安徽大学集成电路学院

《电路实验》第七次报告

项目	RC电路	日期			
专业	集就电路	学号	姓名	师签字	

1. 3解低通,高通,带通滤波器的频率将性

2. 掌握网络频率铸性测性的的一般方法

【实验原理(预习)】 当电源的频率发生变化时,电路中的电影和电客无件的阻抗会随之改 变。因此,即使保持输入电压的幅值不变,电路中的输出电压也会随频率的改变而发生变化。不同频率已经稳急了,电路响应的频率的关系历由 中的股级中发生发生的不知的。

《神经》的特性用的一种说的特性用的一种说的。

H(jw)=以一种的。

H(jw)=以一种的。

H(jw)=以一种的。

H(jw)=次元的图像的。

H(jw)=次元的图像的。

H(jw)=次元的图像的。

H(jw)=次元的图像多数和影响。 当W=O时,H(jw)=1, B(w)=0, 当W=WC时,H(jw)=方, B(w)=-章, 当W>a时,H(jw)>-型陷着按摩增高,H(jw))将减少,说明低潮(含为以通过,高快信号被抑制或要)成在一阶高频速设器中H(jw)= 它; = R+ 和它 = jwRC 等于 计设置 = H(jw)(q(w)) 的形形。由于现代 = 1000 (元) 和 1000 (元) 在佛面滤波电客中: H(1W)= 3+ 1(WRC-wkc) 焰前的特性: [H(jw)]= 19+(wRc-wRc)2 相频铸性: q(w) = arc wac - WRC

【实验内容与记录(题号、操作步骤、数据记录与处理、附图编号等)】 人**测试-BARC高通电路加坡平特啦**

取R=1KD, 电客C=0.14F,电路的输入端输入一个41=3V的圣弦信号,改变信号派的频率, 观察输出端 电压的变化,确定电路的畅频和相频特性,完成了表

f(H2)	500	650	800	1000	1591	5×10	7×103	1 × 104	4x104	7×104	1×10	4x18	7×105	1×10
Ùo(v)	0.96345	1.2070	1.4223	1-6692	2.1616	2.7857	2.8395	2.8695	2.897/	2.8949	2.8889	2.7183	2.4971	2,3692
Vi(v)	3.0398	4.0309	3.0212	3.0083	2.9758	2.9211	2.9157	2.9123	2.9070	2.9029	2.8963	2.7240	2.5002	2.377
st	40045	285us	21400	issus	78us	8 us	sus	zus	ztons	loons	65ns	lons	Sns	3ns
T	Ziooms	1-54ms	1-25ms	/ms	bzbus	2004	14411	loous	rsus	14.30)	lous	zsus	1-43MS	IM
Ø	72.0°	66.6°	61.6°	55.8°	44.9°	14.4°	12.50	7.2	3.6°	2.50	2130	44°	1.30	1.10

【实验内容与记录(题号、操作步骤、数据记录与处理、附图编号等)】

2. Min-MRC低通电路的频率铸性 取R=1KR电客C=0.1UF、电路的输入端确入一个Vi=3V的各弦信号。改变信号廊的频率,观察输出端电压的变化 确定电路的幅频铸性、完成接口了表

f(Hz)	500	650	800	/o³	1591	3×103	7×10	1×104	4 × 104	7×10	11/2	4215	7x18	1×106
Vo	28890	2.7916	26821	25266 V	2.0788 V	0.8726 V	0 - 6373	0.4521 V	115.195 mv	65.785 mv	45:787 mv	8.414 mv	1.045 mv	0.250
0i	3.0410	3.0325	3.0232	3.01.8	2.9786	2.9217	2.9158	2.9121 V	29069 V	2.9023	2.8966	2-7353	2.5319	2.4290

【小结与讨论】

经历了此次实验、知学报了以下内容

1、3解3低通,高通滤波器的频率铸性

2、掌握了网络频率特性测试的一般方法

11:在高通滤波器中,其频率铸性

中的频特性: H(jw)= NH(WRC)

相频特性: ((w) = 90° - tan wRc

由此可见, (4(w)) 随着频率的降低而深小,说明高频信号可以通过, 低频信号被衰, 放或被抑制

己在低通滤波器中具频率特性

· 帽板铸性: H(jw)= JH(wRc);

相频分析 4生: (1w) = - tan-1 WRC.

由此可见,14分测)随着频率的增高而流水,说明低版信号可以通过,高频信号被衰减效被抑制

【实验成绩】