AMENDMENTS TO THE CLAIMS

1. (Currently amended) A polymer comprising recurring units of the following general formula (1a) or (1b) and having a weight average molecular weight of 1,000 to 500,000,

wherein R^1 is an acid labile group, an adhesive group or a straight, branched or cyclic fluorinated alkyl group of 1 to 20 carbon atoms which may contain a hydrophilic group such as hydroxyl, R^2 is hydrogen, fluorine or a straight, branched or cyclic alkyl or fluorinated alkyl group of 1 to 20 carbon atoms, R^3 and R^4 each are a single bond or a straight, branched or cyclic alkylene or fluorinated alkylene group of 1 to 20 carbon atoms, R^5 is hydrogen or an acid labile group, "a" is 1 or 2, U11 and U12 are numbers satisfying 0 < U11 < 1 and 0 < U12 < 1.

2. (Currently amended) The polymer of claim 1 wherein the sulfonate units included in the formulae (1a) and (1b) are selected from the following general formulae (2a) to (2f): A polymer comprising recurring units of the following general formula (2a) to (2f) and recurring units of the following general formula (1c) or (1c) and having a weight average molecular weight of 1,000 to 500,000,

Application No. 10/773,228 Amendment dated August 30, 2005 Reply to Office Action of June 1, 2005

Docket No.: 0171-1062P

Application No. 10/773,228 Amendment dated August 30, 2005 Reply to Office Action of June 1, 2005

wherein R^2 is hydrogen, fluorine or a straight, branched or cyclic alkyl or fluorinated alkyl group of 1 to 20 carbon atoms, R^3 and R^4 each are a single bond or a straight, branched or cyclic alkylene or fluorinated alkylene group of 1 to 20 carbon atoms, R^5 is hydrogen or an acid labile group, wherein R^6 , R^7 , R^9 , R^{10} and R^{17} each are a single bond or a straight, branched or cyclic alkylene or fluorinated alkylene group of 1 to 20 carbon atoms, R^8 , R^{11} , R^{14} and R^{20} each are hydrogen or an acid labile group, R^{12} , R^{13} , R^{15} , R^{16} , R^{18} and R^{19} each are hydrogen, fluorine or a straight, branched or cyclic alkyl or fluorinated alkyl group of 1 to 20 carbon atoms, at least one of R^{18} and R^{19} contains at least one fluorine atom, R^{21} is a straight, branched or cyclic fluorinated alkyl group of 1 to 20 carbon atoms, at least one of R^{18} and R^{19} contains at least one fluorine atom, R^{21} is a straight, branched or cyclic fluorinated alkyl group of 1 to 20 carbon atoms, "a" is 1 or 2, and each of b and c is 1 or 2, U11 and U12 are numbers satisfying 0 < U11 < 1 and 0 < U12 < 1.

3. (Currently amended) The polymer of elaim 1, claim 2, further comprising recurring units of the following general formula (3):

$$R^{23} \xrightarrow{R^{24}} R^{25}$$

$$R^{24} R^{26}$$

$$R^{25}$$

$$R^{26}$$

wherein R^{22} is a methylene group, oxygen atom or sulfur atom, R^{23} to R^{26} each are hydrogen, fluorine, $-R^{27}$ -OR²⁸, $-R^{27}$ -CO₂R²⁸ or a straight, branched or cyclic alkyl or fluorinated alkyl group of 1 to 20 carbon atoms, at least one of R^{23} to R^{26} contains $-R^{27}$ -OR²⁸ or $-R^{27}$ -CO₂R²⁸, R^{27} is a

single bond or a straight, branched or cyclic alkylene or fluorinated alkylene group of 1 to 20 carbon atoms, R²⁸ is hydrogen, an acid labile group, an adhesive group or a straight, branched or cyclic fluorinated alkyl group of 1 to 20 carbon atoms which may contain a hydrophilic group such as hydroxyl, and d is 0 or 1.

4. (Original) The polymer of claim 3 wherein said recurring units of formula (3) have a structure of the following general formula (3a) or (3b):

$$R^{29}$$
 R^{30}
 R^{31}
 R^{32}
 R^{28}
 R^{28}
 R^{28}
 R^{28}

wherein R^{28} is as defined above, R^{29} to R^{32} each are hydrogen, fluorine or an alkyl or fluorinated alkyl group of 1 to 4 carbon atoms, at least either one of R^{29} and R^{30} contains at least one fluorine atom, and at least either one of R^{31} and R^{32} contains at least one fluorine atom.

5. (Currently amended) The polymer of elaim 1, claim 2, further comprising recurring units of the following general formula (4):

Application No. 10/773,228 Docket No.: 0171-1062P

Amendment dated August 30, 2005 Reply to Office Action of June 1, 2005

$$(4)$$

$$R^{33}$$

$$R^{34} OR^{35})_{\epsilon}$$

wherein R^{33} is hydrogen, fluorine or a straight, branched or cyclic alkyl or fluorinated alkyl group of 1 to 20 carbon atoms, R^{34} is a single bond or a straight, branched or cyclic alkylene or fluorinated alkylene group of 1 to 20 carbon atoms, R^{35} is hydrogen or an acid labile group, R^{36} is fluorine or a straight, branched or cyclic fluorinated alkyl group of 1 to 20 carbon atoms, e is 1 or 2, and f is an integer of 0 to 4, satisfying $1 \le e+f \le 5$.

6. (Original) The polymer of claim 5 wherein the recurring units of formula (4) have the following formula (4a) or (4b):

wherein R³⁵ is as defined above, R³⁷ to R⁴² each are hydrogen, fluorine or an alkyl or fluorinated alkyl group of 1 to 4 carbon atoms, at least either one of R³⁷ and R³⁸ contains at least one

Birch, Stewart, Kolasch & Birch, LLP

Page 6 Of 22

Application No. 10/773,228 Docket No.: 0171-1062P Amendment dated August 30, 2005

Reply to Office Action of June 1, 2005

fluorine atom, at least either one of R^{39} and R^{40} contains at least one fluorine atom, and at least either one of R^{41} and R^{42} contains at least one fluorine atom.

7. (Currently amended) The polymer of elaim 1, claim 2, further comprising recurring units of the following general formula (5):

$$\begin{array}{c}
R^{43} \\
R^{44}
\end{array}$$

$$\begin{array}{c}
0 \\
R^{46}
\end{array}$$
(5)

wherein R⁴³ to R⁴⁵ each are hydrogen, fluorine or a straight, branched or cyclic alkyl or fluorinated alkyl group of 1 to 20 carbon atoms, and R⁴⁶ is hydrogen, an acid labile group, an adhesive group or a straight, branched or cyclic fluorinated alkyl group of 1 to 20 carbon atoms which may contain a hydrophilic group such as hydroxyl.

- 8. (Original) The polymer of claim 7 wherein R⁴⁵ in formula (5) is trifluoromethyl.
- 9. (Currently amended) A resist composition comprising the polymer of claim 1 claim 2.
- 10. (Original) A chemically amplified positive resist composition comprising
 - (A) the polymer of claim 1,

Application No. 10/773,228 Amendment dated August 30, 2005 Reply to Office Action of June 1, 2005 Docket No.: 0171-1062P

- (B) an organic solvent, and
- (C) a photoacid generator.
- 11. (Original) The resist composition of claim 10, further comprising (D) a basic compound.
- 12. (Original) The resist composition of claim 10, further comprising (E) a dissolution inhibitor.
- 13. (Original) A process for forming a pattern comprising the steps of:

band of 100 to 180 nm or 1 to 30 nm through a photomask, and

applying the resist composition of claim 9 onto a substrate to form a coating,

heat treating the coating and then exposing it to high-energy radiation in a wavelength

optionally heat treating the exposed coating and developing it with a developer.

- 14. (Original) The pattern forming process of claim 13 wherein the high-energy radiation is an F₂ laser beam, Ar₂ laser beam or soft x-ray.
- 15. (New) A polymer comprising recurring units selected from the group consisting of the following general formulae and having a weight average molecular weight of 1,000 to 500,000,

$$CF_{3}$$

$$O=S=O$$

$$O$$

$$F_{3}C$$

$$F_{3}C$$

$$CF_{3}$$

$$F_{3}C$$

$$CF_{3}$$

$$F_{3}C$$

$$CF_{3}$$

$$F_{3}C$$

$$CF_3$$

$$O=S=O$$

$$O$$

$$F_3C$$

$$R^5O$$

$$CF_3$$

$$CF_3$$

$$CF_3$$

$$CF_3$$

$$CF_3$$

$$CF_3$$

R⁸O

wherein R^5 is hydrogen or an acid labile group, R^8 , R^{11} and R^{20} each are hydrogen or an acid labile group, Ull and U12 are numbers satisfying 0 < Ull < 1 and 0 < U12 < 1.

16. (New) The polymer of claim 15, further comprising recurring units selected from the group consisting of the following formulae:

wherein R²⁸ is hydrogen, an acid labile group, an adhesive group or a straight, branched or cyclic fluorinated alkyl group of 1 to 20 carbon atoms which may contain a hydrophllic group such as hydroxyl.

17. (New) The polymer of claim 15, further comprising recurring units selected from the group consisting of the following formulae:

wherein R³⁵ is hydrogen or an acid labile group.