Contents

1	Introduction	2
2	Théorie de Teichmuller	3
3	Isomorphisme de Mirzhakani	5
4	Vitesse de mélange	6
5	Example du tore à un trou	7

1 Introduction

2 Théorie de Teichmuller

Nous commencerons dans cette section par donner quelques définitions pour introduire la théorie des espaces de Teichmuller.

Définition 2.1. Espace de Teichmuller Soit S une surface de genre g, un marquage de S est un couple (X, f) formé d'une surface de Riemann X et d'un homéomorphisme préservant l'orientaion $f: S \to X$. Sur l'ensemble des marquages de S, nous pouvons faire une relation d'équivalence $(X_1, f_1) \sim (X_2, f_2)$ si il existe $\alpha: X_1 \to X_2$ tel que $f_2 \circ \alpha \circ f_1^{-1}$ soit un homéomorphisme de S préservant l'orientation et isotope à l'identité. L'espace des marquages quotienté par la relation s'appelle l'espace de Teichmuller et est noté \mathbb{T}_g

Remarque. Si $g \geq 2$, pour toute courbe simple fermée α de S, il existe une unique géodésique fermée de X librement isotope à $f(\alpha)$. Nous noterrons $L_{\alpha}(X)$ sa longeur hyperbolique et nous prenons la topologie la plus faible sur T_g qui rendent ces fonctions continues.

Définition 2.2. Espace des modules On appele groupe modulaire le groupe des homéomorphisme préservant l'oriention de S quotienté par ceux isotope à l'identité. Nous notterons ce groupe Mod_g . Il agit de façon discrète sur T_g et l'espace quotient est appelé espace des modules et est noté \mathbb{M}_g

Il est naturel de ce demander à quoi ressemble ces espaces.

Définition 2.3. Dehn twist Soit γ une courbe simple et fermée. Il existe un voisinage tubulaire de γ noté A homéomorphe à $[0;1] \times S^1$. On définit le Dehn's twist comme l'homéomorphisme qui vaut l'indentité hors de A et vaut $(t,s) \mapsto (t,e^{2i\pi t}s)$ sur A.

Remarque. Le théorème de Lickorisk affirme que le groupe modulaire est engendré par ces Dehn's twist et que plus précisément on peut choisir 2g + 1 générateurs [?].

Définition 2.4. Feuilletage Un feuilletage mesuré est un feuilletage de la surface dont chaque arc porte une mesure. Ainsi la mesure d'un arc γ ne dépent que de la feuille d'arrivé

Définition 2.5. Lamination Une lamination est un ensemble fermé qui est un union (non nécessairement finie) de géodésiques. Par chaque point x contenu dans λ il ne passe que une seul géodésique. Nous notterons cet espace $\mathbb{ML}(x)$

Définition 2.6. Différentielle quadratique Une différentielle quadratique est une section du carré de l'espace tangeant canonique à X. Il s'écrit localement comme $\phi = \phi(z)dz^2$

Remarque. Si $\phi(p) \neq 0$ on peut trouver une carte contenant p dans laquel $\phi = dz^2$. Ainsi ϕ détermine une métrique plate sur X et un feuilletage \mathbb{F} correspondant aux lignes horizontales.

Une différentielle quadratique est dite intégrable si

$$\|\phi\| = \int_X |\phi| < \infty$$

Nous notterons $\operatorname{mathbb}{Q}(x)$ l'espace de Banach des différentielles quadratiques intégrables.

3 Isomorphisme de Mirzhakani

4 Vitesse de mélange

5 Example du tore à un trou