Moka (Mokhwa) Lee

➤ mokhwa.lee@stonybrook.edu | ➤ mokhwa.lee.726@gmail.com
in LinkedIn | ☑ Website | ❖ Google Scholar

EDUCATION

Stony Brook University

Stony Brook, NY

PhD candidate in Applied Mathematics and Statistics (AMS), Operations Research Track Advanced Certificate: Data and Computational Science Aug. 2019 – July. 2025

Ewha Womans University

Seoul, Korea

MS in Mathematics

Mar. 2017 - Aug. 2019

Ewha Womans University

Seoul, Korea

BS in Mathematics and Computational Science

Mar. 2012 - Feb. 2017

Programming Skills

• Languages: Python, MATLAB, R, (C, C++)

Technologies: Github, API, LATEX

WORK EXPERIENCE

Utopia Compression Corporation

Los Angeles, California

Research and Development (RED) Engineer

Jan. 2023 - Aug. 2024

- o Mathematical Modeling and Software Engineering
 - * Utilized Mixed Integer Programming (MIP) and the branch-and-bound algorithm to solve a constrained minimization problem, using Python Ortool package and the MOSEK optimization solver.
 - * Enhanced an e-commerce marketplace bid matching algorithm/model and provided end-to-end solutions.
 - * Based on buyers' demand and sellers' supplies information, the algorithm allocates the feasible and optimal solution while minimizing the total order cost.
 - * Integrated the optimizer into the BigCommerce API, automating the communication between front-end and back-end via GitHub version control (full-stack).

AlphaCrest Capital Management LLC

New York, Manhattan

Quantitative Researcher

Aug. 2020 - June. 2021

- o Convex Optimization in Portfolio and Risk Management
 - * Aimed to obtain a sparse coefficient solution to address the non-convex feature selection problem.
 - * Implemented the Relaxed Lasso (linear regression) method in Python and R (glmnet package).
 - * Applied L1 regularization to select relevant columns in the predictor matrix and minimize prediction error.
 - * Used the Polyphase Filter Bank technique on alpha data to compute the signal's frequency spectrum.
 - * Preprocessed and trained on mid-frequency time series data from 2011 to 2018.

RESEARCH

PhD in the OptiML (Optimization and Machine Learning) Lab

Stony Brook University, NY

Advisor: Yifan Sun (CS) and Joseph Mitchell (AMS)

Oct. 2020 - Present

- Advancing Multi-Secant Quasi-Newton Methods for General Convex Functions
 - * Extended to a limited-memory version of the multisecant L-BFGS method to reduce computational overhead, enhancing its applicability to large-scale machine learning problems (e.g. neural networks).
 - * Proved the superlinear convergence rate and integrated the method into a PyTorch extension.
 - * Journal Submission (submitted) : Journal of Optimization Theory and Applications
 - * Collaborative Research : Quasi-Newton method for bilevel optimization
- o Almost Multisecant Quasi-Newton (QN) Method

- * Solved convex optimization problems using **second-order quasi-Newton (QN)** methods, leveraging fast curvature approximation techniques and extending the BFGS algorithm.
- * Proposed a robust update scheme by interpolating past iterates to maintain the descent direction for minimizing machine learning problems, using supervised learning methods such as logistic regression.
- * Conference Paper (Accepted, IEEE): 2024 58th Asilomar Conference on Signals, Systems, and Computers "Almost Multisecant BFGS Quasi-Newton Method."
- * Selected Conference Presentations: NeurIPS OPT2023 (Workshop on Optimization for Machine Learning), CMS (Canadian Mathematical Society), and MOPTA (Modeling and Optimization Theory and Applications) "Almost Multisecant Quasi-Newton Method."

Kim's Numerical Analysis Research Lab

Master's Thesis in Mathematics (Advisor: Prof. Sunyoung Kim)

Ewha W. University, South Korea Jan. 2017 - Aug. 2019

- o Solving Nonconvex Quadratic Constrained Quadratic Problems (QCQP) with Hollow Matrices
 - * Developed a computational method to solve QCQP efficiently by leveraging matrix sparsity.
 - * Evaluated performance on nonconvex quadratic optimization using relaxation techniques, including Linear Programming (LP), Semidefinite Programming (SDP), and Second-Order Cone Programming (SOCP)
 - * Used SeDuMi (Self-Dual-Minimization) software package in MATLAB.
 - * Proved mathematically that the optimal value of the SDP relaxation of the original QCQP is equivalent to that of the new LP, SDP, and SOCP relaxations.

SCHOLARSHIP AND FELLOWSHIP

• IACS Junior Researcher Award Institute for Advanced Computational Science (IACS)	Stony Brook University, NY Aug. 2023 - Aug. 2025
• New Coming Graduate Student Fellowship Applied Mathematics and Statistics Department	Stony Brook University, NY $Aug. 2019$

Teaching Experience			
_	Teaching Instructor	Stony Brook University, NY	
•	Graph Theory: Managed 22 students including exams, projects, and office how	urs. July. 2020 - Aug. 2020	
•	Teaching Assistant	Stony Brook University, NY	
	Operations Research (Deterministic Models), Graph Theory	Aug. 2019 - June. 2020	
•	Teaching Assistant E	Swha Womans University, South Korea	
	Calculus 1, Calculus 2, Mathematical Science and Information	Mar. 2017 - June 2018	

Course Work

• Machine Learning, Artificial Intelligence, Linear Programming, Operations Research: Stochastic Models, Network flows, Probability, Numerical Analysis, Linear Regression, Numerical Differential Equations (Finite Difference, Finite Element method), and many more Applied Math and Statistics & Computer Science courses.