§7参数估计

统计 推断 的 基本 问题 假设检 验问题

参数估计的类型

点估计(point Estimation) —— 估计未知参数的值

区间估计(interval Estimation)—— 估计未知参数的 取值范围,使得这个范围包含未知参数真值的 概率为给定的值.

§ 7.1 点估计

一、点估计问题的一般提法

设总体X 的分布函数的形式已知,但含有一个或多个未知参数: $\theta_1, \theta_2, ..., \theta_k$

设 $X_1, X_2, ..., X_n$ 为总体的一个样本构造 k 个统计量:

$$\left.\begin{array}{l} \theta_{\mathbf{1}}(X_{\mathbf{1}},X_{\mathbf{2}},\cdots,X_{n}) \\ \theta_{\mathbf{2}}(X_{\mathbf{1}},X_{\mathbf{2}},\cdots,X_{n}) \\ \cdots \\ \theta_{k}(X_{\mathbf{1}},X_{\mathbf{2}},\cdots,X_{n}) \end{array}\right\}$$
 随机变量

并建立k个方程。

当测得样本值 $(x_1, x_2,...,x_n)$ 时,代入上述方程组,即可得到 k 个数:

称数 $\hat{\theta}_1 \cdots, \hat{\theta}_k$ 为未知参数 $\theta_1, \cdots, \theta_k$ 的估计值 $\}$ 通称估计对应统计量为未知参数 $\theta_1, \cdots, \theta_k$ 的估计量 $\}$ 简记为 $\hat{\theta}_1$

例1 在某纺织厂细纱机上的 断头次数 X 是一个随机变量, 假设它服从以 $\lambda > 0$ 为参数的泊松分布,参数 λ 为未知, 现检查了 150 只纱锭在某一时间段内断头的次数, 数据如下, 试估计参数 λ .

 断头次数 k
 0
 1
 2
 3
 4
 5
 6

 断头 k 次的纱锭数 n_k
 45
 60
 32
 9
 2
 1
 1
 150

解先确定一个统计量 \overline{X} , 再计算出 \overline{X} 的观察值 \overline{x} , 把 \overline{x} 作为参数 λ 的估计值.

(由大数定律, $\lim_{n\to\infty} P\{|\frac{1}{n}\sum_{i=1}^n X_i - \mu|<\varepsilon\}=1$)

 $\bar{x} = 1.133$. λ 的估计值为 1.133.

二、估计量的求法

由于估计量是样本的函数,是随机变量,故 对不同的样本值,得到的参数值往往不同,如何 构造统计量、如何评价估计量的好坏是关键问 题.

常用构造估计量的方法: (两种) 矩估计法和最大似然估计法.

1. 矩估计法

设X为连续型随机变量,其概率 密度为 $f(x;\theta_1,\theta_2,\cdots,\theta_k)$,或X为离散 型随机变量,其分布律为

且均为 $\theta_1, \theta_2, \dots, \theta_k$ 的函数, 即

 $\mu_l = E(X^l) = \int_{-\infty}^{+\infty} x^l f(x; \theta_1, \theta_2, \dots, \theta_k) dx \quad (X$ 连续型) 或 $\mu_l = E(X^l) = \sum x^l p(x; \theta_1, \theta_2, \dots, \theta_k), \quad (X$ 为离散型)¹⁰

其中 R_X 是x可能取值的范围, $l=1,2,\dots,k$ 若总体X的 数学期望 $E(X)=\mu$ 存在

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} E(X) = \mu$$

$$\downarrow \downarrow$$

$$1 \sum_{i=1}^{n} x_{i} \xrightarrow{P} -x_{i} + x_{i}$$

 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} E(X^k) = \mu_k \ (k = 1, 2, \dots)$

 $g(A_1,A_2,\cdots,A_k) \xrightarrow{P} g(\mu_1,\mu_2,\cdots,\mu_k)$ 其中 g 为连续函数 .

这表明,当样本容量很大时,在统计上,可以 用样本矩去估计总体矩.这一事实导出矩估计法。

矩估计法的定义

用样本矩来估计总体矩,用样本矩的连续函数来估计总体矩的连续函数,这种估计法称为矩估计法.

理论依据: 大数定律

矩估计法的具体做法:

设总体的分布函数中含有k个未知参数 $\theta_1, \theta_2, \dots, \theta_k$,那么它的前k阶矩 $\mu_1, \mu_2, \dots, \mu_k$,一般都是这 k 个 参数的函数,记为:

$$\mu_i = \mu_i(\theta_1, \theta_2, \dots, \theta_k)$$
 $i=1,2,\dots,k$

从这 k 个方程中解出

$$\theta_i = \theta_i(\mu_1, \mu_2, \dots, \mu_k)$$
 $j=1,2,\dots,k$

那么用诸 μ_i 的估计量 A_i 分别代替上式中的诸 μ_i ,即可得诸 θ_i 的矩估计量:

$$\hat{\theta}_{j} = \theta_{j}(A_{1}, A_{2}, \dots, A_{k})$$
 $j=1,2,\dots,k$

矩估计量的观察值称为矩估计值.

例2 设总体 X 在 [a,b] 上服从均匀分布,其中a,b 未知, (X_1, X_2, \dots, X_n) 是来自总体 X 的样本,求a,b 的估计量.

$$\mu_1 = E(X) = \frac{a+b}{2},$$

$$\mu_2 = E(X^2) = D(X) + [E(X)]^2 = \frac{(a-b)^2}{12} + \frac{(a+b)^2}{4},$$

$$\frac{a+b}{2} = A_1 = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

$$\frac{(a-b)^2}{12} + \frac{(a+b)^2}{4} = A_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2,$$

14

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$\begin{cases} a+b=2A_1, \\ b-a=\sqrt{12(A_2-A_1^2)}. \end{cases}$$

解方程组得到a, b的矩估计量分别为

$$\hat{a} = A_1 - \sqrt{3(A_2 - A_1^2)} = \overline{X} - \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2},$$

$$\hat{b} = A_1 + \sqrt{3(A_2 - A_1^2)} = \overline{X} + \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}.$$

例3 设总体 X 的均值 μ 和方差 σ^2 都存在,且有 $\sigma^2 > 0$,但 μ 和 σ^2 均为未知,又设 X_1, X_2, \dots, X_n 是 一个样本,求 μ 和 σ^2 的矩估计量.

$$\mu_1 = E(X) = \mu,
\mu_2 = E(X^2) = D(X) + [E(X)]^2 = \sigma^2 + \mu^2,
\Leftrightarrow \begin{cases} \mu = A_1, \\ \sigma^2 + \mu^2 = A_2. \end{cases}$$

 $(\sigma + \mu = A_2)$. 解方程组得到矩估计量分别为 $\hat{\mu} = A_1 = \overline{X}$,

$$\hat{\sigma}^2 = A_2 - A_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = S_n^2.$$

...

上例表明:

总体均值与方差的矩估计量的表达式不因不 同的总体分布而异.

例 $X \sim N(\mu, \sigma^2)$, μ , σ^2 未知, 即得 μ , σ^2 的矩估计量 $\hat{\mu} = \overline{X}, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$

一般地,

用样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 作为总体X的均值的矩估计,用样本二阶中心矩 $B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$ 作为总体X的方差的矩估计.

□ 最大似然估计法(maximum likelihood)

2. 最大似然估计法

它是在总体类型已知条件下使用的一种 参数估计方法.

它首先是由德国数学家<mark>高斯</mark>在 1821年提出的.然而,这个方法常 归功于英国统计学家费舍儿.

费舍儿在1922年重新发现了 这一方法,并首先研究了这种方 法的一些性质.

②包方法:一次试验就出现的事件有较大的概率

例如: 有两个外形相同的箱子,都装有100个球一号箱 99个白球, 1个红球一号箱 1个白球, 99个红球

现从两箱中任取一箱,并从箱中任取一球, 结果所取得的球是白球。

问 所取的球来自哪一箱?

答: 极有可能是第一箱.

基本思想:

如: 甲.乙两人比较射击技术,分别射击目标一次,甲中而乙未中,则可以认为:甲射击技术 优于乙射击技术.

实际问题(医生看病、公安人员破案、技术人员进行质量检验等)尽管千差万别,但他们具有一个共同的规律,即在获得了观察资料之后,给参数选取一个数值,使得前面的观察结果出现的可能性最大.

最大似然估计就是通过样本值 x_1, \dots, x_n 来求得总体的分布参数,使得 X_1, \dots, X_n 取值为 x_1, \dots, x_n 的概率最大.

__

似然函数的定义

设总体X的概率密度为 $f(x;\theta)$ (或分布律 $P\{X=k\}$ = $p(x;\theta)$), θ 为待估参数, $\theta \in \Theta$,

 $(其中\Theta 是 \theta$ 可能的取值范围)

 X_1, X_2, \cdots, X_n 是来自总体 X的样本,

则 X_1, X_2, \dots, X_n 的联合密度为 $\prod_{i=1}^n f(x_i; \theta)$

(或分布律为 $\prod_{i=1}^{n} p(x_i;\theta)$).

又设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的一个样本值.

离散型:

则样本 X_1, X_2, \dots, X_n 取到观察值 x_1, x_2, \dots, x_n 的概率,即事件 $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$ 发生的概率为

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta), \quad \theta \in \Theta,$$
连续型:

则随机点 (X_1, X_2, \cdots, X_n) 落在点 (x_1, x_2, \cdots, x_n) 的 邻域(边长分别为 dx_1, dx_2, \cdots, dx_n 的n维立方体)内的概率近似地为 $\prod_{i=1}^n f(x_i; \theta) dx_i$,

 $L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta),$

 $L(\theta)$ 称为样本似然函数.

22

最大似然估计法

得到样本值 x_1, x_2, \dots, x_n 时,选取使似然函数 $L(\theta)$

取得最大值的 $\hat{\theta}$ 作为未知参数 θ 的估计值,

即 $L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta).$ (其中 Θ 是 θ 可能的取值范围)

这样得到的 $\hat{\theta}$ 与样本值 x_1, x_2, \cdots, x_n 有关,记为

 $\hat{\theta}(x_1, x_2, \dots, x_n)$,参数 θ 的最大似然估计值

 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 参数 θ 的最大似然估计量

最大似然估计法是由费舍尔引进的.

求最大似然估计量的步骤:

(一) 写出似然函数

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n p(x_i; \theta)$$

或 $L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta);$

(二) 取对数

 $\ln L(\theta) = \sum_{i=1}^{n} \ln p(x_i; \theta) \quad \overrightarrow{\mathbb{Q}} \quad \ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i; \theta);$

(三) 对
$$\theta$$
 求导 $\frac{d \ln L(\theta)}{d \theta}$, 并令 $\frac{d \ln L(\theta)}{d \theta} = 0$ 对数似

解方程即得未知参数 θ 的最大似然估计值 $\hat{\theta}$.

最大似然估计法也适用于分布中含有多个 未知参数的情况.

$$L(x_1,\dots,x_n;\theta_1,\dots,\theta_k)$$

若 $L(x_1, \dots, x_n; \theta_1, \dots, \theta_k)$ 关于 $\theta_1, \dots, \theta_k$ 可微,则

$$\frac{\partial}{\partial \theta_i} \ln L = 0$$
, $i = 1, 2, \dots, k$. 对数似然方程组

解出由 k 个方程组成的方程组,即可得各未知参数 θ_i ($i = 1, 2, \dots, k$) 的最大似然估计值 $\hat{\theta}_i$.

例4 设 $X \sim b(1, p), X_1, X_2, \dots, X_n$ 是来自X的一个样本, 求p的最大似然估计量.

解 设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的一个样本值,

X的分布律为
$$P{X = x} = p^x (1-p)^{1-x}, x = 0,1,$$

似然函数
$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

26

$$\ln L(p) = \left(\sum_{i=1}^{n} x_{i}\right) \ln p + \left(n - \sum_{i=1}^{n} x_{i}\right) \ln(1-p),$$

$$\Leftrightarrow \frac{d}{dp} \ln L(p) = \frac{\sum_{i=1}^{n} x_{i}}{p} - \frac{n - \sum_{i=1}^{n} x_{i}}{1-p} = 0,$$

解得 p 的最大似然估计值 $p = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$.

p的最大似然估计量为 $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$.

这一估计量与矩估计量是相同的.

例5 设总体 $X \sim N(\mu, \sigma^2)$, μ, σ^2 为未知参数, x_1, x_2, \dots, x_n 是来自 X的一个样本值, 求 μ 和 σ^2 的最大似然估计量.

解 X的概率密度为

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

X的似然函数为

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x_i - \mu)^2}{2\sigma^2}},$$

2

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2,$$

$$\begin{cases} \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = 0, \\ \frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) = 0, \end{cases}$$

$$\begin{cases} \frac{1}{\sigma^2} \left[\sum_{i=1}^n x_i - n\mu \right] = 0, \\ -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0, \end{cases}$$

由
$$\frac{1}{\sigma^2} \left[\sum_{i=1}^n x_i - n\mu \right] = 0$$
解得
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x},$$

由
$$-\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0$$
解得

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

故 μ 和 σ^2 的最大似然估计量分别为

$$\hat{\mu} = \overline{X}, \ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
. 它们与相应的矩估计量相同.

例6 设总体 X 在 [a,b] 上服从均匀分布,其中 a, b未知, x_1, x_2, \dots, x_n 是来自总体 X 的一个样本值, 求 a,b 的最大似然估计量.

解 记
$$x_{(l)} = \min(x_1, x_2, \dots, x_n),$$

 $x_{(h)} = \max(x_1, x_2, \dots, x_n),$

X的概率密度为

$$f(x; a, b) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{其他.} \end{cases}$$

因为 $a \le x_1, x_2, \dots, x_n \le b$ 等价于 $a \le x_{(1)}, x_{(h)} \le b$, 作为a,b的函数的似然函数为

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n}, & a \le x_{(l)}, \ b \ge x_{(h)}, \\ 0, & 其他 \end{cases}$$

于是对于满足条件 $a \le x_{(l)}, b \ge x_{(h)}$ 的任意a,b有

$$L(a,b) = \frac{1}{(b-a)^n} \le \frac{1}{(x_{(h)} - x_{(l)})^n},$$

即似然函数 L(a,b) 在 $a=x_{(l)},\ b=x_{(h)}$ 时 取到最大值 $(x_{(h)} - x_{(l)})^{-n}$,

a, b 的最大似然估计值

$$\hat{a} = x_{(l)} = \min_{1 \le i \le n} x_i, \quad \hat{b} = x_{(h)} = \max_{1 \le i \le n} x_i,$$

a,b 的最大似然估计量

$$\hat{a} = \min_{1 \le i \le n} X_i, \qquad \hat{b} = \max_{1 \le i \le n} X_i.$$

最大似然估计的性质(不变性)

设 θ 的函数 $u = u(\theta), \theta \in \Theta$ 具有单值反函 数 $\theta = \theta(u), u \in \mathcal{U}$ 又设 $\hat{\theta}$ 是 X 的概率密度函 数 $f(x;\theta)$ (f形式已知)中的参数 θ 的最大似然 估计,则 $\hat{u} = u(\hat{\theta})$ 是 $u(\theta)$ 的最大似然估计.

证明 因为 $\hat{\theta}$ 是 θ 的最大似然估计值,

所以 $L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta)$,

其中 x_1, x_2, \dots, x_n 是来自总体X的一个样本值,

由于 $\hat{u} = u(\hat{\theta}), \hat{\theta} = \theta(\hat{u}),$ 故 $L(x_1, x_2, \dots, x_n; \theta(\hat{u})) = \max_{u \in \theta} L(x_1, x_2, \dots, x_n; \theta(u)),$

于是 $\hat{u} = u(\hat{\theta})$ 是 $u(\theta)$ 的最大似然估计.

如 在正态总体 $N(\mu,\sigma^2)$ 中, σ^2 的极大似然估计 值为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$

 $\sigma = \sqrt{\sigma^2}$ 是 σ^2 的单值函数,且具有单值反函数, 故 σ 的极大似然估计值为

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

 $\lg \sigma$ 的极大似然估计值为

$$\mathbf{lg} \overset{\wedge}{\sigma} = \mathbf{lg} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

矩估计就不具有这个性质.

例如 设 X 的密度函数为

$$f(x) = \begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{\sigma} e^{-\frac{x^2}{2\sigma^2}} & x > 0 \\ 0 & x \le 0 \end{cases} \quad E(X) = \sqrt{\frac{2}{\pi}} \sigma, \ D(X) = \left(1 - \frac{2}{\pi}\right)\sigma^2$$

 $X_1, X_2, ..., X_n$ 为总体的样本

由矩法,令
$$E(X) = \sqrt{\frac{2}{\pi}} \sigma = \overline{X}$$

$$E(X^2) = D(X) + E^2(X) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

 $E(X^2) = D(X) + E^2(X) = \sigma^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$ 得 σ 与 σ^2 的矩法估计量为 $\hat{\sigma} = \sqrt{\frac{\pi}{2}} X$

不具有不变性——
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \neq (\hat{\sigma})^2$$

三、小结

两种求点估计的方法: { 矩估计法 最大似然估计法

在统计问题中往往先使用最大似然估计法, 在最大似然估计法使用不方便时, 再用矩估计法.

似然函数
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta)$$

或
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta);$$