DAY3

ਪਿਛਲੇ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਦੋ ਘਾਤੀ ਬਹਪਦ ਦੇ ਸਿਫਰਾਂ ਅਤੇ ਗਣਾਂਕਾਂ ਦੇ ਸੰਬੰਧ ਬਾਰੇ ਚਰਚਾ ਕੀਤੀ ਸੀ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਇੱਕ ਦੋਘਾਤੀ ਬਹਪਦ ਦੀ ਰਚਨਾ ਕਰਾਂਗੇ, ਜਿਸ ਦੀਆਂ ਸਿਫਰਾਂ ਦਿੱਤੀਆਂ ਹੋਣ।

ਜੇ α ਅਤੇ β ਦੋਘਾਤੀ ਬਹਪਦ ਦੀਆ ਸਿਫਰਾਂ ਹਨ ਤਾ

$$p(x)=(x-\alpha)(x-\beta)=x^2-(\alpha+\beta)x+\alpha\beta=x^2-Sx+P$$

ਜਿੱਥੇ $S=$ ਸਿਫਰਾਂ ਦਾ ਜੋੜ $=\alpha+\beta$ & $P=$ ਸਿਫਰਾਂ ਦੀ ਗੁਣਾ $=\alpha\beta$

1. ਦੋ ਘਾਤੀ ਬਹਪਦ ਪਤਾ ਕਰੋ ਜਿਸਦੀਆਂ ਸਿਫਰਾਂ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਹਨ:

$$(ii) -5, 2$$

$$(iii) -2, -3$$

(iv) 5,
$$\sqrt{3}$$

$$(v) 4, -1$$

ਹੱਲ:- (i) ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

ਦੋ ਘਾਤੀ ਬਹੁਪਦ = x^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) x + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ)

$$= x^2 - (3+1)x + 3 \times 1 = x^2 - 4x + 3$$

(ii) ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

ਦੋ ਘਾਤੀ ਬਹਪਦ = χ^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) χ + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ) $= x^{2} - (-5 + 2)x + (-5) \times 2 = x^{2} + 3x - 10$

(iii) ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

ਦੋ ਘਾਤੀ ਬਹੁਪਦ = χ^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) χ + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ) $= x^2 - (-2 - 3)x + (-2) \times (-3) = x^2 + 5x + 6$

(iv) ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

ਦੋ ਘਾਤੀ ਬਹੁਪਦ = χ^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) χ + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ) $= x^{2} - (5 + \sqrt{3})x + 5 \times \sqrt{3} = x^{2} - (5 + \sqrt{3})x + 5\sqrt{3}$

(v) ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

ਦੋ ਘਾਤੀ ਬਹਪਦ = χ^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) χ + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ) $= x^2 - (4 + (-1)) x + 4 \times (-1) = x^2 - 3x - 4$

2. ਦੋ ਘਾਤੀ ਬਹਪਦ ਪਤਾ ਕਰੋ ਜਿਸਦੇ ਸਿਫਰਾਂ ਦਾ ਜੋੜ ਅਤੇ ਗਣਨਫਲ ਇਸ ਪ੍ਰਕਾਰ ਹੈ:-

(i)
$$3, -4$$

(ii)
$$\frac{1}{2}$$
, $\frac{1}{3}$

(ii)
$$\frac{1}{2}$$
, $\frac{1}{3}$ (iii) $\sqrt{3}$, 4

$$(iv)$$
 $-2, -5$

$$(\mathbf{v})\frac{-2}{3}, 1$$

Sol:-(i) ਦੋ ਘਾਤੀ ਬਹਪਦ = x^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) x + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ)

$$= x^2 - 3x + (-4) = x^2 - 3x - 4$$

(ii) ਦੋ ਘਾਤੀ ਬਹਪਦ = χ^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) χ + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ)

$$= x^2 - \frac{1}{2}x + \frac{1}{3}$$

(iii) ਦੋ ਘਾਤੀ ਬਹੁਪਦ = χ^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) χ + (ਸਿਫਰਾਂ ਦੀ ਗੁਣਾਂ)

$$= x^2 - \sqrt{3}x + 4$$

(iv) ਦੋ ਘਾਤੀ ਬਹਪਦ = x^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) x + (ਸਿਫਰਾਂ ਦੀ ਗਣਾਂ) $= x^2 - (-2)x + (-5) = x^2 + 2x - 5$

$$(\mathbf{v})$$
 ਦੋ ਘਾਤੀ ਬਹੁਪਦ = x^2 – (ਸਿਫਰਾਂ ਦਾ ਜੋੜ) x + (ਸਿਫਰਾਂ ਦੀ ਗੁਣਾਂ) = $x^2 - \left(\frac{-2}{3}\right)x + 1 = x^2 + \frac{2}{3}x + 1$

ਅਭਿਆਸ

- 1. ਦੋ ਘਾਤੀ ਬਹੁਪਦ ਪਤਾ ਕਰੋ ਜਿਸਦੀਆਂ ਸਿਫਰਾਂ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਹਨ:
 - (i) 4,3
- (ii) -2, -5 (iii) -6,3 (iv) $3,\sqrt{2}$ (v) 4, -4

2. Ex 2.2, Q2

DAY 4

ਵੰਡ ਐਲਗੋਰਿਥਮ

ਯੂਕਲਿਡ ਵੰਡ ਐਲਗੋਰਿਥਮ ਦੁਆਰਾ a = bq + r **ਜਾਂ** ਭਾਜ = ਭਾਜਕ imes ਭਾਗਫਲ + ਬਾਕੀ ਪਰ ਯੂਕਲਿਡ ਐਲਗੋਰਿਥਮ ਸਿਰਫ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਲਈ ਹੈ।

ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਬਹੁਪਦੀਆਂ ਦੇ ਵੰਡ ਐਲਗੌਰਿਥਮ ਬਾਰੇ ਚਰਚਾ ਕਰਾਂਗੇ।

ਬਹੁਪਦੀਆਂ ਦੇ ਵੰਡ ਐਲਗੋਰਿਥਮ ਜੇ p(x) ਅਤੇ g(x) ਦੋ ਬਹੁਪਦੀਆਂ ਹਨ ਅਤੇ g(x), p(x) ਨੂੰ ਵੰਡਦੀ ਹੈ ਤਾਂ ਵੰਡ ਐਲਗੋਰਿਥਮ : p(x) = g(x), q(x) + r(x); $r(x) \neq 0$

ਭਾਵ: ਭਾਜ = ਭਾਜਕ × ਭਾਗਫਲ + ਬਾਕੀ

1. ਵੰਡ ਐਲਗੋਰਿਥਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ $p(x) = 2x^2 + 3x + 1$, ਨੂੰ g(x) = x + 2 ਨਾਲ ਭਾਗ ਕਰਕੇ ਭਾਗਫਲ ਅਤੇ ਬਾਕੀ ਪਤਾ ਕਰੋ ।. [PSEB Ex. 6]

Sol:- $\begin{array}{c|c} 2x - 1(ਭਾਗਫਲ) \\ x + 2 & 2x^2 + 3x + 1 \\ \pm 2x^2 \pm 4x \\ \hline -x + 1 \\ \hline \mp x \mp 2 \end{array}$

3 (ਬਾਕੀ)

2. ਵੰਡ ਐਲਗੋਰਿਥਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ $p(x) = 3x^2 + 2x + 4$, ਨੂੰ g(x) = x - 1 ਨਾਲ ਭਾਗ ਕਰਕੇ ਭਾਗਫਲ ਅਤੇ ਬਾਕੀ ਪਤਾ ਕਰੋ।.

Sol:-

$$3x + 5(ਭਾਗਫਲ)$$
 $x - 1$
 $3x^2 + 2x + 4$
 $\pm 3x^2 \mp 3x$
 $5x + 4$
 $\pm 5x \mp 5$
 $9 (ਬਾਕੀ)$

3. ਵੰਡ ਐਲਗੋਰਿਥਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ $p(x) = 2x^3 - 3x^2 + 10x - 8$, ਨੂੰ g(x) = x + 5 ਨਾਲ ਭਾਗ ਕਰਕੇ ਭਾਗਫਲ ਅਤੇ ਬਾਕੀ ਪਤਾ ਕਰੋ ।

Sol:-

$$\begin{array}{r}
2x^2 - 13x + 75 \\
2x^3 - 3x^2 + 10x - 8 \\
\pm 2x^3 \pm 10x^2 \\
-13x^2 + 10x \\
\hline
+13x^2 \mp 65x \\
\hline
75x - 8 \\
\pm 75x \pm 375 \\
-383
\end{array}$$

ਇੱਥੇ
$$q(x) = 2x^2 - 13x + 75, r(x) = -383$$

ਵੰਡ ਐਲਗੋਰਿਥਮ ਦੁਆਰਾ $2x^3 - 3x^2 + 10x - 8 = (x+5)(2x^2 - 13x + 75) - 383$

4. ਦੋ ਘਾਤੀ ਬਹੁਪਦ $x^2 - 17x + 60$ ਦੇ ਸਿਫਰ ਪਤਾ ਕਰੋ ਅਤੇ ਸਿਫਰਾਂ ਅਤੇ ਗੁਣਾਕਾਂ ਵਿਚਕਾਰ ਸੰਬੰਧਾਂ ਦੀ ਸਚਾਈ ਦੀ ਜਾਂਚ ਕਰੋ ।

Sol:.
$$p(x) = x^2 - 17x + 60 = x^2 - 12x - 5x + 60$$

= $x(x - 12) - 5(x - 12) = (x - 12)(x - 5)$
 $p(x)$ ਦੀਆਂ ਸਿਫਰਾਂ
ਜੇ $x - 12 = 0$ ਅਤੇ $x - 5 = 0$ $i.e.$ $x = 12, x = 5$

ਜਾਂਚ

ਬਹੁਪਦ
$$x^2-17x+60$$
 ਦੀਆਂ ਸਿਫਰਾਂ 12 ਅਤੇ 5
ਸਿਫਰਾਂ ਦਾ ਜੋੜ = $12+5=17=\frac{-b}{a}$
ਸਿਫਰਾਂ ਦੀ ਗੁਣਾ = $12\times5=60=\frac{c}{a}$

5. $3x^4 + 6x^3 - 2x^2 - 10x - 5$ ਦੀਆਂ ਸਾਰੀਆਂ ਸਿਫਰਾਂ ਪਤਾ ਕਰੋ ਜੇ ਦੋ ਸਿਫਰਾਂ $\pm \sqrt{\frac{5}{3}}$ ਹਨ।

Sol. ਦਿੱਤੇ ਬਹੁਪਦ ਦੀਆਂ ਦੋ ਸਿਫਰਾਂ
$$\sqrt{\frac{5}{3}}$$
ਅਤੇ $-\sqrt{\frac{5}{3}}$ ਹਨ।
$$\left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right)$$
 ਦਿੱਤੇ ਬਹੁਪਦ ਦਾ ਗੁਣਨਖੰਡ ਹੈ।
$$x^2 - \frac{5}{3} i.e. 3x^2 - 5$$
 ਦਿੱਤੇ ਬਹੁਪਦ ਦਾ ਗੁਣਨਖੰਡ ਹੈ।

ਵੰਡ ਦੁਆਰਾ

$$\begin{array}{r}
x^2 + 2x + 1 \\
3x^4 + 6x^3 - 2x^2 - 10x - 5 \\
\pm 3x^4 + 5x^2 \\
6x^3 + 3x^2 - 10x - 5 \\
\mp 6x^3 + 10x \\
3x^2 - 5 \\
\pm 3x^2 + 5 \\
0
\end{array}$$

So $3x^4 + \overline{6x^3 - 2x^2 - 10x - 5} = \overline{(3x^2 - 5)}(x^2 + 2x + 1)$ ਬਾਕੀ ਸਿਫਰਾਂ $x^2 + 2x + 1$ ਦਾ ਗੁਣਨਖੰਡੀਕੲਨ ਕਰਕੇ ਪਤਾ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। $x^2 + 2x + 1 = (x + 1)^2 = (x + 1)(x + 1)$ ਸਿਫਰਾਂ -1, -1

ਅਭਿਆਸ 2.2

1. ਵੰਡ ਐਲਗੋਰਿਥਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ p(x) ਨੂੰ g(x) ਨਾਲ ਭਾਗ ਕਰਕੇ ਭਾਗਫਲ ਅਤੇ ਬਾਕੀ ਪਤਾ ਕਰੋ ।

i.
$$p(x) = x^4 - 3x^2 + 4x + 5$$
; $g(x) = x^2 + 1 + x$

ii.
$$p(x) = x^3 - 3x^2 + 5x - 3$$
; $g(x) = x^2 - 2$

iii.
$$p(x) = x^4 - 5x + 6$$
; $g(x) = 2 - x^2$

iv.
$$p(x) = 3x^3 + x^2 + 2x + 5$$
: $g(x) = 1 + 2x + x^2$

v.
$$p(x) = 3x^2 - x^3 - 3x + 5$$
; $g(x) = x - 1 - x^2$

2. ਵੰਡ ਐਲਗੋਰਿਥਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ p(x) ਨੂੰ g(x) ਪਤਾ ਕਰੋ ਕਿ ਪਹਿਲਾ ਬਹੁਪਦ, ਦੂਜੇ ਬਹੁਪਦ ਦਾ ਗੁਣਨਖੰਡ ਹੈ ਜਾਂ ਨਹੀਂ।

i.
$$x^2 - 2$$
; $2x^4 - 3x^3 - 3x^2 + 6x - 2$

ii.
$$y-2$$
; $2y^3 - 5y^2 - 19y + 42$

- **3.** ਜੇ $\sqrt{2}$ ਅਤੇ $-\sqrt{2}$ ਬਹੁਪਦ $2x^4$ $3x^3$ $3x^2$ + 6x 2 ਦੀਆਂ ਸਿਫਰਾਂ ਹਨ ਤਾਂ ਬਾਕੀ ਸਿਫਰਾਂ ਵੀ ਪਤਾ ਕਰੋ।
- **4.** $p(x) = x^3 3x^2 + x + 2$ ਨੂੰ ਬਹੁਪਦ g(x) ਨਾਲ ਵੰਡਣ ਤੇ ਭਾਗਫਲ ਅਤੇ ਬਾਕੀ ਕ੍ਰਮਵਾਰ x 2 ਅਤੇ -2x + 4 ਹਨ।g(x) ਪਤਾ ਕਰੋ।