Objetivos de aprendizaje Tema 3

Análisis Matemático II

Javier Gómez López

5 de abril de 2022

1. Conocer y comprender la definición de la medida de Lebesgue.

En lo que sigue, mantenemos fijo $N \in \mathbb{N}$ y denotamos por $\mathcal{P}(\mathbb{R}^N)$ al conjunto de todos los subconjuntos de \mathbb{R}^N . Para $n \in \mathbb{N}$ será útil escribir $\Delta_n = \{k \in \mathbb{N} : k \leq n\}$. Dado $k \in \Delta_N$ denotamos por $\pi_k : \mathbb{R}^N \to \mathbb{R}$ a la k-ésima proyección coordenada en \mathbb{R}^N , es decir, $\pi_k(x) = x(k)$ para todo $x \in \mathbb{R}^N$.

Un **intervalo** en \mathbb{R}^N será un producto cartesiano de intervalos en \mathbb{R} , y denotaremos por \mathcal{J} al conjunto de todos los **intervalos acotados** en \mathbb{R}^N , entendiendo que $\emptyset \in \mathcal{J}$. Para $I \in \mathcal{J} \setminus \{\emptyset\}$ y cada $k \in \Delta_k$, está claro que $\pi_k(I)$ es un intervalo no vacío y acotado en \mathbb{R} . Esto nos permite definir la **medida elemental** del intervalo I como el número $M(I) \in \mathbb{R}_0^+$ dado por

$$M(I) = \prod_{k=1}^{N} (\sup \pi_k(I) - \inf \pi_k(I))$$
(1)

y como es natural, definimos $M(\emptyset) = 0$. Obtenemos así una función $M : \mathcal{J} \to \mathbb{R}_0^+$ a la que llamaremos **medida elemental de los intervalos acotados**.

A raíz de esta función M, podemos definir **la medida exterior de Lebesgue** como la función $\lambda^* : \mathcal{P}(\mathbb{R}^N) \to [0, +\infty]$ definida por

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{\infty} M(I_n) : I_n \in \mathcal{J} \quad \forall n \in \mathbb{N}, \quad E \subset \bigcup_{n=1}^{\infty} I_n \right\} \qquad \forall E \in \mathcal{P}(\mathbb{R}^N)$$
 (2)

Para cada conjunto $E \in \mathcal{P}(\mathbb{R}^N)$, se dice también que $\lambda^*(E)$ es la **medida exterior** de E.

Sin embargo, existen conjuntos $E, F \in \mathcal{P}(\mathbb{R}^N)$, con $E \cap F = \emptyset$, tales que $\lambda^*(E \cup F) < \lambda^*(E) + \lambda^*(F)$. Por tanto, para evitar estos conjuntos, diremos que un conjunto $E \in \mathcal{P}(\mathbb{R}^N)$ es **medible** cuando se verifica la siguiente condición:

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E) \qquad \forall W \in \mathcal{P}(\mathbb{R}^N)$$
 (3)

y denotaremos por \mathcal{M} a la familia de todos los conjuntos medibles de \mathbb{R}^N .

Definimos así, la **medida de Lebesgue** en \mathbb{R}^N como la restricción de la medida exterior de Lebesgue a la familia de los conjuntos medibles, es decir, la función $\lambda : \mathcal{M} \to [0, +\infty]$ definida por

$$\lambda(E) = \lambda^*(E) \qquad \forall E \in \mathcal{M}$$
 (4)

- 2. Conocer y comprender el enunciado de los siguientes resultados:
 - a) Propiedades de la medida exterior de Lebesgue
 - La medida exterior de Lebesgue es una función creciente, es decir:

$$E \subset F \subset \mathbb{R}^N \Longrightarrow \lambda^*(E) \le \lambda^*(F)$$

■ Para toda sucesión $\{E_n\}$ de subconjuntos de \mathbb{R}^N se tiene:

$$\lambda^* \left(\bigcup_{n=1}^{\infty} E_n \right) \le \sum_{n=1}^{\infty} \lambda^* (E_n)$$

Se alude a la propiedad recién nombrada, diciendo que la medida exterior de Lebesgue es una función σ -subaditiva. Fijados $n \in \mathbb{N}$ y $E_k \in \mathcal{P}(\mathbb{R}^N)$ para todo $k \in \Delta_n$, podemos usar la anterior propiedad, tomando $E_k = \emptyset$ para todo $k \in \mathbb{N} \setminus \Delta_n$. Con ello obtenemos:

$$\lambda^* \left(\bigcup_{k=1}^n E_k \right) \le \sum_{k=1}^n \lambda^*(E_k)$$

y decimos ahora que la medida exterior de Lebesgue es **finitamente subaditi-**va.

- b) Continuidad creciente y decreciente de la medida de Lebesgue De aquí en adelante, \mathcal{M} es la familia de los conjuntos medibles en \mathbb{R}^N .
 - La medida de Lebesgue $\lambda : \mathcal{M} \to [0, \infty]$ es crecientemente continua, es decir:

$$A = \bigcup_{n=1}^{\infty} A_n, \quad A_n \in \mathcal{M} \quad \forall n \in \mathbb{N}, \quad \{A_n\} \nearrow A \Longrightarrow \{\lambda(A_n)\} \nearrow \lambda(A)$$

También es decrecientemente continua, en el siguiente sentido:

$$A = \bigcap_{n=1}^{\infty} A_n, \quad A_n \in \mathcal{M} \quad \forall n \in \mathbb{N}, \quad \{A_n\} \searrow A, \lambda(A_1) < \infty \Longrightarrow \{\lambda(A_n)\} \searrow \lambda(A)$$

c) Relación entre la medida de Lebesgue y la medida elemental de los intervalos acotados

Fijado $N \in \mathbb{N}$, y siendo \mathcal{J} el conjunto de todos los intervalos acotados en \mathbb{R}^N , tenemos la siguiente relación:

■ La medida de Lesbesgue extiende a la medida elemental de los intervalos acotados, es decir: $\mathcal{J} \subset \mathcal{M}$ y $\lambda(I) = M(I)$ para todo $I \in \mathcal{J}$

donde M es la medida elemental de los intervalos acotados. La medida de Lebesgue supone una formalización y generalización de la medida elemental. Concretamente, para un conjunto medible $E \subset \mathbb{R}$, podemos decir que $\lambda(E)$ es la longitud de E, generalizando así la noción de longitud de un segmento, pues cuando E = I es un intervalo acotado, $\lambda(I) = M(I)$ es la longitud de un segmento. Esta idea es extensible a los conceptos de área y volumen.

3. Conocer y comprender la demostración del teorema referente a la estabilidad de la familia de los conjuntos medibles y la σ -aditividad de la medida de Lebesgue

Teorema 1. La familia \mathcal{M} de los conjuntos medibles tiene las siguientes tres propiedades:

- $(\boldsymbol{a}) \mathbb{R}^N \in \mathcal{M}$
- (b) $E \in \mathcal{M} \Rightarrow \mathbb{R}^N \setminus E \in \mathcal{M}$

$$(c)$$
 $E_n \in \mathcal{M}$ $\forall n \in \mathbb{N}$, $E = \bigcup_{n=1}^{\infty} E_n \Rightarrow E \in \mathcal{M}$

A su vez, la medida de Lebesgue $\lambda: \mathcal{M} \to [0, \infty]$ tiene la siguiente propiedad:

$$E_n \in \mathcal{M} \quad \forall n \in \mathbb{N}, \quad E = \biguplus_{n=1}^{\infty} E_n \Longrightarrow \lambda(E) = \sum_{n=1}^{\infty} \lambda(E_n)$$
 (5)

Demostración. Ya sabíamos que \mathbb{R}^N es medible. Para abreviar, denotaremos por E^c al complemento de un conjunto $E \subset \mathbb{R}^N$. Si $E \in \mathcal{M}$, se tiene

$$\lambda^*(W \cap E^c) + \lambda^*(W \setminus E^c) = \lambda^*(W \setminus E) + \lambda^*(W \cap E) = \lambda^*(W)$$

luego $E^c \in \mathcal{M}$ y se verifica (b).

Pasemos a probar (c). Dados $E, F \in \mathcal{M}$, para todo $W \in \mathcal{P}(\mathbb{R}^N)$ tenemos

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \cap E^c) \tag{6}$$

$$= \lambda^*(W \cap E \cap F) + \lambda^*(W \cap E \cap F^c) + \lambda^*(W \cap E^c \cap F) + \lambda^*(W \cap E^c \cap F^c)$$

La igualdad anterior se sigue verificando si sustituimos W por $W \cap (E \cup F)$. Al hacerlo, obtenemos

$$\lambda^*(W \cap (E \cup F)) = \lambda^*(W \cap E \cap F) + \lambda^*(W \cap E \cap F^c) + \lambda^*(W \cap E^c \cap F) \tag{7}$$

Sustituyendo (7) en (6) obtenemos

$$\lambda^*(W) = \lambda^*(W \cap (E \cup F)) + \lambda^*(W \cap E^c \cap F^c) = \lambda^*(W \cap (E \cup F)) + \lambda^*(W \setminus (E \cup F))$$

Esta igualdad es válida para todo $W \in \mathcal{P}(\mathbb{R}^N)$, y nos dice que $E \cup F \in \mathcal{M}$. Usando (b) deducimos que también $E \cap F \in \mathcal{M}$ y $E \setminus F \in \mathcal{M}$. Mediante una inducción, vemos que toda unión finita de conjuntos medibles es un conjunto medible, que es la versión de (c) para una familia finita de conjuntos.

Además, para $E, F \in \mathcal{M}$, con $E \cap F = \emptyset$, la igualdad (7) nos dice que

$$\lambda^*(W \cap (E \uplus F)) = \lambda^*(W \cap E) + \lambda^*(W \cap F) \qquad \forall W \in \mathcal{P}(\mathbb{R}^N)$$

Razonando de nuevo por inducción, obtenemos que, para todo $n \in \mathbb{N}$ se tiene:

$$E_k \in \mathcal{M} \quad \forall k \in \Delta_n, \quad E = \biguplus_{k=1}^n E_k \Longrightarrow \lambda^*(W \cap E) = \sum_{k=1}^n \lambda^*(W \cap E_k) \quad \forall W \in \mathcal{P}(\mathbb{R}^N)$$
 (8)

Supongamos ahora que $E = \biguplus_{n=1}^{\infty} E_n$ con $E_n \in \mathcal{M}$ para todo $n \in \mathbb{N}$. Para usar lo demostrado, tomamos $F_n = \biguplus_{k=1}^n E_k$ para todo $n \in \mathbb{N}$. Fijados $W \in \mathcal{P}(\mathbb{R}^N)$ y $n \in \mathbb{N}$, usamos que λ^* es creciente, junto con (8), y como ya sabemos que $F_n \in \mathcal{M}$, obtenemos:

$$\sum_{k=1}^{n} \lambda^*(W \cap E_k) + \lambda^*(W \setminus E) \le \sum_{k=1}^{n} \lambda^*(W \cap E_k) + \lambda^*(W \setminus F_n)$$
$$= \lambda^*(W \cap F_n) + \lambda^*(W \setminus F_n) = \lambda^*(W)$$

Esta desigualdad es válida para todo $n \in \mathbb{N}$, luego tenemos

$$\sum_{n=1}^{\infty} \lambda^*(W \cap E_n) + \lambda^*(W \setminus E) \le \lambda^*(W)$$

Como $W \cap E = \bigcup_{n=1}^{\infty} (W \cap E_n)$, usando que λ^* es σ -subaditiva, de la última desigualdad deducimos que

$$\lambda^*(W) \le \lambda^*(W \cap E) + \lambda^*(W \setminus E) \le \sum_{n=1}^{\infty} \lambda^*(W \cap E_n) + \lambda^*(W \setminus E) \le \lambda^*(W)$$

Esto prueba que $E \in \mathcal{M}$ pero además, tomando W = E obtemos claramente la igualdad enunciada en el teorema.

Finalmente, sea $\{E_n\}$ una sucesión de conjuntos medibles, que ya no tiene por qué ser dos a dos disjuntos, y sea de nuevo $E = \bigcup_{n=1}^{\infty} E_n$. Tomando $H_1 = E_1$ y $H_{n+1} = E_{n+1} \setminus \bigcup_{k=1}^n E_k$ para todo $n \in \mathbb{N}$, sabemos ya que $H_n \in \mathcal{M}$ para todo $n \in \mathbb{N}$, y se tiene claramente que $E = \biguplus_{n=1}^{\infty} H_n$, luego usando lo ya demostrado, obtenemos que $E \in \mathcal{M}$. Esto prueba que se verifica (c), lo que concluye la demostración.