Suite et séries de fonctions

Exercice 1 (Domaine de définition) Soit $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ et $\mu(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}$. Déterminer le domaine de définition de la fonction ζ , appelé fonction de Rienman et de la fonction μ .

Exercice 2 (Convergence simple) Soit $(f_n)_{n\in\mathbb{N}}$, $(g_n)_{n\in\mathbb{N}}$ et $(h_n)_{n\in\mathbb{N}}$, les suites de fonctions définies par $\forall n \in \mathbb{N}^* : f_n : x \mapsto x^n$, $g_n : x \mapsto (1 + \frac{x}{n})^n$, $h_n : x \mapsto xn^a e^{-nx}$. Démontrer que ces fonctions converge simplement sur l'intervalle [0,1] et déterminer la limite.

Exercice 3 (Convergence uniforme) Soit la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie par :

$$f_n \mid_{x \longmapsto x^2 e^{-nx}}^{\mathbb{R}^+}, \quad \forall n \in \mathbb{N}.$$

Étudier la convergence de cette suite de fonctions.

Exercice 4 (Vrai/Faux) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions qui converge simplement vers une fonction f sur un intervalle I. Dire si les assertions suivantes sont vraies ou fausses :

- 1. Si les f_n sont croissantes, alors f aussi.
- 2. Si les f_n sont strictement croissantes, alors f aussi.
- 3. Si les f_n sont périodiques de période T, alors f aussi.
- 4. Si les f_n sont continues en a, alors f aussi.

Reprendre l'exercice en remplaçant la convergence simple par la convergence uniforme.

Exercice 5 (Étude de convergence simple et uniforme détaillée) Pour $x \in \mathbb{R}$, on pose $f_n(x) = 1 + x + \cdots + x^{n-1}$.

- 1. Étudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$. On note f(x) la limite de la suite $(f_n(x))$ lorsque cette limite existe.
- 2. On pose, pour $x \in]-1,1[, \varphi_n(x)=f(x)-f_n(x)]$. Vérifier que

$$\varphi_n(x) = \frac{x^n}{1 - x}.$$

- 3. Quelle est la limite de φ_n en 1? En déduire que la convergence n'est pas uniforme sur]-1,1[.
- 4. Soit $a \in]0,1[$. Démontrer que $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur [-a,a].

Exercice 6 (Convergence uniforme sur un intervalle plus petit...) On pose, pour $n \ge 1$ et $x \in]0,1]$, $f_n(x) = nx^n \ln(x)$ et $f_n(0) = 0$.

- 1. Démontrer que $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1] vers une fonction f que l'on précisera. On note ensuite $g=f-f_n$.
- 2. Étudier les variations de g.
- 3. En déduire que la convergence de $(f_n)_{n\in\mathbb{N}}$ vers f n'est pas uniforme sur [0,1].

4. Soit $a \in]0,1]$. En remarquant qu'il existe $n_0 \in \mathbb{N}$ tel que $e^{-1/n} \ge a$ pour tout $n \ge n_0$, démontrer que la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur [0,a].

Exercice 7 (Avec paramètre) Soit $a \ge 0$. On définit la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ sur [0, 1] par $f_n(x) = n^a x^n (1-x)$. Montrer que la suite $(f_n)_{n \in \mathbb{N}}$ converge simplement vers 0 sur [0, 1], mais que la convergence est uniforme si et seulement si a < 1.

Exercice 8 (Convergence uniforme et fonctions bornées) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions bornées, $f_n:\mathbb{R}\to\mathbb{R}$. On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f. Montrer que f est bornée. Le résultat persiste-t-il si on suppose uniquement la convergence simple?

Exercice 9 (Convergence simple et fonctions décroissantes) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions décroissantes définies sur [0,1] telle que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction nulle. Montrer que la convergence est en fait uniforme.

Exercice 10 (Exemples et contre-exemples) Pour $x \ge 0$, on pose $u_n(x) = \frac{x}{n^2 + x^2}$.

- 1. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge uniformément sur tout intervalle [0, A], avec A > 0.
- 3. Vérifier que, pour tout $n \in \mathbb{N}$, $\sum_{k=n+1}^{2n} \frac{n}{n^2+k^2} \geqslant \frac{1}{5}$.
- 4. En déduire que la série $\sum_{n\geq 1} u_n$ ne converge pas uniformément sur \mathbb{R}_+ .
- 5. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ converge uniformément sur \mathbb{R}_+ .
- 6. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ converge normalement sur tout intervalle [0, A], avec A > 0.
- 7. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ ne converge pas normalement sur \mathbb{R}_+ .

Exercice 11 (Série alternée) On considère la série de fonctions $S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}$.

- 1. Prouver que S est définie sur $I =]-1, +\infty[$.
- 2. Prouver que S est continue sur I.
- 3. Prouver que S est dérivable sur I, calculer sa dérivée et en déduire que S est croissante sur I.
- 4. Quelle est la limite de S en -1? en $+\infty$?

Exercice 12 (Convergence normale) Soit $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$.

Démontrer que la fonction zeta converge normalement sur tout intervalle $[a, \infty[$ avec a > 1. En déduire la continuité de la fonction ζ sur $]1, \infty[$. Donner la limite $\lim_{x\to\infty}\zeta(x)$.

Exercice 13 (Equivalent Série-Intégrale) On considère la série de fonctions $\sum f_n$, où pour $|\mathbb{R}^{+*} \longrightarrow \mathbb{R}$

tout
$$n > 0$$
, $f_n \mid x \longrightarrow x$
$$\frac{1}{\sinh(nx)}$$
.

- 1. Donner le domaine de définition de la fonction $f(x) = \sum_{n=0}^{\infty} f_n(x)$.
- 2. Démontrer que la fonction f est continue sur $]0, +\infty[$.
- 3. Donner un équivalent de 0 de f.

Exercice 14 (Convergence suite de fonctions) On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$, où pour tout $n>0, f_n \begin{vmatrix} [0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n(1-x)^n \end{vmatrix}$.

où pour tout
$$n > 0$$
, $f_n \begin{vmatrix} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n (1-x)^n \end{vmatrix}$.

- 1. Donner le domaine de définition de la fonction $f(x) = \lim_{n\to\infty} f_n(x)$.
- 2. Démontrer que la suite de fonctions f_n converge uniformément sur [0,1].

Exercice 15 (Convergence suite de fonctions) On considère la suite de fonctions $\sum f_n$,

où pour tout
$$n > 1$$
, $f_n \mid [0,1] \longrightarrow \mathbb{R}$
$$x \longmapsto \frac{xe^{-nx}}{\ln n}.$$

- 1. Donner le domaine de définition de la fonction $f(x) = \sum_{n=2}^{\infty} f_n(x)$.
- 2. Démontrer que la fonction f est continue sur \mathbb{R}^{+*} .
- 3. Démontrer que la fonction f est continue sur \mathbb{R}^+ .

Exercice 16 (Espérance et variance de loi géométrique) Soit X, une variable aléatoire suivant une loi géométrique de paramètre p, $\mathcal{G}(p)$, c'est à dire

$$\forall k \in \mathbb{N}^* : \mathbb{P}(X = k) = (1 - p)^{k - 1} p.$$

- 1. Calculer l'espérance de X
- 2. Calculer la variance de X

Suite et séries de fonctions