Дискретная математика. Лекция 25.03.

С. В. Ткаченко

25.03.2022

Алгеброй Жегалкина называют алгебру на множестве булевых функций, которая включает две операции: конъюнкцию (\land) и сумму по mod 2 (\oplus), а также константы 0 и 1.

Равносильности алгебры Жегалкина

Коммутативность					
$x \wedge y = y \wedge x$	$x \oplus y = y \oplus x$				
Ассоциативность					
$x \wedge (y \wedge z) = (x \wedge y) \wedge z$	$x \oplus (y \oplus z) = (x \oplus y) \oplus z$				
Дистрибутивность					
$x \wedge (y \oplus z) = (x \wedge y) \oplus (x \wedge z)$					
Равносильности идемпотентности, дополнения,					
тождества и констант					
$x \wedge x = x$	$x \oplus x = 0$				
$x \wedge 0 = 0$	$x \oplus 0 = x$				
$x \wedge 1 = x$	$x \oplus 1 = \overline{x}$				

Замена операций

$$1)x\vee y=\overline{(\overline{x}\wedge\overline{y})}=(x\oplus 1)\wedge (y\oplus 1)\oplus 1=x\wedge y\oplus x\oplus y;$$

$$2)x\sim y=\overline{(\overline{x}\oplus\overline{y})}=\overline{x}\oplus\overline{y}\oplus 1=x\oplus 1\oplus y\oplus 1\oplus 1=x\oplus y\oplus 1.$$

Полином Жегалкина функции $f(x_1,...,x_n)$ называется полином вида

$$P(x_1, ..., x_n) = a_0 \oplus \sum_{i=1}^n a_i \wedge x_i \oplus \sum_{\substack{i,j=1; i \neq j \\ a_{12...n} \wedge x_1 \wedge x_2 \wedge ... \wedge x_n}} a_{ij} \wedge x_i \wedge x_j \oplus ... \oplus$$

где коэффициенты $a_0, a_i, a_{ij}, ..., a_{12...n}$ принимают значение 0 или 1. **Теорема 9 (теорема Жегалкина).** Каждая булева функция $f(x_1, ..., x_n)$ может быть представлена в виде полинома Жегалкина и притом единственным образом, с точностью до порядка слагаемых.

Пример. Построить полином Жегалкина для

$$f(x, y, z) = (\overline{y} \sim x) \vee \overline{z}.$$

1 способ

$$\begin{split} f(x,y,z) &= (\overline{y} \sim x) \vee \overline{z} = \\ &= [(\overline{y} \sim x) \wedge \overline{z}] \oplus [\overline{y} \sim x] \oplus [\overline{z}] = \\ &= [(\overline{y} \oplus x \oplus 1) \wedge (z \oplus 1)] \oplus [\overline{y} \oplus x \oplus 1] \oplus [z \oplus 1] = \\ &= [(y \oplus 1 \oplus x \oplus 1) \wedge (z \oplus 1)] \oplus [y \oplus 1 \oplus x \oplus 1] \oplus [z \oplus 1] = \\ &= [(y \oplus x) \wedge (z \oplus 1)] \oplus [y \oplus x] \oplus [z \oplus 1] = \\ &= [yz \oplus y \oplus xz \oplus x] \oplus [y \oplus x] \oplus [z \oplus 1] = \\ &= yz \oplus y \oplus xz \oplus x \oplus y \oplus x \oplus z \oplus 1 = (y \oplus y = 0, x \oplus x = 0) = \\ &= 1 \oplus z \oplus xz \oplus yz = P(x,y,z). \end{split}$$

2 способ

$$P(x,y,z) = a_0 \oplus a_1 x \oplus a_2 y \oplus a_3 z \oplus a_{12} xy \oplus a_{13} xz \oplus a_{23} yz \oplus a_{123} xyz$$

X	у	Z	\overline{y}	$\overline{y} \sim x$	\overline{z}	f(x,y,z)	Коэффициент
0	0	0				1	a_0
0	0	1				0	a_3
0	1	0				1	a_2
0	1	1				1	a_{23}
1	0	0				1	a_1
1	0	1				1	a_{13}
1	1	0				1	a_{12}
1	1	1				0	a_{123}

X	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

$$\begin{split} &P(0,0,0) = a_0 = 1 \Rightarrow a_0 = 1, \\ &P(0,0,1) = a_0 \oplus a_3 = 0, \ 1 \oplus a_3 = 0 \Rightarrow a_3 = 1, \\ &P(0,1,0) = a_0 \oplus a_2 = 1, \ 1 \oplus a_2 = 1 \Rightarrow a_2 = 0, \\ &P(0,1,1) = a_0 \oplus a_2 \oplus a_3 \oplus a_{23} = 1, 1 \oplus 0 \oplus 1 \oplus a_{23} = 1 \Rightarrow a_{23} = 1, \\ &P(1,0,0) = a_0 \oplus a_1 = 1, \ 1 \oplus a_1 = 1 \Rightarrow a_1 = 0, \\ &P(1,0,1) = a_0 \oplus a_1 \oplus a_3 \oplus a_{13} = 1, 1 \oplus 0 \oplus 1 \oplus a_{13} = 1 \Rightarrow a_{13} = 1, \\ &P(1,1,0) = a_0 \oplus a_1 \oplus a_2 \oplus a_{12} = 1, 1 \oplus 0 \oplus 0 \oplus a_{12} = 1 \Rightarrow a_{12} = 0, \end{split}$$