Definition 0.1. (Bounds). Let $X \subseteq \mathbb{R}$. Then...

- 1. $u \in \mathbb{R}$ is called an upper bound of X if $x \le u$, $\forall x \in X$.
- 2. $l \in \mathbb{R}$ is called a lower bound of X if $x \ge l$, $\forall x \in X$.

Definition 0.2. (Extremum). Let $X \subseteq \mathbb{R}$ be bounded. Then...

- 1. $y = \sup(X)$ (<u>supremum</u> of X) if y is an upper bound and, y' is another upper bound, then $y' \ge y$.
- 2. $z = \inf(X)$ (infinum of X) if z is an lower bound and, z' is another lower bound, then $z' \le z$.

Also if...

- 1. $sup(X) \in X$, then we call it the maximum of X.
- 2. $\inf(X) \in X$, then we call it the minimum of X.

Definition 0.3. (Neighborhood). Let $x \in \mathbb{R}^n$ and $\epsilon > 0$. Then

$$B_{\epsilon}(x) = \{ y \in \mathbb{R}^n \mid |x - y| < \epsilon \} \tag{0.1}$$

This is called an ϵ -neighborhood of x.

Definition 0.4. (Classification of points). Let $X \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$. Then x is called

- interior point of X if $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subseteq X$.
- boundary point of X if $\forall \epsilon > 0$, $B_{\epsilon}(x) \cap X \neq \emptyset$ and $B_{\epsilon}(x) \cap X^{c} \neq \emptyset$
- exterior point of X if it is an interior point of X^c

Notation: X = interior of X = set of all interior point of X. $\delta X = \text{boundary of } X = \text{set of all boundary points of } X$

Definition 0.5. (Closure). X is called <u>open</u> if it only consists of interior points. X is called <u>closed</u> if its complement is open.

- \Rightarrow X is open if it contains none of its boundary points.
- \Rightarrow X is closed if it contains all of its boundary points.

Definition 0.6. (Convergent sequence; limit of sequence). A sequence $i\mapsto a_i$

if points in \mathbb{R}^n converges to $\mathbf{a} \in \mathbb{R}^n$ if

$$\forall \epsilon > 0, \ \exists M \ \text{s.t.} \ m > M \Rightarrow |\mathbf{a}_{m} - \mathbf{a}| < \epsilon$$
 (0.2)

We then call **a** the limit of the sequence.

Definition 0.7. (Limit of a function). Let X be a subset of \mathbb{R}^n and \mathbf{x}_0 a point in \overline{X} (note $\overline{X} = X \cup \delta X$). A function $\mathbf{f} : X \to \mathbb{R}^m$ has the limit \mathbf{a} at \mathbf{x}_0 :

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \mathbf{f}(\mathbf{x}) = \mathbf{a} \tag{0.3}$$

if $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall \mathbf{x} \in \mathbf{X}$,

$$|\mathbf{x} - \mathbf{x}_0| < \delta \Rightarrow |\mathbf{f}(\mathbf{x}) - \mathbf{a}| < \epsilon$$
 (0.4)

Related Prop: If a function has a limit, it is unique.

Definition 0.8. (Closure). $X \subseteq \mathbb{R}^n$, define the closure of $X: \overline{X} = X \cup \delta X$

Definition 0.9. (Continuous function). Let $X \subset \mathbb{R}^n$. A mapping $f : X \to \mathbb{R}^m$ is continuous at $x_0 \in X$ iff

$$\lim_{x \to \mathbf{x}_0} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_0); \tag{0.5}$$

f is continuous on X if it is continuous at every point of X. Equivalently, $\mathbf{f}: X \to \mathbb{R}^m$ is continuous at $\mathbf{x}_0 \in X$ if and only if for every $\varepsilon > 0$, there exists $\delta > 0$ such that when $|\mathbf{x} - \mathbf{x}_0| < \delta$, then $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)| < \varepsilon$.

Definition 0.10. (Bounded set). A subset $X \in \mathbb{R}^n$ is <u>bounded</u> if it is contained in a ball in \mathbb{R}^n centered at the origin:

$$X \subset B_R(0)$$
 for some $R < \infty$ (0.6)

Definition 0.11. (Compact set). A nonempty subset $C \subset \mathbb{R}^n$ is <u>compact</u> if it is closed and bounded.

Definition 0.12. (Derivative). Let U be an open subset of \mathbb{R} , and let $f: U \to \mathbb{R}$

be a function. Then f is differentiable at $a \in U$ with derivative f'(a) if the limit

$$f'(\alpha) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{1}{h} (f(\alpha + h) - f(\alpha)) \quad \text{exists}$$
 (0.7)

Definition 0.13. (Derivatives in \mathbb{R}^n). Let $U \subset \mathbb{R}^n$ be an open subset and let $f: U \to \mathbb{R}^m$ be a mapping; let **a** be a point in U. If there exists a linear transformation (represented by a matrix) $[\mathbf{D}f(x)] \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$\lim_{\vec{h} \to 0} \frac{1}{|\vec{h}|} (f(x + \vec{h}) - f(\vec{x})) - [Df(x)]\vec{h} = \vec{0}$$
 (0.8)

then f is differentiable at a, and [Df(x)] is unique and is the derivative of f at a.

Definition 0.14. (Partial derivative). The right-hand side of # is called the <u>partial</u> derivative of # (with respect to the ith variable evaluated at #):

$$D_{i}f(\mathbf{x}) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{1}{h} \begin{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{i} + h \\ \vdots \\ x_{n} \end{pmatrix} - f \begin{pmatrix} x_{1} \\ \vdots \\ x_{i} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$(0.9)$$

(Given such limit exists, of course). Therefore, we can calculate it by considering x_i the only variable, and holding all other components constant.

This limit is essentially the ith row in [Df] or [Jf].

Definition 0.15. (Jacobian matrix). The <u>Jacobian matrix</u> of a function $\mathbf{f}: U \subset \mathbb{R}^n \to \mathbb{R}^m$ [i.e. $\mathbf{f}(\mathbf{a}) = (f_1(\mathbf{a}), \dots, f_n(\mathbf{a}))$] is the $m \times n$ matrix composed of the n partial derivatives of \mathbf{f} evaluated at \mathbf{a} :

$$[\mathbf{Jf}(\mathbf{a})] = \begin{bmatrix} \mathbf{J}f \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} D_1 f_1(\mathbf{a}) & \cdots & D_n f_1(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ D_1 f_m(\mathbf{a}) & \cdots & D_n f_m(\mathbf{a}) \end{bmatrix}$$
(0.10)

Definition 0.16. (Directional derivatives). The directional derivative of **f** at **x** in

direction \vec{v} gives the rate of change of f as we step into direction \vec{v} . It is defined as

$$\lim_{h \to 0} \frac{\mathbf{f}(\mathbf{x} + h\vec{\mathbf{v}}) - \mathbf{f}(\mathbf{x})}{h} \tag{0.11}$$

Definition 0.17. (C^p function). A $\underline{C^p$ function on $U \subset \mathbb{R}^n$ is a function that is p times continuously differentiable: all of its partial derivatives up to order p exist and are continuous on U.

Definition 0.18. (Newton's method). Let \vec{f} be a differentiable map from U to \mathbb{R}^n , where U is an open subset of \mathbb{R}^n . Newton's method consists of starting with some guesses \mathbf{a}_0 for a sollution of $\vec{f}(\mathbf{x}) = \vec{0}$. Then linearize the equation at \mathbf{a}_0 : replace the increment to the function, $\vec{f}(\mathbf{x}) - \vec{f}(\mathbf{a}_0)$, by a linear function of the increment, $[\mathbf{D}\vec{f}(\mathbf{a}_0)](\mathbf{x} - \mathbf{a}_0)$. Now solve the corresponding linear equation:

$$\vec{f}(\mathbf{a}_0) + [\mathbf{D}\vec{f}(\mathbf{a}_0)](\mathbf{x} - \mathbf{a}_0) = \vec{0}$$
 (0.12)

$$a_0 = \text{initial guess}$$

$$a_{n+1} = a_n - [\overrightarrow{\mathbf{Df}}(a_n)]^{-1} \mathbf{f}(a_n)$$

$$x_{n+1} = x_n - \frac{\mathbf{f}(x)}{\mathbf{f}'(x_n)}$$

Definition 0.19. (Smooth manifold in \mathbb{R}^n). A subset $M \subset \mathbb{R}^n$ is a smooth k-dimensional manifold if locally it is the graph of a C^1 mapping \mathbf{f} expressing n-k variables as functions of other k variables.