Písomná skúška z predmetu "Algebra a diskrétna matematika" konaná dňa 23. 5. 2005

Skupina B

- **1. príklad.** Dokážte metódou vymenovaním prípadov tieto vlastnosti: $min\{a, min\{b, c\}\} = min\{min\{a, b\}, c\}$, kde a, b, c sú reálne čísla.
- **2. príklad**. Čo môžeme povedať o množinách A a B, ak platí (a) $A \cap B = B \cap A$, (e) A B = B A, (c) A B = A.

3. príklad.

Zistite, či relácia R nad množinou všetkých ľudí je reflexívna, symetrická, antisymetrická, alebo tranzitívna, pričom $(x, y) \in R$ vtedy a len vtedy, ak

- (a) x je väčší ako y,
- (b) x a y sa narodili v rovnakom dni,
- (c) x navštevuje rovnakú školu ako y,

4. príklad.

Koľko existuje permutácií nad reťazcom ABCDEFG, ktoré

(a) obsahujú podreťazec BCD, (b) obsahujú podreťazec CFGA, (c) dva podreťazce BA a GF,

5. príklad

V koši máme 100 jabĺčok, z ktorých 20 je červivých a 15 je nahnitých. Nech v koši je 10 jabĺčok, ktoré sú červivé a nahnité, koľko jabĺčok v koši nie je ani červivých a ani nahnitých?

6. príklad.

Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovým funkciám $wxy\overline{z} + wx\overline{y}z + w\overline{x}yz + \overline{w}x\overline{y}z + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}\overline{x} + \overline{w}\overline{x}\overline{x} + \overline{w}\overline{x}\overline{x} + \overline$

7. príklad.

Pre ktoré hodnoty parametrov p a q má matica

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix}$$

hodnosť 2.

8. príklad.

Nájdite riešenie systému lineárnych rovníc pomocou Crameroveho pravidla

$$1x_1 + 2x_2 + x_3 = -1$$

$$-3x_1 + 2x_2 + x_3 = 1$$

$$2x_1 + x_2 - x_3 = 0$$

9. príklad.

Dokážte priamo z definície, že matica

$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

s nenulovými diagonálnymi elementmi, má hodnosť h(A) = 3

- **10. príklad.** Odôvodnite, prečo môže či prečo nemôže existovať obyčajný graf s 15 vrcholmi, pričom každý z nich má stupeň 5?
- 11. príklad. Aké je chromatické číslo grafu typu "koleso" W_n ?

Poznámka: Každý príklad je hodnotený 5 bodmi, maximálny počet bodov je 55. Nezabudnite na písomku napísať meno a priezvisko, číslo krúžku a ročník. Čas na písomku je 90 min.

Riešenie

1. príklad. Dokážte metódou vymenovaním prípadov tieto vlastnosti: $min\{a, min\{b, c\}\} = min\{min\{a, b\}, c\}$, kde a, b, c sú reálne čísla.

(1)
$$a \le b \le c$$
, $min \left\{ \underbrace{a, \underbrace{min \left\{ b, c \right\}}_{b}} \right\} = min \left\{ \underbrace{\underbrace{min \left\{ a, b \right\}}_{a}, c \right\}}_{c}$

(2)
$$a \le c \le b$$
, $min \left\{ \underbrace{a, \underbrace{min \left\{ b, c \right\}}_{c}} \right\} = min \left\{ \underbrace{min \left\{ a, b \right\}}_{a}, c \right\}$

(3)
$$b \le a \le c$$
, $min \left\{ a, \underbrace{min \left\{ b, c \right\}}_{b} \right\} = min \left\{ \underbrace{min \left\{ a, b \right\}}_{b}, c \right\}$

$$(4) b \le c \le a, \min \left\{ \underbrace{a, \min \left\{ b, c \right\}}_{b} \right\} = \min \left\{ \underbrace{\min \left\{ a, b \right\}}_{b}, c \right\}$$

(5)
$$c \le a \le b$$
, $min \left\{ \underbrace{a, \min\{b, c\}}_{c} \right\} = min \left\{ \underbrace{\min\{a, b\}}_{a}, c \right\}$

(6)
$$c \le b \le a$$
, $min\left\{a, \underbrace{min\left\{b, c\right\}}_{c}\right\} = min\left\{\underbrace{min\left\{a, b\right\}}_{c}, c\right\}$

2. príklad. Čo môžeme povedať o množinách A a B, ak platí

(a)
$$A \cap B = B \cap A$$
, (e) $A - B = B - A$, (c) $A - B = A$.

- (a) $A \cap B = B \cap A$, platí pre každé množiny A a B
- (b) A B = B A, platí ak A = B.
- (c) A B = A, platí ak $A \cap B = \emptyset$

3. príklad.

Zistite, či relácia R nad množinou všetkých ľudí je reflexívna, symetrická, antisymetrická, alebo tranzitívna, pričom $(x, y) \in R$ vtedy a len vtedy, ak

- (a) x je väčší ako y,
- (b) x a y sa narodili v rovnakom dni,
- (c) x navštevuje rovnakú školu ako y.

(a) x je väčší ako y,

tranzitívna: $\forall x \forall y \forall z ((x > y) \land (y > z) \Rightarrow (x > z))$

antisymetrická: $\forall (x, y \in X)((x, y) \in R \Rightarrow (y, x) \notin R)$

(b) x a y sa narodili v rovnakom dni,

reflexívna: $\forall x ((x, x) \in R)$

symetrická: $\forall x \forall y ((x, y) \in R \Rightarrow (y, x) \in R)$

tranzitívna: $\forall x \forall y \forall z ((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R)$

(c) x navštevuje rovnakú školu ako y.

reflexívna: $\forall x ((x, x) \in R)$

symetrická: $\forall x \forall y ((x, y) \in R \Rightarrow (y, x) \in R)$

tranzitívna: $\forall x \forall y \forall z ((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R)$

4. príklad.

Koľko existuje permutácií nad reťazcom ABCDEFG, ktoré

(a) obsahujú podreťazec BCD, (b) obsahujú podreťazec CFGA, (c) dva podreťazce BA a GF.

(a) obsahujú podreťazec BCD, 5!=120

(b) obsahujú podreťazec CFGA, 4! = 24

(c) dva podreťazce BA a GF,

Celkový počet reťazcov je $2 \times 24 + 4 \times 18 = 120$.

5. príklad

V koši máme 100 jabĺčok, z ktorých 20 je červivých a 15 je nahnitých. Nech v koši je 10 jabĺčok, ktoré sú červivé a nahnité, koľko jabĺčok v koši nie je ani červivých a ani nahnitých?

$$\begin{split} A_1 &= \{\text{červiv\'e jabl\'c\'ka}\}, \ A_2 &= \{\text{nahnit\'e jabl\'c\'ka}\} \ \big|A_1\big| = 20, \ \big|A_2\big| = 15, \ \big|A_1 \cap A_2\big| = 10, \\ \big|\overline{A_1} \cap \overline{A_2}\big| &= \big|\overline{A_1 \cup A_2}\big| = \big|U\big| - \big|A_1 \cup A_2\big| = \big|U\big| - \big(\big|A_1\big| + \big|A_2\big| - \big|A_1 \cap A_2\big|\big) \\ &= \big|U\big| - \big|A_1\big| - \big|A_2\big| + \big|A_1 \cap A_2\big| = 100 - 20 - 15 + 10 = \blacksquare \end{split}$$

6. príklad.

Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovým funkciám $wxy\overline{z} + wx\overline{y}z + w\overline{x}yz + \overline{w}x\overline{y}z + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}\overline{x} + \overline{w}\overline{x} + \overline{$

0. etapa			1. etapa		
1	(1110)		1	(2,4)	(#101)
2	(1101)		2	(4,6)	(0#01)
3	(1011)				
4	(0101)				
5	(0010)				
6	(0001)				

$$U_f^{(0)} \qquad (1110) \qquad (1101) \qquad (1011) \qquad (0010) \qquad (0000)$$

$$U_f^{(1)} \qquad (\#101) \qquad (\#101) \qquad (0\#01)$$

$$\tilde{V} = \{ (\#101), (0\#01), (1110), (1011), (0010) \}$$

$$f(w, x, y, z) = x\overline{y}z + \overline{w} \, \overline{y}z + wxy\overline{z} + w\overline{x}yz + \overline{w} \, \overline{x}y\overline{z}$$

7. príklad.

Pre ktoré hodnoty parametrov p a q má matica

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix}$$

hodnosť 2.

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & -1 & 3 - 2p & -3 + p \\ 0 & 1 & 1 - 2q & 1 + q \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & 1 & -3 + 2p & 3 - p \\ 0 & 1 & 1 - 2q & 1 + q \end{pmatrix}$$

Pretože požadujme, aby 2., 3. a 4. riadok boli ekvivaletné, potom z podmienok

$$(-3+2p=-5) \land (3-p=4) \Rightarrow \boxed{p=-1}$$
$$(1-2q=-5) \land (1+q=4) \Rightarrow \boxed{q=3}$$

Potom ekvivaltná matica na prvej strane má tvar

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & -1 & 3 & -3 \\ q & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & 1 & -3 + 2p & 3 - p \\ 0 & 1 & 1 - 2q & 1 + q \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 4 \\ 0 & 1 & -5 & 4 \end{pmatrix}$$

To znamená, že pre p=-1 a q=3 má matica hodnosť 2.

8. príklad.

Nájdite riešenie systému lineárnych rovníc pomocou Crameroveho pravidla

$$1x_1 + 2x_2 + x_3 = -1$$

$$-3x_1 + 2x_2 + x_3 = 1$$

$$2x_1 + x_2 - x_3 = 0$$

$$\begin{vmatrix} \mathbf{A} \\ | = \begin{vmatrix} 1 & 2 & 1 \\ -3 & 2 & 1 \\ 2 & 1 & -1 \end{vmatrix} = -12, \ |\mathbf{A}_1| = \begin{vmatrix} -1 & 2 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & -1 \end{vmatrix} = 6,$$
$$\begin{vmatrix} \mathbf{A}_2 \\ | = \begin{vmatrix} 1 & -1 & 1 \\ -3 & 1 & 1 \\ 2 & 0 & -1 \end{vmatrix} = -2, \ |\mathbf{A}_3| = \begin{vmatrix} 1 & 2 & -1 \\ -3 & 2 & 1 \\ 2 & 1 & 0 \end{vmatrix} = 10$$

Potom riešenie

$$x_1 = \frac{6}{-12} = -\frac{1}{2}, \quad x_2 = \frac{-2}{-12} = \frac{1}{6}, \quad x_3 = \frac{10}{-12} = -\frac{5}{6}$$

9. príklad.

Dokážte priamo z definície, že matica

$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

s nenulovými diagonálnymi elementmi, má hodnosť h(A) = 3

Budeme dokazovať stĺpcovú hodnosť, zavedieme stĺpce matice

$$s_{1} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, \ s_{2} = \begin{pmatrix} 0 \\ a_{22} \\ a_{32} \end{pmatrix}, \ s_{3} = \begin{pmatrix} 0 \\ 0 \\ a_{33} \end{pmatrix}$$

Tieto vektory sú lineárne nezávislé, ak ich lineárna kombinácia sa rovná nulovému vektoru len pre nulové koeficienty

$$\alpha_1 s_1 + \alpha_2 s_2 + \alpha_3 s_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Táto vektorová rovnica špecifikuje systém 3 rovníc pre koeficienty

$$\alpha_{1}a_{11} = 0$$

$$\alpha_{1}a_{21} + \alpha_{2}a_{22} = 0$$

$$\alpha_{1}a_{31} + \alpha_{2}a_{32} + \alpha_{3}a_{33} = 0$$

Postupným riešením tohto systému dostaneme $\alpha_1 = \alpha_2 = \alpha_3 = 0$. To znamená, že stĺpcové vektory s_1, s_2, s_3 sú lineárne nezávislé, čiže stĺpcová hodnosť matice je 3. Pretože platí veta, že stĺpcová hodnosť sa rovná riadkovej hodnosti, potom hodnosť matice A je $\frac{1}{2}$.

10. príklad. Odôvodnite, prečo môže či nemôže existovať obyčajný graf s 15 vrcholmi, pričom každý z nich má stupeň 5?

Riešenie:

Nemôže existovať, taký graf by mal nepárny počet vrcholov nepárneho stupňa, čo odporuje teorému 10.1.

11. príklad. Aké je chromatické číslo grafu typu "koleso" W_n ?

Riešenie: V príklade v textu sme videli, že chromatické číslo C_n je 2 pre párne n a 3 pre nepárne n. Pretože koleso W_n je iba n-uholník C_n s centrálnym vrcholom naviac, prepojeným so všetkými vrcholmi C_n na obvode, W_n potrebuje iba o jednu farbu viac ako C_n , práve pre centrálny vrchol. Preto je chromatické číslo W_n je 3 pre párne n a 4 pre nepárne n.