Exercise 2: feduced density matrix and entanglement entropy $\frac{1}{1}$ $\frac{1}$

 $| \psi \rangle = \sum_{Q = 1, U} \varphi_{Q, Q} | \varphi_{1, 0} \rangle | \varphi_{1, 0} \rangle$

with the motifix elements
$$R_{11} = \frac{2}{5} (1+3+1)$$

with the motifix elements $R_{11} = \frac{2}{5} (1+3+1)$
 $R_{11} = \frac{2}{5} (1+3+1)$
 $R_{12} = \frac{2}{5} (1+3+1)$
 $R_{13} = \frac{2}{5} (1+3+1)$
 $R_{14} = \frac{2}{5} (1+3+1)$
 $R_{15} = \frac{2}{5} (1+3+1)$

For state 1477
$$\frac{1}{100z} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 eigenvalue: $100z = 100$

$$Se = -W \ln W - W_2 \ln W_2 = -0 \ln 0 - 1 \cdot \ln 1 = 0$$

$$\lim_{x \to 0} x \cdot \ln x = 0$$

For state
$$|\psi_{z}\rangle$$
 $\overline{\psi_{0102}} = \begin{pmatrix} \frac{1}{z} & 0 \\ 0 & \frac{1}{z} \end{pmatrix}$ $W_{1} = \frac{1}{z}$ $W_{z} = \frac{1}{z}$

$$Se = -\frac{1}{2} \left| n(\frac{1}{2}) - \frac{1}{2} \left| n(\frac{1}{2}) \right| = \left| h^2 \right|$$

For state 143>
$$\frac{1}{4}$$
 $\frac{1}{4}$

$$\det\left(\overline{+}_{0},0,2-\lambda\right) = \begin{vmatrix} 1 & 1 & 1 \\ \overline{+} & 1 & 1 \\ \overline{+} & \overline{+} & 1 \end{vmatrix} = (\overline{+} - \lambda)^{2} - \overline{1}_{0}^{2} = 0 \Rightarrow \lambda_{1} = \overline{2} \quad \lambda_{2} = 0$$

$$=7 \quad W_{1} = \frac{1}{2} \quad W_{2} = 0$$

$$S_e = -\frac{1}{z} \ln(\frac{1}{z}) - D \ln D = \frac{1}{z} \ln 2$$

日期:		