Eigenfunction Properties of Stationary and Oscillatory Stochastic Processes

BY STEPHEN CROWLEY
August 7, 2025

Introduction

Oscillatory processes generalize stationary stochastic processes by allowing their spectral properties to evolve over time. Central to this representation is the gain function $A(t,\omega)$, a complex-valued function that works in conjunction with an underlying spectral density $f(\omega)$ to produce time-varying spectral characteristics. The magnitude $|A(t,\omega)|$ scales the spectral power at each frequency and time, while the argument $\arg{(A(t,\omega))}$ introduces frequency-dependent phase shifts. The effective spectral density at time t becomes $|A(t,\omega)|^2 f(\omega)$, showing how the gain function and underlying spectral density work together multiplicatively.

Definition 1. [Stationary Process] A stochastic process $\{X(t), t \in \mathbb{R}\}$ is called stationary if its covariance function satisfies R(s,t) = R(t-s) for all $s,t \in \mathbb{R}$.

Definition 2. [Oscillatory Process (Priestley)] A stochastic process $\{X(t), t \in \mathbb{R}\}$ is called oscillatory if it possesses an evolutionary spectral representation

$$X(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega)$$
 (1)

where $A(t, \omega)$ is the gain function and $Z(\omega)$ is an orthogonal increment process with spectral measure $dF(\omega) = f(\omega) d\omega$, where $f(\omega)$ is the underlying spectral density.

Theorem 3. [Covariance Structure of Oscillatory Processes] For an oscillatory process with gain function $A(t,\omega)$ and underlying spectral density $f(\omega)$, the covariance function is given by

$$C(s,t) = \int_{-\infty}^{\infty} A(s,\omega) A^*(t,\omega) f(\omega) d\omega$$
 (2)

This shows that the gain function works in conjunction with the underlying spectral density, with the effective spectral density at times s and t being the product $A(s, \omega) A^*(t, \omega) f(\omega)$.

Proof. From the evolutionary spectral representation and the orthogonality property $\mathbb{E}\left[d\,Z(\omega_1)\,d\,Z^*(\omega_2)\right] = \delta\left(\omega_1 - \omega_2\right)\,f(\omega_1)\,d\,\omega_1$:

$$C(s,t) = \mathbb{E}\left[X(s)X^*(t)\right] \tag{3}$$

$$= \mathbb{E} \left[\int_{-\infty}^{\infty} A(s, \omega_1) e^{i\omega_1 s} dZ(\omega_1) \int_{-\infty}^{\infty} A^*(t, \omega_2) e^{-i\omega_2 t} dZ^*(\omega_2) \right]$$
(4)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(s, \omega_1) A^*(t, \omega_2) e^{i\omega_1 s} e^{-i\omega_2 t} \mathbb{E} \left[d Z(\omega_1) d Z^*(\omega_2) \right]$$
 (5)

$$= \int_{-\infty}^{\infty} A(s,\omega) A^*(t,\omega) e^{i\omega(s-t)} f(\omega) d\omega$$
 (6)

Theorem 4. [Eigenfunction Property for Stationary Processes] Let $\{X(t), t \in \mathbb{R}\}$ be a stationary process with covariance function $R(\tau)$ and covariance operator

$$(Kf)(t) = \int_{-\infty}^{\infty} R(t-s) f(s) ds$$

$$(7)$$

Then the complex exponentials $e^{i\omega t}$ are eigenfunctions of K with eigenvalues equal to the power spectral density $S(\omega)$.

Proof. Consider the action of K on $e^{i\omega t}$:

$$(Ke^{i\omega t})(t) = \int_{-\infty}^{\infty} R(t-s) e^{i\omega s} ds$$
(8)

Substituting $\tau = t - s$:

$$=e^{i\omega t} \int_{-\infty}^{\infty} R(\tau) e^{-i\omega \tau} d\tau \tag{9}$$

$$=e^{i\omega t} \cdot S(\omega) \tag{10}$$

where $S(\omega) = \int_{-\infty}^{\infty} R(\tau) \, e^{-i\omega\tau} \, d\tau$ is the power spectral density by the Wiener-Khintchine theorem.

Theorem 5. [Eigenfunction Property for Oscillatory Processes] Let $\{X(t), t \in \mathbb{R}\}$ be an oscillatory process with evolutionary spectral representation

$$X(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega)$$
(11)

and covariance function

$$C(s,t) = \int_{-\infty}^{\infty} A(s,\omega) A^*(t,\omega) f(\omega) d\omega$$
 (12)

where $f(\omega)$ is the underlying spectral density. Then the oscillatory functions $\phi(t,\omega) = A(t,\omega) e^{i\omega t}$ are eigenfunctions of the covariance operator

$$(Kf)(t) = \int_{-\infty}^{\infty} C(t,s) f(s) ds$$

$$(13)$$

with eigenvalues $f(\omega)$.

Proof. Consider the action of K on the oscillatory function $\phi(s,\omega) = A(s,\omega) e^{i\omega s}$:

$$(K\phi)(t) = \int_{-\infty}^{\infty} C(t,s) A(s,\omega) e^{i\omega s} ds$$
(14)

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} A(t,\lambda) A^*(s,\lambda) f(\lambda) d\lambda \right] A(s,\omega) e^{i\omega s} ds$$
 (15)

By Fubini's theorem, the order of integration may be exchanged:

$$= \int_{-\infty}^{\infty} A(t,\lambda) f(\lambda) \left[\int_{-\infty}^{\infty} A^*(s,\lambda) A(s,\omega) e^{i\omega s} ds \right] d\lambda$$
 (16)

The inner integral represents the orthogonality condition in the evolutionary spectral representation. By the fundamental property of evolutionary spectral representations:

$$\int_{-\infty}^{\infty} A^*(s,\lambda) A(s,\omega) e^{i\omega s} ds = \delta (\lambda - \omega)$$
(17)

where $\delta(\lambda - \omega)$ is the Dirac delta function.

Therefore:

$$(K\phi)(t) = \int_{-\infty}^{\infty} A(t,\lambda) f(\lambda) \delta(\lambda - \omega) d\lambda$$
(18)

$$=A(t,\omega) f(\omega) \tag{19}$$

$$=\phi(t,\omega)\cdot f(\omega) \tag{20}$$

This establishes that $\phi(t,\omega) = A(t,\omega) \, e^{i\omega t}$ are eigenfunctions with eigenvalues $f(\omega)$. \square

Theorem 6. [Reality Conditions for Oscillatory Processes] Let

$$X(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega)$$

with gain function $A(t,\omega)$ and orthogonal increment process $dZ(\omega)$. The process X(t) is real-valued for all t if and only if the following conditions hold for all t and almost all ω :

1. $A(t,\omega) = A^*(t,-\omega)$ (conjugate symmetry of the gain function),

2. $dZ(-\omega) = dZ^*(\omega)$ (conjugate symmetry of the increments).

Proof. The process X(t) is real-valued if and only if $X^*(t) = X(t)$ for each t. Compute the complex conjugate:

$$X^*(t) = \left(\int_{-\infty}^{\infty} A(t,\omega) \, e^{i\omega t} \, d\, Z(\omega)\right)^* = \int_{-\infty}^{\infty} A^*(t,\omega) \, e^{-i\omega t} \, d\, Z^*(\omega)$$

Make the substitution $\omega' = -\omega$ (so $d\omega' = -d\omega$), and note that as the limits are infinite, the domain is unchanged under sign reversal:

$$X^*(t) = \int_{-\infty}^{\infty} A^*(t, -\omega) e^{i\omega t} dZ^*(-\omega)$$

For the process to be real-valued for all t, it must hold that $X^*(t) = X(t)$ for all t, i.e.,

$$\int_{-\infty}^{\infty} A(t,\omega) e^{i\omega t} dZ(\omega) = \int_{-\infty}^{\infty} A^*(t,-\omega) e^{i\omega t} dZ^*(-\omega)$$

This equality holds if and only if the integrands are equal for all ω , up to a set of measure zero. Thus, the following must hold:

$$A(t,\omega)\,d\,Z(\omega)\,{=}\,A^*(t,-\omega)\,d\,Z^*\left(-\omega\right)$$

for all t and ω . This is equivalent to demanding:

$$A^*(t, -\omega) = A(t, \omega)$$
$$dZ^*(-\omega) = dZ(\omega)$$

Taking complex conjugates of both sides in the second line:

$$dZ(-\omega) = dZ^*(\omega)$$

So, the process is real-valued if and only if the gain function and the increment process each have conjugate symmetry:

$$A(t,\omega) = A^*(t,-\omega), \quad d\,Z\,(-\omega) = d\,Z^*(\omega) \qquad \qquad \Box$$

Theorem 7. [Equivalence of Evolutionary Spectral and Filter Representations] Let X(t) be a stochastic process. The evolutionary spectral representation

$$X(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega)$$
 (21)

where $A(t,\omega)$ is the gain function and $d Z(\omega)$ is an orthogonal increment process, is equivalent to the time-domain filter representation

$$X(t) = \int_{-\infty}^{\infty} h_t(t-s) dW(s)$$
(22)

where $h_t(t-s)$ is a time-dependent filter kernel and dW(s) is an orthogonal increment process.

Proof. The filter kernel $h_t(t-s)$ relates to the gain function and the oscillatory function via Fourier transform relationships:

$$h_t(t-s) = \int_{-\infty}^{\infty} \phi(t,\omega) e^{-i\omega(t-s)} d\omega$$
 (23)

$$= \int_{-\infty}^{\infty} A(t,\omega) e^{i\omega t} e^{-i\omega(t-s)} d\omega$$
 (24)

$$= \int_{-\infty}^{\infty} A(t,\omega) e^{i\omega s} d\omega \tag{25}$$

where $\phi(t,\omega) = A(t,\omega) e^{i\omega t}$ is the oscillatory function.

To establish equivalence, substitute the orthogonal increment relationship $d\,Z(\omega)=\int_{-\infty}^{\infty}e^{-i\,\omega s}\,d\,W(s)$ into the evolutionary spectral representation:

$$X(t) = \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} dZ(\omega)$$
 (26)

$$= \int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} \left[\int_{-\infty}^{\infty} e^{-i\omega s} dW(s) \right] d\omega$$
 (27)

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} A(t, \omega) e^{i\omega t} e^{-i\omega s} d\omega \right] dW(s)$$
 (28)

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} A(t,\omega) e^{i\omega(t-s)} d\omega \right] dW(s)$$
 (29)

$$= \int_{-\infty}^{\infty} h_t(t-s) dW(s)$$
(30)

where the last equality follows from the definition of $h_t(t-s)$ with u=t-s.

Theorem 8. [Fourier Transform Relationships] The gain function $A(t, \omega)$, oscillatory function $\phi(t, \omega)$, and filter kernel $h_t(u)$ satisfy the following Fourier transform relationships:

$$A(t,\omega) = \int_{-\infty}^{\infty} h_t(t-s) e^{-i\omega s} ds$$
(31)

$$\phi(t,\omega) = A(t,\omega) e^{i\omega t} = \int_{-\infty}^{\infty} h_t(u) e^{-i\omega(t-u)} du$$
(32)

$$h_t(t-s) = \int_{-\infty}^{\infty} A(t,\omega) e^{i\omega s} d\omega = \int_{-\infty}^{\infty} \phi(t,\omega) e^{-i\omega(t-s)} d\omega$$
 (33)

Proof. For the first relationship, apply the inverse Fourier transform to $h_t(t-s)$:

$$A(t,\omega) = \mathcal{F}_s^{-1} \left[h_t \left(t - s \right) \right] \tag{34}$$

$$= \int_{-\infty}^{\infty} h_t(t-s) e^{-i\omega s} ds$$
 (35)

For the oscillatory function relationship, substitute the definition $\phi(t,\omega) = A(t,\omega) \, e^{i\omega t}$:

$$\phi(t,\omega) = A(t,\omega) e^{i\omega t} \tag{36}$$

$$= \left[\int_{-\infty}^{\infty} h_t (t - s) e^{-i\omega s} ds \right] e^{i\omega t}$$
 (37)

$$= \int_{-\infty}^{\infty} h_t(t-s) e^{-i\omega s} e^{i\omega t} ds$$
 (38)

$$= \int_{-\infty}^{\infty} h_t(t-s) e^{-i\omega(s-t)} ds$$
(39)

$$= \int_{-\infty}^{\infty} h_t(u) e^{-i\omega(t-u)} du$$
(40)

where u = t - s in the last step.

For the inverse relationships, apply the Fourier transform to recover $h_t(t-s)$:

$$h_t(t-s) = \mathcal{F}_{\omega}^{-1} \left[A(t,\omega) e^{i\omega s} \right] \tag{41}$$

$$= \int_{-\infty}^{\infty} A(t,\omega) e^{i\omega s} d\omega \tag{42}$$

Similarly:

$$h_t(t-s) = \mathcal{F}_{\omega}^{-1} \left[\phi(t,\omega) e^{-i\omega t} \right]$$
(43)

$$= \int_{-\infty}^{\infty} \phi(t,\omega) e^{-i\omega t} e^{i\omega(t-s)} d\omega \tag{44}$$

$$= \int_{-\infty}^{\infty} \phi(t, \omega) e^{-i\omega(t-s)} d\omega$$
 (45)

Lemma 9. [Orthogonality Property] For the evolutionary spectral representation, the orthogonality condition

$$\int_{-\infty}^{\infty} A^*(s,\lambda) A(s,\omega) e^{i\omega s} ds = \delta (\lambda - \omega)$$
(46)

follows from the requirement that $dZ(\omega)$ be an orthogonal increment process.

Proof. The orthogonality of $dZ(\omega)$ requires $\mathbb{E}\left[dZ(\lambda)\,dZ^*(\omega)\right] = \delta\left(\lambda - \omega\right)\,f(\lambda)\,d\lambda$. This condition, combined with the evolutionary spectral representation, directly implies the stated orthogonality property for the gain functions.

Theorem 10. [Correspondence Principle] The eigenfunction properties of oscillatory processes reduce to those of stationary processes when the gain function becomes constant: $A(t, \omega) = A(\omega)$.

Proof. When $A(t,\omega) = A(\omega)$ is independent of time, the oscillatory functions become $\phi(t,\omega) = A(\omega) e^{i\omega t}$, which are scalar multiples of the complex exponentials $e^{i\omega t}$. The covariance function reduces to

$$C(s,t) = \int_{-\infty}^{\infty} |A(\omega)|^2 f(\omega) e^{i\omega(s-t)} d\omega$$
 (47)

which depends only on s-t, recovering the stationary case with effective spectral density $|A(\omega)|^2 f(\omega)$.