LA DÉRIVATION E05C

EXERCICE N°1 Méthode : dérivée et tableau de variation

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné, puis dresser le tableau de signes de f' et en déduire son tableau de variations sur I.

1)
$$f: x \mapsto x^3 - \frac{3}{2}x^2 - 6x + 4$$
 $I =]-4; 4[$

• f est une somme de fonctions de référence définies et dérivables sur I donc f l'est aussi et pour tout $x \in I$,

$$f'(x) = 3x^2 - 3x - 6 = 3(x^2 - x - 2)$$

• On remarque que -1 et 2 sont des racines évidentes, on peut donc écrire : f'(x) = 3(x+1)(x-2)

et dresser le tableau de signes suivant :

х	-4	<u> </u>	-1		2		4
3		+		+	1	+	
<i>x</i> + 1		_	0	+	1	+	
x-2		_		_	0	+	
f'(x)		+	0	_	0	+	
f'(x)	-60		7,5		6		20

2)
$$f: x \mapsto 9x - 5 + \frac{16}{x - 2}$$
 $I =]3; 6[$

• f est une somme de fonctions de référence définies et dérivables sur I donc f l'est aussi et pour tout $x \in I$,

$$f'(x) = 9 - \frac{16}{(x-2)^2} = \frac{9(x-2)^2 - 16}{(x-2)^2} = \frac{[3(x-2)-4][3(x-2)+4]}{(x-2)^2} = \frac{(3x-10)(3x-2)}{(x-2)^2}$$

On cherche toujours à avoir une forme factorisée.

x	$\frac{10}{3}$
3x-10	- +
3x-2	+ 0 +
$(x-2)^2$	+ +
f'(x)	+ 0 +
f(x)	38 53

LA DÉRIVATION E05C

EXERCICE N°2 Étude de fonction avec une fonction auxiliaire

On se propose d'étudier la fonction $f: x \mapsto \sqrt{\frac{1}{3}x^3 - x + 2}$ sur I =]-2; 2[.

Partie n°1 : f est définie et dérivable sur I .

On pose $g: x \mapsto \frac{1}{3}x^3 - x + 2$

1) Montrer que la fonction g est définie et dérivable sur I.

g est une somme de fonctions de références, définies et dérivables sur I donc elle l'est aussi.

2) Étudier le signe de g' sur I.

Commençons par déterminer g'.

Pour tout $x \in \mathbb{R}$,

$$g'(x) = x^2 - 1 = (x - 1)(x + 1)$$

x	-2		-1		1		2
x-1		_		_	0	+	
x+1		_	0	+		+	
g'(x)		+	0	_	0	+	

3) Dresser alors le tableau de variations de g sur I.

х	-2		-1		1		2
g'(x)		+	0	_	0	+	
g(x)	$\frac{4}{3}$		$\frac{8}{3}$		$\frac{4}{3}$		₹ 3 × 3

4) En déduire le signe de g sur I à l'aide de ses extrema sur I.

D'après son tableau de variation, g possède un minimum sur I qui est $\frac{4}{3}$, ce qui signifie que:

$$\forall x \in I , g(x) \ge \frac{4}{3} > 0 .$$

Ainsi, g est strictement positive sur I.

5) Justifier alors que f est bien définie et dérivable sur I.

Pour tout
$$x \in I$$
,
 $f(x) = \sqrt{g(x)}$

La fonction racine carrée étant définie et dérivable sur]0; $+\infty[$, pour que f soit dérivable sur I, il faut et il suffit que :

$$\forall x \in I, g(x) \in]0; +\infty[$$
.

C'est bien le cas d'après la question 4).

Donc f est bien définie et dérivable sur I.

Partie n°2 : étude de f sur I.

6) Déterminer f', la fonction dérivée de la fonction f sur I.

Pour tout
$$x \in I$$
,
 $f'(x) = \frac{g'(x)}{2\sqrt{g(x)}}$

$$f'(x) = \frac{(x-1)(x+1)}{2\sqrt{\frac{1}{3}x^3 - x + 2}}$$

7) Étudier le signe de f' sur I.

x	-2		-1		1		2
x-1		_		_	0	+	
x+1		_	0	+		+	
$\sqrt{\frac{1}{3}x^3 - x + 2}$		+		+		+	
f'(x)		+	0	_	0	+	

8) Dresser alors le tableau de variations de f sur I.

х	-2		-1		1		2
f'(x)		+	0	_	0	+	
f(x)	$\frac{2}{3}\sqrt{3}$		$\sqrt{\frac{2}{3}}\sqrt{6}$		$\frac{2}{3}\sqrt{3}$		$\frac{2}{3}\sqrt{6}$

