DYNAMIC PROGRAMMING SUBSET SUM

CS340

Subset Sum

- You have n items {1, 2,..., n}
- Each item has a weight {w₁, w₂, ..., w_n}
- You want add as much weight as possible, without exceeding a maximum weight, W

Real life examples

- Production Scheduling
 - An assembly line is available for W minutes
 - You want to schedule jobs to maximize utilization of the line
- Filling a knapsack with the maximum possible weight
 - Carry as many books as possible to school
 - Don't overload it the knapsack or it will break

How to solve this problem

- Items = $\{2, 1, 13, 4, 2, 8, 1\}$
- Total weight = 11

Optimal solution(s)?

How about a greedy solution?

- Bag will hold W weight, there are 3 items
- Sort by weight, largest to smallest...
 - W/2 + 1, W/2, W/2
- Sort by weight, smallest to largest
 - 1, W/2, W/2
- What is the greedy solution?
- What is the optimal solution?

- What properties does an optimal solution have?
 - How many items are in the optimal solution?
 - What total weight does the optimal solution have?

- Imagine the optimal solution consists of a subset of the available items, S
- Before we add the last item, the optimal set (so far) is S'
- What do we know about the optimal set before the last item was added?
 - W(S') < W(S) <= W

- Why wasn't item x added?
 - It would have gone over the weight limit
 - W(S') + W(x) > W
 - It wasn't optimal
 - W(S') + W(x) < W(S') +the last item added (=W(S))

- At the first step, the first item is added to the knapsack
- At each successive step, either
 - The next item is added to the knapsack
 - The next item is not added to the knapsack
- One of these choices will lead to the optimal solution
 - It doesn't matter which if we calculate them all
- There are N items that can be added. Max weight is W
 - How many distinct problems are there?

- There are actually only n x W distinct subproblems to consider!
- Hence: Create an n x W matrix
- Each entry corresponds to the OPT total value for the first i items subject to a total weight of W

An example

- Items $w_i = \{2,3,4\}$
- W = 6

What is the optimal solution?

An example

Items
$$w_i = \{2,3,4\}$$

 $N = 3$
 $W = 6$

A row represents:

The better of

 The optimum so far (from the row below) = OPT(i-1,w)

W

 The optimum so far + the next item = w_i + OPT(i-1, w-w_i)

An example

Items
$$w_i = \{2,3,4\}$$

 $N = 3$
 $W = 6$

Each cell = OPT(i,w)
if w< w_i then OPT(i,w) = OPT(i-1,w)
$$\uparrow$$

else OPT(i,w) = MAX(OPT(i-1,w), w_i + OPT(i-1, w- w_i)

Another example

```
Items = \{2,1,2,3\}
N = 4
W = 6
```

4 (3)	0						
3 (2)	0						
2 (1)	0						
1 (2)	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

W

What is the complexity

- What is the complexity of each computation?
- How many computations? (nxW)
- Is this polynomial time, based on the size of the input?
 - What is the size of the input?
 - What happens if W is large?
- W is not the representation of W
 - · W depends on how many bits are used to encode it
 - Think about a binary representation of W requiring 2^k bits
 - If we double W, the input size increases by 1 bit, but running time doubles
 - Running time is exponential in k = O(n2^k)

The Knapsack Problem

- A lot like subset sum, but each item has a value in addition to a weight.
- Value vector {v₁, v₂, ..., v_n}
- We want to maximize value, while not exceeding maximum weight. Some items might be proportionately more valuable than others.

The Knapsack Problem

- Each cell = OPT(i,w)
- if $w < w_i$ then OPT(i,w) = OPT(i-1,w)
- else OPT(i,w) = MAX(OPT(i-1,w), v_i + OPT(i-1, w- w_i)

What's different?

The Knapsack Problem

```
Weights = {2,1, 2, 3}
Values = {4, 5, 1, 2}
N = 4
W = 6
```

4	0						
3	0						
2	0						
1	0						
0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6

W