143 In natural variables s and n prove $P \leftarrow \text{if } n=0 \text{ then } ok \text{ else } n:=n-1. \ s:=s+2^n-n. \ t:=t+1. \ P \text{ fi}$ where $P = s' = s + 2^n - n \times (n-1)/2 - 1 \land n' = 0 \land t' = t + n$. § Proof by parts (3 of them) and by cases (2 of them), so 6 things to prove. First part, first case, starting with the right side: $n=0 \land ok$ expand ok $n=0 \land n'=n \land s'=s \land t'=t$ arithmetic and specialization $\implies s' = s + 2^n - n \times (n-1)/2 - 1$ First part, last case: $n>0 \land (n:=n-1. \ s:=s+2^n-n. \ t:=t+1. \ s'=s+2^n-n\times(n-1)/2-1)$ Substitution Law 3 times $n>0 \land s' = s + 2^{n-1} - (n-1) + 2^{n-1} - (n-1) \times (n-1-1)/2 - 1$ arithmetic = $n>0 \land s'=s+2^n-n\times(n-1)/2-1$ specialization $\implies s' = s + 2^n - n \times (n-1)/2 - 1$ Middle part, first case: $n=0 \land ok$ expand ok $n=0 \land n'=n \land s'=s \land t'=t$ transitivity and specialization $\implies n'=0$ Middle part, last case: $n>0 \land (n:=n-1. \ s:=s+2^n-n. \ t:=t+1. \ n'=0)$ Substitution Law 3 times = Assignment Project Exam Helppecialization Last part, first case: $n=0 \land ok$ $n=0 \land n'$ https://powcoder.com/hmetic and specialization $\implies t' = t + n$

 $n>0 \land (n:=n-1)$ = 1 =

Last part, last case:

 $\implies t' = t + n$