

I MESSAUE ORDERINUS PARADIUMS:

* The message ordering means me order of delivering the messages to the intended recipients.

* The Common message order 8 hemes are FIFO, NON FIFO, Causual Order.

Notations:

msg - mi s'x s'z's s' causality dependent sond event - Si on sa on sa fereure event - Ri and =7 alb @ Same process

T => all send-rec pairs.

1. NON-FIFO EXECUTIONS:-

- * It is also called as Asynchronous execution.
- * Asynchronous execution is an execution for which

 The Causiality relation is a partial order.
- * There Cannot be any lausal relationship between events in asynchronous execution.

- * The messages can be delivered in any order.
- * Multiple paths may exist between the two end points of the logical link:

* All physical links obey FIFO rule.

2. FIFO EXECUTIONS: -

- * A fife execution is an A-execution in which, for all (six) and (six) $\in T$. (sas' and rar' and sas') = Y T
- * To Implement FIFO over non-fifo link, use sequence number and connection of for each message.
- * Receiver ruses buffer to order messages as per me Sendens sequence numbers.

3. CASUAL ORDER :-

* (0 execution & an A-execution in which, for all (s) and (s', r') ET, (r~r' and sis) = rar'

* Two Send events s and s' are related by Cawality ordered execution requires that their corresponding receive events r and r' occur in the same order at all common destinations.

* Casual order is used in applications that update shared data, distributed shared memory.

Recourse uses butter to total

* A Snapshot captures the local states of each process along with the State of each Communication Channel.

Snapshots are required to:

- * Checkpointing
- * Collecting gartage
- * Detecting deadlocks.
- * Debugging.

Chandy - Lamport algorithm:

- * The algorithm will record a global snapshot for lach process channel.
- * The Chandy-lamport algorithm uses a Control message, Called a marker.
- * After a site has recorded its snapshot, it sends a marker along all of its outgoing channels before sending out any more messages.
- * Any process may instrate the snapshot (send 'Markon').

Algoramm :-

Marker Sending rule for process Pi.

- 1. Process pr records its state.
 - 2. For each outgoing channel's on which a marker has not been Sent, Pi Sends a marker along c before Pi sends further messages along c.

Marker receiving rule for process Pj.

→ On receiving a marker along channel c.

Pecond the State of C as empty set Execute the "marker sending rule".

else

Record the State of C as the Set of messages received along C after ppis State was recorded and before p; received the marker along c.

Pa recorded Signal

- * Due to FIFO property of channels, it follows that no message sent after the marker on that chound is recorded in the channel state. Thus, condition Ca is satisfied.
- * When a process p; receives message m; that Precedes the marker on channel Cis, it act as follows: If process po has not taken its snapshot yel, then it includes mig is its recorded snapshot. Otherwise, it records meg in the State of the Channel Cry. Thus, condition G is soldified. - I swind gradient of one lossing burnet

Complexity:

* The recording part of a single instance of the algorithm requires O(e) messages and O(d) time, when e is the number of doges edges and d'is the diameter of the network.

Proporties of the recorded global State:

D,1.
$$A = $500$$
 $B = 170
 $C12 = 0
 $C21 = 80
 $C31 = 80
 $C31 = 80
 $C31 = 80
 $C31 = 80

* A distributed algorithm designed to run correctly on asynchronous systems may not run correctly on Synchronous systems.

* An algorithm that runs on an asynchronous system may deadlock on a synchronous system.

Process A Process B

Send (B) Send (A)

Recevie (B) Pecevie (A)

Realizable Synchronous Communication (RSC).

* A - execution can be realized under Synchronous communication is called realizable with synchronous communication (RSC).

RSC EXECUTIONS :-

Non-Separated Linear extension of (E.L)

The intertal $\{x \in E \mid S < x < r\}$ is empty.

Dec execution

An A-Execution (E,Z) is an RSA execution if there exist non-separated linear catension of the partial order (E,Z).

* Checking for all ilinear extensions has emporential Cost!

* Practical test using the crown Characterization.

CROWN:

Let E be an execution.

A Crown & Size K in $E((s',x'), i \in \{0, ..., k-1\})$ 8

pairs & Cornesponding send and receive events such that: $S^{k-2} < \gamma^{k-1}, S^{k-1}, \gamma^{k}$

Pa

- * fig ca): The crown is $\{(s', \tau'), (s^2, \tau^2)\}$ as we have $s' \times \tau^2$ and $5^2 \times \tau'$. This execution represents the program enecution
- * Cyclic dependencies may exist in a crown.
- * The Crown triferion states that an-A-computation is

 PSC, P.e., it can be realized on a system with

 Synchronous communication if and only if It contains

 no cours.

Hierarchy of ordering paradigms:

- * For an A-execution, A is RSC is and only is A is
 on 8-execution.
- * RSC CCO CFIFO CA.
- * The degree of Concurrency is most in A and least in syrve.
- * A program using synchronous Communication is carriest to develop and verify.
- * A program using non-fito Communication, resulting is an A execution, is hardest to design and voily.

Hierarchy of the communication model.

Simulation - Asynchronous program on Synchronous systems. (How to make non Rse to Rse).

- * Each channel Go is modeled by a Control process pigo that simulates the Channel buffer.
- * An asynchronous Communication from i to j becomes a synchronous Communication from i to pij followed by Synchronous Communication from pijo to j.