Prova scritta di Logica Matematica 1 2 settembre 2010

Cognome Nome Matricola

Scrivete subito il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte

almeno 5 relativi alla prima parte.	
PRIMA PARTE	
Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.	
1. $p \lor (\neg q \land r) \equiv (r \to q) \to p$.	1pt
2. Per essere sicuri della convergenza dell'algoritmo di Fitting per la fnc	
bisogna sempre agire sulle β -formule quando possibile. $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
3. In quante delle seguenti formule la sostituzione $\{x/f(y)\}$ è ammissibile?	
$\forall y r(x, y), \forall z r(x, z), \exists w g(w, x) \land \forall y \neg r(x, y),$	
$\forall z (\exists y r(z, y) \to \neg r(x, z)).$ $\boxed{0 \boxed{1} \boxed{2} \boxed{3} \boxed{4}}$	1pt
4. $p(x) \to \forall x F \equiv \forall x (p(x) \to F)$, qualunque sia la formula F .	1pt
5. $\forall x \forall y \forall z q(x, y, z, f(x, z, y)) \models \forall x \forall y \forall z \exists u q(x, y, z, u).$	1pt
6. La formula $\forall x \exists y f(x) = y$ è valida nella logica con uguaglianza. $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
7. Siano I e J interpretazioni per un linguaggio \mathcal{L} .	
Se esiste un omomorfismo forte suriettivo di J in I , allora $I \equiv_{\mathcal{L}} J$. $\mathbf{V} \mathbf{F}$	1pt
8. Se un tableau (non necessariamente sistematico) per l'enunciato predicativo	
F è aperto, allora F è soddisfacibile. $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
9. Se un insieme di Hintikka contiene sia $p \to (q \land \neg r)$ che r	
allora contiene necessariamente anche $\neg p$.	1pt
SECONDA PARTE	
10. Sul retro del foglio dimostrate che	4pt
$\exists x \exists y r(x,y), \forall x \forall y (r(x,y) \to \exists z (r(x,z) \land r(z,y))) \nvDash \exists x r(x,x).$	
11. Sia $\mathcal{L} = \{f, r\}$ un linguaggio in cui f è un simbolo di funzione unario e r è	
un simbolo di relazione binario. Sia I l'interpretazione per $\mathcal L$ definita da	4pt
$D^{I} = \{A, B, C, D, E\};$ $r^{I} = \{(B, A), (B, C), (B, D), (E, B), (E, E)\}$	

 ${A, B, C, D, E};$ $r' = {(B, A), (B, C), (B, D), (E, B), (E, E)}$

$$f^{I}(A) = C;$$
 $f^{I}(B) = D;$ $f^{I}(C) = f^{I}(D) = A;$ $f^{I}(E) = B.$

Sul retro del foglio definite una relazione di congruenza \sim su I che abbia tre classi d'equivalenza, giustificando la vostra risposta.

- 12. Sia $\mathcal{L} = \{d, m, c, u, a, =\}$ un linguaggio con uguaglianza dove d e m sono simboli di funzione unari, c e u sono simboli relazionali binari, e a è un simbolo di costante. Interpretando d(x) come "il dentista di x", m(x) come "il miglior amico di x", c(x, y) come "x è cliente di y", u(x, y) come "x cura y", e x come "Alex" traducete le seguenti frasi:
 - (i) il dentista di Alex non è suo cliente, ma Alex è il suo miglior amico; 3pt
 - (ii) i clienti di Alex non curati dal dentista di Alex sono curati dal dentista di qualche cliente del miglior amico di Alex.

 3pt
- **13.** Dimostrate che $H \to \neg F, F \lor G, \neg(G \land H) \rhd \neg H$. Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)
- 14. Usando il metodo dei tableaux stabilite che $\forall x \, p(x), \forall x (\forall z \, r(x,z) \to \neg p(x)) \models \forall y \, \exists x \, \neg r(y,x).$

(Utilizzate il retro del foglio)

15. Utilizzando lo spazio qui sotto mettete in forma prenessa la formula 2pt $\forall x(\exists y \, r(x,y) \lor \exists y \, q(y,x)) \to \exists u \, \forall v \, \neg (\forall w \, q(u,f(v,w)) \land \neg \exists w \, r(f(u,v),w)).$ [Se si usa il minimo numero di quantificatori possibili, 1pt in più.]

Soluzioni

- 1. V come può essere verificato sia con le tavole di verità che scrivendo una catena di equivalenze logiche.
- 2. F l'algoritmo in questione gode della proprietà della terminazione forte (Lemma 3.25 delle dispense).
- 3. 2 la sostituzione è ammissibile nella seconda e nella quarta formula.
- **4. F** se F è p(x) stessa la formula a destra (che è un enunciato) è valida, mentre la formula a sinistra è falsa in alcune interpretazioni e stati.
- 5. V
- 6. V
- 7. V è il Corollario 9.13 delle dispense.
- 8. F si veda l'Esempio 10.14 delle dispense.
- **9.** V se l'insieme di Hintikka è Γ , da $p \to (q \land \neg r) \in \Gamma$ segue che $\neg p \in \Gamma$ oppure $q \land \neg r \in \Gamma$. La seconda possibilità implicherebbe $\neg r \in \Gamma$, contraddicendo $r \in \Gamma$.
- 10. Dobbiamo definire un'interpretazione che soddisfi i due enunciati a sinistra del simbolo di conseguenza logica ma non quello a destra. L'interpretazione I definita da

$$D^{I} = \{0, 1, 2\}, \quad r^{I} = \{(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)\}$$

ha queste caratteristiche. Anche l'interpretazione J definita da

$$D^J = \mathbb{Q}, \quad r^J = \left\{ (x, y) \in \mathbb{Q}^2 : x < y \right\}$$

andrebbe bene.

- 11. Una classe d'equivalenza secondo \sim contiene A, C e D, mentre sia B che E sono congruenti solo a loro stessi. Si tratta poi di verificare che tutte le proprietà della congruenza sono verificate.
- **12.** (i) $\neg c(d(a), a) \land m(d(a)) = a;$
 - (ii) $\forall x (c(x, a) \land \neg u(d(a), x) \rightarrow \exists y (c(y, m(a)) \land u(d(y), x))).$
- 13. Ecco una deduzione naturale che mostra quanto richiesto:

14. Per stabilire la conseguenza logica costruiamo un tableau chiuso la cui radice è etichettata con i due enunciati a sinistra del simbolo di conseguenza logica e con la negazione di quello a destra (Algoritmo 10.47 delle dispense). Indichiamo con F, G e H le γ -formule $\forall x \, p(x), \, \forall x (\forall z \, r(x, z) \to \neg p(x))$ e $\neg \exists x \, \neg r(a, x)$. In ogni passaggio sottolineiamo la formula su cui agiamo.

15.

$$\forall x (\exists y \, r(x,y) \lor \exists y \, q(y,x)) \rightarrow \exists u \, \forall v \, \neg (\forall w \, q(u,f(v,w)) \land \neg \exists w \, r(f(u,v),w))$$

$$\forall x \, \exists y (r(x,y) \lor q(y,x)) \rightarrow \exists u \, \forall v \, \neg (\forall w \, q(u,f(v,w)) \land \forall w \, \neg r(f(u,v),w))$$

$$\forall x \, \exists y (r(x,y) \lor q(y,x)) \rightarrow \exists u \, \forall v \, \neg \forall w (q(u,f(v,w)) \land \neg r(f(u,v),w))$$

$$\forall x \, \exists y (r(x,y) \lor q(y,x)) \rightarrow \exists u \, \forall v \, \exists w \, \neg (q(u,f(v,w)) \land \neg r(f(u,v),w))$$

$$\forall x \, \exists y (r(x,y) \lor q(y,x)) \rightarrow \exists x \, \forall v \, \exists w \, \neg (q(x,f(v,w)) \land \neg r(f(x,v),w))$$

$$\exists x \, (\exists y (r(x,y) \lor q(y,x)) \rightarrow \neg (q(x,f(v,w)) \land \neg r(f(x,v),w)))$$

$$\exists x \, \forall v \, \exists w \, (\exists y (r(x,y) \lor q(y,x)) \rightarrow \neg (q(x,f(v,w)) \land \neg r(f(x,v),w)))$$