# Individual Assignment

CE889 Neural Network and Deeplearning



NONTANAT TOCHAYAMANON 22093307

#### CE889 NEURAL NETWORK AND DEEPLEARNING

# **AGENDA**









### Data detailing 01

- Partition of data
- Processing of data

### Design choices 02

Architecture/Topology

#### Parameters detailing 03

- What parameter
- How to pick them
- What effect did they have

#### **RMSE 04**

- RMSE values
- early stopping criteria and why

C E 8 8 9

# DATA PRE-PROCESSING



## **Partition of data**

- 70% for Training.
- 30% for Testing

| 4  | Α          | В          | С          | D          |
|----|------------|------------|------------|------------|
| 1  | -404.27155 | 437.399878 | -1.099391  | 0.01906881 |
| 2  | -404.29062 | 438.499269 | -1.1982954 | -0.0418369 |
| 3  | -404.24878 | 439.697564 | -1.296349  | -0.0296715 |
| 4  | -404.21911 | 440.993913 | -1.3933105 | -0.0244011 |
| 5  | -404.19471 | 442.387224 | -1.48894   | -0.0259835 |
| 6  | -404.16872 | 443.876164 | -1.5829992 | -0.0343679 |
| 7  | -404.13436 | 445.459163 | -1.6752515 | -0.0494953 |
| 8  | -404.08486 | 447.134415 | -1.7654628 | -0.0712987 |
| 9  | -404.01356 | 448.899878 | -1.8534014 | -0.0997028 |
| 10 | -403.91386 | 450.753279 | -1.9388381 | -0.1346241 |
| 11 | -403.77924 | 452.692117 | -2.0215472 | -0.1759714 |
| 12 | -403.60326 | 454.713664 | -2.101306  | -0.2236456 |
| 13 | -403.37962 | 456.81497  | -2.1778955 | -0.2775399 |
| 14 | -403.10208 | 458.992866 | -2.2511006 | -0.3375399 |
| 15 | -402.76454 | 461.243966 | -2.3207102 | -0.4035238 |
| 16 | -402.36101 | 463.564677 | -2.3865178 | -0.4753624 |
| 17 | -401.88565 | 465.951194 | -2.4483212 | -0.5529194 |
| 18 | -401.33273 | 468.399516 | -2.5059233 | -0.6360517 |
| 19 | -400.69668 | 470.905439 | -2.5591322 | -0.7246092 |
| 20 | -399.97207 | 473.464571 | -2.6077612 | -0.8184354 |
| 21 | -399.15364 | 476.072332 | -2.6516291 | -0.917367  |
| 22 | -398.23627 | 478.723961 | -2.6905608 | -1.021235  |
| 23 | -397.21503 | 481.414522 | -2.7243869 | -1.129864  |
| 24 | -396.08517 | 484.138909 | -2.7529444 | -1.2430729 |

# **Processing of data**

- Data normalization
- Scale raw data to 0-1

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$



# **Model Architechture**





# Parameters detailing

01

#### Number of network

Using the number of node that give a minimum of Error

02

#### **Learning Rate**

Using the value of learning rate that give a minimum of Error

03

#### Momentum

Using the value of momentum that give a minimum of Error



# **Number of Network**

- Run the neural network model by training data and testing data with the random value of weight in the range -1, 1 by size from 2 -100 nodes
- Run the model by given the values of Learning Rate as 0.01 and the values of Momentum as 0
- Pick the fit number of network where the testing rms value is lowest



# Learning Rate

- Use the best Network number from last function set to run training and testing data with the value of momentum as 0
- given the value of learning rate as [0.05, 0.15, 0.2, ..., 0.95]
- Pick the fit learning rate value where the testing rms value is lowest



# Momentum

- Use the weight set and Learning Rate from the last that given the minimum error
- Run the model in each momentum values by given as [0.05, 0.15, 0.2, ..., 0.95]
- Pick the fit Momentum value where the testing rms value is lowest





C E 8 8 9

# RMSE - from testing and training Model

- Run model 200 epoch
- Pick the best weight where the lowest testing rmse

