Leçon 262. Convergences d'une suite de variables aléatoires. Théorèmes limite. Exemples et applications.

1. NOTATION. On considère un espace probabilisé $(\Omega, \mathscr{A}, \mathbf{P})$ où toutes les variables aléatoires considérées y seront définies.

I. Convergences presque sûre et en probabilité

I.1. Convergence presque sûre

2. DÉFINITION. Une suite $(X_n)_{n \in \mathbb{N}}$ de variables aléatoires à valeurs dans \mathbb{R}^d converge presque sûrement vers un variable aléatoire X si

$$\mathbf{P}(X_n \longrightarrow X) = 1 \quad \text{avec} \quad \{X_n \longrightarrow X\} := \{\omega \in \Omega \mid X_n(\omega) \longrightarrow X(\omega)\}.$$

Dans ce cas, on notera $X_n \to X$.

- 3. REMARQUE. Si la suite $(X_n)_{n\in\mathbb{N}}$ converge presque sûrement, alors deux de ses limites X et X' sont égales presque sûrement. La limite d'une suite convergeant presque sûrement est donc unique à égalité presque sûre.
- 4. Proposition. La suite $(X_n)_{n\in\mathbb{N}}$ converge presque sûrement vers la variable aléatoire X si et seulement si

$$\forall \varepsilon > 0, \qquad \mathbf{P}(\limsup_{n \to +\infty} |X_n - X| \geqslant \varepsilon) = 0.$$

5. Proposition (critère de Cauchy). La suite $(X_n)_{n \in \mathbb{N}}$ converge presque sûrement si et seulement si

$$\forall \varepsilon > 0, \qquad \mathbf{P}\Big(\bigcup_{n \in \mathbf{N}} \bigcap_{m \geqslant n} \{\|X_n - X_m\| < \varepsilon\}\Big) = 1.$$

- 6. EXEMPLE. Soient $p \in [0,1]$ un réel et $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant un loi de Bernoulli de paramètre p. Alors la suite $(U_n)_{n \in \mathbb{N}^*}$ où l'on a posé $U_n := \sum_{i=1}^n 2^{-i} X_i$ converge presque sûrement.
- 7. THÉORÈME (lemme de Borel-Cantelli). Soit $(A_n)_{n \in \mathbb{N}}$ une suite d'événements.
 - Si la série $\sum \mathbf{P}(A_n)$ converge, alors $\mathbf{P}(\limsup_{n\to+\infty}A_n)=0$.
 - Si la suite $(A_n)_{n \in \mathbb{N}}$ est indépendante, alors la réciproque du point précédent est vérifiée : si $\mathbf{P}(\limsup_{n \to +\infty} A_n) = 0$, alors la série $\sum \mathbf{P}(A_n)$ converge.
- 8. COROLLAIRE. Soient $(X_n)_{n \in \mathbb{N}}$ une suite de variable aléatoire réelle et X une variable aléatoire réelle.
 - Si la série $\sum \mathbf{P}(|X_n X| > \varepsilon)$) converge pour tout réel $\varepsilon > 0$, alors $X_n \to X$.
 - Si la suite $(X_n)_{n \in \mathbb{N}}$ est indépendante, alors elle converge presque sûrement vers 0 si et seulement si la série $\sum \mathbf{P}(|X_n X| > \varepsilon))$ converge pour tout réel $\varepsilon > 0$.
- 9. Contre-exemple. La réciproque du premier point est fausse. En effet, on se place dans l'espace $([0,1],\mathcal{B}([0,1]),\lambda)$ où la mesure λ est celle de Lebesgue sur [0,1]. Alors la suite $(\mathbf{1}_{[0,1/n[})_{n\in\mathbb{N}^*}$ converge presque sûrement vers 0 et pourtant la série de terme général $\lambda(|X_n|>1/2)=1/n$ diverge

I.2. Convergence en probabilité

10. DÉFINITION. Une suite $(X_n)_{n \in \mathbb{N}}$ de variables aléatoires à valeurs dans \mathbb{R}^d converge en probabilité vers un variable aléatoire X si

$$\forall \varepsilon > 0, \qquad \mathbf{P}(\|X_n - X\| \geqslant \varepsilon) \longrightarrow 0.$$

Dans ce cas, on notera $X_n \to X$.

- 11. Remarque. La limite, si elle existe, est encore unique à égalité presque sûre.
- 12. EXEMPLE. Soit $(X_i)_{i \in \mathbb{N}}$ une suite de variables aléatoires réelles centrée et de même variance. Alors la suite $((X_1 + \cdots + X_n)/n)_{n \in \mathbb{N}^*}$ converge en probabilité vers 0.
- 13. PROPOSITION. L'expression $d(X,Y) := \mathbf{E}[\min(|X-Y|,1)]$ définie une distance sur l'ensemble des variable aléatoires de l'espace $(\Omega, \mathscr{A}, \mathbf{P})$ et elle vérifie la propriété suivante : la suite $(X_n)_{n \in \mathbf{N}}$ converge en probabilité vers la variable aléatoire X si et seulement si $d(X_n, X) \longrightarrow 0$.
- 14. Proposition. La converge presque sûrement implique celle en probabilité.
- 15. Contre-exemple. La réciproque est fausse. En effet, munissons le segment [0,1] de sa tribu borélienne et de sa probabilité uniforme. Alors la suite $(X_n)_{n\in\mathbb{N}^*}$ définie par l'égalité

$$X_{2^m+k} := \mathbf{1}_{[k/2^n,(k+1)/2^n[}, \qquad n \in \mathbf{N}^*, \ k \in [0, 2^n - 1]]$$

ne converge pas presque sûrement, mais elle converge en probabilité vers 0.

- 16. Théorème. Soient $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires et X une variable aléatoire. Alors les points suivants sont équivalents :
 - la suite $(X_n)_{n\in\mathbb{N}}$ converge en probabilité;
 - pour toute extraction $\phi \colon \mathbf{N} \longrightarrow \mathbf{N}$, il existe une extraction $\psi \colon \mathbf{N} \longrightarrow \mathbf{N}$ telle que la sous-suite $(X_{\phi \circ \psi(n)})_{n \in \mathbf{N}}$ converge presque sûrement.
- 17. COROLLAIRE. La notion de convergence presque sûre n'est pas métrisable.
- 18. PROPOSITION. Soient $(X_n)_{n \in \mathbb{N}}$ et $(Y_n)_{n \in \mathbb{N}}$ deux suites de variables aléatoires convergeant en probabilité respectivement vers deux variables aléatoires X et Y.
 - Pour toute fonction continue $f: \mathbf{R}^d \longrightarrow \mathbf{R}^m$, on a $f(X_n) \to f(X)$.
 - Pour tous réels $\alpha, \beta \in \mathbf{R}$, on a $\alpha X_n + \beta Y_n \mathbf{P} \to \alpha X + \beta Y$.
 - Lorsque d = 1, on a $X_n Y_n P \rightarrow XY$.
- 19. Exemple. Comme le produit scalaire est continu, on trouve $\langle X_n, Y_n \rangle \mathbf{P} \to \langle X, Y \rangle$.
- 20. Théorème. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires telle que

$$\forall \varepsilon > 0, \ \exists N \in \mathbf{N}, \ \forall n \geqslant N, \qquad \mathbf{P}(|X_n - X_N| \geqslant \varepsilon) \leqslant \varepsilon.$$

Alors elle converge en probabilité.

I.3. Une application: les lois faible et forte des grands nombres

21. Théorème (loi forte des grands nombres). Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et de même loi qu'une variable aléatoire X. On suppose que $\mathbf{E}[|X|] < +\infty$. Alors

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow{p} \mathbf{E}[X].$$

22. Théorème (loi forte des grands nombres). Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et de même loi qu'une variable aléatoire X. Alors

$$\mathbf{E}[|X|] < +\infty \quad \Longleftrightarrow \quad \frac{X_1 + \dots + X_n}{n} \xrightarrow{-ps} \mathbf{E}[X].$$

23. EXEMPLE. Considérons l'espace probabilisé $([0,1], \mathcal{B}([0,1]), \lambda)$. Tout réel $\omega \in [0,1]$

24. PROPOSITION (méthode de Monte-Carlo). Soit $f:[a,b] \longrightarrow \mathbf{R}$ une fonction mesurable. Soit $(U_i)_{i \in \mathbf{N}^*}$ une suite de variables aléatoires indépendantes de loi uniforme sur le segment [a,b]. Pour $n \in \mathbf{N}^*$, on définit

$$I_n := \frac{b-a}{n} \sum_{i=1}^n \varphi(U_i).$$

Alors la suite $(I_n)_{n \in \mathbb{N}^*}$ converge presque sûrement vers l'intégrale $I := (b-a)^{-1} \int_a^b \varphi$. De plus, si la fonction f est bornée par un réel c > 0, on a

$$\mathbf{P}(|I_n - I| > \varepsilon) \leqslant \frac{c^2}{n\varepsilon^2}, \quad n \in \mathbf{N}^*, \ \varepsilon > 0.$$

25. Théorème (Bernstein). Soit $f: [0,1] \longrightarrow \mathbf{C}$ une fonction continue. On introduit son module de continuité

$$\omega : \begin{vmatrix} \mathbf{R}_+ & \longrightarrow \mathbf{R}, \\ h & \longmapsto \sup\{|f(u) - f(v)| \mid u, v \in [0, 1], \mid u - v \mid \leqslant h\}. \end{vmatrix}$$

Pour tout entier $n \ge 1$, on considère le polynôme

$$B_n(x) := \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f(k/n) \in \mathbf{C}[x].$$

Alors

- (i) la suite $(B_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction f sur [0,1];
- (ii) plus précisément, il existe une constante C>0 telle que

$$\forall n \geqslant 1, \qquad ||f - B_n||_{\infty} \leqslant C\omega(1/\sqrt{n}).$$

II. Convergence dans les espaces de Lebesgue

II.1. Définition et uniforme intégrabilité

26. DÉFINITION. Soit p > 0. Une suite (X_n) de variables aléatoires de $L^p(\Omega, \mathcal{A}, \mathbf{P})$ converge dans L^p vers une variable aléatoire $X \in L^p(\Omega, \mathcal{A}, \mathbf{P})$ si

$$||X_n - X||_p = \mathbf{E}[||X_n - X||^p]^{1/p} \longrightarrow 0.$$

- 27. Proposition. Soient p, q > 0 deux réels tels que $p > q \geqslant 1$. Si la suite $(X_n)_{n \in \mathbb{N}}$ converge vers la variable aléatoire X dans L^p , alors elle y convergence dans L^q .
- 28. DÉFINITION. Une famille $(X_i)_{i\in I}$ de variables aléatoires réelles intégrables est uniformément intégrable si

$$\sup_{i \in I} \mathbf{E}[|X_i| \mathbf{1}_{\{|X_i| > c\}}] \xrightarrow[c \to +\infty]{} 0.$$

29. REMARQUE. Une famille finie de variables aléatoires réelles intégrables est uniformément intégrables. De même, s'il existe une variable aléatoire intégrable Y telle que, pour tout $i \in I$, on ait $|X_i| \leq Y$ presque sûrement, alors la famille $(X_i)_{i \in I}$ est uniformément intégrable.

- 30. Proposition. Une famille $(X_i)_{i \in I}$ de variables aléatoires réelles intégrables est uniformément intégrables si et seulement si les deux points suivants sont vérifiés :
 - pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que

$$\forall A \in \mathscr{A}, \quad \mathbf{P}(A) \leqslant \eta \implies (\forall i \in I, \quad \mathbf{E}[|X_i| \mathbf{1}_A] \leqslant \varepsilon);$$

- la famille $(\mathbf{E}[|X_i|])_{i\in I}$ soit bornée.

II.2. Lien avec les autres convergences

- 31. Proposition. La convergence dans L^p implique la convergence en probabilité.
- 32. Contre-exemple. La convergence en probabilité n'implique pas la convergence dans L^p (la limite n'est pas nécessairement dans L^p). De même, la convergence presque sûre n'implique par la converge dans L^p . En effet, sur l'espace $(\mathbf{R}, \mathscr{B}(\mathbf{R}))$ et pour un réel p > 1, considérons des variables aléatoires X_n avec $n \in \mathbf{N}^*$ vérifiant

$$P(X_n = n) = 1 - P(X_n = 0) = n^{-p}.$$

Alors la suite $(X_n)_{n \in \mathbb{N}^*}$ converge presque sûrement vers 0 et pourtant on a $\mathbf{E}[|X_n|^p] = 1$ pour tout entier $n \in \mathbb{N}^*$.

- 33. THÉORÈME. Soient $p \ge 1$ un réel et $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires admettant un moment d'ordre p. Alors les points suivants sont équivalents :
 - la suite $(X_n)_{n\in\mathbb{N}}$ converge dans L^p ;
 - elle est de Cauchy dans L^p ;
 - la suite $(|X_n|^p)_{n \in \mathbb{N}}$ est uniformément intégrable et la suite $(X_n)_{n \in \mathbb{N}}$ converge en probabilité vers une variable aléatoire admettant un moment d'ordre p.
- 34. Contre-exemple. La condition d'uniforme intégrabilité est nécessaire. Pour tout entier $n \in \mathbb{N}^*$, on considère une variable aléatoire X_n vérifiant

$$P(X_n = n^2) = 1 - P(X_n = 0) = 1/n.$$

Alors la suite $(X_n)_{n \in \mathbb{N}}$ converge en probabilité, mais pas dans L¹.

III. Convergence en loi

III.1. Convergences étroite et en loi

35. DÉFINITION. Une suite (μ_n) de probabilités sur \mathbf{R}^d convergence étroitement vers une probabilité μ sur \mathbf{R}^d si

$$\forall f \in \mathscr{C}_{\mathrm{b}}(\mathbf{R}^d), \qquad \int f \,\mathrm{d}\mu_n \longrightarrow \int f \,\mathrm{d}\mu.$$

- 36. Théorème (admis). Soient $(\mu_n)_{n\in\mathbb{N}}$ une suite de probabilités sur \mathbb{R}^d et μ une probabilité sur \mathbb{R}^d . Alors les points suivants sont équivalents :
 - la suite $(\mu_n)_{n \in \mathbb{N}}$ converge étroitement vers la mesure μ ;
 - pour tout fermé $F \subset \mathbf{R}^d$, on a $\limsup_{n \to +\infty} \mu_n(F) \leqslant \mu(F)$;
 - pour tout ouvert $O \subset \mathbf{R}^d$, on a $\liminf_{n \to +\infty} \mu_n(O) \geqslant \mu(O)$;
 - pour tout borélien A tel que $\mu(\partial A) = 0$, on a $\lim_{n \to +\infty} \mu_n(A) = \mu(A)$.
- 37. DÉFINITION. Une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires converge en loi vers une variable aléatoire X si la suite $(\mathbf{P}_{X_n})_{n\in\mathbb{N}}$ converge étroitement vers la mesure \mathbf{P}_X , c'est-à-dire si

$$\forall f \in \mathscr{C}_{\mathrm{b}}(\mathbf{R}^d), \quad \mathbf{E}[f(X_n)] \longrightarrow \mathbf{E}[f(X)].$$

38. Définition. Les points suivants sont équivalents :

- la suite $(X_n)_{n \in \mathbb{N}}$ converge en loi vers la variable aléatoire X;
- lorsque d=1, pour tout point $t \in \mathbf{R}$ de discontinuité de la fonction de répartition de la variable aléatoire X, on a $\mathbf{P}(X_n \leqslant t) \longrightarrow \mathbf{P}(X \leqslant t)$;
- pour tout réel $t \in \mathbf{R}$, on a $\varphi_{X_n}(t) := \mathbf{E}[e^{itX_n}] \longrightarrow \varphi_X(t) := \mathbf{E}[e^{itX}].$
- 39. Proposition. La convergence presque sûrement, respectivement en probabilité, implique celle en loi.
- 40. Contre-exemple. La convergence en loi n'implique ni la convergence presque sûre ni la convergence en probabilité. En effet, soit X une variable aléatoire suivant un loi normale centrée réduite. Alors la suite $((-1)^n X)_{n \in \mathbb{N}}$ converge en loi vers la variable aléatoire X, mais elle n'y converge ni presque sûrement ni en probabilité.
- 41. Proposition. Une suite convergeant en loi vers une variable aléatoire constante y converge en probabilité.
- 42. Théorème (lemme de Slutsky). Soient $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux suites convergeant en loi respectivement vers un variable aléatoire X et une variable aléatoire constante $c \in \mathbb{R}$. Alors $(X_n, Y_n)^{-\text{loi}} \to (X, c)$.
- 43. Théorème (Lévy). Soient $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires et X un variable aléatoire.
 - Si X_n -loi \to X, alors la suite $(\varphi_{X_n})_{n \in \mathbb{N}}$ converge uniformément sur tout compact de \mathbb{R}^d vers la fonction φ_X .
 - Si la suite $(\varphi_{X_n})_{n\in\mathbb{N}}$ converge simplement vers une fonction φ qui est continue en 0, alors la fonction φ est la fonction caractéristique d'une variable aléatoire et la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers cette dernière.

III.2. Le théorème central limite

44. Théorème (central limite). Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes et de même loi qu'une variable aléatoire X admettant un moment d'ordre 2. Alors

$$\frac{X_1 + \dots + X_n - n\mathbf{E}[X]}{\sqrt{n \operatorname{Var}[X]}} \xrightarrow{-\text{loi}} \mathcal{N}(0, 1).$$

45. EXEMPLE. Soit $(X_i)_{i \in \mathbf{N}^*}$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre $p \in [0, 1[$. Pour tout réel $a, b \in \mathbf{R}$ avec a < b, on a

$$\mathbf{P}\left(a \leqslant \frac{S_n - np}{\sqrt{np(1-p)}} \leqslant b\right) \longrightarrow \int_a^b \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt$$

avec $S_n := X_1 + \dots + X_n$.

46. APPLICATION (construction d'intervalles de confiance). Combinée avec le lemme de Slutsky, comme la loi des grands nombre donne S_n/n $-P \rightarrow p$, la dernière limite donne

$$\mathbf{P}\left(a \leqslant \frac{S_n - np}{\sqrt{S_n(1 - S_n/n)}} \leqslant b\right) \longrightarrow \int_a^b \frac{e^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t =: q.$$

On obtient l'intervalle de confiance

$$\left[\frac{S_n}{n} - \frac{b}{\sqrt{n}}\sqrt{\frac{S_n}{n}\left(1 - \frac{S_n}{n}\right)}, \frac{S_n}{n} - \frac{a}{\sqrt{n}}\sqrt{\frac{S_n}{n}\left(1 - \frac{S_n}{n}\right)}\right]$$

qui encadre le paramètre p avec une probabilité voisine de la quantité q

^{1]} Philippe Barbe et Michel Ledoux. Probabilité. Belin, 1998.

^[7] Jean-Yves Ouvrard. Probabilité. T. Tome II. Cassini, 2000.