Relationships involving Attran

1. If a chemical equation is multiplied by some factor, then Altran is multiplied by the same factor

$$A + 2B \rightarrow C \qquad \Delta H_1$$

$$2A + 4B \rightarrow 2C \qquad \Delta H_2 = 2 \cdot \Delta H_1$$

2. If a chemical reaction is seversed, then DA (xn changes sign

$$A + 2B \rightarrow C$$
 ΔH_1
 $C \rightarrow A + 2B$ $\Delta H_2 = -\Delta H_1$

3. If a chemical can be expressed as the sum of a series of steps, then altran for the overall is equation is the sum of the heats of reaction for each step (Hess Law)

$$A + 2B \rightarrow C AH_1$$

$$C \rightarrow 2D \Delta H_2$$

$$A + 2B \rightarrow 2D \Delta H_3 = AH_1 + \Delta H_2$$

Co(g) + NO(g) -> Coz(g) + 1/2 DH =?

Given:

- (A) CO(g) + 202(g) -> Co2(g) AH = -283.0 2/mo1
- (B) Nz (g) + Oz (g) -> 2NO DH = 180.6 kJ/mol
- Equation A has the same amount of co and Coz as in the target => leave a written
- Equation B has twice as much Nz and No as the target and they are on opposite sides => multiply with 1/2 and reverse

$$Co(g) + \frac{1}{2} \mathcal{E}_{L}(g) \longrightarrow Co_{2}(g)$$
 $AH = -283 \frac{20}{mol}$
 $No(g) \longrightarrow \frac{1}{2} N_{2}(g) + \frac{1}{2} \mathcal{E}_{L}$ $AH = (-1) \cdot (\frac{1}{2}) \cdot 180.6 \frac{20}{mol}$
 $= -90.3 \frac{20}{mol}$

Cocg) + Nocg) -> CozCg) + 1/2(g) Altran = -373.3kg

Standard States and Standard Enthalpy Changes

1. Standard State

gas: pur gase @ lahn

liquid/solid: pure substance in its most stable form at / alm and at the temp. of in krest

substance in solution: 1M

- 2. Standard Enthalpy: 14°

 The change of enthalpy for a process when all recetants and products are in their standard state
- 3. Standard Enthalps of Formation Alle For a pure compound: The change in enthalpy when I make of compound forms from its constituent elements in their standard states

For a pure element in ils standard state $\Delta H_{\rm f}^{\rm o} = 0 \; \text{W/mol}$

Example MgCo3

a). Write the equation will the elements in MgCO3 in Heir standord states and I move MgCO3 as product

Mg(s) + C(s, graphite) + Oz(g) -> MgCoz(s)
ballance

Mg (s) + C (s, graphik) + = Oz(g) -> Mg(oz(s)

4Hp = - 1095.8 & 21/more (table)

A + B -> C + D

tecctout -> elements
$$\Delta H_1 = - \Xi \Delta H_f^o$$
elements -> products $\Delta H_2 = + \Xi \Delta H_f^o$
reactants -> products $\Delta H_{ran} = \Delta H_1 + \Delta H_2$

$$CH_{4}(cg) + 2O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(g) \qquad \Delta H_{1xm}^{o} = ?$$

$$\frac{C(s_{1}g_{1}s_{0}f_{1}h_{2}) + 2H_{2}(g) + 2O_{2}(g)}{For makion of CO_{2}}$$

$$\frac{CH_{4}(cg) + 2O_{2}(g)}{CH_{4}(cg) + 2O_{2}(g)}$$

$$\frac{CO_{2}(g) + 2H_{2}(g) + O_{2}(g)}{VCO_{2}(g) + 2H_{2}O(g)}$$

$$C(s, graphih) + 2H_2(g) - CH_4(g)$$
 $\Delta H = -74.8 \text{ B.) lmol}$
 $EVERSE$
 $CH_4(g) - C(s, graphih) + 2H_2(g)$ $\Delta H = \frac{1}{4}.74.8 \text{ B.) lmol}$

Formation of $(o_2(g))$
 $C(s, graphih) + O_2(g) - Co_2(g)$ $\Delta H = -393.5 \text{ R.) lmol}$

Formation of $H_2O(g)$
 $2 \cdot [H_2(g) + \frac{1}{4}O_2(g) - H_2O(g)]$ $\Delta H = 2 \cdot \Delta H_2^o(H_2O(g))$
 $= 2 \cdot -241.8 \text{ B.) lmol}$

(44(9) + 202(9) -> (02(9) + H2O(9) AH (xy = -802.5 kg/m)

Standard enthalpies of formation at 25°C (kJ/mol) of compounds at 1 atm, aqueous ions at 1M Compounds

Compound							
AgBr(s)	-100.4	$CaCl_2(s)$	-795.8	$H_2O(g)$	-241.8	$NH_3(g)$	-46.1
AgCl(s)	-127.1	$CaCO_3(s)$	-1206.9	$H_2O(l)$	-285.8	$N_2H_4(l)$	50.6
$AgNO_3(s)$	-124.4	CaO(s)	-635.1	$H_2O_2(l)$	-187.8	$N_2H_3CH_3(l)$	+54
$Al_2O_3(s)$	-1675.7	$Ca(OH)_2(s)$	-986.1	$H_2S(g)$	-20.6	$NH_4Cl(s)$	-314.4
$BaCl_2(s)$	-858.6	$CaSO_4(s)$	-1434.1	$H_2SO_4(l)$	-814.0	NO(g)	+91.3
$BaCO_3(s)$	-1216.3	$CdCl_2(s)$	-391.5	HgO(s)	-90.8	$N_2O_4(g)$	+9.2
$BaSO_4(s)$	-1473.2	$Cr_2O_3(s)$	-1139.7	KCl(s)	-436.7	$N_2O(g)$	+81.6
$CCl_4(l)$	-135.4	CuO(s)	-157.3	KClO ₃ (s)	-397.7	$NO_2(g)$	+33.2
$CHCl_3(l)$	-134.5	$CuSO_4(s)$	-771.4	KNO ₃ (s)	-494.6	$N_2O_4(l)$	-20.
$CH_4(g)$	-74.8	$FeCl_2(s)$	-341.8	$MgCl_2(s)$	-641.3	$NiCl_2(s)$	-305.3
$C_2H_4(g)$	+52.4	$Fe_2O_3(s)$	-824.2	$MgCO_3(s)$	-1095.8	NiO(s)	-239.7
$C_2H_6(g)$	-84.7	$Fe_3O_4(s)$	-1118.4	$MgF_2(s)$	-1124.2	$PbBr_2(s)$	-278.7
$C_6H_6(l)$	+49.1	$Fe(OH)_3(s)$	-823.0	MgO(s)	-601.7	$PCl_3(g)$	-287.0
$CH_3OH(l)$	-238.7	HBr(g)	-36.4	$Mg(OH)_2(s)$	-924.5	$SiO_2(s)$	-910.9
$C_2H_5OH(l)$	-277.7	HF(g)	-273.3	$MgSO_4(s)$	-1284.9	SiCl ₄ (1)	-687
$C_3H_6O(l)$	-284.4	HCl(g)	-92.3	$Na_2O(s)$	-416	$SnO_2(s)$	-580.7
acetone	4070.0	****		11.014		80 ()	
$C_6H_{12}O_6(s)$	-1273.3	HI(g)	+26.5	NaCl(s)	-411.2	SO₃(g)	-395.7
glucose CO(g)	-110.5	$HNO_3(l)$	-174.1	NaHCO3(s)	-950.8	ZnO(s)	-348.3
$CO_2(g)$	-393.5	$H_3PO_4(s)$	-1284.4	NaOH(s)	-425.6	ZnS(s)	-206.0
002(8)	7,7,7	1232 04(3)	1207.7	114011(3)	- 4 23.0	ZIIS(3)	-200.0

Cat	ions	Anions			
$Ag^{+}(aq)$ +105.6	$K^{+}(aq)$ -252.4	Br (aq)	-121.6	H_2PO_4 (aq)	-1296.3
$Al^{3+}(aq)$ -531.0	$Mg^{2+}(aq)$ -466.8	CO ₃ ²⁻ (aq)	-677.1	Γ(aq)	-55.2
$Ba^{2+}(aq)$ -537.6	$Mn^{2+}(aq)$ -220.8	Cl (ag)	-167.2	MnO₄ (aq)	-541.4
Ca ²⁺ (aq) -542.8	$Na^{+}(aq)$ -240.1	ClO₃ (aq)	-104.0	NO₂⁻(aq)	-104.6
$Cu^{+}(aq) +71.7$	$NH_4^+(aq)$ -132.5	ClO₄ (aq)	-129.3	NO₃ (aq)	-205.0
$Cu^{2+}(aq) + 64.8$	Ni ²⁺ (aq) -54.0	CrO ₄ ²⁻ (aq)	-881.2	OH (aq)	-230.0
$Fe^{2+}(aq)$ -89.1	$Pb^{2+}(aq)$ -1.7	$Cr_2O_7^{2-}(aq)$	-1490.3	PO ₄ ³⁻ (aq)	-1277.4
Fe ³⁺ (aq) -48.5	Sn ²⁺ (aq) -8.8	F(aq)	-332.6	S ²⁻ (aq)	+33.1
$H^{\dagger}(aq)$ 0.0	$Zn^{2+}(aq)$ -153.9	$HCO_3(aq)$	-692.0	SO_4^{2} (ag)	-909.3