

Algorithmical Geometry: Delaunay Triangulation

Markus Pawellek

January 16, 2022

Outline

Introduction

Mathematical Preliminaries

Geometric Primitives

Data Structure

Algorithm

Implementation

Applications

Conclusions

 $[\]verb|^*https://upload.wikimedia.org/wikipedia/commons/b/b8/Approx-3tori.svg, December 29, 2021| \\$

^{*}https://upload.wikimedia.org/wikipedia/commons/b/b8/Approx-3tori.svg, December 29, 2021

Educational Problems:

Many Resources

- ▶ Many Resources
- Duality to Voronoi Diagrams

- Many Resources
- Duality to Voronoi Diagrams
- Multiple Algorithm Types: Incremental, Sweepline, Divide-and-Conquer

- Many Resources
- Duality to Voronoi Diagrams
- Multiple Algorithm Types: Incremental, Sweepline, Divide-and-Conquer
- Varying Data Structures

1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
- 2014 Fuetterling, Lojewski, and Pfreundt, "High-Performance Delaunay Triangulation for Many-Core Computers"

- 1980 Lee and Schachter, "Two Algorithms for Constructing a Delaunay Triangulation"
- 1985 Guibas and Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams"
- 1987 Dwyer, "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations"
- 1996 Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
- 2014 Fuetterling, Lojewski, and Pfreundt, "High-Performance Delaunay Triangulation for Many-Core Computers"

Mathematical Preliminaries

Mathematical Preliminaries: Triangle and Circumcircle

Triangle

 $A,B,C\in\mathbb{R}^2$ affinely independent define vertices of a triangle.

Mathematical Preliminaries: Triangle and Circumcircle

Triangle

 $A,B,C\in\mathbb{R}^2$ affinely independent define vertices of a triangle.

Circumcircle

Circle that intersects with all vertices of the triangle.

Mathematical Preliminaries: Point Set

Point Set

 $\mathcal{V}\subset\mathbb{R}^2$ finite, $\#\mathcal{V}\geq 3$, affinely span \mathbb{R}^2

Mathematical Preliminaries: Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over V such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over \mathcal{V} such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Mathematical Preliminaries: Delaunay Triangulation

Point Set

 $\mathcal{V} \subset \mathbb{R}^2$ finite, $\#\mathcal{V} \geq 3$, affinely span \mathbb{R}^2

Triangulation

Planar straight-line graph over V such that its edges form a maximal subset of non-crossing edges.

Delaunay Triangulation

Circumcircle of any triangle contains no other points of V.

Optimality: maximization of the minimum angle of all angles

- Optimality: maximization of the minimum angle of all angles
- Convex hull is contained

- Optimality: maximization of the minimum angle of all angles
- Convex hull is contained
- Voronoi diagram is the dual

Mathematical Preliminaries: Properties of Delaunay Triangulation

- Duality to Voronoi Diagram (also useful for proofs)
- always exists -> proof
- ▶ If no points are cocircular, unique -> proof
- optimality: maximization of the minimum angle of all angles -> proof,
 reason why delaunay is good
- boundary is convex hull

Geometric Primitives

10/21

Counterclockwise Order \iff C is left of \overline{AB}

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix} = \begin{vmatrix} B_x - A_x & B_y - A_y \\ C_x - A_x & C_y - A_y \end{vmatrix}$$

Counterclockwise Order
$$\iff$$
 C is left of \overline{AB}

$$0 < \begin{vmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ C_x & C_y & 1 \end{vmatrix} = \begin{vmatrix} B_x - A_x & B_y - A_y \\ C_x - A_x & C_y - A_y \end{vmatrix} = \det \left(B - A - C - A \right)$$

Geometric Primitives: Inside Circumcircle

Geometric Primitives: Inside Circumcircle

$$0 < \begin{vmatrix} A_x & A_y & A_x^2 + A_y^2 & 1 \\ B_x & B_y & B_x^2 + B_y^2 & 1 \\ C_x & C_y & C_x^2 + C_y^2 & 1 \\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{vmatrix}$$

Data Structure

Edge-Based List-Like Data Structure:

Directed edges for vertices

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces
- Pointer to ccw. next directed dual edge with same origin face

- Directed edges for vertices
- Pointer to ccw. next directed edge with same origin vertex
- Directed dual edges for adjacent faces
- Pointer to ccw. next directed dual edge with same origin face

Data Structure: Quad-Edge Implementation


```
struct edge {
    size_t next;
    size_t data;
};

struct quad_edge {
    edge data[4];
};

vector<vertex> vertices{};
vector<quad_edge> quad_edges{};
vector<size_t> free_edges{};
```


Data Structure: Quad-Edge Implementation

Data Structure: Quad-Edge Functions

Data Structure: Quad-Edge Operations

- edge functions
- create edge
- splice
- connect
- ▶ delete edge

Algorithm

Triangulation Algorithm

1. Sort the given point set by increasing \boldsymbol{x} coordinate.

Triangulation Algorithm

- 1. Sort the given point set by increasing \boldsymbol{x} coordinate.
- 2. Triangulate sorted point set.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

Subroutine: Triangulate

1. If point count is smaller than four, make edge or triangle and return.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

- 1. If point count is smaller than four, make edge or triangle and return.
- 2. Split point set into left and right half.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

- 1. If point count is smaller than four, make edge or triangle and return.
- 2. Split point set into left and right half.
- 3. Triangulate left and right half.

Triangulation Algorithm

- 1. Sort the given point set by increasing x coordinate.
- 2. Triangulate sorted point set.

- 1. If point count is smaller than four, make edge or triangle and return.
- 2. Split point set into left and right half.
- 3. Triangulate left and right half.
- 4. Merge left and right triangulations.

Subroutine: Merge Triangulations

1. Compute and add lower common tangent.

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:
 - 3.1 Remove invalid edges adjacent to and above baseline.

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:
 - 3.1 Remove invalid edges adjacent to and above baseline.
 - 3.2 Insert cross edge above baseline.

- 1. Compute and add lower common tangent.
- 2. Use lower common tangent as baseline.
- 3. Loop until baseline becomes upper common tangent:
 - 3.1 Remove invalid edges adjacent to and above baseline.
 - 3.2 Insert cross edge above baseline.
 - 3.3 Make this cross edge the new baseline.

Algorithm: Correctness 19/21

Algorithm: Complexity 20/21

Implementation

Implementation

 Geometric Primitives need exact computation and therefore arbitrary precision

Applications

Conclusions

Thank you for Your Attention!

References

nn 203_222 HBF https:

(1)	D. T. Lee and B. J. Schachter. "Two Algorithms for Constructing a Delaunay Triangulation". In: International Journal of Computer and Information Sciences 9 (1980), pp. 219–242. DOI: 10.1007/BF00977785.	(7)	D. F. Watson. "Computing the n -Dimensional Delaunay Tessellation with Application to Voronoi Polytopes". In: The Computer Journal 24 (1981), pp. 167–172. DOI: $10.1093/\text{comjnl}/24.2.167$.
(2)	Leonidas Guibas and Jorge Stolfi. "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams". In: ACM Transactions on Graphics 4 (April 1985), pp. 74–123. DOI: 10.1145/j.com.10.2003	(8)	A. Bowyer. "Computing Dirichlet Tessellations". In: <i>The Computer Journal</i> 24 (1981), pp. 162–166. DOI: 10.1093/comjnl/24.2.162.
	10.1145/282918.282923. urt.: http://sccg.sk/-samuelcik/dgs/quad_edge.pdf (visited on 11/07/2020).	(9)	(9) Christoph Burnikel. <i>Delaunay Graphs by Divide and Conquer.</i> 1998. URL: https://pure.mpg.de/rest/items/ item_1819432_4/component/file_2599484/content
(3)	Rex A. Dwyer. "A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations". In:		(visited on 11/07/2020).
	Algorithmica 2 (November 1987), pp. 137–151. DOI: 10.1007/BF01840356.	(10)	P. Cignoni, C. Montani, and R. Scopigno. "DeWall: A Fast Divide-and-Conquer Delaunay Triangulation Algorithm
(4)	Jonathan Richard Shewchuk. "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator".		in E ^{d.*} . In: Computer-Aided Design 30 (1998), pp. 333–341. doi: 10.1016/S0010-4485(97)00082-1;
	In: Applied Computational Geometry: Towards Geometric Engineering. Ed. by Ming C. Lin and Dinesh Manocha. Vol. 1148. Lecture Notes in Computer Science. From the First ACM Workshop on Applied Computational Geometry. Springer-Verlag, May 1996,	(11)	Jyrki Katajainen and Markku Koppinen. "Constructing Delaunay Triangulations by Merging Buckets in Quad-Tree Order". In: Fundamenta Informaticae 11 (April 1988), pp. 275–288.