Package 'GenOU'

August 28, 2025

Type Package			
le Sequential Change-Point Tests for Generalized Ornstein-Uhlenbeck Processes			
Version 0.2.1			
Description Sequential change-point tests, parameters estimation, and goodness-of-fit tests for generalized Ornstein-Uhlenbeck processes.			
Depends R (>= 3.5.0), doParallel, parallel, foreach, stats			
License GPL (>= 2)			
Encoding UTF-8			
RoxygenNote 7.3.2			
NeedsCompilation no			
Author Yunhong Lyu [aut, ctb, cph], Bouchra R. Nasri [aut, ctb, cph], Bruno N Remillard [aut, cre, cph]			
Maintainer Bruno N Remillard <bruno.remillard@hec.ca></bruno.remillard@hec.ca>			
Repository CRAN			
Date/Publication 2025-08-28 08:40:02 UTC			
Contents			
gof_stat kappa SimBM SimGOUexact SimQuantilesGoF SimQuantilesWBM StatGOU X			
Index			

2 kappa

gof_stat	Function to estimate quantiles for a goodness-of-fit test for generalized Ornstein-Uhlenbeck process

Description

Function to calculate the quantiles of Cramer-von Mise and Kolmogorov-Smirnov statistics.

Usage

```
gof_stat(X, T1, N, p, q)
```

Arguments

X	observations
T1	last time of observation
N	number of observations on from on interval (0,T1]
р	number of cosine coefficients >=1
q	number of sine coefficients >=0

Value

out List of statistics (cvm and ks), estimated parameters, and pseudo-observations

Examples

```
T1=20
N=500
data(X)
out = gof_stat(X,T1,N,2,0)
```

kappa

Change-point statistics for GOU

Description

Function to compute Sigma covariance matrix and kappas of change-point statistics

Usage

```
kappa(theta, theta_star, sigma)
```

SimBM 3

Arguments

theta list of parameters before change-point: cos coefficients (>=1), sine coefficients

(>=0, and alpha

theta_star list of parameters after change-point: cos coefficients (>=1), sine coefficients

(>=0, and alpha

sigma volatility parameter of the GOU process

Value

out List containing Sigma and kappas for Q and G statistics

Examples

```
theta=list(cos=c(1,2),alpha=1)
theta_star=list(cos=c(2,4),alpha=2)
sigma=3
out = kappa(theta,theta_star, sigma)
```

SimBM

Simulation of multidimensional Brownian motion

Description

This function is used to simulate multidimensional Brownian motion at points 0,1/n, ..., 1.

Usage

```
SimBM(n, d)
```

Arguments

n Number of simulated d Dimension of BM

Value

W Brownian motion

Examples

```
W = SimBM(100,4)
```

SimGOUexact 4

SimGOUexact	Simulation of generalized Ornstein-Uhlenbeck (GOU) process

Description

Function to simulate exact N+K+1 values with change point after $N+K_s$ tar, with K_s tar = floor($N*t_s$ tar), for a GOU process. Starting point is 0.

Usage

```
SimGOUexact(T1, N, t_star = 0, K, theta, theta_star, sigma)
```

Arguments

T1	Last time of observation
N	Number of observations on from on interval (0,T1]
t_star	Time of change-point after T1
K	Number of observation after change-point
theta	list of parameters before change-point: cos coefficients (>=1), sine and sigma
theta_s	list of parameters after change-point: cos coefficients (>=1), sine and sigma
sigma	volatility parameter of the GOU process

Value

Χ Simulated path evaluated at points k x T1/N, $0 \le k \le N+K$

Examples

```
set.seed(3253)
T1=20
N=500
K=2*N
t_star=0
theta=list(cos=c(1,2),alpha=1) # d=3 parameters for the drift
theta_star=list(cos=c(2,5),alpha=1)
sigma=3
X=SimGOUexact(T1,N,t_star,K,theta,theta_star,sigma)
```

SimQuantilesGoF 5

SimQuantilesGoF	Function to estimate quantiles for residuals of generalized Ornstein-Uhlenbeck (GOU) process
	\

Description

Computation of quantiles for Cramer-von Mises and Kolmogorov-Smirnov statistics for testing goodness-of-fit of GOU

Usage

```
SimQuantilesGoF(n, B = 50000, alpha = c(0.9, 0.95, 0.975, 0.99), n_cores = 2)
```

Arguments

n	number of points
В	number of bootstrap samples (default 50000)
alpha	vector of probabilities (default is (.90,.95,.975,.99))
n_cores	number of cores for parallel computing (default is 2)

Value

q Data frame of simulated quantiles of weighted BM

SimQuantilesWBM	Function to estimate quantiles for weigthed Brownian Motion functional
-----------------	--

Description

Function to calculate the critical value for the Euclidean norm of d-dimensional BM divided by t^g

Usage

```
SimQuantilesWBM(
    n,
    d,
    gamma,
    B = 50000,
    alpha = c(0.9, 0.95, 0.975, 0.99),
    n_cores = 2
)
```

6 StatGOU

Arguments

n	number	of	poin	ts
---	--------	----	------	----

d dimension of Brownian motion

gamma parameter between 0 and 0.5 (not included)

B number of bootstrap samples (default 50000)

alpha vector of probabilities (default is (.90,.95,.975,.99))

n_cores number of cores for parallel computing (default is 2)

Value

qs Simulated quantiles of weighted BM

 ${\it StatGOU} \qquad {\it Change-point tests for generalized Ornstein-Uhlenbec (GOU) process}$

Description

Function to simulate exact N+K+1 values with change point after $N+K_{star}$, with $K_{star} = floor(N*t_{star})$, for a GOU process. Starting point is 0.

Usage

```
StatGOU(X, T1, N, p, q, gamma, c1, cd)
```

Arguments

T1 last time of observation

N number of observations on from on interval (0,T1]

p number of cosine coefficients >=1
q number of sine coefficients >=0
gamma weight parameter >=0 and < 0.5

c1 critical value for Q stat (based on 1-dimensional weighted BM)

cd critical value for G stat (based on d-dimensional weighted BM), where d =

p+q+1 is the number of estimated parameters for the drift.

Value

out List

References

Lyu, Nasri and Remillard (2025): Sequential Change-point Detection with Generalized Ornstein–Uhlenbeck Processes

X

Examples

```
T1=20
N=500
gamma = 0.1
p=2
q=0
c1 = 2.2838 # corresponding to gamma=0.1
c3 = 3.0502 # corresponding to gamma=0.1 and d=3 estimated parameters for the drift data(X)
out=StatGOU(X,T1,N,p,q,gamma,c1,c3)
```

Χ

Simulated GOU process

Description

 $Simulated\ GOU\ process\ with\ set.seed (3253),\ theta=list (cos=c(1,2),alpha=1)\ theta_star=list (cos=c(2,4),alpha=2),\ using\ X=SimGOU exact (20,500,0,1000,theta,theta_star,3)$

Usage

data(X)

Format

Simulated GOU process (X)

Examples

data(X)

Index

```
* datasets
     X, 7

gof_stat, 2

kappa, 2

SimBM, 3
SimGOUexact, 4
SimQuantilesGoF, 5
SimQuantilesWBM, 5
StatGOU, 6

X, 7
```