Prerequisites

- sets (operations)
- multisets (basics)

Operations on multisets

Standard set operations

The set operations union, intersection and relative complement can be generalized to multisets.

Definition 1. Given two natural numbers m and n with $m \le n$, let $\max(m, n) = n$ and $\min(m, n) = m$. Then for any two multisets A_M and B_M

- the union $A_M \cup B_M$ maps every a to $\max(A_M(a), B_M(a))$,
- the intersection $A_M \cap B_M$ maps every a to $min(A_M(a), B_M(a))$
- the relative complement $A_M B_M$ maps every a to $A_M(a) B_M(a)$ (or 0 if the value would be negative)

```
Example Let A_M := \{a:3,b:2,c:1\} and B_M := \{a:1,b:1,c:2,d:1\}. Then 

• A_M \cup B_M = B_M \cup A_M = \{a:3,b:2,c:2,d:1\}
• A_M \cap B_M = B_M \cap A_M = \{a:1,b:1,c:1\}
• A_M - B_M = \{a:2,b:1,c:0\}
• B_M - A_M = \{c:1,d:1\}

Exercise Fill each gap with a matching multiset or operator.

1
• \{a:3,b:2,c:1\} \cup \{a:5,b:1,d:8\} = \_
• \{c:17\}\_\{a:5,b:1,d:8\} = \{c:17\}
• \{a:3,b:3\} \cup \_ = \{a:5,b:3,c:5,d:6\}
• \_ \{a:5,b:1,d:8\} = \{a:3,b:1\}
```

Special operations for multisets

Since multisets are a generalization of sets, they allow for certain operations that would not make much sense with sets. These are *multiset sum* (\uplus) and *scalar multiplication* (\otimes).

Definition 2. Let A_M and B_M be two multisets and n a natural number. Then

- the multiset sum $A_M \uplus B_M$ maps every a to $A_M(a) + B_M(a)$,
- the scalar multiplication $n \otimes A_M$ maps every a to $n \times A_M(a)$ (where \times denotes multiplication over natural numbers).

Example **2**

As in the previous examples, we will look at the multisets $A_M := \{a:3,b:2,c:1\}$ and $B_M := \{a:1,b:1,c:2,d:1\}$. For those two sets, $A_M \uplus B_M := \{a:4,b:3,c:3,d:1\}$, which is identical to $B_M \uplus A_M$. Furthermore, $3 \otimes A_M = \{a:9,b:6,c:3\}$ whereas $3 \otimes B_M = \{a:3,b:3,c:6,d:3\}$.

Exercise 2

Calculate the final result of the equations below. If the result cannot be uniquely determined without additional assumptions, explain why.

- 3 \otimes (({a:5,b:3}_M \uplus {a:1,c:5,d:6}_M) ({a:5,b:3}_M \cap {a:1,c:5,d:6}_M))
- {John, John} \uplus 3 \otimes {Mary, Mary, Mary, John}_M
- $\{a:5,c:1\}_M \cup \{a:3,b:3,c:3,d:3\}_M \uplus \{a:1\}_M$