

Fair Comparison between Efficient Attentions

Jiuk Hong¹, Chaehyeon Lee¹, Soyoun Bang¹ and Heechul Jung¹ ¹Department of Artificial Intelligence, Kyungpook National University

Motivation

- ✓ In ViT, decreasing the patch size and thus increasing the effective sequence length shows surprisingly robust improvements without introducing parameters.
 - A well-known concern with self-attention is the quadratic time and memory complexity.
 - The quadratic complexity can hinder patch size scalability.

- ✓ There has been an overwhelming influx of efficient attentions proposed recently that address this problem.
 - But there are few attempts to compare the works fairly because of model configuration and training schemes.
- ✓ Then, how about using those works to reduce patch size while decreasing computations?

Experiment Setting

- ✓ We use the pyramid architecture from Pyramid Transformer.
 - Like CNN, it reduce spatial dimension and increase feature dimension.
 - While we conduct experiment using small size of patch, we cannot afford to handle computation with columnar architecture like ViT.
- ✓ For a fair comparison, we use same architecture and training schemes. Only the patch size and the type of attention change.
 - We compare several attentions, which has global token interaction and linear complexity.
 - For reference, we also evaluate Swin, which use local token interaction, and columnar architecture with patch size 14 and 16.
 - Below table shows efficient attention used in our paper and its complexity.

Model Architecture	Equation	Complexity per Self-Attention	
Transformer (SA)	$\operatorname{softmax}\left[\frac{\mathbf{q}\mathbf{k}^T}{\sqrt{d_k}}\right]\mathbf{v}$	$O(N^2C)$	
Linformer (LA)	softmax $\left(\frac{\mathbf{q}[W_{proj}\mathbf{k}]^T}{\sqrt{d_k}}\right)W_{proj}\mathbf{v}$.	O(NCm)	
Efficient Attention (EA)	$\operatorname{softmax}(\mathbf{q}) \big[\operatorname{softmax}(\mathbf{k}^T) \mathbf{v} \big]$	$O(NC^2)$	
Performer (PA)	$\frac{\psi(\mathbf{q}) \left[\psi(\mathbf{k})^T \mathbf{v} \right]}{\operatorname{diag}(\psi(\mathbf{q}) [\psi(\mathbf{k})^T \mathbb{I}_N])}$	O(NCr)	
Fastformer (AA)	q + [k'*v]W	O(NC)	
XCiT (XCA)	$\left[\operatorname{softmax}\left(\frac{\ \mathbf{q}\ _{2}^{T}\ \mathbf{k}\ _{2}}{\tau}\right)\mathbf{v}^{T}\right]^{T}$	$O(NC^2)$	
Swin Transformer (Swin)	same as SA, but using window	$O(NCw^2)$	

Result on ImageNet-1K

Type of	#params	FLOPs	FLOPs	Top 1	
Attention	(M, millions)	(G, giga)	ratio	Acc. (%)	
Baseline					
SA-4	28.27	8.821	1	81.80	
SA-7	28.28	1.915	1	78.97	
	Effici	ient Attentio	ons		
LA-4	30.91	5.496	0.62	79.04(-2.76)	
LA-7	28.56	1.561	0.81	77.47(-1.5)	
EA-4	28.27	4.480	0.51	79.87(-1.93)	
EA-7	28.28	1.473	0.77	77.91(-1.06)	
PA-4	28.27	4.481	0.51	78.73(-3.07)	
PA-7	28.28	1.473	0.77	77.87(-1.1)	
AA-4	28.27	4.394	0.50	77.60(-3.93)	
AA-7	28.28	1.445	0.75	76.02(-2.95)	
XCA-4	28.27	4.480	0.51	78.67(-3.13)	
XCA-7	28.28	1.473	0.77	77.62(-1.35)	
References					
Swin-4	28.27	4.528	0.51	80.08(-1.72)	
Swin-7	28.28	1.500	0.78	78.72(-0.25)	
T DT 4	20.20	4.500	0.51	04 74 (0 0 0	

1.394	0.30	11.00(-3.93)
1.445	0.75	76.02(-2.95)
1.480	0.51	78.67(-3.13)
1.473	0.77	77.62(-1.35)
rences		v
1.528	0.51	80.08(-1.72)
1.500	0.78	78.72(-0.25)
1.520	0.51	81.54(-0.26)
1.486	0.78	79.7(+0.73)
5.117	0.69	81.30(-0.50)
1.589	0.52	80.97(-0.83)

- Efficient attentions has lower performance, but much lower computation.
- ✓ Additional methods such as two convolution layer before attention (LPI) or shifted window attention (Swin) show comparable result with baseline.
- Pyramid architecture with small patches does not show superior performance compared to columnar architecture.

Limitation

28.39

22.00

- ✓ More experiments with columnar architecture are needed to show above results are the same in other setting.
- ✓ Attention with much smaller patches is ineffective due to its unpractical computation.