

Soutenance Projet 7

•••

Pierre Schifflers

Agenda

- Problématique
- Présentation du jeu de données
- Modélisation
- Outils
- Présentation Dashboard
- Aller plus loin

Problématique

- L'entreprise "*Prêt à dépenser*" propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.
- Construire un modèle de scoring qui donnera une prédiction sur la probabilité de faillite d'un client de façon automatique.
- Construire un dashboard interactif à destination des gestionnaires de la relation client permettant d'interpréter les prédictions faites par le modèle.
- La transparence et l'interprétabilité sont essentiels.

Jeu de Données

Données du Home Credit Group disponibles sur Kaggle:

- 1. **Table principale** \rightarrow Table avec une ligne par prêt + infos sur le prêt et le client.
- Tables historiques → Données sur les prêts précédents des clients et leurs habitudes de remboursement. Pas utilisées dans ce projet par souci de simplicité.
- 3. **Description des features** \rightarrow Utilisé lors de l'interprétation des prédictions

Table principale: 307,000 observations sur 122 colonnes

Feature Engineering

- Basé sur <u>kernel Kaggle</u>
- Label Encoding, One-Hot Encoding, Scaling, création de features spécifiques au domaine financier
- Nettoyage des données (valeurs aberrantes, imputation par la médiane)

SMOTE

- Données très inégales: 92% des données dans la catégorie 0.
- Utilisation de Synthetic Minority Oversampling Technique pour résoudre ce problème.
- Over-sampling: 30% →
 Under-sampling 50%.
- Distribution finale: 67% des données dans la catégorie 0.

Définition de la métrique

- Faux Positif = Perte de revenus potentiels
- Faux Négatif = Coûts additionnels

Hypothèse: Les faux négatifs ont un impact plus important sur l'entreprise. Ils doivent donc avoir plus de poids dans l'évaluation du modèle.

Métrique: F-Beta où Beta = 2. Le recall a 2x plus de poids que la précision.

		Classe Réelle		
		Non-Défaut	Défaut	
Classe	Non-Défaut	Vrai Négatif	Faux Négatif	
Prédite	Défaut	Faux Positif	Vrai Positif	

Evaluation des modèles

- Séparation en train/validation de 70/30%
- Tuning des hyperparamètres avec cross-validation 4 folds + SMOTE dans le pipeline
- Test des performances (score F-Beta) sur jeu de validation

-	model	score	train_score	test_score
0	Logistic Regression - No Smote	F-Beta	0.013918	0.015908
1	Logistic Regression	F-Beta	0.352568	0.354126
2	XG Boost	F-Beta	0.190002	0.117907
3	Light Gradient Boosting	F-Beta	0.282701	0.261707
4	Random Forest Classifier	F-Beta	0.989360	0.040362

Conclusion: SMOTE permet de gagner énormément en performance et la **régression** logistique est le modèle le plus performant.

Interprétabilité des modèles

Utilisation de LIME (Local interpretable model-agnostic explanations):

- Explication de prédiction pour une observation unique
- Bien approprié pour notre cas
- Utile pour un modèle de régression logistique où nous n'avons pas de 'feature importance'

Outils

Fonction	Outil	
Plate-forme de déploiement API + Dashboard	片 HEROKU	
Dashboard	Streamlit	
Versionage	GitHub	

h	master •			
0-	Commits on Sep 20, 2020			
	Added descriptions, updated graph colours. schiffpierre committed 2 hours ago	@ 0e88f9e <>		
Commits on Sep 19, 2020				
	Renaming files, added methodological note, updated readme, added prep	68748d2 <>		
	Added descriptions and formatting. Refactored code. Sehiffplerre committed yesterday	□ 1c0d71d <>		

Dashboard

https://credit-risk-dashboard.herokuapp.com/

Credit Risk Prediction Dashboard

A dashboard to understand the factors influencing credit risk predictions

- The **Global** dashboard provides general information about loans at the Home Credit Group.
- The Client-specific dashboard lets you get a credit risk prediction for a specific client and provides insights into the prediction.

Please select a dashboard below:

Client-Specific Dashboard

Examples of client IDs:

122913, 420515, 136802, 394032, 155090

Client ID:

Please enter a Client ID.

Dashboard made by Pierre Schifflers as part of the Data Science track on OpenClassrooms.

Aller plus loin

- Tuning hyperparamètres + feature engineering
- Interprétation des features à l'échelle
- Description des features en one-hot encoding
- Hosting du dashboard sur une plate-forme permettant plus de rapidité
- Filtres pour sélectionner un groupe de clients particulier