Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Югорский государственный университет Институт цифровой экономики

Отчет

к проекту D "Агентная модель распространения инфекции (SIR) "

Руководитель, Семенов С.П. Исполнитель, Свита А.Н. группа 11916

г. Ханты-Мансийск 2022 г.

Оглавление

Концептуальная модель реального процесса	3
Формализация	4
Компьютерная модель	6
Планирования эксперимента	7
Список использованных источников	. 14

Концептуальная модель реального процесса

Описание: Рассматривается процесс распространения инфекционного заболевания (эпидемия) среди населения некоторого региона. Предполагается, чтоизначально население восприимчиво к заболеванию. Эпидемияраспространяется, поскольку заражённые люди контактируют и передают заболевание восприимчивым. Через определённое время после вырабатывает заражения человек выздоравливает И иммунитет К заболеванию.

Проблема Имитационная модель процесса эпидемии разрабатывается с целью получить ответы на ряд вопросов: как процесс развивается во времени? Как изменяется численность заболевших и выздоровевших?

Цель моделирования: анализ распространения инфекционного заболевания.

Задачи:

- 1. Выявить время окончания инфекции
- 2. Оценить число восприимчивых людей
- 3. Оценить число зараженных людей
- 4. Оценить число людей с иммунитетом

Формализация

Население региона условно разделяется на три категории в соответствии с их состоянием:

- Susceptible восприимчивые к заболеванию
- Infection зараженные
- Recovered выздоровевшие

По мере того, как люди заражаются, они перемещаются из категории Susceptible в категорию Infectious, и затем, по мере выздоровления - в категорию Recovered.

Переход из первого состояния (восприимчивый к заболеванию) во второе (зараженный) происходит в результате взаимодействия людей между собой. Переход из второго состояния (зараженный) в третье (выздоровевший) и из третьего (выздоровевший) в первое (выздоровевший) происходит по таймауту. Люди общаются друг с другом с определённой известной

интенсивностью. Если заражённый человек контактирует с восприимчивым к заболеванию, то последний заражается с заданной вероятностью. Люди контактируют только с теми, кто находятся в окрестности определённого радиуса.

Единицей модельного времени являются дни. Продолжительность эксперимента 1 год (365 дней)

Модель имеет следующие входные данные:

Формальное обозначение	Сокращенное обозначение	Полное обозначение	Название
X ₁	Р	Population	Количество населения (тыс. человек)
X ₂	I	Intensive	Интенсивность заражения (частота рассылки сообщений в день)
X ₃	NatI	Nature_of_Infection	Характер заражения
X4	CR	Contact_Radius	Радиус контакта (размер окрестности, в которой может происходить взаимодействие)
X5	TIR	QueueClerk*	Время перехода из состояния «Infection» в состояние «Recovered» (в днях)
X ₆	TRS	ParametrClerk*	Время перехода из состояния «Recovered» в

	состояние «Susceptible»
	(в днях)

Табл. 1 — входные данные эксперимента.

Выходные данные включают следующие пункты:

Формальное обозначение	Сокращенное обозначение	Полное обозначение	Название
y 1	A	Appearance	Внешний вид распространения инфекции
y ₂	CT	Cessation_time	Время прекращения инфекции
У3	NS	Number_ Susceptible	Число восприимчивых людей по прошествии заданного времени
У4	NI	Number_Infection	Число зараженных людей по прошествии заданного времени
У5	NR	Number_ Recovered	Число людей с иммунитетом по прошествии заданного времени

Табл. 2 — выходные данные эксперимента

Компьютерная модель

Компьютерная модель построена в среде AnyLogic. Модель имеет следующий вид:

Рис. 1 — Модель

Модель представляет собой диаграмму состояний, состоящую из трёх состояний:

- Susceptible восприимчивые к заболеванию
- Infective—зараженные
- Recovered выздоровевшие

Модель имеет два перехода $S \rightarrow I$, которые происходят при получении сообщений "Inf0" (отправляется при запуске модели, заражение первого человека) и "Inf" (отправляется с заданной интенсивностью, отправка происходит внутри состояния **Infective**).

Из Infective → Recovered ведёт переход, срабатывающий по таймауту.

Таймаут соответствует времени протекания болезни. Аналогичный переход

— Recovered → Susceptible, ссоответствует времени сохранения иммунитета.

Планирования эксперимента

Первый эксперимент:

Провести простой эксперимент в соответствии с назначенным вариантом

- 1. Подсчитать значения выходных данных y=(y1,...,y5).
- 2. Построить графики, отображающих динамику изменения численности агентов, находящихся в состоянии «восприимчивых», «инфицированных» и «выздоровевших».
- 3. Представить скриншот карты распространения инфекции в популяции в день максимального значения численности инфицированных.

Проанализируйте полученные результаты.

Второй эксперимент:

Исследовать зависимость динамики количества инфицированных от интенсивности заражения (частота рассылки сообщений). Параметры для эксперимента приведены в таблице 5. Время эксперимента - у2. Запись [a; b; h] означает интервал от а(начальное значение) до b(конечное значение) с шагом h. Проанализировать результаты.

Третий эксперимент:

Используя входные параметры первого эксперимента найдите такие наименьшие значения входных параметров, чтобы доля инфицированных достигла указанного значения, не позже, чем за 1 год (365 дней).

Вариант 11. Найдите такую *интенсивность* заражения (x2), доля инфицированных составляла не менее 40%.

Экспиремент 1:

Формальное обозначение	Полное обозначение	Название	Значения
X ₁	Population	Количество населения (тыс. человек)	16
X ₂	Intensive	Интенсивность заражения (частота рассылки сообщений в день)	2
X3	Nature_of_Infection	Характер заражения	5

		Радиус контакта	5
		(размер окрестности, в	
\mathbf{x}_4	Contact_Radius	которой может	
		происходить	
		взаимодействие)	
		Время перехода из	14
		состояния «Infection»	
X5	QueueClerk*	в состояние	
		«Recovered»	
		(в днях)	
		Время перехода из	20
		состояния	
V	ParametrClerk*	«Recovered» в	
X_6	rafameticier.	состояние	
		«Susceptible»	
		(в днях)	

Внешний вид распространения инфекции, 47 день рис 1:

Рисунок 1

График распространения:

Результат:

Формальное обозначение	Полное обозначение	Название	Результат
		Внешний вид	Рисунок 1(при
y 1	Appearance	распространения инфекции	максимальном заражение)
y 2	Cessation_time	Время прекращения инфекции	94 день
y 3	Number_ Susceptible	Число восприимчивых людей по прошествии заданного времени	16000
У4	Number_Infection	Число зараженных людей по прошествии заданного времени	0
y 5	Number_ Recovered	Число людей с иммунитетом по прошествии заданного времени	0

Вывод: единовременно болела небольшая часть населения в результате чего на рисунке 1 видно, что число заражённых и иммунных было стабильным (пусть и не очень высоким) в течении большей части года, в результате чего переболела $\sim 55\%$ населения.

Экспиремент 2:

Формальное обозначение	Полное обозначение	Название	Значения
X ₁	Population	Количество населения (тыс. человек)	16

X ₂	Intensive Интенсивность заражения (частота рассылки сообщений в день)		[0,5:0,9:0,2]
X3	Nature_of_Infection	Характер заражения	6
X4	Contact_Radius	Радиус контакта (размер окрестности, в которой может происходить взаимодействие)	5
X5	QueueClerk*	Время перехода из состояния «Infection» в состояние «Recovered» (в днях)	14
X ₆	ParametrClerk*	Время перехода из состояния «Recovered» в состояние «Susceptible» (в днях)	20

X2=0,5: Динамика количества инфицированных:

X2=0,7: Динамика количества инфицированных:

X2=0,9: Динамика количества инфицированных:

Вывод: с увеличением интенсивности заражения увеличиваются темпы заражения. Из-за этого пик заражения также увеличивается. Но поскольку большое кол-во людей быстрее заражается, популяция, с увеличением интенсивности заражения, быстрее получает иммунитет и следовательно, эпидемия быстрее оканчивается.

Экспиремент 3:

Формальное обозначение	Полное обозначение	Название	Значения
X ₁	Population	Количество населения (тыс. человек)	16
X ₂	Intensive	Интенсивность	2

		заражения (частота	
		` `	
		рассылки сообщений в	
		день)	
X 3	Nature_of_Infection	Характер заражения	5
		Радиус контакта	5
		(размер окрестности, в	
X4	Contact_Radius	которой может	
		происходить	
		взаимодействие)	
		Время перехода из	14
		состояния «Infection»	
X ₅	QueueClerk*	в состояние	
		«Recovered»	
		(в днях)	
		Время перехода из	20
		состояния	
	Do no no otnC1 o n1-4	«Recovered» в	
X ₆	ParametrClerk*	состояние	
		«Susceptible»	
		(в днях)	

Задачи:

1 Найдите такую *интенсивность заражения* (x2), доля инфицированных составляла не менее 40%.

X2	2	1	0,5	0,7
Доля	55,7%	53,1%	33,75%	46,8%

Вывод: доля инфицированных составляет не менее 40% (а именно 46,8%) при интенсивность заражения равно 0,7.

Заключение.

После проведения анализа распространения инфекционного заболевания. Выявлена одна закономерность между динамикой количество инфицированных и интенсивность заражения. Чем больше интенсивность, тем быстрее растет количество инфицированных, но также с этим и растет появления иммунных к самой болезни и поэтому уменьшает время эпидемия.

Список использованных источников

- 1. https://eluniver.ugrasu.ru/pluginfile.php/386538/mod_resource/content/1/Пр оект%20D%20Модель%20распространения%20инфекции.pdf
- 2. https://help.anylogic.ru/
- 3. https://futurepubl.ru/ru/nauka/article/37206/view