Probability Theory and Statistics

Rashad Gafarli 2018IVSB

https://www.kaggle.com/doaaalsenani/usa-cers-dataset

A dataset scraped from AUCTION EXPORT.com on 28 brands of clean and used vehicles for sale In the United States.

Acquired from Kaggle.com with fair use law provided by the site and poster of data.

The dataset possesses 11 variables as follows:

Price – The sale price of the vehicle in the add. Integer

Year – The vehicle registration year. Integer

Brand – The brand of the vehicle. String

Model – Model of the vehicle. String

Color – Color of the vehicle. String

State/City - The location where the car is available for purchase String

Mileage - miles traveled by vehicle. Float

Vin – Unique vehicle identification numbers as a collection of 17 characters (digits and capital letters). String

Title Status – Status indicating if a vehicle is a clean vehicle or salvage insurance in the add. String

Lot – Identification number assigned to a particular quantity or lot of material from a single manufacturer.

For cars, a lot number is combined with a serial number to form the Vehicle Identification Number.

Integer

Condition – Time left for the sale of the car on the add. String

Summary of Data:

building of Butu.					
X	price	brand	model	year	title_status
Min. : 0.0	Min. : 0	Length:2499	Length:2499	Min. :1973	Length:2499
1st Qu.: 624.5	1st Qu.:10200	Class :character	class :character	1st Qu.:2016	Class :character
Median :1249.0	Median :16900	Mode :character	Mode :character	Median :2018	Mode :character
Mean :1249.0	Mean :18768			Mean :2017	
3rd Qu.:1873.5	3rd Qu.:25556			3rd Qu.:2019	
Max. :2498.0	Max. :84900			Max. :2020	
mileage	color	vin	lot	state	country
Min. : 0	Length:2499	Length:2499	Min. :15934	8797 Length:24	499 Length: 2499
1st Qu.: 21467	class :charact	er class:charact	ter 1st Qu.:16762	5331 Class:cl	haracter Class:character
Median : 35365	Mode :charact	er Mode :charact	ter Median :16774	5058 Mode :cl	haracter Mode :character
Mean : 52299			Mean :16769:	1389	
3rd Qu.: 63473			3rd Qu.:167779	9772	
Max. :1017936			Max. :16780	5500	
condition					
Length: 2499					
Class :character					
Mode :character					

- 1. Boxplot Status and Years shows that there is an inclination for cars made more recently to be sold as clean vehicles while older cars are more likely to be put on a as salvage insurance.
- 2. Boxplot Status and Price relationship clearly displays that vehicles which are classified as salvage insurance are put on sale more cheaply compared to clean vehicles.
- 3. Boxplot Status and Mileage display that cars that have put on more miles are more likely to be salvage insurance vehicles. Remove outliers to verify.
- 4. Brand price distribution provides insight that most offers no matter the brand lie between the 7500 to 47500 range. Ford brand vehicles display the widest range as well as having some of the priciest single vehicles.
- 5. State price distribution provides insight that most prices in lie between 0 to 30000 with Kentucky having the most expensive vehicles.
- 6. Car Price histogram provides a display of the prices being prevalent between the 0 32500 range.
- 7. Car Model Years histogram displays that vehicles between 2014 and 2020 are much more frequently put-on sale compared the previous year.
- 8. The Price Year histogram shows an upward trend for prices the more modern the vehicle is.
- 9. The Most Popular Colors Display that White colored vehicles are on auction most frequently follows by Black, Gray, and Silver.
- 10. The Most Popular Colors by brand display that Toyota, Jaguar, Heartland, and Harley-Davison provide the least variety with only 1 option a color pallet, while Dodge and Chevrolet have the most variety of colors.
- 11. The Correlation Matrix provides a strong relationship between price and year of manufacture, but a weak one between price and miles travelled, and very little correlation between manufacture of a vehicle and mileage.
- 12. The Price and Mileage relationship regression displays that the more the car has been driven the lower in value it becomes.
- 13. The test and training sets display a similar regression to the total sum of data.

Status and Years Relationship

Brand Price Distribution

State Price Distribution

Car Model Years

Most Popular Colors by Brand

-50000 -

mileage

Price and Mileage Relationship

Price and Mileage Relationship

Price and Mileage Relationship

