Khôlles de Mathématiques $\mathbb{H}\mathbb{X}\mathbb{I}$ $Espaces\ de\ dimension\ finie$

N. CLOAREC

Du 06-02-17 au 18-03-17

Exercice 1 Soient E un \mathbb{K} -espace vectoriel de dimension finie et F_1, \ldots, F_n des sous-espaces vectoriels de E. On suppose que $E = F_1 + \cdots + F_n$.

Montrer qu'il existe G_1, \ldots, G_n sous-espaces vectoriels tels que :

$$\forall 1 \leq i \leq n, G_i \subset F_i \text{ et } E = G_1 \oplus \cdots \oplus G_n$$

Exercice 2 Soit (e_1, \ldots, e_p) une famille libre de vecteurs de $E, F = \text{Vect}(e_1, \ldots, e_p)$ et G un supplémentaire de F dans E.

En considérant les sous-espaces $F_a = \text{Vect}(e_1 + a, \dots, e_p + a)$ pour $a \in G$, montrer que G admet autant de supplémentaires distincts dans E qu'il y a d'éléments dans G.

Exercice 3 Soient H un hyperplan et F un sous-espace vectoriel non inclus dans H. Déterminer la dimension de $F \cap H$.

Exercice 4 Soient \mathbb{K} un sous-corps de \mathbb{C} , E un \mathbb{K} -espace vectoriel de dimension finie, F_1 et F_2 deux sous-espaces vectoriels de E.

- a) On suppose dim $F_1 = \dim F_2$. Montrer qu'il existe G sous-espace vectoriel de E tel que $F_1 \oplus G = F_2 \oplus G = E$.
- b) On suppose que dim $F_1 \leq \dim F_2$. Montrer qu'il existe G_1 et G_2 sous-espaces vectoriels de E tels que $F_1 \oplus G_1 = F_2 \oplus G_2 = E$ et $G_2 \subset G_1$.

Exercice 5 Soient $f, g \in \mathcal{L}(E)$ tels que

$$f + g = \operatorname{Id}_E$$
 et $\operatorname{rg} f + \operatorname{rg} g = \dim E$

Montrer que f et g sont des projecteurs complémentaires.

Exercice 6 Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$.

Soit H un supplémentaire de ker f dans E.

On considère $h: H \to E$ la restriction de $g \circ f$ à H.

- a) Montrer que $\ker(g \circ f) = \ker h + \ker f$
- b) Observer que $\operatorname{rg} h \ge \operatorname{rg} f \dim \ker g$
- c) En déduire que $\dim \ker(g \circ f) \leq \dim \ker g + \dim \ker f$

Exercice 7 Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$.

Montrer qu'il existe un endomorphisme f tel que $\operatorname{Im} f = \ker f$ si, et seulement si, n est pair.

Exercice 8 Soit $f \in \mathcal{L}(E)$ tel que $f^2 = 0$ avec E un \mathbb{K} -espace vectoriel de dimension finie. Montrer que

$$\exists g \in \mathcal{L}(E), f \circ g + g \circ f = \mathrm{Id}_E \iff \mathrm{Im}\, f = \ker f$$

Exercice 9 Soient $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$ et Δ l'endomorphisme de E déterminé par $\Delta(P) = P(X + 1) - P(X)$.

- a) Justifier que l'endomorphisme Δ est nilpotent.
- b) Déterminer des réels $a_0, \ldots, a_n, a_{n+1}$ non triviaux vérifiant : $\forall P \in \mathbb{R}_n [X], \sum_{k=0}^{n+1} a_k P(X+k) = 0$
- c) En déduire que : $\forall n \in \mathbb{N}, \, \forall i \in \{0, \dots n\} \ \sum_{k=0}^{n+1} (-1)^k {n+1 \choose k} k^i = 0$

Exercice 10 Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer

$$\operatorname{Im} g \subset \operatorname{Im} f \iff \exists h \in \mathcal{L}(E), g = f \circ h$$

Exercice 11 Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 1$. Pour tout $p \in \mathbb{N}$, on pose

$$I_p = \operatorname{Im} f^p \text{ et } N_p = \ker f^p$$

- a) Montrer que les suites $(I_p)_{p\geq 0}$ et $(N_p)_{p\geq 0}$ sont respectivement décroissante et croissante et que celles-ci sont simultanément stationnaires.
- b) On note r le rang à partir duquel les deux suites sont stationnaires. Montrer

$$I_r \oplus N_r = E$$