Report for the Markov model (cohort state-transition model)

2020.12.20

Results from the paper

These two tables are from the result part of the paper by Yaqin Si.

Table 1: Increased QALY with no screening

	est	LB	UB
strategy1	498	103	894
strategy2	691	233	194
strategy3	654	105	1108

 Table 2: Prevent CVD events

 est
 LB
 UB

 strategy1
 298
 155
 441

 strategy2
 374
 181
 567

 strategy3
 346
 154
 538

Part I. General population (without CVD)

Markov model

%latex table generated in R3.6.3 by xtable 1.8-4 package % Fri Jan 01 23:12:51 2021

Table 3: Data from Global Health Data Exchange

	Index	sex	rate_incidence_CVD	$rate_death_CVD$	rate_death_nonCVD
1	40	male	0.003888	0.000819	0.002494
2	45	male	0.006729	0.001340	0.003399
3	50	$_{\mathrm{male}}$	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	male	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
14	70	female	0.033907	0.013398	0.014907

```
## General setup
source("./function/transform_func.R")
rate_data <- rate_data[1:7,]</pre>
n t <- 10 # time horizon, number of cycles
# S1: live; S2: cvd; S3: cvdth; S4: oth death
v_names_states <- c("S1", "S2", "S3", "S4")</pre>
n_states <- length(v_names_states) # number of health states</pre>
v_names_str <- c("Strategy0", "Strategy1", "Strategy2", "Strategy3") # store the strategy names
           <- length(v names str)</pre>
                                          # number of strategies
# Utilities: for calculation of QALY
out_cvd_free <- 1  # utility when being S1</pre>
out_cvd <- 0.9 # utility when being S2</pre>
out_dth <- 0 # utility when being S3 and S4 together
out_trans_to_cvd <- -0.038
                             # TODO
p_live_oth_death <- rate_to_prob(r=rate_data$rate_death_nonCVD,t = 1)</pre>
p_live_cvd <- rate_to_prob(r=rate_data$rate_incidence_CVD, t=1)</pre>
p_live_cvdth <- rate_to_prob(r=rate_data$rate_death_CVD, t=1)</pre>
# transition probability from S2 to S3
p_ccvd_acvd <- rate_to_prob(rate_data$rate_incidence_CVD*HR_cvdhistory_cvd, t=1)</pre>
p_ccvd_cvdth <- rate_to_prob(rate_data$rate_death_CVD*HR_cvdhistory_cvdth,t=1)</pre>
```

```
set.seed(100)
p_acvd_cvdth <- rep(runif(1,min=0.02,max=0.1),length=length(p_live_cvd))</pre>
```

Component 1: A transition probability matrix P_t

$$P_{t} = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$

For example, the transition matrix for the cohort is P_1 :

a_P["S4", "S4", 6:10] <- 1

```
 \begin{cases} p_{[1,1,1]} & p\_live\_cvd* (1-p\_acvd\_cvdth) & p\_live\_cvdt+p\_live\_cvd* p\_acvd\_cvdth \\ 0 & 1-(p\_ccvd\_cvdth+p\_ccvd\_acvd* p\_acvd\_cvdth) - p\_live\_oth\_death & p\_ccvd\_cvdth+p\_ccvd\_acvd* p\_acvd\_cvdth \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{cases}
```

```
#### Create transition arrays ####
a P \leftarrow array(0, dim) = c(n states, n states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
## From S1
a_P["S1", "S1", 1:5] <-1-(p_live_cvd[1]*(1-p_acvd_cvdth[1]) + p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1]
a_P["S1", "S2", 1:5] <- p_live_cvd[1]*(1-p_acvd_cvdth[1])
a_P["S1", "S3", 1:5] <- p_live_cvdth[1]*p_live_cvd[1]*p_acvd_cvdth[1]
a_P["S1", "S4", 1:5] <- p_live_oth_death[1]
## From S2
a_P["S2", "S1", 1:5] <- 0
a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[1]-(p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1])
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[1]+p_ccvd_acvd[1]*p_acvd_cvdth[1]
# TODO: cvd people to death of other reasons (P3)
a_P["S2", "S4", 1:5] <- p_live_oth_death[1]
#1 - (p_ccvd_acvd[1] + p_ccvd_cvdth[1])
## From S3
a_P["S3", "S3", 1:5] <- 1
## From S4
a P["S4", "S4", 1:5] <- 1
# From S1
a_P["S1", "S1", 6:10] <- 1-(p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1]) + p_live_cvdth[1+1]*p_live_cvd[1+1]*
a_P["S1", "S2", 6:10] <- p_live_cvd[1+1]*(1-p_acvd_cvdth[1+1])
a_P["S1", "S3", 6:10] <- p_live_cvdth[1+1]*p_live_cvd[1+1]*p_acvd_cvdth[1+1]
a_P["S1", "S4", 6:10] <- p_live_oth_death[1+1]</pre>
## From S2
a_P["S2", "S1", 6:10] <- 0
a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[1+1]-(p_ccvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1])
a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[1+1]+p_ccvd_acvd[1+1]*p_acvd_cvdth[1+1]
# TODO: cvd people to death of other reasons
# p_live_oth_death != p_cvd _oth_death (P3)
a_P["S2", "S4", 6:10] <- p_live_oth_death[1+1]
## From S3
a_P["S3", "S3", 6:10] <- 1
## From S4
```

Component 2: A cohort trace matrix M

```
#### Run Markov model ####
## Initial state vector
# All starting healthy
v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
## Initialize cohort trace for cSTM
m_M \leftarrow matrix(0,nrow = (n_t + 1), ncol = n_states,
             dimnames = list(0:n_t, v_names_states))
m_M[1, ] \leftarrow v_s_{init}
## Iterative solution of cSTM
for(t in 1:5){
 ## Fill in cohort trace
 m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
rowSums(m_M)
## 0 1 2 3 4 5 6 7 8 9 10
## 1 1 1 1 1 1 0 0 0 0
for(t in 6:10){
 ## Fill in cohort trace
m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
}
rowSums(m_M)
## 0 1 2 3 4 5 6 7 8 9 10
## 1 1 1 1 1 1 1 1 1 1 1
plot_trace(m_M)
```


Figure 1: For the group male aging from 40-45

```
HR_l_stg1
            <- 0.63
HR_m_stg1
            <- 1.56
HR_h_stg1
            <- 1.6
HR_l_stg2
            <- 0.43
HR_m_stg2
            <- 0.97
HR_h_stg2
            <- 2.06
HR_1_stg3
            <- 0.45
            <- 1.09
HR_m_stg3
HR_h_stg3
            <- 2.11
# lifestyle intervention for medium risk and above
HR_smk_cvd <- 0.85
                <- 0.72
HR_smk_cvdth
HR_salt_cvd <- 0.81</pre>
HR_salt_cvdth
                <- 0.66
HR_wtc_cvd <- 0.93
HR_wtc_dth <- 0.93
# treatment intervention for high risk (additional)
HR_hpt_lip_cvd <- 0.7</pre>
HR_hpt_lip_cvdth <- 0.82</pre>
```

```
## For strategy 1
# transition probability to cvd
p_live_cvd_l <- ProbFactor(p_live_cvd,HR_l_stg1)
p_live_cvd_m <- ProbFactor(p_live_cvd,HR_m_stg1*</pre>
```

	Tab	ole 4: Incidence rate	
Item		CVD incidence(HR)	CVD cause-specific mortality (HR)
	Low risk	0.63	1
Strategy 1	Medium risk	1.56	1
	High risk	1.6	1.7
Strategy 2	Low risk	0.43	1
	Medium risk	0.97	1
	High risk	2.06	1.7
Strategy 3	Low risk	0.63	1
	Medium risk	1.09	1
	High risk	2.11	1.7
Intervention	Weight control	0.93	0.93
	Smoke cession	0.85	0.72
	Salt reduction	0.81	0.66
Medication	Statin and antihypertensive	0.7	0.82

	Table 5: Transition probability matrix for Strategy 1				
$p_{[1,1,t]}$	$p_live_cvd_l$	$p_live_cvdth_l$	$p_live_oth_death_l$		
0	p_ccvd_acvd	p_ccvd_cvdth	$p_live_oth_death$		
0	0	0	0		
0	0	0	0		
$p_{[1,1,t]}$	$p_live_cvd_m$	$p_live_cvdth_m$	$p_live_oth_death_m$		
0	p_ccvd_acvd	p_ccvd_cvdth	$p_live_oth_death$		
0	0	0	0		
0	0	0	0		
$p_{[1,1,t]}$	$p_live_cvd_h$	$p_live_cvdth_h$	$p_live_oth_death_h$		
0	p_ccvd_acvd	p_ccvd_cvdth	$p_live_oth_death$		
0	0	0	0		
0	0	0	0		

```
# lifestyle intervention
                              HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd)
p_live_cvd_h <- ProbFactor(p_live_cvd,HR_h_stg1*</pre>
                              # lifestyle intervention
                              HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth*
                              HR_hpt_lip_cvdth) # treatment intervention
# transition probability to death
p_live_cvdth_l <- ProbFactor(p_live_cvdth,1)</pre>
p_live_cvdth_m <- ProbFactor(p_live_cvdth,1*</pre>
                                 # lifestyle intervention
                                HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd)
p_live_cvdth_h <- ProbFactor(p_live_cvdth,1.7*</pre>
                                 # lifestyle intervention
                                HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth*
                                HR_hpt_lip_cvdth) # treatment intervention
# again get cvd
p_ccvd_acvd <- ProbFactor(p_live_cvd, HR_cvdhistory_cvd)</pre>
p_ccvd_cvdth <- ProbFactor(p_live_cvdth,HR_cvdhistory_cvdth)</pre>
```