Constructive Torelli Theorem for Regular Matroids

Alec Elhindi

4th November 2024

Graph Preliminaries

A graph G = (V, E) consists of vertices $v_i \in V$ and edges $e_i = \{v_i, v_k\} \in E$.

graph is any two vertices.

connected if there is a

path between

Graph Preliminaries

It can be **oriented**, edges become ordered pairs $e_i = (v_j, v_k)$.

An oriented graph is **strongly connected** if there is an oriented path between any two vertices.

Connectedness

A graph is *n*-connected if upon removing n-1 edges it remains connected.

A **cycle** in a graph is a subset $C \subseteq E$ which is a minimal closed walk.

A graph is 2-connected if every edge participates in a cycle.

A spanning tree is a subset $T \subseteq E$ which meets every vertex but contains no cycles.

A **cycle basis** is a set of cycles which cover every edge (and are linearly independent) – these only exist for 2-connected graphs.

One can be found by considering the **fundamental cycles** with respect to a spanning tree.

$$\textit{C}_1 = \{\textit{e}_1, \textit{e}_4, \textit{e}_6\}$$

$$\textit{C}_1 = \{\textit{e}_1, \textit{e}_4, \textit{e}_6\}$$

$$\textit{C}_1 = \{\textit{e}_1, \textit{e}_4, \textit{e}_6\}$$

$$C_1 = \{e_1, e_4, e_6\}, C_2 = \{e_1, e_2, e_5, e_6\}$$

$$C_1 = \{e_1, e_4, e_6\}, C_2 = \{e_1, e_2, e_5, e_6\}$$

$$C_1 = \{e_1, e_4, e_6\}, C_2 = \{e_1, e_2, e_5, e_6\}$$

$$C_1 = \{e_1, e_4, e_6\}, C_2 = \{e_1, e_2, e_5, e_6\}, C_3 = \{e_3, e_5, e_6\}.$$

Oriented Cycle Bases

An orientation on a graph causes cycles to become oriented cycles.

Start following an edge clockwise (or counterclockwise), if an edges orientation agrees along the cycle it gets a positive coefficient, otherwise negative.

We call a cycle **positive** (or **negative**) if the coefficients are all positive (or negative).

A positive cycle basis consists of positive cycles.

Oriented Cycle Bases

$$C_1 = \{+e_1, +e_4, +e_6\}, \, C_2 = \{+e_1, +e_2, +e_5, +e_6\}, \, C_3 = \{+e_3, +e_5, +e_6\}.$$

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis then is a basis of the lattice of integer flows.

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis then is a basis of the lattice of integer flows.

The discrete Torelli theorem for a certain class of objects states that their lattices of integer flows are isomorphic iff the objects are.

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis then is a basis of the lattice of integer flows.

The discrete Torelli theorem for a certain class of objects states that their lattices of integer flows are isomorphic iff the objects are.

• Graphs – Watkins (1990, 1994)

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis then is a basis of the lattice of integer flows.

The discrete Torelli theorem for a certain class of objects states that their lattices of integer flows are isomorphic iff the objects are.

- Graphs Watkins (1990, 1994)
- Graphs and tropical curves Caporaso and Viviani (2010)

Considering \mathbb{Z}^E to be the free abelian group spanned by E(G), the **lattice of integer flows** of a graph is the abelian subgroup of \mathbb{Z}^E spanned by cycles, equipped with the Euclidean inner product.

Any cycle basis then is a basis of the lattice of integer flows.

The discrete Torelli theorem for a certain class of objects states that their lattices of integer flows are isomorphic iff the objects are.

- Graphs Watkins (1990, 1994)
- Graphs and tropical curves Caporaso and Viviani (2010)
- Regular matroids Su and Wagner (2010)

Matroid

A matroid is a formalism which generalises graphs and linear algebra – we consider trees independent and cycles dependent.

Matroid

A matroid is a formalism which generalises graphs and linear algebra – we consider trees independent and cycles dependent.

A (finite) **matroid** $\mathcal{M} = (E, \mathcal{I})$ is an ordered pair of a finite set E, called the **base set**, and \mathcal{I} , called the "family of independent subsets of E" which satisfies the following axioms:

- ② For any $I_1 \in \mathcal{I}$ and $I_2 \subseteq I_1$, then $I_2 \in \mathcal{I}$.
- **9** If $l_1, l_2 \in \mathcal{I}$ are such that $|l_1| < |l_2|$, then there exists $e \in l_2 \setminus l_1$ such that $l_1 \cup \{e\} \in \mathcal{I}$.

A matroid is a formalism which generalises graphs and linear algebra – we consider trees independent and cycles dependent.

A (finite) **matroid** $\mathcal{M} = (E, \mathcal{I})$ is an ordered pair of a finite set E, called the **base set**, and \mathcal{I} , called the "family of independent subsets of E" which satisfies the following axioms:

- ② For any $I_1 \in \mathcal{I}$ and $I_2 \subseteq I_1$, then $I_2 \in \mathcal{I}$.
- **9** If $l_1, l_2 \in \mathcal{I}$ are such that $|l_1| < |l_2|$, then there exists $e \in l_2 \setminus l_1$ such that $l_1 \cup \{e\} \in \mathcal{I}$.
 - ullet Dependent sets are those which are not independent, denoted \mathcal{D} .

A matroid is a formalism which generalises graphs and linear algebra – we consider trees independent and cycles dependent.

A (finite) **matroid** $\mathcal{M}=(E,\mathcal{I})$ is an ordered pair of a finite set E, called the **base set**, and \mathcal{I} , called the "family of independent subsets of E" which satisfies the following axioms:

- ② For any $I_1 \in \mathcal{I}$ and $I_2 \subseteq I_1$, then $I_2 \in \mathcal{I}$.
- **9** If $l_1, l_2 \in \mathcal{I}$ are such that $|l_1| < |l_2|$, then there exists $e \in l_2 \setminus l_1$ such that $l_1 \cup \{e\} \in \mathcal{I}$.
- **Dependent sets** are those which are not independent, denoted \mathcal{D} .
- Circuit sets are minimal dependent sets, denoted C.

A matroid is a formalism which generalises graphs and linear algebra – we consider trees independent and cycles dependent.

A (finite) **matroid** $\mathcal{M}=(E,\mathcal{I})$ is an ordered pair of a finite set E, called the **base set**, and \mathcal{I} , called the "family of independent subsets of E" which satisfies the following axioms:

- ② For any $I_1 \in \mathcal{I}$ and $I_2 \subseteq I_1$, then $I_2 \in \mathcal{I}$.
- **9** If $l_1, l_2 \in \mathcal{I}$ are such that $|l_1| < |l_2|$, then there exists $e \in l_2 \setminus l_1$ such that $l_1 \cup \{e\} \in \mathcal{I}$.
 - ullet Dependent sets are those which are not independent, denoted \mathcal{D} .
 - Circuit sets are minimal dependent sets, denoted C.
- Basis sets are maximal independent sets, denoted \mathcal{B} .

A matroid is a formalism which generalises graphs and linear algebra – we consider trees independent and cycles dependent.

A (finite) **matroid** $\mathcal{M} = (E, \mathcal{I})$ is an ordered pair of a finite set E, called the **base set**, and \mathcal{I} , called the "family of independent subsets of E" which satisfies the following axioms:

- $\emptyset \in \mathcal{I}.$
- ② For any $I_1 \in \mathcal{I}$ and $I_2 \subseteq I_1$, then $I_2 \in \mathcal{I}$.
- **9** If $l_1, l_2 \in \mathcal{I}$ are such that $|l_1| < |l_2|$, then there exists $e \in l_2 \setminus l_1$ such that $l_1 \cup \{e\} \in \mathcal{I}$.
 - ullet Dependent sets are those which are not independent, denoted \mathcal{D} .
 - Circuit sets are minimal dependent sets, denoted C.
- ullet Basis sets are maximal independent sets, denoted ${\cal B}.$

Any of the above can define a matroid, they each come with a set of axioms.

Motivating Examples of Matroids

• Given a matrix M over \mathbb{F} , letting $E(\mathcal{M})$ be the columns of M, then a matroid is formed in the natural way of linear independence. Such a matroid is called a \mathbb{F} -representable matroid.

Motivating Examples of Matroids

- Given a matrix M over \mathbb{F} , letting $E(\mathcal{M})$ be the columns of M, then a matroid is formed in the natural way of linear independence. Such a matroid is called a \mathbb{F} -representable matroid.
- ② Given a graph G, letting $E(\mathcal{M}) = E(G)$ and $\mathcal{C}(\mathcal{M})$ consist of the cycles in G, then $\mathcal{M}(G)$ is the **graphical matroid associated to** G. Note vertices do not exist in graphical matroids!

Motivating Examples of Matroids

- Given a matrix M over \mathbb{F} , letting $E(\mathcal{M})$ be the columns of M, then a matroid is formed in the natural way of linear independence. Such a matroid is called a \mathbb{F} -representable matroid.
- ② Given a graph G, letting $E(\mathcal{M}) = E(G)$ and $\mathcal{C}(\mathcal{M})$ consist of the cycles in G, then $\mathcal{M}(G)$ is the **graphical matroid associated to** G. Note vertices do not exist in graphical matroids!

A matroid which is representable over any field is called a **regular matroid**. Any graphical matroid is regular by finding the graphs signed adjacency matrix.

Regular matroids are nice – very similar to graphs. Many notions transfer over:

 $\bullet \ \, \mathsf{Spanning} \ \, \mathsf{trees} \to \mathsf{basis} \ \, \mathsf{sets}. \\$

- ullet Spanning trees o basis sets.
- ullet Cycle bases o circuit bases.

- Spanning trees \rightarrow basis sets.
- Cycle bases → circuit bases.
- 2-connected graph \rightarrow cogirth \geq 2 matroid (every $e \in E$ is in some cycle).

- Spanning trees \rightarrow basis sets.
- Cycle bases → circuit bases.
- 2-connected graph \rightarrow cogirth \geq 2 matroid (every $e \in E$ is in some cycle).
- ullet Orientations (edge assignments) o orientations (column assignments).

- Spanning trees \rightarrow basis sets.
- Cycle bases → circuit bases.
- 2-connected graph \rightarrow cogirth \geq 2 matroid (every $e \in E$ is in some cycle).
- ullet Orientations (edge assignments) o orientations (column assignments).
- Strongly connected orientations: path between vertices \rightarrow every $e \in E$ is in a positive circuit.

- ullet Spanning trees o basis sets.
- ullet Cycle bases o circuit bases.
- 2-connected graph \rightarrow cogirth \geq 2 matroid (every $e \in E$ is in some cycle).
- ullet Orientations (edge assignments) o orientations (column assignments).
- Strongly connected orientations: path between vertices \rightarrow every $e \in E$ is in a positive circuit.
- Dual graph (only planar) → dual matroid works for non-planar!

- ullet Spanning trees o basis sets.
- ullet Cycle bases o circuit bases.
- 2-connected graph \rightarrow cogirth \geq 2 matroid (every $e \in E$ is in some cycle).
- ullet Orientations (edge assignments) o orientations (column assignments).
- Strongly connected orientations: path between vertices \rightarrow every $e \in E$ is in a positive circuit.
- Dual graph (only planar) → dual matroid works for non-planar!
- Induced dual orientation → oriented dual matroid.

Regular matroids are nice – very similar to graphs. Many notions transfer over:

- ullet Spanning trees o basis sets.
- Cycle bases → circuit bases.
- 2-connected graph \rightarrow cogirth \geq 2 matroid (every $e \in E$ is in some cycle).
- ullet Orientations (edge assignments) o orientations (column assignments).
- Strongly connected orientations: path between vertices \rightarrow every $e \in E$ is in a positive circuit.
- Dual graph (only planar) → dual matroid works for non-planar!
- Induced dual orientation → oriented dual matroid.

In fact regular matroids are closed under duality, and graphical matroids and their duals (almost) generate all regular matroids.

The Lattice of Integer Flows – Matroids

Given a regular matroid $\mathcal M$ with representing matrix M, the lattice of integer flows is

$$\mathcal{F}(\mathcal{M}) = \ker(M) \cap \mathbb{Z}^E$$
.

This coincides for the signed incidence matrix of a graph – the natural representing matrix for a graphical matroid.

Any circuit basis then is a basis of the lattice of integer flows.

Recovering \mathcal{M}

The lattice of integer flows is a (in most cases strict) sub-lattice of \mathbb{Z}^E . Can we explicitly recover \mathcal{M} from $\mathcal{F}(\mathcal{M})$?

Recovering \mathcal{M}

The lattice of integer flows is a (in most cases strict) sub-lattice of \mathbb{Z}^E . Can we explicitly recover \mathcal{M} from $\mathcal{F}(\mathcal{M})$?

We provide a constructive algorithm for recovering the matroid – a *constructive Torelli theorem*. The first step is strengthening the following theorem.

Theorem 1: [Su-Wagner] Let \mathcal{M} and \mathcal{N} be 2-connected regular matroids. Then $\mathcal{F}(\mathcal{M}) \cong \mathcal{F}(\mathcal{N})$ if and only if $\mathcal{M} \cong \mathcal{N}$.

Recovering \mathcal{M}

The lattice of integer flows is a (in most cases strict) sub-lattice of \mathbb{Z}^E . Can we explicitly recover \mathcal{M} from $\mathcal{F}(\mathcal{M})$?

We provide a constructive algorithm for recovering the matroid – a *constructive Torelli theorem*. The first step is strengthening the following theorem.

Theorem 1: [Su-Wagner] Let \mathcal{M} and \mathcal{N} be 2-connected regular matroids. Then $\mathcal{F}(\mathcal{M}) \cong \mathcal{F}(\mathcal{N})$ if and only if $\mathcal{M} \cong \mathcal{N}$.

Proposition: A positive circuit basis exists for any 2-connected regular matroid.

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{\mathcal{E}(\mathcal{M})} \to \mathbb{Z}^{\mathcal{E}(\mathcal{N})}$.

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{\mathcal{E}(\mathcal{M})} \to \mathbb{Z}^{\mathcal{E}(\mathcal{N})}$.

Proof:

① Use Greene's rigid embedding theorem to show any automorphism of $\mathcal{F}(\mathcal{M})$ lifts – relies on the existance of a positive circuit basis of \mathcal{M} .

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

- ① Use Greene's rigid embedding theorem to show any automorphism of $\mathcal{F}(\mathcal{M})$ lifts relies on the existance of a positive circuit basis of \mathcal{M} .
- 2

$$\mathbb{Z}^{E(\mathcal{N})}$$
 \blacktriangleleft ----- $\mathbb{Z}^{E(\mathcal{M})}$

$$\mathcal{F}(\mathcal{N}) \longleftarrow_{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

• Use Greene's rigid embedding theorem to show any automorphism of $\mathcal{F}(\mathcal{M})$ lifts – relies on the existance of a positive circuit basis of \mathcal{M} .

2

$$\mathbb{Z}^{E(\mathcal{M})} \xrightarrow{\Psi} \mathbb{Z}^{E(\mathcal{N})} \xrightarrow{\bullet} \mathbb{Z}^{E(\mathcal{M})}$$

$$\mathcal{F}(\mathcal{N}) \xleftarrow{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

① Use Greene's rigid embedding theorem to show any automorphism of $\mathcal{F}(\mathcal{M})$ lifts – relies on the existance of a positive circuit basis of \mathcal{M} .

2

$$\mathbb{Z}^{E(\mathcal{M})} \xrightarrow{\quad \Psi \quad} \mathbb{Z}^{E(\mathcal{N})} \overset{\Phi}{\longleftarrow} \mathbb{Z}^{E(\mathcal{M})}$$

$$\mathcal{F}(\mathcal{M}) \xrightarrow{\psi} \mathcal{F}(\mathcal{N}) \longleftarrow_{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

① Use Greene's rigid embedding theorem to show any automorphism of $\mathcal{F}(\mathcal{M})$ lifts – relies on the existance of a positive circuit basis of \mathcal{M} .

2

1,-100

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

① Use Greene's rigid embedding theorem to show any automorphism of $\mathcal{F}(\mathcal{M})$ lifts – relies on the existance of a positive circuit basis of \mathcal{M} .

2

$$\mathcal{F}(\mathcal{M}) \xrightarrow{\psi} \mathcal{F}(\mathcal{N}) \xleftarrow{\varphi} \mathcal{F}(\mathcal{M})$$

Proposition: An isomorphism of lattices $\varphi: \mathcal{F}(\mathcal{M}) \to \mathcal{F}(\mathcal{N})$ lifts to an isomorphism of Euclidean lattices $\Phi: \mathbb{Z}^{E(\mathcal{M})} \to \mathbb{Z}^{E(\mathcal{N})}$.

Proof:

① Use Greene's rigid embedding theorem to show any automorphism of $\mathcal{F}(\mathcal{M})$ lifts – relies on the existance of a positive circuit basis of \mathcal{M} .

2

Voronoi Cells

The **Voronoi cell** $\mathcal{V}(\Lambda)$ of a lattice Λ is the collection of points in space (i.e. in $\Lambda \otimes \mathbb{R}$) closer to the origin than any other lattice point in Λ .

Voronoi Cells

The **Voronoi cell** $\mathcal{V}(\Lambda)$ of a lattice Λ is the collection of points in space (i.e. in $\Lambda \otimes \mathbb{R}$) closer to the origin than any other lattice point in Λ .

$$C_1 = \{+e_1, +e_2, -e_5\}, C_2 = \{+e_3, +e_4, +e_5\}, C_1 + C_2 = \{+e_1, +e_2, +e_3, +e_4\}.$$

Amini-Dancso-Lim Theorem

Faces of the Voronoi cell form a partially ordered set (poset) $\mathcal{FP}(\mathcal{F}(\mathcal{M}))$ with inclusion given by dimension.

Oriented submatroids $(\mathcal{M}, \omega_{\mathcal{M}})$ which are strongly connected form a poset $\mathcal{SC}(\mathcal{M})$ with inclusion $(\mathcal{M}, \omega_{\mathcal{M}}) \leq (\mathcal{N}, \omega_{\mathcal{N}})$ if and only if \mathcal{N} is a submatroid of \mathcal{M} and $\omega_{\mathcal{M}}$ restricted to \mathcal{N} is $\omega_{\mathcal{N}}$.

Theorem 2: For a finite regular matroid \mathcal{M} , $\mathcal{FP}(\mathcal{F}(\mathcal{M})) \cong \mathcal{SC}(\mathcal{M})$ as graded posets.

Example: Codimension one faces of the Voronoi cell correspond to circuits in \mathcal{M} . Edges of the Voronoi cell correspond to maximal strongly orientable submatroids of \mathcal{M} .

Amini-Dancso-Lim Theorem

The parallel faces of the Voronoi cell correspond to the different strongly connected orientations of the same underlying matroid.

For a face F, we consider [F] the equivalence class of faces that are parallel to F.

For a subset $A \subseteq E(\mathcal{M})$ we denote $[F_A]$ to be the face(s) which corresponds to $\mathcal{M} \setminus A$ (provided it is strongly orientable).

A matroid is 3-connected if $\mathcal{M}\setminus\{e\}$ is 2-connected for all $e\in E(\mathcal{M})$. Furthermore, a 2-connected matroid can always be strongly oriented as it always has a positive circuit basis.

Reconstructing 3-connected matroids:

A matroid is 3-connected if $\mathcal{M}\setminus\{e\}$ is 2-connected for all $e\in E(\mathcal{M})$. Furthermore, a 2-connected matroid can always be strongly oriented as it always has a positive circuit basis.

Reconstructing 3-connected matroids:

① There is a bijection $e \leftrightarrow [F_{\{e\}}]$ for $e \in E(\mathcal{M})$.

A matroid is 3-connected if $\mathcal{M}\setminus\{e\}$ is 2-connected for all $e\in E(\mathcal{M})$. Furthermore, a 2-connected matroid can always be strongly oriented as it always has a positive circuit basis.

Reconstructing 3-connected matroids:

- **1** There is a bijection $e \leftrightarrow [F_{\{e\}}]$ for $e \in E(\mathcal{M})$.
- ② There is a bijection $C \leftrightarrow [F_C]$ for $C \in \mathcal{C}(\mathcal{M})$.

A matroid is 3-connected if $\mathcal{M}\setminus\{e\}$ is 2-connected for all $e\in E(\mathcal{M})$. Furthermore, a 2-connected matroid can always be strongly oriented as it always has a positive circuit basis.

Reconstructing 3-connected matroids:

- **1** There is a bijection $e \leftrightarrow [F_{\{e\}}]$ for $e \in E(\mathcal{M})$.
- ② There is a bijection $C \leftrightarrow [F_C]$ for $C \in \mathcal{C}(\mathcal{M})$.
- **9** A given element $e \in E(\mathcal{M})$ belongs to a circuit C if and only if no member of $[F_{\{e\}}]$ is contained in $[F_C]$.

A matroid is 3-connected if $\mathcal{M}\setminus\{e\}$ is 2-connected for all $e\in E(\mathcal{M})$. Furthermore, a 2-connected matroid can always be strongly oriented as it always has a positive circuit basis.

Reconstructing 3-connected matroids:

- **1** There is a bijection $e \leftrightarrow [F_{\{e\}}]$ for $e \in E(\mathcal{M})$.
- ② There is a bijection $C \leftrightarrow [F_C]$ for $C \in \mathcal{C}(\mathcal{M})$.
- **9** A given element $e \in E(\mathcal{M})$ belongs to a circuit C if and only if no member of $[F_{\{e\}}]$ is contained in $[F_C]$.

For general 2-connected matroids steps (2) and (3) remain the same, but step (1) requires much more work, as maximal strongly connected submatroids may be of the form $\mathcal{M}\setminus S$ for (possibly different sized) |S|>1.

The key to the reconstruction for 2-connected matroids are 2-cut blocks.

These are the equivalence classes of the equivalence relation $e \sim f$ if and only if e = f or $\{e, f\}$ is a cocircuit (a circuit in the dual matroid).

These 2-cut blocks are precisely those sets for which $\mathcal{M}\setminus S$ is a maximal strongly connected submatroid, so denote $S_{[\epsilon]}$ for the 2-cut block which corresponds to the parallel class of edges $[\epsilon]$.

① Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.

- **①** Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **3** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in F_C for each $C \in B$.

- **①** Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **②** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in F_C for each $C \in B$.
- **3** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon] \not\in F_{C_i}} |S_{[\epsilon]}| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\varepsilon]\not\in F_{C_i},F_{C_i}} \left|S_{[\varepsilon]}\right| = |\langle C_i,C_j\rangle|.$$

- Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **②** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in F_C for each $C \in B$.
- **9** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon] \not\in F_{C_i}} \left| S_{[\epsilon]} \right| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\epsilon] \not\in F_{C_i}, F_{C_j}} \left| S_{[\epsilon]} \right| = |\langle C_i, C_j \rangle|.$$

• Find the unique positive integer solution $\{|S_{[\epsilon]}|\}$.

- Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **②** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in F_C for each $C \in B$.
- **9** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon] \not\in F_{C_i}} \left| S_{[\epsilon]} \right| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\varepsilon]\not\in F_{C_i},F_{C_i}} \left|S_{[\varepsilon]}\right| = |\langle C_i,C_j\rangle|.$$

- Find the unique positive integer solution $\{|S_{[\epsilon]}|\}$.
- **5** $E(\mathcal{M})$ is the disjoint union of the sets $\{S_{[\epsilon]}\}$.

- Create a circuit basis B such that $|\langle C_i, C_j \rangle| = |C_i \cap C_j|$ for all $C_i, C_j \in B$.
- **②** Find the parallel classes $[\epsilon]$ of the Voronoi cell and identify which edges participate in F_C for each $C \in B$.
- **9** For each basis circuit C_i , i = 1, ..., r, write the equation

$$\sum_{[\epsilon] \not\in F_{C_i}} |S_{[\epsilon]}| = \langle C_i, C_i \rangle,$$

and for each pair of basis circuits $\{\{C_i,C_j\},i,j=1,\ldots,r,i\neq j\}$ write the equation

$$\sum_{[\varepsilon]\not\in F_{C_i},F_{C_i}} \left|S_{[\varepsilon]}\right| = |\langle C_i,C_j\rangle|.$$

- Find the unique positive integer solution $\{|S_{[\epsilon]}|\}$.
- **5** $E(\mathcal{M})$ is the disjoint union of the sets $\{S_{[\epsilon]}\}$.
- **3** Again, the element e belongs to a circuit C if and only if no member of the corresponding edge parallel class $[\epsilon]$ belongs to the face $[F_C]$.

Reconstructing

Greene's Conjecture

Greene showed that:

Theorem 3: The d-invariant of the lattice of integer flows of a 2-connected graph determines its stable isomorphism type.

Then naturally conjectured:

Conjecture 1: The d-invariant of the lattice of integer flows of a 2-connected regular matroid determines its stable isomorphism type.

The approach we used shows most of what is required for this conjecture to be true.