Chapitre 5

Ordre dans $\mathbb R$

	Sommaire			
1	Ordre et comparaison	1		
2	Ordre et opérations	1		
	2.1 Addition	1		
	2.2 Multiplication	1		
	2.3 Opposé et inverse	2		
	2.4 Carré et racine carrée	2		
	2.4 Carre et lacine carree	2		
3	Encadrement 2			
4	Valeur absolue	3		
	4.1 Distance entre deux réels	3		
	4.2 Valeur absolue d'un réel	3		
5	Approximations – Approximations décimales	4		
	5.1 Approximations	4		
	5.2 Approximations décimales	4		
	7.2 Approximations declinates	1		
6	Intervalles de $\mathbb R$	4		
	6.1 Intervalles bornés	4		
	6.2 Intervalles non bornés	5		
	6.3 Intervalles et valeur absolue	5		
	6.4 Intersection et réunion d'intervalles	5		
		9		
7	Exercises	G		

1 Ordre et comparaison

Définitions

Soient a et b deux nombres réels.

- a est dit «**supérieur ou égal** » à b, écrit $a \ge b$, si $a b \ge 0$.
- a est dit «**supérieur strictement** » à b, écrit a > b, si a b > 0.
- a est dit «**inférieur ou égal** » à b, écrit $a \le b$, si $a b \le 0$.
- a est dit «**inférieur strictement** » à b, écrit a < b, si a b < 0.

Remarques

Comparer deux nombres réels a et b revient à étudier le signe de a-b, et déterminer lequel d'eux est le plus grand.

Exemples

Comparer $a = \frac{3}{4}$ et $b = \frac{5}{6}$.

Propriété

Soient a,b et c des nombres réels. Si $a \le b$ et $b \le c$ alors $a \le c$.

2 Ordre et opérations

2.1 Addition

Propriétés

Soient a,b,c et d des nombres réels.

• Si $a \le b$ alors $a + c \le b + c$.

• Si a < b et c < d alors a + c < b + d.

Exemples

• Comparer $a = 1 + \sqrt{12}$ et $b = \frac{1}{3} + \sqrt{12}$.

.....

• Comparer $a = \frac{4}{5} + \sqrt{2}$ et $b = \frac{5}{4} + \sqrt{3}$.

.....

2.2 Multiplication

Propriétés

Soient a, b, c et d des nombres réels.

• Si $a \le b$ et c > 0 alors $ac \le bc$.

- Si $a \le b$ et c < 0 alors $ac \ge bc$.
- Si a, b, c et d sont positifs tels que $a \le b$ et $c \le d$ alors $ac \le bd$.

Exemples

• Comparer $a = 6\sqrt{3}$ et $b = 6\sqrt{7}$.

.....

• Comparer $a = \frac{1}{2}$ et $b = \frac{1}{3}$.

.....

• Comparer $a = 2\sqrt{7}$ et $b = 3\sqrt{3}$.

2.3 Opposé et inverse

Propriétés

Soient a etb deux nombres réels.

• Si $a \le b$ alors $-a \ge -b$.

• Si a et b sont non nuls et de même signe tels que $a \le b$ alors $\frac{1}{a} \ge \frac{1}{b}$.

Exemples

Comparer $a = -\frac{1}{2\sqrt{7}}$ et $b = -\frac{1}{3\sqrt{3}}$.

2.4 Carré et racine carrée

Propriétés

Soient a etb deux nombres réels positifs.

• Si $a \le b$ et alors $a^2 \le b^2$.

• Si $a \le b$ alors $\sqrt{a} \le \sqrt{b}$.

Exemples

Comparer $a = (1 + \sqrt{2\sqrt{7}})^2$ et $b = (1 + \sqrt{3\sqrt{3}})^2$.

3 Encadrement

Définitions

Soient a,b et x des réels.

Encadrer x signifie trouver deux réels a et b tels que $: a \le x \le b$ ou $a \le x \le b$ ou $a < x \le b$ ou $a < x \le b$.

- \bullet Le nombre réel positif b-a est appelé amplitude de l'encadrement.
- a est appelé une valeur approchée par défaut de x à b-a prés.
- b est appelé une valeur approchée par excès de x à b-a prés.

Propriétés

Soient a,b,c,d,x et y tels $a \leq x \leq b$ et $c \leq y \leq d.$ On a :

 $\bullet \ a + c \le x + y \le b + d.$

- $\bullet \ a-d \le x-y \le b-c.$
- Si a, b, c et d sont positifs, alors $ac \le xy \le bd$. Si a, b, c et d sont positifs non nuls, alors $\frac{a}{d} \le \frac{x}{y} \le \frac{b}{c}$.

Exemples

Soient x et y deux réels, tels que $\sqrt{2} < x < 2$ et $1 < y < \sqrt{3}$. Encadrer x + y, x - y, xy et $\frac{x}{y}$.

Valeur absolue 4

Distance entre deux réels

Définitions

La «distance entre deux réels x et y » est la différence entre le plus grand et le plus petit des deux, et se note d(x; y) ou |x - y|.

Exemples

Compléter ce qui suit :

Interprétation graphique

Sur une droite graduée d'origine O, Soient M le point d'abscisse x, et N le point d'abscisse y. d(x;y) est la distance entre les points M et N, c'est à dire MN.

4.2 Valeur absolue d'un réel

Définitions

On appelle valeur absolue d'un réel x, notée |x|, la distance entre x et 0, c'est à dire d(x;0).

Exemples

Compléter ce qui suit :

- $|5| = \cdots \cdots$ $|-4| = \cdots \cdots$ $\left|\frac{\sqrt{2}}{3}\right| = \cdots \cdots$ $|1 \sqrt{2}| = \cdots \cdots$

Remarque

Soit x un nombre réel. On a :

• Si $x \ge 0$ alors |x| = x - 0 = x.

• Si $x \le 0$ alors |x| = 0 - x = -x.

Propriétés

Soient x, y et a des réels tels que a > 0.On a :

- |-x| = |x|. $|x|^2 = |x^2| = x^2$. $|x-y| \ge |x| |y|$. Si |x| = a alors x = a ou x = -a. $\sqrt{x^2} = |x|$. $|x+y| \le |x| + |y|$. $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$ avec $y \ne 0$. Si |x| = |y| alors x = y ou x = -y.

Approximations – Approximations décimales 5

5.1 Approximations

Définitions

Soient a et x deux réels et r un réel strictement positif.

- a est dit «approximation par défaut» (ou «valeur approchée par défaut») de x «à r près» (ou «à la précision r»), si $a \le x \le a + r$ (i.e. : $0 \le x - a \le r$).
- a est dit «approximation par excès» (ou «valeur approchée par excès») de x «à r près» (ou «à la précision r»), si $a - r \le x \le a$ (i.e. : $-r \le x - a \le 0$).
- a est dit «approximation» (ou «valeur approchée») de x «à r près» (ou «à la précision r»), si $a - r \le x \le a + r$ (i.e. : $|x - a| \le r$).

Approximations décimales 5.2

Définitions

Soient x un réel tel que $p \times 10^{-n} \le x \le (p+1) \times 10^{-n}$, où $p \in \mathbb{Z}$ et $n \in \mathbb{N}$.

- $p \times 10^{-n}$ est dit «approximation décimale par défaut de x à 10^{-n} près».
- $(p+1) \times 10^{-n}$ est dit «approximation par excès de x à 10^{-n} près».

6 Intervalles de \mathbb{R}

6.1 Intervalles bornés

Définitions

Soient a et b deux réels.						
Ensemble de nombres	Représentation	Intervalle				
$\{x \in \mathbb{R} \ / \ a < x < b\}$]a;b[
	$-\infty$ a b $+\infty$	ouvert				
$\{x \in \mathbb{R} \ / \ a < x \le b\}$	1//////]a;b]				
	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	semi-ouvert à gauche				
$\{x \in \mathbb{R} \ / \ a \le x < b\}$	[//////	[a;b[
$\{x \in \mathbb{R} \mid a \leq x < 0\}$	$-\infty$ a b $+\infty$	semi-ouvert à droite				
$\{x \in \mathbb{R} \ / \ a \le x \le b\}$		[a;b]				
	$-\infty$ a b $+\infty$	fermé				

Exemples

- $\{x \in \mathbb{R} / -3 \le x \le 2\} = \cdots$ $\left[-5; -\frac{\sqrt{2}}{3}\right[= \cdots$
- $\bullet \left\{ x \in \mathbb{R} \ / \ \frac{1}{2} < x \le \frac{2}{3} \right\} = \cdots$

Remarques

- un intervalle réduit à un point a se note $\{a\}$.
- Un intervalle vide se note \emptyset .

- Pour tout réel a, on a $[a; a] = \{a\}$.
- Pour tout réel a, on a a = a.

6.2 Intervalles non bornés

Définitions

Soit a un réel. Ensemble de nombres Représentation Intervalle $a; +\infty[$ /////////////////> $\{x \in \mathbb{R} \mid x > a\}$ ouvert $[a; +\infty[$ $\{x \in \mathbb{R} / x \ge a\}$ fermé $-\infty;a[$ $\{x \in \mathbb{R} \mid x < a\}$ ouvert $-\infty;a$ $\{x \in \mathbb{R} \mid x \leq a\}$ fermé

Exemples

- $\{x \in \mathbb{R} / x \le 2\} = \cdots$
- \bullet] $-\infty$; $\sqrt{2}$ [= \cdots
- $\left\{x \in \mathbb{R} \mid x > -\frac{1}{3}\right\} = \cdots$
- $[-3; +\infty[=\cdots]$

Remarques

- Les symboles $+\infty$ se lit "plus l'infini", et $-\infty$ se lit "moins l'infini". Ce ne sont pas des nombres.
- Les intervalles sont toujours ouvert du côté des symboles $+\infty$ et $-\infty$.
- On a les notations suivantes : $\mathbb{R} =]-\infty; +\infty[$, $\mathbb{R}^+ = [0; +\infty[$ et $\mathbb{R}^- =]-\infty; 0]$.

6.3 Intervalles et valeur absolue

Définitions

Soient a un réel positif.

Solene & the receiptosters.						
Ensemble de nombres	Représentation	Intervalle				
$\{x \in \mathbb{R} \ / \ x < a\}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$]-a;a[ouvert				
$\{x \in \mathbb{R} \ / \ x \le a\}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[-a;a] fermé				
$\{x \in \mathbb{R} / x > a\}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$]-\infty;-a[\cup]a;+\infty[$ ouvert				
$\{x \in \mathbb{R} \ / \ x \ge a\}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$]-\infty;-a]\cup[a;+\infty[$ fermé				

Exemples

- $\{x \in \mathbb{R} / |x| \le 4\} = \cdots$
- \bullet] $-\sqrt{3}$; $\sqrt{3}$ [= \cdots
- $\{x \in \mathbb{R} / |x| \le 0\} = \cdots$
- $\left\{x \in \mathbb{R} / |x| > \frac{3}{4}\right\} = \cdots$
- $\bullet]-\infty;-1] \cup [1;+\infty[=\cdots\cdots\cdots$
- $\bullet \{x \in \mathbb{R} / |x| > 0\} = \cdots$

6.4 Intersection et réunion d'intervalles

Définitions

Soient I et J deux intervalles quelconque (ouverts, semi-ouvert ou fermés).

- L'«intersection» des deux intervalles I et J est l'ensemble des nombres appartenant au premier et au deuxième intervalle, elle se note $I \cap J$, et se lit «I inter J».
- La «**réunion**» des deux intervalles I et J est l'ensemble des nombres appartenant au premier **ou** au deuxième intervalle, elle se note $I \cup J$, et se lit «I union J».

Exercice

- 1. Représenter sur une même droite graduée les intervalles [-3; 5], [2; 7] et $[6; +\infty[$.
- 2. En déduire les intersections et les réunions deux à deux des intervalles [-3; 5], [2; 7] et $[6; +\infty[$.

Exercices

Exercice 1

1. Comparer les nombres x et y dans chacun des cas suivants :

(a)
$$x = 1 - \frac{1732}{735}$$
 et $y = \frac{1}{100} + 1$

(b)
$$x = \sqrt{2} \text{ et } y = \frac{2}{\sqrt{2}+1}$$

(c)
$$x = \sqrt{3} - 1$$
 et $y = \frac{2}{\sqrt{3} + 1}$

(d)
$$x = 17\sqrt{2}$$
 et $y = 15\sqrt{3}$.

2. On donne les encadrements suivants : $2 \le x \le 4$ et $-6 \le y \le 1$.

Donner un encadrement aux expressions suivantes :

(a)
$$x^2$$

(b)
$$y^2$$

(c)
$$x + y$$

(d)
$$2x - 3y$$

(f)
$$\frac{1}{x}$$
.

Exercice 2

1. Déterminer les intervalles correspondants aux inégalités suivantes :

(a)
$$x \ge 7$$

(b)
$$x < 10$$

(c)
$$x \le 3$$

(d)
$$x > 5$$

(e)
$$2 \le x \le 8$$

(f)
$$-4 \le x < 7$$

(g)
$$0 < x \le 3$$

(h)
$$-7 < x < -2$$

2. Déterminer $I \cup J$ et $I \cap J$ dans les cas suivants :

(a)
$$I =]-2;6]$$
 et $J = [-3; +\infty[$

(a)
$$I =]-2$$
; of et $J = [-3; +6]$
(c) $I =]-1$; 4[et $J = [5; 7]$

(e)
$$I =]1; 4]$$
 et $J = [4; +\infty[$

(b)
$$I =]-\infty;7]$$
 et $J = \left[\frac{-3}{4}; +\infty\right[$

(d)
$$I = [1; 4]$$
 et $J = [-2; 4]$

(f)
$$]-\infty;3] \text{ et } J=[5;+\infty[$$

Exercice 3

1. Calculer ce qui suit :

(a)
$$3|0,3-1|-4|2-1,3|+\frac{1}{2}|1-2,5|$$

(b)
$$|3\sqrt{2} - 2| - |2\sqrt{2} - 3| + |\sqrt{2} - 2|$$

(a)
$$3|0, 3-1|-4|2-1, 3|+\frac{1}{2}|1-2, 5|$$

(b) $|3\sqrt{2}-2|-|2\sqrt{2}-3|+|\sqrt{2}-2|$
(c) $|\sqrt{2}-\sqrt{3}|+2|\sqrt{3}-\sqrt{2}|-|2\sqrt{2}-3\sqrt{3}|$
(d) $\sqrt{(\sqrt{3}-\sqrt{2})^2}$

(d)
$$\sqrt{(\sqrt{3}-\sqrt{2})^2}$$
.

- 2. a et b sont deux nombres réels tels que $a \in [-2, 5]$ et $b \in [-3, -1]$. Simplifier A = 2|2a + 7| - |3b| + 2|b + 8| - |2b - a|.
- 3. On pose $A = \sqrt{55 12\sqrt{21}}$. Calculer $(3\sqrt{3} 2\sqrt{7})^2$, puis simplifier A.

Exercice 4

Soient a et b deux réels tels que $|a+2| \le 3$ et $b \in [-1; 4]$.

- 1. Établir que $-5 \le a \le 1$ et que $|a+b-1| \le 7$.
- 2. On pose E = ab + 6b 5a.
 - (a) Vérifier que E = (a+6)(b-5) + 30.
 - (b) En déduire un encadrement de E, et déterminer son amplitude.

Exercice 5

Soit a un réel tel que $a \in [1; +\infty[$. On pose $A = \sqrt{1 + \frac{1}{a}}$.

- 1. Montrer que a(A + 1)(A 1) = 1.
- 2. Montrer que $2 \le 1 + A \le 3$, puis conclure que $1 + \frac{1}{3a} \le A \le 1 + \frac{1}{2a}$. 3. Montre que 1,1 est une valeur approchée du $\sqrt{1,2}$ à $\frac{1}{30}$ prés.

Exercice 6

Soit x un réel positif strictement.

1. Montrer que $1 + \sqrt{1+x} > 2$.

2. Conclure que $0 < \frac{1}{1+\sqrt{1+x}} < \frac{1}{2}$.

- 3. Montrer que $1 < \sqrt{1+x} < 1 + \frac{x}{2}$.
- 4. Donner un encadrement au nombre $\sqrt{1,04}$.

Soient a et b deux réels tels que $0 < a \le b \le 2a$

- 1. (a) Montrer que $(a-b)(2a-b) \leq 0$.
- (b) Développer (a-b)(2a-b) et $(a\sqrt{2}-b)^2$.
- 2. On pose $A = \frac{2a^2 + b^2}{3ab}$. Montrer que $\frac{2\sqrt{2}}{3} \le A \le 1$. 3. Montrer que $\frac{(1+\sqrt{2})^2}{6}$ est une approximation du nombre A à $\frac{(1-\sqrt{2})^2}{6}$ prés.

Exercice 8

- Soient $x \in \mathbb{R}^*$ et $E = \frac{\sqrt{x^2+1}}{x}$. 1. Montrer que $\frac{\sqrt{x^2+1}}{x} \frac{1}{x} = \frac{x}{\sqrt{x^2+1}+1}$.

 - 2. Montrer que $\sqrt{x^2+1}+1\geq 2$, puis conclure que $|E-\frac{1}{x}|\leq \frac{1}{2}|x|$. 3. Déterminer une valeur approchée du nombre $\frac{\sqrt{1,0001}}{0,01}$ à 5×10^{-3} prés.