Consumption Heterogeneity: Micro Drivers and Macro Implications

Edmund Crawley & Andreas Kuchler

Johns Hopkins University, September 18, 2018

Is Heterogeneity Important for Macroeconomics?

Theory: Consumption heterogeneity *potentially* very important for macroeconomic dynamics

Recent HANK models

Empirics: Ability to measure heterogeneity limited by

- Methods to measure MPCs
- Consumption data
- Household balance sheet data

Two Empirical Contributions

- 1 Method: New methodology to measure MPCs out of transitory and permanent income shocks
 - Builds on Blundell, Pistaferri, and Preston (2008)
 - Correctly accounts for the Time Aggregation Problem
- 2 Data: Panel data covering all Danish households 2004-2015
 - Large sample size reveals clear, systemic heterogeneity
 - Detailed household balance sheets allow us to infer implications for monetary policy transmission

A one percentage point interest rate hike reduces aggregate expenditure by **35 basis points** through this *interest rate exposure channel* alone

Redistribution >> Intertemporal Substitution

What has the Empirical MPC literature Found?

General consensus: MPCs are large (≈ 0.5 including durables)

• For both expected and unexpected transitory shocks

Few studies have enough power to say much about the distribution of MPCs in the population

- Jappelli and Pistaferri (2014) Italian Survey Data
- Fuster, Kaplan, and Zafar (2018) NY Fed Survey
- Fagereng, Holm, and Natvik (2016) Norway Lottery Data
- Gelman (2016) Financial App Data

Liquid assets and income are key predictors of transitory MPC

What has the Empirical MPC literature Found?

General consensus: MPCs are large (≈ 0.5 including durables)

• For both expected and unexpected transitory shocks

Few studies have enough power to say much about the distribution of MPCs in the population

- Jappelli and Pistaferri (2014) Italian Survey Data
- Fuster, Kaplan, and Zafar (2018) NY Fed Survey
- Fagereng, Holm, and Natvik (2016) Norway Lottery Data
- Gelman (2016) Financial App Data

Liquid assets and income are key predictors of transitory MPC

Our method and data can uncover detailed heterogeneity - Many potential applications

How Are Consumption Responses Typically Measured?

Three methods:

- 1 (Natural) Experiments stimulus checks, lotteries etc
 - Few true experiments, especially for permanent shocks
 - Data limitations
- 2 Ask people
 - Unclear how to interpret
- 3 Use covariance structure of income and consumption
 - Empirical methods (until now!) have been flawed

We develop a robust method based on 3

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

Regressing Consumption Growth on Income Growth Least Liquid β^N, Regression Coefficient 9, 9.0 omplete Markets 4.0 Relatively more 2 10

N. Years of Growth

$$\Delta^{N} c_{i} = \alpha^{N} + \beta^{N} \Delta^{N} y_{i} + \varepsilon_{i}$$

Aside: Why Not Blundell, Pistaferri and Preston 2008?

Common Assumptions

Income y_t is made up of:

- Permanent Income (random walk)
- Transitory Income (uncorrelated over time)

Key to BPP Identification

 Δy_{t+1} is a *valid instrument* for transitory shocks in year t

- Negatively correlated with transitory shocks in year t
- Uncorrelated with permanent shocks in year t

Aside: Why Not Blundell, Pistaferri and Preston 2008?

Common Assumptions

Income y_t is made up of:

- Permanent Income (random walk)
- Transitory Income (uncorrelated over time)

Key to BPP Identification

 Δy_{t+1} is a *valid instrument* for transitory shocks in year t

- Negatively correlated with transitory shocks in year t
- Uncorrelated with permanent shocks in year t

Fails due to the Time Aggregation Problem

Permanent income growth is positively autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

⇒ Thinks negative transitory shocks result in consumption *increasing*

Permanent income growth is positively autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

If the Permanent Income Hypothesis holds, BPP will estimate the MPC to be -0.6

We follow the spirit of Carroll & Samwick (1997):

Permanent income follows a random walk

$$p_t = p_{t-1} + \zeta_t$$

Total income includes a transitory component

$$y_t = p_t + \varepsilon_t$$

Growth over N years is:

$$\Delta^{N} y_{T} = (\zeta_{T-N+1} + \dots + \zeta_{T}) + \varepsilon_{T} - \varepsilon_{T-N}$$
$$\operatorname{Var}(\Delta^{N} y_{T}) = N \operatorname{Var}(\zeta) + 2 \operatorname{Var}(\varepsilon)$$

We follow the spirit of Carroll & Samwick (1997):

• If transitory income follows an MA(2) process:

$$y_t = \rho_t + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

$$\implies \operatorname{Var}(\Delta^N y_T) = N \underbrace{\operatorname{Var}(\zeta)}_{\mathsf{Perm var}} + 2 \underbrace{(1 + \theta_1^2 + \theta_2^2) \operatorname{Var}(\varepsilon)}_{\mathsf{"Total" trans var}} \text{ if } N \ge 3$$

Carroll & Samwick use N = 3, 4, 5 to identify permanent shock variance and "total" transitory shock variance

We follow the spirit of Carroll & Samwick (1997):

• If transitory income follows an MA(2) process:

$$y_t = p_t + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

$$\implies \operatorname{Var}(\Delta^N y_T) = N \underbrace{\operatorname{Var}(\zeta)}_{\text{Perm var}} + 2 \underbrace{(1 + \theta_1^2 + \theta_2^2) \operatorname{Var}(\varepsilon)}_{\text{"Total" trans var}} \text{ if } N \ge 3$$

Carroll & Samwick use N = 3, 4, 5 to identify permanent shock variance and "total" transitory shock variance

- 1 How does time aggregation affect this identification?
- 2 What might the equivalent of "robust to MA(2) transitory shocks" be in continuous time?

Carroll & Samwick in Continuous Time with Aggregation

- To begin assume no persistence in the transitory shock
- p_t and q_t are independent martingale processes with independent increments

$$Var(p_t - p_{t-1}) = \sigma_p^2$$
$$Var(q_t - q_{t-1}) = \sigma_q^2$$

 Instantaneous income is equal to the flow of permanent income plus the transitory income component

$$dy_t = p_t dt + dq_t$$

Carroll & Samwick in Continuous Time with Aggregation

- To begin assume no persistence in the transitory shock
- p_t and q_t are independent martingale processes with independent increments

$$Var(p_t - p_{t-1}) = \sigma_p^2$$
$$Var(q_t - q_{t-1}) = \sigma_q^2$$

 Instantaneous income is equal to the flow of permanent income plus the transitory income component

$$dy_t = p_t dt + dq_t$$

We observe \bar{y}_T , total income over year T:

$$\bar{y}_T = \int_{T-1}^T p_t dt + q_T - q_{T-1}$$

$$\implies \operatorname{Var}(\Delta^N \bar{y}_T) = (N - \frac{1}{3})\sigma_p + 2\sigma_q$$

Allow a generic persistence in transitory shock

Following shock, transitory income flow decays as:

$$f(t)$$
 where $f(t) = 0$ if $t > 2$

Generic Transitory Impulse Response, f(t)

$$y_t = p_t + \int_{t-2}^t f(t-s)dq_s$$

$$\implies \operatorname{Var}(\Delta^N \bar{y}_T) = (N - \frac{1}{3})\sigma_p^2 + 2\sigma_{\tilde{q}}^2 \text{ for } N \ge 3$$

where $\tilde{q_T} = \int_{T-1}^T \int_{t-2}^t f(t-s) dq_s dt$ is the time aggregated transitory component of income

Assumptions on Consumption

- \bullet Permanent: Consumption permanently moves by fraction ϕ of the income shock
- Transitory: Allow for generic impulse response g(t) where g(t) = 0 for t > 2

This is a key difference between what we assume and BPP

Assumptions on Consumption

- \bullet Permanent: Consumption permanently moves by fraction ϕ of the income shock
- Transitory: Allow for generic impulse response g(t) where g(t) = 0 for t > 2

This is a key difference between what we assume and BPP

Consumption flow is given by:

$$\begin{split} c_t &= \phi p_t + \int_{t-2}^t g(t-s) dq_s \\ \implies &\operatorname{Cov}(\Delta^N \bar{c_T}, \Delta^N \bar{y_T}) = \phi (N - \frac{1}{3}) \sigma_p^2 + 2\psi \sigma_{\tilde{q}}^2 \end{split}$$

where $\psi = \frac{\operatorname{Cov}(\tilde{c},\tilde{q})}{\operatorname{Var}(\tilde{q})}$, the regression coefficient of 'transitory' consumption on transitory income

Consumption flow is given by:

$$c_t = \phi p_t + \int_{t-2}^t g(t-s) dq_s$$

$$\implies \operatorname{Cov}(\Delta^N \bar{c_T}, \Delta^N \bar{y_T}) = \phi(N - \frac{1}{3}) \sigma_p^2 + 2\psi \sigma_{\tilde{q}}^2$$

where $\psi = \frac{\operatorname{Cov}(\tilde{c},\tilde{q})}{\operatorname{Var}(\tilde{q})}$, the regression coefficient of 'transitory' consumption on transitory income

- ϕ : MPX out of permanent income shocks
- ψ : MPX out of transitory income shocks

Full Identification

We use GMM on the equations:

$$\operatorname{Var}(\Delta^{N} \bar{y_{T}}) = (N - \frac{1}{3})\sigma_{p}^{2} + 2\sigma_{\tilde{q}}^{2}$$
$$\operatorname{Cov}(\Delta^{N} \bar{c_{T}}, \Delta^{N} \bar{y_{T}}) = \phi(N - \frac{1}{3})\sigma_{p}^{2} + 2\psi\sigma_{\tilde{q}}^{2}$$

with N = 3, 4, 5 (total of six equations) to identify the four unknowns:

- σ_p^2 : Permanent shock variance
- ullet $\sigma_{\tilde{a}}^2$: (Time aggregated) transitory shock variance
- ϕ : MPX out of permanent income shocks
- ψ : MPX out of transitory income shocks

Threats to Identification

	Direction of Bias	
	Perm MPX	Tran MPX
Persistent Consumption Response	+ve	-ve
Endogenous Income Shocks	Neutral	+ve
Income Measurement Error	Neutral	+ve
Permanent Shocks are $AR(1)$	Neutral	+ve
Non-linear MPX	?	?
Time-varying risk	?	?

Data: Income

- Starting point: Register based micro data for all Danish households made available by Statistics Denmark
- Really good income data
 - We use after-tax income for the household head, based on third-party reported tax data
 - Restrict sample to heads aged 30-55
- We divide through by permanent income (mean income over all observed years) and take the residual after controlling for age, education, marital status etc. (along with interactions of these)

Data: Expenditure

We use the identity

$$C_t \equiv Y_t - S_t = Y_t - P_t - \Delta NW$$

- Deposit and brokerage accounts all third party reported
- Works well for households with simple financial lives
- Main issue: Capital gains and losses
 - Exclude households where methodology will not work well (eg business owners)
 - Exclude housing wealth and years with housing transactions
 - Capital gains for stocks based on a diversified index
- Noisy, but perhaps better than surveys (Kuchler et al. 2018)
- Huge sample size advantage: sample covers 7.6 million observations over 2004-2015

MPX by Liquid Wealth

Permanent and Transitory Variance by Liquid Wealth Quantile

MPX by Liquid Wealth Quantile

MPX by Net Wealth

Model vs Data

How does a standard model compare with the data?

Model vs Data

How does a standard model compare with the data?

We calculate the sufficient statistics from Auclert (2017)

Here we will focus on the *Interest Rate Exposure* channel:

lf

- 1 Households that *owe* a lot of floating rate debt have *high* MPCs
- 2 Households that own a lot of floating rate debt have low MPCs

Then lowering interest rates will on average *increase* consumption through redistribution

We calculate the sufficient statistics from Auclert (2017)

Here we will focus on the *Interest Rate Exposure* channel:

lf

- 1 Households that *owe* a lot of floating rate debt have *high* MPCs
- 2 Households that own a lot of floating rate debt have low MPCs

Then lowering interest rates will on average *increase* consumption through redistribution

Do we know if 1 and 2 hold? How can we measure the size of this effect?

Define *Unhedged Interest Rate Exposure* for household *i* as the total savings the household will invest at this year's interest rate:

$$URE_i = Y_i - C_i + A_i - L_i$$

Where

- Y_i = Total after tax income
- C_i = Total Expenditure, including interest payments
- $A_i = Maturing assets$
- L_i = Maturing liabilities

Following a change in the interest rate dR, the size of the Interest Rate Exposure channel on household i's expenditure is:

$$dc_i = MPC_i URE_i \frac{dR}{R} \tag{1}$$

In aggregate, the size of this channel is given by:

$$\frac{dC}{C} = \mathbb{E}_{I} \left(MPC_{i} \frac{URE_{i}}{\mathbb{E}_{I}(c_{i})} \right) \frac{dR}{R}$$

Define sufficient statistic:

$$\mathcal{E}_{R} = \mathbb{E}_{I} \left(MPC_{i} \frac{URE_{i}}{\mathbb{E}_{I}(c_{i})} \right)$$

 \implies Need to know the distribution of MPC_i with URE_i

We can do that!

Total URE sums to zero - this is not true for our household sample

• -338bn Kr

	MPX	URE	\mathcal{E}_R component
Estimation Sample	See Distribution	-57	-0.40
Young	0.5	-16	-0.07
Old	0.5	14	0.06
Pension Funds	0.1	31	0.03
Government	0.0	-19	0.00
Non-financial Corp.	0.1	-11	-0.01
Financial Sector	0.1	51	0.04
Rest of World	0.0	7	0.00
Total		-0	-0.35

Notes: URE numbers are in billions of 2015 USD.

The Five Transmission Channels:

Aggregate Income Channel

$$\frac{dC}{C} = \frac{dY}{M\frac{dY}{Y}} + \mathcal{E}_R \frac{dR}{R}$$

Interest Rate Exposure Channel

Earnings Heterogeity Channel $\overbrace{+\gamma\mathcal{E}_{Y}\frac{dY}{Y}}^{+\gamma\mathcal{E}_{Y}\frac{dY}{Y}} \\ -\sigma\mathcal{S}\frac{dR}{R}$

Intertemporal Substitution Channel

Fisher Channel

The Five Transmission Channels:

Aggregate Income Channel

$$\frac{dC}{C} = \frac{dY}{M \frac{dY}{Y}}$$

$$+ \mathcal{E}_{P} \frac{dR}{M}$$

Interest Rate Exposure Channel

Earnings Heterogeity Channel

$$\begin{array}{c}
+\gamma \mathcal{E}_{Y} \frac{dY}{Y} \\
-\sigma \mathcal{S} \frac{dR}{R}
\end{array}$$

Intertemporal Substitution Channel

$$\mathcal{M}$$
 0.56 \mathcal{E}_{Y} -0.03 \mathcal{E}_{P} -0.81 \mathcal{E}_{R} -0.35 \mathcal{S} 0.47

Fisher Channel

The Five Transmission Channels:

Aggregate Income Channel

$$\frac{dC}{C} = \frac{\widetilde{M}\frac{dY}{Y}}{+\mathcal{E}_R}\frac{dR}{R}$$

Interest Rate Exposure Channel

Earnings Heterogeity Channel

$$\overbrace{+\gamma \mathcal{E}_{Y} \frac{dY}{Y}} \\
-\sigma \mathcal{S} \frac{dR}{R}$$

Intertemporal Substitution Channel

$$\mathcal{M}$$
 0.56 \mathcal{E}_{Y} -0.03 \mathcal{E}_{P} -0.81 \mathcal{E}_{R} -0.35 \mathcal{S} 0.47

Compare \mathcal{E}_R to σS :

 σ in the range of 0.1 to 0.5 (maybe)

$$\sigma S \approx 0.06 - 0.28$$

Fisher Channel

We have data on value of household cars

• Construct expenditure excluding car purchases and sales

$$C_T^{\mathsf{nocar}} = C_T - \Delta \mathsf{CarValue}$$

• Construct proxy for non durable consumption (Cars \approx 42.1% durable expenditure)

$$C_T^{\text{nondurable}} = C_T - \frac{1}{0.421} \Delta \text{CarValue}$$

Conclusion

- We have designed a new method to estimate consumption responses to income shocks
- It appears to work well, both in theory and practice
- We can use it to show that heterogeneity plays a key role in monetary policy transmission

Thank you!

Evidence of Consumption Decay Within 2 Years

From Gelman (2016)

Notes: 1,445,560 observations from 48,059 individuals. The vertical bars on each coefficient represent 95% confidence intervals using heteroskedasticity robust errors clustered at the individual level.

MPX by Net Wealth

MPX by Net Wealth Quantile

