Доказать, что, каково бы ни было число α , удовлетворяющее условию — $1 \le \alpha \le 1$, можно выбрать последовательность $x_n \to 0$ $(n=1, 2, \ldots)$ такую, что $\lim_{n \to \infty} f(x_n) = \alpha$.

643. Определить

$$l = \lim_{x \to 0} f(x) \text{ u } L = \overline{\lim}_{x \to 0} f(x),$$

если:

a)
$$f(x) = \sin^2 \frac{1}{x} + \frac{2}{\pi} \arctan \frac{1}{x}$$
;

6)
$$f(x) = (2-x^2)\cos\frac{1}{x}$$
; B) $f(x) = \left(1+\cos^2\frac{1}{x}\right)^{\sec^2(1/x)}$

644. Определить

$$l = \lim_{x \to \infty} f(x) \ \text{if } L = \overline{\lim}_{x \to \infty} f(x),$$

если:

a)
$$f(x) = \sin x$$
; 6) $f(x) = x^2 \cos^2 x$;

B)
$$f(x) = 2^{\sin x^2}$$
; $f(x) = \frac{x}{1 + x^2 \sin^2 x}$ $(x \ge 0)$.

§ 6. О-символика

1°. Запись

$$\varphi(x) = O(\psi(x))$$
 npn $x \in X$

обозначает, что существует постоянная А такая, что

$$| \varphi(x) | \leqslant A | \psi(x) | \text{ для } x \in X, \tag{1}$$

Аналогично пишут

$$\varphi(x) = O(\psi(x)) \text{ при } x \to a, \tag{2}$$

если неравенство (1) выполнено в некоторой окрестностн U_a точки a ($x \neq a$). В частности, если ψ (x) \neq 0 при $x \in U_a$ ($x \neq a$), то соотношение (2) заведомо имеет место, если существует конечный $\lim_{x \to a} \frac{\varphi(x)}{\psi(x)} \neq 0$. В этом случае будем писать $\varphi(x) = O^*$ ($\psi(x)$).

Если

$$\lim_{x\to 0}\frac{\varphi(x)}{x^p}=k\neq 0 \quad (p>0),$$

то ф (х) называется бесконечно малой порядка р относительно