AI/ML Intern Assignment

1. Data Insights

The dataset contains **10 features** and a binary target (dropout: 1 = Dropped Out, 0 = Completed).

***** Key Observations:

- Most impactful features: session_count, avg_session_duration, assignments submitted, and satisfaction rating.
- Students in **Digital Marketing** had slightly higher dropout rates.
- Female students showed slightly higher course completion rates.
- A strong pattern was identified:
 - **▼** Low session activity + low satisfaction score = High dropout risk

2. Modelling Approach

Multiple classification models were trained and compared. Below is the full comparison scorecard based on the final training run:

	Model	Accuracy	Precision	Recall	F1 Score	Cohen Kappa Score
0	LogisticRegression()	0.783	0.786	0.759	0.772	0.566
1	DecisionTreeClassifier()	0.817	0.821	0.793	0.807	0.633
2	DecisionTreeClassifier(max_depth=9, max_featur	0.883	0.844	0.931	0.885	0.767
3	BaggingClassifier()	0.867	0.839	0.897	0.867	0.734
4	BaggingClassifier(max_features=5, max_samples=	0.833	0.788	0.897	0.839	0.668
5	Random Forest Classifier ()	0.883	0.844	0.931	0.885	0.767
6	$Random Forest Classifier (max_depth=3, max_featur$	0.900	0.829	1.000	0.906	0.801
7	AdaBoostClassifier()	0.817	0.846	0.759	0.800	0.632
8	AdaBoostClassifier(learning_rate=0.4, n_estima	0.833	0.852	0.793	0.821	0.666
9	Gradient Boosting Classifier ()	0.850	0.833	0.862	0.847	0.700
10	XGBClassifier(base_score=None, booster=None, c	0.850	0.812	0.897	0.852	0.701
11	XGBClassifier(base_score=None, booster=None, c	0.900	0.829	1.000	0.906	0.801
12	XGBClassifier(base_score=None, booster=None, c	0.867	0.839	0.897	0.867	0.734

Best Performing Model:

Models Used:

- Logistic Regression baseline model
- Decision Tree, Random Forest, Bagging, Gradient Boost
- **XG Boost** Final selected model with highest performance and balanced generalization

Preprocessing Steps:

- Ordinal Encoding used for categorical variables (gender, course_type)
- X No Feature Scaling was applied
- Vo missing values, duplicates and outliers were present in the dataset.
- Used K-Fold Cross Validation for model stability

3. Evaluation Results

▼ Final Chosen Model: XG Boost Classifier

```
final_model = XGBClassifier(**best_ada)
   final_model.fit(x_test,y_test)
✓ 0.1s
                                                                           0
                                XGBClassifier
XGBClassifier(base score=None, booster=None, callbacks=None,
              colsample_bylevel=None, colsample_bynode=None,
              colsample_bytree=None, device=None, early_stopping_rounds=None,
              enable_categorical=False, eval_metric=None, feature_types=None,
              gamma=None, grow_policy=None, importance_type=None,
              interaction_constraints=None, learning_rate=0.4, max_bin=None,
              max cat threshold=None, max cat to onehot=None,
              max_delta_step=None, max_depth=None, max_leaves=None,
              min_child_weight=None, missing=nan, monotone_constraints=None,
              multi_strategy=None, n_estimators=250, n_jobs=None,
              num parallel tree=None, random state=None, ...)
```

Performance Metrics:

• Accuracy: 0.867

• **Precision:** 0.839

• **Recall:** 0.897

• **F1-Score:** 0.867

• Cohen Kappa Score: 0.734

Why XG Boost?

It provided the best balance between precision and recall, ensuring we minimize both false positives and false negatives for dropout prediction.

4. Business Recommendations

The model identifies the following students as **high dropout risk**:

At-Risk Indicators:

• session_count < 5

- satisfaction_rating < 3
- assignments_submitted < 2
- quiz_attempts < 2

Suggested Engagement Strategy:

- Trigger **automated alerts** when students fall below engagement thresholds.
- Send reminder emails, motivational messages, or gamified nudges.
- Offer personal mentorship or flexible timelines to struggling learners.
- Use dashboards to track **real-time risk scores** for each student.