

Electrostatics: Stationary charges with constant electric fields

Magnetostatics: Steady currents with constant magnetic fields

- Magnetic force and magnetic field
 - Pass current in parallel wires
 - Wires repel with antiparallel current
 - Wires attract with parallel current
 - Force is not electrostatic in nature (wires are charge neutral)
 - Magnetic force

- Magnetic force and magnetic field
 - Empirical rules for magnetic field and magnetic force
 - Straight current-carrying wire has magnetic field circling around it
 - Right-hand rule for field direction given current direction
 - Right-hand rule for force direction given current and field direction

- The Lorenz force law
 - Magnetic force on charge Q, moving with velocity \mathbf{v} , in magnetic field \mathbf{B}

$$\mathbf{F}_{\text{mag}} = Q(\mathbf{v} \times \mathbf{B})$$

- Given as an axiom without proof
- With both **E** and **B**, the full Lorenz force law $\mathbf{F} = Q[\mathbf{E} + (\mathbf{v} \times \mathbf{B})]$

$$\mathbf{F} = Q[\mathbf{E} + (\mathbf{v} \times \mathbf{B})]$$

- Consequences
 - Circular charge motion, or alike, when magnetic force acts as centripetal force
 - Magnetic forces do no work, B only deflects particle direction

$$dW_{\text{mag}} = \mathbf{F}_{\text{mag}} \cdot d\mathbf{l} = Q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{v} dt = 0$$

Example 5.2. Cycloid Motion. A more exotic trajectory occurs if we include a uniform electric field, at right angles to the magnetic one. Suppose, for instance, that **B** points in the *x*-direction, and **E** in the *z*-direction, as shown in Fig. 5.7. A positive charge is released from the origin; what path will it follow?

- Current in a wire: charge per time passing a given point
 - Unit: Amperes (A) = Coulomb/second
 - I = λv where λ: line charge density,
 v: velocity of movement

- o Positive charges moving at $\mathbf{v} = \text{negative charges moving at } -\mathbf{v}$
- Not meaningful to talk about current if it's just a single point charge moving (non-steady)
- \circ In many problems just write the magnitude $I = \lambda v$
 - Because direction is determined by the shape of wire
- o Magnetic force on a current-carrying wire $\mathbf{F}_{mag} = \int I(d\mathbf{l} \times \mathbf{B})$ $\mathbf{F}_{mag} = \int (\mathbf{v} \times \mathbf{B}) \, dq = \int (\mathbf{v} \times \mathbf{B}) \lambda \, dl = \int (\mathbf{I} \times \mathbf{B}) \, dl = \int I(d\mathbf{l} \times \mathbf{B})$

- Surface and volume distributions of current
 - O Surface current density $\mathbf{K} = \sigma \mathbf{v}$ (C/m² · m/s) (σ : surface charge density)
 - **K**: current per unit width (A/m)

$$d\mathbf{I} = \sigma \mathbf{v} \ dl_{\perp}$$
 \Longrightarrow $\mathbf{K} \equiv \frac{d\mathbf{I}}{dl_{\perp}}$ (l_{\perp} : cross-sectional line segment perpendicular to \mathbf{v})

Magnetic force

$$\mathbf{F}_{\text{mag}} = \int (\mathbf{v} \times \mathbf{B}) \, dq = \int (\mathbf{v} \times \mathbf{B}) \sigma \, da = \int (\mathbf{K} \times \mathbf{B}) \, da$$

* B experiences discontinuity across a current-carrying surface

- Surface and volume distributions of current
 - o Volume current density $\mathbf{J} = \rho \mathbf{v}$ (C/m³ · m/s) (ρ : volume charge density)
 - **J**: current per unit area (A/m²)

$$d\mathbf{I} = \rho \mathbf{v} da_{\perp}$$
 $d\mathbf{I} = \mathbf{J} \cdot d\mathbf{a} = \rho \mathbf{v} \cdot d\mathbf{a}$
 $\mathbf{J} \equiv \frac{d\mathbf{I}}{da_{\perp}}$
 $(a_{\perp}: \text{cross-sectional area segment perpendicular to } \mathbf{v})$

Magnetic force

$$\mathbf{F}_{\text{mag}} = \int (\mathbf{v} \times \mathbf{B}) \, dq = \int (\mathbf{v} \times \mathbf{B}) \rho \, d\tau = \int (\mathbf{J} \times \mathbf{B}) \, d\tau$$

o Ohm's law $\mathbf{J} = \sigma_c \mathbf{E}$ (σ_c : electrical conductivity)

- Surface and volume distributions of current
 - Continuity equation for volume current density
 - Current crossing a surface S: $I = \int_{S} J \, da_{\perp} = \int_{S} \mathbf{J} \cdot d\mathbf{a}$
 - Current crossing boundary of a volume \mathcal{V} :

$$\oint_{\mathcal{S}} \mathbf{J} \cdot d\mathbf{a} = \int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{J}) \, d\tau$$

which must equal to the change of net charge in the volume

$$\int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{J}) \, d\tau = -\frac{d}{dt} \int_{\mathcal{V}} \rho \, d\tau = -\int_{\mathcal{V}} \left(\frac{\partial \rho}{\partial t} \right) \, d\tau$$

$$\mathbf{\nabla \cdot J} = -\frac{\partial \rho}{\partial t}$$

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t} \quad \text{for magnetostatics} \quad \frac{\partial \rho}{\partial t} = 0 \quad \frac{\partial \mathbf{J}}{\partial t} = \mathbf{0} \quad \nabla \cdot \mathbf{J} = 0$$

$$\frac{\partial \rho}{\partial t} = 0$$

$$\frac{\partial \mathbf{J}}{\partial t} = \mathbf{0}$$

$$\nabla \cdot \mathbf{J} = 0$$

The Biot-Savart law

Magnetic field generated by a steady current

• Line current
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times \hat{\mathbf{i}}}{r^2} dl' = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l}' \times \hat{\mathbf{i}}}{r^2}$$

- Unit of B: Tesla (T) = N/(A⋅m)
- Permeability $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$
- Separation vector r = r r'

• Surface current
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{r}') \times \hat{\mathbf{k}}}{r^2} da'$$

o Volume current
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times \hat{\mathbf{i}}}{r^2} d\tau'$$

- Expressions for surface and volume currents not proved
- The law cannot be used to calculate field generated by discrete moving charges

* * in textbook is typed as *

The Biot-Savart law

Application of Biot-Savart law

Example 5.5. Find the magnetic field a distance s from a long straight wire carrying a steady current I (Fig. 5.18).

$$\mathbf{B} = \frac{\mu_0 I}{2\pi s} \,\hat{\boldsymbol{\phi}}$$

Curl of magnetic field

- Derivation of curl from Stokes theorem
 - Loop integral of **B** around a straight-line current

$$\oint \mathbf{B} \cdot d\mathbf{l} = \oint \frac{\mu_0 I}{2\pi s} dl = \frac{\mu_0 I}{2\pi s} \oint dl = \mu_0 I$$

Result still holds if path is noncircular

$$d\mathbf{l} = ds\,\hat{\mathbf{s}} + \underline{s\,d\phi\,\hat{\boldsymbol{\phi}}} + dz\,\hat{\mathbf{z}} \qquad \mathbf{B} = \frac{\mu_0 I}{2\pi s}\,\hat{\boldsymbol{\phi}}$$

Loop integral of **B** around any current distribution

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}} \qquad (I_{\text{enc}} = \int \mathbf{J} \cdot d\mathbf{a} \text{ total current enclosed by the path})$$

Apply Stokes theorem

$$\oint \mathbf{B} \cdot d\mathbf{l} = \int (\mathbf{\nabla} \times \mathbf{B}) \cdot d\mathbf{a} = \mu_0 \int \mathbf{J} \cdot d\mathbf{a}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

Curl of magnetic field

- Derivation of curl from Biot-Savart law
 - A much more formal derivation than previous slide

$$\nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} \int \nabla \times \left(\mathbf{J} \times \frac{\hat{\mathbf{i}}}{2} \right) \frac{d\tau'}{\mathbf{J}}$$

$$\mathbf{B}(\mathbf{r}) \qquad \nabla_{\mathbf{r}} \quad \mathbf{J}(\mathbf{r}') \qquad \mathbf{r} = \mathbf{r} - \mathbf{r}' \qquad dx'dy'dz'$$

Product rule
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$

$$\nabla \times \left(\mathbf{J} \times \frac{\hat{\boldsymbol{\imath}}}{\imath^2} \right) = \mathbf{J} \left(\nabla \cdot \frac{\hat{\boldsymbol{\imath}}}{\imath^2} \right) - \underline{(\mathbf{J} \cdot \nabla) \frac{\hat{\boldsymbol{\imath}}}{\imath^2}}$$

$$\nabla \cdot \left(\frac{\hat{\mathbf{i}}}{n^2}\right) = 4\pi \delta^3(\mathbf{i}), \text{ and second term integrates to 0 (textbook p.232)}$$

$$\nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} \int \mathbf{J}(\mathbf{r}') 4\pi \delta^3(\mathbf{r} - \mathbf{r}') d\tau' = \mu_0 \mathbf{J}(\mathbf{r})$$

Divergence of magnetic field

Derivation of divergence from Biot-Savart law

$$\begin{array}{c} \bullet \quad \nabla \cdot \mathbf{B} = \frac{\mu_0}{4\pi} \int \nabla \cdot \left(\mathbf{J} \times \frac{\hat{\mathbf{i}}}{\imath^2} \right) \, d\tau' \\ \\ \downarrow \quad \text{Product rule} \quad \nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}) \\ \\ \nabla \cdot \left(\mathbf{J} \times \frac{\hat{\mathbf{i}}}{\imath^2} \right) = \frac{\hat{\mathbf{i}}}{\imath^2} \cdot (\nabla \times \mathbf{J}) - \mathbf{J} \cdot \left(\nabla \times \frac{\hat{\mathbf{i}}}{\imath^2} \right) \\ \\ \downarrow \quad \nabla_{\mathbf{r}} \times \mathbf{J}(\mathbf{r}') = 0, \text{ and } \quad \nabla \times \frac{\hat{\mathbf{i}}}{\imath^2} = 0 \quad \text{(Remember } \nabla \times \mathbf{E} = \mathbf{0} \text{)} \\ \\ \hline \nabla \cdot \mathbf{B} = 0 \quad \text{Magnetic fields are divergence-free (no magnetic "free charge")} \\ \end{array}$$

Magnetic monopoles? not reproduced

First Results from a Superconductive Detector for Moving Magnetic Monopoles

Blas Cabrera Phys. Rev. Lett. **48**, 1378 – Published 17 May 1982

Ampère's law

Electrostatics	Magnetostatics
Coulomb's law	Biot-Savart law
Gauss's law $\mathbf{\nabla \cdot E} = ho/arepsilon_0, \oint \mathbf{E} \cdot d\mathbf{a} = Q_{\mathrm{enc}}/arepsilon_0$	Ampère's law $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}, \oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\mathrm{enc}}$
Gaussian surface	Amperian loop

- Use of Ampère's law to calculate magnetic field
 - Ampère's law in integral form
 - Symmetry arguments
 - Translation symmetry
 - Rotational symmetry
 - Mirror symmetry
 Inversion symmetry
 Be careful to use when transforming B: need to flip sign
 - B flips sign if I flips sign (time-reversal symmetry)

Symmetry of polar vectors and axial vectors

- Polar vectors and axial vectors
 - Polar vectors: E, P, D, J, I
 - Usually vectors associated with electric fields
 - Axial vectors: B, M, H
 - Usually vectors associated with magnetic fields
- Mirror operation

- Polar vectors: every operation as usual
- Axial vectors: Additional sign flip for mirror and inversion operations, other operations as usual

Ampère's law

Example 5.8. Find the magnetic field of an infinite uniform surface current $\mathbf{K} = K \hat{\mathbf{x}}$, flowing over the xy plane (Fig. 5.33).

Example 5.9. Find the magnetic field of a very long solenoid, consisting of n closely wound turns per unit length on a cylinder of radius R, each carrying a steady current I (Fig. 5.34).

Ampère's law

Example 5.10. A toroidal coil consists of a circular ring, or "donut," around which a long wire is wrapped (Fig. 5.38). The winding is uniform and tight enough so that each turn can be considered a plane closed loop.

Magnetic vector potential

Vector potential A

$$\circ \quad \mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$$

- Exploiting the property $\nabla \cdot \mathbf{B} = 0$ (divergence of curl vanishes)
- $\nabla \cdot \mathbf{A} = 0$
 - Chosen to be so (like choosing reference point for electric potential) If original A_0 is not, can define $A = A_0 + \nabla \lambda$ without varying **B**

$$\nabla \cdot \mathbf{A} = \nabla \cdot \mathbf{A}_0 + \nabla^2 \lambda$$

Can choose $\nabla^2 \lambda = -\nabla \cdot \mathbf{A}_0$

- $\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$
 - Use the choice above, and apply Ampère's law

$$\nabla \times \mathbf{B} = \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \mu_0 \mathbf{J}$$

Magnetic vector potential

- Calculating vector potential from current
 - $\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$ Poisson's equation, if $\mathbf{J} \to 0$ at infinity,

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\imath} \, d\tau' \qquad \text{(A is a polar vector)}$$

- Analogous to solution $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{\hbar} d\tau'$ to $\nabla^2 V = -\frac{\rho}{\epsilon_0}$

Line current
$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{\imath} dl' = \frac{\mu_0 I}{4\pi} \int \frac{1}{\imath} d\mathbf{I}'$$

o Surface current
$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}}{\imath} da'$$

- Not so much simplification (vector **A** representing vector **B**) but equation is easier to use than the Biot-Savart law
 - No need to integrate unit vector r

*
$$\nabla^2 \mathbf{A} = (\nabla^2 A_x) \hat{\mathbf{x}} + (\nabla^2 A_y) \hat{\mathbf{y}} + (\nabla^2 A_z) \hat{\mathbf{z}}$$

Magnetic vector potential

Calculating vector potential from magnetic field

$$\oint \mathbf{A} \cdot d\mathbf{l} = \int (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \int \mathbf{B} \cdot d\mathbf{a} = \Phi$$
where Φ is the magnetic flux

- Can calculate A using equation above plus symmetry argument
- Generally A mimics the direction of current

Example 5.12. Find the vector potential of an infinite solenoid with n turns per unit length, radius R, and current I.

- o Check $\nabla \times \mathbf{A} = \mathbf{B}$
- o Check $\nabla \cdot \mathbf{A} = 0$

Current, magnetic field, and vector potential

Differential equations need boundary conditions to solve

Boundary conditions

- Boundary conditions of B across a 2D current surface
 - Normal component of **B** Thin pillbox with thickness $\varepsilon \to 0$

$$\oint \mathbf{B} \cdot d\mathbf{a} = 0$$

Tangential component of B that is perpendicular to current

Thin Amperian loop

$$\oint \mathbf{B} \cdot d\mathbf{l} = \left(B_{\text{above}}^{\parallel} - B_{\text{below}}^{\parallel} \right) l$$

$$= \mu_0 I_{\text{enc}} = \mu_0 K l$$

o Summarizing above $\mathbf{B}_{above} - \mathbf{B}_{below} = \mu_0(\mathbf{K} \times \mathbf{\hat{n}})$

Boundary conditions

- Boundary conditions of A across a 2D current surface
 - \circ Vector potential **A** is always continuous $\mathbf{A}_{above} = \mathbf{A}_{below}$

$$A_{above} = A_{below}$$

Normal component of A

 $\nabla \cdot \mathbf{A} = 0$ and select a thin pillbox

$$A_{\text{above}}^{\perp} = A_{\text{below}}^{\perp}$$

Tangential component of A

 $\nabla \times \mathbf{A} = \mathbf{B}$ and select a thin loop to integrate

$$\oint \mathbf{A} \cdot d\mathbf{l} = \int \mathbf{B} \cdot d\mathbf{a} = \Phi \text{ tends to zero when loop is thin}$$

$$A_{\text{above}}^{\parallel} = A_{\text{below}}^{\parallel}$$

Derivative of A is discontinuous

$$\frac{\partial \mathbf{A}_{\text{above}}}{\partial n} - \frac{\partial \mathbf{A}_{\text{below}}}{\partial n} = -\mu_0 \mathbf{K}$$

Multipole expansion of vector potential

Goal: to expand A in power series of 1/r

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint \frac{1}{r} d\mathbf{l}'$$

$$\frac{1}{r} = \frac{1}{\sqrt{r^2 + (r')^2 - 2rr'\cos\alpha}} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos\alpha)$$
(From electrostatic multipole expansion)

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint (r')^n P_n(\cos \alpha) \, d\mathbf{l}'$$

$$= \frac{\mu_0 I}{4\pi} \left[\frac{1}{r} \oint d\mathbf{l}' + \frac{1}{r^2} \oint r' \cos \alpha \, d\mathbf{l}' + \frac{1}{r^3} \oint (r')^2 \left(\frac{3}{2} \cos^2 \alpha - \frac{1}{2} \right) \, d\mathbf{l}' + \cdots \right]$$
Quadrupole

Multipole expansion of vector potential

- Magnetic monopole and magnetic dipole
 - Magnetic monopole
 - Always zero, because $\oint d\mathbf{l}' = \mathbf{0}$
 - Also because $\nabla \cdot \mathbf{B} = 0$

Magnetic dipole

$$\mathbf{A}_{\text{dip}}(\mathbf{r}) = \frac{\mu_0 I}{4\pi r^2} \oint r' \cos \alpha \, d\mathbf{l}' = \frac{\mu_0 I}{4\pi r^2} \oint (\hat{\mathbf{r}} \cdot \mathbf{r}') \, d\mathbf{l}'$$

$$\oint (\hat{\mathbf{r}} \cdot \mathbf{r}') \, d\mathbf{l}' = -\hat{\mathbf{r}} \times \int d\mathbf{a}' \quad \text{(proved by a textbook problem)}$$

$$\mathbf{A}_{\rm dip}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$$

Magnetic dipole moment
$$\mathbf{m} \equiv I \int d\mathbf{a} = I\mathbf{a}$$

$$\mathbf{m} \equiv I \int d\mathbf{a} = I\mathbf{a}$$

Multipole expansion of vector potential

Pure dipole vs physical dipole

Pure dipole

$$\mathbf{A}_{\rm dip}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$$

Assumes $r \gg \text{loop radius}$ $\mathbf{m} = I\mathbf{a}$ but take $I \to \infty$, $a \to 0$

Similar to pure electric dipole

Physical dipole

Deviations appear when closing up onto the dipole

Magnetic fields in matter

Magnetic materials

- Practically, all materials have magnetic response
 - o Orbiting electrons around nuclei as magnetic dipoles

- Magnetization: $\mathbf{M} = \frac{1}{V} \sum_{i} \mathbf{m}_{i}$
 - Magnetic dipole moment per unit volume
- Three types of response of matter to magnetic field
 - Paramagnets: magnetization M parallel to applied B
 - Diamagnets: magnetization M opposite to applied B
 - Ferromagnets: finite magnetization M even without B

Magnetic dipoles responding to field

- Paramagnetic response
 - Torque in a uniform field
 - Suppose a rectangle current loop with side lengths a and b

$$\mathbf{N} = aF \sin \theta \, \hat{\mathbf{x}} \qquad \qquad \mathbf{N} = IabB \sin \theta \, \hat{\mathbf{x}} = mB \sin \theta \, \hat{\mathbf{x}}$$

$$\mathbf{N} = \mathbf{m} \times \mathbf{B}$$

Torque tends to align m parallel to B

Magnetic dipoles responding to field

- Diamagnetic response
 - Modification to an atomic orbit

$$I = \frac{-e}{T} = -\frac{ev}{2\pi R} \quad \xrightarrow{T = 2\pi R/v} \quad \mathbf{m} = -\frac{1}{2}evR\,\hat{\mathbf{z}}$$
 Orbit period

Velocity without and with **B**, balancing Coulomb and centripetal forces

without **B**:
$$\frac{1}{4\pi\epsilon_0} \frac{e^2}{R^2} = m_e \frac{v^2}{R}$$

with **B**:
$$\frac{1}{4\pi\epsilon_0} \frac{e^2}{R^2} + e\bar{v}B = m_e \frac{\bar{v}^2}{R}$$
 \bar{v} : electron velocity with **B** m_e : electron mass

v: electron velocity

$$e\bar{v}B = \frac{m_e}{R}(\bar{v}^2 - v^2) = \frac{m_e}{R}(\bar{v} + v)(\bar{v} - v)$$

$$\Delta v = \bar{v} - v = \frac{eRB}{2m_e} \quad \text{for small } \Delta v$$

$$\Delta \mathbf{m} = -\frac{1}{2}e(\Delta v)R\,\hat{\mathbf{z}} = -\frac{e^2R^2}{4m_e}\mathbf{B}$$

Change in dipole moment works against **B**

Forces on paramagnets and diamagnets

General formula for small dipole in nonuniform field

$$\mathbf{F} = \nabla(\mathbf{m} \cdot \mathbf{B})$$

- \circ For paramagnets $m \parallel B$
 - Force directs toward more intense field regions
 - Paramagnets are attracted to magnets

- For diamagnets $m \parallel -B$
 - Force directs toward less intense field regions
 - Diamagnets are repelled by magnets

Levitating frog

(Ig Nobel award 2000)

Field of magnetized objects

- **Bound currents**
 - Vector potential of a magnetized object (neglecting the cause)

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{M}(\mathbf{r}') \times \hat{\mathbf{k}}}{\imath^2} d\tau'$$

$$= \frac{\mu_0}{4\pi} \int \left[\mathbf{M}(\mathbf{r}') \times \left(\nabla' \frac{1}{\imath} \right) \right] d\tau'$$

$$\downarrow \text{ Integrate by parts}$$

$$= \frac{\mu_0}{4\pi} \left\{ \int \frac{1}{\imath} [\nabla' \times \mathbf{M}(\mathbf{r}')] d\tau' - \int \nabla' \times \left[\frac{\mathbf{M}(\mathbf{r}')}{\imath} \right] d\tau' \right\}$$

$$= \frac{\mu_0}{4\pi} \int \frac{1}{\imath} [\nabla' \times \mathbf{M}(\mathbf{r}')] d\tau' + \frac{\mu_0}{4\pi} \oint \frac{1}{\imath} [\mathbf{M}(\mathbf{r}') \times d\mathbf{a}'] \quad \text{C3.Curldtau}$$

$$= \frac{\mu_0}{4\pi} \int_{\mathcal{V}} \frac{\mathbf{J}_b(\mathbf{r}')}{\imath} d\tau' + \frac{\mu_0}{4\pi} \oint_{\mathcal{S}} \frac{\mathbf{K}_b(\mathbf{r}')}{\imath} da' \qquad \qquad \text{* with } \mathbf{J}_b = \nabla \times \mathbf{M}$$

$$\mathbf{K}_b = \mathbf{M} \times \hat{\mathbf{n}}$$

Field of magnetized objects

Bound currents

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\mathcal{V}} \frac{\mathbf{J}_b(\mathbf{r}')}{\imath} \, d\tau' + \frac{\mu_0}{4\pi} \oint_{\mathcal{S}} \frac{\mathbf{K}_b(\mathbf{r}')}{\imath} \, da'$$

- \circ Density of bound currents $\left\{ egin{array}{ll} & ext{surface:} & extbf{K}_b = extbf{M} imes \hat{ extbf{n}} \\ ext{volume:} & extbf{J}_b = extbf{\nabla} imes extbf{M} \end{array}
 ight.
 ight. \qquad \text{*check $\nabla \cdot extbf{J}_b = 0$}$

Physical picture of bound currents

Surface bound current (suppose uniform M)

Volume bound current

Field of magnetized objects

Bound currents

Example 6.1. Find the magnetic field of a uniformly magnetized sphere.

- o Field inside the sphere $\mathbf{B} = \frac{2}{3}\mu_0\mathbf{M}$
 - Uniform field
 - M induces B that is parallel to it, while
 P induces E that is antiparallel

$$\mathbf{m} = \frac{4}{3}\pi R^3 \mathbf{M}$$

Auxiliary field

- Add the cause and the effect of magnetization
 - Total magnetic field

$$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J} = \mathbf{J}_f + \mathbf{J}_b = \mathbf{J}_f + (\nabla \times \mathbf{M})$$

- B: total magnetic field
- J: total current density
- J_b: bound current density, due to magnetization
- J_f : free current density that we control, not a result of magnetization

$$\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} - \mathbf{M}\right) = \mathbf{J}_f$$

o The auxiliary field $\mathbf{H} \equiv \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$

$$\nabla \times \mathbf{H} = \mathbf{J}_f$$

Ampère's law for auxiliary field

$$\oint \mathbf{H} \cdot d\mathbf{l} = I_{f_{\text{enc}}}$$

Enclosed total free current

Auxiliary field

Application of auxiliary field

Example 6.2. A long copper rod of radius R carries a uniformly distributed (free) current I (Fig. 6.19). Find \mathbf{H} inside and outside the rod.

o Inside

$$H(2\pi s) = I_{f_{\text{enc}}} = I \frac{\pi s^2}{\pi R^2}$$

$$\implies \mathbf{H} = \frac{I}{2\pi R^2} s \,\hat{\boldsymbol{\phi}}$$

Outside

$$\implies \mathbf{H} = \frac{I}{2\pi s} \,\hat{\boldsymbol{\phi}}$$

Auxiliary field

- H = 0 without applying any free current?
 - $\circ \quad \text{Looks like so because} \quad \oint \mathbf{H} \cdot d\mathbf{l} = I_{f_{\text{enc}}}$

- Consider a short cylindrical magnet
- H would be zero everywhere
- Then $\mathbf{B} \neq \mathbf{0}$ inside magnet, $\mathbf{B} = \mathbf{0}$ outside magnet
- Obviously wrong
- \circ H can be finite without any J_F
 - Because $\nabla \cdot \mathbf{H} = \nabla \cdot \left(\frac{1}{\mu_0} \mathbf{B} \mathbf{M}\right) = -\nabla \cdot \mathbf{M} \neq \mathbf{0}$
 - $\nabla \cdot \mathbf{M} \neq \mathbf{0}$ at the top and bottom surfaces of the magnet

H versus B, D versus E

- A long history of confusion
 - Whether we shall call H or B as the magnetic field
 - Some convention calls H the magnetic field, and B as the magnetic flux density
 - Our textbook takes the stance that H should be "auxiliary"
- Reason for such confusion
 - H is a lot more frequently used than B as H is given by free current, something we can control, while B is material dependent
 - Helmholtz coil magnetizing a specimen
 - E is a lot more frequently used than D as D is given by free charge, which we rarely control, while E is determined by voltage difference (over distance), which is what we control
 - Charging up of a parallel plate capacitor

Linear magnetic media

- Linear magnetic media

 $\circ \quad \mathbf{M} = \chi_m \mathbf{H} \qquad (\chi_m: \text{magnetic susceptibility})$

- Diamagnetic susceptibility on the order of 10⁻⁶
- \circ $\mathbf{B} = \mu \mathbf{H}$ $(\mu = \mu_0 (1 + \chi_m))$: permeability)

Example 6.3. An infinite solenoid (*n* turns per unit length, current *I*) is filled with linear material of susceptibility χ_m . Find the magnetic field inside the solenoid.

$$\oint \mathbf{H} \cdot d\mathbf{l} = I_{f_{\text{enc}}} \longrightarrow \mathbf{H} = nI \,\hat{\mathbf{z}}$$

Enhancement of field if paramagnetic!

Boundary conditions

- Boundary conditions reexamined
 - Earlier findings still hold, but J needs to include free and bound currents

$$\begin{cases} B_{\text{above}}^{\perp} = B_{\text{below}}^{\perp} \\ B_{\text{above}}^{\parallel} - B_{\text{below}}^{\parallel} = \mu_0 (\mathbf{K} \times \hat{\mathbf{n}}) \end{cases}$$

Easier to use the boundary conditions of H

Surface free charge density

$$\begin{cases}
\nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{M} \\
\nabla \times \mathbf{H} = \mathbf{J}_f
\end{cases}
\qquad
\begin{cases}
\mathbf{H}_{\text{above}}^{\parallel} - \mathbf{H}_{\text{below}}^{\parallel} = \mathbf{K}_f \times \hat{\mathbf{n}} \\
H_{\text{above}}^{\perp} - H_{\text{below}}^{\perp} = -(M_{\text{above}}^{\perp} - M_{\text{below}}^{\perp})
\end{cases}$$

Nonlinear magnetic media

- Ferromagnets: M ≠ 0 without applying any field
 - o Obvious violation of the linear relation $\mathbf{M} = \chi_m \mathbf{H}$
 - Represents a quantum phenomena
 - Exchange interaction: $U = -2J \sum_{p=1}^{N} S_p \cdot S_{p+1} \ (J > 0)$

