1/34

Differential Privacy

A. M. Sadeghzadeh, Ph.D.

Sharif University of Technology Computer Engineering Department (CE) Data and Network Security Lab (DNSL)

December 29, 2024

A. M. Sadeghzadeh Sharif U. T. Differential Privacy December 29, 2024

Today's Agenda

1 Recap

2 Differential Privacy

3 Laplace Mechanism

Recap

Machine Learning as a Service

Machine Learning as a Service

(Shokri, 2020)

A. M. Sadeghzadeh

Sharif U. T.

Privacy Risks in Machine Learning

■ What is training data leakage? Inferring information about members of *X*, beyond what can be learned about its underlying distribution.

(Shokri, 2020)

A. M. Sadeghzadeh

Membership Inference Attack

■ Given a model, can an adversary infer whether data point x is part of its training set?

A. M. Sadeghzadeh

Sharif U. T.

Membership Inference Attack

• Given a model, can an adversary infer whether data point x is part of its training set?

(Carlini, 2022)

A. M. Sadeghzadeh

Sharif U. T.

Membership Inference Attack

• Given a model, can an adversary infer whether data point x is part of its training set?

Membership Inference:

(Carlini, 2022)

A. M. Sadeghzadeh

Sharif U. T.

8/34

source: http://www.recode.net/2016/6/15/11940908/mossberg-apple-is-still-a-world-of-its-own

Differential privacy describes a promise, made by a data holder, or curator, to a data subject:

C. Dwork and A. Roth

You will **not be affected**, adversely or otherwise, by **allowing your data to be used in any study or analysis**, no matter what other studies, data sets, or information sources, are available.

Differential privacy describes a promise, made by a data holder, or curator, to a data subject:

C. Dwork and A. Roth

You will **not be affected**, adversely or otherwise, by **allowing your data to be used in any study or analysis**, no matter what other studies, data sets, or information sources, are available.

Differential privacy addresses the paradox of **learning nothing about an individual** while **learning useful information about a population**.

Privacy

A medical database may teach us that smoking causes cancer. Has an smoker been harmed by the analysis?

- Perhaps
 - affecting an insurance company's view of a smoker's long-term medical costs.
 - He may also be helped learning of his health risks

Privacy

A medical database may teach us that smoking causes cancer. Has an smoker been harmed by the analysis?

- Perhaps
 - affecting an insurance company's view of a smoker's long-term medical costs.
 - He may also be helped learning of his health risks

It is certainly the case that **more is known about him after the study** than was known before, but was his information **leaked**?

■ Differential privacy will take the view that it was not.

Privacy

A medical database may teach us that smoking causes cancer. Has an smoker been harmed by the analysis?

- Perhaps
 - affecting an insurance company's view of a smoker's long-term medical costs.
 - He may also be helped learning of his health risks

It is certainly the case that **more is known about him after the study** than was known before, but was his information **leaked**?

Differential privacy will take the view that it was not.

Differential privacy: the impact on the smoker is the same **independent** of whether or not he was in the study.

 Differential privacy promises that the probability of harm/benefit was not significantly increased by their choice to participate.

11/34

Defining Private Data Analysis

The analyst **knows no more about any individual** in the data set **after the analysis** is completed than she knew before the analysis was begun.

- The adversary's prior and posterior views about an individual (i.e., before and after having access to the database) shouldn't be too different"
 - Access to the database shouldn't change the adversary's views about any individual **too much**.

A. M. Sadeghzadeh Sharif U. T. Differential Privacy December 29, 2024

Differential Privacy ensures that any sequence of outputs (responses to queries) is **essentially equally likely** to occur, **independent** of the presence or absence of **any individual**.

If nothing is learned about an individual then the individual cannot be harmed by the analysis.

A. M. Sadeghzadeh

Sharif U. T.

Differential Privacy

December 29, 2024

A technique developed in the social sciences to collect statistical information about embarrassing or illegal behavior

A. M. Sadeghzadeh Sharif U. T.

A technique developed in the social sciences to collect **statistical information about embar-** rassing or illegal behavior

Study participants are told to report whether or not they have property ${\cal P}$ as follows:

- Flip a coin.
- **If tails**, then respond truthfully.
- If **heads**, then flip a second coin and respond "Yes" if heads and "No" if tails.

A technique developed in the social sciences to collect **statistical information about embar-** rassing or illegal behavior

Study participants are told to report whether or not they have property ${\cal P}$ as follows:

- Flip a coin.
- **If tails**, then respond truthfully.
- If heads, then flip a second coin and respond "Yes" if heads and "No" if tails.

Privacy comes from the **plausible deniability** of any outcome.

A technique developed in the social sciences to collect **statistical information about embar-** rassing or illegal behavior

Study participants are told to report whether or not they have property ${\cal P}$ as follows:

- Flip a coin.
- If **tails**, then respond truthfully.
- If heads, then flip a second coin and respond "Yes" if heads and "No" if tails.

Privacy comes from the **plausible deniability** of any outcome.

Let \emph{p} is the true fraction of participants having property \emph{P} the expected number of "Yes" answers is

$$\mathbb{E}("yes"|p) = \frac{1}{4}(1-p) + \frac{3}{4}p = \frac{1}{4} + \frac{p}{2} \to p = 2\mathbb{E}("yes"|p) - \frac{1}{2}$$

A. M. Sadeghzadeh

Randomization Is Essential

Suppose, for the sake of contradiction, that we have a non-trivial deterministic algorithm.

Non-triviality says that there exists a query and two databases that yield different outputs under this query.

Changing one row at a time we see there exists a pair of databases differing only in the value of a single row, on which the same query yields different outputs.

• An adversary knowing that the database is one of these two almost identical databases learns the value of the data in the unknown row.

name	DOB	sex	weight	smoker	lung cancer						
John Doe	12/1/51	М	185	Υ	N						
Jane Smith	3/3/46	F	140	N	N]					
Ellen Jones	4/24/59	F	160	Υ	Υ	ر ا					
Jennifer Kim	3/1/70	F	135	N	N				_		
Rachel Waters	9/5/43	F	140	N	N			Š	١	1	
\$\begin{array}{cccccccccccccccccccccccccccccccccccc											
(Katrina Ligett, 2017)											

A Randomized Algorithm

In general, a randomized algorithm with domain A and (discrete) range B will be associated with a mapping from A to the probability simplex over B, denoted $\Delta(B)$

A. M. Sadeghzadeh

Sharif U. T.

In general, a randomized algorithm with domain A and (discrete) range B will be associated with a mapping from A to the probability simplex over B, denoted $\Delta(B)$

Definition 2.1 (Probability Simplex). Given a discrete set B, the *probability simplex* over B, denoted $\Delta(B)$ is defined to be:

$$\Delta(B) = \left\{ x \in \mathbb{R}^{|B|} : x_i \ge 0 \text{ for all } i \text{ and } \sum_{i=1}^{|B|} x_i = 1 \right\}$$

In general, a randomized algorithm with domain A and (discrete) range B will be associated with a mapping from A to the probability simplex over B, denoted $\Delta(B)$

Definition 2.1 (Probability Simplex). Given a discrete set B, the *probability simplex* over B, denoted $\Delta(B)$ is defined to be:

$$\Delta(B) = \left\{ x \in \mathbb{R}^{|B|} : x_i \ge 0 \text{ for all } i \text{ and } \sum_{i=1}^{|B|} x_i = 1 \right\}$$

Definition 2.2 (Randomized Algorithm). A randomized algorithm \mathcal{M} with domain A and discrete range B is associated with a mapping $M:A\to\Delta(B)$. On input $a\in A$, the algorithm \mathcal{M} outputs $\mathcal{M}(a)=b$ with probability $(M(a))_b$ for each $b\in B$. The probability space is over the coin flips of the algorithm \mathcal{M} .

A. M. Sadeghzadeh

Sharif U. T.

Laplace Mechanism

Database

We will think of databases x as being collections of records from a universe \mathcal{X} . It will often be convenient to represent databases by their histograms: $x \in \mathbb{N}^{|\mathcal{X}|}$, in which each entry x_i represents the number of elements in the database x of type $i \in \mathcal{X}$.

name	DOB	sex	weight	smoker	lung cancer
John Doe	12/1/51	М	185	Υ	Ν
Jane Smith	3/3/46	F	140	Ν	Z
Ellen Jones	4/24/59	F	160	Υ	Υ
Jennifer Kim	3/1/70	F	135	N	N
Rachel Waters	9/5/43	F	140	N	N

Distance Between Databases

Definition 2.3 (Distance Between Databases). The ℓ_1 norm of a database x is denoted $||x||_1$ and is defined to be:

$$||x||_1 = \sum_{i=1}^{|\mathcal{X}|} |x_i|.$$

The ℓ_1 distance between two databases x and y is $||x - y||_1$

Note that $||x||_1$ is a measure of the *size* of a database x (i.e., the number of records it contains), and $||x-y||_1$ is a measure of how many records differ between x and y.

A. M. Sadeghzadeh

Sharif U. T.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \approx_{\epsilon} \Pr[\mathcal{M}(y) \in \mathcal{S}]$$

where the probability space is over the coin flips of the mechanism $\mathcal{M}.$

A. M. Sadeghzadeh

Sharif U. T.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le (1 + \epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}]$$

where the probability space is over the coin flips of the mechanism $\mathcal{M}.$

A. M. Sadeghzadeh

Sharif U. T.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}]$$

where the probability space is over the coin flips of the mechanism $\mathcal{M}.$

A. M. Sadeghzadeh

Sharif U. T.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $S \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \le 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta$$

Differential Privacy

where the probability space is over the coin flips of the mechanism \mathcal{M} .

Sharif U. T.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \operatorname{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta$$

where the probability space is over the coin flips of the mechanism $\mathcal{M}.$

lacksquare If $\delta=0$, we say that $\mathcal M$ is ϵ -differentially private.

Sharif U. T.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \operatorname{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \le 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta$$

where the probability space is over the coin flips of the mechanism $\mathcal{M}.$

- If $\delta = 0$, we say that \mathcal{M} is ϵ -differentially private.
- lacksquare δ is a negligible function.
 - $\,\blacksquare\,$ δ that are less than the inverse of any polynomial in the size of the database.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta$$

where the probability space is over the coin flips of the mechanism $\ensuremath{\mathcal{M}}.$

- If $\delta = 0$, we say that \mathcal{M} is ϵ -differentially private.
- lacksquare δ is a negligible function.
 - $\,\blacksquare\,$ δ that are less than the inverse of any polynomial in the size of the database.
- The definition is symmetric.

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \le 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta$$

where the probability space is over the coin flips of the mechanism $\mathcal{M}.$

- If $\delta = 0$, we say that \mathcal{M} is ϵ -differentially private.
- lacksquare δ is a negligible function.
 - $\,\blacksquare\,\,\delta$ that are less than the inverse of any polynomial in the size of the database.
- The definition is symmetric.
- Differential privacy is a definition, not an algorithm.
 - For a given computational task T and a given value of ϵ there will be many differentially private algorithms for achieving T in an ϵ -differentially private manner. Some will have better accuracy than others.

A. M. Sadeghzadeh

Differential Privacy: A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \le 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\epsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta$$

where the probability space is over the coin flips of the mechanism \mathcal{M} .

- If $\delta = 0$, we say that \mathcal{M} is ϵ -differentially private.
- lacksquare δ is a negligible function.
 - $\,\blacksquare\,$ δ that are less than the inverse of any polynomial in the size of the database.
- The definition is symmetric.
- Differential privacy is a definition, not an algorithm.
 - For a given computational task T and a given value of ϵ there will be many differentially private algorithms for achieving T in an ϵ -differentially private manner. Some will have better accuracy than others.
- ullet $\epsilon pprox 1$ and $\delta \ll rac{1}{N}$ (generally speaking, one digit ϵ is good) where N is the size of dataset.

A. M. Sadeghzadeh

Differential Privacy

20 / 34

Differential Privacy

ϵ -differential privacy

$$\Pr[M(x_1) \in S] \leq e^{\varepsilon} \Pr[M(x_2) \in S]$$

(Katrina Ligett, 2017)

A. M. Sadeghzadeh Sharif U. T. Differential Privacy December 29, 2024

20 / 34

Differential Privacy

(ϵ, δ) -differential privacy

$$\Pr[M(x_1) \in S] \le e^{\varepsilon} \Pr[M(x_2) \in S] + \delta$$

(Katrina Ligett, 2017)

A. M. Sadeghzadeh Sharif U. T. Differential Privacy December 29, 2024

Privacy Loss

 (ϵ, δ) -differential privacy ensures that for all adjacent x, y, the **absolute value of the privacy loss will be bounded by** ϵ with probability at least $1 - \delta$.

The quantity

$$\mathcal{L}_{\mathcal{M}(x)\parallel\mathcal{M}(y)}^{(\xi)} = \ln\left(\frac{\Pr[\mathcal{M}(x) = \xi]}{\Pr[\mathcal{M}(y) = \xi]}\right)$$

is important to us; we refer to it as the *privacy loss* incurred by observing ξ . This loss might be positive (when an event is more likely under x than under y) or it might be negative (when an event is more likely under y than under x).

A. M. Sadeghzadeh

What is the privacy loss of Randomized response mechanism?

Claim 3.5. The version of randomized response described above is $(\ln 3, 0)$ -differentially private.

A. M. Sadeghzadeh

What is the privacy loss of Randomized response mechanism?

Claim 3.5. The version of randomized response described above is $(\ln 3, 0)$ -differentially private.

Proof. Fix a respondent. A case analysis shows that $\Pr[\text{Response} = \text{Yes}|\text{Truth} = \text{Yes}] = 3/4$. Specifically, when the truth is "Yes" the outcome will be "Yes" if the first coin comes up tails (probability 1/2) or the first and second come up heads (probability 1/4)), while $\Pr[\text{Response} = \text{Yes}|\text{Truth} = \text{No}] = 1/4$ (first comes up heads and second comes up tails; probability 1/4). Applying similar reasoning to the case of a "No" answer, we obtain:

$$\begin{split} &\frac{\Pr[\text{Response} = \text{Yes}|\text{Truth} = \text{Yes}]}{\Pr[\text{Response} = \text{Yes}|\text{Truth} = \text{No}]} \\ &= \frac{3/4}{1/4} = \frac{\Pr[\text{Response} = \text{No}|\text{Truth} = \text{No}]}{\Pr[\text{Response} = \text{No}|\text{Truth} = \text{Yes}]} = 3. \end{split}$$

Laplace Mechanism

Laplace Mechanism

Sensitivity

The ℓ_1 sensitivity of a function f captures the magnitude by which a single individual's data can change the function f in the worst case

• Intuitively, the uncertainty in the response that we must introduce in order to hide the participation of a single individual.

The sensitivity of a function gives an upper bound on how much we must perturb its output to preserve privacy.

Definition 3.1 (ℓ_1 -sensitivity). The ℓ_1 -sensitivity of a function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$ is:

$$\Delta f = \max_{\substack{x,y \in \mathbb{N}^{|\mathcal{X}|} \\ \|x-y\|_1 = 1}} \|f(x) - f(y)\|_1.$$

The Laplace Distribution

Definition 3.2 (The Laplace Distribution). The Laplace Distribution (centered at 0) with scale b is the distribution with probability density function:

$$\operatorname{Lap}(x|b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right).$$

The variance of this distribution is $\sigma^2 = 2b^2$. We will sometimes write Lap(b) to denote the Laplace distribution with scale b.

A. M. Sadeghzadeh

Sharif U. T.

The Laplace Mechanism

Definition 3.3 (The Laplace Mechanism). Given any function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$, the Laplace mechanism is defined as:

$$\mathcal{M}_L(x, f(\cdot), \varepsilon) = f(x) + (Y_1, \dots, Y_k)$$

where Y_i are i.i.d. random variables drawn from Lap $(\Delta f/\varepsilon)$.

A. M. Sadeghzadeh

Sharif U. T.

The Laplace Mechanism

Theorem 3.6. The Laplace mechanism preserves $(\varepsilon, 0)$ -differential privacy.

A. M. Sadeghzadeh

The Laplace Mechanism

Theorem 3.6. The Laplace mechanism preserves $(\varepsilon, 0)$ -differential privacy.

Proof. Let $x \in \mathbb{N}^{|\mathcal{X}|}$ and $y \in \mathbb{N}^{|\mathcal{X}|}$ be such that $||x - y||_1 \leq 1$, and let $f(\cdot)$ be some function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$. Let p_x denote the probability density function of $\mathcal{M}_L(x, f, \varepsilon)$, and let p_y denote the probability density function of $\mathcal{M}_L(y, f, \varepsilon)$. We compare the two at some arbitrary point $z \in \mathbb{R}^k$

$$\frac{p_x(z)}{p_y(z)} = \prod_{i=1}^k \left(\frac{\exp(-\frac{\varepsilon|f(x)_i - z_i|}{\Delta f})}{\exp(-\frac{\varepsilon|f(y)_i - z_i|}{\Delta f})} \right) = \prod_{i=1}^k \exp\left(\frac{\varepsilon(|f(y)_i - z_i| - |f(x)_i - z_i|)}{\Delta f} \right)$$

$$\leq \prod_{i=1}^k \exp\left(\frac{\varepsilon |f(x)_i - f(y)_i|}{\Delta f}\right) = \exp\left(\frac{\varepsilon \cdot ||f(x) - f(y)||_1}{\Delta f}\right) \leq \exp(\varepsilon),$$

where the first inequality follows from the triangle inequality, and the last follows from the definition of sensitivity and the fact that $||x-y||_1 \leq 1$. That $\frac{p_x(z)}{p_y(z)} \geq \exp(-\varepsilon)$ follows by symmetry.

A. M. Sadeghzadeh Sharif U. T. Differential Private Control of the Control of the

28 / 34

Example: Counting Queries

Counting queries are queries of the form "How many elements in the database satisfy Property P?"

Example: Counting Queries

Counting queries are queries of the form "How many elements in the database satisfy Property P?"

lacksquare The sensitivity of a counting query is 1

Sharif U. T.

December 29, 2024

28 / 34

Example: Counting Queries

Counting queries are queries of the form "How many elements in the database satisfy Property P?"

- lacksquare The sensitivity of a counting query is 1
- $(\epsilon,0)$ -differential privacy can be achieved for counting queries by the addition of noise scaled to $1/\epsilon$, that is, by adding noise drawn from $\text{Lap}(1/\epsilon)$.

A. M. Sadeghzadeh Sharif U. T. Differential Privacy

Example: Counting Queries

Counting queries are queries of the form "How many elements in the database satisfy Property P?"

- The sensitivity of a counting query is 1
- $(\epsilon, 0)$ -differential privacy can be achieved for counting queries by the addition of noise scaled to $1/\epsilon$, that is, by adding noise drawn from $\text{Lap}(1/\epsilon)$.

A fixed but arbitrary list of m **counting queries** can be viewed as a vector-valued query.

 $lue{}$ The sensitivity is m

Example: Counting Queries

Counting queries are queries of the form "How many elements in the database satisfy Property P?"

- The sensitivity of a counting query is 1
- $(\epsilon, 0)$ -differential privacy can be achieved for counting queries by the addition of noise scaled to $1/\epsilon$, that is, by adding noise drawn from Lap $(1/\epsilon)$.

A fixed but arbitrary list of m counting queries can be viewed as a vector-valued query.

- $lue{}$ The sensitivity is m
- $(\epsilon,0)$ -differential privacy can be achieved by adding noise scaled to m/ϵ to the true answer to each query.

A. M. Sadeghzadeh

Histogram Queries

In this type of query the universe $\mathbb{N}^{|\mathcal{X}|}$ is **partitioned into cells**, and the query asks how many database elements lie in each of the cells.

A. M. Sadeghzadeh

Sharif U. T.

Histogram Queries

In this type of query the universe $\mathbb{N}^{|\mathcal{X}|}$ is **partitioned into cells**, and the query asks how many database elements lie in each of the cells.

- Because the cells are disjoint, the addition or removal of a single database element can affect the count in exactly one cell. Hence the sensitivity is 1.
- $(\epsilon,0)$ -differential privacy can be achieved by adding noise scaled to $1/\epsilon$, that is, by adding noise drawn from $\text{Lap}(1/\epsilon)$ to the true count in each cell.

A. M. Sadeghzadeh

Report Noisy Max

Report Noisy Max. Consider the following simple algorithm to determine which of m counting queries has the highest value: Add independently generated Laplace noise $\text{Lap}(1/\varepsilon)$ to each count and return the index of the largest noisy count (we ignore the possibility of a tie). Call this algorithm Report Noisy Max.

Claim 3.9. The Report Noisy Max algorithm is $(\varepsilon, 0)$ -differentially private.

A. M. Sadeghzadeh

The Accuracy of the Laplace Mechanism

Fact 3.7. If $Y \sim \text{Lap}(b)$, then:

$$\Pr[|Y| \ge t \cdot b] = \exp(-t).$$

Theorem 3.8. Let $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$, and let $y = \mathcal{M}_L(x, f(\cdot), \varepsilon)$. Then $\forall \delta \in (0, 1]$:

$$\Pr\left[\|f(x) - y\|_{\infty} \ge \ln\left(\frac{k}{\delta}\right) \cdot \left(\frac{\Delta f}{\varepsilon}\right)\right] \le \delta$$

Proof. We have:

$$\Pr\left[\|f(x) - y\|_{\infty} \ge \ln\left(\frac{k}{\delta}\right) \cdot \left(\frac{\Delta f}{\varepsilon}\right)\right] = \Pr\left[\max_{i \in [k]} |Y_i| \ge \ln\left(\frac{k}{\delta}\right) \cdot \left(\frac{\Delta f}{\varepsilon}\right)\right]$$

$$\le k \cdot \Pr\left[|Y_i| \ge \ln\left(\frac{k}{\delta}\right) \cdot \left(\frac{\Delta f}{\varepsilon}\right)\right]$$

$$= k \cdot \left(\frac{\delta}{k}\right)$$

$$= \delta$$

where the second to last inequality follows from the fact that each $Y_i \sim \text{Lap}(\Delta f/\varepsilon)$ and Fact [3.7]

A. M. Sadeghzadeh

Suppose we wish to calculate which first names, from a list of $10,\!000$ potential names, were the most common among participants of the 2010 census.

lacksquare This question can be represented as a query $f: \mathbb{N}^{|\mathcal{X}|} o \mathbb{R}^{10000}$

Suppose we wish to calculate which first names, from a list of 10,000 potential names, were the most common among participants of the 2010 census.

- \blacksquare This question can be represented as a query $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{10000}$
- \blacksquare This is a histogram query, and so has sensitivity $\varDelta f={\scriptscriptstyle 1}$

Suppose we wish to calculate which first names, from a list of 10,000 potential names, were the most common among participants of the 2010 census.

- This question can be represented as a query $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{10000}$
- lacksquare This is a histogram query, and so has sensitivity $\Delta f=\mathbf{1}$

We can simultaneously calculate the frequency of all 10000 names with ($\epsilon=1, \delta=0$)-differential privacy $(y=\mathcal{M}(\mathbb{N}^{|\mathcal{X}|},f))$, and with probability 95% ($\delta=0.05$).

Suppose we wish to calculate which first names, from a list of 10,000 potential names, were the most common among participants of the 2010 census.

- This question can be represented as a query $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^{10000}$
- lacksquare This is a histogram query, and so has sensitivity $\Delta f=\mathbf{1}$

We can simultaneously calculate the frequency of all 10000 names with $(\epsilon = 1, \delta = 0)$ -differential privacy $(y = \mathcal{M}(\mathbb{N}^{|\mathcal{X}|}, f))$, and with probability 95% $(\delta = 0.05)$.

$$Pr[||f(x) - y||_{\infty} \ge \ln(\frac{k}{\delta}).(\frac{\Delta f}{\epsilon})] \le \delta$$

$$Pr[||f(x) - y||_{\infty} \ge \ln(\frac{10000}{0.05}).(\frac{1}{1})] \le 0.05$$

$$Pr[||f(x) - y||_{\infty} \ge 12.2] \le 0.05$$

Hence, no estimate will be off by more than an additive error of $\ln(10000/.05) \approx 12.2$, with probability 95%.

■ That's pretty low error for a nation of more than 300,000,000 people!

A. M. Sadeghzadeh

The Gaussian Mechanism

Let $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^d$ be an arbitrary d-dimensional function, and define its ℓ_2 sensitivity to be $\Delta_2 f = \max_{\text{adjacent} x, y} \|f(x) - f(y)\|_2$. The Gaussian Mechanism with parameter σ adds noise scaled to $\mathcal{N}(0, \sigma^2)$ to each of the d components of the output.

Theorem A.1. Let $\varepsilon \in (0,1)$ be arbitrary. For $c^2 > 2\ln(1.25/\delta)$, the Gaussian Mechanism with parameter $\sigma \ge c\Delta_2 f/\varepsilon$ is (ε, δ) -differentially private.

References

- Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, (Ch. 2).
- Gautam Kamath, CS 860, Fall 2020, University of Waterloo