Aula 4: Métodos Lineares para Classificação

Machine Learning

Paulo Orenstein

Verão, 2025 IMPA

Capítulo 4: Métodos lineares para classificação

Capítulo 4

- Classificação: setup geral
- ▶ Métodos discriminativos: regressão logística e regressão multinomial
- ▶ Métodos generativos: LDA, QDA e naive Bayes
- Avaliação de classificadores
- Modelos lineares generalizados

Introdução

- ▶ Queremos prever variáveis qualitativas (e.g., cor de olho ∈ {castanho, azul, verde})
- ightharpoonup Dado previsores X, nosso objetivo é construir $\hat{f}(X)$ tomando valores em \mathcal{Y}
- Em geral, há interesse não só na previsão, mas na probabilidade de pertencimento de cada classe

Setup geral

- ▶ Dados de treino: $\{(x_i, y_i)\}_{i=1}^n$, onde $x_i \in \mathcal{X}$ e $y_i \in \mathcal{Y}$
 - Vamos assumir que $\mathcal{Y} = \{0, 1\}$
- ightharpoonup Classe de funções preditivas: $\hat{f}_{tr}: \mathcal{X} \to \mathcal{Y}$
 - Vamos assumir que $\hat{t}_{tr}(x) = \mathbb{I}_{[\hat{p}(x)>0.5]}$, com $\hat{p}(x) = h(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p)$
- Função-perda: $L: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$
 - Vamos assumir que $L(y, \hat{f}(x)) = \mathbb{I}_{[v \neq \hat{f}(x)]}$
- ▶ Otimizador: encontrar \hat{f} (ou, equivalentemente, $\hat{\beta}_0, \dots, \hat{\beta}_p$) que minimiza o erro médio:

$$(\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_p) = \operatorname*{argmin}_{\tilde{eta}_0,\ldots,\tilde{eta}_p} rac{1}{n} \sum_{i=1}^n \mathbb{I}_{[y_i
eq \hat{f}(x_i)]}$$

Classificação: otimização da perda 0-1

- Dado que temos uma função-perda, por que não escolher os parâmetros que minimizam a função?
- Problema: perda 0-1, $L(y, \hat{f}(x)) = \mathbb{I}_{[y \neq \hat{f}(x)]}$ com $\hat{f}(x) = \mathbb{I}_{[\hat{p}(x) > 0.5]}$, não é convexa, nem suave

- ▶ Ou seja, $\partial L(y, \hat{f}(x))/\partial \hat{p}(x) = 0$ em quase todo ponto!
- ▶ Daí, se $\hat{p}(x) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$, temos $\partial L(y, \hat{f}(x)) / \partial \hat{\beta}_j = (\partial L(y, \hat{f}(x)) / \partial \hat{p}(x)) \cdot (\partial \hat{p}(x) / \partial \hat{\beta}_j)$
- Precisamos considerar perdas substitutas

Classificação: regressão linear

- Que tal usar a perda quadrática, como fizemos antes?
- ▶ Ou seja, por que não regressão linear com $Y \in \{0, 1\}$, e fitamos $\hat{p}(x) = \sum_{j=1}^{p} \hat{\beta}_j X_j$?
- ▶ Assim, $\mathbb{E}[Y|X=x] = 0 \cdot \mathbb{P}[Y=0|X=x] + 1 \cdot \mathbb{P}[Y=1|X=1] = \mathbb{P}[Y=1|X=x] = p(x)$
- lacktriangle Na hora de escolher a classe, basta tomar $\hat{f}(X) = \mathbb{I}_{[\hat{p}(x)>0.5]}$
- Ainda assim, há três desvantagens:
 - Não é imediato como generalizar para mais categorias (e.g., {avc, câncer, diabetes})
 - As estimativas $\hat{p}(x) = \sum_{i=1}^{p} \hat{\beta}_{i} X_{j}$ não precisam estar em [0, 1], então não são probabilidades
 - Se y = 1 e $\hat{p}(x) = 3$, o que é "bom", a perda seria menor com $\hat{p}(x) = 0$, pois $(3-1)^2 > (0-1)^2$
- ightharpoonup Parte do problema é que estamos adaptando um método de regressão que assume $y \in \mathbb{R}$
- ightharpoonup Dados sugerem repensar nossa função perda L e, com isso, nossa função preditiva \hat{f}

- ▶ Vamos modelar $Y \sim \text{Bern}(p(x))$, ou seja, $\mathbb{P}[Y = 1 | X = x] = p(x)$
- Essa formulação sugere uma perda natural: máxima verossimilhança, ou seja, escolher o valor de $\hat{p}(x)$ tal que os dados se pareçam com $Y \sim \text{Bern}(\hat{p}(x))$. Para isso note que

$$\mathbb{P}[Y = y | X = x] = (p(x))^{y} (1 - p(x))^{1-y}$$

Isso vira uma perda se considerarmos o seu negativo (e tomarmos o log, por simplicidade):

$$L(y, \hat{p}(x)) = -(y \log(\hat{p}(x)) + (1 - y) \log(1 - \hat{p}(x)))$$

- Essa perda é um substituto mais suave para a acurácia: $L(y,\hat{f}(x)) = \mathbb{I}_{[y \neq \hat{f}(x)]} = \mathbb{I}_{[y \neq \mathbb{I}_{[\hat{p}(x)>0.5]}]}$
- Melhor: ele penaliza bastante as previsões feitas com muita confiança, mas erradas

8 / 42

Capítulo 4

- Classificação: setup geral
- ▶ Métodos discriminativos: regressão logística e regressão multinomial
- ▶ Métodos generativos: LDA, QDA e naive Bayes
- Avaliação de classificadores
- Modelos lineares generalizados

Se queremos escolher $\hat{f}(x)$ para minimizar a perda empírica, então:

$$\hat{p}(x) = \underset{\tilde{p}}{\operatorname{argmin}} - \left(\frac{1}{n} \sum_{i=1}^{n} y_i \log \frac{\tilde{p}(x_i)}{1 - \tilde{p}(x_i)} + \log(1 - \tilde{p}(x_i)) \right)$$

Ideia: vamos modelar o impacto sobre yi de maneira linear, ou seja:

$$\log \frac{\hat{p}(x)}{1 - \hat{p}(x)} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Isso é equivalente a tomar:

$$\hat{p}(x) = \operatorname{logistic}(\beta_0 + \dots + \beta_p x_p) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}},$$

o que resolve nosso problema com previsões fora de [0, 1]. É uma normalização.

- Du seja: acurácia é uma perda desejada, mas difícil de otimizar. A logística é mais suave.
- Escolhemos $\hat{p}(x_i)$ para ter impacto linear dos previsores sobre y_i . É uma ideia bem geral.
- Isso equivale a resolver o seguinte problema de estimação:

$$egin{aligned} (\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_p) &= \operatorname*{argmin}_{ ilde{eta}_0,\ldots, ilde{eta}_p} - rac{1}{n}\sum_{i=1}^n y_i\lograc{\hat{p}(x_i)}{1-\hat{p}(x_i)} + \log(1-\hat{p}(x_i)) \ &= \operatorname*{argmin}_{ ilde{eta}_0,\ldots, ilde{eta}_p} - rac{1}{n}\sum_{i=1}^n y_ieta^{ op}x_i - \log(1+e^{eta^{ op}x_i}) \end{aligned}$$

É um problema convexo. Podemos usar métodos de gradiente para encontrar β.

Regressão logística: otimização

 \triangleright Em mais detalhes, note que função-perda é convexa em β :

$$L = -\frac{1}{n} \sum_{i=1}^{n} y_i \boldsymbol{\beta}^{T} x_i - \log(1 + e^{\boldsymbol{\beta}^{T} x_i})$$

Logo, podemos usar métodos de gradiente baseados em:

$$\frac{\partial L}{\partial \beta} = -\left(\frac{1}{n}\sum_{i=1}^{n} y_i x_i - \frac{x_i e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}\right) = -\frac{1}{n}\sum_{i=1}^{n} (y_i - \hat{p}(x_i))x_i = -\frac{1}{n}X^T(y - \hat{p})$$

$$\frac{\partial^2 L}{\partial \beta \partial \beta^T} = \frac{1}{n}\sum_{i=1}^{n} x_i x_i^T(\hat{p}(x_i) - \hat{p}^2(x_i)) = \frac{1}{n}X^T WX,$$

onde $W = \operatorname{diag}(\hat{p}(1-\hat{p}))$

Regressão logística: otimização

 \triangleright Descida de gradiente com passo η (método de primeira ordem):

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \eta_t \frac{\partial L}{\partial \beta} = \hat{\beta}_t + \frac{\eta_t}{n} X^T (y - \hat{p})$$

Método de Newton (método de segunda ordem):

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \left(\frac{\partial^2 L}{\partial \beta \partial \beta^T}\right)^{-1} \frac{\partial L}{\partial \beta} = \hat{\beta}_t + (X^T W X)^{-1} X^T (y - \hat{p})$$

$$= (X^T W X)^{-1} X^T W (X \hat{\beta}_t - W^{-1} (y - \hat{p})) = (X^T W X)^{-1} X^T W z_t,$$

$$\hat{\beta}_{t+1} W^{-1} (y - \hat{p})$$

onde $z_t = X\hat{\beta}_t + W^{-1}(y - \hat{p})$

lsso é uma forma de mínimos quadrados iterados com pesos (IRLS), onde a *i*-ésima observação recebe peso $\sqrt{\hat{p}_i(1-\hat{p}_i)}$; aí cada passo de Newton pode ser resolvido com descida de gradiente:

$$\hat{eta}_{t+1} = \operatorname*{argmin}_{\tilde{eta}} (z_t - X \tilde{eta})^{\mathsf{T}} W(z_t - X \tilde{eta})$$

Regressão logística: exemplo

▶ Resultado da regressão logística **default** \approx Bern(logistic($\beta_0 + \beta_1$ **balance**)):

	Coefficient	Std. Error	Z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	<0.0001
balance	0.0055	0.0002	24.9	< 0.0001

- Inferência pode ser generalizada através de testes assintóticos
- Qual é a probabilidade de default para alguém com balance de \$1000?

$$\hat{p}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

▶ Qual é a probabilidade de **default** para alguém com **balance** de \$2000?

$$\hat{p}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

Regressão logística: exemplo

▶ Resultado da regressão logística **default** ≈ Bern(logistic($\beta_0 + \beta_1$ **student**)):

	Coefficient	Std. Error	Z-statistic	<i>p</i> -value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

Qual é a probabilidade de default para um estudante?

$$\hat{p}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}} = \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431$$

Qual é a probabilidade de default para um não-estudante?

$$\hat{p}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}} = \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292$$

Regressão logística com muitas variáveis

O caso com p previsores é estimado como antes, via máxima verossimilhança:

$$\hat{
ho}(X)=rac{e^{\hat{eta}_0+\hat{eta}_1X_1+\cdots+\hat{eta}_pX_p}}{1+e^{\hat{eta}_0+\hat{eta}_1X_1+\cdots+\hat{eta}_pX_p}}$$

▶ Resultado de **default** ≈ Bern(logistic($\beta_0 + \beta_1$ balance + β_2 income + β_3 student)):

	Coefficient	Std. Error	Z-statistic	<i>p</i> -value
Intercept	-10.8690	0.4923	-22.08	<0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2363	-2.74	0.0062

▶ Por que o coeficiente **student**, que antes era positivo, agora ficou negativo?

Regressão logística: variáveis de confusão

- Estudantes têm saldos maiores que não-estudantes, então saldo é explicado por estudante
- Pessoas com grandes saldos têm maior probabilidade de inadimplência
- ▶ Dentre pessoas com alto saldo, estudantes são menos prováveis de serem inadimplentes

Regressão logística: problemas

- Quando há colinearidade, os coeficientes ficam instáveis
- Quando há separação perfeita entre classes, os coeficientes ficam instáveis
 - É sempre o caso com $p \ge n-1$
- Coeficientes instáveis tornam o problema de otimização mais complicado
- A interpretação dos coeficientes não é tão simples quanto no caso de regressão linear
- ▶ O modelo pode ser muito inflexível para alguns problemas, como classificação de dígitos

Regressão multinomial

- ▶ Como proceder se queremos prever mais de duas classes?
- ► Por exemplo, emergências ∈ {infarto, overdose, epilepsia}
- ▶ Ideia: utilizar a distribuição categórica ao invés da Bernoulli. Com K classes, suponha que $\mathbb{P}[Y = k | X = x] = \hat{p}_k(x)$, onde $\sum_{k=1}^K \hat{p}_k(x) = 1$. Ou seja, a densidade de Y é dada por

$$\mathbb{P}[Y = y | X = x] = \hat{p}_1(x)^{\mathbb{I}_{[y=1]}} \cdot \hat{p}_2(x)^{\mathbb{I}_{[y=2]}} \cdots \hat{p}_K(x)^{\mathbb{I}_{[y=K]}}$$

A log-verossimilhança é, portanto,

$$\begin{split} L(y, \hat{p}(x)) &= \sum_{k=1}^{K} \mathbb{I}_{[y=k]} \log \hat{p}_{k}(x) = \sum_{k=1}^{K-1} \mathbb{I}_{[y=k]} \log \frac{\hat{p}_{k}(x)}{\hat{p}_{K}(x)} + \log \hat{p}_{K}(x) \\ &= \sum_{k=1}^{K-1} \mathbb{I}_{[y=k]} \log \left(\frac{\hat{p}_{k}(x)}{1 - \sum_{l=1}^{K-1} \hat{p}_{l}(x)} \right) + \log \left(1 - \sum_{k=1}^{K-1} \hat{p}_{k}(x) \right) \end{split}$$

Regressão multinomial

ightharpoonup Como antes, modelamos o efeito de $\hat{p}(x)$ em y de maneira linear, ou seja,

$$\log \left(\frac{\hat{p}_k(x)}{1 - \sum_{k=1}^{K-1} \hat{p}_l(x)} \right) = \hat{\beta}_{k0} + \hat{\beta}_{k1} x_1 + \hat{\beta}_{k2} x_2 + \dots + \hat{\beta}_{kp} x_p,$$

onde agora há (p+1)K parâmetros. Ou seja, tomamos

$$\hat{p}_{k}(x) = \frac{e^{\hat{\beta}_{k0} + \hat{\beta}_{k1}x_{1} + \hat{\beta}_{k2}x_{2} + \dots + \hat{\beta}_{kp}x_{p}}}{1 + \sum_{l=1}^{K-1} e^{\hat{\beta}_{l0} + \hat{\beta}_{l1}x_{1} + \hat{\beta}_{l2}x_{2} + \dots + \hat{\beta}_{lp}x_{p}}}, \qquad k = 1, \dots, K-1$$

e, para a última classe,

$$\hat{p}_{\mathcal{K}}(x) = 1 - \sum_{k=1}^{K-1} \hat{p}_{k}(x) = rac{1}{1 + \sum_{l=1}^{K-1} e^{\hat{eta}_{l0} + \hat{eta}_{l1} x_{1} + \hat{eta}_{l2} x_{2} + \cdots + \hat{eta}_{lp} x_{p}}}$$

Os parâmetros são determinados via máxima verossimilhança, como antes

Capítulo 4

- Classificação: setup geral
- ▶ Métodos discriminativos: regressão logística e regressão multinomial
- ▶ Métodos generativos: LDA, QDA e naive Bayes
- Avaliação de classificadores
- Modelos lineares generalizados

Modelos generativos

- ▶ Até agora, o que fizemos foi estimar $\mathbb{P}[Y = y | X = x] = p(x)$.
- Agora, vamos fazer isso estimando outras duas quantidades:
 - 1. $\mathbb{P}[X|Y]$: dada a categoria de Y, qual é a distribuição sobre os previsores X
 - 2. $\mathbb{P}[Y]$: a probabilidade de Y pertencer a cada uma das categorias
- Daí usamos a regra de Bayes, que diz:

$$\mathbb{P}[Y=k|X=x] = \frac{\mathbb{P}[X=x|Y=k] \ \mathbb{P}[Y=k]}{\mathbb{P}[X=x]} = \frac{\mathbb{P}[X=x|Y=k] \ \mathbb{P}[Y=k]}{\sum_{l=1}^{K} \mathbb{P}[X=x|Y=l] \ \mathbb{P}[Y=l]}$$

- ightharpoonup Como vamos estimar $\mathbb{P}[X|Y]$ e $\mathbb{P}[Y]$, esses modelos são chamados generativos
 - Modelos que estimam $\mathbb{P}[Y|X]$ (como regressão logística) são chamados discriminativos

- ▶ Vamos estimar $\mathbb{P}[Y|X]$ usando as seguintes hipóteses:
 - 1. $\mathbb{P}[X = x | Y = k] = \hat{f}_k(x)$ é uma distribuição Normal multivariada

2. $\mathbb{P}[Y = k] = \hat{\pi}_k$ é exatamente a fração de dados de treino na classe k

- ▶ Seja $\mathbb{P}[Y = k] = \pi_k$
- Suponha que $\mathbb{P}[X = x | Y = k]$ é uma Normal multivariada:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}^{-1}(x-\mu_k)},$$

onde $\mu_k \in \mathbb{R}^p$ é a média da categoria k e $\Sigma \in \mathbb{R}^{p \times p}$ é a matriz de covariância (comum a todas as categorias)

 \triangleright O classificador de Bayes para escolher a classe k é dado por:

$$\mathbb{P}[Y=k|X=x] = \frac{\mathbb{P}[X=x|Y=k]\mathbb{P}[Y=k]}{\mathbb{P}[X=x]} = \frac{f_k(x)\pi_k}{\mathbb{P}[X=x]} = C \times f_k(x)\pi_k$$

25 / 42

Expandindo $f_k(x)$ e absorvendo o que não depende de k:

$$\mathbb{P}[Y = k | X = x] = \frac{C\pi_k}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}^{-1}(x - \mu_k)} = \tilde{C}\pi_k e^{-\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}^{-1}(x - \mu_k)}$$

▶ Daí, dado X, vamos escolher a classe Y = k que maximiza

$$\log \mathbb{P}[Y = k | X = x] = \log \tilde{C} + \log \pi_k - \frac{1}{2} (x - \mu_k)^T \mathbf{\Sigma}^{-1} (x - \mu_k)$$
$$= \log \tilde{C} + \log \pi_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + x^T \mathbf{\Sigma}^{-1} \mu_k$$

e note que o termo $\log \tilde{\tilde{C}}$ não importa para k

▶ Dado x, nossa previsão é a classe k com maior valor

$$\delta_k(x) = \log \pi_k - \frac{1}{2} \mu_k^\mathsf{T} \mathbf{\Sigma}^{-1} \mu_k + x^\mathsf{T} \mathbf{\Sigma}^{-1} \mu_k$$

- ▶ O "linear" se refere ao formato da fronteira de classificação
- ightharpoonup O conjunto de pontos x igualmente classificados para as classes k e l são:

$$\log \boldsymbol{\pi}_{k} - \frac{1}{2}\boldsymbol{\mu}_{k}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{k} + \boldsymbol{x}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{k} = \delta_{k}(\boldsymbol{x}) = \delta_{l}(\boldsymbol{x}) = \log \boldsymbol{\pi}_{l} - \frac{1}{2}\boldsymbol{\mu}_{l}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{l} + \boldsymbol{x}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{l}$$

▶ Isso é linear em x:

Análise discriminante linear: estimação

- Quais parâmetros precisamos estimar para LDA?
- $ightharpoonup \hat{\pi}_k$ é a fração de amostras de treino na classe k:

$$\hat{\pi}_k = \frac{\#\{i : y_i = k\}}{n}$$

 \triangleright $\hat{\mu}_k$ é o centro de massa de cada classe k:

$$\hat{\mu}_k = \frac{1}{\#\{i: y_i = k\}} \sum_{i: y_i = k} x_i$$

 $ightharpoonup \hat{\Sigma}$ é o estimador não-viesado da matriz de covariância:

$$\hat{\mathbf{\Sigma}} = \frac{1}{n - K} \sum_{k=1}^{K} \sum_{i: y_k = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T$$

Análise discriminante linear: estimação

ightharpoonup Ou seja, tendo estimado $\hat{\pi}_k$, $\hat{\mu}_k$ e $\hat{\Sigma}$, classificamos a resposta do previsor x como

$$\hat{f}(x) = \operatorname*{argmax}_{k=1,...,K} \hat{\delta}_k(x) = \operatorname*{argmax}_{k=1,...,K} \log \hat{\pi}_k - \frac{1}{2} \hat{\mu}_k^T \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_k + x^T \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_k$$

- ► Por que usar análise discriminante linear?
 - Quando as classes são bem-separadas, LDA é mais estável de se estimar que regressão logística
 - lacktriangle Com n pequeno e X|Y distribuído de maneira aproximadamente Normal, LDA é melhor que regressão logística

Análise discriminante: generalizações

► A hipótese fundamental de LDA é estimar

$$\mathbb{P}[Y = k | X = x] = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)},$$

onde $f_k(x)$ são Normais com mesma matriz de covariância Σ em cada classe.

- ▶ Considerando outros formatos para $f_k(x)$ é possível generalizar LDA:
 - Análise discriminante quadrática (QDA): quando cada classe tem um Σ_k diferente, ou seja, $X|Y=k\sim N(\mu_k,\Sigma_k)$. Isso generaliza e é mais flexível do que LDA
 - Naive Bayes: quando os p previsores são considerados independentes, i.e., $f_k(x) = f_{k1}(x_1) \times f_{k2}(x_2) \times \cdots \times f_{kp}(x_p)$ (e cada f_{kj} precisa ser especificado)

30 / 42

Análise discriminante quadrática

 \triangleright Como Σ_k são diferentes, os termos quadráticos importam:

$$\delta_k(x) = \log \pi_k - \frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}_k^{-1}(x - \mu_k) - \frac{1}{2}\log |\mathbf{\Sigma}_k|$$

► Exemplo: fronteira de Bayes (---), LDA (·····) e QDA (----)

Naive Bayes

- Assumindo que os p previsores são independentes é uma forma de simplificar o problema, útil quando p é grande
- **Exemplo:** no caso Normal, Σ_k é diagonal, então

$$\delta_k(x) \propto \log \left(\pi_k \prod_{j=1}^p f_{kj}(x_j)
ight) = \log \pi_k - rac{1}{2} \sum_{j=1}^p \left[rac{(x_j - \mu_{kj})^2}{\sigma_{kj}^2} + \log \sigma_{kj}^2
ight]$$

- ▶ Naive Bayes pode ser usado também para variáveis quantitativas: basta usar uma estimativa da função de probabilidade (e.g., histogramas)
- ▶ A hipótese de independência condicional de Naive Bayes pode ser forte, mas costuma funcionar

Comparando os métodos: analiticamente

- ▶ Dado previsor X, escolhemos a classe que maximiza $\mathbb{P}[Y = k | X = x]$ ou $\log \left(\frac{\mathbb{P}[Y = k | X = x]}{\mathbb{P}[Y = K | X = x]} \right)$
- Regressão logística:

$$\log\left(\frac{\mathbb{P}[Y=k|X=x]}{\mathbb{P}[Y=K|X=x]}\right) = \beta_{k0} + \sum_{j=1}^{p} \beta_{kj} x_j$$

Análise discriminante linear:

$$\log\left(\frac{\mathbb{P}[Y=K|X=X]}{\mathbb{P}[Y=K|X=X]}\right) = \log\left(\frac{\pi_k \exp(-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}^{-1}(x-\mu_k))}{\pi_K \exp(-\frac{1}{2}(x-\mu_K)^T \mathbf{\Sigma}^{-1}(x-\mu_K))}\right) = a_k + \sum_{j=1}^p b_{kj} x_j$$

Comparando os métodos: analiticamente

Análise discriminante quadrática:

$$\log \left(\frac{\mathbb{P}[Y = K | X = X]}{\mathbb{P}[Y = K | X = X]} \right) = \log \left(\frac{\pi_k \exp(-\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}_{\mathbf{k}}^{-1}(x - \mu_k))}{\pi_K \exp(-\frac{1}{2}(x - \mu_K)^T \mathbf{\Sigma}_{\mathbf{k}}^{-1}(x - \mu_K))} \right)$$

$$= a_k + \sum_{j=1}^{p} b_{kj} x_j + \sum_{j=1}^{p} \sum_{l=1}^{p} c_{kjl} x_j x_l$$

► Naive Bayes:

$$\log\left(\frac{\mathbb{P}[Y=K|X=x]}{\mathbb{P}[Y=K|X=x]}\right) = \log\left(\frac{\pi_k \prod_{j=1}^p f_{kj}(x)}{\pi_K \prod_{j=1}^p f_{kj}(x_j)}\right) = a_k + \sum_{k=1}^p g_{kj}(x_j)$$

Comparando os métodos: analiticamente

- ▶ Regressão logística não é modelo generativo, pois não estima X|Y
- ▶ LDA é um caso particular de QDA, mas pode ter performance melhor
- ▶ Todo classificador com fronteiras de decisão linear é um naive Bayes (e.g., LDA)
- ▶ Quando naive Bayes usa $f_{kj}(x_j)$ como $N(\mu_{kj}, \sigma_j^2)$, vira LDA com $\Sigma = \text{diag}(\sigma_j^2)$
- QDA e naive Bayes não são casos particulares um do outro
 - QDA possui termos quadráticos (e.g., x_jx_k)
 - lacktriangle Naive Bayes possui somas de funções sobre cada componente x_j
- Ou seja, métodos fazem hipóteses distintas; nenhum é uniformemente melhor

35 / 42

Comparando os métodos: empiricamente

36 / 42

Capítulo 4

- Classificação: setup geral
- ▶ Métodos discriminativos: regressão logística e regressão multinomial
- ▶ Métodos generativos: LDA, QDA e naive Bayes
- Avaliação de classificadores
- Modelos lineares generalizados

Avaliando métodos de classificação

- ▶ Em geral, para métodos de classificação, usamos a perda 0-1: $\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}_{[\hat{y}_i\neq y_i]}$
- ▶ Ela não é bem informativa: será que os erros são balanceados entre classes?
- ▶ Uma descrição melhor é a matriz de confusão:

Predicted class

	Negative	Positive
Negative	True Negative (TN)	False Negative (FN) (or β)
Positive	False Positive (FP) (or α)	True Positive (TP)

Exemplo: LDA

▶ Vamos usar LDA para prever **default** num dataset de 10 mil pessoas com previsão "sim" se $\mathbb{P}[\mathbf{default} = \mathbf{yes}|X] > 0.5$

		True default status	
		Negative	Positive
Predicted	Negative	9,644	252
	Positive	23	81

- ► A taxa de erro (de treino) é muito baixa: (23 + 252/10000) = 2.75%
- Mas se prevermos sempre "não", o erro é de $(333/10000) \approx 3.33\%$
- ▶ Problema: a taxa de falsos negativos é alta: $252/333 \approx 76\%$
- ▶ Uma solução: mudar o threshold de 0.5 para 0.2

Exemplo: escolha de threshold

▶ Como a tabela anterior muda se mudarmos a nossa previsão de "sim" quando $\mathbb{P}[\text{default} = \text{yes}|X] > 0.2 \text{ (versus 0.5)}?$

		True default status	
		Negative	Positive
Predicted	Negative	9,644	252
	Positive	23	81

	True default status		
	Negative	Positive	
Negative	9,432	138	
Positive	235	195	

- ▶ A taxa de falso negativos agora é: $138/333 \approx 41\%$
- Mas a taxa de falso positivo subiu de $23/9667 \approx 0.2\%$ para $235/9667 \approx 2.4\%$
- ► E a taxa de erro (de treino) aumentou: $(235 + 138)/10000 \approx 3.7\%$
- ▶ Dependendo do problema, essa mudança pode ser útil (e.g., em tribunais)

Exemplo: efeito do threshold no erro

▶ Vamos visualizar a dependência da taxa de erro no threshold:

- — Taxa de falso negativo (FN/P)
- ····· Taxa de falso positivo (FP/N)
- —— Perda 0-1 ou taxa de erro ((TP+TN)/(P+N))

Exemplo: curva ROC

▶ Curva ROC mostra a performance de um classificador para todos os thresholds

- A área sob a curva (AUC) mede a qualidade do classificador
 - Um classificador que sugere "não" com probabilidade 0.5 tem AUC de 0.5
 - Quanto mais perto de 1, melhor a AUC

Perguntas para revisão

- ▶ Por que não usamos métodos de regressão para problemas de classificação?
- Por que, mesmo querendo minimizar a perda 0-1, não é recomendado minimizá-la diretamente? O que fazer ao invés?
- Qual é a perda sendo minimizada pela regressão logística?
- ightharpoonup Como encontrar o vetor de coeficientes $\hat{\beta}$ em regressão logística?
- Como interpretar os coeficientes de regressão logística?
- ▶ Como generalizar regressão logística para mais de dois casos $y \in \{0, 1\}$?
- O que são métodos generativos? Como diferenciar LDA, QDA e Naive Bayes?
- ▶ Sob que circunstâncias podemos encarar regressão logística, LDA, QDA e Naive Bayes como casos particulares uns dos outros? Quando preferir um ao outro?
- Como avaliar métodos de classificação? O que é curva ROC?