CONTROL DE TRANSMISIÓN DE DATOS

15 de Diciembre de 2000

NOTAS IMPORTANTES:

- 1.- No se responderá ninguna pregunta acerca del enunciado o su interpretación. El alumno responderá según su criterio, especificando en sus respuestas las hipótesis que realice.
- 2.- Se valorará la justificación y discusión de los resultados.
- 3.- Los problemas se entregarán por separado, poniendo el nombre en cada hoja y numerándola.
- 4.- Un error conceptual grave puede anular todo el problema.

Problema 1 (50%)

Se quiere diseñar un módem 4-PAM con un ecualizador **NO** ADAPTATIVO de tres coeficientes. El filtro frontal está adaptado al emisor y el pulso normalizado. El módem se va a usar sobre tres canales distintos, cada uno caracterizado por

Canal	Probabilidad	x[-1]	x[0]	x[1]	No/2
A	70% de los casos	0.2	1	0.1	0.1
В	20% de los casos	0.3	1	0.2	0.07
С	10% de los casos	0.1	1	0.3	0.12

Hállense, de forma razonada, los coeficientes que minimizan el error cuadrático medio GLOBAL.

Problema 2 (50%)

Un sistema de transmisión PAM binario tiene la respuesta impulsional global siguiente

$$x[-1] = a, x[0] = 1, x[1] = a$$

El ruido presenta la siguiente densidad de probabilidad: $f_n(x) = 1.744 e^{\frac{-x^4}{0.01}}$, pudiéndose suponer que las distintas muestras de ruido son **independientes**.

Si la secuencia de símbolos transmitidos es 1,-1,-1 y la secuencia de muestras recibidas es 0.25, 1.05, -1.2, -1.45, 0.65, obtenga, de forma razonada, el valor de *a* más verosímil