NEVILLE'S AND LAGRANGE'S INTERPOLATING POLYNOMIAL

Learning Outcomes

At the end of this session, the students should be able to:

- 1. describe the Lagrangian interpolating polynomial for any given degree;
- 2. describe the Neville's interpolating polynomial for any given degree; and
- 3. create R scripts implementing these methods.

Content

- I. Polynomial Interpolation
- II. Lagrangian Interpolating Polynomial
- III. Neville's Interpolating Polynomial

Polynomial Interpolation

Interpolation is a method of constructing new data points within the range of a discrete set of known data points. Given discrete set of known data points $(x_0, f(x_0))$, $(x_1, f(x_1))$... $(x_n, f(x_n))$, interpolation is finding the value of f(x) at some value of x that is not given.

Polynomials are the most common choice of interpolants because they are easy to (1) evaluate, (2) differentiate, and (3) integrate. **Polynomial interpolation** involves finding a polynomial of order n that passes through n+1 the data points.

Lagrangian Interpolating Polynomial

The Lagrange Method seeks to find the interpolating polynomial which passes through the points $(x_1, y_1), ..., (x_n, y_n)$ finding n polynomials which follows these rules:

- 1. The first-order polynomial is y_1 at x_1 and equals zero at x_2 , ..., x_n .
- 2. The second-order polynomial is y_2 at x_2 and equals zero at x_1 , x_3 , ..., x_n .
- 3. The n^{th} -order polynomial is y_n at x_n and equals zero at x_1 , ..., x_{n-1} .

To do this, we set the following:

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

$$L_i(x) = \prod_{j=0, j\neq i}^n \frac{x-x_j}{x_i-x_j}$$

Therefore, the first-order polynomial is:

$$f_1(x) = f(x_0) \frac{x - x_1}{x_0 - x_1} + f(x_1) \frac{x - x_0}{x_1 - x_0}$$

And the **second-order polynomial** is:

$$f_2(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

The polynomial can also be evaluated at the n-1 th order, thus it is imperative that the data is sorted according to the x-coordinate.

Example

We are to estimate ln(2), which has a true value of 0.6931. We are doing this to check if the Lagrangian interpolating polynomial will fair in approximating when we rely on other true values.

х	f(x)
1	ln(1) = 0
3	ln(3) = 1.0986
4	ln(4) = 1.3863
5	ln(5) = 1.6094

For us to have an interpolating polynomial for four data points, we use a third-order interpolating polynomial.

$$f_3(x) = \sum_{i=0}^{3} L_i(x) f(x_i)$$

$$f_3(x) = \sum_{i=0}^{3} \prod_{j=0, j\neq i}^{3} \frac{x-x_j}{x_i-x_j} f(x_i)$$

$$f_3(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_2}{x_0 - x_2}\right) \left(\frac{x - x_3}{x_0 - x_3}\right) f(x_0) + \left(\frac{x - x_0}{x_1 - x_0}\right) \left(\frac{x - x_2}{x_1 - x_2}\right) \left(\frac{x - x_3}{x_1 - x_3}\right) f(x_1) + \left(\frac{x - x_0}{x_2 - x_0}\right) \left(\frac{x - x_1}{x_2 - x_1}\right) \left(\frac{x - x_3}{x_2 - x_3}\right) f(x_2) + \left(\frac{x - x_0}{x_3 - x_0}\right) \left(\frac{x - x_1}{x_3 - x_1}\right) \left(\frac{x - x_2}{x_3 - x_2}\right) f(x_3)$$

$$f_3(x) = \left(\frac{x-3}{1-3}\right) \left(\frac{x-4}{1-4}\right) \left(\frac{x-5}{1-5}\right) 0 + \left(\frac{x-1}{3-1}\right) \left(\frac{x-4}{3-4}\right) \left(\frac{x-5}{3-5}\right) 1.0986 +$$

$$\left(\frac{x-1}{4-1}\right)\left(\frac{x-3}{4-3}\right)\left(\frac{x-5}{4-5}\right)1.3863 + \left(\frac{x-1}{5-1}\right)\left(\frac{x-3}{5-3}\right)\left(\frac{x-4}{5-4}\right)1.6094$$

$$f_3(2) = 0.66395$$

Neville's Interpolating Polynomial

In the Neville's Method, the evaluation is automatically done. This means that the sought value of the function x should be automatically given for computation to proceed. Also, data should be arranged according to their closeness to x.

$$P_{i,k} = \frac{(x-x_i)P_{i+1,k-1} + (x_{i+k}-x)P_{i,k-1}}{x_{i+k}-x_i}$$

For easy computation of the values, a table for this purpose is needed.

i	$x_i \qquad x - x_i $	$P_{i,0} = f(x_i) \qquad P_{i,1}$		$P_{i, n-2}$	$P_{i, n-1}$	
---	------------------------	-----------------------------------	--	--------------	--------------	--

Example

We are to estimate ln(2), which has a true value of 0.6931. We are doing this to check if the Neville's interpolating polynomial will fair in approximating when we rely on other true values.

х	f(x)
1	ln(1) = 0
3	ln(3) = 1.0986
4	ln(4) = 1.3863
5	ln(5) = 1.6094

For us to have an interpolating polynomial, we need to construct the following table:

i	x_i	$ x-x_i $	$P_{i,0} = f(x_i)$	$P_{i, 1}$	P _{i, 2}	$P_{i,3}$
1	1	1	0	0.5493	0.6365	0.66395
2	3	1	1.0986	0.8109	0.7463	
3	4	2	1.3863	0.9401		
4	5	3	1.6094			

Learning Experiences

- 1. Students will try to manually expand the Lagrangian interpolating polynomials for any given degree.
- 2. Students will try to manually solve word problems using the given methods.

Sample Exercises for Self-learning

1. Create R functions named Neville and Lagrange which takes a matrix of data points.

The functions should have the following *parameters*:

- 1. mat, the matrix of data points (for Neville and Lagrange);
- 2. verbose, a Boolean with a default of TRUE which prints the table of reliant values (for Neville);
- 3. x, the x-coordinate sought for (for Neville);

The functions must **return** the following values:

- 1. f, the interpolating polynomial being made as a function (for Lagrange);
- 2. fx, the corresponding y-coordinate sought (for Neville).

Assessment Tool

A *programming exercise* that implements both the Neville's and Lagrange's Interpolating Polynomial.

References

- [1] Obrero, R.J. (2015). [Handout 6] Neville's and Lagrange's Interpolating Polynomial (CMSC 150 old handout)
- [2] Obrero, R.J. (2015). [Exercise 6] Neville's and Lagrange's Interpolating Polynomial (CMSC 150 old handout)
- [3] Encinas, J.E.I (2012). Lagrange Interpolating Polynomial and Neville's Algorithm (CMSC 150 old handout)

Sample Problems

Using the code you have created, answer the following problems below in a 1/2 sheet of paper, or as attached otherwise.

- 1. Gather the Lagrangian and Neville's Interpolating Polynomial which explains the trend of the Philippine population from 1995 to 2015. Using the gathered polynomial, predict the population in 2004.
 - a. For the computation in Lagrange's, place the final interpolating polynomial.
 - b. For the computation in Neville's, include the table which was produced by the algorithm, as well as the final output, rounded into the nearest whole number.
- 2. Plot the Lagrangian Interpolating Polynomial in R from 1990 to 2020, as well as the coordinates of the said function in 2004.
 - a. Provide appropriate titles for the graph, and let be the plot of the said coordinate be a solid filled circle of color red. Also, plot the points which make the interpolating polynomial as an x-mark of color blue.
 - b. Attach the image that you have produced in Google Classroom. In a form of a comment, interpret the results that you have gathered.

Year	Population Count
1995	68 349 452
2000	75 505 061
2005	82 079 348
2010	87 940 171

2015	93 440 274