Лабораторная работа №1 по мат. анализу

Хайруллин Артур М3134

Часть 1. Аналитический метод

1 Сходимость последовательности

Дана последовательность $x_n = (3 - (-1)^n) \cdot \frac{2n+5}{n+2}$

Выделим подпоследовательности $a_n=2\cdot \frac{2n+5}{n+2}$ (члены x_n при чётном n) и $b_n=4\cdot \frac{2n+5}{n+2}$ (члены x_n при нечётном n).

Обе подпоследовательности сходятся, причём $\lim_{n\to\infty}a_n=4$, $\lim_{n\to\infty}b_n=8$ ($\lim_{n\to\infty}a_n=2\cdot\lim_{n\to\infty}\frac{2+\frac{5}{n}}{1+\frac{2}{n}}=4$,

 $\lim_{n\to\infty} b_n = 4 \cdot \lim_{n\to\infty} \frac{2+\frac{5}{n}}{1+\frac{2}{n}} = 8$). Так как подпоследовательности были выбраны в зависимости от чётности n, любой член x_n попадёт либо в a_n , либо в b_n . Отсюда получаем, что множество частичных пределов $M = \{4,8\}$. Тогда $\overline{\lim_{n\to\infty}} x_n = \sup M = \max M = 8$, $\underline{\lim_{n\to\infty}} x_n = \inf M = \min M = 4$ (M конечно, поэтому можно найти супремум/инфимум как максимум/минимум M).

Видим, что нижний предел x_n не равен верхнему, поэтому последовательность x_n не сходится.

2 Подпоследовательности

Выделили подпоследовательности: $a_n = 2 \cdot \frac{2n+5}{n+2}$, $b_n = 4 \cdot \frac{2n+5}{n+2}$

Определим монотонность a_n . Рассмотрим a_n и a_{n+1} : $a_{n+1} = 2 \cdot \frac{2(n+1)+5}{n+1+2} = 2 \cdot \frac{2n+7}{n+3} = 2 \cdot \frac{2n^2+11n+14}{(n+3)(n+2)}$, $a_n = 2 \cdot \frac{2n^2+11n+15}{(n+2)(n+3)}$, $14 < 15 \Rightarrow a_{n+1} < a_n \ \forall n \in \mathbb{N}$. Значит, a_n убывает.

Отсюда a_n ограничено сверху $a_0 = 5$ и ограничено снизу числом $4\left(2 \cdot \frac{2n+5}{n+2} > 4 \Leftrightarrow 4n+10 > 4n+8 \Leftrightarrow 10 > 8$ - верно для любого n). Можно найти $\sup a_n$ как $\max a_n = a_0 = x_0 = 5$, а вот $\min a_n$ не достижим, т.к. a_n бесконечно убывает, однако $a_n \to 4$ и можно найти $\inf a_n = 4$, т.к. $a_n > 4$ $\forall n$ и $\forall i > 4$ $\exists N : a_N < i$.

Воспользовавшись тем, что $b_n=2a_n$, поймём, что b_n бесконечно убывает, $\sup b_n=b_0=x_1=\frac{28}{3}=9.(3), \inf b_n=8$ (аналогично используем $b_n\to 8$).

Так как x_n содержит члены обеих подпоследовательностей, можно сказать, что inf $a_n < x_n \le \sup b_n \Leftrightarrow 4 < x_n \le 9.(3)$. Также $\sup x_n = 9.(3)$ (это $\max x_n$), inf $x_n = 4$ (опять же т.к. $x_n > 4 \ \forall n \ \text{u} \ \forall i > 4 \ \exists N : x_N < i$), $\min x_n$ не достигается (т.к. все подпоследовательности x_n бесконечно убывают).

3 Предел подпоследовательности

Выберем подпоследовательность: $a_n = 2 \cdot \frac{2n+5}{n+2}$

$$\lim_{n \to \infty} = 4 \Leftrightarrow \forall \varepsilon > 0 \quad \exists N(\varepsilon) : \forall n > N \Rightarrow |a_n - 4| < \varepsilon$$

$$4 - \varepsilon < \frac{4n + 10}{n + 2} < 4 + \varepsilon$$

$$\begin{cases} \varepsilon > \frac{-2}{n + 2} \\ \varepsilon > \frac{2}{n + 2} \end{cases}$$

т.к. $\varepsilon > 0$, оставим второе неравенство.

$$\frac{n+2}{2}>\frac{1}{\varepsilon}\Leftrightarrow n>\frac{2}{\varepsilon}-2\Leftrightarrow n>\left\lceil\frac{2}{\varepsilon}\right\rceil-2\ (\text{с учётом }n\in\mathbb{N}).$$

Утверждается, что по любому $\varepsilon > 0$ можно найти N. Например, $\varepsilon = 0.5 \Rightarrow N = 3$ подойдёт.

Часть 2. Численный метод

Аналитически найдены $\sup x_n = 9.(3)$, $\inf x_n = 4$, $\overline{\lim}_{n \to \infty} x_n = 8$, $\underline{\lim}_{n \to \infty} x_n = 4$.

Снова выберем подпоследовательность $a_n = 2 \cdot \frac{2n+5}{n+2}$. Программу напишем на языке Python 3.9.13 (Jupyter Notebook) с использованием библиотек Matplotlib и Numpy.

Выберем инфимум x_n как недостижимую точную грань. Тогда номер m будет таков, что $x_m < \inf x_n + \varepsilon$. Т.к. инфимумом является инфимум подпоследовательности a_n , можем рассматривать такой член $a_k < \inf a_n + \varepsilon$, что m = 2k.

$$2 \cdot \frac{2k+5}{k+2} < \inf a_n + \varepsilon$$

$$4k+10 < 4(k+2) + \varepsilon(k+2)$$

$$4k+10 < 4k+8 + \varepsilon k + 2\varepsilon$$

$$2 < k\varepsilon + 2\varepsilon$$

$$k > \frac{2}{\varepsilon} - 2$$

$$m > \left[\frac{4}{\varepsilon}\right] - 4, \ m \vdots 2$$

В программе можно ввести значения эпсилон для предела и для недостижимой грани в самом первом блоке. Далее импортируются библиотеки, инициализируются переменные и нужные списки, находятся по заданным эпсилон n_0 и m, списки заполняются значениями (списки индексов - индексами от ibeg=0 до ilim=100, однако ilim может увеличиться при m>100, списки значений - значениями членов последовательности и подпоследовательности, вычисленными с помощью функций от индекса).

В самом конце строится 2 графика: Main sequence, где отображаются члены последовательности (чёрный цвет), члены подпоследовательности a_n (синий цвет), верхний предел x_n (красный), нижний предел x_n (розовый), инфимум x_n (зелёный), супремум x_n (голубой). Также выделена красным точка - член a_n с индексом m и равный a_m .

Другой график - Subsequence - содержит члены подпоследовательности a_n , предел a_n и дополнительно показывает границы ε -окрестности предела.