Course 8 Properties of Regular Languages

How to prove whether a given language is not regular?

2) Minimization of DFAs

Some languages are *not* regular

When is a language is regular?
if we are able to construct one of the following: DFA or NFA or ε -NFA or regular expression

When is it not?

If we can show that no FA can be built for a language

How to prove languages are **not** regular?

What if we cannot come up with any FA?

- A) Can it be language that is not regular?
- B) Or is it that we tried wrong approaches?

How do we *decisively* prove that a language is not regular?

"The hardest thing of all is to find a black cat in a dark room, especially if there is no cat!" -Confucius

Example of a non-regular language

Let L = {w | w is of the form 0^n1^n , for all $n \ge 0$ }

- Hypothesis: L is not regular
- Intuitive rationale: How do you keep track of a running count in an FA?
- A more formal rationale:
 - By contradition, if L is regular then there should exist a DFA for L.
 - Let k = number of states in that DFA.
 - Consider the special word w= 0^k1^k => w ∈ L
 - DFA is in some state p_i, after consuming the first i symbols in w

Rationale...

- Let {p₀,p₁,... p_k} be the sequence of states that the DFA should have visited after consuming the first k symbols in w which is 0^k
- But there are only k states in the DFA!
- > ==> at least one state should repeat somewhere along the path (by) + Principle)
- ==> Let the repeating state be p_i=p_i for i < j</p>
- > ==> We can fool the DFA by inputing 0^{(k-(j-i))}1^k and still get it to accept (note: k-(j-i) is at most k-1).
- ==> DFA accepts strings w/ unequal number of 0s and 1s, implying that the DFA is wrong!

The Pumping Lemma for Regular Languages

What it is?

The Pumping Lemma is a property of all regular languages.

How is it used?

A technique that is used to show that a given language is **not** regular.

It can not be used to show that a given language is regular.

Pumping Lemma for Regular Languages

Let L be a regular language.

Then <u>there exists</u> some constant N such that <u>for every</u> string $w \in L$ s.t. $|w| \ge N$, <u>there exists</u> x, y, z, w = xyz, such that:

- 1. $y \neq \varepsilon$
- $|xy| \le N$
- For all $k \ge 0$, all strings of the form $xy^kz \in L$

This property should hold for <u>all</u> regular languages.

Definition: *N* is called the "Pumping Lemma Constant"

Pumping Lemma: Proof

- L is regular => it should have a DFA.
 - Set N := number of states in the DFA
- Any string w∈L, s.t. |w|≥N, should have the form: w=a₁a₂...a_m, where m≥N
- Let the states traversed after reading the first N symbols be: {p₀,p₁,... p_N}
 - ==> There are N+1 p-states, while there are only N DFA states
 - ==> at least one state has to repeat i.e, p_i= p_i where 0≤i<j≤N (by PHP)</p>

Pumping Lemma: Proof...

- => We should be able to break w=xyz as follows:
 - $> x=a_1a_2..a_i$; $y=a_{i+1}a_{i+2}..a_J$; $z=a_{J+1}a_{J+2}..a_m$
 - x's path will be p₀..p_i
 - y's path will be p_i p_{i+1}..p_i (but p_i=p_i implying a loop)
 - z's path will be p_jp_{J+1}..p_m
- Now consider another string w_k=xy^kz, where k≥0

- Case k=0
 - DFA will reach the accept state p_m
- Case k>0
 - DFA will loop for y^k, and finally reach the accept state p_m for z
- ▶ In either case, $w_k \in L$ This proves part (3) of the lemma

Pumping Lemma: Proof...

- For part (1):
 - Since i<j, y $\neq \varepsilon$

- For part (2):
 - By PHP, the repetition of states has to occur within the first N symbols in w
 - ==> |xy|≤N

Using P.L. to prove non-regularity

- *L* regular \Rightarrow *L* satisfies P.L.
- *L* non-regular \Rightarrow ?
- 3. L non-regular \Leftarrow L does not satisfy P.L.: (1) & (2) & not (3) from P.L. formulation

Forall N exists $w \in L$ and $|w| \ge N$, forall x, y, z, w = xyz, such that:

- 1. $y \neq \varepsilon$
- $|xy| \le N$
- For all $k \ge 0$, all strings of the form $xy^kz \in L$ Then L non-regular.

Note: This N can be anything (need not necessarily be the #states in the DFA.)

- Claim L = $\{w \mid w = 0^n 1^n, n \ge 1\}$ is non-regular.
- Proof: Show that P.L. does not hold. (If P.L. holds this does not mean regularity)
- By contradiction, assume L is regular and derive a contradiction
 - Then, there exists N s.t. for all $w \in L$. Let $w = 0^{N}1^{N}$
 - There exists x, y, z, w=xyz, such that:

 - 2. |**x**y|≤N
 - For all k≥0, the string xy^kz is also in L
 - w satisfies (1) and (2) above but:

$$w = 0^{N}1^{N} = 0...00...01...1 ==> #0>#1$$

Example 2

Claim $L_{eq} = \{w \mid w \text{ is a binary string with equal number of 1s and 0s} \}$ is non-regular.

Assume L_{eq} be non-regular. Then there exists N such that for every string $w \in L$ s.t. $|w| \ge N$, there exists x, y, z with w = xyz, such that: (1) $y \ne \varepsilon$, (2) $|xy| \le N$ (3) Exists $k \ge 0$ and $xy^kz \in L$. Take $N = N^*$, and $w = 0^{N^*}1^{N^*}$ ($|w| = 2N^* \ge N^*$), $w \in L_{eq}$. Proof proceeds like in Example 1.

4

Example 3

Prove L = $\{0^n10^n \mid n \ge 1\}$ is not regular.

Assume L_{eq} be regular and derive a contradiction. Then there exists N such that for every string $w \in L$ s.t. $|w| \ge N$, there exists x, y, z with w = xyz, such that: (1) $y \ne \varepsilon$, (2) $|xy| \le N$ (3) For all $k \ge 0$, all strings of the form $xy^kz \in L$. Take $N = N^*$, and $w = 0^{N^*} 10^{N^*}$ ($|w| = 2N^* + 1 \ge N^*$). Then w can be divided into 3 parts: x = 0...0 (length $N^* - 2$), $y = 0...(|xy| = N^* - 2 + 2 \le N^*)$, z = 0...0 (length N^*). Then $|xy| = N^* \le N^*$. For k = 0 we have xz = 0...0 (no 1). So not in L_{eq} .

We found a counterexample for which the PL does not hold. Hence L_{eq} is not regular.

Example 4

Prove $L = \{1^n \mid n \text{ is prime}\}\)$ is not regular.

Assume L_{eq} be regular. Then there exists N such that for every string $w \in L$ s.t. $|w| \ge N$, there exists a way to break w into three parts, w = xyz, such that: $(1)y \ne \varepsilon$, $(2)|xy| \le N$ (3) For all $k \ge 0$, all strings of the form $xy^kz \in L$.

Take N=p, and w=1^p($|w|=p\ge p$ and p - prime). Then w can be divided into 3 parts: $|y|=l\ge 1$ (cond. (1) – is satisfied, and assume $|xy| \le p$ s.t. (2) is satisfied).

Trying to prove (3): Let k=p+1. We have $|xy^{p+1}z| = |xyz| + |y^p| = p+p|y| = p(1+|y|)$ which is not always a prime number, e.g. p=3, |y| = 1, $|xy^{p+1}z| = 3(1+1) = 6$.

Equivalence & Minimization of DFAs

Applications of interest

- Comparing two DFAs:
 - L(DFA₁) == L(DFA₂)?

- How to minimize a DFA?
 - Remove unreachable states
 - Identify & condense equivalent states into one

When to call two states in a DFA "equivalent"?

Two states p and q are said to be equivalent iff:

Any string w accepted by starting at p is also accepted by

starting at q;

AND

Any string w rejected by starting at p is also rejected by i) starting at q.

W

W

Computing equivalent states in a DFA **Table Filling Algorithm**

Pass #0

1. Mark accepting states ≠ non-accepting states

Pass #1

- Compare every pair of states
- Distinguish by one symbol transition
- 3. Mark = or \neq or blank (i.e. can not distinguish)

- Compare every pair of states 1.
- Distinguish by up to two symbol transitions (until different or same or tbd)

Pass #2

X X X X X X X X X X X X X X X X X X X

Table Filling Algorithm

- Recursive discovery of distinguishable states in a DFA
 - Base case: If p is an accepting state and q is not accepting then the pair {p,q} is distinguishable.
 - **Induction**: Let p, q be states s.t. for some input symbol a, $r = \delta$ (p, a) and $s = \delta$ (q, a) are known to be distinguishable. Then the pair {p,q} is distinguishable.

Α	=							
В		Ш						
С			Ш					
D				II				
Е					Ш			
F						Ш		
G							II	
Н								Ш
	Α	В	С	D	Е	F	G	Н

1. Mark X between accepting vs. non-accepting state

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	Ш							
В		II						
С	X		II					
D	X			II				
Е	X	X	X	X	II			
F					X	II		
G	X				X		Ш	
Н	X				X			II
	Α	В	С	D	E	F	G	Н
		- '						

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В		=						
С	X	X	II					
D	X	X		II				
Ε	X	X	X	X	II			
F					X	П		
G	X	X			X		11	
Н	X	X			X			=
	Α	В	С	D	Е	F	G	Н
	•	†			'	'	'	

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В		=						
С	X	X	=					
D	X	X	X	=				
Е	X	X	X	X	=			
F			X		X	П		
G	X	X	X		X		Ш	
Н	X	X	=		X			II
	Α	В	С	D	Е	F	G	Н
	-	-			-	-		

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В		=						
С	X	X	=					
D	X	X	X	=				
Е	X	X	X	X	=			
F			X	X	X	=		
G	X	X	X	=	X		=	
Н	X	X	=	X	X			=
	Α	В	С	D	Е	F	G	Н
'	•	•	•	†	•	•		

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В		=						
С	X	X	=					
D	X	X	X	=				
E	X	X	X	X	=			
F			X	X	X	=		
G	X	X	X	=	X	X	II	
Н	X	X	=	X	X	X		Ш
	Α	В	С	D	Е	F	G	Н
	-	-	-	-	-			-

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	Ш							
В		=						
С	X	X	II					
D	X	X	X	II				
Е	X	X	X	X	II			
F			X	X	X	II		
G	X	X	X	II	X	X	II	
Н	X	X	II	X	X	X	X	II
	Α	В	С	D	Е	F	G 🛧	Н

Α	=							
В	=	=						
С	X	X	=					
D	X	X	X	=				
Ε	X	X	X	X	=			
F	X	X	X	X	X	=		
G	X	X	X	=	X	X	=	
Н	X	X	=	X	X	X	X	=
	Α	В	С	D	Е	F	G	Н

- 1. Mark X between accepting vs. non-accepting state
- 2. Pass 1:
 Look 1- hop away for distinguishing states or strings | A | B | C | D | E | F | G |
- 3. Pass 2:

Look 1-hop away again for distinguishing states or strings continue....

	1	II (
E	3 (=	II						
()) X	X	II					
)	X	X	X	II				
E	=	X	X	X	X	=			
F	=	X	X	X	X	X	=		
	3	X	X	\mathbf{x}	=	X	X	=	
F	-	X	X	=	X	X	X	X	=
— inaa		Α	В	C	D	Е	F	G	Н

- Mark X between accepting vs. non-accepting state
- Pass 1: Look 1- hop away for distinguishing states or strings
- 3. Pass 2:

Look 1-hop away again for distinguishing states or strings **Equivalences**: continue....

- A=B
- C=H
- D=G

Retrain only one copy for each equivalence set of states

Equivalences:

- A=B
- C=H
- D=G

Table Filling Algorithm – special case

Α	Ш							
В		II						
С			Ш					
D				II				
Е				? -	II			
F						II		
G							II	
Н								Ш
	Α	В	С	D	Е	F	G	Н

Q) What happens if the input DFA has more than one final state?

Can all final states initially be treated as equivalent to one another?

DFA Minimization by state equivalence method

DFA Minimization with unreacheable states

Hureachable

State

Step 1. Eliminate

Ale nureach.

Uste Step 2. Fræded with State equivalence or table filling

Putting it all together ...

How to minimize a DFA?

Goal: Minimize the number of states in a DFA

Depth-first traversal from the start state

- Algorithm:
 - 1. Eliminate states unreachable from the start state

 Table filling algorithm
 - Identify and remove equivalent states
 - Output the resultant DFA

Summary

- How to prove languages are not regular?
 - Pumping lemma & its applications
- Simplification of DFAs
 - How to remove unreachable states?
 - How to identify and collapse equivalent states?
 - How to minimize a DFA?