CS 112 - Collision Detection

Computationally Expensive

- Objects have millions of triangles
- For two objects with m and n triangles
 - You need mn triangle-triangle intersections
 - 10¹² intersection computations for just *two* objects
- Dynamic scenes 30 frames per second
 - Humungous computation needs
- Need to make it efficient

Efficiency Measures

- Most of the time objects do not intersect
 - Fast rejections
 - Spend time on intersection computations only when objects intersect
- Two important issues
 - Bounding Volume How closely it approximates the object?
 - Intersection Computation How simple are the intersection computations?

Bounding Volumes

- Enclose the object
- The ratio of the object volume to the bounding volume should be as close to 1 as possible
- Depends on the shape of the object

- Axis-aligned
 - The planes of the box is aligned with the world coordinates
- Object oriented
 - The planes are aligned to hug the object more closely
 - More rejections

Bounding Volumes

- Spherical
 - Enclosing sphere
- Spherical Shells
 - Between concentric spherical shells
- Convex Hull
 - Closest Fit (Optimal)
 - Smallest Ratio

Intersection Calculations

- Axis aligned Bounding Box
 - Compare min and max in X, Y and Z directions
 - If all of them intersect, then the object intersects
- Spherical
 - Find the distance between the spheres
 - If less than the summation of the radius, then intersects

Intersection Computations

- Object Oriented and Spherical Shells
 - Complex computations
 - Google for reference
- Convex Hull
 - Convex hull of the object is the object itself
 - Therefore, need exhaustive triangle-triangle computation

Updating the bounding boxes

- Axis aligned Bounding box
 - +Translation invariant
 - -Any other kind of movements, box no longer remains axis-aligned
 - -Needs to be recomputed frame by frame
 - + Very simple computation

Updating the bounding boxes

- Spherical
 - +Transformation invariant
 - +Simple intersection computation
 - Lot of empty space in the volume
- Oriented Bounding Box
 - + Transformation invariant
 - Complex intersection computation
 - + Compact volume

Hierarchical Bounding Volumes

- Similar to spatial subdivision
- But for each object
- Slightly different
 - Union of children may not encompass the parent

- If does not intersect, do not explore the children
- If intersects, do bounding volume intersection on children
- Continue till you get to the triangle-triangle intersection
 - Very few of them needs to be computed