String Prefixes Abstract Domain

Ben Hardekopf

1 Prefix Lattice

Let Σ be an alphabet, $\Sigma*$ be the set of all strings using that alphabet, and $[\Sigma*]$ contain the same strings as $\Sigma*$ except the strings are recognizably from $[\Sigma*]$ (i.e., strings contained in brackets signify prefixes rather than exact strings). We will interpret a string $[prefix] \in [\Sigma]$ as representing the set of all strings that have prefix as a prefix. Let $P = \Sigma * \cup [\Sigma*]$.

For $str_1, str_2 \in P$, define $lcp(str_1, str_2)$ as the longest common prefix of str_1 and str_2 . Define $S = \{\bot\} \cup P$. The prefix lattice is $(S, \sqsubseteq, \sqcup, \sqcap)$ where for $s_1, s_2 \in S$:

- \top is defined as $[\epsilon]$.
- \sqcup is defined as

```
- \perp \sqcup s_1 = s_1 \sqcup \perp = s_1

- s_1 \sqcup s_1 = s_1

- s_1 \sqcup s_2 = [lcp(s_1, s_2)], \text{ for } s_1 \neq s_2 \text{ and } s_1, s_2 \neq \perp
```

• \sqcap is defined as

```
- s_1 \sqcap s_2 = s_1 \text{ if } s_1 \sqcup s_2 = s_2- s_1 \sqcap s_2 = \bot \text{ otherwise.}
```

• \sqsubseteq is defined as $s_1 \sqsubseteq s_2$ iff $s_1 \sqcup s_2 = s_2$.

1.1 Lattice Properties

Chains in this lattice consist of taking a string and successively removing the last letter until we reach \top . The lattice is infinitely high because there is no bound on how long a string can be. However, any given string has a finite length, and thus we are guaranteed to reach \top in a finite number of steps. Therefore the lattice is noetherian.

2 Abstraction and Concretization Functions

$$\alpha: \mathcal{P}(\Sigma *) \to S$$

$$\alpha(x) = \begin{cases} \bot & \text{if } x = \{\} \\ str & \text{if } x = \{str\} \\ [lcp(x)] & \text{otherwise} \end{cases}$$

$$\gamma: S \to \mathcal{P}(\Sigma*)$$

$$\gamma(x) = \begin{cases} \{\} & \text{if } x = \bot \\ \{str\} & \text{if } x = str \\ \{str \mid lcp(str, [prefix]) = prefix\} & \text{if } x = [prefix] \end{cases}$$

3 Abstract + Operator

Define $\widehat{+}$ as:

$$\begin{array}{c|ccccc} \hat{+} & \bot & str_2 & [prefix_2] \\ \hline \bot & \bot & \bot & \bot \\ str_1 & \bot & str_1 + str_2 & [str_1 + prefix_2] \\ [prefix_1] & \bot & [prefix_1] & [prefix_1] \end{array}$$

 $\widehat{+}$ is monotone if $a \sqsubseteq a'$ and $b \sqsubseteq b'$ implies $a \widehat{+} b \sqsubseteq a' \widehat{+} b'$. We use the fact that for $str_1, str_2 \in P$, by definition of the \sqsubseteq relation, $str_1 \sqsubseteq str_2$ iff $lcp(str_1, str_2) = str_2$. Consider the following cases in order (i.e., if multiple cases apply use the first case listed below):

Case 1. One of a or b is \bot . Then $a + b = \bot$, which is \sqsubseteq everything. QED.

Case 2. $a' = str_1$, $b' = str_2$, and $a, b \neq \bot$. Then a = a' and b = b', therefore a + b = a' + b'. QED.

Case 3. $a' = str_1$, $b' = [prefix_2]$, and $a, b \neq \bot$. Then a = a' and lcp(b, b') = b'. By definition of the \sqsubseteq relation, $[str_1 + str] \sqsubseteq [str_1 + prefix_2]$ for any $str \in P$ s.t. $lcp(str, [prefix_2]) = prefix_2$. QED.

Case 4. $a' = [prefix_1]$ and $a, b, b' \neq \bot$. Then a' + b' = a'. Because $a \sqsubseteq a'$, lcp(a + str, a') = a' for any $str \in P$. Therefore, by definition of the \sqsubseteq relation, $a + b \sqsubseteq a'$. QED.

4 Abstract \leq Operator

Let $str_1, str_2 \in \Sigma *$ and $[prefix_1], [prefix_2] \in [\Sigma *]$ and $s \in S$.

$$s \stackrel{\frown}{\leq} \bot = \bot$$

$$\bot \stackrel{\frown}{\leq} s = \bot$$

$$str_1 \stackrel{\frown}{\leq} str_2 = str_1 \leq str_2$$

$$str_1 \stackrel{\frown}{\leq} [prefix_1] = \begin{cases} \top & \text{if } str_1 \sqsubseteq [prefix_1] \text{ and } str_1 \neq prefix_1 \\ str_1 \leq prefix_1 & \text{otherwise} \end{cases}$$

$$[prefix_1] \stackrel{\frown}{\leq} str_1 = \begin{cases} \top & \text{if } str_1 \sqsubseteq [prefix_1] \\ prefix_1 \leq str_1 & \text{otherwise} \end{cases}$$

$$[prefix_1] \stackrel{\frown}{\leq} [prefix_2] = \begin{cases} \top & \text{if } [prefix_1] \sqsubseteq [prefix_2] \text{ or } [prefix_2] \sqsubseteq [prefix_1] \\ prefix_1 \leq prefix_2 & \text{otherwise} \end{cases}$$

 $\widehat{\le}$ is monotone if $a \sqsubseteq a'$ and $b \sqsubseteq b'$ implies $a \widehat{\le} b \sqsubseteq a' \widehat{\le} b'$.

Case 1. $a \leq b = \bot$ or $a' \leq b' = \top$. Trivially true. QED.

Case 2. $a' = str_1$, $b' = str_2$, $a, b \neq \bot$. Then a = a' and b = b'. Therefore $a \subseteq b = a' \le b'$. QED.

Case 3. $a' = str_1$, $b' = [prefix_1]$, $a, b \neq \bot$, and $a' \subseteq b'$ yields an exact answer. Then a = a' and b' is a prefix of b. If b is an exact string then \subseteq will necessarily do an exact comparison and return the same answer as $a' \subseteq b'$. Otherwise, we are comparing an exact string a against a prefix string b. Because a = a' we know that $a \not\sqsubseteq b'$ or a = b'. In either case, becase b' is a prefix of b it must be that $a \not\sqsubseteq b$. Thus we go to the exact case and give the same answer as $a' \subseteq b'$. QED.

Case 4. $a' = [prefix_1], b' = str_1, a, b \neq \bot$, and $a' \stackrel{<}{\leq} b'$ yields an exact answer. Using the same reasoning as Case 3 except switching the roles of a, a' and b, b', we must give the same answer for $a \stackrel{<}{\leq} b$ as for $a' \stackrel{<}{\leq} b'$. QED.

Case 5. $a' = [prefix_1], b' = [prefix_2], a, b \neq \bot$, and $a' \le b'$ yields an exact answer. a' must be a prefix of a and b' must be a prefix of b. Because $a' \le b'$ yields an exact answer we know that $a' \not\sqsubseteq b'$ and $b' \not\sqsubseteq a'$. Neither a' nor b' is a prefix of the other, and so neither a nor b can be a prefix of the other, i.e., $a \not\sqsubseteq b$ and $b \not\sqsubseteq a$. Thus regardless of what combination of exact or prefix strings a and b are, we know $a \le b$ must give an exact answer that is the same as $a' \le b'$. QED.