MATH3423 - Statistical Inference Assignment 5

- 1. Q19 in Exercise 3
- 2. Q24 in Exercise 3
- 3. Consider a random sample $\{X_i: i=1,2,\ldots,n\}$ of size n>2 from $N(\mu,\sigma^2)$, where μ and σ^2 are unknown. Define $S_{n-1}^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$.
 - (a) Find the UMVUE of $\frac{1}{\sigma}$.
 - (b) Find the UMVUE of $\frac{\mu}{\sigma}$.
- 4. Q2 in the final exam of 2013/2014

Let $X_1, ..., X_n$ be a random sample from a location distribution family

$$f(x;\theta) = \frac{1}{\theta} \exp\left(-\frac{x-\delta}{\theta}\right) I(x \ge \delta) .$$

Note that $X_i - \delta \sim \exp\left(\frac{1}{\theta}\right)$.

- (a) Assume that δ is known.
 - i. Find the complete and sufficient statistic of the unknown parameter θ . What is its distribution?
 - ii. Find the UMVUE of θ .
 - iii. Find the UMVUE of $Pr(X_1 > 1)$ when $\delta < 1$.
- (b) Assume that θ is known.
 - i. Find the complete and sufficient statistic of the unknown parameter δ . What is its distribution?
 - ii. Find the UMVUE of δ .
 - iii. Find the UMVUE of $Pr(X_1 > 1)$ when $\delta < 1$.
- 5. Q1 in the final exam of 2014/2015

Let $X_1,...,X_n$ be a random sample from the Bernoulli(θ), where θ is the unknown parameter.

- (a) Find the complete and sufficient statistic for θ . Find its distribution.
- (b) Find the UMVUE for θ^2 .
- (c) Find the CRLB for θ^2 . Is the variance of the UMVUE for θ^2 equal to its CRLB? Explain in details.
- (d) Find the limiting distribution of the maximum likelihood estimator for θ^2 as $n \to \infty$ by Delta method. What phenomenon do you observe?
- (e) Find the UMVUE of $P(X_1 + X_2 + X_3 = 1)$.
- (f) Find the maximum likelihood estimator for the variance of $\sum X_i$, i.e., $n\theta(1-\theta)$. Is it unbiased? Hence or otherwise, find the UMVUE for the variance of $\sum X_i$.