1. Per convenció, es denomina una memòria cau segons la quantitat de dades que conté (és a dir, una memòria cau de 4 KiB pot contenir 4 KiB de dades); tanmateix, com haureu comprovat a classe, les memòries cache també requereixen SRAM per emmagatzemar metadades com ara etiquetes i bits d'"status". Per a aquest exercici, examinareu com afecta la configuració d'una memòria cau a la quantitat total de SRAM necessària per implementar-la, considerant que a la SRAM només hi guardarem les etiquetes. Suposem que les memòries cau són adreçables byte a byte i que les adreces i les paraules són de 64 bits. (adreçables byte a byte vol dir que, si volem, podem accedir a només un byte de la paraula).

Calculeu el nombre total de bits, provinents de les etiquetes, que es guardaran a l'SRAM si tenim una memòria cau totalment associativa de **32 KiB amb blocs de 2 paraules**.

$$\begin{array}{l} \textit{mida cache} = 32kB = 2^5 \cdot 2^{10}B = 2^{15}B \\ \textit{mida paraula } (B) = 64 \ \textit{bits} = 8B = 2^3 \\ \textit{2 paraules per bloc } (W) \\ \textit{mida adreça} = 64 \ \textit{bits} \end{array} \\ \rightarrow \begin{cases} \textit{mida cache} = 2^{15}B \\ \textit{B} = 3 \\ \textit{W} = 1 \end{cases}$$

mida
$$bloc = mida \ paraula \times 2 = 2^3 \cdot 2^1 = 2^4$$

mida $adreça = TAG + i + W + B$
 $en \ CA : S = 1; K = C$
 $S = 2^0 \rightarrow i = 0$
 $TAG = 64 - 0 - 1 - 3 = 60$

CA			
TAG	i	W	В
60	0	1	3

$$num\ blocs = \frac{mida\ cache}{mida\ bloc} = \frac{2^{15}}{2^4} = 2^{11}\ blocs/linies$$

La SRAM ha de guardar 2^{11} linies \times 60bits de TAG = 122.880 bits \rightarrow 15.360 Bytes

2. Considerem un computador format per una CPU, una memòria cau i una memòria principal. La mida de les paraules és de 64 bits i la memòria principal és adreçable byte a byte. La caché s'organitza mitjançant mapejat directe. El bus d'adreces és de 64 bits i s'organitza de la següent manera:

TAG	Index	Offset
63-10	9-5	4-0

mida paraula = 64 bits = $8 B = 2^3 \rightarrow B = 3$

mida bus adreces = 64 bits

offset =
$$W + B \rightarrow W = offset - B = 5 - 3 = 2 \rightarrow W = 2$$

 $i = 5 \rightarrow num\ conjunts\ (S) = 2^5$

 $TAG = 54 \ bits$

$$en MP : K = 1; S = C$$

 $C = S = 2^5 num blocs$

MD			
TAG	i	W	В
54	5	2	3

a) Quina és la mida dels blocs de la caché?

$$mida \ bloc = 2^{W+B}$$

$$mida \ bloc = 2^{2+3} = 2^{5}$$

b) Quantes línies té la caché? La caché te 2⁵ línies/blocs

Dintre de la caché s'han de emmagatzemar 2 tipus d'informació:

- Caché Data: La informació que ens interessa (Instruccions o dades).
- · Caché TAG: Informació sobre l'adreça que aquesta informació té a MP.

c) Quin és el ratio entre els bits dedicats a emmagatzemar dades i el nombre total d'informació que ha d'emmagatzemar la caché si considerem que, a més, tenim 1 bit d'status ?

mida linia caché =
$$2^{W+B} + TAG + n^{\circ}$$
 bits status n° bits status = 1
ratio = $\frac{n^{\circ}$ bits status + $i + W + B}{mida \ adreça} \times 100 = \frac{1 + 5 + 2 + 3}{64} \times 100 = 17,1875\%$

d) Amb la caché inicialment buida, les següents adreces són introduïdes (per ordre d'esquerra a dreta)

Address												
Hex	00	04	10	84	E8	Α0	400	1E	8C	C1C	В4	884
Dec	0	4	16	132	232	160	1024	30	140	3100	180	2180

Ompliu la següent taula:

Ens fixem en els bits de l'index:

Si no coincideixen amb cap i anterior \rightarrow MISS

Si coincideixen amb un i anterior:

Mirar bits del TAG de la última instrucció i que coincideix:

 $Si\ coincideixen\ els\ TAGs\ o HIT$

Si no coincideixen els $TAGs \rightarrow MISS$

Byte Address	Binary Address	TAG	Index	Offset	Hit/Miss
0	00 <mark>00 000</mark> 0 0000	00	00000	00000	Miss
4	0000 0000 0100	00	00000	00100	Hit
16	0000 0001 0000	00	00000	10000	Hit
132	0000 1000 0100	00	00100	00100	Miss
232	0000 1110 1000	00	00111	01000	Miss
160	0000 1010 0000	00	00101	00000	Miss
1024	0100 0000 0000	01	00000	00000	Miss
30	0000 0001 1110	00	00000	11110	Miss
140	0000 1000 1100	00	00100	01100	Hit
3100	1100 0001 1100	11	00000	11100	Miss
180	0000 1011 0100	00	00101	10100	Hit
2180	1000 1000 0100	10	00100	00100	Miss

Mida instrucció completa:

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

e) Segons aquestes dades, quin és el hit rate?

Hit Rate =
$$\frac{num\ cache\ hits}{num\ peticions\ a\ memòria} = \frac{4}{12} = 0,33$$