МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

УТВЕРЖДАЮ Директор Ассоциации «Искусственный интеллект в промышленности»	УТВЕРЖДАЮ Научный руководитель ИЦ СИИП Университета ИТМО			
Т. М.Супатаев 2024	А. В. Бухановский2024			

ИНСТРУМЕНТАРИЙ ПАРАЛЛЕЛЬНОЙ ОБРАБОТКИ КОГНИТИВНЫХ КАРТ

	HITCH SWILITTAL HIT HAT ASSILSIBITION ODI ADOTRITROI HITTIDIDIA RALI
дата	ОПИСАНИЕ ПРОГРАММЫ
Подп. и дата	ЛИСТ УТВЕРЖДЕНИЯ
<u> </u>	RU.CHAБ.00853-02 13 ББ-ЛУ
дубл.	
νōΝ	
Инв. N <u>o</u>	
	Представители
9 Ng	Организации-разработчика
Взам. Инв №	Руководитель разработки
Взс	Я.С. Коровин
	2024
ıma	
Подп. и дата	Нормоконтролер
дп.	Пормоконтролер
По	Е. В. Игнатова
	2024
одл.	

УТВЕРЖДЕН RU.CHAБ.00853-02 13 ББ-ЛУ

ИНСТРУМЕНТАРИЙ ПАРАЛЛЕЛЬНОЙ ОБРАБОТКИ КОГНИТИВНЫХ КАРТ

ОПИСАНИЕ ПРОГРАММЫ

RU.CHAБ.00853-02 13 ББ

ЛИСТОВ 12

ıв. N<u>е</u> подл. и дата Взам. Инв N<u>е</u> Инв. N<u>е</u> дубл. Подп. и дата

RИЦАТОННА

Документ содержит описание компонента "Инструментарий параллельной обработки когнитивных карт". Этот компонент предназначен для применения совместно с компонентом адаптивной оптимизации выполнения производственных процессов с использованием вероятностных моделей и динамически изменяемой среды. Компонент входит в состав ПО, разрабатываемого в рамках мероприятия М1 плана Исследовательского центра в сфере искусственного интеллекта «Сильный ИИ в промышленности» (ИЦ ИИ) в рамках соглашения с АНО «Аналитический центр при Правительстве Российской Федерации» (ИГК 000000D730321P5Q0002), № 70-2021-00141.

Компонент предназначен для организации параллельной работы компонента адаптивной оптимизации выполнения производственных процессов с использованием вероятностных моделей и динамически изменяемой среды.

СОДЕРЖАНИЕ

1	ОБЩИЕ СВЕДЕНИЯ	4
	ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ	
3	ОПИСАНИЕ ЛОГИЧЕСКОЙ СТРУКТУРЫ	6
4	ИСПОЛЬЗУЕМЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА	8
	ВЫЗОВ И ЗАГРУЗКА	
	ВХОДНЫЕ ДАННЫЕ	
	выходные данные	

1 ОБЩИЕ СВЕДЕНИЯ

Наименование компонента: Инструментарий параллельной обработки когнитивных карт.

Обозначение: RU.CHAБ.00853-02 ББ.

Компонент разработан на языке программирования Python (версия Python 3.11) с использованием следующих библиотек:

- numpy 1.24.2;
- scipy 1.10.1;
- keras 2.13.1;
- pandas 2.0.3;
- paramiko 3.4.0;
- cryptography 3.3.2;
- bcrypt 3.2.0.

Компонент размещен по адресу https://gitlab.actcognitive.org/itmo-sai-code/cogmapoptimizer.

2 ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ

Компонент "Инструментарий параллельной обработки когнитивных карт" (далее компонент) предназначен для применения совместно с компонентом адаптивной оптимизации выполнения производственных процессов с использованием вероятностных моделей и динамически изменяемой среды.

Компонент обеспечивает параллельное выполнение компонента адаптивной оптимизации выполнения производственных процессов с использованием вероятностных моделей и динамически изменяемой среды на узлах вычислительной сети за счет распределения вычислительных заданий на узлах вычислительной сети (см. рис. 1).

Рисунок 1

3 ОПИСАНИЕ ЛОГИЧЕСКОЙ СТРУКТУРЫ

Поиск оптимального изменения параметров множественной вероятностной нечеткой когнитивной карты предполагает последовательную композицию простых структур из их предопределенного набора с указанной картой. Поскольку данные композиции являются независимыми друг от друга, их обработка может быть организована в параллельном режиме с использованием распределенной вычислительной системы.

Компонент реализует параллельную обработку данных когнитивной карты следующим образом (см. рис. 2):

- 1) Производится подготовка данных для параллельной обработки (создание конфигурационного файла deploy.json с описанием распределенной системы).
- 2) Запускается процесс распределенного решения, начинающийся с распределения параллельных задач на выделенные для этого вычислительные узлы.
- 3) Скрипт распределения параллельных задач deploy.py передает на каждый доступный для работы вычислительный узел подготовленный для получения частного решения (для одной простой структуры) пакет с данными и указание, какую из простых фигур необходимо обсчитать (фигуры нумеруются от 0 до 6).
- 4) Периодически проводится проверка готовности результатов на имеющихся узлах. Если результат есть, то результат передается с вычислительного узла и сохраняется на хост-машине.
- 5) После получения частного результата от вычислительного узла проверяется, есть ли еще необработанные данные. При их наличии, они передаются на высвободившийся узел и система продолжает ожидать результаты от оставшихся вычислительных узлов. Если все данные обработаны, пользователь получает сообщение о завершении обработки данных.

Рисунок 2

4 ИСПОЛЬЗУЕМЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА

Для работы компонента узлы вычислительной сети должны удовлетворять следующим требованиям:

- обеспечивать запуск и выполнение кода Python 3.11;
- запущенный SSH-сервер с доступом по логину/паролю;
- доступные для записи и чтения сетевые папки.

5 ВЫЗОВ И ЗАГРУЗКА

Запуск компонента осуществляется с помощью команды python deploy.py.

Для успешной работы компонента в одной папке с файлом компонента deploy.py должен располагаться конфигурационный файл deploy.json.

Описание конфигурационного файла deploy.json приведено ниже (см. раздел "ВХОД-НЫЕ ДАННЫЕ").

6 ВХОДНЫЕ ДАННЫЕ

Входными данными компонента является конфигурационный файл deploy.json, содержащий описание когнитивной карты и вычислительной среды. Ниже приведен пример конфигурационного файла.

```
{
"local storage folder": "c:\\share\\Deploy\\Results\\",
"cog map": "CogMapOptimizer test.cmj",
"cog map xyz": "CogMapOptimizer test.cmj xyz",
"pulse model steps": 5,
"nodes": [
         "net path": "\\\192.168.1.57\\share\\PyPy\\",
         "local path": "c:\\share\\PyPy\\",
         "user": "user",
         "pass": "user"
     },
         "net path": "\\\192.168.1.55\\share\\py55\\",
         "local path": "c:\\share\\py55\\",
         "user": "root",
         "pass": "root"
     }
]
```

Описание полей файла deploy. ison приведено ниже:

- local storage folder папка на хост-машине для сохранения полученных результатов;
- сод тар и сод тар хуз файлы с описанием когнитивной карты;
- pulse model steps число шагов импульсного моделирования;
- nodes описание узлов распределенной системы:
 - _ net_path сетевая папка на узле, открытая на запись для копирования исполняемых файлов и файлов когнитивной карты;
 - _ local_path та же папка (указание в формате, понятном локально запускаемому скрипту-вычислителю);
 - user и pass логин и пароль для доступа к удаленной машине по SSH.

7 ВЫХОДНЫЕ ДАННЫЕ

Выходными данными компонента являются стј-файлы отчетов в формате JSON. Описание данных файла отчета приведено в табл. 1.

Таблица 1 - Описание формата данных файла отчета.

Наименование данных	Описание данных	Ограничения		
ModelingResults	резюме по результатам моделирования			
added_new_vertices	число добавленные вершин	целое число		
bad_vertices	список идентификаторов, оставшихся после применения этой композиции проблемных вершин	список		
y_max_er	отклонение оставшихся проблемных вершин от номинальных значений	вещественное число		
target_vertices	список целевых вершин	список		
id	идентификатор целевой вершины	целое число		
fullName	имя целевой вершины	строка		
Vertices	список вершин полученной когнитивной карты	аналогично входным данным		
Edges	список ребер полученной когнитивной карты	аналогично входным данным		
Scenarios	список сценариев моделирования	список		
impulses	список импульсов (воздействий)	список		
val	значение импульса	вещественное число		
V	идентификатор вершины	целое число		
step	шаг моделирования, на котором применяется импульс	целое число		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	Номера листов (страниц)			Всего		Входящий			
Изм.	изменен- ных	заменен- ных	новых	аннулиро- ванных	листов (страниц) в докум.	№ документа	номер доп. Документа и дата	Подп.	Дата
									<u> </u>
									<u> </u>
									<u> </u>