系统工程导论 第三次作业 来昆 自 72 2017011607

题目 1 使用 python/matlab 编程实现一元线性回归要求:

- 1. 实现函数 linear regression1(data,alpha)
- 2. 输入为 Nx2 的矩阵 data, 第一列为 Y, 第二列为 X; 显著性水平 alpha;
- 3. 打印出回归直线方程(也可以打印中间过程数据)
- 4. 用 F 检验进行统计检验, matlab 中 F 分布对于给定显著性水平和自由度的分度数函数为 finv, 请大家自行学习使用函数; 输出检验结果如果输入数据满足线性关系, 那么继续 做 5 和 6, 否则结束
- 5. 打印出置信区间, matlab 中标注正态分布相应的分位数函数是 norminv。
- 6. 画出所有数据点、回归直线 (y 为因变量, x 为自变量) 和置信区间对应的两条边界线。

代码及结果分析:

1. 要求 1&2

其中 data 使用.mat 存储,直接读取进行处理。data 内部及 main 函数中的部分如下:

Data.data		
	1	2
1	4	0.0090
2	3.4400	0.0130
3	3.6000	0.0060
4	1	0.0250
5	2.0400	0.0220
6	4.7400	0.0070
7	0.6000	0.0360
8	1.7000	0.0140
9	2.9200	0.0160
10	4.8000	0.0140
11	3.2800	0.0160
12	4.1600	0.0120
13	3.3500	0.0200
14	2.2000	0.0180

Data = load('data.mat');

data = Data. data;

linear_regression1(data, 0.05);

函数定义及 X 和 Y 如下:

2. 一元线性回归(要求3)

使用最小二乘法进行处理, 公式如下:

记
$$X_i = [x_1 - \overline{x}, x_2 - \overline{x}, \dots, x_N - \overline{x}]$$
 $\overline{x} = \frac{1}{N} \sum_{i=1}^N x_i$

$$Y_i = [y_1 - \overline{y}, y_2 - \overline{y}, \dots, y_N - \overline{y}], \quad \overline{y} = \frac{1}{N} \sum_{i=1}^N y_i$$
则 $\hat{a} = \overline{y} - \hat{b}\overline{x}, \quad \hat{b} = \frac{\sum X_i Y_i}{\sum X_i^2} = \frac{L_{xy}}{L_{xx}}$

代码如下:

对 data 进行处理时,输出的结果为:

```
>> main
Linear Regression Outcome: y = -134.6066 x + 5.18
```

3. F 检验

思路:

按相关系数分解(平方和分解)可以将总共方和 TSS 分解为解释平方和 ESS 和剩余平方和 RSS,统计量 F 的定义如下:

$$F = \frac{ESS / f_E}{RSS / f_R} = \frac{(N-2)ESS}{RSS}$$

$$\begin{split} L_{yy} = & \sum_{i=1}^{N} (y_i - \bar{y})^2 = \sum_{i=1}^{N} y_i^2 - N \bar{y}^2 = \sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \\ (总平方和TSS) & (解释平方和ESS) & (剩余平方和RSS) \end{split}$$

fe和fe分别为二者的自由度.

F 检验的思路如下:

对于给定的显著性水平 $\alpha(0 \le \alpha \le 1)$,以及自由度 (1, N-2),查 F分布表,得到相应的临界值 F_α ,从而对Ho进行假设检验,即:

当 $F > F_{\alpha}$ 时,否定原假设,认为 x 与 y 存在线性关系; 当 $F \leq F_{\alpha}$ 时,接收原假设,认为 x 与 y 不存在线性关系。

计算 F 分布的分位数, 根据课件上给出的公式,

% 1. F_alpha
N = size(X, 1);
p = 1 - alpha;
v1 = 1;
v2 = N - 2;
F_a = finv(p, v1, v2);

再求 F 的值(按照上面的公式)

% 2. F
Y_hat = b_hat * X + a_hat;
ESS = (Y_hat - y_bar)' * (Y_hat - y_bar);
RSS = (Y - Y_hat)' * (Y - Y_hat);
F = ((N - 2)*ESS) / RSS;

再根据 F 和 F_a 的大小关系判断是否符合线性,输出结果。 F 分布的计算及输出结果为:

F=21.9609, F_a=4.7472, F>F_a, X and Y have Linear relation.

4. 置信区间计算

设 s_s 为 y 的剩余均方差,它表示变量 y 偏离回归 直线的误差

$$S_{\sigma} = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y})^2}{N - 2}} = \sqrt{\frac{(1 - r^2)L_{yy}}{N - 2}}$$

给定显著性水平 α ,对某一 x_0 ,相应的 y_0 将以 $(1-\alpha)$ 的概率落在下述区间(称为置信区间)

$$(\hat{y}_0 - Z_{\alpha l}, S_{\delta}, \hat{y}_0 + Z_{\alpha l}, S_{\delta})$$

式中, \hat{y}_0 是对应于 x_0 的 y_0 的预测值, $Z_{\alpha/2}$ 是标准正态分布上 $\alpha/2$ 百分位点的值。

Z_a = abs(norminv(alpha/2));
S_sigma = sqrt((Y-Y_hat)'*(Y-Y_hat) / (N-2));
disp(['Half width of Confindence Interval:' num2str(Z_a*S_sigma)]);
disp(['Confidence Interval: [y_hat-' num2str(Z_a*S_sigma) ', y_hat+' num2str(Z_a*S_sigma) ']']);

Half width of Confindence Interval: 1.5912 Confidence Interval: [y_hat-1.5912, y_hat+1.5912] 5. 画出包括原始数据,拟合直线,置信区间的图像。

其中左下角的点不在置信区间内部。

代码:

```
figure('name', 'DATA&LinearFunction&ConfidenceInterval')
h_fit = plot(x_fit, y_fit, 'b-', 'LineWidth', 2);
hold on
h_cfivl_low = plot(x_fit, y_cfivl_low, 'b--');
hold on
plot(x_fit, y_civl_up, 'b--');
hold on
h_data = plot(X, Y, 'r*', 'MarkerSize', 5, 'LineWidth', 2);
hold on
legend([h_data, h_fit, h_cfivl_low], 'Data', 'Fit', '95% Confidence Intervals');
```