	_	Α	В	C	Σ	J:	
NÉV: ELTE AZON.:							

Prog. inf. I. (BSc.)

3. vizsgadolgozat

2015. január 15.

Első rész (70 perc)

A. Minden feladatban írjuk be a megfelelő választ a sor végén levő keretbe. Csak az eredmény lesz pontozva. Minden helyes válasz 1 pontot ér. Az elégségeshez legalább 6 pontot kell szerezni az A kérdéscsoportból.

(15 pont)

1. Melyek azok az
$$x \in \mathbb{R}$$
 valós számok, melyekre az $\begin{bmatrix} 1 & 0 & x \end{bmatrix}^T$, a $\begin{bmatrix} 2 & 2 \end{bmatrix}^T$ és a $\begin{bmatrix} 4 & 2 & 3 \end{bmatrix}^T$ vektorok lineárisan függetlenek?

$$x \neq 1/2$$

A megadott vektorok pontosan akkor lesznek lineárisan függetlenek, ha a belőlük mint oszlopvektorokból

képzett mátrix determinánsa nem 0. Mivel $\begin{vmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ x & 2 & 3 \end{vmatrix} = 4x - 2$, ezért a vektorok pontosan akkor

függetlenek, ha $x \neq 1/2$. – Második megoldás. Könnyen látható, hogy a megadott vektorrendszerben egyik vektor sem skalárszorosa a másiknak, így lineáris összefüggés esetén csak úgy kaphatunk nem triviális lineáris kombinációként nullvektort, ha egyik vektornak sem nulla az együtthatója. Ez viszont azt jelenti, hogy mindegyik vektor kifejzhető a másik kettőből. Tehát pl. az elsőt kifejezve

$$[1 \ 0 \ x]^T = \alpha [2 \ 2 \ 2]^T + \beta [4 \ 2 \ 3]^T$$

valamilyen $\alpha, \beta \in \mathbb{R}$ együtthatókkal. Az első két komponensből azt kapjuk, hogy $1 = 2\alpha + 4\beta$ és $0 = 2\alpha + 2\beta$. Ebből $\beta = 1/2$, $\alpha = -1/2$ adódik, s ekkor az utolsó komponensekből azt kapjuk, hogy x = -(1/2)2 + (1/2)3, vagyis x = 1/2. Így a megadott vektorok pontosan akkor lineárisan összefüggők, ha x = 1/2.

2. Egy $U \leq \mathbb{R}^4$ altérben van 2 vektor, ami lineárisan összefüggő, és van 3 vektor, ami lineárisan független. Ha $\mathbf{u} \in U$ nem nullvektor, akkor hány olyan generátorrendszere van U-nak, amely tartalmazza \mathbf{u} -t?

Számuk: végtelen

Mivel U-ban van 3 elemű lineárisan független vektorrendszer, ezért U nem csak a nullvektorból áll. Így kiválasztva U-nak egy bázisát (ez 3 vagy 4 elemű lehet), ahhoz hozzávéve \mathbf{u} -t, még végtelen sokféleképpen vehetünk hozzájuk néhány vektort: minden ilyen vektorhalmaz generátorrendszer lesz U-ban. – Vegyük észre, hogy nagyon sok információ fölösleges volt: pl. az a mondat, hogy van két vektor, ami lineárisan összefüggő (persze, ebből is hasznosíthatjuk azt a részt, hogy a vektortérnek van legalább két eleme, tehát végtelen sok is van), s arra sincs igazán szükségünk, hogy az altér legalább három dimenziós (ez a második feltételből következik). Végezetül, egy lényegesen erősebb állítást is kimondhattunk volna: ha $\mathbf{u} \neq \mathbf{0}$, akkor mindig kiegészíthetjük U egy bázisává, s mivel dim $U \geq 2$, ezért ezt a kiegészítést végtelen sokféleképpen megtehetjük.

3. Legyen $U \leq \mathbb{R}^3$ azon vektoroknak a halmaza, amelyeknek a komponensei (a megadott sorrendben) számtani sorozatot alkotnak. Adjuk meg U-nak egy bázisát.

Bázis pl.
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$$

A számtani sorozatok azzal jellemezhetők, hogy az egymást követő tagok különbségei azonosak, Tehát $U = \{[x_1 \ x_2 \ x_3]^T \in \mathbb{R}^3 | x_1 - x_2 = x_2 - x_3\}$. A definiáló egyenlet tehát úgy is írható, hogy $x_1 - 2x_2 + x_3 = 0$. Enek a homogén lineáris egyenletrendszernek a megoldásai 2 dimenziós alteret alkotnak, s így két független vektort kell megadni a térből. Ez lehet a fönti két vektor is. – Úgy is fölfoghatjuk a megoldás keresését, hogy egy számtani sorozatot két adat határoz meg: a kezdő tagja és a különbség a szomszédos tagok között. Így az elsőnek megadott vektor megfelelő skalárszorosának kiválasztásával beállítjuk a kezdőtagot, a második vektor skalárszorosát pedig a különbség határozza meg. Ily módon tehát U-nak egy lineárisan független generátorrendszerét adtuk meg.

4. Mi lehet
$$X \in \mathbb{R}^{2 \times 2}$$
, ha $X \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$?

$$X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Mivel az $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ mátrix invertálható (a determinánsa nem nulla), ezért $X = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix} A^{-1}$, tehát az X mátrix egyértelmű. Másrészt könnyű "kitalálni" a megoldást: X második sorába két nullát téve nyilván jó lesz a szorzat második sora, másrészt az első sorba pedig a $\begin{bmatrix} 0 & 1 \end{bmatrix}$ vektort téve, ha ezzel

szorozzuk az A mátrixot, az épp azt "csinálja", hogy a szorzatmátrixba az A második sorát teszi. – Természetesen A^{-1} -et is könnyű kiszámolni, s akkor "találgatni" sem kell.

5. Ha $A \in \mathbb{R}^{2 \times 2}$ olyan, melyre $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ és $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, akkor adjunk meg két különböző vektort, \mathbf{y}_1 -et és \mathbf{y}_2 -t, melyekre $A\mathbf{y}_1 = A\mathbf{y}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

Pl.
$$\mathbf{y}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \ \mathbf{y}_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

 $\begin{aligned} & \textit{Mivel A} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \textit{ezért a vektor kétszeresét véve A} \begin{pmatrix} 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{pmatrix} = A \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}. \ \textit{Egy megoldásvektort tehát már találtunk. A másikat pl. úgy kaphatjuk, hogy ha hozzádjuk a homogén lineáris egyenletrendszer egyik ismert megoldásvektorát, <math>\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ -et. – Jó tudni, hogy ha $A\mathbf{x}_0 = \mathbf{b}$ és

 $A\mathbf{y} = \mathbf{0}$, akkor $A(\mathbf{x}_0 + \lambda \mathbf{y}) = \mathbf{b}$, tehát egy inhomogén egyenletrendszer egy kiinduló megoldásából több másikat is kaphatunk, ha hozzáadjuk a homogén egyenletrendszer egy megoldását. (Sőt, az összes megoldást ilyen módon kaphatjuk.)

6. Ha egy $n \times n$ -es mátrix invertálható, mennyi lehet benne az $(n-1) \times (n-1)$ -es nem nulla aldeterminánsok minimális száma?

Számuk legalább: n

Mivel a determinánst bármely sor szerinti kifejtéssel megkaphatjuk, csak úgy lehet a determináns értéke nem nulla, ha minden ilyen kifejtésben szerepel nem nulla aldetermináns. Így a nem nulla aldeterminánsok száma legalább n. Másrészt az egységmátrixban csak az átló elemeihez tartozó aldeterminánsok nem nullák, így jobb becslést nem is mondhatunk általában.

7. Legyenek \mathbf{a}, \mathbf{b} egymásra merőleges geometriai egységvektorok. Határozzuk meg a $\mathbf{v} = (((\mathbf{a} \times \mathbf{b}) \times \mathbf{b}) \times \mathbf{b}) \times \mathbf{b}$ vektor \mathbf{a} -val bezárt γ szögét.

$$\gamma = 0^{\circ}$$

A koordinátarendszer megfelelő elforgatásával föltehető, hogy $\mathbf{a} = \mathbf{i}$ és $\mathbf{b} = \mathbf{j}$ a szokásos tengely irányú egységvektorok. (Azért célszerű így választanunk a koordinátarendszert, mert így könnyebben számolunk és hivatkozunk az eredményre.) Így a következőt kapjuk:

 $(((\mathbf{i}\times\mathbf{j})\times\mathbf{j})\times\mathbf{j})\times\mathbf{j}=((\mathbf{k}\times\mathbf{j})\times\mathbf{j})\times\mathbf{j}=(-\mathbf{i}\times\mathbf{j})\times\mathbf{j}=-\mathbf{k}\times\mathbf{j}=\mathbf{i},$ így a keresett szög 0°.

8. Az $A \in \mathbb{R}^{4\times 4}$ mátrix elemeiből képzett $a_{21}a_{32}a_{43}a_{14}$ szorzat milyen előjellel kerül bele a det A-t definiáló összegbe?

Előjel: –

Az előjelet úgy kapjuk meg, ha az oszlopindexek sorozata által megadott permutációban számoljuk az inverziókat, feltéve, hogy a sorindexek növő sorrendben vannk megadva. Így a szorzatot először még egy kicsit át kell rendeznünk: $a_{21}a_{32}a_{43}a_{14}=a_{14}a_{21}a_{32}a_{43}$, tehát a vizsgálni kívánt permutáció a (4,1,2,3), s ebben 3 inverzió van (a 4-es minden másik számmal inverzióban van, más inverzió viszont nincs). Így tehát -1-gyel kell majd szoroznunk a determináns definíciójában.

9. Az $A \in \mathbb{R}^{n \times n}$ mátrix első oszlopának első eleme 3, a többi 0, $B \in \mathbb{R}^{n \times n}$ pedig tetszőleges invertálható mátrix. Határozzuk meg det $(B^{-1}AB - 3I_n)$ értékét.

$$\det(B^{-1}AB - 3I_n) = 0$$

A feltételből könnyen kapjuk, hogy a mátrix karakterisztikus polinomja osztható $(3 - \lambda)$ -val, vagyis a 3 sajátérték. (Mellesleg épp az \mathbf{e}_1 bázisvektor lesz egy sajátvektor, amihez 3 tartozik.) Ekkor azonban a 3 sajátértéke az A-val hasonló $B^{-1}AB$ mátrixnak is, tehát a megadott determináns értéke 0.

10. Tekintsük az $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ mátrixhoz tartozó Q kvadratikus alakot. Keressünk olyan $\mathbf{u} \in \mathbb{R}^2$ vektort, melyre $Q(\mathbf{u})$ negatív.

$$Pl. \ \mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Csupa pozitív vagy csupa negatív elemű vektorral nem érdemes próbálkoznunk. A vegyes vektorok közül az egyik elsőnek eszünkbe jutó, fönt megadott \mathbf{u} vektorra $Q(\mathbf{u}) = \mathbf{u}^T A \mathbf{u} = -2$, tehát ez jó lesz. – Általánosan is fölírhatjuk a kvadratikus alak értékét: $Q([x \ y]) = x^2 + 4xy + y^2 = (x + 2y)^2 - 3y^2$, tehát ha pl. úgy választjuk x-et és $y \neq 0$ -t, hogy x = -2y teljesüljön, akkor a kvadratikus alak értéke biztosan negatív lesz a megadott vektoron. (Persze, láttuk, máshol is kaphatunk negatív értéket.)

11. Legyenek $\varphi, \psi \in \mathcal{H}om(\mathbb{R}^3, \mathbb{R}^3)$ lineáris transzformációk, méghozzá φ a tér forgatása a z tengely körül 90°-kal, ψ pedig a tér tükrözése az x-y-síkra. Hány dimenziós lesz $\mathcal{K}er(\varphi\psi\varphi)$?

$$\dim \mathcal{K}er(\varphi\psi\varphi) = 0$$

Mindkét transzformáció egybevágóság, tehát izomorfizmus (egyetlen nem nulla vektort sem visznek a nullvektorba), így a kompozíciójuk is az lesz, s a magtér csak a nullvektort tartalmazza. –

Könnyű fölírni a megadott transzformációk mátrixát a szokásos bázisban: $[\varphi] = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ és

 $[\psi] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}. \ Ezeket szorozva megkaphatjuk kompozíció mátrixát, s arról könnyen látszik, hogy invertálható, amiből következik, hogy a transzformáció izomorfizmus.$

12. Az $A=\begin{bmatrix}1&c\\3&4\end{bmatrix}\in\mathbb{R}^{2\times 2}$ mátrix nem diagonalizálható $\mathbb R$ fölött. Mik lehetnek $c\in\mathbb R$ értékei?

$$c \le -3/4$$

Számoljuk ki az A karakterisztikus polinomját: $k_A(\lambda) = \lambda^2 - 5\lambda + 4 - 3c$. A mátrix biztosan diagonalizálható $\mathbb R$ fölött, ha a polinomnak két különböző valós gyöke van, azaz a diszkriminánsa pozitív. A mátrix biztosan nem diagonalizálható, ha a karakterisztikus polinomnak nincs valós gyöke, azaz a diszkrimináns negatív. Végezetül ha a diszkrimináns nulla, akkor egy darab kétszeres sajátértéket kapunk, s az esetleges diagonális alak skalármátrix lenne (azaz a két átlóelemnek meg kellene egyeznie). Ugyanakkor viszont a skalármátrixok csak önmagukhoz hasonlók, így A nem lehet hasonló egy skalármátrixhoz. Ez azt jelenti, hogy ha a diszkrimináns nulla, a mátrix akkor sem diagonalizálható. Mivel a fönti polinomnak a diszkriminánsa $\Delta = 25 - 16 + 12c$, ezért $\Delta \leq 0$ pontosan akkor teljesül, ha $9 + 12c \leq 0$, $azaz c \leq -3/4$.

13. Határozzuk meg az $\mathbf{u}=[1+i\quad 2i-3\quad 1+3i]^T\in\mathbb{C}^3$ vektor normáját a szokásos $\mathbf{v}^*\mathbf{u}$ skaláris szorzatra nézve.

$$\|\mathbf{u}\| = 5$$

 $\|u\| = \sqrt{\mathbf{u}^* \cdot \mathbf{u}} = \sqrt{[1-i \quad -2i-3 \quad 1-3i] \cdot [1+i \quad 2i-3 \quad 1+3i]^T} = \sqrt{2+13+10} = 5$. Vigyázat: a komplex euklideszi tereknél konjugálnunk kell az első tényezőben! Aki a norma értékére a gyök alá negatív vagy nem valós értéket kap, az valahol hibázott!

14. Adjunk meg egy, a nullvektortól különböző \mathbf{v} vektort \mathbb{R}^4 -ben, mely (a szokásos $\mathbf{x}^T\mathbf{y}$ skaláris szorzatra nézve) merőleges mindazon vektorokra, melyekben a komponensek összege 0?

Pl.
$$\mathbf{v} = [1 \ 1 \ 1 \ 1]^T$$

Azok a vektorok, melyekre **v**-nek merőlegesnek kellene lennie, kielégítik az $x_1 + x_2 + x_3 + x_4 = 0$ összefüggést, azaz a skaláris szorzatuk az $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ vektorral 0. Így már meg is van a keresett vektor. – Vegyük észre, hogy amikor egy lineáris egyenletrendszerrel adunk meg egy alteret, akkor tkp. azt mondjuk, hogy az egyenletrendszer mátrixának sorvektorai merőlegesek a megoldásokra.

15. Egy $\varphi\in\mathcal{H}om(\mathbb{R}^2,\mathbb{R}^2)$ lineáris transzformáció mátrixa az \mathbf{u},\mathbf{v} bázisban $A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$. Mi lesz a transzformáció mátrixa a $2\mathbf{u},2\mathbf{v}$ bázisban?

tudjuk fölírni, tehát az i-edik oszlopvektor változatlan marad.

$$[\varphi]^{2\mathbf{u},2\mathbf{v};2\mathbf{u},2\mathbf{v}} = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}$$

A báziscsere képlete alapján az új mátrix úgy kapható meg a régiből, hogy balról-jobbról szorozzuk az új bázisra való áttérés mátrixának inverzével, illetve magával a mátrixszal, $D = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ -vel. Mivel D skalármátrix, ezért mindennel fölcserélhető, tehát a báziscsere nem változtatja meg a transzformáció mátrixát. – Hivatkozhatnánk a lineáris transzformációk mátrixának a definíciójára is: ha az i-edik bázisvektort a 2-szeresére cseréljük, akkor a képvektor is az eredeti képvektor kétszerese lesz, de ezt most az eredeti bázisvektorok kétszereseinek lineáris kombinációjaként ugyanazokkal az együtthatókkal

- **B.** Válaszoljuk meg az alábbi kérdéseket. A kimondandó állításokat nem kell bizonyítani. Ügyeljünk a pontos fogalmazásra. Minden teljes válasz 2 pontot ér. Az elégségeshez legalább 4 pontot kell szerezni a B kérdéscsoportból. (10 pont)
- 16. Mit jelent az, hogy az $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$ vektorok lineárisan függetlenek?

Az $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^n$ vektorok pontosan akkor lineárisan függetlenek, ha csak a triviális lineáris kombinációjuk adja a nullvektort, azaz $\sum_{i=1}^k \lambda_i \mathbf{u}_i = \mathbf{0}$ esetén $\lambda_i = 0$ minden $1 \le i \le k$ -ra.

17. Definiáljuk két geometriai vektor, a és b vektoriális szorzatát.

Az \mathbf{a} és \mathbf{b} vektorok vektoriális szorzata az az $\mathbf{a} \times \mathbf{b}$ -vel jelölt vektor, melyre:

- 1) $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin \gamma(\mathbf{a}, \mathbf{b})$ (ahol $\gamma(\mathbf{a}, \mathbf{b})$ a két vektor közötti hajlásszög);
- 2) $\mathbf{a} \times \mathbf{b} \perp \mathbf{a}, \mathbf{b}$;
- 3) $\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ jobbrendszert alkotnak (feltéve hogy $|\mathbf{a} \times \mathbf{b}|$ nem nulla).
- 18. Mondjuk ki a determinánsokra vonatkozó kifejtési tételt. (Ne feledkezzünk meg a tételben szereplő jelek magyarázatáról sem!)

Ha $A \in \mathbb{R}^{n \times n}$, és a_{ij} jelöli az A mátrix i-edik sorának j-edik elemét, A_{ij} pedig az ehhez tartozó előjelezett aldeterminánst, akkor tetszőleges i-re det $A = \sum_{j=1}^{n} a_{ij} A_{ij}$ (ez az i-edik sor szerinti kifejtés).

19. Mit jelent az, hogy az $A \in \mathbb{R}^{n \times n}$ mátrix hasonló \mathbb{R} fölött a $B \in \mathbb{R}^{n \times n}$ mátrixhoz?

Azt mondjuk, hogy az A mátrix hasonló $\mathbb R$ fölött a $B \in \mathbb R^{n \times n}$ mátrixhoz, ha létezik olyan invertálható $D \in \mathbb R^{n \times n}$ mátrix, melyre $B = D^{-1}AD$.

20. Mondjuk ki azt a tételt, amely egy $A \in \mathbb{R}^{n \times n}$ mátrix \mathbb{R} fölötti diagonalizálhatóságára ad szükséges és elégséges feltételt. (Figyelem, itt nem a diagonalizálhatóság definícióját kérdezzük!)

Egy $A \in \mathbb{R}^{n \times n}$ mátrix pontosan akkor diagonalizálható \mathbb{R} fölött, ha \mathbb{R}^n -nek létezik A sajátvektoraiból álló bázisa.

Az elégségeshez a dolgozat második részével együtt legalább 15 pontot kell szerezni.

NÉV:	ELTE AZON	J.:
Prog. inf. I. (BSc.)	$3.\ { m vizsgadolgozat/5}$ Második rész (40 perc)	2015. január 15.
		n a részben nincs minimum-
		vektorok lineáris függésének (4 pont)
	$A\ h\'at la pon\ foly tathat\'o!$	
Definiáljuk a Vandermonde- determináns értékére vonath	determináns fogalmát, majd mondjuk ki és bizo kozó állítást.	onyítsuk be a Vandermonde- (6 pont)
	$A\ hcute{atlapon}\ folytathat\'o!$	
	Prog. inf. I. (BSc.) Bizonyítsuk az alábbi állítás követelmény az elégségeshez Mondjuk ki és bizonyítsuk fogalmát összekapcsoló tétel. Definiáljuk a Vandermonde-	Prog. inf. I. (BSc.) 3. vizsgadolgozat/5 Második rész (40 perc) Bizonyítsuk az alábbi állításokat. Ügyeljünk a pontos fogalmazásra. Ebber követelmény az elégségeshez. Mondjuk ki és bizonyítsuk be a vektorok lineáris összefüggőségének és a v fogalmát összekapcsoló tételt. A hátlapon folytatható! Definiáljuk a Vandermonde-determináns fogalmát, majd mondjuk ki és bizodetermináns értékére vonatkozó állítást.

Ha az I. rész két kérdéscsoportjából a megszerzett pontszám eléri a 6-ot, illetve a 4-et, akkor a dolgozat érdemjegye az összpontszám alapján:

 $\begin{array}{ccc} 0-14: & 1 \\ 15-18: & 2 \\ 19-22: & 3 \\ 23-26: & 4 \end{array}$

27 - 35: 5

EREDMÉNYHIRDETÉS: 2015. január 15-én, csütörtökön 17 és 18 óra között a Déli tömb 3-711-es szobájában. Ezt követően a vizsgadolgozatok Szalay tanár úrtól vehetők át a szóbeli vizsgák napjain (többnyire kedden, szerdán és csütörtökön a délelőtti órákban).