

1. Estación meteorológica

Esta permite medir y registrar las variables atmosféricas como la irradiancia, temperatura ambiente, velocidad y dirección del viento, presión atmosférica, humedad relativa, entre otras, del lugar donde está instalada la estación solar.

2. Estructura de soporte

Construida a medida para maximizar los tiempos de exposición al sol considerando las características del entorno. Cuenta con un sistema de fijación modular que se adapta a las dimensiones de cualquier tecnología solar (paneles o módulos). Permite variar el ángulo de inclinación norte-sur desde cero a noventa grados.

3. Módulo de prueba

Este módulo portátil adicional a la estructura de soporte principal, está pensado para realizar pruebas iniciales o de corta duración. A través de estas pruebas se caracteriza el desempeño eléctrico inicial de los módulos o paneles fotovoltaicos a partir de las curvas corriente - tensión (I-V) en condiciones de exteriores.

7. Base de datos

Con la información de la producción energética, del desempeño eléctrico medido a través de las curvas I-V y de las variables atmosféricas, será posible realizar estudios de degradación de las tecnologías fotovoltaicas, definir pautas de mantenimiento y desarrollar modelos computacionales para predecir el comportamiento de estas tecnologías ante diferentes condiciones atmosféricas, con la finalidad de tener herramientas que permitan tomar decisiones con respecto a la tecnología apropiada según las condiciones atmosféricas.

Caracterizador de paneles solares

Equipo electrónico desarrollado por los grupos GIMEL y CIDEMAT de la Universidad de Antioquia para caracterizar el desempeño eléctrico de la tecnología solar a partir de la curva I-V. A través de este equipo se está midiendo y registrando de forma remota las curvas características de las diferentes tecnologías solares en condiciones de exteriores.

Tecnología solar fotovoltaica

En la estación solar se está evaluando en condiciones reales de operación el desempeño eléctrico de 5 tecnologías solares comerciales (HIT, CIGS y 3 relacionadas con silicio: amorfo, mono-cristalino, poli-cristalino) y de las celdas y mini-módulos de tercera generación desarrollados en el laboratorio de RutaN por el Laboratorio de Celdas Solares de CIDEMAT

- 1. Plataforma de análisis en campo de soluciones solares
- 2. Estación Solar SIU: evaluación y monitoreo de tecnologías solares en condiciones de operación real (exteriores o campo)
 - Diseño eléctrico, óptico (análisis de sombras) y mecánico de sistemas de generación solar
 - Evaluación en campo de soluciones solares
 - Módulos y paneles
 - Comparación con referentes del mercado (CIGS, HIT, y silicio amorfo poli, mono)
 - Respuesta temporal correlacionada con variables climáticas
 - Dispositivos electrónicos (inversores, MPP, entre otros)
 - Instalación de estaciones solares (conectado a la red eléctrica con y sin reslpado de baterías, sistema aislado)
 - Dispositivo de monitoreo de paneles solares
 - Modelación del desempeño eléctrico de paneles
 - Big data (desempeño eléctrico + variables climática)

Centro de investigación innovación y desarrollo – CIDEMAT Grupo de manejo eficiente de la energía – GIMEL Universidad de Antioquia

Tels. 2110404 ext 106, 2196617 laboratoriocidemat@udea.edu.co

