PhầnI: CHUẨN BỊ THÍ NGHIỆM

BÀI THÍ NGHIỆM SỐ 1

XÂY DỰNG ĐẶC TÍNH CƠ ĐIỆN MỘT CHIỀU KÍCH TỪ ĐỘC LẬP <u>I.MỤC ĐÍCH THÍ NGHIỆM</u>

Bằng tính toán lý thuyết và thực nghiệm vẽ các đặc tính cơ - điện (hoặc đặc tính cơ) của động cơ một chiều kích từ độc lập ở các chế độ làm việc khác nhau.

Sơ đồ thí nghiệm vẽ trên hình 12, trong đó:

-Động cơ thí nghiệm ĐTN, các máy phụ tải F1, F2 có các thông số hoàn toàn như nhau. Cụ thể là :

Kiểu máy điện $\Pi n - 45T$

 P_{dm}^{\cdot} =2,5 Kw; U_{dm} =220 V ; I_{dm} = 14,4 A; n_{dm} = 1000 v/ph;

Dòng kích từ định mức I_{ktdm} =0,72 A ; η_{dm} = 79% . điện trở phần ứng(kể cả điện trở tiếp xúc của chỗi than) là : r_{tr} =1,56 Ω

Nội dung tính toán thí nghiệm:

1. Vẽ đặc tính cơ tự nhiên của động cơ:

 U_{dm} =220 V =const; I_{ktdm} =0,72 A=const; R_f =0;

2. Vẽ đặc tính cơ biến trở ứng với hai trường hợp

 $a_{r_u} = 4 \Omega$; $U_{dm} = 220 V = const$; $I_{ktdm} = 0.72 A = const$, $r_u = 1.56 = const$;

 $b_{r}R_{f}=18\Omega$; $U_{dm}=220=const$; $I_{ktdm}=0.72A=const$, $r_{u}=1.56=const$;

3. vẽ đặc tính cơ giảm từ thông (với giả thiết mạch từ chưa bão hoà) ứng với :

a, $I_{kt1}=0.65$; $U_{dm}=220 \text{ V} = \text{const}$; $R_f=0$;

b, I_{kt2} =0,55; U_{dm} =220V=const; R_f =0;

4. Vẽ đặc tính cơ khí khi động cơ được hãm động năng kích từ độc lập trong 2 trượng hợp sau;

 $a,R_{h1}=4\Omega; I_{ktdm}=const.$

 $b,R_{h2}=8\Omega;$

BÀI 1: XÂY DỰNG ĐẶC TÍNH CƠ ĐIỆN MỘT CHIỀU KÍCH TỪ ĐỘC LẬP I.VỀ ĐẶC TÍNH CƠ TỰ NHIÊN CỦA ĐỘNG CƠ

Từ phương trình đặc tính cơ của động cơ điện một chiều kích từ độc lập:

$$\omega = \frac{U_u}{K\phi} - \frac{R_u + R_f}{(K\phi)^2} M \; ;$$

khi R_f =0 tức ta có đặc tính cơ tự nhiên. Đặc tính này đi qua 2 điểm cơ bản đó là:

(M=0,I= $\omega_{o})$ và (M=M_{dm} , ω = ω_{dm})

điểm thứ nhất là điểm không tải lí tưởng:

$$\omega_0 = \frac{U_{dm}}{K\phi_{dm}} \text{ v\'oi } K\phi_{dm} = \frac{U_{dm} - I_{dm}R_u}{\omega_{dm}} = \frac{220 - 14, 4.1, 56}{2.3, 14. \frac{1000}{60}} = 1,88 \Rightarrow \omega_o = \frac{220}{1,88} = 116,7 \text{ (rad/s)}$$

Điểm thứ hai là điểm định mức:

$$\omega_{dm} = \frac{n_{dm}}{9,55} = \frac{1000}{9,55} = 104,7 \text{ (rad/s)} \text{ và } M_{dm} = \frac{P_{dm}}{\omega_{dm}} = \frac{2,5.10^3}{104,7} = 23,9 \text{ (Nm)}$$

II. ĐẶC TÍNH CƠ BIẾN TRỞ ỨNG VỚI 2 TRƯỜNG HỢP

a. Vẽ đặc tính cơ với R_f = 4Ω và U= U_{dm} = 220 = const, I_{ktdm} =0,72 A = const: Đặc tính sẽ đi qua hai điểm .

- Điểm đầu là $\omega = \omega_0 = 116,7$ khi M=0;
- Điểm thứ hai là: tì m ω_{ntdm1} ứng với M=M_{dm}=23,9

Từ phương trình

$$\omega_{nidm1} = \omega_{dm} \frac{U_{dm} - I_{dm}(R_u + R_f)}{U_{dm} - I_{dm}R_u} = 104,7 \frac{220 - 14,4(1,56 + 4)}{220 - 14,4.1,56} = 74,17$$

$$\omega_{ntdm1}$$
=74,17 với M=M_{đm};

b. Vẽ đặc tính cơ với R_f = 18 Ω và U= U_{dm} = 220 = const, I_{ktdm} =0,72 A = const: $\omega=\omega_0$ khi M=0 ; Tương tự trên ta có

$$\omega_{ntdm2} = \omega_{dm} \cdot \frac{U_{dm} - I_{dm}(R_u + R_f)}{U_{dm} - I_{dm}R_u} = 104,7 \cdot \frac{220 - 14,4(1,56 + 18)}{220 - 14,4(1,56)} = -32,68 \text{ khi M=M}_{dm};$$

Vậy đặc tính cơ biển trở là đường đi qua

- Đường 1: $(\omega = \omega_0, M=0)$ và $(\omega = 74,17, M=23,9)$
- Đường 2: $(\omega = \omega_0, M=0)$ và $(\omega = -32,68, M=23,9;$

III.VĒ ĐẶC TÍNH CƠ GIẢM TỪ THÔNG

a. Vẽ đặc tính cơ giảm từ thông với I_{kt} = 0,65A, R_f =0, U= U_{dm} ;

Vì mạch từ chưa bão hoà nên ta có:

$$x_{1} = \frac{\phi_{dm}}{\phi_{1}} = \frac{0.72}{0.65} = 1,108 \text{ và} \quad I_{nm} = \frac{U_{dm}}{R_{u}} = \frac{220}{1,56} = 141,03 \text{ (A)}$$

$$M_{nm1} = \frac{M_{nmdm}}{x_{1}} = \frac{K\phi_{dm}I_{nm}}{x_{1}} = \frac{1,88.141,03}{1,108} = 239,3 \text{ (Nm)}, \text{ và}$$

$$\omega_{01} = \frac{U_{dm}}{K\phi_{0}} = x.\omega_{0} = 1,108.116,7 = 129,3;$$

Vậy đặc tính cơ đi qua 2 điểm A(0;129,3);B(239,3;0);

b. Vẽ đặc tính cơ giảm từ thông với I_{kt} = 0,55A, R_f =0, U= U_{dm} ;

Tương tự như trên ta có:

$$x_2 = \frac{\phi_{dm}}{\phi_2} = \frac{I_{ktdm}}{I_{kt2}} = \frac{0,72}{0,55} = 1,309, \text{ và}$$

$$M_{nm2} = \frac{K\phi_{dm}}{x_2} I_{nm} = \frac{1,88.141,03}{1,309} = 202,5 \text{ và } \omega_{02} = x_2.\omega_0 = 1,309.116,7 = 152,8 \text{ (rad/s)}$$

Vậy đặc tính cơ đi qua 2 điểm A(0;152,8);B(202,5;0);

IV.VĒ ĐẶC TÍNH CƠ KHI ĐỘNG CƠ ĐƯỢC HẪM ĐỘNG NĂNG KÍCH TỪ ĐỘC LẬP TRONG HAI TRƯƠNG HỢP.

a. Vẽ đặc tính cơ với R_{h1} =4 Ω , I_{ktdm} = const;

Khi động cơ đang làm việc ở chế độ định mức ta thực hiện hãm $\omega_{hd}=\omega_{dm}$

Ta có
$$M_{hd1} = K\phi I_{hd} = K\phi \frac{-K\phi\omega_{hd}}{R_u + R_{h1}} = \frac{-(K\phi_{dm})^2\omega_{hd}}{R_u + R_{h1}} = -\frac{1,88^2.104,7}{1,56+4} = -67,03 \text{ (Nm)}$$

Đường đặc tính đi qua 2 điểm:

 $(M = -67,03 ; \omega = 104,07) \text{ và } (M = 0; \omega = 0);$

b. Vẽ đặc tính cơ với R_{h1} =8 Ω , I_{ktdm} = const;

Turong tự ta có:
$$M_{hd2} = -\frac{(K\phi_{dm})^2 \omega_{hd}}{R_u + R_h} = -\frac{1,88^2.104,7}{1,56+8} = -38,98 \text{ (Nm)}$$

Đường đặc tính qua 2 điểm:

$$(M = -38.98; \omega = 104.07) \text{ và } (M = 0; \omega = 0)$$

Ta sẽ thể hiện các đường đặc tính đó trên cùng một đồ thị sau:

1: Đặc tính cơ tự nhiên của động cơ

2a, 2b: Đặc tính cơ biến trở ứng với 2 trường hợp

$$R_{f1} = 4\Omega, R_{f2} = 18\Omega$$
;

3a,3b: Đặc tính cơ giảm từ thông khi $I_{kt1}=0,65A$, $I_{kt2}=0,55A$;

4a,4b : Đặc tính cơ khi động cơ được hãm động năng kích từ độc lập trong 2 trường hợp

$$R_{h1}=4\Omega$$
, $R_{h2}=8\Omega$;

BÀI 2:

XÂY DỰNG ĐẶC TÍNH CƠ CỦA ĐỘNG CƠ KHÔNG ĐỒNG BỘ RÔTO DÂY QUẨN.

I.MŲC ĐÍCH

Bằng tính toán lí thuyết và thực nghiệm vẽ các đặc tính cơ của động cơ không đồng bộ rôto dây quấn ở các chế độ làm việc khác nhau:

1 .Các số liệu kĩ thuật của động cơ:

$$n_{dm} = 1430 \text{v/ph}, E_{2dm} = 192, I_{2dm} = 8\text{A};$$

$$r_1=3,16\Omega$$
, $r_2=2,14\Omega$, $x_1=4,03\Omega$, $x_2=6,7\Omega$, $x_0=103\Omega$.

2. Các điện trở biến trở:

Các biến trở R₂, R₄ có các thông số như đã cho ở bài 1.

 R_f có trị số: $3 \times 2.5\Omega$,

 R_{hc} có trị số : 250 Ω , I_{dm} =2,4A mã hiệu P Π C

3. Các số liệu của máy phát phụ tải F₁:

$$P_{dm}$$
=2,5Kw; U_{dm} =115V; I_{dm} =22,6; n_{dm} =1450 v/ph; I_{ktdm} =1,9A;

Hiệu suất định mức η_{dm} =78,5%;

Trong thí nghiệm stato động cơ đấu sao nên U_{dm} =380V roto động cơ cũng đấu sao .

II.NỘI DUNG TÍNH TOÁN LÝ THUYẾT:

1. Vẽ đặc tính cơ tự nhiên với điện áp dây định mức U_{dm} =380=const, điện trở trong mạch rôto R_f =0;

với
$$U_{dm}=380V$$
 và động cơ mắc kiểu $\frac{\Delta}{\Upsilon}$ nên $U_{fdm}=\frac{380}{\sqrt{3}}=220V$;

$$I_{dm} = I_{fdm} = 4.3 \text{A.}$$
 $\omega_{dm} = \frac{n_{dm}}{9.55} = \frac{1430}{9.55} = 149.74 (rad/s), a = r_1/r_2 = 3.16/2.14 = 1.477;$

$$n_{1} = 1500 \, \frac{1}{p_{ph}}; \omega_{1} = \frac{2\pi f}{p} = 157(rad/s); x_{nm} = x_{1} + x_{2}^{'} = 10,73\Omega \,,$$

$$s_{th} = \frac{r_{2}^{'}}{\sqrt{r_{1}^{2} + x_{nm}^{2}}} = \frac{2,14}{\sqrt{3,16^{2} + 10,73^{2}}} = 0,1913;$$

$$M_{th} = \frac{3.U_{f1}^{2}}{2.\omega_{1}(r_{1} + \sqrt{r_{1}^{2} + x_{nm}^{2}})} = \frac{3.220^{2}}{2.157(3,16 + \sqrt{3,16^{2} + 10,73^{2}})} = 32,23(Nm)$$

$$M = \frac{2.M_{th}(1 + a.s_{th})}{\frac{s}{s_{th}} + \frac{s_{th}}{s} + 2a.s_{th}} = \frac{2.32,23(1 + 1,477.0,1913)}{\frac{0,1913}{s} + \frac{s}{0,1913} + 0,565}$$

Từ biểu thức trên ta có bảng giá trị sau:

n(v/p)	1500	1400	1300	1213	1100	900	500	0
S	0	0,0667	0,133	0,1913	0,266	0,4	0,667	1
M(Nm)	0	21,86	30,62	32,23	31,02	26,3	19,02	13,82

2. Vẽ đặc tính cơ biển trở với $U_{\text{dm}}\!\!=\!\!380V\!\!=\!\!\text{const}$, trong hai trường hợp a. R $_{\text{fl}}\!\!=\!\!0,\!9\Omega$

$$\longrightarrow R_{f1} = k_e^2 . R_{f1}; k_e = 0.955. \frac{U_{dm}}{E_{2dm}} = 0.955. \frac{220\sqrt{3}}{192} = 1.88; R_{f1} = 1.88^2 . 0.9 = 3.18\Omega$$

$$a_1 = \frac{r_1}{r_2 + R_{f1}} = \frac{3.16}{2.14 + 3.18} = 0.6; s_{th1} = \frac{r_2 + R_{f1}}{\sqrt{r_1^2 + x_{nm}^2}} = \frac{2.14 + 3.18}{\sqrt{3.16^2 + 10.73^2}} = 0.476;$$

$$n_{th1} = 786(v/ph); M_{th} = 32.23(Nm); M = \frac{2M_{th}(1 + a_1 s_{th1})}{\frac{s}{s} + \frac{s_{th1}}{s} + 2a_1 s_{th1}} = \frac{82.87}{\frac{s}{0.476} + \frac{0.476}{s} + 0.5712}$$

Từ biểu thức này ta lập bảng:

n(v/ph)	1500	1400	1000	786	400	0	-100
S	0	0,066	0,333	0,476	0,733	1	1,067
M(Nm)	0	10,55	30,6	32,23	29,62	26,32	25,43

$$b.R_{f2}=2,5$$

$$a_{2} = \frac{r_{1}}{r_{2} + R_{f2}} = \frac{3,16}{2,14 + 8,84} = 0,29; s_{th2} = \frac{r_{2} + R_{f2}}{\sqrt{r_{1}^{2} + x_{nm}^{2}}} = \frac{2,14 + 8,84}{\sqrt{3,16^{2} + 10,73^{2}}} = 0,98;$$

$$n_{th2} = 30(v/ph); M = \frac{2M_{th}(1 + a_{2}s_{th2})}{\frac{s}{s_{th2}} + \frac{s_{th2}}{s} + 2a_{2}s_{th2}} = \frac{82,87}{\frac{s}{0.98} + \frac{0,98}{s} + 0,5684}$$

ta có bảng giá tri:

n(v/ph)	1500	1200	600	300	100	30	0
S	0	0,2	0,6	0,8	0,93	0,98	1
M(Nm)	0	14,8	29,9	31,7	32,01	32,12	32,2

3. Vẽ đặc tính cơ khi động cơ được hãm động năng ứng với ba trường hợp

a.R_{f1}=2,2
$$\Omega$$
; I_{mc}=3A; $R_{f1}' = k_e^2$. $R_{f1} = 1.88^2$.2,2=7,78 Ω ; $I_1 = \sqrt{\frac{2}{3}}$.3 = 2,45 A
R₂'=r₂'+R_{f1}'=2,14+7,78=9,93 Ω
 $\omega_{th}'' = \frac{R_2'}{x_0 + x_2'} = \frac{9,92}{103+6,7} = 0,09$; $M_{th} = \frac{3I_1^2 \cdot x_0^2}{2\omega_1(x_0 + x_2')} = 5,55(Nm)$;
 $M = \frac{2M_{th}}{\frac{\omega_{th}}{w_{th}}} = \frac{11,1}{\frac{\omega_{th}}{w_{th}}}; \omega^* = \frac{\omega}{\omega_1} = \frac{n}{n_1} = \frac{n}{1500}$;

ta có bảng gia trị sau

n(v/p)	1500	1200	900	600	300	135	60	0
ω^*	1	0,8	0,6	0,4	0,2	0,09	0,04	0
M(Nm)	0,99	1,23	1,628	2,38	4,15	5,55	4,12	0

b. R_{f2} =2,5 Ω dòng điện một chiều khi hãm I_{mc} =3A;

$$R_{f2}' = k_e^2 \cdot R_{f2} = 1,88^2 \cdot 2,5 = 8,84\Omega$$
; $I_1 = \sqrt{\frac{2}{3}} \cdot 3 = 2,45A$; $R_2' = r_2' + R_{f2}' = 2,14 + 8,84 = 10,98$

$$\omega_{th}^* = \frac{R_2'}{x_0 + x_2'} = \frac{10,98}{103 + 6,7} = 0,1; M_{th} = \frac{3I_1^2 \cdot x_0^2}{2\omega_1(x_0 + x_2')} = 5,55(Nm);$$

$$M = \frac{2M_{th}}{\frac{\omega^*}{\omega^*} + \frac{\omega_{th}^*}{\omega^*}} = \frac{11,1}{\frac{\omega^*}{0.1} + \frac{0,1}{\omega^*}}; \omega^* = \frac{\omega}{\omega_1} = \frac{n}{n_1} = \frac{n}{1500};$$

ta có bảng:

n(v/p)	900	600	300	150	60	30	10	0
ω^*	0,6	0,4	0,2	0,1	0,04	0,02	0,007	0
M(Nm)	1,8	2,61	4,44	5,55	3,83	2,13	0,76	0

c. R_{f3} =2,5 Ω dòng điện một chiều khi hãm I_{mc} =4A;

$$R_{f2}' = k_e^2 \cdot R_{f2} = 1,88^2 \cdot 2,5 = 8,84\Omega ; I_1 = \sqrt{\frac{2}{3}} \cdot 4 = 3,26A ; R_2' = r_2' + R_{f2}' = 2,14 + 8,84 = 10,98$$

$$\Omega \omega_{th}^* = \frac{R_2'}{x_0 + x_2'} = \frac{10,98}{103 + 6,7} = 0,1; M_{th} = \frac{3I_1^2 \cdot x_0^2}{2\omega_1(x_0 + x_2')} = 9,82(Nm);$$

$$M = \frac{2M_{th}}{\omega_{th}^*} = \frac{19,64}{\omega_{th}^*}; \omega^* = \frac{\omega}{\omega_1} = \frac{n}{n_1} = \frac{n}{1500};$$

bảng giá trị:

n(v/p)	900	600	300	150	60	30	10	0
ω^*	0,6	0,4	0,2	0,1	0,04	0,02	0,007	0
M(Nm)	3,18	4,62	7,86	9,82	6,77	3,78	1,3	0

Từ các mục đã tính được ta vẽ các đường đặc tính cơ với từng trường hợp (trên cùng đồ thị)

Đồ thị hình bên:

Với 1: là đặc tính cơ tự nhiên ở điện áp định mức và R_f=0;

2a và 2b là hai đặc tính cơ biến trở tương ứng R_E=0,9 và 2,5;

3a, 3b và 3c là những đặc tính cơ khi động cơ hãm động năng tương ứng với R_f =2,2 Ω , R_f =2,5 Ω khi I mc=3A và R_f =2,5 Ω khi I mc=4A

BÁO CÁO THÍ NGHIỆM TRUYỀN ĐỘNG ĐIỆN PHẦN LÝ THUYẾT	