Politecnico di Milano STATISTICS (079086), 2009/2010, Prof. A.Barchielli Problem set n. 2

25th March 2010

Exercise 1 Let X_1, \ldots, X_n be a random sample from a Gaussian distribution $\mathcal{N}(4.2, 4)$.

- 1. Calculate $P(X_1 > 3)$; [0.726]
- 2. Find x such that $P(X_1 \le x) = 0.7$; [0.524]
- 3. Calculate $P(\bar{X} \leq 3)$, with n = 3; [0.149]
- 4. Calculate $P(|\bar{X} 4.2| \le 0.3)$, with n = 3 and n = 25; [0.206, 0.546]
- 5. What is the minimum *n* such that $P(|\bar{X} 4.2| \le 0.3) \ge 0.8$? [74]

Exercise 2 Let X_1 and X_2 be two independent random variables with Exponential distribution and mean 1/2. Set $Y = X_1 + X_2$. Moreover, let Z be a random variable with Uniform distribution over the interval (0,1), and set Cov(Y,Z) = 0.05.

- 1. Compute the correlation coefficient of Y and Z. [The correlation coefficient of Y and Z is $corr(Y,Z) = Cov(Y,Z)/\sqrt{Var(Y)\times Var(Z)}$. We know that X_1 and X_2 are independent and thus $Var(X_1+X_2) = Var(X_1) + Var(X_2) = 2\frac{1}{4} = \frac{1}{2}$. Moreover, $Var(Z) = \frac{1}{12}$. Hence, $corr(Y,Z) = \frac{0.05}{\sqrt{\frac{1}{2}\frac{1}{12}}} = 0.245$]
- 2. Compute the mean and variance of W = Y 2Z. [We know that $E(Y) = E(X_1 + X_2) = E(X_1) + E(X_2) = 2\frac{1}{2} = 1$ and $E(Z) = \frac{1}{2}$. Hence, E(W) = E(Y 2Z) = E(Y) 2E(Z) = 1 1 = 0. Moreover, $Var(W) = Var(Y 2Z) = Var(Y) + 4Var(Z) 4Cov(Y, Z) = \frac{1}{2} + 4\frac{1}{12} 4 \times 0.05 = 0.633$]

Exercise 3 The quantity of coffee powder utilized by an automatic coffee machine for a cup of coffee is a Gaussian random variable with mean 30 grams. Find the standard deviation such that 98% of the cups contains al least 27 grams of coffee powder. $[\sigma = 1.46]$

Exercise 4 The glycemic level in the blood of an adult woman is a Gaussian random variable with mean $\mu = 80$ mg%ml and standard deviation $\sigma = 20$ mg%ml. If this level is 1.5σ greater than the mean value, the patient is considered hill (hyperglycemic). Find the probability that an adult woman is hyperglycemic. [0.0668]

Exercise 5 A test for students consists in 100 questions each with two possible answers.

- a) Suppose the student chooses the answer at random. Find the approximate probability that the student correctly answers to at least 55 questions. [0.184, normal approximation]
- b) The teacher decides to set a minimum score y to avoid that student answering at random pass the test. The minimum score y is then set as that value such that the probability to obtain at least y at random is 0.05. Find y. [59]

Exercise 6** An avicultural farm rears two types of chickens A and B. Let X be the random variable that indicates the weight of the eggs produced by type A chickens, and let Y be the random variable that indicates the weight of the eggs produced by type B chickens. If $X \sim \mathbb{N}(60,4)$ and $Y \sim \mathbb{N}(55,2.5)$, and X and Y are independent, find the probability the variable (X+Y)/2 takes values in the interval (55,58). [0.6267]

Exercise 7** Let $X \sim f(x, \theta)$ be the random variable indicating the daily journey time (in minutes) from Peter's house to the Politecnico:

$$f(x,\theta) = \begin{cases} \frac{\theta}{30^{\theta}} (x - 30)^{\theta - 1} & \text{if } 30 < x < 60\\ 0 & \text{otherwise} \end{cases}$$

with θ unknown positive parameter.

- 1. Express in terms of θ the probability that Peter reaches the Politecnico in less than 35 minutes. $[1/6^{\theta}]$
- 2. Indicate the appropriate probabilistic model describing the number of days out of 100 days in which Peter reaches the Politecnico in less than 35 minutes. $[Bin(100, 1/6^{\theta})]$
- 3. Express in terms of θ the approximate probability that Peter reaches the Politecnico in less than 35 minutes at least 40 days out of 100 days. $[1 - \Phi\left((3.95 \times 6^{\theta} - 10)/\sqrt{6^{\theta} - 1}\right)]$ 4. Calculate the probability found at point 3. when $\theta = 0.6$ [$\simeq 1 - \Phi(1.13) \simeq 0.129$]