

Faculty of Electrical and Computer Engineering Institute of Acoustics and Speech Communication Chair of Speech Technology and Cognitive Systems

Diplom Thesis

Wireless data transmission for an intraoral assistive device Zungenmaus- Drahtlose übertragung der sensor daten

Hamza Ben Hassen

Supervisor: Dipl.-Ing. Kathleen Große

19.11.2020

Contents

- 1. Introduction and Motivation
- 2. State of the art
- 3. Literature survey
- 4. Implementation
- 5. Results
- 6. Summary and outlook
- 7. Demo

We rely heavily on hands for mobility and interaction with digital world.

Several factors can result in loss of hand functions:

- Accidents
- Illness
- Aging
- -> Motivation for alternative input methods

Source

Source

Source Source

Zungenmaus – Studienarbeit 2019

- Optical sensors to detect tongue position
- DTW gesture recognition
- Wired connection to PC
- → The tongue can be used to operate a computer and control a mouse cursor.

Objective of this work: Implement a wireless link from inside the mouth cavity and present a method for qualifying the link quality.

State of the art

State of the art

Passive : RFTattoo [3]

- -Sense the stretch of the skin.
- -1 mm stretch of the antenna results in 8 MHz resonance frequency shift.
- -Maximal detectable stretch in the ISM band (902 -928 MHz) is 3,25 mm
- -Battery free
- -Limited communication range of 2,5 m
- -Slow with 4 Hz data acquisition

State of the art

Active: iTDS [4]

- -Automated impedance matching with custom Tx ASIC solution.
- -3 operating bands (27 MHz, 433 MHz, and 915 MHz) that are automatically switched to mitigate external RF interference.
- -103 cm operating range
- -Complex Design , robust against interference and antenna detuning.

Propagation of electromagnetic waves in a lossy medium

An electromagnetic waves propagating through a lossy medium is attenuated due to:

- Ohmic losses due to conduction and displacement currents
- Reflection at the interfaces

Carrier Frequency (MHz)	Conductivity (σ, S/m)	Relative permittivity (ε_r)	Attenuation coefficient (α, Np/m)	Attenuation per cm (dB)
27	0.70*/0.03**	120/10	7.60/1.07	0.33/0.06
433.9	1.00/0.05	60/5	23.1/3.73	1.00/0.16
2480	2.50/0.09	50/4.2	65.5/8.07	2.85/0.35

^{*} Muscle/* * Fat

Attenuation characteristics of tissues

Source[6]

Propagation of electromagnetic waves in a lossy medium

The penetration depth δ of a material describes the depth at which the amplitude of a penetrating wave has decayed by a factor of 1/e of its initial value.

- The losses are due to conduction and displacement currents, as well as reflection at the interfaces.
- Higher attenuations occur at higher frequencies.
- However lower frequencies result in higher wavelengths and larger antennas.
- →Tradeoff between size and range

Scattering parameters

- -The scattering parameters of an antenna provides a measure for the performance of an antenna.
- -The reflection coefficient describes how well the antenna is matched to the transmission line.
- -At the frequency band of operation, the S11 parameter should be as low as possible.
- -The radiation power S21 describes the amount of power transferred from Port 1 to Port 2.

Bluetooth low energy 5 overview

- -Channel Selection Algorithm (CSA) #2 reduces collisions from interference.
- -Cyclic reduncancy check to detect communication errors.
- -Link-layer acknowledgements and retransmissions.

LSB				MSE
Preamble	Access Address	Protocol Data Unit (PDU)	Cyclic Redundancy Check (CRC)	Constant Tone Extension
1 or 2 octets	4 octets	2-258 octets	3 octets	16 to 160 μs
				[5]

Implementation

System overview

Hardware selection

Transmitter: U-blox BMD-341-A-R - Cost: 12,38 €

- No external components needed
- UFL antenna connector : no restrictions for ground size plane and layout
- 14.8 mA @+8dBm, 4.8 mA @ +0dBm
- Size: 15 x 10,2 x 1,9 mm (MicroSD: 15 mm × 11 mm × 1 mm)
- Supports several protocols : BLE5, Zigbee, Thread, Proprietary 2,4GHz

Antenna: Atom FXP75 – Cost: 7,09 €

- Smallest 2,4 GHz commercially available external antenna : 5,9 x 4,1x 0,24 mm
- Flexible mounting
- Easier to characterize
- Efficiency 45%

Source

Source

Receiver

- Goal: support both embedded and custom receivers

- Compatibility with a wide range of devices
- Supported connection parameters vary between devices
- Antenna typically embedded behind the screen: harder to adjust the position / orientation

Source

Custom receiver: nRF52840-Dongle Cost: 8,81€

- Same SoC as the transmitter: faster development
- Flexible positioning
- Known connection parameters and capabilities
- Supports custom communication protocols

Pinout

Serial Wire Debug (SWD) Interface:

- Only 2 wires are required.
- Step by step debugging
- Used to programm the SoC using the NRF52DK debugger

Power: VCC-VCCH

- **Low voltage mode**: VCC and VCCH connected to supply : 1,7-3,6V
- **High voltage mode**: VCCH connects to supply 2,5 -5,5 VCC provides regulated 3V out to external devices

Exposed GPIOs: P0.17- P0.18 - P1.07- P1.08- P1.09 - P1.12

- Flexible pin assignement for digital interfaces (I2C,SPI,UART)

Main loop

Results

Radiation pattern - Antenna

Reflection coefficient - Antenna

Radiation pattern – complete system

Power consumtion – complete system

Table 6.2: Peak current consumption - High Voltage mode

Test case	Link layer	Connection Inter- val[ms]	Update Rate [Hz]	Peak Cur- rent [mA]	Battery Life [Hours]
Maximal performance	2M	7.5	1120	9.3	3.14
Maximal range	Coded Phy	7.5	26	7.2	3.89
Balanced 1	2M	50	26	6.6	4.48
Maximal battery life	2M	400	26	6.6	4.48
Balanced 2	2M	7.5	100	6.9	3.93
Balanced 3	2M	7.5	400	7.0	3.93

Throughput - complete system

Summary and outlook

Summary and outlook

- Implementation adequate for intraoral assistive device at short ranges.
- Used components are certified off the shelve components, resulting in easier qualification process for the entire device.
- Modular implementation allows easier antenna swapping.
- Used SiP includes a DC-DC converter that can power external sensors thus alleviating the need for a dedicated power management unit.
- Latest Bluetooth protocol provides improved CSA algorithm resulting in better coexistence with other 2,4 GHz devices.
- Custom 2,4 GHz wireless protocols can be used to achieve a lower latency and higher data throughput.

Demo

Thank you for your attention

References

- [1] H. P. Schwan, "Electrical properties of tissues and cell suspensions: mechanisms and models," *Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, Baltimore, MD, USA, 1994, pp. A70-A71 vol.1.
- [2] Principles and Applications of RF/Microwave in Healthcare and Biosensing ISBN: 978-0-12-802903-9
- [3] Wang, Jingxian; Pan, Chengfeng; Jin, Haojian; Singh, Vaibhav; Jain, Yash; Hong, Jason I.; Majidi, Carmel; Kumar, Swarun: RFID Tattoo: A Wireless Platform for Speech Recognition. In: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3 (2019), Dezember, Nr. 4. http://dx.doi.org/10.1145/3369812. DOI 10.1145/3369812
- [4] Kong, Fanpeng; Ghovanloo, Maysam; Durgin, Gregory D.: An Adaptive Impedance Matching Transmitter for a Wireless Intraoral Tongue-Controlled Assistive Technology. In: IEEE Transactions on Circuits and Systems II: Express Briefs 51 67 (2020), feb, Nr. 2, S. 240–244. http://dx.doi.org/10.1109/tcsii.2019. 2913623. DOI 10.1109/tcsii.2019.2913623
- [5] Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification." Version 5.1. https://www.bluetooth.com/.
- [6] H. Park and M. Ghovanloo, "Wireless Communication of Intraoral Devices and Its Optimal Frequency Selection," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 62, no. 12, pp. 3205-3215, Dec. 2014, doi: 10.1109/TMTT.2014.2365804.

Implementation

- Goal: support an adaptive operation mode for different usage scenarios

Source

High performance mode:

- Faster data transmission: up to 1KHz
- Higher power consumtion
- Lower operating range < 1m

Usecase: Mouse pointing

Power saving mode:

- Slower data transmission < 10 Hz
- Low power consumtion
- Higher operating range > 2m

Usecase: Embedded gesture recognition

Problem

- Investigate the wireless connectivity of an intra oral device.
- Power requirements : operation with small sized batteries
- Size: mounting under the hardpalate / buccal shelf
- Range: operate a computer less than 1m away.

Structure:

Literature survey:

- -Electromganetic waves as a carrier of information.
- -Biological tissue models and interaction with electromagnetic waves.
- -Electrical small Antennas.
- -RF systems : components parameters Quality factor

Hardware survey:

-Antennas , tranceiver chips Design Experiment

Biological tissue properties

- -Biological tissues display characteristics of both insulators and conductors.
- -Dispersive permittivity and conductivity

Idealized dispersion of dielectric constant and conductivity of tissues and cell [1]

Biological tissue properties -2- Quelle [2] p57

- Relative complex permitttivity : $arepsilon(\omega) = arepsilon'(\omega) - jarepsilon''(\omega)$

- attenuation constant :
$$\alpha = \frac{\omega}{c} \sqrt{\frac{\varepsilon'}{2}} \sqrt{\sqrt{1 + \tan \delta^2} - 1}$$

Phase constant
$$\beta = \frac{\omega}{c} \sqrt{\frac{\varepsilon'}{2}} \sqrt{\sqrt{1 + \tan \delta^2} + 1}$$

- Plane wave wavelength
$$\lambda = \frac{2\pi}{\beta} = \lambda_0 \left[\sqrt{\frac{\varepsilon'}{2}} \sqrt{\sqrt{1 + \tan \delta^2} + 1} \right]^{-1}$$

- Loss tangent

Effects of antenna proximity to biological tissue

- -The impedance of the antenna is changed.
- -Impedance mismatch, s parameter

FREQUENCY-DEPENDENT ATTENUATION CHARACTERISTICS OF TISSUE [41]

Carrier Frequency (MHz)	Conductivity (σ, S/m)	Relative permittivity (ε_r)	Attenuation coefficient (α, Np/m)	Attenuation per cm (dB)
27	0.70*/0.03**	120/10	7.60/1.07	0.33/0.06
433.9	1.00/0.05	60/5	23.1/3.73	1.00/0.16
2480	2.50/0.09	50/4.2	65.5/8.07	2.85/0.35

^{*} Muscle/** Fat

Quelle: https://ieeexplore.ieee.org/document/6957600

^[41] S. Gabriel, R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," *Phys. Med. Biol.*, vol. 41, no. 11, pp. 2251–2269, Nov. 1996.

RF quality metrics

- Definition:

Antenna: VSWR - Gain

- System : Received signal strength - Packet error

rate.

Hardware considerations

- Integrated solutions : EYU , Würth , Anna-blox
- Custom pcb :
- Frequency , receiver , position , antenna
- Experiment: program a bluetooth characteristic, send fake sensor data, measure PER and rssi, (compare with head tracking position,

Effects of biological tissue on RF performance

- 1 propagation loss through oral tissue.
- 2 Dielectric loading: surrounding tissue detunes an antenna requiring adaptive impedance matching , wideband antenna design and custom coating.

FREQUENCY-DEPENDENT ATTENUATION CHARACTERISTICS OF TISSUE [41]

Carrier Frequency (MHz)	Conductivity (σ, S/m)	Relative permittivity (ϵ_r)	Attenuation coefficient (α, Np/m)	Attenuation per cm (dB)
27	0.70*/0.03**	120/10	7.60/1.07	0.33/0.06
433.9	1.00/0.05	60/5	23.1/3.73	1.00/0.16
2480	2.50/0.09	50/4.2	65.5/8.07	2.85/0.35

^{*} Muscle/** Fat

Quelle: https://ieeexplore.ieee.org/document/6957600

^[41] S. Gabriel, R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," *Phys. Med. Biol.*, vol. 41, no. 11, pp. 2251–2269, Nov. 1996.

State of the art

- intra-oral
- Implantables
- small antennas, small batteries , low power sensoric
- Ultra low power rf solutions

Bluetooth low energy

- A custom PCB contains a wireless tranceiver SiP, impedance matching and a power management unit and exposes the following ports:
- UfL connector : to connect to an external antenna.
- I2C: to connect to an external sensor unit
- Power IN: to connect to an external Li-PO / Lithium Ion battery
- Power OUT : to power an external sensor unit.

- BLE: low energy consumption, easier implementation and testing.
- Sip: An Sip solution reduces the amount of externally needed components.
- Ufl connector: An external antenna has no ground plane size constraint allowing for a compact size. It also allows testing several antennas sizes and placements in the oral cavity.

Open questions:

- Custom antenna design resources.
- **Test commercially available flexible antennas (**FXP75.07.0045B , PC17.07.0070A **)**

FXP74.07.0100A		
Manufacturer	Taoglas	^
Gain	+4.0 dBi	
Impedance	50 Ω	
Size	47.0 x 7.0 x 0.1 mm	
Туре	Patch, Flexfilm	
Connector	U.FL.	
Cable length	100 mm	
Comment	Should be attached to a plastic enclosure or part for best performance. For more info see antenna data sheet.	
	Should not be mounted inside a metal enclosure. To be mounted on a U.FL connector.	
Approval	RED, MIC, KCC, ANATEL, ACMA and ICASA	

FXP75.07.004	5B	
Manufacturer	Taoglas	4
Gain	+2.5 dBi	1
Impedance	50 Ω	
Size	5.9 x 4.1 x 0.24 mm	
Туре	Patch, Flexfilm	1
Connector	U.FL.	
Cable length	45 mm	
Comment	Should be attached to a plastic enclosure or part for best performance. For more info see antenna data sheet.	
	Should not be mounted inside a metal enclosure. To be mounted on a U.FL connector.	
Approval	FCC, IC, RED, MIC, NCC, KCC, ANATEL, ACMA and ICASA	

PC17.07.0070	A	
Manufacturer	Taoglas	
Gain	+1.0 dBi	
Impedance	50 Ω	~
Size	24.0 x11.0x 0.8 mm	
Туре	Patch, PCB	
Connector	U.FL.	
Cable length	70 mm	
Comment	Should be attached to a plastic enclosure or part for best performance. For more info see antenna data sheet.	
	Should not be mounted inside a metal enclosure. To be mounted on a U.FL connector.	
Approval	FCC, IC, RED, MIC, NCC, KCC, ANATEL, ACMA and ICASA	

Open questions:

- Custom antenna design resources.
- **Test commercially available flexible antennas (**FXP75.07.0045B , PC17.07.0070A **)**
- https://www.lairdconnect.com/rf-antennas/wifi-antennas/embedded-antennas/flexpifa-flexible-adhesive-backed-pifa-internal-antenna
- https://www.lairdconnect.com/rf-antennas/wifi-antennas/embedded-antennas/nanogreen-series-internal-antennas
- Tunable: http://datasheets.avx.com/ethertronics/AVX-E 1001932FT.pdf
- **Molex** https://www.molex.com/molex/products/part-detail/antennas/2069941100

NFC

- NFC power transfer is possible with miniature coils https://ieeexplore.ieee.org/document/8400620
- Power and data through same coil https://ieeexplore.ieee.org/document/7959373

Figure 1. An NFC system consisting of the MAX66300 transceiver and the MAX66242 transponder. Ancillary circuitry is connected to the MAX66242 V_{OUT}, I²C interface, and the PIO.

https://www.maximintegrated.com/en/design/technical-documents/app-notes/6/6725.html

NFC

https://www.mdpi.com/1424-8220/18/11/3746/pdf

- -Headunit with cheek nfc coil.
- -Mouth unit with first coil attached to inner cheek.
- + Battery less operation for low powered sensors inside the mouth (with nfc power harvesting).
- +Robust wireless link (no interference , easy to connect , lowest propagation path loss)
- -Low efficiency of wireless power transfer requires larger head unit batteries.
- -Low data rate < 424 kbit/s

NFC

https://www.mdpi.com/1424-8220/18/11/3746/pdf

- CHIP antenna ground fläche
- -Antennen vergleich

Variant 2

nRF52811

- Available reference design: 9 mm * 9 mm, 4 layers with DC-DC circuit.
- 4.6 mA in TX (0 dBm),
- 50Ω RF Pin , Proposed design : chip antenna , various ground plane sizes.
- TX current consumption @+0/8dBm: 6,4/16,4 dBm

Variant 3

nRF52811

- Available reference design: 9 mm * 9 mm, 4 layers with DC-DC circuit.
- 4.6 mA in TX (0 dBm),
- More flexible design: impedance matching, antenna selection.
- Proposed design : chip antenna , various ground plane sizes.

Problem

- Investigate the wireless connectivity of an intra oral device.
- Power requirements : operation with small sized batteries
- Size : mounting under the hardpalate / buccal shelf
- Range : operate a computer less than 1m away.

Structure:

Literature survey:

- -Electromganetic waves as a carrier of information.
- -Biological tissue models and interaction with electromagnetic waves.
- -Electrical small Antennas.
- -RF systems.

State of the Art:

-

Hardware survey:

-Antennas , tranceiver chips

Design

Experiment

Wireless history

- Investigate the wireless connectivity of an intra oral device.
- Power requirements : operation with small sized batteries
- Size : mounting under the hardpalate / buccal shelf
- Range: operate a computer less than 1m away.

Structure:

Literature survey:

- -Electromganetic waves as a carrier of information.
- -Biological tissue models and interaction with electromagnetic waves.
- -Electrical small Antennas.
- -RF systems.

State of the Art:

-

Hardware survey:

-Antennas , tranceiver chips

Design

Experiment

Biological tissue properties -2-

If we apply an alternating voltage : $V(t) = V0 \cos(\omega t)$ to the tissue model , a changing charge on the capacitor induces a displacement current : $Id = dQ/dt = -\omega CV0 \sin(\omega t)$

Total current : I= GV + C dV/dt = $(\sigma + i \omega \epsilon)$ A .V/d

Admittance Y = I/V = $(A/d)(\sigma + i\omega \epsilon)$

With $\varepsilon = \varepsilon 0 * \varepsilon r$

A complex valued relative prermittivity is defined : $\epsilon^* = \epsilon r - i\sigma/\omega\epsilon 0$

Experiment design

- Test a real world usage:

Total current : I= GV + C dV/dt = $(\sigma + i \omega \epsilon)$ A .V/d

Admittance Y = I/V = $(A/d)(\sigma + i\omega \epsilon)$

With $\varepsilon = \varepsilon 0 * \varepsilon r$

A complex valued relative prermittivity is defined : $\varepsilon^* = \varepsilon r - i\sigma/\omega \varepsilon 0$

Biological tissue properties - 4

-Insulation effects

Electrically small antennas

- -Discovery:
- -First experimental:

State of the Art

Kong2018

- Single band 2,4GHz.
- 3 Custom antennas were evaluated.
- Patch antenna showed a 0,5 % Packet error rate (PER) in worst case (closed mouth + 90° head orientation) at 1 m distance from Rx antenna.

-susceptible to interference due the crowded 2,4 GHz band (WiFi , Bluetooth ...)

Fig. 3. iTDS system prototype with a control board, a supply board, and a USB dongle.

Fig. 8. Photograph of the three types of fabricated antennas from the top to the bottom with the PDMS coating material: the patch antenna, the PIFA, and the dipole antenna.

https://ieeexplore.ieee.org/document/8258970

State of the Art

Hangue Park; Maysam Ghovanloo 2014

"Experimental results showed that 27 MHz has the smallest path loss in the near-field up to 39 cm separation between transmitter and receiver antennas. However, 433.9 MHz shows the best performance beyond 39 cm and offers a maximum operating distance of 123 cm with 0 dBm transmitter output power. These distances were obtained by a bit error rate test and verified by a link budget analysis and full functionality test of the iTDS with computer access."

Fig. 4. Photos of the iTDS embedded in the Essix-type transparent dental retainer: (a) top side of 433.9 MHz iTDS and (b) bottom side of 2.48 GHz iTDS.

https://ieeexplore.ieee.org/document/6957600

