

ANÁLISE DE SENTIMENTOS

PROCESSAMENTO DE LINGUAGEM NATURAL

Agenda

OBJETIVO DA SPRINT

Artefatos desenvolvidos

ARQUITETURA MACRO

Solução

EXECUÇÃO DOS ARTEFATOS

Resultados

CRONOGRAMA

Passos Futuros

Andamento do Projeto

Itens Entregáveis

Objetivo da Sprint 3 : Word2Vec e Modelos de Treinamento

- Word2Vec: modelo de aprendizado de máquina que representa palavras como vetores.
- Modelos de Treinamento: Naive Bayes Gaussiana, RNN e Embedding Layer.

Arquitetura Macro da solução

<Bag Of Words>

<Word2Vec>

· Naive Bayes;

· Dados Teste;

Dados Treino.

· Acurácia:

 Revocação; Matriz de Confusão.

Origem dos Dados

Análise Descritiva

INPUT

baseDados.csv

OUTPUT

<Metadados>

Pré-Processamento

OUTPUT

<Dados Processados>

Criação do Modelo

INPUT <Dados Processados> Criação do Modelo · Bag Of Words; Vetorização · Word2Vec. **OUTPUT 1 OUTPUT 2** <Bag Of Words> <Word2Vec>

Treinamento do Modelo

Serviço

INPUT

<Modelo>

Serviço

- · Pré-Processamento;
- Implementação do modelo;
- Exibição dos resultados.

OUTPUT

arquivo.csv

Dashboard

Dashboard

- · Processamento dos dados;
- Criação visual.

OUTPUT

Visualização

Modelo Word2Vec

Modelo que **transforma palavras em vetores**, **capturando** suas características **semânticas**, definições e **contexto**. O modelo **agrupa vetores de palavras similares** e fornece estimativas fortes sobre seus significados com **base em sua ocorrência nos textos**. Passos para aplicação:

- 1) Construção do modelo Word2Vec;
- 2) Gerar vetores de palavras;
- 3) Exploração e análise dos vetores;

Bag of Words VS Word2Vec

Representação baseada em contagem: considera apenas a frequência das palavras, sem considerar contexto, palavras tratadas de forma independente.

Alta dimensionalidade: gera vetores de alta dimensionalidade, onde cada dimensão representa uma palavra única no vocabulário.

Perda de informações semânticas e contextuais: palavras diferentes com significados semelhantes podem ter vetores completamente diferentes.

Representação densa e vetores de palavras: as palavras com significados semelhantes têm vetores próximos no espaço de vetores. Essa representação captura melhor as relações semânticas e permite operações matemáticas entre os vetores de palavras.

Redução da dimensionalidade: Os vetores são geralmente de tamanho fixo, independentemente do tamanho do vocabulário, o que torna mais eficiente em termos computacionais e lida melhor com problemas de alta dimensionalidade..

Modelo Naive Bayes Gaussiana (word2vec)

Classifica dados numéricos contínuos; calcula a probabilidade de pertencer a cada classe. É simples de implementar e pode funcionar bem em muitos casos, embora faça a simplificação de assumir independência entre os atributos.

Resultados:

Acurácia: 0,81

Modelo RNN (Word2Vec)

Modelo de aprendizado de máquina usado para **processar dados sequenciais**, como texto ou séries temporais. Ele possui **conexões em loop**, permitindo que **informações anteriores influenciem as próximas etapas**. Isso o torna adequado para capturar dependências de longo prazo em sequências.

Resultados:

Acurácia: 0,75

Modelo Embedding Layer (Word2Vec)

Parte de uma **rede neural** que mapeia palavras ou itens em um espaço vetorial de dimensão reduzida. Ela representa **cada palavra** ou item por meio de **um vetor** denso. Essa representação permite que o modelo **capture relações semânticas** e contextuais entre as palavras.

Resultados:

Acurácia: 0,81

Próximos Passos

Testar com novos hiperparâmetros e features.

Aprimorar resultados

Investigação de novos Modelos

Cronograma Projeto

CRONOGRAMA		
1	Recebimento da base de dados;	CONCLUÍDO
2	Validação de Premissas;	CONCLUÍDO
3	Entendimento dos dados;	CONCLUÍDO
4	Pré-processamento dos dados;	CONCLUÍDO
5	Modelagem - Modelo de Bag of Words;	CONCLUÍDO
6	Modelo Word2Vec Análise de sentimentos;	EM ANDAMENTO
7	Prototipagem da interface;	PENDENTE
8	Criação do back-end;	PENDENTE
9	Deploy do melhor modelo;	PENDENTE
10	Entrega Final;	PENDENTE

TIME

Dayllan de Souza Alho

Eric Tachdjian

Gabriela de Morais Silva

GiovannaFurlan Torres

Lucas de Britto

Michel Mansur

Obrigado(a)!

Estamos disponíveis para maiores esclarecimentos.

