<u>▶</u>iveVide⊙StackCon

H.265金山云演进之路

金山云算法总监 朱政

序章: 致敬x264

创造了众所周知的工具和名 词Mbtree, CRF, 2PASS

x264

繁荣了H.264的内容和生态

解放了视频编解码 底层开发劳动力

除了不限速和最慢档,H.265软件的价值在哪里?

> 迄今达到的性能一览

性能摘要汇总

	vs. x264(RC=ABR)		vs. x265 (RC=ABR)		vs. VP9 (RC=VBR)	
速度档次	带宽节省	加速	带宽节省	加速	带宽节省	加速
superfast	43.7%	-5.4%	26.0%	212.6%	30.5%	147.9%
Veryfast	41.2%	8.9%	34.5%	123.2%	38.0%	75.5%
Slow	36.2%	-5.1%	23.7%	47.5%	32.6%	179.0%
Veryslow	35.3%	83.3%	10.9%	84.1%	23.1%	778.0%

ksc265 veryfast vs x264 veryfast						
Thread No.	Class	BDRATE-Y	BDRATE-U	BDRATE-V	BDRATE-YUV	Speed-Up
	Class A	-43.6%	-41.7%	-45.0%	-43.7%	8.4%
	Class B	-51.0%	-55.6%	-56.4%	-51.9%	35.1%
	Class C	-38.2%	-49.8%	-49.5%	-40.3%	1.6%
1	Class D	-31.5%	-51.5%	-50.8%	-35.1%	-15.2%
	ClassE	-48.0%	-61.5%	-63.9%	-51.7%	47.0%
	Game 30 fps	-36.4%	-43.7%	-42.5%	-38.0%	9.3%
	Average	-40.2%	-49.4%	-49.4%	-42.1%	13.1%
	Class A	-44.4%	-43.1%	-45.8%	-44.6%	4.2%
	Class B	-50.0%	-54.9%	-55.6%	-50.9%	26.9%
	Class C	-37.1%	-48.8%	-47.6%	-39.2%	-2.4%
auto	Class D	-30.2%	-50.0%	-50.1%	-33.8%	-0.8%
	ClassE	-46.4%	-60.1%	-62.2%	-50.1%	35.4%
	Game 30 fps	-35.5%	-42.8%	-41.4%	-37.1%	2.1%
	Average	-39.2%	-48.5%	-48.4%	-41.2%	8.9%

veryfast为例性能摘要

与x264复杂度对标

如何在保证HEVC高压缩比的情况下,速度和功耗无限接近x264

- 从零开始
- 从实时档次开始做

我们的2014

从零开始做实时,随时随地重构,不惧推倒重来

积累之前的经验教训,对标准通篇更加熟悉

> 工程化追求极致

快速迭代,不断试错, 找到突破口

每一处代码和数据结构 精益求精

小团队结对编程,所有人 熟悉所有代码

不怕麻烦,只怕性能不够 95%的精力投入到5%的 性能提升

单元测试先行,严格 codereview

解码器追求极限速度

SIMD优化

X86和ARM: ASM和intrincis各一套

变换和反变换实现无转置的方法

C代码优化

解码器完全无递归

减少判断:编程过程CU边界仅两个

Bool判断

作为编码器副产品打造,却耗费大量精力

比OpenHEVC平均提速2倍,全标准的支持,鲁棒性强

CEOC	ltours	FFMPEG-KSC265 vs FFMPEG-OpenHEVC			
SEQS	Items	iOS	android	解码提速	
avantar	1920x1080	67.3 vs 24.0	126.7 vs 50.7	165%	
BigShip	1280x720	113.0 vs 38.3	192.0 vs 84.3	161%	
mobilephone	480x360	340.7 vs 157.7	572.3 vs 142.7	209%	
mobile	832x480	285.3 vs 129.7	474.7 vs 89.3	276%	
mobile	640x480	227.0 vs 96.7	384.7 vs 79.7	259%	
(AVG)			214%	

•测试说明: KSC265解码器与openHEVC不同码率分辨率视频解码速度测试

•测试设备: ipad min2(ios 7, apple A7), vivo xplay 5手机 (android 5.1操作系统, 骁龙652)

设定高目标,1月1个迭代

快速算法约70个,配置参数约200个

设计、实现、调试、反复试验

- superfast5:1 -> 3:1 (speed up 3%, loss 1%)
- Veryfast: 10:1 -> 5:1
- ... 随着版本的成熟和算法数目增多,新算法收益越来越小
- Slow: 10:1
- Slower: 15:1
- Veryslower: 30:1

正确性测试

编码器迄今支持的feature

- Main profile, still profile
- Speed Control
 - ultrafast ~ placebo
- Latancy Control
 - Zerolatency, lowdelay, livestreaming, offline
- Picture Type
 - Intra period, scenecut, keyframe-request
 - RASL/close GOP
 - Max bframes, Adaptive bframes
 - Temporal scalable
 - Hierarchy P/B frames
- Rate Control
 - CQP, CRF, CBR, ABR
 - Vbv-bufsize, Vbv-maxrate, qpmax/qpmin
 - RateTolerance: stability of CBR
 - 2pass
 - Adaptive frame skipping
- Parallel
 - FPP, WPP, combination
 - Threadpool: task with priority

References

- Adaptive longterm
- Adaptive multi-references

Quantization

- AQ, RDOQ, signhide, zerodetect
- Algorithms
 - Fast algorithms: 70+
 - Improve-quality algorithms
 - 200+ configurations on algorithms

Motion search

- DIA, HEX, improved UMH, EPZS
- 1/4 subpixel, several strength

Standard tools

- All sizes of CU/PU/TU, intra/inter, skip/merge
- Deblock/SAO
- Almost all...

痛点与解决之道

痛点和解决之道

困难	解决之道	解决指数	
复杂度高	死磕、持续极致优化 复杂度对标x264	***	
浏览器Flash、 JS不支持	硬解白名单 H.264/H.265双备份 极致软解优化 H5播放探索	**	

用户痛点	解决之道
播放体验差	
带宽成本之痛	KSC265
用户追求高清内容	

痛点和解决之道

客户的疑虑

• 担心技术投入大

• 顾虑功耗和兼容性问题

• 担心有单点、无备份链路

解决之道

- 尽量与x264接口保持一致, Demo代码示范
- 客户原有的技术架构,最轻量化接入
- 白名单, 软硬解切换
- iOS11全面支持硬编和软硬解
- 中低码率分辨率KSC265覆盖所有机型
- H.264/H.265双链路备份
- 软硬编软硬解切换
- 主流CDN厂商直播CDN都支持HEVC
- 与x265、OpenHEVC进行备份

> 金山视频云产品解决方案

云转码、客户端SDK,全面覆盖直播、点播、短视频解决方案

>> KSC265编码器Demo

直观对比编解码压缩比与速度

iOS

实时档 -> 慢速档 中低码率 -> 高码率

基础设施 -> 上层建筑 码控、场景优化、自适应量化、主观调优

极致压缩:AI+视频编码

Thank You

扫码关注金山云LIVE

zhuzheng@Kingsoft.com https://github.com/ksvc/ks265codec

<u>▶</u>iveVide⊙StackCon

关注LiveVideoStack公众号

回复 朱政 为讲师评分