

PRM算法

概率路线图算法 (Probabilistic Roadmap)

1.构建概率路线图

- (1) 随机采样点
- (2) 将新采样点和距离小于阈值的 采样点连接产生图

2.在图上寻找路径

- (1) Dijkstra算法
- (2) A*算法

缺点: 两阶段, 速度较慢, 且不能找到最优路径

PRM算法

概率路线图算法 (Probabilistic Roadmap)

用于局部路径规划,通过打分选择较优路径

路径规划算法总结

Joe 艾若机器人 joe_ir@163.com

公众号: Joe学习笔记

总结

完备性:

是指如果在起始点和目标点间有路径解存在,那么一定可以得到解,如果得不到解那么一定说明没有解存在;

概率完备性:

是指如果在起始点和目标点间有路径解存在, 只要规划或搜索的时间足够长, 就一定能确保找到一条路径解;

最优性:

是指规划得到的路径在某个评价指标上是最优的(评价指标一般为路径的长度);

渐进最优性:

是指经过有限次规划迭代后得到的路径是接近最优的次优路径,且每次迭代后都与最优路径更加接近,是一个逐渐收敛的过程;

算法类型	具体算法	是否完备	是否最优
基于搜索	Dijkstra算法、A*算法	完备	是
基于采样	PRM、RRT	概率完备	否
	RRT* 、Informed RRT*	概率完备	渐进最优
基于智能算法	遗传算法、蚁群算法	完备	否

总结

规划速度: RRT系列 > A*算法 > Dijkstra算法 > 基于智能算法的路径规划算法

长按二维码 识别加关注

② Joe学习笔记

关注公众号: Joe学习笔记, 获取PPT和代码

邮箱: joe_ir@163.com

THANKS