

SPARQA: Skeleton-based Semantic Parsing for Complex Questions over Knowledge Bases

Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu National Key Laboratory for Novel Software Technology, Nanjing University

Outline

- Background
- Our approach
 - Overview
 - Skeleton Parsing
 - Multi-Strategy Scoring
- Experiment
- Conclusion

Question Answering over Knowledge Base (KBQA)

Question: Who is the wife of Barack Obama?

Knowledge Base

KBQA Classification

- Simple KBQA
 - Single Predicate
- Complex KBQA
 - Multiple Predicates or Aggregation

Example: What movie that Miley Cyrus acted in had a director named Tom Vaughan?

Challenge 1

Syntactic Parsing Error

Incorrect relation between "in" and "had"

Miss long-distance dependency relation between "movie" and "had"

Challenge 2

Structural Heterogeneity

Our approach

Challenges	Our solutions
Syntactic Parsing Error	Skeleton Parsing
Structural Heterogeneity	Multi-Strategy Scoring

Our approach – Overview

Example

What movie that Miley Cyrus acted in had a director named Tom Vaughan?

(1) Question

(3) Ungrounded Query

So Undercover

(6) Answer

Skeleton Parsing

Skeleton

- Span: minimum semantic unit (S, NP, VP, PP)
- Attachment relation: seven dependency relations (acl, acl:relcl, nmod, nmod:poss, conj, xcomp, advcl)

Skeleton Parsing

```
Algorithm 1 Skeleton Parsing
Require: A sentence Q
Ensure: The skeleton of Q
  T \leftarrow \text{tree} with a root node Q
  while Split(Q) is true do
     s \leftarrow \text{TextSpanPrediction}(Q)
     h \leftarrow \text{HeadwordIdentification}(s, Q)
     r \leftarrow \text{AttachmentRelationClassification}(s, Q)
     Remove s from Q
     Grow T with relation r from h \in Q to s
  end while
  return T
```

Skeleton Parsing

```
Algorithm 1 Skeleton Parsing
Require: A sentence Q
Ensure: The skeleton of Q
  T \leftarrow \text{tree with a root node } Q
  while Split(Q) is true do
     s \leftarrow \text{TextSpanPrediction}(Q)
     h \leftarrow \text{HeadwordIdentification}(s, Q)
     r \leftarrow \text{AttachmentRelationClassification}(s, Q)
     Remove s from Q
     Grow T with relation r from h \in Q to s
  end while
  return T
```

Skeleton Parsing – Procedures

Example – What movie that Miley Cyrus acted in had a director named Tom Vaughan?

Step 1

What movie that Miley Cyrus acted in had a director? acl named Tom Vaughan Step 2 What movie had a director? acl:relcl acl that Miley Cyrus acted in named Tom Vaughan

Multi-Strategy Scoring – Sentence-level Scorer

Multi-Strategy Scoring – Word-level Scorer

Experiment – Setup

Dataset	GraphQuestions	ComplexWebQuestions
Baseline	SEMPRE PARASEMPRE JACANA UDEPLAMBDA SCANNER PARA4QA	MHQA-GRN SIMPQA + PRETRAINED SPLITQA + PRETRAINED SPLITQA + data augmentation PullNet
Metric	F1	P@1

Experiment – Result

GraphQuestions

Method	F1
SEMPRE	10.80
PARASEMPRE	12.79
JACANA	5.08
UDEPLAMBDA	17.70
SCANNER	17.02
PARA4QA	20.40
SPARQA	21.53

ComplexWebQuestions

Method	P@1
MHQA-GRN	30.10
SIMPQA + PRETRAINED	19.90
SPLITQA + PRETRAINED	25.90
SPLITQA + data augmentation	34.20
PullNet	45.90
SPARQA	31.48

Experiment – Ablation Study

■ ComplexWebQuestions

Method	P@1
SPARQA	31.48
SPARQA w/o skeleton parsing	29.39
SPARQA w/o sentence-level scorer	26.45
SPARQA w/o word-level scorer	26.11

Conclusion

- SPARQA
 - Skeleton Parsing
 - Multi-Strategy Scoring
- Future Work
 - Node Recognition and Linking
 - Structural Heterogeneity

Thanks for your listening

Code and Skeleton

https://github.com/nju-websoft/SPARQA