GEL10280: Communications numériques **2003 Examen Partiel**

Mercredi le 12 mars 2003; Durée: 10h30 à 12h20 Une feuille documentation permise; une calculatrice permise

Problème 1 (20 points sur 100)

Université Laval

Professeur: Leslie A. Rusch

Supposons que nous avons une impulsion avec durée infinie, soit

$$s(t) = \begin{cases} e^{-t} & t \ge 0 \\ 0 & ailleurs \end{cases}$$

Supposons en plus que le canal est idéal avec une largeur de bande infinie. Le bruit n(t) est un bruit blanc additif Gaussian (AWGN) avec PSD= $N_0/2$.

- A. (5 points) Donnez le récepteur optimal pour ce système qui utilise la modulation BPSK.
- B. (10 points) Supposons que nous utilisons la même forme de récepteur, mais notre fenêtre d'observation (temps entre échantillons dans le récepteur) est d'une durée de 1 seconde. Donnez la probabilité d'erreur pour ce système en fonction de N_0 .
- C. (5 points) Comparé au récepteur optimal de la partie A, quelle sera la perte en dB si vous utilisez le récepteur non optimal de la partie B?

Problème 3 (30 points sur 100)

i		
Symbole	Coordonnées en espace I/Q	Distance à l'origine
А	$\left(-1,2\sqrt{3}\right)$	√13
В	(1,2√3)	
С	$(2,\sqrt{3})$	
D	(1,0)	
Е	(-1,0)	
F		
G		
Н		
I		
J		
K		
L		
М		
N		
0	$(5,0)$ $(4,\sqrt{3})$	
Р	$(4,\sqrt{3})$	

Considérons la constellation hexagonale de 16QAM, donnée dans la figure suivante.

- A. (5 points) Quelles sont les coordonnées des symboles F-N dans l'espace I/Q? Complétez la table et mettre dans le cahier bleu.
- B. (10 points) Trouvez la distance minimale dans l'espace du signal comme fonction de l'énergie moyenne par symbole *E*_s.
- C. (10 points) Trouvez la probabilité d'erreur en utilisant l'approximation venant de la borne d'union.
- D. (5 points) Asymptotiquement, est-ce que cette configuration a une meilleure probabilité d'erreur que la constellation 16QAM rectangulaire avec

 $D_{\min} = 2\sqrt{E_s/10}$? Justifiez votre réponse.

Problème 4 (30 points sur 100)

- A. (10 points) Décrire la motivation pour l'utilisation de DPSK au lieu de BPSK. Donnez un récepteur pour DPSK, en expliquant son fonctionnement.
- B. (10 points) Quelle est la différence entre un récepteur MAP et un récepteur MLE? Donnez un exemple simple.
- C. (5 points) Quel est l'avantage de l'utilisation des modulations orthogonales?
- D. (5 points) Quelle est l'impulsion Nyquist la plus efficace en largeur de bande?