pato sentiría: (a) usando la regla de la cadena, (b) expresando T en función de t y derivando.

- **14.** Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una aplicación lineal de modo que (por el Ejercicio 28 de la Sección 2.3) $\mathbf{D}f(\mathbf{x})$ es la matriz de f. Comprobar directamente la validez de la regla de la cadena para aplicaciones lineales.
- **15.** Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$; $(x,y) \mapsto (e^{x+y}, e^{x-y})$. Sea $\mathbf{c}(t)$ una trayectoria con $\mathbf{c}(0) = (0,0)$ y $\mathbf{c}'(0) = (1,1)$. ¿Cuál es el vector tangente a la imagen de $\mathbf{c}(t)$ bajo f en t = 0?
- **16.** Sea $f(x,y) = 1/\sqrt{x^2 + y^2}$. Calcular $\nabla f(x,y)$.
- 17. Escribir la regla de la cadena para cada una de las funciones siguientes y justificar la respuesta en cada caso utilizando el Teorema 11.
 - (a) $\partial h/\partial x$, donde h(x,y) = f(x,u(x,y))
 - (b) dh/dx, donde h(x) = f(x, u(x), v(x))
 - (c) $\partial h/\partial x$, donde h(x, y, z) = f(u(x, y, z), v(x, y), w(x))
- **18.** Verificar la regla de la cadena para $\partial h/\partial x$, donde h(x,y) = f(u(x,y),v(x,y)) y

$$f(u,v) = \frac{u^2 + v^2}{u^2 - v^2},$$

$$u(x,y) = e^{-x-y}, v(x,y) = e^{xy}.$$

19. (a) Sea y(x) la función definida implícitamente (y(x)) no está definida explícitamente como función de x) por G(x,y(x))=0, donde G es una función dada de dos variables. Demostrar que si y(x) y G son diferenciables, entonces

$$\frac{dy}{dx} = -\frac{\partial G/\partial x}{\partial G/\partial y}$$
 si $\frac{\partial G}{\partial y} \neq 0$.

(b) Obtener una fórmula análoga a la del apartado (a) si y_1, y_2 se definen implícitamente mediante

$$G_1(x, y_1(x), y_2(x)) = 0,$$

 $G_2(x, y_1(x), y_2(x)) = 0.$

- (c) Sea y la función definida implícitamente por $x^2 + y^3 + e^y = 0$. Calcular dy/dx en función de x e y.
- **20.** Los textos sobre termodinámica⁴ utilizan la relación

$$\left(\frac{\partial y}{\partial x}\right)\left(\frac{\partial z}{\partial y}\right)\left(\frac{\partial x}{\partial z}\right) = -1.$$

Explicar el significado de esta ecuación y demostrar que es cierta. (SUGERENCIA: partir de una relación F(x,y,z)=0 que define x=f(y,z),y=g(x,z) y z=h(x,y) y derivar implícitamente.)

21. La ecuación de estado de Dieterici para un gas es $P(V-b)e^{a/RVT}=RT$, donde a,b y R son constantes. Considerar el volumen V como una función de la temperatura T y de la presión P y demostrar que

$$\frac{\partial V}{\partial T} = \left(R + \frac{a}{TV}\right) \bigg/ \bigg(\frac{RT}{V-b} - \frac{a}{V^2}\bigg).$$

22. Este ejercicio proporciona otro ejemplo del hecho de que la regla de la cadena no es aplicable si f no es diferenciable. Considérese la función

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Demostrar que

- (a) $\partial f/\partial x$ y $\partial f/\partial y$ existen en (0, 0).
- (b) Si $\mathbf{g}(t) = (at, bt)$ para constantes a y b, entonces $f \circ \mathbf{g}$ es diferenciable $y (f \circ \mathbf{g})'(0) = ab^2/(a^2 + b^2)$, pero $\nabla f(0, 0) \cdot \mathbf{g}'(0) = 0$.
- **23.** Demostrar que si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es diferenciable en $\mathbf{x}_0 \in U$, existe un entorno V de $\mathbf{0} \in \mathbb{R}^n$ y una función $R_1: V \to \mathbb{R}$ tal que para todo $\mathbf{h} \in V$, tenemos $\mathbf{x}_0 + \mathbf{h} \in U$,

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + [\mathbf{D}f(\mathbf{x}_0)]\mathbf{h} + R_1(\mathbf{h})$$

V

$$\frac{R_1(\mathbf{h})}{\|\mathbf{h}\|} \to 0$$
 cuando $\mathbf{h} \to \mathbf{0}$.

⁴Véase S. M. Binder, "Mathematical Methods in Elementary Thermodynamics", *J. Chem. Educ.*, 43 (1966): 85–92. Un conocimiento adecuado de la derivación parcial puede resultar muy útil en algunas aplicaciones; por ejemplo, véase M. Feinberg, "Constitutive Equation for Ideal Gas Mixtures and Ideal Solutions as Consequences of Simple Postulates", *Chem. Eng. Sci.*, 32 (1977): 75–78.