0.1 矩阵的 Kronecker 积

定义 0.1 (矩阵的 Kronecker 积)

设 $A = (a_{ij})$ 和 $B = (b_{ij})$ 分别是数域 \mathbb{F} 上的 $m \times n$ 和 $k \times l$ 矩阵, 它们的 **Kronecker** 积 $A \otimes B$ 是 \mathbb{F} 上的 $mk \times nl$ 矩阵:

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}$$

定理 0.1 (矩阵的 Kronecker 积的基本性质)

证明矩阵的 Kronecker 积满足下列性质 (假设以下的矩阵加法和乘法都有意义):

- $(1) \ (A+B) \otimes C = A \otimes C + B \otimes C, A \otimes (B+C) = A \otimes B + A \otimes C;$
- $(2) (kA) \otimes B = k(A \otimes B) = A \otimes (kB);$
- (3) $(A \otimes C)(B \otimes D) = (AB) \otimes (CD)$;
- $(4) (A \otimes B) \otimes C = A \otimes (B \otimes C);$
- (5) $I_m \otimes I_n = I_{mn}$;
- (6) $(A \otimes B)' = A' \otimes B'$;
- (7) 若 A, B 都是可逆矩阵, 则 $A \otimes B$ 也是可逆矩阵, 并且

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1};$$

- (8) 若 A 是 m 阶矩阵, B 是 n 阶矩阵, 则 $|A \otimes B| = |A|^n |B|^m$;
- (9) 若 $A \neq m$ 阶矩阵, $B \neq n$ 阶矩阵, 则 $tr(A \otimes B) = tr(A) \cdot tr(B)$.
- (10) 设 A, B 均为上三角阵, 且 A, B 的主对角元素分别依次为 a_1, \cdots, a_n 和 b_1, \cdots, b_m , 则 $A \otimes B$ 仍是上三角阵, 且 $A \otimes B$ 的主对角元素依次为 $a_1b_1, \cdots, a_1b_m, a_2b_1, \cdots, a_2b_m, \cdots, a_nb_1, \cdots, a_nb_m$.
- (11) 设 A, B 均为对角阵, 且 A, B 的主对角元素分别依次为 a_1, \cdots, a_n 和 b_1, \cdots, b_m , 则 $A \otimes B$ 仍是对角阵, 且 $A \otimes B$ 的主对角元素依次为 $a_1b_1, \cdots, a_1b_m, a_2b_1, \cdots, a_2b_m, \cdots, a_nb_1, \cdots, a_nb_m$.

证明

- (1) 由 Kronecker 积的定义经简单计算即可验证.
- (2) 由 Kronecker 积的定义经简单计算即可验证.
- (3) 设 $A = (a_{ij})$ 是 $m \times p$ 矩阵, $B = (b_{ij})$ 是 $p \times n$ 矩阵, $C = (c_{ij})$ 是 $k \times q$ 矩阵, $D = (d_{ij})$ 是 $q \times l$ 矩阵. 由 Kronecker 积的定义以及分块矩阵的乘法可得

$$(A \otimes C)(B \otimes D) = \begin{pmatrix} a_{11}C & a_{12}C & \cdots & a_{1p}C \\ a_{21}C & a_{22}C & \cdots & a_{2p}C \\ \vdots & \vdots & & \vdots \\ a_{m1}C & a_{m2}C & \cdots & a_{mp}C \end{pmatrix} \begin{pmatrix} b_{11}D & b_{12}D & \cdots & b_{1n}D \\ b_{21}D & b_{22}D & \cdots & b_{2n}D \\ \vdots & \vdots & & \vdots \\ b_{p1}D & b_{p2}D & \cdots & b_{pn}D \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j=1}^{p} a_{1j}b_{j1}CD & \sum_{j=1}^{p} a_{1j}b_{j2}CD & \cdots & \sum_{j=1}^{p} a_{1j}b_{jn}CD \\ \sum_{j=1}^{p} a_{2j}b_{j1}CD & \sum_{j=1}^{p} a_{2j}b_{j2}CD & \cdots & \sum_{j=1}^{p} a_{2j}b_{jn}CD \\ \vdots & \vdots & & \vdots \\ \sum_{j=1}^{p} a_{mj}b_{j1}CD & \sum_{j=1}^{p} a_{mj}b_{j2}CD & \cdots & \sum_{j=1}^{p} a_{mj}b_{jn}CD \end{pmatrix}$$

$$= (AB) \otimes (CD).$$

(4) 设 $A = (a_{ij}), B = (b_{ij})$ 和 $C = (c_{ij})$ 分别是 $m \times n, k \times l$ 和 $p \times q$ 矩阵, 则经计算即可发现 $(A \otimes B) \otimes C$ 和 $A \otimes (B \otimes C)$ 都等于下面的 $mkp \times nlq$ 矩阵:

$$\begin{pmatrix} a_{11}b_{11}C & \cdots & a_{11}b_{1l}C & \cdots & a_{1n}b_{1l}C & \cdots & a_{1n}b_{1l}C \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{11}b_{k1}C & \cdots & a_{11}b_{kl}C & \cdots & a_{1n}b_{k1}C & \cdots & a_{1n}b_{kl}C \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{m1}b_{11}C & \cdots & a_{m1}b_{1l}C & \cdots & a_{mn}b_{1l}C & \cdots & a_{mn}b_{1l}C \\ \vdots & & & \vdots & & \vdots & & \vdots \\ a_{m1}b_{k1}C & \cdots & a_{m1}b_{kl}C & \cdots & a_{mn}b_{kl}C & \cdots & a_{mn}b_{kl}C \end{pmatrix}$$

- (5) 由 Kronecker 积的定义经简单计算即可验证
- (6) 由 Kronecker 积的定义经简单计算即可验证.
- (7) 由(3)和(5)可得

$$(A \otimes B)(A^{-1} \otimes B^{-1}) = (AA^{-1}) \otimes (BB^{-1}) = I_m \otimes I_n = I_{mn}.$$

(8) 由 Laplace 定理容易证明:

$$|A \otimes I_n| = |A|^n$$
, $|I_m \otimes B| = |B|^m$;

再由(3)以及矩阵乘积的行列式等于行列式的乘积可得

$$|A \otimes B| = |(A \otimes I_n)(I_m \otimes B)| = |A \otimes I_n||I_m \otimes B| = |A|^n |B|^m$$
.

- (9) 由 Kronecker 积的定义经简单计算即可验证.
- (10) 由 Kronecker 积的定义经简单计算即可验证.
- (11) 由 Kronecker 积的定义经简单计算即可验证.

命题 0.1 (矩阵的 Kronecker 积的秩)

设 A, B 分别为 $m \times n, k \times l$ 矩阵, 求证: $r(A \otimes B) = r(A) \cdot r(B)$.

证明 设 r(A) = r, r(B) = s, P, Q, R, S 为可逆矩阵, 使得

$$PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}, \quad RBS = \begin{pmatrix} I_s & O \\ O & O \end{pmatrix},$$

则由性质(7)可知 $P \otimes R, Q \otimes S$ 均非异,再由性质(3)可得

$$(P \otimes R)(A \otimes B)(Q \otimes S) = (PAQ) \otimes (RBS) \sim \begin{pmatrix} I_{rs} & O \\ O & O \end{pmatrix},$$

于是 $r(A \otimes B) = rs = r(A) \cdot r(B)$.

推论 0.1

设 A, B 分别为 $m \times n$, $k \times l$ 矩阵, 求证: $A \otimes B$ 是行满秩阵 (列满秩阵) 的充要条件是 A, B 均为行满秩阵 (列满秩阵).

证明 由矩阵的 Kronecker 积的秩可知

$$r(A \otimes B) = r(A) \cdot r(B)$$
.

于是立得结论.

命题 0.2 (矩阵的 Kronecker 积的特征值)

设 A, B 分别是 m, n 阶矩阵,A 的特征值为 λ_i $(1 \leq i \leq m)$,B 的特征值为 μ_j $(1 \leq j \leq n)$, 求证: $A \otimes B$ 的特征值为 $\lambda_i \mu_j$ $(1 \leq i \leq m; 1 \leq j \leq n)$.

证明 由命题??可知,存在m 阶可逆矩阵P 以及n 阶可逆矩阵Q,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & * & * & * \\ & \lambda_2 & * & * \\ & & \ddots & \vdots \\ & & & \lambda_m \end{pmatrix}, \quad Q^{-1}BQ = \begin{pmatrix} \mu_1 & * & * & * \\ & \mu_2 & * & * \\ & & \ddots & \vdots \\ & & & \mu_n \end{pmatrix}.$$

由性质 (10)可知 $(P^{-1}AP) \otimes (Q^{-1}BQ)$ 仍是上三角矩阵且 $(P^{-1}AP) \otimes (Q^{-1}BQ)$ 的主对角元素依次为

$$\lambda_1\mu_1,\cdots,\lambda_1\mu_n,\lambda_2\mu_1,\cdots,\lambda_2\mu_n,\cdots,\lambda_m\mu_1\cdots,\lambda_m\mu_n.$$

注意到 $(P^{-1}AP)\otimes (Q^{-1}BQ)=(P\otimes Q)^{-1}(A\otimes B)(P\otimes Q)$, 因此 $(P^{-1}AP)\otimes (Q^{-1}BQ)$ 和 $A\otimes B$ 相似, 又相似矩阵特征值相同, 故结论得证.

命题 0.3

设 A, B 分别为 m, n 阶矩阵,V 为 $m \times n$ 矩阵全体构成的线性空间,V 上的线性变换 φ 定义为: $\varphi(X) = AXB$. 设 A 的特征值为 λ_i ($1 \leq i \leq m$),B 的特征值为 μ_j ($1 \leq j \leq n$). 求证: 线性变换 φ 的特征值为 $\lambda_i \mu_j$ ($1 \leq i \leq m$; $1 \leq j \leq n$).

注 本题是例题??的推广.

证明 取 V 的一组基为 $m \times n$ 基础矩阵:

$$E_{11}, \cdots, E_{1n}, E_{21}, \cdots, E_{2n}, \cdots, E_{m1}, \cdots, E_{mn},$$

我们首先证明 φ 在这组基下的表示矩阵为 $A \otimes B'$. 事实上,

$$\varphi(E_{ij}) = AE_{ij}B = Ae_if_j'B = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{pmatrix} \begin{pmatrix} b_{j1} & b_{j2} & \cdots & b_{jn} \end{pmatrix} = \sum_{k=1}^m \sum_{l=1}^n a_{ki}b_{jl}E_{kl},$$

其中 e_i , f_i 分别是 m, n 维标准单位列向量, 故 φ 的表示矩阵为

$$\begin{pmatrix} a_{11}B' & a_{12}B' & \cdots & a_{1m}B' \\ a_{21}B' & a_{22}B' & \cdots & a_{2m}B' \\ \vdots & \vdots & & \vdots \\ a_{m1}B' & a_{m2}B' & \cdots & a_{mm}B' \end{pmatrix} = A \otimes B'.$$

注意到 B' 与 B 有相同的特征值, 故由矩阵的 Kronecker 积的特征值可知, φ 的特征值为 $\lambda_i \mu_i$.

3

例题 0.1 设 A, B 分别为 m, n 阶矩阵,V 为 $m \times n$ 矩阵全体构成的线性空间,V 上的线性变换 φ 定义为: $\varphi(X) = AXB$. 证明: φ 是线性自同构的充要条件是 A, B 都是可逆矩阵.

注例 4.16 作为本题的特例, 我们已经给出了两种证法, 其中证法 1 仍然可以适用于本题, 证法 2 则需改用例 6.99 进行讨论, 当然也可用第 4 章解题 13 进行统一的处理, 请读者自行补充细节. 下面再给出两种证法.(这里的题目与题号都是指白皮书上的)

证明 证法三:由命题 0.3的证明过程可知, φ 在基础矩阵这组基下的表示矩阵为 $A \otimes B'$, 再由性质 (8) 可知 $|A \otimes B'| = |A|^n |B|^m$, 故 φ 是自同构当且仅当表示矩阵 $A \otimes B'$ 是可逆矩阵, 这也当且仅当 A, B 都是可逆矩阵.

证法四:由命题 0.3可知, φ 是自同构当且仅当 φ 所有的特征值 $\lambda_i \mu_j \neq 0$, 这当且仅当所有的 $\lambda_i \neq 0$ 以及所有的 $\mu_i \neq 0$, 这也当且仅当 A, B 都是可逆矩阵.

例题 0.2 设 A, B 分别为 m, n 阶矩阵,V 为 $m \times n$ 矩阵全体构成的线性空间,V 上的线性变换 φ 定义为: $\varphi(X) = AXB$. 证明: φ 是幂零线性变换的充要条件是 A, B 至少有一个是幂零矩阵.

证明 先证充分性. 不妨设 A 是幂零矩阵, 即存在正整数 k, 使得 $A^k = O$, 则 $\varphi^k(X) = A^k X B^k = O$, 即 $\varphi^k = 0$, 于是 φ 是幂零线性变换.

再证必要性. 我们考虑必要性的逆否命题. 设 A,B 都不是幂零矩阵, 即对任意给定的正整数 $k,A^k \neq O,B^k \neq O$, 只要证明 $\varphi^k \neq 0$ 即可. 我们给出以下 4 种证法.

证法一: 不妨设 A^k 的第 i 列非零, B^k 的第 j 行非零,即有列向量 $A^k e_i \neq \mathbf{0}$, 行向量 $f_j' B^k \neq \mathbf{0}$, 其中 e_i , f_j 分别是 m, n 维标准单位列向量、于是

$$\varphi^k(E_{ij}) = A^k E_{ij} B^k = A^k e_i f_i' B^k = (A^k e_i) (f_i' B^k) \neq O.$$

证法二:设 P_i , Q_i 为可逆矩阵, 使得 $P_1A^kQ_1 = \operatorname{diag}\{I_r,O\}, P_2B^kQ_2 = \operatorname{diag}\{I_s,O\}$, 不妨设 $r \geq s \geq 1$, 于是 $\varphi^k(Q_1P_2) = P_1^{-1}\operatorname{diag}\{I_r,O\}\operatorname{diag}\{I_s,O\}Q_2^{-1} = P_1^{-1}\operatorname{diag}\{I_s,O\}Q_2^{-1} \neq O.$

证法三: 由命题 0.3的证明过程可知, φ^k 在基础矩阵这组基下的表示矩阵为 $A^k \otimes (B^k)'$,再由 Kronecker 积的定义可知 $A^k \otimes (B^k)' \neq O$,于是 $\varphi^k \neq 0$.

证法四:由命题??可知, φ 是幂零线性变换当且仅当 φ 的所有特征值都等于零. 由于 A, B 都不是幂零矩阵, 故 A 的特征值 λ_i 不全为零,B 的特征值 μ_j 不全为零. 再由命题 0.3可知, φ 的特征值 $\lambda_i\mu_j$ 也不全为零,从而 φ 不是幂零线性变换.

命题 0.4

设 A, B 分别为 m, n 阶矩阵,V 为 $m \times n$ 矩阵全体构成的线性空间,V 上的线性变换 φ 定义为: $\varphi(X) = AX - XB$. 设 A 的特征值为 $\lambda_i (1 \le i \le m)$,B 的特征值为 $\mu_j (1 \le j \le n)$. 求证: 线性变换 φ 的特征值为 $\lambda_i - \mu_j (1 \le i \le m)$,B 的特征值为 $A_i = A_i + A_$

证明 取 V 的一组基为 $m \times n$ 基础矩阵: $E_{11}, \dots, E_{1n}, E_{21}, \dots, E_{2n}, \dots, E_{m1}, \dots, E_{mn}$, 类似命题??的讨论可得, φ 在上述基下的表示矩阵为 $A \otimes I_n - I_m \otimes B'$. 由命题??可知, 存在 m 阶可逆矩阵 P 以及 n 阶可逆矩阵 Q, 使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & * & * & * \\ & \lambda_2 & * & * \\ & & \ddots & \vdots \\ & & & \lambda_m \end{pmatrix}, \quad \mathbf{Q}^{-1}\mathbf{B}'\mathbf{Q} = \begin{pmatrix} \mu_1 & * & * & * \\ & \mu_2 & * & * \\ & & \ddots & \vdots \\ & & & \mu_n \end{pmatrix}.$$

注意到

$$(\mathbf{P} \otimes \mathbf{Q})^{-1}(\mathbf{A} \otimes \mathbf{I}_n - \mathbf{I}_m \otimes \mathbf{B}')(\mathbf{P} \otimes \mathbf{Q}) = (\mathbf{P}^{-1}\mathbf{A}\mathbf{P}) \otimes \mathbf{I}_n - \mathbf{I}_m \otimes (\mathbf{Q}^{-1}\mathbf{B}'\mathbf{Q})$$

是一个上三角矩阵, 其主对角元素依次为 $\lambda_1 - \mu_1, \dots, \lambda_1 - \mu_n, \lambda_2 - \mu_1, \dots, \lambda_2 - \mu_n, \dots, \lambda_m - \mu_1, \dots, \lambda_m - \mu_n$, 由此即得结论.

例题 0.3 设 A, B 分别为 m, n 阶矩阵, V 为 $m \times n$ 矩阵全体构成的线性空间, V 上的线性变换 φ 定义为: $\varphi(X) = AX - XB$. 证明: 若 A, B 都是幂零矩阵, 则 φ 是幂零线性变换.

证明 因为 A, B 都是幂零矩阵, 所以它们的特征值都为零. 由命题 0.4可知, φ 的特征值也都为零, 于是 φ 是幂零线性变换.(也可由矩阵的运算直接证明本题.)

例题 0.4 设 $\mathbf{A} = (a_{ij})$ 是 n 阶矩阵, $g(\lambda) = |\lambda \mathbf{I}_n + \mathbf{A}|$. 求证: n^2 阶矩阵

$$\boldsymbol{B} = \begin{pmatrix} a_{11}\boldsymbol{I}_n + \boldsymbol{A} & a_{12}\boldsymbol{I}_n & \cdots & a_{1n}\boldsymbol{I}_n \\ a_{21}\boldsymbol{I}_n & a_{22}\boldsymbol{I}_n + \boldsymbol{A} & \cdots & a_{2n}\boldsymbol{I}_n \\ \vdots & \vdots & & \vdots \\ a_{n1}\boldsymbol{I}_n & a_{n2}\boldsymbol{I}_n & \cdots & a_{nn}\boldsymbol{I}_n + \boldsymbol{A} \end{pmatrix}$$

是可逆矩阵的充要条件是 g(A) 是可逆矩阵

证明 显然 $B = A \otimes I_n + I_n \otimes A$. 设 A 的全体特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则 $g(\lambda) = (\lambda + \lambda_1)(\lambda + \lambda_2) \dots (\lambda + \lambda_n)$. 由命题??可知, 存在 n 阶可逆矩阵 P, 使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & * & * & * \\ & \lambda_2 & * & * \\ & & \ddots & \vdots \\ & & & \lambda_n \end{pmatrix}.$$

注意到

$$(\mathbf{P} \otimes \mathbf{P})^{-1} \mathbf{B} (\mathbf{P} \otimes \mathbf{P}) = (\mathbf{P}^{-1} \mathbf{A} \mathbf{P}) \otimes \mathbf{I}_n + \mathbf{I}_n \otimes (\mathbf{P}^{-1} \mathbf{A} \mathbf{P})$$

是一个上三角矩阵, 其主对角元素为 $\lambda_i + \lambda_j (1 \leq i, j \leq n)$, 故

$$|\mathbf{B}| = \prod_{i,j=1}^{n} (\lambda_i + \lambda_j) = \prod_{i=1}^{n} g(\lambda_i).$$

因为 g(A) 的特征值为 $g(\lambda_1), g(\lambda_2), \cdots, g(\lambda_n)$, 所以 |B| = |g(A)|, 从而 B 是可逆矩阵等价于 g(A) 是可逆矩阵.

定义 0.2 (矩阵的 Hadamard 积)

设 \mathbb{F} 是数域且 $A = (a_{ij}) \in \mathbb{F}^{m \times n}, B = (b_{ij}) \in \mathbb{F}^{m \times n}$, 我们定义

$$(A \circ B)_{(i,j)} = a_{ij}b_{ij}, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n.$$

定理 **0.2** (矩阵的 **Hadamard** 积的性质)

当下述表达式有意义时,必有

- 1. $r(A \circ B) \leqslant r(A) \cdot r(B)$;
- 2. 设 $A = (a_{ij}) \in \mathbb{R}^{n \times n}, B = (b_{ij}) \in \mathbb{R}^{n \times n}$ 或 $A = (a_{ij}) \in \mathbb{C}^{n \times n}, B = (b_{ij}) \in \mathbb{C}^{n \times n}$. 若 A, B 半正定或 Hermite 半正定, 我们有

$$\lambda_{\min}(A \circ B) \geqslant \lambda_{\min}(A) \cdot \lambda_{\min}(B),$$

这里 λ_{\min} 表示最小特征值. 特别的, $A \circ B$ 半正定.

证明 注意到

$$A \circ B = (E_{1,1} + E_{2,m+2} + \dots + E_{m,m^2})(A \otimes B)(E_{1,1} + E_{n+2,2} + \dots + E_{n^2,n}) = P(A \otimes B)Q, \tag{1}$$

这里 $P \in \mathbb{F}^{m \times m^2}$, $Q \in \mathbb{F}^{n^2 \times n}$. 当 m = n, 有 $Q = P^T$, 此时 $A \circ B$ 是 $A \otimes B$ 主子阵.

1. 子矩阵的秩当然不小于等于原矩阵的秩,于是由(??)和矩阵的 Kronecker 积的基本性质,我们知道

$$r(A \circ B) \leqslant r(A \otimes B) = r(A) \cdot r(B).$$

2. $A \circ B$ 是 $A \otimes B$ 主子式, 不妨设在 $A \otimes B$ 左上角, 否则同时交换行列 ¹⁴ 即可. 现在记

$$A \otimes B = T = \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}, A \circ B = T_1.$$

我们由矩阵的 Kronecker 积的基本性质知 T 最小特征值为 $\lambda_{\min}(A) \cdot \lambda_{\min}(B)$. 考虑

$$\lambda \triangleq \lambda_{\min}(A) \cdot \lambda_{\min}(B) \geqslant 0$$
,

则
$$T - \lambda I = \begin{pmatrix} T_1 - \lambda I & T_2 \\ T_3 & T_4 - \lambda I \end{pmatrix}$$
 还是半正定的, 故 $T_1 - \lambda I$ 半正定. 这就证明了

$$\lambda_{\min}(A \circ B) \geqslant \lambda_{\min}(A) \cdot \lambda_{\min}(B).$$