International TOR Rectifier

IRG4BC30SPbF

Standard Speed IGBT

INSULATED GATE BIPOLAR TRANSISTOR

Features

- Standard: optimized for minimum saturation voltage and low operating frequencies (< 1kHz)
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- Industry standard TO-220AB package
- Lead-Free

Benefits

- Generation 4 IGBTs offer highest efficiency available
- IGBTs optimized for specified application conditions
- Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Breakdown Voltage	600	V	
I _C @ T _C = 25°C	Continuous Collector Current	34		
I _C @ T _C = 100°C	100°C Continuous Collector Current 18		Α	
I _{CM}	Pulsed Collector Current ①	68		
I _{LM}	Clamped Inductive Load Current ②	68		
V_{GE}	Gate-to-Emitter Voltage	± 20	V	
E _{ARV}	Reverse Voltage Avalanche Energy ③	10	mJ	
P _D @ T _C = 25°C	Maximum Power Dissipation	100	W	
P _D @ T _C = 100°C	Maximum Power Dissipation	42	7 VV	
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)		
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.2	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount		80	
Wt	Weight	2.0 (0.07)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

						. ,	
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600	_	_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ④	18	_	_	V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.75	_	V/°C	V_{GE} = 0V, I_{C} = 1.0mA	
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	1.40	1.6	V	I _C = 18A	V _{GE} = 15V
		_	1.84	_		I _C = 34A	See Fig.2, 5
		_	1.45	_		I _C = 18A , T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	—	6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-11	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
9 fe	Forward Transconductance ⑤	6.0	11	_	S	$V_{CE} = 100V, I_{C} = 18A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μΑ	V _{GE} = 0V, V _{CE} = 600V	
		_	_	2.0		$V_{GE} = 0V, V_{CE} = 10V, T$	J = 25°C
		_	—	1000		V _{GE} = 0V, V _{CE} = 600V,	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V _{GE} = ±20V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	50	75		I _C = 18A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	7.3	11	nC	V _{CC} = 400V See Fig. 8
Q _{gc}	Gate - Collector Charge (turn-on)	_	17	26		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	22	_		
t _r	Rise Time	_	18	_	ns	$T_J = 25$ °C
t _{d(off)}	Turn-Off Delay Time	_	540	810	113	$I_{\rm C}$ = 18A, $V_{\rm CC}$ = 480V
t _f	Fall Time	_	390	590		V_{GE} = 15V, R_G = 23 Ω
Eon	Turn-On Switching Loss	_	0.26	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	_	3.45	_	mJ	See Fig. 9, 10, 14
E _{ts}	Total Switching Loss	_	3.71	5.6		
t _{d(on)}	Turn-On Delay Time	_	21	_		T _J = 150°C,
t _r	Rise Time	_	19	_	ns	$I_C = 18A, V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time	_	790	_	115	V_{GE} = 15V, R_G = 23 Ω
t _f	Fall Time	_	760	_		Energy losses include "tail"
E _{ts}	Total Switching Loss	_	6.55	_	mJ	See Fig. 11, 14
LE	Internal Emitter Inductance	_	7.5	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	_	1100	_		V _{GE} = 0V
C _{oes}	Output Capacitance	_	72	_	pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance	_	13	_		f = 1.0MHz

Notes

- 1 Repetitive rating; $V_{GE} = 20V$, pulse width limited by max. junction temperature. (See fig. 13b)
- $\bigcirc \quad V_{CC} = 80\% (V_{CES}), \, V_{GE} = 20V, \, L = 10 \mu H, \, R_G = 23 \Omega, \\ (\text{See fig. 13a})$
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- ④ Pulse width $\leq 80\mu s$; duty factor $\leq 0.1\%$.
- ⑤ Pulse width 5.0µs, single shot.

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

100

T_J = 150 °C

T_J = 25 °C

V_{CC} = 50V
Spis PULSE WIDTH

V_{GE}, Gate-to-Emitter Voltage (V)

Fig. 2 - Typical Output Characteristics www.irf.com

Fig. 3 - Typical Transfer Characteristics

3

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **IOR** Rectifier

IRG4BC30SPbF

20 VCC = 400V | CC = 18A | CC = 1

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

International **IOR** Rectifier

Fig. 12 - Turn-Off SOA

International IOR Rectifier

IRG4BC30SPbF

* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.

 $R_{L=}\frac{VCC}{ICM}$ 480µF 0 - VCC 7

Pulsed Collector Current

Test Circuit

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector **Current Test Circuit**

Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 480V

Fig. 14b - Switching Loss Waveforms

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

TO-220AB Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 01/2010