

Курс "Машинное обучение" Лабораторная работа

Binary confusion matrix based measures

Сорокин С.В., М16-524 Вариант 1-08

Исходные данные

Дано:

Два класса данных:

50 – Положительные примеры

300 – Отрицательные примеры

Результат работы классификатора на каждом примере в виде числа score

Задача:

Оценить качество классификации

Исходные данные

. Рисунок 1. Диаграмма рассеяния для исходных данных

Таблица сопряженности:

		Ответ классификатора	
		Отрицательный	Положительный
Исходные значения	Отрицательный	TN	FP
	Положительный	FN	TP

$$ERROR \ RATE = \frac{FP + FN}{P + N}$$
 FP TN positive (P) negative (N)

$$ACCURACY = \frac{TP + TN}{P + N}$$

TP

positive (P)

negative (N)

$$SENSITIVITY = \frac{TP}{P}$$

$$SPECIFICITY = \frac{TN}{N}$$
The positive (P)
negative (N)

$$PRECISION = \frac{TP}{TP + FP}$$

$$FALL\ OUT = \frac{FP}{N}$$

$$F_{\beta} = \frac{(1+\beta^2)*PREC*SENS}{\beta^2*PREC+SENS}$$

$$Kappa = \frac{ACC - ACC_0}{1 - ACC_0}$$

$$ACC_0 = \frac{TN + FN}{P + N} * \frac{TN + FP}{P + N} + \frac{TP + FP}{P + N} * \frac{TP + FN}{P + N}$$

Задание 1. Таблица сопряженности

		Ответ классификатора	
		Отрицательный	Положительный
Исходные значения	Отрицательный	TN = 295	FP = 5
	Положительный	FN = 18	TP = 32

Задание 2. Расчет основных показателей

Показатель	Значение
ERR	0.066
ACC	0.934
SENS	0.640
SPEC	0.983
PRE	0.865
FALL	0.017
F_1	0.736
KAPPA	0.737

Задание 3.

Рисунок 2. График зависимости $F_{\beta}(\beta)$

Задание 4.

Рисунок 3. График зависимости чувствительности от объема выборки $N \in (4;350]$

Рисунок 4. График зависимости специфичности от объема выборки $N \in (4;350]$

Задание 5. Инвертирование классов

Показатель	Исходное	Инвертированное
ERR	0.066	0.934
ACC	0.934	0.066
SENS	0.640	0.017
SPEC	0.983	0.360
PRE	0.865	0.135
FALL	0.017	0.640
F_1	0.736	0.030
KAPPA	0.737	-0.051

Выводы

- 1. Предложенный классификатор имеет неплохую точность и низкую степень ошибки
- 2. Классификатор обладает высокими значениями сбалансированных оценок F-score и Карра
- 3. Графики зависимости чувствительности и специфичности показывают, что размер выборки не следует брать меньше 275
- 4. При инвертировании классов классификатор оказывается полностью неработоспособным