Tarea Cuatro.

Teoría de números uno.

Contreras Mendoza Ximena de la Luz

24 de abril de 2020

Ejercicio 1. Pruebe que d(n) es impar si y solo si n es un cuadrado, es decir existe $m \in \mathbb{Z}^+$ tal que $n = m^2$.

 $Demostración. \Leftarrow)$

Por hipótesis

$$n = m^2 \tag{1}$$

Consideremos la factorización en potencia de primos de m. Sea $m=p_1^{\beta_1}\cdots p_t^{\beta_t}$ dicha factorizació, sustituyendo en la ecuación (1) tenemos:

$$n = (p_1^{\beta_1} \cdots p_t^{\beta_t})^2 = p_1^{2\beta_1} \cdots p_t^{2\beta_t}$$
 (2)

Aplicando la función contadora de divisores a la ecuación (2) nos queda

$$d(n) = d(p_1^{2\beta_1} \cdots p_s^{2\beta_s})$$
 (3)

Ahora un corolario visto en clase:

Corolario 1.

Si p es primo y $\alpha \geqslant 0$ entonces $d(p^{\alpha}) = \alpha + 1$. En general si $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ factorización en primos de n entonces $d(n) = d(p_1^{\alpha_1} \cdots p_t^{\alpha_t}) = (\alpha_1 + 1) \cdots (\alpha_t + 1)$.

Aplicando el Corolario 1. a la ecuación (3)

$$d(n) = (2\beta_1 + 1) \cdots (2\beta_s + 1) \tag{4}$$

Algunos resultados.

I. El producto de impares es impar:

Prueba.

Sea 2n+1 con $n \in \mathbb{Z}$ un número impar. Multiplicando (2n+1)(2m+1) = 4nm+2n+2m+1 = 2(2nm+n+m)+1. Como $n, m \in \mathbb{Z} \Rightarrow (2nm+n+m) \in \mathbb{Z}$. Sea k = (2nm+n+m) por lo tanto (2n+1)(2m+1) = 2k+1 con $k \in \mathbb{Z}$. Así el producto de impares es impar.

II. El producto de pares es par:

Prueba.

Sea 2n con $n \in \mathbb{Z}$ un número par. Multiplicando (2n)(2m) = 4nm = 2(2nm). Sea k = (2nm) por lo tanto (2n)(2m) = 2k con $k \in \mathbb{Z}$. Así el producto de pares es par.

III. El producto de un impar con un par, es par:

Prueba.

Multiplicando (2n+1)(2m) = 4nm+2m = 2(2nm+m). Como $n, m \in \mathbb{Z} \Rightarrow (2nm+m) \in \mathbb{Z}$. Sea k = (2nm+m) por lo tanto (2n+1)(2m) = 2k. Así el producto de un impar con un par, es par.

Así en la ecuación (4) para toda i, $2\beta_i + 1$ es un número impar. Como el producto de impares es impar, d(n) = 2k + 1 para alguna $k \in \mathbb{Z}$. En particular 2k + 1 > 0 pues para toda i, $2\beta_i + 1 > 0$.

 \Rightarrow

Por hipótesis

$$d(n) = 2k + 1 \tag{5}$$

Sea

$$n = p_1^{\alpha_1} \cdots p_s^{\alpha_s} \tag{6}$$

Factorización en potencia de primos de n. Aplicando la función contadora de divisores a la ecuación (6)

$$d(n) = d(p_1^{\alpha_1} \cdots p_s^{\alpha_s}) \tag{7}$$

Aplicando el Corolario 1. a la ecuación (7)

$$d(n) = (\alpha_1 + 1) \cdots (\alpha_s + 1) \tag{8}$$

Juntando la ecuación (5) y (8) Obtenemos:

$$2k + 1 = (\alpha_1 + 1) \cdots (\alpha_s + 1) \tag{9}$$

Por los resultados I. II. y III. concluimos que para toda i, $\alpha_i + 1$ debe ser impar, i.e. $\alpha_i + 1 = 2m_i + 1 \Rightarrow \alpha_i = 2m_i \Longrightarrow 2 \mid \alpha_i$ para toda i, entonces $\exists b \in \mathbb{Z}$ tal que $n = b^2$

Ejercicio 2. Pruebe que para toda n > 1 se tiene:

$$\prod_{d|n} d = n^{\frac{d(n)}{2}}$$

Demostración. Sea n > 1. Consideremos el conjunto $D_n := \{d \in \mathbb{Z}^+ : d \mid n\} = \{1 = d_1, d_2, ..., d_t = n\}$. Como D_n es un conjunto finito de enteros positivos podemos acomodarlos de menor a mayor. Supongamos $1 = d_1 < d_2 < \cdots < d_t = n$. Ahora, para toda $i \in \{1, 2, ..., t\}$, podemos considerar el conjugado de d_i , es decir, si $d_i \in D_n$ entonces la pareja $\{d_i, \frac{n}{d_i}\} \subseteq D_n$. Podemos ver el conjunto D_n como la unión de divisores y sus conjugados. Observemos que $(d_i) \frac{n}{d_i} = n \quad \forall i = 1, 2, ..., t$. Así al hacer el producto de parejas obtenemos

$$(d_1)\frac{n}{d_1}\cdots(d_t)\frac{n}{d_t} = \underbrace{n*n*\cdots*n}_{t\ veces} = n^t$$
(10)

Por otro lado al hacer la lista de parejas, podemos ver que se repiten.

- 1. $\{d_1, \frac{n}{d_1}\} = \{1, \frac{n}{1}\} = \{1, n\}$
- 2. $\{d_2, \frac{n}{d_2}\}$
- : :
- t. $\{d_t, \frac{n}{d_t}\} = \{n, \frac{n}{n}\} = \{n, 1\}$

De aquí podemos concluir que nuestra lista de parejas es:

- 1. $\{d_1, d_t\} = \{1, \frac{n}{1}\} = \{1, n\}$
- 2. $\{d_2, d_{t-1}\}$
- :
- t. $\{d_t, d_1\} = \{n, \frac{n}{n}\} = \{n, 1\}$

Por lo tanto en la ecuación (10) estamos multiplicando de más, estamos multiplicando cada divisor de n dos veces. Es decir nuestra ecuación realmente se ve así:

$$(d_1)^2 \cdots (d_t)^2 = n^t \tag{11}$$

Elevando a la $\frac{1}{2}$ a la ecuación (11) nos queda.

$$(d_1)(d_2)\cdots(d_{t-1})(d_t)=n^{t/2}$$

Así tenemos que el producto de todos los divisores de n es igual a $n^{t/2}$. Como t era el número de divisores de n, es decir t = d(n). Por lo tanto

$$\prod_{d|n} d = n^{\frac{d(n)}{2}}$$

Ejercicio 3. Pruebe que $\sigma(1) + \sigma(2) + \ldots + \sigma(n) \leq n^2$ para toda n > 1.

Hint: acomoden los sumandos del lado derecho en un arreglo triangular y cambien el orden de la suma.

+1				$\sigma(1)$
+1	+2			$\sigma(2)$
+1		+3		$\sigma(3)$
:				•
+1			n	$\sigma(n)$
		Total		
$1k_1$	$+2k_2$	$+3k_{3}$		$+nk_n$

Demostración. Tenemos que

$$\sigma(1) + \sigma(2) + \ldots + \sigma(n) = 1k_1 + 2k_2 + 3k_3 + \cdots + nk_n \tag{12}$$

Nuestros valores k_i con i = 1, 2, ...n los conocemos. Los obtenemos por el Algoritmo de la división. En efecto, podemos calcularlos fácilmente.

Para i = 1 tenemos que n = 1n + r con r = 0 así $k_1 = n$.

Para i = 2 tenemos que n = 2b + r con $0 \le r \le b$ así $b = k_2$.

:

Para i = n tenemos que n = n1 + r con r = 0 así $1 = k_n$.

Que pasaría si esto no fuera así. Sea $j \in \{1, 2, ..., n\}$ entonces n = jz + r con $z \in \mathbb{Z}$ y $0 \leqslant r \leqslant z$. Si k_j fuera distinto de z entonces se cumplen dos casos.

1) $k_i < z$

Entonces debe existir al menos un valor $x \in \{1, 2, ..., n\}$ tal que $j \mid x$ pero estoy sumando $\sigma(x) - j$ ó no estoy sumando $\sigma(x)$ por lo tanto mi suma es erronea.

2)
$$k_i > z$$

Entonces estoy contando de más. Es decir tengo un valor m > n tal que $j \mid m$ entonces mi suma queda $\sigma(1) + \sigma(2) \dots + \sigma(n) + \sigma(m)$ por lo tanto mi suma es erronea.

Por lo tanto utilizando el algoritmo de la división encontramos k_i con i=1,2,...,n. Observemos que $n=k_1>k_2\geqslant ...\geqslant k_n=1$. En efecto, si $a<\alpha$ entonces

$$n = ab + r$$
 $p.a.$ $b \in \mathbb{Z}, \ 0 \leqslant r \leqslant b$

Por otro lado

$$n = \alpha \beta + t$$
 p.a. $\beta \in \mathbb{Z}, \ 0 \leq t \leq b$

Como $a < \alpha$ debe suceder que $\beta \geqslant b$.

Por lo tanto en la ecuación (12) tenemos una suma, de n sumandos, donde cada sumando es menor o igual a n. Por lo tanto

$$\sigma(1) + \sigma(2) + \ldots + \sigma(n) \leq \underbrace{n + n + \ldots + n}_{n \text{ veces}} = n^2$$

Para toda n > 1

Ejercicio 4. Pruebe que $\varphi(n)$ es par, para toda n > 1.

Demostración. Observemos que n debe ser mayor que 2 pues $\varphi(2) = 1$, que es impar.

Consideremos la factorización en potencia de primos de n, ecuación (6). Por otro lado, sabemos que φ es una función multiplicativa. Es decir, la función φ cumple que si (a,b)=1 entonces $\varphi(ab)=\varphi(a)\varphi(b)$. Tenemos que $(p_1,p_2,...,p_s)=1$, pues son primos distintos dos a dos, entonces $(p_1^{\alpha_1},p_2^{\alpha_2},...,p_s^{\alpha_s})=1$. Aplicando φ a la ecuación (6) obtenemos:

$$\varphi(n) = \varphi(p_1^{\alpha_1} \cdots p_s^{\alpha_s}) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_s^{\alpha_s}) = (p_1 - 1)p_1^{\alpha_1 - 1} \cdots (p_s - 1)p_s^{\alpha_s - 1}$$

$$\tag{13}$$

Afirmación 1.

Todo $p \in \mathbb{P}$ tal que $p \neq 2$ cumple que p - 1 es par.

Prueba.

Sea $p \in \mathbb{P}$ con $p \neq 2$ supongamos que p-1 no es par, entonces $p-1=2m+1 \Rightarrow p=2m+2=2(m+1) \Rightarrow 2 \mid p \longrightarrow \leftarrow$ pues p, es primo distinto de dos.

Así la ecuación (13) cumple que $\forall i, p_i - 1$ es par, excepto cuando $p_j = 2$. Utilizando la parte de **Algunos resultados** en el **Ejercicio 1.** más específicamente II. y III. concluimos $\varphi(n)$ es par.

Ejercicio 5. Pruebe que para todo n > 1 se tiene que

$$\sum_{k=1 (n,k)=1}^{n} k = \frac{n}{2}\varphi(n)$$

donde la suma corre sobre el conjunto $\{1 \le k \le n : (n, k) = 1\}$

Hint: prueba que $(n,k)=1 \iff (n,n-k)=1$, de esta manera los elementos en $\{1\leqslant k\leqslant n:(n,k)=1\}$ vienen en parejas de la forma (k,n-k)

Demostración. Sea $\mathbb{A} = \{1 \le k \le n : (n, k) = 1\} = \{k_1, k_2, ..., k_m\} \text{ con } m = \varphi(n).$

Observación 1.

A es un conjunto finito de enteros.

Como $(n,k)=1 \iff (n,n-k)=1$ para cada k_i tengo que $n-k_i \in \mathbb{A}$, es decir $\mathbb{A}=\{1\leqslant k\leqslant n:(n,n-k)=1\}$. Por la **Observación 1.** entonces debe $\exists j\in\{1,...,m\}$ tal que $k_i=n-k_j$

para toda $i \in \{1,...,m\}$. Pongámos
los en parejas:

Sumémoslos:

$$(k_1 + k_2 + \dots + k_m) + (n - k_1) + (n - k_2) + \dots + (n - k_m) = k_1 + (n - k_1) + k_2 + (n - k_2) + \dots + k_m + (n - k_m)$$

$$= \underbrace{n + n + \dots + n}_{m = \varphi(n) veces}$$

$$= n\varphi(n)$$

Por lo tanto

$$(k_1 + k_2 + \dots + k_m) + (n - k_1) + (n - k_2) + \dots + (n - k_m) = n\varphi(n)$$
(14)

Por otro lado:

$$(k_1 + k_2 + \dots + k_m) + (n - k_1) + (n - k_2) + \dots + (n - k_m) = k_1 + (n - k_m) + \dots + k_m + (n - k_1)$$
$$= 2k_1 + \dots + 2k_m$$
$$= 2(k_1 + \dots + k_m)$$

Por lo tanto

$$(k_1 + \dots + k_m) + (n - k_1) + \dots + (n - k_m) = 2(k_1 + \dots + k_m)$$
(15)

Juntando las ecuaciones (14) y (15) tenemos que:

$$2\sum_{k=1}^{n} k = n\varphi(n) \implies \sum_{k=1}^{n} k = \frac{n}{2}\varphi(n)$$

Bastaría solo probar el Hint. $(n,k)=1 \iff (n,n-k)=1$

Prueba. \Rightarrow)

Por hipótesis $(n, k) = 1 \Longrightarrow \exists a, b \in \mathbb{Z}$ tal que

$$an + bk = 1 \tag{16}$$

De la ecuación (16) tenemos que:

$$1 = an + (bn - bn) + bk = (a + b)n + (-b)(n - k)$$

Por lo tanto

$$(a+b)n - b(n-k) = 1 (17)$$

Con $-b, a+b \in \mathbb{Z}$. Por lo tanto (n, n-k) = 1

(=)

Por hipótesis (n, n - k) = 1 entonces, tenemos que se cumple la ecuación (17). Como nuestra ecuación (17) implica la ecuación (16) que implica que (n, k) = 1. Tenemos que si $(n, n - k) = 1 \Rightarrow (n, k) = 1$