7		Erinnerung: TM M S= 1#, 1, b3	
		gegeben durch # Bander n=n(M)	
		ench zustandsmenge Q mit qe, qe E Q, qe + a Ühergangsska S: S" x Q - S" x Q x {-1,0,13	7
		Ohergangsska 8 s x Q - s x Q x 1-10,13	
		\$\[\delta\]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	<u> Lia</u>	\$ 11) 1 5 1	
		3 b	
		TM herechnet f. IV" - IV, Wenn	
		$n(M) \gg m+1$	
		und bei Eingabe XEINM (d.h. Xi auf dem ihn	ı
	1 . 1 .	Band) stoppt TM nach endl. Zeit (d.h.	
		lancle! in 2Ustand a=). Bandinhalt	
		veprasentiert $(x_1, x_m, f(\bar{x})), 0, 0, 0, 0)$	
	Ka	ann angeben werden durch: - Modubeschreibung	
		- Modúlbeschreibung	
		- Uhergangsski.	
		- Ühergangsskt. - Flussdragramm.	
	BSP	(x, y) - x + y is 1 TM - herechen har	
		Benulze TM M mit n(M) = 4, zustande Q=19, 9, 92	
		93, 9F3	
		Programmcode (Modulheschreibung):	
	_	Beginne in Zustand qr. Kopiere x (Bandinhalt von Ba	
		his zum ersten b) auf B3. Wenn lertig, wech	5
		in q.	39

	MG	n	ir		71	151	lar	ld	0	1	K	0	21	ev	?	Y	(,	Ba	N	11	n 1	Ja	H	hi	1	١				
	7	711/) ((V)	IU	n	り)		V01	1		Б2		d	V	d	54 60		11	/\ \	10	1)	ol II	(1	1				
1111	4 6	161	n,	118			1	4	21	h	181	Y) Y			er.	119		W	***		(X)X	Y		. \	-		-			
-	20	Sta	M)		92	:	\	16	ŊŊ		By		NI.	(V	11	n	VII	Υ	(1)	Yo	16	11	116	V-J,						
		g	Ne	1 2	<u> </u>	M.	16	212	lle	NI		21	1.		Bi	1 _,_	l l	VJ (? f .	H	(l	UV	(1	1.	b,		-		-	
		h	16 C	NJ	16		n	19	3.		-						1	A 1			1				(1	1			
				i						rep								1						- 4			4			
	2vs	^	MC	(Y	17 (218		111		9F											n				-		-			_
+	£VS	an	d i	93		F	Ug	6	('n	1		d M	1	Ŀ	nc'	U,	V(21		Bi	r	Cl	C	3	-	-		-	H
				h	in	170	1	e V	16	129	l	VS	U.	5	17	d!	VI		B3		du	140	h	1	1,					
			-	h	10	ch,	110		in	9	2.					J					11.15								-	
8				X.	.1			(.								M							4.4			10				
	non																										711	R		-
P	nge	hei	1	l	11	161		VI	70	V Gã	n	g s	JK	1.		Ka	VN	1	P	16	l K	11	Ka	h	61.		-			-
																					7.9	r					+			-
																									-		+			
								-			1			4		+					D			1		4	-			
								-												<u>, 12</u>	- 17	H	46				1			-(
												-										li.				-	-			
								-			-	-							1.1		la la						-			
																	-										-			
							187							į.																
1 1	3 5				<u> </u>	100	1														N.						-			
	16. 1					-						-															-			-
			1		n 8	1 1	10					Į.	Ja V	.21					2.7					IIM						
																	11	1				- 1	10						11	4
	710																	-							-		-			
	70																			7.		1								

32: (1) Ein Band repräsensiert (zu einem gegebenen Bandinhall (\$,1,...,1,b,b,b,) ist m-mal (2) Eine partielle Funktion von INP nach IV ist ein Tupel (A.S), mit As INP und SA - IN Schreine A = dom (1) und F. für die Menge all dieser Paare. (3.) Eine TM M herechnet fe Fet wenn n(M) = p+1 gilt und s.a. m EMP, was gilt: Wenn Maus dem Input starket, bei dem die Bander B. B. die Zahlen m. m. repräsensieren. und B. sov i>p die Zahl o vepräsensiers, dann (i) sans me dom (s) stoppt unach endlært und die Bander von U reprâsentieren (m., me, s(m), o, -,0) lin dieser Reinensolge!) (ii) salls me dom (s), stopps un nie (d.h. un wechselt nie in austand qs). (4) Eine partielle Fh. I heißt Turing herechenbar, wenn es eine TM Mgibt die I herechnet (1 & F.* Jurein pell) Lemma 3.3: Die Funktionen $g: N \rightarrow N, x \rightarrow x + 1,$ $C^{\circ}: N^{\circ} \rightarrow N, C^{\circ} = 0$ und $PX P^{\circ}: N^{\circ} \rightarrow N,$ $(m_1, m_n) \rightarrow m_i$ für alle $n \in N_{>0}, 1 \le i \le n$ sind TM-herechenhar.

Bew . C. Wird durch eine TM M mit einem Band hevechnes, 20standsmenge $Q = 1q_{\Gamma}, q_{\Gamma}$ und Ohergangs, kt. $M(\$, q_{\Gamma}) = (\$, q_{\Gamma}, 0)$ ('velevante Teil') (jelze elwa sor) durch M(1, q_1) = (1, q_1, 0) und $M(b, q_{I}) = (b, q_{I}, 0)$ · I wird durch TM M mil zwei Bandern berechnel, Zuslandumenge Q = {qI, qF} und Obergangssk1. Marias apple M ((\$,\$), q;) = ((\$,\$), q;, 1), $M((1,b), q_{\bar{1}}) = ((1,1), q_{\bar{1}}, 1), M((b,b), q_{\bar{1}}) = ((b,\bar{1}), q_{\bar{1}}, 0)$ Alternativer Beneis (auch okay): Modulbeschreibung - Lese aktuelle sesses comments spalle. Falls oherer Einstrag \$, rucke Lesekops nach vechts. Talls accorded oberev Einling 1, schreibe (1.1) und rücke Lesekops nach rechts. Falls oberer Einstrag b. schreibe (b.1) und wechsele in akz. Zustand. D (Pin Obung!) Diagrammjorm (b,b) ~ (b,1),0) (9F) (\$,\$) = ((\$,\$),1) (1,b) = ((1,1),1) Anmerkung: Jowohl Modulheschreibungen als auch (Fluss-)
Diagramme können zur Beschreibung von TM henvizt werden! Es gibl noch viele weilere Möglichkeilen, TM 24 delinieren, bspw. 1-Band oder Band durch Z nummeriert. Alle berechnen die gleichen Fkt!

(siehe BT-Vovlesung)

· Unare kodierung von natürlichen Zahlen ist natürlich ausgesprochen inessizient. Wir sind in dieser VI aber nicht an (Lauszeiten) inkressiert! 12iel: Malhemalische Beschreibung der TM-berechenbaren Tht. Sei In = is: IN" - IN3 and F = Unem In. nel 34. Eine Junktion f: IN - IN (junzo) heißi primitiv rekursiv, wenn sie sich aus den Grund-Junklionen | | Nachloiger $(RO) \quad \mathcal{J}(x) = x + 1$ $P_i^*(x_1, x_n) = x_i \quad (1 \le i \le n)$ Projektion konst. 0-7kt C: = 0 durch Anwenden der solgenden Regeln ausbauen lässt (R1) [Einselzung] Sind [...[a: IN" - IN und h INK - IN prim. rek, dann auch (also g(x, -, xn) = h(s, (x, -, xn), -, s, (x, -, xn))) (R2) [Prim Renuvsion] Jind g IN" - 11 und h 1/112 - 1/1 vehursiv, dann auch 1(x1-, Xn, y): // n+1 -0 // mit 1(X1,-, Xn, O) = g(X1,-, Xn) ((X1,-, Xn, y+1) = h(X1,-, Xn, y, f(X1,-, Xn, y)) BSP 3.5: For jedes nell und kell ist Ch" (x1...xn) = k (konstante FKI) prim vekuvsiv.

Ben Com = S(Cm) Cm = Cm (R1 mi) (K=0) - vielen n-siell Fk1.) Def 36: Eine FK+ 1: IN- - IN (16 × N=0) hei B+ vekuvsiv, wenn sie sich aus den Grundski. (RO) durch Anwenden der Regeln (R1), (R2) und (R3): [M-Rekursion] g: IN" - IN rekursiv mit VX., , X. 3 y g(x., , X., y) = O. Dann ist auch 1(x, -, x,) = My (g(x, -, x, y)=0) vekuvsiv, wober My Aly) = " das kleinsky mit Aly)". BSP 3.7 (ohne Beneis): Ackermann Junktion. Die Funktion 3:1N2 - IN, gegeben durch - 3(0, x)== 2x · 3 (y, 0) = 1 · 3 (y+1, x+1) = 3 (y, 3 (y+1, x)) ist rekursiv aber nicht primitiv rekursiv. Rige nun Alle Prekursiven Funktionen sind TM-berechenhar. schon gezeigt. Die Grundsunktionen (RO) sind TM- bevechenb Lemma 38: Die Menge der TM-herechenbaren Fkl. 181 stabil unter Einsetzung (R1). Ben Seien for Ik: IM" - IN und h: IM" - IN TMbevechenbar, g= h(1,..., sk), dh. es ex. TM Mi Jûr 1 si sk mit pi > n+1 vielen Bandern wet. und zuslandsmenge Qi, die si berechnen, sowie TM M' mit k' > k+1 vielen Bandern und

zustandsmenge Q'. weiche g berechnes Bew: thee: Berechne nacheinander 1. (x1., x1), _. [. (x1., x1)]
und speichere Evgebnisse auf Hillsbändern schreibe Ergebnis in die (n+1)-te Zeile, losche Misser evilen Einsvag \$) von den Hilfshändern Lemma 3.9. Die Menge der TM-herechenharen FKI ist stabil unfer prim Rekursion (R2) Lemma 3.10: Die Menge der TM-herechenbaren Fkl.

1st stabit unter M-Rekursion (R3).

Bewicke: Initière Zähler 2-0 auf einem Hilsband.

14) Berechne g(x1.-, x1. 2). (auf Hillsband) (a) Talls g(x...x., 2) = 0. Kopiere 2 aul Band n+1, løsche alle Einsväge (außer dem ersten Einsrag \$) von den Hiljsbandern, wechsie in qf. (b) Falls g(x,-, xa, 2) +0, prselze 2 durch 2+1 und wiederhole (*). D Prop 3.11 Jede rekursive Fkl. ist TM-berechenbar.
Ben 33 + 3.8 + 3.9 + 3.10. 0 Andere Richlung Etwas aujwändiger!

		1	em	m	9	3		2	-	0	P	V	FU	nl	KA	10	N	en	y < v	Χ÷	Y		χ	Y	/	Χ	Y	Χ)	(1	UN	d			
						51	X	-1	(•	1	Λ-	Y			en	nc	Y	= A		1	X			1	1	A			1	98				1
		D	11/	100																q.		13	n			A	1/	1					ĠĮ.		
		BAY	Q.C	1000					0.00			i	4							1 1					4) [V	M					
				B	64							1			- 0		1		10	183			- 1		2	Δų	À			y y		7	1 6		
							9	- 1					X		7	Χ.	+	CY	+.	1)	=	J	(X	41	()	U/	1.5	P/			1		1)		
							6		(.				1	-	1	X	14		žň		44	4	-			, J				7					-
								1		- 1		-	1					(4	1	()	2	X	1+	X	Λ) (11	15			16.	1		
4			- V 1	ß	91		-1		(4	9)	(!	lly.	21	19	10	9	28	A	V			1	A				4			1					
		731	INT			7	•	X					1		1.0			1	M			19	01		N		W								
	11	1	Δ, 3	(, X	12%	κX		- 1				f.	1		1	111	100	100	F. 9	/ -	- 1	- 1	1	_	-		-17			7					
-(A		-A) !						1			g.	1					
A - 4 X	- 6		3	ΠV			Ж	1	1	l l	<	Nι	m	X	1-1	χ <u>-</u>	0	=	0	7/	X-	<u>·</u> (Y	+1)	E	()	=	Y)	÷	1			
			1	19			į)		11.	70			(X	100	X																			
		1)(Ei	1	? [16	ilr	n	21	19	P	9	(0	de	Y	21	VC	h	` Q	in	V	Py	à(IF	Ka	d f	')		A	<u>C</u>	11	٧ ^٧	n	
				h	19															V.									191	/a	K	He V	15	11,	J
				F	K	1.		}	in		. J. A.	y)	1		ſ	0	Y	16	۸r	(X	1-1	Xn)	¢	Δ	S								
							X	A (X	1-1	X	m) y	=	1	1	y	W	e r	(((X,	11-	, X	m	(A	7 ,	19	7					
				(DV	Ìη	11.	Ì٧)	V	61	()	γ.	51	٧	18	1	1	13	00		M		33	1	46	7		ħ°	à.					
	VA	J 11		1	1	71		9	H		ūΪ	1	11	0			-7	1		7/1	Y			A.B.	1		3	4		h					
		1	em	Ma	d	3	Λ^{\uparrow}	3	1)	4	2 }	1	114		59	71	191		Ġ																
		X	1	1.)))(()	M	er	10	9		d	ev		DV	in	۸.	1	e k		TI	4		18	1	9	h() .	V	Λ	ter	(le	
					1	V	27	19	V	CO	h	er	1	,	VC	n	170	/a	VÌ	ah	10	n	,			V			11						
						20 July				- 1		1		1			47		10 0	: //		- 1			- 1		70	96	he	n	(tu	1	h	
			F .	F X)	κĀ				9 ((X	11-	, χ	m	<u></u>	Į.į](χ,	J	(i-i	Χ:	, X	140	1-1	χį	-1,	X	, X	ita	1-1	X۳	()	id	11	
X 3/1	-5 X		,)	16	Γp	se r	1	5	0	, χ,	110	, λ	m)	ì	l t	V	er	KY	(i4, \Ū	19	VY	10)\) N		ſ	U	1	1	ge	61	gr	1
									J	P	VC	110	k	11	Or	ler	1	1			1 7		J				·		-			<i>U</i>		J	A STATE OF THE PERSON NAMED IN
			ĺ	2.)	l	10	n	1		Λ (. J	V IN	m		n	V	1	12	١	ın	d	1	a	ſ			IN	K	ھـ	1	V	n	. <i>V</i>	1	
				4.1	1	46		1	/	1		' [_	4	-	11.			ν,		011			AI-	o d	^		17		H	-11	V	1'		V	4

				0	N	ų Ą.	13.1	lot lot		3		ni		Ħ	J.A	'n	4	h	ji.		100		N T	J.	l l	,		My		9		Ç	7	3					
				di	311	η	2/1	ch	X	V	; =		11	(.	L y	χ	A	C	1	N	K		(((X	()		C	(;	¥)) 6	1	3	10					(
				1111000		1		4 .		1 1		. 1		2000		Tarrette and	100	1			- 1	1	1-X	1 7	\ /·	1-1	1 0		N-1		1.0	VJ							
			13))(r I	716	1	No	N	() O		d	PA		D	V	1	TI	M		VIC	n	0	11	/ N	1	n	11	12	11	0	1	un	d					
			(c)	.)		IN	n	111	7 (7	1.1	1	. 1	2	11.	7	M	IN	10	2 Y	1	(7/	A.		())) (1	V	(0	M	ומ	DY	na	n	1			
				7	- R	514		γ.		<u> </u>	=	γ		u	γ.	y -	(3)	7	X	6	20	1		XA							g	1/	u i	1 (0	11) ,			
			iL)	U U	10	M	OY	10	D	1	11	A	V) - \\F	5	X	1	Y	(2	11	12	ДА	i	1,1		D	γ		0.6								
			1.	r <i>J</i>	7	Ber	ار ما:	()	X	NV.		A E	γ	1	1 '	67	()	1		×	\	1	1		14	9 1		1'	•										
-			())		1)6																		n	97														
	62		10	,		61																					in	0	1	10	h	11	٧ ⁿ						
					i	7	0	N .	7	Λø	N	00	n		(1	200	4	IK	ſ		(IN	N.	7	11	4	0		(.	U TT	3 N	N				(I	7
						1)	2	111	ch			91	γ.		X)	\ <u> </u>	A	6.	1	, .I.	N	Х	()		12	11	1	X.	,	Χ.	1	Λ		ก	ν			
						3e v		1 1		4 1					- 2		1		1			1		A		20	11	U	VV)	-1	, (N) (
					1	N.	he	so	n	10	40	Ma	1.1	10	10	()		A)	A K		X	1	1	-12	m	19,	X	X:			ur	10		A٩	= 1(X1.	1 X n)x	i z Xn ?
				3	,	10	'/'	J	,	OK.	• 1		U	1.1	, ,			1.7	(X	11-	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)	-0	1 €	is n		X			b	V							
		N	(()		ns Bei	ich	112	in	k1	P	q,)UI	M	W	10	n	110	11	1	10	1)10	di	151	sn 10	7/) 7		И	1		£.		1				
4)			7.1	19	h	161	IN.			11	(n)	11		>	11	(1)	D.	V		1.1	11.	V	h	9 Y	111		9	U	01	1	A								
						lev rb		7		()	(4.	X	, ,	+)	VΪ	11	10	19		T	1	(x	(1.		Kn.	t)	1	N).								
						FR	Chi	=0		} \	2	8		DV	an	Δ١	Lei	10	R	10	t=0) (12	or	()	I A	,i	\(\frac{1}{2}\)											
			(7)	1	Re.	scr	148	än	kl	er	1	W-	1 ⁷ ()()	61	19	10	14	7	1/1						7	11	01	Vζ	1			1					
				. ,	1	Bec ev)	(5	1	V	141	1	n	11	M		9	K		1	09	n	1	16	1	di	6	1	K	1	(\)	. //\	/ n-		> //	\ <u>/</u>			
					7	•							-1'	•	6	0	-1	46	nn	6	d' V	(Pi	0	t <	2	ai	hi	n	111	(X	<i>\</i>	e	χĺ		V			
	m	34		13	AL	j	ba	f ((X /	17-1	χ.	1, 2	-)	-]		į.		10	N Y	1	Į,	6	1	mi	N	gi		M	li L	(/ V	+) 0	Y					
					a	n Cl	n	0	V				ch	۱۷۱	pil)(A	(\bar{x})	E	(2	(\.A	4	£ 7)	()			X	+) (ce)	()	1					
		N	9.1	J	Be	M:	191	191	ſ	(X		0)	1	.()			/ (ev)	1	,	1	1 5		di	4 11 11	1		1										
(3)	ī -		.	1	X		IX.	X		χ	Ì	.,		x Ì		Ta	(1(Ź.	2),,	X		16	3/1	S	2	2	χ	(χ.	(}	7	1					
44	9	10	13	90	()	110			1	(X	, 2	-14	1	g			1	2				191		J'a	115	Ĭñ.	} t	=0 X x	(5	(, 	.) =	= ()	8		(X	71	1)	ϵ	(
		1		3.0							1						1	0			01	k	91	13	(ir	121	=0			1					V 1				,
(1)	n	į,	-	0	VA	g-	N	~	o	1		D	V),	h/	0	ae				5.	1	A		1	9 1	1	M			(4			
												1'-			1.10		J																						
- 1	Į.			- 1	Į.	Ŧ	1)	1)	<u> </u>		- 4	1	1	- 1	- 1			K			10.50		2	Ţ	1 -	1	ř.	1	1	. !	- 1			- 1	- 1	- 1	1		