FCC REPORT

Applicant: Nexpro International Limitada

Address of Applicant: Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del

Bufete Facio Y Canas

Equipment Under Test (EUT)

Product Name: 3G smartphone

Model No.: WINK

FCC ID: ZYPWINK

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Aug., 2014

Date of Test: 29 Aug., to 03 Nov., 2014

Date of report issued: 04 Nov., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	04 Nov., 2014	Original

Luna Gao
Report Clerk Prepared by: Date: 04 Nov., 2014

Reviewed by: 04 Nov., 2014 Date:

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	C	OVER PAGE	1
2	V	/ERSION	2
3		CONTENTS	
4	Т	EST SUMMARY	4
5	C	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	T	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	_	5.9.1 Conducted Emission Method	
	6.10		_
		5.10.1 Conducted Emission Method	
	•	5.10.2 Radiated Emission Method	
7	T	EST SETUP PHOTO	59
8		EUT CONSTRUCTIONAL DETAILS	٤n
J		.01	00

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Nexpro International Limitada
Address of Applicant:	Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del Bufete Facio Y Canas

5.2 General Description of E.U.T.

Product Name:	3G smartphone
Model No.:	WINK
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-4.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1600mAh
AC adapter:	Input: AC 100-240V 50/60Hz 0.2A Output: DC 5.0V, 500mA

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	Aug 23 2014	Aug 22 2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Apr 19 2014	Apr 19 2015			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Apr 19 2014	Apr 19 2015			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015			
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015			
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015			
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015			
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015			
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015			
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015			
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015			
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015			
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Apr 19 2014	Apr 19 2015			
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015			
18	Loop antenna	Laplace instrument	RF300	EMC0701	Apr 01 2014	Mar. 31 2015			
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 29 2014	May. 28 2015			
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Apr 19 2014	Apr 19 2015			

Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	Oct 10 2012	Oct 09 2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Apr 10 2014	Apr 09 2015				
3	LISN	CHASE	MN2050D	CCIS0074	Apr 10 2014	Apr 10 2015				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is -4.5 dBi.

6.2 Conducted Emissions

T .D	F00 D 145 0 0 11 45 007							
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.4:2003							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swe	ep time=auto						
Limit:	Francisco de la Contraction (NALLE)	Limit (c	dBuV)					
	Frequency range (MHz) Quasi-peak Average 66 to 56* 56 to 46*							
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm of	f the frequency.						
Test setup:	Reference Plane	•						
	AUX Filter AC power Equipment E.U.T Equipment E.U.T Equipment Receiver Remark: E.U.T Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m							
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Bluetooth (Continuous transmittir	ng) mode						
Test results:	Pass	<u>.</u>						

Measurement Data

Line:

Trace: 7

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 734RF Condition

Job No.

EUT : 3G smartphone : Wink Model Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Wendell

Remark

iomar n	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu∜	dB	
1	0.150	36.64	0.27	10.78	47.69	66.00	-18.31	QP
1 2 3	0.150	23.94	0.27	10.78	34.99	56.00	-21.01	Average
	0.365	26.93	0.27	10.73	37.93	58.61	-20.68	QP
4	0.373	14.85	0.28	10.73	25.86	48.43	-22.57	Average
4 5	0.454	13.77	0.29	10.74	24.80	46.80	-22.00	Average
6 7	0.759	26.37	0.23	10.80	37.40	56.00	-18.60	QP
7	0.759	14.78	0.23	10.80	25.81	46.00	-20.19	Average
8 9	0.943	27.19	0.24	10.85	38.28	56.00	-17.72	QP
9	1.970	31.44	0.26	10.96	42.66	56.00	-13.34	QP
10	2.249	17.02	0.26	10.95	28.23	46.00	-17.77	Average
11	2.409	20.16	0.27	10.94	31.37	46.00	-14.63	Average
12	2.554	41.74	0.27	10.94	52.95	56.00	-3.05	QP

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

Job No. : 734RF EUT : 3G smartphone Model : Wink

Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Wendell

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
0.150	35.96	0.25	10.78	46.99	66.00	-19.01	QP
0.150	20.75	0.25	10.78	31.78	56.00	-24.22	Average
0.654	15.70	0.20	10.77	26.67	46.00	-19.33	Average
0.658	27.62	0.20	10.77	38.59	56.00	-17.41	QP
0.731	14.11	0.18	10.78	25.07	46.00	-20.93	Average
0.958	28.58	0.21	10.86	39.65	56.00	-16.35	QP
1.236	28.01	0.24	10.90	39.15			
1.680	13.37	0.27	10.94	24.58	46.00	-21.42	Average
1.762	30.10	0.28	10.94	41.32	56.00	-14.68	QP
2.273	20.55	0.29	10.95	31.79	46.00	-14.21	Average
2.540	42.19	0.29	10.94	53.42	56.00	-2.58	QP
2.540	21.84	0.29	10.94	33.07	46.00	-12.93	Average
	Freq 0.150 0.150 0.654 0.658 0.731 0.958 1.236 1.680 1.762 2.273 2.540	Read Freq Level MHz dBuV 0.150 35.96 0.150 20.75 0.654 15.70 0.658 27.62 0.731 14.11 0.958 28.58 1.236 28.01 1.680 13.37 1.762 30.10 2.273 20.55 2.540 42.19	Read LISN Level Factor MHz dBuV dB 0.150 35.96 0.25 0.150 20.75 0.25 0.654 15.70 0.20 0.658 27.62 0.20 0.731 14.11 0.18 0.958 28.58 0.21 1.236 28.01 0.24 1.680 13.37 0.27 1.762 30.10 0.28 2.273 20.55 0.29 2.540 42.19 0.29	Read LISN Cable Level Factor Loss MHz dBuV dB dB	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.150 35.96 0.25 10.78 46.99 0.150 20.75 0.25 10.77 31.78 0.654 15.70 0.20 10.77 26.67 0.658 27.62 0.20 10.77 38.59 0.731 14.11 0.18 10.78 25.07 0.958 28.58 0.21 10.86 39.65 1.236 28.01 0.24 10.90 39.15 1.680 13.37 0.27 10.94 24.58 1.762 30.10 0.28 10.94 41.32 2.273 20.55 0.29 10.95 31.79 2.540 42.19 0.29 10.94 53.42	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.150 35.96 0.25 10.78 46.99 66.00 0.150 20.75 0.25 10.78 31.78 56.00 0.654 15.70 0.20 10.77 26.67 46.00 0.658 27.62 0.20 10.77 38.59 56.00 0.731 14.11 0.18 10.78 25.07 46.00 0.958 28.58 0.21 10.86 39.65 56.00 1.236 28.01 0.24 10.90 39.15 56.00 1.236 28.01 0.24 10.90 39.15 56.00 1.680 13.37 0.27 10.94 24.58 46.00 1.762 30.10 0.28 10.94 41.32 56.00 2.273 20.55 0.29 10.95 31.79 46.00 2.540 42.19 0.29 10.94 53.42 56.00	Read LISN Cable Limit Over Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dBuV dB 0.150 35.96 0.25 10.78 46.99 66.00 -19.01 0.150 20.75 0.25 10.78 31.78 56.00 -24.22 0.654 15.70 0.20 10.77 26.67 46.00 -19.33 0.658 27.62 0.20 10.77 38.59 56.00 -17.41 0.731 14.11 0.18 10.78 25.07 46.00 -20.93 0.958 28.58 0.21 10.86 39.65 56.00 -16.35 1.236 28.01 0.24 10.90 39.15 56.00 -16.85 1.680 13.37 0.27 10.94 24.58 46.00 -21.42 1.762 30.10 0.28 10.94 41.32 56.00 -14.68 2.273 20.55 0.29 10.95 31.79 46.00 -14.21 2.540 42.19 0.29 10.94 53.42 56.00 -2.58

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

mododi omont Bata	neasurement Data			
	GFSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	5.05	21.00	Pass	
Middle	5.70	21.00	Pass	
Highest	5.64	21.00	Pass	
	π/4-DQPSK	mode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	4.42	21.00	Pass	
Middle	5.06	21.00	Pass	
Highest	5.06	21.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	4.55	21.00	Pass	
Middle	5.18 21.00		Pass	
Highest	5.06 21.00 Pass		Pass	

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)		
	GFSK	π/4-DQPSK	8DPSK
Lowest	841.68	1138.28	1178.36
Middle	841.68	1134.27	1178.36
Highest	845.69	1130.26	1174.35

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	563.79	Pass
Middle	1002	563.79	Pass
Highest	1002	563.79	Pass
	π/4-DQPSK mo	de	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	758.85	Pass
Middle	1002	758.85	Pass
Highest	1002	758.85	Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	785.57	Pass
Middle	1002 785.57 Pa		Pass
Highest	1002	785.57	Pass

Note: According to section 6.4

recerring to course	0.7	
Mode	20dB bandwidth (kHz)	Limit (kHz)
Wode	(worse case)	(Carrier Frequencies Separation)
GFSK	845.69	563.79
π/4-DQPSK	1138.28	758.85
8DPSK	1178.36	785.57

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

•	,			
Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12768		
GFSK	DH3	0.26736	0.4	Pass
	DH5	0.31424		
	2-DH1	0.12576		
π/4-DQPSK	2-DH3	0.26576	0.4	Pass
	2-DH5	0.30997		
	3-DH1	0.12960		
8DPSK	3-DH3	0.26576	0.4	Pass
	3-DH5	0.31232		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s DH1 time slot=0.399*(1600/ (2*79))*31.6=127.68ms DH3 time slot=1.671*(1600/ (4*79))*31.6=267.36ms DH5 time slot=2.946*(1600/ (6*79))*31.6=314.24ms

2-DH1 time slot=0.393*(1600/ (2*79))*31.6=125.76ms

2-DH3 time slot=1.661*(1600/ (4*79))*31.6=265.76ms

2-DH5 time slot=2.906*(1600/ (6*79))*31.6=309.97ms

3-DH1 time slot=0.405*(1600/ (2*79))*31.6=129.60ms

3-DH3 time slot=1.661*(1600/ (4*79))*31.6=265.76ms

3-DH5 time slot=2.928*(1600/ (6*79))*31.6=312.32ms

Test plot as follows:

11.OCT.2014 21:26:33

2-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	9 and 15.205					
Test Method:	ANSI C63.4: 20	03						
Test Frequency Range:	2.3GHz to 2.5G	Hz						
Test site:	Measurement D	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ency	Limit (dBuV/		Remark			
	Above 1	GHz	54.0 74.0		Average Value Peak Value			
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier							
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable 5. The test-recesspecified Ba 6. If the emission limit specified EUT would be 10dB margin.	B meter cambine position of the position of the set 3 meters of th	er. The table whe highest races away from the ted on the toped from one maximum value arizations of the tuned to heighed from 0 deem was set to Pea Maximum Hole EUT in peaking could be stop therwise the early and the ted from 0 deem was set to Pea Maximum Hole EUT in peaking could be stop therwise the early set in the ted from 0 deem was set to Pea Maximum Hole EUT in peaking could be stop the ted from 0 deem was set to Pea Maximum Hole EUT in peaking could be stop the ted from 0 deem was set to Pea Maximum Hole EUT in peaking t	was rotated diation. The interference of a variable of the field one antenna was arrangents from 1 regrees to 360 at Detect Full Mode. The mode was apped and the missions the one using process to 360 at Detect Full Mode.	le-height antenna r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters d degrees to find the unction and lodB lower than the he peak values of the hat did not have beak, quasi-peak or			
Test Instruments:	Refer to section							
Test mode:	Non-hopping m	ode						
Test results:	Passed							

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Jobi NO. : 734RF

EUT : 3G Smart phone Model : WINK Test mode : BT-DH1-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Colin

000	ReadAnte Freq Level Fac								
	MHz	dBuV	$\overline{-dB}/\overline{m}$	āB	ā <u>ā</u>	$\overline{dB}\overline{uV/m}$	dBuV/m	āB	
1 2	2390.000 2390.000					52.27 40.65			Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 734RF Condition

Jobi NO.

: 3G Smart phone

: WINK Model

Test mode : BT-DH1-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Colin

	Freq		Antenna Cable Factor Loss dB/m dB						
	MHz	MHz dBuV		dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 734RF Jobi NO.

EUT 3G Smart phone

: WINK Model

Test mode : BT-DH1-H mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Colin

: 133/200CM

ReadAntenna Cable Preamp Limit Over Loss Factor Level Freq Level Factor Line Limit Remark dB dB dBuV/m dBuV/m MHz dBuV dB/m ďB 0.00 52.91 74.00 -21.09 Peak 0.00 41.19 54.00 -12.81 Average 2483.500 19.69 27.52 5.70 2483.500 7.97 27.52 5.70

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 734RF Condition

Jobi NO.

: 3G Smart phone EUT

Model : WINK
Test mode : BT-DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

	Freq	Read Level	Antenna Factor	Cable I Loss I	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	— <u>d</u> B/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483,500 2483,500								

π/4-DQPSK mode Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

734RF Jobi NO.

EUT : 3G Smart phone

: WINK Model

Test mode : BT-2DH1-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Colin

,,,,	Freq	Read					Limit Line	
	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	
	2390,000 2390,000							

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 734RF Condition

Jobi NO.

: 3G Smart phone EUT

: WINK Model

Test mode : BT-2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: Colin

Freq Level F		Antenna Factor						Remark
MHz	MHz dBuV	dB/m dB	dB	dBuV/m	dBu√/m	<u>d</u> B		
2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Jobi NO.

734RF 3G Smart phone EUT

: WINK Model

Test mode : BT-2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

1 2

Freq		Antenna Factor						
MHz	dBuV	$\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Jobi NO. : 734RF

: 3G Smart phone : WINK EUT

Model

Test mode : BT-2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

	Freq		Cable 1 Loss 1					
	MHz	dBu∇	 <u>dB</u>	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500							

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 734RF Jobi NO.

EUT : 3G Smart phone Model : WINK Test mode : BT-3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

	Freq	ReadAntenna Freq Level Factor							
	MHz	dBu₹	$\overline{-dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	2390, 000 2390, 000				0.00				Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Jobi NO. : 734RF

: 3G Smart phone : WINK EUT

Model

Test mode : BT-3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%
Test Engineer: Colin

2

: 174.4/146.3cm

Freq		Antenna Factor					Over Limit	
MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								Peak Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 734RF Jobi NO.

: 3G Smart phone EUT

: WINK Model

Test mode : BT-3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

	Freq	Read! Freq Level				Level			
	MHz	dBuV	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Jobi NO. : 734RF

: 3G Smart phone EUT

: WINK Model

Test mode : BT-3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

	Freq	ReadAnt Freq Level Fa							
	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500						74.00 54.00		

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

GFSK Lowest channel

Date: 11.0CT.2014 22:15:18

30MHz~25GHz Middle channel

Date: 11.OCT.2014 22:13:29

30MHz~25GHz Highest channel

Date: 11.0CT.2014 22:18:08

30MHz~25GHz

π/4-DQPSK Lowest channel

Date: 11.0CT.2014 22:19:17

30MHz~25GHz Middle channel

Date: 11.0CT.2014 22:20:32

Date: 11.0CT.2014 22:21:55

30MHz~25GHz Highest channel

30MHz~25GHz

8DPSK Lowest channel

Date: 11.OCT.2014 22:27:17

30MHz~25GHz Middle channel

Date: 11.0CT.2014 22:25:42

30MHz~25GHz Highest channel

Date: 3.NOV.2014 17:57:11

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Me		otion 45 00				1			
Test Requirement:	FCC Part15 C Se		y						
Test Method:	ANSI C63.4: 2003								
Test Frequency Range:	9 kHz to 25 GHz								
Test site:	Measurement Dis	stance: 3m Detecto	ı	RBW	VBW				
Receiver setup:	Frequency	Remark							
	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3MHz	Peak Value			
	7.0000	Peak 1MHz 10H							
Limit:	Frequen	су	Lim	nit (dBuV/m	@3m)	Remark			
	30MHz-88I	MHz		40.0		Quasi-peak Value			
	88MHz-216MHz 43.5 Quasi-peak								
	216MHz-960MHz 46.0 Quasi-peak V								
	960MHz-1GHz 54.0 Quasi-peak Valu								
	Above 1GHz 54.0 Average Value								
	Above 1C	74.0							
Test setup:	Below 1GHz Antenna Tower Search Antenna Table 0.8m Antenna Tower Antenna Tower								

Report No: CCIS14080073402

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 734RF Condition

Jobi NO.

EUT : 3G Smart phone

Model : Wink Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

	Freq		Antenna Factor						
	MHz	dBu∇	-dB/m		<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	34.037	35.32	12.31	0.47	29.96	18.14	40.00	-21.86	QP
2	119.018	36.01	10.69	1.12	29.40	18.42	43.50	-25.08	QP
2 3 4 5 6	144.335	42.70	8.22	1.29	29.25	22.96	43.50	-20.54	QP
4	192.419	33.24	10.56	1.37	28.88	16.29	43.50	-27.21	QP
5	262.896	36.38	12.17	1.66	28.52	21.69	46.00	-24.31	QP
6	945.440	36.72	21.40	3.44	27.74	33.82	46.00	-12.18	QP

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Jobi NO. : 734RF

: 3G Smart phone : WINK EUT

Model Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin

	Freq		Antenna Factor						Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	90.855	47.52	12.07	0.91	29.57	30.93	43.50	-12.57	QP
2	181.920	37.99	9.84	1.36	28.96	20.23	43.50	-23.27	QP
2 3 4 5	325.596	34.01	13.59	1.86	28.51	20.95	46.00	-25.05	QP
4	400.432	38.23	15.10	2.12	28.78	26.67	46.00	-19.33	QP
5	547.098	34.23	17.51	2.53	29.09	25.18	46.00	-20.82	QP
6	945.440	36.48	21.40	3.44	27.74	33.58	46.00	-12.42	QP

Above 1GHz:

Test channel:			Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.71	31.53	8.90	40.24	46.90	74.00	-27.10	Vertical
4804.00	46.30	31.53	8.90	40.24	46.49	74.00	-27.51	Horizontal
Te	st channel	:	Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	26.20	31.53	8.90	40.24	26.39	54.00	-27.61	Vertical
4804.00	27.39	31.53	8.90	40.24	27.58	54.00	-26.42	Horizontal

Test channel:			Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	48.08	31.58	8.98	40.15	48.49	74.00	-25.51	Vertical
4882.00	46.04	31.58	8.98	40.15	46.45	74.00	-27.55	Horizontal
Test channe	l:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	28.87	31.58	8.98	40.15	29.28	54.00	-24.72	Vertical
4882.00	26.39	31.58	8.98	40.15	26.80	54.00	-27.20	Horizontal

Test channel:		Highest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.99	31.69	9.08	40.03	46.73	74.00	-27.27	Vertical
4960.00	46.58	31.69	9.08	40.03	47.32	74.00	-26.68	Horizontal
Test channe	Test channel:		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	25.49	31.69	9.08	40.03	26.23	54.00	-27.77	Vertical
4960.00	28.79	31.69	9.08	40.03	29.53	54.00	-24.47	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.