ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ

Ústav mechaniky tekutin a termodynamiky

DIPLOMOVÁ PRÁCE

Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací

MASTER THESIS

Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations

Autor práce: Bc. Josef Krubner

Vedoucí práce: Ing. Michal Schmirler, Ph.D.

Konzultant: doc. Ing. Jan Halama, Ph.D.

Akademický rok 2021/2022

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení: Krubner Jméno: Josef Osc	obní číslo:	473541
------------------------------------	-------------	--------

Fakulta/ústav: Fakulta strojní

Zadávající katedra/ústav: Ústav mechaniky tekutin a termodynamiky

Studijní program: Aplikované vědy ve strojním inženýrství

Specializace: Matematické modelování v technice

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název	dinl	omové	nráce:
INAZEV	ulul	UIIIUVE	DIACE.

Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací

Název diplomové práce anglicky:

Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations

Pokyny pro vypracování:

- 1) Popište problematiku měření teplot plynů proudících při vysokých podzvukových rychlostech, tedy s uvažováním jejich stlačitelnosti.
- 2) Popište princip fungování v názvu zmiňované DRTA sondy. Představte geometrii sondy, která bude výchozí pro další kroky v rámci návrhu zlepšení jejích termodynamických vlastností.
- 3) Popište CFD model, který budete pro simulaci termodynamických vlastností sondy používat (fyzikální model, okrajové podmínky, numerické schéma, způsoby diskretizace atd.).
- 4) Proveďte simulace vlivu jednotlivých vybraných konstrukčních úprav na termodynamické parametry sondy (hodnoty restitučních faktorů v závislosti na rychlosti nabíhajícího proudu, směrová citlivost, rozložení proudového a teplotního pole atd.)
- 5) Na základě výsledků provedených numerických simulací vyberte nejvhodnější geometrii sondy a vyhodnoťte její termodynamické vlastnosti.

_			
Seznam	doport	icene	literatury:

Dle pokynů vedoucího práce či konzultanta.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Schmirler, Ph.D. ústav mechaniky tekutin a termodynamiky FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

doc. Ing. Jan Halama, Ph.D. ústav technické matematiky FS

Datum zadání diplomové práce: 25.04.2022 Termín odevzdání diplomové práce: 29.07.2022

podpis vedoucí(ho) ústavu/katedry

Platnost zadání diplomové práce:

Ing. Michal Schmirler, Ph.D.

Ing. Michal Schmirler, Ph.D.

doc. Ing. Miroslav Španiel, CSc.

III. PŘEVZETÍ ZADÁNÍ

podpis vedoucí(ho) práce

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání Podpis studenta

Prohlášení	
Prohlašuji, že jsem bakalářskou práci na ností vysokorychlostní DRTA sondy pomoc statně. Veškerá použitá literatura a podkla seznamu literatury.	
V Praze, dne	Josef Krubner

Poděkování Tímto bych chtěl poděkovat Ing. Michalu Schmirlerovi, Ph.D., a doc. Ing. Janu Halamovi, Ph.D., za cenné rady a připomínky, které mi byly nápomocny při vypracování této diplomové práce. Dále bych rád poděkoval své rodině a své přítelkyni za podporu při studiu.

Anotační list

Název práce:	Zlepšení termodynamických vlastností vysokorychlostní DRTA sondy pomocí numerických simulací
Title:	Improvement of thermodynamic properties of a high-speed DRTA probe by numerical simulations
Autor:	Bc. Josef Krubner
Studijní program:	Aplikované vědy ve strojním inženýrství
Druh práce:	Diplomová
Vedoucí práce	Ing. Michal Schmirler, Ph.D.
Konzultant	doc. Ing. Jan Halama, Ph.D.
Abstrakt:	Práce se zaměřuje na vývoj DRTA sondy pro měření nízkých podzvukových rychlostí plynů, která je založena na principu měření rovnovážných teplot pomocí odporových teplotních snímačů s rozdílnými restitučními faktory. Zkoumán byl vliv dílčích konstrukčních úprav prototypu na jeho termodynamické vlastnosti s využitím CFD simulací. Z nabytých poznatků byla navržena nová geometrie sondy, jejíž chování bylo taktéž simulováno.
Abstract:	This work focuses on the design of high subsonic gas speed DRTA probe, which is based on the priciples of recovery temperature measurement using two RTD sensors with different recovery factors. Using CFD simulations, analysis of constructional changes' influence on the probe's thermodynamic properties were made. With the use of acquired knowledge new probe's prototype geometry was presented and analysed as well.
Klíčová slova:	návrh sondy pro měření rychlosti, měření rychlosti plynů, podzvukové proudění, restituční faktor, rovnovážná teplota, CFD simulace
Keywords:	velocimetry probe design, gas velocimetry, subsonic flow, recovery factor, recovery temperature, CFD simulation

Obsah

Seznam použitých symbolí	ů											7
Seznam symbolů a indexů		 										7
Seznam použitých indexů		 										7
Seznam obrázků												8

Seznam použitých symbolů

Seznam symbolů

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a	$\frac{m}{s}$	Rychlost zvuku
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c_p	$\frac{J}{kgK}$	Měrná tepelná kapacita za konstantního tlaku
k $\frac{m^2}{s^2}$ Turbulentní kinetická energieMa1Machovo číslo p Pa TlakPr1Prandtlovo číslo r $\frac{J}{kgK}$ Měrná plynová konstantaRe1Reynoldsovo číslo T K Termodynamická teplota T_r K Rovnovážná teplota u $\frac{m}{s}$ Rychlost proudění ε 1Chyba κ 1Poissonova konstanta ν $\frac{m^2}{s}$ Kinematická viskozita ν $\frac{kg}{m^3}$ Hustota	f	1	Restituční faktor
k $\frac{m^2}{s^2}$ Turbulentní kinetická energieMa1Machovo číslo p Pa TlakPr1Prandtlovo číslo r $\frac{J}{kgK}$ Měrná plynová konstantaRe1Reynoldsovo číslo T K Termodynamická teplota T_r K Rovnovážná teplota u $\frac{m}{s}$ Rychlost proudění ε 1Chyba κ 1Poissonova konstanta ν $\frac{m^2}{s}$ Kinematická viskozita ν $\frac{kg}{m^3}$ Hustota	h	$\frac{J}{kg}$	Měrná entalpie
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k		Turbulentní kinetická energie
Pr 1 Prandtlovo číslo $r \frac{J}{kgK} \text{Měrná plynová konstanta}$ Re 1 Reynoldsovo číslo $T K \text{Termodynamická teplota}$ $T_r K \text{Rovnovážná teplota}$ $u \frac{m}{s} \text{Rychlost proudění}$ $\varepsilon 1 \text{Chyba}$ $\kappa 1 \text{Poissonova konstanta}$ $\mu Pas \text{Dynamická viskozita}$ $\nu \frac{m^2}{s} \text{Kinematická viskozita}$ $\rho \frac{kg}{m^3} \text{Hustota}$	Ma	1	Machovo číslo
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p	Pa	Tlak
Re1Reynoldsovo číslo T K Termodynamická teplota T_r K Rovnovážná teplota u $\frac{m}{s}$ Rychlost proudění ε 1Chyba κ 1Poissonova konstanta μ Pas Dynamická viskozita ν $\frac{m^2}{s}$ Kinematická viskozita ρ $\frac{kg}{m^3}$ Hustota	Pr	1	Prandtlovo číslo
T K Termodynamická teplota T_r K Rovnovážná teplota u $\frac{m}{s}$ Rychlost proudění ε 1Chyba κ 1Poissonova konstanta μ Pas Dynamická viskozita ν $\frac{m^2}{s}$ Kinematická viskozita ρ $\frac{kg}{m^3}$ Hustota	r	$\frac{J}{kgK}$	Měrná plynová konstanta
T_r K Rovnovážná teplota u $\frac{m}{s}$ Rychlost proudění ε 1 Chyba κ 1 Poissonova konstanta μ ρ $\frac{m^2}{s}$ Kinematická viskozita ν $\frac{m^2}{s}$ Hustota	Re	1	Reynoldsovo číslo
u $\frac{m}{s}$ Rychlost proudění ε 1 Chyba κ 1 Poissonova konstanta μ Pas Dynamická viskozita ν $\frac{m^2}{s}$ Kinematická viskozita ρ Hustota	T	K	Termodynamická teplota
ε 1 Chyba κ 1 Poissonova konstanta μ Pas Dynamická viskozita ν $\frac{m^2}{s}$ Kinematická viskozita ρ $\frac{kg}{m^3}$ Hustota	T_r	K	Rovnovážná teplota
κ 1 Poissonova konstanta μ Pas Dynamická viskozita ν $\frac{m^2}{s}$ Kinematická viskozita ρ Hustota	u	$\frac{m}{s}$	Rychlost proudění
μ Pas Dynamická viskozita ν $\frac{m^2}{s}$ Kinematická viskozita ρ Hustota	ε	1	Chyba
$ \frac{m^2}{s} $ Kinematická viskozita $ \rho \qquad \frac{kg}{m^3} $ Hustota	κ	1	Poissonova konstanta
ρ Hustota	μ	Pas	Dynamická viskozita
	ν	$\frac{m^2}{s}$	Kinematická viskozita
ω Specifická rychlost disipace	ho	$\frac{kg}{m^3}$	Hustota
	ω	$\frac{1}{s}$	Specifická rychlost disipace

Seznam indexů

A	Čidlo A
B	Čidlo B
0	Stagnační

Seznam obrázků