CS109A Final Project

Modeling Coup d'Etat Data

Andrew Nickerson, Caleb Saul, Drew Webster, Ayana Yaegashi

Motivation

- Coups are very important in global events, even recently
 - Peruvian coup just days ago
 - Assassination of Japanese former prime minister over the summer
- Coups can change the course of a country's history as well as the lives of the people in that country; it is important to be able to try to understand better what causes them

Dataset Overview

The Cline Center Coup D'état Project (CPD) Dataset "identifies coups, attempted coups, and coup plots/conspiracies in 136 countries (1945-2019). The data identifies the type of actor who initiated the coup (i.e.military, palace, rebel, etc.) as well as the fate of the deposed executive (killed, injured, exiled, etc.)."

- Dropping unnecessary columns
 - cowcode, coup_id, event_type, and unrealized were dropped due to the fact that their data was already encoded in other columns and were therefore unnecessary
- Dropping "cheat" columns
 - executive_fate, executive_consequence
- Encoding predictors:
 - \circ Country \rightarrow continent
 - mm/dd/yyyy → time of month, season, decade
- One-hot-encoding categorical variables:
 - ex) continent → columns for Africa, South America, etc.

Exploratory Data Analysis

Exploratory Data Analysis

Research Questions

- 1. **Binary Prediction:** Can we predict whether a coup event will be successful (realized) based on some set of predictors? If so, which predictors are most useful for this task?
- 2. **Multi-Class Prediction:** Can we predict if an event was a conspiracy, an attempted coup, or an actual coup? If so, which predictors are most useful in this scenario?

Multi-Model Approach

- Baseline logistic regression (no regularization)
- Logistic regression with Lasso regularization
- Single Decision Tree
- Bagging
- Random Forest
- Boosting
 - AdaBoost
 - Gradient Boosting

No Regularization

Train Score: 0.7384 Test Score: 0.7619

LASSO

Train Score: 0.7517 Test Score: 0.7460 We found the following predictors were least important (zeroed out by Lasso):

Africa, Asia, late, military, foreign, other

We note that the following coefficients did not include 0 in a 95% confidence interval after 100 bootstraps: **North America**, **Oceania**, **1960s**, **2000s**, **dissident**, **palace**, **auto**, **resign**, **popular**, **counter**, **and other**. intercept -0.2120

Africa	0.0000
<mark>Asia</mark>	0.0000
Europe	-0.2233
North Ame	rica 0.2046
Oceania	0.5547
South Ame	rica -0.153
1940s	0.3796
1950s	-0.0007
1960s	0.4104
1970s	0.3309
1980s	0.0002
1990s	-0.0592
2000s	-0.4636
2010s	-0.1717
fall	0.0399
spring	-0.0990
summer	0.1108
winter	-0.1196
early	-0.0555
<mark>late</mark>	0.0000
middle	0.0382
<mark>military</mark>	0.0000
dissident	-2.4630
rebel	0.2920
palace	1.4140
foreign	0.0000
auto	1.4594
resign	0.9653
popular	1.6418
counter	0.7712
other	0.0000

Results (Binary Prediction) Logistic Regression

After bootstrapping, we had a better idea as to which predictors were most important. We note that the following coefficients did not include 0 in a 95% confidence interval after 100 bootstraps, sampling with replacement from our training data (753 data points): North America, Oceania, 1960s, 2000s, dissident, palace, auto, resign, popular, counter, and other.

Results (Binary Prediction) Single Decision Tree

Cross Validation & Non Cross Validation Training Scores for Decision Trees, depth = 1-20

Best Depth: d = 5 Train Score: 0.7623

Test Score: 0.6931

Results (Binary Prediction) Bagging & Random Forest Models

Bagger Train and OOB Scores for the Different Num Estimators

Best Num Estimators = 1000

Train Score: 0.7530 Test Score: 0.7302

Best Depth: d = 6

Best Num Estimators = 200

Train Score: 0.7968 Test Score: 0.7460

Feature Importance: Bagging & Random Forest

Bagging

Best Depth = 4
Best Num Estimators = 1000
Train Score = 0.7530
Test Score = 0.7302

Random Forest

Best Depth = 6

Best Num Estimators = 200

Train Score: 0.7968 Test Score: 0.7460

Weight	Feature	Weight	Feature
0.1868 ± 0.0747	dissident	0.1413 ± 0.0576	dissident
0.0365 ± 0.0261	military	0.0317 ± 0.0189	popular
0.0222 ± 0.0114	popular	0.0217 ± 0.0397	military
0.0164 ± 0.0493	decade	0.0169 ± 0.0221	resign
0.0048 ± 0.0145	resign	0.0122 ± 0.0268	decade
0.0026 ± 0.0071	rebel	0.0122 ± 0.0292	palace
0.0016 ± 0.0142	palace	0.0106 ± 0.0134	middle
0.0005 ± 0.0032	counter	0.0090 ± 0.0116	late
0 ± 0.0000	other	0.0090 ± 0.0134	rebel
0 ± 0.0000	spring	0.0074 ± 0.0118	auto
0 ± 0.0000	Asia	0.0063 ± 0.0123	Africa
0 ± 0.0000	Europe	0.0053 ± 0.0000	other
0 ± 0.0000	North America	0.0048 ± 0.0032	summer
0 ± 0.0000	Oceania	0.0048 ± 0.0057	winter
0 ± 0.0000	South America	0.0037 ± 0.0048	Asia
0 ± 0.0000	fall	0.0016 ± 0.0068	foreign
0 ± 0.0000	late	0.0005 ± 0.0057	counter
0 ± 0.0000	summer	0.0005 ± 0.0088	fall
0 ± 0.0000	winter	0.0000 ± 0.0067	Europe
0 ± 0.0000	early	0 ± 0.0000	Oceania
0 ± 0.0000	middle	-0.0026 ± 0.0127	spring
0 ± 0.0000	foreign	-0.0026 ± 0.0098	South America
0 ± 0.0000	Africa	-0.0079 ± 0.0118	North America
-0.0021 ± 0.0052	auto	-0.0095 ± 0.0104	early

Bagging Model

Random Forest Model

Boosting

AdaBoost

Best Depth: d = 4

Best Num Estimators = 200 Best Learning Rate = 0.005

Train Score: 0.7676 Test Score: 0.7354

Gradient Boosting

Best Depth: d = 2

Best Num Estimators = 800

Best Learning Rate = 0.005

Train Score: 0.7543 Test Score: 0.7249

Weight	Feature
0.1815 ± 0.0828	dissident
0.0376 ± 0.0286	military
0.0243 ± 0.0127	popular
0.0143 ± 0.0469	decade
0.0053 ± 0.0047	other
0.0053 ± 0.0116	South America
0.0053 ± 0.0183	palace
0.0037 ± 0.0134	resign
0.0026 ± 0.0098	rebel
0.0016 ± 0.0048	counter
0 ± 0.0000	spring
0 ± 0.0000	Asia
0 ± 0.0000	North America
0 ± 0.0000	Oceania
0 ± 0.0000	fall
0 ± 0.0000	late
0 ± 0.0000	summer
0 ± 0.0000	winter
0 ± 0.0000	middle
0 ± 0.0000	foreign
0 ± 0.0000	Africa
-0.0005 ± 0.0032	Europe
-0.0026 ± 0.0053	early
-0.0026 ± 0.0071	auto

AdaBoost

Gradient Boosting

Weight

0.1889 + 0.0716

 0.0339 ± 0.0251

 0.0217 ± 0.0138

 0.0111 ± 0.0515

 0.0037 ± 0.0171

 0.0005 ± 0.0138

 0.0005 ± 0.0032

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.0000

0.00000

0.00000

0.00000

0.00000

 0 ± 0.0000

0.00000

 -0.0011 ± 0.0042

 -0.0079 ± 0.0053

Feature

military

popular

decade

resign

palace

counter

summer

Europe

Oceania

spring

winter

early

rebel

middle

foreign

Africa

fall

auto

late

North America

South America

other

Asia

dissident

Results (Binary Prediction)

	train	test
Baseline Logistic Regression	0.7384	0.7619
Lasso Logistic Regression	0.7517	0.7460
Single Decision Tree Depth = 5	0.7623	0.6931
Bagging	0.7530	0.7302
Random Forest	0.7968	0.7460
Adaboost	0.7676	0.7355
Gradient Boosting	0.7543	0.7249

No Regularization

Train Score: 0.6401 Test Score: 0.6032

LASSO

Train Score: 0.6401 Test Score: 0.6032 We found the following predictors were least important (zeroed out by Lasso): 1960s, 1970s, 1980s, 1990s, 2000s, summer, winter, late, dissident, rebel, counter

We note that the following coefficients did not include 0 in a 95% confidence interval after 100 bootstraps: Africa, Europe, Oceania, South America, 1950s, 1960s, 1980s, dissident, rebel, palace, auto, resign, popular, and other. intercept 0.5324 -0.0819Africa Asia -0.0555 -0.0035Europe -0.0017North America 0.5071 Oceania 0.2737 South America 1940s -0.12671950s -0.0076 1960s 0.0000 1970s 0.0000 1980s 0.0000 1990s 0.0000 2000s 0.0000 2010s 0.1701 -0.0003fall 0.1001 spring 0.0000 summer 0.0000 winter 0.1423 earlv late 0.0000 middle -0.0274military 0.2258 dissident 0.0000 0.0000 rebel palace -0.4481 -0.0042foreign 0.4199 auto -0.3178resign 0.4167 popular 0.0000 counter 5.3492 other

Results (Multi-Class Prediction) Logistic Regression

-2.0 -1.5 -1.0 -0.5 0.0

Value of beta 31

After bootstrapping, we had a better idea as to which predictors were most important. We note that the following coefficients did not include 0 in a 95% confidence interval after 100 bootstraps, sampling with replacement from our training data (753 data points): Africa, Europe, Oceania, South America, 1950s, 1960s, 1980s, dissident, rebel, palace, auto, resign, popular, and other.

Results (Multi-Class Prediction) Single Decision Tree

Cross Validation & Non Cross Validation Training Scores for Decision Trees, depth = 1-20

Best Depth: d = 5

Train Score: 0.6428

Test Score: 0.5714

Results (Multi-Class Prediction)

Bagging & Random Forest Models

Best Depth: d = 6

Best Num Estimators = 200

Train Score: 0.7185 Test Score: 0.5661

Random Forest Train and OOB Scores for the Different Num Estimators

Best Depth: d = 6

Best Num Estimators = 200

Train Score: 0.6866 Test Score: 0.5820

Boosting

AdaBoost

Best Depth: d = 4

Best Num Estimators = 200 Best Learning Rate = 0.005

Train Score: 0.7676 Test Score: 0.7354

Gradient Boosting

Best Depth: d = 2

Best Num Estimators = 800

Best Learning Rate = 0.005

Train Score: 0.7543 Test Score: 0.7249

Permutation Feature Importance

Weight	Feature
0.1286 ± 0.0568	dissident
0.0376 ± 0.0243	palace
0.0233 ± 0.0399	decade
0.0212 ± 0.0195	popular
0.0201 ± 0.0295	Africa
0.0190 ± 0.0127	winter
0.0132 ± 0.0118	auto
0.0090 ± 0.0068	North America
0.0085 ± 0.0269	military
0.0079 ± 0.0238	fall
0.0048 ± 0.0074	rebel
0.0037 ± 0.0083	foreign
0.0026 ± 0.0144	Europe
0.0011 ± 0.0079	Oceania
0.0000 ± 0.0206	resign
0 ± 0.0000	Asia
-0.0005 ± 0.0192	spring
-0.0011 ± 0.0063	counter
-0.0011 ± 0.0156	summer
-0.0016 ± 0.0106	middle
-0.0021 ± 0.0172	South America
-0.0032 ± 0.0052	early
-0.0053 ± 0.0082	other
-0.0169 ± 0.0221	late

Weight	Feature
0.1270 ± 0.0568	dissident
0.0392 ± 0.0260	palace
0.0317 ± 0.0201	military
0.0286 ± 0.0202	Africa
0.0238 ± 0.0273	North America
0.0233 ± 0.0277	spring
0.0175 ± 0.0184	rebel
0.0169 ± 0.0226	resign
0.0169 ± 0.0507	decade
0.0153 ± 0.0145	auto
0.0143 ± 0.0095	middle
0.0138 ± 0.0185	popular
0.0132 ± 0.0228	South America
0.0095 ± 0.0063	counter
0.0079 ± 0.0127	winter
0.0063 ± 0.0063	foreign
0.0048 ± 0.0274	late
0.0042 ± 0.0250	early
0.0021 ± 0.0070	Europe
0.0016 ± 0.0177	Asia
0.0011 ± 0.0079	Oceania
-0.0016 ± 0.0177	summer
-0.0053 ± 0.0082	other
-0.0063 ± 0.0092	fall

AdaBoost

Gradient Boosting

Results (Multi-Class Prediction)

	train	test
Baseline Logistic Regression	0.6401	0.6032
Lasso Logistic Regression	0.6401	0.6032
Single Decision Tree Depth = 5	0.6428	0.5714
Bagging	0.7184	0.5661
Random Forest	0.6865	0.5820
Adaboost	0.6215	0.5873
Gradient Boosting	0.6401	0.6031

Imbalanced Class Representation

Solution: Oversampling

Poor Predictors

Solution: Expanded Dataset

Test Accuracy by Class

	coup	attempted	conspiracy
Baseline Logistic Regression	0.8023	0.4627	0.3889
Lasso Logistic Regression	0.8023	0.4627	0.3889
Single Decision Tree Depth = 5	0.7907	0.3731	0.4167
Bagging	0.8140	0.3731	0.3333
Random Forest	0.9302	0.3284	0.2222
Adaboost	0.8256	0.3582	0.4444
Gradient Boosting	0.8023	0.4627	0.3889