divergence tests of goodness of fit

testing uniform distribution of random variable X with n observations on r_{X} outcomes

p= model based on empirical distribution p(x)=n(x)/n (the relative frequencies) with $d(p)=r_X-1$ q=X is uniformly distributed on r_X outcomes with d(q)=0

Mog likelihood ratio test statistic

$$\chi^{2}(r_{X} - 1) = 2nD(p, q)$$

= $2n[\log r_{X} - H(X)]$

where H(X) is the empirical entropy of X

uniformity is rejected if

$$\chi^2(r_X - 1) \ge r_X - 1 + \sqrt{8(r_X - 1)}$$

or if H(X) deviates from its maximum values $\log(r_X)$ by more than $[r_X - 1 + \sqrt{8(r_X - 1)}]/2n$

divergence tests of goodness of fit

testing pairwise independence of random variable X and Y with $r_{\!X}$ and $r_{\!Y}$ outcomes

 $p = \text{model based on empirical distribution } p(x, y) \text{ with } d(p) = r_X r_Y - 1$ $q = X \perp Y \text{ such that } p(x) \cdot p(y) \text{ with } d(q) = (r_X - 1) + (r_Y - 1)$

