DataScience Specialization Test Series -Test 3 - Batch A & B - 14th October 2023

Total points 44/60 (2)

The respondent's email (rajendraku0000@gmail.com) was recorded on submission of this

0 of 0 points

Name *

rajendraku0000@gmail.com

DataScience Specialization Test Series - Test 3 - Batch A & B - 14th October 2023

44 of 60 points

×	What is the primary purpose of a validation set in the machine learning workflow?	0/1
0	To train the model	
0	To fine-tune hyperparameters	
•	To evaluate the model's performance on unseen data	×
0	To test the model's generalization	
Corr	ect answer	
•	To fine-tune hyperparameters	
✓	What does the drop_duplicates() function in Pandas do?	1/1
0	Drops rows with missing values from a DataFrame.	
•	Drops duplicate rows from a DataFrame.	✓
0	Drops columns with missing values from a DataFrame.	
0	Drops columns with duplicate values from a DataFrame.	

×	How can you perform element-wise subtraction of two DataFrames df1 and df2 and replace missing values with 0?	0/1
Corr	df1-df2 df1.subtract(df2, fill_value=0) df1.sub(df2, fill_value=0) df1.elementwise(df2, fill_value=0) ect answer df1.sub(df2, fill_value=0)	×
~	How can you replace all occurrences of a specific value (e.g., 'old_value') i a DataFrame df with a new value (e.g., 'new_value')?	n 1/1
	df.replace('old_value', 'new_value')	✓
O	df.replace('old_value', 'new_value') df.replace('old_value', 'new_value', inplace=True)	✓
••••••••••••••••••••••••••••••••••••••••••••••••••••••••		✓
	df.replace('old_value', 'new_value', inplace=True)	✓

✓	How can you rename the column 'old_name' to 'new_name' in a DataFrame 1/1 df?
0	df.rename_column('old_name', 'new_name')
•	df.rename(columns={'old_name': 'new_name'})
0	df.column_rename('old_name', 'new_name')
0	df.rename_column({'old_name': 'new_name'})
✓	In the context of deep learning, what does the term "backpropagation" refer 1/1 to?
•	The process of training a model by updating its parameters
0	The process of preprocessing data before training a model
\bigcirc	The process of evaluating a model's performance on a validation set
0	The process of selecting hyperparameters for a model
~	What is the primary purpose of data augmentation in machine learning? 1/1
0	To reduce model complexity
0	To add noise to the data
0	To increase the dimensionality of the data
•	To generate additional training data by applying transformations

✓ In deep learning, what is the role of the activation function in a neural network?	1/1
To initialize the network weights	
To determine the learning rate of the network	
To introduce non-linearity to the model	✓
To define the network architecture	
✓ What does the to_datetime() function in Pandas do?	1/1
Converts a Series to a datetime data type.	✓
Converts a Series to a timedelta data type.	
Converts a Series to a string representation of the datetime.	
Converts a datetime to a string representation.	

What is the primary difference between bagging and boosting in ensemble 0/1 learning?
Bagging combines multiple weak learners into a strong learner, while boosting uses a single strong learner.
Bagging focuses on reducing model variance, while boosting focuses on reducing model bias.
Bagging uses only decision trees, while boosting uses various machine learning algorithms.
Bagging is a form of data augmentation, while boosting is a form of feature engineering
Correct answer
Bagging combines multiple weak learners into a strong learner, while boosting uses a single strong learner.
✓ Which deep learning architecture is used for generating new data samples, 1/1 such as images or text?
○ CNN
RNN
● GAN
Autoencoder

×	Which technique is used to combat the problem of class imbalance in dee learning?	p 0/1
0	Data augmentation	
•	Batch normalization	×
0	Regularization	
0	Gradient clipping	
Corr	ect answer	
•	Data augmentation	
/	What is a hyperparameter in the context of deep learning?	1/1
0	A parameter that is learned during training	
0	A weight value in a neural network	
•	A configuration setting that is set before training and affects the model's performance	✓
0	A bias term in a neural network	
✓	What is the primary goal of feature selection in machine learning?	1/1
0	To increase model complexity	
0	To add noise to the data	
0	To create new features from existing data	
•	To choose the most relevant features for a model	✓

×	How can you handle missing values in a DataFrame df by filling them the mean value of the column?	with 0/1
0	df.fillna(df.mean())	
\bigcirc	df.fillna(df.mean(), axis=0)	
\bigcirc	df.fillna(df.mean(), axis=1)	
	df.fillna(df.mean(), inplace=True)	×
Corre	ect answer	ı
	df.fillna(df.mean())	
✓	What is the main objective of semi-supervised learning in machine	1/1

✓	How can you calculate the element-wise product of two DataFrames df1 and df2 ?	1/1
•	df1 * df2	✓
0	df1.mul(df2)	
0	df1.product(df2)	
0	df1.elementwise(df2)	
✓	In machine learning, what is the primary goal of data preprocessing?	1/1
\bigcirc	To build the model	
\bigcirc	To evaluate the model's performance	
	To transform and clean the data to make it suitable for modeling	✓
0	To validate the model's predictions	
×	Which machine learning technique is suitable for solving problems involving a sequence of decisions, such as game playing or robot control?	0/1
0	Reinforcement Learning	
•	Unsupervised Learning	×
0	K-Means Clustering	
0	Naive Bayes	
Corr	ect answer	
•	Reinforcement Learning	

×	Which machine learning algorithm is best suited for outlier detection in a dataset?	0/1
0	Support Vector Machine (SVM)	
0	Random Forest	
0	Principal Component Analysis (PCA)	
•	k-Nearest Neighbors (KNN)	×
Corr	ect answer	
•	Support Vector Machine (SVM)	
/	How can you convert a DataFrame df to a CSV file named 'output.csv'?	1/1
0	df.write_csv('output.csv')	
0	df.save_csv('output.csv')	
•	df.to_csv('output.csv')	✓
0	df.export_csv('output.csv')	
/	What is the primary goal of outlier detection in machine learning?	1/1
0	To identify patterns and clusters in data	
0	To uncover hidden associations in data	
•	To detect and remove data points that deviate significantly from the norm	✓
0	To classify data into predefined categories	

~	Which machine learning algorithm is commonly used for recommendation systems, such as those used by Netflix or Amazon to suggest movies or products?	1/1
0	Naive Bayes	
0	K-Means Clustering	
•	Collaborative Filtering	✓
0	Principal Component Analysis (PCA)	
×	Which machine learning technique is often used for imbalanced classification tasks, where one class has significantly fewer examples than the other?	0/1
•	K-Means Clustering	×
0	Random Forest	
0	Logistic Regression	
0	Synthetic Minority Over-sampling Technique (SMOTE)	
Corr	ect answer	
•	Synthetic Minority Over-sampling Technique (SMOTE)	

×	Which type of neural network architecture is used for sequence-to- sequence tasks such as machine translation?	0/1
0	Convolutional Neural Network (CNN)	
0	Recurrent Neural Network (RNN)	
•	Long Short-Term Memory (LSTM)	×
0	Autoencoder	
Corr	ect answer	
•	Recurrent Neural Network (RNN)	
✓	What is the primary purpose of the backpropagation algorithm in deep learning?	1/1
0	To compute the forward pass of a neural network	
0	To initialize the weights of the network	
•	To update the model's weights based on the computed gradients	✓
0	To determine the optimal learning rate	

×	How can you select rows from a DataFrame df where the values in column 0/1 'column_name' are not null?
0	df[df.column_name.notnull()]
0	df[df.column_name != null]
0	df[df.column_name.notna()]
•	All of the above
Corre	ect answer
•	df[df.column_name.notna()]
~	In deep learning, what is the purpose of a loss function? 1/1
0	To regularize the model
0	To initialize the weights of the neural network
•	To measure the error between the predicted and actual values
0	To prevent overfitting

★ What does the resample() function in Pandas do?	0/1
Aggregates data over a specific time period.	
Fills missing values in a DataFrame.	
Reindexes a DataFrame with a new time frequency.	×
None of the above.	
Correct answer	
Aggregates data over a specific time period.	
✓ How can you extract the unique values from a specific column 'column_name' in a DataFrame df?	1/1
df.unique('column_name')	
df['column_name'].unique()	✓
df.get_unique('column_name')	
df.column_name.unique()	
✓ In machine learning, what does the term "ensemble method" refer to?	1/1
A method for preprocessing data before training	
A method for dimensionality reduction	
A technique that combines the predictions of multiple models to improve overall performance	✓
A type of feature extraction technique	

✓ W	hat is the primary goal of hyperparameter tuning in machine learning?	1/1
От	o eliminate bias in the model	
От	o minimize overfitting	
()	o identify the best set of model parameters and settings for optimal erformance	✓
Ото	o reduce the dimensionality of the data	
	hich technique is used for reducing the dimensionality of data in deep arning?	0/1
O Pi	rincipal Component Analysis (PCA)	
В	atch normalization	
M	fax-pooling	×
O 0	ne-hot encoding	
Correct	t answer	
Pr	rincipal Component Analysis (PCA)	

×	Which machine learning algorithm is often used for anomaly detection in time series data, such as identifying unusual patterns in network traffic or fraud detection?	0/1
	Decision Trees	×
\bigcirc	Support Vector Machine (SVM)	
0	Hidden Markov Models (HMM)	
0	Logistic Regression	
Corre	ect answer	
•	Hidden Markov Models (HMM)	
✓	Which evaluation metric is commonly used for regression problems to assess the goodness of fit of a model's predictions to the actual values?	1/1
0	F1 Score	
•	Mean Absolute Error (MAE)	✓
\bigcirc	Precision	
0	Recall	

✓	What is the primary difference between supervised learning and unsupervised learning in deep learning?	1/1
•	Supervised learning uses labeled data for training, while unsupervised learning uses unlabeled data.	✓
0	Supervised learning is used for regression tasks, while unsupervised learning is used for classification tasks.	
0	Supervised learning has a higher degree of model interpretability compared to unsupervised learning.	
0	Unsupervised learning uses reinforcement learning algorithms for training	
~	Which technique can be used to address the curse of dimensionality in high-dimensional datasets?	1/1
0	Adding more features	
0	Feature scaling	
•	Dimensionality reduction	✓
0	Imputation	
~	How can you create a new column 'new_column' in a DataFrame df that contains the sum of two existing columns 'col1' and 'col2'?	1/1
•	df['new_column'] = df['col1'] + df['col2']	✓
0	df.add_column('new_column', df['col1'] + df['col2'])	
0	df.new_column = df.col1 + df.col2	
0	df.set_column('new_column', df.col1 + df.col2)	

✓	Which machine learning algorithm is commonly used for sentiment analysis and text classification tasks, particularly when dealing with text data?	1/1
0	K-Means Clustering	
0	Decision Trees	
•	Naive Bayes	✓
0	Random Forest	
~	Which machine learning technique is used for solving sequential decision-making problems with a Markovian property, such as autonomous driving or game playing?	1/1
•	Reinforcement Learning	✓
0	Unsupervised Learning	
0	Principal Component Analysis (PCA)	
0	Genetic Algorithms	
/	What is the primary objective of Natural Language Processing (NLP) in machine learning?	1/1
0	To identify patterns in numerical data	
•	To understand and process human language data	✓
0	To perform clustering of text documents	
0	To predict stock market prices	

✓	How can you create a new column 'new_column' in a DataFrame df that contains the row-wise mean of all columns?	1/1
0	df.new_column = df.mean(axis=1)	
	df['new_column'] = df.mean(axis=1)	✓
0	df.insert('new_column', df.mean(axis=1))	
0	df['new_column'] = df.sum(axis=1) / len(df.columns)	
~	How can you calculate the percentage change of a DataFrame df along th columns?	e 1/1
	df.pct_change()	✓
0	df.calculate_change()	
0	df.percent_change()	
0	df.change()	
✓	What is the primary purpose of the Expectation-Maximization (EM) algorithm in machine learning?	1/1
•	To estimate the parameters of a statistical model when some data is missing or hidden	✓
\bigcirc	To maximize the accuracy of a model on the training data	
0	To optimize the hyperparameters of a neural network	
0	To find the global minimum of a non-convex loss function	

×	What does the merge_asof() function in Pandas do?	0/1
\circ	Merges two DataFrames based on the closest match to a key column.	
	Merges two DataFrames based on a common column.	×
\bigcirc	Merges two DataFrames based on a specified time interval.	
\bigcirc	None of the above.	
Corre	ect answer	
	Merges two DataFrames based on the closest match to a key column.	
✓	What is the purpose of transfer learning in deep learning?	1/1
\circ	Learning to transfer data between different devices	
	Using pre-trained models to improve performance on a new task	✓
\bigcirc	Transferring data between the training and validation sets	
\bigcirc	Transferring gradients between layers in a neural network	
✓	What is the purpose of Principal Component Analysis (PCA) in	1/1
	dimensionality reduction?	
0	To remove noisy data points from the dataset	
•	To eliminate irrelevant features and reduce data dimensionality	✓
\bigcirc	To increase the dimensionality of the data	
\bigcirc	To separate data into distinct clusters	
	. o oopalato data into diotinot oldotolo	

✓	How can you create a pivot table with multiple aggregation functions for a 1/1 DataFrame df ?
•	df.pivot_table(values='value_column', index='index_column', columns='columns_column', aggfunc=['sum', 'mean'])
0	df.pivot_table(values='value_column', index='index_column', columns='columns_column', aggfunc='sum', aggfunc='mean')
0	df.pivot_table(values='value_column', index='index_column', columns='columns_column', aggfunc='sum, mean')
0	df.pivot_table(values='value_column', index='index_column', columns='columns_column', aggfunc='sum_mean')
×	How can you calculate the z-scores of a specific column 'column_name' in 0/1 a DataFrame df ?
	df['column_name'].zscore()
0	(df['column_name'] - df['column_name'].mean()) / df['column_name'].std()
0	df['column_name'].transform(lambda x: (x - x.mean()) / x.std())
0	All of the above
Corr	ect answer
•	All of the above

✓	In machine learning, what is the main purpose of transfer learning?	1/1
0	To transfer data between different machines	
0	To transfer models between different machine learning frameworks	
•	To transfer knowledge from one task or domain to another, typically by fine- tuning a pre-trained model	✓
0	To transfer labeled data to an unlabeled dataset	
/	What does the term "bias-variance trade-off" refer to in machine learning?	1/1
0	The trade-off between precision and recall in classification models	
\bigcirc	The trade-off between model complexity and model accuracy	
\bigcirc	The balance between the mean squared error and the number of features	
•	The trade-off between underfitting and overfitting in a model	✓
✓	Which type of machine learning task involves grouping similar data points into clusters based on their features, without predefined class labels?	1/1
0	Regression	
0	Classification	
•	Clustering	✓
0	Anomaly Detection	

✓	What is the vanishing gradient problem in deep learning?	1/1
0	It occurs when gradients are too large and lead to divergence.	
0	It is a problem related to overfitting.	
•	It happens when gradients in a neural network become very small during training.	✓
0	It is a term used in generative adversarial networks (GANs).	
✓	How can you calculate the cumulative sum of a DataFrame df along the columns?	1/1
0	df.cumulative_sum(axis=0)	
	df.cumsum(axis=1)	✓
0	df.cumulative(axis=1)	
0	df.cumulative_sum(axis=1)	

✓	In the context of deep learning, what is a "vanishing gradient" problem, and how is it typically addressed?	d 1/1
0	It is a problem where gradients become extremely large, leading to numerical instability. It is addressed by using gradient clipping.	
•	It is a problem where gradients become very small, making it difficult to update model parameters in deep networks. It is addressed by using activation functions that mitigate this issue, such as ReLU.	✓
0	. It is a problem where gradients converge to a local minimum, leading to suboptimal solutions. It is addressed by increasing the learning rate.	
0	It is a problem that occurs when there are too many layers in a neural network, leading to slow training times. It is addressed by using shallow networks.	
✓	How can you sort a DataFrame df based on values in the column 'column_name' in ascending order?	1/1
\bigcirc	df.sort('column_name')	
	df.sort_values('column_name', ascending=True)	✓
\bigcirc	df.sort_by('column_name')	
0	df.order_by('column_name')	

★ What does the query() function in Pandas do?	0/1
Selects rows from a DataFrame based on a query string.	
Performs SQL-like operations on a DataFrame.	
Calculates the mean value of each group.	
None of the above.	×
Correct answer	
Selects rows from a DataFrame based on a query string.	
✓ What is the primary purpose of a Confusion Matrix in machine learn	ning? 1/1
To visualize the decision boundary of a classification model	
To summarize the performance of a classification model, showing the nu of true positives, true negatives, false positives, and false negatives	ımber 🗸
To reduce overfitting in a neural network	
To optimize hyperparameters in an ensemble learning model	
✓ Which of the following is an example of a non-parametric machine learning algorithm? Name	*1/1
C Linear Regression	
K-Means Clustering	
Support Vector Machine (SVM)	
k-Nearest Neighbors (KNN)	~

✓ In ensemble learning, what is the purpose of stacking (stacked generalization)?	1/1
To create a stack of physical hardware for distributed machine learning	
To stack multiple layers of neurons in a neural network	
To combine predictions from multiple base models using a meta-model	✓
O To perform feature engineering by stacking features from different sources	

This form was created inside REGex Software Services.

Google Forms