Lista de exercícios extraída do livro Algoritmos Estruturados -Autor: Harry Farrer e outros - Editora: LTC 3a Ed., Pág 75-86 Obs: em todos os exercícios, considere unidade de entrada como sinônimo de teclado e unidade de saída, ou impressora, como sinônimo de vídeo (console).

- **1.12.1.** Fazer um algoritmo que:
- Leia um número indeterminado de linhas contendo cada uma a idade de um indivíduo. A última linha que não entrará nos cálculos, contém o valor da idade igual a zero. Calcule e escreva a idade média deste grupo de indivíduos.
- **1.12.2.** Tem-se um conjunto de dados contendo a altura e o sexo (masculino, feminino) de 50 pessoas. Fazer um algoritmo que calcule e escreva:
- a maior e a menor altura do grupo:
- a média de altura das mulheres;
- o número de homens;
- 1.12.3. A conversão de graus Farenheit para centígrados é obtida por

$$C = \underline{5} \times (F - 32)$$

Fazer um algoritmo que calcule e escreva uma tabela de centígrados em função de graus Farenheit, que variam de 50 a 150 de 1 em 1.

1.12.4. Um comerciante deseja fazer o levantamento do lucro das mercadorias que ele comercializa. Para isto, mandou digitar uma linha para cada mercadoria com nome, preço de compra e preço de venda das mesmas. Fazer um algoritmo que:determine e escreva quantas mercadorias proporcionam:

determine e escreva o valor total de compra e de venda de todas as mercadorias, assim como o lucro total.

Observação: o aluno deve adotar um flag.

- **1.12.5.** Supondo que a população de um país A seja da ordem de 90.000.000 de habitantes com uma taxa anual de crescimento de 3% e que a população de um país B seja, aproximadamente, de 20.000.000 de habitantes com uma taxa anual de crescimento de 1,5%, fazer um algoritmo que calcule e escreva o número de anos necessários para que a população do país A ultrapasse ou iguale a população do país B, mantidas essas taxas de crescimento.
- **1.12.6.** Um determinado material radioativo perde metade de sua massa a cada 50 segundos. Dada a massa inicial, em gramas, fazer um algoritmo que determine o tempo necessário para que essa massa se torne menor do que 0,5 grama. Escreva a massa inicial, a massa final e o tempo calculado em horas, minutos e segundos.
- **1.12.7.** Deseja-se fazer um levantamento a respeito da ausência de alunos à primeira prova de Programação de Computadores para cada uma das 14 turmas existentes. Para cada turma, é fornecido um conjunto de valores, sendo que os dois primeiros valores do conjunto corresponde a identificação da turma (A, ou B, ou C,...) e ao número de alunos matriculados, e os demais valores deste conjunto contêm o número de matrícula do aluno e a letra A ou P para o caso de o aluno estar ausente ou presente, respectivamente. Fazer um algoritmo que:
- para cada turma, calcule a porcentagem de ausência e escreva a identificação da turma e a porcentagem calculada;
- determine e escreva quantas turmas tiveram porcentagem de ausência superior a 5%.

- **1.12.8.** Uma certa firma fez uma pesquisa de mercado para saber se as pessoas gostaram ou não de um novo produto lançado no mercado. Para isso, forneceu o sexo do entrevistado e sua resposta (sim ou não). Sabendo-se que foram entrevistadas 2.000 pessoas, fazer um algoritmo que calcule e escreva:
- o número de pessoas que responderam sim;
- o número de pessoas que responderam não;
- a porcentagem de pessoas do sexo feminino que responderam sim;
- a porcentagem de pessoas do sexo masculino que responderam não;
- **1.12.9.** Foi feita uma pesquisa para determinar o índice de mortalidade infantil em um certo período. Fazer um algoritmo que:
- leia inicialmente o número de crianças nascidas no período;
- leia, em seguida um número indeterminado de linhas, contendo, cada uma, o sexo de uma criança morta (masculino, feminino) e o número de meses de vida da criança. A última linha, que não entrará nos cálculos, contém no lugar do sexo a palavra "vazio";
- determine e imprima:
- a) a porcentagem de crianças mortas no período;
- b) a porcentagem de crianças do sexo masculino mortas no período;
- c) a porcentagem de crianças que viveram 24 meses ou menos no período.
- **1.12.10.** Foi feita uma pesquisa de audiência de canal de TV em várias casas de uma certa cidade, num determinado dia. Para cada casa visitada, é fornecido o número do canal (4,5,7,12) e o número de pessoas que o estavam assistindo naquela casa. Se a televisão estivesse desligada, nada era anotado, ou seja, esta casa não entrava na pesquisa. Fazer um algoritmo que:
- leia um número indeterminado de dados, sendo que o "FLAG" corresponde ao número do canal igual a zero;
- calcule a porcentagem de audiência para cada emissora;
- escreva o número do canal e a sua respectiva porcentagem.
- **1.12.11.** Uma universidade deseja fazer um levantamento a respeito do seu concurso vestibular. Para cada curso, é fornecido o seguinte conjunto de valores:
- o código do curso;
- o número de vagas;
- número de candidatos do sexo masculino:
- número de candidatos do sexo feminino;
- O último conjunto, para indicar fim de dados, contém o código do curso igual a zero. Fazer um algoritmo que:
- calcule escreva, para cada curso, o número de candidatos por vaga e a porcentagem de candidatos do sexo feminino (escreva também o código correspondente do curso);
- determine o maior número de candidatos por vaga e escreva esse número juntamente com o código do curso correspondente (supor que não haja empate);
- calcule e escreva o total de candidatos;
- **1.12.12.** O sistema de avaliação de uma determinada disciplina obedece aos seguintes critérios:
- durante o semestre são dadas três notas;
- a nota final é obtida pela média aritmética das notas dadas durante o curso;
- é considerado aprovado o aluno que obtiver a nota final superior ou igual a 60 e que tiver comparecido a um mínimo de 40 aulas.

Fazer um algoritmo que:

- a) Leia um conjunto de dados contendo o número de matrícula, as três notas e a frequência (número de aulas frequentadas) de 100 alunos.
- b) Calcule:
- a nota final de cada aluno:
- a major e menor nota da turma:
- a nota média da turma:
- o total de alunos reprovados;
- a porcentagem de alunos reprovados por infrequência;
- c) Escreva:
- para cada aluno, o número de matrícula, a frequência, a nota final e o código (aprovado ou reprovado);
- o que foi calculado no item b (2,3,4 e 5).
- **1.12.13.** Deseja-se fazer uma pesquisa a respeito do consumo mensal de energia elétrica em uma determinada cidade. Para isso, são fornecidos os seguintes dados:
- preço do kWh consumido;
- número do consumidor;
- quantidade de kWh consumidos durante o mês;
- código do tipo de consumidor (residencial, comercial, industrial).

O número do consumidor igual a zero deve ser usado como flag. Fazer um algoritmo que:

- leia os dados descritos acima:
- calcule:
- a) para cada consumidor, o total a pagar;
- b) o maior consumo verificado;
- c) o menor consumo verificado:
- d) o total do consumo para cada um dos três tipos de consumidores;
- e) a média geral de consumo;
- escreva:
- a) para cada consumidor, o seu número e o total a pagar;
- b) o que foi calculado nos itens b, c, d, e acima especificados.
- **1.12.14.** Tem-se uma estrada ligando várias cidades. Cada cidade tem seu marco quilométrico. Fazer um algoritmo que:
- leia vários pares de dados, contendo cada par os valores dos marcos quilométricos, em ordem crescente, de duas cidades. O último par contém estes dois valores iguais;
- calcule os tempos decorridos para percorrer a distância entre estas duas cidades, com as seguintes velocidades: 20, 30, 40, 50, 60, 70, 80 km/hora, sabendo-se que t = e/v, onde t = tempo; e = espaço; v = velocidade;
- escreva os marcos quilométricos, a velocidade e o tempo decorrido entre as duas cidades, apenas quando este tempo for superior a 2 horas.
- **1.12.15.** Os bancos atualizam diariamente as contas de seus clientes. Essa atualização envolve a análise dos depósitos e retiradas de cada conta. Numa conta de balanço mínimo, uma taxa de serviço é deduzida se a conta cai abaixo de uma certa quantia especificada. Suponha que uma conta particular comece o dia com um balanço de R\$ 60,00. O balanço mínimo exigido é R\$ 30,00 e se o balanço de fim de dia for menor do que isso, uma taxa é reduzida da conta.

A fim de que essa atualização fosse feita utilizando computador, é fornecido o seguinte conjunto de dados:

- a primeira linha contém o valor do balanço mínimo diário, quantidade de transações e taxa de servico:
- as linhas seguintes contém número da conta, valor da transação e código da transação (depósito ou retirada);

Escrever um algoritmo que:

- calcule o balanço (saldo/débito) da conta ao fim do dia (se o resultado for negativo, isto significa insuficiência de fundos na conta);
- escreva, para cada conta, o seu número e o balanço calculado. Se não houver fundos, imprima o número da conta e a mensagem "NÃO HÁ FUNDOS".
- **1.12.16.** Uma empresa decidiu fazer um levantamento em relação aos candidatos que se apresentarem para preenchimento de vagas no seu quadro de funcionários, utilizando processamento eletrônico. Supondo que você seja o programador encarregado desse levantamento, fazer um algoritmo que:
- leia um conjunto de dados para cada candidato contendo:
- a) número de inscrição do candidato:
- b) idade;
- c) sexo (masculino, feminino);
- d) experiência no serviço (sim ou não).
- O último conjunto contém o número de inscrição do candidato igual a zero.
- calcule:
- a) o número de candidatos do sexo feminino;
- b) o número de candidatos do sexo masculino;
- c) idade média dos homens com mais de 45 anos entre o total de homens;
- d) número de mulheres que têm idade inferior a 35 anos e com experiência no serviço;
- e) a menor idade entre mulheres que já tem experiência no serviço;
- escreva:
- a) o número de inscrição das mulheres pertencentes ao grupo descrito no item e;
- b) o que foi calculado em cada item acima especificado.
- **1.12.17.** Um companhia de teatro planeja dar uma série de espetáculos. A direção calcula que, a R\$ 5,00 o ingresso, serão vendidos 120 ingressos, e as despesas montarão em R\$ 200,00. A diminuição de R\$ 0,50 no preço dos ingressos espera-se que haja um aumento de 26 ingressos vendidos.

Fazer um algoritmo que escreva uma tabela de valores do lucro esperado em função do preço do ingresso, fazendo-se varias este preço de R\$ 5,00 a R\$ 1,00 de R\$ 0,50 em R\$ 0,50. Escreva, ainda, o lucro máximo esperado, o preco e o número de ingressos correspondentes.

1.12.18. A comissão organizadora de um rallye automobilístico decidiu apurar os resultados da competição através de um processamento eletrônico. Um dos algoritmos necessários para a classificação das equipes concorrentes é o que emite uma listagem geral do desempenho das equipes, atribuindo pontos segundo determinadas normas:

O algoritmo deverá:

- a) Ler:
- a.1) uma linha contendo os tempos-padrão (em minutos decimais) para as três fases de competição;
- a.2) um conjunto de linhas contendo cada uma o número de inscrição da equipe e os tempos (em minutos decimais) que as mesmas despenderam ao cumprir as três diferentes etapas. A última linha (flag), que não entrará nos cálculos, contém o número 9999 como número de inscrição.
- b) Calcular:
- b.1) os pontos de cada equipe em cada uma das etapas, seguindo o seguinte critério:

Seja D o valor absoluto da diferença entre o tempo-padrão (lido na primeira linha) e o tempo despendido pela equipe numa etapa:

- D < 3 minutos atribuir 100 pontos à etapa
- 3 <= D <= 5 minutos atribuir 80 pontos à etapa
- D > 5 minutos atribuir 80 (D 5)/5 pontos à etapa
- b.2) o total de pontos de cada equipe nas três etapas;
- b.3) a equipe vencedora.
- c) Escrever:
- c.1) para cada equipe, o número de inscrição, os pontos obtidos em cada etapa e o total de pontos obtidos.
- **1.12.19.** Numa certa loja de eletrodomésticos, o comerciário encarregado da seção de televisores recebe, mensalmente, um salário fixo mais comissão. Essa comissão é calculada em relação ao tipo e ao número de televisores vendidos por mês, obedecendo à tabela abaixo:

TIPO	N.o DE TELEVISORES VENDIDOS	COMISSÕES
a cores	Maior ou igual a 10 Menor do que 10	R\$100,00 por televisor vendido R\$ 50,00 por televisor vendido
Preto e branco	Maior ou igual a 20 Menor do que 20	R\$ 40,00 por televisor vendido R\$ 20,00 por televisor vendido

Sabe-se, ainda, que ele tem um desconto de 8% sobre seu salário fixo para o INPS. Se o seu salário total (fixo + comissões - INPS) for maior ou igual a R\$ 3.000,00 ele ainda terá um desconto de 5%, sobre esse salário total, relativo ao imposto de renda retido na fonte. Sabendo-se que existem 20 empregados nesta seção, leia o valor do salário fixo e, para cada comerciário, o número de sua inscrição, o número de televisores a cores e o número de televisores preto e branco vendidos; calcule e escreva o número de inscrição de cada empregado, seu salário bruto e seu salário líquido.

1.12.20. O dia da semana para uma data qualquer pode ser calculado pela seguinte fórmula: Dia da semana = RESTO(QUOCIENTE(2,6 \times M - 0,2), 1) + D + A + QUOCIENTE(A,4) + QUOCIENTE(S,4) - 2 \times S), 7)

Onde:

- M representa o número do mês. Janeiro e fevereiro são os meses 11 e 12do ano precedente, março é o mês 1 e dezembro é o mês 10;
- D representa o dia do mês;
- A representa o número formado pelos dois últimos algarismos do ano;
- S representa o número formado pelos dois primeiros algarismos do ano;

Os dias da semana são numerados de zero a seis; Domingo corresponde a 0, Segunda a 1, e assim por diante.

Fazer um algoritmo que:

- leia um conjunto de 50 datas (dia, mês, ano);
- determine o dia da semana correspondente à data lida, segundo o método especificado;
- escreva, para cada data lida, o dia, mês, ano e o dia da semana calculado.

- 1.12.21. Numa fábrica trabalham homens e mulheres divididos em três classes:
- A os que fazem até 30 peças por mês;
- B os que fazem de 31 a 35 peças por mês;
- C os que fazem mais de 35 peças por mês;

A classe A recebe salário-mínimo. A classe B recebe salário-mínimo e mais 3% do salário mínimo por peça, acima das 30 iniciais. A classe C recebe salário-mínimo e mais 5% do salário mínimo por peça acima das 30 iniciais.

Fazer um algoritmo que:

- a) leia várias linhas, contendo cada uma:
- o número do operário;
- o número de peças fabricadas por mês;
- o sexo do operário;
- b) calcule e escreva
- o salário de cada operário;
- o total da folha mensal de pagamento da fábrica;
- o número total de peças fabricadas por mês;
- a média de peças fabricadas pelos homens em cada classe;
- a média de peças fabricadas pelas mulheres em cada classe;
- o número do operário ou operária de maior salário (não existe empate).

Observação: A última linha, que servirá de flag, terá o número do operário igual a zero.

1.12.22. Uma determinada fábrica de rádios possui duas linhas de montagem distintas: standard e luxo. A linha de montagem standard comporta um máximo de 24 operários; cada rádio standard dá um lucro de X reais e gasta um homem-dia para sua confecção. A linha de montagem luxo comporta no máximo 32 operários; e cada rádio luxo dá um lucro de Y cruzados e gasta 2 homens dia para sua confecção. A fábrica possui 40 operários. O mercado é capaz de absorver toda a produção e o fabricante deseja saber qual esquema de produção a adotar de modo a maximizar seu lucro diário.

Fazer um algoritmo que leia os valores de X e Y e escreva, para esse esquema de lucro máximo, o número de operários na linha standard e na linha luxo, o número de rádios standard e luxo produzidos e o lucro.

- **1.12.23.** Fazer um algoritmo para calcular o número de dias decorridos entre duas datas (considerar também a ocorrência de anos bissextos), sabendo-se que:
- a) cada par de datas é lido numa linha, a última linha contém o número do dia negativo
- b) a primeira data na linha é sempre a mais antiga.
- O ano está digitado com quatro dígitos.
- **1.12.24.** Fazer um algoritmo que calcule e escreva o valor de S:

$$S = 1/1 + 3/2 + 5/3 + 7/4 + ... + 99/50$$

1.12.25. Fazer um algoritmo que calcule e escreva a seguinte soma:

$$2^{1}/50 + 2^{2}/49 + 2^{3}/48 + ... + 2^{50}/1$$

1.12.26. Fazer um algoritmo para calcular e escrever a seguinte soma:

$$S = (37 \times 38)/1 + (36 \times 37)/2 + (35 \times 36)/3 + ... + (1 \times 2)/37$$

1.12.27. Fazer um algoritmo que calcule e escreva o valor de S onde:

$$S = 1/1 - 2/4 + 3/9 - 4/16 + 5/25 - 6/36 \dots - 10/100$$

1.12.28. Fazer um algoritmo que calcule e escreva a soma dos 50 primeiros termos da seguinte série:

$$1000/1 - 997/2 + 994/3 - 991/4 + ...$$

1.12.29. Fazer um algoritmo que calcule e escreva a soma dos 30 primeiros termos da série:

1.12.30. Escrever um algoritmo para gerar e escrever uma tabela com s valores do seno de um ângulo A em radianos, utilizando a série de Mac-Laurin truncada, apresentada a seguir:

sen
$$A = A - A^3/6 + A^5/120 - A^7/5040$$

Condições: os valores dos ângulos A devem variar de 0.0 a 6.3, inclusive, de 0.1 em 0.1.

1.12.31. Fazer um algoritmo para calcular e escrever o valor d número p, com precisão de 0,0001, usando a série:

$$\pi = 4 - 4/3 + 4/5 - 4/7 + 4/9 - 4/11 + ...$$

Para obter a precisão desejada, adicionar apenas os termos cujo valor absoluto seja maior ou igual a 0.0001.

1.12.42. Sejam P(x₁,y₁) e Q(x₂,y₂) dois pontos quaisquer do plano. A sua distância é dada por $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Escrever então um algoritmo que, lendo várias linhas onde cada uma contém as coordenadas dos dois pontos, escreva para cada par de pontos lidos a sua distância. A última linha contém as coordenadas x_1 , y_2 , y_1 , y_2 iguais a zero.

1.12.43. A solução x, y para o sistema de equações lineares abaixo:

$$ax + by = u$$

$$cx + dy = v$$

é dada por:

$$x = d/(ad - bc) u - b/(ad - bc) v$$
, $y = -c/(ad - bc) u + a/(ad - bc) v$

Escrever um algoritmo que:

- leia várias linhas, onde cada uma contém os parâmetros a, b, c, d, u, v do sistema (a última linha contém os valores a, b, c, d iguais a zero);
- calcule a solução x, y de cada sistema dado por seus parâmetros;
- escreva os parâmetros lidos e os valores calculados.
- **1.12.44.** Fazer um algoritmo que, lendo em uma unidade de entrada os parâmetros A e B de uma reta no plano dado pela equação Y = AX + B, determina a área do triângulo formado por esta reta e os eixos coordenados.

O algoritmo lerá um número indeterminado de linhas, cada linha contendo um par de parâmetros (A, B), e para cada par lido deverá escrever: os parâmetros A e B e a área do triângulo.

A execução do algoritmo deverá terminar quando ler uma linha cm um par de zeros.

Observação: Se, em uma linha (à exceção da última), um dos parâmetros for igual a zero, não haverá triângulo – assim, o programa deverá imprimir A, B, e 0 (zero).

1.12.45. Fazer um algoritmo para tabular a função y = f(x) + g(x), para x = 1, 2, 3, ..., 10 onde:

$$h(x) = x^{2} - 16$$

 $f(x) = h(x)$, se $h(x) >= 0$
 $= 1$, se $h(x) < 0$
 $g(x) = x^{2} + 16$, se $f(x) = 0$
 $= 0$, se $f(x) > 0$

1.12.46. As coordenadas de um ponto (x,y) estão disponíveis em uma unidade de entrada. Ler esses valores (até quando um flag ocorrer) e escrever "INTERIOR" se o ponto estiver dentro da região hachurada entre as retas mostrada abaixo, $(y_2 < |y| < y_1)$; caso contrário, escrever "EXTERIOR".

- **1.12.47.** Fazer um algoritmo para calcular e escrever a soma dos cubos dos números pares compreendidos entre B e A . Suponha que os valores de B e A (B > A) são dados em uma linha.
- **1.12.48.** Fazer um algoritmo que calcule o volume de uma esfera em função do raio R. O raio deverá varias de 0 a 20 cm de 0,5 em 0,5 cm

$$V = 4/3 \pi R^3$$

- **1.12.49.** Fazer um algoritmo para calcular e escrever a área de um polígono regular de N lados inscrito numa circunferência de raio R. O número de polígonos será fornecido na primeira linha de dados e nas linhas seguintes serão fornecidos os valores de N e R.
- **1.12.50.** Para um polígono regular inscrito numa circunferência, quanto maior o número de lados do polígono, mais seu perímetro se aproxima do comprimento da circunferência. Se o número de lados for muito grande e o raio da circunferência for unitário, o semiperímetro do polígono terá um valor muito próximo de π .

Fazer um algoritmo que escreva uma tabela do semiperímetro em função do número de lados, para polígonos regulares inscritos, numa circunferência de raio unitário. O número de lados deverá variar de 5 a 100 de 5 em 5.

1.12.51. Construir uma tabela de perda de carga em tubulações para vazões que variem de $0,1\ell$ / s a 10ℓ / s, de 0,1 em 0,1, através da fórmula de Hanzen-Willians dada abaixo:

$$J = Q^{1.85} \times 10,643 \times D^{4.87} \times C^{-1.85}$$

onde:

J = perda de carga (m/1000m);

Q = vazão (m³/s);

D = diâmetro de tubo (m²);

C = coeficiente de rugosidade.

Os valores de D e C serão lidos de uma unidade de entrada. Considerar como flag o valor D = 0.

- **1.12.52.** Fazer um algoritmo que calcule e escreva o número de grãos de milho que se pode colocar num tabuleiro de xadrez, colocando 1 no primeiro quadro e nos quadros seguintes o dobro do quadro anterior.
- **1.12.53.** Um certo aço é classificado de acordo com o resultado de três testes, que devem verificar se o mesmo satisfaz às seguintes especificações:
- Teste 1 conteúdo de carbono abaixo de 7%;
- Teste 2 dureza de Rockwell maior que 50;
- Teste 3 resistência à tração maior do que 80.000 psi.

Ao aço é atribuído o grau 10, se passa pelos três testes; 9, se passa apenas nos testes 1 e 2; 8, se passa no teste 1; e 7, se não passou nos três testes. Supondo que sejam lidos de uma unidade de entrada: número de amostra, conteúdo de carbono (em %), a dureza de Rockwell e a resistência à tração (em psi) – fazer um algoritmo que dê a classificação de 112 amostras de aço que foram testadas, escrevendo o número da amostra e o grau obtido.

- **1.12.54.** Fazer um algoritmo para calcular a raiz quadrada de um número positivo, usando o roteiro abaixo, baseado no método de aproximações sucessivas de Newton: Seja Y o número:
- A primeira aproximação para a raiz quadrada de Y é X₁ = Y/2
- as sucessivas aproximações serão: $X_{n+1} = (X_n^2 + Y)/2X_n$

O algoritmo deverá prever 20 aproximações.

1.12.55. Dada a equação $x^3 - 3x^2 + 1 = 0$, pode-se encontrar qualquer uma de suas raízes reais através de aproximações sucessivas utilizando a seguinte fórmula:

$$X_{n+1} = X_n - (X_n^3 - 3X_n^2 + 1)/(3X_n^2 - 6X^n)$$

Fazer um algoritmo que:

- considere como primeira aproximação X = 1,5;
- calcule e escreva a trigésima aproximação da raiz.
- **1.12.56.** Fazer um algoritmo que tabule a seguinte função:

$$f(x,y) = (x^2 + 3x + y^2) / (xy - 5y - 3x + 15)$$

para x = 1,4,9,16,...,100;

e y = 0,1,2,...,5 para cada valor de x.

1.12.57. Tem-se 10 conjuntos de valores, onde cada conjunto é formado pelo número de um aluno, a nota provisória do seu trabalho prático e a data em que foi entregue.

Fazer um algoritmo para:

- a) Calcular e imprimir a nota final de cada aluno, sabendo-se que os trabalhos entregues:
- até 20/04, nota final = nota provisória + 10 pontos;
- até 02/05, nota final = nota provisória;
- até 30/05, nota final = nota provisória/2;
- até 30/06, nota final = 0.
- b) Calcular a média e o desvio padrão das notas provisória e final.

Observação: Desvio padrão =
$$\sqrt{\frac{1}{N-1} \left[\sum_{i=1}^{N} x_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)^2 \right]}$$

1.12.58. Números complexos podem ser escritos na forma cartesiana Z = x + iy ou na forma exponencial $Z = re^{i\theta}$. Multiplicações e divisões de números complexos na forma exponencial ficam muito mais fáceis de serem feitas, pois assumem a seguinte forma:

$$Z_1 \times Z_2 = r_1 e^{i\theta_1} \times r_2 e^{i\theta_2} = (r_1 \times r_2) e^{i(\theta_1 + \theta_2)}$$

bastando, portanto, operar os módulos (r_1 e r_2) e os argumentos ($\theta 1$ e $\theta 2$).

Fazer um algoritmo que leia um conjunto de linhas, cada uma contendo um código de quatro valores. Código MULTIPLICA indica que se quer operar a multiplicação dos dois números complexos representados pelos quatro valores (r_1 , $\theta 1$, r_2 , $\theta 2$). Código DIVIDE indica que a operação desejada é a divisão. E código VAZIO vai indicar fim de dados. Para cada operação completada, escrever todos os valores lidos e os valores obtidos.

1.12.59. O cálculo do valor de uma integral definida, usando o método das aproximações por trapézios, é feito dividindo o intervalo de integração em n partes iguais e aproximando a função, em cada subintervalo obtido, por um segmento de reta. O valor da integral é calculado, então, como a soma das áreas dos diversos trapézios formados.

$$A = ((y_i + y_{i+1})/2)$$
. h , área de cada trapézio $h = x_{i+1} - x_i = (b - a) / n = constante$

Fazer um algoritmo para determinar e escrever o valor de π , o qual pode ser calculado pela integral:

$$\pi = 4. \int_0^1 1/(1+x^2) dx$$

- 1.12.60. Fazer um algoritmo que:
- leia um conjunto de 25 linhas, contendo, cada uma três números inteiros positivos (em qualquer ordem).
- calcule o máximo divisor comum entre os três números lidos, utilizando o método das divisões sucessivas.
- escreva os três números lidos e o m.d.c. entre eles.
- **1.12.61.** O número 3025 possui a seguinte característica:

$$30 + 25 = 55$$

 $55^2 = 3025$

Fazer um algoritmo para um programa que pesquise e imprima todos os números de quatro algoritmos que apresentam tal característica.

1.12.62. Dada uma equação diferencial y = f(x,y) e a condição inicial $y(x_0) = y_0$ pode-se encontrar uma solução aproximada desta equação, usando o seguinte método:

$$\begin{split} y_1 &= y_0 + hf(x_0, y_0) \\ y_2 &= y_1 + hf(x_1, y_1) \\ & \vdots \\ Y_{k+1} &= y_k + hf(x_k, y_k) \end{split}$$

Onde h é um acréscimo que se dá aos valores de x, xn limite superior do intervalo;

$$h = (x_n - x_0) / n$$

x₀: limite inferior do intervalo;

n : número de subintervalos.

Fazer, portanto, um algoritmo que encontre e escreva as soluções aproximadas da equação y' = xy com y(0) = 1 no intervalo fechado de 0 a 1, com n = 10 subintervalos.

- 1.12.63. Fazer um algoritmo que:
- calcule o número de divisores dos números compreendidos entre 300 e 400.
- Escreva cada número e o número de divisores correspondentes.
- **1.12.64.** Fazer um algoritmo que, dados 100 números inteiros positivos, calcule e imprima os que são números perfeitos.

Nota: Número perfeito é aquele cuja soma de seus divisores, exceto ele próprio, é igual ao número.

Exemplo: 6 é perfeito porque 1 + 2 + 3 = 6.

1.12.65. Regressão linear é uma técnica estatística que ajusta uma equação linear (da forma y = ax + b) a um conjunto de pontos dados. O problema consiste em achar uma equação linear que melhor se ajuste aos pontos dados. Um dos métodos empregados é o dos mínimos quadrados, que consiste em minimizar a soma dos quadrados dos desvios verticais dos pontos para a linha reta.

As fórmulas para os coeficientes a e b, dado um conjunto de n pares de pontos (x,y) são

$$a = \frac{n\Sigma xy - \Sigma x \cdot \Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$$

$$b = \frac{\Sigma y \cdot \Sigma x^2 - \Sigma x \cdot \Sigma xy}{n\Sigma x^2 - (\Sigma x)^2}$$
sendo:
$$\Sigma x = \sum_{i=1}^{n} x_i$$

$$\Sigma xy = \sum_{i=1}^{n} x_i y_i$$

$$\Sigma x^2 = \sum_{i=1}^{n} x_i^2$$

Uma vez achada a equação da reta, é importante determinar a precisão de ajustamento dessa linha aos dados reais. Uma medida disso é o coeficiente de correlação R, dado pela fórmula

$$R = \frac{n \Sigma xy - \Sigma x \cdot \Sigma y}{\sqrt{n\Sigma x^2 - (\Sigma x)^2} \cdot \sqrt{n\Sigma y^2 - (\Sigma y)^2}}$$

O intervalo de variação de R é de -1 <= R <= 1. Quanto mais próximo de 1 ou -1 ficar o valor de R, melhor terá sido o ajustamento da reta.

Fazer um algoritmo para ler e imprimir um conjunto de pares de pontos (x,y) e calcular e escrever os valores de a, b e R.

1.12.66. Capicuas são números que têm o mesmo valor, se lidos da esquerda para a direita ou da direita para a esquerda. Ex: 44, 232, etc.

Fazer um algoritmo que determine e escreva todos os números inteiros menores que 10.000 que são quadrados perfeitos e capicuas ao mesmo tempo.

1.12.67. Número primo é aquele que só é divisível por ele mesmo e pela unidade. Fazer um algoritmo que determine e escreva os números primos compreendidos entre 5.000 e 7.000.

1.12.68. Fazer um algoritmo que:

- leia um conjunto de linhas contendo, cada uma, um número inteiro, na base 10, de até cinco dígitos. A última linha contém o valor zero;
- transforme esse número da base 10 para a base 2;
- escreva o número na base 10 e na base 2.

1.12.69. Fazer um algoritmo que:

- leia um conjunto de linhas contendo, cada uma, um número inteiro na base 3. A última linha contém o valor zero;
- transforme esse número na base 3 para a base 10;
- escreva o número na base 3 e na base 10.

Fim (por enquanto).