

Doc. Number: DN0618168

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: G104X1 SUFFIX: L03

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
yuhsiang.chang (張喻翔/514-10922)		
2016-07-14	2016-07-13	2016-07-12
04:51:56 CST	11:12:24 CST	18:46:26 CST

Version 2.9 21 June 2016 1 / 26

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 6
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 9
5. INTERFACE PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BLOCK DIAGRAM OF INTERFACE 5.3 BACKLIGHT UNIT 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT	 10
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 12
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 16
8. RELIABILITY TEST CRITERIA	 20
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD 9.3 UN-packing METHOD	 21
10. DEFINITION OF LABELS 10.1 CMO MODULE LABEL	 23
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	 24
12. MECHANICAL CHARACTERISTIC	 25

REVISION HISTORY

2.0 2009/10/15 All All Approval spec was first issued 2.1 2009/12/28 5 2.1 Change Storage Temperature from 80 to 70 2.1 2010/01/04 6 3.1 Updated power supply current 2.2 2010/04/15 10 5.1 Note 1 2.3 2010/07/15 16 7.2 Modified Optical specification 2.4 2010/09/10 8 3.2 Modified Note 2 2.5 2011/06/10 8 3.2 Modified EN control Level / Backlight on and PWM Control Level/PW High Level 2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified PWM control duty ratio , frequency, and Note2 2.8 2012/05/15 4 1.2 Modified Features 2.9 3.2 All Modified Features Converter Power Supply Current : Typ=0.28 → Typ=0.3 A Add Max = 0.35 A 2.9 All All All Modified Company logo to INNOLUX Modified Note (1)(a) 3.1 4 1.1 General Overview <th>Version</th> <th>Date</th> <th>Date Pag</th> <th></th> <th>Description</th>	Version	Date	Date Pag		Description
2.1 2010/01/04 6 3.1 Updated power supply current 2.2 2010/04/15 10 5.1 Note 1 2.3 2010/07/15 16 7.2 Modified Optical specification 2.4 2010/09/10 8 3.2 Modified Note 2 2.5 2011/06/10 8 3.2 Modified EN control Level / Backlight on and PWM Control Level/PW High Level 2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified outline drawing of light bar FPC 2.8 2012/05/15 4 1.2 Modified Features 2.9 2016/6/21 All All Modified company logo to INNOLUX 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview Modified Note (1)(a) Added Note (3) Modified Test Conditions Added Note (4), (5), (6)	2.0	2009/10/15	009/10/15 AII	All	Approval spec was first issued
2.2 2010/04/15 10 5.1 Note 1 2.3 2010/07/15 16 7.2 Modified Optical specification 2.4 2010/09/10 8 3.2 Modified Note 2 2.5 2011/06/10 8 3.2 Modified EN control Level / Backlight on and PWM Control Level/PW High Level 2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified outline drawing of light bar FPC 2.8 2012/05/15 4 1.2 Modified Features 2.9 2016/6/21 All All Modified company logo to INNOLUX 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 4 6.1 Added Note (3) Modified Test Conditions 20 8 Added Note (4), (5), (6)	2.1	2009/12/28	009/12/28 5	2.1	Change Storage Temperature from 80 to 70
2.3 2010/07/15 16 7.2 Modified Optical specification 2.4 2010/09/10 8 3.2 Modified Note 2 2.5 2011/06/10 8 3.2 Modified EN control Level / Backlight on and PWM Control Level/PW High Level 2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified outline drawing of light bar FPC 2.8 2012/05/15 4 1.2 Modified Features Converter Power Supply Current : Typ=0.28 → Typ=0.3 A Add Max = 0.35 A 2.9 All All All Modified company logo to INNOLUX Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 7.1 Modified Test Conditions Added Note (4), (5), (6)	2.1	2010/01/04	010/01/04 6	3.1	Updated power supply current
2.4 2010/09/10 8 3.2 Modified Note 2 2.5 2011/06/10 8 3.2 Modified EN control Level / Backlight on and PWM Control Level/PW High Level 2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified outline drawing of light bar FPC 2.8 2012/05/15 4 1.2 Modified Features 8 3.2 Converter Power Supply Current : Typ=0.28 → Typ=0.3 A Add Max = 0.35 A 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)	2.2	2010/04/15	010/04/15 10	5.1	Note 1
2.5 2011/06/10 8 3.2 Modified EN control Level / Backlight on and PWM Control Level/PW High Level 2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified outline drawing of light bar FPC 2.8 2012/05/15 4 1.2 Modified Features 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)	2.3	2010/07/15	010/07/15 16	7.2	Modified Optical specification
2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified outline drawing of light bar FPC 2.8 2012/05/15 4 1.2 Modified Features 8 3.2 Converter Power Supply Current : Typ=0.28 → Typ=0.3 A Add Max = 0.35 A 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)	2.4	2010/09/10	010/09/10 8	3.2	Modified Note 2
2.6 2011/08/10 8 3.2 Modified PWM control duty ratio , frequency, and Note2 2.7 2012/01/11 26 12 Modified outline drawing of light bar FPC 2.8 2012/05/15 4 1.2 Modified Features 2.9 2016/6/21 All All Modified company logo to INNOLUX 2.9 2016/6/21 All Modified Note (1)(a) 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) Modified Test Conditions Added Note (4), (5), (6)	2.5	2011/06/10	011/06/10 8	3.2	Modified EN control Level / Backlight on and PWM Control Level/PWM
 2.7					High Level
2.8 2012/05/15 4 1.2 Modified Features 8 3.2 Converter Power Supply Current : Typ=0.28 → Typ=0.3 A Add Max = 0.35 A 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)			_		1
8 3.2 Converter Power Supply Current : Typ=0.28 → Typ=0.3 A Add Max = 0.35 A 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)					
Add Max = 0.35 A 2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)	2.8	2012/05/15			
2.9 2016/6/21 All All Modified company logo to INNOLUX 4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)			8	3.2	
4 1.1 Updated 1.1 General Overview 5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)					
5 2.1 Modified Note (1)(a) 12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)	2.9	2016/6/21			1
12 6.1 Added Note (3) 16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)					· ·
16 7.1 Modified Test Conditions 20 8 Added Note (4), (5), (6)					
20 8 Added Note (4), (5), (6)					
9.3 Added UN-packing METHOD					
			22	9.3	Added UN-packing METHOD

Version 2.9 21 June 2016 3 / 26

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G104X1- L03 is a 10.4" IAV TFT Liquid Crystal Display module with LED backlight unit and 30-pin-and-1ch LVDS interface. This product supports 1024 x 768 XGA format and can display true 16.2M colors (6-bits colors with FRC). The converter module for LED backlight is built-in.

1.2 FEATURES

- Excellent brightness (350 nits)
- Ultra high contrast ratio (1000:1)
- Fast response time (Ton+Toff average 25 ms)
- XGA (1024 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Ultra wide viewing angle: 176(H)/ 176(V) (CR>10) Super MVA technology
- -180 degree rotation display option
- -Color reproduction (Nature color)
- -Wide operation and storage temperature range

1.3 APPLICATION

- TFT LCD monitor for Industrial applications
- Slim design display for portable applications
- Digitizer Applicable Design

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	210.4 (H) x 157.8 (V) (10.4" diagonal)	mm	(1)
Bezel Opening Area	215.4 (H) x 161.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1024 x R.G.B. x 768	pixel	-
Pixel Pitch (Sub Pixel)	0.0685 (H) x 0.2055 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.2 M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti Glare	-	-
Total power consumption(typ)	5.1	W	typ

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Version 2.9 21 June 2016 4 / 26

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	ı	238.6	-	mm	(1)
Module Size	Vertical (V)	-	175.8	-	mm	(1)
	Depth (D)	-	7.5	-	mm	-
We	ight	-	280	-	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	Note
Operating Ambient Temperature	T _{OP}	-20	+70	°C	
Storage Temperature	T _{ST}	-20	+70	°C	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta < 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation

Relative Humidity (%RH)

Version 2.9 21 June 2016 5 / 26

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note	
iteiii	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCC	-0.3	7	V	(1)	

2.2.2 LED CONVERTER

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Converter Voltage	Vi	-0.3	22	V	(1), (2)
Enable Voltage	EN		5.5	V	
Backlight Adjust	ADJ		5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED light ba (Refer to 3.2 for further information).

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol		Value		Unit	Note
		Symbol	Min.	Тур.	Max.	Ullit	Note
Power Supply Voltage		V _{cc}	3.0	3.3	3.6	V	(1)
Rush Current		I _{RUSH}	-	-	4.0	Α	(2)
Dower Supply Current	White		530	570	620	mA	(2)
Power Supply Current	Black	Ī -	380	420	460	mA	(3)
Power Consumption		P_L		1.9		W	
LVDS differential input voltage		VID	100	-	600	mV	-
LVDS common input volt	age	VICM	0.7	-	1.6	V	-

Note (1) The assembly should be always operated within above ranges.

Note (2) Measurement Conditions:

Version 2.9 21 June 2016 6 / **26**

VCC rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

c. Vertical Stripe Pattern

Version 2.9 21 June 2016 7 / **26**

3.2 LED CONVERTER

 $Ta = 25 \pm 2 \, ^{\circ}C$

Parameter		Symbol	Value			Unit	Note
rarameter		Syllibol	Min.	Тур.	Max.	Offic	Note
Converter Power Supply \	√oltage	V_{i}	7	12.0	17	V	(Duty 100%)
Converter Power Supply Current		l _i		0.3	0.35	Α	@ Vi = 12V (Duty 100%)
LED Power Consumption		P _{LED}		3.1		W	@ Vi = 12V (Duty 100%)
EN Control Level	Backlight on		2.0		5	V	
LIN COILLOI Level	Backlight off		0	1	0.8	V	
PWM Control Level	PWM High Level		2.0		5	V	
r www.control Level	PWM Low Level		0	1	0.15	V	
PWM Control Duty Ratio			2		100	%	
PWM Control Frequency		f_{PWM}	190	200	20k	Hz	(2)
LED Life Time	_	L _L	30,000			Hrs	(3)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2): At 190 ~1KHz PWM control frequency, duty ratio range is restricted from 2% to 100%.

1K ~20KHz PWM control frequency, minimum duty on-time 20 us.

Note (3) The lifetime of LED is defined as the time when it continues to operate under the conditions at $Ta = 25 \pm 2$ and $I_{LED} = 20 \text{mA}_{DC} \text{(LED forward current)}$ until the brightness becomes 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Version 2.9 21 June 2016 8 / 26

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Version 2.9 21 June 2016 9 / 26

5. INTERFACE PIN ASIGNMENT

5.1 TFT LCD MODULE

CN1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VCC	Power supply: +3.3V	-
2	VCC	Power supply: +3.3V	-
3	VCC	Power supply: +3.3V	-
4	GND	Ground	-
5	GND	Ground	-
6	GND	Ground	-
7	RPFI	Reverse Panel Function (Display Rotation)	(2)
8	NC	No Connection	
9	NC	No Connection	-
10	NC	No Connection	-
		LVDS 6/8 bit select function control,	
11	SEL6/8	Low or NC \rightarrow 8 bit Input Mode	(2)
		High → 6bit Input Mode	(2)
12	GND	Ground	-
13	NC	No Connection	-
14	GND	Ground	-
15	RX0-	Negative transmission data of pixel 0	-
16	RX0+	Positive transmission data of pixel 0	-
17	GND	Ground	-
18	RX1-	Negative transmission data of pixel 1	-
19	RX1+	Positive transmission data of pixel 1	-
20	GND	Ground	-
21	RX2-	Negative transmission data of pixel 2	-
22	RX2+	Positive transmission data of pixel 2	-
23	GND	Ground	-
24	RXCLK-	Negative of clock	-
25	RXCLK+	Positive of clock	-
26	GND	Ground	-
27	RX3-	Negative transmission data of pixel 3	-
28	RX3+	Positive transmission data of pixel 3	-
29	GND	Ground	-
30	NC	No Connection	(2)

Note (1) Connector Part No.: JAE, FI-XB30SRL-HF11 or compatible connector

Note (2) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected"

5.2 BACKLIGHT UNIT (Converter connector pin)

Pin	Symbol	Description	Remark
1	V_{i}	Converter input voltage	12V
2	V_{i}	Converter input voltage	12V
3	V_{i}	Converter input voltage	12V
4	V_{i}	Converter input voltage	12V
5	V_{GND}	Converter ground	Ground
6	V_{GND}	Converter ground	Ground
7	V_{GND}	Converter ground	Ground
8	V_{GND}	Converter ground	Ground
9	EN	Enable pin	3.3V
10	ADJ	Backlight Adjust	PWM Dimming

Note (1) Connector Part No.: 91208-01001(ACES) or equivalent

Note (2) User's connector Part No.: 91209-01011(ACES) or equivalent

Version 2.9 21 June 2016 10 / 26

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	า						Bl	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	B4	В3	B2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IXEG	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
2.00	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.9 21 June 2016 11 / 26

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	55	65	75	MHz	
	Total	Tv	770	806	950	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	2	38	182	Th	-
	Total	Th	1104	1344	1800	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1024	1024	1024	Тс	-
	Blank	Thb	76	320	776	Тс	-

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

- (2) Frame rate is 60Hz
- (3) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Version 2.9 21 June 2016 12 / 26

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Timita		
	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
T5	200	-	-	ms
Т6	20	-	-	ms
T7	5	-	300	ms
Т8	10	-	-	ms
Т9	10	-	-	ms

Version 2.9 21 June 2016 13 / 26

6.3 The Input Data Format

SEL 6/8 = "High" for 6 bits LVDS Input

SEL 6/8 = "Low" or "NC" for 8 bits LVDS Input

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Note (3) Output signals from any system shall be low or Hi-Z state when VCC is off

Version 2.9 21 June 2016 14 / 26

6.4 Scanning Direction

The following figures show the image see from the front view. The arrow indicates the direction of scan.

RPFI = high: display with 180degree rotation

Version 2.9 21 June 2016 15 / 26

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Value	Unit			
Ambient Temperature (Ta)	25±2	°C			
Ambient Humidity (Ha)	50±10	%RH			
Supply Voltage					
Input Signal	According to typical value in "ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current Per Input Pin	317.10.10.12				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		700	1000		_	(2)	
Response Time		T_R		-	14	19	ms	(2)	
		T_F		-	11	16	ms	(3)	
Center Lumina	nce of White	L _C		300	350	ı	cd/m ²	(4)	
White Variation	1	δW		-	-	1.4	-	(7)	
Cross Talk		CT	0 -00 0 -00	-	-	4	%	(5)	
	Red	Rx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.610		-		
	Reu	Ry	Viewing angle at normal direction	Typ. -0.05	0.365		-		
	Green	Gx	Homai direction		0.341		-	(6)	
		Gy			0.564	Тур.	-		
Chromaticity	Blue	Bx			0.147	+0.05	-		
		Ву			0.087		-		
		Wx			0.313		-		
	White	Wy			0.329		-		
	l lori-ontol	θ_{x} +		80	88	-			
Viewing	Horizontal	θ _x -	OD>10	80	88	-	Dog	(1)	
Angle	Vertical	θ _Y +	CR≥10	80	88	- Deg		(1)	
	Vertical	θ _Y -		80	88	-			

Version 2.9 21 June 2016 16 / 26

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by BM5A

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Version 2.9 21 June 2016 17 / 26

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Version 2.9 21 June 2016 18 / 26

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Version 2.9 21 June 2016 19 / 26

8. Reliability Test Criteria

Test Item	Test Condition	Note
High Temperature Storage Test	70°C, 240 hours	(4)
Low Temperature Storage Test	-20°C, 240 hours	(1)
Thermal Shock Storage Test	-20°C, 0.5hour 70 , 0.5hour; 100cycles, 1hour/cycle	(2)
High Temperature Operation Test	70°C, 240 hours	(4) (5)
Low Temperature Operation Test	-20°C, 240 hours	(0)
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	(1) (2) (4) (6)
Shock (Non-Operating)	200G, 2ms, half sine wave, 1 time for ± X, ± Y, ± Z.	(3)(4)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(3)(4)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 70 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before the reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Version 2.9 21 June 2016 20 / 26

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 18pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 8.3Kg (18 modules per box)

9.2 PACKING METHOD

Figure.9-1 packing method

Version 2.9 21 June 2016 21 / 26

Sea / Land Transportation (40ft Container)

Air Transportation

9.3 UN-packing METHOD

Figure. 9-2 Packing method

Version 2.9 21 June 2016 22 / 26

10. DEFINITION OF LABELS

10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: G104X1-L03
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of backlight will be higher than that of room temperature.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Version 2.9 21 June 2016 24 / 26

12. MECHANICAL CHARACTERISTICS

