Algebra II Course Notes

Isaac Holt January 23, 2023

1 Rings and fields

1.1 Rings, subrings and fields

Definition 1.1.1. A **ring** $(R, +, \cdot)$ is a set R with two binary opertaions: addition (+) and multiplication (\cdot) , such that (R, +) is an abelian group and these conditions hold:

- 1. (**Identity**) for some element $1 \in R$, $\forall x \in R$, $1 \cdot x = x \cdot 1 = x$.
- 2. (Associativity) $\forall (x, y, z) \in \mathbb{R}^3, \ x \cdot (y \cdot z) = (x \cdot y) \cdot z.$
- 3. (Distributivity) $\forall (x, y, z) \in \mathbb{R}^3$, $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$.

Remark. Often we write R to mean the entire ring instead of just the set of the ring.

Definition 1.1.2. A ring R is **commutative** if $\forall x, y \in R^2$, $x \cdot y = y \cdot x$ and is **non-commutative** otherwise.

Example 1.1.3. Let V be a finite dimensional vector space over \mathbb{C} . The set of **linear endomorphisms** is defined as

$$\operatorname{End}(V) = \{ f : V \to V : f \text{ is a linear map} \}$$

For $f \in \text{End}(V)$ and $g \in \text{End}(V)$, addition is defined as

$$(f+g)(v) := f(v) + g(v)$$

Multiplication is defined as function composition:

$$f \cdot q := f \circ q$$

where $(f \circ g)(v) := f(g(v))$. End(v) is an abelian group under addition, and it forms a ring with the addition and multiplication operations defined as above:

- 1. The identity element is defined as the identity map id: $V \to V$, id(v) := v.
- 2. Associativity: $f \circ (g \circ h)(v) = f((g \circ h)(v)) = f(g(h(v)))$ and $((f \circ g) \circ h)(v) = (f \circ g)(h(v)) = f(g(h(v))) = f \circ (g \circ h)(v)$.
- 3. Distributivity is similarly easy to check.

Definition 1.1.4. For $n \in \mathbb{N}$, the set of remainders modulo n is

$$\mathbb{Z}/n := \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

The elements of \mathbb{Z}/n are called **residue classes**.

Definition 1.1.5.

- Addition in \mathbb{Z}/n is defined as $\overline{a} + \overline{b} = \overline{a+b}$.
- Subtraction in \mathbb{Z}/n is defined as $\overline{a} \overline{b} = \overline{a b}$.
- Multiplication in \mathbb{Z}/n is defined as $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$.

Example 1.1.6. \mathbb{Z}/n is a commutative ring.

- Commutativity: $\overline{a} \cdot \overline{b} = \overline{ab} = \overline{ba} = \overline{b} \cdot \overline{a} \quad \forall \overline{a}, \overline{b} \in (\mathbb{Z}/n)^2$, by commutativity of \mathbb{Z} .
- Identity: $\overline{1} \cdot \overline{a} = \overline{1 \cdot a} = \overline{a \cdot 1} = \overline{a} \cdot \overline{1} \quad \forall \overline{a} \in \mathbb{Z}/n \text{ so } \overline{1} \text{ is the identity element.}$
- Associativity: $\overline{a}(\overline{ac}) = \overline{a}(\overline{bc}) = \overline{a(bc)} = \overline{(ab)c} = (\overline{ab})\overline{c} = (\overline{a}\overline{b})\overline{c} \quad \forall \overline{a}, \overline{b}, \overline{c} \in (\mathbb{Z}/n)^3$.

Definition 1.1.7. A subring S of a ring R is a set $S \subset R$ that satisfies:

- 1. $0 \in S$ and $1 \in S$.
- $2. \ \forall a,b \in S^2, a+b \in S.$
- 3. $\forall a, b \in S^2, a \cdot b \in S$,
- $4. \ \forall a \in S, -a \in S.$

Note that the addition and multiplication operations for S are the same as those for R.

Example 1.1.8. \mathbb{Q} is a subring of $\mathbb{Q}[x]$. For every $a \in \mathbb{Q}$, a is a constant polynomial in $\mathbb{Q}[x]$. $0 \in \mathbb{Q}$ and $1 \in \mathbb{Q}$. $\forall a, b \in \mathbb{Q}^2$, $a + b \in \mathbb{Q}$ and $-a \in \mathbb{Q}$ and $ab \in \mathbb{Q}$.

Example 1.1.9. $\mathbb{Z}[\sqrt{2}]\{a+b\sqrt{2}:a,b\in\mathbb{Z}^2\}$ is a ring. Instead of proving this using the definition of a ring, we can prove that it is a subring of \mathbb{R} , which requires less work.

Example 1.1.10. A subset of a ring can be a ring without being a subring. For example, $R = \{\overline{0}, \overline{2}, \overline{4}\} \subset \mathbb{Z}/6$ but R is not a subring of $\mathbb{Z}/6$ since $\overline{1} \notin R$. However, R is a ring itself, with identity $\overline{4}$.

Definition 1.1.11. A ring R is a field if

- 1. R is commutative.
- 2. $0 \in R$ and $1 \in R$, with $0 \neq 1$, so R has at least two elements.
- 3. $\forall a \in R \text{ with } a \neq 0, \text{ for some } b \in R, ab = 1. b \text{ is called the inverse of } a.$

Remark. For a field F, if $a, b \in F^2$ satisfy ab = 0, then if $b \neq 0$, $a = abb^{-1} = 0b^{-1} = 0$. Similarly, if $a \neq 0$, then b = 0. So $ab = 0 \iff a = 0$ or b = 0.

This is not true in all rings, and if a ring doesn't satisfy this property, then it can't be a field.

Definition 1.1.12. Let R be a ring and let $a \in R$ such that for some $b \neq 0$, ab = 0. Then a is called a **zero divisor**.

1.2 Integral domains

Definition 1.2.1. A ring R is called an **integral domain** if it is commutative, has at least two elements $(0 \neq 1)$, and has no zero divisors except for $0 \ (\forall a, b \in R^2, ab = 0 \implies a = 0 \text{ or } b = 0)$.

Remark. Every ring that is a subring of a field is an integral domain.

Example 1.2.2. $\mathbb{Z}/3$ is an integral domain, because $\forall a, b \in (\mathbb{Z}/3)^2, a \neq 0$ and $b \neq 0 \implies ab \neq 0$. $\mathbb{Z}/4$ is not an integral domain, because $\overline{2} \cdot \overline{2} = \overline{0}$ in $\mathbb{Z}/4$.

Proposition 1.2.3. If a ring R is an integral domain, then the ring of polynomials $R[x] := \{a_0 + a_1x + \cdots + a_nx^n : \underline{a} \in R^n\}$ is an integral domain as well.

Proof. R[x] is obviously commutative, and $0 \in R[x], 1 \in R[x], 0 \neq 1$, as this is true for R. To show that the only zero divisor is 0, assume the opposite, so for some $f(x), g(x) \in (R[x])^2, f(x)g(x) = 0$. Let

$$f(x) = a_0 + \dots + a_m x^m, a_m \neq 0$$

 $g(x) = b_0 + \dots + b_n x_n, b_n \neq 0$

Then

$$f(x)q(x) = a_m b_n x^{m+n} + \dots + a_0 b_0 = 0$$

so $a_m b_n = 0$. But $a_m \in R$ and $b_n \in R$ and R is an integral domain, so $a_m = 0$ or $b_n = 0$, so we have a contradiction.

Definition 1.2.4. For a ring R, $a \in R$ is called a **unit** if for some $b \in R$, ab = ba = 1, so $b = a^{-1}$ is the inverse of a.

Proposition 1.2.5. The inverse of $a \in R$ is unique.

Proof. Assume that for some $b_1, b_2 \in \mathbb{R}^2$, with $b_1 \neq b_2$, $ab_1 = b_1a = 1$ and $ab_2 = b_2a = 1$. But then

$$b_1(ab_1) = (b_1a)b_1 = b_1 = b_1ab_2 = b_2$$

so we have a contradiction.

Definition 1.2.6. The set of all units of a ring R is written as R^{\times} .

Definition 1.2.7. For a ring R, R^{\times} is a group under multiplication from R.

Proof.

- 1. Closure: if $a, b \in (R^{\times})^2$, for some $c, d \in R^2$, ac = 1 and bd = 1 so (ab)(dc) = a(bd)c = ac = 1 so $ab \in R^{\times}$.
- 2. Identity: $1 \cdot 1 = 1$ so $1 \in \mathbb{R}^{\times}$ is the identity.
- 3. Associativity: this is automatically satisfied by associativity in R.
- 4. Inverse element: every $a \in R^{\times}$ has an inverse by definition.

Example 1.2.8. For a field F, $F^{\times} = F - \{0\}$ since every $a \neq 0 \in F$ is a unit.

Example 1.2.9. $\mathbb{Z}^{\times} = \{1, -1\}.$

Example 1.2.10. For a field F, $F[x]^{\times} = F^{\times} = F - \{0\}$, since if $f(x), g(x) \in (F[x])^2$ and f(x)g(x) = 1, then $\deg(f) = \deg(g) = 0$, otherwise $\deg(fg) \geq 1$. Therefore if f is a unit, it is a constant non-zero polynomial, so $f \in F$.

Example 1.2.11. $M_n(\mathbb{Q})^{\times} = \{ A \in M_n(\mathbb{Q}) : \det(A) \neq 0 \}.$

Proposition 1.2.12. Let $\overline{a} \in \mathbb{Z}/n$. \overline{a} is a unit iff gcd(a, n) = 1.

Proof. Let $d = \gcd(a, n)$, so $d \mid a$ and $d \mid n$. Assume \overline{a} is a unit, so let $\overline{b} = \overline{a}^{-1}$, so $\overline{a}\overline{b} = \overline{1} \Rightarrow ab \equiv 1 \pmod{n} \Rightarrow \exists x \in \mathbb{Z}, ab = xn + 1$. Now $d \mid (ab)$ and $d \mid xn$ so $d \mid (ab + xn)$, hence $d \mid 1 \Rightarrow d = 1$.

Now assume that d=1, then by the Euclidean algorithm, $\exists x,y \in \mathbb{Z}^2, xa+ny=d=1$. So $xa\equiv 1 \pmod n \Rightarrow \overline{ax}=\overline{1}$, so \overline{a} is a unit, with $\overline{a}^{-1}=\overline{x}$.

Corollary 1.2.13. $(\mathbb{Z}/n)^{\times} = {\overline{a} \in \mathbb{Z}/n : \gcd(a, n) = 1}.$

Proof. It's pretty much already there.

Corollary 1.2.14. \mathbb{Z}/p is a field iff p is prime.

Proof. If p is prime, then $\overline{1}, \overline{2}, \dots, \overline{p-1}$ are all units by Proposition 1.2.12, so \mathbb{Z}/p is a field.

If \mathbb{Z}/p is a field, then every $\overline{0} \neq \overline{a} \in \mathbb{Z}/p$ is a unit, hence $\gcd(a,p) = 1 \ \forall 1 \leq a \leq p-1$ by Proposition 1.2.12. This means p must be prime.

Proposition 1.2.15. \mathbb{Z}/p is an integral domain iff p is prime (iff \mathbb{Z}/p is a field).

Proposition 1.2.16. If p is prime, \mathbb{Z}/p is a field by Corollary 1.2.14, and every field is an integral domain.

If p is not prime, $\exists a, b \in \mathbb{Z}^2, p = ab$, with $2 \le a, b \le n - 1$. But then $\overline{ab} = \overline{p} = \overline{0}$, meaning that \overline{a} and \overline{b} are zero divisors in \mathbb{Z}/p , so \mathbb{Z}/p is not an integral domain. The contrapositive of this statement completes the proof.

1.3 Polynomials over a field

Definition 1.3.1. For a field F and $f(x) = a_0 + \cdots + a_n x_n \in F[x]$, the **degree** of f is defined as

$$\deg(f) = \begin{cases} \max\{i : a_i \neq 0\} & \text{if } f(x) \neq 0 \\ -\infty & \text{if } f(x) = 0 \end{cases}$$

It satisfies the following properties for every $f(x), g(x) \in (F[x])^2$:

- deg(fg) = deg(f) + deg(g)
- $\deg(f+g) \le \max\{\deg(f),\deg(g)\}\$ with equality if $\deg(f) \ne \deg(g)$.

The degree of the zero polynomial is $-\infty$ for the following reason:

- Let f be the zero polynomial and let $g, h \in (F[x])^2$, with $\deg(g) \neq \deg(h)$. So f = fg = fh.
- By the first property, $\deg(g) + \deg(f) = \deg(gf) = \deg(f) = \deg(hf) = \deg(h) + \deg(f)$, but $\deg(g) \neq \deg(h)$. So for this equality to be true, $\deg(f) = \pm \infty$. But by the second property, $\deg(f+g) = \max\{\deg(f), \deg(g)\}$ when $\deg(g) \neq 0$, which would not hold if $\deg(f) = \infty$. So $\deg(f) = -\infty$.

Proposition 1.3.2. Let $f(x), g(x) \in (F[x])^2$ and $g(x) \neq 0$. Then there are unique polynomials $q(x), r(x) \in (F[x])^2$, where $\deg(r) < \deg(g)$, such that

$$f(x) = q(x)g(x) + r(x)$$

Proof. First we show the existence of q(x) and r(x). If $\deg(g) > \deg(f)$, q(x) = 0 and r(x) = f(x). If $\deg(g) \le \deg(f)$, let

$$f(x) = a_0 + \dots + a_m x^m, \quad a_m \neq 0$$

$$g(x) = b_0 + \dots + b_n x^n, \quad b_n \neq 0$$

Use induction on $d = m - n \ge 0$.

• When d=0, m=n, then let $q(x)=a_m/b_n$ and let

$$r(x) = f(x) - q(x)g(x)$$

which satisfies $\deg(r) < m = \deg(g) \le \deg(f)$.

- Assume q(x) and r(x) exist for every $0 \le d < k$ for some $k \ge 1$.
- When d = k, m = n + k and let

$$f_1(x) = f(x) - \frac{a_m}{b_n} x^{m-n} g(x)$$

so $\deg(f_1) < \deg(f)$. By the inductive assumption, for some $q_1(x)$ and r(x),

$$f_1(x) = q_1(x)g(x) + r(x)$$

which gives

$$f(x) = f_1(x) + \frac{a_m}{b_n} x^{m-n} g(x)$$

$$= \left(q_1(x) + \frac{a_m}{b_n} x^{m-n} \right) g(x) + r(x) = q(x)g(x) + r(x)$$

where we let $q(x) = q_1(x) + \frac{a_m}{b_n} x^{m-n}$. So the result holds for d = k, and this completes the induction.

Now we show the uniqueness of q(x) and r(x). Let $f(x) = q_1(x)g(x) + r_1(x) = q_2(x)g(x) + r_2(x)$, where $\deg(r_1) < \deg(g)$ and $\deg(r_2) < \deg(g)$, so $\deg(R - r) < \deg(g)$. Then

$$r_2(x) - r_1(x) = (q_1(x) - q_2(x))g(x)$$

so by the properties of deg,

$$\deg(q_1 - q_2) + \deg(g) = \deg(r_2 - r_1) < \deg(g)$$

Hence $\deg(q_1 - q_2) < 0$ so $q_1(x) = q_2(x)$, and since $r_2(x) - r_1(x) = (q_1(x) - q_2(x))g(x)$, $r_1(x) = r_2(x)$.

1.4 Divisibility and greatest common divisor in a ring

Definition 1.4.1. Let R be a commutative ring and $a, b \in R^2$. a divides b if for some $r \in R$, b = ra and we write $a \mid b$.

Definition 1.4.2. Let R be a commutative ring and $a, b \in R^2$. $d \in R$ is a **greatest** common divisor, written $d = \gcd(a, b)$, if

• $d \mid a \text{ and } d \mid b$.

• For every $e \in R$, if $e \mid a$ and $e \mid b$, $e \mid d$.

Remark. This definition does not require that gcd(a, b) be unique. For example, by this definition 1 and -1 are greatest common divisors of 4 and 5 in \mathbb{Z} . \mathbb{Z} has a total ordering so in this case we can define the **greatest** common divisor to be the larger of the two. But in some rings, a total ordering does not exist, so multiple gcd's exist. Some rings exist where a gcd of two elements does not exist at all.

Lemma 1.4.3. For every ring R, gcd(0, 0) = 0.

Proof. $\forall x \in R, 0 = 0 \cdot x$ so every element divides 0, so the first property is satisfied. By the second property, every element that divides 0 must also divide $\gcd(0,0)$. But every $x \in R$ divides 0, so in particular $0 \in R$ divides 0, so 0 must divide $\gcd(0,0)$ hence

$$\exists m \in R, \gcd(0,0) = 0 \cdot m = 0$$

so gcd(0,0) = 0, which is unique.

Lemma 1.4.4. Let R be an integral domain. Let $a, b \in R^2$ and assume $d = \gcd(a, b)$ exists. Then for every unit $u \in R^{\times}$, ud is also a gcd of a and b. Also, for any two gcd's d_1 and d_2 of a and b, for some unit $u \in R^{\times}$, $d_1 = d_2u$. So the gcd is unique up to units.

Proof. We first prove that ud is a gcd of a and b. $d \mid a$ so for some $m \in R$, dm = a, hence

$$du(u^{-1}m) = a \Longrightarrow du \mid a$$

Similarly, $du \mid b$.

For every $e \in R$ such that $e \mid a$ and $e \mid b$, $e \mid d \Longrightarrow \exists k \in R, ek = d$. Then $eku = du \Rightarrow e \mid du$. So by Definition 1.4.2, du is a gcd.

Now we prove that the gcd is unique up to units. Let d_1 and d_2 be gcd's. Then by Definition 1.4.2, d_1 and d_2 divide a and b and both divide each other. Hence

$$\exists u, v \in R^2, \quad d_1 = d_2 u, \quad d_2 = d_1 v$$

So $d_1 = d_1 uv$. If $d_1 = 0$ then $d_2 = 0$ so let u = 1. If $d_1 \neq 0$, since R is an integral domain, uv = 1, hence u and v are units.

Definition 1.4.5. Let F be a field. A polynomial

$$p(x) = a_0 + \dots + a_n x^n \in F[x]$$

is called **monic** if its leading coefficient $a_n = 1$.

Corollary 1.4.6. Let F be a field. Then for every $p_1(x), p_2(x) \in (F[x])^2$, there is a unique monic gcd.

Proof. Let $g(x) = a_0 + \cdots + a_n x^n$ be a gcd of p_1 and p_2 . a_n is a unit in F[x] by Example 1.2.10, so $\frac{1}{a_n}g(x)$ is a gcd and is monic. Now assume

$$h(x) = b_0 + \cdots x^m$$

is another monic gcd. Then by Lemma 1.4.4, for some unit $u \in F[x]^{\times} = F^{\times}$,

$$uh(x) = u(b_0 + \dots + x_m) = \frac{1}{a_n}g(x)$$

Then $ux^m = x^n$ so u = 1 and m = n. Hence $h(x) = \frac{1}{a_n}g(x)$.

Theorem 1.4.7. Let R be either \mathbb{Z} or F[x], and $a, b \in \mathbb{R}^2$. Then

- 1. A gcd of a and b exists.
- 2. If $a \neq 0$ and $b \neq 0$, a gcd can be computed by the **Euclidean algorithm** (the algorithm is shown in the proof).
- 3. If d is a gcd(a, b), then for some $x, y \in \mathbb{R}^2$, ax + by = d.

Proof. The proof is shown for R = F[x]. For $R = \mathbb{Z}$, the proof is the same, but $\deg(r_i(x)) < \deg(r_{i-1}(x))$ is replaced with just $r_i < r_{i-1}$ and so on.

Let
$$r_{-1}(x) = a$$
 and $r_0(x) = b$. We have

$$\exists q_1(x), r_1(x) \in (F[x])^2, r_{-1}(x) = q_1(x)r_0(x) + r_1(x), \quad \deg(r_1(x)) < \deg(r_0(x))$$

$$\vdots$$

$$\exists q_i(x), r_i(x) \in (F[x])^2, r_{i-2}(x) = q_i(x)r_{i-1}(x) + r_i(x), \quad \deg(r_i(x)) < \deg(r_{i-1}(x))$$

$$\exists q_n(x), r_n(x) \in (F[x])^2, r_{n-2}(x) = q_n(x)r_{n-1}(x) + r_n(x), \quad \deg(r_n(x)) < \deg(r_{n-1}(x))$$
$$\exists q_{n+1} \in F[x], r_{n-1}(x) = q_{n+1}r_n(x) + 0$$

This process must terminate after a finite number of iterations, since the degree of $r_i(x)$ is a non-negative integer and it decreases by at least 1 each time.

The last non-zero remainder, $r_n(x)$ divides rn - 1(x), hence divides $r_{n-2}(x)$, and so on, so divides $r_{-1}(x)$ and $r_0(x)$. Now for every divisor d(x) of $r_{-1}(x)$ and $r_0(x)$, d(x) must divide $r_1(x)$, so also divides $r_2(x)$, and so on, so divides $r_n(x)$. Therefore $r_n(x)$ satisfies the properties of a gcd, so is a gcd of a and b.

To prove part 3 of the theorem, start from $r_n(x) = r_{n-2}(x) - q_n(x)r_{n-1}(x)$ and replace $r_{n-1}(x)$ with $r_{n-3}(x) - q_{n-1}(x)r_{n-2}(x)$ from the equation above. So we have

$$r_n(x) = h(x)r_{n-2}(x) + g(x)r_{n-3}(x)$$

for some h(x), g(x). Continuing this process from bottom to top, we get

$$r_n(x) = a(x)r_{-1}(x) + b(x)r_0(x)$$

for some $a(x), b(x) \in (F[x])^2$.

2 Homomorphisms between Rings

Let R and S be two rings. A map $f: R \to S$ is called a (ring)-homomorphism if:

- 1. f(1) = 1
- 2. f(a+b) = f(a) + f(b)
- 3. f(ab) = f(a)f(b)

Lemma 2.0.1. f(0) = 0 and f(-a) = -f(a)

Proof.
$$f(0) = f(0+0) = f(0) + f(0)$$

 $0 = f(0) = f(a+(-a)) = f(a) + f(-a)$
Hence $-f(a) = f(-a)$

Definition 2.0.2. Two rings R and S are **isomorphic** if there exists a bijective homomorphism between R and S. The map between them is an **isomorphism**. We write $R \cong S$.

Lemma 2.0.3. A homomorphism $f: R \to S$ is injective iff ker f = 0.

Proof. If f is injective, $f(x) = f(y) \Rightarrow x = y$. Assume f is injective. $\ker f = a \in \mathbb{R} : f(a) = 0$ so $f(a) = 0 \Rightarrow f(a) = f(0) \Rightarrow a = 0$.

For the other direction: assume $\ker f = 0$. $f(x) = f(y) \Rightarrow f(x) - f(y) = 0 \Rightarrow f(x) + f(-y) = 0 \Rightarrow f(x-y) = 0 \Rightarrow x-y \in \ker f$. Since $\ker f = 0$, x-y=0 and so x=y.

Definition 2.0.4. Let R and S be two rings.

- The **product** of R and S is defined as $R \times S := \{(r, s) : r \in R, s \in S\}$ which is itself a ring.
- Addition is defined as $(r_1, s_1) + (r_2, s_2) := (r_1 + r_2, s_1 + s_2)$.
- Multiplication is defined as $(r_1, s_1) \cdot (r_2, s_2) := (r_1r_2, s_1s_2)$
- The multiplicative identity is (1,1).

Definition 2.0.5. We have two ring homomorphisms:

- 1. $p_1: R \times S \to R = (r, s) \to r$
- 2. $p_2: R \times S \to S = (r, s) \to s$

$$\ker p_1 = \{(r,s) \in R \times S : p_1((r,s)) = 0\} = \{(r,s) \in R \times S : r = 0\} = \{(0,s) : s \in S\}$$

Remark. Note ker p_1 is not a subring of $R \times S$ since $(1,1) \notin \ker p_1$.

But we can consider ker p_1 as a ring by taking (0,1) as the multiplicative identity. Then ker $p_1 \cong S$ as we map $(0,s) \to s$.

Similarly, $\ker p_2 \cong R$ and so $\ker p_1 \times \ker p_2 \cong S \times R \cong R \times S$.

Lemma 2.0.6. Let $f: R \to S$ be a ring homomorphism. Then ker f has the following two properties:

1. $\ker f$ is closed under addition.

2. For every $r \in R$ and $x \ker f$ we have $r \cdot x \in \ker f$ and $x \cdot r \in \ker f$.

Proof.

- 1. If $x, y \in \ker f$ then f(x+y) = f(x) + f(y) = 0 + 0 = 0. That is $x + y \in \ker f$.
- 2. For every $r \in R$ and $x \ker f$, $f(r \cdot x) = f(r) \cdot f(x) = f(r) \cdot 0 = 0$. Thus $r \cdot x \in \ker f$. Similarly for $x \cdot r$.

Definition 2.0.7. Let I be an ideal in a ring R. Then for an element $x \in R$, the **coset** of I generated by x to be the set $\bar{x} := x + I := \{x + r : r \in I\} \subset R$. x is said to be a representative of this coset.

Lemma 2.0.8. Let $x \in R$ and $y \in R$. Then the following statements are equivalent

- 1. x + I = y + I
- $2. \ x + I \cap y + I \neq \emptyset$
- 3. $x y \in I$

Proof. $((1) \Rightarrow (2))$ is obvious

 $((2) \Rightarrow (3))$: if $x + I \cap y + I \neq \emptyset$, for some $r_1 \in I, r_2 \in I, x + r_1 = y + r_2$ and so $x - y = r_2 - r_1 \in I$.

 $((3) \Rightarrow (1))$: since $x - y \in I$, for some $r' \in I$, x = y + r'. Then $x + I = \{x + r : r \in I\} = \{y + r' + r : r \in I\} \subseteq y + I$ as ideals are closed under addition, and $r' + r \in I$. $y + I = \{y + r : r \in I\} = x - r' + r : r \in I \subseteq x + I$ and so x + I = y + I.

Notation: $\bar{x} = \bar{y} \Leftrightarrow x + I = y + I \Leftrightarrow x \equiv y \pmod{I} \Leftrightarrow x - y \in I$

Definition 2.0.9. $R/I := \{\bar{x} : x \in R\} = \{x + I : x \in R\}$ is the set of all distinct cosets of $R \pmod{I}$

Remark. If $R = \mathbb{Z}$ and I = (n), $n \in \mathbb{N}$, $R/I = \mathbb{Z}/n = \{\bar{0}, \dots, \bar{n-1}\}$.

Definition 2.0.10.

- Addition: (x + I) + (y + I) = x + y + I
- Multiplication: $(x+I) \cdot (y+I) = xy + I$

A coset x+I has many representatives, for example x+r with $r \in I$ gives the same coset, since $x+r-x=r \in I$.

Assume $x, x' \in R$ such that x + I = x' + I and $y, y' \in R$ such that y + I = y' + I.

Proof. • Addition: $x + I = x' + I \Leftrightarrow x - x' \in I$ and similarly $y - y' \in I$. I is closed under addition so $(x - x') + (y - y') \in I \Leftrightarrow (x + y) - (x' + y') \in I \Leftrightarrow x + y + I = x' + y' + I$.

• $x-x' \in I$ and $y-y' \in I$, so $(x-x')y \in I$ and $x(y-y') \in I$. $(x-x')y+x(y-y') = xy - x'y' \in I \Leftrightarrow xy + I = x'y' + I$.

R/I with the two binary operations of addition and multiplication is a ring:

- The zero element is 0 + I as (x + I) + (0 + I) = x + I.
- The multiplicative identity is 1 + I.
- All properties follow from the corresponding properties of R:
- e.g. distributivity: $\bar{x} = x + I$, $\bar{y} = y + I$, $\bar{z} = z + I$. $\bar{x}(\bar{y} + \bar{z}) = \bar{x}(\bar{y} + \bar$

Definition 2.0.11. Let R be a ring, and $I \subseteq R$ be an ideal of R. Then the ring R/I is called the **quotient** of R by I (R mod I). Its elements, x + I, $x \in R$ are called cosets (or residue classes or equivalence classes) and we denote them \bar{x} .

R/I may be commutative or non-commutative, but if R is commutative, so is R/I.

If I = R, then R/R consists of a single element, since for every $x \in R$, $y \in R$, we have $x - y \in R$ and hence x + R = y + R.

If I = 0 = 0 is the zero ideal, if $x \in R$, x + I = x + 0 = x. Hence R/I = R.

Definition 2.0.12. Given R, $I \subseteq R$ an ideal, the **quotient map** (or **canonical homomorphism**) is defined as $\Pi : R \to R/I = x \to \overline{x} = x + I$ and is a ring homomorphism.

$$\ker \Pi = \{ r \in R : \overline{r} = \overline{0} \} = \{ r \in R : r - 0 = r \in I \} = I.$$

Hence, given a ring R and an ideal $I \subseteq R$, there exists a ring homomorphism (Π) such that $\ker \Pi = I$.

Theorem 2.0.13. (First Isomorphism Theorem or FIT) Let $\phi: R \to S$ be a ring homomorphism. The map $\bar{\phi}: R/\ker \phi \to \operatorname{Im} \phi = \bar{x} \to \phi(x)$ is well-defined and it is a ring isomorphism: $R/\ker \phi \cong \operatorname{Im} \phi$.

Proof. Let $x, x' \in R$ such that $\overline{x} = \overline{x'}$, i.e. $x + \ker \phi = x' + \ker \phi$. So $x - x' \in \ker \phi$, hence $\phi(x - x') = 0 \Leftrightarrow \phi(x) - \phi(x') = 0 \Leftrightarrow \phi(x) = \phi(x')$. Hence $\overline{\phi}$ is well-defined.

- $1. \ \overline{\phi}(\overline{1}) = \phi(1) = 1$
- 2. $\overline{\phi}(\overline{x} + \overline{y}) = \overline{\phi}(\overline{x + y}) = \phi(x + y) = \phi(x) + \phi(y) = \overline{\phi}(\overline{x}) + \overline{\phi}(\overline{y}).$
- 3. Similarly, $\bar{\phi}(\bar{x} \cdot \bar{y}) = \bar{\phi}(\bar{x}) \cdot \bar{\phi}(\bar{y})$.

Hence $\bar{\phi}$ is a ring homomorphism.

 $\bar{\phi}(\bar{x}) = 0 \Leftrightarrow \phi(x) = 0 \Leftrightarrow x \in \ker \phi \Leftrightarrow \bar{x} = 0$, hence $\ker \bar{\phi} = \{\bar{0}\}$. Let $y \in \operatorname{Im} \phi \Leftrightarrow \text{for some } x \in R, \ \phi(x) = y$. Hence $\bar{\phi}(\bar{x}) = \phi(x) = y$, hence $\bar{\phi}$ is also surjective, hence it is bijective.

Definition 2.0.14. Let R be a commutative ring. An ideal $I \subseteq R$ is a **prime ideal** if $I \neq R$ (I is proper) and for every $a, b \in R$ such that $a \cdot b \in I$ then $a \in I$ or $b \in I$.

The ideal $I \neq R$ is **maximal** if the only ideals that contain I is I itself and R. i.e. there is no ideal J such that $I \subsetneq J \subsetneq R$.

Theorem 2.0.15. Recall $x \in R$ is prime if $0 \neq x \notin R^{\times}$ and $x|ab \Rightarrow x|a$ or x|b. If x is a prime element then (x) is a prime ideal.

Proof. $ab \in (x) \Rightarrow$ for some $r \in R$, $ab = rx \Rightarrow x|ab$ so because x is prime, x|a or x|b so $a \in (x)$ or $b \in (x)$.

Lemma 2.0.16. Let (x) be a non-zero prime ideal. The x is a prime element.

Proof. If x|ab, $ab \in (x)$, so because (x) is a prime ideal, $a \in (x)$ or $b \in (x)$, so x|a or x|b.

Remark. $x|a \Leftrightarrow a \in (x) \Leftrightarrow (a) \subseteq (x)$.

This can be described as "to divide is to contain".

Corollary 2.0.17. The zero ideal (0) = 0 is a prime ideal iff R is an integral domain, since an integral means $ab = 0 \Rightarrow a = 0$ or b = 0.

Theorem 2.0.18. Let R be a commutative ring and $I \subseteq R$ an ideal.

- 1. I is prime iff R/I is an integral domain.
- 2. I is maximal iff R/I is a field.

Proof.

1. Assume I is prime. Assume $\bar{a}\bar{b}=\bar{0}$ with $a,b\in R,\ \bar{a},\bar{b}\in R/I.\ \bar{a}\bar{b}=\bar{0}\Rightarrow \bar{a}\bar{b}=\bar{0}$ $\bar{a}\bar{b}=\bar{0}$ $\bar{a}\bar{b}=\bar{0}$ or $\bar{b}=\bar{0}$, hence R/I is an integral domain.

Now assume R/I is an integral domain. $ab \in I \Rightarrow \overline{ab} = \overline{0}$. Since R/I is an integral domain, $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0} \Rightarrow a \in I$ or $b \in I$.

2. (\Rightarrow): Assume that I is maximal. Let $\bar{x} \neq \bar{0}$, $\bar{x} \in R/I$, then $x \in R$ with $x \notin I$. Consider $(I, x) := \{r + r'x : r \in I, r' \in R\}$. This is an ideal, as $r_1 + r'_1 x + r_2 + r'_2 x = (r_1 + r_2) + (r'_1 + r'_2) x \in R$, and $r''(r + r'x) = r''r + r''r'x \in R$. $I \subseteq (I, x) \subseteq R$. I is maximal so $(I, x) = R \Rightarrow 1 \in (I, x)$. Hence for some $y \in R$, yx + m = 1 for some $m \in I$.

Hence $yx - 1 \in I \Rightarrow \overline{yx} = \overline{y}\overline{x} = \overline{1}$ hence \overline{x} is invertible, so R/I is a field.

(\Leftarrow): Assume R/I is a field. If $\bar{0} \neq \bar{x} \in R/I$, then for some $y \in R/I$, $\bar{x}\bar{y} = 1 \Rightarrow xy - 1 \in I \Rightarrow xy = 1 + m$ for some $m \in I$. That is, 1 = xy - m hence $1 \in (I, x) \Rightarrow (I, x) = R$.

Now let J be an ideal such that $I \subsetneq J \subseteq R$. Since $I \subsetneq J$, for some $x \in J$, $x \notin I$. Then $I \subsetneq (I, x) \subseteq J \subseteq R$. But (I, x) = R, hence J = R. Hence there is no ideal J such that $I \subsetneq J \subsetneq R$, hence I is maximal.

Corollary 2.0.19. If I is maximal then I is prime.

Proof. I is maximal $\Rightarrow R/I$ is a field $\Rightarrow R/I$ is an integral domain $\Rightarrow I$ is a prime ideal.

2.1 Principal Ideal Domains (PIDs)

Example 2.1.1. Let $a, b \in \mathbb{Z}$. Then let $d = (a, b) = \gcd(a, b)$. $(a, b) \subseteq (d)$ since d|a and $d|b \Leftrightarrow a = dr_1$ and $b = dr_2$, $r_1, r_2 \in \mathbb{Z} \Rightarrow a \in (d)$ and $b \in (d)$.

Moreover, for some $r_1, r_2 \in \mathbb{Z}$, $d = r_1 + r_2 b \Rightarrow d \in (a, b) \Rightarrow (d) \subseteq (a, b)$.

The same argument holds for F[x] with F a field.

i.e. $(f(x), g(x)) = (\gcd(f(x), g(x))).$

12

Definition 2.1.2. An integral domain in which all ideals are principle is called a principle ideal domain (PID).

Theorem 2.1.3. Let R be a either \mathbb{Z} or F[x] with F a field. Then R is a PID.

Proof. Define the following "degree" function $d: R \setminus \{0\} \to \mathbb{N}$ by

$$d(a) := \begin{cases} |a| & \text{if } a \in \mathbb{Z} \\ \deg(a) & \text{if } a \in F[x] \end{cases}$$

By division, for every $a, m \in R \setminus \{0\}$, we can find unique $q, R \in R$ such that a = qm + r with r = 0 of d(r) < d(m).

Let $I \subseteq R$ be an ideal. If $I = 0 = \{0\}$ we are done. So now let $I \neq 0$. Let $0 \neq m \in I$ such that d(m) is minimal among elements of I. We claim that I = (m).

Let $a \in I$. $a \in (m) \Leftrightarrow m|a$. Dividing a by m, we get a = qm + r, with r = 0 or d(r) < d(m). But since $r = a - qm \in I$, d(r) < d(m) would contradict the minimality of d(m). Hence r = 0, so $m|a \Leftrightarrow a \in (m)$. $(m) \subseteq I$ so $a \in I \Leftrightarrow a \in (m)$.

Theorem 2.1.4. (Stated without proof) Any PID is a UFD.

Remark. There are integral domains which are not PIDs, e.g. $\mathbb{Z}[\sqrt{-5}]$ which is not a UFD and hence not a PID.

Proposition 2.1.5. Let R be a PID and $a, b \in R$. Then gcd(a, b) exists and (a, b) = (gcd(a, b)).

Proof. Since R is a PID, for some $d \in R$, (a,b) = (d). We claim that $d = \gcd(a,b)$. $(a,b) = (d) \Rightarrow a \in (d)$ and $b \in (d) \Rightarrow d|a$ and d|b. Suppose $e \in R$ such that $e|a \Rightarrow a \in (e)$ and $e|b \Rightarrow b \in (e)$. $(d) = (a,b) \subseteq (e) \Rightarrow e|d$. Therefore $d = \gcd(a,b)$. \square

Theorem 2.1.6. (Stated without proof): $\mathbb{Z}[i], \mathbb{Z}[\pm\sqrt{2}]$ are PID's.

Lemma 2.1.7. Let R be a PID and let $a \in R$ be irreducible. Then the principle ideal generated by a is a maximal ideal.

Proof. Suppose $(a) \subseteq I$, with I an ideal. We must show I = (a) or I = R. Since R is a PID, for some $t \in R$, I = (t). So $(a) \subseteq (t)$ so for some $m \in R$, a = tm. But a is irreducible, so either t is a unit or m is a unit.

If $t \in R^{\times}$ then I = (t) = R. If $m \in R^{\times}$ then (a) = (t) = I (last question of assignment 3).

2.2 Fields on quotients

Theorem 2.2.1. Let F be a field and $f(x) \in F[x]$, with f(x) irreducible. Then F[x]/(f(x)) is a field and a vector space over F with basis

$$B := \{\bar{1}, \bar{x}, \bar{x}^2, \dots, \bar{x}^{n-1}\}$$

where $n = \deg f$.

That is, every element of F[x]/(f(x)) can be uniquely written as

$$\overline{a_0 1 + a_1 x + \dots + a_{n-1} x^{n-1}}$$

Proof. Since f(x) is irreducible, F[x]/(f(x)) is a field. F[x]/(f(x)) is a vector space over F and an abelian group with respect to addition and scalar multiplication with elements of F: if $g(x) \in F[x]/(f(x))$ and $\alpha \in F$ then $\alpha g(x) = \overline{\alpha}g(x) \in F[x]/(f(x))$.

We must prove B spans F[x]/(f(x)). For every $\overline{g(x)} \in F[x]/(f(x))$, $g(x) = \underline{q(x)}f(x) + r(x)$ with $\deg(r) < \underline{\deg(f)} = \underline{n} \Rightarrow g(x) - r(x) = q(x)f(x) \in (f(x)) \Rightarrow g(x) = \overline{r(x)}$, $\deg(r) < n$. Hence $\overline{g(x)} = \overline{r(x)} = a_0 + a_1\overline{x} + \cdots + a_{n-1}\overline{x}^{n-1}$ with $a_i \in F$. Hence B spans F[x]/(f(x)).

We must show B is linearly independent over F, i.e. show if $\sum_{i=0}^{n-1} a_i \bar{x}^i = \bar{0}$ then $\forall i, a_i = 0$.

 $\sum_{i=0}^{n-1} a_i \bar{x}^i = \bar{0} \Leftrightarrow \sum_{i=0}^{n-1} a_i x^i \in (f(x)) \Rightarrow f(x) | \sum_{i=0}^{n-1} a_i x^i. \text{ But deg}(f) = n \text{ and } \deg(\sum_{i=0}^{n-1} a_i x^i) < n \text{ so } \sum_{i=0}^{n-1} a_i x^i \text{ is the zero polynomial so } \forall i, a_i = 0. \text{ Therefore } B \text{ is linearly independent.}$

So B is a basis.

3 Finite fields

Theorem 3.0.1. For every prime p and $n \in \mathbb{N}$, for some irreducible polynomial $f(x) \in (\mathbb{Z}/p)[x]$, $\deg(f) = n$. Thus $(\mathbb{Z}/p)[x]/(f(x))$ is a field with p^n elements (since there are p choices for each a_i in $a_0 + a_1\bar{x} + \cdots + a_{n-1}\bar{x}^{n-1}$).

Any two such fields are isomorphic and we denote the unique, up to isomorphism, field with p^n elements with \mathbb{F}_{p^n} .

Proof. Not examinable. \Box

Remark. If n = 1 then $\mathbb{F}_p \cong \mathbb{Z}/p$ with p prime. However if n > 1 then $\mathbb{F}_{p^n} \ncong \mathbb{Z}/p^n$ since \mathbb{Z}/p^n is not a field.

Example 3.0.2. Find an irreducible polynomial f in $(\mathbb{Z}/3)[x]$ of degree 3.

 $f(x) = x^3 + x^2 + x + \bar{2}$. This has no roots in $\mathbb{Z}/3$ so f(x) is irreducible since $\deg(f) = 3$. Then $\mathbb{F}_{27} = \mathbb{F}_{3^3} \cong (\mathbb{Z}/3)[x]/(f(x))$. All elements can be written as $a_0 + a_1\bar{x} + a_2\bar{x}^2$, $a_i \in \mathbb{Z}/3$.

 $\overline{f(x)} = \overline{0} = \overline{x^3 + x^2 + x + \overline{2}} \Rightarrow \overline{x}^3 = -\overline{x}^2 - \overline{x} - \overline{2}.$

3.1 The Chinese Remainder Theorem (CRT)

Definition 3.1.1. Let $a, b \in R$. a and b are **coprime** if $\not\exists r$ irreducible in R such that r|a and r|b.

Lemma 3.1.2. Let R be a PID and $a, b \in R$ be coprime. Then (a, b) = R and hence $\exists x, y \in R$ such that xa + yb = 1.

Proof. Since R is a PID, (a,b)=(r) for some $r \in R$. So $a,b \in (r) \Rightarrow r|a$ and r|b. So a=rn and b=rm for some $n,m \in R$. r must be a unit in R since otherwise, $r=p_1\cdots p_k$ for some p_i irreducible, but then $a=p_1\cdots p_k n$, $b=p_k\cdot p_k m$, which would contradict a and b being coprime.

So
$$r \in R^{\times} \Rightarrow (r) = R \Rightarrow (a, b) = R$$
.

Corollary 3.1.3. For $a, b \in R$ coprime, any $gcd(a, b) \in R^{\times}$.

Proof. In a PID, $(a, b) = (\gcd(a, b))$. By the lemma above, if a and b are coprime, $(a, b) = R \Rightarrow (\gcd(a, b)) = R = (1) \Rightarrow \gcd(a, b) \in R^{\times}$.

Theorem 3.1.4. (CRT for PID's) Let R be a PID and let $a_1, \ldots, a_k \in R$ be pairwise coprime elements. Then the map from $R/(a_1, \ldots, a_k) \to R/(a_1) \times \cdots \times R/(a_k)$ given by $r + (a_1, \ldots, a_k) \to (r + (a_1), \ldots, r + (a_k))$ is a ring isomorphism.

Proof. Let $\psi: R \to R/(a_1) \times \cdots \times R/(a_k)$, $\psi(r) = (r + (a_1), \dots, r + (a_k))$. Clearly, ψ is a ring homomorphism.

For every i = 1, 2, ..., k, the elements a_i and $a_1 ... a_{i-1} a_{i+1} ... a_k$ are coprime. (If not, there exists an irreducible p such that $p|a_i$ and $p|a_1 ... a_{i-1} a_{i+1} ... a_k$. But then pirreducible $\Leftrightarrow p$ prime hence $p|a_j$ for some $j \neq i$, but this contradicts that a_i and a_j are coprime).

By the above lemma, for some $x_i, y_i \in R$, $x_i a_i + y_i (a_1 \dots a_{i-1} a_{i+1} \dots a_k) = 1$. Set $e_i := 1 - a_i x_i$ for each $i = 1, \dots, k$. Then $e_i = 1 + (a_i)$ and $e_i = 0 + (a_j)$ for $j \neq i$, since $e_i = 1 - a_i x_i = y_i (a_1 \dots a_{i-1} a_{i+1} \dots a_k)$.

Let $(r_1 + (a_1), \ldots, r_k + (a_k))$ be any element in $R/(a_1) \times \cdots \times R/(a_k)$. We claim that

$$\psi\left(\sum_{i=1}^{k} r_i e_i\right) = (r_1 + (a_1), \dots, r_k + (a_k))$$

$$\psi\left(\sum_{i=1}^{k} r_{i} e_{i}\right) = \sum_{i=1}^{k} \psi(r_{i} e_{i}) = \sum_{i=1}^{k} \psi(r_{i}) \psi(e_{i})$$

$$\psi(e_1) = (0 + (a_1), \dots, 1 + (a_i), 0 + (a_{i+1}), \dots, 0 + (a_k))$$

since $e_i = 1 + (a_i)$ and $e_i = 0 + (a_j)$ for $j \neq i$ and

$$\psi(r_i) = (r_i + (a_1), \dots r_i + (a_k))$$

SO

$$\psi(e_i)\psi(r_i) = TODOfinish and check this proof$$

Thus ψ is surjective. $\ker \psi = \{r \in R : r \in (a_i), i = 1, \dots, k\} = \{r \in R : a_i | r, i = 1, \dots, k\} = \{r \in R : a_1 \dots a_k | r\}$ since a_i and a_j are coprime. $\ker \psi = (a_1 a_2 \dots a_k)$. Then by the FIT, $R/\ker \psi \cong R/(a_1) \times \dots \times R/(a_k)$.

4 Group Theory

Definition 4.0.1. A group is a pair (G, \circ) where G is a set and \circ is a map

$$\circ: G \times G \to G, \quad \circ(q,h) = q \circ h$$

Satisfying these properties:

- 1. Closure: $g, h \in G \Rightarrow g \circ h \in G$.
- 2. Associativity: $x, y, z \in G \Rightarrow (x \circ y) \circ z = x \circ (y \circ z)$.
- 3. Identity element: $\exists e \in G, \ \forall g \in G, \ e \circ g = g \circ e = g$.
- 4. Existence of inverse: $\forall g \in G$, $\exists h \in G$, $g \circ h = h \circ g = e$. h is called the inverse of g and is written as g^{-1} .

Definition 4.0.2. A group (G, \circ) is an **Abelian group** if $\forall g, h \in G, g \circ h = h \circ g$. Otherwise, it is called **non-Abelian**.

Remark. Often, G is written to refer to a group, not just the set of a group.

Lemma 4.0.3. Let $(R, +, \cdot)$ be a ring. Then $(G, \circ) = (R, +)$ is a group.

Proof. Properties 1 and 2 of a group are automatically satisfied. The identity element is $0 \in R$. The inverse element for any element will be the same inverse element in the ring.

Lemma 4.0.4. Let $(F, +, \cdot)$ be a field. Then $(G, \circ) = (R, \cdot)$ is a group.

Proof. Again, group properties 1 and 2 are automatic. The identity element is $1 \in F$. The inverse element for any element will be the same inverse element in the field. \square

Example 4.0.5. (Symmetries of a square): The following are all symmetries of a square:

- Rotation by $\frac{\pi}{2}$.
- Reflection about the y-axis, x-axis, y = x axis, y = -x axis.
- Any of the above symmetries can be combined to form a new symmetry.

Define the group $G(, \circ)$ where G is the symmetries of the square and \circ is composition of the symmetries. The identity e is the map which does nothing to the square. The inverse of a rotation is rotation in the opposite direction, and the inverse of a reflection is the same reflection.

Definition 4.0.6. The group in the above example is the **dihedral group**.

Definition 4.0.7. The **general linear group** is defined as the set $GL_2(\mathbb{R}) := \{A \in M_2(\mathbb{R}) : \det A \neq 0\}$ together with \circ being matrix multiplication.

Lemma 4.0.8. The general linear group is a group.

Proof.

- 1. $\det(AB) = \det A \det B \neq 0$ so $A, B \in GL_2(\mathbb{R}) \Rightarrow AB \in GL_2(\mathbb{R})$.
- 2. Matrix multiplication is associative.
- 3. The identity is I_2 .
- 4. The inverse of $A \in GL_2(\mathbb{R})$ is A^{-1} , which exists since det $A \neq 0$.

Remark. $GL_2(\mathbb{R})$ is non-abelian.

4.1 Subgroups

Definition 4.1.1. A subset $H \subseteq G$ is a **subgroup** of (G, \circ) if (H, \circ) is also a group. We write $H \subseteq G$.

Remark. H = G is a subgroup of a group G.

Definition 4.1.2. Every group (G, \circ) has a **trivial subgroup**, $H = \{e\}$, where $e \in G$ is the identity element.

Definition 4.1.3. A subgroup H of G is **proper** if $H \neq \{e\}$ and $H \neq G$. We write H < G.

Proposition 4.1.4. (Subgroup criteria) Let (G, \circ) be a group. Then $H \subseteq G$ is a subgroup iff all these conditions hold:

- 1. $H \neq \emptyset$
- $2. h_1, h_2 \in H \Rightarrow h_1 \circ h_2 \in H.$
- 3. $h \in H \Rightarrow h^{-1} \in H$.

Proof. We only need to show that H contains an identity: $h \in H \Rightarrow h^{-1} \in H \Rightarrow e = h \circ h^{-1} \in H$.

Example 4.1.5. If $(S, +, \cdot)$ is a subring, then (S, +) is a subgroup.

Proposition 4.1.6. Let $I \subseteq R$ be a non-empty ideal of a ring $(R, +, \cdot)$. Then (I, +) is a subgroup of (R, +).

Proof. Criteria 1 and 2 are satisfied by definition. Now we must show that $x \in I \Rightarrow -x \in I$: if $x \in I$, then $(-1_R)x = -x \in I$ where $-1_R + 1_R = 0_R$.

Definition 4.1.7. The special linear group is defined as $SL_2(\mathbb{R}) = \{A \in M_2(\mathbb{R}) : \det A = 1\}$, which satisfies $(SL_2(\mathbb{R}), \cdot) \leq (Gl_2(\mathbb{R}), \cdot)$.

Example 4.1.8. Let $q \in \mathbb{N}$, then $q\mathbb{Z} = \{mq : m \in \mathbb{Z}\}$ is an ideal in \mathbb{Z} . For example, the even numbers, $2\mathbb{Z}$, is a subgroup.

However, the odd numbers are not subgroup, as they do not contain 0, nor is $\bar{a} = \{a + mq : m \in \mathbb{Z}\}\$ for $1 \le a \le q - 1$.

4.2 Cosets

Definition 4.2.1. Let (G, \circ) be a group and $H \leq G$. A **left coset** of H is a set of the form

$$q \circ H := \{q \circ h : h \in H\}$$
 for $q \in G$

A **right coset** of H is a set of the form

$$H \circ g := \{h \circ g : h \in H\} \text{ for } g \in G$$

Remark. $x \in g \circ H \iff g^{-1} \circ x \in H$.

Remark. If G is Abelian, then $g \circ H = H \circ g$, but this isn't true in general for non-Abelian groups.

Proposition 4.2.2. Let (G, \circ) be a group and $H \leq G$. Then:

- 1. For every $g \in G$, $g \circ H$ and H are in bijection. (So $|H| < \infty \Rightarrow |g \circ H| = |H|$).
- 2. If $g \in G$, then $g \in H \iff g \circ H = H$.
- 3. If $g_1, g_2 \in G$, then either $g_1 \circ H = g_2 \circ H$ or $(g_1 \circ H) \cap (g_2 \circ H) = \emptyset$.

Proof.

1. Let $g \in G$. Define $\phi_g : H \to g \circ H$ as

$$\phi_a(h) := g \circ h$$

 $\forall x \in g \circ H, \exists h_x \in H, x = g \circ h_x = \phi_g(h_x) \text{ so } \phi_g \text{ is surjective. Let } h_1, h_2 \in H \text{ such that } \phi_g(h_1) = \phi_g(h_2) \Leftrightarrow g \circ h_1 = g \circ h_2 \Rightarrow h_1 = e \circ h_1 = (g^{-1} \circ g) \circ h_1 = g^{-1} \circ (g \circ h_1).$ Similarly, $h_2 = e \circ h_2 = (g^{-1} \circ g) \circ h_2 = g^{-1} \circ (g \circ h_2).$ Hence $h_1 = h_2$, so ϕ_g is injective, and so also bijective.

- 2. (\Rightarrow) Let $g \in H$. If $h \in H$, then $g \circ h \in H \Longrightarrow g \circ H \subseteq H$. To show that $H \subseteq g \circ H$, we will show that if $h \in H$, then $\exists h' \in H, h = g \circ h' \in g \circ H \iff h' = g^{-1} \circ h \in H \iff h = g \circ (g^{-1} \circ h) \in g \circ H \iff H \subseteq g \in H$. (\Leftarrow) If $g \circ H = H$, $g = g \circ e \in g \circ H$ since $e \in H$, hence $g \in H$.
- 3. Let $(g_1, g_2) \in G^2$ and assume that $g_1 \circ H \neq g_2 \circ H$, and that $(g_1 \circ H) \cap (g_2 \circ H) \neq \emptyset$. Let $x \in (g_1 \circ H) \cap (g_2 \circ H)$, then $\exists (h_1, h_2) \in H^2$, $x = g_1 \circ h_1 = g_2 \circ h_2 \iff g_2^{-1} \circ g_1 = h_2 \circ h_1^{-1} \in H$. By part $2, (g_2^{-1} \circ g_1) \circ H = H \implies g_1 \circ H = g_2 \circ H$, but this is a contradiction, which completes the proof.

Theorem 4.2.3. (Lagrange) If G is a **finite** group and $H \leq G$, then |H| divides |G|. So if $|H| \nmid |G|$ then $H \not \leq G$.

Proof. Let $G_0 = G$ and let $G_1 = G_0 \setminus H$. If $|G_1| = 0$, we are done, otherwise for some $g_1 \in G$, $H \cap g_1 \circ H = \emptyset$. Then set $G_2 = G_1 \setminus G_1 \setminus (g_1 \circ H)$. If $|G_2| = 0$, we are done, otherwise for some $g_2 \in G$, $(H \cup (g_1 \circ H)) \cap (g_2 \circ H) = \emptyset$, and set $G_3 = G_2 \setminus (g_2 \circ H)$.

This process must terminate since $|g_i \circ H| = |H| \ge 1$ elements are removed each time. At the end of this process, for some $S \subseteq G$,

$$G = \bigcup_{g \in S} (g \circ H)$$

and for $g, g' \in S$, $g \circ H \cap g' \circ H = \emptyset$. So

$$|G| = \left| \bigcup_{g \in S} (g \circ H) \right| = \sum_{g \in S} |g \circ H|$$

Since $|g \circ H| = |H| \forall g \in S, |G| = |S||H| \Longrightarrow |H| \mid |G|$.

4.3 Normal subgroups

Definition 4.3.1. A subgroup $H \leq G$ is **normal** if $\forall g \in G$, $g \circ H = H \circ g$. Equivalently, H is normal if either:

1. $\forall g \in G, \ g \circ H \circ g^{-1} \subseteq H.$

2. $\forall g \in G, h \in H, g \circ h \circ g^{-1} \in H$.

We write $H \triangleleft G$.

Remark. This means that $\forall h \in H, \exists h' \in H, g \circ h = h' \circ g$, but $h \neq h'$ in general.

Example 4.3.2. If G is **abelian**, then every subgroup $H \leq G$ is normal, since if $g \in G, h \in H$, then $g \circ h \circ g^{-1} = g \circ (g^{-1} \circ h) = h \in H$.

Definition 4.3.3. For a group G and $g \in G$, g^k for $k \in \mathbb{Z}$ is defined as

$$g^{k} = \begin{cases} g \circ g \circ \dots \circ g & (k \text{ times}) & \text{if } k \ge 1 \\ g^{-1} \circ g^{-1} \circ \dots \circ g^{-1} & (-k \text{ times}) & \text{if } k < 0 \\ e & \text{if } k = 0 \end{cases}$$

Definition 4.3.4. For a group G and $g \in G$, the **group generated by** g, H, is defined as

$$H := \langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}$$

Proposition 4.3.5. H is a Abelian group.

Proof.

1.
$$g^{n+m} = g^n \circ g^m = g^m \circ g^n$$
.

2.
$$g^{-n} = (g^n)^{-1}$$
.

Definition 4.3.6. Let $S \subseteq G$ be finite, so $S = \{g_1, \ldots, g_k\}$. The subgroup of G generated by S is defined as

$$H := \langle S \rangle = \{ g_1^{a_1} \circ \cdots \circ g_k^{a_k} \circ g_1^{b_1} \circ \cdots \circ g_k^{b_k} : a_i, b_j \in \mathbb{Z}^2 \}$$

H is the set of finite products of g_i and g_j^{-1} , for $1 \leq i, j \leq k$.

Example 4.3.7. Let $q \in \mathbb{N}$ be odd, so $\bar{2} \in \mathbb{Z}/q$. Then $\langle \bar{2} \rangle = \mathbb{Z}/q$, since every $\bar{a} \in \mathbb{Z}/q$ is of the form $\bar{2} \cdot x, x \in \mathbb{Z}$.

Example 4.3.8. Let $q = p^2$ for p prime. Then $\langle \bar{p} \rangle = \{\bar{p}, \overline{2p}, \dots, \overline{p(p-1)}, \bar{0}\}.$

Example 4.3.9. Let $(G, \circ) = (\mathbb{R}^{\times}, \cdot)$ and $S = \{\sqrt{2}, \pi\}$. Then $\langle S \rangle = \{\sqrt{2}^a \cdot \pi^b : a, b \in \mathbb{Z}^2\}$. Since $(\mathbb{R}^{\times}, \cdot)$ is Abelian.

Definition 4.3.10. Let G be a group, and let $g \in G$. The **order** of g in G, written as $\operatorname{ord}_G(g)$ or $\operatorname{ord}(g)$ is the smallest $d \in \mathbb{N}$ such that $g^d = e$.

If d does not exist, $\operatorname{ord}_G(g) = \infty$. If $\operatorname{ord}_G(g) < \infty$, g has **finite order**, otherwise, g has **infinite order**.

Example 4.3.11. For $(G, \circ) = (\mathbb{Z}, +)$, every $x \in \mathbb{Z} - \{0\}$ has infinite order, because $x + \cdots + x = dx = 0$, and since \mathbb{Z} is an integral domain, d = 0, but $d \in \mathbb{N}$.

Example 4.3.12. In D_4 , the symmetries of a square,

- The rotation by $\frac{\pi}{2}$, r, has $\operatorname{ord}(r) = 4$.
- Reflection, s, has ord(s) = 2.

4.4 Cyclic groups

Definition 4.4.1. A group G is **cyclic** if $\exists g \in G, G = \langle g \rangle$.

Theorem 4.4.2. Let a group G be finite and let |G|=p for p prime. Then G is cyclic.

Proof. Since |G| = p > 1, $\exists g \in G, g \neq e$. Let $H = \langle g \rangle$, so $H \leq G$. By Lagrange's theorem, $|H| \mid |G|$. Since |G| is prime, |H| = 1 or |H| = p. Since $\{e, g\} \subset H, |H| \geq 2$, so |H| = p. $H \subseteq G$, so $G = H = \langle g \rangle$.

Remark. For every $g \neq e$ in G of prime order, $G = \langle g \rangle$, and $\operatorname{ord}_G(g) = p$.