Math Template

Michael Francesco Ala

1 Intro

Give some motivation for the talk.

2 Twists

Definition 2.0.1. A **twist** over a locally compact Hausdorff étale groupoid \mathcal{G} is a groupoid \mathcal{E} with unit space $\mathcal{G}^{(0)}$, along with two continuous groupoid homomorphisms $\iota: \mathcal{G}^{(0)} \times \mathbb{T} \to \mathcal{E}$, and $\pi: \mathcal{E} \to \mathcal{G}$, such that

- ι and π descend to homeomorphisms on the unit spaces.
- ι is injective and π is surjective.
- $\iota(\mathcal{G}^{(0)} \times \mathbb{T}) = \pi^{-1}(\mathcal{G}^{(0)})$
- $\iota(\mathcal{G}^{(0)} \times \mathbb{T})$ is central in \mathcal{E} , in the sense that for all $\varepsilon \in \mathcal{E}$ and $z \in \mathbb{T}$, $\iota(r(e), z)e = e\iota(s(e), z)$.
- \mathcal{E} is a \mathbb{T} -bundle: for all $\gamma \in \mathcal{G}$, there exists an open bisection $U \ni \gamma$ such that $\pi^{-1}(U) \cong U \times \mathbb{T}$.

Example. Let $\mathcal{E} = \mathcal{G} \times \mathbb{T}$, with ι and π the obvious maps.

Example. Let $\sigma: \mathcal{G}^{(2)} \to \mathbb{T}$ be a **continuous, normalized** 2-**cocycle**: a continuous map satisfying $\sigma(r(\gamma), \gamma) = \sigma(\gamma, s(\gamma)) = 1$, and the following cocycle identity

$$\sigma(\alpha, \beta)\sigma(\alpha\beta, \gamma) = \sigma(\beta, \gamma)\sigma(\alpha, \beta\gamma)$$

Let \mathcal{E} have the same underlying set as $\mathcal{G} \times \mathbb{T}$, but with the following "twisted multiplication":

$$(\alpha, w)(\beta, z) = (\alpha\beta, \sigma(\alpha, \beta)wz)$$
 $\sigma(\alpha, w)(\beta, z) = (\alpha\beta, \sigma(\alpha, \beta)wz)$

Fact 2.0.2. There is a natural \mathbb{T} -action on \mathcal{E} , given by letting $z \cdot \varepsilon := \iota(r(\varepsilon), z)\varepsilon$. Then this action preserves fibres $(\pi(z \cdot \varepsilon) = \pi(\varepsilon))$, and moreover whenever $\varepsilon, \delta \in \mathcal{E}$ occupy the same fibre $(\pi(\varepsilon) = \pi(\delta))$, then there is a unique $z \in \mathbb{T}$ such that $\delta = z \cdot \varepsilon$. Finally, under this \mathbb{T} -action, $\mathcal{E}/\mathbb{T} \cong \mathcal{G}$ (algebraically, and homeomorphically if π is an open map).

The goal of twisted groupoids is to expand the class of C*-algebras arising from groupoids.

2.1 Convolution Algebras

Definition 2.1.1. Let $\Sigma_c(\mathcal{G}; \mathcal{E}) := \{ f \in C_c(\mathcal{E}) \mid f(z \cdot \varepsilon) = zf(\varepsilon) \}$. We'd like to define some sort of convolution operation.

For any $\gamma \in \mathcal{G}$, $\mathbb{T} \cong \pi^{-1}(\{\gamma\})$, via the map $z \mapsto z \cdot \delta$ for any choice $\delta \in \pi^{-1}(\{\gamma\})$. Thus we can obtain a \mathbb{T} -invariant measure on the fibre of γ by pushing forward the Haar measure on \mathbb{T} via this homeomorphism. For each $x \in \mathcal{G}^{(0)}$, define a measure λ^x supported on \mathcal{E}^x via

$$\lambda^{x}(U) = \sum_{\gamma \in \mathcal{G}^{x}} \lambda^{\pi^{-1}(\{\gamma\})} (U \cap \pi^{-1}(\{\gamma\}))$$

Definition 2.1.2. $\Sigma_c(\mathcal{G}; \mathcal{E})$ becomes a *-algebra with the following operations:

$$(f * g)(\varepsilon) = \int_{\mathcal{E}^{r(\varepsilon)}} f(\delta)g(\delta^{-1}\varepsilon) \,\mathrm{d}\,\lambda^{r(\varepsilon)}(\delta)$$

and

$$f^*(\varepsilon) = \overline{f(\varepsilon^{-1})}$$

Notice that when $\pi(\delta) = \pi(\delta')$, then there exists a unique $z \in \mathbb{T}$ such that $z \cdot \delta = \delta'$, implying

$$f(\delta)g(\delta^{-1}\varepsilon) = f(\delta')g(\delta'^{-1}\varepsilon)$$

so that the integrand in the convolution formula is fibrewise constant. Thus, for any section $S: \mathcal{G}^{r(\varepsilon)} \to \mathcal{E}^{r(\varepsilon)}$ (not even necessarily continuous),

$$(f * g)(\varepsilon) = \sum_{\alpha\beta = \pi(\varepsilon)} f(S(\alpha))g(S(\beta))$$

Talk about:

- $\operatorname{supp}(f * g) \subseteq \operatorname{supp}(f) \operatorname{supp}(g)$
- D_c commutative, isomorphic to $C_c(\mathcal{G}^{(0)})$.
- Even though \mathcal{E} isn't étale, every function f is a linear combination of functions supported on $\pi^{-1}(U)$, $U \subseteq \mathcal{G}$ a bisection.

Definition 2.1.3. $C^*(\mathcal{G}; \mathcal{E}) = \overline{\Sigma_c(\mathcal{G}; \mathcal{E})}^{\|\cdot\|_{\text{max}}}$, has a universality property. Left-regular representations

$$\pi_x$$
: $\Sigma_c(\mathcal{G}; \mathcal{E}) \rightarrow \mathcal{B}(L^2(\mathcal{G}_x; \mathcal{E}_x))$
 $(\pi_x(f)g)(\gamma) = \int_{\mathcal{E}_{r(\gamma)}} f(\delta)g(\delta\gamma) \,\mathrm{d}\,\lambda_{r(\gamma)}(\delta)$

Define

$$C_r^*(\mathcal{G}; \mathcal{E}) = \overline{\bigoplus_x \pi_x(\Sigma_c(\mathcal{G}; \mathcal{E}))}$$

As in the untwisted case, there is a surjective *-homomorphism $\pi_r: C^*(\mathcal{G}; \mathcal{E}) \to C^*_r(\mathcal{G}; \mathcal{E})$.

The representations $\bigoplus_x \pi_x$ and π_{\max} are both injective, so both $C^*(\mathcal{G}; \mathcal{E})$ and $C^*_r(\mathcal{G}; \mathcal{E})$ contain $\Sigma_c(\mathcal{G}; \mathcal{E})$.

We now have three norms on $\Sigma_c(\mathcal{G}; \mathcal{E})$: $\|\cdot\|_{\sup} \leq \|\cdot\|_r \leq \|\cdot\|_{\max}$, and when restricted to D_c , $\|\cdot\|_{\max} \leq \|\cdot\|_{\sup}$, so all three norms coincide. Thus, both $C^*(\mathcal{G}; \mathcal{E})$ and $C^*_r(\mathcal{G}; \mathcal{E})$ contain isometric copies of $D_0 := \overline{D_c} \cong C_0(\mathcal{G}^{(0)})$. When \mathcal{G} is amenable, $\|\cdot\|_r = \|\cdot\|_{\max}$.

3 Cartan Pairs

Definition 3.0.1. Let $B \subseteq A$. $N(B) = \{n \in A \mid nBn^*, n^*Bn \subseteq B\}$. $u \in N(B) \cap U(A)$ if and only if uB = Bu.

Definition 3.0.2. B is **regular** in A if N(B) generates A as a C*-algebra.

Definition 3.0.3. (A, B) is a Cartan pair if

- B is a masa in A,
- B is **regular** in A,
- B contains an approximate identity in A,
- $\exists ! \ \Phi : A \to B$, faithful conditional expectation.

Theorem 3.0.4. Let $\mathcal{E} \to \mathcal{G}$ be a twist over a locally compact Hausdorff, *effective* étale groupoid \mathcal{G} . Then $(C_r^*(\mathcal{G}; \mathcal{E}), D_r)$ is a Cartan pair.

Proof. Argue exactly as in the untwisted case. Extend $\Sigma_c(\mathcal{G};\mathcal{E}) \to D_c$, taking $f \mapsto f|_{\iota(\mathcal{G}^{(0)} \times \mathbb{T})}$ to a contractive idempotent on $C_r^*(\mathcal{G},\mathcal{E}) \to D_r$, which by Tomiyama's theorem is a conditional expectation. Assuming that \mathcal{G} is effective, we can show this expectation is *unique*, arguing as in \square

Fact 3.0.5. Let (A, B) be a Cartan pair. Then for any $n \in N(B)$, n^*n , $nn^* \in B$.

From this point forward, given a Cartan pair (A, B), since B is commutative I'd like for us to think of $B = C_0(X)$, where $X = \widehat{B}$ is the spectrum of B.

Definition 3.0.6. For $n \in N(B)$, let

$$\operatorname{dom}^{\circ} n = \{ x \in \widehat{B} \mid n^* n(x) > 0 \}, \qquad \operatorname{ran}^{\circ} n = \{ x \in \widehat{B} \mid n n^*(x) > 0 \}$$

and dom $n = \overline{\mathrm{dom}^{\circ} n}$, ran $n = \overline{\mathrm{ran}^{\circ} n}$. Notice that for $b \in B$, dom $n = \mathrm{supp} b$, dom $n = \mathrm{ran}^{\circ} n$, and dom $n = \mathrm{ran}^{\circ} n + n = \mathrm{ran}^{\circ} n$.

Theorem 3.0.7. For any $n \in N(B)$, there is a homeomorphism $\alpha_n : \text{dom}^{\circ} n \to \text{ran}^{\circ} n$, defined by the requirement that for all $b \in C_0(\text{dom}^{\circ} n) \subseteq B$ and $x \in \text{dom}^{\circ} n$,

$$n^*bn(x) = b(\alpha_n(x))n^*n(x)$$

Proof. Let us work in $B \subseteq A \subseteq A^{**}$, the enveloping von Neumann algebra of A. Given any $n \in N(B)$, we can write n = v|n|, where $v \in A^{**}$ is a partial isometry and $|n| = (n^*n)^{1/2} \in B$. We also require v to be the *unique* isometry such that $\ker v = \ker n$ (which, if you don't like reference to the implicit Hilbert spaces, is also just the unique v for which whenever $p \in A^{**}$ is a projection for which np = 0, then vp = 0).

Consider the ideal $I_n := C_0(\text{dom}^\circ n) \subseteq B$, and take f in the dense subalgebra $C_c(\text{dom}^\circ n)$. Then $\text{supp}(f) \subseteq \text{dom}^\circ n$, which is to say that whenever f(x) is nonzero, $n^*n(x)$ is nonzero (for all $x \in \widehat{B}$), so n^*n is invertible on supp(f). Thus, there exists $g \in I_n$ such that |n|g|n| = f (just take $g = \frac{f}{n^*n}$ defined on supp(f), and set to zero elsewhere). Then $v|n|g|n|v^* = ngn^* = vfv^*$, but $ngn^* \in B$, so vfv^* is also in B.

You can check using the properties of the partial isometry v that v^*v is the projection onto dom n, and commutes with B (B is no longer maximal abelian in A^{**}), and along with this the map $\beta_n: I_n \to B$ taking $f \mapsto vfv^*$ is a *-homomorphism, with range I_{n^*} and inverse β_{n^*} .

Let $\alpha_n : \text{dom}^{\circ} n \to \text{ran}^{\circ} n$ be the induced homeomorphism between the spectra \widehat{I}_n and \widehat{I}_{n^*} given by β_{n^*} . In other words, α_n is the unique continuous map such that

$$f(\alpha_n(x)) = \beta_{n^*}(f)(x) = v^* f v(x)$$

which implies

$$f(\alpha_n(x))n^*n(x) = |n|(x)f(\alpha_n(x))|n|(x) = |n|v^*fv|n|(x) = n^*fn(x)$$

as desired. \Box

These maps α_n enjoy a sort of uniqueness guarantee as well, but it's difficult to phrase and we run short on time.

Fact 3.0.8. Some observations can be made:

- For any $b \in B$, α_b is merely the identity on supp b.
- Let $m, n \in N(B)$, and note that $mn \in N(B)$ as well. We also observe

$$(mn)^*b(mn)(x) = b(\alpha_{mn}(x))(mn)^*(mn)(x) = b(\alpha_{mn}(x))n^*(m^*m)n(x)$$

= $b(\alpha_{mn}(x))m^*m(\alpha_n(x))n^*n(x)$

$$(mn)^*b(mn)(x) = n^*(m^*bm)n(x) = m^*bm(\alpha_n(x))n^*n(x)$$
$$= b(\alpha_m \circ \alpha_n(x))m^*m(\alpha_n(x))n^*n(x)$$

So we might expect that $\alpha_m \circ \alpha_n = \alpha_{mn}$ wherever the two are defined, and indeed this is the case (though the proof is quite finnicky).

• A similar calculation yields that $\alpha_n^{-1} = \alpha_{n^*}$ (this is far easier to prove).

Definition 3.0.9 (Weyl Groupoid). Let (A, B) be a Cartan pair. The collection of maps $\{\alpha_n\}_{n\in N(B)}$ forms a **pseudogroup**, and so we can look at the **groupoid of germs** $\mathcal{G}_{(A,B)}$.

More explicitly, set

$$\mathcal{N} := \{ (n, x) \mid n \in N(B), \ x \in \mathrm{dom}^{\circ}(n) \}$$

and define an equivalence relation as follows:

$$(m,x) \sim (n,y) \iff x = y, \text{ and } \exists U \ni x \text{ s.t. } \alpha_m|_U = \alpha_n|_U$$

(so [m, x] is the germ of α_m at x). Set

$$\mathcal{G}^{(0)}_{(A,B)} = \{ [b,x] \mid b \in B, \ x \in \text{supp}^{\circ}(b) \}$$

$$s([m,x]) = [mm^*, x], \qquad r([m,x]) = [m^*m, \alpha_m(x)]$$

$$[m,\alpha_n(x)][n,x] = [mn,x], \qquad [n,x]^{-1} = [n^*, \alpha_n(x)]$$

Equip $\mathcal{G}_{(A,B)}$ with the topology generated by the basic open sets

$$Z(n, U) = \{ [n, x] \mid x \in U \}$$

where U is an open subset of dom^o n.

With this topology, $\mathcal{G}_{(A,B)}$ becomes a locally compact, Hausdorff, effective étale groupoid. The sets Z(n,U) are open bisections.

Remark. Notice that there is a natural identification of $\mathcal{G}^{(0)}_{(A,B)}$ with \widehat{B} , given by taking $[b,x] \mapsto x$: indeed, given any two $b,b' \in B$ with $x \in \operatorname{supp}^{\circ}(b) \cap \operatorname{supp}^{\circ}(b')$, clearly α_b and $\alpha_{b'}$ on an open neighbourhood of x, since they're both the identity map.

Proof that $\mathcal{G}_{(A,B)}$ is effective.

$$\operatorname{Iso}(\mathcal{G}_{(A,B)}) = \{ [n,x] \mid x \in \operatorname{dom}^{\circ}(n) \cap \operatorname{ran}^{\circ}(n), \ \alpha_n(x) = x \}$$

In order to show that \mathcal{G} is effective, given $x \in \text{Iso}(\mathcal{G}) \setminus \mathcal{G}^{(0)}$ we need to show that any open neighbourhood U of x contains some other y which is not in $\text{Iso}(\mathcal{G})$.

Take $[n,x] \notin \mathcal{G}^{(0)}_{(A,B)}$, so for all $b \in B$, $[b,x] \neq [n,x]$, so for every open U containing b, there is a point $y \in U$ at which $\alpha_n(y) \neq \alpha_b(y) = y$ (recall α_b is the identity). This means that for any basic open neighbourhood $Z(n,U) \ni [n,x]$, there is some $[n,y] \in Z(n,U)$ for which $\alpha_n(y) \neq y$ so $[n,y] \notin \text{Iso}(\mathcal{G}_{(A,B)})$.

Theorem 3.0.10. Let $\mathcal{E} \to \mathcal{G}$ be a twisted groupoid, and consider the Cartan pair $(A, B) = (C_r^*(\mathcal{G}; \mathcal{E}), D_r)$. Then there is an isomorphism $\theta : \mathcal{G} \to \mathcal{G}_{(A,B)}$.

Proof. Let $n \in \Sigma_c(\mathcal{G}; \mathcal{E})$ and $h \in D_r$. Suppose n is supported on $\pi^{-1}(U)$, for some open bisection U in \mathcal{G} . Then one can calculate that for any $\gamma \in \pi^{-1}(U)$:

$$(n^* * h * n)(s(\gamma)) = h(r(\gamma))|n(\gamma)|^2 = h(r(\gamma))n^*n(\gamma)$$

This should look awfully familiar, compare with:

$$n^* * h * n(s(\gamma)) = h(\alpha_n(r(\gamma)))n^*n(\gamma)$$

In other words, we've just shown that on the open set $s(\pi^{-1}(U))$:

$$\alpha_n(s(\gamma)) = r(\gamma)$$

We define θ as follows: given $\gamma \in \mathcal{G}$, choose an open bisection $U \ni \pi(\gamma)$, and an $n \in \Sigma_c(\mathcal{G}; \mathcal{E})$ supported on $\pi^{-1}(U)$. Then we set

$$\theta(\gamma) := [n, s(\gamma)]$$

Is θ well-defined? Well let's say we choose open bisections U, V in \mathcal{G} containing $\pi(\gamma)$, and $m, n \in \Sigma_c(\mathcal{G}; \mathcal{E})$ supported on $\pi^{-1}(U)$, $\pi^{-1}(V)$ respectively. Then for all $h \in D_r$ and $\delta \in \pi^{-1}(U \cap V)$,

$$m^*hm(s(\delta)) = h(r(\delta))m^*m(\delta)n^*hn(s(\delta)) = h(r(\delta))n^*n(\delta)$$

and so
$$\alpha_m|_{s(\pi^{-1}(U\cap V))} = \alpha_n|_{s(\pi^{-1}(U\cap V))}$$
.

Definition 3.0.11 (Weyl Twist). We can impose a different relation on the set \mathcal{N} above as follows.

$$(m,x) \approx (n,y) \iff x=y, \text{ and } \exists b,b' \in B \text{ s.t. } b(x),b'(x)>0, mb=nb'$$

Then $\mathcal{E}_{(A,B)} := \mathcal{N}/\approx$ is a groupoid, with precisely the same units, source, range, multiplication and inversion as defined for $\mathcal{N}/\sim=\mathcal{G}_{(A,B)}$. We let $[\![m,x]\!]$ denote the equivalence classes under this new relation. We equip $\mathcal{E}_{(A,B)}$ with the topology generated by the sets $\widetilde{Z}(n,U) := \{[\![n,x]\!] \mid x \in U\}$. Then $\mathcal{E}_{(A,B)}$ becomes a locally compact Hausdorff groupoid, and the sets $\widetilde{Z}(n,U)$ are open bisections.

Proof that $\mathcal{E}_{(A,B)}$ is a groupoid. First, an observation: if [m,x] = [n,x], then [m,x] = [n,x]:

$$mb = nb'$$
 $\implies \alpha_m = \alpha_m \circ \alpha_b = \alpha_{mb} = \alpha_{m'b'} = \alpha_{m'} \circ \alpha_{b'} = \alpha_{m'}$ where defined

Thus we have a well-defined surjection $\pi_{(A,B)}: \mathcal{E}_{(A,B)} \to \mathcal{G}_{(A,B)}$. When we show that $\mathcal{E}_{(A,B)}$ is a groupoid, then by definition of π it'll be easy to see that it is a continuous groupoid homomorphism and an open map.

Showing that the source and range are well-defined is straightforward. To check that multiplication is well-defined, assume [n,x] = [n',x] and $[m,\alpha_n(x)] = [m',\alpha_{n'}(x)]$ (which is possible since α_n and $\alpha_{n'}$ agree on an open neighbourhood of x). Choose b,b' such that $b(\alpha_n(x)),b'(\alpha_{n'}(x))>0$ and mb=m'b', and similarly c,c' such that c(x),c'(x)>0 and nc=n'c'. Then

$$\begin{split} mn(cn^*bn) &= m(nn^*)bnc = mb(nn^*)nc = m'b'(nn^*)nc \\ &= m'(nn^*)b'nc = m'n(n^*b'n)c = m'(nc)(n^*b'n) \\ &= m'(n'c')(n^*b'n) = m'n'(c'n^*b'n) \end{split}$$

and so [mn, x] = [m'n', x].

Theorem 3.0.12. Let (A, B) be a Cartan pair. The following sequence is a twist.

$$\widehat{B} \times \mathbb{T} \xrightarrow{\iota_{(A,B)}} \mathcal{E}_{(A,B)} \xrightarrow{\pi_{(A,B)}} \mathcal{G}_{(A,B)}$$

Theorem 3.0.13. Let $\mathcal{E} \to \mathcal{G}$ be a twist, and

There is a topological groupoid isomorphism $\zeta: \mathcal{E} \to \mathcal{E}_{(A,B)}$