- 1. 먼저 가상의 데이터를 생성해보겠습니다. 이 데이터는 1학년부터 3학년까지의 학생들의 수학, 영어, 국어 점수를 나타내며, 각 학년당 100명씩의 학생이 있다고 가정합니다.
- 2. CSV 파일로 저장 ex) student_scores.csv

	Grade	Math	English	Korean
0	1	74.967142	73.368040	84.083863
1	1	68.617357	75.518552	63.934016
2	1	76.476885	85.978349	85.435271
3	1	85.230299	84.882962	91.267654
4	1	67.658466	79.832787	79.961219
295	3	63.070904	75.919869	82.784519
296	3	78.995999	77.841001	72.994583
297	3	73.072995	72.169890	76.760564
298	3	78.128621	76.445654	89.478108
299	3	76.296288	83.018404	65.196772

[300 rows x 4 columns]

3. 상관 관계 분석 – 히트맵 출력

4. 과목별로 성적 분포와 통계치를 분석 판다스의 describe() 함수를 사용

```
300.000000
count
          69.944514
mean
std
           9.841937
          37.587327
min
25%
          63.167541
50%
          70.592195
75%
          76.266577
         108.527315
max
Name: Math, dtype: float64
         300.000000
count
          79.828080
mean
          7.692943
std
min
          60.226844
25%
          74.364759
50%
          79.849883
75%
          84.930700
         104.631046
max
Name: English, dtype: float64
         300.000000
count
          75.986329
mean
          11.960118
std
          42.637360
min
25%
          68.142297
50%
          75.512886
75%
          83.537635
         106.588585
max
Name: Korean, dtype: float64
```

5. 과목별로 성적 분포와 통계치를 분석 시각화

- 제출 방식 : 한글 워드 작성 후 pdf 파일 제출
- ▶ 결과물 사진
- ▶ 상관 관계 분석 히트맵 출력 결과 해석
- ▶ 과목별로 성적 분포와 통계치를 분석 시각화 그래프 별 결과 해석

제출 기간 : 다음날 수업 9시 수업 진행 전까지

다음날 수업에서 같이 진행 할 예정!!