Insurance versus Moral Hazard in Income-Contingent Student Loan Repayment

Tim de Silva Stanford GSB and SIEPR

July 2025

Disclaimer: The results of these studies are based, in part, on Australian Business Registrar (ABR) data supplied by the Registrar to the ABS under A New Tax System (Australian Business Number) Act 1999 and tax data supplied by the ATO to the ABS under the Taxation Act 1953. These require that such data is only used for the purpose of carrying out functions of the ABS. No individual information collected under the Census and Statistics Act 1905 is provided back to the Registrar or ATO for administrative or regulatory purposes. Any discussion of data limitations or weaknesses is in the context of using the data for statistical purposes, and is not related to the ability of the data to support the ABR or ATO's core operational requirements. Legislative requirements to ensure privacy and secrecy of these data have been followed. Source data are de-identified and so data about specific individuals or firms has not been viewed in conducting this analysis. In accordance with the Census and Statistics Act 1905, results have been treated where necessary to ensure that they are not likely to enable identification of a particular person or organisation.

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

- Standard contract in US
- Hard to discharge

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt Equity

- Standard contract in US
- Hard to discharge

- Share of earnings
- Limited successful examples

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

Income-Contingent Loan

Equity

- Standard contract in US
- Hard to discharge

 Used in US, UK, Australia, Canada

- Share of earnings
- Limited successful examples

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

Income-Contingent Loan

Equity

- Standard contract in US
- Hard to discharge
- Borrowers bear most of risk
- ⇒ US "crisis": 25% default within 5 vears

- Used in US, UK, Australia, Canada
- Limited successful examples

Share of earnings

- Insurance
- Disincentivize labor supply

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

Income-Contingent Loan

Equity

- Standard contract in US
- Hard to discharge
- Borrowers bear most of risk

 Used in US, UK, Australia, Canada

- Share of earnings
- Limited successful examples
- + Insurance
- Disincentivize labor supply
- + Encourage investment & risk-taking
- Incentivize over-borrowing

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

Income-Contingent Loan

Equity

- Standard contract in US
- Hard to discharge
- Borrowers bear most of risk

 Used in US, UK, Australia, Canada

- Share of earnings
- Limited successful examples
- + Insurance
- Disincentivize labor supply
- + Encourage investment & risk-taking
- Incentivize over-borrowing
- Adverse selection

- Governments often provide subsidized financing for higher education
 - Student loans = \$1.6 trillion in US and 10% of household debt in US and UK

Debt

Income-Contingent Loan

Equity

- Standard contract in US
- Hard to discharge
- Borrowers bear most of risk

This Paper: Insurance vs. Moral Hazard

 Used in US, UK, Australia, Canada

- Share of earnings
- Limited successful examples
- + Insurance
- Disincentivize labor supply
- + Encourage investment & risk-taking
- Incentivize over-borrowing
- Adverse selection

THIS PAPER

Conditional on ex-ante choices + taxes/tranfers, how does income-contingent repayment affect **labor supply** and welfare?

- Setting: Australian government's income-contingent student loan program
 - Variation: discontinuities in repayment rates + policy change to these rates
 - Identification: limited room for selection and ex-ante responses
- Research design: bunching at discontinuities before and after policy change
 - **Data**: universe of income tax returns + student debt balances

THIS PAPER

Conditional on ex-ante choices + taxes/tranfers, how does income-contingent repayment affect labor supply and **welfare**?

- Setting: Australian government's income-contingent student loan program
- Research design: bunching at discontinuities before and after policy change
- ${f 3}$ ${f Model}$: life cycle model with endogenous labor supply + uninsurable wage risk
 - Positive: translate responses into estimates of preference parameters
 - Normative: characterize optimal amount and form of income-contingent repayment

THIS PAPER

Conditional on ex-ante choices + taxes/tranfers, how does income-contingent repayment affect labor supply and **welfare**?

- Setting: Australian government's income-contingent student loan program
- Research design: bunching at discontinuities before and after policy change
- ${f 3}$ ${f Model}$: life cycle model with endogenous labor supply + uninsurable wage risk
 - Positive: translate responses into estimates of preference parameters
 - Normative: characterize optimal amount and form of income-contingent repayment
 - Caveat: compute optimal contracts taking ex-ante choices as given \approx restructuring

Main Results

- - Larger responses in occupations with more hourly flexibility
 - Responses increase with liquidity constraints and decrease with P(repayment)
- **2** Structural estimation: labor supply elasticity of 0.15 + adjustment frictions
- 3 Contract design: moral hazard reduces optimal amount of insurance
 - $\bullet \ \ \text{Moral hazard} = \text{most of fiscal cost from fixed} \rightarrow \text{income-contingent repayment} \\$
 - Fixed repayment \rightarrow optimal income-contingent loan $\Rightarrow \uparrow$ 0.8% lifetime consumption
 - Forbearance + fixed repayment does worse because of slower repayment

MAIN RESULTS

- **① Empirics**: borrowers reduce labor supply to ↓ income-contingent repayments
 - Larger responses in occupations with more hourly flexibility
 - Responses increase with liquidity constraints and decrease with P(repayment)
- 2 Structural estimation: labor supply elasticity of 0.15 + adjustment frictions
- 3 Contract design: moral hazard reduces optimal amount of insurance
 - Moral hazard = most of fiscal cost from fixed \rightarrow income-contingent repayment
 - Fixed repayment \rightarrow optimal income-contingent loan $\Rightarrow \uparrow$ 0.8% lifetime consumption
 - Forbearance + fixed repayment does worse because of slower repayment

Takeaway: income-contingent repayment creates moral hazard that affects contract design, but too small to justify fixed repayment

RELATED LITERATURE & CONTRIBUTIONS

- 1 Financing of human capital Bovenberg-Jacobs 2005, Lochner-Monge-Naranjo 2016, Stantcheva 2017
- 2 Empirical effects of student loans
 - ↑ Debt ⇒ ↑ delinquencies, ↓ mobility, ↓ income Di Maggio et al. 2021, ↓ homeownership
 Mezza et al. 2020, △ occupation Luo-Mongey 2019, △ major Hampole 2022
 - Income-contingent loans ⇒ ↓ delinquencies Herbst 2023, ↓ defaults Mueller-Yannelis 2019

RELATED LITERATURE & CONTRIBUTIONS

- 1 Financing of human capital Bovenberg-Jacobs 2005, Lochner-Monge-Naranjo 2016, Stantcheva 2017
- 2 Empirical effects of student loans
 - ↑ Debt ⇒ ↑ delinquencies, ↓ mobility, ↓ income Di Maggio et al. 2021, ↓ homeownership
 Mezza et al. 2020, △ occupation Luo-Mongey 2019, △ major Hampole 2022
 - Income-contingent loans $\Rightarrow \downarrow$ delinquencies Herbst 2023, \downarrow defaults Mueller-Yannelis 2019

Contributions:

- Empirical evidence of moral hazard from income-contingent repayment Britton-Gruber 2020
- Structural model of labor supply that replicates these responses
 Choice of labor supply is dynamic: income-contingent repayment + frictions
- 3 Quantification of how moral hazard affects optimal contract design

RELATED LITERATURE & CONTRIBUTIONS

- 3 Insurance vs. moral hazard in social insurance: UI Gruber 1997, Chetty 2008, Ganong-Noel 2019, HH bankruptcy Dobbie-Song 2015, Indarte 2023, health insurance Einav et al. 2015
- 4 Mortgages with more risk-sharing Shiller 2004, Caplin et al. 2007, Mian-Sufi 2014, Piskorski-Seru 2018, Hartman-Glaser-Hébert 2020, Greenwald et al. 2021, Campbell et al. 2021, Benetton et al. 2022
- 6 Bunching at discontinuities in tax rates Saez 2010, Chetty et al. 2011, Kleven-Waseem 2013
- 6 Determinants of labor supply Blundell-MaCurdy 1999, Keane 2011, Chetty 2012, ...

OUTLINE

- 1 Institutional Background and Data
- 2 Labor Supply Responses to Income-Contingent Repayment
- 3 Life Cycle Model with Endogenous Labor Supply
- 4 Welfare Impact of Income-Contingent Repayment
- **5** Conclusion

OUTLINE

- 1 Institutional Background and Data
- 2 Labor Supply Responses to Income-Contingent Repayment
- Life Cycle Model with Endogenous Labor Supply
- Welfare Impact of Income-Contingent Repayment
- **5** Conclusion

STUDENT LOANS IN AUSTRALIA: HELP

- Australian citizens eligible for government-provided student loans through HELP
- Initial debt = tuition government contribution upfront payment (avg. ≈ \$20K USD)
- Debt grows at CPI net of **income-contingent repayments**:

```
Repayment<sub>it</sub> = HELP Rate<sub>t</sub> (HELP Income<sub>it</sub>) × HELP Income<sub>it</sub>
HELP Income<sub>it</sub> = Labor Income<sub>it</sub> + Capital Income<sub>it</sub> - Deductions<sub>it</sub>
```

- Repayments continue until remaining debt balance equals zero or death
 - Cannot be cancelled or discharged in bankruptcy
 - Note: collection done from individual (not household) tax returns

WHY STUDY INCOME-CONTINGENT REPAYMENT IN AUSTRALIA?

- Benefit #1: only one government contract + no private market
 - Only choice is between borrowing and paying upfront; former heavily subsidized
 - ✓ Limited scope for adverse selection (or selection on moral hazard)
- Benefit #2: loans can only be used for tuition
 - Tuition is government-controlled at public universities (94% of enrollment)
 - ✓ Less room for ex-ante moral hazard from changes in borrowing
- Benefit #3: first nationwide provider of income-contingent loans in 1989
 - ✓ Borrowers likely understand structure of repayment

WHY STUDY INCOME-CONTINGENT REPAYMENT IN AUSTRALIA?

- Benefit #1: only one government contract + no private market
 - Only choice is between borrowing and paying upfront; former heavily subsidized
 - ✓ Limited scope for adverse selection (or selection on moral hazard)
- Benefit #2: loans can only be used for tuition
 - Tuition is government-controlled at public universities (94% of enrollment)
 - ✓ Less room for ex-ante moral hazard from changes in borrowing
- Benefit #3: first nationwide provider of income-contingent loans in 1989
 - ✓ Borrowers likely understand structure of repayment

Good setting to identify labor supply responses to income-contingent repayment

▶ Differences from US

IDENTIFYING VARIATION: DISCONTINUITIES IN REPAYMENT RATES

IDENTIFYING VARIATION: POLICY CHANGE TO REPAYMENT RATES

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES AVERAGE REPAYMENT RATE

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES LIQUIDITY MORE THAN WEALTH

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES LIQUIDITY MORE THAN WEALTH

Note: policy change applied to new and existing debtholders

REPAYMENT THRESHOLD INCREASES LIQUIDITY MORE THAN WEALTH

Note: policy change applied to new and existing debtholders

Marginal Rates Payments News Occupations

DATA

- lacktriangle Universe of individual tax returns from Australian Tax Office (\sim US Form 1040)
- 2 Administrative HELP data: debt balances and repayments
- 3 2016 Household Census: self-reported hours and mortgage + rent payments
- Administrative retirement savings data: superannuation balances
- 6 HILDA: survey data on hours worked and asset holdings

DATA

- lacktriangle Universe of individual tax returns from Australian Tax Office (\sim US Form 1040)
- 2 Administrative HELP data: debt balances and repayments
- 3 2016 Household Census: self-reported hours and mortgage + rent payments
- Administrative retirement savings data: superannuation balances
- 6 HILDA: survey data on hours worked and asset holdings

Sample: \sim 4 million unique debtholders between ages 20-64 from 1991-2018

Mean HELP Income at age 26 = \$34K with 98% from labor income

Limitation: no information about borrowing (e.g., degree, institution)

► Debt Repay

OUTLINE

- 1 Institutional Background and Data
- 2 Labor Supply Responses to Income-Contingent Repayment
- 3 Life Cycle Model with Endogenous Labor Supply
- Welfare Impact of Income-Contingent Repayment
- 5 Conclusion

BORROWERS ADJUST INCOME TO REDUCE REPAYMENTS

BORROWERS ADJUST INCOME TO REDUCE REPAYMENTS

BORROWERS ADJUST INCOME TO REDUCE REPAYMENTS

• Next: does bunching reflect labor supply or evasion? • Source • Non-Debt

► Source ► Non-Debt ► Labor ► vs Tax

BORROWERS BELOW REPAYMENT THRESHOLD WORK FEWER HOURS

In 2016, reduction is around 1 hour/week = 1.4 fewer weeks per year

More Bunching in Occupations with Greater Hourly Flexibility

Sample: all wage-earners between 2005-2018

Alt. Measure

Evasion

Table

Profiles

Additional Results

Tim de Silva, Stanford

12

P(Repayment) Matters: Bunching Decreases with Wage Growth

P(Repayment) Matters: Bunching Increases with Debt

Note: confidence intervals omitted due to small size

P(Repayment) Matters: Bunching Increases with Debt

Note: confidence intervals omitted due to small size

14

Bunching Increases with Proxies for Liquidity Constraints

▶ Retirement Savings

▶ House Prices

15

TAKING STOCK

Empirical facts:

► Additional Results

- Borrowers reduce income in response to income-contingent repayment
 - Reflects labor supply: "bunchers" work fewer hours and in more flexible occupations
- 2 Size of responses depends on
 - P(repayment): increases with debt, decreases with wage growth and peak
 - Liquidity: increases with liquidity demands, decreases with retirement wealth

TAKING STOCK

Empirical facts:

► Additional Results

- Borrowers reduce income in response to income-contingent repayment
 - Reflects labor supply: "bunchers" work fewer hours and in more flexible occupations
- Size of responses depends on
 - P(repayment): increases with debt, decreases with wage growth and peak
 - Liquidity: increases with liquidity demands, decreases with retirement wealth

Questions for model:

- How large are these labor supply responses quantitatively?
- ② Do they imply the costs of income-contingent repayment exceed the benefits?

OUTLINE

- Institutional Background and Data
- 2 Labor Supply Responses to Income-Contingent Repayment
- 3 Life Cycle Model with Endogenous Labor Supply
- Welfare Impact of Income-Contingent Repayment
- 5 Conclusion

MODEL DESCRIPTION

OVERVIEW

OVERVIEW

Life cycle model with debt + incomplete markets + endogenous labor supply

- Overlapping generations born at 22 with heterogeneous assets, wage, and debt
- From 22 to 64, individuals choose consumption, c_a , and labor supply, ℓ_a
 - Wage rate subject to idiosyncratic shocks (no aggregate risk, partial equilibrium)
 - Shocks are uninsurable: borrowing allowed up to age-dependent limit with interest

After age 64, individuals retire and choose consumption c_a

OVERVIEW

Life cycle model with debt + incomplete markets + endogenous labor supply

- Overlapping generations born at 22 with heterogeneous assets, wage, and debt
- From 22 to 64, individuals choose consumption, c_a , and labor supply, ℓ_a
 - Wage rate subject to idiosyncratic shocks (no aggregate risk, partial equilibrium)
 - Shocks are uninsurable: borrowing allowed up to age-dependent limit with interest
- After age 64, individuals retire and choose consumption c_a

Government

- Revenues: progressive income taxes, debt repayments
- Expenses: means-tested unemployment benefits & retirement pension, initial debt

BUNCHING CONSISTENT WITH POSITIVE LABOR SUPPLY ELASTICITY

MASS ABOVE THRESHOLD INCONSISTENT WITH FRICTIONLESS MODEL

Moving above to below threshold ⇒ more leisure and \$1400 more cash-on-hand

LABOR SUPPLY OPTIMIZATION FRICTIONS

Adjusting labor supply requires paying stochastic fixed cost Nakamura-Steinsson 2010

$$f_a = \omega_a f_L + (1 - \omega_a) f_H$$
, $\omega_a \sim \text{Bernoulli}(\lambda)$, $f_L < f_H$

- Nests the two canonical adjustment models:
 - 1 $f_L = 0$, $f_H = \infty \Rightarrow$ Calvo model Andersen et al. 2020, Giglio et al. 2021
 - $2 \lambda = 1 \Rightarrow (S,s)$ model Abel et al. 2013, Handel 2013, Choukhmane 2021

LABOR SUPPLY OPTIMIZATION FRICTIONS

Adjusting labor supply requires paying stochastic fixed cost Nakamura-Steinsson 2010

$$f_a = \omega_a f_L + (1 - \omega_a) f_H$$
, $\omega_a \sim \text{Bernoulli}(\lambda)$, $f_L < f_H$

- Nests the two canonical adjustment models:
 - 1 $f_L = 0$, $f_H = \infty \Rightarrow$ Calvo model
 - 2 $\lambda = 1 \Rightarrow (S, s)$ model
- Adjustment is **state-dependent** if $f_L > 0$
 - $f_L, f_H \approx$ real or psychological costs of changing hours/jobs Chetty 2012
- Adjustment is **time-dependent** if $\lambda < 1$
 - $\omega_a \approx$ inattention, arrival of opportunities to change hours/jobs DMP, Kleven et al. 2023

$$V_a(\mathbf{s}_a) =$$

$$V_a(\mathbf{s}_a) = \max_{\substack{A_{a+1} \geq \underline{A}_{a+1}, \ \ell_a}}$$

$$V_a(\mathbf{s}_a) = \max_{\substack{A_{a+1} \geq \underline{A}_{a+1},\ \ell_a}}$$

$$V_a(\mathbf{s}_a) = \max_{\substack{A_{a+1} \geq \underline{A}_{a+1},\ \ell_a}}, \qquad \underbrace{c_a - \kappa rac{\ell_a^{1+\phi^{-1}}}{1+\phi^{-1}}}_{ ext{utility of consumption} \& ext{disutility of labor}}$$

$$V_a(\mathbf{s}_a) = \max_{\substack{A_{a+1} \geq A_{a+1}, \ \ell_a}} - \left[\underbrace{c_a - \kappa rac{\ell_a^{1+\phi^{-1}}}{1+\phi^{-1}}}_{ ext{utility of consumption}} - \underbrace{f_a * \mathbf{1}_{\ell_a
eq \ell_{a-1}}}_{ ext{adjustment cost}}
ight]^{1-\phi}$$

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \geq A_{a+1}, \\ \ell_{a}}} - \left[\underbrace{c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}}}_{\text{utility of consumption & disutility of labor}} - \underbrace{f_{a} * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}}}_{\text{adjustment cost}}\right]^{1-\sigma} + \beta m_{a} \mathbf{E}_{a} \underbrace{V_{a+1}(\mathbf{s}_{a+1})}_{\text{continuation value}}$$

$$V_{a}(\mathbf{s}_{a}) = \max_{\substack{A_{a+1} \geq \underline{A}_{a+1}, \\ \ell_{a}}} - \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f_{a} * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta m_{a} \mathbf{E}_{a} V_{a+1}(\mathbf{s}_{a+1})$$

$$c_{a} + A_{a+1} + \underbrace{d(y_{a}, D_{a}, t)}_{\text{debt}} + \underbrace{\tau(y_{a})}_{\text{taxes} + \text{ui}} = \underbrace{y_{a}}_{\text{labor}} + \underbrace{A_{a} R}_{\text{capital income}}$$

$$V_a(\mathbf{s}_a) = \max_{A_{a+1} \geq A_{a+1}, \ \ell_a} - \left[c_a - \kappa \frac{\ell_a^{1+\phi^{-1}}}{1+\phi^{-1}} - f_a * \mathbf{1}_{\ell_a \neq \ell_{a-1}} \right]^{1-\sigma} + \beta m_a \mathbf{E}_a V_{a+1}(\mathbf{s}_{a+1})$$
 $c_a + A_{a+1} + d(y_a, D_a, t) + \tau(y_a) = y_a + A_a R$
 $y_a = \ell_a w_a, \quad \log w_a = \underbrace{g_a}_{\substack{\text{age} \text{permanent transitory profile income shock}}} + \underbrace{\ell_a}_{\substack{\text{shock} \text{profile income shock}}}$

$$egin{aligned} V_a(\mathbf{s}_a) &= \max_{A_{a+1} \geq A_{a+1},} - \left[c_a - \kappa rac{\ell_a^{1+\phi^{-1}}}{1+\phi^{-1}} - f_a * \mathbf{1}_{\ell_a
eq \ell_{a-1}}
ight]^{1-\sigma} + eta m_a \mathbf{E_a} V_{a+1}(\mathbf{s}_{a+1}) \ &c_a + A_{a+1} + d(y_a, D_a, t) + au(y_a) = y_a + A_a R \ &y_a = \ell_a w_a, \quad \log w_a = g_a + heta_a + \epsilon_a \ &\mathbf{s}_a = \left(a \ t \ A_a \ D_a \ heta_a \ \epsilon_a \ \ell_{a-1} \ \omega_a
ight) \end{aligned}$$

$$egin{aligned} V_a(\mathbf{s}_a) &= \max_{A_{a+1} \geq A_{a+1},} - \left[c_a - \kappa rac{\ell_a^{1+\phi^{-1}}}{1+\phi^{-1}} - f_a * \mathbf{1}_{\ell_a
eq \ell_{a-1}}
ight]^{1-\sigma} + eta m_a \mathbf{E_a} V_{a+1}(\mathbf{s}_{a+1}) \ &c_a + A_{a+1} + d(y_a, D_a, t) + au(y_a) = y_a + A_a R \ &y_a = \ell_a w_a, \quad \log w_a = g_a + heta_a + \epsilon_a \ &\mathbf{s}_a = \left(a \quad t \quad A_a \quad D_a \quad heta_a \quad \ell_{a-1} \quad \omega_a
ight) \end{aligned}$$

- *a* = age
- t = year to keep track of policy change

$$egin{aligned} V_a(\mathbf{s}_a) &= \max_{A_{a+1} \geq A_{a+1},} - \left[c_a - \kappa rac{\ell_a^{1+\phi^{-1}}}{1+\phi^{-1}} - f_a * \mathbf{1}_{\ell_a
eq \ell_{a-1}}
ight]^{1-\sigma} + eta m_a \mathbf{E_a} V_{a+1}(\mathbf{s}_{a+1}) \ &c_a + A_{a+1} + d(y_a, D_a, t) + au(y_a) = y_a + A_a R \ &y_a = \ell_a w_a, \quad \log w_a = g_a + heta_a + \epsilon_a \ &\mathbf{s}_a = \left(a \ t \ A_a \ D_a \ heta_a \ \epsilon_a \ \ell_{a-1} \ \omega_a
ight) \end{aligned}$$

- A_a = savings from previous period
- $D_a = \text{debt} = R_d D_{a-1} d(y_{a-1}, D_{a-1}, t)$

$$egin{aligned} V_a(\mathbf{s}_a) &= \max_{A_{a+1} \geq A_{a+1},} - \left[c_a - \kappa rac{\ell_a^{1+\phi^{-1}}}{1+\phi^{-1}} - f_a * \mathbf{1}_{\ell_a
eq \ell_{a-1}}
ight]^{1-\sigma} + eta m_a \mathbf{E_a} V_{a+1}(\mathbf{s}_{a+1}) \ &c_a + A_{a+1} + d(y_a, D_a, t) + au(y_a) = y_a + A_a R \ &y_a = \ell_a w_a, \quad \log w_a = g_a + \theta_a + \epsilon_a \ &\mathbf{s}_a = \left(a \ t \ A_a \ D_a \ \theta_a \ \epsilon_a \ \ell_{a-1} \ \omega_a
ight) \end{aligned}$$

- θ_a = permanent income = $\rho\theta_{a-1} + \nu_a$, $\nu_a \sim N(0, \sigma_{\nu}^2)$
- ϵ_a = transitory shock $\sim N(0, \sigma_{\epsilon}^2)$

$$V_{a}(\mathbf{s}_{a}) = \max_{A_{a+1} \geq A_{a+1}, \ \ell_{a}} - \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f_{a} * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta m_{a} \mathbf{E}_{a} V_{a+1}(\mathbf{s}_{a+1})$$
 $c_{a} + A_{a+1} + d(y_{a}, D_{a}, t) + \tau(y_{a}) = y_{a} + A_{a} R$
 $y_{a} = \ell_{a} w_{a}, \quad \log w_{a} = g_{a} + \theta_{a} + \epsilon_{a}$
 $\mathbf{s}_{a} = \begin{pmatrix} a & t & A_{a} & D_{a} & \theta_{a} & \epsilon_{a} & \ell_{a-1} & \omega_{a} \end{pmatrix}$

- ℓ_{a-1} = labor supply from previous period
- ω_a = shock that determines fixed cost

$$V_{a}(\mathbf{s}_{a}) = \max_{A_{a+1} \geq A_{a+1}, \ \ell_{a}} - \left[c_{a} - \kappa \frac{\ell_{a}^{1+\phi^{-1}}}{1+\phi^{-1}} - f_{a} * \mathbf{1}_{\ell_{a} \neq \ell_{a-1}} \right]^{1-\sigma} + \beta m_{a} \mathbf{E}_{a} V_{a+1}(\mathbf{s}_{a+1})$$
 $c_{a} + A_{a+1} + d(y_{a}, D_{a}, t) + \tau(y_{a}) = y_{a} + A_{a} R$
 $y_{a} = \ell_{a} w_{a}, \quad \log w_{a} = g_{a} + \theta_{a} + \epsilon_{a}$
 $\mathbf{s}_{a} = \begin{pmatrix} a & t & A_{a} & D_{a} & \theta_{a} & \epsilon_{a} & \ell_{a-1} & \omega_{a} \end{pmatrix}$

- Sources of ex-ante heterogeneity:
 - θ_0 = initial permanent income $\sim N(0, \sigma_i^2)$
 - D_0 = initial debt, A_0 = initial assets

ESTIMATION

FIRST-STAGE CALIBRATION

- Interest rates and borrowing:
 - Interest rate = 1.84%, borrowing rate = CC rate, debt interest rate = 0%
 - Borrowing limit = average CC limit by age
- Demographics: cohort birth rates and mortality risk taken from life tables
 - Consumption adjusted for equivalence scale using HH size Lusardi et al. 2017
- Government: use exact (non-smooth) formulas provided by tax office
- Initial conditions: assets and debt distributions taken from data at age 22
- **Baseline RRA/EIS:** $\sigma = 2.23$ Choukhmane-de Silva 2023
 - Welfare analysis: alternative values + preference for timing of uncertainty resolution

SECOND-STAGE SIMULATED METHOD OF MOMENTS

- Estimation via SMM with 44 moments + 16 parameters
 - Find parameters that minimize % difference between data & model moments
- Simulated policy change: unanticipated change in HELP formula at t = 2005

$$\mathsf{Parameters} = \left(\overbrace{\phi \quad \mathit{f}_{\mathsf{L}} \quad \lambda}^{\mathsf{labor supply}} \right)$$

- Labor supply elasticity: identified by bunching below repayment threshold
- Frictions: identified by mass above repayment threshold

$$\mathsf{Parameters} = \left(\overbrace{\phi \quad \mathit{f_L} \quad \lambda}^{\mathsf{labor supply}} \right)$$

- · Labor supply elasticity: identified by bunching below repayment threshold
- Frictions: identified by mass above repayment threshold
- Separate identification of frictions
 - **Intuition**: with $\lambda = 1$, bunching is quite persistent
 - Moment: P(bunching₂₀₀₅|bunching₂₀₀₄)

$$\mathsf{Parameters} = \left(\overbrace{\phi \quad \mathit{f}_{\mathsf{L}} \quad \lambda}^{\mathsf{labor \, supply}} \quad \beta \right)$$

- Labor supply elasticity: identified by bunching below repayment threshold
- · Frictions: identified by mass above repayment threshold
- Separate identification of frictions
- Identification of time preferences
 - Intuition: ICL looks like a tax to a myopic agent ⇒ bunching ⊥ debt
 - Moment: heterogeneity in bunching with debt

$$\mathsf{Parameters} = \left(\begin{array}{ccc} \overbrace{\phi & \mathit{f_L} & \lambda} & \beta & \mathit{f_H} \end{array} \right)$$

- Labor supply elasticity: identified by bunching below repayment threshold
- Frictions: identified by mass above repayment threshold
- Separate identification of frictions
- Identification of time preferences
- Identification of upper adjustment cost
 - Moment: kurtosis of changes in labor supply Alvarez et al. 2016
 - Use survey data + allow for measurement error

$$\text{Parameters} = \left(\underbrace{ \overbrace{\phi \quad f_L \quad \lambda \quad \beta \quad f_H \quad \kappa}_{\text{preferences}} \quad \underbrace{\delta_0 \quad \delta_1 \quad \delta_2 \quad \delta_0^E \quad \delta_1^E}_{\text{wage profile}} \quad \underbrace{\rho \quad \sigma_\nu \quad \sigma_\epsilon \quad \sigma_j}_{\text{wage risk}} \quad \xi \right)$$

- Labor supply elasticity: identified by bunching below repayment threshold
- Frictions: identified by mass above repayment threshold
- Separate identification of frictions
- Identification of time preferences
- Identification of upper adjustment cost
- No panel data on hours ⇒ wage profile & wage risk estimated jointly

▶ Other Parameters

		Estimation		
Parameter		(1)		
Labor supply elasticity	ϕ	0.003		
Lower fixed cost	f_L	\$0		
Adjustment probability	λ	1		
Upper fixed cost	f_H	∞		
Time discount factor	β	0.998		
Scaling parameter	κ	0.179		
Wage profile parameters	δ_0	10.170		
	δ_1	0.067		
		-0.001		
	δ_{0}^{E}	-0.442		
	$\delta_2 \ \delta_0^E \ \delta_1^E$	0.025		
Persistence of permanent shock	ρ	0.824		
Std. deviation of permanent shock	$\overset{\cdot}{\sigma}_{ u}$	0.057		
Std. deviation of transitory shock	σ_{ϵ}	0.431		
Std. deviation of individual FE	σ_i	0.575		
Measurement error in hours	ί	0		

		Estimation			
Parameter		(1)	(2)		
Labor supply elasticity	$\overline{\phi}$	0.003	0.167		
Lower fixed cost	f_L	\$0	\$1377		
Adjustment probability	λ	1	1		
Upper fixed cost	f_H	∞	∞		
Time discount factor	β	0.998	0.914		
Scaling parameter	κ	0.179	1.233		
Wage profile parameters	δ_0	10.170	9.360		
	δ_1	0.067	0.074		
	δ_2	-0.001	-0.001		
	$egin{array}{c} \delta_2 \ \delta_0^E \ \delta_1^E \end{array}$	-0.442	-0.440		
	δ_1^E	0.025	0.019		
Persistence of permanent shock	ρ	0.824	0.927		
Std. deviation of permanent shock	$\sigma_{ u}$	0.057	0.223		
Std. deviation of transitory shock	σ_{ϵ}	0.431	0.133		
Std. deviation of individual FE	σ_i	0.575	0.569		
Measurement error in hours	ί	0	0		

		Estimation		
Parameter		(1)	(2)	(3)
Labor supply elasticity	$\overline{\phi}$	0.003	0.167	0.084
Lower fixed cost	f_L	\$0	\$1377	\$0
Adjustment probability	$\bar{\lambda}$	1	1	0.124
Upper fixed cost	f_H	∞	∞	∞
Time discount factor	β	0.998	0.914	0.934
Scaling parameter	κ	0.179	1.233	0.236
Wage profile parameters	δ_{0}	10.170	9.360	9.089
	δ_1	0.067	0.074	0.073
	δ_2	-0.001	-0.001	-0.001
	δ ₂ δ ₀ Ε δ ₁ Ε	-0.442	-0.440	-0.480
	δ_1^E	0.025	0.019	0.022
Persistence of permanent shock	$\dot{\rho}$	0.824	0.927	0.922
Std. deviation of permanent shock	$\sigma_{ u}$	0.057	0.223	0.252
Std. deviation of transitory shock	σ_{ϵ}	0.431	0.133	0.113
Std. deviation of individual FE	σ_i	0.575	0.569	0.541
Measurement error in hours	ι	0	0	0

		Estimation			
Parameter		(1)	(2)	(3)	(4)
Labor supply elasticity	ϕ	0.003	0.167	0.084	0.146
Lower fixed cost	f_L	\$0	\$1377	\$0	\$454
Adjustment probability	λ	1	1	0.124	0.161
Upper fixed cost	f_H	∞	∞	∞	∞
Time discount factor	β	0.998	0.914	0.934	0.958
Scaling parameter	κ	0.179	1.233	0.236	0.697
Wage profile parameters	δ_{0}	10.170	9.360	9.089	9.243
	δ_1	0.067	0.074	0.073	0.078
	δ_2	-0.001	-0.001	-0.001	-0.001
	δ ₂ δ ₀ δ ₁	-0.442	-0.440	-0.480	-0.496
	δ_1^E	0.025	0.019	0.022	0.021
Persistence of permanent shock	$\dot{\rho}$	0.824	0.927	0.922	0.934
Std. deviation of permanent shock	$\sigma_{ u}$	0.057	0.223	0.252	0.222
Std. deviation of transitory shock	σ_{ϵ}	0.431	0.133	0.113	0.164
Std. deviation of individual FE	σ_i	0.575	0.569	0.541	0.591
Measurement error in hours	ι	0	0	0	0

		Estimation					
Parameter		(1)	(2)	(3)	(4)	(5)	
Labor supply elasticity	$\overline{\phi}$	0.003	0.167	0.084	0.146	0.149	
Lower fixed cost	f_L	\$0	\$1377	\$0	\$454	\$378	
Adjustment probability	λ	1	1	0.124	0.161	0.153	
Upper fixed cost	f_H	∞	∞	∞	∞	\$3191	
Time discount factor	β	0.998	0.914	0.934	0.958	0.937	
Scaling parameter	κ	0.179	1.233	0.236	0.697	2.667	
Wage profile parameters	δ_{0}	10.170	9.360	9.089	9.243	9.667	
	δ_1	0.067	0.074	0.073	0.078	0.064	
	δ_2	-0.001	-0.001	-0.001	-0.001	-0.001	
	$\delta_0^{\bar{E}}$ $\delta_1^{\bar{E}}$	-0.442	-0.440	-0.480	-0.496	-0.473	
	δ_1^E	0.025	0.019	0.022	0.021	0.019	
Persistence of permanent shock	$\dot{\rho}$	0.824	0.927	0.922	0.934	0.929	
Std. deviation of permanent shock	$\sigma_{ u}$	0.057	0.223	0.252	0.222	0.224	
Std. deviation of transitory shock	σ_ϵ	0.431	0.133	0.113	0.164	0.150	
Std. deviation of individual FE	σ_i	0.575	0.569	0.541	0.591	0.569	
Measurement error in hours	ι	0	0	0	0	0.034	

MODEL FIT: BUNCHING BEFORE AND AFTER POLICY CHANGE

MODEL FIT: BUNCHING BEFORE AND AFTER POLICY CHANGE

► Model Fit: Other Moments

OUT-OF-SAMPLE VALIDATION: UK DATA

OUTLINE

- 1 Institutional Background and Data
- 2 Labor Supply Responses to Income-Contingent Repayment
- 3 Life Cycle Model with Endogenous Labor Supply
- 4 Welfare Impact of Income-Contingent Repayment
- 5 Conclusion

NORMATIVE ANALYSIS

Conditional on government subsidy for higher education + existing taxes/transfers, what contract best balances insurance with moral hazard?

- Perspective: social planner that maximizes borrower welfare with one contract
 - Problem faced by governments with one contract (e.g., Australia, UK)
 - · Contract is subsidized with zero interest rate, prices held fixed
 - Caveat: borrowing and education choices held fixed ≈ debt restructuring

NORMATIVE ANALYSIS

Conditional on government subsidy for higher education + existing taxes/transfers, what contract best balances insurance with moral hazard?

- Perspective: social planner that maximizes borrower welfare with one contract
- Government budget:

$$\mathcal{G} \equiv \mathbf{E}_0 \sum_{a=a_0}^{a_T} rac{\mathsf{Repayments}_a + \mathsf{Taxes}_a - \mathsf{Transfers}_a}{R^{a-a_0}}$$

• Step 1: Existing income-contingent loans vs. fixed repayment (not budget-neutral)

NORMATIVE ANALYSIS

Conditional on government subsidy for higher education + existing taxes/transfers, what contract best balances insurance with moral hazard?

- Perspective: social planner that maximizes borrower welfare with one contract
- Government budget:

$$\mathcal{G} \equiv \mathbf{E}_0 \sum_{a=a_0}^{a_T} rac{\mathsf{Repayments}_a + \mathsf{Taxes}_a - \mathsf{Transfers}_a}{R^{a-a_0}}$$

- Step 1: Existing income-contingent loans vs. fixed repayment (not budget-neutral)
- Step 2: Construct income-contingent loans with same fiscal cost (budget-neutral)

Benchmark: 25-Year Fixed Repayment = similar duration, not income-contingent

MVPF = WTP / (mechanical fiscal impact + fiscal externality)

Hendren-Sprung-Keyser 2020

Result #1: Moral hazard > 100% of fiscal cost from income-contingent repayment

Result #2: Significant welfare gains from fixed → income-contingent repayment

Source: https://policyimpacts.org/

Result #2: Significant welfare gains from fixed \longrightarrow income-contingent repayment

Result #3: Accelerating repayments from high-income borrowers ⇒ ↑ MVPF

Result #4: Forgiveness not needed with income-contingent repayment

Result #5: Equity contract (4% of income for 9 years) is worse than all ICLs

Result #6: Gains from ICLs \approx 40% of full forgiveness at \approx 4% of fiscal cost

STEP 2: CONSTRAINED-OPTIMAL INCOME-CONTINGENT LOANS

Constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 V_{a_0}(\psi,K)$$

(2)

STEP 2: CONSTRAINED-OPTIMAL INCOME-CONTINGENT LOANS

Constrained-planner's problem:

$$\max_{\psi,K} \mathsf{E}_0 \mathit{V}_{a_0}(\psi,K)$$
 (behind the "veil-of-ignorance")

(2)

STEP 2: CONSTRAINED-OPTIMAL INCOME-CONTINGENT LOANS

Constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 V_{a_0}(\psi,K)$$

subject to: (à la Ramsey, not Mirrlees)

Repayments_a
$$(\psi, K) = \psi * \max\{y_a - K, 0\}$$
 (1)

(2)

STEP 2: CONSTRAINED-OPTIMAL INCOME-CONTINGENT LOANS

Constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 V_{a_0}(\psi,K)$$

subject to:

Repayments_a
$$(\psi, K) = \min \left\{ \psi * \max \left\{ y_a - K, 0 \right\}, D_a \right\} * \mathbf{1}_{a \le a_R}$$
 (1)

(2)

STEP 2: CONSTRAINED-OPTIMAL INCOME-CONTINGENT LOANS

Constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 V_{a_0}(\psi,K)$$

subject to:

$$\mathsf{Repayments}_{a}(\psi, K) = \min \left\{ \psi * \max \left\{ y_{a} - K, 0 \right\}, D_{a} \right\} * \mathbf{1}_{a \leq a_{R}} \tag{1}$$

$$\mathbf{E}_0 \sum_{a=a_0}^{a_7} \frac{\mathsf{Repayments}_a(\psi, K) + \mathsf{Taxes}_a(\psi, K) - \mathsf{Transfers}_a(\psi, K)}{R^{a-a_0}} \tag{2}$$

STEP 2: CONSTRAINED-OPTIMAL INCOME-CONTINGENT LOANS

Constrained-planner's problem:

$$\max_{\psi,K} \mathbf{E}_0 V_{a_0}(\psi,K)$$

subject to:

$$\mathsf{Repayments}_{a}(\psi, K) = \min \left\{ \psi * \max \left\{ y_{a} - K, 0 \right\}, D_{a} \right\} * \mathbf{1}_{a \leq a_{R}} \tag{1}$$

$$\mathbf{E}_{0} \sum_{a=a_{0}}^{a_{7}} \frac{\mathsf{Repayments}_{a}(\psi, K) + \mathsf{Taxes}_{a}(\psi, K) - \mathsf{Transfers}_{a}(\psi, K)}{R^{a-a_{0}}} \geq \mathcal{G}_{25\text{-Year Fixed}} \tag{2}$$

WELFARE GAINS FROM CONSTRAINED-OPTIMAL CONTRACTS

Contract Space: p	$\psi_{ ho}$	K_{ρ}	$\pi_{ ho}$	$g_{\scriptscriptstyle p}$	$\psi_{ ho}^{\ell\mathrm{fixed}}$	$\mathcal{K}^{\ell \; fixed}_{p}$
Income-Contingent Loan	16%	\$19,188	\$2,778	0.79%	38%	\$39,702
Income-Contingent Loan with Notch	9.6%	\$24,093	\$1,508	0.46%	15%	\$47,001
Income-Contingent Loan + 20 Year Forgiveness	23%	\$17,533	\$1,128	0.36%	32%	\$29,516
Income Sharing Agreement (9 Years)	4.1%		\$1,730	0.52%	3.6%	
Income Sharing Agreement $(a_R - a_0)$ Years)	0.87%		\$6,549	1.82%	0.78%	

Result #1: Income-Contingent Loan increases welfare without additional costs

- Welfare gain = \$2800 or 0.8% of lifetime consumption
- · Constrained-optimal repayment threshold is below HELP, but close to US IBR

WELFARE GAINS FROM CONSTRAINED-OPTIMAL CONTRACTS

Contract Space: p	$\psi_{ ho}$	K_{ρ}	$\pi_{ ho}$	$g_{\scriptscriptstyle p}$	$\psi_{ ho}^{\ell\mathrm{fixed}}$	$\mathcal{K}^{\ell \; fixed}_{p}$
Income-Contingent Loan	16%	\$19,188	\$2,778	0.79%	38%	\$39,702
Income-Contingent Loan with Notch	9.6%	\$24,093	\$1,508	0.46%	15%	\$47,001
Income-Contingent Loan + 20 Year Forgiveness	23%	\$17,533	\$1,128	0.36%	32%	\$29,516
Income Sharing Agreement (9 Years)	4.1%		\$1,730	0.52%	3.6%	
Income Sharing Agreement $(a_R - a_0)$ Years)	0.87%		\$6,549	1.82%	0.78%	

Result #2: Effect of moral hazard on contract design is substantial

- Optimal ψ and K would be over twice as large without labor supply responses
- \Rightarrow Welfare loss from moral hazard $\approx 0.9pp$ of lifetime consumption

Welfare Gains from Constrained-Optimal Contracts

Contract Space: p	$\psi_{ extsf{ extsf{P}}}$	K_{ρ}	$\pi_{ ho}$	$g_{\scriptscriptstyle p}$	$\psi_{\it p}^{\ell{ m fixed}}$	$\mathcal{K}^{\ell \; fixed}_{p}$
Income-Contingent Loan	16%	\$19,188	\$2,778	0.79%	38%	\$39,702
Income-Contingent Loan with Notch	9.6%	\$24,093	\$1,508	0.46%	15%	\$47,001
Income-Contingent Loan + 20 Year Forgiveness	23%	\$17,533	\$1,128	0.36%	32%	\$29,516
Income Sharing Agreement (9 Years)	4.1%		\$1,730	0.52%	3.6%	
Income Sharing Agreement $(a_R - a_0)$ Years)	0.87%		\$6,549	1.82%	0.78%	

Result #3: Having a notch instead of a kink reduces welfare gains

WELFARE GAINS FROM CONSTRAINED-OPTIMAL CONTRACTS

Contract Space: p	$\psi_{ ho}$	K_{ρ}	$\pi_{ ho}$	$g_{\scriptscriptstyle p}$	$\psi_{\it p}^{\ell \; {\rm fixed}}$	$\mathcal{K}_p^{\ell \; ext{fixed}}$
Income-Contingent Loan	16%	\$19,188	\$2,778	0.79%	38%	\$39,702
Income-Contingent Loan with Notch	9.6%	\$24,093	\$1,508	0.46%	15%	\$47,001
Income-Contingent Loan + 20 Year Forgiveness	23%	\$17,533	\$1,128	0.36%	32%	\$29,516
Income Sharing Agreement (9 Years)	4.1%		\$1,730	0.52%	3.6%	
Income Sharing Agreement ($a_R - a_0$ Years)	0.87%		\$6,549	1.82%	0.78%	

Result #4: Forgiveness reduces welfare gains because of poor targeting

Transfers repayment from older to younger liquidity-constrained borrowers

WELFARE GAINS FROM CONSTRAINED-OPTIMAL CONTRACTS

Contract Space: p	$\psi_{ ho}$	Kρ	$\pi_{ ho}$	g_{p}	$\psi_{\it p}^{\ell{ m fixed}}$	$\mathcal{K}^{\ellfixed}_{p}$
Income-Contingent Loan	16%	\$19,188	\$2,778	0.79%	38%	\$39,702
Income-Contingent Loan with Notch	9.6%	\$24,093	\$1,508	0.46%	15%	\$47,001
Income-Contingent Loan + 20 Year Forgiveness	23%	\$17,533	\$1,128	0.36%	32%	\$29,516
Income Sharing Agreement (9 Years)	4.1%		\$1,730	0.52%	3.6%	
Income Sharing Agreement ($a_R - a_0$ Years)	0.87%		\$6,549	1.82%	0.78%	

Result #5: Equity contracts outperform ICLs, if horizon is sufficiently long

- Problem: gain from equity contracts comes entirely from redistribution
 - ⇒ Less robust to unmodeled ex-ante responses and selection
- In contrast, gains from ICL are 50-50 from insurance vs. redistribution

OUTLINE

- 1 Institutional Background and Data
- 2 Labor Supply Responses to Income-Contingent Repayment
- Life Cycle Model with Endogenous Labor Supply
- Welfare Impact of Income-Contingent Repayment
- **5** Conclusion

BIG PICTURE

- US "student debt crisis": 25% of borrowers default within 5 years of graduation
 - Possible solution = change contracts to be income-contingent (e.g., SAVE)
- This paper: evidence + model to calibrate the effects of debt restructuring
 - 1 Ex-post moral hazard is not a reason to avoid income-contingent contracts
 - 2 Among these contracts, income-contingent loans seem effective and robust
- Open question: effects of income-contingent contracts on ex-ante choices?
- Broader question: is more state-contingent repayment useful for other liabilities?
 - HHs: shared-appreciation/partial-ownership mortgages (Norway, UK, Canada, AU)
 - Firms: revenue-based financing

THANK YOU!

www.timdesilva.me

tdesilva@stanford.edu

APPENDIX

START OF APPENDIX

PREVALENCE OF GOVERNMENT-PROVIDED INCOME-CONTINGENT LOANS

- Countries with universal adoption: Australia (1989), New Zealand (1991), UK (1998), Hungary (2001)
- Countries with partial adoption: US (1994), Thailand (2006), South Korea (2009), Brazil (2016), the Netherlands (2016), Japan (2017), Canada (2017), Colombia (2023)
- Countries considering adoption (as of 2022): Chile, France, Malaysia, Ireland

Source: Chapman-Dearden 2022

Variable Definitions

- HELP Income = Taxable Income + Fringe Benefits + Foreign Employment Income
 + Investment or Property Losses + Employer Super Contributions
- Labor Income = Salary/Wages + Allowances & Tips + Self-Employment Income
- Capital Income = Interest and Dividend Income + Annuity Income + Capital Gains
 + Rental Income + Managed Trust Income
- Net Deductions = Labor Income + Capital Income HELP Income

√ Back

AU-US DIFFERENCES MOST LIKELY TO AFFECT CONTRACT DESIGN

- 1 More debt in US due to higher tuition, longer degrees, and discretionary items
 - Larger demand for insurance in US, but also more moral hazard
 - Discretionary borrowing in US ⇒ possible ex-ante moral hazard
- Active private market in US cream-skims high-income borrowers Bachas 2019
 - Amount of insurance that can be provided might be lower in US
- Student loans more subsidized in Australia than US
 - Different moral hazard in US (if there is selection on moral hazard) Karlan-Zinman 2009
- 4 Tuition and enrollment caps at public universities in Australia
 - Supply-side responses could increase fiscal cost of ICLs in US Kargar-Mann 2023
 - Note: I compare contracts with identical subsidy

DIFFERENCES BETWEEN AUSTRALIA AND US: STATISTICS

Feature of Environment	Australia	US
Cost of Higher Education		
Public Undergraduate Tuition Cost	\$2,700-\$10,100 USD per year for CSPs	\$9,500 USD per year for 4-Year In-State \$39,000 USD per year for 4- Year Private Nonprofit
Total Cost of Attendance	\$15,850 USD per year	\$22,700 USD per year
Prevalence of Scholarships	Rare	Common
Initial Student Debt Borrowed	\$8,100-\$30,300 USD	\$51,800 USD (Average)
Student Population		
% of Population with Undergraduate Degree	38%	32%
% of Undergraduates at Private Universities	6%	26%
% of Undergraduates from Abroad	16%	5%
% of Current Students Employed	50%	40%
Income Distribution and Taxes/Transfers		
Median Personal Income	\$33,500 USD	\$40,500 USD
Poverty Line for Single Individual	\$16,200 USD	\$14,580 USD
Gini Coefficient for Income	0.32	0.38
Marginal Tax Rate at Average Income	41%	41%
Heathcote et al. (2017) Tax Progressivity	0.133	0.184
1-Month Individual UI Replacement Rate	23%	35%
Union Membership Rate	13.7%	10.3%

◆ Back: Benefits

■ Back: Differences

MARGINAL HELP REPAYMENT RATES ON 100 AUD

HELP REPAYMENT RATES AND REPAYMENTS

◆ Back

News Article: Policy Change

Ease HECS burden on students, say universities

Kate Marshall Australian students owing more than \$9 billion of debts to the federal government should be spared financial heartache under a proposal to lift the income threshold for repayments, the Australian Vice-Chancellors Sowe Share Committee said yesterday.

OCCCUPATION-SPECIFIC INCOME PROFILES RELATIVE TO THRESHOLDS

SUMMARY STATISTICS

	Non-Debtholders	Debtholders
	(1)	(2)
Demographic Variables		
Age	41.1	29.5
Female	0.46	0.60
Wage-Earner	0.85	0.91
Income Variables (in 2005 AUD)		
Labor Income	35,480	27,136
Capital Income	1,221	324
Net Deductions	-1,548	-1,099
Taxable Income	37,695	27,796
HELP Income	38,756	28,586
HELP Variables		
HELP Debt (in 2005 AUD)		10,830
HELP Debt at Age 26 (in 2005 AUD)		13,156
HELP Payment (in 2005 AUD)		991
HELP Income < 2004 0% Threshold	0.37	0.51
HELP Income < 2005 0% Threshold	0.52	0.67
Number of Unique Individuals	19,484,517	4,013,382
Number of Individual-Year Observations	247,118,713	27,316,037

◆ Back

DEBT BALANCES BY AGE

DEBT BALANCES BY AGE: INDIVIDUALS WITH POSITIVE DEBT AT AGE 22

New Bunching Comes from Between Old and New Thresholds

No Bunching at Repayment Threshold for Non-Debtholders

Bunching in Labor Income = 83% of Bunching in HELP Income

◆ Back

BUNCHING AT THRESHOLD IS LARGER THAN AT TAX KINK: 2016

ALTERNATIVE MEASURE OF HOURLY FLEXIBILITY

BUNCHING UNCORRELATED WITH MEASURE OF EVASION

BUNCHING UNCORRELATED WITH MEASURE OF EVASION

OCCUPATION-LEVEL REGRESSIONS

	Ratio of Debtholders Below to Above Threshold						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Hourly Flexibility: SD of Changes in Log Hours	1.30				1.30	1.05	0.50
	(0.35)				(0.35)	(0.28)	(0.23)
Evasion: Share with Non-Wage Income		-0.20			-0.02	-0.17	0.05
		(0.30)			(0.30)	(0.30)	(0.25)
Income Slope: Mean Wage at 45 / Mean Wage at 26			-0.53			-0.40	
			(0.10)			(0.12)	
Income Peak: Maximum Wage in Occupation Profile				-0.48			-0.40
	•			(0.06)			(0.07)
R^2	0.34	0.01	0.23	0.58	0.34	0.46	0.62
Number of Occupations	43	43	43	43	43	43	43

COMPUTATION OF BUNCHING STATISTIC

- Bunching statistic calculated as in prior literature Chetty et al. 2011, Kleven-Waseem 2013
 - 1 Fit 5-piece spline leaving out [\$32,500, \$35,000 + X] \Rightarrow counterfactual density
 - 2 Iterate and choose X so that counterfactual density integrates to 1
 - 3

$$b = \frac{\text{observed mass in [$32,500, $35,000]}}{\text{counterfactual mass in [$32,500, $35,000]}} - 1$$

- $b = 0.1 \Rightarrow 10\%$ more people below threshold than would be absent discontinuity
 - Note: normalization makes b comparable across distributions of different shapes
- Sample: All debtholders age 20 to 64 pooled across 2005 to 2018
 - Income deflated to 2005 so 0% threshold constant in real terms at \$35,000

BUNCHING DECREASES WITH SUPERANNUATION BALANCES

BUNCHING HETEROGENEITY BY SUPER WEALTH: AGES 20-29

Less Bunching in Regions with More Housing Wealth

Additional Empirical Results

- Persistence of bunching below threshold lasts around three years
- 2 Long-run: income of "bunchers" similar to "non-bunchers" after two years •
- 3 No discontinuity in probability of switching occupations around threshold
- 4 Limited heterogeneity in bunching with household demographics
 - Caveat: no extensive margin responses, which can vary across groups Saez et al. 2012
- 5 Limited evidence of bunching coming from firm responses (as in Chetty et al. 2011)
- 6 Additional tests for evasion:
 - Bunching present in salary and wages, which is harder to misreport Slemrod 2019
 - Minimal difference in bunching based on filing type
 - Bunching declines by only 4% when dropping self-employed
 - Borrowers are median income ⇒ less avoidance opportunities Slemrod-Yitzhaki 2002

PERSISTENCE OF BUNCHING LASTS AROUND THREE YEARS

LIMITED EVIDENCE OF DYNAMIC COST TO BUNCHING

LITTLE DIFFERENCE IN DISTRIBUTION OF FUTURE INCOME

◆ Back

NO DISCONTINUITY IN THE PROBABILITY OF SWITCHING OCCUPATIONS

DEMOGRAPHIC HETEROGENEITY IN BUNCHING

Sample	Estimated Bunching Statistic:			
Non-Electronic Filers	0.086			
Electronic Filers	0.082			
Wage-Earners	0.081			
Entrepreneurs (Not Wage-Earners)	0.117			
Females	0.081			
Males	0.083			
No Dependent Children	0.086			
Has Dependent Children	0.077			
No Spouse	0.085			
Has Spouse	0.081			
Full Sample	0.084			

CHETTY ET AL. (2011) TEST OF FIRM RESPONSES

Borrower Labor Income

BUNCHING IN DISTRIBUTION OF SALARY AND WAGES

Salary and Wages

SIMULATED MINIMUM DISTANCE: OTHER MOMENTS

Parameters =
$$\left(\underbrace{\phi \quad f \quad \lambda \quad \kappa \quad \beta}_{\text{preferences}} \quad \underbrace{\delta_0 \quad \delta_1 \quad \delta_2 \quad \delta_0^E \quad \delta_1^E}_{\text{wage profile}} \quad \underbrace{\rho \quad \sigma_\nu \quad \sigma_\epsilon \quad \sigma_i}_{\text{wage risk}}\right)$$

- Age profiles of salary & wages ⇒ wage profile parameters
- Moments in Guvenen et al. 2022 ⇒ wage risk parameters
- Average capital income at ages 40-44 ⇒ β
- Average labor supply $\Rightarrow \kappa$

COMPARISON WITH EXISTING LITERATURE ON LABOR SUPPLY (1/2)

Source: intensive-margin Hicks and Frisch elasticities reported in Keane (2011) and Chetty (2012)

COMPARISON WITH EXISTING LITERATURE ON LABOR SUPPLY (2/2)

Reasons why elasticity may be smaller:

- **1** Different sample: college graduates with less flexibility and further from $y_t = w_t l_t$
- 2 Elasticity is local to threshold: no high-income individuals Gruber-Saez 2002
- 3 Bunching does not identify extensive margin responses Saez et al. 2012

Contributions:

- Empirical characterization of responses to income-contingent repayment
 - ullet of indebted households responds to liquidity not wealth, like c_t Ganong-Noel 2020
- 2 Dynamic model of labor supply with time- and state-dependent adjustment
 - ✓ First paper (to my knowledge) to explicitly estimate different types of frictions

◆ Back

FULL ESTIMATION RESULTS

Parameter		Estimation					
		(1)	(2)	(3)	(4)	(5)	
Labor supply elasticity	φ	0.003	0.167 (.001)	0.084	0.146 (.001)	0.149	
Lower adjustment cost	f_L	\$0	\$1377 (\$6)	\$0	\$454 (\$9)	\$378 (\$16)	
Adjustment cost probability	λ	1	1	0.124	0.161 (.002)	0.153	
Upper adjustment cost	f_H	∞	∞ .	~	~	\$3191 (\$105)	
Time discount factor	β	0.998	0.914 (.001)	0.934	0.958	0.937 (.001)	
Scaling parameter	κ	0.179 (.000)	1.233 (.007)	0.236 (.001)	0.697 (.006)	2.667 (.032)	
Wage profile parameters	δ_0	10.170 (.002)	9.360 (.004)	9.089 (.004)	9.243 (.004)	9.667 (.003)	
	δ_1	0.067	(.000)	0.073 (.000)	0.078	0.064	
	δ_2	-0.001 (.000)	-0.001 (.000)	-0.001 (.000)	-0.001 (.000)	-0.001 (.000)	
	δ_0^E	-0.442 (.000)	-0.440 (.001)	-0.480 (.001)	-0.496 (.001)	-0.473 (.001)	
	δ_1^E	0.025	0.019	0.022	0.021	0.019	
Persistence of permanent shock	ρ	0.824	0.927	0.922	0.934	0.929	
Std. deviation of permanent shock	$\sigma_{ u}$	0.057	0.223	0.252	0.222	0.224	
Std. deviation of transitory shock	σ_ϵ	0.431	0.133	0.113	0.164	0.150	
Std. deviation of individual FE	σ_i	0.575	0.569	0.541	0.591	0.569	
Std. deviation of measurement error	ι	0	0	0	0	0.034	

MODEL FIT: OTHER TARGET MOMENTS

	Data	Model
Cross-Sectional Variance of Log Labor Income at Age 22	0.453	0.448
Cross-Sectional Variance of Log Labor Income at Age 32	0.555	0.470
Cross-Sectional Variance of Log Labor Income at Age 42	0.577	0.503
Cross-Sectional Variance of Log Labor Income at Age 52	0.539	0.568
Cross-Sectional Variance of Log Labor Income at Age 62	0.608	0.665
Linear Age Profile Term	0.077	0.071
Quadratic Age Profile Term	-0.001	-0.001
Education Income Premium Constant	-0.574	-0.559
Education Income Premium Slope	0.023	0.022
10th Percentile of 1-Year Labor Income Growth	-0.387	-0.407
10th Percentile of 5-Year Labor Income Growth	-0.667	-0.702
90th Percentile of 1-Year Labor Income Growth	0.415	0.407
90th Percentile of 5-Year Labor Income Growth	0.698	0.706
Average Labor Supply	1.000	0.813
Probability that Labor Supply Not Adjusted	0.422	0.375
Kurtosis of Changes in Log Hours	5.637	5.721
Bunching Ratio: Q4 Debt to Q1 Debt	1.173	1.222
Bunching Probability in 2005 Conditional on Bunching in 2004	0.020	0.020

Back

OUT-OF-SAMPLE VALIDATION: BUNCHING HETEROGENEITY

Heterogeneity by Debt and Age

Bunching at Changes in Tax Rates

2nd Bracket 2004 and 2005: 3nd Bracket 2004 and 2005: 13% Change in Marginal Rate 12% Change in Marginal Rate

OUT-OF-SAMPLE VALIDATION: SPEED OF RESPONSE

◆ Back

OUT-OF-SAMPLE VALIDATION: PANEL

DECOMPOSITION: RATE DIFFERENTIAL, REPAYMENT, AND LIQUIDITY

Bunching Liquidity Gain =
$$\$1400 \ge \$1400 \times \frac{r+1-p}{1+r}$$
 = Bunching NPV Gain

- Interest rate differential = $r \Rightarrow 0\%$ of bunching
- Probability of repayment = $p \Rightarrow 61\%$ of bunching
- Demand for liquidity ⇒ 39% of bunching (Chetty 2008, Ganong-Noel 2023, Indarte 2023)

ROBUSTNESS TO MODEL MISSPECIFICATION

Estimated Models	$\psi_{\it P}$	K_p	$\pi_{ ho}$	g_{p}
Baseline Model	16%	\$19,188	\$2,778	0.79%
$f_L = f_H$ Model	16%	\$31,786	\$3,456	1.35%
$f_L = 0, f_H = \infty$ Model	37%	\$38,390	\$4,997	1.61%
$f_H = \infty$ Model	14%	\$31,055	\$4,821	1.18%
Deviation from Baseline Model	$\psi_{ ho}$	K_p	$\pi_{ ho}$	g_{ρ}
US Tax System	15%	\$18,539	\$2,599	0.65%
Optimized Tax System	6%	\$2,104	\$24	0.01%
Lower RRA = 1.5	14%	\$18,565	\$1,429	0.44%
Higher RRA = 4	22%	\$20,856	\$5,551	1.74%
Lower EIS = 0.25	18%	\$18,524	\$2,404	0.84%
Higher EIS = 1.5	11%	\$17,151	\$2,238	0.52%
Wealth Effects on ℓ	33%	\$34,083	\$3,129	0.76%
Less Persistence: $\rho = 0.8$	33%	\$37,518	\$2,963	0.83%
More Persistence: $\rho = 0.99$	8%	\$2,782	\$1,700	0.49%
US Initial Debt Levels	27%	\$16,994	\$9,838	3.03%
Higher Debt Interest Rate: $R_d = 2\%$	28%	\$43,863	\$6,776	1.88%
Government Discount Rate = $R + 2\%$	33%	\$33,095	\$5,044	1.43%

SENSITIVITY OF WELFARE GAINS TO PARAMETERS

Insurance-Redistribution Decomposition

Contract Space: p	$\pi_{ ho}^{ ext{Before}}$	$\pi_{ ho}^{ ext{After}}$	$g_{ ho}^{ ext{Before}}$	$g_{ ho}^{ m After}$
Income-Contingent Loan	\$4,012	\$1,616	1.03%	0.50%
Income Sharing Agreement ($a_R - a_0$ Years)	\$6,182		1.75%	

Back

TARGETING OF TAXES VS. ICL

◆ Back

SHORTCUTS IN ADOBE ACROBAT

Physical vs. logical page numbers

- Windows: Ctrl + K, uncheck "Use Logical Page Numbers"
- Mac: Cmd + K, uncheck "Use Logical Page Numbers"
- Always toggle on/off closing window and then reopening

Jump to page numbers

- Windows: Ctrl + Shift + N
- Mac: Cmd + Shift + N