

Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator

Rodrigo Gutiérrez-Moreno, Rafael Barea, Elena López-Guillén , Javier Araluce and Luis M. Bergasa University of Alcalá

Intersections problem

60% of severe traffic injuries in Europe a

large amount of information

Developing an agent that allows

safe and reliable decisions is a hard task to implement manually

29% of all car crashes and 18% of pedestrian fatalities

existing solutions

prediction and collaborations (V2V, V2I)

TTC (tuning parameters have to be adjusted, and this task can be laborious)

Reinforcement learning

Imitation learning

Approach

Curriculum learning

First stage → SUMO Second stage → Carla

DRL

An execution layer is in charge of the motion, while a decision-making layer executes the high-level actions

Diferent intersections

No rules Traffic lights Stop signal

.

Approach

Strategy Level

HD map input → road and lanes graph → Dijkstra algorithm → route as waypoints → ROS

Tactical Level

state vector to execute a high level action each time step

Operative Level

classic controller performs
a smooth interpolation of
the way-points using Linear
Quadratic Regulator (LQR)
techniques && velocity
profile is generated

Policy-based method

$$L^{PG}(\theta) = \hat{\mathbb{E}}_t[log \pi_{\theta}(a_t|s_t)\hat{A}_t]$$

where Et is the expectation, $\pi\theta$ is the policy and $\hat{A}t$ is an estimator of the advantage function at a time step t

PPO

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t)]$$

where c1 , c2 are coefficients, S denotes an entropy bonus, and LVF t (θ) is a squared-error loss

$$L_t^{CLIP}(\theta) = \hat{\mathbb{E}}_t[min(r_t(\theta)\hat{A}_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A}_t)]$$

where epsilon is a hyperparameter and rt (θ) is the probability ratio:

$$r_t(\theta) = \pi_{\theta}(a_t|s_t) / \pi_{\theta_{old}}(a_t|s_t)$$

- The perception data are directly obtained from the simulator's ground truth.
- In real applications, these data could be obtained using the fusion of cameras and lidars
- continuous state vector and a set of discrete action
- define the intersection scenarios as an MDP

- distance to the intersection point and its longitudinal velocity: si = {di , vi } normalized between 0 and 1
- state vector as the collection of the individual states of the two closest vehicles for each lane and the ego vehicle

• a = {stop, drive}.

 Both actions set a desired velocity, stop sets 0 m/s and drive sets the nominal velocity of 5 m/s.

Rewards

Goal is to drive through the intersection as fast as possible avoiding adversarial vehicles

- Negative reward when collision. -2
- Positive reward when reaches the goal. 1
- Cumulative reward based on velocity. K * v
- Negative reward proportional to the duration. 0.2 / t

We present the hypothesis that the RL agent (ego vehicle) is capable of driving only based on the position and speed of the adversarial vehicles

We need to define the scenarios in the two simulators slightly different to obtain similar intersection scenarios. In CARLA, the simulation is slower than in SUMO, so we use a shorter road and generate fewer adversaries, but the ego vehicle faces a similar situation when it approaches the intersection

• collisions can be avoided even though the ego vehicle misses the traffic light

• These adversaries never stop, forcing the ego vehicle to stop and cross when there is a big enough gap

- most difficult scenario
- driver is obliged to yield to vehicles approaching from his right

Experiments

- SUMO does not have sensors neither vehicle dynamics
- SUMO is much faster than CARLA
- SUMO is developed using openAIGym

Experiments

In CARLA, three vehicles are spawned in each lane. These have different behaviors: they can yield, cross or stop randomly.

Evaluation metrics

- $success(\%) = end reached/n_e$
- $t_{avg} = \sum t_n / n_e$

Table 2. Evaluation metrics results in SUMO simulator: comparison between algorithms trained with and without features structure.

	Traffic Light		Stop Signal		Uncontrolled		Combination	
	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)
1-PPO	53	112	37	93	23	109	30	105
2-PPO	95	67	78	78	87	63	88	71
1-FEPPO 2-FEPPO	61 100	104 43	48 90	82 94	30 95	111 55	37 95	102 85

Table 3. Evaluation metrics results in CARLA simulator: comparison between the model trained in SUMO (2-FEPPO) and the model trained in CARLA (SUMO + CARLA).

	Traffic I	Traffic Light		Stop Signal		Uncontrolled		Combination	
	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)	
SUMO	78	17	35	19	47	19	50	19	
CARLA	83	17	70	19	75	16	78	17	

Table 4. Comparison of success rate between different approaches.

Architecture	Success Rate (%)
2-FEPPO	95
MPC Agent [24]	95.2
Level-k Agent [28]	93.8
Sc04 Left Turn [30]	90.3

Table 5. Evaluation metrics results in SUMO simulator: ground truth vs. sensor data simulation.

	Traffic Light		Stop Signal		Uncontrolled		Combination	
	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)	success (%)	t_{avg} (s)
Ground Truth	100	43	90	94	95	55	95	85
Sensor Data	96	42	88	92	94	51	91	80

Discussion

SUMO is faster

Table 6. Simulation time.

Simulator	No. of Episodes	Time (h)
SUMO	30 k	5
CARLA (estimated)	30 k	1650
SUMO + CARLA	30 k + 1 k	10.5

- Curriculum learning enabled PPO to converge
- The agent sometimes does not follow the rules (cross a red traffic light)

Discussion

Features extractor improved the 2 stage training performance

Future work

- Use sensor data instead of ground truth
- Use this system in a real environment