Problem Set 3 Solutions

Calvin Walker

1.

(a) Consider the M-projection with the factored approximation Q(X,Y) = Q(X)Q(Y),

$$\begin{split} D(P||Q) &= \sum_{X,Y} P(X,Y) \log \frac{P(X,Y)}{Q(X)Q(Y)} \\ &= \mathbb{E}_P[\log P(X,Y) - \log Q(X)Q(Y)] \\ &= \mathbb{E}_P[\log P(X,Y)] - \left(\mathbb{E}_p[\log Q(X)] + \mathbb{E}_p[\log Q(Y)]\right) \pm \log(P(X)P(Y)) \\ &= \mathbb{E}_p\left[\log \frac{P(X,Y)}{P(X)P(Y)}\right] + \mathbb{E}_p\left[\log \frac{P(X)}{Q(X)}\right] + \mathbb{E}_p\left[\log \frac{P(Y)}{Q(Y)}\right] \end{split}$$

Letting $Q_M^* = P(X)P(Y)$,

$$D(P||Q) = D(P||Q_M^*) + \mathbb{E}_p \left[\log \frac{P(X)}{Q(X)} \right] + \mathbb{E}_p \left[\log \frac{P(Y)}{Q(Y)} \right]$$

Thus, $D(P||Q) \ge D(P||Q_M^*)$, and $Q_M^* = P(X)P(Y)$ minimizes the M-projection.

(b)

$$\theta^* = \arg\max_{\theta} \prod_{i=1}^{M} Q(X^{(i)}; \theta)$$

$$= \arg\min_{\theta} \sum_{i=1}^{M} -\log Q(X^{(i)}; \theta)$$

$$= \arg\min_{\theta} \sum_{i=1}^{M} -\log Q(X^{(i)}; \theta) + P(X^{(i)})$$

So if the sample size M is significantly large,

$$\theta^* = \underset{\theta}{\operatorname{arg \, min}} \ \mathbb{E}_P \left[\log \frac{P(X)}{Q(X;\theta)} \right]$$
$$= \underset{\theta}{\operatorname{arg \, min}} \ D(P||Q(X;\theta))$$

Therefore, the MLE solution θ^* minimizes the KL-Divergence $D(P||Q(X;\theta))$, and is equivalent to solving for the M-projection D(P||Q).

(c)

2.

(a) $\mathcal{M} \subseteq Local[\mathcal{U}]$, since any valid distribution P over \mathcal{X} will satisfy the constraints of the local-consistency polytope. For a clique tree \mathcal{T} , under the constraints of the local-consistency polytope, the pseudo marginals must be locally consistent,

$$\mu_{i,j}(S_{i,j}) = \sum_{C_i - S_{i,j}} \beta_i(C_i) = \sum_{C_j - S_{i,j}} \beta_i(C_j)$$

which implies that the clique tree is calibrated. So we have the clique tree invariant

$$\tilde{P}_{\Phi}(\mathcal{X}) = \frac{\prod_{i} \beta_{i}(C_{i})}{\prod_{i,j} \mu_{i,j}(S_{i,j})}$$

where $\beta_i(C_i) \propto \tilde{P}_{\Phi}(C_i)$ and $\mu_{i,j}(S_{i,j}) \propto \tilde{P}_{\Phi}(S_{i,j})$. Therefore, the clique and sepset marginals define a valid distribution over \mathcal{X} , and $Local[\mathcal{U}] \subseteq \mathcal{M}$. So we have that $Local[\mathcal{U}]$ is equivalent to \mathcal{M} for a clique tree \mathcal{T} .

Figure 1: Example Cluster Graph

(b)

Consider the above Cluster Graph for a pairwise MRF over three binary variables A, B, and C. We can satisfy the local consistency constraints with the following clique beliefs:

$$\beta_1(A,B) = \begin{bmatrix} 0.45 & 0.05 \\ 0.05 & 0.45 \end{bmatrix} \quad \beta_2(B,C) = \begin{bmatrix} 0.45 & 0.05 \\ 0.05 & 0.45 \end{bmatrix} \quad \beta_3(A,C) = \begin{bmatrix} 0.05 & 0.45 \\ 0.45 & 0.05 \end{bmatrix}$$

Such that the sepset marginals are given by: $\mu_{1,3}(A) = \mu_{1,2}(B) = \mu_{2,3}(C) = (0.5, 0.5)$. If we assume that these are marginals for a valid probability distribution,

$$P(A = 0, B = 0) = \beta_1(A = 0, B = 0) = 0.45 = P(0, 0, 1) + P(0, 0, 0)$$

 $P(A = 0, C = 0) = \beta_3(A = 0, C = 0) = 0.05 = P(0, 1, 0) + P(0, 0, 0)$
 $P(B = 0, C = 1) = \beta_2(B = 0, C = 1) = 0.05 = P(1, 0, 1) + P(0, 0, 1)$

So $P(0,0,1) \le 0.05$ and $P(0,0,0) \le 0.05$, but P(0,0,1) + P(0,0,0) = 0.45. So the parameterization does not correspond to a valid probability distribution, and we can see for a cluster graph that is not a tree, the marginal polytope is strictly contained by the local consistency polytope.

3.

(a) (i) We can see that the pseudo-marginal distributions satisfy the marginalization condition, since:

$$\mu_{1,3}(X_1) = (0.5, 0.5) = \sum_{X_2} \beta_1(X_1, X_2) = \sum_{X_3} \beta_3(X_1, X_3)$$

$$\mu_{1,2}(X_2) = (0.5, 0.5) = \sum_{X_1} \beta_1(X_1, X_2) = \sum_{X_3} \beta_2(X_2, X_3)$$

$$\mu_{2,3}(X_3) = (0.5, 0.5) = \sum_{X_2} \beta_2(X_2, X_3) = \sum_{X_1} \beta_3(X_1, X_3)$$

And that the normalization conditions hold:

$$\sum_{X_1, X_2} \beta_1(X_1, X_2) = \sum_{X_2, X_3} \beta_2(X_2, X_3) = \sum_{X_1, X_3} \beta_3(X_1, X_3) = 1$$

and $\beta_i(c_i) \geq 0 \ \forall i$. Therefore, they are calibrated and locally consistent.

(ii) Assume that there is a valid distribution $P(X_1, X_2, X_3)$ with the beliefs as its marginals. Then,

$$P(X_1 = 0, X_2 = 0) = \beta_1(X_1 = 0, X_2 = 0) = 0.4 = P(0, 0, 1) + P(0, 0, 0)$$

$$P(X_1 = 0, X_3 = 0) = \beta_3(X_1 = 0, X_3 = 0) = 0.1 = P(0, 1, 0) + P(0, 0, 0)$$

$$P(X_2 = 0, X_3 = 1) = \beta_2(X_2 = 0, X_3 = 1) = 0.1 = P(1, 0, 1) + P(0, 0, 1)$$

So $P(0,0,1) \le 0.1$ and $P(0,0,0) \le 0.1$, but P(0,0,1) + P(0,0,0) = 0.4, a contradiction. So the pseudo-marginals can't constitute a vaild distribution.

(b)

$$P_{\Phi}(A,B) - \beta_1(A,B) = \sum_{C,D} P_{\Phi}(A,B,C,D) - \sum_{C,D} P_{\Phi}(A,B,C,D) r(A,D)$$
$$= P_{\Phi}(A,B) - P_{\Phi}(A,B) \sum_{D} r(A,D)$$

So $\beta_1(A, B) = P_{\Phi}(A, B) \sum_D r(A, D)$, and we have a bound on the error for the estimated marginal $\beta_1(A, B)$

(a)

Table 1: GMM Mean Vectors (Foreground)

1	2	3	4	5
36.52	84.58	28.38	54.43	54.73
-0.13	17.19	10.62	22.38	-1.72
-46.72	16.56	-23.34	4.80	-27.85

Table 3: GMM Mean Vectors (Background)

1	2	3	4	5
87.89	67.91	44.28	97.85	75.99
1.36	18.52	5.19	0.98	-2.30
-3.51	13.05	-9.32	0.89	-11.15

1	2	3	4	5
7.05	35.98	44.74	131.42	108.44
10.16	10.80	15.04	78.22	5.41
27.44	12.82	99.20	75.32	70.76

Table 2: GMM Covariance Traces (Foreground)

Table 4: GMM Covariance Traces (Background)

1	2	3	4	5
19.86	6.27	25.90	0.18	67.36
3.90	1.66	12.03	0.45	1.74
10.53	4.70	18.18	1.49	6.58

5.

(a)