- **15 3.5.11 Let W_1 and W_2 be subspaces of a finite-dimensional vector space V.
 - a. Prove that $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
 - b. Prove that $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.
 - **Solution** a. Let $f \in (W_1 + W_2)^0$. Then by definition, for all $c, d \in F$ and $\alpha \in W_1, \beta \in W_2$, we have $f(c\alpha + d\beta) = 0$. Set d = 0 and c = 1. Then $f(\alpha) = 0$ for all $\alpha \in W_1 \implies f \in W_1^0$.

Similarly, putting c=0 and d=1, we have $f(\beta)=0$ for all $\beta \in W_2 \implies f \in W_2^0$.

Thus, $(W_1 + W_2)^0 \subseteq W_1^0 \cap W_2^0$.

Let $f \in W_1^0 \cap W_2^0$. Then for all $\alpha \in W_1$ and $\beta \in W_2$, $f(\alpha) = f(\beta) = 0$. Then for all $c, d \in F$, $f(c\alpha + d\beta) = cf(\alpha) + df(\beta) = 0 \implies f \in (W_1 + W_2)^0$. Thus, $W_1^0 \cap W_2^0 \subseteq (W_1 + W_2)^0$. Hence, $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.

b. Let $f \in (W_1 \cap W_2)^0$. Then let

 $\alpha_1, \ldots, \alpha_k$ be a basis of $W_1 \cap W_2$ $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_m$ be a basis of W_1 $\alpha_1, \ldots, \alpha_k, \gamma_1, \ldots, \gamma_n$ be a basis of W_2 $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_m, \gamma_1, \ldots, \gamma_n, \delta_1, \ldots, \delta_l$ be a basis of V

Then consider its dual basis, α_1^* , α_2^* , etc. As $f \in (W_1 \cap W_2)^0$, $f \in V^*$ also, so we can write f as

$$f = b_1 \beta_1^* + \dots + b_m \beta_m^* + c_1 \gamma_1^* + \dots + c_n \gamma_n^* + d_1 \delta_1^* + \dots + d_l \delta_l^*$$

$$= \underbrace{(c_1 \gamma_1^* + \dots + c_n \gamma_n^* + d_1 \delta_1^* + \dots + d_l \delta_l^*)}_{:= f_1} + \underbrace{(b_1 \beta_1^* + \dots + b_m \beta_m^*)}_{:= f_2}$$

 f_1 is clearly an annihilator of W_1 and f_2 is clearly an annihilator of W_2 , and $f=f_1+f_2$, so $f\in W_1^0+W_2^0 \implies (W_1\cap W_2)^0\subseteq W_1^0+W_2^0$.

If $f \in W_1^0 + W_2^0$, then $f = f_1 + f_2$, where $f_1 \in W_1^0$ and $f_2 \in W_2^0$. Then if $\alpha \in W_1 \cap W_2$, we have $f(\alpha) = f_1(\alpha) + f_2(\alpha) = 0$. Thus, $W_1^0 + W_2^0 \subseteq (W_1 \cap W_2)^0$. Hence, $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.

- **16 3.5.17 Let W be the space of $n \times n$ matrices over the field F, and let W_0 be the subspace spanned by the matrices C of the form C = AB - BA. Prove that W_0 is exactly the subspace of matrices which have trace zero. (Hint: What is the dimension of the space matrices of trace zero? Use the matrix 'units,' i.e., matrices with exactly one non-zero entry to construct enough linearly independent matrixes of the form AB - BA.)
 - **Solution** Define E^{ij} to be the matrix such that $E^{ij}_{ij} = \delta_{ij}$. The E^{ij} 's are clearly linearly independent and if we consider the matrices where $i \neq j$, then they span the set of matrices with 0's on the diagonal. There are $n^2 - n$ of these matrices, since an $n \times n$ matrix has n^2 entries, and if we fix the diagonal to be all 0's, then there are n fewer entries we need to account for. Thus, the dimension of the matrices with a diagonal of 0's is $n^2 - n$.

To get all the matrices with a trace zero, we add to the basis above with the set of matrices with all 0 entries except on the diagonal. The x_i be the *i*-th diagonal entry. We want $x_1 + \cdots + x_n = 0$. The set of solutions to this system have dimension n-1. Thus, the matrices with trace zero have dimension $n^2-n+n-1=n^2-1$.

Note that $E_{ij} = E_{ij}E_{jj} - E_{jj}E_{ij}$ if $i \neq j$. We can generate all of the matrices described in the first paragraph like this. Similarly, $E_{ii} - E_{jj} = E_{ij}E_{ji} - E_{ji}E_{ij}$ will produce n-1 linearly independent matrices as in the second paragraph.

Thus, matrices of the form C = AB - BA span the set of matrices with trace zero.

**17 6.2.11 Let N be a 2×2 complex matrix such that $N^2 = 0$. Prove that either N = 0 or N similar over $\mathbb C$ to

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
.

Solution There are three cases:

 $\operatorname{rank} N = 0$:

Clearly N = 0 in this case.

 $\operatorname{rank} N = 1$:

Let $\alpha \in \mathbb{C}^2$ such that $N\alpha \neq 0$, which exists since rank N = 1. Then $N\alpha \in \ker N$ since $N^2\alpha = 0$. They are linearly independent:

$$c_1\alpha + c_2N\alpha = 0$$

$$N(c_1\alpha + c_2N\alpha) = c_1N\alpha = 0 \implies c_1 = 0$$

$$c_2N\alpha = 0 \implies c_2 = 0$$

Thus, $\mathfrak{B} = \{\alpha, N\alpha\}$ is a basis of \mathbb{C}^2 . Let $U = \begin{pmatrix} | & | \\ \alpha & N\alpha \\ | & | \end{pmatrix}$. U takes \mathfrak{B} coordinates to standard coordinates, so U^{-1} does the opposite. Thus,

$$\begin{split} [N]_{\mathfrak{B}} &= U^{-1}NU \\ &= U^{-1}N\begin{pmatrix} | & | \\ \alpha & N\alpha \\ | & | \end{pmatrix} \\ &= U^{-1}\begin{pmatrix} | & | \\ N\alpha & N^2\alpha \\ | & | \end{pmatrix} \\ &= U^{-1}\begin{pmatrix} | & | \\ N\alpha & 0 \\ | & | \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{split}$$

as desired.

 $\operatorname{rank} N = 2$:

This is not possible since $N^2=0 \implies (\det N)^2=0 \implies \det N=0 \iff \operatorname{rank} N<2.$