NOTES FOR C*-ALGEBRA

Based on the John Conway

Author Wells Guan

Contents

1	C*-Algebras		
	1.1	Basic Concepts	
	1.2	The Positive Elements in a C*-Algebra	3
	1.3	Ideals and Quotients of C*-Algebras	9

1 C*-Algebras

1.1 Basic Concepts

Definition 1.1.1. (Involution)

For a Banach algebra \mathcal{A} (which is not required to have an identity), the involution is a map $\mathcal{A} \to \mathcal{A}$ denoted by $a \mapsto a^*$ such that for any $a, b \in \mathcal{A}$

- $(a^*)^* = a$
- $(ab)^* = b^*a^*$
- $(\alpha a + b)^* = \overline{\alpha}a^* + b^*$ for any $\alpha \in \mathbb{C}$

Definiton 1.1.2. (C*-algebra)

A C^* -algebra is a Banach algebra \mathcal{A} such that

$$||a^*a|| = ||a||^2$$

for any $a \in \mathcal{A}$.

Proposition 1.1.1. Suppose \mathcal{A} is a C*-algebra, then the involution keeps norm, i.e. for any $a \in \mathcal{A}$ we have $||a^*|| = ||a||$.

Proof.

Notice

$$||a||^2 = ||aa^*|| \le ||a||||a^*||$$

which implies $||a|| \le ||a^*||$ and since $(a^*)^* = a$ and we are done.

Proposition 1.1.2. Suppose \mathcal{A} is a C*-algebra, $a \in \mathcal{A}$, then

$$||a|| = \sup\{||ax||, x \in \mathcal{A}, ||x|| \le 1\}$$

Proof.

1.2 The Positive Elements in a C*-Algebra

Definition 1.2.1. If \mathcal{A} is a C*-algebra, then a is positive if $a \in \text{Re}\mathcal{A}$ (the hermitian elements of \mathcal{A}) and $\sigma(a) \subset [0, \infty)$. If a is positive, this is denoted by $a \geq 0$. Let \mathcal{A}_+ be the set of all positive elements of \mathcal{A} .

Proposition 1.2.1. If $a \in \int$

1.3 Ideals and Quotients of C*-Algebras

Proposition 1.3.1. If I is a closed left or right ideal in the C*-algebra \mathcal{A} , $a \in I$ with $a = a^*$ and if $f \in C(\sigma(a))$ with f(0) = 0, then $f(a) \in I$.

Corollary 1.3.2. If I is a closed left or right ideal, $a \in I$ with $a = a^*$ then $a_+, a_-, |a|$ and $|a|^{1/2} \in I$.

Theorem 1.3.3. If I is a closed ideal in the C*-algebra \mathcal{A} , then $a^* \in I$ if $a \in I$.

Proposition 1.3.4. If \mathcal{A} is a C*-algebra and I is an ideal of \mathcal{A} , then for every a in I there is a sequence $\{e_n\}$ of positive elements in I such that

- $e_1 \le e_2 \le \cdots$ and $||e_n|| \le 1$
- $||ae_n a|| \to 0 \text{ as } n \to \infty$

Lemma 1.3.5. If I is an ideal in a C*-algebra \mathcal{A} and $a \in \mathcal{A}$, then $||a+I|| := \inf\{||a-x||, x \in I\} = \inf\{||a-ax|| : x \in I, x \geq 0, ||x|| \leq 1\}.$

Proof.

We know

$$||a + I|| \le \inf\{||a - ax||, x \ge 0, ||x|| \le 1\}$$

and let $e_n \in I$, $e_n \le 1$ such that $||y - ye_n|| \to 0$ for some $y \in I$ then since we know $0 \le 1 - e_n \le 1$, so $||(a+y)(1-e_n)|| \le ||a+y||$ and hence

$$||a+y|| \geq \liminf ||a-ae_n|| \geq \inf \{||a-ax||, x \geq 0, ||x|| \leq 1, x \in I\}$$

Theorem 1.3.6. If \mathcal{A} is a C*-algebra and I is a closed ideal of \mathcal{A} , then for each a+I in \mathcal{A}/I define $(a+I)^* = a^* + I$. Then A/I with its quotient norm is a C*-algebra.

Proof.

By the lemma 1.3.5. we know

$$||a+I||^2 = \inf\{||(1-x)a^*a(1-x)||, x \ge 0, ||x|| \le 1, x \in I\} \le ||a^*a+I||$$

and since $||a^* + I|| = ||a + I||$ by proposition 1.3.4. and we are done.