize costs? |

## What is Statistics?

## **Statistics definition:**

- -"Statistics relates to the collection, analysis, interpretation, and presentation of data"
- -Statistical methods are used to:
- Summarize a collection of data
- Draw inferences about an entire population
- Make predictions or forecasts
- -Statistics is also the study of variation in data

## -Descriptive VS. Inferential statistics:

| 1. Descriptive statistics: | -Are tabular, graphical, and numerical measures used to summarize data  |
|----------------------------|-------------------------------------------------------------------------|
| 2. Inferential statistics: | -The process of using data obtained from a sample to make estimates and |
|                            | test claims about the characteristics of a population                   |

#### Variables:

- -Characteristics of items or individuals
- -EG. Gender, field of study, money in wallet, time spent in shower each day
- -It is essential that all variables have an <u>operational definition</u>: which is defines how a variable is to be measured, otherwise confusion can occur.

#### Data:

-Observed characteristics of items of individuals.

## **Populations:**

- -A collection of all members of a group being investigated
- -Two factors need to be specified when defining a population:
- •1. The entity (EG. People or motor vehicles)
- •2. The boundary

## Sample:

- -The portion of the population selected for analysis
- -EG. Ten full time students selected for a focus group

#### Parameter:

-A numerical measure of some population characteristic

-EG. The average amount spent by all customers at the local shopping centre last weekend

#### Statistic:

- -A numerical measure that describes a characteristic of a sample
- -EG. The average amount spent by the 30 customers completing the market research survey

## **Data sources:**

## Four important sources of data:

- -Data distributed by an organisation or an individual
- -A designed experience
- -A survey
- -An observational study (such as a focus group)

## **Primary and Secondary sources:**

| Primary sources:   | -When the data collector is the one using the data for analysis                  |
|--------------------|----------------------------------------------------------------------------------|
|                    | -EG. Internal company records, business transactions, customer market surveys    |
| Secondary sources: | -When another organisation or individual has collected the data that is used for |
|                    | analysis by an organisation or individual                                        |
|                    | -EG. Government and commercial sources, online research                          |

## **Types of Data:**

## \*BIG DATA\* (Data deluge):

- -Many companies have massive amounts of data at their disposal
- -This data deluge is a result of:
- Automatic data collection
- Electronic instrumentation
- Online transactional processing
- -There is growing recognition of the untapped value in these data bases
- -Data is produced in great volumes, in a variety of forms, and is produced very quickly=BIG DATA

## 1. Categorical data (Qualitative data):

- -Labels or names used to identify attributes of each entity
- -Can be recorded in either numeric or nonnumeric formats
- -EG. 'Yes or no', 'male or female' answers
- -Usually counted or expressed as a portion or a percentage

## 2. Numerical data (Quantitative data):

- -Take numbers as their observed responses
- -Numerical data can be converted to categorical data. EG Salary can be converted into

low/medium/high. However you cannot convert categorical data back to numerical data -There are two types of numerical data:

| Discrete:   | -If measuring how many (Whole numbers)  |
|-------------|-----------------------------------------|
| Continuous: | -If measuring how much (Decimal places) |

## **Scales of Measurement:**

| Categorica             | Categorical Measurements                                                                |  |
|------------------------|-----------------------------------------------------------------------------------------|--|
| Nominal:               | -A classification of categorical data that implies no ranking                           |  |
|                        | -EG. Favorite soft drink, gender                                                        |  |
| Ordinal:               | -Scale of measurement where values are assigned by ranking                              |  |
|                        | -EG. Rating customers service as 'very good, good, average, or poor'                    |  |
| Numerical Measurements |                                                                                         |  |
| Interval:              | -A ranking of numerical data where differences are meaningful but there is no true zero |  |
|                        | point                                                                                   |  |
|                        | -EG. Shoe sizes 9, 9.5, 10                                                              |  |
| Ratio:                 | -A ranking of numerical data where differences between measurements involve a true zero |  |
|                        | point                                                                                   |  |
|                        | -EG. Length, weight, age, salary measurements                                           |  |



## **Two Broad Types of Data:**

| Cross-sectional data:            | "Relates to a group of items or individuals at a given point of time"     |
|----------------------------------|---------------------------------------------------------------------------|
| Time ordered (time series) data: | "Relates to a particular entity or situation at different points of time" |

# **Topic 2 Revision Notes**

-"Provide a relative measure of the distance an observation is from the mean (in terms of standard deviations)"



- -As a general rule a Z score above +3 or below -3 is considered an outlier
- -EG. A Z score of 2 means that a value is 2 SDs away from the mean

### The Chebyshev Rule (for any data set):

- -At least 75% of the data values must be within Z=2 Standard deviations of the mean
- -At least 89% of the data values must be within Z=3 Standard deviations of the mean
- -At least 94% of the data values must be within Z=4 Standard deviations of the mean

## The Empirical Rule (for a data set that is bell-shaped):

- -Approx 68% of the data values lie within Z=1 Standard deviations of the mean
- -Approx 95% of the data values lie within Z=2 Standard deviations of the mean
- -Approx 99.7% of the data values lie within Z=3 Standard deviations of the mean (ONLY WORKS FOR SYMMETRICAL DATA)



## 4. Measures of Variability:

## 1. Distance Measures:

| Range:        | -"Difference between largest and smallest data values"          |
|---------------|-----------------------------------------------------------------|
|               | =Max – Min                                                      |
| Interquartile | -"Difference between the third quartile and the first quartile" |
| Range (IQR):  | =Q3 - Q1                                                        |
|               | -It is the range for the middle 50% of the data                 |

## 2. Average Variation:

-Measure the average scatter around the mean. That is how larger values fluctuate above it and how smaller values are distributed below it.

| Variance           | -Expressed in square units                                                   |
|--------------------|------------------------------------------------------------------------------|
| (S <sup>2</sup> ): | $s^2 = \frac{\sum (x_i - \overline{X})^2}{1}$                                |
|                    | n-1                                                                          |
| Standard           | -"Estimate of the average deviation of individual values away from the mean" |
| deviation          | -SD is preferred over S <sup>2</sup> because it maintains the original unit  |
| (S):               | $-S(\sigma) = \sqrt{S^2}$                                                    |

## 3. Relative Variation:

| Coefficient   | -"Indicates how large the standard deviation is in relation to the mean"               |
|---------------|----------------------------------------------------------------------------------------|
| of Variation: | $CoV = \frac{s}{x} \times 100$                                                         |
|               | -Useful for comparing variability between data sets in different units                 |
|               | -EG. Relative to the mean, the package volume is more variable than the package weight |

## **Summary:**

- -The more spread out the data: the larger the range + IQR + SD
- -The more concentrated or similar the data: the smaller the range+ IQR + SD
- -If the value are the same: the range + IQR + SD will be zero
- -No measure of variation can ever be negative

## 5. Shape:

## Symmetrical Data (normal distribution):