Mühazirə 15.

Kəsənlər (vətərlər) üsulu

Bu üsul yuxarıda baxdığımız Nyuton üsulunda $f'(x_k)$ törəməsinin

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

bölünən fərqi ilə əvəz olunmasının nəticəsi kimi alınır. Kəsənlər üsuluna görə iterasiya prosesi

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}, f(x_k) \quad k = 1, 2, \dots$$

kimi qurulur. Göründüyü kimi kəsənlər ysulu Nyuton üsulundan fərqli olaraq ikiaddımlı üsuldur, yəni hər növbəti x_{k+1} yaxınlaşması bundan əvvəlki x_{k-1} və x_k yaxınlaşmalarının köməyi ilə qurulurlar. Daha dəqiq desək, bu üsula görə $(x_{k-1},f(x_{k-1}))$ və $(x_k,f(x_k))$ nöqtələrindən keçən kəsən çəkilir və bu kəsənin OX oxu ilə kəsişmə nöqtəsi növbəti x_{k+1} yaxınlaşması kimi qəbul olunur. Başqa sözlə, $\left[x_{k-1},x_k\right]$ parçasında f(x) funksiyası birtərtibli interpolyasiya çoxhədlisi ilə əvəz olunur və növbəti x_{k+1} yaxınlaşması kimi bu çoxhədlinin kökü götürülür.

Kəsənlər(və ya vətərlər) üsulunun variantlarından birinə görə x_0 başlanğıc nöqtəsi tərpənməz qalır və yeni yaxınlaşmalar o biri tərəfdən qurulurlar. Biz bu halı araşdıracağıq.

Fərz edək ki, f(x) funksiyası x həqiqi dəyişəninin həqiqi qiymətli funksiyasıdır, $x=x^*$ isə f(x)=0 tənliyinin həqiqi köküdür və $x=x^*$ nöqtəsinin yaxın ətrafında f(x) funksiyası və f'(x), f''(x), funksiyaları kəsilməzdirlər və bu ətrafda f'(x), f''(x), törəmələri öz işarələrini saxlayırlar. Bu isə öz növbəsində o deməkdir ki, $x=x^*$ nöqtəsindən keçdikdə f(x) funksiyası öz işarəsini dəyişir və deməli, $x=x^*$ nöqtəsi sadə kökdür.

İndi isə, fərz edək ki, x_0 nöqtəsi baxılan ətrafdandır, və $f(x_0) \cdot f''(x_0) > 0$ şərti ödənir. $\psi(x)$ -funksiyası kimi

$$\psi(x) \equiv \frac{x - x_0}{f(x) - f(x_0)}$$

götürək. Onda

$$x = \varphi(x) = x - \psi(x) \cdot f(x) = x - \frac{x - x_0}{f(x) - f(x_0)} \cdot f(x) =$$

$$= \frac{x \cdot f(x) - x \cdot f(x_0) - x \cdot f(x) + x_0 \cdot f(x)}{f(x) - f(x_0)}$$

$$x = \frac{x_0 \cdot f(x) - x \cdot f(x_0)}{f(x) - f(x_0)}$$

 $x = x^*$ -nöqtəsi, həm də axırıncı tənliyin köküdür(Yoxlayın!)

 x_1 yaxınlaşması kimi x^* -in yaxın ətrafından elə nöqtə seçək ki, $f(x_0)\cdot f(x_1)<0$ şərti ödənsin və əgər x_0 nöqtəsi baxılan aralığın bir ucudursa, onda x_1 nöqtəsi kimi digər ucu götürmək lazımdır

Növbəti yaxınlaşmalar aşağıdakı kimi seçilirlər:

$$x_{n+1} = \frac{x_0 f(x_n) - x_n f(x_0)}{f(x_n) - f(x_0)}, \qquad (n = 1, 2, ...)$$

Kəsənlər (vətərlər) üsulunun həndəsi interpretasiyası

Kəsənlər üsuluna görə $\{x_n\}$ ardıcıllığı aşağıdakı kimi qurulur: $(x_0, f(x_0))$ və $(x_1, f(x_1))$ nöqtələrindən keçən kəsən çəkilir və bu kəsənin 0X oxu ilə kəsişmə nöqtəsi x_2 -növbəti yaxınlaşma kimi qəbul olunur. Sonrakı mərhələdə $(x_0, f(x_0))$ və $(x_2, f(x_2))$ nöqtələrindən keçən yeni kəsən çəkilir və bu kəsənin 0X oxu ilə kəsişmə nöqtəsi x_3 -növbəti yaxınlaşma kimi qəbul olunur və i.a.. Beləliklə, hər addımda $(x_0, f(x_0))$ və $(x_n, f(x_n))$ nöqtələrindən keçən kəsən çəkilir və kəsənin 0X oxu ilə kəsişmə nöqtəsi yeni x_{n+1} yaxınlaşması kimi qəbul olunur. İterasiya prosesi o vaxta qədər davam olunur ki, şərti $|x_{n+1}-x_n|<\varepsilon$ ödənsin.

Nyuton üsulunda olduğu kimi burada da qrafiki təsvirlərlə kəsənlər üsulunun həndəsi interpretasiyasını verək.

Fərz edək ki,

a)
$$f'(x) < 0$$
, $f''(x) > 0$ və $f(a) > 0$, $f(b) < 0$, x_0 -başlanğıc nöqtəsi elə seçilməlidir ki, $f(x_0) \cdot f''(x_0) > 0$ -şərti ödənsin, deməli $x_0 = a$ və $x_1 = b$ qəbul olunmalıdır və $x_0 = a$ nöqtəsi tərpənməz olaraq qalır.

b)
$$f'(x) > 0$$
, $f''(x) < 0$ və $f(a) < 0$, $f(b) > 0$,

bu halda da $x_0 = a$ və $x_1 = b$ qəbul olunmalıdır.

Baxılan bu iki hal üçün üsulun həndəsi interpretasiyasını qrafik olaraq aşağıdakı kimi göstərmək olar:

Növbəti iki hal isə aşağıdakı kimi olacaqdır. a)
$$f'(x) > 0$$
 , $f''(x) > 0$ və $f(a) < 0$, $f(b) > 0$

b)
$$f'(x) < 0$$
, $f''(x) < 0$, $f(a) > 0$, $f(b) < 0$,

Buradakı, hər halda isə $x_0 = b$, $x_1 = a$ götürülməlidir.

