数学の分野ごとのまとめ

あなたの名前

February 11, 2025

Contents

- 1 前提知識 (Preliminary Knowledge)
- 1.1 定義 (Definitions)

定義 1.1. 数列 a_n が収束するとは、 $\lim_{n\to\infty}a_n=L$ となることです。

1.2 定理 (Theorems)

定理 1.1. $\lim_{n\to\infty}a_n=L$ が成り立つならば、数列 a_n は収束すると言います。

2 定理と証明 (Theorems and Proofs)

定理 2.1 (例: 関数の極限). f(x) が x_0 で連続ならば、 $\lim_{x\to x_0} f(x) = f(x_0)$ 。 *Proof.* 証明の詳細。

- 3 例 (Examples)
- 3.1 例1:数列の収束

数列 $a_n = \frac{1}{n}$ は 0 に収束する。

3.2 例 2: 関数の極限

関数 $f(x)=x^2$ は $x_0=2$ で連続であり、 $\lim_{x\to 2}f(x)=4$ 。

4 補題 (Lemmas)

補題 4.1. 任意の実数列 a_n が上に有界ならば、部分列の中で収束するものが存在する。

Proof. 補題の証明。

5 問題 (Problems)

問題 5.1. 数列 $a_n = \frac{2n+1}{n^2+1}$ の極限を求めよ。

解法 5.1. 解答の詳細。

6 文献 (References)

References

- [1] 書籍名, 著者, 出版年.
- [2] 論文名, 著者, 雑誌名, 年.

A 付録 (Appendix)

ここには計算の詳細や補足説明を追加します。