Learning with gradient descent

Assuming C is a function of two variables v_1 and v_2 , as illustrated in the figure below, and we want to find where C achieve its global minimum.

let's think about what happens when we move a small amount Δv_1 in the direction v_1 , and a small amount Δv_{21} in the direction v_2 . Calculus tells us that C changes as follows:

$$\Delta C pprox rac{\partial C}{\partial v_1} \Delta v_1 + rac{\partial C}{\partial v_2} \Delta v_2.$$

If we can find a way of choosing Δv_1 and Δv_2 so as to make ΔC negative, we should be able to find where C achieve its global minimum.

Define Δv to be the vector of changes. In 2D, it is:

$$\Delta v \equiv (\Delta v_1, \Delta v_2)^T$$

Where T is the transpose operation.

Also, define the gradient of \mathcal{C} to be the vector of partial derivatives:

$$abla C \equiv \left(rac{\partial C}{\partial v_1}, rac{\partial C}{\partial v_2}
ight)^T.$$

Then, ΔC can be rewritten in terms of Δv and ∇C :

$$\Delta C \approx \nabla C \cdot \Delta v$$

If we choose:

$$\Delta v = -\eta \nabla C \tag{a}$$

Where η is a small, positive parameter (known as the *learning rate*)

Then:

$$\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta \|\nabla C\|^2$$

Because $\|\nabla C\|^2 \ge 0$, this guarantees that $\Delta C \le 0$, i.e., C will always decrease, never increase, if we change v according to the prescription above. So we will use equation (a) to compute a value for Δv , then the new value of v is:

$$v o v' = v - \eta \nabla C$$

To make gradient descent work correctly, we need to choose the learning rate η to be small enough. To use gradient descent to find the weights w_k and biases b_l which minimize the Quadratic cost, we have:

$$w_k
ightarrow w_k' = w_k - \eta rac{\partial C}{\partial w_k}$$

$$b_l
ightarrow b_l' = b_l - \eta rac{\partial C}{\partial b_l}$$

Then, the question is: How to compute the gradient of the cost function?