AEROFIT BUSINESS CASE

About Aerofit

Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

Problem Statement

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts. For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business. Dataset

The company collected the data on individuals who purchased a treadmill from the AeroFit stores during the prior three months. The dataset has the following features:

About the dataset

- 1. Product Purchased: KP281, KP481, or KP781
- 2. Age: In years
- 3. Gender: Male/Female
- 4. Education: In years
- 5. MaritalStatus: Single or partnered
- 6. Usage: The average number of times the customer plans to use the treadmill each week.
- 7. Income: Annual income (in USD)
- 8. Fitness: Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 is the excellent shape.
- 9. Miles: The average number of miles the customer expects to walk/run each week

Product Portfolio:

- 1. The KP281 is an entry-level treadmill that sells for USD 1,500.
- 2. The KP481 is for mid-level runners that sell for USD 1,750.
- 3. The KP781 treadmill is having advanced features that sell for USD 2,500.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as stats
from IPython.display import display
```

In [2]: # Importing and Reading top 10 data

df_aerofit=pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assedf_aerofit.head(10)

Out[2]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47
	5	KP281	20	Female	14	Partnered	3	3	32973	66
	6	KP281	21	Female	14	Partnered	3	3	35247	75
	7	KP281	21	Male	13	Single	3	3	32973	85
	8	KP281	21	Male	15	Single	5	4	35247	141
	9	KP281	21	Female	15	Partnered	2	3	37521	85

General Analysis

```
In [3]: # Defining the shape and dimension of data

a = df_aerofit.shape
b = df_aerofit.ndim
print("Shape-->", a,'\n',"Dimension-->",b)

Shape--> (180, 9)
Dimension--> 2
```

- 1. There are 180 rows and 9 columns present in the dataset.
- 2. Its 2-d dataset by nature

```
In [4]: # Checking general info of cols

df_aerofit.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

Remarks: -

- 1. There are 3 string type columns (product, gender, maritalstatus)
- 2. Rest all are integer type

In [5]: # Overall stats of entire dataset

df_aerofit.describe(include="all")

Out[5]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness
	count	180	180.000000	180	180.000000	180	180.000000	180.000000
	unique	3	NaN	2	NaN	2	NaN	NaN
	top	KP281	NaN	Male	NaN	Partnered	NaN	NaN
	freq	80	NaN	104	NaN	107	NaN	NaN
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000
	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000
	4							•

- 1. These are the overall stats of the dataset
- 2. A lot of NaN values are present for numerical related calculation like mean, etc. , since they are object type by nature.
- 3. The overall mean of Age= 28.78; There are more Male

compared to Female ; There are more partnered persons
(maritalstatus) ;
 KP281 is the most demanded product as compared to rest

```
In [6]: # Categorical Data Description

df_aerofit.describe(include= object).T
```

Out[6]:		count	unique	top	freq
	Product	180	3	KP281	80
	Gender	180	2	Male	104
	MaritalStatus	180	2	Partnered	107

Remarks: -

- 1. This is solely targetting the object datatype columns overall statistics
- 2. There are 3 unique products and 2 unique Gender/Maritalstatus values present in entire dataset
- 3. The topmost consecutive value and its freq of each of the column values are present in the last
 - 2 columns (in above result)

```
In [7]: # Null/Empty values in dataset
        df aerofit.isna().sum().sort values(ascending=False)
Out[7]: Product
                          0
                          0
        Age
        Gender
        Education
                          0
        MaritalStatus
        Usage
        Fitness
        Income
                          0
        Miles
                          0
        dtype: int64
```

- 1. This is a check on the number of nulls/empty values present in the entire dataset
- 2. There are no nulls/empty values present in the dataset for any of the column values

```
In [8]: # Finding duplicate rows based on all columns

duplicate_rows = df_aerofit[df_aerofit.duplicated()]

# Display the duplicate rows
print("Duplicate Rows:")
print(duplicate_rows)
```

```
# Count the total number of duplicate rows
num_duplicates = len(duplicate_rows)

print(f"Total number of duplicate rows: {num_duplicates}")

Duplicate Rows:
Empty DataFrame
Columns: [Product, Age, Gender, Education, MaritalStatus, Usage, Fitness, Income, Miles]
Index: []
Total number of duplicate rows: 0
```

Remarks: -

- 1. This is solely targetting the number of duplicates across any of the data
- 2. There are no duplicates present in the entire dataset

Age False
Education False
Usage False
Fitness False
Income False
Miles False
dtype: bool

Remarks: -

- 1. This is for checking if there is any oddity or unexpected data/anomalies present under the integer columns
- 2. There are no anomaly values and only numeric data is present across all the rows for these integer columns

Non-Graphical Analysis

Uniques and Value counts

```
In [10]: # Unique values for Products

print("Unique values are: -")
print(df_aerofit['Product'].unique())

# Value counts
print("\nValue counts are: -")
print(df_aerofit['Product'].value_counts().reset_index().to_string(index=False,
```

```
Unique values are: -
['KP281' 'KP481' 'KP781']

Value counts are: -
Product Count
   KP281   80
   KP481   60
   KP781   40
```

- 1. There are 3 unique values for product type in the entire dataset
- 2. The unique counts of each values are as displayed above:-KP281=80 times it occurred in the dataset ,etc.

```
In [11]: # Unique values for Age

print("Unique values are: -")
print(np.sort(df_aerofit['Age'].unique()))

# Value counts
print("\nCounts of occurences for each Age(ordered by desc w.r.t counts): -")
age_cnt=df_aerofit['Age'].value_counts().reset_index()
age_cnt.columns=['Age', 'Count']
age_cnt1=age_cnt.sort_values(by='Count',ascending=False)
print(age_cnt1.to_string(index=False))
```

```
Unique values are: -
[18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48 50]
Counts of occurences for each Age(ordered by desc w.r.t counts): -
 Age Count
  25
         25
  23
         18
  24
         12
  26
         12
  28
          9
  35
          8
  33
  30
  38
          7
  21
          7
          7
  22
  27
          7
  31
  34
          6
  29
          6
  40
          5
  20
          5
  32
          4
  19
          4
  48
          2
  37
          2
  45
          2
  47
          2
  46
  50
          1
  18
          1
  44
          1
  43
          1
  41
          1
  39
          1
  36
          1
  42
          1
```

- 1. There are 32 unique values for Age in the entire dataset
- 2. The unique counts of each values are as displayed above: Age
- 25 =>25 times it occurred in the dataset ,etc.

```
In [12]: # Unique values for Gender

print("Unique values are: -")
print(df_aerofit['Gender'].unique())

# Value counts
print("\nValue counts are: -")
print(df_aerofit['Gender'].value_counts().reset_index().to_string(index=False, head
```

```
Unique values are: -
['Male' 'Female']

Value counts are: -
Gender Count
   Male   104
Female   76
```

Remarks: -

- 1. There are 2 unique values for Gender in the entire dataset
- 2. The unique counts of each values are as displayed above:-Male =>104 are there in data ,etc.

```
In [13]: # Unique values for Education
         print("Unique values are: -")
         print(np.sort(df_aerofit['Education'].unique()))
         # Value counts
         print("\nCounts of occurences for each Education(ordered by desc w.r.t counts):
         edu_cnt=df_aerofit['Education'].value_counts().reset_index()
         edu_cnt.columns=['Education', 'Count']
         edu_cnt1=edu_cnt.sort_values(by='Count',ascending=False)
         print(edu_cnt1.to_string(index=False))
        Unique values are: -
        [12 13 14 15 16 18 20 21]
        Counts of occurences for each Education(ordered by desc w.r.t counts): -
         Education Count
                       85
                16
                14
                       55
                18
                       23
                15
                       5
                13
                        5
                12
                       3
                21
                        3
                20
```

- 1. There are 8 unique values for Education in the entire dataset
- 2. The unique counts of each values are as displayed above:- 85 people have 16years education ,etc.

```
In [14]: # Unique values for MaritalStatus

print("Unique values are: -")
print(df_aerofit['MaritalStatus'].unique())

# Value counts
print("\nValue counts are: -")
print(df_aerofit['MaritalStatus'].value_counts().reset_index().to_string(index=F
```

```
Unique values are: -
['Single' 'Partnered']

Value counts are: -
MaritalStatus Count
Partnered 107
Single 73
```

Remarks: -

- 1. There are 2 unique values for MaritalStatus in the entire dataset
- 2. The unique counts of each values are as displayed above:-Married => 107 people in our data ,etc.

```
In [15]: # Unique values for Usage
         print("Unique values are: -")
         print(np.sort(df_aerofit['Usage'].unique()))
         # Value counts
         print("\nCounts of occurences for each Usage(ordered by desc w.r.t counts): -")
         usag_cnt=df_aerofit['Usage'].value_counts().reset_index()
         usag_cnt.columns=['Usage', 'Count']
         usag_cnt1=usag_cnt.sort_values(by='Count',ascending=False)
         print(usag cnt1.to string(index=False))
        Unique values are: -
        [2 3 4 5 6 7]
        Counts of occurences for each Usage(ordered by desc w.r.t counts): -
         Usage Count
             3
                   69
             4
                   52
             2
                   33
             5
                   17
             6
                   7
             7
```

- 1. There are 6 unique values for Usage in the entire dataset
- 2. The unique counts of each values are as displayed above:-69 people use 3 times a week on an average ,etc.

```
In [16]: # Unique values for Fitness

print("Unique values are: -")
print(np.sort(df_aerofit['Fitness'].unique()))

# Value counts
print("\nCounts of occurences for each Fitness(ordered by desc w.r.t counts): -"
fitn_cnt=df_aerofit['Fitness'].value_counts().reset_index()
fitn_cnt.columns=['Fitness', 'Count']
fitn_cnt1=fitn_cnt.sort_values(by='Count',ascending=False)
print(fitn_cnt1.to_string(index=False))
```

```
Unique values are: -
[1 2 3 4 5]

Counts of occurences for each Fitness(ordered by desc w.r.t counts): -
Fitness Count
3 97
5 31
2 26
4 24
1 2
```

- 1. There are 5 unique values for Fitness level in the entire dataset
- 2. The unique counts of each values are as displayed above:-Fitness level 3 => 97 among all,etc.

```
In [17]: # Unique values for Income

print("Unique values are: -")
print(np.sort(df_aerofit['Income'].unique()))

# Value counts
print("\nCounts of occurences for each Income(ordered by desc w.r.t counts): -")
inc_cnt=df_aerofit['Income'].value_counts().reset_index()
inc_cnt.columns=['Income', 'Count']
inc_cnt1=inc_cnt.sort_values(by='Count',ascending=False)
print(inc_cnt1.to_string(index=False))
```

```
Aerofit EDA
Unique values are: -
[ 29562 30699 31836 32973 34110 35247 36384 37521 38658 39795
 40932 42069 43206 44343 45480 46617 47754 48556 48658 48891
 49801 50028 51165 52290 52291 52302 53439 53536 54576 54781
 55713 56850 57271 57987 58516 59124 60261 61006 61398 62251
 62535 64741 64809 65220 67083 68220 69721
                                               70966 74701 75946
 77191 83416 85906 88396 89641 90886 92131 95508 95866 99601
 103336 104581]
Counts of occurences for each Income(ordered by desc w.r.t counts): -
 Income Count
 45480
          14
 52302
           9
 46617
            8
 54576
            8
 53439
            8
 50028
            7
            7
 51165
```

- 1. There are 62 unique values for Incomes in the entire dataset
- 2. The unique counts of each values are as displayed above:-14 people earn \$45480 anually ,etc.

```
In [18]: # Unique values for Miles

print("Unique values are: -")
print(np.sort(df_aerofit['Miles'].unique()))

# Value counts
print("\nCounts of occurences for each Miles(ordered by desc w.r.t counts): -")
mil_cnt=df_aerofit['Miles'].value_counts().reset_index()
mil_cnt.columns=['Miles', 'Count']
mil_cnt1=mil_cnt.sort_values(by='Count',ascending=False)
print(mil_cnt1.to_string(index=False))
```

```
Unique values are: -
[ 21 38 42 47 53 56 64 66 74 75 80 85 94 95 100 103 106 112
 113 120 127 132 140 141 150 160 169 170 180 188 200 212 240 260 280 300
 360]
Counts of occurences for each Miles(ordered by desc w.r.t counts): -
 Miles Count
    85
           27
    95
           12
    66
           10
    75
           10
    47
   106
    94
            8
   113
            7
    53
            7
   100
            6
    56
    64
            6
   180
   200
            6
   127
            5
            5
   160
            4
    42
   150
            4
            3
   120
   103
            3
    38
            3
            3
   170
    74
            3
            2
   132
   141
            2
            1
   280
   260
            1
   300
            1
   240
            1
   112
            1
   212
            1
    80
            1
   140
            1
    21
   169
            1
   188
   360
```

Remarks: -

- 1. There are 37 unique values for Miles in the entire dataset
- 2. The unique counts of each values are as displayed above:-27 people walk/run average 85 miles per week,etc.

Product preferences in relation to various factors considered (probability)

Product preference with single category variable (eg. product vs age, etc.)

```
In [19]: # Gender wise Product Preference

crosstab_result = round(pd.crosstab(df_aerofit["Gender"], df_aerofit["Product"],
#crosstab_result
crosstab_result1 = pd.crosstab(df_aerofit["Gender"], df_aerofit["Product"],margi

result_combined = pd.concat([crosstab_result, crosstab_result1], axis=1)
result_combined
```

Out[19]: Product KP281 KP481 KP781 All KP281 KP481 KP781 All Gender **Female** 22.22 16.11 3.89 42.22 40 29 7 76 Male 22.22 17.22 18.33 40 31 33 104 57.78

22.22 100.00

Remarks: -

ΑII

44.44

33.33

```
    The marginal values for products:- P(KP281)=80 (44.44%);
    P(KP481)=60 (33.33%), etc.
    The marginal values for Gender:- P(Female)= 76 (42.22%) & P(Male)= 104 (57.78%)
    The number of Female who use KP281 [Joint probability], P(Female & KP281)= 40 (22.22%).
    Same goes for others like:- P(Male & KP481)= 31 (17.22%), etc.
```

80

60

40 180

```
# Conditional Probability for above Gender vs Product
In [20]:
         marginal_prob = {
              "kp281": 80,
              "kp481": 60,
              "kp781": 40,
              "Female": 76,
              "Male": 104
         }
         joint_prob = {
              ("kp281", "Female"): 40,
              ("kp481", "Female"): 29,
              ("kp781", "Female"): 7,
              ("kp281", "Male"): 40,
              ("kp481", "Male"): 31,
              ("kp781", "Male"): 33
         # Defining a function to calculate conditional probability
         def calculate_conditional_probability(event_A, event_B):
              \# P(A \text{ and } B)
              p_A_and_B = joint_prob.get((event_A, event_B), 0)
              \# P(B)
              p_B = marginal_prob.get(event_B, 0)
              if p_B == 0:
```

```
return None
     # Calculating P(A|B)
     p_A_given_B = (p_A_and_B / p_B)
     return p_A_given_B
 # Calculating conditional probabilities in a loop-like fashion
 events_A = ["kp281", "kp481", "kp781"]
 events_B = ["Female", "Male"]
 for event_A in events_A:
     for event_B in events_B:
         p_A_given_B = calculate_conditional_probability(event_A, event_B)
         if p_A_given_B is not None:
             print(f"P(\{event_A\}|\{event_B\}) = \{p_A_given_B * 100:.2f\}\%")
P(kp281|Female) = 52.63\%
P(kp281|Male) = 38.46\%
P(kp481|Female) = 38.16\%
P(kp481|Male) = 29.81\%
P(kp781|Female) = 9.21%
```

Remarks: -

P(kp781|Male) = 31.73%

1. The conditional probabilities (in %) of Gender vs Product are as given above in output

Out[21]:	Product	KP281	KP481	KP781	All	KP281	KP481	KP781	All
	Fitness								
	1	0.56	0.56	0.00	1.11	1	1	0	2
	2	7.78	6.67	0.00	14.44	14	12	0	26
	3	30.00	21.67	2.22	53.89	54	39	4	97
	4	5.00	4.44	3.89	13.33	9	8	7	24
	5	1.11	0.00	16.11	17.22	2	0	29	31
	All	44.44	33.33	22.22	100.00	80	60	40	180

```
1. The marginal values for products:- P(KP281)=80 (44.44\%); P(KP481)=60 (33.33\%), etc.
2. The marginal values for Fitness:- P(1)=2 (1.11\%) \& P(2)=26 (14.44\%), etc.
```

3. The number of people who use KP281 and have fitness level 1 [Joint probability], P(1 & KP281)= 1 (0.56%).

Same goes for others like:- P(2 & KP481)= 12 (6.67%), etc.

```
In [22]: # Conditional Probability for above Fitness vs Product
          marginal_prob = {
              "kp281": 80,
              "kp481": 60,
              "kp781": 40,
              "1": 2,
              "2": 26,
              "3": 97,
              "4": 24,
              "5": 31
          joint_prob = {
              ("kp281", "1"): 1,
("kp281", "2"): 14,
              ("kp281", "3"): 54,
              ("kp281", "4"): 9,
              ("kp281", "5"): 2,
              ("kp481", "1"): 1,
              ("kp481", "2"): 12,
              ("kp481", "3"): 39,
              ("kp481", "4"): 8,
("kp481", "5"): 0,
              ("kp781", "1"): 0,
              ("kp781", "2"): 0,
              ("kp781", "3"): 4,
              ("kp781", "4"): 7,
              ("kp781", "5"): 29,
          # Defining a function to calculate conditional probability
          def calculate conditional probability(event A, event B):
              \# P(A \text{ and } B)
              p_A_and_B = joint_prob.get((event_A, event_B), 0)
              \# P(B)
              p_B = marginal_prob.get(event_B, 0)
              if p B == 0:
                  return None
              # Calculate P(A|B)
              p_A_given_B = (p_A_and_B / p_B)
              return p A given B
          # Calculating conditional probabilities in a loop-like fashion
          events_A = ["kp281", "kp481", "kp781"]
          events_B = ["1", "2", "3", "4", "5"]
          for event_A in events_A:
              for event B in events B:
                  p_A_given_B = calculate_conditional_probability(event_A, event_B)
                  if p_A_given_B is not None:
                       print(f"P(\{event_A\}|\{event_B\}) = \{p_A_given_B * 100:.2f\}\%")
```

```
P(kp281|1) = 50.00%

P(kp281|2) = 53.85%

P(kp281|3) = 55.67%

P(kp281|4) = 37.50%

P(kp281|5) = 6.45%

P(kp481|1) = 50.00%

P(kp481|2) = 46.15%

P(kp481|3) = 40.21%

P(kp481|4) = 33.33%

P(kp481|5) = 0.00%

P(kp781|1) = 0.00%

P(kp781|2) = 0.00%

P(kp781|3) = 4.12%

P(kp781|4) = 29.17%

P(kp781|5) = 93.55%
```

Remarks: -

1. The conditional probabilities (in %) of Fitness level vs Product are as given above in output

```
In [23]: # Education wise Product Preference

crosstab_result = round(pd.crosstab(df_aerofit["Education"], df_aerofit["Product
crosstab_result1= pd.crosstab(df_aerofit["Education"], df_aerofit["Product"],ma

result_combined = pd.concat([crosstab_result, crosstab_result1], axis=1)
result_combined
```

Out[23]:	Product	KP281	KP481	KP781	All	KP281	KP481	KP781	All
	Education								
	12	1.11	0.56	0.00	1.67	2	1	0	3
	13	1.67	1.11	0.00	2.78	3	2	0	5
	14	16.67	12.78	1.11	30.56	30	23	2	55
	15	2.22	0.56	0.00	2.78	4	1	0	5
	16	21.67	17.22	8.33	47.22	39	31	15	85
	18	1.11	1.11	10.56	12.78	2	2	19	23
	20	0.00	0.00	0.56	0.56	0	0	1	1
	21	0.00	0.00	1.67	1.67	0	0	3	3
	All	44.44	33.33	22.22	100.00	80	60	40	180

- 1. The marginal values for products:- P(KP281)=80 (44.44%); P(KP481)=60 (33.33%), etc.
- 2. The marginal values for Education:- P(12)=3 (1.67%) & P(13)=5 (5%), etc.
- 3. The number of people who use KP281 and have Education level

12 [Joint probability], P(12 & KP281)= 2 (1.11%).

Same goes for others like:- P(13 & KP481)= 2 (1.11%), etc.

```
In [24]: # Conditional Probability for above Education vs Product
          marginal_prob = {
              "kp281": 80,
              "kp481": 60,
              "kp781": 40,
              "14": 26,
              "16": 97,
              "18": 23
          }
          joint_prob = {
              ("kp281", "18"): 2,
              ("kp281", "14"): 30,
              ("kp281", "16"): 39,
              ("kp481", "18"): 2,
              ("kp481", "14"): 23,
              ("kp481", "16"): 31,
("kp781", "14"): 2,
              ("kp781", "16"): 15,
              ("kp781", "18"): 19
          # Defining a function to calculate conditional probability
          def calculate conditional probability(event A, event B):
              \# P(A \text{ and } B)
              p A and B = joint prob.get((event A, event B), 0)
              \# P(B)
              p B = marginal prob.get(event B, 0)
              if p B == 0:
                  return None
              # Calculate P(A|B)
              p A given B = (p A and B / p B)
              return p_A_given_B
          # Calculating conditional probabilities in a loop-like fashion
          events_A = ["kp281", "kp481", "kp781"]
          events_B = ["14", "16", "18"]
          for event_A in events_A:
              for event B in events B:
                  p_A_given_B = calculate_conditional_probability(event_A, event_B)
                  if p_A_given_B is not None:
                      print(f"P(\{event_A\}|\{event_B\}) = \{p_A_given_B * 100:.2f\}\%")
        P(kp281|14) = 115.38\%
        P(kp281|16) = 40.21\%
        P(kp281|18) = 8.70\%
        P(kp481|14) = 88.46\%
        P(kp481|16) = 31.96\%
        P(kp481|18) = 8.70\%
        P(kp781|14) = 7.69\%
        P(kp781|16) = 15.46\%
        P(kp781|18) = 82.61\%
```

Remarks: -

1. The conditional probabilities (in %) of Education level vs Product are as given above in output

```
In [25]: # Age wise Product Preference

age_bins = [10, 20, 30, 40, 50]
age_labels = ['10-20','20-30', '30-40', '40-50']

# Creating age bins and add them as a new column with custom labels
df_aerofit["AgeBins"] = pd.cut(df_aerofit["Age"], bins=age_bins, labels=age_labe

# Creating a crosstab using the age bins with custom labels and the 'Product' co
crosstab_result = round(pd.crosstab(df_aerofit["AgeBins"], df_aerofit["Product"]
crosstab_result1 = pd.crosstab(df_aerofit["AgeBins"], df_aerofit["Product"], mar

result_combined = pd.concat([crosstab_result, crosstab_result1], axis=1)
result_combined
```

Out[25]:	Product	KP281	KP481	KP781	All	KP281	KP481	KP781	All
	AgeBins								
	10-20	3.33	2.22	0.00	5.56	6	4	0	10
	20-30	27.22	17.22	16.67	61.11	49	31	30	110
	30-40	10.56	12.78	3.33	26.67	19	23	6	48
	40-50	3.33	1.11	2.22	6.67	6	2	4	12
	All	44.44	33.33	22.22	100.00	80	60	40	180

- 1. The marginal values for products:- P(KP281)=80 (44.44%); P(KP481)=60 (33.33%), etc.

 2. The marginal values for Age ranges:- P(10-20)=10 (5.56%) & P(20-30)=110 (61.11%), etc.

 3. The number of people who use KP281 and have Age between 10-20 [Joint probability], P((10-20) & KP281)=6 (3.33%).
- Same goes for others like:- P((20-30) & KP481)= 31 (17.22%), etc.

```
In [26]: # Conditional Probability for above Age vs Product
marginal_prob = {
    "kp281": 80,
    "kp481": 60,
    "kp781": 40,
    "20-30": 110,
    "30-40": 48
}

joint_prob = {
    ("kp281", "20-30"): 49,
```

```
("kp281", "30-40"): 19,
      ("kp481", "20-30"): 31,
     ("kp481", "30-40"): 23, ("kp781", "20-30"): 30,
     ("kp781", "30-40"): 6
 # Defining a function to calculate conditional probability
 def calculate_conditional_probability(event_A, event_B):
     \# P(A \text{ and } B)
     p_A_and_B = joint_prob.get((event_A, event_B), 0)
     \# P(B)
     p_B = marginal_prob.get(event_B, 0)
     if p_B == 0:
          return None
     # Calculate P(A|B)
     p_A_given_B = (p_A_and_B / p_B)
     return p_A_given_B
 # Calculating conditional probabilities in a loop-like fashion
 events_A = ["kp281", "kp481", "kp781"]
 events_B = ["20-30", "30-40"]
 for event_A in events_A:
     for event_B in events_B:
          p A given B = calculate conditional probability(event A, event B)
          if p A given B is not None:
              print(f"P(\{event_A\}|\{event_B\}) = \{p_A_given_B * 100:.2f\}\%")
P(kp281|20-30) = 44.55\%
P(kp281|30-40) = 39.58\%
P(kp481|20-30) = 28.18\%
P(kp481|30-40) = 47.92\%
P(kp781|20-30) = 27.27\%
P(kp781|30-40) = 12.50\%
```

Remarks: -

1. The conditional probabilities (in %) of Age range vs Product are as given above in output

```
In [27]: # MaritalStatus wise Product Preference

crosstab_result = round(pd.crosstab(df_aerofit["MaritalStatus"], df_aerofit["Product"],

crosstab_result1=pd.crosstab(df_aerofit["MaritalStatus"], df_aerofit["Product"],

result_combined = pd.concat([crosstab_result, crosstab_result1], axis=1)

result_combined
```

Out[27]:	Product	KP281	KP481	KP781	All	KP281	KP481	KP781	All
	MaritalStatus								
	Partnered	26.67	20.00	12.78	59.44	48	36	23	107
	Single	17.78	13.33	9.44	40.56	32	24	17	73
	All	44.44	33.33	22.22	100.00	80	60	40	180

Remarks: -

- 1. The marginal values for products:- P(KP281)=80 (44.44%); P(KP481)=60 (33.33%), etc.
- 2. The marginal values for MaritalStatus:- P(Partnered)= 107 (59.44%) & P(single)= 73 (9.44%).
- 3. The number of people who use KP281 and are married [Joint probability], P(Partnered & KP281)= 48 (26.67%).

Same goes for others like:- P(single & KP481)= 24 (13.33%), etc.

```
In [28]: # Conditional Probability for above MaritalStatus vs Product
          marginal_prob = {
              "kp281": 80,
              "kp481": 60,
              "kp781": 40,
              "Partnered": 107,
              "Single": 73
          }
          joint_prob = {
              ("kp281", "Partnered"): 48,
              ("kp281", "Single"): 32,
              ("kp481", "Partnered"): 36,
("kp481", "Single"): 24,
              ("kp781", "Partnered"): 23,
              ("kp781", "Single"): 17
          # Defining a function to calculate conditional probability
          def calculate_conditional_probability(event_A, event_B):
              \# P(A \text{ and } B)
              p A and B = joint prob.get((event A, event B), 0)
              \# P(B)
              p_B = marginal_prob.get(event_B, 0)
              if p_B == 0:
                  return None
              # Calculate P(A|B)
              p_A_given_B = (p_A_and_B / p_B)
              return p_A_given_B
          # Calculating conditional probabilities in a loop-like fashion
          events_A = ["kp281", "kp481", "kp781"]
          events_B = ["Partnered", "Single"]
```

```
for event_A in events_A:
    for event_B in events_B:
        p_A_given_B = calculate_conditional_probability(event_A, event_B)
        if p_A_given_B is not None:
            print(f"P({event_A}|{event_B}) = {p_A_given_B * 100:.2f}%")

P(kp281|Partnered) = 44.86%
P(kp281|Single) = 43.84%
P(kp481|Partnered) = 33.64%
P(kp481|Single) = 32.88%
P(kp781|Partnered) = 21.50%
P(kp781|Single) = 23.29%
```

Remarks: -

1. The conditional probabilities (in %) of MaritalStatus vs Product are as given above in output

```
In [29]: # Usage wise Product Preference

Usage_bins = [1, 4, 6, 8, 10]
Usage_labels = ['1-3', '3-5', '5-7', '7-9']

# Creating Usage bins and add them as a new column with custom labels
df_aerofit["UsageBins"] = pd.cut(df_aerofit["Usage"], bins=Usage_bins, labels=Us

# Creating a crosstab using the Usage bins with custom labels and the 'Product'
crosstab_result = round(pd.crosstab(df_aerofit["UsageBins"], df_aerofit["Product
crosstab_result1= pd.crosstab(df_aerofit["UsageBins"], df_aerofit["Product"], ma

result_combined = pd.concat([crosstab_result, crosstab_result1], axis=1)
result_combined
```

Out[29]:	Product	KP281	KP481	KP781	All	KP281	KP481	KP781	All
	UsageBins								
	1-3	43.33	31.67	10.56	85.56	78	57	19	154
	3-5	1.11	1.67	10.56	13.33	2	3	19	24
	5-7	0.00	0.00	1.11	1.11	0	0	2	2
	All	44.44	33.33	22.22	100.00	80	60	40	180

```
    The marginal values for products:- P(KP281)=80 (44.44%);
    P(KP481)=60 (33.33%), etc.
    The marginal values for Usage:- P(1-3)= 154 (85.56%) & P(3-5)= 24 (13.33%), etc.
    The number of people who use KP281 and have Usage range between 1-3 [Joint probability], P((1-3) & KP281)= 78 (43.33%).
    Same goes for others like:- P(3-5 & KP481)= 3 (1.67%), etc.
```

```
In [30]: # Conditional Probability for above Usage vs Product
         marginal_prob = {
              "kp281": 80,
              "kp481": 60,
              "kp781": 40,
              "1-3": 154
         }
         joint_prob = {
              ("kp281", "1-3"): 78,
              ("kp481", "1-3"): 57,
              ("kp781", "1-3"): 19,
         }
         # Defining a function to calculate conditional probability
         def calculate_conditional_probability(event_A, event_B):
             \# P(A \text{ and } B)
              p_A_and_B = joint_prob.get((event_A, event_B), 0)
              \# P(B)
             p_B = marginal_prob.get(event_B, 0)
              if p B == 0:
                  return None
              # Calculate P(A|B)
              p_A_given_B = (p_A_and_B / p_B)
              return p_A_given_B
         # Calculating conditional probabilities in a loop-like fashion
         events_A = ["kp281", "kp481", "kp781"]
         events B = ["1-3"]
         for event_A in events_A:
              for event_B in events_B:
                  p_A_given_B = calculate_conditional_probability(event_A, event_B)
                  if p A given B is not None:
                      print(f"P(\{event_A\}|\{event_B\}) = \{p_A_given_B * 100:.2f\}\%")
        P(kp281|1-3) = 50.65\%
        P(kp481|1-3) = 37.01\%
        P(kp781|1-3) = 12.34\%
```

Remarks: -

1. The conditional probabilities (in %) of Usage level vs Product are as given above in output

```
In [31]: # Income wise Product Preference

Income_bins = [0, 25000, 50000, 75000, 100000]
Income_labels = ["0-25k", "25k-50k", "50k-75k", "75k-100k"]

# Creating Income bins and add them as a new column with custom labels
df_aerofit["IncomeBins"] = pd.cut(df_aerofit["Income"], bins=Income_bins, labels

# Creating a crosstab using the Income bins with custom labels and the 'Product'
crosstab_result = round(pd.crosstab(df_aerofit["IncomeBins"], df_aerofit["Product"])
```

```
crosstab_result1= pd.crosstab(df_aerofit["IncomeBins"], df_aerofit["Product"], m
result_combined = pd.concat([crosstab_result, crosstab_result1], axis=1)
result_combined
```

Out[31]:	Product	KP281	KP481	KP781	All	KP281	KP481	KP781	All
	IncomeBins								
	25k-50k	27.12	16.95	2.82	46.89	48	30	5	83
	50k-75k	18.08	16.95	7.91	42.94	32	30	14	76
	75k-100k	0.00	0.00	10.17	10.17	0	0	18	18
	All	45.20	33.90	20.90	100.00	80	60	37	177

```
    The marginal values for products:- P(KP281)=80 (44.44%);
    P(KP481)=60 (33.33%), etc.
    The marginal values for Income:- P(25k-50k)= 83 (46.89%), etc.
    The number of people who use KP281 and have Income range between $(25k-50k) [Joint probability], P((25k-50k) & KP281)= 48 (27.12%). Same goes for others like:- P(50k-75k & KP481)= 30 (16.95%), etc.
```

```
In [32]:
         # Conditional Probability for above Income vs Product
          marginal prob = {
              "kp281": 80,
              "kp481": 60,
              "kp781": 40,
              "25k-50k": 83
          }
          joint_prob = {
              ("kp281", "25k-50k"): 48,
("kp481", "25k-50k"): 30,
              ("kp781", "25k-50k"): 5,
          # Defining a function to calculate conditional probability
          def calculate_conditional_probability(event_A, event_B):
              \# P(A \text{ and } B)
              p_A_and_B = joint_prob.get((event_A, event_B), 0)
              \# P(B)
              p_B = marginal_prob.get(event_B, 0)
              if p_B == 0:
                   return None
              # Calculate P(A|B)
              p_A_given_B = (p_A_and_B / p_B)
              return p_A_given_B
```

```
# Calculating conditional probabilities in a loop-like fashion
events_A = ["kp281", "kp481", "kp781"]
events_B = ["25k-50k"]

for event_A in events_A:
    for event_B in events_B:
        p_A_given_B = calculate_conditional_probability(event_A, event_B)
        if p_A_given_B is not None:
            print(f"P({event_A}|{event_B}) = {p_A_given_B * 100:.2f}%")

P(kp281|25k-50k) = 57.83%
P(kp481|25k-50k) = 36.14%
P(kp781|25k-50k) = 6.02%
```

Remarks: -

1. The conditional probabilities (in %) of Income range vs Product are as given above in output

```
In [33]: # Miles wise Product Preference

Miles_bins = [0, 100, 200, 300, 400]
Miles_labels =["0-100", "100-200", "200-300", "300-400"]

# Creating Miles bins and add them as a new column with custom labels
df_aerofit["MilesBins"] = pd.cut(df_aerofit["Miles"], bins=Miles_bins, labels=Mi

# Creating a crosstab using the Miles bins with custom labels and the 'Product'
crosstab_result = round(pd.crosstab(df_aerofit["MilesBins"], df_aerofit["Product
crosstab_result1= pd.crosstab(df_aerofit["MilesBins"], df_aerofit["Product"], ma

result_combined = pd.concat([crosstab_result, crosstab_result1], axis=1)
result_combined
```

Out[33]:	Product	KP281	KP481	KP781	All	KP281	KP481	KP781	All
	MilesBins								
	0-100	34.44	24.44	4.44	63.33	62	44	8	114
	100-200	10.00	8.33	15.00	33.33	18	15	27	60
	200-300	0.00	0.56	2.22	2.78	0	1	4	5
	300-400	0.00	0.00	0.56	0.56	0	0	1	1
	All	44.44	33.33	22.22	100.00	80	60	40	180

- 1. The marginal values for products:- P(KP281)=80 (44.44%); P(KP481)=60 (33.33%), etc.
- 2. The marginal values for Miles:- P(0-100) = 114 (34.44%), etc.
- 3. The number of people who use KP281 and have covered miles between 0-100 [Joint probability], $\,$

```
P(0-100 \& KP281) = 62 (34.44\%). Same goes for others like:- P(100-200 \& KP481) = 15 (8.33\%), etc.
```

```
In [34]: # Conditional Probability for above Miles vs Product
          marginal_prob = {
              "kp281": 80,
              "kp481": 60,
              "kp781": 40,
              "0-100": 114
          joint_prob = {
              ("kp281", "0-100"): 62,
("kp481", "0-100"): 44,
              ("kp781", "0-100"): 8,
          }
          # Defining a function to calculate conditional probability
          def calculate_conditional_probability(event_A, event_B):
              \# P(A \text{ and } B)
              p_A_and_B = joint_prob.get((event_A, event_B), 0)
              \# P(B)
              p B = marginal prob.get(event B, 0)
              if p B == 0:
                  return None
              # Calculate P(A|B)
              p_A_given_B = (p_A_and_B / p_B)
              return p A given B
          # Calculating conditional probabilities in a loop-like fashion
          events_A = ["kp281", "kp481", "kp781"]
          events B = ["0-100"]
          for event A in events A:
              for event_B in events_B:
                  p_A_given_B = calculate_conditional_probability(event_A, event_B)
                  if p_A_given_B is not None:
                      print(f"P(\{event_A\}|\{event_B\}) = \{p_A_given_B * 100:.2f\}\%")
        P(kp281|0-100) = 54.39\%
        P(kp481|0-100) = 38.60\%
        P(kp781|0-100) = 7.02\%
```

Remarks: -

1. The conditional probabilities (in %) of Miles vs Product are as given above in output

Product preference with combination of category variables (eg. product vs age+gender, etc.) keeping product as base column

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Age	Gender	Product						
18	Female	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	1	0 0 1 0 0 0	0
		KP481	0	0	0	0	0	0
•••	•••	•••						
50	Female	KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0

192 rows × 6 columns

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Age	Gender	Product						
18	Female	KP281	0.0	0.0	0.0	0.00	0.0	0.0
		KP481	0.0	0.0	0.0	0.00	0.0	0.0
		KP781	0.0	0.0	0.0	0.00	0.0	0.0
	Male	KP281	0.0	0.0	0.0	0.56	0.0	0.0
		KP481	0.0	0.0	0.0	0.00	0.0	0.0
•••	•••	•••						
50	Female	KP481	0.0	0.0	0.0	0.00	0.0	0.0
		KP781	0.0	0.0	0.0	0.00	0.0	0.0
	Male	KP281	0.0	0.0	0.0	0.00	0.0	0.0
		KP481	0.0	0.0	0.0	0.00	0.0	0.0
		KP781	0.0	0.0	0.0	0.00	0.0	0.0

192 rows × 6 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who is male and has an age of 18 and has brought KP281 =1 (1st table)
 - and its probability % is 0.56% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Education			12			13		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP48
Age	Education	Product								
18	12	KP281	0	0	0	0	0	0	0	(
		KP481	0	0	0	0	0	0	0	(
		KP781	0	0	0	0	0	0	0	(
	13	KP281	0	0	0	0	0	0	0	(
		KP481	0	0	0	0	0	0	0	(
•••	•••	•••								
50	20	KP481	0	0	0	0	0	0	0	(
		KP781	0	0	0	0	0	0	0	(
	21	KP281	0	0	0	0	0	0	0	(
		KP481	0	0	0	0	0	0	0	(
		KP781	0	0	0	0	0	0	0	(

768 rows × 24 columns

768 rows × 24 columns

→

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has education of 12 and has an age of 18 and has brought KP281 =0 (1st table) and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Age	MaritalStatus	Product						
18	Partnered	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Single	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
•••	•••	•••		•••	•••	•••	•••	
50	Partnered	KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Single	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0

192 rows × 6 columns

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Age	MaritalStatus	Product						
18	Partnered	KP281	0.0	0.0	0.0	0.00	0.0	0.0
		KP481	0.0	0.0	0.0	0.00	0.0	0.0
		KP781	0.0	0.0	0.0	0.00	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.56	0.0	0.0
		KP481	0.0	0.0	0.0	0.00	0.0	0.0
•••	•••	•••						
50	Partnered	KP481	0.0	0.0	0.0	0.00	0.0	0.0
		KP781	0.0	0.0	0.0	0.00	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.00	0.0	0.0
		KP481	0.0	0.0	0.0	0.00	0.0	0.0
		KP781	0.0	0.0	0.0	0.00	0.0	0.0

192 rows × 6 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who is Single and has an age of 18 and has brought KP281 =1 (1st table)
 - and its probability % is 0.56% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Usage			2			3			
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	KP
Age	Usage	Product									
18	2	KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	
	3	KP281	0	0	0	1	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	
50	6	KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	
	7	KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	

576 rows × 18 columns

576 rows × 18 columns

→

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has age of 18 and usage of 2 and has brought KP281 =0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

Fitness 1 2

		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	KF			
Age	Fitness	Product												
18	1	KP281	0	0	0	0	0	0	0	0				
		KP481	0	0	0	0	0	0	0	0				
		KP781	0	0	0	0	0	0	0	0				
	2	KP281	0	0	0	0	0	0	0	0				
		KP481	0	0	0	0	0	0	0	0				
•••	•••	•••												
50	4	4	4	4	KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0				
	5	KP281	0	0	0	0	0	0	0	0				
		KP481	0	0	0	0	0	0	0	0				
		KP781	0	0	0	0	0	0	0	0				

480 rows × 15 columns

→

Fitness

		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	KF
Age	Fitness	Product									
18	1	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	2	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•••	•••	•••									
50	4	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	5	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

1

2

480 rows × 15 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has fitness of 1 and age of 18 and has brought KP281 = 0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Income			29562			30699			3
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	K
Age	Income	Product									
18	29562	KP281	1	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	
	30699	KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
•••	•••	•••									
50	103336	KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	
	104581	KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	

5952 rows × 186 columns

5952 rows × 186 columns

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has income of 29562 and age of 18 and has brought KP281 =1 (1st table)
 - and its probability % is 0.56% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

Miles 21 38

Product KP281 KP481 KP781 KP281 KP481 KP781 KP281 KP481 KP7

						0.			0.	
Age	Miles	Product								
18	18 21	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	38	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
•••	•••	•••	•••	•••						
50	300	KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	360	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0

3552 rows × 111 columns

→

Miles

		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	KP7
Age	Miles	Product									
18	21	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	38	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•••	•••	•••									
50	300	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	360	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

21

38

3552 rows × 111 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has covered miles of 21 and age of 18 and has brought KP281 =0 (1st table) $\frac{1}{2}$
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Gender	Female					Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Education	Gender	Product						
12	Female	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	2	0	0
		KP481	0	0	0	0	1	0
		KP781	0	0	0	0	0	0
13	Female	KP281	0	0	0	0	0	0
		KP481	0	1	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	3	0	0
		KP481	0	0	0	0	1	0
		KP781	0	0	0	0	0	0
14	Female	KP281	18	0	0	0	0	0
		KP481	0	12	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	12	0	0
		KP481	0	0	0	0	11	0
		KP781	0	0	0	0	0	2
15	Female	KP281	2	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	2	0	0
		KP481	0	0	0	0	1	0
		KP781	0	0	0	0	0	0
16	Female	KP281	19	0	0	0	0	0
		KP481	0	14	0	0	0	0
		KP781	0	0	2	0	0	0
	Male	KP281	0	0	0	20	0	0
		KP481	0	0	0	0	17	0
		KP781	0	0	0	0	0	13
18	Female	KP281	1	0	0	0	0	0

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Education	Gender	Product						
		KP481	0	2	0	0	0	0
		KP781	0	0	4	0	0	0
	Male	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	15
20	Female	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	1
21	Female	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	1	0	0	0
	Male	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	2

		Gender	Female					Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Education	Gender	Product						
12	Female	KP281	0.00	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	1.11	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.56	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
13	Female	KP281	0.00	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	0.56	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	1.67	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.56	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
14	Female	KP281	10.00	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	6.67	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	6.67	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	6.11	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	1.11
15	Female	KP281	1.11	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	1.11	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.56	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
16	Female	KP281	10.56	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	7.78	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	1.11	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	11.11	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	9.44	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	7.22
18	Female	KP281	0.56	0.00	0.00	0.00	0.00	0.00

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Education	Gender	Product						
		KP481	0.00	1.11	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	2.22	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	0.56	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	8.33
20	Female	KP281	0.00	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	0.56
21	Female	KP281	0.00	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.56	0.00	0.00	0.00
	Male	KP281	0.00	0.00	0.00	0.00	0.00	0.00
		KP481	0.00	0.00	0.00	0.00	0.00	0.00
		KP781	0.00	0.00	0.00	0.00	0.00	1.11

Remarks: -

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who is male and has education of 12 and has brought KP281 =2(1st table)

and its probability % is 1.11% (2nd table)

3. Same way of interpretation goes for rest of the data above

dropna=False,normalize='index')*100,2)

display(crosstab_result, crosstab_result1)

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Marital	Gender	Product						
Partnered	Female	KP281	27	0	0	0	0	0
		KP481	0	15	0	0	0	0
		KP781	0	0	4	0	0	0
	Male	KP281	0	0	0	21	0	0
		KP481	0	0	0	0	21	0
		KP781	0	0	0	0	0	19
Single	Female	KP281	13	0	0	0	0	0
		KP481	0	14	0	0	0	0
		KP781	0	0	3	0	0	0
	Male	KP281	0	0	0	19	0	0
		KP481	0	0	0	0	10	0
		KP781	0	0	0	0	0	14
		Gender			Female			Male
		Gender Product	KP281	KP481	Female KP781	KP281	KP481	
Marital	Gender		KP281	KP481		KP281	KP481	
Marital Partnered	Gender Female	Product	KP281	KP481		KP281	KP481	
		Product Product KP281	100.0		KP781	0.0		KP781
		Product Product KP281	100.0	0.0	KP781	0.0	0.0	KP781
		Product Product KP281 KP481	100.0	0.0	KP781 0.0 0.0	0.0	0.0	0.0 0.0
	Female	Product Product KP281 KP481 KP781	100.0	0.0 100.0 0.0	0.0 0.0 0.0 100.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
	Female	Product Product KP281 KP481 KP781 KP281	100.0 0.0 0.0	0.0 100.0 0.0	0.0 0.0 0.0 100.0 0.0	0.0 0.0 0.0 100.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	Female	Product Product KP281 KP481 KP781 KP281 KP481	100.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0	0.0 0.0 100.0 0.0	0.0 0.0 0.0 100.0	0.0 0.0 0.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0
Partnered	Female Male	Product Product KP281 KP481 KP781 KP281 KP481 KP781	100.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0	0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0	0.0 0.0 0.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0 0.0
Partnered	Female Male	Product Product KP281 KP481 KP781 KP281 KP481 KP781 KP281	100.0 0.0 0.0 0.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 0.0	0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0	0.0 0.0 0.0 0.0 100.0 0.0	0.0 0.0 0.0 0.0 0.0 100.0
Partnered	Female Male	Product Product KP281 KP481 KP781 KP281 KP481 KP781 KP781 KP481	100.0 0.0 0.0 0.0 0.0 100.0	0.0 100.0 0.0 0.0 0.0 0.0 100.0	0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 100.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 100.0 0.0
Partnered	Female Male Female	Product Product KP281 KP481 KP781 KP281 KP481 KP781 KP281 KP281 KP481	100.0 0.0 0.0 0.0 0.0 100.0 0.0	0.0 100.0 0.0 0.0 0.0 0.0 100.0	0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Partnered	Female Male Female	Product Product KP281 KP481 KP781 KP281 KP481 KP781 KP281 KP281 KP481 KP781	100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0	0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0	0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 100.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who is Female and is married and has brought KP281 =27(1st table)
 - and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Usage	Gender	Product						
2	Female	KP281	13	0	0	0	0	0
		KP481	0	7	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	6	0	0
		KP481	0	0	0	0	7	0
		KP781	0	0	0	0	0	0
3	Female	KP281	19	0	0	0	0	0
		KP481	0	14	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	18	0	0
		KP481	0	0	0	0	17	0
		KP781	0	0	0	0	0	1
4	Female	KP281	7	0	0	0	0	0
		KP481	0	5	0	0	0	0
		KP781	0	0	2	0	0	0
	Male	KP281	0	0	0	15	0	0
		KP481	0	0	0	0	7	0
		KP781	0	0	0	0	0	16
5	Female		1	0	0	0	0	0
		KP481	0	3	0	0	0	0
		KP781	0	0	3	0	0	0
	Male	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
6	Female	KP781 KP281	0	0	0	0	0	9
0	remale	KP481	0	0	0	0	0	0
		KP781	0	0	2	0	0	0
	Male	KP281	0	0	0	0	0	0
	IVIAIC	KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	5
7	Female		0	0	0	0	0	0

	Gender			Female				
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Usage	Gender	Product						
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	2

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Usage	Gender	Product						
2	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
3	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
4	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
5	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
6	Female	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
7	Female	KP281	0.0	0.0	0.0	0.0	0.0	0.0

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Usage	Gender	Product						
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who is female and has usage of 2 and has brought KP281 = 13(1st table)
 - and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Fitness	Gender	Product						
1	Female	KP281	0	0	0	0	0	0
		KP481	0	1	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
2	Female	KP281	10	0	0	0	0	0
		KP481	0	6	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	4	0	0
		KP481	0	0	0	0	6	0
		KP781	0	0	0	0	0	0
3	Female	KP281	26	0	0	0	0	0
		KP481	0	18	0	0	0	0
		KP781	0	0	1	0	0	0
	Male	KP281	0	0	0	28	0	0
		KP481	0	0	0	0	21	0
		KP781	0	0	0	0	0	3
4	Female	KP281	3	0	0	0	0	0
		KP481	0	4	0	0	0	0
		KP781	0	0	1	0	0	0
	Male	KP281	0	0	0	6	0	0
		KP481	0	0	0	0	4	0
		KP781	0	0	0	0	0	6
5	Female	KP281	1	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	5	0	0	0
	Male	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	24

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Fitness	Gender	Product						
1	Female	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
2	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
3	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
4	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
5	Female	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0

Remarks: -

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who is female and has Fitness of 1 and has brought KP481 = 1(1st table)
 - and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Income	Gender	Product						
29562	Female	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
	•••							
104581	Female	KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	2

 $372 \text{ rows} \times 6 \text{ columns}$

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Income	Gender	Product						
29562	Female	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Male		0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
•••	•••							
104581	Female	KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Male	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0

372 rows × 6 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who is male and has Income of 29562 and has brought KP281 =1(1st table)
 - and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Gender			Female			Male
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Miles	Gender	Product						
21	Female	KP281	0	0	0	0	0	0
		KP481	0	1	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
•••	•••	•••						
360	Female	KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Male	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	1

222 rows × 6 columns

		Gender			Female			Male	
		Product	KP281	KP481	KP781	KP281	KP481	KP781	
Miles	Gender	Product							
21	Female	KP281	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	100.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	
	Male	KP281	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	
•••	•••	•••	•••	•••	•••	•••	•••		
360	Female	KP481	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	
	Male	KP281	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	100.0	

222 rows × 6 columns

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who is female and has covered miles of 21 and has brought KP481 =1(1st table) and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Education			12			13	
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP28
MaritalStatus	Education	Product							
Partnered	12	KP281	0	0	0	0	0	0	
		KP481	0	1	0	0	0	0	
		KP781	0	0	0	0	0	0	
	13	KP281	0	0	0	2	0	0	
		KP481	0	0	0	0	1	0	
		KP781	0	0	0	0	0	0	
	14	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	15	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	16	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	18	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	20	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	21	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
C' l .	42	KP781	0	0	0	0	0	0	
Single	12	KP281	2	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
	13	KP781 KP281		0	0	1	0		
	13	KP281 KP481	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
	14	KP281	0	0	0	0	0	0	

		Education			12			13	
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP28
MaritalStatus	Education	Product							
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	15	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	16	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	18	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	20	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	
	21	KP281	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	

48 rows × 24 columns

		Education			12			13			
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP28		
MaritalStatus	Education	Product									
Partnered	12	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP481	0.0	100.0	0.0	0.0	0.0	0.0	0		
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
	13	KP281	0.0	0.0	0.0	100.0	0.0	0.0	0		
		KP481	0.0	0.0	0.0	0.0	100.0	0.0	0		
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
	14	KP281	0.0	0.0	0.0	0.0	0.0	0.0	100		
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
	15	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0		
	16	KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP281	0.0	0.0	0.0	0.0	0.0	0.0	0		
			KP481	0.0	0.0	0.0	0.0	0.0	0.0	0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
		18	18	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0
			KP481	0.0	0.0	0.0	0.0	0.0	0.0	0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
	20	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
	21	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
Single	12	KP281	100.0	0.0	0.0	0.0	0.0	0.0	0		
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0		
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
	13	KP281	0.0	0.0	0.0	100.0	0.0	0.0	0		
		KP481	0.0	0.0	0.0	0.0	100.0	0.0	0		
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0		
	14	KP281	0.0	0.0	0.0	0.0	0.0	0.0	100		

		Education			12			13	
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP28
MaritalStatus	Education	Product							
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0
	15	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0
	16	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0
	18	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0
	20	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0
	21	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0

48 rows × 24 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has education of 12 and married and has brought KP481 =1(1st table) and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Education			12			13		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP4
Usage	Education	Product								
2	. 12	KP281	0	0	0	0	0	0	0	
		KP481	0	1	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	
	13	KP281	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	
	• •••	•••								
7	20	KP481	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	
	21	KP281	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	

144 rows × 24 columns

Education

		Education			12			13		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP4
Usage	Education	Product								
2	12	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	100.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	13	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•••	•••	•••								
7	20	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	21	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

12

13

144 rows × 24 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has education of 12 and usage of 2 and has brought KP481 =1(1st table)
 - and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Education			12			13			
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP	
Fitness	Education	Product									
1	12	KP281	0	0	0	0	0	0	0		
		KP481	0	0	0	0	0	0	0		
	13	KP781	0	0	0	0	0	0	0		
		KP281	0	0	0	0	0	0	0		
		KP481	0	0	0	0	0	0	0		
•••		•••									
5		KP481	0	0	0	0	0	0	0		
			KP781	0	0	0	0	0	0	0	
		KP281	0	0	0	0	0	0	0		
		KP481	0	0	0	0	0	0	0		
		KP781	0	0	0	0	0	0	0		

120 rows × 24 columns

120 rows × 24 columns

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has education of 12 and Fitness of 1 and has brought KP481 =0(1st table)
 - and its probability % is 0% (2nd table)

Education

3. Same way of interpretation goes for rest of the data above

		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KF
Income	Education	Product								
29562	12	KP281	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	
	13	KP281	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	
•••	•••	•••								
104581	20	KP481	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	
	21	KP281	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	

12

13

1488 rows × 24 columns

→

Education

		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KF
Income	Education	Product								
29562	12	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	13	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•••	•••	•••			•••	•••			•••	
104581	20	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	21	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

12

13

1488 rows × 24 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has education of 12 and Income of 29562 and has brought KP481 =0(1st table) and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Education			12			13			
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP4	
Miles	Education	Product									
21	12	KP281	0	0	0	0	0	0	0		
		KP481	0	0	0	0	0	0	0		
		KP781	0	0	0	0	0	0	0		
	13	KP281	0	0	0	0	0	0	0		
		KP481	0	0	0	0	0	0	0		
•••			•••	•••	•••	•••	•••		•••		
360	20	KP481	0	0	0	0	0	0	0		
		KP781	0	0	0	0	0	0	0		
	21	KP281	0	0	0	0	0	0	0		
			KP481	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0		

888 rows × 24 columns

888 rows × 24 columns

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has education of 12 and covered miles of 21
 and has brought KP481 =0(1st table)
 and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Usage	MaritalStatus	Product						
2	Partnered	KP281	12	0	0	0	0	0
		KP481	0	10	0	0	0	0
		KP781	0	0	0	0	0	0
	Single	KP281	0	0	0	7	0	0
		KP481	0	0	0	0	4	0
		KP781	0	0	0	0	0	0
3	Partnered	KP281	23	0	0	0	0	0
		KP481	0	17	0	0	0	0
		KP781	0	0	0	0	0	0
	Single	KP281	0	0	0	14	0	0
		KP481	0	0	0	0	14	0
		KP781	0	0	0	0	0	1
4	Partnered	KP281	12	0	0	0	0	0
		KP481	0	6	0	0	0	0
		KP781	0	0	11	0	0	0
	Single	KP281	0	0	0	10	0	0
		KP481	0	0	0	0	6	0
5	Partnered	KP781 KP281	0	0	0	0	0	7
3	Partnered	KP281	0	3	0	0	0	0
		KP781	0	0	5	0	0	0
	Single	KP281	0	0	0	1	0	0
	Jingie	KP481	0	0	0	0	0	0
		КР781	0	0	0	0	0	7
6	Partnered	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	5	0	0	0
	Single	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	2
7	Partnered	KP281	0	0	0	0	0	0

		MaritalStatus	Partnered					Single		
		Product	KP281	KP481	KP781	KP281	KP481	KP781		
Usage	MaritalStatus	Product								
		KP481	0	0	0	0	0	0		
		KP781	0	0	2	0	0	0		
	Single	KP281	0	0	0	0	0	0		
		KP481	0	0	0	0	0	0		
		KP781	0	0	0	0	0	0		

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Usage	MaritalStatus	Product						
2	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
3	3 Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
4	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
5	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
6	Partnered	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
7	Partnered	KP281	0.0	0.0	0.0	0.0	0.0	0.0

		MaritalStatus	Partnered					Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Usage	MaritalStatus	Product						
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has usage of 2 and married and has brought KP281 =12(1st table)
 - and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Fitness	MaritalStatus	Product						
1	Partnered	KP281	1	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Single	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	1	0
		KP781	0	0	0	0	0	0
2	Partnered	KP281	11	0	0	0	0	0
		KP481	0	7	0	0	0	0
		KP781	0	0	0	0	0	0
	Single	KP281	0	0	0	3	0	0
		KP481	0	0	0	0	5	0
		KP781	0	0	0	0	0	0
3	Partnered	KP281	31	0	0	0	0	0
		KP481	0	25	0	0	0	0
		KP781	0	0	1	0	0	0
	Single	KP281	0	0	0	23	0	0
		KP481	0	0	0	0	14	0
		KP781	0	0	0	0	0	3
4	Partnered	KP281	4	0	0	0	0	0
		KP481	0	4	0	0	0	0
		KP781	0	0	5	0	0	0
	Single	KP281	0	0	0	5	0	0
		KP481	0	0	0	0	4	0
_		KP781	0	0	0	0	0	2
5	Partnered	KP281	1	0	0	0	0	0
		KP481	0	0	0	0	0	0
	<u>.</u>	KP781	0	0	17	0	0	0
	Single	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	12

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Fitness	MaritalStatus	Product						
1	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
2	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
3	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
4	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0
5	Partnered	KP281	100.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	100.0

Remarks: -

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has Fitness of 1 and married and has brought KP281 = 1(1st table)
 - and its probability % is 100% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Income	MaritalStatus	Product						
29562	Partnered	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0
	Single	KP281	0	0	0	1	0	0
		KP481	0	0	0	0	0	0
•••	•••	•••						
104581	Partnered	KP481	0	0	0	0	0	0
		KP781	0	0	2	0	0	0
	Single	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0

372 rows × 6 columns

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Income	MaritalStatus	Product						
29562	Partnered	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	100.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
•••	•••	•••						
104581	Partnered	KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0

372 rows × 6 columns

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has income of 29562 and married and has brought KP281 =0 (1st table) and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Miles	MaritalStatus	Product						
21	Partnered	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		КР781	0	0	0	0	0	0
	Single	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	1	0
•••	•••	•••						
360	Partnered	KP481	0	0	0	0	0	0
		KP781	0	0	1	0	0	0
	Single	KP281	0	0	0	0	0	0
		KP481	0	0	0	0	0	0
		KP781	0	0	0	0	0	0

222 rows × 6 columns

		MaritalStatus		Pa	rtnered			Single
		Product	KP281	KP481	KP781	KP281	KP481	KP781
Miles	MaritalStatus	Product						
21	Partnered	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	100.0	0.0
•••	•••	•••	•••	•••	•••	•••	•••	
360	Partnered	KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	100.0	0.0	0.0	0.0
	Single	KP281	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0

222 rows × 6 columns

Remarks: -

Usage

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has miles covered of 21 and married and has brought KP281 =0 (1st table) $\,$
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

Product KP281 KP481 KP781 KP281 KP481 KP781 KP281 KP481

3

2

Fitness	Usage	Product								
1	2	KP281	0	0	0	0	0	0	0	0
		KP481	0	1	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	3	KP281	0	0	0	1	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
•••	•••	•••		•••				•••		
5	6	KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	7	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0

90 rows × 18 columns

→

		Usage			2			3		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481
Fitness	Usage	Product								
1	2	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3	KP281	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•••	•••	•••								
5	6	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7	KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

90 rows × 18 columns

Remarks: -

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has fitness of 1 and usage of 2 and has brought KP281 =0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

```
In [58]: # Income wise Product Preference w.r.t Usage
          result = df_aerofit.groupby(["Income", "Usage", "Product"])["Product"].count()
          crosstab_result = pd.crosstab([df_aerofit["Income"], df_aerofit["Usage"], df_aer
                                           [df_aerofit["Usage"], df_aerofit["Product"]],
                                           rownames=['Income', 'Usage', 'Product'],
colnames=['Usage', 'Product'],
                                           dropna=False)
          crosstab_result1 = round(pd.crosstab([df_aerofit["Income"], df_aerofit["Usage"],
                                           [df_aerofit["Usage"], df_aerofit["Product"]],
                                           rownames=['Income', 'Usage', 'Product'],
                                           colnames=['Usage', 'Product'],
                                           dropna=False,normalize='index')*100,2)
          display(crosstab_result, crosstab_result1)
```

		Usage			2			3			
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	
Income	Usage	Product									
29562	2	KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	
	3	KP281	0	0	0	1	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
•••	•••	•••	•••	•••	•••	•••	•••	•••			
104581	6	KP481	0	0	0	0	0	0	0	0	
	7		KP781	0	0	0	0	0	0	0	0
		KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	

1116 rows × 18 columns

4										>
		Usage			2			3		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481
Income	Usage	Product								
29562	2	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3	KP281	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•••	•••	•••								
104581	6	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

1116 rows × 18 columns

→

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has Income of 29562 and usage of 2 and has brought KP281 =0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

Usage 2 3

Product KP281 KP481 KP781 KP281 KP481 KP781 KP281 KP481 K

Miles	Usage	Product								
21	2	KP281	0	0	0	0	0	0	0	0
		KP481	0	1	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	3	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
•••	•••		•••	•••		•••	•••	•••	•••	
360	6	KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	7	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0

666 rows × 18 columns

→

Usage

		O bage			_			•			
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	K
Mile	s Usage	Product									
2	1 2	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	3	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		•••									
36	0 6	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	360 6	KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	7	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

2

3

666 rows × 18 columns

Remarks: -

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has usage of 2 and miles of 21 and has brought KP281 = 0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Fitness			1			2		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481
Income	Fitness	Product								
29562	1	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	2	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
•••	•••	•••								
104581	4	KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0
	5	KP281	0	0	0	0	0	0	0	0
		KP481	0	0	0	0	0	0	0	0
		KP781	0	0	0	0	0	0	0	0

930 rows × 15 columns

4										•
		Fitness			1			2		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481
Income	Fitness	Product								
29562	1	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•••	•••	•••	•••	•••			•••	•••	•••	
104581	4	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	5	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

930 rows × 15 columns

→

1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages

- 2. The person who has Fitness of 1 and Income of 29562 and has brought KP281 =0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

Fitness Product KP281 KP481 KP781 KP281 KP481 KP781 KP281 KP481 F Miles Fitness **Product KP281 KP481 KP781 KP281 KP481 KP481**

555 rows × 15 columns

KP781

KP281

KP481

KP781

→

Fitness

		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	ŀ
Miles	Fitness	Product									
21	1	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	2	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•••	•••	•••									
360	4	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	5	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

1

2

555 rows × 15 columns

Remarks: -

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has Fitness of 1 and miles of 21 and has brought KP281 =0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

		Income			29562			30699			
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481	
Miles	Income	Product									
21	29562	KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	
	30699	KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
•••	•••	•••									
360	103336	103336	KP481	0	0	0	0	0	0	0	0
	104581	KP781	0	0	0	0	0	0	0	0	
		KP281	0	0	0	0	0	0	0	0	
		KP481	0	0	0	0	0	0	0	0	
		KP781	0	0	0	0	0	0	0	0	

6882 rows × 186 columns

4										•
	Income				29562			30699		
		Product	KP281	KP481	KP781	KP281	KP481	KP781	KP281	KP481
Miles	Income	Product								
21	29562	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	30699	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•••	•••									
360	103336	KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	104581	KP281	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP481	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		KP781	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

6882 rows × 186 columns

,

- 1. From above table, 1st table gives the value in whole number and 2nd one gives probability percentages
- 2. The person who has Miles of 21 and Income of 29562 and has brought KP281 =0 (1st table)
 - and its probability % is 0% (2nd table)
- 3. Same way of interpretation goes for rest of the data above

Calculating mean, median, mode, variance of columns

```
In [63]: # Mode of all columns of the dataset
         product_mode=df_aerofit["Product"].mode().values[0]
         age_mode=df_aerofit["Age"].mode().values[0]
         gender_mode=df_aerofit["Gender"].mode().values[0]
         education mode=df aerofit["Education"].mode().values[0]
         marital_mode=df_aerofit["MaritalStatus"].mode().values[0]
         usage_mode=df_aerofit["Usage"].mode().values[0]
         fitness_mode=df_aerofit["Fitness"].mode().values[0]
         income_mode=product_mode=df_aerofit["Income"].mode().values[0]
         miles_mode=df_aerofit["Miles"].mode().values[0]
         print("Mode of following data: -")
         print(f"Product: {product_mode}")
         print(f"Age: {age_mode}")
         print(f"Gender: {gender_mode}")
         print(f"Education: {education_mode}")
         print(f"MaritalStatus: {marital mode}")
         print(f"Usage: {usage_mode}")
         print(f"Fitness: {fitness_mode}")
         print(f"Income: {income_mode}")
         print(f"Miles: {miles_mode}")
        Mode of following data: -
        Product: 45480
        Age: 25
        Gender: Male
        Education: 16
        MaritalStatus: Partnered
```

Remarks: -

Usage: 3 Fitness: 3 Income: 45480 Miles: 85

1. The above output gives details about "mode" of all the columns present in our dataset

```
In [64]: # Median of integer dtype columns present in the dataset

age_median=df_aerofit["Age"].median()
  education_median=df_aerofit["Education"].median()
  usage_median=df_aerofit["Usage"].median()
  fitness_median=df_aerofit["Fitness"].median()
  income_median=product_mode=df_aerofit["Income"].median()
```

```
miles_median=df_aerofit["Miles"].median()
print("Median of following data: -")
print(f"Age: {age_median}")
print(f"Education: {education_median}")
print(f"Usage: {usage_median}")
print(f"Fitness: {fitness_median}")
print(f"Income: {income_median}")
print(f"Miles: {miles_median}")
```

Median of following data: -

Age: 26.0 Education: 16.0 Usage: 3.0 Fitness: 3.0 Income: 50596.5 Miles: 94.0

Remarks: -

1. The above output gives details about "median" of all the columns present in our dataset

```
In [65]: # Variance of integer dtype columns present in the dataset

age_var=df_aerofit["Age"].var()
    education_var=df_aerofit["Education"].var()
    usage_var=df_aerofit["Usage"].var()
    fitness_var=df_aerofit["Fitness"].var()
    income_var=product_mode=df_aerofit["Income"].var()
    miles_var=df_aerofit["Miles"].var()
    print("Variance of following data: -")
    print(f"Age: {age_var}")
    print(f"Education: {education_var}")
    print(f"Usage: {usage_var}")
    print(f"Fitness: {fitness_var}")
    print(f"Income: {income_var}")
    print(f"Miles: {miles_var}")
```

Variance of following data: Age: 48.21216635630043
Education: 2.6148665425201694
Usage: 1.1767846058348868
Fitness: 0.9194289261328368
Income: 272470624.1447548
Miles: 2689.8334885164513

Remarks: -

1. The above output gives details about "variance" of all the columns present in our dataset

```
In [66]: # Mean of Age grouped with Gender

df_aerofit.groupby(["Gender"])["Age"].mean()
```

Out[66]: Gender

Female 28.565789 Male 28.951923

Name: Age, dtype: float64

Remarks: -

1. The above output gives mean as described in comment (refer code part)

```
In [67]: # Average Miles covered w.r.t Gender

df_aerofit.groupby(["Gender"])["Miles"].mean()
```

Out[67]: Gender

Female 90.013158 Male 112.826923

Name: Miles, dtype: float64

Remarks: -

1. The above output gives mean as described in comment (refer code part)

```
In [68]: # Average Miles covered w.r.t MaritalStatus basis

df_aerofit.groupby(["MaritalStatus"])["Miles"].mean()
```

Out[68]: MaritalStatus

Partnered 104.289720 Single 101.589041 Name: Miles, dtype: float64

Remarks: -

1. The above output gives mean as described in comment (refer code part)

```
In [69]: # Average Usage w.r.t Product wise

df_aerofit.groupby(["Product"])["Usage"].mean()
```

Out[69]: Product

KP281 3.087500
KP481 3.066667
KP781 4.775000

Name: Usage, dtype: float64

Remarks: -

1. The above output gives mean as described in comment (refer code part)

```
In [70]: # Gender-Product wise Average Age
```

```
df_aerofit.groupby(["Gender","Product"])["Age"].mean()
Out[70]: Gender Product
         Female KP281
                         28.450000
                KP481
                         29.103448
                         27.000000
                KP781
         Male
                KP281
                         28.650000
                KP481
                         28.709677
                          29.545455
                KP781
         Name: Age, dtype: float64
```

Remarks: -

1. The above output gives mean as described in comment (refer code part)

```
In [71]: # Gender-Product wise Average Income
         df_aerofit.groupby(["Gender","Product"])["Income"].mean()
Out[71]: Gender
                Product
                        46020.075000
         Female
                KP281
                KP481
                         49336.448276
                KP781
                         73633.857143
                KP281
                         46815.975000
         Male
                KP481
                          48634.258065
                KP781
                         75825.030303
         Name: Income, dtype: float64
```

Remarks: -

 The above output gives mean as described in comment (refer code part)

```
In [72]: # Gender-Product wise Average Miles
         df_aerofit.groupby(["Gender","Product"])["Miles"].mean()
Out[72]: Gender
                Product
         Female
                KP281
                           76.200000
                 KP481
                            87.344828
                 KP781
                          180.000000
         Male
                 KP281
                            89.375000
                            88.483871
                 KP481
                 KP781
                           164.121212
         Name: Miles, dtype: float64
```

Remarks: -

1. The above output gives mean as described in comment (refer code part)

```
In [73]: # Gender-MaritalStatus-Product wise Average Usage

df_aerofit.groupby(["Gender","MaritalStatus","Product"])["Usage"].mean()
```

Out[73]:	Gender	MaritalStatus	Product				
	Female	Partnered	KP281	2.851852			
			KP481	3.333333			
			KP781	5.250000			
		Single	KP281	3.000000			
			KP481	2.928571			
			KP781	4.666667			
	Male	Partnered	KP281	3.285714			
			KP481	2.857143			
			KP781	4.842105			
		Single	KP281	3.263158			
			KP481	3.300000			
			KP781	4.571429			

Name: Usage, dtype: float64

Remarks: -

1. The above output gives mean as described in comment (refer code part)

In [74]: # Gender-MaritalStatus-Product wise Mean, Median Miles

df_aerofit.groupby(["Gender", "MaritalStatus", "Product"])["Miles"].aggregate([np.

Out[74]:

	Gender	MaritalStatus	Product	mean	median
0	Female	Partnered	KP281	74.925926	66.0
1	Female	Partnered	KP481	94.000000	85.0
2	Female	Partnered	KP781	215.000000	200.0
3	Female	Single	KP281	78.846154	75.0
4	Female	Single	KP481	80.214286	79.5
5	Female	Single	KP781	133.333333	100.0
6	Male	Partnered	KP281	80.190476	75.0
7	Male	Partnered	KP481	87.238095	95.0
8	Male	Partnered	KP781	176.315789	160.0
9	Male	Single	KP281	99.526316	94.0
10	Male	Single	KP481	91.100000	95.0
11	Male	Single	KP781	147.571429	150.0

Remarks: -

- The above output gives mean (group of Gender, Marital Status, Product) as described in comment (refer code part)
- 2. The above output gives median (group of Gender, MaritalStatus, Product) as described in comment (refer code part)

Univariate Analysis

Outlier Checks and Treatment

In [75]:	<pre>df_aerofit_copy=df_aerofit.copy() df_aerofit_copy.head()</pre>										
Out[75]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Ag
	0	KP281	18	Male	14	Single	3	4	29562	112	
	1	KP281	19	Male	15	Single	2	3	31836	75	
	2	KP281	19	Female	14	Partnered	4	3	30699	66	
	3	KP281	19	Male	12	Single	3	3	32973	85	
	4	KP281	20	Male	13	Partnered	4	2	35247	47	
	4										•

Remarks: -

1. I have created a copy of original data so that while handling outliers, we are not hampering the original data

Remarks: -

1. There are lots of outliers for Income and Miles especially as compared to other columns

```
In [77]: # Handling the outliers
         columns_of_interest =["Age","Education","Usage","Fitness","Income", "Miles"]
         # Create a 2x3 grid of subplots
         fig, axes = plt.subplots(2, 3, figsize=(20,10))
         # Flatten the axes array for easier indexing
         axes = axes.flatten()
         for i, column in enumerate(columns_of_interest):
             # Calculating the 10th and 90th percentiles
             tenth_percentile = df_aerofit_copy[column].quantile(0.10)
             ninetieth percentile = df aerofit copy[column].quantile(0.90)
             # Applying quantile-based flooring and capping
             df_aerofit_copy[column] = np.where(df_aerofit_copy[column] < tenth_percentil</pre>
             df_aerofit_copy[column] = np.where(df_aerofit_copy[column] > ninetieth_perce
             # Creating a boxplot of winsorized data
             sns.boxplot(data=df_aerofit_copy, x=column, orient='h', ax=axes[i])
             axes[i].set_title(f"{column} (outlier_handled)")
         plt.tight_layout()
         plt.show()
```


Remarks: -

- 1. To handle the outliers, I have used a technique called "quantile-based flooring and capping"[Winsorization], where I am taking out the 10th and 90th percentile of the data margins and then whichever outliers are less than 10th percentile, those values are replaced with 10th percentile value and same goes for those which are above 90th percentile
- 2. The outliers are handled to 98% as compared to the initial graphs, and this newly made outlier free dataframe is used for below graph analysis

Graphical analysis

```
In [79]: # Plotting counts of all the columns present in the dataset

fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(14, 12))
fig.subplots_adjust(top=1.2)

# Plot Product
plt1=sns.countplot(data=df_aerofit_copy, x="Product",ax=axes[0, 0])
plt1.set_title("Countplot of Product")
plt1.set_xlabel("Product")
plt1.set_ylabel("Count")

# Plot Age
bins = [0, 20, 40, 60, 80, 100]
df_aerofit_copy["AgeGroup"] = pd.cut(df_aerofit_copy["Age"], bins=bins, right=Fa
plt2 = sns.countplot(data=df_aerofit_copy, x="AgeGroup", ax=axes[0, 1])
plt2.set_title("Countplot of Age Groups")
plt2.set_ylabel("Age Group")
plt2.set_ylabel("Count")
```

```
formatted labels = ["0-20", "20-40", "40-60", "60-80", "80-100"]
plt2.set xticklabels(formatted labels)
# Plot Gender
plt3=sns.countplot(data=df_aerofit_copy, x="Gender",ax=axes[0, 2])
plt3.set title("Countplot of Gender")
plt3.set_xlabel("Gender")
plt3.set_ylabel("Count")
# Plot Education
plt4=sns.countplot(data=df_aerofit_copy, x="Education",ax=axes[1, 0])
plt4.set title("Countplot of Education")
plt4.set_xlabel("Education")
plt4.set_ylabel("Count")
# Plot MaritalStatus
plt5=sns.countplot(data=df_aerofit_copy, x="MaritalStatus",ax=axes[1, 1])
plt5.set_title("Countplot of MaritalStatus")
plt5.set xlabel("MaritalStatus")
plt5.set_ylabel("Count")
# Plot Usage
plt6=sns.countplot(data=df_aerofit_copy, x="Usage",ax=axes[1, 2])
plt6.set_title("Countplot of Usage")
plt6.set_xlabel("Usage")
plt6.set_ylabel("Count")
# Plot Fitness
plt7=sns.countplot(data=df_aerofit_copy, x="Fitness",ax=axes[2, 0])
plt7.set title("Countplot of Fitness")
plt7.set_xlabel("Fitness")
plt7.set_ylabel("Count")
# Plot Income
bins = [0, 25000, 50000, 75000, 100000]
df_aerofit_copy["IncomeGroup"] = pd.cut(df_aerofit_copy["Income"], bins=bins, ri
plt8 = sns.countplot(data=df aerofit copy, x="IncomeGroup", ax=axes[2, 1])
plt8.set_title("Countplot of Income Groups")
plt8.set_xlabel("Income Group")
plt8.set_ylabel("Count")
formatted labels = ["0-25k", "25k-50k", "50k-75k", "75k-100k"]
plt8.set xticklabels(formatted labels)
# Plot Miles
bins = [0, 60, 120, 180, 240]
df_aerofit_copy["MilesGroup"] = pd.cut(df_aerofit_copy["Miles"], bins=bins, right
plt9 = sns.countplot(data=df_aerofit_copy, x="MilesGroup", ax=axes[2, 2])
plt9.set title("Countplot of Miles Groups")
plt9.set_xlabel("Miles Group")
plt9.set ylabel("Count")
formatted_labels = ["0-60", "60-120", "120-180", "180-240"]
plt9.set_xticklabels(formatted_labels)
plt.show()
```


Observations: -

Graph 1:- 1. The plot shows the count of individual products

2. Customers who have purchased a particular

treadmill--> KP281 : 80 ; KP481 : 60 ;

KP781: 40

3. Most of customers prefer buying KP281 followed by KP481 & KP781

Graph 2:- 1. The plot shows the count of individiual Age groups 2. The age group of 20 to 40 years is range of customers who mostly purchased the

products

Graph 3:- 1. The plot shows the count of individiual Gender

categories

2. Customers who have purchased--> More than 100 Male

customers; More than 75

Female customers

3. They have more Male Customers compared to Female

Customers; Ratio being (almost 60:40)

- Graph 4:- 1. The plot shows the count of individual Education groups
- 2. Around 80 customers with 16 years of education ; 60 customers with 14 years ; 5

customers with 15 years; 20 customers with 18 years.

- 3. Most of customers have education of 16 years & 14 years $% \left(1\right) =\left(1\right) ^{2}$
- Graph 5:- 1. The plot shows the count of individual MaritalStatus groups
- 2. There are 73 customers who are single ; 107 customers who are partnered.
 - 3. 59% of the customers are partnered
- Graph 6:- 1. The plot shows the count of individual Usage groups
- 2. More than 30 customers who plan to use the treadmill twice a week on an average;

around 70 customers who plan to use the treadmill thrice a week on average, etc.

- 3. Customers on an average plan to use the treadmill 3 to 4 times a week
- Graph 7:- 1. The plot shows the count of individiual Fitness groups
- 2. Around 26 customers given a score of 2; more than 90 gave score of 3, etc.
- 3. Almost 50% of the customers have given a self-rated fitness scale of 3
- Graph 8:- 1. The plot shows the count of individual Income groups
- 2. More than 80 customers fall in the range of 24k to 50k ; ~ 75 fall under 51k-75k

,etc.

- 3. Most customers are earning between 25k and 50K
- Graph 9:- 1. The plot shows the count of individual Miles groups
- 2. More than 100 customers expect to walk/run upto 100 miles each week on an

average, etc.

3. Most Customers expect to walk/run 60 to 100 miles per week on an average

```
In [80]: # Plotting the % distributions of only the categorical columns
         fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))
         fig.subplots_adjust(top=1.2)
         # Plotting Product
         product_counts = df_aerofit_copy["Product"].value_counts()
         axes[0].pie(product_counts, labels=product_counts.index, autopct='%1.1f%%')
         axes[0].set_title("Pie Chart of Product Distribution")
         # Plotting Gender
         gender_counts = df_aerofit_copy["Gender"].value_counts()
         axes[1].pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%')
         axes[1].set title("Pie Chart of Gender Distribution")
         # Plotting MaritalStatus
         marital_counts = df_aerofit_copy["MaritalStatus"].value_counts()
         axes[2].pie(marital_counts, labels=marital_counts.index, autopct='%1.1f%%')
         axes[2].set title("Pie Chart of MaritalStatus Distribution")
         plt.show()
```


Observations: -

- Graph 1:- 1. The plot shows the % distribution of individual products
- 2. 44.4% of customers purchased KP281 ; 33.3% of customers purchased KP481 ;
 - 22.2% of customers purchased KP781
 - 3. KP281 is most sold product with 44.45% in overall.
- Graph 2:- 1. The plot shows % distribution of individiual Age groups
 - 2. 57.8% Male customers ; 42.2% female customers
 - 3. Almost 59% of the total customers are Male.
- Graph 3:- 1. The plot shows % distribution of individual Gender categories
- 2. 59.4% of the customers are single ; 40.6% of the customers are partnered
 - 3. Almost 60% of customers are partnered.

```
In [100... # Plotting KDE plots to see the distribution of values for non-categorical column fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(8, 10))
```

```
fig.subplots_adjust(top=1.2)
# Defining colors for each plot
hist_colors = ['darkblue', 'green', 'purple', 'yellow', 'red', 'orange']
# Plotting Age
sns.histplot(data=df_aerofit_copy, x='Age', bins=36, color=hist_colors[0],
             ax=axes[0, 0], edgecolor='black', kde=True, linewidth=2)
axes[0, 0].set_title("Age")
# Plotting Education
sns.histplot(data=df_aerofit_copy, x='Education', bins=36, color=hist_colors[1],
             ax=axes[0, 1], edgecolor='black', kde=True, linewidth=2)
axes[0, 1].set_title("Education")
# Plotting Usage
sns.histplot(data=df_aerofit_copy, x='Usage', bins=36, color=hist_colors[2],
             ax=axes[1, 0], edgecolor='black', kde=True, linewidth=2)
axes[1, 0].set_title("Usage")
# Plotting Fitness
sns.histplot(data=df_aerofit_copy, x='Fitness', bins=36, color=hist_colors[3],
             ax=axes[1, 1], edgecolor='black', kde=True, linewidth=2)
axes[1, 1].set_title("Fitness")
# Plotting Income
sns.histplot(data=df_aerofit_copy, x='Income', bins=36, color=hist_colors[4],
             ax=axes[2, 0], edgecolor='black', kde=True, linewidth=2)
axes[2, 0].set_title("Income")
# Plotting Miles
sns.histplot(data=df_aerofit_copy, x='Miles', bins=36, color=hist_colors[5],
             ax=axes[2, 1], edgecolor='black', kde=True, linewidth=2)
axes[2, 1].set_title("Miles")
plt.show()
```


Observations: -

- Graph 1:- 1. The plot shows the distribution of individual Age groups
- 2. Inferences from this graph is same as stated in countplots graph analysis
- Graph 2:- 1. The plot shows % distribution of individiual Education groups
- 2 Inferences from this graph is same as stated in countplots graph analysis
- Graph 3:- 1. The plot shows % distribution of individiual Usage categories
- 2. Inferences from this graph is same as stated in countplots graph analysis
- Graph 4:- 1. The plot shows % distribution of individual Fitness categories
- 2. Inferences from this graph is same as stated in countplots graph analysis
- Graph 5:- 1. The plot shows % distribution of individual Income categories
- 2. Inferences from this graph is same as stated in countplots graph analysis
- Graph 6:- 1. The plot shows % distribution of individiual Miles categories
- 2. Inferences from this graph is same as stated in countplots graph analysis

Bivariate Analysis

```
In [82]: # comparison of Product with various other factors
         sns.set_style(style='whitegrid')
         fig, axs = plt.subplots(nrows=2, ncols=4, figsize=(18, 15))
         #Plotting of Product vs Age
         sns.boxplot(data=df_aerofit_copy, x='Product', y='Age', ax=axs[0][0])
         #Plotting of Product vs Gender
         sns.countplot(data=df_aerofit_copy, x='Gender', hue='Product', ax=axs[0][1])
         #Plotting of Product vs Education
         sns.boxplot(data=df_aerofit_copy, x='Product', y='Education', ax=axs[0][2])
         #Plotting of Product vs Maritalstatus
         sns.countplot(data=df_aerofit_copy, x='MaritalStatus', hue='Product', ax=axs[0][
         #Plotting of Product vs Usage
         sns.boxplot(data=df_aerofit_copy, x='Product', y='Usage', ax=axs[1][0])
         #Plotting of Product vs Fitness
         sns.boxplot(data=df_aerofit_copy, x='Product', y='Fitness', ax=axs[1][1])
         #Plotting of Product vs Income
         sns.boxplot(data=df_aerofit_copy, x='Product', y='Income', ax=axs[1][2])
         #Plotting of Product vs Miles
```


Observations: -

Graph 1:- 1. The plot shows comparison between Product and Age
2. For KP281 & KP481 : Average age around 26 years ;
With Customers age range
between ~(23 to 33 years) & (24 to 33 years)
respectively

For KP781 : Average age around 27 years ; With Customers age range between ~(25 to 31 years)

Graph 2:- 1. The plot shows comparison between Product and Gender

2 For KP281 : Male - 40, Female 40 ; For KP481 : Male - 31, Female 29
For KP781 : Male - 33, Female 7

Graph 3:- 1. The plot shows comparison between Product and Education

2. For KP281 $\,\&\,$ KP481 : range between 14 to 16 years of Education

For KP781 : more than 16 years of Education

Graph 4:- 1 The plot shows comparison between Product and MaritalStatus

2. For KP281 : Partnered 48, Single 32 ; For KP481 : Partnered 36, Single 33

For KP781 : Partnered 23, Single 17

Graph 5:- 1. The plot shows comparison between Product and Usage 2. For KP281 : 3 to 4 times avg each week ; For KP481 : 3 times avg each week

For KP781 : 4 to 5 avg times each week

Graph 6:- 1. The plot shows comparison between Product and Fitness

2. For KP281 & KP481 $\,:\,$ 3 indicating a moderate level of fitness

For KP781 : 5 indicating a High level of fitness

Graph 7:- 1. The plot shows comparison between Product and Income

2. For KP281 : range between 38K to 55K; with median around 46K; For KP481 : range between 46K to 54K; with median around 50K For KP781 : range between 57K to 85K; with median around 76K

Graph 8:- 1. The plot shows comparison between Product and Miles 2. For KP281 & KP481 : 86K miles each week; range being between (around 68K to 93K)

& (around 63 K to 104 K) respectively
For KP781 : 160K miles each week; range being between 120K to 18K

Conclusion:-

KP281 & KP481 products are purchased by 30k to 70k earning customers.

KP781 product purchased by customers who earning more than 50k.

KP281 & KP481 product customers mostly used to run 50 to 120 miles per week, but KP781 product used to run more than 100 miles per week.

Upto 4 days per week usage can prefer to KP281 & KP481.

More than 4 days per week usage is preferable to use KP781.

Beginner and Intermediate fitness people prefer KP281 and KP481.

Advance Fitness people prefer KP781.

More than 16 years of Educated customer prefer KP781.

More Earning customer prefer KP781. And in another hand less to medium earning customer prefer KP281 & KP481.

More Fitness and more usage customers prefer KP781.

When Male is Partnered, it's higher chances to buy KP481 and KP781.

When Female is Partnered, it's higher chances to buy KP281.

```
In [83]: # comparison of Age with various other factors
         sns.set_style(style='whitegrid')
         fig, axs = plt.subplots(nrows=2, ncols=4, figsize=(18, 15))
         # Plotting of Age vs Gender (Categorical vs. Numerical)
         sns.violinplot(data=df_aerofit_copy, x='Gender', y='Age', ax=axs[0][0])
         # Plotting of Age vs Education (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Age', y='Education', ax=axs[0][1])
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plotting of Age vs MaritalStatus (Categorical vs. Numerical)
         sns.boxplot(data=df_aerofit_copy, x='MaritalStatus', y='Age', ax=axs[0][2])
         # Plotting of Age vs Usage (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Age', y='Usage', ax=axs[0][3])
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plotting of Age vs Fitness (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Age', y='Fitness', ax=axs[1][0])
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plotting of Age vs Income (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Age', y='Income', ax=axs[1][1])
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plotting of Age vs Miles (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Age', y='Miles', ax=axs[1][2])
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Removing the last subplot (axs[1][3]) by not plotting anything in it
         fig.delaxes(axs[1][3])
         plt.tight_layout()
         plt.show()
```


Observations: -

Graph 1:- 1. The plot shows comparison between Gender and Age

2. Mostly Males lie in the range of \gt 20 and \lt 36 years of age with the median being

somewhere around 25-35; Similarly for Female, it lies somewhat similar to male but less than male.

Graph 2:- 1. The plot shows comparison between Age and Education

2 Person who have age of 25, have education of 14,16,18 respectively; Similarly

the reading goes for rest of the plots.

3. Also education of 14, 16 and 18 years have more strong correlation with age ; $\,$

Segment of customers in the age group between 32 to 37 years & having education

 $\,$ of 16 years; This cluster is more dense compared to the other 2 in this age group

Graph 3:- 1. The plot shows comparison between Age and MaritalStatus

2. Single Customers falling in the age group range of 23 to 31 years represent 50%

of the customers in the 'Single Customers' category. (Median age being 25 years)

3. Partnered Customers falling in the age group range

of 25 to 35 years represent

50% of the customers in the 'Partnered Customers' category.

(Median age being 26 years)

Graph 4:- 1. The plot shows comparison between Age and Usage

2. Segment of customers with age between 20 to 30 years vary in their plan to use each

week (i.e. 2,3,4,5 times).

 $\,$ 3. Segment of customers with age beyond 37 years vary in their plan to use the treadmill

each week(i.e. 2,3,4,5 times).

4. Segment of customers with age between 31 to 37 years mostly prefer to use the treadmill 3 to 4 times each week.

5. Segment of customers with age 36 prefer to use the treadmill 4 times each week.

6. Majority of the customers prefer to use the treadmill 3 to 4 times each week

Graph 5:- 1. The plot shows comparison between Age and Fitness

2. Segment of customers with age group range from 20 to 40 years have self-rated fitness

score of 3

 $\,$ 3. Segment of customers leaving the age group range from 25 to 27 years, 31 years, 32 $\,$

years, 36 years

have self-rated fitness score of 5

4. Segment of customers with age group range from 35 to 37 years have self-rated fitness

score of 3

 $\,$ 5. Customers with self-rated fitness score of 3 more likely to purchase the product $\,$

Graph 6:- 1. The plot shows comparison between Age and Income

2. Customers having annual income in the range between 46K to 56K represent a cluster

which is most likely

to purchase product in a wider age group.

3. Customers having annual income upto 45K & limited age group range of 20 to 26 years $\,$

represent another data point cluster.

4. Customers having annual income upto 51K to 65K & age 37 years represent another data point cluster.

 $\,$ 5. Customers having annual income of 85K & age group range of 27 to 37 years represent

another data point cluster.

Graph 7:- 1. The plot shows comparison between Age and Miles

2. Customers who expect to walk/run upto 120 miles fall in age group of 20 to 28 years $\,$

form 1st data point cluster.

3. Customers expecting to walk/run avg no. of mile i.e.[50, range 80 to 100, 180]miles

form another set of clusters spread across age group 20 to 40 years

```
In [84]: # comparison of Gender with various other factors
         # Creating a single figure with a 2x3 grid
         fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(18, 10))
         # Plot 1: Gender vs. Education
         sns.boxplot(data=df_aerofit_copy, x='Gender', y='Education', ax=axs[0][0])
         axs[0][0].set_title("Gender vs. Education")
         # Plot 2: Gender vs. MaritalStatus
         sns.countplot(data=df_aerofit_copy, x='Gender', hue='MaritalStatus', ax=axs[0][1
         axs[0][1].set_title("Gender vs. MaritalStatus")
         # Plot 3: Gender vs. Usage
         sns.boxplot(data=df_aerofit_copy, x='Gender', y='Usage', ax=axs[0][2])
         axs[0][2].set_title("Gender vs. Usage")
         # Plot 4: Gender vs. Fitness
         sns.boxplot(data=df_aerofit_copy, x='Gender', y='Fitness', ax=axs[1][0])
         axs[1][0].set_title("Gender vs. Fitness")
         # Plot 5: Gender vs. Income
         sns.boxplot(data=df_aerofit_copy, x='Gender', y='Income', ax=axs[1][1])
         axs[1][1].set_title("Gender vs. Income")
         # Plot 6: Gender vs. Miles
         sns.boxplot(data=df_aerofit_copy, x='Gender', y='Miles', ax=axs[1][2])
         axs[1][2].set_title("Gender vs. Miles")
         plt.tight_layout()
         # Show the combined subplot
         plt.show()
```


Observations: -

- Graph 1:- 1. The plot shows comparison between Gender and Education
- 2. Male & Female customers both having 14 to 16 years of education
- Graph 2:- 1. The plot shows comparison between Gender and MaritalStatus
- 2 In both categories Male & Female the count of Partnered male customers & partnered Female customers
- is more than count of single male & single female customers respectively.
- 3. Within male customers, the count of partnered customers is more than the single customers.

And same can be said about Female customers as well.

- Graph 3:- 1. The plot shows comparison between Gender and Usage
- 2. The average number of times the male customer plans to use the product each week is 3 to 4.
- 3. The average number of times the female customer plans to use the treadmill each week range between 2 to 4;

 The median being 3 times.
- 4. Female customers showcase a wider range of usage levels (2-3-4)
- Graph 4:- 1. The plot shows comparison between Gender and Fitness
- 2. Male customers have wider range of Fitness level compared to female customers.
- 3. Male customers have fitness starting from 3 till 4 (and median fitness level of 3.5)
- 4. Female customers are having fitness level of 3 (i.e. median fitness level of 3)
- Graph 5:- 1. The plot shows comparison between Gender and Income (in \$)
- 2. Male Customers having Annual Income ranging from 32K to 85K where 50% of the customers lie in the range of 45K to 62K (Median Annual Income being around 52K)
- 3. Female Customers having Annual Income ranging from 32K to 70K- where 50% of the customers lie in the range around 43K to 57K (Median Annual Income being around 48K)
- 4. Male customers showcase a wider range of Income levels compared to female customers.
- 5. Male Target Audience which contribute most to business have Annual Income around 52K
- Female Target Audience which contribute most to business have Annual Income around 48K
- Graph 6:- 1. The plot shows comparison between Gender and Miles

2. Male Customers are expected to walk/run on average no. of miles ranging from 50 to 180 each week - where 50% of the customers lie in the range of 85 to 141 (expected median level being 100 miles)

- 3. Female Customers are expected to walk/run on average no. of miles ranging from 50 to 130 each week where 50% of the customers lie in the range of 65 to 100 (expected median level being around 85 miles)
- 4. Male customers showcase a wider range of expected miles covered as compared to female customers.

```
In [85]: # comparison of Education with various other factors
         # Creating a single figure with a 2x3 grid
         fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(18, 10))
         # Plot 2: Education vs. MaritalStatus (Categorical vs. Categorical)
         sns.countplot(data=df_aerofit_copy, x='MaritalStatus', hue='Education', ax=axs[@
         axs[0][0].set_title("MaritalStatus vs. Education")
         # Plot 3: Education vs. Usage (Numerical vs. Numerical)
         a=sns.scatterplot(data=df aerofit copy, x='Education', y='Usage', ax=axs[0][1])
         axs[0][1].set_title("Education vs. Usage")
         a.xaxis.set major formatter(plt.FuncFormatter(lambda x, : int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plot 4: Education vs. Fitness (Numerical vs. Numerical)
         a=sns.scatterplot(data=df aerofit copy, x='Education', y='Fitness', ax=axs[0][2]
         axs[0][2].set title("Education vs. Fitness")
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plot 5: Education vs. Income (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Education', y='Income', ax=axs[1][0])
         axs[1][0].set title("Education vs. Income")
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plot 6: Education vs. Miles (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Education', y='Miles', ax=axs[1][1])
         axs[1][1].set_title("Education vs. Miles")
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Removing empty subplot
         fig.delaxes(axs[1][2])
         plt.tight layout()
         # Show the combined subplot
         plt.show()
```


Observations: -

- Graph 1:- 1. The plot shows comparison between Education and MaritalStatus
- 2. The count of partnered customers with 14 yrs,16 yrs is more than count of single customers with same education years
- 3. The count of partnered customers with 18 yrs is more than count of single customers with same education years
- 4. The count of partnered customers with 15 yrs is less than count of single customers with same education years
- 5. The count of partnered customers with 16 yrs is the max amongst both the categories
- Graph 2:- 1. The plot shows comparison between Education and Usage
- 2 4 clusters can be seen with 180 datapoints concentrated over education years of 14,15,16 & 18 years & planned useage of 2,3,4,& 5 times on an average each week.
- 3. The cluster is spread across the complete range & not moving much in upward or downward direction from Left to right
- 4. Above observations suggests that education may not have that much significant impact on planned weekly usage
- Graph 3:- 1. The plot shows comparison between Education and Fitness
- 3. The cluster is spread across the range & not moving much in upward or downward direction from Left to right

4. Above observations suggests there is a correlation but education not have most significant impact on fitness score

- Graph 4:- 1. The plot shows comparison between Education and Income(in \$)
- 2. There is one segment of customers with education years of 14 & 16 years & having annual income in the range upto 65K

These set of customers may lean towards purchasing more cost-effective options. (i.e. KP281,KP481)

3. There is another segment of premium customers with more than 18 years of education having annual income ranging from 48K upto 85K

These customers with higher education and income levels may prefer treadmill like KP781

4. 4 clusters can be clearly seen for 4 duff education years (i.e. 14,15,16 & 18 years)

Cluster for 16 years is densely populated.

- 5. We can see an upward trend in the clusters as the education years increase showcasing a positive correlation
- Graph 5:- 1. The plot shows comparison between Education and Miles

spread till 140 miles though

These represent 4 clusters individually.

- 3. Cluster for 16 education years is densely populated signifing a major count of customers purchasing this treadmill.
- 4. Also datapoints near 105 miles across 3 clusters of 14,16 & 18 education years are close.
- 5. The cluster is spread across the complete range & not moving much in upward or downward direction from Left to right

Above observations suggests that education may not have that much significant impact on expected weekly mileage.

```
In [86]: # comparison of MaritalStatus with various other factors

fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(18, 10))

# Plot 1: MaritalStatus vs. Usage (Categorical vs. Numerical)
sns.boxplot(data=df_aerofit_copy, x='MaritalStatus', y='Usage', showmeans=True,
axs[0][0].set_title("MaritalStatus vs. Usage")

# Plot 2: MaritalStatus vs. Fitness (Categorical vs. Numerical)
sns.boxplot(data=df_aerofit_copy, x='MaritalStatus', y='Fitness', showmeans=True
axs[0][1].set_title("MaritalStatus vs. Fitness")

# Plot 3: MaritalStatus vs. Income (Categorical vs. Numerical)
sns.boxplot(data=df_aerofit_copy, x='MaritalStatus', y='Income', ax=axs[1][0])
```

```
axs[1][0].set_title("MaritalStatus vs. Income")

# Plot 4: MaritalStatus vs. Miles (Categorical vs. Numerical)
sns.boxplot(data=df_aerofit_copy, x='MaritalStatus', y='Miles', ax=axs[1][1])
axs[1][1].set_title("MaritalStatus vs. Miles")

plt.tight_layout()

# Show the combined subplot
plt.show()
```


Observations: -

- Graph 1:- 1. The plot shows comparison between MaritalStatus and Usage
- 2. The range of usage for Single is between 3-4 miles per week
- 3. The range of usage for Partnered is between 3-4 miles per week
- 4. The median is same for both (refer small green triangle)
- Graph 2:- 1. The plot shows comparison between MaritalStatus and Fitness
 - 2 The range of Fitness for Single is between 3-4
 - 3. The range of Fitness for Partnered is between 3-4
- 4. The median for Partnered is less than Single (refer small green triangle)
- Graph 3:- 1. The plot shows comparison between MaritalStatus and Income
- 2. There are Single Cutomers having Annual Income range upto 70K where 50% of the customers lie in the range of 40K to 55K (Median Annual Income being around 48K)
- 3. There are partnered Cutomers having Annual Income range above 80K where 50% of the customers lie in

the range around 45K to 61K (Median Annual Income being around 52K)

- 4. Partnered customers have a higher Annual Income median value than the Single customers
- 5. For instance, partnered customers might prioritize different features or price points compared to single customers.
- Graph 4:- 1. The plot shows comparison between MaritalStatus and Miles
- 2. Single Customers expects to walk/run on average no of miles ranging from 50 to 170 each week - where 50% of the customers lie in the range of 75 to 110 (expected median level being 95 miles)
- 3. Partnered Customers expects to walk/run on average no of miles ranging from 50 to 180 each week where 50% of the customers lie in the range of 65 to 120 (expected median level being around 85 miles)
- 4. Partnered customers showcase a wider range of expected mileage compared to Single customers

```
In [87]: # comparison of Usage with various other factors
         fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(18, 10))
         # Plot 1: Usage vs. Fitness (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Usage', y='Fitness', ax=axs[0][0])
         axs[0][0].set_title("Usage vs. Fitness")
         a.xaxis.set major formatter(plt.FuncFormatter(lambda x, : int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plot 2: Usage vs. Income (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Usage', y='Income', ax=axs[0][1])
         axs[0][1].set title("Usage vs. Income")
         a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Plot 3: Usage vs. Miles (Numerical vs. Numerical)
         a=sns.scatterplot(data=df_aerofit_copy, x='Usage', y='Miles', ax=axs[1][0])
         axs[1][0].set title("Usage vs. Miles")
         a.xaxis.set major formatter(plt.FuncFormatter(lambda x, : int(x)))
         a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
         # Removing empty subplot
         fig.delaxes(axs[1][1])
         plt.tight layout()
         # Show the combined subplot
         plt.show()
```


- Graph 1:- 1. The plot shows comparison between Usage and Fitness
- Customers who plans usage twice a week on an avg have self-rated fitness on a scale of 2 & 3; These form 1 cluster.
- 3. Customers who plans usage 3 times or 4 times a week on an avg have self-rated fitness across the scale
 1 to 5; These form 2nd cluster & 3rd cluster respectively.
- 4. Customers who plans usage 5 times a week on an avghave self-rated fitness on a scale of 3, 4, 5; Theseform 4th cluster.
- 5. The more the self-rated fitness score more the planned useage each week.
- 6. There is strong positive correlation between customer's planned Usage of product & the self-rated fitness score.
- Graph 2:- 1. The plot shows comparison between Usage and Miles
- 2 Customers who plans usage twice a week on an avg expect to walk/run max upto 110 miles; These form 1 cluster.
- 3. Customers who plans usage thrice a week on an avg expect to walk/run max upto 130 miles; These form 2nd cluster.
- 4. Customers who plans usage four times a week on an avg expect to walk/run max upto 180 miles; These form 3rd cluster.
- 5. Customers who plans usage four times a week on an avg expect to walk/run starting from 90 miles & max upto 180 miles; These form 4th cluster.
- 6. The more the planned usage of product related to the upward trend in the expected avg no of miles each week;
 - 7. There is strong positive correlation between

planned Usage of product & the expected avg no of miles to walk/run each week.

- Graph 3:- 1. The plot shows comparison between Usage and Income
- 2. There is one segment of customers with usage of product of 2 to 3 times each week & having $% \left(1\right) =\left(1\right) ^{2}$ annual income
 - in the range upto 65K
- 3. These set of customers with less frequent usage plans may prioritize a more cost-effective product options (i.e. KP281,481)
- 4 There is one segment of customers with usage of product of 4 to 5 times each week & having annual income in the range spread across
- 5. These customers who plan for more frequent usage and have income levels may prefer product like KP 781
- 6. The planned usage of product related to the range of the annual income of the customers
- 7. There is correlation between planned Usage of product & annual income of the customers

```
In [88]: # comparison of Fitness with various other factors

# Creating subplots
fig, axs = plt.subplots(1, 2, figsize=(18, 10))

# Plot 1: Fitness vs. Income (Numerical vs. Numerical)
a=sns.scatterplot(data=df_aerofit_copy, x='Fitness', y='Income', ax=axs[0])
axs[0].set_title("Fitness vs. Income")
a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))

# Plot 2: Fitness vs. Miles (Numerical vs. Numerical)
a=sns.scatterplot(data=df_aerofit_copy, x='Fitness', y='Miles', ax=axs[1])
axs[1].set_title("Fitness vs. Miles")

a.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: int(x)))
a.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: int(y)))
plt.tight_layout()
plt.show()
```


Observations: -

- Graph 1:- 1. The plot shows comparison between Fitness and Income
- 2. Segment of customers with self-rated fitness score of 3 & having annual income in the range upto 70K
- 3. These set of customers $\,$ essential showing a max count of customers above 90 & they may prioritize a more

cost-effective treadmill options (i.e. KP281,KP481)

- 4. Segment of customers with self-rated fitness score of 2 are having annual income in the range upto 65K
- 5. Segment of customers with self-rated fitness score of 4 are having annual income range spread majorly between 40K to 60K
- 6. Segment of customers with self-rated fitness score of 5 are having annual income range spread across starting from 45 K to 80K
- 8. These customers rate themselves as being in excellent shape and have mid to High income levels
- 7. They may prefer treadmill like KP781. The more the annual Income, more the self-rated fitness score.

There is positive correlation between customer's annual Income & the self-rated fitness score.

- Graph 2:- 1. The plot shows comparison between Fitness and Miles
- $\,$ 2 Customers who expect to walk/run in range starting 50 miles upto 85 miles have self-rated

fitness score of 2; This form 1 cluster.

3. Customers who expect to walk/run in range starting 50 miles upto 170 miles have self-rated

fitness score of 3; This form 2nd cluster.

4. Customers who expect to walk/run in range starting 70 miles upto 180 miles have self-rated

fitness score of 4; This form 3rd cluster.

5. Customers with who expect to walk/run in range starting 80 miles upto 180 miles have self-rated

fitness score of 5; This form 4th cluster.

- 6. The more the expected avg no of miles each week, more the self-rated fitness score.
- 7. There is strong positive correlation between customer's annual Income & the self-rated fitness score.

```
In [89]: # comparison of Income with various other factors

# Plot: Fitness vs. Miles (Numerical vs. Numerical)
plt1=sns.scatterplot(data=df_aerofit_copy, x='Income', y='Miles')
plt1.set_title("Income vs. Miles")

plt.tight_layout()
plt.show()
```


- Graph 1:- 1. The plot shows comparison between Income and Miles
- 2. Segment of customers with Annual Income in the range from 35K to 65K have expect walk/run each week from 59 to 135 miles. These resemble 1 cluster which is densely populated.
- 3. These set of customers may prioritize purchase for treadmill options (i.e. KP281,481) [check for miles factor in the KP281 & KP481 product]
- 4. There is 1 more cluster of customers with Income above 80K & having expected walk/run each week in range starting 100 miles upto 180 miles.
 - 5. This showcase an upward trend [for customers with

higher Annual income range]
6. There is correlation between Annual Income & expected avg no of miles each week

Multivariate Analysis

```
In [90]: # PairPlots for Product

pairplot = sns.pairplot(data=df_aerofit_copy, hue='Product')
pairplot.fig.suptitle("Pairplot of all columns w.r.t Product", y=1.02)
plt.show()
```


Observations: -

In the above pair plot the correlation with other attributes are pivotted around the product purchased

- 1. The age group between 20-30 and have purchased KP781 usually covered 150-180 miles on average as compared to rest.
- 2. The age group between 20-35 and have purchased KP281 usually covered 50-110 miles on average as compared to rest.

3. The age group between 25-35 and have income range of 35k-55k, purchased KP281; same goes for rest.

- 4. KP781 have more people(age between 20-40) with education level 16 and 18.
- 5. People having education of 16 and income range between 35k-65k, have a diversified product purchasing.
- 6. People covering 50-100 miles and covering 25-40 have purchased KP481.

```
In [91]: # PairPlots for Gender

pairplot = sns.pairplot(data=df_aerofit_copy, hue='Gender')
pairplot.fig.suptitle("Pairplot of all columns w.r.t Gender", y=1.02)
plt.show()
```


Observations: -

In the above pair plot the correlation with other attributes are pivotted around the gender of the person

- 1. More people who are male lie in age range between 20-30 and they have covered miles between 80-120
- 2. Males having fitness level of 3 mostly have income range between 40k-70k

- 3. Females with usage level of 2, have income range between 25k-50k
- 4. Females with age range of 27-30, have fitness level of 3

```
In [92]: # PairPlots for MaritalStatus

pairplot = sns.pairplot(data=df_aerofit_copy, hue='MaritalStatus')
pairplot.fig.suptitle("Pairplot of all columns w.r.t MaritalStatus", y=1.02)
plt.show()
```


Observations: -

In the above pair plot the correlation with other attributes are pivotted around the marital status of the person

- 1. Age range between 22-25 who are single, have covered miles in range of 80-110 as compared to partnered who have age between 25-25 and have covered 180 miles.
- 2. Persons who are partnered and have fitness level of 3, mostly have income range between 50k-60k.
- 3. The persons (both marital status) who lie around age of 25 and have income of 40k-60k, are more active (refer to clusters)
- 4. Married people with education of 16 have covered ~50-120 miles on average

```
In [93]: # Making a copy of dataset to tackle corr between all integer based values

df_aerofit_copy1=df_aerofit_copy[['Age','Education','Usage','Fitness','Income',
    df_aerofit_copy1
```

Out[93]:		Age	Education	Usage	Fitness	Income	Miles
	Age	1.000000	0.280203	0.003003	0.044482	0.515780	0.017828
	Education	0.280203	1.000000	0.412484	0.441082	0.636355	0.381117
	Usage	0.003003	0.412484	1.000000	0.660556	0.469009	0.773487
	Fitness	0.044482	0.441082	0.660556	1.000000	0.537574	0.825967
	Income	0.515780	0.636355	0.469009	0.537574	1.000000	0.528245
	Miles	0.017828	0.381117	0.773487	0.825967	0.528245	1.000000

Observations: -

The above table shows the correlation between all integer based columns and there is a very strong correlation between Fitness and miles (0.825) and the least correlation is between Age and miles (0.017)

```
In [94]: sns.clustermap(data=df_aerofit_copy1, annot=True, cmap='PiYG')
   plt.show()
```


- 1. There is strong correlation between Age and Miles; Age and Usage
- 2. Similarly there is a strong correlation between Miles and Fitness
- 3. Least correlation exists between Miles and Income
- 4. Education high correlation with Income and sufficiently correlated to Usage, Fitness too
- 5. Also correlation between Fitness, Usage and Miles is seen which depicts, more the usage of product=>more miles run and therefore more fitness achieved

```
In [95]: sns.heatmap(data=df_aerofit_copy1, annot=True, cmap='PiYG')
    plt.show()
```


- 1. Miles and Fitness and Miles and Usage are highly correlated, which means if a person fitness level is high their usage is more
- 2. Income and education show a strong correlation. High-income and highly educated people prefer high-end models (KP781) (also mentioned during analysis of Categorical variables)
- 3. There is no corelation between Usage & Age or Fitness & Age which means, Age should not be barrier to use the any model of the product
- 4. Correlation between Age and Miles is 0.018
- 5. Correlation between Education and Income is 0.64
- 6. Correlation between Usage and Fitness is 0.66
- 7. Correlation between Fitness and Age is 0.044
- 8. Correlation between Income and Usage is 0.47

```
In [96]: # comparison of Usage with various other factors

fig, axs = plt.subplots(nrows=2, ncols=4, figsize=(18, 10))

# Plot 1
sns.scatterplot(data=df_aerofit_copy, x='Age', y='Income', hue='Gender', ax=axs[axs[0][0].set_title("Age vs. Income w.r.t Gender")

# Plot 2
sns.swarmplot(data=df_aerofit_copy, x='MaritalStatus', y='Income', hue='Gender', axs[0][1].set_title("MaritalStatus vs. Income w.r.t Gender")

# Plot 3
sns.boxplot(data=df_aerofit_copy, x='Education', y='Usage', hue='Gender', ax=axs axs[0][2].set_title("Education vs. Usage w.r.t Gender")
```

```
# Plot 4
sns.scatterplot(data=df_aerofit_copy, x='Usage', y='Miles', hue='Fitness', ax=ax
axs[0][3].set_title("Usage vs. Miles w.r.t Fitness")
# Plot 5
sns.barplot(data=df_aerofit_copy, x='Gender', y='Income', hue='MaritalStatus', a
axs[1][0].set_title("Gender vs. Income w.r.t MaritalStatus")
# Plot 6
sns.pointplot(data=df_aerofit_copy, x='Product', y='Age', hue='Gender', ax=axs[1
axs[1][1].set_title("Product vs. Age w.r.t Gender")
# Plot 7
sns.violinplot(data=df_aerofit_copy, x='Education', y='Income', hue='MaritalStat
axs[1][2].set_title("Education vs. Income w.r.t MaritalStatus")
# Plot 8
sns.barplot(data=df_aerofit_copy, x='Gender', y='Usage', hue='Education', ax=axs')
axs[1][3].set_title("Gender vs. Usage w.r.t Education")
plt.tight_layout()
plt.show()
                                   Ħ
                          Product vs. Age w.r.t Gende
```

Observations: -

The observation for these plots are already descirbed in above pairplots/other comparison plots and these plots are made, just to increase the visualisation angles so as to understand each relation more closely as compared to a general pairplot.

```
In [97]: # Comparison of Usage with various other factors

fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 8))

# Plot 1
sns.pointplot(data=df_aerofit_copy, x='Income', y='Gender', hue='Product', ax=ax axs[0].set_title("Income vs. Gender w.r.t Product")
```

```
# Plot 2
sns.lineplot(data=df_aerofit_copy, x='Fitness', y='Usage', hue='Product', ax=axs
axs[1].set_title("Fitness vs Usage w.r.t Product")
plt.tight_layout()
plt.show()
```


Observations: -

The observation for these plots are already descirbed in above pairplots/other comparison plots and these plots are made, just to increase the visualisation angles so as to understand each relation more closely as compared to a general pairplot.

```
In [98]: # Plotting for age,usage and miles basing Gender as point of comparison

pairplot = sns.pairplot(data=df_aerofit_copy, vars=['Age', 'Usage', 'Miles'], hu
pairplot.fig.suptitle("Pairplot of Age, Usage, and Miles w.r.t Gender", y=1.02)
plt.show()
```


Observations: -

The observation for these plots are already descirbed in above pairplots/other comparison plots and these plots are made, just to increase the visualisation angles so as to understand each relation more closely as compared to a general pairplot.

```
In [99]: # Plotting for age,income and usage basing Gender as point of comparison

pairplot = sns.pairplot(data=df_aerofit_copy, hue='Gender', vars=['Age', 'Income pairplot.fig.suptitle("Pairplot of Age, Income, and Usage w.r.t Gender", y=1.02)
plt.show()
```


Observations: -

The observation for these plots are already descirbed in above pairplots/other comparison plots and these plots are made, just to increase the visualisation angles so as to understand each relation more closely as compared to a general pairplot.

Customer Profiling

For KP281

- 1. Easily affordable entry level product, which is also the maximum selling product
- 2. KP281 is the most popular product among the entry level customers
- 3. This product is easily afforded by both Male and Female customers
- 4. Average distance covered in this model is around 70 to 90 miles
- 5. Product is used 3 to 4 times a week
- 6. Most of the customer who have purchased the product have rated Average shape as the fitness rating (under 3)
- 7. Younger to Elder age group, i.e., beginner level customers prefer this product

- 8. Females who are Partnered prefer more than Female who is single
- 9. Income range between 39K to 53K have preferred this product (Less to medium earning)
- 10. People between age of 25-30 have usages of 2
- 11. Female with income 35k, have miles covered < 105
- 12. People with education level as 16 and age>32 have income around 45k-50k
- 13. People having incomes range between 35k-45k and 50k-60k have usage as 4
- 14. People having incomes range between 45k-50k have usage as 2 whereas 60k-70k have 3
- 15. People with education level as 16 and age>45 have income around 60k-70k

For KP481

- 1. This is an Intermediate level Product
- 2. KP481 is the second most popular product among the population
- 3. People prefer this product mostly to cover more miles than fitness
- 4. Average distance covered in this product is from 70 to 130 miles per week
- 5. Fitness Level of this product users varies from Bad to Average Shape depending on their usage
- 6. Probability of Male buying KP481 is significantly higher than Female
- 7. KP481 product is specifically recommended for Female who are intermediate users
- 8. Average Income of the person who buys KP481 is ~45K
- 9. Average Usage of this product is 3-4 days per week
- 10. More Partnered people prefer this product than Single
- 11. The age range of people buying KP481, is roughly between 24-34 years
- 12. People who are under 40 years of age have an usage of 2
- 13. People with education as 13 have income around 45k-60k
- 14. People with age 35-40, have income around 60k-70k and education level =16 and age <22 have income between 45k-50k
- 15. Male with income range between 60k-70k, cover 100-150 miles on an average per week

For KP781

- 1. Due to High Price & being the advanced type, people prefers less of this product
- 2. People use this product mainly to cover more distance
- 3. People who use this product have rated excelled shape as fitness rating
- 4. People walk/run average 120 to 200 or more miles per week on his product
- 5. People use 4 to 5 times a week at least
- 6. Female who are running average 180 miles (extensive exercise), are using product KP781, which is higher than Male average using same product
- 7. Average Income of KP781 buyers are over 75K per annum
- 8. Partnered Female bought KP781 treadmill compared to Partnered Male

- 9. This product is preferred by the people where the correlation between Education and Income is High
- 10. People who are educated more than 16 years prefered to buy this
- 11. Fitness level more than 4 for people who bought this
- 12. Mostly preferred by Male peoples as compared to Females
- 13. People with age range of 22-38 and having fitness level as 5, purchased this product
- 14. Middle aged to higher age peoples tend to use this model to cover more distance.
- 15. These people(having usage >=4) have fitness level of around >5

Business Insights

- 1. Product KP281 brings in the highest revenue, KP481 and KP781 come next in line respectively
- 2. ~60-40% distribution are of the (single and partnered) & (male and female) product buyers
- 3. Majority of the buyers spend 14, 16, 18 years on their education
- 4. Majority of the people are in their early age groups of 22-33 years
- 5. Most of the users use the treadmill 3-4 times a week
- 6. Most of the users rate themselves average in terms of their fitness levels
- 7. Majority of the users earn between 35k-60k annually
- 8. Majority of the users set target miles expected to be walked/ran between 53 and 132 miles on am average
- KP281, KP481 products have almost similar buyers profile, except Male Partnered who preferred KP481 & Female Partnered for KP281
- 10. 75% of people are earning less than 60k, and people who earning more than 60k prefer KP781
- 11. KP781 had unique observations among other products when it comes to more usage or high fitness profiles
- 12. Probability of Buying KP281 increased from 44.44% to 58.7%, if person is Female and Partnered
- 13. Probability of Buying KP781 increased from 22.22% to 32.56%, if person is Male and Single
- 14. Probability of Buying KP781 decreased from 22.22% to 8.7%, if people is Female and Partnered
- 15. Highly educated peoples prefer product KP781 as they could be more aware of the products typical features and its usage
- 16. Since KP781 more popular amongst high education/income group, so highly-educated/income peoples tend to exercise more with fitness levels
- 17. With Fitness level 4 and 5, the peoples tend to use high-end models (KP781/KP481) and the average number of miles is above 150 per week
- 18. Majority are from the age group of 20-35, most of them tend to buy KP281, followed by KP481 and KP781. It is found that people of age greater than 30 are not very keen on buying KP781 and the most probable reason is not kepping up the fitness level and under-usage of treadmills. Customers, who knows their fitness level,

tend not to invest in expensive treadmills. According to probabilites, people of age between 45-35, go for KP281 more than any other age group, but for other variants it is the consumers falling age group of 25-35.

Recommendations

- 1. As KP781 premium product preferred by Males, more usage and high salaried people, we can promote this product with similar characteristics and also we can promote upcoming premium products to them
- 2. KP281 & KP481 products preferred by almost similar Characteristics and KP281 is most sold product, we can promote KP481 products more and can make some no cost EMI support to increase sales
- 3. Provide personalized Ads in E-commerce sites and in Social Media for better reach to similar characteristics of people with respective preferred products
- 4. Come up with better, high-end, premium product for highly-educated, high income and active customers to increase revenue
- 5. Campaigns to promote KP781 product for females specially since their purchase count is low compared to males
- 6. Since KP281 and KP481 also brings in significant revenue and is prefered by young & less education individuals, added features and specialized discounts could help boost sales for these
- 7. Aerofit should conduct market research to determine if it can attract customers with income under USD 35k to expand its customer base
- 8. Female who prefer exercising equipments are very low here. Hence, we should run a marketing campaign on to encourage women to exercise more
- KP281 & KP481 products are preferred by the customers whose annual income lies in the range of USD 39K-53K. These models should promoted as budget-friendly products
- 10. As KP781 provides more features and functionalities, the product should be marketed for professionals and athletes
- 11. To target normal customers w.r.t KP781, it should be promotted using influencers and other international atheletes
- 12. Research required for expanding market beyond 50 years of age considering health pros and cons
- 13. Provide customer support and recommend users to upgrade from lower versions to next level versions of product after consistent usages for better fitness
- 14. Targetting the Age group above 40 years to recommend Product KP781 since they have more income in USD
- 15. Analyze user engagement data by feedback, to identify which metrics of the KP281 and KP481 models are most valued by customers so as to focus marketing efforts and product enhancements on these aspects for KP781 sales as well as increase KP281/KP481 sales
- 16. Examining usage patterns to determine peak usage times, workout durations, and preferred workout modes for each product. Using this information Aerofit can

- optimize product features and marketing campaigns
- 17. Determining which features of the KP781 and KP481 models are underutilized or misunderstood by customers thereby developing educational content or product updates to promote these features effectively
- 18. Analysis of sales data to determine price sensitivity for the KP781 and KP481 models thereby adjusting pricing strategies based on demand elasticity and competitor pricing
- 19. Identifying gaps in the market or areas where the current product models are not meeting customer needs. This information can guide the development of new products or product improvements
- 20. Attend fitness and wellness trade shows and exhibitions to showcase the KP781 and KP481 models and interact with potential customers directly
- 21. Offer virtual training sessions led by certified fitness trainers specifically designed for KP481/KP781 users. These sessions can help users maximize their workouts and stay motivated thereby leading to motivate peers to buy product
- 22. Creating targeted email/SMS/online advertising campaigns specifically focussing on users looking for compact, space-saving fitness equipment and drive their attention by highlighting the KP781s suitability for smaller spaces. On top of it, Offer bundle deals that include the KP781 model along with popular fitness accessories such as heart rate monitors, fitness trackers, or floor mats at a discounted price as this adds value to the purchase

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
EOF	
EOF	

In []: