Лекция 13. Алфавитные коды. Неравенство Макмиллана. Теорема о существовании префиксного кода с заданными длинами кодовых слов. Дерево префиксного кода.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Теорема 13.1 (неравенство Макмиллана). Пусть $C_{\varphi} = \{B_1, \dots, B_r\}$ — алфавитный код в кодирующем алфавите B, |B| = q, и $|B_i| = l_i$, $i = 1, \dots, r$. Если код C_{φ} — разделим, то верно неравенство:

$$\sum_{i=1}^r \frac{1}{q^{l_i}} \leqslant 1.$$

0000000000

Неравенство Макмиллана

Доказательство. Пусть $n \ge 1$. Рассмотрим выражение:

$$\left(\sum_{i=1}^r \frac{1}{q^{l_i}}\right)^n.$$

Получаем:

$$\left(\sum_{i=1}^{r} \frac{1}{q^{l_i}}\right)^n = \left(\sum_{i_1=1}^{r} \frac{1}{q^{l_{i_1}}}\right) \cdot \left(\sum_{i_2=1}^{r} \frac{1}{q^{l_{i_2}}}\right) \cdot \ldots \cdot \left(\sum_{i_n=1}^{r} \frac{1}{q^{l_{i_n}}}\right) = \\
= \sum_{i_1=1}^{r} \sum_{i_2=1}^{r} \ldots \sum_{i_n=1}^{r} \frac{1}{q^{l_{i_1}+l_{i_2}+\ldots l_{i_n}}} = \sum_{k=1}^{n \cdot l_{\text{max}}} \frac{c_k}{q^k},$$

где $l_{\max} = \max_{1 \leq i \leq r} l_i$ и c_k равно числу таких наборов (i_1, \ldots, i_n) , что $l_{i_1} + \ldots + l_{i_n} = k$ (для каждого $k = 1, \ldots, n \cdot l_{\max}$).

Вспомогательная лемма

Лемма 13.1. Если C_{φ} — разделимый алфавитный код, то $c_k \leqslant q^k$.

Доказательство. Итак, c_k равно числу таких наборов (i_1, \ldots, i_n) , что $l_{i_1} + \ldots + l_{i_n} = k$.

Каждому такому набору (i_1,\ldots,i_n) соответствует слово $\alpha=a_{i_1}\ldots a_{i_n}\in A^*$ (где A — исходный алфавит).

Далее:

$$\varphi(\alpha) = \varphi(\mathsf{a}_{\mathsf{i}_1} \dots \mathsf{a}_{\mathsf{i}_n}) = \mathsf{B}_{\mathsf{i}_1} \dots \mathsf{B}_{\mathsf{i}_n} = \beta,$$

причем $|\beta| = l_{i_1} + \ldots + l_{i_n} = k$.

Вспомогательная лемма

Но код C_{φ} — разделим, поэтому если $\beta\in B^*$, то найдется не более одного такого слова $\alpha\in A^*$, что $\varphi(\alpha)=\beta$.

Поэтому любому слову $\beta \in B^*$, $|\beta| = k$, соответствует не более одного такого слова $\alpha = a_{i_1} \dots a_{i_n} \in A^*$, что $\beta = \varphi(\alpha)$.

А значит, число таких наборов (i_1,\ldots,i_n) , что $l_{i_1}+\ldots+l_{i_n}=k$, не превосходит числа слов длины k в алфавите B, т. е. $c_k\leqslant q^k$.

Доказательство теоремы 13.1 (продолжение). Итак,

$$\left(\sum_{i=1}^r \frac{1}{q^{l_i}}\right)^n = \sum_{k=1}^{n \cdot l_{\text{max}}} \frac{c_k}{q^k}.$$

По лемме 13.1 верно $c_k \leqslant q^k$, поэтому

$$\left(\sum_{i=1}^{r} \frac{1}{q^{l_i}}\right)^n \leqslant \sum_{k=1}^{n \cdot l_{\text{max}}} 1 \leqslant n \cdot l_{\text{max}},$$

или

$$\sum_{i=1}^r \frac{1}{q^{l_i}} \leqslant \sqrt[n]{n \cdot l_{\mathsf{max}}}.$$

Неравенство

$$\sum_{i=1}^{r} \frac{1}{q^{l_i}} \leqslant \sqrt[n]{n \cdot l_{\mathsf{max}}}$$

выполняется для любого $n\geqslant 1$. Переходя в нем к пределу при $n\to\infty$, получаем:

$$\sum_{i=1}^r \frac{1}{q^{l_i}} \leqslant 1.$$

Пример. Является ли разделимым алфавитный код

$$C_{\varphi_1} = \{00, 01, 10, 001, 011, 100\}$$
?

Находим кодирующий алфавит: $B = \{0, 1\}$.

Получаем:

$$\frac{3}{2^2} + \frac{3}{2^3} = \frac{3}{4} + \frac{3}{8} = \frac{9}{8} > 1.$$

Если бы код C_{φ_1} был разделим, то сумма в левой части не превосходила бы единицу, что не так. Значит, код C_{φ_1} не является разделимым.

Пример. Является ли разделимым алфавитный код

$$C_{\varphi_2} = \{00, 01, 10, 001, 011\}$$
?

Находим кодирующий алфавит: $B = \{0, 1\}$.

Получаем:

$$\frac{3}{2^2} + \frac{2}{2^3} = \frac{3}{4} + \frac{2}{8} = 1.$$

Пока невозможно сделать вывод о разделимости или неразделимости кода C_{φ_2} .

Пример (продолжение). Построим граф $G_{\varphi_2}=(V_{\varphi_2},E_{\varphi_2})$ для кода $C_{\varphi_2}=\{00,01,10,001,011\}$. Получаем: $V_{\varphi_2}=\{\Lambda,0,1\}$. Далее:

 G_{φ_2} :

Пример (продолжение). Построим граф $G_{\varphi_2}=(V_{\varphi_2},E_{\varphi_2})$ для кода $C_{\varphi_2}=\{00,01,10,001,011\}$. Получаем: $V_{\varphi_2}=\{\Lambda,0,1\}$. Далее:

Λ

 G_{φ_2}

0.

•1

Пример (продолжение). Построим граф $G_{\varphi_2}=(V_{\varphi_2},E_{\varphi_2})$ для кода $C_{\varphi_2}=\{00,01,10,001,011\}$. Получаем: $V_{\varphi_2}=\{\Lambda,0,1\}$. Далее:

Пример (продолжение). Построим граф $G_{\varphi_2}=(V_{\varphi_2},E_{\varphi_2})$ для кода $C_{\varphi_2}=\{00,01,10,001,011\}$. Получаем: $V_{\varphi_2}=\{\Lambda,0,1\}$. Далее:

Пример (продолжение). Построим граф $G_{\varphi_2}=(V_{\varphi_2},E_{\varphi_2})$ для кода $C_{\varphi_2}=\{00,01,10,001,011\}$. Получаем: $V_{\varphi_2}=\{\Lambda,0,1\}$. Далее:

Пример (продолжение). Построим граф $G_{\varphi_2}=(V_{\varphi_2},E_{\varphi_2})$ для кода $C_{\varphi_2}=\{00,01,10,001,011\}$. Получаем: $V_{\varphi_2}=\{\Lambda,0,1\}$. Далее:

В графе G_{φ_2} найдется направленный цикл, проходящий через вершину Λ , значит, код C_{φ_2} — не является разделимым.

Пример. Существует ли разделимый алфавитный код в кодирующем алфавите из q=3 букв с длинами кодовых слов:

Получаем:

$$\frac{2}{3^1} + \frac{4}{3^2} = \frac{2}{3} + \frac{4}{9} = \frac{10}{9} > 1.$$

Если бы такой код существовал, то сумма в левой части не превосходила бы единицу, что не так. Значит, такого разделимого кода не существует.

Пример. Существует ли разделимый алфавитный код в кодирующем алфавите из q=3 букв с длинами кодовых слов:

Получаем:

$$\frac{1}{3^1} + \frac{2}{3^2} + \frac{3}{3^3} = \frac{1}{3} + \frac{2}{9} + \frac{3}{27} = \frac{2}{3} \leqslant 1.$$

Противоречия нет. Но найдется ли такой разделимый код?

Теорема 13.2 (о существовании префиксного кода с заданными длинами кодовых слов). Пусть q, l_1, \ldots, l_r — такие натуральные числа, что выполняется неравенство:

$$\sum_{i=1}^r \frac{1}{q^{l_i}} \leqslant 1.$$

Тогда существует такой префиксный код $C = \{B_1, \ldots, B_r\}$ в любом кодирующем алфавите из q букв, что $|B_i| = I_i$ для всех $i = 1, \ldots, r$.

Доказательство. Итак, пусть $q, l_1, \ldots, l_r \geqslant 1$,

$$\sum_{i=1}^r \frac{1}{q^{l_i}} \leqslant 1$$

и B — произвольный кодирующий алфавит из q букв.

Пусть m_1,\ldots,m_k — все различные числа среди чисел l_1,\ldots,l_r , $1\leqslant k\leqslant r$, причем чисел m_i среди l_1,\ldots,l_r ровно r_i , $i=1,\ldots,k$. Отметим, что

$$r_1 + \ldots + r_k = r$$
.

Значит,

$$\sum_{i=1}^k \frac{r_j}{q^{m_j}} \leqslant 1.$$

Пусть, для определенности, $m_1 < m_2 < \ldots < m_{k_{2^n}}$

Следовательно, выполняется система неравенств:

$$\begin{cases} \frac{r_1}{q^{m_1}} \leqslant 1, \\ \frac{r_1}{q^{m_1}} + \frac{r_2}{q^{m_2}} \leqslant 1, \\ \frac{r_1}{q^{m_1}} + \frac{r_2}{q^{m_2}} + \frac{r_3}{q^{m_3}} \leqslant 1, \\ \dots, \\ \frac{r_1}{q^{m_1}} + \frac{r_2}{q^{m_2}} + \dots + \frac{r_k}{q^{m_k}} \leqslant 1, \end{cases}$$

откуда

$$\begin{cases} r_1 \leqslant q^{m_1}, \\ r_2 \leqslant q^{m_2} - r_1 q^{m_2 - m_1}, \\ r_3 \leqslant q^{m_3} - r_2 q^{m_3 - m_2} - r_1 q^{m_3 - m_1}, \\ \dots, \\ r_k \leqslant q^{m_k} - r_{k-1} q^{m_k - m_{k-1}} - \dots - r_1 q^{m_k - m_1}. \end{cases}$$

Итак, $r_1 \leqslant q^{m_1}$.

Выберем r_1 различных слов B_1, \ldots, B_{r_1} длины m_1 в алфавите B.

Всего различных слов длины m_1 в алфавите B найдется q^{m_1} .

Из $r_1 \leqslant q^{m_1}$ следует, что r_1 различных слов длины m_1 в алфавите B можно найти.

Из дальнейшего рассмотрения исключим все слова в алфавите B с префиксами B_1, \ldots, B_{r_1} .

Теперь, $r_2 \leqslant q^{m_2} - r_1 q^{m_2 - m_1}$.

Выберем r_2 различных слов $B_{r_1+1},\dots,B_{r_1+r_2}$ длины m_2 в алфавите B, не начинающихся с B_1,\dots,B_{r_1} .

Всего различных слов длины m_2 в алфавите B найдется q^{m_2} . Из них содержат одно из слов B_1,\ldots,B_{r_1} как префикс в точности $r_1q^{m_2-m_1}$ слов.

Но $r_2\leqslant q^{m_2}-r_1q^{m_2-m_1}$, поэтому r_2 различных слов длины m_2 с такими условиями можно найти.

Из дальнейшего рассмотрения исключим все слова в алфавите B с префиксами B_1, \ldots, B_r , $B_{r_1+1}, \ldots, B_{r_1+r_2}$.

Далее,
$$r_3 \leqslant q^{m_3} - r_2 q^{m_3 - m_2} - r_1 q^{m_3 - m_1}$$
.

Выберем r_3 различных слов $B_{r_1+r_2+1},\ldots,B_{r_1+r_2+r_3}$ длины m_3 в алфавите B, не начинающихся с $B_1,\ldots,B_{r_1},\ B_{r_1+r_2}.$

Всего различных слов длины m_3 в алфавите B найдется q^{m_3} . Из них содержат одно из слов $B_1,\ldots,B_{r_1},\,B_{r_1+1},\ldots,B_{r_1+r_2}$ как префикс в точности $r_1q^{m_3-m_1}+r_2q^{m_3-m_2}$ слов.

Но $r_3\leqslant q^{m_3}-r_2q^{m_3-m_2}-r_1q^{m_3-m_1}$, поэтому r_3 различных слов длины m_3 с такими условиями можно найти.

Из дальнейшего рассмотрения исключим все слова в алфавите B с префиксами $B_1,\ldots,B_{r_1},\ B_{r_1+r_2+1},\ldots,B_{r_1+r_2+r_3}.$

И т. д.

Повторив эти рассуждения k раз, получим слова:

$$B_1, \ldots, B_{r_1}, B_{r_1+1}, \ldots, B_{r_1+r_2}, \ldots, B_{r_1+\ldots+r_{k-1}+1}, \ldots, B_{r_1+\ldots+r_{k-1}+r_k}.$$

По построению ни одно из этих слов не является префиксом никакого другого из этих слов.

Поэтому эти слова образуют искомый префиксный (а значит, и разделимый) алфавитный код.

Пример. Существует ли разделимый алфавитный код в кодирующем алфавите из q=3 букв с длинами кодовых слов:

Получаем:

$$\frac{1}{3^1} + \frac{2}{3^2} + \frac{3}{3^3} = \frac{1}{3} + \frac{2}{9} + \frac{3}{27} = \frac{2}{3} \leqslant 1.$$

По доказательству теоремы 13.2 построим префиксный код с такими длинами кодовых слов в кодирующем алфавите $\mathcal{B}=\{0,1,2\}$:

$$B_1 = 0, \ B_2 = 10, \ B_3 = 11, \ B_4 = 120, \ B_5 = 121, B_6 = 122.$$

Префиксные коды

Теорема 13.3 (о существовании префиксного кода с теми же длинами кодовых слов). Если $C = \{B_1, \ldots, B_r\}$ — разделимый алфавитный код в кодирующем алфавите B, то найдется такой префиксный код $C' = \{B'_1, \ldots, B'_r\}$ в том же алфавите B, что $|B'_i| = |B_i|$ для всех $i = 1, \ldots, r$.

Доказательство. Пусть |B| = q и $|B_i| = l_i, i = 1, ..., r$.

Код ${\it C}$ — разделимый, поэтому по теореме 13.1 верно:

$$\sum_{i=1}^r \frac{1}{q^{l_i}} \leqslant 1.$$

Значит, по теореме 13.2 найдется такой префиксный код $C'=\{B'_1,\ldots,B'_r\}$ в кодирующем алфавите B, что $|B'_i|=I_i$, $i=1,\ldots,r$. Он и есть искомый.

Префиксный код C_{φ} можно задавать в виде корневого дерева D_{φ} .

Пусть задан префиксный код $C_{\varphi}=\{B_1,\ldots,B_r\}$ в кодирующем алфавите B. Пусть $b_1,\ldots,b_t\in B$ — все буквы, являющиеся префиксами хотя бы одного кодового слова из C_{φ} , и

$$C_{\varphi_i} = \{ \beta \in B^* \mid \exists B_j \in C_{\varphi} : B_j = b_i \beta \},\$$

где $i=1,\ldots,t$. Отметим, что C_{φ_i} также является префиксным кодом для всех таких $i,\ 1\leqslant i\leqslant t$, что $C_{\varphi_i}\neq \{\Lambda\}.$

Тогда корневое дерево D_{φ} кода C_{φ} содержит корень v_0 , ребра (v_0,v_i) , помеченные буквой b_i , $i=1,\ldots,t$, и поддеревья D_{φ_i} с корнем v_i для всех таких i, $1\leqslant i\leqslant t$, что $C_{\varphi_i}\neq\{\Lambda\}$.

Если D_{φ} — дерево префиксного кода $C_{\varphi}=\{B_1,\ldots,B_r\}$ с корнем v_0 , то у дерева D_{φ} ровно r листьев.

Более того, все листья дерева D_{φ} можно так занумеровать u_1,\dots,u_r , что если записать последовательно пометки ребер вдоль единственной простой (v_0,u_i) -цепи P_i в этом дереве, то получим кодовое слово $B_i,\ i=1,\dots,r$.

Пример. Построим дерево D_{arphi} префиксного кода $\mathcal{C}_{arphi} = \{00,11,010\}$ в кодирующем алфавите $B = \{0,1\}$:

Пример. Построим дерево D_{φ} префиксного кода $C_{\varphi} = \{00, 11, 010\}$ в кодирующем алфавите $B = \{0, 1\}$:

Пример. Построим дерево D_{φ} префиксного кода $C_{\varphi} = \{00, 11, 010\}$ в кодирующем алфавите $B = \{0, 1\}$:

Обратно, пусть D — корневое дерево с корнем v_0 с ребрами, помеченными буквами из некоторого алфавита B.

Кроме того, пусть для любых двух ребер e_1 и e_2 , исходящих из одной и той же вершины v и помеченных одной и той же буквой $b \in B$, верно, что одно из этих ребер принадлежит единственной простой (v_0, v) -цепи.

Тогда D можно рассматривать как дерево префиксного кода C, построенного следующим образом.

Если u_1,\dots,u_r — все листья в дереве D, то кодовое слово B_i получаем, записывая последовательно пометки ребер вдоль единственной простой (v_0,u_i) -цепи P_i в дереве $D,\ i=1,\dots,r.$

Далее:
$$C = \{B_1, \ldots, B_r\}.$$

Пример. Построим префиксный код C по дереву D:

Пример. Построим префиксный код C по дереву D:

Пример. Построим префиксный код C по дереву D:

Получаем: $C = \{002, 01, 11, 12, 2\}.$

Задачи для самостоятельного решения

1. Постройте дерево префиксного кода из примера после теоремы 13.2.

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 48–50.
- 2. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001. С. 272–276.
- 3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. VIII $1.6,\ 1.7,\ 1.8.$