

Analog Integrated Systems Design

Lecture 09 Digital-to-Analog Conversion (1)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Resistor String (Ladder) DAC

- Simply a voltage divider using 2^N identical unit resistors
- No. of switches = 2^N (every unit element needs a switch)
 - This is an example of a **unary** (thermometer) DAC
- Monotonicity is guaranteed
- The decoder is a bit complex

R-2R Ladder DAC

- ☐ Current splits equally at each level → Binary weighted currents
- ☐ At each node, looking downward the equivalent impedance is R
 - Each branch can be replaced by a resistance R with no effect on current splitting
- Current splits equally at each node between the "R" branch and the "2R" branch

R-2R Ladder DAC

- ☐ Current splits equally at each node
 - The binary weighted currents are combined by switches
- $lue{}$ No. of switches $\sim N$
- No complex decoder is required
- Monotonicity is NOT guaranteed

Current Domain DAC

 \square Unary implementation: 2^N switches, monotonic, complex decoder

 \square Binary implementation: $\sim N$ switches, monotonicity not guaranteed

Unary (thermometer) Implementation

- \square No. of elements = 2^N
 - Unit elements can be resistors, capacitors, currents, etc
- \square No. of switches = 2^N (every unit element needs a switch)
- Monotonicity is guaranteed
- ☐ A.k.a. **thermometer code**

$$B_u = \sum_{i=0}^{i=2^N-1} b_i = b_0 + b_1 + b_2 \dots + b_{2^N-1}$$

Unary series: 1,1,1,1,1,1,1...

Binary Implementation

- \square No. of elements $\sim N$
 - Note that large elements are still composed of small matched unit elements
- \square No. of switches $\sim N$ (several unit elements share the same switch)
- Monotonicity is NOT guaranteed
 - Worst case error occurs at mid-scale transition

$$B_b = \sum_{i=0}^{i=N-1} b_i 2^i = b_0 + b_1 2^1 + b_2 2^2 \dots + b_{N-1} 2^{N-1}$$

Binary series: 20,21,22,23,24 ... 2N-1

Unary vs Binary

0	-
1	Δ_0
11	Δ_0 + Δ_1
111	Δ_0 + Δ_1 + Δ_2
1111	Δ_0 + Δ_1 + Δ_2 + Δ_3
11111	Δ_0 ++ Δ_4
111111	Δ_0 ++ Δ_5
1111111	Δ_0 ++ Δ_6
11111111	Δ_0 ++ Δ_6 + Δ_7
111111111	Δ_0 ++ Δ_8
1111111111	Δ_0 ++ Δ_9
1111111111	Δ_0 ++ Δ_{10}
11111111111	Δ_0 ++ Δ_{11}
111111111111	Δ_0 ++ Δ_{12}
1111111111111	Δ_0 ++ Δ_{13}
111111111111111	Δ_0 ++ Δ_{14}

0000	-
0001	Δ_0
0010	Δ_1
0011	Δ_0 + Δ_1
0100	Δ_2
0101	Δ_0 + Δ_2
0110	Δ_1 + Δ_2
0111	$\Delta_0 + \Delta_1 + \Delta_2$
1000	Δ_3
1001	Δ_0 + Δ_3
1010	Δ_1 + Δ_3
1011	Δ_0 + Δ_1 + Δ_3
1100	Δ_2 + Δ_3
1101	Δ_0 + Δ_2 + Δ_3
1110	Δ_1 + Δ_2 + Δ_3
1111	Δ_0 + Δ_1 + Δ_2 + Δ_3

Static DAC Errors

- Static DAC errors mainly due to component mismatch
- Mismatch can be systematic or random
- Systematic mismatch (can be reduced by good design and layout)
 - Edge effects in arrays
 - Process gradients
 - Contact resistance
 - Finite current source output resistance
- Random mismatch
 - Doping, lithography, etc.
 - Often Gaussian distribution (central limit theorem)

Random Mismatch

MOS transistors	$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$	$A_{VT} = 1 \text{ mV} \mu \text{m/nm} [74, 91]$
MOS transistors	$\frac{\sigma_{\Delta\beta}}{\beta} = \frac{A_{\beta}}{\sqrt{WL}}$	$A_{\beta} = 1-2\% \mu \text{m} [74, 91]$
Bipolar transistors (BiCMOS)	$\sigma_{\Delta Vbe} = \frac{A_{Vbe}}{\sqrt{WL}}$	$A_{Vbe} = 0.3 \mathrm{mV} \mu \mathrm{m} [90]$
Bipolar SiGe		$A_{Vbe} = 1 \text{ mV} \mu \text{m} [99]$
Diffused/poly resistors	$\frac{\sigma_{\Delta R}}{R} = \frac{A_R}{\sqrt{WL}}$	$A_R = 0.5/5 \% \mu \text{m}$
Plate, fringe capacitors	$\frac{\sigma_{\Delta C}}{C} = \frac{A_C}{\sqrt{\text{C in fF}}}$	$A_C = 0.3 - 0.5 \% \sqrt{\text{fF}} [78]$
Small capacitors <2 fF		$A_C = 0.7\% \sqrt{\text{fF}} [82]$

Guidelines for Matched Components

1	Matching components are of the same material, have the same form, dimensions, and orientation			
2	The potentials, temperatures, pressures, and other environmental factors are identical			
3	Currents in components run in parallel, not anti-parallel, or perpendicular			
4	Only use cross-coupled structures if there is a clear reason for that (e.g., temperature gradient). Identify the heat centers			
5	Avoid overlay of wiring on matching components.			
6	Use star-connected wiring for power, clock, and signal			
7	Apply symmetrical (dummy) structures up to 20 µm away from sensitive structures			
8	Keep supply and ground wiring together and take care that no other circuits dump their return current in a ground line			
9	Check on voltage drops in power lines			
10	Stay 200 µm away from the die edges to reduce stress from packaging			
11	Tiling patterns are automatically inserted and can lead to unpredictable coupling, isolation thickness variations, and stress. Do not switch off the tiling pattern generation, but define a symmetrically placed tiling pattern yourself			

Normal Distribution

where: μ is the expected value and standard deviation: $\sigma = \sqrt{E(X^2) - \mu^2}$ $\sigma^2 \rightarrow variance$

Yield

- Probability calculated numerically by erf (error function)
 - $C = X/\sigma$ is known as confidence interval

$$P\left(-C \le X \le +C\right) = \frac{1}{\sqrt{2\pi}} \int_{-C}^{+C} e^{-\frac{X^2}{2}} dX = erf\left(\frac{C}{\sqrt{2}}\right)$$

Yield

- ☐ Probability calculated numerically by erf (error function)
 - $C = X/\sigma$ is known as confidence interval

X/σ	P(-X ≤ x ≤ X) [%]	X/σ	P(-X ≤ x ≤ X) [%]
0.2000	15.8519	2.2000	97.2193
0.4000	31.0843	2.4000	98.3605
0.6000	45.1494	2.6000	99.0678
0.8000	57.6289	2.8000	99.4890
1.0000	68.2689	3.0000	99.7300
1.2000	76.9861	3.2000	99.8626
1.4000	83.8487	3.4000	99.9326
1.6000	89.0401	3.6000	99.9682
1.8000	92.8139	3.8000	99.9855
2.0000	95.4500	4.0000	99.9937

Normal Distribution Example

- Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with σ = 2mV and μ = 0
- Find the fraction of opamps with |Vos| < 6mV
 - $X/\sigma = 3 \rightarrow 99.73 \%$ yield
- Find the fraction of opamps with |Vos| < 400uV:
 - $X/\sigma = 0.2 \rightarrow 15.85 \%$ yield

Unary DAC DNL

- \square Assume the value of the m-th unit element in a unary array is u(m)
 - Due to variations: u(m) = u + du
 - lacktriangle The standard deviation of mismatch is σ_{du}
 - Expectation (mean): E[u(m)] = u
 - Standard deviation: $\sigma[u(m)] = \sigma_{du}$
 - Normalized std deviation: $\sigma_{\underline{du}} = \frac{\sigma_{du}}{u}$
- For any transition in the unary N-bit DAC
 - $DNL = \frac{u(m)}{u} 1$
 - $\bullet E[DNL] = 0$
 - $\bullet \ \sigma[DNL] = \sigma_{DNL} = \sigma_{\underline{du}}$
- The DNL is independent of no. of bits!

Unary DAC INL

☐ It can be shown that

$$\sigma_{INL}^2(m) = \frac{m(2^N - m)}{2^N} \sigma_{\underline{du}}^2$$

 \square Max σ_{INL} occurs at mid transition: $m = \frac{2^N}{2} = 2^{N-1}$

$$\sigma_{INL}^2 = 2^{N-2} \sigma_{\underline{du}}^2 \qquad \Rightarrow \qquad \sigma_{INL} = 2^{\frac{N}{2}-1} \sigma_{\underline{du}}$$

 \square σ_{INL} depends on no. of bits

Unary DAC DNL/INL Example

- \square Note that max σ_{INL} occurs at mid-transition (statistical result)
 - But max INL for every DAC is not necessarily at mid-transition

Unary DAC DNL Example

- Assume a unary N-bit resistor string DAC
- If σ_{dR} = 1%, what DNL spec goes into the DAC datasheet so that 99.73 % of all converters meet the spec?
 - 99.73 % yield \rightarrow X/ σ = 3
 - DNL spec = $3 \times \sigma_{DNL} = 3 \times 1\% = 3\% = \pm 0.03 \, LSB$
 - Independent of N?!
- There is a flaw in this example. Why?

Unary DAC DNL Example

- \Box For N-bit unary DAC we have 2^N elements
- For the DAC to pass the DNL spec, every element must pass
- P(all elements pass spec) = P(each element passes the spec) 2N
- $0.9973 = P_{new}^{} ^2 = P_{new} = (0.9973)^{\frac{1}{2^N}}$
 - N = 6-bit: $P_{new} = 0.99995708$
- calculate modified confidence intervals using MATLAB
 - N = 6-bit: C = $\sqrt{2}$ *erfinv(P_{new}) = 4 → DNL spec = ± 0.04 LSB
 - N = 12-bit: C = $\sqrt{2}$ *erfinv (P_{new}) = 5 → DNL spec = $\pm 0.05 LSB$
- For complex DAC architectures, running Monte Carlo simulations in MATLAB may be easier than deriving yield expression

Binary DAC DNL

- Worst case transition occurs at mid-scale
 - 100...0 → 011...1

$$DNL = \frac{\left(u_{2^{N-1}} + u_{2^{N-1}+1} + \dots + u_{2^{N}-1}\right) - \left(u_{1} + \dots + u_{2^{N-1}-1}\right)}{u} - 1$$

All DAC elements are involved in the transition

$$\sigma^{2}[DNL] = \sigma_{DNL}^{2} = (2^{N} - 1) \sigma_{\underline{du}}^{2}$$

$$\sigma_{DNL} \approx 2^{\frac{N}{2}} \sigma_{\underline{du}}$$

Binary DAC INL

 \square Max σ_{INL} same as in unary (at mid-transition)

$$\sigma_{INL}^2 = 2^{N-2} \sigma_{\underline{du}}^2$$

$$\sigma_{INL} = 2^{\frac{N}{2} - 1} \sigma_{\underline{du}}$$

Binary DAC DNL/INL Example

- ☐ The DNL plot is symmetric
- Worst case DNL occurs at binary transitions

$$2^{N-1}$$
, $2^{N-1} \pm 2^{N-2}$, $2^{N-1} \pm 2^{N-2} \pm 2^{N-3}$, ...

☐ The INL shows a repetitive pattern

Unary vs Binary

Unary vs Binary

Segmentation

- lacktriangle Use unary for MSBs (N_{unary}) and binary for LSBs (N_{binary})
- The unary steps must have the accuracy of an LSB
- ☐ Binary errors will appear "periodically" over all unary sections

Segmented DAC

Segmented DAC DNL

- lacksquare Use unary for MSBs (N_{unary}) and binary for LSBs (N_{binary})
- $oldsymbol{\square}$ Worst case occurs when LSB DAC turns off (N_{binary}) and one more MSB DAC element turns on
 - Same as binary weighted DAC with $(N_{binary} + 1)$ bits

$$\sigma^{2}[DNL] = \sigma_{DNL}^{2} = (2^{N_{binary}+1} - 1) \sigma_{\underline{du}}^{2}$$

$$\sigma_{DNL} \approx 2^{\frac{N_{binary}+1}{2}} \sigma_{\underline{du}}$$

Segmented DAC INL

 \square Max σ_{INL} same as in unary (at mid-transition)

$$\sigma_{INL}^2 = 2^{N-2} \sigma_{\underline{du}}^2$$

$$\sigma_{INL} = 2^{\frac{N}{2} - 1} \sigma_{\underline{du}}$$

DNL/INL Summary

	σ_{INL}	σ_{DNL}	No. of switches
Unary (thermometer)		$\sigma_{\frac{du}{u}}$	$2^{N}-1$
Segmented	$2^{\frac{N}{2}-1}\sigma_{\frac{du}{u}}$	$2^{\frac{N_{binary}+1}{2}}\sigma_{\underline{du}}$	$2^{N_{unary}} - 1 + N_{binary}$
Binary		$2^{\frac{N}{2}}\sigma_{\frac{du}{u}}$	N

Example: N = 12, $\sigma_{du/u} = 1\%$

	σ_{INL} (LSB)	σ_{DNL} (LSB)	No. of switches
Unary (thermometer)		0.01	4095
Segmented (6u+6b)	0.32	0.11	63 + 6
Segmented (5u+7b)		0.16	31 + 7
Binary		0.64	12

DAC Architectures

	Unary	Binary	
Voltage	Resistor string	R-2R	
	Flash ADC	Low-performance DAC	
Current	Current matrix	Current splitting	
	High bandwidth DAC		
Charge/capacitor	Capacitor bank	Capacitor bank	
	Low power DAC		
Time	PWM, $\Sigma\Delta$ mod	Limited by distortion	
	Low bandwidth DAC		

In italic the main application area is indicated

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- ☐ B. Murmann, EE 315, Stanford.
- Y. Chiu, EECT 7327, UTD.

Thank you!