# Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

# Реферат по теме

# «Байесовские методы классификации»

Выполнил: студент 316 группы Плеханов А. Д.

# Содержание

| Введение                                      | 2  |
|-----------------------------------------------|----|
| Постановка задачи классификации               | 2  |
| Вероятностная постановка задачи классификации | 2  |
| Байесовский классификатор и его оптимальность | 2  |
| Bayesian Model Averaging Naive Bayes          | 3  |
| Наивный байесовский классификатор             | 3  |
| Метод BMA-NB                                  |    |
| Байесовское усреднение моделей                |    |
| ВМА в приложении к NB                         |    |
| Реализация и тестирование метода              | 7  |
| Датасет Fisher Iris                           | 7  |
| Синтетические данные                          | 8  |
| Список литературы                             | 11 |

# Введение

## Постановка задачи классификации

Пусть X — множество описаний объектов, Y — конечное множество номеров (имён, меток) классов. Существует неизвестная целевая зависимость — отображение  $y^*: X \to Y$ , значения которой известны только на объектах конечной обучающей выборки  $X^l = \{(x_1, y_1), \dots, (x_l, y_l)\}.$ 

Требуется построить алгоритм  $a: X \to Y$ , способный классифицировать произвольный объект  $x \in X$ .

## Вероятностная постановка задачи классификации

Пусть  $X \subset \mathbb{R}^n$ ,  $Y \subset \mathbb{Z}$ .

При вероятностной трактовке задачи классификации предполагается, что на множестве  $X \times Y$  задано некоторое вероятностное пространство, а пара (x, y) порождается распределением с плотностью вероятности p(x, y).

По формуле Байеса можем представить p(x, y) в следующем виде:

$$p(x,y) = P(y)p(x|y) = p(x)P(y|x), \tag{1}$$

где P(y) - априорная вероятность класса y, p(x|y) - функция правдоподобия класса y, p(x) - плотность распределения объектов всех классов, P(y|x) - условная вероятность того, что объект x принадлежит классу y.

Тогда процесс генерации нового объекта x можно представить в виде двух этапов:

- 1. Генерируется метка класса y из распределения P(y);
- 2. Из распределения p(x|y) генерируется сам объект x

Препдположим, что для всех классов  $y \in Y$  известны плотности распредения p(x|y)

## Байесовский классификатор и его оптимальность

Рассмотрим произвольный алгоритм  $a: X \to Y$ . Он разбивает множество X на непересекающиеся области  $A_y = \{x \in X | a(x) = y\}$ ,  $y \in Y$ . Вероятность того, что появится объект класса y и алгоритм a отнесёт его к классу s, равна  $P(y)P(A_s|y)$ . Каждой паре  $(y,s) \in Y \times Y$  поставим в соответствие величину потери  $\lambda_{ys}$  при отнесении объекта класса y к классу s. Обычно полагают  $\lambda_{yy} = 0$ , и  $\lambda_{ys} > 0$  при  $y \neq s$ . Соотношения потерь на разных классах, как правило, известны заранее.

Функционал среднего риска:

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(y) P(A_s | y), \tag{2}$$

где  $P(A_s|y) = \int_{A_s} p(x|y) dx$  - вероятность того, что алгоритм отнесет объект класса y к классу s.

В таком случае будет верна следующая теорема:

Теорема

Если известны априорные вероятности P(y) и плотности распределения каждлого класса p(x|y), то минимум среднего риска R(a) достигается алгоритмом

$$a(x) = \arg\min_{s \in Y} \sum_{y \in Y} \lambda_{ys} P(y) P(x|y)$$
(3)

В случае, если  $\lambda_{yy}=0$  и  $\lambda_{ys}\equiv\lambda_y$ , т.е. потери зависят лишь от класса, на котором совершили ошибку, данный алгоритм примет вид

$$a(x) = \arg\max_{s \in Y} \lambda_y P(y) p(x|y) \tag{4}$$

\_\_\_\_\_\_

Таким образом, байесовские классификаторы, в основе которых лежит формула (4), теоретически оптимальны в смысле минимизации функционала среднего риска, что является несомненным плюсом такого подхода.

# Bayesian Model Averaging Naive Bayes

В предыдущей главе было показано, что при известных априорном распределении классов P(y) и апостериорном распределении объектов p(x|y) возможно в явном виде выписать оптимальный в смысле функционала среднего риска алгоритм классификации (4). На практике эти распределения не известны, но их можно оценить по выборке  $X^l = \{(x_i, y_i)\}_{i=1}^l$ . В таком случае теоретическая оптимальность классификатора теряется.

В зависимости от способа восстановления плотности распределения p(x|y) и предположений, накладываемых на свойства этого распределения, существуют различные байесовские классификаторы, некоторые из которых будут рассмотрены в данном реферате.

При параметрическом восстановлении плотности распределения p(x|y) возникают такие классификаторы, как, например, Naive Bayes (речь о котором пойдет ниже), или квадратичный дискриминант Фишера, в котором предоплагается гауссовость распределения каждого класса. Параметры распределений оцениваются с помощью метода максимального правдоподобия.

# Наивный байесовский классификатор

Наивный байесовский классификатор исходит из "наивного" предположения о том, что признаки  $f_j: X \to D_j$  - независимые случайные величины с плотностью распределения  $p_j(z|y), y \in Y, j=1,...,n$ . Тогда функции правдоподобия классов  $y \in Y$  для объекта  $x=(x^{(1)},...,x^{(n)})$  представимы в виде

$$p(x|y) = p(x^{(1)}|y) \cdot \dots \cdot p(x^{(n)}|y)$$

В таком случае алгоритм классификации (4) можно переписать в виде

$$a(x) = \arg\max_{y \in Y} \left[ \lambda_y P(y) \prod_{j=1}^n p(x^{(j)}|y) \right], \tag{5}$$

С учетом монотонности натурального логарифма, получим:

$$a(x) = \arg\max_{y \in Y} \left[ \ln(\lambda_y P(y)) + \sum_{i=1}^{n} \ln p_i(x|y) \right], \tag{6}$$

Обучение метода классификации сводится к оценке n одномерных плотностей  $p_j(z|y)$  по выборке  $x^{(j)}=(x_1^{(j)},...,x_l^{(j)}).$ 

Несмотря на наивность предположения о независимости признаков, наивный байесовский классификатор часто используется в задачах классификации текстовых документов.

#### Метод BMA-NB

В качестве основого метода, рассматриваемого в данном реферате, был выбран ВМА-NВ классификатор - комбинация обычного наивного байесовского классификатора и байесовского усреднения моделей - подхода, призванного учесть неопределенность при выборе модели, наилучшим образом описывающей данные.

#### Байесовское усреднение моделей

На практике очень часто бывает, что несколько моделей обеспечивают адекватное описание распределения, генерирующие наблюдаемые данные. В таких случаях обычно выбирают одну модель в соответствии с некоторым критерием, которая впоследствие считается истинной. Проблема в том, что такой подход может приводить к слишком самоуверенным выводам, а значит, и к принятию более рискованных решений. Байесовское усреднение моделей (Bayesian Model Averaging - BMA) представляет собой расширение байесовского вывода через задание априорного распределения для рассматриваемых моделей.

Далее будут использоваться следующие обозначения:

- $\bullet$  **x** признаковое описание объекта, для которого необходимо построить прогноз
- $D = \{(x_i, y_i)\}_{i=1}^N$  наблюдаемая выборка
- $m \in \{1, ..., M\}$  модель из заранее определенного набора

Совместное распределение класса y и признакового описания  $\mathbf{x}$  при условии наблюдаемой выборки и модели m:

$$P(y, \mathbf{x}|m, D) = P(\mathbf{x}|m, y, D)P(y|D)$$

Совместное распределение класса y и признакового описания  ${\bf x}$  при условии наблюдаемой выборки:

$$P(y, \mathbf{x}|D) = \sum_{m} P(\mathbf{x}|m, y, D)P(y|D)P(m|D)$$
(7)

По теореме Байеса для правдоподобия данных D для модели m верно:

$$P(m|D) \propto P(D|m)P(m) = P(m) \prod_{i=1}^{N} P(y_i, \mathbf{x_i}|m) = P(m) \prod_{i=1}^{N} P(y_i)P(\mathbf{x_i}|m, y_i)$$
 (8)

Комбинируя формулы (7) и (8), получим:

$$P(y, \mathbf{x}|D) \propto \sum_{m} P(m) \prod_{i=1}^{N+1} P(y_i) P(\mathbf{x_i}|m, y_i)$$
(9)

В данной формуле произведение из N+1 множителей, т.к. оно учитывает помимо наблюдаемой выборки сам объект  $\mathbf{x}$ , для которого строится прогноз.

#### BMA в приложении к NB

Рассмотрим задачу классификации для набора данных с количеством признаков K, и предположим независимость признаков. Несложно подсчитать, что количество потенциальных наивных байесовских классификаторов равно  $2^K$ . т.е. сложность перебора всех моделей экспоненциальна по размерности признакового описания. Далее будет показано, что ВМА позволит учитывать "голоса"всего экспоненциального числа моделей в одном алгоритме, сложность обучения которого будет линейна относительно K.

Будем описывать каждую модель m бинарным вектором  $\mathbf{f}=(f_1,...,f_K)$ . Если  $f_j=1$ , то модель учитывает j-ый признак при построении прогноза, иначе - не учитывает.

Предполагая  $P(m) = \prod_{k=1}^{K} P(f_k)$ , тогда условная вероятность класса y для объекта  $\mathbf{x}$  и наблюдаемой выборки D имеет вид:

$$P(y|\mathbf{x}, D) = \sum_{\mathbf{f}} \left[ \prod_{k=1}^{K} P(f_k) \right] \prod_{i=1}^{N+1} P(y_i) \prod_{k=1}^{K} P(\mathbf{x}_{i,k}|f_k, y_i) =$$

$$= \sum_{f_1} \dots \sum_{f_K} \left[ \prod_{i=1}^{N+1} P(y_i) \right] \prod_{k=1}^{K} P(f_k) \prod_{i=1}^{N+1} P(\mathbf{x}_{i,k}|f_k, y_i) =$$

$$= \left[ \prod_{i=1}^{N+1} P(y_i) \right] \prod_{k=1}^{K} \sum_{f_k} P(f_k) \prod_{i=1}^{N+1} P(\mathbf{x}_{i,k}|f_k, y_i)$$
(10)

Определим априорную вероятность вероятность  $P(f_k)$ :

$$P(f_k) \propto \begin{cases} \frac{1}{\beta}, & \text{if } f_k = 1\\ 1, & \text{if } f_k = 0 \end{cases}$$

где  $\beta$  - некоторый положительный гиперпараметр. Можно положить его больше 1, тогда "вес"модели, учитывающей меньшее количество признаков, будет

выше, что соответствует принципу бритвы Оккама.

Вероятность  $P(\mathbf{x}_{i,k}|f_k,y_i)$  логично определить так:

$$P(\mathbf{x}_{i,k}|f_k, y_i) = \begin{cases} P(\mathbf{x}_{i,k}|y_i), & \text{if } f_k = 1\\ P(\mathbf{x}_{i,k}), & \text{if } f_k = 0 \end{cases}$$

Таким образом, финальная формула для условной вероятности класса имеет вид:

$$P(y|\mathbf{x}, D) = \left[\prod_{i=1}^{N+1} P(y_i)\right] \prod_{k=1}^{K} \left[\prod_{i=1}^{N+1} P(\mathbf{x}_{i,k}) + \frac{1}{\beta} \prod_{i=1}^{N+1} P(\mathbf{x}_{i,k}|y_i)\right]$$

Сам алгоритм имеет вид:

$$a(x) = \arg\max_{y \in Y} P(y) \cdot \prod_{k=1}^{K} \left( A_k \cdot P(x_k) + \frac{B_k}{\beta} \cdot P(x_k|y) \right), \tag{11}$$

где значения констант  $A_k = \prod_{i=1}^N P(\mathbf{x}_{i,k}), B_k = \prod_{i=1}^N P(\mathbf{x}_{i,k}|y_i)$  вычисляются непосредственно из обучающей выборки, а параметры распределений признаков оцениваются методом максимального правдоподобия.

Таким образом, обучение алгоритма заключается в оценке параметров  $K \cdot |Y|$  одномерных распределений  $P(x_k|y)$  (|Y| - количество классов). Для построения прогноза необходимо вычислить вероятности  $P(x_k|y)$  (напрямую) и  $P(x_k)$  (вычисляется с помощью формулы полной вероятности).

# Реализация и тестирование метода

Метод классификации ВМА-NВ реализовывался на языке Python 3 с использованием библиотеки питру. Листинг кода приведен в приложении. В качестве базовой модели был выбран гауссовский вариант наивного байесовского классификатора (предполагается нормальное распрделение каждого из признаков), что ограничивает область применения получившегося метода (в общем случае ВМА-NВ не делает предположений о виде признаков, можно реализовать и для категориальных).

Также стоит отметить, что данная реализация метода не позволяет применять его на выборках большого размера, поскольку возникает проблема зануления коэффициентов  $A_k$ ,  $B_k$ . Как было показано выше, данные коэффициенты по сути являются произведением N множителей (N - размер выборки) с значенями из отрезка [0,1]. Значения этих коэффициентов хранятся в типе np.float64, но при слишком большом размере выборки данного типа не хватает для хранения очень маленьких чисел с плавающей точкой, что приводит к занулению коэффициентов. Данная проблема также не всегда решается нормировкой, поскольку отношение между коэффициентами  $A_k$  настолько велико, что неизбежно один из них становится равным 0 или +inf.

Тестирование метода проводилось как на синтетических данных, так и на реальных - на встроенном в sklearn наборе данных "Ирисы Фишера".

## Датасет Fisher Iris

Набор данных ирисы Фишера включает в себя информацию о 3 видах ирисов - setosa, versicolor и virginica. У каждого объекта 4 числовых признака. Распределение классов в признаковом пространстве представлено на рис. 1. На рис. 2 представлены точности классификаторов ВМА-NB, GaussianNB и SVC (с rbf-ядром) по кросс-валидации на 5 фолдах.



Рис. 1: Ирисы Фишера

Рис. 2: Точности BMA-NB, GaussianNB, SVM на ирисах Фишера

Как видно из рис. 2, все алгоритмы показали точность выше 0.95, что подтверждает работоспособность реализованного метода.

#### Синтетические данные

Приведем несколько примеров работы метода на синтетических данных, сгенерированных с помощью функции  $make\ classification$  из модуля sklearn.datasets.

Сравнение качества работы алгоритма проводилось с методом GaussianNB из модуля  $sklearn.naive_bayes$  (Гауссовский наивный байесовский классификатор) и методом SVC из модуля sklearn.svm (SVM-классификатор с RBF-ядром).



Рис. 3: Результаты тестирования

Рис. 4: Генерация выборки



Рис. 5: Результаты тестирования

Рис. 6: Генерация выборки



Рис. 7: Результаты тестирования

Рис. 8: Генерация выборки



Рис. 9: Результаты тестирования

Рис. 10: Генерация выборки



Рис. 11: Результаты тестирования

Рис. 12: Генерация выборки

В первых двух тестах методы ВМА-NВ и GaussianNB стабильно показывают одинаковую точность (она варьирует в зависимости от  $random\_state$ , но в среднем около 0.8). В то же время метод SVM в большинстве случаев заметно

превосходит оба статистических алгоритма. Это объясняется тем фактом, что метод SVM с RBF-ядром вообще является довольно сильным методом, он не делает наивных предположений о данных.

В третьем, четвертом и пятом тестах, при уменьшении доли информативных признаков, алгоритм ВМА-NВ в среднем превосходит GaussianNB на 0.05, но его точность всё еще меньше SVC. Также можно заметить, что при увеличении количества классов отличие между точностями ВМА-NВ и GaussianNB увеличиается примерно в два раза.

# Список литературы

- 1. К. В. Воронцов "Байесовская классификация. Непараметрические методы."
- 2. Tiago M. Fragoso, Francisco Louzada Neto "Bayesian model averaging: A systematic review and conceptual classification"
- 3. Ga Wu, Scott Sanner, and Rodrigo F.S.C. Oliveira "Bayesian Model Averaging Naive Bayes (BMA-NB): Averaging over an Exponential Number of Feature Models in Linear Time"
- 4. Документация библиотеки scikit-learn

In [ ]: import numpy as np import sklearn as sk import matplotlib.pyplot as plt %matplotlib inline In [ ]: from sklearn.model selection import cross val score from sklearn.metrics import accuracy score from sklearn.naive bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import make blobs, make classification In [ ]: def gaussian kernel(x, mu=0, sigma=1): return 1 / (((2 \* np.pi) \*\* 0.5) \* sigma) \* np.exp(-(x - mu) \*\* 2 / (2 \* sigma.astype(np.float64) \*\* 2)) class BMANBClassifier: ВМА-NВ классификатор. Предполагается, что распределение всех признаков нормальное def init (self, beta=1, coef=2): self.beta = beta # константа нормализации self.coef = coef # количество классов self.m = None # массив меток классов размерности (т, ) (т - число классов) self.labels = None # массив априорных вероятностей классов размерности (т, ) self.cls probs = None # размерность признакового пространства self.k = None # массив средних размерности (m, k) (k - число признаков) self.mus = None # массив стандартных отклонений размерности (m, k)self.sigmas = None # массив величин А k размерности (1, k) self.a = None # массив величин В k размерности (1, k) self.b = None def fit(self, X, y, coef=None): X - признаковое описание объектов: np.array размерности (n, k) (п - количество объектов, k - размерность признакового пространства) у - метки классов: np.array размерности (n, ) Вычисляем self.cls probs, self.mus, self.sigmas, self.a, self.b returns: self if coef != None: self.coef = coef # размер обучающей выборки n = y.shape[0]# размерность признакового пространства self.k = X.shape[1]# массив меток классов self.labels = np.unique(y) # количество классов self.m = self.labels.shape[0] # вычисление априорных вероятностей классов, параметров распределения для каждого класса и каждого приз self.cls probs = np.zeros(self.m) self.mus = np.zeros((self.m, self.k)) self.sigmas = np.zeros((self.m, self.k)) for i, label in enumerate(self.labels): self.cls\_probs[i] = (y == label).sum() / n # признаковое описание объектов с меткой label X cls = X[y == label]# вычисление мат.ожиданий и стандартных отклонений сразу по всем признакам self.mus[i] = X cls.mean(axis=0)  $self.sigmas[i] = (((X_cls - self.mus[i]) ** 2).sum(axis=0) / X_cls.shape[0]) ** 0.5$ # занумеруем классы для удобства дальнйших вычислений y\_nums = np.zeros(n).astype(int) for i, label in enumerate(self.labels): y\_nums[np.where(y == label)] = i # вычисление коэффициентов А k и В k self.a = np.zeros(self.k).astype(np.float64) self.b = np.zeros(self.k).astype(np.float64) # рассматриваем ј-й признак for j in range(self.k): arr = np.tile(X[:, j].reshape((-1,)), (self.m, 1))# вычисляем  $P(x_{ij} | y_j)$  для всех  $y_q, q = 1,...,m$ for q, label in enumerate(self.labels): arr[q] = gaussian\_kernel(arr[q], self.mus[q, j], self.sigmas[q, j]) vec\_a = (self.coef \* np.transpose(arr) \* self.cls\_probs).sum(axis=1) vec\_b = (self.coef \* gaussian\_kernel(X[:, j], self.mus[:, j][y\_nums], self.sigmas[:, j][y\_nums])) norm coef = 10 \*\* np.median(np.log10(np.hstack([vec a, vec b]).flatten())) vec a /= norm coef vec b /= norm coef self.a[j] = vec\_a.prod() self.b[j] = vec\_b.prod() return self def predict(self, X=None): X - признаковое описание объектов: пр.array размерности (n, k) returns: np.array размерности (n,) - метки классов для соответствующих объектов из Xn = X.shape[0]# Вычисление  $P(x_{id} \mid y_{j})$  и  $P(x_{id})$  для всех  $i=1,\ldots,n,d=1,\ldots,k,j=1,\ldots,m$ prob arr = np.zeros((n, self.m + 1, self.k)) for i in range(n): for j in range(self.m): prob\_arr[i][j] = gaussian\_kernel(X[i], self.mus[j], self.sigmas[j]) prob\_arr[i][self.m] = (prob\_arr[i][:-1] \* self.cls\_probs[:, None]).sum() # строим прогноз... result = np.zeros(n) for i in range(n): l = np.log10(self.a \* np.tile(prob arr[i][self.m], (self.m, 1)) + self.b / self.beta \* prob arr[i] result[i] = self.labels[np.argmax(1.sum(axis=1) + np.log10(self.cls probs))] return result def kfold split(num objects, num folds): indexes = np.arange(num objects) delims = np.arange(0, num objects // num folds \* num folds, num objects // num folds)[1:] folds = np.split(indexes, delims) for i in range(num folds): l.append((np.delete(indexes, folds[i]), folds[i])) return 1 def cross val(model, X, y, cv=5, score function=accuracy score, seed=0): folds = kfold split(X.shape[0], cv) np.random.seed(seed) indexes = np.random.permutation(X.shape[0]) X, y = X[indexes], y[indexes]accuracy list = [] for train fold, test fold in folds: model.fit(X[train fold], y[train fold]) y\_pred = model.predict(X[test\_fold]) accuracy list.append(score function(y[test fold], y pred)) return np.array(accuracy\_list) Test 0 In [ ]: from sklearn.datasets import load iris data = load iris() X = data["data"] y = data["target"] print("GaussianNB. Тосность по кросс-валидации на 5 фолдах:", cross val score(GaussianNB(), X, y, cv=5).mean()) print("BMA-NB. Тосность по кросс-валидации на 5 фолдах:", cross val(BMANBClassifier(coef=1, beta=1), X, y, cv=5 print("SVC. Tochocть по кросс-валидации на 5 фолдах:", cross\_val\_score(SVC(), X, y, cv=5).mean()) Test 1 In [ ]: bmanb list = [] nb list = [] svc\_list = [] for state in range(5): X, y = make classification(n samples=1500, n features=5, n informative=5, n redundant=0, n repeated=0, n\_clusters\_per\_class=1, n\_classes=2, random state=state) bmanb\_list.append(cross\_val(BMANBClassifier(), X, y, cv=5, seed=2).mean()) nb\_list.append(cross\_val\_score(GaussianNB(), X, y, scoring="accuracy", cv=5).mean()) svc\_list.append(cross\_val\_score(SVC(), X, y, scoring="accuracy", cv=5).mean()) print(state) In [ ]: | # задаем размеры plt.figure(figsize=(9,5)) # заголовок plt.title('Точность ВМА-NВ и NВ по кросс-валидации на 5 фолдах') # ширина столбцов width = 0.35# координаты столбцов ids = np.arange(1, 6)# рисуем графики plt.bar(ids - width / 3, bmanb list, width / 3.5, label="BMA-NB") plt.bar(ids, nb\_list, width / 3.5, label="GaussianNB") plt.bar(ids + width / 3, svc\_list, width / 3.5, label='SVC') # подписи осей plt.xlabel('random state') plt.ylabel('cross-validation score') plt.legend() # сетка графика plt.grid(True) plt.show() Test 2 In [ ]: bmanb list = [] nb list = []svc\_list = [] for state in range(5): X, y = make classification(n samples=3000, n features=20, n\_informative=5, n\_redundant=5, n\_repeated=5, n\_clusters\_per\_class=1, n\_classes=3, random state=state) bmanb\_list.append(cross\_val(BMANBClassifier(), X, y, cv=5, seed=2).mean()) nb\_list.append(cross\_val\_score(GaussianNB(), X, y, scoring="accuracy", cv=5).mean()) svc\_list.append(cross\_val\_score(SVC(), X, y, scoring="accuracy", cv=5).mean()) print(state) In [ ]: | # задаем размеры plt.figure(figsize=(9,5)) # заголовок plt.title('Точность ВМА-NВ и NВ по кросс-валидации на 5 фолдах') # ширина столбцов width = 0.35# координаты столбцов ids = np.arange(1, 6)# рисуем графики plt.bar(ids - width / 3, bmanb list, width / 3.5, label="BMA-NB") plt.bar(ids, nb list, width / 3.5, label="GaussianNB") plt.bar(ids + width / 3, svc list, width / 3.5, label='SVC') # подписи осей plt.xlabel('random state') plt.ylabel('cross-validation score') plt.legend() # сетка графика plt.grid(True) plt.show() Test 3 In [ ]: bmanb list = [] nb list = []svc list = [] for state in range(5): X, y = make classification(n samples=1500, n features=500, n informative=30, n redundant=3, n clusters per class=1, n classes=2, random state=state) bmanb list.append(cross val(BMANBClassifier(), X, y, cv=5, seed=2).mean()) nb list.append(cross val score(GaussianNB(), X, y, scoring="accuracy", cv=5).mean()) svc list.append(cross val score(SVC(), X, y, scoring="accuracy", cv=5).mean()) print(state) In [ ]: # задаем размеры plt.figure(figsize=(9,5)) # заголовок plt.title('Точность ВМА-NВ и NВ по кросс-валидации на 5 фолдах') # ширина столбцов width = 0.35# координаты столбцов ids = np.arange(1, 6)# рисуем графики plt.bar(ids - width / 3, bmanb\_list, width / 3.5, label="BMA-NB") plt.bar(ids, nb list, width / 3.5, label="GaussianNB") plt.bar(ids + width / 3, svc\_list, width / 3.5, label='SVC') # подписи осей plt.xlabel('random\_state') plt.ylabel('cross-validation score') plt.legend() # сетка графика plt.grid(True) plt.show() Test 4 In [ ]: bmanb list = [] nb list = []svc\_list = [] for state in range(5): X, y = make classification(n samples=2000, n features=500, n informative=30, n redundant=3, n clusters per class=1, n classes=3, random state=state) bmanb\_list.append(cross\_val(BMANBClassifier(), X, y, cv=5, seed=2).mean()) nb\_list.append(cross\_val\_score(GaussianNB(), X, y, scoring="accuracy", cv=5).mean()) svc\_list.append(cross\_val\_score(SVC(), X, y, scoring="accuracy", cv=5).mean()) print(state) In [ ]: | # задаем размеры plt.figure(figsize=(9,5)) # заголовок plt.title('Точность ВМА-NВ и NВ по кросс-валидации на 5 фолдах') # ширина столбцов width = 0.35# координаты столбцов ids = np.arange(1, 6)# рисуем графики plt.bar(ids - width / 3, bmanb\_list, width / 3.5, label="BMA-NB") plt.bar(ids, nb\_list, width / 3.5, label="GaussianNB") plt.bar(ids + width / 3, svc list, width / 3.5, label='SVC') # подписи осей plt.xlabel('random\_state') plt.ylabel('cross-validation score') plt.legend() # сетка графика plt.grid(True) plt.show() Test 5 In [ ]: bmanb list = [] nb list = [] svc list = [] for state in range(5): X, y = make classification(n samples=2000, n features=500, n informative=30, n redundant=3, n clusters per class=1, n classes=5, random state=state) bmanb list.append(cross val(BMANBClassifier(), X, y, cv=5, seed=2).mean()) nb list.append(cross val score(GaussianNB(), X, y, scoring="accuracy", cv=5).mean()) svc list.append(cross val score(SVC(), X, y, scoring="accuracy", cv=5).mean()) print(state) In [ ]: | # задаем размеры plt.figure(figsize=(9,5)) # заголовок plt.title('Точность ВМА-NВ и NВ по кросс-валидации на 5 фолдах') # ширина столбцов width = 0.35# координаты столбцов ids = np.arange(1, 6)# рисуем графики plt.bar(ids - width / 3, bmanb\_list, width / 3.5, label="BMA-NB") plt.bar(ids, nb\_list, width / 3.5, label="GaussianNB") plt.bar(ids + width / 3, svc\_list, width / 3.5, label='SVC') # подписи осей plt.xlabel('random\_state') plt.ylabel('cross-validation score') plt.legend() # сетка графика plt.grid(True) plt.show()