INFINICAM

検索

INFINICAM

USB3.1で120万画素の画像データを1,000コマ/秒でPCメモリに転送できるストリーミングハイスピードカメラです。 PCメモリに転送された画像データを画像処理することで、簡単に高速画像処理システムが構築できます。 最新版SDKではC++に加えて、コンピュータービジョン/マシンビジョン分野で一般的なPythonに対応しました。 より簡単で直感的なプログラミングでINFINICAMを使用したリアルタイム画像処理が可能になります。

製品特長

高速画像処理を シンプルに

これまで高速画像処理には専用ボードや複雑なケーブル配線が必要でしたが、汎用のUSB3.1TypeCケーブル1本とPC1台で環境を構築できます。

小型軽量・ 汎用 C マウント

55mm×55mm×55mm、280gの小型軽量筐体なので設置が簡単です。C マウントレンズ対応なので様々なレンズを選択できます。

リアルタイム 高速画像圧縮

データ容量を 1/4 以下にリアルタイム圧縮し、通常 USB3.1 では送れない解像度 1246×1008 画素で1,000 コマ/秒、最大3万コマ/秒の高速画像転送が可能です。

オープンな開発環境

最新 SDK や開発環境、マニュアル類を WEB 上でダウンロードできます。サンプルプログラムのソースコードなども順次公開しています。

例.) カメラの初期化と 1枚画像キャプチャ

cam = CameraFactory().create()
decoder = cam.decoder()
xferData = cam.grab()
img = decoder.decode(xferData)

たった 4 行のプログラミ ングでデータキャプチャ が可能

Python に対応し、より簡単・ 直感的なプログラミングが可能 になりました。例えば画像取得 のコーディングは左式のように、 たった 4 行で済むため、素早い 実装が可能です。

1,000 fps リアルタイム 画像処理のサンプル公開

左の画像は公開したサンプルアプリの一例です。スマートフォンの LED ライトを捉え、XY の座標値をリアルタイムで計算し出力できます。サンプルアプリにはソースコード(C++ および Python)が付いています。

アプリケーションと画像処理の例

- 物体検知
- ・物体追跡
- ・モーション解析 ・物体のラベリング
- ・テンプレートマッチング

- 表面
 料
 さ解析
- ・オプティカルフロー
- ・デジタルホログラフィ

製品仕様 -

モデル名	INFINICAM UC-1
センサタイプ	CMOSイメージセンサ
センササイズ	12.8×10.24mm
画素ピッチ※正方画素	10μm
有効最大解像度	1246×1024
最高撮影速度(フルフレーム)	988コマ/秒
最高撮影速度(分割フレーム)	31,157コマ/秒
最短露光時間	6.5µsec
シャッタ方式	グローバルシャッタ
濃度階調	モノクロ 8bit
インタフェース	USB3.1 Gen1 Type-C
レンズマウント	Cマウント
外部同期信号	2.5Vp-p(D I Nコネクタオス)
カメラ筐体	非密閉空冷型(ファン付き)
寸法/質量	55(W)×55(H)×55(D)mm/280g(突起物、付属品を除く)
保管温度/湿度	-20~60℃/85%以下(結露無き事)
動作温度/湿度	0~45℃/80%以下
DC電源	5V(USB Vbus供給)

開発環境

豊田営業所

OS	Microsoft Windows 10 64bit
CPU	AVX2対応プロセッサ
ランタイム	Visual C++ 2019 再頒布パッケージ
対応プログラミング言語	C++、Python

撮影性能

撮影速度(コマ/秒)	解像度
50	1246 × 1024
250	1246 × 1024
500	1246 × 1024
988	1246 × 1024
1,000	1246 × 1008
2,000	1246 × 496
5,000	1246 × 176
10,000	1246 × 80
20,000	1246 × 32
31,157	1246 × 16

- ※撮影速度は 1~ 31,157 コマ/秒の範囲で設定可。
- ※露光時間は開放 $\sim 6.5~\mu sec~$ の範囲で $0.01~\mu sec~$ 刻みで設定可。
- ※解像度は高さ方向 16 画素刻みで設定可。(分割フレーム時は制限あり)
- ※開発環境により設定した撮影性能が出ない場合があります。

SDKの主な関数 —

- ライブラリの初期化
- デバイスの検索
- デバイスオープン・クローズ リングバッファ数の取得・設定
- 撮影速度/シャッター速度の 画像の取得 取得・設定
- 露光期間/非露光期間の
- クロック設定
- 同期信号入力の取得・設定
- 連続転送の開始・終了

- 量子化テーブルの取得・設定
- 圧縮データのデコード

◆日本国外での使用をご検討の際は、輸出規制対象製品も含まれますので、必ず弊社にご相談ください。 ____ E-mail : image@photron.co.jp

-- お問い合わせ窓口:システムソリューション事業本部 -

記載の意匠や仕様は、予告無しに変更されることがあります。 記載の製品名等は、各社の登録商標または商標です。

Photron

株式会社フォトロン

〒101-0051 東京都千代田区神田神保町1-105 神保町三井ビルディング21階 TEL.03-3518-6271 FAX.03-3518-6279

〒460-0002 名古屋市中区丸の内1-5-28 伊藤忠丸の内ビル 名古屋営業所

TEL.052-232-2149 FAX.052-201-1269

〒470-1206 豊田市永覚新町3-47-1 TEL.0565-30-0029

〒530-0055 大阪市北区野崎町9-8 永楽ニッセイビル TEL.06-7711-9066 FAX.06-7711-0266 大阪営業所

〒814-0001 福岡市早良区百道浜2-1-22 福岡SRPセンタービル 福岡営業所

TEL.092-687-5551 FAX.092-687-5552

インターネットホームページ https://www.photron.co.jp/