Statistical and Mathematical Methods for Data Analysis

Dr. Faisal Bukhari
Punjab University College of Information Technology
(PUCIT)

Textbooks

- □ Probability & Statistics for Engineers & Scientists, Ninth Edition, Ronald E. Walpole, Raymond H. Myer
- □Elementary Statistics: Picturing the World, 6th Edition, Ron Larson and Betsy Farber
- □ Elementary Statistics, 13th Edition, Mario F. Triola

Reference books

- Probability and Statistical Inference, Ninth Edition, Robert V. Hogg, Elliot A. Tanis, Dale L. Zimmerman
- ☐ **Probability Demystified**, Allan G. Bluman
- □Schaum's Outline of Probability, Second Edition, Seymour Lipschutz, Marc Lipson
- □ Python for Probability, Statistics, and Machine Learning, José Unpingco
- □ Practical Statistics for Data Scientists: 50 Essential Concepts,
 Peter Bruce and Andrew Bruce
- ☐ Think Stats: Probability and Statistics for Programmers, Allen Downey

References

Readings for these lecture notes:

- □ Probability & Statistics for Engineers & Scientists, Ninth Edition, Ronald E. Walpole, Raymond H. Myer
- ☐ **Probability Demystified**, Allan G. Bluman
- □ http://www.thefreedictionary.com/statistics
- ☐ Discrete Mathematics and Its Application, 7th Edition by Kenneth H. Rosen

These notes contain material from the above resources.

Distribution of points

Midterm = 30 points

Final term = 40 points

Sessional points = 30 points

- I. Assignments = $2 \times 4 = 8$ points
- II. Hands-on Python in class = $0.5 \times 6 = 3$ points
- III. Quizzes = $2 \times 6 = 12$ points
- IV. Journal/conference paper presentation = 5 points
- V. Mini project (its report should be in an IEEE journal paper format) = 2 points

Or

The weightage of the project will be increased up to 10 points

What is Data Science?

Data Science is a fusion of multiples disciplines, including statistics, computer science, information technology, and domain-specific fields.

OR

Data Science is an umbrella that contain many other fields like machine learning, data mining, big data, statistics, data visualization, data analytics,...

Data Science

Figure 1-1. Drew Conway's Venn diagram of data science

□Set: Any well defined list or collection of objects is called a set.

OR

A set is an unordered collection of objects.

Element: The objects comprising the **set** are called its *elements* or *members*. We write $p \in A$ if p is an element in the set A

OR

The **objects** in a set are called the **elements**, or **members**, of the set. A set is said to contain elements.

Example The set V of all vowels in the English alphabet can be written as $V = \{a, e, i, o, u\}$.

Example The set O of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.

□ Example {a, 2, Fred, New Jersey}

□Note: Although sets are usually used to group together elements with common properties, there is nothing that prevents a set from having seemingly unrelated elements.

Set builder notation

Another way to describe a set is to use set builder notation.

Example: The set 0 of all **odd positive integers** less than **10** can be written as

O = {x | x is an odd positive integer less than 10}

 $O = \{x \in Z^+ \mid x \text{ is odd and } x < 10 \}.$

or

Note: The concept of a **datatype**, or type, in computer science is built upon the concept of a **set**.

Example: boolean is the name of the set {0, 1} together with operators on one or more elements of this set, such as AND, OR, and NOT

□Subset: If every element of A also belongs to a set B, i.e. if $p \in A$ implies $p \in B$, then A is called a *subset* of B or is said to be *contained* in B; this is denoted by $A \subset B$ or $B \supset A$

OR

The set A is said to be a subset of B if and only if every element of A is also an element of B.

□Note: Uppercase letters are usually used to denote sets

□Examples: ☐ The set of all **odd positive integers less than 10** is a subset of the set of all positive integers less than 10. ☐ The set of rational numbers is a subset of the set of real numbers. ☐The set of all computer science majors at your school is a subset of the set of all students at your school. ☐ The set of all people in China is a subset of the set of all people in China (that is, it is a subset of itself).

Theorem: For every set S,

- (i) $\emptyset \subseteq S$ and
- (ii) S ⊆ S

Proper subset

When we wish to emphasize that a **set** A is a **subset** of the **set** B but that $A \neq B$, we write $A \subset B$ and say that A is a **proper subset** of B. For $A \subset B$ to be true, it must be the case that $A \subseteq B$ and **there must exist** an **element** x of B that is **not an element** of A.

Note: Sets may have other sets as members.

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

□ Equal Set: Two sets are equal if each is contained in the other; that is,

A = B if and only if $A \subset B$ and $B \subset A$

□Negation of Element, Subset and Equal Set: The negations of $p \in A$, $A \subset B$ and A = B are written as $p \notin A$, $A \not\subset B$ and $A \neq B$

Note: Lowercase letters are usually used to denote **elements** of sets.

We specify a particular set by either **listing its elements** or by **stating properties** which characterize the elements of the set. For example,

$$\Box A = \{1, 3, 5, 7, 9\}$$

means A is the set consisting of the numbers 1, 3, 5, 7 and 9; and

 $\square B = \{x : x \text{ is a prime number, } x < 15\}$

means that **B** is the set of prime numbers less than **15.**

Example: The sets **A** and **B** in the previous slide can also be written as

```
    A = {x : x is an odd number, z < 10}</li>
    and
    B = {2, 3, 6, 7, 11, 13}
```

Example: We use the following special symbols:

N = the set of positive integers: 1, 2, 3, ...

Z =the set of integers: ... -3, -2, -1, 0, 1, 2, 3, ...

R = the set of real numbers

Thus we have $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{R}$

Example: *Intervals* on the real line, defined below, appear very often in mathematics. Here a and b are real numbers with a < b.

Open interval from a to $b = (a,b) = \{x : a < x < b\}$

Closed interval from a to $b = [a,b] = \{x : a \le x \le b\}$

Open-closed interval from a to $b = (a,b] = \{x : a < x \le b\}$

Closed-open interval from a to $b = [a,b) = \{x : a \le x < b\}$

The **open-closed** and **closed-open** intervals are also called *half*-open

□Union: Let A and B be arbitrary sets. The union of A and B, denoted by A U B, is the set of elements which belong to A or to B.

A U B = $\{x : x \in A \text{ or } x \in B\}$. Here "or" is used in the sense of and/or.

OR

Let A and B be sets. The union of the sets A and B, denoted by A U B, is the set that contains those elements that are either in A or in B, or in both. An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B.

 $A \cup B = \{x \mid x \in A \lor x \in B\}.$

EXAMPLE The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}

 $\{1, 3, 5\} \cup \{1, 2, 3\} = \{1, 2, 3, 5\}.$

□Intersection: The intersection of A and B, denoted by $A \cap B$, is the set of elements belong which belong to both A and B

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

OR

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

$$A \cap B = \{x \mid x \in A \land x \in B \}.$$

```
Example: The intersection of the sets \{1, 3, 5\} and \{1, 2, 3\} is the set \{1, 3\}.
```

Disjoint: If $A \cap B = \emptyset$, that is, if **A** and **B** do not have any elements in common, then **A** and **B** are said to be **disjoint**.

OR

Two sets are called disjoint if their **intersection** is the **empty set**.

EXAMPLE Let $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8, 10\}$.

 $A \cap B = \emptyset$, A and B are disjoint.

Difference: The *difference* of A and B or the *relative complement* of B with respect to A, denoted by $A \setminus B$, is the set of elements which belong to A but not to B.

$$A \setminus B = \{x : x \in A, x \notin B\}$$
OR

Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

$$A - B = \{x \mid x \in A \land x \notin B\}$$

EXAMPLE The difference of {1, 3, 5} and {1, 2, 3} is the set {5}

$$\{1, 3, 5\} - \{1, 2, 3\} = \{5\}.$$

$$\{1, 2, 3\} - \{1, 3, 5\} = \{2\}.$$

Complement: The *absolute complement* or, simply, *complement* of A, denoted by A^c is the set of elements which do not belong to A:

$$A^c = \{x : x \in U, x \notin A\}$$

 \square That is, A^c is the difference of the universal set U and A.

OR

Let U be the universal set. The **complement** of the set A, denoted by \overline{A} , is the complement of A with respect to U. In other words, the complement of the set A is $U - A \cdot \overline{A} = \{x \mid x \notin A\}$

EXAMPLE Let A = {a , e, i , 0, u } (where the universal set is the set of letters of the English alphabet).

A = {b, c, d, j, g, h, j, k, I, m, n, p, q, r, S, t, v, w, x, y, z}.

DExample: The diagrams on next slide, called **Venn diagrams**, illustrate the set operations discussed in the previous slides. Here sets are represented by simple plane areas and **U**, the **universal set**, **by** the area in the entire rectangle.

Example cont.

 $A \cup B$ is shaded

 $A \cap B$ is shaded

 $A \setminus B$ is shaded

A^c is shaded

De Morgan's law

$$I. \quad (A \cup B)^C = A^c \cap B^c$$

II.
$$(A \cap B)^C = A^c \cup B^c$$

Example: Let U = {1, 3, 5, 7, 9, 2, 6, 4, 8, 10}, A = {3, 2, 7, 5, 8, 9}, and B = {2, 5, 4, 8, 10}. Prove De Morgan's law of intersection.

$$(A \cap B)^C = A^c \cup B^c$$

Solution:

LHS =
$$(A \cap B)^C$$

$$A \cap B = \{3, 2, 7, 5, 8, 9\} \cap \{2, 5, 4, 8, 10\}$$

= \{2, 5, 8\}

$$(A \cap B)^{C} = \{1, 3, 5, 7, 9, 2, 6, 4, 8, 10\} - \{2, 5, 8\}$$

= $\{1, 3, 7, 9, 6, 4, 10\}$

LHS =
$$\{1, 3, 4, 6, 7, 9, 10\}$$

```
RHS = A^c \cup B^c

A^c = U - A

= \{1, 3, 5, 7, 9, 2, 6, 4, 8, 10\} - \{3, 2, 7, 5, 8, 9\}

= \{1, 4, 6, 10\}
```

$$\mathbf{B^c} = U - B$$

= $\{1, 3, 5, 7, 9, 2, 6, 4, 8, 10\} - \{2, 5, 4, 8, 10\}$
= $\{1, 3, 6, 7, 9\}$

RHS =
$$\{1, 4, 6, 10\}$$
 U $\{1, 3, 6, 7, 9\}$ = $\{1, 3, 4, 6, 7, 9, 10\}$

$$RHS = LHS$$

Cardinality of a set

Let **S** be a **set**. If there are exactly **n distinct** elements in **S** where **n** is a **nonnegative integer**, we say that **S** is a **finite set** and that **n** is the **cardinality** of **S**. The cardinality of **S** is denoted by |S|.

Cardinality of a set

Example Let **A** be the set of **odd positive integers** less than 10. Then |A| = 5.

Example Let **S** be the **set of integers** in the English alphabet. Then |A| = 26.

Example Because the null set has no elements, it follows that $|\emptyset| = 0$.

Infinite, not finite, and power set

Definition A set is said to be **infinite** if it is **not finite**.

Example: The set of positive integers is **infinite.**

Definition Given a set **S**, the **power set** of **S** is the set of **all subsets** of the **set S**. The power set of **S** is denoted by **P(S)**.

Example: What is the **power set** of the set to {0, 1, 2}?

Solution:

The power set $P(\{0, 1, 2\})$ is the set of all subsets of to $\{0, 1, 2\}$.

Hence,

 $P({0, 1, 2}) = {\{\emptyset\}, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\}.$

Example What is the power set of the **empty set**? What is the power set of the set $\{\emptyset\}$?

Solution: The **empty set** has exactly **one subset**, namely, itself.

$$P(\emptyset) = \{\emptyset\}.$$

The set $\{\emptyset\}$ has exactly two subsets, namely, \emptyset and the set $\{\emptyset\}$ itself. Therefore,

$$P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$$

Note:

No of elements in a power set: If a set has n elements, then its power set has 2ⁿ elements.

Cartesian Products [1]

The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, . . . , and a_n as its nth element.

2-tuples are called ordered pairs. The ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d.

Note: (a, b) and (b, a) are not equal unless a = b.

Definition Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

 $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Cartesian Products [2]

EXAMPLE: What is the Cartesian product of

$$A = \{ 1, 2 \} \text{ and } B = \{ a, b, c \} ?$$

Solution:

The Cartesian product $A \times B$ is

$$A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}.$$

Relation

□ A subset R of the Cartesian product A × B is called a relation from the set A to the set B. The elements of R are ordered pairs, where the first element belongs to A and the second to B.

The Cartesian products $A \times B$ and $B \times A$ are not equal, unless $A = \emptyset$ or $B = \emptyset$ (so that $A \times B = \emptyset$) or A = B