Лабораторная работа №3

Недетерминированные магазинные автоматы.

Теоретическая часть

Модель магазинного автомата (рис.1) состоит из

- входной ленты,
- устройства управления и
- вспомогательной ленты, называемой магазином или стеком.

Рис.1. Модель магазинного автомата

Входная лента разделяется на клетки (позиции), в каждой из которых может быть записан символ входного алфавита. При этом предполагается, что в неиспользуемых клетках входной ленты расположены пустые символы λ.

Вспомогательная лента также разделена на клетки, в которых могут располагаться символы магазинного алфавита. Начало вспомогательной ленты называется дном магазина. Связь устройства управления с лентами осуществляется двумя головками, которые могут перемещаться вдоль лент.

Головка входной ленты может перемещаться только в одну сторону - вправо или оставаться на месте. Она может выполнять только чтение. Головка вспомогательной ленты способна выполнять как чтение, так и запись, но эти операции связаны с перемещением головки определенным образом:

- при записи головка предварительно сдвигается на одну позицию вверх, а затем символ заносится на ленту,
- при чтении символ, находящийся под головкой считывается с ленты, а затем головка сдвигается на одну позицию вниз, т.о. головка всегда установлена против последнего записанного символа. Позицию, находящуюся в рассматриваемый момент времени под головкой, называют вершиной магазина.

Определение. Магазинный автомат **M** определяется следующей совокупностью семи объектов: $\mathbf{M} = \{\mathbf{S}, \mathbf{P}, \mathbf{Z}, \boldsymbol{\delta}, \mathbf{s}_0, \mathbf{h}_0, \mathbf{F}\}$, где

- S алфавит состояний,
- Р входной алфавит,
- **Z** алфавит магазинных символов, записываемых на вспомогательную ленту,
- δ функция переходов, δ : {S x P \cup { λ } x H} \cup \square S x H*, если М-автомат детерминированный, и δ : {S x P \cup { λ } x H} \cup \square 2^{S x H*}, если М-автомат недетерминированный.
- s_0 начальное состояние, $s_0 \in S$.

 ${f h_0}$ - маркер дна, он всегда записывается на дно магазина , ${f h_0} \in {f H}$.

 ${f F}$ - множество конечных состояний. ${f F}$ является подмножеством ${f S}$.

Функция δ отображает тройки $(p_i\,,\,s_j\,,\,h_k)$ в пары $(s_r\,,\,\upsilon)$, где $\upsilon\in \mathbf{H}^*$ и h_k - символ в вершине магазина, для детерминированного автомата или в множество таких пар для недетерминированного автомата.

Эта функция описывает изменение состояния магазинного автомата, происходящее при чтении символа с входной ленты и перемещении входной головки.

В дальнейшем при построении магазинных автоматов потребуются две разновидности функций переходов:

- 1) функция переходов с пустым символом в качестве входного символа: $\delta^0(s, \lambda, h) = (s', \beta)$, которая, независимо от того, какой символ находится под читающей головкой входной ленты, предписывает прочитать символ h из вершины магазина, изменить состояние автомата на s' и записать цепочку $\beta \square s$ магазин.
- 2) функция переходов с определенным входным символом: δ (s, a, \Box \Box h) = (s', β), которая предписывает прочитать входной символ a, изменить состояние автомата на s' и заменить верхний символ магазина h цепочкой β .

Работа магазинного автомата

Чтобы описать, как работает автомат, введем понятие конфигурации.

Определение. Конфигурацией автомата **M** называют тройку (s, α , γ)∈**S x P*** **x H***, где

- s текущее состояние управляющего устройства,
- α неиспользованная часть входной цепочки $\alpha \in P^*$, самый левый символ этой цепочки находится под головкой. Если $a=\lambda$, то считается, что вся входная цепочка прочитана.
- γ цепочка, записанная в магазине, $\gamma \in H^*$, самый правый символ цепочки считается вершиной магазина. Если $\gamma = \lambda$, то магазин пуст.

Работа автомата может быть представлена как смена конфигураций. Один такт работы автомата заключается в определении новой конфигурации по заданной. Это записывается так:

$$(s, a\alpha, \gamma h) \vdash (s', \alpha, \gamma \beta)$$

Такая смена конфигураций возможна, если функция $\delta(s, a, h)$ (или $\delta(s, \lambda, h)$) определена и имеет значение (s', β) . При этом предполагается, что автомат

- читает символ а, находящийся под головкой. Или не читает ничего, в случае входного символа λ.
- определяет новое состояние s'
- читает символ h, находящийся в вершине магазина и
- записывает цепочку β в магазин вместо символа h. Если $\beta = \lambda$, то верхний символ оказывается удаленным из магазина.

Таким образом, могут быть три случая при работе автомата:

- $\delta(s, a, h)$ определена и выполняется такт работы,
- $\delta(s, a, h)$ не определена, но определена функция $\delta(s, \lambda, h)$ и выполняется пустой такт (без чтения входной информации).
- функции $\delta(s, a, h)$ и $\delta(s, \lambda, h)$ не определены, в этом случае дальнейшая работа автомата невозможна.

Начальной конфигурацией называется конфигурация (s_0 , α , h_0), где s_0 - начальное состояние, α - исходная цепочка, h_0 - маркер дна магазина.

Заключительная конфигурация — (s, λ , λ), где s принадлежит множеству заключительных состояний F.

Для обозначения последовательности сменяющих друг друга конфигураций условимся использовать знак |-*. Таким образом последовательность

$$(s_1, \alpha_1, \gamma_1) \mid (s_2, \alpha_2, \gamma_2) \mid \dots \mid (s_n, \alpha_n, \gamma_n)$$

записывается в сокращенном виде как:

$$(s_1, \alpha_1, \gamma_1) \vdash^* (s_n, \alpha_n, \gamma_n).$$

Язык, допускаемый магазинным автоматом

Определение. Цепочка α называется **допустимой** для автомата M, если существует последовательность конфигураций, в которой первая конфигурация является начальной с цепочкой α , а последняя — заключительной. $(s_0, \alpha, h_0) \models^* (s_1, \lambda, \lambda)$, где $s_1 \in F$.

Определение. Множество цепочек, допускаемых автоматом M, называется языком, допускаемым или определяемым автоматом M, и обозначается L(M).

$$L(M)=\{\alpha\mid (s_0,\alpha,h_0)\mid \dot{+}^*(s',\lambda,\lambda) \text{ if } s'\in F\}$$

Чтобы лучше представить себе работу магазинного автомата, рассмотрим два примера. Пусть задан магазинный автомат M_1 в следующем виде:

$$\begin{split} M_1 &: P = \{a \ , b\}; \ S = \{s_0 \ , s_1 \ , s_2\}; \ Z = \{h_0 \ , a\}; \ F = \{s_0\}; \\ &\delta \ (s_0 \ , a \ , h_0) = (s_1 \ , h_0 a), \\ &\delta \ (s_1 \ , a \ , a) = (s_1 \ , a a), \\ &\delta \ (s_1 \ , b \ , a) = (s_2 \ , \lambda), \\ &\delta \ (s_2 \ , b \ , a) = (s_2 \ , \lambda), \\ &\delta \ (s_2 \ , \lambda \ , h_0) = (s_0 \ , \lambda). \end{split}$$

Этот автомат является **детерминированным**, поскольку каждому набору аргументов соответствует единственное значение функции. Работу автомата при распознавании входной цепочки aabb можно представить в виде последовательности конфигураций:

```
(s_0,aabb,h_0) \vdash (s_1,abb,h_0a) \vdash (s_1,bb,h_0aa) \vdash (s_2,b,h_0a) \vdash (s_2,\lambda,h_0) \vdash (s_0,\lambda,\lambda).
```

Нетрудно проверить, что при задании входной цепочки aabbb автомат не сможет закончить работу. Следовательно, эта цепочка не принадлежит языку, допускаемому автоматом M_1 .

Магазинный автомат М₂, заданный следующим описанием:

```
\begin{split} M_2 &: P = \{a \ , b\}; \ S = \{s_0, \, s_1 \, , \, s_2\}; \ Z = \{h_0, \, a \ , \, b\}; \ F = \{s_2\}; \\ &(1) \ \delta \ (s_0 \ , \, a \ , \, h_0) = (s_0, \, h_0 a), \\ &(2) \ \delta \ (s_0 \ , \, b \ , \, h_0) = (s_0, \, h_0 b), \\ &(3) \ \delta \ (s_0 \ , \, a \ , \, a) = \{(s_0, aa) \ , (s_1 \ , \lambda)\}, \\ &(4) \ \delta \ (s_0 \ , \, b \ , \, a) = (s_0, ab), \\ &(5) \ \delta \ (s_0 \ , \, a \ , \, b) = (s_0 \ , ba), \\ &(6) \ \delta \ (s_0 \ , \, b \ , \, b) = \{(s_0 \ , \, bb) \ , (s_1 \ , \lambda)\}, \\ &(7) \ \delta \ (s_1 \ , \, a \ , \, a) = (s_1, \, \lambda), \\ &(8) \ \delta \ (s_1 \ , \, b \ , \, b) = (s_1, \, \lambda), \\ &(9) \ \delta \ (s_2 \ , \epsilon \ , \, h_0) = (s_2 \ , \, \lambda), \end{split}
```

является **недетерминированным** автоматом, поскольку одному и тому же набору аргументов, например (s_o , a, a), соответствуют два значения функции. Работу автомата рассмотрим для входной цепочки abba. Если использовать последовательность команд (1),(4),(6.1),(5), то получим последовательность конфигураций:

```
(s_0,abba,h_0)

-(s_0,bba,h_0a), (1)

-(s_0,ba,h_0ab), (4)

-(s_0,a,h_0abb), (6.1)

-(s_0,\lambda,h_0abba). (5)
```

которая показывает, что дальнейшая работа невозможна, т.к. входная цепочка прочитана и переход (s_0,λ,h_0abba) не определен. Если же использовать последовательность команд (1),(4),(6.2),(3),(9), то получим заключительную конфигурацию:

```
(s_0,abba,h_0)

-(s_0,bba,h_0a), (1)

-(s_0,ba,h_0ab), (4)

-(s_1,a,h_0a), (6.2)

-(s_1,\lambda,h_0), (3)

-(s_2,\lambda,\lambda). (9).
```

Т.о. можно сделать вывод о том, что цепочка abba допускается автоматом M_2 .

Построение магазинного автомата

Пусть задана грамматика $G = \{VN, VT, I, P\}$. Определим компоненты автомата M следующим образом:

$$S = \{s_0\}, P = VT, Z = VN \cup VT \cup \{h_0\}, F = \{s_0\},\$$

в качестве начального состояния автомата примем s_0 и построим функцию переходов так:

1. Для всех $A \in VN$ таких, что встречаются в левой части правил $A \to \alpha$, построим команды вида:

$$\delta^{\bar{0}}(s_0,\lambda,A)=(s_0,\alpha^R),$$
 где α^R- реверс цепочки α .

2. Для всех $\mathbf{a} \in \mathbf{VT}$ построим команды вида

$$\delta (s_0, a, a) = (s_0, \lambda)$$

3. Для перехода в конечное состояние построим команду

$$\delta (s_0, \lambda, h_0) = (s_0, \lambda)$$

4. Начальную конфигурацию автомата определим в виде:

$$(s_0, \omega, h_0 I),$$

где ω − □ □исходная цепочка, записанная на входной ленте.

построенный по приведенным выше правилам, работает следующим образом. Если в вершине магазина находится терминал, и символ, читаемый с входной ленты, совпадает с ним, то по команде типа (2) терминал удаляется из магазина, а входная головка сдвигается. Если же в вершине магазина находится нетерминал, то выполняется команда типа (1), которая вместо терминала записывает в магазин цепочку, представляющую собой правую часть правила грамматики. Следовательно, автомат, последовательно заменяя нетерминалы, появляющиеся в вершине магазина, строит в магазине левый вывод входной цепочки, удаляя полученные терминальные символы, совпадающие с символами входной цепочки. Это означает, что каждая цепочка, которая может быть получена с помощью левого вывода в грамматике G, допускается построенным автоматом М.

Пример построения автомата

Процедуру построения автомата рассмотрим на примере грамматики с правилами:

$$E \rightarrow \Box E + T \mid T$$
$$T \rightarrow \Box T * F \mid F$$
$$F \rightarrow (E) \mid a$$

Для искомого автомата имеем:

$$P = \{a, +, *, \}, (\}, Z = \{E, T, F, a, +, *\}, h_0, (\}, S = \{s_0\}, F = \{s_0\}$$
The previous framework crosses where the construction of the constru

Для всех правил грамматики строим команды типа (1):

$$\begin{split} &(1)\;\delta^0\left(s_0\,,\,\epsilon\;,\,E\right) = \{(s_0\,,\,T{+}E)\;;\,(s_0\,,\,T)\},\\ &(2)\;\;\delta^0\left(s_0\,,\,\lambda\;,\,T\right) = \{(s_0\,,\,F{*}T)\;;\,(s_0\,,\,F)\}, \end{split}$$

(3)
$$\delta^0(s_0, \lambda, F) = \{(s_0, (E)); (s_0, a)\},\$$

Для всех терминальных символов строим команды типа (2):

(4)
$$\delta$$
 (s_0 , a , a) = (s_0 , λ),
(5) δ (s_0 , +, +) = (s_0 , λ),
(6) δ (s_0 , *, *) = (s_0 , λ),
(7) δ (s_0 , (, () = (s_0 , λ),
(8) δ (s_0 ,),)) = (s_0 , λ),

Для перехода в конечное состояние построим команду:

(9)
$$\delta(s_0, \lambda, h_0) = (s_0, \lambda)$$
.

Построенный автомат является недетерминированным.

Начальную конфигурацию с цепочкой a+a*a запишем так: $(s_0$, a+a*a, $h_0E)$.

Последовательность тактов работы построенного автомата, показывающая, что заданная цепочка допустима, имеет вид:

$$\begin{array}{c} (s_0\,,\,a+a^*a\,,\,h_0E) \,\,\, |\,\, (s_0\,,\,a+a^*a\,,\,h_0T+E) \,\,\, |\,\, (s_0\,,\,a+a^*a\,,\,h_0T+T) \,\,\, |\,\, (s_0\,,\,a+a^*a\,,\,h_0T+F) \,\, |\,\, (s_0\,,\,a+a^*a\,,\,h_0T+a) \,\,\, |\,\, (s_0\,,\,a^*a\,,\,h_0T+b) \,\, |\,\, (s_0\,,\,a^*a\,,\,h_0F*T) \,\,\, |\,\, (s_0\,,\,a^*a\,,\,h_0F*T) \,\, |\,\, (s_0\,,\,a^*a\,,\,h_0F*T) \,\,$$

Отметим, что последовательность правил, используемая построенным автоматом, соответствует левому выводу входной цепочки:

 $E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F \Rightarrow a+F*F \Rightarrow a+a*F \Rightarrow \Box a+a*a$. Если по такому выводу строить дерево, то построение будет происходить сверху вниз, т.е. от корня дерева к листьям.

Такой способ построения дерева по заданной цепочке называется нисходящим.

Магазинные автоматы называют часто распознавателями, поскольку они определяют, является ли цепочка, подаваемая на вход автомата, допустимой или нет, и следовательно, отвечают на вопрос, принадлежит ли эта цепочка языку, пораждаемому грамматикой, использованной для построения автомата.

Учитывая характер построения вывода в магазине, автоматы рассмотренного типа называют нисходящими распознавателями.

Задание на лабораторную работу

Написать программу, реализующую работу недетерминированного магазинного автомата.

Входные данные:

1. Текстовый файл с описанием грамматики, для которой строится магазинный автомат.

Каждая строка в файле может задавать несколько правил грамматики с одинаковой левой частью. В этом случае правила отделяются друг от друга символом '|'.

Для отделения левой части правила от правой используется символ '>'. В одной строке может быть несколько символов '>'. В этом случае первый из них трактуется, как символ, отделяющий правую и левую части продукции, все последующие — как терминальный символ.

Все нетерминалы задаются с помощью прописных букв латинского алфавита.

Все символы, не описанные выше, являются терминальными символами.

Правил в грамматике (а значит и во входном файле) – неограниченное количество.

Рекомендуется считать пробельные символы в файле незначащими, а для терминала «пробел» использовать какой-нибудь другой символ (например, ~, либо заключать пробел в апострофы).

Пример входного файла

$$E > \square E + T \mid T$$

 $T > \square T * F \mid F$
 $F > (E) \mid a \mid \sim$

2. Строка символов, которую нужно проанализировать с помощью построенного автомата и дать заключение о допустимости (или недопустимости) автоматом данной цепочки символов.

Выходные данные

- 1. На оценку «удовлетворительно»: заключение о допустимости (или недопустимости) автоматом цепочки символов.
- 2. На оценку «отлично»: значение множеств P, Z и т.д.; список команд (1) (4) (см раздел «Построение магазинного автомата»); цепочка конфигураций магазинного автомата, полученная в процессе его работы; заключение о допустимости (или недопустимости) автоматом цепочки символов.

Литература

При подготовка данной лабораторной работы были использованы материалы сайта http://mf.grsu.by/.