Central bank communication and the yield curve

Matteo Leombroni, Andrea Vedolin, Gyuri Venter, Paul Whelan (JFE,2021.5)

石宛青

(武汉大学金融系)

2024年9月25日

Motivation

- The financial turmoil of 2007–2008 and the subsequent European debt crisis
- yield spread between peripheral(Italy,Spain) & core(Germany,France) country

• European debt crisis leading to a huge yields diverged on communication days.

Question

• How Does Central Bank Communication Affect Long-term Interest Rates?

- ECB's regular communications raised credit risk premia, affect pattern in Fig. 1
- ECB president's speeches outside regular announcements reduced the peripheral-core spread and yield spread alongside unconventional policies.

Introduction

focus: 央行沟诵背后的意图, 是否合意实现?

- · simple: event study—price vol(Kohn & Sack, 2004)
- · direction: tightening—short rate1, easing—rate1 (Ehrmann & Fratzscher, 2007)

subjective, ex post measures, maybe not actual perception→

- · Markets should solely react to the unexpected component. Kuttner (2001) Federal Funds Rate
- · Gurkaynak et al. (2005) used PCA 1+ PCA2(orthogonal to rate), "target" by "path" factor,
- ·this paper: swap rate PCA + orthogonal to stock futures. "forward guidance" & "risk premium" shock

00000

Contribution

- contributes to literature on monetary policy affect assets and market variable.
 - prior: US Federal Reserve's monetary policy on long-term real, nominal interest rates, equity returns, volatility, mortgage issuance(Hanson et al., 2020...)
 - extend:
 - highlight influence beyond the usual: affects credit risk premia, not term premia.
 - \bullet eurozone setting: study central bank communication separately from policy action
- contributes to literature on ECB's action during the European debt crisis.
 - prior: unconventional policies eased financial conditions in peripheral countries
 - extend: focus on the different dimensions of central bank communication.

Contribution

- contributes to literature on signaling channel of monetary policy
 - prior: Policymakers' actions reveal private knowledge to market, affecting economy.(Campbell et al.,2016)
 - extend:
 - extracting two distinct policy shocks:standard interest rate, credit risk shocks.
 - credit risk shocks could capture macroeconomic and unconventional policies signal

Introduction

Design-Theoretical framework

- The central bank (the ECB) has two roles: set the target short rate and communicates to market participants.
- central bank communication provides information about:
 - IR: future short rates (forward guidance)
 - U: additional policies signal (eg: implementation of asset purchase programs).
- Investors adjust economic outlook based on central bank communications:
 - Core vs. peripheral: Peripheral have higher credit risk and greater risk premiums
 - Bond yield: future expected risk-free rate + risk premium.

Design-Theoretical framework

- Impact of 2 Types of Shocks on Sovereign Bond Yields:
 - IR shock(forward guidance):
 - Expectation channel:low future short rate signal, bond yield decrease in all country
 - Risk premium channel:longer low rate lead concern about future economy
 - U shock (negative news about ECB policies) <0:
 - Risk Premium Channel:increase the perceived probability of the credit event
- Hypothesis:
 - 1 In normal times, IR shocks positively impact all yields; in crisis times, they affect core yields positively and peripheral yields less even negatively.
 - 2 In normal times, U shocks have little effect on yields; in crisis times, they negatively impact all yields, with a larger effect on peripheral yields.

Design-shock measure

• extracts monetary policy shocks:ECB conducts the target rate announcement and the press conference at different points in time. 图 1

- IR shock: one month and ten years swap rates——liq,future rate
 - 1 161 (number of announcements) Œ 21 (maturities)
 - **2** PCA1:86%, PCA2:93%
 - 3 regress zero-coupon rate changes, bootstrapped from swap rate changes-PCA1

Design-shock measure

- U shock: $EQ_t = a + b \cdot IR_t + \epsilon_t$, $U_t \equiv EQ_t \hat{a} \hat{b}IR_t$
 - equity response, EQ:most liquid EuroStoxx 50 futures contract

Design-shock measure

- eg 1: 2011.8.4, ECB: keep interest rates on hold after previous hike in July
 IR = -11bps
- eg 2: 2012.8.2, after "whatever it takes" speech, ECB: undertake outright open market operations adequate to reach objective
 - U = -247 bps

Design:Central bank communication and sovereign yields

• Core versus peripheral yields:

$$\Delta y_{i,t}^{ au} = extstyle{a}_{i}^{ au} + extstyle{b}_{i}^{ au} extstyle{IR}_{t} + extstyle{c}_{i}^{ au} extstyle{U}_{t} + arepsilon_{i,t}^{ au}$$

- $\Delta y_{i,t}^{\tau}$ are daily zero-coupon yield changes
- i = c, p (core and periphery), with maturities $\tau = 3, ..., 120$ months
- Credit risk channel:

$$\Delta CDS_{i,t} = a_i + b_i IR_t + c_i U_t + \varepsilon_{i,t}$$

• $\Delta CDS_{i,t}$ change in the five-year CDS rate of country i.

Data

- Announcement dates: 2001.1-2014.12, >2015 unconventional policy measures.
 - Monthly, 2001(22),2008(13 meetings)=179announcement days
 - -18 not followed by a press conference or were unscheduled=161
 - 18 refinancing rate was cut, 11 days raised, 132 meetings no change.
- Sovereign bond yields:
 - daily zero-coupon bond yields, 3m-10y-Bloomberg
 - Germany, France, Italy, Spain, GDP76%
- Interest Rates Swaps:
 - overnight index swap rates: 1 12 months and swap rates
 - written on the 6-month Euribor, 2-10 years.-Reuters Datascope
- Equity: high-frequency data on EuroStoxx 50 futures-Reuters
- Credit risk:credit default swaps-Markit

	Mean	Std	Min	Max	Skew	Kurt	AR(1)						
	Full sample												
IR U	0,20 0,00	3.19 13.43 72.73 247.32		14.34 180.24	0,11 0,31	8.01 4.20	0.24 0.09						
	Precrisis												
IR U	0.19 2.76	3,29 64,71	13,43 187,37	14.34 173.79	0.03 0.04	7.78 4.15	0.26 0.15						
	Crisis												
IR U	0,20 4,53	3,03 84.64	11.77 247.32	10.79 180.24	0.41 0.42	8.35 3.70	0,20 0.02						

 $\bullet\,$ risk premium shocks become more negative as well as more volatile over time.

$$\Delta y_{i,t}^{ au} = a_i^{ au} + b_i^{ au} I R_t + c_i^{ au} U_t + arepsilon_{i,t}^{ au}$$

- pre crisis: IR dominant, no delta spread, 8 bp,2 year
- crisis: core :same , peripheral:IR small, -U shock increase yield spread

• ΔR^2 is the change in the adjusted R2 when adding U

	3	6	12	24	36	48	60	72	84	96	108	120	
						Co	re						
IR	0.64	0.99	1.23	1.52	1.52	1.47	1.42	1.31	1.19	1.08	0.99	0.94	
	(5.90)	(6.14)	(7.09)	(7.55)	(8.61)	(8.18)	(7.66)	(7.39)	(7.16)	(6.75)	(6.43)	(6.18	
$U(\times 10^{-2})$	0.87	0.34	0.33	0.18	0.53	0.53	0.67	0.88	1.03	1.22	1.33	1.27	
	(2.04)	(0.89)	(1.04)	(0.35)	(0.87)	(0.71)	(0.78)	(1.05)	(1.24)	(1.50)	(1.63)	(1.58	
\overline{R}^2	17.40	27.16	63.07	60.08	59.00	54.40	48.09	46.95	44.63	41.91	38.74	36.30	
ΔR^2	0.09	2.18	0.87	1.26	0.82	0.97	0.88	0.10	0.76	2.17	3.23	2.93	
	Periphery												
IR	0.60	0.66	0.74	-0.21	-0.25	-0.29	-0.31	-0.31	-0.35	-0.33	-0.34	-0.34	
	(2.09)	(1.54)	(1.83)	(0.50)	(0.59)	(0.75)	(0.82)	(0.87)	(1.06)	(1.04)	(1.08)	(1.08	
$U(\times 10^{-2})$	0.66	0.83	2.45	7.50	8.77	9.04	9.27	8.90	9.53	9.15	9.43	9.17	
	(0.88)	(0.67)	(1.74)	(3.42)	(4.08)	(4.06)	(4.08)	(4.02)	(3.65)	(3.54)	(3.35)	(3.38	
\overline{R}^2	15.93	12.48	5.60	16.43	20.92	23.65	25.14	25.49	29.25	28.91	30.22	29.79	
ΔR^2	1.59	1.79	0.31	16.41	20.91	23.61	25.09	25.41	28.85	28.30	29.41	28.90	
	Periphery-core spread												
IR	0.04	0.33	0.49	1.74	1.77	1.77	1.73	1.62	1.55	1.41	1.34	1.27	
	(0.18)	(0.64)	(1.20)	(4.27)	(4.46)	(4.36)	(4.14)	(3.88)	(3.88)	(3.73)	(3.55)	(3.47	
$U(\times 10^{-2})$	0.21	0.49	2.78	7.68	9.29	9.57	9.95	9.78	10.55	10.37	10.76	10.44	
	(0.32)	(0.41)	(2.09)	(3.85)	(4.64)	(4.29)	(4.08)	(4.02)	(3.54)	(3.47)	(3.28)	(3.30	
\overline{R}^2	0.85	0.59	2.18	24.67	29.21	31.74	33.11	34.12	37.30	37.50	38.18	37.44	
ΔR^2	3.23	3.09	0.84	15.12	20.59	22.90	24.82	26.30	30.31	31.28	32.81	32.29	

- -11bp IR shock increases 2Y (10Y) yield spread by 19bps (14bps),
- 247bp U shock increases 2Y (10Y) yield spread 19bps (26bps).

• rolling regression is set to 50 months:

• Economic significance(10Y core-periphery yield spread):

• 2013,total 213bps,the spread due to communication represented around 1/4

• whether communication drives yield spread through credit risk channel:

$$\Delta CDS_{i,t} = a_i + b_i IR_t + c_i U_t + \varepsilon_{i,t}$$

	Germany	France	Italy	Spain	Core	Periphery	P-C
IR	-0.28	-0.50	-1.55	-1.48	-0.39	-1.52	-1.12
	(-2.32)	(-3.85)	(-4.42)	(-3.69)	(-3.73)	(-4.16)	(-3.61)
$U(\times 10^{-2})$	-1.11	-2.59	-10.72	-11.23	-1.85	-10.97	-9.12
	(-2.63)	(-3.19)	(-4.20)	(-3.86)	(-3.16)	(-4.04)	(-3.90)
\overline{R}^2	16.06	28.36	36.01	36.48	25.91	36.87	36.29
ΔR^2	8.21	20.51	28.16	28.62	18.05	29.01	28.43

- communication drive belief about future interest rates & perceived credit risk.
- U shocks -main drivers of credit risk premia-can be interpreted as sovereign credit risk premium shocks of ECB communication.

Results: ECB president speeches

• "whatever it takes" on 2012.7.26

Results: ECB president speeches

• IR shock:2.63bp, U shock:261bp——decrease 9bp+15bp = half of total 40bps

Results: Quantitative easing and reconnecting monetary policy

Altavillaetal.(2019):
$$\Delta y_{i,t}^{\tau} = a_i^{\tau} + b_i^{\tau} I R_t + c_i^{\tau} U_t + d_i^{\tau} Q E_t + \varepsilon_{i,t}^{\tau}$$

	3	6	12	24	36	48	60	72	84	96	108	120
	Core											
IR	0.35	0.54	0.74	1.38	1.72	2.06	2.31	2.49	2.68	2.81	2.90	2.92
	(2.73)	(4.28)	(4.59)	(8.93)	(11.90)	(13.89)	(16.27)	(17.23)	(18.17)	(15.49)	(13.70)	(12.58)
$U(\times 10^{-2})$	-1.21	-1.53	-1.96	-2.59	-2.73	-2.82	-2.69	-2.56	-2.36	-2.11	-1.96	-1.78
	(-3.06)	(-4.61)	(-4.81)	(-9.23)	(-8.40)	(-7.32)	(-6.36)	(-5.98)	(-5.03)	(-4.18)	(-3.47)	(-3.11)
QE	-0.36	-0.39	-0.35	-0.47	-0.37	-0.24	-0.05	0.19	0.45	0.69	0.93	1.00
_	(-3.10)	(-3.46)	(-2.86)	(-2.55)	(-1.65)	(-0.92)	(-0.16)	(0.61)	(1.39)	(1.84)	(2.16)	(2.23)
\overline{R}^2	46.94	65.01	64.51	70.74	71.80	73.50	74.52	75.79	77.60	76.10	74.11	73.09
ΔR^2	7.65	7.06	2.57	1.91	0.29	-0.55	-0.93	-0.70	0.18	1.27	2.63	3.07
	Periphery											
IR	0.36	0.43	0.66	1.51	1.98	2.39	2.63	2.77	2.91	3.09	3.31	3.30
	(4.34)	(4.58)	(5.08)	(7.08)	(7.98)	(7.85)	(7.47)	(7.55)	(7.38)	(7.58)	(7.82)	(7.36)
$U(\times 10^{-2})$	-0.08	-0.35	-0.98	-1.62	-1.98	-2.28	-2.58	-2.54	-2.34	-2.64	-2.89	-2.70
	(-0.59)	(-1.92)	(-1.81)	(-2.58)	(-2.76)	(-2.99)	(-3.04)	(-2.86)	(-2.49)	(-2.70)	(-2.87)	(-2.60)
QE	0.10	0.08	0.27	0.24	0.18	0.32	0.44	0.64	0.76	0.85	0.97	0.99
-2	(0.94)	(0.46)	(1.11)	(0.84)	(0.55)	(0.81)	(0.99)	(1.54)	(1.71)	(2.03)	(2.40)	(2.25)
\overline{R}^2	41.25	49.70	33.99	62.72	64.17	65.13	63.42	62.76	61.75	62.50	64.13	61.75
ΔR^2	-0.76	-1.22	-0.47	-0.77	-1.11	-0.80	-0.62	0.01	0.40	0.66	1.06	1.03
	Periphery-core spread											
IR	0.01	-0.11	-0.08	0.14	0.26	0.33	0.32	0.28	0.23	0.27	0.41	0.38
	(0.10)	(-0.75)	(-0.46)	(0.65)	(0.96)	(0.97)	(0.80)	(0.66)	(0.54)	(0.60)	(0.86)	(0.74)
$U(\times 10^{-2})$	1.13	1.18	0.99	0.97	0.74	0.54	0.11	0.02	0.02	-0.53	-0.93	-0.92
	(2.76)	(2.61)	(1.26)	(1.55)	(1.17)	(0.88)	(0.16)	(0.02)	(0.03)	(-0.66)	(-1.14)	(-1.07)
QE	0.46	0.47	0.61	0.71	0.55	0.57	0.49	0.45	0.31	0.16	0.04	-0.02
	(3.34)	(2.51)	(2.62)	(2.05)	(1.27)	(1.10)	(0.87)	(0.87)	(0.67)	(0.37)	(0.08)	(-0.03)
\overline{R}^2	39.67	34.39	11.62	27.71	21.39	24.44	20.20	19.91	19.13	18.82	19.07	14.94
ΔR^2	17.78	12.58	8.17	9.92	2.72	1.81	-0.06	-0.66	-1.84	-2.70	-2.98	-3.15

Introduction

Conclusion

- 2 channels of central bank communication: interest rates and credit risk premia ,using interest rates and equity index during narrow window
- precrisis: IR shock uniform effect on core and peripheral; crisis:credit risk premia drive core-peripheral yield spread
- president speech & unconventional policy announcements managed to be effective

中国市场的债券-央行沟通研究

- 提取政策意图,评估有效性:
 - 1 短期利率:央行沟通(松、紧)对短期利率走势有显著合意影响(冀志斌和宋清华,2012;吴国培和潘再见,2014)
 - ② 预期/未预期的美联储政策影响资产价格,包括国债,中长期更显著(姜富伟等,2019)
 - 3 未预期货币政策信息影响资产价格,包括国债,中长期更显著(董青马等,2023)
 - ❹ 固浮利差分解预期/未预期货币政策,影响中长期企业信用利差(郭晔,2016)
 - 5 未来:
 - 具体的渠道,类似信用风险溢价、流动性风险溢价,可对比国债、企业债、公司债;
 - 中国央行沟通与全球债券市场(特别美联储政策沟通)之间的联动效应
- 具体沟通内容的其他方面:
 - 沟通语调、文本相似度和文本复杂度对国债收益与波动的影响(张一帆等, 2022)
 - 未来:
 - 其他文本内容如内容明确性;风险提示语言的影响:特别提到的经济金融风险(如全球经济放缓、通胀风险、金融系统性风险)如何影响债券市场;
 - 央行的绿色政策相关沟通是否影响绿债市场

 $\substack{ \text{Conclusion} \\ \text{00} \bullet }$

Thanks!