CSF 432: Intro to Network and System Security

Week 08 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes

Networking Devices

Networking Devices

Hub

- - ☑ Traffic going in one port is repeated to every other port
 - ✓ OSI Layer 1
- ☑ Becomes less efficient as network speeds increase
- ☑ Difficult to find today

Networking Devices

Bridge

- ☑ Connects different physical networks
 - Can connect different topologies
 - ☑ Gets around physical network size limitations / collisions
- ☑OSI Layer 2 device
 - ☑ Distributes traffic based on MAC address.
- ✓ Most bridges these days are wireless access points
 - ☑ Bridges wired Ethernet to wireless

Networking Devices

Switch

- ☑ Bridging done in hardware
 - ☑ Application-specific integrated circuit (ASIC)
- ☑An OSI layer 2 device
- Many ports and features
- ✓ Multilayer switch
 - ☑ Includes Layer 3 (routing) functionality

Networking Devices

Router

- ☑ Routes traffic between IP subnets
 - ☑ OSI layer 3 device
 - ☑ Routers inside of switches sometimes called "layer 3 switches"
 - ☑ Layer 2 = Switch
 - ☑ Layer 3 = Router
- ☑ Often connects diverse network types
 - ☑ LAN, WAN, copper, fiber

Networking Devices

Firewall

- - ☑ OSI layer 4 (TCP/UDP)
- ☑ Can encrypt traffic into/out of the network
 - Protect your traffic between sites
- ☑ Can proxy traffic
- - Usually sits on the ingress/egress of the network

Networking Devices

Wireless access point (WAP)

- ✓ Not a wireless router
 - ☑ A wireless router is a router and a WAP in a single device
- - Extends the wired network onto the wireless network
 - ☑ WAP is an OSI layer 2 device

Networking Devices

Modem

- Modulator / Demodulator
 - Converts analog sounds to digital signals
 - ☑ Needs a modem on both sides of the connection
- - ☑ Limited frequencies, limited bandwidths
- ☑ POTS modems now used for backup and utility functions
- MADSL modems used for Internet Access
- ☑ Cable modem is a bridge

Networking Devices

Media Converter

- ☑OSI Layer 1
 - Physical layer signal conversion
- - ☑ Convert it to fiber, and back again
- ☑ Almost always powered
 - ☑ Especially fiber to copper

- 1

Networking Devices

Wireless range extender

- Extend the reach of a wireless network

Networking Devices

VoIP endpoint

- - ☑ Traditional phone handset, desktop application, mobile device app

Advanced Networking Devices

Multilayer switches

- ☑A switch (Layer 2) and router (Layer 3) in the same physical device
 - ☑ Layer 2 router?
- ☑ Switching still operates at OSI Layer 2, routing still operates at OSI Layer 3

Advanced Networking Devices

Wireless networks everywhere

- - And you probably don't just have a single access point
- - ☑ One (or more) at every remote site
- ☑ Configurations may change at any moment
 - Access policy, security policies, AP configs
- - ☑ Seamless network access, regardless of role

Advanced Networking Devices

Balancing the load

- ☑ Distribute the load

 - ☑ Invisible to the end-user
- - ☑ Server outages have no effect
 - ☑ Very fast convergence

1.5

☑ Prioritization

☑ Content switching

☑ QoS

Load balancer

☑ Configurable load

TCP offload

☑ Protocol overhead

SSL offload

☑ Encryption/Decryption

Advanced Networking Devices

IDS and IPS

☑ Intrusion Detection System / Intrusion Prevention System

☑ Watch network traffic

✓ Intrusions

☑ Exploits against operating systems, applications, etc.

☑ Buffer overflows, cross-site scripting, other vulnerabilities

☑ Detection vs. Prevention

☑ Detection – Alarm or alert

☑ Prevention – Stop it before it gets into the network

17

Advanced Networking Devices

Identification technologies

Look for a perfect match

☑ Anomaly-based

☑ Build a baseline of what's "normal"

☑ Behavior-based

☑ Observe and report

M Heuristics

Use artificial intelligence to identify

Advanced Networking Devices

Proxies

☑ Sits between the users and the external network

☑ Receives the user requests and sends the request on their behalf (the proxy)

✓ Useful for caching information, access control, URL filtering, content scanning

☑ Applications may need to know how to use the proxy (explicit)

☑ Some proxies are invisible (transparent)

19

Application proxies

- - ☑ The proxy understands the way the application works
- MA proxy may only know one application, i.e., HTTP

Advanced Networking Devices

VPN concentrator

- ✓ Virtual Private Network
 - Encrypted (private) data traversing a public network
- ☑ Concentrator
 - ☑ Encryption/decryption access device
 - ☑ Often integrated into a firewall
- Many deployment options
 - ☑ Specialized cryptographic hardware
 - ☑ Software-based options available
- **☑**Used with client software

21

Advanced Networking Devices

Remote access VPN

Advanced Networking Devices

AAA framework

- ☑ Identification This is who you claim to be
 - ☑ Usually your username
- - Password and other authentication factors
- - Based on your identification and authentication, what access do you have?
- ✓ Accounting
 - ☑ Resources used: Login time, data sent and received, logout time

RADIUS (Remote Authentication Dial-in User Service)

- ☑ One of the more common AAA protocols
 - ☑ Supported on a wide variety of platforms and devices
- - ☑ Routers, switches, firewalls
 - ☑ Server authentication
 - ☑ Remote VPN access
 - 802.1X network access
- ☑ RADIUS services available on almost any server operating system

Advanced Networking Devices

UTM / All-in-one security appliance

- ✓ Unified Threat Management (UTM) / Web security gateway
- ☑URL filter / Content inspection
- MIDS/IPS

☑ Malware inspection

☑ Bandwidth shaper

VPN endpoint

- **☑** CSU/DSU
- ☑ Router, Switch

Advanced Networking Devices

Next-generation Firewalls (NGFW)

- - ☑ Layer 7 firewall
- ✓ Can be called different names
 - Application layer gateway

 - ☑ Deep packet inspection
- ☑ Requires some advanced decodes
 - Every packet must be analyzed, categorized, and a security decision determined

Advanced Networking Devices

VoIP technologies

- ☑ PBX (Private Branch Exchange)

 - ☑ Connects to phone provider network
 - Analog telephone lines to each desk
- **▼**VoIP PBX
 - ☑ Integrate VoIP devices with a corporate phone switch
- ✓ VoIP Gateway
 - ☑ Convert between VoIP protocols and traditional PSTN protocols
 - ☑ Often built-in to the VoIP PBX

Content filtering

- ☑ Control traffic based on data within the content
 - ☑ Data in the packets
- ☑ Corporate control of outbound and inbound data
 - ☑ Sensitive materials
- ☑ Control of inappropriate content
 - ☑ Not safe for work
 - ☑ Parental controls
- ☑ Protection against evil
 - ☑ Anti-virus, anti-malware

Virtual Networking

29

Virtual Networking

Network virtualization

- ✓ Server farm with 100 individual computers
 - All servers are connected with enterprise switches and routers, with redundancy
- - ☑ To one physical server with 100 virtual servers inside
- ☑ What happens to the network?

Virtual Networking

The hypervisor

- **☑** Virtual Machine Manager
- ☑ May require a CPU that supports virtualization
 - ☑ Can improve performance
- - ☑ CPU, networking, security

Virtual Networking

Network requirements

- Most client-side virtual machine managers have their own virtual (internal) networks
- ✓ Shared network address
 - ☑ The virtual machine shares the same IP address as the physical host
 - ☑ Uses a private IP address internally
 - Uses NAT to convert to the physical host IP
- ☑ Bridged network address
- - ☑ The VM does not communicate outside of the virtual network

Type 1

Hypervisor

Hardware

Type 2

33

May use an isolated network and high-speed network technologies

Network Storage

Jumbo frames

- ☑ Ethernet frames with more than 1,500 bytes of payload
 - ☑ Up to 9,216 bytes (9,000 is the accepted norm)
- ☑ Increases transfer efficiency
 - ☑ Per-packet size
- - ☑ Switches, interface cards

3

Network Storage

Common Storage Area Network Types

G FCoE

☑ iSCSI

☑ InfiniBand

WAN Services

Network	Channels	Line Rate
T1	24 channels at 64 kbit/s each	1.544 Mbit/s
E1	32 channels at 64 kbit/s each	2.048 Mbit/s
ТЗ	28 T1 circuits 672 channels	44.736 Mbit/s
E3	16 E1 circuits 512 channels	34.368 Mbit/s

WAN Services

ISDN - Integrated Services Digital Network

- ☑ BRI Basic Rate Interface (2B+D)

 - One 16 kbit/s signaling (D) channel

- ☑PRI Primary Rate Interface
 - ☑ Delivered over a T1 or E1
 - ☑ T1 23B + D
 - ☑ E1 30B + D + alarm channel
 - Commonly used as connectivity from the PSTN to large phone systems (PBX)

Network	Channels	Line Rate
T1	24 channels at 64 kbit/s each	1.544 Mbit/s
E1	32 channels at 64 kbit/s each	2.048 Mbit/s
Т3	28 T1 circuits 672 channels	44.736 Mbit/s
E3	16 E1 circuits 512 channels	34.368 Mbit/s

4

WAN Services

☑T1 / E1

☑T3 / DS3 / E3

Network	Channels	Line Rate
T1	24 channels at 64 kbit/s each	1.544 Mbit/s
E1	32 channels at 64 kbit/s each	2.048 Mbit/s
Т3	28 T1 circuits 672 channels	44.736 Mbit/s
E3	16 E1 circuits 512 channels	34.368 Mbit/s

WAN Services

OC (Optical Carrier)

- ☑ Commonly implemented by carriers on SONET rings

SONET	Line Rate
OC-3	155.52 Mbit/sec
OC-12	622.08 Mbit/sec
OC-48	2.49 Gbit/sec
OC-192	9.95 Gbit/sec

WAN Services

DSL

- ☑ ADSL (Asymmetric Digital Subscriber Line)
 - ☑ Uses telephone lines
- ☑ Download speed is faster than the upload speed (asymmetric)

 - ☑ Faster speeds may be possible if closer to the CO

WAN Services

Metro Ethernet

- - ✓ Not your typical WAN connection
- ☑The Ethernet is usually running over a different topology
 - ☑ Pure Ethernet
 - ☑ Ethernet over SDH, MPLS, or DWDM

WAN Services

Cable broadband

- **⊠** Broadband
 - ☑ Transmission across multiple frequencies
 - ☑ Different traffic types
- ☑ Data on the "cable" network
 - ☑ DOCSIS (Data Over Cable Service Interface Specification)
- - ☑ Gigabit speeds are possible
- Multiple services Data, voice

WAN Services

Dialup

- ✓ Network with voice telephone lines
 - ☑ Analog lines with limited frequency response
- ☑ Relatively slow throughput Difficult to scale

WAN Transmission Mediums

WAN Transmission Mediums

Satellite networking

- ☑ Communication to a satellite
 - ☑ Non-terrestrial communication
- High cost relative to terrestrial networking

 - ☑ Remote sites, difficult-to-network sites
- ☑ High latency 250 ms up, 250 ms down
- ☑ High frequencies 2 GHz
 - ☑ Line of sight, rain fade

WAN Transmission Mediums

Copper

- - ☑ Relatively inexpensive
 - ☑ Easy to install and maintain
- ☑Limited bandwidth availability
 - Physics limits electrical signals through copper
- - ☑ Cable modem, DSL, T1/T3 local loop
- - ☑ Copper on the local loop, fiber in the backbone

49

WAN Transmission Mediums

Fiber

- ☑ High speed data communication Frequencies of light
- - Communicate over long distances
- ☑ Large installation in the WAN core
 - Supports very high data rates
- - Business and home use

WAN Transmission Mediums

Wireless

- ✓ Use the cellular network Wireless WAN
 - ☑ Use an external hotspot or mobile phone
- - ☑ Security system, daily point-of-sale reporting and updates
- ☑ Roaming communication
- ☑ Limited by coverage and speed
 - ☑ Remote areas can be a challenge

WAN Technologies

WAN Technologies

Frame relay

- ☑ One of the first cost-effective WAN types
 - ☑ Departure from circuit-switched T1s
- ☑LAN traffic is encapsulated into frame relay frames
- ☑ Usually 64 Kbits/s through DS3 speeds
- - And other WAN technologies

WAN Technologies

ATM

- - ☑ Data, voice, and video
- - Limits based on segmentation and reassembly (SAR)

WAN Technologies

MPLS

- ✓ Learning from ATM and Frame Relay
- ☑ Packets through the WAN have a label
 - Routing decisions are easy
- ☑ Any transport medium, any protocol inside
 - ☑ IP packets, ATM cells, Ethernet frames
 - ☑ OSI layer 2.5 (!)
- ☑ Increasingly common WAN technology
 - ☑ Ready-to-network

5

į

WAN Technologies

MPLS pushing and popping

- ☑ Labels are "pushed" onto packets as they enter the MPLS cloud
- ☑ Labels are "popped" off on the way out

WAN Technologies

PPP (Point-to-point protocol)

- - ☑ OSI layer 2 / data link protocol
 - Communicate using many different protocols
- - ☑ Dial-up connections, serial links, mobile phone, DSL (PPPoE)
- ☑ Provides additional data link functionality
 - ☑ Authentication
 - ☑ Compression

E

WAN Technologies

PPPoE

- ☑ Encapsulate point-to-point protocol over Ethernet
- ☑ Common on DSL networks
 - ☑ Telephone providers know PPP
- ☑ Easy to implement
 - ☑ Support in most operating systems
 - ☑ No routing required
 - ☑ Similar to existing dialup architecture
- ☑ Allows competition
 - Once connected, data is switched to the appropriate ISP

WAN Technologies

DMVPN

- - ☑ Common on Cisco routers
- ✓ Your VPN builds itself
 - ☑ Remote sites communicate to each other
- ☑ Tunnels are built dynamically, on-demand
 - A dynamic mesh

59

(

WAN Technologies

SIP trunking

- - ☑ Control protocol for VoIP
- ☑ Traditional PBX connectivity uses T1/ISDN
- **☑**SIP trunking
 - ☑ Use SIP/VoIP to communicate to an IP-PBX provider
- More efficient use of bandwidth
 - ☑ Less expensive than ISDN lines

WAN Termination

WAN Termination

Demarcation point

- The point where you connect with the outside world
 - ☑ WAN provider
 - ☑ Internet service provider
 - ☑ The demarc
- ☑ Central location in a building
 - ☑ Usually a network interface device
 - ☑ Can be as simple as an RJ-45 connection
- - ☑ Customer premises equipment or "customer prem"

WAN Termination

Channel Service Unit/Data Service Unit connectivity

✓ CSU

MDSU

- ☑ Connects to the data terminal equipment (usually an internal router)
- ☑ Physical device
 - ☑ Or built-in to the router

63

(

WAN Termination

Smartjack

- ✓ Network interface unit (NIU)

 - ✓ Network Interface Device, Telephone Network Interface
- ☑Smartjack

 - ☑ Can be a circuit card in a chassis
- ☑ Built-in diagnostics
 - ☑ Loopback tests
- - ☑ Configuration, status

CSF 432: Intro to Network and System Security

Week 08 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes