■ H.264 视频质量评价方法 (基于视频内容)

2013年10月20日 16:18:32 阅读数:5738

Michal Ries等人在论文《Content Based Video Quality Estimation for H.264/AVC Video Streaming》中,描述了一种基于视频内容的视频质量评价方法。有一定的参考价值,在此记录一下。

该质量评价方法的特别之处在于,根据视频内容的复杂程度将视频分成了几类,每种类别分别使用不同的模型系数。而一般的视频质量评价方法通常只有一个模型以及一套固定的系数。

该论文将视频序列分为5类,以下是其中几类的截图(少了一类)

Fig. 1. pSnapshots of typical content classes 1020

五类包括:

news (新闻): 仅有一小块感兴趣区域在运动(比如人脸,一般占视频画面的15%),背景是静止的。

soccer(足球):包含大面积统一方向的运动。镜头通常会在一个统一颜色的背景下(绿色)跟踪一个快速运动的物体(足球)。

cartoon(卡通):主题在运动,背景是绝对静止的(没有自然特性)。

panorama(全景画): 包含大面积统一方向的运动,运动方向是一致的。

rest(其他):除以上几种之外的视频都属于这一类。通常包含大量杂乱的运动,或者有很多镜头切换。

对视频内容进行分类的Content classifier(内容分类器)设计如下图所示:

Fig. 2: t Content classifier design eixiaohua1020

下图统计了五种类别的视频中,统一运动所占的百分比以及零运动矢量百分比的 经验累积分布函数。

注:ECDF全称empirical cumulative distribution functions, 经验累积分布函数。

Fig. 3. Model ECDF of zero MV ratio and uniformity of movement 20

对Content classifier (内容分类器) 进行测试的结果如下表所示。False detection反映的是对视频进行了错误的分类的百分率。就是视频本身属于其他类,却分到了这一类。Good match反映的是对视频进行了正确的分类的百分率。

由表可见,内容分类器基本上是比较准确的。

Content class	False detection [%]	Good match [%]
1	0	97
2	0	100
3	5,6	92
4	0	100
Num. of sequenc.	786	98

 $\begin{tabular}{ll} TABLE\ I \\ The\ evaluation\ results\ of\ content\ classifier\ \verb|1020| \\ \hline \end{tabular}$

测试序列的设置如下表所示。测试序列时长为10秒,分辨率为SIF,编码为H.264 baseline profile 1b。下表所示一共有36种组合。

FR [fps]/BR [kbit/s]	24	50	56
5	Ne, Ca	Vi	Ne, Ca
7.5	Ne, Ca		Ne, Ca
10	Ne, Ca		Ne, Ca
15	Ne		Ne

FR [fps]/BR [kbit/s]	60	70	80	105
5				Ne
7.5	Vi	Vi		Ne, So, Vi
10		Vi	Vi	Ne, So, Vi
15		10 de	Vi	Ne, So, Vi

TABLE II

TESTED COMBINATIONS OF FRAME RATES AND BIT RATES. ABREVIATION OF SEQUENCE TYPES: CA = CARTOON, NE = NEWS, SO = SOCCER, PA = PANORAMA, VI = VIDEOCLIP net/leixiaohua1020

测试使用的设备如下图所示,是一个PDA。

Fig. 4. Test equipment: VPA IV UMTS/WLANohua1020

Fig. 5. Content based video quality estimator design 1020

实验结果数据分析方面,用到了 principal component analysis(PCA, 主成分分析)

注:主成分分析作用是: 将多个变量通过 线性变换 以选出较少个数重要变量的一种 多元统计分析 方法。又称 主分量分析 。

Sequence	Variab. of PC1 [%]	Variab.of PC2 [%	
Content class 1	61.7	23.1	
Content class 2	51.8	32.9	
Content class 3	54.8	30.4	
Content class 4	53.1	42.7	
Content class 5	63.5	28.2	

TABLE III

THE TOTAL VARIABILITY OF THE FIRST TWO COMPONENTS FOR ALL
CONTENT CLASSES. dn. net/leixiaohua1020

PCA分析结果如下图所示。

注:BR代表码率。FR代表帧率。

Fig. 6. Visualization of PCA results for all content classes.

最终给出的视频客观质量评价模型的形式如下:

 $h + \widehat{MOS} = f(BR, FR, Content class).$

最终给出的视频客观质量评价模型如下式所示:

注:BR代表码率。FR代表帧率。

$$\widehat{\text{MOS}} = A + B \cdot \text{BR} + \frac{C}{BR} + D \cdot \text{FR} + \frac{E}{FR}.$$

并且给出了五种不同的内容相应的系数:

Coeff.	CC 1	CC 2	CC 3	CC 4	CC 5
A	4.0317	1.3033	4.3118	1.8094	1.0292
B	0	0.0157	0	0.0337	0.0290
C	-44.9873	0	-31.7755	0	0
D	0	0.0828	0.0604	0.0044	0
E	-0.5752	0	0	0	-1.6115

TABLE IV

COEFFICIENTS OF METRIC MODEL FOR ALL CONTENT CLASSES (CC)

下表所示是对该模型性能的验证。

r代表的是 皮尔逊相关系数(Pearson correlation coefficient)

r'代表的是 Spearman相关系数(Spearmank correlation factor)

Content type	CC 1	CC 2	CC 3	CC 4	CC 5
r	0.9277	0.9018	0.7559	0.9030	0.9307
r'	0.9964	0.8863	0.8409	0.9812	0.9695

TABLE V

METRIC PREDICTION PERFORMANCE BY CORRELATION ON EVALUATION

SET SET

该模型预测的视频质量和实际主观视频质量之间的关系如下图所示:

Fig. 7. Estimated vs. subjective MOS results annual 020

论文地址: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4224741&contentType=Conference+Publications

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/leixiaohua1020/article/details/12883747

文章标签: H.264 视频 质量评价 视频内容 分类

个人分类: 视频质量评价 所属专栏: 视频质量评价

此PDF由spygg生成,请尊重原作者版权!!!

我的邮箱:liushidc@163.com