Finite Automata into Regular Expressions

To prove that every DFA language is regular we introduce an extension of finite automata.

Definition An extended finite automaton (EFA), M, is a quintuple $(Q, \Sigma, \delta, s, f)$ where Q, Σ, s are as in λ -NFA, f is the only final state, $f \neq s$,

 $\delta: Q \times Q \to R_{\Sigma}$ is a total extended transition function.

Example of an EFA:

$$\begin{array}{l} \delta(p,s) = \emptyset \\ \delta(s,f) = \emptyset \end{array}$$

.

One final state $f \neq s$

 \triangle A configuration is in $Q\Sigma^*$

\triangle Move

$$px \vdash qy \text{ if }$$

- (i) $x = wy, \ w \in \Sigma^*,$
- (ii) $\delta(p,q) = E$, and
- (iii) $w \in L(E)$.

 $\triangle \vdash^*$, \vdash^+ are defined similarly as before.

<u>Lemma</u> If M is a DFA, Then there is an EFA M' with L(M') = L(M).

Example DFA into EFA.

Example:

An extended finite Automaton (EFA). M:

Check if the following words are in $\mathcal{L}(M)$

- **(1)** *bbabab*
- **(2)** *aabbc*
- **(3)** *acccc*
- **(4)** *aaaaac*

State Elimination Technique Goal of the technique:

i.e.:

(1) EFA has 2 states

Example

(2) EFA M has k+1 states, $k \ge 2$. Then eliminate a state from M to form M': M:

Note: $q \in Q - \{s, f\}$ Consider all transitions (p_i, E_{iq}, q) and (q, E_{qi}, p_i)

M':

$$\delta'(p_i, p_j) = \delta(p_i, p_j) \cup \delta(p_i, q)(\delta(q, q))^* \delta(q, p_j)$$

Example

 $b^*a[b\cup ab^*a]^*$

Example

Summary of the State Elimination Technique

- (0) Change FA into EFA
- (1) Add a <u>new start state</u> if the original one has incoming transitions.
- (2) Add a new final state if there are more than one final states originally. Old final states become non-final states.
- (3) Eliminate the states in $Q \{s, f\}$ one by one.
- (4) Eliminate the transition $\delta(f, f)$.