BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI HYDERABAD CAMPUS SECOND SEMESTER 2019- 2020 COURSE HANDOUT (PART II)

Date: 06/01/2020

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : CS F342

Course Title : Computer Architecture

Instructor-in-charge : Chetan Kumar V Instructors : Chetan Kumar V

Email : <u>chetan@hyderabad.bits-pilani.ac.in</u>

1. Scope and Objective:

This course aims at introducing the concept of computer architecture. It involves design aspects, and deals with the current trends in computing architecture. System resources such as memory technology and I/O subsystems needed to achieve proportional increase in performance will also be discussed.

Processor performance criteria, performance bench-marks, arithmetic circuits, CPU design - instruction set architecture, instruction execution, Single and Multicycle implementation, Pipeline design, Hazards, methods of overcoming hazards, Branch prediction, Memory subsystems including cache optimization, Instruction level Parallelism

2. Learning Outcome:

- Understand various factors affecting CPU (e.g. CPU Performance, Power Consumption etc.)
- Understand the fundamentals of instruction set architectures and their relationship to the CPU design.
- Understand the principles behind implementation of a basic MIPS processor.
- Understand the operation of pipelined CPUs including pipeline hazards and different ways to solve them.
- Understand the principles of memory organization, Caches and Virtual memory.
- Understand the basic principles of advanced pipelined processors and Multi-core processors.
- Design and emulate a single cycle or pipelined CPU by given specifications using Verilog Hardware Description Language (HDL).

3. Text Book:

(T1) Patterson, D.A. & J.L. Hennessy, Computer Organization and Design, Elsevier, 4th ed., 2009.

4. Reference Books:

- (R1) Patterson, D.A. & J.L. Hennessy Computer Architecture: A Quantitative Approach, 5th Edition, 2012
- (R2) William Stallings, Computer Organisation & Architecture, Pearson, 8th ed., 2010.
- (R3) Hamacher et. al, Computer Organisation, McGraw Hill, 5th ed., 2002.
- (R4) Samir Palnitkar, *Verilog HDL: A Guide to Digital Design and Synthesis*, Pearson Education, Asia, 2003.

5. Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1	Introduction	Introduction to the course	1.1-1.3
2-4	CPU Performance and its	Current Trends in technology,	1.4-1.6
	factors, Power limit and	power, Performance, Amdahl's law,	
5 40	evolution of CPU	Problems	0.4.0.40.0.40
5-10	RISC Architecture & Instruction Set	Classification of ISA, RISC	2.1-2.10, 2.16
11		Instructions and encoding, Problems RISC Processor data path	4.1-4.4
11	Data path Design	Implementation	4.1-4.4
12	Control Hardware	RISC Processor control path Implementation	Appendix-D and Class Notes
13-15	Pipelining Overview, Pipelined Datapath and Control	Pipelining concepts, introduction to Data and Control Hazards, Pipeline Implementation, Problems	4.5-4.6
16-19	Data Hazards, Control hazards, Branch Prediction	Forwarding, stall condition implementation, Problems	4.7-4.9
Reading	Computer Arithmetic	Implementation of Basic arithmetic	3.1-3.4
Assignment		operations, Problems	2525
20-21	Floating Point Arithmetic	Implementation of Floating-point arithmetic operations, Problems	3.5-3.7
22-23	Memory Organization Introduction	Organization of memory	5.1 and Class Notes
24-29	Basics of cache, Measuring and improving performance of Cache	Basics of cache, Direct mapped, Fully associative, cache performance, Problems	5.2-5.3
30-32	Virtual Memory	Virtual Memory, Page table, TLB, Problems	5.4
33-35	Advanced Topics: Advanced Instruction Level Parallelism	Overview, ILP based processor designs	4.10, Class Notes
36-39	Modern Processors: Special Purpose, Multicore	Multicore processor challenges, Cache Coherence	7.1-7.6, Class Notes
40-41	Storage and IO Organization,	Buses and other connection between	6.1-6.2
	Interfacing of IO devices	processor, memory and I/O devices,	6.5-6.6
D !!	Character C	Interfacing of IO devices	000400
Reading Assignment	Storage Concepts	Storage Concepts	6.3-6.4, 6.9

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Sem Examination	90 Min	60(20%)	6/3 9.00 -	СВ
			10.30AM	
Surprise Quizzes	To be announced in Class	30(10%)		ОВ
Weekly Lab Experiments	NA	60(20%)		OB
(Reports)+ Lab Examination				
Assignments	NA	30(10%)		OB

Comprehensive Evermination	3 Hrs	120(40%)	12/05 EN	CD
Comprehensive Examination	S DIS	120(40%)	12/05 FIN	СБ

- 7. **Self-Study/Reading Assignment:** "Course will have some self-study components which will be announced periodically"
- **8. Chamber Consultation Hours:** To be announced in the class
- **9. Notices:** Notices regarding the course will be put up on CMS.
- **10. Makeup Policy:** No makeup exam allowed without prior permission.
- **11. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor - in - charge CS F342