COVID-19 optimal vaccination policies:

A modeling study on efficacy, natural and vaccine-induced immunity responses, June 15, 2022

CONACYT-UNISON-ITSON Mathematical biology group

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

"Classic" Vaccination

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

"Classic" Vaccination With vaccination

$$S'(t) = -\beta IS - \lambda_{V}(t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

"Classic" Vaccination

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

$$x^{\top} = (S, I, R, V)$$

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

"Classic" Vaccination

Gumel,

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

$$x^{\top} = (S, I, R, V)$$

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

"Classic" Vaccination

Gumel,

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

$$x^{\top} = (S, I, R, V)$$

To fix ideas:

$$S'(t) = -\beta IS$$

 $I'(t) = \beta IS - \gamma I$
 $R'(t) = \gamma I$
 $S(0) = S_0, I(0) = I_0, R(0) = 0$
 $S(t) + I(t) + R(t) = 1$

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

$$x^{\top} = (S, I, R, V)$$

"Classic" Vaccination

Gumel,

$$\lambda_V := \underbrace{\boldsymbol{\xi}}_{\textit{cte.}} \cdot S(t)$$

Alexander, M. E., Bowman, C., Moghadas, S. M., Summers, R., Gumel, A. B., and Sahai, B. M. (2004). A vaccination model for transmission dynamics of influenza. SIAM Journal on Applied Dynamical Systems,

3(4):503-524.

Iboi, E. A., Ngonghala, C. N., and Gumel, A. B. (2020). Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.?
Infectiuos disease modelling, 5:510–524.

To fix ideas:

$$S'(t) = -\beta IS$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$S(0) = S_0, I(0) = I_0, R(0) = 0$$

$$S(t) + I(t) + R(t) = 1$$

$$S'(t) = -\beta IS - \lambda_{V}(x, t)$$

$$I'(t) = \beta IS - \gamma I$$

$$R'(t) = \gamma I$$

$$V'(t) = \lambda_{V}(x, t)$$

$$S(0) = S_{0}, I(0) = I_{0},$$

$$R(0) = 0, V(0) = 0$$

$$S(t) + I(t) + R(t) + V(t) = 1$$

$$x^{\top} = (S, I, R, V)$$

"Classic" Vaccination

Gumel.

$$\lambda_V := \underbrace{\boldsymbol{\xi}}_{cte.} \cdot S(t)$$

Optimal Controlled:

Hethcote, H. W. and Waltman, P. (1973). Optimal vaccination schedules in a deterministic epidemic model.

Mathematical Biosciences, 18(3-4):365-381.

Wickwire, K. (1977).

Mathematical models for the control of pests and infectious diseases: A survey.

Theoretical Population Biology, 11(2):182-238.

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\it T}$ and vaccination coverage

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{COV} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\it T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{COV} , T

$$\lambda_V = -\frac{1}{T}\ln(1-X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

X_{COV} : 70%, T: one year

$$\lambda_{\text{V}}\approx 0.003\,29$$

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\it T}$ and vaccination coverage

$$X_{cov} = X(T)$$

 $\approx 1 - \exp(-\lambda_V T).$

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T}\ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

 $\lambda_{V}\approx 0.003\,29$

If S(0)N corresponds to HMS (812229 inhabitants) $\approx 2668 \, \mathrm{jabs/day}.$

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\cal T}$ and vaccination coverage

Given X_{COV} , T

$$\lambda_V = -\frac{1}{T}\ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

 X_{COV} : 70%, *T*: one year

 $\lambda_{V}\approx 0.003\,29$

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\it T}$ and vaccination coverage

Common Objectives

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{COV} .

X_{COV} : 70%, T: one year

 $\lambda_{V}\approx 0.003\,29$

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\it T}$ and vaccination coverage

Common Objectives

Who to vaccine first? (Allocation)

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

X_{COV} : 70%, T: one year

$$\lambda_{\text{V}}\approx 0.003\,29$$

Hypothesis

Cost

The **effort** expended in "**preventing-mitigating** an epidemic" by vaccination is **proportional** to the vaccination rate λ_V .

Jabs Counter If $S(0) \approx 1$, $X(\cdot)$: counts vaccine doses, then

$$X(t) = 1 - \exp(-\lambda_V t),$$

estimates the fraction of vaccinated individuals. Thus, for time horizon ${\it T}$ and vaccination coverage

Common Objectives

Who to vaccine first? (Allocation) How and when? (Administration)

Given X_{cov} , T

$$\lambda_V = -\frac{1}{T} \ln(1 - X_{cov})$$

estimates the constant vaccination rate s.t., afther time T, we reach X_{cov} .

X_{COV} : 70%, T: one year

$$\lambda_{V}\approx 0.003\,29$$

Common Objectives

* Who to vaccine first? (Allocation)

Common Objectives

- ⋆ Who to vaccine first? (Allocation)
- * How and when? (Administration)

Cost

Common Objectives

- ⋆ Who to vaccine first? (Allocation)
- \star How and when? (Administration)

Cost

$$J(u) := \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

Common Objectives

- ⋆ Who to vaccine first? (Allocation)
- * How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T],$$

$$x(0) = x_0$$

Common Objectives

- ★ Who to vaccine first? (Allocation)
- * How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$
$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T],$$
$$x(0) = x_0$$

- Bubar, K. M., Reinholt, K., Kissler, S. M., Lipsitch, M., Cobey, S., Grad, Y. H., and Larremore, D. B. (2021).

 Model-informed covid-19 vaccine prioritization strategies by age and serostatus.
 - Science, 371(6532):916-921.
- Buckner, J. H., Chowell, G., and Springborn, M. R. (2021).

 Dynamic prioritization of covid-19 vaccines when social distancing is limited for essential workers.
 - Proceedings of the National Academy of Sciences, 118(16).
- Matrajt, L., Eaton, J., Leung, T., and Brown, E. R. (2020). Vaccine optimization for covid-19: Who to vaccinate first? Science Advances, 7(6).

Common Objectives

- * Who to vaccine first? (Allocation)
- * How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T],$$

$$x(0) = x_0$$

Covid-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses.

Mathematical Biosciences, 337:108614.

Salcedo-Varela, G. A., Peñuñuri, F., González-Sánchez, D., and Díaz-Infante, S. (2021).

Optimal piecewise constant vaccination and lockdown policies for covid-19.

Common Objectives

- * Who to vaccine first? (Allocation)
- * How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T],$$

$$x(0) = x_0$$

Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., and Olmos-Liceaga, D. (2021).

Covid-19 optimal vaccination policies: A modeling study on efficacy, natural and vaccine-induced immunity responses.

Mathematical Biosciences, 337:108614.

Salcedo-Varela, G. A., Peñuñuri, F., González-Sánchez, D., and Díaz-Infante, S. (2021).

Optimal piecewise constant vaccination and lockdown policies for covid-19. medRxiv.

Common Objectives

- * Who to vaccine first? (Allocation)
- * How and when? (Administration)

Optimal Control Problem

$$\min_{\mathbf{u} \in \mathcal{U}} J(u) = \varphi(x(T)) + \int_0^T f(t, x(t), u(t))$$

$$\dot{x}(t) = b(t, u(t), x(t)), \quad \text{a.e. } t \in [0, T],$$

$$x(0) = x_0$$

Aim of this talk

To illustrate the formulation of optimal vaccination policies based in vaccination rate.

$$\lambda_f := \frac{\beta_A I_A + \beta_S I_S}{N^*}$$

$$N^* := N - D$$

$$\underset{\text{natural death}}{\longrightarrow} \text{natural death}$$

Vaccine Hypotheses

Imperfect preventive
One dose
Symptomatic exception
Action over susceptible

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

Vaccine Hypotheses

Imperfect preventive
One dose
Symptomatic exception
Action over susceptible

 λ_V : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

Notation

- ε vaccine efficacy
- p Generation of symptoms probability

Vaccine Hypotheses

- Imperfect preventive
- One dose
- Symptomatic exception
- Action over susceptible

Notation

- ε vaccine efficacy
- p Generation of symptoms probability

 λ_V : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

SAGE objectives

Vaccine profile (Efficacy, immunity)

Coverage

Time Horizon

Notation

- arepsilon vaccine efficacy
- p Generation of symptoms probability

 λ_V : vaccination rate

 $\frac{1}{\delta_V} : \text{vaccine-induced} \\ \frac{1}{\delta_R} : \text{natural}$

SAGE objectives

Vaccine profile (Efficacy, immunity) Coverage Time Horizon

Immunity: natural (reinfection) vaccine-induced

© CONACYT-UNISON-ITSON Mathematical biology group

Reproductive number

Reproductive number

 λ_V : vaccination rate $\mathbf{u}_V(\mathbf{t})$: control signal

 $\lambda_V + u_V(t)$: modulates the number of administrated vaccine doses per day

 λ_V : vaccination rate $\mathbf{u}_V(\mathbf{t})$: control signal

 $\lambda_V \ + \ u_V(t)$: modulates the number of administrated vaccine doses per day

$$\begin{aligned} \min_{\{u_v \in \mathcal{U}\}} J(u_V) &= \varphi(x(T)) \\ &+ \int_0^T f(t, x(t), u_V(t)) \\ s. \, t. \\ &\dot{x}(t) = b(t, u(t), x(t)) \\ &x(0) = x_0 \end{aligned}$$

The disability-adjusted life year (DALY)

$$DALY(c, s, a, t) = YLL(c, s, a, t) + YLD(c, s, a, t)$$

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

N(c, s, a, t): is the number of deaths due to the cause c L(s, a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

I(c, s, a, t): number of incident cases for cause c

DW(c, s, a): disability weight for cause c

L(c,s,a,t) : average duration of the case until remission or death

(years)

$$J(u_V) :=$$

The disability-adjusted life year (DALY)

$$DALY(c, s, a, t) = YLL(c, s, a, t) + YLD(c, s, a, t)$$

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

N(c, s, a, t): is the number of deaths due to the cause c L(s, a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

I(c, s, a, t): number of incident cases for cause c

DW(c, s, a): disability weight for cause c

L(c,s,a,t) : average duration of the case until remission or death

(years)

$$\min_{u_V \in \mathscr{U}[0,T]} J(u_V) :=$$

The disability-adjusted life year (DALY)

$$DALY(c, s, a, t) = YLL(c, s, a, t) + YLD(c, s, a, t)$$

For given cause c, age a, sex s and year t

YLL: Years of life lost due to premature death.

$$YLL(c, s, a, t) = N(c, s, a, t) \times L(s, a)$$

N(c, s, a, t): is the number of deaths due to the cause c L(s, a): is a standard loss function specifying years of life lost

YLD: Years of life list due to disability

$$YLD(c, s, a, t) = I(c, s, a, t) \times DW(c, s, a) \times L(c, s, a, t)$$

I(c, s, a, t): number of incident cases for cause c

DW(c, s, a): disability weight for cause c

L(c,s,a,t) : average duration of the case until remission or death

(years)

$$\min_{u_V \in \mathcal{U}[0,T]} J(u_V) := \underbrace{a_D(D(T) - D(0))}_{:=YLL} + \underbrace{a_S(Y_{I_S}(T) - Y_{I_S}(0))}_{:=YLD}$$

$$\begin{split} & \underset{u_V \in \mathscr{U}[0,T]}{\min} J(u_V) := \underbrace{a_D(D(T) - D(0))}_{:=YLL} + \underbrace{a_S(Y_{l_S}(T) - Y_{l_S}(0))}_{:=YLD} \\ & u_V(\cdot) \in [u_{\min}, u^{\max}], \\ & \kappa I_S(t) \leq B, \quad \forall t \in [0,T], \end{split}$$

$$\begin{split} \min_{u_V \in \mathcal{U}[0,T]} J(u_V) &:= \underbrace{a_D(D(T) - D(0))}_{:=YLL} + \underbrace{a_S(Y_{l_S}(T) - Y_{l_S}(0))}_{:=YLD} \\ \underline{u_V(\cdot)} &\in [\underline{u_{\min}}, \underline{u^{\max}}], \\ \kappa I_S(t) &\leq B, \quad \forall t \in [0,T], \end{split}$$

$$\begin{split} \min_{u_V \in \mathcal{U}[0,T]} J(u_V) &:= \underbrace{a_D(D(T) - D(0))}_{:= YLL} + \underbrace{a_S(Y_{I_S}(T) - Y_{I_S}(0))}_{:= YLD} \\ u_V(\cdot) &\in [u_{\min}, u^{\max}], \\ \kappa I_S(t) &\leq B, \quad \forall t \in [0,T], \end{split}$$

$$\min_{u_V \in \mathscr{U}[0,T]} J(u_V) := a_D(D(T) - D(0)) + a_S(Y_{I_S}(T) - Y_{I_S}(0))$$

s.t.
$$f_{\lambda} := \frac{\beta_{S}I_{S} + \beta_{A}I_{A}}{\bar{N}}$$

$$S'(t) = \mu \bar{N} + \delta_{V}V + \delta_{R}R$$

$$-(f_{\lambda} + \mu + \lambda_{V} + u_{V}(t))S$$

$$E'(t) = f_{\lambda}(S + (1 - \varepsilon)V) - (\mu + \delta_{E})E$$

$$I'_{S}(t) = p\delta_{E}E - (\mu + \alpha_{S})I_{S}$$

$$I'_{A}(t) = (1 - p)\delta_{E}E - (\mu + \alpha_{A})I_{A}$$

$$R'(t) = (1 - \theta)\alpha_{S}I_{S} + \alpha_{A}I_{A} - (\mu + \delta_{R})R$$

$$D'(t) = \theta\alpha_{S}I_{S}$$

$$V'(t) = (\lambda_{V} + u_{V}(t))S - ((1 - \varepsilon)f_{\lambda}V + \mu + \delta_{V})V$$

$$X'(t) = (\lambda_{V} + u_{V}(t))(S + E + I_{A} + R)$$

$$S(0) = S_{0}, E(0) = E_{0}, I_{S}(0) = I_{S_{0}},$$

$$I_{A}(0) = I_{A_{0}}, R(0) = R_{0}, D(0) = D_{0},$$

$$V(0) = 0, X(0) = 0, X(T) = x_{coverage},$$

$$V(t) = [u_{min}, u^{max}],$$

$$KI_{S}(t) \leq B, \quad \forall t \in [0, T],$$

$$\bar{N}(t) = S + E + I_{S} + I_{A} + R + V.$$

Vaccine efficacy

Developer	Vaccine Name	Efficacy %, (95% CI)	Reference
Pfizer-BioNTech Gamaleya Institute Oxford University-	BNT162b2 Sputnik V AZD1222	95 (90.3–97.6) 91.6 (85.6–95.2) 74.6 (41.6-88.9)	[1] [4] [2]
AztraZeneca Johnson & Johnson* Sinovac Biotech*	Ad26.COV2.S CoronaVac	57 %, 66 % or 72 % 50.4 %	[3] [5]

Table: Vaccine efficacy of some of the approved developments for emergency use. (*) No available information about the confidence intervals.

The response of COVID-19 burden due to vaccine efficacy

The response of COVID-19 burden due to vaccine efficacy

The response of COVID-19 burden due to vaccine-immunity

The response of COVID-19 burden due to vaccine-immunity

The response of COVID-19 burden due to natural-immunity

The response of COVID-19 burden due to natural-immunity

Time (days)

Time (days)

Important questions

- (*) Optimal vaccination strategies in terms of target groups and under different possible supply scenarios
 - Two or more vaccine platforms
 - Multi-doses
- Potential reduction in infectiousness of breakthrough infections among vaccinated individuals
- (*) Potential differences in vaccine efficacy against mild or severe/fatal COVID-19 disease

Important questions

- (*) Optimal vaccination strategies in terms of target groups and under different possible supply scenarios
 - Two or more vaccine platforms
 - Multi-doses
- (*) Potential reduction in infectiousness of breakthrough infections among vaccinated individuals
- (*) Potential differences in vaccine efficacy against mild or severe/fatal COVID-19 disease

Important questions

- (*) Optimal vaccination strategies in terms of target groups and under different possible supply scenarios
 - Two or more vaccine platforms
 - Multi-doses
- (*) Potential reduction in infectiousness of breakthrough infections among vaccinated individuals
- (*) Potential differences in vaccine efficacy against mild or severe/fatal COVID-19 disease

Working group

Dr. Saúl Díaz Infante Velasco
Dr. Manuel A. Acuña Zegarra
Dr. Daniel Olmos Liceaga
Dr. David Baca Carrasco
Dr. David González-Sánchez
Dr. Francisco Peñuñuri
M.C. Gabriel Salcedo-Varela

CONACYT-UNISON
UNISON
UADY
UNISON

Adviser

Dr. Jorge X. Velasco Hernández UNAM-Juriquilla

Thanks a lot

GitHub

References I

- DAGAN, N., BARDA, N., KEPTEN, E., MIRON, O., PERCHIK, S., KATZ, M. A., HERNÁN, M. A., LIPSITCH, M., REIS, B., AND BALICER, R. D. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting.

 New England Journal of Medicine (feb 2021), NEJMoa2101765.
- EMARY, K. R. W., GOLUBCHICK, T., ALEY, P. K., ARIANI, C. V., ANGUS, B. J., BIBI, S., BLANE, B., BONSALL, D., CICCONI, P., CHARLTON, S., CLUTTERBUCK, E., COLLINS, A., COX, T., DARTON, T., AND ET. AL. Efficacy of ChAdOx1 nCoV-19 (AZD1222) Vaccine Against SARS-CoV-2 VOC 202012/01 (B.1.1.7). SSRN (2021).
- JOHNSON & JOHNSON.

 Johnson & Johnson Announces Single-Shot Janssen COVID-19 Vaccine
 Candidate Met Primary Endpoints in Interim Analysis of its Phase 3

 ENSEMBLE Trial, January 2021.

 Accessed February 15, 2021.

LUGONOV, D. Y., DOLZHIKOVA, I. V., SHCHEBLYAKOV, D. V., TUKHVATULIM, A. I., ZUBKUVA, O. V., DZHARULLAEVA, A. S., KOVYRSHINA, A. V., LUBENETS, N. L., GROUSOVA, D. M., EROHOVA, A. S., BOTIKOV, A. G., IZHAEVA, F. M. POPOVA, O., OZHAROVSKAYA, T. A., ESMAGAMBETOV, I. B., FAVORSKAYA, I. A., ZRELKIN, D. I., AND VORONINA, D. V. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet (2021).

New York Times.
Coronavirus Vaccine Tracker, January 2020.
Accessed January 20, 2021.