

Digitale Signalverarbeitung auf FPGAs

Kap. 0 - Einführung

2015

Prof. Dr. Christian Münker

Ein allgemeines DSP - System

Gliederung der Vorlesung

- 1. Grundlagen: Zeitdiskrete Signale und Systeme im Zeitbereich
- 2. Grundlagen: Zeitdiskrete Signale und Systeme im Frequenzbereich
- 3. Diskrete Fourier Transformation und FFT
- Digitale Filter (FIR und IIR)
- 5. Quantisierung und Arithmetik (Zeitbereich)
- 6. Quantisierungsrauschen (Frequenzbereich)
- 7. Abtastung und Downsampling
- Upsampling und Digital-Analog Wandlung
- 9. Multiraten-Signalverarbeitung
- 10. Zustandsraum
- 11. Wavelets und Filterbänke

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-3

Organisatorisches (1)

eMail christian.muenker@hm.edu

Büro R3.063, Tel. 3466 (3. Stock über der Fachschaft)

Sprechstunde Mi. 9:00 – 10:00

... oder nach Vereinbarung (eMail)

Videos Kap. 1 - 3 zu Hause, Übungen an der HM

Download von Vorlesungsunterlagen und Videos über

Moodle-Seite - Password

Vorlesung Fr., 10:00 – 13:15 Uhr / 1x Di. 14:15 – 17:30

Letzte reguläre Vorlesung: 4.12.2015

Organisatorisches (2)

■ Python Crashkurs: Di. 13.10. 14:15 – 17:30 in RBG 052

■ Praktikum (freiwillig), Fr. 10:00 – 13:15 + Di. 14:15 – 17:30 (2 Grp)

1. Versuch: Grundlagen Simulink / System Generator 08. / 11.12.

2. Versuch: Entwurf eines Multiratenfilters in Simulink 15. / 18.12.

3. Versuch: Implementierung des Filters auf einem

FPGA mit System Generator 8. / 12. 1. 2016

Prüfungsvorbereitung

15.1.2016

Prüfung besteht aus einem Teil (90 min.)

Hilfsmittel: 4 DIN-A4 Seiten (2 Blätter) Unterlagen

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-5

Literatur

Grundlage für "DSV auf FPGAs" ist der Stoff der Vorlesung "Signale und Systeme" (Fourier- und Laplace-Transformation, zeitdiskrete Signale und Systeme)

Über meine Moodle-Seite können Skript und Übungsaufgaben von Prof. Geng heruntergeladen werden:

Signale und Systeme Teil 2: Zeitdiskrete Signale und Systeme

Diese Inhalte werden als bekannt vorausgesetzt!

Weitere (optionale) Literatur: Siehe Unterlagen zu "DSV auf FPGAs"

Arbeitsaufwand ...

- Laut Modulbeschreibung hat DSV auf FPGAs 5 ECTS-Punkte und 4 SWS
- Ein ECTS-Punkt entspricht laut Vorgaben der internationalen Studien-Kommissionen ca. 30h Arbeitsaufwand → 150h für DSV auf FGPAs
 - 33h (Zeitstunden) seminaristischer Unterricht
 - 9h Praktikum
 - → ca. 100h Eigenstudium (Vor- und Nachbearbeitung, Prüfungsvorbereitung etc.)
- "Early Warning": 30 ECTS-Punkte pro Semester entsprechen damit 900h, bei 15
 Wochen im Semester haben Sie also theoretisch eine 60h-Woche …
- Daher:
 - Arbeiten Sie in den Vorlesungen mit
 - Lassen Sie sich nicht abhängen bereiten Sie den Stoff vor / nach

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-7

Was ist ein FPGA?

(Das wird nicht in der Prüfung abgefragt ...)

- Geschichte: Was ist ein FPGA (nicht)?
- Technologie
- Architektur
- Entwurf

Siehe auch Webinar:

Max Maxfield, "Fundamentals of FPGAs" [Xilinx]

www.techonline.com/learning/course/210605004

DSP - Plattformen

Universal – Prozessoren (Intel, AMD, Microcontroller, ...)

Preisgünstig, begrenzte Performance, nicht energieeffizient für DSP

DSP - Prozessoren

Hardware und Befehlsset optimiert für DSP (z.B. schnelle Multiplizierer)

FPGAs

- Sehr hohe Performance möglich durch Parallelisierung
- Hohe Effizienz durch beliebige Wortlängen
- "Software-frei" (schwer zu kopieren und hacken, definiertes Einschaltverhalten)

ASICs

 Noch höhere Effizienz und Performance als FPGAs, aber kostengünstig nur bei hohen Stückzahlen (> 100.000; für Multimedia, Mobilfunk, ...)

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-9

Vergleich: ASIC, FPGA, Microcontroller

\$\$\$, Flexibilität, Rechenleistung

	ASIC	FPGA	Microcontroller
Maskenkosten	10k1M \$	Entfällt	Entfällt
Entwurfssoftware	> 20 k\$	Kostenlos 1000 \$	Kostenlos 1000 \$
Entwicklungszeit	Hoch (Gates, VHDL, IPBlocks, Analog)	Mittel schnell Schematic, VHDL, IP	Schnell Assembler, C, IP
Stückpreis	\$25000 pro 25 Wafer mit jeweils 25k Chips	< 1 \$ 5000 \$	0.1 \$ 100 \$ (?)
Lieferzeit	Mehrere Monate	i.A. schnell verfügbar	i.A. schnell verfügbar
Test- und Entwicklungsboard	Spezielle Entwicklung	50 \$ 1 k\$, Standardprodukt	1 \$ 1 k\$, Standardprodukt
Effizienz (Power und Fläche pro Funktion)	Optimal, Wortlänge / Clock / Technologie (frei) wählbar	Langsamer Clock, aber parallelisierbar, Wortlänge beliebig	Langsamer Clock, nur serielle Datenverarbeitung, analoge Functions

2009

Dr.-Ing. Jörg Vollrath 10/43

Motivation für programmierbare Logik

"TTL-Friedhöfe" bestehen aus zahllosen Logik-Chips

- unzuverlässig
- schwer zu modifizieren
- groß
- stromhungrig
- Logistik-Albtraum (viele Spezial-Bausteine)
- → Programmable Logic Devices (PLDs)!

[siehe "programmable logic" in Wikipedia.org!]

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-11

Simple PLDs (SPLDs) - PROMs

(P)ROM kann beliebige kombinatorische Logik ersetzen:

- Adressdekoder entspricht fester AND-Verknüpfung
- Speicherinhalt entspricht OR-Verknüpfung
- Andere Bezeichnung: "Look-Up Table" (LUT)
- Nur wenige Eingänge möglich, da Dekoder ansonsten sehr komplex wird

PROM bereits 1957 patentiert (US-Pat. 3028659)

Adressdekoder (festes AND – Array)

Lücke zwischen PLDs und komplexen ICs

Mitte der 1980er Lücke zwischen PLDs und ASICs mit hohen NRE * - Kosten, speziell für schnelle Datenverarbeitung

* Non-Recurring Engineering / Expenditure

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-13

Auftritt der FPGAs

1985 erstes FPGA XC2064 von Xilinx mit 64 Logic Blocks (jeweils zwei 3-Input LUTs und einem FF), 58 I/O – Pins und 1200 equiv. Gates

Typische Anwendungsgebiete für FPGAs

- **Bildverarbeitung** (Driver Assistance Systeme, medizinische Bildgebung) → *Rechenleistung*, *Parallelisierung*
- Schnelle Regelungen (Vektor- und observerbasierte Motorsteuerungen) → geringe, definierte Latenzzeit
- Kommunikationssysteme (Pay-TV, 3D-TV, Smartphones und Basisstationen) → Rechenleistung, Rekonfigurierbarkeit
- Messsysteme (NI / Labview FPGA, Spektrumanalyzer) → schnelle Real-Time Signalverarbeitung, geringe Stückzahlen
- High-Speed Datenübertragung → Gb/s Serializer / Deserializer

Generell: Prototyping, Stückzahlen < 100.000, "Softwarelose" Systeme, schnelle parallele Datenverarbeitung

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-15

Was ist ein FPGA?

- Geschichte: Was ist ein FPGA (nicht)?
- Technologie
- Architektur
- Entwurf

Technologie: SRAM

Standard CMOS-Prozess, daher immer in aktuellster Technologie verfügbar → schnell und günstig (in €/Gate)!

- Konfiguration durch SRAM-Zellen (viel h\u00f6herer Stromverbrauch)
- Verwendet für FPGAs
- ± Verliert Inhalt beim Abschalten
- Ext. Flash oder CPU benötigt

Marktführer:

Xilinx (Spartan, Virtex)

Altera (Stratix, Cyclone)

Optional: Flash im gleichen Gehäuse (SIP)

(Xilinx Spartan-3AN, Lattice XP)

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-17

Technologie: EEPROM / Flash

Zusätzliche Technologieschritte für nicht-flüchtige Speicherzellen

- Technologieknoten werden ca. 18 Monate nach Standard-CMOS erreicht
- Verwendet f
 ür SPLDs, CPLDs, FPGAs (z.B. Actel Igloo and ProASIC3)
- Elektrisch programmier- und löschbar
- Synonym: "Non-Volatile-…"
- + In-System Re-programmierbar
- + Beim Einschalten funktionsfähig
- Langsamer + teurer als SRAM
- Unterschied zwischen EEPROM und Flash: nur in der Architektur (NOR vs. NAND), nicht in der Technologie

- Geschichte: Was ist ein FPGA (nicht)?
- Technologie
- Architektur
- Entwurf

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-19

FPGA = Synchrone Logik

"kritischer Pfad" begenzt max. Taktrate

Takterzeugung und -verteilung

- Dedizierte Clock Pins zum Anschluss eines Oszillators mit f_{ref}
- PLLs erzeugen davon abgeleitete Clock Signale $f = M / D f_{ref}$ mit einstellbaren Phasen (z.B. Virtex-5: $f \le 550$ MHz, $M \le 33$, $D \le 32$)
- Separate gepufferte ("lokale") Clock-Netze zum Ausgleich von Laufzeiten und Lasten an den Clock Pfaden

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-21

FPGA-Makros: Block RAM

- Einzelne Flip-Flops sind ineffizient für größere Speicherblöcke
- → Embedded SRAM-Blöcke im Fabric verteilt (insgesamt bis zu mehreren MB) "Block RAM" oder BRAM

Hard Makro: I/O

- Über 1000 I/O-Pins pro FPGA möglich mit verschiedensten Standards
- Digitally-Controlled Impedance (DCI), on-chip active I/O termination
- Delay-Equalization in 75 ps Schritten (DLL) für z.B. parallele Busse

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-23

Weitere FPGA-Makros

- Komplexe 32 bit uC-Cores (z.B. von ARM) als Hard-Makros
- Kleinere uPs werden oft als Soft-Makro implementiert (Xilinx: Picoblaze, Microblaze)
- Serializer / Deserializer (Hard-Makro) für bis zu 25 GB/s pro differenziellem I/O-Kanal
- Unzählige Softmakros kommerziell oder als OpenCore verfügbar
- Komponenten werden oft verbunden über ein Bussystem mit ARM Advanced Microcontroller Bus Architecture (AMBA)
 - Advanced eXtensible Interface Bus (AXI)
 - Advanced Peripheral Bus (APB)
 - **...**

Was ist ein FPGA?

- Geschichte: Was ist ein FPGA (nicht)?
- Technologie
- Architektur
- Entwurf

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-25

Design Software

VHDL / Verilog

Erlaubt Entwurf auch sehr komplexer Systeme – aber viel Erfahrung nötig!

Blocksets (hardwarespezifisch)

Vom FPGA-Hersteller zur Verfügung gestellte Blöcke erlauben grafischen Entwurf, eher für geringere Komplexität geeignet

Matlab / Simulink (Mathworks)

Quasi-Standard für System Level Simulationen / Design, sollte begleitend zum Kurs installiert werden. Zusätzliche Tools bzw. -boxen ermöglichen automatisierte Hardwaresynthese aus Simulinkmodellen:

Simulink HDL Coder: Toolbox, generiert synthetisierbaren VHDL oder Verilog-Code aus Simulink / Stateflow – Designs (unabhängig von Zielplattform)

Xilinx System Generator: Hardwarespezifische Blocksets für Simulink, die synthetisierbaren HDL-Code für die entsprechende Plattform erzeugen

4-Bit Addierer in VHDL


```
entity Adder_VHDL is
  port(
    a, b: in std_logic_vector (3 downto 0);
    sum: out std_logic_vector (3 downto 0);
    cout : out std_logic
    );
end entity Adder_VHDL;

architecture Behavioral of Adder_VHDL is
signal sum_sig: std_logic_vector (4 downto 0);
begin
    sum_sig <= ("0" & a) + b;
    sum <= sum_sig (3 downto 0);
    cout <= sum_sig (4);
end architecture Behavioral;</pre>
```

2010

Dr.-Ing. Jörg Vollrath 27

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-27

Simulink / System Generator

Simulink / Xilinx System Generator (2)

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-29

Die Zukunft ist da: System-On-Chip

Xilinx ZYNQ-7000 System-On-Chip, 2x ARM Cortex A9 Processor 800 MHz 10 ... 20 €

Vergleichbar:

- Actel Fusion,
- Cypress PSoC,
- Altera SoC

.

Design Prozess ???

Produktion von kundenspezifischen ICs wird mit jedem Technologieknoten exponenziell teurer

Sind FPGAs die Kakerlaken, die übrig bleiben, wenn sich der Staub von Moore's Apolypse gelegt hat?

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-32

Atlys FPGA-Boards (SPARTAN-6)

- 15 Stück (180 €) für Praktikum DSV auf FPGAs und fürs Labor bestellt
- Simulink / System Generator Support (Lizenzen?)
- Hardware-in-the-Loop
- HDMI, Audio Codec, USB, GB Ethernet, ...
- PMOD-Interface

© Digilent

System Level Design Software = Mathworks?

- Simulation ist zentraler Teil der Systementwicklung (und der Lehre) von DSV Systemen
- Quasi-Monopol von Mathworks mit Matlab / Simulink
- Für Hochschulen vergleichsweise unfreundliche Lizenzpolitik

Fragestellung: Gibt es Alternativen, die ...

- DSV-Simulationen mit Wortlängeneffekten
- automatisierte Generierung von FPGA / DSP Code
- Kommunikation mit Messgeräten, HW / SW-Cosimulation, ...

... für Studierende, Professor und Laborprojekte erlauben?

Prof. Dr. Christian Münker

Oct 2, 2015

Digitale Signalverarbeitung auf FPGAs 0-34