Архитектура компьютера.

Биты и манипулирование ими.

«Но да будет слово ваше: да, да; нет, нет; а что сверх того, то от лукавого.»

- Евангелие от Матфея 5, 37

Компьютер решает задачи в соответствие с алгоритмом, представленным в виде *машинного кода* – последовательности нулей и единиц.

Бит – двоичный разряд, имеющий два значения – нуль или единицу.

Теоретическим основанием для технических реализаций систем, манипулирующих битами является *булева алгебра* (или изоморфные ей математические структуры – *алгебра высказываний* и *алгебра логики*).

На множестве из двух элементов – 0 и 1 (или «правда» и «ложь», или «да» и «нет») заданы две бинарные операции – конъюнкция and и дизъюнкция or, и одна унарная – not.

Свойства логически

закон двойного отрицания: not not a = a **закон коммутативности:**

х операций:

 $a ext{ or } b = b ext{ or } a$ $a ext{ and } b = b ext{ and } a$

закон ассоциативности:

 $a ext{ or } (b ext{ or } c) = (a ext{ or } b) ext{ or } c$ $a ext{ and } (b ext{ and } c) = (a ext{ and } b) ext{ and } c$ **закон дистрибутивности:**

 $a ext{ or } (b ext{ and } c) = (a ext{ or } b) ext{ and } (a ext{ or } c)$ $a ext{ and } (b ext{ or } c) = (a ext{ and } b) ext{ or } (a ext{ and } c)$

правила де Моргана:

not (a or b) = not a and not b not (a and b) = not a or not b

Дополнительная операция - «исключающее или»

Таблица истинности:

xor						
xor a	b	and	or	xor	а	not
• 0	0	0	0	0	0	1
0	1	0	1	1		0
1	0	0	1	1	ı	U
1	1	1	1	0		

Биты и манипулирование ими.

Абстрактные устройства, реализующие логические операции (*вентили*):

Техническая реализация вентилей:

Биты и манипулирование ими.

Двоичный полусумматор:

Α	В	S	C
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Полный двоичный сумматор:

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
1	0	0	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Триггер:

Биты и манипулирование ими.

Подача сигнала на вход В устанавливает триггер в состояние 1. После снятия напряжения с этого входа триггер остается в этом состоянии. Для перехода триггера в состояние 0 необходимо подать сигнал на вход А.

Биты и манипулирование ими.

Техническая реализация триггера дорогостоящая, поэтому биты с помощью триггеров хранят в небольшой по объему памяти, но с большим быстродействием. Эта статическая память – *SRAM*, используется в персональных компьютерах для *регистров* и *кэшей*.

Оперативная память основа на технологии динамической памяти – DRAM, использующей конденсаторы для хранения бит.

Организация памяти.

В ОЗУ персональных компьютеров принята линейная побайтовая адресация памяти. Каждая ячейка памяти – байт, имеет свой адрес от нуля до N (емкость памяти).

Адресация памяти предоставляет возможность доступа к произвольной ячейке – *память с произвольным доступом* (*RAM*) (см. *Лекцию 3*).

Основные характеристики памяти - емкость (размер) и пропускная способность.

Пропускная способность определяется

- тактовой частотой памяти;
- •шириной шины памяти;
- •количеством бит на линию за такт (технология DDR 2 бита за такт)

Частоте в 1МГц соответствует время 1000 нс.

Например (DDR SDRAM): частота памяти 200 МГц, значит эффективная частота – 400 МГц, разрядность шины 64 бит.

Пропускная способность = 400*64=25600Мбит/с=3.2Гб/с

Архитектура компьютера.

Организация памяти.

Двоичный код.

i<n

Представление информации в виде двоичного кода. Двоичная система счисления.

Представление целых числовых значений.

$$b=b_0 + b_1^*2^1 + b_2^*2^2 + ... + b_{n-1}^*2^{n-1}$$

	<u>Программа</u>
Программа	<u>Ввод</u> {b _i }, n
<u>Ввод</u> а	a:=b ₀
i:=0	d:=2
Выполнять	i:=1
b _i :=остаток(а, 2)	<u>Цикл-пока</u> i<
а=частное(а,2)	a:=a+b _i *d
i:=i+1	d:=d*2
<u>До</u> a=0	i:=i+1
<u>Вывод</u> {b _i }	<u>Конец-цикл</u>
<u>Конец</u>	<u>Вывод</u> а
	<u>Конец</u>

Представление дробной части.

$$a=b_1*2^{-1}+b_2*2^{-2}+...+b_n*2^{-n}$$

Двоичный дополнительный код.

Процессоры семейства 80x86 трактуют отрицательные числа, как двоичные дополнения (которые содержат единичный бит в старшем разряде). Чтобы получить отрицательное число надо инвертировать все биты и добавить единицу.

Например (пусть единица хранения – 1 байт): Проверяем:

00000101	ПЯТЬ	00000101
11111010	инвертируем биты	+ <u>11111011</u>
<u>+1</u>	добавляем единицу	1 00000000
11111011	MINHVC DOTA	

(в прямом двоичном коде минус пять записывается 10000101)

Вопрос: как перевести отрицательное число в двоичном дополнительном коде в прямую десятичную запись?

Вопрос: 10000000 - какое это число?

Представление со смещением (с избытком).

Пример: 3-х битовое представление 000 001 010 011 100 101 110 111 (со смещением 4) -4 -3 -2 -1 0 1 2 3

Вопрос: каково смещение в 1-байтовом представлении с избытком?

Представление с плавающей точкой.

Нормализованная запись числа: мантисса всегда меньше единицы и её первый разряд содержит отличную от нуля цифру (в двоичной системе счисления - единицу).

В общем случае запись числа А имеет вид:

$$A = (\pm M) \times Q^{\pm P}$$
,

где M – мантисса, Q – основание системы счисления, Р – порядок числа.

Пример: расшифруем число 01101011, записанное в формате с плавающей точкой (единица хранения — 1 байт, старший бит — знаковый, младшие 4 бита — мантисса, остальные три бита — порядок (записан в формате со смещением)).

0 110 1011 Знак Порядок Мантисса

.1011 — мантисса. В 3-х битовом представлении со смещением 110 — это два. Переносим точку вправо на два разряда: 10.11. Целая часть числа — 10 равна двум. Дробная часть числа — 11 равна 1/2 +1/4=3/4. Итак, 01101011 — это запись числа 2.75.

Стандарт IEEE записи чисел с плавающей точкой одинарной точности: старший бит – знак, 8 младших бит – порядок, остальные 23 бита – мантисса. Кроме того, не записывается первый бит мантиссы («скрытый»).

Вопрос: каков диапазон значений в такой записи?

Представление текста.

ASCII код

	. 0	.1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	.A	.в	.c	.D	.E	.F
0.	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	TAB	LF	VT	FF	CR	SO	SI
1.	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2.		!	"	#	Ş	8	&	1	()	*	+	,	_		/
з.	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	2
4.	@	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
5.	P	Q	R	S	Т	U	V	W	Х	Y	Z	[١]	^	_
6.		a	b	С	d	e	f	g	h	i	j	k	1	m	n	0
7.	p	q	r	s	t	u	v	W	x	У	z	{		}		DEL

Примечание (16-ричное представление):

В полубайте можно кодировать числа со значениями от 0 до 15. Для записи содержимого байта удобно использовать систему счисления с основанием 16.

0123456789 101112131415 0123456789 A B C D E F

Кодовые страницы.

Windows - 1251

	.0	.1	.2	.3	. 4	.5	. 6	.7	. 8	. 9	.A	.в	.c	.D	.E	. F
8.	T) 402	Ѓ 403	, 201A	Ѓ 453	" 201E	2026	† 2020	‡ 2021	€ 20AC	‱ 2030	Љ 409	2039	Њ 40A	Ќ 400	7ì 40B	Ц 40F
9.	ħ) 452	2018	2019	# 201C	" 201D	2022	_ 2013	2014		TM 2122	ЈЬ 459	, 203A	Њ 45A	Ŕ 450	ћ 458	Д 45F
Α.	A0	ў 40Е	ў 45Е	J 408	D 24	Г 490	 A6	§ a7	Ë 401	© A9	€ 404	« AB	- AC	AD	® ae	Ï 407
В.	o B0	± B1	I 406	i 456	Ґ 491	Ц в5	¶ 86	B7	ë 451	NQ 2116	6 454	» BB	j 458	S 405	S 455	Ï 457
c.	A 410	B 411	B 412	Γ 413	Д 414	E 415	Ж 416	3	И	Й 419	K 41A	Л 418	M 410	H 41D	() 41E	П 41F
D.	P 420	C 421	T 422	У 423	Ф 424	X 425	Ц 426	Ч 427	∐∐ 428	Ш 429	Ъ 422	Ы 428	Ь 420	∂ 42D	Ю 42E	Я 42F
E.	a 430	б 431	B 432	Г 433	Д 434	e 435	3€. 436	3 437	И 438	Й 439	K 43A	Л 43B	M 43C	H 43D	0 43E	П 43F
F.	p 440	C 441	T 442	У 443	ф	X 445	Ц 446	प 447	III 448	Щ 449	Ъ 44A	Ы 44В	Б 440	Э 44D	Ю 44E	Я 44F

Примечание (Unicode): под символами записаны кодировки Unicode.

KOI8 - R

		11 *	•													
	.0	.1	.2	.3	. 4	.5	.6	.7	.8	.9	.A	.В	.c	.D	.E	.F
8.	2500	2502	□ 250C	7 2510	L 2514		- 251C	- 2524		 2534	+ 253C	2580	2584	2588	258C	2590
9.	2591	2592	2593	2320	25A0	2219	√ 221A	≃≥ 2248	≤ 2264	≥ 2265	A0	2321	o B0	2 B2	B7	÷ F7
Α.	<u>=</u> 2550	 2551	F 2552	ë 451	Г 2553	F 2554	7 2555	7 2556	7 2557	≟ 2558	L 2559	<u>L</u> 255à	⊒ 255B		≟ 255D	255E
В.	- 255F	⊨ 2560	= 2561	Ë 401	- 2562	= 2563		T 2565	⊤ 2566	<u></u> 2567	 2568	<u></u> 2569	# 256A	+ 256B	‡ 2560	© 29
c.	Ю 44E	a 430	б 431	Ц 446	Д 434	e 435	ф 444	Г 433	X 445	И 438	Й 439	K 43A	Л 43B	M 43C	H 43D	0 43E
D.	П 43F	R TPP	p 440	C 441	T 442	У 443	Ж. 436	B 432	Ъ 440	Ы 44В	3 437	Ш 448	Э 44D	Щ 449	प 447	Ъ 44A
E.	Ю	A 410	B 411	Ц 426	Д 414	E 415	Ф 424	Г 413	X 425	И 418	Й 419	K 413	Л 41В	M 410	H 41D	O 41E
F.	∏ 41F	Я 42F	P 420	C 421	T 422	У 423	Ж 416	B 412	Б 420	Ы 428	3	∐∐ 428	∂ 42D	Щ 429	<u>Ч</u> 427	Ъ 42A

Фрагмент таблицы UNICODE (область ASCII)

0000000000000001111111111111111 0123456789ABCCEF0123456789ABCCEF

```
! " # $ % 8 ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0
 (ABCDEFGHIJKLNNCPCRSTUVVXYZ[\]^
4
   abcdefghijklnnopqrstuvwxyz{|}~
```

Фрагмент таблицы UNICODE (область кириллицы)

Фрагмент таблицы UNICODE (окончание)

Представления UNICODE: **UTF-8**, UTF-16, UTF-32 (от 2-х до 6 байт)