Mult-layer perceptron

Back Propagation

Steps of a single epoch

For each pattern

- Forward prop
 - \circ Calculate net_i and o_i for all neurons (except input layer and bias neurons)
 - Calculate specific error (for single pattern)
- Back prop
 - \circ Calculate δ_i for all neurons (except input layer and bias neurons)
 - \circ Calculate $\Delta w_{i,j}$ for all variable weights including bias weights
 - $\circ w_{i,j} \coloneqq w_{i,j} + \Delta w_{i,j}$

After end of epoch

- Calculate total error = sum of specific errors
- Check stopping condition
- Run another epoch if stopping condition is False

Notes

Assuming layer K is before layer H, and either layer L is after layer H, or layer H is the output layer

•
$$net_h = \sum_{k \in K} w_{k,h} o_k$$

•
$$o_h = f_{act}(net_h)$$
 Default is $\frac{1}{1+e^{-net}}$

$$\frac{1}{1+e^{-net}}$$

•
$$\delta_h =$$

- $f'_{act}(net_h) \cdot \sum_{l \in L} \delta_l w_{h,l}$ if h is hidden neuron
 - Default is: $o_h(1-o_h)\sum_{l\in L}\delta_l w_{h,l}$ for sigmoid activation function
- $f'_{act}(net_h) \cdot -\frac{\partial Err_p}{\partial v_h}$ if h is output neuron
 - Default is: $y_h(1-y_h)(t_h-y_h)$ for sigmoid activation function and for $Err_p = \frac{1}{2}\sum_{h \in H}(t_h - y_h)^2$

Warning! if different activation function or different error function is used, you must calculate the derivatives $f'_{act}(net_h) \cdot -\frac{\partial Err_p}{\partial x_h}$

Notes

- $\Delta w_{i,j} = \eta \ o_i \ \delta_j$
- $w_{i,j} \coloneqq w_{i,j} + \eta \ o_i \ \delta_j$
 - If i is input neuron: $o_i = x_i$
 - If i is bias neuron: $o_i = 1$

Example

x1	x2	t
0	0	0
0	1	1
1	0	1
1	1	0

Assume learning rate = 0.3

x1 = 0, x2 = 0, t = 0Pattern: 1:

Initial weights:

$$w13 = 0.3$$

$$w23 = -0.1$$
 $wb3 = 0.2$

$$wb3 = 0.2$$

$$w14 = -0.2$$
 $w24 = 0.2$

$$w24 = 0.2$$

$$wb4 = -0.3$$

$$w35 = 0.4$$

$$w45 = -0.2$$

$$w35 = 0.4$$
 $w45 = -0.2$ $wb5 = 0.4$

o net3 = w13 * x1 + w23 * x2 + wb3 =
$$0.3 * 0 - 0.1 * 0 + 0.2 = 0.2$$

$$\circ$$
 o3 = 1/(1 + e^-net3) = 1/(1 + e^-0.2) = 0.5498

o net4 = w14 * x1 + w24 * x2 + wb4 =
$$-0.2 * 0 + 0.2 * 0 - 0.3 = -0.3$$

$$\circ$$
 o4 = 1/(1 + e^-net4) = 1/(1 + e^0.3) = 0.4256

$$y = 1/(1+e^-net5) = 1/(1+e^-0.5348) = 0.6306$$

Calculating error:

$$\circ$$
 Err_p1 = 0.5 * (0 - 0.6306)^2 = 0.1988

Pattern: 1: x1 = 0, x2 = 0, t = 0

Back Prop:

1) Finding delta

$$\delta 5 = y^*(1 - y)^*(t - y) = 0.6306 * (1 - 0.6306) * (0 - 0.6306) = - 0.1469$$

 $\delta 3 = o3(1 - o3)^* \delta 5 * w35 = 0.5498 * (1 - 0.5498) * - 0.1469 * 0.4 = - 0.0145$
 $\delta 4 = o4(1 - o4)^* \delta 5 * w45 = 0.4256 * (1 - 0.4256) * - 0.1469 * -0.2 = 0.0072$

$$w35 := w35 + \eta * o3 * \delta5 = 0.4 + 0.3 * 0.5498 * - 0.1469 = 0.3758 \\ w45 := w45 + \eta * o4 * \delta5 = -0.2 + 0.3 * 0.4256 * - 0.1469 = -0.2188 \\ wb5 := wb5 + \eta * 1 * \delta5 = 0.4 + 0.3 * 1 * - 0.1469 = 0.3559 \\ w14 := w14 + \eta * x1 * \delta4 = -0.2 + 0.3 * 0 * 0.0072 = -0.2 \\ w24 := w24 + \eta * x2 * \delta4 = 0.2 + 0.3 * 0 * 0.0072 = 0.2 \\ wb4 := wb4 + \eta * 1 * \delta4 = -0.3 + 0.3 * 1 * 0.0072 = -0.2978 \\ w13 := w13 + \eta * x1 * \delta3 = 0.3 + 0.3 * 0 * - 0.0145 = 0.3 \\ w23 := w23 + \eta * x2 * \delta3 = -0.1 + 0.3 * 0 * - 0.0145 = -0.1 \\ wb3 := wb3 + \eta * 1 * \delta3 = 0.2 + 0.3 * 1 * - 0.0145 = 0.1957 \\$$

Pattern: 2: x1 = 0, x2 = 1, t = 1

• weights:

$$w13 = 0.3$$
 $w23 = -0.1$ $wb3 = 0.1957$

$$w14 = -0.2$$
 $w24 = 0.2$ $wb4 = -0.2978$

$$w35 = 0.3758$$
 $w45 = -0.2188$ $wb5 = 0.3559$

• Forward prop:

$$\circ$$
 net3 = w13 * x1 + w23 * x2 + wb3 = ...

$$\circ$$
 o3 = 1/(1 + e^-net3) = ...

$$\circ$$
 net4 = w14 * x1 + w24 * x2 + wb4 = ...

$$\circ$$
 o4 = 1/(1 + e^-net4) = ...

$$\circ$$
 net5 = w35 * o3 + w45 * o4 + wb5 = ...

$$\circ$$
 y = 1/(1+e^-net5) = ...

• Calculating error:

$$\circ$$
 Err_p2 = 0.5 * (t - y)^2 = ...

Pattern: 2: x1 = 0, x2 = 1, t = 1

Back Prop:

1) Finding delta

$$\delta 5 = y^*(1 - y)^*(t - y) = ...$$

$$\delta 3 = o3(1 - o3) * \delta 5 * w35 = ...$$

$$\delta 4 = o4(1 - o4) * \delta 5 * w45 = ...$$

$$w35 := w35 + \eta * o3 * \delta5 = ...$$

$$w45 := w45 + \eta * o4 * \delta5 = ...$$

wb5 := wb5 +
$$\eta$$
 * 1 * δ 5 = ...

$$w14 := w14 + \eta * x1 * \delta4 = ...$$

$$w24 := w24 + \eta * x2 * \delta4 = ...$$

wb4 := wb4 +
$$\eta$$
 * 1 * δ 4 = ...

$$w13 := w13 + \eta * x1 * \delta3 = ...$$

$$w23 := w23 + \eta * x2 * \delta3 = ...$$

wb3 := wb3 +
$$\eta$$
 * 1 * δ 3 = ...

Pattern: 3: x1 = 1, x2 = 0, t = 1

• weights:

$$w13 = ?$$

$$wb3 = ?$$

$$w14 = ?$$

$$wb4 = ?$$

$$w35 = ?$$

$$wb5 = ?$$

• Forward prop:

$$\circ$$
 net3 = w13 * x1 + w23 * x2 + wb3 = ...

$$\circ$$
 o3 = 1/(1 + e^-net3) = ...

$$\circ$$
 o4 = 1/(1 + e^-net4) = ...

$$\circ$$
 net5 = w35 * o3 + w45 * o4 + wb5 = ...

$$\circ$$
 y = 1/(1+e^-net5) = ...

• Calculating error:

$$\circ$$
 Err_p3 = 0.5 * (t - y)^2 = ...

Pattern: 3: x1 = 1, x2 = 0, t = 1

Back Prop:

1) Finding delta

$$\delta 5 = y^*(1 - y)^*(t - y) = ...$$

$$\delta 3 = o3(1 - o3)* \delta 5 * w35 = ...$$

$$\delta 4 = o4(1 - o4) * \delta 5 * w45 = ...$$

$$w35 := w35 + \eta * o3 * \delta5 = ...$$

$$w45 := w45 + \eta * o4 * \delta5 = ...$$

wb5 := wb5 +
$$\eta$$
 * 1 * δ 5 = ...

$$w14 := w14 + \eta * x1 * \delta4 = ...$$

$$w24 := w24 + \eta * x2 * \delta4 = ...$$

wb4 := wb4 +
$$\eta$$
 * 1 * δ 4 = ...

$$w13 := w13 + \eta * x1 * \delta3 = ...$$

$$w23 := w23 + \eta * x2 * \delta3 = ...$$

wb3 := wb3 +
$$\eta$$
 * 1 * δ 3 = ...

Pattern: 4: x1 = 1, x2 = 1, t = 0

• weights:

$$w13 = ?$$

$$wb3 = ?$$

$$w14 = ?$$

$$wb4 = ?$$

$$w35 = ?$$

$$wb5 = ?$$

• Forward prop:

$$\circ$$
 net3 = w13 * x1 + w23 * x2 + wb3 = ...

$$\circ$$
 o3 = 1/(1 + e^-net3) = ...

$$\circ$$
 o4 = 1/(1 + e^-net4) = ...

$$\circ$$
 net5 = w35 * o3 + w45 * o4 + wb5 = ...

$$\circ$$
 y = 1/(1+e^-net5) = ...

• Calculating error:

$$\circ$$
 Err_p4 = 0.5 * (t - y)^2 = ...

Pattern: 4: x1 = 1, x2 = 1, t = 0

Back Prop:

1) Finding delta

$$\delta 5 = y^*(1 - y)^*(t - y) = ...$$

$$\delta 3 = o3(1 - o3) * \delta 5 * w35 = ...$$

$$\delta 4 = o4(1 - o4) * \delta 5 * w45 = ...$$

$$w35 := w35 + \eta * o3 * \delta5 = ...$$

$$w45 := w45 + \eta * o4 * \delta5 = ...$$

wb5 := wb5 +
$$\eta$$
 * 1 * δ 5 = ...

$$w14 := w14 + \eta * x1 * \delta4 = ...$$

$$w24 := w24 + \eta * x2 * \delta4 = ...$$

wb4 := wb4 +
$$\eta$$
 * 1 * δ 4 = ...

$$w13 := w13 + \eta * x1 * \delta3 = ...$$

$$w23 := w23 + \eta * x2 * \delta3 = ...$$

wb3 := wb3 +
$$\eta$$
 * 1 * δ 3 = ...

End of Epoch 1

Total error = Err_p1 + Err_p2 + Err_p3 + Err_p4 = 0.1988 + ...

If Total error <= tolerance (If given): Then stop training

If epoch number = max number of epochs (if given): Then stop training

Otherwise, run another epoch using last weights

