

Univerza na Primorskem UP FAMNIT Študijsko leto 2021/2022

Algebra I 1. KOLOKVIJ – 23. NOVEMBER 2021 –

Čas pisanja: 135 minut. Maksimalno število točk: 100. Dovoljena je uporaba pisala in kalkulatorja. Pišite razločno in utemeljite vsak odgovor. Srečno!

- (a) Zapišite definicijo skalarnega produkta in naštejte vsaj 3 njegove lastnosti. Zapišite in dokažite karakterizacijo pravokotnosti med dvema vektorjema s pomočjo skalarnega produkta.
 (6 točk)
 - (b) Zapišite definicijo mešanega produkta in njegov geometrijski pomen. (6 točk)
 - (c) Dokažite naslednjo trditev: Razdalja d med nevzporednima premicama $\ell_1=\vec{r}_1+\lambda_1\vec{v}_1$ in $\ell_2=\vec{r}_2+\lambda_2\vec{v}_2$ ($\lambda_1,\lambda_2\in\mathbb{R}$) se izračuna kot

$$d = \frac{|\langle \vec{v}_1 \times \vec{v}_2, \vec{r}_2 - \vec{r}_1 \rangle|}{|\vec{v}_1 \times \vec{v}_2|}.$$

(8 točk)

- 2. Točke A(3,2,t), B(3,-3,1) in C(5,t,2) predstavljajo oglišča paralelograma ABCD.
 - (a) Za t = 1 izračunajte koordinate točke D. (6 točk)
 - (b) Za katere vrednosti $t \in \mathbb{R}$ bo $|\overrightarrow{AC}| = \sqrt{22}$? (7 točk)
 - (c) Za katere vrednosti $t \in \mathbb{R}$ bo točka A oddaljena od izhodišča za 7 enot? (7 točk)
- 3. Dane imamo vektorje $\vec{a}=(8-t,3,-1-t)$, $\vec{b}=(7,1,0)$ in $\vec{c}=(7,7,0)$. Poiščite vse vrednosti $t\in\mathbb{R}$, za katere bo $\angle(\vec{a},\vec{b})=\angle(\vec{a},\vec{c})=\varphi$ in določite ta kot.

Namig: Kot med dvema vektorjema dobimo s pomočjo enačbe $\cos \varphi = \frac{\vec{v}_1 \cdot \vec{v}_2}{|\vec{v}_1| \cdot |\vec{v}_2|}$. (20 točk)

- 4. Zapišite enačbo premice ℓ , ki vsebuje točko A(1,2,1), je vzporedna z ravnino x-y+z=4 in seka premico $p=(0,0,2)+\lambda(1,2,0)$. Izračunajte tudi presečišče med premicama ℓ in p. (20 točk)
- 5. Premica p je podana s presečiščem ravni 3x-2y+z+3=0 in 4x-3y+4z+1=0. Poiščite vrednosti $\alpha,\beta\in\mathbb{R}$ za katere je premica p pravokotna na ravnino $\alpha x+8x+\beta z=-2$. (20 točk)

University of Primorska UP FAMNIT Academic year 2021/2022

Algebra I MIDTERM 1 - NOVEMBER 23, 2021 -

Time: 135 minutes. Maximum number of points: 100. You are allowed to use a pen and a calculator. Write clearly, and justify all your answers. Good luck!

- (a) Give the definition of the scalar (dot) product and state at least 3 of its properties.
 Write and prove the characterisation of orthogonality between two vectors in terms of the scalar product.
 (6 points)
 - (b) Give the definition of the box product and state its geometrical meaning. (6 points)
 - (c) Prove the next claim: The distance d between two non-parallel lines $\ell_1 = \vec{r}_1 + \lambda_1 \vec{v}_1$ and $\ell_2 = \vec{r}_2 + \lambda_2 \vec{v}_2$ ($\lambda_1, \lambda_2 \in \mathbb{R}$) is computed as

$$d = \frac{|\langle \vec{v}_1 \times \vec{v}_2, \vec{r}_2 - \vec{r}_1 \rangle|}{|\vec{v}_1 \times \vec{v}_2|}.$$

(8 points)

- 2. Points A(3,2,t), B(3,-3,1) and C(5,t,2) are corners of the parallelogram ABCD.
 - (a) For t = 1 find the coordinates of D.

(6 points)

(b) For which values $t \in \mathbb{R}$ will $|\overrightarrow{AC}| = \sqrt{22}$?

(7 points)

(c) For which values $t \in \mathbb{R}$ will A be at distance 7 from the origin?

(7 points)

3. We are given vectors $\vec{a}=(8-t,3,-1-t)$, $\vec{b}=(7,1,0)$ and $\vec{c}=(7,7,0)$. Find all values $t\in\mathbb{R}$, for which $\angle(\vec{a},\vec{b})=\angle(\vec{a},\vec{c})=\varphi$ and compute that angle.

Hint: The angle between two vectors can be obtained from the equation $\cos \varphi = \frac{\vec{v}_1 \cdot \vec{v}_2}{|\vec{v}_1| \cdot |\vec{v}_2|}$. (20 points)

- 4. Find the line ℓ that contains point A(1,2,1), is parallel to the plane x-y+z=4 and intersects the line $p=(0,0,2)+\lambda(1,2,0)$. Compute also the intersection between lines ℓ and p.
- 5. The line p is given by the intersection of planes 3x 2y + z + 3 = 0 and 4x 3y + 4z + 1 = 0. Find the values $\alpha, \beta \in \mathbb{R}$ for which the line p is orthogonal to the plane $\alpha x + 8x + \beta z = -2$. (20 points)