Bordered Hessian Matrix 1. Recall:

A Hessian Matrix is a matrix of all second-order partial derivatives and it is used to determine if a critical point is a local min, local max or saddle point.

2. Def:

(

A Bordered Hessian Matrix, denoted by H, is used to determine if a constrained crit point is a local min or local max.

3. Thm:

Let $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ and $g: U \subset \mathbb{R}^2 \to \mathbb{R}$ be smooth (at least C^2) functions. Let $V_0 \in U$, $g(V_0) = C$ and S be the level curve for g with value C. Assume that $\nabla g(V_0) \neq 0$ and that there is a real number λ s.t. $\nabla f(V_0) = \lambda \nabla g(V_0)$.

Let $L = f - \lambda 9$. Then, the Bordered Hessian Matrix determinant, denoted by IHI is given by: 0 - 39 - 39

		9×	99	11
	- 39	32L	32T	1
IFI	9×	9×2	9×97	11
	- 39	92F	92F	
	92	923×	923	
		•		1
			•	1
	•		•	

If IFII>0, then Vo is a local max. If IFII<0, then Vo is a local min. If IFII=0, then the test is inconclusive.