

FreeCAD - STEMFIE Workbench

FreeCAD es una aplicación libre de diseño CAD 3D para el diseño de elementos mecánicos. Está basado en Open CASCADE y programado en los lenguajes C++ y Python.

FreeCAD tiene un entorno de trabajo similar a otras herramientas de diseño 3D profesional. Utiliza técnicas de modelado paramétrico y está provisto de una arquitectura de software modular, permitiendo añadir de forma sencilla funcionalidades sin tener que cambiar el núcleo del sistema.

Además del propio formato de archivo de FreeCAD, pueden manejarse los siguientes formatos de archivo: DXF, SVG, STEP, IGES, **STL**, **OBJ**, DAE, SCAD, IV y IFC.

Ander González ha creado un entorno de trabajo (workbench) específico de STEMFIE para FreeCAD, denominado StemfieWB, donde se pueden generar muchas piezas compatibles STEMFIE con las dimensiones que se necesiten y de una manera muy sencilla.

Instalación de FreeCAD

Se puede descargar desde https://www.freecadweb.org/downloads.php?lang=es_ES para el sistema operativo requerido.

Se ejecuta el programa descargado que contiene un asistente de instalación muy sencillo hasta completar la instalación.

Seguidamente se podría ejecutar la aplicación FreeCAD, pero primero es mejor añadir el entorno de trabajo (Stemfie WorkBench), versión actual **StemfieWB_V10_01.ZIP** que viene en un archivo comprimido.

Hay que copiarlo en **C:/Archivos de programa/FreeCAD 0.19/Mod** y extraerlo en este mismo lugar, creará una carpeta STEMFIE incluyendo todos los archivos de Stemfie WorkBench

Ahora ya se puede ejecutar FreeCAD, donde muestra todo el espacio de trabajo.

Ahora es aconsejable ajustar las **preferencias de trabajo** para tener un entorno apropiado. En la pestaña **Editar ▶ Preferencias** y se abre una ventana de ajustes.

En la pestaña General se puede seleccionar el cambio de idioma. Otra acción para quien solo va a utilizar FreeCAD para generar piezas STEMFIE puede seleccionar en la parte baja en Iniciar, marcar en Cargar automáticamente el módulo después de inicio, elegir STEMFIE, después dar al botón Aplicar y después OK. De esta manera al iniciar FreeCAD ya se tendrá el entorno de trabajo preparado.

Además, es recomendable para tener una zona de trabajo con poca información relevante (por el momento) es quitar en preferencias en la pestaña Ventana de salida los informes de errores y de advertencias.

Otra manera de acceder al StemfieWB es ir a la casilla onde se despliegan todos los Workbench instalados y es donde se puede encontrar el de **STEMFIE**.

Seleccionar STEMFIE

Entonces se añadirá en la **barra de herramientas** la colección de piezas creadas, para que se pueda acceder y generar el tamaño deseado.

También se puede acceder a la colección de piezas STEMFIE a través de la pestaña Stemfie dónde aparecen todas estas piezas agrupadas por tipo (Braces, Beams, Connectors).

EDITAR UNA PIEZA

Para editar una pieza, primero hay que abrir un Nuevo proyecto en FreeCAD

Aparece el nuevo espacio y en la Vista Combinada aparece un nuevo elemento, Sin nombre.

Seguidamente se puede seleccionar el modelo de pieza STEMFIE que se quiere generar.

Esta pieza básica aparecerá en la **ventana de diseño** y se añade en el proyecto **Sin nombre** como STR STD ERR

Para acceder a modificar la pieza, hay que selecciona la pieza en la vista combinada marcando o seleccionando la pieza dibujada

Entonces se abre una ventana debajo con las **Propiedades**, con el **Valor** de esta pieza (en este caso N_{a} N_Agujeros = 3)

Si se quiere obtener una pieza del mismo tipo pero con 8 agujeros, es tan sencillo como cambiar en **Valores de Pieza** el **N_Agujeros** a **8** y aparecerá la pieza generada

Ahora solo queda exportar esta pieza en formato STL o OBJ, en la pestaña **Archivo** se despliega la lista, escoger **Exportar**

Se abrirá una ventana donde se podrá poner el **Nombre** y el **Tipo**, en este caso **STL** para poder imprimir, también se puede usar el formato **OBJ**.

Como se puede observar los nombres de las piezas usan unas nomenclaturas que para su comprensión se verán descritas al final de este documento.

Antes de poner más ejemplos de cómo generar piezas, a continuación, se muestran los tipos de piezas actuales que se pueden generar con el WorkBench de STEMFIE, para ir identificando las denominaciones de estas, donde se han querido mantener el mismo formato que en las generadas por STEMFIE original www.stemfie.org

6

Braces

Beams

Connectors

Otros ejemplos de generación de piezas

Una pieza como esta permite modificar tanto los agujeros de base como de cada brazo, el ángulo es fijo a 90 grados en el eje Z.

Esta pieza podríamos decir que es igual que la anterior, pero permite variar los dos ángulos a la vez en el eje Z. Para ello en la casilla **Angulo** se puede modificar y afecta a los dos ángulos a la vez

Como ayuda en todas la piezas situándose encima de la casilla de valores de cada pieza como ayuda indica las restricciones en el valor de cada una, en este caso entre 90 y 180 grados. También se aplica al número de agujeros.

Estas dos piezas cruzadas, se puede variar la longitud de cada brazo, mínimo un agujero que es el punto de cruce de los cuatro brazos. La denominación de la pieza sería STR_STD_CR-4x3x1x2

En este caso se puede ver una pieza dónde se puede variar los dos ángulos a la vez en el eje Y. La denominación sería STR_STD_BRT_AY-2x4x2_170

El mismo tipo de pieza con un ángulo muy pequeño se puede conseguir una pieza quizá nada útil, pero sería muy complejo poner unas restricciones.

Lo mismo en la siguiente

Ahora se puede ver en una viga (Brace) con dos brazos en ángulo.

Comparativa entre dos piezas **viga (Beam)** similares. La de color gris es fija en ángulo a 90 grados, la de color verde se puede modificar el ángulo y aquí se ha fijado a 90 grados también para ver las diferencias.

Por último, este tipo especial de **viga (Beam)** con dos finales distintos y la misma longitud de "agujeros" o BU.

Abreviaturas

Definition	Abbreviation
Adaptor	ADT
Alternating	ALT
Angle	AGL
Angled	AGD
Asymmetric	ASYM
Barbed	BRD
Beam	BEM
Bearing	BRN
Bearing Shaft	BRNS
Bidirectional	BDR
BlockUnit	BU
Both Ends	BE
Box-section	BXS
Brace	BRC
Bracket	BRK
Cam-Locking	CL
Cap Nut	CPN
Centered	CNT
Connector	CON
Corner	CRN
CounterSunk Head	CSH
Driver	DVR

Ending Round Round	ERR
Ending Round Square	ERS
Ending Square Square	ESS
Fixed	FXD
Flat	FLT
Four-Way	4W
Free	FRE
Full Length	FL
Gear	GER
Ground	GND
Headed	HDD
Hexagonal	HEX
Inner	INR
Joint Mortice & Tenon	JM&T
Joint Mortice Centered	JMC
Joint Mortice Double-ended	JMDE
Joint Mortice Single-ended	JMSE
Joint Tenon Single-ended	JTSE
Lap Joint	LJT
Locating	LCT
Longitudinal Tread	LTRD
One-Way	1W
Pinhead	PH

Plain	PLN
Pulley	PLY
Recessed	RSD
Recessed Head	RSDH
Right	RHT
Right-Hand Thread	RH
Rounded Head	RHD
Screw	SCR
Sequential	SQT
Shaft	SFT
Shallow Head	SH
Shank	SNK
Shim	SHM
Shouder Screw	SSC
Sign	SGN
Single End	SE
Slanted	SLTD
Slottet	SLT
Spacer	SPR
Spring	SPG

Spring Pin	SPP
Stand	STN
Standard	STD
Straight	STR
Surface	SFC
Symmetric	SYM
Template	TPL
Thin	THN
Thread Eye	THREYE
Threaded Rod	THR
Three-Way	3W
Through-Hole	TRH-H
Traversal Tread	TTRD
Two-Way	2W
U-shaped	USH
Unidirectional	UDR
Washer	WSR
Wedge	WDG
Wheel	WHL