Contents

1	Bas					
	1.1	Set Theory				
[Ma	athematics 1				
2	Analysis					
	2.1	Real Set Theory				
	2.2	Properties of Numbers				
	2.3	Sequence				
	2.4	Series				
	2.5	Limit Superior/Inferior				
		2.5.1 Properties of limit superior/inferior				
	2.6	Limit of a function				
	2.7	Limit Inferior/Superior of Functions				
	2.8	Sequence of Functions				
		2.8.1 Notions of Convergence				
		2.8.2 Notions of Boundedness				
	2.9	Limit of a Set				
	2.10	Sequence of Sets				
Ι	\mathbf{N}	Iathematics 2				
	Alge	ebra				
	3.1	Number Theory				
		3.1.1 Arithmetical Functions				
	3.2	Group Theory				
		3.2.1 Groups and Subgroups				
		3.2.2 Permutations, Cosets & Direct Products				
		3.2.3 Homomorphisms & Factor Groups				
		3.2.4 Advanced Group Theory				
	3.3	Ring Theory				
		3.3.1 Rings & Fields				
		3.3.2 Ideals & Factor Rings				
		3.3.3 Factorisation				
	3.4	Fields				
		3.4.1 Extension Fields				
		3.4.2 Automorphisms & Galois Theory				

2 CONTENTS

II	Ι	Calcu	lus	48	
4	1 Ordinary Differential Equations				
	4.1	Basic	Calculus	49	
		4.1.1	Differentiation	49	
		4.1.2	Integration	49	
	4.2	Ordin	ary Differential Equation	50	
		4.2.1	Solving first order ordinary differential equations	50	
		4.2.2	Existence & Uniqueness	51	
		4.2.3	Solving First Order ODEs of Degree $n > 1 \dots \dots \dots$	52	
		4.2.4	Orthogonal Trajectory	52	
		4.2.5	Solving ordinary differential equations for a singular solution	52	
		4.2.6	Solving second order ordinary differential equaitons	53	

Chapter 1

Basics

1.1 Set Theory

Set is a collection of points which satisfies ZFC-axioms. And the points are the elements of $A, x \in A$.

- 1. Cardinality |A| is the number of elements of the set A.
- 2. Let $n \in \mathbb{N}$, then there exists a finite set of cardinality n given by $\mathbb{N}_n = \{1, 2, \dots, n\}$.
- 3. A set B is a **subset** of a set A, $B \subset A$ if $x \in B \implies x \in A$.
- 4. The **power set** $\mathcal{P}(A)$ of a set A is the family of all subsets of A.
- 5. Two sets A, B are equal, A = B if $A \subset B$ and $B \subset A$.
- 6. Set Operations

```
union of two sets A, B is the set A \cup B = \{x : x \in A \text{ or } x \in B\}.

intersection of two sets A, B is the set A \cap B = \{x : x \in A \text{ and } x \in B\}.

complement of a set A wrt a set B is the set A - B = \{x \in A : x \notin B\}.

symmetric difference of two sets A, B is the set A \Delta B = (A - B) \cup (B - A).

cartesian product of A and B, A \times B = \{(a, b) : a \in A, b \in B\}.
```

- 7. A **relation** from A to B is a subset of $A \times B$. And $xRy \implies (x,y) \in R \subset A \times B$.
- 8. A relation on A is $R \subset A \times A$.

```
reflexive relation R on A satisfies xRx, \forall x \in A.

symmetric relation R on A satisfies xRy \iff yRx.

antisymmetric relation R on A satisfies (x,y) \in R \implies (y,x) \notin R.

transitive relation R on A satisfies xRy, yRz \implies xRz, \forall x,y,z \in A.

total relation R on A satisfies either xRy or yRx, \forall x,y \in A, (x \neq y).
```

¹We adopt Cantor's notion of number of elements when the set is infinite.

9. equivalence relation R on A is a reflexive, symmetric, and trasitive relation.

An equivalence class of a set A containing x is the subset $\hat{x} = \{y \in A : xRy\}$ where the relation R is an equivalence relation.

10. A **partition** $\{\hat{x}, \hat{y}, \dots\}$ of A is a family of subsets \hat{x} of A which satisfies

$$x \in \hat{x}, \ \forall x \in A.$$

$$\hat{x} \cap \hat{y} \iff \hat{x} = \hat{y}.$$

$$A = \cup \{\hat{x} : x \in A\}.$$

11. A function from A to B is relation which has a unique element (a, b), $\forall a \in A$.

A function
$$f: A \to B$$
 is an **injection** if it satisfies $f(x) = f(y) \implies x = y$.

A function $f: A \to B$ is a **surjection** if it satisfies $y = f(x), \ \forall y \in B$.

12. A function $f: A \to B$ is a **bijection** if f is both injective and surjective. Then A, B are of the same cardinality $A \sim B$.

If $f:A\to B$ is an injection, then $\exists C\subset B$ such that $f:A\to C$ is a bijection. Then $A\sim C\subset B\implies |A|\leq |B|$. If A is uncountable, then B is uncountable. If B is countable, then A is countable.

If $f:A\to B$ is an surjection, then $\exists C\subset A$ such that $f:C\to B$ is a bijection. Then $B\sim C\subset A\implies |B|\leq |A|$. If A is countable, then B is countable, then A is uncountable. If B is uncountable, then A is uncountable.

- 13. There exists a bijection from the set of all equivalence relations on A to the set of all partitions of A.
- 14. A set A is **finite** if there exists a natural number n and a bijection $f: A \to \mathbb{N}_n$.
- 15. A set A is finite if and only if there does not exist a bijection from A into any proper subset of A. A set A is infinite if A has a proper subset B and there exists a bijection $f: A \to B$.
- 16. A set A is **countably infinite** if there exists a bijection $f: A \to \mathbb{N}$.

A subset of a countably infinite set is at most countably infinite.

If A is uncountable and B is countable, then A - B is uncountable.

Non-degenerate intervals are uncountable.

17. The finite cartesian product of countable sets are countable.

Proof: cantor diagonalisation process and induction.

18. Countable union of countable sets is countable.

Let
$$A_j = \{a_{i,j} : (i,j) \in \mathbb{N} \times \mathbb{N}\}$$
 and $S = \bigcup_{j \in \mathbb{N}} A_j$. Then $S \sim \mathbb{N} \times \mathbb{N} \implies |S| = \aleph_0$.

19. Continuum Hypothesis : Let $\aleph_0, \aleph_1, \ldots$ where $2^{\aleph_k} = \aleph_{k+1}$. Then there does not exists a set A such that $\aleph_k < |A| < \aleph_{k+1}$.

For any set A, there does not exists a bijection from A to power set of $\mathcal{P}(A)$.

1.1. SET THEORY 5

20.
$$\aleph_0^{\aleph_0} = \aleph_1$$
, $\aleph_0^n = \aleph_0$, and $n\aleph_0 = \aleph_0$.

Set of all polynomials of degree less than n with rational coefficients is countable. That is, $S \sim \mathbb{Q}^n \implies |S| = \aleph_0$.

The set of all circles with rational radii and center with rational co-ordinates is countable. That is, $S \sim \mathbb{Q}^3 \implies |S| = \aleph_0$.

The collection of function, $F = \{f : \mathbb{R} \to \mathbb{R}\}$ is uncountable. $|F| = |\mathbb{R}|^{|\mathbb{R}|} = \aleph_2$.

21. Let $f: X \to Y$, $g: Y \to X$ and $g \circ f = id_X$. Then $f \circ g$ is idempotent.

Part I Mathematics 1

Chapter 2

Analysis

2.1 Real Set Theory

- 1. A **neighbourhood** of $x \in S$ is an open interval ¹ containing x contained in S.
- 2. A point $x \in S$ is an **interior point** of S if there exists $\varepsilon > 0$ such that $(x \varepsilon, x + \varepsilon)$ is contained in S. The set of all interior points of S is the **interior** of S, S^0 .

The interior of a set S is the largest open set contained in it.

Boundary points of an interval is not its interior points. That is, $[a, b]^0 = (a, b)$.

3. A set G is **open** if and only if $G^0 = G$.

Open sets are countable union of disjoint open intervals.

- 4. Arbitrary union of open sets is open. Finite intersection of open sets is open.
- 5. A set C is closed if $\mathbb{R} C$ is open.

Closure of a set S, is the smallest closed set \bar{S} containing S.

The **exterior** of a set is the interior of its complement. The **boundary** of a set ∂S is the intersection of its closure and closure of its exterior.

6. A point x is a **limit point** of S if every neighbourhood of x has infinitely many points of S.

A point x is a limit point of S if there exists an eventually nonconstant sequence $\{x_n\}$ in S converging x.

 $S = \{\frac{1}{n} : n \in \mathbb{N}\}$ has limit point 0.

The set of limit points of a set S is the **derived set** S'.

$$\bar{S} = S \cup S'$$
.

7. A set S is **rare**(nowhere dense) if its interior is empty. A set S is **meagre**(Baire first category) if it is a countable union of rare sets. A set S is **non-meagre**(second category) if it is not meagre.

The set of rational numbers is rare.

The set of irrationals numbers is rare.

 $[\]overline{{}^{1}N}$ is a neighbourhood of x if there exists an set G containing x which is open in S.

Cantor set is rare.

Notions of smallness: $Countable > Zero\ Measure > Rare.^2$

- 8. Cantor function is uniformly continuous, but not absolutely continuous.
 - Voltera function is differentiable, but its derivative is not integrable.

Weierstrass function³ is continuous everywhere but nowhere differentiable.

- 9. **Dedekind Cut**: $\mathbb{Q} = [A : B]$ where $A = \{q \in \mathbb{Q} : q < \sqrt{2}\}$ and $B = \{q \in \mathbb{Q} : q < \sqrt{2}\}$ $q > \sqrt{2}$. Clearly, $\mathbb{Q} = A \cup B$, A does not have a maximum and B does not have a minimum.
- 10. A set S is bounded above if there exists $m \in \mathbb{R}$ such that $\forall x \in S, x \leq m$. If S is bounded above, there exists infinitely many upperbounds. The least upperbound is the **supremum** of S, say $\sup(S)$. If S is not bounded above, then $\sup(S) = +\infty$.

$$\sup(S) \notin S$$

If $\sup(S) \in S$, then $\sup(S) = \max(S)$.

11. The greatest lowerbound is the **infimum** of S, say $\inf(S)$. If S is not bounded below, then $\inf(S) = -\infty$.

Properties of Numbers 2.2

- 1. Greatest integer function $\forall x \in \mathbb{R}, x-1 < |x| < x$
- 2. Arithmetic vs Geometric mean $\forall a, b \in \mathbb{R}, \quad \frac{a+b}{2} \geq \sqrt{ab}$
- 3. Exponential function $\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x$
- 4. Archimedian Property $\forall x \in \mathbb{R}, \ \exists n \in \mathbb{N} : x < n$
- 5. Dense Subset $\forall x, y \in \mathbb{R}, \ \exists r \in \mathbb{Q} : x < r < y \quad (x < y)$
- 6. $||a| |b|| \le |a b|$
- 7. Derived Set $A' = \{x \in X : \forall N \in \mathcal{N}_x, N \{x\} \cap A \neq \emptyset\}.$
- 8. Every function on \mathbb{N} is continuous as the induced topology on \mathbb{N} is discrete.

2.3 Sequence

- 1. A **sequence** x_n in a set X is a function $x : \mathbb{N} \to X$ where $x_n = x(n)$.
- 2. A subsequence x_{n_k} of a sequence x_n is a function $x \circ n$ where $n : \mathbb{N} \to \mathbb{N}$, $n_k = n(k)$ is a strictly increasing sequence.
- 3. A sequence $\{x_n\}$ is **convergent** if there exists $x \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}$ such that $\forall n > N, |x_n - x| < \varepsilon$. Then x is a **limit** of the sequence $\{x_n\}$ and $x_n \to x$.

²The Smith-Voltera cantor set is a rare set with measure $\frac{1}{2}$, constructed by removing $\frac{1}{4}$ th from middle. ³Weierstrass' monster function, $f(x) = \sum_{k=1}^{\infty} a^k \cos(b^k \pi x)$

2.3. SEQUENCE 9

4. If space X is T_2 , then limit of convergent sequence in X is unique.

In \mathbb{R} , limit of a convergent sequence is unique.

- 5. A sequence $\{x_n\}$ converges if and only if every subsequence $\{x_{n_k}\}$ converges.
- 6. A sequence $\{x_n\}$ is **bounded** if $|x_n| \leq k$.

Every convergent sequence is bounded.

 ${\bf Bolzano\text{-}Weierstrass\ Theorem}$: Every bounded sequence has a convergent subsequence.

7. A point x is a **limit point**(cluster point) of the sequence $\{x_n\}$ if every neighbourhood of x contains infinitely many terms of the sequence.

x is a limit point of $\{x_n\}$ if and only if it has a subsequence converging to x.

Every convergent sequence has a unique limit point.

A bounded sequence with unique limit point is convergent.

- 8. A sequence x_n is **Cauchy** if $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n, m > N$, $|x_n x_m| < \varepsilon$. Every Cauchy sequence is bounded.
- 9. A space is **complete** if every Cauchy sequence in it converges.

In \mathbb{R} , sequence is convergent if and only if Cauchy.

 \mathbb{R}^n , \mathbb{C}^n , l^2 , C[a,b] are complete.

Sequence space l^p is complete if and only if p=2.

10. A sequence $\{x_n\}$ is monotonically increasing if $\forall n \in \mathbb{N}, a_{n+1} \geq a_n$.

Every sequence has a monotone subsequence.

Every monotonically increasing (decreasing) sequence which is bounded above (below) is convergent. And the limit is its supremum (infimum).

11. A sequence $\{x_n\}$ is **contractive** if there exists $c \in (0,1)$ such that $|a_{n+2} - a_{n+1}| \le c|a_{n+1} - a_n|$ for sufficiently large values of n.

Every contractive sequence is Cauchy.

- 12. $\forall x \in \mathbb{R}$, there exist a rational sequence and an irrational sequence converging to x. $\left[\frac{10^n x_n}{10^n}\right] \to x$ and $x_n + \frac{\sqrt{2}}{n} \to x$.
- 13. Logarithm function is continuous. That is, $x_n \to x \implies \ln x_n \to \ln x$, $(x_n > 0)$.
- 14. Square root function is continuous. That is, $x_n \to x \implies \sqrt{x_n} \to \sqrt{x}$, $(x_n > 0)$.
- 15. Properties of Convergent Sequences,

$$x_n \to x \implies kx_n \to kx.$$

 $x_n \to x, \ y_n \to y \implies x_n \pm y_n \to x \pm y.$
 $x_n \to x, \ y_n \to y \implies x_n y_n \to xy$
 $x_n \to x, \ y_n \to y, \ y_n \neq 0, \ y \neq 0 \implies x_n/y_n \to x/y$

16.
$$x_n \to x$$
, $y_n \to y$, $x_n \le y_n \implies x \le y$
 $x_n \to x$, $x_n \le k \implies x \le k$.

- 17. Squeeze theorem : $x_n \leq y_n \leq z_n, x_n \to l, z_n \to l \implies y_n \to l$.
- 18. Every convergent sequence is absolute convergent.

$$|x_n| \to |x| \implies x_n \to x.$$

 $x_n \to 0 \iff |x_n| \to 0.$

- 19. $x_n y_n \to xy$, $x_n \to x \implies y_n \to y$
- 20. $x_n \to \pm \infty \implies x_{n_k} \to \pm \infty$.
- 21. Tests for non-convergence,

Unbounded sequences are non-convergent.

If sequence has two convergent subsequence with distinct limits.

If it has a non-convergent subsequence.

22. A few popular convergent sequences,

$$x^n \to 0$$
 where $(|x| < 1)$.

$$\frac{1}{n^p} \to 0$$
 provided $p > 0$.

$$p^{\frac{1}{n}} \to 1$$
 provided $p > 0$.

$$n^{\frac{1}{n}} \to 1$$
.

$$(1+\frac{1}{n})^n \to e.$$

23. $(1 + \frac{2}{n})^n \to e^2$

Let $x_n = (1 + \frac{2}{n})^n$. Suppose sequence $\{x_n\}$ converges, then subsequence $\{x_{2n}\}$ converges to the same limit and $x_{2n} = \left((1 + \frac{1}{n})^n \right)^2 \to e^2$.

- 24. A sequence $\{x_n\}$ is **Cesaro summable** if the sequence of arithmetic means is convergent.
- 25. Cauchy's First Theorem on Limits: Every convergent sequence is Cesaro summable and has the same limit. That is, $x_n \to x \implies \frac{x_1 + x_2 + \dots + x_n}{n} \to x$.

Let sequence $\{p_n\}$ be a sequence of positive real numbers with $\frac{1}{p_1+p_2+\cdots+p_n} \to 0$. Then sequence of weighted arithmetic means also converges to the same limit. That is, $x_n \to x \implies \frac{p_1 x_1 + p_2 x_2 + \dots + p_n x_n}{p_1 + p_2 + \dots + p_n} \to x$.

That is,
$$x_n \to x \implies \frac{p_1x_1+p_2x_2+\cdots+p_nx_n}{p_1+p_2+\cdots+p_n} \to x$$

The sequence of geometric means also converges to the same limit. That is, $x_n \to x \implies (x_1 x_2 \dots x_n)^{\frac{1}{n}} \to x$ provided $x_n \ge 0$.

26. Cauchy's Second Theorem : $\frac{x_{n+1}}{x_n} \to l \implies x_n^{\frac{1}{n}} \to l$.

D'Alembert's Ratio Test : Suppose $x_n > 0$ and let $\frac{x_{n+1}}{x_n} \to l$. If $l < 1, x_n \to 0$. If l > 1, $x_n \to +\infty$. If l = 1, test fails.

Cauchy's **Root test**: Suppose $x_n \ge 0$ and let $(x_n)^{\frac{1}{n}} \to l$. If $l < 1, x_n \to 0$. If $l > 1, x_n \to +\infty$. If l = 1, test fails.

2.4. SERIES 11

27. **Cesaro's theorem**: The Cauchy product of two convergent sequences is Cesaro summable. That is, $x_n \to x$, $y_n \to y \implies \frac{x_1y_n + x_2y_{n-1} + \dots + x_ny_1}{n} \to xy$.

28. Stolz-Cesaro Theorem : $\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to l \implies \frac{x_n}{y_n} \to l$ provided $\{y_n\}$ is strictly monotone and diverges to $\pm \infty$.

 $\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\to l \implies \frac{x_n}{y_n}\to l \implies \frac{x_1+x_2+\cdots+x_n}{y_1+y_2+\cdots+y_n}\to l \text{ provided } \{y_n\} \text{ is strictly increasing to } +\infty.^4$

29. Riemann Sum

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{\infty} f(k/n) = \int_0^1 f(x) \ dx$$

Problems

1.
$$\frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} \to \frac{1}{e} \implies \left(\frac{n!}{n^n}\right)^{\frac{1}{n}} = \frac{\sqrt[n]{n!}}{n} \to \frac{1}{e}$$

2.4 Series

- 1. A series $\sum a_n$ is a sequence of the form $\{b_n\}$ where $b_n = \sum_{k=1}^n a_k$, the sequence of partial sums. If the sequence of partial sums converges to s, then the sum of the series $\sum a_n = s$. If the sequence of partial sums diverges, the series also diverges.
- 2. nth term test : If $\sum a_n$ converges, then $a_n \to 0$. And if $a_n \not\to 0$ then $\sum a_n$ diverges.
- 3. Suppose $\sum a_n, \sum b_n$ converges, then $\sum a_n + b_n, \sum \alpha a_n$ converges.
 - (a) Abel's test : if $\sum a_n$ is monotonic and $\sum a_n, \sum b_n$ converges, then $\sum a_n b_n$ converges
 - (b) Dirichlet's test: if $\sum a_n$ is decreasing & converges and sequence of partial sums of $\sum b_n$ is bounded, then $\sum a_n b_n$ converges.
- 4. Power Series test : $\sum 1/n^p$ converges if p > 1 and diverges if $p \le 1$.
- 5. Geometric Series test : $\sum a^n$ converges if |a| < 1 and diverges if $|a| \ge 1$.
- 6. Ratio test: Let $a_n > 0$ 5 and $a_{n+1}/a_n \to l$. If l < 1, $\sum a_n$ converges. If l > 1, $\sum a_n$ diverges. If l = 1, test fails.
- 7. Comparison test: Suppose $0 \le a_n \le b_n$. If $\sum b_n$ converges, then $\sum a_n$ converges. If $\sum a_n$ diverges, then $\sum b_n$ diverges.
- 8. Limit Comparison Test: Suppose $a_n > 0$ and $b_n > 0^6$ and $a_n/b_n \to l$. If l = 0 and $\sum b_n$ converges, then $\sum a_n$ converges. If $l \neq 0$, then both behaves alike.

⁴Why the corollary of Stolz-Cesaro theorem is not applicable when y_n is strictly monotone and diverges to $\pm \infty$.

⁵The condition $a_n > 0$ can be relaxed a bit, to eventually positive as eventuality is all that matters. ⁶In this case, eventuality is not sufficient.

- 9. Cauchy's *n*th root test : If $a_n > 0$ and $a^{\frac{1}{n}} \to l$. If l < 1, then $\sum a_n$ converges. If l > 1, then $\sum a_n$ diverges. If l = 1, test fails.
- 10. Condensation test: Suppose sequence a_n is decreasing and positive. Then $\sum a_n$ and $\sum 2^n a_n$ behaves similar. Tailor-made for logarithmic functions.
- 11. Rabee's test: Suppose $a_n > 0$ and $n\left(\frac{a_n}{a_{n+1}} 1\right) \to l$. If l < 1, then $\sum a_n$ converges. If l > 1, then $\sum a_n$ diverges. If l = 1, test fails.
- 12. Logarithmic test : Suppose $a_n > 0$ and $n \log(a/a_{n+1}) \to l$. If l > 1, then $\sum a_n$ converges. If l < 1, then $\sum a_n$ diverges.
- 13. Lebinitz test: Suppose sequence a_n is decreasing and converges to zero. $(a_n \downarrow_0)$ Then the alternating series $\sum (-1)^n a_n$ converges.
- 14. A series $\sum a_n$ is **absolutely convergent** if $\sum |a_n|$ converges. In the case of series, absolute convergence implies convergence. A sequence which is convergent, but not absolutely convergent is **conditionally convergent**.

2.5 Limit Superior/Inferior

Definitions 2.1.

$$\limsup_{n \to \infty} x_n = \inf_{n \ge 0} \sup_{m \ge n} x_n$$

Definitions 2.2.

$$\liminf_{n \to \infty} x_n = \sup_{n > 0} \inf_{m \ge n} x_n$$

Remark. lim inf $x_n = I$, lim sup $x_n = S$ are the bounds for cluster points of x_n . Thus, there are at most finitely many terms outside $(I - \varepsilon, S + \varepsilon)$. However, [I, S] may not contain any term of x_n . For example, $x_n = (-1)^n(1 + \frac{1}{n})$.

2.5.1 Properties of limit superior/inferior

$$\inf x_n \le \liminf x_n \le \limsup x_n \le \sup x_n$$

 $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n) \le \limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$ $\liminf a_n \liminf b_n \le \liminf (a_n b_n) \le \limsup (a_n b_n) \le \limsup a_n \limsup b_n$

Theorem 2.3 (Stolz-Cesaro).

$$\liminf_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\leq \liminf_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

2.6 Limit of a function

Definitions 2.4 (limit). If $f(x_n) \to L$ as $x_n \to a$, then $\lim_{x \to a} f(x) = L$.

Definitions 2.5 (continuity). A function $f: X \to Y$ is continuous at $a \in X$, if $\lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a)$.

Theorem 2.6. Limit is algebraic.

Suppose $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ exists, then

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x) \tag{2.1}$$

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
(2.1)

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$
 (2.3)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
(2.4)

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} f(x)^{\lim_{x \to a} g(x)}$$
(2.5)

Remark (exceptions).

$$\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, \ 0 \pm \infty, \ \infty - \infty, \ 0^0, \ \infty^0, \ 1^{\pm \infty}$$

Theorem 2.7 (L'Hospital/Bernouli).

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Remark (application).

$$\lim_{x \to 0} (2+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{1}{x}\log(2+x)} = e^{\lim_{x \to 0} \frac{\log(2+x)}{x}} = \lim_{x \to 0} \frac{1}{2+x} = \sqrt{e}$$

Squeeze theorem Suppose $f(x) \leq g(x) \leq h(x)$ for each x in an open interval containing a (except a). If $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, then

$$\lim_{x \to a} g(x) = L \tag{2.6}$$

Theorem 2.8 (chain rule). Suppose $\lim_{x\to a} g(x) = b$ and f is continuous at b, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b) = c \tag{2.7}$$

Remark. The existence of limit $\lim_{b \to a} f(y) = c$ does not imply f(b) = c. If g assumes value b in some neighbourhood of a, then

$$\lim_{x \to a} g(x) = b, \ \lim_{y \to b} f(x) = c \Longrightarrow \lim_{x \to a} f \circ g(x) = c$$

2.7Limit Inferior/Superior of Functions

Definitions 2.9 (metric).

$$\limsup_{x\to a} f = \lim_{\varepsilon\to 0} \sup_{x\in B(a,\varepsilon)^*} \{f(x)\} = \inf_{\varepsilon>0} \sup_{x\in B(a,\varepsilon)^*} \{f(x)\}$$

$$\liminf_{x\to a}f=\lim_{\varepsilon\to 0}\inf_{x\in B(a,\varepsilon)^*}\{f(x)\}=\sup_{\varepsilon>0}\inf_{x\in B(a,\varepsilon)^*}\{f(x)\}$$

2.8 Sequence of Functions

2.8.1 Notions of Convergence

Definitions 2.10 (pointwise). Sequence of functions are pointwise convergent if for each $x_0 \in X$, the sequence $f_n(x_0)$ converges to $f(x_0)$.

(metric)
$$\forall x \in X, \ \forall \varepsilon > 0, \ \exists N_{x,\varepsilon} \in \mathbb{N}, \ \forall n > N_{x,\varepsilon}, \ d(f_n(x), f(x)) < \varepsilon$$
 (2.8)

(norm)
$$\forall x \in X, \ \forall \varepsilon > 0, \ \exists N_{x,\varepsilon} \in \mathbb{N}, \ \forall n > N_{x,\varepsilon}, \ \|f_n(x), f(x)\| < \varepsilon$$
 (2.9)

$$(nbd) \quad \forall x \in X, \ \forall U \in \mathcal{N}_{f(x)}, \ \exists N_{x,U} \in \mathbb{N}, \ \forall n > N_{x,U}, \ f_n(x) \in U$$
 (2.10)

Definitions 2.11 (uniform). Sequence of functions are uniformly convergent if for each $x \in X$, all the sequences $f_n(x)$ converges to f(x) uniformly.

(metric)
$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}, \ \forall x \in X, \ \forall n > N_{\varepsilon}, \ d(f_n(x), f(x)) < \varepsilon$$
 (2.11)

(norm)
$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}, \ \forall x \in X, \ \forall n > N_{\varepsilon}, \ \|f_n(x), f(x)\| < \varepsilon$$
 (2.12)

$$(nbd) ?? (2.13)$$

2.8.2 Notions of Boundedness

Definitions 2.12 (pointwise). Sequence of functions is pointwise bounded if for each $x_0 \in X$, the sequence $f_n(x_0)$ is bounded.

$$\forall x \in X, \ \exists M_x \in \mathbb{R}, \ |f_n(x)| < M_x \tag{2.14}$$

Definitions 2.13 (uniform). Sequence of functions if uniformly bounded if the pointwise bounds are uniform.

$$\exists M \in \mathbb{R}, \ \forall x \in X, \ |f_n(x)| < M \tag{2.15}$$

2.9 Limit of a Set

Definitions 2.14.

$$\liminf X = \inf\{limit\ points\}$$

$$\limsup X = \sup \{ limit \ points \}$$

2.10 Sequence of Sets

Definitions 2.15.

$$\lim\inf X_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} X_n$$

$$\limsup X_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} X_n$$

Part II Mathematics 2

Chapter 3

Algebra

3.1 Number Theory

Lemma 3.1 (Euclid). Let p be a prime. If p divides ab, then either p divides a or p divides b.

Greatest Common Divisor

- 1. Bézout's Identity : If gcd(n, m) = d, then $\exists s, t \in \mathbb{Z}$ such that d = sn + tm.
- 2. Euclid's Division Algorithm : If b > 0, then $\forall a \in \mathbb{Z}$, $\exists q \in \mathbb{Z}$ and $\exists r \in \mathbb{Z}$ such that a = qb + r where 0 < r < b.
- 3. Euclid's Algorithm : $gcd(a, b) = gcd(b, r) = \cdots = gcd(d, 1)$ where a = bq + r.
- 4. The linear equation ax + by = c has integer solutions if gcd(a, b) divides c. If (x, y) is a solution, then (x b/d, y a/d) is also a solution.
- 5. Chinese Remainder Theorem : Let $x \cong a_j \pmod{n_j}$ be a system of congruences where $\gcd(n_j, n_k) = 1, \ (j \neq k)$. Then there exists a solution. If x_1, x_2 is are two solutions, then $x_1 \cong x_2 \pmod{N}$ where $N = \prod n_j$.

$$x \cong \sum a_j M_j N_j \pmod{N}$$
 where $N_j = \frac{N}{n_j}$ and $M_j \cong N_j^{-1} \pmod{n_j}$

Congruences

Definitions 3.2. The congruence is a relation on \mathbb{Z} defined by

$$a \cong b \pmod{n} \iff n|(a-b)$$

- 1. The relation \cong is an equivalence relation.
- 2. $a \cong b \pmod{n} \implies \forall k, \ a^k \cong b^k \pmod{n}$.
- 3. If gcd(a, n) = 1, then $a^{-1} \pmod{n}$ exists.
- 4. Linear congruence equation $ax \cong b \pmod{n}$ has a solution if $\gcd(a,n)$ divides b.

Euler's phi function The function $\phi : \mathbb{N} \to \mathbb{N}$ is defined as $\phi(n) =$ the cardinality of the set $\{k \in \mathbb{N} : k \leq n, \gcd(n, k) = 1\}$.

- 1. ϕ is multiplicative. That is, $\phi(mn) = \phi(m)\phi(n)$, $\gcd(m,n) = 1$.
- 2. $\phi(p^n) = p^n p^{n-1}$ where p is a prime.
- 3. $\phi(n)$ is even for n > 2.
- 4. The sum of $\phi(d)$ for all divisors of n is n.
- 5. The sum of all natural numbers $k \leq n$ that are relatively prime to n is $n\phi(n)/2$.

Theorem 3.3 (Fermat). $a^p \cong a \pmod{p}$

Definitions 3.4. A number x such that $a^x \cong a \pmod{x}$ is a (fermat) **pseudoprime** for base a where gcd(a, x) = 1.

Number 341 is the smallest pseudoprime for base 2.

Definitions 3.5. A number x is a **Carmichael** number if $a^x \cong a \pmod x$ whenever $\gcd(a,x)=1$.

3.1.1 Arithmetical Functions

Definitions 3.6. A function $f : \mathbb{N} \to \mathbb{C}$ is an **arithmetical** (number theoretic) function.

Definitions 3.7. An arithmetical function f is multiplicative iff f(mn) = f(m)f(n) whenever gcd(m,n) = 1. And completely multiplicative iff f(mn) = f(m)f(n) always.

Definitions 3.8. The Dirichlet convolution

$$f * g = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Clearly, Dirichlet convolution is commutative and associative.

And Dirichlet convolution of multiplicative functions in multiplicative. However, Dirichlet convolution of completely multiplicative functions is not completely multiplicative.

Definitions 3.9. Every artithmetical function f with $f(1) \neq 0$ has a unique **Dirichlet** inverse f^{-1} .

$$f^{-1}(n) = \begin{cases} \frac{1}{f(1)} & n = 1\\ \frac{-1}{f(1)} \sum_{\substack{d \mid n \\ d < n}} f(n/d) f^{-1}(d) & n > 1 \end{cases}$$

Clearly, $(f * g)^{-1} = g^{-1} * f^{-1}$ provided f^{-1} and g^{-1} exists.

Theorem 3.10. Let f be multiplicative. Then f is completely multiplicative iff $f^{-1} = \mu f$.

Arithmetical Functions and their Dirichlet products

- 1. **Identity function**, $I(n) = \left[\frac{1}{n}\right]$ vanishes everywhere except at n = 1, I(1) = 1. Clearly, I is completely multiplicative.
- 2. Möbius function, $\mu(n)$ gives the parity of the number of prime factors of a square free number and vanishes for numbers which are contains a square. For example, $\mu(1) = 1$, $\mu(30) = -1$, $\mu(12) = 0$. Clearly, μ is multiplicative.
- 3. Riemann Zeta function, $\zeta(n) = 1$ is completely multiplicative. Thus $\zeta^{-1} = \mu \zeta = \mu$.
- 4. Power function, $N^{\alpha}(n) = n^{\alpha}$ is completely multiplicative. Thus, $(N^{\alpha})^{-1} = \mu N^{\alpha}$. And $N^{0} = \zeta$.
- 5. Characteristic function, χ_S is the membership indicator function.

$$\chi_S(n) = \begin{cases} 1 & n \in S \\ 0 & n \notin S \end{cases}$$

 χ_S is not multiplicative.

- 6. Euler totient function, $\phi(n)$ gives the number of positive integers less than n which are relatively prime to n. And $\phi = \mu * N$. Thus, $\phi^{-1} = \zeta * \mu N$.
- 7. **Liouville function** $\lambda(n)$ gives the parity of sum of prime powers of n. For example, $\lambda(1) = 0$, $\lambda(30) = -1$, $\lambda(12) = -1$. Clearly, λ is completely multiplicative and $\lambda^{-1} = \mu \lambda$. And $\lambda = \mu * \chi_{Sq}$ where Sq is the set of all squares.
- 8. Divisor function $\sigma_{\alpha}(n)$ is the sum of α th powers of divisors of n. Clearly, $\sigma_{\alpha} = \zeta * N^{\alpha}$. And $\sigma_{\alpha}^{-1} = \mu * \mu N^{\alpha}$.
- 9. $\tau(n)$ gives the number of divisors of n. And d(n) gives the sum of divisors of n. Clearly, $\tau = \sigma_0 = \zeta * \zeta$. And $d = \sigma = \sigma_1 = \zeta * N$. We have, $\sigma * \phi = \zeta * N * \mu * N = N * N = N\tau$ since,

$$N*N(n) = \sum_{d|n} N(d)N(n/d) = \sum_{d|n} n = N(n)\tau(n)$$

and
$$\tau * \phi = \zeta * \zeta * \mu * N = \zeta * N = \sigma$$

- 10. $\omega(n)$ gives the number of distinct prime factors of n. Clearly $\omega = \zeta * \chi_{\mathbb{P}}$ where \mathbb{P} is the set of all primes.
- 11. $\Omega(n)$ gives the number of prime factors of n counted with multiplicity. Clearly, $\Omega = \zeta * \chi_{\mathcal{P}}$ where \mathcal{P} is the set of all prime powers
- 12. p-adic valuation $\nu_p(n)$ is the exponent of highest power of prime p that divides n.

$$\omega(2^n 3^m) = 2, \ \Omega(2^n 3^m) = n + m, \ \nu_2(2^n 3^m) = n$$

$$\nu_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots$$

Strange Functions

1. $\sin : \mathbb{N} \to [-1, 1]$ is an injection since $\sin(x) = \sin(y) \implies 2\pi | (x - y)$.

3.2 Group Theory

Definitions 3.11. An **algebra** is $\langle S, \mathcal{F} \rangle$ where S is a collection of sets and \mathcal{F} is a collection of functions/relations defined on them.

Definitions 3.12. A binary relation on a set A is a relation between $A \times A$ and A.

Definitions 3.13. An associative binary relation * on A satisfies

$$(x*y), (y*z) \in A \implies (x*y)*z, x*(y*z) \in A, (x*y)*z = x*(y*z)$$
 (3.1)

Definitions 3.14. A commutative binary relation * on A satisfies

$$x * y \in A \implies y * x \in A, \ x * y = y * x \tag{3.2}$$

A commutative algebra is also called abelian.

Definitions 3.15. A binary operation on A is a function $*: A \times A \rightarrow A$.

Definitions 3.16. An associative binary operation * on A satisfies

$$(x * y) * z = x * (y * z)$$
(3.3)

Definitions 3.17. A commutative binary operation * on A satisfies

$$x * y = y * x \tag{3.4}$$

Definitions 3.18. A binary **algebra** $\langle A, * \rangle$ is an algebra with a set A together with a binary operation * on A.

Definitions 3.19. A magma is a binary algebra $\langle A, * \rangle$ where * is a binary operation on A. By the definition of binary operation, * is well-defined(closed) on $A \times A$.

Definitions 3.20. A semigroup is a magma $\langle A, * \rangle$ where * is associative.

Definitions 3.21. A left identity e' of an algebra $\langle A, * \rangle$ satisfies e' * x = x, $\forall x \in A$. And **right identity** e' satisfies x * e' = x, $\forall x \in A$. An **identity** element e of $\langle A, * \rangle$ satisfies both.

A binary algebra has at most one identity element. Homomorphisms map identity elements into identity elements.

Definitions 3.22. A monoid is a semigroup $\langle A, * \rangle$ where * has an identity $e \in A$.

Definitions 3.23. Let $x \in A$. An **inverse** x^{-1} of x in an algebra $\langle A, * \rangle$ satisfies $xx^{-1} = x^{-1}x$. Let e be the identity of a monoid $\langle A, * \rangle$. Then, x^{-1} satisfies $xx^{-1} = x^{-1}x = e$.

Definitions 3.24. A group is a monoid $\langle A, * \rangle$ where every element $x \in A$ has an inverse x^{-1} .

Definitions 3.25. An algebra $\langle R, +, \times \rangle$ is a **ring** if

- 1. $\langle R, + \rangle$ is an abelian group.
- 2. $\langle R, \times \rangle$ is a semigroup.
- $3. \times is \ distributive \ over +.$

Definitions 3.26. A commutative ring with unity $\langle D, +, \times \rangle$ is an **integral domain** if

- 1. $\langle D^*, \times \rangle$ has no zero divisors.
- 2. \times is distributive over +.

Definitions 3.27. An integral domain $\langle F, +, \times \rangle$ is a **field** if

- 1. $\langle F^*, \times \rangle$ is an abelian group.
- 2. \times is distributive over +.

Definitions 3.28. An algebra $\langle V, F, +, \times \rangle$ is a linear algebra if

- 1. $\langle F \rangle$ is a field.
- 2. $\langle V, + \rangle$ is an abelian group.
- 3. $\langle V, \times \rangle$ is a semigroup.
- $4. \times is distributive over +.$

Figure 3.1: Binary Algebraic Structures

Definitions 3.29. The sum of two subsets A and B of a magma¹ $\langle X, + \rangle$ is

$$A + B = \{a + b : a \in A, b \in B\}$$

¹Instead of magma, the name groupoid is used in many texts that don't study groupoid in detail

Definitions 3.30. Let $\langle R, +, \cdot \rangle$, $\langle R', +', \cdot' \rangle$ be two commutative rings with identity. A function $f: R \to R'$ is **linear** if $f(k \cdot x + y) = k \cdot' f(x) +' f(y)$.

Definitions 3.31. A function $f: \mathbb{R}^n \to \mathbb{R}'$ is n-linear if for $1 \le k \le n$,

$$f(a_1, a_2, \dots, ka_i + a_i', \dots, a_n) = kf(a_1, a_2, \dots, a_i, \dots, a_n) + f(a_1, a_2, \dots, a_i', \dots, a_n)$$

Definitions 3.32. Let $\langle G, *_1, *_2, \dots, *_r \rangle$ and $\langle H, \star_1, \star_2, \dots, \star_r \rangle$ be two algebraic structures. A function $f: G \to H$ is a **homomorphism** if $\forall *_k, f(x *_k y) = f(x) \star_k f(y)$.

Definitions 3.33. An **isomorphism** is a bijective, homomorphism.

- 1. Number of relations on $A = 2^{n^2}$.
- 2. Number of reflexive relations on $A = 2^{n^2-n}$.
- 3. Number of symmetric relatons on $A = 2^{\frac{n(n+1)}{2}}$.
- 4. Number of equivalence relations on A = B(n), n^{th} Bell number²
- 5. Number of total relations on $A = 2^n 3^{\frac{n(n-1)}{2}}$.

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 0 & 5 & 6 \\ 7 & 8 & 0 & 9 \\ 10 & 11 & 12 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 4 & 7 \\ \bar{2} & 3 & 5 & 8 \\ \bar{4} & \bar{5} & 6 & 9 \\ \bar{7} & \bar{8} & \bar{9} & 10 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 2 & 3 \\ \bar{1} & 2 & 4 & 5 \\ \bar{2} & \bar{4} & 3 & 6 \\ \bar{3} & \bar{4} & \bar{6} & 4 \end{bmatrix}$$

Figure 3.2: Enumerating Relations - Reflexive, Symmetric, and Total

- 6. Let |A| = m, |B| = n. Number of functions $f: A \to B = n^m$.
- 7. Number of injections $f: A \to B = {}^{n}P_{m}$ $(n \ge m)$.

8. Number of surjections
$$f: A \to B = \sum_{r=0}^{n-1} (-1)^r \binom{n}{r} (n-r)^m$$
 $(n \le m)$

9. Number of bijections $f: A \to B = n!$ (n = m)

Figure 3.3: Bell Triangle

10. Number of binary operations on $A = n^{n^2}$ where |A| = n.

 $^{^{2}}B(n) = \sum S(n,k)$ where S(n,k) are Stirling numbers of second kind.

3.2.1 Groups and Subgroups

Definitions 3.34. A group is a binary algebraic structure $\langle G, * \rangle$ which satisfies

- 1. * is closed, $\forall x, y \in G, x * y \in G$
- 2. * is associative, $\forall x, y, z \in G$, (x * y) * z = x * (y * z).
- 3. * has an identity element, $\exists e \in G, \ \forall x \in G, \ e * x = x = x * e$.
- 4. * has inverses for every element of G, $\forall x \in G, \exists x^{-1} \in G, x * x^{-1} = e = x^{-1} * x$

Definitions 3.35. The **order** of a group is the number of elements in it. The **order** of an element $g \in G$ is the order of the smallest subgroup of G containing g.

Definitions 3.36. An element $g \in G$ is a **generator** if the smallest subgroup of G containing g is G itself. A group G is **cyclic** if it has a generator.

Definitions 3.37. The **center** of a group, Z(G) is the set of all elements that commutes with every element in G.

Definitions 3.38. The **centralizer** of an element g, C(g) is the set of all elements that commute with g.

Properties of Center

- 1. The center Z(G) of a group G is a normal subgroup of G. The centralizer of g, C(g) is a subgroup of G.
- $2. \ Z(G) \le C(g) \le C(g^k).$
- 3. $C(g) = C(g^k) \iff \gcd(k, n) = 1 \text{ where } o(g) = n.$
- 4. $Z(S_n)$ is trivial for $n \geq 3$.
- 5. $Z(D_n)$ is trivial when n is odd.
- 6. $Z(A_n)$ is trivial for n > 4.
- 7. $Z(M_n(F)) = \{aI : a \in F\}.$
- 8. $Z(GL(n, F)) = \{aI : a \in F, a \neq 0\}.$
- 9. $Z(SL(n, F)) = \{aI : a \in F, a^n = 1\}.$
- 10. $Z(Q_8) = \{1, -1\} \cong \mathbb{Z}_2$.
- 11. Center of a direct product is the direct product of centers.
- 12. Center of a simple group is either trivial (nonabelian) or the whole group (abelian).
- 13. Grün's Lemma : If G is perfect, then Z(G/Z(G)) is trivial.

Important Notions

Properties of Groups

1. $o(a) = o(a^{-1})$

Proof.
$$a^n = e \iff (a^{-1})^n a^n = (a^{-1})^n \iff e = (a^{-1})^n$$

2. $o(xax^{-1}) = o(a) = o(x^{-1}ax)$

Proof.
$$(xax^{-1})^n = e \iff xa^nx^{-1} = e \iff a^n = x^{-1}x \iff a^n = e$$

3. o(ab) = o(ba)

Proof.
$$(ab)^n = e \iff b(ab)^n b^{-1} = e \iff (ba)^n = e$$

4. $\forall a \in G, \ a^{-1} = a \implies G$ is abelian.

Proof.
$$ab = a^{-1}b^{-1} = (ba)^{-1} = ba$$

5. $\forall a, b \in G$, $(ab)^2 = a^2b^2 \iff G$ is abelian.

Proof.
$$abab = aabb \iff bab = abb \iff ba = ab$$

6. $\forall a, b \in G, (ab)^{-1} = a^{-1}b^{-1} \iff G \text{ is abelian}$

Proof.
$$(ab)^{-1} = a^{-1}b^{-1} \iff (ab)^{-1} = (ba)^{-1} \iff ab = ba$$

7. If $\forall a, b \in G$, $a^3b^3 = (ab)^3$, then every commutator is of order 3.

Proof.
$$a^3b^3 = (ab)^3 \implies a^2b^2 = (ba)^2$$
.

$$(aba^{-1}b^{-1})^2 = (a^{-1}b^{-1})^2(ab)^2 = b^{-2}(a^{-2}b^2)a^2 = b^{-2}(ba^{-1})^2a^2 = b^{-1}a^{-1}ba$$
$$(aba^{-1}b^{-1})^4 = (b^{-1}a^{-1}ba)^2 = aba^{-1}b^{-1} \implies (aba^{-1}b^{-1})^3 = e$$

8.
$$a^n = 1$$
, $aba^{-1} = b^2 \implies b^{2^n - 1} = e$.

Proof.
$$(aba^{-1})^2 = ab^2a^{-1} = b^4 \implies a^2ba^{-2} = b^4 \implies a^nba^{-n} = b^{2^n}$$
.

- 9. Let a, b be elements of finite order, then ab is not necessarily of finite order.
- 10. If x commutes with y, then

$$x$$
 commutes with y^{-1} , since $y^{-1}(xy)y^{-1} = y^{-1}(yx)y^{-1}$
 x^{-1} commutes with y , since $x^{-1}(xy)x^{-1} = x^{-1}(yx)x^{-1}$.
 x^{-1} commutes with y^{-1} , since $(xy)^{-1} = (yx)^{-1}$.

11. Group G has precisely one element g of order two, then g commutes with every element of G.

Proof. Let
$$g \in G$$
 such that $o(g) = 2$.
 $\forall x \in G, \ o(xgx^{-1}) = o(g) = 2 \implies xgx^{-1} = g \implies xg = gx$

Subgroups

- 1. Subgroup Test : $a^{-1}b \in H$, $\forall a, b \in H \implies H \leq G$.
- 2. Finite Subgroup Test: H is a subgroup of a finite group if * is closed in H.
- 3. Group G has a element of order n iff G has a cyclic subgroup of order n.
- 4. Let G be an abelian group. The set $\{g \in G : g^p = e\}$ is a subgroup of G. However, it is not true for nonabelian groups. $\{g \in D_4 : g^2 = e\}$ is not a subgroup of D_4 .
- 5. Let G be an abelian group of order n. If d|n, then G has a subgroup of order d. If d is square-free, then G has an element of order d.
- 6. Every cyclic group of order n has $\phi(n)$ elements of order n. Suppose G has n_m elements of order m, then G has $n_m/\phi(m)$ cyclic subgroups of order m.

If a finite abelian group G has 24 elements of order 6, then G has $24/\phi(6) = 12$ subgroups of order 6 as abelian group of order 6 are cyclic.

- 7. The dihedral group D_n has $\phi(d)$ elements of order d for every divisor d of n, except d=2. There are either n or n+1 elements of order 2 depending on the parity of n. The number of subgroup of $D_n = \tau(n) + \sigma(n)$.
- 8. $H, K \leq G \implies H \cap K \leq G$. And $H \cup K \subset HK \leq G$. $|HK| = |H||K|/|H \cap K|.$ $m\mathbb{Z} \cap n\mathbb{Z} = k\mathbb{Z} \text{ where } k = lcm(m, n).$ $m\mathbb{Z} + n\mathbb{Z} = k\mathbb{Z} \text{ where } k = \gcd(m, n).$

Strange Groups

- 1. Smallest non-abelian group is S_3 . Smallest non-cyclic group is the Klein 4-group, $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Smallest non-abelian simple group is A_5 . Thus, A_5 is the smallest perfect group.
- 2. $D_p, D_4, Q_8, A_4, \ldots$ are non-abelian groups with every proper subgroup abelian.
- 3. \mathbb{C}^* is a multiplicative group with identity 1. Unit circle is a subgroup of \mathbb{C}^* . Unit circle has a unique cyclic subgroup for any order. The *n*th roots of unity is the cyclic subgroup of unit circle with order n.
- 4. \mathbb{Q}/\mathbb{Z} is torsion group which has a unique cyclic subgroup of any finite order. And every proper subgroup of \mathbb{Q}/\mathbb{Z} is finite and cyclic.
- 5. $\left\langle \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} : a \neq 0 \right\}, \times \right\rangle$ is a group with identity $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$.
- 6. $\left\langle \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \neq 0 \right\}, \times \right\rangle$ is a group with identity $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- 7. $\langle \mathbb{Q}^+, a * b = \frac{ab}{5}, \times \rangle$ is a group with idenity 5.
- 8. $\{5, 15, 20, 25, 30, 35\}, \times_{40}\}$ is a group with identity 25.

- 9. The multiplicative group $\mathbb{Z}_n^{\times} = \{m \in \mathbb{Z}_n : \gcd(m,n) = 1\}$. If it is cyclic, then it has $\phi(\phi(n))$ generators.
- 10. Convergent sequences under addition is a group.
- 11. Group of rigid motions(rotations) of the cube is a group of order $\binom{8}{1}\binom{3}{1} = 24$ under permutation multiplication. This group is isomorphic to S_4 .

Group Representations

- 1. The function $\phi: G \to S_G$, $\phi(x) = \lambda_x$, $\lambda_x(g) = xg$ is the **left regular representation** of G.
- 2. Let G be a finite group with a generating set S. The **Cayley digraph** of G has elements of G as its vertices and generators from S as its arcs. The Cayley digraph for an abelian graph is symmetric.
- 3. A **permutation matrix** is obtained by reordering rows of an identity matrix. The permutation matrices $P_{n\times n}$ under matrix multiplication forms a group which is isomorphic to S_n . By Cayley's theorem, every group G is isomorphic to a group of permutation matrices where left regular representation corresponds to left multiplication.
- 4. The set theoretic group representation using generators and their relations. The dihedral group with generators $y = R_{2\pi/n}$, rotation by $2\pi/n$ radians and $x = \mu$, reflection (about the line through the center and a fixed vertex) of a regular n-gon.

$$D_n = \{x^i y^j : x^2 = y^n = 1, (xy)^2 = 1\}$$

The symmetric group with generators x = (1, 2) and y = (1, 2, ..., n).

$$S_n = \{x^i y^j : x^2 = y^n = 1, (yx)^{n-1} = 1\}$$

The alternating group with the set of all three cycles of the form $x_j = (1, 2, j)$ as generating set S.

$$A_n = \left\{ \prod_{j=3}^n x_j^{n_j} : x_j^3 = 1, \ (x_i x_j)^2 = 1 \right\}$$

Counter Examples

- 1. $\langle \mathbb{R}^*, * \rangle$ where a * b = a/b is not associative.
- 2. $\langle \mathbb{C}, * \rangle$ where a * b = |ab| has no identity element.
- 3. $\langle C[0,1]-\{0\},\times\rangle$ is a not closed. There exists a pair of functions with product 0.
- 4. Let G be a group and $\mathscr{P}(G)$ be the power set of G. Define $A * B = \{ab : a \in A, b \in B\}$. Then $\langle \mathscr{P}(G), * \rangle$ is a monoid with identity $\{e\}$. The units are the left cosets of the trivial subgroup.
- 5. $\langle GL(n,F), + \rangle$ is not closed as $I_n + (-I_n) \notin GL(n,F)$.

Group Homomorphisms

- 1. $\phi: \mathbb{Z} \to \mathbb{Z}$ where $\phi(n) = 2n$ with $\ker(\phi) = 0$ and $\phi[\mathbb{Z}] = 2\mathbb{Z}$.
- 2. $\phi: \mathbb{Q} \to \mathbb{Q}$ where $\phi(x) = 2x$ with $\ker(\phi) = 0$ and $\phi[\mathbb{Q}] = \mathbb{Q}$.
- 3. $\phi: \mathbb{R} \to \langle \mathbb{R}^+, \times \rangle$ where $\phi(x) = 0.5^x$ with $\ker(\phi) = 0$ and $\phi[\mathbb{R}] = \mathbb{R}^+$.
- 4. $\phi: \mathbb{Z} \to \langle \mathbb{Z}, * \rangle$ where m*n = m+n-1 is a group with $\ker(\phi) = 0$ and $\phi[\mathbb{Z}] = \mathbb{Z}$. (hint: $\phi(n) = n+1$, $\phi(0) = 1$, $x^{-1} = -x-2$)
- 5. $\phi: \mathbb{Q} \to \langle \mathbb{Q}, * \rangle$ where x * y = x + y + 1 is a group with $\ker(\phi) = 0$ and $\phi[\mathbb{Q}] = \mathbb{Q}$. (hint: $\phi(x) = 3x 1$, $\phi(0) = -1$, $x^{-1} = -x 2$)
- 6. $\phi: \mathbb{Q}^* \to \langle \mathbb{Q} \{-1\}, * \rangle$ where $x * y = \frac{(x+1)(y+1)}{3} 1$ is a group with $\ker(\phi) = 1$ and $\phi[\mathbb{Q}^*] = \mathbb{Q} \{-1\}$. (hint : $\phi(x) = 3x 1$, $\phi(1) = 2$, $x^{-1} = \frac{8-x}{x+1}$)

Cyclic Groups

1. Every cyclic group is abelian.

Proof.
$$G = \langle g \rangle \implies \forall a, b \in G, \ ab = g^n g^m = g^m g^n = ba.$$

2. Subgroup of cyclic group is cyclic. Let G be a cyclic group of order n. The order of the subgroup generated by g^m is $n/\gcd(n,m)$. For each divisor d of n, there exists unique cyclic subgroup of order n/d.

The multiplicative group $\mathbb{Z}_{25}^{\times} \cong \mathbb{Z}_{20}$ has generator 3. We have $\gcd(20,5) = \gcd(20,15)$. Clearly, $3^5 \cong 18 \pmod{25}$ and $3^{15} \cong 7 \pmod{25}$. Thus, $\langle 7 \rangle \cong \langle 18 \rangle \cong \mathbb{Z}_4$.

- 3. Every proper subgroup of the Klein 4-group, $V \cong \mathbb{Z}_2 \times \mathbb{Z}$ is cyclic. However, V is not cyclic.
- 4. For any natural number n, there exists a cyclic group of order n. Two cyclic group of same order are isomorphic.

Proof. The finite group $\langle \mathbb{Z}_n, +_n \rangle$ is cyclic with order $n \in \mathbb{N}$ and the infinite group \mathbb{Z} is cyclic. Let G, H be cyclic groups of the same order with generators g, h respectively. Then $\phi : G \to H$, $g \xrightarrow{\phi} h$ is an isomorphism.

- 5. An automorphism of a cyclic group is well defined by the image of a generator. Clearly, \mathbb{Z}_{12} has $\phi(12) = 4$ generators and there are four distinct automorphisms.
- 6. For finite cyclic group \mathbb{Z}_n , a generator is an element with the same order as the group. However, this is not the case for inifinite cyclic group \mathbb{Z} .

$$o(g) = o(G) \Longrightarrow \langle g \rangle \cong G$$

7. Every finite cyclic group, \mathbb{Z}_n has $\phi(n)$ generators which are relatively prime to n. Clearly, \mathbb{Z}_{20} has a non-prime generator, say 9.

- 8. The equation $x^m = e$ has m solutions in any finite cyclic group \mathbb{Z}_n where m|n.
- 9. Let G be an abelian group and H, K are cyclic subgroups of G with generators h, k respectively. Then $\langle hk \rangle$ is a cyclic subgroup of order lcm(r, s).
- 10. \mathbb{Q}/\mathbb{Z} is not cyclic. proof: $o(\frac{1}{2} + \mathbb{Z}) = 2$, where the infinite cyclic group \mathbb{Z} has no such element.
- 11. \mathbb{Q}^* is not cyclic. proof : o(-1) = 2, where \mathbb{Z} don't have any element of order two.
- 12. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are not cyclic. proof: If \mathbb{Q} is cyclic, then \mathbb{Q}/\mathbb{Z} is a cyclic quotient group. But \mathbb{Q}/\mathbb{Z} is not.
- 13. The subgroup generated by nth primite root of unity is a cyclic subgroup of \mathbb{C}^* isomorphic to \mathbb{Z}_n . Clearly, $\langle (1+i)/\sqrt{2} \rangle \cong \mathbb{Z}_8$.
- 14. The subgroup generated by any complex number which is a non-root of unity is a cyclic subgroup of \mathbb{C}^* isomorphic to \mathbb{Z} . Clearly $\langle 1+i\rangle \cong \mathbb{Z}$.

Number Groups

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, n\mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}_c, \mathbb{R}_c, \mathbb{Q}^+, \mathbb{R}^+, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*, \mathbb{Z}_n^{\times}$ are groups with a suitable arithmetic operators from $\{+, \times, +_c, \times_c, +_n, \times_n\}$.
- 2. Any nontrivial subgroup of \mathbb{Q} is an infinite cyclic group.
- 3. $\mathbb{R} \{-1\}, *\}$ where a * b = a + b + ab is a group with identity 0 and o(-2) = 2.
- 4. The cyclic group, $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z} = \{g^n : n \in \mathbb{N}\}$. \mathbb{Z}_n has $\phi(d)$ elements of order d for every divisor d of n.

$$a^{-1}b \in Z_n \iff \gcd(a,n)|b$$

5. Group \mathbb{Z}_n^{\times} is the multiplicative group of natural numbers less than n that are relatively prime to n. Thus $|\mathbb{Z}_n^{\times}| = \phi(n)$. Clearly, \mathbb{Z}_n^{\times} are abelian.

Linear Groups

- 1. $M_{m \times n}(F)$ is the additive group of all matrices of order $m \times n$ with entries from the field F. When m = n, we may write $M_n(F)$.
- 2. General Linear Group, GL(n, F) is the multiplicative group of all invertible matrices of order n with entries from field F.
- 3. Special Linear Group, SL(n, F) is the multiplicative group of all matrices of order n and determinant 1 with entries from field F.

3.2.2 Permutations, Cosets & Direct Products

Definitions 3.39. The **symmetric group** S_n is the set of all permutation on a set $\{1, 2, ..., n\}$ together with the function composition operation.

The cycle $f:(1,2,3) \in S_5$ maps $1 \to 2 \to 3 \to 1$ and fixes 4,5. And cycle $g:(1,2,5) \in S_5$ maps $1 \to 2 \to 5 \to 1$ and fixes 3,4. For example f(g(1)) = f(2) = 3, and f(g(3)) = f(3) = 5.. Thus by function composition $f \circ g:(1,2,3)(1,2,5) = (1,3)(2,5)$.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 4 & 2 \end{pmatrix}$$

Theorem 3.40 (Cayley). Every group is isomorphic to a subgroup of a symmetric group.

Proof. The function $\phi: G \to S_G$ defined by $\phi(x) = \lambda_x$ where $g \xrightarrow{\lambda_x} xg$ is an homomorphism.

Definitions 3.41. Let σ be a bijection/permutation on a set A. The **orbits** of the permutation σ are the equivalent classes of the relation

$$a \sim_{\sigma} b \iff \exists n \in \mathbb{N}, \ a = \sigma^n(b)$$

Definitions 3.42. A permutation σ is a **cycle** if it has at most one orbit containing more than one element. The **length** of a cycle σ is the number of elements in its largest orbit.

The multiplication of disjoint cycles is commutative.

Theorem 3.43. Every permutation of a finite set has a unique cycle decomposition.

Proof. construct cycles corresponding to each orbit under the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 2 & 4 & 1 & 7 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 3 & 5 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 7 & 6 \end{pmatrix}$$

In short, we may write (1,3,2,5)(6,7) ignoring those which are left fixed by the permutation. And (1,3,2,5)(6,7) = (1,5)(1,2)(1,3)(6,7) is an even permutation.

Definitions 3.44. The alternating group A_n is the subgroup of all even permutations in the symmetric group S_n .

Definitions 3.45. Let H be a subgroup of group G. The **left coset**, gH of H containing $g \in G$ is the set of all element of the form gh where $h \in H$. The **right coset** Hg of H containing $g \in G$ is the set of all element of the form hg where $h \in H$.

Theorem 3.46 (Lagrange). The order of a subgroup H of a finite group G divides the order of G.

Proof. The left cosets of H in G are disjoint and covers G. Thus |H| must divide |G|. \square

Definitions 3.47. Index of H in G, (G : H) is the number of left cosets of H in G.

Theorem 3.48. The number right cosets of H in G is same as the number of left cosets of H in G.

Proof. $aH = bH \iff ah_1 = bh_2 \iff (ah_1)^{-1} = (bh_2)^{-1} \iff h_1^{-1}a^{-1} = h_2^{-1}b^{-1} \iff Ha^{-1} = Hb^{-1}$. Thus, $aH \stackrel{\phi}{\to} Ha^{-1}$ is bijective.

Theorem 3.49. Let $K \leq H \leq G$. Then (G : K) = (G : H)(H : K).

Definitions 3.50. Let G, H be two groups. The **direct product** $G \times H$ is defined as the group $\langle G \times H, * \rangle$ where $*: (G \times H) \times (G \times H) \rightarrow (G \times H)$ such that $(g_1, h_1) * (g_2, h_2) = (g_1g_2, h_1h_2)$.

Theorem 3.51. $\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{n \times m} \iff \gcd(m, n) = 1.$

Proof. $(1,1) \in \mathbb{Z}_n \times \mathbb{Z}_m$ has order mn. Thus, $\mathbb{Z}_n \times \mathbb{Z}_m$ is cyclic.

Suppose gcd(m,n) = 1. The canonical isomorphism $\phi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ is given by

$$a \pmod{mn} \xrightarrow{\phi} (a \pmod{m}, a \pmod{n})$$

Theorem 3.52. Let $(a_1, ..., a_n) \in G_1 \times ... G_n$ and $o(a_i) = r_i$. Then $o((a_1, ..., a_n)) = lcm(r_1, ..., r_n)$.

Theorem 3.53. Let G be a finitely generated group. Then $G \cong \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \cdots \times \mathbb{Z}_{p_k^{r_k}} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ where the number of \mathbb{Z} is its Betti number.

Theorem 3.54. Let G be a finite abelian group with order n. If m|n, then G has a subgroup H of order m.

Proof. We have, $n = \prod P_j^{r_j}$ and $m = \prod P_j^{s_j}$ where $0 \le s_j \le r_j$. From the structure of finitely generated abelian group G, we may derive the structure of its subgroup H of order m by diminishing the powers of primes as required.

Important Notions

Definitions 3.55. Let $H, K \leq G$. The equivalent classes of the equivalence relation $aRb \iff a = hbk, \ h \in H, \ k \in K \ are \ the \ double \ cosets \ of \ G$.

Definitions 3.56. A group G is **decomposable** if $G \cong H \times K$ where H, K are proper, nontrivial subgroups of G. Otherwise, G is indecomposable.

Finite indecomposable groups are \mathbb{Z}_p .

Consequences of Lagrange's theorem

- 1. By Lagrange's theorem, every group of prime order is cyclic.
- 2. If |G| = pq, then every proper subgroup of G is cyclic.
- 3. The quotient group $\mathbb{Z}_n/\langle g\rangle\cong\mathbb{Z}_{\frac{n}{m}}$ where o(g)=m.

Finite Abelian Groups

- 1. Finite abelian groups are finitely generated.
- 2. Number of abelian groups of order $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ is $\prod_k B(r_k)$.
- 3. Order of an abelian group G is square free, then G is cyclic.
- 4. Order of an element in a cyclic group Let $m \in \mathbb{Z}_n$. Then it has order

$$o(m) = \frac{n}{\gcd(n, m)}$$

5. Order of an element in a product of Cyclic groups Let $(g_1, g_2, \ldots, g_k) \in G_1 \times G_2 \times \cdots \times G_k$. Then

$$o(g_1, g_2, \dots, g_k) = lcm(o(g_1), o(g_2), \dots, o(g_k))$$

6. Enumerating the elements of same order in a finite abelian group.

Enumerate elements of order 4 in $\mathbb{Z}_{12} \times \mathbb{Z}_{10}$?

Let $(g,h) \in \mathbb{Z}_{12} \times \mathbb{Z}_{10}$ has order $o(g,h) = 4 \iff o(g) = 4$, o(h) = 1 or 2. Clearly, an element $k \in \mathbb{Z}_{12}$ is of order 4 iff $\frac{12}{\gcd(12,k)} = 4$. For $\gcd(12,k) = 3$, we have k = 3 or 9. For $\gcd(10,k) = 5$, we have k = 5. For $\gcd(10,k) = 10$, we have k = 0. Thus, the elements are (3,0), (3,5), (9,0) and (9,5). In other words, $\phi(4)\phi(2) + \phi(4)\phi(1) = 4$ elements of order four in $\mathbb{Z}_{12} \times \mathbb{Z}_{10}$.

Enumerate elements of order 9 in $\mathbb{Z}_{12} \times \mathbb{Z}_{18} \times \mathbb{Z}_{27}$?

There are $\phi(1)$, $\phi(3)$, $\phi(9)$ elements of order 1, 3, 9 respectively (if any³). There are 1+2+6 elements of order either 1, 3 or 9 in both \mathbb{Z}_{18} and \mathbb{Z}_{27} . There are $3\times 9\times 9$ elements out of which precisely $3\times 3\times 3$ of them are of order either 1 or 3. Thus, there are 216 elements of order 9.

- 7. Let $g \in \mathbb{Z}_n$ with o(g) = m where $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ and $m = p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}$ such that $0 \le s_j \le r_j$. Then $g = (g_1, g_2, \dots, g_k) \in \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \dots \mathbb{Z}_{p_k^{r_k}}$ with $o(g_j) = s_j$. For example, o(15) = 12 in \mathbb{Z}_{36} . The isomorphism $\phi : \mathbb{Z}_{36} \to \mathbb{Z}_4 \times \mathbb{Z}_9$ where $\phi(a) = (a \pmod{4}, a \pmod{9})$. Clearly $15 \to (3, 6)$. And o(3) = 4 and o(6) = 3.
- 8. Let $(g,h) \in \mathbb{Z}_{p^{r_1}} \times \mathbb{Z}_{p^{r_2}}$ with $o(g,h) = p^{r_3}$ where $r_1 \geq r_2$. Then, $(\mathbb{Z}_{p^{r_1}} \times \mathbb{Z}_{p^{r_2}})/\langle (g,h) \rangle \cong \mathbb{Z}_{p^{r_1}} \times \mathbb{Z}_{p^{r_2-r_3}}$ when o(h) = o(g,h). $\mathbb{Z}_{p^{r_1-r_3}} \times \mathbb{Z}_{p^{r_2}}$ when o(h) < o(g,h).

For example, $(\mathbb{Z}_8 \times \mathbb{Z}_4)/\langle (2,1) \rangle \cong \mathbb{Z}_8$ and $(\mathbb{Z}_8 \times \mathbb{Z}_4)/\langle (2,2) \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.

9. Order of an element in S_n Let $\sigma \in S_n$ be a permutation with structure $1^{n_1}2^{n_2} \dots r^{n_r}$. Then $o(\sigma) = lcm(\{k : n_k \ge 1\})$. Order of an element in A_n can be found using the same rule as above. Parity of permutation is the parity of $\sum (j-1)n_j$. Maximum order of an element in A_{10} is $3 \times 7 = 21$. And maximum order of an element in S_{10} is $2 \times 3 \times 5 = 30$ where $2^1 3^1 5^1$ is an odd permutation, $\therefore (1+2+4)$.

 A_7 has a element of order 6 with structure 2^23^1 , since 2+2=4 is even parity.

³We know that, \mathbb{Z}_{12} don't have any element of order 9.

10. Maximal abelian subgroup of S_n

 S_{10} has maximal abelian subgroup of order 36 which is isomorphic to $\mathbb{Z}_6 \times \mathbb{Z}_6$ and is generated by $\{(1,2), (3,4,5), (6,7), (8,9,10)\}$. It is abelian as the cycles are disjoint.

11. Direct product form of the multiplicative group of units, \mathbb{Z}_n^{\times}

$$\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\} \text{ and } \phi(10) = \phi(2)\phi(5) = 4. \text{ And } \mathbb{Z}_{10}^{\times} \cong \mathbb{Z}_4 \text{ as } \langle 3 \rangle = \mathbb{Z}_{10}^{\times}.$$

$$\mathbb{Z}_{mn}^{\times} \cong \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times} \iff \gcd(m,n) = 1$$

$$\forall n \in \mathbb{N}, \ \mathbb{Z}_{2^{n+2}}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^n}$$

$$\forall p > 2, \ \forall n \in \mathbb{N}, \ \mathbb{Z}_{p^n}^{\times} \cong \mathbb{Z}_{p^n - p^{n-1}}$$

Thus, $\mathbb{Z}_4^{\times} = \mathbb{Z}_2$, $\mathbb{Z}_8^{\times} = \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_{16}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_4$, ... Clearly, $\phi(40) = \phi(8)\phi(5)$ and $\mathbb{Z}_{40}^{\times} \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}_4$. And $\mathbb{Z}_{1000}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{100}$.

Structure of a Permutation

Definitions 3.57. The **structure** of a permuation $\sigma \in S_n$ is $1^{n_1}2^{n_2} \dots r^{n_r}$ where n_j is the number of cycles of length j.

The number of permutations of the structure $1^{n_1}2^{n_2}\dots r^{n_r}$ in S_n is

$$\frac{n!}{\prod_{k=1}^r n_k! \ k^{n_k}}$$

There are $\frac{10!}{3! \cdot 2! \cdot 1! \cdot 2^2 \cdot 3}$ elements of the structure $1^3 2^2 3^1$.

Definitions 3.58. The set of all elements of an abelian group G of finite order forms a normal subgroup called **torsion** subgroup of G.

Definitions 3.59. A torsion free group has only one element of finite order in it.

Torsion and Torsion Free Groups

- 1. The torsion subgroup of \mathbb{C}^* is the set of all roots of unity. The cyclic group generated by z where $|z| \neq 1$ is a torsion free subgroup of \mathbb{C}^* . The cyclic group generated by $e^{2\pi i x}$, $x \in \mathbb{R} \mathbb{Q}$ is a torsion free subgroup of the unit circle.
- 2. Any finite group is a torsion group. The subgroups and quotient groups of any torsion group is also a torsion group.
- 3. Every infinite group has a nontrivial torsion free subgroup. The subgroups of a torsion free group is always torsion free.
- 4. Let T be the torsion subgroup of an abelian group G. Then the quotient group G/T is torsion free.

The group \mathbb{Q}^* has only two elements of finite order, say 1 and -1. The torsion subgroup of $\mathbb{Q}^* \cong \mathbb{Z}_2$. Thus $\mathbb{Q}^+ \cong \mathbb{Q}^*/\{1, -1\}$ is torsion free. Similarly, \mathbb{R}^+ is torsion free.

- 5. Suppose normal subgroup H contains the torsion subgroup of a group G. Then G/H is torsion free. Thus $\mathbb{C}^*/U \cong \mathbb{R}^+$ is torsion free.
- 6. There is no bound for the order of elements in this torsion group.

 $\mathbb{Q}/\mathbb{Z} \cong \mathbb{Q}_1$ is a torsion group and $o(p/q + \mathbb{Z}) = q$. \mathbb{Q}_{π} is torsion free.

3.2.3 Homomorphisms & Factor Groups

Definitions 3.60. Let $\phi: G \to G'$ be a homomorphism. Then $\phi[G]$ is the range of ϕ .

Compositions of group homomorphisms is again a group homomorphism.

Definitions 3.61. Let $\phi: G \to G'$ be a group homomorphism. Then, the **kernel** of ϕ ,

$$\ker(\phi) = \phi^{-1}[e'] = \{g \in G : \phi(g) = e'\}$$

Properties of Homomorphisms Let $\phi: G \to G'$.

- 1. $\phi(e) = e'$.
- 2. $\phi(a^{-1}) = \phi(a)^{-1}$.
- 3. $H \le G \implies \phi[H] \le \phi[G] \le G'$.
- 4. $K' \le \phi[G] \implies \phi^{-1}[K'] \le G$.
- 5. Let $N = \ker(\phi)$. Then $\phi^{-1}(\phi(a)) = aN$. And ϕ is injective iff N is trivial.
- 6. Let $\phi: G \to G'$ with $\ker(\phi) = N$.

Rule for Kernel: $G/N \cong \phi[G] \implies o(G)/o(N) = o(\phi[G]) \implies o(G)|o(N)o(G')$ Rule for Generators: $(gh)^n = e \implies \phi(gh^n) = e' \implies o(\phi(g)\phi(h))|o(G)$,

- 7. $T: \mathbb{Z}_8 \to \mathbb{Z}_{12}$ where T(x) = 4x is not a homomorphism (by Rule of generators). Number of surjection homomorphisms $\phi: \mathbb{Z}_n \to \mathbb{Z}_m$ is $\phi(m)$ where m|n.
- 8. Given G, G' and normal subgroup N. The homomorphism $\phi : G \to G'$ with $\ker(\phi) = N$ exists only if o(G)/o(N) < o(G'). (Rule of Kernel) proof: $\not\exists \phi : S_4 \to S_3$ with $\ker(\phi) = \mathbb{Z}_2$ as S_4/\mathbb{Z}_2 is too big to be a subgroup of S_3 .
- 9. If $\phi: G \to G'$ is surjective and G is cyclic(abelian), then G' is cyclic(abelian).
- 10. If $\phi: G \to G'$ is injective, then $G \cong \phi[G] \leq G'$.

There does not exists an injective homomorphism, $\phi: S_n \to \mathbb{C}^*$ as $\phi: S_n \to \phi[S_n]$ where $\phi[S_n] \leq \mathbb{C}^a st$ is an isomorphism. However, subgroups of \mathbb{C}^* is abelian.

11. $\phi: G \to G$ where $\phi(x) = x^m$ is an automorphism iff $\gcd(m,n) = 1$.

Definitions 3.62. Let $H \leq G$. H is **normal** in G if gH = Hg for every element $g \in G$.

Definitions 3.63. Let $H \leq G$. H is a **characteristic subgroup** if $\phi[H] \subset H$ for every automorphism ϕ on G.

- 1. Intersection of normal subgroups are again normal.
- 2. For every subset S of a group G, there exists a minimal normal subgroup of G containing S.
- 3. Subgroup of index two is normal (if exists).
- 4. Subgroups of the center Z(G) are normal. $H = \{I_3, 2I_3, 4I_3\} \subseteq GL(3, F_{11})$ as $H \subseteq Z(GL(3, F_{11})) = \{aI_3 : a \in F_{11}^*\}$
- 5. $\forall k | n, \{m \in \mathbb{Z}_n^{\times} : m \cong 1 \pmod{k}\} \leq \mathbb{Z}_n^{\times}$ $\{1, 7, 13, 19\} \leq \mathbb{Z}_{30}^{\times} \text{ where } k = 6.$
- 6. Characteristic subgroups are normal.
- 7. Let $\phi: G \to G'$ be a homomorphism. Then $\ker(\phi) = N$ is normal subgroup of G.
- 8. Let $\phi: G \to G'$. If $N \subseteq G$, then $\phi[N] \subseteq \phi[G]$. If $N' \subseteq G'$, then $\phi^{-1}(N') \subseteq G$.
- 9. Intermediate subgroup condition: Let $K \leq H \leq G$ and $K \leq G$ then $K \leq H$.
- 10. Let $K \leq H \leq G$. If H, K are normal subgroups of G, then $G/H \leq G/K$.
- 11. $K \subseteq H \subseteq G \implies K \subseteq G$

Proof.
$$D_5 \leq D_{10} \leq D_{20}$$
. But $D_5 \not\leq D_{20}$.

- 12. Let $H \leq G$ and $N \subseteq G$. Then $HN = \{hn : h \in H, n \in N\}$ is the smallest subgroup of G containing both N and H.
- 13. Let H, K be normal subgroups of G, then HK is normal in G.
- 14. Let H, K be normal subgroups of G such that $H \cap K = \{e\}$. Then hk = kh.
- 15. $Z(G) \subseteq G$ and $Z(G/Z(G)) \subseteq G/Z(G)$.
- 16. Let $\gamma: G \to G/Z(G), \ \gamma(g) = gZ(G).$ Then $\gamma^{-1}(Z(G/Z(G))) \leq G.$

Definitions 3.64. Let N be a normal subgroup of G. The **quotient group** G/N is the set of all left cosets of N with binary operation $g_1N * g_2N = (g_1g_2)N$.

Theorem 3.65. Let $N \subseteq G$. $\gamma: G \to G/N$ where $\gamma(g) = gN$ is canonical homomorphism with $\ker(\gamma) = N$.

Theorem 3.66. Let $\phi: G \to G'$ be a homomorphism with $\ker(\phi) = N$. Then there exists a canonical homomorphism $\gamma: G \to G/N$ where $\gamma(q) = qN$ such that $G/N \cong \phi[G]$.

Theorem 3.67. Let G, G' be groups with normal subgroups H, H'. Let $\phi : G \to G'$ be a homomorphism with $\phi[H] \leq H'$. Then there exists an induced canonical homomorphism $\phi_* : G/H \to G'/H'$ where $\phi_*(gH) = \phi(g)H'$.

Definitions 3.68. The map $x \to gxg^{-1}$ is the **inner automorphism** of G by g.

1. The set of all inner automorphisms on G is a group, say Inn(G).

- 2. $Inn(G) \cong G/Z(G)$.
- 3. $Inn(G) \leq Aut(G)$.
- 4. Let G be a finite cyclic group of order n. Then $Aut(G) \cong \mathbb{Z}_n^{\times}$.

$$Aut(V) \cong S_3$$
.

$$Aut(Q_8) \cong S_4.$$

$$Aut(F \times F \times \dots F) \cong GL(n, F).$$

$$Aut(A_n) \cong Aut(S_n) \cong S_n, n \neq 6, n > 2$$

$$Aut(A_6) \cong Aut(S_6) \cong S_6 \rtimes Z_2$$

- 5. Outer automorphism group is the quotient group, $Out(G) \cong Aut(G)/Inn(G)$.
- 6. A group G is complete if both center Z(G) and outer automorphism group Out(G) are trivial.

$$S_n$$
 is complete, $n \ge 3$, $n \ne 6$.

If G is a nonabelian simple group, then Aut(G) is complete.

7. $G \cong Aut(G) \implies G$ is complete.

Proof.
$$D_4 \cong Aut(D_4)$$
, D_4 is not complete.

Definitions 3.69. The conjugacy class of x, $Cl(x) = \{gxg^{-1} : g \in G\}$.

Definitions 3.70. Let $H, K \leq G$. The subgroups are conjugates if $\exists g \in G, K = i_g[H]$.

- 1. Conjugacy is an equivalence relation on the set of all subgroups of G.
- 2. Normal subgroups are alone in their conjugacy equivalence class.

Definitions 3.71. A group G is simple if it does not have a proper, nontrivial, normal subgroup.

- 1. M is a maximal normal subgroup of G iff G/M is simple.
- 2. Abelian simple groups are cyclic groups of prime order, say \mathbb{Z}_p .
- 3. G/Z(G) is cyclic iff G is abelian.

Proof. Let
$$gZ(G)$$
 be a generator of $G/Z(G)$. Let $g_1, g_2 \in G$. Then $g_1 = g^{n_1}z_1$ and $g_2 = g^{n_2}z_2$ where $z_1, z_2 \in Z(G)$. Thus, $g_1g_2 = g_2g_1$. Therefore, G is abelian. If G is abelian, then $Z(G) \cong G$ and $G/Z(G)$ is trivial, thus cyclic.

Definitions 3.72. An element $g \in G$ is a **commutator** if $g = aba^{-1}b^{-1}$ for some $a, b \in G$.

1. The set of all commutators in a group G is a subgroup of G, say **commutator** subgroup C.

- 2. Commutator subgroup C is the smallest normal subgroup of G such that G/C is abelian.
- 3. Let $N \subseteq G$. G/N is abelian iff $C \subseteq N$.
- 4. Commutator subgroup of a simple group is either trivial(abelian) or the whole group(nonabelian).
- 5. Commutator subgroup of S_n is A_n .

Definitions 3.73. A group is **perfect** if the commutator subgroup is the whole group.

- 1. Any nonabelian, simple group is perfect.
- 2. Direct product of nonabelian simple groups in perfect but not simple.
- 3. $SL(2, F_5)$ is a perfect group which is not simple.

Definitions 3.74. An action of group G on a set X is a function $*: G \times X \to X$ where

- 1. $\forall x \in X, \ ex = x$
- 2. $\forall x \in X, \ \forall g_1, g_2 \in G, \ (g_1g_2)x = g_1(g_2x)$

The set X is G-set if G acts on X. Let $S \subset G$ such that $\forall s \in S, Gs \subset S$. Then S is a sub G-set.

Theorem 3.75. Let X be a G-set. Then $\phi: G \to S_X$ where $\phi(g) = \sigma_g$, $\sigma_g(x) = gx$ is the group action induced homomorphism.

- 1. ϕ is the permutation representation of G induced by the group action of G on X.
- 2. Group action is **faithful** if $e \in G$ is the only element that fixes every $x \in X$. For a faithful group action, the kernel of the induced homomorphism is trivial.
- 3. Group action is **transitive** if $\forall x_1, x_2 \in X$, $\exists g \in G$, $gx_1 = x_2$.
- 4. Every group G is a G-set where the action is both faithful and transitive.
- 5. Let $H \leq G$.

Conjugation is an action of G on H, say $(g,h) \to ghg^{-1}$. Left multiplication is an action of G on H, say $(g,h) \to gh$.

- 6. Let $H \leq G$ and L_H be the set of left cosets of H. $L_H \text{ is a } G\text{-set under conjugation, say } (g, aH) \to g(aH)g^{-1}.$
- 7. Let V(F) be a vector space. Then V is an F^* -set.
- 8. Disjoint union of G-sets is also a G-set.
- 9. G_x is the **isotropy subgroup** of G containing all elements that fix x.
- 10. X_g is the subset of X fixed by $g \in G$.

- 11. The relation $x_1 \sim_g x_2 \iff gx_1 = x_2$ is an equivalence relation on X.
- 12. The equivalence classes of the above relation, Gx is the **orbit** of x in a G-set X,
- 13. Orbit Stabiliser theorem : $|Gx| = (G:G_x)$
- 14. Burnside's Formula, $r|G| = \sum_{g \in G} |X_g|$

Important Notions

Group Homomorphisms

- 1. $\phi: S_n \to \mathbb{Z}_2$ where $\phi(\sigma) = 1$ if the σ is an odd permutation and $\phi(\sigma) = 2$ otherwise. Then $\ker(\phi) = A_n$.
- 2. Evaluation Homomorphism, $\phi_c: F \to \mathbb{R}$ where $\phi_c(f) = f(c)$ where F is the additive group of all functions $f: \mathbb{R} \to \mathbb{R}$.
- 3. $\phi: \mathbb{R}^n \to \mathbb{R}^m$ where $\phi(v) = Av$, $A \in M_{m \times n}(\mathbb{R})$.
- 4. The trace, $tr: M_n(\mathbb{R}) \to \mathbb{R}$.
- 5. The trace, $tr: M(n, F) \to F$. Then $\ker(tr)$ is $n^2 1$ dimensional over F.
- 6. Determinant det : $GL(n,\mathbb{R}) \to \mathbb{R}^*$ where $\det(A) = |A|$ with $\ker(\det) = SL(n,\mathbb{R})$ and $\det[GL(n,\mathbb{R})] \cong \mathbb{R}^*$.
- 7. Determinant det : $GL(n, F_q) \to F_q^*$ where det(A) = |A| with $ker(det) = SL(n, F_q)$ and $det[GL(n, F_q)] \cong F_q^*$.

$$|GL(n, F_q)| = \prod_{r=0}^{n-1} (q^n - q^r)$$

$$|SL(n, F_q)| = \frac{|GL(n, F_q)|}{q - 1}$$
 since $GL(n, F_q)/SL(n, F_q) \cong F_q^*$

- 8. $\phi: \mathbb{Z}_n^{\times} \to \mathbb{Z}_k^{\times}$ with $\ker(\phi) = \{ m \in \mathbb{Z}_n^{\times} : m \cong 1 \pmod{k} \}.$
- 9. $\phi_r: \mathbb{Z} \to \mathbb{Z}$ where $\phi_r(n) = rn$. ϕ_0 is trivial, ϕ_1 is identity, ϕ_{-1} is surjective.
- 10. Projection map $\pi_i: \prod G_j \to G_i$ where $\pi_i(g_1, g_2, \dots, g_n) = g_i$.
- 11. $\sigma: F \to \mathbb{R}$ where $\sigma(f) = \int_0^1 f(x) \ dx$ and F is the additive group of all continuous functions $f: [0,1] \to \mathbb{R}$.
- 12. $\gamma : \mathbb{Z} \to \mathbb{Z}_n$ where $\gamma(m) = r$, m = qn + r, $0 \le r < n$.
- 13. $\phi: \mathbb{C}^* \to \mathbb{R}^*$ where $\phi(z) = |z|$. Left cosets aN are circles of radius a about origin.
- 14. Let D be the set of all differentiable function. Define $\phi: D \to F$ where $\phi(f) = f'$. Left cosets fN are f(x) + C.
- 15. $\phi: \mathbb{Z} \to \mathbb{R}$ where $\phi(n) = n$.

3.2. GROUP THEORY

37

- 16. $\phi : \mathbb{R} \to \mathbb{Z}$ where $\phi(x) = [x]$ with $\ker(\phi) = [0, 1)$.
- 17. $\phi: \mathbb{R}^* \to \mathbb{R}^*$ where $\phi(x) = |x|$ with $\ker(\phi) = \{1, -1\} \cong \mathbb{Z}_2$.
- 18. $\phi: \mathbb{Z}_6 \to \mathbb{Z}_2$ where $\phi(n) \cong n \pmod{2}$ with $\ker(\phi) = \{0, 2, 4\} \cong \mathbb{Z}_3$.
- 19. $\phi: \mathbb{R} \to \mathbb{R}^*$ where $\phi(x) = 2^x$ with $\ker(\phi) = \{0\}$.
- 20. Injection map, $\phi_i: G_i \to \prod G_j$ where $\phi_i(g) = (e_1, e_2, \dots, ge_i, \dots, e_n)$ with $\ker(\phi) = \{e_i\}$.
- 21. $\phi: G \to G$ where $\phi(g) = g^{-1}$ with $\ker(\phi) = \{e\}$.
- 22. $\phi: F \to F$ where $\phi(f) = f''$ where F is the set of all functions f having derivatives of all orders with $\ker(\phi) = \{ax + b : a, b \in \mathbb{R}\}.$
- 23. $\phi: F \to F$ where $\phi(f) = \int_0^4 f(x) \ dx$ where F is the set of all continuous functions $f: \mathbb{R} \to \mathbb{R}$.
- 24. $\phi: F \to F$ where $\phi(f) = 3f$ with $\ker(\phi) = \{0\}$.
- 25. $\phi: F \to \mathbb{R}^*$ where $\phi(f) = \int_0^1 f(x) \ dx$ where F is the multiplicative group of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$.
- 26. $\phi: \mathbb{Z} \to \mathbb{Z}_7$ where $\phi(1) = 4$ with $\ker(\phi) = 7\mathbb{Z}$.
- 27. $\phi: \mathbb{Z} \to \mathbb{Z}_{10}$ where $\phi(1) = 6$ with $\ker(\phi) = 5\mathbb{Z}$.
- 28. $\phi: \mathbb{Z} \to S_8$ where $\phi(1) = (1, 4, 2, 6)(2, 5, 7)$ with $\ker(\phi) = 12\mathbb{Z}$.
- 29. $\phi: \mathbb{Z}_{10} \to \mathbb{Z}_{20}$ where $\phi(1) = 8$ with $\ker(\phi) = \{0, 5\} \cong \mathbb{Z}_2$.
- 30. $\phi: \mathbb{Z}_{24} \to S_8$ where $\phi(1) = (1, 4, 6, 7)(2, 5)$ with $\ker(\phi) = \{0, 4, 8, 12, 16, 20\} \cong \mathbb{Z}_6$.
- 31. $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ where $\phi(1,0) = 3$, $\phi(0,1) = -5$ with $\ker(\phi) = \langle (5,3) \rangle \cong \mathbb{Z}$.
- 32. $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where $\phi(1,0) = (2,-3)$ and $\phi(0,1) = (-1,5)$ with $\ker(\phi) = \{(0,0)\}.$
- 33. $\phi: \mathbb{Z} \times \mathbb{Z} \to S_{10}$ where $\phi(1,0) = (3,5)(2,4)$ and $\phi(0,1) = (1,7)(6,10,8,9)$ with $\ker(\phi) = \langle (2,4) \rangle \cong \mathbb{Z}$.
- 34. $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_5$ where $\phi(1) = 0$ with $\ker \phi = \mathbb{Z}_{12}$.
- 35. $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_4$ where
 - $\phi(1) = 0$ with $\ker(\phi) = \mathbb{Z}_{12}$
 - $\phi(1) = 1 \text{ with } \ker(\phi) = \{0, 4, 8\} \cong \mathbb{Z}_3$
 - $\phi(1) = 2$ with $\ker(\phi) = \{0, 6\} \cong \mathbb{Z}_2$
 - $\phi(1) = 3$ with $\ker(\phi) = \{0, 4, 8\} \cong \mathbb{Z}_3$

36.
$$\phi: \mathbb{Z}_2 \times \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_5$$
 where
$$\phi(1,0) = (0,0), \ \phi(0,1) = (0,0) \text{ with } \ker(\phi) = \mathbb{Z}_2 \times \mathbb{Z}_4$$
$$\phi(1,0) = (1,0), \ \phi(0,1) = (0,0) \text{ with } \ker(\phi) = \{0\} \times \mathbb{Z}_4$$
$$\phi(1,0) = (0,0), \ \phi(0,1) = (1,0) \text{ with } \ker(\phi) = \mathbb{Z}_2 \times \{0,2\} \cong V$$

 $\phi(1,0) = (1,0), \ \phi(0,1) = (1,0) \text{ with } \ker(\phi) = \{0\} \times \{0,2\}$

37.
$$\phi: \mathbb{Z}_3 \to \mathbb{Z}$$
 where $\phi(1) = 0$

38.
$$\phi : \mathbb{Z}_3 \to S_3$$
 where $\phi(1) = ()$ with $\ker(\phi) = \mathbb{Z}_3$ $\phi(1) = (1, 2, 3)$ with $\ker(\phi) = \{0\}$ $\phi(1) = (1, 3, 2)$ with $\ker(\phi) = \{0\}$

39.
$$\phi: \mathbb{Z} \to S_3$$
 where $\phi(1) = ()$ with $\ker(\phi) = \mathbb{Z}$.

40.
$$\phi: \mathbb{Z} \times \mathbb{Z} \to 2\mathbb{Z}$$
 where $\phi(1,0) = 2s$, $\phi(0,1) = 2t$ with $\ker(\phi) = \{0\}$, $s,t \neq 0$.

41.
$$\phi: 2\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
 where $\phi(2) = (s,t)$ with $\ker(\phi) = \{0\}, s, t \neq 0$.

42.
$$\phi: D_4 \to S_3$$
 where $\phi(R_{90}) = (), \ \phi(\mu) = ()$ with $\ker(\phi) = D_4$. $\phi(R_{90}) = (i, j), \ \phi(\mu) = ()$ with $\ker(\phi) = \{0, R_{180}, \mu, R_{180}\mu\}$. $\phi(R_{90}) = ()$ or $\phi(\mu) = (i, j)$ with $\ker(\phi) = \{0, R_{90}, R_{180}, R_{270}\}$. $\phi(R_{90}) = (i, j)$ or $\phi(\mu) = (i, j)$ with $\ker(\phi) = \{0, R_{90}\mu, R_{180}, R_{270}\mu\}$. $\phi: D_4 \to S_3, \ \ker(\phi) \not\cong \mathbb{Z}_2 \text{ since } S_3 \text{ don't have a subgroup isomorphic to } D_4/\mathbb{Z}_2$

43.
$$\phi: S_3 \to S_4$$
 where

$$\phi(1,2) = (), \ \phi(1,2,3) = () \text{ with } \ker(\phi) = S_3.$$

$$\phi(1,2) = (i,j), \ \phi(1,2,3) = () \text{ with } \ker(\phi) = \{(),(1,2,3),(1,3,2)\}.$$

$$\phi(1,2) = (), \ \phi(1,2,3) = (i,j,k) \text{ with } \ker(\phi) = k\{(),(1,2)\}.$$

$$\phi(1,2) = (i,j), \ \phi(1,2,3) = (i,j,k) \text{ with } \ker(\phi) = \{()\}.$$

$$\phi(1,2) = (i,j)(k,l), \ \phi(1,2,3) = () \text{ with } \ker(\phi) = \{(),(1,2,3),(1,3,2)\}.$$

44.
$$\phi: S_4 \to S_3$$
 where

$$\phi(1,2) = (), \ \phi(1,2,3,4) = () \text{ with } \ker(\phi) = S_4.$$

$$\phi(1,2) = (i,j), \ \phi(1,2,3,4) = (i,j) \text{ with } \ker(\phi) = A_4.$$

$$\phi(1,2) = (i,j), \ \phi(1,2,3,4) = (i,k) \text{ is surjective with }$$

$$\ker(\phi) = \{(), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3)\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \cong V.$$

Counter Examples

- 1. $\phi: \mathbb{Z}_9 \to \mathbb{Z}_2$ where $\phi(n) \cong n \pmod{2}$. But, $\phi(2+8) \neq \phi(2) + \phi(8)$.
- 2. $\phi: M_n(\mathbb{R}) \to \mathbb{R}$ where $\phi(A) = \det(A)$. However, $\det(A+B) \neq \det(A) + \det(B)$.
- 3. $\phi: GL(n,\mathbb{R}) \to \mathbb{R}^*$ where $\phi(A) = tr(A)$. However, $tr(AB) \neq tr(A)tr(B)$.
- 4. $\phi: S_3 \to S_4$ where $\phi(1,2) = (1,2)$, $\phi(1,2,3) = (1,3,4)$ is not a homomorphism. Let $\sigma = (1,2)(1,2,3) = (2,3)$, $\phi(\sigma) = \phi(1,2)\phi(1,2,3) = (1,3,4,2)$ and $\phi(\sigma^2) \neq ()$.
- 5. $\phi: S_3 \to S_4$ where $\phi(1,2) = (1,2)(3,4)$, $\phi(1,2,3) = (1,2,3)$ is not as well. Let $\sigma = (1,2)(1,2,3) = (2,3)$, $\phi(\sigma) = \phi(1,2)\phi(1,2,3) = (2,4,3)$ and $\phi(\sigma^2) \neq ()$.
- 6. $\phi(1,2) = (i,j), \ \phi(1,2,3,4) = ().$ Let $\sigma = (2,3,4) = (1,2)(1,2,3,4)$. Then $\phi(\sigma) = (i,j)$ and $\phi(\sigma^3) \neq ().$
- 7. $\phi(1,2) = (), \ \phi(1,2,3,4) = (1,2).$ Let $\sigma = (1,2)(1,2,3,4) = (2,3,4). \ \phi(\sigma) = (1,2) \text{ and } \phi(\sigma^3) \neq ().$

Special Homomorphisms

- 1. There are two homomorphisms of \mathbb{Z} onto \mathbb{Z} . $\phi_1(n) = n$ and $\phi_2(n) = -n$.
- 2. There are countably many homomorphisms of \mathbb{Z} into \mathbb{Z} . $\phi_r(n) = rn, r \in \mathbb{Z}$.
- 3. There is a unique homomorphisms of \mathbb{Z} into \mathbb{Z}_2 . $\phi(n) \cong n \pmod{2}$.
- 4. $\phi_q: G \to G$ where $\phi_q(x) = gx$ is a homomorphism only when g = e.
- 5. $\phi_g: G \to G$ where $\phi_g(x) = gxg^{-1}$ is a homomorphism with $\ker(\phi_g) = \{e\}$.
- 6. There exists exactly 24 surjective homomorphisms from S_4 onto S_3 . However, the $\ker(\phi) = \mathbb{Z}_2 \times \mathbb{Z}_2$ as it is the only normal subgroup of S_4 with order 4.
- 7. The field $\left\langle \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}, +, \times \right\rangle \cong \mathbb{C}$ where $\phi \left(\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \right) = a + ib$.

Quotient Groups

- 1. $\mathbb{R}/n\mathbb{R} \cong \{e\}$ where $n\mathbb{R} = \{nr : r \in \mathbb{R}\}.$
- 2. $S_n/A_n \cong \mathbb{Z}_2, n > 1$.
- 3. $A_4/V = \{[V], (1,2)[V], (1,2,3,4)[V]\} \cong \mathbb{Z}_3.$
- 4. $(\mathbb{Z}_4 \times \mathbb{Z}_6) / \langle (0,1) \rangle \cong \mathbb{Z}_4$.
- 5. $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (0,2)\rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.
- 6. $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (2,3)\rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_3$.
- 7. $D_n/\mathbb{Z}_n \cong \mathbb{Z}_2$, n > 2. And $D_n \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$.
- 8. $\mathbb{Z}_n^{\times}/N \cong \mathbb{Z}_k^{\times}$ where $N = \{m \in \mathbb{Z}_n^{\times} : m \cong 1 \pmod{k}\}.$

- 9. Factor groups of cyclic groups are cyclic. $\mathbb{Z}_n/\mathbb{Z}_d \cong \mathbb{Z}_{n/d}, d|n$.
- 10. $F/K \leq F$ where F is the additive group of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ and K is the subgroup of all constant functions.
- 11. $F^*/K^* \leq F^*$ where F^* is the multiplicative group of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ and K^* is the subgroup of all nonzero constant functions.

Maximal Normal Subgroups

- 1. $S_n: A_n, n > 5$ $S_4: A_4, \mathbb{Z}_2 \times \mathbb{Z}_2$
- 2. $A_4: \mathbb{Z}_2 \times \mathbb{Z}_2$ $A_n \text{ is simple, } n > 4.$
- 3. $D_n: D_{n/2}, \mathbb{Z}_n, D_d$ where d|n, n > 2. $D_4 \text{ is the only dihedral group in which } \mathbb{Z}_2 \times \mathbb{Z}_2 \text{ is normal. (index 2)}$

Order of Quotient Groups

- 1. $\mathbb{Z}_6/\langle 3 \rangle$. We have $|H| = o(3) = 6/\gcd(6,3) = 2$ and |G/H| = |G|/|H| = 6/2 = 3
- 2. $(\mathbb{Z}_4 \times \mathbb{Z}_{12})/(\langle 2 \rangle \times \langle 2 \rangle)$. We have, $o(2) = 4/\gcd(4,2) = 2$ and $o(2) = 12/\gcd(12,2) = 6$. And |G|/|H| = 48/12 = 4.
- 3. $(\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,1) \rangle$. We have, o(2,1) = lcm(o(2),o(1)) = lcm(2,2) = 2. And |G/H| = 8/2 = 4.
- 4. $(\mathbb{Z}_3 \times \mathbb{Z}_5)/\{0\} \times \mathbb{Z}_5$. Clearly, |G/H| = 15/5 = 3.
- 5. $(\mathbb{Z}_2 \times \mathbb{Z}_4)/\langle (1,1) \rangle$. We have, o(1,1) = lcm(o(1),o(1)) = lcm(2,4) = 4. And |G/H| = 8/4 = 2.
- 6. $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3) \rangle$. We have o(4,3) = lcm(o(4),o(3)) = lcm(3,6) = 6. And $|G/H| = 12 \times 18/6 = 36$.
- 7. $(\mathbb{Z}_2 \times S_3)/\langle (1, \rho_1) \rangle$ where $\rho_1 = (1, 2, 3)$. We have $o(1, \rho_1) = lcm(o(1), o(\rho_1)) = lcm(2, 3) = 6$. And |G/H| = 12/6 = 2.
- 8. $(\mathbb{Z}_{11} \times \mathbb{Z}_{15})/\langle (1,1) \rangle$. Clearly $o(1,1) = 11 \times 15$. And |G/G| = 1.

Order of an element in the quotient group

- 1. $5 + \langle 4 \rangle \in \mathbb{Z}_{12} / \langle 4 \rangle$. $4 \times 5 + \langle 4 \rangle = 0 + \langle 4 \rangle$.
- 2. $26 + \langle 12 \rangle \in \mathbb{Z}_{60} / \langle 12 \rangle$. $6 \times (2 + 24) + \langle 12 \rangle = 0 + \langle 12 \rangle$.
- 3. $(2,1) + \langle (1,1) \rangle \in (\mathbb{Z}_3 \times \mathbb{Z}_6) / \langle (1,1) \rangle$. $3 \times [(1,0) + (1,1) + \langle (1,1) \rangle] = (0,0) + \langle (1,1) \rangle$.
- 4. $(3,1) + \langle (1,1) \rangle \in (\mathbb{Z}_4 \times \mathbb{Z}_4) / \langle (1,1) \rangle$. $2 \times [(2,0) + (1,1) + \langle (1,1) \rangle = (0,0) + \langle (1,1) \rangle$.
- 5. $(3,3) + \langle (1,2) \rangle \in (\mathbb{Z}_4 \times \mathbb{Z}_8) / \langle (1,2) \rangle$. $8 \times [(2,1) + (1,2) + \langle (1,2) \rangle] = (0,0) + \langle (1,2) \rangle$.
- 6. $(2,0) + \langle (4,4) \rangle \in (\mathbb{Z}_6 \times \mathbb{Z}_8) / \langle (4,4) \rangle$. $3 \times [(2,0) + \langle (4,4) \rangle] = (0,0) + \langle (4,4) \rangle$.

41

Conjugate Subgroups

1.
$$i_{\rho_1}[H]$$
 where $H = \{\rho_0, \mu_1\}$ and $\mu_1 = (2, 3)$.
We have, $i_{\rho_1}(\mu) = (1, 2, 3)(2, 3)(1, 3, 2) = (1, 3) = \mu_2$. Thus, $i_{\rho_1}[H] = \{\rho_0, \mu_u\}$.

Group G characterised by G/Z(G)

- 1. If G is non-abelian, finite group then $|Z(G)| \leq \frac{1}{4}|G|$. Otherwise G/Z(G) is a group of order 1, 2 or 3. And groups of order 1, 2, 3 are cyclic.
- 2. If G is non-abelian, then Z(G) is not a maximal subgroup of G.

Proof. Suppose Z(G) is a maximal subgroup of G. Then G/Z(G) has no nontrivial subgroups. That is, G/Z(G) is of prime order and thus cyclic which is not possible as G is non-abelian.

3. For A_5, S_3, \ldots , the group G/Z(G) is non-abelian.

Group Actions

1.

Definitions 3.76. Let G be a group. The dual group of G, \hat{G} is the abelian group of all homomorphisms $\phi: G \to \mathbb{C}^*$.

$$\widehat{A \times B} \cong \widehat{A} \times \widehat{B}$$

3.2.4 Advanced Group Theory

Isomorphism Theorems

- 1. $\forall \phi: G \to G', \exists \gamma_N: G \to G/N, \phi = \mu \gamma \text{ where } N = \ker(\phi) \text{ and } \phi[G] \xrightarrow{\mu} G/N.$
- 2. Let $H \leq G$ and $N \leq G$. Then $(HN)/N \cong H/(H \cap N)$. $|HN| = |H||N|/|H \cap N|.$ If $H \cap N = \{e\}$, then |HN| = |H||N|.
- 3. Let $K \leq H \leq G$ and H, K are normal subgroups of G. Then $G/H \cong (G/K)/(H/K)$.

Definitions 3.77. A subnormal series of a group G is a finite sequence $\{H_i\}_{i=0}^n$ such that $H_i \leq H_{i+1}$, $H_0 = \{e\}$ and $H_n = G$.

Definitions 3.78. A normal series of a group G is a finite sequence $\{H_i\}_{i=0}^n$ such that $H_i \leq G$, $H_0 = \{e\}$ and $H_n = G$.

Definitions 3.79. A subnormal(normal) series of a group G is a **composition(principal)** series of group G if every quotient group H_{i+1}/H_i is simple.

Definitions 3.80. A composition series of a group G is **solvable** if every quotient group H_{i+1}/H_i is abelian.

Definitions 3.81. The ascending central series of the group G is $\{e\} \leq Z(G) \leq Z_1(G) \leq Z_2(G) \dots$ where $Z_1(G) = \gamma^{-1}(Z(G/Z(G))), Z_i(G) = \gamma_1^{-1}(Z(G/Z_1(G))) \dots$ and $\gamma: G \to G/Z(G), \gamma(g) = gZ(G)$ and $\gamma_1: G \to G/Z_1(G), \gamma_1(g) = gZ_1(G), \dots$

1. Zassenhaus Lemma (Butterfly Lemma): Let $H^* \subseteq H$ and $K^* \subseteq K$. Then

$$H^*(H \cap K^*) \leq H^*(H \cap K),$$

 $K^*(H^* \cap K) \leq K^*(H \cap K),$
 $(H^* \cap K)(H \cap K^*) \leq (H \cap K),$ and

$$H^*(H \cap K)/H^*(H \cap K^*) \cong K^*(H \cap K)/K^*(H^* \cap K) \cong (H \cap K)/(H^* \cap K)(H \cap K^*)$$

- 2. Schreier Theorem : Any two subnormal series of a group G have isomorphic refinements.
- 3. Jordan-Hölder Theorem : Any two composition (principal) series of a group G are isomorphic.
- 4. Every normal subgroup N of G belongs to some composition series of the group G.
- 5. Finite product of solvable groups is solvable.

Definitions 3.82. If every element of G has order a power of prime p, then G is a p-group. Let $H \leq G$ and H is a p-group, then H is a p-subgroup of G.

Definitions 3.83. Let G be a group and $H \leq G$. The **normaliser** N[H] of H is the largest subgroup of G such that $H \leq N[H]$.

Definitions 3.84. Maximal p-subgroup is a **Sylow** p-subgroup of G.

Definitions 3.85. The **class equation** of G is $|G| = c + n_{c+1} + \cdots + n_r$ where n_j is the length of jth orbit in the partition of G under conjugation and c = |Z(G)| is the number of element that are alone in their conjugacy class.

- 1. The set of all Sylow p-subgroups of G, $Syl_p(G)$ is a G-set with conjugation action.
- 2. Let X be a finite G-set and $|G| = p^n$. Then $|X| \cong |X_G| \pmod{p}$.
- 3. Cauchy's theorem : Let G be a finite group and p divides the order of G, then G has element g of order p.
- 4. Let H be a p-subgroup of a finite group G. Then $(N[H]:H)\cong (G:H)\pmod p$. If p divides the index of H in G, (G:H), then $N[H]\neq H$.

N[H] is isomorphic to the group of all inner automorphisms G that map H onto itself.

5. The class equation of various groups,

$$G: n = n$$
, if G is abelian.

$$G: p^3 = p + p + \cdots + p$$
, if G non-abelian.

$$S_3: 6=1+2+3.$$

$$S_4: 24 = 1 + 3 + 8 + 6 + 6.$$

$$S_5: 120 = 1 + 10 + 15 + 20 + 20 + 24 + 30.$$

$$A_4: 12 = 1 + 3 + 4 + 4.$$

$$A_5: 60 = 1 + 20 + 12 + 12 + 15.$$

$$D_4: 8 = 2 + 2 + 2 + 2.$$

$$D_5: 10 = 1 + 2 + 2 + 5.$$

$$D_6: 12 = 2 + 2 + 2 + 3 + 3.$$

 $Q_8: 8 = 2 + 2 + 2 + 2.$

6. Distinct groups can have the same class equation.

Sylow Theorems

- 1. If $|G| = p^n m$, then $\{H_i\}_{i=0}^n$ is a subnormal series such that $|H_i| = p^i$ and $H_i \leq G$.
- 2. Let P_1, P_2 be Sylow p-subgroups of a finite group G. Then P_1, P_2 are conjugate subgroups of G.
- 3. Let G be a finite group and p divides the order of G. Then the number of Sylow p-subgroups, $n_p \cong 1 \pmod{p}$ and $n_p|o(G)$.

Applications of Sylow theorems

- 1. Wilson's theorem : $(p-1)! \cong -1 \pmod{p}$. S_p has (p-2)! Sylow p-subgroups. Clearly, $(p-2)! \cong 1 \pmod{p}$ and theorem holds.
- 2. Nonabelian group of order pq is isomorphic to $\mathbb{Z}_q \rtimes \mathbb{Z}_p$. It has q Sylow-p subgroups.
- 3. Sylow p-subgroups are conjugates. Suppose |G| = 36 with four Sylow 3-subgroups (of order 9). Then either they are isomorphic to \mathbb{Z}_9 or $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Important Notions

HN subgroups

1.
$$G = \mathbb{Z}_{24}, \ H = \langle 4 \rangle, \ N = \langle 6 \rangle. \ HN = \langle 2 \rangle.$$

2.
$$G = \mathbb{Z}_{36}, \ H = \langle 6 \rangle, \ N = \langle 9 \rangle. \ HN = \langle 3 \rangle.$$

Third Isomorphism Theorem

1.
$$G = \mathbb{Z}_{24}$$
, $H = \langle 4 \rangle$, $N = \langle 8 \rangle$. $G/K = \{\langle 8 \rangle, 1 + \langle 8 \rangle, \dots, 7 + \langle 8 \rangle\}$. $H/K = \{\langle 8 \rangle, 4 + \langle 8 \rangle\}$. $G/H = \{\langle 4 \rangle, 1 + \langle 4 \rangle, 2 + \langle 4 \rangle, 3 + \langle 4 \rangle\}$.

Non-abelian Groups There are a few classes of non-abelian groups which has every proper subgroup abelian: 1) every nonabelian group of order pq where p|q, and 2) two non-abelian groups of order p^3 .

Important Notions

Semidirect Product

Definitions 3.86. Let $\phi: H \to Aut(N)$ be a group homomorphism where N, H are two group. Then the **semidirect product** $N \rtimes H$ is defined as the group $\langle N \rtimes H, * \rangle$ where $*: (N \times H) \times (N \times H) \to (N \times H)$ such that $(n_1, h_1) * (n_2, h_2) = (n_1\phi_{h_1}(n_2), h_1h_2)$.

Let G be a group with nontrivial normal subgroups $N, H \leq G$ such that $N \cap H = \{1\}$ and $N \vee H = G$. Then $G/N \cong H$ and $G/H \cong N$. Thus $G \cong N \times H$.

We can extend the notion direct product as follows. Let G be a group with nontrivial subgroups N, H such that N is normal and $N \cap H = \{1\}$. Then $G \cong N \rtimes H$ except for $G \cong \mathbb{Z}_4$ and Q_8 .

Definitions 3.87. The **fundamental group** of a topological space is the group of equivalent classes under homotopy of the loops contained in the space.

Semidirect Products

- 1. The dihedral group, $D_n \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$.
- 2. No simple group G can be expressed as a semidirect/direct product. Simple groups are indecomposable.
- 3. The fundamental group of the Klein bottle is $\mathbb{Z} \times \mathbb{Z}$.

The converse of Lagrange's theorem Finite group G not necessarity have subgroups for each divisor of its order. For example, the alternating group A_5 of order 12 does not have a subgroup of order 6.

Classification of Finite Groups

- 1. By Burnside's theorem, p-Groups have non-trivial center. And Q_8 is the smallest non-abelian p-group.
- 2. By Sylow first theorem, no group of prime power order is simple.
- 3. Every group of prime power order is solvable.
- 4. Every group G of order p is cyclic and $G \cong \mathbb{Z}_p$. The number of generators is $\phi(n)$.
- 5. Every group G of order p^2 is abelian. There are two groups Z_{p^2} and $Z_p \times Z_p$.
- 6. There are exactly five groups of order p^3 .

Proof. Three abelian groups $-Z_{p^3}$, $Z_{p^2} \times Z_p$, and $Z_p \times Z_p \times Z_p$ and two non-abelian groups $-(Z_p \times Z_p) \rtimes Z_p$, and $Z_{p^2} \rtimes Z_p$ except for p=2. For p=2, $Z_4 \rtimes Z_2 \cong (Z_2 \times Z_2) \rtimes Z_2 \cong D_4$. However we have Q_8 , which is another nonabelian group of order 8.

3.3. RING THEORY 45

7. Every non-abelian group G of order p^3 has center Z(G) of order p.

Proof. Since G is a p-group, G has nontrivial center. Suppose $|Z(G)| = p^2$, then G/Z(G) is a cyclic group of order p. But G is non-abelian.

- 8. Every non-abelian group G of order p^3 has $p^2 + p 1$ distinct conjugacy classes.
- 9. Abelian group of order pq is cyclic. Non-abelian group of order pq exists and is isomorphic to $\mathbb{Z}_q \rtimes \mathbb{Z}_p$ provided $q \cong 1 \pmod{p}$.
- 10. Every non-abelian group G of order pq has trivial center.

Proof. Suppose nonabelian group G has a nontrivial center of order p (wlog), then G/Z(G) is a cyclic group of order q. But G is non-abelian. Thus Z(G) is trivial. \square

11. Every group of square free order is supersolvable. And thus solvable.

Proof. Suppose $|G| = p_1 p_2 \dots p_k$ where $p_1 > p_2 > \dots p_k$. Then there exists a normal series $G_1 \leq G_2 \leq \dots \leq G_k \leq G$ such that $|G_1| = p_1$, $|G_2| = p_1 p_2$ and $|G_k| = p_1 p_2 \dots p_k$.

3.3 Ring Theory

3.3.1 Rings & Fields

1. Every finite PID is field.

3.3.2 Ideals & Factor Rings

3.3.3 Factorisation

Lemma 3.88 (Bézout). Let gcd(a,b) = d. Then there exists integers x, y such that ax + by = d. And integers of the form as + bt are exactly the multiples of d.

The integers x, y are the Bézout coefficients for (a, b). Bézout coefficients are not unique. Bézout identity implies Euclid's lemma, and chinese remainder theorem.

Lemma 3.89 (Euclid). Let p be a prime. If p divides ab, then p divides either a or b.

Proof. By Bézout's identity or By induction using Euclidean algorithm. \Box

Theorem 3.90 (chinese remainder theorem).

Definitions 3.91 (Bézout Domain). A Bézout Domain is an integral domain which satisfyies Bézout's identity.

Definitions 3.92 (Gaussian Integers). Gaussian integers, $\mathbb{Z}[i]$ are complex numbers of the form a + ib, $a, b \in \mathbb{Z}$.

Let x, y are Gaussian integers. x divides y if there exists a Gaussian integer z such that y = xz. The Gaussian integers not divisible by any non-unit Gaussian integer is a Gaussian prime.

Properties

- 1. $\mathbb{Z}[i]$ is a subring of \mathbb{C}
- 2. $\mathbb{Z}[i]$ is an integral domain.
- 3. $\mathbb{Z}[i]$ is a principal ideal domain (PID).
- 4. $\mathbb{Z}[i]$ is a Unique factorisation domain (UFD).
- 5. $\mathbb{Z}[i]$ with norm $N(a+ib)=a^2+b^2$ is a Euclidean Domain.
- 6. $\mathbb{Z}[i]$ is a Bézout Domain.
- 7. Every PID is a Bézout Domain.

Important Notions

- 1. Every PID is a UFD.
- 2. If D is a UFD, then D[x] is a UFD.

Definitions 3.93 (Eisenstein Integers). Eisenstein Integers, $\mathbb{Z}[w]$ are complex numbers of the form a + wb, $a, b \in \mathbb{Z}$ and $w = e^{i2\pi/3}$.

The units in $\mathbb{Z}[w]$ are $\pm 1, \pm w, \pm w^2$.

3.4 Fields

3.4.1 Extension Fields

Definitions 3.94. There exists a unique **Galois field** $GF(p^n)$ of order p^n .

Theorem 3.95 (Kronecker). Let F be a field and f(x) be a nonconstant polynomial in F[x]. Then there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.

Definitions 3.96. A field E is an extension field of field F if F is containined in E.

Definitions 3.97. A field E is a **simple extension** of field F if there exists some $\alpha \in E$ such that E is the minimal extension field of F containing α .

Definitions 3.98. Let field E be an extension of field F. A number $\alpha \in E$ is algebraic over F if there exists $f(x) \in F[x]$ such that $f(\alpha) = 0$.

Then α is algebraic over the field F. Otherwise α is transcendental over the field F. If $F = \mathbb{Q}$, then α is an algebraic number.

Definitions 3.99. An extension E of a field F is **algebraic** if $E \cong F(\alpha)$ for some α algebraic over F.

The field $\mathbb{Q}(\pi)$ is a simple, transcendental extension of \mathbb{Q} . And $\mathbb{Q}(i)$ is a simple, algebraic extension of \mathbb{Q} as f(x): $x^2 + 1 \in \mathbb{Q}[x]$ and f(i) = 0.

Definitions 3.100. Let field E be an n-dimensional vector space over field F. Then E is a **finite extension** of F. And [E:F]=n.

3.4. FIELDS 47

Theorem 3.101 (Fundamental Theorem of Algebra). The field \mathbb{C} is algebraically closed.

Proof. Every non-constant polynomial has a linear factorisation. Let f(z) be a non-constant polynomial which has no zero in \mathbb{C} . Then 1/f(z) is entire. Clearly $f(z) \to \infty$ as $z \to \infty$. Thus, $1/f(z) \to 0$ as $z \to \infty$. Therefore, f is bounded. However, by Liouville's theorem, the bounded, entire function 1/f(z) is constant.

Field \mathbb{C} does not have any algebraic extensions. However, the field of all rational functions $\mathbb{C}(x)$ is a transcendental extension of \mathbb{C} .

Important Notions

The binary algebra, $\langle \mathbb{Z}_n, +_n, \times_n \rangle$ is a commutative ring with unity.

Theorem 3.102. $\langle \mathbb{Z}_n, +_n, \times_n \rangle$ is a field iff n is a prime.

Proof. A number $a \in \mathbb{Z}_n$ is not a zero divisor(and has an inverse) iff gcd(a, n) = 1.

Simple Extensions of \mathbb{Q} Let α be an algebraic number. Then there exists a polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. From f(x), we may obtain a monic polynomial $p(x) \in \mathbb{Q}[x]$ such that $p(\alpha) = 0$. By division algorithm, such monic irreducible polynomials are unique. Thus, we may refer $p(x) = irr(\alpha, \mathbb{Q})$. By Kronecker's theorem, field \mathbb{Q} has an algebraic extension $\mathbb{Q}(\alpha)$.

Definitions 3.103 (cyclotomic field). The nth cyclotomic field is $\mathbb{Q}(\alpha)$ where α is a primitive nth root of unity.

Definitions 3.104 (cyclotomic polynomial). The nth cyclotomic polynomial $\Phi_n(x)$ is the monic irreducible polynomial with primitive nth roots of unity as its zeroes.

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} (x - \zeta_k)$$

Definitions 3.105. A number α is **constructible** if you can draw a line of α length in a finite number of steps using a straightedge and a compass (given a line of unit length).

- 1. The nth cyclotomic polynomial has degree $\phi(n)$.
- 2. The constructible numbers form a field.
- 3. A number α is constructible iff the degree of the monic, irreducible polynomial of α over \mathbb{Q} is a power of the prime 2.
- 4. The constructible numbers field is an infinite extension of \mathbb{Q} .

The classical problems like trisecting an angle, squaring a circle and doubling a cube are thus impossible.

3.4.2 Automorphisms & Galois Theory

Part III

Calculus

Chapter 4

Ordinary Differential Equations

4.1 Basic Calculus

4.1.1 Differentiation

- 1. Linearity: $[f(x) + g(x)]' = f'(x) \pm g'(x)$ and [cf(x)]' = cf'(x).
- 2. Product rule : [f(x)g(x)]' = f(x)g'(x) + f'(x)g(x).
- 3. Quotient rule : $[f(x)/g(x)]' = [f'(x)g(x) f(x)g'(x)]/g^2(x)$.
- 4. Chain rule : [f(g(x))]' = f'(g(x))g'(x).
- 5. $[x^r]' = rx^{r-1}$ where $r \in \mathbb{R}$.
- 6. $[a^x]' = a^x \ln a$ where $a \in \mathbb{R}^+$.
- 7. $[\sin x]' = \cos x$, $[\cos x]' = -\sin x$, $[\tan x]' = \sec^2 x$, $[\csc x]' = -\csc x \cot x$, $[\sec x]' = \sec x \tan x$ and $[\cot x]' = -\csc^2 x$.
- 8. $[\sin^{-1} x]' = \frac{1}{\sqrt{1-x^2}}$, $[\tan^{-1} x]' = \frac{1}{1+x^2}$, and $[\sec^{-1} x]' = \frac{1}{x\sqrt{x^2-1}}$. Hint: $y = f^{-1}(x) \implies f(y) = x \implies f'(y) = 1$.

4.1.2 Integration

- 1. Linearity: $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$ and $\int cf(x) dx = c \int f(x) dx$.
- 2. Product rule: $\int [f(x)g(x)] dx = f(x) \int g(x) dx \int f'(x) \left[\int g(x) dx \right] dx$.

$$\int fg \ dx = f \int g - f' \iint g + f'' \iiint g + \cdots$$

- 3. $\int \tan x \, dx = -\log \cos x$ and $\int \cot x \, dx = \log \sin x$.
- 4. $\int \csc x \ dx = \log(\csc x \cot x)$ and $\int \sec x \ dx = \log(\sec x + \tan x)$.

4.2 Ordinary Differential Equation

- 1. An equation involving derivatives with respect to an independent variable and involving dependent variable is called an **ordinary differential equation**(ODE).
- 2. The **order** and **degree** of an ODE is the order and degree of its highest derivative.
- 3. An ODE is **linear** if it does not contain product of dependent variable and its derivatives.
- 4. A **solution** of a differential equation a relation between the dependent variable and the independent variable. Solution has the general form : f(x, y) = 0.

A general solution is of the form $\sum c_j y_j(x)$ where c_j s are arbitrary constants and the number of arbitrary constants is equal to the order of the differential equation.

A particular solution is obtained from general solution by giving particular values to its arbitrary constants.

A **singular solution** is a solution which cannot be obtained from a general solution by a choice of arbitrary constants.

5. There are two major type of problems:

An **initial value problem** is a differential equation together with values of dependent variable and its derivatives for a particular value of independent variable.

A **boundary value problem** is a differential equation together with functions of dependent variable and its derivatives at different values of independent variable.

4.2.1 Solving first order ordinary differential equations

- 1. Variable Separable : f(x)dx = g(y)dy $\int f(x)dx = \int g(y)dy$.
- 2. Homogeneous : $x^k f(y/x, y')$ $y = vx \implies dy = vdx + xdv$. Then g(x)dx = h(v)dv.
- 3. Exact: Mdx + Ndy = 0 where $M_y = N_x$ and M, N, M_y, N_x are continuous. $\int M dx + \int N^* dy = C$ where N^* is the part of N(x, y) not containing x.
- 4. Almost Exact : Mdx + Ndy = 0 but $M_y \neq N_x$. Case 1 : $(M_y - N_x)/N = f(x)$, Case 2 : $(M_y - N_x)/-M = g(y)$ and Case 3 : $(M_y - N_x)/(N_y - M_x) = h(z)$ where z = xy. Suppose Case 1 is true, then $IF = e^{\int f(x) \ dx}$ and $\int M \ IF \ dx + \int (N \ IF)^* \ dy = C$.
- 5. Inspection Method Use known results to simply the ODE.

$$[y/x]' = (xdy - ydx)/x^{2}.$$

$$[x/y]' = (ydx - y^{2}dx)/y^{2}.$$

$$[y^{2}/x]' = (2xydy - y^{2}dx)/x^{2}.$$

$$[\ln(xy)]' = (xdy + ydx)/xy.$$

$$[xy]' = xdy + ydx.$$

$$[x^{2} + y^{2}]' = 2(xdx + ydy).$$

$$[\tan^{-1}(x/y)]' = (ydx - xdy)/(x^{2} + y^{2}).$$

$$[\sin^{-1}(x/y)]' = (ydx - xdy)/y\sqrt{y^{2} - x^{2}}.$$

$$[\sec^{-1}(x/y)]' = (ydx - xdy)/\sqrt{x^{2} - y^{2}}.$$

$$[\ln(x/y)]' = (ydx - xdy)/xy.$$

- 6. Leibnitz's Method : y' + P(x)y = Q(x). The solution is : $y \ IF = \int IF \ Q(x) \ dx$ where $IF = e^{\int P(x) \ dx}$.
- 7. Bernouli's Method : $y' + P(x)y = Q(x)y^n$ where $n \neq 0, 1$. The solution is : y^{1-n} $IF = \int IF \ Q(x)(1-n) \ dx$ where $IF = e^{\int P(x)(1-n) \ dx}$.

Problems

- 1. Computing M from N in an exact differential equation Suppose g(x,y)dx + (x+y)dy = 0 is exact and $g(x,0) = x^2$. Exact $\implies g_y = N_x = 1 \implies g(x,y) = y + f(x)$ And $g(x,0) = f(x) = x^2 \implies g(x,y) = x^2 + y$.
- 2. Set $S = \{\frac{2}{x+1} : x \in (-1,1)\}.$ $-1 < x < 1 \implies 0 < x+1 < 2 \implies \infty > 1/(x+1) > 1/2$ $\implies \infty > 2/(x+1) > 1 \implies S = (1,\infty) \implies S' = [1,\infty).$
- 3. S is union of disjoint bounded intervals. S is compact only if each interval is closed. $\sup S \in S$ if right most interval is right closed and $\inf S \in S$ if left most interval is left closed. If S has more than one interval in it, then S being compact is a different story.
- 4. Let $A \subset \mathbb{R}$. Then I(A) is an open set. Thus, either I(A) is empty or uncountable.

4.2.2 Existence & Uniqueness

- 1. A function f(x, y) such that $|f(x, y_1) f(x, y_2)| \le k|y_1 y_2|$ is a **Lipschitz** function with Lipschitz constant k. If the function is differentiable, then condition reduces to the form $|\partial f/\partial y| \le k$.
- 2. Peano's Theorem: Consider an initial value problem y' = f(x,y), $y(x_0) = y_0$. If f(x,y) is continuous and is bounded, say $|f(x,y)| \leq M$, in the rectangle $|x-x_0| \leq h$ and $|y-y_0| \leq k$. Then there exists at least one solution ϕ such that $\frac{d\phi}{dx} = f(x,y)$ on the interval $|x-x_0| \leq \min\{h, k/M\}$.
- 3. Picard's Theorem: Consider an initial value problem y' = f(x, y), $y(x_0) = y_0$. If f(x, y) is continuous and is bounded in the rectangle $|x x_0| \le h$ and $|y y_0| \le k$ and f(x, y) satisfies Lipschitz condition, then the there exists a unique solution.
- 4. Types of IVP,
 - (a) No Solution. The general solution reduces to an contradictory statement with given initial values. Or Peano's theorem hypotheses do not hold.

In an intermediate step, we replace y^{1-n} with u and solve using Leibnitz's method.

- (b) Unique Solution. Unique particular solution is obtained. Or Picard's theorem hypotheses hold.
- (c) Uncountably many solutions. Particular solutions together with zero function and other variants.

4.2.3 Solving First Order ODEs of Degree n > 1

- 1. Solutions are of the form (a) Cartesian Form (Equation containing x, y and constants.) (b) Parametric Form, $x = f_1(P, c)$ and $y = f_2(P, c)$. (c) x = g(x, P)G(x, P, c) and y = f(x, P)F(x, P, c).
- 2. General Form: $p_0P^n + p_1P^{n-1} + \cdots + p_{n-1}P + p_n = 0$ where P = y' and p_k 's are functions of x and y. If we can factorise it into linear factors, say $(P f_1)(P f_2) \cdots (P f_n) = 0$. Then we can solve each one of those factor $P f_k = 0$ into some $F_k(x, y, c_k) = 0$. And the general solution is $F_1(x, y, c)F_2(x, y, c) \cdots F_n(x, y, c) = 0$.
- 3. Solvable for x. That is, x = f(y, P) where P = dy/dx. $x = f(y, P) \implies 1/P = F(y, P, dP/dy) \implies \psi(y, P, c) = 0 \implies y = g(P, c)$.
 - (a) Case 1: $x = f(P) \implies 1/P = F(P, dP/dy) \implies y = g(P, c)$.
- 4. Solvable for y. $y = f(x, P) \implies P = F(x, P, dP/dx) \implies \psi(x, P, c) = 0 \implies x = g(P, c)$.
 - (a) Case 1: $y = f(P) \implies P = F(P, dP/dx) \implies x = g(P, c)$.
 - (b) Case 2: Lagrange's Equation : y = xF(P) + f(P). $y = xF(P) + f(P) \implies P = \psi(x, y, P, dP/dx) \implies dx/dP + g(P)x = h(p)$. Solve Leibnitz Equation.
 - (c) Case 3 : Clairut's Equation : y = xP + f(P). y = xc + f(c).

4.2.4 Orthogonal Trajectory

1. If a family of curves f(x, y, c) = 0 satisfies differential equation F(x, y, P) = 0. Then the differential equation of their orthogonal trajectory is F(x, y, -1/P) = 0.

4.2.5 Solving ordinary differential equations for a singular solution

Definitions 4.1. If a family of curves f(x, y, c) = 0 represented by F(x, y, P) = 0 and it has an envelope. Then the envelope is the singular solution of F(x, y, P) = 0.

1. Method 1 : P discriminant. Let f(x, y, P) = 0. From $\frac{\partial f}{\partial P} = 0$ obtain a P-discriminant³ relation, F(x, y) = 0. Then F(x, y) or its factors satisfying f(x, y, P) = 0 are the singular solutions.

²It is possible to have multiple singular solutions?

 $^{^{3}}$ relation not containing P

- 2. Method 2: c-discriminant.
 - Let $\phi(x,y,c)=0$ be a solution for f(x,y,P)=0. From $\frac{\partial \phi}{\partial c}$ obtain a c-discriminant relation F(x,y)=0. Then F(x,y) or its factors satisfying f(x,y,P)=0 are the singular solutions.
- 3. Method 3: Quadratic Relation in P. Let $AP^2 + BP + C = 0$. Then $F(x,y) = B^2 - 4AC$ is the respective P-discriminant relation. And F(x,y) or its factors satisfying f(x,y,P) = 0 are the singular solutions.

4.2.6 Solving second order ordinary differential equaitons

1. Linear Differential Equations with Constant Coefficients

$$D^{n}y + a_{1}D^{n-1}y + \dots + a_{n}y = R(x)$$
(4.1)

Solution is of the form : Complementary function + Particular Integral where Complementary function is the solution of the respective homogenous equation.

- 2. We may write f(D)y = R(x) where $f(D) = D^n + a_1 D^{n-1} + \cdots + a_n$ is the respective auxiliary equation. Let m_1, m_2, \ldots be solutions of the auxiliary equation. Then $e^{m_i x}$ is solution of the homogenous equation. If m_i is a root of multiplicity n then $x^k e^{m_i}$, $k = 0, 1, 2, \ldots, n-1$ are the respective solutions.
 - (a) Case 1 : Real Distinct Roots. Let $m=m_1,m_2$. Then $y=c_1e^{m_1}x+c_2e^{m_2x}$ is the complementary function.
 - (b) Case 2: Real, Multiple Roots. Let m be a real root of multiplicity 4. Then $y = (c_1 + c_2x + c_3x^2 + c_4x^3)e^{mx}$ is the complementary function.
 - (c) Case 3: Complex, Conjugate Roots. Let $m = \alpha \pm i\beta$. Then $y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$ is the complementary function.
 - (d) Case 4: Complex, Conjugate, Multiple Roots. Let $\alpha \pm i\beta$ be conjugate roots of multiplicity 4. Then $y = e^{\alpha x}((c_1 + c_2 x + c_3 x^2 + c_4 x^3)\cos\beta x + (c_5 + c_6 x + c_7 x^2 + c_8 x^3)\sin\beta x)$ is the complementary function.
 - (e) Case 5: Conjugate Surds. Let $m = \alpha \pm \sqrt{\beta}$. Then $y = e^{\alpha x}(c_1 \cosh \beta x + c_2 \sinh \beta x)$ is the complementary function. ⁴
- 3. Particular Integral y_p
 - (a) Case 1 : $R(x) = e^{\alpha x}$.

$$y_p = \begin{cases} \frac{e^{\alpha x}}{f(\alpha)} & f(\alpha) \neq 0\\ \frac{1}{\phi(\alpha)} \frac{x^r}{r!} e^{\alpha x} & f(\alpha) = 0 \end{cases}$$

(b) Case 2 : $R(x) = \sin x$.

$$y_p = \begin{cases} \frac{1}{f(D)} \sin \alpha x & f(D) \neq 0, D^2 = -\alpha^2 \\ \frac{x}{2} \int \sin \alpha x & f(D) = 0 \end{cases}$$

(c) Case 3: $R(x) = x^m$.

$$y_p = \frac{1}{f(D)}x^m$$
 where $(1-D)^{-n} = \sum_{r=0}^{\infty} {n \choose r}D^r$

(d) Case 4 : $R(x) = e^{\alpha x} v(x)$.

$$y_p = e^{\alpha x} \frac{1}{f(D+\alpha)} v(x)$$

4. Cauchy-Euler Equations

$$a_n x^n D^n y + a_{n-1} x^{n-1} D^{n-1} y + \dots + a_1 x D y + a_0 y = R(x)$$
(4.2)

Put $x = e^t$. Then $t = \log x$, xDy = Dy, $x^2D^2y = D(D-1)y$, The Cauchy-Euler equation reduces to a linear differential equation with constant coefficient.

5. Legendre's Linear Differential Equation

$$a_n(\alpha x + \beta)^n D^n y + a_{n-1}(\alpha x + \beta)^{n-1} D^{n-1} y + \dots + a_1(\alpha x + \beta) Dy + a_0 y = R(x)$$
 (4.3)

Put $\alpha x + \beta = e^t$. Then $t = \log(\alpha x + \beta)$, $(\alpha x + \beta)Dy = \alpha Dy$, $(\alpha x + \beta)^2D^2y = \alpha^2D(D-1)y$, The Legendre's linear differential equation reduces to a linear differential equation with constant coefficient.

6. Finding general solution from a fundamental solution.