# EEC 417/517 Embedded Systems Cleveland State University

# Lab 11 Floating-Point Arithmetic

Dan Simon Rick Rarick Spring 2018

# Floating-Point Arithmetic



# Floating-Point Arithmetic



#### Floating-Point Arithmetic

- 1. Computing devices store numbers as binary symbols (digits) in memory registers: 1001 0101
- 2. The meaning of the symbols depends entirely on the **interpretation** assigned to the symbols.
- 3. The most common interpretations (or formats) are the **fixed-point** and **floating-point** formats.
- 4. Many other formats exist and are used in various applications.

1. The algebraic form of a number *x* in scientific notation is

$$x = m \times 10^e$$

*m* is called the **mantissa** (or significand), and *e* is called the **exponent**.

- 2. If  $1 \le m < 10$ , then  $x = m \times 10^e$  is said to be in **normalized scientific notation**.
- 3. This means that m lies in the interval  $1.000000... \le m < 9.999999...$  so the first digit of m cannot be '0'.  $1.356 \times 10^2 \times 10^{-3} \times 10$
- 4. Exception: x = 0 if and only if m = 0

1. The algebraic form of a Base-2 number in floating-point is

$$x = f \times 2^e$$

where f is a called the **fraction** (or significand or mantissa) and e is called the **exponent**.

- 2. If  $0.1_2 \le f < 1$ , then  $x = f \times 2^e$  is said to be in Base-2 **normalized floating-point notation**. Note: in Base-10, this means that  $0.5 \le f < 1$   $(0.1_2 = 2^{-1} = 0.5)$
- 3. In normalized form, f lies in the interval

$$(0.10000 \dots \le f < 0.11111 \dots)_2$$

so the first digit after the binary point must be '1'.

4. Exception: x = 0 if and only if f = 0

Any number can be represented in normalized scientific notation by allowing the decimal point to "float":

$$8104.75 = 8.10475 \times 10^3$$

$$0.00147 = 1.47 \times 10^{-3}$$

Similarly, any number can be represented in normalized Base-2 notation by allowing the binary point to "float":

$$1101.01_2 = 0.110101_2 \times 2^4$$

$$0.0010111_2 = 0.10111_2 \times 2^{-2}$$

1. In normalized floating-point notation,  $0.1_2 \le f < 1$ , but this can also be expressed in decimal representation as  $0.5 \le f < 1$ .

Example: If  $f = 0.1011_{2}$ , then

$$f = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$
$$= \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = 0.5 + 0.125 + 0.0625 = 0.6875$$

- 2. Note that in the algebraic representation  $x = f \times 2^e$  of a Base-2 floating-point number, we have temporarily ignored the sign of the number.
- 3. The sign can be easily included:

positive: 
$$s = 0$$

negative: 
$$s = 1$$

$$x = (-1)^s f \times 2^e$$

- 1. How can the algebraic form  $x = (-1)^s f \times 2^e$  be represented in computing machines?
- 2. In other words, how can  $x = (-1)^s f \times 2^e$  be stored as 0's and 1's in memory registers?
- 3. We need a standard format so that programs written under the standard will run correctly on various machines.
- 4. The standard format (since about 1990) for representing Base-2 floating-point numbers in computing devices is the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

1. The IEEE 754 standard includes standards for 16, 32, 64, and 128-bit machines.

2. Example: 16-bit IEEE 754

1 is omitted because it occurs in all floating point representations



3. The exponent **b** is called a **biased** or **offset** exponent and is defined below.

We will look at a **modified** 16-bit IEEE 754 format which is defined in Microchip's Application Note 575.

Algebraic representation:  $x = (-1)^s f \times 2^e$ 

#### **Modified Floating-Point Representation**



-1

1. An 8-bit exponent register stores unsigned integers in the range,

$$b \in [0, 255].$$

2. But we want the range of exponents to include positive and negative values:

$$e \in [-128, 127].$$

3. So we **interpret** the exponent to be **biased** by 128.

$$x = (-1)^s f \times 2^e$$



# **Biased Exponent**

|          | Biased<br>Exponent | Exponent    |
|----------|--------------------|-------------|
| Binary   | b = e + 128        | e = b - 128 |
|          |                    |             |
| 00000000 | 0                  | -128        |
| 00000001 | 1                  | -127        |
| 00000010 | 2                  | -126        |
|          |                    |             |
|          |                    |             |
| 01111111 | 127                | -1          |
| 10000000 | 128                | 0           |
| 10000001 | 129                | 1           |
|          |                    |             |
|          |                    |             |
| 11111101 | 253                | 125         |
| 11111110 | 254                | 126         |
| 11111111 | 255                | 127         |

#### Floating-Point Biased Exponent

$$x = (-1)^s f \times 2^e, -128 \le e \le 127$$



Define 
$$b = e + 128$$

$$x = (-1)^s f \times 2^{b-128}, \quad 0 \le b \le 255$$

algebraic representation

$$x = (-1)^s f \times 2^e$$

 $-128 \le e \le 127$ 

computer floating-point representation

| 27    | 26    | 25    | 24    | 23    | 22    | 21    | 20    | S | 2-1   | 2-2   | 2-3   | 2-4   | 2-5   | 2-6   | 2-7   |
|-------|-------|-------|-------|-------|-------|-------|-------|---|-------|-------|-------|-------|-------|-------|-------|
| $b_7$ | $b_6$ | $b_5$ | $b_4$ | $b_3$ | $b_2$ | $b_1$ | $b_0$ | S | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$ |

$$b$$
 = biased exponent  
 $b = e + 128$   
 $0 \le b \le 255$   
 $b_i \in \{0, 1\}$ 

$$s = \text{sign bit}$$
  $f = \text{fraction}$ 

$$s \in \{0, 1\}$$

$$0.1_2 \le f < 1$$

$$(\text{if } x \ne 0)$$

$$f_i \in \{0, 1\}$$

**Example:** decimal  $\rightarrow$  computer floating-point  $\rightarrow$  hex

$$x = -11.125$$

$$x = -11.125 = (-1)^{1}(1011.001_{2}) = (-1)^{1}(0.1011001_{2}) \times 2^{4} = (-1)^{s} f \times 2^{e}$$

$$e = 4$$
 $b = e + 128 = 132 = 1000 \ 0100_2$ 
 $s = 1$ 
 $f = 0.101 \ 1001_2$ 

$$x \to 1000 \ 0100 \ 1101 \ 1001 = 0x84D9$$
 $b \ s \ f$ 

**Example:** hex  $\rightarrow$  computer floating-point  $\rightarrow$  decimal

$$x \to 0x8358 = 1000\ 0011\ 0101\ 1000$$
**b s f**

$$b = 1000 \ 0011_2 = 130$$

$$e = b - 128 = 2$$

$$s = 0$$

$$f = 0.1011_2 = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = 0.6875$$

$$x = (-1)^s f \times 2^e = (-1)^0 (0.6875)(2^2) = 2.75$$

Note that the symbol f is **overloaded**:  $f = 0.1011000_2 = 1011000$ 

#### Floating-Point Precision (Round-off Error)





The representation of a floating point number is **not** unique:

$$0.5 = 0.1_2 \times 2^0$$
  $\Rightarrow$  Normalized floating-point

$$0.5 = 0.0000001_2 \times 2^6 \implies \text{Non-normalized floating-point}$$

**Example:** Convert the above two representations of 0.5 to Modified Floating-Point:

**Normalized:** 
$$x = 0.1_2 \times 2^0 = (-1)^s f \times 2^e$$

$$s = 0$$
,  $f = 0.1_2 = 2^{-1}$  and  $e = 0 \implies b = e + 128 = 128$ 

$$x \to 1000\ 0000\ 0100\ 0000 = 0x8040$$
**b**  $s$   $f$ 

| 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | S | 2-1 | 2-2 | 2-3 | 2-4 | 2-5    | 2-6 | $2^{-7}$ |
|----|----|----|----|----|----|----|----|---|-----|-----|-----|-----|--------|-----|----------|
| 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 1   | 0   | 0   | 0   | 0      | 0   | 0        |
|    |    |    |    |    |    |    |    |   |     |     |     | f ( | 7-bits | s)  |          |

$$x = f \times 2^e = (2^{-1} \pm 2^{-8}) \times 2^0 = 0.5 \pm 0.0039$$

**Non-normalized:**  $x = (-1)^s f \times 2^e = 0.0000001_2 \times 2^6$ 

$$s = 0$$
,  $f = 0.0000001_2 = 2^{-7}$  and  $e = 6 \implies b = e + 128 = 134$ 

$$x \to 1000\ 0110\ 0000\ 0001 = 0x8601$$
**b** s f

| 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | S | 2-1 | 2-2 | 2-3 | 2-4 | 2-5 | 2-6 | 2-7 |
|----|----|----|----|----|----|----|----|---|-----|-----|-----|-----|-----|-----|-----|
| 1  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 1   |
|    |    |    |    |    |    |    |    | , |     |     |     | ~   |     |     |     |
|    |    |    | I  | )  |    |    |    |   |     |     |     | f   |     |     |     |

$$x = f \times 2^e = (2^{-7} \pm 2^{-8}) \times 2^6 = 0.5 \pm 0.25$$

- 1.  $0.5 \rightarrow 0x8040 = 0.5 \pm 0.0039$  (normalized)
- 2.  $0.5 \rightarrow 0x8601 = 0.5 \pm 0.25$  (non-normalized)
- 3. Normalized numbers ( $f_1 = 1$  = first digit to right of binary point) are the most precise floating-point numbers.
- 4. Therefore, the normalized representation (0x8040 in the above example) is always used, and the representation is then unique.
- 5. Normalization:
  - a) Rotate the fraction register one bit to the left until  $f_1 = 1$
  - b) Subtract one from the exponent with each rotation

# Floating Point Range

#### Range for normalized floating point:

| 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | S | 2-1 | 2-2 | 2-3 | 2-4 | 2-5 | 2-6 | $2^{-7}$ |
|----|----|----|----|----|----|----|----|---|-----|-----|-----|-----|-----|-----|----------|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 1   | 0   | 0   | 0   | 0   | 0   | 0        |

p =smallest positive number

$$x = (-1)^s f \times 2^e$$

$$b = 0$$
,  $e = -128$ ,  $f = 0.12 = 0.5$ 

$$p = 0.5 \times 2^{-128} = 1.47 \times 10^{-39}$$
 (smaller for non-normalized,  $f = 0.000 \ 0001_2$ )

| 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | S | 2-1 | 2-2 | 2-3 | 2-4 | $2^{-5}$ | 2-6 | 2-7 |
|----|----|----|----|----|----|----|----|---|-----|-----|-----|-----|----------|-----|-----|
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0 | 1   | 1   | 1   | 1   | 1        | 1   | 1   |

P =largest positive number

$$b = 255, e = 127, f = 0.111 \ 1111_2 = 0.9921875$$

$$P = 0.9921875 \times 2^{127} = 1.69 \times 10^{38}$$

# Distribution of Floating Point Numbers on the Real Number Line

- 3 bit mantissa
- **exponent** {-1,0,1}

| e = -1              | e = 0            | e = 1            |
|---------------------|------------------|------------------|
| 1.00 X 2^(-1) = 1/2 | 1.00 X 2^0 = 1   | 1.00 X 2^1 = 2   |
| 1.01 X 2^(-1) = 5/8 | 1.01 X 2^0 = 5/4 | 1.01 X 2^1 = 5/2 |
| 1.10 X 2^(-1) = 3/4 | 1.10 X 2^0 = 3/2 | 1.10 X 2^1= 3    |
| 1.11 X 2^(-1) = 7/8 | 1.11 X 2^0 = 7/4 | 1.11 X 2^1 = 7/2 |

Non-uniformly distributed, round-off error varies over range.



## Floating-Point Distribution

# REAL NUMBERS



Non-uniformly distributed, round-off error varies over range.

The Division Algorithm can be used to convert a decimal integer to a binary integer.

**Division Algorithm:** Dividend = Quotient × Divisor + Remainder with Remainder < Divisor

**Example**: Convert 1379 to a binary integer.

We write 1379 in its Base-2 expansion starting with the LSB on the left:

$$1379 = a_0 2^0 + a_1 2^1 + a_2 2^2 + a_3 2^3 + \cdots \quad \text{where } a_i \in \{0, 1\}$$
LSB

We can determine the coefficients by repeatedly applying the Division Algorithm.

$$1379 = a_0 2^0 + a_1 2^1 + a_2 2^2 + a_3 2^3 + \dots \qquad \text{where } a_i \in \{0, 1\}$$

#### 1. Divide both sides by two:

 $Dividend = Quotient \times Divisor + Remainder$ 

$$1379 = 689 \times 2 + 1$$

$$1379 / 2 = 689 + 1 / 2$$

$$689 + 1 / 2 = a_0 \frac{2^0}{2} + a_1 \frac{2^1}{2} + a_2 \frac{2^2}{2} + a_3 \frac{2^3}{2} + \cdots$$

$$= \underbrace{a_0 / 2}_{1/2} + \underbrace{\left(a_1 2^0 + a_2 2^1 + a_3 2^2 + \cdots\right)}_{\text{integer}}$$

Since  $a_0 \in \{0, 1\}$  and  $\left(a_1 2^0 + a_2 2^1 + a_3 2^2 + \cdots\right)$  is an integer, we must have  $a_0 = 1$ . Subtracting 1/2 from both sides gives

$$689 = a_1 2^0 + a_2 2^1 + a_3 2^2 + \cdots$$

$$689 = a_1 2^0 + a_2 2^1 + a_3 2^2 + \cdots$$

#### 2. Divide both sides by two:

$$689/2 = 344 + 1/2 = a_1/2 + (a_2 2^0 + a_3 2^1 + a_4 2^2 + \cdots)$$

So, 
$$a_1 = 1$$
 and  $344 = a_2 2^0 + a_3 2^1 + a_4 2^2 + \cdots$ 

#### 3. Divide both sides by two:

$$344/2 = 172 + 0/2 = a_2/2 + (a_3 2^0 + a_4 2^1 + a_5 2^2 + \cdots)$$

So, 
$$a_2 = 0$$
 and  $172 = a_3 2^0 + a_4 2^1 + a_5 2^2 + \cdots$ 

#### 4. Divide both sides by two:

$$172/2 = 86 + 0/2 = a_3/2 + (a_4 2^0 + a_5 2^1 + a_6 2^2 + \cdots)$$

So, 
$$a_3 = 0$$
 and  $86 = a_4 2^0 + a_5 2^1 + a_6 2^2 + \cdots$ 

5. And so on until the quotient is zero.

The algorithm can be tabularized:
Dividend = Quotient × Divisor + Remainder

| Dividend | Quotient = Dividend ÷ 2 | Remainder | Symbol   |
|----------|-------------------------|-----------|----------|
| 1379     | 689                     | 1         | $a_0$    |
| 689      | 344                     | 1         | $a_1$    |
| 344      | 172                     | 0         | $a_2$    |
| 172      | 86                      | 0         | $a_3$    |
| 86       | 43                      | 0         | $a_4$    |
| 43       | 21                      | 1         | $a_5$    |
| 21       | 10                      | 1         | $a_6$    |
| 10       | 5                       | 0         | $a_7$    |
| 5        | 2                       | 1         | $a_8$    |
| 2        | 1                       | 0         | $a_9$    |
| 1        | 0                       | 1         | $a_{10}$ |

LSB

$$a_{10} \cdots a_2 a_1 a_0$$

$$1379 = 101 \ 0110 \ 0011_2$$

**MSB** 

#### Converting a Decimal Fraction to a Binary Fraction

**Example**: Convert 0.14159 to a binary fraction.

$$0.14159 = f_1 2^{-1} + f_2 2^{-2} + f_3 2^{-3} + f_4 2^{-4} + \cdots$$

#### 1. Multiply both sides by two:

$$\mathbf{0.28318} = f_1 + \left( f_2 2^{-1} + f_3 2^{-2} + f_4 2^{-3} + \cdots \right)$$

Since 
$$f_1 \in \{0, 1\}$$
 and  $0 \le (f_2 2^{-1} + f_3 2^{-2} + f_4 2^{-3} + \cdots) < 1$ ,  
we must have  $f_1 = 0$  (the integer part of 0.28318)

So, 
$$0.28318 = f_2 2^{-1} + f_3 2^{-2} + f_4 2^{-3} + \cdots$$

#### 2. Multiply both sides by two:

$$0.56636 = f_2 + (f_3 2^{-1} + f_4 2^{-2} + \cdots)$$

So, 
$$f_2 = 0$$
 and  $0.56636 = f_3 2^{-1} + f_4 2^{-2} + \cdots$ 

#### Converting a Decimal Fraction to a Binary Fraction

#### 3. Multiply both sides by two:

$$1.13272 = f_3 + (f_4 2^{-1} + f_5 2^{-2} + \cdots)$$

So, 
$$f_3 = 1$$
 and subtracting 1 from both sides,  

$$0.13272 = f_4 2^{-1} + f_5 2^{-2} + \cdots$$

#### 4. Multiply both sides by two:

$$0.26544 = f_4 + (f_5 2^{-1} + \cdots)$$
 so  $f_4 = 0$ 

So the first four binary digits of the Base-2 expansion of 0.14159 is

$$0.14159 \approx 0.0010_2 = \frac{1}{8} = 0.125$$

The process can be continued to any desired accuracy.

# Converting a Decimal Fraction to a Binary Fraction

**Example**: 0.14159

| Fraction | Fraction × 2          | Integer Part |
|----------|-----------------------|--------------|
| 0.14159  | 0.28318               | $f_1 = 0$    |
| 0.28318  | <mark>0</mark> .56636 | $f_2 = 0$    |
| 0.56636  | 1.13272               | $f_3 = 1$    |
| 0.13272  | 0.26544               | $f_4 = 0$    |
| 0.26544  | <b>0</b> .53088       | $f_5 = 0$    |
| 0.53088  | 1.06176               | $f_6 = 1$    |
| 0.06176  | <mark>0</mark> .12352 | $f_7 = 0$    |
| 0.12352  | <mark>0</mark> .24704 | $f_8 = 0$    |

So, the 7-bit approximation is  $0.14159 \approx 0.0010010_2 = 0.140625$ 

We don't have to round up since  $f_8 = 0$ .

**Example**: decimal  $\rightarrow$  computer floating-point  $\rightarrow$  hex

To convert  $\pi \approx 3.14159$  to Modified Floating-Point, convert the integer and fractional parts separately:

$$3 = 11_2$$
, and from the previous table  $0.14159 \approx 0.0010010_2$ 

So,

$$\pi \approx 3.14159 \approx 11.0010010_2 = 0.11001001_2 \times 2^2$$
 (Normalized)

Since we only use 7 bits for the fractional part, we drop the eighth bit and round the seventh bit up:

$$\pi \approx (-1)^s f \times 2^e = (-1)^0 \times 0.1100101_2 \times 2^2$$

$$s = 0$$
,  $f = 0.1100101_2$ ,  $b = e + 128 = 130$ 

#### **Example (cont)**: decimal $\rightarrow$ computer floating-point $\rightarrow$ hex

$$\pi \rightarrow 1000\ 0010\ 0110\ 0101 = 0x8265$$

$$b = 130 \qquad f = 0.7890625$$

Floating-point answer: 
$$\pi \approx f \times 2^e$$
  
= 0.7890625 \times 2<sup>2</sup>  
= 3.15625

Error = 
$$(3.15625 - \pi) / \pi = 0.47\%$$

#### Floating Point Addition

$$C = A + B = \left(f_A \times 2^{e_A}\right) + \left(f_B \times 2^{e_B}\right)$$

- 1. If  $e_A = e_B$ , then  $C = (f_A + f_B) \times 2^{e_A}$
- 2. If  $e_A < e_B$ , then increase  $e_A$  until it is equal to  $e_B$ , rotating the  $f_A$  register one bit right (rrf) for each increment of  $e_A$ .
- 3. If  $e_B < e_A$ , then increase  $e_B$  until it is equal to  $e_A$ , rotating the  $f_B$  register one bit right (rrf) for each increment of  $e_B$ .

# Computer Floating Point Addition

**Example:** 
$$C = A + B = 0x82E0 + 0x82C0$$

$$C = (f_A + f_B) \times 2^{e_A}$$

$$b_C = b_A = b_B = 0x82 = 130$$
 (biased exponent)

E0 = 
$$1100000$$
 C0 =  $11000000$  (implied binary point after sign bit)  
 $f_A = 0x60 = 0.75$   $f_B = 0x40 = 0.50$ 

Add fractional parts (ignore the sign bits):

$$\overline{f}_C = f_A + f_B = 0.110\ 0000_2 + 0.100\ 0000_2 = 1.010\ 0000_2 = 0.101\ 0000_2 \times 2^{10}$$

$$C = (f_A + f_B) \times 2^{e_A} = 0.1010000_2 \times 2^1 \times 2^{e_A} = 0.1010000_2 \times 2^{e_A+1},$$

so we must add 1 to the biased exponent:  $f_C = 0.101\ 0000_2$ ,  $b_C = 0x82 + 1 = 0x83$ 

Prepend the sign bit to  $f_C$ : 1101 0000 = 0xD0

Final answer: C = 0x83D0

# Floating Point Addition Algorithm

$$C = (f_A + f_B) \times 2^{e_C}$$
, where  $e_C = e_A = e_B$ 

Remove sign bits  $s_A$  and  $s_B$  from the low bytes in computer format.

```
If s_A=0 and s_B=1 then if f_A>f_B f_C=f_A-f_B \text{ and } s_C=0 positive number > negative number else f_C=f_B-f_A \text{ and } s_C=1 negative number > positive number Prepend the sign bit to f_C end if
```

#### Floating Point Subtraction

#### Reminder:

| A | В | A xor B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 0       |

# Floating Point Multiplication

$$C = A \times B = (f_A \times 2^{e_A}) \times (f_B \times 2^{e_B}) = (f_A \times f_A) \times 2^{e_A + e_B} = f_C \times 2^{e_C}$$

Mantissa:  $f_C = f_A \times f_B$ 

Exponent:  $e_C = e_A + e_B$ 

Sign bit:  $s_C = s_A \text{ xor } s_B$ 

$$f_A \times f_B = (0.a_0...a_6) \times (0.b_0...b_6)$$
  
=  $0.c_0...c_{13}$ 

| A | В | A xor B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 0       |

(Use integer multiply routine)

Round the result to 7 MSBs  $\rightarrow f_C = 0.c_0...c_6$ 

# Floating Point Multiplication

$$e_C = e_A + e_B$$
 (unbiased exponent)

But remember the computer floating point number contains biased exponents  $b_A$  and  $b_B$ 

Assume 8-bit exponents:

$$(b_C - 128) = (b_A - 128) + (b_B - 128)$$
  
 $b_C = b_A + b_B - 128$ 

Enhancement: Check for

overflow

# Floating Point Division

$$C = A / B = (f_A \times 2^{e_A}) / (f_B \times 2^{e_B}) = (f_A / f_A) \times 2^{e_A - e_B} = f_C \times 2^{e_C}$$

Mantissa:  $f_C = f_A / f_B$ 

Exponent:  $e_C = e_A - e_B$  (convert to biased exponent subtraction)

Sign bit:  $s_C = s_A \text{ xor } s_B$ 

Use an integer divide routine that gives a 16-bit result:

$$f_A/f_B = (0.a_0...a_6)/(0.b_0...b_6) = (a_0...a_6)/(b_0...b_6)$$
  
=  $(c_0...c_7).(c_8...c_{15})$ 

Shift division result so  $c_8$  is the MSB equal to 1 ( $c_0...c_7=0$ ), incrementing  $e_C$  each right shift, decrementing  $e_C$  each left shift.

# End of Lab 11