Week 11: Convergence in Distribution and Central Limit Theorem

MATH697

Sahir Bhatnagar

November 14, 2017

McGill University

Convergence in Distribution

Convergence in Distribution

Definition 1 (Convergence in Distribution)

Let X_1, X_2, \ldots be a sequence of random variables. Then we say that the **sequence converges in distribution** to a random variable X if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$

at all points x where $F_X(x)$ is continuous and we write $X_n \stackrel{\mathcal{D}}{\to} X$

Convergence in Distribution

Definition 1 (Convergence in Distribution)

Let X_1, X_2, \ldots be a sequence of random variables. Then we say that the **sequence converges in distribution** to a random variable X if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$

at all points x where $F_X(x)$ is continuous and we write $X_n \stackrel{\mathcal{D}}{\to} X$

- Intuitively, X_1, X_2, \ldots converges in distribution to X if for large n, the distribution of X_n is close to that of X
- The importance of this, is that often the distribution of X_n is difficult to work with, while that of X is much simpler
- With X_n converging in distribution to X, however, we can approximate the distribution of X_n by that of X.

Convergence in Probability Implies in Distribution

Theorem 2 (Convergence in Probability Implies in Convergence in Distribution)

If the sequence of random variables X_1, X_2, \ldots converges to a random variable X, the sequence also converges in distribution to X. That is if $X_n \stackrel{P}{\to} X$ then $X_n \stackrel{D}{\to} X$

Poisson Approximation to the Binomial

Example 3 (Poisson Approximation to the Binomial)

Suppose that $X_n \sim Binomial(n, \lambda/n)$ and $X \sim Poisson(\lambda)$. We have previously seen that as $n \to \infty$

$$P(X_n = j) = \binom{n}{j} \left(\frac{\lambda}{n}\right)^j \left(1 - \frac{\lambda}{n}\right)^{n-j} \to e^{-\lambda} \frac{\lambda^j}{j!}$$

This implies that $F_{X_n}(x) \to F_X(x)$ and thus $X_n \stackrel{\mathcal{D}}{\to} X$

Central Limit Theorem

Introduction

- Let X_1, X_2, \ldots , be iid with mean μ and finite variance σ^2 . The law of large numbers says that as $n \to \infty$, \bar{X}_n converges to the constant μ (with probability 1).
- But what is its distribution along the way to becoming a constant?
- This is addressed by the central limit theorem (CLT)

Central Limit Theorem (CLT)

- The CLT states that for large n, the distribution of \bar{X}_n (after standardization) approaches a standard Normal distribution.
- By standardization, we mean that we subtract μ , the expected value of \bar{X}_n , and divide by σ/\sqrt{n} , the standard deviation of \bar{X}_n .

Theorem 4 (CLT)

As $n \to \infty$

$$\sqrt{n}\left(\frac{\bar{X}_n-\mu}{\sigma}\right)\stackrel{D}{\rightarrow}\mathcal{N}(0,1)$$

From this we can also say that for large n

$$ar{X}_{n} \sim \mathcal{N}(\mu, \sigma^{2}/n)$$

Proof:on board

Central Limit Theorem (CLT)

- The CLT states that for large n, the distribution of \bar{X}_n (after standardization) approaches a standard Normal distribution.
- By standardization, we mean that we subtract μ , the expected value of \bar{X}_n , and divide by σ/\sqrt{n} , the standard deviation of \bar{X}_n .

Theorem 4 (CLT)

As $n \to \infty$

$$\sqrt{n}\left(\frac{\bar{X}_n-\mu}{\sigma}\right)\stackrel{D}{\to}\mathcal{N}(0,1)$$

From this we can also say that for large n

$$\bar{X}_{n} \sim \mathcal{N}(\mu, \sigma^{2}/n)$$

Proof:on board

- \cdot In words, the CDF of the left-hand side approaches Φ , the CDF of a standard Normal distribution.
- Starting from virtually no assumptions (other than independence and finite variances), we end
 up with normality

Central Limit Theorem (CLT) for the Sum

- The CLT says that the sample mean \bar{X}_n is approximately Normal
- · But since the sum

$$S_n = X_1 + \cdots + X_n = n\bar{X}_n$$

is just a scaled version of \bar{X}_n , the CLT also implies that S_n is approximately Normal

• If X_j have mean μ and variance σ^2 , S_n has mean $n\mu$ and variance $n\sigma^2$.

Theorem 5 (CLT for the Sum)

for large n

$$S_n \sim \mathcal{N}(n\mu, n\sigma^2)$$

Running Proportion of Heads Revisited

Before, we used the law of large numbers to conclude that $\bar{X}_n \to 1/2$ as $n \to \infty$. Now, using the central limit theorem, we can say more: $E(\bar{X}_n) = 1/2$ and $Var(\bar{X}_n) = 1/(4n)$, so for large n,

$$\bar{X}_n \sim \mathcal{N}\left(\frac{1}{2}, \frac{1}{4n}\right)$$

Poisson Convergence to Normal

Let $Y \sim Pois(n)$. Using MGFs it can be shown that Y can be expressed as a sum of n iid Poisson(1) random variables. Therefore by CLT, for large n,

$$Y \sim \mathcal{N}(n, n)$$

Binomial Convergence to Normal

Let $Y \sim Binomial(n, p)$. Using MGFs it can be shown that Y can be expressed as a sum of n iid Bernoulli(p) random variables. Therefore by CLT, for large n,

$$Y \sim \mathcal{N}(np, np(1-p))$$

CLT Visual

Histograms of the distribution of \overline{X}_n for different starting distributions of the X_j (indicated by the rows) and increasing values of n (indicated by the columns). Each histogram is based on 10,000 simulated values of \overline{X}_n . Regardless of the starting distribution of the X_j , the distribution of \overline{X}_n approaches a Normal distribution as n grows.

CLT Exercise

One way to visualize the CLT for a distribution of interest is to plot the distribution of \overline{X}_n for various values of n. To do this, we first have to generate iid X_1, \ldots, X_n a bunch of times from our distribution of interest. For example, suppose that our distribution of interest is Unif(0,1), and we are interested in the distribution of \overline{X}_{12} , i.e., we set n=12. In the following code, we create a matrix of iid standard Uniforms. The matrix has 12 columns, corresponding to X_1 through X_{12} . Each row of the matrix is a different realization of X_1 through X_{12} .

```
nsim <- 10^4
n <- 12
x <- matrix(runif(n*nsim), nrow=nsim, ncol=n)
xbar <- rowMeans(x)
hist(xbar)
# change runif for rexp. what do you notice?</pre>
```

CLT In Action

¹http://www.medicine.mcgill.ca/epidemiology/Joseph/courses/EPIB-607/notes.pdf

CLT In Action Exercise

- 1. Set n = 10
- Simulate data from various distributions, each representing a different part of the journey to McGill. Create a data.frame of the simulated times and add a column for the total transit time

```
walk <- rnorm(n, 4, 1); bus <- runif(n, 4, 16)
ride <- rpois(n, 8); climb <- rgamma(n, shape = 6, scale = 0.5)
fall <- rexp(n, rate = 4)</pre>
```

Calculate the theoretical means and variances for each of the distributions. Use the CLT to determine the mean and variance of the total transit time.

```
\label{eq:mean.walk=4; mean.bus=(4+16)/2; mean.ride=8; mean.climb=6*0.5; mean.fall=1/4 var.walk=1; var.bus=(16-4)^2/12; var.ride=8; var.climb=6*0.5^2; var.fall=1/4^2
```

4. Plot a histogram of the total transit times and superimpose the density of the theoretical distribution of the sum. Repeat the whole exercise for n = 50, 100, 200, 500, 1000, 2000.

Session Info

devtools::session_info()

```
##
   setting value
##
   version R version 3.4.1 (2017-06-30)
##
    system
            x86_64, linux-gnu
##
    пi
            X11
##
   language en US
    collate en US.UTF-8
##
##
   t.z
            Canada/Eastern
##
    date
            2017-11-20
##
                * version
##
    package
                             date
                                        source
##
    abind
                 1.4-5
                             2016-07-21 cran (a1.4-5)
                             2016-11-27 cran (al.9-3)
##
    arm
                 1.9-3
##
   assertthat
                 0.2.0
                             2017-04-11 CRAN (R 3.4.1)
    backports
                 1.1.0
                             2017-05-22 cran (a1.1.0)
##
##
    base
                * 3.4.1
                             2017-07-08 local
    hindr
                             2016-11-13 CRAN (R 3.4.1)
##
                 0.1
    bindrcpp
                 0.2
                             2017-06-17 CRAN (R 3.4.1)
##
##
   hlme
                 1.0-4
                             2015-06-14 cran (al.0-4)
##
   broom
                 0.4.2
                             2017-02-13 CRAN (R 3.4.1)
```