PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-310629

(43)Date of publication of application: 24.11.1998

(51)Int.CI.

C08G 59/26 C08G 59/62 C08K 9/06 C08L 63/00 H01L 23/29

H01L 23/31

(21)Application number : **09**–1**35957**

(71)Applicant: TOSHIBA CHEM CORP

(22)Date of filing:

09.05.1997

(72)Inventor: HOSOKAWA HARUOMI

(54) EPOXY RESIN COMPOSITION AND SEMICONDUCTOR DEVICE SEALED THEREWITH (57) Abstract:

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition that can give a cured product affected little by absorbed moisture, humidity resistance after reflow in soldering, soldering—heat resistance, etc., not suffering from internal resin cracking and leak current and improved in reliability by using an anthracene—type epoxy resin, a phenolic resin, a silane coupling agent, a spherical powder and a cure accelerator as the essential components.

SOLUTION: The epoxy resin composition essentially consists of an anthracene—type epoxy resin (A) of formula I (wherein R1 to R4 are each CnH2n+1; and m is 0, 1 or greater), a phenolic resin (B), a silane coupling agent (C) of formula II (wherein R5 is an epoxy—containing atomic group; R6 is methyl or ethyl; and n is 0, 1 or greater), a spherical alumina powder (D) having a maximum particle diameter of 100 µm or below and a cure accelerator (E), wherein the component D is contained in am amount of 35–95 wt.% and a sealed

CH1-CHCH2 O-CH2 CH-CH1

R* C. H., 331 1028 14

11

]

16

semiconductor device prepared by sealing a semiconductor chip with a cured product of the above composition. An example of component A is a compound of formula III. Component B has at least two phenolic hydroxyl groups reactive with the epoxy group of component A.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-310629

(43)公開日 平成10年(1998)11月24日

(51) Int.Cl. ⁶		識別記号		FΙ		.,			
	E0 /90				Fo log				
C 0 8 G				C 0 8 G	59/26				
	59/62				59/62				
C08K	9/06			C08K	9/06				
C08L	63/00			C08L	63/00				
H01L	23/29			H01L	23/30		R		
			審查請求	未請求請求	R項の数 2	FD	(全 6 頁)	最終頁に続く	
(21)出願番号		特願平9-135957		(71)出願人 390022415					
4							株式会社		
(22)出顧日		平成9年(1997)5月9日		東京都港区新橋3丁目3番9号					
				(72)発明者 細川 晴臣					
					埼玉県	川口市	領家5丁目14	番25号 東芝ケ	
					ミカル	株式会	社川口工場内		
				(74)代理》	人 弁理士	諸田	英二		
						•			

(54) 【発明の名称】 エポキシ樹脂組成物および半導体封止装置

(57)【要約】

【課題】 半田リフロー後の耐湿性、半田耐熱性、成形性、流動性に優れ、封止樹脂と半導体チップあるいはリードフレームとの間の剥がれや内部クラックの発生がなく、また電極腐蝕による断線や水分によるリーク電流発生もなく、長期信頼性を保証できるエポキシ樹脂組成物および半導体封止装置を提供する。

【解決手段】 (A)アントラセン型エポキシ樹脂、

- (B)フェノール樹脂、(C)エポキシ基を含有するシランカップリング剤、(D)球状アルミナ粉末および
- (E)硬化促進剤を必須成分とし、全体の樹脂組成物に対して前記(D)の球状アルミナ粉末を35~95重量%の割合で含有してなるエポキシ樹脂組成物であり、また、このエポキシ樹脂組成物の硬化物によって、半導体チップを封止した半導体封止装置である。

【特許請求の範囲】

【請求項1】 (A) 次の一般式に示されるアントラセ

ン型エポキシ樹脂、

(但し、式中、 $R^1 \sim R^4$ は同一又はたがいに異なる $R^1 \sim R^4$ は $R^1 \sim R^4$ は同一又はたがいに異なる $R^1 \sim R^4$ は同一又はたがいに異なる $R^1 \sim R^4$ は $R^1 \sim R^4$

(B) フェノール樹脂、(C) 次の一般式で示されるエポキシ基を有するシランカップリング剤、

【化2】 $R^5 - C_n H_{2n} - S_i$ (OR6) 3

(但し、式中R⁵ はエポキシ基を有する原子団を、R⁶ はメチル基又はエチル基を、n は0 又は1 以上の整数をそれぞれ表す)

(D)最大粒径が100 μm以下の球状アルミナ粉末および(E)硬化促進剤を必須成分とし、全体の樹脂組成物に対して前記(D)の球状アルミナ粉末を35~95重量%の割合で含有してなることを特徴とするエポキシ樹脂組成物。

【請求項2】 (A) 次の一般式に示されるアントラセン型エポキシ樹脂、

СH₂—СHCH₂ О СН₂ СН—СH₂ СН—СH₂ СН—СH₂

(但し、式中、R¹ ~R⁴ は同一又はたがいに異なる C m H_{2m+1} 基を、m は0 又は1 以上の整数を表す)

(B)フェノール樹脂、(C)次の一般式で示されるエポキシ基を有するシランカップリング剤、

【化4】 $R^5 - C_n H_{2n} - Si (OR^6)$ 3

(但し、式中R⁵ はエポキシ基を有する原子団を、R⁶ はメチル基又はエチル基を、n は0 又は1 以上の整数をそれぞれ表す)

(D)最大粒径が100 μm以下の球状アルミナ粉末および(E)硬化促進剤を必須成分とし、全体の樹脂組成物に対して前記(D)の球状アルミナ粉末を35~95重量%の割合で含有したエポキシ樹脂組成物の硬化物によって、半導体チップが封止されてなることを特徴とする半導体封止装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、耐湿性、半田耐熱性、成形性に優れたエポキシ樹脂組成物および半導体封止装置に関する。

[0002]

【従来の技術】近年、半導体集積回路の分野において、 高集積化、高信頼性化の技術開発と同時に半導体装置の 40 実装工程の自動化が推進されている。例えばフラットパッケージ型の半導体装置を回路基板に取り付ける場合に、従来、リードピン毎に半田付けを行っていたが、最近では半田浸漬方式や半田リフロー方式が採用されている。

[0003]

【発明が解決しようとする課題】従来のノボラック型エポキシ樹脂等のエポキシ樹脂、ノボラック型フェノール樹脂および無機充填剤からなる樹脂組成物によって封止した半導体装置は、装置全体の半田リフローを行うと耐 50

湿性が低下するという欠点があった。特に吸湿した半導体装置を浸漬すると、封止樹脂と半導体チップ、あるいは封止樹脂とリードフレームとの間の剥がれや、内部樹脂クラックが生じて著しい耐湿性劣化を起こし、電極の腐蝕による断線や水分によるリーク電流を生じ、その結果、半導体装置は、長期間の信頼性を保証することができないという欠点があった。

【0004】また、よく使用されている下記に示したナフタレン骨格含有エポキシ樹脂は、

[0005]

【化5】

従来のノボラック型エポキシ樹脂やビフェニル型エポキシ樹脂に比較すると、靭性値が高いという長所があるもののエポキシ当量が低く、これを用いた樹脂組成物を低吸湿化することが困難であった。

【0006】本発明は、上記の欠点を解消するためになされたもので、吸湿の影響が少なく、特に半田浴リフロー後の耐湿性、半田耐熱性、成形性、流動性に優れ、封止樹脂と半導体チップあるいは封止樹脂とリードフレームとの間の剥がれや、内部樹脂クラックの発生がなく、また電極の腐蝕による断線や水分によるリーク電流の発生もなく、長期信頼性を保証できるエポキシ樹脂組成物および半導体封止装置を提供しようとするものである。

[0007]

【課題を解決するための手段】本発明者は、上記の目的を達成しようと鋭意研究を重ねた結果、特定のエポキシ樹脂、特定のシランカップリング剤を用いることによって、耐湿性、半田耐熱性、成形性等に優れた樹脂組成物が得られることを見いだし、本発明を完成したものであ

2

る。

【0008】即ち、本発明は、(A)次の一般式に示されるアントラセン型エポキシ樹脂、

【0009】 【化6】

(但し、式中、R¹~R⁴ は同一又はたがいに異なる C m H_{2m+1} 基を、m は0 又は1 以上の整数を表す)

(B)フェノール樹脂、(C)次の一般式で示されるエ 10 ポキシ基を有するシランカップリング剤、

[0010]

【化7】 $R^5 - C_n H_{2n} - S_i (OR^6)_3$

(但し、式中R⁵ はエポキシ基を有する原子団を、R⁶ はメチル基又はエチル基を、n は0 又は1 以上の整数をそれぞれ表す)

(D)最大粒径が100 μm以下の球状アルミナ粉末および(E)硬化促進剤を必須成分とし、全体の樹脂組成物

に対して前記(D)の球状アルミナ粉末を35~95重量%の割合で含有してなることを特徴とするエポキシ樹脂組成物である。また、このエポキシ樹脂組成物の硬化物によって、半導体チップが封止されてなることを特徴とする半導体封止装置である。

【0011】以下、本発明を詳細に説明する。

【0012】本発明に用いる(A)エポキシ樹脂は、前記の一般式化6で示されるものが使用される。具体的な化合物としては、例えば

[0013]

【化8】

CH2-CHCH2 O-OCH2 CH-CH

が挙げられる。また、このエポキシ樹脂には、ノボラック系エポキシ樹脂、エピビス系エポキシ樹脂、ビフェニル型エポキシ樹脂その他の一般の公知のエポキシ樹脂を併用することができる。

【0014】本発明に用いる(B)フェノール樹脂としては、前記(A)のエポキシ樹脂のエポキシ基と反応し得るフェノール性水酸基を2個以上有するものであれば特に制限するものではない。具体的な化合物として例えば

(但し、n は0 又は1 以上の整数を表す)

[0017]

o (但し、n は0 又は1 以上の整数を表す)

[0018]

【化12】

[0015]

(但し、n は0 又は1 以上の整数を表す)

[0016]

50

(但し、n は0 又は1 以上の整数を表す)

[0019]

5

(但し、n は0 又は1 以上の整数を表す)等が挙げら れ、これらは単独又は混合して使用することができる。 【0020】本発明に用いる(C)工ポキシ基を有する シランカップリング剤としては、前記の一般式化7で示 20 されるものが使用される。具体的なものとして、例え ば、

等が挙げられ、これらは単独又は混合して使用すること ができる。

【0023】このシランカップリング剤には極微量の有 機塩基を添加処理することができる。有機塩基で処理す ることによって加水分解性を高めることができ、ここで 添加処理する有機塩基としてジメチルアミン、ジエチル アミン、ピリジン、キノリン、ピペリジン等の環状有機 塩基を挙げることができ、これらは単独又は混合して使 用することができる。有機塩基の配合割合は、シランカ ップリング剤に対して0.05~5 重量%の範囲内で使用す ることが望ましい。この配合量が0.05重量%未満ではシ ランカップリング剤の加水分解を十分に促進することが できず、また、5 重量%を超えると耐湿信頼性が低下し て好ましくない。

【0024】本発明に用いる(D)球状アルミナ粉末と しては、不純物濃度が低く最大粒径が100 μm以下で、 平均粒径20μm以下の球状アルミナ粉末が好ましく使用 される。平均粒径20 µ mを超えると耐湿性および成形性 が劣り好ましくない。球状アルミナ粉末の配合割合は、

全体の樹脂組成物に対して35~95重量%含有するように 配合することか好ましい。その割合が35重量%未満では 樹脂組成物の吸湿性が高く、半田浸漬後の耐湿性に劣 り、また95重量%を超えると極端に流動性が悪くなり、 成形性に劣り好ましくない。これらの球状アルミナ粉末 に、シランカップリング剤に有機塩基を添加し、直ちに ヘンシェルミキサー、スーパーミキサー等で処理を行う と均一に表面処理ができ、その効果が十分に発揮でき る。

6

【0025】本発明に用いる(E)硬化促進剤として は、リン系硬化促進剤、イミダゾール系硬化促進剤、D BU系硬化促進剤その他の硬化促進剤等を広く使用する ことができる。これらは単独又は2種以上併用すること ができる。硬化促進剤の配合割合は、全体の樹脂組成物 に対して0.01~5 重量%含有するように配合することが 望ましい。その割合が0.01重量%未満では樹脂組成物の ゲルタイムが長く、硬化特性も悪くなり、また、5 重量 %を超えると極端に流動性が悪くなって成形性に劣り、 さらに電気特性も悪くなり耐湿性に劣り好ましくない。 【0026】本発明のエポキシ樹脂組成物は、前述した 特定のエポキシ樹脂、フェノール樹脂、特定のシランカ ップリング剤、球状アルミナ粉末および硬化促進剤を必 須成分とするが、本発明の目的に反しない限度におい て、また必要に応じて、例えば天然ワックス類、合成ワ ックス類、直鎖脂肪酸の金属塩、酸アミド類、エステル 類、パラフィン類等の離型剤、三酸化アンチモン等の難 燃剤、カーボンブラック等の着色剤、ゴム系やシリコー ン系の低応力付与剤等を適宜添加配合することができ る。

【0027】本発明のエポキシ樹脂組成物を成形材料と して調製する場合の一般的方法は、前述した特定のエポ キシ樹脂、フェノール樹脂、シランカップリング剤処理 をした球状アルミナ粉末および硬化促進剤その他の成分 を配合し、ミキサー等によって十分均一に混合した後、 さらに熱ロールによる溶融混合処理またはニーダ等によ る混合処理を行い、次いで冷却固化させ適当な大きさに 粉砕して成形材料とすることができる。こうして得られ た成形材料は、半導体装置をはじめとする電子部品或い は電気部品の封止・被覆・絶縁等に適用すれば優れた特 性と信頼性を付与させることができる。

【0028】また、本発明の半導体封止装置は、上述の 成形材料を用いて半導体チップを封止することにより容 易に製造することができる。封止を行う半導体チップと しては、例えば集積回路、大規模集積回路、トランジス

タ、サイリスタ、ダイオード等で特に限定されるものではない。封止の最も一般的な方法としては、低圧トランスファー成形法があるが、射出成形、圧縮成形、注形等による封止も可能である。成形材料で封止後加熱して硬化させ、最終的にはこの硬化物によって封止された半導体封止装置が得られる。加熱による硬化は、150 ℃以上に加熱して硬化させることが望ましい。

【0029】本発明のエポキシ樹脂組成物および半導体 封止装置は、特定のエポキシ樹脂、フェノール樹脂、特 定のシランカップリング剤、球状アルミナ粉末および硬 化促進剤を用いることによって、樹脂組成物の吸水性を 低減し、成形性、流動性、熱機械的特性と低応力性が向 上し、半田浸漬、半田リフロー後の樹脂クラックの発生 がなくなり、耐湿性劣化が少なくなるものである。

[0030]

【発明の実施の形態】次に本発明を実施例によって説明するが、本発明はこれらの実施例によって限定されるものではない。以下の実施例および比較例において「%」とは「重量%」を意味する。

8

【0031】実施例1

球状アルミナ粉末(最大粒径100 μ m以下)86.5%をヘンシェルミキサーに入れ、攪拌しながら前述した化 1 5 のシランカップリング剤0.4 %と、ジエチルアミン4 × 10-4 %とを加えて球状アルミナ粉末の表面処理をした。【0032】次に前述した化8のアントラセン型エポキ

シ樹脂1.4 %、下記化16に示したビフェニル型エポキシ樹脂4.0 %、

【0033】 【化16】

テトラブロモビスフェノールA型エポキシ樹脂1.3 %、 前述した化9のフェノール樹脂0.9 %、前述した化10 のフェノール樹脂3.7 %、トリフェニルホスフィン0.2 %、カルナバワックス類0.4 %、カーボンブラック0.3 %、および三酸化アンチモン1.0 %を常温で混合し、さ らに70~100 ℃で混練冷却した後、粉砕して成形材料 (A)を製造した。

【0034】実施例2

球状アルミナ粉末(最大粒径100 μ m以下)86.5%をへ 30 ンシェルミキサーに入れ、攪拌しながら前述した化 1 5 のシランカップリング剤0.4 %と、ジエチルアミン4 × 10^{-4} %とを加えて球状アルミナ粉末の表面処理をした。

【0035】次に前述した化8のアントラセン型エポキシ樹脂1.4%、実施例1で使用した化16のビフェニル型エポキシ樹脂4.0%、テトラブロモビスフェノールA型エポキシ樹脂1.3%、前述した化9のフェノール樹脂0.9%、前述した化11のフェノール樹脂3.7%、トリフェニルホスフィン0.2%、カルナバワックス類0.4%、カーボンブラック0.3%、および三酸化アンチモン401.0%を常温で混合し、さらに70~100℃で混練冷却した後、粉砕して成形材料(B)を製造した。

【0036】比較例1

球状アルミナ粉末(最大粒径100 μ m以下)86.5%をヘンシェルミキサーに入れ、攪拌しながら前述した化 1 4 のシランカップリング剤0.4 %と、ジエチルアミン4 × 10^{-4} %とを加えて球状アルミナ粉末の表面処理をした。【0037】実施例 1 で使用した化 1 6 のビフェニル型エポキシ樹脂5.4 %、テトラブロモビスフェノール A型

エポキシ樹脂1.3 %、化9のフェノール樹脂0.9 %、前 50

述した化10のフェノール樹脂3.7%、トリフェニルホスフィン0.2%、カルナバワックス類0.4%、カーボンブラック0.3%、および三酸化アンチモン1.0%を常温で混合し、さらに70~100℃で混練冷却した後、粉砕して成形材料(C)を製造した。

【0038】比較例2

球状アルミナ粉末(最大粒径100 μ m以下)86.5%をヘンシェルミキサーに入れ、攪拌しながら前述した化 1 4 のシランカップリング剤0.4 %と、ジエチルアミン4 × 10^{-4} %とを加えて球状アルミナ粉末の表面処理をした。

【0039】実施例1で使用した化16のビフェニル型エポキシ樹脂4.0%、テトラブロモビスフェノールA型エポキシ樹脂1.3%、化5に示したナフタレン型エポキシ樹脂1.4%、前述した化9のフェノール樹脂0.9%、前述した化11のフェノール樹脂3.7%、トリフェニルホスフィン0.2%、カルナバワックス類0.4%、カーボンブラック0.3%、および三酸化アンチモン1.0%を常温で混合し、さらに70~100℃で混練冷却した後、粉砕して成形材料(D)を製造した。

【0040】こうして製造した成形材料(A)~(D)を用いて170℃に加熱した金型内にトランスファー注入、半導体チップを封止し硬化させて半導体封止装置を製造した。これらの半導体封止装置について、諸試験を行ったのでその結果を表1に示したが、本発明のエポキシ樹脂組成物および半導体封止装置は、耐湿性、半田耐熱性、成形性に優れており、本発明の顕著な効果を確認することができた。

[0041]

【表1】

(単位)

例	実施	例	比較例	
特性	1	2	1	2
成形材料	A	В	С	D
曲げ強さ (kgf/m²) * 1	16.5	16.0	16.0	15. 5
熟膨張係数α1 (×10⁻⁵/℃) * ²	1.5	1.5	1.5	1.5
吸水率 (ppm) * 3	2100	2000	3200	2100
半田リフロー性(不良数/試料数)* 4	0/30	0/30	15/30	0/30

*1 : 175 $^{\circ}$ C, 80 k g / c m² , 2 分間のトランスファー成形をして成形品(試験片)をつくり、175 $^{\circ}$ C, 8 時間の後硬化を行い、J I S - K - 6 9 1 1 に準じて試験した。

*2:*1 と同様な成形品を作り、175 ℃, 8 時間の後 硬化を行い、適当な大きさの試験片とし、熱機械分析装 置を用いて測定した。

*3、*4:成形材料を用いて175 ℃, 2 分間トランスファー成形した10×15mmの評価用素子を封止したパッ 20ケージを、175 ℃, 8 時間の後硬化を行った。こうして得た半導体封止装置を85℃, 85%, 168 時間の吸湿処理

した後、増加した重量によって計算した。また、これを 半田リロー (Max 240℃)後、ハクリおよび口開きの 有無を調査した。

[0042]

【発明の効果】以上の説明および表1から明らかなように、本発明のエポキシ樹脂組成物および半導体封止装置は、耐湿性、半田耐熱性、成形性に優れ、吸湿による影響が少なく、電極の腐蝕による断線や水分によるリーク電流の発生等を著しく低減することができ、しかも長期間にわたって信頼性を保証することができる。

フロントページの続き

(51) Int.C1.6

識別記号

H O 1 L 23/31

FI