Finanzderivate und Optionen, Übung 6

HENRY HAUSTEIN

Aufgabe 1

Der Wert von Put-Optionen steigt, da der Aktienkurs direkt nach der Ausschüttung fallen wird.

Aufgabe 2

Falsch, der Verlust beträgt 600, da der maximale Verlust bei einer Long Call genau die Prämie (hier 6,00) ist. Mit Multiplikator ergibt sich ein Verlust von 600.

Aufgabe 3

Beim Verkauf ist der Investor 3300 im Plus. Der Preis pro Aktie darf höchstens um 33 fallen, also auf 167, damit der Investor bei \pm 0 ist.

Aufgabe 4

Der Put mit einem Strike von 450. Es ist am unwahrscheinlichsten, dass die Aktie von ABC so tief fällt. Und man kann mit diesem nur maximal 450 verdienen.

Aufgabe 5

Falsch, erst wenn der Preis um 18 unter dem Strike ist, ist der Investor bei ± 0 , also bei 282.

Aufgabe 6

Der Gewinn in Abhängigkeit des zukünftigen Preises x ist:

$$\Pi(x) = 1000(x - 100) + 1000 \cdot \max(100 - x, 0) - 6.4 \cdot 1000 - 1000 \cdot \max(x - 110, 0) + 6.10 \cdot 1000$$

Mit WolframAlpha ergibt sich

$$\Pi(x) = \begin{cases} -300 & x < 100 \\ 9700 & x > 110 \\ 1000x - 100300 & \text{sonst.} \end{cases}$$

welches sein Maximum bei 9700 hat.

Alternativ:

• Kauf: $(10 \cdot -6.40) \cdot 100 = -6400$

• Verkauf: $(10 \cdot 6.10) \cdot 100 = 6100$

 \Rightarrow Gewinn/Verlust durch Prämien: -300

• Aktiengewinn bei Kassastand 110: $(110 - 100) \cdot 1000 = 10000$

 \Rightarrow Gesamtgewinn: 9700

Aufgabe 7

Die Put-Option ist schon im Geld, der innere Wert ist 500. Der Zeitwert muss damit -15 betragen.

Aufgabe 8

GuV je Option: 10 - (200 - 196) = 6

GuV je Kontrakt: 600

Anzahl der Kontrakte: $\frac{9000}{600} = 15$

Aufgabe 9

Wenn alle Optionen verfallen, dann ist

$$\Pi = 100(-2 \cdot 35 - 2 \cdot 8 + 4 \cdot 15)$$
$$= -2600$$

Aufgabe 10

Da man als Verkäufer die Pflicht hat zu liefern. Als Käufer hat man das Recht.

Aufgabe 11

Die Ausübung von Mitarbeiteroptionen führt in der Regel zur Emission neuer Aktien durch das Unternehmen (Verwässerung).

Aufgabe 12

Weil amerikanische Optionen jederzeit ausgeübt werden können.

Aufgabe 13

Put-Call-Parität bei Fixed-Income-Futures:

$$C - P = IF - E$$
$$12 - 7 = 145 - E$$
$$E = 140$$

Aufgabe 14

Richtig, es gilt $C^+P^-=U^+$, damit gilt auch $C^+U^-=P^+$

Aufgabe 15

Wenn die Call Option im Verhältnis zur Aktie und zur Put Option unterbewertet ist, lässt sich eine profitable Reversal-Strategie (Short Aktie + Long Call + Short Put) aufbauen.

Aufgabe 16

 $\label{eq:conversal} \begin{array}{l} \text{Reversal} = U^-C^+P^-\\ \text{GuV} = \text{Pr\"{a}mie} \text{ Put} \text{ - Kosten Call} = 1.19 \text{ - } 1.15 = 0.04\\ \text{Conversion} = U^+C^-P^+\\ \text{GuV} = \text{Pr\"{a}mie} \text{ Call} \text{ - Kosten Put} = 1.13 \text{ - } 1.21 = -0.08 \end{array}$