体論(第5回)の解答

問題 5-1 の解答

 $M_1 \cap M_2$ が M_1/K と M_2/K の中間体であることに注意すると, 定理 5-1 から

$$2 = [M_1:K] = [M_1:M_1 \cap M_2][M_1 \cap M_2:K]$$

$$3 = [M_2 : K] = [M_2 : M_1 \cap M_2][M_1 \cap M_2 : K].$$

これより, $[M_1\cap M_2:K]$ は 2 と 3 の両方の約数だから, $[M_1\cap M_2:K]=1$ を得る. 従って $M_1\cap M_2=K$.

問題 5-2 の解答

(1) $f(x) = x^2 - 3$ と $g(x) = x^3 - 5$ がそれぞれ $\sqrt{3}$ と $\sqrt[3]{5}$ の \mathbb{Q} 上の最小多項式である. 従って、

$$[\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = \deg f = 2, \quad [\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}] = \deg g = 3.$$

(2) $\sqrt{3} \in \mathbb{Q}(\sqrt[3]{5})$ と仮定する. このとき, $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(\sqrt[3]{5})$ であるから,

$$3 = [\mathbb{Q}(\sqrt[3]{5}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{5}) : \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}) : \mathbb{Q}].$$

これは $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$ に矛盾. 従って $\sqrt{3}\notin\mathbb{Q}(\sqrt[3]{5})$.

(3) $h(x)=x^2-3\in K[x]$ とする. $\sqrt{3}\notin K$ より, $\sqrt{3}$ の K 上の最小多項式の次数は 2 以上. 従って h(x) が $\sqrt{3}$ の K 上の最小多項式である. よって $[K(\sqrt{3}):K]=2$ となる.

 $(4) \ \mathbb{Q}(\sqrt{3}, \sqrt[3]{5}) = K(\sqrt{3}) \ \sharp \ \mathfrak{h}$

$$[\mathbb{Q}(\sqrt{3}, \sqrt[3]{5}) : \mathbb{Q}] = [K(\sqrt{3}) : \mathbb{Q}] = [K(\sqrt{3}) : K][K : \mathbb{Q}] = 6.$$