0.1 Условие применимости метода линеаризации в задаче локального синтеза

0.1.1 Постановка задачи

Рассмотрим нелинейную систему, аффинную по управлению

$$\dot{z}(t) = f(z(t)) + Bu(t), \qquad 0 \leqslant t \leqslant T, \qquad z(0) = z_0.$$
 (0.1)

где $z \in \mathbb{R}^n$ — вектор состояния, $u \in \mathbb{R}^r$ — вектор управления, $B \in \mathbb{R}^{n \times r}$, а T — некоторое положительное число.

Система (0.1) является частным случаем системы (??), которая исследовалась в Главе ??, при $f_1(t, z(t)) = f(z(t))$ и $f_2(t, z(t)) = B$.

Пространство скалярных или векторных функций интегрируемых с квадратом на [0,T] будем обозначать здесь через $\mathbb{L}_2 = \mathbb{L}_2[0,T]$.

Предполагается, что управление $u(\cdot)$ принадлежит пространству \mathbb{L}_2 .

Предположение 1 Существует такое $\mu > 0$, что все решения $x(s, v(\cdot))$ системы $\dot{x} = -f(x) - Bv(t)$, выходящие из некоторой окрестности нуля и отвечающие управлениям $v(\cdot) \in B_{\mathbb{L}_2}(0,\mu)$, определены на интервале [0,T] и лежат в шаре $B_{\mathbb{R}^n}(0,\overline{r})$, $\overline{r} > 0$.

Здесь $B_{\mathbb{R}^n}(0, \overline{r})$ — это шар радиуса \overline{r} с центром в точке $0 \in \mathbb{R}^n$. Будем считать, что функция f обладает следующим свойством.

Предположение 2 Найдутся такие $\overline{r} > r > 0$, k > 0 что при всех $z \in B_{\mathbb{R}^n}(0,r)$, функция f(z) может быть представлена в форме f(z) = Az + R(z), причем $A \in \mathbb{R}^{n \times n}$ и $||R(z)|| \le k||z||^2$.

Это свойство выполняется, если $f(0)=0, \frac{\partial f}{\partial z}(0)=A$ и f(z) дважды непрерывно дифференцируема.

Заметим, что из справедливости Предположения 2 для f следует выполнение условий Предположения ?? на интервале $0 \le t \le T$ в области $B_{\mathbb{R}^n}(0,r)$.

В качестве функционала мы рассматриваем

$$I(T, u) := \int_0^T u^\top(t)u(t)dt = ||u(\cdot)||_{\mathbb{L}_2}^2.$$
 (0.2)

Задача состоит в синтезе закона управления u(t)=u(t,z(t)) который бы приводил траектории замкнутой системы

$$\dot{z}(t) = f(z(t)) + Bu(t, z(t)), \qquad 0 \le t \le T, \qquad z(0) = z_0.$$

в начало координат за время T и обеспечивал при этом минимальное значение I(T,u).

Рассмотрим линейный случай (R(z) = 0)

$$\dot{z} = Az + Bu, \qquad 0 \leqslant t \leqslant T. \tag{0.3}$$

Если система (0.3) управляема, то решение описанной выше задачи — это линейный по состоянию закон управления

$$u(t,z) = -B^{\mathsf{T}} Q_T(t)z \tag{0.4}$$

(см, например, [?,?,?]). Здесь $Q_T(t) = W^{-1}(T-t)$, а W(t) — грамиан управляемости системы $\dot{x} = -Ax - Bu$:

$$W(t) = \int_0^t e^{-A\tau} B B^{\mathsf{T}} e^{-A^{\mathsf{T}} \tau} d\tau.$$

Грамиан W(t) положительно определен при t>0 тогда и только того, когда система (0.3) управляема. Можно показать, что $Q_T(t)$ — решение дифференциального уравнения

$$\dot{Q_T} = Q_T B B^{\mathsf{T}} Q_T - A^{\mathsf{T}} Q_T - Q_T A, \quad Q_T(0) = W^{-1}(T).$$
 (0.5)

Таким образом, чтобы найти $Q_T(t)$ на (0,T], нужно сначала вычислить W(T), а затем проинтегрировать систему (0.5). Поскольку W(0) = 0, $Q_T(t)$ определена для t < T и $||Q_T(t)|| \to \infty$ при $t \to T$.

Верно следующее утверждение [?,?,?].

Утверждение 1 Любая траектория z(t) системы (0.3) с управлением (0.4) выходящая из точки z_0 достигает начала координат за время T. При этом интегральный функционал I(T,u) принимает минимальное значение $z_0^\top Q_T(0)z_0$ при каждом z_0 .

Далее мы будем исследовать поведение траекторий системы (0.1) замкнутой линейной обратной связью $u(t,z) = -B^{\top}Q_T(t)z$ при условии, что T достаточно мало. Верно ли, что все траектории, начинающиеся в некоторой окрестности начала координат, достигают его? Можно ли что-то сказать о значении интегрального функционала?

0.1.2 Асимптотическая эквивалентность множеств достижимости

Далее, мы будем использовать понятие асимптотической эквивалентности множеств, введенное в разделе $\ref{eq:constraint}$. Рассмотрим систему, уравнения которой получаются из (0.1) обращением времени. Положив au=T-t мы имеем

$$\dot{x}(\tau) = -f(x(\tau)) - Bv(\tau), \qquad 0 \leqslant \tau \leqslant T; \tag{0.6}$$

здесь $x(\tau) = z(T - \tau), \ v(\tau) = u(T - \tau)$. При заданном $\mu > 0$ обозначим через $G_-(T, \mu)$ множество достижимости системы (0.6) с интегральными квадратичными ограничениями на управление, $G_-(T, \mu) = \{x \in \mathbb{R}^n : \exists v(\cdot) \in B_{\mathbb{L}_2}(0, \mu), \ x = x(T, v(\cdot)))\}.$

Здесь $x(\tau, v(\cdot))$) обозначает решение системы (0.6) с нулевыми начальными условиями. Свойства множеств достижимости нелинейных систем с интегральными ограничениями на управление изучались во многих работах (см., например, [?,?,?]). Рассмотрим также

линейную систему

$$\dot{x}(\tau) = -Ax(\tau) - Bv(\tau), \qquad 0 \leqslant \tau \leqslant T; \tag{0.7}$$

эта система является линеаризацией системы (0.6) в начале координат. Множество достижимости этой системы обозначим через $G^0_-(T,\mu)$. Это множество — эллипсоид в \mathbb{R}^n , описываемый неравенством $G^0_-(T,\mu) = \{x \in \mathbb{R}^n : x^\top W^{-1}(T)x \leqslant \mu^2\}$.

Через $\nu(\tau), \eta(\tau)$ обозначим наименьшее и наибольшее собственное число $W(\tau)$ соответственно. Из результатов [?,?,?,?] следует, что множества достижимости $G_-(\tau,\mu)$ и $G_-^0(\tau,\mu)$ асимптотически эквивалентны при $\tau \to 0$ если пара (A,B) — управляема и существуют такие $l>0,\,\tau_0>0$ и $\alpha>0$ что для всех $0<\tau\leqslant\tau_0$

$$\nu(\tau) \geqslant l\tau^{4-\alpha}.\tag{0.8}$$

Замечание 1 Множество достижимости $G_{-}(T,\mu)$ системы (0.6) совпадает с множеством нуль-управляемости системы (0.1), т.е. множества таких начальных условий, из которых система может быть переведена в начало координат управлениями из $B_{\mathbb{L}_{2}}(0,\mu)$ за время T. То же самое справедливо для систем (0.7) и (0.7) и соответствующих им множеств $G_{-}^{0}(T,\mu)$.

0.1.3 Задача синтеза управления. Асимптотика траекторий

Далее мы будем предполагать, что пара (A, B) является управляемой, не уточняя это отдельно.

В этом разделе мы исследуем асимптотическое поведение траекторий системы (0.1), замкнутой линейной обратной связью $u(t,z) = -B^{\top}Q_T(t)z$:

$$\dot{z} = f(z) - BB^{\mathsf{T}} Q_T(t)z, \qquad 0 \leqslant t \leqslant T, \qquad z(0) = z_0.$$
 (0.9)

Напомним, что это управление приводит траектории линейной системы $\dot{z}=Az+Bz$ к началу координат в момент времени T и обеспечивает минимальное значение функционала. Это значение равно $J_0(T,z_0)=z_0^\top Q_T(0)z_0$.

Для анализа траекторий системы (0.9) используем следующую лемму

Лемма 1 Пусть $C \in \mathbb{R}^{n \times n}$ и $D \in \mathbb{R}^{n \times n}$ — симметричные положительно-определенные матрицы, $C = D^{-1}$. Тогда, для любого $\forall z \in \mathbb{R}^n$

$$\frac{1}{\lambda_{max}(D)} \|z\|^2 \leqslant z^T C z \leqslant \frac{1}{\lambda_{min}(D)} \|z\|^2, \tag{0.10}$$

где $\lambda_{max}(D)$ и $\lambda_{min}(D)$ — наибольшее и наименьшее собственное число матрицы D.

Д о к а з а т е л ь с т в о. . Следует из факта, что наибольшее и наименьшее собственное число матрицы C равны $1/\lambda_{min}(D)$ и $1/\lambda_{max}(D)$, соответственно.

Если $C=Q_T(t)=W^{-1}(T-t),$ то D=W(T-t) и неравенство (0.10) принимает вид

$$\frac{1}{\eta(T-t)} \|z\|^2 \leqslant z^T Q_T(t) z \leqslant \frac{1}{\nu(T-t)} \|z\|^2, \quad 0 \leqslant t < T.$$

Предположение 3 Пусть существует $\overline{T}>0$ и непрерывная положительная функция $\varphi(\tau):(0,\overline{T}]\to\mathbb{R}$ такие, что

$$0 < \frac{\eta(\tau)}{\sqrt{\nu(\tau)}} \leqslant \varphi(\tau), \qquad 0 < \tau \leqslant \overline{T}, \quad \int_{0}^{\overline{T}} \varphi(\tau) d\tau < \infty.$$

Введем функцию $\Phi(T):[0,\overline{T}]\to\mathbb{R}$

$$\Phi(T) = \int_{0}^{T} \varphi(\tau)d\tau, \quad 0 < T \leqslant \overline{T}, \quad \Phi(0) = 0.$$

Напомним, что $\eta(\tau)$ и $\nu(\tau)$ — это наименьшее и наибольшее собственные числа $W(\tau)$. Далее будем считать систему (0.7) полностью управляемой, поэтому $\eta(\tau) \geqslant \nu(\tau) \geqslant 0$ при $\tau \geq 0$.

Поскольку $\varphi(\tau)$ не обязательно ограничено в нуле, $\Phi(T)$ может принимать значения, равные $+\infty$.

Лемма 2 Верны следующие свойства $\Phi(T)$:

- 1. Если $\Phi(T) < \infty$ хотя бы для одного T, то $\Phi(T) < \infty$ для всех $T \in (0, \overline{T}]$.
- 2. Если $\Phi(T) < \infty$, то $\Phi(T)$ непрерывная и возрастающая функция на $[0,\overline{T}]$.

Доказательство. . Следует из свойств несобственных интегралов.

Предположение 4 Существует такое $0 < \beta \leqslant 1$ что $\frac{\sqrt{\eta(T)}}{\Phi^{\beta}(T)} \to 0$ при $T \to 0$.

Если $\Phi(T)$ конечна, то существует не более одного корня уравнения $\Phi(T)=1$ на $(0,\overline{T}],$ обозначим этот корень через T^* . Если $\Phi(T)<1$ при $T\in(0,\overline{T}]$ положим $T^*=\overline{T}.$ Очевидно, что для всех $0<\beta\leqslant 1,\ \Phi^{\beta}(T)\geqslant \Phi(T)$ если $T\leqslant T^*.$

При фиксированном $T \in (0, \overline{T}]$ рассмотрим квадратичную форму $V_T(t, z) = z^{\top} Q_T(t) z$.

Лемма 3 Пусть выполнено предположение 3. Если $T \leqslant T^*$ и z(t) — такая траектория системы (0.9) что $z(t) \in B(0,r)$ при $0 < t \leqslant T$ и $V_T(0,z(0)) \leqslant 1/(4k^2\Phi^{2\beta}(T))$ для некоторого $0 < \beta \leqslant 1$. Тогда

$$V_T(t, z(t)) \leqslant \frac{1}{k^2 \Phi^{2\beta}(T)}, \qquad 0 \leqslant t \leqslant T.$$

Д о к а з а т е л ь с т в о. . Продифференцировав V_T вдоль траектории z(t) системы (0.1) на интервале [0,T], мы получим

$$\frac{d}{dt}V_T(t,z) = \frac{d}{dt}z^\top Q_T z = \dot{z}^\top Q_T z + z^\top \dot{Q}_T z + z^\top Q_T \dot{z} =
= \left(z^\top A^\top + R^\top (z) - z^\top Q_T B B^\top\right) Q_T z +
+ z^\top Q_T \left(A + R(z) - B B^\top Q_T\right) z + z^\top \left(Q B B^\top Q_T - A^\top Q - Q_T A\right) z =
= R^\top (z) Q_T z + z^\top Q_T R(z) - z^\top (Q_T B B^\top Q_T) z =
= 2 \left(R(z), Q_T z\right) - z^\top Q_T B B^\top Q_T z$$

Хотя здесь z и Q_T зависят от t, для краткости мы опускаем явную зависимость в обозначениях. Из $z^{\top}Q_TBB^{\top}Q_Tz \geqslant 0$, следует, что

$$\frac{d}{dt}V_T(t,z) \leqslant 2(R(z),Q_Tz) = 2(R(z),z)_{Q_T} \leqslant 2||R(z)||_{Q_T}||z||_{Q_T}.$$
(0.11)

Здесь использованы обозначения $(x,y)_{Q_T}=x^\top Q_T y$ и $\|x\|_{Q_T}=\sqrt{(x,x)_{Q_T}}$ для $x,y\in\mathbb{R}^n$. Так как $z=z(t)\in B(0,r)$ то, учитывая, что $\|R(z)\|\leqslant k\|z\|^2$ и применяя Лемму 1, получаем

$$||R(z)||_{Q_T} \leqslant \frac{1}{\sqrt{\nu(T-t)}} ||R(z)|| \leqslant \frac{k}{\sqrt{\nu(T-t)}} ||z||^2 \leqslant k \frac{\eta(T-t)}{\sqrt{\nu(T-t)}} V_T.$$
 (0.12)

Напомним, что $Q_T^{-1}(t) = W(T-t)$. Подставляя полученную выше оценку в (0.11) приходим к

$$\frac{d}{dt}V_T \leqslant 2k \frac{\eta(T-t)}{\sqrt{\nu(T-t)}} V_T^{3/2} \leqslant 2k\varphi(T-t)V_T^{3/2} \tag{0.13}$$

Давайте введем систему

$$\dot{\psi} = 2k\varphi(T-t)\psi,\tag{0.14}$$

которую мы будем использовать как систему сравнения для (0.13). Проинтегрировав эту систему, мы имеем

$$d\psi^{-1/2} = -k\varphi(T-t)dt, \quad \psi^{-1/2}(t) = -k\int_{0}^{t} \varphi(T-\zeta)d\zeta + C,$$

где

$$0 < \int_{0}^{t} \varphi(T - \zeta) d\zeta \leqslant \int_{0}^{T} \varphi(T - \zeta) d\zeta = \int_{0}^{T} \varphi(\tau) d\tau = \Phi(T)$$

Выберем $C = 2k(\Phi(T))^{\beta}$, тогда $\psi^{-1/2} \geqslant 2k(\Phi(T))^{\beta} - k\Phi(T) = k(2\Phi^{\beta} - \Phi) \geqslant k\Phi^{\beta}$. То-

гда $\psi(t) \leqslant (k^2\Phi^{2\beta}(T))^{-1}$ для всех $0 \leqslant t \leqslant T^*$ и $\psi(0) = (4k^2\Phi^{2\beta}(T))^{-1}$. Таким образом, $V_T(0,z(0)) \leqslant \psi(0)$ и теорема сравнения [?], примененная к (0.13), (0.14), означает, что выполняется неравенство $V_T(t,z(t)) \leqslant \psi(t)$. Это завершает доказательство.

Теорема 1 Пусть выполнены предположения 3, 4. Тогда существует такое $T_1 \leqslant T^*$ что для всех $T \leqslant T_1$, найдется такой $r_1(T)$ что траектории системы (0.9) выходящие из $z(0) = z_0 \in B(0, r_1(T))$ стремятся к 0 при $t \to T$.

Д о к а з а т е л ь с т в о. . Поскольку $\frac{\sqrt{\eta(T)}}{\Phi^{\beta}(T)}$ стремится к 0 если T стремится к 0, то найдется такой $T_1 \leqslant T^*$, что выполняется следующее неравенство $\sqrt{\eta(T)}/(k\Phi^{\beta}(T)) \leqslant r/2, \ \forall T \in [0;T_1].$

Определим $r_1(T)$ равенством

$$r_1(T) = \min\left\{\frac{r}{4}, \frac{\sqrt{\nu(T)}}{2k\Phi^{\beta}(T)}\right\}. \tag{0.15}$$

Здесь нам нужно доказать, что вся траектория z(t) лежит в сфере B(0,r), чтобы использовать оценку (0.16) из предыдущего раздела. Из (0.15) немедленно следует, что $r_1(T) < r$. Отсюда и из условий теоремы и следует, что $z_0 \in B(0,r_1(T)) \subset B(0,r)$. Более того, непрерывность траектории z(t) означает, что условие $z(t) \in B(0,r)$ выполняется и для близких к нулю значений t.

Обозначим $t^* = \sup\{t: z(t) \in B(0,0.5r)\}$. Предположим, что $t^* < T$, это означает, что $z(t) \notin B(0,0.5r)$, при $t > t^*$. Тогда, мы можем выбрать такое положительное ε , что включение $z(t) \in B(0,r)$ будет выполняться для всех $0 \le t \le t^* + \varepsilon$.

Из условия (0.15) следует, что для $0 \le t \le t^* + \varepsilon$ будет выполняться следующее условие

$$V_T(0, z_0) \leqslant \frac{1}{\nu(T)} ||z_0||^2 \leqslant \frac{1}{\nu(T)} r_1^2 \leqslant \frac{1}{4k^2 \Phi^{2\beta}(T)}.$$

Из Леммы 3 вытекает, что $V_T(t, z(t)) \leqslant \psi(t)$ и

$$||z(t)||^2 \le \eta(T-t)V_T(t,z(t)) \le \eta(T-t)\psi(t) \le \frac{\eta(T)}{k^2\Phi^{2\beta}(T)},$$
 (0.16)

поэтому, $||z(t)|| \leq \frac{\sqrt{\eta(T)}}{k\Phi^{\beta}(T)} \leq r/2$ для всех $0 \leq t \leq t^* + \varepsilon$, что противоречит определению t^* . А значит, включение $z(t) \in B(0,r)$ и неравенство $V_T(t,z(t) \leq \psi(t))$ справедливы для всех $t \in [0;T]$.

Наконец, $||z(t)||^2 \leqslant \eta(T-t)\psi(t) \leqslant \eta(T-t) \left(k^2 \Phi^{2\beta}(T)\right)^{-1}$, где $\eta(T-t) \to 0$ при $t \to T$, а это означает, что ||z(t)|| тоже стремится к нулю.

Следствие 1 Пусть существуют такие $l>0,\ \tau_0>0\ u\ \alpha>0$ что для всех $0<\tau\leqslant\tau_0$ выполняется

$$\nu(\tau) \geqslant l\tau^{4-\alpha}.\tag{0.17}$$

Тогда справедливы Предположения 3 и 4 и, следовательно, утверждение Теоремы 1 является верным.

Д о к а з а т е л ь с т в о. . Положим $\overline{T}=\tau_0$. Существует такое m>0, что $\eta(\tau)\leqslant m\tau$, для $0<\tau\leqslant\overline{T}$ (см,например, [?]). Следовательно, имеем $\eta(\tau)/\sqrt{\nu(\tau)}\leqslant ml^{-1/2}\tau^{-1+\alpha/2}$, и можем взять $\varphi(\tau):=ml^{-1/2}\tau^{-1+\alpha/2}$. В этом случае $\Phi(T)=2mT^{\alpha/2}/(l^{-1/2}\alpha)$, и Предположение 3, очевидно, выполняется. Поскольку $\sqrt{\eta(T)}/\Phi^{\beta}(T)\leqslant c_0T^{(1-\alpha\beta)/2}$, где c_0 — константа, то для выполнения Предположения 4 достаточно взять $\beta<1/\alpha$. \square Заметим, что неравенство (0.17) совпадает с условием, из которого следует Теорема 1 из [?].

0.1.4 Оценка погрешностей в значениях функционала

В этой части работы мы сосредоточимся на значении интегрального функционала (0.2) при применении линейной обратной связи (0.4) к нелинейной системе (0.1). Напомним, что в линейном случае системы (0.3) этот функционал принимает минимальное значение на управлении (0.4). Ранее мы обозначили это значение через $J_0(T, z_0)$. А обозначение $J(T, z_0)$ мы используем для значения функционала на траектории системы (0.9). Для того, чтобы получить выражение для $J(T, z_0)$ нам нужен проинтегрировать (0.11) от 0 до t:

$$z^{\top}(t)Q_T(t)z(t) = z_0^{\top}Q_T(0)z_0 - \int_0^t u^{\top}(\xi)u(\xi)\,d\xi + 2\int_0^t R^{\top}(z(\xi))Q(\xi)z(\xi)d\xi,\tag{0.18}$$

где $u(\xi) = -B^\top Q_T(\xi) z(\xi)$ — это управление в момент времени ξ . В линейном случае, $R(z) \equiv 0$ и $z^\top(t)Q_T(t)z(t) \to 0$ при $t \to T$, так что

$$J_0(T, z_0) = z_0^{\mathsf{T}} Q_T(0) z_0 = \int_0^t u^{\mathsf{T}}(\xi) u(\xi) d\xi.$$

Далее мы собираемся исследовать поведение квадратичной формы $z^{\top}(t)Q_T(t)z(t)$ и остаточного члена в (0.18), который мы обозначим через

$$\gamma(t, z_0) = 2 \int_0^t R^{\top}(z(\xi, z_0)) Q(\xi) z(\xi, z_0) d\xi.$$

Теорема 2 Пусть выполнено предположение 3. Пусть x(t) — такая траектория системы (0.9), что $x(t) \in B(0,r)$, при $0 \leqslant t \leqslant \tilde{T} \leqslant \overline{T}$ и $V_{\tilde{T}}(t,x(t)) \to 0$ при $t \to \tilde{T}$. Тогда существует такое $T_2 \leqslant \tilde{T}$ что для всех $0 < T < T_2$ выполняется следующая оценка

$$\left| \frac{J(T) - J_0(T)}{J_0(T)} \right| \le 16k\Phi(T)J_0^{1/2}(T). \tag{0.19}$$

 $3 десь \ J(T) = J(T, x(\tilde{T}-T)), \ J_0(T) = J_0(T, x(\tilde{T}-T))$ — значения функционала $I(T, u(\cdot))$ на траекториях нелинейной и линеаризованной системы соответственно.

Д о к а з а т е л ь с т в о. . Пусть $T \leqslant \tilde{T}$. Через z(t) обозначим траекторию системы (0.9) с начальным условием $z(0) = x(\tilde{T} - T)$ и определенную на интервале [0, T). Тогда мы имеем

$$Q_T(t) = W^{-1}(T - t) = W^{-1}(\tilde{T} - (\tilde{T} - T + t)) = Q_{\tilde{T}}(\tilde{T} - T + t) = Q(\tau),$$

$$V_T(t, z(t)) = z^{\top}(t)Q_T(t)z(t) = V_{\tilde{T}}(\tau, x(\tau)),$$

где $\tau = \tilde{T} - T + t$. $V_T(0, z(0)) = V_{\tilde{T}}(\tilde{T} - T, x(\tilde{T} - T)), V_{\tilde{T}}(t, x(t)) \to 0$ при $t \to \tilde{T}$. Поскольку $V_{\tilde{T}}(t, x(t)) \to 0, t \to \tilde{T}$ мы получаем, что $V_T(0, z(0)) = J_0(T)$ стремится к нулю при $T \to 0$. Ясно, что $V_T(t, z(t)) = z^{\top}(t)Q_T(t)z(t) = V_{\tilde{T}}(\tau, x(\tau))$ стремится к нулю при $t \to T$. Используя это, перепишем (0.18)

$$\int_0^T u^{\top}(\xi)u(\xi) d\xi - z_0^{\top} Q_T(0)z_0 = 2 \int_0^T R^{\top}(z(\xi))Q(\xi)z(\xi)d\xi = \gamma(T, z(0)), \qquad (0.20)$$

и изучим подробнее подынтегральное выражения $(R(z), Q_T z) = (R(z), z)_{Q_T} \leqslant ||R(z)||_{Q_T} ||z||_{Q_T}$. Повторяя шаги (0.12), (0.13) из доказательства леммы 3, приходим к следующей оценке сверху

$$2(R(z), Q_T z) \leqslant 2k \frac{\eta(T-t)}{\sqrt{\nu(T-t)}} V_T^{3/2} \leqslant 2k\varphi(T-t) V_T^{3/2}, \tag{0.21}$$

которая аналогична (0.13). Однако дальнейшие действия с системой сравнения здесь несколько изменены. Интегрируя систему сравнения $\dot{\psi}=2k\varphi(T-t)\psi$, имеем

$$d\psi^{-1/2} = -k\varphi(T-t)dt, \quad \psi^{-1/2}(t) = -k\int_{0}^{t} \varphi(T-\zeta)d\zeta + C.$$

Поскольку $V_T(0,z(0)) \to 0$ и $\Phi(T) \to 0$ при $T \to 0$, то найдется такое T_2 , что при всех $T \leqslant T_2$ выполняется неравенство $\Phi(T)\sqrt{V_T(0,z(0))} \leqslant 1/2k$. Переписав это неравенство, получаем

$$\frac{1}{2\sqrt{V_T(0,z(0))}} \geqslant k\Phi(T).$$

Выберем $C = 1/\sqrt{V_T(0,z(0))},$ тогда

$$\psi^{-1/2}(t) = -k \int_{0}^{t} \varphi(T - \zeta) d\zeta + C \geqslant -k\Phi(T) + C \geqslant \frac{1}{2\sqrt{V_T(0, z(0))}},$$

таким образом, $\psi(t) \leqslant 4V_T(0,z(0)) = 4J_0(T)$. Поскольку $\psi(0) = V_T(0,z(0))$, из теоремы сравнения мы получаем, что $V_T(t,z(t)) \leqslant \psi(t) \leqslant 4J_0(T)$, при $0 \leqslant t < T$.

Подставляя эту оценку в (0.21) мы получаем $(R(z), Q_T z) \leq k \varphi(T - t) (4J_0(T))^{3/2}$. Теперь

нам остается только проинтегрировать это выражение и использовать его в (0.20),

$$J(T) - J_0(T) = \gamma(T, z(0)) = 2 \int_0^T R^{\mathsf{T}}(z(\xi)) Q_T(\xi) z(\xi) d\xi \leqslant 2k\Phi(T) (4J_0(T))^{3/2},$$

откуда и следует (0.19).

Так как при предположениях Теоремы 2 $\Phi(T)$ и $J_0(T)$ стремятся к нулю, то правая часть (0.19) тоже стремится к нулю при $T \to 0$.

В теореме 1 мы доказали, что траектория z(t) системы (0.9) стремится к нулю при $t \to T$ и $V_T(t,z(t))$ — ограничена в окрестности T. Следующая теорема дает условия, при которых $V_T(t,z(t)) \to 0$ при $t \to T$.

Теорема 3 Пусть выполнено неравенство (0.8). Пусть $T \leqslant \overline{T}$ и траектория z(t) системы (0.9) стремится к нулю при $t \to T$. Тогда $V_T(t,z(t)) = z^\top(t)Q(t)z(t) \to 0$ при $t \to T$.

Доказательство. Заметим, что функция $u(\xi) = -B^{\top}Q(\xi)z(\xi)$ — непрерывна на интервале $0 \leqslant \xi < T$.

Так же заметим, что функция $V_T(t,z(t))$ может не быть конечной только в окрестности точки t=T. Однако, учитывая, что выполнение неравенства (0.8) предполагает выполнение условия теоремы, можно увидеть, что из $z(t) \to 0$ следует, что условия леммы 3 будут выполняться для t из окрестности T. Следовательно, $V_T(t,z(t))$ ограничена на всей траектории z(t). Теперь из соотношения (0.18) видно, что интегральная стоимость $I(t,u) = \int_0^t u^\top(\xi)u(\xi)d\xi$ равномерно ограничена относительно $t \in [0,T]$. Из этого следует, что $u(\cdot)$ принадлежит пространству $\mathbb{L}_2[0,T]$.

Предположим, что квадратичная форма $z^{\top}(t)Q_T(t)z(t)$ не стремится к нулю при t стремящимся к T. Это означает, что найдется последовательность $t_k \to T$ и $\delta > 0$ такие, что

$$z^{\top}(t_k)Q(t_k)z(t_k) \geqslant \delta^2. \tag{0.22}$$

Неравенство $\int_{t_k}^T u^\top(\xi)u(\xi)d\xi \leqslant \|u(\cdot)\|\sqrt{T-t_k}$ означает, что существует такое k_0 , что при всех $k>k_0$ выполняются оба следующих условия

$$\int_{t_k}^T u^{\top}(\xi)u(\xi)d\xi \leqslant \frac{\delta^2}{4}, \qquad T - t_k \leqslant \tau_0.$$

По условиям теоремы, $z(t) \to 0$ при $t \to T$. Сделаем замену времени, введя $y(\tau) = z(T - \tau)$ — решение системы (0.6) с начальным условием y(0) = 0 и управлением $v(\tau) = u(T - \tau)$. Обозначим $\tau_k = T - t_k$ и заметим, что τ_k сходятся к нулю. Действительно,

$$\int_0^{\tau_k} v^{\top}(\xi) v(\xi) d\xi \leqslant \frac{\delta^2}{4},$$

Поэтому, $z(t_k) = y(\tau_k)$ лежит в множестве достижимости системы (0.6), т.е. выполняется включение $z(t_k) \in G_-(T-t_k,\delta/2)$.

Из асимптотической эквивалентности множеств достижимости G_-^0 и G_- [?], а также из 2025-08-13-14-00-14

свойств расстояния Банаха-Мазура следует, что

$$z(t_k) \in \exp(\rho(T - t_k))G_-^0(T - t_k, \frac{\delta}{2}) = G_-^0(T - t_k, \frac{\delta}{2}\exp(\rho(T - t_k))),$$

где $\rho(T-t_k) = \rho(G_-(T-t_k, \frac{\delta}{2}), G_-^0(T-t_k, \frac{\delta}{2})).$

Поскольку $t_k \to T$, $\rho(T-t_k) \to 0$, $\exp(\rho(T-t_k)) \to 1$, то существует такое k_1 , что для всех $k > k_1$ выполнено $\exp(\rho(T-t_k))\delta/2 \leqslant 2\delta/3$. Используя формулу

$$G_{-}^{0}(T - t_{k}, \delta/2) = \left\{ x \in \mathbb{R}^{n} : xW^{-1}(T - t_{k})x \leqslant \frac{4\delta^{2}}{9} \right\},$$

мы получаем $z^{\top}(t_k)W^{-1}(T-t_k)z(t_k) \leqslant 4\delta^2/9$.

Так как $W^{-1}(\tau_k) = Q(t_k)$, неравенство выше противоречит неравенству (0.22). Это означает, что $V_T(t,z(t)) = z^{\top}(t)Q(t)z(t) \to 0$ при $t \to T$.

0.1.5 Примеры

В этом разделе мы приводим результаты численных экспериментов, которые призваны проиллюстрировать применение теорем 1 и 2. Здесь мы имеем дело с осциллятором Дуффинга, уравнения которого

$$\dot{z}_1 = z_2, \qquad \dot{z}_2 = -z_1 - 10z_1^3 + u, \qquad 0 \leqslant t \leqslant T$$
 (0.23)

описывают движение нелинейной упругой пружины под действием внешней силы u. Желаемое конечное состояние - $z_1(T) = z_2(T) = 0$. Это состояние также является состоянием равновесия.

Теперь проверим, справедливо ли Предположение 2 для правой части системы (0.23). Нетрудно видеть, что оно выполняется при k=10, r=1: для всех z_1, z_2 таких, что $z_1^2+z_2^2\leqslant 1, \|R(z)\|=10|z_1|^3<10(z_1^2+z_2^2)$.

Линеаризация системы (0.23) в начале координат приводит к системе, описываемой следующей парой матриц

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{0.24}$$

Для выбора функции $\varphi(\tau)$ выпишем собственные значения грамиана управляемости системы $(0.24)\ \nu(t)=\frac{t^3}{12}+O(t^5), \qquad \eta(t)=t-\frac{t^3}{12}+O(t^5).$ Эти собственные значения позволяют установить $\varphi(t)=\frac{4}{\sqrt{t}}.$ В этом случае, $\Phi(T)=8\sqrt{T}$ и \overline{T} могут быть сколь угодно большими. Выберем $\beta=0.5$ чтобы получить

$$\frac{\sqrt{\eta(T)}}{\Phi^{\beta}(T)} = \frac{\sqrt{30}\,t^{0.25}\,\sqrt{t^4-20\,t^2+240}}{240} \to 0 \text{ при } T \to 0.$$

В первой серии экспериментов начальные условия $z_0 = (-0, 0108; 0, 2722)$ фиксированы,

Таблица 1: Результаты экспериментов с переменным Т

$N_{\overline{0}}$	$\mid T \mid$	$z_0^\top Q_T(0)z_0$	$J(T,z_0)$	Δ_J
1	1.500	0.159686	0.159136	0.0034435
2	1.250	0.197308	0.197031	0.0013990
3	1.000	0.249346	0.249231	0.0004611
4	0.750	0.327395	0.327360	0.0001055
5	0.500	0.459094	0.459089	0.0000102
6	0.250	0.710789	0.710790	0.0000012
7	0.100	0.836541	0.836542	0.0000014
8	0.075	1.000000	1.000001	0.0000009

и изменяется только длина временного интервала T. Точки z_0 выбираются так, чтобы они лежали внутри множества нуль-управляемости системы (0.23) при T=0.075 и $\mu=1$, то есть $z_0 \in G_-(0.075,1)$.

Теперь, изменяя T, будем вычислять $Q_T(0)$ и моделировать движение системы (0.23), замкнутой линейной обратной связью $u(t) = -B^\top Q_T(t)x$. Результаты моделирования показаны на рисунке 1 и в таблице 1. Зеленые области обозначают множество нуль- управляемости $G_-(T,1)$ системы (0.23) при $T=\{0.075,0.1,0.25,0.5,0.75,1.0,$

1.25, 1.5}, сплошные линии показывают траектории системы при тех же T. Символ " \blacklozenge " обозначает точку z_0 , а " \bullet " — целевую точку, расположенную в начале координат. В левой нижней части рисунка показана увеличенная область вокруг начала координат, отмеченная красным прямоугольником. В заголовке таблицы используется обозначение

$$\Delta_J = \frac{|J_0(T, z_0) - J(T, z_0)|}{J_0(T, z_0)}.$$

Несмотря на то, что условие $z_0 \in B(0, r_1(T))$ Теоремы 1 не выполняется при $r_1(T)$, используемом в доказательстве, траектории по-прежнему стремятся к нулю. Это можно объяснить слишком строгим выбором $r_1(T)$ и тем, что теорема 1 формулирует только достаточные условия для того, чтобы траектории стремились к нулю. Можно заметить, что в случае фиксированных начальных условий с уменьшением T относительная разность функционалов Δ_J уменьшается, что следует из оценки, полученной в теореме 2.

Теперь мы немного изменим условия эксперимента. Мы изменим не только T, но и начальные условия z_0 так, чтобы, во-первых, выполнялось равенство $z_0^\top Q_T(0)z_0 = 1$, а вовторых, чтобы точка z_0 находилась внутри соответствующего множества нуль-управляемости $G_-(T,1)$.

Результаты этой серии экспериментов показаны на Рисунке 2 и в Таблице 2. Зелеными областями обозначены множества нуль-управляемости $G_{-}(T,1)$ системы (0.23) при $T=\{0.25,0.5,0.75,1.0,1.25,1.5\}$, пунктирные линии линии показывают границы множества нуль-управляемости линеаризованной системы (0.24), сплошные линии показывают траектории нелинейной системы при различных T. Символы " \spadesuit " разных цветов обозначают

Рис. 1: Результаты экспериментов с переменным T.

Таблица 2: Результаты экспериментов с изменением T и z_0

$N_{\overline{0}}$	T	$ z_0 $	$ z_0 ^2$	$z_0^\top Q_T(0)z_0$	$J(T,z_0)$	Δ_J
1	1.500	[-0.594;-0.057]	0.356680	0.999993	1.075833	0.0758407
2	1.250	[-0.578;0.226]	0.385032	0.999997	1.110464	0.1104671
3	1.000	[-0.502;0.508]	0.509514	0.999999	1.108159	0.1081607
4	0.750	[-0.354;0.652]	0.550391	1.000000	1.048784	0.0487844
5	0.500	[-0.195;0.638]	0.445513	1.000000	1.009848	0.0098475
6	0.250	[-0.069;0.481]	0.236487	1.000000	1.000349	0.0003490

Рис. 2: Результаты экспериментов с изменением T и z_0

начальные условия z_0 , а " \bullet " — целевую точку, расположенную в в начале координат.

Замечание о невыполнении условия из первой части примера актуально и здесь. Из Таблицы 2 видно, что значения Δ_J также уменьшаются с уменьшением T, но это уменьшение не монотонно. По-видимому, это связано с тем, что меняется не только T, но и z_0 .

Также на Рисунке 2 видно, что множества нуль-управляемости нелинейной и линеаризованной систем близки по форме при $T\leqslant 0.75.$