Bài 3: ĐỊNH THỨC. ỨNG DỤNG ĐỊNH THỨC

1. a) (**1.t287**) Cho ma trận $A \, \tilde{co} \, 4 \times 4 \, \tilde{co} \, \det A = \frac{1}{2}$, hãy tìm $\det(2A)$, $\det(-A)$, $\det(A^2)$, và $\det(A^{-1})$.

Page | 0 b) (2.t287) Cho ma trận A cỡ 3x3 có det A = -1, hãy tìm det $\left(\frac{1}{2}A\right)$, det(-A), det (A^2) , det (A^{-1}) .

Giải:

a)
$$\det(2A) = 2^4 \det A = 8$$
,

$$\det(-A) = (-1)^4 \det A = \frac{1}{2}$$
,

$$\det(A^2) = \frac{1}{4}, \text{ và}$$

$$\det(A^{-1})=2.$$

b)
$$\det\left(\frac{1}{2}A\right) = \left(\frac{1}{2}\right)^3 \det A = -\frac{1}{8},$$

$$\det(-A) = (-1)^3 \det A = 1,$$

$$\det(A^2) = 1$$
, $\det(A^{-1}) = \frac{1}{\det A} - 1$

2. (3.t287) Các khẳng định sau đúng hay sai? Hãy giải thích nếu đúng và nêu phản ví dụ nếu sai:

a)
$$\det(I + A) = 1 + \det A$$
.

b)
$$det(ABC) = det A det B det C$$
.

c)
$$det(4A) = 4 det A$$
.

d)
$$\det(AB - BA) = 0$$
.

Giải

a) Sai Ví dụ
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow \det A = -2$$
, $A + I = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \rightarrow \det(I + A) = 1$ nên det $A \neq \det(I + A)$

b) Sai $\det(ABC) = \det A \det B \det C$ chỉ đúng khi A,B,C là các ma trận vuông cùng cấp).

Ví dụ $A_{2x3}B_{3x2}C_{2x2}=D_{2x2}$, nhưng không tồn tại det A, det B .

c)
$$det(4A) = 4 det A$$
 sai

d) sai Ví dụ lấy
$$A_{2x3}B_{3x2}=C_{2x2}; B_{3x2}A_{2x3}=D_{3x3}$$
 nên $AB-BA$ không tồn tại.

3 Biết rằng
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix} = 10$$
, tính

a)
$$\begin{vmatrix} 2a & 2b & 2c \\ d & e & f \\ g & h & k \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix} = 20$$

b)
$$\begin{vmatrix} a+d & b+e & c+f \\ d & e & f \\ g & h & k \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix} + \begin{vmatrix} d & e & f \\ d & e & f \\ g & h & k \end{vmatrix} = 10$$

c)
$$\begin{vmatrix} 2a+d & 2b+e & 2c+f \\ d & e & f \\ g & h & k \end{vmatrix} = \begin{vmatrix} 2a & 2b & 2c \\ d & e & f \\ g & h & k \end{vmatrix} + \begin{vmatrix} d & e & f \\ d & e & f \\ g & h & k \end{vmatrix} = 20$$

d)
$$\begin{vmatrix} a & b & c+3b \\ d & e & f+3e \\ g & h & k+3h \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix} + \begin{vmatrix} a & b & 3b \\ d & e & 3e \\ g & h & 3h \end{vmatrix} = 10$$

4 Tính các định thức sau theo phương pháp phần phụ đại số:

a)
$$\begin{vmatrix} 0 & 0 & 1 \\ 0 & 2 & 5 \\ 4 & 0 & -4 \end{vmatrix} = a_{13}C_{13} = -8$$

b)
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -3 \\ 1 & 3 & 2 \end{vmatrix} = a_{11}C_{11} = 6$$

c)
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 0 \end{vmatrix} = a_{31}C_{31} = 7.(12-15) = -21$$

5. Tìm định thức của U, U^{-1} và U^2 :

a)
$$U = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \Rightarrow \det U = ad; \det U^{-1} = \frac{1}{ad} (ad \neq 0); \det U^2 = (ad)^2$$

b)
$$U = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix} \Rightarrow \det U = 6; \det U^{-1} = \frac{1}{6}; \det U^2 = 36$$

7. Sử dụng công thức phần phụ đại số, tìm ma trận nghịch đảo của ma trận $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix}$.

Giải $\det A = -4$

$$C_{11} = 0; C_{12} = 4; C_{13} = -4;$$

$$C_{21} = 4; C_{22} = -8; C_{23} = 4;$$

$$C_{31} = -3; C_{32} = 4; C_{33} = -2$$

nên
$$C = \begin{bmatrix} 0 & 4 & -4 \\ 4 & -8 & 4 \\ -3 & 4 & 2 \end{bmatrix}$$
 Áp dụng công thức $A^{-1} = \frac{1}{\det A} C^{T} = \begin{bmatrix} 0 & -1 & 3/4 \\ -1 & 2 & -1 \\ 1 & -1 & 1/2 \end{bmatrix}$

8. (13.t303) Tìm ma trận nghịch đảo của các ma trận sau:

a)
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 b) $B = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ c) $C = \begin{bmatrix} 2 & 5 & 1 \\ 1 & 0 & 2 \\ 1 & 3 & 4 \end{bmatrix}$.

b)
$$B = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

c)
$$C = \begin{bmatrix} 2 & 5 & 1 \\ 1 & 0 & 2 \\ 1 & 3 & 4 \end{bmatrix}$$
.

Giải:

a)
$$\det A = 4$$

$$C_{11} = 3; C_{12} = 2; C_{13} = 1;$$

$$C_{21} = 2; C_{22} = 4; C_{23} = 2;$$

$$C_{31} = 1; C_{32} = 2; C_{33} = 3$$

$$C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} \text{ Áp dụng công thức } A^{-1} = \frac{1}{\det A} C^{T} = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

b)
$$B = A^{-1}$$
 nên $B^{-1} = A$

c)
$$\det C = -19$$

$$C_{11} = -6; C_{12} = -2; C_{13} = 3;$$

$$C_{21} = -17; C_{22} = 7; C_{23} = 1;$$

$$C_{31} = 10; C_{32} = -3; C_{33} = -5$$

$$C = \begin{bmatrix} -6 & -2 & 3 \\ -17 & 7 & 1 \\ 10 & -3 & -5 \end{bmatrix} \text{ Áp dụng công thức } A^{-1} = \frac{1}{\det A} C^{T} = \frac{1}{-19} \begin{bmatrix} -6 & -17 & 10 \\ -2 & 7 & -3 \\ 3 & 1 & -5 \end{bmatrix}$$