Course No.	Course Name	L-T-P-Credits	Year of Introduction
CS307	DATA COMMUNICATION	3-0-0-3	2015

Course Objectives

- 1. To introduce fundamental communication models.
- 2. To discuss various time domain and frequency domain concepts of data communication.
- 3. To introduce the concepts of encoding, multiplexing and spread spectrum.

Syllabus

Data Transmission, Transmission Impairments, Channel Capacity, Transmission media, Wireless propagation, Signal encoding Techniques, Multiplexing, Digital data transmission techniques, Sampling theorem, Error detection and correction, Spread spectrum, Basic principles of switching.

Expected Outcome

Student is able to

- 1. Identify and list the various issues present in the design of a data communication system.
- 2. Apply the time domain and frequency domain concepts of signals in data communication.
- 3. Compare and select transmission media based on transmission impairments and channel capacity.
- 4. Select and use appropriate signal encoding techniques and multiplexing techniques for a given scenario.
- 5. Design suitable error detection and error correction algorithms to achieve error free data communication and explain different switching techniques.

Text Books

- 1. William Stallings, Data and Computer Communication 9/e, Pearson Education, Inc. [Chapters: 4, 5, 6, 7, 8, 9].
- 2. Forouzan B. A., Data Communications and Networking, 5/e, Tata McGraw Hill, 2013. [Chapters:3,4, 5, 6,7,8]
- 3. Schiller J., Mobile Communications, 2/e, Pearson Education, 2009. [Chapters:2,3]
- 4. Curt M. White, Fundamentals of Networking and Communication 7/e, Cengage learning. [Chapter 3,4,9,10]

References

- 1. Forouzan B. A., Data Communications and Networking, 4/e, Tata McGraw Hill, 2007.
- 2. Tanenbaum A. S. and D. Wetherall, Computer Networks, Pearson Education, 2013.

COURSE PLAN

Module	Contents	Hours	Sem. Exam Marks %	
ı	Data Transmission: Communication model Simplex, half duplex and full duplex transmission - Periodic Analog signals: Sine wave, phase, wavelength, time and frequency domain, bandwidth - Digital Signals; Digital data Transmission:- Analog & Digital data, Analog & Digital signals, Analog & Digital transmission - Transmission Impairments: Attenuation, Delay distortion, Noise - Channel capacity: Nyquist Bandwidth, Shannon's Capacity formula.	08	15%	
II	Transmission media - Guided Transmission Media: Twisted pair, Coaxial cable, optical fiber, Wireless Transmission, Terrestrial microwave, Satellite microwave. Wireless Propagation: Ground wave propagation, Sky Wave propagation, LoS Propagation.	07	15%	
FIRST INTERNAL FYAM				

FIRST INTERNAL EXAM

Ш	Signal Encoding techniques - Digital Data Digital Signals: NRZ, Multilevel binary, Biphase - Digital Data Analog Signals: ASK, FSK, PSK - Analog Data Digital Signals: Sampling theorem, PCM, Delta Modulation - Analog Data Analog Signals: AM, FM, PM.	07	15%
IV	Multiplexing- Space Division Multiplexing- Frequency Division Multiplexing: Wave length Division Multiplexing - Time Division multiplexing: Characteristics, Digital Carrier system, SONET/SDH-Statistical time division multiplexing: Cable Modem - Code Division Multiplexing. Multiple Access- CDMA.	07	15%
SECOND INTERNAL EXAM			
V	Digital Data Communication Techniques - Asynchronous transmission, Synchronous transmission-Detecting and Correcting Errors-Types of Errors-Error Detection: Parity check, Cyclic Redundancy Check (CRC) - Error Control Error Correction: Forward Error Correction and Hamming Distance.	06	20%
VI	Spread Spectrum Techniques-Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS). Basic principles of switching - Circuit Switched Networks, Structure of Circuit Switch - Packet Switching: Datagram Networks, Virtual Circuit Networks, Structure of packet switches.	07	20%

END SEMESTER EXAM				

Question Paper Pattern

1. There will be *five* parts in the question paper – A, B, C, D, E

2. Part A

- a. Total marks: 12
- b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II;All<u>four</u> questions have to be answered.

3. Part B

- a. Total marks: 18
- b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts.

4. Part C.

- a. Total marks: 12
- b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV;All<u>four</u> questions have to be answered.

5. Part D

- a. Total marks: 18
- b. <u>Three</u>questionseach having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.