Introduction to Business Problem

Project: Travel and Tourism

Business problem: Forecasting sales for next 30 days

Tools: Spyder and Tableau

Techniques: Time-Series Analysis

• Pre-processing data (aggregating sales day wise)

• Exploring time-series, Level, trend and seasonality

• Trying and testing different forecasting methods and selecting the best one to forecast sales of the next 30 days

Description about Data

Columns: Order date, Sales, Order Type,

Type, State

Order date: Date on which order is placed. Data are given in different different formats we need to convert it into Sales

Sales: Sales on that particular day on that particular order type and State

Order Type: Categorical data types. Types of Order

it takes for sale

data.iloc[:,2].value_counts()

Out[10]:	
Air	151995
payment	55394
Charge	32775
Other Product	18692
Hotel	7904
refund	5495
Air Cancellation	4600
Other Product Cancellation	547
Air Debit Note	535
Hotel Cancellation	289
Air Loss	210
Other Product Debit Note	21
Hotel Loss	4
Hotel Debit Note	3
Name: Order Type, dtype: in	nt64
In [11]:	

Order Date	Sales	Order Type	Type	State
02/12/18	269	Other Product	Domestic	Delhi
02/12/18	269	Other Product	Domestic	Delhi
02/12/18	269	Other Product	Domestic	Delhi
02/12/18	269	Other Product	Domestic	Delhi
02/12/18	0	Charge	nan	Rajasthan
02/12/18	0	Charge	nan	Rajasthan
02/12/18	0	Charge	nan	Rajasthan
02/12/18	2218	Hotel	Domestic	Rajasthan
02/12/18	0	Charge	nan	Rajasthan
02/12/18	2218	Hotel	Domestic	Rajasthan
02/12/18	0	Charge	nan	Rajasthan
08/12/18	0	Charge	nan	Rajasthan
02/12/18	0	Charge	nan	Rajasthan
08/12/18	0	Charge	nan	Rajasthan
02/12/18	5743	Air	Domestic	Maharashtra
02/12/18	10	Other Product	Domestic	Maharashtra
02/12/18	2688	Air	Domestic	Kerala
02/12/18	10	Other Product	Domestic	Kerala
03/12/18	3650	Air	Domestic	Tamil Nadu
03/12/18	2413	Air	Domestic	Tamil Nadu
03/12/18	10	Other Product	Domestic	Tamil Nadu

Type: Domestic and International

State: State name on where purchase has been done.

EDA Observations and steps along with code

```
# Importing Dataset
import pandas as pd

data = pd.read_csv("C:\\Users\\dell\\Desktop\\project7\\data\\
sales_project7_modified.csv")

data.iloc[:,2].value counts()
```

Order Date is not in one format. Separating Order Day, Month and Year in different columns, then again combine them in a single column in one single format.

```
data['day'] = data['Order Date'].str[0:2]
data['month'] = data['Order Date'].str[3:5]
data['year'] = data['Order Date'].str[6:]
data.loc[data['year'].str.len()==2, 'year'] = '20'+
data['year']
data['year'] = data['year'].str[0:5]
# dd-mm-yyyy string format in one column
data['odatestring'] = data['day'] +'/'+ data['month'] + '/'+ data['year']
```

Order Date	Sales
12/12/18	150
12/12/18	150
12/12/18	8098
12/12/18	8098
12/12/18	3600
12/12/18	0
12/12/18	3349
12/12/18	0
13-12-2018 00:01	10
13-12-2018 13:54	6664
13-12-2018 13:54	0
13-12-2018 15:07	7850
13-12-2018 10:45	269
13-12-2018 12:06	5305
13-12-2018 13:11	2131
13-12-2018 13:11	2131

Index	Order Date	Sales	Order Type	Туре	State .	day	month	year	odatestring
8909	12/01/19	4127.04	Air	International	Haryana	12	01	2019	12/01/2019
8910	12/01/19	499	Other Product	International	Haryana	12	01	2019	12/01/2019
8911	12/01/19	499	Other Product	International	Haryana	12	01	2019	12/01/2019
8912	12/01/19	3626	Air	Domestic	Haryana	12	01	2019	12/01/2019
8913	12/01/19	0	Charge	nan	Haryana	12	01	2019	12/01/2019
8914	13-01-2019 00:01	7497	Air	Domestic	Uttar Pradesh	13	01	2019	13/01/2019
8915	13-01-2019 00:01	0	Charge	nan	Uttar Pradesh	13	01	2019	13/01/2019
8916	13-01-2019 00:06	10620	Hotel	Domestic	Uttar Pradesh	13	01	2019	13/01/2019

data.dtypes

object
float64
object

filling NaN values by zero
data.dropna(inplace = True)

Dropping extra columns

Order Date	Sales	Order Type
31-12-2018 15:53	nan	payment
31-12-2018 15:58	nan	payment
31-12-2018 16:00	nan	payment
31-12-2018 21:14	nan	refund
31-12-2018 14:52	nan	payment
31-12-2018 16:05	nan	payment
31-12-2018 16:06	nan	payment
31-12-2018 14:56	nan	payment
31-12-2018 15:14	nan	payment
31-12-2018 15:14	nan	payment
31-12-2018 15:26	nan	payment
31-12-2018 15:26	nan	payment
31-12-2018 17:05	nan	payment

```
sales dates = data.drop(['Order Date','Order
Type','Type','State','day','month','year'], axis=1)
                                                   16]: sales_dates.isnull().sum()
# check missing values
sales dates.isnull().sum()
                                               Sales
                                               odatestring
                                               dtype: int64
#converting string to Date and time object; sales to integer
sales dates['odatestring'] = pd.to datetime(sales dates['odatestring'], dayfirst =
True)
sales_dates['Sales'] = sales_dates['Sales'].astype(float)
sales_dates.dtypes
                                                                           float64
                                                     Sales
                                                                    datetime64[ns]
                                                    odatestring
                                                    dtype: object
#renaming column name
                                                     In [18]:
sales dates =
sales_dates.rename(columns={'odatestring':'order_date'})
```

```
# creating index on date column to work resample
sales_dates = sales_dates.set_index('order_date')
# aggregating sales Day wise using resample method
sales_day_wise = sales_dates.resample('D').sum()
```

Index	Sales
2018-04-01 00:00:00	200746
2018-04-02 00:00:00	510258
2018-04-03 00:00:00	372377
2018-04-04 00:00:00	608408
2018-04-05 00:00:00	1.06378e+06
2018-04-06 00:00:00	806566
2018-04-07 00:00:00	647209
2018-04-08 00:00:00	294807
2018-04-09 00:00:00	717486

```
# 21-Aug-2018 to 31-Aug-2018 sales are 0. Replacing them by 1. B'coz taking log of
0 is infinite
sales_day_wise.loc[sales_day_wise['Sales']==0, 'Sales'] = 1
sales_day_wise.dtypes
```

Visualizing Time-Series

```
# seasonal_decompose expects timeseries column as index
from statsmodels.tsa.seasonal import seasonal_decompose
decompose_data = seasonal_decompose(sales_day_wise['Sales'], model = 'additive')
decompose_data.plot()
decompose_data = seasonal_decompose(sales_day_wise['Sales'], model =
'multiplicative')
decompose data.plot()
```


Inferences from above plot:

Trend: Linear

Seasonality: Additive (M=6 or M=7)

```
#ACF Plots and PACF Plots on original Data
import statsmodels.graphics.tsaplots as tsa_plts
tsa_plts.plot_acf(sales_day_wise['Sales'], lags=10)
tsa_plts.plot_pacf(sales_day_wise['Sales'], lags=10)
```


Inferences from above plots:

ACF lag = 1

Moving average window = 5

Splitting Train and Test Data

```
# Splitting Train and Test Data taking last 30 days into our test dataset
Train = sales_day_wise.head(406)
Test = sales_day_wise.tail(30)

# Creating a MAPE function
def MAPE(pred, orig):
    temp = np.abs((pred-orig)/orig)*100
    return np.mean(temp)
```

Building model

```
##########################
## Smoothing Techniques ##
############################
# Simple Exponential Smoothing
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
ses model = SimpleExpSmoothing(Train['Sales']).fit()
pred ses = ses model.predict(start = Test.index[0], end = Test.index[-1])
mape ses = MAPE(pred ses, Test['Sales']) #52.92 %
# Holt method only trend
from statsmodels.tsa.holtwinters import Holt
holt model = Holt(Train['Sales']).fit()
pred holt = holt model.predict(start = Test.index[0], end = Test.index[-1])
mape holt = MAPE(pred holt, Test['Sales']) #57.83%
# Winter method with both trend and Seasonality
from statsmodels.tsa.holtwinters import ExponentialSmoothing
#winter model with additive seasonality = 7
winter model 7 = ExponentialSmoothing(Train['Sales'], seasonal = 'add', trend =
'add', seasonal periods = 7).fit()
pred winter model 7 = winter model 7.predict(start = Test.index[0], end =
Test.index[-1])
mape winter model 7 = MAPE(pred winter model 7, Test['Sales']) #29.71%
#winter model with additive seasonality = 6
winter model 6 = ExponentialSmoothing(Train['Sales'], seasonal = 'add', trend =
'add', seasonal periods = 6).fit()
pred winter model 6 = winter model 6.predict(start = Test.index[0], end =
Test.index[-1])
mape winter model 6 = MAPE(pred winter model 6, Test['Sales']) #54.24%
```

```
#winter model with additive seasonality = 5
winter model 5 = ExponentialSmoothing(Train['Sales'], seasonal = 'add', trend =
'add', seasonal periods = 5).fit()
pred_winter_model_5 = winter_model_5.predict(start = Test.index[0], end =
Test.index[-1])
mape winter model 5 = MAPE(pred winter model 5, Test['Sales']) #60.52%
#winter model with multiplicative seasonality = 7
winter model 7 mul = ExponentialSmoothing(Train['Sales'], seasonal = 'mul', trend =
'add', seasonal periods = 7).fit()
pred winter model 7 mul = winter model 7 mul.predict(start = Test.index[0], end =
Test.index[-1])
mape winter model 7 mul = MAPE(pred winter model 7 mul, Test['Sales']) #24.28%
(best)
import pylab
x = pd.date range('2019-05-12', periods=30, freq='D')
pylab.plot(x, pred winter model 7 mul,':r', label = 'predicted')
pylab.plot(x, Test['Sales'],'-b', label = 'actual')
pylab.xlabel('Days')
pylab.ylabel('Sales per day')
pylab.title('Actual Sales V/s Predicted Sales')
pylab.legend(loc='upper left')
pylab.show()
```



```
winter model 7 mul resi = pd.DataFrame(winter model 7 mul.resid)
tsa plts.plot acf(winter model 7 mul resi, lags=12) # 2 is showing significance
#Using ARIMA forecasting errors for Lag =2
winter model 7 mul resi = winter model 7 mul resi.reset index(drop=True)
resi winter model 7 mul = ARIMA(winter model 7 mul resi[0],
order=(2,0,0)).fit(transparams=True)
tsa plts.plot acf(resi winter model 7 mul.resid, lags=12) # No significant lags
winter forecast errors = resi winter model 7 mul.forecast(steps = 30)[0]
winters predictions = pd.DataFrame(columns =
['forecast sales','forecast errors','improved'])
winters predictions['forecast sales'] = pd.Series(pred_winter_model_7_mul)
winters predictions = winters predictions.reset index(drop=True)
winters predictions['forecast errors'] = pd.Series(winter forecast errors)
winters predictions['improved'] = winters predictions['forecast sales']
+winters predictions['forecast errors']
Test = Test.reset index(drop=True)
mape winter model 7 mul AR = MAPE(winters predictions['improved'], Test['Sales'])
#24.82%
##################################
##### ARIMA Model ######
####################################
from statsmodels.tsa.arima model import ARIMA
\#ARIMA for Lag=1 and window size = 2
arima m2 = ARIMA(Train['Sales'], order=(1,1,2)).fit(transparams=True)
\#ARIMA for Lag=1 and window size = 5
arima m5 = ARIMA(Train['Sales'], order=(1,1,5)).fit(transparams=True)
#residuals of residuals
arima m2 resi = pd.DataFrame(arima m2.resid)
```

```
arima m5 resi = pd.DataFrame(arima m5.resid)
# ACF Plot of Residuals of Residuals
tsa plts.plot acf(arima m2 resi, lags=12)
tsa plts.plot acf(arima m5 resi, lags=12)
#Showing Significance at Lag = 7
arima m2 resi lag7 = ARIMA(arima m2 resi[0], order=(7,1,2)).fit(transparams=True)
arima m5 resi lag7 = ARIMA(arima m5 resi[0], order=(7,1,5)).fit(transparams=True)
#residuals of residuals of residuals
arima m2 resi lag7 resi = pd.DataFrame(arima m2 resi lag7.resid)
arima m5 resi lag7 resi = pd.DataFrame(arima m5 resi lag7.resid)
# ACF Plot of Residuals of Residuals
tsa plts.plot acf(arima m2 resi lag7 resi, lags=12)
tsa plts.plot acf(arima m5 resi lag7 resi, lags=12)
# Predicting values using ARIMA model
# Moving Average = 2
arima ma2 forecast values = arima m2.forecast(steps = 30)[0]
arima_ma2_forecast_errors = arima m2 resi lag7.forecast(steps = 30)[0]
arima predictions = pd.DataFrame(columns =
['forecast sales','forecast errors','improved'])
arima predictions['forecast sales'] = pd.Series(arima ma2 forecast values)
arima predictions['forecast errors'] = pd.Series(arima ma2 forecast errors)
arima predictions['improved'] = arima predictions['forecast sales']
+arima predictions['forecast errors']
Test = Test.reset index(drop=True)
mape arima ma2 = MAPE(arima predictions['improved'], Test['Sales']) #55.31
```

```
# Moving Average = 5
arima_ma5_forecast_values = arima_m5.forecast(steps = 30)[0]
arima_ma5_forecast_errors = arima_m5_resi_lag7.forecast(steps = 30)[0]

arima_predictions_5 = pd.DataFrame(columns =
['forecast_sales','forecast_errors','improved'])
arima_predictions_5['forecast_sales'] = pd.Series(arima_ma5_forecast_values)
arima_predictions_5['forecast_errors'] = pd.Series(arima_ma5_forecast_errors)
arima_predictions_5['improved'] = arima_predictions_5['forecast_sales']
+arima_predictions_5['forecast_errors']
mape_arima_ma5 = MAPE(arima_predictions_5['improved'], Test['Sales']) #65.81
```

Final model along with code

```
#Building final model with whole Data set : winter model with multiplicative
seasonality = 7
sales day wise = sales dates.resample('D').sum()
sales day wise.loc[sales day wise['Sales']==0, 'Sales'] = 1
sales day wise.dtypes
from statsmodels.tsa.holtwinters import ExponentialSmoothing
final model = ExponentialSmoothing(sales day wise['Sales'], seasonal = 'mul', trend
= 'add', seasonal periods = 7).fit()
# creating Dates for next 30 days to be forcasted
date range = pd.date range('2019-06-11', periods=30, freq='D')
next 30 days = pd.DataFrame(index=date range)
# Forecasting Sales of next 30 days using Final model
final predictions = final model.predict(start = next 30 days.index[0], end =
next 30 days.index[-1])
final predictions = final predictions.astype(int)
final predictions
```