1. (选择题)设函数 f(x) = x(x-2)(x-4)(x-6),则方程 f'(x) = 0 在 $(-\infty, +\infty)$ 内有 () 个实根。

A. 1; B. 2; C. 3; D. 4

选 C.

解析: 因为 f(x) 在 [0,2] 上连续,在 (0,2) 内可导且 f(0) = 0 = f(2) ,所以根据罗尔定理,至少存在 $\xi_1 \in (0,2)$,使得 $f'(\xi_1) = 0$,即方程 f'(x) = 0 在 (0,2) 内至少有一个根 ξ_1 ;

同理,根据罗尔定理,方程 f'(x) = 0 在 (2,4) 内至少有一个根 ξ_2 ; 方程 f'(x) = 0 在 (4,6) 内至少有一个根 ξ_2 ; 所以,方程 f'(x) = 0 在 $(-\infty, +\infty)$ 内至少有 3 个实数根 ;

另一方面,f(x)为 4 次多项式,f'(x)为 3 次多项式,从而方程 f'(x)=0为 3 次代数方程,在 $(-\infty,+\infty)$ 内最多有 3 个实数根。综上,方程 f'(x)=0 在 $(-\infty,+\infty)$ 内有且仅有 3 个实根。

2. (填空题)设函数 $f(x) = x^4$ 在区间 [1,2] 上满足拉格朗日中值定理条件,则中值 $\xi =$ _____。

解析:
$$\frac{2^4 - 1^4}{2 - 1} = 4\xi^3 \Rightarrow \xi = \sqrt[3]{\frac{15}{4}}$$

二、证明

1. 已知函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1)=1 。证明:存在 $\xi \in (0,1)$,使 得 $f(\xi) + \xi f'(\xi) = 1$ 。

证 即证存在 $\xi \in (0,1)$,使得 $f(\xi) + \xi f'(\xi) - 1 = 0$,注意到 f(x) + x f'(x) - 1 = [x f(x) - x]', 故构造辅助函数 $\varphi(x) = x f(x) - x$ 。 因为 $\varphi(x) = x f(x) - x$ 在 [0,1] 上连续,在 (0,1) 内可导, 且 $\varphi(0) = 0 = \varphi(1)$, 所以根据罗尔定理知,存在 $\xi \in (0,1)$, 使得 $\varphi'(\xi) = 0$ 。结论得证。

2. 若 f(x) > 0 在 [a,b] 上连续,在 (a,b) 内可导,则存在 $\xi \in (a,b)$,使得

$$\ln \frac{f(b)}{f(a)} = \frac{f'(\xi)}{f(\xi)}(b-a) \circ$$

证 即证存在 $\xi \in (a,b)$,使得 $\frac{\ln f(b) - \ln f(a)}{b-a} = \frac{f'(\xi)}{f(\xi)}$,故构造辅助函数 $\varphi(x) = \ln f(x)$ 。

因为 $\varphi(x) = \ln f(x)$ 在[a,b]上连续,在(a,b)内可导,所以根据拉格朗日中值定理知,存在 $\xi \in (a,b)$,使得 $\frac{\varphi(b)-\varphi(a)}{b-a} = \varphi'(\xi)$ 。结论得证。

3.
$$\forall 0 < x < \frac{\pi}{2}$$
,证明 $x < \tan x < \frac{x}{\cos^2 x}$ 。

证 即证
$$1 < \frac{\tan x}{x} < \frac{1}{\cos^2 x}$$
,亦即证 $1 < \frac{\tan x - \tan 0}{x - 0} < \frac{1}{\cos^2 x}$ 。

因为 $\varphi(x) = \tan x$ 在[0,x]上连续,在(0,x)内可导,由拉格朗日中值定理知,存在

$$\xi \in (0,x)$$
,使得 $\frac{\varphi(x)-\varphi(0)}{x-0} = \varphi'(\xi)$,即 $\frac{\tan x - \tan 0}{x-0} = \frac{1}{\cos^2 \xi}$ 。注意到

当
$$0 < \xi < x < \frac{\pi}{2}$$
时, $\cos^2 x < \cos^2 \xi < \cos^2 0$,结论得证。