Oth T P App Hove	dels Considered Logistic Regression MultinomialNB (GBoost
Ηον	Extra Trees Classifier Aer libraries used TPOT: Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. Can bipelines that combines/stack multiples models + preprocessors in its default state. Optuna: Hyperparameter tuning framework which can find the optimal machine learning in a large search space comparable Random Grid Search, but with smarter choices of hyperparameters in each iteration and faster rate of model evaluation, ultimerating to faster convergence. Proaches to model training/evaluation Evaluate all the above models using Stratified 3 Fold Cross Validation; most of them are optimised using Optuna
• F • II • W • V	Utilise TPOT to search for machine learning pipelines that was not previously considered. We we arrived at final model ExtraTreesClassifier performed well on public dataset. Pipelines output from TPOT also performed well on public dataset. In order to prevent overfitting and improve model performance through the use of independent classifiers, we created a Voting with soft voting from a few classifier pipelines from TPOT (which we called c10, c12 and c112) with an Extra Trees Classifier called etc). We then used Optuna to optimise the weights assigned to each of the above classifiers.
Log Wha • L Why	gistic Regression at is the model? Logistic Regression is a linear model that outputs a probability (between 0 and 1) using the logistic function. If we chose to test this model? We use this model to provide a baseline f1_score which subsequent models ought to improve on. The Hyperparameters of the model
• p • to	penalty {'11', '12', 'elasticnet', 'none'}, default='12' Specifies the norm of the penalty ol: float, default = 1e-4 Tolerance for stopping criteria. It float, default = 1.0 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger egularization. It is make the default value provided by Sci-kit learn
Mul Wha	Itinomial NB At is the model? Multinomial NB implements the naive Bayes algorithm for multinomially distributed data, and is one of the two classic naive Why we chose to test this model? The reason behind testing this model is based on the research paper released regarding the classification of hate speech comparison of classification algorithms for hate speech detection. The results show that the Multinomial Naive Bayes algoridates the best model with the highest recall value of 93.2% which has an accuracy value of 71.2% for the classification.
• a A	speech. (Putri et al., 2020). erparameters of the model slipha: float, default = 1.0 Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). it_prior: bool, default = True Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior: array-like of shape (n_classes,), default = None Prior probabilities of the classes. If specified, the priors are not adjusted according to the data
Why	We chose this framework Optuna boasts the following features: • Lightweight, versatile, and platform agnostic architecture • Handle a wide variety of tasks with a simple installation that has few requirements. • Pythonic search spaces • Define search spaces using familiar Python syntax including conditionals and loops. • Efficient optimization algorithms • Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials. • Easy parallelization • Scale studies to tens or hundreds or workers with little or no changes to the code.
Res F1 sc XGI Wha	 Quick visualization Inspect optimization histories from a variety of plotting functions. Optuna also allowed us to find the optimal parameters at a faster rate as opposed to grid search though there is a trade off in ult Fore of Model on public dataset (20%): 0.7100 Boost For the model? For the model on the model which stands for "gradient-boosted decision tree (GBDT)". Compared to the random for the random for the properties of the properties of the random for the random for the random for the properties of the properties of the random for the properties of the
Why XGBc Boost regul mode Hyp e	post implement the idea of "boosting" which establishes a connection between trees. Therefore, trees in XGBoost models are rendent of each other and the model eventually becomes an orderly collective decision-making system. If we chose to test this model? The post is an ensemble algorithm that has higher predicting power and performance, and it is achieved by improvisation on Gracting framework by introducing some accurate approximation algorithms. We speculate that by gradient boost mechanism a carization embedded in the model can potentially increase the accuracy of predictions and reduce the risk of overfitting for treels. Therefore, trees in XGBoost models are connected to each other and the model of the
• n s s s s • n N • n N • g N	The step size in fitting. Objective: default = reg:squarederror Specify the learning task. Oum_round: integer Same as "n_estimators", the number for boosting, which also decides the number of trees in the ensemble forest. Subsample: float, default = 1 Subsample ratio of the training instances (prevent overfitting). Onin_child_weight: float, default = 1 Winimum sum of instance weight needed in a child. The larger, the more conservative the model will be. Onax_depth: integer, default = 6 Maximum depth of a tree. Opamma: float, default = 0 Minimum loss reduction required to make a further partition on a leaf node.
Para We an Why From h	The subsample_bytree: default = 1 The subsample ratio of columns when constructing each tree. Ameters tuning The utilizing the RandomSearchCV provided by scikit-learn to tune our parameters. The chose this framework RandomSearchCV is useful when we have many parameters to try and the training time is very long. The training time for the elatively long compared to non-tree-based models. Considering that cross-validation takes a longer time as well, the train local neavier. The number of parameters to consider for XGBoost trees is particularly high and the magnitudes of influence are imbalance compared to GridSearch, RandomSearch is more suitable in this situation.
Lear	rning points Overfitting problem: It was shown during the training process that the f1-score on the training dataset was much higher than esting dataset under cross-validation (over 15% higher throughout the training process). Sometimes it happened that test lose change while training loss was decreasing. Most tree-based models are easily overfitted. This means that increasing model does not always increase model performance/robustness; it's always about finding the balance between simplicity and control of the control of th
Wha It is a Why Extra them	at is the model? In ensemble machine learning model that is derived from deciesion trees. Also known as "Extremely Randomized Trees". If we chose to test this model? TreesClassifier builds multiple trees and fits a number of randomized decision trees on various sub-samples of the dataset, a to improve predictive accuracy and control over-fitting. If parameters:
T • c · n · T · n · n · n · n · n · n · n · n	n_estimators: int, default = 100 The number of trees in the forest. criterion: {"gini", "entropy", "log_loss"}, default = "gini" The function to measure the quality of a split. max_depth: int, default = None The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less that nin_samples_split samples. min_samples_split: int or float, default = 2 The minimum number of samples required to split an internal node. If int, then consider min_samples_split as the minimum nuloat, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for an internal node. If int, then consider min_samples_split as the minimum nuloat, then min_samples_leaf: int or float, default = 1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves a nin_samples_leaf training samples in each of the left and right branches. min_weight_fraction_leaf: float, default = 0.0
• n o o o o o o o o o o o o o o o o o o	The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples haveight when sample_weight is not provided. max_features: {"sqrt", "log2", None}, int or float, default = "sqrt" e number of features to consider when looking for the best split. If int, then consider max_features at each split. It, then max_features is a fraction and round(max_features * n_features) features are considered at each split. If "auto", then features=sqrt(n_features). If "sqrt", then max_features=sqrt(n_features). If "log2", then max_features=log2(n_features). If Nofeatures=n_features. max_leaf_nodes: int, default = None Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unumber of leaf nodes. min_impurity_decrease: float, default = 0.0 A node will be split if this split induces a decrease of the impurity greater than or equal to this value. bootstrap: bool, default=False Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree. andom_state: int, RandomState instance or None, default=None Seed to control sources of randomness selass_weight: {"balanced", "balanced_subsample"}, dict or list of dicts, default=None Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one. scp_alpha: non-negative float, default=0.0
Para • V	Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller ccp_alpha will be chosen. By default, no pruning is performed. max_samples: int or float, default=None if bootstrap is True, the number of samples to draw from X to train each base estimator. mameters tuning We utilized the Optuna hyperparameter optimization framework to tune our hyperparameters. mameters obtained model = ExtraTreesClassifier (n_estimators=144,
Res F1 sc	criterion="entropy", class_weight="balanced_subsample", ccp_alpha=6.267622143679782e-05, min_samples_split=157, min_weight_fraction_leaf=4.8022857076483334e-05, min_impurity_decrease=1.5576259402879695e-05, max_features=0.00502175457189458, max_samples=0.8999810323985775, bootstrap=True)
TP(What	of the models evaluated above, Extra Trees Classifier performed the best. However, in addition to testing single mode attempted to use a library to generate pipelines that perform well with the given dataset. This was done using TPOT COT: An pipeline-generating AutoML library using genetic programming is TPOT? TPOT stands for Tree-based Pipeline Optimization Tool. It is a Python Automated Machine Learning tool that optimizes mache earning pipelines using genetic programming we chose to use TPOT?
• pp • s • c • c	TPOT automates the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the given data. It is built on scikit-learn (familiar interface) #### Key parameters of TPOT • generations: int or None, optional. default = 100 Number of iterations to the run pipeline optimization process. #### Nopulation_size: nt, optional (default=100) **Number of individuals to retain in the genetic programming population every generation. Must be a positive number. **Georing: string or callable, optional (default='accuracy') **Function used to evaluate the quality of a given pipeline for the classification problem. The following built-in scoring functions used: **Ev: int, cross-validation generator, or an iterable, optional (default=5) **Cross-validation strategy used when evaluating pipelines. **Config_dict: Python dictionary, string, or None, optional (default=None) **A configuration dictionary for customizing the operators and parameters that TPOT searches in the optimization process.
h Imple i f f t t	andom_state: int, RandomState instance or None, default=None he seed of the pseudo random number generator used in TPOT. American import random from tpot import TPOTClassifier Aprint ("reading CSVs") Arrain_df = pd.read_csv("/kaggle/input/50007-dataset/train_tfidf_features.csv") Arrint ("creating X and y")
y (cliu	<pre>% = train_df.drop(['id', 'label'], axis=1).values % = train_df['label'].values ck to expand) searchDict = cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=3) periodic_checkpoint_folder = "/kaggle/working/checkpoints/" nodel = TPOTClassifier(generations=500, population_size=30, cv=cv, config_dict=searchDict, scoring='f1_macro', verbosity=3, random_state=random.randint(1, 99999) and it is not be a search of the search</pre>
Runn pipeli f f f f f	export the best model model.export('tpot_best_model.py') sing the above implmentation on several kaggle notebooks for 12 hours each yield various well-performing cross-varines. The three selected pipelines are as follows: From sklearn.pipeline import make_pipeline, make_union From sklearn.preprocessing import Normalizer, FunctionTransformer, RobustScaler, MaxAbsScaler from sklearn.feature_selection import VarianceThreshold, SelectPercentile, f_classif from tpot.export_utils import set_param_recursive from tpot.builtins import StackingEstimator from sklearn.naive_bayes import BernoulliNB from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import SGDClassifier
#	<pre>From copy import copy Average CV score on the training set was: 0.7165325962375743 El0 = make_pipeline(make_union(FunctionTransformer(copy), make_pipeline(make_union(</pre>
) # s	StackingEstimator(estimator=SGDClassifier(alpha=0.001, eta0=1.0, fit_intercept=False, l1 c=0.5, learning_rate="invscaling", loss="modified_hub penalty="elasticnet", power_t=0.5)), Bernoulling(alpha=1.0, fit_prior=True) Fix random state for all the steps in exported pipeline set_param_recursive(cl0.steps, 'random_state', 2) Average CV score on the training set was: 0.7167734749214567 212 = make_pipeline(StackingEstimator(estimator=DecisionTreeClassifier(
1) # s	StackingEstimator(estimator=SGDClassifier(alpha=0.001, eta0=1.0, fit_intercept=False, l1 p=0.75, learning_rate="invscaling", loss="perceptron", ty="elasticnet", power_t=0.1)), BernoulliNB(alpha=1.0, fit_prior=False) Fix random state for all the steps in exported pipeline set_param_recursive(cl2.steps, 'random_state', 222) Average CV score on the training set was: 0.7192365888770997 cl12 = make_pipeline(SelectPercentile(score_func=f_classif, percentile=77),
) # s Beca of the	SelectPercentile(score_func=f_classif, percentile=68), StackingEstimator(estimator=SGDClassifier(alpha=0.001, eta0=0.0012, fit_intercept=False,
Explain Figure 1	anation: Implements a plain stochastic gradient descent learning routine which supports different loss functions and penalties for class selow is the decision boundary of a SGDClassifier trained with the hinge loss, equivalent to a linear SVM. Imparameters: Imperameters:
• I' T • fi V • m T n	ate when set to learning_rate is set to 'optimal'. Values must be in the range [0.0, inf). 1_ratio: float, default=0.15 The Elastic Net mixing parameter, with 0 <= I1_ratio <= 1. I1_ratio=0 corresponds to L2 penalty, I1_ratio=1 to L1. Only used it elasticnet'. Values must be in the range [0.0, 1.0]. it_intercept: bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. nax_iter: int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the fit method, and not the nethod. Values must be in the range [1, inf). ol: float, default=1e-3 The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for n_iter_no_change consecutive epocheron of the range [0.0, inf).
Explain A A A A A A A A A A A A A A A A A A A	cision Tree Classifier: Anation: A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coir ip heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision take computing all attributes). The paths from root to leaf represent classification rules. **rparameters:** *riterion: {"gini", "entropy", "log_loss"}, default="gini" The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" be Shannon information gain, see Mathematical formulation.
• n T If	Eplitter: {"best", "random"}, default="best" The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to best random split. Inax_depth: int, default=None The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less that nin_samples_split samples. Inin_samples_split: int or float, default=2 The minimum number of samples required to split an internal node: If int, then consider min_samples_split as the minimum number. If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for nin_samples_leaf: int or float, default=1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves a nin_samples_leaf training samples in each of the left and right branches. This may have the effect of smoothing the model, eggression.
• n • n T w • n If	find, then consider min_samples_leaf as the minimum number. If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for node. Inin_weight_fraction_leaf: float default=0.0 The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples haveight when sample_weight is not provided. Inax_features: int or float {"auto", "sqrt", "log2"}, default=None The number of features to consider when looking for the best split: If int, then consider max_features features at each split. If float, then max_features is a fraction and max(1, int(max_features * n_featuresin)) features are considered at each split. If "auto", then max_features=sqrt(n_features). If "sqrt", then max_features=sqrt(n_features). If "log2", then max_features=log2(n_features). If None, then max_features=n_features.
Expla	rnoulli Naive Bayes anation: Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption of the class variable. Inparameters: Inpha: float, default=1.0 Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). Ininarize: float or None, default=0.0 Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vertically assumed to already consist of binary vertically and the class variable.
• a	it_prior: bool, default=True Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior: array-like of shape (n_classes,), default=None Prior probabilities of the classes. If specified, the priors are not adjusted according to the data. IAL MODEL CREATION
• a • b T • fi V • c F	rder to craft a model that is performant and resilient, we used a voting classifier to aggreg dicted probabilties of the Extra Trees Classifier and 3 of the best performing TPOT pipeline ple model.
• a • b • fi • fi V • c F FIN In or precising The of are Vot Wha • v Sele	rder to craft a model that is performant and resilient, we used a voting classifier to aggregaticted probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipeline gle model. rationale is that a variety of model that is independent is able to resolve and adjust for the ny single model included within the ensemble ingClassifier at is the model?
• a A A • b T • fi V • c F F F IN Order of an Vot What • V • C • C • C • C • C • C • C • C • C	rder to craft a model that is performant and resilient, we used a voting classifier to aggreg dicted probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipeline in the model. rationale is that a variety of model that is independent is able to resolve and adjust for the my single model included within the ensemble ingClassifier at is the model? VotingClassifier is a machine learning model that trains an ensemble of user-defined models and predicted an output based veights (voting power) assigned to each of the model. **Ceted Models for the voting classifier** 1. Stacking Classifier1: SGD Classifier and Bernoulli Naive Bayes **Preprocessing: • Values are rescaled by the maximum of the absolute values • Select highest scoring percentage (5 percentile) of features • Scale each feature by its maximum absolute value • SGD Classifier • Bernoulli Naive Bayes • Individual Performance on cross validation: 0.7165325962375743 **The formal of the control of the control of the make_pipeline(**make_union(**)
• a A • b T • fi V • c F F IN or precipitation of an Vot What • W • Sele • 1	rationale is that a variety of model that is independent is able to resolve and adjust for the propabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipeline in model. rationale is that a variety of model that is independent is able to resolve and adjust for the my single model included within the ensemble ing Classifier at is the model? foting Classifier is a machine learning model that trains an ensemble of user-defined models and predicted an output based veights (voting power) assigned to each of the model. Stacking Classifier: SGD Classifier and Bernoulli Naive Bayes Preprocessing: Values are rescaled by the maximum of the absolute values Select highest scoring percentage (5 percentile) of leatures Scale each feature by its maximum absolute value SGD Classifier Bernoulli Naive Bayes Individual Performance on cross validation: 0.7165325962375743 The for first model from TPOT Average CV score on the training set was: 0.7165325962375743 The make_union(Normalizer(norm="max"), SalectPercentile(score_func=f_classif, percentile=5)), MaxAbsScaler()), StackingRatimator(estimstor=850Classifier(alpha=0.001, eta0=1.0, fit_intercept=False, 13 percentile_5) StackingRatimator(estimstor=850Classifier(alpha=0.001, eta0=1.0, fit_intercept=False, 13 percentile_5) StackingRatimator(estimstor=850Classifier(alpha=0.001, eta0=1.0, fit_intercept=False, 13 percentile_5) Rearning_rate="invacaling", loss="modified_but penalty="elastionot", power_t=0.5)),
• a A • b T • fi V • c F • F • N • c F • F • N • C • F • C • C • C • C • C • C • C • C	reder to craft a model that is performant and resilient, we used a voting classifier to aggreg dicted probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipeline model. rationale is that a variety of model that is independent is able to resolve and adjust for the my single model included within the ensemble ingClassifier at is the model? OblingClassifier at is the model? OblingClassifier is a machine learning model that trains an ensemble of user-defined models and predicted an output based weights (voting power) assigned to each of the model. Obtact Models for the voting classifier Stacking Classifier: SGD Classifier and Bornoulili Nalve Bayes Proprocessing: Values are recealed by the maximum of the absolute values SGD Classifier: SGD Classifier: SGD Classifier: Bernoulil Naive Bayes Individual Performance on cross validation: [0,7165325962275743] For first model from TPOT Average CV score on the training set was: 0.7165325962375743 For first model from TPOT Average CV score on the training set was: 0.7165325962375743 For score in the steps of the score of the
• a A • b T • five • F • No of the single of	refer to craft a model that is performant and resilient, we used a voting classifier to aggregited probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipeline [le model]. Trationale is that a variety of model that is independent is able to resolve and adjust for the ry single model included within the ensemble ing Classifier It is the model? Proportional included within the ensemble of user-defined models and produced an output based engine (voting power) assigned to each of the model. Stacking Classifier: SGD Classifier and Bernoulli Nalve Bayes - Proporcessing - Stacking Classifier: SGD Classifier and Bernoulli Nalve Bayes - Proporcessing - Stacking Classifier and Bernoulli Nalve Bayes - Proporcessing - Solid Chapter stacked by the maximum of the absolute values - Solid Chapter stacked by the maximum absolute value - Solid Chapter and the base of the produced of percentage (5 percentage) of features - Solid Chapter and the base of the stacked by the maximum absolute value - Solid Chapter and the base of the stacked by the maximum absolute value - Solid Chapter and the base of the stacked by the maximum absolute value - Solid Chapter and the base of the stacked by the maximum absolute value - Solid Chapter and the base of the stacked by the maximum absolute value - Solid Chapter and the base of the stacked by the maximum absolute value - Bernoulli Nalve Bayes - Individual Performance (copy), - Solid Chapter and (copy), -
• A A B T I I I I I I I I I I I I I I I I I I	refer to craft a model that is performant and resilient, we used a voting classifier to aggregitated probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipelinic learned in the model included within the ensemble of user-defined models and predicted an output based explicit young power assigned to seen of the model. State of the country of the model in the model i
• A b T five of the state of th	Index for craft a model that is performant and resilient, we used a voting classifier to aggregilated probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipeline in model included within the ensemble in the probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipeline in a control of the probabilities of the Extra Trees Classifier and 5 of the best performing TPOT pipeline in a control of the probabilities of the theory single model included within the ensemble in gold proved in the probabilities of the control of of the
• A B T IN ORD OF THE TOTAL OF	rider to craft a model that is performant and resilient, we used a voting classifier to aggregited probabilities of the Extra Trees Classifier and 3 of the best performing TPOT pipelini ion model. rationale is that a variety of model that is independent is able to resolve and adjust for the yarigle model included within the ensemble in a control of the control of

 Eas Sca Qui Insp Optuna also allow Implementation: import optuna 	opt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials. Say parallelization ale studies to tens or hundreds or workers with little or no changes to the code. Sick visualization Spect optimization histories from a variety of plotting functions. Wed us to find the optimal parameters at a faster rate as opposed to grid search though there is a trade off in accurate an ensemble import VotingClassifier, ExtraTreesClassifier
from sklearn. def objective cv = Stra ### model w1 = tria w2 = tria	ensemble import VotingClassifier, ExtraTreesClassifier e(trial): atifiedKFold(n_splits=3, shuffle=True, random_state=1) ling with suggested params al.suggest_float("w1", 0.5, 6) al.suggest_float("w2", 0.5, 6)
<pre>w4 = tria weights = # Average cl0 = mak make_ E</pre>	al.suggest_float("w3", 0.5, 6) al.suggest_float("w4", 0.5, 6) = [w1, w2, w3, w4] e CV score on the training set was: 0.7165325962375743 ke_pipeline(_union(FunctionTransformer(copy),
), Stack	<pre>make_pipeline(make_union(Normalizer(norm="max"), SelectPercentile(score_func=f_classif, percentile=5)), MaxAbsScaler() kingEstimator(estimator=SGDClassifier(alpha=0.001, eta0=1.0, fit_intercept=False, l1_</pre>
Berno) # Fix rar set_param # Average	learning_rate="invscaling", loss="modified_hube" leasticnet", power_t=0.5)), bullinB(alpha=1.0, fit_prior=True) adom state for all the steps in exported pipeline m_recursive(cl0.steps, 'random_state', 2) be CV score on the training set was: 0.7167734749214567 ke_pipeline(
Stack ratio=0.75, penalty="ela Berno") # Fix rar	<pre>criterion="gini", max_depth=8, min_samples_leaf=9, min_samples_split=6)), criterion="gini", max_depth=8, min_samples_leaf=9, min_samples_split=6), criterion="gini", max_depth=8, min_samples_leaf=9, min_samples_split=6), criterion="gini", max_depth=8, min_samples_leaf=9, min_samples_split=6), criterion="gini", max_depth=8, min_samples_leaf=9, min_samples_split=6), criterion="gini", max_depth=8, min_samples_leaf</pre>
# Average cl12 = ma Select Select Stack ="hinge", per	e CV score on the training set was: 0.7192365888770997 ake_pipeline(ctPercentile(score_func=f_classif, percentile=77), ctPercentile(score_func=f_classif, percentile=68), kingEstimator(estimator=SGDClassifier(alpha=0.001, eta0=0.0012, fit_intercept=False,
set_param	ndom state for all the steps in exported pipeline m_recursive(cl12.steps, 'random_state', 422) traTreesClassifier(n_estimators=144,
	<pre>min_samples_split=157,</pre>
score = c	<pre>voting='soft',</pre>
study.optimiz print(study.k print(study.k Running the above ({'w1': 0.5053	na.create_study(direction='maximize') # maximize accuracy ze(objective, n_trials=None, timeout=42000, n_jobs=2,) pest_trial.params) pest_value) Optuna search on a kaggle notebook for 12 hours resulted in the following weights: 3634333272882, 0582376550015,
'w3': 1.4825 'w4': 5.6692 This was manually to w1 = 1 w2 = 2 w3 = 3.5 w4 = 10	uned to arrive at the final chosen weight:
from sklearn. from sklearn. narizer, MinM from sklearn. from tpot.exp from tpot.bui	ensemble import VotingClassifier, ExtraTreesClassifier pipeline import make_pipeline, make_union preprocessing import Normalizer, FunctionTransformer, RobustScaler, MaxAbsScaler, Bi
<pre>from sklearn. from copy imp from sklearn. cv = Stratifi # Weights cho w1 = 1</pre>	.tree import DecisionTreeClassifier .linear_model import SGDClassifier port copy .model_selection import StratifiedKFold iedKFold(n_splits=3, shuffle=True, random_state=1) osen after Optuna hyperparamter tuning and manual adjustments
<pre>cl0 = make_pi make_unic Funct make_</pre>	
))),	Normalizer(norm="max"), SelectPercentile(score_func=f_classif, percentile=5) MaxAbsScaler() Estimator(estimator=SGDClassifier(alpha=0.001, eta0=1.0, fit_intercept=False, l1_ratilearning rate="invscaling", loss="modified huber",
Bernoulli) # Fix random set_param_rec # Average CV cl2 = make_pi	asticnet", power_t=0.5)), iNB(alpha=1.0, fit_prior=True) state for all the steps in exported pipeline cursive(cl0.steps, 'random_state', 2) score on the training set was: 0.7167734749214567
crite StackingE o=0.75, lty="elasticr Bernoulli) # Fix random	erion="gini", max_depth=8, min_samples_leaf=9, min_samples_split=6)), Estimator(estimator=SGDClassifier(alpha=0.001, eta0=1.0, fit_intercept=False, l1_rati learning_rate="invscaling", loss="perceptron", pena net", power_t=0.1)), iNB(alpha=1.0, fit_prior=False) state for all the steps in exported pipeline cursive(cl2.steps, 'random_state', 222)
# Average CV cl12 = make_p SelectPer SelectPer StackingE	score on the training set was: 0.7192365888770997
set_param_rec	state for all the steps in exported pipeline cursive(cl12.steps, 'random_state', 422) reesClassifier(n_estimators=144,
	<pre>ccp_alpna=6.26/6221436/9782e-05, min_samples_split=157, min_weight_fraction_leaf=4.8022857076483334e-05, min_impurity_decrease=1.5576259402879695e-05, max_features=0.00502175457189458, max_samples=0.8999810323985775, bootstrap=True) st = [("cl0", cl0), ("cl2", cl2), ("cl12", cl12), ("etc", etc)]</pre>
How are mos	<pre>voting='soft', verbose=False, n_jobs=2, weights=weights) st of our models evaluated?</pre>
dataset into 5 fold (stratified) according final evaluation multiplementation from sklearn.	tial overfitting issue, we use cross validation to evaluate the performance of our final model. We split the training ds, each time use 4 of them for training and 1 of them for validation. The labels of the dataset are also balanced ding to the ratio of positive and negative labels. After getting the result from all trials, we average the f1-score as our natric. : .model_selection import cross_val_score
## cross vali cv2 = cv = St	idation score tratifiedKFold(n_splits=3, shuffle=True, random_state=1) s_val_score(model, X, y, n_jobs=2, cv=cv2, scoring="f1_macro") T") mean())
 Simple models suetc. An increase in models 	el complexity does not always increase model Performance uch as Naive Bayes can perform surprisingly well and sometimes even outperform complex models such as XGBoo odel complexity increases the tendency of a model to overfitting, potentially leading to misleadingly high validation est scores. Complex models also tend to take a longer time to train and test. Using them can be extremely resource
scores but poor to intensive It is hence necess robustness of the robustness of the Real-world data Models, especiall This means that repreferable.	est scores. Complex models also tend to take a longer time to train and test. Using them can be extremely resource sary that a good balanced between simplicity and complexity is found, and that cross-validation is performed to enseresults. Sets are large and requires substantial resources to utilise for ML By complex ones, can take a very long time to train on real-world datasets. In model size/performance is an important consideration in real-world scenarios, and that small models are highly
decreasing the archence extremely PCA In our cases, it archence the features were	reprocessors that perform dimensionality reduction/encoding of the dataset can increase model performance while mount of time needed to train models. An in-depth practical and technical understanding of such preprocessors is valuable. ppears that many models' performance decreased after doing PCA on data. In this particular case, it might be becate already filtered for one time (we only choose the first 5000 words after tf-idf processing), and most noises have be dicates one of the disadvantages of PCA which is the loss of information. However, it is also true that the training time
time, performance does not contain Stacking Models • Even though almore Compared to other	er after decreasing the number of features. We need to be careful in PCA operations and most of the time the balance and the property of the dataset are keys that decide how we utilize PCA. In this project, it is clear that this dataset too much noise and we aim to maximize the performance, therefore, we did not apply PCA to the data before trainings. Sost all the models we used in task 3 have been taught in class, it is the first time we tried to stack them together. The er ensemble techniques such bagging and boosting, stacking model is very different from them. Unlike bagging, in dels are typically different (e.g. not all decision trees) and fit on the same dataset (e.g. instead of samples of the trainings).
(e.g. instead of a fitting on the train Since it is easy to Extra Tree Class • Similar to random	n forest, extra tree classfier is another trees ensemble methods. While it is different from random forest since it add
provides another Fechniques to fi	ion and thus reduce bias and variance. In terms of computational cost, the extra trees algorithm is faster. Thus it choice for us when we get stuck at increasing accuracy for random forest. ine tune the hyperparameters: parameter tuning with TPOT

How were the above weights chosen? It was based on a mix of an initial parameter search by Optuna, followed by manual tuning.