CSC205 section 1 Spring 2015 Homework 3

How to Submit:

Please submit your solutions (parts A and B separately) through Blackboard. Remember to put your name and homework number on all the documents that you submit as attachments.

Total possible points in this homework: 3 for Part B (You receive 1 bonus point towards Part A if you get all Part A questions correct.)

Part A

1. You are given the following function:

$$F = (\sim (x * y) + x * y) * \sim y$$

- i. Simplify the function using Boolean algebra and its identities.
- ii. Construct a truth table for the original function to verify your answer for (i);
- iii. Construct a simple digital circuit for the function.
- 2. You are given the following:
 - one 8-bit input, of the form $A=(A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0)$, and
 - a bunch (as many as you need) of logic gates (AND, OR, NOT, XOR, NOR, NAND etc). You may use multi-input AND gates and OR gates if needed.

Assuming A is an 8-bit signed integer in 2s-complement, show how to construct a combinational circuit that tests A to produce the output $=(S_2 S_1 S_0)$, such that:

 S_0 is 1 if and only if A is negative,

 S_1 is 1 if and only if A is zero, and

 S_2 is 1 if and only if A is positive.

			XYZ	141/2'	/ Xi/ Z	1X11 Z'	<u> </u>	1X JZ	1112	<u> </u>
In2	In1	In0	Out7	Out6	Out5	Out4	Out3	Out2	Out1	Out0
0	0	0	0	Q	0	Ö	0	0	8	- 1
0	0	1	D	Q	0	0	Q	0	1	Ø
0	1	0	0		Ď	0	0	- 1	0	0
0	1	1	D	Ø	0	0	- 1	0	Q	0
1	0	0	Ó	0	0	1	O	O	٥	0
1	0	1	0	0	1	Ó	0	0	0	Q
1	1	0	Ŏ	1	0	٥	0	0	Ó	Ō
1	1	1	I	δ	0	0	Ò	0	0	O

4. The bit-shifter discussed in class always produces an output that is either a left-shift or a right-shift of the input. Add an input W as the control signal, so that the bit-shifter produces its expected outputs when W=1, but it produces all zeroes when W=0. Show how to connect W to the rest of the circuit in the diagram below. You may use multi-input AND gates and OR gates if needed.

Part B

- 5. [Total 3 pts] This question relates Boolean algebra to digital circuitry, and studies its application on circuit design.
 - a. [1 pt] Consider a 3-to-8 decoder with inputs (A_2, A_1, A_0) and outputs $(B_7, ..., B_0)$. Describe each output B_i in terms of a Boolean expression of the inputs.
 - b. [1 pt] Consider a 4-to-1 multiplexer with inputs (A₃, A₂, A₁, A₀), selects (B₁, B₀) and output C. Describe the output C in terms of a Boolean expression of all the inputs.
 - c. [1 pt] Consider the following simple ALU discussed in class. Reconstruct it using multiplexers in place of the decoder to yield equivalent results.

6. [Total 1 bonus pt] Verilog is one of the most commonly used circuit design languages today. Its syntax is very similar to C/C++. Consult the verilog tutorials provided by the following links.

http://electrosofts.com/verilog/mux.html (optional) http://electrosofts.com/verilog/introduction.html

Then write:

- a. [0.5 pt] A verilog module to define a simple 8-to-1 multiplexer with inputs a and select, and output q;
- b. [0.5 pt] A test bench to your multiplexer for the following input values:

d	select					
0000001	For each value					
00000010	of d given (on					
00000100	•					
00001000	the left), try					
00010000	all possible					
00100000	combinations					
01000000	of value of					
10000000	select					