Group 1 Presentation

---Zekun Wang, Jinwen Xu, Yuman Wu, Yidan Huo, Yicheng Du

Background

Data Source: We use the dataset named *Amazon US Customer Reviews Dataset* from Kaggle.

Dataset Introduction: The dataset encompasses a wide range of customer opinions and experiences, which has a total size of 54.41GB, providing detailed insights into user perspectives on various products listed on Amazon.

Our main questions:

1. How can we know the 5 fields with the best development and the 5 fields with the worst development in recent years?

2. How can we *create new variables* that *capture the full information of a time series* for further effective analysis?

A detailed description of the dataset:

This dataset contains 37 distinct folders, and each folder includes 15 variables. For our analysis, we focused on two specific variables: 'star_rating' and 'review_date'.

The specific variable explanations are as follows:

- (1) "Star_rating" is the 1-5 star rating of the review. Its data type is int.
- (2) "Review_date" is the date when the review is published. Its data type is datetime.

Task 1

Question: Calculate the mean star-rating of all the 37 categories of products on Amazon.

Method: Calculate the means through parallel computing.

Results:

Top 5 mean star-ratings:

Gift card	4.731372
Digital Music Purchase	4.642895
Music	4.436622
Grocery	4.312221
Multilingual	4.306758

Bottom 5 mean star-ratings:

Digital Software	3.539226
Software	3.566997
Major Appliances	3.716390
Mobile Electronics	3.763225
Digital Video Games	3.852957

Task 2

Question: How can we create new variables that capture the full information of a time series for further effective analysis?

Method: Calculate the auto-covariance function matrix of the time series

Computational steps:

- (1) Suppose there is a time series, $X_1, X_2, ..., X_t, ..., X_n$, then calculate the mean of the sequence.
- (2) For each possible lag value h, compute the sample covariance between the lagged sequence and the original sequence.

$$\gamma(h) = n^{-1} \sum_{j=1}^{n-h} (x_{j+h} - \bar{x})(x_j - \bar{x}), 0 \le h < n$$

(3) Auto-covariance function matrix: $\Gamma(m) = [\gamma(0), \gamma(1), \ldots, \gamma(m)]$

Partial calculation results:

Taking 'Musical_Instruments' as an example, select to calculate the average daily score of different products, with a data length of 4558. To visually demonstrate, we create a curve of $\gamma(h)$

as h changes.

Application:

- 1. In machine learning: we use the auto-covariance function matrix to represent the features of the time series, which can be used for classification and clustering. In this case, dimensionality reduction is usually used in combination.
- 2. In the field of deep learning: using the self-covariance function matrix to optimize the transformer-based framework, reducing model complexity and enhancing interpretability.

37 categories files in total, each can be as large as 10 GBs.

Job 1 (Calculating the mean)

It consists of 4 files:

Pre1.sh: It splits the file into 100 subfiles and cuts the column "star-rating" of interest.

2 Job1.sh

3 Job1.sub

These two files run all the 100 parallel jobs to calculate the total amount of "star-rating".

4 Post1.sh

It calculates the sum of the sub-total of the 100 files and total number of reviews, and get the average value of "star-rating".

Job 2 (Calculating the auto-correlation)

It consists of 3 files:

Job2.R: It makes use of the average "star-rating" in Job 1 to calculate the auto-correlation coefficients of the time series.

Job2.sh

These two files send jobs to calculate, on which we could possibly make further improvements.

Job2.sub

Thank you!