Formulario per l'esame di Probabilità Metodi Matematici per l'Ingegneria

CALCOLO COMBINATORIO

Disposizioni con ripetizione (numero di sequenze ordinate di k elementi da un insieme di n elementi): $D_{n,k}^R = n^k$

Disposizioni semplici (numero di sequenze ordinate di k elementi diversi fra loro da un insieme di n elementi):

$$D_{n,k} = \frac{n!}{(n-k)!} = n(n-1)...(n-k+1), \text{ con } n \ge k$$

Permutazioni di n elementi: $P_n = D_{n,n} = n!$

Combinazioni semplici (numero di sottoinsiemi di k elementi da un insieme di n elementi):

$$C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}, \text{ con } n \ge k$$

Coefficiente multinomiale (numero di modi in cui si può partizionare un insieme di n elementi in r sottoinsiemi di rispettivamente $k_1, k_2, ..., k_r$ elementi, con $k_1 + k_2 + ... + k_r = n$): $\binom{n}{k_1, k_2, ... k_r} = \frac{n!}{k_1! k_2! ... k_r!}$

Probabilità

Formula moltiplicativa o legge delle probabilità composte:

$$\mathbb{P}(A_1\cap\ldots\cap A_n)=\mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1\cap A_2)\cdot\ldots\cdot\mathbb{P}(A_n|A_1\cap\ldots\cap A_{n-1}).$$

Formula delle probabilità totali:

$$\mathbb{P}(B) = \sum_{i=1}^n \mathbb{P}(B \cap A_i) = \sum_{i=1}^n \mathbb{P}(B|A_i)\mathbb{P}(A_i), \text{ con } A_1, ..., A_n \text{ partizione dello spazio campionario}, \mathbb{P}(A_i) > 0$$

Formula di Bayes:

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\mathbb{P}(B)}, \text{ con } \mathbb{P}(B), \mathbb{P}(A_i) > 0$$

Modelli di variabili aleatorie

Variabile Aleatoria	Densità	Media	Varianza
$\operatorname{Binomiale}(n,p)$	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k \in \{0, \dots, n\}$	np	np(1-p)
Geometrica(p)	$p_X(k) = p(1-p)^{k-1}, \ k \ge 1$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\operatorname{Pascal}(r,p)$	$p_X(k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, \ k \ge r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Ipergeometrica (N, K, n)	$p_X(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, k \le K, 0 \le n-k \le N-K$	$n\frac{K}{N}$	$n\frac{K}{N}(1-\frac{K}{N})\frac{N-n}{N-1}$
$\operatorname{Poisson}(\lambda)$	$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k \ge 0$	λ	λ
$\operatorname{Uniforme}(a,b)$	$f_X(x) = \frac{1}{b-a} \mathbb{1}_{(a,b)}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\text{Normale}(\mu,\sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Esponenziale(λ)	$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{[0,+\infty)}(x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$