Contemporary Abstract Algebra - Joseph A. Gillian *

Zhenyong Shin

July 2021

0 Preliminaries

0.1 Properties of Integers

Axiom 0.1 (Well Ordering Principle). Every nonempty set of positive integers contains a smallest number.

Note 0.1. An integer $t \in \mathbb{Z}$, t > 0 is a divisor of $s \in \mathbb{Z}$ if $\exists u \in \mathbb{Z} : s = tu$ or $t \mid s$ (t divides s). If t is not a divisor of s then $t \nmid s$. A prime is a postive integer greater than 1 whose only positive divisors are 1 and itself. $s \in \mathbb{Z}$ is a multiple of $t \in \mathbb{Z}$ if $\exists u \in \mathbb{Z} : s = tu$ or $t \mid s$.

Theorem 0.1 (Division Algorithm). Let $a, b \in \mathbb{Z}, b > 0$. Then

$$\exists ! q, r \in \mathbb{Z} : a = bq + r, 0 < r < b.$$

q is the quotient upon dividing a by b, r is the remainder upon dividing a by b.

Proof. Existence: Consider the set $S = \{a - bk : k \in \mathbb{Z} \text{ and } a - bk \ge 0\}$. If $0 \in S$, then

$$0 = a - bk \implies a = bk$$

and thus $b \mid a$. Let q = a/b, r = 0, then

$$a = bq + 0,$$

as desired. If $0 \notin S$, then since S is nonempty because

$$a > 0 \implies a - b \cdot 0 \in S$$

^{*}Recorded lectures available at: https://www.youtube.com/watch?v=lx3qJ-zjn5Y&list=PLmU0FI1JY-Mn3Pt-r5zQ_-Ar8mAnBZTf2&t=0s

and

$$a < 0 \implies a - b(2a) = a(1 - 2b) \in S$$
,

and $a \neq 0$ since $0 \notin S$. It follows that by the Well Ordering Principle, S has a smallest member, say r = a - bq. Then $a = bq + r, r \geq 0$, so all that remains to be proved is that r < b.

Assume $r \geq b$, then

$$a - b(q + 1) = a - bq - b = r - b \ge 0,$$

so $a - b(q + 1) \in S$. But a - b(q + 1) < a - bq, this contradicts that r = a - bq is the smallest member of S. Thus r < b and

$$\exists q, r \in \mathbb{Z} : a = bq + r, 0 < r < b,$$

as desired.

Uniqueness: Assume

$$\exists q, q', r, r' \in \mathbb{Z} : a = bq + r, 0 \le r < b \text{ and } a = bq' + r', 0 \le r < b.$$

For convenience, assume $r' \geq r$. Then

$$bq + r = bq' + r' \implies b(q - q') = r' - r.$$

So
$$b \mid (r'-r)$$
 and $0 \le r'-r \le r' < b$, hence $r'-r=0$, and $r'=r, q'=q$.

Example 0.1. For a = 17, b = 5, the division algorithm gives $17 = 5 \cdot 3 + 2$. For a = -23, b = 6, the division algorithm gives -23 = 6(-4) + 1.

Definition 0.1. The greatest common divisor (gcd) of two nonzero integers a, b is the largest common divisors of a, b, denoted by gcd(a, b). If gcd(a, b) = 1, then a, b are relatively prime.

Theorem 0.2 (GCD is a Linear Combination).

$$\forall a, b \in \mathbb{Z}, a \neq 0, b \neq 0, \exists s, t \in \mathbb{Z} : \gcd(a, b) = as + bt.$$

Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.

Proof. Consider the set $S = \{am + bn : m, n \in \mathbb{Z}, am + bn > 0\}$. If a, b < 0, then let m, n < 0 so that am + bn > 0. Hence $S \neq \emptyset$. By the Well Ordering Principle, S has a smallest member. Let d = as + bt be the smallest member of

S. WTS $d = \gcd(a, b)$. Since d > 0, by Theorem 0.1, $a = dq + r, 0 \le r < d$. If r > 0, then

$$\begin{split} r &= a - dq \\ &= a - (as + bt)q \\ &= a - asq + btq \\ &= a(1 - sq) + b(-tq) \in \mathbb{S}. \end{split}$$

Since $0 \le r < d$ and $r \in S$, this contradicts that d is the smallest member of S. Hence, r = 0 and $a = dq \implies d \mid a$. Similarly, $d \mid b$. Hence d is a common divisor of a, b.

Let d' be a common divisor of a, b, so a = d'h, b = d'k. Then

$$d = as + bt$$

$$= (d'h)s + (d'k)t$$

$$= d'(hs + kt),$$

so $d' \mid d$ and $d' \leq d$. Hence $d = \gcd(a, b)$.

Corollary 0.2.1.

$$a, b \in \mathbb{Z}, \gcd(a, b) = 1 \iff \exists s, t \in \mathbb{Z} : as + bt = 1.$$

Example 0.2.

$$\gcd(4,15) = 1$$
$$\gcd(4,10) = 2$$
$$\gcd(2^2 \cdot 3^2 \cdot 5, 2 \cdot 3^3 \cdot 7^2) = 2 \cdot 3^2.$$

4 and 15 are relatively prime whereas 4 and 10 are not. Also,

$$4 \cdot 4 + 15(-1) = 1$$
 and $4(-2) + 10 \cdot 1 = 2$.

Example 0.3. Example 0.3. For any integer n the integers n+1 and n^2+n+1 are relatively prime. Since

$$(n^{2} + n + 1)(1) + (n + 1)(-n) = n^{2} + n + 1 - n(n + 1)$$
$$= n^{2} + n + 1 - n^{2} - n$$
$$= 1.$$

Lemma 0.1 (Euclid's Lemma). Let p be a prime, then

$$p|ab \implies p|a \lor p|b.$$

Proof. Assume p is a prime such that $p \mid ab$ but $p \nmid a$. WTS $p \mid b$. Since $p \nmid a$, and the only integer that divides p is 1, gcd(a, p) = 1 and

$$\exists s, t \in \mathbb{Z} : 1 = as + pt.$$

Then

$$b(1) = b(as + pt)$$
$$b = bas + bpt$$
$$= abs + ptb.$$

Since p divides the RHS of this equation, it follows that $p \mid b$.

Theorem 0.3 (Fundamental Theorem of Arithmetic). Every integer greater than 1 is a prime or a product of primes. This product is unique, except for the order in which the factors appear. If

$$n = p_1 p_2 \dots p_r$$
 and $n = q_1 q_2 \dots n_s$,

where the p's and q's are primes, then r = s and, after renumbering the q's, $p_i = q_i, \forall i \in \mathbb{N}$.

Example 0.4. Let $n \in \mathbb{Z}, n > 1$, $\sqrt[n]{2}$ is irrational. Since if $\sqrt[n]{2} = a/b, a, b \in \mathbb{Z}$, and a/b is in lowest terms, then $a^n = 2b^n$. By Theorem 0.3, $2 \mid a$, say a = 2c. Then $2^n c^n = 2b^n$ and therefore $2^{n-1}c^n = b^n$. But this implies $2 \mid b$. This contradicts that a/b is in lowest terms.

Definition 0.2. $\forall a, b \in \mathbb{Z}, \text{lcm}(a, b)$ is the smallest positive integer that is a multiple of both a, b.

Note 0.2. Proof that $m = \text{lcm}(a, b), \forall s \in \mathbb{N} : a, b \mid s \implies m \mid s$.

Let m = lcm(a, b) and let $s \in \mathbb{N} : a, b \mid s$ be arbitrary. By Theorem 0.1,

$$\exists q, r \in \mathbb{Z} : s = mq + r, 0 < r \le m.$$

Since

$$a, b \mid s \implies a, b \mid mq + r$$
.

it follows that $a, b \mid r$. But

$$a, b \mid r, m = \text{lcm}(a, b), 0 < r < m \implies r = 0.$$

Hence $s = mq, q \in \mathbb{Z} \implies m \mid s$.

Example 0.4.

$$\begin{split} lcm(4,6) &= 12 \\ lcm(4,8) &= 8 \\ lcm(10,12) &= 60 \\ lcm(6,5) &= 0 \\ lcm(2^2 \cdot 3^2 \cdot 5, 3^3 \cdot 7^2) &= 2^2 \cdot 3^3 \cdot 5 \cdot 7^2. \end{split}$$

0.2 Modular Arithmetic

Note 0.3. If a = qn + r, where q is quotient and r is the remainder upon dividing a by n, then $a \mod n = r$. In general, if $a, b, n \in \mathbb{Z}$, n is positive, then

$$a \mod n = b \mod n \iff n \mid (a - b).$$

Moreover,

$$ab \mod n = (a \mod n)(b \mod n) \mod n,$$

 $(a+b) \mod n = (a \mod n + b \mod n) \mod n.$

0.3 Complex Numbers

Theorem 0.4 (Properties of Complex Numbers). (i) (a + bi) + (c + di) = (a + c) + (b + d)i (closure under addition).

- (ii) $(a+bi)(c+di) = (ac) + (ad)i + (bd)i^2 = (ac-bd) + (ad+bc)i$ (closure under multiplication).
- $\begin{array}{ll} (iii) \ \ \frac{a+bi}{c+di} = \frac{a+bi}{c+di} \frac{c-di}{c-di} = \frac{(ac+bd)(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i, c+di \neq 0 \ \ (closure\ under\ division). \end{array}$
- (iv) $(a+bi)(a-bi) = a^2 + b^2$ (complex conjugation).
- $(v) \ \forall a+bi \in \ mathbb{C}, a+bi \neq 0, \exists c+di \in \mathbb{C} : (a+bi)(c+di) = 1 \ (inverses).$
- (vi) $\forall a + bi = r(\cos \theta + i \sin \theta) \in \mathbb{C}, \forall n \in \mathbb{N}, (a + bi)^n = (r(\cos \theta + i \sin \theta))^n = r^n(\cos n\theta + i \sin n\theta)$ (powers).
- $(vii) \ \forall a + bi = r(\cos\theta + i\sin\theta) \in \mathbb{C}, \forall n \in \mathbb{N}, \sqrt[n]{r(\cos\theta + i\sin\theta)} = \sqrt[n]{r} \left(\cos\frac{\theta + 2\pi k}{n} + i\sin\frac{\theta + 2\pi k}{n}\right), k = 0, 1, \dots, n 1 \ (n^{th} \ roots \ of \ a + bi).$

0.4 Mathematical Induction

Theorem 0.5 (First Principle of Mathematical Induction). Let $a \in S \subseteq \mathbb{Z}$. Then

$$(k \in \mathbb{Z}, k \ge a, k \in S \implies k+1 \in S) \implies S = \{k \in \mathbb{Z} : k \ge a\}.$$

Theorem 0.6 (Second Principle of Mathematical Induction). Let $a \in S \subseteq \mathbb{Z}$. Then

$$(n \in \mathbb{Z}, \forall k \in \mathbb{Z}, a \le k < n, k \in S \implies n \in S) \implies S = \{k \in \mathbb{Z} : k \ge a\}.$$

0.5 Equivalence Relations

Definition 0.3. An equivalence relation on a set S is a set R of ordered pairs of elements of S s.t.

- 1. $\forall a \in S, (a, a) \in R$ (reflexive property).
- 2. $(a,b) \in R \implies (b,a) \in R$ (symmetric property).
- 3. $(a,b) \in R, (b,c) \in R \implies (a,c) \in R$ (transitive property).

Note 0.4. A suggestive symbol \approx, \equiv, \sim is usually used to denote the relation. Using this notation, the three conditions for an equivalence become

- 1. $\forall a \in S, a \sim a$.
- 2. $a \sim b \implies b \sim a$.
- 3. $a \sim b, b \sim c \implies a \sim c$.

Definition 0.4. If \sim is an equivalence relation on a set S and $a \in S$, then the set $[a] = \{x \in S : x \sim a\}$ is the equivalence class of S containing a.

Example 0.5. Let S be the set of all triangles in a plane. If $a, b \in S$, define $a \sim b$ if a, b have corresponding angles that are the same. Then, \sim is an equivalence relation on S.

Example 0.6. Let S be the set of all polynomials with real coefficients. If $f,g \in S$, define $f \sim g$ if f' = g', where f' is the derivative of f. Then \sim is an equivalence relation on S. Since two polynomials with equal derivatives differ by a constant, $\forall f \in S, [f] = \{f + c : c \in \mathbb{R}\}.$

Example 0.7. Let $S = \mathbb{Z}, n \in \mathbb{N}$. If $a, b \in S$, define $a \approx b$ if $a \mod n = b \mod n$. Then \approx is an equivalence relation on S and $[a] = \{a + kn : k \in S\}$.

Since $n \mid a-a$, it follows that $\forall a \in S, a \equiv a$. Next, assume that $a \equiv b$, say, a-b=rn. Then, b-a=(-r)n, and therefore $b \equiv a$. Finally, assume that $a \equiv b, b \equiv c$, say, a-b=rn, b-c=sn. Then,

$$a - c = (a - b) + (b - c) = rn + sn = (r + s)n,$$

so $a \equiv c$.

Definition 0.5. A partition of a set S is a collection of nonempty disjoint subsets of S whose union is S.

Example 0.8. The sets $\{0\}, \{1, 2, 3, ...\}, \{..., -3, -2, -1\}$ constitute a partition of \mathbb{Z} .

Example 0.9. \mathbb{N}, \mathbb{Z}^- do not partition \mathbb{Z} since both contain 0.

Theorem 0.7 (Equivalence Classes Partition). The equivalence classes of an equivalence relation on a set S constitute a partition of S. Conversely, for any partition P of S, there is an equivalence relation on S whose equivalence classes are the elements of P.

Proof. Let \sim be an equivalence relation on a set S. By the reflexive property, $\forall a \in S, a \in [a]$. So [a] is nonempty and the union of all equivalence classes is S. Assume [a], [b] are distinct equivalence classes. WTS $[a] \cap [b] = \emptyset$. For the sake of contradiction, assume $c \in [a] \cap [b]$. Let $x \in [a]$, then $c \sim a, c \sim b$, and $x \sim a$. By the symmetric property, $a \sim c$. Thus by transitivity, $x \sim c, x \sim b$. This proves $[a] \subseteq [b]$. Similarly, $[b] \subseteq [a]$ and hence [a] = [b]. This contradicts that [a], [b] are disctinct equivalence classes and hence $[a] \cap [b] = \emptyset$.

0.6 Functions (Mappings)

Definition 0.6 (Function (Mapping)). A function/mapping $\phi: A \to B$ is a rule that assigns to each $a \in A$ exactly one $b \in B$. The set A is the domain of ϕ , and B is the range of ϕ . If $\phi(a) = b$, then b is the image of a under ϕ . The subset of B comprising all the images of elements of A is the image of A under ϕ .

Definition 0.7 (Composition of Functions). Let $\phi : A \to B$ and $\psi : B \to C$. The composition $\psi \phi : A \to C$ is defined as $(\psi \phi)(a) = \psi(\phi(a)), \forall a \in A$.

Definition 0.8. A function ϕ from a set A is one-to-one if

$$\forall a_1, a_2 \in A, \phi(a_1) = \phi(a_2) \implies a_1 = a_2$$

or

$$\forall a_1, a_2 \in A, a_1 \neq a_2 \implies \phi(a_1) \neq \phi(a_2).$$

Definition 0.9. A function $\phi: A \to B$ is *onto* if

$$\forall b \in B, \exists a \in A : \phi(a) = b.$$

Theorem 0.8 (Properties of Functions). Given functions $\alpha: A \to B, \beta: B \to C, \gamma: C \to D$, then

- (i) $\gamma(\beta\alpha) = (\gamma\beta)\alpha$ (associativity).
- (ii) α, β are one-to-one $\Longrightarrow \beta \alpha$ is one-to-one.
- (iii) α, β are onto $\implies \beta \alpha$ is onto.
- (iv) α is one-to-one and onto $\Longrightarrow \exists \alpha^{-1} : B \to A \text{ s.t. } (\alpha^{-1}\alpha)(a) = a, \forall a \in A \text{ and } (\alpha\alpha^{-1})(b) = b, \forall b \in B.$

Proof. (i) Let $a \in A$. Then

$$(\gamma(\beta\alpha))(a) = \gamma((\beta\alpha)(a)) = \gamma(\beta(\alpha(a))).$$

But

$$((\gamma\beta)\alpha)(a) = (\gamma\beta)(\alpha(a)) = \gamma(\beta(\alpha(a))).$$

Hence $\gamma(\beta\alpha) = (\gamma\beta)\alpha$.

1 Introduction to Groups

2 Groups

2.1 Definition and Examples of Groups

Definition 2.1. If G is a set. A binary operation on G is a function that assigns each ordered pair $(a,b): a,b \in G$ an element of G.

Definition 2.2. If G is a set with a binary operation that assigns to each ordered pair $(a,b): a,b \in G$ an element $ab \in G$. Then G is a group under the binary operation, with properties

- (i) $a, b, c \in G, a(bc) = (ab)c$ (associativity).
- (ii) $\exists e \in G : \forall a \in G, ae = ea = a$, where e is the identity element (identity).
- (iii) $\forall a \in G, \exists b \in G : ab = ba = e$, where b is the inverse of a (inverses).

If G has the property that $\forall a, b \in G, ab = ba$, then G is abelian.

Example 2.1. 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are groups under addition. In each case, the identity element is 0 and the inverse of a is -a. For \mathbb{Z} ,

- (i) $\forall a, b, c \in \mathbb{Z}$, a+(b+c) = (a+b)+c.
- (ii) $\exists 0 \in \mathbb{Z} : \forall a \in \mathbb{Z}, a+0=0+a=a$.
- (iii) $\forall a \in \mathbb{Z}, \exists -a \in \mathbb{Z} : a + (-a) = (-a) + a = 0.$

The same applies to \mathbb{Q}, \mathbb{R} .

- 2. \mathbb{Z} under multiplication is not a group. Since 1 is the identity element, $\forall a \in \mathbb{Z}$, there does not exist an $b \in \mathbb{Z}$: ab = ba = 1.
- 3. The subset $\{1,-1,i,-i\}$ of $\mathbb C$ is a group under complex multiplication. Since
 - (i) $\forall a, b, c \in \{1. -1, i, -i\}, a(bc) = (ab)c$. For example, $1(i(-i)) = 1(-i^2) = 1(-(-1)) = 1$ and $(1i)(-i) = i(-i) = -i^2 = -(-1) = 1$.
 - (ii) $\exists 1 \in \{1, -1, i, -i\} : \forall a \in \{1, -1, i, -i\}, a1 = 1a = a.$
 - (iii) $\forall a \in \{1, -1, i, -i\}, \exists b \in \{1, -1, i, -i\} : ab = ba = 1$. For example, -1(-1) = -1(-1) = 1 and $i(-i) = (-i)i = -i^2 = 1$.
- 4. \mathbb{Q}^+ is a group under multiplication. Since
 - (i) $\forall a, b, c \in \mathbb{Q}^+, a(bc) = (ab)c$. For example, $\frac{1}{2} \left(\frac{2}{3} \frac{3}{4} \right) = \frac{1}{2} \frac{6}{12} = \frac{6}{24} = \frac{1}{4}$ and $\left(\frac{1}{2} \frac{2}{3} \right) \frac{3}{4} = \frac{2}{6} \frac{3}{4} = \frac{6}{24} = \frac{1}{4}$.
 - (ii) $\exists 1 \in \mathbb{Q}^+ : \forall a \in \mathbb{Q}^+, a(1) = 1(a) = a.$
 - (iii) $\forall a \in \mathbb{Q}^+, \exists b \in \mathbb{Q}^+ : ab = ba = 1$. For example, $\frac{2}{3} \left(\frac{3}{2} \right) = \frac{3}{2} \left(\frac{2}{3} \right) = 1$.
- 5. $S = \mathbb{I}^+ \cup \{1\}$ under multiplication is not a group. Since $\sqrt{2}(\sqrt{2}) = 2 \notin S$, so S is not closed under multiplication.
- 6. $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}, a, b, c, d \in \mathbb{R}$ is a group under matrix addition. The identity element is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and the inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$.
- 7. $\mathbb{Z}_n = \{0, 1, \dots, n-1\}, n \geq 1$ is a group under addition modulo n. Since

- (i) $\forall a, b, c \in \mathbb{Z}_n, a(bc) = (ab)c$. For example, for $\mathbb{Z}_3 = \{0, 1, 2\}$ under addition modulo 3, 0 + (1+2) = 0 + 3 = 3 = 0 and (0+1) + 2 = 1 + 2 = 3 = 0.
- (ii) $\exists n \in \mathbb{Z}_n : \forall a \in \mathbb{Z}_n, a+n=n+a=a$. For example, for $\mathbb{Z}_3 = \{0,1,2\}$ under addition modulo 3, 1+3=3+1=4=1 and 2+3=3+2=5=2.
- (iii) $\forall a \in \mathbb{Z}_n, \exists n-a \in \mathbb{Z}_n : a+(n-a)=(n-a)+a=n$. For example, for $\mathbb{Z}_3 = \{0,1,2\}$ under addition modulo 3, 3 is the identity element and 1+(3-1)=(3-1)+1=3.
- 8. The set \mathbb{R}^* of nonzero real numbers is a group under multiplication. Since
 - (a) $\forall a, b, c \in \mathbb{R}^*, a(bc) = (ab)c.$
 - (b) $\exists 1 \in \mathbb{R}^* : \forall a \in \mathbb{R}^*, 1a = a1 = a.$
 - (c) $\forall a \in \mathbb{R}^*, \exists 1/a \in \mathbb{R}^* : a(1/a) = (1/a)a = 1.$
- 9. The set

$$GL(2,\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \right\}$$

of 2×2 matrices with real entries and nonzero determinants is a non-Abelian group under matrix multiplication

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_1 + d_1d_2 \end{pmatrix}.$$

Since

- (a) For any two 2×2 matrices $A, B, \det(AB) = (\det A)(\det B)$. So the product of two matrices with nonzero determinants also has a nonzero determinant. Associativity can be verified by direct calculations.
- (b) The identity is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- (c) The inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is

$$\begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}.$$

In particular, the determinant of a matrix determines if it has an inverse. Another useful fact about determinants is $\det A^{-1} = (\det A)^{-1}$.

This very important non-Abelian group is the general linear group of 2×2 matrices over \mathbb{R} .

- 10. The set of all 2×2 matrices with real entries is not a group under matrix multiplication since inverses do not exists when det A = 0.
- 11. Define

$$U(n) = \{k \in \mathbb{N} : k < n, \gcd(k, n) = 1\}, n > 1.$$

Then U(n) is a group under multiplication modulo n.

			Form of		_
Group	Operation	Identity	Element	Inverse	Abelian
Z	Addition	0	k	-k	Yes
Q^+	Multiplication	1	m/n,	n/m	Yes
			m, n > 0		
Z_n	Addition mod n	0	k	n-k	Yes
\mathbf{R}^*	Multiplication	1	x	1/x	Yes
\mathbf{C}^*	Multiplication	1	a + bi	$\frac{1}{a^2 + b^2}a - \frac{1}{a^2 + b^2}bi$	Yes
GL(2,F)	Matrix multiplication	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $ad - bc \neq 0$	$\begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{ad-bc}{ad-bc} \end{bmatrix}$	No
U(n)	Multiplication	1	k,	Solution to	Yes
\mathbb{R}^n	$\mod n$ Componentwise			$ kx \bmod n = 1 $ $(-a_1, -a_2, \dots, -a_n)$	Yes
SL(2,F)	addition Matrix multiplication	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix},$ $ad - bc = 1$	$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	No
D_n	Composition	R_0	R_{α}, L	R_{360-a}, L	No

Figure 2.1: Summary of Group Examples (\mathbb{F} can be any of $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Z}_p ; L is a reflection).

2.2 Elementary Properties of Groups

Theorem 2.1 (Uniqueness of the Identity). Let G be a group. Then

$$e_1, e_2 \in G : \forall a \in G, ae_1 = e_1 a = a, ae_2 = e_2 a = a \implies e_1 = e_2.$$

Proof. Assume G is a group and $\forall a \in G, \exists e_1, e_2 \in G : ae_1 = e_1a = a, ae_2 = e_2a = a.$

In particular, let $a=e_2$, then $e_2e_1=e_1e_2=e_2$. Let $a=e_1$, then $e_1e_2=e_2e_1=e_1$. It follows that $e_2e_1=e_2$ and $e_2e_1=e_1$. Hence $e_1=e_2$.

Theorem 2.2 (Cancellation). Let G be a group. Then $\forall a, b, c \in G$,

$$ba = ca \implies b = c \quad and \quad ab = ac \implies b = c.$$

Proof. Let G be a group. Then $\forall a \in G, \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$. If

ba = ca, then by associativity,

$$ba = ca$$

$$(ba)a^{-1} = (ca)a^{-1}$$

$$b(aa^{-1}) = c(aa^{-1})$$

$$be = ce$$

$$b = c.$$

If ab = ac, then by associativity,

$$ab = ac$$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$(a^{-1}a)b = (a^{-1}a)c$$

$$eb = ec$$

$$b = c.$$

Theorem 2.3 (Uniqueness of Inverses). Let G be a group. Then

$$b_1, b_2 \in G : \forall a \in G, ab_1 = b_1 a = e, ab_2 = b_2 a = e \implies b_1 = b_2.$$

Proof. Let G be a group. Assume that $\forall a \in G, \exists b_1, b_2 : ab_1 = b_1a = e, ab_2 = b_2a = e$. Then by associativity,

$$e = ab_1 = ab_2 = e$$

$$b_1(ab_1) = b_1(ab_2)$$

$$(b_1a)b_1 = (b_1a)b_2$$

$$eb_1 = eb_2$$

$$b_1 = b_2.$$

Theorem 2.4 (Socks-Shoes Property). G is a group $\implies \forall a,b \in G, (ab)^{-1} = b^{-1}a^{-1}$.

Proof. Let G be a group and $a, b \in G$. So $ab, (ab)^{-1} \in G$. It follows that

$$(ab)(ab)^{-1} = e,$$

 $b(ab)^{-1} = a^{-1}e,$
 $(ab)^{-1} = b^{-1}a^{-1}e = b^{-1}a^{-1}.$

	Multiplicative Group	Additive Group	
$a \cdot b$ or ab	Multiplication	a+b	Addition
<i>e</i> or 1	Identity or one	0	Zero
a^{-1}	Multiplicative inverse of <i>a</i>	-a	Additive inverse of a
a^n	Power of a	na	Multiple of a
ab^{-1}	Quotient	a-b	difference

Figure 2.2

3 Finite Groups; Subgroups

3.1 Terminology and Notation

Definition 3.1. The number of elements of a group (finite or infinite) is its order, denoted as |G|.

Note 3.1. The group \mathbb{Z} has infinite order. The group $U(10) = \{1, 3, 7, 9\}$ under multiplication modulo 10 has order 4.

Definition 3.2. The order of $g \in G$, denoted by |g| = n, is the smallest $n \in \mathbb{N} : g^n = e$. If no such n exists, then $|g| = \infty$. In additive notation, $\exists n \in \mathbb{N} : ng = 0 \Longrightarrow |g| = n$.

Definition 3.3. Let G be a group. If $H \subseteq G$ is a group under the operation of G, then H is a *subgroup* of G, denoted $H \subseteq G$. If H is a *proper subgroup* of G, then $H \subset G$.

Note 3.2. $H = \{e\}$ is the *trivial* subgroup of G. $H \neq \{e\}$ is a *nontrivial* subgroup of G.

 \mathbb{Z}_n under addition modulo n is not a subgroup of \mathbb{Z} under addition, because addition modulo n is not the operation of \mathbb{Z} .

3.2 Subgroup Tests

Theorem 3.1 (One-Step Subgroup Test). Let G be a group and $H \subseteq G, H \neq \emptyset$. Then

$$a, b \in H, ab^{-1} \in H \implies H < G.$$

In additive notation,

$$a, b \in H, a - b \in H \implies H \le G.$$

Proof. Let G be a group and $H \subseteq G, H \neq \emptyset$. Assume that $a, b \in H, ab^{-1} \in H$.

Since the operation of H is the same operation in G, the operation is associative. Since $H \neq \emptyset \implies \exists x \in H$. Let a = x, b = x, then

$$e = xx^{-1} = ab^{-1} \in H.$$

So H has an identity e. Next, let a = e, b = x, then

$$x^{-1} = ex^{-1} = ab^{-1} \in H.$$

So $x \in H \implies x^{-1} \in H$. Finally, since $y \in H \implies y^{-1} \in H$, let $a = x, b = y^{-1}$, then

$$xy = x(y^{-1})^{-1} = ab^{-1} \in H.$$

So $x, y \in H \implies xy \in H$. Hence H is a group under the operation in G and by Definition 3.3, $H \leq G$.

Note 3.3. Although Theorem 3.1 is called One-Step Subgroup Test, there are actually four steps involved in applying the theorem:

- 1. Identify the property P that distinguishes the elements of H. That is, identify a defining condition.
- 2. Prove that the identity element has property P. This verifies $H \neq \emptyset$.
- 3. Assume that a, b have property P.
- 4. Use the assumption that a, b have property P to show that ab^{-1} has property P.

Example 3.1. 1. Let G be an Abelian group with identity e. Then $H = \{x \in G : x^2 = e\}$ is a subgroup of G. The defining property of H is the condition $x^2 = e$. First, $e^2 = e$, so $e \in H$ and $H \neq \emptyset$. Now assume that $a, b \in H, a^2 = e, b^2 = e$. Finally, since G is Abelian,

$$(ab^{-1})^2 = ab^{-1}ab^{-1} = aab^{-1}b^{-1} = a^2(b^2)^{-1} = ee^{-1} = e.$$

Hence $ab^{-1} \in H$ and by Theorem 3.1, $H \leq G$.

2. Let G be an Abelian group under multiplication with identity e. Then $H = \{x^2 : x \in G\}$ is a subgroup of G. The defining property P is that the elements have the form x^2 . Since $e^2 = e$, the identity has the correct form and $e \in H \implies H \neq \emptyset$. Next, write two elements in H in the correct forms a^2, b^2 . Since G is Abelian,

$$a^2(b^2)^{-1}=a^2(b^{-1})^2=aab^{-1}b^{-1}=ab^{-1}ab^{-1}=(ab^{-1})^2,\\$$

which is the correct form. Hence $H \leq G$.

Theorem 3.2 (Two-Step Subgroup Test). Let G be a group and $H \subseteq G, H \neq \emptyset$. If

- (i) $a, b \in H, ab \in H$ (H is closed under the operation), and
- (ii) $a \in H, a^{-1} \in H$ (H is closed under taking inverses),

then $H \leq G$.

Proof. Let G be a group and $H \subseteq G, H \neq \emptyset$. Assume that $a, b \in H, ab \in H$ and $a \in H, a^{-1} \in H$. Then since the operation of H is the same as the operation of G, the operation is associative in H. Next, let $a \in H$. Then $a^{-1} \in H, aa^{-1} \in H$ and

$$e = aa^{-1} \in H$$
.

Hence, H is a group under the operation of G and $H \leq G$.

Note 3.4. When applying Theorem 3.2, one proceeds exactly as in the case of Theorem 3.1, except one uses the assumption that a, b have property P to prove that ab has property P and that a^{-1} has property P.

Example 3.2. Let G be an Abelian group. Then $H = \{x \in G : |x| \neq \infty\}$ is a subgroup of G. Since $e^1 = e$, it follows that e has finite order so $e \in H$ and hence $H \neq \emptyset$. To apply Theorem 3.2, assume that $a, b \in H, |a| = m, |b| = n$. Then, since G is Abelian,

$$(ab)^{mn} = (a^m)^n (b^n)^m = e^n e^m = e.$$

Thus, ab has finite order and $ab \in H$. This does not show that |ab| = mn, but $|ab| \le mn$. Moreover,

$$(a^{-1})^m = (a^m)^{-1} = e^{-1} = e.$$

So a^{-1} has finite order and $a^{-1} \in H$.

Note 3.5. The next example illustrate how to use Theorem 3.2 by introducing an important technique for creating new subgroups of Abelian groups from existing ones.

Example 3.3. Let G be an Abelian group and $H, K \leq G$. Then $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G. Since $e \in H, e \in K$, it follows that $e = ee \in HK$ and hence $HK \neq \emptyset$. Next, let $a, b \in HK$. Then by definition of HK

$$\exists h_1, h_2 \in H, k_1, k_2 \in K : a = h_1 k_1, b = h_2 k_2.$$

Since G is Abelian and $H, K \in G$, it follows that

$$ab = (h_1k_1)(h_2k_2) = (h_1h_2)(k_2k_2) \in HK,$$

since $h_1h_2 \in H, k_1k_2 \in K$. Likewise,

$$a^{-1} = (h_1 k_1)^{-1} = k_1^{-1} h_1^{-1} = h_1^{-1} k_1^{-1} \in HK,$$

since $h_1^{-1} \in H, k_1^{-1} \in K$. Hence $HK \leq G$.

Note 3.6. Any of the following ways guarantees that $H \subseteq G$ is not a subgroup of G.

- 1. Show that $e \notin H$.
- 2. Show $\exists a \in H : a^{-1} \notin H$.
- 3. Show $\exists a, b \in H : ab \notin H$.

Example 3.4. Let G be the group of nonzero real numbers under multiplication, let $H = \{x \in G : x = 1 \lor x \in \mathbb{I}\}$ and $K = \{x \in G : x \ge 1\}$. Then $H \nleq G$, since $\sqrt{2} \in H$ but $\sqrt{2}\sqrt{2} \notin H$. Also, $K \nleq G$, since $2 \in K$ but $2^{-1} \notin K$.

Theorem 3.3 (Finite Subgroup Test). Let H be a nonempty finite subset of a group G. Then $a, b \in H, ab \in H \implies H \leq G$.

Proof. Let G be a group, and let $H \subseteq G$, H is nonempty and finite. Assume that $a,b \in H, ab \in H$.

If a = e, then

$$a^{-1} = e^{-1} = e = a \in H.$$

Since $a, b \in H, ab \in H, a^{-1} \in H$, by Theorem 3.2, $H \leq G$.

If $a \neq e$, consider the sequence a, a^2, \ldots Since $a, b \in H, ab \in H$, it follows that

$$a \in H$$

$$a^{2} = aa \in H$$

$$a^{3} = aa^{2} \in H$$
.

and hence $a, a^2, \dots \in H$. Since H is finite, not all of these elements are distinct. Assume $a^i = a^j, i > j$. Then

$$a^{i} = a^{j}$$

$$a^{i}a^{-j} = a^{j}a^{-j}$$

$$a^{i-j} = e.$$

Since $a \neq e$, it follows that i - j > 1. Thus

$$aa^{i-j-1} = a^{i-j} = e$$

and hence $a^{i-j-1}=a^{-1}$. But $i-j>1 \implies i-j-1>0 \implies a^{i-j-1}\in H$. So $a,b\in H,ab\in H,a^{-1}\in H$ and by Theorem 3.2, $H\leq G$.

3.3 Examples of Subgroups

Definition 3.4. $\forall a \in G, \langle a \rangle = \{a^n : n \in \mathbb{Z}\} = \{\dots, a^{-2}, a^{-1}, a^0 = e, a^1, a^2, \dots\}.$

Theorem 3.4 ($\langle a \rangle$ is a Subgroup). Let G be a group, and let $a \in G$. Then, $\langle a \rangle \leq G$.

Proof. Let G be a group and $a \in G$. Since $a \in \langle a \rangle$, it follows that $\langle a \rangle \neq \emptyset$. Let $a^n, a^m \in \langle a \rangle$. Then, $a^n(a^m)^{-1} = a^{n-m} \in \langle a \rangle$. Hence by Theorem 3.1, $\langle a \rangle \leq G$.

 $\langle a \rangle$ is the cyclic subgroup 5 of G generated by a. If $G = \langle a \rangle$, then G is cyclic and a is a generator of G. A cyclic group may have many generators. Although the list $\ldots, a^{-2}, a^{-1}, a^0, a^1, a^2, \ldots$ has infinitely many entries, the set $\{a^n : n \in \mathbb{Z}\}$ might have only finitely many elements. Also, since $a^i a^j = a^{i+j} = a^j a^i$, every cyclic group is Abelian.

Example 3.5. 1. For $U(10) = \{1, 3, 7, 9\}$ under multiplication modulo 10, since

$$3^0 = 1, 3^1 = 3, 3^2 = 9, 3^3 = 7, 3^4 = 1, 3^5 = 3^4 \cdot 3^1 = 1 \cdot 3 = 3, \dots$$

and since $3 \cdot 7 = 1$ and 1 is the identity, it follows that $3^{-1} = 7$. So

$$3^{-1} = 7, 3^{-2} = 3^{-1}3^{-1} = 7 \cdot 7 = 9, 3^{-3} = 3^{-2}3^{-1} = 9 \cdot 7 = 3, \dots$$

Hence $\langle 3 \rangle = \{3, 9, 7, 1\} = U(10)$ under multiplication modulo 10.

2. For \mathbb{Z}_{10} under addition modulo 10, since

$$0(2) = 0, 1(2) = 2, 2(2) = 4, 3(2) = 6, 4(2) = 8, 5(2) = 0, 6(2) = 2, \dots$$

and since -2 = 10(-1) + 8, it follows that

$$-1(2) = 8, -2(2) = -4 = 6, -3(2) = -6 = 4, -4(2) = -8 = 2, \dots$$

Hence, $\langle 2 \rangle = \{2, 4, 6, 8, 0\}$ and since $a, b \in \langle 2 \rangle \implies ab \in \langle 2 \rangle$. For instance,

$$0 \cdot 2 = 0, 2 \cdot 4 = 8, 8 \cdot 8 = 4, \dots \in \langle 2 \rangle.$$

Hence by Theorem 3.3, $\langle 2 \rangle = \{2, 4, 6, 8, 0\} \leq \mathbb{Z}_{10}$.

3. For \mathbb{Z} , since

$$\langle -1 \rangle = \{\dots, -2(-1), -1(-1), 0(-1), 1(-1), 2(-1), \dots \}$$

= $\{\dots, -2, -1, 0, 1, 2, \dots \} = \mathbb{Z}.$

Hence $\langle -1 \rangle = \mathbb{Z}$.

4.

5.

For any $a \in G$, it is useful to think of $\langle a \rangle$ as the smallest subgroup of G containing a. This notion can be extended to any collection S of elements from G by defining $\langle S \rangle$ as the subgroup of G with the property that $S \in \langle S \rangle$ and if H is any subgroup of G containing S, then H also contains $\langle S \rangle$. Thus $\langle S \rangle$ is the smallest subgroup of G that contains S. $\langle S \rangle$ is the subgroup generated by S.

Example 3.6. In \mathbb{Z}_{20} , $(8, 14) = \{0, 2, 4, \dots, 18\} = (2)$.

In \mathbb{Z} , $\langle 8, 13 \rangle = \mathbb{Z}$.

In D_4 , $\langle H, V \rangle = \{H, H^2, V, HV\} = \{R_0, R_{180}, H, V\}.$

In D_4 , $\langle R_9, V \rangle = \{R_{90}, R_{90}^2, R_{90}^3, R_{90}^4, V, R_{90}V, R_{90}^2V, R_{90}^3V\} = D_4$.

Definition 3.5. The center of a group G is

$$Z(G) = \{ a \in G : \forall x \in G, ax = xa \}.$$

Theorem 3.5 (Z(G) is a Subgroup). Let G be a group and Z(G) be the center of G. Then $Z(G) \leq G$.

Proof. Let G be a group and Z(G) be the center of G. Since $\forall x \in G, ex = xe$, it follows that $e \in Z(G)$ and hence $Z(G) \neq \emptyset$. Assume that $a, b \in Z(G)$, then since the operation of G is associative,

$$\forall x \in G, (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab).$$

Hence $ab \in Z(G)$.

Next, assume that $a \in Z(G)$. Then $\forall x \in G, ax = xa$ and

$$ax = xa,$$

$$a^{-1}(ax)a^{-1} = a^{-1}(xa)a^{-1},$$

$$(a^{-1}a)xa^{-1} = a^{-1}x(aa^{-1}),$$

$$exa^{-1} = a^{-1}xe,$$

$$xa^{-1} = a^{-1}x.$$

Hence $a^{-1} \in Z(G)$ and by Theorem 3.2, $Z(G) \leq G$.

Example 3.7. Let $n \geq 3$. Observe that since $R \in D_n$, $R = (R_{360/n})^k$, $k \in \mathbb{Z}$, so $R, R' \in D_n$, RR' = R'R. Let $R \in D_n$ be any rotation and let $F \in D_n$ be any reflection. Since RF is a reflection, it follows that

$$RF = (RF)^{-1} = F^{-1}R^{-1} = FR^{-1}$$
.

Thus

$$RF = FR \iff FR = RF = FR^{-1}.$$

By cancellation, $R = R^{-1}$. But $R = R^{-1}$ only when $R = R_0$ or $R = R_{180}$ and R_{180} is in D_n only when n is even. So,

$$Z(D_n) = \begin{cases} \{R_0, R_{180}\} & \text{, n is even,} \\ \{R_0\} & \text{, n is odd.} \end{cases}$$

Definition 3.6. Let a be a fixed element of a group G. The *centralizer* of a in G is

$$C(a) = \{g \in G : ga = ag\}.$$

Theorem 3.6 (C(a) is a Subgroup). Let G be a group. Then

$$\forall a \in G, C(a) \leq G.$$

Proof. Let G be a group, $a \in G$ be arbitrary, and C(a) be a centralizer of a in G. Since $e \in G$, ea = ae, it follows that $e \in C(a)$ and hence $C(a) \neq \emptyset$. Assume that $x, y \in C(a)$. Then, since the operation in G is associative,

$$(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy).$$

Hence $xy \in C(a)$.

Next, assume that $x \in C(a)$. Then xa = ax and

$$xa = ax,$$

 $x^{-1}(xa)x^{-1} = x^{-1}(ax)x^{-1},$
 $(x^{-1}x)ax^{-1} = x^{-1}a(xx^{-1}),$
 $eax^{-1} = x^{-1}ae,$
 $ax^{-1} = x^{-1}a.$

Hence $x^{-1} \in C(a)$ and by Theorem 3.2, $C(a) \leq G$.

Note that $\forall a \in G, Z(G) \subseteq C(a)$. Also, G is Abelian iff $\forall a \in G, C(a) = G$.

Example 3.8. In D_4 ,

$$C(R_0) = D_4 = C(R_{180}),$$

$$C(R_{90}) = \{R_0, R_{90}, R_{180}, R_{270}\} = C(R_{270}),$$

$$C(H) = \{R_0, H, R_{180}, V\} = C(V),$$

$$C(D) = \{R_0, D, R_{180}, D'\} = C(D').$$

4 Cyclic Groups

4.1 Properties of Cyclic Groups

Definition 4.1. Let G be a group. Then

$$\exists a \in G : G = \langle a \rangle = \{a^n : n \in \mathbb{Z}\} \implies G \text{ is cyclic.}$$

 $a \in G$ is a generator of G.

Example 4.1. 1. \mathbb{Z} under addition is cyclic. Since

$$\begin{split} \langle 1 \rangle &= \{ n1 : n \in \mathbb{Z} \} \\ &= \{ \dots, -2(1), -1(1), 0(1), 1(1), 2(1), \dots \} \\ &= \{ \dots, -2, -1, 0, 1, 2, \dots \} \\ &= \mathbb{Z} \end{split}$$

and

$$\langle -1 \rangle = \{ n(-1) : n \in \mathbb{Z} \}$$

$$= \{ \dots, 2(-1), 1(-1), 0(-1), -1(-1), -2(-1), \dots \}$$

$$= \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

$$= \mathbb{Z}.$$

Hence $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$ and -1, 1 are the generators of \mathbb{Z} .

2. $\mathbb{Z}_n = \{0, 1, \dots, n-1\}, n \geq 1$ under addition modulo n is a cyclic group. Since

and

it follows that $\mathbb{Z}_n = \langle 1 \rangle = \langle -1 \rangle$. Hence 1, -1 = n - 1 are the generators of \mathbb{Z}_n .

3. For \mathbb{Z}_8 under addition modulo 8. Since

$$\langle 1 \rangle = \{1, 2, 3, 4, 5, 6, 7, 0\},\$$

$$\langle 3 \rangle = \{3, 6, 1, 4, 7, 2, 5, 0\},\$$

$$\langle 5 \rangle = \{5, 2, 7, 4, 1, 6, 3, 0\},\$$

$$\langle 7 \rangle = \{7, 6, 5, 4, 3, 2, 1, 0\},\$$

it follows that $\mathbb{Z}_8 = \langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle$. Hence 1, 3, 5, 7 are the generators of \mathbb{Z}_8 . On the other hand, 2 is not a generator since $\langle 2 \rangle = \{2, 4, 6, 0\} \neq \mathbb{Z}_8$.

- 4. For $U(10) = \{1, 3, 7, 9\}$, since $\langle 3 \rangle = \{3, 9, 7, 1\}, \langle 7 \rangle = \{7, 9, 3, 1\}$, it follows that $U(10) = \langle 3 \rangle = \langle 7 \rangle$. Hence 3, 7 are generators of U(10).
- 5. For $U(8) = \{1, 3, 5, 7\}$, since $\langle 1 \rangle = \{1\}, \langle 3 \rangle = \{3, 1\}, \langle 5 \rangle = \{5, 1\}, \langle 7 \rangle = \{7, 1\}$, it follows that $U(8) \neq \langle a \rangle, a \in U(8)$. Hence U(8) is not cyclic.

Theorem 4.1. Let G be a group and $a \in G$.

(i)
$$|a| = \infty \implies (a^i = a^j \iff i = j)$$
.

(ii)
$$|a| = n \implies \langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$$
 and $a^i = a^j \iff n \mid (i-j)$.

Proof. Let G be a group and $a \in G$.

- (i) Assume that $|a| = \infty$. Then $a^n \neq e, n \in \mathbb{N}$.
- (\Rightarrow) Assume that $a^i=a^j$. Then $a^{i-j}=e$, it follows that $i-j=0 \implies i=j$.
- (\Leftarrow) Assume that i=j. Then i-j=0 and hence $a^{i-j}=a^0=e \implies a^i=a^j$.

Hence, $|a| = \infty \implies (a^i = a^j \iff i = j)$.

(ii) Assume that |a|=n, so $a^n=e.$ Let $a^k\in\langle a\rangle$ be arbitrary. By the division algorithm,

$$\exists q, r \in \mathbb{Z} : k = nq + r, 0 \le r \le n.$$

So

$$a^k = a^{nq+r} = a^{nq}a^r = (a^n)^q a^r = e^q a^r = ea^r = a^r.$$

Since $0 \le r < n$, it follows that $e \le a^k < a^n$ and $a^k \in \{e, a, a^2, \dots, a^{n-1}\}$. Hence, $\langle a \rangle \subseteq \{e, a, a^2, \dots, a^{n-1}\}$.

Let $a^k \in \{e, a, \dots, a^{n-1}\}$. Then $a^k \in \langle a \rangle = \{a^t : t \in \mathbb{Z}\}$ and $\{e, a, \dots, a^{n-1}\} \subseteq$

- $\langle a \rangle$. Hence $\langle a \rangle = \{e, a, \dots, a^{n-1}\}.$
- (\Rightarrow) Assume that $a^i = a^j$, so $a^{i-j} = e$. By the division algorithm,

$$\exists q, r \in \mathbb{Z} : i - j = nq + r, 0 < r < n.$$

So

$$e = a^{i-j} = a^{nq+r} = a^{nq}a^r = (a^n)^q a^r = e^q a^r = ea^r = a^r.$$

Since n is the smallest positive integer s.t. $a^n = e$, it follows that r = 0 and $i - j = nq \implies n \mid (i - j)$.

 (\Leftarrow) Assume that $n \mid (i-j)$, so i-j=nq. It follows that

$$a^{i-j} = a^{nq} = (a^n)^q = e^q = e$$

and hence $a^i = a^j$.

Hence
$$|a| = n \implies \langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$$
 and $a^i = a^j \iff n \mid (i - j)$. \square

Corollary 4.1.1. Let G be a group. Then $\forall a \in G, |a| = |\langle a \rangle|$.

Proof. Let G be a group, let $a \in G$ be arbitrary. Assume that |a| = n, then $\langle a \rangle = \{e, a, \dots, a^{n-1}\}$. It follows that $|\langle a \rangle| = n$.

Corollary 4.1.2. Let G be a group. Then $\forall a \in G, a^k = e \iff |a| \mid k$.

Proof. From Theorem 4.1 (ii), $a^k = e = a^0 \iff (n = |a|) \mid (k - 0 = k)$.

Corollary 4.1.3. Let G be a group. Then $\forall a \in G, a^k = e \iff k$ is a multiple of |a|.

Corollary 4.1.4. Let G be a finite group. Then

$$a, b \in G, ab = ba \implies |ab| \mid |a||b|.$$

Proof. Let |a| = m, |b| = n. Then

$$(ab)^{mn} = (a^m)^n (b^n)^m = e^n e^m = e.$$

Hence by Corollary 4.1.2, |a| | mn = |a| |b|.

Figure 4.1: Powers of a for |a| = 6.

Figure 4.1 shows Theorem 4.1 and its corollaries for |a| = 6.

Theorem 4.2. Let G be a group, $a \in G$, |a| = n, and let $k \in \mathbb{N}$. Then

(i)
$$\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$$
 and

(ii)
$$|a^k| = n/\gcd(n, k)$$
.

Proof. Let G be a group, $a \in G$, |a| = n, and let $k \in \mathbb{N}$.

(i) Let $d = \gcd(n, k)$ and let k = dr. Since $a^k = (a^d)^r \in \langle a^d \rangle$, it follows that $\langle a^k \rangle \subseteq \langle a^d \rangle$. By Theorem 0.2, $\exists s, t \in \mathbb{Z} : d = ns + kt$. So

$$a^{d} = a^{ns+kt} = a^{ns}a^{kt} = (a^{n})^{s}(a^{k})^{t} = e(a^{k})^{t} = (a^{k})^{t} \in \langle a^{k} \rangle.$$

Hence, $\langle a^d \rangle \subseteq \langle a^k \rangle$ and $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$.

(ii) Let d be any divisor of n. Then $(a^d)^{n/d} = a^n = e \implies |a^d| \le n/d$. Let $i \in \mathbb{N}, i < n/d$. If $(a^d)^i = a^{di} = e$, then since |a| = n, it follows that $di \ge n \implies i \ge n/d$, contradicting that i < n/d. Hence $|a^d| = n/d$. Now let $d = \gcd(n, k)$, then

$$|a^k| = |\langle a^k \rangle| \text{ (by Corollary 4.1.1)}$$

$$= |\langle a^{\gcd(n,k)} \rangle| \text{ (by part (i))}$$

$$= |a^{\gcd(n,k)}|$$

$$= |a^d|$$

$$= n/d$$

$$= n/\gcd(n,k).$$

Example 4.2. 1. For |a| = 30, find $\langle a^{26} \rangle, \langle a^{17} \rangle, \langle a^{18} \rangle, |a^{26}|, |a^{17}|, |a^{18}|$.

Since gcd(30, 26) = 2, by Theorem 4.2 (i), $\langle a^{26} \rangle = \langle a^{gcd(30, 26)} \rangle = \langle a^2 \rangle$. Since

$$(a^2)^1 = a^2, (a^2)^2 = a^4, \dots, (a^2)^{14} = a^{28}, (a^2)^{15} = a^{30} = e,$$

 $(a^2)^{16} = a^{32} = a^{30}a^2 = ea^2 = a^2, (a^2)^{17} = a^{34} = a^{30}a^4 = ea^4 = a^4, \dots$

and

$$(a^2)^0 = e,$$

$$(a^2)^{-1} = (a^2)^{-1} \cdot e = (a^2)^{-1}a^{30} = (a^2)^{-1}(a^2)^{15} = (a^2)^1 4 = a^{28},$$

$$(a^2)^{-2} = (a^2)^{-1}(a^2)^{-1} = a^{28}a^{28} = a^{56} = a^{30}a^{26} = a^{26},$$

$$\vdots$$

it follows that $\langle a^{26} \rangle = \langle a^2 \rangle = \{e, a^2, a^4, \dots, a^{26}, a^{28}\}$ and $|a^{26}| = 30/\gcd(30, 26) = 30/2 = 15$.

Since gcd(30, 17) = 1, it follows that $\langle a^{17} \rangle = \langle a^1 \rangle = \{e, a, a^2, \dots, a^{29}\}$ and $|a^{17}| = 30/1 = 30$.

Since gcd(30, 18) = 6, it follows that $\langle a^{18} \rangle = \langle a^6 \rangle$. Since

$$(a^6)^1 = a^6, (a^6)^2 = a^{12}, (a^6)^3 = a^{18}, (a^6)^4 = a^{24}, (a^6)^5 = a^{30} = e, \dots$$

and

$$(a^6)^0 = e, (a^6)^{-1} = (a^6)^{-1}a^{30} = (a^6)^{-1}(a^6)^5 = (a^6)^4 = a^{24}, \dots,$$

it follows that $\langle a^1 8 \rangle = \langle a^6 \rangle = \{e, a^6, a^{12}, a^{18}, a^{24}\}$ and $|a^{18}| = 30/\gcd(30, 18) = 30/6 = 5$.

 $2. \ \ \text{For} \ |a|=1000, \ \text{find} \ \langle a^{140}\rangle, \langle a^{400}\rangle, \langle a^{62}\rangle, |a^{140}|, |a^{400}|, |a^{62}|.$

Since $\gcd(1000,140) = \gcd(2^35^3,2^25\cdot7) = 2^25 = 20$, it follows that $\langle a^{140} \rangle = \langle a^{20} \rangle = \{e,a^{20},a^{40},a^{60},\dots,a^{980}\}$ and $|a^{140}| = 1000/20 = 50$.

Since $\gcd(1000,400) = \gcd(2^35^3,2^45^2) = 2^35^2 = 200$, it follows that $\langle a^{400} \rangle = \langle a^{200} \rangle = \{e,a^{200},a^{400},a^{600},a^{800}\}$ and $|a^{140}| = 1000/200 = 5$.

Since $\gcd(1000,62) = \gcd(2^35^3,2\cdot 31) = 2$, it follows that $\langle a^{62} \rangle = \langle a^2 \rangle = \{e,a^2,a^4,a^6,a^{998}\}$ and $|a^{62}| = 1000/2 = 500$.

Corollary 4.2.1. $G = \langle a \rangle, |G| = n \implies \forall g \in G, |g| \mid |G|$.

Proof. Let $G = \langle a \rangle, a \in G$ and $|G| = |\langle a \rangle| = |a| = n$. Let $g \in G$ be arbitrary, since $G = \langle a \rangle$, it follows that $g = a^k$. By Theorem 4.2 (ii),

$$|q| = |a^k| = n/\gcd(n, k) = |G|/\gcd(n, k).$$

Hence, $|a| \mid G, a \in G$.

Corollary 4.2.2. Let |a| = n. Then

(i)
$$\langle a^i \rangle = \langle a^j \rangle \iff \gcd(n,i) = \gcd(n,j), \ and$$

(ii)
$$|a^i| = |a^j| \iff \gcd(n, i) = \gcd(n, j)$$
.

Proof. Let |a| = n.

(i) (\Rightarrow) Assume that $\langle a^i \rangle = \langle a^j \rangle$. By Theorem 4.2 (i),

$$\langle a^i \rangle = \langle a^j \rangle \implies \langle a^{\gcd(n,i)} \rangle = \langle a^{\gcd(n,j)} \rangle,$$

which implies that $|a^{\gcd(n,i)}| = |a^{\gcd(n,j)}|$ since two sets are equal if they have the same members. By Theorem 4.2 (ii),

$$|a^{\gcd(n,i)}| = |a^{\gcd(n,j)}| \implies n/\gcd(n,i) = n/\gcd(n,j) \implies \gcd(n,i) = \gcd(n,j).$$

- (\Leftarrow) Assume that gcd(n,i) = gcd(n,j). Then it follows that $\langle a^i \rangle = \langle a^j \rangle$.
- (ii) (\Rightarrow) Assume that $|a^i| = |a^j|$. Then by Theorem 4.2 (ii),

$$|a^{i}| = |a^{j}|,$$

$$n/\gcd(n, i) = n/\gcd(n, j),$$

$$\gcd(n, i) = \gcd(n, j).$$

 (\Leftarrow) Assume that $\gcd(n,i) = \gcd(n,j)$. Then

$$\gcd(n,i) = \gcd(n,j),$$

$$n \cdot \gcd(n,i) = n \cdot \gcd(n,j),$$

$$n/\gcd(n,i) = n/\gcd(n,j),$$

$$|a^{i}| = |a^{j}| \text{ (by Theorem 4.2 (ii))}.$$

Corollary 4.2.3. Let |a| = n. Then

(i)
$$\langle a \rangle = \langle a^j \rangle \iff \gcd(n,j) = 1$$
, and

(ii)
$$|a| = |a^j| \iff \gcd(n, j) = 1.$$

Example 4.3. For $U(50) = \{1, 3, 7, 9, 11, 13, 17, 19, \dots, 47, 49\}, |U(50)| = 20.$ Since

$$3^1 \mod 50 = 3, 3^2 \mod 50 = 9, 3^3 \mod 50 = 27, 3^4 \mod 50 = 31, \dots,$$

$$3^0 \mod 50 = 1, 3^{-1} \mod 50 = 3^{19} \mod 50 = 17, \dots,$$

it follows that $U(50) = \langle 3 \rangle$ and 3 is a generator of U(50). By Corollary 4.2.3, $\gcd(50,3) = 1 \iff \langle 3 \rangle = \langle 3^3 \rangle$, so $U(50) = \langle 3 \rangle = \langle 3^3 \rangle = \langle 27 \rangle$ and 27 is a generator of U(50). The complete list of generators of U(50) is

$$3^1 \mod 50 = 3, 3^3 \mod 50 = 27, 3^7 \mod 50 = 37, 3^9 \mod 50 = 33,$$

 $3^{11} \mod 50 = 47, 3^{13} \mod 50 = 23, 3^{17} \mod 50 = 13, 3^{19} \mod 50 = 17.$

Corollary 4.2.4. $k \in \mathbb{Z}_n$ is a generator of $\mathbb{Z}_n \iff \gcd(n,k) = 1$.

4.2 Classification of Subgroups of Cyclic Groups

Theorem 4.3 (Fundamental Theorem of Cyclic Groups). Let G be cyclic. Then $H \leq G \implies H$ is cyclic. Moreover, if $|\langle a \rangle| = n$, then

1.
$$H < \langle a \rangle \implies |H| \mid n$$
.

2.
$$k \mid n, k > 0, !\exists H \leq \langle a \rangle : |H| = k, H = \langle a^{n/k} \rangle$$
.

Proof. Let G be a cyclic group, so $\exists a \in G$: $G = \langle a \rangle$.

(i) Assume that $H \leq G = \langle a \rangle$. If $H = \{e\}$, then H is cyclic. If $H \neq \{e\}$, then

$$H < G = \langle a \rangle \implies \forall x \in H, x = a^t, t \in \mathbb{Z}.$$

If $a^t \in H, t < 0$, then

$$H < G \implies a^{-t} \in H, -t > 0.$$

Hence $\exists a^t \in H, t > 0$. Let $m = \min\{t \in \mathbb{N} : a^t \in H\}$. Then by closure, $(a^m)^t \in H, t \in \mathbb{Z}$. Hence $\langle a^m \rangle \subseteq H$.

Let $b \in H$ be arbitrary. Then

$$H < G = \langle a \rangle \implies b = a^k, k \in \mathbb{Z}.$$

By the division algorithm,

$$\exists q, r \in \mathbb{Z} : k = mq + r, 0 \le r \le m.$$

So

$$a^k = a^{mq+r} = a^{mq}a^r$$

and

$$a^r = a^{-mq}a^k = (a^m)^{-q}a^k.$$

By closure,

$$(a^m)^{-q}, a^k \in H \implies a^{-mq}a^k = a^r \in H.$$

But

$$a^m \in H, m = \min\{t \in \mathbb{N} : a^t \in H\}, 0 \le r < m \implies r = 0,$$

so

$$k = mq + r = mq$$
 and $a^k = a^{mq}a^r = a^{mq} = (a^m)^q$.

Hence,

$$a^k \in \langle a^m \rangle \implies H \subseteq \langle a^m \rangle$$

and

$$\langle a^m \rangle \subseteq H, H \subseteq \langle a^m \rangle \implies H = \langle a^m \rangle.$$

- (ii) Let $|G| = |\langle a \rangle| = n$. Then
- (a) Assume that $H \leq G = \langle a \rangle$. Then by Theorem 4.3 (i), $H = \langle a^m \rangle$ and $a^k \in H = \langle a^m \rangle \implies k = mq, q \in \mathbb{Z}$. Since

$$|G| = |\langle a \rangle| = |a| = n \implies a^n = e \in H,$$

it follows that $n = mq, q \in \mathbb{Z}$. Let |H| = k, then by Theorem 4.2 (ii),

$$k = |H| = |\langle a^m \rangle| = |a^m| = n/\gcd(n, m) = n/m$$

and

$$n = km \implies k \mid n.$$

(b) Let $k \in \mathbb{N}$: $k \mid n$ be arbitrary. Assume that $H_1, H_2 \leq G = \langle a \rangle$ and $|H_1| = |H_2| = k$. Let $H_1 = \langle a^{m_1} \rangle, H_2 = \langle a^{m_2} \rangle$, then

$$|a| = n, |H_1| = |H_2| = k \implies n = m_1 k, n = m_2 k \implies m_1 = m_2 = n/k.$$

Hence
$$H_1 = H_2 = \langle a^{n/k} \rangle$$
.

Example 4.4. Let $G = \langle a \rangle$ and $|G| = |\langle a \rangle| = |a| = 30$, so $a^{30} = e$. Find the subgroups of G. By Theorem 4.3 (i),

$$H \leq G \implies H$$
 is cyclic.

By Theorem 4.3 (ii) (a),

$$H < G = \langle a \rangle \implies |H| = k : k \mid 30.$$

So $k \in \{-30, -15, \dots, -1, 1, 2, 3, 5, 6, 10, 15, 30\}$. By Theorem 4.3 (ii) (b), $\forall k \in \mathbb{N} : k \mid 30$, there exists only one $H \leq G = \langle a \rangle : |H| = k, H = \langle a^{30/k} \rangle$. Hence the

list of subgroups of $\langle a \rangle$ is

$$\begin{split} k &= 1: H = \langle a^{30/1} \rangle = \langle a^{30} \rangle = \{e\}, & |H| &= 1, \\ k &= 2: H = \langle a^{30/2} \rangle = \langle a^{15} \rangle = \{e, a^{15}\}, & |H| &= 2, \\ k &= 3: H = \langle a^{30/3} \rangle = \langle a^{10} \rangle = \{e, a^{10}, a^{20}\}, & |H| &= 3, \\ k &= 5: H = \langle a^{30/5} \rangle = \langle a^6 \rangle = \{e, a^6, a^{12}, a^{18}, a^{24}\}, & |H| &= 5, \\ k &= 6: H = \langle a^{30/6} \rangle = \langle a^5 \rangle = \{e, a^5, a^{10}, a^{15}, a^{20}, a^{25}\}, & |H| &= 6, \\ k &= 10: H = \langle a^{30/10} \rangle = \langle a^3 \rangle = \{e, a^3, a^6, \dots, a^{27}\}, & |H| &= 10, \\ k &= 15: H = \langle a^{30/15} \rangle = \langle a^2 \rangle = \{e, a^2, a^4, a^6, \dots, a^{28}\}, & |H| &= 15, \\ k &= 30: H = \langle a^{30/30} \rangle = \langle a^1 \rangle = \{e, a, a^2, \dots, a^{29}\}, & |H| &= 30. \end{split}$$

Corollary 4.3.1. $\forall k \in \mathbb{N} : k \mid n, \text{ there exists only one } \langle n/k \rangle \leq \mathbb{Z}_n : |\langle n/k \rangle| = k.$ Moreover, these are the only subgroups of \mathbb{Z}_n .

Example 4.5. For $Z_{30} = \{0, 1, 2, ..., 29\} = \langle 1 \rangle$, let k be a positive divisor of 30, so $k \in \{1, 2, 3, 5, 6, 10, 15, 30\}$. The list of subgroups of \mathbb{Z}_{30} is

$$\begin{array}{lll} k=1: \langle 30/1\rangle = \langle 30\rangle = \{0\}, & |\langle 30/1\rangle| = 1, \\ k=2: \langle 30/2\rangle = \langle 15\rangle = \{0,15\}, & |\langle 30/2\rangle| = 2, \\ k=3: \langle 30/3\rangle = \langle 10\rangle = \{0,10,20\}, & |\langle 30/3\rangle| = 3, \\ k=5: \langle 30/5\rangle = \langle 6\rangle = \{0,6,12,18,24\}, & |\langle 30/5\rangle| = 5, \\ k=6: \langle 30/6\rangle = \langle 5\rangle = \{0,5,10,15,20,25\}, & |\langle 30/6\rangle| = 6, \\ k=10: \langle 30/10\rangle = \langle 3\rangle = \{0,3,6,9,\ldots,27\}, & |\langle 30/10\rangle| = 10, \\ k=15: \langle 30/30\rangle = \langle 2\rangle = \{0,2,4,6,\ldots,28\}, & |\langle 30/15\rangle| = 15, \\ k=30: \langle 30/30\rangle = \langle 1\rangle = \{0,1,2,\ldots,29\}, & |\langle 30/30\rangle| = 30. \end{array}$$

Example 4.6. For \mathbb{Z}_{36} , find the generators of the subgroup of order 9. Since \mathbb{Z}_{36} is cyclic under addition modulo 36 and $\mathbb{Z}_{36} = \langle 1 \rangle$, by Theorem 4.3 (ii) (b), there exists exactly one $H \leq \mathbb{Z}_{36} = \langle 1 \rangle : |H| = 9, H = \langle 1 \cdot (36/9) \rangle = \langle 4 \rangle$. So 4 is a generator of H. By Corollary 4.2.3, since |4| = 9, it follows that $\langle 4 \rangle = \langle 4j \rangle \iff \gcd(9,j) = 1$. Since $j \in \{1,2,4,5,7,8\}$, it follows that

$$\begin{split} \langle 4 \cdot 1 \rangle &= \langle 4 \cdot 2 \rangle = \langle 4 \cdot 4 \rangle = \langle 4 \cdot 5 \rangle = \langle 4 \cdot 7 \rangle = \langle 4 \cdot 8 \rangle, \\ \langle 4 \rangle &= \langle 8 \rangle = \langle 16 \rangle = \langle 20 \rangle = \langle 28 \rangle = \langle 32 \rangle \\ &= \{0,4,8,12,16,20,24,28,32\}. \end{split}$$

Hence 4,8,16,20,28,32 are all generators of the subgroup of order 9.

In general, to find all the subgroups of $\langle a \rangle$ of order 9 where |a| = 36, one has

$$\langle (a^4)^1 \rangle = \langle (a^4)^2 \rangle = \langle (a^4)^4 \rangle = \langle (a^4)^5 \rangle = \langle (a^4)^7 \rangle = \langle (a^4)^8 \rangle.$$

Note that once one has the generator $a^{n/d}$ for the subgroup of order d where d is a divisor of |a| = n, all the generators of $\langle a^d \rangle$ have the form $(a^d)^j, j \in U(d)$.

Definition 4.2. The Euler phi function is defined as

$$\phi(n) = \begin{cases} 1 & , n = 1\\ \text{number of } k \in \mathbb{N} : k < n, \gcd(k, n) = 1 & , n > 1 \end{cases}$$

Notice that by definition of the group U(10), $|U(10)| = \phi(n)$. Figure 4.2 shows the first 12 values of $\phi(n)$.

Figure 4.2: The first 12 values of $\phi(n)$.

Theorem 4.4. Let G be cyclic, |G| = n. If $d \mid n, d \in \mathbb{N}$, then the number of elements $a \in G : |a| = d$ is $\phi(d)$.

Proof. Let G be cyclic, |G| = n. Assume that $d \mid n, d > 0$, then by Theorem 4.3, there exists only one $H \leq G : |H| = d$. Let $H = \langle a \rangle$. Since by Corollary 4.2.3, $\langle a \rangle = \langle a^k \rangle \iff \gcd(d,k) = 1$, and $|a^k| = |\langle a^k \rangle| = \langle a \rangle = |a| = d$. It follows that $\phi(d) = \text{the number of } k \in \mathbb{N} : k < d, \gcd(d,k) = 1 = \text{the number of } a^k \in H : |a^k| = d$.

Corollary 4.4.1. Let G be a group, |G| = n. Then the number of elements $a \in G : |a| = d$ is a multiple of $\phi(d)$.

Proof. Let G be a group, |G| = n. If the number of elements $a \in G : |a| = d$ is 0, then since 0 is a multiple of $\phi(d)$, the statement is true. If $\exists a \in G : |a| = d$, then by Theorem 4.4, $\langle a \rangle$ has $\phi(d)$ elements of order d.

If all elements of order d in G are in $\langle a \rangle$, then the number of elements of order d is a multiple of $\phi(d)$. If $\exists b \in G : |b| = d, b \notin \langle a \rangle$, then $\langle b \rangle$ has $\phi(d)$ elements of order d. So there are $2\phi(d)$ elements of order d in G provided $\langle a \rangle$ and $\langle b \rangle$ have no elements of order d in common. If $\exists c \in \langle a \rangle, \langle b \rangle : |c| = d$, then $\langle a \rangle = \langle b \rangle = \langle c \rangle$, so $b \in \langle a \rangle$, a contradiction. Continuing in this fashion, the number of elements of order d in G is a multiple of $\phi(d)$.

Theorem 4.4 together with the two number theorem properties that for any prime p,

- 1. $\phi(p^n) = p^n p^{n-1}$, and
- 2. $\phi(p_1^{k_1}p_2^{k_2}\dots p_m^{k_m}) = \phi(p_1^{k_1})\phi(p_2^{k_2})\dots\phi(p_m^{k_m}), p_1, p_2,\dots, p_m$ are distinct,

simplify the task of determining orders of element in U(n) and whether or not U(n) is cyclic.

Example 4.7. Let U(n), n > 2 be cyclic. Since $2 \mid |U(n)| = \phi(n)$, by Theorem 4.3, there exists only one $H \leq U(n) : |H| = 2$. Since $\langle -1 \rangle = \langle n-1 \rangle \leq U(n)$ and $|\langle n-1 \rangle| = |\langle -1 \rangle| = |-1| = 2$, it follows that $\langle n-1 \rangle$ is the only subgroup of order 2 of U(n). But in $U(80), 9^2 = 1 \implies |9| = |\langle 9 \rangle| = 2, \langle 9 \rangle \neq \langle 79 \rangle$, and in $U(120), 11^2 = 1 \implies |11| = |\langle 11 \rangle| = 2, \langle 11 \rangle \neq \langle 119 \rangle$. Hence U(80), U(120) are not cyclic.

5 Permutation Groups

5.1 Definition and Notation

Definition 5.1. A permutation of a set A is a one-to-one and onto function $f: A \to A$. A permutation group of a set A is a set of permutation of A that forms a group under function composition.

Note 5.1. For example, define a permutation α of the set $\{1, 2, 3, 4\}$ as

$$\alpha(1) = 2, \alpha(2) = 3, \alpha(3) = 1, \alpha(4) = 4.$$

or in array form

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{bmatrix}.$$

Similarly, the permutation β of $\{1, 2, 3, 4, 5, 6\}$ can be defined as

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 6 & 2 & 4 \end{bmatrix}.$$

Let

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{bmatrix}, \gamma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{bmatrix},$$

Figure 5.1 shows the composition of permutations σ and γ . Since $(\gamma \sigma)(1) = \gamma(\sigma(1)) = \gamma(2) = 4$, so $\gamma \sigma$ maps 1 to 4.

$$\gamma \sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ & \downarrow & & & \\ 5 & 4 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ & \downarrow & & & \\ 2 & 4 & 3 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 3 & 5 \end{bmatrix}$$

Figure 5.1: Composition of permutations σ and γ .

Example 5.1. Let S_3 be the set of all permutations of $\{1, 2, 3\}$. Then S_3 under function composition is a group with six elements. The six elements are

$$\epsilon = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \alpha = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \alpha^2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix},$$

$$\beta = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}, \alpha\beta = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \alpha^2\beta = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}.$$

Since

$$\beta \alpha = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = \alpha^2 \beta \neq \alpha \beta,$$

 S_3 is non-Abelian. The relation $\beta \alpha = \alpha^2 \beta$ can be used to compute other products in S_3 without resorting to the arrays. For example

$$\beta \alpha^2 = (\beta \alpha) \alpha = (\alpha^2 \beta) \alpha = \alpha^2 (\beta \alpha) = \alpha^2 (\alpha^2 \beta) = \alpha^4 \beta = \alpha \beta.$$

Example 5.2. S_n is the set of all permutations of a set of n elements $A = \{1, 2, ..., n\}$ called the symmetric group of degree n. Elements of S_n have the form

$$\alpha = \begin{bmatrix} 1 & 2 & \dots & n \\ \alpha(1) & \alpha(2) & \dots & \alpha(n) \end{bmatrix}.$$

Since α is one-to-one, there are n choices for $\alpha(1)$, n-1 choices for $\alpha(2)$, ..., 1 choice for $\alpha(n)$. So S_n has $n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$ elements and $|S_n| = n!$. S_n is non-Abelian when $n \geq 3$, since any permutation α only commute with the identity permutation ϵ , i.e. $\epsilon \alpha = \alpha \epsilon$.

Example 5.3. Associate each motion in D_4 with the permutation of the location of each of the four corners of a square.

5.2 Cycle Notation

Note 5.2. Consider the permutation

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 6 & 5 & 3 \end{bmatrix}.$$

Figure 5.2 shows the cycle notation of α . Figure 5.2 can also be expressed as $\alpha = (1, 2)(3, 4, 6)(5)$ or $\alpha = (12)(346)(5)$.

As a second example, consider

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 6 & 2 & 4 \end{bmatrix}.$$

In cycle notation, $\beta = (2,3,1,5)(6,4)$ or (4,6)(3,1,5,2). An expression of the form (a_1,a_2,\ldots,a_m) is called a *cycle of length* m or an m-cycle.

A multiplication of cycle can be performed by thinking of a cycle as a permutation that fixes any symbol not appearing in the cycle. So the cycle (4,6) can be thought of as the permutation $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{bmatrix}$. Then

Figure 5.2: Cycle notation of α .

the multiplication of cycles can be thought of as composition of permutations in array form. Let $\alpha=(13)(27)(456)(8), \beta=(1237)(648)(5)\in S_8$. Then $\alpha\beta=(13)(27)(456)(8)(1237)(648)(5)$. One proceeds by treating each of the cycles of $\alpha\beta$ as a function $f:\{1,\ldots,8\}\to\{1,\ldots,8\}$ and use function composition. Each cycle that does not contain a symbol fixes that symbol. For example, for $\alpha\beta(1)$, (5) fixes 1, then (648) fixes 1, then (1237) maps 1 to 2, then (8) fixes 2, then (456) fixes 2, then (27) maps 2 to 7, and lastly (13) fixes 7. So $\alpha\beta(1)=7$. Thus one begins with $\alpha\beta=(17\ldots)\cdots$. Figure 5.3 shows $\alpha\beta(1)$.

$$1 \stackrel{(5)}{\rightarrow} 1 \stackrel{(648)}{\longrightarrow} 1 \stackrel{(1237)}{\longrightarrow} 2 \stackrel{(8)}{\rightarrow} 2 \stackrel{(456)}{\longrightarrow} 2 \stackrel{(27)}{\longrightarrow} 7 \stackrel{(13)}{\longrightarrow} 7.$$

Figure 5.3:
$$\alpha\beta(1) = 7$$
.

Then, for $\alpha\beta(7)$, (5) fixes 7, (648) fixes 7, (1237) maps 7 to 1, (8) fixes 1, (456) fixes 1, (27) fixes 1, and (13) maps 1 to 3, so $\alpha\beta(7) = 3$. Figure 5.4 shows $\alpha\beta(7) = 3$. Hence, $\alpha\beta = (173...) \cdots$. Eventually, $\alpha\beta = (1732)(48)(56)$.

$$7 \xrightarrow{(5)} 7 \xrightarrow{(648)} 7 \xrightarrow{(1237)} 1 \xrightarrow{(8)} 1 \xrightarrow{(456)} 1 \xrightarrow{(27)} 1 \xrightarrow{(13)} 3$$

Figure 5.4:
$$\alpha\beta(7) = 3$$
.

For another example, if

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{bmatrix}, \beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{bmatrix}.$$

Then in cycle notation, $\alpha = (12)(3)(45)$, $\beta = (153)(24)$, $\alpha\beta = (12)(3)(45)(153)(24)$. For $\alpha\beta(1)$, (24) fixes 1, (153) maps 1 to 5, (45) maps 5 to 4, (3) fixes 4, and (12) fixes 4. So $\alpha\beta(1) = 4$. Eventually, $\alpha\beta = (14)(253)$.

One can convert $\alpha\beta$ back to array form without converting each cycle of $\alpha\beta$ back to array form by observing that (14) means $1 \to 4, 4 \to 1$; (253) means $2 \to 5, 5 \to 3, 3 \to 2$.

Any missing element in a cycle is mapped to itself. So $\alpha = (12)(3)(45) = (12)(45)$ and the identity permutation

$$\epsilon = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

in cycle form is $\epsilon = (1) = (2) = (3) = (4) = (5)$.

5.3 Properties of Permutations

Theorem 5.1. Every permutation of a finite set can be expressed as a cycle or as a product of disjoint cycles.

Proof. Let α be a permutation on $A = \{1, 2, \dots, n\}$. To write α in disjoint form, choose any member of A, say a_1 , and let

$$a_2 = \alpha(a_1), a_3 = \alpha(a_2) = \alpha(\alpha(a_1)) = \alpha^2(a_1), a_4 = \alpha^3(a_1), \dots$$

Since A is finite, eventually there will be a repetition

$$a_{m+1} = \alpha^m(a_1) = a_1, m \in \mathbb{N}.$$

If

$$\alpha^{i}(a_1) = \alpha^{j}(a_1), i, j \in \mathbb{N}, i < j,$$

then $a_1 = \alpha^m(a_1) = \alpha^{j-i}(a_1)$. The relationship among a_1, a_2, \dots, a_m is expressed as

$$\alpha = (a_1, a_2, \dots, a_m) \cdots$$

The three dots at the end indicate that A may have not been exhausted in this process. If so, then choose any element $b_1 \in A$ not in the first cycle and repeat the process until

$$b_{k+1} = b_1 = \alpha^k(b_1), k \in \mathbb{N}.$$

If

$$\alpha^i(a_1) = \alpha^j(b_1), i, j \in \mathbb{N},$$

then

$$\alpha^{i-j}(a_1) = \alpha^j \alpha^{-j}(b_1) = \epsilon(b_1) = b_1 \implies b_1 = a_t, t \in \mathbb{N}.$$

This contradicts that b_1 is not in the first cycle. Hence the new cycle has no elements in common with the first cycle. Continuing the process until A is exhausted, the permutation is expressed as

$$\alpha = (a_1, a_2, \dots, a_m)(b_1, b_2, \dots, b_k) \cdots (c_1, c_2, \dots, c_s).$$

Theorem 5.2. If the pair of cycles $\alpha = (a_1, a_2, \dots, a_m), \beta = (b_1, b_2, \dots, b_n)$ have no entries in common, then $\alpha\beta = \beta\alpha$.

Proof. Let α, β be the permutation of the set

$$S = \{a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n, c_1, c_2, \dots, c_k\},\$$

where c's are the members of S left fixed by both α, β (there may not be any c's). Let a_i be an arbitrary a element, then

$$(\alpha\beta)(a_i) = \alpha(\beta(a_i)) = \alpha(a_i) = a_{i+1},$$

since β fixes all a elements. $a_{i+1} = a_1$ if i = m. Similarly,

$$(\beta \alpha)(a_i) = \beta(\alpha(a_i)) = \beta(a_{i+1}) = a_{i+1}.$$

Hence $\alpha\beta = \beta\alpha$ for all a elements. The same can be applied to all b elements. Let c_i be an arbitrary c element, then

$$(\alpha\beta)(c_i) = \alpha(\beta(c_i)) = \alpha(c_i) = c_i,$$

and

$$(\beta \alpha)(c_i) = \beta(\alpha(c_i)) = \beta(c_i) = c_i.$$

So $\alpha\beta = \beta\alpha$ for all c elements. Hence $\alpha\beta = \beta\alpha$ for all elements in S.

Theorem 5.3. Let α be a permutation of a finite set written in disjoint cycle form. Then $|\alpha| = \text{lcm}(\text{the lengths of the cycles}).$

Proof. Let $\alpha = (a_1, a_2, \dots, a_n)$ be an arbitrary cycle of length n. Then

$$\alpha(a_1) = a_2,$$

$$\alpha(a_2) = \alpha(\alpha(a_1)) = \alpha^2(a_1) = a_3.$$

$$\alpha(a_3) = \alpha(\alpha^2(a_1)) = \alpha^3(a_1) = a_4,$$

$$\vdots$$

$$\alpha(a_n) = \alpha^n(a_1) = a_{n+1} = a_1.$$

So $\alpha^n(a_i) = a_i, i \in \{1, ..., n\} \implies \alpha^n = \epsilon \text{ and } |\alpha| = |(a_1, a_2, ..., a_n)| = n.$ Hence a cycle of n length has order n.

Let $\gamma = \alpha\beta = (a_1, \dots, a_m)(b_1, \dots, b_n)$ be a permutation of a finite set in disjoint cycle form, and let k = lcm(m, n). WTS $|\gamma| = |\alpha\beta| = \text{lcm}(m, n) = k$.

Since $|\alpha| = m$, $|\beta| = n$ and $m, n \mid k$, by Theorem 4.1,

$$\alpha^k = \alpha^0 = \epsilon \iff m \mid (k - 0) = k,$$

 $\beta^k = \beta^0 = \epsilon \iff n \mid (k - 0) = k.$

Hence $\alpha^k = \epsilon, \beta^k = \epsilon$. Since α, β are disjoint, by Theorem 5.2, $\alpha\beta = \beta\alpha$. So

$$\gamma^k = (\alpha\beta)^k = \alpha^k \beta^k = \epsilon\epsilon = \epsilon$$

and $|\gamma| = t \le k$.

By Theorem 4.1,

$$\gamma^k = \epsilon \iff |\gamma| = t \mid k,$$

and

$$|\gamma| = |\alpha\beta| = t \implies \gamma^t = (\alpha\beta)^t = \alpha^t\beta^t = \epsilon.$$

Since α, β are disjoint, it follows that

$$\alpha^{k}(b_{i}) = b_{i}, i \in \{1, \dots, n\},\$$

 $\beta^{k}(a_{i}) = a_{i}, i \in \{1, \dots, m\}.$

Since $\gamma^t = \alpha^t \beta^t = \epsilon$, it follows that

$$\gamma^{t}(a_{i}) = (\alpha^{t}\beta^{t})(a_{i}) = \epsilon(a_{i}) = a_{i}, i \in \{1, \dots, m\},\$$

 $\gamma^{t}(b_{i}) = (\alpha^{t}\beta^{t})(b_{i}) = \epsilon(b_{i}) = b_{i}, i \in \{1, \dots, n\}.$

This is true iff $\alpha^t = \epsilon, \beta^t = \epsilon$. By Theorem 4.1,

$$\alpha^t = \alpha^0 = \epsilon \iff m \mid (t - 0) = t,$$

 $\beta^t = \beta^0 = \epsilon \iff n \mid (t - 0) = t,$

so t is a common multiple of m, n. Since k = lcm(m, n), it follows that $t \geq k$. So

$$t \ge k, t \le k \implies t = k$$

and hence $|\gamma| = t = k$.

The general cases involving more than two cycles can be proved in a similar manner. $\hfill\Box$

Example 5.4.

$$|(132)(45)| = \operatorname{lcm}(3, 2) = 6,$$

$$|(1432)(56)| = \operatorname{lcm}(4, 2) = 4,$$

$$|(123)(456)(78)| = \operatorname{lcm}(3, 3, 2) = 6,$$

$$|(123)(145)| = |(14523)| = 5.$$

Example 5.5. Determine the orders of the 7! = 5040 elements of S_7 . For convenience, denote an n-cycle by (\underline{n}) . Then, arranging all possible disjoint cycle structures of elements of S_7 according to longest cycle lengths left to

right,

$$(7),\\ (\underline{6})(\underline{1}),\\ (\underline{5})(\underline{2}),\\ (\underline{5})(\underline{1})(\underline{1}),\\ (\underline{4})(\underline{3}),\\ (\underline{4})(\underline{2})(\underline{1}),\\ (\underline{4})(\underline{1})(\underline{1})(\underline{1}),\\ (\underline{3})(\underline{3})(\underline{1}),\\ (\underline{3})(\underline{2})(\underline{2}),\\ (\underline{3})(\underline{2})(\underline{1})(\underline{1}),\\ (\underline{2})(\underline{2})(\underline{1})(\underline{1}),\\ (\underline{2})(\underline{2})(\underline{1})(\underline{1}),\\ (\underline{2})(\underline{1})(\underline{1})(\underline{1}),\\ (\underline{2})(\underline{1})(\underline{1})(\underline{1}),\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1}),\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1})(\underline{1}).\\ (\underline{1})(\underline{1$$

By Theorem 5.3, the orders of the elements of S_7 are

$$7, \\ lcm(6,1) = lcm(3,2,2) = lcm(3,2,1,1) = 6, \\ lcm(5,2) = 10, \\ lcm(5,1,1) = 5, \\ lcm(4,3) = 12, \\ lcm(4,2,1) = lcm(4,1,1,1) = 4, \\ lcm(3,3,1) = lcm(3,1,1,1,1) = 3, \\ lcm(2,2,2,1) = lcm(2,2,1,1,1) = lcm(2,1,1,1,1,1) = 2, \\ lcm(1,1,1,1,1,1,1) = 1.$$

Example 5.6. Determine the number of elements of order 12 in S_7 . Since lcm(4,3) = 12, by Theorem 5.2 and 5.3, only the number of permutations with disjoint cycle form $(a_1a_2a_3a_4)(a_5a_6a_7)$ is needed to be counted. First consider the cycle $(a_1a_2a_3a_4)$. There are $7 \cdot 6 \cdot 5 \cdot 4$ ways of choosing 4 out of 7 entries, but each choice of the cycle $(a_1a_2a_3a_4)$ is counted four times. For example,

$$(2741) = (1274) = (4127) = (7412).$$

Similarly, there are $3 \cdot 2 \cdot 1$ ways of choosing 3 out of 7 entries for $(a_5 a_6 a_7)$, but each choice of $(a_5 a_6 a_7)$ is counted three times. Hence, there are

$$\frac{(7 \cdot 6 \cdot 5 \cdot 4)(3 \cdot 2 \cdot 1)}{(4)(3)} = 420$$

elements of order 12 in S_7 .

Example 5.7. Determine the number of elements of order 3 in S_7 . Since lcm(3,3,1) = lcm(3,1,1,1,1) = 3, by Theorem 5.2 and 5.3, the elements of order 3 in S_7 have the disjoint cycle form

$$(a_1a_2a_3)(a_4a_5a_6)(a_7)$$
 and $(a_1a_2a_3)(a_4)(a_5)(a_6)(a_7)$.

or

$$(a_1a_2a_3)(a_4a_5a_6)$$
 and $(a_1a_2a_3)$.

For $(a_1a_2a_3)(a_4a_5a_6)$, there are $(7 \cdot 6 \cdot 5)/3$ ways of creating $(a_1a_2a_3)$ and there are $(4 \cdot 3 \cdot 2)/3$ ways of creating $(a_4a_5a_6)$. But $(7 \cdot 6 \cdot 5)/3$ and $(4 \cdot 3 \cdot 2)/3$ count $(a_1a_2a_3)(a_4a_5a_6)$ and $(a_4a_5a_6)(a_1a_2a_3)$ as distinct elements when they are identical. So there are

$$\frac{(7 \cdot 6 \cdot 5)(4 \cdot 3 \cdot 2)}{(3)(3)(2)} = 280$$

elements of order 3 in S_7 with disjoint cycle form $(a_1a_2a_3)(a_4a_5a_6)$.

For $(a_1a_2a_3)$, there are $(7 \cdot 6 \cdot 5)/3$ ways of creating $(a_1a_2a_3)$. So there are $(7 \cdot 6 \cdot 5)/3 = 70$ elements of order 3 in S_7 with the distinct cycle form $(a_1a_2a_3)$. Hence there are 280 + 70 = 350 elements of order 3 in S_7 .

Theorem 5.4. Every permutation in S_n , n > 1 is a product of 2-cycle.

Proof. The identity permutation ϵ can be expressed as (12)(12). So ϵ can be expressed as a product of 2-cycle. By Theorem 5.1, every permutation can be written in the disjoint cycle form

$$(a_1 \ldots a_k)(b_1 \ldots b_t)(c_1 \ldots c_s).$$

This is the same as

$$(a_1a_k)(a_1a_{k-1})(a_1a_{k-2})\dots(a_1a_2)(b_1b_t)(b_1b_{t-1})(b_1b_{t-2})\dots(b_1b_2)$$
$$\dots(c_1c_s)(c_1c_{s-1})(c_1c_{s-2})\dots(c_1c_2).$$

Example 5.8.

$$(12345) = (15)(14)(13)(12)$$
$$(1632)(457) = (12)(13)(16)(47)(45)$$

Example 5.9.

$$(12345) = (54)(53)(52)(51)$$
$$(12345) = (54)(52)(21)(25)(23)(13)$$

Lemma 5.1. If $\epsilon = \beta_1 \beta_2 \dots \beta_r$, where $\beta_1, \beta_2, \dots, \beta_r$ are 2-cycles, then r is even.

Proof.

Theorem 5.5. Let α be a permutation. If

$$\alpha = \beta_1 \beta_2 \dots \beta_r$$
 and $\alpha = \gamma_1 \gamma_2 \dots \gamma_s$,

where β, γ are all 2-cycles, then r, s are both even or both odd.

Proof. Let α be a permutation and let

$$\alpha = \beta_1 \beta_2 \dots \beta_r$$
 and $\alpha = \gamma_1 \gamma_2 \dots \gamma_s$,

where β, γ are all 2-cycles. Then since the inverse of an 2-cycle is itself,

$$\alpha = \beta_1 \beta_2 \dots \beta_r = \gamma_1 \gamma_2 \dots \gamma_s \implies \epsilon = \gamma_1 \dots \gamma_s \beta_1^{-1} \dots \beta_r^{-1} = \gamma_1 \dots \gamma_s \beta_1 \dots \beta_r.$$

By Lemma 5.4.1, if $\epsilon = \beta_1 \dots \beta_t$, where all β are 2-cycles, then t is even. So t = r + s is even $\iff r, s$ are both even or both odd.

Definition 5.2. Let α be a permutation and let $\alpha = \beta_1 \dots \beta_r$ where all β_i 's are 2-cycles. If r is even then α is an *even* permutation. If r is odd then α is an *odd* permutation.

Theorem 5.6. The set of even permutations in S_n is a subgroup of S_n .

Proof. Let $A \in S_n$ be the set of even permutations. Let $\alpha, \beta \in A$ be arbitrary.

$$\alpha = \gamma_1 \dots \gamma_r, \beta = \sigma_1 \dots \sigma_s,$$

where γ 's and σ 's are 2-cycles and r, s are even. Since

$$\alpha\beta = \gamma_1 \dots \gamma_r \sigma_1 \dots \sigma_s$$

and r + s is even, it follows that $\alpha\beta \in A$. Next,

$$\alpha \alpha^{-1} = \epsilon,$$

$$\gamma_1 \dots \gamma_r \alpha^{-1} = \epsilon,$$

$$\alpha^{-1} = \gamma_1^{-1} \dots \gamma_r^{-1} \epsilon$$

$$= \gamma_1^{-1} \dots \gamma_r^{-1}$$

$$= \gamma_1 \dots \gamma_r$$

$$= \alpha \in A.$$

Since $\alpha, \beta \in A \implies \alpha\beta \in A$ and $\alpha \in A \implies \alpha^{-1} \in A$, by Theorem 3.2, $A \leq S_n$.

Definition 5.3. The group of even permutation of n symbols is denoted by A_n and is called the *alternating group of degree* n.

Theorem 5.7. Let A_n be an alternating group of degree n. Then

$$|A_n| = n!/2, n > 1.$$

Proof. For each odd permutation α , the permutation $(12)\alpha$ is even. By the cancellation property, $(12)\alpha \neq (12)\beta$ when $\alpha \neq \beta$. So there are at least as many even permutations as there are odd ones. For each even permutation α , the permutation $(12)\alpha$ is odd. By the cancellation property, $(12)\alpha \neq (12)\beta$ when $\alpha \neq \beta$. So there are at least as many odd permutations as there are even ones. Hence the numbers of even and odd permutations are the same. Since $|S_n| = n!$, it follows that $|A_n| = n!/2$.

Table 5.1 The Alternating Group A_4 of Even Permutations of $\{1, 2, 3, 4\}$

(In this table, the permutations of A_4 are designated as $\alpha_1, \alpha_2, \ldots, \alpha_{12}$ and an entry k inside the table represents α_k . For example, α_3 $\alpha_8 = \alpha_6$.)

	α_1	α_2	α_3	α_4	$\alpha_{\scriptscriptstyle 5}$	α_6	α_7	α_8	α_9	α_{10}	α_{11}	α_{12}
$(1) = \alpha_1$	1	2	3	4	5	6	7	8	9	10	11	12
$(12)(34) = \alpha_2$	2	1	4	3	6	5	8	7	10	9	12	11
$(13)(24) = \alpha_3$	3	4	1	2	7	8	5	6	11	12	9	10
$(14)(23) = \alpha_4$	4	3	2	1	8	7	6	5	12	11	10	9
$(123) = \alpha_5$	5	8	6	7	9	12	10	11	1	4	2	3
$(243) = \alpha_6$	6	7	5	8	10	11	9	12	2	3	1	4
$(142) = \alpha_7$	7	6	8	5	11	10	12	9	3	2	4	1
$(134) = \alpha_8$	8	5	7	6	12	9	11	10	4	1	3	2
$(132) = \alpha_9$	9	11	12	10	1	3	4	2	5	7	8	6
$(143) = \alpha_{10}$	10	12	11	9	2	4	3	1	6	8	7	5
$(234) = \alpha_{11}$	11	9	10	12	3	1	2	4	7	5	6	8
$(124) = \alpha_{12}$	12	10	9	11	4	2	1	3	8	6	5	7

Figure 5.5

6 Isomorphism

6.1 Definition and Examples

Definition 6.1. Let G, \overline{G} be two groups. Let $\phi: G \to \overline{G}$ be a function s.t.

- 1. $\forall a, b \in G, \phi(a) = \phi(b) \implies a = b \text{ (one-to-one)},$
- 2. $\forall \overline{a} \in \overline{G}, \exists a \in G : \phi(a) = \overline{a} \text{ (onto)},$
- 3. $\forall a, b \in G, \phi(ab) = \phi(a)\phi(b)$ (preservation of operations),

then ϕ is an isomorphism from G to \overline{G} .

If there is an isomorphism from G to \overline{G} , then G and \overline{G} are isomorphic, denoted $G \approx \overline{G}$.

Figure 6.1 shows the visualization of Definition 6.1. Figure 6.2 shows the operation tables for G and \overline{G} . The operation table for \overline{G} can be obtained by replacing each entry x in the operation table for G by $\phi(x)$. Figure 6.3 shows the four cases of operations of G and \overline{G} involving \cdot and +.

Figure 6.1

There are four steps involved in proving that $G \approx \overline{G}$.

- 1. **Mapping.** Define a function $\phi: G \to \overline{G}$.
- 2. **1-1.** Show that $\forall a, b \in G, \phi(a) = \phi(b) \implies a = b$.
- 3. **Onto.** Show that $\forall \overline{g} \in \overline{G}, \exists g \in G : \phi(g) = \overline{g}.$
- 4. **Operation-Preserving.** Show that $\forall a, b \in G, \phi(ab) = \phi(a)\phi(b)$.

Example 6.1. Let $G = (\mathbb{R}, +)$ and $\overline{G} = (\mathbb{R}^+, \cdot)$. Show that $G \approx \overline{G}$ under

G	_	-	_	b	-	-	
_	-	_	_	_	_	_	
_	_	_	_	_	_	_	
a	-	_	_	ab	_	_	
_	-	_	_	_	_	_	
\overline{G}	-	_	_	$\phi(b)$)	_	_
_	-	_	_	_		_	_
_	_	_	_	_		_	_
_ _ b(a)	-	_ _ _	_	_ _ φ(al	b)	- - -	- - -

Figure 6.2: Operation tables for G and \overline{G} . The operation table for \overline{G} can be obtained by replacing each entry x in the operation table for G by $\phi(x)$.

G Operation	G Operation	Operation Preservation
•	•	$\phi(a\cdot b) = \phi(a)\cdot\phi(b)$
	+	$\phi(a\cdot b)=\phi(a)+\phi(b)$
+		$\phi(a+b) = \phi(a) \cdot \phi(b)$
+	+	$\phi(a+b) = \phi(a) + \phi(b)$

Figure 6.3: The four cases of operations of G and \overline{G} involving \cdot and +

.

 $\phi(x) = 2^x$. First, assume that $\forall a, b \in G, \phi(a) = \phi(b)$, then

$$\phi(a) = \phi(b),$$

$$2^{a} = 2^{b},$$

$$\log_{2} 2^{a} = \log_{2} 2^{b},$$

$$a = b.$$

So $\forall a,b \in G, \phi(a) = \phi(b) \implies a = b$. Next, let $b \in \overline{G}$ be arbitrary. WTS $\exists a \in G : 2^a = b$. Since

$$2^{a} = b,$$

$$\log_{2} 2^{a} = \log_{2} b,$$

$$a = \log_{2} b,$$

it follows that $\forall b \in \overline{G}, \exists a = \log_2 b \in G : \phi(a) = 2^a = 2^{\log_2 b} = b$. Finally,

$$\forall a, b \in G, \phi(a+b) = 2^{a+b} = 2^a \cdot 2^b = \phi(a) \cdot \phi(b).$$

Hence $G \approx \overline{G}$.

Example 6.2. For any infinite cyclic group $G = \langle a \rangle, a \in G, |G| = \infty$, show that $G \approx (\mathbb{Z}, +)$ under $\phi(a^k) = k, k \in \mathbb{Z}$.

First, assume that $\forall a^i, a^j \in G, \phi(a^i) = \phi(a^j)$, then

$$\phi(a^i) = \phi(a^j) \implies i = j.$$

By Theorem 4.1 (i),

$$|G| = |\langle a \rangle| = |a| = \infty \implies (a^i = a^j \iff i = j).$$

Hence $\forall a^i, a^j \in G, \phi(a^i) = \phi(a^j) \implies a^i = a^j$. Next, let $k \in \mathbb{Z}$ be arbitrary. Since $\langle a \rangle = \{a^k : k \in \mathbb{Z}\}$, it follows that $\exists a^k \in \langle a \rangle : \phi(a^k) = k$. Hence $\forall k \in \mathbb{Z}, \exists a^k \in \langle a \rangle : \phi(a^k) = k$. Finally,

$$\phi(a^{i}a^{j}) = \phi(a^{i+j}) = i + j = \phi(a^{i}) + \phi(a^{j}).$$

Hence, $G \approx (\mathbb{Z}, +)$ under $\phi(a^k) = k, k \in \mathbb{Z}$.

For any finite cyclic group $G = \langle a \rangle, a \in G, |G| = n$, show that $G \approx \mathbb{Z}_n$ under addition modulo n under $\phi(a^k) = k \mod n$.

First, assume that $\forall a^i, a^j \in G, \phi(a^i) = \phi(a^j)$. Then

$$\phi(a^{i}) = \phi(a^{j}),$$

$$i \mod n = j \mod n,$$

$$(i - j) \mod n = 0 \implies n \mid (i - j).$$

By Theorem 4.1 (ii),

$$|a| = n \implies (a^i = a^j \iff n \mod (i - j)).$$

Hence $\forall a^i, a^j \in G, \phi(a^i) = \phi(a^j) \implies a^i = a^j$. Next, since |a| = n, it follows that

$$a^{0} = a^{n} = a^{kn} = e, a^{-1} = a^{n-1} = a^{kn-1}, a^{1} = a^{n+1} = a^{kn+1}, a^{-2} = a^{n-2} = a^{kn-2}, a^{2} = a^{n+2} = a^{kn+2}, a^{-3} = a^{n-3} = a^{kn-3}, \vdots \vdots \vdots$$

Hence $\forall a^k \in G, k \mod n \in \{0, 1, \dots, n-1\}$ and so $\forall x \in \mathbb{Z}_n, \exists a^k \in G : \phi(a^k) = k \mod n = x$. Finally,

$$\phi(a^i a^j) = \phi(a^{i+j}) = (i+j) \bmod n$$
$$= (i \bmod n + j \bmod n) \bmod n$$
$$= (\phi(a^i) + \phi(a^j)) \bmod n.$$

Hence $G \approx \mathbb{Z}_n$ under addition modulo n under $\phi(a^k) = k \mod n$.

Example 6.3. Let $G = (\mathbb{R}, +)$. Show that G and G are not isomorphic under $\phi(x) = x^3$.

First, assume $\forall a, b \in G, \phi(a) = \phi(b)$, then

$$\phi(a) = \phi(b) \implies a^3 = b^3 \implies a = b.$$

Hence $\forall a, b \in G, \phi(a) = \phi(b) \implies a = b$. Next, since $\mathbb{I} \subseteq \mathbb{R}$ and

$$y^3 = x \implies y = \sqrt[3]{x} \in \mathbb{I} \subset \mathbb{R},$$

it follows that $\forall x \in G, \exists y \in G : \phi(y) = y^3 = (\sqrt[3]{x})^3 = x$. But

$$\forall a, b \in G, \phi(a+b) = (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \neq \phi(a) + \phi(b).$$

Hence ϕ is not operation-preserving and G and G are not isomorphic under $\phi(x) = x^3$.

Example 6.4. 1. Show that U(10) under multiplication modulo $10 \approx \mathbb{Z}_4$ under addition modulo 4.

Note that $\mathbb{Z}_{\not \triangleright} = \{1, 2, 3\}, U(10) = \{1, 3, 7, 9\} = \langle 3 \rangle$ and |U(10)| = 4. By Example 6.2, $U(10) \approx \mathbb{Z}_4$ under $\phi(3^k) = k \mod 4$. First, assume that $\forall 3^i, 3^j \in U(10), \phi(3^i) = \phi(3^j)$. Then

$$\phi(3^{i}) = \phi(3^{j}),$$

$$i \mod 4 = j \mod 4,$$

$$(i-j) \mod 4 = 0 \implies 4 \mid (i-j).$$

By Theorem 4.1 (ii),

$$|3| = 4 \implies (3^i = 3^j \iff 4 \mid (i - j)).$$

Hence,

$$\forall 3^i, 3^j \in U(10), \phi(3^i) = \phi(3^j) \implies 3^i = 3^j.$$

Next, since

$$1 \in \mathbb{Z}_4, 1 = \phi(3^1) = \phi(3^5) = \phi(3^{4k}),$$

$$2 \in \mathbb{Z}_4, 2 = \phi(3^{4k+2}),$$

$$3 \in \mathbb{Z}_4, 3 = \phi(3^{4k+3}),$$

it follows that $\forall x \in \mathbb{Z}_4, \exists 3^k \in U(10) : \phi(3^k) = x$. Finally,

$$\phi(3^{i}3^{j}) = \phi(3^{i+j})$$
= $(i+j) \mod 4$
= $i \mod 4 + j \mod 4$
= $\phi(3^{i}) + \phi(3^{j})$.

Hence, $U(10) \approx \mathbb{Z}_4$ under $\phi(3^k) = k \mod 4$.

2. Similarly, $U(5) \approx \mathbb{Z}_4$.

Example 6.5. There is no isomorphism from \mathbb{Q} under addition to $\mathbb{Q}' = \mathbb{Q} \setminus \{0\}$ under multiplication. Since if $\mathbb{Q} \approx \mathbb{Q}'$, then there is an 1-1 and onto function s.t. $\exists a \in \mathbb{Q} : \phi(a) = -1$. But

$$-1 = \phi(a) = \phi\left(\frac{1}{2}a + \frac{1}{2}a\right) = \phi\left(\frac{a}{2}\right) \cdot \phi\left(\frac{a}{2}\right) = \left(\phi\left(\frac{a}{2}\right)\right)^2$$

and there is no $x \in \mathbb{Q}'$: $x^2 = -1$. Hence there is no isomorphism from \mathbb{Q} under addition to \mathbb{Q}' under multiplication.

Example 6.6. Let $G = SL(2,\mathbb{R})$, the group of 2×2 matrices with determinant 1. Show that $G \approx G$ under $\phi_M(A) = MAM^{-1}, \forall A \in G, M$ is any 2×2 matrix with determinant 1.

First, let $A \in G$ be arbitrary, then

$$\det(\phi_M(A)) = \det(MAM^{-1}) = (\det M)(\det A)(\det M^{-1}) = 1 \cdot 1 \cdot 1 = 1.$$

Hence $\phi_M: G \to G$. Second, assume that $\forall A, B \in G, \phi_M(A) = \phi_M(B)$. Then

$$\begin{split} \phi_M(A) &= \phi_M(B), \\ MAM^{-1} &= MBM^{-1}, \\ M^{-1}MAM^{-1} &= M^{-1}MBM^{-1}, \\ 1 \cdot AM^{-1} &= 1 \cdot BM^{-1}, \\ AM^{-1}M &= BM^{-1}M, \\ A &= B. \end{split}$$

Hence, $\forall A, B \in G, \phi_M(A) = \phi_M(B) \implies A = B$. Next, let $B \in G$ be arbitrary. WTS $\exists A \in G : \phi(A) = MAM^{-1} = B$. Notice that

$$\phi(A) = MAM^{-1} = B \implies A = M^{-1}BM.$$

Let $A = M^{-1}BM \in G$, then

$$\phi(A) = MAM^{-1} = M(M^{-1}BM)M^{-1} = B.$$

Hence $\forall B \in G, \exists A \in G : \phi(A) = B$. Finally,

$$\phi(AB) = MABM^{-1} = (MA)I(BM^{-1}) = (MAM^{-1})(MBM^{-1}) = \phi(A)\phi(B).$$

Hence $G \approx G$ under $\phi(A) = MAM^{-1}, A \in G$.

6.2 Cayley's Theorem

Theorem 6.1 (Cayley's Theorem). Every group is isomorphic to a group of permutations.

Proof. Let G be an arbitrary group. Then for every $g \in G$, define a function $T_q: G \to G$ as

$$\forall x \in G, T_q(x) = gx.$$

WTS T_g is a permutation on the set of elements of G. Let $x_1, x_2 \in G$ be arbitrary, assume that $T_g(x_1) = T_g(x_2)$. Then,

$$T_g(x_1) = T_g(x_2),$$

 $gx_1 = gx_2,$
 $g^{-1}gx_1 = g^{-1}gx_2,$
 $x_1 = x_2.$

Hence $\forall x_1, x_2 \in G, T_g(x_1) = T_g(x_2) \implies x_1 = x_2$ and T_g is 1-1. Next, let $y \in G$ be arbitrary. Notice that

$$T_g(x) = gx = y \implies x = g^{-1}y.$$

Since $g^{-1}, y \in G \implies x = g^{-1}y \in G$, let $x = g^{-1}y$, it follows that

$$T_g(x) = gx = g(g^{-1}y) = y.$$

Hence $\forall y \in G, \exists x \in G : T_g(x) = y$ and T_g is onto. Since $T_g : G \to G$ is 1-1 and onto, by Definition 5.1, T_g is a permutation of the elements of G.

Let $\overline{G}=\{T_g:g\in G\}$. WTS \overline{G} is a group under function composition. First, let $T_{g_1},T_{g_2}\in \overline{G},x\in G$ be arbitrary, then

$$\begin{split} (T_{g_1}T_{g_2})(x) &= T_{g_1}(T_{g_2}(x)) \\ &= T_{g_1}(g_2x) \\ &= g_1(g_2x) \\ &= (g_1g_2)(x) \\ &= T_{g_1g_2}(x) \in \overline{G}. \end{split}$$

Since $\forall g_1, g_2 \in G, g_1g_2 \in G$, it follows that $T_{g_1g_2} \in \overline{G}$. Hence $\forall T_{g_1}, T_{g_2} \in \overline{G}, T_{g_1}T_{g_2} \in \overline{G}$ and \overline{G} is closed under function composition. Second, let $T_{g_1}, T_{g_2}, T_{g_3} \in \overline{G}, x \in G$ be arbitrary, then

$$\begin{split} (T_{g_1}(T_{g_2}T_{g_3}))(x) &= T_{g_1}((T_{g_2}T_{g_3})(x)) & ((T_{g_1}T_{g_2})T_{g_3})(x) = (T_{g_1}T_{g_2})(T_{g_3}(x)) \\ &= T_{g_1}(T_{g_2}(T_{g_3}(x)) & = (T_{g_1}T_{g_2})(g_3x) \\ &= T_{g_1}(T_{g_2}(g_3x)) & = T_{g_1}(T_{g_2}(g_3x)) \\ &= T_{g_1}(g_2g_3x) & = T_{g_1}(g_2g_3x) \\ &= g_1g_2g_3x & = g_1g_2g_3x. \end{split}$$

Hence $\forall T_{g_1}, T_{g_2}, T_{g_3} \in \overline{G}, T_{g_1}(T_{g_2}T_{g_3}) = (T_{g_1}T_{g_2})T_{g_3}$ and T_g is associative under function composition. Next, $e \in G \implies T_e \in \overline{G}$. Let $T_g \in \overline{G}, x \in G$ be arbitrary. Then,

$$(T_e T_g)(x) = T_e(T_g(x)) = T_e(gx) = egx = gx = T_g(x).$$

and

$$(T_gT_e)(x) = T_g(T_e(x)) = T_g(ex) = gex = gx = T_g(x).$$

Hence $T_eT_g = T_gT_e = T_g$ and T_e is the identity element of \overline{G} . Finally, $g, g^{-1} \in G \implies T_g, T_{g^{-1}} \in \overline{G}$. So

$$(T_{g^{-1}}T_g)(x) = T_{g^{-1}}(T_g(x)) = T_{g^{-1}}(gx) = g^{-1}gx = ex = T_e(x).$$

and

$$(T_gT_{g^{-1}})(x) = T_g((T_{g^{-1}}(x))) = T_g(g^{-1}x) = gg^{-1}x = ex = T_e(x).$$

Hence $T_{g^{-1}}T_g=T_gT_{g^{-1}}=T_e$ and $T_{g^{-1}}$ is the inverse of T_g . Therefore, \overline{G} is a group under function composition.

Let $\phi(g) = T_g, \forall g \in G$, so $\phi: G \to \overline{G}$. WTS $G \approx \overline{G}$ under ϕ . First, assume that $\forall g_1, g_2 \in G, T(g_1) = T(g_2)$. Then,

$$\phi(g_1) = \phi(g_2) \implies T_{g_1} = T_{g_2}.$$

It follows that

$$T_{g_1}(x) = T_{g_2}(x), x \in G,$$

 $g_1 x = g_2 x,$
 $g_1 = g_2.$

Hence $\forall g_1, g_2 \in G, T(g_1) = T(g_2) \implies g_1 = g_2$. Next, by definition,

$$\overline{G} = \{T_g : g \in G\} \implies \forall T_g \in \overline{G}, \exists g \in G : \phi(g) = T_g.$$

Hence \overline{G} is onto. Finally, $\phi(g_1g_2) = T_{g_1g_2}$ and

$$T_{q_1q_2}(x) = g_1g_2x = g_1T_{q_2}(x) = T_{q_1}(T_{q_2}(x)) = (T_{q_1}T_{q_2})(x).$$

Hence

$$\phi(g_1g_2) = T_{g_1g_2} = T_{g_1}T_{g_2} = \phi(g_1)\phi(g_2).$$

Therefore, $G \approx \overline{G}$ under ϕ .

Example 6.7. For $U(12) = \{1, 5, 7, 11\}$, find $\overline{U(12)}$. Figure 6.4 shows the permutations of U(12) in array form. Figure 6.5 shows the Cayley tables for U(12) and $\overline{U(12)}$.

$$T_{1} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 1 & 5 & 7 & 11 \end{bmatrix}, \qquad T_{5} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 5 & 1 & 11 & 7 \end{bmatrix},$$

$$T_{7} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 7 & 11 & 1 & 5 \end{bmatrix}, \qquad T_{11} = \begin{bmatrix} 1 & 5 & 7 & 11 \\ 11 & 7 & 5 & 1 \end{bmatrix}.$$

Figure 6.4: The permutations of U(12) in array form.

Figure 6.5: The Cayley tables for U(12) and $\overline{U(12)}$.

6.3 Properties of Isomorphisms

Theorem 6.2. Let $\phi: G \to \overline{G}$ be an isomorphism. Then

- (i) $e \in G, \overline{e} \in \overline{G}, \phi(e) = \overline{e}$.
- (ii) $\forall n \in \mathbb{Z}, \forall a \in G, \phi(a^n) = (\phi(a))^n$. In additive form, $\phi(na) = n\phi(a)$.
- (iii) $\forall a, b \in G, ab = ba \iff \phi(a)\phi(b) = \phi(b)\phi(a).$
- (iv) $G = \langle a \rangle \iff \overline{G} = \langle \phi(a) \rangle$.
- $(v) \ \forall a \in G, |a| = |\phi(a)|.$
- (vi) $k \in \mathbb{Z}, b \in G, x^k = b$ has the same number of solutions in G as the equation $x^k = \phi(b)$ in \overline{G} .
- (vii) If G is finite, then G and \overline{G} have exactly the same number of elements of every order.

Proof. (i) Let $e \in G, \overline{e} \in \overline{G}$. Then,

$$\overline{e}\phi(e) = \phi(ee) = \phi(e)\phi(e),$$

$$\overline{e}\phi(e)(\phi(e))^{-1} = \phi(e)\phi(e)(\phi(e))^{-1},$$

$$\overline{e} = \phi(e).$$

(ii) Let $n \in \mathbb{Z}$, $a \in G$ be arbitrary. Then,

$$\phi(a^n) = \phi(\underbrace{aa \cdots a}_n) = \underbrace{\phi(a)\phi(a) \cdots \phi(a)}_n = (\phi(a))^n.$$

Hence $\forall n \in \mathbb{Z}, \forall a \in G, \phi(a^n) = (\phi(a))^n$.

- (iii) Let $a, b \in G$ be arbitrary.
 - (\Rightarrow) Assume that ab = ba. Then,

$$ab = ba \implies \phi(ab) = \phi(ba) \implies \phi(a)\phi(b) = \phi(b)\phi(a).$$

 (\Leftarrow) Assume that $\phi(ab) = \phi(ba)$. Then,

$$\phi(ab) = \phi(ba) \implies ab = ba.$$

(iv) Let $G = \langle a \rangle$. By closure, $\overline{G} = \langle \phi(a) \rangle$. Since ϕ is onto, $\forall b \in \overline{G}, \exists a^k \in G : \phi(a^k) = b$. Then, by Theorem 6.1 (ii),

$$b = \phi(a^k) = (\phi(a))^k \subset \langle \phi(a) \rangle.$$

Hence $\overline{G} \subseteq \langle \phi(a) \rangle$ and $\overline{G} = \langle \phi(a) \rangle$.

(v) Let $a \in G$ be arbitrary and let |a| = k. Then $a^k = e$ and

$$\overline{e} = \phi(e) = \phi(a^k) = (\phi(a))^k.$$

So $|\phi(a)| = t \le k$. Let t < k, then

$$\overline{e} = (\phi(a))^t = \phi(a^t) \implies a^t = e.$$

But this contradicts that |a| = k. Hence t = k and $|a| = |\phi(a)|$.

(vi) Let $x^k = b \in G, x^k = \phi(b) \in \overline{G}, k \in \mathbb{Z}$. Then,

$$x = b^{1/k} = (\phi(b))^{1/k} = \phi(b^{1/k}).$$

Hence the number of $x: x = b^{1/k} \in G$ is the same as the number of $x: x = \phi(b^{1/k}) \in \overline{G}.$

(vii) Let G be finite. Since ϕ is 1-1 and onto, and by Theorem 6.1 (ii), $\forall a \in$ $G, |a| = |\phi(a)|$. Hence the number of $a \in G : |a| = k$ is the same as the number of $\phi(a) \in \overline{G} : |\phi(a)| = k$.

Theorem 6.3. Let $\phi: G \to \overline{G}$ be an isomorphism. Then

- (i) $\phi^{-1}: \overline{G} \to G$ is an isomorphism.
- (ii) G is Abelian $\iff \overline{G}$ is Abelian.
- (iii) G is cyclic $\iff \overline{G}$ is cyclic.
- (iv) $K \leq G \implies \phi(K) = \{\phi(k) : k \in K\} \leq \overline{G}.$ (v) $\overline{K} \leq \overline{G} \implies \phi^{-1}(\overline{K}) = \{\phi^{-1}(\overline{k}) : \overline{k} \in \overline{K}\} \leq G.$
- (vi) For the center Z(G), $\phi(Z(G)) = Z(\overline{G})$.

Proof. Let $\phi: G \to \overline{G}$ be an isomorphism. Since $\phi: G \to \overline{G}$ is 1-1 and onto, by Theorem 0.6,

$$\exists \phi^{-1} : \overline{G} \to G : \forall g \in G, \phi^{-1}(\phi(g)) = g \text{ and } \forall \overline{g} \in \overline{G}, \phi(\phi^{-1}(\overline{g})) = \overline{g}.$$

(i) First, assume that $\forall \overline{a}, \overline{b} \in \overline{G}, \phi^{-1}(\overline{a}) = \phi^{-1}(\overline{b}),$ then

$$\phi^{-1}(\overline{a}) = \phi^{-1}(\overline{b}),$$

$$\phi(\phi^{-1}(\overline{a})) = \phi(\phi^{-1}(\overline{b})),$$

$$\overline{a} = \overline{a}$$

Hence $\forall \overline{a}, \overline{b} \in \overline{G}, \phi^{-1}(\overline{a}) = \phi^{-1}(\overline{b}) \implies \overline{a} = \overline{b}$. Next, let $a \in G$ be arbitrary, then

$$\phi(a) = \overline{a} \in \overline{G},$$

$$\phi^{-1}(\phi(a)) = \phi^{-1}(\overline{a}),$$

$$a = \phi^{-1}(\overline{a}).$$

Hence $\forall a \in G, \exists \overline{a} \in \overline{G} : \phi^{-1}(\overline{a}) = a$. Finally, since $\phi(ab) = \phi(a)\phi(b) = \overline{a}\overline{b}$, it follows that

$$\phi^{-1}(\overline{a}\overline{b}) = \phi^{-1}(\phi(ab)) = ab = \phi^{-1}(\overline{a})\phi^{-1}(\overline{b}).$$

Hence $\phi^{-1}: \overline{G} \to G$ is an isomorphism.

(ii) (\Rightarrow) Let G be Abelian. So

$$\forall a, b \in G, ab = ba.$$

Then,

$$\phi(ab) = \phi(ba),$$

$$\phi(a)\phi(b) = \phi(b)\phi(a),$$

$$\overline{a}\overline{b} = \overline{b}\overline{a}, \overline{a}, \overline{b} \in \overline{G}.$$

So G is Abelian $\Longrightarrow \overline{G}$ is Abelian.

 (\Leftarrow) Let \overline{G} be Abelian. So

$$\forall \overline{a}, \overline{b} \in \overline{G}, \overline{a}\overline{b} = \overline{b}\overline{a}.$$

Then,

$$\phi^{-1}(\overline{a}\overline{b}) = \phi^{-1}(\overline{b}\overline{a}),$$

$$\phi^{-1}(\overline{a})\phi^{-1}(\overline{b}) = \phi^{-1}(\overline{b})\phi^{-1}(\overline{a}),$$

$$ab = ba, a, b \in G.$$

So \overline{G} is Abelian $\implies G$ is Abelian.

Hence, G is Abelian $\iff \overline{G}$ is Abelian.

(iii) (\Rightarrow) Let G be cyclic. So $\exists a \in G : G = \langle a \rangle$. Let $\phi(a) = \overline{a} \in \overline{G}$, by closure, $\langle \overline{a} \rangle \subseteq \overline{G}$. Let $\overline{b} \in \overline{G}$, then

$$\exists b \in G : \phi(b) = \overline{b}.$$

Since

$$b \in \langle a \rangle \implies b = a^k, k \in \mathbb{Z},$$

it follows that

$$\overline{b} = \phi(b) = \phi(a^k) = (\phi(a))^k = \overline{a}^k \in \langle \overline{a} \rangle.$$

Hence $\overline{G} \subseteq \langle \overline{a} \rangle$ and $\overline{G} = \langle \overline{a} \rangle$.

(\Leftarrow) Let \overline{G} be cyclic. So $\exists \overline{a} \in \overline{G} : G = \langle \overline{a} \rangle$. Let $\phi^{-1}(\overline{a}) = a \in G$, by closure, $\langle a \rangle \subseteq G$. Let $b \in G$, then

$$\exists \overline{b} \in \overline{G} : \phi^{-1}(\overline{b}) = b.$$

Since

$$\bar{b} \in \langle \overline{a} \rangle \implies \bar{b} = \overline{a}^k, k \in \mathbb{Z},$$

it follows that

$$b = \phi^{-1}(\overline{b}) = \phi^{-1}(\overline{a}^k) = (\phi^{-1}(\overline{a}))^k = a^k \in \langle a \rangle.$$

Hence, $G \subseteq \langle a \rangle$ and $G = \langle a \rangle$.

(iv) Let $K \leq G$ and $\phi(K) = \{\phi(k) : k \in K\} \subseteq \overline{G}$. Since $K \leq G$,

$$e \in K \implies \phi(e) \in \phi(K)$$
.

Hence $\phi(K) \neq \emptyset$.

Let $a, b \in K$ be arbitrary, then $\phi(a), \phi(b) \in \phi(K)$ and $\phi(a)\phi(b) = \phi(ab)$. Since $K \leq G, \forall a, b \in K, ab \in K$. It follows that

$$ab \in K \implies \phi(ab) \in \phi(K).$$

Hence $\forall \phi(a), \phi(b) \in \phi(K), \phi(a)\phi(b) \in \phi(K)$.

Let $\phi(a) \in \phi(K)$ be arbitrary. Then $(\phi(a))^{-1} = \phi(a^{-1})$. Since $K \leq G, a \in K \implies a^{-1} \in K$. It follows that

$$a^{-1} \in K \implies \phi(a^{-1}) \in \phi(K).$$

Hence $\forall \phi(a) \in \phi(K), (\phi(a))^{-1} \in \phi(K).$

Hence by Theorem 3.2, $\phi(K) \leq \overline{G}$.

(v) Let $\overline{K} \leq \overline{G}$ and $\phi^{-1}(\overline{K}) \in {\{\phi^{-1}(\overline{k}) : \overline{k} \in \overline{K}\}} \subseteq G$. Since $\overline{K} \leq \overline{G}$,

$$\overline{e} \in \overline{K} \implies \phi^{-1}(\overline{e}) \in \phi^{-1}(\overline{K}).$$

Hence $\phi(\overline{K}) \neq \emptyset$.

Let $\phi^{-1}(\overline{a}), \phi^{-1}(\overline{b}) \in \phi^{-1}(\overline{K})$ be arbitrary. Then, $\phi^{-1}(\overline{a})\phi^{-1}(\overline{b}) = \phi^{-1}(\overline{a}\overline{b})$. Since $\overline{K} \leq \overline{G}$, it follows that

$$\overline{a}\overline{b} \in \overline{K} \implies \phi^{-1}(\overline{a}\overline{b}) \in \phi^{-1}(\overline{K}).$$

Hence $\forall \phi^{-1}(\overline{a}), \phi^{-1}(\overline{b}) \in \phi^{-1}(\overline{K}), \phi^{-1}(\overline{a})\phi^{-1}(\overline{b}) \in \phi^{-1}(\overline{K}).$

Let $\phi^{-1}(\overline{a}) \in \phi^{-1}(\overline{K})$ be arbitrary. Then

$$(\phi^{-1}(\overline{a}))^{-1} = \phi^{-1}(\overline{a}^{-1}).$$

Since $\overline{K} \leq \overline{G}$, it follows that $\forall \overline{a} \in \overline{K}, \overline{a}^{-1} \in \overline{K}$, and

$$\overline{a}^{-1} \in \overline{K} \implies \phi^{-1}(\overline{a}^{-1}) \in \phi^{-1}(\overline{K})$$

Hence, $\forall \phi^{-1}(\overline{a}) \in \phi^{-1}(\overline{K}), (\phi^{-1}(\overline{a}))^{-1} \in \phi^{-1}(\overline{K}).$

Hence by Theorem 3.2, $\phi^{-1}(\overline{K}) \leq G$.

Example 6.8. Consider \mathbb{Z}_12 , D_6 , A_4 . All three groups have order 12. Since the largest order of any element in the three are 12,6,3, respectively, no two are isomorphic. Alternatively, the number of elements of order 2 in each is 1,7,3.

Example 6.9. \mathbb{Q} under addition is not isomorphic to $\mathbb{Q}' = \mathbb{Q} \setminus \{0\}$ under multiplication. Because $\forall a \in \mathbb{Q}, a \neq e, |a| = \infty$, since $an = 0 \iff a = 0$, but |-1| = 2 in \mathbb{Q}' .

6.4 Automorphisms

Definition 6.2. An isomorphism $G \approx G$ is an automorphism of G.

Example 6.10. The isomorphism $SL(2,\mathbb{R}) \approx SL(2,\mathbb{R})$ in Example 6.6 is an automorphism of $SL(2,\mathbb{R})$.

Example 6.11. The function $\phi: \mathbb{C} \to \mathbb{C}$ given by $\phi(a+bi) = a-bi$ is an automorphism of $(\mathbb{C},+)$. The restriction of ϕ to \mathbb{C}^* is an automorphism of (\mathbb{C}^*,\cdot) .

Example 6.12. Let $\mathbb{R}^2 = \{(a,b) : a,b \in \mathbb{R}\}$. Then $\phi(a,b) = (b,a)$ is an automorphism of \mathbb{R}^2 under componentwise addition. Geometrically, ϕ reflects each point in the plain across the line y = x. Generally, any reflection across a line passing through the origin or any rotation of the plane about the origin is an automorphism of \mathbb{R}^2 .

Definition 6.3. Let G be a group, and let $a \in G$. The function $\phi_a : \forall x \in G, \phi_a(x) = axa^{-1}$ is the inner automorphism of G induced by a.

Example 6.13. By Example 6.6, ϕ_a is actually an automorphism of G.

Example 6.14. Figure 6.6 shows the inner automorphism of D_4 induced by R_{90} .

Figure 6.6

Definition 6.4. Aut(G) is the set of all automorphisms of G and Inn(G) is the set of all inner automorphisms of G.

Theorem 6.4. Let G be a group. Then Aut(G) and Inn(G) are both groups under function composition.

Proof. Let G be a group, and let $Aut(G) = \{\phi: G \to G \text{ s.t. } G \approx G\}, Inn(G) = \{\phi_a: a \in G\}.$

WTS Aut(G) is a group. First, let $\phi_1, \phi_2 \in Aut(G), a \in G$ be arbitrary. Then,

$$(\phi_1\phi_2)(a) = \phi_1(\phi_2(a)) = \phi_1(b) = c.$$

Since ϕ_1, ϕ_2 are automorphisms of G, it follows that

$$b, c \in G \implies \phi_1 \phi_2 \in Aut(G).$$

Hence

$$\forall \phi_1, \phi_2 \in Aut(G), \phi_1 \phi_2 \in Aut(G)$$

and Aut(G) is closed under function composition. Second, by Theorem 0.6,

$$\forall \phi_1, \phi_2, \phi_3 \in Aut(G), \phi_1(\phi_2\phi_3) = (\phi_1\phi_2)\phi_3.$$

Third, let $\phi_e(a) = a, \forall a \in G$. WTS $\phi_e \in Aut(G)$. First, since $\forall a \in G, \phi_e(a) = a$, it follows that $\phi_e : G \to G$. Second, assume that $\forall a, b \in G, \phi_e(a) = \phi_e(b)$. Then,

$$\phi_e(a) = \phi_e(b) \implies a = b.$$

Hence ϕ_e is 1-1. Third, since $\forall a \in G, \exists a \in G : \phi(a) = a$. Hence ϕ_e is onto. Finally,

$$\phi_e(ab) = ab = \phi_e(a)\phi_e(b).$$

Hence, ϕ_e is an automorphism of G and $\phi_e \in Aut(G)$. It follows that

$$(\phi\phi_e)(a) = \phi(\phi_e(a)) = \phi(a)$$

and

$$(\phi_e \phi)(a) = \phi_e(\phi(a)) = \phi(a).$$

Hence.

$$\exists \phi_e \in Aut(G) : \forall \phi \in Aut(G), \phi \phi_e = \phi_e \phi = \phi,$$

and ϕ_e is the identity element of Aut(G). Finally, since $\forall \phi \in Aut(G), \phi : G \to G$ is an automorphism, by Theorem 6.3, $\phi^{-1} : G \to G$ is an isomorphism and $\phi^{-1} \in Aut(G)$. By Theorem 0.6, since ϕ is 1-1 and onto,

$$\forall a \in G, (\phi^{-1}\phi)(a) = a = \phi_e(a) \text{ and } (\phi\phi^{-1})(a) = a = \phi_e(a).$$

Hence.

$$\forall \phi \in Aut(G), \exists \phi^{-1} \in Aut(G) : \phi^{-1}\phi = \phi\phi^{-1} = \phi_e$$

and ϕ^{-1} is a reverse of ϕ . Therefore, Aut(G) is a group.

WTS $Inn(G) = \{\phi_a : a \in G\}$ under function composition is a group. First, let $\phi_a, \phi_b \in Inn(G), x \in G$ be arbitrary. Then,

$$(\phi_a \phi_b)(x) = \phi_a(\phi_b(x))$$

$$= \phi_a(bxb^{-1}),$$

$$= abxb^{-1}a^{-1}$$

$$= (ab)x(ab)^{-1} \quad \text{(Theorem 2.4)}$$

$$= \phi_{ab}(x).$$

Since $a, b \in G \implies ab \in G$, it follows that $\phi_{ab} \in Inn(G)$ and Inn(G) is closed under function composition. Second, By Theorem 0.6,

$$\phi_a(\phi_b\phi_c) = (\phi_a\phi_b)\phi_c.$$

Hence function composition is associative. Third, since $e \in G \implies \phi_e \in Inn(G)$, it follows that

$$(\phi_a \phi_e)(x) = \phi_a(\phi_e(x)) = \phi_a(exe^{-1}) = \phi_a(x)$$

and

$$(\phi_e \phi_a)(x) = \phi_e(\phi_a(x)) = \phi_e(axa^{-1}) = eaxa^{-1}e^{-1} = axa^{-1} = \phi_a(x)$$

Hence $\phi_a \phi_e = \phi_e \phi_a = \phi_a$ and ϕ_e is the identity element of Inn(G). Finally, since $a^{-1} \in G \implies \phi_{a^{-1}} \in Inn(G)$, it follows that

$$(\phi_a \phi_{a^{-1}})(x) = \phi_a(\phi_{a^{-1}}(x))$$

$$= \phi_a(a^{-1}x(a^{-1})^{-1})$$

$$= \phi_a(a^{-1}xa)$$

$$= aa^{-1}xaa^{-1}$$

$$= x = \phi_e(x)$$

and

$$(\phi_{a^{-1}}\phi_a)(x) = \phi_{a^{-1}}(\phi_a(x))$$

$$= \phi_{a^{-1}}(axa^{-1})$$

$$= a^{-1}axa^{-1}(a^{-1})^{-1}$$

$$= a^{-1}axa^{-1}a$$

$$= x = \phi_e(x).$$

Hence $\phi_a\phi_{a^{-1}}=\phi_{a^{-1}}\phi_a=\phi_e$ and $\phi_{a^{-1}}$ is the reverse of ϕ_a . Therefore, Inn(G) is a group under function composition.

Example 6.15. To find $Inn(D_4)$, note that the list of inner automorphisms of D_4 is $\{\phi_{R_0}, \phi_{R_{90}}, \phi_{R_{180}}, \phi_{R_{270}}, \phi_H, \phi_V, \phi_D, \phi_{D'}\}$. Since $R_{180} \in Z(D_4) = \{a \in D_4 : \forall x \in D_4, ax = xa\}$, it follows that

$$\phi_{R_{180}}(x) = R_{180}xR_{180}^{-1} = x,$$

so $\phi_{R_{180}} = \phi_{R_0}$. Also,

$$\phi_{R_{270}}(x) = R_{270}xR_{270}^{-1} = R_{90}R_{180}xR_{180}^{-1}R_{90}^{-1} = R_{90}xR_{90}^{-1} = \phi_{R_{90}}(x).$$

Similarly, since $H = R_{180}V$ and $D' = R_{180}D$, it follows that

$$\phi_H = \phi_V, \phi_D = \phi_{D'}.$$

Hence the previous list can be pared down to $\{\phi_{R_0}, \phi_{R_{90}}, \phi_H, \phi_D\}$. WTS these are distinct.

Example 6.16. Compute $Aut(\mathbb{Z}_{10})$. Let $\phi \in Aut(\mathbb{Z}_{10})$. Since ϕ is an automorphism of \mathbb{Z}_{10} , by Theorem 6.2 (ii) and (v),

$$\forall k \in \mathbb{Z}, \phi(k) = k\phi(1)$$

and

$$1 \in \mathbb{Z}_{10}, |\phi(1)| = |1| = 10.$$

So

$$\phi \in Aut(\mathbb{Z}_{10}) \implies |\phi(1)| = 10.$$

Define

$$\alpha_1(1) = 1$$
, $\alpha_3(1) = 3$, $\alpha_7(1) = 7$, $\alpha_9(1) = 9$.

Since

$$\begin{aligned} |\alpha_1(1)| &= |1| = 10, \\ |\alpha_3(1)| &= |3| = 10, \\ |\alpha_7(1)| &= |7| = 10, \\ |\alpha_9(1)| &= |9| = 10, \end{aligned}$$

it follows that

$$\alpha_1, \alpha_3, \alpha_7, \alpha_9 \in Aut(\mathbb{Z}_{10})$$

Since

$$\forall \phi \in Aut(\mathbb{Z}_{10}), (\alpha_1 \phi)(1) = \alpha_1(\phi(1)) = \phi(1)\alpha_1(1) = \phi(1)$$

and

$$(\phi \alpha_1)(1) = \phi(\alpha_1(1)) = \phi(1).$$

Hence α_1 is the identity element of $Aut(\mathbb{Z}_{10})$. Since

$$(\alpha_3\alpha_7)(1) = \alpha_3(\alpha_7(1)) = \alpha_3(7) = 7\alpha_3(1) = 7 \cdot 3 \mod 10 = 1$$

and

$$(\alpha_7\alpha_3)(1) = \alpha_7(\alpha_3(1)) = \alpha_7(3) = 3\alpha_7(1) = 3 \cdot 7 \mod 10 = 1,$$

it follows that ϕ_7 is the reverse of ϕ_3 and vice versa. The reverses of ϕ_1 and ϕ_9 are themselves. Since

$$\alpha_3(1) = 3,$$

$$(\alpha_3\alpha_3)(1) = (\alpha_3)^2(1) = 3 \cdot 3 \mod 10 = 9,$$

$$(\alpha_3)^3(1) = 3 \cdot 3 \cdot 3 \mod 10 = 7,$$

$$(\alpha_3)^4(1) = 3^4 \mod 10 = 1,$$

$$(\alpha_3)^5(1) = 3^4 \mod 10 = 3,$$

$$\vdots$$

it follows that $Aut(\mathbb{Z}_{10}) = \langle \alpha_3 \rangle$ and $Aut(\mathbb{Z}_{10})$ is cyclic. Figure 6.7 shows that $\mathbb{Z}_{10} \approx U(10)$.

Theorem 6.5.
$$\forall n \in \mathbb{N}, Aut(\mathbb{Z}_n) \approx U(n)$$
.

Proof. (Not covered in lectures) Let $n \in \mathbb{N}$ be arbitrary. Let $\phi \in Aut(\mathbb{Z}_n)$. So $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ is an automorphism. By Theorem 6.2 (ii),

$$\forall n \in \mathbb{Z}, \phi(n) = n\phi(1).$$

U(10)	1	3	7	9	$Aut(Z_{10})$	α_1	α_3	α_7	α_9
1					$\alpha_{_1}$	α_1	α_3	α_7	$\alpha_{\rm o}$
		9			α_3	α_3	α_9	α_1	α_7
		1			α_7	α_7	$\alpha_1^{'}$	α_{0}	α_3
9	9	7	3	1			α_7		

Figure 6.7: The Cayley tables of \mathbb{Z}_{10} and U(10).

Hence any automorphism ϕ is determined by the value of $\phi(1)$. By Theorem 6.2 (v),

$$1 \in \mathbb{Z}_n, |\phi(1)| = |1| = n.$$

Let $\alpha(1) = 1$, then

$$|\alpha(1)| = |1| = n \implies \alpha \in \mathbb{Z}_n$$

and $\alpha(1) = 1 \in U(n)$. Let $f : Aut(\mathbb{Z}_n) \to U(n)$ such that $f(\phi) = \phi(1)$. First, assume that $\forall \alpha, \beta \in Aut(\mathbb{Z}_n), f(\alpha) = f(\beta)$. Then

$$f(\alpha) = f(\beta) \implies \alpha(1) = \beta(1).$$

It follows that

$$\forall k \in \mathbb{Z}, \alpha(k) = k\alpha(1) = k\beta(1) = \beta(k).$$

Hence f is 1-1. Next, let $b \in U(10)$ be arbitrary and let $\alpha(a) = ab \mod n, \forall a \in \mathbb{Z}_n$. α is an automorphism of \mathbb{Z}_n and $\alpha \in Aut(\mathbb{Z}_n)$. Since

$$f(\alpha) = \alpha(1) = 1 \cdot b \mod n = b \in U(n),$$

f is onto. Finally, since

$$f(\alpha\beta) = (\alpha\beta)(1)$$

$$= \alpha(\beta(1))$$

$$= \beta(1)\alpha(1)$$

$$= \alpha(1)\beta(1)$$

$$= f(\alpha)f(\beta).$$

Hence $Aut(\mathbb{Z}_n) \approx U(n)$.

Example 6.17. Consider $H \leq S_4$,

$$H = \{(1), (1234), (13)(24), (1432), (12)(34), (24), (14)(23), (13)\}.$$

One has the subgroups

$$(12)H(21) = \{(1), (1342), (14)(23), (1234), (12)(34), (14), (13)(24), (23)\}$$

and

$$(123)H(321) = \{(1), (1423), (12)(34), (1324), (14)(23), (34), (13)(24), (12)\}$$

of S_4 that are isomorphic to H.

7 Cosets and Lagrange's Theorem

7.1 Properties of Cosets

Definition 7.1. Let G be a group and let $H \leq G, H \neq \emptyset$. For any $a \in G$,

$$aH = \{ah : h \in H\}, \quad Ha = \{ha : h \in H\}, \quad aHa^{-1} = \{aha^{-1} : h \in H\}.$$

The set aH is the left coset of H in G containing a, Ha is the right coset of H in G containing a. The element a is the coset representative of aH or Ha. The number of elements in aH is |aH|, and the number of elements in Ha is |Ha|.

Example 7.1. Let $G = S_3$ and $H = \{(1), (13)\}$. Then the left cosets of H in G are

$$(1)H = H,$$

 $(12)H = \{(12), (12)(13)\} = \{(12), (132)\} = (132)H,$
 $(13)H = \{(13), (1)\} = H,$
 $(23)H = \{(23), (23)(13)\} = \{(23), (123)\} = (123)H.$

Example 7.2. Let $\alpha = \{R_0, R_{180}\} \leq D_4$. Then

$$R_0 \alpha = \alpha,$$

 $R_{90} \alpha = \{R_{90}, R_{270}\} = R_{270} \alpha,$
 $R_{180} \alpha = \{R_{180}, R_0\} = \alpha,$
 $V \alpha = \{V, H\} = H \alpha,$
 $D \alpha = \{D, D'\} = D \alpha.$

Example 7.3. Let $H = \{0, 3, 6\} \leq \mathbb{Z}_9$ under addition. Then the left cosets of H in \mathbb{Z}_9 are

$$\begin{aligned} 0+H &= \{0+0,0+3,0+6\} = \{0,3,6\} = 3+H = 6+H, \\ 1+H &= \{1,4,7\} = 4+H = 7+H, \\ 2+H &= \{2,5,8\} = 5+H = 8+H. \end{aligned}$$

Lemma 7.1. Let G be a group, $H \leq G$, and $a, b \in G$. Then,

- (i) $a \in aH$.
- (ii) $aH = H \iff a \in H$.
- (iii) (ab)H = a(bH) and H(ab) = (Ha)b.
- (iv) $aH = bH \iff a \in bH$.
- (v) (aH = bH) or $(aH \cap bH = \emptyset)$,
- (vi) $aH = bH \iff a^{-1}b \in H$.
- (vii) |aH| = |bH|.
- (viii) $aH = Ha \iff H = aHa^{-1}$.
- (ix) $aH \le G \iff a \in H$.

Proof. Let G be a group, $H \leq G$, and $a, b \in G$.

- (i) Since $e \in H$, it follows that $a = ae \in aH$.
- (ii) (\Rightarrow) Assume that aH = H. Then by Lemma 7.1 (i),

$$a \in aH = H$$
.

 (\Leftarrow) Assume that $a \in H$. Let $ah \in aH$, then

$$a \in H, h \in H \implies ah \in H.$$

Let $h \in H$. Since

$$a \in H \implies a^{-1} \in H$$
,

it follows that $a^{-1}h \in H$. Then

$$h = eh = (aa^{-1})h = a(a^{-1}h) \in aH.$$

(iii) Let $(ab)h \in (ab)H$. Then

$$(ab)h = a(bh) \in a(bH) \implies (ab)H \subseteq a(bH).$$

Let $a(bh) \in a(bH)$. Then

$$a(bh) = (ab)h \in (ab)H \implies a(bH) \subseteq (ab)H.$$

Hence (ab)H = a(bH).

Let $h(ab) \in H(ab)$. Then

$$h(ab) = (ha)b \in (Ha)b \implies H(ab) \subseteq (Ha)b.$$

Let $(ha)b \in (Ha)b$. Then

$$(ha)b = h(ab) \in H(ab) \implies (Ha)b \subseteq H(ab).$$

Hence H(ab) = (Ha)b.

(iv) (\Rightarrow) Assume that aH = bH. Then

$$a = ae \in aH = bH$$
.

 (\Leftarrow) Assume that $a \in bH$. Then a = bh and by Lemma 7.1 (iii),

$$aH = (bh)H = b(hH).$$

Since $h \in H$, by Lemma 7.1 (ii), hH = H and hence

$$aH = b(hH) = bH.$$

(v) Assume that aH = bH. Then

$$aH \cap bH = aH = bH \neq \emptyset.$$

Assume that $aH \cap bH = \emptyset$. Then

$$\neg(\exists x : x \in aH, x \in bH) \implies aH \neq bH.$$

(vi) (\Rightarrow) Assume that aH = bH. Since

$$a(a^{-1}bH) = b(a^{-1}bH),$$

$$bH = ba^{-1}bH,$$

$$H = a^{-1}bH,$$

$$aH = bH,$$

it follows that

$$aH = bH \iff a^{-1}bH = H.$$

By Lemma 7.1 (ii),

$$a^{-1}bH = H \iff a^{-1}b \in H.$$

 (\Leftarrow) Assume that $a^{-1}b \in H$. Then

$$a^{-1}bH = H \implies bH = aH.$$

(vii) Since |aH| = |H|, |bH| = |H|, it follows that |aH| = |bH|.

(viii) (\Rightarrow) Assume that aH = Ha. Then

$$aH = Ha,$$

$$aHa^{-1} = H.$$

 (\Leftarrow) Assume that $H = aHa^{-1}$. Then

$$H = aHa^{-1},$$

$$Ha = aH.$$

(ix) (\Rightarrow) Assume that $aH \leq G$. Then

$$e \in aH, e = ee \in eH \implies aH \cap eH \neq \emptyset.$$

By Lemma 7.1 (v), aH = eH = H. By Lemma 7.1 (ii),

$$aH = H \iff a \in H.$$

 (\Leftarrow) Assume that $a \in H$. By Lemma 7.1 (ii),

$$a \in H \iff aH = H \le G.$$

Example 7.4. Find the cosets of $H = \{1, 15\}$ in $G = U(32) = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31\}.$

$$1H = \{1, 15\} = 15H,$$

$$3H = \{3, 13\} = 13H,$$

$$5H = \{5, 11\} = 11H,$$

$$7H = \{7, 9\} = 9H,$$

$$17H = \{17, 31\} = 31H,$$

$$19H = \{19, 29\} = 29H,$$

$$21H = \{21, 27\} = 27H,$$

$$23H = \{23, 25\} = 25H.$$

7.2 Lagrange's Theorem and Consequences

Theorem 7.1 (Lagrange's Theorem). Let G be a group, |G| = n. Then

$$H \leq G \implies |H| \mid |G|.$$

Moreover, the number of distinct left and right cosets of H in G is |G|/|H|.

Proof. Let G be a group, |G| = n. Assume that $H \leq G$. Let a_1H, a_2H, \ldots, a_rH be the distinct left cosets of H in G. Then,

$$\forall a \in G, \exists i \in \{1, 2, \dots, r\} : aH = a_i H.$$

By Lemma 7.1 (i), $a \in aH$. So

$$\forall a \in G, \exists i \in \{1, 2, \dots, r\} : a \in a_i H.$$

It follows that

$$G = a_1 H \cup \cdots \cup a_r H$$
.

By Lemma 7.1 (v), this union is disjoint, so

$$|G| = |a_1H| + |a_2H| + \dots + |a_rH|.$$

Since

$$\forall i \in \{1, \dots, r\}, |a_i H| = |H|,$$

it follows that

$$|G| = |a_1H| + |a_2H| + \dots + |a_rH|$$

$$= \underbrace{|H| + \dots + |H|}_{r}$$

$$= r|H|.$$

Hence $|H| \mid |G|$ and the number of distinct left and right cosets of H in G is r = |G|/|H|.

Definition 7.2. The *index* of $H \leq G$, denoted by |G:H|, is the number of distinct left cosets of H in G.

Corollary 7.1.1.
$$|G| = n, H \le G \implies |G:H| = |G|/|H|$$
.

Corollary 7.1.2.
$$|G| = n \implies \forall a \in G, |a| \mid |G|$$
.

Proof. Let G be a group and |G| = n. Let $a \in G$ be arbitrary. By Theorem 3.4, $\langle a \rangle \leq G$. By Theorem 7.1, $|\langle a \rangle| |G|$. Hence

$$\forall a \in G, |a| \mid |G|.$$

Corollary 7.1.3. |G| = p, p is prime $\implies G$ is cyclic.

Proof. Let G be a group and |G|=p, p is prime. Let $a \in G$ and $a \neq e$. Then, by Theorem 3.4, $\langle a \rangle \leq G$. By Theorem 7.1, $|\langle a \rangle| \mid |G|$. Since |G|=p, it follows that $|\langle a \rangle| \in \{1, p\}$. But

$$a \neq e \implies \langle a \rangle \neq 1.$$

Hence

$$|\langle a \rangle| = p = |G|, \langle a \rangle \le G \implies G = \langle a \rangle.$$

Corollary 7.1.4. $|G| = n, a \in G \implies a^{|G|} = e.$

Proof. Let G be a group, |G|=n, and $a\in G.$ By Corollary 7.1.2, $|a|\mid |G|,$ so $|G|=|a|k,k\in\mathbb{Z}.$ Then

$$a^{|G|} = a^{|a|k} = e^k = e.$$

Corollary 7.1.5 (Fermat's Little Theorem). $\forall a \in \mathbb{Z}, \forall p = prime, a^p \mod p = a \mod p$.

Proof. Let $a \in \mathbb{Z}$ and p is prime. By the division algorithm,

$$a = pm + r, 0 \le r < p.$$

So $a \mod p = r$. If r = 0, then $a \mod p = 0$ and $a^p \mod p = 0$. If 0 < r < p, let $r \in U(p) = \{1, 2, \dots, p-1\}$ under multiplication modulo p. Then by Corollary 7.1.4,

$$r^{|U(p)|} = r^{p-1} = 1.$$

It follows that

$$r^{p-1} \mod p = 1 \implies r^p \mod p = r.$$

Example 7.5. The converse of Lagrange's Theorem is false. By Table 5.1, A_4 has eight elements of order 3 (α_5 through α_{12}). Let $H \leq A_6$, |H| = 6. Let $a \in A_4$, |a| = 3. By Theorem 7.1,

$$|A_4:H| = |A_4|/|H| = 12/6 = 2.$$

So at most two of the cosets H, aH, a^2H are distinct. But equality of any pair of these three implies that $aH = H \implies a \in H$. Thus, H: |H| = 6 would have to contain all eight $a \in A_4, |a| = 3$, which is absurd.

Theorem 7.2. Let G be a group, $H, K \leq G$, |H| = m, |K| = n. Define the set $HK = \{hk : h \in H, k \in K\}$. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Although the set HK has |H||K| products, there may be $hk = h'k', h \neq h', k \neq k'$. For every $t \in H \cap K$, the product $hk = (ht)(t^{-1}k)$, so each element in HK is represented by at least $|H \cap K|$ products in HK. But

$$hk = h'k' \implies t = h^{-1}h' = kk'^{-1} \in H \cap K \implies h' = ht, k' = t^{-1}k.$$

Thus each element in HK is represented by exactly $|H \cap K|$ products. So $|HK| = |H||K|/|H \cap K|$.

Example 7.6. A group of order 75 can have at most one subgroup of order 25. Suppose H, K are two subgroups of order 25. Since

$$|H \cap K| \mid |H| = |H \cap K| \mid 25 \implies |H \cap K| \in \{1, 5\}.$$

It follows that

$$|HK| = |H||K|/|H \cap K| = 25 \cdot 25/|H \cap K| \in \{625, 125\}.$$

Hence

$$|H \cap K| = 25 \implies H = K.$$

Theorem 7.3. Let G be a group and p > 2 is a prime. Then

$$|G| = 2p \implies G \approx \mathbb{Z}_{2p} \text{ or } G \approx D_p.$$

Proof. Let G be a group and p > 2 is a prime. Let |G| = 2p. Assume that $\forall a \in G, |a| \neq 2p$. Since $a \in G, a \neq e, \langle a \rangle \leq G$, by the Lagrange's Theorem,

$$|G| = 2p, \langle a \rangle \le G \implies |\langle a \rangle| \mid |G| \implies |a| \mid 2p.$$

Hence

$$\forall a \in G, a \neq e, |a| = 2 \text{ or } |a| = p.$$

If |a|=2, then

$$\forall a, b \in G, ab = (ab)^{-1} = b^{-1}a^{-1} = ba.$$

So G is Abelian. Then, $\forall a,b \in G, a,b \neq e,a \neq b$, the set $\{e,a,b,ab\}$ is closed and hence is a subgroup of G of order 4. But this contradicts the Lagrange's Theorem since

$$|G| = 2p, H \le G \implies |H| \mid |G| = 2p,$$

and 4 does not divide 2p. Hence |a| = p.

Let $b \in G$: $b \neq \langle a \rangle$ be arbitrary. Then by the Lagrange's Theorem and the assumption that $\forall a \in G, |a| \neq 2p$, one has |b| = 2 or |b| = p. Since $\langle a \rangle, \langle b \rangle \leq G, |\langle a \rangle| \neq \infty, |\langle b \rangle| \neq \infty$, by Theorem 7.2,

$$|\langle a \rangle \cap \langle b \rangle| \mid |\langle a \rangle| = |a| = p.$$

So $|\langle a \rangle \cap \langle b \rangle| = 1$ or $|\langle a \rangle \cap \langle b \rangle| = p$. Since $\langle a \rangle \neq \langle b \rangle$ and $e \in \langle a \rangle, e \in \langle b \rangle$, it follows that $|\langle a \rangle \cap \langle b \rangle| = 1$. If |b| = p, then by Theorem 7.2,

$$|\langle a \rangle \langle b \rangle| = |\langle a \rangle| |\langle b \rangle| = p^2 > 2p = |G|,$$

which is impossible. Hence $\forall b \in G, b \notin \langle a \rangle, |b| = 2$. Consider ab. Since $ab \notin \langle a \rangle, |ab| = 2$. Then

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba^{-1}.$$

This relation completel determines the multiplication table for G. For example,

$$a^{3}(ba^{4}) = a^{2}(ab)a^{4}$$

$$= a^{2}(ba^{-1})a^{4}$$

$$= a(ab)a^{3}$$

$$= a(ba^{-1})a^{3}$$

$$= (ab)a^{2}$$

$$= (ba^{-1})a^{2}$$

$$= ba.$$

Since the multiplication table for all noncclic groups of order 2p is uniquely determined by the relation $ab = ba^{-1}$, all noncyclic groups of order 2p must be isomorphic to each other.

7.3 An Application of Cosets to Permutation Groups

Definition 7.3. Let G be a group of permutation of a set S. The *stabilizer of* $i \in S$ in G is

$$stab_G(i) = \{ \phi \in G : \phi(i) = i \}.$$

Proof that $stab_G(i) \leq G$. Let G be a group of permutation of a set S, let

$$stab_G(i) = \{ \phi \in G : \phi(i) = i \}, i \in S.$$

Let $\phi_1, \phi_2 \in stab_G(i)$, so $\phi_1(i) = i, \phi_2(i) = i$. It follows that

$$(\phi_1\phi_2)(i) = \phi_1(\phi_2(i)) = \phi_1(i) = i \implies \phi_1\phi_2 \in stab_G(i).$$

Let $\phi \in stab_G(i)$. Then

$$\phi(\phi^{-1}(i)) = (\phi\phi^{-1})(i) = \epsilon(i) = i \implies \phi^{-1}(i) = i.$$

It follows that $\phi^{-1} \in stab_G(i)$. Hence by the Two-step Subgroup Test, $stab_G(i) \leq G$.

Definition 7.4. Let G be a group of permutations of a set S. The *orbit of* $i \in S$ under G is

$$orb_G(i) = \{\phi(i) : \phi \in G\}.$$

The number of elements in $orb_G(i)$ is $|orb_G(i)|$.

Example 7.7. Let

$$G = \{(1), (132)(456)(78), (132)(465), (123)(456), (123)(456)(78), (78)\} \le S_8.$$

Then,

$$\begin{aligned} orb_G(1) &= \{1,3,2\}, & stab_G(1) &= \{(1),(78)\}, \\ orb_G(2) &= \{2,1,3\}, & stab_G(2) &= \{(1),(78)\}, \\ orb_G(4) &= \{4,6,5\}, & stab_G(4) &= \{(1),(78)\}, \\ orb_G(7) &= \{7,8\}, & stab_G(7) &= \{(1),(132)(465),(123)(456)\}. \end{aligned}$$

Example 7.8. Let D_4 be a group of permutation of a square. Figure 7.1(a) and (b) show $orb_{D_4}(p)$ and $orb_{D_4}(q)$, respectively. Furthermore, $stab_{D_4}(p) = \{R_0, D\}$ and $stab_{D_4}(q) = \{R_0\}$.

Figure 7.1: (a) $orb_{D_4}(p)$. (b) $orb_{D_4}(q)$.

Theorem 7.4 (Orbit-Stabilizer Theorem). Let G be a finite group of permutations of a set S. Then,

$$i \in S, |G| = |orb_G(i)||stab_G(i)|.$$

Proof. Let G be a group of permutation of a set S and |G|=n. By the Lagrange Theorem,

$$stab_G(i) \leq G \implies |stab_G(i)| \mid G, i \in S$$

and the number of distinct left cosets of $stab_G(i)$ in G, $r = |G|/|stab_G(i)|$.

Let

$$T: \{\phi stab_G(i) : \phi \in G\} \to orb_G(i) = \{\phi(i) : \phi \in G\}.$$

Assume that $\alpha stab_G(i) = \beta stab_G(i)$. Then by Lemma 7.1,

$$\alpha stab_G(i) = \beta stab_G(i) \iff \alpha^{-1}\beta \in stab_G(i).$$

It follows that

$$(\alpha^{-1}\beta)(i) = i \implies \alpha(i) = \alpha(\alpha^{-1}\beta(i)) = (\alpha\alpha^{-1}\beta)(i) = \beta(i).$$

Hence T is a well-defined function.

Assume that $\alpha(i) = \beta(i)$. Then $(\alpha^{-1}\beta)(i) = i$ and it follows that by Lemma 7.1,

$$\alpha stab_G(i) = \beta stab_G(i) \iff \alpha^{-1}\beta \in stab_G(i).$$

Hence T is 1-1. Let $j \in orb_G(i)$ be arbitrary. Since

$$\exists \alpha \in G : \alpha(i) = j,$$

it follows that

$$T(\alpha stab_G(i)) = \alpha(i) = j.$$

Hence T is onto $orb_G(i)$. Thus,

$$|orb_G(i)| = r = |G|/|stab_G(i)| \implies |G| = |orb_G(i)||stab_G(i)|.$$

7.4 The Rotation Group of a Cube and a Soccer Ball

Theorem 7.5. The group of rotations of a cube is isomorphic to S_4 .

Proof.

8 External Direct Products

8.1 Definition and Examples

Definition 8.1. Let G_1, G_1, \ldots, G_n be a finite collection of groups. The *external direct product* of G_1, G_2, \ldots, G_n is

$$G_1 \oplus G_2 \oplus \cdots \oplus G_n = \{(g_1, g_2, \ldots, g_n) : g_i \in G_i\},\$$

where

$$(g_1, g_2, \dots, g_n)(g'_1, g'_2, \dots, g'_b) = (g_1g'_1, g_2g'_2, \dots, g_ng'_n).$$

Each $g_i g'_i$ is performed with the operation of G_i . If each G_i is finite, then

$$|G_1 \oplus G_2 \oplus \cdots \oplus G_n| = |G_1||G_2|\cdots |G_n|.$$

Proof that $G_1 \oplus \cdots \oplus G_n$ is a group. Since

$$(g_1,\ldots,g_n)(g'_1,\ldots,g'_n)=(g_1g'_1,\ldots,g_ng'_n)$$

and $g_1g_1' \in G_1, \ldots, g_ng_n' \in G_n$, it follows that $G_1 \oplus \cdots \oplus G_n$ is closed. Next, since

$$[(g_1, \dots, g_n)(g'_1, \dots, g'_n)](g''_1, \dots, g''_n) = (g_1g'_1, \dots, g_ng'_n)(g''_1, \dots, g''_n)$$

$$= [(g_1g'_1)g''_1, \dots, (g_ng'_n)g''_n]$$

$$= [g_1(g'_1g''_1), \dots, g_n(g'_ng''_n)]$$

$$= (g_1, \dots, g_n)(g'_1g''_1, \dots, g'_ng''_n)$$

$$= (g_1, \dots, g_n)[(g'_1, \dots, g'_n)(g''_1, \dots, g''_n)],$$

it follows that $G_1 \oplus \cdots \oplus G_n$ is associative. Further, since

$$(e_1, \dots, e_n)(g_1, \dots, g_n) = (e_1g_1, \dots, e_ng_n)$$

= (g_1, \dots, g_n)
= (g_1e_1, \dots, g_ne_n)
= $(g_1, \dots, g_n)(e_1, \dots, e_n),$

it follows that (e_1, \ldots, e_n) is the identity element of $G_1 \oplus \cdots \oplus G_n$. Lastly, since

$$(g_1^{-1}, \dots, g_n^{-1})(g_1, \dots, g_n) = (g_1^{-1}g_1, \dots, g_n^{-1}g_n)$$

$$= (e_1, \dots, e_n)$$

$$= (g_1g_1^{-1}, \dots, g_ng_n^{-1})$$

$$= (g_1, \dots, g_n)(g_1^{-1}, \dots, g_n^{-1}),$$

it follows that $(g_1^{-1}, \dots, g_n^{-1})$ is the reverse of (g_1, \dots, g_n) . Hence, $G_1 \oplus \dots \oplus G_n$ is a group.

Example 8.1. Consider $U(8) = \{1, 3, 5, 7\}, U(10) = \{1, 3, 7, 9\}.$ Then

$$U(8) \oplus U(10) = \{(1,1), (1,3), (1,7), (1,9),$$

$$(3,1)(3,3), (3,7), (3,9),$$

$$(5,1), (5,3)(5,7), (5,9),$$

$$(7,1), (7,3), (7,7), (7,9)\}.$$

The product $(3,7)(7,9) = (3 \cdot 7 \mod 8, 7 \cdot 9 \mod 10) = (5,3)$.

Example 8.2. Consider $\mathbb{Z}_2 = \{0, 1\}$ and $\mathbb{Z}_3 = \{0, 1, 2\}$. Then

$$\mathbb{Z}_2 \oplus \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}.$$

Since

$$(0,0)(0,1) = (0,1) = (0,1)(0,0),$$

$$(0,0)(0,2) = (0,2) = (0,2)(0,0),$$

$$\vdots$$

$$(1,1)(1,2) = (0,0) = (1,2)(1,1),$$

it follows that $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is an Abelian group of order 6. Since the operation in each component is addition,

$$(1,1) = (1,1),$$

$$2(1,1) = (0,2),$$

$$3(1,1) = (1,0),$$

$$4(1,1) = (0,1),$$

$$5(1,1) = (1,2),$$

$$6(1,1) = (0,0).$$

Hence $\mathbb{Z}_2 \oplus \mathbb{Z}_3 = \langle (1,1) \rangle$. It follows that $\mathbb{Z}_2 \oplus \mathbb{Z}_3 \approx \mathbb{Z}_6$.

Example 8.3. Let G be a group of order 4. By the Lagrange's Theorem,

$$|G| = 4, \langle a \rangle \le G, a \in G \implies |\langle a \rangle| = |a| \mid |G| = 4.$$

So $a \in G, a \in \{1,2\}$. Let $a,b \in G, a \neq e,b \neq e,a \neq b$. Then, $ab \neq a,ab \neq b$, and $ab \neq e$, otherwise $a = b^{-1} = b$. Thus $G = \{e,a,b,ab\}$. Since $ab = (ab)^{-1} = b^{-1}a^{-1} = ba$, the operation table is uniquely determined. Hence $G \approx \mathbb{Z}_4$ or $G \approx \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

8.2 Properties of External Direct Products

Theorem 8.1.
$$|(g_1, g_2, \dots, g_n)| = \text{lcm}(|g_1|, |g_2|, \dots, |g_n|).$$

Proof. Let $s = \text{lcm}(|g_1|, |g_2|, \dots, |g_n|)$ and $t = |(g_1, g_2, \dots, g_n)|$. Since s is a multiple of each $|g_i|$, by Theorem 4.1 (ii),

$$g_i^s = g_i^0 = e_i \iff |g_i| \mid (s - 0) = s.$$

It follows that

$$(g_1, g_2, \dots, g_n)^s = (g_1^s, g_2^s, \dots, g_n^s) = (e_1, e_2, \dots, e_n)$$

and $t \leq s$. On the other hand, since

$$(e_1, e_2, \dots, e_n) = (g_1, g_2, \dots, g_n)^t = (g_1^t, g_2^t, \dots, g_n^t),$$

by Theorem 4.1 (ii),

$$g_i^t = g_i^0 = e_i \iff |g_i| \mid (t - 0) = t.$$

So t is a common multiple of $|g_1|, \ldots, |g_n|$. Since $s = \operatorname{lcm}(|g_1|, \ldots, |g_n|)$, it follows that $s \leq t$. Hence s = t.

Example 8.4. Groups of order 100 include \mathbb{Z}_{100} , $\mathbb{Z}_{25} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_4$, $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$, $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$.

Example 8.5. Find the number of elements of order 5 in $\mathbb{Z}_{25} \oplus \mathbb{Z}_5$.

By Theorem 8.1, the number of elements $(a,b) \in \mathbb{Z}_{25} \oplus \mathbb{Z}_5$ of order 5 is the number of elements with the property

$$5 = |(a, b)| = \operatorname{lcm}(|a|, |b|).$$

So either $|a| = 5, |b| \in \{1, 5\}$ or $|a| \in \{1, 5\}, |b| = 5$.

Case 1 $|a| = 5, |b| \in \{1, 5\}$, then since $5, 10, 15, 20 \in \mathbb{Z}_{25}$ and

$$|5| = |10| = |15| = |20| = 5,$$

there are four choices for a. Since $0, 1, 2, 3, 4 \in \mathbb{Z}_5$ and

$$|0| = 1,$$

 $|1| = |2| = |3| = |4| = 5,$

there are five choices for b. Hence there are $4 \cdot 5 = 20$ elements of order 5. Namely, $(5,0), (5,1), (5,2), (5,3), (5,4), (10,0), \dots, (20,4)$.

Case 2 |a|=1, |b|=5, then there are one choice for a (namely, $0 \in Z_{25}$) and four choices for b (namely, $\{1,2,3,4\} \in Z_5$). Hence there are $1 \cdot 4 = 4$ elements of order 5. Namely, $\{0,1\}, \{0,2\}, \{0,3\}, \{0,4\}$.

Hence there are 20 + 4 = 24 elements of order 5 in $\mathbb{Z}_{25} \oplus \mathbb{Z}_5$.

Example 8.6. Find the number of cyclic subgroups of order 10 in $\mathbb{Z}_{100} \oplus \mathbb{Z}_{25}$.

By Theorem 8.1, this is the number of elements $(a,b) \in Z_{100} \oplus Z_{25}$ with the property

$$10 = |(a, b)| = \operatorname{lcm}(|a|, |b|).$$

Case 1 $|a| = 10, |b| \in \{1, 5\}$. By Theorem 4.4,

$$Z_{100} = \langle 1 \rangle, |Z_{100}| = 100, 10|100,$$

the number of elements $a \in Z_{100}$: |a| = 10 is $\phi(10) = 4$. Hence, there are four choices for a. Similarly,

$$Z_{25} = \langle 1 \rangle, |Z_{25}| = 25, 1|25, 5|25,$$

the number of elements $b \in Z_{25}$: |b| = 1 is $\phi(1) = 1$ and |b| = 5 is $\phi(5) = 4$. Hence there are 1 + 4 = 5 choices for b. So there are $4 \cdot 5 = 20$ elements $(a,b) \in Z_{100} \oplus Z_{25}$: |(a,b)| = 10.

Case 2 |a| = 2 and |b| = 5. By Theorem 4.4,

$$Z_{100} = \langle 1 \rangle, |Z_{100}| = 100, 2|100,$$

the number of elements $a \in Z_{100}$: |a| = 2 is $\phi(2) = 1$. Similarly,

$$Z_{25} = \langle 1 \rangle, |Z_{25}| = 25, 5|25,$$

the number of elements $b \in Z_{25}$: |b| = 5 is $\phi(5) = 4$. Hence there are four choices for b. So there are $1 \cdot 4 = 4$ elements $(a, b) \in Z_{100} \oplus Z_{25}$: |(a, b)| = 10.

Hence there are 20+4=24 elements $(a,b) \in \mathbb{Z}_{100} \oplus \mathbb{Z}_{25} : |(a,b)|=10$. Since by Theorem 4.4,

$$|\langle (a,b)\rangle| = 10, 10|10,$$

there are $\phi(10) = 4$ elements of order 10 in $\langle (a,b) \rangle$. Hence each cyclic subgroup of order 10 is generated by four elements of order 10. So there are totally 24/4 = 6 cyclic subgroups of order 10 in $Z_{100} \oplus Z_{25}$.

Theorem 8.2. Let G, H be finite cyclic groups. Then

$$G \oplus H$$
 is cyclic $\iff \gcd(|G|, |H|) = 1$.

Proof. Let $G = \langle g \rangle, H = \langle h \rangle$.

(\Rightarrow) Assume that $G \oplus H$ is cyclic. So $\exists (g,h) \in G \oplus H : G \oplus H = \langle (g,h) \rangle$. Let |G| = m, |H| = n, so

$$|(g,h)| = |\langle (g,h)\rangle| = |G \oplus H| = mn.$$

Let gcd(m, n) = d, since

$$(g,h)^{mn/d} = (g^{mn/d}, h^{mn/d}) = (g^m)^{n/d}, (h^n)^{m/d}) = (e, e),$$

it follows that

$$|(g,h)| = mn \le mn/d \implies d = 1.$$

Hence

$$gcd(m,n) = d = 1 \implies |G| = m, |H| = n$$
 are relatively prime.

(\Leftarrow) Assume that |G|=m, |H|=n are relatively prime. So $\gcd(m,n)=1$. Then, by Theorem 8.1,

$$\begin{split} |\langle (g,h)\rangle| &= |(g,h)| = \operatorname{lcm}(|g|,|h|) \\ &= \operatorname{lcm}(|\langle g\rangle|,|\langle h\rangle|) \\ &= \operatorname{lcm}(|G|,|H|) \\ &= mn \\ &= |G \oplus H|. \end{split}$$

Hence $G \oplus H = \langle (g, h) \rangle$.

Corollary 8.2.1. Let G_1, G_2, \ldots, G_n be cyclic. Then $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ is cyclic iff $gcd(|G_i|, |G_j|) = 1$ when $i \neq j$.

Corollary 8.2.2. Let $m = n_1 n_2 \cdots n_k$. Then $\mathbb{Z}_m \approx \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_k}$ iff $gcd(n_i, n_j) = 1$ when $i \neq j$.

8.3 The Group of Units Modulo n as an External Direct Product

Definition 8.2. Let $k \mid n$. Then $U_k(n) = \{x \in U(n) : x \mod k = 1\}$.

Example 8.7. Consider $U_7(105) = \{1, 8, 22, 29, 43, 64, 71, 92\}.$

Since $U_k(n)$ is finite, and

$$1 \in U(n), 1 \mod k = 1 \implies 1 \in U_k(n) \implies U_k(n) \neq \emptyset.$$

By Theorem 3.3, let $a, b \in U_k(n)$, so $a, b \in U(n)$, $ab \in U(n)$. Then

$$a \mod k = 1, b \mod k = 1 \implies ab \mod k = 1$$

and $ab \in U_k(n)$. Hence $U_k(n) \leq U(n)$.

Theorem 8.3. Let gcd(s,t) = 1. Then

$$U(st) \approx U(s) \oplus U(t)$$
.

Moreover,

$$U_s(st) \approx U(t)$$
 and $U_t(st) \approx U(s)$.

Proof. An isomorphism from U(st) to $U(s) \oplus U(t)$ is $x \to (x \mod s, x \mod t)$. An isomorphism from $U_s(st)$ to U(t) is $x \to x \mod t$. An isomorphism from $U_t(st)$ to U(s) is $x \to x \mod s$.

Corollary 8.3.1. Let $m = n_1 n_2 \dots n_k$ and $gcd(n_i, n_j) = 1, i \neq j$. Then,

$$U(m) \approx U(n_1) \oplus U(n_2) \oplus \cdots \oplus U(n_k).$$

9 Normal Subgroups and Factor Groups

9.1 Normal Subgroups

Definition 9.1. Let G be a group and $H \leq G$. Then H is a *normal* subgroup of G if $\forall a \in G, aH = Ha$. In symbols,

$$H \le G, \forall a \in G, aH = Ha \implies H \triangleleft G.$$

If $H \triangleleft G$, then

$$\forall a \in G, h \in H, \exists h' \in H : ah = h'a.$$

Likewise,

$$\exists h'' \in H : ha = ah''.$$

It is possible that h' = h or h'' = h.

Theorem 9.1. Let G be a group and $H \leq G$. Then

$$H \triangleleft G \iff \forall x \in G, xHx^{-1} \subseteq H.$$

Proof. Let G be a group and $H \leq G$.

(⇒) Assume that $H \triangleleft G$. So $\forall a \in G, aH = Ha$. Let $x \in G$ be arbitrary and $h \in H$. Then

$$\exists h' \in H : xh = h'x \implies xhx^{-1} = h' \in H.$$

Hence $\forall x \in G, xHx^{-1} \subseteq H$.

 (\Leftarrow) Assume that $\forall x \in G, xHx^{-1} \subseteq H$. Let x = a, then

$$aHa^{-1} \subseteq H \implies aH \subseteq Ha.$$

Let $x = a^{-1}$, then

$$a^{-1}H(a^{-1})^{-1} = a^{-1}Ha \subseteq H \implies Ha \subseteq aH.$$

Hence $\forall x \in G, aH = Ha \text{ and } H \triangleleft G.$

Example 9.1. Every subgroup of an Abelian group is normal. In this case, $\forall a \in G, h \in H, ah = ha$.

Example 9.2. The center $Z(G) = \{a \in G : \forall x \in G, ax = xa\}$ is always normal. In this case, $\forall a \in G, h \in Z(G), ah = ha$.

Example 9.3. The alternating group A_n of even permutations is a normal subgroup of S_n . Note, for example, that for $(1) \in S_n$, $(123) \in A_n$, $(12)(123) \neq (123)(12)$ but (12)(123) = (132)(12), $(132) \in A_n$.

Example 9.4. The subgroup of rotations in D_n is normal in D_n . For any rotation r and any reflection f, $fr = r^{-1}f$, whereas for any rotations r, r', rr' = r'r.

Example 9.5. Let $H \triangleleft G, K \leq G$. Then $HK = \{hk : h \in H, k \in K\} \leq G$. First, $e = ee \in HK$ and $HK \neq \emptyset$. Next, let $a = h_1k_1, b = h_2k_2, h_1, h_2 \in H, k_1, k_2 \in K$ be arbitrary. Then

$$ab^{-1} = (h_1k_1)(h_2k_2)^{-1}$$
$$= h_1k_1k_2^{-1}h_2^{-1}$$
$$= h_1(k_1k_2^{-1})h_2^{-1}.$$

Since $H \triangleleft G$, $h_2^{-1} \in H$, and $k_1 k_2^{-1} \in K \subseteq G$, it follows that

$$\exists h' \in H : (k_1 k_2^{-1}) h_2^{-1} = h'(k_1 k_2^{-1})$$

and hence

$$ab^{-1} = h_1(k_1k_2^{-1})h_2^{-1} = h_1h'(k_1k_2^{-1}) \in HK.$$

Hence by Theorem 3.1, $HK \leq G$.

Example 9.6. The group $SL(2,\mathbb{R})$ of 2×2 matrices with determinant 1 is a normal subgroup of $GL(2,\mathbb{R})$, the group of 2×2 matrices with nonzero determinant. To verify, by Theorem 9.1, let $x \in GL(2,\mathbb{R})$, $h \in SL(2,\mathbb{R}) = H$. Note that

$$(\det x)(\det h)(\det x)^{-1} = (\det x)(\det x)^{-1} = 1,$$

hence

$$xhx^{-1} \in H \implies xHx^{-1} \subseteq H.$$

Example 9.7. By Figure 5.5 for A_4 , $H = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \triangleleft A_4$, whereas $K = \{\alpha_1, \alpha_5, \alpha_9\}$ is not a normal subgroup of A_4 . To verify, let $\beta \in A_4$, $|\beta H \beta^{-1}| = 4$ and H is the only subgroup of A_4 of order 4 since all other elements of A_4 have order 3. Hence $\beta H \beta^{-1} = H$. In contrast, $\alpha_2 \alpha_5 \alpha_2^{-1} = \alpha_7 \notin K$, so $\alpha_2 K \alpha_2^{-1} \nsubseteq K$.

9.2 Factor Groups

Theorem 9.2. Let G be a group and $H \triangleleft G$. Then the set $G/H = \{aH : a \in G\}$ is a group under the operation (aH)(bH) = abH. In this case, G/H is a factor group.

Proof. Let G be a group and $H \triangleleft G$. Consider the set $G/H = \{aH : a \in G\}$ under the operation (aH)(bH) = abH.

First, let $aH, bH \in G/H$ be arbitrary. Then (aH)(bH) = abH. Since $a, b \in G$, $ab \in G$, it follows that $abH \in G/H$ and G/H is closed under the operation. Second, let $aH, bH, cH \in G/H$, then

$$(aH)[(bH)(cH)] = (aH)(bcH) = abcH,$$

 $[(aH)(bH)](cH) = (abH)(cH) = abcH.$

Hence the operation is associative. Third, since $e \in G \implies eH \in G/H$, let $aH \in G/H$ be arbitrary, then

$$(aH)(eH) = aeH = aH = eaH = (eH)(aH).$$

Hence $eH \in G/H$ is the identity element. Finally, let $a \in G$ be arbitrary, then since $a^{-1} \in G$, it follows that $a^{-1}H \in G/H$ and

$$(aH)(a^{-1}H) = aa^{-1}H = eH = a^{-1}aH = (a^{-1}H)(aH).$$

Hence $a^{-1}H$ is the reverse element of aH. Therefore, G/H is a group under the operation.

Example 9.8. Let $4\mathbb{Z} = \{\ldots, -8, -4, 0, 4, 8, \ldots\}$. Consider the four left cosets,

$$\begin{aligned} 0+4\mathbb{Z} &= \{\ldots, -8, -4, 0, 4, 8, \ldots\}, \\ 1+4\mathbb{Z} &= \{\ldots, -7, -3, 1, 5, 9, \ldots\}, \\ 2+4\mathbb{Z} &= \{\ldots, -6, -2, 2, 6, 10, \ldots\}, \\ 3+4\mathbb{Z} &= \{\ldots, -5, -1, 3, 7, 11, \ldots\}. \end{aligned}$$

These are the only left cosets of $4\mathbb{Z}$. Since if $k \in \mathbb{Z}$, then $k = 4q + r, 0 \le r < 4$. Hence

$$k + 4\mathbb{Z} = r + 4q + 4\mathbb{Z} = r + 4\mathbb{Z}.$$

Figure 9.1 shows the Cayley table of $\mathbb{Z}/4\mathbb{Z}$. Hence, $\mathbb{Z}/4\mathbb{Z} \approx \mathbb{Z}_4$. More generally, for any n > 0, let $n\mathbb{Z} = \{\ldots, -2n, -n, 0, n, 2n, \ldots\}$, then $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}_n$.

	0 + 4Z	1 + 4Z	2 + 4Z	3 + 4Z
0 + 4Z $1 + 4Z$ $2 + 4Z$ $3 + 4Z$	0 + 4Z $1 + 4Z$ $2 + 4Z$ $3 + 4Z$	1 + 4Z $2 + 4Z$ $3 + 4Z$ $0 + 4Z$	2 + 4Z $3 + 4Z$ $0 + 4Z$ $1 + 4Z$	3 + 4Z 0 + 4Z 1 + 4Z 2 + 4Z

Figure 9.1: The Cayley table of $\mathbb{Z}/4\mathbb{Z}$.

Example 9.9. Let $G = \mathbb{Z}_{18}$ and $H = \langle 6 \rangle = \{6, 12, 0\}$. Then since

$$\begin{aligned} 0+H&=H=6+H=12+H,\\ 1+H&=\{1,7,13\}=7+H=13+H,\\ 2+H&=\{2,8,14\}=8+H=14+H,\\ 3+H&=\{3,9,15\}=9+H=15+H,\\ 4+H&=\{4,10,16\}=10+H=16+H,\\ 5+H&=\{5,11,15\}=11+H=17+H, \end{aligned}$$

it follows that $G/H = \{0 + H, 1 + H, 2 + H, 3 + H, 4 + H, 5 + H\}$. Consider (5 + H) + (4 + H),

$$(5+H) + (4+H) = 5+4+H$$

$$= 9+H$$

$$= 3+6+H$$

$$= 3+\{6,12,0\}$$

$$= 3+H.$$

Example 9.10. Let $\mathfrak{K} = \{R_0, R_{180}\}\$, and consider the factor group of D_4

$$D_4/\mathfrak{R} = \{\mathfrak{K}, R_{90}\mathfrak{K}, H\mathfrak{K}, D\mathfrak{K}\}.$$

Figure 9.2 shows the Cayley table for $D_4\mathfrak{K}$.

 D_4/\mathfrak{K} provides a good opportunity to demonstrate how a factor group of G is related to G itself. Arrange the heading of the Cayley table for D_4 in such a way that elements from the same coset of \mathfrak{K} are in adjacent columns as shown in Figure 9.3. Then, the multiplication table for D_4 can be blocked off into boxes that are cosets of \mathfrak{K} , and the substitution that replaces a box containing the element x with the coset $x\mathfrak{K}$ yields the Cayley table for D_4/\mathfrak{K} .

For example, when one passes from D_4 to D_4/\mathfrak{K} , the box shown in Figure 9.4 in Figure 9.3 becomes the element $H\mathfrak{K}$ in Figure 9.2. Similarly, the box shown in Figure 9.5 becomes the element $D\mathfrak{K}$, and so on.

In this way, one can see that the formation of a factor group G/H causes a systematic collapse of the elements of G. In particular, all the elements in the coset of H containing a collapse to the single group element aH in G/H.

	K	$R_{90}\mathcal{K}$	HK	$D\mathcal{K}$
К R ₉₀ К НК ДК	\mathcal{H} $R_{90}\mathcal{H}$ $H\mathcal{H}$ $D\mathcal{H}$	$egin{aligned} R_{90} & \mathcal{K} \ \mathcal{K} \ D & \mathcal{H} \ H & \mathcal{H} \end{aligned}$	$egin{aligned} &H\mathcal{K}\ &D\mathcal{K}\ &\mathcal{K}\ &R_{90}\mathcal{H} \end{aligned}$	$D\mathcal{K}$ $H\mathcal{K}$ $R_{90}\mathcal{H}$ \mathcal{K}

Figure 9.2

	$R_0^{}$	R_{180}	R_{90}	R_{270}	H	V	D	D'
$\begin{matrix}R_0\\R_{180}\end{matrix}$	$\begin{matrix} R_0 \\ R_{180} \end{matrix}$	$\begin{matrix}R_{180}\\R_0\end{matrix}$	$R_{90} \ R_{270}$	$R_{270} \ R_{90}$	H V	V H	D D'	D' D
$R_{90} \ R_{270}$	$R_{90} \\ R_{270}$	$R_{270} \\ R_{90}$	$\begin{matrix}R_{180}\\R_0\end{matrix}$	$\begin{matrix}R_0\\R_{180}\end{matrix}$	D' D	$D \\ D'$	H V	V H
H V	H V	V H	$D \\ D'$	D' D	$\begin{matrix}R_0\\R_{180}\end{matrix}$	$\begin{matrix}R_{180}\\R_0\end{matrix}$	$R_{90} \ R_{270}$	$R_{270} \\ R_{90}$
$egin{array}{c} D \ D' \end{array}$	D D'	D' D	V H	H V	$R_{270} \\ R_{90}$	$R_{90} \ R_{270}$	$\begin{matrix}R_0\\R_{180}\end{matrix}$	$\begin{matrix}R_{180}\\R_0\end{matrix}$

Figure 9.3

Figure 9.4

Figure 9.5

Example 9.11. Let

$$G=U(32)=\{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31\}$$
 and $H=U_{16}(32)=\{1,17\}$. Since
$$1H1^{-1}=1H1=H\subseteq H$$

$$3H3^{-1}=3H11=\{3,51\}11=\{3,19\}11=\{33,209\}=\{1,17\}=H\subseteq H,$$

$$5H5^{-1}=5H13=\{5,85\}13=\{5,21\}13=\{65,273\}=\{1,17\}=H\subseteq H,$$

$$\vdots$$

$$31H31^{-1}=31H31=\{31,527\}31=\{31,15\}31=\{961,465\}=\{1,17\}=H\subseteq H,$$
 hence by Theorem 9.1, $H\lhd G$. Since
$$1H=\{1,17\},$$

$$3H=\{3,51\}=\{3,19\},$$

$$5H=\{5,85\}=\{5,21\},$$

$$7H=\{7,119\}=\{7,23\},$$

$$9H=\{9,25\},$$

$$11H=\{11,27\},$$

$$13H=\{13,29\},$$

$$15H=\{15,31\},$$

$$17H=\{17,1\}=1H,$$

$$\vdots$$

$$31H=\{31,15\}=15H,$$
 it follows that $G/H=\{1H,3H,5H,7H,9H,11H,13H,15H\}$ with the operation $(aH)(bH)=abH$ is a factor group and $|G/H|=|G|/|H|=16/2=8$. Since
$$(1H)(kH)=kH=(kH)(1H), k\in\{1,3,5,\ldots,15\},$$

$$(1H)\in G/H$$
 is the identity. Since

it follows that G/H is Abelian.

(3H)(5H) = 15H = (5H)(3H),

 $(3H)(7H) = 21H = \{21, 357\} = \{21, 5\} = 5H = (7H)(3H),$ $(7H)(9H) = 63H = \{63, 1071\} = \{31, 15\} = 15H = (9H)(7H),$

 $(aH)(bH) = (bH)(aH) \in G/H, a, b \in \{1, 3, 5, \dots, 15\},\$

There are three possible Abelian groups of order 8, namely,

$$\mathbb{Z}_8 = \{0, 1, \dots, 7\},$$

$$\mathbb{Z}_4 \oplus \mathbb{Z}_2 = \{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)\},$$

$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),$$

$$(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}.$$

Since

$$(3H)^4 = 81H = 1H \implies |3H| = 4,$$

it follows that G/H is not isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ since

$$\neg \exists a \in \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 : |a| = 4.$$

Since $\mathbb{Z}_8 = \langle 3 \rangle$ and $|\mathbb{Z}_8| = 8$, by Theorem 4.4,

$$2 \mid 8, 2 \in \mathbb{N} \implies \text{number of } a \in \mathbb{Z}_8 : |a| = 2 \text{ is } \phi(2) = 1.$$

Since |7H|=2 and |9H|=2, there is more than an element of order 2 and G/H is not isomorphic to \mathbb{Z}_8 . Hence $U(32)/U_{16}(32)\approx \mathbb{Z}_4\oplus \mathbb{Z}_2$, which is also isomorphic to U(16).

Example 9.12. Let $G = \mathbb{Z}_8 \oplus \mathbb{Z}_4 = \{(0,0), (0,1), (0,2), (0,3), \dots, (7,2), (7,3)\}$ and $H = \langle (2,2) \rangle$. Since

$$1(2,2) = (2,2), \qquad 0(2,2) = (0,0)$$

$$2(2,2) = (4,4) = (4,0), \qquad -1(2,2) = (-2,-2) = (6,2),$$

$$3(2,2) = (6,6) = (6,2), \qquad -2(2,2) = (-4,-4) = (4,0),$$

$$4(2,2) = (8,8) = (0,0), \qquad -3(2,2) = (-6,-6) = (2,2)$$

$$5(2,2) = (10,10) = (2,2), \qquad -4(2,2) = (-8,-8) = (0,0),$$

it follows that $H = \langle (2,2) \rangle = \{(2,2), (4,0), (6,2), (0,0)\}$. Since

$$\begin{split} (0,0)H(0,0)^{-1} &= (0,0)H(0,0) = H \subseteq H, \\ (0,1)H(0,1)^{-1} &= (0,1)H(0,3) \\ &= \{(2,3),(4,1),(6,3),(0,1)\}(0,3) \\ &= \{(2,6),(4,4),(6,6),(0,4)\} \\ &= \{(2,2),(4,0),(6,2),(0,0\} = H \subseteq H, \\ \end{split}$$

:

$$(7,3)H(7,3)^{-1} = (7,3)H(1,1)$$

$$= \{(9,5), (11,3), (13,5), (7,3)\}(1,1)$$

$$= \{(1,1), (3,3), (5,1), (7,3)\}(1,1)$$

$$= \{(2,2), (4,4), (6,2), (8,4)\}$$

$$= \{(2,2), (4,0), (6,2), (0,0)\} = H \subseteq H,$$

by Theorem 9.1, $H \triangleleft G$. Hence G/H with the operation (aH)(bH) = abH is a factor group. Since

$$\begin{aligned} &(0,0)H = \{(2,2),(4,0),(6,2),(0,0)\},\\ &(0,1)H = \{(2,3),(4,1),(6,3),(0,1)\},\\ &(0,2)H = \{(2,4),(4,2),(6,4),(0,2)\} = \{(2,0),(4,2),(6,0),(0,2)\},\\ &(0,3)H = \{(2,5),(4,3),(6,5),(0,3)\} = \{(2,1),(4,3),(6,1),(0,3)\},\\ &(1,0)H = \{(3,2),(5,0),(7,2),(1,0)\},\\ &(1,1)H = \{(3,3),(5,1),(7,3),(1,1)\}\\ &(1,2)H = \{(3,4),(5,2),(7,4),(2,2)\} = \{(3,0),(5,2),(7,0),(2,2)\},\\ &(1,3)H = \{(3,5),(5,3),(7,5),(2,3)\} = \{(3,5),(5,3),(7,1),(2,3)\}\\ &(2,0)H = \{(4,2),(6,0),(8,2),(2,0)\} = \{(4,2),(6,0),(0,2),(2,0)\} = (0,2)H,\\ &(2,1)H = \{(4,3),(6,1),(8,3),(2,1)\} = \{(4,3),(6,1),(0,3),(2,1)\} = (0,3)H,\\ &\vdots \end{aligned}$$

it follows that

$$G/H = \{(0,0)H, (0,1)H, (0,2)H, (0,3)H, (1,0)H, (1,1)H, (1,2)H, (1,3)H\}$$

and |G/H| = 8. Hence G/H is isomorphic to one of \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ and $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Since for any (a, b)H,

$$((a,b)H)^4 = ((a,b)^4H) = ((4a,4b)H) = \begin{cases} (4,0)H & \text{, a is odd} \\ (0,0)H & \text{, a is even'} \end{cases}$$

and $(0,0),(4,0) \in H$, it follows that

$$((a,b)H)^4 = ((a,b)^4H) = ((4a,4b)H) = H.$$

Hence $\forall (a,b)H \in G/H, |(a,b)H| \leq 4$. Since

$$((1,0)H)^2 = ((1,0)^2H) = (2,0)H \neq H,$$

it follows that |(1,0)H|=4. Hence G/H is not isomorphic to \mathbb{Z}_8 and $\mathbb{Z}_2\oplus\mathbb{Z}_2\oplus\mathbb{Z}_2$.

9.3 Applications of Factor Groups

Theorem 9.3. Let G be a group and let Z(G) be the center of G. Then

$$G/Z(G)$$
 is cyclic \implies G is Abelian.

Proof. Let G be a group and let Z(G) be the center of G. Assume that G/Z(G) is cyclic. Since

$$Z(G) = \{ a \in G : \forall x \in G, ax = xa \},\$$

the factor group

$$G/Z(G) = \{gZ(G) : g \in G\}.$$

Since G/Z(G) is cyclic,

$$\exists g Z(G) \in G/Z(G) : G/Z(G) = \langle g Z(G) \rangle.$$

Let $kZ(G) \in G/Z(G)$ arbitrary, then

$$\exists i \in \mathbb{Z} : (gZ(G))^i = kZ(G).$$

But

$$(gZ(G))^i = g^i Z(G) = kZ(G).$$

Since

$$Z(G) < G \implies e \in Z(G),$$

it follows that

$$k = ke = g^i a, a \in Z(G).$$

Let

$$C(g) = \{x \in G : xg = gx\}$$

be the center of g. Then since

$$g^i \in G, g^i g = g g^i \implies g^i \in C(g),$$

 $a \in Z(G) \subseteq G, ag = g a \implies a \in C(g),$

it follows that $k = g^i a \in C(g)$. Since k is arbitrary,

$$\forall k \in G, kg = gk.$$

Hence $g \in Z(G)$ and by Lemma 7.1,

$$gZ(G) = Z(G) \implies G/Z(G) = \{gZ(G) = Z(G) : g \in G\} = \{Z(G)\}.$$

Hence $g \in G, \forall x \in G, gx = xg$.

Theorem 9.4. Let G be a group. Then $G/Z(G) \approx Inn(G)$.

Proof. Let G be a group. Let

$$G/Z(G) = \{ gZ(G) : g \in G \}$$

and

$$Inn(G) = \{\phi_g(x) = gxg^{-1} : \forall x \in G, g \in G\}.$$

Let $T(gZ(G)) = \phi_g(x)$. First, let $gZ(G), hZ(G) \in Z(G)$ be arbitrary. Assume that gZ(G) = hZ(G). By Lemma 7.1 (vi),

$$qZ(G) = hZ(G) \iff h^{-1}q \in Z(G).$$

It follows that $\forall x \in G, h^{-1}gx = xh^{-1}g$. So

$$h^{-1}gx = xh^{-1}g,$$

$$gxg^{-1} = hxh^{-1},$$

$$\phi_g(x) = \phi_h(x).$$

Hence $T:gZ(G)\to \phi_g(x)$ is a function. Second, let assume that T(gZ(G))=T(hZ(G)). Then

$$T(gZ(G)) = T(hZ(G)),$$

$$\phi_g(x) = \phi_f(x),$$

$$gxg^{-1} = hxh^{-1},$$

$$h^{-1}gx = xh^{-1}g,$$

it follows that $h^{-1}g \in Z(G)$. By Lemma 7.1 (vi),

$$gZ(G)=hZ(G)\iff h^{-1}g\in Z(G).$$

Hence T is one-to-one. Next, let $\phi_g(x) \in Inn(G)$ be arbitrary. Since T is one-to-one, there exists an inverse function T^{-1} s.t.

$$T(gZ(G)) = \phi_g(x),$$

$$gZ(G) = T^{-1}(\phi_g(x)),$$

it follows that

$$\exists g Z(G) \in G/Z(G) : T(gZ(G)) = T(T^{-1}(\phi_g(x))) = \phi_g(x).$$

Hence T is onto. Finally,

$$T(gZ(G)hZ(G)) = T(ghZ(G))$$

$$= \phi_{gh}(x)$$

$$= ghx(gh)^{-1}$$

$$= ghxh^{-1}g$$

and

$$T(gZ(G))T(hZ(G)) = \phi_g \phi_h(x)$$
$$= \phi_g(hxh^{-1})$$
$$= ghxh^{-1}g.$$

Hence T conserves the operation. It follows that $G/Z(G) \approx Inn(G)$.

Example 9.13.

Theorem 9.5 (Cauchy's Theorem for Abelian Groups). Let G be a finite Abelian group and let p be a prime, $p \mid |G|$. Then

$$\exists g \in G : |g| = p.$$

Proof. Let G be a finite Abelian group and let p be a prime, $p \mid |G|$. If |G| = 2, then let p = 2 and $\exists g \in G : |g| = 2$. Hence Theorem 9.5 is true.

If $|G| \neq 2$. By the Second Principle of Mathematical Induction, assume that Theorem 9.5 is true for all Abelian groups with orders less than |G|. Let $x \in G$, |x| = m = qn, q is prime, then $|x^n| = q$. Hence

$$\exists x^n \in G : |x^n| = q.$$

If q = p, then Theorem 9.5 is true. If $q \neq p$, since G is Abelian,

$$\langle x \rangle \le G \implies \langle x \rangle \lhd G.$$

Hence

$$\overline{G} = G/\langle x \rangle = \{g\langle x \rangle : g \in G\}$$

with the operation $(g\langle x\rangle)(h\langle x\rangle)=gh\langle x\rangle$ is a factor group. Since G is Abelian, $g,h\in G,gh=hg$. It follows that

$$\begin{split} g\langle x\rangle, h\langle x\rangle \in \overline{G}, & (g\langle x\rangle)(h\langle x\rangle) = gh\langle x\rangle \\ & = hg\langle x\rangle \\ & = (h\langle x\rangle)(g\langle x\rangle). \end{split}$$

Hence \overline{G} is Abelian. Since

$$|\overline{G}| = |G/\langle x \rangle| = |G|/|\langle x \rangle| = |G|/q,$$

it follows that $|\overline{G}| < |G|$. Hence Theorem 9.5 is true for $|\overline{G}|$. So $p \mid |\overline{G}|$ and

$$\exists y \langle x \rangle \in \overline{G} : |y \langle x \rangle| = p.$$

Since $\langle x \rangle$ is the identity element of $|\overline{G}|$, it follows that $(y\langle x \rangle)^p = y^p \langle x \rangle = \langle x \rangle$. Hence $y^p \in \langle x \rangle$. If $y^p = e$, then Theorem 9.5 is true. If $y^p \neq e$, then $|y^p| = q$ and $|y^q| = p$.

9.4 Internal Direct Products

Definition 9.2. If

$$H, K \triangleleft G, \quad G = HK = \{hk : h \in H, k \in K\}, \quad \text{and} \quad H \cap K = \{e\},$$

then G is the internal direct product of H, K, denoted $G = H \times K$,

Figure 9.6 and 9.7 show the internal direct product and external direct product.

Figure 9.6: For the internal direct product, H, K must be subgroups of the same group.

Figure 9.7: For the external direct product, H, K can be any groups.

Example 9.14. If s,t are relatively prime positive integers then $U(st) = U_s(st) \times U_t(st)$.

Example 9.15. In D_6 let $F \in D_6$ be some reflection and let $R_k \in D_6$ be a rotation of k degrees. Then,

$$D_6 = \{R_0, R_{120}, R_{240}, F, R_{120}F, R_{240}F\} \times \{R_0, R_{180}\}.$$

Definition 9.3. Let $H_1, H_2, \ldots, H_n \triangleleft G$. Then G is the internal direct product of H_1, H_2, \ldots, H_n , denoted $G = H_1 \times H_2 \times \cdots \times H_n$, if

1.
$$G = H_1 H_2 \cdots H_n = \{h_1 h_2 \dots h_n : h_i \in H_i\},\$$

2.
$$(H_1H_2\cdots H_i)\cap H_{i+1}=\{e\}, i=1,2,\ldots,n-1.$$

Theorem 9.6. Let G be a group. Then

$$G = H_1 \times H_2 \times \cdots \times H_n \implies G \approx H_1 \oplus H_2 \oplus \cdots \oplus H_n.$$

Proof. Let G be a group and assume that $G = H_1 \times H_2 \times \cdots \times H_n$. So $H_1, H_2, \ldots, H_n \triangleleft G$,

$$G = H_1 H_2 \cdots H_n = \{h_1 h_2 \dots h_n : h_i \in H_i\},\$$

and

$$(H_1H_2\cdots H_i)\cap H_{i+1}=\{e\}, i=1,2,\ldots,n-1.$$

Let $h_i \in H_i, h_j \in H_j, i \neq j$, then by Theorem 9.1,

$$H \lhd G \iff \forall x \in G, xHx^{-1} \subseteq H.$$

So

$$h_j h_i h_j^{-1} \in h_j H_i h_j^{-1} \subseteq H_i$$

and

$$h_i h_j h_i^{-1} \in h_i H_j h_i^{-1} \subseteq H_j.$$

It follows that

$$(h_i h_j h_i^{-1}) h_j^{-1} \in H_j h_j^{-1} = H_j$$

and

$$h_i(h_j h_i^{-1} h_j^{-1}) \in h_i H_i = H_i.$$

Hence,

$$h_i h_j h_i^{-1} h_j^{-1} \in H_i \cap H_j = \{e\} \implies h_i h_j h_i^{-1} h_j^{-1} = e \implies h_i h_j = h_j h_i.$$

Next, let $g \in G$,

$$g = h_1 h_2 \cdots h_n$$
 and $g = h'_1 h'_2 \dots h'_n$

where $h_i, h'_i \in H_i, i = 1, ..., n$. Then, since $h_i h_j = h_j h_i$, it follows that

$$g = g,$$

$$h_1 h_2 \cdots h_n = h'_1 h'_2 \cdots h'_n,$$

$$h'_n h_n^{-1} = (h'_1)^{-1} h_1 (h'_2)^{-1} h_2 \cdots (h'_{n-1})^{-1} h_{n-1}.$$

Therefore

$$h'_n h_n^{-1} \in (H_1 H_2 \cdots H_{n-1}) \cap H_n = \{e\},\$$

it follows that

$$h_n'h_n^{-1} = e \implies h_n' = h_n.$$

So

$$h_1 h_2 \cdots h_n = h'_1 h'_2 \cdots h'_n,$$

$$h_1 h_2 \cdots h_{n-1} = h'_1 h'_2 \cdots h'_n h_n^{-1},$$

$$h_1 h_2 \cdots h_{n-1} = h'_1 h'_2 \cdots h'_{n-1} e,$$

$$h_1 h_2 \cdots h_{n-1} = h'_1 h'_2 \cdots h'_{n-1}.$$

Repeating the steps,

$$h'_{n-1}h_{n-1}^{-1} = e \implies h'_{n-1} = h_{n-1}.$$

Continuing the process, eventually

$$h'_i = h_i, i = 1, \dots, n.$$

Define $\phi: G \to H_1 \oplus H_2 \oplus \cdots \oplus H_n$ by $\phi(h_1h_2 \cdots h_n) = (h_1, h_2, \dots, h_n)$. First, assume that $h_1h_2 \cdots h_n, h'_1h'_2 \cdots h'_n \in G, h_1h_2 \cdots h_n = h'_1h'_2 \cdots h'_n$. Then

$$\phi(h_1 h_2 \cdots h_n) = (h_1, h_2, \dots, h_n)$$

= $(h'_1, h'_2, \dots, h'_n)$
= $\phi(h'_1 h'_2 \cdots h'_n)$.

So ϕ is a well-defined function. Second, assume that $\phi(h_1h_2\cdots h_n)=\phi(h'_1h'_2\cdots h'_n)$. Then since $h'_i=h_i, i=1,\ldots,n$, it follows that

$$h_1h_2\cdots h_n=h'_1h'_2\cdots h'_n.$$

Hence ϕ is one-to-one. Third, let $(h_1, h_2, \dots, h_n) \in H_1 \oplus \dots \oplus H_n$ be arbitrary. Since

$$\phi(h_1 \cdots h_n) = (h_1, \dots, h_n),$$

$$h_1 \cdots h_n = \phi^{-1}((h_1, \dots, h_n)).$$

Let $h_1 \cdots h_n = \phi^{-1}((h_1, \dots, h_n))$, it follows that

$$\phi(h_1 \cdots h_n) = \phi(\phi^{-1}((h_1, \dots, h_n))) = (h_1, \dots, h_n).$$

Hence ϕ is onto. Finally,

$$\phi((h_1 \cdots h_n)(h'_1 \cdots h'_n)) = \phi(h_1 h'_1 \cdots h_n h'_n)$$

$$= (h_1 h'_1, \dots, h_n h'_n)$$

$$= (h_1, \dots, h_n)(h'_1, \dots, h'_n)$$

$$= \phi(h_1 \cdots h_n)\phi(h'_1 \cdots h'_n).$$

Hence ϕ preserves the operation. Therefore, $G \approx H_1 \oplus \cdots \oplus H_n$.

Theorem 9.7. Let G be a group and p a prime. Then

$$|G| = p^2 \implies G \approx \mathbb{Z}_{p^2} \quad or \quad G \approx \mathbb{Z}_p \oplus \mathbb{Z}_p.$$

Proof. \Box

Corollary 9.7.1. Let G be a group and p a prime. Then

$$|G| = p^2 \implies \forall a, b \in G, ab = ba.$$

10 Group Homomorphisms

Definition 10.1. A homomorphism $\phi: G \to \overline{G}$ is a mapping that preserves the group operation; that is, $\forall a, b \in G, \phi(ab) = \phi(a)\phi(b)$.

Definition 10.2. The *kernel* of a homomorphism ϕ from a group G to a group with identity e is the set $\{x \in G : \phi(x) = e\}$, denoted by Ker ϕ . Moreover, Ker $\phi \triangleleft G$.

Example 10.1. Any isomorphism is a homomorphism that is also one-to-one and onto. The kernel of an isomorphism is the trivial subgroup.

Example 10.2. Let $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication. Then the determinant mapping $A \to \det A$ is a homomorphism from $GL(2,\mathbb{R})$ to \mathbb{R}^* . The kernel of the determinant mapping is $SL(2,\mathbb{R})$.

Example 10.3. The mapping $\phi : \mathbb{R}^* \to \mathbb{R}^*, \phi(x) = |x|$ is a homomorphism with Ker $\phi = \{-1, 1\}$.

Example 10.4. Let $\mathbb{R}[x]$ be the group of all polynomials with real coefficients under addition. For $f \in \mathbb{R}[x]$, let f' be the derivative of f. Then $\phi(f) = f'$ is a homomorphism $\phi : \mathbb{R}[x] \to \mathbb{R}[x]$. Ker ϕ is the set of all constant polynomials.

Example 10.5. The mapping $\mathbb{Z} \to \mathbb{Z}_n$, $\phi(m) = m \mod n$, is a homomorphism and Ker $\phi = \langle n \rangle$.

Example 10.6. The mapping $\phi : \mathbb{R}^* \to \mathbb{R}^*$, $\phi(x) = x^2$, under multiplication is a homomorphism, since $a, b \in \mathbb{R}^*$, $\phi(ab) = (ab)^2 = a^2b^2 = \phi(a)\phi(b)$. Ker $\phi = \{-1, 1\}$.

Example 10.7. The mapping $\phi: \mathbb{R} \to \mathbb{R}$, $\phi(x) = x^2$ under addition is not a homomorphism, since $a, b \in \mathbb{R}$, $\phi(a+b) = (a+b)^2 = a^2 + 2ab + b^2 \neq a^2 + b^2 = \phi(a) = \phi(b)$.

10.1 Properties of Homomorphisms

Theorem 10.1. Let $\phi: G \to \overline{G}$ be a homomorphism, let $g \in G$. Then

- 1. $e \in G, \overline{e} \in \overline{G}, \phi(e) = \overline{e}$.
- 2. $\forall n \in \mathbb{Z}, \phi(g^n) = (\phi(g))^n$.
- 3. $|g| = n \implies |\phi(g)| \mid |g|$.
- 4. Ker $\phi \leq G$.
- 5. $\phi(a) = \phi(b) \iff a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.
- 6. $\phi(g) = \overline{g} \implies \phi^{-1}(\overline{g}) = \{x \in G : \phi(x) = \overline{g}\} = g \operatorname{Ker} \phi$. (!)

Proof. Let $\phi: G \to \overline{G}$ be a homomorphism, $g \in G$.

1. Let $e \in G, \overline{e} \in \overline{G}$. Since phi is OP, $\phi(g) \in \overline{G}$,

$$\phi(g)\phi(e) = \phi(ge) = \phi(g) = \phi(eg) = \phi(e)\phi(g).$$

Hence $\phi(e) = \overline{e}$.

2. Let $n \in \mathbb{Z}$ be arbitrary, since ϕ is OP,

$$\phi(g^n) = \underbrace{\phi(g) \cdots \phi(g)}_{n} = (\phi(g))^n.$$

3. Let |g| = n, then

$$(\phi(g))^n = \phi(g^n) = \phi(e) = \overline{e}.$$

By Theorem 4.1(ii),

$$(\phi(g))^n = \overline{e} = (\phi(g))^0 \iff |\phi(g)| \mid (n-0) = n.$$

4. Let $\operatorname{Ker} \phi = \{g \in G : \phi(g) = \overline{e}, g, g^{-1} \in \operatorname{Ker} \phi, \text{ then } \}$

$$\phi(gg^{-1}) = \phi(e) = \overline{e} \implies gg^{-1} \in \operatorname{Ker} \phi.$$

Hence by one-step subgroup test, $\operatorname{Ker} \phi \leq G$.

5. (\Rightarrow) Let $\phi(a) = \phi(b)$, then

$$\overline{e} = \phi(a)(\phi(b))^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}),$$

Hence $ab^{-1} \in \ker \phi$. Since by Theorem 10.1.4, $\operatorname{Ker} \phi \leq G$, by Lemma 7.1.6,

$$ab^{-1} \in \operatorname{Ker} \phi \iff a \operatorname{Ker} \phi = b \operatorname{Ker} \phi.$$

 (\Leftarrow) Let $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$, then by Lemma 7.1.6,

$$ab^{-1} \in \operatorname{Ker} \phi \iff a \operatorname{Ker} \phi = b \operatorname{Ker} \phi.$$

Hence,

$$\overline{e} = \phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)(\phi(b))^{-1} \implies \phi(a) = \phi(b).$$

Therefore, $\phi(a) = \phi(b) \iff a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.

6. Let $\phi(g) = \overline{g}, \phi^{-1}(\overline{g}) = \{x \in G : \phi(x) = \overline{g}\}, g \operatorname{Ker} \phi = \{gx : \phi(x) = \overline{e}\}.$ Let $x \in \phi^{-1}(\overline{g})$, then

$$\phi(x) = \overline{g} = \phi(g).$$

By Theorem 10.1.5,

$$\phi(x) = \phi(g) \iff x \operatorname{Ker} \phi = g \operatorname{Ker} \phi.$$

Since $\phi(e) = \overline{e} \implies e \in \operatorname{Ker} \phi$, it follows that

$$x = xe \in x \operatorname{Ker} \phi = g \operatorname{Ker} \phi$$
.

Hence, $\phi^{-1}(\overline{g}) \subseteq g \ker \phi$.

Let $gx \in g \ker \phi$, then

$$\phi(gx) = \phi(g)\phi(x) = \overline{ge} = \overline{g} \implies gx \in \phi^{-1}(\overline{g}).$$

Hence $g \ker \phi \subseteq \phi^{-1}(\overline{g})$.

Therefore $\phi^{-1}(\overline{g}) = g \ker \phi$.

Theorem 10.2. Let $\phi: G \to \overline{G}$ be a homomorphism, let $H \leq G$. Then

- 1. $\phi(H) = {\phi(h) : h \in H} \le \overline{G}$.
- 2. H is cyclic $\implies \phi(H)$ is cyclic.
- 3. H is Abelian $\implies \phi(H)$ is Abelian.
- 4. $H \triangleleft G \implies \phi(H) \triangleleft \phi(G)$.
- 5. $|\operatorname{Ker} \phi| = n \implies \phi: G \to \phi(G)$ is an n-to-1 mapping.
- 6. H is finite $\implies |\phi(H)| \mid |H|$.
- 7. $\overline{K} < \overline{G} \implies \phi^{-1}(\overline{K}) = \{k \in G : \phi(k) \in \overline{K}\} < G.$
- 8. $\overline{K} \triangleleft \overline{G} \implies \phi^{-1}(\overline{K}) = \{k \in G : \phi(k) \in \overline{K}\} \triangleleft G.$
- 9. ϕ is onto and $\operatorname{Ker} \phi = \{e\} \implies \phi: G \to \overline{G}$ is an isomorphism.

Proof. Let $\phi: G \to \overline{G}$ be a homomorphism, and $H \leq G$.

1. Let $\phi(H) = {\phi(h) : h \in H} \subseteq \overline{G}$. Let $\phi(h_1), \phi(h_2) \in \phi(H)$, then since ϕ is OP,

$$\phi(h_1)(\phi(h_2))^{-1} = \phi(h_1)\phi(h_2^{-1}) = \phi(h_1h_2^{-1}).$$

Hence,

$$h_1 h_2^{-1} \in H \implies \phi(h_1)(\phi(h_2))^{-1} = \phi(h_1 h_2^{-1}) \in \phi(H).$$

By one-step subgroup test, $\phi(H) \leq \overline{G}$.

2. Let $H=\langle h\rangle, h\in H$, then $x\in H, x=h^n, n\in\mathbb{Z}$. Let $\phi(x)\in\phi(H)$ be arbitrary, then

$$\phi(x) = \phi(h^n) = (\phi(h))^n.$$

Hence $\phi(H) = \langle \phi(h) \rangle$.

3. Let H be Abelian, then $a, b \in H, ab = ba$. Let $\phi(a), \phi(b) \in \phi(H)$, then

$$\phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a).$$

Hence $\phi(H)$ is Abelian.

4. Let $H \triangleleft G$, then by Theorem 9.1,

$$H \lhd G \iff g \in G, gHg^{-1} \subseteq H.$$

Let $\phi(g) \in \phi(G), \phi(h) \in \phi(H)$, then

$$\phi(g)\phi(h)(\phi(g))^{-1} = \phi(g)\phi(h)\phi(g^{-1}) = \phi(ghg^{-1}).$$

Since $ghg^{-1} \in gHg^{-1} \subseteq H$, by definition, $\phi(ghg^{-1}) \in \phi(H)$. Hence,

$$\phi(g)\phi(h)(\phi(g))^{-1} = \phi(ghg^{-1}) \in \phi(H) \implies \phi(g)\phi(H)(\phi(g))^{-1} \subseteq \phi(H)$$

Therefore by Theorem 9.1,

$$\phi(q)\phi(H)(\phi(q))^{-1} \subset \phi(H) \iff \phi(H) \triangleleft \phi(G).$$

5. Let $|\operatorname{Ker} \phi| = n, g \in G, \overline{g} \in \phi(G)$. Then by Theorem 10.1.6,

$$\phi(g) = \overline{g} \implies \phi^{-1}(\overline{g}) = \{x \in G : \phi(x) = \overline{g}\} = g \operatorname{Ker} \phi.$$

Hence,

$$|\ker \phi| = n \implies |g \operatorname{Ker} \phi| = n = |\phi^{-1}(\overline{g})|.$$

Therefore,

$$\overline{g} \in \phi(g), \exists x_1, \dots, x_n \in G : \phi(x_1) = \dots = \phi(x_n) = \overline{g}.$$

6. Let |H| = n. Let $\phi_H : H \to \phi(H)$, then ϕ_H is a homomorphism. Since

$$H \leq G \implies e \in H \implies \phi(e) \in \phi(H),$$

therefore $\operatorname{Ker} \phi_H \neq \emptyset$. Let $|\operatorname{Ker} \phi_H| = t$, by Theoremn 10.2.5, $|\operatorname{Ker} \phi_H| = t \implies \phi_H : H \to \phi(H)$ is t-to-1. Hence,

$$|\phi(H)| = |H|/t \implies |\phi(H)| \mid |H| = n.$$

7. Let $\overline{K} \leq \overline{G}$ and $\phi^{-1}(\overline{K}) = \{k \in G : \phi(k) \in \overline{K}\} \subseteq G$. Since

$$e \in G, \phi(e) = \overline{e} \in \overline{K} \implies e \in \phi^{-1}(\overline{K}),$$

therefore $\phi^{-1}(\overline{K}) \neq \emptyset$. Let $a, b \in \phi^{-1}(\overline{K})$, then $\phi(a), \phi(b) \in \overline{K}$. Since ϕ is OP,

$$\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)(\phi(b))^{-1}.$$

Since $\overline{K} \leq \overline{G} \implies \phi(a)(\phi(b))^{-1} \in \overline{K}$, therefore

$$\phi(ab^{-1}) = \phi(a)(\phi(b))^{-1} \in \overline{K} \implies ab^{-1} \in \phi^{-1}(\overline{K}).$$

Hence by one-step subgroup test, $\phi^{-1}(\overline{K}) \leq G$.

8. Let $\overline{K} \triangleleft \overline{G}$ and $\phi^{-1}(\overline{K}) = \{k \in G : \phi(k) \in \overline{K}\}$. Let $a \in \phi^{-1}(\overline{K}), g \in G$. Then since ϕ is OP,

$$\phi(gag^{-1}) = \phi(g)\phi(a)\phi(g^{-1}) = \phi(g)\phi(a)(\phi(g))^{-1}.$$

Since $\overline{K} \triangleleft \overline{G}$, therefore $\phi(g) \in \overline{G}$, $\phi(a) \in \overline{K}$,

$$\phi(g)\overline{K}(\phi(g))^{-1} \subseteq \overline{K} \implies \phi(g)\phi(a)(\phi(g))^{-1} \in \overline{K}.$$

Hence,

$$\phi(gag^{-1}) = \phi(g)\phi(a)(\phi(g))^{-1} \in \overline{K} \implies gag^{-1} \in \phi^{-1}(\overline{K}).$$

Therefore, $g\phi^{-1}(\overline{K})g^{-1} \subseteq \phi^{-1}(\overline{K})$ and by Theorem 9.1, $\phi^{-1}(\overline{K}) \triangleleft G$.

9. Let ϕ be onto and $\ker \phi = \{e\}$. By Theorem 10.2.5, $|\operatorname{Ker} \phi| = 1 \implies \phi: G \to \overline{G}$ is 1-to-1. Since ϕ is 1-to-1, onto, and OP, therefore ϕ is an isomorphism.

Corollary 10.2.1. Let $\phi: G \to \overline{G}$ be a homomorphism. Then $\operatorname{Ker} \phi \lhd G$.

Proof. Let $\phi: G \to \overline{G}$ be a homomorphism. By Theorem 10.1.4, Ker $\phi \leq G$. By Theorem 9.1, let $g \in G, x \in \text{Ker } \phi$ be arbitrary, and $gxg^{-1} \in g \text{ Ker } \phi g^{-1}$. Then

$$\phi(gxg^{-1}) = \phi(g)\phi(x)\phi(g^{-1})$$

$$= \phi(g)\phi(x)(\phi(g))^{-1}$$

$$= \phi(g)\overline{e}(\phi(g))^{-1}$$

$$= \phi(g)(\phi(g))^{-1}$$

$$= \overline{e}.$$

Hence $gxg^{-1} \in \operatorname{Ker} \phi \implies g \operatorname{Ker} \phi g^{-1} \subseteq \operatorname{Ker} \phi$. Therefore $\operatorname{Ker} \phi \triangleleft G$.

Example 10.8. Let $\phi: \mathbb{C}^* \to \mathbb{C}^*$, $\phi(x) = x^4$ be a mapping. Since for $x, y \in \mathbb{C}^*$,

$$\phi(xy) = (xy)^4 = x^4 y^4 = \phi(x)\phi(y),$$

 ϕ is a homomorphism. Since

$$Ker \phi = \{x \in \mathbb{C}^* : \phi(x) = x^4 = 1\} = \{1, -1, i, -i\},\$$

so, by Theorem 10.2.5, $|\operatorname{Ker} \phi| = 4 \implies \phi$ is a 4-to-1 mapping. To find all $x \in \mathbb{C}^* : \phi(x) = 2$, since $\phi(\sqrt[4]{2}) = (\sqrt[4]{2})^4 = 2$, by Theorem 10.1.6,

$$\phi^{-1}(2) = \{x \in \mathbb{C}^* : \phi(x) = 2\} = \sqrt[4]{2} \operatorname{Ker} \phi = \{\sqrt[4]{2}, -\sqrt[4]{2}i\}.$$

Finally, let $H = \langle \cos 30^{\circ} + i \sin 30^{\circ} \rangle$. By Theorem 10.1.3, Theorem 10.2.6, and DeMoivre's Theorem,

$$(r(\cos\theta + i\sin\theta))^n = r^n(\cos n\theta + i\sin n\theta).$$

$$|H| = 12, \phi(H) = \langle \cos 120^{\circ} + i \sin 120^{\circ} \rangle$$
, and $|\phi(H)| = 3$.

Example 10.9. Let $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_{12}$, $\phi(x) = 3x$ be a mapping. Since for $a, b \in \mathbb{Z}_{12}$,

$$\phi(a+b) = 3(a+b) = 3a + 3b = \phi(a) + \phi(b),$$

 ϕ is a homomorphism. Since for $a \in \mathbb{Z}_{12}$,

$$\phi(a) = 3a = 0 \implies a = 0, 4, 8,$$

therefore $\operatorname{Ker} \phi = \{0, 4, 8\}$. By Theorem 10.2.5, $|\operatorname{Ker} \phi| = 3 \implies \phi$ is a 3-to-1 mapping. Since $\phi(2) = 6$, by Theorem 10.1.6,

$$\phi^{-1}(6) = \{a \in \mathbb{Z}_{12} : \phi(a) = 6\} = 2 + \text{Ker } \phi = \{2, 6, 10\}.$$

By Theorem 10.2.2, $\langle 2 \rangle = \{0,2,4,6,8,10\}$ is cyclic $\implies \phi(\langle 2 \rangle) = \{0,6\}$ is cyclic. By Theorem 10.1.3,

$$|2| = 6 \implies |\phi(2)| = |6| = 2||2| = 6.$$

Let $\overline{K} = \{0, 6\} \leq \mathbb{Z}_{12}$, by Theorem 10.2.7,

$$\phi^{-1}(\overline{K}) = \{ a \in \mathbb{Z}_{12} : \phi(a) \in \overline{K} \} \le \mathbb{Z}_{12}.$$

Figure 10.1

Example 10.10. Both \mathbb{Z}_{12} , \mathbb{Z}_{30} are cyclic. To determine all homomorphisms $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_{30}$. Let $1 \in \mathbb{Z}_{12}$, $\phi(1) = a$, by Theorem 10.1.2,

$$x \in \mathbb{Z}_{12}, \phi(x) = x\phi(1) = xa.$$

By Largange's Theorem,

$$a \in \mathbb{Z}_{30}, |a| = |\langle a \rangle| \mid 30,$$

and by Theorem 10.1.3,

$$1 \in \mathbb{Z}_{12}, |1| = 12 \implies |\phi(1)| = |a| |12.$$

Hence $|a| \in \{1, 2, 3, 6\} \implies a = \{0, 15, 10, 20, 5, 25\}$. Let $\phi_n(1) = n$, then $\{\phi_0, \phi_{15}, \phi_{10}, \phi_{20}, \phi_5, \phi_{25}\}$ are all the homomorphisms from $\mathbb{Z}_{12} \to \mathbb{Z}_{30}$. For example, let $a, b \in \mathbb{Z}_{12}$, then

$$\phi_{15}(a+b) = (a+b)\phi_{15}(1) = (a+b)15 = 15a + 15b = \phi_{15}(a) + \phi_{15}(b).$$

Example 10.11. The mapping $\phi: S_n \to \mathbb{Z}_2$ that takes an even permutation to 0 and an odd permutation to 1 is a homomorphism (Figure 10.2).

10.2 The First Isomorphism Theorem

Theorem 10.3 (First Isomorphism Theorem). Let $\phi: G \to \overline{G}$ be a homomorphism. Then $\psi: G/\operatorname{Ker} \phi \to \phi(G), \psi(g\operatorname{Ker} \phi) = \phi(g)$ is an isomorphism. In symbols, $G/\operatorname{Ker} \phi \approx \phi(G)$.

Figure 10.2: Homomorphism from S_3 to Z_2 .

Proof. Let $\phi: G \to \overline{G}$ be a homomorphism. Let $\psi: G/\operatorname{Ker} \phi \to \phi(G), \psi(g\operatorname{Ker} \phi) = \phi(g)$ be a mapping. Let $a, b \in G$, by Theorem 10.1.5,

$$\phi(a) = \phi(b) \iff a \operatorname{Ker} \phi = b \operatorname{Ker} \phi.$$

Hence ψ is well-defined and 1-to-1. Let $\phi(g) \in \phi(G)$, since

$$g \in G \implies \exists g \operatorname{Ker} \phi \in G / \operatorname{Ker} \phi : \psi(g \operatorname{Ker} \phi) = \phi(g).$$

Hence ψ is onto. By Corollary 10.2.1, $\operatorname{Ker} \phi \lhd G$, therefore by Theorem 9.2, $G/\operatorname{Ker} \phi$ under $a\operatorname{Ker} \phi \cdot b\operatorname{Ker} \phi = ab\operatorname{Ker} \phi$ is a factor group. Let $a\operatorname{Ker} \phi, b\operatorname{Ker} \phi \in G/\operatorname{Ker} \phi$, then

$$\psi(a \operatorname{Ker} \phi \cdot b \operatorname{Ker} \phi) = \psi(ab \operatorname{Ker} \phi)$$

$$= \phi(ab)$$

$$= \phi(a)\phi(b)$$

$$= \psi(a \operatorname{Ker} \phi)\psi(b \operatorname{Ker} \phi).$$

Hence ψ is OP. Therefore $\psi: G/\ker\phi \to \phi(G)$ is an isomorphism and $G/\ker\phi \approx \phi(G)$.

Corollary 10.3.1. Let G be a finite group. Then

$$\phi: G \to \overline{G} \text{ is a homomorphism} \implies |\phi(G)| \mid |G|, |\overline{G}|.$$

Proof. Let $\phi: G \to \overline{G}$ be a homomorphism. By Theorem 10.1.4, Ker $\phi \leq G$. By Lagrange's Theorem,

$$|G/\operatorname{Ker} \phi| = |G|/|\operatorname{Ker} \phi| \implies |G/\operatorname{Ker} \phi| \mid |G|.$$

By Theorem 10.3,

$$G/\operatorname{Ker} \phi \approx \phi(G) \implies |\phi(G)| = |G/\operatorname{Ker} \phi| \mid |G|.$$

By Theorem 10.2.1,

$$G \le G \implies \phi(G) \le \overline{G}.$$

Hence by Lagrange's Theorem,

$$\phi(G) \leq \overline{G} \implies |\phi(G)| \mid |\overline{G}|.$$

Therefore, $|\phi(G)| | |G|, |\overline{G}|$.

Example 10.12. Let $\phi: D_4 \to D_4$ be a homomorphism given by Figure 10.3. Then $\operatorname{Ker} \phi = \{R_0, R_{180}\}$. Let $\psi: D_4/\operatorname{Ker} \phi \to \phi(D_4), \psi(x \operatorname{Ker} \phi) = \phi(x), x \in D_4$ be a mapping. So,

$$\psi(R_0 \text{ Ker } \phi) = \phi(R_0) = R_0 = \phi(R_{180}) = \psi(R_{180} \text{ Ker } \phi),
\psi(R_{90} \text{ Ker } \phi) = \phi(R_{90}) = H = \phi(R_{270}) = \psi(R_{270} \text{ Ker } \phi)),
\psi(H \text{ Ker } \phi) = \phi(H) = R_{180} = \phi(V) = \psi(V \text{ Ker } \phi),
\psi(D \text{ Ker } \phi) = \phi(D) = V = \phi(D') = \psi(D' \text{ Ker } \phi).$$

By Theorem 10.3, $\psi(D_4/\operatorname{Ker}\phi) \approx \phi(D_4)$.

Figure 10.3

Note 10.1. Theorem 10.3 can be represented by Figure 10.4, where $\gamma: G \to G/\operatorname{Ker} \phi$, $\gamma(g) = g \operatorname{Ker} \phi$ is called the *natural mapping* from G to $G/\operatorname{Ker} \phi$. By the proof of Theorem 10.3, $\psi \gamma = \phi$. In this case, Figure 10.4 is *commutative*.

Figure 10.4

Example 10.13. Let $\phi: \mathbb{Z} \to Z_n$, $\phi(m) = m \mod n$ be a homomorphism. Since $a \in \mathbb{Z}: \phi(a) = a \mod n = 0 \implies a \in \{0, n\}$, therefore $\ker \phi = \langle n \rangle = \{0, n\}$. By Theorem 10.3, $\mathbb{Z}/\ker \phi \approx \phi(\mathbb{Z}) = Z_n$.

Example 10.14. The warping function W maps each $a \in \mathbb{R}$ to a point a radian from (1,0) on the unit circle centered at (0,0). The positive reals in the counterclockwise direction, the negative reals in the clockwise direction, and W(0) = (1,0) (Figure 10.5). W is a homomorphism from \mathbb{R} under addition onto the circle group, the group of complex number of magnitude 1 under multiplication. From elementary trigonometry facts,

$$W(x) = \cos x + i \sin x,$$

$$W(x+y) = W(x)W(y).$$

Since W is periodic of period 2π , therefore $\text{Ker }W=\langle 2\pi\rangle$. So, from the First Isomorphism Theorem, $\mathbb{R}/\langle 2\pi\rangle\approx$ the circle group.

Example 10.15. Let $H \leq G$. The normalizer of H in G is $N(H) = \{x \in G : xHx^{-1} = H\}$ and the centralizer of H in G is $C(H) = \{x \in G : xhx^{-1} = h, h \in H\}$. Let $\psi : N(H) \to Aut(H), \psi(g) = \phi_g$, where $\phi_g(h) = ghg^{-1}, h \in H$ is the inner automorphism of H induced by g. The mapping ψ is a homomorphism with Ker $\psi = C(H)$. So, by the First Isomorphism Theorem,

$$N(H)/\operatorname{Ker} \psi = N(H)/C(H) \approx \psi(N(H)) < \operatorname{Aut}(H).$$

Figure 10.5

Example 10.16. Let |G| = 35. By Lagrange's Theorem,

$$g \in G, g \neq e, |g| = |\langle g \rangle| \mid |G| = 35.$$

Hence, $|g| \in \{5,7,35\}$. If $\exists a \in G : |a| = 35$, then $G = \langle a \rangle$. So assume that $g \in G, a \neq e, |g| \in \{5,7\}$. But not all $g \in G$ can have order 5, since $g \in G : |g| = 5$ come 4 at a time $(|x| = 5 \implies |x^2| = |x^3| = |x^4| = 5)$ and 4 does not divide 34. Similarly, since 6 does not divide 34, not all $g \in G$ can have order 7. Hence, G has elements of order 5 and 7. Since $\exists g \in G : |g| = 7$, $\exists H \leq G : |H| = 7$. In fact, H is the only subgroup of G of order 7, since if $K \leq H, |K| = 7$, then

$$|HK| = |H||K|/|H \cap K| = 7 \cdot 7/1 = 49.$$

But this is impossible in a group of order 35. Since $a \in G, aHa^{-1} \leq G, |aHa^{-1}| = 7$, therefore $H = aHa^{-1}$. So, N(H) = G. Since H has prime order, it is cyclic and therefore Abelian. In particular, C(H) contains H. So, $7 \mid |C(H)|$ and $|C(H)| \mid 35$. It follows that C(H) = G or C(H) = H. If C(H) = G, then an element x of order 35 can be obtained by letting x = hk, where $h \in H, h \neq e$ and |k| = 5. If C(H) = H, then |C(H) = 7 and |N(H)/C(H)| = 35/7 = 5. However, 5 does not divide $|Aut(H)| = |Aut(Z_7)| = 6$. This contradiction shows that G is cyclic.

Theorem 10.4 (Normal Subgroups Are Kernels). Let $\phi: G \to \overline{G}$ be a homomorphism. Then

$$H \triangleleft G \implies H = \operatorname{Ker} \phi.$$

In particular, let $\gamma: G \to G/N, \gamma(g) = gN$ be a homomorphism called the natural homomorphism from G to G/N. Then,

$$N \triangleleft G \implies N = \operatorname{Ker} \gamma.$$

Proof. Let $\gamma: G \to G/N, \gamma(g) = gN$ be the natural homomorphism from G to G/N. Then,

$$\gamma(xy) = (xy)N = xNyN = \gamma(x)\gamma(y).$$

Moreover,

$$g \in \operatorname{Ker} \gamma \iff gN = \gamma(g) = N.$$

By Lemma 7.1.2,

$$gN = N \iff g \in N.$$

Hence,

$$\operatorname{Ker} \gamma \subseteq N, N \subseteq \operatorname{Ker} \gamma \implies N = \operatorname{Ker} \gamma.$$

11 Fundamental Theorem of Finite Abelian Groups

11.1 The Fundamental Theorem

Theorem 11.1 (Fundamental Theorem of Finite Abelian Groups). Every finite Abelian group is a direct product of cyclic groups of prime-power order Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely determined by the group.

Corollary 11.1.1. If m divides the order of a finite Abelian group G, then G has a subgroup of order m.