

## Olimpiada Iberoamericana de Matemática Universitaria 2011

1. (4 puntos) Sean r y s enteros positivos. Cada uno de los números  $a_1, a_2, \ldots, a_r, b_1, \ldots, b_s$  es 1 ó 2. Considera los números que tienen las siguientes representaciones decimales:

$$a = 0.a_1 a_2 \dots a_r a_1 a_2 \dots a_r \dots$$

$$b = 0.b_1 b_2 \dots b_s b_1 b_2 \dots b_s \dots$$

$$x = 0.a_1 a_2 \dots a_r b_1 b_2 \dots b_s$$

$$y = 0.b_1 b_2 \dots b_s a_1 a_2 \dots a_r$$

Muestra que  $a \leq b$  si y sólo si  $x \leq y$ .

**Nota:** Los números a y b tienen representación decimal periódica. Los números x y y tienen representación decimal finita.

2. (4 puntos) El cubo n-dimensional C se descompone en  $2^n$  cajas rectangulares más pequeñas por n planos  $P_1, P_2, \ldots, P_n$  de tal forma que cada eje de C es perpendicular a exactamente uno de esos planos. Las  $2^n$  cajas se marcan en colores blanco y negro de tal manera que cada par de cajas vecinas tiene un color diferente.

Supongamos que la suma de los volúmenes de las cajas en negro es igual a la suma de los volúmenes de las cajas en blanco. Muestre que al menos uno de los planos  $P_1, P_2, \ldots, P_n$  bisecta a C.

3. (5 puntos) Sea  $n \ge 2$  un entero. Sea  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$  un polinomio con n raíces enteras distintas entre sí y distintas de 1. Muestre que:

$$\frac{n + \sum_{j=0}^{n-1} j a_j}{1 + \sum_{j=0}^{n-1} a_j} < 1 + \ln n.$$

4. (5 puntos) Los números complejos a, b y c satisfacen que a|bc|+b|ca|+c|ab|=0. Muestre que

$$|(a-b)(b-c)(c-a)| \ge 3\sqrt{3}|abc|.$$

5. (6 puntos) Se tienen tres círculos  $\omega_1$ ,  $\omega_2$ ,  $\omega_3$  en la esfera unitaria S de  $\mathbb{R}^3$ . Supongamos que para cada par de índices (i,j) con  $1 \le i < j \le 3$  existen dos círculos máximos  $C_{ij}$  y  $C_{ji}$  de S tales que ambos son tangentes a  $w_i$  y  $w_j$  y ninguno de los dos separa  $w_i$  y  $w_j$ . Los círculos máximos  $C_{ij}$  y  $C_{ji}$  se intersectan en los puntos  $P_{ij}$  y  $P_{ji}$ .

Demuestra que los puntos  $P_{12}$ ,  $P_{23}$ ,  $P_{31}$ ,  $P_{13}$ ,  $P_{32}$  y  $P_{21}$  están en un mismo círculo máximo de S.

6. (7 puntos) Los enteros no negativos a, b, c y d satisfacen  $2ab + 2bc + 2ca - a^2 - b^2 - c^2 = d^2$ . Considera el conjunto X de enteros que se pueden escribir como suma de cuadrados de dos enteros.

Muestra que a, b y c están los tres en X si y sólo si el máximo común divisor de a, b y c está en X.

7. (8 puntos) Considera

$$\mathcal{F} = \left\{ f \in C([0,1]) : \forall x \in [0,1], \left| \int_0^x \frac{f(t) dt}{\sqrt{x-t}} \right| \le 1 \right\}.$$

Determina

$$\sup_{f \in \mathcal{F}} \left| \int_0^1 f \right|.$$