

SOLID BOND MODEL: KELVIN-VOIGT MODEL

Bond properties:

$$L_b = L_1 - \sqrt{r_1^2 - r_b^2} - \sqrt{r_2^2 - r_b^2}$$
 (Recalculated in each step)

$$I = \frac{\pi \cdot R_b^4}{4}$$

$$J = \frac{\pi \cdot R_b^4}{2}$$

$$A_b = \pi \cdot R_b^2$$

Contact vector:

$$\bar{r}_c = O_2 - O_1$$

$$\bar{r}_n = \frac{O_2 - O_1}{|O_2 - O_1|}$$

Velocities:

$$\bar{v}_{rel} = \bar{v}_2 - \bar{v}_1 - \frac{(\overline{\omega}_1 + \overline{\omega}_2) \times \overline{r_c}}{2}$$

$$\overline{\omega}_{rel} = \overline{\omega}_1 - \overline{\omega}_2$$

$$\overline{\omega}_{rel,n} = \overline{r}_n \cdot (\overline{r}_n \cdot \overline{\omega}_{rel})$$

$$\bar{v}_{rel,n} = \bar{r}_n \cdot (\bar{r}_n \cdot \bar{v}_{rel})$$

$$\overline{\omega}_{rel,t} = \overline{\omega}_{rel} - \overline{\omega}_{rel,n}$$

$$\Delta \bar{\delta}_{\omega n,b} = \bar{\omega}_{rel,n} \cdot \Delta t$$

$$\Delta \bar{\delta}_{\omega t,b} = \overline{\omega}_{rel,t} \cdot \Delta t$$

$$\Delta \bar{\delta_t} = \vec{v}_{rel,t} \cdot \Delta t$$

Force and moment in normal direction:

$$\begin{split} & \bar{F}_{n,b} = \bar{r}_n \times (L_b - L_{init}) \cdot \frac{E}{L_{init}} \cdot A_b \\ & \bar{F}_{n,diss} = \frac{\bar{v}_{rel,n}}{L_{init}} \cdot \eta \cdot A_b \\ & \bar{M}_{n,b} = T \cdot \bar{M}_{n,b} + \Delta \vec{\delta}_{\omega n,b} \cdot \frac{E}{2L_{init}(1 + \nu)} \cdot J \end{split}$$

Force and moment in shear direction:

$$\begin{split} & \bar{F}_{t,b} = T \cdot \bar{F}_{t,b} + \Delta \bar{\delta}_t \cdot \frac{E}{2L_{init}(1+\nu)} \cdot A_b \\ & \bar{F}_{t,diss} = \frac{\bar{v}_{rel,t}}{L_{init}} \cdot \eta \cdot A_b \\ & \bar{M}_{t,b} = T \cdot \bar{M}_{t,b} + \Delta \vec{\delta}_{\omega t,b} \cdot \frac{E}{L_{init}} \cdot I \end{split}$$

Total force:

$$\begin{split} \overline{F}_{t,tot} &= \overline{F}_{t,b} + \overline{F}_{t,diss} \\ \\ \overline{F}_{n,tot} &= \overline{F}_{n,b} + \overline{F}_{n,diss} \end{split}$$

Breakage criteria:

$$\frac{F_{n,tot}}{A_b} + \frac{M_{t,b} \cdot R_b}{I} = \sigma_{max}$$

$$\frac{F_{t,tot}}{A_b} + \frac{M_{n,b} \cdot R_b}{I} = \tau_{max}$$

Literature

This model is a part of current research work – results will be published.

Symbol	Description
A_b	Cross-cut surface of the bond [m²]
$\Delta \overline{\delta}_{\omega n,b}$, $\Delta \overline{\delta}_{\omega t,b}$	Increment of displacement (in current step) between particles in contact point due to the
	rotational velocities [m]
$\Delta \overline{oldsymbol{\delta}}_t$	Tangential displacement in the current step [m]
η	Dynamic viscosity [Pa s]
E	Young modulus for particle or bond [Pa]
I,J	Moments of inertia of the bond [m³]
L_b	Current bond length
L_{init}	Initial bond length [m]
O_1, O_2	Centers of contact partners [m]
r_1, r_2	Particle radii [m]
r_b	Bond radius [m]
T	Transformation matrix (to consider rotation of the bond in the global coordinate system) [-]
$\overline{\omega}_1, \overline{\omega}_2$	Rotation velocities of particles [rad/s]