FÍSICA

Quando necessário, use os seguintes valores para as constantes:

Aceleração local da gravidade $g = 10 \text{ m/s}^2$; velocidade da luz no vácuo $c = 3.0 \times 10^8 \text{ m/s}$;

Velocidade do som $v_{som} = 340 \text{ m/s}$; carga elementar $e = 1.6 \times 10^{-19} \text{C}$;

Constante de Planck h vezes a velocidade da luz c, hc = 1240 eV.nm;

Massa do elétron $m_e = 9{,}11 \times 10^{-31}$ kg.

Aproximações numéricas: $(1 + \alpha)^n \approx 1 + n\alpha$, para $|\alpha| \ll 1$; $\sqrt{3} \approx 1,7$.

Questão 1. Um bloco cúbico de aresta l=4,5 cm desliza, sob o efeito da gravidade, sobre um plano inclinado de ângulo $\alpha=60^\circ$ relativamente à horizontal. O deslizamento acontece com as normais de duas de suas faces sempre paralelas à direção do movimento. Para estudar o movimento, um observador usa uma máquina fotográfica que captura em uma mesma imagem a posição do bloco em instantes diferentes. Para isso, a câmera é programada para abrir e fechar o diafragma periodicamente, a cada intervalo de tempo $\Delta t=0,2$ s. O tempo de exposição δt , isto é, o tempo em que o diafragma permanece aberto, é tal que $\delta t \ll \Delta t$. O disparo da câmera é sincronizado com o movimento, de modo que a primeira exposição acontece no instante em que o bloco é solto. A foto registra quatro pontos, que correspondem à posição do objeto em diferentes instantes. O experimentador extrai da foto a distância entre pontos adjacentes, $\Delta x_n = x_n - x_{n-1}$, com n=1,2 e 3.

Considere que a foto capta o perfil lateral do plano inclinado sem distorções ópticas ou efeitos de paralaxe. Em seguida, faça o que se pede:

- a) se $\Delta x_3 = 0.75$ m, determine os valores de Δx_2 , Δx_1 e o deslocamento total do bloco;
- b) estime o valor do coeficiente de atrito cinético entre a superfície do bloco e do plano inclinado;
- c) considere agora que δt ainda é pequeno, mas seu efeito já não é mais desprezível. Determine o valor de δt para que, na quarta captura, a imagem seja um retângulo de dimensões l por 2l.

Questão 2. Considere uma partícula P_1 , de massa m_1 , inicialmente em repouso. Em seguida, essa partícula é acelerada por uma força constante $\vec{F_1}$, durante um intervalo de tempo Δt_1 . Após este intervalo de tempo, P_1 move-se livremente sem atrito por um plano, até colidir com uma partícula P_2 , de massa $m_2 = 2m_1$. Após a colisão, P_2 sai em uma trajetória que faz um ângulo de $\theta = \frac{\pi}{6}$ rad com relação à trajetória inicial (pré-colisão) de P_1 . Após um breve deslocamento, uma força constante $\vec{F_2}$, com direção contrária à da velocidade da partícula P_2 , atua durante um intervalo de tempo $\Delta t_2 = \sqrt{3}\Delta t_1$ até a parada total de P_2 .

Sabendo que a colisão entre P_1 e P_2 é inelástica e resulta em uma perda de 25% da energia mecânica do sistema, determine a magnitude da força F_1 em termos da magnitude de F_2 .

Questão 3. Considere um recipiente que contém uma coluna de água de altura H. Um pequeno furo é feito na parede a uma altura h, de tal forma que um filete de água é expelido horizontalmente, como na figura. Considere a água um fluido incompressível e de viscosidade desprezível. A aceleração local da gravidade vale g.

Determine:

- a) a trajetória y(x) do filete de água descrito;
- b) o lugar geométrico dos pontos P(x,y) que podem ser atingidos por um filete de água, considerando que a altura h possa ser escolhida entre 0 e H.

- Questão 4. Considere uma nave espacial esférica, de raio R, com paredes de espessura $h \ll R$. No espaço profundo, existe uma radiação cósmica de fundo de temperatura T_0 (aproximadamente 2,7 K). Seja a temperatura da parede interna da nave T_i , e a temperatura da parede externa T_e , com $T_i > T_e > T_0$. A condutividade térmica do material que compõe a parede da nave é κ ; o seu calor específico é c e sua densidade de massa é ρ . A emissividade da nave é unitária e a constante de Stefan-Boltzmann é dada por σ . Quando ocorrem pequenas variações de temperatura na parede interna da nave, a condição de fluxo estacionário de calor é perturbada e o sistema tende a uma nova situação de fluxo estacionário de energia. A constante de tempo característica τ desse processo pode ser estimada apenas em termos das características do material que compõem o revestimento da nave $-\kappa$, c e ρ bem como sua espessura h. Faça o que se pede:
- a) obtenha a equação polinomial cuja raiz forneça T_e com os coeficientes em termos de κ , σ , h, T_i e T_0 , considerando a condição de fluxo de calor estacionário;
- b) estime, por análise dimensional, uma expressão para τ .

Questão 5. Um emissor de onda sonora esférica de frequência f_s executa um movimento circular uniforme com velocidade angular ω e raio r em torno da origem O do plano xy, de acordo com a figura. Ao mesmo tempo, um receptor sonoro executa um movimento no eixo y de forma que sua posição sempre coincida com a coordenada y do emissor. A velocidade do som é designada como v_{som} . Sabe-se que o gráfico da frequência da onda sonora detectada no receptor, f_{ob} , em função da coordenada x do emissor, aproxima-se de uma cônica para o caso em que $\omega r \ll v_{som}$. Determine:

- a) a velocidade máxima alcançada pelo receptor;
- b) a cônica e sua equação.

Questão 6. Considere um metamaterial, de índice de refração $n_1 < 0$ e espessura d_1 , depositado sobre um meio de índice de refração $n_2 > 0$. Nesse meio, um objeto A dista d_2 da interface com o metamaterial, como na figura. Considere pequeno o ângulo θ que se forma entre o raio óptico que vai do objeto ao observador e a normal da interface entre o metamaterial e o ar. Nesse caso, vale a aproximação tg $\theta \approx \text{sen}\theta$. Determine n_1 em função de n_2 , d_1 e d_2 para que a imagem final do objeto se forme na interface entre o ar e o metamaterial.

Questão 7. Uma roda de raio d pode girar livremente com relação ao seu centro O, a partir de t=0, partindo do repouso. Na roda, são fixadas oito cargas elétricas de magnitude q (q>0), equiespaçadas, como na figura da direita. Na região, há um campo elétrico não uniforme no sentido positivo do eixo x. A magnitude desse campo é dada pelo gráfico à esquerda, sendo y=0 a extremidade inferior da roda, como na figura da direita.

A respeito do movimento, determine:

- a) o sentido de rotação da roda imediatamente após o início do movimento, justificando sua resposta;
- b) o módulo do torque por causa da força elétrica, em t = 0, relativamente ao centro da roda.

Questão 8. Um laboratório de paredes adiabáticas possui N computadores de alta performance que precisam ser mantidos a uma temperatura T. Para isso, é instalado um ar-condicionado que atua como uma máquina térmica de máxima eficiência possível, operando entre a temperatura do laboratório e a temperatura do meio externo T_e . Cada computador possui n_c circuitos. A Figura 1 é o esquema de um circuito. Cada resistor de cada circuito é formado por um fio de cobre de diâmetro ϵ , com n_v voltas por unidade de comprimento, enrolado em um cilindro de cerâmica de raio r e comprimento l, como na Figura 2. Determine:

- a) a potência dissipada pelos computadores, considerando ρ_0 a resistividade do cobre a uma temperatura padrão T_0 e α o seu coeficiente de temperatura;
- b) a energia consumida pelo ar-condicionado em 1 dia.

Figura 2

Questão 9. Considere duas barras metálicas longas, 1 e 2, dispostas paralelamente uma à outra, em um plano horizontal sem atrito. Seja L o comprimento das barras; 2r, o diâmetro da seção transversal circular; ρ , a densidade volumétrica de massa; e σ , a condutividade elétrica. A barra 1 está conectada a uma fonte de tensão contínua U_1 . A barra 2 é presa em seu centro de massa por uma mola de constante elástica k. Inicialmente, a barra 2 está conectada a uma fonte de corrente I_2 e encontra-se em equilíbrio estático a uma distância d da barra 1. No instante t_1 , a fonte de corrente é desconectada da barra 2, a qual passa a mover-se livremente no plano.

Calcule a velocidade máxima adquirida pela barra 2.

Questão 10. Feixes de luz de comprimentos de onda 590 nm, 450 nm e 380 nm incidem sobre uma superfície metálica. Com um aparato experimental, são medidas as velocidades dos fotoelétrons ejetados. Sabendo que a maior velocidade detectada foi de 640 km/s, faça o que se pede:

- a) determine a função trabalho do material;
- b) determine a frequência de corte;
- c) justifique se é possível que um elétron livre absorva um fóton, tal como ocorre no efeito fotoelétrico em um material. Um elétron livre é um elétron sem interações com outros corpos, além do referido fóton.