Trust Region Policy Optimization Demo

Rishikesh Vaishnav

July 11, 2018

Code

- The code for this project is available at: .

Implementation Details

Single Path Executable Pseudocode:

- Initialize policy parameter θ .
- Iterate until convergence:
 - Initialize/clear list S of $\{\frac{G_{\theta}(s,a)}{\pi_{\theta}(s,a)}, s, a\}$.
 - Generate N_{τ} trajectories $\{\tau\}$.
 - For each trajectory $\tau \in \{\tau\}$:
 - For each $\{s,a\} \in \tau$:
 - Calculate discounted return $G_{\theta}(s, a)$ from this time to end of episode.
 - Calculate $\pi_{\theta}(s, a)$ at this (s, a).
 - Store $\left\{\frac{G_{\theta}(s,a)}{\pi_{\theta}(s,a)}, s, a\right\}$ in S.
 - Use constraint optimizer to yield θ' by solving the problem:
 - Objective (to maximize): objective (S, θ).
 - Constraint: constraint(S, θ).
 - $-\theta = \theta'$.

objective (S, θ') Pseudocode:

- Initialize L=0.
- For $\left\{\frac{G_{\theta}(s,a)}{\pi_{\theta}(s,a)}, s, a\right\} \in S$:
 - Add $\pi_{\theta'}(s,a) \frac{G_{\theta}(s,a)}{\pi_{\theta}(s,a)}$ to L.
- Return L.

 $\mathrm{constraint}(S,\,\theta')$ Pseudocode:

- Initialize D = 0.
- For $s \in S$:

- Add $D_{KL}(\pi_{\theta}(\cdot|s)||\pi_{\theta'}(\cdot|s))$ to D.
- Return $\frac{D}{|S|}$.

Parameter Settings:

- $N_{\tau} = 4$ (adjusted to balance between empirical runtime and performance)
- $-\gamma = 1$ (adjusted to maximize empirical performance)
- $\delta = 0.01$ (following Schulman et. al.)

Policy Function Encoding:

- Each state-action pair is converted to the feature vector x(s, a). Letting S_{obs} and S_{act} be the size of the observation and action spaces, respectively, the size of the vector is $S_{obs} \times S_{act}$, where all features are 0 except for the S_{obs} features starting at index $S_{obs} \times a$, which are set to the environment's parameterization of s.
 - In this case, $S_{obs}=4$ and $S_{act}=2$.
- The policy function $\pi(a|s,\theta)$ performs the softmax on a parameterized linear mapping of feature vectors:

$$\pi(a|s,\theta) = \frac{e^{\theta^T x(s,a)}}{\sum_b e^{\theta^T x(s,b)}}$$

Constraint Optimization Method:

– I used scipy's optimize.minimize function, with the "trust-constr" method. All gradients and hessians were automatically calculated. A tolerance of 1×10^{-2} and a maximum iteration limit of 100 were used.

Results

– The results can be summarized as follows:

_