MATH 601 (DUE 9/25)

HIDENORI SHINOHARA

Exercise. (Problem 1) Define $\gamma: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{2}]$ by $\gamma(a+b\sqrt{2}) = a-b\sqrt{2}$. Show that γ is a ring isomorphism and compute its inverse.

Proof. Let $a + b\sqrt{2}$, $c + d\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ be given.

$$\begin{split} \gamma((a+b\sqrt{2}) + (c+d\sqrt{2})) &= \gamma((a+c) + (b+d)\sqrt{2}) \\ &= (a+c) - (b+d)\sqrt{2} \\ &= (a-b\sqrt{2}) + (c-d\sqrt{2}) \\ &= \gamma(a+b\sqrt{2}) + \gamma(c+d\sqrt{2}). \\ \gamma((a+b\sqrt{2})(c+d\sqrt{2})) &= \gamma((ac+2bd) + (ad+bc)\sqrt{2}) \\ &= (ac+2bd) - (ad+bc)\sqrt{2} \\ &= (ac+2(-b)(-d)) + (a(-d) + (-b)c)\sqrt{2} \\ &= (a-b\sqrt{2})(c-d\sqrt{2}) \\ &= \gamma(a+b\sqrt{2})\gamma(c+d\sqrt{2}). \end{split}$$

Moreover, $\gamma(1) = 1 - 0\sqrt{2} = 1$. Therefore, γ is a ring homomorphism. For any $a + b\sqrt{2}$, $\gamma(\gamma(a+b\sqrt{2})) = \gamma(a-b\sqrt{2}) = a+b\sqrt{2}$. Therefore, γ has an inverse, and the inverse of γ is γ . This implies that γ is bijective.

In conclusion, γ is an isomorphism and its inverse is itself.

Exercise. (Problem 2) Define $N: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ by $N(a+b\sqrt{2}) = (a+b\sqrt{2})\gamma(a+b\sqrt{2})$. Show that $N(\alpha\beta) = N(\alpha)N(\beta)$.

Proof. Let $a + b\sqrt{2}$, $c + d\sqrt{2}$ be given.

$$\begin{split} N((a+b\sqrt{2})(c+d\sqrt{2})) &= N((ac+2bd) + (ad+bc)\sqrt{2}) \\ &= ((ac+2bd) + (ad+bc)\sqrt{2})\gamma((ac+2bd) + (ad+bc)\sqrt{2}) \\ &= (a+b\sqrt{2})(c+d\sqrt{2})\gamma((a+b\sqrt{2})(c+d\sqrt{2})) \\ &= (a+b\sqrt{2})(c+d\sqrt{2})\gamma(a+b\sqrt{2})\gamma(c+d\sqrt{2}) \\ &= (a+b\sqrt{2})\gamma(a+b\sqrt{2})(c+d\sqrt{2}) \\ &= N(a+b\sqrt{2})N(c+d\sqrt{2}). \end{split}$$

Exercise. (Problem 3) Write $\mathbb{Z}[\sqrt{2}]^*$ for the group of units in $\mathbb{Z}[\sqrt{2}]$. Show that $\alpha \in \mathbb{Z}[\sqrt{2}]^*$ if and only if $N(\alpha) = \pm 1$.

Proof. We have $N(1) = 1\gamma(1) = 1$.

Let α be a unit and β be the inverse. Then $N(\alpha\beta) = N(1) = 1$. Thus $1 = N(\alpha)N(\beta)$. Since $N(\alpha), N(\beta) \in \mathbb{Z}, N(\alpha) = \pm 1$.

On the other hand, suppose that $N(\alpha) = \pm 1$ for some α .

- Case 1: $N(\alpha) = 1$. Then $\alpha \gamma(\alpha) = 1$, so $\gamma(\alpha)$ is an inverse of α . Therefore, α is a unit.
- Case 2: $N(\alpha) = -1$. Then $\alpha \gamma(\alpha) = -1$, so $-\gamma(\alpha)$ is an inverse of α . Therefore, α is a unit.

In each case, α is a unit.

Therefore, $N(\alpha) = \pm 1$ if and only if α is a unit.

Exercise. (Problem 4) What does finding the units in $\mathbb{Z}[\sqrt{2}]$ have to do with solving the equation $x^2 - 2y^2 = \pm 1$?

Proof. Let (a,b) be a solution to the equation. Then $a^2 - 2b^2 = \pm 1$, so $(a+b\sqrt{2})(a-b\sqrt{2}) = \pm 1$. This implies that $a \pm b\sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$.

On the other hand, let $a + b\sqrt{2}$ be a unit in $\mathbb{Z}[\sqrt{2}]$. By Problem 3, $N(a + b\sqrt{2}) = \pm 1$. Thus $\pm 1 = N(a + b\sqrt{2}) = (a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - b^2$. Hence, (a, b) is a solution to $x^2 - 2y^2 = \pm 1$.

In conclusion, there exists a bijective correspondence between the units in $\mathbb{Z}[\sqrt{2}]$ and the solutions to $x^2 - 2y^2 = \pm 1$.

Exercise. (Problem 5) Show that $\mathbb{Z}[\sqrt{2}]$ has no smallest positive element.

Proof. We have $0 < \sqrt{2} - 1 < 1$. Since $\forall n \in \mathbb{N}, (\sqrt{2} - 1)^n \in \mathbb{Z}[\sqrt{2}]$ and $\lim_{n \to \infty} (\sqrt{2} - 1)^n = 0$, there exists no smallest positive element in $\mathbb{Z}[\sqrt{2}]$.

Exercise. (Problem 6) Find an element $u \in \mathbb{Z}[\sqrt{2}]^*$ with u > 1.

Proof.
$$(\sqrt{2}+1)(\sqrt{2}-1)=2-1=1$$
. Thus $u=\sqrt{2}+1$ is a unit such that $u>1$.

Exercise. (Problem 7) Let $u \in \mathbb{Z}[\sqrt{2}]^*$ with u > 1. Write $u = a + b\sqrt{2}$ with $a, b \in \mathbb{Z}$. Show a > 0 and b > 0.

Proof. Since u is a unit, $N(u)=\pm 1$ from Problem 3. In other words, $(a+b\sqrt{2})(a-b\sqrt{2})=a^2-2b^2=\pm 1$. Then $a^2=\pm 1+2b^2\equiv 1\pmod 2$, so a is odd. Specifically, $a\neq 0$.

- Case 1: a < 0. Since a is an integer, $a \le -1$. Since $u = a + b\sqrt{2} > 1$, b > 0. Since b is an integer, $b \ge 1$. This implies that $a b\sqrt{2} \le -1 \sqrt{2} < -1$. This means $(a + b\sqrt{2})(a b\sqrt{2}) < -1$ because $a + b\sqrt{2} > 1$. However, this is impossible because $(a + b\sqrt{2})(a b\sqrt{2}) = \pm 1$. This is a contradiction, so a is not negative.
- Case 2: a > 0 and b < 0. Since a, b are integers, this implies $a \ge 1$ and $b \le -1$. Then $a b\sqrt{2} \ge 1 + \sqrt{2} > 2$. Since $a + b\sqrt{2} > 1$, this implies $(a + b\sqrt{2})(a b\sqrt{2}) > 1 \cdot 2 = 2$. This is a contradiction because we have $(a + b\sqrt{2})(a b\sqrt{2}) = \pm 1$.

Therefore, both a and b must be positive.

Exercise. (Problem 8) Show that among all u satisfying the conditions of 7, there is a least element u_0 . What is u_0 ?

Proof. Since we know that $a \ge 1$ and $b \ge 1$, $1 + \sqrt{2}$ is less than or equal to all such u. Since $(1 + \sqrt{2})(\sqrt{2} - 1) = 1$, $1 + \sqrt{2}$ is indeed a unit. Therefore, $1 + \sqrt{2}$ is the least element in $\mathbb{Z}[\sqrt{2}]^*$.

Exercise. (Problem 9) Show that every element of $\mathbb{Z}[\sqrt{2}]^*$ is of the form $\pm u_0^n$, $n \in \mathbb{Z}$.

Proof. Let $u \in \mathbb{Z}[\sqrt{2}]^*$.

- Case 1: 1 < u. Since $1 + \sqrt{2}$ is the least element among all units greater than 1, there must exist an $n \in \mathbb{N}$ such that $(1 + \sqrt{2})^n \le u < (1 + \sqrt{2})^{n+1}$. This implies that $1 \le \frac{u}{(1+\sqrt{2})^n} < 1 + \sqrt{2}$. Since u and $1 + \sqrt{2}$ are both units, $\frac{u}{(1+\sqrt{2})^n}$ is a unit in $\mathbb{Z}[\sqrt{2}]$ as well. Since $1 + \sqrt{2}$ is the least element among all units greater than 1, $u/(1+\sqrt{2})^n = 1$. Therefore, $u = (1+\sqrt{2})^n$.
- Case 2: u = 1. Then $u = (1 + \sqrt{2})^0$.
- Case 3: 0 < u < 1. Then $1/u \in \mathbb{Z}[\sqrt{2}]^*$, and 1 < 1/u. By Case 1, $1/u = (1 + \sqrt{2})^n$ for some $n \in \mathbb{Z}$. Therefore, $u = (1 + \sqrt{2})^{-n}$.
- Case 4: -1 < u < 0. Then $-u \in \mathbb{Z}[\sqrt{2}]^*$ and 0 < -u < 1. By Case 3, $-u = (1+\sqrt{2})^n$ for some $n \in \mathbb{Z}$. Thus $u = -(1+\sqrt{2})^n$.
- Case 5: u = -1. Then $u = -(1 + \sqrt{2})^0$.
- Case 6: u < -1. Then $-u \in \mathbb{Z}[\sqrt{2}]^*$ and 1 < -u. By Case 1, $-u = (1 + \sqrt{2})^n$ for some $n \in \mathbb{Z}$. Therefore, $u = -(1 + \sqrt{2})^n$.

Therefore, u is indeed of the form $\pm (1 + \sqrt{2})^n$ with $n \in \mathbb{Z}$.

Exercise. (Problem 10) Describe all solutions to $x^2 - 2y^2 = 1$.

Proof. We claim that $(x,y) \in \mathbb{Z}^2$ is a solution to $x^2 - 2y^2 = 1$ if and only if $x + y\sqrt{2} = (1 + \sqrt{2})^{2n}$ for some $n \in \mathbb{Z}$.

Let $x, y \in \mathbb{Z}$.

- $x^2 2y^2 = 1$ if and only if $N(x + \sqrt{2}y) = 1$.
- We showed in Problem 3 that $x + \sqrt{2}y \in \mathbb{Z}[\sqrt{2}]^*$ if and only if $N(x + \sqrt{2}y) = \pm 1$.
- We showed in Problem 9 that every element in $\mathbb{Z}[\sqrt{2}]^*$ is of the form $\pm u_0^n$ for some $n \in \mathbb{Z}$.

Therefore, we will first check which $\pm u_0^n$ satisfies $N(\pm u_0^n) = 1$. We claim that $N(u_0^{2n}) = N(-u_0^{2n}) = 1$ for all $n \in \mathbb{Z}$.

- When n = 0, this is clearly true.
- Suppose that $N(u_0^{2n}) = 1$ for some $n \in \mathbb{N}$. Let $x + \sqrt{2}y = u_0^{2n}$ where $x, y \in \mathbb{Z}$. Then $u_0^{2n+2} = (x + \sqrt{2}y)(1 + \sqrt{2})^2 = (x + \sqrt{2}y)(3 + 2\sqrt{2}) = (3x + 4y) + (2x + 3y)\sqrt{2}$.

$$\begin{split} N(u_0^{2n+2}) &= ((3x+4y) + (2x+3y)\sqrt{2})((3x+4y) - (2x+3y)\sqrt{2}) \\ &= (9x^2 + 24xy + 16y^2) - 2(4x^2 + 12xy + 9y^2) \\ &= x^2 - 2y^2 \\ &= N(u_0^{2n}) = 1. \end{split}$$

By mathematical induction, $N(u_0^{2n}) = 1$ for all $n \in \mathbb{N}$.

• Let $n \in \mathbb{N}$. Let $x + y\sqrt{2} = u_0^{2n}$ where $x, y \in \mathbb{Z}$.

$$\frac{1}{u_0^{2n}} = \frac{1}{x + y\sqrt{2}}$$

$$= \frac{x - y\sqrt{2}}{x^2 - 2y^2}$$

$$= \frac{x - y\sqrt{2}}{N(x + y\sqrt{2})}$$

$$= \frac{x - y\sqrt{2}}{N(u_0^{2n})}$$

$$= x - y\sqrt{2}.$$

Since $N(x - y\sqrt{2}) = N(x + y\sqrt{2}) = 1$, $N(u_0^{-2n}) = 1$ for all $n \in \mathbb{N}$.

• Let $k \in \mathbb{Z}$. Let $x + y\sqrt{2} = u_0^{2n}$.

$$\begin{split} N(-u_0^{2n}) &= N(-x - y\sqrt{2}) \\ &= (-x - y\sqrt{2})(-x + y\sqrt{2}) \\ &= (x + y\sqrt{2})(x - y\sqrt{2}) \\ &= N(x + y\sqrt{2}) \\ &= N(u_0^{2n}) = 1. \end{split}$$

Therefore, $N(\pm u_0^{2n})=1$ for any sign and $n\in\mathbb{Z}$. We now claim that $N(\pm u_0^{2n+1})=-1$ for any sign and $n\in\mathbb{Z}$. Let $x+y\sqrt{2}=\pm u_0^{2n}$ for some sign and $n\in\mathbb{Z}$. Then $(x+y\sqrt{2})(1+\sqrt{2})=(x+2y)+(x+y)\sqrt{2}$.

$$N((x+y\sqrt{2})(1+\sqrt{2})) = N((x+2y) + (x+y)\sqrt{2})$$

$$= ((x+2y) + (x+y)\sqrt{2})((x+2y) - (x+y)\sqrt{2})$$

$$= (x+2y)^2 - 2(x+y)^2$$

$$= (x^2 + 4xy + 4y^2) - (2x^2 + 4xy + 2y^2)$$

$$= -x^2 + 2y^2$$

$$= -(x^2 - 2y^2)$$

$$= -N(x+y\sqrt{2})$$

$$= -1$$

Therefore, $N(\pm u_0^{2n+1})$ for any sign and any $n\in\mathbb{Z}$. Hence, $\{(x,y)\in\mathbb{Z}^2\mid x+\sqrt{2}y\in\{-u_0^{2n},u_0^{2n}\mid n\in\mathbb{Z}\}\}$ is the set of all solutions to $x^2-2y^2=1$.

Exercise. (Problem 11) Construct a group isomorphism $\mathbb{Z}[\sqrt{2}]^* \to \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Proof. By Problem 9, every element in $\mathbb{Z}[\sqrt{2}]^*$ can be represented as $(-1)^a(1+\sqrt{2})^{2k}$ for some $(k,a) \in \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let $\phi : \mathbb{Z}[\sqrt{2}]^* \to \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ be defined such that $\phi((-1)^a(1+\sqrt{2})^{2k}) = (k,a)$.

- Well-defined? Every element in $\mathbb{Z}[\sqrt{2}]^*$ can be expressed unique as $(-1)^a(1+\sqrt{2})^{2k}$ for some $(k,a) \in \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Thus ϕ is well defined.
- Group homomorphism?

$$\phi((-1)^{a}(1+\sqrt{2})^{2k}(-1)^{b}(1+\sqrt{2})^{2l}) = \phi((-1)^{a+b}(1+\sqrt{2})^{2(k+l)})$$

$$= (k+l,a+b)$$

$$= (k,a) + (l,b)$$

$$= \phi((-1)^{a}(1+\sqrt{2})^{2k})\phi((-1)^{b}(1+\sqrt{2})^{2l}).$$

• Injective? $\phi((-1)^a(1+\sqrt{2})^k)=(0,0)$ implies that k=a=0. Therefore, 1 is the only number in the kernel of ϕ . Since the kernel of ϕ only contains the identity element, ϕ is injective.

• Surjective? For any $(k, a) \in \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $(-1)^a (1 + \sqrt{2})^{2k} \in \mathbb{Z}[\sqrt{2}]^*$.

Therefore, ϕ is a group isomorphism.

Exercise. (Problem 12) Show that $\mathbb{Z}[\sqrt{2}]$ is an integral domain.

Proof. $\mathbb{Z}[\sqrt{2}]$ is a commutative ring because multiplication of real numbers is commutative. Moreover, $\mathbb{Z}[\sqrt{2}] \subset \mathbb{R}$ where \mathbb{R} is a field. Thus $\mathbb{Z}[\sqrt{2}]$ has no zero divisors. Therefore, $\mathbb{Z}[\sqrt{2}]$ is an integral domain.

Exercise. (Problem 13) Define $\sigma : \mathbb{Z}[\sqrt{2}] \setminus \{0\} \to \{0, 1, 2, \cdots, \}$ by $\sigma(\alpha) = |N(\alpha)|$. Show that $(\mathbb{Z}[\sqrt{2}], \sigma)$ is a Euclidean domain.

Proof. Let $a + b\sqrt{2}$, $c + d\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ be given such that $c + d\sqrt{2} \neq 0$. Consider

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2}.$$

Let $p, q \in \mathbb{Z}$ be chosen such that

$$\left| \frac{ac - 2bd}{c^2 - 2d^2} - p \right| \le \frac{1}{2}, \left| \frac{bc - ad}{c^2 - 2d^2} - q \right| \le \frac{1}{2}.$$

Such p, q are guaranteed to exist. Let $\alpha + \beta \sqrt{2}$ denote $\frac{a+b\sqrt{2}}{c+d\sqrt{2}} - (p+q\sqrt{2})$. Then $|\alpha| \le 1/2, |\beta| < 1/2$.

Let $\epsilon = (a+b\sqrt{2}) - (c+d\sqrt{2})(p+q\sqrt{2})$. If $\epsilon = 0$, we are done. Suppose otherwise. Then we have $a+b\sqrt{2} = (c+d\sqrt{2})(p+q\sqrt{2}) + \epsilon$.

$$\epsilon = (a + b\sqrt{2}) - (c + d\sqrt{2})(p + q\sqrt{2})$$

$$= (c + d\sqrt{2})(\frac{a + b\sqrt{2}}{c + d\sqrt{2}} - (p + q\sqrt{2}))$$

$$= (c + d\sqrt{2})(\alpha + \beta\sqrt{2})$$

$$= (\alpha c + 2\beta d) + (c\beta + \alpha d)\sqrt{2}.$$

This implies that

$$N(\epsilon) = (\alpha c + 2\beta d)^{2} - 2(c\beta + \alpha d)^{2}$$

$$= (\alpha^{2}c^{2} + 2\alpha\beta cd + 4\beta^{2}d^{2}) - 2(c^{2}\beta^{2} + 2\alpha\beta cd + \alpha^{2}d^{2})$$

$$= \alpha^{2}(c^{2} - 2d^{2}) - 2\beta^{2}(c^{2} - 2d^{2})$$

$$= (c^{2} - 2d^{2})(\alpha^{2} - 2\beta^{2})$$

$$= (\alpha^{2} - 2\beta^{2})N(c + d\sqrt{2}).$$

Therefore, $\sigma(\epsilon) = |\alpha^2 - 2\beta^2|\sigma(c + d\sqrt{2})$. Since $|\alpha^2 - 2\beta^2| \le |\alpha|^2 + 2|\beta|^2 \le 1/4 + 2 \cdot 1/4 = 3/4$, $\sigma(\epsilon) < \sigma(c + d\sqrt{2})$.

We have shown the existence of such $p+q\sqrt{2}$ and ϵ . We will show the uniqueness. Suppose both $p+q\sqrt{2}$, ϵ and $p'+q'\sqrt{2}$, ϵ' satisfy the desired properties. Then $a+b\sqrt{2}=(c+d\sqrt{2})(p+q\sqrt{2})+\epsilon$, and $a+b\sqrt{2}=(c+d\sqrt{2})(p'+q'\sqrt{2})+\epsilon'$. By subtracting one from the other, we get $0=(c+d\sqrt{2})((p-p')+(q-q')\sqrt{2})+(\epsilon-\epsilon')$.

Finish proving the uniqueness. This might have something to do with $|p - p'| \le 1$ and $|q - q'| \le 1$.

Exercise. (Problem 14) Conclude that $\mathbb{Z}[\sqrt{2}]$ is a principal ideal domain and a unique factorization domain.

Proof. In class, we proved that every principal ideal domain is a unique factorization domain. Therefore, it suffices to show that $\mathbb{Z}[\sqrt{2}]$ is a principal ideal domain. Let I be an ideal of $\mathbb{Z}[\sqrt{2}]$. If I = (0), we are done. Suppose otherwise. Let $S = \{|N(\alpha)| \mid \alpha \in I, \alpha \neq 0\}$. Since S is a nonempty set of positive integers, there exists a minimum value m. Let $\beta \in I$ be an element such that $|N(\beta)| = m$. We claim that $I = (\beta)$.

Suppose otherwise. Let $\alpha \in I \setminus (\beta)$. By Problem 13, there exist $\delta, \epsilon \in \mathbb{Z}[\sqrt{2}]$ such that $\alpha = \beta \delta + \epsilon$ with $|N(\epsilon)| < |N(\beta)|$. ϵ cannot be 0 because $\alpha \notin (\beta)$. Since I is an ideal, $\beta \delta \in I$. This implies that $\epsilon = \alpha - \beta \delta \in I$. However, this is a contradiction because β was chosen because $|N(\beta)| \leq |N(\beta')|$ for all $\beta' \in I$. Therefore, $I = (\beta)$, and thus $\mathbb{Z}[\sqrt{2}]$ is a principal ideal domain and a unique factorization domain.