Poster Presentations

Code	Title	Authors
P01	A Python application programming interface for accessing	Krzysztof Krawczyk, Matthias J. Mickert,
	Philips iSyntax whole slide images	Stefan Andersson-Engels, Anders Sjögren
P02	Augmented Reality Microscopy (ARM) Utility for Breast	Mustafa Yousif, Liron Pantanowitz
	Tumor Measurements	
P03	Microscope HD video streaming in University Pathology	Luis Alfaro, Maria Jose Roca
	teaching through YouTube and Twitch	
P04	Analysis of paraffin-embedded slides of esophageal	Benjamin Igbo, Annett Linge, Theresa Suckert,
	carcinoma after different treatments using QuPath	Susanne Frosch, Liane Stolz-Kieslich, Esther
		G.C. Troost
P05	Instant digital pathology for rapid evaluation of thyroid	Martina Verri, S. Scarpino, C. Taffon, A.
	cytology: a pilot study and molecular test	Palermo, A.M. Naciu, D. Nicoletti, D. Galafate,
		E. Pilozzi, A. Crescenzi
P06	Physical Color Calibration of Scanners for Deep Learning	Xiaoyi Ji, Richard Salmon, Nita Mulliqi, Henrik
	Based Diagnosis of Prostate Cancer	Olsson, Lars Egevad, Pekka Ruusuvuori, Martin
		Eklund, Kimmo Kartasalo
P07	A Python application programming interface for accessing	Nita Mulliqi, Lars Egevad, Pekka Ruusuvuori,
	Philips iSyntax whole slide images	Martin Eklund, Kimmo Kartasalo
P08	Automatic segmentation of tumor infiltrating	Jakub Gawlik, Agnieszka Łazarczyk, Julita
	lymphocytes in breast histopathology slides	Ciuruś, Michał Okarski, Joanna Szpor
P09	Normal and Neoplastic Salivary Gland Segmentation	Ibrahim Alsanie, Eu-Wing Toh, Syed Ali
	Using Machine Learning – A pilot study	Khurram
P10	An approach to resource saving histology dataset	Artyom Borbat, Inna Yatsenko
	expansion	
P11	Neural network analysis visualization approach for	Artyom Borbat, Peter Bondarenko, Sergey
	diagnostic pathology	Lishchuk
P12	QuPath-based approach to evaluate liver parenchyma	Artyom Borbat, Alexandr Dushkin, Ilya Serdyuk
	status: preliminary data	
P13	Primary and metastatic tumor tissue datasets to train	Artyom Borbat, Elena Filatova, Maksim
	neural network model for metastasis detection	Iaroslavtsev, Tatiana Novikova
P14	Semiautomated workflow for tissue-microarray analysis	Teresa San Miguel, Ana Sierra, David Moratal,
	on tumors of the central nervous system	Miguel Cerdá-Nicolás, Concha López-Ginés,
		Javier Megías, Lara Navarro, Daniel Monleón
P15	Segmentation of oesophageal cancer lymph nodes within	Manon Beuque, Avishek Chatterjee, Henry C.
	large H&E datasets with explainable AI	Woodruff, Ruth E. Langley, William Allum,
		Matthew G. Nankivell, David Cunningham,
		Philippe Lambin, Heike I. Grabsch
P16	Reducing the false negative prostate biopsies using deep-	Bojing Liu, Yinxi Wang, Philippe Weitz, Johan
	learning assessment of benign biopsies	Lindberg, Lars Egevad, Henrik Grönberg,
		Martin Eklund, Mattias Rantalainen
P17	Using deep learning to predict gene expression-based	Andreas Ekholm, Yinxi Wang, Johan Hartman,
	breast cancer proliferation score from H&E WSIs	Mattias Rantalainen

P18	The effectiveness of whole slide imaging in assessing the	Gabriela Baltatescu, M. Aşchie, M. Enciu, G.C.
	invasive breast carcinoma cases.	Cozaru, O. Cojocaru, M. Cristian, N. Dobrin, M.
D40		Deacu
P19	Automated removal of pen ink on whole slide images	Saul Kohn, S Sankarapandian, D Ayyagari, RV
	using weakly-supervised deep neural networks	Chamarthi, W Shon, Z Laszik, S Bowman, E
		Chan, MJ Bonham, RE Soans, JD Ianni
P20	Predicting Genetic Intra-tumor Heterogeneity From	Mustafa Umit Oner, Hwee Kuan Lee, Wing-Kin
	Digital Histopathology Slides	Sung, Jianbin Chen, Weiwei Zhai
P21	Deep Learning Model for Metastasis Risk in Colon Cancer	Stefan Schiele, T.T. Arndt, B. Martin, S. Miller,
	Patients based on Binary Tumor Images	B. Märkl, G. Müller
P22	Automated Identification of Different Tissue Regions in	Fahime Sheikhzadeh, F. Aghaei, I. Klaman, O.
	H&E and IHC Slides Using Deep Learning	Grimm, C. Ferreira, Y. Nie
P23	Quantitative morphological characterization of	Daniela Rodrigues, Tiago Bordeira Gaspar,
	pancreatic islets in HE-stained slides	Paula Sampaio, Mafalda Sousa
P24	New Cytomine open-source software architecture and	Raphaël Marée
	modules for AI in digital pathology	
P25	Assessment of prostate carcinoma architecture through	Mircea-Sebastian Serbanescu, Razvan Mihail
	fractal analysis in correlation with Gleason and Srigley	Plesea, Larisa Iovan, Anca-Maria Istrate-
	grading systems	Ofiteru, Gabriela-Camelia Rosu,
		ValentinTiberiu Moldovan, Iancu Emil Plesea
P26	Assessment of E-Cadherin expression in prostate	Emil Plesea, Razvan Mihail Plesea, Mircea-
	carcinoma in correlation with Gleason and Srigley grading	Sebastian Serbanescu, Alina Elena Stefan,
	system	Daniela Gologan, Sorin Musat, Matthew O.
		Leavitt, Iancu Emil Plesea
P27	Digital experience on practical cytopathology online	Lara Pijuan, Carmen Vásquez, Francisco
	course using whole slide imaging	Tresserra, Núria Baixeras, Gemma Fabra, Alba
		Zanca, Leonardo Rodriguez, Carme Dinarès
P28	Identification of biomarkers using DeePathology STUDIO	Shahar Ish Shalom, Ady Yosepovich, Jacob
	AI Platform	Gildenblat, Ido Ben Shaul, Ofir Etz Hadar
P29	A systematic review and meta-analysis of automated	Martin Fergie, Anna-Maria Tsakiroglou, Susan
	tools for HER2, ER and T-cell scoring in cancer biopsies	Astley, Kim Linton, Anne Martel, Isabel Peset-
		Martin, Catharine West, Richard Byers
P30	Pathologist-led definition of generalizability for clinical AI	Patricia Raciti, Peter Hamilton, Brandon
	ensures patient-relevant performance and clinical	RothRock, Jillian Sue, Margaret Horton,
	usability	Christopher Kanan
P31	Deep learning with transfer learning on basal-cell	Mircea-Sebastian Serbanescu, Raluca-Maria
	carcinomas subtype automated classification	Bungardea, Maria Crisan
P32	Inking cellblocks improves scanner detection for primary	Beatriz Luz Neves, João Vale, António Polónia,
	diagnosis	Catarina Eloy, Sofia Campelos, Mónica Curado
P33	Automated quantification of Ki-67-positive cells on	Christophe Deroulers, Pascale Varlet, Gwénael
	whole-slide images in pediatric high-grade glioma may	Le Teuff, Marie-Céecile Le Deley, Felice
	have more prognostic value than WHO grade	Giangaspero, Christine Haberler, Thomas S.
	, 5	Jacques
P34	Establishing Qualitative Image Analysis Methods for	Caner Ercan, Luigi Terracciano
	Tumour Microenvironment Research	, 5
P35	Al-Power to the pathologist - IHC guided annotations	Lars Bjork, Feria Hikmet, Jonas Gustavsson,
	improved the resolution performance of the algo	Daniel Hägg, Mats Andersson, Filippo
	compared to manual annotated whole slide images.	Fraggetta, Witold Rezner, Mateusz Seliga,
	,	Piotr Bobkiewicz, Lex Makkus, Andrey
		Bychkov, Junya Fukuoka, Kristian Eurén,
		Stefan Elfwing, Cecilia Lindskog
		occian Enwing, occinia Emaskog

