Genexia Health Project

Smarter Anticoagulant Dosing Through Precision Medicine

Contents / Slide No.			
	3	Problem	alth
	4	Objectives	GenexaHealth
	5	Approach)
	6-7	Results	#

Problem

- Anticoagulant, Warfarin has a narrow therapeutic window which makes dosing highly sensitive
- Current prescribing practices fail to integrate genetic, clinical, and lifestyle factors which leads to:
- Patient safety risks: bleeding or clotting (if doses are too high or too low respectively)
- Extended stabilisation periods, frequent INR monitoring, and reduced quality of life
- Loss of patient trust due to non-personalised dosing

Hospital Impact

- High clinical liability and financial burden due to medication-related readmissions
- Operational inefficiency, as clinicians rely on trial-and-error dose adjustments without required guidance

Business Impact

- Faces competitive and regulatory pressure as AI-driven pharmacogenomics becomes standard
- Credibility and differentiation in precision medicine must be maintained
- Must prove clinical and financial benefits to partners and insurer

Objectives

Enhance patient safety by reducing adverse drug events

Comply with precision medicine and FDA guidelines

Improve clinical efficiency using AI and data-driven automation

Build patient trust through transparent, personalised dosing recommendation

Differentiate
GenexaHealth's offerings to
strengthen healthcare,
insurer and research
partnerships

Measurable KPI's

- 25% reduction in bleeding events within 6 months post-implementation
- Shorter stabilisation period:
 of patients reaching target
 INR in <10 days
- ROI metrics: Hospital cost savings from reduced readmissions and faster stabilisation

Approach

Data Science

- Develop multimodal ML models for personalised Warfarin dose prediction
- Integrate genomic variants, clinical parameters, and lifestyle factors into model inputs
- Apply SHAP explainability for interpretable AI-driven recommendations
- Track/retrain models using MLf low for version control and reproducibility
- Deploy models through

PMO

- Use Agile methodology and Scrum (in two Sprints) with milestone tracking in Jira.
- Documentation and tools: Jira, Confluence, BPMN, Requirements Traceability Matrices.
- Monitor risks (including regulatory delays, EHR integration issues).
- Ensure cross-functional alignment between clinical, technical, and business teams

Business Analysis

- Elicit requirements from stakeholders
- Map current vs. future-state workflows and define integration needs
- Translate clinical guidelines into functional system requirements
- Define KPIs and success metrics for hospitals and insurers to assess ROI

Results

CHALLENGE

Traditional warfarin dosing relies on trial-and-error, putting patients at risk during weeks of stabilization

SOLUTION

AI model that predicts optimal warfarin dose with 90% accuracy using genetic + clinical data

- Successfully Merged Genomic, Lifestyle
 & Clinical Data
- Advanced Machine Learning for Precision Dosing
- $\sqrt{}$ 90% Prediction Accuracy ($R^2 = 0.90$)
- ✓ 0.4 mg Mean Absolute Error (Clinically significant)
- ✓ Integrated Genomic + EHR + Lifestyle data
- Deployable Clinical Decision Support Tool

MULTI-MODAL DATA INTEGRATION

- ► Clinical EHR: Age, Weight, Comorbidities, Medications
- ► Genomic Data: CYP2C9, VKORC1, CYP4F2 variants
- ► Lifestyle Factors: Diet, Smoking, Alcohol intake

DATA ENHANCEMENT JOURNEY

Baseline Features → Engineered Features BASELINE (Limited Predictive Power)

- Age, sex, weight, height, ethnicity
- Basic medication flags
- Simple lifestyle scores

ENGINEERED INTELLIGENCE (High Predictive Power)

- Genetic risk
- Comorbidity Burden Index
- Polypharmacy Interaction Score
- Pharmacokinetic Calculations
- Lifestyle Impact Quantification

RESULT: 40%+ improvement in prediction accuracy

SEE **LIVE DEMO**

Champion Model Performance

EXTRA TREES REGRESSOR - ENGINEERED FEATURES

PREDICTION ACCURACY

- R² Score: 0.90 (90% variance explained)
- Mean Absolute Error: 0.4 mg (Clinically precise)
- Root Mean Square Error: 0.6 mg

CLINICAL INTERPRETATION

- Model accuracy within 0.4 mg of actual stable dose
- Outperforms traditional dosing protocols
- Validated on diverse patient population

(Model Insights) (Model Insights)

TOP PREDICTORS OF DOSE REQUIREMENTS

- 1. Genetic Factors** (CYP2C9, VKORC1 variants) 35%
- 2. Body Composition** (Weight, BMI) 25%
- 3. Clinical Comorbidities** 20%
- 4. Drug Interactions** (Amiodarone) 15%
- 5. Lifestyle Factors** 5%

VALIDATES KNOWN PHARMACOLOGY

- Genetics account for largest dose variation
- Drug interactions significantly modify requirements
- Comprehensive model captures real-world complexity

Thank You