

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZEŚĆ I

MIN-R1 **1**P-183

DATA: 7 czerwca 2018 r. GODZINA ROZPOCZECIA: 14:00

CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

UZUPEŁNIA ZDAJĄCY	WYBRANE:	
	(system operacyjny)	
	(program użytkowy)	
	(środowisko programistyczne)	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowany (wybrany) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

NOWA FORMUŁA

Zadanie 1. Wyszukiwanie liczb (0–6)

Funkcja F(T, x) przyjmuje jako argumenty tablicę T, w której znajdują się liczby całkowite uporządkowane niemalejąco, oraz liczbę całkowitą x, którą ma wyszukać w tablicy.

Dane:

```
n — liczba elementów tablicy, n > 0 T[1..n] - n-elementowa tablica zawierająca liczby całkowite uporządkowane niemalejąco x — liczba całkowita poszukiwana w tablicy T
```

Wynik:

prawda – jeśli liczba x występuje w tablicy T, falsz – w przeciwnym razie

Uwaga: zapis div oznacza dzielenie całkowite

Zadanie 1.1. (0–4)

Rozważmy tablicę T = [3; 5; 7; 8; 9; 13; 33; 37; 40; 43].

A. Podaj wynik funkcji F(T, x) dla liczby x=7.

Odpowiedź:

Miejsce na obliczenia.

B. Podaj, ile razy nastąpi modyfikacja wartości zmiennej p, a ile razy zmiennej k podczas wykonywania pętli **dopóki** dla x = 7 oraz dla x = 43,

Zmienna	Ile razy nastąpi modyfikacja wartości zmiennej?	
	<i>x</i> =7	x=43
p		
k		

Miejsce na obliczenia.

C. Podaj kolejne wartości zmiennej s , jakie będzie ona przyjmowała dla $x = 7$.	
Odpowiedź:	

Miejsce na obliczenia.

Zadanie 1.2. (0–1)

Podaj, ile razy dla n=100 jest spełniony warunek "p <= k" podczas wykonywania pętli **dopóki** w funkcji F(T, x), w sytuacji, gdy poszukiwana liczba jest większa od każdego z elementów zapisanych w tablicy T?

Odpowiedź:

Miejsce na obliczenia.

Zadanie 1.3. (0–1)

Sprawdź działanie funkcji F(T, x) dla nieuporządkowanej tablicy

T = [3; 5; 7; 8; 90; 13; 33; 37; 40; 43].

Podaj wynik działania tej funkcji dla tablicy T oraz liczby x = 43.

Odpowiedź:

Miejsce na obliczenia.

Zadanie 2. Liczby Fibonacciego (0–5)

Liczby Fibonacciego są definiowane w następujący sposób:

$$F_1 = 1$$
, $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ dla $n = 3, 4, ...$

Rekurencyjny algorytm, który służy do obliczania wartości F_n dla dowolnego $n \ge 1$, można zapisać następująco:

```
funkcja F(n)
  jeśli n=1 lub n=2
      wynikiem jest 1
  w przeciwnym razie
      wynikiem jest F(n-1) + F(n-2)
```

Zadanie 2.1. (0–2)

Zapisz w wybranej przez siebie notacji (w języku programowania lub w pseudokodzie) algorytm iteracyjny, który służy do obliczania wartości liczby F_n dla dowolnego $n \ge 1$. Algorytm nie może używać tablic.

Algorytm.

Zadanie 2.2. (0–1)

Aby obliczyć F_{45} , wywołano najpierw funkcję iteracyjną, a potem – rekurencyjną. Okazało się, że czas trwania obliczeń realizowanych przez funkcję rekurencyjną był długi, podczas gdy funkcja iteracyjna prawie natychmiast podała wynik. Uzasadnij długi czas działania funkcji **rekurencyjnej**.

Odpowiedź:		 	
1			
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •

Zadanie 2.3. (0–2)

Aby przyśpieszyć rekurencyjne obliczanie wartości n-tego wyrazu ciągu Fibonacciego, można skorzystać z następujących wzorów, prawdziwych dla dowolnego całkowitego $k \ge 2$:

$$F_{2k} = (F_{k+1})^2 - (F_{k-1})^2$$

$$F_{2k-1} = (F_k)^2 + (F_{k-1})^2$$

Zapisz w wybranej przez siebie notacji (w postaci listy kroków, w języku programowania lub w pseudokodzie) algorytm **rekurencyjny**, który służy do obliczania wartości liczby F_n dla dowolnego $n \ge 1$ i korzysta z tych wzorów.

Zadanie 3. Test (0–4)

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0–1)

W tabeli *T* zapisano wiele rekordów danych zawierających informacje o zawodnikach. Pola rekordu to: id, nazwisko, imie, plec, wzrost, numer_startowy, punkty, id klubu.

Polecenie SQL obliczające sumę punktów zawodników z klubu o id_klubu równym liczbie 100, może mieć postać:

1	<pre>select sum(punkty) as suma from T where id_klubu=100;</pre>	P	F
2	select avg(punkty) from T where id=100;	P	F
3	<pre>select punkty as suma from T where id_klubu=100;</pre>	P	F
4	select sum(punkty) from T where id klubu=100;	P	F

Zadanie 3.2. (0–1)

Które zdania dotyczące struktury danych zwanej stosem są prawdziwe?

1	Elementy stosu są zdejmowane w odwrotnej kolejności niż kolejność ich wkładania na stos.	P	F
2	Tylko pierwszy dodany element jest zawsze dostępny na stosie.	P	F
3	Stos może być używany m.in. przy obliczaniu wartości wyrażeń zapisanych w Odwrotnej Notacji Polskiej (ONP).	P	F
4	Tylko ostatnio dodany element jest zawsze dostępny na stosie.	P	F

Zadanie 3.3. (0–1)

Do jednoznacznego zakodowania znaków pięcioelementowego alfabetu wystarczą/y:

1	2 bity.	P	F
2	3 bity.	P	F
3	5 bitów.	P	F
4	8 bitów.	P	F

Zadanie 3.4. (0–1)

Dana jest funkcja rekurencyjna Rek, której argumentem jest nieujemna liczba całkowita n.

funkcja Rek(n)

jeśli (n>0) to wykonaj kolejno dwie instrukcje:

- 1. wywołaj Rek dla argumentu n-1
- 2. wypisz n

Jeśli wywołamy ją dla *n* równego 5, to:

1	Zero będzie wypisane.	P	F
2	Największą wypisaną liczbą będzie 5.	P	F
3	Zostanie wypisanych 5 liczb.	P	F
4	Liczby zostaną wypisane w kolejności malejącej.	P	F

BRUDNOPIS (nie podlega ocenie)