

Practical ML Advice

Rishabh Iyer

Proper Experimental Methodology Can Have a Huge Impact:

A 2002 paper in *Nature* (a major journal) needed to be corrected due to "training on the testing set"

Original report: 95% accuracy (5% error rate)

Corrected report (which still is buggy):

73% accuracy (27% error rate)

Error rate increased over 400%!!!

Some Typical ML Experiments

Typical Experiments

	Test Set Performance
Full System	80%
Without Module A	75%
Without Module B	62%

Experimental Methodology

- 1) Start with a dataset of labeled examples
- 2) Randomly partition into N groups
- 3a) N times, combine N -1 groups into a train set
- 3b) Provide training set to learning system
- 3c) Measure accuracy on "left out" group (the test set)

train test train train

Called N-fold cross validation

Validation Sets

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.
- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")
- It is a "cheat" to look at the test set while still learning
- Better method
 - Set aside part of the training set
 - Measure performance on this validation data to estimate future performance for a given set of hyperparameters
 - Use best hyperparameter settings, train with all training data (except test set) to estimate future performance on new examples

A typical Learning system

collection of classified examples

Multiple Tuning sets

- Using a single tuning set can be unreliable predictor, plus some data "wasted"
 - 1) For each possible set of hyperparameters
 - a) Divide <u>training</u> data into **train** and **valid**. sets, using **N-fold cross** validation
 - b) Score this set of hyperparameter values: average **valid**. set accuracy over the *N* folds
 - 2) Use **best** set of hyperparameter settings and **all** (train + valid.) examples
 - 3) Apply resulting model to test set

EVALUATING ML MODELS

Regression Evaluation Metrics

1. Mean Absolute Error (MAE)

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

- Measures the average magnitude of errors in predictions.
- Robust to outliers, all errors are treated equally.

2. Mean Squared Error (MSE)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

- Squares the errors before averaging.
- Penalizes larger errors more than smaller ones.
- Sensitive to outliers.

Regression Evaluation Metrics

3. Root Mean Squared Error (RMSE)

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- Square root of MSE.
- Interpreted in the same units as the target variable.
- Useful when larger errors are more significant.

4. R-squared (R² Score)

$$R^2 = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

- Measures the proportion of variance explained by the model.
- Ranges from -∞ to 1:
 - $R^2 = 1$: Perfect prediction
 - $R^2=0$: Model no better than the mean
 - $R^2 < 0$: Worse than predicting the mean

Contingency Tables

(special case of 'confusion matrices')

Counts of occurrences

TPR and FPR


```
True Positive Rate = n(1,1) / (n(1,1) + n(0,1))

= \text{correctly categorized +'s / total positives}

\sim \text{P(algo outputs + | + is correct)}

False Positive Rate = n(1,0) / (n(1,0) + n(0,0))

= \text{incorrectly categorized -'s / total neg's}

\sim \text{P(algo outputs + | - is correct)}
```

Can similarly define False Negative Rate and True Negative Rate

ROC Curves

- ROC: Receiver Operating Characteristics
- Started for radar research during WWII
- Judging algorithms on accuracy alone may not be good enough when getting a positive wrong costs more than getting a negative wrong (or vice versa)
 - e.g., medical tests for serious diseases
 - e.g., a movie-recommender system

ROC Curves Graphically

Different
algorithms can
work better in
different parts
of ROC space.
This depends
on cost of false
+ vs false -

Creating an ROC Curve

The Standard Approach:

- You need an ML algorithm that outputs NUMERIC results such as prob(example is +)
- You can use ensemble methods to get this from a model that only provides Boolean outputs
 - e.g., have 100 models vote & count votes

Alg. for Creating ROC Curves

Step 1: Sort predictions on test set

Step 2: Locate a *threshold* between examples with opposite categories

Step 3: Compute TPR & FPR for each threshold of Step 2

Step 4: Connect the dots

Plotting ROC Curves - Example

Ex 9	.99		+
Ex 7	.98	TPR=(2/5), FPR=(0/5)	
Ex 1	.72	TPR=(2/5), FPR=(1/5)	_
Ex 2	.70		+
Ex 6	.65	TPR=(4/5), FPR=(1/5)	<u>+</u>
Ex 10	.51		-
Ex 3	.39	TPR=(4/5), FPR=(3/5)	_
Ex 5	.24	TPR=(5/5), FPR=(3/5)	+
Ex 4	.11		-
Ex 8	.01	TPR=(5/5), FPR=(5/5)	_

Algorithm predicts + if its output is ≥ 0

Area Under ROC Curve

- A common metric for experiments is to numerically integrate the ROC Curve
 - Usually called AUC
 - Probability that ML alg. will "rank" a randomly chosen positive instance higher than a randomly chosen negative one
 - Can summarize the curve too much in practice

Asymmetric Error Costs

- Assume that cost(FP) ≠ cost(FN)
- You would like to pick a threshold that minimizes

```
E(total\ cost)
= cost(FP) \times pr(FP) \times (\#\ of\ neg\ ex's) + cost(FN) \times pr(FN) \times (\#\ of\ pos\ ex's)
```

 You could also have (maybe negative) costs for TP and TN (assumed zero in above)

ROC's & Skewed Data

 One strength of ROC curves is that they are a good way to deal with skewed data (|+| >> |-|) since the axes are fractions (rates) independent of the # of examples

- You must be careful though!
 - Low FPR * (many negative ex) = sizable number of FP
 - Possibly more than # of TP

Precision vs. Recall

Think about search engines...

Notice that n(0,0) is not used in either formula
 Therefore you get no credit for filtering out irrelevant items

ROC vs. Precision-Recall

You can get very different visual results on the same data!

The reason for this is that there may be lots of – ex's (e.g., might need to include 100 neg's to get 1 more pos)

The F1 Measure

Figure of merit that combines precision and recall

$$F_1 = 2 \cdot \frac{P \cdot R}{P + R}$$

where P = precision; R = recall. This is twice the harmonic mean of P and R.

• We can plot F1 as a function of the classification threshold θ

Summary of Evaluation Metrics

Metric	Best Use Case
Accuracy	Balanced classes with equal error cost
F1 Score	Imbalanced classes, equal importance to precision/recall
Precision	When false positives are costly (e.g., spam filtering)
Recall	When false negatives are costly (e.g., medical diagnosis)
AUC	Imbalanced data, ranking-focused applications
MAE (L1)	Regression with outliers , stable performance
RMSE (L2)	Regression where larger errors are worse
R ² Score	Overall model fit in regression