VR Physics Lab using CoSpaces Edu

Assignment Overview

In this interactive assignment designed for middle and high school students, learners will use CoSpaces Edu to build a virtual reality (VR) physics lab. Students will create immersive VR environments that simulate and demonstrate key physics concepts such as gravity, motion, and forces. Instead of programming in C#, students will use block-based coding within CoSpaces or JavaScript to develop interactive elements in their simulations. They will document their design process and results in an accompanying digital project journal or website.

Learning Objectives

- Explore and demonstrate key physics concepts through virtual simulation.
- Apply computational thinking by designing interactive elements using block coding or JavaScript.
- Develop problem-solving skills through iterative design and testing.
- Collaborate with peers to refine and present their VR simulations.
- Create digital documentation that explains the physics behind the simulation.

Materials Needed

- CoSpaces Edu account (with access to MERGE Cube or VR mode)
- Computer or tablet with internet access
- Headphones and optional VR headset (for immersive testing)
- Notebook or digital tool for documenting the process (e.g., Google Docs, website builder)

Steps and Instructions

- 1. Choose a physics concept (e.g., Newton's laws, kinetic/potential energy, projectile motion).
- 2. Design a virtual scene in CoSpaces that visually and interactively demonstrates the concept.
- 3. Use block-based coding or JavaScript to make elements respond to input or simulate behavior (e.g., objects falling, bouncing, or moving).
- 4. Test the scene using MERGE Cube or VR preview.
- 5. Document your process: include concept explanation, screenshots, code snippets, and challenges faced.
- 6. Share your final project and documentation with the class or on a digital portfolio site.

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

VR Simulation Planning Table

Physics Concept	Simulation Plan	Interactivity (Code or Action)	Expected Outcome

ISTE Standards Addressed

- 1.3.d-Knowledge Constructor: Students build knowledge by actively exploring real-world issues through VR.
- 1.5.c Computational Thinker: Students develop logical solutions using block coding or JavaScript.
- 1.7.c Global Collaborator: Students contribute to group work and share their simulation with others for feedback.

Assessment Rubric – CoSpaces VR Physics Lab

Criteria	Beginning (1 Point)	Developing (2 Points)	Proficient (3 Points)
Physics	Concept is unclear or	Concept is somewhat	Physics concept is clearly
Concept	inaccurately represented	clear but lacks depth or	demonstrated, accurate,
Represent	in the simulation.	scientific accuracy.	and aligns with grade-level
ation			expectations.
Simulatio	Scene is minimal, with	Scene is complete but	Scene is immersive,
n Design	limited or no interactive	contains basic	engaging, and includes
	elements.	interactivity or minimal	interactive elements that
		visual storytelling.	reinforce the concept.
Coding &	No coding or coding is	Basic block coding or	Effective and creative use
Interactiv	incomplete or non-	JavaScript used with	of block coding or
ity	functional.	partial functionality.	JavaScript to create
			interactive elements.
Digital	Limited documentation,	Documentation	Thorough documentation
Documen	missing key elements	includes most required	with clear explanations,
tation	(e.g., explanation,	elements but lacks	visuals, and thoughtful
	screenshots, reflection).	detail or clarity.	reflections.
Collabora	Limited participation in	Moderate collaboration	Strong collaboration and
tion &	group work or sharing.	with some evidence of	active sharing or

Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Communi	peer input or shared	presentation of final
cation	effort.	project.

Total: /15