

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced

data

Separable models

Coregionalizatio

Spatially varying

Multivariate models for areal

Multivariate CAR (MCAR)

Non-separable MCAR Generalized MCAR (GMCAR)

Coregionalized MCAR

Lecture 6 Multivariate Spatial Modeling

Shiwei Lan¹

¹School of Mathematical and Statistical Sciences Arizona State University

STP598 Spatiotemporal Analysis Fall 2020

Multivariate spatial modeling

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference data

Co-kriging
Separable models
Coregionalization
models
Spatially varying

Multivariate models for areal data

Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR) Coregionalized MCAR

- *Multivariate*: multiple (i.e. more than one) outcomes are measured at each spatial unit.
- Multivariate point-referenced data:
 - Levels of pollutants including ozone, nitric oxide, carbon monoxide, $PM_{2.5}$ etc. are measured at monitoring station
 - Surface temperature, precipitation, and wind speed in atmospheric modeling.
 - In examining real estate markets, both selling price and total rental income observed for individual property...
- Multivariate areal data:
 - In public health, supplies counts or rates for a number of diseases for each county or administrative unit.

Table of Contents

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced

Co-kriging

Separable mod

Coregionalizati models

Spatially varying coefficient models

Multivariate models for areal

Multivariate CAR (MCAR) Non-separable MCAR

Generalized MCAR (GMCAR)

oregionalized MCAI

 Multivariate spatial modeling for point-referenced data Co-kriging
 Separable models

Coregionalization models

Spatially varying coefficient models

Multivariate models for areal data Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR) Coregionalized MCAR

Multivariate spatial modeling for point-referenced data

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Separable mode Coregionalizatio

Spatially varying coefficient models

Multivariate models for areal data

(MCAR) Non-separable MCAR Generalized MCAR (GMCAR) We model multivariate point-referenced data by either a conditioning approach (kriging with external drift) or a joint approach (co-kriging).

• Inference focuses upon three major aspects:

- estimate associations among the processes
- estimate the strength of spatial association for each process
- g predict the processes at arbitrary locations
- Let $\mathbf{Y}(\mathbf{s}) = (Y_1(\mathbf{s}), \dots, Y_p(\mathbf{s}))^T$ be a $p \times 1$ vector of process referenced at $\mathbf{s} \in \mathcal{D}$.
- We seek to capture the association both within components of $\mathbf{Y}(\mathbf{s})$ and across \mathbf{s} .

Cross- variograms and covariances

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging

Separable mod Coregionalizati

models

coefficient model

Multivariate models for areal data

Multivariate CAR (MCAR)

Non-separable MCAR Generalized MCAR (GMCAR) • Assume E(Y(s + h) - Y(s)) = 0. The joint second order (weak) stationarity hypothesis defines the *cross-variogram* as

$$\gamma_{ij}(\mathbf{h}) = \frac{1}{2} \mathrm{E}(Y_i(\mathbf{s} + \mathbf{h}) - Y_i(\mathbf{s}))(Y_j(\mathbf{s} + \mathbf{h}) - Y_j(\mathbf{s})) \tag{1}$$

- $\gamma_{ij}(\mathbf{h}) = \gamma_{ij}(-\mathbf{h})$.
- $|\gamma_{ij}(\mathbf{h})|^2 \leq \gamma_{ii}(\mathbf{h})\gamma_{jj}(\mathbf{h})$.
- The cross-covariance function is defined as

$$C_{ij}(\mathbf{h}) = \mathrm{E}(Y_i(\mathbf{s} + \mathbf{h}) - \mu_i)(Y_j(\mathbf{s}) - \mu_j)$$
 (2)

- $C_{ij}(\mathbf{h}) \neq C_{ji}(\mathbf{h})$.
- $|C_{ij}(\mathbf{h})|^2 \le C_{ii}(0)C_{ij}(0)$. $|C_{ij}(\mathbf{h})|^2 \le C_{ii}(\mathbf{h})C_{jj}(\mathbf{h})$?
- Eg: spatial delay models (Wackernagel, 2003): $Y_2(\mathbf{s}) = aY_1(\mathbf{s} + \mathbf{h}_0) + \epsilon(\mathbf{s})$.

Cross- variograms and covariances

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced

Co-kriging
Separable models
Coregionalization

Spatially varying coefficient models

Multivariate models for areal data

(MCAR) Non-separable MCAR Generalized MCAR (GMCAR) • How to express $\gamma_{ij}(\mathbf{h})$ in terms of C_{ij} ?

Cross- variograms and covariances

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging

Separable mo

Coregionalizat

Spatially varying

Multivariate models for areal data

Multivariate CAR (MCAR)

Non-separable MCAR Generalized MCAR (GMCAR)

oregionalized MCAF

• How to express $\gamma_{ij}(\mathbf{h})$ in terms of C_{ij} ?

$$\gamma_{ij}(\mathbf{h}) = C_{ij}(0) - \frac{1}{2}(C_{ij}(\mathbf{h}) + C_{ij}(-\mathbf{h}))$$
(3)

- Cross-variogram only captures the even term of the cross-covariance function!
- Pseudo cross-variogram:
 - Clark et al. (1989) proposed $\pi_{ii}^c(\mathbf{h}) = \mathrm{E}(Y_i(\mathbf{s}+\mathbf{h})-Y_i(\mathbf{s}))^2$
 - Myers (1991) defined $\pi_{ii}^m(\mathbf{h}) = \operatorname{Var}(Y_i(\mathbf{s} + \mathbf{h}) Y_j(\mathbf{s}))$
 - $\pi_{ii}^{c}(\mathbf{h}) = \pi_{ii}^{m}(\mathbf{h}) + (\mu_{i} \mu_{j})^{2}$
- Positive, may not be even. Co-kriging uses $\pi^m_{ij}(\mathbf{h})$.

Co-kriging

S.Lan

Co-kriging

• Given $\mathbf{Y} = (\mathbf{Y}(\mathbf{s}_1), \dots, \mathbf{Y}(\mathbf{s}_n))^T$, we want to know $\mathbf{Y}(\mathbf{s}_0)$.

- Different from multi-output kriging for a univariate spatial process at multiple locations!
- In the regression framework, we could require the predicted value $\hat{\mathbf{Y}}(\mathbf{s}_0)$

$$\hat{\mathbf{Y}}(\mathbf{s}_0) = \sum_{i=1}^n \Lambda_i \mathbf{Y}(\mathbf{s}_i), \quad \sum_{i=1}^n \Lambda_i = I$$
 (4)

$$\min_{\Lambda} \operatorname{trE}(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0))(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0))^{T}$$
 (5)

• $trE(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0))(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0))^T = E(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0))^T(\hat{\mathbf{Y}}(\mathbf{s}_0) - \mathbf{Y}(\mathbf{s}_0)).$

Co-kriging

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference data

Co-kriging

Coregionalization models

Spatially varying coefficient mode

Multivariate models for areal data

(MCAR)
Non-separable MCA
Generalized MCAR
(GMCAR)

• Assume a multivariate Gaussian spatial process **Y**(**s**) with zero mean.

- Suppose we have a finite cross-covariance function (permissible cross-variogram).
- Denote $\mathbf{Y} = (\mathbf{Y}(\mathbf{s}_1)^T, \dots, \mathbf{Y}(\mathbf{s}_n)^T)^T$. Then we have $np \times np$ covariance matrix $\Sigma_{\mathbf{Y}}$.
- Denote $np \times 1$ vector \mathbf{c}_0 with jl-th element $c_{0j,l} = \operatorname{Cov}(Y_1(\mathbf{s}_0), Y_l(\mathbf{s}_j))$. Then

$$E(Y_1(\mathbf{s}_0)|\mathbf{Y}) = \mathbf{c}_0^T \Sigma_{\mathbf{Y}}^{-1} \mathbf{Y}$$
 (6)

$$\operatorname{Var}(Y_1(\mathbf{s}_0)|\mathbf{Y}) = C_{11}(0) - \mathbf{c}_0^T \Sigma_{\mathbf{Y}}^{-1} \mathbf{c}_0$$
 (7)

Co-kriging

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging

Separable mode Coregionalization models

Spatially varying coefficient model

Multivariate models for area data

Multivariate CAR (MCAR)

Non-separable MCAR Generalized MCAR (GMCAR) • *Intrinsic* co-kriging assumes $C(\mathbf{h}) = \rho(\mathbf{h})T$ with a valid correlation function $\rho(\cdot)$ and a positive definite covariance matrix T.

• Therefore $\Sigma_{\mathbf{Y}} = R \otimes T$, and

$$E(Y_1(\mathbf{s}_0)|\mathbf{Y}) = \mathbf{c}_0^T \Sigma_{\mathbf{Y}}^{-1} \mathbf{Y} = t_{11} \mathbf{r}_0^T R^{-1} \tilde{\mathbf{Y}}_1$$
(8)

where $\mathbf{r}_0 = (\rho(\mathbf{s}_0 - \mathbf{s}_j))$ and $\tilde{\mathbf{Y}}_1$ is formed by the first components of $\mathbf{Y}(\mathbf{s}_j)$'s.

- Data availability (missing data):
 - isotopy: data is available for each variable at all sampling points
 - partial *heterotopy*: some variables share some sample locations
 - entirely *heterotopic*: the variables have no sample locations in common
- Collocated co-kriging makes use of $Y_i(\mathbf{s}_i)$ to help predict $Y_1(\mathbf{s}_0)$.

Cross-covariance function

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference data

Co-kriging

Coregionalizati

Spatially varying coefficient models

Multivariate models for areal data

Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR) Coregionalized MCAR • Consider a vector-valued spatial process $\{\mathbf{w}(\mathbf{s}) \in \mathbb{R}^p : \mathbf{s} \in \mathcal{D}\}$. Assume $\mathrm{E}[\mathbf{w}(\mathbf{s})] = 0$.

• The cross-covariance function is a matrix-valued function $\mathbf{C}(\mathbf{s},\mathbf{s}')$ with (i,j)-th entry

$$C_{ij}(\mathbf{s}, \mathbf{s}') = \operatorname{Cov}(w_i(\mathbf{s}), w_j(\mathbf{s}')) = \operatorname{E}[w_i(\mathbf{s})w_j(\mathbf{s}')]$$
(9)

- Let $w_i(\mathbf{s}) = Y_i(\mathbf{s}) \mu_i$. Then $C(\mathbf{s}, \mathbf{s}') = \text{Cov}(\mathbf{w}(\mathbf{s}), \mathbf{w}(\mathbf{s}')) = \text{E}[\mathbf{w}(\mathbf{s})\mathbf{w}(\mathbf{s}')^T]$.
- We require $C(\mathbf{s}, \mathbf{s}') = C(\mathbf{s}', \mathbf{s})^T$.
- $\mathbf{w}(\mathbf{s})$ is stationary if $C(\mathbf{s}, \mathbf{s}') = C(\mathbf{h})$ is a function of $\mathbf{h} = \mathbf{s} \mathbf{s}'$. Symmetric cross-covariance implies $C(-\mathbf{h}) = C(\mathbf{h})$.
- $\mathbf{w}(\mathbf{s})$ is *isotropic* if further $C(\mathbf{s}, \mathbf{s}') = C(\|\mathbf{h}\|)$, which directly implies symmetry in cross-covariance function.

Separable models

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging

Separable models

Coregionaliza

Spatially varying

Multivariate models for areal

(MCAR) Non-separable MCAR

Non-separable MCAR Generalized MCAR (GMCAR) • Separable models for p-dimensional $\mathbf{Y}(\mathbf{s})$ assume the following cross-covariance function

$$C(\mathbf{s}, \mathbf{s}') = \rho(\mathbf{s}, \mathbf{s}') \cdot T \tag{10}$$

The covariance matrix for Y has the following Kronecker product structure

$$\Sigma_{\mathbf{Y}} = H \otimes T \tag{11}$$

where $H_{ij} = \rho(\mathbf{s}_i, \mathbf{s}_j)$.

- Pros: $|\Sigma_{\mathbf{Y}}| = |H|^p \cdot |T|^n$, $\Sigma_{\mathbf{Y}}^{-1} = H^{-1} \otimes T^{-1}$.
- Cons: coherence $\frac{\text{Cov}(Y_{\ell}(\mathbf{s}), Y_{\ell'}(\mathbf{s}+\mathbf{h}))}{\sqrt{\text{Cov}(Y_{\ell}(\mathbf{s}), Y_{\ell}(\mathbf{s}+\mathbf{h}))\text{Cov}(Y_{\ell'}(\mathbf{s}), Y_{\ell'}(\mathbf{s}+\mathbf{h}))}} = \frac{T_{\ell\ell'}}{T_{\ell\ell}T_{\ell'\ell'}}$ regardless of \mathbf{s} and \mathbf{h} : no spatial variation of dependences among components of $\mathbf{Y}(\mathbf{s})$!

Interpolation, (spatial) prediction and regression

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference

Co-kriging

Separable models

models

coefficient models

Multivariate models for areal data

Multivariate CAR (MCAR)

Non-separable MCAR Generalized MCAR (GMCAR)

oregionalized MCA

- Consider response process Z(s) and a vector of covariates x(s).
- Partition our set of sites into three mutually disjoint groups
 - \bigcirc S_Z : the sites where only the response $Z(\mathbf{s})$ has been observed
 - \bigcirc S_X : the the set of sites where only the covariates have been observed
 - S_{ZX} : the set where both $Z(\mathbf{s})$ and the covariates have been observed
 - $\bigcirc S_U$: the set of sites where no observations have been taken.
- Formalize three types of inference questions:
 - **1** *interpolation*: concerns $Y(\mathbf{s})$ when $\mathbf{s} \in S_X$
 - **2** *prediction*: concerns Y(s) when $s \in S_U$
 - ③ spatial regression: concerns the functional relationship between X(s) and Y(s) at an arbitrary site s, along with other covariate information U(s), E[Y(s)|X(s),U(s)].

Interpolation, (spatial) prediction and regression

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced

Co-kriging

Separable models

Coregionaliza modele

Spatially varying

Multivariate models for area data

(MCAR) Non-separable MCA Generalized MCAR (GMCAR)

Figure 9.1 A graphical representation of the S sets. Interpolation applies to locations in S_X , prediction applies to locations in S_U , and regression applies to all locations. $\mathbf{X}_{aug} = (\mathbf{X}, \mathbf{X}')$, $\mathbf{Y}_{aug} = (\mathbf{Y}, \mathbf{Y}')$.

Regression in the Gaussian case

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Separable models

Coronionalizat

models

Spatially varying coefficient model

Multivariate models for area data

(MCAR)
Non-separable MCAR

Generalized MCAR (GMCAR) • Learn about the conditional distribution for $Y(s_0)|X(s_0)$.

• Considering a bivariate Gaussian spatial process $\mathbf{W}(\mathbf{s}) = (X(\mathbf{s}), Y(\mathbf{s}))^T$ with mean $\boldsymbol{\mu}(\mathbf{s}) = (\mu_X(\mathbf{s}), \mu_Y(\mathbf{s}))^T$ and a separable cross-covariance function, we have

$$\mathbf{W}(\mathbf{s}) = (X(\mathbf{s}), Y(\mathbf{s}))^T \sim N(\mu(\mathbf{s}), T)$$
(12)

• For simplicity, suppose $\mu(s) = (\mu_1, \mu_2)^T$. We have the conditional

$$p(y(\mathbf{s})|x(\mathbf{s}),\beta_0,\beta_1,\sigma^2) = N(\beta_0 + \beta_1 x(\mathbf{s}),\sigma^2)$$
(13)

$$\beta_0 = \mu_2 - \frac{T_{12}}{T_{11}}\mu_1, \quad \beta_1 = \frac{T_{12}}{T_{11}}, \quad \sigma^2 = T_{22} - \frac{T_{12}^2}{T_{11}}$$
 (14)

• Therefore, *regression*: $E[Y(s)|x(s)] = \beta_0 + \beta_1 x(s)$.

Interpolation/Prediction in the Gaussian case

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference

Co-kriging

Separable models

nodels

Spatially varying coefficient mode

Multivariate models for areal data

Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR) • Now let \mathbf{s}_0 be a new site where we want to make prediction.

We have

$$\mathbf{W}^* = (\mathbf{W}(\mathbf{s}_0), \cdots, \mathbf{W}(\mathbf{s}_n))^T \sim N(1_{n+1} \otimes \mu, H^*(\phi) \otimes T)$$
 (15)

where
$$H^*(\phi) = \begin{bmatrix} H(\phi) & \mathbf{h}(\phi) \\ \mathbf{h}(\phi)^T & \rho(0;\phi) \end{bmatrix}$$
, and $\mathbf{h}(\phi) = (\rho(\mathbf{s}_0 - \mathbf{s}_j;\phi))$.

• For interpolation: $x(\mathbf{s}_0)$ is observed, we obtain

$$p(y(\mathbf{s}_0)|x(\mathbf{s}_0),\mathbf{y},\mathbf{x}) = \int p(y(\mathbf{s}_0)|x(\mathbf{s}_0),\mathbf{y},\mathbf{x},\boldsymbol{\mu},\phi,T)p(\boldsymbol{\mu},\phi,T|\mathbf{y},\mathbf{x}) \quad (16)$$

• For *prediction*: $x(\mathbf{s}_0)$ is not observed, we still have

$$p(y(\mathbf{s}_0)|\mathbf{y},\mathbf{x}) = \int p(y(\mathbf{s}_0)|x(\mathbf{s}_0),\mathbf{y},\mathbf{x},\boldsymbol{\mu},\phi,T)p(\boldsymbol{\mu},\phi,T,x(\mathbf{s}_0)|\mathbf{y},\mathbf{x}) \quad (17)$$

Regression in a probit model

Multivariate Model

S.Lan

Multivariate spatial modelir for point-reference data

Separable models

Coregionaliza

models

Spatially varying coefficient model

Multivariate models for area data

(MCAR) Non-separable MCAR Generalized MCAR (GMCAR) • Now suppose we have binary response $Z(\mathbf{s})$ in a point-source spatial dataset.

- Let Y(s) be a latent spatial process such that Z(s) = 1 only if Y(s) > 0. Let X(s) be a process that generate values of a covariate.
- Again we consider a bivariate Gaussian spatial process $\mathbf{W}(\mathbf{s}) = (X(\mathbf{s}), Y(\mathbf{s}))^T$, but where now $\mu(\mathbf{s}) = (\mu_1, \mu_2 + \alpha^T \mathbf{U}(\mathbf{s}))^T$ with $\mathbf{U}(\mathbf{s})$ regarded as a $p \times 1$ vector of fixed covariates.
- We can set $T_{22}=1$ due to non-identifiability. Thus we formulate a probit regression model

$$P(Z(\mathbf{s}) = 1 | x(\mathbf{s}), \mathbf{U}(\mathbf{s}), \alpha, \mu, T_{11}, T_{12}) = \Phi\left([\beta_0 + \beta_1 X(\mathbf{s}) + \alpha^T \mathbf{U}(\mathbf{s})] / \sqrt{1 - T_{12}^2 / T_{11}} \right)$$

where $\beta_0 = \mu_2 - (T_{12}/T_{11})\mu_1$, and $\beta_1 = T_{12}/T_{11}$.

Regression in a probit model

Multivariate Model S.Lan

Multivariate spatial modeling for

Co-kriging

Separable models

Coregionalizat

Spatially varying coefficient model

Multivariate models for areal data

Multivariate CAR (MCAR)

Non-separable MCAR
Generalized MCAR
(GMCAR)
Coregionalized MCAR

• Now we observe $\mathbf{z} = (z(\mathbf{s}_1), \cdots, z(\mathbf{s}_n))^T$ and $\mathbf{X} = (X(\mathbf{s}_1), \cdots, X(\mathbf{s}_n))^T$, but not $\mathbf{Y} = (Y(\mathbf{s}_1), \cdots, Y(\mathbf{s}_n))^T$. Again we have

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = N \left(\begin{bmatrix} \mu_1 1 \\ \mu_2 1 + \mathbf{U} \boldsymbol{\beta} \end{bmatrix}, T \otimes H(\boldsymbol{\phi}) \right)$$
 (18)

- Assuming appropriate hyper-priors, we can obtain posterior samples from $p(\mu, \alpha, T_{11}, T_{12}, \phi | \mathbf{x}, \mathbf{z})$.
- Given $x(\mathbf{s}_0)$, we could obtain posterior estimates of the "success probability" $P(Z(\mathbf{s}_0) = 1 | x(\mathbf{s}_0), \mathbf{U}(\mathbf{s}_0), \alpha, \mu, T_{11}, T_{12})$.
- Without $x(\mathbf{s}_0)$, we could still obtain $P(Z(\mathbf{s}_0)=1|\mathbf{U}(\mathbf{s}_0),\alpha,\mu,T_{11},T_{12})$ from

$$\int P(Z(\mathbf{s}_0) = 1 | x(\mathbf{s}_0), \mathbf{U}(\mathbf{s}_0), \alpha, \mu, T_{11}, T_{12}) p(x(\mathbf{s}_0), \mu_1, T_{11}) dx(\mathbf{s}_0)$$
(19)

Conditional modeling

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Separable models

Coregionalizati

Spatially varying

coefficient models

Multivariate models for area data

Multivariate CAR (MCAR)

Generalized MCAR (GMCAR)

Coregionalized MCA

- Previously, we consider a bivariate Gaussian process to model $Y(\mathbf{s})$ and $X(\mathbf{s})$ jointly. Alternatively, we could directly consider a conditional approach.
- Can we model Y|X using a condition process Y(s)|X(s)? What is the joint distribution of $Y(s_i)|X(s_i)$ and $Y(s_j)|X(s_j)$?
- Assume $X(\mathbf{s})$ is a univariate Gaussian spatial process with mean $\mu_X(\mathbf{s})$ and covariance function $C_X(\cdot; \theta_X)$. Then we can model for any finite collection of n locations

$$Y(\mathbf{s}_i) = \beta_0 + \beta_1 X(\mathbf{s}_i) + e(\mathbf{s}_i), \quad i = 1, \dots, n$$
(20)

where $e(\mathbf{s})$ is another GP with zero mean and covariance function $C_e(\cdot; \theta_e)$ independent of $X(\mathbf{s})$.

Conditional modeling

S.Lan

Separable models

Therefore we have the joint distribution of X and Y

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \sim N \left(\begin{bmatrix} \boldsymbol{\mu}_{X} \\ \beta_{0} 1 + \beta_{1} \boldsymbol{\mu}_{X} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{X} (\boldsymbol{\theta}_{X}) & \beta_{1} \boldsymbol{\Sigma}_{X} (\boldsymbol{\theta}_{X}) \\ \beta_{1} \boldsymbol{\Sigma}_{X} (\boldsymbol{\theta}_{X}) & \boldsymbol{\Sigma}_{e} (\boldsymbol{\theta}_{e}) + \beta_{1}^{2} \boldsymbol{\Sigma}_{X} (\boldsymbol{\theta}_{X}) \end{bmatrix} \right)$$
(21)

• It arises from a legitimate bivariate process $\mathbf{W}(\mathbf{s}) = (X(\mathbf{s}), Y(\mathbf{s}))^T$ with mean $\mu_{\mathbf{W}}(\mathbf{s}) = (\mu_{\mathbf{X}}(\mathbf{s}), \beta_0 + \beta_1 \mu_{\mathbf{X}}(\mathbf{s}))$ and cross covariance

$$C_{\mathbf{W}}(\mathbf{s}, \mathbf{s}') = \begin{bmatrix} C_{\mathcal{X}}(\mathbf{s}, \mathbf{s}') & \beta_1 C_{\mathcal{X}}(\mathbf{s}, \mathbf{s}') \\ \beta_1 C_{\mathcal{X}}(\mathbf{s}, \mathbf{s}') & C_{e}(\mathbf{s}, \mathbf{s}') + \beta_1^2 C_{\mathcal{X}}(\mathbf{s}, \mathbf{s}') \end{bmatrix}$$
(22)

• We can define spatial regression model $E[Y(s)|X(s)] = \beta_0 + \beta_1 X(s)$.

Coregionalization models

Multivariat Model

S.Lan

Multivariate spatial modeling for point-reference data Co-kriging

Coregionalization models

Spatially varying coefficient models

Multivariate models for area data

(MCAR) Non-separable MCAR Generalized MCAR (GMCAR) Consider a constructive modeling strategy to add flexibility to separable models while retaining interpretability and computational tractability.

- The approach is through the linear model of coregionalization (LMC).
- The most basic coregionalization model, a.k,a. intrinsic specification (Matheron, 1982): $\mathbf{Y}(\mathbf{s}) = A\mathbf{w}(\mathbf{s})$, where $w_j(\mathbf{s}) \stackrel{iid}{\sim} (0, \rho(h))$. Therefore

$$E[\mathbf{Y}(\mathbf{s})] = 0, \quad \Sigma_{\mathbf{Y}(\mathbf{s}),\mathbf{Y}(\mathbf{s}')} = C(\mathbf{s} - \mathbf{s}') = \rho(\mathbf{s} - \mathbf{s}')AA^{T}$$
(23)

 Intrinsic: specification only requires the first and second moments of differences in measurement vectors and

$$E[\mathbf{Y}(\mathbf{s}) - \mathbf{Y}(\mathbf{s}')] = 0, \quad \Sigma_{\mathbf{Y}(\mathbf{s}) - \mathbf{Y}(\mathbf{s}')} = G(\mathbf{s} - \mathbf{s}')$$
 (24)

• We denote $T = AA^T$ and assume A full rank and lower triangular.

Coregionalization models

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference

Co-kriging Separable mod

Coregionalization models

Spatially varying coefficient models

Multivariate models for area data

(MCAR) Non-separable MCAR Generalized MCAR (GMCAR) • A more general LMC: $\mathbf{Y}(\mathbf{s}) = A\mathbf{w}(\mathbf{s})$, where $w_j(\mathbf{s}) \stackrel{inid}{\sim} (\mu_j, \rho_j(h))$. Therefore

$$E[\mathbf{Y}(\mathbf{s})] = A\boldsymbol{\mu}, \quad \Sigma_{\mathbf{Y}(\mathbf{s}),\mathbf{Y}(\mathbf{s}')} = C(\mathbf{s} - \mathbf{s}') = \sum_{j=1}^{\rho} \rho_j(\mathbf{s} - \mathbf{s}') T_j$$
 (25)

where $T_j = \mathbf{a}_j \mathbf{a}_j^T$ with \mathbf{a}_j the j-th column of A. Note $\sum_j T_j = T$.

 Alternatively, we can have a general nested covariance model (Wackernagel, 1998)

$$\mathbf{Y}(\mathbf{s}) = \sum_{u=1}^{r} A^{(u)} \mathbf{w}^{(u)}(\mathbf{s})$$
 (26)

where the $\mathbf{Y}^{(u)}$ are independent intrinsic LMC specifications with the components of $\mathbf{w}^{(u)}$ having correlation function ρ_u . Then the cross-covariance function is $(T^{(u)} = A^{(u)}(A^{(u)})^T$ coregionalization matrices.)

$$C(\mathbf{s} - \mathbf{s}') = \sum_{u=1}^{r} \rho_{u}(\mathbf{s} - \mathbf{s}') T^{(u)}$$
(27)

Coregionalization models

Multivariate Model

S.Lan

Multivariate spatial modeling for point-references

Co-kriging
Separable models
Coregionalization

Spatially varying coefficient models

Multivariate models for area data

(MCAR)
Non-separable MCAR
Generalized MCAR
(GMCAR)

In a general multivariate spatial model

$$\mathbf{Y}(\mathbf{s}) = \boldsymbol{\mu}(\mathbf{s}) + \mathbf{v}(\mathbf{s}) + \boldsymbol{\epsilon}(\mathbf{s}) \tag{28}$$

where $\epsilon(\mathbf{s}) \sim N(0, D)$, $D = \operatorname{diag}(\tau_j^2)$, $\mathbf{v}(\mathbf{s}) = A\mathbf{w}(\mathbf{s})$, and $\mu_j(\mathbf{s}) = \mathbf{X}_j^T(\mathbf{s})\beta_j$.

This can be cast into a hierarchical model

$$\mathbf{Y}(\mathbf{s}_i)|\mu(\mathbf{s}_i),\mathbf{v}(\mathbf{s}_i) \stackrel{ind}{\sim} N(\mu(\mathbf{s}_i)+\mathbf{v}(\mathbf{s}_i),D)$$
 (29)

$$\mathbf{v} \sim N(0, \sum_{j=1}^{p} H_j \otimes T_j) \tag{30}$$

• Concatenating $\mathbf{Y}(\mathbf{s}_i)$ into \mathbf{Y} and marginalizing over \mathbf{v} yields

$$p(\mathbf{Y}|\{\beta_j\}, D, \{\rho_j\}, T) = N\left(\mu, \sum_{j=1}^p H_j \otimes T_j + I_{n \times n} \otimes D\right)$$
(3)

Spatially varying coefficient models

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference

Separable models
Coregionalization
models

Spatially varying coefficient models

Multivariate

models for areal

(MCAR)
Non-separable MCAR
Generalized MCAR
(GMCAR)
Coregionalized MCAR

• Recall the usual Gaussian stationary spatial process model

$$Y(\mathbf{s}) = \mu(\mathbf{s}) + w(\mathbf{s}) + \epsilon(\mathbf{s})$$
(32)

where $\mu(\mathbf{s}) = \mathbf{x}(\mathbf{s})^T \beta$, $\epsilon(\mathbf{s})$ is a white noise process $(0, \tau^2 \delta(\mathbf{s}, \mathbf{s}'))$ and $w(\mathbf{s})$ is a second-order stationary process with 0 mean and covariance function $\sigma^2 \rho(\mathbf{s}, \mathbf{s}'; \phi)$.

- Let $\mu(\mathbf{s}) = \beta_0 + \beta_1 x(\mathbf{s})$, and $w(\mathbf{s}) = \beta_0(\mathbf{s}) + \beta_1(\mathbf{s})x(\mathbf{s})$. Then we can denote $\tilde{\beta}_0(\mathbf{s}) = \beta_0 + \beta_0(\mathbf{s})$ and $\tilde{\beta}_1(\mathbf{s}) = \beta_1 + \beta_1(\mathbf{s})$.
- The model can be written as

$$Y(\mathbf{s}) = \tilde{\beta}_0(\mathbf{s}) + \tilde{\beta}_1(\mathbf{s})x(\mathbf{s}) + \epsilon(\mathbf{s})$$
(33)

where we have $\operatorname{Cov}(Y(\mathbf{s}), Y(\mathbf{s}')|\beta_0, \beta_1, \tau^2, \sigma_0^2, \sigma_1^2) = \sigma_0^2 \rho_0(\mathbf{s} - \mathbf{s}'; \phi_0) + \sigma_1^2 x(\mathbf{s}) x(\mathbf{s}') \rho_1(\mathbf{s} - \mathbf{s}'; \phi_1) + \tau^2 \delta(\mathbf{s}, \mathbf{s}')$ nonstationary.

Spatially varying coefficient models

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference data

Co-kriging Separable models Coregionalization models

Spatially varying coefficient models

Multivariate models for areal data

(MCAR)
Non-separable MCAR
Generalized MCAR
(GMCAR)

• For the $p \times 1$ covariate vector $\mathbf{X}(\mathbf{s})$ including 1, we consider

$$Y(\mathbf{s}) = \mathbf{X}^{T}(\mathbf{s})\tilde{\boldsymbol{\beta}}(\mathbf{s}) + \epsilon(\mathbf{s})$$
(34)

where $\tilde{eta}(\mathbf{s})$ is assumed to follow a *p*-variate spatial process model.

- Denote **X** as $n \times np$ block diagonal having as block for the *i*-th row $\mathbf{X}^T(\mathbf{s}_i)$. Then we can write $\mathbf{Y} = \mathbf{X}^T \tilde{\mathbf{B}} + \epsilon$, where $\tilde{\mathbf{B}}$ is $np \times 1$ the concatenated vector of $\tilde{\boldsymbol{\beta}}(\mathbf{s})$, and $\epsilon \sim N(0, \tau^2 I)$.
- Denote $\mu_{\beta} = (\beta_1, \dots, \beta_p)^T$. We assume separable models for $\tilde{\mathbf{B}}$

$$\tilde{\mathbf{B}} \sim \mathcal{N}(1_{n \times 1} \otimes \boldsymbol{\mu}_{\beta}, H(\phi) \otimes T) \tag{35}$$

• If we write $\tilde{\mathbf{B}} = \mathbf{B} = \mathbb{1}_{n \times 1} \otimes \boldsymbol{\mu}_{\beta}$, then we have

$$Y(\mathbf{s}) = \mathbf{X}^{T}(\mathbf{s})\boldsymbol{\mu}_{\beta} + \mathbf{X}^{T}(\mathbf{s})\boldsymbol{\beta}(\mathbf{s}) + \epsilon(\mathbf{s})$$
(36)

Spatially varying coregionalization models

Multivariate Model

S.Lan

Multivariate spatial modeli for point-reference data

Separable models
Coregionalization
models
Spatially varying
coefficient models

Multivariate models for areal data

Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR) Coregionalized MCAR A possible extension of the LMC would replace A by A(s) to get the following spatially varying LMC:

$$\mathbf{Y}(\mathbf{s}) = A(\mathbf{s})\mathbf{w}(\mathbf{s}) \tag{37}$$

Therefore the covariance function becomes non-stationary

$$C(\mathbf{s}, \mathbf{s}') = \sum_{j=1}^{p} \rho_j(\mathbf{s} - \mathbf{s}') \mathbf{a}_j(\mathbf{s}) \mathbf{a}_j(\mathbf{s}')^T$$
(38)

- $T_j(\mathbf{s}) = \mathbf{a}_j(\mathbf{s})\mathbf{a}_i^T(\mathbf{s})$ with $\mathbf{a}_j(\mathbf{s})$ the *j*-th column of $A(\mathbf{s})$. $\sum_i T_j(\mathbf{s}) = \mathbf{T}(\mathbf{s})$.
- Extending the intrinsic specification for Y(s) yields the following covariance function

$$C(\mathbf{s}, \mathbf{s}') = \rho(\mathbf{s} - \mathbf{s}')\mathbf{T}(\mathbf{s}) \tag{39}$$

which is a multivariate version of the case of a spatial process with a spatially varying variance.

Table of Contents

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced

Co-kriging

Separable mode

Coregionalization models

Spatially varying coefficient models

Multivariate models for areal

(MCAR) Non-separable MCAR Generalized MCAR

(GMCAR)

oregionalized MCAF

 Multivariate spatial modeling for point-referenced data Co-kriging
 Separable models
 Coregionalization models
 Spatially varying coefficient models

Multivariate models for areal data Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR) Coregionalized MCAR

Multivariate models for areal data

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Separable models
Coregionalization
models
Spatially varying

Multivariate

models for areal

Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR)

- We explore the extension of univariate CAR methodology to the multivariate setting.
- Multivariate CAR (MCAR) models can also provide coefficients in a multiple regression setting that are dependent and spatially varying at the areal unit level.
- Gamerman et al. (2002) investigate a Gaussian Markov random field (GMRF) model (a multivariate generalization of the pairwise difference IAR model).
- Assunção et al. (2002) consider space-varying coefficient models.
- Zhang, Hodges and Banerjee (2009) develop an alternative approach building upon the techniques of smoothed ANOVA (SANOVA).

The multivariate CAR (MCAR) distribution

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference

Separable m

Coregionalization

Spatially varying coefficient mode

Multivariate models for area

Multivariate CAR (MCAR)

Non-separable MCAR Generalized MCAR (GMCAR) • Let $\phi^T = (\phi_1, \dots, \phi_n)$ where each $\phi_i = (\phi_{i1}, \dots, \phi_{ip})^T$. Under the MRF assumption, we specify the full conditionals

$$p(\phi_i|\phi_{j\neq i},\Gamma_i)=N\left(\sum_{j\sim i}B_{ij}\phi_j,\Gamma_i\right),\quad,i,j=1,\cdots,n$$
 (40)

where Γ_i and B_{ii} are $p \times p$ matrices.

• Mardia (1988) proved, using a multivariate analogue of Brook's Lemma, the joint distribution

$$p(\phi|\{\Gamma_i\}) \propto \exp\left\{-\frac{1}{2}\phi^T\Gamma^{-1}(I-\tilde{B})\phi\right\}$$
 (41)

where Γ is block-diagonal with blocks Γ_i , and \tilde{B} is $np \times np$ with (i,j)-th block B_{ii} .

The multivariate CAR (MCAR) distribution

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference

Separable model
Coregionalization

Spatially varying coefficient models

Multivariate models for area data

Multivariate CAR (MCAR)

Non-separable MCAR
Generalized MCAR
(GMCAR)
Coregionalized MCAF

• A convenient special case to guarantee the symmetry of $\Gamma^{-1}(I - \tilde{B})$ is $B_{ij} = b_{ij}I_p$ and $b_{ij}\Gamma_j = b_{ji}\Gamma_i$.

- Analogous to the univariate case, we set $b_{ij} = w_{ij}/w_{i+}$ and $\Sigma_i = w_{i+}^{-1}\Sigma$.
- Note, in this case, we have $\tilde{B}=B\otimes I$ and $\Gamma=D^{-1}\otimes \Sigma$. Therefore,

$$\Gamma^{-1}(I - \tilde{B}) = (D \otimes \Sigma^{-1})(I - B \otimes I) = (D - W) \otimes \Sigma^{-1}$$
 (42)

- Note the singularity of D-W implies that $\Gamma^{-1}(I-\tilde{B})$ is singular. We denote this distribution as $\mathrm{MCAR}(1,\Sigma)$.
- To consider remedies to the impropriety, Mardia (1988) proposed rewriting $N\left(R_i\sum_{j\sim i}B_{ij}\phi_j,\Gamma_i\right)$. The symmetry condition becomes $\Gamma_jB_{ij}^TR_i^T=R_jB_{ji}\Gamma_i$.
- Setting $R_{ij} \equiv R = \rho I$ yields a separable model $\phi \sim N(0, (D \rho W)^{-1} \otimes \Sigma)$, denoted as $MCAR(\rho, \Sigma)$.

Proper non-separable MCAR distribution

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

Co-kriging

Coregionalizatio

Spatially varying coefficient model

Multivariate models for areal data

Multivariate CA (MCAR)

Non-separable MCAR
Generalized MCAR
(GMCAR)
Coregionalized MCAR

• However, the assumption of a common ρ for $j=1,\cdots,p$ may well be too strong.

• We may use ρ_j for each component:

$$\phi \sim N_{np} \left(0, \left[\operatorname{diag}(U_1^T, \cdots, U_p^T) (\Lambda \otimes I_n) \operatorname{diag}(U_1, \cdots, U_p) \right]^{-1} \right)$$
(43)

where $U_i^T U_j = D - \rho_j W$, $j = 1, \dots, p$ and $\Lambda = \Sigma^{-1}$.

• This leads to to a *non-separable* model. We denote this distribution as $MCAR(\rho_1, \dots, \rho_p, \Sigma)$, or simply $MCAR(\rho, \Sigma)$.

Modeling with a proper, non-separable MCAR distribution

Multivariate Model

S.Lan

Multivariate spatial modeling for point-reference data

Co-kriging
Separable model
Coregionalization
models

Multivariate models for area

Multivariate CAR (MCAR)

Non-separable MCAR Generalized MCAR (GMCAR) Coregionalized MCAR Previous MCAR is specified for spatial random effects in a hierarchical model.

- Suppose we have a linear model with continuous data \mathbf{Y}_{ik} , $i=1,\cdots,n$, $k=1,\cdots,m_i$, where \mathbf{Y}_{ik} is a $p\times 1$ vector denoting the k-th response at the i-th areal unit.
- The first stage models the mean μ_{ik} with $\mu_{ikj} = (\mathbf{X}_{ik})_j \boldsymbol{\beta}^{(j)} + \phi_{ij}$, $j=1,\cdots,p$. Here \mathbf{X}_{ik} is a $p\times s$ matrix with covariates associated with \mathbf{Y}_{ik} having j-th row $(\mathbf{X}_{ik})_j$, $\boldsymbol{\beta}^{(j)}$ is an $s\times 1$ coefficient vector associated with the j-th component of \mathbf{Y}_{ik} 's, and ϕ_{ij} is the j-th component of the $p\times 1$ vector ϕ_j . We have

$$\mathbf{Y}_{ik}|\{\boldsymbol{\beta}^{(j)}\}, \boldsymbol{\phi}_i, V \sim N(\boldsymbol{\mu}_{ik}, V) \tag{44}$$

- The second stage specifies priors for $\{\beta^{(j)}\}$ and V, and an MCAR model for ϕ_i .
- Finally, a hyperprior on the MCAR parameters completes the model.

Multivariate Model

S.Lan

Multivariate spatial modeling for point-referenced data

models

Spatially varying

coefficient models

models for areal

(MCAR)
Non-separable MCAR
Generalized MCAR
(GMCAR)

Coregionalized MCAR

Conditionally specified generalized MCAR (GMCAR) distributions

- Jin, Carlin and Banerjee (2005) expand upon this idea by building the joint distribution for a multivariate Markov random field (MRF) through specifications of simpler conditional and marginal models.
- For simplicity, we consider bivariate case. Assume the joint distribution of ϕ_1 and ϕ_2 is

$$\begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_{22} \end{bmatrix} \right) \tag{45}$$

- Then we have $\phi_1|\phi_2 \sim N(A\phi_2, \Sigma_{11\cdot 2})$, where $A = \Sigma_{12}\Sigma_{22}^{-1}$, and $\Sigma_{11\cdot 2} = \Sigma_{11} \Sigma 12\Sigma_{22}^{-1}\Sigma_{12}^T$. If $\phi_2 \sim N(0, \Sigma_{22})$, then $p(\phi) = p(\phi_1|\phi_2)p(\phi_2)$.
- Jin et al. (2005) propose

$$\phi_1 | \phi_2 \sim N(A\phi_2, [(D - \rho_1 W)\tau_1]^{-1})$$
(46)

$$\phi_2 \sim N(0, [(D - \rho_2 W)\tau_2]^{-1})$$
 (47)

where $A = \eta_0 I + \eta_1 W$.

Multivariate Model

 $\mathsf{S}.\mathsf{Lan}$

Multivariate spatial modeling for point-referenced data

Coregionalization models

Spatially varying coefficient mode

Multivariate models for area data

(MCAR) Non-separable MCAR Generalized MCAR (GMCAR)

Conditionally specified generalized MCAR (GMCAR) distributions

Under these assumptions, we can obtain

$$\Sigma_{11} = [\tau_1(D - \rho_1 W)]^{-1} + (\eta_0 I + \eta_1 W)[\tau_2(D - \rho_2 W)]^{-1}(\eta_0 I + \eta_1 W)$$
 (48)

$$\Sigma_{12} = (\eta_0 I + \eta_1 W) [\tau_2 (D - \rho_2 W)]^{-1}$$
(49)

$$\Sigma_{22} = [\tau_2(D - \rho_2 W)]^{-1} \tag{50}$$

- Jin et al. (2005) denote this new model by $GMCAR(\rho_1, \rho_2, \eta_0, \eta_1, \tau_1, \tau_2)$.
- Setting $ho_1=
 ho_2=
 ho$ and $\eta_1=0$ produces the separable model with $\Sigma^{-1}=\Lambda\otimes(Dho W)$, where $au_1=\Lambda_{11}$, $au_2=\Lambda_{11}-rac{\Lambda_{12}^2}{\Lambda_{11}}$, and $\eta_0=-rac{\Lambda_{12}}{\Lambda_{11}}$.
- Further setting $\rho = 1$ produces an improper MIAR.
- If $\rho_1 \neq \rho_2$ and $\eta_0 = \eta_1 = 0$, this is equivalent to two separate univariate CAR models.
- If $\rho_1 = \rho_2 = 0$ and $\eta_0 \neq 0$, the model becomes iid bivariate normal.

Coregionalized MCAR distributions

Multivariat Model

S.Lan

Multivariate spatial modelin for point-reference data

Separable models
Coregionalization
models

Spatially varying coefficient model

Multivariate models for areal data

(MCAR)
Non-separable MCAR
Generalized MCAR
(GMCAR)
Coregionalized MCAR

 GMCAR depends on the order of conditioning. To obviate this issue, Jin, Banerjee and Carlin (2007) develop an order-free framework for multivariate areal modeling.

- This approach is based on an adaptation of the linear model of coregionalization (LMC) to areal data.
- The essential idea is to develop richer spatial association models using linear transformations of much simpler spatial distributions.
- Write the spatial effects in terms of latent processes: $\phi = (A \otimes I_n)\mathbf{u}$, where $\mathbf{u} = (\mathbf{u}_1^T, \dots, \mathbf{u}_p^T)^T$ is $np \times 1$ with each \mathbf{u}_j being an $n \times 1$ areal process.
- A proper distribution for ${\bf u}$ ensures a proper distribution for ϕ subject to the non-singularity of A.

Case 1: Independent and identical latent CAR variables

Multivariate Model

S.Lan

Multivariate spatial modelin for point-reference

Separable models
Coregionalization
models

Spatially varying coefficient models

models for area data

Multivariate CAR (MCAR) Non-separable MCAR Generalized MCAR (GMCAR) • First we assume the random spatial processes \mathbf{u}_j , $j=1,\cdots,p$ are independent and identical. Give a CAR structure for each of them

$$\mathbf{u}_{j} \sim N_{n}(0, (D - \alpha W)^{-1}), \quad j = 1, \cdots, p$$
 (51)

- Therefore $\mathbf{u} \sim N_{np}(0, I_p \otimes (D \alpha W)^{-1})$.
- The joint distribution of $\phi = (A \otimes I_n)\mathbf{u}$ is

$$\phi \sim N_{np}(0, \Sigma \otimes (D - \alpha W)^{-1})$$
 (52)

where $\Sigma = AA^T$. We denote this distribution as $MCAR(\alpha, \Sigma)$.

- The model is independent of the choice of A. Without loss of generality, we specify A as the upper-triangular Cholesky factor of Σ .
- We need to require $\frac{1}{\xi_{\min}} < \alpha < \frac{1}{\xi_{\max}}$, where ξ_{\min} and ξ_{\max} are the minimum and maximum eigenvalues of $D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$.

Multivariat Model

S.Lan

Multivariate spatial modeling for point-referenced

Co-kriging Separable models Coregionalization models

Spatially varying coefficient model

Multivariate models for area data

Multivariate CAR (MCAR)

Generalized MCAR (GMCAR)

Coregionalized MCAR

Case 2: Independent but not identical latent CAR variables

• Now assume \mathbf{u}_i are independent, but relax them being identically distributed:

$$\mathbf{u}_{j} \sim N_{n}(0, (D - \alpha_{j}W)^{-1}), \quad j = 1, \cdots, p$$
 (53)

• The joint distribution of $\phi = (A \otimes I_n)\mathbf{u}$ becomes

$$\phi \sim N_{np}(0, (A \otimes I_n)\Gamma^{-1}(A \otimes I_n)^T)$$
 (54)

where $\Sigma = AA^T$ and Γ is an $np \times np$ block diagonal matrix with $n \times n$ diagonal entries $\Gamma_j = D - \alpha_j W$. We denote this distribution as $\mathrm{MCAR}(\alpha, \Sigma)$.

- Again we may specify A as the upper-triangular Cholesky factor of Σ .
- Note there is no unique joint distribution for ϕ .

Case 3: Dependent and not identical latent CAR variables

Multivariate Model

S.Lan

Multivariate spatial modelin for point-referenced data

Co-kriging
Separable models
Coregionalization
models

Spatially varying coefficient models

Multivariate models for areal data

(MCAR)
Non-separable MCAR
Generalized MCAR

Coregionalized MCAR

• Finally, in this case we assume \mathbf{u}_j are neither independent nor identically distributed.

- Assume that $u_{ij} \perp u_{i,l\neq j} | u_{k\neq i,j}, u_{k\neq i,l\neq j}$, where $l,j=1,\cdots,p$ and $i,k=1,\cdots,n$.
- Denote $b_{il} = \text{Cov}(\mathbf{u}_i, \mathbf{u}_l)$. Then we have

$$\mathbf{u} \sim N_{np}(0, (I_p \otimes D - B \otimes W)^{-1}) \tag{55}$$

where B is a $p \times p$ matrix with the elements b_{jl} , $j, l = 1, \dots, p$.

- Note $I_p \otimes D B \otimes W = (I_p \otimes D)^{\frac{1}{2}} (I_{np} B \otimes D^{-\frac{1}{2}} WD^{-\frac{1}{2}}) (I_p \otimes D)^{\frac{1}{2}}$. Denote the eigenvalues of B as ζ_j . We need to require $\frac{1}{\xi_{\min}} < \zeta_j < \frac{1}{\xi_{\max}}$.
- The joint distribution of $\phi = (A \otimes I_n)\mathbf{u}$ becomes

$$\phi \sim N_{np}(0, (A \otimes I_n)(I_p \otimes D - B \otimes W)^{-1}(A \otimes I_n)^T)$$
 (56)