Minimum Spanning Trees

□ Problem

- Given a connected undirected weighted graph (G, w) with G = (V, E), the goal of the minimum spanning tree (MST) problem is to find a spanning tree of the smallest cost.
- How to implement Prim's algorithm in $O((|V| + |E|) \cdot \log |V|)$ time?

Let G = (V, E) be a connected undirected graph. Let w be a function that maps each edge e of G to a positive integer w(e) called the weight of e.

A spanning tree *T* is a **tree** satisfying the following conditions:

- The vertex set of T is V.
- Every edge of *T* is an edge in *G*.

The **cost** of *T* is the sum of the weights of all the edges in *T*.

The second row shows three spanning trees. The cost of the first two trees is 37, and that of the right tree is 48.

Prim's algorithm

The algorithm grows a tree T_{mst} by including one vertex at a time.

At any moment, it divides the vertex set *V* into two parts:

- The set S of vertices that are already in T_{mst} .
- The set of other vertices: $V \setminus S$.

At the end of the algorithm, S = V.

If an edge connects a vertex in V and a vertex in $V \setminus S$, we call it an **cross edge**.

Implementing Prim's algorithm

To implement the algorithm efficiently, we will **enforce the following invariant**:

• For every vertex $v \in V \setminus S$, refer to the cross edge of v with the smallest weight as the **lightest cross edge** of v and denote it as best-cross(v).

Implementing Prim's algorithm

- 1. $\{u, v\} \leftarrow$ the edge with the smallest weight among all edges.
- 2. $S \leftarrow \{u, v\}$. Initialize a tree T_{mst} with only one edge $\{u, v\}$.
- 3. Enforce our invariant:

For every vertex z of $V \setminus S$

- best-cross(z) \leftarrow the lighter edge between $\{z, u\}$ and $\{z, v\}$.
- If an edge does not exist, treat its weight as infinity.

Edge $\{a, b\}$ is the lightest of all. So, in the beginning $S = \{a, b\}$. The MST now has one edge $\{a, b\}$.

vertex $oldsymbol{v}$	best-cross and weight
а	n / a
b	n / a
С	{c, a}, 3
d	nil, ∞
е	{e, b}, 10
f	{a, f}, 7
g	{g, b}, 13
h	{a, h}, 8

Implementing Prim's algorithm

- 4. Repeat the following until S = V:
 - 5. Find a cross edge $\{u, v\}$ with the smallest weight.
 - /* Without loss of generality, suppose $u \in S$ and $v \notin S$ */
 - 6. Add v into S, and add edge $\{u, v\}$ into T_{mst} .
 - /* Next, restore the invariant. */
 - 7. Enforce the invariant again:

For every edge $\{v, z\}$ of v

If $z \notin S$ then

If best-cross(z) is heavier than edge $\{v, z\}$ then Set best-cross(z) as edge $\{v, z\}$.

Edge $\{c, a\}$ is the lightest cross edge. So, we add c to S, which is now $S = \{a, b, c\}$. Add edge $\{c, a\}$ into the MST.

vertex $oldsymbol{v}$	best-cross and weight
а	n / a
b	n / a
С	{c, a}, 3
d	nil, ∞
е	{e, b}, 10
f	{a, f}, 7
g	{g, b}, 13
h	{a, h}, 8

Restore the invariant.

vertex v	best-cross and weight
а	n/a
b	n/a
С	{c, a}, 3 => n / a
d	nil, ∞
е	{e, b}, 10
f	${a, f}, 7 => {c, f}, 5$
g	{g, b}, 13
h	{a, h}, 8 => {c, h}, 6

Edge $\{c, f\}$ is the lightest cross edge. So, we add f to S, which is now $S = \{a, b, c, f\}$. Add edge $\{c, f\}$ into the MST.

vertex $oldsymbol{v}$	best-cross and weight
а	n / a
b	n / a
С	n / a
d	nil, ∞
е	{e, b}, 10
f	{c, f}, 5
g	{g, b}, 13
h	{c, h}, 6

Restore the invariant.

vertex v	best-cross and weight
а	n/a
b	n / a
С	n/a
d	nil, ∞
е	{e, f}, 2
f	n / a
g	{g, b}, 13
h	{c, h}, 6

Edge $\{e, f\}$ is the lightest cross edge. So, we add e to S, which is now $S = \{a, b, c, f, e\}$. Add edge $\{e, f\}$ into the MST.

vertex $oldsymbol{v}$	best-cross and weight
а	n / a
b	n / a
С	n / a
d	nil, ∞
е	{e, f}, 2
f	n/a
g	{g, b}, 13
h	{c, h}, 6

Restore the invariant.

vertex v	best-cross and weight
а	n / a
b	n / a
С	n / a
d	{e, d}, 12
е	n / a
f	n / a
g	{g, b}, 13
h	{c, h}, 6

Edge $\{c, h\}$ is the lightest cross edge. So, we add h to S, which is now $S = \{a, b, c, f, e, h\}$. Add edge $\{c, h\}$ into the MST.

vertex v	best-cross and weight
а	n/a
b	n/a
С	n/a
d	{e, d}, 12
е	n/a
f	n / a
g	{g, b}, 13
h	{c, h}, 6

Restore the invariant.

vertex v	best-cross and weight
а	n / a
b	n / a
С	n / a
d	{e, d}, 12
е	n / a
f	n / a
g	{g, h}, 9
h	n / a

Edge $\{g, h\}$ is the lightest cross edge. So, we add g to S, which is now $S = \{a, b, c, f, e, h, g\}$. Add edge $\{g, h\}$ into the MST.

vertex v	best-cross and weight
а	n / a
b	n / a
С	n / a
d	{e, d}, 12
е	n / a
f	n / a
g	{g, h}, 9
h	n/a

Restore the invariant.

vertex v	best-cro($oldsymbol{v}$) and weight
а	n / a
b	n / a
С	n / a
d	{d, g}, 11
е	n / a
f	n / a
g	n / a
h	n/a

Finally, edge $\{d, g\}$ is the lightest cross edge. So, we add **d** to S, which is now $S = \{a, b, c, f, e, h, g, d\}$. Add edge $\{d, g\}$ into the MST.

vertex v	best-cross and weight
а	n / a
b	n/a
С	n/a
d	{d, g}, 11
е	n/a
f	n/a
g	n/a
h	n/a

We have obtained our final MST.

vertex $oldsymbol{v}$	best-cross and weight
а	n / a
b	n / a
С	n / a
d	n / a
е	n / a
f	n / a
g	n / a
h	n / a

Data structure

For a fast implementation, we need a good data structure.

Let *P* be a set of *n* tuples of the form (*id*, *weight*, *data*). Design a data structure to support the following operations:

- ✓ Find: given an integer t, find the tuple (id, weight, data) from P where t = id; return nothing if the tuple does not exist.
- ✓ Insert: add a new tuple (id, weight, data) to P.
- ✓ **Delete**: given an integer t, delete the tuple (id, weight, data) from P where t = id.
- \checkmark **DeleteMin**: remove from *P* the tuple with the smallest weight.

We can build this structure so it requires O(n) space and supports all these essential operations in $O(\log n)$ time.

Data structure

Maintain P in two binary search trees T_1 and T_2 , where the tuples are indexed on ids in T_1 , and on weights in T_2 . It supports the following operations:

- ✓ Find: search the tuple in T_1 .
- ✓ Insert: insert the new tuple into both T_1 and T_2 .
- ✓ **Delete**: first find the tuple with id t in T_1 , from which we know the weight. Now, delete the tuple from both T_1 and T_2 .
- ✓ **DeleteMin**: find the tuple with the smallest weight from T_2 (which can be found by continuously descending into left child nodes). Now we have its id t as well. Remove the tuple from both T_1 and T_2 .

Edge $\{a, b\}$ is the lightest of all. $S = \{a, b\}$.

P

13 b 13	8 9 g 5	2^f 10
3	$\frac{3}{6}$	d

vertex	weight	best-cross
С	3	{c, a}
d	∞	nil
е	10	{e, b}
f	7	{a, f}
g	13	{g, b}
h	8	{a, h}

6 (id, weight, data) insertions into P.

In general, |V| - 2 insertions in $O(|V| \cdot \log |V|)$ time.

Edge $\{c, a\}$ is the lightest cross edge. So, we add c to S, which is now $S = \{a, b, c\}$. Add edge $\{c, a\}$ into the MST.

vertex	weight (key)	best-cross
e	3	{c, a}
d	∞	nil
е	10	{e, b}
f	7	{a, f}
g	13	{g, b}
h	8	{a, h}

P

Perform DeleteMin to obtain $\{c, a\}$ in $O(\log |V|)$ time.

Restore the invariant.

•	_
	- 1
•	- 4
-	_

vertex	weight	best-cross
d	∞	nil
е	10	{e, b}
f	7 => 5	${a, f} => {c, f}$
g	13	{g, b}
h	8 => 6	{a, h} => {c, h}

For edge $\{c, b\}$, perform a find op. using the id of $b \Rightarrow b$ has no tuple in P.

For edge $\{c, a\}$, perform a find op. \Rightarrow a has no tuple in P.

For edge $\{c, f\}$, perform a find op. => f has a tuple with weight 7.

As $\{c, f\}$ is lighter, delete $(f, 7, \{a, f\})$ from P and insert $(f, 5, \{c, f\})$.

For edge $\{c, h\}$, perform a find op. \Rightarrow h has a tuple with weight 8.

As $\{c, h\}$ is lighter, delete $(h, 8, \{a, h\})$ from P and insert $(h, 6, \{c, h\})$.

Time: $O(d_c \log |V|)$ time where d_c is the degree of c.

Edge $\{c, f\}$ is the lightest cross edge. So, we add f to S, which is now $S = \{a, b, c, f\}$. Add edge $\{c, f\}$ into the MST.

vertex	weight	best-cross
d	∞	Nil
е	10	{e, b}
f	5	{c, f}
g	13	{g, b}
h	6	{c, h}

P

Perform DeleteMin to obtain $\{f, c\}$ in $O(\log |V|)$ time.

Restore the invariant.

	<i>P</i>	
vertex	weight	best-cross
d	∞	Nil
е	10=>2	{e, b}=>{e, f}
g	13	{g, b}
h	6	{c, h}

For edge $\{f, a\}$, perform a find op. using the id of $a \Rightarrow a$ has no tuple in P.

For edge $\{f, c\}$, perform a find op. \Rightarrow c has no tuple in P.

For edge $\{f, e\}$, perform a find op. => e has a tuple with weight 2.

As $\{f, e\}$ is lighter, delete $(e, 10, \{e, b\})$ from P and insert $(e, 2, \{e, f\})$.

Time: $O(d_f \log |V|)$ time where d_f is the degree of f.

Edge $\{e, f\}$ is the lightest cross edge. So, we add e to S, which is now $S = \{a, b, c, f, e\}$. Add edge $\{e, f\}$ into the MST.

	1	
vertex	weight	best-cross
d	∞	Nil
е	2	(e, f)
g	13	{g, b}
h	6	{c, h}

P

Perform DeleteMin to obtain $\{e, f\}$ in $O(\log |V|)$ time.

Restore the invariant.

vertex	weight	best-cross
d	∞ => 12	Nil => {e,d}
g	13	{g, b}
h	6	{c, h}

P

For edge $\{e, f\}$, perform a find op. using the id of f => f has no tuple in P.

For edge $\{e, b\}$, perform a find op. \Rightarrow b has no tuple in P.

For edge $\{e, d\}$, perform a find op. \Rightarrow d has a tuple with weight ∞ .

As $\{e, d\}$ is lighter, delete (d, ∞, Nil) from P and insert $(d, 12, \{e, d\})$.

Time: $O(d_e \log |V|)$ time where d_e is the degree of e.

Edge $\{c, h\}$ is the lightest cross edge. So, we add h to S, which is now $S = \{a, b, c, f, e, h\}$. Add edge $\{c, h\}$ into the MST.

	<i>P</i>	
vertex	weight	best-cross
d	12	{e,d}
g	13	{g, b}
h	6	{c, h}

Perform DeleteMin to obtain $\{c, h\}$ in $O(\log |V|)$ time.

Restore the invariant.

	<i>P</i>	
vertex	weight	best-cross
d	12	{e,d}
g	13 => 9	$\{g, b\} => \{g,h\}$

 \mathbf{D}

For edge $\{h, a\}$, perform a find op. using the id of $a \Rightarrow a$ has no tuple in P.

For edge $\{h, c\}$, perform a find op. \Rightarrow c has no tuple in P.

For edge $\{h, g\}$, perform a find op. => g has a tuple with weight 13.

As $\{h, g\}$ is lighter, delete $(g, 13, \{g, b\})$ from P and insert $(g, 9, \{g, h\})$.

Time: $O(d_h \log |V|)$ time where d_h is the degree of h.

Edge $\{g, h\}$ is the lightest cross edge. So, we add g to S, which is now $S = \{a, b, c, f, e, h, g\}$. Add edge $\{g, h\}$ into the MST.

<i>P</i>		
vertex	weight	best-cross
d	12	{e,d}
g	9	{g,h}

Perform DeleteMin to obtain $\{g, h\}$ in $O(\log |V|)$ time.

Restore the invariant.

	<i>P</i>	
vertex	weight	best-cross
d	12=>11	$\{e,d\}=>\{g,d\}$

For edge $\{g, b\}$, perform a find op. using the id of $b \Rightarrow b$ has no tuple in P.

For edge $\{g, h\}$, perform a find op. $\Rightarrow h$ has no tuple in P.

For edge $\{g, d\}$, perform a find op. \Rightarrow d has a tuple with weight 12.

As $\{g, d\}$ is lighter, delete $(d, 12, \{e, d\})$ from P and insert $(g, 11, \{g, d\})$.

Time: $O(d_g \log |V|)$ time where d_g is the degree of g.

Finally, edge $\{g, d\}$ is the lightest cross edge. So, we add d to S, which is now $S = \{a, b, c, f, e, h, g, d\}$. Add edge $\{g, d\}$ into the MST.

<i>P</i>		
vertex	weight	best-cross
d	11	{g,d}

Perform DeleteMin to obtain $\{g, d\}$ in $O(\log |V|)$ time.

We have obtained our final MST.

Total time:

$$O(|V| \cdot \log|V| + \sum_{v \in V} \log|V| + \sum_{v \in V} d_v \log|V|)$$

$$= O((2|V| + 2|E|) \cdot \log|V|)$$

$$= O((|V| + |E|) \cdot \log|V|)$$