COMP 335: Introduction to Theoretical Computer Science

Assignment 2

Nathan Grenier

October 6, 2024 Fall 2024

- 1. [20 Points] For each of the following languages over the alphabet $\Sigma = \{a, b\}$ give an NFA (as a transition diagram) with the specified number of states. *Hint*: try simplifying a DFA and/or use λ transitions.
 - (a) The language $\{a^n : n \ge 0\} \cup \{b^n a : n \ge 1\}$ with at most 4 states.

Solution:

(b) The language $\{w: w \text{ either has no consecutive a's or no consecutive b's}\}$ with at most 5 states.

(c) The language $\{w:w \text{ contains an even number of a's or exactly two b's}\}$ with at most 6 states.

Solution:

(d) The language $\{ab, aab, aba\}^*$ with at most 4 states.

2. [20 Points] Let $\Sigma = \{a, b\}$. Convert each NFA below to a DFA using the subset construction. Draw the transition diagram of your DFA, label the states of your DFA by subset of states of the original NFA.

a)

Solution: Note: States with "null" in them represent the empty set (\emptyset) .

b)

- 3. [20 Points] Find a regular expression for each of the following languages.
 - (a) $\{ba^nb^m : n \ge 3, m \ge 2\}$

Solution:

$$r = b(aaa)a^*(bb)b^*$$

(b) $\{w \in \{a,b\}^* : \text{every maximal substring of } w \text{ consisting entirely of symbols } a$ is of length exactly $3\}$

Solution:

$$r = b^* + (b^*(aaa)b^*)^*$$

(c) $\{w \in \{a,b\}^* : w \text{ does not contain } bab \text{ as a substring}\}$

Solution:

$$r = (a + bb^*aa)^*(\lambda + bb^* + bb^*a)$$

(d) $\{w \in \{a, b\}^* : w \text{ begins with } bb \text{ and } n_b(w) \text{ mod } 3 = 0\}$

$$r = bb(a^*(b)a^*)(a^*(b)a^*(b)a^*(b)a^*)^*$$