Análise de Resultados

December 17, 2024

1 Calibração do Campo Magnético

Realizamos a montagem experimental da $Parte\ A$ para realizar a calibração do campo magnético nas bobinas obtendo o seguinte resultado:

[1]:

Como vemos no gráfico acima, os pontos obtidos foram utilizados para a realização de um ajuste com a equação B=2.39e-01I+6.71e-03 que nos permitirá nos passos seguintes calcular o campo magnético através dos valores de I_B .

2 V_H em função de I_P

Para esta parte, realizamos a montagem experimental da $Parte\ B$ e variamos os valores de I_P e medimos V_H e V_P para determinar o coeficiente de Hall e o número de portadores de carga.

[2]:

A figura acima representa a variação de V_H em função de I_P . Com estes valores e, através da equação 1, podemos calcular R_H , sendo este:

$$R_H = \frac{t}{B}m$$

com t = 1mm.

Obtivemos $R_H=-5.4332e-03m^3/C\pm0.95\%$. A partir da equação 2 podemos calcular o número de portadores de carga por unidade de volume obtendo: $n = 1.1489e + 21m^{-3} \pm 0.95\%$.

V_P em função de I_P

Ao mesmo tempo que medimos $V_H,$ medimos também V_P obtendo a seguinte relação:

[3]:

Estando a medir no mesmo circuíto, o declive deste ajuste corresponde à resistência na amostra, tendo obtido: $R=4.6000e+01\Omega\pm0.98\%$ com um erro de 8% para o valor protocolado.

Fora também calculados, através das equações 3,4 e 5:

Resistência (R): $4.6000e + 01\Omega \pm 0.98\%$

Condutividade (σ_0): $4.3478e + 02S/m \pm 0.98\%$ Mobilidade (μ): $2.3625e + 00m^2/V \cdot s \pm 0.95\%$

Resistividade (ρ_0) : $2.3000e - 03\Omega \cdot m \pm 0.98\%$

Todos os valores aprezentam uma incerteza baixa, pelo que verificamos o protocolado. Podiamos ter melhorado a consistência dos valores fazendo uma análise mais precisa do posicionamento da amostra e um varrimento mais sistematizado dos valores da corrente.

4 V_H em função de B

A partir da equação do ajuste linear da calibração de B traçamos o seguinte gráfico:

[4]:

A partir daqui, e considerando a propagação de incertezas, calculamos o coeficiente de Hall, através da equação 1 obtendo: $R_H=-4.2765e-03m^3/C\pm1.17\%$. Como anteriormente, calculamos também o número de portadores de carga por unidade de volume, obtendo: $n=1.4597e+21m^{-3}\pm1.17\%$.

Podemos verificar que a incerteza é mais elevada pois esta é a propagação de incertezas associadas a duas leituras distintas.

5 Variação da Temperatura

Os seguintes gráficos representam a variação de V_H e V_P em função da temperatura:

[5]:

O comportamento é o esperado previsto pelo manufator do equipamento. Observa-se uma muito ligeira histerese, causada pela reação da amostra a diferentes fluxos térmicos. Como o aquecimento foi muito controlado este valor é mínimo.

A partir da equação 6, podemos calcular a energia de ativação do Germánio:

[6]:

Como podemos verificar, não foram obtidos muitos pontos na gama requerida, o que contribui para o erro elevado. Analisamos os valores do aquecimento onde temos mais valores, obtendo Energia de ativação: $0.3423eV \pm 0.0500eV$ com intervalo de erro devido à incerteza: entre 40.56% e 55.73%.

6 Conclusões

Foi obtido um ajuste para a calibração do campo magnético nas bobinas que facultou a determinação do campo magnético nas partes seguintes. De seguida variou-se o valor de I_P obtendo $R_H=-5.4332e-03m^3/C\pm0.95\%$. Variamos também o valor de B calculando de novo o coeficiente de Hall obtendo: $R_H=-4.2765e-03m^3/C\pm1.17\%$, sendo ambos estes valores dentro do que era expectável já que foi utilizada uma amostra com dopagem do tipo n. Verificamos que o cálculo de R_H a partir de B tem uma incerteza maior devido à propagação de incertezas em duas medições distintas.

Por fim variamos a temperatura e estudamos a energia de ativação da amostra obtendo um valor de $0.3423eV \pm 0.0500eV$ com um erro entre 40.56% e 55.73% devido à fraca aquisição de dados no intervalo necessário para o ajuste. Recomendava-se a realização de nova aquisição de dados nesta gama para verificação. Recomenda-se também a aquisição de dados e realização dos ajustes simultaneamente para saber exatamente em que gama temos de registar mais pontos, para evitar desperdício de tempo.

[]: