CO isotopologue ratio in exoplanet atmospheres

Yapeng Zhang ¹, Ignas Snellen ¹, Alexander Bohn ¹, Paul Mollière ², Christian Ginski ³, Jens Hoeijmakers ⁴, Matthew Kenworthy ¹, Eric Mamajek ⁵,

Tiffany Meshkat ⁶, Maddalena Reggiani ⁷, Frans Snik ¹

1: Leiden Observatory 2: Max Planck Institute for Astronomy, Heidelberg 3: Anton Pannekoek Institute for Astronomy, Amsterdam 4: Lund Observatory 5: JPL, California Institute of Technology 6: IPAC, California Institute of Technology 7: Institute of Astronomy, KU Leuven

arXiv: 2107.06297 2109.11569

- □ yzhang@strw.leidenuniv.nl
- https://home.strw.leidenuniv.nl/~yzhang/

Isotope ratios in the solar system and beyond

- □ Isotopologues ratios (such as D/H, ¹²C/¹³C, ¹⁶O/¹⁸O, etc.) play an important role in understanding planet formation and evolution in the solar system.
- ☐ Searching for isotopologues in atmospheres of extra-solar planets is getting mostly feasible for ¹³CO (Mollière & Snellen 2019).
- \Box Carbon isotope ratios are found to be roughly constant (12 C/ 13 C \sim 89) in the solar system, which differs from the ratio of \sim 68 in the current local interstellar medium (Fig.1).

Figure 1 | ¹²C/¹³C ratios in solar-system objects.

¹³CO in exoplanet and brown dwarf atmospheres

Figure 2 | Panel a) VLT/SINFONI spectrum ($\lambda/\Delta\lambda\sim4500$ at the K-band) of the exoplanet YSES-1b. The colored lines show the best-fit models with or without ¹³CO opacity, obtained with Bayesian free retrieval analyses (Mollière et al. 2020). Panel e) Cross-correlation function between observational residuals and ¹³CO template, with the central peak showing the detection of ¹³CO.

We initiate the search for ¹³CO in the super-Jovian exoplanet YSES-1b (Bohn et al. 2019), and compare its carbon isotope ratio with an analogous free-floating brown dwarf 2M0355 to shed light on their formation pathways.

Figure 3 | Retrieved ¹²CO/¹³CO ratios of the exoplanet and brown dwarf.

Core- Top-down accretion Collapse

Isotope ratios as probes of planet formation

- ☐ The distinct carbon isotope ratios may distinguish the bottom-up core-accretion formation of the super-Jupiter as opposed to the star-like formation pathway.
- ☐ The ¹³CO-rich atmosphere indicates the exoplanet likely formed outside CO iceline, accreted the bulk of its carbon from the ice reservoir, which is enhanced in ¹³C (*Fig. 4*).

Figure 4 | Birth environment of planets in a proto-planetary disk, illustrating the discrepancy of ¹²CO/¹³CO ratios in ice and gas reservoirs. Beyond CO iceline, the ice may be enriched in ¹³C through carbon fractionation, resulting in the observed ¹³CO-rich atmosphere of the planet that formed out there.