IA – DATA DRIVEN

Diseño preliminar de motores eléctricos generados por IA y modelos predictivos basados en datos.

$$\tau = \frac{3}{2} p \cdot \Phi_m i_q$$

$$\nabla \times H = J$$

$$=\frac{2}{2}p\cdot I_{q}$$

1. Introducción

Importancia de los Motores Eléctricos en Aeronáutica:

El diseño eficiente de estos motores impacta directamente en el consumo energético, costos operativos, peso y tamaño, lo que los convierte en un componente clave para los actuadores electromecánicos (EMAs).

Limitaciones de los métodos tradicionales:

- El diseño preliminar tradicional depende principalmente del conocimiento empírico, simulaciones repetitivas y pruebas físicas, lo que puede ser costoso y prolongado.
- Estos métodos suelen presentar dificultades para explorar ampliamente el espacio de diseño debido a restricciones de tiempo, recursos y la complejidad inherente del proceso.
- Frecuentemente se alcanzan diseños aceptables, pero no necesariamente óptimos, limitando la innovación y competitividad tecnológica.

Objetivo:

Mostrar cómo la integración de la Inteligencia Artificial (IA) mediante un enfoque Data-Driven puede superar estas limitaciones, acelerando y optimizando significativamente el proceso de diseño preliminar de motores eléctricos.

- REF_1 W. Qiu, X. Zhao, A. Tyrrell, S. Perinpanayagam, S. Niu and G. Wen, "Application of Artificial Intelligence-Based Technique in Electric Motors: A Review," in *IEEE Transactions on Power Electronics*, vol. 39, no. 10, pp. 13543-13568, Oct. 2024, DOI: 10.1109/TPEL.2024.3410958.
- **REF_2** Wang, Y., Yang, T., Huang, H., Zou, T., Li, J., Chen, N., & Zhang, Z. (2024). Data Driven Automatic Electrical Machine Preliminary Design with Artificial Intelligence Expert Guidance. *arXiv preprint arXiv:2411.11221*.

2. Enfoque Data-Driven

¿Qué es?

Metodología que utiliza datos como motor principal del proceso de diseño.

Minimiza la dependencia de pruebaerror tradicional.

Importancia

Los datos proporcionan patrones y correlaciones imposibles de detectar mediante ecuaciones analíticas.

Facilitan decisiones objetivas.

Ventajas

Acelera el diseño preliminar. Reduce costes de desarrollo.

Optimiza parámetros de rendimiento con mayor precisión.

2. Enfoque Data-Driven

Parámetro	Desc. Parámetro	Símbolo	Unidades	Valor
B1	Voltaje del BUS	Vbus	Vdc	28
B2	Intensidad máxima del sistema	Imax	Arms	26
В3	Densidad de corriente máxima	Jmax	A/mm^2	12,3
B4	Velocidad máxima permitida	n_max	rpm	10000
B5	frecuencia máxima	f_max	Hz	500
В6	Número de fases	m		3
В7	Número de ranuras	N_slots		12
B8	Número de polos	N_polos		10
В9	Diámetro externo del stator_maximo	OSD_max	mm	60
B10	Diámetro interno del eje mínimo	Dsh_min	mm	8
B11	Airgap	g	mm	0,5
B12	Amplitud en grados del imán	Cmag	ō	150
B13	Altura del diente del stator	hso	mm	1
B14	ancho de apertura del slot	bso	mm	1,2
B15	Ángulo del pie del diente del slot	Vs	mm	20
B16	Factor de llenado del slot máximo	GFFmax		55
B17	Factor de llenado del slot Mínimo	GFFmin		20
B18	Diámetro del hilo	dw	mm	0,5105
B19	Masa maxima del motor	Wmax	kg	1
B20	altura del entrediente del slot mínima	he_min	mm	3,5

Parámetro	Desc. Parámetro	Símbolo	Unidades	Valor/Ecuación	Valor Base
PO1	Par nominal del punto de operación	T_nom	Nm	0,11	0,11
PO2	Velocidad nominal del punto de operación	n_nom	rpm	3960	3960
PO3	Par en stall	T_stall	Nm	0,657	0,657
PO4	Velocidad sin carga	n_noload	rpm	4356	4356

Parámetro	Desc. Parámetro	Símbolo	Unidades	Valor/Ecuación	Valor Base
X1	Diámetro externo del stator	OSD	mm	[45, 60]	56,502
X2	Diámetro interior del stator	Dint	mm	[21,2, 45]	23,589
Х3	Longitud del stator	L	mm	[10, 40]	21,908
X4	Altura del imán	tm	mm	[2, 3,5]	3,314
X5	Altura del hueco del slot	hs2	mm	[5, 15]	11,035
Х6	Ancho del Slot	wt	mm	[2, 5]	4,949
X7	Número de vueltas	Nt		[5,30]	19
X8	Númeor de cables en la mano	Nh		[3, 9]	3

Parámetro	Desc. Parámetro	Símbolo	Unidades	Valor/Ecuación	Valor Base
M1	Diámetro interno del rotor	Drot	mm	Dint-2*g	22,589
M2	Diámetro del eje	Dsh	mm	Dint-g*2-tm*2-Dint/3,5	9,221
M3	Altura del entrediente del slot	he	mm	OSD/2-(Dint+2*hs2)/2	5,422
M4	Radio del hueco del imán	Rmag	mm	(Drot/2)-0,25*tm	10,466
M5	Radio de apertura del stack	Rs	mm	(Dint/2)+hs2	22,830
M6	Superficie de conductor en la ranura	CS	mm2	Nt*Nh*2*pi*(dw/2)^2	23,334
M7	Superficie del Slot aproximado	SS	mm2	(PI()*Rs*Rs-PI()*(Dint/2)*(Dint/2))/Ns-wt*hs2	45,415
M8	Factor de llenado del conductor	GFF	%	(CS/SS)*100	51,379

3. lA en el Diseño de Motores Eléctricos

Modelos Predictivos

Predicen comportamiento sin simulaciones extensas. Aprenden de datos históricos y simulaciones previas.

Reducción de Tiempos

Las iteraciones disminuyen de días a minutos. El proceso de diseño se acelera significativamente.

Mayor Precisión

Predicciones más exactas del rendimiento final. Minimiza errores en prototipos físicos.

Exploración Compleja

Analiza miles de configuraciones imposibles de evaluar manualmente. Descubre soluciones adaptadas a los requisites del sistema.

4. Proceso Data-Driven

1. Generación de Datos

Simulaciones FEA estratégicas. Muestreo eficiente del espacio de diseño.

2. Entrenamiento de Modelos

Selección y ajuste de modelos predictivos. Validación con casos de prueba.

3. Optimización

Aplicación de algoritmos metaheurísticos. Búsqueda de diseños óptimos mediante modelos sustitutos.

4. Diseños Preliminares

Generación automática de frontera de Pareto. Selección de candidatos óptimos.

5. Análisis y validación

Visualización de resultados. Recomendaciones de diseño basadas en datos.

4.1. Generación de datos

Construcción de la Base de Datos: $\{\bar{B}, \bar{X}, \bar{P}\}$

Especificación

A partir de una especificación aeronáutica se obtienen los parámetros fijos del sistema y los límites (condiciones de contorno) que condicionará el diseño. $\{\bar{S}, \bar{B}\}$

Diseño base

Mediante un programa comercial o analíticamente se definen los parámetros del motor, como la geometría, bobinado, materiales, etc. $\{\bar{X}, \bar{M}\}$

Simulación FEA

La simulación electromagnética genera los datos de operación del motor como la potencia, la eficiencia o distintos valores de flujo magnético. $\{\bar{P}\}$

4.2. Modelos Predictivos Basados en IA

Polynomial Least Squares (PLS)

Modelo matemático que aproxima relaciones entre variables. Ideal para comportamientos lineales o polinómicos simples.

Kriging (GPR)

Interpolación espacial avanzada. Excelente para superficies de respuesta complejas con pocos datos disponibles.

Support Vector Regression (SVR)

Modelo de aprendizaje profundo. Capacidad para manejar relaciones complejas en conjuntos medianos y pequeños.

Random Forest (RF)

Modelo de aprendizaje profundo. Capturan relaciones altamente no lineales entre parámetros de diseño.

Artificial Neural Network (ANN)

Alimentados con datos de simulaciones por elementos finitos. Aprenden patrones complejos electromagnéticos y térmicos.

4.3. Optimización del modelo

Entrenamiento inicial

Se entrena el modelo mediante los algoritmos descritos. Se establece el coeficiente de regresión cuadrático, R^2 , como valor de referencia para evaluar los distintos modelos. Así mismo el error cuadrático medio, MSE, para conocer la desviación de los datos.

Optimización de hiperparámetros

Se seleccionan los parámetros que maximizan \mathbb{R}^2 en cada modelo y se comparan entre sí para usar el major modelo para cada variable de salida en \overline{P} .

4.4. Base de datos

10.000 MOTORES GENERADOS

Con el modelo optimizado ya entrenado, generamos la base de datos mediante las entradas, \bar{X} , las funciones correlacionales, \bar{M} , y las variables de salida \bar{P} . Siempre respetando las condiciones de contorno del sistema, \bar{B} .

Busqueda de correlaciones en el diseño

Mediante correlaciones de Pearson, y otros métodos estadísticos se buscan las correlaciones entre las variables de entrada y de salida.

4	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
1	x1::OSD 🔻	x2::Dint	x3::L 🔻	x4::tm 💌	x5::hs2 💌	x6::wt 💌	x7::Nt ▼	x8::Nh ▼	p1::W ▼	p4::GFF ▼	p5::BSP_T ▼	p6::BSP_n 🔻	p7::BSP_Mu ▼	p8::MSP_n ▼	p9::UWP_Mu ┵
2	56,75283976	25,49053288	16,31532226	2,95284351	5,9764912	3,210486374	14	6	0,548630075	115,8796578	0,579790283	4901,055597	89,07874251	6958,697135	94,69226153
3	56,59561176	27,92909483	20,45505274	2,645265399	6,441393844	3,934048855	13	5	0,593880158	90,85516559	0,656834238	4454,270328	88,63824314	5754,540429	94,53709669
4	58,81064275	21,959284	32,5791634	2,600540208	6,555409774	2,767242793	25	4	0,955586111	98,7268154	0,990299821	1409,726924	78,65632374	1756,005347	94,22969361
5	58,0650993	27,1726414	17,66689375	2,695198383	6,068439185	3,478459691	13	9	0,660294346	133,1970637	0,891547378	3473,748054	88,83674066	5822,451283	94,18954892
6	54,39924398	21,53450095	20,91364808	2,404544123	8,329834519	4,75997063	12	7	0,616090768	111,0314588	0,620174224	4371,802186	87,52126015	7721,953337	94,11984705
7	52,2163228	22,85712267	23,23759285	2,892679251	7,501502958	3,496758464	16	5	0,598861429	97,98338505	0,693297232	4071,437602	84,12975576	5865,454274	94,03357109
8	53,47535291	25,65706543	24,78897616	2,161217082	6,549295956	3,541602141	12	5	0,612425998	86,0761854	0,659186215	4500,761427	88,60954569	5809,817072	93,99573022
9	54,9987505	24,93611772	29,06633008	2,235860407	6,962394389	3,360304489	28	4	0,815001679	95,26087659	1,079494282	991,1338909	78,06937297	1288,650154	93,98631456
10	52,39616437	23,50450038	15,30588934	2,725390743	8,644128455	4,469550094	14	7	0,497716204	107,588673	0,579287758	4007,695561	87,01390106	7838,295817	93,87120697
	E0 40070470	05 70550404	20.05404054			0.740544050		-	0.00004.0000	444.0000000	0.000470000	2222 254257	05.0475570	0.000 045040	00.0000000

4.4. Base de datos

Valor Real

Comparación Real vs Predicción (valores desescalados)

4.5. Análisis y validación

Simulación FEA para validar los resultados

Una vez seleccionados los mejores candidatos, mediante sus parámetros de diseño, se realizan las simulaciones que generan las variables de salida y se comparan con las generadas mediante IA. Se realiza este procedimiento de validación con varios candidatos para determinar que la varianza de los resultados es acorde a lo pronosticado por el modelo.

Frontera de Pareto

Usando las especificaciones del sistema se filtra la base de datos para encontrar los motores que den los mejores resultados en la variable de salida específica, por ejemplo:

- Máximo rendimiento.
- Menor peso.
- Máxima densidad de potencia.

5. Resultados

Parámetro	Inicial	F	EA Nº 2962	2	IA Nº 2962
Diámetro exterior[mm]	51,69	8,5%	56,502		56,502
Diámetro interior [mm]	21,32	9,6%	23,589		23,589
Longitud [mm]	25,14	14,8%	21,908		21,908
Espesor iman [mm]	3,04	8,1%	3,31		3,31
Altura del slot [mm]	11,26	1,8%	11,06		11,06
Número de vueltas	20	5,3%	19		19
Número de conductores en la mano	4	33,3%	3		3
Potencia BSP [W]	52,751	37,2%	38,445		-
Par BSP [T]	0,659	31,0%	0,503	0,8	0,499
Velocidad BSP [rpm]	2684	18,9%	3310	13,	3844
Densidad de potencia BSP [W/Kg]	412	9,3%	377		-
Velocidad MSP [rpm]	4538	5,2%	4783	7,72	5183
Eficiencia nominal [%]	91,7	0,69%	92,34	0,3	1% 92,63
Peso total del motor [Kg]	0,566	1,91%	0,577	0,5	2 % 0,574

Tiempo de diseño

- Diseño inicial -> 5 días.
- Diseño IA, Nº 2962 -> 3 min.
- Simulación, Nº 2962 -> 17 min.

Hipótesis inicial confirmada

Precisión respecto a la simulación

Con un error relativo muy bajo respecto a la simulación FEA, los motores generados con los modelos de IA permiten ahorrar mucho tiempo en iteraciones de diseño que normalmente pueden tardar días o semanas.

BD con motores del mismo rango de potencia

En la Base de Datos hay 10.000 motores que pueden usarse con otras especificaciones. Esto permite tener una familia de motores capaces de operar en un rango de potencia de 200 W. Toda la BD se construye en cuestión de minutos.

Flexibilidad de diseño

Permite obtener los mejores candidatos para la aplicación en específico, ya sea maximizando rendimiento, minimizando peso, o escogiendo una combinación de estos.

5. Resultados - Comparativa

6. Conclusiones y Futuro

Ventajas Demostradas

La metodología data-driven con IA reduce el costo computacional permitiendo una major gestion de recursos. El tiempo de diseño junto con una exploración profunda de los datos permite adaptarse a la especificación proporcionando gran calidad final del producto.

Implementación Actual

Aplicable a diferentes tipos de motores eléctricos y otros rangos de potencia deseados. Compatible con flujos de trabajo existentes. Sin embargo es necesaria una breve capacitación previa para operarlo correctamente.

Perspectivas futuras

Integración con sistemas CAD automatizados. Incorporación de aprendizaje por refuerzo con adaptación de parámetros en tiempo real. Análisis de imágenes de patrones electromagnéticos con redes neuronales convolucionales.

El enfoque data-driven representa el futuro del diseño de motores eléctricos. Su adopción será clave para la competitividad en el sector.