This is a sample of the report, but applicable for all homework.

[112062542] [賴琮翰] This is for double verification.

Don't copy the problem statement, just write the answer.

Please write down the question number in unit of sub-question.

Please write down the sub-question number even if you don't know how to solve it.

(1.3.1)

Batch size = 1

Layer (type:depth-idx)	Output Shape	Param #		
Net	[1, 10]			
├—Sequential: 1-1	[1, 6, 28, 28]			
└─Conv2d: 2-1	[1, 6, 28, 28]	150		
└──ReLU: 2-2	[1, 6, 28, 28]			
├—Sequential: 1-2	[1, 6, 14, 14]			
	[1, 6, 14, 14]			
-Sequential: 1-3	[1, 16, 10, 10]			
└─Conv2d: 2-4	[1, 16, 10, 10]	2, 400		
└──ReLU: 2-5	[1, 16, 10, 10]			
├—Sequential: 1-4	[1, 16, 5, 5]			
	[1, 16, 5, 5]			
├—Sequential: 1-5	[1, 120, 1, 1]			
└──Conv2d: 2-7	[1, 120, 1, 1]	48,000		
	[1, 120, 1, 1]			
├—Sequential: 1-6	[1, 84]			
└─Linear: 2-9	[1, 84]	10,080		
└──ReLU: 2-10	[1, 84]			
-Sequential: 1-7	[1, 10]			
Linear: 2-11	[1, 10]	840		
T-+-1 61 470	=======================================	=======================================		

Total params: 61,470 Trainable params: 61,470 Non-trainable params: 0 Total mult-adds (M): 0.42

Input size (MB): 0.00

Forward/backward pass size (MB): 0.05

Params size (MB): 0.25

Estimated Total Size (MB): 0.30

(1.3.2)

Batch size = 1

	Type	Input Output		Activation
		Activation Size	Activation Size	Function
conv1	Convolution	1*32*32 = 1024	6*28*28 = 4704	ReLU
maxpool2	Pooling	6*28*28 = 4704	6*14*14 = 1176	
conv3	Convolution	6*14*14 = 1176	16*10*10 = 1600	ReLU
maxpool4	Pooling	16*10*10 = 1600	16*5*5 = 400	
conv5	Convolution	16*5*5 = 400	120*1*1 = 120	ReLU
fc6	Fully connected	120*1*1 = 120	84	ReLU
output	Fully connected	84	10	

(1.3.3)

Paper內的Lenet-5架構和本次作業提供的code差異之處在於Activation Function的選擇。 論文中使用sigmoid squashing function,而作業的code使用ReLU function來加速訓練過程和提 高效能。

(1.3.4)

單就模型能否正常運作這點來看,我認為是可以將conv5替換為fully connected layer的,因為 卷積層和全連接層本質上都是在做矩陣乘法,所以只要考慮到input/output activation size,替 換後是可以正常使用的。然而,全連接層的參數量遠大於卷積層,會使模型效能降低。

(2.1.1)

(2.1.2)

	Range		3-sigma range		雨Range間大
	Min	Max	μ-3σ	μ+3σ	小關係
Conv1	-0.356631	0.470222	-0.440169	0.459173	B > A
Conv2	-0.831554	0.393874	-0.540313	0.451378	A > B
Conv3	-0.789741	0.677149	-0.428571	0.395550	A > B
Fc1	-0.600528	0.474918	-0.401008	0.381691	A > B
Fc2	-1.060360	0.229388	-0.694463	0.443968	A > B

Note: A = Range, B = 3-sigma range

(2.1.3)

我會傾向於使用 3-sigma range 來 quantize weight,原因為觀察上述 weight 直方圖可發現 weight 基本上是呈現類似常態分布,因此用 3-sigma range 即可以涵蓋絕大多數資料範圍,並且避免了使用 min-max range 可能會有 outlier 導致精度下降的問題。至於 3-sigma range 無法包含的數值,則 map 到欲 quantize 值閾的最大與最小值。

(2.2.1)

scaling factor 是(max(abs(sigma_range_max), abs(sigma_range_min)))/127, sigma_range_max 和 sigma_range_min 取 3-sigma range 的兩端點, 127 是因為要 map 到 8 bits 有號整數,此處為 symmetric quantization。

(2.2.2)

很奇怪的是,做完quantization後準確率反而提升,因此accuracy degradation為 -0.01%

Accuracy of the network on the test images: 98.67%

Accuracy of the network after quantizing all weights: 98.68%

(2.3.2)

	Range		3-sigma range		雨Range間大
	Min	Max	μ-3σ	μ+3σ	小關係
Input	-1.000000	0.984314	-2.483544	1.037082	B > A
Conv1	0.000000	2.368435	-0.857875	1.140249	B > A
Conv3	0.000000	4.735325	-1.236447	1.507193	B > A
Conv5	0.000000	9.576344	-5.380785	6.906925	B > A
Fc6	0.000000	12.349260	-6.600145	9.011153	B > A
Output	-22.772041	8.168824	-42.317790	16.034135	B > A

Note: A = Range, B = 3-sigma range

(2.3.3)

我會使用 min-max range 來 quantize each layer's output activations ,原因是 activations 的資料分布非常不平均,資料平均值位於 0 ,但其餘資料都位於正值。

(2.4.1)

 S_I , SWconvI,與 SOconvI 皆是透過 symmetric quantization 的方式來計算,以 S_I 為例,具體公式為 Max(abs(Input Activation_i)) / 127,除上 127 是因為要映射到 8bits 有號數區間,其餘兩個算法 以此類推。

(2.4.2)

浮點數卷積運算 I*W=O, Quantize前後運算式要相等,所以

$$(SI*Iq)*(SWconv1*Wconv1q) = (SOconv1*Oconv1q)$$

經過移項後可得,

$$Oconv1q = \frac{SWconv1 * SI}{SOconv1} * (Iq * Wconv1q)$$

$$M1 = \frac{SWconv1 * SI}{SOconv1}$$

(2.4.3)

Conv3 運算同樣可寫為

(SIconv3*Iconv3q) * (SWconv3 * Wconv3q) = (SOconv3 * Oconv3q) 對於 Conv3 來說,其 input 為 Conv1 的 Output,因此等式可改寫為

(SOconv1*Oconv1q)*(SWconv3*Wconv3q)=(SOconv3*Oconv3q) 經過移項後可得,

$$Oconv3q = \frac{SWconv3 * SOconv1}{SOconv3} * (Oconv1q * Wconv3q)$$

(2.4.4)

For Layer n Mn = SWn * SI / SOn, if n = 1 = SWn * SOn - 1 / SOn, else

(2.4.5) accuracy degradation: 0.01%

Accuracy of the network on the test images: 98.67%

Accuracy of the network after quantizing both weights and activations: 98.66%

(2.4.6)

使用 floor 可以簡化硬體層面的實現難度,假設用 round 則需要另外實作進位的硬體,並且因為統一為捨去,能確保誤差的一致性。

(2.4.7)

```
input_scale:
                                                                127.0
print("input_scale:\n", net_quantized.input_scale.item())
                                                                output_scale:
:print("output_scale:\n {}\n {}\n {}\n {}\n {}\n {}\n {}
                                                                0.001526550273410976
         net_quantized.conv1.output_scale.item(),
                                                                0.002127912361174822
         net_quantized.conv3.output_scale.item(),
                                                                0.0016686655580997467
         net_quantized.conv5.output_scale.item(),
                                                                0.0024485469330102205
         net_quantized.fc0.output_scale.item(),
                                                                0.0029654093086719513
         net_quantized.output.output_scale.item()
                                                                input_scale:
: ))
                                                                127.0
print("input_scale:\n", net_quantized.input_scale.item())
                                                               input_scale:
print("output_scale:\n {}\n {}\n {}\n {}\n {}\n {}\.format(
                                                                127.0
        round(1/net_quantized.conv1.output_scale.item()),
                                                               output_scale:
        round(1/net_quantized.conv3.output_scale.item()),
                                                                655
        round(1/net_quantized.conv5.output_scale.item()),
                                                                470
        round(1/net_quantized.fc0.output_scale.item()),
                                                                599
        round(1/net_quantized.output.output_scale.item())
                                                                408
                                                                337
```

round(1/output_scale)所產生的數值為整數,x/round(1/output_scale)為整數除法運算,硬體實現比浮點數乘法運算 x*output scale 簡單。

(2.5.1)

從題目給的方程式開始推導

$$M \times (W_q \times I_q + \beta_q) = O_q$$

因為是在最後一層(非第一層)加上 bias, M 展開來可寫為

$$\frac{SW * SOn - 1}{SOn} \times (W_q \times On - 1_q + \beta_q) = O_q$$

移項整理

$$(SW * W_q) * (SOn - 1 \times On - 1_q) + (SW * SOn - 1) * \beta_q = SOn * O_q$$

所以最後一層的 bias 的 scaling factor 應是 (SW*SOn-1) ,即最後一層 weight 的 scaling factor 乘上倒數第二層的 output scaling factor。

Accuracy of the network on the test images after all the weights are quantized but the bias isn't: 98.22% Accuracy of the network on the test images after all the weights and the bias are quantized: 98.25%

(3.1.1)

QAT 因為在模型訓練過程中就加入了 quantization,因此訓練出來的 weight 能比較好的適應 quantization error,故 accuracy 高於直接做 quantization 的 PTQ。

(3.1.2)

Quant 用來將 weight quantization 成低精度的數值(ex. int8, 但仍用 float23 儲存), 經過一層卷積運算後透過 dequant 還原成高精度數值(ex. float32), 這是為了反映出 quantization error, 並且浮點數的輸出可以藉由 backward propagation 調整 weight, 最後找出最佳的 weight。