Project Proposal Document

Table of Contents

Project Proposal Document	1
Project Title:	2
Team Members:	2
Abstract:	2
Introduction:	2
Objectives:	2
Methodology:	3
Project Delivery Timeline	4
Conclusion:	6
Appendices:	6

Project Title:

Automating Comment Handling in Collaborative Documents using Hierarchical Capsule Networks and Advanced AI Techniques

Team Members:

- Sravani Pati
- Vamsi Krishna Pasam

Abstract:

This project aims to develop a system that automates the handling of comments in collaborative documents. The system will prioritize, categorize, and triage comments based on relevance, complexity, urgency, and importance using advanced machine learning models, including Hierarchical Capsule Networks and Large Language Models (LLMs). The project will also develop a user interface to facilitate interactions, including assigning priorities, creating incident tickets, and tracking comment resolutions. The final output will be a comprehensive tool ready for real-world application and publication at the ACM CHI conference.

Introduction:

Comments in collaborative documents play a critical role in facilitating communication and collaboration. Efficiently managing these comments can significantly enhance productivity and document quality. Our project uses advanced AI techniques to automate the prioritization and categorization of comments, making the document editing process more efficient and streamlined.

Objectives:

- 1. Develop a hierarchical capsule network for multi-label classification of comments.
- 2. Explore zero-shot and n-shot learning capabilities of LLMs and Vision-Language Models (VLMs) for hierarchical classification.
- 3. Using a multi-label classification system, develop an approach to prioritize and categorize comments based on relevance, complexity, urgency, or importance.
- 4. Create a user-friendly interface for document upload, comment analysis, priority assignment, incident management, and dashboard insights.
- 5. Prepare the project for submission to the ACM CHI conference and ensure readiness for real-world applications.

Methodology:

The project will be implemented in several phases, each focusing on different aspects of development and integration.

Phase 1: Data Preparation and Initial Model Development

- 1. Data Cleaning and Preprocessing:
 - Standardize data formats and handle missing values.
 - Split the comment date and time, and ensure no empty comments.
 - Visualize and analyze the data to identify critical predictors and trends.
- 2. Initial Model Development:
 - Implement and evaluate DistilBERT for initial intent classification.
 - Analyze performance metrics and identify areas for improvement.

Phase 2: Hierarchical Capsule Networks and Advanced Models

- 1. Hierarchical Capsule Network Development:
 - Implement a hierarchical capsule network for multi-label classification.
 - Train and evaluate the model on the cleaned dataset.
- 2. Zero-shot and N-shot Learning with LLMs and VLMs:
 - Investigate the capabilities of models like GPT-4 and CLIP for hierarchical classification.
 - Implement both sequential and in-build classification approaches.
 - Fine-tune models and explore in-context learning and retrieval-augmented generation (RAG).

Phase 3: Triage Comments

- 1. Develop Prioritization and Categorization Approach:
 - Develop an approach to prioritize and categorize comments based on relevance, complexity, urgency, or importance.
 - Use a multi-label classification system to assign multiple tags to each comment, indicating its priority and category.
- 2. Integration with ML Models:
 - Integrate the triage system with the hierarchical capsule network and other models.
 - Ensure the system accurately reflects the prioritization and categorization in the user interface.

Phase 4: User Interface Development

1. Front-end Development:

- Create a document upload interface using React.js.
- Develop components for comment analysis, priority assignment, and incident management.
- Implement a dashboard for visualizing insights and analytics.
- 2. Back-end Development:
 - Set up a Node.js server with Express.js.
 - Develop APIs for document processing, comment analysis, priority management, and incident tracking.
 - Integrate the back-end with the Python-based ML models using Flask or FastAPI.

Phase 5: Integration and Testing

- 1. Integration:
 - Integrate the front-end with the back-end APIs.
 - Ensure seamless communication between the user interface and ML models.
- 2. Testing:
 - Conduct unit and integration testing to ensure functionality.
 - Perform user testing to gather feedback and make necessary adjustments.

Phase 6: Deployment and Finalization

- 1. Deployment:
 - Containerize the application using Docker.
 - Deploy the application on a cloud platform (AWS et al.).
- 2. Finalization:
 - Prepare documentation and finalize the project for submission to the ACM CHI conference.
 - Ensure the system is ready for real-world application with user-friendly documentation.

Project Delivery Timeline

Phase	Task	Start Date	End Date	Deliverable
Phase 1: Data Preparation	Data Cleaning and Preprocessing	June 1, 2024	June 15, 2024	Cleaned Dataset

	Initial Model Development (DistilBERT)	June 16, 2024	June 30, 2024	Initial Model and Evaluation Report
Phase 2: Advanced Model Development	Hierarchical Capsule Network Implementation	July 1, 2024	July 15, 2024	Trained Capsule Network Model
	Zero-shot and N-shot Learning Implementation	July 16, 2024	July 31, 2024	Fine-tuned LLMs and VLMs
Phase 3: Triage Comments	Develop Prioritization and Categorization Approach	August 1, 2024	August 10, 2024	Triage System and Classification Report
	Integration with ML Models	August 11, 2024	August 15, 2024	Integrated Triage System
Phase 4: UI Development	Front-end Development (React.js Components)	August 16, 2024	August 25, 2024	Document Upload and Analysis Interface
	Back-end Development (Node.js APIs)	August 26, 2024	September 5, 2024	Fully Functional Back-end APIs

	Integration of Front- end and Back-end	September 6, 2024	September 10, 2024	Integrated Application
Phase 5: Testing and Deployment	Integration Testing and User Feedback	September 11, 2024	September 20, 2024	Tested and Refined Application
	Deployment to Cloud	September 21, 2024	September 25, 2024	Deployed Application on Cloud
	Final Documentation and Conference Paper Preparation	September 26, 2024	September 30, 2024	Submission-Ready Project Documentation
Phase 6: Finalization	Final Adjustments and Submission	October 1, 2024	October 15, 2024	Submission to ACM CHI and Ready-for- Use Application

Conclusion:

Following this detailed project plan, we aim to develop a robust and effective system for automating comment handling in collaborative documents. The project will be prepared for publication at the ACM CHI conference and will be suitable for real-world applications. This proposal outlines the steps, methodologies, and timeline to ensure the project's success and impact.

Appendices:

- 1. Data Schema: Detailed description of the dataset columns and their meanings.
- 2. Model Architecture: Diagrams and explanations of the hierarchical capsule network and other models used.
- 3. API Documentation: Endpoints and usage guidelines for the developed APIs.
- 4. User Manual: Instructions for using the user interface and system features.

ect proposal document ser ct by the end of Septembe n.	