THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

STAT3602 Statistical Inference

Example Class 9 (2020-2021 1st Semester)

Review

1. Information Inequality under regularity assumption and also assume $I(\theta)$ is positive definite,

$$Var_{\theta}(T) \ge \alpha(\theta)^T I(\theta)^{-1} \alpha(\theta)^T$$

where T is a statistic with $E_{\theta}(T^2) < \infty$ and $\alpha(\theta) = \left[\frac{\partial}{\partial \theta_1} E_{\theta}(T), ..., \frac{\partial}{\partial \theta_k} E_{\theta}(T)\right]^T$.

- (a) Note: if an unbiased estimator has a variance equal to this lower bound, and the assumptions in the theorem is satisfied, then it must be a UMVU estimator.
- (b) Cramer-Rao Lower Bound: special case when k = 1 and $\phi(\theta) = \theta$.
- 2. MLE

$$\hat{\theta}_n$$
 maximizes $l_n(\theta|x)$ or $S_n(\theta|x)$

- (a) if $\hat{\theta}_n$ is the MLE of θ_0 , then $\hat{\phi}_n = \phi(\hat{\theta}_n)$ is the MLE of $\phi(\theta_0)$.
- (b) property of MLE

Theorem. Subject to regularity conditions on $p(x|\theta)$, we have

- (i) $\hat{\theta}_n$ converges in probability to θ_0 ,
- (ii) $n^{1/2}(\hat{\theta}_n \theta_0)$ converges in distribution to $N(0, \mathscr{I}(\theta_0)^{-1})$,
- (iii) $n^{-1/2}U(\theta_0)$ converges in distribution to $N(0, \mathscr{I}(\theta_0))$,

where
$$\mathscr{I}(\theta) = n^{-1}I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \ln p(X_1|\theta)}{\partial \theta \partial \theta^{\top}}\right]$$
 has (i,j) th entry $\mathscr{I}_{ij}(\theta) = -\mathbb{E}_{\theta}\left[\frac{\partial^2 \ln p(X_1|\theta)}{\partial \theta_i \partial \theta_j}\right]$.

(c) Note: if the regularity conditions fail, $\hat{\theta}_n$ may not be asymptotically normal.

Problem

1. A team of 8 interviewers were recruited to conduct a survey in which each interviewer asked for the opinion (positive, negative, neutral) of 10 respondents about a political issue. The following table summarizes the counts of the three response categories found from the survey:

Interviewer	1	2	3	4	5	6	7	8	Total
Positive	2	3	2	1	0	4	2	2	16
Negative	5	7	6	6	4	6	7	7	48
Neutral	3	0	2	3	6	0	1	1	16

Let X_i and Y_i be the counts of the positive and negative responses obtained by the *i*-th interviewer respectively, for i = 1, 2, ..., 8. Assume that (X_i, Y_i) follows a multinomial distribution with mass function

$$f(x,y|p,q) = \begin{cases} \frac{10!}{x!y!(10-x-y)!} p^x q^y (1-p-q)^{10-x-y}, & x,y \in (0,1,...,10), x+y \le 10\\ 0, & otherwise \end{cases}$$

for unknown parameters p and q which can be interpreted as the probabilities that a respondent gives positive and negative responses respectively.

- (a) Give the loglikelihood function of p and q based on the observed data.
- (b) Find the maximum likelihood estimator of (p, q).
- (c) Calculate the expected Fisher information matrix for p, q.
- (d) Quoting the large-sample properties of MLE, describe the asymptotic distribution of (\hat{p}, \hat{q})
- 2. Let $X = (X_1, ..., X_n)$ be a random sample of size $n \ge 3$ from the exponential distribution with density $f(x) = \theta e^{-\theta x}$ (mean=1/ θ and variance=1/ θ ²). Obtain the maximum likelihood estimator $\hat{\theta}_n$ based on the sample of size n for θ .

Find an unbiased estimator which is a function of $\hat{\theta}_n$.

Calculate the Cramer-Rao Lower Bound for the variance of the unbiased estimator. Is the bound attained?

(Hint: Sum of n i.i.d $Exp(\theta)$ distributed random variables follows $Gamma(n, \theta)$. If $Y \sim Gamma(k, \theta)$, then $Y^{-1} \sim InverseGamma(k, \theta)$ with mean $= \theta/(k-1)$ and variance $= \theta^2/[(k-1)^2(k-2)]$)