INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO

Departamento de Matemática Aplicada e Estatística SME0892 – Cálculo Numérico para Estatística

ANTONIO AUGUSTO NUNES DE SOUZA 15440698 ASHTON APEBIO MERGULHÃO SEGNIBO 15441765 MARIA RITA SOUSA BORGES 15656239

Aplicação de Modelos Numéricos em funções polinomiais

Método de bisseção, Método de Newton-Raphson e Secantes

Conteúdo

1	Intro	odução	1
2	2.2		
3	Resultados		3
4	Cond	clusão	4
\mathbf{L}	ista	de Figuras	
	1	Gráfico que representa comportamento de $f(x)$	2

1 Introdução

O presente trabalho tem como objetivo apresentar diferentes formas de aproximar raízes de funções, isto é, valores que satisfazem f(x) = 0, com diferentes métodos.

Dentre as inúmeras técnicas existentes, vamos aplicar Bisseção e Método de Newton-Raphson.

A bisseção consiste em um princípio matemático que se resume em: se uma função f(x) é contínua em um intervalo [a,b] e seus valores extremos possuem sinais opostos, $(f(a)\cdot f(b)<0)$, então existe pelo menos uma raíz existente nesse intervalo seguindo a definição de limites. Embora o Método de Bisseção seja menos eficiente, em termos de velocidade, ele tem grande valor por ser de simples compreensão e é simples de aplicar em problemas nos quais informações detalhadas sobre a função são limitadas.

Diferentemente da bissecção, o método de Newton-Raphson destaca-se como uma das maneiras mais eficientes de aproximar raízes, consiste numa técnica de iteração que utiliza a derivada das funções. O princípio é simples, e consiste em: dado um valor inicial, o método constrói uma sequência que iterada n-vezes traz um alto grau de precisão para a posição do ponto procurado.

Por fim, o método da Secante pode ser visto como uma alternativa ao método de Newton-Raphson, porém sem a necessidade de calcular explicitamente a derivada da função. Esse método se destaca por apresentar convergência superlinear, sendo geralmente mais rápido que a bisseção, mas sem atingir a eficiência do método de Newton-Raphson. Sua principal vantagem está na aplicabilidade a funções cuja derivada não pode ser determinada de maneira explícita ou prática.

Os três métodos apresentados possuem características distintas em termos de eficiência, velocidade de convergência e requisitos para aplicação. A análise comparativa entre eles permite compreender melhor suas vantagens e limitações, possibilitando a escolha adequada para diferentes tipos de problemas numéricos.

2 Métodos

Considerando a função polinomial de quinto grau

$$f(x) = 3x^5 - 7x^4 - 3x^3 + 7x^2 - 6x + 14$$

é possível visualizar que nos intervalos [-2, -1] e [1, 2] existe uma raíz real para cada intervalo. Nesse caso, é possível aproximar o valor da raíz analisando o gráfico abaixo por meio de aproximações via índice. Porém, para garantir proximidade, vamos fazer com o método tradicional aplicado ferramentário de Cálculo I, usando o princípio de minimizar a derivada da função para encontrar a raíz real disposta no intervalo. Para isso, devemos derivar f(x) e obter:

$$f'(x) = 15x^4 - 28x^3 - 9x^2 + 14x - 6$$

Utilizando o software [WolframAlpha], conseguimos encontrar a primeira raíz de x definida no intervalo [-2, -1] com o valor $x = -\sqrt{2}$, localizado mais à esquerda do gráfico.

Enquanto no intervalo [1,2], utilizando ainda a ferramenta WolframAlpha, encontramos a raíz real $x = \sqrt{2}$.

Figura 1: Gráfico que representa comportamento de f(x)

Fonte: Autoria própria

2.1 Método de bisseção

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua em um intervalo fechado $[a, b] \subset \mathbb{R}$, tal que:

$$f(a) \cdot f(b) < 0 \tag{1}$$

O método da bisseção é um processo iterativo, para encontrar uma aproximação da raiz real de α de f(x), garantido pelo Teorema do Valor Intermediário, conforme citado acima. A cada iteração, o ponto médio do intervalo é obtido por:

$$m_n = \frac{a_n + b_n}{2}, n = 0, 1, 2, ..., n$$
 (2)

O subintervalo é definido a partir do momento que a condição é satisfeita garantindo que $f(a_n) \cdot f(b_n) < 0$ continue válido. A iteração acontece até que:

$$|b_n - a_n| < \varepsilon \text{ ou } |f(m_n)| < \varepsilon$$
 (3)

onde $\varepsilon > 0$ é uma tolerância predefinida.

O método apresenta convergência desde que a função seja contínua e o teorema do valor intermediário seja satisfeito. A teoria do método é discutida em textos clássicos, como [Burden e Faires (2011)], fonte para tal definição.

2.2 Método de Newton

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função continuamente diferenciável num intervalo $I \subset \mathbb{R}$. O método de Newton, também conhecido como Newton-Raphson é um modelo de iteração com maior eficiência para encontrar convergência de funções.

Dado um ponto inicial $x_0 \in I$, a fórmula do método é expressa por:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, 2, ..., n$$
 (4)

Para que o método apresente convergência, algumas condições fundamentais devem ser satisfeitas, f(x) deve ser continuamente diferenciável no intervalo e pertencer ao inter-

valo definido. Além disso, é necessário que $f(\alpha) = 0$ e $f'(\alpha) \neq 0$ em todo o intervalo, caso haja $f'(\alpha) = 0$ em algum ponto do intervalo, não é possível garantir convergência. Sob condições favoráveis, o método apresenta convergência quadrática, se apresenta da seguinte forma:

$$\lim_{z \to \infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^2} = C \tag{5}$$

com C > 0 constante.

2.3 Método das secantes

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função continuamente diferenciável em um intervalo $I \subset \mathbb{R}$. O método das secantes é uma técnica de iteração advinda do método de Newton-Raphson, utilizando aproximações iniciais $x_0, x_1 \in I$. O método é definido como:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}, n = 0, 1, 2, ..., n$$
(6)

Onde assume o seguinte critério de parada:

$$|x_{n+1} - x_n| < \varepsilon \text{ ou } |f(x_{n+1})| < \varepsilon$$
 (7)

O método das secantes pode ser visto como uma generalização do método de Newton, substituindo a análise da derivada f'(x) por uma aproximação de diferença finita. Ela apresenta convergência superlinear, inferior à convergência quadrática de Newton, porém não exige cálculo e análise de derivadas da função.

3 Resultados

Nesta seção, apresentamos e analisamos os resultados obtidos na aplicação de métodos numéricos, com o intuito de comparar o comportamento da função em diferentes cenários. A lógica de implementação foi desenvolvida em linguagem Python, e todos os cálculos consideraram a função $f(x) = 3x^5 - 7x^4 - 3x^3 + 7x^2 - 6x + 14$. Os métodos numéricos foram executados para dois intervalos distintos: [2, -1] e [1, 2], com um critério de convergência estabelecido para um erro absoluto de aproximadamente 10^7 .

As raízes encontradas, conforme referência gerada pelo software WolframAlpha, foram aproximadas para $-\sqrt{2}$ no intervalo negativo e $\sqrt{2}$ no intervalo positivo, correspondendo a valores numéricos de -1.414213660 e 1.414213660, respectivamente. A seguir, apresentamos a performance de cada método:

Método da Bisseção:

O método da bisseção convergiu para as raízes aproximadas após 20 iterações em ambos os intervalos. Como esperado, o comportamento do método foi consistente entre os dois casos devido à sua natureza que explora uma divisão uniforme do intervalo.

Método de Newton:

O método de Newton, por sua vez, apresentou uma velocidade de convergência significativamente superior. No intervalo [-2, -1], a raiz foi atingida em apenas 6 iterações, enquanto no intervalo [1, 2], o mesmo resultado foi alcançado em apenas 4 iterações. Essa

diferença pode ser atribuída ao comportamento da derivada da função. No intervalo negativo, a derivada apresenta valores menores em magnitude, o que reduz a eficiência do método. Em contraste, no intervalo positivo, a derivada é mais estável, acelerando o processo de convergência.

Método das Secantes:

Por fim, o método das secantes também demonstrou diferenças entre os dois intervalos. Para o intervalo positivo [1,2], a raiz foi encontrada em 6 iterações, enquanto para o intervalo negativo [-2,-1], foram necessárias 11 iterações. Embora o método das secantes não dependa diretamente do cálculo da derivada, ele é influenciado pelas características locais da função, refletindo um comportamento semelhante ao do método de Newton.

4 Conclusão

Com base nos resultados apresentados, é possível observar diferenças significativas no desempenho de cada método numérico em termos de rapidez e precisão na convergência para a solução. O método de Newton destacou-se por requerer menos iterações para atingir o valor aproximado, evidenciando sua eficiência em situações que permitem o uso de derivadas. Por outro lado, o método das secantes apresentou uma solução com ligeira diferença na precisão, mas com um número de iterações menor do que o método da bisseção, que, embora mais lento, garantiu a aproximação com maior estabilidade. Assim, cada método oferece vantagens específicas que podem ser exploradas de acordo com as características do problema a ser resolvido.

Referências

- [1] ASANO, Claudio Hirofume; COLLI, Eduardo. Cálculo Numérico Fundamentos e Aplicações. São Paulo: Pearson Education do Brasil, 2014.
- [2] BURDEN, R. L.; FAIRES, J. D. *Numerical Analysis*. 9^a ed. Boston: Brooks/Cole, Cengage Learning, 2011.
- [3] WOLFRAM ALPHA. Computational Intelligence. Disponível em: https://www.wolframalpha.com. Acesso em: 01 abr. 2025.