

Planning, Learning and **Decision Making**

Lecture 4. Hidden Markov models (cont.)

Quick recap

Hidden Markov model

Markov state

The state at instant t is enough to predict the state at instant t + 1:

$$\mathbb{P}\left[\mathbf{x}_{t+1} = y \mid \mathbf{x}_{0:t} = \mathbf{x}_{0:t}, \mathbf{z}_{0:t} = \mathbf{z}_{0:t}\right] = \mathbb{P}\left[\mathbf{x}_{t+1} = y \mid \mathbf{x}_{t} = \mathbf{x}_{t}\right]$$

State-dependent observations

The state at instant t is enough to predict the observation at instant t:

$$\mathbb{P}\left[\mathbf{z}_{t} = z \mid \mathbf{x}_{0:t} = \mathbf{x}_{0:t}, \mathbf{z}_{0:t-1} = \mathbf{z}_{0:t-1}\right] = \mathbb{P}\left[\mathbf{z}_{t} = z \mid \mathbf{x}_{t} = \mathbf{x}_{t}\right]$$

Summarizing...

A HMM can be represented compactly as a tuple

$$(\mathcal{X}, \mathcal{Z}, \mathsf{P}, \mathsf{O})$$

- \mathcal{X} is the set of possible states
- \mathcal{Z} is the set of possible observations
- P is the transition probability matrix
- O is the observation probability matrix

Estimation

Filtering:

Given a sequence of observations, estimate the final state

Smoothing:

Given a sequence of observations, estimate the sequence of states

Prediction:

Given a sequence of observations, predict future states

Estimation

Filtering:

- Forward algorithm
- Given a sequence of observations, estimate the final state
- **Smoothing:**
 - Given a sequence of observations, estimate the sequence of states
- **Prediction:**
 - Given a sequence of observations, predict future states

Forward mapping

Forward mapping

Given a sequence of observations $\mathbf{z}_{0:t}$, the forward mapping $a_t: \mathcal{X} \longmapsto \mathbb{R}$ is defined for each t as

$$\alpha_t(x) = \mathbb{P}_{\mu_0} \left[\mathbf{x}_t = x, \mathbf{z}_{0:t} = \mathbf{z}_{0:t} \right]$$

How the past relates to the present

Require: Observation sequence $z_{0:T}$

1. Initialize $\alpha_0 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_0})\mu_0^{\top}$

2. **for** t = 1, ..., T **do**

$$\boldsymbol{\alpha}_t \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_t}) \mathbf{P}^{\top} \boldsymbol{\alpha}_{t-1}$$

4. end for

5. $\operatorname{return} \mu_{T|0:T} = \alpha_T/(\mathbf{1}^{\top} \boldsymbol{\alpha}_T)$

*Z*0

 Z^{2}

Z2

ZT

 $\operatorname{diag}(\mathbf{O}_{:,z_0})\boldsymbol{\mu}_0^{ op}$

ZT

$$\mathbf{P}^\top \boldsymbol{\alpha}_0$$

$$\operatorname{diag}(\mathbf{O}_{:,z_1})\mathbf{P}^{\top}\boldsymbol{\alpha}_0$$

$$\mathbf{P}^{ op}oldsymbol{lpha}_1$$

$$\operatorname{diag}(\mathbf{O}_{:,z_2})\mathbf{P}^{\top}\boldsymbol{\alpha}_1$$

Given observation sequence $\mathbf{z}_{0:T}$

- 1. Multiply initial distribution by $\mathbf{O}(z_0 \mid :)$
- 2. At each time step:
 - a. Multiply current distribution by P

Predict 1-step move

Given observation sequence $\mathbf{z}_{0:T}$

- 1. Multiply initial distribution by $\mathbf{O}(z_0 \mid :)$
- 2. At each time step:
 - a. Multiply current distribution by P
 - Check b. Multiply by $O(z_t \mid :)$ prediction with observation

Given observation sequence $\mathbf{z}_{0:T}$

- 1. Multiply initial distribution by $\mathbf{O}(z_0 \mid :)$
- 2. At each time step:
 - a. Multiply current distribution by P
 - b. Multiply by $\mathbf{O}(z_t \mid :)$
- 3. Normalize

Estimation

Filtering:

Given a sequence of observations, estimate the final state

Smoothing:

Given a sequence of observations, estimate the sequence of states

Prediction:

Given a sequence of observations, predict future states

Estimation

- Filtering:
 - Given a sequence of observations, estimate the final state
- (Easier) Marginal smoothing:
 - Given a sequence of observations, estimate some state in the middle
- **Prediction:**
 - Given a sequence of observations, predict future states

Smoothing

- We are given a sequence of observations $\mathbf{z}_{0:T}$
- We want to estimate, for t < T

$$\mathbb{P}_{\mu_0} \left[\mathbf{x}_t = x \mid \mathbf{z}_{0:T} = \mathbf{z}_{0:T} \right]$$

where μ_0 is the initial distribution, i.e.,

$$\mu_0(x) = \mathbb{P}\left[x_0 = x\right]$$

Smoothing

• We use the same notation:

$$\mu_{t|0:T}(x) = \mathbb{P}_{\mu_0} \left[\mathbf{x}_t = x \mid \mathbf{z}_{0:T} = \mathbf{z}_{0:T} \right]$$

Z0

Z1

 Z_t

ZT - 1

ZT

 Z_t

ZT - 1

 Z_{T}

 Z_0

 Z_1

 Z_t

ZT - 1 ZT

Backward mapping

Backward mapping

Given a sequence of observations $\mathbf{z}_{0:t}$, the backward mapping $\beta_t : \mathcal{X} \longmapsto \mathbb{R}$ is defined for each t as

$$\beta_t(x) = \mathbb{P}_{\mu_0} \left[\mathbf{z}_{t+1:T} = \mathbf{z}_{t+1:T} \mid \mathbf{x}_t = x \right]$$

How the present relates to the future

So what?

- Backward mapping has several useful properties
 - 1. We can compute $\mu_{t\mid 0:T}$ from a_t and β_t :

$$\mu_{t|0:T}(x) = \frac{\beta_t(x)\alpha_t(x)}{\sum_{y \in \mathcal{X}} \beta_t(y)\alpha_t(y)}$$

So what?

- Backward mapping has several useful properties
 - 1. We can compute $\mu_{t|0:T}$ from a_t and β_t
 - 2. The backward mapping can be computed recursively:

$$\beta_t(x) = \sum_{y \in \mathcal{X}} \mathbf{O}(z_{t+1} \mid y) \beta_{t+1}(y) \mathbf{P}(y \mid x)$$

Forward-backward algorithm

Require: Observation sequence $z_{0:T}$

1. Initialize
$$\alpha_0 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_0}) \boldsymbol{\mu}_0^{\top}, \boldsymbol{\beta}_T \leftarrow \mathbf{1}$$

2. **for**
$$T = 0, ..., t$$
 do

3.
$$\boldsymbol{\alpha}_{\tau+1} \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_{\tau}})\mathbf{P}^{\top}\boldsymbol{\alpha}_{\tau}$$
 Forward update

4. end for

5. **for**
$$T = T - 1, ..., t$$
 do

6.
$$\boldsymbol{\beta}_{\tau} \leftarrow \mathbf{P} \operatorname{diag}(\mathbf{O}_{:,z_{\tau+1}}) \boldsymbol{\beta}_{\tau+1} \leftarrow \mathbf{Update}$$

7. end for

8.
$$\mathbf{return} \boldsymbol{\alpha}_t \otimes \boldsymbol{\beta}_t / (\boldsymbol{\alpha}_t^{\top} \boldsymbol{\beta}_t)$$
 Combine & normalize

Estimation

Filtering:

Given a sequence of observations, estimate the final state

(Joint) Smoothing:

Given a sequence of observations, estimate the **whole** sequence of states (most likely sequence)

Prediction:

Given a sequence of observations, predict future states

Any ideas?

Naive approach

Naive approach

Compute most compute most likely state x_0 likely state x_1

$$t = 0$$

$$t = 1$$

Compute mostCompute most likely state x_{T-1} likely state x_T

$$t = T - 1$$

$$t = T$$

Naive approach

Problem?

Inconsistency...

These transitions may be impossible

Smoothing

- We are given a sequence of observations $\mathbf{z}_{0:T}$
- We want to estimate the most likely sequence, i.e.,

$$oldsymbol{x}_{0:T}^* = \operatorname*{argmax}_{oldsymbol{x}_{0:T}} \left[oldsymbol{\mathbf{x}}_{0:T} = oldsymbol{x}_{0:T} \mid oldsymbol{\mathbf{z}}_{0:T} = oldsymbol{z}_{0:T}
ight]$$

where μ_0 is the initial distribution, i.e.,

$$\mu_0(x) = \mathbb{P}\left[x_0 = x\right]$$

Z0

*Z*₁

*Z*₂

ZT

*Z*₂

ZT

Best state leading here

Maximizing forward mapping

Maximizing forward mapping

Given a sequence of observations $\mathbf{z}_{0:t}$, the maximizing forward mapping $m_t: \mathcal{X} \longmapsto \mathbb{R}$ is defined for each t as

$$m_t(x) = \max_{\boldsymbol{x}_{0:t-1}} \mathbb{P}_{\mu_0} \left[\mathbf{x}_t = x, \mathbf{x}_{0:t-1} = \boldsymbol{x}_{0:t-1}, \mathbf{z}_{0:t} = \boldsymbol{z}_{0:t} \right]$$

Maximizing sequence ending in x

Viterbi algorithm

Require: Observation sequence $z_{0:T}$

1. Initialize
$$m{m}_0 \leftarrow \mathrm{diag}(\mathbf{O}_{:,z_0}) m{\mu}_0^{ op}$$

2. **for**
$$T = 1, ..., T$$
 do

3.
$$\boldsymbol{m}_t \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_t}) \max{\{\mathbf{P}^{\top} \operatorname{diag}(\boldsymbol{m}_{t-1})\}}$$

4.
$$\boldsymbol{i}_t = \operatorname{argmax}\{\mathbf{P}^{\top}\operatorname{diag}(\boldsymbol{m}_{t-1})\}$$

5. end for

6.
$$x_T^* = \operatorname*{argmax} m_T(x)$$

7. **for**
$$t = T - 1, ..., 0$$
 do

9. end for

10.return $x_{0:T}^*$

Forward update

Index tracking

Example: The urn problem

Suppose that

$$\mu_0 = \begin{bmatrix} 0.125 & 0.375 & 0.375 & 0.125 \end{bmatrix}$$

We observe the sequence of observations

$$z_{0:2} = \{w, w, b\}$$

What is the most likely sequence up to time t = 2?

Step 1: Initialize mo

• $m_0 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_0}) \boldsymbol{\mu}_0^{\top}$

Step 2: Compute m₁

• $m_1 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_1}) \max{\{\mathbf{P}^{\top} \operatorname{diag}(m_0)\}}$

0.2	0.2	0.05	0.05	0.125 0	0	0	0.025	0	0.019	0
0.6	0.6	0.15	0.15	0 0	0	0	0.075	0	0.056	0
0.15	0.15	0.6	0.6	0 0	0.375	0	0.019	0	0.225	0
0.05	0.05	0.2	0.2	0 0	0	0	0.006	0	0.075	0

Step 2: Compute m₁

• $m_1 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_1}) \max{\{\mathbf{P}^{\top} \operatorname{diag}(m_0)\}}$

Step 2: Compute m₁

• $m_1 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_1}) \max{\{\mathbf{P}^{\top} \operatorname{diag}(m_0)\}}$

1	0	0	0	0.025	0.025
0	0	0	0	0.075	0
0	0	1	0	0.225	0.225
0	0	0	0	0.075	0

Step 3: Compute i₁

• $i_1 = \operatorname{argmax}\{\mathbf{P}^{\top}\operatorname{diag}(\boldsymbol{m}_0)\}$

Step 4: Compute m₂

• $m_2 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_2}) \max{\{\mathbf{P}^{\top} \operatorname{diag}(m_1)\}}$

0.2	0.2	0.05	0.05
0.6	0.6	0.15	0.15
0.15	0.15	0.6	0.6
0.05	0.05	0.2	0.2

0.025	0	0	0
0	0	0	0
0	0	0.225	0
0	0	0	0

0.005	0	0.011	0
0.015	0	0.034	0
0.004	0	0.135	0
0.001	0	0.045	0

Step 4: Compute m₂

• $m_2 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_2}) \max{\{\mathbf{P}^{\top} \operatorname{diag}(m_1)\}}$

Step 4: Compute m₂

• $m_2 \leftarrow \operatorname{diag}(\mathbf{O}_{:,z_2}) \max{\{\mathbf{P}^{\top} \operatorname{diag}(m_1)\}}$

Step 5: Compute i₂

• $i_1 = \operatorname{argmax}\{\mathbf{P}^{\top}\operatorname{diag}(\boldsymbol{m}_0)\}$

Step 6: Maximize m₂

•
$$x_2^* = \operatorname*{argmax} m_2(x)$$

 $x \in \mathcal{X}$

 m_2

0.034 0.045

Step 7: Backtrack

• $x_t^* = i_{t+1}(x_{t+1}^*)$

Finally...

Most likely sequence:

$$x_0^* = 3$$

$$x_1^* = 3$$

$$x_2^* = 4$$

Estimation

Filtering:

Given a sequence of observations, estimate the final state

Smoothing:

Given a sequence of observations, estimate the sequence of states

Prediction:

Given a sequence of observations, predict future states

Prediction

- We are given a sequence of observations $\mathbf{z}_{0:T}$
- We want to estimate, for t > T

$$\mathbb{P}_{\mu_0} \left[\mathbf{x}_t = x \mid \mathbf{z}_{0:T} = \mathbf{z}_{0:T} \right]$$

where μ_0 is the initial distribution, i.e.,

$$\mu_0(x) = \mathbb{P}\left[x_0 = x\right]$$

Prediction

- Easy:
 - We compute $\mu_{T|0:T}$ using the forward algorithm
 - We use the Markov property:

$$\boldsymbol{\mu}_{T+1|0:T} = \boldsymbol{\mu}_{T|0:T} \mathbf{P}$$