D-H Link Parameter Example

 α_i : rotation angle from Z_{i-1} to Z_i about X_i

 a_i : distance from intersection of $Z_{i-1} \& X_i$ to origin of i coordinate along X_i

 d_i : distance from origin of (i-1) coordinate to intersection of Z_{i-1} & X_i along Z_{i-1}

0

do

3

0

 θ_i

 θ_1

 θ_2

03

 θ_i : rotation angle from X_{i-1} to X_i about Z_{i-1}

Transformation Matrices

Joint i	α_i	a_i	d_i	Θ_{i}
1	0	a_0	0	Θ_1
2	-90	a ₁	0	Θ_2
3	0	0	d_2	θ3

$$T_{i-1}^{i} = \begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{0}^{3} = (T_{0}^{1})(T_{1}^{2})(T_{2}^{3})$$

$$T_{1}^{2} = \begin{bmatrix} \cos\theta_{2} & 0 & -\sin\theta_{2} & a_{1}\cos\theta_{2} \\ \sin\theta_{2} & 0 & \cos\theta_{2} & a_{1}\sin\theta_{2} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{2}^{2} = \begin{bmatrix} \cos\theta_{2} & 0 & -\sin\theta_{2} & a_{1}\cos\theta_{2} \\ \sin\theta_{2} & 0 & \cos\theta_{2} & a_{1}\sin\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{2}^{3} = (\cos\theta_{3} & -\sin\theta_{3} & 0 & 0 \\ \sin\theta_{3} & \cos\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_0^3 = (T_0^1)(T_1^2)(T_2^3)$$

$$T_{0}^{1} = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} & 0 & a_{0} \cos \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} & 0 & a_{0} \sin \theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{1}^{2} = \begin{bmatrix} \cos\theta_{2} & 0 & -\sin\theta_{2} & a_{1}\cos\theta_{2} \\ \sin\theta_{2} & 0 & \cos\theta_{2} & a_{1}\sin\theta_{2} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{2}^{3} = \begin{bmatrix} \cos\theta_{3} & -\sin\theta_{3} & \mathbf{0} & 0\\ \sin\theta_{3} & \cos\theta_{3} & 0 & 0\\ 0 & 0 & 1 & d_{2}\\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

TABLE 2.1. D-H Parameters of a 3-DOF Manipulator

Joint i	α_i	a_i	d_i	θ_{i}
1	0	a_1	0	θ_1
2	0	a_2	0	θ_2
3	0	a_3	0	θ_3

$${}^{0}A_{1} = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{1}c\theta_{1} \\ s\theta_{1} & c\theta_{1} & 0 & a_{1}s\theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}A_{2} = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{2}A_{3} = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{3}c\theta_{3} \\ s\theta_{3} & c\theta_{3} & 0 & a_{3}s\theta_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Overall transformation matrix?

$${}^{0}A_{3} = \begin{bmatrix} c\theta_{123} & -s\theta_{123} & 0 & a_{1}c\theta_{1} + a_{2}c\theta_{12} + a_{3}c\theta_{123} \\ s\theta_{123} & c\theta_{123} & 0 & a_{1}s\theta_{1} + a_{2}s\theta_{12} + a_{3}s\theta_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Initial position vector:

$$^{3}\mathbf{q} = [0, 0, 0, 1]^{\mathrm{T}}$$

Final position vector?

$$\begin{bmatrix} q_x \\ q_y \\ q_z \\ 1 \end{bmatrix} = {}^{0}A_{3} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{1}c\theta_{1} + a_{2}c\theta_{12} + a_{3}c\theta_{123} \\ a_{1}s\theta_{1} + a_{2}s\theta_{12} + a_{3}s\theta_{123} \\ 0 \\ 1 \end{bmatrix}$$

Initial position vector:

$${}^{3}\mathbf{g} = [g_{u}, g_{v}, 0, 1]^{T}$$

Final position vector?

$$\begin{bmatrix} g_x \\ g_y \\ g_z \\ 1 \end{bmatrix} = {}^{0}A_3 \begin{bmatrix} g_u \\ g_v \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} g_u c\theta_{123} - g_v s\theta_{123} + a_1 c\theta_1 + a_2 c\theta_{12} + a_3 c\theta_{123} \\ g_u s\theta_{123} + g_v c\theta_{123} + a_1 s\theta_1 + a_2 s\theta_{12} + a_3 s\theta_{123} \\ 0 \\ 1 \end{bmatrix}$$

Direct Kinematics of SCARA Arm (4 DOF

Manipulator)

FIGURE 2.4. Schematic diagram of a SCARA arm.

TABLE 2.2. D-H Parameters of the SCARA Arm

Joint i	α_i	a_i	d_i	θ_i
1	0	a_1	d_1	θ_1
2	π	a_2	ó	θ_2
3	0	0	d_3	0
4	0	0	d_4	θ_{Δ}

$${}^{1}A_{2} = \begin{bmatrix} c\theta_{2} & s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & -c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & 0 \\ s\theta_{4} & c\theta_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & 0\\ s\theta_{4} & c\theta_{4} & 0 & 0\\ 0 & 0 & 1 & d_{4}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Direct Kinematics of SCORBOT Robot (5 DOF

Manipulator)

TABLE 2.3. D-H Parameters of a 5-DOF Manipulator

380 Table 1				0
Joint i	α_i	a_i	d_i	
1 2 3 4	$ \begin{array}{c} -\pi/2 \\ 0 \\ 0 \\ -\pi/2 \end{array} $	a ₁ a ₂ a ₃ 0	d_1 0 0 0	$egin{array}{c} heta_1 \ heta_2 \ heta_3 \ heta_4 \ heta_5 \end{array}$
5	0	0	<u>d</u> 5	$\frac{\theta_5}{}$

$${}^{0}A_{1} = \begin{bmatrix} c\theta_{1} & 0 & -s\theta_{1} & a_{1}c\theta_{1} \\ s\theta_{1} & 0 & c\theta_{1} & a_{1}s\theta_{1} \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}A_{2} = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}A_{3} = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{3}c\theta_{3} \\ s\theta_{3} & c\theta_{3} & 0 & a_{3}s\theta_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & 0 & -s\theta_{4} & 0 \\ s\theta_{4} & 0 & c\theta_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c\theta_3 & -s\theta_3 & 0 & a_3c\theta_3 \\ s\theta_3 & c\theta_3 & 0 & a_3s\theta_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & 0 & -s\theta_{4} & 0 \\ s\theta_{4} & 0 & c\theta_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}A_{5} = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0\\ s\theta_{5} & c\theta_{5} & 0 & 0\\ 0 & 0 & 1 & d_{5}\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

PUMA 560 (6 DOF Manipulator)

PUMA 560 robot arm link coordinate parameters

Joint i	Θ_i	α_i	a _i (mm)	d _i (mm,
1	Θ_1	-90	0	0
2	Θ_2	0	431.8	149.09
3	θ_3	90	-20.32	0
4	Θ_4	-90	0	433.07
5	θ_5	90	0	0
6	θ_6	0	0	56.25

Find out the D-H Link Parameters for each joint

PUMA 560 (6 DOF Manipulator)

$${}^{0}\boldsymbol{T}_{1} = \begin{pmatrix} \cos\theta_{1} & 0 & -\sin\theta_{1} & 0 \\ \sin\theta_{1} & 0 & \cos\theta_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad {}^{1}\boldsymbol{T}_{2} = \begin{pmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & a_{2}\cos\theta_{2} \\ \sin\theta_{2} & \cos\theta_{2} & 0 & a_{2}\sin\theta_{2} \\ 0 & 0 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{4}T_{5} = \begin{pmatrix} \cos\theta_{5} & 0 & \sin\theta_{5} & 0 \\ \sin\theta_{5} & 0 & -\cos\theta_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad {}^{5}T_{6} = \begin{pmatrix} \cos\theta_{6} & -\sin\theta_{6} & 0 & 0 \\ \sin\theta_{6} & \cos\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Derive Overall Transformation matrix

ELBOW Manipulator (6 DOF Manipulator)

Joint i	α_i	a_i	d_i	θ_i
1	$\pi/2$	0	0	variable
2	0	a_2	0	variable
3	0	a_3	0	variable
4	$-\pi/2$	a_4	0	variable
5	$\pi/2$	0	0	variable
6	0	0	d_6	variable

ELBOW Manipulator

$${}^{1}A_{2} = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}A_{3} = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{3}c\theta_{3} \\ s\theta_{3} & c\theta_{3} & 0 & a_{3}s\theta_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & 0 & -s\theta_{4} & a_{4}c\theta_{4} \\ s\theta_{4} & 0 & c\theta_{4} & a_{4}s\theta_{4} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}A_{5} = \begin{bmatrix} c\theta_{5} & 0 & s\theta_{5} & 0\\ s\theta_{5} & 0 & -c\theta_{5} & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}A_{1} = \begin{bmatrix} c\theta_{1} & 0 & s\theta_{1} & 0 \\ s\theta_{1} & 0 & -c\theta_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}A_{1} = \begin{bmatrix} c\theta_{1} & 0 & s\theta_{1} & 0 \\ s\theta_{1} & 0 & -c\theta_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}A_{6} = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ s\theta_{6} & c\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Derive Overall Transformation matrix

Stanford Manipulator (6 DOF Manipulator)

Joint i	α_i	a_i	d_i	θ_i
1	-90°	0	0	θ_1 (variable)
2	90°	0	d_2 (constant)	θ_2 (variable)
3	00	0	d_3 (variable)	−90° (constant)
4	-90°	0	0	θ_4 (variable)
5	90°	0	0	θ_5 (variable)
6	00	0	0	θ_6 (variable)

Stanford Manipulator

$${}^{0}A_{1} = \begin{bmatrix} c\theta_{1} & 0 & -s\theta_{1} & 0 \\ s\theta_{1} & 0 & c\theta_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}A_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}\!A_{5} = \begin{bmatrix} c\theta_{5} & 0 & s\theta_{5} & 0 \\ s\theta_{5} & 0 & -c\theta_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{5}\!A_{6} = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ s\theta_{6} & c\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\!A_{1} = \left[egin{array}{cccc} {
m c} heta_{1} & 0 & -{
m s} heta_{1} & 0 \ {
m s} heta_{1} & 0 & {
m c} heta_{1} & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight] \quad {}^{1}\!A_{2} = \left[egin{array}{ccccc} {
m c} heta_{2} & 0 & {
m s} heta_{2} & 0 \ {
m s} heta_{2} & 0 & -{
m c} heta_{2} & 0 \ 0 & 1 & 0 & d_{2} \ 0 & 0 & 0 & 1 \end{array}
ight]$$

$${}^{y_2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{3}A_4 = \begin{bmatrix} c\theta_4 & 0 & -s\theta_4 & 0 \\ s\theta_4 & 0 & c\theta_4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}A_{6} = \begin{vmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0\\ s\theta_{6} & c\theta_{6} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{vmatrix}$$

FANUC S-900W (6 DOF Manipulator)

FANUC S-900W

$${}^{4}A_{5} = \begin{bmatrix} c\theta_{5} & 0 & s\theta_{5} & 0 \\ s\theta_{5} & 0 & -c\theta_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}A_{6} = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0\\ s\theta_{6} & c\theta_{6} & 0 & 0\\ 0 & 0 & 1 & d_{6}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\!A_{1} = \begin{bmatrix} c\theta_{1} & 0 & s\theta_{1} & a_{1}c\theta_{1} \\ s\theta_{1} & 0 & -c\theta_{1} & a_{1}s\theta_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{1}A_{2} = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{2}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & a_{2}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{2}A_{5} = \begin{bmatrix} c\theta_{5} & 0 & s\theta_{5} & 0 \\ s\theta_{5} & 0 & -c\theta_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{2}A_{3} = \begin{bmatrix} c\theta_{3} & 0 & s\theta_{3} & a_{3}c\theta_{3} \\ s\theta_{3} & 0 & -c\theta_{3} & a_{3}s\theta_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{3}A_{4} = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ s\theta_{6} & c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & 0 & -s\theta_{4} & 0 \\ s\theta_{4} & 0 & c\theta_{4} & 0 \\ 0 & -1 & 0 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & 0 & -s\theta_{4} & 0 \\ s\theta_{4} & 0 & c\theta_{4} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{3}A_{4} = \begin{bmatrix} c\theta_{4} & 0 & -s\theta_{4} & 0 \\ s\theta_{4} & 0 & c\theta_{4} & 0 \\ 0 & -1 & 0 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$