SFWRENG 4G06 - Verification & Validation

Group: NextStep (Group 10)

Justin Rosner, rosnej1 Daniel Noorduyn, noorduyd Mengxi Lei, leim5 Alexander Samaha, samahaa Tishko Araz, arazt

Department of Computing and Software McMaster University March 22nd, 2022

Contents

1	Davidana	ก
1	Revisions	2
2	Purpose	3
3	Scope	3
	•	
4	Background	3
5	Test Cases 5.1 Testing Plan and Testing Factors 5.2 Data Collection Module 5.3 Object Avoidance System 5.4 User Guidance Mechanism 5.5 User Inputs 5.6 Sensor Fusion 5.7 System Diagnostics Module/Safety Requirements Tests 5.8 Integration Testing	. 6 . 12 . 14 . 16 . 18
6	Beyond Testing	36
7	Supporting Material	37
8	Traceability Matrices ist of Tables	37
	1 Revision History 3 Data Collection Module Tests 5 Object Avoidance System Tests 7 User Guidance Mechanism Tests 9 User Input Tests 11 Sensor Fusion Tests 13 System Diagnostics Module/Safety Requirements Tests 15 Integration Tests 16 Data Collection Module Traceability 17 Object Avoidance System Traceability	. 11 . 13 . 16 . 17 . 33 . 35 . 36 . 37 . 37
	18 User Guidance Mechanism Traceability 19 User Inputs Traceability 20 Sensor Fusion Traceability 21 System Diagnostics Module Traceability 22 Integration Testing Traceability	. 38 . 38 . 39

1 Revisions

Revision Number	Date	Reason for Change
Revision 0	February 4, 2022	N/A
Revision 1	March 25, 2022	Updating tests for system modifications

Table 1: Revision History

2 Purpose

The purpose of this document is to show what tests are necessary and sufficient for all functional software components and overall system of the NextStep product. This document will help the NextStep team in the development of the product in order to fine tune and mitigate all hazards and point of failures, such that the final product works based on the requirements.

3 Scope

The scope of this document will focus on the software components of the NextStep device that where described in detail within the system design document. The tests within this document pertain to the unit tests that are injective to each software module. Note each software module may have multiple tests that attack each corner case as well as test cases seen in a typical real world implementation. These test will define the input and output requirements for each sub module. Secondly, this document will contain the integration testing between modules that have dependencies with one another. Lastly, we include a system wide test that covers the system as a whole, making sure the functional and nonfunctional requirements are met as well as the error handling for failures. Hence, verifying and validating the system as a whole.

4 Background

The NextStep device is designed with various software modules to interface with hardware for I/O operations, as well as object detection and guidance. All these modules work together in order to detect objects and direct the user of NextStep such that they avoid static and slow moving obstacles within an indoor environment.

NextStep starts off by receiving user input which will be their height; this data will be utilized to calibrate the sensors. The device will then begin to utilize Lidar and ultrasonic sensors in order to collect data on objects and obstacles around the user. This data will be sanitized and processed by our Sensor Fusion module. Next, this data will be sent to the Object Avoidance module to determine a path through the obstacles. Finally, this path will be relayed to the user through the User Guidance module which interfaces with the haptic motors in order to guide the user of our NextStep device.

Additionally, there is a System Diagnostic module which will interface with all sensors to make sure they are working correctly. The Diagnostic module will also notify the user of NextStep when the battery percent is low.

5 Test Cases

5.1 Testing Plan and Testing Factors

The following section describes a testing methodology where we start by testing the functionality of the individual modules using unit tests. These unit tests consist of both white-box and black-box tests, where the white-box test cases are derived from the percentage of code coverage obtained from the unit tests. From here, we then test the functionality of the modules working together using black-box tests.

There are three categories of undesired events within the system: edge cases, passing incorrect parameter types and receiving incorrect sensor data format. Edge cases are tested within the respective component, which are listed below. For parameter passing, only primitive data types are being passed between functions and modules. All non-primitive data types are global, thus each component access it directly instead of passing it, and it is also sanitized and used within spec each time it is being modified. Therefore, it is unnecessary to test for passing incorrect parameter types as it is not beneficial to do so. Lastly, the sensor will always return data that matches within spec according to its data sheet provided by manufacturer, unless there is a connection issue, which is captured by the system diagnostic module and the

corresponding test are listed below. there is no connection issues.	Hence, it is not	necessary to	test for incorre	ect sensor da	ta format when

Component	Test Plan Factors
Data Collection Module	The main goal for testing the Data Collection Module was to ensure that the various sensors used in NextStep (ultrasonic sensors, Lidar, accelerometer) are reliably able to collect data points. Tests 1-3 focus on making sure the ultrasonic sensors are able to detect multiple objects placed at varying distances away from the sensors. Tests 4-8 and 10 focus on the Lidar and making sure that it able to accurately collect data points from a range of distances and angles. Test 9 checks for the correctness of the accelerometer reading.
Object Avoidance System	The main goal for testing the Object Avoidance Module was to ensure that NextStep can adequately guide a user around obstacles in their path. Test 1-3 cover how the system determines the rebound angle necessary to avoid the objects that are within the current frame that the device has to consider objects. Tests 4 and 5 deal with the creation and updating of the bubble band or frame that the device will consider objects to create a safe path.
User Guidance Mechanism	The main goal for testing the User Guidance module was to ensure that NextStep can effectively deliver the information about the calculated path the user must take to avoid the objects in their path. Tests 1-5 cover the function of each haptic motor's ability to convey a path based on the obstacles in the user's path. Tests 6 and 7 ensure that NextStep is able to deliver information in time to avoid a collision with either a static object or a moving object.
User Inputs	The main goal for testing the User Inputs Module was to make sure that the system is able to correctly receive inputs from the user that are needed to update the system state. Tests 1 and 2 cover the functionality of the user inputting their height into NextStep. These tests also accounted for instances where the user would make a mistake and have to redo an input value. Tests 3 and 4 had to do with the user being able to adjust the volume (turn up or down by a specified number of levels) of the speaker that the system uses.
Sensor Fusion	The main goal for testing the Sensor Fusion Module was to certify that the system could accurately detect distances and locations of both stationary and slow moving object using a fused picture of data from the ultrasonic sensors and Lidar. Tests 1-4 test the ability of the system to detect stationary objects. Tests 5-10 test the ability of the system to default to the Lidar's data points. Tests 11 and 12 test the ability of the system to detect objects in the ultrasonic sensor's blind-spots. Tests 13-15 test the data filtering algorithm on both the Lidar and ultrasonic sensor data. Tests 16-18 tests the detection of a larger stationary object. Test 19 certifies that objects below the $S_{min_detection}$ aren't treated as obstacles. Tests 20-24 test the systems ability to detect moving obstacles and stationary obstacles. Tests 25-32 test the systems ability to detect stationary, moving, and stationary and moving obstacles while moving forwards.
Systems Diagnostics Module	The main goal for testing the Systems Diagnostics Module was to make sure the system is able to detect a hardware issue with its sensors or Lidar, report the issue to user and suggest that the user stops using the device to prevent providing false information of surrounding obstacles.

5.2 Data Collection Module

The ultrasonic sensors are capable of detecting objects in the range of 0cm to 500cm. The Lidar is capable of detecting objects in the range of 0cm to 1200 cm.

Test	Description	Requirement	Inputs	Expected	Actual	Results
Number		Reference		Outputs	Outputs	
5.2.01	Testing the ability of the ultrasonic sensors to detect objects that are close by (less than 20cm away)	FR1, FR7	Objects placed at a distance of 15cm away from each of the sensors	Sensor Readings = [15cm, 15cm, 15cm, 15cm]	Sensor Readings = [17cm, 15cm, 16cm, 14cm, 15cm]. Note that because of sensor variance any value within +- 5 cm of the expected outputs is correct.	Pass
5.2.02	Testing the ability of the ultrasonic sensors to detect objects that are less than a meter away	FR1, FR7	Objects placed at a distance of 75cm away from each of the sensors	Sensor Readings = [75cm, 75cm, 75cm, 75cm]	Sensor Readings = [72cm, 74cm, 75cm, 75cm]. Note that because of sensor variance any value within +- 5 cm of the expected outputs is correct.	Pass

5.2.03	Testing the ability of the ultrasonic sensors to detect objects that are 5 meters away	FR1, FR7	Objects placed at a distance of 500cm away from each of the sensors	Sensor Read- ings = [500cm, 500cm, 500cm, 500cm]	Sensor Readings = [499cm, 497cm, 497cm, 498cm, 500cm]. Note that because of sensor variance any value within +- 5 cm of the expected outputs is correct.	Pass
5.2.04	Test that the Lidar is able to detect objects within a 180° field of view, up to a distance of 12 meters away	FR1	An object placed 30cm and 30° away from the left side of the Lidar (the reference point used for 0°)	Lidar Reading of 30cm for dis- tance and 30°for the detected angle	Lidar Reading of 30cm for dis- tance and 30°for the detected angle	Pass
5.2.05	Test that the Lidar is able to detect objects within a 180° field of view, up to a distance of 12 meters away	FR1	An object placed 100cm and 50°away from the left side of the Lidar (the reference point used for 0°)	Lidar Reading of 100cm for dis- tance and 50° for the detected angle	Lidar Reading of 100cm for dis- tance and 50°for the detected angle	Pass

5.2.06	Test that the Lidar is able to detect objects within a 180° field of view, up to a distance of 12 meters away	FR1	An object placed 300cm and 90°away from the left side of the Lidar (the reference point used for 0°)	Lidar Reading of 300cm for dis- tance and 90° for the detected angle	Lidar Reading of 300cm for dis- tance and 90°for the detected angle	Pass
5.2.07	Test that the Lidar is able to detect objects within a 180° field of view, up to a distance of 12 meters away	FR1	An object placed 600cm and 120°away from the left side of the Lidar (the reference point used for 0°)	Lidar Reading of 600cm for dis- tance and 120°for the de- tected angle	Lidar Reading of 600cm for dis- tance and 120°for the de- tected angle	Pass
5.2.08	Test that the Lidar is able to detect objects within a 180° field of view, up to a distance of 12 meters away	FR1	An object placed 1200cm and 180°away from the left side of the Lidar (the reference point used for 0°)	Lidar Read- ing of 1200cm for dis- tance and 180°for the de- tected angle	Lidar Read- ing of 1200cm for dis- tance and 180°for the de- tected angle	Pass
5.2.09	Testing the ability to get the current velocity of the user	FR22	User is walking at $1m/s$ in a straight line	Reading of $1m/s$ in the forward direction	Reading of $1m/s$ in the forward direction	Pass

5.2.10	Testing the ability	FR7	Objects	List of	List of	Pass
	for the Lidar to		placed	detected	detected	
	detect multiple		at the	distances	distances	
	objects at once		following	[15cm,	[15cm,	
	when all of the		locations:	$30\mathrm{cm},$	$30\mathrm{cm},$	
	objects fall into		(15cm,	50cm,	$50\mathrm{cm},$	
	the 180°field of		3°),	$100\mathrm{cm},$	$100\mathrm{cm},$	
	view and are up		(30cm,	$7000\mathrm{cm}$	$7000 \mathrm{cm}$	
	to a distance of 12		15°),	and list of	and list of	
	meters away.		(50cm,	detected	detected	
			45°),	angles	angles	
			$(100\mathrm{cm},$	$[3^{\circ}, 15^{\circ},$	$[3^{\circ}, 15^{\circ},$	
			90°),	45°, 90°,	45°, 90°,	
			(7000cm,	135°]	135°]	
			135°).	with in-	with in-	
			Each	dex i in	dex i in	
			distance,	each of	each of	
			angle	the lists	the lists	
			pair cor-	corre-	corre-	
			responds	sponding	sponding	
			to the	to object	to object	
			distance	i	i	
			away			
			from the			
			Lidar			
			and the			
			angle in			
			reference			
			to the left side			
			of the Li-			
			dar (the			
			reference			
			point used for 0			
			used for 0			
5.2.11	Testing the left ul-	FR1, FR7	Person	Sensor	Sensor	Pass
0.2.11	tra sonic sensor is	1 101, 1 101	standing	Reading	Reading	1 (100
	operational		150cm in	$= 150 \mathrm{cm}$	$= 152 \mathrm{cm}.$	
	operational		front of	- 1000111	Note that	
			the left		because	
			sensor		of sensor	
					variance	
					any value	
					within	
					+- 5cm	
					of the	
					expected	
					outputs	
					is correct	
					15 0011000	

5.2.12	Testing the center- left ultra sonic sen- sor is operational	FR1, FR7	Person standing 150cm in front of the center- left sensor	Sensor Reading = 150cm	Sensor Reading = 149cm. Note that because of sensor variance any value within +- 5cm of the expected	Pass
5.2.13	Testing the center	FR1, FR7	Person	Sensor	outputs is correct Sensor	Pass
	ultra sonic sensor is operational		standing 150cm in front of the center sensor	Reading = 150cm	Reading = 147cm. Note that because of sensor variance any value within +- 5cm of the expected outputs is correct	
5.2.13	Testing the center-right ultra sonic sensor is operational	FR1, FR7	Person standing 150cm in front of the center- right sensor	Sensor Reading = 150cm	Sensor Reading = 153cm. Note that because of sensor variance any value within +- 5cm of the expected outputs is correct	Pass

5.2.14	Testing the right ul-	FR1, FR7	Person	Sensor	Sensor	Pass
	tra sonic sensor is		standing	Reading	Reading	
	operational		$150 \mathrm{cm}$ in	$= 150 \mathrm{cm}$	= 151 cm.	
			front of		Note that	
			the right		because	
			sensor		of sensor	
					variance	
					any value	
					within	
					+- 5cm	
					of the	
					expected	
					outputs	
					is correct	

Table 3: Data Collection Module Tests

5.3 Object Avoidance System

For this module please note that if there are any sensor readings equal to 1200cm used as an input, this is referring to the max distance reading that can be obtained from the Sensor Fusion algorithm. Typically this correlates to no object being detected.

Test	Description	Requirement	Inputs	Expected	Actual	Results
Number		Reference		Outputs	Outputs	
5.3.01	Test that the re-	FR19	Sensor	Rebound	Rebound	Pass
	bound angle calcu-		readings	angle =	angle =	
	lated by the Ob-		$_{ m from}$	1.99, Sec-	1.99, Sec-	
	ject Avoidance al-		Sensor	tor = a_3 ,	tor = a_3 ,	
	gorithm is accurate		Fusion	'Center-	'Center-	
	when there are mul-		algo-	right'	right'	
	tiple objects placed		rithm =			
	in the path of the		[1200cm,			
	user		$200\mathrm{cm},$			
			$100\mathrm{cm},$			
			1200cm,			
			1200cm]			
			(this cor-			
			responds			
			to objects			
			placed			
			2m and			
			1m away			
			in the			
			center-			
			left and			
			center			
			sectors			
			respec-			
F 0.00	(T) 4 41 4 41 1	FR19	tively)	Null	Null	Pass
5.3.02	Test that the ob-	FK19	Sensor	Null	Null	Pass
	ject avoidance al-		readings from			
	gorithm does not output a direction		Sensor			
	change when no ob-		Fusion			
	jects are present in		algo-			
	front of the user		$ \begin{array}{rcl} \text{argo-} \\ \text{rithm} &= \\ \end{array} $			
	11011t of the user		[1200 cm,]			
			1200cm,			
			1200cm,			
			1200cm,			
			1200cm, 1200cm]			
			1200CIII]			

5.3.03	Test rebound angle calculated by the Object Avoidance algorithm for the edge case when the user is nearing a wall	FR9, FR19	Sensor readings from Sensor Fusion algorithm = [1200cm, 200cm, 200cm, 1200cm]*	sector a_5 , 'right' or sector a_1 , 'left'	sector a_5 , 'right'	Pass
5.3.04	Testing that the bubble boundary (area in which we start to direct users away from objects) used in the Object Avoidance algorithm grows larger as the user's velocity increases	FR19	A user is walking at a speed of 0.5m/s and then starts walking at a pace of 1m/s.	bubble bound- ary = [200cm, 200cm, 200cm, 200cm, 200cm]	bubble bound- ary = [200cm, 200cm, 200cm, 200cm, 200cm]	Pass
5.3.05	Testing that the bubble boundary (area in which we start to direct users away from objects) used in the Object Avoidance algorithm is at least 100cm when the user is standing still	FR19	A user is standing stationary	bubble bound- ary = [100cm, 100cm, 100cm, 100cm,	bubble bound- ary = [100cm, 100cm, 100cm, 100cm,	Pass
5.3.06	Testing that the bubble boundary (area in which we start to direct users away from objects) used in the Object Avoidance algorithm grows to a maximum of 5 meters when the user is walking at 1.5m/s (upper bound of user speed assumption)	FR19	A user is walking at a speed of 1m/s and then starts walking at a pace of 1.5m/s.	bubble bound- ary = [500cm, 500cm, 500cm, 500cm]	bubble bound- ary = [500cm, 500cm, 500cm, 500cm]	Pass

Table 5: Object Avoidance System Tests

5.4 User Guidance Mechanism

Test Number	Description	Requir Refere		Inputs	Expected Outputs	Actual Outputs	Results
5.4.01	Testing the ability of the left haptic motor to provide guidance to the user (check if the left haptic motor is operational)	FR3, FR19	FR9,	A high signal sent from the Arduino to the left haptic motor for 2 seconds, followed by a low signal	Left Hap- tic motor phys- ically buzzing for 2 seconds	Left Haptic motor physically buzzing for 2 seconds	Pass
5.4.02	Testing the ability of the center-left haptic motor to provide guidance to the user (check if the center-left haptic motor is operational)	FR3, FR19	FR9,	A high signal sent from the Arduino to the center-left haptic motor for 2 seconds, followed by a low signal	Center-left Haptic motor phys- ically buzzing for 2 seconds	Center-left Haptic motor phys- ically buzzing for 2 seconds	Pass
5.4.03	Testing the ability of the center haptic motor to provide guidance to the user (check if the center haptic motor is operational)	FR3, FR19	FR9,	A high signal sent from the Arduino to the center haptic motor for 2 seconds, followed by a low signal	Center Haptic motor phys- ically buzzing for 2 seconds	Center Haptic motor phys- ically buzzing for 2 seconds	Pass

5.4.04	Testing the ability of the center-right haptic motor to provide guidance to the user (check if the center-right haptic motor is operational)	FR3, FR19	FR9,	A high signal sent from the Arduino to the centerright haptic motor for 2 seconds, followed	Centerright Haptic motor physically buzzing for 2 seconds	Centerright Haptic motor physically buzzing for 2 seconds	Pass
5.4.05	Testing the ability of the right haptic motor to provide guidance to the user (check if the right haptic motor is operational)	FR3, FR19	FR9,	by a low signal A high signal sent from the Arduino to the right haptic motor for 2 seconds, followed by a low signal	Right Haptic motor phys- ically buzzing for 2 seconds	Right Haptic motor phys- ically buzzing for 2 seconds	Pass
5.4.06	Testing the response time of the user guidance system (from detection of an object to relaying information to the user) so the user avoids a collision with a static object	FR24		User walking at $1m/s$ in a straight line with a box directly in front of them $5000 \mathrm{cm}$ away	Haptic motor begins buzzing before the user is 2000cm away from the box	Haptic motor begins buzzing before the user is 2000cm away from the box	Pass

5.4.07	Testing the re-	FR24	User	Haptic	Haptic	Pass
	sponse time of		walking	motor	motor	
	the user guidance		at $1m/s$	begins	begins	
	system (from de-		in a	buzzing	buzzing	
	tection of an object		straight	before	before	
	to relaying infor-		line with	the user	the user	
	mation to the user)		a person	is less	is less	
	so the user avoids		walking	than	than	
	a collision with a		towards	$4000 \mathrm{cm}$	$4000 \mathrm{cm}$	
	moving object		them at	away	away	
			1m/s	from the	from the	
			from the	person	person	
			front and			
			$1000 \mathrm{cm}$			
			away			
5.4.08	Test that the	FR13	NextStep	msg_rec	msg_rec	Pass
	speaker is opera-		relays	= True	= True	
	tional		a mes-			
			sage to			
			the user			
			over the			
			speaker			

Table 7: User Guidance Mechanism Tests

5.5 User Inputs

Test	Description	Requirement	Inputs	Expected	Actual	Results
Number		Reference		Outputs	Outputs	
5.5.01	Testing that the	FR12, UH2,	A list, I,	User	User	Pass
	user can properly	UH5, UH6	of button	height is	height is	
	enter their height		presses	182cm	$182 \mathrm{cm}$	
	into NextStep using		and the			
	the button on the		pauses			
	brim of the hat		between			
			the			
			presses.			
			I = [1,			
			pause, 1,			
			1, pause,			
			1, 1, 1, 1,			
			1, 1, 1, 1,			
			pause, 1,			
			1, pause,			
			1, 1, 1, 1,			
			pause, 1,			
			1]			

5.5.02	Testing that when	FR12	A list, I,	User	User	Pass
	the user inputs the		of button	height is	height is	
	wrong height, the		presses	172cm	172cm	
	system allows for		and the			
	them to correct this		pauses			
	by entering in a new		between			
	height value		the			
			presses.			
			I = [1,			
			1, pause,			
			1, pause,			
			1, pause,			
			1,1,			
			pause, 1,			
			1, 1, 1,			
			1, 1, 1,			
			pause, 1,			
			1, pause,			
			1, 1,			
			pause, 1,			
			1]			
5.5.03	Test that the user is	FR 13	User	vol = 4	vol = 4	Pass
	able to turn the vol-		turns the			
	ume of the speaker		volume,			
	down		vol, down			
			two levels			
			given			
			that it			
			starts at			
5.5.04	Test that the user is	FR 13	level 6 User	vol = 6	vol = 6	Pass
0.0.04	able to turn the vol-	1.11.19	turns the	VOI — U	voi = 0	1 922
	ume of the speaker		volume,			
	up up		volume,			
	"P		two levels			
			given			
			that it			
			starts at			
			level 4			
5.5.05	Test the button	FR12	User	b_press =	b_press =	Pass
	is operational and		presses	True	True	
	that clicks are reg-		the but-			
	istered		ton			
	I			1		

Table 9: User Input Tests

5.6 Sensor Fusion

For this module please note that if there are any sensor readings equal to 1200cm used as an input, this is referring to the max distance reading that can be obtained from the Sensor Fusion algorithm. Typically this correlates to no object being detected. The ultrasonic sensors are capable of detecting objects in the range of 0cm to 500cm. The Lidar is capable of detecting objects in the range of 0cm to 1200 cm.

$egin{array}{c} { m Test} \\ { m Number} \end{array}$	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
5.6.01	Testing an object placed in front of each ultrasonic sensor at the edge case of less than 20cm is calculated to be in the correct position after fusion.	FR1	Water-bottle placed at 15cm in front of left most ultrasonic sensor (Repeat for all 5 ultrasonic sensors)	Object readings at [15cm, 1200cm, 1200cm, 1200cm,	Object readings at [18cm, 1200cm, 1200cm, 1200cm,	Pass
5.6.02	Testing an object placed in front of each ultrasonic sensor at the edge case of 500cm is calculated to be in the correct position after fusion.	FR1	Water-bottle placed at 500cm in front of left most ultrasonic sensor (Repeat for all 5 ultrasonic sensors)	Object read- ings at [500cm, 1200cm, 1200cm, 1200cm,	Object read- ings at [502cm, 500cm, 1200cm, 1200cm, 1200cm]	Pass
5.6.03	Testing that a wall is correctly detected after the distance vector is calculated.	FR9	Aim device at a wall that is 200 cm away.	Object read- ing at [1200cm, 250cm, 200cm, 1200cm] away	Object read- ing at [1200cm, 246cm, 203cm, 247cm, 1200cm]	Pass

5.6.04	Testing the ability of the system to detect multiple ob- jects at once, with each of the objects at varying distances	FR1, FR7	Objects placed at (150cm, 25°), (30cm, 60°) and (300cm, 100°) in front of device	Object read- ings at [1200cm, 1200cm, 300cm, 30cm, 150cm]	Object read- ings at [1200cm, 1200cm, 302cm, 26cm, 151cm]	Pass
5.6.05	Test that when the ultrasonic sensors return faulty data that the Sensor Fusion algorithm will revert to relying solely on the Lidar data	FR1	Aim Lidar at the wrong angle to synthe- size only the ul- trasonic sensors detecting objects. Place a book at (150cm, 90°)	Object read- ings at [1200cm, 1200cm, 1200cm, 1200cm,	Object read- ings at [1200cm, 1200cm, 1200cm, 1200cm,	Pass
5.6.06	Test that when the ultrasonic sensors return faulty data that the Sensor Fusion algorithm will revert to relying solely on the Lidar data	FR1	Aim ultrasonic sensors at the wrong angle to synthesize only the Lidar detecting objects. Place a computer screen at (150cm, 145°)	Object read- ings at [1200cm, 1200cm, 1200cm, 1200cm, 150cm]	Object read- ings at [1200cm, 1200cm, 1200cm, 1200cm, 153cm]	Pass

5.6.07	Test that when the ultrasonic sensors return faulty data that the Sensor Fusion algorithm will revert to relying solely on the Lidar data	FR1	Aim ultrasonic sensors at the wrong angle to synthesize only the Lidar detecting objects. Place a computer screen at (150cm, 45°)	Object read- ings at [1200cm, 150cm, 1200cm, 1200cm,	Object read- ings at [1200cm, 151cm, 1200cm, 1200cm, 1200cm]	Pass
5.6.08	Test that when the Lidar returns faulty data that the Sensor Fusion algorithm will revert to relying solely on the ultrasonic sensor data	FR1	Aim Lidar at the wrong angle to synthe- size only the ul- trasonic sensor detecting objects. Place a book at (150cm, 90°)	Object read- ings at [1200cm, 1200cm, 150cm, 1200cm, 1200cm]	Object read- ings at [1200cm, 1200cm, 149cm, 1200cm,	Pass
5.6.09	Test that when the Lidar returns faulty data that the Sensor Fusion algorithm will revert to relying solely on the ultrasonic sensor data	FR1	Aim Lidar at the wrong angle to synthe- size only the ul- trasonic sensor detecting objects. Place a book at (150cm, 145°)	Object read- ings at [150cm, 150cm, 1200cm, 1200cm,	Object read- ings at [150cm, 146cm, 1200cm, 1200cm,	Pass

5.6.10	Test that when the Lidar returns faulty data that the Sensor Fusion algorithm will revert to relying solely on the ultrasonic sensor data	FR1	Aim Lidar at the wrong angle to synthe- size only the ul- trasonic sensor detecting objects. Place a book at (150cm, 45°)	Object read- ings at [1200cm, 1200cm, 1200cm, 150cm,	Object read- ings at [1200cm, 1200cm, 1200cm, 154cm, 147cm]	Pass
5.6.11	Testing object detection in ultrasonic sensor blind-spots where only Lidar will pick up objects	FR1	Place cup at (20cm, 36°)	Object read- ings at [1200cm, 1200cm, 20cm, 1200cm, 1200cm,	Object read- ings at [1200cm, 1200cm, 22cm, 1200cm, 1200cm]	Pass
5.6.12	Testing object detection in ultrasonic sensor blind-spots where only Lidar will pick up objects	FR1	Place cup at (25cm, 108°)	Object read- ings at [1200cm, 1200cm, 25cm, 1200cm, 1200cm]	Object read- ings at [1200cm, 1200cm, 1200cm, 1200cm,	Pass
5.6.13	Testing data filtering of Lidar garnered data	FR1	Place book at (230cm, 90°)	Lidar data reading is [1200cm, 1200cm, 1200cm, 1200cm, 1200cm]	Lidar data reading is [1200cm, 1200cm, 1200cm, 1200cm, 1200cm, 1200cm]	Pass
5.6.14	Testing data filtering of Lidar garnered data	FR1	Place book at (150cm, 10°)	Lidar data reading is [1200cm, 1200cm, 1200cm, 150cm]	[1200cm, 1200cm, 1200cm, 1200cm, 149cm]	Pass

5.6.15	Testing data filtering of ultrasonic sensor garnered data	FR1	Place book at 150cm directly in front of the leftmost ultra- sonic sensor (Repeat for all 5 ultra- sonic sensors)	ultrasonic sensor data reading is [150cm, 1200cm, 1200cm, 150cm]	ultrasonic sensor data reading is [154cm, 1200cm, 1200cm, 1200cm, 149cm]	Pass
5.6.16	Testing larger objects detected as being in 2 different sectors (from the Obstacle Avoidance Algorithm)	FR1	Place chair at (100cm, 36°)	Object read- ings at [1200cm, 1200cm, 1200cm, 100cm, 100cm]	Object read- ings at [1200cm, 1200cm, 1200cm, 102cm, 100cm]	Pass
5.6.17	Testing larger objects detected as being in 2 different sectors (from the Obstacle Avoidance Algorithm)	FR1	Place chair at (130cm, 108°)	Object read- ings at [1200cm, 130cm, 1200cm, 1200cm,	Object read- ings at [1200cm, 130cm, 125cm, 1200cm, 1200cm,	Pass
5.6.18	Testing larger objects detected as being in 2 different sectors (from the Obstacle Avoidance Algorithm)	FR1	Place chair at 160cm, 144°)	Object read- ings at [160cm, 160cm, 1200cm, 1200cm, 1200cm]	Object read- ings at [163cm, 156cm, 1200cm, 1200cm, 1200cm,	Pass
5.6.19	Testing that an object smaller than $S_{min_detection}$ is not considered a detected objected	FR17	Place an object smaller than $S_{min_}$ detection at $(300 \mathrm{cm}, 90)$	Object read- ings are [1200cm, 1200cm, 1200cm, 1200cm, 1200cm]	Object read- ings are [1200cm, 1200cm, 1200cm, 1200cm, 1200cm,	Pass

5.6.20	Testing the detec-	A person	FR1	Object	Object	Pass
0.0.20	tion of slow moving	stands di-	1.101	readings	readings	1 000
	obstacle that walks	rectly in		are ini-	are ini-	
	away in a straight	front of cen-		tially	tially	
	line in the same sec-	ter ultrasonic		[500cm,	[1200cm,	
	tor	sensor (at		500cm,	$1200 \mathrm{cm},$	
		distance		200cm,	202cm,	
		200cm) and		500cm,	1200cm,	
		slowly walks		500cm]	$1200\mathrm{cm}$	
		away from		and	and	
		device at		changes	changes	
		a speed of		to	to	
		50cm/sec		[1200cm,	[1200cm,	
		(Repeat for		1200cm,	1200cm,	
		remaining 4		250cm,	$249 \mathrm{cm},$	
		sectors)		1200cm,	1200cm,	
				1200cm]	$1200\mathrm{cm}$	
				after 1	after 1	
				second,	second,	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				300cm,	300cm,	
				1200cm, 1200cm]	1200cm,	
				after 2	1200cm] after 2	
				seconds,	seconds,	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				350cm,	353cm,	
				1200cm,	1200 cm,	
				1200cm]	$1200\mathrm{cm}$	
				after 3	after 3	
				seconds,	seconds,	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				400cm,	397cm,	
				1200cm,	1200cm,	
				1200cm]	1200cm]	
				after 4	after 4	
				seconds,	seconds,	
				[1200cm, 1200cm,	[1200cm, 1200cm,	
				450cm,	445cm,	
				1200cm,	1200cm,	
				1200cm, 1200cm]	1200cm, 1200cm]	
				after	after	
				5 sec-	5 sec-	
				onds and	onds and	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				1200cm,	$1200\mathrm{cm},$	
				1200cm,	1200cm,	
				1200cm]	1200cm]	
				after 6	after 6	
				seconds	seconds	

5.6.21	Testing the de-	FR1	A person	Object	Object	Pass
	tection of a slow		stands	readings	readings	
	moving obstacle		at (275)	initially	initially	
	moving across		cm away	are	are	
	sectors while main-		from	[1200cm,	[1200cm,	
	taining the same		center ul-	1200cm,	1200cm,	
	distance away from		trasonic	275cm,	276cm,	
	device		sensor)	1200cm,	1200cm,	
			and walks	1200cm],	1200 cm],	
			left at a	[1200cm,	[1200cm,	
			pace of	275cm,	275cm,	
			1 sector-	1200cm,	$1200\mathrm{cm},$	
			width per	1200 cm,	1200cm,	
			2 seconds	$1200\mathrm{cm}$	1200 cm]	
				after 2	after 2	
				seconds,	seconds,	
				[275cm,	[277cm,	
				1200cm,	1200cm,	
				1200 cm,	1200cm,	
				1200cm,	1200cm,	
				$1200\mathrm{cm}$	$1200\mathrm{cm}$	
				after	after	
				4 sec-	4 sec-	
				onds and	onds and	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				$1200\mathrm{cm}$	$1200\mathrm{cm}$	
				after 5	after 5	
				seconds	seconds	

5.6.22	Testing the detec-	FR1	A person	Object	Object	Pass
	tion of a slow mov-		stands in	reading	reading	
	ing obstacle moving		the left	initially	initially	
	across sectors at an		most sec-	is [350cm,	is [351cm,	
	angle		tor at a	1200cm,	1200cm,	
			distance	1200cm,	1200cm,	
			of 350	1200cm,	1200cm,	
			cm and	1200cm],	1200cm],	
			moves	after 2	after 2	
			across (at	seconds is	seconds is	
			a speed of	[1200cm,	[1200cm,	
			1 sector-	300cm,	297cm,	
			width	1200cm,	1200cm,	
			per 2	1200cm,	1200cm,	
			seconds)	1200cm],	1200cm],	
			the sec-	after 4	after 4	
			tors such	seconds is	seconds is	
			that they	[1200cm,	[1200cm,	
			enter	1200cm,	1200cm,	
			each new	250cm,	$252\mathrm{cm},$	
			sector 50	1200 cm,	1200 cm,	
			cm closer	1200 cm],	1200cm],	
			than the	after 6	after 6	
			previous	seconds is	seconds is	
			entry	[1200cm,	[1200cm,	
				1200 cm,	1200 cm,	
				1200cm,	1200cm,	
				200cm,	200cm,	
				1200 cm]	$1200\mathrm{cm}$	
				and after	and after	
				8 sec-	8 sec-	
				onds is	onds is	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				$150 \mathrm{cm}$	$155 \mathrm{cm}$	

5.6.23	Testing detection of	FR1	Place a	Object	Object	Pass
	a stationary obsta-		book at	reading	reading	
	cle and a moving		(200cm,	initially is	initially is	
	obstacle		90°) and	[1200cm,	[1200cm,	
			have a	1200cm,	1200cm,	
			person	200cm,	201cm,	
			start at	1200cm,	1200cm,	
			100cm in	100 cm],	97cm],	
			the right	after 2	after 2	
			most	seconds is	seconds is	
			sector	[1200cm,	[1200cm,	
			and move	1200cm,	1200cm,	
			left at 1	200cm,	202cm,	
			sector-	100cm,	100cm,	
			width/2	1200cm],	1200cm],	
			seconds	after 4	after 4	
			while	seconds is	seconds is	
			maintain-	[1200cm,	[1200cm,	
			ing their	1200 cm,	1200 cm,	
			distance	100cm,	99cm,	
			from the	1200cm,	1200cm,	
			device	1200cm],	1200cm],	
				after 6	after 6	
				seconds is	seconds is	
				[1200cm,	[1200cm,	
				100cm,	101cm,	
				200cm,	1200cm,	
				1200cm,	1200cm,	
				$1200\mathrm{cm}$	$1200\mathrm{cm}$	
				and after	and after	
				8 seconds	8 seconds	
				is [100cm,	is [105cm,	
				1200cm,	1200cm,	
				200cm,	198cm,	
				1200cm,	1200cm,	
				$1200\mathrm{cm}$	$1200\mathrm{cm}$	

5.6.24	Testing detection of	FR1	Place a	Object	Object	Pass
	a stationary obsta-		book at	reading	reading	
	cle and a moving		(200cm,	initially	initially	
	obstacle		170°) and	is [200cm,	is [201cm,	
			have a	1200cm,	$1200\mathrm{cm},$	
			person	1200cm,	1200cm,	
			start at	1200cm,	1200cm,	
			100cm in	100cm],	102cm],	
			the right	after 2	after 2	
			most	seconds is	seconds is	
			sector	[200cm,	[203cm,	
			and move	1200cm,	1200cm,	
			left at 1	1200cm,	1200cm,	
			sector-	100cm,	100cm,	
			width per	1200cm],	1200cm],	
			2 seconds	after 4	after 4	
			while	seconds is	seconds is	
			maintain-	[200cm,	$[204\mathrm{cm},$	
			ing their	1200cm,	1200cm,	
			distance	100cm,	96cm,	
			from the	1200cm,	$500\mathrm{cm},$	
			device	1200cm],	$500\mathrm{cm}$],	
				after 6	after 6	
				seconds is	seconds is	
				[200cm,	[203cm,	
				100cm,	101cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				$1200\mathrm{cm}$	$1200 \mathrm{cm}$	
				and after	and after	
				8 seconds	8 seconds	
				is [100cm,	is [96cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				$1200\mathrm{cm}$	$1200 \mathrm{cm}$	

5.6.25	Testing the detec-	FR1	Place an	Object	Object	Pass
	tion of an obsta-		obstacle	reading	reading	
	cle while the sen-		in the	initially is	initially is	
	sors are moving to-		center	[1200cm,	[1200cm,	
	wards it		sector	1200cm,	1200 cm,	
			at a dis-	300cm,	301cm,	
			tance of	1200cm,	1200cm,	
			300 cm	1200cm],	1200cm],	
			(Repeat	after 1	after 1	
			for all	second is	second is	
			sectors),	[1200cm,	[1200cm,	
			move the	1200cm,	1200 cm,	
			sensors at	250cm,	252cm,	
			a speed of	1200cm,	1200cm,	
			50cm/sec	$1200\mathrm{cm}$	$1200\mathrm{cm}$	
			straight	and after	and after	
			towards	3 sec-	3 sec-	
			the ob-	onds is	onds is	
			ject	[1200cm,	[1200cm,	
			J • • •	1200cm,	1200cm,	
				150cm,	147cm,	
				1200cm,	1200cm,	
				$1200\mathrm{cm}$	$1200\mathrm{cm}$	
5.6.26	Testing that a	FR9	Aim de-	Object	Object	Pass
	wall is correctly		vice at a	reading	reading	
	detected while		wall that	ini-	ini-	
	moving towards it		is 200 cm	tially at	tially at	
			away and	[1200cm,	[1200cm,	
			move the	245cm,	$245 \mathrm{cm},$	
			sensors at	200cm,	198cm,	
			a speed of	245cm,	$246\mathrm{cm},$	
			50cm/sec	1200cm],	1200cm],	
			straight	after 1	after 1	
			towards	second is	second is	
			the wall	[1200cm,	[1200cm,	
				200cm,	199cm,	
				150cm,	153cm,	
				200cm,	204cm,	
				1200cm],	1200 cm],	
				and after	and after	
				3 sec-	3 sec-	
				onds is	onds is	
				[1200cm,	[120cm,	
				75cm,	75cm,	
				50cm,	52cm,	
				75cm,	77cm,	
				1200 cm]	1200 cm]	

5.6.27	Testing the detec-	FR1, FR7	Place	Object	Object	Pass
	tion of multiple	,	books at	readings	readings	_ 0.00.0
	objects at different		(150cm,	initially	initially	
	distances while		25°),	are	are	
	moving towards		(30cm,	[1200cm,	[1200cm,	
	them		60°) and	$1200 \mathrm{cm},$	1200cm,	
	onom		$(300\mathrm{cm},$	300cm,	302cm,	
			100°) in	30cm,	31cm,	
			front of	150cm],	150cm],	
			device	after	after	
			and move	1 sec-	1 sec-	
			the sen-	ond are	ond are	
			sors at a	$[1200\mathrm{cm},]$	$[1200\mathrm{cm},]$	
			speed of	1200cm,	1200cm,	
			50cm/sec	250cm,	250cm,	
			straight	1200cm,	1200cm,	
			forward	100cm]	99cm]	
				and after	and after	
				3 sec-	3 sec-	
				onds are	onds are	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				150cm,	152cm,	
				1200cm,	1200cm,	
				1200cm]	1200cm]	
5.6.28	Testing larger ob-	FR1	Place	Object	Object	Pass
	jects detected as		chair at	readings	readings	
	being in multiple		(350cm,	are ini-	are ini-	
	sectors while mov-		36°) and	tially at	tially at	
	ing towards them		move	[1200cm,	[1200cm,	
			sensors	1200cm,	1200cm,	
			for-	1200cm,	1200cm,	
			ward at	350cm,	351cm,	
			100cm/sec	350cm],	351cm],	
				after	after	
				1 sec-	1 sec-	
				ond are	ond are	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				250cm,	251cm,	
				$250\mathrm{cm}$	251cm]	
				and after	and after	
				2 sec-	2 sec-	
				onds are	onds are	
				[1200cm,	[1200cm,	
				1000	1000	1
				1200 cm,	1200cm,	
				1200cm,	1200cm,	

5.6.29 Testing the detection of slow moving obstacle that walks away in a straight line in the same sector while the sensors move forwards	FR1	A person stands directly in front of center ul- trasonic sensor (at	Object readings are ini- tially [1200cm, 1200cm, 350cm,	Object readings are ini- tially [1200cm, 1200cm,	Pass
obstacle that walks away in a straight line in the same sec- tor while the sen-		directly in front of center ul- trasonic sensor (at	are initially [1200cm, 1200cm,	are initially [1200cm, 1200cm,	
away in a straight line in the same sec- tor while the sen-		in front of center ul- trasonic sensor (at	tially [1200cm, 1200cm,	tially [1200cm, 1200cm,	
line in the same sector while the sen-		center ul- trasonic sensor (at	[1200cm, 1200cm,	[1200cm, 1200cm,	
tor while the sen-		trasonic sensor (at	1200cm,	1200cm,	
		sensor (at			1
		,	OOOCIII.	347cm,	
		distance	1200cm,	1200cm,	
		350cm)	1200cm]	1200cm]	
		and	and	and	
		slowly	changes	changes	
1		walks	to	to	
		away	[1200cm,	[1200cm,	
		from de-	1200cm,	1200cm,	
		vice at a	300cm,	299cm,	
		speed of	1200cm,	1200cm,	
		50cm/sec	$1200 \mathrm{cm}$	$1200 \mathrm{cm}$	
		(Repeat	after 1	after 1	
		for re-	second,	second,	
		maining	[1200cm,	[1200cm,	
		4 sectors)	1200cm,	1200cm,	
		while	250cm,	254cm,	
		the sen-	1200cm,	1200cm,	
		100cm/sec			
				· /	
				· ′ · · · · · · · · · · · · · · · · · ·	
			1200cm,	1200cm,	
			100cm,	98cm,	
			1200cm,	· · · · · · · · · · · · · · · · · · ·	
			1200cm]		
			after 5	after 5	
		sors are moved for-ward at 100cm/sec	100cm, 1200cm, 1200cm]	98cm, 1200cm, 1200cm]	

5.6.30	Testing the de-	FR1	A person	Object	Object	Pass
	tection of a slow		stands	readings	readings	
	moving obstacle		at 275	initially	initially	
	moving across		cm away	are	are	
	sectors while main-		from	[1200cm,	[1200cm,	
	taining the same		center ul-	1200 cm,	$1200\mathrm{cm},$	
	distance away from		trasonic	275cm,	273cm,	
	device as the sen-		sensor	1200cm,	1200 cm,	
	sors move forward		and	1200cm],	1200cm],	
			walks	[1200cm,	[1200cm,	
			left at a	225cm,	226cm,	
			pace of	1200cm,	1200cm,	
			1 sector-	1200cm,	1200 cm,	
			width per	1200 cm]	$1200 \mathrm{cm}$	
			2 seconds	after 2	after 2	
			while the	seconds,	seconds,	
			sensors	[175cm,	[172cm,	
			move for-	1200cm,	1200cm,	
			ward at	1200cm,	1200 cm,	
			25cm/sec	1200 cm,	$1200\mathrm{cm},$	
				1200 cm]	$1200 \mathrm{cm}$	
				after	after	
				4 sec-	4 sec-	
				onds and	onds and	
				[1200cm,	[1200cm,	
				1200cm,	1200cm,	
				1200cm,	1200 cm,	
				1200cm,	$1200\mathrm{cm},$	
				1200 cm]	$1200 \mathrm{cm}$	
				after 5	after 5	
				seconds	seconds	

5.6.31	Testing the detec-	FR1	A person	Object	Object	Pass
	tion of a slow mov-		stands in	reading	reading	
	ing obstacle moving		the left	initially	initially	
	across sectors at an		most sec-	is [450cm,	is [446cm,	
	angle while the sen-		tor at a	1200cm,	$1200\mathrm{cm},$	
	sors are moving		distance	1200cm,	1200cm,	
			of 450	1200cm,	1200cm,	
			cm and	1200cm],	1200cm],	
			moves	after 2	after 2	
			across (at	seconds is	seconds is	
			a speed of	[1200cm,	[1200cm,	
			1 sector-	350cm,	353cm,	
			width	1200cm,	$1200\mathrm{cm},$	
			per 2	1200cm,	$1200\mathrm{cm},$	
			seconds)	1200cm],	1200 cm],	
			the sec-	after 4	after 4	
			tors such	seconds is	seconds is	
			that they	[1200cm,	[1200cm,	
			enter	1200cm,	1200cm,	
			each new	250cm,	253cm,	
			sector 50	1200cm,	1200cm,	
			${ m cm}$ closer	1200cm],	1200 cm],	
			than the	after 6	after 6	
			previous	seconds is	seconds is	
			entry	[12000cm,	[12000cm,	
			while the	1200cm,	1200cm,	
			sensors	1200cm,	1200cm,	
			move for-	150cm,	154cm,	
			ward at	$1200\mathrm{cm}$	$1200\mathrm{cm}$	
			25cm/sec	and after	and after	
				8 sec-	8 sec-	
				onds is	onds is	
				[1200cm,	[1200cm,	
				1200cm,	1200 cm,	
				1200cm,	1200cm,	
				1200cm,	1200cm,	
				$50\mathrm{cm}$	$45\mathrm{cm}$	

5.6.32	Testing detection of	FR1	Place a	Object	Object	Pass
	a stationary obsta-		book at	reading	reading	
	cle and a moving		(200cm,	initially	initially	
	obstacle while the		170°) and	is [200cm,	is [201cm,	
	sensors are moving		have a	1200cm,	1200cm,	
	forward		person	1200 cm,	1200 cm,	
			start at	1200 cm,	1200 cm,	
			400cm in	400cm],	403cm],	
			the right	after 2	after 2	
			most	seconds is	seconds	
			sector	[100cm,	is [98cm,	
			and move	1200cm,	1200cm,	
			left at	$1200\mathrm{cm},$	1200cm,	
			1sector -	$300\mathrm{cm}$	298cm,	
			width/sec	1200 cm],	1200cm],	
			while	after 4	after 4	
			maintain-	seconds is	seconds is	
			ing their	[1200cm,	[1200cm,	
			distance	1200 cm,	1200 cm,	
			from the	$200\mathrm{cm},$	197cm,	
			device	1200 cm,	1200cm,	
			while the	1200 cm],	1200cm],	
			sensors	after 6	after 6	
			move for-	seconds is	seconds is	
			ward at	[1200cm,	[1200cm,	
			50cm/sec	$100\mathrm{cm},$	96cm,	
				1200 cm,	1200cm,	
				1200 cm,	1200cm,	
				$1200\mathrm{cm}$	$1200\mathrm{cm}$	
				and after	and after	
				8 sec-	8 sec-	
				onds is	onds is	
				[1200cm,	[1200cm,	
				1200 cm,	1200cm,	
				1200 cm,	1200cm,	
				$1200\mathrm{cm},$	1200cm,	
				$1200\mathrm{cm}$	$1200\mathrm{cm}$	

Table 11: Sensor Fusion Tests

5.7 System Diagnostics Module/Safety Requirements Tests

Test	Description	Requirement	Inputs	Expected	Actual	Results
Number		Reference		Outputs	Outputs	
5.7.01	Test that the sys-	FR14	Loosen	Informing	Informing	Pass
	tem is able to de-		the power	the user	the user	
	tect a connection is-		connec-	that	that	
	sue between the Li-		tion of	there is	there is	
	dar and the Ar-		Lidar	a connec-	a connec-	
	duino			tion issue	tion issue	
				with	with	
				Lidar	Lidar	
				via the	via the	
				speaker.	speaker	
5.7.02	Test that the	FR14	Place	Informing	Informing	Pass
	system is able to		your	the user,	the user,	
	detect something		hands at	via the	via the	
	blocking the Lidar		5cm away	speaker,	speaker,	
			from	that the	that the	
			Lidar	Lidar is	Lidar is	
			covering	blocked	blocked	
			its front,	and re-	and re-	
			left and	questing	questing	
			right	they at-	they at-	
			0	tempt to	tempt to	
				unblock	unblock	
				the Lidar	the Lidar	
5.7.03	Test that the sys-	FR14	Loosen	Inform	Inform	Pass
	tem is able to de-		the power	the user	the user	
	tect a connection is-		connec-	that	that	
	sue between any of		tion of	there is	there is	
	the ultrasonic sen-		the front	a connec-	a connec-	
	sors and the Ar-		facing ul-	tion issue	tion issue	
	duino		trasonic	with the	with the	
			sensors	front	front	
			(repeat	facing ul-	facing ul-	
			for all ul-	trasonic	trasonic	
			trasonic	sensor	sensor	
			sensors)	via the	via the	
			_	speaker	speaker	
5.7.04	Test that the sys-	FR14	Place	Inform	Inform	Pass
	tem is able to de-		hand 5cm	the user	the user	
	tect any of the ul-		in front of	that the	that the	
	trasonic sensors be-		the front	front	front	
	ing blocked by a ob-		facing ul-	facing ul-	facing ul-	
	stacle		trasonic	trasonic	trasonic	
			sensor	sensor	sensor	
			(repeat	is being	is being	
			for all	blocked	blocked	
			the ul-	via the	via the	
			trasonic	speaker	speaker	
			sensors)	T.	T	
			pomona)			

5.7.05	Test that the sys-	FR14	Loosen	Inform	Inform	Pass
	tem is able to de-		the data	the user	the user	
	tect a connection is-		connec-	that	that	
	sue between the in-		tion cable	there is	there is	
	put button and the		between	a connec-	a connec-	
	Arduino		input	tion issue	tion issue	
			button	with the	with the	
			and Ar-	input	input	
			duino,	button	button	
			and run	via the	via the	
			the pro-	speaker	speaker	
			cedure			
			for user			
			inputting			
			their			
			height			
5.7.06	Test that the sys-	FR14	Loosen	Inform	Inform	Pass
	tem is able to de-		the power	the user	the user	
	tect a connection is-		connec-	that	that	
	sue between the ac-		tion of	there is	there is	
	celerometer and the		the ac-	a con-	a con-	
	Arduino		celerome-	nection	nection	
			ter	issue with	issue with	
				the ac-	the ac-	
				celerom-	celerom-	
				eter	eter	
				via the	via the	
				speaker	speaker	

Table 13: System Diagnostics Module/Safety Requirements Tests

5.8 Integration Testing

Since testing for the Sensor Fusion module inherently does integration testing with the Data Collection module and testing for User Guidance module also performs integration testing with the Object Avoidance module, the integration testing will only include testing for the overall system.

Test	Description	Requirement	Inputs	Expected	Actual	Results
Number		Reference		Outputs	Outputs	
5.8.01	Test the system's	FR1, FR7,	An obsta-	Center-	Center-	Pass
	ability to direct the	PR1, PR5	cle placed	right	right	
	user around a sta-		2 meters	haptic	haptic	
	tionary obstacle		directly	motor	motor	
			ahead	buzzing	buzzing	

5.8.02	Test the system's	FR1, FR7,	Place an	Initially	Initially	Pass
	ability to guide a	PR1, PR5	obstacle	center-	center-	
	user past a station-	,	2 meters	right	right	
	ary obstacle while		directly	haptic	haptic	
	the user is moving		ahead	motor	motor	
	at $50cm/s$			buzzing,	buzzing,	
	,			after 2	after 2	
				seconds,	seconds,	
				user	user	
				turns to	turns to	
				the right	the right	
				and the	and the	
				center	center	
				haptic	haptic	
				motor	motor	
				buzzes,	buzzes,	
				after	after	
				3 sec-	3 sec-	
				onds no	onds no	
				buzzing.	buzzing	
5.8.03	Test the system's	FR1, FR7,	Place an	Initially	Initially	Pass
	ability to guide a	PR1, PR5	obsta-	center	center	
	user past multiple		cle at	haptic	haptic	
	obstacle while the		(150cm,	motor	motor	
	user is moving at		-90°),	buzzing,	buzzing,	
	50cm/s		(30cm,	after 1.5	after 1.5	
			-45°) and	seconds,	seconds,	
			(300cm,	center-	center-	
			0°, mov-	right	right	
			ing	haptic	haptic	
			toward	motor	motor	
			user's	buzzes	buzzes	
			initial po-	and user	and user	
			sition at	turns to	turns to	
			50cm/s)	the right,	the right,	
			in front	then the	then the	
			of user	center	center	
				buzzer	buzzer	
				buzzes,	buzzes,	
				after	after	
				2 sec-	2 sec-	
				onds no	onds no	
				buzzing.	buzzing	

Table 15: Integration Tests

6 Beyond Testing

In addition to testing, the NextStep development team utilized code reviews. The code reviews served the purpose of ensuring that any code being submitted was clear, concise, and functionally correct. This process worked by assigning each file an "owner" who would be an expert on the contents of that file.

Each time a member of the development team wanted to add some code/functionality to that specific file the owner of the file would be added to the code review where they could leave any comments or suggestions as to how to improve the code before any changes were committed. If multiple files were worked on for a given change then the code review would have the owners from each of those files added to the review. If the file owner made changes to their own file then another developer would be added to the review to step in as the temporary file owner for the purposes of this review (Ideally this temporary owner has prior experience contributing code to that file).

7 Supporting Material

Please refer to the updated REV1 documents for further support in understanding the system.

8 Traceability Matrices

The following traceability matrices map the functional and non-functional requirements to the test cases outlined in previous sections.

Test Cases	Functional and Non-Functional Requirements
5.2.01	FR1, FR7, PR5
5.2.02	FR1, FR7, PR5
5.2.03	FR1, FR7, PR5
5.2.04	FR1, PR5
5.2.05	FR1, PR5
5.2.06	FR1, PR5
5.2.07	FR1, PR5
5.2.08	FR1, PR5
5.2.09	FR22
5.2.10	FR7
5.2.11	FR1,FR7
5.2.12	FR1,FR7
5.2.13	FR1,FR7
5.2.14	FR1,FR7

Table 16: Data Collection Module Traceability

Test Cases	Functional and Non-Functional Requirements
5.3.01	FR19
5.3.02	FR19
5.3.03	FR9, FR19
5.3.04	FR19
5.3.05	FR19
5.3.06	FR19

Table 17: Object Avoidance System Traceability

Test Cases	Functional and Non-Functional Requirements
5.4.01	FR3, FR9, FR19
5.4.02	FR3, FR9, FR19
5.4.03	FR3, FR9, FR19
5.4.04	FR3, FR9, FR19
5.4.05	FR3, FR9, FR19
5.4.06	FR24, PR1
5.4.07	FR24, PR1
5.4.08	FR13

Table 18: User Guidance Mechanism Traceability

Test Cases	Functional and Non-Functional Requirements
5.5.01	FR12, UH2, UH5, UH6
5.5.02	FR12
5.5.03	FR13
5.5.04	FR13
5.5.05	FR12

Table 19: User Inputs Traceability

Test Cases	Functional and Non-Functional Requirements
5.6.01	FR1
5.6.02	FR1
5.6.03	FR9
5.6.04	FR1, FR7
5.6.05	FR1
5.6.06	FR1
5.6.07	FR1
5.6.08	FR1
5.6.09	FR1
5.6.10	FR1
5.6.11	FR1
5.6.12	FR1
5.6.13	FR1
5.6.14	FR1
5.6.15	FR1
5.6.16	FR1
5.6.17	FR1
5.6.18	FR1
5.6.19	FR17
5.6.20	FR1
5.6.21	FR1
5.6.22	FR1
5.6.23	FR1
5.6.24	FR1
5.6.25	FR1
5.6.26	FR9
5.6.27	FR1, FR7
5.6.28	FR1
5.6.29	FR1
5.6.30	FR1
5.6.31	FR1
5.6.32	FR1

Table 20: Sensor Fusion Traceability

Test Cases	Functional and Non-Functional Requirements
5.7.01	FR14
5.7.02	FR14
5.7.03	FR14
5.7.04	FR14
5.7.05	FR14
5.7.06	FR14

Table 21: System Diagnostics Module Traceability

Test Cases	Functional and Non-Functional Requirements
5.8.01	FR1, FR7, PR1, PR5
5.8.02	FR1, FR7, PR1, PR5
5.8.03	FR1, FR7, PR1, PR5

Table 22: Integration Testing Traceability