Topics, Attribution, & Literature

- Today we'll talk about...
 - Photodetectors
 - Intrumentation for converting scintillation photons into electronic signal
 - Non-proportionality in scintillators
 - Causes and consequences for energy resolution

Attribution

 The majority of the material for these lectures is derived from the 2015 IEEE short course on scintillation detectors by Dr. Stephen Derenzo

Literature

- W. Moses et al: <u>The Origins of Scintillator Non-Proportionality</u>
- S. Payne et al: <u>Nonproportionality of Scintillators: Theory and Experiment</u>
- Bora: <u>Photon Statistics in Scintillation Crystals</u>

Overview: Photodetectors

- Convert scintillation photons into electric signal for subsequent measurement
- Desirable properties of a photodetector include:
 - High photodetection efficiency
 - Often expressed as Quantum Efficiency, Q.E. = N_{photoelectrons}/N_{incident photons}
 - Low electronic noise contributions
 - Large active area
 - Stability over time, temperature, etc.
- Main classes of photodetector:
 - Vacuum-based: e.g. Photomultiplier tube (PMT) Microchannel plate
 - Solid state: Photodiode (PD), Avalanche photodiode (APD),
 Silicon photomultiplier (SiPM)
 - Vacuum/SS Hybrids

Photomultiplier Tube (PMT)

https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf

- Very high gain O(10⁶ 10⁷)
- Peak Q.E.
 - ~25% for Bialkali (BA) photocathode
 - Up to ~40% for UBA
- Low noise (single-electron sensitivity)
- Fast time response
 - o RT ~1ns
- Many sizes/shapes, including large area
- Sensitive to B-field
- Require large biases

Photocathode

Photon

Entrance window

- Q.E. depends on incident photon energy
 - a. Create e⁻/h pair
 - b. E⁻ transport to surface
 - c. Overcome potential barrier (work function)
- Trade-off between photon abs. / e⁻ emission with thickness
 - Choose PC that matches scintillator emission
 - Consider window material
 - E.g. quartz for UV sensitivity
- E.g. Bialkali (K₂CsSb)
 - Peak QE @ ~400nm (blue)

Electron Multiplication

- Multi-stage dynode structure
 - Multiplication via 2ndary e⁻ emission
 - \circ Very high gain: $\mathsf{\alpha}\delta^\mathsf{N}$
 - G very sensitive to HV
 - Finite transit time (delay)
 - Jitter →PC e⁻ @ 1st stage

- Other multiplication structures
 - E.g. microchannel plate

PMT Bases

Resistive-divider network to apply dynode voltages

PMT Bases

Resistive-divider network to apply dynode voltages

	Advantages	Disadvantages
Positive HV	1) Photocathode at ground potential	 Anode at HV – coupling capacitor required- failure can damage electronics d.c. signals blocked; bipolar pulses with zero area Negative pulse component makes baseline unstable
Negative HV	 Anode at ground potential Can measure total signal by simple integration 	 To prevent ion migration in glass a photocathode shield at HV is required => electrical shock hazard

S. Derenzo

Solid State Photodetectors: Photodiodes

- Advantages
 - Can have very high Q.E.
 - **70-90%**
 - Insensitive to B-field
- Disadvantages
 - Gain = 1
 - Leakage current →Noise
 - No single e⁻ sensitivity
 - Can be cooled to improve SNR
- Small size diodes

S. Derenzo

Reference: Blouke and Nelson, SPIE 1900 (1993), 228-240

Solid State Photodetectors: APD

- Avalanche Photodiode (APD)
 - PD advantages with gain
 - Q.E. ~70%
 - Wide spectral response
 - Insensitive to B-field
- Controlled avalanche mechanism
 - E.g. reach-through architecture
- Gain ~100 1000

- Position-sensitive APD (PSAPDs)
 - Monolithic APD with segmented readout
 - Imaging applications

http://rmdinc.com/avalanche-photo-diodes/

Solid State Photodetectors: Silicon Photomultiplier (SiPM), Geiger-mode APD, Multipixel Photon Counter (MPPC)

- Basic principle: single photon counting with large gain
 - SiPM/MPPC = array of single-photon avalanche diodes (SPADs)
- Full Geiger-mode operation
- Properties
 - Advantages of solid state
 - Very high gain (~10⁶)
 - Fast response (~100 ps RT)
 - ~100V applied bias
- Issues
 - HV/Temp sensitivity (avalanche)
 - High dark pulse rate
 - Cross-talk & after pulsing

Scintillator Pulse Shape Analysis

- Pulse mode operation
 - Output voltage signal on per-event basis
- Signal depends on time constant
 - \circ τ << scint. decay time
 - Full charge not integrated
 - Preserve shape of current pulse
 - \circ $\tau >>$ scint. decay time
 - Signal amplitude proportional to total charge (spectroscopy)
- Dependence of time const. scint. decay time

Scintillator Pulse Shape Analysis

- Alternatives to conventional pulse height analysis for scintillator spectroscopy
 - Time-over-threshold (ToT)
- ToT Benefits
 - Simplicity
 - Low-power
 - High channel density
- Applications for multipixel systems with moderate energy resolution requirements

https://ieeexplore.ieee.org/document/6308744

Energy Resolution in Gamma-Ray Spectroscopy with Inorganic Scintillators

- Factors that affect energy resolution of scintillators
 - Scintillation efficiency (scint. photons / deposited keV)
 - Uniformity of scintillation efficiency in the detector
 - Non-proportionality of light output w/ electron energy
 - Self-absorption / re-emission process
 - Light collection efficiency & uniformity
 - Photodetector Q.E. @ scint. Photon wavelength
 - Photodetector Q.E. & gain uniformity across input
 - Photodetector gain drift during acquisition
 - Gain-stabilization may be required

Example: 662 keV in NaI(TI)

Assume Poisson

Gain does not affect resolution!

$$\frac{\Delta E}{E} = \frac{\Delta N}{N} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

$$\frac{\Delta E}{E} = \frac{1}{\sqrt{3,400}} = 1.7\% \text{ rms}$$

$$2.35 \times \frac{\Delta E}{E} = 4.0\%$$
 fwhm

Best measured value for NaI(Tl) 5.6% fwhm
Typical value for NaI(Tl) 7%
Best measured value for pure NaI 3.8%
see http://scintillator.lbl.gov
New codoping => 4.9% fwhm

S. Derenzo

Thought Experiment: Ultimate Scintillator Energy

Resolution

Assume Poisson process (stay tuned)

$$\frac{\Delta E}{E} = \frac{\Delta N}{N} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

$$\frac{\Delta E}{E} = \frac{1}{\sqrt{42,000}} = 0.49\% \text{ rms}$$

$$2.35 \times \frac{\Delta E}{E} = 1.2\% \text{ fwhm}$$

Best measured value 2.0% fwhm (several examples are in http://scintillator.lbl.gov)

Observed Energy Resolution in Inorganic Scintillators

https://pubarchive.lbl.gov/islandora/object/ir%3A119312

- Solid line = Poisson limit
- Why do nearly all scintillators has poorer energy resolution than predicted by Poisson counting statistics?

Scintillator Non-proportionality

Light output per keV depends on energy

Figure 8.8 From W. Mengesha, T. Taulbee, B. Rooney and J. Valentine, "<u>Light yield</u> nonproportionality of CsI(Tl), CsI(Na), and YAP," *IEEE Trans Nucl Sci* 45, pp. 456-461, 1998.

Ideal (proportional) response →Horizontal line at 1.0

Scintillator Non-proportionality

Light output per keV depends on energy

Payne et. al. Nonproportionality of Scintillators: Theory and Experiment, IEEE 2011

Ideal (proportional) response →Horizontal line at 1.0

Origin of Nonproportionality

- Scintillation efficiency depends on dE/dx
 - Competition between scintillation (radiative) & quenching (non-radiative) processes depends on ionization density
 - For a given amount of energy, variation in number and type of carriers →variation in dE/dx
- It is this additional variance that degrades energy resolution

Origin of Nonproportionality

Payne et. al. Nonproportionality of Scintillators: Theory and Experiment, IEEE 2011 Photoelectron efficiency η_{scint} product of cascade-capture-detection efficiencies:

$$\eta_{\text{scint}} = \eta_{\text{CAS}} \, \eta_{\text{CAP}} \, \eta_{\text{C-DET}}$$

Since uncorrelated, can add variances in quadrature:

$$(d\eta_{scint}/\eta_{scint})^2 = (d\eta_{CAS}/\eta_{CAS})^2 + (d\eta_{CAP}/\eta_{CAP})^2 + (d\eta_{C-DET}/\eta_{C-DET})^2$$

Carrier capture term, $(d\eta_{CAP}/\eta_{CAP})^2$, mainly responsible for nonproportionality

Nonproportionality Models

"Minimalist" model

- Only consider exciton transfer to lumin. Centers
- Results in 2-param model
- Ignores time dependence, radiative e/h recombination

form excitons

Onsager Theory

Birks Equation

Nonproportionality Models

- Kinetic model $-d\rho/dt = (R_1 + K_1)\rho + (R_2 + K_2)\rho^2 + K_3\rho^3$
 - Model ionization density ρ as f(time) with multi-order terms
 - E.g. trapping $\rightarrow 1^{st}$ order process, 2-body Auger quenching $\rightarrow 2^{nd}$ order
 - At high ρ, highest order terms (i.e. quenching terms) dominate over radiative terms →scintillation eff. Drops with higher ρ
 - At low ρ, lowest-order terms dominate
 - Results in different behaviors depending on material
 - E.g. Exciton-mediated luminescense (LSO:Ce, LuAG) vs.
 e/h-mediated luminescense (NaI(TI))
- Practical limitations of Kinetic model
 - High-parameter model
 - Difficult to extract general insight given dependence on specific luminescense mechanism

Nonproportionality Models

Diffusion Model

- Consider carrier motion from electrostatic forces/diffusion
 - O(ps) vs. O(ns) for quenching / scintillation
- Dependence on $\mu_{\rm e}$, $\mu_{\rm h}$
 - \circ $\mu_h << \mu_e$
 - Recomb. & luminosity depend strongly on dE/dx
 - \circ $\mu_{\mathsf{h}} \sim \mu_{\mathsf{e}}$
 - High recomb. & luminos.
 - High $\mu \rightarrow$ less quenching \rightarrow more proportional behav.

(1-QF): Calculated fraction of carriers that survive 10 ps in high-density ionization track

 $(1-\sigma_{NP})$: Scint. Eff. (or collection efficiency for semicond.) at

low e energy

Diffusion coefficient —— D_{eff} (cm²/s)

The Origins of Scintillator Non-Proportionality

Effect of Nonproportionality on Resolution

- Magnitude of fluctuation (i.e. variance) due to nonproportionality effects on same order as counting statistics
- Deviation can be captured in Fano factor
 - High-energy electron cascade
 - Similar to semicond. Mechanism
 - Sub-Poisson (F_{cascade} < 1)
 - Conversion to optical photons
 - Independent, "rare" event
 - Poisson process (F_{opt. phot.} = 1)
 - Nonproportionality
 - Increased variance in # of scintil.
 Photons
 - Super-Poisson (F_{nonprop.} > 1)
- From: <u>Photon Statistics in Scintillation</u>
 <u>Crystals</u>

Measuring Scintillator Nonproportionality

Scintillation Light Yield Nonproportionality Characterization Instrument (SLYNCI)

