In Th Claims:

1. (Currently Amended) A compound of the following formula I, or an enantiomers, diastereomers, salts or metabolite and solvates thereof:

wherein:

$$R_{1}$$
 is R_{6} R_{6} R_{9} R_{9a} R_{10} $R_$

R₂ is hydrogen, halogen, -CHO, alkyl, haloalkyl, (cycloalkyl)alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkoxyalkyl, alkoxy, cyano, hydroxy, hydroxyalkyl, nitro, -CH(OR₁₃)(OR₁₄), or -(CH₂)_wY; with the proviso that when R₁ is B, R₂ is not hydrogen, halogen, alkyl, haloalkyl, alkoxy, hydroxyalkyl, nitro, -(CH₂)_wNR₁₀R₂₀ or -NHSO₂R₂₂; R₃ is heteroaryl;

- R₄-and R₅ are each independently is alkyl, hydroxyalkyl, cycloalkyl, hydroxy substituted cycloalkyl, alkoxyalkyl, or hydroxy substituted alkoxyalkyl; , or R₄-and R₅ together form a cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl or tetrahydropyranyl ring which may be optionally substituted with one or more hydroxy groups;
- R₆ is alkyl, hydroxyalkyl, haloalkyl, hydroxy substituted haloalkyl, cycloalkyl, hydroxy substituted cycloalkyl, (cycloalkyl)alkyl, hydroxy substituted (cycloalkyl)alkyl, aralkyl, alkoxy, hydroxy substituted alkoxyalkyl, or -NR₁₆R₁₇;
- $R_7 \text{ is -(CH}_2)_w\text{-CO}_2R_{15}, \text{-(CH}_2)_w\text{-(C=O)NR}_{16}R_{17}, \text{-(CH}_2)_w\text{-NR}_{15}(C=O)NR_{16}R_{17}, \text{-(CH}_2)_w\text{-CH}_2OH,} \\ -(CH_2)_w\text{-(C=O)R}_{15}, \text{ tetrazolyl, oxadiazolyl or triazolyl wherein said tetrazolyl, oxadiazolyl or triazolyl may optionally be substituted with hydrogen, alkyl, hydroxy or halogen;}$
- R_8 , R_9 , R_{9a} , and R_{10} and R_{12} are each independently hydrogen, halogen, alkyl, hydroxyalkyl, cycloalkyl, (cycloalkyl, aryl, heteroaryl, arylalkyl, alkylthioalkyl, alkoxy or alkoxyalkyl; or R_9 and R_{9a} together with the carbon atom to which they are bonded form a cycloalkyl ring;

R₁₁ and R_{11a} are each independently hydrogen, alkoxy, or together form a carbonyl;

 R_{13} and R_{14} are alkyl or together form a five to six-membered ring;

R₁₅, R₁₆ and R₁₇ are independently hydrogen, alkyl, hydroxyalkyl, cycloalkyl, (cycloalkyl)alkyl, alkoxyalkyl, aralkyl, heterocycloalkyl, aryl, heteroaryl or -(CH₂)_wQ, or R₁₆ and R₁₇ may together form a four to six–membered heterocyclic ring;

n is 1 or 2;

w is 0, 1, or 2;

Y is heteroaryI, -COOH, -COOR₁₈, -CONR₁₉R₂₀, -NR₁₉R₂₀, -NR₁₉-OR₂₀, -NR₂₁(C=O)R₂₂, -NR₂₁(C=O)NR₁₉R₂₀, -N(R₁₉)-(alk)-NR₂₁(C=O)R₂₂, -NR₂₁(C=O)OR₁₈, -NR₂₁SO₂R₂₂, -SO₂R₂₂, Q, R or S:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

R₁₈, R₁₉, R₂₀, R₂₁ and R₂₂ are each independently hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, aralkyl, heteroaryl, or R₁₉ and R₂₀ may together form a four to seven-membered heterocyclic ring;

 R_{23} and R_{24} are each independently hydrogen, alkyl or cycloalkyl, or may together form a three to seven membered cycloalkyl ring;

Z is oxygen,

x is 2, 3 or 4;

 R_{25} , R_{26} and R_{27} are each independently hydrogen, alkyl or cycloalkyl, or R_{26} and R_{27} may together form a three to seven-membered cycloalkyl ring;

R₁₀₁, R₁₀₂, R₁₀₃, and R₁₀₄ are each independently hydrogen, halogen, -CHO, alkyl, haloalkyl, (cycloalkyl)alkyl, alkenyl, alkoxyalkyl, haloalkoxyalkyl, alkoxy, alkoxyalkoxy, cyano, hydroxy, hydroxyalkyl, nitro, -CH(OR₁₃)(OR₁₄), or -(CH₂)_wY;

wherein said rings; aryl alone or as part of another group; or heteroaryl alone or as part of another group may each optionally be substituted by one or more hydrogen, halogen, cyano, alkyl, hydroxyalkyl, alkoxy, nitro or trifluoromethyl groups; .

provided that when R_1 is \underline{A} said compound is other than

2. (Currently Amended) A compound of claim 1, wherein

$$R_1$$
 is R_6 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_{10} R_{10} R_{10} R_{11} R_{12} R_{12} R_{12} R_{12} R_{12} R_{12} R_{12} R_{12} R_{12} R_{13} R_{14} R_{15} R_{15}

R₂ is alkyl, haloalkyl, (cycloalkyl)alkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxy, alkoxyalkoxy, hydroxyalkyl, or -(CH₂)_wY; , or when R₁ is D, R₂ is hydrogen, alkyl, haloalkyl, (cycloalkyl)alkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxy, alkoxyalkoxy, hydroxyalkyl, or -(CH₂)_wY;

R₃ is isoxazolyl pyridizinyl, pyrazinyl or pyrimidinyl, each optionally independently substituted with one to three substituents selected from hydrogen, halogen, cyano, alkyl, alkoxy, trifluoromethyl or nitro;

 R_4 and R_5 are each independently alkyl, cycloalkyl, or R_4 and R_5 together form a cyclobutyl, cyclopentyl or cyclohexyl ring;

 R_6 is alkyl, haloalkyl, cycloalkyl or alkoxy;

 R_7 is $-CO_2R_{15}$, $-(C=O)NR_{16}R_{17}$ or $-CH_2OH$;

 R_{87} , R_{87} , and R_{10} and R_{12} are each independently hydrogen, halogen, alkyl, cycloalkyl, alkoxy or alkoxyalkyl;

 R_{11} and R_{11a} are each independently hydrogen, alkoxy, or together form a carbonyl;

R₁₅, R₁₆ and R₁₇ are independently hydrogen, alkyl or cycloalkyl or R₁₆ and R₁₇ may together form a four to six-membered heterocyclic ring;

n is 1 or 2;

w is 0, 1, or 2;

 $Y \text{ is -COOR}_{18}, \text{ -NR}_{21}(C=O)R_{22}, \text{ -NR}_{21}(C=O)NR_{19}R_{20}, \text{ -NR}_{21}(C=O)OR_{18}, \text{ -NR}_{21}SO_2R_{22}, \text{ -SO}_2R_{22} \text{ or } \underline{Q} \text{ ; } \\ \frac{Q}{2} = \frac{1}{2} \left(\frac{Q}{2} + \frac{Q}{2}$

Q is

 R_{18} , R_{19} , R_{20} , R_{21} and R_{22} are each independently hydrogen, alkyl, cycloalkyl, or R_{19} and R_{20} may together form a four to seven-membered heterocyclic ring;

 R_{23} and R_{24} are each independently hydrogen, alkyl or cycloalkyl, or may together form a three to seven membered cycloalkyl ring;

Z is oxygen,

x is 2, 3 or 4;

 R_{25} , R_{26} and R_{27} are each independently hydrogen, alkyl or cycloalkyl, or R_{26} and R_{27} may together form a three to seven-membered cycloalkyl ring;

R₁₀₁, R₁₀₂, R₁₀₃, and R₁₀₄ are each independently hydrogen, halogen, alkoxy or alkyl.

3. (Currently Amended) A compound of claim 1, wherein

$$R_1$$
 is R_6 N R_7 R_8 R_{10} R_{11a} R_{1

 R_2 is alkyl, haloalkyl, (cycloalkyl)alkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxy, hydroxyalkyl,or - $(CH_2)_wY$, or when R_1 is \underline{D} , R_2 is hydrogen, alkyl, haloalkyl, (cycloalkyl)alkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxyalkoxy, hydroxyalkyl, or - $(CH_2)_wY$;

R₃ is isoxazolyl, optionally independently substituted with one or two substituents selected from hydrogen, halogen, cyano, alkyl, alkoxy, trifluoromethyl or nitro;

 R_4 and R_5 are each independently alkyl, cycloalkyl, or R_4 and R_5 together form a cyclobutyl, eyclopentyl or cyclohexyl ring;

R₆ is alkyl, haloalkyl, cycloalkyl or alkoxy;

R₇ is -CO₂R₁₅ or -(C=O)NR₁₆R₁₇;

 R_8 , R_9 and R_{10} are each independently hydrogen, halogen, alkyl, cycloalkyl, alkoxy or alkoxyalkyl;

R₁₁ and R_{11a} together form a carbonyl;

 R_{15} , R_{16} and R_{17} are independently hydrogen, alkyl, or cycloalkyl or R_{16} and R_{17} may together form a four to six-membered heterocyclic ring;

n is 2;

w is 0, 1, or 2;

 $Y \text{ is -NR}_{21}(C=O)R_{22}, \text{ -NR}_{21}(C=O)NR_{19}R_{20}, \text{ -NR}_{21}(C=O)OR_{18}, \text{ -NR}_{21}SO_2R_{22}, \text{ -SO}_2R_{22} \text{ or } \underline{Q} \text{ ; } \\$

$$\begin{pmatrix}
R_{23} & R_{24} \\
Z & N
\end{pmatrix}$$
Q is

R₁₈, R₁₉, R₂₀, R₂₁ and R₂₂ are each independently hydrogen, alkyl, cycloalkyl, or R₁₉ and R₂₀ may together form a four to seven-membered heterocyclic ring;

 R_{23} and R_{24} are each independently hydrogen, alkyl or cycloalkyl, or may together form a three to seven membered cycloalkyl ring;

$$N-R_{25}$$
 or R_{26}

Z is oxygen,

x is 2, 3 or 4;

 R_{25} , R_{26} and R_{27} are each independently hydrogen, alkyl or cycloalkyl, or R_{26} and R_{27} may together form a three to seven-membered cycloalkyl ring;

 R_{101} , R_{102} , R_{103} , and R_{104} are each independently hydrogen, halogen, or alkyl.

4. (Currently Amended) A compound of claim 1, wherein

$$R_1$$
 is R_6
 R_6
 R_7
 R_8
 R_{10}
 R_{10}
 $R_{11a, of}$
 $R_{11a, of}$
 $R_{11a, of}$
 $R_{11a, of}$
 $R_{11a, of}$
 $R_{11a, of}$

R₂ is alkyl, haloalkyl, (cycloalkyl)alkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxy, alkoxyalkoxy, hydroxyalkyl, or -(CH₂)_wY; or when R₁ is <u>D</u>, R₂ is hydrogen, alkyl, haloalkyl, (cycloalkyl)alkyl, alkoxyalkoxy, hydroxyalkyl, or -(CH₂)_wY;

R₃ is isoxazol-5-yl or isoxazol-3-yl independently substituted with two substituents selected from alkyl or halogen;

 R_4 -and R_6 are each independently alkyl, cycloalkyl, or R_4 and R_6 -together form a cyclobutyl, cyclopentyl or cyclobexyl ring;

R₆ is alkyl, haloalkyl, cycloalkyl or alkoxy;

R₇-is--(C=O)NR₄₆R₄₇;

 R_8 , R_9 , and R_{10} are independently H, alkyl, cycloalkyl, alkoxy or alkoxyalkyl;

n is 2;

w is 0, 1, or 2;

 $\label{eq:Yis-NR21} \mbox{Y is -NR}_{21}(\mbox{C=O})\mbox{R}_{21}(\mbox{C=O})\mbox{NR}_{19}\mbox{R}_{20}, \mbox{ -NR}_{21}(\mbox{C=O})\mbox{OR}_{18}, \mbox{ -NR}_{21}\mbox{SO}_2\mbox{R}_{22} \mbox{ or } \underline{Q} \ ;$

$$\begin{pmatrix} R_{23} & R_{24} \\ X & N \end{pmatrix} \times \begin{pmatrix} R_$$

Q is

 R_{18} , R_{19} , R_{20} , R_{21} and R_{22} are each independently hydrogen, alkyl, cycloalkyl, or R_{19} and R_{20} may together form a four-, five-, six- or to seven-membered heterocyclic ring;

 R_{23} and R_{24} are each independently hydrogen, alkyl or cycloalkyl, or may together form a three to seven membered cycloalkyl ring;

x is 2;

R₂₅, R₂₆ and R₂₇ are each independently hydrogen, alkyl or cycloalkyl, or R₂₆ and R₂₇ may together form a three-, four-, five, six- or seven-membered cycloalkyl ring;
 R₁₀₁, R₁₀₂, R₁₀₃, and R₁₀₄ are each independently hydrogen, halogen, or alkyl.

- 5. (Original) A compound of claim 1, wherein R_3 is isoxazol-5-yl or isoxazol-3-yl independently substituted with two substituents selected from alkyl or halogen.
 - 6-9. (Cancelled)

- 10. (Original) A compound of claim 5, wherein R_1 is
- 11. (Original) A compound of claim 10, wherein R_2 is alkyl, haloalkyl, alkoxyalkyl or haloalkoxyalkyl and R_{101} , R_{102} , R_{103} , R_{104} are each independently hydrogen, halogen, or alkyl.
 - 12. (Original) A compound of claim 10, wherein R_2 is -CH₂Y.
 - 13. (Original) A compound of claim 12, wherein Y is \underline{Q} .
 - 14-17. (Cancelled)
- 18. (Currently Amended) A compound of claim 1, wherein R_2 is alkoxyalkyl alkyl or haloalkoxyalkyl $\underline{.}$
- 19. (Original) A compound of claim 18, wherein R_3 is isoxazol-5-yl or isoxazol-3-yl independently substituted with two substituents selected from alkyl or halogen.
 - 20. (Original) A compound of claim 1, wherein R_2 is -CH₂Y.
- 21. (Original) A compound of claim 20, wherein R_3 is isoxazol-5-yl or isoxazol-3-yl independently substituted with two substituents selected from alkyl or halogen.

- 22. (Original) A compound of claim 20, wherein Y is \underline{Q} .
- 23. (Original) A compound of claim 22, wherein R_3 is isoxazol-5-yl or isoxazol-3-yl independently substituted with two substituents selected from alkyl or halogen.

24-45. (Cancelled)

46. (Original) A pharmaceutical composition for the treatment of an endothelin-dependent or angiotensin II-dependent disorder, comprising a pharmaceutically acceptable vehicle or diluent and at least one compound of claim 1 in an amount effective therefor.

47-48. (Cancelled)

49. (Original) A compound of the formula

wherein R_1 , R_2 , R_3 , R_{101} , R_{102} , R_{103} , and R_{104} are as defined in claim 1; and R_{51} is a suitable nitrogen protecting group.

- 50. (Original) The compound of claim 49, wherein R_{51} is -CH₂OCH₂CH₂OCH₃, -CH₂OCH₂CH₂OCH₃, or -CH₂OCH₂-aryl.
 - 51-64. (Cancelled)
- 65. (Original) N-(4,5-Dimethyl-3-isoxazolyl)-2'-ethoxymethyl-4'-[[(3-methoxy-2,6-dimethyl-4-pyridinyl)oxy]methyl] [1,1'-biphenyl]-2-sulfonamide or a salt, enantiomer or diasteriomer thereof.
- 66. (Original) N-(4,5-Dimethyl-3-isoxazolyl)-2'-[(2-fluoroethoxy)methyl]-4'-[[(3-methoxy-2,6-dimethyl-4-pyridinyl)oxy]methyl] [1,1'-biphenyl]-2-sulfonamide or a salt, enantiomer or diasteriomer thereof.

67. (Original) N-(4,5-Dimethyl-3-isoxazolyl)-4'-[[(3-methoxy-2,6-dimethyl-4-pyridinyl)oxy]methyl]-2'-propyl [1,1'-biphenyl]-2-sulfonamide or a salt, enantiomer or diasteriomer thereof.

68-92. (Cancelled)

- 93. (Original) The pharmaceutical composition of claim 46 further comprising at least one ACE inhibitor.
- 94. (Original) The pharmaceutical composition of claim 93 wherein said ACE inhibitor is selected from captopril, zofenopril, fosinopril, ceranapril, alacepril, enalapril, delapril, pentopril, quinapril, ramipril, or lisinopril.
- 95. (Original) The pharmaceutical composition of claim 46 further comprising at least one vasopepsidase inhibitor.
- 96. (Original) The pharmaceutical composition of claim 95 wherein said vasopepsidase inhibitor is selected from omapatrilat or gemopatrilat.
- 97. (Original) The pharmaceutical composition of claim 46 further comprising at least one HMG CoA reductase inhibitor.
- 98. (Original) The pharmaceutical composition of claim 97 wherein said HMG CoA reductase inhibitor is selected from pravastatin, lovastatin, atorvastatin, simvastatin, NK-104 or ZD-4522.
- 99. (Original) The pharmaceutical composition of claim 46 further comprising at least one anti-platelet agent.
- 100. (Original) The pharmaceutical composition of claim 99 wherein said anti-platelet agent is selected from clopidigrel, ticlopidine, CS-747 or aspirin.
- 101. (Original) The pharmaceutical composition of claim 46 further comprising at least one anti-diabetic agent.

- 102. (Original) The pharmaceutical composition of claim 101 wherein said anti-diabetic agent is selected from biguanides or biguanide/glyburide combinations.
- 103. (Original) The pharmaceutical composition of claim 46 further comprising at least one beta-adrenergic agent.
- 104. (Original) The pharmaceutical composition of claim 103 wherein said beta-adrenergic agent is selected from carvedilol or metoprolol.
- 105. (Original) The pharmaceutical composition of claim 46 further comprising at least one mineralocorticoid receptor antagonist.
- 106. (Original) The pharmaceutical composition of claim 105 wherein said mineralocorticoid receptor antagonist is selected from spironolactone or eplerenone.

107-108. (Cancelled)