Think Like the Cardinality Estimator

Taiob Ali

Data Solutions Manager, GMO LLC

- http://sqlworldwide.com/
- in /sqlworldwide
- @sqlworldwide
- Taiob@sqlwroldwide.com

Data Professional

Microsoft Data Platform MVP. 14 Years working with Microsoft Data Platform. Microsoft and MongoDB certified. Worked in ecommerce, healthcare and finance industry.

Giving Back

Board member NESQL user group and PASS DBA virtual group. Organizer of Boston SQL Saturday. Frequent speaker at local and virtual user groups, SQL Saturdays, and azure events.

When Not Working

Running – One 26.2 and many 13.1 miles. Learning US history. Shuttling 3 kids.

Agenda

- ☐ Predicate, Density, Predicate Selectivity
- ☐ What is Cardinality
- ■Why Cardinality Matters
- DBCC SHOW_STATISTICS
- ☐ Magic Numbers

@SQWorldWide

Predicate

Is an expression that evaluates to

TRUE, FALSE, or UNKNOWN

- ☐ Join
- ☐ Filter
 - Where
 - Having

Predicate

```
SELECT
    cus.CustomerID,
    COUNT(0) AS [NumOfOrders]
FROM
    sales.Orders AS ord
JOIN
    sales.Customers AS cus
ON
    ord.CustomerID=cus.CustomerID
WHERE
    ord.OrderDate='2013-01-01'
GROUP BY cus.CustomerID
HAVING | COUNT(0)
G0
```

Join Predicate

Filter Predicate
Where/Having

Density

How often duplicate values occur in a column.

1

[# of distinct values in a column]

```
COUNT(DISTINCT customerID) AS [DistinctCusId]

FROM
sales.Orders;

GO
```

Predicate Selectivity

Most commonly used to describe a predicate.

[# rows that pass the predicate]

[total number of rows]

```
COUNT(0) AS [NumOfOrders]

FROM
sales.Orders

WHERE
CustomerID=577;

GO
```

Cardinality

For Us

Number of rows returned by a query operator.

Structured Query Language

• <u>Uniqueness</u> of data values contained in a particular column (attribute) of a <u>database</u> <u>table</u>.

Math

• Cardinality of a <u>set</u> is a measure of the "number of <u>elements</u> of the set".

Clustered Index Seek (Clustered)

Scanning a particular range of rows from a clustered index.

Physical Operation	Clustered Index Seek
Logical Operation	Clustered Index Seek
Actual Execution Mode	Row
Estimated Execution Mode	Row
Storage	RowStore
Actual Number of Rows	12
Actual Number of Batches	0
Estimated Operator Cost	0.0032904 (8%)
Estimated I/O Cost	0.003125
Estimated Subtree Cost	0.0032904
Estimated CPU Cost	0.0001654
Estimated Number of Executions	1
Number of Executions	1
Estimated Number of Rows	7.61577
Estimated Row Size	143 B

Actual

Estimated

Why Cardinality Matters

Before

Parse

Normalize

Cardinality Estimation

Derive Cardinality

Create Many Plans **Downstream**

Optimization

Downstream

Execute Plan

Why Cardinality Matters

Cost

Parallel

Serial

Memory Grant

In Memory

Spill to Disk

Access Method

Seek

Scan

Seek + Scan

Algorithm

Join

Aggregate

Sort

DBCC SHOW STATISTICS

Header

Meta data about the statistics.

Density Vector

 How many unique values are present within a column or columns?

Histogram

 Frequency of data within the first key column of the statistics.

DBCC SHOW_STATISTICS

□STAT_HEADER

Name	Updated	Rows	Rows Sampled	Steps	Density	Average key length	String Index	Filter Expression	Unfiltered Rows
FK_Sales_Orders_ContactPersonID		71583	71583	200	0.009388237	8	NO	NULL	71583

DENSITY_VECTOR

	All density	Average Length	Columns
1	0.001512859	4	ContactPersonID
2	1.39698E-05	8	ContactPersonID, OrderID

☐ HISTOGRAM

	RANGE_HI_KEY	RANGE_ROWS	EQ_ROWS	DISTINCT_RANGE_ROWS	AVG_RANGE_ROWS
1	1001	0	128	0	1
2	1007	248	107	2	124
3	1013	231	130	2	115.5
4	1021	327	111	3	109
5	1025	101	85	1	101
6	1031	237	133	2	118.5

STAT_HEADER

Name	Updated	Rows	Rows Sampled	Steps
NCI_FilteredContactPersonID	Mar 31 2017 4:55PM	50299	50299	200

Deprecated

Density	Average key length	String Index	Filter Expression	Unfiltered Rows
0.00945746	8	NO	([contactpersonid]>(2000))	73595

DENSITY_VECTOR

1/Number of distinct values in column

Names of columns in the prefix

All density	Average Length	Columns
0.002164502	4	ContactPersonID
1.988111E-05	8	ContactPersonID, OrderID

Histogram

	RANGE_HI_KEY	RANGE_ROWS	EQ_ROWS	DISTINCT_RANGE_ROWS	AVG_RANGE_ROWS
70	2035	330	123	3	110
71	2043	333	90	3	111
72	2051	317	94	3	105.6667
73	2055	106	114	1	106
74	2061	249	122	2	124.5
75	2065	107	108	1	107
76	2073	326	111	3	108.6667
77	2077	127	129	1	127
78	2083	234	119	2	117
79	2091	332	106	3	110.6667
80	2095	118	135	1	118
81	2103	338	125	3	112.6667
82	2107	112	110	1	112
83	2113	224	109	2	112
84	2121	375	118	3	125
85	2127	224	101	2	112

101

@SQWorldWide

Histogram

RANGE_HI_KEY	RANGE _ROWS	EQ_ROWS	DISTINCT_RANGE _ROWS	AVG_RANGE _ROWS
2083		119		
Between 2084 and 2088	221		2	110.5
2089		111		

Magic Numbers

- ☐Single Predicate
 - ☐ Histogram direct hit
 - ☐ Histogram intra step
 - □ Scaling
 - □ Distinct

Magic Numbers

- ☐ Multiple Predicates
 - □ Conjunction
 - □ Disjunction
- ■Parameter Sniffing
- Unknown
- Ascending Key

https://www.invotide.com/demo

4/24/2020 @SQWorldWide

Resource

- Query Tuning Fundamentals
- DBCC SHOW_STATISTICS (Transact-SQL)
- 13 Things You Should Know About Statistics and the Query Optimizer
- Cardinality Estimation for Multiple Predicates
- New Trace Flag to Fix Table Variable Performance
- Ascending key Issue TF 2389 and 2390
- Optimizing Query Plans with the SQL Server 2014
 Cardinality Estimator

linkedin.com/in/sqlworldwide

sqlworldwide.com

taiob@sqlworldwide.com

@SQWorldWide

