

Evoluce robotů v simulovaném fyzikálním prostředí

Marek Bečvář

ÚVOD

Pro řešení různorodých problémů se nám může hodit využívat metod evolučních algoritmů. Jedná se o přírodou inspirované optimalizační algoritmy, které napodobováním přírodních procesů hledají nejlepší řešení pro zadané cíle.

Práce s těmito algoritmy ale může být velmi složitá kvůli velkému množství parametrů a nastavení, se kterými je potřeba najednou při experimentech pracovat.

CÍLE PRÁCE

Hlavní cíl: platforma pro experimenty s evolučními algoritmy, dostupná pro uživatele různých úrovní specializace. Evoluční algoritmy v projektu vyvíjí roboty v simulovaném prostředí.

Vedlejší cíl: experimentálně ověřit hypotézu, že pro vývoj složitějších robotů (více stupňů volnosti) potřebujeme složitější evoluční algoritmy.

VYUŽITÉ TECHNOLOGIE

Celý projekt je pro přehlednost a rozšiřitelnost napsaný v programovacím jazyce Python.

Pro lepší čitelnost a rozšířitelnost naší platformy jsme se rozhodli nevyužít již existující knihovny pracující s evolučními algoritmy. Místo toho jsme vytvořili vlastní implementace nejpoužívanějších základních bloků, ze kterých mohou být evoluční algoritmy poskládány.

Simulované fyzikální prostředí je důležitou částí tohoto projektu. S ohledem na naše požadavky jsme pro tento účel zvolili fyzikální prostředí *MuJoCo* zpřístupněné pomocí knihovny *Gymnasium* (dříve *OpenAI Gym*).

Platforma umožňuje využít grafické rozhraní pro podrobnou konfiguraci experimentů, které bylo implementována pomocí knihovny *PySimpleGUI*.

PLATFORMA

Prací vznikla platforma pro snadné experimentování s evolučními algoritmy umožňující podrobnou, interaktivní konfiguraci experimentů v grafickém rozhraní, a zároveň spouštění a statistické vyhodnocování většího množství experimentů v textovém rozhraní.

Pro maximální efektivitu je běh evolučních algoritmů paralelizován, využívající moderních CPU.

Přehledná implementace a dokumentace modulů umožňuje uživateli projekt jednoduše rozšiřovat (nové typy evolučních algoritmů, nové příklady robotů).

OVĚŘENÍ HYPOTÉZY

Pro splnění druhého cíle práce jsme zvolili dva typy evolučních algoritmů. Algoritmy se liší hlavně ve způsobu, jak transformují informace z prostředí na nastavení motorů robota.

Jednodušší algoritmus pro nastavení každého z motorů využíval sinusoidu s vlastními parametry pro každý motor. Složitější algoritmus využíval zkrácenou Fourierovu řadu opět s parametry pro každý motor.

Experimenty s oběma algoritmy potvrdily, že u jednoduchých robotů zvládají oba najít řešení pro zadaný cíl (urazit rovně co největší vzdálenost). Pro složitého robota (*SpotLike* z ukázky grafické aplikace) byl pouze složitější algoritmus schopný najít řešení a tak potvrdil základní hypotézu.

ZÁVĚR

Práce splnila cíle, které pro ní byly zadány. Platforma pro provádění experimentů je přehledná, funkční a stabilní (dostupná na OS Windows a Linux). Projekt zároveň dává nástroje pro vizualizaci řešení a statistické vyhodnocení dat z experimentů.

Platforma také umožnila splnění vedlejšího cíle práce a to ověření základní hypotézy o rozdílných složitostech ovládání robotů.

Celý projekt dostupný v Gitlab repozitáři:

