Analiza funkcjonalna I

Ryszard Szwarc*

Spis treści

1	Prz 1.1	estrzenie unormowane Dodatek	2 12	
2	Ope	eratory liniowe	14	
3	3.1	estrzenie Hilberta Podstawowe własności	26 26 33	
4	3.2 Prz	Proces ortogonalizacji Grama-Schmidta	37	
5	Twierdzenia Hahna-Banacha			
	5.1	Przedłużanie funkcjonałów liniowych	39	
	5.2	Granica Banacha	46	
	5.3	Przestrzeń sprzężona do $C[a,b]$	47	
	5.4	Wersja geometryczna	49	
	5.5	Wersja niezmiennicza	54	
6	Twierdzenie Baire'a i zastosowania			
	6.1	Twierdzenie Baire'a	61	
	6.2	Twierdzenie Banacha-Steinhausa	62	
	6.3	Twierdzenia Banacha	68	
7	Tw	ierdzenie Stone'a-Weierstrassa	7 3	

^{*}Wykład prowadzony w semestrze zimowym 2007. Opracowany na podstawie notatek Magdaleny Świczewskiej

8	Przestrzenie sprzężone do L^p i do $C(X)$	81	
	8.1 Wersja rzeczywista	82	
	8.2 Wersja zespolona		
	8.3 Twierdzenie Riesza		
9	Słaba zbieżność w przestrzeniach unormowanych		
	9.1 Słaba zbieżność ciągów	91	
	9.2 Słabe topologie	97	
10	Γwierdzenie Arzeli-Ascoliego	101	
11	Odwzorowania zwężające i zastosowania	105	
	11.1 Twierdzenie o funkcji odwrotnej	106	
12	Гwierdzenie Kreina-Millmana	109	
13		113	
	13.1 Komentarz do zadania 98	113	
	13.2 Komentarz do zadania 91		
14	Zadania	116	

1 Przestrzenie unormowane

Definicja 1.1. Niech X będzie przestrzenią liniową nad \mathbb{C} (lub \mathbb{R}). Normą określoną na X nazywamy funkcję $X \ni x \mapsto ||x|| \in [0, \infty)$ spełniającą warunki

- (i) ||x|| = 0 wtedy i tylko wtedy, gdy x = 0.
- (ii) $\|\lambda x\| = |\lambda| \|x\|$, dla $\lambda \in \mathbb{C}$ oraz $x \in X$. (jednorodność)
- (iii) $||x+y|| \le ||x|| + ||y||$, dla $x, y \in X$. (warunek trójkąta)

Uwaga 1.2. Z nierówności trójkąta wynika, że

$$|||x|| - ||y||| \le ||x - y||$$

Określmy funkcję $d(x,y)=\|x-y\|$ dla $x,y\in X$. Wtedy d(x,y) jest metryką i X staje się przestrzenią metryczną.

Przykłady.

1. $X = \mathbb{C}^n$ (lub \mathbb{R}^n). Dla $x = (x_1, x_2, \dots, x_n)$ możemy określić normy

$$||x||_1 = \sum_{i=1}^n |x_i|,$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

2. X=C[0,1] (funkcje ciągłe o wartościach zespolonych). Określamy tzw. normę jednostajną

$$||f||_{\infty} = \max_{0 \le t \le 1} |f(t)|.$$

Ta przestrzeń ma nieskończony wymiar, bo jednomiany $1, x, x^2, x^3, \dots$ tworzą nieskończony układ liniowo niezależny. Jednakże układ ten nie jest bazą algebraiczną przestrzeni liniowej X. Możemy rozważać też inną normę:

$$||f||_1 = \int_0^1 |f(t)| dt.$$

3. $X = \ell^{\infty} = \{x = (x_n)_{n=1}^{\infty} : \sup_n |x_n| < \infty \}.$

$$||x||_{\infty} = \sup_{n} |x_n|.$$

Zauważmy, że $|x_n| \leq ||x||_{\infty}$.

Definicja 1.3. Przestrzeń metryczną nazywamy **zupełną**, jeśli każdy ciąg elementów tej przestrzeni spełniający warunek Cauchy'ego jest zbieżny.

Definicja 1.4. Przestrzeń unormowaną zupełną w metryce d(x,y) = ||x-y|| nazywamy **przestrzenią Banacha**.

Przykład. Przestrzenie $\mathbb R$ i $\mathbb C$ są przestrzeniami Banacha.

Przykład. ℓ^{∞} jest przestrzenią Banacha. W tym celu trzeba pokazać, że każdy ciąg Cauchy'ego $x^{(k)}$ w ℓ^{∞} jest zbieżny do pewnego elementu x z ℓ^{∞} . Ustalmy wskaźnik n. Wtedy

$$|x_n^{(k)} - x_n^{(l)}| \le \sup_{m \in \mathbb{N}} |x_m^{(k)} - x_m^{(l)}| = ||x^{(k)} - x^{(l)}||_{\infty}.$$

Zatem dla dowolnej liczby n ciąg liczbowy $(x_n^{(k)})_{k=1}^\infty$ spełnia warunek Cauchy'ego. Zatem ten ciąg ma granicę $\lim_k x_n^{(k)} = x_n$. Otrzymujemy w ten sposób ciąg $x = (x_n)_{n=1}^\infty$. Pokażemy, że $x \in \ell^\infty$ oraz $||x^{(k)} - x||_\infty \to 0$. Ustalmy liczbę dodatnią ε . Z warunku Cauchy'ego istnieje wskaźnik k_0 taki, że dla $k, l \geqslant k_0$ mamy

$$|x_n^{(k)} - x_n^{(l)}| \le ||x^{(k)} - x^{(l)}||_{\infty} < \varepsilon.$$

Przechodząc do granicy po lewej stronie, gdy $l \to \infty$ otrzymamy

$$|x_n^{(k)} - x_n| \leqslant \varepsilon, \qquad n = 1, 2, \dots$$

Zatem $x^{(k)} - x \in \ell^{\infty}$ oraz

$$||x^{(k)} - x||_{\infty} \leqslant \varepsilon \qquad k \geqslant k_0. \tag{1.1}$$

Stąd x leży w ℓ^{∞} jako suma dwu elementów z ℓ^{∞}

$$x = -(x^{(k_0)} - x) + x^{(k_0)}.$$

Ponadto (1.1) oznacza, że $x^{(k)}$ zbiega do $x \le \ell^{\infty}$.

Definicja 1.5. Mówimy, że szereg $\sum_{n=1}^{\infty} x_n$ elementów z przestrzeni unormowanej X jest zbieżny, jeśli szereg sum częściowych

$$s_n = \sum_{k=1}^n x_k$$

jest zbieżny.

Mówimy, że szereg $\sum_{n=1}^{\infty} x_n$ jest bezwzględnie zbieżny, jeśli zbieżny jest szereg liczbowy $\sum_{n=1}^{\infty} \|x_n\|$.

Twierdzenie 1.6. Przestrzeń liniowa unormowana jest zupełna wtedy i tylko wtedy, gdy każdy szereg bezwzględnie zbieżny jest zbieżny.

 $Dowód. \ (\Rightarrow)$ Załóżmy, że $\sum_{n=1}^{\infty} ||x_n|| < \infty$. Dla n > m mamy

$$||s_n - s_m|| = \left\| \sum_{j=m+1}^n x_j \right\| \le \sum_{j=m+1}^n ||x_j|| \le \sum_{j=m+1}^\infty ||x_j||.$$

Stąd wynika, że ciąg s_n spełnia warunek Cauchy'ego, zatem jest zbieżny.

(\Leftarrow) Niech x_n będzie ciągiem Cauchy'ego w X. Dla $\varepsilon=2^{-k}$ istnieje liczba naturalna n_k taka, że dla $n,m\geqslant n_k$ mamy $\|x_n-x_m\|<2^{-k}$. Można założyć, że $n_{k+1}>n_k$. Zatem

$$||x_{n_{k+1}} - x_{n_k}|| < 2^{-k}, \qquad k = 1, 2, \dots$$

Przyjmijmy $y_0=x_{n_1}$ oraz $y_k=x_{n_{k+1}}-x_{n_k}$ dla $k\geqslant 1$. Wtedy szereg $\sum y_k$ jest bezwzględnie zbieżny. Zatem szereg ten jest zbieżny. Obliczamy sumy częściowe tego szeregu i otrzymujemy

$$\sum_{l=0}^{k-1} y_l = x_{n_k}.$$

Zatem podciąg x_{n_k} jest zbieżny. Oznaczmy $x=\lim_k x_{n_k}$. Pokażemy, że $x=\lim_n x_n$. Ustalmy liczbę $\varepsilon>0$. Z warunku Cauchy'ego istnieje liczba k_0 taka, że

$$||x_n - x_m|| < \frac{\varepsilon}{2}, \qquad n, m \geqslant k_0.$$

Istnieje też liczba l_0 , dla której

$$||x_{n_l} - x|| < \frac{\varepsilon}{2}, \qquad l \geqslant l_0.$$

Niech $n \ge \max(k_0, l_0) = m_0$. Wtedy $n \ge k_0$ oraz $n_{m_0} \ge m_0 \ge k_0$. Zatem

$$||x_n - x|| \le ||x_n - x_{n_{m_0}}|| + ||x_{n_{m_0}} - x|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Przykład. Rozważamy przestrzeń liniową

$$L^1_{\mathbb{R}}(0,1) = \left\{ f : (0,1) \to \mathbb{R} \mid f \text{ mierzalna, } ||f||_1 = \int_0^1 |f(x)| \, dx < \infty \right\}.$$

Przyjmujemy, że dwie funkcje f i g są równe jeśli f(x) = g(x) prawie wszędzie dla x z przedziału (0,1) względem miary Lebesgue'a. Pokażemy zupełność przestrzeni w normie $\| \ \|_1$. Wystarczy sprawdzić, że każdy szereg bezwzględnie zbieżny jest zbieżny. Niech $\sum \|f_n\|_1 < \infty$. Określmy funkcję

$$g(x) = \sum_{n=1}^{\infty} |f_n(x)|.$$

Jeśli szereg jest rozbieżny, przyjmujemy wartość ∞ . Funkcja g jest mierzalna i nieujemna jako granica punktowa sum częściowych funkcji mierzalnych i nieujemnych. Na podstawie twierdzenia Beppo-Leviego mamy

$$\int_{0}^{1} g(x) dx = \int_{0}^{1} \sum_{n=1}^{\infty} |f_n(x)| dx = \sum_{n=1}^{\infty} \int_{0}^{1} |f_n(x)| dx = \sum_{n=1}^{\infty} ||f_n||_{1} < \infty$$

Zatem $g(x) < \infty$ prawie wszędzie, czyli szereg $\sum f_n(x)$ jest bezwzględnie zbieżny prawie wszędzie. To pozwala określić

$$h(x) = \begin{cases} \sum_{n=1}^{\infty} f_n(x), & \text{jeśli szereg jest zbieżny;} \\ 0, & \text{jeśli szereg jest rozbieżny.} \end{cases}$$

Pokażemy, że $h \in L^1_{\mathbb{R}}(0,1)$ oraz $\sum f_n = h$ w normie przestrzeni $L^1_{\mathbb{R}}(0,1)$. Mamy

$$\int_{0}^{1} |h(x)| \, dx = \int_{0}^{1} \left| \sum_{n=1}^{\infty} f_n(x) \right| \, dx \leqslant \int_{0}^{1} \sum_{n=1}^{\infty} |f_n(x)| \, dx = \sum_{n=1}^{\infty} \|f_n\|_1 < \infty.$$

Dalej

$$\left\| h - \sum_{k=1}^{n} f_{k} \right\|_{1} = \int_{0}^{1} \left| h(x) - \sum_{k=1}^{n} f_{k}(x) \right| dx = \int_{0}^{1} \left| \sum_{k=n+1}^{\infty} f_{k}(x) \right| dx$$

$$\leq \int_{0}^{1} \sum_{k=n+1}^{\infty} |f_{k}(x)| dx = \sum_{k=n+1}^{\infty} ||f_{k}||_{1} \xrightarrow{n} 0.$$

Tak samo dowodzi się, że przestrzeń $L^1_{\mathbb{R}}(X,\mu)$ jest zupełna dla przestrzeni X z miarą μ .

W przestrzeniach \mathbb{C}^n (lub \mathbb{R}^n oraz np. C[0,1] można określić wiele norm.

Definicja 1.7. Dwie normy $\| \|_1$ oraz $\| \|_2$ określone na przestrzeni liniowej X nazywamy **równoważnymi**, jeśli te normy są porównywalne, tzn. istnieją liczby dodatnie c_1 i c_2 spełniające

$$c_2||x||_2 \leqslant ||x||_1 \leqslant c_1||x||_2$$

 $dla\ wszystkich\ x\ z\ X.$

Uwaga 1.8. Równoważność norm oznacza zatem, że iloraz norm dla niezerowych elementów jest ograniczony od góry i od dołu przez liczby dodatnie. Jeśli normy $\| \|_1$ oraz $\| \|_2$ są równoważne, to zbieżność ciągu x_n względem normy $\| \|_1$ jest równoważna zbieżności tego ciągu w normie $\| \|_2$. Rzeczywiście, wynika to z nierówności

$$c_2||x_n - x||_2 \le ||x_n - x||_1 \le c_1||x_n - x||_2.$$

Implikacja odwrotna też jest prawdziwa, tzn. jeśli zbieżność ciągów w dwu normach jest równoważna, to normy te muszą być równoważne (zadanie).

Przykład. Rozważmy C[0,1] i dwie normy

$$||f||_{\infty} = \max_{0 \le t \le 1} |f(t)|, \quad ||f||_{1} = \int_{0}^{1} |f(t)| dt.$$

Mamy

$$||f||_1 = \int_0^1 |f(t)| dt \le \int_0^1 ||f||_{\infty} dt = ||f||_{\infty}.$$

Niech $f_n(x) = x^n$. Wtedy

$$||f_n||_{\infty} = 1, \qquad ||f_n||_1 = \frac{1}{n+1}.$$

Stad normy te nie są równoważne, bo iloraz norm nie jest ograniczony.

Twierdzenie 1.9. W przestrzeni \mathbb{C}^n (lub \mathbb{R}^n) wszystkie normy są równoważne.

Dowód. Pokażemy, że dowolna norma $\| \|$ jest równoważna z normą $\|x\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$. Niech e_1, e_2, \ldots, e_n oznaczają elementy standardowej bazy w \mathbb{C}^n . Tzn. ciąg e_i składa się z (n-1) zer i jedynki umieszczonej na i-tej pozycji. Wtedy

$$||x|| = \left\| \sum_{i=1}^{n} x_i e_i \right\| \le \sum_{i=1}^{n} |x_i| ||e_i|| \le \left(\sum_{i=1}^{n} ||e_i|| \right) ||x||_{\infty}$$

Przyjmując $c_1=\sum_{i=1}^n\|e_i\|$ otrzymujemy $\|x\|\leqslant c_1\|x\|_\infty$. Pozostaje udowodnić, że istnieje stała $c_2>0$ taka, że

$$c_2||x||_{\infty} \leqslant ||x||, \qquad x \in \mathbb{C}^n.$$

Niech $S = \{y \in \mathbb{C}^n \mid ||y||_{\infty} = 1\}$. Rozważmy funkcję $\varphi : S \to (0, \infty)$ określoną wzorem $\varphi(y) = ||y||$. Zbiór S jest domknięty i ograniczony w \mathbb{C}^n . Z kolei funkcja φ jest ciągła, bo

$$|\varphi(y) - \varphi(y_0)| = |||y|| - ||y_0||| \le ||y - y_0|| \le c_1 ||y - y_0||_{\infty}.$$

Z twierdzenia Weierstrassa funkcja φ przyjmuje wartość najmniejszą w pewnym punkcie zbioru S. W szczególności ta funkcja jest ograniczona od dołu przez pewną dodatnią stałą c_2 . Czyli $||y|| \ge c_2$ dla $y \in S$. Niech $x \ne 0 \in \mathbb{C}^n$. Wtedy element $y = x/||x||_{\infty}$ należy do S. Z równości $x = ||x||_{\infty} y$ otrzymujemy zatem

$$||x|| = ||x||_{\infty} ||y|| \geqslant c_2 ||x||_{\infty}.$$

Uwaga 1.10. Z twierdzenia wynika, że przestrzeń \mathbb{C}^n (i \mathbb{R}^n) jest zupełna niezależnie od wyboru normy, bo ciągi zbieżne w jednej normie są zbieżne w każdej innej normie oraz ciągi Cauchy'ego w jednej normie są ciągami Cauchy'ego w każdej innej normie.

Wniosek 1.11.

- (i) Przestrzeń \mathbb{C}^n (\mathbb{R}^n) jest zupełna w dowolnej normie.
- (ii) Przestrzeń unormowana skończonego wymiaru jest zawsze zupełna.

Dowód. (ii) Niech X będzie tą przestrzenią oraz $\dim X = n$. Niech f_1, f_2, \ldots, f_n będzie bazą przestrzeni X. Określmy odwzorowanie $\varphi: X \to \mathbb{C}^n$ wzorem

$$X \ni \sum_{k=1}^{n} x_k f_k \xrightarrow{\varphi} (x_1, x_2, \dots, x_n) \in \mathbb{C}^n,$$

oraz normę w przestrzeni \mathbb{C}^n wzorem

$$||x|| = \left\| \sum_{k=1}^{n} x_k f_k \right\|, \quad x \in \mathbb{C}^n.$$

Wtedy φ jest izometrycznym izomorfizmem przestrzeni X i \mathbb{C}^n . Z pierwszej części wniosku wynika, że X jest zupełna.

Wiadomo, że jeśli podzbiór Y w przestrzeni metrycznej X jest przestrzenią metryczną zupełną, to Y jest domkniętym podzbiorem w X. Stąd natychmiast otrzymujemy

Wniosek 1.12. Jeśli E jest podprzestrzenią liniową skończonego wymiaru w przestrzeni unormowanej X, to E jest domknięta w X.

Twierdzenie 1.13 (o najlepszej aproksymacji). Niech E będzie podprzestrzenią liniową skończonego wymiaru w przestrzeni unormowanej X. Dla każdego elementu x z X istnieje element $x_0 \in E$ taki, że

$$||x - x_0|| = \inf_{y \in E} ||x - y||.$$

Dowód. Oznaczmy $a = \inf_{y \in E} ||x - y||$. Dla liczby n istnieje element $y_n \in E$ taki, że $||x - y_n|| < a + \frac{1}{n}$. Wtedy

$$||y_n|| \le ||y_n - x|| + ||x|| < a + ||x|| + \frac{1}{n} \le a + ||x|| + 1.$$

Zatem ciąg y_n jest ograniczony. Z twierdzenia Bolzano-Weierstrassa (bo dim $E < \infty$) możemy wybrać podciąg y_{n_k} zbieżny np. do x_0 . Ponieważ E jest domknięta, to $x_0 \in E$. Dalej

$$a \le ||x - x_0|| \le ||x - y_{n_k}|| + ||y_{n_k} - x_0|| < a + \frac{1}{n_k} + ||y_{n_k} - x_0|| \underset{k \to \infty}{\longrightarrow} a.$$

Otrzymujemy $||x - x_0|| = a$ co kończy dowód.

Uwaga 1.14. Jeśli norma spełnia

$$||x + y|| = ||x|| + ||y|| \implies x = \alpha y \text{ dla } \alpha \in \mathbb{C}, \tag{1.2}$$

to element x_0 z tezy twierdzenia jest jedyny. Istotnie, załóżmy, że istnieją dwa elementy x_0 oraz x_1 spełniające

$$||x - x_0|| = ||x - x_1|| = a.$$

Wtedy

$$a \le \left\| x - \frac{x_0 + x_1}{2} \right\| = \left\| \frac{x - x_0}{2} + \frac{x - x_1}{2} \right\| \le \left\| \frac{x - x_0}{2} \right\| + \left\| \frac{x - x_1}{2} \right\| = a.$$

Zatem

$$\left\| \frac{x - x_0}{2} + \frac{x - x_1}{2} \right\| = \left\| \frac{x - x_0}{2} \right\| + \left\| \frac{x - x_1}{2} \right\|.$$

Wtedy

$$\frac{x - x_0}{2} = \alpha \frac{x - x_1}{2}$$

dla pewnej liczby α . Jeśli $\alpha=1$, to $x_0=x_1$. Jeśli zaś $\alpha\neq 1$, to obliczając x otrzymamy, że $x\in E$ i wtedy $x=x_0=x_1$. Można też zauważyć, że liczba α z (1.2) musi być zawsze nieujemna. Jeśli $\|x\|=\|y\|\neq 0$, oraz $\|x+y\|=\|x\|+\|y\|$ to $\alpha=1$.

Definicja 1.15. Podzbiór przestrzeni metrycznej X nazywamy **gęstym**, jeśli dla dowolnego elementu x z X i dowolnej liczby $\varepsilon > 0$ istnieje element a z A spełniający $d(x,a) < \varepsilon$. Przestrzeń metryczna jest **ośrodkowa**, jeśli posiada przeliczalny podzbiór gęsty.

Uwaga 1.16. Jeśli w przestrzeni metrycznej X znajdziemy nieprzeliczalną rodzinę rozłącznych otwartych kul (tzn. zbiorów postaci $B(x,r) = \{y \in Y \mid d(x,y) < r\}$), to X nie jest ośrodkowa.

Przykład. $X = \mathbb{R}^n$ (lub \mathbb{C}^n).

$$A_{\mathbb{R}} = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{Q}\}$$

$$A_{\mathbb{C}} = \{(z_1, z_2, \dots, z_n) \mid z_i \in \mathbb{Q} + i\mathbb{Q}\}$$

Przykład. Rozważmy $X = C_{\mathbb{R}}[0,1]$ z normą $||f||_{\infty} = \sup_{0 \leq t \leq 1} |f(t)|$. Z twierdzenia Weierstrassa dla dowolnej funkcji f istnieje ciąg wielomianów p_n taki, że $p_n(x)$ jest zbieżny jednostajnie do f(x). Tzn. $||p_n - f||_{\infty} \to 0$, gdy $n \to \infty$. Zatem wielomiany \mathcal{P} tworzą gęsty podzbiór w X. Wtedy zbiór

$$\mathcal{P}_0 = \{ p(x) = a_n x^n + \ldots + a_1 x + a_0 \mid n \in \mathbb{N}, \ a_0, a_1, \ldots, a_n \in \mathbb{Q} \}$$

jest przeliczalnym i gęstym podzbiorem w \mathcal{P} , a zatem również w X.

Przykład. Dla przestrzeni

$$\ell^{2} = \left\{ (x_{n})_{n=1}^{\infty} \mid \sum_{n=1}^{\infty} |x_{n}|^{2} < \infty, \ x_{n} \in \mathbb{C} \right\}$$

zbiór

$$A = \{(x_n)_{n=1}^{\infty} \mid x_n \in \mathbb{Q} + i\mathbb{Q}, \ x_n = 0 \text{ od pewnego miejsca}\}$$

jest przeliczalnym zbiorem gestym.

Przykład. Rozważamy przestrzeń

$$\ell_{\mathbb{R}}^{\infty} = \left\{ x = (x_n)_{n=1}^{\infty} \mid ||x||_{\infty} = \sup_{n} |x_n| < \infty, \ x_n \in \mathbb{R} \right\}.$$

Ta przestrzeń nie jest ośrodkowa. Rzeczywiście, dla podzbioru $A\subseteq \mathbb{N}$ określmy

$$x_A(n) = \begin{cases} 1 & n \in A, \\ 0 & n \notin A. \end{cases}$$

Wtedy $||x_A - x_B||_{\infty} = 1$ o ile $A \neq B$. Rozważmy kule $B(x_A, \frac{1}{2})$ dla wszystkich $A \subseteq \mathbb{N}$. Te zbiory są rozłączne i jest ich continuum. Zatem $\ell_{\mathbb{R}}^{\infty}$ nie jest ośrodkowa.

Twierdzenie 1.17. Każdą przestrzeń unormowaną można uzupełnić do przestrzeni Banacha.

Dowód. Niech X_0 będzie przestrzenią unormowaną. Oznaczmy przez X rodzinę klas równoważności ciągów Cauchy'ego elementów z X_0 . Dwa ciągi Cauchy'ego (x_n) oraz (y_n) są $\boldsymbol{równoważne}$, co zapisujemy $(x_n) \sim (y_n)$, gdy $||x_n - y_n|| \xrightarrow{n} 0$. Przestrzeń X_0 utożsamiamy z podzbiorem X następująco

$$X_0 \ni x_0 \longmapsto [(x_0, x_0, \dots, x_0, \dots)]_{\sim} \in X,$$

gdzie $(x_n)_{\sim}$ oznacza klasę równoważności ciągu. Wiemy z topologii, że X jest przestrzenią metryczną zupełną z metryką

$$d_X((x_n)_{\sim},(y_n)_{\sim}) = \lim_n d_{X_0}(x_n,y_n) = \lim_n ||x_n - y_n||_{X_0}.$$

X jest przestrzenią liniową, bo

$$(1) (x_n)_{\sim} + (y_n)_{\sim} = (x_n + y_n)_{\sim}.$$

(2)
$$\lambda(x_n)_{\sim} = (\lambda x_n)_{\sim}, \ \lambda \in \mathbb{C}.$$

Sprawdzimy, że definicja dodawania jest prawidłowa, tzn. nie zależy od wyboru reprezentantów w klasie równoważności. Niech $(x_n) \sim (x'_n)$ oraz $(y_n) \sim (y'_n)$. Wtedy $(x_n + y_n) \sim (x'_n + y'_n)$, bo

$$\|(x_n + y_n) - (x'_n + y'_n)\|_{X_0} \le \|x_n - x'_n\|_{X_0} + \|y_n - y'_n\|_{X_0} \longrightarrow 0.$$

Analogicznie sprawdzamy (2).

Określmy kandydata na normę w X wzorem

$$\|(x_n)_{\sim}\|_X = d_X((x_n)_{\sim}, (0)_{\sim}) = \lim_n \|x_n\|_{X_0}.$$

Definicja jest poprawna, tzn. nie zależy od wyboru reprezentantów, bo środkowe wyrażenie zależy tylko od klasy równoważności ciągu x_n .

Pozostaje sprawdzić, że $\| \ \|_X$ jest normą oraz, że $\| (x_0)_{\sim} \|_X = \| x_0 \|_{X_0}$. Warunek trójkąta i jednorodność wynikają z własności normy $\| \ \|_{X_0}$. Sprawdzamy kiedy $\| [(x_n)]_{\sim} \|_X = 0$. Otrzymujemy $\lim \| x_n \|_{X_0} = 0$, tzn. $(x_n) \sim (0)$. Sprawdzamy jeszcze zgodność normy $\| \ \|_X$ z metryką $d_X(\ ,\)$. Ale

$$d_X((x_n)_{\sim}, (y_n)_{\sim}) = \lim_n ||x_n - y_n||_{X_0} = ||(x_n)_{\sim} - (y_n)_{\sim}||_X.$$

1.1 Dodatek

Lemat 1.18 (F. Riesz). Niech Y będzie domkniętą właściwą podprzestrzenią liniową unormowanej przestrzeni liniowej X. Dla dowolnej liczby $0 < \theta < 1$ istnieje element x w X spełniający ||x|| = 1 oraz

$$d(x,Y) := \inf\{\|x - y\| : y \in Y\} \geqslant \theta.$$

Uwaga 1.19. Mamy $d(x, Y) \leq 1$, bo ||x - 0|| = 1. Lemat mówi, że można znaleźć element x taki, że ||x|| = 1, dla którego odległość od domkniętej podprzestrzeni Y jest dowolnie bliska liczbie 1.

Dowód. Ustalmy liczbę $0 < \theta < 1$. Niech $x_0 \in X \setminus Y$. Oznaczmy

$$a = d(x_0, Y) = \inf\{||x_0 - y|| : y \in Y\}.$$

Liczba a jest dodatnia, bo jeśli a=0, to istnieje ciąg $y_n \in Y$ taki, że $\|x_0-y_n\| \xrightarrow[n]{} 0$. Czyli $y_n \xrightarrow[n]{} x_0$. Ponieważ Y jest domknięta, to $x_0 \in Y$, co daje sprzeczność. Z dodatniości liczby a mamy $a < a/\theta$. Zatem istnieje element $y_0 \in Y$ spełniający

$$a \leqslant ||x_0 - y_0|| \leqslant \frac{a}{\theta}.$$

Niech

$$x = c(x_0 - y_0),$$
 gdzie $c = \frac{1}{\|x_0 - y_0\|}.$

Wtedy ||x|| = 1. Ponadto, dla $y \in Y$ mamy

$$||x - y|| = ||c(x_0 - y_0) - y|| = c||x_0 - (y_0 + c^{-1}y)|| \ge ca = \frac{a}{||x_0 - y_0||} \ge \theta.$$

Zatem
$$d(x,Y) \geqslant \theta$$
.

Twierdzenie 1.20. Niech X będzie unormowaną przestrzenią liniową nieskończonego wymiaru. Wtedy istnieje ciąg elementów x_n w X spełniający warunki: $||x_n|| = 1$ oraz $||x_n - x_m|| \ge \frac{1}{2}$ dla $n \ne m$.

Dowód. Z założenia istnieje nieskończony układ liniowo niezależny y_1, y_2, y_3, \ldots . Określmy $Y_n = \lim\{y_1, y_2, \ldots, y_n\}$. Podprzestrzenie liniowe Y_n spełniają

$$Y_1 \subsetneq Y_2 \subsetneq \ldots \subsetneq Y_n \subsetneq \ldots$$

Stosując lemat Riesza dla $Y_{n-1} \subsetneq Y_n$ i $\theta = \frac{1}{2}$ otrzymujemy element $x_n \in Y_n$ o własności $||x_n|| = 1$ oraz $d(x_n, Y_{n-1}) \geqslant \frac{1}{2}$. Niech n > m. Wtedy $x_m \in Y_m \subset Y_{n-1}$. Zatem $||x_n - x_m|| \geqslant d(x_n, Y_{n-1}) \geqslant \frac{1}{2}$.

Wniosek 1.21. W nieskończenie wymiarowej liniowej przestrzeni unormowanej X kula jednostkowa $B = \{x \in X : ||x|| \le 1\}$ nie jest zbiorem zwartym.

Dowód. Wyrazy ciągu x_n z poprzedniego twierdzenia leżą w kuli B, ale ciąg ten nie zawiera podciągu zbieżnego.

Wniosek 1.22. Załóżmy, że przestrzeń Banacha X ma nieskończony wymiar. Wtedy baza przestrzeni X jest nieprzeliczalna.

Dowód. Załóżmy, że przestrzeń X posiada przeliczalną bazę e_1, e_2, e_3, \ldots . Niech $X_n = \lim\{e_1, e_2, \ldots, e_n\}$. Zatem

$$X = \bigcup_{n=1}^{\infty} X_n,$$

bo każdy element x w X należy do pewnej przestrzeni X_n . Na podstawie dowodu poprzedniego twierdzenia istnieją elementy $x_n \in X_n$ takie, że $||x_n|| = 1$ oraz $d(x_n, X_{n-1}) \geqslant \frac{1}{2}$. Wtedy szereg $\sum_{n=1}^{\infty} 4^{-n}x_n$ jest bezwzględnie zbieżny, zatem jest zbieżny (por. Twierdzenie 1.6). Oznaczmy

$$y = \sum_{n=1}^{\infty} 4^{-n} x_n.$$

Element y leży w X_{n_0} dla pewnej liczby n_0 . Zatem

$$\sum_{n=n_0+1}^{\infty} 4^{-n} x_n = y - \sum_{n=1}^{n_0} 4^{-n} x_n \in X_{n_0}.$$

Zatem

$$y_0 := \sum_{n=n_0+1}^{\infty} 4^{n_0+1-n} x_n \in X_{n_0}.$$

W konsekwencji otrzymujemy

$$\frac{1}{2} \leqslant d(x_{n_0+1}, X_{n_0}) \leqslant ||x_{n_0+1} - y_0||$$

$$= \left\| \sum_{n=n_0+2}^{\infty} 4^{n_0+1-n} x_n \right\| \leqslant \sum_{n=n_0+2}^{\infty} 4^{n_0+1-n} = \frac{1}{3}.$$

Otrzymaliśmy sprzeczność.

2 Operatory liniowe

Niech $X=\mathbb{C}^n,\,Y=\mathbb{C}^m$ oraz $A=\{a_{ij}\}$ będzie macierzą wymiaru $m\times n$ o wyrazach zespolonych. Wtedy A możemy traktować jako odwzorowanie z X do Y poprzez wzór

$$A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}, \quad \text{gdzie } y_i = \sum_{j=1}^n a_{ij} x_j.$$

Odwzorowanie A spełnia

$$A(x + x') = Ax + Ax'$$
 gdzie $x, x' \in X$,
 $A(\lambda x) = \lambda Ax$ gdzie $\lambda \in \mathbb{C}, x \in X$.

Definicja 2.1. Operatorem liniowym T z przestrzeni liniowej X w przestrzeń liniową Y nazywamy odwzorowanie $T: X \to Y$ spełniające:

$$T(x + x') = Tx + Tx'$$

 $T(\lambda x) = \lambda Tx.$

Załóżmy dodatkowo, że X i Y są przestrzeniami unormowanymi. Operator liniowy $T:X\to Y$ nazywamy ograniczonym jeśli istnieje stała liczba C>0 taka, że

$$||Tx||_Y \leqslant C||x||_X, \qquad x \in X. \tag{2.1}$$

Twierdzenie 2.2. Dla operatora liniowego $T: X \to Y$, pomiędzy przestrzeniami unormowanymi X i Y następujące warunki są równoważne.

- (a) T jest ciągłym odwzorowaniem w jednym punkcie.
- (b) T jest odwzorowaniem ciągłym w każdym punkcie.
- (c) T jest operatorem ograniczonym.

 $Dow \acute{o}d.$ (c) \Longrightarrow (b)

Niech $x \in X$ oraz $x_n \xrightarrow{n} x$. Wtedy z liniowości mamy

$$||Tx_n - Tx|| = ||T(x_n - x)|| \le C||x_n - x|| \xrightarrow{n} 0.$$

Stąd $Tx_n \xrightarrow[n]{} Tx$ w normie przestrzeni Y, czyli T jest ciągły w punkcie x.

 $(b) \Longrightarrow (a)$

To wynikanie jest oczywiste.

 $(a) \Longrightarrow (c)$

Pokażemy, że operator T jest ciągły w punkcie 0 wiedząc, że jest ciągły w jakimś punkcie x_0 . Niech $x_n \to 0$. Wtedy $u_n = x_n + x_0 \to x_0$. Z założenia mamy

$$Tx_n + Tx_0 = T(x_n + x_0) = Tu_n \xrightarrow{r} Tx_0.$$

Zatem $Tx_n \xrightarrow[n]{} 0 = T0.$

Załóżmy nie wprost, że nie istnieje stała spełniająca warunek (2.1). To oznacza, że dla dowolnej liczby naturalnej n można znaleźć element $x_n \in X$ taki, że

$$||Tx_n|| > n||x_n||.$$

W szczególności $x_n \neq 0$. Określmy

$$u_n = \frac{1}{\sqrt{n}} \frac{x_n}{\|x_n\|}.$$

Wtedy $||u_n|| = 1/\sqrt{n}$. Zatem $u_n \xrightarrow{n} 0$. Dalej

$$||Tu_n|| = \frac{1}{\sqrt{n}} \frac{||Tx_n||}{||x_n||} > \frac{1}{\sqrt{n}} n = \sqrt{n} \xrightarrow{n} \infty.$$

To przeczy ciągłości operatora T w punkcie 0.

Jeśli Tjest ograniczonym operatorem liniowym, to dla pewnej stałej Ci dla wszystkich $x \neq 0$ mamy

$$\frac{\|Tx\|}{\|x\|} \leqslant C.$$

Zatem

$$\sup_{x \neq 0} \frac{\|Tx\|}{\|x\|} \leqslant C.$$

Definicja 2.3. Liczbę

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||}$$

 $nazywamy \ norma \ operatora \ ograniczonego \ T.$

Zauważmy, że dla $x \in X$ mamy

$$\frac{\|Tx\|}{\|x\|} \leqslant \|T\|, \qquad x \neq 0.$$

Czyli $||Tx|| \le ||T|| ||x||$ dla $x \in X$ włącznie z x = 0. Zatem C = ||T|| jest najmniejszą liczbą nieujemną, dla której nierówność $||Tx|| \le C||x||$ jest spełniona.

Twierdzenie 2.4.

$$||T|| = \sup_{\|u\| \le 1} ||Tu||.$$

 $Dow \acute{o}d.$ Dla $x \neq 0$ norma elementu $x/\|x\|$ jest równa 1. Mamy

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{x \neq 0} \left| |T\left(\frac{x}{||x||}\right) \right|| \le \sup_{\|u\| \le 1} ||Tu||.$$

Z drugiej strony

$$\sup_{\|u\|\leqslant 1}\|Tu\|=\sup_{0<\|u\|\leqslant 1}\|Tu\|\leqslant \sup_{0<\|u\|\leqslant 1}\frac{\|Tu\|}{\|u\|}\leqslant \sup_{u\neq 0}\frac{\|Tu\|}{\|u\|}=\|T\|.$$

Przykład. Rozważamy $X = \mathbb{C}^n$ i $Y = \mathbb{C}^m$ z normami euklidesowymi. Niech e_1, e_2, \ldots, e_n i f_1, f_2, \ldots, f_m oznaczają standardowe bazy w przestrzeniach X i Y odpowiednio. Niech T będzie operatorem liniowym z X do Y. Wtedy

$$||Tx|| = \left\| T\left(\sum_{j=1}^{n} x_j e_j\right) \right\| = \left\| \sum_{j=1}^{n} x_j T e_j \right\| \leqslant \sum_{j=1}^{n} |x_j| ||Te_j||$$

$$\leqslant \left(\sum_{j=1}^{n} ||Te_j||^2\right)^{1/2} \left(\sum_{j=1}^{n} |x_j|^2\right)^{1/2} = C||x||,$$

gdzie
$$C = \left(\sum_{j=1}^{n} \|Te_j\|^2\right)^{1/2}$$
. Zatem

$$||T|| \le \left(\sum_{j=1}^{n} ||Te_j||^2\right)^{1/2}.$$

Zapiszmy T w postaci macierzowej, tzn.

$$Te_j = \sum_{i=1}^m a_{ij} f_i.$$

Wtedy

$$\sum_{j=1}^{n} ||Te_j||^2 = \sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}|^2,$$

czyli norma ||T|| jest oszacowana z góry przez pierwiastek z sumy kwadratów wartości bezwzględnych wszystkich wyrazów macierzy związanej z T.

Uwaga 2.5. Z przykładu wynika, że każdy operator liniowy określony na przestrzeni skończenie wymiarowej jest ograniczony. Rzeczywiście obraz takiego operatora ma skończony wymiar, więc można go utożsamić z operatorem pomiędzy \mathbb{C}^n i \mathbb{C}^m dla pewnych n i m. Ponieważ normy na tych przestrzeniach są równoważne normie euklidesowej, to operator musi być ograniczony.

Przykład. Rozważamy przestrzeń C[0,1] z normą $\|f\|_{\infty}=\sup_{0\leqslant x\leqslant 1}|f(x)|$. Niech k(x,y) będzie funkcją ciągłą dwu zmiennych $0\leqslant x,y\leqslant 1$. Określamy odwzorowanie $T:C[0,1]\to C[0,1]$ wzorem

$$(Tf)(x) = \int_{0}^{1} k(x, y)f(y) dy, \qquad 0 \le x \le 1.$$

Mamy

$$|(Tf)(x)| \le \int_{0}^{1} |k(x,y)| |f(y)| dy \le ||f||_{\infty} \int_{0}^{1} |k(x,y)| dy$$

$$\le ||f||_{\infty} \sup_{0 \le x \le 1} \int_{0}^{1} |k(x,y)| dy.$$

Zatem dla $C = \sup_{0 \leqslant x \leqslant 1} \int_{0}^{1} |k(x,y)| \, dy$ otrzymujemy

$$||Tf||_{\infty} = \sup_{0 \le x \le 1} |(Tf)(x)| \le C||f||_{\infty}.$$

Ostatecznie

$$||T|| \le \sup_{0 \le x \le 1} \int_{0}^{1} |k(x, y)| \, dy.$$

Wielkość po prawej stronie jest skończona, bo z twierdzenia Weierstrassa funkcja k(x,y) jest ograniczona.

Załóżmy, że $k(x,y) \geqslant 0$. Wtedy dla funkcji stale równej 1 mamy $\|1\|_{\infty} = 1$ oraz

$$(T1)(x) = \int_{0}^{1} k(x, y) dy.$$

Zatem

$$||T1||_{\infty} = \sup_{0 \le x \le 1} \int_{0}^{1} k(x, y) \, dy.$$

Stad wynika, że

$$||T|| \geqslant \sup_{0 \leqslant x \leqslant 1} \int_{0}^{1} k(x, y) \, dy.$$

Reasumując otrzymujemy

$$||T|| = \sup_{0 \le x \le 1} \int_{0}^{1} k(x, y) \, dy.$$

Funkcja k(x,y) nie musi być ciągła, aby odpowiadający jej operator T przekształcał C[0,1] w C[0,1]. Na przykład operatorowi funkcji pierwotnej

$$(Tf)(x) = \int_{0}^{x} f(y) \, dy$$

odpowiada funkcja

$$k(x,y) = \begin{cases} 1, & 0 \leqslant y \leqslant x, \\ 0, & x < y \leqslant 1. \end{cases}$$

Ponieważ $k(x,y) \ge 0$, to

$$||T|| = \sup_{0 \leqslant x \leqslant 1} \int_{0}^{1} k(x, y) \, dy = \sup_{0 \leqslant x \leqslant 1} x = 1.$$

Przykład. Niech $X = C^1[0,1]$ oraz Y = C[0,1]. W obu przestrzeniach wprowadzamy normę $\| \|_{\infty}$. Rozważamy operator pochodnej Tf = f'. Dla $f_n(x) = x^n$ mamy $\|f_n\|_{\infty} = 1$, ale $\|Tf_n\|_{\infty} = \|nx^{n-1}\|_{\infty} = n$. Zatem operator T nie jest ograniczony.

W przestrzeni $X=C^1[0,1]$ bardziej naturalne będzie wprowadzenie normy

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$

Po tej zmianie przestrzeń X staje się zupełna oraz operator Tf=f' jest ograniczony, bo

$$||Tf||_{\infty} = ||f'||_{\infty} \le ||f||_{\infty} + ||f'||_{\infty} = ||f||.$$

Zatem norma operatora T nie przekracza liczby 1.

Twierdzenie 2.6. Niech X_0 będzie gęstą podprzestrzenią liniową przestrzeni unormowanej X. Załóżmy, że operator liniowy $T_0: X_0 \to Y$, gdzie Y jest przestrzenią Banacha, jest ograniczony. Wtedy istnieje rozszerzenie operatora T_0 do operatora T ograniczonego z przestrzeni X w Y.

Uwaga 2.7. Rozszerzenie T jest jednoznaczne.

Przykład. Niech $X_0 = L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, $X = L^2(\mathbb{R})$ oraz $Y = L^2(\mathbb{R})$. W przestrzeniach X i Y wprowadzamy normę

$$||f||_2 = \left(\int_{-\infty}^{\infty} |f(x)|^2 dx\right)^{1/2}.$$

Wtedy przestrzeń Y jest zupełna (por. dowód zupełności dla $L^1(0,1)$). Podprzestrzeń $X_0 = L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ jest gęsta w $X = L^2(\mathbb{R})$. Rzeczywiście dla $f \in L^2(\mathbb{R})$ określamy $f_n(x) = f(x) \mathbf{1}_{[-n,n]}(x)$. Wtedy $f_n \in L^2([-n,n]) \subset L^1([-n,n]) \subset L^1(\mathbb{R})$. Rzeczywiście

$$\int_{-\infty}^{\infty} |f_n(x)| \, dx = \int_{-n}^{n} |f(x)| \, dx \le \left(\int_{-n}^{n} |f(x)|^2 \, dx \right)^{1/2} \left(\int_{-n}^{n} dx \right)^{1/2}$$

$$\le (2n)^{1/2} \left(\int_{-\infty}^{\infty} |f(x)|^2 \, dx \right)^{1/2}.$$

Ponadto $f_n \xrightarrow{n} f \le L^2(\mathbb{R})$. Istotnie

$$||f_n - f||_2^2 = \int_{-\infty}^{\infty} |f_n(x) - f(x)|^2 dx = \int_{|x| > n} |f(x)|^2 dx \xrightarrow{n} 0.$$

Dla $f \in X_0 = L^1 \cap L^2$ określamy

$$Tf = \hat{f}, \qquad \hat{f}(\lambda) = \int_{-\infty}^{\infty} f(x)e^{-i\lambda x} dx.$$

Z równości Plancherela otrzymujemy

$$||Tf||_2^2 = \int_{-\infty}^{\infty} |\widehat{f}(\lambda)|^2 d\lambda = 2\pi \int_{-\infty}^{\infty} |f(x)|^2 dx = 2\pi ||f||_2^2.$$

Zatem $||Tf||_2 = \sqrt{2\pi} ||f||_2$, dla $f \in L^1 \cap L^2$. Z Twierdzenia 2.6 transformata Fouriera rozszerza się do operatora $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$. Operator \mathcal{F} jest ograniczony i spełnia $||\mathcal{F}(f)||_2 = \sqrt{2\pi} ||f||_2$.

Powracamy do dowodu Twierdzenia 2.6.

Dowód. Niech $x \in X$. Z założenia istnieje ciąg elementów x_n z X_0 zbieżny do x. Badamy ciąg T_0x_n .

$$||T_0x_n - T_0x_m|| = ||T_0(x_n - x_m)|| \le ||T_0|| ||x_n - x_m|| \xrightarrow{n,m \to \infty} 0.$$

Zatem T_0x_n jest ciągiem Cauchy'ego w Y. Ciąg T_0x_n jest więc zbieżny, np. do elementu y. Określmy operator T wzorem $Tx = y = \lim_n T_0x_n$. Trzeba

sprawdzić, że ta definicja jest poprawna, tzn. wynik y nie zależy od wyboru ciągu x_n zbieżnego do x. Załóżmy, że inny ciąg x'_n elementów z X_0 jest zbieżny do x. Utwórzmy nowy ciąg $x_1, x'_1, x_2, x'_2, \ldots$ Ten ciąg jest zbieżny do x. Zatem, podobnie jak dla ciągu x_n , ciąg wartości $Tx_1, Tx'_1, Tx_2, Tx'_2, \ldots$ jest zbieżny. Ale podciąg wyrazów o numerach nieparzystych jest zbieżny do y, zatem również podciąg o numerach parzystych, czyli Tx'_n , też jest zbieżny do y.

Tjest rozszerzeniem operatora $T_0,$ bo jeśli $x_0 \in X_0$ to możemy przyjąć $x_n \equiv x_0.$ Wtedy

$$Tx_0 = \lim_n T_0 x_n = T_0 x_0.$$

Sprawdzamy liniowość. Niech $x_n \to x$ oraz $x'_n \to x'$, gdzie $x_n, x'_n \in X_0$. Wtedy $x_n + x'_n \to x + x'$. Zatem

$$T(x + x') = \lim_{n} T_0(x_n + x'_n) = \lim_{n} (T_0 x_n + T_0 x'_n)$$

$$= \lim_{n} T_0 x_n + \lim_{n} T_0 x'_n = Tx + Tx'$$

$$T(\lambda x) = \lim_{n} T_0(\lambda x_n) = \lambda \lim_{n} T_0(x_n) = \lambda Tx.$$

Sprawdzamy ograniczoność.

$$||Tx|| = ||\lim_{n} T_0 x_n|| = \lim_{n} ||T_0 x_n|| \le ||T_0|| \lim_{n} ||x_n|| = ||T_0|| ||x||.$$

Otrzymaliśmy $||T|| \leq ||T_0||$. Ale oczywiście mamy $||T|| \geq ||T_0||$, bo kres górny występujący w określeniu normy operatora T oblicza się po większym zbiorze elementów niż przy oliczaniu normy operatora T_0 . Reasumując $||T|| = ||T_0||$.

Uwaga 2.8. Stosowanie Twierdzenia 2.6 dla przestrzeni skończenie wymiarowych nie ma sensu, bo taka przestrzeń nie posiada właściwych gęstych podprzestrzeni liniowych.

Definicja 2.9. Mówimy, że ograniczony operator liniowy $T: X \to Y$ pomiędzy unormowanymi przestrzeniami liniowymi jest **odwracalny**, jeśli istnieje ograniczony operator liniowy $S: Y \to X$ spełniający

$$STx = x$$
, dla $x \in X$,
 $TSy = y$, dla $y \in Y$.

W szczególności odwzorowanie T musi być różnowartościowe i obraz przez T musi być równy Y.

Uwaga 2.10. Jeśli T jest odwzorowaniem różnowartościowym i "na", to istnieje odwzorowanie odwrotne S. Ponieważ T jest operatorem liniowym, to również S jest operatorem liniowym. W definicji odwracalności dodatkowo żądamy, aby odwzorowanie odwrotne było ograniczone (równoważnie: ciągłe).

Przykład. Niech $X = \mathbb{C}^n$ oraz $Y = \mathbb{C}^m$. Rozważmy operator liniowy $T: X \to Y$. Odwzorowanie T nie może być odwracalne, gdy $n \neq m$, bo dla m < n, T nie jest różnowartościowe. Z kolei dla m > n odwzorowanie T nie jest "na".

Jeśli n=m, to z kursu algebry liniowej wiemy, że T jest różnowartościowe wtedy i tylko wtedy, gdy to odwzorowanie jest "na", co z kolei jest równoważne warunkowi det $T \neq 0$.

Przykład. Niech $X=Y=\ell^1$, gdzie ℓ^1 oznacza przestrzeń ciągów $x=(x_n)_{n=1}^\infty$ (o wyrazach zespolonych (lub rzeczywistych) bezwzględnie sumowalnych z normą

$$||x||_1 = \sum_{n=1}^{\infty} |x_n|.$$

Rozważamy operator

$$T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots).$$

Wtedy

$$||Tx||_1 = ||x||_1.$$

Zatem ||T|| = 1. Operator T jest różnowartościowy, ale nie jest odwracalny, bo ciąg $(1,0,0,\ldots)$ nie należy do obrazu operatora T. Rozważmy operator

$$S(x_1, x_2, \ldots) = (x_2, x_3, \ldots).$$

Mamy

$$||Sx||_1 = \sum_{n=2}^{\infty} |x_n| \le \sum_{n=1}^{\infty} |x_n| = ||x||_1.$$

Zatem $||S|| \leq 1$. Tym razem operator S nie jest różnowartościowy, bo

$$S(1,0,0,\ldots) = (0,0,\ldots) = S(0,0,\ldots).$$

Obraz operatora S jest równy ℓ^1 , bo

$$S(0, x_1, x_2, \ldots) = (x_1, x_2, \ldots).$$

Zauważmy, że ST = I oraz

$$(TS)(x_1, x_2, x_3...) = (0, x_2, x_3,...).$$

Fakt 2.11. Załóżmy, że ograniczony operator liniowy $T: X \to Y$ jest odwzorowaniem 1-1 i "na". T jest odwracalny wtedy i tylko wtedy, gdy dla pewnej dodatniej liczby c spełniona jest nierówność $||Tx|| \ge c||x||$, dla wszystkich x w X.

 $Dow \acute{o}d$. Oznaczmy symbolem S operator odwrotny do T.

(⇒). Załóżmy, że Tjest odwracalny. Wtedy Sjest ograniczony, zatem

$$||x|| = ||STx|| \le ||S|| ||Tx||.$$

Stad

$$||Tx|| \ge c||x||, \qquad c = \frac{1}{||S||}.$$

(<
=). Załóżmy, że dla c>mamy $\|Tx\|\geqslant c\|x\|.$ Wtedy dla
 $y\in Y$ mamy

$$||y|| = ||TSy|| \geqslant c||Sy||.$$

Po przekształceniu otrzymujemy

$$||Sy|| \leqslant \frac{1}{c}||y||.$$

To oznacza, że S jest ograniczony.

Przykład. Niech X=c oraz $Y=c_0$, gdzie c oznacza przestrzeń wszystkich zbieżnych ciągów, natomiast c_0 oznacza przestrzeń ciągów zbieżnych do zera. W obu przestrzeniach wprowadzamy normę

$$||x||_{\infty} = \sup_{n} |x_n|, \qquad x = (x_n)_{n=1}^{\infty}.$$

Dla $x \in X$ niech $x_{\infty} = \lim_{n} x_{n}$. Określ
my operator $T: X \to Y$ wzorem

$$T(x_1, x_2, \ldots, x_n, \ldots) = (x_{\infty}, x_1 - x_{\infty}, x_2 - x_{\infty}, \ldots, x_n - x_{\infty}, \ldots).$$

Łatwo stwierdzić, że T jest operatorem liniowym z X do Y. Sprawdzimy ograniczoność. Mamy $|x_{\infty}| \leq ||x||_{\infty}^*$ oraz

$$|x_n - x_\infty| \le |x_n| + |x_\infty| \le ||x||_\infty + ||x||_\infty = 2||x||_\infty.$$

^{*}Jeśli $x_n \to x_\infty$, to $|x_n| \to |x_\infty|$. Mamy więc $|x_\infty| = \limsup |x_n| \le \sup |x_n| = \|x\|_\infty$.

Zatem

$$||Tx||_{\infty} \leqslant 2||x||_{\infty},$$

czyli $\|T\|\leqslant 2.$ Określ
my operator $S:Y\to X$ wzorem

$$S(y_0, y_1, y_2, \dots, y_n, \dots) = (y_1 + y_0, y_2 + y_0, \dots, y_n + y_0, \dots).$$

Sjest operatorem liniowym z Y do Xoraz

$$||Sy||_{\infty} = \sup_{n \ge 1} |y_n + y_0| \le 2 \sup_{n \ge 0} |y_n| = 2||y||_{\infty}.$$

Ponadto STx = x oraz TSy = y. Zatem T jest operatorem odwracalnym.

Definicja 2.12. Dwie unormowane przestrzenie liniowe X i Y nazywamy **izomorficznymi**, jeśli istnieje ograniczony i odwracalny operator liniowy z X na Y.

Uwaga 2.13. Ostatni przykład pokazuje, że przestrzenie c i c_0 są izomorficzne. Można udowodnić, że te przestrzenie nie są izometrycznie izomorficzne, tzn. nie istnieje operator liniowy T z X na Y spełniający $||Tx||_{\infty} = ||x||_{\infty}$ dla wszystkich x z X.

Dla dwu unormowanych przestrzeni liniowych X i Y symbolem B(X,Y) będziemy oznaczać zbiór wszystkich ograniczonych operatorów liniowych z X w Y. Dla $T_1, T_2 \in B(X,Y)$ określamy

$$(T_1 + T_2)x = T_1x + T_2x,$$

$$(\lambda T_1)x = \lambda (T_1x), \qquad \lambda \in \mathbb{C}.$$

Wtedy operatory $T_1 + T_2$ oraz λT_1 są liniowe. Sprawdzamy ich ograniczoność.

$$||(T_1 + T_2)x|| = ||T_1x + T_2x|| \le ||T_1x|| + ||T_2x|| \le ||T_1|| ||x|| + ||T_2|| ||x|| = (||T_1|| + ||T_2||) ||x||.$$

Zatem $||T_1 + T_2|| \leq ||T_1|| + ||T_2||$. Dalej

$$\|(\lambda T_1)x\| = \|\lambda(T_1x)\| = |\lambda| \|T_1x\|.$$

W konsekwencji otrzymujemy

$$\|\lambda T_1\| = \sup_{\|x\| \le 1} \|(\lambda T_1)x\| = |\lambda| \sup_{\|x\| \le 1} \|T_1x\| = |\lambda| \|T_1\|.$$

Z obliczeń wynika, że B(X,Y) jest unormowaną przestrzenią liniową z normą operatorową $||T|| = \sup_{\|x\| \le 1} ||Tx||$.

Przykład. Niech $X=\mathbb{C}^n$ oraz $Y=\mathbb{C}^m$. Wtedy B(X,Y) można utożsamić z macierzami zespolonymi wymiaru $m\times n$. Czyli przestrzeń B(X,Y) jest izomorficzna z \mathbb{C}^{mn} .

Twierdzenie 2.14. Jeśli Y jest przestrzenią Banacha, a X jest przestrzenią unormowaną, to B(X,Y) jest przestrzenią Banacha.

Dowód. Trzeba pokazać zupełność przestrzeni B(X,Y). Niech T_n będzie ciągiem Cauchy'ego w B(X,Y), tzn.

$$||T_n - T_m|| \xrightarrow{n,m \to \infty} 0.$$

Dla $x \in X$ mamy

$$||T_n x - T_m x|| = ||(T_n - T_m)x|| \le ||T_n - T_m|| ||x||.$$

Zatem $T_n x$ jest ciągiem Cauchy'ego w Y. Ponieważ Y jest przestrzenią Banacha, to ciąg $T_n x$ jest zbieżny. Oznaczmy

$$Tx = \lim_{n} T_n x.$$

Wtedy T odwzorowuje X w Y. Odwzorowanie T jest liniowe, bo

$$T(\lambda_1 x_1 + \lambda_2 x_2) = \lim_n T_n(\lambda_1 x_1 + \lambda_2 x_2) = \lim_n (\lambda_1 T_n x_1 + \lambda_2 T_n x_2)$$

= $\lambda_1 \lim_n T_n x_1 + \lambda_2 \lim_n T_n x_2 = \lambda_1 T x_1 + \lambda_2 T x_2.$

Pozostaje pokazać, że T jest ograniczony oraz, że $||T_n - T|| \xrightarrow{n \to \infty} 0$. Ustalmy liczbę $\varepsilon > 0$. Z założenia istnieje liczba N taka, że dla $n, m \ge N$ mamy $||T_n - T_m|| < \varepsilon$. Niech $n \ge N$. Wtedy

$$||(T_n - T)x|| = ||T_n x - Tx|| = \lim_m ||T_n x - T_m x||.$$

Z drugiej strony jeśli $m \ge N$, to

$$||T_n x - T_m x|| = ||(T_n - T_m)x|| \le ||T_n - T_m|| \, ||x|| \le \varepsilon ||x||.$$

Zatem

$$||(T_n - T)x|| \le \varepsilon ||x||, \qquad n \ge N.$$
 (2.2)

czyli

$$||T_n - T|| \le \varepsilon$$

dla $n \ge N$. W szczególności operator $T_N - T$ jest ograniczony. Ponieważ $T = T_N - (T_N - T)$, to również T jest ograniczony. Ponadto z (2.2) wnioskujemy, że $T_n \xrightarrow{n \to \infty} T$ w normie operatorowej.

Wniosek 2.15. Jeśli $Y = \mathbb{C}$ (lub \mathbb{R}), to B(X,Y) jest przestrzenią Banacha.

26

3 Przestrzenie Hilberta

3.1 Podstawowe własności

Będziemy rozważać zespolone przestrzenie liniowe X z iloczynem skalarnym $\langle x,y\rangle$. Z kursu algebry liniowej wiemy, że wyrażenie $\|x\|=\langle x,x\rangle^{1/2}$ jest normą. Iloczyn skalarny można wyrazić poprzez normę wzorem polaryzacyjnym.

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} ||x + i^k y||^2 i^k.$$

Spełniona jest nierówność Schwarza

$$|\langle x, y \rangle| \leqslant ||x|| \, ||y||.$$

Norma pochodząca od iloczynu skalarnego spełnia równość równoległoboku.

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Przypomnimy wzór

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x, y\rangle.$$

Z kursu algebry liniowej wiemy, że

Twierdzenie 3.1 (Jordan, von Neumann). Norma przestrzeni liniowej pochodzi od iloczynu skalarnego wtedy i tylko wtedy, gdy spełniony jest warunek równoległoboku.

Przykłady.

(1)
$$X = \mathbb{C}^n$$
 $\langle x, y \rangle = \sum_{k=1}^n x_k \overline{y_k}$
(2) $X = \ell^2$ $\langle x, y \rangle = \sum_{k=1}^\infty x_k \overline{y_k}$
(3) $X = L^2(0, 2\pi)$ $\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx$

Definicja 3.2. Przestrzeń zupelną z iloczynem skalarnym nazywamy przestrzenia Hilberta.

Lemat 3.3 (o najlepszej aproksymacji). Niech M będzie podprzestrzenią domkniętą przestrzeni Hilberta \mathcal{H} . Wtedy dla $x \in \mathcal{H}$ istnieje jedyny element $x_0 \in M$ spełniający warunek

$$||x - x_0|| = d(x, M) = \inf_{v \in M} ||x - v||.$$

 $Dow \acute{o}d$. Niech d=d(x,M). Wtedy istnieje element $v_n\in M$ taki, że

$$d \leqslant ||x - v_n|| \leqslant d + \frac{1}{n}.$$

Pokażemy, że ciąg v_n jest zbieżny. Korzystając z równości równoległoboku mamy

$$||v_n - v_m||^2 = ||(x - v_m) - (x - v_n)||^2$$

$$= 2||x - v_m||^2 + 2||x - v_n||^2 - ||(x - v_m) + (x - v_n)||^2$$

$$= 2||x - v_m||^2 + 2||x - v_n||^2 - 4||x - \frac{1}{2}(v_m + v_n)||^2$$

$$\leqslant 2\left(d + \frac{1}{m}\right)^2 + 2\left(d + \frac{1}{n}\right)^2 - 4d^2 \xrightarrow{n,m} 0.$$

Zatem v_n jest ciągiem Cauchy'ego. Niech $v_0 = \lim_n v_n$. Wtedy

$$||x - v_0|| = \lim_n ||x - v_n|| = d.$$

Ponadto $v_0 \in M$, bo M jest domkniętą podprzestrzenią. Z rozumowania wynika, że element v_0 jest jedyny. Istotnie, załóżmy, że również $\tilde{v}_0 \in M$ spełnia $\|x-\tilde{v}_0\|=d$. Rozważmy ciąg v_n postaci $v_0,\tilde{v}_0,v_0,\tilde{v}_0,\ldots$ Na podstawie obliczeń wnioskujemy, że taki ciąg jest zbieżny. Zatem $\tilde{v}_0=v_0$.

Definicja 3.4. Niech M będzie podzbiorem przestrzeni \mathcal{H} . Określamy dopełnienie ortogonalne M^{\perp} wzorem

$$M^{\perp} = \{ x \in \mathcal{H} : \langle x, y \rangle = 0, \text{ dla wszystkich } y \in M \}.$$

Z własności iloczynu skalarnego wynika, że zbiór M^{\perp} jest podprzestrzenią liniową. Co więcej, M^{\perp} jest domknięty, bo jeśli $x_n \to x$ oraz $x_n \in M^{\perp}$, to dla $y \in M$ mamy

$$|\langle x, y \rangle| = |\langle x, y \rangle - \langle x_n, y \rangle| = |\langle x - x_n, y \rangle| \le ||x - x_n|| ||y|| \xrightarrow{n} 0.$$

Zatem $\langle x, y \rangle = 0$ dla $y \in M$, czyli $x \in M^{\perp}$.

Twierdzenie 3.5. Niech M będzie domkniętą podprzestrzenią liniową w \mathcal{H} . Wtedy każdy element x w \mathcal{H} ma jednoznaczne przedstawienie w postaci

$$x = x_0 + x_1$$
, gdzie $x_0 \in M$, $x_1 \in M^{\perp}$.

 $Tzn. \mathcal{H} = M \oplus M^{\perp}.$

Dowód. Mamy $M \cap M^{\perp} = \{0\}$, bo jeśli $x \in M \cap M^{\perp}$, to $\langle x, x \rangle = 0$, czyli x = 0. Stąd wynika jednoznaczność rozkładu. Rzeczywiście jeśli $x_0 + x_1 = x'_0 + x'_1$, dla $x_0, x'_0 \in M$ oraz $x_1, x'_1 \in M^{\perp}$, to element $x_0 - x'_0 = x'_1 - x_1$ leży w $M \cap M^{\perp}$. Stąd $x_0 = x'_0$ i $x_1 = x'_1$. Niech $x \in \mathcal{H}$. Z poprzedniego lematu istnieje element $x_0 \in M$ taki, że $d = ||x - x_0|| = d(x, M)$. Niech $x_1 = x - x_0$. Wtedy $x = x_0 + x_1$. Pokażemy, że $x_1 \in M^{\perp}$. Niech $0 \neq y \in M$. Trzeba udowodnić, że $\langle x, y \rangle = 0$. Dla $t \in \mathbb{C}$ mamy

$$||x - x_0||^2 \le ||x - (x_0 + ty)||^2 = ||(x - x_0) - ty||^2$$

$$= ||x - x_0||^2 + |t|^2 ||y||^2 - 2\operatorname{Re}\langle x - x_0, ty\rangle$$

$$= ||x - x_0||^2 + |t|^2 ||y||^2 - 2\operatorname{Re}\bar{t}\langle x - x_0, y\rangle$$

Podstawmy

$$t = \frac{\langle x - x_0, y \rangle}{\|y\|^2}.$$

Wtedy

$$||x - x_0||^2 \le ||x - x_0||^2 + \frac{|\langle x - x_0, y \rangle|^2}{||y||^4} ||y||^2 - 2 \frac{|\langle x - x_0, y \rangle|^2}{||y||^2}$$
$$= ||x - x_0||^2 - \frac{|\langle x, y \rangle|^2}{||y||^2}$$

Zatem
$$\langle x, y \rangle = 0$$
.

Uwaga 3.6. Dla $x \in \mathcal{H}$ element x_0 nazywamy rzutem ortogonalnym na podprzestrzeń M i oznaczamy symbolem $P_M x$. Z Twierdzenia 3.5 wynika $P_M x \perp x - P_M x$.

W przestrzeni z iloczynem skalarnym elementy x, y nazywamy ortogonalnymi, jeśli $\langle x, y \rangle = 0$. Stosujemy wtedy zapis $x \perp y$. Rodzinę elementów o normie jeden i parami ortogonalnych nazywamy układem ortonormalnym. Maksymalny, ze względu na zawieranie, układ ortonormalny nazywamy bazą ortonormalną. Z kursu algebry liniowej wiemy, że

Twierdzenie 3.7. Każda przestrzeń liniowa z iloczynem skalarnym posiada bazę ortonormalną.

Uwaga 3.8. Baza ortonormalna nie jest bazą przestrzeni liniowej, tzn. nie jest maksymalnym układem elementów liniowo niezależnych chyba, że przestrzeń ma skończony wymiar.

Lemat 3.9. Baza ortonormalna w ośrodkowej przestrzeni Hilberta jest przeliczalna.

 $Dow \acute{o}d.$ Niech $\{e_i\}_{i\in I}$ będzie bazą ortonormalną. Wtedy dla $i,j\in I$ takich, że $i\neq j$ mamy

$$||e_i - e_j||^2 = ||e_i||^2 + ||e_j||^2 = 2.$$

Czyli $||e_i - e_j|| = \sqrt{2}$. Zatem kule $B(e_i, \frac{1}{2})_{i \in I}$ są parami rozłączne. Z ośrodkowości ilość tych kul jest przeliczalna. Tzn. zbiór I jest przeliczalny.

Twierdzenie 3.10 (Nierówność Bessela). *Jeśli* e_1, e_2, \ldots, e_n *jest układem ortonormalnym w przestrzeni* X, *to dla* $x \in X$ *mamy*

$$\sum_{j=1}^{n} |\langle x, e_j \rangle|^2 \leqslant ||x||^2.$$

 $Dow \acute{o}d$. Użyjemy prostego faktu, że jeśli elementy x_1, x_2, \ldots, x_n są parami ortogonalne, to

$$||x_1 + x_2 + \dots, +x_n||^2 = ||x_1||^2 + ||x_2||^2 + \dots + ||x_n||^2.$$

Rozważmy

$$s_n = \sum_{j=1}^n \langle x, e_j \rangle e_j.$$

Wtedy dla $1 \le k \le n$ mamy

$$\langle x - s_n, e_k \rangle = \langle x, e_k \rangle - \langle s_n, e_k \rangle = \langle x, e_k \rangle - \langle x, e_k \rangle \langle e_k, e_k \rangle = 0.$$

To oznacza, że $x - s_n \perp e_1, e_2, \ldots, e_n$. Zatem $x - s_n \perp s_n$ oraz

$$||x||^2 = ||x - s_n||^2 + ||s_n||^2 = ||x - s_n||^2 + \sum_{j=1}^n |\langle x, e_j \rangle|^2 \geqslant \sum_{j=1}^n |\langle x, e_j \rangle|^2.$$

Przestrzenie Hilberta

30

Lemat 3.11. *Jeśli* $\langle x, y \rangle = \langle x', y \rangle$ *dla wszystkich* $y \in X$, *to* x = x'.

 $Dow \acute{o}d.$ Z założenia $\langle x-x',y\rangle=0$ dla $y\in X.$ W szczególności dla y:=x-x'otrzymujemy $\|x-x'\|^2=0,$ czyli x=x'.

Lemat 3.12.

$$||x|| = \sup_{\|y\| \le 1} |\langle x, y \rangle|.$$

Dowód. Możemy założyć, że $x \neq 0$. Z nierówności Schwarza mamy

$$\sup_{\|y\| \leqslant 1} |\langle x, y \rangle| \leqslant \|x\|.$$

Niech $y_0 = x/\|x\|$. Wtedy $\|y_0\| = 1$ oraz $\langle x, y_0 \rangle = \|x\|$. Zatem

$$\sup_{\|y\| \le 1} |\langle x, y \rangle| \ge \|x\|.$$

Twierdzenie 3.13. Załóżmy, że przestrzeń Hilberta \mathcal{H} posiada przeliczalną bazę ortonormalną $e_1, e_2, \ldots, e_n, \ldots$ Wtedy dla każdego elementu $x \in \mathcal{H}$ mamy

(i)
$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$$
.

(ii)
$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$$
.

Dowód. Ustalmy liczbę n. Z nierówności Bessela mamy

$$\sum_{n=1}^{N} |\langle x, e_n \rangle|^2 \leqslant ||x||^2,$$

dla dowolnej liczby N. Przechodząc do granicy $N \to \infty$ otrzymujemy

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \leqslant ||x||^2.$$

Zbadamy zbieżność szeregu w (i). W tym celu sprawdzimy warunek Cauchy'ego dla ciągu sum częściowych $s_n = \sum_{j=1}^n \langle x, e_j \rangle e_j$. Niech n > m. Wtedy

$$||s_n - s_m||^2 = \left\| \sum_{j=m+1}^n \langle x, e_j \rangle e_j \right\|^2 = \sum_{j=m+1}^n |\langle x, e_j \rangle|^2$$

$$\leq \sum_{j=m+1}^\infty |\langle x, e_j \rangle|^2 \xrightarrow{m \to \infty} 0.$$

Zatem szereg jest zbieżny. Oznaczmy

$$x' = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n.$$

Chcemy pokazać, że x' = x. Mamy

$$\langle x - x', e_k \rangle = \langle x, e_k \rangle - \langle x', e_k \rangle = \langle x, e_k \rangle - \lim_{n} \langle s_n, e_k \rangle$$
$$= \langle x, e_k \rangle - \langle x, e_k \rangle \langle e_k, e_k \rangle = 0.$$

Czyli $x - x' \perp e_k$ dla każdego k. Ponieważ $\{e_k\}$ jest maksymalnym układem ortogonalnym, to x - x' = 0. To dowodzi (i).

Przechodzac do granicy $n \to \infty$ we wzorze

$$||x||^2 = ||x - s_n||^2 + \sum_{k=1}^n |\langle x, e_k \rangle|^2$$

i korzystając z $s_n \to x$ otrzymujemy (ii).

Uwaga 3.14. Z dowodu twierdzenia wynika, że warunki (i) i (ii) są równoważne dla pojedynczego elementu x.

Wniosek 3.15. Przestrzeń Hilberta z przeliczalną bazą ortonormalną jest ośrodkowa.

Dowód. Każdy element przestrzeni jest granicą sum częściowych s_n , które są kombinacjami liniowymi elementów bazy ortonormalnej. Tzn. skończone kombinacje liniowe elementów bazy e_1, e_2, \ldots leżą gęsto w \mathcal{H} . Z kolei każda taka skończona kombinacja liniowa jest granicą kombinacji liniowych ze współczynnikami z przeliczalnego zbioru $\mathbb{Q} + i\mathbb{Q}$. Ostatecznie kombinacje liniowe o współczynnikach z $\mathbb{Q} + i\mathbb{Q}$ leżą gęsto w \mathcal{H} . Takich kombinacji jest tylko przeliczalnie wiele.

Przestrzenie Hilberta

Twierdzenie 3.16 (Równość Parsevala). Dla przestrzeni Hilberta z przeliczalną bazą ortonormalną (e_n) mamy

$$\langle x, y \rangle = \sum_{n=1}^{\infty} \langle x, e_n \rangle \overline{\langle y, e_n \rangle}.$$

Dowód. Niech $x_n = \sum_{j=1}^n \langle x, e_j \rangle e_j$ oraz $y_n = \sum_{j=1}^n \langle y, e_j \rangle e_j$. Wiemy, że $x_n \xrightarrow{n} x$ i $y_n \xrightarrow{n} y$. Zatem

$$\langle x, y \rangle = \lim_{n} \langle x_n, y_n \rangle = \lim_{n} \sum_{j=1}^{n} \langle x, e_j \rangle \overline{\langle y, e_j \rangle}$$

Wniosek 3.17. Niech M będzie domkniętą podprzestrzenią przestrzeni Hilberta \mathcal{H} . Załóżmy, że układ $(e_n)_{n=1}^N$, gdzie $N \in \mathbb{N} \cup \{\infty\}$, jest bazą ortonormalną w M. Dla każdego elementu x w \mathcal{H} jego rzut ortogonalny na M wyraża się wzorem

$$P_M x = \sum_{n=1}^{N} \langle x, e_n \rangle e_n.$$

 $Dow \acute{o}d.$ Z założenia P_Mx leży w M. Zatem z Twierdzenia 3.13 zastosowanego do Moraz z Uwagi 3.6 uzyskujemy

$$P_M x = \sum_{n=1}^{N} \langle P_M x, e_n \rangle e_n = \sum_{n=1}^{N} \langle x, e_n \rangle e_n.$$

Twierdzenie 3.18. Każda ośrodkowa przestrzeń Hilberta nieskończonego wymiaru jest izometrycznie izomorficzna $z \ell^2$.

Dowód. Z Lematu 3.9 przestrzeń \mathcal{H} posiada przeliczalną bazę ortonormalną $\{e_n\}_{n=1}^{\infty}$. Rozważmy odwzorowanie $U:\mathcal{H}\to\ell^2$ określone wzorem

$$Ux = \{\langle x, e_n \rangle\}_{n=1}^{\infty}.$$

U jest odwzorowaniem liniowym. Ponadto z Twierdzenia 3.13(ii) wnosimy, że $||Ux||_{\ell^2} = ||x||$, tzn. U jest izometrią. W szczególności U jest różnowartościowe. Pozostaje sprawdzić, że U jest "na". Niech $\{a_n\}_{n=1}^{\infty} \in \ell^2$. Wtedy szereg $\sum_{n=1}^{\infty} a_n e_n$ jest zbieżny w \mathcal{H} , bo jego sumy częściowe spełniają warunek Cauchy'ego. Oznaczmy $x = \sum_{n=1}^{\infty} a_n e_n$. Wtedy $\langle x, e_n \rangle = a_n$. Czyli $Tx = \{a_n\}_{n=1}^{\infty}$.

Przykład. Rozważamy $\mathcal{H} = L^2(0, 2\pi)$. Niech $e_n(t) = e^{int}$, gdzie $n \in \mathbb{Z}$. Wiadomo z kursu szeregów Fouriera, że $\{e_n\}_{n=-\infty}^{\infty}$ jest bazą ortonormalną w \mathcal{H} . Ponadto

$$\langle f, e_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt = \widehat{f}(n).$$

Przyporządkowanie

$$f \longmapsto \{\widehat{f}(n)\}_{n=-\infty}^{\infty}$$

jest izometrycznym izomorfizmem z \mathcal{H} na ℓ^2 .

3.2 Proces ortogonalizacji Grama-Schmidta

Niech $\{u_n\}_{n=1}^N$ będzie układem liniowo niezależnym w przestrzeni \mathcal{H} . Naszym celem jest skonstruowanie układu ortonormalnego $\{v_n\}_{n=1}^N$ o własności

$$L_n := \lim \{u_1, u_2, \dots, u_n\} = \lim \{v_1, v_2, \dots, v_n\}$$

oraz $\langle v_n, u_n \rangle > 0$ dla wszystkich n.

Określamy $v_1 = u_1/\|u_1\|$. Załóżmy, że elementy $v_1, v_2, \ldots, v_{n-1}$ zostały już skonstruowane. Aby określić v_n rozważamy podprzestrzeń $L_{n-1} = \lim \{u_1, u_2, \ldots, u_{n-1}\}$. Niech u_n' oznacza rzut ortogonalny elementu u_n na L_{n-1} . Wtedy $u_n \neq u_n'$, bo $u_n \notin L_{n-1}$. Określamy

$$v_n = \frac{u_n - u_n'}{\|u_n - u_n'\|}.$$

Z konstrukcji otrzymujemy $v_n \in L_n$ oraz $v_n \perp L_{n-1}$. Zatem dla m < n mamy $v_m \in L_m \subset L_{n-1}$ oraz $v_n \perp L_{n-1}$. To oznacza, że $v_m \perp v_n$ czyli otrzymaliśmy układ ortonormalny. Dalej

$$\langle v_n, u_n \rangle = \frac{\langle u_n - u'_n, u_n \rangle}{\|u_n - u'_n\|} = \frac{\langle u_n - u'_n, u_n - u'_n \rangle}{\|u_n - u'_n\|} = \|u_n - u'_n\| > 0.$$

Uwaga 3.19. Elementy v_n można określić bezpośrednim wzorem wyznacznikowym, w którym występują iloczyny skalarne $\langle u_j, u_k \rangle$ (por. Zadanie 65).

Funkcjonały liniowe

Definicja 3.20. Przestrzeń $B(\mathcal{H}, \mathbb{C})$ nazywamy przestrzenią ograniczonych funkcjonałów liniowych na przestrzeni Hilberta \mathcal{H} .

Przykład. Dla ustalonego elementu $y \in \mathcal{H}$ określamy $f(x) = \langle x, y \rangle$ dla $x \in \mathcal{H}$. Wtedy

$$|f(x)| = |\langle x, y \rangle| \le ||y|| \, ||x||.$$

Ponadto z Lematu 3.12 mamy

$$||f|| = \sup_{\|x\| \le 1} |f(x)| = \|y\|.$$

Twierdzenie 3.21 (Lemat Riesza). Dla każdego ograniczonego funkcjonalu liniowego $f: \mathcal{H} \to \mathbb{C}$ istnieje jedyny element $y \in \mathcal{H}$ spełniający $f(x) = \langle x, y \rangle$ dla wszystkich $x \in \mathcal{H}$.

Dowód. Zbiór $N = \{x \in \mathcal{H} \mid f(x) = 0\}$ jest domkniętą podprzestrzenią liniową w \mathcal{H} . Jeśli $N = \mathcal{H}$, to możemy przyjąć y = 0. Załóżmy, że $N \neq \mathcal{H}$. Zatem z Twierdzenia 3.5 istnieje element $y_0 \neq 0$ taki, że $y_0 \perp N$. Ponadto $f(y_0) \neq 0$, bo $y_0 \notin N$. Niech $y_1 = y_0/f(y_0)$. Wtedy $f(y_1) = 1$ oraz $y_1 \perp N$. Dla $x \in \mathcal{H}$ mamy

$$x = (x - f(x)y_1) + f(x)y_1. (3.1)$$

Pierwszy składnik rozkładu należy do N a drugi do N^{\perp} . Mnożąc skalarnie obie strony (3.1) przez $y_1 \in N^{\perp}$ otrzymamy

$$\langle x, y_1 \rangle = \langle f(x)y_1, y_1 \rangle = f(x) ||y_1||^2.$$

Zatem

$$f(x) = \frac{\langle x, y_1 \rangle}{\|y_1\|^2}.$$

Możemy więc określić $y = y_1/\|y_1\|^2$. Jedyność elementu y wynika z Lematu 3.11.

Wniosek 3.22. Przestrzeń $B(\mathcal{H}, \mathbb{C})$ można utożsamić z \mathcal{H} . Przyporządkowanie

$$\mathcal{H} \ni y \longmapsto f_y \in B(\mathcal{H}, \mathbb{C}), \qquad \text{gdzie } f_y(x) = \langle x, y \rangle$$

jest antyliniowe, tzn.

$$f_{y_1+y_2} = f_{y_1} + f_{y_2},$$

$$f_{\lambda y} = \overline{\lambda} f_y.$$

Definicja 3.23. Formą półtoraliniową F na $\mathcal{H} \times \mathcal{H}$ nazywamy odwzorowanie $F: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ spełniające

Przestrzenie Hilberta 35

(i)
$$F(\lambda x + \mu y, z) = \lambda F(x, z) + \mu F(y, z)$$
.

(ii)
$$F(z, \lambda x + \mu y) = \overline{\lambda} F(z, x) + \overline{\mu} F(z, y)$$
.

Mówimy, że forma F jest ograniczona, jeśli dla pewnej stałej c mamy

$$|F(x,y)| \leqslant c||x|| \, ||y||, \qquad x,y \in \mathcal{H}.$$

Przykład. Dla $\mathcal{H} = \mathbb{C}^n$ każda forma półtoraliniowa ma postać

$$F(x,y) = \sum_{i,j=1}^{n} a_{ij} x_i \overline{y_j}.$$

Rzeczywiście

$$F(x,y) = F\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i,j=1}^{n} F(e_i, e_j) x_i \overline{y_j},$$

zatem $a_{ij} = F(e_i, e_j)$. Forma F(x, y) jest ograniczona, bo z nierówności Schwarza

$$|F(x,y)| = \left| \sum_{i,j=1}^{n} a_{ij} \left(x_i \overline{y_j} \right) \right| \le \left(\sum_{i,j=1}^{n} |a_{ij}|^2 \right)^{1/2} \left(\sum_{i,j=1}^{n} |x_i|^2 |y_j|^2 \right)^{1/2}$$
$$= \left(\sum_{i,j=1}^{n} |a_{ij}|^2 \right)^{1/2} ||x|| ||y||.$$

Przykład. Niech $A: \mathcal{H} \to \mathcal{H}$ będzie operatorem ograniczonym. Określmy $F(x,y) = \langle x, Ay \rangle$. Wtedy F jest ograniczoną formą półtoraliniową, bo

$$|F(x,y)| = |\langle x, Ay \rangle| \le ||x|| \, ||Ay|| \le ||A|| \, ||x|| \, ||y||.$$

Twierdzenie 3.24. Każda ograniczona forma półtoraliniowa na \mathcal{H} ma postać

$$F(x,y) = \langle x, Ay \rangle$$

dla pewnego ograniczonego operatora liniowego $A: \mathcal{H} \to \mathcal{H}$. Operator A jest jedyny.

 $Dow \acute{o}d.$ Ustalmy $y \in \mathcal{H}$ i rozważmy odwzorowanie φ_y

$$\mathcal{H} \ni x \xrightarrow{\varphi_y} F(x,y) \in \mathbb{C}.$$

Wtedy φ_y jest funkcjonałem liniowym. Ponadto

$$|\varphi_y(x)| = |F(x,y)| \le c||y|| \, ||x||.$$

Zatem φ_y jest ograniczony oraz $\|\varphi_y\| \le c\|y\|$. Z lematu Riesza istnieje jedyny wektor Ay taki, że

$$F(x,y) = \varphi_y(x) = \langle x, Ay \rangle.$$

Pokażemy, że przyporządkowanie $y \mapsto Ay$ jest liniowe. Mamy

$$\langle x, A(y_1 + y_2) \rangle = F(x, y_1 + y_2) = F(x, y_1) + F(x, y_2)$$

= $\langle x, Ay_1 \rangle + \langle x, Ay_2 \rangle = \langle x, Ay_1 + Ay_2 \rangle$

Zatem $A(y_1 + y_2) = Ay_1 + Ay_2$. Podobnie pokazujemy, że $A(\lambda y) = \lambda Ay$. Pozostaje sprawdzić ograniczoność operatora A. Mamy

$$\|Ay\| = \sup_{\|x\| \leqslant 1} |\langle x, Ay \rangle| = \sup_{\|x\| \leqslant 1} |F(x, y)| \leqslant \sup_{\|x\| \leqslant 1} (c\|x\| \|y\|) = c\|y\|$$

Zatem
$$||A|| \leq c$$
.

Wniosek 3.25. Dla ograniczonego operatora liniowego $A: \mathcal{H} \to \mathcal{H}$ istnieje jedyny operator $A^*: \mathcal{H} \to \mathcal{H}$ spełniający

$$\langle Ax, y \rangle = \langle x, A^*y \rangle \quad x, y \in \mathcal{H}.$$

Operator A^* nazywamy operatorem sprzężonym do operatora A.

 $Dow \acute{o}d$. Funkcja $F(x,y) = \langle Ax,y \rangle$ jest ograniczoną formą półtoraliniową. Zatem istnieje ograniczony operator liniowy A^* taki, że

$$\langle Ax, y \rangle = F(x, y) = \langle x, A^*y \rangle.$$

Uwaga 3.26. Jeśli $\langle A_1 x, y \rangle = \langle A_2 x, y \rangle$, to $A_1 = A_2$.

Przykład. Niech $\mathcal{H} = \mathbb{C}^n$ oraz $A : \mathbb{C}^n \to \mathbb{C}^n$, będzie odwzorowaniem liniowym zadanym macierzą (a_{ij}) gdzie $a_{ij} = \langle Ae_j, e_i \rangle$. Wyznaczamy macierz odwzorowania A^* .

$$a_{ij}^* = \langle A^* e_i, e_j \rangle = \langle e_i, A e_j \rangle = \overline{a_{ji}}.$$

Otrzymujemy $A^* = \overline{A^T}$, gdzie T oznacza transpozycję macierzy.

4 Przestrzenie sprzężone

Definicja 4.1. Przestrzeń $B(X,\mathbb{C})$ (czyli przestrzeń ograniczonych funkcjonałów liniowych), nazywamy **przestrzenią sprzężoną** do przestrzeni unormowanej X i oznaczamy symbolem X^* .

Przykład. Z lematu Riesza mamy $\mathcal{H}^* = \mathcal{H}$. Istotnie każdy funkcjonał liniowy na \mathcal{H} ma postać $\varphi_y(x) = \langle x, y \rangle$ dla pewnego elementu $y \in \mathcal{H}$. Przyporządkowanie $\mathcal{H} \ni y \mapsto \varphi_y \in \mathcal{H}^*$ spełnia

$$\varphi_{y_1+y_2} = \varphi_{y_1} + \varphi_{y_2},
\varphi_{\lambda y} = \overline{\lambda}\varphi_{y}.$$

Przykład. Niech $X=c_0$ oznacza przestrzeń ciągów zbieżnych do zera z normą supremum wartości bezwzględnej wyrazów. Wykażemy, że $X^*=\ell^1$. Niech Λ oznacza funkcjonał z X^* . Każdy element x z c_0 zapisujemy w postaci

$$x = \sum_{n=1}^{\infty} x_n e_n,$$

gdzie

$$x = (x_1, x_2, \dots, x_n, \dots), e_n = (0, \dots, 0, \frac{1}{n}, 0, \dots).$$

Szereg jest zbieżny, bo ogon szeregu dąży do zera w normie przestrzeni c_0 . Zatem

$$\Lambda(x) = \Lambda\left(\sum_{n=1}^{\infty} x_n e_n\right) = \sum_{n=1}^{\infty} \Lambda(x_n e_n) = \sum_{n=1}^{\infty} x_n \Lambda(e_n).$$

Oznaczmy $\lambda_n = \Lambda(e_n)$. Wtedy

$$\Lambda(x) = \sum_{n=1}^{\infty} \lambda_n x_n,$$

tzn. każdy funkcjonał liniowy na c_0 ma postać jak wyżej dla pewnego ciągu $\lambda = \{\lambda_n\}_{n=1}^{\infty}$. Załóżmy, że $\lambda \in \ell^1$. Wtedy dla $x \in c_0$ mamy

$$|\Lambda(x)| \le \sum_{n=1}^{\infty} |\lambda_n| |x_n| \le \sup_n |x_n| \sum_{n=1}^{\infty} |\lambda_n| = ||\lambda||_1 ||x||_{\infty}.$$

Zatem $\Lambda \in X^*$ oraz $\|\Lambda\| \leqslant \|\lambda\|_1$.

Odwrotnie, załóżmy, że $\Lambda \in X^*$. Chcemy pokazać, że ciąg $\lambda_n = \Lambda(e_n)$ leży w ℓ^1 . Dla ustalonej naturalnej liczby N określmy ciąg

$$f_N = (\overline{\operatorname{sgn}(\lambda_1)}, \overline{\operatorname{sgn}(\lambda_2)}, \ldots, \overline{\operatorname{sgn}(\lambda_N)}, 0, 0, \ldots) \in c_0.$$

Ponieważ $||f_N||_{\infty} \leq 1$, to

$$\sum_{n=1}^{N} |\lambda_n| = |\Lambda(f_N)| \le ||\Lambda|| \, ||f_N||_{\infty} \le ||\Lambda||.$$

Przechodząc do granicy z N otrzymujemy

$$\|\lambda\|_1 = \sum_{n=1}^{\infty} |\lambda_n| \leqslant \|\Lambda\|.$$

Z wcześniejszego rozumowania wynika równość $\|\Lambda\| = \|\lambda\|_1$.

Przykład. Można udowodnić, że dla $1 mamy <math>(\ell^p)^* = \ell^q$, gdzie q = p/(p-1) oraz $(\ell^1)^* = \ell^\infty$. Przeprowadzimy szkic dowodu dla $1 . Ponieważ dla <math>x \in \ell^p$ szereg $x = \sum x_n e_n$ jest zbieżny w ℓ^p , to dla funkcjonału $\Lambda \in (\ell^p)^*$ mamy

$$\Lambda(x) = \sum_{n=1}^{\infty} \Lambda(e_n) x_n.$$

Załóżmy, że ciąg $\lambda_n = \Lambda(e_n)$ leży w ℓ^q . Wtedy z nierówności Höldera otrzymujemy

$$|\Lambda(x)| = \left| \sum_{n=1}^{\infty} \lambda_n x_n \right| \leqslant \sum_{n=1}^{\infty} |\lambda_n| |x_n|$$

$$\leqslant \left(\sum_{n=1}^{\infty} |\lambda_n|^q \right)^{1/q} \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{1/p} = \|\lambda\|_q \|x\|_p.$$

Zatem $\|\Lambda\| \leqslant \|\lambda\|_q$.

Odwrotnie, załóżmy, że $\Lambda \in (\ell^p)^*$. Pokażemy, że $\lambda \in \ell^q$ oraz $\|\lambda\|_q \leq \|\Lambda\|$. W tym celu rozważmy ciąg

$$f_N = (\overline{\operatorname{sgn}(\lambda_1)}|\lambda_1|^{q-1}, \overline{\operatorname{sgn}(\lambda_2)}|\lambda_2|^{q-1}, \dots, \overline{\operatorname{sgn}(\lambda_N)}|\lambda_N|^{q-1}, 0, 0, \dots) \in \ell^p.$$

Mamy

$$\Lambda(f_N) = \Lambda\left(\sum_{n=1}^N \overline{\operatorname{sgn}(\lambda_n)} |\lambda_n|^{q-1} e_n\right) = \sum_{n=1}^N \overline{\operatorname{sgn}(\lambda_n)} |\lambda_n|^{q-1} \Lambda(e_n) = \sum_{n=1}^N |\lambda_n|^q.$$
(4.1)

Dalej obliczamy

$$||f_N||_p^p = \sum_{n=1}^N |\lambda_n|^{(q-1)p} = \sum_{n=1}^N |\lambda_n|^q.$$
(4.2)

Z ograniczoności funkcjonału Λ mamy

$$|\Lambda(f_N)| \leqslant ||\Lambda|| ||f_N||_p.$$

Na podstawie (4.1) i (4.2) otrzymujemy

$$\sum_{n=1}^{N} |\lambda_n|^q \leqslant ||\Lambda|| \left(\sum_{n=1}^{N} |\lambda_n|^q\right)^{1/p}.$$

Po przekształceniu mamy

$$\left(\sum_{n=1}^{N} |\lambda_n|^q\right)^{1/q} \leqslant \|\Lambda\|.$$

Ostatecznie $\|\lambda\|_q \leq \|\Lambda\|$.

5 Twierdzenia Hahna-Banacha

5.1 Przedłużanie funkcjonałów liniowych

Załóżmy, że Y jest podprzestrzenią liniową przestrzeni liniowej X. Na podprzestrzeni Y mamy określony funkcjonał liniowy λ . Naszym celem jest przedłużenie go do funkcjonału liniowego Λ określonego na przestrzeni X. Będziemy chcieli zachować pewne własności funkcjonału λ .

Definicja 5.1. Funkcję $p:X\to\mathbb{R}$ nazywamy wypukłą, jeśli

$$p(\alpha x + \beta y) \leqslant \alpha p(x) + \beta p(y) \qquad \text{dla } x,y \in X, \ \alpha,\beta \geqslant 0, \ \alpha + \beta = 1.$$

Przykład. Jeśli X jest unormowaną przestrzenią liniową, to p(x) = ||x|| jest funkcją wypukłą.

Twierdzenie 5.2 (Hahn-Banach). Niech X będzie rzeczywistą przestrzenią liniową oraz p(x) będzie funkcją wypukłą na X. Załóżmy, że λ jest rzeczywistym funkcjonałem liniowym określonym na podprzestrzeni liniowej $Y \subset X$, spełniającym

$$\lambda(y) \leqslant p(y), \qquad y \in Y.$$

Wtedy istnieje funkcjonał liniowy Λ określony na X i spełniający

$$\Lambda(y) = \lambda(y), \quad y \in Y,$$

 $\Lambda(x) \leq p(x), \quad x \in X.$

 $Dow \acute{o}d.$ Załóżmy, że $Y \subsetneq X.$ Wybierzmy $x_0 \in X \backslash Y.$ Wtedy $x_0 \neq 0.$ Określmy przestrzeń

$$X_0 = \lim\{x_0, Y\} = \{\alpha x_0 + y : y \in Y, \ \alpha \in \mathbb{R}\}.$$

Każdy element z X_0 ma jednoznaczny zapis w postaci $\alpha x_0 + y$. Rzeczywiście, jeśli $\alpha x_0 + y = \alpha' x_0 + y'$, to

$$(\alpha - \alpha')x_0 = y' - y \in Y.$$

Ponieważ $x_0 \notin Y$, to $\alpha = \alpha'$ i wtedy y = y'.

Niech $\tilde{\lambda}$ oznacza rozszerzenie funkcjonału λ na X_0 . Funkcjonał $\tilde{\lambda}$ jest wyznaczony przez liczbę $\tilde{\lambda}(x_0)$, bo

$$\widetilde{\lambda}(\alpha x_0 + y) = \alpha \widetilde{\lambda}(x_0) + \widetilde{\lambda}(y) = \alpha \widetilde{\lambda}(x_0) + \lambda(y).$$

Chcemy dobrać wartość $\widetilde{\lambda}(x_0)$ tak, aby spełniony był warunek

$$\tilde{\lambda}(\alpha x_0 + y) \leqslant p(\alpha x_0 + y), \qquad \alpha \in \mathbb{R}, \ y \in Y.$$

Czyli chcemy, aby

$$\alpha \widetilde{\lambda}(x_0) + \lambda(y) \leqslant p(\alpha x_0 + y).$$

Dla $\alpha=0$ warunek jest spełniony z założenia. Rozważmy $\alpha\neq 0$. Dla $\alpha>0$ musi zachodzić

$$\tilde{\lambda}(x_0) \leqslant \frac{1}{\alpha} [p(\alpha x_0 + y) - \lambda(y)].$$

Z kolei dla $\alpha=-\beta,\ \beta>0$ musi być spełniony warunek

$$\widetilde{\lambda}(x_0) \geqslant \frac{1}{\beta} [\lambda(y) - p(y - \beta x_0)].$$

Obie nierówności muszą być spełnione dla wszystkich $y \in Y$ oraz wszystkich dodatnich liczb α i β zatem liczba $\widetilde{\lambda}(x_0)$ musi spełniać warunek

$$\sup_{\beta>0} \sup_{y\in Y} \frac{1}{\beta} [\lambda(y) - p(y - \beta x_0)] \leqslant \widetilde{\lambda}(x_0) \leqslant \inf_{\alpha>0} \inf_{y'\in Y} \frac{1}{\alpha} [p(\alpha x_0 + y') - \lambda(y')]. \tag{5.1}$$

Liczba $\tilde{\lambda}(x_0)$ da się znaleźć tylko wtedy, gdy liczba po lewej stronie (5.1) jest nie większa niż liczba po prawej stronie. W tym celu wystarczy udowodnić, że dla dowolnych liczb $\alpha, \beta > 0$ oraz dowolnych $y, y' \in Y$ mamy

$$\frac{1}{\beta}[\lambda(y) - p(y - \beta x_0)] \leqslant \frac{1}{\alpha}[p(\alpha x_0 + y') - \lambda(y')].$$

Mnożąc obie strony przez $\alpha\beta$, odpowiednio przekształcając, i wreszcie dzieląc obie strony przez $\alpha+\beta$ otrzymamy równoważną postać pożądanej nierówności:

$$\lambda \left(\frac{\alpha}{\alpha + \beta} y + \frac{\beta}{\alpha + \beta} y' \right) \leqslant \frac{\alpha}{\alpha + \beta} p(y - \beta x_0) + \frac{\beta}{\alpha + \beta} p(\alpha x_0 + y'). \tag{5.2}$$

Niech $y_1 = y - \beta x_0$ oraz $y_2 = \alpha x_0 + y'$. Wtedy

$$\frac{\alpha}{\alpha + \beta} y_1 + \frac{\beta}{\alpha + \beta} y_2 = \frac{\alpha}{\alpha + \beta} y + \frac{\beta}{\alpha + \beta} y'.$$

Zatem

$$\lambda \left(\frac{\alpha}{\alpha + \beta} y + \frac{\beta}{\alpha + \beta} y' \right) = \lambda \left(\frac{\alpha}{\alpha + \beta} y_1 + \frac{\beta}{\alpha + \beta} y_2 \right)$$

$$\leq p \left(\frac{\alpha}{\alpha + \beta} y_1 + \frac{\beta}{\alpha + \beta} y_2 \right) \leq \frac{\alpha}{\alpha + \beta} p(y_1) + \frac{\beta}{\alpha + \beta} p(y_2)$$

$$= \frac{\alpha}{\alpha + \beta} p(y - \beta x_0) + \frac{\beta}{\alpha + \beta} p(\alpha x_0 + y'),$$

co kończy dowód pożądanej nierówności (5.2).

Uwaga 5.3. Jeśli skrajne liczby w nierówności (5.1) są równe, to rozszerzenie $\tilde{\lambda}$ jest jednoznaczne. W przeciwnym wypadku rozszerzenie nie jest jednoznaczne.

Niech $\mathcal E$ oznacza rodzinę wszystkich rozszerzeń $(\widetilde{\lambda},\widetilde{X})$ funkcjonału (λ,Y) spełniających warunek $\widetilde{\lambda}(x)\leqslant p(x),\quad x\in\widetilde{X},$ gdzie \widetilde{X} jest podprzestrzenią X zawierającą Y. Rodzina takich rozszerzeń jest częściowo uporządkowana:

$$(\widetilde{\lambda}_1, \widetilde{X}_1) \prec (\widetilde{\lambda}_2, \widetilde{X}_2)$$

jeśli $\widetilde{X}_1 \subset \widetilde{X}_2$ oraz $\widetilde{\lambda}_2(x) = \widetilde{\lambda}_1(x)$ dla $x \in \widetilde{X}_1$. Pokażemy, że każdy łańcuch w \mathcal{E} (czyli rodzina liniowo uporządkowana) jest ograniczony. Niech $(\widetilde{\lambda}_i, \widetilde{X}_i)_{i \in I}$

będzie łańcuchem. Określmy $\widetilde{X}=\bigcup_{i\in I}\widetilde{X}_i$. Wtedy \widetilde{X} jest przestrzenią liniową. Określamy funkcjonał $\widetilde{\lambda}$ na \widetilde{X} następująco:

$$\widetilde{\lambda}(x) = \widetilde{\lambda}_i(x), \quad \text{jeśli } x \in \widetilde{X}_i.$$

Definicja jest poprawna, bo jeśli $x \in \widetilde{X}_i \cap \widetilde{X}_j$, to $\widetilde{X}_i \subset \widetilde{X}_j$ lub $\widetilde{X}_j \subset \widetilde{X}_i$. W każdym przypadku $\widetilde{\lambda}_i(x) = \widetilde{\lambda}_j(x)$. Nietrudno sprawdzić, że $\widetilde{\lambda}$ jest funkcjonałem liniowym na \widetilde{X} . Ponadto

$$\widetilde{\lambda}(x) = \widetilde{\lambda}_i(x) \leqslant p(x), \quad \text{dla } x \in \widetilde{X}_i.$$

Z konstrukcji rozszerzenie $(\widetilde{\lambda},\widetilde{X})$ jest większe niż $(\widetilde{\lambda}_i,\widetilde{X}_i)$ dla wszystkich $i\in I$. Zatem z lematu Kuratowskiego-Zorna rodzina $\mathcal E$ zawiera element maksymalny $(\widetilde{\lambda},\widetilde{X})$. Jeśli $\widetilde{X}\subsetneq X$, to z pierwszej części dowodu można rozszerzyć $\widetilde{\lambda}$ o jeden wymiar, co przeczyłoby maksymalności rozszerzenia $(\widetilde{\lambda},\widetilde{X})$. Zatem $\widetilde{X}=X$.

Definicja 5.4. Mówimy, że funkcja $p: X \to \mathbb{R}$ jest absolutnie wypukła jeśli

$$p(\alpha x + \beta y) \le |\alpha|p(x) + |\beta|p(y)$$

 $dla \ \alpha, \beta \in \mathbb{C}, \ |\alpha| + |\beta| = 1, \ x, y \in X.$

Uwaga 5.5. Warunek dotyczy przestrzeni liniowych nad \mathbb{C} i jest mocniejszy od wypukłości. Norma p(x) = ||x|| jest absolutnie wypukła.

Twierdzenie 5.6 (Hahn-Banach). Niech λ będzie funkcjonałem liniowym na podprzestrzeni Y zespolonej przestrzeni liniowej X. Załóżmy, że λ spełnia

$$|\lambda(y)| \le p(y), \quad y \in Y$$

dla pewnej absolutnie wypukłej funkcji $p: X \to \mathbb{R}_+$. Wtedy istnieje funkcjonał liniowy $\Lambda: X \to \mathbb{C}$ spełniający

$$\begin{array}{rcl} \Lambda(y) & = & \lambda(y), & y \in Y, \\ |\Lambda(x)| & \leqslant & p(x), & x \in X. \end{array}$$

 $Dow \acute{o}d.$ Niech $\ell(y)=\operatorname{Re}\lambda(y).$ Wted
y $\ell(y)$ jest rzeczywistym funkcjonałem liniowym na
 Y. Ponadto

$$\ell(y) = \operatorname{Re} \lambda(y) \leqslant |\lambda(y)| \leqslant p(y), \quad y \in Y.$$

Zatem z poprzedniego twierdzenia istnieje funkcjonał rzeczywisty $\mathcal L$ określony na X i spełniający

$$\mathcal{L}(y) = \ell(y), \quad y \in Y,$$

 $\mathcal{L}(x) \leq p(x), \quad x \in X.$

Zauważmy, że

$$\ell(iy) = \operatorname{Re} \lambda(iy) = \operatorname{Re} [i\lambda(y)] = -\operatorname{Im} \lambda(y).$$

Zatem

$$\lambda(y) = \operatorname{Re} \lambda(y) + i \operatorname{Im} \lambda(y) = \ell(y) - i\ell(iy). \tag{5.3}$$

Określmy

$$\Lambda(x) = \mathcal{L}(x) - i\mathcal{L}(ix), \quad x \in X. \tag{5.4}$$

Wtedy Λ jest funkcjonałem liniowym nad $\mathbb R$ określonym na X, bo $\mathcal L$ jest takim funkcjonałem. Dalej

$$\Lambda(ix) = \mathcal{L}(ix) - i\mathcal{L}(-x) = \mathcal{L}(ix) + i\mathcal{L}(x) = i[\mathcal{L}(x) - i\mathcal{L}(ix)] = i\Lambda(x).$$

Zatem Λ jest funkcjonałem liniowym nad \mathbb{C} . Ze wzorów (5.3) i (5.4) i z faktu, że \mathcal{L} jest rozszerzeniem ℓ wynika, że

$$\Lambda(y) = \lambda(y), \quad y \in Y.$$

Zapiszmy

$$\Lambda(x) = |\Lambda(x)|e^{i\theta}.$$

Wtedy

$$|\Lambda(x)| = e^{-i\theta} \Lambda(x) = \Lambda(e^{-i\theta}x) = \mathcal{L}(e^{-i\theta}x) \leqslant p(e^{-i\theta}x) = p(x).$$

Ostatnia równość wynika z absolutnej wypukłości funkcji p. Wystarczy przyjąć $\beta=0$.

Wniosek 5.7. Załóżmy, że Y jest podprzestrzenią liniową przestrzeni unormowanej X oraz λ jest ograniczonym funkcjonałem liniowym na Y. Wtedy istnieje ograniczony funkcjonał liniowy Λ określony na X i spełniający

$$\Lambda(y) = \lambda(y), \quad y \in Y,
\|\Lambda\|_{X^*} = \|\lambda\|_{Y^*}.$$

 $Dow \acute{o}d$. Określmy $p(x) = \|\lambda\|_{Y^*} \|x\|$. Wtedy p(x) jest funkcją absolutnie wypukłą na X. Ponadto

$$|\lambda(y)| \le ||\lambda||_{Y^*} ||y|| = p(y), \quad y \in Y.$$

Z poprzedniego twierdzenia istnieje funkcjonał liniowy $\Lambda:X\to\mathbb{C}$ spełniający

$$\Lambda(y) = \lambda(y), \quad y \in Y,
|\Lambda(x)| \leq p(x) = ||\lambda||_{Y^*} ||x||.$$

Zatem $\|\Lambda\|_{X^*} \leq \|\lambda\|_{Y^*}$. Ale $\|\Lambda\|_{X^*} \geq \|\lambda\|_{Y^*}$, bo Λ jest rozszerzeniem funkcjonału λ .

Uwaga 5.8. Jeśli M jest domkniętą podprzestrzenią przestrzeni Hilberta \mathcal{H} i φ jest ograniczonym funkcjonałem liniowym na M, to φ ma postać

$$\varphi(y) = \langle y, v \rangle, \quad y \in M,$$

dla pewnego wektora $v \in M$. Wtedy rozszerzenie Φ na X ma postać

$$\Phi(x) = \langle x, v \rangle.$$

W tym wypadku jest to jedyne rozszerzenie nie podwyższające normy funkcjonału.

Wniosek 5.9. Niech x_0 będzie niezerowym elementem przestrzeni unormowanej X. Wtedy istnieje funkcjonał $\Lambda \in X^*$ taki, że

$$\Lambda(x_0) = ||x_0||, \qquad ||\Lambda||_{X^*} = 1.$$

 $Dow \acute{o}d$. Rozważmy prostą, czyli podprzestrzeń jednowymiarową, $Y=\mathbb{C}\,x_0$. Określmy funkcjonał $\lambda:Y\to\mathbb{C}$ wzorem

$$\lambda(\alpha x_0) = \alpha ||x_0||.$$

Zatem $|\lambda(\alpha x_0)| = \|\alpha x_0\|$. To oznacza, że $\|\lambda\|_{Y^*} = 1$. Z poprzedniego wniosku istnieje funkcjonał $\Lambda: X \to \mathbb{C}$ spełniający $\|\Lambda\|_{X^*} = \|\lambda\|_{Y^*} = 1$ oraz $\Lambda(x_0) = \lambda(x_0) = \|x_0\|$.

Wniosek 5.10. Niech X będzie przestrzenią unormowaną. Wtedy dla $x \in X$ mamy

$$||x|| = \max\{|\varphi(x)| : \varphi \in X^*, ||\varphi||_{X^*} \le 1\}.$$

Uwaga 5.11. Wniosek jest uogólnieniem własności przestrzeni z iloczynem skalarnym:

$$||x|| = \max\{|\langle x, y \rangle| : ||y|| \le 1\}.$$

Dowód. Dla $\|\varphi\|_{X^*} \leq 1$ mamy

$$|\varphi(x)| \leqslant \|\varphi\|_{X^*} \|x\| \leqslant \|x\|.$$

Stąd

$$\sup\{|\varphi(x)| : \varphi \in X^*, \ \|\varphi\|_{X^*} \le 1\} \le \|x\|.$$

Dla $x \in X$ istnieje funkcjonał φ_0 taki, że $\|\varphi_0\|_{X^*} = 1$ oraz $\varphi_0(x) = \|x\|$. Zatem

$$\sup\{|\varphi(x)| : \varphi \in X^*, \ \|\varphi\|_{X^*} \le 1\} \ \geqslant \ \varphi_0(x) = \|x\|.$$

Wniosek 5.12. Niech Y będzie podprzestrzenią liniową przestrzeni unormowanej X oraz $x_0 \in X \setminus Y$. Istnieje funkcjonał $\Lambda \in X^*$ spełniający

$$\Lambda|_Y = 0, \qquad \Lambda(x_0) = d,$$

gdzie $d = d(x_0, Y) = \inf\{\|x_0 - y\| : y \in Y\}, \text{ oraz } \|\Lambda\|_{X^*} \le 1.$

Uwaga 5.13. Dla $Y = \{0\}$ tezę otrzymujemy z Wniosku 5.9.

Dowód. Niech $X_0 = \lim\{x_0,Y\} = \{\alpha x_0 - y : \alpha \in \mathbb{C}, y \in Y\}$. Określmy funkcjonał $\lambda: X_0 \to \mathbb{C}$ wzorem

$$\lambda(\alpha x_0 - y) = \alpha d.$$

Sprawdzamy ograniczoność funkcjonału λ .

$$\sup_{\alpha \neq 0, y \in Y} \frac{|\lambda(\alpha x_0 - y)|}{\|\alpha x_0 - y\|} = \sup_{\alpha \neq 0, y \in Y} \frac{|\alpha| d}{\|\alpha x_0 - y\|} = \sup_{\alpha \neq 0, y \in Y} \frac{d}{\|x_0 - \alpha^{-1}y\|} \leqslant 1.$$

Zatem $\|\lambda\|_{X_0^*} \le 1$. Z twierdzenia Hahna-Banacha istnieje funkcjonał $\Lambda \in X^*$ taki, że $\|\Lambda\|_{X^*} = \|\lambda\|_{X_0^*} \le 1$ oraz

$$\Lambda(y) = \lambda(y) = 0, \quad y \in Y,$$

$$\Lambda(x_0) = \lambda(x_0) = d.$$

Uwaga 5.14. Jeśli x_0 leży poza domknięciem podprzestrzeni Y, tzn. d>0, to $\|\Lambda\|_{X^*}=1$. Istotnie

$$\|\lambda\|_{X_0^*} = \sup_{\alpha \neq 0, y \in Y} \frac{d}{\|x_0 - \alpha^{-1}y\|} = \frac{d}{\inf\{\|x_0 - y\| : y \in Y\}} = 1.$$

5.2 Granica Banacha

Rozważmy podprzestrzeń $c\subset \ell^\infty$ złożoną z ciągów zbieżnych. W podprzestrzeni cokreślamy funkcjonał

$$\lambda(x) = \lim_{n} x_n, \qquad x = \{x_n\} \in c.$$

Ten funkcjonał jest niezmienniczy na przesunięcia, tzn.

$$\lambda(x) = \lambda(s(x)), \text{ gdzie } s(x)_n = x_{n+1}.$$

Mamy

$$|\lambda(x)| \leq \sup_{n} |x_n| = ||x||_{\infty}.$$

Zatem $\|\lambda\|_{c^*} = 1$. Chcemy znaleźć rozszerzenie Λ funkcjonału λ na ℓ^{∞} tak, aby funkcjonał Λ był też niezmienniczy na przesunięcia. Niech Y oznacza podprzestrzeń ciągów ograniczonych y takich, że granica

$$\lim_{n} \frac{y_1 + y_2 + \ldots + y_n}{n} \tag{5.5}$$

istnieje. Wiemy, że $c \subset Y$ oraz dla $y \in c$ wielkość w (5.5) jest równa $\lim_n y_n$. W przestrzeni Y określamy funkcjonał λ wzorem

$$\lambda(y) = \lim_{n} \frac{y_1 + y_2 + \dots + y_n}{n}, \quad y \in Y.$$

Mamy

$$|\lambda(y)| \le \sup_{n} \frac{|y_1 + y_2 + \dots + y_n|}{n} \le \sup_{n} \frac{|y_1| + |y_2| + \dots + |y_n|}{n} \le \sup_{n} |y_n| = ||y||_{\infty}.$$

Z twierdzenia Hahna-Banacha istnieje funkcjonał $\Lambda: \ell^{\infty} \to \mathbb{C}$ taki, że $\|\Lambda\|_{(\ell^{\infty})^*} = 1$ oraz $\Lambda(x) = \lim_n x_n$ dla $x \in c$, bo $c \subset Y$ oraz $\lambda(x) = \lim_n x_n$ jeśli $x \in c$. Pozostaje wykazać, że $\Lambda(x) = \Lambda(s(x))$. W tym celu zauważmy, że dla dowolnego ciągu $x \in \ell^{\infty}$ ciąg y = x - s(x) leży w Y oraz $\lambda(x - s(x)) = 0$. Rzeczywiście

$$\frac{1}{n}(y_1 + y_2 + \ldots + y_n) = \frac{1}{n}(x_1 - x_{n+1}) \xrightarrow{n} 0.$$

Zatem

$$\Lambda(x) = \Lambda(s(x)) + \Lambda(x - s(x)) = \Lambda(s(x)) + \lambda(x - s(x)) = \Lambda(s(x)).$$

5.3 Przestrzeń sprzężona do C[a, b]

Twierdzenie 5.15 (F. Riesz). Każdy ograniczony funkcjonał liniowy φ na C[a,b] (lub $C_{\mathbb{R}}[a,b]$) ma postać

$$\varphi(f) = \int_{a}^{b} f(x) \, dw(x)$$

dla pewnej funkcji w(x) o wahaniu ograniczonym na [a,b]. Ponadto

$$\|\varphi\|_{C^*} = \operatorname{Var}_{[a,b]}(w).$$

Dowód. Rozważmy funkcjonał $\varphi \in C[a,b]^*$. Symbolem B[a,b] oznaczamy przestrzeń wszystkich ograniczonych funkcji określonych na przedziale [a,b] z normą $\|f\|_{\infty} = \sup_{a \leqslant x \leqslant b} |f(x)|$. Wtedy $C[a,b] \subset B[a,b]$. Istnieje rozszerzenie Φ funkcjonału ϕ na przestrzeń B[a,b] takie, że $\|\Phi\|_{B^*} = \|\varphi\|_{C^*}$. Określmy funkcję

$$w(x) = \begin{cases} 0 & x = a, \\ \Phi(\mathbb{I}_{[a,x]}) & a < x \le b. \end{cases}$$

Zbadamy wahanie funkcji w(x). W tym celu dzielimy przedział punktami $a = x_0 < x_1 < \ldots < x_n = b$. Wtedy

$$\sum_{j=1}^{n} |w(x_j) - w(x_{j-1})| = |\Phi(\mathbb{I}_{[x_0, x_1]})| + \sum_{j=2}^{n} |\Phi(\mathbb{I}_{(x_{j-1}, x_j]})|.$$

Oznaczmy $g_1 = \mathbb{I}_{[x_0,x_1]}, g_j = \mathbb{I}_{(x_{j-1},x_j]}$ dla $j \ge 2$, oraz niech $a_j = \overline{\operatorname{sgn} \Phi(g_j)}$. Wtedy

$$\sum_{j=1}^{n} |w(x_j) - w(x_{j-1})| = \sum_{j=1}^{n} |\Phi(g_j)| = \sum_{j=1}^{n} a_j \Phi(g_j)$$

$$= \Phi\left(\sum_{j=1}^{n} a_j g_j\right) \leqslant \|\Phi\|_{B^*} \left\|\sum_{j=1}^{n} a_j g_j\right\|_{\infty} \leqslant \|\Phi\|_{B^*} = \|\varphi\|_{C^*}$$

Zatem

$$\operatorname{Var}_{[a,b]}(w) \leqslant \|\varphi\|_{C^*}.$$

Podzielmy przedział [a,b] punktami $x_k = a + (b-a)k/n$. Dla funkcji $f \in C[a,b]$ określamy ciąg funkcji

$$f_n(x) = \sum_{j=1}^n f(x_j)\chi_{I_j}, \qquad I_1 = [x_0, x_1], \ I_j = (x_{j-1}, x_j], \ j \geqslant 2.$$

Wiadomo, że $f_n \rightrightarrows f$, tzn. $f_n \xrightarrow[n]{} f$ w normie przestrzeni B[a,b]. W związku z tym $\Phi(f_n) \xrightarrow[n]{} \Phi(f) = \varphi(f)$. Ale

$$\Phi(f_n) = \sum_{j=1}^n f(x_j) \Phi(\chi_{I_j}) = \sum_{j=1}^n f(x_j) [w(x_j) - w(x_{j-1})] \xrightarrow{n} \int_a^b f(x) \, dw(x).$$

Zatem

$$\varphi(f) = \int_{a}^{b} f(x) \, dw(x).$$

Ponadto

$$|\Phi(f_n)| = \left| \sum_{j=1}^n f(x_j) [w(x_j) - w(x_{j-1})] \right| \le \sum_{j=1}^n |f(x_j)| |w(x_j) - w(x_{j-1})|$$

$$\le ||f||_{\infty} \sum_{j=1}^n |w(x_j) - w(x_{j-1})| \le \operatorname{Var}_{[a,b]}(w) ||f||_{\infty}$$

Zatem

$$|\varphi(f)| = |\Phi(f)| = \lim_{n} |\Phi(f_n)| \leq \operatorname{Var}_{[a,b]}(w) ||f||_{\infty}.$$

Stąd $\|\varphi\|_{C^*} \leq \operatorname{Var}_{[a,b]}(w)$, czyli

$$\|\varphi\|_{C^*} = \operatorname{Var}_{[a,b]}(w).$$

Uwaga 5.16. Różne funkcje w mogą wyznaczyć ten sam funkcjonał na C[a,b], nawet jak przyjmiemy w(a)=0. Na przykład dla $0 \le \alpha \le 1$ niech

$$w_{\alpha}(x) = \begin{cases} 0, & 0 \leqslant x < \frac{1}{2} \\ \alpha, & x = \frac{1}{2} \\ 1, & \frac{1}{2} < x \leqslant 1. \end{cases}$$

Wtedy

$$\int_{0}^{1} f(x) dw_{\alpha}(x) = f\left(\frac{1}{2}\right).$$

Każda funkcja o wahaniu ograniczonym posiada granice jednostronne w każdym punkcie, bo jest kombinacją liniową czterech funkcji rosnących. Dla funkcji w o wahaniu ograniczonym określamy

$$\widetilde{w}(x) = \begin{cases} w(a), & x = a \\ w(b), & x = b \\ \lim_{t \to x^{-}} w(t), & a < x < b. \end{cases}$$

Wtedy \widetilde{w} jest lewostronnie ciągła wewnątrz przedziału oraz nadal ma wahanie ograniczone (bo jeśli w jest rosnąca, to \widetilde{w} też jest rosnąca). Ponadto

$$\int_{a}^{b} f(x) d\widetilde{w}(x) = \int_{a}^{b} f(x) dw(x).$$

Co więcej jeśli w_1 i w_2 są różnymi funkcjami o wahaniu ograniczonym, lewostronnie ciągłymi na (a,b) oraz $w_1(a) = w_2(a)$, to funkcjonały wyznaczone przez te funkcje są różne, tzn. dla pewnej funkcji $f \in C[a,b]$ mamy

$$\int_a^b f(x) dw_1(x) \neq \int_a^b f(x) dw_2(x).$$

5.4 Wersja geometryczna

Definicja 5.17. Podzbiór $V \subset X$ nazywamy **wypukłym** jeśli dla $x, y \in V$ oraz $0 \le t \le 1$ mamy $tx + (1-t)y \in V$. To oznacza, że zbiór V zawiera elementy x i y wraz z całym odcinkiem łączącym x z y.

Przykład.
$$V = \{x \in X : ||x|| \le r\}.$$

Przykład. Niech φ będzie rzeczywistym funkcjonałem liniowym na przestrzeni unormowanej X. Wtedy zbiór

$$V_{\alpha} = \{ x \in X : \varphi(x) > \alpha \}$$

jest wypukły dla $\alpha \in \mathbb{R}$.

Załóżmy, że zbiór wypukły $V \subset X$ jest otwarty i zawiera punkt 0. Zatem dla pewnej liczby $\varepsilon > 0$ mamy $B_{\varepsilon}(0) \subset V$. To oznacza, że dla dowolnego elementu $x \in X$ istnieje liczba t > 0 taka, że $t^{-1}x \in V$. Rzeczywiście wystarczy, aby $||t^{-1}x|| < \varepsilon$, czyli $t > \varepsilon^{-1}||x||$.

Definicja 5.18. Dla otwartego, wypukłego zbioru V, zawierającego 0, określamy funkcjonał Minkowskiego wzorem

$$p_V(x) = \inf\{t > 0 : t^{-1}x \in V\}.$$

Przykład. Niech $V = \{x \in X : ||x|| \le r\}$. Dla dowolnego elementu $x \in X$ mamy $t^{-1}x \in V$ wtedy i tylko wtedy, gdy $t > r^{-1}||x||$. Zatem $p_V(x) = r^{-1}||x||$.

Przykład. Na płaszczyźnie $X=\mathbb{R}^2$ z normą euklidesową rozważmy elipsę

$$V = \{(x, y) : x^2 + 4y^2 \le 1\}.$$

Elementy u = (2,0) i w = (0,2) mają tę samą normę, ale

$$p_V(u) = 2 \neq 4 = p_V(w).$$

Lemat 5.19.

- (a) $p_V(0) = 0$.
- (b) $p_V(sx) = s p_V(x) \ dla \ s > 0.$
- (c) $p_V(x+y) \le p_V(x) + p_V(y)$.
- (d) $\{x \in X : p_V(x) < 1\} \subset V \subset \{x \in X : p_V(x) \le 1\}.$
- (e) Jeśli $W \subset V$, to $p_W(x) \geqslant p_V(x)$.

Dowód.

- (a) Mamy $t^{-1}0 = 0 \in V$ dla t > 0. Zatem $p_V(0) = 0$.
- (b) Warunek $t^{-1}x \in V$ jest równoważny z warunkiem $(st)^{-1}(sx) \in V$ dla s > 0. Stad $p_V(sx) = sp_V(x)$.
- (c) Załóżmy, że $t^{-1}x\in V$ oraz $s^{-1}y\in V.$ Wtedy z wypukłości zbioru V mamy

$$(s+t)^{-1}(x+y) = \frac{t}{s+t}(t^{-1}x) + \frac{s}{s+t}(s^{-1}y) \in V.$$

Zatem $p_V(x+y) \leqslant s+t$. Biorąc kres dolny względem s i t spełniających $t^{-1}x \in V$ oraz $s^{-1}y \in V$ otrzymamy

$$p_V(x+y) \leqslant p_V(x) + p_V(y).$$

(d) Niech $p_V(x) < 1$. Zatem istnieje liczba 0 < t < 1 spełniająca $t^{-1}x \in V$. Wtedy z wypukłości V i z warunku $0 \in V$ wynika, że

$$x = t(t^{-1}x) + (1-t)0 \in V.$$

To dowodzi pierwszego zawierania w (d). Załóżmy, że $x \in V$. Wtedy $1^{-1}x \in V$, czyli $p_V(x) \leq 1$. Stąd otrzymujemy drugą część (d).

Uwaga 5.20. Z lematu wynika, że funkcja $p_V(x)$ jest wypukła.

Definicja 5.21. Mówimy, że dwa zbiory A i B w przestrzeni unormowanej X można **rozdzielić hiperpłaszczyzną**, jeśli istnieją niezerowy ograniczony funkcjonał liniowy $\varphi: X \to \mathbb{R}$ oraz liczba $\alpha \in \mathbb{R}$ takie, że

$$\varphi(x) \leqslant \alpha, \quad \text{dla } x \in A,$$

$$\varphi(y) \geqslant \alpha, \quad \text{dla } y \in B.$$

Jeśli obie nierówności są ostre, to mówimy, że zbiory A i B są ściśle rozdzielone.

Uwaga 5.22. Niech X będzie przestrzenią wymiaru n nad \mathbb{R} . Dla niezerowego funkcjonału liniowego φ na X zbiór

$$X_0 = \{ x \in X : \varphi(x) = 0 \}$$

jest (n-1)-wymiarową podprzestrzenią w X. Jeśli e_1, e_2, \ldots, e_n jest bazą w X oraz $a_j = \varphi(e_j)$, to φ ma postać

$$\varphi(x) = \varphi\left(\sum_{j=1}^{n} x_j e_j\right) = \sum_{j=1}^{n} x_j \varphi(e_j) = \sum_{j=1}^{n} a_j x_j,$$

Wtedy

$$X_0 = \{(x_j)_{j=1}^n : a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0\}$$

jest hiperprzestrzenią natomiast hiperpłaszczyzna $X_{\alpha} = \{x \in X : \varphi(x) = \alpha\}$ ma postać $X_{\alpha} = X_0 + x_{\alpha}$, gdzie x_{α} jest ustalonym wektorem spełniającym $\varphi(x_{\alpha}) = \alpha$.

Twierdzenie 5.23. Niech A i B będą wypukłymi i rozłącznymi podzbiorami unormowanej przestrzeni liniowej X. Wtedy

(a) Jeśli A jest otwarty, to zbiory A i B można rozdzielić hiperpłaszczyzną.

- (b) Jeśli A i B są otwarte, to można je rozdzielić ściśle.
- (c) Jeśli A jest zwarty a B jest domknięty, to można je rozdzielić ściśle. Dowód.
- (a) Niech $A-B=\{a-b:a\in A,\ b\in B\}$, tzn. A-B jest różnicą kompleksową zbiorów A i B. Wtedy $0\notin A-B$, bo A i B są rozłączne. Wybierzmy $-x_0\in A-B$ i określmy

$$C = x_0 + (A - B).$$

Z konstrukcji mamy $0 \in C$ oraz $x_0 \notin C$. Zbiór C jest wypukły jako przesunięcie różnicy kompleksowej zbiorów wypukłych. Zbiór C jest otwarty, bo jeśli $x \in x_0 + (A - B)$, to $x = x_0 + a - b$ dla pewnych $a \in A$ oraz $b \in B$. Z otwartości zbioru A mamy $a \in B_{\varepsilon}(a) \subset A$ dla pewnej liczby $\varepsilon > 0$. Zatem

$$B_{\varepsilon}(x) = B_{\varepsilon}(x_0 + a - b) = x_0 + B_{\varepsilon}(a) - b \subset x_0 + A - B = C.$$

Uwaga 5.24. Dowód otwartości można przeprowadzić nie korzystając z normy. Zapisujemy

$$C = x_0 + A - B = \bigcup_{b \in B} [(x_0 - b) + A]$$

i zauważamy, że każdy składnik sumy mnogościowej jest zbiorem otwartym.

Niech $X_0 = \mathbb{R}x_0$, tzn. X_0 jest prostą przechodzącą przez 0 oraz x_0 . Określmy funkcjonał ℓ na X_0 wzorem

$$\ell(\lambda x_0) = \lambda, \quad \lambda \in \mathbb{R}.$$

W szczególności z Lematu 5.19(d) wynika $\ell(x_0)=1\leqslant p_C(x_0),$ bo $x_0\notin C.$ Zatem dla $\lambda\geqslant 0$ mamy

$$\ell(\lambda x_0) = \lambda \leqslant \lambda p_C(x_0) = p_C(\lambda x_0).$$

Z kolei dla $\lambda < 0$ otrzymujemy

$$\ell(\lambda x_0) = \lambda < p_C(\lambda x_0).$$

Reasumując udowodniliśmy, że

$$\ell(x) \leqslant p_C(x)$$
, dla $x \in X_0$.

Funkcja p_C spełnia założenia twierdzenia Hahna-Banacha. Zatem istnieje funkcjonał $\mathcal{L}: X \to \mathbb{R}$ taki, że

$$\mathcal{L}(x_0) = \ell(x_0) = 1$$

 $\mathcal{L}(x) \leqslant p_C(x) \text{ dla } x \in X.$

Pokażemy, że \mathcal{L} rozdziela A i B. Niech $x \in C$. Wtedy z Lematu 5.19(d) mamy

$$\mathcal{L}(x) \leqslant p_C(x) \leqslant 1.$$

Czyli $\mathcal{L}(x_0 + a - b) \leq 1$ dla dowolnych $a \in A$ i $b \in B$. Zatem $\mathcal{L}(a) \leq \mathcal{L}(b)$ dla $a \in A$ i $b \in B$. Biorąc kres górny względem a a potem kres dolny względem b otrzymamy

$$\sup_{a \in A} \mathcal{L}(a) \leqslant \inf_{b \in B} \mathcal{L}(b).$$

Uwaga 5.25. Jeśli tu mamy ostrą nierówność, to A i B są ściśle rozdzielone.

Istnieje zatem liczba α spełniająca

$$\sup_{a \in A} \mathcal{L}(a) \leqslant \alpha \leqslant \inf_{b \in B} \mathcal{L}(b).$$

Pozostaje uzasadnić ciągłość funkcjonału \mathcal{L} . Ponieważ zbiór C jest otwarty oraz $0 \in C$, to $B_{\varepsilon}(0) \subset C$ dla pewnej liczby $\varepsilon > 0$. Wtedy z przykładu po Definicji 5.18 mamy

$$\mathcal{L}(x) \leqslant p_C(x) \leqslant p_{B_{\varepsilon}(0)}(x) = \varepsilon^{-1} ||x||.$$

Czyli $\mathcal{L}(x) \leqslant \varepsilon^{-1} ||x||$. Zatem

$$-\mathcal{L}(x) = \mathcal{L}(-x) \leqslant \varepsilon^{-1} \| - x \| = \varepsilon^{-1} \|x\|.$$

Ostatecznie $|\mathcal{L}(x)| \leq \varepsilon^{-1} ||x||$.

(b) Załóżmy, że A i B są otwarte. Z pierwszej części dowodu istnieje niezerowy ograniczony funkcjonał $\mathcal L$ oraz liczba α taka, że

$$\mathcal{L}(a) \leqslant \alpha \leqslant \mathcal{L}(b), \quad a \in A, \ b \in B.$$

Zbiory $\mathcal{L}(A)$ i $\mathcal{L}(B)$ są wypukłe i otwarte w \mathbb{R} (zadanie). Zbiory te są zatem otwartymi przedziałami w \mathbb{R} , przy czym $\mathcal{L}(A)$ leży na lewo od $\mathcal{L}(B)$. Zatem

$$\mathcal{L}(a) < \alpha < \mathcal{L}(b), \quad a \in A, \ b \in B.$$

(c) Zakładamy, że A jest zwarty a B domknięty. Dla dowolnego elementu $a\in A$ istnieje kula otwarta K_a o środku w 0 taka, że kula $a+2K_a$ jest rozłączna z B. Zbiory $a+K_a$ dla $a\in A$ pokrywają zbiór A. Ze zwartości mamy

$$A \subset (a_1 + K_{a_1}) \cup (a_2 + K_{a_2}) \cup \ldots \cup (a_n + K_{a_n}).$$

Określmy

$$U = K_{a_1} \cap K_{a_2} \cap \ldots \cap K_{a_n}. \tag{5.6}$$

Wtedy U jest otwartą kulą o środku w zerze. Zauważmy, że

$$(A+U)\cap B=\emptyset. (5.7)$$

Istotnie z (5.4) mamy

$$A + U \subset [(a_1 + K_{a_1}) \cup (a_2 + K_{a_2}) \cup \ldots \cup (a_n + K_{a_n})] + U$$

= $(a_1 + K_{a_1} + U) \cup (a_2 + K_{a_2} + U) \cup \ldots \cup (a_n + K_{a_n} + U)$
 $\subset (a_1 + 2K_{a_1}) \cup (a_2 + 2K_{a_2}) \cup \ldots \cup (a_n + 2K_{a_n}).$

W ostatniej sumie każdy składnik sumy mnogościowej jest rozłączny z B. To dowodzi (5.7). Zatem

$$(A + \frac{1}{2}U) \cap (B + \frac{1}{2}U) = \emptyset.$$

Ale zbiory $A + \frac{1}{2}U$ i $B + \frac{1}{2}U$ są otwarte i wypukłe, więc z części (b) można je ściśle rozdzielić. Tym bardziej można ściśle rozdzielić A i B.

5.5 Wersja niezmiennicza

Definicja 5.26. Niech X będzie przestrzenią liniową. Rodzinę \mathcal{G} operatorów liniowych określonych na X nazywamy **półgrupą przemienną** jeśli \mathcal{G} zawiera odwzorowanie identycznościowe I oraz z warunku $A, B \in \mathcal{G}$ wynika $AB = BA \in \mathcal{G}$.

Twierdzenie 5.27. Niech p(x) będzie funkcją wypukłą określoną na rzeczywistej przestrzeni liniowej X, przy czym p(0) = 0. Załóżmy, że λ jest funkcjonałem liniowym określonym na podprzestrzeni liniowej $Y \subset X$, spełniającym warunek $\lambda(y) \leq p(y)$ dla $y \in Y$. Niech \mathcal{G} będzie półgrupą przemienną operatorów liniowych na X spełniającą warunki:

- (i) Dla $A \in \mathcal{G}$ mamy $A(Y) \subset Y$, tzn. podprzestrzeń Y jest niezmiennicza pod działaniem operatorów półgrupy.
- (ii) $p(Ax) \leq p(x)$, dla $x \in X$ oraz $A \in \mathcal{G}$.
- (iii) $\lambda(Ay) = \lambda(y)$ dla $y \in Y$ oraz $A \in \mathcal{G}$, tzn. funkcjonał λ jest niezmienniczy na działanie operatorów $z \mathcal{G}$.

Wtedy istnieje funkcjonał Λ określony na X taki, że

- (a) $\Lambda(y) = \lambda(y)$ dla $y \in Y$.
- (b) $\Lambda(x) \leq p(x)$ dla $x \in X$.
- (c) $\Lambda(Ax) = \Lambda(x)$ dla $x \in X$ oraz $A \in \mathcal{G}$.

Dowód. Wiemy, że dla $\alpha_i \ge 0$, $\sum_{i=1}^n \alpha_i = 1$ mamy

$$p(\alpha_1 x_1 + \ldots + \alpha_n x_n) \leqslant \alpha_1 p(x_1) + \ldots + \alpha_n p(x_n).$$

Nierówność pozostaje prawdziwa, jeśli $\alpha_i \geqslant 0, \ \sum_{i=1}^n \alpha_i \leqslant 1.$ Rzeczywiście

$$p(\alpha_1 x_1 + \ldots + \alpha_n x_n) = p(\alpha_1 x_1 + \ldots + \alpha_n x_n + (1 - \sum_{i=1}^n \alpha_i)0)$$

$$\leq \alpha_1 p(x_1) + \ldots + \alpha_n p(x_n) + (1 - \sum_{i=1}^n \alpha_i) p(0)$$

$$= \alpha_1 p(x_1) + \ldots + \alpha_n p(x_n).$$

Z niezmienniczości i liniowości funkcjonału λ otrzymujemy

$$\lambda(y) = \lambda\left(\sum_{i=1}^{n} \alpha_i A_i y\right), \quad y \in Y, A_i \in \mathcal{G}, \ \alpha_i \geqslant 0, \ \sum_{i=1}^{n} \alpha_i = 1.$$

Zatem

$$\lambda(y) \leqslant p\left(\sum_{i=1}^{n} \alpha_i A_i y\right), \quad y \in Y, A_i \in \mathcal{G}, \ \alpha_i \geqslant 0, \ \sum_{i=1}^{n} \alpha_i = 1.$$

W rezultacie

$$\lambda(y) \leqslant \inf \left\{ p\left(\sum_{i=1}^n \alpha_i A_i y\right) : n \in \mathbb{N}, A_i \in \mathcal{G}, \alpha_i \geqslant 0, \sum_{i=1}^n \alpha_i = 1 \right\}.$$

Dla $x \in X$ określmy

$$q(x) = \inf \left\{ p\left(\sum_{i=1}^{n} \alpha_i A_i x\right) : n \in \mathbb{N}, \ A_i \in \mathcal{G}, \ \alpha_i \geqslant 0, \ \sum_{i=1}^{n} \alpha_i = 1 \right\}.$$
 (5.8)

Wtedy

$$\lambda(y) \leqslant q(y), \quad y \in Y.$$

Zauważmy, że $q(x) \leq p(x)$. Istotnie, dla $n=1, A_1=I$ oraz $\alpha_1=1$ otrzymujemy $p\left(\sum_{i=1}^n \alpha_i A_i x\right) = p(x)$. Pokażemy, że funkcja q(x) jest wypukła. Niech $x,y\in X$ oraz $\alpha,\beta\geqslant 0, \ \alpha+\beta=1$. Wybierzmy liczby nieujemne $\alpha_1,\alpha_2,\ldots,\alpha_m,\ \beta_1,\beta_2,\ldots,\beta_n$ takie, że $\sum_{i=1}^n \alpha_i=\sum_{j=1}^n \beta_j=1$ oraz operatory $A_1,A_2,\ldots,A_m,\ B_1,B_2,\ldots,B_n$ pochodzą z półgrupy \mathcal{G} . Wtedy rozważamy mn liczb $\alpha_i\beta_j$ i tyleż operatorów $A_iB_j\in \mathcal{G}$. Mamy

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j = 1.$$

Korzystając z wypukłości i własności (ii) funkcji p otrzymujemy

$$q(\alpha x + \beta y) \leqslant p \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i} \beta_{j} A_{i} B_{j}(\alpha x + \beta y) \right)$$

$$= p \left(\alpha \sum_{j=1}^{n} \beta_{j} B_{j} \left(\sum_{i=1}^{m} \alpha_{i} A_{i} x \right) + \beta \sum_{i=1}^{m} \alpha_{i} A_{i} \left(\sum_{j=1}^{n} \beta_{j} B_{j} y \right) \right)$$

$$\leqslant \alpha p \left(\sum_{j=1}^{n} \beta_{j} B_{j} \left(\sum_{i=1}^{m} \alpha_{i} A_{i} x \right) \right) + \beta p \left(\sum_{i=1}^{m} \alpha_{i} A_{i} \left(\sum_{j=1}^{n} \beta_{j} B_{j} y \right) \right)$$

$$\leqslant \alpha \sum_{j=1}^{n} \beta_{j} p \left(B_{j} \sum_{i=1}^{m} \alpha_{i} A_{i} x \right) + \beta \sum_{i=1}^{m} \alpha_{i} p \left(A_{i} \sum_{j=1}^{n} \beta_{j} B_{j} y \right)$$

$$\leqslant \alpha \sum_{j=1}^{n} \beta_{j} p \left(\sum_{i=1}^{m} \alpha_{i} A_{i} x \right) + \beta \sum_{i=1}^{m} \alpha_{i} p \left(\sum_{j=1}^{n} \beta_{j} B_{j} y \right)$$

$$= \alpha p \left(\sum_{i=1}^{m} \alpha_{i} A_{i} x \right) + \beta p \left(\sum_{j=1}^{n} \beta_{j} B_{j} y \right).$$

Obliczając kres dolny względem wszystkich wyborów współczynników $\alpha_i,\ \beta_j$ oraz operatorów $A_i,\ B_j\in\mathcal{G}$ otrzymujemy

$$q(\alpha x + \beta y) \le \alpha q(x) + \beta q(y),$$

zatem q jest funkcją wypukłą na X. Ponadto

$$\lambda(y) \leqslant q(y), \qquad y \in Y.$$

Z twierdzenia Hahna-Banacha istnieje funkcjonał $\Lambda: X \to \mathbb{R}$ spełniający

$$\begin{split} &\Lambda(y) = \lambda(y) & \text{dla } y \in Y, \\ &\Lambda(x) \leqslant q(x) \leqslant p(x) & \text{dla } x \in X. \end{split}$$

Pozostaje udowodnić, że $\Lambda(Ax) = \Lambda(x)$ dla $x \in X$ oraz $A \in \mathcal{G}$. Przyjmując $n \ge 2$, $\alpha_i = \frac{1}{n}$ oraz $A_i = A^{i-1}$ dla $A \in \mathcal{G}$ (patrz (5.8)) otrzymujemy

$$q(x - Ax) \le p\left(\frac{1}{n}\sum_{i=1}^{n} A^{i-1}(x - Ax)\right) = p\left(\frac{1}{n}x + \frac{1}{n}A^{n}(-x)\right)$$
$$\le \frac{1}{n}p(x) + \frac{1}{n}p(A^{n}(-x)) \le \frac{1}{n}[p(x) + p(-x)].$$

Ponieważ njest dowolną liczbą naturalną, to $q(x-Ax)\leqslant 0.$ Stąd wynika, że

$$\Lambda(x) - \Lambda(Ax) = \Lambda(x - Ax) \leqslant q(x - Ax) \leqslant 0,$$

czyli

$$\Lambda(x) \leqslant \Lambda(Ax), \quad x \in X, \ A \in \mathcal{G}.$$

Podstawiając x:=-xotrzymamy nierówność przeciwną, czyli $\Lambda(Ax)=\Lambda(x).$ $\hfill\Box$

Następny wynik jest efektownym zastosowaniem Twierdzenia 5.27.

Twierdzenie 5.28. Istnieje funkcja rzeczywista μ określona dla wszystkich ograniczonych podzbiorów prostej spełniająca:

- (i) $\mu(A) \geqslant 0$.
- (ii) Jeśli $A \cap B = \emptyset$, to $\mu(A \cup B) = \mu(A) + \mu(B)$.
- (iii) $\mu(x+A) = \mu(A)$ dla $x \in \mathbb{R}$, tzn. μ jest niezmiennicza na przesunięcia.

(iv) Jeśli A jest podzbiorem mierzalnym w sensie Lebesgue'a, to $\mu(A) = |A|$, gdzie |A| oznacza miarę Lebesgue'a zbioru A.

Dowód. Niech X będzie przestrzenią wszystkich ograniczonych funkcji $f: \mathbb{R} \to \mathbb{R}$ o nośniku ograniczonym, czyli

$${x \in \mathbb{R} : f(x) \neq 0} \subset [a, b]$$

dla pewnych liczb $a, b \in \mathbb{R}$. Niech Y oznacza zbiór funkcji w X mierzalnych w sensie Lebesgue'a. Określmy funkcję $p: X \to \mathbb{R}$

$$p(f) = \inf \left\{ \int_{\mathbb{R}} g(x) dx : g \in Y, |f(x)| \leq g(x), x \in \mathbb{R} \right\}.$$

Wartość p(f) jest zawsze skończona. Istotnie, niech $|f(x)| \le m$ oraz f(x) = 0 dla $x \notin [a,b]$, to przyjmując $g(x) = m \mathbb{1}_{[a,b]}$ otrzymamy $|f(x)| \le g(x)$ oraz $p(f) \le m(b-a)$.

Funkcja p jest wypukła oraz p(0) = 0. Rzeczywiście, niech $f_1, f_2 \in X$ oraz $\alpha, \beta \geq 0$. Wybierzmy dowolne funkcje mierzalne g_1, g_2 spełniające $|f_1(x)| \leq g_1(x)$ oraz $|f_2(x)| \leq g_2(x)$. Wtedy

$$|\alpha f_1(x) + \beta f_2(x)| \le \alpha |f_1(x)| + \beta |f_2(x)| \le \alpha g_1(x) + \beta g_2(x).$$

Zatem

$$p(\alpha f_1 + \beta f_2) \leqslant \int_{\mathbb{R}} [\alpha g_1(x) + \beta g_2(x)] dx = \alpha \int_{\mathbb{R}} g_1(x) dx + \beta \int_{\mathbb{R}} g_2(x) dx.$$

Obliczając kres dolny względem g_1 i g_2 otrzymamy

$$p(\alpha f_1 + \beta f_2) \leq \alpha p(f_1) + \beta p(f_2).$$

Dla $f \in X$ oraz $t \in \mathbb{R}$ określamy operator przesunięcia A_t wzorem

$$(A_t f)(x) = f(x+t).$$

Operatory A_t tworzą półgrupę przemienną, bo

$$A_t A_s = A_{t+s} = A_s A_t, \qquad A_0 = I.$$

Dla $f \in Y$ mamy $A_t f \in Y$, bo przesunięcie funkcji mierzalnej w argumencie daje w wyniku funkcję mierzalną. Ponadto $p(A_t f) \leq p(f)$. Rzeczywiście, jeśli

 $|f(x)| \leq g(x)$ dla $f \in X$ i $g \in Y$, to $|(A_t f)(x)| \leq (A_t g)(x)$ oraz $A_t g \in Y$. Zatem

$$p(A_t f) \leqslant \int_{\mathbb{R}} (A_t g)(x) dx = \int_{\mathbb{R}} g(x+t) dx = \int_{\mathbb{R}} g(x) dx.$$

Biorąc kres dolny względem funkcji g otrzymujemy

$$p(A_t f) \leqslant p(f)$$
.

Uwaga 5.29. Prawdziwa jest równość $p(A_t f) = p(f)$. Istotnie

$$p(f) = p(A_{-t}A_tf) \leqslant p(A_tf) \leqslant p(f).$$

Określ
my funkcjonał $\lambda:Y\to\mathbb{R}$ wzorem

$$\lambda(f) = \int_{\mathbb{R}} f(x) \, dx.$$

Wtedy

$$p(f) = \int_{r} |f(x)| dx \geqslant \int_{\mathbb{R}} f(x) dx = \lambda(f).$$

Ten funkcjonał jest niezmienniczy pod działaniem A_t , bo

$$\lambda(A_t f) = \int_{\mathbb{R}} f(x+t) \, dx = \int_{\mathbb{R}} f(x) \, dx = \lambda(f).$$

Zatem z Twierdzenia 5.27 istnieje funkcjonał $\Lambda: X \to \mathbb{R}$ spełniający

$$\Lambda(A_t f) = \Lambda(f),$$

$$\Lambda(f) = \lambda(f) = \int_{\mathbb{R}} f(x) dx, \quad \text{dla } f \in Y,$$

$$\Lambda(f) \leqslant p(f), \quad \text{dla } f \in X.$$
(5.9)

Pokażemy, że funkcjonał Λ jest nieujemny, tzn. jeśli $f \ge 0$, to $\Lambda(f) \ge 0$. Załóżmy, że $0 \le f(x) \le m$ oraz f(x) = 0 dla $x \notin [a, b]$. Wtedy

$$0 \le m \, \mathbb{I}_{[a,b]}(x) - f(x) \le m \, \mathbb{I}_{[a,b]}(x). \tag{5.10}$$

Na podstawie (5.9) i (5.10) mamy

$$\Lambda\left(m\,\mathbb{1}_{[a,b]}-f\right)\leqslant p\left(m\,\mathbb{1}_{[a,b]}-f\right)\leqslant \int\limits_{\mathbb{R}}m\,\mathbb{1}_{[a,b]}(x)\,dx=m(b-a).$$

Zatem

$$m(b-a) - \Lambda(f) = \lambda \left(m \, 1\!\!1_{[a,b]} \right) - \Lambda(f) \leqslant m(b-a).$$

Ponieważ $\lambda\left(m \, 1\!\!1_{[a,b]}\right) = m(b-a)$, to $\Lambda(f) \geqslant 0$.

Dla ograniczonego podzbioru $A \subset \mathbb{R}$ określamy

$$\mu(A) = \Lambda(\mathbb{I}_A)$$
.

Mamy $\mu(A) \ge 0$, bo funkcjonał Λ jest nieujemny. Jeśli $A \cap B = \emptyset$, to

$$\mu(A \cup B) = \Lambda\left(\mathbb{I}_{A \cup B}\right) = \Lambda\left(\mathbb{I}_A + \mathbb{I}_B\right) = \Lambda\left(\mathbb{I}_A\right) + \Lambda\left(\mathbb{I}_B\right) = \mu(A) + \mu(B).$$

Ponadto jeśli A jest mierzalny w sensie Lebesgue'a, to

$$\mu(A) = \Lambda \left(\mathbb{I}_A \right) = \lambda \left(\mathbb{I}_A \right) = \int_{\mathbb{R}} \mathbb{I}_A(x) \, dx = |A|.$$

Uwaga 5.30. Niech SO(3) oznacza grupę obrotów w przestrzeni \mathbb{R}^3 . Miara Lebesgue'a w \mathbb{R}^3 jest niezmiennicza na działanie grupy SO(3). Jednak miara ta mierzy tylko zbiory mierzalne. Rozważmy zagadnienie: czy istnieje skończenie addytywna funkcja μ określona na wszystkich ograniczonych podzbiorach w \mathbb{R}^3 taka, że

$$\mu(U(A)) = \mu(A), \quad U \in SO(3), \ A \subset \mathbb{R}^3.$$

Zagadnienie jest związane z tzw. paradoksem Banacha-Tarskiego. Okazuje się, że kulę jednostkową $B=\{x\in\mathbb{R}^3:\|x\|\leqslant 1\}$ można przedstawić w postaci sumy rozłącznej pięciu podzbiorów

$$B = B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5$$

oraz istnieją dwie macierze $U_1,\ U_2$ z SO(3) takie, że

$$U_1(B_1) \cup B_2 = B$$
, $U_2(B_3) \cup B_4 = B$.

W związku z tym funkcja μ o opisanych własnościach nie może istnieć.

6 Twierdzenie Baire'a i zastosowania

6.1 Twierdzenie Baire'a

Definicja 6.1. Zbiór S w przestrzeni metrycznej X nazywamy **nigdziegę-stym**, jeśli domknięcie \overline{S} ma puste wnętrze. Tzn. dla dowolnej otwartej kuli B w X mamy $B \setminus \overline{S} \neq \emptyset$.

Przykłady. Skończony podzbiór na prostej jest nigdziegęsty. Przeliczalny zbiór $\mathbb{Z} \subset \mathbb{R}$ jest nigdziegęsty. Jednakże przeliczalny podzbiór może być gęsty, np. zbiór liczb wymiernych jest gęsty w \mathbb{R} . Zbiór Cantora $C \subset [0,1]$ jest nigdziegęsty, chociaż jest nieprzeliczalny.

Definicja 6.2. S nazywamy zbiorem I kategorii jeśli S jest przeliczalną sumą zbiorów nigdziegęstych w X.

Przykład. \mathbb{Q} jest zbiorem I kategorii, bo $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}.$

Uwaga 6.3. Przeliczalna suma zbiorów I kategorii jest znowu zbiorem I kategorii.

Twierdzenie 6.4 (Baire). Przestrzeń metryczna zupełna nie jest zbiorem I kategorii.

Dowód. Załóżmy, że X jest zbiorem I kategorii. Niech

$$X = \bigcup_{n=1}^{\infty} A_n,$$

gdzie A_n są zbiorami nigdziegęstymi. Ponieważ A_1 nie jest gęsty, to można znaleźć $x_1 \notin \overline{A_1}$. Zatem istnieje otwarta kula B_1 o środku w x_1 taka, że

$$x_1 \in \overline{B_1} \subset X \setminus \overline{A_1}$$
.

Możemy założyć, że promień kuli B_1 nie przekracza 2^{-1} . Zbiór A_2 jest nigdziegęsty, zatem można znaleźć element x_2 taki, że $x_2 \in B_1 \setminus \overline{A_2}$. Istnieje zatem kula o środku w x_2 i promieniu co najwyżej 2^{-2} spełniająca warunek

$$x_2 \in \overline{B_2} \subset B_1 \setminus \overline{A_2}.$$

Dalej postępujemy podobnie. Tzn. jeśli B_{n-1} i x_{n-1} są już wybrane, to istnieje element x_n taki, że $x_n \in B_{n-1} \setminus \overline{A_n}$. Istnieje wtedy kula o środku w x_n i promieniu co najwyżej 2^{-n} taka, że

$$x_n \in \overline{B_n} \subset B_{n-1} \setminus \overline{A_n}$$
.

Otrzymamy w ten sposób ciąg x_n , który spełnia warunek Cauchy'ego. Istotnie jeśli n, m > N, to $x_n, x_m \in B_N$, bo kule tworzą ciąg zstępujący. Zatem

$$d(x_n, x_m) < \frac{2}{2^N}.$$

Z zupełności przestrzeni X ciąg x_n jest zbieżny. Niech $x=\lim_n x_n$. Dla n>N mamy $x_n\in B_{N+1}$. Stąd

$$x = \lim_{n} x_n \in \overline{B_{N+1}} \subset B_N,$$

dla każdej wartości N. Ale $B_N \cap A_N = \emptyset$. Tzn. $x \notin A_N$ dla każdej wartości N. Czyli

$$x \notin \bigcup_{N=1}^{\infty} A_N = X,$$

co prowadzi do sprzeczności.

Uwaga 6.5. Jeśli S nie jest zbiorem I kategorii w X oraz $S = \bigcup_{n=1}^{\infty} A_n$, to dla pewnej wartości n zbiór $\overline{A_n}$ zawiera kulę.

Przykład. Zbiór $\mathbb{R} \setminus \mathbb{Q}$ nie jest zbiorem I kategorii w \mathbb{R} . Istotnie, gdyby $\mathbb{R} \setminus \mathbb{Q}$ był zbiorem I kategorii, to również $\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q}$ byłby zbiorem I kategorii, co przeczyłoby twierdzeniu Baire'a.

6.2 Twierdzenie Banacha-Steinhausa

Twierdzenie 6.6. Niech X i Y będą przestrzeniami unormowanymi. Niech \mathcal{F} oznacza pewną rodzinę ograniczonych operatorów liniowych z X w Y. Wtedy zbiór liczb { $||T||: T \in \mathcal{F}$ } jest ograniczony lub zbiór

$$\{x \in X \ : \ \sup_{T \in \mathcal{F}} \|Tx\| < \infty\}$$

 $jest\ I\ kategorii\ w\ X.$

Uwaga 6.7. Jeśli zbiór $\{||T||: T \in \mathcal{F}\}$ jest ograniczony, czyli istnieje liczba c > 0 taka, że $||T|| \le c$ dla $T \in \mathcal{F}$, to

$$||Tx|| \le ||T|| ||x|| \le c||x||, \quad x \in X, \ T \in \mathcal{F}.$$

Zatem dla każdego ustalonego elementu x liczby ||Tx|| są wspólnie ograniczone, czyli

$$\{x \in X : \sup_{T \in \mathcal{F}} ||Tx|| < \infty\} = X.$$

Dowód. Załóżmy, że

$$A = \{ x \in X : \sup_{T \in \mathcal{F}} ||Tx|| < \infty \}$$

nie jest I kategorii. Wprowadzamy zbiory

$$A_n = \{ x \in X : \sup_{T \in \mathcal{F}} ||Tx|| \leqslant n \}.$$

Wtedy

$$A = \bigcup_{n=1}^{\infty} A_n.$$

Zbiory A_n są domknięte, bo jeśli $x_k \in A_n$ oraz $x_k \to x$, to

$$||Tx|| = \lim_{k} ||Tx_k|| \le n, \quad T \in \mathcal{F}$$

Na podstawie Uwagi 6.5 dla pewnej wartości n, zbiór A_n zawiera kulę

$$A_n \supset B = \{ x \in X : ||x - x_0|| \le r \}.$$

Niech $||x|| \le 1$. Wtedy $x_0, rx + x_0 \in B \subset A_n$. Zatem

$$|Tx|| = ||T(rx)|| = ||T(rx + x_0) - Tx_0||$$

$$\leq ||T(rx + x_0)|| + ||Tx_0|| \leq n + n = 2n.$$

Otrzymujemy

$$||Tx|| \leqslant \frac{2n}{r} \text{ dla } ||x|| \leqslant 1, \ T \in \mathcal{F},$$

czyli

$$||T|| \leqslant \frac{2n}{r}, \quad T \in \mathcal{F}.$$

Wniosek 6.8. Niech X będzie przestrzenią Banacha. Przy oznaczeniach z poprzedniego twierdzenia otrzymujemy: jeśli dla dowolnego elementu $x \in X$ zbiór liczb $\{||Tx|| : T \in \mathcal{F}\}$ jest ograniczony, to również zbiór $\{||T|| : T \in \mathcal{F}\}$ jest ograniczony. Tzn. z punktowej ograniczoności rodziny operatorów wynika jednostajna ograniczoność tej rodziny.

Dowód. Z założenia

$$X = \{x \in X \,:\, \sup_{T \in \mathcal{F}} \|Tx\| < \infty\}.$$

Z twierdzenia Baire'a X nie jest zbiorem I kategorii, bo X jest przestrzenią Banacha. Z poprzedniego twierdzenia wnioskujemy, że zbiór liczb

$$\{||T||: T \in \mathcal{F}\}$$

jest ograniczony.

Przez kontrapozycję Wniosku dostajemy

Wniosek 6.9. Przy oznaczeniach z Wn. 6.8, jeśli zbiór { $||T|| : T \in \mathcal{F}$ } nie jest ograniczony, to dla pewnego elementu $x \in X$ zbiór { $||Tx|| : T \in \mathcal{F}$ } nie jest ograniczony.

Przykład. Udowodnimy istnienie funkcji ciągłej o okresie 2π , dla której szereg Fouriera nie jest zbieżny w punkcie 0. Niech

$$X = C_{\rm per}[-\pi,\pi] = \{ f \in C[-\pi,\pi] \, : \, f(-\pi) = f(\pi) \}.$$

Dla funkcji $f \in X$ określamy współczynniki Fouriera c_n

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx, \quad n \in \mathbb{Z}.$$

Sumy częściowe szeregu Fouriera mają postać

$$s_n(f)(x) = \sum_{k=-n}^{n} c_k e^{ikx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) D_n(t) dt,$$

gdzie funkcja $D_n(t)$, zwana jądrem Dirichleta, ma postać

$$D_n(t) = \frac{\sin(n + \frac{1}{2})t}{\sin\frac{t}{2}}.$$

Przy dodatkowych założeniach, np. $f \in C^1_{per}[-\pi, \pi]$ można udowodnić, że sumy $s_n(f)$ są jednostajnie zbieżne do funkcji f. Ogólnie ciąg $s_n(f)(x_0)$ nie musi być zbieżny. Rozważmy $x_0 = 0$ i funkcjonały φ_n określone na X przez

$$\varphi_n(f) = s_n(f)(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(t) dt = \int_{-\pi}^{\pi} f(t) dg_n(t),$$

gdzie

$$g_n(x) = \frac{1}{2\pi} \int_{-\pi}^x D_n(t) dt.$$

Funkcja g_n ma wahanie ograniczone, bo

$$\operatorname{Var}_{[-\pi,\pi]}(g_n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt.$$

Na podstawie Twierdzenia 5.15 wiemy, że norma funkcjonału φ_n na $C[-\pi, \pi]$ jest równa $\operatorname{Var}_{[-\pi,\pi]}(g_n)$. Nietrudno pokazać, że norma φ_n na $C_{\operatorname{per}}[-\pi,\pi]$ jest taka sama, czyli też jest równa $\operatorname{Var}_{[-\pi,\pi]}(g_n)$. Z kursu szeregów Fouriera wiemy, że liczby

$$L_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_n(t)| dt$$

dążą do nieskończoności. Można wykazać, że

$$L_n \approx c \log n + d$$
.

To oznacza, że normy funkcjonałów $\|\varphi_n\|$ nie są wspólnie ograniczone. Zatem z Wn. 6.9 istnieje funkcja $f \in C_{\rm per}[-\pi,\pi]$ taka, że ciąg $\varphi_n(f) = s_n(f)(0)$ nie jest ograniczony. W szczególności ciąg $s_n(f)(0)$ nie może być zbieżny. Co więcej z twierdzenia Banacha-Steinhausa wynika, że zbiór funkcji, dla których ciąg $s_n(f)(0)$ jest ograniczony jest zbiorem I kategorii w $C_{\rm per}[-\pi,\pi]$.

Twierdzenie 6.10. Załóżmy, że funkcja B(x,y) jest zespoloną formą dwuliniową (lub półtoraliniową) na iloczynie $X \times Y$, gdzie X i Y są przestrzeniami Banacha, tzn. $B: X \times Y \to \mathbb{C}$. Jeśli dla każdego ustalonego elementu $x \in X$ funkcjonal $y \mapsto B(x,y)$ jest ciągły na Y oraz dla każdego ustalonego elementu $y \in Y$ funkcjonal $x \mapsto B(x,y)$ jest ciągły na X, to istnieje stała c > 0 spełniająca

$$|B(x,y)| \le c||x|| ||y||, \quad x \in X, \ y \in Y.$$

W szczególności odwzorowanie $(x,y) \mapsto B(x,y)$ jest ciągłe na $X \times Y$ (względem normy np. ||(x,y)|| = ||x|| + ||y||).

Uwaga 6.11. Jeśli B jest formą półtoraliniową, to rozważamy funkcjonały

$$y \mapsto \overline{B(x,y)}$$
.

Dowód. Ustalmy $x \in X$ i rozważmy funkcjonał $\varphi_x(y) = B(x,y)$. W przypadku, gdy B(x,y) jest formą dwuliniową, funkcjonał φ_x jest liniowy. Z założenia wiemy, że φ_x jest ciągły. Zatem istnieje stała $c_x > 0$ taka, że $|\varphi_x(y)| \le c_x ||y||$, czyli

$$|B(x,y)| \le c_x ||y||, \quad y \in Y.$$
 (6.1)

Podobnie, dla każdego elementu $y \in Y$ istnieje stała $d_y > 0$ taka, że

$$|B(x,y)| \leqslant d_y ||x||, \quad x \in X. \tag{6.2}$$

Rozważamy rodzinę funkcjonałów $\mathcal{F} = \{\varphi_x : ||x|| \leq 1\}$ określonych na przestrzeni Y. Sprawdzamy, czy wartości $\varphi_x(y)$, dla $||x|| \leq 1$, są wspólnie ograniczone dla każdego ustalonego elementu $y \in Y$. Na podstawie (6.2) mamy

$$|\varphi_x(y)| = |B(x,y)| \leqslant d_y ||x|| \leqslant d_y.$$

Zatem z Wn. 6.8 normy funkcjonałów $\|\varphi_x\|_{Y^*}$ są wspólnie ograniczone dla $\|x\| \leq 1$. To oznacza, że

$$c = \sup_{\|x\| \le 1} \|\varphi_x\|_{Y^*} < \infty.$$

Ale

$$c = \sup_{\|x\| \leqslant 1} \|\varphi_x\|_{Y^*} = \sup_{\|x\| \leqslant 1} \sup_{\|y\| \leqslant 1} |\varphi_x(y)| = \sup_{\|x\| \leqslant 1} \sup_{\|y\| \leqslant 1} |B(x,y)|.$$

Zatem dla $x, y \neq 0$ otrzymujemy

$$|B(x,y)| = ||x|| \, ||y|| \, \left| B\left(\frac{x}{||x||}, \frac{y}{||y||}\right) \right| \leqslant c||x|| \, ||y||.$$

Z ostatniej nierówności wynika ciągłość. Rzeczywiście, dla $x_n \to x$ oraz $y_n \to y$ mamy

$$B(x_n, y_n) - B(x, y) = B(x_n - x, y_n - y) + B(x, y_n - y) + B(x_n - x, y).$$

Zatem

$$|B(x_n, y_n) - B(x, y)| \le |B(x_n - x, y_n - y)| + |B(x, y_n - y)| + |B(x_n - x, y)|$$

$$\le c||x_n - x|| ||y_n - y|| + c||x|| ||y_n - y|| + c||x_n - x|| ||y|| \xrightarrow{n} 0$$

Twierdzenie 6.12 (Hellinger-Toeplitz). Załóżmy, że dwa operatory liniowe $A, B: \mathcal{H} \to \mathcal{H}$ określone na przestrzeni Hilberta \mathcal{H} spełniają warunek

$$\langle Ax, y \rangle = \langle x, By \rangle \quad x, y \in \mathcal{H}.$$

Wtedy A i B są ograniczone oraz $B = A^*$.

Uwaga 6.13. Jeśli $\langle Ax, y \rangle = \langle x, Ay \rangle$ dla $x, y \in \mathcal{H}$, to A jest ograniczony oraz $A^* = A$.

Dowód. Określmy formę półtoraliniową C na $\mathcal{H} \times \mathcal{H}$

$$C(x,y) = \langle Ax, y \rangle.$$

Wtedy

$$|C(x,y)| = |\langle Ax, y \rangle| \le ||Ax|| ||y||,$$

$$|C(x,y)| = |\langle Ax, y \rangle| = |\langle x, By \rangle| \le ||By|| ||x||.$$

Zatem oba odwzorowania $X\ni x\mapsto C(x,y)$ oraz $Y\ni y\mapsto C(x,y)$ są ciągłe. Z Twierdzenia 6.10 istnieje stała c>0 taka, że

$$|C(x,y)| \le c||x|| \, ||y||.$$

Wtedy z Lematu 3.12 mamy

$$||A|| = \sup_{\|x\| \leqslant 1} ||Ax|| = \sup_{\|x\| \leqslant 1} \sup_{\|y\| \leqslant 1} |\langle Ax, y \rangle| = \sup_{\|x\| \leqslant 1} \sup_{\|y\| \leqslant 1} |C(x, y)| \leqslant c.$$

Podobnie $||B|| \leq c$.

6.3 Twierdzenia Banacha

Twierdzenie 6.14 (o odwzorowaniu otwartym). Ciągłe odwzorowanie liniowe T z przestrzeni Banacha X na przestrzeń Banacha Y jest otwarte, tzn. obraz T(U) dla każdego otwartego podzbioru U w X jest otwartym podzbiorem w Y.

Dowód. Najpierw pokażemy, że obraz otwartej kuli jednostkowej o środku w 0 w X zawiera kulę otwartą o środku w 0 w Y. Niech

$$B_n = \{ x \in X : ||x|| < 2^{-n} \}.$$

Mamy

$$X = \bigcup_{k=1}^{\infty} kB_1.$$

Zatem

$$Y = T(X) = \bigcup_{k=1}^{\infty} T(kB_1) = \bigcup_{k=1}^{\infty} kT(B_1).$$

Z twierdzenia Baire'a przynajmniej jeden ze zbiorów $kT(B_1)$ nie jest nigdziegęsty. Zatem $T(B_1)$ nie jest nigdziegęsty. To oznacza, że domknięcie zbioru $T(B_1)$ zawiera pewną kulę, czyli

$$\overline{T(B_1)} \supset \{ y \in Y : ||y - y_0|| < \eta \},$$

dla pewnego elementu $y_0 \in Y$ oraz liczby $\eta > 0$.

$$\{y \in Y : ||y|| < \eta\} = \{y \in Y : ||y - y_0|| < \eta\} - y_0 \subset \overline{T(B_1)} - \overline{T(B_1)}$$
$$\subset \overline{T(B_1) - T(B_1)} \subset \overline{T(B_1 - B_1)} = \overline{T(2B_1)} = \overline{T(B_0)}.$$

Skorzystaliśmy z prostej własności, że $\overline{A}-\overline{B}\subset \overline{A-B}.$ Dzieląc stronami przez 2^n otrzymamy

$$\left\{ y \in Y : \|y\| < \frac{\eta}{2^n} \right\} \subset \overline{T(B_n)}. \tag{6.3}$$

Naszym celem jest wykazanie, że

$$\left\{ y \in Y : \|y\| < \frac{\eta}{2} \right\} \subset T(B_0).$$
 (6.4)

Niech $||y|| < \eta/2$. Zatem z (6.3) dla n=1 mamy $y \in \overline{T(B_1)}$. Istnieje więc element $x_1 \in B_1$ taki, że

$$||y - Tx_1|| < \frac{\eta}{2^2}.$$

Znowu z (6.3) dla n=2 wnioskujemy, że $y-Tx_1\in \overline{T(B_2)}$. Istnieje więc element $x_2\in B_2$ taki, że

$$||y - Tx_1 - Tx_2|| < \frac{\eta}{2^3},$$

zatem $y-Tx_1-Tx_2\in \overline{T(B_3)}$, na podstawie (6.3) dla n=3. Postępując tak dalej otrzymamy ciąg elementów x_n o własnościach $x_n\in B_n$ oraz

$$||y - Tx_1 - Tx_2 - \dots - Tx_n|| < \frac{\eta}{2^{n+1}}.$$

Zatem

$$y = \sum_{n=1}^{\infty} Tx_n.$$

Skoro $x_n \in B_n$, to $||x_n|| < 2^{-n}$. Z zupełności przestrzeni X szereg $\sum_{n=1}^{\infty} x_n$ jest zbieżny. Oznaczmy

$$x = \sum_{n=1}^{\infty} x_n.$$

Wtedy

$$Tx = \sum_{n=1}^{\infty} Tx_n = y.$$

Ponadto

$$||x|| \le \sum_{n=1}^{\infty} ||x_n|| < \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

Czyli $x \in B_0$. W ten sposób dowód (6.4) został zakończony.

Niech U będzie otwartym podzbiorem w X oraz $y_0 \in T(U)$. Wtedy $y_0 = Tx_0$ dla pewnego elementu $x_0 \in U$. Z otwartości U mamy

$$\{x \in X : ||x - x_0|| < r\} \subset U$$

dla pewnej liczby r > 0. Zatem

$$x_0 + rB_0 = \{x \in X : ||x - x_0|| < r\} \subset U.$$

Wtedy

$$y_0 + rT(B_0) = T(x_0 + rB_0) \subset T(U).$$

Z (6.4) wynika zatem, że

$$\left\{ y \in Y : \|y - y_0\| < \frac{r\eta}{2} \right\} = y_0 + r \left\{ y \in Y : \|y\| < \frac{\eta}{2} \right\} \subset y_0 + rT(B_0) \subset T(U).$$

To oznacza, że y_0 leży w T(U) wraz z pewnym otoczeniem, czyli T(U) jest otwartym podzbiorem w Y.

Twierdzenie 6.15 (o odwzorowaniu odwrotnym). Niech T będzie ciągłym, różnowartościowym odwzorowaniem liniowym z przestrzeni Banacha X na przestrzeń Banacha Y. Wtedy odwzorowanie odwrotne $T^{-1}: Y \to X$ jest ciągłe. Ponadto istnieje stała c > 0, dla której

$$||Tx|| \geqslant c||x||, \quad x \in X.$$

Dowód. Z poprzedniego twierdzenia T jest odwzorowaniem otwartym. To oznacza, że odwzorowanie T^{-1} jest ciągłe. Zatem T^{-1} jest ograniczonym odwzorowaniem liniowym. Wtedy

$$||x|| = ||T^{-1}Tx|| \le ||T^{-1}|| \, ||Tx||.$$

Stąd

$$||Tx|| \geqslant \frac{1}{||T^{-1}||} ||x||,$$

czyli
$$c = ||T^{-1}||^{-1}$$
.

Wniosek 6.16. Załóżmy, że T jest ciągłym, różnowartościowym odwzorowaniem liniowym z przestrzeni Banacha X na domkniętą podprzestrzeń przestrzeni Banacha Y. Wtedy istnieje stała c > 0, dla której

$$||Tx|| \geqslant c||x||, \quad x \in X.$$

Dow'od. Niech $Y_0=T(X)$. Wtedy Y_0 jest przestrzenią Banacha, jako domknięta podprzestrzeń przestrzeni Y. Możemy zatem zastosować poprzednie twierdzenie do $T:X\to Y_0$.

Uwaga 6.17. Jeśli odwzorowanie liniowe $T: X \to Y$ spełnia $||Tx|| \ge c||x||$ dla $x \in X$ i pewnej stałej c > 0, to odwzorowanie T jest różnowartościowe oraz T(X) jest domknietą podprzestrzenią w Y.

Definicja 6.18. Dla odwzorowania $T:X\to Y$ podzbiór $\Gamma\subset X\times Y$ określony wzorem

$$\Gamma = \{(x, Tx) : x \in X\}$$

nazywamy wykresem.

Lemat 6.19. Załóżmy, że X i Y są liniowymi przestrzeniami unormowanymi. Jeśli T jest ciągłym odwzorowaniem z X w Y, to zbiór Γ jest domkniętym podzbiorem w $X \times Y$.

Dowód. Załóżmy, że $(x_n, Tx_n) \xrightarrow{n} (x, y)$. Wtedy

$$||x_n - x|| \underset{n}{\longrightarrow} 0, \quad ||Tx_n - y|| \underset{n}{\longrightarrow} 0.$$

Ale z ciągłości mamy $Tx_n \to Tx$, zatem Tx = y, co oznacza, że $(x,y) \in \Gamma$.

Lemat 6.20. Jeśli X i Y są przestrzeniami Banacha, to również $X \times Y$ jest przestrzenią Banacha z normą

$$||(x,y)||_{X\times Y} = ||x||_X + ||y||_Y.$$

Dowód. Z równości

$$||x_n - x_m||_X + ||y_n - y_m||_Y$$

= $||(x_n - x_m, y_n - y_m)||_{X \times Y} = ||(x_n, y_n) - (x_m, y_m)||_{X \times Y},$

wynika, że (x_n, y_n) jest ciągiem Cauchy'ego w $X \times Y$ wtedy i tylko wtedy, gdy x_n i y_n są ciągami Cauchy'ego w X i Y, odpowiednio. Ponadto zastępując x_m przez x oraz y_m przez y otrzymamy, że jeśli $x_n \to x$ oraz $y_n \to y$, to $(x_n, y_n) \to (x, y)$.

Twierdzenie 6.21 (o wykresie domkniętym). Niech T będzie odwzorowaniem liniowym z przestrzeni Banacha X w przestrzeń Banacha Y. Jeśli wykres Γ odwzorowania T jest domkniętą podprzestrzenią w $X \times Y$, to odwzorowanie T jest ciągłe.

Dowód.Z założenia domkniętości wykresu wynika, że Γ jest przestrzenią Banacha. Rozważmy odwzorowania $\pi_1:\Gamma\to X$ oraz $\pi_2:\Gamma\to Y$ zadane wzorami

$$\pi_1(x, Tx) = x, \qquad \pi_2(x, Tx) = Tx.$$

Oba odwzorowania są liniowe i ograniczone z normą nie przekraczającą 1. Ponadto π_1 jest różnowartościowym odwzorowaniem z Γ na X. Zatem z twierdzenia o odwzorowaniu odwrotnym odwzorowanie π_1^{-1} jest ograniczone. Zauważmy, że

$$x \stackrel{\pi_1^{-1}}{\longmapsto} (x, Tx) \stackrel{\pi_2}{\longmapsto} Tx,$$

czyli

$$T = \pi_2 \circ \pi_1^{-1}$$
.

Zatem odwzorowanie T jest ograniczone jako złożenie dwu operatorów ograniczonych.

Przykład. Niech macierz $A = (a_{ij})_{i,j=1}^{\infty}$ spełnia

$$\sum_{j=1}^{\infty} |a_{ij}|^2 < \infty, \quad i = 1, 2, \dots,$$

tzn. wiersze macierzy A są sumowalne z kwadratem. Rozważamy $X=Y=\ell^2$. Określamy operator T na ℓ^2 wzorem

$$(Tx)(i) = \sum_{j=1}^{\infty} a_{ij}x(j), \quad x = \{x(j)\}_{j=1}^{\infty} \in \ell^2.$$

Z założenia mamy

$$\sum_{j=1}^{\infty} |a_{ij}x(j)| \le \sum_{j=1}^{\infty} \frac{1}{2} \left(|a_{ij}|^2 + |x(j)|^2 \right) < \infty,$$

czyli wielkość (Tx)(i) jest dobrze określona dla dowolnej wartości i.

Załóżmy, że T odwzorowuje ℓ^2 w siebie, tzn. dla x z ℓ^2 ciąg Tx również leży w ℓ^2 . Okazuje się, że wtedy T jest automatycznie operatorem ograniczonym. Rzeczywiście, sprawdzimy, że wykres operatora T jest domknięty. Posłużymy się lematem.

Lemat 6.22. Niech T będzie odwzorowaniem liniowym z przestrzeni unormowanej X w przestrzeń unormowaną Y. Jeśli z warunków $x_n \to 0$ oraz $Tx_n \to y$ wynika, że y = 0, to wykres odwzorowania T jest domknięty.

Dowód. Niech $x_n \to x$ oraz $Tx_n \to z$. Trzeba pokazać, że z = Tx. Mamy $x_n - x \to 0$. Ponadto $T(x_n - x) = Tx_n - Tx \to z - Tx$. Z założenia z - Tx = 0.

Niech $x_n \to 0$ oraz $Tx_n \to y \le \ell^2$. Mamy

$$|(Tx_n)(i)| = \left| \sum_{j=1}^{\infty} a_{ij} x_n(j) \right| \le \left(\sum_{j=1}^{\infty} |a_{ij}|^2 \right)^{1/2} ||x_n||_2 \xrightarrow{n} 0.$$

To oznacza, że $(Tx_n)(i) \xrightarrow{n} 0$ dla $i \in \mathbb{N}$. Dalej mamy

$$|(Tx_n)(i) - y(i)| \le \left(\sum_{j=1}^{\infty} |(Tx_n)(j) - y(j)|^2\right)^{1/2} = ||Tx_n - y||_2 \xrightarrow{n} 0.$$

Skoro $|(Tx_n)(i) - y(i)| \xrightarrow{n} 0$ oraz $(Tx_n)(i) \xrightarrow{n} 0$, to y(i) = 0 dla $i \in \mathbb{N}$, czyli y = 0.

7 Twierdzenie Stone'a-Weierstrassa

Dla funkcji $f \in C_{\mathbb{R}}[0,1]$ istnieją wielomiany $p_n(x)$ o współczynnikach rzeczywistych takie, że

$$p_n(x) \underset{n}{\Longrightarrow} f(x), \quad 0 \leqslant x \leqslant 1,$$

tzn.

$$||p_n - f||_{\infty} \xrightarrow{n} 0.$$

Na przykład można przyjąć, że p_n są wielomianami Bernsteina.

$$p_n(x) = B_n(f; x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

Wielomiany \mathcal{P} tworzą algebrę, tzn. z warunku $p, q \in \mathcal{P}$ wynika, że $pq \in \mathcal{P}$. Niech K będzie zwartą przestrzenią topologiczną Hausdorffa, np. zwartą przestrzenią metryczną.

Definicja 7.1. Podzbiór $A \subset C_{\mathbb{R}}(K)$ (lub C(K)) nazywamy **podalgebrą**, jeśli z warunku $f, g \in A$ wynika, że f + g, fg oraz c f leżą w A, $gdzie c \in \mathbb{R}$ (lub $c \in \mathbb{C}$).

Uwaga 7.2. Zauważmy, że $||fg||_{\infty} \le ||f||_{\infty} ||g||_{\infty}$, tzn. norma jest podmulty-plikatywna.

Przykłady.

- 1. Wielomiany $\mathcal{P} \le C[0,1]$ (lub $\le C[a,b]$).
- 2. $\mathcal{A} = \{ f \in C_{\mathbb{R}}[0,1] : f(\frac{1}{2}) = 0 \}.$

Lemat 7.3. Jeśli $A \subset C_{\mathbb{R}}(K)$ jest podalgebrą, to \overline{A} (czyli jednostajne granice ciągów z A) też jest podalgebrą.

Dowód. Niech $f, g \in \overline{\mathcal{A}}$. Zatem istnieją ciągi $f_n, g_n \in \mathcal{A}$ takie, że $||f_n - f||_{\infty} \xrightarrow[n]{} 0$ oraz $||g_n - g||_{\infty} \xrightarrow[n]{} 0$. Mamy

$$||f_n g_n - fg||_{\infty} = ||(f_n - f)(g_n - g) + f(g_n - g) + g(f_n - f)||_{\infty}$$

$$\leq ||f_n - f||_{\infty} ||g_n - g||_{\infty} + ||f||_{\infty} ||g_n - g||_{\infty} + ||g||_{\infty} ||f_n - f||_{\infty}$$

Zatem $||f_n g_n - fg||_{\infty} \xrightarrow{n} 0$, co oznacza, że $fg \in \overline{\mathcal{A}}$. Podobnie pokazujemy, że f + g, $cf \in \overline{\mathcal{A}}$ dla $c \in \mathbb{R}$.

Definicja 7.4. Mówimy, że podalgebra $A \subset C_{\mathbb{R}}(K)$ (lub C(K)) **rozdziela punkty**, jeśli dla dowolnych punktów $x_1, x_2 \in K$ istnieje funkcja $f \in A$ taka, że $f(x_1) \neq f(x_2)$.

Definicja 7.5. Mówimy, że podalgebra $A \subset C_{\mathbb{R}}(K)$ (lub C(K)) **nie znika** w K, jeśli dla dowolnego punktu $x \in K$ istnieje funkcja $f \in A$ taka, że $f(x) \neq 0$.

Przykład. Podalgebra wielomianów $\mathcal{P} \subset C[a,b]$ nie znika, bo $1 \in \mathcal{P}$. Podalgebra \mathcal{P} rozdziela punkty, bo funkcja x jest różnowartościowa.

Lemat 7.6. Niech $A \subset C_{\mathbb{R}}(K)$ będzie podalgebrą rozdzielającą punkty i nieznikającą w K. Wtedy dla dowolnych punktów $x_1, x_2 \in K$ oraz liczb $a_1, a_2 \in \mathbb{R}$ można znaleźć funkcję $f \in A$ spełniającą

$$f(x_1) = a_1, \quad f(x_2) = a_2.$$

 $Dow \acute{o}d.$ Istnieją funkcje h_1 i h_2 oraz funkcja $g\le \mathcal{A}$ takie, że

$$h_1(x_1) \neq 0$$
, $h_2(x_2) \neq 0$, $g(x_1) \neq g(x_2)$.

Określmy funkcje

$$u(x) = g(x)h_1(x) - g(x_2)h_1(x) = [g(x) - g(x_2)]h_1(x),$$

$$v(x) = g(x)h_2(x) - g(x_1)h_2(x) = [g(x) - g(x_1)]h_2(x).$$

Wtedy $u, v \in \mathcal{A}$ oraz

$$u(x_1) \neq 0,$$
 $u(x_2) = 0,$
 $v(x_1) = 0,$ $v(x_2) \neq 0.$

Zauważmy, że funkcja

$$f(x) = a_1 \frac{u(x)}{u(x_1)} + a_2 \frac{v(x)}{v(x_2)}$$

spełnia tezę lematu.

Twierdzenie 7.7 (Stone-Weierstrass). Niech $A \subset C_{\mathbb{R}}(K)$ będzie podalgebrą rozdzielającą punkty i nieznikającą w K. Wtedy A leży gęsto w $C_{\mathbb{R}}(K)$, tzn. dla dowolnej funkcji f z $C_{\mathbb{R}}(K)$ można znaleźć ciąg f_n w A taki, że $f_n \underset{n}{\Longrightarrow} f$ w K. Innymi słowy $\overline{A} = C_{\mathbb{R}}(K)$.

Twierdzenie 7.7 wynika z czterech kolejnych lematów, w których przyjmujemy założenia Tw. 7.7 .

Lemat 7.8. Jeśli $f \in \overline{A}$, to również $|f| \in \overline{A}$.

Dowód. Możemy założyć, że $f \neq 0$. Rozważmy

$$g = \frac{1}{\|f\|_{\infty}} f.$$

Wtedy $||g||_{\infty} = 1$. Zatem $|g(x)| \leq 1$ dla $x \in K$. Wiemy, że $g \in \overline{\mathcal{A}}$. Wystarczy pokazać, że $|g| \in \overline{\mathcal{A}}$. Z twierdzenia Weierstrassa istnieje ciąg wielomianów $q_n(y)$ taki, że

$$q_n(y) \underset{n}{\Longrightarrow} |y|, \quad -1 \leqslant y \leqslant 1.$$

Ponieważ $q_n(0) \underset{n}{\to} 0$, to dla $p_n(y) = q_n(y) - q_n(0)$ mamy $p_n(0) = 0$ oraz

$$p_n(y) \underset{n}{\Longrightarrow} |y|, \quad -1 \leqslant y \leqslant 1.$$

Wtedy

$$p_n(g(x)) \underset{n}{\Longrightarrow} |g(x)|, \quad x \in K.$$

Rzeczywiście

$$\sup_{K} |p_n(g(x)) - |g(x)|| \leq \sup_{|y| \leq 1} |p_n(y) - |y|| \xrightarrow{n} 0.$$

Na podstawie Lematu 7.3 otrzymujemy $p_n(g(x)) \in \overline{\mathcal{A}}$. Zatem $|g(x)| \in \overline{\mathcal{A}}$, czyli $|f(x)| \in \overline{\mathcal{A}}$.

Uwaga 7.9. Ciąg wielomianów przybliżający |x| można wskazać jawnym wzorem. Na przykład, korzystając z rozwinięcia w szereg Taylora mamy

$$|x| = (1 + (x^{2} - 1))^{1/2} = 1 + \sum_{n=1}^{\infty} {1 \choose 2} (x^{2} - 1)^{n}$$

$$= 1 - \sum_{n=1}^{\infty} \frac{1}{2n - 1} {2n \choose n} \frac{1}{4^{n}} (1 - x^{2})^{n}. \quad (7.1)$$

Równość jest spełniona dla $|1-x^2|<1$ czyli dla $0<|x|\leqslant 1$. Ze wzoru (7.1) otrzymujemy

$$\sum_{n=1}^{N} \frac{1}{2n-1} \binom{2n}{n} (1-x^2)^n \le 1 - |x| < 1.$$

Obliczamy granicę lewej strony, gdy $x \to 0$. Wtedy

$$\sum_{n=1}^{N} \frac{1}{2n-1} \binom{2n}{n} \leqslant 1, \quad N \geqslant 1,$$

czyli szereg $\sum_{n=1}^{\infty}\frac{1}{2n-1}\binom{2n}{n}$ jest zbieżny. Z kryterium Weierstrassa o majoryzacji szereg

$$\sum_{n=1}^{\infty} \frac{1}{2n-1} {2n \choose n} (1-x^2)^n, \qquad |x| \le 1$$

jest zbieżny jednostajnie i suma jest funkcją ciągłą dla $|x| \le 1$. Stąd równość (7.1) jest spełniona dla $|x| \le 1$.

Lemat 7.10. Jeśli $f, g \in \overline{\mathcal{A}}$, to $\min(f, g)$ i $\max(f, g)$ również leżą w $\overline{\mathcal{A}}$.

Dowód. Teza wynika z poprzedniego lematu oraz ze wzorów

$$\min(f,g) = \frac{f+g-|f-g|}{2}, \quad \max(f,g) = \frac{f+g+|f-g|}{2}.$$

Uwaga 7.11. Z lematu wynika natychmiast, że jeśli $f_1, f_2, \ldots, f_n \in \overline{\mathcal{A}}$, to $\min(f_1, f_2, \ldots, f_n)$ oraz $\max(f_1, f_2, \ldots, f_n)$ leżą w $\overline{\mathcal{A}}$.

Lemat 7.12. Niech $f \in C_{\mathbb{R}}(K)$ oraz $x \in K$. Dla dowolnie wybranej liczby $\varepsilon > 0$ istnieje funkcja $g_x \in \overline{\mathcal{A}}$ taka, że

$$g_x(x) = f(x)$$

 $g_x(t) > f(t) - \varepsilon$, dla $t \in K$.

 $Dow \acute{o}d.$ Na podstawie lematu 7.6, dla $y \in K$ istnieje funkcja $h_y \in \mathcal{A}$ taka, że

$$h_y(x) = f(x), \quad h_y(y) = f(y).$$

Z ciągłości funkcji $h_y(t)-f(t)$ istnieje otoczenie otwarte U_y punktu ytakie, że

$$h_y(t) > f(t) - \varepsilon$$
, dla $t \in U_y$.

Otoczenia $U_y,\ y\in K,$ pokrywają zbiór K. Ze zwartości zbioru K można znaleźć skończone podpokrycie

$$K \subset U_{y_1} \cup U_{y_2} \cup \ldots \cup U_{y_n}$$
.

Określmy funkcję

$$g_x(t) = \max(h_{y_1}(t), h_{y_2}(t), \dots, h_{y_n}(t)).$$

Z uwagi po lemacie 7.10 wiemy, że $g_x \in \overline{A}$. Mamy $g_x(x) = f(x)$. Ponadto jeśli $t \in K$, to $t \in U_{y_i}$ dla pewnej liczby j = 1, 2, ..., n. Wtedy

$$g_x(t) \geqslant h_{y_j}(t) > f(t) - \varepsilon.$$

Lemat 7.13. Niech $f \in C_{\mathbb{R}}(K)$ oraz $\varepsilon > 0$. Wtedy istnieje funkcja $h \in \overline{\mathcal{A}}$ taka, że

$$|h(x) - f(x)| < \varepsilon$$
, dla $x \in K$.

Dow'od.Z poprzedniego lematu, dla każdego punktu $x\in K$ istnieje funkcja $g_x\in\overline{\mathcal{A}}$ spełniająca

$$g_x(x) = f(x)$$
, oraz $g_x(t) > f(t) - \varepsilon$, $t \in K$.

Z ciągłości istnieje otwarte otoczenie V_x punktu x, dla którego

$$g_x(t) < f(t) + \varepsilon, \quad t \in V_x.$$

Otoczenia V_x stanowią pokrycie zbioru K. Ze zwartości znajdujemy skończone podpokrycie

$$K \subset V_{x_1} \cup V_{x_2} \cup \ldots \cup V_{x_n}$$
.

Określmy

$$h(t) = \min((g_{x_1}(t), g_{x_2}(t), \dots, g_{x_n}(t)).$$

Z lematu 7.10 funkcja h należy do $\overline{\mathcal{A}}$. Wiemy, że

$$h(t) > f(t) - \varepsilon$$
, bo $g_{x_i}(t) > f(t) - \varepsilon$, dla $j = 1, 2, \dots, n$.

Dla $t \in K$ mamy $t \in V_{x_j}$ dla pewnego j = 1, 2, ..., n. Zatem

$$h(t) \leq g_{x_i}(t) < f(t) + \varepsilon.$$

W rezultacie

$$|h(t) - f(t)| < \varepsilon$$
, dla $t \in K$.

Przechodzimy teraz do przypadku funkcji o wartościach zespolonych.

Definicja 7.14. Podalgebrę $A \subset C(K)$ nazywamy **samosprzężoną** jeśli z tego, że f leży w A wynika, że funkcja sprzężona \overline{f} również leży w A.

Twierdzenie 7.15 (Stone-Weierstrass, wersja zespolona). Jeśli \mathcal{A} jest samosprzężoną podalgebrą w C(K), rozdzielającą punkty i nieznikającą, to \mathcal{A} leży gęsto w C(K).

Dowód. Niech

$$\mathcal{A}_{\mathbb{R}} = \{ f \in \mathcal{A} : \overline{f} = f \} \subset C_{\mathbb{R}}(K).$$

Zauważmy, że $\mathcal{A}_{\mathbb{R}}$ jest podalgebrą w $C_{\mathbb{R}}(K)$. Sprawdzimy, że $\mathcal{A}_{\mathbb{R}}$ spełnia założenia Twierdzenia 7.7. Z założenia dla $x_1 \neq x_2 \in K$ istnieje funkcja $f \in \mathcal{A}$ taka, że $f(x_1) \neq f(x_2)$. Zatem

$$\operatorname{Re} f(x_1) \neq \operatorname{Re} f(x_2)$$
 lub $\operatorname{Im} f(x_1) \neq \operatorname{Im} f(x_2)$.

Ale Ref oraz Imf leżą w $\mathcal{A}_{\mathbb{R}}$, bo algebra \mathcal{A} jest samosprzężona oraz

$$\operatorname{Re} f = \frac{f + \overline{f}}{2}, \qquad \operatorname{Im} f = \frac{f - \overline{f}}{2i}.$$

Stąd $\mathcal{A}_{\mathbb{R}}$ rozdziela punkty.

Dla $x \in K$ istnieje $f \in \mathcal{A}$ taka, że $f(x) \neq 0$. Zatem

$$\operatorname{Re} f(x) \neq 0$$
 lub $\operatorname{Im} f(x) \neq 0$.

Stąd $\mathcal{A}_{\mathbb{R}}$ nie znika. Z Twierdzenia 7.7 algebra $\mathcal{A}_{\mathbb{R}}$ leży gęsto w $C_{\mathbb{R}}(K)$. Niech $f \in C(K)$. Wtedy

$$f = \operatorname{Re} f + i \operatorname{Im} f$$
.

Każdą z funkcji Re f i Im f można przybliżać jednostajnie funkcjami z $\mathcal{A}_{\mathbb{R}}$. Zatem f może być przybliżona funkcjami z \mathcal{A} .

Przykłady.

1. Niech $K = [0, \pi]$ oraz

$$\mathcal{A} = \lim_{\mathbb{R}} \{1, \cos x, \cos 2x, \dots, \cos nx, \dots \}.$$

 \mathcal{A} jest podalgebrą w $C_{\mathbb{R}}[0,\pi]$, bo

$$\cos nx \cos mx = \frac{1}{2}\cos(n+m)x + \frac{1}{2}\cos(n-m)x.$$

 \mathcal{A} nie znika, bo $1 \in \mathcal{A}$. Ponadto \mathcal{A} rozdziela punkty, ponieważ funkcja $\cos x$ jest różnowartościowa w przedziale $[0, \pi]$. Zatem $\overline{\mathcal{A}} = C_{\mathbb{R}}[0, \pi]$.

2. Niech $K=\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$. Możemy przyjąć, że $\mathbb{T}=[0,2\pi)$ przez podstawienie $z=e^{ix}$. Rozważmy

$$\mathcal{A} = \lim \{ e^{inx} : n \in \mathbb{Z} \}.$$

Kombinację liniową funkcji e^{inx} nazywamy wielomianem trygonometrycznym, ze względu na równość

$$e^{inx} = \cos nx + i\sin nx.$$

 $\mathcal A$ jest podalgebrą w $C(\mathbb T)$, bo $e^{inx}e^{imx}=e^{i(n+m)x}$. Algebra $\mathcal A$ nie znika, bo $1\in\mathcal A$ (dla n=0). Algebra $\mathcal A$ rozdziela punkty, bo funkcja e^{ix} (n=1)jest różnowartościowa na $\mathbb T$. Wreszcie $\mathcal A$ jest samosprzężona, bo $e^{inx}=e^{-inx}$. Z Twierdzenia 7.15 mamy $\overline{\mathcal A}=C(\mathbb T)$, tzn. każda funkcja ciągła na $\mathbb T$ (równoważnie funkcja f z $C[0,2\pi]$ taka, że $f(0)=f(2\pi)$) jest jednostajną granicą ciągu zespolonych wielomianów trygonometrycznych.

Uwaga 7.16. Niech

$$\mathcal{A}_{+} = \lim \{ e^{inx} : n \geqslant 0 \}.$$

 \mathcal{A}_+ jest podalgebrą rozdzielającą punktu i nieznikającą w \mathbb{T} , ale \mathcal{A}_+ nie jest gęsta w $C(\mathbb{T})$. Rzeczywiście, $e^{-ix} \notin \overline{\mathcal{A}_+}$. To wynika z rozumowania poniżej. Dla $n \geqslant 0$ mamy

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{-ix} \overline{e^{inx}} \, dx = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i(n+1)x} \, dx = \frac{1}{2\pi} \frac{-1}{i(n+1)} e^{-i(n+1)x} \Big|_{0}^{2\pi} = 0.$$

Zatem

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{-ix} \overline{f(x)} \, dx = 0, \quad \text{dla } f \in \mathcal{A}_{+}.$$

Stad

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{-ix} \overline{f(x)} \, dx = 0, \quad \text{dla } f \in \overline{\mathcal{A}_{+}}.$$

Funkcja e^{-ix} nie może należeć do $\overline{\mathcal{A}_+}$, bo podstawiając $f(x)=e^{-ix}$ otrzymamy wynik 1.

3. Rozważmy $C_{\mathbb{R}}([0,1] \times [0,1])$ oraz

$$A = \lim_{\mathbb{R}} \{ f(x)g(y) : f, g \in C_{\mathbb{R}}[0, 1] \}.$$

Rodzina \mathcal{A} składa się zatem z rzeczywistych kombinacji liniowych funkcji rozdzielonych zmiennych. \mathcal{A} jest podalgebrą, bo

$$f_1(x)g_1(y) \cdot f_2(x)g_2(y) = [f_1(x)f_2(x)][g_1(y)g_2(y)].$$

Algebra \mathcal{A} nie znika, bo $1 \in \mathcal{A}$. Ponadto \mathcal{A} rozdziela punkty, bo jeśli $(x_1, y_1) \neq (x_2, y_2)$ to funkcja f(x, y) = x lub funkcja g(x, y) = y rozdziela te punkty. Zatem $\overline{\mathcal{A}} = C_{\mathbb{R}}([0, 1] \times [0, 1])$.

Twierdzenie 7.17 (Stone-Weierstrass). Załóżmy, że \mathcal{A} jest podalgebrą w $C_{\mathbb{R}}(K)$ rozdzielającą punkty. Wtedy zachodzi jeden z przypadków:

- (i) $\overline{\mathcal{A}} = C_{\mathbb{R}}(K)$.
- (ii) Istnieje punkt x_0 w K taki, $\dot{z}e$ $\overline{\mathcal{A}} = \{ f \in C_{\mathbb{R}}(K) : f(x_0) = 0 \}.$

Dowód. Załóżmy, że \mathcal{A} nie znika. Wtedy z Twierdzenia 7.7 otrzymujemy (i). W przeciwnym wypadku istnieje punkt x_0 w K taki, że $f(x_0) = 0$ dla wszystkich $f \in \mathcal{A}$. Wtedy $\overline{\mathcal{A}} \subset \{f \in C_{\mathbb{R}}(K) : f(x_0) = 0\}$. Rozważmy

$$\mathcal{A}_1 = \{ f(x) + \alpha : f \in \mathcal{A}, \ \alpha \in \mathbb{R} \}.$$

Rodzina \mathcal{A}_1 jest podalgebrą. Ponieważ $\mathcal{A}_1 \supset \mathcal{A}$, to \mathcal{A}_1 rozdziela punkty. Ponadto \mathcal{A}_1 nie znika, bo zawiera funkcję 1. Zatem $\overline{\mathcal{A}_1} = C_{\mathbb{R}}(K)$. Niech

 $g \in \{f \in C_{\mathbb{R}}(K) : f(x_0) = 0\}$. Chcemy pokazać, że $g \in \overline{\mathcal{A}}$. Ale wiemy, że $g \in \overline{\mathcal{A}_1}$. Zatem istnieją ciągi $f_n \in \mathcal{A}$ oraz $\alpha_n \in \mathbb{R}$ takie, że

$$f_n(x) + \alpha_n \underset{n}{\Longrightarrow} g(x).$$

Podstawiając $x = x_0$ otrzymamy $\alpha_n \to 0$. Zatem

$$f_n(x) \underset{n}{\Longrightarrow} g(x)$$

co oznacza, że $g \in \overline{\mathcal{A}}$.

8 Przestrzenie sprzężone do L^p i do C(X)

Rozważamy przestrzenie $L^p(X,\mu)$, gdzie X jest przestrzenią z miarą σ -skończoną μ określoną na X, tzn. na pewnym σ -pierścieniu podzbiorów przestrzeni X. Jak wiadomo z kursu funkcji rzeczywistych $L^p(X,\mu)$ jest przestrzenią Banacha z normą

$$||f||_p = \begin{cases} \left(\int_X |f(x)|^p d\mu(x) \right)^{1/p}, & 1 \le p < \infty, \\ \operatorname{ess \, sup}_{x \in \mathbb{R}} |f(x)|, & p = \infty. \end{cases}$$

Dla liczby $1\leqslant p\leqslant \infty$ symbolem q oznaczamy wykładnik sprzężony, tzn. spełniający $p^{-1}+q^{-1}=1$. Przyjmujemy $q=\infty$ dla p=1 oraz q=1 dla $p=\infty$.

Twierdzenie 8.1. Niech $1 \leq p < \infty$ oraz $g \in L^q(X, \mu)$. Wtedy odwzorowanie

$$G_g(f) = \int_X f(x)g(x) d\mu(x)$$

jest ograniczonym funkcjonałem liniowym na przestrzeni $L^p(X,\mu)$ oraz

$$||G_g|| = ||g||_q.$$

Dowód. Dowód przeprowadzimy tylko dla p>1. Możemy się ograniczyć do przypadku $g\neq 0.$ Z nierówności Höldera mamy

$$\int_{X} |f(x)g(x)| \, d\mu(x) \le \left(\int_{X} |f(x)|^{p} \, d\mu(x) \right)^{1/p} \left(\int_{X} |g(x)|^{q} \, d\mu(x) \right)^{1/q} < \infty,$$

zatem wielkość $G_g(f)$ jest dobrze określona. Odw
zorowanie G_g jest liniowe, bo wielkość $G_g(f)$ zależy liniowo od funkcji
 f. Ponadto

$$|G_g(f)| \le \int_X |f(x)g(x)| d\mu(x) \le ||g||_q ||f||_p,$$

czyli

$$||G_g|| \leqslant ||g||_q.$$

Niech $f(x) = \overline{\operatorname{sgn} g(x)} |g(x)|^{q-1}$. Wtedy

$$\int\limits_{X} |f(x)|^p \, d\mu(x) = \int\limits_{X} |g(x)|^{p(q-1)} \, d\mu(x) = \int\limits_{X} |g(x)|^q \, d\mu(x) < \infty.$$

Zatem $f \in L^p(X, \mu)$ oraz $||f||_p^p = ||g||_q^q$. Ponadto

$$G_g(f) = \int_X |g(x)|^q d\mu(x) = ||g||_q^q.$$

Reasumując

$$\frac{G_g(f)}{\|f\|_p} = \frac{\|g\|_q^q}{\|g\|_q^{q/p}} = \|g\|_q.$$

Stąd $||G_g|| \geqslant ||g||_q$.

8.1 Wersja rzeczywista

Naszym celem jest udowodnienie twierdzenia odwrotnego do Tw. 8.1. Najpierw rozważymy przypadek funkcji o wartościach rzeczywistych i miary skończonej, tzn. $\mu(X) < \infty$.

Lemat 8.2. Załóżmy, że $\mu(X)<\infty$. Niech $g:X\to\mathbb{R}$ będzie funkcją całkowalną oraz

$$\left| \int_{X} g(x)\varphi(x) \, d\mu(x) \right| \leqslant M \|\varphi\|_{p}, \tag{8.1}$$

dla dowolnej funkcji prostej $\varphi: X \to \mathbb{R}$ (funkcja prosta przyjmuje skończenie wiele wartości). Wtedy $g \in L^q_{\mathbb{R}}(X, \mu)$.

Dowód. Rozważymy tylko przypadek p>1. Chcemy udowodnić, że

$$\int |g(x)|^q d\mu(x) < \infty.$$

Istnieje rosnący ciąg nieujemnych funkcji prostych ψ_n taki, że $\psi_n(x) \xrightarrow[n]{} |g(x)|^q$ dla $x \in X$. Określmy

$$\varphi_n(x) = \operatorname{sgn} g(x)\psi_n(x)^{1/p}.$$

 φ_n jest nadal funkcją prostą, bo sgng(x) przyjmuje tylko trzy wartości. Podstawiając funkcję φ_n do nierówności (8.1) otrzymujemy

$$\int\limits_X |g(x)|\psi_n(x)^{1/p} d\mu(x) \leqslant M \left(\int\limits_X \psi_n(x) d\mu(x)\right)^{1/p}.$$

Dalej korzystając z $\psi_n(x)^{1/q} \leq |g(x)|$ mamy

$$\begin{split} \int\limits_X \psi_n(x)\,d\mu(x) &= \int\limits_X \psi_n(x)^{\frac{1}{p}+\frac{1}{q}}\,d\mu(x) \\ &\leqslant \int\limits_X |g(x)|\psi_n(x)^{\frac{1}{p}}\,d\mu(x) \leqslant M\left(\int\limits_X \psi_n(x)\,d\mu(x)\right)^{1/p}. \end{split}$$

Po przekształceniu dostajemy

$$\int_{Y} \psi_n(x) \, d\mu(x) \leqslant M^q.$$

Dalej przechodząc do granicy, gdy $n \to \infty$, otrzymujemy

$$\int\limits_X |g(x)|^q \, d\mu(x) \leqslant M^q.$$

Twierdzenie 8.3. Niech G będzie ograniczonym rzeczywistym funkcjonalem liniowym na przestrzeni $L^p_{\mathbb{R}}(X,\mu)$, gdzie X jest σ -skończoną przestrzenią miarową. Wtedy istnieje jedyna funkcja g w $L^q_{\mathbb{R}}(X,\mu)$ taka, że

$$G(f) = \int_{X} f(x)g(x) d\mu(x). \tag{8.2}$$

Dowód. Ograniczymy się do p > 1. Zaczniemy od przypadku, gdy $\mu(X) < \infty$. Wtedy każda funkcja ograniczona leży w $L^p_{\mathbb{R}}(X,\mu)$, bo jeśli $|f(x)| \leq c$, to

$$\int\limits_X |f(x)|^p \, d\mu(x) \leqslant c^p \mu(X).$$

W szczególności funkcja $1\!\!1_E$ leży w $L^p_{\mathbb R}(X,\mu)$ dla dowolnego zbioru mierzalnego E.Określamy

$$\nu(E) = G(1 \mathbb{I}_E).$$

Sprawdzimy, że funkcja zbiorów ν jest przeliczalnie addytywna i ma ograniczone wahanie. Niech $E=\bigcup_{n=1}^{\infty}E_n$ będzie sumą rozłącznych zbiorów E_n . Określmy $\alpha_n=\operatorname{sgn}\nu(E_n)$. Rozważmy funkcje

$$f(x) = \sum_{n=1}^{\infty} \alpha_n \mathbb{I}_{E_n}(x), \quad \mathbb{I}_E(x) = \sum_{n=1}^{\infty} \mathbb{I}_{E_n}(x).$$

Oba szeregi są zbieżne w $L^p_{\mathbb{R}}(X,\mu)$. Istotnie

$$\begin{aligned} \left\| f - \sum_{n=1}^{N} \alpha_n \mathbb{I}_{E_n} \right\|_p &= \left\| \sum_{n=N+1}^{\infty} \alpha_n \mathbb{I}_{E_n} \right\|_p \\ &= \left(\sum_{n=N+1}^{\infty} |\alpha_n|^p \mu(E_n) \right)^{1/p} \leqslant \left(\sum_{n=N+1}^{\infty} \mu(E_n) \right)^{1/p} \xrightarrow{n} 0, \end{aligned}$$

bo $\mu(E) = \sum_{n=1}^{\infty} \mu(E_n) < \infty$. Podobnie

$$\left\| \mathbb{I}_{E} - \sum_{n=1}^{N} \mathbb{I}_{E_{n}} \right\|_{p} = \left\| \sum_{n=N+1}^{\infty} \mathbb{I}_{E_{n}} \right\|_{p} = \left(\sum_{n=N+1}^{\infty} \mu(E_{n}) \right)^{1/p} \xrightarrow{n} 0.$$

Z ciągłości funkcjonału G wnioskujemy, że

$$G(f) = \sum_{n=1}^{\infty} \alpha_n G\left(\mathbb{I}_{E_n}\right) = \sum_{n=1}^{\infty} \alpha_n \nu(E_n) = \sum_{n=1}^{\infty} |\nu(E_n)|.$$

Ale

$$|G(f)| \leqslant ||G|| \, ||f||_p$$

oraz

$$||f||_p = \left(\sum_{n=1}^{\infty} |\alpha_n|^p \mu(E_n)\right)^{1/p} \leqslant \left(\sum_{n=1}^{\infty} \mu(E_n)\right)^{1/p} \leqslant \mu(E)^{1/p}.$$

Zatem

$$\sum_{n=1}^{\infty} |\nu(E_n)| \le ||G|| \, \mu(E)^{1/p} \le ||G|| \, \mu(X)^{1/p}, \tag{8.3}$$

co oznacza, że ν ma ograniczone wahanie. Dalej

$$\nu(E) = G\left(\mathbb{I}_{E}\right) = \sum_{n=1}^{\infty} G\left(\mathbb{I}_{E_{n}}\right) = \sum_{n=1}^{\infty} \nu\left(E_{n}\right),$$

czyli ν jest przeliczalnie addytywna.

Z nierówności (8.3) zastosowanej do rodziny zbiorów $E_n = \emptyset$, dla $n \ge 2$, wynika

$$|\nu(E)| \le ||G|| \, \mu(E)^{1/p}.$$

Zatem miara znakowana ν jest absolutnie ciągła względem miary μ . Z twierdzenia Radona-Nikodyma istnieje więc funkcja mierzalna g, bezwzględnie całkowalna względem miary μ i spełniająca

$$\nu(E) = \int_{E} g(x) \, d\mu(x) = \int_{X} g(x) \, \mathbb{I}_{E}(x) \, d\mu(x),$$

czyli

$$G\left(\mathbb{I}_{E}\right) = \int_{Y} g(x) \, \mathbb{I}_{E}(x) \, d\mu(x).$$

Rozważając kombinacje liniowe funkcji charakterystycznych zbiorów otrzymamy

$$G(\varphi) = \int_{\mathcal{X}} g(x) \, \varphi(x) \, d\mu(x),$$

dla funkcji prostych φ . Ponieważ funkcjonał G jest ograniczony, to

$$\left| \int_{X} g(x) \varphi(x) d\mu(x) \right| = |G(\varphi)| \le ||G|| \, ||\varphi||_{p},$$

dla funkcji prostych φ . Z lematu 8.2 wnioskujemy, że $g \in L^q_{\mathbb{R}}(X, \mu)$. Wykażemy wzór (8.2). Niech $f \in L^p_{\mathbb{R}}(X, \mu)$. Wtedy istnieje ciąg φ_n funkcji prostych

taki, że $\varphi_n \xrightarrow[n]{} f$ w normie przestrzeni $L^p_{\mathbb{R}}(X,\mu)$ oraz $|\varphi_n(x)| \leq |f(x)|$. Wtedy

$$G(f) = \lim_{n} G(\varphi_n) = \lim_{n} \int_{X} \varphi_n(x)g(x) d\mu(x)$$
$$= \lim_{n} G_g(\varphi_n) = G_g(f) = \int_{Y} f(x)g(x) d\mu(x).$$

Funkcja g jest jedyną funkcją spełniającą (8.2). Rzeczywiście, załóżmy, że

$$G(f) = \int_X f(x)g(x) d\mu(x) = \int_X f(x)h(x) d\mu(x)$$

dla $g, h \in L^q_{\mathbb{R}}(X, \mu)$. Określmy funkcjonał

$$\Phi(f) = \int_{X} f(x)[g(x) - h(x)] d\mu(x).$$

Ale $\Phi(f) = 0$ dla $f \in L^p_{\mathbb{R}}(X, \mu)$. Z Twierdzenia 8.1 mamy

$$\|\Phi\| = \|g - h\|_q$$
.

Zatem g = h prawie wszędzie.

Przechodzimy do przypadku, gdy $\mu(X) = \infty$. Niech

$$X = \bigcup_{n=1}^{\infty} X_n$$
, gdzie $\mu(X_n) < \infty$, $X_n \subset X_{n+1}$.

Wtedy możemy przyjać, że

$$L^p_{\mathbb{R}}(X_n,\mu) \subset L^p_{\mathbb{R}}(X_{n+1},\mu) \subset L^p_{\mathbb{R}}(X,\mu).$$

Funkcjonał G obcinamy do podprzestrzeni $L^p_{\mathbb{R}}(X_n,\mu)$ i z pierwszej części dowodu znajdujemy funkcję $g_n \in L^q_{\mathbb{R}}(X_n,\mu)$ taką, że

$$G(f) = \int_{X_n} f(x)g_n(x) d\mu(x), \quad \text{dla } f \in L^p_{\mathbb{R}}(X_n, \mu).$$

Zatem dla $f \in L^p_{\mathbb{R}}(X_n, \mu) \subset L^p_{\mathbb{R}}(X_{n+1}, \mu)$ mamy

$$G(f) = \int_{X_n} f(x)g_n(x) d\mu(x)$$
$$= \int_{X_{n+1}} f(x)g_{n+1}(x) d\mu(x) = \int_{X_n} f(x)g_{n+1}(x) d\mu(x).$$

Z pierwszej części dowodu wynika, że $g_n(x)=g_{n+1}(x)$ prawie wszędzie na zbiorze X_n . Modyfikując wartości funkcji g_{n+1} na zbiorze miary zero można zażądać, aby

$$g_n(x) = g_{n+1}(x), \quad x \in X_n.$$

Wtedy

$$g_m(x) = g_n(x), \qquad n > m, \ x \in X_m.$$

Wiemy, że

$$||g_n||_q = ||G|_{L^p_{\mathbb{R}}(X_n,\mu)}|| \le ||G||.$$

Określmy

$$g(x) = g_n(x)$$
, dla $x \in X_n$.

Definicja funkcji g jest poprawna, bo jeśli $x \in X_m \cap X_n$, to $g_m(x) = g_n(x)$. Niech \tilde{g}_n oznacza rozszerzenie funkcji g_n na X tzn.

$$\widetilde{g}_n(x) = \begin{cases} g_n(x), & \text{dla } x \in X_n, \\ 0, & \text{dla } x \in X \setminus X_n. \end{cases}$$

Wtedy $|\tilde{g}_n(x)| \nearrow |g(x)|$, bo $g(x) = \tilde{g}_n(x) = g_k(x)$ dla $x \in X_k$ oraz $n \ge k$. Zatem z twierdzenia o zbieżności monotonicznej mamy

$$\int_{X} |g(x)|^{q} d\mu(x) = \lim_{n} \int_{X} |\widetilde{g}_{n}(x)|^{q} d\mu(x)
= \lim_{n} \int_{X_{n}} |g_{n}(x)|^{q} d\mu(x) = \lim_{n} ||g_{n}||_{L_{\mathbb{R}}^{q}(X_{n}, \mu)}^{q} \leq ||G||^{q} < \infty.$$

W rezultacie $g \in L^q_{\mathbb{R}}(X, \mu)$.

Dla funkcji $f \in L^p_{\mathbb{R}}(X,\mu)$ niech $f_n = f \mathbb{I}_{X_n}$. Wtedy $f_n \xrightarrow{n} f \le L^p_{\mathbb{R}}(X,\mu)$. Rzeczywiście

$$||f_n - f||_p^p = \int_X |f_n(x) - f(x)|^p d\mu(x) = \int_{X \setminus X_n} |f(x)|^p d\mu(x) \xrightarrow{n} 0,$$

bo $f\in L^p_{\mathbb{R}}(X,\mu)$ oraz Xjest wstępującą sumą zbiorów $X_n.$ Dalej

$$\int_{X} f(x)g(x) \, d\mu(x) = \lim_{n} \int_{X} f_n(x)g(x) \, d\mu(x)$$

$$= \lim_{n} \int_{X_n} f_n(x)g_n(x) \, d\mu(x) = \lim_{n} G(f_n) = G(f).$$

Pierwsza z powyższych równości wynika z

$$\left| \int_X f(x)g(x) d\mu(x) - \int_X f_n(x)g(x) d\mu(x) \right|$$

$$\leqslant \int_X |f(x) - f_n(x)| |g(x)| d\mu(x) \leqslant ||f - f_n||_p ||g||_q \xrightarrow{n} 0,$$

z kolei ostatnia wynika z ciągłości funkcjonału G. Znowu jedyność funkcji g, która spełnia tezę twierdzenia wynika z Tw. 8.1.

Uwaga 8.4. Założenie o σ -skończoności miary μ nie jest potrzebne dla p > 1. Wyjaśnienie oparte będzie na następnym lemacie.

Lemat 8.5. Dla $g \in L^p(X, \mu)$ zbiór $\{x \in X : g(x) \neq 0\}$ jest σ -skończony.

 $Dow \acute{o}d$. Dla liczby $\delta > 0$ określamy zbiór

$$A_{\delta} = \{ x \in X : |g(x)| \geqslant \delta \}.$$

Wtedy

$$\infty > \int\limits_X |g(x)|^p \, d\mu(x) \geqslant \int\limits_{A_\delta} |g(x)|^p \, d\mu(x) \geqslant \delta^p \int\limits_{A_\delta} d\mu(x) = \delta^p \mu(A_\delta).$$

Zatem $\mu(A_{\delta}) < \infty$. Ze wzoru

$${x \in X : g(x) \neq 0} = \bigcup_{n=1}^{\infty} A_{\frac{1}{n}}$$

wynika teza lematu.

Rozważmy ograniczony funkcjonał liniowy G na przestrzeni $L^p_{\mathbb{R}}(X,\mu)$, dla p>1. Istnieje ciąg funkcji $f_n\in L^p(X,\mu)$ spełniający $\|f_n\|_p=1$ oraz $|G(f_n)|\underset{n}{\to}\|G\|$. Mnożąc f_n przez ± 1 można założyć, że $G(f_n)\geqslant 0$ oraz $G(f_n)\underset{n}{\to}\|G\|$. Niech

$$X_0 = \bigcup_{n=1}^{\infty} \{x \in X : f_n(x) \neq 0\}.$$

Z lematu zbiór X_0 jest σ -skończony.

Lemat 8.6. Jeśli funkcja $h \in L^p_{\mathbb{R}}(X,\mu), p > 1$, zeruje się na X_0 , to G(h) = 0.

Dow'od. Załóżmy, że istnieje funkcja $h\in L^p_{\mathbb{R}}(X,\mu)$ taka, że $G(h)\neq 0$ oraz $h|_{X_0}=0.$ Bez straty ogólności można przyjąć, że G(h)=1. Wtedy dla $\alpha>0$ mamy

$$||G|| \geqslant \frac{G(f_n + \alpha h)}{||f_n + \alpha h||_p} = \frac{G(f_n) + \alpha}{(||f_n||_p^p + \alpha^p ||h||_p^p)^{1/p}} \xrightarrow{n} \frac{||G|| + \alpha}{(1 + \alpha^p ||h||_p^p)^{1/p}}.$$

Po przekształceniu, korzystając z nierówności Bernoulliego, dostajemy

$$1 + \alpha^p ||h||^p \geqslant \left(1 + \frac{\alpha}{||G||}\right)^p \geqslant 1 + p \frac{\alpha}{||G||}.$$

Zatem

$$\alpha^{p-1} \geqslant \frac{p}{\|h\|^p \|G\|}, \qquad \alpha > 0,$$

co prowadzi do sprzeczności, gdy p > 1.

Opierając się na Lemacie 8.6 łatwo zakończyć rozumowanie. Istotnie, dla $f\in L^p_{\mathbb{R}}(X,\mu)$ możemy zapisać

$$G(f) = G(f \mathbb{1}_{X_0} + f \mathbb{1}_{X \setminus X_0}) = G(f \mathbb{1}_{X_0}) + G(f \mathbb{1}_{X \setminus X_0}) = G(f \mathbb{1}_{X_0}).$$

Zauważmy, że $f \mathbb{1}_{X_0} \in L^p_{\mathbb{R}}(X_0, \mu)$. Z Twierdzenia 8.3 istnieje więc funkcja $g_0 \in L^q_{\mathbb{R}}(X_0, \mu)$ taka, że

$$G(f) = G(f \mathbb{1}_{X_0}) = \int_{X_0} f(x)g_0(x) d\mu(x).$$

Wtedy

$$G(f) = \int_{X} f(x)g(x) d\mu(x),$$

gdzie

$$g = \begin{cases} g_0(x), & x \in X_0, \\ 0, & x \in X \setminus X_0. \end{cases}$$

Oczywiście zachodzi $g \in L^q_{\mathbb{R}}(X, \mu)$.

8.2 Wersja zespolona

Rozważamy funkcje z $L^p(X,\mu)$ o wartościach zespolonych. Niech G będzie ograniczonym funkcjonałem liniowym na $L^p(X,\mu)$. Możemy zapisać

$$L^p(X,\mu) = L^p_{\mathbb{R}}(X,\mu) \oplus iL^p_{\mathbb{R}}(X,\mu),$$

bo dla $f \in L^p(X, \mu)$ mamy

$$f(x) = f_1(x) + i f_2(x),$$
 $f_1, f_2 \in L^p_{\mathbb{R}}(X, \mu).$

Określmy funkcjonały G_1 i G_2 na $L^p_{\mathbb{R}}(X,\mu)$ wzorami

$$G_1(f) = \operatorname{Re} G(f), \quad G_2(f) = \operatorname{Im} G(f).$$

Funkcjonały G_1 i G_2 są ograniczone, bo

$$|G_j(f)| \le |G(f)| \le ||G|| ||f||_p, \quad j = 1, 2.$$

Istnieją zatem funkcje $g_1, g_2 \in L^q_{\mathbb{R}}(X, \mu)$ takie, że

$$G_j(f) = \int_X f(x)g_j(x) d\mu(x), \quad f \in L^p_{\mathbb{R}}(X,\mu), \ j = 1, 2.$$

Dla $f \in L^p_{\mathbb{R}}(X, \mu)$ mamy zatem

$$G(f) = G_1(f) + iG_2(f) = \int_X f(x)[g_1(x) + ig_2(x)] d\mu(x).$$

Niech $g(x) = g_1(x) + ig_2(x)$. Wtedy $g \in L^q(X, \mu)$ oraz

$$G(f) = \int_X f(x)g(x) d\mu(x), \quad f \in L^p_{\mathbb{R}}(X,\mu).$$

Zatem dla $f \in L^p(X, \mu)$ otrzymujemy

$$G(f) = G(f_1 + if_2) = G(f_1) + iG(f_2)$$

= $\int_{Y} f_1(x)g(x) d\mu(x) + i \int_{Y} f_2(x)g(x) d\mu(x) = \int_{Y} f(x)g(x) d\mu(x).$

8.3 Twierdzenie Riesza

Wiemy, że przestrzeń sprzężoną do C[0,1] można utożsamić z przestrzenią zespolonych funkcji w(x) o wahaniu ograniczonym, lewostronnie ciągłych w (0,1) oraz w(0)=0. To twierdzenie można rozszerzyć na zwarte przestrzenie topologiczne Hausdorffa. Niech X będzie taką przestrzenią. Najmniejsze σ -ciało zawierające zbiory otwarte nazywamy σ -ciałem zbiorów borelowskich.

Definicja 8.7. Borelowską miarę skończoną (nieujemną) μ nazywamy regularną jeśli dla dowolnego borelowskiego zbioru A mamy

$$\mu(A) = \sup_{\substack{E \subset A \\ E \text{ domkn.}}} \mu(E) = \inf_{\substack{A \subset F \\ F \text{ otw.}}} \mu(F).$$

Miarę zespoloną o wahaniu ograniczonym na X nazywamy regularną jeśli

$$\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4),$$

gdzie miary μ_j dla j=1,2,3,4 są nieujemne i regularne. Rodzinę takich miar oznaczamy symbolem M(X).

Twierdzenie 8.8 (F. Riesz). Niech X będzie zwartą przestrzenią topologiczną Hausdorffa. Każdy ograniczony funkcjonał liniowy φ na przestrzeni C(X) ma postać

$$\varphi(x) = \int_{\mathbf{Y}} f(x) \, d\mu(x)$$

dla pewnej zespolonej borelowskiej miary regularnej o wahaniu ograniczonym na X.

Dow'od. Patrz [9].

9 Słaba zbieżność w przestrzeniach unormowanych

9.1 Słaba zbieżność ciągów

Niech X^* oznacza przestrzeń sprzężoną do przestrzeni unormowanej X.

Definicja 9.1. Mówimy, że ciąg $x_n \in X$ jest **słabo zbieżny** do elementu $x \in X$, jeśli dla dowolnego funkcjonalu $x^* \in X^*$ mamy $x^*(x_n) \xrightarrow{n} x^*(x)$.

Uwaga 9.2. Jeśli $x_n \to x$ w normie przestrzeni X, to $x^*(x_n) \to x^*(x)$ dla $x^* \in X^*$.

Twierdzenie 9.3. Każdy ciąg słabo zbieżny jest ograniczony.

 $Dow \acute{o}d.$ Rozważmy ciąg $x_n \in X$ słabo zbieżny do x. Elementy x_n wyznaczają funkcjonały liniowe φ_n na X^* wzorem

$$\varphi_n(x^*) = x^*(x_n).$$

Traktujemy φ_n jako operatory liniowe z przestrzeni Banacha X^* (por. Wniosek 2.15) w \mathbb{C} . Funkcjonały φ_n są ograniczone punktowo, bo

$$\varphi_n(x^*) = x^*(x_n) \xrightarrow[n]{} x^*(x).$$

Zatem ciąg liczb $\varphi_n(x^*)$ jest ograniczony, jako ciąg zbieżny. Z twierdzenia Banacha-Steinhausa (bo X^* jest przestrzenią zupełną) normy $\|\varphi_n\|$ są wspólnie ograniczone. Ale z Wniosku 5.10 wynika, że

$$\|\varphi_n\| = \sup_{\|x^*\| \le 1} |\varphi_n(x^*)| = \sup_{\|x^*\| \le 1} |x^*(x_n)| = \|x_n\|.$$

Przykład. W przestrzeni Hilberta \mathcal{H} słaba zbieżność $x_n \to x$ oznacza, że

$$\langle x_n, y \rangle \longrightarrow \langle x, y \rangle, \qquad y \in \mathcal{H}.$$

Niech $\{e_n\}_{n=1}^{\infty}$ będzie bazą ortonormalną w \mathcal{H} . Dla $x \in \mathcal{H}$ mamy

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n, \qquad ||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2,$$

zatem $\langle x, e_n \rangle \xrightarrow[n]{} 0$. To oznacza, że ciąg e_n jest słabo zbieżny do zera.

Fakt 9.4. Ciąg x_n w przestrzeni Hilberta \mathcal{H} jest słabo zbieżny do elementu x wtedy i tylko wtedy, gdy ciąg liczb $||x_n||$ jest ograniczony oraz $\langle x_n, e_j \rangle \xrightarrow[n]{} \langle x, e_j \rangle$ dla $j \in \mathbb{N}$, gdzie $\{e_j\}_{j \in \mathbb{N}}$ jest bazą ortonormalną przestrzeni \mathcal{H} .

Dowód. Implikacja (⇒) wynika z Twierdzenia 9.3 oraz z faktu, że

$$\langle x_n, y \rangle \xrightarrow{n} \langle x, y \rangle$$

dla dowolnego $y \in \mathcal{H}$.

Dla dowodu implikacji (\Leftarrow), niech $c = \sup_n ||x_n|| + ||x||$ oraz $\mathcal{F} = \inf\{e_n\}_{n=1}^{\infty}$. Z założenia mamy

$$\langle x_n, y \rangle \xrightarrow{n} \langle x, y \rangle, \quad y \in \mathcal{F}.$$

 \mathcal{F} jest gęstą podprzestrzenią w \mathcal{H} . Niech $y \in \mathcal{H}$ oraz $\varepsilon > 0$. Wtedy istnieje element $y_0 \in \mathcal{F}$ taki, że $||y - y_0|| < \varepsilon/4c$. Zatem

$$\begin{aligned} |\langle x_n, y \rangle - \langle x, y \rangle| &= |\langle x_n - x, y \rangle| \leqslant |\langle x_n - x, y - y_0 \rangle| + |\langle x_n - x, y_0 \rangle| \\ &\leqslant ||x_n - x|| \, ||y - y_0|| + |\langle x_n, y_0 \rangle - \langle x, y_0 \rangle| \leqslant \frac{\varepsilon}{2} + |\langle x_n, y_0 \rangle - \langle x, y_0 \rangle|. \end{aligned}$$

Wybierzmy teraz N>0 tak, aby dla n>N zachodziła nierówność

$$|\langle x_n, y_0 \rangle - \langle x, y_0 \rangle| < \varepsilon/2.$$

Wtedy

$$|\langle x_n, y \rangle - \langle x, y \rangle| < \varepsilon \quad \text{dla } n > N.$$

Fakt 9.5. W przestrzeni C(X), gdzie X jest zwartą przestrzenią Hausdorffa, ciąg funkcji f_n jest słabo zbieżny do funkcji f wtedy i tylko wtedy, gdy liczby $||f_n||_{\infty}$ są wspólnie ograniczone oraz ciąg f_n jest zbieżny punktowo, tzn. $f_n(x) \xrightarrow{n} f(x)$ dla $x \in X$.

 $Dow \acute{o}d.$

 (\Rightarrow) Z Twierdzenia 9.3 ciąg norm $\|f_n\|_{\infty}$ jest ograniczony. Z założenia mamy

$$\int\limits_X f_n(x) \, d\mu(x) \xrightarrow[n]{} \int\limits_X f(x) \, d\mu(x),$$

dla dowolnej miary $\mu \in M(X)$ (por Def. 8.7). Ustalmy $x \in X$ i rozważmy miarę $\mu = \delta_x$, gdzie

$$\delta_x(A) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

Ponieważ $\delta_x \in M(X)$, to

$$f_n(x) = \int_{\mathcal{X}} f_n(t) d\delta_x(t) \xrightarrow{n} \int_{\mathcal{X}} f(t) d\delta_x(t) = f(x).$$

(⇐) Wystarczy udowodnić, że

$$\int_{X} f_n(x) d\mu(x) \xrightarrow{n} \int_{X} f(x) d\mu(x)$$
(9.1)

dla miar nieujemnych $\mu \in M(X)$. Z założenia $|f_n(x)| \leq c$ dla $n \in \mathbb{N}$ oraz $x \in X$. Zatem z twierdzenia Lebesgue'a o zbieżności ograniczonej wynika (9.1).

Twierdzenie 9.6. Niech X będzie przestrzenią unormowaną. Jeśli przestrzeń X^* jest ośrodkowa, to X też jest ośrodkowa.

Dowód. Niech $\{x_n^*\}_{n=1}^{\infty}$ będzie gęstym podzbiorem w X^* . Wybierzmy elementy $x_n \in X_n$ spełniające $||x_n|| = 1$ oraz $|x_n^*(x_n)| \geqslant \frac{1}{2}||x_n^*||$. Niech \mathcal{A} oznacza rodzinę wszystkich kombinacji liniowych, o zespolonych współczynnikach wymiernych, elementów ciągu $\{x_n\}_{n=1}^{\infty}$. Zbiór \mathcal{A} jest wtedy przeliczalny. Pokażemy, że zbiór \mathcal{A} leży gęsto w X. Rozważmy domknięcie $\overline{\mathcal{A}}$ w X. Ten zbiór jest podprzestrzenią liniową, bo $\overline{\mathcal{A}}$ zawiera skończone kombinacje liniowe elementów z $\{x_n\}_{n=1}^{\infty}$. Załóżmy, że $\overline{\mathcal{A}} \subsetneq X$. Wtedy z Wniosku 5.12 istnieje funkcjonał $x^* \neq 0$ taki, że $x^*|_{\overline{\mathcal{A}}} = 0$. Zatem

$$||x_n^* - x^*|| \ge |(x_n^* - x^*)(x_n)| = |x_n^*(x_n) - \underbrace{x^*(x_n)}_{0}|$$

$$= |x_n^*(x_n)| \ge \frac{1}{2} ||x_n^*|| \ge \frac{1}{2} (||x^*|| - ||x_n^* - x^*||).$$

Po przekształceniu otrzymujemy

$$||x_n^* - x^*|| \ge \frac{1}{3} ||x^*|| > 0$$

co jest sprzeczne z założeniem o gęstości ciągu $\{x_n^*\}_{n=1}^{\infty}$.

Uwaga 9.7. Przestrzeń sprzężona do przestrzeni ośrodkowej nie musi być ośrodkowa. Np. niech $X = \ell^1$. Wtedy podzbiór

$$\mathcal{A} = \left\{ \{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n| < \infty, \ x_n \in \mathbb{Q} + i\mathbb{Q} \right\}$$

jest przeliczalny i gęsty w X. Przestrzeń sprzężona $X^* = \ell^{\infty}$ (patrz Rozdział 4) nie jest ośrodkowa. Istotnie dla podzbiorów $B_1 \neq B_2 \subset \mathbb{N}$ mamy

$$||1 \mathbb{I}_{B_1} - 1 \mathbb{I}_{B_2}||_{\infty} = 1.$$

W ten sposób otrzymujemy kontinuum elementów w ℓ^{∞} takich, że odległość pomiędzy każdymi dwoma elementami wynosi 1. Zatem ℓ^{∞} nie jest ośrodkowa. Przypomnijmy, że z rozdziału 4 wynika, że

$$c_0^* = \ell^1, \qquad (\ell^1)^* = \ell^\infty.$$

Podobnie $C[0,1]^* = M(0,1)$, i przestrzeń M(0,1) nie jest ośrodkowa, bo

$$\|\delta_{x_1} - \delta_{x_2}\|_{M(0,1)} = 2, \qquad x_1 \neq x_2.$$

Definicja 9.8. Rozważmy $x_n^* \in X^*$ dla przestrzeni unormowanej X. Mówimy, że ciąg funkcjonałów x_n^* jest *-słabo zbieżny do funkcjonału $x^* \in X^*$, jeśli $x_n^*(x) \xrightarrow{n} x^*(x)$, dla każdego elementu $x \in X$.

Uwaga 9.9. Bezpośrednio z twierdzenia Banacha-Steinhausa wynika, że każdy *-słabo zbieżny ciąg funkcjonałów liniowych na przestrzeni Banacha jest ograniczony.

Przykład. Rozważmy przestrzeń C[0,1] i funkcjonały związane miarami

$$\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{\frac{k}{n}}.$$

Wtedy

$$\int_{0}^{1} f(x) d\mu_n(x) = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \xrightarrow{n} \int_{0}^{1} f(x) dx.$$

To oznacza, że ciąg miar μ_n jest *-słabo zbieżny do miary Lebesgue'a na [0,1].

Uwaga 9.10. Przestrzeń unormowaną X można utożsamić z podprzestrzenią $X^{**}=(X^*)^*$. Istotnie, dla $x\in X$ określamy funkcjonał φ_x na X^* wzorem

$$\varphi_x(x^*) = x^*(x).$$

Funkcjonał φ_x jest liniowy. Ponadto

$$\|\varphi_x\|_{X^{**}} = \sup_{\|x^*\|_{X^*} \le 1} |\varphi_x(x^*)| = \sup_{\|x^*\|_{X^*} \le 1} |x^*(x)| = \|x\|_X.$$

Przyporządkowanie $X\ni x\mapsto \varphi_x\in X^{**}$ jest liniowe (zadanie). Zatem przestrzeń X można włożyć izometrycznie w X^{**} poprzez odwzorowanie $x\mapsto \varphi_x$.

Definicja 9.11. Mówimy, że przestrzeń Banacha X jest **refleksywna** jeśli $X^{**} = X$. Tzn. odwzorowanie $x \mapsto \varphi_x$ jest izometrią z X na X^{**} .

Przykład. Rozważmy przestrzeń $L^p(X, \mu)$ dla 1 . Wtedy

$$(L^p)^* = L^q$$
, gdzie $\frac{1}{p} + \frac{1}{q} = 1$, $1 < q < \infty$.

zatem $(L^q)^* = L^p$, czyli L^p jest refleksywna.

Niech (X, μ) będzie σ -skończona, ale przestrzeń $L^1(X, \mu)$ ma nieskończony wymiar. Przestrzeń $L^1(X, \mu)$ jest wtedy ośrodkowa. Mamy $(L^1)^* = L^{\infty}$. Ale przestrzeń L^{∞} nie jest ośrodkowa, zatem z Twierdzenia 9.6 przestrzeń $(L^{\infty})^*$ również nie jest ośrodkowa. W związku z tym $(L^{\infty})^* \neq L^1$, czyli L^1 nie jest przestrzenią refleksywną.

Twierdzenie 9.12 (Banach-Alaoglu). Niech X będzie ośrodkową przestrzenią unormowaną. Z każdego ograniczonego ciągu x_n^* funkcjonałów liniowych na X można wybrać podciąg *-słabo zbieżny.

Dowód. Oznaczmy $c=\sup_n\|x_n^*\|_{X^*}$. Niech $\{y_j\}_{j=1}^\infty$ będzie gęstym podzbiorem w X. Każdy z ciągów liczbowych $\{x_n^*(y_j)\}_{n=1}^\infty$ jest ograniczony. Stosując metodę przekątniową można wybrać rosnący ciąg liczb naturalnych n_k taki, że każdy z ciągów $\{x_{n_k}^*(y_j)\}_{k=1}^\infty$ jest zbieżny. Pokażemy, że podciąg $x_{n_k}^*$ jest *-słabo zbieżny. W tym celu sprawdzimy, że dla dowolnego elementu $x\in X$ ciąg liczb $x_{n_k}^*(x)$ spełnia warunek Cauchy'ego. Ustalmy liczbę $\varepsilon>0$. Z gęstości istnieje element y_j taki, że

$$||x - y_j|| < \frac{\varepsilon}{4c}.$$

Wtedy

$$\begin{split} |x_{n_k}^*(x) - x_{n_l}^*(x)| \leqslant |x_{n_k}^*(x - y_j)| + |x_{n_k}^*(y_j) - x_{n_l}^*(y_j)| + |x_{n_l}^*(y_j - x)| \\ \leqslant c \cdot \frac{\varepsilon}{4c} + |x_{n_k}^*(y_j) - x_{n_l}^*(y_j)| + c \cdot \frac{\varepsilon}{4c} \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

dla dużych ki
 l. Zatem ciąg $x_{n_k}^\ast(x)$ jest zbieżny. Określ
my

$$\varphi(x) = \lim_{k} x_{n_k}^*(x).$$

Wtedy φ jest funkcjonałem liniowym na X. Ponadto

$$|\varphi(x)| = |\lim_k x_{n_k}^*(x)| \leqslant c ||x||.$$

Zatem $\varphi \in X^*$ oraz $x_{n_k}^* \to \varphi$ *-słabo.

Uwaga 9.13. Założenie ośrodkowości jest istotne. Rozważmy ciąg funkcjonałów $\{\delta_n\}_{n=1}^{\infty}$ na ℓ^{∞} określonych wzorem $\delta_n(x) = x_n$ dla $x \in \ell^{\infty}$. Mamy $\|\delta_n\|_{(\ell^{\infty})^*} = 1$. Jednak ciąg $\{\delta_n\}_{n=1}^{\infty}$ nie zawiera podciągu *-słabo zbieżnego.

9.2 Słabe topologie

Definicja 9.14. Słabą topologią w przestrzeni unormowanej X nazywamy najsłabszą topologię, w której wszystkie funkcjonały $x^* \in X^*$ są ciągłe.

Uwaga 9.15. Najsłabsza topologia to taka, która ma najmniej zbiorów otwartych.

Dla ustalonego funkcjonału $x_0^* \in X^*$ oraz $a \in \mathbb{C}, \ \varepsilon > 0$ zbiór

$$V_{x_0^*;a,\varepsilon} = \{ y \in X : |x_0^*(y) - a| < \varepsilon \}$$

jest otwarty w słabej topologii jako przeciwobraz otwartego koła $\{z \in \mathbb{C} : |z-a| < \varepsilon\}$ przez funkcjonał x_0^* .

Dla elementu $x \in X$ bazą otoczeń w słabej topologii jest rodzina zbiorów postaci:

$$U_{x_1^*, x_2^*, \dots, x_n^*; \varepsilon}(x) = \{ y \in X : \max_{1 \le j \le n} |x_j^*(y) - x_j^*(x)| < \varepsilon \}$$

gdzie $x_1^*, x_2^*, \dots, x_n^*$ są ustalonymi funkcjonałami w X^* a liczba ε jest dodatnia. Zbiór ten jest otwarty, bo przyjmując oznaczenie $a_j = x_i^*(x)$ mamy

$$U_{x_1^*, x_2^*, \dots, x_n^*; \varepsilon}(x) = V_{x_1^*; a_1, \varepsilon} \cap V_{x_2^*; a_2, \varepsilon} \cap \dots \cap V_{x_n^*; a_n, \varepsilon}. \tag{9.2}$$

To oznacza, że element y leży "blisko" elementu x w słabej topologii, gdy mierzymy odległość za pomocą skończonej liczby funkcjonałów liniowych $x_1^*, x_2^*, \ldots, x_n^*$. Słaba topologia jest w szczególności słabsza niż topologia w przestrzeni X wyznaczona przez metrykę $d(x,y) = \|x-y\|$. Przestrzeń X ze słabą topologią jest przestrzenią Hausdorffa. Istotnie, dla $y_1 \neq y_2$ w X istnieje funkcjonał $x^* \in X^*$ taki, że $x^*(y_1 - y_2) \neq 0$. Wtedy $x^*(y_1) \neq x^*(y_2)$. Oznaczmy $\varepsilon = \frac{1}{2}|x^*(y_1) - x^*(y_2)|$. Zbiory

$$\{x \in X : |x^*(x) - x^*(y_1)| < \varepsilon\}, \qquad \{x \in X : |x^*(x) - x^*(y_2)| < \varepsilon\}$$

są otwarte i rozłączne. Pierwszy jest otoczeniem punktu y_1 a drugi punktu y_2 .

Twierdzenie 9.16. Kula $B = \{x \in X : ||x|| \le 1\}$ jest zbiorem domkniętym w słabej topologii.

 $Dow \acute{o}d$. Niech $x \notin B$, tzn. ||x|| > 1. Z Twierdzenia 5.23(c) istnieją rzeczywisty ograniczony funkcjonał liniowy φ oraz liczba rzeczywista α takie, że

$$\varphi(x) < \alpha < \varphi(y), \quad y \in B.$$

Niech $\widetilde{\varphi}(x) = \varphi(x) - i\varphi(ix)$. Wtedy $\widetilde{\varphi}$ jest ograniczonym funkcjonałem liniowym względem \mathbb{C} . Rzeczywiście, $\widetilde{\varphi}$ jest liniowy względem \mathbb{R} oraz

$$\widetilde{\varphi}(ix) = \varphi(ix) + i\varphi(x) = i\widetilde{\varphi}(x).$$

Zatem $\tilde{\varphi} \in X^*$. Ponadto

$$\operatorname{Re} \widetilde{\varphi}(x) < \alpha < \operatorname{Re} \widetilde{\varphi}(y), \qquad y \in B.$$

Niech

$$U = \{ y \in X : \operatorname{Re} \widetilde{\varphi}(y) < \alpha \}.$$

Wtedy U jest otwarty w słabej topologii, bo jeśli $\widetilde{\varphi}$ jest ciągły, to Re $\widetilde{\varphi}$ też. Ponadto $x \in U$ oraz $U \cap B = \emptyset$. Tzn. x leży poza zbiorem B wraz z pewnym otoczeniem, czyli B jest zbiorem domkniętym.

Uwaga 9.17. Kula otwarta $\{x \in X : ||x|| < 1\}$ nie jest zbiorem otwartym w słabej topologii, o ile przestrzeń X ma nieskończony wymiar. Istotnie pokażemy, że zbiór postaci (9.2) jest nieograniczony, tzn. zawiera elementy o dowolnie dużej normie. Rozważmy jeden taki zbiór dla x = 0. Istnieje element $y \neq 0$ w X taki, że

$$x_1^*(y) = x_2^*(y) = \dots = x_n^*(y) = 0.$$

Wtedy $\mathbb{R}y \subset U_{x_1^*,x_2^*,\dots,x_n^*;\varepsilon}(0)$, ale $\mathbb{R}y \not\subset B$. Tzn. każde otoczenie punktu 0 jest nieograniczone.

Uwaga 9.18. Niech dim $X = \infty$ oraz $S = \{x \in X : ||x|| = 1\}$. Wtedy domknięcie S w słabej topologii jest równe $B = \{x \in X : ||x|| \le 1\}$. Rzeczywiście dla $x \in X$ zbiór $x + U_{x_1^*, x_2^*, \dots, x_n^*; \varepsilon}(0)$ jest otwartym otoczeniem punktu x i zawiera prostą przechodzącą przez x. Gdy ||x|| < 1 ta prosta przecina S.

Definicja 9.19. *-słabą topologią na X^* nazywamy najsłabszą topologię, w której funkcjonały $X^* \ni x^* \longmapsto x^*(x) \in \mathbb{C}$ są ciągłe dla każdego $x \in X$.

Uwaga 9.20. *-słaba topologia pokrywa się ze słabą topologią na X^* jeśli przestrzeń X jest refleksywna.

Dla $x_0 \in X$ oraz liczb $a \in \mathbb{C}$ i $\varepsilon > 0$ zbiór

$$V_{x_0;a,\varepsilon} = \{ y^* \in X^* : |y^*(x_0) - a| < \varepsilon \}$$

jest otwarty w *-słabej topologii jako przeciwobraz zbioru $\{z\in\mathbb{C}:|z-a|<\varepsilon\}$ funkcjonału na X^* wyznaczonego przez x_0 .. Bazą otoczeń funkcjonału x^* jest rodzina zbiorów

$$U_{x_1,x_2,\dots,x_n;\varepsilon}(x^*) = \{ y^* \in Y^* : \max_{1 \le j \le n} |y^*(x_j) - x^*(x)| < \varepsilon \},$$

gdzie x_1, x_2, \ldots, x_n są ustalonymi elementami w X a liczba ε jest dodatnia. Funkcjonał y^* leży "blisko" funkcjonału x^* jeśli wartości funkcjonałów w punktach x_1, x_2, \ldots, x_n są bliskie sobie.

Twierdzenie 9.21. Kula $B^* = \{x^* \in X^* : ||x^*|| \leq 1\}$ jest domknięta w *-słabej topologii.

Uwaga 9.22. *-słaba topologia na X^* jest słab
sza niż słaba topologia na X^* , bo $X \subset X^{**}$.

 $Dow \acute{o}d.$ Niech $x^* \notin B^*.$ Tzn. $\|x^*\| > 1.$ Zatem istnieje element $x \in X$ taki, że $\|x\| = 1$ oraz $|x^*(x)| > 1.$ Niech

$$U=\{y^*\in X^*\,:\, |y^*(x)|>1\}.$$

Zbiór U jest otwarty w *-słabej topologii oraz $x^* \in U$. Ponadto dla $y^* \in B^*$ mamy

$$|y^*(x)| \le ||y^*|| \, ||x|| \le 1.$$

Zatem
$$U \cap B^* = \emptyset$$
.

Twierdzenie 9.23 (Banach-Alaoglu). Kula $B^* = \{x^* \in X^* : ||x^*|| \le 1\}$ jest zwarta w *-słabej topologii.

Dowód. Niech

$$V = \underset{x \in X}{\mathsf{X}} \{ z \in \mathbb{C} : |z| \leqslant ||x|| \}$$

będzie iloczynem kartezjańskim kół domkniętych w płaszczyźnie zespolonej z topologią produktową. Z Twierdzenia Tichonowa V jest zwartą przestrzenią topologiczną jako iloczyn kartezjański zbiorów zwartych. Rozważmy odwzorowanie $\Phi: B^* \to V$ zadane wzorem

$$\Phi(x^*) = \{x^*(x)\}_{x \in X} \in V.$$

Warunek $\Phi(x^*) \in V$ jest spełniony, bo

$$|x^*(x)| \le ||x^*|| \, ||x|| \le ||x||.$$

Odwzorowanie Φ jest ciągłe, gdy w B^* mamy *-słabą topologię, co wynika bezpośrednio z określenia tej topologii. Sprawdzimy, że obraz $\Phi(B^*)$ jest domkniętym podzbiorem w V. W tym celu rozważmy ciąg uogólniony $\Phi(x^*_{\alpha})$ w $\Phi(B^*)$. Załóżmy, że ciąg uogólniony $\Phi(x^*_{\alpha})$ jest zbieżny w V. Ale

$$\Phi(x_{\alpha}^*) = \left(x_{\alpha}^*(x)\right)_{x \in X}.$$

To oznacza, że dla każdego elementu $x \in X$ ciąg u
ogólniony liczb $x_{\alpha}^*(x)$ jest zbieżny. Oznaczmy

$$\eta(x) = \lim_{\alpha} x_{\alpha}^{*}(x).$$

W ten sposób otrzymaliśmy funkcjonał η określony na X. Pokażemy, że $\eta \in B^*$. Sprawdzimy liniowość funkcjonału η . Dla $x,y \in X$ oraz $\lambda,\mu \in \mathbb{C}$ mamy

$$\eta(\lambda x + \mu y) = \lim_{\alpha} x_{\alpha}^{*}(\lambda x + \mu y) = \lim_{\alpha} [\lambda x_{\alpha}^{*}(x) + \mu x_{\alpha}^{*}(y)]$$
$$= \lambda \lim_{\alpha} x_{\alpha}^{*}(x) + \mu \lim_{\alpha} x_{\alpha}^{*}(y) = \lambda \eta(x) + \mu \eta(y).$$

Wiemy, że $|\eta(x)| \leq ||x||$, bo $|x_{\alpha}^*(x)| \leq ||x||$. Zatem $||\eta|| \leq 1$. Czyli $\eta \in B^*$ co kończy dowód domkniętości zbioru $\Phi(B^*)$.

Zauważmy, że odwzorowanie Φ jest różnowartościowe. Rzeczywiście, jeśli $\Phi(x^*) = \Phi(y^*)$ to $x^*(x) = y^*(x)$ dla wszystkich $x \in X$. Wtedy $x^* = y^*$. Z określenia *-słabej topologii wynika zatem, że Φ jest homeomorfizmem z B^* na $\Phi(B^*)$. Ale $\Phi(B^*)$ jest zbiorem zwartym jako domknięty podzbiór zwartej przestrzeni topologicznej V. Zatem również B^* jest zwarty w *-słabej topologii.

Przykład. Rozważmy $X = \ell^{\infty}$ i funkcjonały $\delta_n \in X^*$ określone wzorem

$$\delta_n(x) = x_n, \quad x \in \ell^{\infty}.$$

Mamy $\|\delta_n\|_{X^*}=1$, czyli $\delta_n\in B^*$. Wiemy, że B^* jest zbiorem zwartym w *-słabej topologii. Ze zwartości ciąg δ_n ma punkt skupienia w X^* w *-słabej topologii. Jednakże δ_n nie posiada podciągu zbieżnego *-słabo. Istotnie, załóżmy nie wprost, że δ_n ma podciąg *-słabo zbieżny δ_{n_k} dla rosnącego ciągu liczb naturalnych n_k . Określmy

$$x_n = \begin{cases} (-1)^k, & n = n_k \\ 0, & n \neq n_k \end{cases}.$$

Wtedy $x \in \ell^{\infty}$, ale $\delta_{n_k}(x) = x_{n_k} = (-1)^k$ nie jest zbieżny. Tzn. ciąg δ_{n_k} nie jest *-słabo zbieżny.

10 Twierdzenie Arzeli-Ascoliego

Niech K będzie zwartą przestrzenią topologiczną Hausdorffa. Rozważamy przestrzeń $C_{\mathbb{R}}(K)$ z normą

$$||f||_{\infty} = \max_{x \in K} |f(x)|.$$

Przypomnimy znane twierdzenie z topologii.

Twierdzenie 10.1. Podzbiór A w przestrzeni metrycznej (X,d) jest zwarty wtedy i tylko wtedy, gdy z każdego ciągu elementów z A można wybrać podciąg zbieżny do pewnego elementu z A.

Definicja 10.2. Podzbiór A przestrzeni metrycznej nazywamy warunkowo zwartym jeśli domknięcie \overline{A} jest zbiorem zwartym.

Symbolem $B(x,\varepsilon)$ będziemy oznaczać otwartą kulę o środku w x i promieniu ε czyli

$$B(x,\varepsilon)=\{y\in X\,:\, d(x,y)<\varepsilon\}.$$

Twierdzenie 10.3. Podzbiór A w przestrzeni metrycznej zupełnej (X, d) jest warunkowo zwarty wtedy i tylko wtedy, gdy jest **całkowicie ograniczony**, tzn. dla dowolnej liczby $\varepsilon > 0$ istnieją punkty $x_1, x_2, \ldots, x_n \in X$ takie, że

$$A \subset B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \ldots \cup B(x_n, \varepsilon).$$

Uwaga 10.4. Zbiór jest całkowicie ograniczony, jeśli można go pokryć skończoną liczbą kul o dowolnie małym promieniu.

Dowód.

 (\Longrightarrow) Ustalmy $\varepsilon > 0$. Wtedy

$$\overline{A} \subset \bigcup_{x \in X} B(x, \varepsilon).$$

Ze zwartości zbioru \overline{A} istnieje skończone podpokrycie

$$A \subset \overline{A} \subset B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \ldots \cup B(x_n, \varepsilon).$$

(\iff) Skorzystamy z Twierdzenia 10.1. Niech y_n będzie ciągiem elementów z A. Pokażemy,że y_n zawiera podciąg zbieżny. Dla $\varepsilon=\frac12$ mamy z założenia

$$\{y_n\}_{n=1}^{\infty} \subset A \subset B(x_1, \frac{1}{2}) \cup B(x_2, \frac{1}{2}) \cup \ldots \cup B(x_m, \frac{1}{2}).$$

Przynajmniej jedna z kul, np. $B(x_j, \frac{1}{2})$ zawiera nieskończony podciąg $\{y_n^{(1)}\}$ ciągu $\{y_n\}$. Dalej dla $\varepsilon = 2^{-2}$ wiemy, że podciąg $\{y_n^{(1)}\} \subset A$ jest zawarty w skończonej liczbie kul o promieniu 2^{-2} . Zatem jedna z takich kul zawiera nieskończony podciąg $\{y_n^{(2)}\}$ ciągu $\{y_n^{(1)}\}$. Postępując tak dalej otrzymamy rodzinę podciągów $\{y_n^{(m)}\}$ takich, że $\{y_n^{(m+1)}\}$ jest podciągiem ciągu $\{y_n^{(m)}\}$ oraz $\{y_n^{(m)}\}$ jest zawarty w kuli o promieniu 2^{-m} .

Stosując metodę przekątniową określmy ciąg $z_n = y_n^{(n)}$. Wtedy ciąg $\{z_n\}$ jest podciągiem ciągu $\{y_n\}$. Sprawdzimy, że z_n spełnia warunek Cauchy'ego. Dla n > m elementy z_n i z_m leżą w kuli o promieniu 2^{-m} , zatem

$$d(z_n, z_m) \leqslant \frac{2}{2^m}.$$

Z założenia zupełności ciąg z_n jest zbieżny.

Przykłady.

1. Rozważmy przestrzeń $X=C_{\mathbb{R}}[0,2\pi]$ oraz ciąg funkcji

$$f_n(x) = \sin nx.$$

Ponieważ

$$\frac{1}{\pi} \int_{0}^{2\pi} (\sin nx - \sin mx)^2 dx = 2$$

to

$$||f_n - f_m||_{\infty} \geqslant 1.$$

Zatem f_n nie posiada podciągu zbieżnego jednostajnie. Można udowodnić, że nawet nie istnieje podciąg zbieżny punktowo.

2. Niech $X = C_{\mathbb{R}}[0, 1]$. oraz

$$f_n(x) = \frac{x}{x + (1 - nx)^2}.$$

Wtedy $f_n(x) \to 0$ dla $0 \le x \le 1$. Jednak f_n nie posiada podciągu zbieżnego jednostajnie, bo taki podciąg musiałby być zbieżny do 0, a przecież dla $x = \frac{1}{n}$ mamy $f_n(\frac{1}{n}) = 1$.

Definicja 10.5. Rodzinę funkcji $A \subset C_{\mathbb{R}}(K)$ nazywamy **jednakowo ciągłą**, jeśli dla każdego punktu $x \in K$ i liczby $\varepsilon > 0$ istnieje otwarte otoczenie U punktu x takie, że

$$|f(y) - f(x)| < \varepsilon, \quad y \in U, \ f \in \mathcal{A}.$$

Uwaga 10.6. Zbiór U, zależny od x oraz ε , jest wybrany dla wszystkich funkcji $f \in \mathcal{A}$. Na tym polega jednakowa ciągłość.

Definicja 10.7. Rodzina $A \subset C_{\mathbb{R}}(K)$ jest **ograniczona** jeśli istnieje stała liczba M taka, że

$$||f||_{\infty} \leqslant C, \quad f \in \mathcal{A}.$$

Twierdzenie 10.8 (Arzelà-Ascoli). Rodzina funkcji $A \subset C_{\mathbb{R}}(K)$ jest warunkowo zwarta wtedy i tylko wtedy, gdy A jest jednakowo ciągła i ograniczona.

Dowód.

(⇒) Ustalmy liczbę $\varepsilon > 0$. Z Twierdzenia 10.3 istnieją funkcje $f_1, f_2, \ldots, f_n \in C_{\mathbb{R}}(K)$ takie, że

$$\mathcal{A} \subset B\left(f_1, \frac{\varepsilon}{3}\right) \cup B\left(f_2, \frac{\varepsilon}{3}\right) \cup \ldots \cup B\left(f_n, \frac{\varepsilon}{3}\right).$$
 (10.1)

W szczególności zbiór $\mathcal A$ jest ograniczony przez

$$M = \max_{1 \le j \le n} ||f_j||_{\infty} + \frac{\varepsilon}{3}.$$

Ustalmy $x \in K$. Istnieją otwarte otoczenia U_1, U_2, \dots, U_n takie, że

$$|f_j(y) - f_j(x)| < \frac{\varepsilon}{3}, \quad y \in U_j, j = 1, 2, \dots, n.$$

Niech $U = U_1 \cap U_2 \cap \ldots \cap U_n$. Wtedy U jest otwartym otoczeniem punktu x oraz

$$|f_j(y) - f_j(x)| < \frac{\varepsilon}{3}, \quad y \in U, j = 1, 2, \dots, n.$$

Niech $f \in \mathcal{A}$. Wtedy z (10.1) mamy $f \in B(f_j, \frac{\varepsilon}{3})$ dla pewnego j = 1, 2, ..., n. Zatem dla $y \in U$ otrzymujemy

$$|f(y) - f(x)| \le |f(y) - f_j(y)| + |f_j(y) - f_j(x)| + |f_j(x) - f(x)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

(\Leftarrow) Pokażemy, że rodzinę \mathcal{A} można pokryć skończoną liczbą kul o promieniu $\varepsilon > 0$. Rodzina \mathcal{A} jest ograniczona przez pewną stałą M, tzn.

$$|f(x)| \leq M, \quad f \in \mathcal{A}, \ x \in K.$$

Rodzina \mathcal{A} jest jednakowo ciągła, więc dla każdego elementu $x \in K$ istnieje otoczenie $U_x \ni x$ takie, że mamy

$$|f(y) - f(x)| < \frac{\varepsilon}{3}, \quad f \in \mathcal{A}, \ y \in U_x.$$
 (10.2)

Ponieważ

$$K = \bigcup_{x \in K} U_x,$$

to ze zwartości zbioru K otrzymujemy

$$K \subset U_{x_1} \cup U_{x_2} \cup \ldots \cup U_{x_n} \tag{10.3}$$

dla pewnych punktów x_1, x_2, \ldots, x_n . Podzielmy przedział wartości [-M, M] na równe części punktami $-M = y_0 < y_1 < y_2 < \ldots < y_m = M$ tak, że

$$y_j - y_{j-1} < \frac{\varepsilon}{3}.$$

Wykres każdej z funkcji $f \in \mathcal{A}$ leży w iloczynie kartezjańskim $K \times [-M, M]$. Rozważmy ciąg n wskaźników (j_1, j_2, \ldots, j_n) , z których każdy pochodzi z $\{1, 2, \ldots, m\}$. Dla takiego ciągu określamy podzbiór w $C_{\mathbb{R}}(K)$ wzorem

$$B_{j_1,j_2,\dots,j_n} = \{ f \in C_{\mathbb{R}}(K) : f(x_1) \in [y_{j_1-1}, y_{j_1}],$$

$$f(x_2) \in [y_{j_2-1}, y_{j_2}], \dots, f(x_n) \in [y_{j_n-1}, y_{j_n}] \}.$$

Każda funkcja z \mathcal{A} należy do pewnego zbioru postaci $B_{j_1,j_2,...,j_n}$, czyli

$$\mathcal{A} = \bigcup_{j_1, j_2, \dots, j_n = 1}^m B_{j_1, j_2, \dots, j_n} \cap \mathcal{A}.$$

Zbadamy średnicę zbioru $B_{j_1,j_2,\ldots,j_n} \cap \mathcal{A}$. Niech $f,g \in B_{j_1,j_2,\ldots,j_n} \cap \mathcal{A}$. oraz $x \in K$. Wtedy z (10.3) wynika, że $x \in U_{x_k}$ dla pewnego $k = 1, 2, \ldots, n$. Dalej z (10.2) i z określenia zbiorów B_{j_1,j_2,\ldots,j_n} wnioskujemy, że

$$|f(x) - g(x)| \le |f(x) - f(x_k)| + |f(x_k) - g(x_k)| + |g(x_k) - g(x)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Zatem średnica zbioru $B_{j_1,j_2,...,j_n} \cap \mathcal{A}$ jest nie większa niż ε co oznacza, że ten zbiór jest zawarty w pewnej kuli o promieniu ε .

Przykład. Niech

$$\mathcal{A} = \{ f \in C_{\mathbb{R}}[0,1] : f \text{ r\'ozniczkowalna w } (0,1), \ f(0) = 0, \ |f'(x)| \leq 1 \}.$$

Wtedy zbiór A jest warunkowo zwarty, bo z

$$|f(x_1) - f(x_2)| = |f'(\xi)| |x_1 - x_2| \le |x_1 - x_2|$$

wynika jednakowa ciągłość funkcji z A. Ponadto

$$|f(x)| = |f(x) - f(0)| \le x \le 1,$$

czyli rodzina \mathcal{A} jest ograniczona przez 1.

Uwaga 10.9. Twierdzenie Arzeli-Ascoliego pozostaje prawdziwe również dla $\mathcal{A} \subset C(K)$, czyli funkcji o wartościach zespolonych.

11 Odwzorowania zwężające i zastosowania

Twierdzenie 11.1. Niech (X,d) będzie przestrzenią metryczna zupełną a $T: X \to X$ będzie odwzorowaniem **zwężającym**, tzn. istnieje stała $0 < \theta < 1$, taka, że

$$d(Tx, Ty) \le \theta d(x, y), \quad x, y \in X.$$

Wtedy odwzorowanie T posiada jedyny punkt stały, tzn. punkt $y \in X$ taki, że Ty = y.

Uwaga 11.2. Odwzorowanie zwężające jest ciągłe.

 $Dow \acute{o}d.$ Dla ustalonego punktu $x \in X$ rozważmy ciąg iteracji $x_n = T^n x.$ Mamy

$$d(x_k, x_{k+1}) = d(Tx_{k-1}, Tx_k) \le \theta d(x_{k-1}, x_k).$$

Zatem

$$d(x_k, x_{k+1}) \leqslant \theta^k(d(x_0, x_1).$$

Niech n > m. Wtedy

$$d(x_m, x_n) \leqslant d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+2}) + \dots + d(x_{n-1}, x_n)$$

$$\leqslant (\theta^m + \theta^{m+1} + \dots + \theta^{n-1}) d(x_0, x_1) \leqslant \frac{\theta^m}{1 - \theta} d(x_0, x_1).$$

Zatem ciąg x_n spełnia warunek Cauchy'ego, więc jest zbieżny z założenia o zupełności przestrzeni X. Niech $x_n \to y$. Wtedy $Tx_n \to Ty$. Z drugiej strony $Tx_n = x_{n+1} \to y$. Stad Ty = y, czyli y jest punktem stałym odwzorowania T. Załóżmy, że również punkt y' jest stały, tzn. Ty' = y'. Wtedy

$$d(y, y') = d(Ty, Ty') \leqslant \theta d(y, y').$$

Zatem d(y, y') = 0, czyli y = y'.

11.1 Twierdzenie o funkcji odwrotnej

Niech $\varphi: U \xrightarrow{C^1} \mathbb{R}^n$, gdzie U jest otwartym podzbiorem w \mathbb{R}^n . Załóżmy, że $x_0 \in U$ oraz det $D\varphi(x_0) \neq 0$. Pokażemy, że istnieje odwzorowanie odwrotne określone w otoczeniu punktu $y_0 = \varphi(x_0)$.

Poprzez zastosowanie przekształceń liniowych i przesunięć możemy założyć, że $x_0=0, y_0=\varphi(0)=0$ oraz $D\varphi(0)=I$. Możemy też założyć, że U jest kulą otwartą o środku w 0.

Zapiszmy φ w postaci

$$\varphi(x) = x + f(x) = y. \tag{11.1}$$

Wtedy funkcja f jest klasy C^1 oraz f(0) = 0 i Df(0) = 0. Rozwiązania równania (11.1), czyli odwzorowania odwrotnego, będziemy szukać w postaci

$$x = y + g(y).$$

Z układu równań

$$x + f(x) = y (11.2)$$

$$y + g(y) = x (11.3)$$

usuwamy x i otrzymujemy

$$y + g(y) + f(y + g(y)) = y.$$

Zatem

$$g(y) = -f(y + g(y)).$$

Chcemy znaleźć funkcję g spełniającą powyższy wzór. Jeśli znajdziemy taką funkcję, to funkcja

$$\psi(y) = y + g(y)$$

będzie spełniać

$$\varphi(\psi(y)) = \psi(y) + f(\psi(y)) = \psi(y) + f(y + g(y)) = \psi(y) - g(y) = y.$$

W tym celu rozważmy przekształcenie

$$(Tg)(y) = -f(y + g(y)).$$

Zamierzamy znaleźć punkt stały przekształcenia T. Wiemy, że Df(0) = 0. Funkcja f jest klasy C^1 , zatem istnieje liczba $\delta > 0$ taka, że

$$||Df(x)|| \le \frac{1}{2}, ||x||_2 \le 2\delta,$$
 (11.4)

gdzie po lewej stronie występuje norma macierzy jako odwzorowania \mathbb{R}^n w \mathbb{R}^n z normą euklidesową w \mathbb{R}^n . Oznaczmy

$$B_{\delta} = \{ x \in \mathbb{R}^n : ||x||_2 \leqslant \delta \}$$

oraz

$$X = \{g : B_{\delta} \to B_{\delta} : g \text{ jest ciągła}\}.$$

Określamy metrykę w X wzorem

$$d(g_1, g_2) = \sup_{x \in B_{\delta}} \|g_1(x) - g_2(x)\|_2.$$

Wtedy (X, d) jest przestrzenią metryczna zupełną, bo zbiór B_{δ} jest zwarty a funkcje $g \in X$ są ograniczone.

Pokażemy, że T odwzorowuje X w siebie i jest zwężające. Dla $g \in X$ funkcja Tg jest ciągła. Ponadto dla $\|y\|_2 \le \delta$ mamy

$$||Tg(y)||_2 = ||f(y+g(y))||_2, \quad ||y+g(y)||_2 \le 2\delta.$$

Dalej dla $||x||_2 \le 2\delta$ obliczamy

$$f(x) = f(x) - f(0) = \int_{0}^{1} \frac{d}{dt} f(tx) dt = \int_{0}^{1} Df(tx) \cdot x dt.$$

Zatem

$$||f(x)||_2 \leqslant \int_0^1 ||Df(tx) \cdot x||_2 dt \leqslant \int_0^1 ||Df(tx)|| ||x||_2 dt \leqslant \frac{1}{2} ||x||_2 \leqslant \delta.$$

Podstawiając x=y+g(y) otrzymamy $\|Tg(y)\|_2 \leqslant \delta$ dla $\|y\| \leqslant \delta$, czyli $Tg \in X$. Sprawdzamy warunek zwężania. Mamy

$$f(b) - f(a) = \int_{0}^{1} Df(a + t(b - a)) \cdot (b - a) dt.$$

Zatem

$$||f(b) - f(a)||_2 \le \int_0^1 ||Df(a + t(b - a))|| dt ||b - a||_2.$$

Podstawiamy $a = y + g_1(y)$ oraz $b = y + g_2(y)$ dla $g_1, g_2 \in X$ oraz $y \in B_\delta$. Wtedy $a, b \in B_{2\delta}$ zatem $a + t(b - a) \in B_{2\delta}$. Korzystając z (11.4) otrzymujemy

$$||Tg_1(y) - Tg_2(y)||_2 = ||f(y + g_1(y)) - f(y + g_2(y))||_2$$

$$\leqslant \int_0^1 ||Df(a + t(b - a))|| dt ||g_2(y) - g_1(y)||_2 \leqslant \frac{1}{2} ||g_2(y) - g_1(y)||_2.$$

To oznacza, że

$$d(Tg_1, Tg_2) \leqslant \frac{1}{2}d(g_1, g_2).$$

Z Twierdzenia 11.1 wynika, że odwzorowanie T posiada punkt stały $g \in B_{\delta}$. Ale wtedy na podstawie wzorów (11.2) i (11.3) funkcja $\psi(y) = y + g(y)$ jest odwzorowaniem odwrotnym do φ .

12 Twierdzenie Kreina-Millmana

Liniową przestrzeń topologiczną V nazywamy $lokalnie\ wypukłq$ jeśli istnieje baza otoczeń zera złożona ze zbiorów wypukłych. Zauważmy, że przestrzeń unormowana X ze słabą topologią jest przestrzenią lokalnie wypukłą, bo

$$U_{x_1^*, x_2^*, \dots, x_n^*; \varepsilon}(0) = \{ y \in X : \max_{1 \le j \le n} |x_j^*(y)| < \varepsilon \}$$

są wypukłymi podzbiorami w X. Podobnie przestrzeń X^* z *-słabą topologią jest lokalnie wypukła, bo

$$U_{x_1,x_2,\dots,x_n;\varepsilon}(0) = \{y^* \in Y^* : \max_{1 \le j \le n} |y^*(x_j)| < \varepsilon\}$$

są wypukłymi podzbiorami w X^* .

Niech K będzie wypukłym podzbiorem przestrzeni liniowej X. Punkt x z K nazywamy **ekstremalnym** jeśli x nie leży wewnątrz żadnego odcinka zawartego w K. Tzn. z warunku $x = \lambda y_1 + (1 - \lambda)y_2$ dla $0 < \lambda < 1$ wynika, że $y_1 \notin K$ lub $y_2 \notin K$.

Przykłady.

(a) Dla zbioru wypukłego

$$\left\{ x \in \mathbb{R}^n : \max_{j=1,2...,n} |x_j| \leqslant 1 \right\},\,$$

czyli n-wymiarowej kostki w \mathbb{R}^n , punktami ekstremalnymi są wektory x postaci $|x_i| = 1$. Zatem $\#(E) = 2^n$.

(b) Dla zbioru wypukłego

$$\left\{ x \in \mathbb{R}^n : \sum_{j=1,\dots,n} |x_j| \leqslant 1 \right\}$$

punkty ekstremalne mają postać $\pm e_j$, dla $j=1,2,\ldots,n$. Czyli # (E)=2n.

(c) Dla kuli jednostkowej w ℓ^2 każdy element sfery jednostkowej, czyli wektor spełniający $||x||_2=1$, jest punktem ekstremalnym. Własność ta wynika z faktu, że w przestrzeni z iloczynem skalarnym jeśli

$$||x + y|| = ||x|| + ||y||, \quad x, y \neq 0,$$

to y = ax dla pewnej liczby dodatniej a > 0.

Domknięty i wypukły podzbiór S zbioru wypukłego K nazywamy **zbiorem podpierającym** zbioru K, jeśli z warunków $y_1, y_2 \in K$, $0 < \lambda < 1$ oraz $\lambda y_1 + (1 - \lambda)y_2 \in S$ wynika, że $y_1, y_2 \in S$. Tzn. jeśli punkt wewnętrzny odcinka zawartego w K leży w S, to cały odcinek leży w S. W szczególności punkt ekstremalny zbioru K jest jednopunktowym zbiorem podpierającym zbioru K.

Dla zbioru z przykładu (c) każdy odcinek łączący dwa punkty na sferze jest zbiorem podpierającym. Z kolei odcinek łączący dwa punkty z wnętrza kuli nie jest zbiorem podpierającym.

Lemat 12.1. Niech φ będzie ciągłym rzeczywistym funkcjonałem liniowym na przestrzeni lokalnie wypuklej X oraz K zwartym podzbiorem wypukłym w X. Zbiór S złożony z punktów zbioru K, w których funkcja

$$K \ni x \mapsto \varphi(x)$$

osiąga maksimum jest zwartym zbiorem podpierającym zbioru K.

Dowód. Niech $m = \max_{y \in K} \varphi(y)$. Wtedy

$$S = \{ x \in K : \varphi(x) = m \}.$$

Zatem S jest zwartym zbiorem wypukłym jako przekrój zbioru K z domkniętym zbiorem afinicznym $\{x \in X : \varphi(x) = m\}$.

Załóżmy, że $\lambda y_1 + (1 - \lambda)y_2 \in S$ dla $y_1, y_2 \in K$ oraz $0 < \lambda < 1$. Wtedy

$$m = \varphi(\lambda y_1 + (1 - \lambda)y_2) = \lambda \varphi(y_1) + (1 - \lambda)\varphi(y_2).$$

Zatem $\varphi(y_1) = \varphi(y_2) = m$, czyli $y_1, y_2 \in S$.

Poniżej będziemy rozważać przestrzeń $V=X^*$ z *-słabą topologią.

Lemat 12.2. Domknięcie zbioru wypuklego jest zbiorem wypuklym.

Dowód. Niech V będzie zbiorem wypukłym. Rozważmy punkty $x, y \in \overline{V}$ i liczbę $0 < \lambda < 1$. Trzeba pokazać, że $(1 - \lambda)x + \lambda y \in \overline{E}$. Z założenia istnieją ciągi uogólnione $\{x_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ i $\{y_{\beta}\}_{{\beta} \in \mathcal{B}}$ o wyrazach pochodzących ze zbioru V, zbieżne do x i y odpowiednio. W zbiorze $\mathcal{A} \times \mathcal{B}$ określamy relację

$$(\alpha, \beta) \preceq (\alpha', \beta') \iff \alpha \preceq \alpha', \ \beta \preceq \beta'.$$

Wtedy $\mathcal{A} \times \mathcal{B}$ jest zbiorem skierowanym. Określamy również dwa ciągi uogólnione $x_{\alpha,\beta}$ i $y_{\alpha,\beta}$ wzorami

$$x_{\alpha,\beta} = x_{\alpha}, \qquad y_{\alpha,\beta} = y_{\beta}.$$

Wtedy

$$x_{\alpha,\beta} \to x, \qquad y_{\alpha,\beta} \to y.$$

Z wypukłości zbioru V wyrazy ciągu $(1-\lambda)x_{\alpha,\beta} + \lambda y_{\alpha,\beta}$ leżą w V. W związku z tym ich granica leży w \overline{V} .

Przekrój wszystkich domkniętych zbiorów wypukłych zawierających dany zbiór E jest domkniętym zbiorem wypukłym, zawartym w każdym domkniętym zbiorze wypukłym zawierającym E. Taki zbiór nazywamy domkniętq wypukłq otoczkq zbioru E.

Ten zbiór można opisać w inny sposób. Wypukła otoczka zbioru E składa się ze wszystkich wypukłych kombinacji elementów zbioru E czyli elementów postaci

$$\sum_{k=1}^{n} a_k x_k, \qquad x_k \in E, \ a_k > 0, \ \sum_{k=1}^{n} a_k = 1.$$

Zbiór tych kombinacji oznaczany symbolem $\operatorname{conv}(E)$, jest zbiorem wypukłym zawierającym E. Po domknięciu otrzymujemy domknięty zbiór $\overline{\operatorname{conv}(E)}$ wypukły, na podstawie Lematu 12.2. Każdy zbiór wypukły zawierający E musi zawierać $\overline{\operatorname{conv}(E)}$. Zatem każdy domknięty wypukły zbiór zawierający E musi zawierać $\overline{\operatorname{conv}(E)}$. Stąd $\overline{\operatorname{conv}(E)}$ jest domknięta wypukłą otoczką zzbioru E.

Twierdzenie 12.3 (Krein-Millman). Niech K będzie zwartym wypukłym podzbiorem lokalnie wypukłej przestrzeni topologicznej X. Wtedy K jest domkniętą wypukłą otoczką swoich punktów ekstremalnych.

Dowód. (**Kelley**) Przekrój zbiorów podpierających zbioru K jest zbiorem podpierającym zbioru K. Ponadto jeśli S jest zbiorem podpierającym zbioru K oraz T jest zbiorem podpierającym zbioru S, to T jest zbiorem podpierającym zbioru K. Rzeczywiście, jeśli $\lambda y_1 + (1 - \lambda)y_2 \in T \subset S$ dla pewnych punktów $y_1, y_2 \in K$, to $y_1, y_2 \in S$, bo S podpiera K. Ale wtedy $y_1, y_2 \in T$, bo T podpiera S.

Rodzina wszystkich zbiorów podpierających zbioru K jest częściowo uporządkowana przez zawieranie. Ponadto każdy łańcuch tej rodziny jest ograniczony od dołu przez przekrój zbiorów z łańcucha. Z lematu Kuratowskiego-Zorna istnieje minimalny zbiór podpierający S zbioru K. Pokażemy, że S jest

jednopunktowy. Załóżmy, nie wprost, że $x \neq y \in S$. Wtedy z Twierdzenia 5.23(c)* istnieje ciągły funkcjonał liniowy φ na X taki, że $\varphi(x) > \varphi(y)$. Wtedy podzbiór S_0 zbioru S złożony z punktów, w których φ osiąga maksimum jest zbiorem podpierającym zbioru S, a zatem zbioru S. Zbiór S_0 nie zawiera S0 zatem S0 S0.

Jeśli zbiór podpierający jest jednopunktowy $S = \{x\}$, to x jest punktem ekstremalnym w zbiorze K. Rzeczywiście, jeśli $x = \lambda y_1 + (1 - \lambda)y_2$, dla pewnych $y_1, y_2 \in K$ oraz $0 < \lambda < 1$, to $y_1, y_2 \in S$, czyli $y_1 = y_2 = x$. Pokazaliśmy w ten sposób, że każdy niepusty zbiór podpierający zawiera punkt ekstremalny zbioru K.

Rozważmy ciągły rzeczywisty funkcjonał liniowy φ . Zbiór punktów z K, dla których ten funkcjonał osiąga maksimum jest podpierający, czyli maksimum funkcjonału φ na K jest osiągnięte w punkcie ekstremalnym. Tzn.

$$\max_{x \in K} \varphi(x) = \max_{x \in E} \varphi(x),$$

gdzie E oznacza zbiór punktów ekstremalnych zbioru K. Niech C oznacza domkniętą wypukłą otoczkę zbioru E. Załóżmy, że $x \in K \setminus C$. Wtedy z Twierdzenia 5.23(c) istnieje ciągły rzeczywisty funkcjonał liniowy φ taki, że

$$\varphi(x) > \max_{y \in C} \varphi(y) = \max_{y \in E} \varphi(y) = \max_{y \in K} \varphi(y).$$

Otrzymaliśmy sprzeczność, bo $x \in K$.

 ${f Uwaga.}$ Można przyjąć, że X jest przestrzenią unormowaną ze słabą topologią lub X jest przestrzenią sprzężoną do przestrzeni unormowanej, z *-słabą topologią.

Przykład. Rozważmy kulę jednostkową B w przestrzeni c_0 . Kula nie posiada punktów ekstremalnych. Rzeczywiście załóżmy, że $x \in B$. Wtedy $|x_{n_0}| \leq \frac{1}{2}$ dla pewnego wskaźnika n_0 . Zatem ciągi $u = x + \frac{1}{2}\delta_{n_0}$ oraz $v = x - \frac{1}{2}\delta_{n_0}$ należą do B. Ponadto $x = \frac{1}{2}(u+v)$. Z twierdzenia Kreina-Millmana i z twierdzenia Banacha-Alaoglu wynika, że c_0 nie jest przestrzenią sprzężoną do przestrzeni unormowanej. Można to uzyskać również z Wniosku 5.10. Przypuśćmy, nie wprost, że $c_0 = X^*$. Wtedy X byłaby nieskończenie wymiarową domkniętą podprzestrzenią przestrzeni $X^{**} = c_0^* = \ell^1$. W szczególności X byłaby przestrzenią Banacha. Z Wniosku 5.10 każdy element x z $X \subset \ell^1$ osiąga swoją

^{*}Twierdzenie 5.23(c) nie wymaga, aby przestrzeń X była unormowana.

normę poprzez maksimum modułu na kuli jednostkowej w $c_0=X^*$. Niech $x\in X$. Załóżmy, że dla ciągu $x=\{x_n\}\in \ell^1$ maksimum jest osiągnięte na ciągu $y=\{y_n\}$ z kuli jednostkowej w c_0 . Wtedy $|y_n|\leqslant 1$ oraz $|y_n|<\frac12$ dla $n\geqslant n_0$. Zatem

$$||x||_{1} = \sum_{n=1}^{\infty} |x_{n}| = \left| \sum_{n=1}^{\infty} x_{n} y_{n} \right| \leq \sum_{n=1}^{\infty} |x_{n}| |y_{n}|$$

$$= \sum_{n=1}^{n_{0}} |x_{n}| |y_{n}| + \sum_{n=n_{0}+1}^{\infty} |x_{n}| |y_{n}|$$

$$\leq \sum_{n=1}^{n_{0}} |x_{n}| + \frac{1}{2} \sum_{n=n_{0}+1}^{\infty} |x_{n}|$$

Zatem $x_n = 0$ dla $n \ge n_0$. To oznacza, że

$$X = \bigcup_{n=1}^{\infty} X_n,$$

gdzie X_n oznacza przestrzeń ciągów w X zerujących się od miejsca n. W związku z tym X jest zbiorem I kategorii, co daje sprzeczność.

13 Dodatek

13.1 Komentarz do zadania 98

W zadaniu 98 trzeba pokazać, że jeśli M i N są domkniętymi podprzestrzeniami przestrzeni Banacha X oraz $M \cap N = \{0\}$ i X = M + N, to dla pewnej dodatniej stałej c spełniony jest warunek

$$||m+n|| \ge c(||m|| + ||n||), \quad m \in M, \ n \in N.$$
 (13.1)

Teza jest spełniona również, gdy X' = M + N jest domkniętą podprzestrzenią przestrzeni X, bo X' jest wtedy przestrzenią Banacha.

Jeśli M+N nie jest domkniętą przestrzenią w przestrzeni Banacha X, to warunek nie może być spełniony. Rzeczywiście, załóżmy, że ciąg $m_k+n_k\in M+N$ spełnia warunek Cauchy'ego. Wtedy ciągi m_k i n_k spełniają ten warunek, zatem są zbieżne odpowiednio do $m\in M$ i $n\in N$. Wtedy ciąg m_k+n_k jest zbieżny do m+n. To oznacza, że podprzestrzeń M+N jest zupełna, czyli jest domkniętą podprzestrzenią w X.

Dla dwu podprzestrzeni M i N może się zdarzyć, że podprzestrzeń M+N nie jest domknięta. Rozważmy ośrodkową przestrzeń Hilberta \mathcal{H} z bazą $\{e_k\}_{k=1}^{\infty}$. Niech

$$f_k = \tanh k \left(e_{2k} + \frac{1}{\sinh k} e_{2k-1} \right).$$

Układ $\{f_k\}_{k=1}^{\infty}$ jest ortonormalny. Określmy

$$M = \overline{\lim\{e_{2k} : k \in \mathbb{N}\}}, \qquad N = \overline{\lim\{f_k : k \in \mathbb{N}\}}.$$

Przekrój podprzestrzeni Mi Njest zerowy. Rzeczywiście, załóżmy, że $x \in M \cap N.$ Wtedy

$$\sum_{k=1}^{\infty} \langle x, e_{2k} \rangle e_{2k} = x = \sum_{k=1}^{\infty} \langle x, f_k \rangle f_k$$
$$= \sum_{k=1}^{\infty} \tanh k \langle x, f_k \rangle e_{2k} + \sum_{k=1}^{\infty} \frac{1}{\cosh k} \langle x, f_k \rangle e_{2k-1}$$

Zatem $\langle x, f_k \rangle = 0$ dla $k \ge 1$. Czyli x = 0.

Podprzestrzeń M+N jest gęsta w \mathcal{H} . Istotnie, załóżmy, że $x\perp M+N$. Wtedy $x\perp M$ i $x\perp N$. To oznacza, że $x\perp e_{2k}$ i $x\perp f_n$ dla $k\geqslant 1$. Zatem $x\perp e_{2k-1}$ dla $k\geqslant 1$, czyli x=0.

Podprzestrzeń M+N nie jest domknięta, bo nie jest spełniony warunek (13.1). Faktycznie, dla $m=e_{2k}$ i $n=-f_k$ mamy

$$||m+n|| = ||e_{2n} - f_n||^2 = \frac{4}{e^{2k} + 1}, \qquad ||e_{2k}|| + ||f_k|| = 2$$

13.2 Komentarz do zadania 91

W zadaniu 91 trzeba wykazać, że dla rodziny ograniczonych operatorów liniowych $T_n:X\to Y$, gdzie X jest przestrzenią Banacha, a Y przestrzenią unormowaną, zbiór

$$A = \{x \in X \mid \lim_{n} T_{n}x \text{ istnieje } \}$$

jest pierwszej kategorii lub B = X.

Teza nie musi być spełniona, gdy X nie jest przestrzenią Banacha.

Lemat 13.1. Dla nieskończenie wymiarowej przestrzeni Banacha X istnieje niezerowy funkcjonał liniowy φ taki, że ker φ nie jest zbiorem pierwszej kategorii.

 \mathbf{Uwaga} . Funkcjonał φ nie może być ograniczony. Rzeczywiście, jądro niezerowego funkcjonału ograniczonego jest domkniętą właściwą podprzestrzenią liniową w X, zatem zbiorem o pustym wnętrzu.

Dowód. Niech \mathcal{B} będzie bazą Hamela przestrzeni X, czyli maksymalnym układem liniowo niezależnym. Wiemy, że układ ten jest nieprzeliczalny z twierdzenia Baire'a. Dla ciągu $\{e_n\}_{n=1}^{\infty} \subset \mathcal{B}$ określamy $\mathcal{B}_0 = \mathcal{B} \setminus \{e_n\}_{n=1}^{\infty}$. Następnie definiujemy zbiory

$$A_n = \lim \{ \mathcal{B}_0, e_1, e_2, \dots, e_n \}.$$

Wtedy $A_n \subsetneq A_{n+1}$. Każdy element $x \in X$ jest skończoną kombinacją liniową elementów z \mathcal{B}_0 i z $\{e_n\}_{n=1}^{\infty}$. Zatem $x \in A_n$ dla pewnej liczby n. To oznacza, że $X = \bigcup_n A_n$. Z twierdzenia Baire'a, dla pewnej liczby n_0 podprzestrzeń A_{n_0} nie jest pierwszej kategorii. Zatem domknięcie przestrzeni A_{n_0} zawiera kulę otwartą w X, co pociąga $\overline{A_{n_0}} = X$. Określmy funkcjonał φ na \mathcal{B} wzorem

$$\varphi(b) = \begin{cases} 1 & b = f_{n_0+1} \\ 0 & b \in \mathcal{B}, \ b \neq f_{n_0+1} \end{cases}$$

Wtedy φ rozszerza się do niezerowego funkcjonału liniowego na przestrzeni X. Zauważmy, że $A_{n_0} \subset \ker \varphi$, więc ker φ nie jest zbiorem pierwszej kategorii. \square

Rozważmy nieskończenie wymiarową ośrodkową przestrzeń Hilberta \mathcal{H} . Z lematu wynika, że \mathcal{H} zawiera właściwą podprzestrzeń liniową V, która nie jest zbiorem pierwszej kategorii. Podobnie jak w dowodzie lematu, wnioskujemy, że $\overline{V} = \mathcal{H}$. W podprzestrzeni V wybieramy maksymalny układ ortonormalny $\{e_n\}_{n=1}^{\infty}$. Ten układ jest bazą ortonormalną przestrzeni \mathcal{H} . Rzeczywiście, załóżmy, że $x \perp e_n$ dla $n \geqslant 1$. Zatem $x \perp V$, co pociąga $x \perp \overline{V} = \mathcal{H}$, czyli x = 0. Określmy operatory $T_n : \mathcal{H} \to V$ wzorem

$$T_n(x) = \sum_{k=1}^n \langle x, e_k \rangle e_k.$$

Wtedy dla $x \in \mathcal{H}$ mamy $T_n x \to x$, w przestrzeni \mathcal{H} . Zatem granica leży w V tylko dla $x \in V$. Stąd mamy

$$A := \{ x \in X : \lim_{n} T_{n}x \text{ istnieje} \} = V,$$

czyli A nie jest zbiorem pierwszej kategorii.

14 Zadania

1. Udowodnić nierówność Höldera

$$ab \leqslant \frac{1}{p}a^p + \frac{1}{q}b^q,$$

116

gdzie $a,b\geqslant 0,\; p,q\geqslant 1$ oraz $\frac{1}{p}+\frac{1}{q}=1.$ Wyznaczyć, kiedy zachodzi równość. Wskazówka:

(Sposób I) Naszkicować wykres funkcji $y=x^{p-1}$. Porównać pole prostokąta $[0,a]\times[0,b]$ z sumą pól dwu obszarów: (1) ograniczonego wykresem funkcji, osią OX, i prostą x=a, (2) ograniczonego wykresem funkcji, osią OY i prostą y=b. (Sposób II) Przyjąć b=1 i pokazać, że funkcja $f(x)=\frac{1}{p}x^p-x+\frac{1}{q}$ przyjmuje minimum w punkcie x=1.

2. Pokazać nierówność Höldera

$$\sum_{i=1}^{n} x_i y_i \leqslant \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} \left(\sum_{i=1}^{n} y_i^q\right)^{1/q},$$

gdzie $x_i, y_i \ge 0, p, q$ jak poprzednio. Kiedy zachodzi równość? Wskazówka: Założyć, że obie sumy $\sum_{i=1}^n x_i^p$ i $\sum_{i=1}^n y_i^q$ nie przekraczają 1. Zastosować poprzednie zadanie do każdego z iloczynów $x_i y_i$.

3. Pokazać, że

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} = \max\left\{\left|\sum_{i=1}^{n} x_i \overline{y_i}\right| : \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q} \leqslant 1\right\},\,$$

gdzie $x_i, y_i \in \mathbb{C}$, p i q jak poprzednio.

4. Pokazać nierówność trójkata dla normy

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

określonej na \mathbb{C}^n . Wskazówka: Skorzystać z poprzedniego zadania.

5. Uogólnić trzy poprzednie zadania na sumy nieskończone.

6. Dla $p_2 \geqslant p_1 \geqslant 1$ i $n \in \mathbb{N}$ znaleźć najlepsze stałe w nierównościach

$$\left(\sum_{i=1}^{n}|x_i|^{p_1}\right)^{1/p_1}\leqslant c_1\left(\sum_{i=1}^{n}|x_i|^{p_2}\right)^{1/p_2},\quad \left(\sum_{i=1}^{n}|x_i|^{p_2}\right)^{1/p_2}\leqslant c_2\left(\sum_{i=1}^{n}|x_i|^{p_1}\right)^{1/p_1}.$$

- 7. Pokazać, że $\ell^{p_1} \subset \ell^{p_2}$, jeśli $p_1 \leqslant p_2$. Wskazówka: Jeśli $||x||_{p_1} \leqslant 1$, to $|x_n| \leqslant 1$ dla wszystkich n.
- 8. Skonstruować ciąg $x \in \ell^2$ taki, że $x \notin \ell^p$ dla każdego p < 2.
- 9. Pokazać całkową nierówność Höldera

$$\int_{\Omega} f(x)g(x)d\mu(x) \leqslant \left(\int_{\Omega} f(x)^{p}\right)^{1/p} \left(\int_{\Omega} g(x)^{q}\right)^{1/q},$$

dla nieujemnych funkcji f(x) i g(x), p i q jak w zadaniu 1.

10. Pokazać nierówność trójkąta dla normy

$$||f||_p = \left(\int_{\Omega} |f(x)|^p d\mu(x)\right)^{1/p},$$

gdzie f jest zespoloną funkcją na Ω i $p\geqslant 1$. Wskazówka: Wyprowadzić wzór analogiczny do wzoru z zadania 3.

- 11. Wskazać normę w przestrzeni \mathbb{R}^n inną niż normy $\| \|_p$ dla $1 \leq p \leq \infty$, ale taką, że $\|e_i\| = 1$ dla każdego z wektorów standardowej bazy e_1, \ldots, e_n .
- 12. Pokazać, że w przestrzeni liniowej unormowanej X zbiory

$$\{x \in X : ||x|| \le 1\}$$
 $\{x \in X : ||x|| = 1\}$

są domknięte.

- 13. Pokazać, że ciąg funkcji f_n jest zbieżny do funkcji f w normie przestrzeni C[0,1] (tzn. $||f_n f||_{\infty} \to 0$ przy $n \to \infty$) wtedy i tylko wtedy, gdy f_n jest jednostajnie zbieżny do f.
- 14. Udowodnić zupełność przestrzeni C[0,1]. Wskazówka: Dla ciągu Cauchy'ego f_n pokazać zbieżność punktową korzystając z nierówności

$$|f_n(t) - f_m(t)| \leqslant ||f_n - f_m||_{\infty}$$

i z zupełności \mathbb{C} (lub \mathbb{R}). Niech f będzie granicą punktową ciągu f_n . Pokazać, że f jest jednostajną granicą ciągu f_n korzystając z nierówności

$$|f_n(t) - f(t)| \le |f_m(t) - f(t)| + ||f_n - f_m||_{\infty}.$$

Pokazać, że f jest ciągła, korzystając z nierówności

$$|f(t) - f(s)| \le |f_n(t) - f_n(s)| + 2||f_n - f||_{\infty}.$$

Uwaga: Dowód przenosi się na przypadek C(K) przestrzeni funkcji ciągłych na przestrzeni metrycznej (lub topologicznej) K.

- 15. Niech c oznacza przestrzeń liniową ciągów zbieżnych o wyrazach zespolonych. Niech $\|\{x_n\}\|=\sup_{n\geqslant 1}|x_n|$. Pokazać, że c jest przestrzenią Banacha. Pokazać, że ciągi zbieżne do 0 tworzą domkniętą podprzestrzeń c_0 w c. Wskazówka: Można utożsamić c z C(K), gdzie $K=\{1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots\}\cup\{0\}$.
- 16. Udowodnić twierdzenie Weierstrassa o gęstości wielomianów w C[-1,1] korzystając z tego, że każda funkcja ciągła o okresie 2π jest jednostajną granicą ciągu wielomianów trygonometrycznych. Wskazówka: Dla funkcji ciągłej f(x) określonej na [-1,1] funkcja $f(\cos t)$ ma okres 2π i jest parzysta. Z tego powodu można ją aproksymować jednostajnie wielomianami trygonometrycznymi postaci

$$a_0 + a_1 \cos t + \ldots + a_n \cos nt$$
.

Zauważyć, że $\cos nt$ jest wielomianem od $\cos t$ tzn.

$$\cos nt = T_n(\cos t),$$

gdzie T_n jest wielomianem stopnia n. Pokazać, że funkcję f(x) można aproksymować jednostajnie wielomianami postaci

$$a_0 + a_1 T_1(x) + \ldots + a_n T_n(x)$$
.

17. Dla funkcji ciągłej f na przedziale [0,1] określamy wielomian Bernsteina wzorem

$$B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} (1-x)^{n-k} x^k.$$

Pokazać, że $B_n(f)$ jest jednostajnie zbieżny do f. Wskazówka: Zajrzeć do ksiązki S. /Lojasiewicz, Wstęp do teorii funkcji rzeczywistych (rozdział II §3, Twierdzenie 1).

- 18. Udowodnić, że jeśli $x_n \to x$ oraz $y_n \to y$ w przestrzeni unormowanej X, to $x_n + y_n \to x + y$. Pokazać, że jeśli $\lambda_n \to \lambda$, gdzie $\lambda_n, \lambda \in \mathbb{C}$, to $\lambda_n x_n \to \lambda x$.
- 19. Pokazać zupełność przestrzeni $L^p(0,1)$, dla $p \ge 1$. Wskazówka: Postępować tak jak w przypadku p=1. Skorzystać z nierówności

$$\|\sum |f_n|\|_p \leqslant \sum \|f_n\|_p.$$

- 20. W przestrzeni $C_{\mathbb{R}}[0,1]$ znaleźć odległość funkcji x^n od dwuwymiarowej podprzestrzeni $E = \{ax + b : a, b \in \mathbb{R}\}.$
- 21. Pokazać, że dla $0 funkcjonał <math>||(x_n)||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{1/p}$ określony na ciągach dla których szereg występujący w definicji jest zbieżny, nie jest normą, bo nie spełnia warunku trójkąta. Pokazać, że spełnione są nierówności

$$||x+y||_p^p \le ||x||_p^p + ||y||_p^p, \qquad ||x+y||_p \le 2^{1/p-1}(||x||_p + ||y||_p).$$

- 22. Pokazać, że $L^1(0,1)$ zawiera dwie liniowo niezależne funkcje f i g takie, że $||f+g||_1 = ||f||_1 + ||g||_1$. Pokazać, że w normie przestrzeni $L^p(0,1)$, dla 1 , taka sytuacja nie jest możliwa.
- 23. Pokazać, że jeśli X Y są przestrzeniami unormowanymi z normami $\|\cdot\|_X, \|\cdot\|_Y,$ to ich suma prosta $X\oplus Y$ jest przestrzenią unormowaną z normą

$$||x \oplus y|| = ||x||_X + ||y||_Y.$$

Pokazać, że jeśli X i Y są zupełne, to również $X \oplus Y$ jest zupełna.

24. Dla ciągu X_n przestrzeni unormowanych z normami $\|\cdot\|_{X_n}$ określamy sumę prostą X

$$X = \left\{ \{x_n\}_{n \in \mathbb{N}} \mid x_n \in X_n, \|\{x_n\}\| = \sum_{n=1}^{\infty} \|x_n\|_{X_n} < \infty \right\}.$$

Pokazać, że X jest przestrzenią unormowaną z normą $\|\{x_n\}\|$. Pokazać, że X jest zupełna jeśli wszystkie X_n są przestrzeniami zupełnymi.

25. Udowodnić, że jeśli podzbiory $A\subset B$ przestrzeni metrycznej X spełniają warunek, że A jest gęsty w B oraz B jest gęsty w X, to A jest gęsty w X.

- 26. Wykorzystać poprzednie zadanie aby udowodnić, że wielomiany o współczynnikach wymiernych stanowią gęsty podzbiór przestrzeni $C_{\mathbb{R}}[0,1]$ z normie $\|\cdot\|_{\infty}$. Udowodnić, że ciągi $(x_n)_{n=1}^{\infty}$ o skończenie wielu wyrazach niezerowych takich, że $x_n \in \mathbb{Q} + i\mathbb{Q}$ stanowią gęsty podzbiór każdej przestrzeni ℓ^p dla $1 \leq p < \infty$, w normie $\|\cdot\|_p$.
- *27. Dla domkniętej podprzestrzeni M w przestrzeni Banacha X z normą $\|\cdot\|_X$, określamy przestrzeń ilorazową X/M jako przestrzeń klas równoważności względem relacji w X

$$x \sim y$$
 jeśli $x - y \in M$.

Oznaczając klasę równoważności elementu $x \in X$ przez [x] określamy dodawanie i mnożenie przez skalar wzorem

$$\alpha[x] + \beta[y] = [\alpha x + \beta y].$$

Pokazać, że ta definicja jest poprawna, tzn. prawa strona zależy jedynie od klas równoważności, z których pochodzą x i y, a nie od samych elementów x i y.

Określmy

$$||[x]|| = \inf_{m \in M} ||x - M||_X.$$

Pokazać, że ta funkcja ma własności normy. Pokazać, że X/M z tą normą jest przestrzenią Banacha. Wskazówka: Pokazać, że jeśli $\sum ||[x_n]|| < \infty$, to szereg $\sum [x_n]$ jest zbieżny. W tym celu dla każdego n wybrać $m_n \in M$ tak, aby

$$||x_n - m_n||_X \le 2 \inf_{m \in M} ||x_n - m_n||_X.$$

Zauważyć, że szereg $\sum (x_n - m_n)$ jest zbieżny w X. Oznaczając jego sumę przez s pokazać, że $[s] = \sum [x_n]$ w X/M.

28. Niech X = C[0,1] i $M = \{f \mid f(0) = f(1) = 0\}$. Pokazać, że X/M można utożsamić z \mathbb{C}^2 , z normą $\|(x_1, x_2)\| = \max\{|x_1|, |x_2|\}$.

*29. $\{x_n\}_{n=0}^{\infty}$ jest gęstym podzbiorem kuli jednostkowej w przestrzeni Banacha X. Określmy odwzorowanie $J: \ell^1 \to X$, wzorem

$$J: \{a_n\}_{n=0}^{\infty} \longmapsto \sum_{n=0}^{\infty} a_n x_n$$

- (a) Pokazać, że odwzorowanie J jest ciągłe.
- (b) Pokazać, że kerJ jest domknięte i że J "podnosi" się do ciągłego odwzorowania \hat{J} z przestrzeni ilorazowej $\ell^1/\ker J$ w X.
- (c) Pokazać, że Im $\hat{J}=X$. Wskazówka. Przy ustalonym x, ||x||=1, wybrać indukcyjnie $x_{n(i)}$ tak aby

$$||x - \sum_{i=1}^{k} 2^{-i+1} x_{n(i)}|| < 2^{-k-1}., \quad k = 0, 1, \dots$$

- (d) Zamieniając w (c) liczbę 2 na 3,4, . . . , pokazać, że \hat{J} jest izometrią.
- 30. Znaleźć normę operatora identycznościowego z $L^p(a,b)$ w $L^q(a,b)$.
- 31. Rozważamy przestrzeń $X=\mathbb{R}^n$ z normą $\|\cdot\|_2$. Niech A będzie macierzą symetryczną wymiaru $n\times n$ o wyrazach rzeczywistych. Pokazać, że norma operatora liniowego związanego z A z przestrzeni X w siebie, jest równa największej z liczb $|\lambda|$, gdzie λ jest wartością własną macierzy A. Jaka jest norma operatora liniowego związanego z macierzą ortogonalną U, tzn. taką, że $U^T=U^{-1}$.
- 32. Dla jakich funkcji a(x) operator mnożenia przez a(x) jest ciągłym odwzorowaniem z $L^p(0,1) \le L^q(0,1)$?
- 33. Obliczyć normę operatora

$$s_n f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) f(x-t) dt$$

w przestrzeni $C[-\pi,\pi]$ i w przestrzeni $L^2(-\pi,\pi)$, gdzie $D_n(t)=1+2\cos t+\ldots+2\cos nt$.

34. Podzbiór A przestrzeni unormowanej X nazywamy ograniczonym, jeśli $\sup_{a\in A}\|a\|<\infty$. Pokazać, że operator liniowy $T:X\to Y$ z przestrzeni unormowanej X w przestrzeń unormowaną Y jest ograniczony wtedy i tylko wtedy, gdy przekształca ograniczone podzbiory X w ograniczone podzbiory Y.

35. X, Y, Z są trzema przestrzeniami unormowanymi oraz $T_1: X \to Y$ i $T_2: Y \to Z$ są operatorami liniowymi ograniczonymi. Pokazać, że złożenie T_2T_1 jest operatorem ograniczonym z X do Z oraz $||T_2T_1|| \leq ||T_1|||T_2||$. Pokazać, że jeśli $T: X \to X$ jest operatorem liniowym ograniczonym, to dowolna potęga T^n (w sensie złożenia) jest operatorem ograniczonym oraz $||T^n|| \leq ||T||^n$.

- 36. Pokazać, że jeśli $T \neq 0$ jest operatorem liniowym ograniczonym z X do Y oraz ||x|| < 1 dla pewnego $x \in X$, to ||Tx|| < ||T||.
- 37. Pokazać, że operator $T:\ell^\infty \to \ell^\infty$ określony wzorem

$$T(x_1, x_2, \dots, x_n, \dots) = (x_1, \frac{1}{2}x_2, \dots, \frac{1}{n}x_n, \dots)$$

jest liniowy i ograniczony.

- 38. Pokazać, że obraz $\operatorname{Im} T$ operatora liniowego ograniczonego $T:X\to Y$ nie musi być domkniętą podprzestrzenią w Y. Wskazówka: Poprzednie zadanie.
- 39. Pokazać, że jądro ograniczonego operatora liniowego $T: X \to Y$, tzn. $\ker T = \{x \in X | Tx = 0\}$ jest domkniętą podprzestrzenią w X.
- 40. Pokazać, że odw
zorowanie odwrotne $T^{-1}: \operatorname{Im} T \to X$ operatora $T: X \to Y$ nie musi być ograniczone. Wskazówka: Zadanie 37.
- 41. Znaleźć obraz operatora $T:C[0,1] \to C[0,1]$

$$(Tf)(x) = \int_{0}^{x} f(y) \, dy.$$

Znaleźć operator odwrotny $T^{-1}: \operatorname{Im} T \to C[0,1]$. Czy T jest liniowy i ograniczony ?

42. Na C[0,1] określamy operatory S i T wzorami

$$(Tf)(x) = x \int_{0}^{1} f(t) dt$$
 $(Sf)(x) = xf(x).$

Czy operatory T i Ssą przemienne, tzn. czy TS=ST? Obliczyć normy operatorów $S,\ T,\ ST,\$ i TS.

43. Niech X będzie przestrzenią liniową wszystkich ograniczonych funkcji o wartościach rzeczywistych określonych na \mathbb{R} z normą

$$||f|| = \sup_{x \in \mathbb{R}} |f(x)|.$$

123

Dla ustalonej liczby δ określmy odwzorowanie $(Tf)(x) = f(x - \delta)$. Pokazać, że T jest ograniczonym operatorem liniowym X w siebie.

- 44. Pokazać, że normy w przestrzeniach ℓ^p oraz $L^p(0,1)$ nie pochodzą od iloczynu skalarnego dla $p \neq 2$. Wskazówka: Wskazać dwa elementy, dla których nie zachodzi równość równoległoboku.
- 45. Pokazać, że jeśli $\langle x,y\rangle=0$, to $||x+y||^2=||x||^2+||y||^2$. Czy odwrotna implikacja jest prawdziwa? Podać przykład.
- 46. W przestrzeni z iloczynem skalarnym warunek ||x|| = ||y|| implikuje $\langle x+y, x-y \rangle = 0$. Co to oznacza geometrycznie ?
- 47. Sprawdzić tożsamość Apoloniusza w przestrzeni z iloczynem skalarnym.

$$||z - x||^2 + ||z - y||^2 = \frac{1}{2}||x - y||^2 + 2||z - \frac{1}{2}(x + y)||^2.$$

Pokazać, że można ją uzyskać z równości równoległoboku.

- 48. Pokazać, że jeśli $x, y \neq 0$ oraz $\langle x, y \rangle = 0$, to wektory x i y są liniowo niezależne. Rozszerzyć tę własność na większą liczbę wektorów.
- 49. Udowodnić, że jeśli $x_n \xrightarrow{n} x$ oraz $y_n \xrightarrow{n} y$, to $\langle x_n, y_n \rangle \xrightarrow{n} \langle x, y \rangle$.
- 50. Pokazać, że $\langle x,y\rangle=0$ wtedy i tylko wtedy, gdy $\|x+\alpha y\|\geqslant \|x\|$ dla wszystkich skalarów α .
- 51. Podzbiór A przestrzeni liniowej nazywamy wypukłym, jeśli z warunku $x,y\in A$ wynika, że $\frac{1}{2}(x+y)\in A$. Pokazać, że jeśli A jest niepustym, wypukłym i domkniętym podzbiorem przestrzeni Hilberta \mathcal{H} , to dla każdego wektora $x\in \mathcal{H}$ istnieje jedyny wektor $z\in A$ spełniający

$$||x - z|| = \inf\{||x - y|| : y \in A\}.$$

Wskazówka: Przeanalizować dowód z wykładu dotyczący przypadku, gdy A jest domknieta podprzestrzenia liniowa.

Pokazać, że teza nie jest prawdziwa dla przestrzeni Banacha, tzn. kres dolny może nie być osiągnięty. W szczególności teza nie jest spełniona dla domkniętych podprzestrzeni w C[0,1] i w ℓ^1 .

52. Pokazać, że w niepustym i domkniętym zbiorze wypukłym A przestrzeni Hilberta istnieje element z taki, że

$$||z|| = \inf\{||y|| : y \in A\}.$$

- 53. Pokazać, że domkniecie zbioru wypukłego jest zbiorem wypukłym.
- 54. Pokazać, że zbiór $M=\{x=(x_i): \sum x_i=1\}$ w przestrzeni \mathbb{C}^n jest wypukły i domknięty. Znaleźć w M element o najmniejszej normie euklidesowej.
- 55. Dla zbioru M w przestrzeni Hilberta \mathcal{H} przez M^{\perp} oznaczamy zbiór wektorów x takich, że $\langle x,v\rangle=0$ dla wszystkich $v\in M$. Pokazać, że M^{\perp} jest domkniętą podprzestrzenią liniową.
- 56. Pokazać, że jeśli $A \subset B$, to

$$A \subset A^{\perp \perp}$$
 $B^{\perp} \subset A^{\perp}$ $A^{\perp \perp \perp} = A^{\perp}$

- 57. Pokazać, że dla podzbioru A w przestrzeni Hilberta, $A^{\perp\perp}$ jest najmniejszą domkniętą podprzestrzenią zawierającą A.
- 58. Niech A oznacza podzbiór przestrzeni ℓ^2 złożony ciągów absolutnie sumowalnych o sumie współrzędnych równej 0. Pokazać, że A jest podprzestrzenią liniową w ℓ^2 . Znaleźć domknięcie zbioru A w przestrzeni ℓ^2 .
- 59. Pokazać, że jeśli M jest domkniętą podprzestrzenią przestrzeni Hilberta, to $M^{\perp\perp}=M.$
- 60. Podzbiór A unormowanej przestrzeni liniowej nazywamy liniowo gęstym jeśli przestrzeń linA jest gęsta. Pokazać, że podzbiór A przestrzeni Hilberta jest liniowo gęsty wtedy i tylko wtedy, gdy $A^{\perp} = \{0\}$.
- 61. Udowodnić twierdzenie Jordana—von Neumanna dla przypadku rzeczywistego, tzn. pokazać, że norma spełniająca warunek równoległoboku

na rzeczywistej przestrzeni liniowej pochodzi od rzeczywistego iloczynu skalarnego. Wskazówka: Zdefiniować funkcję

$$R(x,y) = \langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

Następnie pokazać, że ta funkcja określa iloczyn skalarny według poniższego schematu.

- (a) Pokazać, że $\langle x, y \rangle = \langle y, x \rangle$ oraz $\langle -x, y \rangle = -\langle x, y \rangle$.
- (b) Korzystając z równości równoległoboku wykazać, że

$$\langle x_1 + x_2, 2y \rangle = 2\langle x_1, y \rangle + 2\langle x_2, y \rangle.$$

(c) Na podstawie (b) udowodnić, że $\langle x,2y\rangle=2\langle x,y\rangle=\langle 2x,y\rangle,$ a następnie

$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle.$$

(d) Udowodnić przez indukcję, że

$$\langle nx, y \rangle = n \langle x, y \rangle, \qquad n \in \mathbb{N}$$

a następnie

$$\langle rx, y \rangle = r \langle x, y \rangle, \qquad r \in \mathbb{Q}.$$

(e) Zauważyć, że jeśli $x_n \xrightarrow{n} x$, to $\langle x_n,y \rangle \xrightarrow{n} \langle x,y \rangle$. Pokazać, że zatem

$$\langle rx, y \rangle = r \langle x, y \rangle, \qquad r \in \mathbb{R}.$$

62. Udowodnić twierdzenie Jordana–von Neumanna dla przypadku zespolonego. Wskazówka: Określmy R(x,y) jak w zadaniu 1. Następnie niech

$$\langle x, y \rangle = R(x, y) - iR(ix, y).$$

- (a) Pokazać, że R(ix, y) = -R(x, iy) a następnie $\langle y, x \rangle = \overline{\langle x, y \rangle}$.
- (b) Pokazać, że $\langle ix,y\rangle=i\langle x,y\rangle$ a następnie na podstawie zadania 1 $\langle \lambda x,y\rangle=\lambda\langle x,y\rangle$ dla $\lambda\in\mathbb{C}.$
- 63. Dla rzeczywistej przestrzeni liniowej unormowanej X określamy przestrzeń V=X+iX z normą $\|x+iy\|=\sqrt{\|x\|^2+\|y\|^2}$, dla $x,y\in X$. Pokazać, że V jest rzeczywistą przestrzenią unormowaną. Pokazać, że

jeśli norma w X spełnia warunek równoległoboku, to również norma w V spełnia ten warunek. Pokazać, że V jest zespoloną przestrzenią unormowaną z mnożeniem

$$(\alpha + i\beta)(x + iy) = (\alpha x - \beta y) + i(\beta x + \alpha y), \quad \alpha, \beta \in \mathbb{R}, \ x, y \in X$$

wtedy i tylko wtedy, gdy norma w X spełnia warunek równoległoboku.

64. Macierzą Grama układu wektorów $\{x_i\}_{i=1}^n$ w przestrzeni z iloczynem skalarnym nazywamy macierz $((x_j,x_i))_{i,j=1}^n$. Pokazać, że wyznacznik macierzy Grama nie znika wtedy i tylko wtedy, gdy wektory $\{x_i\}_{i=1}^n$ są liniowo niezależne. Wskazówka: Jeśli wektory są liniowo zależne, to wiersze macierzy są liniowo zależne. To dowodzi implikacji w jedną stronę. Dla dowodu w drugą stronę zastosować indukcję względem n. Zauważyć, że wyznacznik Grama można zapisać jako iloczyn skalarny wektora v_n z wektorem x_n , gdzie

$$v_n = \begin{vmatrix} (x_1, x_1) & (x_2, x_1) & \dots & (x_n, x_1) \\ (x_1, x_2) & (x_2, x_2) & \dots & (x_n, x_2) \\ \vdots & \vdots & & \vdots & & \vdots \\ (x_1, x_{n-1}) & (x_2, x_{n-1}) & \dots & (x_n, x_{n-1}) \\ x_1 & x_2 & \dots & x_n \end{vmatrix}.$$

Pokazać, że v_n jest ortogonalny do wektorów x_1, \ldots, x_{n-1} . Niech Δ_k oznacza wyznacznik Grama pierwszych k wektorów układu. Pokazać, że $(v_n, v_n) = \Delta_{n-1}\Delta_n$. Jeśli wyznacznik Grama znika, to $v_n = 0$. To oznacza, że wektor x_n jest liniową kombinacją pozostałych wektorów, bo z założenia indukcyjnego współczynnik przy x_n jest niezerowy (współczynnik ten jest równy Δ_{n-1}).

Pokazać, że wyznacznik Grama jest zawsze nieujemny.

65. Niech $\{x_i\}_{i=1}^{\infty}$ będzie układem wektorów liniowo niezależnych. Pokazać, że wektory

$$y_n = \frac{1}{\sqrt{\Delta_{n-1}\Delta_n}} v_n$$

stanowią układ ortonormalny o własnościach:

- (a) $y_n \perp \{x_1, \dots, x_{n-1}\};$
- (b) $(y_n, y_n) = 1$;

- (c) $(y_n, x_n) > 0$:
- (d) $\lim\{y_1,\ldots,y_n\} = \lim\{x_1,\ldots,x_n\}.$

Pokazać, że warunki (a)–(d) wyznaczają układ $\{y_n\}$. Przejście od układu $\{x_n\}$ do układu $\{y_n\}$ nosi nazwę procesu ortogonalizacji Grama-Schmidta.

- 66. Niech $\mathcal{H}=L^2(-1,1)$ oraz $x_n(t)=t^{n-1}$, dla $n=1,2,\ldots$ Pokazać, że układ x_n jest liniowo niezależny. Znaleźć y_1, y_2 oraz y_3 .
- 67. Niech

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}).$$

Pokazać, że H_n jest wielomianem stopnia n. Udowodnić, że

$$\int_{-\infty}^{+\infty} H_m(x)H_n(x)e^{-x^2}dx = 0, \quad n \neq m,$$

tzn. H_n tworzą układ ortogonalny w $L^2(\mathbb{R}, e^{-x^2}dx)$. H_n nazywamy wielomianami Hermite'a.

68. Sprawdzić, że układ funkcji Haara $h_{m,n}(x), m \ge 0, 1 \le n \le 2^m$, gdzie $h_{0,1} = 1 \text{ oraz}$

$$h_{m,n}(x) = \begin{cases} 2^{m/2} & \frac{n-1}{2^m} \le x < \frac{2n-1}{2^{m+1}}, \\ -2^{m/2} & \frac{2n-1}{2^m} \le x < \frac{n}{2^m}, \\ 0 & x < \frac{n-1}{2^m} \text{ lub } x \geqslant \frac{n}{2^m}, \end{cases}$$

jest ortonormalny względem iloczynu skalarnego $\langle f, g \rangle = \int_0^1 f(x)g(x) dx$. Czy istnieje niezerowa funkcja ciągła (całkowalna z kwadratem) na przedziale [0, 1] ortogonalna do wszystkich funkcji tego układu?

69. Znaleźć rzuty ortogonalne wektorów na podane podprzestrzenie:

(a)
$$f(x) = x^3$$
, $M = \ln\{1, x\}$, $\mathcal{H} = L^{\frac{1}{2}}(0, 1)$.
(b) $f(x) = x$, $M = \ln\{1, \cos x, \sin x\}$, $\mathcal{H} = L^{2}(-\pi, \pi)$.

(b)
$$f(x) = x$$
, $M = \ln\{1, \cos x, \sin x\}$, $\mathcal{H} = L^2(-\pi, \pi)$

70. Obliczyć normy funkcjonałów na przestrzeni \mathcal{H} .

(a)
$$\varphi(f) = \int_0^1 x f(x) dx$$
, $\mathcal{H} = L^2(0, 1)$.

(b)
$$\varphi(f) = \int_{-\infty}^{\infty} f(x) e^{-x^2} dx$$
, $\mathcal{H} = L^2(\mathbb{R}, e^{-x^2} dx)$.

(c)
$$\varphi(\lbrace x_n \rbrace) = \sum_{n=0}^{\infty} \frac{x_n}{n+1}, \quad \mathcal{H} = \ell^2.$$

- 71. Czy funkcjonał $f \mapsto f(0)$ rozszerza się z C[-1,1] do ograniczonego funkcjonału liniowego na przestrzeni Hilberta $L^2(-1,1)$?
- 72. Pokazać, że iloczyn skalarny na przestrzeni z iloczynem skalarnym jest ograniczoną formą półtoraliniową.
- 73. Formą hermitowską nazywamy formę półtoraliniową spełniającą

$$B(y,x) = \overline{B(x,y)}.$$

Pokazać, że ograniczona forma hermitowska jest postaci

$$B(x,y) = \langle x, Ay \rangle$$

dla ograniczonego operatora liniowego spełniającego $A^* = A$.

74. Formę półtoraliniową nazywamy nieujemną jeśli $B(x,x) \ge 0$ dla wszystkich wektorów $x \in \mathcal{H}$. Pokazać, że forma nieujemna jest hermitowska oraz spełnia nierówność Schwarza

$$|B(x,y)|^2 \leqslant B(x,x)B(y,y).$$

- 75. Dla nieujemnej formy półtoraliniowej B(x,y) określmy $p(x) = \sqrt{B(x,x)}$. Pokazać, że $p(x+y) \le p(x) + p(y)$ oraz $p(\lambda x) = |\lambda| p(x)$.
- 76. Pokazać, że $||A^*|| = ||A||$ dla ograniczonego operatora liniowego A w przestrzeni Hilberta \mathcal{H} .
- 77. Dla zespolonej funkcji k(x,y) ciągłej określamy operator

$$Af(x) = \int_0^1 k(x, y) f(y) \, dy$$

dla $f \in L^2(0,1).$ Sprawdzić, że Ajest ograniczony. Znaleźć operator $A^*.$

129

78. Znaleźć operator sprzężony do operatora

$$(Tf)(x) = \int_0^x f(y) \, dy$$

określonego na $\mathcal{H} = L^2(0,1)$.

- 79. Pokazać, że odwzorowanie $A \mapsto A^*$ na przestrzeni $B(\mathcal{H}) := B(\mathcal{H}, \mathcal{H})$ jest antyliniowe.
- 80. Pokazać, że dla $A, B \in B(\mathcal{H})$ mamy $(AB)^* = B^*A^*$.
- 81. Niech $A: \to \mathcal{H}$ będzie ograniczonym operatorem odwracalnym. Pokazać, że $(A^{-1})^* = (A^*)^{-1}$.
- 82. Niech A będzie ograniczonym operatorem na \mathcal{H} spełniającym $A(M_1) \subset M_2$, dla podprzestrzeni $M_1, M_2 \subset \mathcal{H}$. Pokazać, że $A^*(M_2^{\perp}) \subset M_1^{\perp}$.
- 83. Pokazać, że dla operatora $A \in B(\mathcal{H})$ zachodzi

$$\ker A = (\operatorname{Im} A^*)^{\perp} \qquad \operatorname{Im} A \subset (\ker A^*)^{\perp}.$$

- 84. Pokazać, że jeśli dwa operatory liniowe T_1 , T_2 spełniają $\langle T_1 x, x \rangle = \langle T_2 x, x \rangle$ dla każdego $x \in \mathcal{H}$, to $T_1 = T_2$.
- 85. Dla ograniczonego operatora liniowego $T:\mathcal{H}\to\mathcal{H}$ określamy operator $S=I+T^*T,$ gdzie I oznacza operator identycznościowy. Pokazać, że S spełnia

$$||x|| \le ||Sx|| \le (1 + ||T||^2)||x||.$$

Następnie pokazać, że S jest różnowartościowy i że podprzestrzeń Im S jest domknięta. Korzystając z zadania 13 udowodnić, że Im S jest gęsta w \mathcal{H} . Pokazać, że S jest odwracalny oraz $||S^{-1}|| \leq 1$.

86. Załóżmy, że ograniczony operator liniowy $T:\mathcal{H}\to\mathcal{H}$ ma skończenie wymiarowy obraz. Pokazać, że T ma postać

$$Tx = \sum_{j=1}^{n} \langle x, v_j \rangle w_j$$

dla pewnych wektorów $v_i, w_i \in \mathcal{H}$.

87. Załóżmy, że ograniczony operator liniowy $T:X\to Y$, gdzie X i Y są przestrzeniami unormowanymi, ma skończenie wymiarowy obraz. Pokazać, że T ma postać

$$Tx = \sum_{j=1}^{n} \varphi_j(x) w_j,$$

dla pewnych elementów $w_j \in Y$ oraz ograniczonych funkcjonałów liniowych φ_j określonych na X.

- 88. Niech $\{e_n\}_{n=1}^{\infty}$ będzie bazą ortonormalną w przestrzeni \mathcal{H} . Określmy operator prawego przesunięcia $T:\mathcal{H}\to\mathcal{H}$ przez $Te_n=e_{n+1}$, dla $n=1,2,\cdots$. Znaleźć obraz, jądro i normę operatora T i T^* . Obliczyć T^*T oraz TT^* .
- 89. Znaleźć normę operatora Tokreślonego na $\ell^2(\mathbb{N})$ przez

$$T(x_1, x_2, \dots, x_n, \dots) = (\lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n, \dots),$$

dla ustalonego ograniczonego ciągu liczb zespolonych.

90. T_n jest ciągiem ograniczonych operatorów liniowych z przestrzeni unormowanej X w przestrzeń Banacha Y. Pokazać, że zbiór $\{x \in X: \lim_{n \to \infty} T_n x \text{ istnieje}\}$ jest równy X lub jest zbiorem I-ej kategorii. Wskazówka: Niech

$$A = \{x \in X : \lim_{n \to \infty} T_n x \text{ istnieje}\},$$

$$B = \{x \in X : \sup_n ||T_n x|| < +\infty\}.$$

Mamy $A \subset B$. Jeśli A nie jest pierwszej kategorii to również B nie jest I-ej kategorii. Zatem normy $||T_n||$ są wspólnie ograniczone. Pokazać, że wtedy A jest domknięty. Ponieważ nie jest I-ej kategorii, to zawiera kulę otwartą. Ale A jest podprzestrzenią liniową. Zatem A = X.

- (**) Pokazać, że teza nie musi być spełniona jeśli Ynie jest przestrzenią Banacha.
- 91. Niech T_n będą ograniczonymi operatorami liniowymi z przestrzeni Banacha X w przestrzeń unormowaną Y. Pokazać, że jeśli $T_n x$ jest zbieżny dla każdego x z przestrzeni Banacha X, to normy $||T_n||$ są wspólnie ograniczone. Pokazać, że operator określony wzorem

$$Tx = \lim_{n} T_n x$$

jest ograniczony oraz $||T|| \leq \liminf ||T_n||$.

- 92. Niech a_n będzie ciągiem o wyrazach zespolonych o własności, że szereg $\sum_{n=1}^{\infty}a_nx_n \text{ jest zbieżny dla każdego ciągu }\{x_n\}\in c_0. \text{ Pokazać, że }\sum_{n=1}^{\infty}|a_n|<+\infty. \text{ Wskazówka: } \text{Rozważyć funkcjonały }\varphi_N(x)=\sum_{n=1}^Na_nx_n \text{ dla }x\in c_0.$
- 93. Ciąg x_n wektorów w przestrzeni Hilberta \mathcal{H} ma własność $\sup_n |(y, x_n)| < +\infty$ dla dowolnego $y \in \mathcal{H}$. Pokazać, że $\sup_n ||x_n|| < +\infty$. Wskazówka. Rozważyć funkcjonały liniowe $y \mapsto (y, x_n)$.
- 94. * $\{a_{mn}\}_{n,m=0}^{\infty}$ jest macierzą zespoloną o własności : dla każdego $m \in \mathbb{N}$ istnieje ciąg $\{x_n^{(m)}\}_{n=0}^{\infty} \in \ell^2$, dla którego szereg $\sum_{n=0}^{\infty} a_{mn} x_n^{(m)}$ jest rozbieżny. Pokazać, że istnieje taki ciąg $\{x_n\}_{n=0}^{\infty} \in \ell^2$, że szereg $\sum_{n=0}^{\infty} a_{mn} x_n$ jest rozbieżny dla wszystkich $m \in \mathbb{N}$.
- 95. Ciąg elementów x_n w przestrzeni unormowanej X ma własność, że ciąg liczbowy $\varphi(x_n)$ jest ograniczony dla dowolnego ciągłego funkcjonału φ określonego na X. Pokazać, że ciąg $||x_n||$ jest ograniczony.
- 96. Niech X oznacza przestrzeń unormowaną złożoną z ciągów zespolonych $x=\{x_n\}$ dla których tylko skończenie wiele wyrazów jest różnych od zera, z normą $\|x\|=\max_n\|x_n|$. Określmy operator liniowy $T:X\to X$ wzorem

$$Tx = (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \ldots).$$

Pokazać, że T jest ograniczony, ale T^{-1} nie jest ograniczony. Czy to przeczy twierdzeniu o odwzorowaniu otwartym ?

- 97. X jest przestrzenią Banacha względem dwu norm $\|\cdot\|_1$, $\|\cdot\|_2$, przy czym $\|\cdot\|_1 \leqslant c\|\cdot\|_2$, dla pewnej stałej c. Pokazać, że $\|\cdot\|_2 \leqslant d\|\cdot\|_1$, dla pewnej stałej d.
- 98. M, N są domkniętymi podprzestrzeniami przestrzeni Banacha X takimi, że każdy element $x \in X$ ma jednoznaczne przedstawienie $x = m+n, m \in M, n \in N$. Pokazać, że istnieje stała c taka, że $\|m\| + \|n\| \leqslant c\|x\|$, dla każdego $x \in X$.

99. Niech $C_{per}(\mathbb{R})$ oznacza przestrzeń funkcji ciągłych o okresie 2π . Pokazać, że każdy ograniczony funkcjonał liniowy na tej przestrzeni ma postać $\varphi(f) = \int_0^{2\pi} f(x) dg(x)$ dla pewnej funkcji lewostronnie ciągłej funkcji o wahaniu ograniczonym na przedziale $[0, 2\pi]$ oraz $\|\varphi\| = Var(g)$.

100. Operator T jest określony na $C(\mathbb{T})$ następująco:

$$Tf = \sum_{-\infty}^{+\infty} a_n \hat{f}(n) e^{inx},$$

dla pewnego ustalonego ciągu a_n , gdzie $\widehat{f}(n)=(2\pi)^{-1}\int_{-\pi}^{\pi}f(t)e^{-int}dt$. Załóżmy, że $Tf\in C(\mathbb{T})$ dla dowolnej $f\in C(\mathbb{T})$. Pokazać, że T jest ograniczonym operatorem liniowym na $C(\mathbb{T})$. Wskazówka: Sprawdzić, że T ma domknięty wykres.

- 101. Pokazać, jeśli operator T z przestrzeni unormowanej X w przestrzeń unormowaną Y ma domknięty wykres oraz T^{-1} istnieje, to również T^{-1} ma domknięty wykres. Wskazówka: Znaleźć związek pomiędzy wykresami operatorów T i T^{-1} .
- 102. Niech X i Y będą przestrzeniami unormowanymi oraz $T_1:X\to Y$ ma domknięty wykres natomiast $T_2:X\to Y$ jest ograniczony. Pokazać, że T_1+T_2 ma domknięty wykres.
- 103. Pokazać, że jądro operatora liniowego $T:X\to Y$ o wykresie domkniętym jest domkniętą podprzestrzenią w X.
- *104. Niech T będzie ograniczonym różnowartościowym operatorem liniowym z przestrzeni Banacha X w przestrzeń Banacha Y. Pokazać, że jeśli obraz T(X) jest domknięty, to istnieje stała $\varepsilon>0$ taka, że dla $S\in B(X,Y)$ jeśli $\|T-S\|\leqslant \varepsilon$, to S jest różnowartościowy. Pokazać, że jeśli obraz T(X) nie jest domknięty, to dla dowolnej liczby $\varepsilon>0$ istnieje operator $S\in B(X,Y)$ taki, że $\|S-T\|<\varepsilon$ oraz S nie jest różnowartościowy.
- *105. Niech T będzie ograniczonym operatorem liniowym z przestrzeni Banacha X na przestrzeń Banacha Y. Pokazać, że istnieje stała $\varepsilon>0$ taka, że dla $S\in B(X,Y)$ jeśli $\|T-S\|\leqslant \varepsilon$, to S(X)=Y. Wskazówka: Wyznaczyć ε z twierdzenia o odwzorowaniu otwartym. Następnie dla

 $y \in Y$ skonstruować x tak, aby Sx = y naśladując dowód twierdzenia o odwzorowaniu otwartym.

- 106. Niech \mathcal{A} będzie samosprzężoną podalgebrą w C(K) oraz a, b dwoma ustalonymi punktami w zwartej przestrzeni Hausdorffa K. Załóżmy, że \mathcal{A} nie znika w K oraz rozdziela dowolne dwa punkty x_1 i x_2 z wyjątkiem a i b. Udowodnić, że każdą funkcję $f \in C(K)$ o własności f(a) = f(b) można jednostajnie przybliżyć funkcjami z \mathcal{A} .
- 107. Pokazać, że dla każdej funkcji $f \in C^1_{\mathbb{R}}[0,1]$ istnieje ciąg wielomianów $p_n(x)$ taki, że

$$\max_{0 \le x \le 1} |p_n(x) - f(x)| + \max_{0 \le x \le 1} |p'_n(x) - f'(x)| \stackrel{n}{\to} 0.$$

- 108. Czy każda funkcja ciągła z $C([0,1] \cup [2,3])$ jest jednostajną granicą wielomianów ?
- 109. Niech \mathcal{A} oznacza rodzinę wielomianów p(x) o własności p''(0)=0. Czy każda funkcja ciągła z C[1,2] jest jednostajną granicą elementów z \mathcal{A} ?
- 110. Czy dla $\varepsilon > 0$ i funkcji $f \in C[0,1]$ można znaleźć wielomian p(x) taki, że $||f-p||_{\infty} < \varepsilon$ oraz p(2) = 5, p'(2) = 6?
- 111. Rozważmy przestrzeń Hilberta $\mathcal{H}=L^2((0,1)\times(0,1))$. Pokazać, że jeśli funkcja $h(x,y)\in\mathcal{H}$ spełnia

$$\int_0^1 \int_0^1 h(x,y) f(x) g(y) \, dx \, dy = 0, \qquad f,g \in L^2(0,1)$$

to h(x, y) = 0 prawie wszędzie.

112. Funkcja $f \in C[0,1]$ spełnia

$$\int_0^1 x^{10n} f(x) \, dx = 0, \qquad n \geqslant 10.$$

Pokazać, że f = 0.

113. Pokazać, że dla miary σ -skończonej μ na zbiorze X przestrzenią sprzężoną do $L^1(X,\mu)$ jest $L^\infty(X,\mu)$. Uwaga: W przestrzeni $L^\infty(X,\mu)$ norma jest określona przez

$$||f||_{\infty} = \inf \left\{ \sup_{x \in X \setminus A} |f(x)| : A \subset X, \ \mu(A) = 0 \right\}.$$

114. Obliczyć normy funkcjonałów na przestrzeni $L^p(\mathbb{R},\mu)$.

(a)
$$\varphi(f) = \int_{0}^{1} f(x)dx$$
, $d\mu(x) = dx$

(b)
$$\varphi(f) = \int_{-\infty}^{\infty} f(x)e^{-x^2}dx$$
, $d\mu(x) = e^{-x^2}dx$.

(a)
$$\varphi(f) = \int_{0}^{1} f(x)dx, \qquad d\mu(x) = dx$$
(b)
$$\varphi(f) = \int_{-\infty}^{\infty} f(x)e^{-x^{2}}dx, \quad d\mu(x) = e^{-x^{2}}dx.$$
(c)
$$\varphi(f) = \sum_{n=1}^{\infty} f(n)e^{-n}, \qquad \mu = \sum_{n=1}^{\infty} \delta_{n}.$$

- 115. Które z funkcjonałów określonych na wielomianach rozszerzają się do ograniczonych funkcjonałów na C[0,1]?
 - (a) $\varphi(a_0 + a_1x + \ldots + a_nx^n) = a_0,$
 - (b) $\varphi(a_0 + a_1 x + \ldots + a_n x^n) = a_1,$
 - (c) $\varphi(a_0 + a_1x + \ldots + a_nx^n) = a_0 + \frac{1}{2}a_1 + \frac{1}{3}a_2 + \ldots + \frac{1}{n+1}a_n,$ (d) $\varphi(a_0 + a_1x + \ldots + a_nx^n) = a_0 + 2a_1 + 2^2a_2 + \ldots + 2^na_n.$
- 116. Λ jest ciągłym funkcjonałem liniowym nad $\mathbb C$ na przestrzeni funkcji C[0,1] o wartościach zespolonych. A nazywamy samosprzeżonym jeśli $\Lambda(f) = \Lambda(f)$. Pokazać, że Λ jest samosprzężony wtedy i tylko wtedy, gdy $\Lambda(f)$ przyjmuje wartości rzeczywiste dla rzeczywistych funkcji f. Pokazać, że każdy ograniczony funkcjonał Λ liniowy można rozłożyć na sumę $\Lambda = \Lambda_1 + i\Lambda_2$, gdzie Λ_1, Λ_2 są samosprzężone, oraz rozkład ten jest jedyny.
- 117. Funkcjonał Λ na rzeczywistej przestrzeni $C_{\mathbb{R}}(X)$, gdzie X jest zwartą przestrzenią topologiczną, nazywamy dodatnim jeśli $\Lambda(f) \geqslant 0$, dla każdej nieujemnej funkcji f. Pokazać, że $\|\Lambda\| = \Lambda(1)$, gdzie 1 oznacza funkcję stale równą 1. Wskazówka. Skorzystać z nierówności $-\|f\|_{\infty}1 \le$ $f \leq ||f||_{\infty} \mathbf{1}$. Pokazać, że jeśli funkcjonał Λ spełnia $||\Lambda|| = \Lambda(\mathbf{1})$, to Λ jest funkcjonałem dodatnim. Wskazówka. Jeśli $0 \le f \le 1$, to $||2f-1|| \le 1$.
- 118. Załóżmy, że liczby m_n mają własność

$$\forall x \in [0, 1] \ \sum_{k=0}^{n} a_k x^k \geqslant 0 \Rightarrow \sum_{k=0}^{n} a_n m_n \geqslant 0,$$

dla dowolnych n i $a_k \in \mathbb{R}$. Pokazać, że istnieje funkcja niemalejąca σ na przedziale [0, 1] taka, że

$$m_n = \int_0^1 x^n d\sigma(x).$$

Bibliografia 135

Wskazówka: Określić funkcjonał φ na wielomianach wzorem

$$\varphi(a_0 + a_1 x + \ldots + a_n x^n) = a_0 m_0 + a_1 m_1 + \ldots + a_n m_n.$$

Z założenia φ jest dodatni. Pokazać, że $|\varphi(p)| \leq m_0 ||p||_{\infty}$, gdzie p jest wielomianem. Pokazać, że φ rozszerza się jednoznacznie do ograniczonego funkcjonału Φ na $C_{\mathbb{R}}[0,1]$. Zauważyć, że Φ jest dodatni. Skorzystać z twierdzenia Riesza o postaci funkcjonałów na $C_{\mathbb{R}}[0,1]$.

119. Niech σ będzie funkcją niemalejącą na [0,1]. Dla $n \geq 0$ liczby $m_n = \int_0^1 x^n d\sigma(x)$ nazywamy momentami funkcji σ . Pokazać, że momenty są liczbami nieujemnymi oraz spełniają warunek

$$\Delta^N m_n \geqslant 0$$
 dla $N \geqslant 1, n \geqslant 0$,

gdzie $\Delta m_n = m_n - m_{n+1}$ i $\Delta^N = \Delta(\Delta^{N-1})$. Wskazówka: Obliczyć $\Delta^N x^n$ i zauważyć, że $\Delta^N \varphi(x^n) = \varphi(\Delta^N x^n)$, gdzie φ jest określone jak w zadaniu 15.

*120. Ciąg liczb nieujemnych $m_n, n \ge 0$ nazywamy całkowicie monotonicznym jeśli

$$\Delta^N m_n \geqslant 0$$
 dla $N \geqslant 1, n \geqslant 0$.

Pokazać, że istnieje funkcja niemalejąca σ na [0,1] taka, że $m_n=\int_0^1 x^n d\sigma(x)$. Wskazówka: Pokazać, że funkcjonał φ określony na wielomianach wzorem

$$\varphi(a_0 + a_1x + \ldots + a_nx^n) = a_0m_0 + a_1m_1 + \ldots + a_nm_n$$

jest dodatni. W tym celu udowodnić, że jeśli p jest wielomianem nieujemnym stopnia N, to wielomiany Bernsteina $B_n(p)$ są wielomianami stopnia N dla $n \ge N$. Ponadto z założenia $\varphi(B_n(p)) \ge 0$ oraz $\varphi(p) = \lim_n B_n(p)$.

Literatura

[1] N. I. Akhiezer, I. M. Glazman, Teoriia lineinykh operatorov v gilbertovom prostranstve I, Kharkov, Vyshcha shkola, 1977-78 (ros.); Theory of Linear Operators in Hilbert Space, New York, Dover, 1993 (ang.). Bibliografia 136

[2] J. Chmieliński, Analiza funkcjonalna Notatki do wykładu, Wydawnictwo: Wydawnictwo Naukowe Akademii Pedagogicznej 2004.

- [3] N. Dunford, J. T. Schwartz, Linear Operators, Part 1: General Theory (Vol 1), New York, Wiley, 1958.
- [4] A. Friedman, Foundations of Modern Analysis, Dover Publications Inc. 1982.
- [5] J. Górniak, T. Pytlik, Analiza funkcjonalna w zadaniach, Wyd. Pol. Wr., 1992.
- [6] E. Kreyszig, Introductory Functional Analysis with Applications, New York, Wiley 1989.
- [7] S. Prus, A. Stachura, Analiza funkcjonalna w zadaniach, Wydawnictwo Naukowe PWN Warszawa, 2007.
- [8] M. Reed, B. Simon, Methods of Modern Mathematical Physics: Functional Analysis, New York, Academic Press 1972
- [9] H. Royden, Real Analysis, MacMillan Publishing Co., 1968.
- [10] W. Rudin, Analiza funkcjonalna, PWN Wydawnictwo Naukowe 2001.
- [11] J.Rusinek: Zadania z analizy funkcjonalnej z rozwiązaniami, Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego 2006.