Propositional Logic

- Syntax of propositional logic defines <u>allowable</u> sentences
- Atomic sentences consists of a single proposition symbol
 - Each symbol stands for proposition that can be True or False

- Syntax of propositional logic defines <u>allowable</u> sentences
- Atomic sentences consists of a single proposition symbol
 - Each symbol stands for proposition that can be True or False
- Symbols of propositional logic
 - Propositional symbols: P, Q, ...
 - Logical constants: *True*, *False*

- Syntax of propositional logic defines <u>allowable</u> sentences
- Atomic sentences consists of a single proposition symbol
 - Each symbol stands for proposition that can be True or False
- Symbols of propositional logic
 - Propositional symbols: P, Q, ...
 - Logical constants: *True*, *False*
- Making complex sentences
 - Logical connectives of symbols: \land , \lor , \Leftrightarrow , \Rightarrow , \neg
 - Also have parentheses to enclose each sentence: (...)

- Syntax of propositional logic defines <u>allowable</u> sentences
- Atomic sentences consists of a single proposition symbol
 - Each symbol stands for proposition that can be True or False
- Symbols of propositional logic
 - Propositional symbols: P, Q, ...
 - Logical constants: *True*, *False*
- Making complex sentences
 - Logical connectives of symbols: \land , \lor , \Leftrightarrow , \Rightarrow , \neg
 - Also have parentheses to enclose each sentence: (...)
- Sentences will be used for inference/problem-solving

- If S is a sentence, $\neg S$ is a sentence
 - Not (negation)
- $S_1 \wedge S_2$ is a sentence, also $(S_1 \wedge S_2)$
 - And (conjunction)
- $S_1 \vee S_2$ is a sentence
 - Or (disjunction)
- $S_1 \Rightarrow S_2$ is a sentence
 - Implies (conditional)
- $S_1 \Leftrightarrow S_2$ is a sentence
 - Equivalence (biconditional)

Propositional Logic: Semantics

- Semantics defines the rules for determining the truth of a sentence (wrt a particular model)
- ¬S: is true iff S is false
- $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \vee S_2$: is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$: is true iff S_1 is false or S_2 is true

 (is false iff S_1 is true and S_2 is false)

 (if S_1 is true, then claiming that S_2 is true, otherwise make no claim)
- $S_1 \Leftrightarrow S_2$: is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Propositional Inference: Enumeration Method

- Truth tables can test for <u>valid</u> sentences
 - True under all possible interpretations in all possible worlds
- For a given sentence, make a truth table
 - Columns as the combinations of propositions in the sentence
 - Rows with all possible truth values for proposition symbols
- If sentence true in every row, then valid

Simple Wumpus Knowledge Base

- For simplicity, only deal with the pits
- Choose vocabulary
 - Let $P_{i,j}$ be True if there is a pit in [i,j]
 - Let $B_{i,j}$ be True if there is a breeze in [i,j]

Simple Wumpus Knowledge Base

- For simplicity, only deal with the pits
- Choose vocabulary
 - Let $P_{i,j}$ be True if there is a pit in [i,j]
 - Let $B_{i,j}$ be True if there is a breeze in [i,j]
- KB sentences
 - FACT: "There is no pit in [1,1]"

$$R_1$$
: $\neg P_{1,1}$

- RULE: "There is breeze in adjacent neighbor of pit"

$$R_2$$
: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Simple Wumpus Knowledge Base

- For simplicity, only deal with the pits
- Choose vocabulary
 - Let $P_{i,j}$ be True if there is a pit in [i,j]
 - Let $B_{i,j}$ be True if there is a breeze in [i,j]
- KB sentences
 - FACT: "There is no pit in [1,1]"

$$R_1$$
: $\neg P_{1,1}$

RULE: "There is breeze in adjacent neighbor of pit"

$$R_2$$
: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

$$R_3$$
: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

Need rule for each square!

Wumpus Environment

- Given knowledge base
- Include percepts as move through environment (online)
- Need to "deduce what to do"
- Derive chains of conclusions that lead to the desired goal
 - Use inference rules

- Modus Ponens
 - From implication and premise of implication, can infer conclusion

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

- And-Elimination
 - From conjunction, can infer any of the conjuncts

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$$

- And-Introduction
 - From list of sentences, can infer their conjunction

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$$

- Or-Introduction
 - From sentence, can infer its disjunction with anything else

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n}$$

- Double-Negation Elimination
 - From doubly negated sentence, can infer a positive sentence

$$\frac{\neg \neg \alpha}{\alpha}$$

- Unit Resolution
 - From disjunction, if one of the disjuncts is false, can infer the other is true

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

- Resolution
 - $-\beta$ cannot be both true and false
 - One of the other disjuncts must be true in one of the premises (implication is transitive)

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

$$\frac{\neg \beta \text{ is true}}{\alpha \vee \beta, \ \neg \beta}$$

$$\beta$$
 is true $\neg \beta \lor \gamma, \beta$

Monotonicity

- A logic is monotonic if when add new sentences to KB,
 - All sentences entailed by original KB are still entailed by the new larger KB

TASK: Find the Wumpus

CAN WE INFER THAT THE WUMPUS IS IN CELL (1,3), GIVEN OUR PERCEPTS AND ENVIRONMENT RULES?

A = agent					
$\mathbf{B} = $ breeze	4				
OK = safe square		W.			
S = stench	3				
V = visited					
$\mathbf{W} = \mathbf{wumpus}$	2	OK S A	OK		
	1	OK V	OK B V	PIT	
		1	2	3	4

Wumpus Knowledge Base

• Percept sentences (facts) "at this point"

$$\neg S_{1,1} \quad \neg B_{1,1}$$
 $\neg S_{2,1} \quad B_{2,1}$
 $S_{1,2} \quad \neg B_{1,2}$

$$R_{1}: \neg S_{1,1} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

$$R_2: \ \neg S_{2,1} \Rightarrow \ \neg W_{1,1} \land \ \neg W_{2,1} \land \ \neg W_{2,2} \land \ \neg W_{3,1}$$

$$R_3: \neg S_{1,2} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,2} \land \neg W_{1,3}$$

$$R_4: S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

3			
2	OK S A	OK	
1	OK	OK	
	1	2	3

Conclude $W_{1,3}$?

- Does the Wumpus reside in square (1,3)?
- In other words, can we infer $W_{1,3}$ from our knowledge base?

$$KB \vdash_i W_{1,3}$$

Conclude $W_{1,3}$ (Step #1)

• Modus Ponens $\alpha \Rightarrow \beta, \alpha \beta$

$$R_1: \neg S_{1,1} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

$$Percept: \neg S_{1,1}$$

Infer $\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$

Conclude $W_{1,3}$ (Step #2)

• And-Elimination

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

$$\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

Infer

$$\neg W_{1,1} \ \neg W_{1,2} \ \neg W_{2,1}$$

Conclude $W_{1,3}$ (Step #3)

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

$$R_2$$
: $\neg S_{2,1} \Rightarrow \neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$
 $Percept: \neg S_{2,1}$

Infer

$$\neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$$

Conclude $W_{1,3}$ (Step #4)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_4$$
: $S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$
 $Percept: S_{1,2}$

 $Infer \\ W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$

Conclude $W_{1,3}$ (Step #5)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$
 from Step #4

$$\neg W_{1,1}$$
 from Step #2

Infer $W_{13} \vee W_{12} \vee W_{22}$

Conclude $W_{1,3}$ (Step #6)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2}$$
 from Step #5

$$\neg W_{2,2}$$
 from Step #3

Infer $W_{1,3} \vee W_{1,2}$

Conclude $W_{1,3}$ (Step #7)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

 $W_{1,3} \vee W_{1,2}$ from Step #6

 $\neg W_{1,2}$ from Step #2

Infer

 $W_{1,3} \rightarrow The wumpus is in cell 1,3!!!$

Wumpus in $W_{1,3}$

Summary

- Propositional logic commits to existence of facts about the world being represented
 - Simple syntax and semantics
- Proof methods
 - Truth table
 - Inference rules
 - Modus Ponens
 - And-Elimination
 - And/Or-Introduction
 - Double-Negation Elimination
 - Unit Resolution
 - Resolution
- Propositional logic quickly becomes impractical