

EC/EE/CS & IT/IN

Digital Electronics

Boolean algebra

KMAP

LECTURE NO. 3

Chandan Jha Sir (CJ Sir)

लहरों से इरकर नौका पार नहीं होती, कोशिश करने वालों की कभी हार नहीं होती। नन्हीं चींटीं, जब दाना लेकर चलती है, चढ़ती दीवारों पर, सौ बार फिसलती

मन का विश्वास, रंगों में साहस भरता है, चढ़कर गिरना, गिरकर चढ़ना, कभी ना अखरता है।

आखिर उसकी मेहनत बेकार नहीं होती, कोशिश करने वालों की, कभी हार नहीं होती ।

असफलता एक चुनौती है, स्वीकार करो, क्या कमी रह गयी, देखो और सुधार करो ।

जब सफल न हो, नींद चैन को त्यागो तुम, संघर्षों का मैदान छोड़, कभी मत भागो तुम,

कुछ किये बिना ही, जय-जयकार नहीं होती, कोशिश करने वालों की, कभी हार नहीं होती ।

~ हरिवंश राय बच्चन की पंक्तियाँ

ABOUT ME

Cleared Gate Multiple times with double Digit Rank (AIR 23) AIR 26)

Qualified ISRO Exam

Mentored More then 1 Lakhs+ Students (Offline & Online)

More then 250+ Motivational Seminar in various Engineering College including NITs & Some of IITs

Chandan Jha

1854- George Boole

"An Investigation of Law of Thoughts"

Ex.1.
$$f(A_1B) = AB$$

B

Variable

Variable

Variable

$$f(A_1B) = \overline{A}B + AB$$

Boolean algebra

K-Map

Tabulation method.

8421 $0 \longrightarrow 0 \quad 0 \quad 0$ 1 - 0 0 0 1 2 - 0 0 10 $\hat{\mathbf{y}} \longrightarrow \mathbf{0} \quad \mathbf{0} \quad \bar{\mathbf{1}} \quad \mathbf{1}$ 6 0 1 0 c- p 2 -> 0 1 0 1

Example

1		
-	Р	1
Α.	T	W
		2

Decimal	ABC	Min term	Max term	Function
0 ~	0 0 0	ĀBC	A+B+C	1 /
1.	0 0 1	Ā.B.C	A+B+c	0 ~
2	0 1 0	A B.C	A+B+C	0 -
3 /	0 1 1	A B.C	A+B+c	1 ~
4 ~	1 0 0	A.B.E	A+B+c	1 -
5	1 0 1	A.B.c	Ā+B+ē	0 -
6	1 1 0	AB.C	AtBtc	0 -
7	1 1 1	A.B.C	A+B+c	1 -

Standard Canonical sop form :->

$$f(A_1B_1c) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= m_0 + m_3 + m_4 + m_7$$

$$= \sum m(0,3,4,7)$$

$$= \sum (0,3,4,7)$$

Standard canonical Pos form:

$$F(A_1B_1C) = (A+B+C) \cdot (A+C) \cdot ($$

SOP [Sum of product Minterm]

POS
[product of sum
[Maxterm]

Distribution Theorem

$$A + BC = (A+B) \cdot (A+C)$$

$$A+BCD=(A+B)(A+C)(A+D)$$

$$1+A=1$$

$$1+A+B=1$$

$$\overline{A} + R = 1$$

$$\leq f(A_1B) = A_1$$

$$=$$
 $(\bar{A}+A)(\bar{A}+B)$

$$=\widehat{\mathbf{A}}+\mathbf{B}$$

Ex
$$A+A$$
 $A+B$ $A+B$ $A+B$ $A+B$

Consensus Theorem

$$f(A,B,C) = AB + \overline{AC} + (BC)$$

$$=AB+\overline{A}C+(\overline{A}+A)BC$$

$$=AB+\bar{A}C$$

$$(AB+AC)+BC = AB+AC$$

$$\Rightarrow Redundan$$

- 1 3terms
- reach term having two
- each variable repealed
 Two times but one
 - repeded in the form
 - of complement

$$f(A_1B_1C) = AB + \overline{AQ} + BC$$

$$=AB+\bar{A}C$$

Redundant term

$$\stackrel{\text{Lex}}{=} f(A_1B) = (AB + BC) + AC$$

$$\begin{cases}
A+Bc = (A+B)(A+c) \\
AB+Ac+Bc = AB+Ac
\end{cases}$$

Transpose Theorem

$$(A+B)(A+C) = AC+AB$$

$$AMS$$

$$= A + B = ABB$$

$$= ABB$$

Ex.
$$(A+B) = AB+\overline{AB}$$

 $= AOB$

B-Morgans Law.

$$/A+BC=(A+B)(A+C)$$

$$\sqrt{(A+B)(\bar{A}+c)} = Ac+\bar{A}B$$

Ex. 1. Minimize the expression.

$$f(A, B) = \overline{A} + AB$$

$$=(\overline{A}+A)(\overline{A}+B)$$

$$=\bar{A}+B$$

$$f(A, B) = \overline{A}\overline{B} + \overline{A}B + AB$$

$$\overline{AB} + \overline{AB} + \overline{AB}$$
 $\overline{A} + \overline{AB}$
 $\overline{A} + \overline{AB}$

$$f(A, B) = \overline{A}\overline{B} + \overline{A}B + A\overline{B} + AB$$

$$= \overline{A} [\overline{B} + B] + A [\overline{B} + B]$$

$$= \overline{A} + A = 1$$

$$f(A, B) = AB + \overline{A}C + BC$$

Ex. 5. Minimize the expression.

$$f(A, B, C) = \overline{A}\overline{B} + \overline{A}C + \overline{B}\overline{C}$$

$$= \bar{A}C + \bar{B}\bar{C}$$

Modified Veilched Biagram

Also known as (R-MAP)

K-MAP

→ Based on gray code.

Gray code

		unity haming distance code
Decimal	Binary	Gray code Gelic code
0	00	Reflecting 10
1	0 1	O I Code
2	10	1 1
3	1 1	10.

Gray code

Decimal	Binary	Gray code
0	000	000
1	OOL	001
2	010	O 1 1
3	0 1 1	O 1 O
4	T 0 0	1 1 0
5	7 9 1	1 1 1
6	1 1 0	T 0 1
7		1 0 0

AN	700	BC	Bc	30
	00	01	11	10
A O	ABC OOO	ABC 0.01 1	ABC 01.13	ABC , 010 2
A 1	ABC	ABC	ABC	ABC
	100 4	101 5	111.7	110 C

f(A,B,C)

 $f(A_1B,C_1D)$

4 Variables minimize.

$$8 group = 23$$

3 Variables minimize

2 Variables minimize

1 Variable minimise.

cs	A			
XQ.	00	01	11	10
00	l		l	20
01				
11				
10	~		ري	2

CJ Baba Rule.

L> Less number of groups and bigger group No. of Terms Reduce

no of Variables Reduce.

क्रम से क्रम group बराना है and वह से बड़ा group बराना है।

Ex.1.
$$f(A,B) = \overline{AB} + \overline{AB} + AB = \sum_{A} m(0,1,3)$$

AB

6	B	CBC	BC OL	Bc II	(B) C)
A	0	1.	1	3	12	
A	1	1	5	7.	Lc	

$$\sqrt{4}hb = C$$

Ex. 6. $(A, B, C, D) = \sum_{=}^{m} (0, 2, 4, 6, 10, 11, 13, 15)$

AD+ ABD+ABC

Pw

Ex. 7. $f(A, B, C, D) = \sum m(0, 1, 2, 4, 6, 7, 9, 12, 13, 14, 15)$

Ex. 8. $f(A, B, C, D) = \sum m (1, 5, 6, 7, 11, 12, 13, 15)$

DON'T CARE CONDITION

Combination of inputs on which the output may or may not depends are called don't care condition.

Output
$$f(A_1B) = \overline{AB} + \overline{AB} + AB$$

Ex. 9. Find the minimized Boolean expression for the function given as $f(A, B, C) = \sum m(0, 2, 3, 4) + \sum d(1, 6, 7)$

Ex. 10. Find the minimized Boolean expression for the function given as $f(A, B, C, D) = \sum_{m} (0, 2, 4, 6, 7, 8, 10, 11, 12, 14, 15) + \sum_{m} d(1,3)$

١						

Comment Box

Ex. 11 Find the minimized Boolean expression for the function given as $f(A, B, C, D) = \sum m(0,3,6,7,9,14) + \sum d(1,4,5,11,13,15)$

