

PROJET FINAL

Normalisation de concepts médicaux de comptes-rendus médicaux

Réalisé par

Mohamed DJERRAB Sophia HAKAM Romaric KANYAMIBWA Boussad MERHANE Kayim SAID BACAR

EncadrantXavier TANNIER

MAIN 5 Polytech Sorbonne Année 2018-2019

Contexte

Problématique

Simplifier la lecture de compte-rendus médicaux

Synthétiser en mots-clés

Normaliser en concepts :

→ Créer un lien entre les mentions de **concepts issues des textes** et ceux d'une **base de connaissances**

Base de données UMLS

Répartition en catégories

Signes et Symptômes
Partie anatomique
Éléments chimiques
Organismes vivants
Maladie
Troubles
Concept et idées

Partitionnement de chaque base

Code CUI (Concept Unique Identifiers) **Nom** (expression ou à un groupe de mots) **Catégorie** (concepts médicaux)

Pre-processing

Recherche de la catégorie d'une expression donnée

Méthode 1 : Régression Logistique

 La régression logistique est un algorithme d'apprentissage statistique très connue.

 Découper le problème de classification multi-classes en une multitude de problèmes de classification binaires.

Résultats

Régression Logistique

		precision	recall	f1-score	support
	0	0.97	0.95	0.96	5346
	1	0.98	0.99	0.98	5647
	2	0.95	0.94	0.95	5514
	3	0.95	0.91	0.93	5480
	4	0.85	0.93	0.89	5721
	5	0.93	0.89	0.91	5594
micro	avg	0.94	0.94	0.94	33302
macro	avg	0.94	0.94	0.94	33302
weighted	avg	0.94	0.94	0.94	33302

Méthode 2 : Multi Layer Perceptron (MLP)

Le MLP est un algorithme de Deep Learning utilisé en classification supervisée.

Chaque neurone est un perceptron:

Résultats

Multi Layer Perceptron

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	1000)	15001000
activation_1 (Activation)	(None,	1000)	0
dropout_1 (Dropout)	(None,	1000)	0
dense_2 (Dense)	(None,	200)	200200
activation_2 (Activation)	(None,	200)	0
dropout_2 (Dropout)	(None,	200)	0
dense_3 (Dense)	(None,	20)	4020
activation_3 (Activation)	(None,	20)	0
dropout_3 (Dropout)	(None,	20)	0
dense_4 (Dense)	(None,	9)	189
activation_4 (Activation)	(None,	9)	0
Total params: 15,205,409 Trainable params: 15,205,409 Non-trainable params: 0)9		
Train on 26164 samples, val	idate on	2908 samples	

 4 couches de neurones avec ReLu comme fonction d'activation

Précision MLP < Précision Régression logistique

Test accuracy: 0.8380795191465

Partie 1

Recherche des codes associés à une expression

Une première approche

Convolutional Neural Network (CNN)

A Full Convolutional Neural Network (LeNet)

CNNs & NLP

"Comment les CNNs s'appliquent-ils au NLP?"

Résultats CNN

Catégorie de fichiers	Train Size	Test Size	Nombre de code unique	Précision en %
Disorders	19473	499	18372	4.0081
Disorders	18474	1498	18372	3.5381
Disorders	15981	3991	18372	2.3051
Disorders	16978	4992	20080	2.8446
Disorders	18976	5989	22582	3.6233

Problème?

Classification de 20 000 données sur 18 300 classes (Codes)

 \circ 1 code \rightarrow 1 expressions

Classification CNN classique

Solutions?

- Autres méthodes de recherche des codes associés à une expression
 - créer un dictionnaire où à un radical correspond plusieurs codes
 - rechercher du code le plus proche à partir des similarités fourni par Gensim

Construction d'un dictionnaire

Construction d'un dictionnaire

TF-IDF

Term Frequency-Inverse Document Frequency

Définir l'importance d'un mot-clé ou d'une phrase dans un document.

$$tf_{i,j}=rac{n_{i,j}}{\sum_k n_{i,j}}$$

$$tf_{i,j} ext{ nombre d'occurrence de i dans j}$$

$$idf(w)=log(rac{N}{df_t}) ext{ nombre de documents contenant i}$$
 $N ext{ nombre total de documents}$

Le produit de ces deux métriques nous donne la formule du TF-IDF qui indique la pertinence d'un mot-clé pour un document sous la forme d'un score notée w

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

Stemming

"Création d'un radical"

L'algorithme le plus courant

→ l'algorithme de Porter (Porter, 1980).

Il est composé de 5 phases de réduction de mots, appliquées de manière séquentielle.

Stemming

Ces règles utilisent des **méthodes de "mesure" de mots** indiquant le nombre de syllabes d'un mot

But : vérifier si le mot est assez long pour qu'il soit considéré comme : - un **suffixe** plutôt qu'une partie d'un **radical** d'un mot.

```
Exemple de règles : SSES → SS
```

 $IES \rightarrow I$

 $SS \rightarrow SS$

 $S \rightarrow S$

...

Par exemple,

POLYTECH' SORBONNE

```
"replacement" → "replac"
"cement" → "c"
```

Application

- Chaque catégorie possède son dictionnaire.
- On recherche dans le dictionnaire de cette catégorie les codes associées aux radicaux extraits.
 - → On compte leur occurrence.
 - → On choisit le *maximum* à l'aide de la méthode *Counter* de la bibliothèque python *collections*.

Dans certains cas, il peut arriver qu'aucun code ne se distingue des autres.

Les **scores** du TF-IDF sont utiles pour mettre en exergue le code correspondant à l'expression la plus proche de l'expression test.

Word2Vec

- CBOW (Continuous bag of Words)
- Skip-Gram model

22

Word2Vec

King - Man + Woman = Queen

Trouver l'expression la plus proche

Mise en place du modèle

Pre-processing

- Création d'un dictionnaire reliant les codes et les expressions
- Parcours du dictionnaire et création d'un vecteur moyen pour chaque expression

Trouver l'expression la plus proche

Mise en place du modèle

Utilisation d'un modèle des **k plus proche voisins** à partir de nos vecteurs moyennés

On souhaite classer l'élément gris dans une des 3 classes possibles

On va caluler chaque distance pour évaluer les points plus proches

Distance des points

On récupère le classement des k points les plus proches ici on a choisi k=4

On determine la classe qui revient le plus de fois et on l'attribue à notre point

Evaluation

Trouver l'expression la plus proche

- Expression Test → Vectorisation via TF-IDF
 - → Application du modèle logistique → Récupération de l'origine du fichier

- Expression test → Nouvelle vectorisation (à l'aide du Word2Vec)
 - → Application du KNN → Récupération de l'expression la plus proche et le code

Résultats

Catégorie de fichiers	Précision en %	Nombre de code unique
Troubles	79.01	10250
Eléments chimiques	70.31	11412
Concept et idées	51.58	11936
Signes et Symptômes	50.20	12300
Parties anatomiques	35.12	15606

Conclusion

- Utilisation des méthodes de classification
- Beaucoup de Labels *vs* peu de données
- Ouverture sur le NLP
- Zero Shot Learning

MERCI POUR VOTRE ATTENTION

Vos questions sont les bienvenues

