

Базовая математика

Урок 13. Пределы

Разбор домашнего задания

Задание 1. Вычислить $\lim_{n\to\infty} \frac{3^{n+1}+2\cdot 4^n}{4^{n+1}-5}$.

Решение. Посмотрим, какие показательные последовательности есть в пределе:

$$3^n, 4^n$$

Выберем последовательность с наибольшим основанием, т. е. 4^n . В целях устранения неопределённости поделим числитель и знаменатель на 4^n :

$$\lim_{n \to \infty} \frac{3^{n+1} + 2 \cdot 4^n}{4^{n+1} - 5} = \lim_{n \to \infty} \frac{3 \cdot 3^n + 2 \cdot 4^n}{4 \cdot 4^n - 5} = \lim_{n \to \infty} \frac{\left(3 \cdot 3^n + 2 \cdot 4^n\right)/4^n}{\left(4 \cdot 4^n - 5\right)/4^n} = \lim_{n \to \infty} \frac{3 \cdot \left(\frac{3}{4}\right)^n + 2}{4 - 5/4^n}$$

В полученном выражении можно сделать несколько упрощений. Во-первых, последовательность $\left(\frac{3}{4}\right)^n$ является бесконечно убывающей геометрической прогрессией, поэтому стремится к нулю. Вовторых, стремится к нулю константа, делённая на возрастающую геометрическую прогрессию, т. е. $5/4^n \to 0$. Имеем:

$$\lim_{n \to \infty} \frac{3 \cdot \left(\frac{3}{4}\right)^n + 2}{4 - 5/4^n} = \frac{2}{4} = \frac{1}{2}$$

 $Omeem: \frac{1}{2}.$

Задание 2. Вычислить $\lim_{x\to 0} \frac{\sin x}{x}$.

Решение. Имеем неопределённость вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Воспользуемся правилом Лопиталя:

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{x'} = \lim_{x \to 0} \cos x = 1$$

Ответ: 1.

Задание 3. Вычислить $\lim_{x\to 1} \frac{2x^2 - 3x + 1}{2x - 2}$.

Peшение. Имеем неопределённость вида $\left[\frac{0}{0}\right]$. Чтобы избавиться от неопределённости, преобразуем функцию, разложив на множители числитель и знаменатель. Решим уравнение:

$$2x^2 - 3x + 1 = 0$$

$$x_1 = 1, x_2 = 0.5$$

Следовательно, имеет место разложение:

$$\frac{2x^2 - 3x + 1}{2x - 2} = \frac{2(x - 1)(x - 0.5)}{2(x - 1)} = x - 0.5$$

Итак, предел:

$$\lim_{x \to 1} \frac{2x^2 - 3x + 1}{2x - 2} = \lim_{x \to 1} (x - 0.5) = 0.5$$

 ${\it Omsem}{:}~0.5.$