for Final Exam (ch1-12)

Natural Stats (mth24100)

nPr

Let A and B be events. Then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$;

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

If E and F are Independent, then $P(E \cap F) = P(E) * P(F)$

Combination n choose r: ${}_{n}\mathbf{C}_{r}$

Permutation *n* choose *r*:

If E and F are Mutually Exclusive (disjoint), then $P(E \cap F) = 0$

β	0.80	0.85	0.90	0.95	0.98	0.99
α	0.20	0.15	0.10	0.05	0.02	0.01
$Z_{\alpha/2}$	1.282	1.440	1.645	1.960	2.326	2.576

	Mean	Variance/ St. Dev.		
Population	$\mu = \frac{\sum X}{N}$	$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$		
Sample	$\bar{x} = \frac{\sum X}{n}$	$s^2 = \frac{\sum (X - \bar{x})^2}{n - 1}$		
Probability Distribution	$\mu = \sum X^* P(X)$	$\sigma^2 = \sum X^2 * P(X) - \mu^2$		
Binomial Distribution	$\mu=np$	$\sigma = \sqrt{np(1-p)}$		
Poisson Distribution	$\mu = \lambda$	$\sigma^2 = \lambda$		
Uniform Distribution	$\mu = \frac{c+d}{2}$	$\sigma = \frac{d - c}{\sqrt{12}}$		
Sample Mean Normal Distribution	$\mu_{ar{x}}=\mu$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$		
Sample Proportion Normal Distribution	$\mu_{\widehat{p}}=p$	$\sigma_{\widehat{p}} = \sqrt{rac{p(1-p)}{n}}$		

Graph Empirical Rule				68%	
		34%	34%		95%
	13.5%			13.5%	99.7%
0.15%					2.35% 0.15%
$\mu - 3\sigma \qquad \mu - 2$	2σ μ -	- <u>1</u> σ ι	μ+	$\frac{1}{x}\sigma$ μ +	$2\sigma \qquad \mu + 3\sigma$

Population z_score: $z = \frac{X - \mu}{\sigma}$; Sample: $z = \frac{X - \bar{x}}{s}$

Interquartile Formulas: $IQR = Q_3 - Q_1$; Lower Fence = $Q_1 - 1.5(IQR)$; Upper Fence = $Q_3 + 1.5(IQR)$

Sample Size for CI: $n = \left(Z_{\alpha/2} \frac{\sigma}{E}\right)^2$; $n = p(1-p) \left(\frac{Z_{\alpha/2}}{E}\right)^2$; $n_1 = n_2 = \frac{\left(Z_{\alpha/2}\right)^2 \left(\sigma_1^2 + \sigma_2^2\right)}{(\text{SE})^2} \stackrel{\text{or}}{=} \frac{\left(Z_{\alpha/2}\right)^2 \left(p_1 \left(1 - p_1\right) + p_2 \left(1 - p_2\right)\right)}{(\text{SE})^2}$

Calculator:

Data Analysis: $1 - Var Stats \underbrace{L_1}_{data}$, $\underbrace{L_2}_{frequency}$

Linear Reg: $\operatorname{LinReg}(ax + b) \underset{x-list}{\underbrace{L_1}}, \underset{y-list}{\underbrace{L_2}}; \quad s^2 = \frac{SSE}{n-2};$ Hyp Test for $\hat{\beta}_1$ LinRegTTest; Conf Int for $\hat{\beta}_1$ LinRegTInt

Binomial Distribution: $P(X = k) = \mathbf{binompdf}(n, p, k), \qquad P(X \le k) = \mathbf{binomcdf}(n, p, k)$

Poisson Distribution: $P(X = k) = \mathbf{Poissonpdf}(\lambda, k), \qquad P(X \le k) = \mathbf{Poissoncdf}(\lambda, k)$

Uniform Distribution: uniformly distributed on [c,d], $P(a \le X \le b) = \frac{b-a}{d-c}$

Normal Distribution: $P(a \le X \le b) = \mathbf{normalcdf}(a, b, \mu, \sigma)$

Inverse Normal: Find k so that $P(X \le k) = prob$. Then, $k = invNorm(prob, \mu, \sigma)$

Multiple Mean Comparison: ANOVA($L_1, L_2, L_3, ...$

	Population Mean, μ	Proportions, p	Pop. Mean Difference, $\mu_1 - \mu_2$	Proportions Difference, $p_1 - p_2$
Confidence Intervals	ZInterval or TInterval	1-PropZInt	2-SampZInt or 2-SampTInt	2-PropZInt
Hypothesis Testing	Z-Test or T-Test	1-PropZTest	2-SampZTest or 2-SampTTest	2-PropZTest