

©Kuang

Graduate School of Information, Production and Systems 早稲田大学 大学院情報生産システム研究科

Binary Classification

A single instance (feature vector) associated with a single label.

Multi-Class Learning

A single instance (feature vector) which its classes are mutually exclusive and each sample can't belong to several classes simultaneously..

^[1]Zhang M L, Zhou Z H. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819-1837.

^[2] Chen B, Gu W, Hu J. An improved multi-label classification based on label ranking and delicate boundary SVM[C]//Neural Networks (IJCNN), The 2010 International Joint Conference on. IEEE, 2010: 1-6.

"Multi-label learning studies the problem where each example is represented by a single instance while associated with a set of labels simultaneously."[1]

^[1]Chen B, Gu W, Hu J. An improved multi-label classification based on label ranking and delicate boundary SVM[C]//Neural Networks (IJCNN), The 2010 International Joint Conference on. IEEE, 2010: 1-6.

Shôshanku no sora ni (1994) Awards

Showing all 19 wins and 37 nominations

Academy Awards, USA 1995

	Best Picture Niki Marvin				
	Best Actor in a Leading Role Morgan Freeman				
	Best Writing, Screenplay Based on Material Previously Produced or Published Frank Darabont				
Nominated Oscar	Best Cinematography Roger Deakins				
Oscar	Best Sound Robert J. Litt Elliot Tyson Michael Herbick Willie D. Burton				
	Best Film Editing Richard Francis-Bruce				
	Best Music, Original Score Thomas Newman				

Key Challenge

The key challenge of learning from multi-label data lies in the overwhelming size of output space, the number of label sets grows exponentially as the number of class labels increases.

a label space with 20 class labels

the number of possible label sets would be 2^20

Categorization of Multi-label Learning

Binary Relevance

In one-versus-rest methods, the multi-label training set is simply divided into m (the number of labels) binary class subsets.

Multi-labels Learning

A single instance associated with m labels.

A single instance associated with 1 labels.

A single instance associated with *I* labels.

. . .

A single instance associated with *I* labels.

Chen B, Gu W, Hu J. An improved multi-label classification based on label ranking and delicate boundary SVM[C]//Neural Networks (IJCNN), The 2010 International Joint Conference on. IEEE, 2010: 1-6.

m

Focus on: Accuracy, Precision, Recall and F Score

$$Accuracy = rac{tp+tn}{tp+tn+fp+fn}$$

$$ext{Precision} = rac{tp}{tp + fp}$$

$$ext{Recall} = rac{tp}{tp + fn}$$

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{eta^2 \cdot ext{precision} + ext{recall}}$$

tp: True Positive

tn: True Negative

fp: False Positive

fn: False Negative

Accuracy

$$ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

Assume, there is a data set with 99% negative samples and 1% positive Samples.

A nonsense classifier just output negative, can get a high accuracy like 99%.

Precision and Recall

$$\operatorname{Precision} = rac{tp}{tp + fp}$$

$$ext{Recall} = rac{tp}{tp + fn}$$

Graduate School of Information, Production and Systems 早稲田大学 大学院情報生産システム研究科

Precision and Recall

$$\operatorname{Precision} = rac{tp}{tp + fp}$$

$$ext{Recall} = rac{tp}{tp + fn}$$

Graduate School of Information, Production and Systems 早稲田大学 大学院情報生産システム研究科

Threshold and Ranking

Most of binary classifier calculate probability of prediction, and the classifier compare the probability with the threshold.

ROC and AUC

The ROC curve is created by plotting the **true positive rate** (TPR) against the **false positive rate** (FPR) at various threshold settings.

$$\mathrm{TPR} = \frac{\mathrm{TP}}{P} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$$

$$\text{TNR} = \frac{\text{TN}}{N} = \frac{\text{TN}}{\text{TN} + \text{FP}}$$

* AUC, Area Under the ROC Curve, a parameter to evaluate classifier.

F Score

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Equal Cost, $\beta==1$

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{eta^2 \cdot ext{precision} + ext{recall}}$$

Unequal Cost, β >1 **Recall** get higher weight, β >1 **Precision** get higher weight

	GO:0016020	GO:0005634	GO:0016021	GO:0008150	GO:0009507	GO:0046872	GO:0005886	GO:0005737	GO:0006355	GO:00167
Accuracy	0.927298	0.933888	0.960586	0.951081	0.938746	0.978371	0.930213	0.93655	0.988679	0.974527
Precision	0.951925	0.913446	0.949326	0.802923	0.763702	0.927426	0.80335	0.836555	0.947623	0.875981
Recall	0.783547	0.76247	0.864486	0.697094	0.597976	0.933005	0.535856	0.627554	0.952577	0.93062
F1-Score	0.859568	0.831158	0.904922	0.746275	0.670754	0.930207	0.642888	0.717137	0.950093	0.902475

 GO:0009570	GO:0003735	GO:0003676	GO:0006412	GO:0006508	GO:0005774	GO:0055085	GO:0005622	GO:0005618	GO:0005575
 0.969458	0.976681	0.965106	0.971274	0.970767	0.97119	0.968951	0.967979	0.971401	0.985891
 N/A	N/A								
 0	0	0	0	0	0	0	0	0	0
 N/A	N/A								

: The larger the metric value, the better algorithm performance

Example-based metrics work by evaluating the learning system's performance on each test example separately, and then returning the mean value across the test set.

Label-based metrics work by evaluating the learning system's performance on each class label separately, and then returning the macro/micro-averaged value across all class labels.

Example-based metrics work by evaluating the learning system's performance on each test example separately, and then returning the mean value across the test set.

Focus on: Subset Accuracy, Hamming Loss...

$$hloss(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{q} |h(\mathbf{x}_i) \Delta Y_i|$$

$$subsetacc(h) = \frac{1}{p} \sum_{i=1}^{p} \llbracket h(x_i) = Y_i \rrbracket$$

$$Precision_{\text{exam}}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{|Y_i \cap h(x_i)|}{|h(x_i)|}$$

$$Recall_{\text{exam}}(h) = \frac{1}{p} \sum_{i=1}^{p} \frac{|Y_i \cap h(x_i)|}{|Y_i|}$$

$$F_{\text{exam}}^{\beta}(h) = \frac{(1+\beta^2) \cdot Precision_{\text{exam}}(h) \cdot Recall_{\text{exam}}(h)}{\beta^2 \cdot Precision_{\text{exam}}(h) + Recall_{\text{exam}}(h)}$$

one-error(f) =
$$\frac{1}{p} \sum_{i=1}^{p} \mathbb{I} \left[\arg \max_{y \in \mathcal{Y}} f(x_i, y) \right] \notin Y_i$$

$$coverage(f) = \frac{1}{p} \sum_{i=1}^{p} \max_{y \in Y_i} rank_f(x_i, y) - 1.$$

$$rloss(f) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{|Y_i||\bar{Y}_i|} |\{(y', y'') \mid f(x_i, y') \}|$$

$$\leq f(x_i, y''), \ (y', y'') \in Y_i \times \bar{Y}_i\}|.$$

Label-based metrics work by evaluating the learning system's performance on each class label separately, and then returning the macro/micro-averaged value across all class labels.

$$B_{\text{macro}}(h) = \frac{1}{q} \sum_{j=1}^{q} B(TP_j, FP_j, TN_j, FN_j)$$

$$B_{\text{micro}}(h) = B\left(\sum_{j=1}^{q} TP_j, \sum_{j=1}^{q} FP_j, \sum_{j=1}^{q} TN_j, \sum_{j=1}^{q} FN_j\right)$$

$$per-classrecall = \frac{1}{C} \sum_{i=1}^{c} \frac{N_{i}^{c}}{N_{i}^{g}}$$

$$per-classprecision = \frac{1}{C} \sum_{i=1}^{c} \frac{N_{i}^{c}}{N_{i}^{p}}$$

$$overall - recall = \frac{\sum_{i=1}^{c} N_{i}^{c}}{\sum_{i=1}^{c} N_{i}^{g}}$$

$$overall - precision = \frac{\sum_{i=1}^{c} N_{i}^{c}}{\sum_{i=1}^{c} N_{i}^{p}}$$

Macro-Precision: 0.874

Macro-Recall: 0.743

Macro-F1 Score: 0.803

Macro-Accuracy: 0.969

: The larger the metric value, the better algorithm performance