Teorema fondamentale sulle applicazioni lineari

Teorema. Siano V e W due spazi vettoriali su un campo K. Fissati un riferimento $R = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ di V e un sistema $S = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$ di n vettori di W, esiste un'unica applicazione lineare $f: V \longrightarrow W$ tale che $f(\mathbf{e}_i) = \mathbf{w}_i, i = 1, 2, \dots, n$.

Dimostrazione. Proviamo l'esistenza. Sia \mathbf{v} un arbitrario vettore di V, tale vettore è esprimibile come combinazione lineare dei vettori di R, ovvero:

$$\mathbf{v} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$$

Sia f l'applicazione che al vettore $\mathbf{v} \in V$ associa il vettore

$$f(\mathbf{v}) \equiv x_1 \mathbf{w}_1 + x_2 \mathbf{w}_2 + \dots + x_n \mathbf{w}_n \in W.$$

Proviamo che f è lineare. Siano \mathbf{v} e \mathbf{v}' due vettori di V, allora si ha $\mathbf{v} = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \cdots + x_n\mathbf{e}_n$ e $\mathbf{v}' = x_1'\mathbf{e}_1 + x_2'\mathbf{e}_2 + \cdots + x_n'\mathbf{e}_n$. Sommando membro a membro si ottiene $\mathbf{v} + \mathbf{v}' = (x_1 + x_1')\mathbf{e}_1 + (x_2 + x_2')\mathbf{e}_2 + \cdots + (x_n + x_n')\mathbf{e}_n$. Ne segue, per definizione di f, che

 $f(\mathbf{v} + \mathbf{v}') = (x_1 + x_1')\mathbf{w}_1 + (x_2 + x_2')\mathbf{w}_2 + \dots + (x_n + x_n')\mathbf{w}_n = (x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \dots + x_n\mathbf{w}_n) + (x_1'\mathbf{w}_1 + x_2'\mathbf{w}_2 + \dots + x_n'\mathbf{w}_n) = f(\mathbf{v}) + f(\mathbf{v}').$

Sia $k \in K$ e sia $\mathbf{v} \in V$. Si ha $\mathbf{v} = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \cdots + x_n\mathbf{e}_n$, e dunque $k\mathbf{v} = kx_1\mathbf{e}_1 + kx_2\mathbf{e}_2 + \cdots + kx_n\mathbf{e}_n$. Ne segue, per definizione di f, che $f(k\mathbf{v}) = kx_1\mathbf{w}_1 + kx_2\mathbf{w}_2 + \cdots + kx_n\mathbf{w}_n = k(x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \cdots + x_n\mathbf{w}_n) = kf(\mathbf{v})$. Inoltre, essendo $\mathbf{e}_i = 0\mathbf{e}_1 + \cdots + 0\mathbf{e}_{i-1} + 1\mathbf{e}_i + 0\mathbf{e}_{i+1} + \cdots + 0\mathbf{e}_n$, si ottiene, per definizione di f, che $f(\mathbf{e}_i) = 0\mathbf{w}_1 + \cdots + 0\mathbf{w}_{i-1} + 1\mathbf{w}_i + 0\mathbf{w}_{i+1} + \cdots + 0\mathbf{w}_n = \mathbf{w}_i$. Proviamo l'unicità. Siano $g: V \longrightarrow W$ e $h: V \longrightarrow W$, due applicazioni lineari tali che $g(\mathbf{e}_i) = h(\mathbf{e}_i) = \mathbf{w}_i$. Sia \mathbf{v} un arbitrario vettore di V, dunque $\mathbf{v} = x_1\mathbf{e}_1 + \cdots + x_n\mathbf{e}_n$. Allora si ha

 $g(\mathbf{v}) = g(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) = x_1g(\mathbf{e}_1) + \dots + x_ng(\mathbf{e}_n) = x_1h(\mathbf{e}_1) + \dots + x_nh(\mathbf{e}_n) = h(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) = h(\mathbf{v})$. Le applicazioni lineari $g \in h$ dunque coincidono.