PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-144625

(43)Date of publication of application: 28.05.1999

(51)Int_CI.

H01J 11/02 C09K 11/59 C09K 11/64 C09K 11/77 H01J 9/02 H01J 9/227

H01J 11/00

(21)Application number: 09-304184

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

06.11.1997

(72)Inventor: AOKI MASAKI

KADO HIROYUKI SUZUKI SHIGEO

KAWAMURA HIROYUKI

(54) PLASMA DISPLAY PANEL AND ITS MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To increase an ultraviolet ray absorption factor and realize high luminance by selecting fluorescent raw materials, continuously spraying phosphor inks from nozzles to apply them, selecting baking conditions, and increasing the plate diameter/thickness ratio of the crystal on the phosphor surface.

SOLUTION: Discharge electrodes 12, a dielectric glass layer 13 and a protective layer 14 are arranged on a front glass substrate 11. Address electrodes 16, barrier ribs 17 and phosphor layers 18 are arranged on a back glass substrate 15, and discharge gas is sealed in discharge spaces 19. Phosphor inks of red, green and blue constituting the phosphor layers 18 are sprayed and scanned in parallel from nozzles to prescribed grooves to uniformly apply them. The plate diameter of phosphor grains is set to 0.3–6 μ m, the plate thickness is set to 0.1–2 μ m and the ratio between the plate diameter and the plate thickness is set to 3–25 by selecting

fluorescent raw materials and baking conditions. The coating factor on the barrier ribs 17 and a bottom section is increased by the flat grains, the ultraviolet ray absorbed amount of the phosphor layers 18 is increased, and the luminance of a display panel is improved.

LEGAL STATUS

[Date of request for examination] 01.12.1999

[Date of sending the examiner's decision of

29.05.2001

rejection]

3/2E=

(19)日本国特許庁(JP)

(12) 公開特許公報(A) (11)特許出願公開番号

特開平11-144625

R:903

(43)公開日 平成11年(1999)5月28日

(51) Int C1.4	識別配号	F I
H01J 11/02	•	H01J 11/02 B
CO9K 11/59		C 0 9 K 11/59
11/64	•	11/64
11/77		i1/77
H01J 9/02		H01J 9/02 F
	•	審査請求 未競求 請求項の数9 OL (全 12 頁) 最終頁に続く
(21)出題番号	特國平9-304184	(71)出版人 000005821
•		松下電器產業株式会社
(22)出頭日	平成9年(1997)11月6日	大阪府門其市大字門真1006番地
		(72)発明者 青木 正樹
	•	大阪府門真市大字門真1008番地 松下電器
		应梁株式会社内
		(72)発明者 加道 博行
		大阪府門真市大字門真1008番地 松下電器
		産業株式会社内
		(72) 免明者 鈴木 茂夫
	•	大阪府門真市大学門真1008番地 松下電器 産業株式会社内
		(74)代理人 弁理士 液本 智之 (外1名)
	•	最終質に統く

(54)【発明の名称】 プラズマディスプレイパネル及びその製造方法

(57)【要約】

【課題】 プラズマディスプレイパネルの蛍光体層の高 輝度化を図る。

【解決手段】 アラズマディスプレイに用いられる蛍光 体の板状比を3以上と大きくし、加えて蛍光体インクを 連続的に細管から境出させて、隔壁内に途布する方法を 用いることにより蛍光体圏18を形成して高輝度なプラ ズマディスプレイパネルを得る。

特別平11-144625

1

【特許請求の範囲】

【請求項1】一対の平行に配されたアレートの間に、電 極及び複数色の蛍光体層とが置設され、ガス媒体が封入 された放電空間が形成され、放電に伴って紫外線を発 し、前記蛍光体層で可視光に変換することによって発光 するアラズマディスプレイパネルであって、

前記蛍光体層を構成する青色、赤色、緑色の各蛍光体粒 子の少なくとも一色の蛍光体粒子が板状粒子であって、その板径が0.3μm~6μmで、板厚が0.1μm~2μmで、板径と板厚の比が3~25であることを特徴とするプラズマディスプレイパネル。

【譲求項2】一対の平行に配されたアレートの間に、電極及び複数色の蛍光体層とが配数され、ガス媒体が對入された放電空間が形成され、放電に伴って紫外線を発し、前配蛍光体層で可視光に変換することによって発光するプラズマディスプレイパネルであって、

前記蛍光体層を構成する青色蛍光体が、原子式 Ba_{1-x} Eu_x Mg $Al_{10}O_{17}$ から成り、ユーロピウム (Eu) の原子比xが0.03~0.25である板状の Ba Mg Al_{10} O_{17} : Eu^{20} で、その平均板径が 0.3 μ m~6 μ mで、板厚が0.1 μ m~2 μ mで、板径と板厚の比が3~25であることを特徴とするブラズマディスプレイパネル。

【請求項3】一対の平行に配されたプレートの間に、電極及び複数の色の蛍光体層とが配数され、ガス媒体が封入された放電空間が形成され、放電に伴って繋が線を発し、前記蛍光体層で可視光に変換することによって発光するアラズマディスプレイパネルであって、

前記堂光体層を構成する赤色蛍光体が、原子式Y1-2 Eux BOsから成り、ユーロピウム(Eu)の原子比 xが0,05~0.15である板状のYBOs; Eu³* で、その平均板径が0.5μm~6μmで、板厚が0. 2μm~2.0μmで、板径と板厚の比が2.5~15 であることを特徴とするプラズマディスプレイパネル。 【請求項4】一対の平行に配されたプレートの間に、電 極及び複数色の蛍光体層とが配設され、ガス媒体が封入 された放電空間が形成され、放電に伴って紫外線を発 し、前記蛍光体層で可視光に変換することによって発光 するプラズマディスプレイパネルであって、

前記蛍光体層を構成る緑色蛍光体が、原子式($Zn_{2-\infty}$ Mn_{2}) $_{2}$ SiO $_{4}$ から成り、マンガン(Mn)の原子 比 $_{2}$ が、 $0.01\sim0.05$ である板状の Zn_{2} SiO $_{4}$: Mn^{2+1} で、その平均板径が $0.3\mu m\sim6\mu m$ で、板厚が $0.1\mu m\sim2\mu m$ で板径と板厚の比が $3\sim25$ であることを特徴とするプラズマディスプレイバネル。

【請求項5】一対の平行に配されたプレートの間に、電極、誘電体層、隔壁及び蛍光体層が配設されガス媒体が封入された放電空間が形成され、電源による放電に伴って紫外線を発し前配蛍光体層で可視光に変換することに

よって発光するプラズマディスプレイパネルであって、 前記隔壁がプラズマ溶射法にて形成され、その中に板状 粒子蛍光体と、溶剤および樹脂パインダーを含む、蛍光 体インクをノズルから連続的に噴出させ、乾燥後焼成し て隔壁内に板状蛍光体層を形成することを特徴としたプ

ラズマディスプレイパネル。

【請求項6】プラズマ溶射法による隔壁で白色材料がアルミナ(Al_2O_3)、スピネル($MgO \cdot Al_2O_3$)、ジルコン($2rO_2$)のうちのいづれか一種で、黒色材料が酸化クロム($2O_3$)、アルミナ・チタニア($2O_3$ 一Ti O_2)、酸化クロム一酸化コバルト($2O_3$ 03- $2O_3$ 03

【請求項7】一対の平行に配されたプレートの間に、電極及び複数色の蛍光体層とが配設され、ガス媒体が封入された放電空間が形成され、放電に伴って紫外線を発し、前記蛍光体層で可視光に変換することによって発光するプラズマディスプレイパネルであって、

前記蛍光体層を少なくとも一種の板状蛍光体と、溶剤および樹脂パインダ、分散剤を含む蛍光体インクを噴出させて形成することを特徴とするプラズマディスプレイパネルの製造方法。

【請求項8】蛍光体層材料、分散剤及び樹脂バインダーを含有する液体の粘度が15~1000センチポイスであることを特徴とする請求項7記載のプラズマディスプレイパネルの製造方法。

【請求項9】樹脂バインダーが、エチルセローズ又はア クリル樹脂であることを特徴とする請求項8記載のプラ ズマディスプレイパネルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、表示デバイスなど に用いるプラズマディスプレイパネルに関するものであ り、特に、蛍光体の改良に関するものである。

[0002]

【従来の技術】一般的にテレビに用いるディスプレイとして、まず従来から用いられているCRTが考えられるわけであるが、CRTは解像度・画質の点でアラズマディスプレイや液晶に対して優れているものの、與行きと重量の点で40インチ以上の大画面にはあまり向いていない。また、液晶は消費電力が少なく、駆動電圧も低いという優れた性能を有しているが、画面の大きさや視野角に限界がある。

【0003】これに対して、プラズマディスプレイは、 奥行きや視野角の問題点は存在しないため、大画面ディ スプレイの実現が可能であり、すでに40インチクラス の製品が開発されている(例えば、機能材料1996年 2月号Vol. 16, No. 2, 7ページ参照)。

2

(03)

特開平11-144625

3

【0004】このプラズマディスプレイパネルの従来の 構成について画面を参照しながら説明する。図7は、交 流型(AC型)のプラズマディスプレイパネルの概略を 示す節面図である。

【0005】図7において、41は、フロントカバーアレート(前面ガラス基板)であり、この前面ガラス基板41上に表示電極42が形成されている。さらに、表示電極42が形成されているフロントカバーアレート41は、誘電体ガラス層43及び酸化マグネシウム(MgO)からなる保護層44により覆われている(例えば、特別平5-342991号公報参照)。

【0006】また、45は、バックプレート(背面ガラス基板)であり、この背面ガラス基板45上には、アドレス電極46および隔壁47、球状の蛍光体層48が設けられており、49が放電ガスを封入する放電空間となっている。

【0007】そして、上記した現行の40~42インチクラスのプラズマディスプレイの輝度は、NTSCの画素レベル(画素数640×480個、セルビッチ0・43mm×1・29mm、1セルの面積0・55mm²)において、150~250cd/m²である(例えば、機能材料1996年2月号Vol・16,No・2、7ページ7参照)。なお、これに対して従来のCRTでは500cd/m²程度の輝度を得ることが可能と言われている。

【0008】近年期待されているフルスペックのハイビジョンテレビの商業レベルでは、画業数が1920×1125となり、セルビッチも42インチクラスで、0.15mm×0.48mmで1セルの面積は0.072mm²の細かさになる。同じ42インチの大きさでプラズマディスプレイパネルのハイビジョンテレビを作製した時、1画素の面積でNTSCと比較すると、1/7~1/8の細かさとなる。

【0009】したがって、同じ蛍光体と、ガス組成、ガス圧を使用して42インチのハイビジョンテレビをプラズマディスプレイパネルで作製すると輝度が30~40 cd/m²と低くなることが予想され、輝度に対する改善が望まれる。

[0010]

【発明が解決しようとする課題】以上のように、プラズマディスプレイパネルによってハイビジョンテレビのような画面の小さなテレビを作製するにあたり、現行のNTSC並の明るさにしようと思えば、輝度を大幅に向上させなければならないという課題が存在する。

【0011】そこで本願発明は、蛍光体を改良することによって蛍光体輝度の向上を図り、これにより高輝度化を実現したプラズマディスプレイパネルを提供することを目的としている。

[0012]

【課題を解決するための手段】本発明のプラズマディス 50

プレイパネルは、上記した目的を達成するために、一対の平行に配されたプレートの間に、電極及び複数色の蛍光体層とが配設され、ガス媒体が封入された放電空間が形成され、放電に伴って紫外線を発し、前記蛍光体層で可視光に変換することによって発光するプラズマディスプレイパネルであって、少なくとも一色の蛍光体層を構成する蛍光体粒子の形状が板状であり、その板径が0.3μm~6μmで板厚が0.1μm~2μmであることを特徴とする。

10 【0013】従来のプラズマディスプレイパネル用の蛍光体は、一般的に、結晶が球状に成長されやすい高温(この焼成温度は、蛍光体の組成によって変わるが、例えば1200℃以上であった。)で長時間焼成され、したがって粒子径の大きな(5~10μm程度)球状に近い蛍光体粒子が用いられてきた。このように作製された球状に近い蛍光体粒子は、従来のCRTや蛍光灯に用いる場合には、蛍光体を球状にして、球間(蛍光体間)のすき間から可視光を透過させる透過型パネル方式を取っているために好都合であった。

20 【0014】しかしながらプラズマディスプレイバネルは、放電によって発生する短波兵の線外線(147.173nm)により、蛍光体が発生し、その発光の仕方が反射型パネルとなっているため、球状に近い蛍光体を蛍光体層として使用すると隔壁や隔壁底部への被覆率が低くなり、紫外線を十分利用できないことになる。

【0015】これに対して、板状の蛍光体粒子でその板径と板厚の比の大きい、いわゆる偏平な粒子は蛍光体膜として、隔壁や底部への被覆率が高くなるため蛍光体層の紫外級吸収量が増大し、したがってパネルの輝度の向上を実現することが出来る。これは、波長が143nmや173nmの紫外線は、CRTに用いられている電子線と異なり、放電空間のごく表面にある蛍光体のしかもその表面層(0.1μm以下)しか進入できないために(例えば月刊してD Intellgence1996、9月号 P58)蛍光体層の充填率や被覆率を高めれば、紫外線をより多く表面から吸収することが出来ることを示している。

【0016】従って、蛍光体の被覆率や充填率を高かれば、蛍光体層の発光強度が高まり、しかも蛍光体の充填率を高めることによって、蛍光体自身が可視光の反射膜として作用しているために、反射輝度の向上も同時に計ることが出来る。そして、この効果は、全色の蛍光体層に板状の蛍光体粒子を用いることにより顕著に得られる。

【0017】上記のように板状をした蛍光体粒子を得るためには、蛍光体を作要するときの焼成条件や出発原料 又は焼成雰囲気を変えて作成することが必要である。即ち、焼成温度をある程度高くし、かつ短時間焼成を行うことにより、蛍光体のごく表面の結晶性は良好であるが板状比を大きくした蛍光体粒子を得ることが出来る。

R:903

10

40

50

б

5

【0018】青色、緑色は、元来その結晶系態が6方晶系であるため(例えば、蛍光体ハンドブック P219、P225、オーム社)、6角板状の蛍光体粒子を得やすいが、赤色は立方晶系であるため板状の蛍光体粒子が得にくいが、水酸化イットリウム(Y2(OH3))等を出発脈料にすることによって板状粒子が得られやすくなる。

【0019】なお、あまり、板厚が薄すぎたり板径が小さすぎると、蛍光体粒子が凝集するため、かえって輝度が低下してしまう。実際には板厚は、0、1μm~3μm、板径が0、3μm~6μmに設定するのが好ましい。

【0020】ところで、上記のように板状比が大きな蛍 光体粒子では、吸収する紫外線量に対して十分な発光点 を確保するために、付活剤を多めに添加して作製することが望ましい。従って、請求項2~4のように、付活剤 の含有量を規定してある。

[0021]

【発明の実施の形態】 (PDPの全体的な構成及び製法 について) 図1は、本発明の一実施の形態に係る交流面 放電型PDPの観略断面図である。図1ではセルが1つ だけ示されているが、赤、緑、青の各色を発光するセル が交互に多数配列されてPDPが構成されている。

【0022】このPDPは、前面ガラス基板11上に放電電極12と誘電体ガラス層13が配された前面パネルと、背面ガラス基板15上にアドレス電極16、隔壁17、板状蛍光体を用いた蛍光体層18が配された背面パネルとを張り合わせ、前面パネルと背面パネルの間に形成される放電空間19内に放電ガスが封入された構成となっており、このPDPは、図2に示す駆動回路によって、放電電極12とアドレス電極16に印加して駆動するようになっている。

【0023】尚、図1では、便宜上、放電電極12が断面で表示されているが、実際には、放電電極12はアドレス電極16と直交マトリックスを組むように、図1の抵面に沿った方向に設置されている。

【0024】前面パネルの作製:前面パネルは、前面ガラス基板11上に放電電極12を形成し、その上を鉛系の誘電体ガラス層13で覆い、更に誘電体ガラス層13で表面に保護層14を形成することによって作製する。 【0025】放電電極12は銀からなる電極であって、電極用の銀ペーストをスクリーン印刷し焼成することによって形成する。

【0026】誘電体ガラス層13は、例えば、70重量 %の酸化鉛 [PbO], 15重量%の酸化硼素 [B 203], 10重量%の酸化硅素 [SiO2] 及び5重量 %の酸化アルミニウムと有限バインダ [αータービネオールに10%のエチルセルローズを溶解したもの]とを 混合してなる組成物を、スクリーン印刷法で塗布した 後、560℃で20分間焼成することによって膜厚約2 O μmに形成する。

【0027】保護層14は、酸化マグネシウム (Mg O) からなるものであって、例えば、スパッタリング法によって0、5μmの膜厚に形成する。

【0028】背面パネルの作製:背面ガラス基板15上に、放電電板12と同様にスクリーン印刷法を用いて、アドレス電極16を形成する。

【0029】隔壁17は、スクリーン印刷法などの方法で作製することができるが、以下に説明するように、溶射法によって形成することもできる。

【0030】図3は、溶射法による隔壁の形成方法を示す図である。まず、アドレス電極16を形成した背面ガラス基板15(図3のA)の表面を、アクリル系感光樹脂でできたドライフィルム81で覆う(図3のB)。

【0031】フォトリソグラフィによって、コノドライフィルム81をパターニングする、即ち、ドライフィルム81の上にフォトマスク82を被せて、隔壁を形成しようとする部分だけに葉外光(UV)83を照射し(図3のC)、現像することによって、隔壁を形成する部分のドライフィルム81を除去し、隔壁を形成する(図3のたけにドライフィルム81のマスクを形成する(図3のたり、なお、現象は、1%程度のアルカリ水溶液(具体的には炭酸ナトリウム水溶液)中で行う。

【0032】そして、これに隔壁の原材料であるアルミナ ($A1_2O_3$),スピネル ($MgO\cdot A1_2O_3$),ジルコン (ZrO_2)をプラズマ溶射する、 $XPDPのコントラストを向上させるために、アルミナ、スピネル、ジルコンの上に同じく無色の<math>Cr_2O_3$, TiO_2 ,CoO, Fe_2O_3 , MnO_2 等の酸化物やこれらの混合物を溶射 することが出来る。

【0033】図4はプラズマ溶射を示す図である。この プラズマ溶射装置90では、陰極91と陽極92の間に 電圧を印加して、陰極91の先端にアーク放電を発生させ、その中にアルゴンガスを送り込み、プラズマジェットを発生させる。

[0034] そして、原材料(アルミナや Cr_2O_5 , TiO_2 等) の粉末をこの中に送り込んで、原材料をプラズマジェットの中で溶融して裏板15の表面に吹き付ける。

【0035】これによって、基板15の表面には、原材料の溶射膜84が形成される。このようにして、膜84が形成された基板15(図3のE)を、剥離液(水酸化ナトリウム溶液)に浸して、ドライフィルム81のマスクを除去する(リフトオフ法)。これに伴って、原材料の膜84の中、ドライフィルム81のマスク上に形成された部分848に除去され、基板15上に直接形成された部分84aだけが残り、これが隔壁17となる(図3のF)。

【0036】そして、隔壁17の間の溝に蛍光体層18 を形成する。この蛍光体層18の形成方法については後

特開平11-144625

て詳述するが、ノズルから蛍光体インキを連続的に噴射 しながら操作する方法で蛍光体インキを墜布し、焼成す ることによって形成する。

【0037】なお、本実施形態では、40インチクラス のハイビジョンテレビに合わせて、隔壁の高さは0.1 ~0.15mm、隔壁のピッチは0.15~0.3mm

【0038】パネル張り合わせによるPDPの作製:次 に、このように作製した前面パネルと背面パネルとを封 着用ガラスを用いて張り合わせると共に、隔壁17で仕 切られた放電空間19内を高東空(例えば8×10⁻⁷T orr)に排気した後、放電ガス(例えばHe-Xe 系、Ne-Xe系の不活性ガス)を所定の圧力で對入す ることによってPDPを作製する。

【0039】次に、PDPを駆動する回路ブロックを図 2のように実装して、PDP表示装置を作製する。

【0040】なお、本実施形態では、放電ガスにおける Xeの含有量を5体積%とし、封入圧力を500~80 OTorrの範囲に設定する.

【0041】(蛍光体層の形成方法について)図5は、

青色蛍光体: BaMgAlaoO17; Eu2+

最色蛍光体: BaAlızOıg! Mn又はZn2SiO4: Mn (Y_xGd_{1-x}) BO₃ : E u³⁺Xl2YBO₃ : E u³⁺ 赤色蛍光体:

ノズルの目づまりや粒子の沈殿を抑制するために、蛍光 体インキに用いる板状蛍光体粒子の平均板径は6μm以 下とするのがよい。また、蛍光体が良好な発光効率を得 るために、蛍光体の平均板厚O.1μm~2μmとする のがよい、又、蛍光体粒子の板状比(板径/板厚)は、 3~25が好ましい。

【0047】また、蛍光体インキの粘度は25℃で10 00センチボアズ以下(15~1000センチボアズ) の範囲内に興整することが望ましい。

[0048]添加剤としてのシリカの粒径は0.01~ 0.02 mで、添加量は1~10重量%が好ましく、 更に、分散剤を0.1~5重量%添加することが望まし 13.

【0049】ノズル24の口径は、ノズルの目詰まりを 防止するために45μm以上で、隔壁17間の滯幅Wよ りも小さく、通常は45~150μm範囲に設定するこ とが望ましい。

[0050]なお、サーバ21内では、インキ中の粒子 が沈殿しないように、サーバ21内に取り付けられた撹 拌機 (不図示) でインキが混合撹拌されながら貯蔵され

【0051】加圧ポンプ22の加圧力は、ノズル24か ら噴射されるインキの流れが連続流となるように調整す

【0052】ヘッダ23は、背面ガラス基板15上を走 査されるようになっている。このヘッダ23の走査は、 本実施の形態ではヘッダ23を直線駆動するヘッダ走査 50

蛍光体周18を形成する際に用いるインキ塗布装置20 の概略構成図である。

【0042】図5に示されるように、インキ塗布装置2 0において、サーバ21には蛍光体インキが貯えられて おり、加圧ポンプ22は、このインキを加圧してヘッダ 23に供給する。ヘッダ23には、インキ室23a及び ノズル24が設けられており、加圧されてインキ室23 aに供給されたインキは、ノズル24から連続的に嗅射 されるようになっている。

【0043】このヘッダ23は、金属材料を機械加工並 びに放電加工することによって、インキ室23aやノズ ル24の部分も含めて一体成形されたものである。

【0044】 蛍光体インキは、各色蛍光体粒子、バイン ダ、溶剤成分を必要に応じて、界面活性剤、シリカ等が 適度な粘度となるように調合されたものである。

【0045】 蛍光体インキを構成する蛍光体粒子として は、一般的にPDPの蛍光体層に使用されているものを 用いることができる。その具体例を以下に示す。 [0046]

機構 (不図示) によってなされるが、ヘッダ23を固定 してガラス基板を直接駆動してもよい。 ヘッダ23を走 査しながら、ノズル24からインキを連続的なインキ流 25 (ジェットライン) を形成するように噴射すること によって、ガラス基板上にインキがライン状に均一的に 域布される.

【0053】なお、インキ塗布装置20において、図6 に示すように、ヘッダ23に複数のノズルを設置し、各 ノズルから並行してインキを吸射しながら走査するよう な構成とするもできる(図6において、矢印Aが走査方 向)、このように複数のノズル24を設ければ、1回の 操作で複数のインキのライン25を塗布することができ

【0054】このようにして、インキ塗布装置20によ る蛍光体インキの塗布は、背面ガラス基板15上を隔壁 17に沿って、赤、青、緑の各色ごとに行う。そして、 赤、緑、青の蛍光体インキを順に所定の溝に塗布して乾 燥した後、パネルを焼成(約500℃で10分間)する ことによって、蛍光体層18が形成される。

【0055】このように、蛍光体層18は、従来のイン キジェット法のようにインキが液滴となって整布される のではなく、インキが連続的に途布されて形成されたも のなので、層の厚さが均一的である。

【0056】尚、このようなインキ塗布装置において、 1つのヘッダに赤、青、緑の3つのインキ室及び各色の ノズルを設けて、3色の蛍光体インキを並行して噴射す るような構成にすれば、一回の走査で3色の蛍光体イン

30

特開平11-144625

10

キを塗布することもできる。

【0057】次に、蛍光体層に用いる蛍光体について説明する。本実施の形態で用いる蛍光体は、組成は従来から用いられている金属酸化物からなるもので、各色蛍光体の具体的な組成としては、青色蛍光体には、BaMgAl10O17を結晶骨格とし、付活剤として所定量の酸化ユーロビウムEu2O3が含有されたBaMgAl10O17: Eu2*を、赤色蛍光体には、YBO3を結晶骨格とし、付活剤として所定量のEu2O3が含有されたYBO3: Eu3*を、緑色蛍光体には、Zn2SiO4を結晶骨格とし、付活剤として所定量のMn2O3が含有されたZn2SiO4: Mn2*を挙げることができる。

9

【0058】又これらの蛍光体を従来より、板状比(板径と板厚の比)の大きな(偏平な)蛍光体を用いる。 【0059】このように板状比の大きな蛍光体を用いることによって、各セルの蛍光体層の被覆率が高まるために放電による紫外線の吸収効率が向上し、バネル輝度の向上を図ることが出来る。前記蛍光体は、従来の場合より比較的高い温度でしかも短時間で焼成することによって蛍光体粒子の板厚方向の結晶成長を抑えることによって揺られる。

【0060】又YBOs, YGdBOs等の赤色蛍光体の場合はY2(OH)s等の水酸化物を出発原料にしたり水熱合成方法(高温高圧合成法)によっても、板状の粒子の作成が可能となる。

【0061】平均板径及び、平均板厚の範囲を限定するのは、平均板径が0.3μm未満の場合や、平均板厚が0.1μm以下の場合は、粒子が細かすぎるために蛍光体粒子同志が凝集してしまい、各粒子において紫外線の吸収が複接する粒子によって阻害され、吸収量が低下するからである。また、この程度粒子径が小さいものになると結晶構造が十分に形成されていないものが多くなるので、蛍光体斑度が十分に得られない傾向があるからでもある。

【0062】尤も、蛍光体層を形成する際に用いる蛍光体粒子を分散させる溶剤等のマトリックスを工夫することによってある程度は、蛍光体粒子の凝集を抑制することは可能と考えられ、その場合には、更に小さな径で板状比が大きな蛍光体粒子を用いることができると考えられる。

【0063】本実施の形態で用いる各色蛍光体は、以下のようにして作製させる。青色蛍光体は、まず、原料として炭酸バリウム(BaCos)、炭酸マグネシウム(MgCOs)、酸化アルミニウム(α-Al2Os)をBa、Mg、Alの原子比で1対1対10になるよう配合する。次に、この退合物に対して、所定量の酸化ユーロビウム(EuaOs)を添加する。そして、適量のフラックス(AlFa、BaCla)と共にボールミルで混合し、1400℃~1650℃で所定時間(例えば、0.5時間)、弱量元性雰囲気(Ha、Na中)で焼成後、こ

れをふるい分けして得る。

【0064】板状比を変えるのには、焼成温度H2とN2 の流量比焼成時間を変えることによって行う。

【0065】赤色蛍光体は、原料として水酸化イットリウムYz(OH) まる では、 は、 この混合物に対して、所定量の酸化ユーロビウム (Eu2Os)を添加し、 適量のフラックスと共にボールミルで混合し、空気中1200~1450ででが定時間 (例えば、1時間) 焼成した後、これをふるい分けして上記粉体が得る。

【0066】緑色蛍光はは、原料として酸化亜鉛(ZnO),酸化症素(SiO₂)をZn、Siの原子比で2対1になるよう配合する。次に、この混合物に対して所定量の酸化マンガン(Mn₂O₂)を添加し、ボールミルで混合後、空気中1200℃~1350℃で所定時間(例えば、0.5時間)焼成し、これをふるい分けして得る。

【0067】なお、上記板径や板厚は、粉体を電子顕微 鏡にて観察した値である。6角板状の青色、緑色蛍光体 と比べて赤色蛍光体は、結晶系が立方晶系であるため、 板状比はやや小さくなる。従って、赤色蛍光体について は板系やや小さく設定する必要がある。又板状比を変え るには焼成温度、焼成時間を変えて行う。

【0068】なお、上記のように全色について板状比の 大きなものを用いることが望ましいが、蛍光体の一色だ けで又は2色だけ適用することも可能である。

【0069】例えば、青色蛍光体に板状比が大きいものを用い、従来の球状赤色、緑色蛍光体と組み合わせることによっても、パネル輝度の向上を図ることが可能である。

【0070】これは、従来のPDPにおいては、通常、 青色蛍光体が最も輝度が得られ難い実情から、赤色、緑 色蛍光体圏の協布量を少なくしたり、シリカなどの添加 剤を加えるなどして当該蛍光体圏の輝度を低く設定し白 バランスを採っていたため、パネル輝度は、青色蛍光体 の輝度に制約されざるをえなかったが、この青色蛍光体 の輝度の向上が実現されることで、その制約が解除され るからである。

【0071】従って、本発明により青色蛍光体の輝度向上を実現した意義は大きいと言える。

【0072】また、上記蛍光体層はインクジェット法による蛍光体層である。この方法の場合、比較が粘度の低いインキを用いるので、特に従来のように球状で粒径の大きな蛍光体では沈降しやすく蛍光体を隔壁側面に塗布するのは困難であったが、本実施の形態のように小さい粒径で板状比の大きな蛍光体は、インキ中での蛍光体粒子の沈降が少ないため、蛍光体を隔壁側面に塗布することが可能となり、蛍光体の被覆率の向上とあわせて輝度向上が可能となる。

50 【0073】最後に板状の蛍光体粒子を使用すること

(07)

特開平11-144625

12

と、低粘度のインキを使用することにより隔壁内に蛍光 体インキを注入後の乾燥工程で、板状粒子が積み重なっ て薄い蛍光体膜厚でも完全に隔鏡側面は、底部を被覆で きるため蛍光体の総量を少なくすることが出来、パネル のコストダウンにも寄与できる。

11

【0074】 【実施例】 (実施例1~7及び比較例8~10)

【0075】 【表1】

労光体の作成条件

	青色萤光体(Ba _{i-X} Eu _X MgAi _N O ₁₇)					赤色堂光体(Y ₁₋₁ 61 ₁₂ 80 ₃)						最色量光体【(Zn _{+x})/m _x)。SiO ₄ 】							
軟料 番号	記の量 X (原子比)	強盟 設 題	報覧を	H _y /N _y ガス の比	の発表を表現が	克斯	Ht.	B)の量 X (原子比)	東京 温度 (C)	施武 時間 (hour)	它 熟板 包裹体	を存むる	比		類 整 密 記	換成 時間 (hour)	平均在下	平板 山	比
1	0.03	1400	0.5	0.05	0.3	0.1	3	0.05	1200	1.0	0.5	0.2	2.6	0.gt	1200	0.5	0.3	0.1	3.0
2	0.05	1450		0.1	1.0	0.15	7		1250	4	1.0	Q.2	5.0	•	1250	1.0	1,0	0.2	5.0
3	0.10	1500	•	0.15	2.0	0.2	10	0.10	1300	•	2.0	0.5	4.0	0.02	1300	0.5	2.0	0.2	10.0
4	0.15	1550	0.4	tr .	4.0	0.2	20	•	1400	0.5	3,0	0.4	7.5	*	1,350	0.3	3.0	0.15	20.0
5	0.25	1600	0.3	•	6.0	0.24	25	0.15	1450	E.0	3.0	0.2	15.0	0.05	1350	0.5	4.0	0.5	0.8
6	0.10	1600	1.5	0.1	5,0	1	5	ı	•	2.0	4.0	1.5	2.7	•	-	2.0	6.0	2.0	3.0
7	0.16	1650	2.0	0,2	6.0	2	3	*	A	3.0	5.0	2.0	2.5	•		7	•	•	
8"	0.15	1400	4.0	0.15	3.0	2	1.5	,	8	2.0	4.0	1.5	2.7		•	•	•	R	•
9,		1650	3.0	0.1	7.0	3	2.3	0.1	1300	0.5	3.0	0.4	7.5	0.02	1300	0.5	2.0	0.2	10.0
10*	,	*	•	•	ď	4	•	,		•		•	•		В	•		*	۳

試料番号No.8~10过比较例

[0076]

【表2】 蛍光体インキの作成条件

此料 學号	放電ガス ・の 組成	機能の建築と 組成比 (重量3)	溶剤の種類と 組成比 (重重3)	分数剤の種類と 組成比 (重量的	シリカの粒径(μm)と 重量比 (度量的	インキの粘度 センチボイズ (CP)
]	34	エチルセルロース* 6	α	なし	0.01 μ m 1.0	15
2	40	アクリル樹脂 10	α	なし	0.D2 μ m 0.05	200
3	57	エチルセルロース 4	プチルカーヒトール 39	タッセリルトリオレエート 1	なし	1000
4	35.9	<i>1544</i> 10-1 3	プラルカーセトール 60	グタセタルトタオレエート 0.1	なし	100
5	50	アクリル樹脂 10	c → サービネオール 40			300
6	· 35	エチルセルロース* 5	α−ナービネオール 61	な し	4	30
7	a	•	e e	•	н	,
8*	,	u	Ħ		,	,
9*	•				u	,
10"	,		Ų		,	

^{*} 此科音号No.8~10は比較例

13					(08)				椈	栗平 :	l 1 -	-144625 14
•	期色隔壁と白色隔壁の比(上部/下部)	1/5	1/10		1/6	1/10	U	7	2	ž.	0	
隔壁の作成条件	開色編建の原料 (上部)	軽化か ロム(C ₂₃ O ₃)	ナルミナ・チタニア (Al ₂ O ₃ +TiO ₂)	Cro3+CoO(酸化コペルト)	Cr ₂ Oy+MnO ₂ 〈政化マンガン〉+ C ₀ O	Cyo,+FeyO,(酸化肽)	アルミナ・チタニア (Al ₂ O ₃ +TiO ₈)	•	Ŀ	B.	74	
	放電ガスの組成	アルミナ(AlgOg)		£ E	ø	17	ジリコン (ZO2)	スピネル (MgO・Al2O ₃)	アルミナ (AlgO3)	ď	ď	
	李 李	1	7	3	4	5	9	7	*∞	*6	10	
						[3	[4]					

[0078]

P. 12

(09)

特開平11-144625

16

15

ペネルの作成条件および特性

XX 哲子	放電ガスの組成	数電ガス圧 (Torr)	輝度 (cd/m²)	ベキルの コントラスト
1	Ne - Xe (5%)	500	540	450:1
2		500	660	,
3 .	•	800	580	430 : 1
4		500	690	420 : 1
5	•	,	665	•
6	,	b c	570	
1	•	ų	530	450 : 1
6"	•	•	420	430:1
g*			410	,
10°			425	250 : 1

【0079】試料No. 1~7のPDPは、前配実施の 形態に基づいて作製した実施例に係るPDPであって、 焼成温度焼成時間ガス流量比を変えることで板径、板 厚、板状比及び粒子径の異なる蛍光体を形成し、加える 付活剤の課度を種々の値に設定したものである。

【0080】試料No. 1~7のPDPは順に各蛍光体 の焼成温度をより高くして、平均板径を大きく設定して ある。又平均板厚は、焼成時間を短かくすることによっ て小さく設定してある。付活剤の濃度は、各色での濃度 範囲においては、輝度に対する影響を少なかった。

【0081】なお、前記各PDPにおいて誘電体ガラス 層の厚みは20μm、MgO保護圏の厚みは0.5μ m、放電電極の電極電距離はO.08mmに設定した。 【0082】試料No. 8~10のPDPは、比較例に 係るPDPである。試料No. 8~10のPDPは、青 色蛍光体粒子の焼成温度と焼成時間をコントロールする ことによって板状比を小さく設定している。それら特徴 的な点以外は、前記試料No.7のPDPと同様の設定 にしてある.

【0083】又インキの組成はノズルから蛍光体インキー を連続的に噴射出来るように粒径や板状比に応じて、樹 腊や溶剤又は分散剤等を組み合せ、インキの粘度を調整 してあり、インキの粘度が15センチポイズ~1000 センチボイズの間で良好な塗布形状(隔壁側面にも蛍光 体層が形成出来る)の蛍光体膜が得られた。

【0084】又溶射法の隔壁作製において、白色のアル ミナ (A12O3) やジリコン (ZrO2) スピネル(Mg O・A 12O3) だけを用いても高い輝度が得られるが、 白色の隔壁の上部に酸化クロム(Cr2O3)やAl2O3 +TiOz, CoO, MnOz, FezOs等の黒色の隔壁 材料を設けることで(試料No.1~9) パネルのコン トラストが牧良できる。

【0085】また、試料No. 1~10の各PDPにつ いて、パネルの輝度を、放電維持電圧が150℃、周波 数が30KHzの放電条件下で測定した。この結果を前 記表4に併記する.

【0086】なお、各PDPにおいて、各色の発光層は 発光時にパネルの白バランスが取れるように規定してあ り、全面白色点灯で輝度を測定した。

【0087】 コントラストはパネルが点灯していない時 としている時とでの輝度比を暗室で測定した。

【0088】試料No. 1~7のPDPおよび試料N o、8~10のPDPの結果を比較して明らかなよう に、特に青色の板径がO・3μm~6μmで、板厚が 0. 1 µm~2 µmで板状比が3~25の範囲にある場 合の方が輝度の向上が大きい。

【0089】尚、試料No. 9, 10では青色の板状比 が小さいために青色の輝度が低く、したがって赤色、緑 色の蛍光体の板状比が7.5,10と大きくても、パネ ルの白パランス (色温度900度に設定)を取ると青色 の輝度が律則となってしまいパネルの輝度向上に役立た なくなるためである。又、隔壁材料の上部に黒色の材料 を用いた試料No. 1~9は、すべて白色材料を用いた 試料No. 10よりコントラストが向上していることが わかる。

[0090]

【発明の効果】以上述べてきたように、本発明のプラズ マディスプレイパネルは、一対の平行に配されたブレー トの間に、電極及び複数色の蛍光体層とが配設され、ガ ス媒体が封入された放電空間が形成され、放電に伴って 髪外線を発し、前記蛍光体層で可視光に変換することに よって発光するプラズマディスプレイパネルであって、 少なくとも一色の蛍光体層を構成する蛍光体粒子の板状 此が3以上であることを特徴とする。

【0091】このように、板状比が3以上と従来よりも 极状比の大きな蛍光体粒子で蛍光体層を構成することに よって、蛍光体層の紫外線を吸収する効率の向上を図 り、バネルの輝度向上を実現する。

【0092】ここで、前記蛍光体粒子の平均板径を0. 3μm~6μmに規定することで板状比が大きく前記効 果を招来させるような蛍光体粒子を合理的に得ることが できる。

50

特別平11-144625

18

17

【0093】又さらにこのような板状比が3以上の個平 で微少な蛍光体を用いることおよびこの粒子をインクジ ェット法(インクを連続的に細管から境出させる方法) によって、上部が黒色をした隔壁内部に途布することに よって高輝度で高コントラストなパネルが得られる。

【図面の簡単な説明】

【図1】本発明の一実施の形態に係る交流面放電型PD Pの機略断面図

【図2】本発明の一実施の形態に係るPDPの概略駆動 ブロック図

【図3】溶射法による隔壁の形成方法を示す図

【図4】 プラズマ溶射を示す図

【図5】本実施の形態で、放電電極、アドレス電極及び 蛍光体層を形成する際に用いるインキ途布装置の概略構

【図6】上記インキ塗布装置の一例を用いた充填動作を 示す斜視図

【図7】 従来の交流型のプラズマディスプレイパネルの

医面侧

【符号の説明】

- 11 前面ガラス基板
- 12 放電電極
- 13 誘電体ガラス層
- 14 保護層
- 15 背面ガラス基板
- 16 アドレス電極
- 17 隔壁
- 10 18 蛍光体層
 - 19 放電空間
 - 81 ドライフィルム
 - 82 フォトマスク
 - 83 紫外光(UV)
 - 84 プラズマ溶射膜
 - 90 プラズマ溶射装置
 - 91 陰極
 - 92 陽極

(図1)

【図2】

【図6】

【図5】

