Statistics MCQ Question Bank

Second Paper

Abdullah Al Mahmud

www.statmania.info

Contents

1	Intr	roduction to Probability 2
	1.1	Permutation-Combination
	1.2	Conceptual Questions
	1.3	Numbers
	1.4	Coin-Die
	1.5	Balls-Cards
	1.6	Set-Problems
	1.7	Multiple Completion
2	Rar	ndom Variables 8
	2.1	Concept of Random Variable
	2.2	Situation Set
	2.3	Multiple Completion
3	Ma	thematical Expectation 14
	3.1	Situation Set
4	Bin	omial Distribution 18
	4.1	Situation Set
	4.2	Multiple Completion
5	Pois	sson Distribution 21
	5.1	Multiple Completion
	5.2	Problems
6	Vita	al Statistics 23
	6.1	Growth Rates

1 Introduction to Probability

1.1 Permutation-Combination

1. Three objects can be placed in 2 positions in – ways.

	(a) 3	(b) 4	(c) 6	(d) 8
2.	In how many ways c	an a team of 2 be for	med from 4 people?	
	(a) 4	(b) 6	(c) 8	(d) 12
3.	$^{n}p_{r}=$			
	(a) $\frac{n!}{(n-r)!}$	(b) $\frac{n!}{(n+r)!}$	(c) $\frac{n!}{r!}$	(d) $\frac{n!}{(r-n)!}$
4.	$^{n}C_{r} =$			
	(a) $\frac{n!}{(n-1)!(n+r)!}$	(b) $\frac{r!}{n!(n-r)!}$	(c) $\frac{n!(n-1)!}{r!}$	(d) $\frac{n!}{(r-n)!}$
	1.2 Conceptual	Questions		
5.	What is the probabi	lity that at least one	item in a sample spac	e will occurr?
	(a) 0	(b) 0.5	(c) 1	(d) Undefined
6.	The probability of tw	vo disjoint sets happe	ning together is:	
	(a) 0.5	(b) 0	(c) 1	(d) $0 \le x < 1$
7.	How many additive	laws of probability are	e there?	
	(a) 1	(b) 2	(c) 3	(d) 4
8.	$P(A \cup B) = P(A) + P($	B) implies A & B are	_	
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent
9.	$P(A\cap B)=P(A)\times P($	B) implies A & B are	_	
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent
10.		a of classical approach		
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$		(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	<u>)</u>
11.	Which is the formula	a of empirical/relative	e frequency approach	of probability?
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$	outcomes ble outcomes	(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	comes utcomes
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	
12.	What is the correct	formula for condition	al probability?	
	(a) $P(A B) = \frac{P(A \cap B)}{P(B A)}$	(b) $P(A B) = \frac{P(A \cap B)}{P(A)}$	(c) $P(A B) = \frac{P(A \cap B)}{P(B)}$	(d) $P(A B) = \frac{P(B A)}{P(B A)}$
13.	The third axiom of p	orobability is –		
	(a) $0 \le P(A) \le 1$		(b) $P(S) = 1$	
	(c) $P(A_1UA_2U\cdots UA_n)$	$) = \sum_{i=1}^{\infty} P(A_i)$	(d) $P(A) = 1 - P(A)$	

14.	Possible value of pro	bability		
	i1 ii. 0.5 iii. 0			
	Which one is correct	?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
15.	An act repeated und	ler some specific cond	itions is called –	
	(a) Event	(b) Experiment	(c) Sample	(d) Sample space
16.	P(0) implies –			
	(a) A certain event	(b) An uncertain event	(c) An impossible event	(d) A probable event
17.	Events having some	common elements are	called –	
	(a) Complementary ever	nts	(b) Mutually exclusive e	events
	(c) Exhaustive events		(d) Non-Mutually exclu	sive events events
18.	The minimum value	of probability is		
	(a) $-\alpha$	(b) 1	(c) 0	(d) -1
19.	Each element of sam	ple space is called–		
	(a) Trial	(b) Experiment	(c) Variable	(d) Sample Point
20.	Two events not ocur	ring together are calle	$\mathrm{ed}-$	
	(a) dependent Events		(b) Independent Events	
	(c) Mutually Exclusive	Events	(d) Marginal Events	
21.	If A and B are indep	pendent, which formul	a is correct?	
	(a) $P(A \cap B) = P(A) \cdot A$	P(B)	(b) $P(A \cap B) = P(\bar{A}) \cdot \bar{A}$	P(B)
	(c) $P(A \cap B) = P(A) \cdot A$	$P(ar{B})$	(d) $P(A \cap \bar{B}) = P(A) \cdot \bar{A}$	P(B)
22.	Which of the following	ng are disjoint events	?	
	(a) $A = \{1, 2, 3\}, B = \{4, 2, 3\}, $	$4,5$ }	(b) $A = \{a, b\}, B = \{b, c\}$,
	(c) $A = \{0\}, B = \{0, 1\}$		(d) $A = \{x, y\}, B = \{x, y\}$	y }
23.	Which of the following	ng are disjoint events	?	
	(a) $P = \{1, 2\}, Q = \{2, 3\}$		(b) $P = \{x\}, Q = \{x, y\}$	
	(c) $P = \{1, 3\}, Q = \{3, 5\}$	5}	(d) $P = \{m, n\}, Q = \{p, q\}$	q
24.	Let the sample space disjoint?	e be $S = \{1, 2, 3, \dots, 1\}$	0}. Which of the following	lowing pairs of events are
	i. A: Number is prime,ii. A: Number is even,	B: Number is greater B: Number is divisible han 5, B: Number is g	by 3	
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
25.	Let $S = \{1, 2, \dots, 10\}$.	Which of the following	ng event pairs are disj	oint?
	ii. A : Number is less th	le by 2, B: Number is an 7, B: Number is one, B: Number is a mu	ld	
	Which one is correct			
	(a) i and iii	(b) i and ii	(c) ii and iii	(d) i, ii and iii

26.	5. Let the sample space be $S=\{1,2,3,\dots,10\}$. Which of the following pairs of events are disjoint?			
	i. A: Number is a multiii. A: Number is less thiii. A: Number is a squa		eater than 8	
	Which one is correct	?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
27.	Let $S = \{1, 2, 3, \dots, 10\}$. Which of the follow	ing pairs of events ar	e disjoint?
	(a) A : Multiples of 3, E	3: Multiples of 5		
	(b) A : Prime numbers,	B: Even numbers greate	r than 2	
	(c) A: Numbers less tha	an 4, B: Numbers greate	r than 6	
	(d) All of the above			
	1.3 Numbers			
28.		v	reater than the averag	itive integers. What is the ge (arithmetic mean) of all
	(a) $\frac{1}{3}$	(b) $\frac{3}{4}$	(c) $\frac{4}{10}$	(d) $\frac{1}{2}$
29.		eople in a city walk to does not walk to the		picked randomly, what is
	(a) 0.95	(b) 0.10	(c) 0.90	(d) 0.01
30.	-	_	online classes over in-pity that they prefer in	person classes. If a student a-person classes?
	(a) 0.15	(b) 0.85	(c) 0.75	(d) 0.25
31.			manufactured items a that it is not defective	are defective. If an item is ve?
	(a) 0.08	(b) 0.92	(c) 0.80	(d) 0.12
32.	_	_	-	appointments. If a patient evening appointments?
	(a) 0.12	(b) 0.78	(c) 0.88	(d) 0.18
33.			stomers in a store pay y that they pay using	y with cash. If a customer another method?
	(a) 0.050	(b) 0.500	(c) 0.975	(d) 0.025
	1.4 Coin-Die			
34.	Tossing a die r times	generates how many	outcomes?	
	(a) $6 \times r$	(b) r^6	(c) 6^r	(d) 2^r
35.	Tossing a coin r time	es generates how man	y outcomes?	
	(a) $2 \times r$	(b) r^2	(c) 2^r	(d) 6^r

36.	A coin is thrown thr	ice. How many outco	mes are generated?	
	(a) 3	(b) 4	(c) 8	(d) 9
37.	A coin is thrown twi	ce. What is the proba	ability of getting 2 hea	ads?
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{4}$
38.	A fair coin is tossed	twice. What is the pr	obability of getting a	t least one tail?
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) $\frac{1}{3}$
39.	Two fair coins are to head?	ossed simultaneously.	What is the probabi	lity of getting exactly one
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) $\frac{1}{3}$
40.	A coin is flipped twice	ce. What is the proba	ability of getting head	s first and tails second?
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{4}$
41.	If two fair coins are	tossed together, what	is the probability of	getting at least one head?
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$
42.	A fair coin is tossed	twice. What is the pr	obability of getting to	wo tails?
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{2}{4}$
43.	Two fair coins are to	ssed. What is the pro	bability that at least o	one of them lands on tails?
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{1}{3}$
44.	A die is thrown twice	e. This is called –		
	(a) An experiment	(b) sample space	(c) A random experiment	-(d) A trial
45.	If a neutral die is the	rown, the probability	of having a digit grea	ter than 6 is
	(a) $\frac{1}{6}$	(b) $\frac{0}{6}$	(c) $\frac{2}{3}$	(d) $\frac{3}{6}$
46.	· ·	(b) $\frac{0}{6}$ generates how many		(d) $\frac{3}{6}$
46.	· ·	. , 0		(d) $\frac{3}{6}$ (d) 2
	Tossing a coin twice (a) 4	generates how many	outcomes? (c) 8	•
	Tossing a coin twice (a) 4	generates how many (b) 16	outcomes? (c) 8	•
	Tossing a coin twice (a) 4 A die is rolled twice.	generates how many (b) 16 How many possible	outcomes? (c) 8 outcomes are there?	(d) 2
47.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 b	generates how many (b) 16 How many possible (b) 12	outcomes? (c) 8 outcomes are there? (c) 36	(d) 2
47.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 b	generates how many (b) 16 How many possible (b) 12 black, and 5 white ba	outcomes? (c) 8 outcomes are there? (c) 36	(d) 2 (d) 18
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 h what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 h	generates how many (b) 16 How many possible (b) 12 black, and 5 white backy that both are red? (b) $\frac{1}{22}$	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two	(d) 2 (d) 18 balls are randomly taken,
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 h what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 h	generates how many (b) 16 How many possible (b) 12 black, and 5 white batty that both are red? (b) $\frac{1}{22}$ black, and 5 white bath	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two	 (d) 2 (d) 18 balls are randomly taken, (d) 3/11
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 be what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 be what is the probabilit (a) $\frac{1}{66}$	generates how many (b) 16 How many possible (b) 12 black, and 5 white backy that both are red? (b) $\frac{1}{22}$ black, and 5 white backy that neither is red (b) $\frac{6}{11}$ e and 4 green marbles	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two? (c) $\frac{3}{11}$	 (d) 2 (d) 18 balls are randomly taken, (d) 3/11 balls are randomly taken,

	(a) $\frac{24}{91}$	(b) $\frac{58}{91}$	(c) $\frac{48}{91}$	(d) $\frac{72}{91}$
53.	A box contains 9 bl probability that at le		If two balls are rand	omly picked, what is the
	(a) $\frac{3}{11}$	(b) $\frac{1}{3}$	(c) $\frac{18}{33}$	(d) $\frac{5}{11}$
	Answer the next que	estions based on the fo	ollowing information.	
	A card is drawn from of	f pack of playing cards.		
54.	What is the probabil	lity that the card is a	King?	
	(a) 0.0192	(b) 0.25	(c) 0.5	(d) 0.0769
55.	P(The card is not from	om Diamonds)–		
	(a) $\frac{1}{2}$	(b) 0	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$
56.	P(The card is red or	Clubs)		
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$
	Answer the next TW	O questions based or	the following inform	ation.
	An urn contains 5 red, '	7 blue, and 8 green balls.		
57.	What is the probabil	lity that the ball draw	n is red?	
	(a) 0.26	(b) 0.25	(c) 0.2	(d) 0.4
58.	P(The ball drawn is	${f not \ blue})-$		
	(a) $\frac{13}{20}$	(b) 0.5	(c) $\frac{7}{20}$	(d) $\frac{8}{20}$
	1.6 Set-Problems	s		
59.	For two independent	events A and B , which	ch one is correct?	
	(a) $P(A \cap B) = P(A) \times$	P(B)	(b) $P(A \cup B) = P(A) +$	P(B)
	(c) $P(A \cap B) = P(A) -$	P(B)	(d) $P(A \cup B) = P(A) \times$	P(B)
60.	For two mutually exc	clusive events A and B	B, which one is correct	t?
	(a) $P(A \cap B) = P(A) \times$	P(B)	(b) $P(A \cup B) = P(A) +$	P(B)
	(c) $P(A \cap B) = P(A) -$	P(B)	(d) $P(A \cup B) = P(A) \times$	P(B)
61.	Which of the following	ng correct?		
	(a) $\frac{P(A)}{P(B)} = \frac{P(B A)}{P(A B)}$	(b) $\frac{P(A)}{P(A B)} = \frac{P(B A)}{P(B)}$	(c) $\frac{P(A)}{P(B)} = \frac{P(B A)}{P(B)}$	(d) $\frac{P(A)}{P(B)} = \frac{P(A B)}{P(B A)}$
62.	The probability of rawill rain on both Mo		day next week. What	t is the probability that it
	(a) $\frac{1}{6}$	(b) $\frac{1}{36}$	(c) $\frac{5}{6}$	(d) $\frac{1}{17}$

51. A box has 7 black and 5 white balls. If one ball is drawn at random, what is the probability

52. A bag contains 8 red and 6 white balls. If two balls are drawn at random, what is the

(c) $\frac{1}{2}$

(d) $\frac{1}{3}$

that it is not black?

(b) $\frac{5}{12}$

probability that they are of different colors?

(a) $\frac{7}{12}$

63.	Given $P(A \cup B) = 0.7$, $P(A \cap B) = 0.2$, what	are $P(A)$ and $P(B)$?	
	(a) $P(A) = 0.5 \text{ and } P(A)$	(3) = 0.4	(b) $P(A) = 0.4$ and $P(A) = 0.4$	(B) = 0.6
	(c) $P(A) = 0.4$ and $P(A) = 0.4$	B) = 0.3	(d) $P(A) = 0.7$ and $P(A) = 0.7$	B) = 0.3
64.	If $P(A) = 0.4$, $P(B) =$	0.5, and $P(A \cup B) = 0.7$	7, what is $P(A \cap B)$?	
	(a) 0.2	(b) 0.1	(c) 0.3	(d) 0.4
65.	Given $P(A) = 0.3, P(A) = 0.3$	$A \cup B$) = 0.6, and $P(A \cap B)$	$\cap B) = 0.1$, what is $P(B)$	3)?
	(a) 0.6	(b) 0.4	(c) 0.3	(d) 0.2
66.	If $P(A) = 0.5$, $P(B) =$	0.6, and $P(A \cap B) = 0.3$	B, what is $P(A \cup B)$?	
	(a) 0.8	(b) 0.9	(c) 0.7	(d) 1
67.	If $P(A) = 0.2$, $P(B) =$	0.3, and $P(A \cup B) = 0.4$	4, what is $P(A \cap B)$?	
	(a) 0.9	(b) 0.2	(c) 0.3	(d) 0.1
68.	Given $P(A) = 0.7, P(A) = 0.7$	$A \cup B) = 0.9$, and $P(A \cap B) = 0.9$	$\cap B) = 0.5$, what is $P(B)$	3)?
	(a) 0.8	(b) 0.6	(c) 0.7	(d) 0.5
	Answer the next two	questions based on t	he following informat	ion
	For	· two exhaustive evenst A	& B $P(A) = 0.7$ and P	P(B) = 0.4
	101	two exhaustive evensu ii	$\mathbf{a} \otimes \mathbf{b}, \mathbf{r} (\mathbf{n}) = 0 \cdot \mathbf{r} \text{ and } \mathbf{r}$	(D) = 0.4
69.	$P(A \cap B) = ?$			
	(a) 0.1	(b) 0.3	(c) 0.6	(d) 1
70.	The events A & B ar	re –		
	i. independent			
	ii. dependentiii. not mutually exclusi	ive		
	Which one is correct	?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
	Answer the next thr	ee questions using the	e following information	n
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{2} \& F$	$P(A \cup B) = \frac{7}{12}$		
71.	$P(A \cap B) = ?$			
	(a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{15}{16}$
72.	$P(A \cap \bar{B}) = ?$			
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{1}{12}$
73.	What is the probabil	lity that B occurs or A	A does not occur?	
	(a) $\frac{3}{4}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{11}{12}$
	Answer the next through $D) = \frac{9}{10}$	ee questions using the	following information	$P(C) = \frac{2}{5}, P(D) = \frac{3}{4} \& P(C \cup C)$
74.	$P(C \cap D) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{1}{4}$	(c) $\frac{7}{20}$	(d) $\frac{4}{5}$
75.	$P(C\cap \bar{D})=?$			
	(a) $\frac{1}{10}$	(b) $\frac{2}{5}$	(c) $\frac{2}{20}$	(d) $\frac{3}{10}$

76.	6. What is the probability that D occurs or C does not occur?				
	(a) $\frac{17}{20}$	(b) $\frac{7}{10}$	(c) $\frac{3}{4}$	(d) $\frac{11}{20}$	
	Answer the next three	ee questions using the	e following information	n:	
	$P(E) = \frac{1}{3}, P(F) = \frac{1}{4} \& F$	$P(E \cap F) = \frac{1}{10}$			
77.	$P(E \cup F) = ?$				
	(a) $\frac{1}{58}$	(b) $\frac{3}{10}$	(c) $\frac{58}{60}$	(d) $\frac{58}{120}$	
78.	$P(E \cap \bar{F}) = ?$				
	(a) $\frac{7}{40}$	(b) $\frac{7}{30}$	(c) $\frac{3}{10}$	(d) $\frac{1}{30}$	
79.	What is the probabil	lity that F occurs or l	E does not occur?		
	(a) $\frac{11}{30}$	(b) $\frac{19}{30}$	(c) $\frac{13}{40}$	(d) $\frac{23}{30}$	
80.	An un contains 10 regetting two red balls	_	Two balls are drawn;	what is the probability of	
	(a) $\frac{3}{7}$	(b) $\frac{4}{7}$	(c) $\frac{20}{21}$	(d) $\frac{2}{21}$	
	1.7 Multiple Cor	mpletion			
81.	P(A) = 0 implies				
	i. A is an impossible even ii. A would ocurr in extriniii. $P(\bar{A})$ is a certain even	reme cases			
	Which one is correct	?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
82.	If A is an uncertain ϵ	event, which one is po	ossible?		
	i. $0 < P(A) < 1$ ii. $P(A) = 0.1$ iii. $P(A) = 0$				
	Which one is correct	?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
83.	If a die is thrown one	ce, the probability of	getting even numbers	is -	
	i. A certain eventii. A composite eventiii. An uncertain event				
	Which one is correct				
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
	2 Random Va	riables			
	2.1 Concept of F	Random Variable			
84.	Which is a discrete r	andom variable?			
	(a) Age of students		(b) Amount of Producti	ion in a factory	

(d) Page size in word processing softwares

(c) Height of workers

85.	$\begin{array}{c} \mathbf{A} \ \mathbf{set} \ \mathbf{of} \ \mathbf{sample} \ \mathbf{poin} \\ - \end{array}$	ts tabulated along wi	th their respective pro	obabilities is an example of
	(a) Probability distribution(c) Frequency distribution		(b) Probability function(d) Marginal probability distribution	
86.	How many condition	ns does a probability o	density function have?	?
	(a) 2	(b) 3	(c) 4	(d) 5
87.	A coin is tossed twi values of X are there		appeared is denoted	by X. How many possible
	(a) 1	(b) 2	(c) 0	(d) 3
88.	A die is thrown thric possible values can 2		times a 6 appears is	denoted by X . How many
	(a) 1	(b) 2	(c) 3	(d) 4
89.	Which one is a prop	erty of marginal prob	ability density function	on?
	(a) $\int_x f(x^2) dx = 1$	(b) $\int_x f(x^2) dx = 0.5$	(c) $\int_{x} f(x) dx = 1$	(d) $P(x \ge 1)$
90.	Which one is NOT a	an example of a conti	nuous random variable	e –
	(a) Weight	(b) Height	(c) Time	(d) Size of television
91.	Integrated value of $\frac{1}{4}$	$\frac{1}{4}x^4$ -		
	(a) $\frac{1}{20}x^5$	(b) $\frac{1}{20}x^5 + c$	(c) $\frac{1}{5}x^4$	(d) $\frac{5}{4}x^5$
92.	The conditions of a partial ii. $\sum P(X) = 1$ ii. $\sum P(X) = 0$ iii. $0 \le P(X) \le 1$ Which one is correct (a) i and ii	probability distribution t? (b) i and iii	on are— (c) ii and iii	(d) i, ii and iii
93.	The conditions for a	cumulative distributi	ion function (CDF) ar	:e-
	i. $F(x)$ is non-decreasing ii. $0 \le F(x) \le 1$ iii. $\lim_{x \to \infty} F(x) = 1$ Which one is correct	ng. t?		
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii
94.	i. $\sum P(X) = 1$ ii. $P(X) \ge 0$ for all X	discrete probability described in the discrete value of the discre		(d) i, ii, and iii
95.	What is $F(\infty)$ for a o	distribution function	F(x)?	
	(a) $-\infty$	(b) -1	(c) 0	(d) 1

96.	What is $F(-\infty)$ for a	a distribution i	function $F(x)$?	
	(a) $-\infty$	(b) -1	(c) 0	(d) 1
97.	How many types of	random variab	oles are there?	
	(a) 2	(b) 3	(c) 4	(d) 5
98.	Which of the follow	ing is not a dis	crete random variable?	
	(a) umber of students		(b) Weight	
	(c) Number of heads in	n coin toss	(d) Population	
99.	Which one is a prop	perty of a prob	ability distribution?	
	(a) $P(x_i) = 0$	(b) $P(x_i \neq 1)$	(c) $\Sigma P(x_i) = 1$	(d) $\int_x P(X)dx \le 1$
100	. Which one is not a	discrete rando	om variable?	
	(a) Summation two die	e throw outcome	(b) Weight	
	(c) Number of heads in	n five coin tosses	(d) Released version	on number of a software
101	. Which one is not a	discrete rando	om variable?	
	(a) Number of students	s in a class	(b) Weight of a pa	ckage
	(c) Shoe size		(d) Total goals sco	red in a match
102	. Which variable typ	e can skip cert	tain whole numbers?	
	(a) Number of chapters	s read in a day	(b) Weight of a pe	rson
	(c) Number of floors in	a building	(d) Number of peo	ple boarding a train
103	. Which one is an ex	cample of a dis	crete random variable?	
	(a) The amount of liqu	id in a glass	(b) Temperature re	eadings at noon
	(c) Number of defective	e items in a batc	h (d) Exact age in ye	ears
104	. Identify which one	is not a discre	te variable.	
	(a) Number of cookies	eaten	(b) Height of stude	ents
	(c) Total cars in a park	king lot	(d) Number of sibl	ings
105	. Which one is a pro	perty of joint	probability distribution?	
	(a) $P(X_i, Y_j) < 1$	(b) $P(X_i, Y_j) =$	$= 0$ (c) $P(X_i, Y_j) < 0$	(d) $0 \le P(X_i, Y_j) \le 1$
	0.0 (2:44: (2-	1		
	2.2 Situation Se	et.		
	Answer the next tw	o questions bas	sed on the following info	rmation
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			$P(x) = \frac{1}{2} = \frac{1}{4} = \frac{1}{4}$	
106	. What is $F(1)$			
	(a) 0.65	(b) 0.75	(c) 0.5	(d) 1

107. $P(X \le 1 \le 3) =$	_		
(a) 0.75	(b) 0.70	(c) 0.95	(d) 1
Answer the nex	t three questions l	based on the following	information
	_	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		$P(X) \mid \frac{1}{4} \mid m \mid \frac{1}{3} \mid \frac{1}{6}$	
108. What is the va	alue of m?		
(a) $\frac{1}{3}$	(b) $\frac{5}{12}$	(c) $\frac{1}{4}$	(d) $\frac{1}{6}$
109. Find $F(2)$.	\ / 12	(/ 4	(/ 6
(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{2}{3}$
110. What is $P(X > X)$	•	(/ 6	(/ 3
(a) $\frac{1}{2}$	(b) $\frac{5}{12}$	(c) $\frac{1}{3}$	(d) $\frac{7}{12}$
=	12	based on the following	± =
	-	V 1 2 3 4 5	
	P($egin{array}{c c c c c c c c c c c c c c c c c c c $	
111. What is the va			
(a) $\frac{1}{3}$	(b) $\frac{1}{4}$	(c) $\frac{1}{20}$	(d) $\frac{1}{6}$
112. Find $P(2 < X \le X)$			
(a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{5}{6}$	(d) $\frac{2}{3}$
113. What is $P(X \le$			
(a) $\frac{9}{20}$	(b) $\frac{7}{10}$	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$
Answer the nex	t three questions l	based on the following	information
		$\begin{array}{c ccccc} x & 1 & 2 & 3 \\ \hline P(x) & \frac{1}{2} & a & \frac{1}{2} \end{array}$	
		$P(x) \mid \frac{1}{3} \mid a \mid \frac{1}{6}$	
114. What is the va	alue of a?		
(a) $\frac{2}{3}$	(b) $\frac{5}{6}$	(c) $\frac{1}{2}$	(d) 1
115. Find $P(2 < X \le$	· ·		
(a) $\frac{5}{6}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
116. What is P(X<		.	•
(a) $\frac{5}{6}$	(b) $\frac{2}{5}$	(c) $\frac{1}{9}$	(d) $\frac{1}{7}$
*	t two questions ba	used on the following in	nformation
		x 1 2 3	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
117. What is $F(2)$?			
(a) $\frac{2}{3}$	(b) $\frac{5}{6}$	(c) $\frac{1}{2}$	(d) 1
\ / 3	\	\	(/

118. $P(1 < X \le 2)$			
(a) $\frac{5}{6}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
Answer the next	two questions based	on the following info	rmation
	f	(x) = kx; 0 < x < 5	
110 What is the real	$\mathbf{r} = \mathbf{r} \cdot \mathbf{f} \cdot D(2 < m < 2)$		
119. What is the value (a) $\frac{4}{5}$	(b) $\frac{3}{5}$	(c) $\frac{2}{5}$	(d) $\frac{1}{5}$
120. $P(X > 0)$	(**/ 5	(*) 5	(-7) 5
(a) 0.99	(b) 0.5	(c) 1	(d) 0
, ,	,	the following informa	• •
		2 3 4 5 6 2k 3k 4k 5k 6k	
121. What is the val	ue of k?		
(a) $\frac{7}{21}$	(b) $\frac{5}{21}$	(c) $\frac{1}{21}$	(d) 1
122. What is the typ	e of variable X?		
(a) Discrete	(b) Discrete rando	om (c) Continuous	(d) Continuous random
Answer the next	THREE questions u	sing the following infe	ormation
	P(x)	$y = \frac{x+1}{k}; x = 1, 2, 3, 4$	
123. What is the val	ue of k?		
(a) 10	(b) 11	(c) 14	(d) 15
124. $F(2) = -$			
(a) $\frac{2}{14}$	(b) $\frac{3}{11}$	(c) $\frac{5}{14}$	(d) $\frac{5}{11}$
125. $P(x)$ is a -			
(a) Joint probability(c) Probability mas		(b) Cumulative pr(d) Probability De	obability distribution ensity function
i. Binomial variate ii. Poisson variate iii. Normal variate Which one is cor	a discrete random v	ariable is–	
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
127. $f(x) = 2x; 0 < X$			
(a) 3	(b) 0	(c) 1	(d) 0
128. $f(x) = 3x; 0 < X$ (a) 6	< 2; What is $F(2)$? (b) 3	(c) 1	(d) 0

129. $f(x) = x^2; 0 < X < 4;$	What is $F(4)$?		
(a) 16	(b) 0	(c) 4	(d) 1
130. $f(x) = 4 - x$; $1 < X < x$	<5; What is $F(5)$?		
(a) 3	(b) 0	(c) 1	(d) 4
Answer the next two	o questions based on t	the following informat	ion:
$P(x,y) = \frac{1}{21}(x+y); x = \frac{1}{21}(x+y)$	=1,2,3 and y=1,2		
131. P (x)=?			
(a) $P(x) = \frac{2x+3}{21}$	(b) $P(x) = \frac{x+3}{27}$	(c) $P(x) = \frac{4x+3}{21}$	(d) $P(x) = \frac{2x+5}{21}$
132. P(y)=?			
(a) $\frac{y+2}{7}$	(b) $\frac{y+3}{7}$	(c) $\frac{3y+2}{7}$	(d) $\frac{y+2}{9}$
133. If $f(x) = kx^3; -1 \le x$	$s \leq 1$, then k is		
i) positiveii) negativeiii) lies from -1 to 1			
(a) i	(b) ii	(c) iii	(d) i and ii
Answer the next two	o questions based on t	the following informat	ion.
	$\begin{array}{c cc} x & 4 & 5 \\ \hline P(X) & \frac{1}{6} & \frac{1}{6} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
134. The value of $P(3 <$	X < 5) is:		
(a) $\frac{1}{2}$	(b) $\frac{1}{6}$	(c) $\frac{1}{3}$	(d) 0
135. $P(x \neq 2)is$:			
(a) $\frac{5}{6}$		(b) 0	
(c) 1		(d) Can't be found from	n this information
2.3 Multiple Co	mpletion		
136. For a continuous ra	andom variable X with	$\mathbf{PDF} \ f(x) = 2x, \ \mathbf{defin}$	ed on $[0,1]$:
i. $f(x) \ge 0$ for all $x \in [$ ii. $\int_0^1 f(x) dx = 1$ iii. $P(X > 1) = 0$	[0, 1]		
Which one is correct	t?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
137. For a continuous ra	andom variable X with	PDF $f(x) = k(2-x)$	defined on $0 \le x \le 2$:
i. The value of k is 1. ii. The cumulative dist iii. $P(1 < X < 2) = \frac{3}{8}$	ribution function $F(x) =$	$x - \frac{x^2}{4}$ for $0 \le x \le 2$.	
Which one is correc	t?		
(a) i	(b) i and ii	(c) ii	(d) i, ii and iii

3 Mathematical Expectation

138. $E(X+Y) = ?$			
(a) $E(X) - E(Y)$	(b) $E(X) + E(Y)$	(c) $2E(X) - E(Y)$	(d) $E(X) \times E(Y)$
139. $E(4x+2Y) = ?$			
(a) $E(X) - E(Y)$	(b) $4E(X) + 2E(Y)$	(c) 2E(X) + 4E(Y)	(d) $E(X) \times E(Y)$
140. What is the expect from their mean?	ted value of of the squ	ared deviation of the	value of the random variable
(a) Arithmetic Mean	(b) Expectation	(c) Variance	(d) Co-variance
141. What is the minin	num value of variance	a random variable?	
(a) $-\infty$	(b) 1	(c) 0	(d) -1
142. If $y = ax + b$, what	is the value of $V(y)$?		
(a) $aV(X)$	(b) $a^2V(X)$	(c) $V(X)$	(d) a^2
143. If $y = ax + b$, what	is the value of $E(y)$?		
(a) $aE(X) + b$	(b) $a^2 E(X)$	(c) $E(X)$	(d) b
144. What is the value	of $V(5)$?		
(a) 0	(b) 25	(c) 5	(d) 1
145. If $P(x) = \frac{1}{n}$; $x = 1, 2$	$,3,\cdots,n,$ what is the	value of $E(X)$?	
(a) $\frac{n}{2}$	(b) $\frac{n-1}{2}$	(c) $\frac{n+1}{2}$	(d) $n+1$
146. If $P(x) = \frac{4 - 5 - x }{k}$	$x; x = 2, 3, 4, \dots 8, $ what	is the value of k?	
(a) 5	(b) 8	(c) 16	(d) 24
147. Expected value of	a constant a is –		
(a) 1	(b) Variance	(c) a	(d) a+1
148. The variance of a	constant m is –		
(a) 0	(b) 1	(c) m	(d) m^2
149. What is $V(X - Y)$	equal to?		
(a) $V(X) + V(Y)$		(b) $V(X) + V(Y) - 2$	Cov(X,Y)
(c) $V(X) - V(Y)$		(d) $V(X) + V(Y) + 2$	Cov(X,Y)
150. What is the value	of $V(2X+5)$?		
(a) $4V(X) - 5$	(b) 20	(c) $4V(X)$	(d) 0
151. If $P(x) = \frac{1}{20}$; $x = 1, 2$	$2, 3, \cdots, 20$, what is the	e standard deviation?	
(a) 1	(b) 5.77	(c) 7.75	(d) 12.57
152. Expectation measurements	ures –		
(a) Dispersion	(b) Skewness	(c) Kurtosis	(d) Central tendency
153. If $E(X) = -0.5$, the	en $E(1-2X) = ?$		
(a) 0	(b) -1	(c) 2	(d) 1

154. If $P(X)$	$=\frac{1}{10}$; $x=1,2,\cdots 10$, then $E(X)=\frac{1}{10}$	=?	
(a) 10	(b) 5.5	(c) 0	(d) 11
155. Which	formula of variance is correct?		
	+Y) = V(X) + V(Y) - 2Cov(X, Y)) = V(X) + V(Y) + 2Cov(X, Y)
(c) $V(X -$	+Y) = V(X) + V(Y) - 2Cov(X, Y)	(d) V(X+Y)) = V(X) - V(Y) + 2Cov(X, Y)
156. X is a o	constant; what is the value of V	$\mathcal{N}(rac{X}{2})$?	
i) 0 ii) $\frac{1}{2}$ iii) $\frac{1}{4}$			
(a) ii	(b) i	(c) iii	(d) i and iii
157. If $E(X)$	$=2, E(X^2) = 8, V(X) =$		
(a) 0	(b) 2	(c) 4	(d) 8
158. If $E(X)$	$=3, E(X^2) = 11, V(X) =$		
(a) 2	(b) 5	(c) 6	(d) 4
159. If $E(X)$	= 4, what is $E(3X - 2)$?		
(a) 10	(b) 8	(c) 7	(d) 6
160. If $E(X)$	$=5, E(X^2) = 30, V(X) =$		
(a) 3	(b) 5	(c) 4	(d) 6
161. If $E(X)$	$= 6$, what is $E(\frac{X}{2} + 1)$?		
(a) 4	(b) 3	(c) 2	(d) 5
162. If $E(X)$	$=2, E(X^2) = 10, V(X) =$		
(a) 5	(b) 6	(c) 7	(d) 4
163. If $E(X)$	= 7, what is $E(4X + 3)$?		
(a) 28	(b) 30	(c) 31	(d) 29
164. If $E(X)$	= 3, what is $E(5 - X)$?		
(a) 2	(b) 3	(c) 4	(d) 5
165. If $E(X)$	=4 and $V(X)=5$, what is $E(X)$	(2^2) ?	
(a) 9	(b) 16	(c) 21	(d) 25
166. If $E(X)$	=3 and $V(X)=7$, what is $E(X)$	(2^2) ?	
(a) 9	(b) 10	(c) 16	(d) 18
167. If $E(X)$	$= 5 \text{ and } E(X^2) = 34, \text{ what is } V$	(X)?	
(a) 6	(b) 9	(c) 10	(d) 7
168. If $E(X)$	$= 2 \text{ and } E(X^2) = 14, \text{ what is } V$	(X)?	
(a) 10	(b) 9	(c) 8	(d) 7
169. If $E(X)$	0=6 and $V(X)=12$, what is $E($	(X^2) ?	

(c) 48

(b) 40

(a) 36

(d) 50

150 IC D() 4-	- 5-x		\ 9
(a) 3	$\frac{- 5-x }{k}$; $x = 2, 3, 4, \dots 8$, who	eat is the value of $E(X)$	(d) 5
, ,	,	` '	, ,
(a) 6	$\frac{- 7-x }{k}$; $x = 2, 3, 4, \dots 12$, w (b) 9	nat is the value of $E(X)$	(d) 36
		` '	(d) 30
(a) 6	$\frac{- 4-x }{k}$; $x = 2, 3, 4, \dots 6$, who	(c) 10	(d) 40
, ,	ance of X is 3, what is	` '	(u) 40
(a) 1	(b) 2	(c) 3	(d) 0
	5, what is $V(X+5)$?		(=) 0
(a) 0	(b) 5	(c) 10	(d) 25
, ,	5, what is $V(2X+5)$?	· /	,
(a) 20	(b) 5	(c) 10	(d) 25
176. If $E(X) = 2$	and $E(X^2) = 8$, then the	he value of the $V(X) =$?
(a) 0	(b) 2	(c) 4	(d) 8
177. If $E(X^2) =$	20 and $V(X) = 11$, what	is $E(X)$?	
(a) 3	(b) 4	(c) 5	(d) 6
178. If $E(X^2) =$	50 and $V(X) = 14$, what	is $E(X)$?	
(a) 5	(b) 6	(c) 7	(d) 8
179. If $E(X^2) =$	25 and $V(X) = 9$, what	is $E(X)$?	
(a) 2	(b) 3	(c) 4	(d) 5
	45 and $V(X) = 21$, what		
(a) $4\sqrt{3}$	(b) $2\sqrt{6}$	(c) $6\sqrt{2}$	(d) $7\sqrt{2}$
	13 and $V(X) = 4$, what		
(a) 2	(b) 3	(c) 4	(d) 5
	8, what is $E(2X - 5)$?	() -	(1) =
(a) 1	(b) 3	(c) 5	(d) 7
	E_{1} , what is $E(\frac{X}{2} + 3)$?	() a	(1) =
(a) 4	(b) 5	(c) 6	(d) 7
	-2, what is $E(3X+7)$?	(-) 9	(1) 4
(a) 1	(b) -1	(c) -2	(d) 4
185. If $E(X) = 6$ (a) 1	5, what is $E(5-X)$? (b) 0	(c) 1	(A) 2
	,	(c) -1	(d) 2
186. If $E(X) = 1$ (a) 12	0, what is $E(4X - 8)$? (b) 40	(c) 28	(d) 32
	, ,		, ,
187. If $P(x) = \frac{1}{11}$	$\frac{1}{5}$; $x = 1, 2, 3, \dots 15$, what	is the value of the exp	ectation?

(b) 7.5

(c) 7

(d) 8

(a) 8.5

3.1 Situation Set

Answer the next THREE questions based on the following information

		$P(x) = \frac{1}{3} = \frac{1}{4} = \frac{5}{12}$	
188. What is the valu	ue of $E(X)$		
(a) $\frac{15}{12}$	(b) $\frac{13}{12}$	(c) $\frac{1}{12}$	(d) $\frac{11}{13}$
189. What is the valu	ue of $E(X^2)$		10
(a) $\frac{25}{12}$	(b) $\frac{13}{12}$	(c) $\frac{23}{12}$	(d) $\frac{25}{13}$
190. What is $V(2X)$?			
(a) 2.93	(b) 2.91	(c) 1.97	(d) 2.97
Answer the next	THREE question	s based on the following	g information
		$\begin{array}{c c c c c} X & 1 & 2 & 3 \\ \hline P(x) & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ \end{array}$	
191. What is the valu	ue of $E(X)$?		
(a) 2.00	(b) 2.17	(c) 2.33	(d) 2.50
192. What is the valu	ue of $E(X^2)$?		
(a) 5.17	(b) 4.83	(c) 5.00	(d) 5.33
193. What is $V(3X)$?			
(a) 9.67	(b) 11.33	(c) 12.67	(d) 4.25
Answer the next	two questions bas	sed on the following inf	ormation
	The probability fur	nction of random variable at $P(x) = \frac{x}{k}$; $x = 1, 2, 3, 4$	x is given below:
194. What is the valu	\mathbf{k}		
(a) 6	(b) 10	(c) 15	(d) 20
195. What is $E(X)$?			
(a) 2.25	(b) 3.5	(c) 2.5	(d) 3.0
Answer the next	three questions b	eased on the following is	nformation
		nction of random variable at $P(x) = \frac{2x+1}{k}$; $x = 1, 2, 3, 4$	x is given below:
196. What is the valu	\mathbf{k} e of k ?		
(a) 18	(b) 25	(c) 12	(d) 24
197. What is $E(X)$?			
(a) 1.75	(b) 2.92	(c) 3.25	(d) 2.25

198. What is $V(X)$?	•		
(a) 1.05	(b) 3.0	(c) 1.5	(d) 1.25
Answer the nex	t two questions based on	the following informa	ation
	The probability function of	of random variable x is g	given below
		$\frac{x-1}{k}$; $x = 2, 3, 4, 5$	
199. What is the va	alue of k?		
(a) 2	(b) 5	(c) 10	(d) 25
200. What is $E(X)$?			
(a) 0.425	(b) 0.525	(c) 0.725	(d) 0.625
4 Binomia	al Distribution		
201. How many par	rameters are there in a bi	nomial distribution?	
(a) 1	(b) 2	(c) 3	(d) 4
202. What is the M	lean of Binomial Distribu	tion?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
203. What is the Va	ariance of Binomial Distr	ibution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
204. What is the St	andard Deviation of Bind	omial Distribution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
205. What is the C	oefficient of Variation of l	Binomial Distribution	?
(a) np	(b) npq	(c) $\frac{q}{np}$	(d) \sqrt{npq}
206. Which is true	of mean (np) of Binomial	Distribution?	
(a) $np = 0$	(b) $np < 0$	(c) $np > 0$	(d) $np \neq 0$
207. In a Binomial	distribution, how are mea	an and variance relate	ed?
(a) $Mean > Vari$	ance	(b) $Mean < Variance$	2
(c) $Mean = Vari$	ance	(d) $Mean = 2 \times Vari$	ance
208. When does Bir	nomial distribution tend	to Poisson distributio	n?
(a) $n \to \infty$ and p	$\rightarrow \infty$ (b) $n \rightarrow 0$ and $p \rightarrow 0$	(c) $n \to \infty$ and $p \to 0$	(d) $n \to 0$ and $p \to \infty$
	t two questions based on ariate with expectation 4 and	_	ation.
209. What are the	values of the parameters	(mean and probability	y)?
(a) $16, \frac{1}{4}$	(b) $16, \frac{3}{4}$	(c) $15, \frac{1}{4}$	(d) $10, \frac{1}{4}$
210. What is $P(X \neq$	€ 0)?		
(a) 0	(b) 0.01	(c) 0.99	(d) 1

211. The characterist	cics of binomial distr	ibution-	
i. $E(X) > V(X)$ ii. $E(X) = V(X)$ iii. $E(X) = np$			
Which one is cor	rect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
212. What is true of	binomial distribution	n?	
(a) There is one par		(b) Number of tria	al is fixed
(c) Mean is greater		(d) Skewness is ne	
213. What is the ske	wness of binomial dis	stribution?	
	(b) $\frac{(q-p)^2}{nn}$		(d) $\frac{(q+p)^2}{npq}$
$(a) \frac{1}{np}$	$\frac{np}{np}$	$\frac{(C)}{npq}$	$\frac{(d)}{npq}$
214. When is a binon	nial distribution posi	itively skewed?	
(a) $p > q$	(b) p = q	(c) $p < q$	(d) $p+q < 1$
Answer the next	two questions based	on the following infor	rmation
	In a binomial distrib	oution, $P(x=4) = \frac{1}{2}P(x$	= 5); n = 10
215. What is the mea	an?		
(a) 6.25	(b) 5.15	(c) 8.52	(d) 5.22
216. $P(x=2) =$			
	(b) 0.0069	(c) 0.0085	(d) 0.94
217. In a binomial di	stribution with $p = 0$.3 and $n = 10$, what is	P(2)?
(a) 0.2335	(b) 0.2668	(c) 0.3828	(d) 0.1211
. ,	,	.4 and $n = 12$, what is	, ,
(a) 0.0896	(b) 0.2131	(c) 0.1419	(d) 0.2942
. ,	,	· /	. ,
(a) 0.2734	(b) 0.3125	.5 and $n = 8$, what is $n = 8$, (c) 0.2070	(d) 0.0898
, ,	` ′	` '	. ,
		.2 and $n = 15$, what is	
(a) 0.1789	(b) 0.1887	(c) 0.1032	(d) 0.2413
		.6 and $n = 9$, what is $n = 9$	
(a) 0.2007	(b) 0.2508	(c) 0.2311	(d) 0.7682
		.3 and $P(x) = 0.2508, n$	4 -5
(a) 18	(b) 10	(c) 13	(d) 6
223. In a binomial di	stribution with $p = 0$.4 and $P(x) = 0.1419$, v	what is n ?
(a) 5	(b) 6	(c) 12	(d) 15
224. In a binomial di	stribution with $p = 0$.5 and $P(2) = 0.1093$, w	what is n ?
(a) 15	(b) 1	(c) 8	(d) 12
225. In a binomial di	stribution with $p = 0$.2 and $P(x) = 0.9389$, n	z = ?
(a) 7	(b) 12	(c) 11	(d) 15
226. In a binomial di	stribution with $p = 0$.6 and $P(5) = 0.02449$,	n = ?
(a) 3	(b) 9	(c) 10	(d) 15

4.1 Situation Set

Answer the next THREE questions based on the following information

The mean of a Binomila distribution is 40 and standard deviation 6.

227. What is the va	alue of n ?		
(a) 200	(b) 300	(c) 400	(d) 500
228. What is the va	alue of $1-q$?		
(a) 0.5	(b) 0.2	(c) 0.3	(d) 0.1
229. What is the va	alue of $P(X \le 40)$?		
(a) 0.52	(b) 0.54	(c) 0.45	(d) 0.91
4.2 Multiple	e Completion		
230. In a binomial of	distribution with para	meters n and p :	
ii. The variance is	alue is given by $E(X) =$ given by $V(X) = np(1 -$ deviation is given by \sqrt{n}	-p).	
Which one is co	orrect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
231. Which of the f	ollowing statements a	bout a binomial distr	ibution are true?
ii. The trials are o	of success remains const dependent on each other. f trials is fixed in advance		
Which one is co	orrect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
232. Consider a bin	omial experiment. W	hich of the following	statements is/are true?
ii. The expected v	ts in exactly one of two pralue is always greater the y mass function of a binor	an the variance.	omputed using the binomial formula
Which one is co	orrect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
233. Which of the f	Collowing is/are correct	t about the binomial	distribution?
ii. If $p = 1$, the di	maximized when $p = 0.5$ stribution becomes deger deviation is given by \sqrt{n}	nerate.	
Which one is co	orrect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii

5 Poisson Distribution

234. The no. of paramet	ers in a Poisson distri	ibution is —	
(a) 1	(b) 2	(c) 3	(d) 4
235. What is the mean o	of Poisson distribution	ı	
(a) $\frac{1}{\sqrt{m}}$	(b) <i>m</i>	(c) $\frac{1}{m}$	(d) $1 + \frac{1}{m}$
236. Which relationship	between mean and va	ariance of Poisson Dist	tribution is correct?
(a) $Mean > Variance$	(b) $Mean < Variance$	(c) $Mean = Variance$	(d) $Mean \neq Variance$
237. What is the Variance	ce of Poisson Distribu	tion(with parameter	
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) m	(d) $\frac{1}{m+1}$
238. What is the Standa	rd Deviation of Poisso	on Distribution(with p	parameter m)?
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) \sqrt{m}	(d) $\frac{1}{m+1}$
239. Which one is true o	of the parameter (m)	of Poisson Distributio	n?
(a) $m = 0$	(b) $m < 0$	(c) $m > 0$	(d) $m = 1$
240. The parameter of a	Poisson Distribution	is 5. What is its mean	n?
(a) 2	(b) 5	(c) 2.24	(d) 25
241. When does Binomia	al Distribution tend to	o Poisson Distribution	n?
(a) $n \to \infty, p \to 0 \& np$	is finite	(b) $n \to \infty, p \to 0 \& np$	
(c) $n \to \infty, p \to \infty \& n_p$	p is finite	(d) $n \to 0, p \to \infty \& np$	is infinite
242. The parameter of a	Poisson variate is 2.	What is its variance?	
(a) 0	(b) 4	(c) $\sqrt{2}$	(d) 2
243. The parameter of a	Poisson variate is 5.	What is its variance?	
(a) 10	(b) 5	(c) $\sqrt{5}$	(d) 25
244. A Poisson distribut	ion has a mean of 3.	What is the variance?	
(a) 9	(b) 3	(c) $\sqrt{3}$	(d) 0
245. X is a Poisson varia	te. $P(2) = P(4)$. Wh	at is the value of the	parameter?
(a) 12	(b) 3.46	(c) 3.6	(d) 4
246. X is a Poisson varia	te. $P(3) = P(5)$. Wh	at is the value of the	parameter?
(a) 4.5	(b) 5	(c) 2.3	(d) 4.1
247. For a Poisson variat	E = X, if P(1) = P(3), v	what is the variance?	
(a) 2.5	(b) 3.2	(c) 2.45	(d) 4.5
248. For a Poisson variat	te X , if $P(2) = P(3)$, w	hat is the variance?	
(a) 3	(b) 4	(c) 5	(d) 6
Answer the next two	questions based on t	he following informat	ion
For a Poisson variate X	, if $P(2) = P(5)$.		
249. What is standard de	eviation?		
(a) 1.978	(b) 1.998	(c) 1.989	(d) 1.889

250. What is the value	$\mathbf{P}(2)$?		
(a) 0.25	(b) 0.14	(c) 0.15	(d) 0.02
251. The standard de	viation of a poisson	distribution is 2. Wh	at is the parameter?
(a) 2	(b) 3	(c) 4	(d) 5
252. Mean of a Poisso	on variate is a. Wha	at is its standard devia	ation?
(a) 0	(b) a	(c) $a^{\frac{1}{2}}$	(d) a^2
253. The standard de	viation of a Poisson	distribution is 3. Wh	nat is the parameter?
(a) 6	(b) 9	(c) 3	(d) 4
254. For a Poisson di	stribution with a m	ean of 5, what is the v	variance?
(a) 5	(b) 10	(c) 25	(d) 15
255. If the variance o	f a Poisson distribu	tion is 4, what is $P(2)$?
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2184
256. If the variance o	f a Poisson distribu	tion is 3.5, what is $P(1)$	1)?
(a) 0.1465	(b) 0.1057	(c) 0.1839	(d) 0.2184
257. A Poisson distri	bution has a mean o	of 7. What is the stand	dard deviation?
(a) 3.2	(b) 4.1	(c) 2.65	(d) 1.78
258. If $P(2)$ in a Pois λ ?	son distribution wit	th parameter λ equals	0.2240, what is the parameter
(a) 2.4551	(b) 1.2515	(c) 1.2115	(d) 2.5112
259. A Poisson distri	bution has a mean o	of 4. What is $P(3)$?	
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2381
260. If the variance o	f a Poisson distribu	tion is 3, what is the	mean?
(a) 3	(b) $\sqrt{3}$	(c) 2	(d) 6
261. For a Poisson di	stribution with mea	n 6, what is the proba	ability of $P(0)$?
(a) 0.0895	(b) 0.012	(c) 0.0454	(d) 0.0024
262. The mean of a F		is 10. What is its star	ndard deviation?
(a) 5	(b) $\sqrt{10}$	(c) 10	(d) $\sqrt{20}$
263. Given that the p	parameter of a Poiss	son distribution is 8, w	what is the variance?
(a) 4	(b) 8	(c) $\sqrt{8}$	(d) 16
5.1 Multiple	Completion		
264. For a Poisson-dia	stributed variable w	with mean $\lambda = 4$, which	of the following is true?
i. $E(X) = 4$			
ii. $V(X) = 2$ iii. $E(X^2) = 18$			
Which one is corn	rect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii

265. If $X \sim $ Poisson	(m=3), which of the f	following holds?		
i. $E(X) = 3$ ii. $V(X) = 3$ iii. $E(X^2) = 12$				
Which one is co	orrect?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
266. For a Poisson	distribution, which of	the following stateme	nts are true?	
ii. The distribution	variance are always equal on is always symmetric. ty of zero occurrences is g			
Which one is co	orrect?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
 267. If a Poisson-distrue? i. E(X) = 6 ii. V(X) = 6 iii. P(X = 0) = e 		able has mean $\lambda=6,{f w}$	hich of the following state	${f ments}$
Which one is co	orrect?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
i. The standard of ii. $P(X \ge 1) = 1$ iii. $E(X^2) = 30$ Which one is considered.	$-e^{-5}$.			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
~ ·			a year.If there are 2000 house will be burnt?	${ m ouses},$
(a) 0.036	(b) 0.040	(c) 0.027		
()	()	()	()	
6 Vital St	tatistics			
270. What is the ca			to the earning population asity (d) Growth rate	ı?
(a) The ratio of t(b) The ratio of tulation(c) The proportion	on of young dependents (0	the working-age population (0-14 and 65+) population		l) pop-
(d) The total pop	oulation divided by the nu	imber of children (0-14)		

272. City A has 12,0 is the dependent		duals aged ()-14, 35,	000 aged	d 15-64,	and 5,0	00 aged 65+. W	hat
(a) 0.31	(b) 0.	48	(c)	0.60		(d) 0.2	25	
273. A City has a d						opulatio	on (15-64) is 50,0	000,
(a) 15,600	(b) 20			26,000	,	(d) 30	,000	
Answer the follo	wing 2 qu	estions base	ed on the	e inform	ation gi	ven belo	w.	
	City	Population	(in tho	usands)	Area (in km ²		
	Gamma	F	1200		<u> </u>	00		
	Delta		800		35	20		
274. What is the pop	pulation d	ensity of Ci	ty Delta	ı?				
(a) 2 people/km ²	(b) 4	$people/km^2$	(c)	2.5 peopl	e/km^2	(d) 2.5	2 people/km^2	
275. Which city is le	ess densely	populated:	?					
(a) Gamma			(b)	Delta				
(c) Both are equal			(d)	Cannot b	oe determ	nined		
Answer the follo	wing two	questions ba	ased on	the info	rmation	given be	elow.	
In a city, the total the population was		ive births in a	a year wa	s 2,400. Т	The numb	per of wor	nen aged 15-49 year	s in
276. Calculate the G	eneral Fe	rtility Rate	(GFR)	for the c	ity.			
(a) 40 per 1,000 we	omen (b) 50	per 1,000 we	omen (c)	60 per 1,0	000 wome	en (d) 30	per 1,000 women	
277. If live births inc what is the new		3,000 while	the num	ber of w	omen aş	ged 15-4	9 remains the sa	me,
(a) 55 per 1,000 wo	omen (b) 65	5 per 1,000 we	omen (c)	50 per 1,	000 wome	en (d) 62	5 per 1,000 women	
278. The population 8,000. What is t					of live	births r	ecorded in a yea	r is
(a) $12 per 1,000$	(b) 16	5 per 1,000	(c)	20 per 1,	000	(d) 22	per 1,000	
279. What is the for	mula of p	opulation de	ensity?					
(a) $\frac{M}{F} \times 100$	(b) $\frac{F}{M}$	$\bar{I} \times 100$	(c)	$\frac{B}{P} \times 100$		(d) $\frac{P}{A}$		
280. In the following	g data, wh	at is the de	pendenc	y ratio?				
Ag	e 0-		25-34	35-44	45-54	55-64	65+	
Populat	tation 31,	500 40,000	48,000	41,000	32,000	25,000	16,000	
(a) 35.54%	(b) 25	5.54%	(c)	23.24%		(d) 31	.25%	
281. Crude Birth Ra	, ,							
(a) $\frac{B}{P} \times 100$	(b) $\frac{B}{P}$	\times 1000	(c)	$\frac{P}{B} \times 100$		(d) $\frac{F}{P}$	× 100	
282. Which one is a i) CBR ii) CDR iii) NRR	measure o	of reproduct	ion?					
(a) i	(b) ii		(c)	iii		(d) i a	nd ii	

283. The number of people living	ing per unit area i	is called–			
(a) Population Index		(b) Population Density			
(c) Human Development Index		(d) Dependency Ratio			
284. Which formula of GFR is	accurate?				
		(b) $GFR = \frac{B}{F_{15-49}} \times 1000$			
		(d) $GFR = \frac{G_i}{F15-49} \times 1000$			
285. Total number of children	born to each 1000	people in any count	ry or region is called –		
(a) TFR (b) G	FR (c	e) CBR ((d) GRR		
286. A city has a dependency ratio of 0.48. If the working-age population (15–64) is 62,500, what is the number of dependents (ages 0–14 and 65+)?					
(a) 30,000 (b) 25	5,000 (c	22,000	(d) 20,000		
287. The dependency ratio of a town is 0.60. If there are 40,000 people aged 15–64, how many individuals are considered dependents?					
(a) 22,000 (b) 26	5,500 (c	24,000	(d) 25,000		
 6.1 Growth Rates 288. If n in P_n = P_o(1+r)ⁿ is split into infinite parts and r adjusted accordingly, what type of growth do we have? (a) Simple growth (b) Arithmetic growth (c) Exponential growth (d) Geometric growth 					
Answer the next two questions based on the following information					
	Year 1 Population 100	2 3 4 110 120 130			
289. Which type of growth is s	seen here?				
(a) Arithmetic growth (b) Go		e) Exponential growth ((d) None		
290. What is the rate of increa	ase?				
(a) 1 (b) 0.3	1 (c	e) 10 ((d) 1%		
291. In exponential growth, where $\frac{\log_{10} 2}{r}$ (b) $\frac{\log_{10} 2}{r}$			$(d) \frac{\log_e 3}{r}$		
292. If a population exponential	ally declines, when	,	,		
(a) $\frac{\log_{10} 2}{r}$ (b) $\frac{\log}{r}$			(d) $\frac{\log_e 3}{r}$		
293. How long does it take for a population to triple in exponential growth?					
(a) $\frac{\log_{10} 3}{r}$ (b) $\frac{\log_{10} 3}{r}$,	, , , , -	(d) $\frac{\log_e 2}{r}$		
Answer the next two questions based on the following information					
Statement					

294. Vital statistics records -

- i. marriage
- ii. birth
- iii. sickness and death

Which one is correct?

- (a) i and ii
- (b) i and iii
- (c) ii and iii
- (d) i, ii and iii

Answer Key:

23. (d)
$$P = \{m, n\}, Q = \{p, q\}$$

48. (b)
$$\frac{1}{22}$$

3. (a)
$$\frac{n!}{(n-r)!}$$

$$25.$$
 (a) i and iii

49. (b)
$$\frac{6}{11}$$

$$(n-r)!$$

50. (b)
$$\frac{1}{3}$$

4. (a)
$$\frac{n!}{(n-1)!(n+r)!}$$

51. (b)
$$\frac{5}{12}$$

28. (d)
$$\frac{1}{2}$$

52. (c)
$$\frac{48}{91}$$

53. (d)
$$\frac{5}{11}$$

55. (c)
$$\frac{3}{4}$$

56. (d)
$$\frac{3}{4}$$

10. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 33.$$
 (c) 0.975

11. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 34.$$
 (c) 6^r

58. (a)
$$\frac{13}{20}$$

12. (a)
$$P(A|B) = \frac{P(A \cap B)}{P(B|A)}$$

35. (c)
$$2^r$$

12. (a)
$$P(A|B) = \frac{P(A|B)}{P(B|A)}$$

59. (a)
$$P(A \cap B) = P(A) \times P(B)$$

13. (c)
$$P(A_1UA_2U\cdots UA_n) = \sum_{i=1}^{\infty} P(A_i)(a) \frac{1}{4}$$

$$(b) T (H \cup D) = T (H) + T$$

38. (c)
$$\frac{3}{4}$$

39. (b)
$$\frac{1}{2}$$

40. (a)
$$\frac{1}{4}$$

41. (c)
$$\frac{3}{4}$$

42. (c)
$$\frac{1}{4}$$

43. (a)
$$\frac{3}{4}$$

21. (a)
$$P(A \cap B) = P(A) \cdot P(B)$$

45. (b)
$$\frac{0}{6}$$

22. (a)
$$A = \{1, 2, 3\}, B = \{4, 5\}$$

60. (b)
$$P(A \cup B) = P(A) + P(B)$$

61. (d)
$$\frac{P(A)}{P(B)} = \frac{P(A|B)}{P(B|A)}$$

62. (b)
$$\frac{1}{36}$$

63. (a)
$$P(A) = 0.5$$
 and $P(B) = 0.4$

71. (c) $\frac{1}{4}$ 72. (a) $\frac{1}{4}$

95. (d) 1

120. (c) 1

96. (c) 0

121. (c) $\frac{1}{21}$

73. (d) $\frac{11}{12}$

97. (a) 2

122. (b) Discrete random

74. (b) $\frac{1}{4}$

98. (b) Weight

123. (c) 14

75. (c) $\frac{2}{20}$

- 99. (c) $\Sigma P(x_i) = 1$
- 124. (c) $\frac{5}{14}$

- 100. (d) Released version number of 125of(waPerobability mass function

76. (a) $\frac{17}{20}$

- 101. (b) Weight of a package
- 126. (a) i and ii

77. (c) $\frac{58}{60}$

78. (b) $\frac{7}{30}$

102. (c) Number of floors in a building 7. (c) 1 103. (c) Number of defective items in 28 bacch

79. (d) $\frac{23}{30}$

- 104. (b) Height of students
- 129. (d) 1

80. (a) $\frac{3}{7}$

- 105. (d) $0 \le P(X_i, Y_i) \le 1$
- 130. (c) 1

81. (b) i and iii

106. (b) 0.75

131. (a) $P(x) = \frac{2x+3}{21}$

82. (a) i and ii

107. (a) 0.75

132. (c) $\frac{3y+2}{7}$

83. (b) i and iii

108. (c) $\frac{1}{4}$

133. (a) i

84. (d) Page size in word processing softwares

134. (b) $\frac{1}{6}$

- 85. (a) Probability distribution
- 110. (a) $\frac{1}{2}$

135. (a) $\frac{5}{6}$

86. (b) 3

111. (c) $\frac{1}{20}$

136. (d) i, ii and iii

87. (d) 3

112. (a) $\frac{5}{12}$

137. (c) ii

88. (d) 4

113. (c) $\frac{1}{2}$

138. (b) E(X) + E(Y)

- 89. (c) $\int_{x} f(x) dx = 1$
- 114. (c) $\frac{1}{2}$

139. (b) 4E(X) + 2E(Y)

- 90. (d) Size of television
- 115. (d) $\frac{1}{6}$

141. (c) 0

91. (b) $\frac{1}{20}x^5 + c$

116. (a) $\frac{5}{6}$

142. (b) $a^2V(X)$

140. (c) Variance

92. (b) i and iii

117. (b) $\frac{5}{6}$

143. (a) aE(X) + b

- 93. (d) i, ii, and iii
- 118. (c) $\frac{1}{2}$

144. (a) 0

- 94. (d) i, ii, and iii
- 119. (d) $\frac{1}{5}$

145. (c) $\frac{n+1}{2}$

146. (c) 16	171. (d) 36	196. (d) 24
147. (c) a	172. (b) 9	197. (b) 2.92
148. (a) 0	173. (d) 0	198. (a) 1.05
149. (c) $V(X) - V(Y)$	174. (b) 5	199. (c) 10
150. (c) $4V(X)$	175. (a) 20	200. (c) 0.725
151. (a) 1	176. (c) 4	201. (b) 2
152. (d) Central tendency	177. (a) 3	202. (a) np
153. (c) 2	178. (b) 6	203. (b) npq 204. (d) \sqrt{npq}
154. (b) 5.5	179. (c) 4	
155. (b) $V(X+Y) = V(X) + V(X)$	Y) 48 0 C(b)(X √8)	205. (c) $\frac{q}{np}$ 206. (c) $np > 0$
156. (b) i	181. (c) 4	200. (c) $Mp > 0$ 207. (a) $Mean > Variance$
157. (c) 4	182. (a) 1	208. (c) $n \to \infty$ and $p \to 0$
	183. (b) 5	209. (a) $16, \frac{1}{4}$
158. (a) 2		210. (c) 0.99
159. (a) 10	184. (a) 1	211. (b) i and iii
160. (b) 5	185. (c) -1	212. (c) Mean is greater than variance
161. (a) 4	186. (d) 32	213. (a) $\frac{(q-p)^2}{np}$
162. (b) 6	187. (d) 8	-
163. (c) 31	188. (b) $\frac{13}{12}$	214. (c) $p < q$
164. (a) 2	189. (b) $\frac{13}{12}$	215. (a) 6.25 216. (b) 0.0069
165. (c) 21	190. (d) 2.97	217. (c) 0.3828
166. (c) 16	191. (b) 2.17	218. (c) 0.1419
167. (b) 9	192. (a) 5.17	219. (a) 0.2734
168. (a) 10	193. (d) 4.25	220. (c) 0.1032
169. (c) 48	194. (b) 10	221. (b) 0.2508
170. (d) 5	195. (d) 3.0	222. (b) 10

223. (c) 12	248. (a) 3	272. (b) 0.48
224. (c) 8	249. (a) 1.978	273. (c) 26,000
225. (d) 15	250. (c) 0.15	274. (b) 4 people/km 2
226. (b) 9	251. (c) 4	275. (b) Delta
227. (c) 400	252. (c) $a^{\frac{1}{2}}$	276. (b) 50 per 1,000 women
228. (d) 0.1	253. (b) 9	277. (d) 62.5 per 1,000 women
229. (b) 0.54	254. (a) 5	278. (b) 16 per 1,000
230. (a) i and ii	255. (a) 0.1465	279. (d) $\frac{P}{A}$
231. (b) i and iii	256. (b) 0.1057	280. (b) 25.54%
232. (d) i, ii and iii	257. (c) 2.65	281. (b) $\frac{B}{P} \times 1000$
233. (d) i, ii and iii	258. (b) 1.2515	•
234. (a) 1	259. (b) 0.1954	282. (c) iii
235. (b) m	260. (a) 3	283. (b) Population Density
236. (c) $Mean = Variance$	261. (d) 0.0024	284. (b) $GFR = \frac{B}{F_{15-49}} \times 1000$
237. (c) m	262. (b) $\sqrt{10}$	285. (c) CBR
238. (c) \sqrt{m}	263. (b) 8	286. (a) 30,000
239. (c) $m > 0$	264. (b) i and iii	287. (c) 24,000
240. (b) 5	265. (d) i, ii and iii	288. (c) Exponential growth
241. (a) $n \to \infty, p \to 0 \& np$ is fini	te 266. (b) i and iii	289. (a) Arithmetic growth
242. (d) 2	267. (d) i, ii and iii	290. (b) 0.1
243. (b) 5	268. (d) i, ii and iii	291. (b) $\frac{\log_e 2}{r}$
244. (b) 3	269. (a) 0.036	292. (b) $\frac{\log_e 2}{r}$
245. (b) 3.46	270. (a) Dependency ratio	293. (b) $\frac{\log_e 3}{r}$
246. (a) 4.5		ned non-working (0-14 and 65+) population to the
247. (c) 2.45	population	294. (d) i, ii and iii