Bond Options and Option Adjusted Yield

Thomas S. Coleman

University of Chicago, Harris

13 February 2024; Draft February 17, 2024

Outline

- Overview
- 2 Risk-Neutral Valuation, Options, Callable Bonds
 - Option Terminology & Risk-Neutral Valuation
 - Black Scholes Formula Simple Expectation
 - **Bond Options**
 - Application Callable US Treasury Bond
 - Idea for Bermuda vs European Option
 - Option-Adjusted Yield for Risky Bond

Overview

Risk-Neutral Valuation, Options, Callable Bonds

- Risk-Neutral Valuation, Options, Callable Bonds Option Terminology & Risk-Neutral Valuation

Option to Buy (or Sell) – Option not Obligation

What is an Option?

The right to buy (or sell) at pre-agreed price:

- FIS stock on Friday (11-may-18) was trading at \$104.89
- Option to buy on 18-may for \$105
- P > \$105: buy at \$105, sell at P, profit P-105
- P < \$105: do nothing
 - You can only win with an option
 - Must pay for that privilege: May 18 \$105 call was \$0.80

Some Option Terminology – And Option Diagram

Option Terminology:

- Underlier: What the option is written on
 - FIS stock price (S₀ today)
- Call vs Put: Buy vs Sell
 - Call: Option to Buy
 - Payoff = $S_T 105$ if $S_T > 105$
- Expiry: date to buy or sell
 - 18-may, 7 days away
- Strike X: Price to buy or sell
 - \$105 in this case

Option Diagram:

Fundamental Problem: PV for Uncertain CFs

Known CFs: We know how to PV by simple discounting: $PV = \frac{CF}{(1+rf)^{yrs}}$

Uncertain CFs: Cannot use discounting, which only works for certain CFs

- Uncertain because a company may not pay: default
- Uncertain because of option condition: $CF = S_T X$ if $S_T > X$

In both cases we have a Distribution of Uncertain CFs

Two methods for adjusting CFs so we can discount using $PV = \frac{CF}{(1+rf)^{yrs}}$

- 1 Adjust size of promised CFs by a risk premium looks like risk-adjusted yield
 - $y_{risky} = rf + rp$
- 2 Adjust probabilities of CFs and apply risk-neutral expectation & discounting (should be called risk-adjusted expectation)

4 D > 4 D > 4 E > 4 E > E 9040

Known CFs: Discounting is Micro I Budget Line

Known CFs: We know how to PV by simple discounting: $PV = \frac{CF}{(1+rf)^{yrs}}$

$$p_1c_1 + p_2c_2/(1+y) = m_1 + m_2/(1+y)$$

$$p_1c_1 \cdot (1+y) + p_2c_2 = m_1 \cdot (1+y) + m_2$$

- Can write as PV: $m_2/1+y$
 - or FV: $m_1 \cdot (1 + y)$
- Budget line same either way
- In FV form income higher, but so are "prices"

イロト イ団ト イヨト オヨト ヨ めのひ

8 / 39

Coleman (Harris) Bond Options and OAY 13-feb-24

PV for Uncertain CFs

Known CFs: We know how to PV by simple discounting: $PV = \frac{CF}{(1+rf)^{yrs}}$

Uncertain CFs: Cannot use discounting, which only works for *certain* CFs

- Instead, adjust until we convert the uncertain CFs to *Certainty Equivalent*
- The *certain CF* with same utility as the distributions of uncertain CFs

Example here:

- ¹/₂ probability of low (\$711.41) vs
 high (\$888.59) CFs
- Average to \$800
- Cannot discount that average \$800 not a certain CF

Solve for *Certainty Equivalent*:

$$U(C_{CE}) = EU(C_l, C_h) = U(C_l, C_h)$$
$$= p \cdot u(C_l) + (1 - p) \cdot u(C_h)$$

< □ > < □ > < □ > < □ > < □ >

Uncertain Distribution → Certainty Equivalent

Uncertain CFs: Convert Uncertain Distribution into Certainty Equivalent CF

Two methods for adjusting CFs so we can discount using $PV = \frac{CECF}{(1+rf)^{yrs}}$

- 1 Adjust size of promised CFs by a risk premium looks like risk-adjusted yield
 - $y_{risky} = rf + rp$
- 2 Adjust probabilities of CFs and apply risk-neutral expectation & discounting (should be called risk-adjusted expectation)

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

Both are Arbitrage-Free Pricing: Using Market Prices

Back out risk adjustment from market prices: Arbitrage-free pricing

Adjust CF size via rp

$$PV_{bond} = \frac{CE}{1 + ust} = \frac{Promised \ CF}{(1 + ust) \cdot (1 + rp)}$$

- Stick with promised CFs
- Discount at $y \approx ust + rp$
- Builds in CF adjustment & discounting

Adjust CF probabilities

$$PV_{bond} = rac{\mathit{CE}}{1 + \mathit{ust}} = rac{\mathit{p}^* \cdot \mathit{C}_{orig}^{lo}}{(1 + \mathit{ust})} + rac{(1 - \mathit{p}^*) \cdot \mathit{C}_{orig}^{hi}}{(1 + \mathit{ust})}$$

$$PV_{option} = \frac{p^* \cdot C_{orig}^{lo}}{(1+ust)} + \frac{(1-p^*) \cdot C_{orig}^{hi}}{(1+ust)}$$

- Work with any part of dist'n

Coleman (Harris)

Bond Options and OAY

13-feb-24

Options - Using Risk-Neutral & Distribution

For standard bonds, risk-adjusted discounting (risk premium) more useful

- Can ignore full distribution
- Use just expected or promised CF

For options, need to use distribution

- Back out risk-adjusted ("risk-neutral") Martingale Equivalent Measure (probability dist'n E_Q[·]) using market PV:
 - $PV = \frac{E_Q[CF]}{(1+rf)}$
- Whole point of an option: you get part of the distribution
 - Discount only part of the distribution
 - $E_Q[S_T X \mid S_T > X]$

Called Risk Neutral Distribution or Equivalent Martingale Measure

• These are some very deep ideas in finance

イロト 4回ト 4 三ト 4 三ト ラ めのひ

- Overview
- 2 Risk-Neutral Valuation, Options, Callable Bonds

Option Terminology & Risk-Neutral Valuation

Black Scholes Formula – Simple Expectation

Bond Options

Application - Callable US Treasury Bond

Idea for Bermuda vs European Option

Option-Adjusted Yield for Risky Bond

Use Distribution to Value FIS May 18 \$105 Equity Call

Simple Expectation – Using Risk Neutral or Martingale Equivalent Measure

- FIS today (May 11th) \$104.89
- Expiry May 18, in 7 days .019yr
- Strike \$105: valuable if P>105

For valuation we:

- 1 Back out average forward price (on May 18) from today's price
- 2 Get some estimate / assumption for volatility (spread) of price distribution
- Get our option CFs and average in this case E[P-105 | P > 105]
- Discount back at risk-free rate

- Assume volatility $\sigma = 14.5\%$
- rf = 1.50%cc
- Today's Price: P = 104.89 => fwd price =

90 a 13-feb-24

Use Distribution to Value FIS May 18 \$105 Equity Call

Simple Expectation - Using Risk Neutral or Martingale Equivalent Measure

- FIS today (May 11th) \$104.89
- Expiry May 18, in 7 days .019yr
- Strike \$105: valuable if P>105

For valuation we:

- 1 Back out average forward price (on May 18) from today's price
- 2 Get some estimate / assumption for volatility (spread) of price distribution
- 3 Get our option CFs and average in this case $E[P-105 \mid P > 105]$
- 4 Discount back at risk-free rate

- Assume volatility $\sigma = 14.5\%$
- rf = 1.50%cc
- Today's Price: P = 104.89 => fwd price = \$104.92
- Fwd Price: $PV = \frac{FP}{1+rf}$, here $1 + rf = \exp(y \cdot t) = \exp(.015 \cdot .01918) = 1.000288$

13-feb-24

Black Scholes Formula – Simple Expectation

Take Expectation (averaging) described by picture – and then discount at risk-free

• Integrate over (take expectation) only the upper tail

$$Call = e^{-rT} \cdot E\left[\left(S_T - X \right) | S_T > X \right] = e^{-rT} \cdot \int_{S=X}^{S=\infty} \left(S_T - X \right) \varphi\left(S_T \right) dS_T$$

This gives Black-Scholes formula

$$\begin{aligned} \textit{Call} &= \textit{N}(\textit{d}_1) \cdot \textit{S}_{\textit{T}} \cdot \textit{exp}(-\textit{rT}) \\ &- \textit{N}(\textit{d}_2) \cdot \textit{X} \cdot \textit{exp}(-\textit{rT}) \\ \textit{d}_1 &= \frac{1}{\sigma \sqrt{T}} \left[\textit{In} \left(\frac{\textit{S}_{\textit{T}}}{\textit{X}} \right) + \frac{\sigma^2 \textit{T}}{2} \right] \\ \textit{d}_2 &= \textit{d}_1 - \sigma \sqrt{T} \end{aligned}$$

4 D > 4 D > 4 E > 4 E > E 9 Q C

15 / 39

Coleman (Harris) Bond Options and OAY 13-feb-24

Calculation with Spread-Sheet and HP 17B app

Spread-sheet on Canvas (Saved with data for problem set)

```
Black fwd
12-May-18
                Today
11-May-18
                Date entered (if empty will use date above)
11-May-18
                Today
                Years to expiry (if empty will use date below)
                Date (if years empty)
18-May-18
18-May-18
                Expires
    104 92
                Forward
      105
                Strike
    14.5%
                Vol input
    1.50%
                Short rate (cc)
                Dividend rate
      0.02
   104.92
                Fwd used
    0.801
                Call
    48.9%
                 Delta
```

HP 17B App – BSCH menu (under Finance)

0.881

Put

	Stock	Strike	#Days	DIV%	VOL%	R.F.%	CALL
Given	104.89	105	7	0	14.5	1.5	
Solve For							0.801

Overview

2 Risk-Neutral Valuation, Options, Callable Bonds

Option Terminology & Risk-Neutral Valuation Black Scholes Formula – Simple Expectation

Bond Options

Application – Callable US Treasury Bond
Idea for Bermuda vs European Option
Option-Adjusted Yield for Risky Bond

Bond Option (Swaption) Models

There are two or three or four versions of option models for bonds:

- Bond Prices are log-normal
 - Bonds prices can go down to zero (so yields up to infinity)
 - Bond prices can go above sum(CF): 4yr 6.5% bond, sum of CF=\$126. $P=$130 \Rightarrow yld = -0.84\%$
 - Effectively, bond yields normal
- 2 Bond yields log-normal
 - $1.0\% \rightarrow 1.1\%$ same as $10\% \rightarrow 11\%$ same as $100\% \rightarrow 110\%$
 - Yields cannot go negative
 - Maybe good, maybe bad
- 3 Bond yield normal
 - Commonly used now
- 4 Bond yield square-root process
 - One of my favorite, because mid-way between log-normal & normal

- 4 ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q Q

Log-Normal Prices

$$\textit{Call} = \mathrm{e}^{-rT} \cdot \textit{E}\left[\left(B_T - X\right) | B_T > X\right] = \mathrm{e}^{-rT} \cdot \int_{B = X}^{B = \infty} \left(B_T - X\right) \varphi\left(B_T\right) dB_T$$

This gives Black-Scholes formula – same picture but put in "B" instead of "S"

$$\begin{aligned} \textit{Call} &= \textit{N}(\textit{d}_1) \cdot \textit{B}_T \cdot \textit{exp}(-rT) \\ &- \textit{N}(\textit{d}_2) \cdot \textit{X} \cdot \textit{exp}(-rT) \\ \textit{d}_1 &= \frac{1}{\sigma \sqrt{T}} \left[\textit{ln} \left(\frac{\textit{B}_T}{\textit{X}} \right) + \frac{\sigma^2 \textit{T}}{2} \right] \\ \textit{d}_2 &= \textit{d}_1 - \sigma \sqrt{T} \end{aligned}$$

(ロ) (団) (注) (注) 注 り()

19/39

Coleman (Harris) Bond Options and OAY 13-feb-24

Log-Normal Yields

I will discuss with swaptions, put option on bond where exercise when PV(swap) $<0 \Rightarrow \text{PV(bond)} < 100$

Option on rates – Put on bond ↔ Call on rates

$$Put = e^{-rT} \cdot PV(annuity) \cdot E\left[(Y_T - X) | Y_T > X \right]$$
$$= e^{-rT} \cdot PV(annuity) \cdot \int_{Y=X}^{Y=\infty} (Y_T - X) \varphi(Y_T) dY_T$$

This gives Black-Scholes formula – same picture but put in "Y" instead of "S"

Why does this work?

- $PV(swap) = PV(annuity) \cdot (Coup Y_T)$
- Use something called "Equivalent Martingale Measure with PV(annuity) as numeraire"
- Calculate PV(annuity) at the forward rate for the swap / bond

Coleman (Harris)

Normal Yields

Exactly same as log-normal yields: put option on bond where exercise when $PV(swap) < 0 \Rightarrow PV(bond) < 100$

Option on rates – Put on bond ↔ Call on rates

Except now the distribution of rates is normal instead of log-normal

$$Put = e^{-rT} \cdot PV(annuity) \cdot E[(Y_T - X) | Y_T > X]$$
$$e^{-rT} \cdot \int_{Y=X}^{Y=\infty} (Y_T - X) \varphi(Y_T) dY_T$$

The density $\varphi(Y_T)$ is a normal density This gives a formula like Black-Scholes – same picture but "Y" instead of "S" Why does this work?

- $PV(swap) = PV(annuity) \cdot (Coup Y_T)$
- Use something called "Equivalent Martingale Measure with PV(annuity) as numeraire"
- Calculate PV(annuity) at the forward rate for the swap / bond

Coleman (Harris)

Constant Elasticity of Variance (CEV) – Square Root

CEV - Constant Elasticity of Variance

 Cox, see Cox and Ross J. Financial Economics, (March 1976), Jarrow & Rudd Options

Underlier

- Forward par swap rate
- Stochastic process: $dy = \alpha(r, t) \cdot dt + \sigma \cdot y^{\psi} dz$
- ullet Constant ψ between 0 and 1. Three important cases

$$\psi=0 \hspace{1cm} \psi=rac{1}{2} \hspace{1cm} \psi=1 \hspace{1cm} ext{Normal rates} \hspace{1cm} ext{Square root} \hspace{1cm} ext{Log-normal}$$

←ロ → ←回 → ← 注 → へ至 → 注 → りへ ○

Constant Elasticity of Variance (CEV) – Square Root

Valuation

- General case involves infinite sum of incomplete gamma functions
- Special cases easier
- Normal and Log-normal mentioned above, very standard
- Square root approximation Jarrow&Rudd, p. 160. Uses Black-Scholes type formula

Volatility Conversions (all very approximate)

- LNP \leftrightarrow LNY: $P_{vol} = Vol(\frac{dp}{p}) \approx Vol(\frac{y}{p}, \frac{dp}{dy}, \frac{dy}{y}) \approx \frac{y}{p}, \frac{dp}{dy}, Vol(\frac{dy}{y}) = \frac{y}{p} \cdot BPV \cdot Y_{vol}$
- SR \leftrightarrow LNY: $SR_{vol} \approx LN_{vol} \cdot \sqrt{y \cdot df^{1/2}}$ Also see Hagan and Woodward (1998)
- NY \leftrightarrow LNY: $N_{vol} = Vol(dy) \approx Vol\left(y\frac{dy}{y}\right) \approx y \cdot Vol\left(\frac{dy}{y}\right) = y \cdot Y_{vol}$

←ロト ←問 ト ← 三 ト ← 三 ・ り Q (~)

2 Risk-Neutral Valuation, Options, Callable Bonds

Option Terminology & Risk-Neutral Valuation Black Scholes Formula – Simple Expectation Bond Options

Application - Callable US Treasury Bond

Idea for Bermuda vs European Option
Option-Adjusted Yield for Risky Bond

24 / 39

Callable Bond – Firm can Redeem (Call) at \$100

Example: US Treasury

- 4.7% coupon, semi-annual Act/Act
- Maturing 1-sep-2045
- Callable at 100 starting 1-sep-2018

"Callable" means gov't can redeem for \$100

- Price today (19-feb-2016) \$95.80
- Price 1-sep-18 may be >100 or <100
- If P<100, gov't does nothing no extra profit
- If P>100, gov't can redeem (give \$100) – extra profit P-100
- Extra profit is OPTION: CF = P-100 when P>100

- What is value to investor Sep 2018?
- P<100: P_{nc}
- P>100: P_{nc} (P-100)
- $P_c = P_{nc} Call$

Simple Yield-to-Maturity Doesn't Work

We want the yield for this bond: P=\$95.80 on 19-feb-16

"What is the flat yield curve y, discounting all CFs at y, to give P=95.80?"

But yield to what date?

When do we get our \$100 back?

Yield to Call: pay \$95.80 today, get \$100 soon (2.5yrs)

• Yield high (6.536%), bond more valuable

Maturity: pay \$95.80 today, get \$100 way out (29.5yrs)

• Yield low (4.972%), bond less valuable

Common (market) convention: Yield to Worst

Take the worst (lowest yield, least valuable case)

YTW = 4.972%, but OAY (option-adjust yield) worse

• OAY $\approx 4.25\%$ sab

Why is Option Adjusted Yield Lower than Yield-to-Worst??

Yield for regular bond uses full distribution: $PV = \frac{E_Q[B_T]}{(1+rf)}$

- Includes both $B_T < 100$ and $B_T > 100$
- $PV = \frac{E_Q[B_T|B_T < 100]}{(1+rf)} + \frac{E_Q[B_T|B_T > 100]}{(1+rf)}$

Why is Option Adjusted Yield Lower than Yield-to-Worst??

Yield for regular bond uses full distribution: $PV = \frac{E_Q[B_T]}{(1+rf)}$

- Includes both $B_T < 100$ and $B_T > 100$
- $PV = \frac{E_Q[B_T|B_T < 100]}{(1+rf)} + \frac{E_Q[B_T|B_T > 100]}{(1+rf)}$

Callable only includes upper part:

- $PV = \frac{E_Q[B_T|B_T<100]}{(1+rf)} + \frac{E_Q[100|B_T>100]}{(1+rf)}$
- High bond price, callable gets \$100
- CFs beyond Sep 2018 are uncertain not because of default but because of option

We can write callable bond as: $P_c = P_{nc} - Call$

• Callable less valuable, so yield lower than non-callable

Coleman (Harris)

How to Calculate Option Adjusted Yield

We can write callable bond as: $P_c = P_{nc} - Call$

- We need to write all as function of yield: $P_c(y) = P_{nc}(y) Call(y)$
- We know how to value standard $P_{nc}(y)$
- We just need to value Call(y)

We want to value all parts bonds at flat curve, all forwards at same yield

- Non-callable $P_{nc}(y)$
- Forward bond:

4日 > 4回 > 4 亘 > 4 亘 > 亘 める○

Valuing a Callable Bond – 19-feb-2016 – Flat YtM

With Callable bonds, need to adjust for Option Value: $P_c = P_{nc} - Call$

- UST 4.7% semi-ann A/A, 1-sep-2045
- B_0 (19-feb-16) = 95.80, yld to mat = 4.972%

Valuation requires that we:

- Back out forward price B_T (price 1-sep-18) from today's price
- Get some estimate / assumption for volatility (spread) of price distribution
- Average over CFs: $[P 100 \mid P > 100]$
- Discount back (at risk-free UST rate)

How do we get fwd prc B_T ?

- Bond yield 4.972%sab
- Bond as of 9/2018, mature 2045,
- B_T=

Valuing a Callable Bond – 19-feb-2016 – Flat YtM

With Callable bonds, need to adjust for Option Value: $P_c = P_{nc} - Call$

- UST 4.7% semi-ann A/A, 1-sep-2045
- B_0 (19-feb-16) = 95.80, yld to mat = 4 972%

Valuation requires that we:

- Back out forward price B_T (price 1-sep-18) from today's price
- Get some estimate / assumption for volatility (spread) of price distribution
- Average over CFs: $[P 100 \mid P > 100]$
- Discount back (at risk-free UST rate)

How do we get fwd prc B_T ?

- Bond yield 4.972%sab
- Bond as of 9/2018, mature 2045,
- $B_T = 95.982

4 D > 4 A > 4 B > 4 B >

10 Fob 16

Black-Scholes Valuation, YtM=4.972%sab

• Use ytm=4.9	972%			-Feb-16	Today	(ii empty will use
 Today 	's $B_0 = 95$	5.80				iry (if empty will us
,	$B_T = 9$			-Sep-18	Date (if year	s empty)
• I Ol Wal	u <i>b</i> † – 9	3.90	1	-Sep-18	Expires	
 Then use 13 	.5% vol (re	asonable)		95.98	Fwd / Underl	ier
• "Short Rate"	4.01% 66.6			100	Strike	
5 Short Nate	4.91/000 (-4.912/0Sab)		13.5%	Vol input	
• Option = 5.	795			4.91%	Short rate (c	
• $P_c = P_{nc} -$	Call — 0E 0	0 5 76 - 00	0.04	2.53	Dividend rate	;
$P_c = P_{nc} -$	Caii = 95.6	0 - 5.70 = 90	7.04	2.53 95.98	Fwd used	
				5.760	Call	
				41.2%	Delta	
				9.310	Put	
	Yield	P non-call	P forward	Call	P callable	
	4.972%	95.80	95.98	5.76	90.04	

 $P_{\it callable}$ way too low, which means the assumed 4.972% yield is too high

- But we know the OAY must be lower than 4.972%
- So try another (lower) value say 4.00%sab

4 D > 4 D > 4 E > 4 E > E > 9 Q P

Date entered (if empty will use

Coleman (Harris) Bond Options and OAY 13-feb-24 30 / 39

Black-Scholes Valuation, YtM=4.00%sab

19-Feb-16 Date entered (if empty will use of Use vtm=4.00% 19-Feb-16 Today Years to expiry (if empty will us • Today's $B_0 = 112.065$ Date (if years empty) 1-Sep-18 1-Sep-18 Expires • Forward $B_T = 111.493$ 111.493 Fwd / Underlier • Then use 13.5% vol (reasonable) 100 Strike 13.5% Vol input "Short Rate" 3.96%cc (=4.00%sab) 3.96% Short rate (cc) Dividend rate Option = 14.4032.53 111 493 Fwd used • $P_c = P_{nc} - Call = 112.065 - 14.403 = 97.662$ 14,403 Call 66 1% Delta

Yield	P non-call	P forward	Call	P callable
4.972%	95.80	95.98	5.795	90.01
4.000%	112.06	111.49	14.40	97.66

P_{callable} now too high, which means the assumed 4.00% yield is too low

So OAY is between 4.972% and 4.000%

4 D > 4 D > 4 E > 4 E > E 990

4.006

Put

Black-Scholes Valuation, YtM=4.00%sab

Yield	P non-call	P forward	Call	P callable
4.972%	95.80	95.98	5.795	90.01
4.25%	107.59	107.26	11.79	95.80
4.000%	112.06	111.49	14.40	97.66

 $P_{callable}$ now too high, which means the assumed 4.00% yield is too low

- So OAY is between 4.972% and 4.000%
- When use the python code "bondYieldFromPrice_callable.py" OAY = 4.25%sab

< □ ▷ < 圊 ▷ < 亨 ▷ 〈토 ▷ 〈토 ▷ 〉 토 · ◇익 ○

Coleman (Harris) Bond Options and OAY 13-feb-24 31/39

Calculating Option-Adjusted Yield

Yield for standard bond: discount rate or what we earn holding to maturity

• Solve for
$$y$$
: $P(y) = \frac{coup}{1+y} + \cdots + \frac{100}{(1+y)^n} = P_{market}$

Yield for callable bond: what we earn holding to ??

- Solve for v: $P_c(v) = P_{nc}(v) Call(v) = P_{market}$
- This is now an option-adjusted yield accounts for uncertain CFs

For callable, we earn less. Using standard ytm overstates what we earn

• Try various yields until $P_c(y^*) = P_{nc}(y^*) - Call(y^*) = P_{market}$

Yield	P non-call	P forward	Call	P callable
4.972%	95.80	95.98	5.795	90.01
4.25%	107.59	107.26	11.79	95.80
4.000%	112.06	111.49	14.40	97.66

4 D > 4 A > 4 B > 4 B > B

Coleman (Harris) Bond Options and OAY 13-feb-24 32 / 39

Callable Bonds: Generally Bermuda Not European

European: Option exercised on only one day

American: Option can be exercised any day (after first day)

Bermuda: Part-way between (like Bermuda): exercised on specific days

• Bond options callable on coupon dates

For stock options, early exercise of American (before final option date) usually not worth anything

- My first job in finance one of the first banks to figure out extra value of Bermuda options – made some nice money
- For bond options always want to exercise before final maturity

Why early exercise (Bermuda) worth more than European for bond options?

- Stocks never mature. Holding for another day, chance it will go up
 - · Generally want to hold, hoping price goes up
 - But bonds mature. Eventually price pulled back to \$100,
 - Eventually, holding longer means price pulled down so exercise early

Computationally difficult problem

Idea For Callable Bonds: Two Exercise Dates

Bermuda: Part-way between (like Bermuda): exercised on specific days

Computationally difficult problem – here's an idea

Idea: two exercise dates

- First call date
- A later date (when rising vol and falling duration offset)

At first call date

 Bond prices up or down, generates distribution of prices

イロト 4回ト 4 恵ト 4 恵 ト 恵 め900

Idea For Callable Bonds: Two Exercise Dates

Bermuda: Part-way between (like Bermuda): exercised on specific days

Computationally difficult problem – here's an idea

At first call, calculate BS option for *each* bond price

Many options to second call date

Numerical integration of BS options

- Will require writing C-code, calling from python
- Python and SciPy have interface to C-functions

Risk-Neutral Valuation, Options, Callable Bonds

Option-Adjusted Yield for Risky Bond

35 / 39

But Problem – How to Calculate Forward Price?

BAC 4.7% ann 30/360 bond 1-sep-2045: $P_{market} = P_c = P_{nc} - Call$

- Value non-callable bond at risk-adjusted yield y^* , Call at risk-free rate rf
- We need to solve for y^* that solves $P_{market} = P_c(y^*) = P_{nc}(y^*) Call\left(P_{forward}(rf)\right)$
- Options are always priced with the risk-adjusted distribution:
 - Adjust distribution until PV discounted at risk-free rate: PV = EPV(rf)
- But above we used $P_{market} = P_c(y^*) = P_{nc}(y^*) Call(P_{forward}(y^*))$

Start with guess $y^* = 4.972$

•
$$B_0 = P_c = 95.80 \text{ (19-feb-16)}$$

- NC to 1-sep-45: If $yld = 4.972 \Rightarrow P_{nc} = 95.80$
- Fwd Wrong: (1-sep-18) $yld = 4.972 \Rightarrow B_T = 96.005$
- Right: Solve for B_T so, discounting at rf=2.61%, $P_{nc}(y=2.61\%, B_T)=95.80$
 - Solution $B_T = 90.132$
- Call = 3.865, P_c = 91.935, price low, yield high

4 D > 4 D > 4 E > 4 E > E 9 Q Q

But Problem – How to Calculate Forward Price?

BAC 4.7% ann 30/360 bond 1-sep-2045: $P_{market} = P_c = P_{nc} - C_{all}$

- Value non-callable bond at risk-adjusted yield y^* , Call at risk-free rate rf
- We need to solve for y^* that solves $P_{market} = P_c(y^*) = P_{nc}(y^*) Call\left(P_{forward}(rf)\right)$
- Options are always priced with the risk-adjusted distribution:
 - Adjust distribution until PV discounted at risk-free rate: PV = EPV(rf)
- But above we used $P_{market} = P_c(y^*) = P_{nc}(y^*) Call (P_{forward}(y^*))$

Another guess: 4.50%

- NC to 1-sep-45: If $yld = 4.50 \Rightarrow P_{nc} = 103.207$
- Fwd Wrong: (1-sep-18) $yld = 4.50 \Rightarrow B_T = 103.090$
- Right: Solve for B_T so, discounting at rf=2.61%, $P_{nc}(y=2.61\%, B_T)=103.207$
 - Solution $B_T = 98.038$
- Call = 7.050, $P_c = 96.157$, almost right

4 □ > 4 □ > 4 □ > 4 □ > 4 □ >

More on Wrong Forward Price vs Right Forward Price

WRONG

Yield	P non-call	P forward	Fwd Yld (ab)	Call	P callable	Spread
4.970%	95.80	96.005	4.970%	5.779	90.02	236bp
4.500%	103.207	103.090	4.500%	9.230	93.977	189bp

RIGHT

Yield	P non-	Forward	Fwd Yld	Call	Р	Sprd to
(ab)	callable	Bond	(ab)	Option	callable	UST
4.972%	95.800	90.132	5.403%	3.865	91.935	236bp
4.500%	103.207	98.038	4.832%	7.050	96.157	189bp

Option Pricing For BAC bond using risk-free rate of 2.61% ab to calculate forward price Very close to the more exact Bloomberg calculations

Bloomberg: OAS = 186.9bp

⊘ ℚ ҈ 38 / 39

Option-Adjusted Yield Gives Risk Premium

- We have again used the market to back out the risk premium
- Yield-to-Maturity = 4.972%ab, spread = 236bp
- Yield-to-Call = 6.536%, spread = 393bp
- Option-Adjusted-Yield (Bloomberg) = 4.48%ab, spread = 187bp
- Actual yield is lower than either yield-to-maturity or yield-to-call
 - Always earn less
 - If price high, company calls and can't enjoy high price
 - If price low, company doesn't call and forced to take low price
- Callable yield always less the Yield-to-Worst

Coleman (Harris)