5 锁存器与触发器

- 5.1、双稳态存储单元电路
- 5.2、锁存器
- 5.3、触发器

锁存器:在E的高(低)电

平期间对信号敏感

触发器:在CP的上升沿(下

降沿)对信号敏感

(1)
$$CP = 1$$
 = 1 : $E_{\rm m} = 1$, $E_{\rm s} = 0$

主锁存器:输入信号D 送入主锁存器 , Q_m 跟随D端的状态变化 , 使 Q_m =D

从锁存器: Q维持在原来的状态不变。

(2) CP = 0时: $E_{\rm m} = 0$, $E_{\rm s} = 1$

主锁存器:输入信号D 不能送入主锁存器 ,主锁存器 Q_m 保持不变 (E_m 从有效到无效之前D的状态)。

从锁存器: $Q=Q_m$ 后,将保持不变

触发器的状态Q仅取决于CP信号下降沿到达前瞬间的D信号。

逻辑符号

逻辑功能表

D	Q ⁿ	Q^{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

特性方程

 $\mathbf{Q}^{n+1} = \mathbf{D}$

状态转换图

工作波形

5.3 D触发器——74HC74

74HC/HCT74的功能表

具有直接置1、直接置0,正边沿触发的D功能触发器

5.3 D触发器——带置位和复位信号的波形

5.3 D触发器——D触发器的动态特性

动态特性反映其触发器对输入信号和时钟信号间的时间要求, 以及输出状态对时钟信号响应的延迟时间 保持时间 0ns 脉冲宽度 建立时间 6ns 2ns $t_{
m SU}$ **C**1 tw t_{PHL} $T_{\rm cmin}$ 1**D** $t_{\rm PL}$ 传输延时时间 传输延时时间 14ns 14ns 10

5.3 D触发器——Verilog描述

时钟上升沿有效,异步复位置位信号高电平有效

```
always @ (posedge clk or posedge rst or posedge set)
begin
if(rst) q=1'b0;
else if(set) q=1'b1;
else q=d;
end
```

时钟下降沿有效,异步复位置位信号低电平有效

```
always @ (negedge clk or negedge rst or negedge set)
begin
if(!rst) q=1'b0;
else if(!set) q=1'b1;
else q=d;
end
```

5.3 D触发器——Verilog描述

时钟上升沿有效,同步复位置位信号高电平有效

```
always @ (posedge clk)
begin
    if(rst) q=1'b0;
    else if(set) q=1'b1;
    else q=d;
end
```

时钟下降沿有效,同步复位置位信号低电平有效

```
always @ (negedge clk)
begin
    if(!rst) q=1'b0;
    else if(!set) q=1'b1;
    else q=d;
end
```

5.3 D触发器——Verilog描述

```
例:
时钟:上升沿有效;
复位:异步,低电平有效;
置位:同步,高电平有效。
```

```
always @ (posedge clk or negedge rst)
begin
if(!rst) q=1'b0;
else if(set) q=1'b1;
else q=d;
end
```

5.3 D触发器——带使能信号的D触发器

功能: (1) En=0, Q 保持不变。

(2) En=1, 在CP作用下, Q=D。

哪一个电路更好呢?

5.3 JK触发器

5.3 JK触发器

功能表

J	K	Q ⁿ	Q^{n+1}	说 明
0	0	0	0	北大 了並
0	0	1	1	状态不变
0	1	0	0	= 0
0	1	1	0	置の
1	0	0	1	
1	0	1	1	置 1
1	1	0	1	翻转
1	1	1	0	翻转

特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

状态转换图

5.3 JK触发器

画出触发器的工作波形

5.3 T触发器

功能表

VD100 P V				
T	Q ⁿ	Q^{n+1}		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

逻辑符号

特性方程

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

状态转换图

5.3 T触发器

由D 触发器构成 T 触发器

$$Q^{n+1} = D$$

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n$$

$$D = T\overline{Q} + \overline{T}Q = T \oplus Q$$

如果用同或呢?

5.3 T'触发器

上升沿触发的T'触发器

逻辑符号

时钟脉冲每作用一次,触发器翻转一次。

特性方程

$$Q^{n+1} = \overline{Q^n}$$

5.3 T'触发器

D 触发器构成 T' 触发器

$$Q^{n+1} = D$$

$$Q^{n+1} = \overline{Q^n}$$
 $D = \overline{Q^n}$

$$D = \overline{Q^n}$$

5.3 触发器小结

- 触发器是时序逻辑电路的基本组成部件,尤其是D触发器和JK触发器
- 如何画工作波形
 - -异步复位和置位信号,优先级高
 - -上升沿或下降沿敏感
 - -依据输入和触发器当前状态确定其跳转状态
 - -触发器的特性方程