第7回 気体の性質 完全気体から実在気体の理解へ

- 7.1 完全気体
 - ●完全気体とは?
 - ●状態方程式
- 7.2 実在気体
 - ●分子間相互作用
 - ●圧縮因子
 - ●ビリアル方程式
 - ●ファンデルワールスの式
 - ●対応状態の原理

アトキンス 物理化学

等温線

7.1 完全気体

●完全気体 (perfect gas) (理想気体)

仮定(1) 分子の大きさは無視

仮定(2) 完全な弾性衝突 (並進運動エネルギー保存)

仮定(3) 衝突以外の相互作用なし

●完全気体の状態方程式

$$pV = nRT$$

$$pV_{\rm m} = RT$$

R: 気体定数 8.314 JK⁻¹mol⁻¹ V_m: モル体積

- ■標準環境温度と圧力(SATP) 298.15 K 1 bar (10⁵ Pa) $V_{\rm m}$ = 24.8 dm³ mol⁻¹ standard ambient temperature and pressure
- ・標準温度と圧力(STP) 0 °C 1 bar (10^5 Pa) $V_{\rm m}$ = $22.7 \text{ dm}^3 \text{ mol}^{-1}$ standard temperature and pressure

7.2 実在気体

●分子間相互作用 反発力と引力

・レナードージョーンズ (Lennard-Jones) 型6-12ポテンシャル

$$U(r) = 4\varepsilon \left\{ \left[\frac{\delta}{r} \right]^{12} - \left[\frac{\delta}{r} \right]^{6} \right\}$$
 δ : 分子直径 ε : 極小値のエネルギー

ムーア 基礎物理化学

● 圧縮因子(compressibility factors) Z

アトキンス 物理化学

Z<1:完全気体より圧縮容易→

Z>1:完全気体より圧縮困難→

●ビリアル方程式 (virial equation)

$$pV_{\rm m} = RT \left[1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots \right]$$

$$pV_{\rm m} = RT \left[1 + B'p + C'p^2 + \dots \right]$$

B, B': 第2ビリアル係数 (温度の関数)

C, C': 第3ビリアル係数 (温度の関数)

 $B/(\mathrm{cm}^3 \mathrm{mol}^{-1})$

	温度	
	273 K	600 K
Ar	-21.7	11.9
CO_2	-149.7	-12.4
N_2	-10.5	21.7
Xe	-153.7	-19.6

●ファンデルワールスの式

$$p = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$

$$p = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m}^2}$$

- (1) パラメータ $b / \text{dm}^3 \cdot \text{mol}^{-1}$ 分子による排除体積 $\propto n$
- (2) パラメータ $a / \text{atm} \cdot \text{dm}^6 \cdot \text{mol}^{-2}$ 分子間引力による壁面への圧力低下 衝突頻度 $\propto [密度]^2 = [n/V]^2 = V_{\text{m}}^{-2}$

a,b:ファンデルワールス定数

・ 臨界定数 と *a*, *b*

$$V_{\rm m_c} = 3b$$
 $p_{\rm c} = \frac{a}{27b^2}$ $T_{\rm c} = \frac{8a}{27Rb}$

演習1. 1.0 molのArが完全気体(a)およびファンデルワールス気体(b)としてふるまうと考える。0℃で22.4 dm³の容器に入っている場合(a)、あるいは、1000Kで100 cm³の容器に入っている(b)の場合、それぞれの圧力を求めよ。

演習2. ある気体の圧縮因子が、300K、20 barで0.86であった。

- (a) この時の気体のモル体積を示せ。
- (b) 300Kにおける第2ビリアル係数の概略値を求めよ。

●圧力と温度の影響

凝縮気体Aを圧縮CDEで大きな変化

・臨界点 この点を境に

臨界定数

 $T_{\rm c}$: 臨界温度

 $p_{\rm c}$: 臨界圧力

 V_c : 臨界モル体積

	p _c /atm	$V_{\rm c}/({\rm cm}^3{\rm mol}^{-1})$	T _c /K
Ar	48.00	75.25	150.72
CO_2	72.85	94.0	304.2
Не	2.26	57.76	5.21
O_2	50.14	78.0	154.8

CO₂の V_m-p 等温線

アトキンス 物理化学

●対応状態の原理

臨界定数を用い T, P, V_mを無次元化

換算温度 $T_r = T/T_c$ 換算圧力 $p_{\rm r} = p/p_{\rm c}$

| 換算温度
$$T_{
m r}=T/T_{
m c}$$
| 換算圧力 $p_{
m r}=p/p_{
m c}$ | 換算モル体積 $V_{
m r}=V_{
m m}/V_{
m mc}$ |

$$p_{\rm r} = \frac{8T_{\rm c}}{3V_{\rm r} - 1} - \frac{3}{V_{\rm r}^2}$$

アトキンス 物理化学

この温度では, p* の圧力で Vm,L* の液体 E と Vm,G* の蒸気 B が

