

RUHR-UNIVERSITÄT BOCHUM

FPGA-based Implementation Attacks with GIAnT

9th CryptArchi Workshop, Bochum

June 17th, 2011

David Oswald, Timo Kasper, Stephen Markhoff, Christof Paar Chair for Embedded Security, Ruhr-University Bochum

- Timo Kasper
- Stephen Markhoff
- Christof Paar

- Motivation
- GIAnT: Architecture and Features
- Practical Results
 - 3DES on ATXMega
 - RSA-CRT and AES on ATMega
- Live Demo
- Conclusion

Motivation

- E.g. AES, 3DES, RSA, ECC, ...
- Mathematically secure
 - ⇒ No analytical attacks
- Large key size
 - ⇒ No brute-force attacks
- All problems solved?

 No! Crypto has to be implemented somewhere

Source: Wikipedia

Analysis

• Digital Oscilloscope: 2000 - 50000 USD

• Signal Generator: **2000 – 10000 USD**

- Specialized Devices:
 - E.g. by Riscure

Sources: LeCroy, Agilent, Riscure

- Expensive
- Usually not fully open / extendable

Our contribution: The GIAnT

- Generic Implementation Analysis Toolkit
- **Low-cost**: < 300 USD
- FPGA-based (Spartan 6)
- Open-source: sf.net/projects/giant
- Support for fault injection and side-channel analysis

Architecture and Features

GIAnT

GIAnT = ZTEX Spartan 6 module + custom board

- ZTEX Spartan 6 module: <u>www.ztex.de</u>
 - Additional μC for USB 2.0 link
 - FPGA power supply
 - 64 MB SRAM

- Controlled and programmed via USB 2.0
- Interfaces to DUT
 - General-purpose I/O
 - Serial links (SPI, TWI, ...)
 - ISO 7816 (Contact-based smartcards)
 - ISO 14443 (Contactless smartcards)

— ...

Digital-Analog Converter AD9283

- Up to 100 MHz (Resolution 10 ns)
- Amplifier: -10 V ... +10 V
- Arbitrary waveform possible
- Extendable with external circuitry
 - Clock glitches
 - EM pulses
 - Laser

- Analog-Digital Converter AD9283
 - Up to 100 MHz
 - 64 MB SRAM on FPGA module
- Record analog signals for side-channel analysis
- Pattern-detection for dynamic triggering

Fault injection

Practical Results

Practical Results: Basics

- Aim: Demonstrate basic functionality
- Test devices: Popular 8-bit μC
- Fault type: Voltage glitch/pulse
- Fault effect: Skip instruction(s)

- Atmel ATXMega: Hardware DES engine
- Execute DES instruction 16 times
- Fault effect: Skip one round

Practical Results: 3DES on ATXMega

- Atmel ATXMega: Hardware DES engine
- Execute DES instruction 16 times

- Atmel ATXMega: Hardware DES engine
- Execute DES instruction 16 times
- Fault effect: Skip one round

Practical Results: 3DES on ATXMega

- Atmel ATXMega: Hardware DES engine
- Execute DES instruction 16 times
- Fault effect: Skip one round

- Atmel ATXMega: Hardware DES engine
- Execute DES instruction 16 times
- Fault effect: Skip one round

Practical Results: 3DES on ATXMega

- Atmel ATXMega: Hardware DES engine
- Execute DES instruction 16 times
- Fault effect: Skip one round

Recover K₁₆, iterate for full key

Practical Results: CRT-RSA and AES on ATMega

Atmel ATMega: Software CRT-RSA on "smartcard"

- Obtain faulty signature c' on x
- Lenstra: $d = gcd(x (c')^e, n)$
- Atmel ATMega: Software AES
 - Fault causes modification of internal states
 - Used for live demo

Let's hope the best and expect the worst

Live demonstration

RUHR-UNIVERSITÄT BOCHUM

Sometimes, testing and debugging feels like this...

RUB

In case it is not working

xkcd: http://xkcd.com/722/

Live Demonstration: Software AES on ATMega

1. Normal operation:

```
After first key addition and S-Box layer @ V_{dd} = 2.5V 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
```

2. Effect of fault voltage: 2V vs. 1V

```
63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 6b
```

3. Effect of pulse duration: 10ns ... 100ns

```
w = 10: 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
w = 20: 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 63
w = 30: 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 6b
w = 40: 3b bb 11 00 91 81 31 46 15 2a 53 6d 34 72 74 43
34 72 64 2a b5 (reset, ATR)
```

. . .

Conclusion

- Fault injection and side-channel analysis in-a-box
- Low-cost
- Open source
- Tested with various devices
- Continously being improved
 - RFID
 - Different pulse shapes
 - Other fault injection methods
 - ...
- Contributions are welcome, visit sf.net/projects/giant

Thanks! Questions?

David Oswald, Timo Kasper, Stephen Markhoff, Christof Paar Chair for Embedded Security, Ruhr-University Bochum

