ECE 597AA – Project Assignment

Question 1.

The immediate reward after action a_s is executed at state $s \in \mathcal{S}$ is defined as follows:

$$r(\mathbf{s}, a_\mathbf{s}) = \left\{ egin{aligned} r_c, & ext{if } e_c = 1, & a_\mathbf{s} = 1, ext{ and } \mathbf{s}' \in \mathcal{S}, \ 0, & ext{otherwise}. \end{aligned}
ight.$$

At state \mathbf{s} , if an arrival slice is accepted, i.e., $a_s = 1$, the system will move to next state \mathbf{s}' and the network provider receives an immediate reward r_c . In contrast, the immediate reward is equal to 0 if an arrival slice is rejected or there is no slice request arriving at the system. The value of r_c represents the amount of money paid by the tenant based on resources and additional services required.

Assume the network provider aims to maximize the immediate reward defined in [equation (16), ref2]. Formulate the network provider's resource allocation problem as a centralized optimization problem. This problem includes the allocation of radio, computing and storage resources to network slices (by the network provider) to meet the slice requests from tenants.

- In state s,
 - If arrival slice is accepted i.e., a_s = 1
 - The system will move to next state s'
 - Network provider receives immediate reward r_c
 - The value of r_c represents the amount of money paid by the tenant based on resources and additional services required
 - If arrival slice is rejected or no slice request arriving at the system
 - Immediate reward is 0

Definition A.2 A centralized optimization problem is defined by:

$$\{x_i\}, i \in [1..(n_x)], \qquad x_i \in D_i$$
 (A.5)

$$\{p_i\}, i \in [1..(n_p)], \qquad p_i: D_{i_1^p} \times D_{i_2^p} \times ... \times D_{i_{a^i}^p} \to boolean$$
 (A.6)

$$f, \qquad f: D_{f_1} \times D_{f_2} \times \dots \times D_{f_b} \to D^f$$
 (A.7)

https://cs.fit.edu/~msilaghi/teza/chapter22.pdf