1. Label Encoding – convert cat variables into numerical labels.

Eg: (India -1, China -0, US -2, UK - 4, Italy - 3)

Drawback: it gives the highest priority to any one category due to its label is high.

From sklearn.preprocessing import LabelEncoder Le = LabelEncoder() Le.fit(catDf['Country']) catDf.Country=Le.transform(catDf.Country) print(catDf)

2. One Hot Encoding:

t Enc	oding:		V		
	Contry	GDP	Contint	tree.] .
	Ind China US	2.68 10.58 15.48	1 * \ h		
	V	j	•		

<u> </u>	DPI	tren	Contry_ Chin	Com_ Idic	Contry _VS	Continut AL	C-NA
2	-8		0	0	0	1	0
15	5-48		0	0)	0	J

1 st	Μ	et	hc	d	
_	1 7 1	·ι	···	u	

Pd.get_dummies(data=catDf)

2nd Method:

From sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder() df1 = pd.DataFrame(ohe.fit_transform(catDf.iloc[:,[0,3]])) pd.concat([catDf,df1], axis = 1)

Normalize/Standardize the data

Common Scale

Z= x-4

Stancer on of)

Wean

1,1) 0 LE

Z = x-M

Algorithms

100000

individual value.

S.D.

0.00001

1

any Pt. is from mem

from sklearn.preprocessing import StandardScalar
scalar = StandardScalar()
data_scaled = scaler.fit_transform(data)

data_scaled = scaler.fit_transform(data)	1,00 h000	
Min-Max Scalar Normalization:	$\frac{1}{2} = \frac{1}{2} $	
sche to a fixed Roge (0, 1)	3	
$y = X - X \min_{x \in X} X = X - X \min_{x \in X} X = X - X \min_{x \in X} X = X - X - X - X - X - X - X - X - X -$	1, 12 8	
Xnorm = (Xmax' - Xmin)	x y=\frac{1}{2+x}	V

From sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() data_scaled=scaler.fit_transform(data)