MAC

A message authentication code is an algorithm that is applied to a message. The output of the algorithm is a MAC tag (or just tag) that is sent along with the message. Security is formulated by requiring that no adversary can generate a valid MAC tag on any message that was not sent by the legitimate communicating parties.

DEFINITION 4.1 (message authentication code – syntax): A message authentication code or MAC is a tuple of probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) fulfilling the following:

- 1. Upon input 1^n , the algorithm Gen outputs a uniformly distributed key k of length n; $k \leftarrow \text{Gen}(1^n)$.
- 2. The algorithm Mac receives for input some $k \in \{0,1\}^n$ and $m \in \{0,1\}^*$, and outputs some $t \in \{0,1\}^*$. The value t is called the MAC tag.
- 3. The algorithm Vrfy receives for input some $k \in \{0,1\}^n$, $m \in \{0,1\}^*$ and $t \in \{0,1\}^*$, and outputs a bit $b \in \{0,1\}$.
- 4. For every n, every $k \in \{0,1\}^n$ and every $m \in \{0,1\}^*$ it holds that $\operatorname{Vrfy}_k(m,\operatorname{Mac}_k(m))=1$.

If there exists a function $\ell(\cdot)$ such that $\mathsf{Mac}_k(\cdot)$ is defined only over messages of length $\ell(n)$ and $\mathsf{Vrfy}_k(m,t)$ outputs 0 for every m that is not of length $\ell(n)$, then we say that (Gen, Mac, Vrfy) is a fixed length MAC with length parameter ℓ .

No polynomial-time adversary should be able to generate a valid MAC tag on any "new" message (i.e., a message not sent by the communicating parties).

Fixed length MACs

If there exists a function $l(\cdot)$ such that $Mack(\cdot)$ is defined only over messages of length l(n) and Vrfyk (m,t) outputs 0 for every m that is not of length l(n), then we say that (Gen, Mac, Vrfy) is a fixed length MAC with length parameter l.