Job Search and the Threat of Unemployment Benefit Sanctions

Thomas Walsh

University of Glasgow

EALE 2023 - 23.09.23

Unemployment Benefit Sanctions

UI sanctions...

- punishment: reduction in UI for low search effort
- pro: consumption smoothing with less moral hazard
 ⇒ more generous UI for total same expenditure
- con: jobseekers create worse matches ("market insurance")

Unemployment Benefit Sanctions

UI sanctions...

- punishment: reduction in UI for low search effort
- pro: consumption smoothing with less moral hazard
 ⇒ more generous UI for total same expenditure
- con: jobseekers create worse matches ("market insurance")

Channels:

- direct: budget constraint ("sanctions on the sanctioned")
- indirect: threat/expectations (potentially much larger group)

Unemployment Benefit Sanctions

UI sanctions...

- punishment: reduction in UI for low search effort
- pro: consumption smoothing with less moral hazard
 ⇒ more generous UI for total same expenditure
- con: jobseekers create worse matches ("market insurance")

Channels:

- direct: budget constraint ("sanctions on the sanctioned")
- indirect: threat/expectations (potentially much larger group)

Policymakers tend to "toughen up" the UI regime after recessions

- "back to work" political rhetoric, budget / austerity /spending reductions
- examine UK reform in 2012 (conditions also tightened again in 2022)
- other examples: France, Germany 2022

Research Questions:

- Does sanction threat change search behaviour?
 - search effort
 - exit rate
- To what extent does sanction threat create worse matches?
 - earnings
 - stability

Research Questions:

- Does sanction threat change search behaviour?
 - search effort
 - exit rate
- To what extent does sanction threat create worse matches?
 - earnings
 - stability

Empirical strategy uses UK Sanction Policy Reform in 2012

- exploit differential responses across districts in sanctioning intensity
- lends itself to Difference-in-Differences design
- mechanisms: triple-differences (variation across spells)

Institutional Setting, Reform, Data, Design

Institutional Setting and Reform

UI Policy in UK:

- administered by around 800 Job Centres
- Caseworker meeting every two weeks
- UI is search not contribution or duration contingent
- Sanction decision made by third party after referral

2012 Policy Reform:

- Increased minimum sanction duration and tighter monitoring of search activity
- large increase in post-reform heterogeneity across districts in sanctions-per-claimant (second, third moments)
- focus on extensive margin only (counts not durations)

► Table: Reasons for Sanction

3

Figure 1: 2nd and 3rd Moments of Sanctioning Rate distribution

Identifying Wedge in Sanction Intensity

Figure 3: sanction intensity: $S_{gt} = sanctions issued_{gt} / UI claimants_{gt}$

Sources of Cross-sectional Variation:

- job centre discretion/autonomy
- management sanction/exit targets
- partisan pressure from politicians
 - close-elections RDD: 20% drop in sanction rate for marginally-gov-aligned seats (Broberg, T\u00e4htinen, Walsh 2023)

► Appendix: RDD plot

National Audit Office: "The NAO concludes it is likely that management focus and local work coach discretion have had a substantial influence on whether or not people are sanctioned (...) heterogeneity [in sanction rates across areas] not fully explained by jobseeker characteristics"

Data

- UK Longitudinal Household Survey (UKLHS, "Understanding Society")
- monthly working life histories, states: {employed, self-emp., unemployed, ...etc}
- 2009-2015
- 10k unemployment spells
- median duration: 9 months, mean: 12 months, 68% < 12 months

Households matched by district-month with sanction-per-claimant rates

Treatment variable is dichotomised:

$$D_g = \begin{cases} 1 & g \in \text{highest quartile of } \Delta \bar{S} \gg 0 \text{ "movers"} \\ 0 & g \in \text{lowest quartile}, \Delta \bar{S} \approx 0 \text{ "stayers"} \end{cases}$$
 (1)

Canonical 2x2 simultaneous reform Difference-in-differences:

$$y_{igt} = \underbrace{\lambda_t + \gamma_g}_{common \ trends} + \theta_{T(i,t)} + \underbrace{\sum_{\ell=-4}^{4} \beta_{\ell} \cdot \mathbb{1}\{t = \ell\} \cdot D_g + u_{igt}}_{ATTs}$$
(2)

- $\theta_{T(i,t)}$ spell duration controls
- Two-stage estimation: estimate $(\lambda, \gamma, \theta)$ using untreated obs. Otherwirse duration effects overstated.

Parallel trends

Parallel Trends Assumption: no signs of divergent local labour markets

- eqm labour market outcomes: wages, employment
- output: gva, gva pc, gva growth
- industrial structure: local industry gva shares

► Appendix: Parallel Trends

Causal Estimates, Back-of-Envelope Magnitudes, Mechanisms

Figure 4: DID Estimates comparing high vs low intensity districts

(b) Exit rate, into employment (% of baseline)

11

Back-of-Envelope Magnitudes: Direct Effect v Threat Effect

Simplifying assumptions:

- worst-case: estimated coefficients are total effects (DE+IE)
- estimate of direct effect of sanction on exit hazard from lit (+100%)
- median duration of sanction approx 1 month
- \Rightarrow \triangle Incidence = \triangle Prevalence (4ppts)

Total Effect (% of baseline)	Direct Effect (%, sanctioned only)	Δ Prevalence (ppts)	Scaled Direct Effect (%)	Indirect Effect (%)
0.200	= (1.00	×0.04)	0.04	+0.160

Table 1: Decompisiton of Direct Effect and Threat Effect

Early Retirements?

Figure 5: Exit to retirement

(a) Exit to retirement (% of baseline)

Post-reform spike one-and-done effect. Very low precision.

Repeat Unemployment and Employment Tenure

Figure 6: Reemployment Stability

Mechanisms: Triple Differences estimates

Earning losses due to job displacement

Displacement event study regression:

- makes valid comparisons of displaced vs not-yet-displaced / i.e. is stagger-robust
- stacking estimator of Cengiz et al (QJE,2019), stacks many 2 × 2 diff-in-diffs

Triple-Differences

- interaction with above/below mean sanctioning threat in first 3 months of unemployment spell
- compare similar individuals displaced in the same year, same district, but experienced different sanction threat levels

Figure 7: Earnings Losses from Job Displacement

Sample: Ever-displaced only. Treated: lose job in year t, control: not-yet-treated by t. Excludes zero earnings. Including zeroes leads to approx -40pct

Scarring Effect and Sanction Threat

Figure 8: Earnings Losses by high/low sanction regimes in early unemployment

- High sanction: average sanction rate in first 3 months of spell above/below average
- · sample-split potentially bundles many things together

Search and Sanctions

17

Figure 9: Triple-Differences Estimates comparing displacements with high vs low sanctioning

less conservative sample restriction: employed in r = -1 only. **Employed at time of survey**

Conclusion

Sanctioning policy acts on a wide set of job-seekers, not just the directly punished. Effects go beyond immediate exit.

• Baily-Chetty optimal replacement rate: highter τ for same buget

Conclusion

Sanctioning policy acts on a wide set of job-seekers, not just the directly punished. Effects go beyond immediate exit.

• Baily-Chetty optimal replacement rate: highter τ for same buget

Quicker exits from unemployment are paid in less stable jobs

- reduces possibility to run more generous social insurance
- may even backfire and increase total expenditure

Search and Sanctions

19

Conclusion

Sanctioning policy acts on a wide set of job-seekers, not just the directly punished. Effects go beyond immediate exit.

• Baily-Chetty optimal replacement rate: highter τ for same buget

Quicker exits from unemployment are paid in less stable jobs

- reduces possibility to run more generous social insurance
- may even backfire and increase total expenditure

Comments and feedback welcome:

thomas.walsh@gla.ac.uk walshthomas.com

Intensive Margin of Sanction Reform

Infraction Level	Example Reasons	Sanctio Before	n in weeks After
Lower	Failure to attend advisor meeting Failure to attend work program	1	4,13
Intermediate	Unavailable to work Ineligible search effort	0	4, 13
Higher	Refusing, voluntarily leaving work Dismissal for misconduct	1-26	4, 26, 156

Table 2: Intensive Margin of Sanctions within Infractions

Mapping Sanction Rates, 2010/12 vs. 2012/14

Mapping Sanction Rates, 2010/12 vs. 2012/14; London

Equilibrium Labour Market Outcomes

Search and Sanctions 23

Figure 10: District-level Output (Real GVA)

*excludes Westminster and City of London due to high business concentration

District × **Industry Trends**

Figure 11: District-Industry Output Shares (GVA_{ind,dist,year}/GVA_{dist,year})

◆ Back: Parallel Trends

Estimated ATTs

Table 3: Regression Results: ATT estimates

	Exit rate		Unemployment	Re-employment duration			
	total	employed	retired	$\overline{N_u}$	>12	>24	>36
β ATT (ppts)	0.00860*** (3.03)	0.00796*** (2.91)	0.00455 (0.84)	0.112*** (6.65)	-0.0396*** (-2.85)	-0.0410** (-2.45)	-0.0631*** (-3.70)
β ATT (percent)	0.191*** (3.03)	0.205*** (2.91)	0.150 (0.84)	0.101*** (6.65)	-0.0504*** (-2.85)	-0.0583** (-2.45)	-0.0952*** (-3.70)
NT	59070	59070	12696	59070	59070	59070	59070

Note. Dependent variable is the residuals from a regression of average sanctioining rate on socioeconomic controls: log population, share of women, share of working age, median earnings, and employment rate. Solid line is quadratic fit, dashed line is lpoly fit. Shaded area represents 95% CI.

