Capítulo 6d: Oblivious Linear Evaluation

Neste capítulo vamos procurar apresentar algumas construções essenciais às provas de conhecimento zero necessárias à construção de esquemas de autenticação.

Links

- +Capítulo 6: Provas de Conhecimento e Assinatura Digital
- +Capítulo 6a: Segurança de Esquemas de Assinatura Digital
- +Capítulo 6b: Circuitos Algébricos e Aritméticos.
- +Capítulo 6c: Computação Cooperativa
- +Capítulo 6e: "Garbled Circuits"

Oblivious Transfer (de novo)

Funcionalidade $\binom{n}{\kappa}$

Vimos no +Capítulo 2b: Cifras Assimétricas uma construção do protocolo "Oblivious Transfer" genérico da forma $\binom{n}{\kappa}$ -OT onde intervêm dois agentes, o **sender** e o **receiver**. Recordemos a funcionalidade básica:

- o O agente **sender** disponibiliza n mensagens m_1, m_2, \cdots, m_n para serem transferidas
- \circ O gente **receiver** escolhe um conjunto I de κ das mensagens e recebe condidencialmente do 1º agente, κ todos os m_i com $i \in I$; no final da transferência
 - O agente sender não identifica as κ mensagens transferidas mas tem a certeza que não mais do que κ das mensagens m_i foram transmitidas,
 - lacksquare O agente **receiver** não conhece qualquer m_i se $i
 ot\in I$.

Como vimos na referência acima, este protocolo genérico é implementado usando técnicas assimétricas o que normalmente exige representações e computações usando estruturas algébricas complexas. Quando integrado em outras técnicas, que iremos referir em seguida, estas implementações transformam-se na componente computacionalmente mais complexa do protocolo que muito provavelmente será incomportável em termos de recursos.

Por isso é frequente usar formas particulares do protocolo com implementações que são muito mais eficientes das que são referidas no capítulo 2b. Para isso destacamos alguns casos particulares, nomeadamente $\binom{2}{1}$ e o caso mais geral $\binom{n}{n-1}$, que têm um tipo de implementação que pode ser muito eficiente: a "Learning Parity with Noise"

Funcionalidade $\binom{2}{1}$ OT

Para uma sessão identificada com sid

Choose(sid, b)

- i. O sender envia um "obliviousness criterion" (OC) para o receiver;
- ii. O **receiver** escolhe um bit b, regista na sua memória esse bit e manda as chaves públicas apropridas para o **sender**.
- iii. Se o OC é satisfeito o sender aceita a informação recebida como representantes da escolha do bit b; regista-as na sua memória para ser usada em futuras transferências. Se o OC não é satisfeito, então aborta todo o protocolo.

Transfer(sid, m_0, m_1)

- i. se a memória do **sender** não contém nenhum registo de escolha termina o protocolo em falha e bloqueia quaisquer funcionalidades futuras.
- ii. Se existir tal registo com a informação pública que dispõe (chaves públicas) envia m_b para o **receiver** .

"Learning Parity with Noise" (LPN)

Baseado nos artigos Statistically "Sender-Private OT from LPN and Derandomization" e "Zero-Knowledge Proofs from Learning Parity with Noise" acessíveis a partir daqui.

Representa-se por $\mathcal{B}(\epsilon)$, sendo ϵ um racional positivo, o gerador pseudo-aleatório de bits, dito *gerador de Bernoulli* , visto como elementos $b\in\mathbb{F}_2$, tal que

$$\mathbb{P}[\,b = 1\,|\,b \leftarrow \mathcal{B}(\epsilon)\,] \,=\, \epsilon$$

O gerador $\mathcal{B}\equiv\mathbb{F}_2$ é o gerador sem qualquer desvio que pode ser implementado por um XOF a partir uma qualquer "seed" apropriada. Para um parâmetro de segurança λ representamos por \mathcal{B}^λ o gerador de vetores $a\in\mathbb{F}_2^\lambda$, e construído como λ cópias concorrentes de \mathcal{B} .

A forma mais direta de implementar um gerador de Bernoulli $\mathcal{B}(\epsilon)$ com a precisão de n bits, é o algoritmo.

 $\mathcal{B}(\epsilon) \ \equiv \ \vartheta \ w \leftarrow \{0,1\}^n \ \text{. if } \ \sum_{i=1}^n w_i \ 2^{-i} \le \varepsilon \ \text{then } 1 \ \text{else } 0$ Aqui $\ \hat{w} \equiv \sum_{i=1}^n \ 2^{-i} \ w_i \ \ \text{\'e}$ o designado $\ racional \ de \ Lebesgue \ determinado pela string de bits <math>\ w$. Em muitos CPU's , $\ \hat{w}$ pode ser calculado em tempo constante ; por isso, este é um processo usual para gerar uniformemente racionais no intervalo $\ [0\,,\,1].$

O gerador $\mathsf{LPN}_{\lambda,\epsilon}(\mathsf{s})$, para um segredo $\mathsf{s} \leftarrow \mathcal{B}^\lambda$, usa parâmetros λ e ϵ definindose do seguinte modo

$$\mathsf{LPN}_{\lambda,\epsilon}(\mathsf{s}) \ \equiv \ \ \vartheta\, a \leftarrow \mathcal{B}^\lambda$$
 , $e \leftarrow \mathcal{B}(arepsilon)$, $\vartheta\, t \leftarrow \mathsf{s} \cdot a + e$, $\langle\, a,t\,
angle$

Aqui s $\cdot a \equiv \sum_i \mathsf{s}_i imes a_i$ denota o produto interno dos dois vetores.

Para $\mathbf{s} \neq 0$ e $\varepsilon > 0$ o gerador $\mathsf{LPN}_{\lambda,\varepsilon}(\mathbf{s})$ é indistinguível do gerador pseudo-aleatório $\mathcal{B}^{\lambda+1}$.

Adicionalmente, é uma crença, que escolhendo parâmetros λ, ϵ apropriados, não existe nenhum algoritmo \mathcal{A} , probabilístico e polinomial <u>no modelo quântico</u> que, usando $\mathsf{LPN}_{\lambda,\epsilon}(\mathsf{s})$ como oráculo, consiga determinar o segredo s .

$\binom{2}{1}$ -OT em LPN

Numa implementação de $\binom{2}{1}$ -OT o oráculo LPN vai ser implementado por um XOF que recebe como argumento uma "seed" α e um comprimento ℓ .

O output dessa função é uma sequência de pares $\ \{\langle\, a_i,u_i\,
angle\}_{i=1}^\ell$ em que $\,a_i\in\mathbb{F}_2^\lambda$ e $u_i\in\mathbb{F}_2$.

Pode-se empacotar a sequência de pares $\ \{\langle\, a_i,u_i\,
angle\}_{i=1}^\ell$ numa matriz $\mathsf{A}\equiv\{a_i\}_{i=1}^\ell\in\mathbb{F}_2^{\ell imes\lambda}$, cujas linhas são os vetores a_i , e num vector $\mathsf{u}\equiv\{u_i\}_{i=1}^\ell\in\mathbb{F}_2^\ell$ cujas componentes são os bits u_i .

No que se segue $\, ar{b} \,$ denota a negação do bit $\, b \, ; \,$ isto é $\, ar{b} + b = 1 \, . \,$

$\mathsf{Choose}(b)$

- a. O **sender** escolhe o par (α,ℓ) e a função XOF e envia essa informação para o **receiver**; esta informação determina completamente a sequência $\{\langle\, a_i,u_i\,\rangle\}_{i=1}^\ell$ que passa a formar o "oblivious criterion"; ambos os agentes podem construir estes elementos.
- b. o **receive**r gera o segredo $\mathbf{s} \leftarrow \mathcal{B}^{\lambda}$ e os diversos bits de "ruído" $\{e_i \leftarrow \mathcal{B}(\epsilon)\}_{i=1}^{\ell}$, os "tags" LPN $\{t_i \leftarrow a_i \cdot \mathbf{s} + e_i\}_{i=1}^{\ell}$. Regista esta informação na sua memória.

Calcula o par de chaves públicas

$$\{\,\langle\, p_i^0 \leftarrow t_i + b \cdot u_i \,\,\,,\,\,\, p_i^1 \leftarrow t_i + ar{b} \cdot u_i \,
angle\,\}_{i=1}^\ell$$

e envia-as para o sender.

c . o **sender** recolhe as chaves públicas e verifica a igualdade $\ p_i^0+p_i^1=u_i.$ Se, para algum $\ i\in\{1,\cdots,\ell\}$ a igualdade não se verifica então termina em falha.

Se se verificar a igualdade, para todo i , então regista este par de chaves na sua memória para transferência futura.

Transfer (m_0, m_1)

a. O **sender** conhece as mensagens $m_0,m_1\in\mathbb{F}_2$. Para as cifrar gera aleatoriamente uma sequência de bits $\{\,r_i\leftarrow\mathcal{B}\,\}_{i=0}^\ell$ com um peso de Hamming (número de bits 1) limitado a uma parâmetro $\,\delta$, e calcula

$$a \leftarrow \sum_i \, r_i \, a_i \quad , \quad c_0 \leftarrow m_0 + \sum_i \, r_i \, p_i^0 \qquad c_1 \leftarrow m_1 + \sum_i \, r_i \, p_i^1$$

O criptograma é o triplo $\langle a, c_0, c_1 \rangle$ que é enviado ao **receiver**.

b. O receiver conhece o segredo ${f s}$. Por isso pode calcular $a\cdot {f s}$.

Temos
$$a \cdot \mathsf{s} = \sum_i r_i (a_i \cdot \mathsf{s}) = \sum_i r_i \left(e_i + t_i \right) =$$

$$= (\sum_i \, r_i e_i) + \left\{ egin{array}{lll} \sum_i \, r_i \cdot (p_i^0 + b \cdot u_i) &=& c_0 + m_0 + b \cdot (\sum_i \, r_i u_i) \ \sum_i \, r_i \cdot (p_i^1 + ar{b} \cdot u_i) &=& c_1 + m_1 + ar{b} \cdot (\sum_i \, r_i u_i) \end{array}
ight.$$

Para simplificar a notação e a interpretação sejam

error
$$\equiv \sum_i r_i e_i$$
 , off $\equiv \sum_i r_i u_i$

Ambos valores são desconhecidos do **receiver** porque não conhece os r_i (apesar de conhecer tanto os e_i como os u_i). No entanto conhece duas equações

$$m_0 = c_0 + (a \cdot \mathsf{s}) + \mathsf{error} + b \cdot \mathsf{off}$$
 $m_1 = c_1 + (a \cdot \mathsf{s}) + \mathsf{error} + ar{b} \cdot \mathsf{off}$

Portanto se b=0 o **receiver** tem, a menos de error , $m_0\simeq c_0+(a\cdot {\sf s})$. Igualmente se for b=1 o **receiver** usa a 2ª equação para obter $m_1\simeq c_1+(a\cdot {\sf s})$.

Resta discutir qual é o efeito de error. Os e_i têm uma grande probabilidade de serem 0. Os r_i têm um número limitados de valores 1. Por isso, com grande probabilidade os produtos r_ie_i são nulos.

Pode acontecer, com baixa probabilidade, que seja $\sum_i r_i e_i = 1$.

Para corrigir esta possibilidade pode-se repetir a operação $\mathsf{Transfer}$ gerando um novo conjunto de valores $\{r_i\}$ e calculando de novo

$$m_b \leftarrow c_b + (a \cdot \mathsf{s})$$

Pode-se repetir este processo vária vezes, sempre com novos $\{r_i\}$; recolhese os várias resultados m_b e, no final, escolhe-se o valor que aparece mais vezes.

Paraa repetição, se à partida for definido que vão ser executadas t iterações nesta operação $\mathsf{Transfer}$, então gera-se todos os r_i para todas as repetições de uma só vez. Equivalentemente cada r_i é gerado não como um bit simples mas sim como um vetor de t bits (um por iteração). Como as gerações são independentes, podem ser executadas em paralelo: a j-ésima iteração usa a sequência $\{r_{i,j}\}_{i=1}^\ell$. O criptograma também é calculado em paralelo e cada componente em (a,c_0,c_1) adquire uma dimensão extra correspondente ao índice j=1..t de repetição; i.e. a passa a ser uma matriz $t\times\lambda$ e c_0,c_1 passam a ser vetores de dimensão t. O resultado $\vec{m_b}\leftarrow c_b+(a\cdot \mathsf{s})$ passa a ser um vetor também de dimensão t. O valor de $v\in\{0,1\}$ que ocorre em maioria no vector $\vec{m_b}$ será o valor final de m_b .

Mensagens arbitrárias

Um factor limitativo deste protocolo resulta de as mensagens transferidas terem apenas um bit. No entanto, para mensagens m_0, m_1 de comprimento arbitrário, o protocolo continua a ser usável; basta aplicá-lo individualmente a cada posição de bit em m_0, m_1 .

Por exemplo, se tivermos $m_0, m_1 \in \mathbb{F}_2^n$ (e.g se cada mensagem tiver n "bits") então

- a. O número de amostras $\{\langle a_{i,j},t_{i,j}\rangle\}_{i\in[\ell],j\in[n]}$ passará a ter $\ell\times n$ elementos. Cada segmento de ℓ pares é dedicado a uma posição na mensagem.
- b. Do mesmo modo tem-se $\{p_{i,j}^0,p_{i,j}^1,e_{i,j}\}_{i\in[\ell],j\in[n]}$ onde cada segmento de ℓ elementos está associada a uma posição $j\in[n]$
- c. Os u_i , r_i , c_0 , c_1 , b e \overline{b} deixam de ser bits e passam a ser vetores de n bits. Nomeadamente b_j determina a escolha feita para a posição j.

d. Para contrariar o efeito do error usa-se um ℓ suficientemente grande e repete-se todo o protocolo $3,5,7,\cdots$ vezes, selecionando para cada posição j o valor do bit m_j que ocorre mais vezes desde que tenha uma maioria significativa.

Nesta opção, uma vez que as mensagens têm vários "bits", é possível interpretá-las como inteiros num determinado intervalo $[-\delta,\delta-1]$. Para mensagens de n bits teremos $\delta \leq 2^{n-1}$.

Aqui é possível e desejável usar na geração de "noise" e, em alternativa ao gerador de Bernoulli $\mathcal{B}(\epsilon)$ apropriado apenas para bits, um gerador que produz inteiros segundo uma distribuição Gaussiana discreta de média 0 e um desvio padrão $\operatorname{sigma} = \alpha \, \delta$.

O parâmetro $~\alpha~$ é um racional positivo, tipicamente $~\alpha\sim0.1..0.3$, que serve para ajustar o equilíbrio entre a segurança e a eficiência do algoritmo.

Pode ver detalhes na seguinte página da documentação SageMath.

$$\binom{N}{N-1}$$
-OT em LPN

O protocolo $\binom{2}{1}\text{-OT}$ implementado em LPN pode ser generalizado para um protocolo $\binom{N}{N-1}\text{-OT}$

modificando as operações Choose e Transfer.

No que se segue, para todo $\,n>0$, representamos por $\,[n]\,$ o intervalo de inteiros $\,\{0..n-1\}$.

$\mathsf{Choose}(b)$

Neste protocolo $b \in [N]$ denota o índice da mensagem que vai ser excluída das transferências legítimas; o criptograma c_b não pode ser decifrado corretamente pelo **receiver** porque este agente não conhece uma chave privada que o permita.

O sender escolhe o par (α,ℓ) e a função XOF e envia essa informação para o receiver; esta informação determina completamente a sequência $\{\langle\, a_i,u_i\,\rangle\}_{i=1}^\ell$ que passa a formar o "oblivious criterion"; ambos os agentes podem construir estes elementos.

a. o **receive**r gera N segredos $\mathbf{s}_k \leftarrow \mathcal{B}^\lambda$, se $k \neq b$, e $\mathbf{s}_b \leftarrow \bot$. Para todo $k \in [N]$ e todo $i \in [\ell]$, calcula $t_{k,i}$ da seguinte forma $t_{i,k} \leftarrow \left\{ \begin{array}{ll} \vartheta \, e_{i,k} \leftarrow \mathcal{B}(\epsilon) & a_i \cdot \mathbf{s}_k + e_{i,k} \quad \text{se} \quad k \neq b \\ u_i - \sum_{j \neq b} t_{i,j} & \text{se} \quad k = b \end{array} \right.$

Regista esta informação na sua memória.

Construímos, para cada $i \in [\ell]$, um vetor em \mathcal{B}^N

$$\mathsf{t}_i \equiv \{t_{i,k} \mid k \in [N]\}$$

e envia-os para o sender como chaves públicas.

c. o $\textbf{sender}\ \ \text{recolhe}$ todas os vetores de chaves públicas t_i e verifca as igualdades

$$\sum_{k \in [N]} \, \mathsf{t}_{i,k} \; = \; u_i$$

Se, para algum $i \in [\ell]$ a igualdade não se verifica então termina em falha. Se se verificar a igualdade então regista todos os \mathbf{t}_i na sua memória para transferência futura.

 $\mathsf{Transfer}(m_0,m_1,\cdots,m_{N-1})$

a. O **sender** conhece as mensagens $m_k \in \mathbb{F}_2$, $k \in [N]$ e, para cada $i \in [\ell]$ as chaves públicas t_i .

Para as cifrar gera aleatoriamente uma sequência de bits $\{\,r_i\leftarrow\mathcal{B}\,\}_{i=0}^\ell$ com um peso de Hamming (número de bits 1) limitado a uma parâmetro $\,\delta$, e calcula

$$a \leftarrow \sum_i \, r_i \, a_i \quad , \quad c_k \leftarrow m_k + \sum_i \, r_i \cdot \mathsf{t}_{i,k} \quad ext{ para todos } k \in [N]$$
 O criptograma é o tuplo $\; \langle \, a \, , \, c_0 \, , \, \cdots \, , \, c_{N-1} \,
angle \;$ que é enviado ao **receiver**.

b. O **receiver** conhece os segredos \mathbf{s}_k para todo $k \in [N]$. Sabe que $\mathbf{s}_b = \bot$ e que para todo $k \neq b$ pode calcular $a \cdot \mathbf{s}_k$. Sabe também que se verifica, para todo $k \neq b$, a relação

$$m_k = c_k + (a \cdot \mathsf{s}_k) + \mathsf{error}_k$$

sendo ${\sf error}_k = \sum_i r_i \cdot e_{i,k}$ um valor desconhecido (porque o **receiver** não conhece os r_i) mas com elevada probabilidade de ser nulo.

Procedendo como no protocolo $\binom{2}{1}$ -OT , pode-se reforçar esta probabilidade, iterando ambas as operações t vezes; para isso cifra-se usando vetores $r_i \in \mathcal{B}^t$. As iterações são independentes e podem ser executadas em paralelo. A **sender** produz t criptogramas distintos, um por iteração. O **receiver** toma este conjunto de criptogramas e calcula, para cada um, um resultado

$$m_k \leftarrow c_k + (a \cdot s_k)$$
 para todo $k
eq b$

Toma-se como resultado final de m_{κ} , para cada $k \neq b$, o valor em maioria nas diferentes iterações; assim obtém-se, com elevada probabilidade, o valor da mensagem inicial.

Finalmente para mensagens $\{m_k\}_{k\in[N]}$ de comprimento arbitrário, tal como no caso, $\binom{2}{1}$ OT, usa-se o protocolo de mensagens binárias para cada posição nas mensagens.