Lab 3: Lowest cost walk between s and t using Dijkstra's algorithm

S=5 t=1	X	y	queue	visited	dist-dictionary	Prev-dictionary
init			< 5 <	{5}	1 2 3 4 5 0	1 2 3 4 5
It 1 it 1.1 it 1.2	5	3 4	< 3 < < 4 <	{5,3} {5,3,4}	1 2 3 4 5 5 3 0	1 2 3 4 5 5 5 0
It 2 it 2.1	3	1	< 1 <	{5,3,4,1}	1 2 3 4 5 6 5 3 0	1 2 3 4 5 3 5 5 0
It 3 it 3.1	4	2 3	< 2 < < 3 <	{5,3,4,1,2} {5,3,4,1,2}	1 2 3 4 5 5 10 4 3 0	1 2 3 4 5 3 4 4 5 0
It 4 it 4.1	2	1		{5,3,4,1,2}	1 2 3 4 5 5 10 4 3 0	1 2 3 4 5 3 4 4 5 0

The path is built from prev, being $\{5 > 4 > 3 > 1\}$, length = 6.

S=1 t=5	X	y	queue	visited	dist-dictionary	Prev-dictionary
init			< 1 <	{1}		1 2 3 4 5
It 1	1				1 2 3 4 5	1 2 3 4 5
it 1.1		3	< 3 <	{1,3}	6 2 0	1 1
it 1.2		2	< 2 <	{1,3,2}		
It 2	3				1 2 3 4 5	1 2 3 4 5
it 2.1		2			6 2	1 1

5 has no parent in the prev dictionary therefore it cannot be reached from 1.

