

# Al Engineer PATH Project 4

Develop a scoring Model.

Axel Favreul

# Contents



1. Exploratory analysis

2. Initial model testing

3. Feature engineering

4. Hyper parameters tuning

5. Features importance



 $\bullet$ 

#### Multiple dataset related to client information:

Main dataset concerning client itself.

Additional dataset concerning previous transaction

#### Target distribution:



Imbalance class problem

#### Missing value:

66 column over 121 contain MV Up to 70% for some column.

#### Column types:

| float64 | 65 |
|---------|----|
| int64   | 41 |
| object  | 16 |

 $\bullet$ 

| • | Label encoding for cat  |
|---|-------------------------|
|   | columns with two differ |
|   | columns)                |

One-hot for the of the columns.

#### **Outlier Method:**

To detect: zscore thres Inter quartile range.

21 Found

|    | Name                        | zscore | iqr   |
|----|-----------------------------|--------|-------|
| 1  | CNT_CHILDREN                | 3364   | 3364  |
| 2  | AMT_INCOME_TOTAL            | 214    | 11226 |
| 3  | AMT_CREDIT                  | 2609   | 5235  |
| 6  | REGION_POPULATION_RELATIVE  | 6745   | 6745  |
| 8  | DAYS_EMPLOYED               | 0      | 57846 |
| 9  | DAYS_REGISTRATION           | 580    | 505   |
| 12 | FLAG_MOBIL                  | 1      | 1     |
| 13 | FLAG_EMP_PHONE              | 0      | 44409 |
| 14 | FLAG_WORK_PHONE             | 0      | 48934 |
| 15 | FLAG_CONT_MOBILE            | 456    | 456   |
| 17 | FLAG_EMAIL                  | 13978  | 13978 |
| 18 | CNT_FAM_MEMBERS             | 3157   | 3157  |
| 19 | REGION_RATING_CLIENT        | 0      | 64626 |
| 20 | REGION_RATING_CLIENT_W_CITY | 0      | 62594 |
| 21 | HOUR_APPR_PROCESS_START     | 506    | 1816  |
|    |                             |        |       |

e outlier max = 117 000 000
of the loan.
:: NSTR
omalies. see next section
:7 years quant75 = 20.5 years. def= how many days
:lient change his registration, time relative to the

• • •

#### Outlier

#### **AMT Income totale:**

High income default on 5,61% Low income default on 8,20%

#### **Days Employment:**

66 columns over 121 contain MV Up to 70% for some columns.

| 365243 | 44397 |
|--------|-------|
| -200   | 126   |
| -212   | 123   |
| -230   | 122   |
| -196   | 116   |
|        |       |
| -12367 | 1     |
| -13904 | 1     |
| -11725 | 1     |
| -13648 | 1     |
| 9      | 1     |

Days employed value count

Non-Anomalies default on 8,66%

Anomalies on 5,46%

→ Flagged the line and replace by Nan value

• • •

| Most Positive Correlations:                       |          |
|---------------------------------------------------|----------|
| OCCUPATION_TYPE_Laborers                          | 0.042102 |
| FLAG_DOCUMENT_3                                   | 0.043879 |
| FLAG_EMP_PHONE                                    | 0.045066 |
| REG_CITY_NOT_LIVE_CITY                            | 0.046282 |
| NAME_EDUCATION_TYPE_Secondary / secondary special | 0.048568 |
| REG_CITY_NOT_WORK_CITY                            | 0.051325 |
| DAYS_ID_PUBLISH                                   | 0.051918 |
| CODE_GENDER_M                                     | 0.053534 |
| DAYS_LAST_PHONE_CHANGE                            | 0.055383 |
| NAME_INCOME_TYPE_Working                          | 0.057175 |
| REGION_RATING_CLIENT                              | 0.059217 |
| REGION_RATING_CLIENT_W_CITY                       | 0.061117 |
| DAYS_EMPLOYED                                     | 0.073386 |
| DAYS_BIRTH                                        | 0.077571 |
| TARGET                                            | 1.000000 |
| Name: TARCET dtyme: fleet64                       |          |

-0 179570

Name: TARGET, dtype: float64

#### Most Negative Correlations:

EXT SOURCE 3

| EXI_SOURCE_3                         | -0.1/85/9 |
|--------------------------------------|-----------|
| EXT_SOURCE_2                         | -0.160777 |
| EXT_SOURCE_1                         | -0.155615 |
| NAME_EDUCATION_TYPE_Higher education | -0.055840 |
| CODE_GENDER_F                        | -0.053528 |
| NAME_INCOME_TYPE_Pensioner           | -0.045358 |
| ORGANIZATION_TYPE_XNA                | -0.045072 |
| DAYS_EMPLOYED_ANOM                   | -0.045072 |
| FLOORSMAX_AVG                        | -0.042968 |
| EMERGENCYSTATE_MODE_No               | -0.042813 |
| FLOORSMAX_MEDI                       | -0.042620 |
| FLOORSMAX_MODE                       | -0.042244 |
| HOUSETYPE_MODE_block of flats        | -0.041717 |
| AMT_GOODS_PRICE                      | -0.040782 |
| REGION_POPULATION_RELATIVE           | -0.036493 |
| Name: TARGET, dtype: float64         |           |

#### **Correlations**

#### Age:



Gender: Male default on 10,11% and female on 7,03%

7



### Initial performance

• • •

Impute and scale

Imputation: median

Scaler: MinMax

+ Model tested:
LogisticRegression

Random Forest

XG Boost

+ Initial result
Score measured with AUC-ROC

|   | Features      | Score    |
|---|---------------|----------|
| 0 | Log reg       | 0.689468 |
| 1 | Random forest | 0.708514 |
| 2 | xgboost       | 0.752845 |
|   |               |          |



## Polynomial features

• • •

# + Choose of features

Most strong correlation value: EXT\_SOURCE (1,2 and 3)
DAYS\_BIRTH

#### + New score XG Boost

|   | Features      | Score    |
|---|---------------|----------|
| 0 | Log reg       | 0.689468 |
| 1 | Random forest | 0.708514 |
| 2 | xgboost       | 0.752845 |
| 3 | xg_poly       | 0.753731 |
|   |               |          |

# + New correlation

| EXT SOURCE 2 EXT SOURCE 3              | -0.193755 |
|----------------------------------------|-----------|
| EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3 | -0.189492 |
| EXT_SOURCE_2^2 EXT_SOURCE_3            | -0.176281 |
| EXT_SOURCE_2 EXT_SOURCE_3^2            | -0.172162 |
| EXT_SOURCE_1 EXT_SOURCE_2              | -0.166753 |
| EXT_SOURCE_1 EXT_SOURCE_3              | -0.164042 |
| EXT_SOURCE_2                           | -0.160619 |
| EXT_SOURCE_1 EXT_SOURCE_2^2            | -0.156908 |
| EXT_SOURCE_3                           | -0.155518 |
| EXT_SOURCE_1 EXT_SOURCE_3^2            | -0.151002 |
| Name: TARGET, dtype: float64           |           |
| EXT_SOURCE_1 EXT_SOURCE_2 DAYS_BIRTH   | 0.155983  |
| EXT_SOURCE_2 DAYS_BIRTH                | 0.156999  |
| EXT_SOURCE_2 EXT_SOURCE_3 DAYS_BIRTH   | 0.180994  |
| TARGET                                 | 1.000000  |
| 1                                      | NaN       |
| Name: TARGET, dtype: float64           |           |
|                                        |           |

## Domain knowledge

#### • • •

# Bureau dataset

#### Number of previous loan

|   | SK_ID_CURR | previous_loan_counts |
|---|------------|----------------------|
| 0 | 100001     | 7                    |
| 1 | 100002     | 8                    |
| 2 | 100003     | 4                    |
| 3 | 100004     | 2                    |
| 4 | 100005     | 3                    |

#### **Numerical information**

| SK_ID_CURR DAYS_CREDIT CREDIT_DAY_OVERDUE |        |       |              |      |       | DAYS_CREDIT_UPDATE |       |      |     |     |  |       |             |      |       |       |       |
|-------------------------------------------|--------|-------|--------------|------|-------|--------------------|-------|------|-----|-----|--|-------|-------------|------|-------|-------|-------|
|                                           |        | count | mean         | max  | min   | sum                | count | mean | max | min |  | count | mean        | max  | min   | sum   | count |
| 0                                         | 100001 | 7     | -735.000000  | -49  | -1572 | -5145              | 7     | 0.0  | 0   | 0   |  | 7     | -93.142857  | -6   | -155  | -652  | 7     |
| 1                                         | 100002 | 8     | -874.000000  | -103 | -1437 | -6992              | 8     | 0.0  | 0   | 0   |  | 8     | -499.875000 | -7   | -1185 | -3999 | 7     |
| 2                                         | 100003 | 4     | -1400.750000 | -606 | -2586 | -5603              | 4     | 0.0  | 0   | 0   |  | 4     | -816.000000 | -43  | -2131 | -3264 | 0     |
| 3                                         | 100004 | 2     | -867.000000  | -408 | -1326 | -1734              | 2     | 0.0  | 0   | 0   |  | 2     | -532.000000 | -382 | -682  | -1064 | 0     |
| 4                                         | 100005 | 3     | -190.666667  | -62  | -373  | -572               | 3     | 0.0  | 0   | 0   |  | 3     | -54.333333  | -11  | -121  | -163  | 3     |

## Domain knowledge

• • •

# Score with new features

|   | Features      | Score    |
|---|---------------|----------|
| 0 | Log reg       | 0.689468 |
| 1 | Random forest | 0.708514 |
| 2 | xgboost       | 0.752845 |
| 3 | xg_poly       | 0.753731 |
| 4 | xg_burr       | 0.756839 |
| 5 | random_f_burr | 0.714592 |



#### Hyperparameters

# Automated tuning

**Using RandomizedSearchCV**To gain computing time.

**Parameters** 

+ Output

**Best Parameters** 

```
params = {
    #min sum of weight of all observations required. control overfitting
        'min_child_weight': [1, 5, 10],

#A node is split only when the resulting split gives a positive reduction
#in the loss function. Gamma specifies the minimum loss reduction required
#to make a split.
        'gamma': [0.5, 1, 1.5, 2, 5],

#Denotes the fraction of observations to be randomly samples for each tree
        'subsample': [0.6, 0.8, 1.0],

#Denotes the fraction of observations to be randomly samples for each tree
        'colsample_bytree': [0.6, 0.8, 1.0],
        'max_depth': [3, 4, 5]
    }
}
```

## Hyperparameters

# Final score

|   | Features      | Score    |
|---|---------------|----------|
| 0 | Log reg       | 0.689468 |
| 1 | Random forest | 0.708514 |
| 2 | xgboost       | 0.752845 |
| 3 | xg_poly       | 0.753731 |
| 4 | xg_burr       | 0.756839 |
| 5 | random_f_burr | 0.714592 |
| 6 | xg_hp_burr    | 0.763355 |
|   |               |          |



# Analysis

# Feature importance

#### Logistic regression



# Analysis

# Feature importance

#### Random forest



# Analysis

# Feature importance

#### Xg boost





#### Conclusion

#### **General comments**

We manage to improve the score.

Best scoring model: XG Boost.

Scoring might be improved using the rest of the dataset.

#### Improve data preparation

Solve imbalance issue. (under/over sampling) additionally with Crossvalidation.



#### Feature importance

Top feature still involved EXT SOURCE: indicator from the bank on which we have no information.

And other expected features. (age, education, etc)

#### Way ahead

Model could be changed to optimize to improve Precision (maximizing precision to reduce the probability to miss a default)



# QUESTION?

OpenClassRooms: Project 4

Axel Favreul