

Spec No.: DS-70-99-0010Effective Date: 12/11/2015

Revision: C

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

1. **DESCRIPTION**

1.1 Features

- High Current transfer ratio (CTR : MIN. 10% at IF = 10mA, VCE = 10V)
- Response time(ton : TYP. $3\mu s$ at VCC = 10V, IC = 2mA, RL = 100Ω)
- Input-output isolation voltage 4N25 series : Viso = 2,500Vrms 4N26 series : Viso = 1,500Vrms 4N27 series : Viso = 1,500Vrms 4N28 series : Viso = 500Vrms
- Dual-in-line package :

4N25, 4N26, 4N27, 4N28

- Wide lead spacing package :
 - 4N25M, 4N26M, 4N27M, 4N28M
- Surface mounting package :
 - 4N25S, 4N26S, 4N27S, 4N28S
- Tape and reel packaging:
 - 4N25S-TA1, 4N26S-TA1, 4N27S-TA1, 4N28S-TA1
- Safety approval
 - UL approval (NO. E113898)
 - TUV approval (NO. R9653630)
 - DEMKO approval (NO. 303985)
 - CSA & cUL, VDE, FIMKO, CQC approved
- RoHS Compliance
 - All materials be used in device are followed EU RoHS directive (No.2002/95/EC).
- ESD pass HBM 8000V/MM2000V
- MSL class 1

1.2 Applications

- Hybrid substrates that require high density mounting.
- Programmable controllers

/14

Part No.: 4N2X series BNS-OD-FC002/A4 Rev.: C

2. PACKAGE DIMENSIONS

2.1 4N25 2.2 4N25M

2.3 4N25S

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.

2.4 4N26 2.5 4N26M

2.6 4N26S

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.

2.7 4N27

2.9 4N27S

Notes:

2.8 4N27M

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.

2.10 4N28

Year Code *1 Week Code *2 Pin No. and Internal connection diagram 6 5 4 N 2 8 6.5±0.5 (.256) OCIONY Code *3 1. Anode 4. Emilter 2. Cathode 5. Collector 3. NC 7.5±0.5 (.287) 1. Anode 4. Emilter 2. Cathode 5. Collector 3. NC 7.5±0.5 (.130) (.131) 2.5±0.25 (.110) 2.5±0.25 (.110)

2.12 4N28S

Notes:

2.11 4N28M

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.

TAPING DIMENSIONS

3.1 4N25S-TA , 4N26S-TA , 4N27S-TA , 4N28S-TA

3.2 4N25S-TA1, 4N26S-TA1, 4N27S-TA1, 4N28S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
	P_2	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.472)

3.3 Quantities Per Reel

Package Type	TA/TA1
Quantities (pcs)	1000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25°C

	Parameter		Symbol	Rating	Unit	
Forward Current		I _F	80	mA		
Input	Input Reverse Voltage Power Dissipation		V_R	6	V	
			Р	150	mW	
Collector - Emitter Voltage Emitter - Collector Voltage		Collector - Emitter Voltage		30	V	
		Voltage	V _{ECO}	7	V	
Output	Output Collector - Base Voltage Collector Current Collector Power Dissipation		V_{CBO}	70	V	
			Ic	100	mA	
			Pc	150	mW	
Total Power Dissipation		P _{tot}	250	mW		
*1 Isolation Voltage		4N25 series		2,500	$V_{\sf rms}$	
		4N26 series	N/	1,500		
		4N27 series	V _{iso}	1,500		
		4N28 series		500		
Operating Temperature		T_{opr}	-55 ~ +100	°C		
Storage Temperature		T _{stg}	-55 ~ +150	°C		
*2 Soldering Temperature		T _{sol}	260	°C		

*1. AC For 1 Minute, R.H. = 40 ~ 60%

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.

*2. For 10 Seconds

4.2 Electrical Optical Characteristics at Ta=25°C

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Input	Forward Voltage	V _F	_	1.2	1.5	V	I _F =10mA	
	Reverse Current	I _R	_	_	10	μΑ	V _R =4V	
	Terminal Capacitance	Ct	_	50	_	pF	V=0, f=1KHz	
	Collector Dark Current	I _{CEO}	_	_	50	nA	V _{CE} =10V, I _F =0	
Output	Collector-Emitter Breakdown Voltage	BV _{CEO}	30	_	_	V	I _C =0.1mA, I _F =0	
	Emitter-Collector Breakdown Voltage	BV _{ECO}	7	_	_	V	I _E =10μΑ, I _F =0	
	Collector-Base Breakdown Voltage	BV _{CBO}	70	_	_	V	I _C =0.1mA, I _F =0	
TRANSFER CHARACTERISTI CS	Collector Current (4N25/4N26)	Ic	2	_	_	mA	I _F =10mA, V _{CE} =10V	
	* Current Transfer Ratio (4N25/4N26)	CTR	20	_	_	%		
	Collector Current (4N27/4N28)	Ic	1	_	_	mA		
	* Current Transfer Ratio (4N27/4N28)	CTR	10	_	_	%		
	Collector-Emitter Saturation Voltage	V _{CE(sat)}	_	0.1	0.5	V	I _F =50mA, I _C =2mA	
	Isolation Resistance	R _{iso}	5×10 ¹⁰	1×10 ¹¹	_	Ω	DC500V, 40 ~ 60% R.H.	
	Floating Capacitance	C _f	_	1	_	pF	V=0, f=1MHz	
	Response Time (Rise)	t _r	_	3	_	μS	V _{CE} =2V, I _C =2mA	
	Response Time (Fall)	t _f	_	3	_	μS	R_L =100 Ω ,	

5. CHARACTERISTICS CURVES

Fig.1 Forward Current vs. Ambient Temperature

Fig.3 Forward Current vs. Forward Voltage

Fig.5 Collector Current vs.

Collector-emitter Voltage

Fig.2 Collector Power Dissipation vs.

Ambient Temperature

Fig.4 Current Transfer Ratio vs. Forward Current

Fig.6 Relative Current Transfer Ratio vs. Ambient Temperature

Fig.7 Collector-emitter Saturation Voltage vs.
Ambient Temperature

Fig.9 Response Time vs. Load Resistance

Fig.11 Collector-emitter Saturation
Voltage vs. Forward Current

Fig.8 Collector Dark Current vs.

Fig.10 Frequency Response

Test Circuit for Response Time

Test Circuit for Frequency Response

6. TEMPERATURE PROFILE OF SOLDERING

6.1 IR Reflow Soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions			
Preheat				
- Temperature Min (T _{Smin})	150°C			
- Temperature Max (T _{Smax})	200°C			
- Time (min to max) (ts)	90±30 sec			
Soldering zone				
- Temperature (T _L)	217°C			
- Time (t _L)	60 sec			
Peak Temperature (T _P)	260°C			
Ramp-up rate	3°C / sec max.			
Ramp-down rate	3~6°C / sec			

6.2 Wave Soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

6.3 Hand Soldering by Soldering Iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

Part No.: 4N2X series BNS-OD-FC002/A4

7. RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Note:

Dimensions in millimeters.

8. Naming rule

Example: 4N25S-TA1

Example: 4N25STA1-V-G

9. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerging unit's body in solder paste is not recommended.