- 1. Для хранения рисунка размером 3840 x 2160 пикселей выделено 7 Мбайт памяти. Определите максимально возможное количество цветом в палитре изображения.
- 2. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город A по каналу связи за 96 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 4 раза выше и частотой дискретизации в 3 раза ниже, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 16 секунд. Во сколько раз пропускная способность канала в город Б больше пропускной способности канала в город А?
- 3. Для хранения в информационной системе документы сканируются с разрешением 200 dpi и цветовой системой, содержащей 256 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 6 Мбайт. Для повышения качества представления информации было решено перейти на разрешение 300 dpi и цветовую систему, содержащую $2^{16} = 65536$ цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?
- **4.** Вася составляет 5-буквенные слова, в которых есть только буквы С, Л, О, Н, причём буква С используется в каждом слове ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?
- **5.** (А. Куканова) Оля составляет 5-буквенные слова из букв К, У, С, А, Т, Ь, причём слова не должны начинаться на мягкий знак и содержать сочетание СУК. Буквы в слове не должны повторяться. Сколько различных слов может составить Оля?
- **6.** Вася составляет 7-буквенные коды из букв H, O, Б, Е, Л, И, Й. Каждую букву нужно использовать ровно 1 раз, при этом код не может начинаться с буквы Й и не может содержать сочетания ИЙО. Сколько различных кодов может составить Вася?
- 7. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 11 символов и содержащий только символы из 12-символьного набора: A, B, C, D, E, F, G, H, K, L, M, N. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 160 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе?
- 8. В школьной базе данных хранятся записи, содержащие информацию об учениках: <Фамилия> 16 символов: русские буквы (первая прописная, остальные строчные), <Имя> 12 символов: русские буквы (первая прописная, остальные строчные), <Отчество> 16 символов: русские буквы (первая прописная, остальные строчные), <Год рождения> числа от 1992 до 2003.

Каждое поле записывается с использованием минимально возможного количества бит. Определите минимальное количество байт, необходимое для кодирования одной записи, если буквы е и ё считаются совпадающими.

- **9.** (Д.В. Богданов) В некоторой стране используют автомобильные номера, состоящие из двух частей: ровно двух букв из 10буквенного алфавита и далее ровно трёх десятичных цифр. Каждая часть кодируется отдельно помощью минимально возможного количества битов, одинакового для всех номеров. Какое минимальное количество байт необходимо зарезервировать для хранения информации о 24 таких номерах?
- **10.** Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь».

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 21 цифры, причем первые 9 цифр – восьмёрки, а остальные – пятерки? В ответе запишите полученную строку.

```
НАЧАЛО
ПОКА нашлось (555) ИЛИ нашлось (888)
ПОКА нашлось (555)
заменить (555, 8)
КОНЕЦ ПОКА
ПОКА нашлось (888)
заменить (888, 5)
КОНЕЦ ПОКА
КОНЕЦ ПОКА
```

11. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь».

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 193 идущих подряд цифр 5? В ответе запишите полученную строку.

```
НАЧАЛО
ПОКА нашлось (333) ИЛИ нашлось (555)
```

```
ЕСЛИ нашлось (555)
ТО заменить (555, 3)
ИНАЧЕ заменить (333, 5)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

12. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА НЕ нашлось(00)
заменить(01, 21022)
заменить(02, 310)
заменить(03, 230112)
КОНЕЦ ПОКА
КОНЕЦ
```

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними были только цифры 1, 2 и 3. После выполнения данной программы получилась строка, содержащая 104 единицы, 39 двоек и 83 тройки. Сколько цифр было в исходной строке?

13. Алгоритм вычисления значения функции F(n), где n – целое число, задан следующими соотношениями:

```
F(n) = 1, при n < 2, F(n) = F(n/3) - 1, когда n \ge 2 и делится на 3, F(n) = F(n-1) + 17, когда n \ge 2 и не делится на 3.
```

Назовите количество значений n на отрезке [1;100000], для которых F(n) равно 43.

14. Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 5000000. Запишите в ответе сначала найденное значение n, а затем через пробел – соответствующую сумму выведенных чисел.

```
C++
       Паскаль
                           Python
                                      void F( int n )
procedure F(n: integer);
begin
                        def F(n):
                                      cout << 2*n+1 << end1;
writeln(2*n+1);
                        print(2*n+1) if( n > 1 ) {
if n > 1 then begin
                        if n > 1:
                                      cout << 3*n-8
writeln(3*n-8);
                        print(3*n-8) \ll endl;
F(n-1);
                        F(n-1)
                                      F(n-1);
F(n-4);
                        F(n-4)
                                      F(n-4);
end;
end;
```

15. Алгоритм вычисления значения функции F(n), где n – целое число, задан следующими соотношениями:

```
F(n) = n, при n \le 5, F(n) = n + F(n / 2 - 1), когда n > 5 и делится на 4, F(n) = n + F(n + 2) , когда n > 5 и не делится на 4.
```

Назовите максимальное значение n, для которого возможно вычислить F(n).

- **16.** В файле <u>17-243.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых хотя бы один из двух элементов меньше, чем наибольшее из всех чисел в файле, делящихся на 171, и хотя бы один элемент из двух нечётное число. В ответе запишите два числа: сначала количество найденных пар, а затем максимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- 17. (В. Шубинкин) В файле 17-1.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите и запишите в ответе сначала количество локальных максимумов в этой последовательности, затем наименьшее расстояние между двумя локальными максимумами. Под локальным максимумом подразумевается элемент последовательности, больший двух соседних элементов. Под расстоянием между элементами последовательности в данной задаче подразумевается разность номеров позиций этих элементов. Гарантируется наличие хотя бы двух локальных максимумов. Например, в последовательности 10; 4; 7; -2; -10; 12; 3; 5; -2 три локальных максимума (7, 12 и 5), поэтому правильным ответом для данного примера будет пара чисел 3 и 2.
- **18.** В файле <u>17-4.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар, в которых оба элемента меньше, чем среднее арифметическое всех чисел в файле, а их сумма оканчивается на 19. В ответе запишите два числа: сначала количество найденных пар, а затем минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.