AD-754 270

The Effects of Local Meteorological Factors upon Aircraft Noise Measurements

Ultrasystems, Inc.

prepared for Federal Aviation Administration

NOVEMBER 1972

Distributed By:

THE EFFECTS OF LOCAL METEOROLOGICAL FACTORS UPON AIRCRAFT NOISE MEASUREMENTS

D. C. WOOTEN and R. L. EIDEMILLER

ULTRASYSTEMS, INCORPORATED
500 NEWPORT CENTER DRIVE
NEWPORT BEACH, CALIFORNIA 92660

12 NOVEMBER 1972

FINAL REPORT

Availability is unlimited. Document may be exeased to the National Technical

Information Service, Springfield, Virginia 22151, for sale to the public

NATIONAL TECHNICAL INFORMATION SERVICE

DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research and Devolopment Service
Washington, D. C. 20591

48 :

The contents of this report reflect the views of Ultrasystems, Inc., which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

THE STATE OF THE PROPERTY OF T

TECHNICAL REPORT STANDARD TITLE PAGE

	•				
1. Report No. FAA-RD-72=145	2. Government Acc	essien Ne.	3. Recipient's Catalo	og No.	
	CTS OF LOCA	L METEORO-	S.' Report Date	7070	
LOGICAL FACTORS UPON		OISE	NOVEMBER		
MEASUREMENTS]	6. Performing Organi	sellen Cose	
D. C. WOOTEN and R.	L. EIDEMILL	ER	B. Performing Organi	zation Ro, art Ho.	
). Performing Organization Name and	Address	j1	9. Werk Unit No.		
ULTRASYSTEMS, INCORP 500 Newport Center D		800	1. Contract or Grant WI-73-038	No. 32_1	
Newport Beach, Calif		_	3. Type of Report on		
2. Sponsoring Agency Name and Addre			FINAL REF		
FEDERAL AVIATION ADM		• C	August- Nov	rember 1972	
Systems Research and 800 Independence Ave Washington, D.C. 20	nue, S.W.		4. Sponsoring Agent	y Code	
Aircraft noise measu Orange County Airpor	t, Santa Ana	a, Californi	a, during op	perational	
Aircraft noise measu	t, Santa And istically counting wind oppressure, count using a significate level. We collation that significate	a, Californi orrelated wi force and di eiling and v regression t nt inverse c ind speed ap at included	a, during op th the local rection, tem isibility. echniques an orrelation be peared to be wind speeds	perational laneteoro- inperature, The cor- ind indi- petween approximate of sig- up to	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no	t, Santa And istically counting wind oppressure, count using a significate level. We collation that significate	a, Californi orrelated wi force and di eiling and v regression t nt inverse c ind speed ap at included	a, during op th the local rection, tem isibility. echniques an orrelation be peared to be wind speeds	perational laneteoro- inperature, The cor- ind indi- petween approximate of sig- up to	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no	t, Santa And istically counting wind oppressure, count using a significate level. We collation that significate	a, Californi orrelated wi force and di eiling and v regression t nt inverse c ind speed ap at included	a, during op th the local rection, tem isibility. echniques an orrelation be peared to be wind speeds	perational laneteoro- inperature, The cor- ind indi- petween approximate of sig- up to	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no	t, Santa And istically counting wind oppressure, count using a significate level. We collation that significate	a, Californi orrelated wi force and di eiling and v regression t nt inverse c ind speed ap at included	a, during op th the local rection, tem isibility. echniques an orrelation be peared to be wind speeds	perational laneteoro- inperature, The cor- ind indi- petween approximate of sig- up to	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no	t, Santa And istically counting wind oppressure, count using a significate level. We collation that significate	a, Californi orrelated wi force and di eiling and v regression t nt inverse c ind speed ap at included	a, during op th the local rection, tem isibility. echniques an orrelation be peared to be wind speeds	perational laneteoro- inperature, The cor- ind indi- petween approximate of sig- up to	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no was 15 knots and bel	t, Santa And istically counting wind oppressure, count using a significate level. We collation that significate	a, Californiorrelated wiforce and dieiling and vergression to inverse coind speed apat included at when the	a, during op th the local rection, ten isibility. echniques an orrelation be peared to be wind speeds range of win	perational meteoro- iperature, The cor- ind indi- petween of sig- up to ind speeds	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no was 15 knots and bel	t, Santa And istically counting wind in pressure, contusing in a significance level. We culation that significance.	a, Californiorrelated wiforce and dieiling and vergression to inverse conditions and included not when the Availability and the second	a, during op th the local rection, ten isibility. echniques an orrelation be peared to be wind speeds range of win i ty is unlimi	perational meteoro- iperature, The cor- ind indi- petween of sig- up to ind speeds	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no was 15 knots and bel 17. Key Words Acoustics Aircraft Noise Meteorological Effec	t, Santa And istically counting wind in pressure, contusing in a significance level. We culation that significance.	a, Californiorrelated wiforce and dieiling and vergression to inverse conditional speed apat included by the when the seed at a conditional seed apat included by the seed at a conditional seed at a conditional seed at a conditional seed apat included by the seed at a conditional seed a	a, during op th the local rection, ten isibility. echniques an orrelation be peared to be wind speeds range of win ty is unlimi be released echnical Inf	perational meteoro- iperature, The cor- ind indi- petween of sig- up to ind speeds ited. Doc- to the formation	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no was 15 knots and bel	t, Santa And istically counting wind in pressure, contusing in a significance level. We culation that significance.	a, Californiorrelated wiforce and dieiling and vergression to inverse conditional speed apat included by the when the service, Se	a, during op th the local rection, ten isibility. echniques an orrelation be peared to be wind speeds range of win ty is unlimi be released echnical Inf pringfield,	perational meteoro- iperature, The cor- ind indi- petween of sig- up to ind speeds ited. Doc- to the formation Virginja	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no was 15 knots and bel 17. Key Words Acoustics Aircraft Noise Meteorological Effec Noise	t, Santa And istically counting wind in pressure, contusing in a significance level. We culation that significance.	a, Californiorrelated wiforce and dieiling and vregression to inverse conditional speed apat included by the service, Se	a, during op th the local rection, ten isibility. echniques an orrelation be peared to be wind speeds range of win ty is unlimi be released echnical Inf	perational meteoro- iperature, The cor- ind indi- petween of sig- up to ind speeds ited. Doc- to the formation Virginja	
Aircraft noise measu Orange County Airpor conditions, are stat logical factors incl humidity barometric relation was carried cated that there is temperature and nois nificance in one cal 25 knots, but was no was 15 knots and bel 17. Key Weeds Acoustics Aircraft Noise Meteorological Effec	t, Santa And istically couding wind pressure, contusing a significance level. We culation that significance.	a, Californiorrelated wiforce and dieiling and vregression to inverse conditions and speed apat included not when the service, Se	a, during op th the local rection, ten isibility. echniques an orrelation be peared to be wind speeds range of win ity is unlimi be released echnical Inf pringfield, sale to the	perational meteoro- imperature, The cor- ind indi- petween of sig- up to ind speeds ited. Doc- to the formation Virginia public.	

Ferm DOT F 1700.7 (8-69)

PREFACE

Ultrasystems, Incorporated wishes to thank Mr. J. K. Powers and Mr. T. H. Higgins, Technical Representatives of the Noise Abatement Division of the Federal Aviation Administration, for initiating this program and for providing many helpful suggestions Juring the course of the work.

CONTENTS

	Page
INTRODUCTION	1
BACKGROUND	2
STATISTICAL ANALYSIS OF DATA	6
SUMMARY AND CONCLUSIONS	13
REFERENCES	15
APPENDIX A - TABULATED DATA	17
APPENDIX B - RESULTS OF ANALYSIS RUNS	35

INTRODUCTION

The effects of meteorological conditions upon sound propagation in air are to a large extent known; however, the importance of the various meteorological conditions upon measured community noise levels during actual aircraft operations has not previously been determined. The objective of this project was to separate out and examine the effects of local meteorological conditions upon measured community aircraft noise exposure.

The study utilizes data measured at Orange County Airport in Santa Ana, California. For over a year, the Orange County Airport noise abatement office has been monitoring and recording noise levels in the surrounding community due to aircraft operations at the airport. Several thousand sound level measurements have been recorded which include both takeoif and landing sound levels produced by the Boeing 737, the Douglas DC-9 and most of the more popular business jet aircraft. Associated with the direct noise measurements, related data have been collected on weather conditions, noise abatement procedures, community noise exposure levels and noise complaint histories. A part of the very large data bank containing the information was used for this study. A principal advantage of this data is that it provides information taken in the community surrounding the airport over a long period of time, under varying meteorological and operational conditions.

BACKGROUND

It is well known that the propagation of sound in the atmosphere is dependent upon local meteorological parameters. The FAA noise standards for aircraft type certification, for example, specify the corrections for non-standard atmospheric conditions that must be made to the EPNL calculated from measured noise data. These corrections are based upon data presented in SAE ARP 866. The noise standards also place limitations upon the range of meteorological conditions under which noise certification tests can be carried out. Known atmospheric absorption data can therefore be utilized to correct measured noise levels for meteorological conditions so that the measured noise levels can be referenced to standard atmospheric conditions. Recent measurements of the flyover noise from a T-33A aircraft were used to experimentally determine atmospheric absorption. The aircraft was flown at nominal 100 percent engine power on straight and level flybys. Measured noise and meteorological data were used to determine experimental absorption coefficients. The results indicate that for elevation angles greater than 15 degrees calculations from ARP 866 generally underestimate the air-to-ground absorption coefficients, and for elevation angles less than 15 degrees the exexperimental absorption coefficients agree with and, in some cases, fall below the ARP 866 predictions. Except for some scatter at low frequencies and errors at high frequencies due to interference from background noise, the measured absorption coefficients show the same trends as the predicted values. Thus, provided the propagation path is known, atmospheric attenuation of aircraft noise can be determined with reasonable accuracy.

The effect of meteorological conditions upon community noise from aircraft measured over a period of time, however, involves factors other than atmospheric absorption. In addition to its effects upon atmospheric attenuation, for example, temperature also strongly affects aircraft performance and thereby indirectly affects measured community noise. The work carried out in this program was aimed at assessing the effects of temperature, humidity, wind force and direction, visibility, and ceiling upon measured community noise by correlating these factors with measured noise data.

The Orange County Airport Loise monitoring system provides a continuous area-wide monitoring of the airport's noise environment. The monitoring system presently consists of five microphone sensors arrayed in both the landing and departure zones of the airport as shown in Figure 1. Under most conditions, runway 19R is normally used for both landing and departure. Three microphone sensors are located in the departure zone; one is along the runway centerline about 10,000 ft from the brake release point, and the other two are about 3,000 ft on each side of the departure flight path and about 16,000 ft from the brake release point. Two additional microphones are located along the runway centerline in the approach zone at about 29,000 ft and 6,000 ft, respectively, from the point of touchdown. The output of each microphone is in A-weighted decibles with a dynamic range of 60 to 120 dB(A). The sensors conform to applicable sections of IEC 179, ANSI S1.4-1971 and the Noise Standard for California Airports. Output accuracy is ±1.0 dB and each station has logged over 3,000 hours during the past year and has remained within calibration while exposed to the outdoor environment. Each sensor transmits a frequency modulated signal over private telephone lines to a central processing computer located at the airport terminal.

A teletype and display output unit, connected to the central processor, print the formulated data and serve as the input unit for the operator-selected operational instructions. The system can be set to operate and provide information according to a variety of formats by selecting threshold levels at each station, resolution limits, maximum and minimum event times, and minimum excursion values for each station. Using the various parameters available in the system, almost all nonjet aircraft events can be rejected or any class of events capable of description by the applicable parameters can be selected. The system normally prints out single event noise exposure level (SENEL) which is the A-weighted noise exposure

level for a single event, hourly noise level (HNL) which is the average (on an energy basis) A-weighted noise level during a particular hour, and community noise equivalent level (CNEL) which is an average A-weighted noise level during a 24-hour day, adjusted to an equivalent level to account for the lower noise tolerance of people in the evening and night-time periods relative to the daytime periods. In addition, a true histogram of individual or multiple station events may be printed out. The detailed methods for calculating the SENEL, HNL and CNEL are given in the "Adopted Noise Regulations for California Airports."

The noise measurements used in the present calculations are the SENEL measurements, which are closely related to the effective perceived noise level (EPNL) for a single noise event. This study is limited to flyover noise from the Boeing 737 aircraft (operated by Air California out of Orange County Airport) to avoid variations that could be introduced into the data by the use of a mix of aircraft types. Only takeoff noise data are used for the calculations. Each calculation was made for SENEL values which were measured at a given microphone for the Boeing 737 during takeoff. In addition to the effects of meteorological conditions, other variables that influence the measured data are the aircraft gross weight, the particular aircraft producing the noise event, the pilot or pilot technique, and other more secondary effects such as maneuvers to avoid other traffic, VFR versus instrument departures, etc. The analysis carried out here only accounts for the effects of the meteorological parameters.

STATISTICAL ANALYSIS OF DATA

For each of the nine matrices of collected data tabulated in Appendix A, a complete multiple regression analysis was conducted. The results of these individual analysis runs are presented as Appendix B.

The dependent parameter, Y, used throughout was the observed noise level (SENEL) at microphone station #1 except for Runs 7, 8, and 9 which used data from microphones #2, #3, and #4, respectively.

The following is a list of the independent variables, X_i , which were studied in at least one analysis run.

- 1. Wind Speed, everall (knots)
- 2. Wind Direction (degrees from flight path)
- Flight path down-wind vector (knots)
- 4. Flight path cross-wind vector (knots)
- 5. Visibility (miles)
- 6. Ceiling, reciprocal (feet)⁻¹
- 7. Temperature (°R)
- .8. Relative humidity (percent).

The major purpose of the experiment was to discover which factors from the system of independent external meteorological conditions of interest could be statistically related to the observed aircraft noise level as measured at a fixed microphone station. The statistical technique used to perform the evaluation was "multiple linear regression." 5

The input for the analysis is a data matrix of the following form:

Y	$x_1 x_2 \dots x_k$
Y	x ₁₁ x ₁₂ x _{1k}
⁴ 2	x ₂₁ x ₂₂ · · · · · x _{2k}
•	
•	
•	
•	
YN	X _{N1} X _{N2} X _{Nk}

These data arrays for each of the nine analysis runs made are given in Appendix A, and Appendix B presents the corresponding analysis results for each of the nine runs made.

The analysis of variance is presented at the top of each page in Appendix B. Basically, this analysis provides a measure of the relative significance of each independent factor as it relates to the dependent variable, which in this case is the measured noise level, Y. The quantity "F" in the next to last column is the statistic that provides the basis for the significance test of each regression coefficient. The larger the value of "F" the more significant the independent variable is. The final column is a code of the significance levels having the following meanings:

- -: the corresponding factor is <u>not</u> significantly correlated with Y
- +: the corresponding factor is significantly correlated with Y at the 95 percent confidence level
- ++: the corresponding factor is significantly correlated with Y at the 99 percent confidence level
- the corresponding factor is significantly correlated with Y at the 99.9 percent confidence level.

The multiple correlation coefficient, R, provides an estimate of the overall level of correlation for the particular analysis. A value near zero indicates a relatively low correlation, while a value of R near + 1 (or -1) indicates high correlation and a near perfect predictability of Y from the given system of independent variables.

The value of R² represents the overall fraction of the original variation in Y which is accounted for by the regression. The remaining variance, the prediction error, is then due to a combination of experimental error (measurement errors, etc.) and the effects of additional significant factors which are not a part of the current system of independent variables.

The least squares prediction equation resulting from the regression analysis is of the form:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_k X_k$$

where the b_i are the estimated regression coefficients. The quantity s_E is the estimated standard deviation of error of the fitted equation. The results of the nine analysis runs are discussed below.

Run No. 1

Multiple linear regression Run No. 1 was conducted for the SENEL measured at microphone #1, as a function of temperature, humidity, wind speed, wind direction, and visibility. Temperature and humidity were input as exponential factors, whereas wind speed, wind direction, and visibility were input as linear factors. Wind speed, wind direction and visibility data were obtained from Orange County Airport weather reports. Temperature and humidity were obtained from Orange County Agricultural Department weather reports.* For conditions of zero wind speed, random numbers from 0-360 were used for wind direction.

The Orange County Agricultural Department maintained a weather station near the control tower at the Orange County Airport until ! January 1972.

The major statistical result for this run, as seen in Appendix B, was that temperature had a very large inverse effect on the measured noise level. The higher the temperature, the smaller the noise level.

The only other effect showing up significantly on this run was wind direction for which a marginal significance at the 95 percent confidence level was indicated.

Run No. 2

The data used for the second correlation was the same as for the first. However, only the effects of temperature and wind direction were considered. As before, temperature was input as an exponential factor, whereas wind direction was input as a linear factor. Conditions of zero wind speed were discarded in order to test the validity of using random numbers for wind direction under such conditions.

The results of this run were essentially the same as for the first run.

Run No. 3

For the third study, the same set of data was used as for Run No. 1. Temperature was input as a linear factor. All other conditions were the same as for the second run.

The results for this run indicated that temperature alone was significant. The overall result as measured by R was somewhat less than Run No. 2; thus, it was concluded that for the future analysis the exponential transformation of temperature would be retained.

Pun No. 4

Analysis No. 4 was run for the SENEL measurement by microphone #1 as a function of temperature, ceiling, and wind down the runway. Temperature was input as an exponential factor, ceiling was input as an inverse fac-

tor, and wind down the runway was input as a linear factor. The wind down the runway was computed as the vector component in the direction of the wind down the runway. Temperature data was obtained from Orange County Agricultural Department weather reports. Ceiling, wind speed, and wind direction data were obtained from Orange County Airport weather reports.

Hone of the factors indicated a significant relationship with noise level on this run. The range of temperatures included for this run was much narrower than in prior runs, and, thus, perhaps was not wide enough for the effect to show up in the calculations.

Run No. 5

White the test of the control of the

Analysis No. 5 was run for the SENEL measured at microphone #1 as a function of temperature, crosswind, and wind down the runway. Temperature was input as an exponential factor, whereas crosswind and wind down the runway were treated as linear factors. Wind down the runway was computed as in Correlation No. 4. Crosswind was computed as the vector component of the wind perpendicular to the runway. The data were obtained from the same sources as for Run No. 4.

Only temperature indicated a significant inverse relationship with noise level, as in prior runs.

Run No. 6

For Study No. 5, a completely new data set was obtained. SENEL of microphone #1 was correlated versus temperature, humidity, wind speed, and wind direction. Temperature and humidity were input as exponential factors, whereas wind speed and wird direction were input as linear factors. Random numbers were used for wind direction data in the cases of zero wind speed. Humidity data were obtained from United States Marine Corps

Helicopter Air Station, Santa Ana, California, (see Figure 1) weather remotes. Temperature, wind speed, and wind direction data were obtained from Orange County Airport weather reports.

The results of this run indicated that, again, the inverse effect of temperature was very significant. None of the other factors considered were found to be significant.

Rur Ho. 7

Run No. 7 was conducted for the SEREL of microphone #2 as a function of temperature, humidity, wind speed, wind direction, and visibility. All conditions were the same as for Run No. 1. except the microphone.

The results were essentially the same as found for microphone #1 with the effect of temperature being the only significant factor.

Run No. 8

Study No. 8 was run for the SENEL of microphone #3 as a function of temperature, humidity, wind speed, wind direction, and visibility. As for Run No. 7, conditions were the same as for Run No. 1 except the microphone. Fewer data sets were used since microphone #3 did not function properly during some of the flights.

The results were essentially the same as the run for the other two microphones. Thus, the results do not seem to substantially differ as a function of microphone placement.

Run No. 9

The property of the state of th

A completely new data set was obtained for Analysis No. 9. For all previous correlations, data were used for flights departing to the south. For this run, data were used for flights departing to the north. The correlation was run for microphone #4 as a function of temperature, humidity,

wind speed, and wind direction. Temperature and humidity were input as exponential factors, whereas wind speed and wind direction were input as linear variables. Random numbers were input as data for wind direction for the conditions of zero wind speed. Humidity data were obtained from United States Marine Corps Helicopter Air Station, Santa Ana, California, weather reports. Temperature, wind speed, and wind direction were obtained from Orange County Airport weather reports.

The results of this analysis indicated the presence of wind speed as a significant inverse effect for the first time. It may have been a real effect previously; however, the range of wind speeds present was perhaps not sufficiently large for the true effect to be seen. The wind speed range for this run was 0-25 knots. The effect of temperature did not, however, show up on this run, probably because range of temperature was somewhat narrow on this particular data set.

SUMMARY AND CONCLUSIONS

The inverse effect of temperature was the only dominant effect that was repeatable throughout the nine runs. There were only two cases which did not indicate the temperature variable as significant, and in both of these cases the range of temperature variation was considerably below that of the other runs.

The effect of wind direction, although showing up significantly on related Runs 1 and 2, may very well not be a "real" effect. It did not have a large effect, even on these runs, and it did fail to show up significantly on any of the other runs. It should be mentioned that an "unreal" effect showing up with significance code + will happen about one time in twenty and, clearly, this would not be too unlikely here since about 30 tests of significance were made in the overall analysis.

The effect of wind speed, likewise, only showed up one time; however, this more likely represents a real effect since the run on which it did show up was Run No. 9, where the data set possessed the greatest range for this factor (i.e., wind speeds up to 25 knots were observed). More data sets with large wind speed ranges should, however, be analyzed before this factor is accepted as being "real." Run No. 9 was made using recently acquired data taken during a so-called "Santa Ana" weather condition. This local weather condition is characterized by high winds from the north and very low humidity. A Santa Ana weather condition occurred during the later stages of the program and, because Orange County noise abatement personnel were noticing generally lower noise levels, a regression calculation was made using new data taken during this condition.

None of the other factors appear to be significantly related to noise level; however, the of these factors should also be studied over wider ranges to be more certain that they are not significant.

It should be noted that, although humidity is an important variable affecting the attenuation of sound in the atmosphere, humidity was not a statistically significant factor in any of the runs made here. This was the case even though humidity varied over a fairly wide range in all the runs in which it was included. Based upon the calculations made here humidity, therefore, is apparently not an important parameter in the measured community noise from aircraft. This is a tentative conclusion based upon a limited number of calculations, however, and would require further calculations based upon a wider range of data to fully substantiate.

Some error was introduced by interpolation of the meterological factors since data in all case; were not available at the time of the noise event. Continuous monitoring of these parameters would reduce this error.

This work indicates that temperature and possibly wind speed are the most important factors affecting measured aircraft noise levels under operating conditions. The local meteorological factors generally account for about one-fourth to one-third of the variations in measured noise levels. This indicates that an improvement of predicated airport noise levels may possibly be achieved by proper consideration of these parameters. Of more importance is the possibility that the consideration of meteorological parameters may significantly assist in airport noise abatement planning and evaluation. This work serves to indicate the relative importance of meteorological parameters in measured community aircraft noise. Further work using a wider data base at several locations would be required to substantiate these results and lead to information that would be of significant usefulness in noise abatement and prediction activities.

REFERENCES

- "Federal Aviation Administration, Part 36 Noise Standards Aircraft Type Certification," November 1969.
- "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," Society of Automotive Engineers, Aerospace Recommended Practice (ARP) Report No. 866, 31 April 1972.
- 3. Tanner, C. S., "Experimental Atmospheric Absorption Coefficients," Federal Aviation Administration Report No. FAA-RD-71-99, November 1971.
- 4. State of California Administrative Code, Title 4 Subchapter 6, entitled "Noise Standards" (Register 70, No. 48-1:-28-70) pp. 391-420.
- 5. Dixon, W. J. and Massey, F. J. <u>Introduction to Statistical Methods</u>, 3rd Edition McGraw-Hill, 1969, p. 212.
- 6. N. G. Ewers, Noise Abatement Specialist, Crange County Airport (private communication).

APPENDIX A - TABUL . .: DATA

DATA SET NO. 1

Date	Time	SENEL M-1 (dB)	Temperature (°F)	Humidity (x)	Wind Speed (Knots)	Wind Direction (°From True North)	Visibility (Miles)
10/10/01	7:30 11:05 17:28 12:35 13:04	112.0 103.0 100.5 99.0 99.5	89 99 99 55 89 94 84 85	92 33 31 30 37.	\ 40@[EE	125 40* 210 240 270 260	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10/12/71	7:50 8:40 8:56 9:55 10:33 11:37 13:03	106.0 103.5 108.5 107.5 107.5 104.0 105.5	64 77 76 73 73 73 73 73 73	85 85 77 77 69 71 70 70	000008552	220* 100* 150* 10* 235 225 220 240	000%.4444.0.0.0 1.1.000000000000000000000000
10/30/71	10:01 10:39 10:59 11:50 12:40	105.5 99.5 101.5 103.5 102.5	622222 622 622 623 623 623 623 623 623 6	70 17 17 72 72	7 9 110 121	180 220 240 240 225 220	0.01 10.0 14.0 15.0

*Data obtained from Random Number Catalog.

DATA SET NO. 1 (CON'T)

on the first and the control of the

Visibility (M.les)	0.0444 20.0222 0.0000 0.0000	20000000000000000000000000000000000000	40.0 40.0 40.0 16.0
Wind Direction (°From True North)	360 200 300 300 300 400 400 400 400 400 400	12222222222222222222222222222222222222	90 100 140 250 230
Wind Speed (Knots)	000000004	<u> </u>	๛๛๛๛๛
Humidity (%)	86 63 53 53 60 60	72 72 72 72 73 69 63 63 63	688888 6882888
Temperature (°F)	7444 7888888888888888888888888888888888	សូលពេលប្រភពសូល 4 សេសសូលប្រភពសូល	448 55 54 54 54
SENEL M-1 (db)	24.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	104.5 104.5 108.0 107.0 108.0 108.0	106.0 107.5 103.5 104.5
Time	7:18 7:40 8:02 8:34 10:04 10:11 10:35 11:57	9:05 10:03 10:53 11:05 12:16 13:03 13:50 13:50	9:20 9:39 9:54 10:15 11:58
Da te	12/3/71	12/26/71	12/29/71

*See footnote, page 17

Wind Temperature and Humidity data obtained from Orange County Agricultural Department weather reports. Speed, Wind Direction, and Visibility data obtained from Orange County Airport weather reports.

DATA SET NOS. 2 AND 3

A STANDARD CONTROL OF THE STANDARD OF THE STAN

Wind Direction (°From True North)	125 210 240 270 260	250 225 240 240 240	180 220 240 225 225	240	160 240 240 240 240 240 240
Temperature (°F)	8 9 9 9 8 8 4 4 9	76 77 73 73 85 73	62 62 62 62 62 63 63 63	54	សូលចុះ សូលចូល 4 សូលចំបូលបំបូ
SENEL M-1 (dB)	112.0 100.5 99.0 99.5 97.0	107.5 103.5 101.5 104.0 105.5 99.5	105.5 99.5 101.5 101.5	106.0	104.5 107.5 108.0 107.0 105.5 105.5
Time	7:30 11:28 12:35 13:04	9:55 10:33 11:00 12:37 13:03	10:01 10:39 10:59 12:40 13:04	12:35	9:05 10:03 11:05 12:16 13:03 13:35
Date	10/10/11	10/12/71	11/30/71	12/3/71	12/26/71

DATA SET NOS. 2 AND 3 (CON'T)

Wind Direction (*From True North)	240 240	90 100 105 140 250 230
Temperature (°F)	55 55	44 48 64 44 44
SENEL M-1 (dB)	108.0	106.0 107.5 104.5 104.5
Time	13:50 13:53	9:20 9:39 9:54 10:15 11:58
Date	2/26/71 (Con't)	17/53/21

Temperature data obtained from Orange County Agricultural Department weather reports. Wind Direction data obtained from Orange County Airport weather reports.

DATA SET NO. 4

Ceiling (Ft)	25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 000e	wwwwww	none none 15,000 15,000 15,000
Wind Direction (°From True North)	, 250 225 220 240 240	220 240 225 225 225	240
Wind Speed (Knots)	000000000000000000000000000000000000000	7 00 10 12 1	0000000004
Temperaturo (°F)	64 64 70 75 73 73	622222 62222 62222	444888888888 ৮৯৫४৪888888
SENEL M-1 (dB)	106.0 105.0 103.5 104.0 105.5 105.5	105.5 101.5 102.5 102.5 102.5	94.5 106.0 108.5 104.0 104.0 0.86.5
Time	7:50 8:40 8:56 9:55 10:33 11:00 13:33	10:01 10:39 10:59 11:50 13:04	7:18 7:40 8:02 8:34 10:04 10:35 11:49 11:57
Date	10/12/71	11/30/71	12/3/71

DATA SET NO. 4 (CON'T)

A CONTRACT CONTRACTOR CONTRACTOR

Date	Time	SENEL M-1 (dB)	Temperature (°F)	Wind Speed (Knots)	Wind Direction (°From True North)	Ceiling (Ft)
12/26/71	9 100:05 100:05 12:12:05 13:03 13:03 13:50	104.5 107.0 108.0 108.0 108.0 108.0	ល្អ ក្រុក ក្កក្រុក ក្រុក ក្រុ	2077555455	2222240 240 240 240 240 240	
12/29/71	9:20 9:39 10:54 15:58	105.0 107.0 104.5 104.5	444 888 84-44	ഒലലെക് <u>ഴ</u>	90 105 140 250 230	none none none 900 3,500

Wind Speed, Wind Temperature data obtained from Orange County Agricultural Department weather reports. Direction, and Ceiling data obtained from Orange County Airport weather reports.

DAT/ SET NO. 5

Wind Direction (°From True North)	125 	250 235 240 240 240	180 220 240 240 225	11191
Wind Speed (Knots)	40 <u>0 L E E</u>	0000885TeE5	∠ 60115 2012	00000
Temperature (°F)	9 9 9 9 5 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9	486000 6000 6000 6000 6000 6000 6000 600	25 62 62 62 62 63 64 64 64 64 64 64 64 64 64 64 64 64 64	44 48 52 55
SENEL M~1 (dB)	112.0 103.0 100.5 99.0 99.5	106.0 103.5 108.5 107.5 104.0 105.5 99.5	105.5 99.5 101.5 101.5	94.5 106.0 108.5 108.5
Time	7:30 11:05 11:28 12:35 13:04	7:50 7:52 8:40 8:55 10:33 11:00 13:03	10:01 10:39 10:59 11:50 12:40	7:18 7:40 8:02 8:34 10:04
Date	10/10/71	10/12/71	11/30/71	12/3/71

DATA SET NO. 5 (CON'T)

THE REPORT OF THE PROPERTY OF

Wind Direction) (°from True North)	5 	160 240 240 240 240 240 240	90 100 105 140 250 230
wind Speed (Knots)	00004	<u> </u>	ലലലക⊀ <u>ന്</u>
Tempenture (ដ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ	មិន	4 4 4 የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ
SENEL M-1 (dB)	101.5 104.0 106.0	104.5 108.0 108.0 108.0 108.0 108.0	106.0 101.0 107.5 104.5
T { r.i.c.	10:11 10:35 11:49 12:35	9.00 11.05 12.05 12.16 13.33 13.50 13.50 13.50	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Date	12/3/71 (Con't)	12/26/71	12/29/71

Temperature data obtained from Orange County Agricultural Department weather reports. Speed and Direction obtained from Orange County Airport weather reports.

DATA SET NO. '

Wind Direction (°From True North)	200 200 300 200 220 230 280 280	240	230 230	210 091	220 220 230 230 230 230	210 220 220
Wind Speed (Knots)	278889 <u>6</u> 54	ស	00	5 0 0		と むむ
Humidity (%)	81 85 85 85 85 85 85 85 85 85 85 85 85 85	•	133	75 78	622 689 60 60 60 60 60	57 54 54
Temperature (°F)	71 76 76 80 87 88 88	78	75 75	76	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.1 69 69
SENEL M-1 (dB)	105.0 92.5 105.5 100.0 103.0 103.5	105.0	94.0	102.0	100.5 100.5 99.5 103.0 97.0	99.0 98.5 101.5
Time	8;22 9:38 10:07 10:37 13:13 13:28 13:50	10:05	14:04 14:08	12:37 13:06	11:50 12:06 12:42 13:19 14:28	11:09 11:43 11:49
Uate	9/4/72	9/5/72	9/15/72	9/22/72	9/23/72	9/25/72

it ... i keedistiikkassiekkassa parataalitiikkassa kasaasa ja kasaa kasaa kasaa kasaa kasaa kasaa kasaa kasaa k

DATA SET NO. 6 (CON'T)

Wind Direction (°From True North)	180 240 240 250 250	.40 40 230	150* 210* 270 240	220 220 220 220	140 100 270 230
Wind Speed (Knots)	4 2 4 4 9 9 9	440	00 w	8 6000	4447
Humidity (%)	65 77 77 65 65	79 78 70	38 66 69 88 88	တလလ စတစ္တစ္	ស
Temperature (°F)	70 70 70 71 72	64 64 68	61 61 72 78	68 68 68 68 68 68	62 65 70 71
SENEL M-1 (dB)	104.5 98.0 96.5 104.5 107.0	107.0 100.0 10.45	106.0 104.0 104.0	101.5 102.0 101.0 99.5	108.5 108.0 103.5
Time	10:04 10:01 10:01 10:01 10:03 10:04 10:04	.8:41 8:53 9:55	8:29 0:33 9:39 9:12 12:00	12:33 13:33 14:39 15:04	8:53 10:18 11:30
Date	3/25/72	9/26/72	9/30/72	10/2/72	30/4/72

DATA SET NO. 6 (CON'T,

A reserve that the substantial and the substantial for the substantial substan

THE CONTROL OF THE PROPERTY OF

eed Wind Direction) (°From True North)	270	250	190 210 220 250 250 250	. 20 300 250 250 180 200 250	160* 260* 30* 30* 360* 290*	120
Wind Speed (Knots)	9	ស	ဃ စ စ ဝ	3 11 15	000000m <u>m</u>	വ വ
Humidity (%)	35	69	53 54 50 50	66 63 42 63 63 64 64 64 64 64	96 67 56 48 88 33 48 88 33	50 49
Temperature (°F)	1.7	99	67 68 70 70	55 60 75 75 74	55 59 67 73 87 75 75	52 53
SENEL M-1 (dB)	104.5	107.5	102.5 104.0 104.0 104.0	108.0 100.0 104.5 103.0 103.0	201 102 103 104 104 104 104 104 104 104 104 104 104	106.5 106.5
Time	10:05	10:02	11:03 11:49 12:34 14:44	8:37 12:34 13:32 14:38	8:05 8:34 8:42 10:04 11:09 11:50 15:35	8:54 9:04
Date	10/5/72	10/9/72	10/10/72	10/11/72	10/13/72	10/14/72

DATA SET NO. 6 (CON'T)

Wind Direction (°From True North)	270 270 260
Wind Speed (Knots)	77 6
Humidity (%)	ស ស ស ស ស
Temperature (°F)	72 72 72
SENEL M-1 (dB)	103.5 104.0 101.5
Time	12:05 12:08 12:48
Date	10/14/72 (Con't)

Humidity data obtained from United States Marine Corps Helicopter Air Station, Santa Ana, California, weather reports. Temperature, Wind Speed, and Wind Direction data obtained from Orange County Airport weather reports.

Lancestandaryang upang upang katang k

DATA SET NO. 7

Vísibílity (Miles)	0000000	00004444000 0000000000	0.001111	40.0
Wind Direction (°From True North)	125 40* 240 270 260	220* 150* 150* 250 225 240 240	180 220 240 225 225	360* 40*
Wind Speed (Knots)	408 <u>55</u>	00008855055	7 6 0 0 1 5 1 5 1 5 1	00
Humidity (%)	92 33 33 37 37	85 77 77 69 70 69 69 70	70 71 72 72	86 75
Temperature (°F)	92 94 89 89	64 70 74 73 73 73 73	62 62 62 62 62 63 63	4 <i>i</i> 48
SENEL M-2 (dB)	95.5 87.0 87.0 87.0 88.0	944.0 925.5 925.0 93.0 93.0 87.5 87.5	92.0 90.5 91.0 91.0	82.0 84.0
Time	7:30 11:05 11:28 12:35 13:04	7:50 7:52 8:40 8:56 9:55 10:33 10:50 11:00 13:03	10:01 10:39 10:59 11:50 12.40	7:18 7:40
Date	10/10/11	10/12/71	11/30/11	12/3/71

*See footnote, page 17

DATA SET NO. 7 (CON'T)

ANTERSTORE OF A STATE OF A STATE

Commission with the contract of the contract o

Visibility (Miles)	20.02 20.00 20.00 20.00 20.00 20.00	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.04 0.04 0.03 0.00 0.00
Wind Direction (°Frcm True North)	190* 230* 320* 350* 240	22240 240 240 240 240 240 240	90 105 140 250 230
Wind Speed (Knots)	0000004	<u> </u>	ผผพผ <i>4</i> <u>ผ</u>
Humidity (%)	66 53 53 60 60 60 60	73 72 72 70 69 63 63	688889 688888
Temperature (°F)	4 77 77 77 77 79 79 79 79 79 79 79 79 79	ក្នុក ភេស ភេស ភេស ភេស ភ ិស ភេស ភេស ភេស ភេស ភេស ភេស ភេស ភេស ភេស ភេ	448 554 54 54 54
SENEL M-2 (dB)	91.0 90.0 99.0 99.5 91.5 5.15	89 989 989 989 989 989 989 989 989 989	92.0 92.0 96.0 91.0 89.5
Time	8:02 8:34 10:04 10:35 11:57 12:35	9 05 01 12 003 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	9:20 9:39 9:54 10:15 11:58
Date	12/3/71 (Con't)	12/26/71	12/29/72

*See footnote, page 17

Temperature and Humidity data obtained from Orange County Agricultural Department weather reports. Speed, Wind Direction, and Visibility data obtained from Orange County Airport weather reports.

DATA SET NO. 8

Visibility (Miles)	3.22.00.3	000 w 4 4 4 4 w w æ i i i o o o o o o o e	0.001.00.00.00.00.00.00.00.00.00.00.00.0	4.0.04 0.004 0.00
Wind Direction (°From True North)	125 40* 210 270 260	220 220 220 220 240 240 240 34 4 * *	180 220 240 225 220	350* 190* 230*
Wind Specd (Knots)	40 <u>0. L E E</u>	00008855055	7 00 11 12	000
Humidity (%)	32 33 33 37 37	85 77 70 70 70 70 70 70	0 17 17 27 27 27	88 66 83
Temperature (°F)	998 94 89 89	64 64 70 74 73 73	62222 6226 622 623	47 49 52
SENEL M-3 (dB)	91.5 86.5 88.5 86.0	93.0 99.0 90.0 90.0 90.0 88.0 90.0 90.0	88.0 88.0 91.0 89.5	84.5 92.0 97.0
Time	7:30 11:05 11:28 12:35 13:04	7:56 8:58 8:56 9.55 10:33 10:50 11:00 13:03	10:01 10:39 10:59 11:50 13:04	7:18 8:02 8:34
Date	17/01/01	10/12/71	11/30/71	12/3/71

*See footnote, page Π

DATA SET NO. 8 (CON'T)

THE PROPERTY OF THE PROPERTY O

Visibility (Miles)	0.00.00.00 0.00.00.00 0.00.00.00 0.00.00	40.0 40.0 20.0 16.0
Wind Direction ("From True North)	240 240 240 240 240 240 240	90 100 140 250 250
Wind Speed (Knots)	<u> </u>	w w w w 4 2
Humidity (%)	73 72 72 70 70 69 63 63	88 88 88 88 88 88 88
Temperature (°F)	ក្នុក ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស	448 549 541 544
SENEL M-3 (dB)	922.0 922.0 922.0 93.0 91.5 801.5	922 905.5 905.5 91.5
Time	9:05 10:03 11:05 11:05 12:16 13:03 13:50 13:50	9:20 9:39 9:54 10:15 11:58
Date	12/26/71	12/29/72

*See footnote, page /7

بر ج

Wind Temperature and Humidity data obtained from Orange County Agricultural Department weather reports. Speed, Wind Direction, and Visibility data obtained from Orange County Airport weather reports.

DATA SET NO. 9

Wind Direction (°From True North)	0444 0000 0000 0000 0000 0000 0000 000	120 110	06 80	180*	90 100 011	90 70	068	70 80	
Wind Speed (Knots)	0004488555	8.62	44	0	44 w	44	വവ	വവ	
Humidity (%)	30 27 27 30 30 30 30 30	87	73 72	74	69 67 62	81 79	72 72	91	
Temperature (°F)	88 88 88 88 89 92 13 92 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95	55 55	49 50	52	51 52	50 52	54 55	53 54	
SENEL M-4 (4B)	23.5 29.0 20.0 25.0 25.0 25.0 20.0 20.0 20.0 20	103.5	102.5	100.5	98.5 103.0 101.5	106.0	104.5	103.5	
Time .	10:07 10:34 11:46 11:47 12:36 13:25 13:40 14:12	7:05 7:15	7:06 7:19	7:33	7:03 7:13 7:41	7:05 7:19	7:05 7:16	7:06 7:18	te, page 17
Date	10/6/72	10/10/72	10/11/72	10/13/72	10/14/72	10/16/72	10/17/72	10/19/72	*See footnote,

DATA SET NO. 9 (CON'T)

ı	,	SENE			-	
Date	Hime ime	M-4 (dB)	Temperatura (°F)	Humidity (%)	Wind Speed (Knots)	Wind Direction (°From True North)
10/21/72	7:14	105.5	. 64	94	0	130*
10/26/72	7:06 7:15	100.5	4 83 83	81 82	000	70
10/27/72	7:15 8:05 9:08 9:10	91.0 103.5 104.5 98.5	2 2 2 2 4 4 6 4 4 6 6 6 6 6 6 6 6 6 6 6	83 77 76 76	ಎ ಒ ಬ ಒ	90 90 70 70
10/28/72	7:14 7:16	101.0	50	85 85	00	300*
10/30/72	8:33 9:52 10:02 11:43 13:34 15:36	107.0 101.0 101.0 94.0 93.5 101.5	55 50 50 50 50 50 50 50 50 50 50 50 50 5	35 33 33 44 26 33 11 26	<u> </u>	ଚନ୍ଦ୍ର ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ
10/31/72	7:01 7:14	94.5 99.0	89 69	35 35	8 7	140 140
•	Z					

*See footnote, page $ec{\Omega}$

Humidity data obtained form United States Marine Corps Helicopter Air Station, Santa Ana, California, weather reports. Temperature, Wind Speed, and Wind Direction data obtained from Orange Count, Airport weather reports.

APPENDIX B RESULTS OF ANALYSIS RUNS

SET 1. (N=49 data sets)

ANALYSIS OF VARIANCE

Source	d.f.*	<u>ss</u> *	ms*	F*	Sig.*
r	1	0.642	0.642	0.07	
x ₂	1	48.746	48.746	4.98	+
x ₃	1	0.045	0.045	0.005	-
x ₄	7	137.247	137.247	14.02	+++
x ₅	1	1.670	1.670	0.17	_
Residual Error	43	420.998	9.791		
Totals	48	609.347	· · · · · · · · · · · · · · · · · · ·		

OVERALL CORRELATION ESTIMATE

$$R = 0.556$$

 $R^2 = 0.309$

$$\hat{Y} = 228.64 - 0.016X_2 - 43.77X_4$$

 $s_E = 3.13$

<u>where</u>		Range o	f Data Set
		Low	High
Y	<pre>= Noise level in CNELdB, Mike #1</pre>	94.5	112.0
	= Wind speed (knots)	0	15
x ₂	= Wind direction, deg. from True North	0	360
X3	= Visibility (miles)	0.1	40.0
^X 4	= e ^{T/528} , where T=temperature in °R	505	554
^X 5	= Relative humidity in %	30	92

d.f. = degrees of freedom; ss = sums of squares; ms = mean square; f = F-test ratio; sig. = significance code.

SET 2. (N=35 data sets)

Source	d.f.	<u>ss</u>	ms	<u>F</u>	<u>Sig.</u>
X ₂	1	30.404	30.404	4.16	+
X ₄	1	98.940	98.940	13.54	+++
Residual Error	32	233.841	7.308		
Totals	34	363.185			

OVERALL CORRELATION ESTIMATE

$$R = 0.597$$

 $R^2 = 0.356$

$$\hat{Y} = 178.16 - 0.0020X_2 - 27.34X_4$$

 $s_E = 2.70$

where		Range of	Data Set
		Low	High
Y	= Noise level in CNELdB, Mike #1	97.0	112.0
X ₂	= Wind direction, deg. from True North	0	360
x ₄	= Wind direction, deg. from True North = e ^{T/528} , where T=temperature in °R	505	554

SET 3. (N=35 data sets)

Source	d.f.	<u>S5</u>	ms	F	Sig.
x ₂	1	19.653	19.053	2.38	<u> </u>
×4	?	88.289	88.289	17.04	++
Residual Error	32	255.843	7.995		
Totals	34	363.185			

GVERALL CORRELATION ESTIMATE

$$R = 0.544$$

 $R^2 = 0.296$

$$\hat{Y} = 111.19 - 0.1021X_4$$

 $s_E = 2.83$

where		Range (of Data Set
٠,		Low	High
r u	= Noise level in CNELdB, Hike #1	97.0	112.0
, X	= Wind direction, deg. from flight path	0	360
х ₄	= Temperature in °R	505	554

SET 4. (N=43 data sers)

Source	d.f.	ss	ms	<u>F</u>	Sig.
X ₁	1	0.168	0.168	0.02	-
x ₂	1	5.369	5.369	0.50	-
Χą	1	17.825	17.825	1.67	-
Residual Error	39	415.766	10.661		
Totals	42	439.128			

OVERALL CORRELATION ESTIMATE

$$R = 0.231$$

 $R^2 = 0.053$

$$\hat{Y}$$
 = 104.09 (equals \overline{Y} since no variables are significant)
 s_r = 3.27

<u>where</u>		Range o	f Data Set
		Low	High
Y	= Noise level in CNELdB, Mike #1	94.5	108.5
X,	= $e^{T/528}$, where T=temperature in °R	505	536
x ₂	= Flight path downwind vector - wind sp. wind dir.	0 0	15 360
x ₃	= Reciprocal of ceiling, (feet) ⁻¹	900	0

SET 5. (N=49 data sets)

Source	d.f.	ss	ms	<u>F</u>	Sig.
x	1	52.80	52.80	4.32	+
X ₂	1	2.86	2.85	0.23	-
x ₃	1	3.53	3.53	0.29	-
Residual Error	45	550.16	12.226		
Totals	48	609.35			

OVERALL CORRELATION ESTIMATE

$$R = 0.312$$

 $R^2 = 0.097$

$$\hat{Y}$$
 = 144.12 - 15.111 X_1
 s_E = 3.50

where			Range of Data S	
			Low	High
		= Noise level in CNELdB, Nike #1	94.5	112.0
	, ,	= $e^{T/528}$, where T=temperature in °R	505	554
	X ₂	= Flight path downwind vector, in knots wind sp.	0	15
	х ₃	= Flight path crosswind vector, in knots wind dir.	Q	360

SET 6. (N=74 data sets)

Source	d.f.	<u>ss</u>	ms	<u>F</u>	<u>Sig.</u>
X	1	57.274	57.274	5.84	+
x ₂	1	5.112	5.112	0.52	-
x ₃	1	î5.668	15.668	1.60	-
λ ₄	1	24.236	24.236	2.47	-
Residual Error	69	677.251	9.815		
Totals	73	775.541		<u> </u>	

OVERALL CORRELATION ESTIMATE

$$R = 0.362$$

$$R^2 = 0.131$$

$$\hat{Y} = 142.75 - 12.518X_1$$

 $s_E^{= 3.13}$

where		Range of Data So	
		L.OW	High
Y	= Noise level in CNELdB, Mike #1	92.5	108.5
X	e ^{T/528} , where T=temperature in °R	511	548
X	e Relative humidity in %	33	86
X	= Wind direction, deg. from True North	0	360
X	= Wind speed, knots	0	16

SET 7. (N=49 data sets)

Source	d.f.	<u>ss</u>	<u>ms</u>	<u>F</u>	<u>Sig.</u>
x ₁	1	0.528	0.528	.09	•
x ₂	1	14.153	14.153	2.39	-
x ₃	1	0.149	0.149	.03	-
X ₄	1	65.118	65.118	10.98	++
x ₅	1	4.862	4.862	.82	-
Residual Error	43	255.242	5.936		
Totals	48	339.918			

OVERALL CORRELATION ESTIMATE

$$R = 0.499$$

 $R^2 = 0.249$

PREDICTION EQUATION

orantalisming paggiological paggiological promotal and indical paggiornamental paggiological paggiol

$$\hat{Y}$$
 = 148.43 - 21.613 X_4
 S_E = 2.44

where		Range o	f Data Set
		Lew	High
	Y = Noise level in CMELdB, Mike #2	82.0	96.0
	X _l = Wind sp≥ed, knots	0	15
	x ₂ = Wind direction, deg. from True North	0	360
	X ₃ = Visibility, miles	0.1	40.0
	$X_4 = e^{T/528}$, where T=temperature in °R	505	554
	$x_5^{-} = e^H$, where H=humidity in %	30	92

SET 8. (N=43 data sets)

Source	d.f.	SS	ms	<u>F</u>	Sig.
X ₁	1	4.584	4.584	0.64	-
x ₂	1	9.322	9.322	1.30	-
x ₃	1	13.091	13.091	1.83	•
x ₄	1	58.831	58.831	8.23	++
x ₅	1	1.063	1.063	0.15	-
Residual Error	37	264.586	7.151		
Totals	42	351.477			

OVERALL CORRELATION ESTIMATE

$$R = 0.497$$

 $R^2 = 0.247$

$$\hat{Y}$$
 = 150.03 - 21.907 X_4
 S_E = 2.67

where		Range of	Data Set
		Low	High
Υ	= Noise level in CNELdB, Mike #3	84.5	97.0
X	= Wind speed, knots	0	15
X ₂	= Wind direction, deg. from True North	0	360
X ₃	= Visibility, miles	0.1	40.0
X	= e ^{1/528} , where T=temperature in °R	505	554
x ₅	= e ^H , where H=relative humidity in %	30	92

SET 9. (N=45 data sets)

Source	d.f.	<u>ss</u>	ms	<u>F</u>	Sig.
x ₁	1	7.012	7.012	0.58	-
х ₂	1	95. 408	95.408	7.92	++
х3	1	29. C73	29.073	2.41	-
Χ _Δ	1	8.526	8.526	0.71	-
Residual Error	40	482.092	12.052		
Totals	44	622.111			

OVERALL CORRELATION ESTIMATE

$$R = 0.474$$

 $R^2 = 0.225$

$$\hat{Y} = 118.52 - 6.801X_2$$

 $s_E = 3.47$

where		Range of	Data Set
		Low	High
Y	= Noise level in CNELdB, Mike #4	91.0	106.0
X	= Wind direction, deg. from True North	0	360
X ₂	= Wind speed, knots	0	25
χ̈́	= Wind speed, knots = e ^{T/528} , where T=temperature în °R	509	552
X ₄	= e^{H} , where H=relative humidity in %	26	94
			ļ