24年 第七晚讲义: 输入捕获

● 上节课我们讲了如何用定时器复用引脚产生PWM波,这节课讲如何用定时器复用引脚去计算PWM 波的占空比和频率

• 0. 关于蓝桥杯与最终考核

- 因为蓝桥杯软件赛道选拔赛的结果应该马上要出来了,排名靠前的参加比赛可以报销
- 我们实验室主攻蓝桥杯电子赛,下周我们会进行一个考核,这个考核其实相当于电子赛的选拔了,同时也是我们实验室成员的选拔
- 软件赛道今年结果不理想的同学更想参加电子赛的同学,和以后想进入实验室的同学要参加 下周的考核哦!
- 特别强调! **电子赛和软件赛是互斥的! 大家只能二选一!**
- 最终考核的形式还是先给大家一个模板,不过外设文件都是有的,不需要大家自己写,主要需要完成的是主函数部分,通过按键完成不同的操作,**必考的内容是: PWM、定时器、LED 和按键**

• 1. 定时器主要功能

计数 定时 输入捕获 输出比较 将计数器计数值 对输入信号进行 脉冲计数,使用 和设定值进行比 时间控制,通过 捕获,实现对脉 使用微控制器内 对微控制器内部 冲的频率测量, 较,根据比较结 部的外部时钟 的时钟脉冲进行 可用于对外部输 果输出不同电平, (PCLK) 来计数, 入信号脉冲宽度 计数实现定时功 用于控制输出波 是对固定周期的 的测量, 比如测 形,比如直流电 能。 脉冲信号计数。 量电机转速。 机的调速。

- 前几次课,我们已经讲了计数、定时、输出比较
- 今天的课主要结合输出比较讲解输入捕获

• 2. 输入捕获与输出比较对比

- 输出比较:用于比较定时器的计数寄存器的值(CNT)和比较寄存器的值(CCR),当计数器 到达比较值时,会触发特定事件,如:
 - 1. 更改输出引脚的状态(高电平或低电平)→PWM 脉冲宽度调制
 - 2. 产生中断或DMA请求(应该讲不到了)
- 输入捕获:通过捕获输入信号的某些时刻的定时器计数值从而对信号精确分析
 - 工作原理:
 - 输入信号接入:外部信号接入到 STM32F407 的定时器通道(如 TIMx CHy)

- 触发事件: 当输入信号发生指定的边沿变化(上升沿或下降沿)时,定时器的捕获/ 比较寄存器(如 CCRy)将记录当前定时器的计数值
- 中断/标志: 发生捕获事件后, 会设置一个中断标志或触发中断, 用户可以在中断服务函数中读取捕获的值并进行计算

• 常见用途:

- 测量信号频率:通过捕获两个相邻上升沿或下降沿的计数值,计算时间间隔,从而得到信号的频率
- 测量信号的占空比: 捕获信号的上升沿和下降沿, 计算高电平持续时间与周期的比例
- 脉冲宽度测量: 捕获信号的上升沿和下降沿,直接计算高电平或低电平持续时间、

• 3. 原理讲解

• 其实上节课的东西听懂了这里就非常简单哈,t2-t1就是高电平持续时间

• 上升沿: 从低电平→高电平

• 下降沿: 从高电平→低电平

• 4. 输入捕获的两种情况

- 因为输入捕获需要两个定时器,一个定时器(TIM14)去产生PWM波,一个定时器(TIM5)去输入捕获,所以设计到两种情况
 - (1) TIM5在正常时间范围内捕捉到了,此时用一个变量接收捕获值,就是高电平的持续时间
 - (2)TIM5在正常时间范围内未捕获到,TIM14产生的PWM波高电平持续的时间过长了,TIM5溢出了都没捕获到,此时用一个变量接收溢出次数,溢出次数×溢出一次所需要的时间+捕获值=高电平的持续时间

• 5. 串口

• 因为时间原因,我们没法讲串口的原理了,大家只需要知道usart.c是系统提供的串口文件就行了,和delay.c一样的

- delay.c中有delay_ms()来延时
- usart.c中有printf()函数来输出,用法和C语言中是一样的
- 怎么确定COM口? 设备管理器!
- 工具: sscom.exe (串口调试助手)
- 杜邦线连接PF9(输出PWM波引脚)和PAO(开启输入捕获功能的引脚)
- 6. 培训任务

任务七

1:使用TIM14让PF9(LED0)产生PWM波,并用TIM5在PA0引脚开启输入捕获功能,随后检测PWM波高电平持续有效时间

2: 动态更新CNT值, 检测捕获到PWM波的频率是否发生变化

注意: 频率应用串口输出到串口调试助手窗口中