3000788 Intro to Comp Molec Biol

Lecture 14: Single-cell transcriptomics

October 2, 2023

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Why single-cell?

Tissue consists of multiple cell types

Tumor microenvironment

Zhang, J. and Veeramachaneni, N. Biomarker Research 10:5 (2022)

Cancer stem cell

Image from https://hsci.harvard.edu/stem-cells-and-cancer

Knowledge at single-cell resolution

Heterogeneity

Treatment response

Cell development through single-cell data

Source: Moon et al. Nature Biotechnology 37:1482-92 (2019)

Detecting gene switches

- Genes whose expressions:
- Change over inferred developmental time
- Diverge between two developmental branches
- Turn on/off across cell type

Source: Ivanovs et al. Development 144:2323-37 (2017)

Single-cell vs bulk transcriptomics

Cell isolation techniques

Hwang et al. Exp & Mol Med 50:96 (2018)

Diverse protocol choices

Methods	Transcript coverage	UMI possibility	Strand specific	References
Tang method	Nearly full-length	No	No	Tang et al., 2009
Quartz-Seq	Full-length	No	No	Sasagawa et al., 2013
SUPeR-seq	Full-length	No	No	Fan X. et al., 2015
Smart-seq	Full-length	No	No	Ramskold et al., 2012
Smart-seq2	Full-length	No	No	Picelli et al., 2013
MATQ-seq	Full-length	Yes	Yes	Sheng et al., 2017
STRT-seq and STRT/C1	5'-only	Yes	Yes	Islam et al., 2011, 2012

Chen et al. Front Genet. 10:317 (2019)

Quartz-Seq2	3'-only	Yes	Yes	Sasagawa et al., 2018
DroNC-seq	3'-only	Yes	Yes	Habib et al., 2017
Seq-Well	3'-only	Yes	Yes	Gierahn et al., 2017
sci-RNA-seq	3'-only	Yes	Yes	Cao et al., 2017
SPLiT-seq	3'-only	Yes	Yes	Rosenberg et al., 2018
Chromium	3'-only	Yes	Yes	Zheng et al., 2017
InDrop	3'-only	Yes	Yes	Klein et al., 2015
Drop-seq	3'-only	Yes	Yes	Macosko et al., 2015
CytoSeq	3'-only	Yes	Yes	Fan H.C. et al., 2015
MARS-seq	3'-only	Yes	Yes	Jaitin et al., 2014
CEL-seq2	3'-only	Yes	Yes	Hashimshony et al., 2016
CEL-seq	3'-only	Yes	Yes	Hashimshony et al., 2012

- Mostly sequence 3' ends of transcript
- Unique Molecular Identifier (UMI) = PCR barcode

10x Genomics' chromium technique

https://bauercore.fas.harvard.edu/10x-chromium-system

- Droplets of sequencing reagents
- Cell barcode + pooled sequencing

UMI and cell barcode

Hwang et al. Exp & Mol Med 50:96 (2018)

- All beads in each droplet have the same cell barcode
 - Reads with the same barcode came from the same cell
- Each PCR adapter contains different
 Unique Molecular Identifiers (UMI)
 - Reads with the same UMI came from the same original RNA molecule

Single-cell vs bulk data

Detection limit of single-cell data

Single-cell RNA-seq

Challenges in single-cell data analysis

- Low read count per cell and gene
 - A lot of zeros in expression data
- Cells are biologically different
 - High variance across cells
- Cells are in continuous states of development
 - Not just control vs treatment
- Data is very large (256 GB of RAM for medium project)
 - 10,000 cells x 5,000 genes

Single-cell data preprocessing

Key steps in single-cell data processing

- Quality filter
 - Low read count & gene count = non-cells
 - Very high read count & gene count = multi-cells
 - High mitochondrial expression = dead cells
- Within-sample normalization
 - Dealing with missing expression values
- Multi-sample integration
 - Single-cell data have strong batch effects

Basic quality filters

An exception

High mitochondrial activity in stem cells and some cell types

Stem cell markers in high-mitochondrial cells

Normalization with pooling

Low expression

Gene A Gene B

Gene C

Medium expression

Gene D

Gene E

Gene F

Gene G

High expression

Gene H

Gene I

Expression-dependent scaling factor

Modeling of detection probability

Measured abundance = $f(true abundance) \times P(detection | true abundance)$

Single-cell data integration

High bias across datasets

https://towardsdatascience.com/how-to-batch-correct-single-cell-7bad210c7ae1

Linear effect removal (Combat-Seq)

Negative binomial regression models

Gene-wise model: for a certain gene g, count in sample j from batch i $y_{gij} \sim NB(\mu_{gij}, \phi_{gi})$

parameter γ_{ai}

Explicit addition of batch
$$\log \mu_{gij} = \alpha_g + X_j \beta_g + \gamma_{gi} + \log N_j$$

parameter $\gamma_{g,j}$ $Var(y_{gij}) = \mu_{gij} + \phi_{gi} \mu_{gij}^2$

Decompose scaled counts into 3 components
$$\begin{bmatrix} & \alpha_g \\ & X_j\beta_g \\ & & \\ & \gamma_{gi} \end{bmatrix}$$

$$lpha_g$$
 Average level for gene g (in "negative" samples) $X_j eta_g$ Biological condition of sample j

Mean batch effect

 N_i = total read count for sample j

Dispersion batch effect

Estimate batch effect parameters

Estimate parameters using established methods in edgeR

Calculate "batch-free" distributions

We assume the adjusted data also follow a negative binomial distribution: $y_{qj}^* \sim NB(\mu_{qj}^*, \phi_q^*)$

Subtract batch parameter $\gamma_{g,i}$ \Longrightarrow $\log \mu_{gj}^* = \log \hat{\mu}_{gij} - \hat{\gamma}_{gi}$ $\phi_g^* = \frac{1}{N_{batch}} \sum_i \hat{\phi}_{gi}$

$$\log \mu_{gj}^* = \log \hat{\mu}_{gij} - \hat{\gamma}_g$$

$$\phi_g^* = \frac{1}{N_{batch}} \sum_i \hat{\phi}_{gi}$$

Zhang, Y. et al. NAR Genom and Bioinfo 2:lgaa078 (2020)

Mutual nearest neighbor (MNN)

- Map clusters of cells together rather than individual cells
- Similar to reciprocal best hits from BLAST for identifying orthologs
- Apply the average mapping vector to unique cell types

Haghverdi et al., Nat. Biot. 36, 2018

Integration via canonical correlation

Canonical correlation analysis (CCA)

- Same samples with two different systems of observations
- Identify correlation structure observation systems (features)

Rajasundaram et al. PLoS ONE (2014)

Good data integration

Integrating RNA-seq with ATAC-seq

- ATAC-seq = open chromatin ~ gene expression level
- Transfer cell type label

Visualizing single-cell data

with dimensionality reduction techniques

Dimensionality reduction

Collapse high-dimensional data on to 2D or 3D scatter plot that preserve some information in original dimension

Manifold hypothesis

"Real-world, high-dimensional data lie on some low-dimensional manifolds"

Nordin, P. et al. Global Health Action 7:25351 (2014)

Dimensionality reduction algorithm sketch

Step 1: Compute a graphical representation of the dataset

Sainburg, T. et al., Neural Comput 33(11):2881-2907 (2021)

Step 2 (non-parametric): Learn an embedding that preserves the structure of the graph

Similarity = correlation in gene expression across cells

t-SNE vs UMAP on single-cell data

Becht, E. et al. Nature Biotechnology 37:38-44 (2019)

t-SNE vs UMAP on single-cell data

Becht, E. et al. Nature Biotechnology 37:38-44 (2019)

- Both are equally good at detecting individual cell types
- But UMAP is better at capturing transitions across cell types

Single-cell analysis overview

Cell clustering and trajectory reconstryction

Clustering of cells with similar omics signatures reveal groups of different cell types and developmental stages

Trajectory modeling with random walk, diffusion, or Markov chain reconstruct the paths of cell development

An end-to-end example

Embedding dimension 1

An end-to-end example

Source: Moon et al. Nature Biotechnology 37:1482-92 (2019)

Algorithm sketch for cell type clustering

Sainburg, T. et al., Neural Comput 33(11):2881-2907 (2021)

https://github.com/topics/graph-clustering

- Connect cells with similar gene expression profile
- Split network into modules with dense edges

Cell developmental trajectory

Cells can be arrange along developmental path

(b) UMAP Embeddings

- Cells are in continuous developmental states
- Similar gene expression implies similar state
- Reconstruct pseudotime
- Identify important genes for development
 - Expression change along the trajectory
 - Expression switch at a particular time point

Minimum spanning tree

Trajectory along the most similar cells

Diffusion approach for cell-cell transitions

Markov chain model for cell development

Cell state + state transition probability + dependency on previous state

Estimating differentiation potential

Differentiation potential = probability of reaching multiple final cell types

Dynamics of unspliced transcript

La Manno et al. Nature 2018

- When a gene is activated, level of unspliced transcripts rises first
- When a gene is repressed, level of unspliced transcripts drops first

RNA velocity model

Bergen, V. et al. Mol Sys Biol 17:e10282 (2021)

- Ratio of spliced and unspliced isoforms tells gene activation state
- Compare to nearby cells to identify direction of activation or repression

Proof of RNA velocity

Circadian genes are genes whose expression cycle with the time of day

Spatial transcriptomics

Extended NanoString

Longo et al. Nature Reviews Genetics 22:627-644 (2021)

In-situ fluorescence labeling of selected RNA transcripts

Spatial barcoding

Longo et al. Nature Reviews Genetics 22:627-644 (2021)

Spatial cell isolation + barcoding

Single-nucleus sequencing

- Isolate nuclei instead of whole-cells
 - Only capture RNA expression in nucleus
- Good for cells that are difficult to isolate: adipocyte, neuron, etc.
 - Also works well with preserved tissues

Summary

- Benefits of single-cell technology
- Difference between single-cell and bulk transcriptomics
- New analysis ideas
 - Visualization of high-dimensional data (preview)
 - Cell type clustering
 - Developmental trajectory reconstruction
- Spatial transcriptomics

Any question?

See you on October 9