

Suppose you have two finite groups G and H, a G-set X, and a target function $t\colon X\to H$. You want to construct some finite sequence of maps $\{f_i\colon X\to H\}_{i=1}^N$ such that for any function $s_0\colon X\to H$ and any sequence $\{g_i\in G\}_{i=1}^{N-1}$ the following sequence contains t

$$\{s_0(x), \underbrace{f_1(x) \cdot s_0(x)}_{s_1}, \underbrace{f_2(x) \cdot g_1 * s_1(x)}_{s_2}, \dots, \underbrace{f_N(x) \cdot g_{N-1} * s_{N-1}(x)}_{s_N}\}$$

where $f_i(x) \cdot s(x) = f_i(x)s(x)$ under ordinary group multiplication, and $g_i * s(x) = s(g_i^{-1}x)$.

Figure 1: Let X be the vertices of the square $G = C_4$ the cyclic group which acts on the X by rotation, $H = \mathbb{Z}_2$, and $t(x) \equiv 0$. Then interspersing the above sequence of N = 7 moves with f(x) = 1 will always result in the sequence reaching the target function, where 1, 2, and 3 are the moves that flip one coin, two opposite coins, and two adjacent coins respectively.

Question. What conditions on G, H, X and t guarantee such a finite sequence of maps?

Related.

- 1. Given G, H, X and t, what is the minimum N?
- 2. If the sequence $\{g_i \in G\}_{i=1}^{\infty}$ is chosen uniformly at random, what is the expected length of $\{f_i\}$ before t is reached?
- 3. What if there is a set of target functions, any one of which is valid. (e.g. all sets satisfying the condition that the number of heads is congruent to 2 (mod 3).)
- 4. Can this be generalized to multiple dimensions (e.g. a tetrahedron)?
- 5. What if something about s_i is told to you after the *i*th move for each *i* (and the strategy can depend on this information)?

Note. This can be generalized to an arbitrary 2^n -gon, but no other m-gon. The idea is that (1) you can't solve any m-gon with m odd, and (2) you can solve a m-gon if and only if you can solve a d-gon for every proper divisor $d \mid m$.

References.

http://mathriddles.williams.edu/?p=77