

Contextualized Word Embeddings BERT

國立臺灣大學資訊工程學系 陳縕儂助理教授 http://vivianchen.idv.tw

BERT: Bidirectional Encoder Representations from Transformers

- Idea: contextualized word representations
 - Learn word vectors using long contexts using Transformer instead of LSTM

BERT #1 - Masked Language Model

 Idea: language understanding is bidirectional while LM only uses left or right context

Use the output of the masked word's position to predict the masked word

Possible classes:

All English words

0.1%

...

Improvisation

...

0%

Zyzzyva

Randomly mask 15% of tokens

- Too little: expensive to train
- Too much: not enough context

BERT #1 - Masked Language Model

BERT #2 — Next Sentence Prediction

- Idea: modeling relationship between sentences
 - QA, NLI etc. are based on understanding inter-sentence relationship

```
Input = [CLS] the man went to [MASK] store [SEP]
         he bought a gallon [MASK] milk [SEP]
Label = IsNext
```

```
Input = [CLS] the man [MASK] to the store [SEP]
         penguin [MASK] are flight ##less birds [SEP]
```


Label = NotNext

BERT #2 – Next Sentence Prediction

Idea: modeling relationship between sentences

BERT – Input Representation

- Input embeddings contain
 - Word-level token embeddings
 - Sentence-level segment embeddings
 - Position embeddings

BERT Training

- Training data: Wikipedia + BookCorpus
- 2 BERT models
 - BERT-Base: 12-layer, 768-hidden, 12-head
 - BERT-Large: 24-layer, 1024-hidden, 16-head

BERT Fine-Tuning for Understanding Tasks

Idea: simply learn a classifier/tagger built on the top layer for each target task

BERT Overview

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

Model: **BERT** Dataset: WIKIPEDIA Die freie Enzyklopädie Predict the masked word Objective: (langauge modeling)

2 - Supervised training on a specific task with a labeled dataset.

BERT Fine-Tuning Results

Effect of Pre-training Task

BERT Results on QA

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Mar 20, 2019	BERT + DAE + AoA (ensemble) Joint Laboratory of HIT and iFLYTEK Research	87.147	89.474
2 Mar 15, 2019	BERT + ConvLSTM + MTL + Verifier (ensemble) Layer 6 Al	86.730	89.286
3 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (ensemble) Google Al Language https://github.com/google-research/bert	86.673	89.147
4 May 21, 2019	XLNet (single model) Google Brain & CMU	86.346	89.133
5 Apr 13, 2019	SemBERT(ensemble) Shanghai Jiao Tong University	86.166	88.886
5 May 14, 2019	SG-Net (ensemble) Anonymous	86.211	88.848

6 Mar 16, 2019	BERT + DAE + AoA (single model) Joint Laboratory of HIT and iFLYTEK Research	85.884	88.621
7 Jun 22, 2019	BNDVnet (ensemble model) PAOS	85.850	88.449
8 Mar 13, 2019	BERT + ConvLSTM + MTL + Verifier (single model) Layer 6 Al	84.924	88.204
8 May 14, 2019	SG-Net (single model) Anonymous	85.229	87.926
8 Jun 10, 2019	Unnamed submission by null	85.240	87.901
9 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (single model) Google Al Language https://github.com/google-research/bert	85.150	87.715
10 Jan 15, 2019	BERT + MMFT + ADA (ensemble) Microsoft Research Asia	85.082	87.615
10 Jun 19, 2019	BNDVnet (single model) PAOS	85.003	87.833

BERT Results on NER

Model	Description	CONLL 2003 F1
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93
ELMo (Peters+, 2018)	ELMo in BLSTM	92.22
BERT-Base (Devlin+, 2019)	Transformer LM + fine-tune	<u>92.4</u>
CVT Clark	Cross-view training + multitask learn	92.61
BERT-Large (Devlin+, 2019)	Transformer LM + fine-tune	<u>92.8</u>
Flair	Character-level language model	93.09

BERT Results with Different Model Sizes

Improving performance by increasing model size

Transformer Params (Millions)

BERT for Contextual Embeddings

Idea: use pre-trained BERT to get contextualized word embeddings and feed

them into the task-specific models

Generate Contexualized Embeddings **ENCODER** 12 **ENCODER ENCODER** 512 Prince Mayuko

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

BERT Contextual Embeddings Results on NER

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

First Layer Emb	edding edding	91.0
Last Hidden Layer	12	94.9
Sum All 12	12 + + + + + + + + + + + + + + + + + + +	
Layers	+ 1 =	95.5
Second-to-Last Hidden Layer	11	95.6
Sum Last Four	12 + 11 + 1	
Sum Last Four Hidden	10	95.9
Concat Last	9 10 11 12	96.1 fine-tune = 9
Four Hidden		96.1 Ime-tune = 9

Dev F1 Score

ERNIE: Enhanced Representation through kNowledge IntEgration

- BERT models local cooccurrence between tokens, while characters are modeled independently
 - 一哈(ha),爾(er),濱(bin) instead 哈爾濱(Harbin)
- ERNIE incorporates knowledge by masking semantic units/entities

Learned by BERT

Learned by ERNIE

哈尔滨是黑龙江的省会, 国际冰雪文化名城

Concluding Remarks

- Contextualized embeddings learned from masked LM via Transformers provide informative cues for transfer learning
- BERT a general approach for learning contextual representations from Transformers and benefiting language understanding
 - ✓ Pre-trained BERT:
 https://github.com/google-research/bert

