Chapter 4

Growth and Culturing of Bacteria

Growth of Bacteria

- √ Asexual reproduction does not involve sex cells.
- ✓ One cell divides into two identical daughter cells by binary fission.

Types of reproduction

- 1. binary fission
- 2. budding
- 3. fragmentation

Key terms

- √ Generation time/Doubling time
 - ■Time interval required for each microbe to divide.
- √ Growth rate
 - Number of cell divisions per unit time.

Obtaining a pure culture

- √ Streak plate
 - ⇒Simplest and most common
- ✓ Pour plate
 - ■Used in enumeration experiments too
 - ■We need a single colony to inoculate our culture
 - →A pure culture contains a single species of organism
 - → A mixed culture different kinds of organisms

Measuring growth

- 1. Serial dilution and standard plate count (Viable).
 - a. pour plates
 - b. spread plates
- 2. Direct Microscopic count
 - a. counting chamber
 - b. Cell counting instruments
 - a. Electronic cell count
 - b. Flow cytometry
- 4.Most probable number (MPN)
- 5. Filtration
- 6. Turbidity
- 6. Other methods

Plate count/serial dilution

- 1. Relatively easy to do.
- 2. Some inaccuracies in counting colonies.
- 3. Risk of contamination.
- 4. Slow.

Microscopic count

- 1. Cannot determine viable cells
- 2. Time consuming
- 3. May need special equipment.
- 4. Small cells are difficult to see (inaccurate)
- 5. Low cell counts cause inaccuracies

5. Flow cytometer 1. Measures laser lights

Electronic cell count

1. Cannot distinguish between viable and non-viable cells. 2. Expensive equipment 3. Difficult to calibrate 4. Coulter counter 1. Detects electrical resistance

Membrane filter

- 1. Relatively simple to
- 2. Good for water samples.
- 3. Some inaccuracies in counting colonies.
- 4. Slow.

Turbidity

- 1. Most convenient method.
- 2. Quick.
- 3. Non-destructive.
- 4. Requires calibration.

Other methods

- > Total Weight
 - > Wet weight
 - Cell spun down and weighed
 - Dry weight
 - Packed cells dried at 100°C for 8-12 hr
 Weighed
- Cell products
 - > Acid production
 - pH indicator
 - Gas production
 - Durham tube traps gas
 - ATP/enzyme production
- Dye reduction
- > Nitrogen content

Factors Affecting Bacterial Growth

- **√** pH
- ✓ Temperature
- ✓ Oxygen
- √ Water availability
- √ Hydrostatic pressure
- √ Osmotic pressure
- ✓ Radiation
- ✓ Nutritional factors

pН

- ✓ pH is a measure of the concentration of hydrogen ions (H+) in a solution.
- ✓ Actually...

$$pH = -log[H^+]$$

pH classification

- √ Acidophiles (acid-loving)
 - ⇒pH 0.1 to 5.4 (Lactobacillus)
 - → Maintain neutral pH by pumping out protons (H+)
- ✓ Neutrophiles
 - ⇒pH 5.4 to 8.5 (E. coli, streptococcus, most of the bacteria that cause human disease)
- √ Alkaliphiles (base-loving)
 - ➡pH 7.0 to 11.5 (Agrobacterium, Vibrio cholera)
 - Maintain neutral pH by exchanging sodium (out) for external protons (in)

pH parameters

- ✓ Intracellular pH of cell = ~7.5
- √ maintains pH by expelling or bringing H⁺ ions into the cell.
- ✓ Optimum pH is at about neutrality
- √ (pH 7).

Optimal pH for growth

√ Bacteria pH 6-8 √ Fungi pH 5-6 ✓ Protozoa pH 6.7 - 7.7 √ Algae

pH 4-8.5

Temperature classification

- ✓ psychrophiles
 - -cold-loving
- √ Psychrotrophs
 - Cold feeding
- √ mesophiles
 - moderate temp-loving
- √ thermophiles
 - heat-loving
- √ Hyperthermophiles

Optimal growth

- ✓ Psychrophile
- Optimum temperature -5°C to 15°C
 Found in Arctic and Antarctic regions

- Psychrotroph

 20°C to 30°C

 □ Important in food spoilage
- Mesophile ► 25°C to 45°C
 - → More common

 → Disease causing
- Thermophiles
- Hyperthermophiles
- - 70°C to 110°C

 Usually members of Archaea
 Found in hydrothermal vents

Oxygen requirement

- √ Microorganisms require different amounts of...
- ✓ Oxygen
- √ Carbon dioxide
- ✓ Nitrogen
- √ Hydrogen

Definitions

- √ Obligate
 - Must have the specified environmental conditions
 - ○Obligate anaerobe Bacterioides killed by the presence of oxygen
- √ Facultative
 - ◆The organism is able to adjust to and tolerate the environmental conditions, but it can live in other conditions
 - ⇒Facultative anaerobe E. coli

Aerobes

- √21% oxygen
- √ efficient energy producers
- ✓ some require 5-10% CO₂
 - ► Mycobacterium tuberculosis
- √ Obligate aerobes
 - ►Psuedomonas spp.

Facultative anaerobes

- √ Can grow in air with O₂ and without O₂.
- ✓ In anaerobic conditions these organisms ferment carbon sources to produce energy.
- ✓ E.coli

Anaerobes

- ✓ Oxygen may be toxic.
- √ Enzymes detoxify O₂ and O₂-related molecules.
- √ Grow well in atmosphere containing CO₂ and H₂.
- √ Clostridium sp.

Microaerophiles

- √ Cannot withstand 21% O₂-prefer 1-15%.
- ✓ Campylobacter jejuni

Water availability

- ✓ Most single celled organisms live a few hours without moisture
 - Exceptions are spores and spore-forming organisms

Hydrostatic Pressure

- √ Barophiles are pressure-dependent microorganisms.
 - ■Live at different water depths
 - ⇒50 meters of water = 32X atmospheric pressure
 - →Pressure keeps their enzyme together and functional

Osmosis

- ✓ Movement of water across a selectively permeable membrane in response to a concentration gradient.
- ✓ Movement of water is towards the zone of high solute concentration.
- √ The pressure associated with the movement of water is called osmotic pressure.

Isotonic

- ✓ Solute concentration is the same on both sides of the plasma membrane.
- ✓ Movement of water is equal in both directions.

Hypertonic

of cell.

✓ Movement of water is towards the greater

✓ Solute concentration is greater on the outside

solute concentration.

✓ Water moves OUT of the cell.

Hypotonic

- √ Solute concentration is greater on the inside of cell.
- ✓ Movement of water is towards the greater solute concentration.
- √ Water moves INTO the cell.

Organisms require a variety of chemical elements as nutrients?

Table 4.3 Representative Functions of the Major Elements

Chemical	Function	
Carbon, oxygen, and hydrogen	Component of cellular constituents including amino acids, lipids, nucleic acids, and sugars.	
Nitrogen	Component of amino acids and nucleic acids.	
Sulfur	Component of some amino acids.	
Phosphorus	Component of nucleic acids, membrane lipids, and ATP.	
Potassium, magnesium, and calcium	Required for the functioning of certain enzymes; additional functions as well.	
Iron	Part of certain enzymes.	

The Chemical Composition of the Cell

The Chemical Composition of the Cell 90% water 10% macromolecules inorganic molecules biosynthetic precursors

Nutritional Factors on Growth

- √ Required elements
 - Major elements
 - GCarbon (C), oxygen (O), hydrogen (H), nitrogen (N), sulfur (S), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca) and iron (Fe)
 - Organisms classified based on carbon usage

 - → Autotrophs
 - Trace elements
 - - □Cobalt (Co), zinc (Zn), copper (Cu), molybdenum (Mo) and manganese (Mn)
 - Required in minute amounts

Nutritional Factors on Growth

- √ Growth factors
 - Some bacteria cannot synthesize some cell constituents
 - These must be added to growth environment
 - Some need very few while others require many
 - ▼These termed fastidious

Nutritional Types of Microorganisms

Table 5.1 Sources of Carbon, Energy, and Electrons

Carbon Sources	
Autotrophs	CO ₂ sole or principal biosynthetic carbon source (pp. 207–8) ^a
Heterotrophs	Reduced, preformed, organic molecules from other organisms (chapters 9 and 10)

Energy Sources Phototrophs Chemotrophs

Light (pp. 195–201) Oxidation of organic or inorganic compounds (chapter 9)

Electron Sources Reduced inorganic molecules (pp. 193–94)
Organic molecules (chapter 9) Lithotrophs Organotrophs

^aFor each category, the location of material describing the participating metabolic pathways is given within the parentheses.

Carbon and Energy Sources

	carbon	energy
	source	source
chemoautotrophs	CO ₂	inorganic
		molecules
chemoheterotrophs	organic	organic
	molecules	molecules
photoautotrophs	CO ₂	light
photoheterotrophs	organic molecules	light
Chemolithoautotroph	CO2	inorganic (rocks)
Chemoorganoheterotrophs	organic	organic

Culture Media

broth

■a liquid culture medium

- solid, gelled medium contained in Petri dishes or in tubes as slants.
- ►typical concentration of 15 grams/liter
- melts at 95-100°C, gels at 42 -45°C

Complex media

- √ Used routinely for growing most microorganisms.
- ✓ Contain plant and animal extracts.
- √ Are usually chemically undefined

Example of Complex Medium

- ✓ Luria Broth
 - ►In 1000 milliliters of water:
 - ■10 g tryptone
 - ●5 g yeast extract
 - ▶10 g sodium chloride

Defined or synthetic media

- ✓ Defined or synthetic media
- √ Contain precise quantities of organic and inorganic nutrients.

Example of Defined Medium

Leuconostoc mesenteroides medium

25 g glucose 10mg FeSO₄ 3g NH4CI 20mg MnSO₄ 0.6g KH2PO₄ 10mg NaCl 0.6g K2HPO₄ amino acids 0.2g MgSO_₄ vitamins purines and pyrimidines

Special Classes of Media

These are subsets of both complex and defined media.

- ✓ selective media
 - Inhibit some while allowing some to
 - Thayer-Martin agar
 - For isolation of Neisseria gonorrhoeae
 - ⇒ EMB agar

 ✓ Isolation of Gram Negative
- √ differential media
 - Distinguish between two different kind of

 - EMB
 Differentiate E. coli from other Gram negatives

Anaerobe media

- √ Some microbes can tolerate either little or no oxygen.
- √ Growth can occur in agar-deeps, or in medium containing reducing compounds that limit the amount of oxygen in the medium.
- √ Contain thioglycolate (captures oxygen)