CS 6041 Theory of Computation

Pushdown Automata

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Pushdown Automata (PDA)

Equivalence of PDA and CFG

 Theorem: A language is context free if and only if some pushdown automaton recognizes it

A language is CFL ⇒ some PDA recognizes it

A language is CFL ← some PDA recognizes it

A language is CFL \Longrightarrow some PDA recognizes it

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

If a PDA can recognize strings in one CFL, done!

• Derivation: A \Rightarrow 0A1 \Rightarrow

$$00A11 \Rightarrow 000A111 \Rightarrow$$

$$000B111 \Rightarrow 000#111$$

How to create a PDA to recognize 000#111

A language is CFL \Longrightarrow some PDA recognizes it

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Step 1: Compare the input with the top of stack

A language is CFL \Longrightarrow some PDA recognizes it

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

Simulate the derivation S ⇒ xyz based on rule
 S → xyz

Simulate the derivation S ⇒ xyz based on rule
 S → xyz

E.g., we need derivation S ⇒ xyz
 Just Pop 'S', Push 'z','y','x'
 Input header just move by one 'a'

A language is CFL \Longrightarrow some PDA recognizes it

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Step 3: If the top of stack is terminal, then do the match

- Compare the current input and top element on stack, if match succeeds:
 - The header move forward
 - The stack pop one element ¹

A language is CFL \Longrightarrow some PDA recognizes it

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation:

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation:

The bottom of stack \$
Start reading from input

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Derivation : A

Push the start variable A

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

Step 2: The top of stack is variable, so simulate the derivation

\$

A

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

Step 3: If it is terminal, do the match operation.

1

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

If the match succeeds, pop up the top element in stack and move hand forward.

A

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

After that, the top of stack is variable, keep the derivation (Step 2).

0

Α

\$

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

$$\Rightarrow$$
 00A11

After derivation, the top of stack becomes terminal again, keep the match with input (Step 3).

Kennesaw State University

Theory of Computation

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

- Derivation : $A \Rightarrow 0A1$
 - \Rightarrow 00A11

If the match succeeds, pop up the top element in stack and move hand forward.

After that, the top of stack is variable again, keep the derivation (Step 2).

Α

0

Α

\$

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

$$\Rightarrow$$
 00A11 \Rightarrow 000A111

After derivation, the top of stack becomes terminal again, keep the match with input (Step 3).

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

$$\Rightarrow$$
 00A11 \Rightarrow 000A111

If the match succeeds, pop up the top element in stack and move hand forward.

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1$

$$\Rightarrow$$
 00A11 \Rightarrow 000A111

The input is # now, we need other derivation to generate #.

1

Α

1

1

B

\$

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

$$00A11 \Rightarrow 000A111 \Rightarrow$$

000B111

This time, we perform the derivation using grammar $A \rightarrow B$

After that, as the top element is still variable, keep the derivation (step 2)

#

\$

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

$$00A11 \Rightarrow 000A111 \Rightarrow$$

$$000B111 \Rightarrow 000#111$$

We perform the derivation using grammar $B \rightarrow \#$

The top element is terminal, then perform the match operation with input (step 3)

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

$$00A11 \Rightarrow 000A111 \Rightarrow$$

$$000B111 \Rightarrow 000#111$$

pop up the top element in stack and move hand forward.

The top element is terminal, then perform the match operation with input (step 3)

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

$$00A11 \Rightarrow 000A111 \Rightarrow$$

$$000B111 \Rightarrow 000#111$$

If the match succeeds, pop up the top element in stack and move hand forward.

The top element is terminal, then perform the match operation with input (step 3)

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

$$00A11 \Rightarrow 000A111 \Rightarrow$$

$$000B111 \Rightarrow 000#111$$

If the match succeeds, pop up the top element in stack and move hand forward.

The top element is terminal, then perform the match operation with input (step 3)

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

 $00A11 \Rightarrow 000A111 \Rightarrow$

 $000B111 \Rightarrow 000#111$

If the match succeeds, pop up the top element in stack and move hand forward.

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

$$00A11 \Rightarrow 000A111 \Rightarrow$$

$$000B111 \Rightarrow 000#111$$

If the input is finished and stack is empty, accept; otherwise reject.

A language is CFL \Longrightarrow some PDA recognizes it

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Question

• Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

• Derivation : $S \Rightarrow SS$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

• Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

• Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

Grammar G₃:

$$S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \rightarrow \epsilon$$

$$\Rightarrow$$
 aSbS \Rightarrow abS \Rightarrow

$$abaSb \Rightarrow abab$$

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation
 - Step 3: If the top of stack is terminal, then do the match

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

- Details: how PDA recognizes a string of a CFL
 - Step 1: Compare the input with the top of stack
 - Step 2: If the top of stack is variable, then simulate the derivation

Step 3: If the top of stack is terminal, then do the match

\$ а	+	а	X	а	\$
					1

• Grammar G₅:

$$E \rightarrow E+E \mid E\times E \mid (E) \mid a$$

$$\Rightarrow$$
 a+E \Rightarrow a+E×E

$$\Rightarrow$$
 a+a×E \Rightarrow a+a×a

A language is CFL \Longrightarrow some PDA recognizes it

• Proof:

Suppose A is CFL, based on definition

we have the grammar of A, CFG G=(V,Σ ,R,S).

Build the following PDA to recognize A

A language is CFL \Longrightarrow some PDA recognizes it

Define E:

Suppose we read input **a**, state changes from **q** to **r**, and the top of stack changes from s to u₁u₂...u_k

introduce new states $q_1, q_2, ..., q_{k-1}$,

let
$$\delta(q,a,s)$$
 contains (q_1,u_k) ,

$$\delta(q_1,\varepsilon,\varepsilon)=\{(q_2,u_{k-1})\},$$

$$\delta(q_2,\varepsilon,\varepsilon)=\{(q_3,u_{k-2})\},\$$

$$\delta(q_{k-1}, \varepsilon, \varepsilon) = \{(r, u_1)\}.$$

Conclude all the above as $(r,u) \in \delta(q,a,s)$ and mark all the new states as E

A language is CFL ⇒ some PDA recognizes it

Define δ :

Example: Put \$ and start variable into stack

• Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Derivation : A

top of stack is variable A some PDA recognizes it

rule $A \rightarrow w$

Define δ

$$\delta(q_{loop}, \varepsilon, A) = \{ (q_{loop}, w) \mid A \rightarrow w \text{ is rule of R} \},$$

by w

$$\delta(q_{loop}, a, a) = \{(q_{loop}, \epsilon)\}$$

Match succeeds and pop

top of stack is terminal a

// repeat the following steps

If the top of stack is variable A,

then pick up one rule A→w, and replace A by w, simulate

the derivation (Step 2).

If the top of stack is terminal a,

then compare a with the symbol of current input

if match(Step 3), repeat;

if not match, reject this branch.

Language is CFL ⇒ some PDA recognizes it

Defin δ :

the input is over

$$\delta(q_{loop}, \varepsilon, \$) = \{(q_{accept}, \varepsilon)\}.$$

// If the top of stack is \$, if the input is over, accept.

Example: when stack and input are empty

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation : $A \Rightarrow 0A1 \Rightarrow$

$$00A11 \Rightarrow 000A111 \Rightarrow$$

$$000B111 \Rightarrow 000#111$$

If the input is finished and stack is empty, accept; otherwise reject.

A language is CFL \Longrightarrow some PDA recognizes it

Define δ :

$$\delta(q_{\text{start}}, \epsilon, \epsilon) = \{(q_{\text{loop}}, S\$)\}, //\text{step 1}$$

 $\delta(q_{loop}, \varepsilon, A) = \{ (q_{loop}, w) \mid A \rightarrow w \text{ is rule of R} \},$

 $\delta(q_{loop}, a, a) = \{(q_{loop}, \epsilon)\}, //step 2 or 3$

 $\delta(q_{loop}, \varepsilon, \$) = \{(q_{accept}, \varepsilon)\}.$

Conclusion for A language is CFL ⇒ some PDA recognizes it

Put \$ and start variable into stack Repeat the following steps

If the top of stack is variable A,
 then pick up one rule A→w, and replace A by w.

If the top of stack is terminal a,
 then compare a with the symbol of current input if match, repeat;
 if not match, reject this branch.

If the top of stack is \$, if the input is over, accept.

q_{start} $\varepsilon, \varepsilon \rightarrow S$ \$ $(A \rightarrow w \in R)$ q_{loop} $(a \in \Sigma)$ ϵ , \$ \rightarrow ϵ

Create a PDA like this:

Example of CFL \Longrightarrow PDA

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ construct an equivalent PDA P₁.

Example of CFL \Longrightarrow PDA

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ construct an equivalent PDA P₁.

Example of CFL \Longrightarrow PDA

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ construct an equivalent PDA P₁.

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ construct an equivalent PDA P₁.

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ construct an equivalent PDA P₁.

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ construct an equivalent PDA P₁.

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ construct an equivalent PDA P₁.

• CFG G: S \rightarrow aTb, T \rightarrow Ta, S \rightarrow b, T \rightarrow ϵ

construct an equivalent PDA P_1 . intermediate states $\epsilon, S \rightarrow b$ $\epsilon, \epsilon \rightarrow T$ $\epsilon, \epsilon \rightarrow a$ $\epsilon, \epsilon \rightarrow S$

 q_{loop}

We introduce some intermediate states to simulate the derivation step by step

Question

CFG G: E → E+E | E×E | (E) | a
 construct an equivalent PDA P₂.

• CFG G: $S \rightarrow aTb$, $T \rightarrow Ta$, $S \rightarrow b$, $T \rightarrow \varepsilon$ construct an equivalent PDA P_1 .

Question

CFG G: E → E+E | E×E | (E) | a
 construct an equivalent PDA P₂.

Question

• CFG G: $E \rightarrow E+E \mid E\times E \mid (E) \mid a$

construct an equivalent PDA P₂.

Outline

Equivalence of PDA and CFG:

A language is CFL ⇒ some PDA recognizes it

Create CFGs for such movements

 Case 1: the stack does not change (increase and then decrease) after some consecutive inputs

 Case 2: the stack does not change (increase and then decrease) after some non-consecutive inputs

$CFL \Leftarrow PDA$

A_{pq} denotes stack movement from p to q (p, q are any two states)

For a PDA

$$P=(Q,$$

$$\Sigma$$
, Γ , δ , q_0 , $\{q_{accept}\}$),

then create equivalent CFG

$$G=({A_{pq} | p,q \in Q}, \Sigma, R, A_{q0qaccept}),$$

A_{q0qaccept} requires starting from q₀ and ending in q_{accept} and making stack is empty. It defines where the PDA starts.

q_{accept}

Non-Consecutive input rule

R has the following rules:

Kennesaw State University

Theory of Computation

Consecutive input rule

R has the following rules:

(2)
$$A_{pq} \rightarrow A_{pr} A_{rq}$$
, (for each p,q,r $\in Q$)

ε rule

R has the following rules:

For a PDA

$$P=(Q,$$

$$\Sigma$$
, Γ , δ , q_0 , $\{q_{accept}\}$),

then create equivalent CFG

$$G=({A_{pq} | p,q \in Q}, \Sigma, R, A_{q0qaccept}),$$

Key idea:

We can create CFGs to simulate the movement of PDA

Conclusion

Equivalence of PDA and CFG:

A language is CFL ⇒ some PDA recognizes it