Zhengdong Zhang

Homework - Week 1 Exercises

Email: zhengz@uoregon.edu Course: MATH 616 - Real Analysis Instructor: Professor Weiyong He

Term: Fall 2025 Due Date: Oct 8th, 2025

ID: 952091294

Exercise 1.2

The Cantor set C can also be described in terms of ternary expansions.

(a) Every number in [0, 1] has a ternary expansion

$$x = \sum_{k=1}^{\infty} a_k 3^{-k}$$
, where $a_k = 0, 1, 2$

Note that this decomposition is not unique since, for example,

$$\frac{1}{3} = \sum_{k=2}^{\infty} \frac{2}{3^k}.$$

Prove that $x \in C$ if and only if x has a representation as above where every a_k is either 0 or 2.

(b) The Cantor-Lebesgue function is defined on \mathcal{C} by

$$F(x) = \sum_{k=1}^{\infty} \frac{b_k}{2^k}$$
, if $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$, where $b_k = \frac{a_k}{2}$.

In this definition, we choose the expansion of x in which $a_k = 0$ or 2. Show that F is well-defined and continuous on C, and moreover, F(0) = 0 as well as F(1) = 1.

- (c) Prove that $F: \mathcal{C} \to [0,1]$ is surjective, that is, for every $y \in [0,1]$, there exists $x \in \mathcal{C}$ such that F(x) = y.
- (d) One can also extend F to be a continuous function on [0,1] as follows. Note that if (a,b) is an open interval of the complement of C, then F(a) = F(b). Hence, we may define F to have the constant value F(a) in that interval.

Solution:

(a) Let $x \in C = \bigcap_{k=0}^{\infty} C_k$. $x \in C$ is the same as $x \in C_k$ for all $k \ge 0$. Let us start with k = 1. We choose $a_1 = 0$ or $a_1 = 2$ based on x is in which interval of C_1 . More specifically, if $0 \le x \le \frac{1}{3}$, choose $a_1 = 0$. If $\frac{2}{3} \le x \le 1$, choose $a_1 = 2$. For k = 2, the interval containing x is again become two parts. If x is in the smaller interval (the one closer to 0), choose $a_2 = 0$. If x is in the larger interval (the one closer to 1), choose $a_2 = 2$. Repeat this process, and in each step n, we write

$$x_n = \sum_{k=1}^n \frac{a_k}{3^k}.$$

We need to show that $\lim_{n\to\infty} x_n = x$. Note that by the way we choose each a_k , we have

$$x_n \le x \le x_n + \frac{3}{3^n}.$$

Let n approaches ∞ , and we have proved that

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$

where everywhere a_k is either 0 or 2.

Conversely, assume x has such a representation. We need to show that $x \in C_n$ for all $n \ge 1$. For every $n \ge 1$, write

$$x_n = \sum_{k=1}^n \frac{a_k}{3^k}.$$

We know x_n is an end point in C_n , and x satisfies

$$x_n \le x \le x_n + \frac{3}{3^n}.$$

Thus, $x \in C_n$ for every n. This proves that $x \in C$.

(b) From (1), we know every point $x \in C$ has a representation

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$

where a_k is 0 or 2. By the way we define the representation, the choice is a_k is unique, so this function F is well-defined. Moreover, if x = 0, then all a_k in its representation is 0, so

$$F(0) = \sum_{k=1}^{\infty} \frac{0}{2^k} = 0.$$

Similarly, if x = 1, then all a_k in its representation is 2, so

$$F(1) = F(\sum_{k=1}^{\infty} \frac{2}{3^k}) = \sum_{k=1}^{\infty} \frac{1}{2^k} = 1.$$

Lastly, we need to show that F is continuous. Fix a point $x \in C$, for any $\varepsilon > 0$, there exists large enough $n \in \mathbb{Z}_+$ such that

$$\frac{1}{3^{n+1}} \le \frac{1}{2^n} < \varepsilon.$$

Consider the open set

$$U = (x - \frac{1}{3^{n+1}}, x + \frac{1}{3^{n+1}}) \cap C \subseteq C.$$

For any $y \in U$, we know that $|x - y| < \frac{1}{3^n}$, so x, y must belong to the same interval for C_1, C_2, \ldots, C_n . This implies that in the representations of x and y, the choices of a_k for

 $1 \le k \le n$ are the same. Therefore, we have

$$|F(x) - F(y)| \le \sum_{k=n+1}^{\infty} \frac{1}{2^k}$$

$$\le 1 - \left(\sum_{k=1}^{n} \frac{1}{2^k}\right)$$

$$\le 1 - \left(1 - \frac{1}{2^n}\right)$$

$$\le \frac{1}{2^n}$$

$$< \varepsilon.$$

This proves that F is continuous.

(c) For any $y \in [0, 1]$, if y has a representation

$$y = \sum_{k=1}^{\infty} \frac{b_k}{2^k}$$

where b_k is 0 or 1, then we can choose $a_k = 2b_k$ and obtain a number $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} \in C$ satisfying F(x) = y. So we only need to show that every $y \in [0,1]$ has such a representation. 0 has a representation by setting all $b_k = 0$. Now assume $y \in (0,1]$. Let's start with b_1 . If $0 < y \le \frac{1}{2}$, choose $b_1 = 0$. If $\frac{1}{2} < y \le 1$, choose $b_1 = 1$. For b_2 , divide the interval y was in into 2 parts again, and if y is in the smaller interval, choose $b_2 = 0$, if y is in the larger interval, choose $b_2 = 1$. Repeat this process, and we obtain a sequence $\sum_{k=1}^{\infty} \frac{b_k}{2^k}$. Note that by our choice, for all $n \ge 1$, we have

$$\sum_{k=1}^{n} \frac{b_k}{2^k} < y \le \sum_{k=1}^{n} \frac{b_k}{2^k} + \frac{2}{2^n}.$$

Thus, we obtain a representation for $y \in [0, 1]$.

(d) We need to show that if we extend F in this way, it is still continuous. We use a very similar proof as (2). In this case, we just choose the open neighborhood of x as

$$U = \left(x - \frac{1}{3^{n+1}}, x + \frac{1}{3^{n+1}}\right).$$

For any $y \in U$, if $y \in C$, then the same proof works. If $y \notin C$, note that the complement of Cantor set C is a countable union of disjoint open intervals, so $y \in (a, b)$ for some $a, b \in C$. We have

$$|F(x) - F(y)| = |F(x) - F(a)| = |F(x) - F(b)|.$$

Thus, we could use the same steps as in (2).

Exercise 1.5

Suppose E is a given set, and \mathcal{O}_n is the open set:

$$\mathcal{O}_n = \left\{ x : d(x, E) < \frac{1}{n} \right\}.$$

Show:

- (a) If E is compact, then $m(E) = \lim_{n \to \infty} m(\mathcal{O}_n)$.
- (b) However, the conclusion in (a) may be false for E closed and unbounded; or E open and bounded.

Solution:

(a) E is closed and bounded, so E is measurable and $m(E) < +\infty$. For every n, $d(\mathcal{O}_n, E) < \frac{1}{n}$, so \mathcal{O}_n is also bounded, and we have

$$\mathcal{O}_1 \supset \mathcal{O}_2 \supset \cdots \supset \mathcal{O}_n \supset \cdots \supset E$$
.

It is obvious that $E \subseteq \bigcap_{n=1}^{\infty} \mathcal{O}_n$. Conversely, for any $x \in \bigcap_{n=1}^{\infty} \mathcal{O}_n$, $d(x, E) < \frac{1}{n}$ for all $n \ge 1$. For every $n \ge 1$, we can find $x_n \in E$ such that $|x_n - x| < \frac{1}{n}$. Let $n \to \infty$, and we have $\lim_{n \to \infty} x_n = x$. This proves that x is a limit point of E, and because E is closed, so $x \in E$. Therefore, $\bigcap_{n=1}^{\infty} \mathcal{O}_n = E$.

Now, we show that E is open. For any $x \in \mathcal{O}_n$, choose an open ball $B_r(x)$ centered at x with radius

 $r = \frac{1}{3}(\frac{1}{n} - d(x, E)).$

Then for any $y \in B_r(x)$, we have

$$\begin{split} d(y,E) &= \inf_{z \in E} |y-z| \\ &\leq \inf_{z \in E} (|y-x| + |x-z|) \\ &\leq r + \inf_{z \in E} |x-z| \\ &= r + d(x,E) \\ &\leq \frac{1}{3n} + \frac{2}{3} d(x,E) \\ &< \frac{1}{n}. \end{split}$$

This proves $y \in \mathcal{O}_n$. So \mathcal{O}_n is an open set, thus measurable and $m(\mathcal{O}_n) < +\infty$. By Corollary 3.3 (ii), we have

$$m(E) = \lim_{n \to \infty} m(\mathcal{O}_n).$$

(b) Consider

$$E = \{1, 2, 3, \ldots\}$$
.

4

E is closed and unbounded. We know that m(E) = 0 because E is countable. Then

$$\mathcal{O}_n = \bigcup_{k=1}^{\infty} (k - \frac{1}{n}, k + \frac{1}{n}).$$

We know that for each k, $m((k-\frac{1}{n},k+\frac{1}{n}))=\frac{2}{n}$, so

$$m(\mathcal{O}_n) - m(E) > m(\bigcup_{k=1}^n (k - \frac{1}{n}, k + \frac{1}{n})) = 2.$$

This implies

$$\lim_{n\to\infty} m(\mathcal{O}_n) \neq m(E).$$

Next, note that $\mathbb{Q} \cap (0,1)$ is countable, so it can be listed as a sequence $\{x_n\}_{n=1}^{\infty}$. Let

$$E = \bigcup_{n=1}^{\infty} (x_n - \frac{1}{2^{n+2}}, x_n + \frac{1}{2^{n+2}})$$

E is open, thus measurable, and

$$m(E) \le \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \frac{1}{2}.$$

For every $n \ge 1$, \mathcal{O}_n must contain [0,1] because the rational numbers are dense in (0,1). So $m(\mathcal{O}_n) \ge 1 > \frac{1}{2} \ge m(E)$ for all $n \ge 1$. This implies that

$$\lim_{n\to\infty} m(\mathcal{O}_n) \neq m(E).$$

Exercise 1.6

Using translations and dilations, prove the following: Let B be a ball in \mathbb{R}^d of radius r. Then $m(B) = v_d r^d$, where $v_d = m(B_1)$, and B_1 is the unit ball.

$$B_1 = \{ x \in \mathbb{R}^d : |x| < 1 \}.$$

Solution: For any $\varepsilon > 0$, there exists a countable union of almost disjoint closed cubes $\{Q_j\}_{j=1}^{\infty}$ such that

$$B_1 \subseteq \bigcup_{j=1}^{\infty} Q_j$$

and

$$|m(B_1) - \sum_{j=1}^{\infty} |Q_j|| < \frac{\varepsilon}{r^d}.$$

For each $j \geq 1$, suppose Q_j is a closed cube centered at (x_1, \ldots, x_d) with side length l. Define \widetilde{Q}_j as the closed cube centered at (rx_1, \ldots, rx_n) with side length rl. We obtain a new sequence $\left\{\widetilde{Q}_j\right\}_{j=1}^{\infty}$. We claim they are still almost disjoint. Indeed, for every point $T=(t_1,\ldots,t_d)$ in a cube Q_j , the new corresponding point has the coordinate $\tilde{T}=(rt_1,\ldots,rt_n)$. If \tilde{T} is in the interior of two

different new cubes, then T must be also in the interior of two different old cubes because both the coordinates and the side length are multiplied by r in this process. For every point $(y_1, \ldots, y_n) \in B$, $(\frac{y_1}{r}, \ldots, \frac{y_n}{r})$ is a point in B_1 . So

$$\bigcup_{j=1}^{\infty} \widetilde{Q_j} \supset B$$

is a cover for B as

$$\bigcup_{j=1}^{\infty} Q_j \supset B_1$$

is a cover for B_1 . Moreover, for every j, we have

$$|\widetilde{Q_j}| = r^d |Q_j|$$

by definition. So

$$|m(B) - \sum_{i=1}^{\infty} |\widetilde{Q_i}|| < \frac{\varepsilon}{r^d} \cdot r^d = \varepsilon.$$

This implies that

$$m(B) = r^d m(B_1) = v_d r^d.$$

Exercise 1.9

Give an example of an open set Θ with the following property: the boundary of the closure of Θ has positive Lebesgue measure.

Solution: Consider the example we constructed in Exercise 1.5 (b). The open set

$$E = \bigcup_{n=1}^{\infty} (x_n - \frac{1}{2^{n+2}}, x_n + \frac{1}{2^{n+2}})$$

where $\{x_n\}_{n=1}^{\infty}$ is a sequence of all rational numbers in (0,1). We have

$$m(E) \le \frac{1}{2}.$$

On the other hand, the closure \bar{E} must contain [0,1] because the rational numbers are dense in (0,1). Thus, the boundary $\bar{E}-E$ must have positive Lebesgue measure.

Exercise 1.10

Let \hat{C} denote a Canton-like set, in particular $m(\hat{C}) > 0$. Let F_1 denote a piecewise linear and continuous function on [0,1], with $F_1 = 1$ in the complement of the first interval removed in the construction of \hat{C} , $F_1 = 0$ at the center of this interval, and $0 \le F_1(x) \le 1$ for all x. Similarly, construct $F_2 = 1$ in the complement of the intervals in stage two of the construction of \hat{C} , with $F_2 = 0$ at the center of these intervals, and $0 \le F_2 \le 1$. Continuing this way, let $f_n = F_1 \cdot F_2 \cdots F_n$. Prove the following:

- (a) For all $n \ge 1$ and all $x \in [0, 1]$, one has $0 \le f_n(x) \le 1$ and $f_n(x) \ge f_{n+1}(x)$. Therefore, $f_n(x)$ converges to a limit as $n \to \infty$ which we denote by f(x).
- (b) The function is discontinuous at every point of \hat{C} .

Solution:

(a) For all $n \ge 1$ and all $x \in [0,1]$, we know that by definition $0 \le F_n(x) \le 1$. So we have

$$0 < f_n(x) = F_1(x) \cdot F_2(x) \cdots F_n(x) < 1.$$

Moreover,

$$f_{n+1}(x) = f_n(x) \cdot F_{n+1}(x) \le f_n(x).$$

This implies that $f_n(x)$ is a bounded decreasing sequence, so that $\lim_{n\to\infty} f_n(x) = f(x)$ exists.

(b) Let $x \in \hat{C}$. By definition, $f_n(x) = 1$ for all $n \ge 1$, so f(x) = 1. For every $n \ge 1$, denote by \hat{C}_n the set obtained in nth stage of the construction of \hat{C} . Consider the open set $(x - \frac{2}{3^n}, x + \frac{2}{3^n})$, it must contain one of the center of a removed interval in the nth stage, because the farthest possible distance between the center and a point in \hat{C} is $\frac{1}{2^n} < \frac{2}{3^n}$. Choose x_n equal to this center, we have $f(x_n) = 0$ for all $n \ge 1$ by definition. Note that $|x_n - x| < 2 \cdot \frac{2}{3^n}$. Let $n \to \infty$. We get a sequence $\{x_n\}_{n=1}^{\infty}$ converging to x but $0 = f(x_n)$ does not converge to f(x) = 1. This implies that f is not continuous at $x \in \hat{C}$.

Exercise 1.13

The following deals with G_{δ} and F_{σ} sets.

- (a) Show that a closed set is a G_{δ} and an open set an F_{σ} .
- (b) Give an example of an F_{σ} which is not a G_{δ} .
- (c) Give an example of a Borel set which is not a G_{δ} nor an F_{σ} .

Solution:

(a) Let O be an open set. By Theorem 1.4, O can be written as the union of closed cubes, so O is an F_{σ} . Let E be a closed set. Then E^c is an open set. By Theorem 1.4, we can write

$$E^c = \bigcup_{j=1}^{\infty} Q_j$$

where Q_j is a closed cube for all $j \geq 1$. Take the complement, and we have

$$E = (E^c)^c = (\bigcup_{j=1}^{\infty} Q_j)^c = \bigcap_{j=1}^{\infty} Q_j^c$$

where Q_j^c is open for all $j \geq 1$. This proves that any closed set is a G_{δ} .

(b) Consider all the rational numbers

$$E = \mathbb{Q} \cap [0, 1]$$

in the open interval [0, 1]. E is countable, so it can be written as the countable union of closed sets, where each closed set is the singleton. This implies that E is a F_{σ} . Suppose E is a G_{δ} , then there exists a sequence of open sets $\{O_n\}_{n=1}^{\infty}$ such that

$$E = \bigcap_{n=1}^{\infty} O_n.$$

Take the closure at both sides, and since the rational numbers are dense in [0, 1], we have

$$[0,1] = \bigcap_{n=1}^{\infty} \overline{O_n}.$$

This means for $n \geq 1$, every $\overline{O_n}$ must contain [0,1]. Choose

$$O'_n = O_1 \cap O_2 \cap \cdots \cap O_n.$$

Then $\{O'_n\}_{n=1}^{\infty}$ is a decreasing sequence of sets and $\bigcap_{n=1}^{\infty} O'_n = E$. Each O'_n is measurable, and has finite Lebesgue measure. By Corollary 3.3 (ii), we have

$$0 = m(E) = \lim_{n \to \infty} m(O'_n) \ge m([0, 1]) = 1.$$

A contradiction. So E is not a G_{δ} .

(c) Let $E' = \mathbb{Q} \cap [-1, 0]$. A similar argument as above shows that E' is an F_{σ} but not a G_{δ} . Take F = [-1, 0] - E'. Then F is a G_{δ} but not an F_{σ} . Consider the set $E \cup F$. E is the set is all rational numbers in [0, 1], so it is countable and thus a Borel set. Similarly, F is the complement of a Borel set, so F is also a Borel set. This implies that $E \cup F$ is also a Borel set. Suppose $E \cup F$ is a G_{δ} . We can write

$$E \cup F = \bigcup_{j=1}^{\infty} O_j$$

where O_j is open for all $j \geq 1$. Note that [0,1] is also a G_{δ} , so we can write

$$[0,1] = \bigcup_{k=1}^{\infty} P_k$$

8

where P_k is open for all $k \geq 1$. Then

$$E = (E \cup F) \cap [0, 1]$$

$$= (\bigcup_{j=1}^{\infty} O_j) \cap (\bigcup_{k=1}^{\infty} P_k)$$

$$= \bigcup_{j,k=1}^{\infty} O_j \cap P_k.$$

Here $O_j \cap P_k$ is open for any $j, k \geq 1$. This is a contradiction because E is not a G_δ . A similar argument can show that $E \cup F$ is also not an F_σ .