Seien $x_1, ..., x_M$ die Ausprägungen eines Merkmals X

Median:

$$x_{med} = \begin{cases} x_{\left\lceil\frac{N+1}{2}\right\rceil}, & \text{für N ungerade,} \\ \frac{1}{2}*(x_{\left\lceil\frac{N}{2}\right\rceil} + x_{\left\lceil\frac{N+1}{2}\right\rceil}), & \text{für N gerade.} \end{cases}$$

p-Quantile:

$$x_p = x_{\lceil < Np > \rceil}$$

Arithmetischer Mittelwert:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Varianz:

$$s_x^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2 = \frac{1}{N} \sum_{i=1}^N x_i^2 - \left(\frac{1}{N} \sum_{i=1}^N x_i\right)^2 = \overline{x^2} - \bar{x}^2$$

Quartilsabstand:

$$D_Q = x_{0,75} - x_{0,25}$$

Kovarianz:

$$cov(x, y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) * (y_i - \bar{y}) = \frac{1}{N} \sum_{i=1}^{N} x_i y_i - \overline{xy}$$

Korrelationskoeffizient:

$$r_{xy} = \frac{cov(x,y)}{s_x * s_y}$$

Regressionsgerade: Y = a + b * X

$$\widehat{b} = \frac{cov(x,y)}{S_{-}^2} \quad und \ \widehat{a} = \overline{y} - \widehat{b} * \overline{x}$$

Seien A und B zwei Ereignisse:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$P(\bar{A}) = 1 - P(A)$$

A und B sind unabhängig falls $P(A \cap B) = P(A) * P(B)$

Laplace Experiment:

$$P(A) = \frac{|A|}{|\Omega|}$$

Kombinatorik: ziehen k Kugeln aus einer Urne mit n Kugeln

Ziehen mit zurücklegen: n^k

Permutationen: n! = n * (n - 1) * (n - 2) * ... * 1.

Ziehen ohne Zurücklegen mit Berücksichtigung der Reihenfolge $\frac{n!}{(n-k)!}$

Ziehen ohne Zurücklegen ohne Berücksichtigung der Reihenfolge $\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Bedingte Wahrscheinlichkeit: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)}{P(B)} * P(A)$

Satz der totalen Wahrscheinlichkeiten:

 A_1, A_2, \dots, A_n disjunkte Zerlegung von Ω

$$P(B) = P(B|A_1)P(A_1) + ... + P(B|A_n)P(A_n)$$

Verteilungsfunktion:

$$F(x) = P(X \le x)$$

Diskrete Gleichverteilung:

$$P(X = x_i) = \frac{1}{N}$$

Bernouilli Verteilung: $X \sim B(1, p)$

$$E(X) = p \quad Var(X) = p(1-p)$$

Binomial Verteilung: $X \sim B(n, p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, E(X) = np, Var(X) = np(1 - p)$$

Geometrische Verteilung: $X \sim G(p)$

$$P(X = k) = p * (1 - p)^{k-1}$$

Poisson Verteilung: $X \sim P(\lambda)$

$$P(X = k) = \frac{\lambda^k}{k!} * \exp(-\lambda), \qquad E(X) = \lambda = Var(X)$$

Normalverteilung: $X \sim N(\mu; \sigma^2)$

Standard Normalverteilung: $\mu = 0$ and $\sigma^2 = 1$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

$$E(X) = \mu$$
 und $Var(X) = \sigma^2$.

$$\Phi(-x) = 1 - \Phi(x)$$

$$P(X \le b) = F(b) = \Phi\left(\frac{b-\mu}{\sigma}\right)$$

$$P(X > b) = 1 - \Phi\left(\frac{b - \mu}{\sigma}\right)$$

$$P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

$$P(-a \le X \le a) = 2 * \Phi\left(\frac{b-\mu}{\sigma}\right) - 1$$

Zwei Zufallsvariablen X und Y sind unabhängig falls

P(X = x, Y = y) = P(X = x) * P(Y = y)

Schätzer von Anteilen:

Punktschätzer:
$$\hat{p} = T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $X_i \sim B(1, p)$

Intervallschätzer:
$$\left[\bar{p} - \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} z_{1-\frac{\alpha}{2}}; \ \bar{p} + \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} z_{1-\frac{\alpha}{2}}\right]$$

Schätzer vom Mittelwert bei einer Normalverteilung $N(\mu; \sigma^2)$:

Punktschätzer:
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\begin{array}{l} \textit{Intervallsch\"{a}tzer:} \ \left[\bar{X} - \frac{\sigma}{\sqrt{n}} z_{1-\frac{\alpha}{2}}; \ \bar{X} + \frac{\sigma}{\sqrt{n}} z_{1-\frac{\alpha}{2}} \right] \text{oder} \left[\bar{X} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha}; \right. \\ \left. + \infty \right) \text{ oder} \left(- \infty; \ \bar{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right] \end{array}$$

Gauß-Test:

Null- und Alternative-Hypothesen:

Fall	Null Hypothese	Alternativ- Hypothese	Testproblem	
(a)	$\mu \geq \mu_0$	$\mu < \mu_0$	einseitig	
(b)	$\mu \leq \mu_0$	$\mu > \mu_0$	einseitig	
(c)	$\mu = \mu_0$	$\mu \neq \mu_0$	zweiseitig	

Prüfgröße

$$T = \frac{\overline{X_N} - \mu_0}{\sigma / \sqrt{N}}$$

Ablehnungsbereich (zum Signifinkanzniveau α)

Fall Ablehnungsbereich

(a)
$$K = (-\infty, -z_{1-\alpha})$$

(b)
$$K = (z_{1-\alpha}, +\infty)$$

(c)
$$K = \left(-\infty, -z_{1-\alpha/2}\right) \cup \left(z_{1-\alpha/2}, +\infty\right)$$

Quantile der Standardnormalverteilung

	0	0,01	0,02	0,03	0,04	0,05	0,06
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909