ML Final Project

By: Pablo O'Hop

Introduction

- Heart failure:
 - Significant mortality rates and predictive challenges
- Project goal:
 - Improve prediction accuracy using machine learning
- Methodology:
 - o PCA + K-means
 - Logistic regression
- Data source:
 - Dataset from Kaggle

Dataset

- Utilized Pandas for data cleaning and preprocessing
- Applied StandardScaler from Scikit-learn for normalization
- Transformed categorical data using get_dummies
- Aim: Create a uniform feature scale for accurate analysis

Α	В	С	D	E	F	G	н	1	J	K	L	M
age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
75	0	582	0	20	1	265000	1.9	130	1	0	4	1
55	0	7861	0	38	0	263358.03	1.1	136	1	0	6	1
65	0	146	0	20	0	162000	1.3	129	1	1	7	1
50	1	111	0	20	0	210000	1.9	137	1	0	7	1
65	1	160	1	20	0	327000	2.7	116	0	0	8	1
90	1	47	0	40	1		2.1	132	1	1	8	
75	1	246	0	15	0	127000	1.2	137	1	0	10	1
60	1	315	1	60	0	454000	1.1	131	1	1	10	1
65	0	157	0	65	0	263358.03	1.5	138	0	0	10	1
80	1	123	0	35	1	388000	9.4	133	1	1	10	1
75	1	81	0	38	1		4	131	1	1	10	
62	0	231	0	25	1	253000	0.9	140	1	1	10	
45	1	981	0	30	0	136000	1.1	137	1	0		
50	1	168	0	38	1	276000	1.1	137	1	0	11	1
49	1	80	0	30	1	427000	1	138	0	0	12	0
82	1	379	0	50	0	47000	1.3	136	1	0	13	1
87	1	149	0	38	0	262000	0.9	140	1	0		
45	0	582	0	14	0	166000	0.8	127	1	0		
70	1	125	0	25	1	237000	1	140	0	0		
48	1	582	1	55	0	87000	1.9	121	0	0		
65	1	52	0	25	1	276000	1.3	137	0	0	16	0
65	1	128	1	30	1	297000	1.6	136	0	0	20	1
68	1	220	0	35	1	289000	0.9	140	1	1	20	1
53	0	63	1	60	0	368000	0.8	135	1	0	22	0

Figure 1: First 25 Rows of Dataset

Unsupervised Analysis: PCA + K-Means Cluster

- Applied PCA for dimensionality reduction
- PCA:
 - No clear separation in survival outcomes identified
- Implemented K-Means to detect patient clusters
- K-Means:
 - Revealed overlapping groups,
 underscoring heart failure complexity

Figure 2: PCA Scatter Plot

Figure 3: K-Means Cluster Scatter
Plot

Supervised Analysis: Logistic Regression

- Developed three logistic regression models:
 - No Regularization:
 - C=1e9 (approx. no reg.)
 - \circ Ridge (λ =0.1):
 - C=10 (mild reg.)
 - \circ Ridge (λ =1):
 - C=1 (strong reg.)
- Focused on prediction of patient survival

Logistic Regression: No Regularization

Training Accuracy: 87.45%

Validation Accuracy: 80%

Precision: 93.33%

• Recall: 56%

• F1 Score: 70%

	Actual Positive	Actual Negative
Predicted Positive	14 (TP)	1 (FP)
Predicted Negative	11(FN)	34 (TN)

Table 1: Confusion Matrix Model 1

Figure 4: Optimal C Value for Logistic Regression Model 1

Logistic Regression: Ridge (λ =0.1)

Training Accuracy: 87.45%

Validation Accuracy: 80%

Precision: 93.33%

Recall: 56%

F1 Score: 70%

	Actual Positive	Actual Negative
Predicted Positive	14 (TP)	1 (FP)
Predicted Negative	11(FN)	34 (TN)

Table 2: Confusion Matrix Model 2

Figure 5: Optimal C Value for Logistic Regression Model 2

Logistic Regression: Ridge (λ =1)

Training Accuracy: 87.45%

Validation Accuracy: 81.67%

Precision: 93.75%

Recall: 60%

F1 Score: 73.17%

	Actual Positive	Actual Negative
Predicted Positive	15 (TP)	1 (FP)
Predicted Negative	10(FN)	34 (TN)

Table 3: Confusion Matrix Model 3

Figure 6: Optimal C Value for Logistic Regression Model 3

LR Model #	<u>λ</u>	Training Accuracy	Validation Accuracy	<u>Precision</u>	Recall	F1 Score
<u>Model 1</u>	N/A	0.8745	0.8	0.9333	0.56	0.7
<u>Model 2</u>	0.1	0.8745	0.8	0.9333	0.56	0.7
<u>Model 3</u>	1	0.8745	0.8167	0.9375	0.6	0.7317

Table 4: Logistic Regression Results

Conclusion

- Concluded Ridge (λ=1) as the most balanced model
 - Improved recall with stronger regularization
 - Cross-validated accuracy peaks
- Importance:
 - Provides predictive tool for medical decision-making

Figure 7: A Machine Learning