FORMULÁRIO DE TRANSFERÊNCIA DE MASSA

$$J_A = -D_{AB} A \frac{\left(dC_A\right)}{dy}$$

J_A: caudal de transferência de massa (kmol/s; kg/s)

C_A: concentração da substância A na mistura (kmol/m³; kg/m³)

A: área de transferência de massa (m2)

D_{AB}: coeficiente de difusão do componente A na mistura AB ou difusividade (m²/s)

CORRELAÇÕES PARA ESTIMATIVA DA DIFUSIVIDADE

- GASES

$$D_{AB} = \frac{4.33 \times 10^{-4} T^{1.5}}{P (V_A^{1/3} + V_B^{1/3})^2} \sqrt{\frac{1}{M_A} + \frac{1}{M_B}}$$

T: temperatura absoluta (K)

P: pressão total (Pa)

M_A, M_B: pesos moleculares dos componentes A e B (kg/kmol)

V_A, V_B: volumes moleculares dos componentes A e B (m³/kmol)

- LÍQUIDOS

$$(D_{AB})_{L} = \frac{7.7 \times 10^{-16} T}{\mu (V_{A}^{1/3} + V_{0}^{1/3})}$$

T: temperatura absoluta (K)

P: pressão total (P)

V_A, V₀: volumes moleculares do soluto A e do solvente B (m³/kmol) (V₀) água=0.008; (V₀) metanoi=0.0149; (V₀) benzeno=0.0228 (m³/kmol)

Número		Interpretação
Adimensional	Definição	
Re		Razão entre as forças de inércia
Número de	_ puL	e as forças viscosas
Reynolds	$Re = \frac{\rho uL}{\mu}$	
	μ	
Sc	μ	Razão entre a difusividade de
Número de Schmidt	$Sc = \frac{\mu}{\rho D}$	momento e a difusividade
		$\Pr = \frac{\mu}{\rho D} = \frac{\nu}{D}$
Sh	k L	Razão entre a transferência de
Número de	$Sh = \frac{K_mL}{D}$	massa por convecção e por
Sherwood	D	difusão, junto à superficie que
~		está em contacto com o fluido
Gr _{TM}		Quociente entre as "forças de
Número de Grashoff	$Gr = \frac{g(\rho_i - \rho)L^3\overline{\rho}}{\mu^2}$	impulsão associadas à
(para T. massa)	$Gr = \frac{1}{11^2}$	convecção natural e as forças viscosas
(Para 1. Iliassa)	"	p _i : massa específica da mistura junto
		à superfície
		ρ: massa específica da mistura no seio do líquido
		p: massa específica média da mistura

L: tamanho característico da geometria

(L=d em condutas circulares e L=x em superficies de comprimento x)

Analogias a transferência de calor

CORRELAÇÕES PARA CONVECÇÃO FORÇADA NO INTERIOR DE TUBOS

Condições	Correlação
Escoamento laminar completamente desenvolvido Re<2100	Sh= 3.66
Escoamento laminar Não completamente desenvolvido	Sh= 1.86((Re Sc)/(d/L)) ^{1/3}
Escoamento turbulento completamente desenvolvido	Sh= 0.023 Re ^{0.8} Sc ^{1/3}

CORRELAÇÕES PARA CONVECÇÃO FORÇADA AO LONGO DE PLACAS PLANAS

Condições	Correlação
Escoamento laminar Re<5×10 ⁵	Na posição x Sh_x = 0.332 $Re_x^{0.5}Sc^{1/3}$ Valor médio Sh_x = $2Sh_x$
Escoamento turbulento	Na posição x Sh_x = $0.0296Re_x^{0.8}Sc^{1/3}$ Valor médio Sh_x = $2Sh_x$

CORRELAÇÕES PARA CONVECÇÃO FORÇADA ATRAVÉS DE UMA ESFERA

Condições	Correlação
1 <re<70000 (Gebhart, 1971)</re<70000 	Sh=2.0+6.0Re ^{0.5} Sc ^{1/3}
2000 <re<7000 (Tang et al., 1991)</re<7000 	Sh=0.41Re ^{0.5} Sc ^{1/3}
25 <re<10<sup>5 (Kreith, 1958)</re<10<sup>	$Sh = 0.37Re^{0.6}$