MS BGD MDI 720 : Statistiques

Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Plan

Intervalle de confiance

Définition

Théorèmes limites

IC pour le modèle linéaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Courbe ROC

Sommaire

Intervalle de confiance

Définition

Théorèmes limites IC pour le modèle linéaire

Tests d'hypothèses

Définition Test pour le modèle linéaire Courbe ROC

Intervalle de confiance

- ▶ Contexte : on a une estimation $\hat{g}(y_1,\ldots,y_n)$ d'une grandeur $g(\theta)$. On veut un intervalle \hat{I} autour de \hat{g} qui contient g avec une grande probabilité
- On construit $\hat{I} = [\hat{A}, \hat{B}]$ à partir des observations (y_1, \dots, y_n) : l'intervalle est une variable aléatoire

$$\mathbb{P}(\hat{I} \text{ contient } g) = \mathbb{P}(\hat{A} \leqslant g \text{ et } \hat{B} \geqslant g) = 1 - \alpha$$

 $\underline{\text{Rem}} :$ souvent $1-\alpha=95\%$, car on veut que cette probabilité soit grande

Intervalle de confiance de niveau α

Intervalle de confiance

Un intervalle de confiance de niveau α pour la grandeur $g=g(\theta)$ est une fonction de l'échantillon

$$\hat{I}:(y_1,\ldots,y_n)\mapsto\hat{I}=\left[\hat{A}(y_1,\ldots,y_n),\hat{B}(y_1,\ldots,y_n)\right]$$

telle que, quel que soit le paramètre $\theta \in \Theta$,

$$\mathbb{P}\left[g(\theta) \in \hat{I}(y_1,\ldots,y_n)\right] \geqslant 1-\alpha \qquad \text{ lorsque } y_i \underset{i.i.d.}{\sim} \mathbb{P}_{\theta}$$

Rem: des choix classiques sont $\alpha = 5\%, 1\%, 0.1\%$, etc.

Rem: dans la suite on notera IC pour Intervalle de Confiance

Exemple: sondage

ightharpoonup Sondage d'une élection à deux candidats : Albert et Bertrand. Le choix du $i^{\rm e}$ sondée suit une loi de Bernoulli de paramètre p

$$y_i = \begin{cases} 1, \text{ si le} i^{\text{e}} \text{ individu vote Albert} \\ 0, \text{ si le} i^{\text{e}} \text{ individu vote Bertrand} \end{cases}$$

Ainsi,

$$\Theta = [0,1]$$
 et $\theta = p$.

- But : estimer $g(\theta) = p$
- ightharpoonup un estimateur raisonnable pour un échantillon de taille n:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}_n$$

Question : intervalle de confiance pour p?

Sondage : intervalle de confiance

- ► Chercher un intervalle $\hat{I} = [\hat{p} \delta, \hat{p} + \delta]$ tel que $\mathbb{P}(p \in \hat{I}) \geqslant 0.95 \Leftrightarrow$ chercher δ tel que $\mathbb{P}[|\hat{p} p| > \delta] \leqslant 0.05$
- ▶ Ingrédient : inégalité de **Tchebyschev** (si $\mathbb{E}(X^2) < +\infty$)

$$\forall \delta > 0, \quad \mathbb{P}(|X - \mathbb{E}(X)| > \delta) \leqslant \frac{\operatorname{Var}(X)}{\delta^2}$$

Pour
$$X=\hat{p}=\frac{1}{n}\sum_{i=1}^n y_i$$
 on a $\mathbb{E}(\hat{p})=p$ et $\mathrm{Var}(\hat{p})=\frac{p(1-p)}{n}$:

$$\forall p \in (0,1), \forall \delta > 0, \quad \mathbb{P}(|\hat{p} - p| > \delta) \leqslant \frac{p(1-p)}{n\delta^2} \leqslant \frac{1}{4n\delta^2}$$

Application numérique : pour un IC à 95%, avec $\hat{p}=55\%$ et n=1000 on choisit δ tel que $\frac{1}{4n\delta^2}=0.05$, i.e., $\delta=(0.2n)^{-1/2}$

$$\delta = 0.07$$
; $\hat{I} = [0.48, 0.62]$

Sommaire

Intervalle de confiance

Définition

Théorèmes limites

IC pour le modèle linéaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Courbe ROC

Théorème central limite

- y_1, \ldots, y_n : variables aléatoires *i.i.d.* de carré intégrable
- $\blacktriangleright \mu$ et σ leur espérance et écart-type théoriques

Théorème central limite (TCL)

La loi de la moyenne empirique re-normalisée $\sqrt{n}\left(\frac{\bar{y}_n-\mu}{\sigma}\right)$ converge vers une loi normale centrée réduite $\mathcal{N}(0,1)$

- Reformulation : la moyenne empirique se comporte approximativement comme une loi normale $\mathcal{N}(\mu,\sigma^2/n)$

Intervalles de confiance asymptotiques

- Exemple du sondage : $\hat{p}=0.55$, n=1000
- ightharpoonup On suppose que n est suffisamment grand pour que

$$\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} y_n - p}{\sqrt{p(1-p)}} \sim \mathcal{N}(0,1) \qquad \underline{\mathsf{Rappel}} : p(1-p) = \mathrm{Var}(Y)$$

▶ D'après le TCL, et l'approximation des quantiles gaussiens

$$\mathbb{P}\left[-1.96 < \sqrt{n} \, \frac{0.55 - p}{\sqrt{p(1-p)}} < 1.96\right] \approx 0.95$$

On résout en p (équations de degré deux) :

$$\mathbb{P}\left[0.52$$

nouvel intervalle de confiance : $\hat{I} = [0.52, 0.58]$: meilleur!

Sommaire

Intervalle de confiance

Définition

Théorèmes limites

IC pour le modèle linéaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Courbe ROC

IC pour les moindres carrés (1)

<u>Rappel</u>: prenons $X \in \mathbb{R}^{n \times p}$, alors $\hat{\sigma}^2 = \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2/(n - \operatorname{rg}(X))$ est un estimateur sans biais de la variance. Ainsi :

Si
$$\varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$$
, alors $T_j = \frac{\hat{\theta}_j - \theta_j^*}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\operatorname{rg}(X)}$

où $\mathcal{T}_{n-\operatorname{rg}(X)}$ est une loi dite de Student (de degré $n-\operatorname{rg}(X)$)

La densité de la loi est connue explicitement, pour tout degré T:

$$f_T(t) = \frac{1}{\sqrt{k\pi}} \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})} \left(1 + \frac{t^2}{k}\right)^{-\frac{k+1}{2}}$$

où Γ est la fonction Gamma d'Euler (qui extrapole les factoriels)

IC pour les moindres carrés (II)

Sous l'hypothèse gaussienne :
$$T_j = \frac{\hat{\theta}_j - \theta_j^\star}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\mathrm{rg}(X)}$$

en notant $t_{1-\alpha/2}$ un quantile d'ordre $1-\alpha/2$ de la loi $\mathcal{T}_{n-\mathrm{rg}(X)}$, l'IC suivant est de niveau α pour la quantité θ_j^\star

$$\left[\hat{\theta}_{j} - t_{1-\alpha/2}\hat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}, \hat{\theta}_{j} + t_{1-\alpha/2}\hat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}\right]$$

 $\underline{\mathrm{Rem}} \colon \mathbb{P}(|T_j| < t_{1-\alpha/2}) = 1 - \alpha \text{ car la loi de Student est symétrique}$

Sommaire

Intervalle de confiance

Définition
Théorèmes limites
IC pour le modèle linéaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire Courbe ROC

Tests d'hypothèses pour le "Pile ou face"

- On veut tester une hypothèse sur le paramètre θ .
- ▶ On l'appelle **hypothèse nulle** \mathcal{H}_0 <u>Exemple</u> : 'la pièce est non biaisée" : $\mathcal{H}_0 = \{p = 0.5\}$. <u>Exemple</u> : 'la pièce est peu biaisée', $\mathcal{H}_0 = \{0.45 \leqslant p \leqslant 0.55\}$
- L' hypothèse alternative \mathcal{H}_1 est complémentaire d' \mathcal{H}_0 .

```
Exemple: \mathcal{H}_1 = \{ p \neq 0.5 \}
Exemple: \mathcal{H}_1 = \{ p \notin [0.45, 0.55] \}
```

• « Faire un test » : déterminer si les données permettent de rejeter l'hypothèse \mathcal{H}_0 . On cherche une région R pour laquelle si $(y_1,\ldots,y_n)\in R$ on rejette l'hypothèse \mathcal{H}_0 .

La région R est appelée la région de rejet

Rejet ou acceptation?

Présomption d'innocence en faveur de \mathcal{H}_0

Même si \mathcal{H}_0 n'est pas rejetée par le test, on ne peut pas en général conclure que \mathcal{H}_0 est vraie!

Rejeter \mathcal{H}_1 est souvent impossible car \mathcal{H}_1 est trop générale. e.g., $\{p \in [0,0.5[\,\cup\,]0.5,1]\}$ ne peut pas être rejetée!

- \mathcal{H}_0 s'écrit sous la forme $\{\theta \in \Theta_0\}$, avec $\Theta_0 \subset \Theta$
- \mathcal{H}_1 s'écrit sous la forme $\{\theta \in \Theta_1\}$, avec $\Theta_1 \subset \Theta$

Rem: $\{\theta \in \Theta_0\}$ et $\{\theta \in \Theta_1\}$ sont disjoints.

Risques de première et de seconde espèce

	\mathcal{H}_0	\mathcal{H}_1
Non rejet de \mathcal{H}_0	Juste	Faux (acceptation à tort)
Rejet de \mathcal{H}_0	Faux (rejet à tort)	Juste

Risque de 1^{re} espèce : probabilité de mauvaise détection

$$\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}((y_1, \dots, y_n) \in R)$$

▶ Risque de 2^{nde} espèce : probabilité de fausse alarme

$$\sup_{\theta \in \Theta_1} \mathbb{P}_{\theta} \left((y_1, \dots, y_n) \notin R \right)$$

Rem: pour le vocabulaire, prendre l'exemple H_0 : "un missile arrive" vs. H_1 : "il n'y pas de missile" (d'où le nom fausse alarme)

Niveau/Puissance

Niveau du test

 $1 - \alpha = \text{probabilit\'e d'} \cdot \text{accepter } \cdot \text{a raison (si } \mathcal{H}_0 \text{ est valide)}$

Puissance du test

 $1 - \beta = \text{probabilit\'e de rejeter } \mathcal{H}_0 \text{ à raison (si } \mathcal{H}_1 \text{ est valide)}$

 $\underline{\rm Rem}:$ lorsqu'on parle de « test à 95% » on parle d'un test de niveau $1-\alpha\geqslant 95\%$

Statistique de test et région de rejet

Objectif classique : construire un test de niveau $1-\alpha$

- ▶ On cherche une fonction des données $T_n(y_1, ..., y_n)$ dont on connaît la loi sous \mathcal{H}_0 : T_n est appelée **statistique de test**.
- On définit une région de rejet ou région critique de niveau α , une région R telle que, sous \mathcal{H}_0 ,

$$\mathbb{P}(T_n(y_1,\ldots,y_n)\in R)\leqslant \alpha$$

Prince Règle de rejet de \mathcal{H}_0 : on rejette si $T_n(y_1,\ldots,y_n)\in R$

Exemple gaussien : nullité de la moyenne

- Modèle : $\Theta = \mathbb{R}$, $\mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$.
- Hypothèse nulle : \mathcal{H}_0 : $\{\theta = 0\}$
- Sous \mathcal{H}_0 , $T_n(y_1,\ldots,y_n)=\frac{1}{\sqrt{n}}\sum_i y_i \sim \mathcal{N}(0,1)$
- Région critique pour T_n ? Quantiles gaussiens : sous H_0 ,

$$\mathbb{P}(T_n \in [-1.96, 1.96]) = 0.95$$

On prend $R = [-1.96, 1.96]^C =]-\infty, -1.96[\cup]1.96, +\infty[.$

Exemple numérique : si $T_n=1.5$, on ne rejette **PAS** \mathcal{H}_0 au niveau 95%

Sommaire

Intervalle de confiance

Définition
Théorèmes limites
IC pour le modèle linéaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Courbe ROC

Tester la nullité des coefficients (I)

<u>Rappel</u>: prenons $X \in \mathbb{R}^{n \times p}$, alors $\hat{\sigma}^2 = \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2/(n - \operatorname{rg}(X))$ est un estimateur sans biais de la variance. Ainsi

Si
$$\varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$$
, alors
$$T_j = \frac{\hat{\theta}_j - \theta_j^*}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\operatorname{rg}(X)}$$

où $\mathcal{T}_{n-\mathrm{rg}(X)}$ est une loi dite de Student (de degré $n-\mathrm{rg}(X)$).

Sa densité est connue explicitement pour un degré ${\it T}$:

$$f_T(t) = \frac{1}{\sqrt{k\pi}} \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})} \left(1 + \frac{t^2}{k}\right)^{-\frac{k+1}{2}}$$

Tester la nullité des coefficients (I)

 $H_0: \theta_j^{\star} = 0$ ce qui revient à prendre $\Theta_0 = \{\theta \in \mathbb{R}^p : \theta_j = 0\}$. Sous H_0 on connaît donc la distribution de $\hat{\theta}_j$:

$$T_j := \frac{\hat{\theta}_j}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\operatorname{rg}(X)}$$

Ainsi en choisissant comme région de rejet $[-t_{1-\alpha/2},t_{1-\alpha/2}]^c$ (en notant $t_{1-\alpha/2}$ un quantile d'ordre $1-\alpha/2$ de la loi $\mathcal{T}_{n-\operatorname{rg}(X)}$), on peut former le test (de Student) :

$$\mathbb{1}_{\{|T_j|>t_{1-\alpha/2}\}}$$

c'est-à-dire que l'on rejette H_0 au niveau lpha, si $|T_j| > t_{1-lpha/2}$

Lien IC et Test

Rappel (modèle gaussien) :

$$IC_{\alpha} := \left[\hat{\theta}_{j} - t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^{\top} X)_{j,j}^{-1}}, \hat{\theta}_{j} + t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^{\top} X)_{j,j}^{-1}} \right]$$

est un IC de niveau α pour θ_i^{\star} . Dire que " $0 \in IC_{\alpha}$ " signifie que

$$|\hat{\theta}_j| \leqslant t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\hat{\theta}_j|}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \leqslant t_{1-\alpha/2}$$

Cela est équivalent à accepter l'hypothèse $\theta_j^\star=0$ au niveau α Le α le plus petit tel que $0\in IC_\alpha$ est appelé la p-value.

Rem: si α est proche de zéro un IC_{α} recouvre l'espace entier; on peut trouver (par continuité) un α assurant l'égalité ci-dessus

Sommaire

Intervalle de confiance

Définition Théorèmes limites IC pour le modèle linéaire

Tests d'hypothèses

Test pour le modèle linéaire Courbe ROC

Références I