Лекция 8

Функция распределения

Def. Функция распределения $F_{\xi}(x)$ случайной величины ξ называется функция $F_{\xi}(x) = P(\xi < x)$

F(x) - вероятность попадания в этот интервал

Свойства функции распределения

- 1) F(x) ограничена $0 \le F(x) \le 1$
- 2) F(x) неубывающая функция: $x_1 < x_2 \Longrightarrow F(x_1) \le F(x_2)$

$$x_1 < x_2 \Longrightarrow \{\xi < x_1\} \subset \{\xi < x_2\} \Longrightarrow p(\xi < x_1) \le p(\xi < x_2)$$
, то есть $F(x_1) \le F(x_2)$

3) $p(\alpha \le \xi < \beta) = F(\beta) - F(\alpha)$

$$p(\xi < \beta) = p(\xi < \alpha) + p(\alpha \le \xi < \beta) \Longrightarrow F(\beta) = F(\alpha) + p(\alpha \le \xi < \beta)$$

Nota. Функция распределения F(x) - вероятность попадания в интервал (-∞; x). Так как Борелевская σ -алгебра порождается такими интервалами, то распределение полностью задается этой функцией

4)
$$\lim_{x \to -\infty} F(x) = 0$$
; $\lim_{x \to +\infty} F(x) = 1$

Так как F(x) монотонна и ограничена, то эти пределы существуют. Поэтому достаточно доказать эти пределы для некоторой последовательности $x_n \to \pm \infty$

5) F(x) непрерывна слева: $F(x_0 - 0) = F(x_0)$

Этот предел существует в силу монотонности и ограниченности функции, поэтому рассмотрим последовательность событий $B_n=\{x_0-\frac{1}{n}\leq \xi < x_0, n\in \mathbb{Z}\}$

Так как
$$B_1 \supset B_2 \supset \cdots \supset B_n \supset \ldots$$
 и $\bigcap_{n=1}^{\infty} B_n = \emptyset$
То по аксиоме непрерывности $p(B_n) \to 0$

$$P(B_n) = F(x_0) - F(x_0 - \frac{1}{n}) \to 0$$

$$F(x_0 - \frac{1}{n}) \to F(x_0)$$

$$\lim_{n \to \infty} F(x) = F(x_0)$$

6) Скачок в точке x_0 равен вероятности попадания в данную точку: $F(x_0+0)-F(x_0)=p(\xi=x_0)$ или $F(x_0+0)=p(\xi=x_0)+p(\xi< x_0)=p(\xi\leq x_0)$

Этот предел существует в силу монотонности и ограниченности функции, поэтому рассмотрим последовательность событий $C_n=\{x_0\leq \xi< x_0+\frac{1}{n}, n\in \mathbb{Z}\}$

Так как
$$C_1 \supset C_2 \supset \cdots \supset C_n \supset \cdots$$
 и $\bigcap_{n=1}^{\infty} C_n = \emptyset$
То по аксиоме непрерывности $p(C_n) \to 0$

$$P(C_n) = F(x_0 + \frac{1}{n}) - F(x_0) \to 0$$

$$p(x_0 \le \xi < x_0 + \frac{1}{n}) + p(\xi = x_0) \to p(\xi = x_0)$$

$$F(x_0 + \frac{1}{n}) - F(x_0) \to p(\xi = x_0)$$

$$F(x_0 + 0) - F(x_0) \to p(\xi = x_0)$$

- 7) Если функция распределения непрерывна в точке $x = x_0$, то очевидно, что вероятность попадания в эту точка $p(\xi = x_0) = 0$ (следствие из 6 пункта)
- 8) Если F(x) непрерывна $\forall x \in \mathbb{R}$, то $p(\alpha \le \xi < \beta) = p(\alpha < \xi \le \beta) = p(\alpha \le \xi \le \beta) = p(\alpha < \xi \le \beta) = F(\beta) F(\alpha)$

Th. Случайная величина ξ имеет дискретное распределение тогда и только тогда, когда ее функция распределения имеет ступенчатый вид

Абсолютно непрерывное распределение

Def. Случайная величина ξ имеет абсолютно непрерывное распределение, если существует $f_{\xi}(x)$ такая, что $\forall B \in \mathcal{B}(\mathbb{R})$ $p(\xi \in B) = \int_{\mathbb{R}} f_{\xi}(x) dx$

Функция f_{ξ} называется плотностью распределения случайной величины

(в определении использует интеграл Лебега, так как B может быть не просто интервалом на \mathbb{R})

Свойства плотности абсолютно непрерывного распределения

1) Вероятносто-геометрический смысл плотности: $p(\alpha \le \xi < \beta) = \int_{\alpha}^{\beta} f_{\xi}(x) dx$

2) Условие нормировки: $\int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1$

Из определения, если $B = \mathbb{R}$

3)
$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(x) dx$$

Если
$$B=(-\infty;x),$$
 то $F_{\xi}(x)=p(\xi\in(-\infty;x))=\int_{-\infty}^{x}f_{\xi}(x)dx$

4) $F_{\xi}(x)$ непрерывна

Из свойства непрерывности интеграла с верхним переменным пределом

5) $F_{\xi}(x)$ дифференцируема почти везде и $f_{\xi}(x) = F'_{\xi}(x)$ для почти всех x

По теореме Барроу

- 6) $f_{\xi}(x) \geq 0$ по определению и как производная неубывающей $F_{\xi}(x)$
- 7) $p(\xi = x) = 0 \ \forall x \in \mathbb{R}$ так как $F_{\xi}(x)$ непрерывна
- 8) $p(\alpha \le \xi < \beta) = p(\alpha < \xi < \beta) = p(\alpha \le \xi \le \beta) = p(\alpha < \xi \le \beta) = F(\beta) F(\alpha)$ 9) **Th.** Если $f(x) \ge 0$ и $\int_{-\infty}^{\infty} f(x) dx = 1$ (выполнены свойства 2 и 6), то f(x) плотность некоторого распределения

Числовые характеристики

 ${f Def.}$ Математическим ожиданием $E\xi$ случайной абсолютно непрерывной величины ξ называется величина $E\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx$ при условии, что данный интеграл сходится абсолютно, то ecth $\int_{-\infty}^{\infty} |x| f_{\xi}(x) dx < \infty$

Def. Дисперсией $D\xi$ случайной величины ξ называется величина $D\xi = E(\xi - E\xi)^2 = \int_{-\infty}^{\infty} (x - \xi)^2 dx$ $(E\xi)^2 f_{\xi}(x) dx$ при условии, что данный интеграл сходится Nota. Вычислять удобно по формуле $D\xi = E\xi^2 - (E\xi)^2 = \int_{-\infty}^{\infty} x^2 f_{\xi}(x) dx - (E\xi)^2$

Def. Среднее квадратическое отклонение $\sigma_{\xi} = \sqrt{D\xi}$ определяется, как корень дисперсии Смысл этих величин такой же, как и при дискретном распределении. Также свойства аналогичны тем, что и при дискретном распределении

Другие числовые характеристики

$$m_k=E\xi^k=\int_{-\infty}^\infty x^kf_\xi(x)dx$$
- момент k -ого порядка
$$\mu_k=E(\xi-E\xi)^k=\int_{-\infty}^\infty (x-E\xi)^kf_\xi(x)dx$$
- центральный момент k -ого порядка

 ${f Def.}$ Медианой ${\it Me}$ абсолютно непрерывной случайной величины ξ называется значение случайной величины ξ , такое что $p(\xi < Me) = p(\xi > Me) = \frac{1}{2}$

 ${f Def.}$ Модой ${\it Mo}$ случайной величины ξ называется точка локального максимума плотности

Сингулярное распределение

Def. Случайная величина ξ имеет сингулярное распределение, если $\exists B$ - Борелевское множество с нулевой мерой Лебега $\lambda(B)=0$, такое что $p(\xi \in B) \in 1$, но $P(\xi = x)=0 \ \forall x \in B$

Nota. Такое Борелевское множество состоит из несчетного множества точек, так как в протичном случае по аксиоме счетной аддитивности $p(\xi \in B) = 0$. То есть при сингулярном распределении случайная величина ξ распределена на несчетном множестве меры 0 *Nota.* Так как $p(\xi = x) = 0 \ \forall x, F_{\xi}$ непрерывна.

Ex. Сингулярное распределение получим, если возьмем случайную величину, функция распределения которой - лестница Кантора

- лестница Кантора
$$F_{\xi}(x) = \begin{cases} 0 & x \le 0, \\ \frac{1}{2}F(3x) & 0 < x \le \frac{1}{3}, \\ \frac{1}{2} & \frac{1}{3} < x \le \frac{2}{3}, \\ \frac{1}{2} + \frac{1}{2}F(3x - 2) & \frac{2}{3} < x \le 1, \\ 1 & x > 1 \end{cases}$$

Th. Лебега.

 $\sqsupset F_{\xi}(x)$ - функция распределения $\xi.$ Тогда $F_{\xi}(x)=p_1F_1(x)+p_2F_2(x)+p_3F_3(x),$ где $p_1+p_2+p_3F_3(x)$

 $p_3 = 1$

 F_1 - функция дискретного распределения

 F_2 - функция абсолютно непрерывного распределения

F₃ - функция сингулярного распределения

То есть существуют только дискретное, абсолютно непрерывное, сингулярное распределения и их смеси