Numerical Optimization and Modeling Techniques for Power System Operations and Planning

Tomás Tinoco De Rubira

Stanford University

February 27, 2015

Acknowledgments

Outline

- Introduction
- Scenario Analysis
- Planning and Control
- 4 Security Assessment
- Conclusions

Electric Power Networks Role of Optimization Challenges Contributions

Introduction

Electric Power Networks
Role of Optimization
Challenges
Contributions

Introduction Electric Power Networks

Or electric power grids

- can cover large regions
- have thousands of components
- must be efficient and reliable
- have billions of dollars at stake

https://texaselectricityalliance.wordpress.com/

Electric Power Networks
Role of Optimization
Challenges
Contributions

Introduction Electric Power Networks

Or electric power grids

- can cover large regions
- have thousands of components
- must be efficient and reliable
- have billions of dollars at stake

This work focuses on transmission and generation

https://texaselectricityalliance.wordpress.com/

Electric Power Networks Role of Optimization Challenges Contributions

Introduction Role of Optimization

Optimization plays a crucial role in grid operations and planning

- optimal power flow (minutes)
- line switching (hours)
- unit commitment (days)
- network expansion (years)

Introduction Challenges

But algorithms for these problems face many difficult challenges

- non-convex constraints
- discrete variables
- time restrictions
- system stress

http://www.endare.com/

Introduction Challenges

But algorithms for these problems face many difficult challenges

- non-convex constraints
- discrete variables
- time restrictions
- system stress

This work aims to help deal with each of these

http://www.endare.com/

Electric Power Networks Role of Optimization Challenges Contributions

Introduction Contributions

Electric Power Networks Role of Optimization Challenges Contributions

Introduction Contributions

- scenario analysis
 - obtain system information more reliably

Introduction Contributions

- scenario analysis
 - obtain system information more reliably
- planning and control
 - obtain practical number of system adjustments
 - find better operating points

Introduction Contributions

- scenario analysis
 - obtain system information more reliably
- planning and control
 - obtain practical number of system adjustments
 - find better operating points
- online security assessment
 - perform faster and more frequent analyses
 - rely less on operator experience

Issues
Power Flow Problen
New Formulation
Solution Approach
Benefits

Scenario Analysis

Issues
Power Flow Problem
New Formulation
Solution Approach
Benefits

Scenario Analysis

Relies on solving power flow problems to obtain system state for different operating conditions

http://www.fairfaxcounty.gov/

Issues
Power Flow Problem
New Formulation
Solution Approach
Benefits

Scenario Analysis

Relies on solving power flow problems to obtain system state for different operating conditions

However, widely-used methods

- are based on Newton-Raphson (NR)
- rely heavily on heuristics
- need good initial solution estimate
- cannot handle stressed systems

http://www.fairfaxcounty.gov/

Issues
Power Flow Problem
New Formulation
Solution Approach
Benefits

Scenario Analysis Issues

Behavior of NR + heuristics

find
$$x$$
 subject to
$$f(x) = 0$$

$$Ax = b$$

$$0 \leq Q(x) \perp V(x) \geq 0$$

find
$$x$$
 just feasibility subject to $f(x)=0$
$$Ax=b \\ 0 \leq Q(x) \perp V(x) \geq 0$$

find
$$x$$
 just feasibility subject to $f(x)=0$ power balance (nonlinear)
$$Ax=b \\ 0 \leq Q(x) \perp V(x) \geq 0$$

find
$$x$$
 just feasibility subject to $f(x)=0$ power balance (nonlinear)
$$Ax=b \\ 0 \leq Q(x) \perp V(x) \geq 0 \ \}$$
 voltage regulation

Find system state (voltages) and unknown generator powers

find
$$x$$
 just feasibility subject to $f(x)=0$ power balance (nonlinear)
$$Ax=b \\ 0 \leq Q(x) \perp V(x) \geq 0$$
 voltage regulation

NR uses "switching heuristics" to handle voltage regulation

minimize
$$\varphi(x)$$
 subject to
$$f(x)=0$$

$$Ax=b$$

$$\Phi(x)=0$$

minimize
$$\varphi(x)$$
 strongly convex subject to $f(x)=0$
$$Ax=b \\ \Phi(x)=0$$

minimize
$$\varphi(x)$$
 strongly convex subject to $f(x)=0$ power balance (nonlinear)
$$Ax=b$$

$$\Phi(x)=0$$

```
 \begin{array}{ll} \mbox{minimize} & \varphi(x) & \mbox{strongly convex} \\ \mbox{subject to} & f(x)=0 & \mbox{power balance (nonlinear)} \\ & Ax=b \\ & \Phi(x)=0 \end{array} \right\} \mbox{ voltage regulation (smooth equalities)}
```

Proposed new problem formulation consists of

$$\begin{array}{ll} \mbox{minimize} & \varphi(x) & \mbox{strongly convex} \\ \mbox{subject to} & f(x)=0 & \mbox{power balance (nonlinear)} \\ & Ax=b \\ & \Phi(x)=0 \end{array} \right\} \mbox{ voltage regulation (smooth equalities)}$$

Has properties that help solve the problem

Objective function encourages typical/desirable state properties

- helps obtain robustness to poor initial points
- helps handle stressed systems ($\frac{df}{dx}$ is near rank-deficient)

Complementarity constraints are replaced with smooth equalities

- have better theoretical properties (constraint qualifications)
- suitable for having "elastic" bounds
- helps keep algorithm simple

Scenario Analysis Solution Approach

Based on Augmented Lagrangian, solves sequence of subproblems

$$\begin{array}{ll} \text{minimize} & \mu \Big(\varphi(x) - \lambda^T c(x) \Big) + \frac{1}{2} \| c(x) \|_2^2 & \left(c = \left[\begin{array}{c} f \\ \Phi \end{array} \right] \right) \\ \text{subject to} & Ax = b \end{array}$$

Scenario Analysis Solution Approach

Based on Augmented Lagrangian, solves sequence of subproblems

$$\begin{array}{ll} \text{minimize} & \mu \Big(\varphi(x) - \lambda^T c(x) \Big) + \frac{1}{2} \| c(x) \|_2^2 & \left(c = \left[\begin{array}{c} f \\ \Phi \end{array} \right] \right) \\ \text{subject to} & Ax = b \end{array}$$

Key features

- uses second derivatives to improve convergence
- avoids forming J^TJ (J is Jacobian of c)
- allows getting "best" infeasible point easily ("elastic")

Scenario Analysis Benefits

Robustness to poor initial points

Scenario Analysis Benefits

Handling of hard and infeasible cases

Scenario Analysis Benefits

Lagrange multiplier estimates provide sensitivity information

Help determine how to improve operation (as measured by φ)

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Issues

Relies on solving optimal power flow problems to determine system adjustments

http://www.itg.ge/

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Issues

Relies on solving optimal power flow problems to determine system adjustments

However, current methods

- use techniques for handling discrete controls that result in poor-quality solutions
- lack capability of utilizing a practical number of control actions

http://www.itg.ge/

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Optimal Power Flow Problem

$$\begin{array}{ll} \text{minimize} & \varphi(x) \\ \text{subject to} & f(x) = 0 \\ & l \leq x \leq u \\ & x \in \mathcal{D} \end{array}$$

Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Optimal Power Flow Problem

minimize
$$\varphi(x)$$
 generation cost, voltage soft limits, etc subject to $f(x)=0$
$$l \leq x \leq u$$

$$x \in \mathcal{D}$$

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Optimal Power Flow Problem

minimize
$$\varphi(x)$$
 generation cost, voltage soft limits, etc subject to $f(x)=0$ power balance (nonlinear)
$$l \leq x \leq u$$
 $x \in \mathcal{D}$

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Optimal Power Flow Problem

```
\begin{array}{ll} \text{minimize} & \varphi(x) & \text{generation cost, voltage soft limits, etc} \\ \text{subject to} & f(x) = 0 & \text{power balance (nonlinear)} \\ & l \leq x \leq u & \text{hard limits (generators, phase shifters, etc)} \\ & x \in \mathcal{D} \end{array}
```

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Optimal Power Flow Problem

```
 \begin{array}{ll} \text{minimize} & \varphi(x) & \text{generation cost, voltage soft limits, etc} \\ \text{subject to} & f(x) = 0 & \text{power balance (nonlinear)} \\ & l \leq x \leq u & \text{hard limits (generators, phase shifters, etc)} \\ & x \in \mathcal{D} & \text{control discreteness (taps, shunts)} \\ \end{array}
```

Planning and Control Bound Constraints

Replace bounds $l \leq x \leq u$ with equality constraints

$$\psi_+(x) = 0 \quad \text{and} \quad \psi_-(x) = 0$$

Properties

• constraints are satisfied with feasibility tolerance ϵ iff $x \in [l - \delta, u + \delta]$

Planning and Control Practical Number of Adjustments

Obtained with smooth sparsityinducing penalty

$$P_s(y) = \sum_{i} \sqrt{y_i^2 + \eta}$$

Properties

- approximates $\|\cdot\|_1$
- strongly convex (for bounded y)

Planning and Control Practical Number of Adjustments

2.5k-bus system, 1153 actions

2.5k-bus system, 28 actions

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Exploration of Discrete-Space

Augmented Lagrangian algorithm that alternates between

- partially solving continuous relaxation (guides search)
- evaluating discrete variable choices in parallel

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Exploration of Discrete-Space

Augmented Lagrangian algorithm that alternates between

- partially solving continuous relaxation (guides search)
- evaluating discrete variable choices in parallel

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Exploration of Discrete-Space

Augmented Lagrangian algorithm that alternates between

- partially solving continuous relaxation (guides search)
- evaluating discrete variable choices in parallel

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Exploration of Discrete-Space

Augmented Lagrangian algorithm that alternates between

- partially solving continuous relaxation (guides search)
- evaluating discrete variable choices in parallel

(gives lower bound) ${}^{\bullet}X_{\text{relaxation}}^{*}$

Issues
Optimal Power Flow Problem
Bound Constraints
Practical Number of Adjustments
Exploration of Discrete-Space

Planning and Control Exploration of Discrete-Space

Augmented Lagrangian algorithm that alternates between

- partially solving continuous relaxation (guides search)
- evaluating discrete variable choices in parallel

Planning and Control Exploration of Discrete-Space

Augmented Lagrangian algorithm that alternates between

- partially solving continuous relaxation (guides search)
- evaluating discrete variable choices in parallel

Planning and Control Exploration of Discrete-Space

Compared time and objective value against those obtained with

- Continuous Relaxation (CR) algorithm (no discrete controls)
- Round and Re-solve (RR) algorithm (current practice)

Twelve 2.5k-bus cases, 8 parallel processes

result	CR	RR	proposed
cases with lowest objective	58%	0%	42%
cases with obj. lower than proposed	58%	8%	_
times slower than RR	0.5	1.0	2.4

Issues Critical Operating Boundaries Problem Modeling Approach Nearest Reachable Boundaries Visualization

Security Assessment

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Issues

Current practices require expensive system simulations and rely on operator experience

http://www.riskmanagementmonitor.com/

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Issues

Current practices require expensive system simulations and rely on operator experience

However, systems are becoming more stressed and unpredictable

- require faster and more frequent security analyses
- require considering more potentially critical quantities

http://www.riskmanagementmonitor.com/

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Critical Operating Boundaries Problem

Consists of three parts

- determine "nearest" reachable boundaries (thermal, voltage)
- determine system adjustments to improve security
- visualize information obtained

Represent system and operating boundaries with

$$Ax = b + Yy$$

$$Cx \ge d$$

$$y^{\min} \le y \le y^{\max}$$

Represent system and operating boundaries with

$$Ax = b + Yy$$
 power balance equations
$$Cx \geq d$$

$$y^{\min} \leq y \leq y^{\max}$$

Represent system and operating boundaries with

$$Ax = b + Yy$$

power balance equations

branch thermal and bus voltage limits

$$y^{\min} \le y \le y^{\max}$$

Issues Critical Operating Boundaries Problem Modeling Approach Nearest Reachable Boundaries Visualization

Security Assessment Modeling Approach

Represent system and operating boundaries with

$$Ax = b + Yy$$

power balance equations

branch thermal and bus voltage limits

$$y^{\min} \le y \le y^{\max}$$

generator and load power bounds

Represent system and operating boundaries with

$$\begin{array}{ll} Ax = b + Yy & \text{power balance equations} \\ Cx \geq d & \text{branch thermal and bus voltage limits} \\ y^{\min} \leq y \leq y^{\max} & \text{generator and load power bounds} \end{array}$$

Can express in terms of generator and load powers only

$$Qy \ge t$$
, $y^{\min} \le y \le y^{\max}$

measure distances in terms of y changes (generation and load)

Represent system and operating boundaries with

$$\begin{array}{ll} Ax = b + Yy & \text{power balance equations} \\ Cx \geq d & \text{branch thermal and bus voltage limits} \\ y^{\min} \leq y \leq y^{\max} & \text{generator and load power bounds} \end{array}$$

Can express in terms of generator and load powers only

$$Qy \ge t$$
, $y^{\min} \le y \le y^{\max}$ (but Q is dense!)

measure distances in terms of y changes (generation and load)

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Modeling Approach

Measure system security with

$$M(y) = \sum_{i} \log(q_i^T y - t_i)$$

 $\nabla M(y)$ gives direction for improving security

- may not be practical
- can use sparse approximation

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Nearest Reachable Boundaries

Identify small set \mathcal{N} of nearest boundaries (say top 200)

- requires comparing boundary distances
- requires knowing $||q||_2$ of each row q of Q
- ullet estimate $\|q\|_2$ by multiplying random vectors with Q

Security Assessment Nearest Reachable Boundaries

Identify small set N of nearest boundaries (say top 200)

- requires comparing boundary distances
- ullet requires knowing $\|q\|_2$ of each row q of Q
- ullet estimate $\|q\|_2$ by multiplying random vectors with Q

Keep ones that can be reached within power bounds

- requires constructing rows of Q and solving trivial LPs
- ullet practical since ${\cal N}$ is small

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Nearest Reachable Boundaries

Identify 500 nearest boundaries

$2.5 \mathrm{k}$ -bus system, $10 \mathrm{k}$ boundaries				
algorithm	time (s)	% top 500		
$full ext{-}Q$	13.92	100		
proposed	0.08	95.6		

45k-bus system, 200 k boundaries				
algorithm	time (s)	% top 500		
$full ext{-}Q$	4836.34	100		
proposed	1.28	95.1		

Security Assessment Visualization

Strategy

- determine suitable plane
- reconstruct boundaries on plane

http://gauss.math.nthu.edu.tw/

Security Assessment Visualization

Strategy

- determine suitable plane
- reconstruct boundaries on plane

Choice of plane

- one that best preserves critical boundary distances
- requires finding top 2 singular vectors of a matrix

http://gauss.math.nthu.edu.tw/

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Visualization

More specifically

proposed plane is spanned by columns of matrix that solves

$$\begin{array}{ll} \underset{U \in \, \mathbb{R}^{m \times 2}}{\operatorname{maximize}} & \sum_{i \in \bar{\mathcal{N}}} \beta_i^2 \|U^T q_i\|_2^2 \\ & U^T U = I \end{array}$$

 $\left(\begin{array}{c}\bar{\mathcal{N}}\text{ is set of nearest reachable constraints}\\\beta_i\text{ are weights inversely proportional to boundary distance}\end{array}\right)$

Issues
Critical Operating Boundaries Problem
Modeling Approach
Nearest Reachable Boundaries
Visualization

Security Assessment Visualization

For two $2.5 \mathrm{k}\text{-bus}$ systems

Conclusions

Conclusions

In this work, we have addressed issues in

- scenario analysis
- planning and control
- security assessment

Conclusions

In this work, we have addressed issues in

- scenario analysis
- planning and control
- security assessment

Conclusions

In this work, we have addressed issues in

- scenario analysis
- planning and control
- security assessment

Contributions

 robust and informative power flow method tested on real and large networks

Conclusions

In this work, we have addressed issues in

- scenario analysis
- planning and control
- security assessment

Conclusions

In this work, we have addressed issues in

- scenario analysis
- planning and control
- security assessment

Contributions

- practical number of control actions
- distributed approach for handling discrete variables and getting higher-quality solutions

Conclusions

In this work, we have addressed issues in

- scenario analysis
- planning and control
- security assessment

Conclusions

In this work, we have addressed issues in

- scenario analysis
- planning and control
- security assessment

Contributions

- fast constraint filtering techniques
- visualization strategies for enhancing security awareness

Questions

Thank you for your attention

ttinoco@stanford.edu