The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let $\varphi \colon A \to B$ be a morphism of local noetherian rings making B a finite type A-module. Show that φ is a local morphism.

Exercise 2. Let $\rho: R \to S$ be a flat morphism and M a finitely generated R-module. Show that the map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ maps $\operatorname{Ass}_S(S \otimes_R M)$ into $\operatorname{Ass}_R(M)$.

Exercise 3. Assume that dim $R \geq 2$. Show that Spec R is infinite.

Exercise 4. (i) Let \mathfrak{p} be a prime of R. Show that the ideal $\mathfrak{p}R[t]$ of R[t] is prime.

- (ii) Show that $\dim R[t] \ge 1 + \dim R$
- (iii) Show that dim $R[t_1, \dots, t_n] = n + \dim R$.

Exercise 5. Let $\mathfrak{p} \in \operatorname{Spec}(R)$ and consider the *n*-th symbolic power

$$\mathfrak{p}^{[n]} = \{ u \in R \mid su \in \mathfrak{p}^n \text{ for some } s \in R - \mathfrak{p} \}.$$

- (i) Show that $\operatorname{Ass}(R/\mathfrak{p}^n)$ may differ from $\{\mathfrak{p}\}$ by considering the case R = k[x,y]/(xy) with k a field, and $\mathfrak{p} = xR$.
- (ii) Show that $\operatorname{Ass}(R/\mathfrak{p}^{[n]}) = \{\mathfrak{p}\}$, and that $\mathfrak{p}^{[n]}$ is minimal among the ideals I containing \mathfrak{p}^n and satisfying $\operatorname{Ass}(R/I) = \{\mathfrak{p}\}$.

Exercise 6. (i) Show that every prime of R has finite height.

(ii) Let M be a possibly non-finitely generated R-module. Assume that $M \neq 0$. Show that $\operatorname{Supp}(M)$ admits at least one minimal element.