TD1: Rappels de complexités, probabilités

Exercice 1. Complexité

Calculer la complexité de chacun des algorithmes suivants. L'instruction <op_elem> désigne n'importe quelle opération élémentaire, qui a complexité O(1) par définition. Si besoin, on pourra utiliser le 'master theorem'.

ALGO1(n): ALGO2(n): ALGO3(n): **1.** Pour i = 0 à n - 1: **1.** Si n = 0: Renvoyer val 1. <op_elem> Pour j = 0 à n - 1: **2.** ALGO2(n-1)**2.** Tant que n > 1: Pour k = 0 à j: 3. 3. <op_elem> $n \leftarrow n/3$ 4. <op_elem> **4.** ALGO2(n-1)4. <op_elem> **5.** Pour i = 0 à n - 1: 5. <op_elem> 5. <op_elem> <op_elem> ALGO4(n): ALGO5(n): ALGO6(n): **1.** Si $n \le 1$: Renvoyer 4 **1.** Si $n \le 1$: Renvoyer 17 **1.** Tant que $n \ge 0$: **2.** Pour t = 0 à n - 1: <op_elem> **2.** ALGO6(|n/2|) ALGO4(n-1) $n \leftarrow n - 3$ 3. <op_elem> 4. <op_elem> ALGO7(n): ALGO9(n): ALGO8(n): **1.** Si $n \le 1$: Renvoyer 51 **1.** Si $n \le 1$: Renvoyer 0 **1.** Si $n \le 1$: Renvoyer 911 **2.** ALGO7([n/2]) 2. <op_elem> **2.** ALGO9([n/2]) 3. Pour i = 0 à $n : < op_elem >$ 3. ALGO8([n/3]) 3. ALGO9([n/2]) **4.** ALGO7([n/2]) **4.** ALGO8([n/3]) **4.** ALGO9([n/2]) 5. Pour i = 0 à $n : < op_elem >$ **5.** Tant que n > 2: $n \leftarrow n - 15$ 5. <op_elem>

Exercice 2. Probabilités discrètes

- 1. On tire deux dés à six faces, équilibrés. Calculer la probabilité des évènements suivants :
 - a. Les deux dés ont la même valeur.
 - **b.** Le deuxième dé vaut strictement plus de points que le premier.
 - c. La somme des deux dés est un nombre pair.
- 2. On tire dix fois une pièce équilibrée. Calculer la probabilité des évènements suivants.
 - a. On n'obtient que des PILE.
 - b. On obtient au moins une fois PILE.
 - c. On obtient autant de PILE que de FACE.
 - d. (Bonus) On obtient plus de PILE que de FACE.

Exercice 3. Probabilités discrètes, suite...

- 1. On jette un dé équilibré à k faces, numérotées de 1 à k. Soit X la variable aléatoire décrivant la valeur observée. Calculer $\mathbb{E}[X]$.
- **2.** On tire dix fois de suite une pièce équilibrée. On note X la variable aléatoire décrivant le nombre de PILE obtenus. Calculer $\mathbb{E}[X]$.
- **3.** Un singe tape sur un clavier à 26 lettres (toutes en minuscules) de manière aléatoire : chaque lettre tapée est choisie uniformément et indépendamment parmi les 26 lettres possibles. Le singe tape un texte d'un million de lettres.
 - 1. Quelle est l'espérance du nombre de fois que la lettre 'x' apparaît dans le texte?
 - 2. Quelle est l'espérance du nombre de fois que le mot 'algo' apparaît dans le texte.

Exercice 4. Un algorithme probabiliste

Dans cet exercice, T est un tableau de n entiers.

1. Soit x un entier qui apparaît (une seule fois) dans T. On veut connaître l'indice i tel que $T_{[i]} = x$. Donner un algorithme naïf déterministe pour ce problème et analyser sa complexité.

- **2.** On décrit maintenant un algorithme probabiliste simple : on tire un indice i aléatoirement entre 0 et n-1 et on teste si $T_{[i]} = x$; on renvoie i si c'est le cas et on recommence sinon.
 - 1. Quelle est la probabilité *p* de trouver le bon indice au premier essai?
 - 2. On note X la variable aléatoire correspondant au nombre d'essais nécessaires avant de trouver x. On note E_n l'espérance de X. En utilisant la formule de l'espérance totale, conditionnée au fait de trouver x au premier tirage ou non, montrer que E_n vérifie $E_n = 1 + (1-p)E_n$.
 - 3. En déduire que $E_n = n$. Cet algorithme est-il intéressant?
- 3. On dit qu'un élément x est majoritaire dans T si au moins la moitié des éléments de T sont égaux à x : formellement, $\#\{i:T_{[i]}=x\}\geq n/2$.
 - 1. On considère le problème suivant : en supposant que *T* contient un élément majoritaire, on veut renvoyer cet élément.
 - i. Donner un algorithme de complexité quadratique pour le problème.
 - ii. On tire i aléatoirement entre 0 et n-1. Quelle est la probabilité que $T_{[i]}$ soit l'élément majoritaire?
 - iii. En déduire un algorithme probabiliste qui trouve x, et dont l'espérance du temps de calcul est linéaire en n. *Pour le calcul de l'espérance, on peut réutiliser la technique de la question* **1.iii**.
 - 2. On considère maintenant le problème suivant : étant donné *T*, on cherche à déterminer s'il existe un élément majoritaire. *On ne suppose donc plus que T possède un élément majoritaire*.
 - i. Donner un algorithme de complexité quadratique pour le problème.

On applique l'algorithme suivant : on tire k indices i_1, \ldots, i_k aléatoirement et indépendamment entre 0 et n-1; on renvoie VRAI si $T_{[i_i]}$ est majoritaire pour (au moins) l'un des indices i_j et FAUX sinon.

- ii. Détailler l'algorithme et calculer sa complexité.
- iii. S'il n'existe pas d'élément majoritaire dans T, montrer que l'algorithme renvoie FAUX quelque soit k.
- iv. S'il existe un élément majoritaire dans T, quelle est la probabilité que l'algorithme renvoie FAUX?
- v. Quelle est la complexité de l'algorithme si on veut que le résultat soit correct avec probabilité $\geq 999/1000$? Et avec probabilité $\geq 1-1/n$?

Exercice 5. Simulations

- **1.** Soit BITALÉATOIRE() un générateur aléatoire qui renvoie 0 avec probabilité $\frac{1}{2}$ et 1 avec probabilité $\frac{1}{2}$.
 - 1. Écrire un algorithme EntierAléatoire(k) qui renvoie un entier aléatoire entre 0 et 2^k-1 . Montrer que la distribution obtenue est uniforme : chaque entier entre 0 et 2^k-1 est obtenu avec probabilité $1/2^k$.
 - 2. On souhaite maintenant tirer un entier aléatoire entre 0 et N-1, où N est un entier de k bits. On propose la solution suivante : on tire un entier n avec EntierAléatoire(k) puis on renvoie n mod N. La distribution obtenue est-elle toujours uniforme? On pourra calculer la probabilité d'obtenir 0 et celle d'obtenir N-1.
 - 3. On veut toujours tirer un entier aléatoire entre 0 et N-1. On opte pour une nouvelle stratégie : on tire toujours n avec EntierAléatoire(k); si n < N on renvoie n; sinon on recommence. Montrer que cette stratégie produit bien une distribution uniforme et borner l'espérance du nombre d'appels à EntierAléatoire.
 - 4. (bonus) Supposons qu'on dispose d'une fonction Entieraléatoire() qui renvoie un entier entre 0 et $2^K 1$ pour une certaine valeur K qu'on ne choisit pas. Proposer une méthode pour tirer un entier aléatoire entre 0 et N-1, pour n'importe quel $N \le 2^K$, qui produit bien une distribution uniforme et dont l'espérance du nombre d'appels à Entieraléatoire est au plus 2.
- 2. On suppose maintenant disposer d'un générateur RÉELALEATOIRE() qui produit un réel aléatoire x entre 0 et 1. Soit $V = \{v_1, \ldots, v_k\}$ un ensemble de valeurs entières, et $P = \{p_1, \ldots, p_k\}$ des probabilités, telles que $\sum_i p_i = 1$. On souhaite tirer v_i avec probabilité p_i . Pour cela, on partitionne l'intervalle [0,1] en k intervalles de longueurs p_1, \ldots, p_k respectivement. On tire un réel r entre 0 et 1, et on renvoie v_i si r appartient à l'intervalle correspondant à v_i .
 - 1. Justifier que l'algorithme esquissé ci-dessus renvoie bien un entier avec la distribution souhaitée.
 - 2. Écrire formellement l'algorithme.