SemEval2023 Visual-WSD

Joint project CV/NLP

Francesco Bottalico

The task

The task of Visual Word Sense Disambiguation is defined as follows:

GIVEN

- A target ambiguous word
- A limited context
- A set of 10 candidate images

Predict the correct image connected to the intended sense of the word

Same word, different meaning

Data and preprocessing

	Training set	Test set
Samples	12896	463
Unique target words	12527	259
Images	13158	8100
Max context lenght	2	4

Text

- Mainly done in disambiguation phase
- Remove stopwords from context
- Add <start_of_text> and <end_of_text> special tokens
- Padding/truncation to have exactly 77 tokens

Images

- Resize to 224x224 (mantaing the aspect ratio)
- If not possible → center crop

Pipeline

- The target word and the context are used as the disamibuguator's input
- The disambiguator gives us a richer context
- The expanded context and the target word are merged and given to the text encoder
- The ten candidate images are given to the image encoder
- Cosine similarity + softmax is used to compute the score between text and images

Disambiguator

- It uses WordNet to expand the limited context of a word
- Three algorithms have been implemented:
 - MPNet
 - WordNet tree distance
 - Lesk algorithm

Disambiguator

- All the synsets relative to the target and the context word are retrieved
- We compute the **similarities** between each pair
- We take the synset with the highest score and use its WordNet definition to create the expanded context
- We can take into account PoS tags of the words during WordNet search (OPTIONAL)

MPNet → a transformer based encoder
WordNet → exploit the tree structure
of WN to interpret distances between
nodes as similiarity
Lesk → Synset definition converted to a
BoW representation and inner product
is used to compute similarities

CLIP

- OpenAl's model trained on connecting image-text pairs
- Texts and images embeddings live in the same latent space (1024 dimensions)
- Positive pairs are close in the vector space
- Text encoder: 12-layer stack
 Transformer encoders
- Image encoder: ResNet-50
 (modified), Vision Transformer
 Base, Vision Transformer Large

CLIP example. Connecting the correct text to each image

CLIP - Example

- CLIP works both ways:
 - Connect text to images (softmax is computed on the columns)
 - Connect image to texts (softmax is computed on the rows)
- Interactive demo on the COLAB notebook
- For our task we are going to pick the correct image given a text

Text Projector Add & Norm Feed Forward 12× Add & Norm Multi-Head Attention Positional P Encoding Input Embedding Inputs

CLIP – text encoder

- 12-layer Transformer encoder
- Normalization on inputs instead of the outputs
- GELU instead of ReLU
- 512 as hidden dimension
- Text projector to project textual embedding in the same image's vector space

Original RN50

Modified RN50

CLIP – image encoder

ResNet-50

- 3 stem convolutions instead of 1
- 2x2 average pooling instead of 3x3 max pooling
- Final **attention pooling** instead of average pooling

• ViT-B-16

- 16x16 patch size
- 768 as hidden size
- 12 attention heads

• ViT-L-14

- 14x14 patch size
- 1024 as hidden size
- 16 attention heads

CLIP variants

Model	Parameters	Pre-training dataset	
Text encoder + ResNet-50	102M	OpenAl 400M	
Text encoder + ViT-B-16	150M	LAION-2B	
Text encoder + ViT-L-14	427M	DataComb-1B	

CLIP – training

 Pre-trained on huge collections of text-image pairs

ORIGINAL TRAINING METHOD

- Batch of size *N*
- N^2 total pairs in the batch
- Maximize the probability of the N positive pairs in contrast to the N(N-1) negative ones
- 1 positive, N-1 negative pairs for each batch input
- Negative pairs are randomly obtained

OUR TRAINING METHOD

- Batch of size N
- N * 10 total pairs in the batch
- Maximize the probability of the N positive pairs in contrast to the N*9 negative ones
- 1 positive, 9 negative pairs for each batch input
- Negative pairs are specified in the dataset

CLIP – fine tuning

- RN50 CLIP fine tuned for 2 epochs
- Text and image feature extractor are freezed (entities in the latent space are only moved around)
- AdamW optimizer with small learning rate $(2 * 10^{-5})$
- Batch size of 8 (limited GPU memory)
- Gradient accumulation to cope with the limited GPU memory, we can simulate a batch of size 64/128 by accumulating the gradients for 8/16 iterations without updating the weights
- Caching is implemented to speed up epochs after the first one (it avoids preprocessing the same image more than once)

The model

Experimental results

	Model	MRR	Hits@1	Hits@3
Baselines	Random	0.317	0.125	-
	Organizers	0.739	0.605	-
	Winners	0.895	0.840	-
0-shot	RN50 (MPNet)	0.772	0.654	0.857
	RN50 (Lesk)	0.757	0.629	0.857
	RN50 (WordNet)	0.723	0.579	0.825
	ViT-B-16 (MPNet)	0.810	0.708	0.894
	ViT-B-16 (Lesk)	0.788	0.674	0.881
	ViT-L-14 (MPNet)	0.833	0.737	0.933
	ViT-L-14 (Lesk)	0.817	0.706	0.922
Fine tuned	RN50 (MPNet)	0.833	0.737	0.920

- Wordnet based disambiguation doesn't work well, MPNet is the best
- Lesk is less accurate but it's faster
- Performances increases almost linearly with model complexity
- Fine tuning the simplest model significantly boost performances

Thanks for your attention