This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

- 1. A method of forming an integrated circuit, including forming a dielectric film comprising, providing a substrate, providing a CDO film on the substrate, and treating the CDO film with an electron beam.
- 2. The method of claim 1 wherein the energy of the electrons in the electron beam is about 3 keV or greater.
- 3. The method of claim 1 wherein the energy of the electrons in the electron beam is about 8 keV or greater.
- 4. The method of claim 1 wherein the energy of the electrons in the electron beam is determined such that the predicted Kanaya-Okayama range of the electrons exceeds the thickness of the CDO film.
 - 5. The method of claim 1 comprising,

 preparing the CDO film on the substrate by using

 chemical vapor deposition.
 - 6. The method of claim 1 wherein the dielectric film is an interlevel dielectric film comprising, preparing a damascene structure in the CDO film.

- 7. The method of claim 6 comprising,
 filling the damascene structure with a metal.
- 8. The method claim 7 comprising,
 removing excess metal by using chemical, mechanical
 polishing (CMP).
 - 9. The method of claim 8 wherein the metal is copper.
 - 10. An integrated circuit, including a dielectric film comprising a CDO film having a modulus of about 20 GPa or greater.
- 11. The integrated circuit of claim 10 wherein the CDO film has a dielectric constant of about 2 to about 4.

15

- 12. The integrated circuit of claim 10 wherein the CDO film has a dielectric constant less than about 3.
- 13. The integrated circuit of claim 10 wherein the CDO film has a density less than about 2 g/cm^3 .
- 14. The integrated circuit of claim 10 wherein the CDO film has a density of about 1.3 g/cm³ to about 1.4 g/cm³.
- 15. The integrated circuit of claim 11 wherein the dielectric film is an interlevel dielectric film.
- 16. The integrated circuit of claim 10 wherein the film has a modulus of about 20 GPa to about 25 GPa.
- 17. The integrated circuit of claim 16 wherein the dielectric constant is about 2 to about 4.

- 18. The integrated circuit of claim 17 wherein the dielectric film is an interlevel dielectric film.
- 19. An integrated circuit, including a dielectric film comprising a CDO film having a hardness of about 2.8 GPa or greater.
- 20. The integrated circuit of claim 19 wherein the CDO film has a dielectric constant of about 2 to about 4.
- 21. The integrated circuit of claim 20 wherein the dielectric film is an interlevel dielectric film.

10

- 22. The integrated circuit of claim 19 wherein the film has a hardness of about 2.8 GPa to about 3.5 GPa.
- 23. The integrated circuit of claim 22 wherein the CDO film has a dielectric constant of about 2 to about 4.
- 24. The integrated circuit of claim 23 wherein the dielectric film is an interlevel dielectric film.
- 25. An integrated circuit, including a dielectric film comprising a CDO film having a hardness of about 2.8 GPa or greater and a modulus of about 20 GPa or greater.
- 26. The integrated circuit of claim 25 wherein the CDO film has a hardness of about 2.8 GPa to about 3.5 GPa and a modulus of about 20 GPa to about 25 GPa.
 - 27. The integrated circuit of claim 26 wherein the CDO film has a dielectric constant of about 2 to about 4.

28. The integrated circuit of claim 27 wherein the dielectric film is an interlevel dielectric film.