WO 2005/054453 PCT/EP2004/013560 1/22

SEQUENCE LISTING

5	<110> BASF Aktiengesellschaft	
10	<120> 2-Methyl-6-solanylbenzoquinone methyltransferase as target for herbicides	
15	<130> 20030911	
	<160> 35	
20	<170> PatentIn version 3.1	
25	<210> 1	
	<211> 1355	
30	<212> DNA	
	<213> Nicotiana tabacum	
35	<220>	
	<221> CDS <222> (110)(1117)	
40	<223>	
45	<400> 1 ctttttttc cgcttctcct ccaaaatccc atcaaaattg ataagcttct cttctgaagc 6	0
	ttatcaaaac tatatgcagt aaaaaaaata acatcaaaaa tacatatcc atg gct tct 11 Met Ala Ser	.8
50	1	
55	tca ata cta agt gga gct gaa aat ttc aag att ctt agt ggt att tct 16 Ser Ile Leu Ser Gly Ala Glu Asn Phe Lys Ile Leu Ser Gly Ile Ser 5 10 15	6
	cca tca gaa tta cac att aag tgt ttt cct caa aag ggt ctt gta aat Pro Ser Glu Leu His Ile Lys Cys Phe Pro Gln Lys Gly Leu Val Asn 20 25 30 35	.4
60	tac tca aga att cca aat acc aaa tca aga act cta aga aca aaa tgc Tyr Ser Arg Ile Pro Asn Thr Lys Ser Arg Thr Leu Arg Thr Lys Cys 40 45 50	2

agt gta tca tct tca aga cca gct tca caa cca aga ttt ata caa cac

310

WO 2005/054453 PCT/EP2004/013560 2/22

									2/2/	<u>z</u>								
	Ser	Val	Ser	Ser 55	Ser	Arg	Pro	Ala	Ser 60	Gln	Pro	Arg	Phe	Ile 65	Gln	His		
5	aaa Lys	aaa Lys	gaa Glu 70	gca Ala	ttt Phe	tgg Trp	ttt Phe	tac Tyr 75	aga Arg	ttc Phe	tta Leu	tct Ser	ata Ile 80	gta Val	tat Tyr	Asp Asp	3!	58
10	cat His	gtt Val 85	ata Ile	aaț Asn	cca Pro	ggt Gly	cat His 90	tgg Trp	act Thr	gaa Glu	gat Asp	atg Met 95	aga Arg	gat Asp	gaa Glu	gca Ala	4	06
15	ctt Leu 100	gaa Glu	cca Pro	gct Ala	gaa Glu	tta Leu 105	aac Asn	agt Ser	aga Arg	caa Gln	ttg Leu 110	caa Gln	gtt Val	gtg Val	gat Asp	gtt Val 115	4:	54
	ggt Gly	ggt Gly	eja aaa	act Thr	gga Gly 120	ttt Phe	act Thr	act Thr	ctt Leu	ggc Gly 125	att Ile	gtg Val	aaa Lys	cat His	gtg Val 130	gat Asp	5	02
20	gct Ala	aag Lys	aat Asn	gtt Val 135	aca Thr	att Ile	att Ile	gat [.] Asp	caa Gln 140	tca Ser	cct Pro	cat His	caa Gln	ctt Leu 145	gcc Ala	aag Lys	5	50
25	gct Ala	aga Arg	gaa Glu 150	aag Lys	gaa Glu	cct Pro	ttg Leu	aaa Lys 155	gaa Glu	tgt Cys	aag Lys	ata Ile	ttg Leu 160	gaa Glu	gga Gly	gat Asp	5	98
30	gct Ala	gag Glu 165	gat Asp	ttg Leu	cct Pro	ttt Phe	cct Pro 170	act Thr	gat Asp	act Thr	ttt Phe	gat Asp 175	aga Arg	tat Tyr	gtt Val	tct Ser	6	46
35	gct Ala 180	gga Gly	agc Ser	att Ile	gag Glu	tat Tyr 185	tgg Trp	ccc Pro	gat Asp	cca Pro	cag Gln 190	cgc Arg	ggt Gly	atc Ile	aag Lys	gaa Glu 195	6	94
33	gca Ala	tac Tyr	cga Arg	gta Val	ctg Leu 200	acc Thr	ata Ile	ggt Gly	ggt Gly	gtt Val 205	Ala	tgc Cys	tta Leu	ata Ile	ggt Gly 210	cct Pro	7	42
40	gtg Val	tac Tyr	ccg Pro	acg Thr 215	ttt Phe	tgg Trp	cta Leu	tct Ser	cgt Arg 220	Phe	ttt Phe	gca Ala	gat Asp	atg Met 225	\mathtt{Trp}	atg Met	7	90
45	ctc Leu	ttt Phe	cca Pro 230	Lys	gaa Glu	gaa Glu	gaa Glu	tat Tyr 235	ata Ile	gaa Glu	tgg Trp	ttc Phe	aaa Lys 240	Lys	gct Ala	ggt Gly		38
50	ttc Phe	gct Ala 245	Gln	gtt Val	aaa Lys	ctc Leu	aag Lys 250	agg Arg	att Ile	ggc	cca Pro	aaa Lys 255	tgg Trp	tat Tyr	cgt Arg	ggt Gly	8	886
- -	gtc Val 260	Arg	cgc	cat His	ggc Gly	ttg Leu 265	Ile	atg Met	ggt Gly	tgt Cys	tct Ser 270	Val	act Thr	ggt	gto Val	aag Lys 275	9	34
55	cca Pro	tat	ttt Phe	G1y ggg	gaa Glu 280		ccg Pro	ttg Leu	cag Gln	ctc Leu 285	Gly	ccg Pro	aag Lys	gtt Val	gag Glu 290	Asp	9	82
60	gtg Val	ago Ser	aag Lys	cct Pro 295	Val	aac Asn	cca Pro	ttc Phe	gca Ala 300	Phe	ctc Leu	gtg Val	cga Arg	ttc Phe 305	Leu	ctc Leu	10	30
	ggc	ata	act	gct	gca	act	tat	tac	gtg	cto	gtt	, cca	ata	tac	atg	tgg	10	78

Gly Ile Thr Ala Ala Thr Tyr Tyr Val Leu Val Pro Ile Tyr Met Trp 310 315 320

ctc aag gat caa atc acc ccg aaa ggt cag cca atc tga acaataagaa 1127
5 Leu Lys Asp Gln Ile Thr Pro Lys Gly Gln Pro Ile
325 330 335

gaacgtcaat ccaaagagaa gctctccaag cattctgttt gagagtacac cagtgaccac 1187

10 aaatctatca cggaacaaga aagtttttgg cgtcgttgca agggtgaatt tgttgcttta 1247

gtttgttagt tttgcagcct tagaaagggc cttttgtaaa gtttaatttc atggtaaaac 1307

ctagaaatca ttgtgactat tttctagttg tataatctat cagtcatg 1355

<210> 2

<211> 335

20 <212> PRT

<213> Nicotiana tabacum

<400> 2

25

35

55

Met Ala Ser Ser Ile Leu Ser Gly Ala Glu Asn Phe Lys Ile Leu Ser 30 1 5 10 15

Gly Ile Ser Pro Ser Glu Leu His Ile Lys Cys Phe Pro Gln Lys Gly
20 25 30

Leu Val Asn Tyr Ser Arg Ile Pro Asn Thr Lys Ser Arg Thr Leu Arg

Thr Lys Cys Ser Val Ser Ser Ser Arg Pro Ala Ser Gln Pro Arg Phe
50 55 60

Ile Gln His Lys Lys Glu Ala Phe Trp Phe Tyr Arg Phe Leu Ser Ile
65 70 75 80

Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met Arg 50 85 90 95

Asp Glu Ala Leu Glu Pro Ala Glu Leu Asn Ser Arg Gln Leu Gln Val 100 105 110

Val Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val Lys 115 120 125

60

His Val Asp Ala Lys Asn Val Thr Ile Ile Asp Gln Ser Pro His Gln
130

135

140

Leu Ala Lys	Ala Arc	Glu	Lys	Glu	Pro	Leu	Lys	Glu	Сув	Lys	Ile	Leu
145	_	150					155					160

145

- Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Thr Phe Asp Arg 5
- ·Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg Gly 10
- Ile Lys Glu Ala Tyr Arg Val Leu Thr Ile Gly Gly Val Ala Cys Leu 200 15

Ile Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ala Asp

- 20 Met Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe Lys
- 25 Lys Ala Gly Phe Ala Gln Val Lys Leu Lys Arg Ile Gly Pro Lys Trp
- Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val Thr 30
- Gly Val Lys Pro Tyr Phe Gly Glu Ser Pro Leu Gln Leu Gly Pro Lys 280 35
 - Val Glu Asp Val Ser Lys Pro Val Asn Pro Phe Ala Phe Leu Val Arg
- 40 Phe Leu Leu Gly Ile Thr Ala Ala Thr Tyr Tyr Val Leu Val Pro Ile
- Tyr Met Trp Leu Lys Asp Gln Ile Thr Pro Lys Gly Gln Pro Ile 45 335 330

<210> 3 50

<211> 1017

<212> DNA

55 <213> Arabidopsis thaliana

<220> . 60

<221> CDS

<222> (1)..(1017)

<223>

5	<400 atg	gcc	tct	ttg	atg	ctc	aac	a aa	gcc	att	acc	ttc	ccc	aaa	ggt	tta	48
	Met 1	Ala	Ser	Leu	Met 5	Leu	Asn	Gly	Ala	Ile 10	Thr	Phe	Pro	Lys	Gly 15	Leu	
10	ggt Gly	tcc Ser	cct Pro	ggt Gly 20	tcc Ser	aat Asn	ttg Leu	cat His	gcc Ala 25	aaa Lys	tcg Ser	att Ile	cct Pro	cgg Arg 30	ccg Pro	acc Thr	96
15					acc Thr												144
20					agc Ser												192
25					cac His												240
20					gac Asp 85												288
30					gct Ala												336
35					gtc Val												384
40	gtc Val	aag Lys 130	aca Thr	gtg Val	aag Lys	gcc Ala	aag Lys 135	aat Asn	gtg Val	acc Thr	att Ile	ctg Leu 140	gac Asp	cag Gln	tcg Ser	cca Pro	432
45					aaa Lys												480
40					gat Asp 165												. 528
50					tct Ser												576
55	agg Arg	gga Gly	ata Ile 195	agg Arg	gaa Glu	gcg Ala	tac Tyr	agg Arg 200	gtt Val	ctc Leu	aag Lys	atc Ile	ggt Gly 205	ggc	aaa Lys	gcg Ala	624
60					cct Pro												672
					atg Met												720

5	ttc a	aag Lys	aat Asn	gcc Ala	ggt Gly 245	ttc Phe	aag Lys	gac Asp	gtt Val	cag Gln 250	ctc Leu	aag Lys	agg Arg	att Ile	ggc Gly 255	ccc Pro	768
3	aag i	tgg Trp	tac Tyr	cgt Arg 260	ggt Gly	gtt Val	cgc Arg	agg Arg	cac His 265	ggc Gly	ctt Leu	atc Ile	atg Met	gga Gly 270	tgt Cys	tct Ser	816
10	gtc : Val :	act Thr	ggt Gly 275	gtt Val	aaa Lys	cct Pro	gcc Ala	tcc Ser 280	ggt Gly	gat Asp	tct Ser	cct Pro	ctc Leu 285	cag Gln	ctt Leu	ggt Gly	864
15	cca Pro	aag Lys 290	gaa Glu	gag Glu	gac Asp	gta Val	gag Glu 295	aag Lys	cct Pro	gtc Val	aac Asn	aac Asn 300	ccc Pro	ttc Phe	tcc Ser	ttc Phe	912
20	ttg Leu 305	gga Gly	cgc Arg	ttc Phe	ctc Leu	ctg Leu 310	gga Gly	act Thr	cta Leu	gca Ala	gct Ala 315	gcc Ala	tgg Trp	ttt Phe	gtg Val	tta Leu 320	960
	atc Ile																1008
25	ccc Pro		tga														1017
30	<210	> 4	1														
	<211	> :	338														
35	<212	> 3	PRT														
	<213	> 2	Arab:	idop	sis '	thal:	iana										
				_													
40	<400)> ·	4														
45	Met 1	Ala	Ser	Leu	Met 5	Leu	Asn	Gly	Ala	Ile 10	Thr	Phe	Pro	ГÀв	Gly 15	Leu	
50	Gly	Ser	Pro	Gly 20	Ser	Asn	Leu	His	Ala 25	Lys	Ser	Ile	Pro	Arg 30	Pro	Thr	
50	Leu	Leu	Ser 35	Val	Thr	Arg	Thr	Ser 40	Thr	Pro	Arg	Leu	Ser 45	Val	Ala	Thr	
55	Lys	Сув 50	Ser	Ser	Ser	Ser	Val 55	Ser	Ser	Ser	Arg	Pro 60	Ser	Ala	Gln	Pro	
60	Arg 65	Phe	Ïle	Gln	His	Lys 70	Lys	Glu	Ala	Tyr	Trp 75	Phe	Tyr	Arg	Phe	Leu 80	
	Ser	Ile	Val	Tyr	Asp 85	His	Val	Ile	Asn	Pro 90	Gly	His	Trp	Thr	Glu 95	Asp	

5	Met	Arg	Asp	Asp 100	Ala	Leu	Glu	Pro	Ala 105	Asp	Leu	Ser	His	Pro 110	Asp	Met
	Arg	Val	Val 115	Asp	Val	Gly	Gly	Gly 120	Thr	Gly	Phe	Thr	Thr 125	Leu	Gly	Ile
10	Val	Lys 130	Thr	Val	Lys	Ala	Lys 135	Asn	Val	Thr	Ile	Leu 140		Gln	Ser	Pro
15	His 145	Gln	Leu	Ala	Lys	Ala 150	Lys	Gln	Lys	Glu	Pro 155	Leu	Lys	Glu	Cys	Lys 160
20	Ile	Val	Glu	Gly	Asp 165	Ala	Glu	Asp	Leu	Pro 170	Phe	Pro	Thr	Asp	Tyr 175	Ala
25	Asp	Arg	Tyr	Val 180	Ser	Ala	Gly	Ser	Ile 185	Glu	Tyr	Trp	Pro	Asp 190	Pro	Gln
	Arg	Gly	Ile 195	Arg	Glu	Ala	Tyr	Arg 200	Val	Leu	Lys	Ile	Gly 205	Gly	Lys	Ala
30	Cys	Leu 210		Gly	Pro	Val	Tyr 215	Pro	Thr	Phe	Trp	Leu 220	Ser	Arg	Phe	Phe
35	Ser 225	_	Val	Trp	Met	Leu 230	Phe	Pro	Lys	Glu	Glu 235		Tyr	Ile	Glu	Trp 240
40	Phe	Lys	Asn	Ala	Gly 245	Phe	Lys	Asp	Val	Gln 250		Lys	Arg	Ile	Gly 255	Pro
45	Lys	Trp	Tyr	Arg 260		Val	Arg	Arg	His 265		Leu	Ile	Met	Gly 270		Ser
.0	Val	Thr	Gly 275		Lys	Pro	Ala	Ser 280		Asp	Ser	Pro	Leu 285		. Leu	Gly
50	Pro	Lys 290		Glu	Asp	Val	Glu 295		Pro	Val	. Asn	Asn 300		Phe	Ser	Phe
55	Leu 305	_	Arg	Phe	Leu	Leu 310		Thr	Lev	Ala	Ala 315		Trp) Phe	val	Leu 320
60	Ile	Pro) Ile	. Tyr	Met 325		ıle	. Lys	Asp	Glr 330		val	. Pro	Lys	Asp 335	Gln

Pro Ile

5 <210> <211> 774 <212> DNA <213> Arabidopsis thaliana 10 <220> 15 <221> CDS <222> (1)..(774) <223> 20 <400> 5 48 tgc agc agc agc gtg tcg tct tcc cgg cca tcg gcg caa cct agg Cys Ser Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg 96 ttc att cag cac aag aag gag gct tac tgg ttc tac agg ttc tta tcc Phe Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser 30 atc gta tac gac cat gtc atc aat cct ggg cat tgg acc gag gat atg Ile Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met 35 192 aga gac gac gct ctt gag cca gcg gat ctc agc cat ccg gac atg cga Arg Asp Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg 40 gtg gtc gat gtc ggc ggc gga act ggt ttc act act ctg ggc ata gtc 240 Val Val Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val aaq aca gtg aag gcc aag aat gtg acc att ctg gac cag tcg cca cat 288 45 Lys Thr Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His cag ctg gcc aaa gca aag caa aag gag ccg ttg aaa gaa tgc aag atc 336 Gln Leu Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile 50 gtc gag gga gat gct gag gat ctt cct ttt cca acc gat tat gct gac 384 Val Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp 120 115 55 aga tac gtt tct gct gga agc att gag tac tgg ccg gac ccg cag agg Arg Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg 130 gga ata agg gaa gcg tac agg gtt ctc aag atc ggt ggc aaa gcg tgt 480 Gly Ile Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys 145 ctc atc ggc cct gtc tac cca acc ttc tgg ctc tct cgc ttc ttt tct

	9/22	
	Leu Ile Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser 165 170 175	
5	gat gtc tgg atg ctc ttc ccc aag gag gaa gag tac att gag tgg ttc Asp Val Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe 180 185 190	576
10	aag aat gcc ggt ttc aag gac gtt cag ctc aag agg att ggc ccc aag Lys Asn Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys 195 200 205	624
15	tgg tac cgt ggt gtt cgc agg cac ggc ctt atc atg gga tgt tct gtc Trp Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val 210 215 220	672
10	act ggt gtt aaa cct gcc tcc ggt gat tct cct ctc cag ctt ggt cca Thr Gly Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro 225 230 235 240	720
20	aag gaa gag gac gta gag aag cct gtc aac aac ccc ttc tcc ttc ttg Lys Glu Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu 245 250 255	768
25	gga cgc Gly Arg	774
	<210> 6	
30	<211> 258	
35	<212> PRT <213> Arabidopsis thaliana	
40	<pre><400> 6 Cys Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg 1 5 10 15</pre>	
45	-	
45	Phe Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser 20 25 30	
50	Ile Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met 35 40 45	
55	Arg Asp Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg 50 55 60	
	Val Val Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val 65 70 75 80	
60	Lys Thr Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His 85 90 95	

	10/22
	10/22

Gln Leu Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile 100 105 110

- 5 Val Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp 115 120 125
- Arg Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg
- Gly Ile Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys 145 150 155 160
 - Leu Ile Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser 165 170 175
- Asp Val Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe
 180 185 190
- 25 Lys Asn Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys 195 200 205
- Trp Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val 210 215 220
- Thr Gly Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro 225 230 235 240
 - Lys Glu Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu 245 250 255
- 40 Gly Arg
- 45 <210> 7
 - <211> 768
- <212> DNA
- 50 <213> Arabidopsis thaliana
- 55 <220>
 - <221> CDS
- <222> (1)..(768) 60
- <223>

WO 2005/054453 PCT/EP2004/013560 11/22 <400> 7 age age age gtg teg tet tee egg eea teg geg caa eet agg tte att 48 Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg Phe Ile 5 cag cac aag aag gag get tac tgg ttc tac agg ttc tta tec atc gta 96 Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser Ile Val 10 tac gac cat gtc atc aat cct ggg cat tgg acc gag gat atg aga gac 144 Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met Arg Asp gac gct ctt gag cca gcg gat ctc agc cat ccg gac atg cga gtg gtc 192 15 Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg Val Val gat gtc ggc gga act ggt ttc act act ctg ggc ata gtc aag aca 240 Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val Lys Thr 20 75 288 gtg aag gcc aag aat gtg acc att ctg gac cag tcg cca cat cag ctg Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His Gln Leu 25 gcc aaa gca aag caa aag gag ccg ttg aaa gaa tgc aag atc gtc gag 336 Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile Val Glu 105 30 gga gat gct gag gat ctt cct ttt cca acc gat tat gct gac aga tac 384 Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp Arg Tyr 120 gtt tet get gga age att gag tae tgg eeg gae eeg eag agg gga ata 432 35 Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile 135 agg gaa gcg tac agg gtt ctc aag atc ggt ggc aaa gcg tgt ctc atc 480 Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys Leu Ile 40 155 150 gge cet gte tac cea ace tte tgg ete tet ege tte ttt tet gat gte 528 Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser Asp Val 45 576 tgg atg ctc ttc ccc aag gag gaa gag tac att gag tgg ttc aag aat Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe Lys Asn gcc ggt ttc aag gac gtt cag ctc aag agg att ggc ccc aag tgg tac 50 624 Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys Trp Tyr 195 200 cgt ggt gtt cgc agg cac ggc ctt atc atg gga tgt tct gtc act ggt 672 55 Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val Thr Gly 210 215 gtt aaa cet gee tee ggt gat tet eet ete eag ett ggt eea aag gaa 720 Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro Lys Glu 60 225 230 240

gag gac gta gag aag cet gte aac aac eec tte tee tte ttg gga ege

Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu Gly Arg

768

<210> 8 <211> 256 <212> PRT <213> Arabidopsis thaliana 10 <400> 8 15 Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg Phe Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser Ile Val 20 25 20 Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met Arg Asp 25 Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg Val Val 30 Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val Lys Thr 35 90 40 120 115 . 45

Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His Gln Leu Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile Val Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp Arg Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile 50 Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys Leu Ile 150 155 160 145 55 Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser Asp Val 165 Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe Lys Asn 60 185 180 Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys Trp Tyr 200 205 195

Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val Thr Gly 220 215 210 5 Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro Lys Glu 230 225 10 Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu Gly Arg 250 15 <210> 9 <211> 910 <212> DNA 20 <213> Nicotiana tabacum 25 <220> <221> CDS <222> (1)..(600) 30 <223> 35 <400> 9 geg gee get gat caa tea eet eat caa ett gee aag get aga gaa aag 48 Ala Ala Asp Gln Ser Pro His Gln Leu Ala Lys Ala Arg Glu Lys 10 gaa cct ttg aaa gaa tgt aag ata ttg gaa gga gat gct gag gat ttg 96 40 Glu Pro Leu Lys Glu Cys Lys Ile Leu Glu Gly Asp Ala Glu Asp Leu cet tit eet act gat act ett gat aga tat git tet get gga gge att 144 Pro Phe Pro Thr Asp Thr Leu Asp Arg Tyr Val Ser Ala Gly Gly Ile 40 gag tat tgg ccc gat cca cag cgc ggt atc aag gaa gca tac cga gta 192 Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile Lys Glu Ala Tyr Arg Val 50 50 ctg acc ata ggt ggt gtt gcc tgc tta ata ggt cct gtg tac ccg acg 240 Leu Thr Ile Gly Gly Val Ala Cys Leu Ile Gly Pro Val Tyr Pro Thr 70 55 ttt tgg cta tct cgt ttc ttt gca gat atg tgg atg ctc ttt cca aaa Phe Trp Leu Ser Arg Phe Phe Ala Asp Met Trp Met Leu Phe Pro Lys

gaa gaa tat ata gaa tgg ttc aaa aaa gct ggt ttc gct caa gtt

Glu Glu Glu Tyr Ile Glu Trp Phe Lys Lys Ala Gly Phe Ala Gln Val 105

aaa ctc aag agg att ggc cca aaa tgg tat cgt ggt gtc tgt cgc cat

336

384

85

100

60

	14/22	
	Lys Leu Lys Arg Ile Gly Pro Lys Trp Tyr Arg Gly Val Cys Arg His 115 120 125	
5	ggc ttg atc atg ggt tgt tct gtg act ggt gtc aag cca tat ttt ggg Gly Leu Ile Met Gly Cys Ser Val Thr Gly Val Lys Pro Tyr Phe Gly 130 135 140	432
10	gaa tot oog tig oag oto ggt oog aag git gag gat gig ago aag oot Glu Ser Pro Leu Gln Leu Gly Pro Lys Val Glu Asp Val Ser Lys Pro 145 150 155 160	480
15	gta aac cca ttc gta ttt ctc gtg cga ttc ctc ctt ggc ata act gct Val Asn Pro Phe Val Phe Leu Val Arg Phe Leu Leu Gly Ile Thr Ala 165 170 175	528
	gca act tat tac gtg ctc gtt cca ata tac atg tgg ctc aag gat caa Ala Thr Tyr Tyr Val Leu Val Pro Ile Tyr Met Trp Leu Lys Asp Gln 180 185 190	576
20	atc acc ccg aaa ggt cag cca atc tgaacaataa gaagaacgtc aatccaaaga Ile Thr Pro Lys Gly Gln Pro Ile 195 200	630
25	gaagetetee aageattetg tttgagagta caceagtgae cacaaateta teaeggaaca	690
20	agaaagtttt tggcgtcgtt gcaagggtga atttgttgct ttagtttgtt agttttgcag	750
	ccttagaaag ggccttttgt aaagtttaat ttcatggtaa aacctagaaa tcattgtgac	810
30	tattttctag ttgtataatc tatcagtcat gttcttttat cacgagttga gaaaactcgt	870
	cgaaataaat accagtaata cgttatttgc cagcggccgc	910
35	<210> 10	
	<211> 200	
40	<212> PRT	
40	<213> Nicotiana tabacum	
45	<400> 10	
	Ala Ala Ala Asp Gln Ser Pro His Gln Leu Ala Lys Ala Arg Glu Lys 1 5 10 15	•
50	Glu Pro Leu Lys Glu Cys Lys Ile Leu Glu Gly Asp Ala Glu Asp Leu 20 25 30	
55	Pro Phe Pro Thr Asp Thr Leu Asp Arg Tyr Val Ser Ala Gly Gly Ile 35 40 45	
60	Glu Tyr Trp Pro Asp Pro Gln Arg Gly Ile Lys Glu Ala Tyr Arg Val 50 55 60	
	Leu Thr Ile Gly Gly Val Ala Cys Leu Ile Gly Pro Val Tyr Pro Thr 65 70 75 80	

Phe Trp Leu Ser Arg Phe Phe Ala Asp Met Trp Met Leu Phe Pro Lys 90 85 5 Glu Glu Glu Tyr Ile Glu Trp Phe Lys Lys Ala Gly Phe Ala Gln Val 100 10 Lys Leu Lys Arg Ile Gly Pro Lys Trp Tyr Arg Gly Val Cys Arg His Gly Leu Ile Met Gly Cys Ser Val Thr Gly Val Lys Pro Tyr Phe Gly 15 Glu Ser Pro Leu Gln Leu Gly Pro Lys Val Glu Asp Val Ser Lys Pro 20 150 Val Asn Pro Phe Val Phe Leu Val Arg Phe Leu Leu Gly Ile Thr Ala 25 Ala Thr Tyr Tyr Val Leu Val Pro Ile Tyr Met Trp Leu Lys Asp Gln 180 30 Ile Thr Pro Lys Gly Gln Pro Ile 35 <210> 11 <211> 16 <212> DNA 40 <213> Artificial sequence 45 <220> <223> Primer <400> 11 16 50 agaattcgcg gccgct <210> 12 55 <211> 32 <212> DNA

<220>

60

<213> Artificial sequence

	WO 2005/0 :	54453	16/22	PCT/EP2004/013560
	<223>	Primer		
5	<400> ctcatgo	12 egge egegegeaae geaattaat	g tg	32
	<210>	13		
10	·<211>	32		
10	<212>	DNA		
	<213>	Artificial sequence		
15				
	<220>			
20	<223>	Primer		
20	<400> tcatgo	13 ggcc gcgagatcca gttcgatgt	a ac	32
25	<210>	14		
	<211>	21		
30	<212>	DNA		
30		Artificial sequence		
35	<220>			
	<223>	Primer		
40	<400> gtggat	14 tgat gtgatatete e		21
	<210>	15		
45	<211>	21		
	<212>	DNA		•
50	<213>	Artificial sequence		
	<220>			
55	<223>	Primer		
	<400> gtaagg	15 gatet gagetacaca t		21
60	<210>	16		
	<211>	22		

60

<220>

<223> Primer

V	VO 2005/0	54453	18/22	PCT/EP2004/013560
	<400> ggggttt	19 caca atgatacaat gatc		24
5	<210>	20		
	<211>	18		
10	·<212>	DNA		
	<213>	Artificial sequence		
15	<220>			
	<223>	Primer		
20	<400> atgage	.20 agca gcgtgtcg		18
	<210>	21		
25	<211>	20		
	<212>	DNA .		
30	<213>	Artificial sequence		
	<220>			
35	<223>	Primer		
	<400> gcgtcc	21 caag aaggagaagg		20
40				
	<210>	22		
45	<211> <212>			
40		Artificial sequence		
		-		
50	<220>			
	<223>	Primer		
55	<400> atgtgc	22 agca gcagcagc		18
	<210>	23 .		
60	<211>	20		

<212> DNA

20

18

19

18

<213> Artificial sequ	ence
-----------------------	------

5 <220>

<223> Primer

·<400> 23

10 gcgtcccaag aaggagaagg

<210> 24

15 <211> 18

<212> DNA

<213> Artificial sequence

20

<220>

25 <223> Primer

<400> 24

atgtgcagca gcagcagc

30

<210> 25

<211> 19

35 <212> DNA

<213> Artificial sequence

40

<220>

<223> Primer

45 <400> 25

tcagcgtccc aagaaggag

<210> 26

50

<211> 18

<212> DNA

55 <213> Artificial sequence

<220> .

<223> Primer

<400> 26

atgagcagca gcgtgtcg

<210> 27 5 <211> 20 <212> DNA <213> Artificial sequence 10 <220> 15 <223> Primer <400> 27 tcagatgggt tggtctttgg 20 20 <210> 28 <211> 18 25 <212> DNA <213> Artificial sequence 30 <220> <223> Primer 35 <400> 28 atgagcagca gcgtgtcg 18 <210> 29 40 <211> 19 <212> DNA 45 <213> Artificial sequence <220> 50 <223> Primer <400> 29 gatgggttgg tctttggga 19 55 <210> 30 <211> 18 . 60 <212> DNA

<213> Artificial sequence

21/22 FC 1/EF 2004/015300

<220> 5 <223> Primer <400> 30 atgtgcagca gcagcagc 18 10 <210> 31 <211> 19 15 <212> DNA <213> Artificial sequence 20 <220> <223> Primer 25 <400> 31 gatgggttgg tctttggga 19 <210> 32 30 <211> 18 <212> DNA 35 <213> Artificial sequence <220> 40 <223> Primer <400> 32 atgagcagca gcgtgtcg 18 45 <210> 33 <211> 19 50 <212> DNA <213> Artificial sequence 55 <220> <223> Primer 60

19

<400> 33

tcagcgtccc aagaaggag

	WO 2005/0	J54453	22/22	PCT/EP2004/013560
	<210>	34		
5	<211>	18		
	<212>	DNA		
	<213>	Artificial sequence		
10	•			
, 0	<220>			
15	<223>	Primer		
		34 agca gcagcagc		18
20	<210>	35		
	<211>	21		
	<212>	DNA		
25	<213>	Artificial sequence		
		•		
30	<220>			
	<223>	Primer		
	<400> gaagga	35 tcag atgggttggt c		21

gaaggatcag atgggttggt c

35