• • Discrete distributions

Four important discrete distributions:

- 1. The Uniform distribution (discrete)
- 2. The Binomial distribution
- 3. The Hyper-geometric distribution
- 4. The Poisson distribution

Uniform distribution Definition

Experiment with *k* equally likely outcomes.

Definition:

Let X: $S \rightarrow R$ be a discrete random variable. If

$$P(X_1 = x_1) = P(X_2 = x_2) = \cdots P(X_k = x_k) = \frac{1}{k}$$

then the distribution of X is the (discrete) uniform distribution.

Probability function:

$$f(x:k) = \frac{1}{k}$$
 for $x = x_1, x_2, ..., x_k$

(Cumulative) distribution function:

$$F(x;k) = \frac{x}{k}$$
 for $x = x_1, x_2, ..., x_k$

Uniform distribution Example

Example: Rolling a dice

X: # eyes

Mean value:

$$E(X) = \frac{1+2+3+4+5+6}{6} = 3.5$$

variance:
$$(1-3.5)^2 + ... + (6-3.5)^2$$

Var(X) = $\frac{35}{12}$

Probability function:

Distribution function:

$$f(x;k) = \frac{1}{6}$$
 for $x = 1,2,...,6$
 $F(x;6) = \frac{x}{6}$ for $x = 1,2,...,6$

$$F(x; 6) = \frac{x}{6}$$
 for $x = 1, 2, ..., 6$

Uniform distribution Mean & variance

Theorem:

Let X be a uniformly distributed with outcomes $x_1, x_2, ..., x_k$ Then we have

• mean value of X:
$$E(X) = \mu = \frac{\sum_{i=1}^{k} X_i}{k}$$

• variance af X:
$$Var(X) = \frac{\sum_{i=1}^{k} (x_i - \mu)^2}{k}$$

Binomial distribution Bernoulli process

Repeating an experiment with *two* possible outcomes.

Bernoulli process:

- 1. The experiment consists in repeating the same trial *n* times.
- 2. Each trial has two possible outcomes: "success" or
- "failure", also known as Bernoulli trial.
- 3. P("succes") = p is the same for all trials.
- 4. The trials are independent.

Binomial distribution Bernoulli process

Definition:

Let the random variable X be the number of "successes" in the n Bernoulli trials.

The distribution of X is called the binomial distribution.

Notation: $X \sim bin(n,p)$

Binomial distribution Probability & distribution function

Theorem:

If $X \sim bin(n,p)$, then X has probability function

$$b(x; n, p) = P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, 2, ..., n$$

$$\frac{n!}{x!(n-x)!}$$

and distribution function

$$B(x; n, p) = P(X \le x) = \sum_{t=0}^{x} b(t; n, p), \quad x = 0, 1, 2, ..., n$$
 (See Table A.1)

Binomial distribution Problem

LEGO has a policy of discarding a batch of bricks if they do not fulfil LEGO's "quality control":

- A sample of 20 LEGO bricks is taken: If one or more bricks are defective, the entire batch is discarded.
- Assume the batch contains 10% defective bricks.
- 1. What is the probability that the entire batch is discarded?
- 2. What is the probability that at most 3 bricks are defective?

Binomial distribution Mean & variance

Theorem:

If $X \sim bin(n,p)$, then

mean of X:

$$E(X) = np$$

variance of X:

$$Var(X) = np(1-p)$$

Example continued:

What is the expected number of defective bricks?

Binomial distribution Tables and MATLAB

Appendix A of [W], Table A.1

	r		9						
n		0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70
20	0	0.1216	0.0115	0.0032	0.0008	0.0000			
	1	0.3917	0.0692	0.0243	0.0076	0.0005	0.0000		
	2	0.6769	0.2061	0.0913	0.0355	0.0036	0.0002		
	3	0.8670	0.4114	0.2252	0.1071	0.0160	0.0013	0.0000	
	4	0.9568	0.6296	0.4148	0.2375	0.0510	0.0059	0.0003	
	5	0.9887	0.8042	0.6172	0.4164	0.1256	0.0207	0.0016	0.000
	6	0.9976	0.9133	0.7858	0.6080	0.2500	0.0577	0.0065	0.000

In MATLAB:
binopdf (X,N,P) =
$$\binom{N}{X} P^X (1-P)^{N-X}$$

binocdf (X,N,P) =
$$\sum_{x=0}^{X} \binom{N}{x} P^x (1-P)^{N-x}$$

Hyper-geometric distribution Hyper-geometric experiment

Hyper-geometric experiment:

- 1. *n* elements chosen from *N* elements without replacement.
- 2. *k* of these *N* elements are "successes" and *N-k* are "failures"

Notice!! Unlike the binomial distribution the selection is done without replacement and the experiments and not independent.

Often used in quality control.

Hyper-geometric distributionDefinition

Definition:

Let the random variable X be the number of "successes" in a hyper-geometric experiment, where n elements are chosen from N elements, of which k are "successes" and N-k are "failures".

The distribution of X is called the hyper-geometric distribution.

Notation: $X \sim \text{hypergeo}(N, n, k)$

Hyper-geometric distribution Probability & distribution function

Theorem:

If $X \sim \text{hypergeo}(N, n, k)$, then X has probability function

$$h(x; N, n, k) = P(X = x) = \frac{\binom{k}{x} \binom{N - k}{n - x}}{\binom{N}{n}}, \quad x = 0, 1, 2, \dots, n$$
Stribution function

and distribution function

$$H(x; N, n, k) = P(X \le x) = \sum_{t=0}^{x} h(t; N, n, k), \quad x = 0, 1, 2, ..., n$$

Hyper-geometric distributionProblem

Toy 'R' Us receives a shipment of 40 LEGO bricks. The shipment is unacceptable if 3 or more bricks are defective.

Sample plan: take 5 bricks. If at least one brick is defective the entire shipment is rejected.

Is this a good sample plan?

Hyper-geometric distribution Mean & variance

Theorem:

If $X \sim \text{hypergeo}(N, n, k)$, then

• mean of X:

$$E(X) = \frac{n \, k}{N}$$

variance of X:

$$Var(X) = \frac{N-n}{N-1} n \frac{k}{N} \left(1 - \frac{k}{N} \right)$$

Hyper-geometric distribution MATLAB

There are no tables in [W]

In MATLAB:
hygepdf (X,M,K,N) =
$$\frac{\binom{K}{X}\binom{M-K}{N-X}}{\binom{M}{N}}$$

hygecdf (X,M,K,N) =
$$\sum_{x=0}^{X} \frac{\binom{K}{M} \binom{M-K}{N-x}}{\binom{M}{N}}$$

Poisson distributionPoisson process

Experiment where events are observed during a time interval.

Poisson process:

- 2. Probability of 1 event in a short time interval [a, a + ϵ] is proportional to ϵ .
- 3. The probability of more then 1 event in the short time interval is close to 0.

Poisson distributionDefinition

Definition:

Let the random variable X be the number of events in a time interval of length t from a Poisson process, which has on average λ events pr. unit time.

The distribution of X is called the Poisson distribution with parameter $\mu = \lambda t$.

Notation: $X \sim \text{Pois}(\mu)$, where $\mu = \lambda t$

Poisson distribution Probability & distribution function

Theorem:

If $X \sim \text{Pois}(\mu)$, then X has probability function

$$p(x; \mu) = P(X = x) = \frac{e^{-\mu} \mu^x}{x!}, \quad x = 0, 1, 2, \dots$$

and distribution function

$$P(x; \mu) = P(X \le x) = \sum_{t=0}^{x} p(t; \mu), \quad x = 0, 1, 2, ...$$
 (see Table A2)

Poisson distribution Examples

Some examples of $X \sim Pois(\mu)$:

Poisson distribution Mean & variance

Theorem:

If $X \sim Pois(\mu)$, then

mean of X:

$$E(X) = \mu$$

variance of X:

$$Var(X) = \mu$$

Poisson distribution Tables and MATLAB

Appendix A of [W], Table A.2

Table A.2 Poisson Probability Sums
$$\sum_{x=0}^{r} p(x; \mu)$$

r					μ		
	1.0	1.5	2.0	2.5	3.0	3.5	4.0
0	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.018
1	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.091
2 ,	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.238
3	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.433
4	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.628
5	0.9994	0.9955	0.9834	0.9580	$0.\overline{9161}$	0.8576	0.785
6	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.889

In MATLAB:

poisspdf (X, lambda) =
$$\frac{e^{-\lambda} \lambda^{X}}{X!}$$

poisscdf (X, lambda) = $\sum_{x=0}^{X} \frac{e^{-\lambda} \lambda^{X}}{x!}$

$$poisscdf(X,lambda) = \sum_{x=0}^{X} \frac{e^{-x} \lambda^{x}}{x!}$$

Poisson distributionProblem

- **Politiken.dk** has done some research: On weekdays before noon an average of 3 clients enters their website per minute.
- 1. What is the probability that exactly 2 clients enter during the time interval 11.38 11.39 (i.e. one minute)
- 2. What is the probability that at least 2 clients enter in the interval above?
- 3. What is the probability that at least 10 clients enter the site in the time interval 10.05 10.10?