Prof. Pedram Jahangiry Utah State University: Huntsman School of Business

Machine Learning Type	Model	Model Type and use case	Description	Pros	Cons	Hyperparameters
Supervised	Linear regression	Linear - Parametric Used for regression only	Finds the "best fit" through all the data points	highly interpretable (giving significancy results) very fast training because of closed form solution no hyperparameter tuning required	- validity of linear regression assumptions - cannot capture complex relationships	none
	Polynomial regression	Linear - Parametric Used for regression only	Extending linear regression model to capture non-linearities	 interpretable for low values of d (giving significancy results) Can capture polynomial relationships 	- need to choose the right polynomial degree - notorious tail behavior (sensitive to outliers)	d: degree of polynomial
	Penalized regression: Ridge, LASSO and Elastic Net	Linear - Parametric	Linear method that penalizes irrelevant features using regularization L1 regularization: LASSO	- Can be used for feature selection (reducing the dimension of the feature space)	- Requires feature scaling	penalty (how much to penalize the parameters)
		Used for regression only	L2 regularization: Ridge combining L1 and L2: Elastic net	- interpretable		L1 ratio: ration between L1 and L2 regularization
	Logistic regression	Linear - Parametric	Basically the adaptation of linear regression to classification problems.	- probabilitsite model (the outputs are probabilities)	- validity of linear regression assumptions	- the same as penalized regression if regularization is used
		Used for classification only		 highly interpretable (giving significancy results) easy to understand fast and efficient 	- sensitive to extreme values - cannot capture complex relationships	
	KNN	Non-linear - Non-parametric Used for both regression and classification	Make prediction for a new observation by finding similarities ("nearness") between it and its k nearest neighbors in the existing dataset.	Intuitive and simple Easy to implement for multi class problem Few parameters/hyper parameters No assumption (non parametric)	- Choice of K - Slow (memory based approach) - Curse of dimensionality - Hard to interpret - Requires feature scaling - Not good with multiple categorical features	- K value - distance metrics
	SVM	Kernel basis (non-linear) Linear SVM is parametric Kernel SVM is non-parametric Used for both regression and classification	Uses a kernel to transform the feature space to linearly separable boundaries	- SVM can be memory efficient! uses only a subset of the training data (support vectors)	- Requires feature scaling	- Kernel: linear, rbf, poly,
				- Can handle non linear data sets - Can handle high dimensional spaces (even when D>N)	- No probability outcome! - Does not perform well with noisy data	- C: Cost of misclassification - Gamma (for rbf): how far the influence reach
				- Linear SVM are not very sensitive to overfitting (soft margin; regularization)	- Limited interpretability (specially for Kernel SVM)	- d (for poly): degree of polynomial
				- Can have high accuracy (even compared to NN)	- Memory intensive: Long training time when we have large data sets.	
	Decision Trees	Tree-based (non-linear) Non-parametric Used for both regression and classification	data groups based on a descriptive feature,	-Easy to interpret and visualize	- Sensitive to noisy data. It can overfit noisy data. Small variations in data can result in the different decision tree	- Max tree depth, min samples per leaf (node), min samples split
				 Can easily handle categorical data without the need to create dummy variables 	- Can lead to overfitting	- Cost complexity alpha
				- Can easily capture Non linear patterns - Can handle data in its raw form (no preprocessing needed).	- Poor level of predictive accuracy	- Criterion: gini/entropy/
				No assumption (non parametric) Can handle colinearity efficiently		
	Random Forest	Ensemble method (non-linear) Non-parametric		All the advantages of Decision Trees + - Typically more accurate	- no interpretability - complexity	DTs parameters + - m: subset of features
				- Avoid overfitting by reducing the model variance.	- many hyper parameters	- B: number of bootstrapped trees
		Used for both regression and classification		 very flexible and parallelizable! No data preprocessing (no feature scaling) Great with high dimensionality 	- slow on large data sets	
	Boosting (XGboost)	Ensemble method (non-linear) Non-parametric	- Implements boosting to build decision trees of weak prediction models and generalizes using a loss function.	All the advantages of Random Forests + - Regularization for avoiding overfitting - Efficient handling of missing data	- no interpretability - many hyper parameters	RF parameters + - Regularization terms
		Used for both regression and classification		- Enrecent nanoring of missing data In-built cross validation capability - Cache awareness and out-of-core computing - Tree pruning using depth-first approach - Parallelized tree building		

Prof. Pedram Jahangiry
Utah State University: Huntsman School of Business

Machine Learning Type	Model	Model Type and use case	Description	Pros	Cons	Hyperparameters
Unsupervised	Principle Component Analysis (PCA)	Non- Parametirc	Principal components are vectors that define a new coordinate system in which the first axis goes in the direction of the highest variance in the data. The second PC is orthogonal to PC1 and etc.	- Dimension reduction facilitates the data visualization in two or three dimensions.	- Hard to interpret - Requires feature scaling	None
		Used for dimension reduction		- Before training another supervised or unsupervised learning model, it can be performed as part of EDA to identify patterns and detect correlations .		
				- Machine learning models are quicker to train, tend to reduce overfitting (by avoiding the curse of dimensionality), and are easier to interpret if provided with lower dimensional datasets.		
	K-Means	Cab be both Parametric and Non- Parametirc	algorithm that repeatedly partitions	- Simple to understand	- Need to choose k before running the algorithm	K: Number of clusters
				- The \boldsymbol{k} means algorithm is fast and works well on very large datasets	- Requires feature scaling	- Distance metrics
		Used for clustering the data		- Can help visualize the data and facilitate detecting trends or outliers.	- Poor performance with clusters of irregular shapes	
					- Not applicable for categorical data	
					- Unable to handle noisy data	
	Hierarchical clustering	Cab be both Parametric and Non- Parametirc	- Uses a measure of similarity to detect groups within data set: Hierarchical clustering is an iterative procedure used to build a hierarchy of clusters	the medal itself	- The choice of distance metrics and linkage methods can be tricky	- Distance metrics
		Used for clustering the data			- Requires feature scaling	- Linkage methods