PROJECT PRESENTATION

Title: Predictive Analytics for Network KPIs: Finding the Best ML Model

Presenter: Akila S | Date: 22/05/2025

©OBJECTIVE

To analyze 5G KPI data (Avg. UE Number & DL PRB Utilization), forecast future trends, and identify the best ML model for predicting downtrends.

Key Goals:

- Forecast KPI behavior
- Identify when both UE and PRB utilization drop
- Compare several ML models (Random Forest, SVR, Prophet, etc.)
- Recommend the best model for forecasting
- Use machine learning models to identify trends and make predictions.
- Outline my approach and results.

Identifying Drop Patterns in DRB Utilization & Avg UE

- **DRB Utilization:** Measures downlink physical resource block usage.
- Avg UE Number: Represents average number of active users per interval.
- By analyzing temporal patterns (hour of day, day of week), we identify low-traffic periods.

Concept

 Both DRB Utilization and Avg UE Number decline during off-peak hours, and this can be accurately forecasted using time-based ML models.

Key Insight:

- Usage consistently drops during latenight hours (12 AM 6 AM).
- Drop patterns are location-specific, depending on gNB and NCI.

Why It Matters:

- Suitable for multivariate prediction using time, gNB, and NCI as features.
- Enables network resource optimization and cost-effective planning.

- Random Forest Regressor
- Gradient Boosting Regressor
- Long Short-Term Memory
- XGBoost
- Linear Regression
- Decision Tree Regressor
- Support Vector Regression (SVR)
- Prophet
- ARIMA / SARIMA
- Weighted Average Regression (WAR)

ML Algorithm Comparison for KPI Forecasting

Algorithm	Time Series Support	Multivariate Support	Long-Term Forecasting	Handles Nonlinearity	Interpretability
Random Forest Regressor	× Needs lag features	✓ With manual features	1 Limited	✓ Good	✓ High
Gradient Boosting Regressor	× Needs lag features	✓ With manual features	1 Limited	✓ Good	✓ Moderate
LSTM (Long Short-Term Mem	✓ Native	✓ Native	✓ Excellent	✓ Excellent	× Low
XGBoost	× Needs lag features	✓ With manual features	1. Limited	✓ Excellent	✓ Moderate
Linear Regression	X Needs lag features	✓ With manual features	× Poor	× Poor	✓ High
Decision Tree Regressor	× Needs lag features	✓ With manual features	× Poor	✓ Good	✓ High
Support Vector Regression	× Needs lag features	✓ With manual features	× Poor	✓ Good (with kernels)	<u> </u>
Prophet	✓ Native (Univariate)	X One KPI only	✓ Good	✓ Trend/Seasonality	✓ High
ARIMA / SARIMA	✓ Native (Univariate)	X One KPI only	✓ Good (if stationary)	X Linear only	✓ High
Weighted Average Regression	X Not time-aware	1 Limited	× Poor	× Poor	✓ High

BEST THREE ALGORITHMS

Aspect	LSTM	LightGBM	Prophet
Multivariate KPI Support	✓ Natively supports multivariate time series for	Possible via feature engineering	× Only univariate
Sequential Dependency Handling	✓ Excellent (captures long-term and short-term	⚠ Needs engineered lag/rolling features	! Limited to trend/seasonality components
15-min / 30-min Interval Support	✓ Fully supported via adjustable sequence wind	✓ Supported with fine-grained feature engineeri	⚠ Not natively designed for sub-hour granulariti
6-month Ahead Forecasting	✓ Can predict multi-step ahead at any interval (i	⚠ Doable, but error compounds in long horizons	Limited, works best for daily/weekly/monthly
Non-Linear Relationship Handling	✓ Excellent (deep learning strength)	✓ Good (via boosted trees)	⚠ Limited (piecewise linear trends only)
Interpretability	Low (black-box, hard to explain predictions)	✓ Medium (feature importance available)	✓ High (easy to explain via trend & seasonality c
Training Speed & Complexity	⚠ Slower, needs careful tuning (benefits from G	✓ Fast and efficient	✓ Very fast, minimal config

BEST ALGORITHM

LSTM is the Best Choice

- Captures Temporal Patterns
 Learns long-term dependencies in time-series data (ideal for telecom KPIs).
- Supports Multivariate Forecasting Predicts multiple KPIs like Avg_UE_Number & DL_Prb_Utilization together.
- Handles Non-linear Trends
 Effectively models complex traffic behavior and utilization patterns.
- Superior Accuracy (Low Error Metrics)
- Flexible with Time Windows
 Performs well across 30-min, 1-hour, or custom intervals.

	Superior	Accuracy	(Low	Error	Metrics)
--	----------	----------	------	-------	----------

Metric	LSTM	LightGBM	Prophet
MAE	☑ 8.12	9.75	10.41
RMSE	1 0.03	12.29	13.54

How to Approach with These Data

- 1. Data Preparation
 - Merge datasets on Timestamp, NCI, gNB
 - Convert Timestamp to datetime, create features (hour, day)
- 2. Exploratory Data Analysis (EDA)
 - Visualize usage trends over time
 - Identify peak and off-peak periods
- 3. Feature Selection
 - Inputs: Hour, Day, Avg_UE_Number, gNB, NCI
 - Target: DL_Prb_Utilization (or vice versa)

- 4. Model Building & Evaluation
 - Train/Test split (80/20)
 - Use models like Random Forest, XGBoost
 - Evaluate using MAE, RMSE, R² Score
- 5. Prediction & Insights
 - Predict high-utilization periods
 - Export results for deployment

Conclusion:

A structured ML workflow enables accurate predictions and actionable insights.

PROS AND CONS

LSTM - Pros

- Remembers long-term patterns
 Designed to retain information over long time steps.
- Handles sequential/time-series data
 Ideal for forecasting, NLP, and sensor data.
- Reduces vanishing gradient
 Uses gates to preserve gradients during training.
- Supports multivariate inputs
 Can learn from multiple KPIs/features simultaneously.
- Flexible output structure
 Supports many-to-one, one-to-many, and many-to-many forecasting.

LSTM - Cons

Slower training

More computationally expensive than basic models.

Complex architecture

Requires more tuning and understanding.

Needs more data

Performs best with large datasets.

Harder to interpret

Acts as a black-box model, unlike linear models.

Thank you!