Our generative story for regression is:

- choose weight vector w- for n=1 to N:

let $z^{(n)} = x^{(n)}w$ draw $e^{(n)}$ from distribution φ Let $y^{(n)} = \rho(z^{(n)}, e^{(n)})$

(a) Adapt the causal diagram from REGRESSIONPROBLEMS (3) such that $UUV = \frac{1}{2}w$, $\varepsilon^{(0)}$, $\chi^{(0)}$, $\chi^{(0)}$, $\chi^{(0)}$, $\chi^{(N)}$, $\chi^$

(b) If we view the causal diagram	m from (a) as a
(b) If we view the causal diagram Bayesian network, which of	the following d-separation
properties hold? Place a chec d-separation assertions.	kmark beside the correct
WILXUD \ E3	