Solution (30.1): (a) This is a legal expression.

- (b) This is a legal expression.
- (c) This is not a legal expression; we should obtain a dual vector upon acting with B_{ij} on the vector C^i .
- (d) This is not a legal expression assuming summation convention; we cannot have a repeated index on the same tensor.
- (e) This is not a legal expression assuming summation convention; we cannot have a repeated index on the same tensor.
- (f) This is a legal expression.
- (g) This is not a legal expression; we should have a (0,2) tensor in the dual space, A_{ij} , rather than a (1,1) tensor of the form A_i^j .
- (h) This is a legal expression.

Solution (30.3): Using the chain rule, we obtain

$$A^{j'}B_{j'} = \frac{\partial u^{j'}}{\partial u^{j}}A^{j}\frac{\partial u^{j}}{\partial u^{j'}}B_{j}$$
$$= \delta^{j}_{j}A^{j}B_{j}$$
$$= A^{j}B_{j}.$$

Meanwhile,

$$A^{j'}B^{j'} = \frac{\partial u^{j'}}{\partial u^j} A^j \frac{\partial u^{j'}}{\partial u^j} B^j$$
$$= \frac{\partial u^{j'}}{\partial u^j} \frac{\partial u^{j'}}{\partial u^j} A^j B^j,$$

which means $A^{j'}B^{j'}$ is a rank (2,0) tensor.

Solution (30.5): The matrix

$$g_{ab} = \begin{pmatrix} 1 & \cos(\phi) \\ \cos(\phi)1 & \end{pmatrix}$$

has inverse

$$g^{ab} = \begin{pmatrix} \csc^2(\phi) & -\cot(\phi)\csc(\phi) \\ -\cot(\phi)\csc(\phi) & \csc^2(\phi) \end{pmatrix},$$

where $cos(\phi) = sin(\alpha + \beta)$. Therefore, we may calculate

$$\vec{e}^{a} = g^{ab} \vec{e}_{b}$$

$$= \frac{1}{\cos(\alpha + \beta)} \begin{pmatrix} \cos(\beta) \\ -\sin(\beta) \end{pmatrix}$$

$$\vec{e}^{b} = g^{ab} \vec{e}_{a}$$

$$= \frac{1}{\cos(\alpha + \beta)} \begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix}.$$

Solution (30.6):

- (a) We have the downstairs basis of $\{\hat{r}, r\hat{\varphi}, \hat{z}\}$ for cylindrical coordinates.
- (b) Using the metric of

$$g^{ab} = \begin{pmatrix} 1 & & \\ & r^2 & \\ & & 1 \end{pmatrix},$$

we calculate

$$\vec{e}^r = g^{ab} \vec{e}_r$$

$$= \hat{r}$$

$$\vec{e}^{\phi} = g^{ab} \vec{e}_{\phi}$$

$$= \frac{1}{r} \hat{\phi}$$

$$\vec{e}^z = g^{ab} \vec{e}_z$$

$$= \hat{z}.$$

(c) We calculate

$$A_{r}\vec{e}^{r} = A_{r}\hat{r}$$

$$= A^{r}\hat{r}$$

$$A_{\phi}\vec{e}^{\phi} = \frac{1}{r}A_{\phi}\hat{\phi}$$

$$= A^{\phi}\hat{\phi}$$

$$A_{z}\vec{e}^{z} = A_{z}\hat{z}$$

$$= A^{z}\hat{z}.$$

Thus,

$$A_{r} = A^{r}$$

$$A_{\phi} = \frac{1}{r}A^{\phi}$$

$$A_{z} = A^{z}.$$

(d) We have

$$A^{r}\vec{e}_{r} = A^{r}\hat{r}$$

$$= A_{r}\hat{r}$$

$$= A_{r}\vec{e}^{r}$$

$$A^{\phi}\vec{e}_{\phi} = A^{\phi}\hat{\phi}$$

$$= rA_{\phi}\hat{\phi}$$

$$= A_{\phi}\vec{e}^{\phi}.$$

$$A^{z}\vec{e}_{z} = A^{z}\hat{z}$$

$$= A_{z}\hat{z}$$

$$= A_{z}\vec{e}_{z}.$$

Solution (30.16):

(a) Let $g_{ab} = diag(1, r^2, r^2 \sin^2(\theta))$ be the metric for spherical coordinates. Then,

$$\begin{split} g_{rr} &= \left(\frac{\partial \rho}{\partial r}\right)^2 + \left(\frac{\partial \phi}{\partial r}\right)^2 + \left(\frac{\partial \theta}{\partial r}\right)^2 \\ &= \frac{z^2}{r^2} + 1 + \frac{1}{z^2} \\ g_{\phi\phi} &= 1 \\ g_{zz} &= \frac{r^2}{z^2} + 1 + \frac{1}{r^2}. \end{split}$$

(b) We convert from spherical to cylindrical by converting from spherical to Cartesian by taking g^{ab} on spherical

coordinates, summing over δ_{ij} , then multiplying by the cylindrical metric, with some relabeling, giving

$$g_{rr} = \frac{z^2}{r^2} + 1 + \frac{1}{z^2}$$

$$g_{\phi\phi} = 1$$

$$g_{zz} = \frac{r^2}{r^2} + 1 + \frac{1}{r^2}.$$

This approach is simpler because we get to take advantage of the properties of the Cartesian metric (i.e., that it is independent of location).

Solution (30.20): Calculating

$$\sqrt{\det(g_{ab})} = \sqrt{1 - \cos^2(\varphi)},$$

we may calculate

$$\int_A d\tau' = \int_0^b \int_0^a \sqrt{1 - \cos^2(\varphi)} du d\nu$$
$$= ab\sqrt{1 - \cos^2(\varphi)}.$$

Solution (30.21):

(a) We take

$$g_{ab} = \begin{pmatrix} R^2 & \\ & R^2 \sin^2(\theta) \end{pmatrix}.$$

(b) Calculating

$$\int_{C} ds = \int_{C} \sqrt{|g_{\alpha b} du^{\alpha} du^{b}|}$$

$$= R \int_{0}^{\theta_{0}} d\theta$$

$$= R\theta_{0}.$$

- (c) The circumference C of the circle $\theta = \theta_0$ is equal to $2\pi R \sin(\theta_0)$, which is not equal to $2\pi s$ because observers on the sphere do not perceive its curvature.
- (d) Without loss of generality we may assume we are on the north pole. Then, very close to the north pole, we have very small θ_0 , or that $\theta_0 \approx \sin(\theta_0)$.

Thus, a small neighborhood of the sphere with radius $r \ll R$ will appear as a disc of radius r rather than a curved section whose boundary has radius $r \sin(\theta_0)$.

Solution (30.22):

(a) Assuming $r_2 > r_1 > r_s$, we calculate

$$\begin{split} \int_{r_1}^{r_2} \, \mathrm{d}s &= \int_{r_1}^{r_2} \sqrt{\left|g_{\alpha b} \, \mathrm{d}u^{\alpha} \, \mathrm{d}u^{b}\right|} \\ &= \int_{r_1}^{r_2} \left(1 - \frac{r_s}{r}\right)^{-1} \, \mathrm{d}r \\ &= \int_{r_1}^{r_2} \frac{r}{r - r_s} \, \mathrm{d}r \\ &= \int_{r_1}^{r_2} 1 + \frac{r_s}{r - r_s} \, \mathrm{d}r \end{split}$$

$$= (r_2 - r_1) + r_s \ln \left(\frac{r_2 - r_s}{r_1 - r_s} \right)$$

\(\geq r_2 - r_1.

(b) Fixing R, we have

$$\int dA = \int_0^{2\pi} \int_0^{\pi} R^2 \sin(\theta) d\theta d\phi$$
$$= 4\pi R^2.$$

In this sense, R is a measure of (warped) constant radius.

- (c) I don't know how to do this.
- (d) As Bob approaches $r = r_s$, Alice perceives time to slow down for Bob.

Solution (30.28):

(a) Using $u^c = \hat{\theta}$ and u^a , $u^b = r \sin \theta \hat{\phi}$, with the Christoffel symbol $\Gamma^{\theta}_{\varphi \varphi} = -\sin(\theta) \cos(\theta)$, we substitute to obtain

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} - \sin\theta\cos\theta \left(\frac{\mathrm{d}\phi}{\mathrm{d}t}\right)^2 = 0.$$

Similarly, expanding the other equation, we have

$$\frac{d}{dt}\left(\sin^2(\theta)\frac{d\phi}{dt}\right) = 2\sin(\theta)\cos(\theta)\frac{d\theta}{dt}\frac{d\phi}{dt} - \sin^2(\theta)\frac{d^2\phi}{dt^2}$$
$$= 0.$$

When we take $u^c = \varphi$ and $\Gamma^{\varphi}_{\varphi\theta} = \cot(\theta)$, we get the geodesic equation yet again.

- (b) With initial velocity along $\hat{\phi}$ at the equator, the geodesic equation evaluates to yield constant $\theta = \pi/2$, constant r = R, and $\dot{\phi} = k$ for some constant k. In other words, this yields a great circle.
- (c) Since the geodesic equation is a covariant expression, we may use a series of transformations to give any other starting position to be equal to the case in part (b), meaning that all geodesics are great circles.