PÓS-GRADUAÇÃO EM ENGENHARIA DE SOFTWARE

Planejamento e Realização de Teste de Software

Aula 07
Teste de Arquitetura de Sistemas

Prof. Rogério Messias

Pauta da aula

- Visão Geral de Arquitetura de Software
- > IEEE 1471/2000
- Cenário de Atributos de Qualidade
- Cenários Genéricos
- Cenários de 6 partes
- Cenários Específicos

Atividades de testes associadas às fases de desenvolvimento

Fase	Atividade
Engenharia de Requisitos	 Determinar as estratégias de testes Especificação de requisitos de testes Geração de dados de testes funcionais
Projeto	 Checar a consistência entre a especificação de requisitos e o projeto (design) Avaliar a arquitetura de software Testar o projeto de arquitetura Geração de dados de teste funcional e estrutural
Implementação	 Verificar a consistência entre o projeto (design) e a implementação Testar o programa
Manutenção	 Repetir os testes acima de acordo com o nível de retrabalho.

Fonte: VLIET, 2008

Afinal de contas o que é arquitetura?

- Segmento guiado por decisões técnicas e comerciais.
- Visa assegurar a satisfação dos:
 - Requisitos de Funcionais (Comportamento)
 - Requisitos de Não Funcionais (Atributos de Qualidade)
 - Metas de Negócio
- É direcionada tanto por aspectos operacionais, considerando requisitos funcionais e não funcionais, como por aspectos organizacionais, considerando o contexto da organização que desenvolve o sistema.

(KRUCHTEN, 2003)

Estrutura composta por elementos de software, propriedades visíveis e externas e o relacionamento entre estes elementos.

(BASS, 2003)

IEEE 1471/2000 - Prática recomendada para descrição de arquitetura de sistemas

Avaliação da arquitetura de software

(KRUCHTEN, 2003)

ISSO/IEC 9126 - Atributos de Qualidade

Cenários de Qualidade

- Um cenário deve descrever como o sistema satisfaz um determinado atributo de qualidade.
- Deve usar um modelo ou estrutura de linguagem que possibilite a sua avaliação:
 - Ao determinar um nível de excelência a ser atingido, torna-se possível avaliar o comportamento do sistema para verificar se ele atende ou não a especificação determinada.

Exemplo:

- Desempenho do sistema:
 - ➤ Em condições normais, os usuários realizam 1000 requisições de arquivo por minuto e essas requisições devem ser processadas em um tempo máximo de 1 minuto.

Modelo de Cenário 6 Partes

- Origem do Estímulo: entidade que gera o estímulo;
- Estímulo: condição que precisa ser considerada quando ocorre no sistema;
- Ambiente: condição em que o sistema se encontra quando ocorre o estímulo;
- Artefato: artefato que é estimulado (pode ser todo o sistema ou parte dele);
- Resposta: atividades empreendidas após o surgimento do estímulo;
- Medida de Resposta: forma de medir a resposta ao estímulo, de modo que a torne verificável.

Cenários Genéricos de Qualidade

	Origem	Estímulo	Artefato	Ambiente	Resposta	Medida
Disponibili- dade	Interna ou Externa	Falha	Recurso altamente requerido	Estado do sistema	Possíveis reações às falhas	Tempo associado à identificação da falha e reparo do sistema
Modificabili- dade	Interessado	Mudança de funcionalidade	Sistema, plataforma ou ambiente	Quando a alteração pode ser feita	Ponto da arquitetura que deve ser alterado	Tempo e custo da mudança
Desempenho	Interna ou Externa	Eventos esporádicos, periódicos ou estocásticos.	Sistema	Normal ou sobrecar- regado	Processamento do estímulo	Medidas de tempo associadas à duração do processamento
Segurança	Ser humano ou outro sistema	Tentativa de quebra de segurança	Serviços ou dados	Conectado ou desco- nectado a uma rede	Identificação e reações ao ataque	Tempo associado à identificação do ataque e ações corretivas
Testabilidade	Testadores	Marcos no ciclo de desenvolvimento do projeto	Parte do código ou todo o sistema	Atividade no ciclo de desenvolvimento do projeto	Acesso a estados e valores processados	Métricas obtidas a partir da verificação dos resultados de testes
Usabilidade	Usuário Final	Avaliação do uso e da eficiência do sistema	Sistema	Sistema em tempo de execução ou configuração	Encontro ou antecipação às necessidades do usuário	Medidas associadas à satisfação do usuário

Disponibilidade

- Preocupação com as possíveis falhas do sistema e suas consequências.
 - Quanto tempo o sistema demora para se recuperar em caso de erro?
 - Quanto tempo a sua empresa pode deixar de disponibilizar seus serviços?

Estímulos:

- > Omissão: Componente falha ao responder uma requisição;
- Crash: Componente repetidamente sofre falhas de omissão;
- Cronometragem: Componente responde, mas atrasado;
- Resposta: Componente responde, mas com um valor incorreto.

Respostas:

Existem muitas formas do sistema responder ao erro: Geração de log por erro, notificação de usuários do sistema, alterar o comportamento do sistema para que trabalhe em modo degradado, desligar sistemas externos.

Medida de Resposta:

Pode ser especificada uma porcentagem de disponibilidade ou um tempo para o reparo, número de vezes que o sistema pode se tornar indisponível, a duração que o sistema deve se manter disponível.

Disponibilidade - Exemplo

- Desejo:
 - > O dono do sistema espera que ele esteja disponível em 99% do tempo.
- Cenário de Disponibilidade:
 - Caso o sistema venha a apresentar erros de cálculos internos, ele deverá tornar-se indisponível e colocado novamente em produção em menos de 2 horas.
- Sua empresa deve "garante" que o sistema XPTO se mantém disponível 99% do tempo (24 horas X 7 dias).
 - 24 x 7 = 168 horas
 - 99% de 168 corresponde a aproximadamente 166,32 horas
 - Sua empresa garante que a manutenção do seu sistema ocorra em 1,68 horas?

Desempenho

- Preocupação com a duração de requisições feitas ao sistema
 - > Tem um alto nível de abstração, ou seja, trata do tempo de resposta do sistema e não de operações internas.
 - Qual o tempo de resposta da operação mais importante do seu sistema?
 - Quantas operações podem ser realizadas ao mesmo tempo, com uma duração aceitável?

Estímulo:

- Forma com que surgem os eventos:
 - Periódica: Existe uma previsibilidade quanto ao surgimento de requisições;
 - Estocástica: Eventos surgem de acordo com distribuição probabilística.

Medidas de Resposta:

- Duração de requisição;
- Prazo do processamento;
- Vazão (Número de operações por unidade de tempo)
- Instabilidade das requisições
- Número de operações não processadas

Desempenho - Exemplo

Desejo:

Espera-se que a velocidade do sistema seja o seu diferencial, de modo a contribuir com a melhora do número de vendas pela Internet.

Cenário de Desempenho:

Ao realizar uma pesquisa o sistema deverá responder em menos de 2 segundos. Diariamente são realizadas 10.000 requisições (das 08:00 às 17:00 horas).

Análise do cenário:

- Vazão = Número de requisições / intervalo de tempo
- Vazão = 10.000 requisições / 540 minutos.
- Logo Vazão = 18,5 requisições/minuto
- Considerando 1 único processador, alocado em 100% para processar todas as 18,5 requisições num período de 60 segundos:
 - Duração revisada = 60 segundos / 18,5 requisições
 - Duração revisada = 3,25 segundos

Testabilidade

- Demonstra a facilidade com que o sistema pode apresentar os seus resultados de testes.
 - Quanto tempo demora para executar os testes de regressão;
 - Qual a cobertura dos casos de testes executados.

Estímulo:

Inicio da fase de execução de testes, tanto para desenvolvimento de novo projetos, quanto para a manutenção de sistemas existentes.

Resposta:

- Percentual de declarações que foram executadas em um caso de testes;
- Medida para execução dos testes (Número de testes /Dia);
- Probabilidade de encontrar novos casos de testes

Testabilidade - Exemplo

Desejo:

Que o sistema seja testado no menor tempo possível

Cenário de Testabilidade

Ao realizar qualquer tipo de manutenção no sistema, devem ser realizados os seus testes de unidade, integração e sistema em até 2 horas, com uma cobertura de 80% do código fonte e 100% das funcionalidades mais importantes do sistema.

Medidas de Resposta:

- Percentual de funcionalidades testadas;
- Probabilidade de falhas;
- Tempo para execução dos testes;
- > Tempo para preparar o ambiente para execução dos testes.

Trabalho em grupo

- Projetar o cenário de qualidade considerado como mais importante do projeto usado como tema do trabalho em grupo.
 - Utilizar como referência:
 - Modelo de cenário de 6 partes, estruturando o cenário em Origem, Estímulo, Ambiente, Artefato, Resposta e Medida de Resposta;
 - Cenários genéricos de atributos de qualidade.
 - A medida de resposta deve ser verificável para garantir a execução de testes.

Trabalho em Grupo - Estrutura

- Entrega completa (29/09/2012)
 - Deve ser entregue documento impresso (Parte 1 + Parte 2)
 - Cada grupo deverá fazer uma apresentação de 15 minutos

Parte 2

- Melhoria Proposta (*)
 - Basear-se nos indicadores para determinar um plano de ação, para melhoria do processo de testes
 - O plano de ação deverá envolver a aplicação de alguma técnica de testes
 - Determinar quais seriam os resultados esperados a partir deste plano, baseando-se em indicadores
 - Determinar quais os riscos associados ao uso da técnica
- Conclusão
 - Análise crítica do plano de ação dentro da empresa, estimando a viabilidade do plano
 - Qual a interpretação do grupo para os resultados esperados
 - Comparar os resultados esperados com os resultados já publicados em outras literaturas
- (*) Deve fazer uso de pelo menos 2 artigos e 1 livro de teste de software

Referências

>

- BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. 2. ed. Boston: Addison-Wesley, 2003. 560 p. CD-ROM.
- IEEE. IEEE Std 1471: recommended practice for architectural description of software-intensive systems. New York, USA: The Institute of Electrical an Electronics Engineers, 2000.
- KLEIN, M.; KAZMAN, R. Attribute-Based Architectural Styles. Technical Report. Pittsburgh, Carnegie Mellon University, 1999. 82 p. Disponível em http://www.sei.cmu.edu/reports/99tr022.pdf. Acesso em: 20 mai. 2010.
- **>** KRUCHTEN, P. **The Rational Unified Process: An Introduction**. 3 ed. Boston: Addison-Wesley Professional, 2003. 336 p. CD-ROM.