CS542200

Parallel Programming 2015

Lab2: Sobel Image Filter (with color)

Chin-Feng Lee, LSA Lab, NTHU 2015/11/25

- 1. Problem Description
- 2. Preparation
- 3. Your Tasks
- 4. Grading
- 5. Reminder

- 1. Problem Description
- 2. Preparation
- 3. Your Tasks
- 4. Grading
- 5. Reminder

Problem Description

Edge Detection: Identifying points in a digital image at which the image brightness changes sharply.

Sobel Operator

- Used in image processing and computer vision, particularly within edge detection algorithms.
- Uses two 3x3 kernels g_x , g_y which are convolved with the original image to calculate approximations of the derivatives one for horizontal changes, and one for vertical.
- At each point in the image, the result of the Sobel operator is either the corresponding gradient vector or the norm of this vector.

The convolution matrix

• g_x , g_y are isotropic 3x3 Image Gradient Operator

$$g_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, \qquad g_y = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Each pixel consists of 3 values R, G, B

How it works

- For each output pixel, we need to refer 9 input pixels around to determine its value
- Each color channel is convolved with g_x and g_y
- c is a constant

•
$$G_x = (g_x * A) \times c$$
, $G_y = (g_y * A) \times c$

12	100	32	55
7			

	12	100	32	55
	7	12		
ĺ				
İ				

12	100	32	55	
7	12	248		

5x5 variation

We use this kernel instead of the 3x3 one in this lab.

$$g_{x} = \begin{pmatrix} -1 & -2 & 0 & 2 & 1 \\ -4 & -8 & 0 & 8 & 4 \\ -6 & -12 & 0 & 6 & 12 \\ -4 & -8 & 0 & 8 & 4 \\ -1 & -2 & 0 & 2 & 1 \end{pmatrix},$$

$$g_y = \begin{pmatrix} -1 & -4 & -6 & -4 & -1 \\ -2 & -8 & -12 & -8 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 8 & 12 & 8 & 2 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix}$$

Sample Result

- 1. Problem Description
- 2. Preparation
- 3. Your Tasks
- 4. Grading
- 5. Reminder

Preparation

- Login to the server
- Upload shared.tar.gz to the server
 - You can use FileZilla, MobaXTerm or scp command
- Untar the file
 - tar axf shared.tar.bz2
- You should be able to see these files:
 - sobel.cu
 - Makefile
 - (sth).bmp
 - (sth)_out.bmp

Sobel Image Filter

- The program sobel.cu is an example code of Sobel image filter.
 - ./sobel INPUT_FILE
 - INPUT_FILE: the input BMP file
- The sample output file is of name *_out.bmp
- For example, You can verify your output by
 - cmp {YOUR_OUTPUT} candy_out.bmp
 - You can also download the file and see the result!

Compile and run

Please refer to the PP2015_Lab2_tutorial.pptx slide for detail instructions

For this lab, a makefile has been provided You can simply run make to compile

Working Items

- Task 1: Turn sobel() into kernel function
 - Add cudaSetDevice, cudaMalloc, cudaMemcpy, ... etc.
 - Relabel index to combination of threadIdx, blockIdx, ... etc.
- Task 2: Put mask[][][] into shared memory
 - Add __shared__ , __syncthreads()
 - Access through shared memory instead of global memory
- Task 3: Use pinned memory
 - Add cudaMallocHost

- 1. Problem Description
- 2. Preparation
- 3. Your Tasks
- 4. Grading
- 5. Reminder

Lab 2 Grading

- Total 2%
 - Attendance (0.5%)
 - Task 1: CUDA version (0.5%)
 - Task 2: Shared memory (0.5%)
 - Task 3: Pinned memory (0.5%)

- 1. Problem Description
- 2. Preparation
- 3. Your Tasks
- 4. Grading
- 5. Reminder

Reminder

- See comments in sobel.cu for HINTS
- Please finish it before leaving
- If you cannot finish all tasks in time,
 you can finish it at home, and submit to iLMS
 - 10% off before 11/30 (Mon) 23:59:59
 - Penalty of late submission doesn't effect the points you got in lab time