

Podstawowe zagadnienia Układy kombinacyjne dr Aleksander Lamża

Uniwersytet J. Kochanowskiego w Kielcach Uniwersytet Śląski w Katowicach

aleksander.lamza@us.edu.pl

Zapoznawanie się z bardziej złożonymi strukturami logicznymi rozpoczniemy od **układów kombinacyjnych**.

Tak naprawdę w pewnym sensie mieliśmy już z takim układem do czynienia – nasze urządzenie z przyciskami i światłami było układem kombinacyjnym.

Cechą wyróżniającą układy kombinacyjne jest to, że stan ich wyjść zależy jedynie od stanu wejść.

To odróżnia je od układów sekwencyjnych, o których pomówimy później.

Jak łatwo zauważyć, istnieje nieskończona liczba możliwych układów kombinacyjnych, jednak w praktyce używa się zwykle pewnych stałych, "wzorcowych" struktur.

Można je podzielić na trzy główne grupy:

- układy arytmetyczne,
- układy łączące,
- układy kodujące.

Zaczynamy od **układów arytmetycznych**.

Na rysunku przedstawiającym budowę procesora widoczny był blok ALU. Jest to jednostka arytmetyczno-logiczna, której zadaniem jest wykonywania działań. Jej podstawowym elementem jest **sumator**. Przyjrzymy mu się bliżej – przeanalizujemy budowę sumatora jednobitowego.

Układ ma dwa wejścia (składniki A i B) oraz dwa wyjścia (S – suma, C – przeniesienie):

Wyjaśnienia wymaga tylko wyjście C. Jest to **przeniesienie**, do którego dochodzi, gdy sumy dwóch składników A i B nie da się przedstawić za pomocą jednego bitu (jest to sytuacja analogiczna do przeniesienia przy dodawaniu liczb dziesiętnych, np. 5+7 = 12, przy czym "1" oznaczające 10 jest właśnie przeniesieniem).

W związku z tym tabela prawdy dla takiego sumatora wygląda następująco:

Α	В	S	С	
0	0	0	0	0 + 0 = 0
0	1	1	0	0 + 1 = 1
1	0	1	0	1 + 0 = 1
1	1	0	1	1 + 1 = 10 (2)

Bez problemu powinniście podać funkcje, które odpowiadają za wyjścia S i C. Co to będzie?

Wyjście sumy realizuje funkcję A \bigoplus B, czyli alternatywę, natomiast przeniesienie to iloczyn A \cdot B.

Schemat sumatora zrealizowanego na bramkach wygląda więc tak:

Układ, który zbudowaliśmy, jest tak naprawdę **półsumatorem**, ponieważ **nie ma wejścia przeniesienia**, które jest niezbędne, gdybyśmy chcieli zbudować wielobitowy sumator.

Jak więc będzie wyglądał prawdziwy, pełny sumator?

Znów rozpoczynamy od tabeli prawdy:

C _{i-1}	Α	В	S	C _i	
0	0	0	0	0	0 + 0 + 0 = 0
0	0	1	1	0	0 + 0 + 1 = 1
0	1	0	1	0	0 + 1 + 0 = 1
0	1	1	0	1	0 + 1 + 1 = 10 (2)
1	0	0	1	0	1 + 0 + 0 = 1
1	0	1	0	1	1 + 0 + 1 = 10
1	1	0	0	1	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11 (3)

Sprawa się skomplikowała, ponieważ mamy trzy wejścia, więc osiem możliwych stanów. Gdybyśmy chcieli sformułować funkcje z tabeli prawdy (jak do tej pory), powstałyby niezbyt miłe "potworki".

Musimy to rozwiązać inaczej. Odpowiedzmy na pytanie, co należy zrobić z wartością z wejścia przeniesienia.

Oczywiście dodać do sumy A i B.

Rozwiązanie wydaje się więc proste. Wystarczy zastosować dwa półsumatory:

Problem jednak w tym, że mamy aż dwa wyjścia przeniesienia. Rzut oka na tabelę prawdy wystarczy, by stwierdzić, że przeniesienie ma wystąpić, jeśli dojdzie do niego podczas dodawania A+B **lub** podczas dodawania sumy cząstkowej i przeniesienia.

Jedna bramka OR rozwiązuje sprawę:

Schemat na bramkach:

Kolejnym typem układów kombinacyjnych są bloki łączące. Ich zadaniem jest połączenie odpowiednich wejść bądź wyjść z resztą układu. Wyróżniamy:

Z układami tego typu (ale niekoniecznie cyfrowymi) z pewnością mieliście do czynienia.

Na przykład w sprzęcie grającym mamy zwykle możliwość wyboru sygnału (z CD, tunera, z wejścia AUX itp.), który trafi do wzmacniacza – to jest właśnie multiplekser.

Przyjrzymy się bliżej multiplekserowi. Zobaczymy, jak go zbudować z bramek logicznych.

Na warsztat weźmiemy najprostszy możliwy multiplekser, czyli taki o dwóch wejściach:

Multipleksowane wejścia to I0 i I1. W zależności od stanu linii adresowej A, na wyjście Y trafi sygnał z wejścia I0 (dla A = 0) lub I1 (dla A = 1). A za co odpowiada sygnał G? Jest to wejście uaktywniające – multiplekser działa, jeżeli G = 1. Jeśli G = 0, na wyjściu zawsze jest 0, niezależnie od stanu pozostałych wejść.

Jak zwykle zaczynamy od tabeli prawdy:

G	Α	10	I1	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

No ładnie... Uwzględniliśmy wszystkie możliwe stany (dla 4 wejść jest ich aż 16!).

Czy naprawdę jest to konieczne?

Wiemy przecież, że jeśli na wejściu G jest 0, na wyjściu również pojawia się 0.

Dodatkowo wiemy, że jeśli A = 0, na wyjściu pojawi się stan z I0, a stan I1 nie ma znaczenia. Analogicznie sprawa wygląda dla A = 1 i wejścia I1.

W związku z tym tabelę prawdy można uprościć, pomijając "niepotrzebne" pozycje. Wprowadzamy symbol X oznaczający dowolny stan (0 lub 1):

G	Α	10	I1	Υ
0	X	X	X	0
1	0	0	X	0
1	0	1	X	1
1	1	X	0	0
1	1	X	1	1

Uff... Znacznie lepiej.

Zastanówmy się teraz, jak zbudować ten układ z wykorzystaniem bramek. Musimy znaleźć taką bramkę, którą możemy "przepuszczać" lub "blokować" sygnał z jednego wejścia.

Spójrzmy na tabelę prawdy czterech bramek: OR, NOR, AND i NAND:

Α	В	OR	NOR	AND	NAND
0	0	0	1	0	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	0	1	0

Która z nich będzie się nadawała?

Prawidłowa odpowiedź: AND

0 1 0
1 0 0
Dla A = 1 wyjście jest równe I.

Weźmy teraz dwie bramki AND:

"Przewodzić" będzie ta bramka, na którą podamy 1. Pamiętajmy, że w multiplekserze zawsze ma "przewodzić" tylko jedna bramka. Analizowany przez nas układ ma tylko dwa wejścia, więc

jeżeli 1 podamy na pierwszą bramkę, na drugą musimy podać 0.

Stąd prosty wniosek, że do linii wybierających (adresowych) musimy użyć negacji.

W tej chwili jeśli A = 0 "przewodzi" pierwsza bramka, a jeśli A = 1 "przewodzi" druga. Świetnie!

Czy zauważyliście na tym schemacie coś niepokojącego?

No jasne! Mamy dwa wyjścia, a powinno być jedno. Co z tym zrobić?

Powinniśmy "zebrać" stany z wszystkich bramek przełączających i "przepuścić" jedynkę.

Jaką bramką to zrobić?

Α	В	OR	NOR	AND	NAND
0	0	0	1	0	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	0	1	0

Odpowiedź jest oczywista – **OR**.

Mamy już działający multiplekser! Linią A wybieramy wejście, którego stan pojawi się na wyjściu.

Brakuje tylko wejścia aktywującego G.

Możemy powielić rozwiązanie z bramką AND, która będzie "przepuszczała" (bądź nie) stan z wyjścia dotychczasowego multipleksera:

Możemy też podejść do sprawy inaczej i blokować multiplekser na wejściu:

Zachęcam, żebyście zbudowali sobie ten układ w logic.ly i przeanalizowali jego działanie.

Ostatnią z omawianych grup układów kombinacyjnych są bloki kodujące (nie mylić z szyfrowaniem). Ich zadaniem jest zamiana jednego kodu na inny.

Klasyczny podział wyróżnia:

- kodery, które zamieniają kod "1 z n" na wartość binarną,
- dekodery działające odwrotnie do koderów,
- transkodery, które zamieniają jeden kod na inny.

Aby zobaczyć, jak są zbudowane ogólnie rozumiane kodery, zaprojektujemy transkoder kodu BCD na 7-segmentowy.

Czym jest **kod BCD**?

Rozwinięcie skrótu BCD to Binary-Coded Decimal. Jest to kod reprezentujący wszystkie cyfry systemu dziesiętnego za pomocą systemu dwójkowego.

cyfra	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Jest to naturalny kod dwójkowy. Wartości zapisujemy na czterech bitach. Kod ten jest zazwyczaj stosowany, gdy wartości mają być wyświetlane w postaci dziesiętnej, np. na wyświetlaczu.

Na przykład liczba dziesiętna 62 w BCD wygląda tak:

0110 0010

Czym jest kod 7-segmentowy?

Jest to kod służący do sterowania wyświetlaczami 7-segmentowymi:

Jest to powszechny sposób wyświetlania cyfr (i innych symboli). Segmenty oznacza się literami od A do G.

Kod 7-segmentowy dla cyfr od 0 do 9:

Ponieważ naszym zadaniem jest zaprojektowanie transkodera BCD na kod 7-segmentowy, musimy zdefiniować funkcje opisujące każdy segment w zależności od wartości BCD.

7-segmentowy ABCDEFG
1111110
0110000
1101101
1111001
0110011
1011011
1011111
1110000
1111111
1111011

Robimy to tak samo, jak ostatnio:

$$A = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d}$$

Wyszła nam dosyć rozbudowana funkcja. Można ją odwzorować w układzie w takiej postaci lub ją zminimalizować.

Do minimalizowania funkcji logicznych używa się zasad logiki Boole'a.
Bardzo pomocna byłaby też siatka Karnaugha.

Do tej pory zawsze zakładaliśmy, że stanem domyślnym jest 0 i określamy sytuacje, w których ma wystąpić stan 1. A gdyby podejść do sprawy na odwrót? Czyli? Szukamy zer i łączymy je w trochę inny, ale równoważny, sposób:

BCD dcba	7-segmentowy ABCDEFG
0000	1111110
0001	0110000
0010	1101101
0011	1111001
0100	0110011
0101	1011011
0110	1011111
0111	1110000
1000	1111111
1001	1111011

$$A = a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} \cdot \overline{a} \cdot \overline{b} \cdot c \cdot \overline{d}$$

Zwróćcie uwagę na negacje nad iloczynami oraz to, że iloczyny są łączone również iloczynem, a nie sumą.

Praktyczna realizacja tego dekodera może wyglądać tak jak na poniższym rysunku.

Jest to schemat rzeczywistego układu dekodera o symbolu 4511.

Na tym zakończyliśmy omawianie układów kombinacyjnych. Teraz pora na **układy sekwencyjne**.