מבני נתונים - תרגיל 5

מרצה ומתרגלים אחראים: מיכאל אלקין, דן שולמן ורועי תמאם הנחיות:

- הגשת העבודה הינה בזוגות.
- העבודה חייבת להיות מוקלדת.
- יש להגיש קובץ בפורמט pdf למערכת ההגשה. ●
- שאלות לגבי העבודה יש לשאול בפורום באתר הקורס או בשעות הקבלה של המרצה/המתרגלים
 האחראיים על העבודה.
 - 1. תארו כיצד ניתן לשנות את אלגוריתם Quicksort כך שירוץ בזמן (חוס במקרה הגרוע ביותר.
- 2. בהינתן מערך ממויין בסדר עולה בעל n איברים שונים שסובב מספר לא ידוע של פעמים, תארו בפסאודו קוד והסבירו כיצד ניתן למצוא איבר מסויים במערך (את האינדקס שלו) ביעילות. נתחו את זמן הריצה של האלגוריתם.

דוגמה - בהינתן המערך הממויין הבא:

1	2	3	4	5	6	7
זהו המערך לעיל לאחר שסובב 3 פעמים:						
5	6	7	1	2	3	4

3. טבלת יאנג מוגדרת כמטריצה בגודל m שורות על n עמודות כך שהאיברים בכל שורה ממויינים בסדר עולה משמאל לימין והאיברים בכל עמודה ממויינים בסדר עולה מלמעלה למטה. חלק מהאיברים בטבלת יאנג יכולים להיות ∞ , נתייחס לאיברים אלו כאיברים שלא קיימים. לכן ניתן להשתמש בטבלת יאנג על מנת להחזיק $r \leq mn$ מספרים סופיים.

- א. ציירו טבלת יאנג בגודל 4 על 4 המכילה את האיברים {9,16,3,2,4,8,5,14,12}.
 - $Y[1,1]=\infty$ על ח ריקה אם Y בגודל Y בגודל אם אם ב. הוכיחו כי טבלת יאנג

 $Y[m,n]<\infty$ איברים) אם Y מלאה (מכילה mn איברים) אם

- ג. כתבו אלגוריתם עבור EXTRACT-MIN על טבלת יאנג לא ריקה בגודל m על n שרץ בזמן (n+m) אריקה בגודל m על א
 - ד. הראו כיצד להכניס איבר חדש לטבלת יאנג לא מלאה בגודל m על n בזמן (m+n).
- ה. הראו כיצד ניתן להשתמש בטבלת יאנג בגודל n על n על מנת למיין n^2 מספרים בזמן $O(n^3)$ ללא שימוש בשיטות מיון אחרות.
 - .n על m שבודק אם מספר נתון קיים בטבלת יאנג נתונה בגודל O(m+n) שבודק אם מספר נתון קיים בטבלת יאנג נתונה בגודל

- weighted median :4.

. $\sum_{1=i}^n w_i=1$ עם משקלים חיובים w_1,w_2,\ldots,w_n כך ש x_1,x_2,\ldots,x_n יהיו איברים איברים האיבר x_1 , איברים שeighted (lower) median ה weighted (lower)

$$\sum_{x_i < x_k} w_i < \frac{1}{2} \quad (1)$$

$$\sum_{x_i > x_k} w_i \le \frac{1}{2} \quad (2$$

0.1,0.35,0.05,0.1,0.15,0.05,0.2 דוגמה : עבור האיברים הבאים $i\in\{1,2,\dots 7\}$ מתקיים ש $i\in\{1,2,\dots 7\}$ אזי ה median שלהם הוא 0.1 אבל ה הא שנים הוא 0.2 אזי ה

- weighted שווה שווה median -, $i\in\{1,2,\dots,n\}$ לכל $w_i=\frac{1}{n}$ ומשקלים x_1,x_2,\dots,x_n ומשקלים (median .median
- ב) הראו אלגוריתם המחשב את ה weighted median עבור ח איברים בזמן (עבור ח מחשב את ה ב) הראו אלגוריתם המחשב את ה
- median בזמן שימוש באלגוריתם למציאת שיפighted median ג) הראו אלגוריתם המחשב את ה $\theta(n)$ ש"י שימוש באלגוריתם למציאת ה $\theta(n)$ הרץ בזמן לינארי ונתחו זמן ריצה.

5. נתון הגרף הבא:

- א) מהו סדר הביקור בקודקודים בהרצת BFS החל מקודקוד
- ב) מהו סדר הביקור בקודקודים בהרצת DFS החל מקודקוד

הערה: אם לקודקוד יש מספר שכנים, יש לבקר בהם לפי סדר האלף-בית.

- $.e=(u_1,u_2)\in E$ וקשת $s,t\in V$ שני צמתים, G=(V,E) אמכוון גרף לא מכוון .6
- t ל s נמצאת על כל המסלולים הקצרים ביותר בין s ל א) תארו אלגוריתם יעיל ככל האפשר הבודק האם הקשת e נמצאת על כל האפשר הצרים ביותר בין s ב g. נתחו את סיבוכיות זמן הריצה של האלגוריתם שלכם.
- c ב t ל s ביותר כלשהו בין t ל t ב t ל t ב ביותר כלשהו בין t ל t ב t ל t ב t ל t ב t ל t ב t ל t ב t ל t ב t ביותר כלשהו בין t ב t ל t ב t ביותר כלשהו בין t ב t ל t ב t ביותר כלשהו בין t ב t ביותר כלשהו בין t ב t ב t ביותר כלשהו בין t ביותר כלשהו בין t ביותר כלשהו בין t ב t ביותר כלשהו בין t ביותר כלשהו ביותר כלשהו בין t ביותר כלשהו ביותר כלשהו