Lecture 12

Chapter 5 Linear Transformation

- **5.1 Definition and Examples**
- **5.2** Image and Kernel

5.1 Definition and Examples

Linear mappings from one vector space to another play an important role in mathematics.

Linear Transformations

Definition 1. Let V and W be two vector space, and $L: V \to W$ be a mapping from V to W. If

$$L(\alpha \mathbf{v_1} + \beta \mathbf{v_2}) = \alpha L(\mathbf{v_1}) + \beta L(\mathbf{v_2})$$

holds for all $v_1, v_2 \in V$, where α, β are scalars, we say that L is a **linear transformation** [线性变换].

In case that V = W, L is also called **linear operator** [线性算子] on V.

Theorem 1. Let $L: V \to W$ be a mapping. Then L is a linear transformation if and only if it satisfies

$$L(v_1 + v_2) = L(v_1) + L(v_2)$$
 (1)

$$L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}), \tag{2}$$

for any $v_1, v_2, v \in V$ and α scalar.

Proof. The necessary part is clear. Assume that L satisfies (1) and (2).

For any $v_1, v_2 \in V$, α, β scalars, αv_1 and βv_2 are both vectors in V.

By (1), we have
$$L(\alpha v_1 + \beta v_2) = L(\alpha v_1) + L(\beta v_2)$$
.

By (2), we have
$$L(\alpha \mathbf{v_1}) = \alpha L(\mathbf{v_1}), \qquad L(\beta \mathbf{v_2}) = \beta L(\mathbf{v_2})$$

showing that
$$L(\alpha v_1 + \beta v_2) = \alpha L(v_1) + \beta L(v_2)$$
.

In other words, L is a linear transformation.

Linear Operators on R²

Example 1. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$L(\mathbf{x}) = x_1 \mathbf{e_1},$$

for any $x = (x_1, x_2)^T \in \mathbf{R}^2$.

- $\mathbf{x} = (x_1, x_2)^T$, $\mathbf{y} = (y_1, y_2)^T \in \mathbf{R}^2$, α, β scalars, $\alpha \mathbf{x} + \beta \mathbf{y} = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2)^T$,
- $L(\alpha \mathbf{x} + \beta \mathbf{y}) = (\alpha x_1 + \beta y_1)\mathbf{e_1}$,
- $\alpha L(\mathbf{x}) + \beta L(\mathbf{y}) = \alpha(x_1 \mathbf{e_1}) + \beta(y_1 \mathbf{e_1}) = (\alpha x_1 + \beta y_1) \mathbf{e_1}$,

$$\Rightarrow L(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha L(\mathbf{x}) + \beta L(\mathbf{y}).$$

L is a linear transformation on \mathbb{R}^2 .

We can think of this linear transformation as a **projection** [投影] onto x_1 -axis.

$$L(\mathbf{x}) = x_1 \mathbf{e_1}$$

Example 2. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$L(x) = \lambda x,$$

where λ is a real number.

• $x, y \in \mathbb{R}^2$, α, β scalars,

$$L(\alpha x + \beta y) = \lambda(\alpha x + \beta y) = \alpha \lambda x + \beta \lambda y = \alpha L(x) + \beta L(y),$$

 \Rightarrow L is a linear transformation (also a linear operator).

This linear transformation can be thought of as a **stretching** or **shrinking** by a factor λ .

Example 3. Let the mapping $L: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$L(\mathbf{x}) = (x_1, -x_2)^T,$$

for each $\mathbf{x} = (x_1, x_2)^T \in \mathbf{R}^2$.

• $x = (x_1, x_2)^T, y = (y_1, y_2)^T \in \mathbb{R}^2, \alpha, \beta \text{ scalars},$

$$\alpha \mathbf{x} + \beta \mathbf{y} = \begin{pmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \end{pmatrix},$$

$$L(\alpha \mathbf{x} + \beta \mathbf{y}) = \begin{pmatrix} \alpha x_1 + \beta y_1 \\ -(\alpha x_2 + \beta y_2) \end{pmatrix}$$
$$= \begin{pmatrix} \alpha x_1 \\ -\alpha x_2 \end{pmatrix} + \begin{pmatrix} \beta y_1 \\ -\beta y_2 \end{pmatrix}$$
$$= \alpha L(\mathbf{x}) + \beta L(\mathbf{y})$$

Thus L is a linear transformation on \mathbb{R}^2 .

The linear transformation L has the effect of **reflecting vectors** about the x_1 -axis.

Linear Transformations from \mathbb{R}^n to \mathbb{R}^m

Example 4. Let $L_A: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping defined by

$$L_A(\mathbf{x}) = A\mathbf{x},$$

where A is an $m \times n$ matrix. Show that L_A is a linear transformation.

Proof. $x, y \in \mathbb{R}^n$, α a real number,

$$L_A(x + y) = A(x + y) = Ax + Ay = L_A(x) + L_A(y)$$

$$L_A(\alpha x) = A(\alpha x) = \alpha(Ax) = \alpha L_A(x).$$

By **Theorem 1**, the mapping L_A is a linear transformation.

Exercise. Let A = (1,1), find L_A .

Example 5. Let $L: \mathbb{R}^n \to \mathbb{R}$ be the mapping defined by

$$L(x) = \langle x, x \rangle.$$

Determine if *L* is a linear transformation.

Solution. Since $L(2x) = 2^2 L(x)$, L is **NOT** a linear transformation.

Linear Transformations from V to W

If L is a linear transformation from a vector space V into a vector space W, then

- (1) $L(\mathbf{0}_V) = \mathbf{0}_W$, where $\mathbf{0}_V$, $\mathbf{0}_W$ are the zero vectors in V, W.
- (2) $L(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n) = \alpha_1 L(v_1) + \alpha_2 L(v_2) + \dots + \alpha_n L(v_n);$
- (3) $L(-\boldsymbol{v}) = -L(\boldsymbol{v})$, for all $\boldsymbol{v} \in V$.

Example 6. If V is any vector space, then the identity operator I is

defined by

$$I(v) = v$$

 $I(\boldsymbol{v}) = \boldsymbol{v}$ for all $\boldsymbol{v} \in V$.

Clearly, I is a linear transformation (operator) from V to itself.

Example 7. Let $D: C^{(1)}(a,b) \to C(a,b)$ be the derivative of a continuous derivable function defined in the interval (a,b).

• $f, g \in C^{(1)}(a, b), \alpha, \beta$ scalars,

$$D(\alpha f + \beta g) = \frac{\mathrm{d}}{\mathrm{d}x}(\alpha f + \beta g) = \alpha \frac{\mathrm{d}f}{\mathrm{d}x} + \beta \frac{\mathrm{d}g}{\mathrm{d}x}$$
$$= \alpha D(f) + \beta D(g).$$

Then *D* is a linear transformation.

Example 8. Let $I: C[a,b] \to R$ be the definite integral of a continuous function defined on the interval [a,b].

• $f, g \in C[a, b], \alpha, \beta$ scalars,

$$I(\alpha f + \beta g) = \int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f dx + \beta \int_{a}^{b} g dx$$
$$= \alpha I(f) + \beta I(g).$$

So *I* is a linear transformation.

5.2 Image and Kernel

Let $L: V \to W$ be a linear transformation. Consider the effect that L has on subspaces of V.

Definition 1. Let $L: V \to W$ be a linear transformation. The vector set

$$\ker(L) = \{ \boldsymbol{v} \in V | L(\boldsymbol{v}) = \mathbf{0}_W \}$$

is called **kernel** [核] of L, where $\mathbf{0}_W$ is the zero vector in the vector space W.

Definition 2. Let $L: V \to W$ be a linear transformation and let S be a subspace of V. The set L(S) defined by

$$L(S) = \{ \boldsymbol{w} \in W | \boldsymbol{w} = L(\boldsymbol{v}), \boldsymbol{v} \in S \}$$

is called **image** [像] of S. The image of the entire space, L(V), is called the **range** [值域] of L.

Theorem 1. If $L: V \to W$ is a linear transformation and S is a subspace of V, then

- (1) ker(L) is a subspace of V;
- (2) L(S) is a subspace of W.

Example 1. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$L(\mathbf{x}) = x_1 \mathbf{e_1}.$$

Find the kernel and the range of L.

Solution.

Find ker(*L*). A vector $\mathbf{x} = (x_1, x_2)^T$ is in ker(*L*) if and only if $x_1 = 0$. Therefore, the kernel of *L* is

$$\ker(L) = \{ \boldsymbol{x} | \boldsymbol{x} = (0, \alpha)^T, \alpha \in \mathbf{R} \},$$

which is a one-dimensional subspace of \mathbb{R}^2 spanned by \mathbf{e}_2 .

Find $L(\mathbf{R}^2)$. A vector \mathbf{y} is in the range of L if and only if y is a multiple of \mathbf{e}_1 . Therefore,

$$L(\mathbf{R}^2) = \operatorname{Span}\{\mathbf{e_1}\}.$$

Example 2. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$L(x) = \lambda x,$$

where $\lambda \neq 0, \lambda \in \mathbf{R}$. Find the kernel and the range of L.

Solution.

Find ker(L). Since $\lambda \neq 0$, the only vector satisfies $L(x) = \lambda x = 0$ is the zero vector, **0**. Therefore,

$$\ker(L) = \{\mathbf{0}\}.$$

Find $L(\mathbf{R}^2)$. Since $\lambda \neq 0$, then

$$L(\mathbf{R}^2) = \mathbf{R}^2.$$

Example 3. Let $D: P_{n+1} \to P_n$ be the transformation of differentiation. Find its kernel and range.

Solution. Find $\ker(D)$. Let $p(x) \in P_m$, where $x \in \mathbf{R}$, then D(p(x)) = p'(x), $x \in \mathbf{R}$.

Consider the differential equation

$$p'(x) = 0, \qquad x \in \mathbf{R}.$$

The solution is p(x) = C, where C is an arbitrary constant. Therefore

 $\ker(D) = \{p(x) | p(x) = C, x \in \mathbf{R} \text{ and } C \text{ is constant}\}.$

Recall: P_n is the vector space of all polynomials of degree less than n.

Example 3. Let $D: P_{n+1} \to P_n$ be the transformation of differentiation. Find its kernel and range.

Solution. Find $D(P_n)$.

By rules of differentiation, if p(x) is a polynomial of degree n, then p'(x) is a polynomial of degree n-1, at most (for $n \ge 1$). Therefore, $D(P_{n+1}) = P_n$ for $n \ge 1$.

 P_1 is the set of all polynomials of constant value, and therefore p'(x) = 0 for $p \in P_1$. We then have $D(P_1) = \{0\}$.

Example 4. Let $I: C[a, b] \to \mathbb{R}$ be the linear transformation of definite integral defined on the interval [a, b] where a < b. Find its kernel and image.

Solution. Find ker(I).

$$\ker(I) = \left\{ f \in C[a, b] \middle| \int_a^b f(x) \, dx = 0 \right\}.$$

Find I(C[a,b]). Notice that f(x) = C, where C is a constant, is one of the functions in C[a,b] and it is easy to calculate that

$$\int_a^b f(x) dx = C \int_a^b dx = C(b-a).$$

Since b - a is a nonzero constant and $C \in \mathbf{R}$, we have

$$I(C[a,b]) = \mathbf{R}.$$

Review

- Definition of Linear Transformations
- Kernel and Image

Preview

- Matrix Representation of Linear Transformations
- Similar Matrices