SOTA in Computer Vision

Part 3

Core idea: Tokenized image

Split image to patches and consider them as tokens (just like words in a sentence) to make prediction

Image Patches Tokens

A special learnable [class] token is appended to represent the token of class prediction Image tokens get flatten and through an embedding Patch + Position **Embedding** * Extra learnable Linear Projection of Flattened Patches [class] embedding

Then all tokens get through a Transformer encoder.

After that, an extra MLP is applied to the [class] token to get final prediction

Variants

Model	Layers	Hidden size	MLP size	Heads	Params
ViT-Base (ViT-B)	12	768	3072	12	86M
ViT- Large (ViT-L)	24	1024	4096	16	307M
ViT-Huge (ViT-H)	32	1280	5120	16	632M

Top-1 Accuracy on ImageNet dataset. ViT models are pre-trained with JFT-300M dataset before fine-tuning on ImageNet. Naming rule: ViT-<variant>/<patch_size>

ViT-H/14	ViT-L/16		
88.55	87.76		

Two improvements:

- **LayerScale:** Stable optimization for deeper vision transformers
- Class Attention: Specialize layers during optimization

Why LayerScale?

By experiments, ViT does not perform well as depth increases.

LayerScale: Perform per-channel scaling on residual output. Scale parameters are learnable. Can think of it as a weight normalization method, hence stable the gradient and the training

Why Class Attention?

As seen in ViT, the [class] token is appended at the start of the Transformer Encoders.

Hence, the learned weights are asked to optimize two contradictory objectives:

- 1. Guiding the self-attention between patches
- 2. Summarizing the information useful to the linear classifier

Class Attention

Two stages architecture:

- **1st stage:** Self-attention blocks without [class] token. Prepare the vectors for classifier
- **2nd stage:** [class] token appended. Apply self-attention but only update the [class] token. Focus on predicting

Variants

Table 3: CaiT models: The design parameters are depth and d. The mem columns correspond to the memory usage. All models are initially trained at resolution 224 during 400 epochs. We also fine-tune these models at resolution 384 (identified by \uparrow 384) or train them with distillation (Υ). The FLOPs are reported for each resolution.

CAIT model	depth (SA+CA)	d	#params $(\times 10^6)$	FLOPs @224	(×10 ⁹) @384	Top-1 @224	acc. (%) ↑384): Imagen @224Υ	et1k-val ↑384Ƴ
XXS-24	24 + 2	192	12.0	2.5	9.5	77.6	80.4	78.4	80.9
XXS-36	36 + 2	192	17.3		14.2	79.1	81.8	79.7	82.2
XS-24	24 + 2	288	26.6	5.4	19.3	81.8	83.8	82.0	84.1
XS-36	36 + 2	288	38.6	8.1	28.8	82.6	84.3	82.9	84.8
S-24	$ \begin{array}{ c c c } 24 + 2 \\ 36 + 2 \\ 48 + 2 \end{array} $	384	46.9	9.4	32.2	82.7	84.3	83.5	85.1
S-36		384	68.2	13.9	48.0	83.3	85.0	84.0	85.4
S-48		384	89.5	18.6	63.8	83.5	85.1	83.9	85.3
M-24	24 + 2	768	185.9	36.0	116.1	83.4	84.5	84.7	85.8
M-36	36 + 2	768	270.9	53.7	173.3		84.9	85.1	86.1

Why Vision Outlooker?

Authors argue that ViT cannot out-performed CNN due to low efficacy in encoding fine-level features and context in token representation

Outlooker use information in K x K window to generate its representation

For each position (token), generate a K^2 x K^2 attention map, meaning an K x K attention map for each neighbor. Then calculate weighted average value. Finally, we got K x K x C tensor

But each neighbor also has its own KxKxC tensors, these tensors also have the weighted average value generated by the neighbor. So we have to sum all the values from the neighbors according to the relative position. This is called **folding**

Outlooker illustration

Let's take a simple "image" size 1x2

Attention map generation

Attention map generation

Unfold

There is also a Linear operation after Unfold but let's skip it for simplicity

Projection

Fold for final result

Network Architecture:

- 1st stage: Stack of Outlook Attentions for patch tokens
- 2nd stage: Stack of Self-Attention

Variants:

Specification	VOLO-D1	VOLO-D2	VOLO-D3	VOLO-D4	VOLO-D5	
Patch Embedding	8×8	8×8	8×8	8×8	8 × 8	
Stage 1 (28 × 28)	[head: 6, stride: 2] kernel: 3 × 3 mlp: 3, dim: 192] ×4	[head: 8, stride: 2] kernel: 3 × 3 mlp: 3, dim: 256] ×6	[head: 8, stride: 2] kernel: 3 × 3 mlp: 3, dim: 256] ×8	[head: 12, stride: 2] kernel: 3 × 3 mlp: 3, dim: 384 ×8	[head: 12, stride: 2] kernel: 3 × 3 mlp: 4, dim: 384 ×12	
Patch Embedding	2×2	2×2	2×2	2×2	2×2	
Stage 2 (14 × 14)	[#heads: 12 mlp: 3, dim: 384] ×14	#heads: 16 mlp: 3, dim: 512 ×18	#heads: 16 mlp: 3, dim: 512 ×28	#heads: 16 mlp: 3, dim: 768 ×28	#heads: 16 mlp: 4, dim: 768 ×36	
Total Layers Parameters	18 26.6M	24 58.7M	36 86.3M	36 193M	48 296M	

Comparison - Training ImageNet from scratch

