

1/8

Fig. 1

Fig. 2

2/8

Fig. 3

Fig. 4

3/8

Fig. 5

Fig. 6

$I_d[A]$	0.0001	0.0002	0.0005	0.001	0.002
I_{subQ}/I_{dratio}					
0.01	5.0E-08	1.3E-07	4.8E-07	1.3E-06	3.3E-06
0.02	7.5E-07	2.0E-06	7.1E-06	1.9E-05	5.0E-05
0.05	2.7E-05	7.0E-05	2.5E-04	6.7E-04	1.8E-03
0.1	4.0E-04	1.1E-03	3.8E-03	1.0E-02	2.6E-02
0.2	5.9E-03	1.6E-02	5.7E-02	1.5E-01	3.9E-01

4/8

Fig. 7

$I_{subQ}/Idratio$	$Id[A]$	0.0001	0.0002	0.0005	0.001	0.002
0.01		4.7E-08	1.3E-07	4.9E-07	1.2E-06	3.6E-06
0.02		7.0E-07	1.9E-06	7.3E-06	1.9E-05	5.3E-05
0.05		2.5E-05	6.7E-05	2.6E-04	6.6E-04	1.9E-03
0.1		3.7E-04	1.0E-03	4.0E-03	1.1E-02	2.5E-02
0.2		5.8E-03	1.5E-02	5.9E-02	1.4E-01	4.0E-01

Fig. 8

5/8

Fig. 9

<i>I_d[A]</i>	0.0001	0.0002	0.0005	0.001	0.002
<i>I_{subQ}/Idratio</i>					
0.01	8.4E-08	2.3E-07	8.8E-07	2.3E-06	5.5E-06
0.02	1.3E-06	3.4E-06	1.3E-05	3.4E-05	8.1E-05
0.05	4.5E-05	1.2E-04	4.7E-04	1.2E-03	2.9E-03
0.1	6.7E-04	1.7E-03	6.0E-03	1.6E-02	4.1E-02
0.2	9.8E-03	2.6E-02	9.0E-02	2.5E-01	6.6E-01

Fig. 10

6/8

Fig. 11

Fig. 12

Fig. 13 7A 20

8/8

Fig. 14

FIG. 1

FIG. 2

FIG. 3

FIG. 4

(DEVICE STRUCTURE)	
IMPURITY CONCENTRATION OF P-TYPE SUBSTRATE	$3 \times 10^{17} \text{ cm}^{-3}$
GATE OXIDE FILM THICKNESS	6nm
GATE ELECTRODE	N-TYPE POLYSILICON
GATE LENGTH	$0.3 \mu \text{m}$
SOURCE/DRAIN DIFFUSION LAYER MAXIMUM CONCENTRATION	$1 \times 10^{20} \text{ cm}^{-3}$
SOURCE/DRAIN DIFFUSION LAYER JUNCTION DEPTH	$0.08 \mu \text{m}$
DEVICE WIDTH	$1 \mu \text{m}$

5/7

FIG. 5A

	NO GR	SRH ONLY	II ONLY	BBT ONLY	ALL
SOURCE CURRENT	4.08E-17	1.38E-17	1.37E-17	4.17E-19	1.29E-18
DRAIN CURRENT	4.07E-17	6.78E-17	6.72E-17	9.45E-14	9.63E-14
SUBSTRATE CURRENT	3.37E-18	9.41E-18	1.72E-18	9.45E-14	9.62E-14

FIG. 5B

SOURCE CURRENT	1.29E-18
DRAIN CURRENT	9.63E-14
SUBSTRATE CURRENT	9.62E-14

MECHANISM	VOLUME INTEGRAL VALUE X PRIME CHARGE
J_{SRHn}	1.50E-17
J_{II_n}	1.68E-15
J_{BBTn}	9.45E-14

6/7

FIG. 6A

	NO GR	SRH ONLY	II ONLY	BBT ONLY	ALL
SOURCE CURRENT	4.08E-04	4.48E-04	4.48E-04	4.48E-04	4.48E-04
DRAIN CURRENT	4.08E-04	4.48E-04	4.48E-04	4.48E-04	4.48E-04
SUBSTRATE CURRENT	4.66E-18	1.59E-17	4.33E-08	4.66E-18	4.33E-08

FIG. 6B

SOURCE CURRENT	4.48E-04
DRAIN CURRENT	4.48E-04
SUBSTRATE CURRENT	4.33E-08

MECHANISM	VOLUME INTEGRAL VALUE X PRIME CHARGE
J_{SRHn}	4.78E-14
J_{II_n}	4.33E-08
J_{BBTn}	0.00E+00

FIG. 7A

$$\frac{\delta n}{\delta t} = \frac{1}{q} \vec{\nabla} \cdot \vec{J}_n + GR_n$$

FIG. 7B

$$GR_n = GR_{SRHn} + GR_{II_n} + GR_{BBTn}$$

FIG. 7C

$$A_{SRHn} = \int_{Si} GR_{SRHn} dv$$

FIG. 7D

$$A_{II_n} = \int_{Si} GR_{II_n} dv$$

FIG. 7E

$$A_{BBTn} = \int_{Si} GR_{BBTn} dv$$

FIG. 7F

$$J_{SRHn} = q \int_{Si} GR_{SRHn} dv$$

FIG. 7G

$$J_{II_n} = q \int_{Si} GR_{II_n} dv$$

FIG. 7H

$$J_{BBTn} = q \int_{Si} GR_{BBTn} dv$$