R05631027_楊皓文_機器學習_作業#3

Problem 1 (Overfitting)

(a) Plot the 5 curves superimposed over a plot of the data points

(b) Log of training error

結果討論:

由上圖可以看出,當 order 數越高時,log of training error 下降的幅度越快,也就是 training accuracy 上升的比 testing accuracy 快,造成高 order 時,會有 overfitting 的現象。

Problem 2 (AIC and BIC)

結果討論:

若單純由上圖 AIC 和 BIC 的圖來看,似乎無法直接看出要選擇哪一個 order 的 model 最好,因為 order 的數量只有到 3,不過若是從 RSS 的曲線圖,可以看出 order=2 之後,RSS 的數值就變化不大了。

Problem 3 (Lagrange Multiplier)
(a)
YOSB 31027 楊龍文 ML H.W. #3
1036310c/ MITTEN MIL 11.10.11
(a) \(\nabla f(\text{x}, \gamma_3\) = \(21\text{x}+\gamma_1\text{x}), \(21\text{x}+\gamma_1\text{x}), \(21\text{x}+\gamma_1\text{x}) \)
$\nabla 9(x,y,z) = (2x,4y,6z)$
By Lagrange's Theorem, V+ = 209
(219x+y+2), 219x+y+3), 219x+y+3)>=9(2x,4y,63)
2(x+y+8)= xxx 0) 2(x+y+8)= xxx 0)
2/x+y+x=4xy6
2(244)=3677 (3)
12+242+32= 1 @
D-2: 717-27)=0 7 7=0 or 9=24
D-Q: 7(24-38)=0 = 7×0 or 24=38
$(2y)^2 + 2y^2 + 3(\frac{2}{3}y)^2 = 1$
→ ジャ2=1 + リ=t3+ x=±ストラーナラーラー
$f(+2\sqrt{2}, +\sqrt{2}\sqrt{2}, +2\sqrt{2}) = (+3\sqrt{2})^2 = 66$
1. 201/21 (13/55) - 6P X
*

(b)

(b) $\nabla f(x,y,z) = \langle y, \chi, zy \rangle$ $\forall g(x,y,z) = \langle z\chi, zy, zy \rangle$ $\forall g(x,y,z) = \langle z\chi, zy, zy \rangle$ $\langle y, \chi, z_1 \rangle = \lambda \langle z\chi, zy, z_2 \rangle$ $\langle y = z \chi \chi \dots Q$ $\langle y = z \chi \chi \dots Q$ $\langle z = z \chi \chi \dots Q$

(i) $0.0: \lambda \neq 0$, $\gamma = y = 0$ B: $(\lambda - 1) = 0 \Rightarrow 3 \neq 0$ or $\lambda = 1$ $f(0, 0, \pm 1) = 1$ (hox) (ii) $0 + 2: (\lambda + 1) = 2\lambda (\lambda + 1) \Rightarrow \lambda = \frac{1}{2} \Rightarrow \lambda = y$ B: $2 \times 2 = 0$ $2 \times 2 = 0$ $2 \times 2 = 0$