Lecture 2.2: Priors

The Bayesian hierarchical model

Prior distributions

Priors

- Reflect our prior expectation (and uncertainty) about parameters (without knowledge of the data)
 - Past observations
 - Biological intuition
 - Biological models

- Beta
- Dirichlet

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

λ = rate of decay

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

- α = shape
- β = inverse scale

Scaled gamma:

α=β

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Used to specify the prior distributions of simplex parameters

- Base frequencies
- · Relative rates in GTR model

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• α_1 , α_2 , ... = shape parameters

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$$

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 300$$

Discrete distributions

- Bernoulli distribution
- Binomial
- Multinomial
- Poisson

Default priors

	BEAST	MrBayes
Rate matrix parameters	Gamma(0.05,10)	Dirichlet(1,1,1,1,1,1)
Base frequencies	Uniform(0,1)	Dirichlet(1,1,1,1)
Shape parameter (α)	Exponential(0.5)	Exponential(2)
Proportion invariable	Uniform(0,1)	Uniform(0,1)

Uninformative priors

- Flat of uniform prior
- Jeffreys prior
 - Invariant to reparameterisation
 - Only works well for models with a single parameter
- Reference priors
 - Maximise expected distance between prior and posterior
 - Allows data to have maximum effect on the posterior

Bayesian relaxed clocks and priors

Relaxed clocks

- We know that life-history characteristics:
 - Have effects on rates of molecular evolution
 - Are usually heritable to some degree
- Treat molecular rate as a heritable trait
- Relaxed clocks generally assume that closely related species share similar rates

Bayesian relaxed clocks

- Allow a different rate in each branch
- Statistical models of rates among branches
- Rates can be autocorrelated or uncorrelated
 - Autocorrelated: rates in neighbouring branches are related
 - Uncorrelated: rates identically and independently distributed among branches

Autocorrelated relaxed clock

Uncorrelated relaxed clock

Uncorrelated relaxed clock

- Models available in BEAST
 - Exponential distribution
 Most rates are quite low
 - Lognormal distribution
 Most rates cluster around the mean

Lognormal uncorrelated relaxed clock

 In the uncorrelated lognormal relaxed clock, two statistics can be obtained:

1. Coefficient of variation of rates

Measures the rate variation among branches A value of 0 indicates clocklike evolution

2. Covariance of rates

Measures autocorrelation of rates between adjacent branches

Calibrating the molecular clock

Calibrating the molecular clock

Calibrating the molecular clock

Parametric prior distributions

Parametric prior distributions

From: Ho and Duchene 2014 Molecular Ecology

Go to Practical 2: Markov Chain Monte Carlo