Définition / Contexte général de l'étude

Cet article propose une **revue des technologies IoT** utilisées pour la **gestion intelligente de l'énergie** dans les villes intelligentes. Il met en lumière comment les **capteurs connectés** et l'**analyse intelligente** (machine learning) permettent de **surveiller**, **contrôler et optimiser** la consommation énergétique des bâtiments, tout en favorisant des systèmes **ouverts et adaptables**.

☐ 1. Problématique

La consommation énergétique des bâtiments dans les villes intelligentes augmente rapidement, ce qui provoque :

- Une pression croissante sur les ressources énergétiques.
- Un besoin urgent de solutions efficaces et durables pour la gestion énergétique.
- Des **limitations importantes** des systèmes traditionnels, qui ne permettent pas une supervision intelligente ni un contrôle en temps réel.
- → D'où la nécessité de concevoir des systèmes intelligents et autonomes, capables de surveiller et optimiser l'énergie dans les bâtiments.

☐ 2. Approche proposée par les auteurs

Les auteurs proposent une **revue systématique** des architectures basées sur l'**Internet des Objets** (**IoT**) pour la gestion énergétique dans les villes intelligentes.

Ils analysent en particulier :

- L'utilisation des **capteurs IoT** pour collecter des données en temps réel (température, lumière, occupation, etc.).
- L'intégration de **techniques d'analyse intelligente** (machine learning) pour surveiller, contrôler et optimiser la consommation d'énergie.
- L'importance d'architectures flexibles pouvant intégrer des applications tierces (développées par d'autres acteurs).

Q L'étude insiste sur le rôle clé des **systèmes intelligents**, capables de **transformer les données brutes en décisions énergétiques optimales**.

3. Technologies utilisées ou abordées

Domaine Technologies ou concepts utilisés IoT (Internet of Capteurs intelligents, réseaux M2M, collecte de données en temps réel

Domaine Technologies ou concepts utilisés

Analyse intelligente	Méthodes de Machine Learning pour l'optimisation énergétique
Stockage de données	Plateformes distribuées pour centraliser les flux de données
Interopérabilité	Systèmes ouverts supportant des API et applications tierces

★ Les auteurs **ne développent pas de système complet**, mais comparent des solutions existantes pour **identifier les meilleures pratiques**.

3 4. Perspectives de recherche (futures directions)

Les auteurs proposent plusieurs pistes pour de futures recherches :

- **Déploiement massif de capteurs IoT sans fil** dans les bâtiments intelligents, pour améliorer la couverture et la précision.
- **Développement de modules logiciels intelligents et modulaires**, adaptés à différents types de bâtiments.
- Études d'évaluation sur :
 - o L'impact environnemental réel de ces technologies.
 - o Leur **efficacité énergétique** réelle.
 - o Leur scalabilité dans des environnements urbains variés.
- **Intégration de systèmes prédictifs** à base de **deep learning** pour anticiper la consommation énergétique future.

∞ Source de l'article

- **Titre complet**: Intelligent Energy Management with IoT Framework in Smart Cities Using Intelligent Analysis: An Application of Machine Learning Methods for Complex Networks and Systems
- **Auteurs**: Maryam Nikpour, Parisa Behvand Yousefi, Hadi Jafarzadeh, Kasra Danesh, Roya Shomali, Saeed Asadi, Ahmad Gholizadeh Lonbar, Mohsen Ahmadi
- **Publié initialement**: 8 juin 2023
- Version actuelle : v4 (3 décembre 2024)
- Plateforme : arXiv.org
- **DOI**: <u>https://doi.org/10.48550/arXiv.2306.05567</u>
- **Citer comme**: arXiv:2306.05567v4 [cs.LG]