SOSC 4300/5500: Text Analysis; Supervised Machine Learning

Han Zhang

Oct 6, 2020

Outline

Logistics

Supervised Machine Learning

Collect Training data

Algorithms

Logistics

ullet Please submit as a group for Assignment 1

Review

- Goal: classify documents into pre existing categories.
 - e.g. sentiment of tweets, ideological position of politicians based on manifestos
- We have seen how dictionary method works to classify documents into categories according to dictionaries
- But dictionary methods have many shortcomings
 - Constructing the set of matches in the dictionary is mostly a matter for human judgment
 - And it's quite often that words have multiple meanings

Supervised Machine Learning

- Supervised methods require a training that exemplify contrasting classes, coded by the researcher
- Formally, we have a training set of (X_i, Y_i) , where each X is a document, and each Y is the category/outcome of the document X
- We train (fit/learn) an model f that maps X to Y: Y = f(X)
 - Hence machine learning
- With the trained model, the goal is to predict the outcomes of documents in the test set, whose categories are unknown

Supervised Machine Learning vs Dictionary Method

- Dictionary Method
 - Advantage: not corpus-specific, cost to apply to a new corpus is trivial
 - Disadvantage: not corpus-specific if you take an off-the-shelf dictionary, so performance on a new corpus is unknown (domain shift)
- Supervised learning
 - Advantage: corpus-specific
 - Disadvantage: You must already know the expected outcomes (e.g., what categories are allowed)

Supervised Machine Learning vs Dictionary Method

- Supervised machine learning can be conceptualized as a generalization of dictionary methods
 - Think about document-term matrix
 - Dictionary methods basically only keeps the columns whose words are in the dictionary;
 - Supervised methods keeps all words, and learn the weights of each column from data
 - Irrelevant words will then be assigned with lower weights
- Theoretically, supervised machine learning will outperform dictionary methods in classification tasks, as long as training set is large enough

		words										
	docs			had	into	get	some	through	next	where	many	irish
	t06_kenny_fg	12	11	5	4	8	4	3	4	5	7	10
	t05_cowen_ff	9	4	- 8	5	- 5	5	14	13	4	9	8
	t14_ocaolain_sf	3	3	3	4	7	3	7	2	3	5	6
	t01_lenihan_ff	12	1	5	4	2	11	9	16	14	6	9
	t11_gormley_greer	1 O	0	0	3	0	2	0	3	1	1	2
	t04_morgan_sf	11	8	7	15	8	19	6	5	3	6	6
	t12_ryan_green	2	2	3	7	0	3	0	1	6	0	0
	t10_quinn_lab	1	4	4	2	8	4	1	0	1	2	0
	t07_odonnell_fq	5	4	2	1	5	0	1	1	0	3	0
	t09_higgins_lab	2	2	5	4	0	1	0	0	2	0	0
	t03_burton_lab	4	8	12	10	5	5	4	5	8	15	8
	t13_cuffe_green	1	2	0	0	11	0	16	3	0	3	1
1	t08_gilmore_lab	4	8	7	4	3	6	4	5	1	2	11
	t02_bruton_fg	1	10	6	4	4	3	0	6	16	5	3
	_											

Steps in supervised methods

Dictionary				
the same				
Collect/construct dictionaries				
Apply dictionary on corpus				
Validation				

How do we obtain a labeled training set?

- Usually we already have (texts)
- How can we get the category for these texts?
- External sources of annotation
- Jake M. Hofman, Amit Sharma, and Duncan J. Watts, Prediction and explanation in social systems, Science 355 (2017), no. 6324, 486–488
- *Y* is cascade size: number of total retweets (including retweets of retweets, and so on so fort)
- *X* is text of tweets, user info, past number of retweets.
- In other words, Y is automatically obtained by some external process
- Other examples?
- Cheap labels are usually noisy; do not always contain what you want

Expert annotation

- If you cannot find existing labeled training data that fits your need
- Expert annotation
- E.g., the Comparative Manifesto Project
 - Texts: parties' election manifestos in major electoral democracies
 - Outcomes: a bunch of variables related to the party's policy preferences reflected in the texts.
 - 4,000 manifestos from nearly 1,000 parties in 50 countries and then organized political scientists to systematically code them.
 Each sentence in each manifesto was coded by an expert using a 56-category scheme
 - https://manifestoproject.wzb.eu/down/tutorials/ primer.html
- In most academic projects, PG/UG students with some training do the coding

- Crowd-sourced coding:
 - Wisdom of crowds: aggregated judgments of non-experts converge to judgments of experts at much lower cost
- E.g., crowd-sourced coding of the Comparative Manifesto Project
- Kenneth Benoit, Drew Conway, Benjamin E. Lauderdale, Michael Laver, and Slava Mikhaylov, Crowd-sourced Text Analysis: Reproducible and Agile Production of Political Data, American Political Science Review 110 (2016), no. 2, 278–295
 - crowd-source workers were asked to classify each sentence as referring to economic policy (left or right), to social policy (liberal or conservative), or to neither
 - Key here: simplify the burden for coder! 56 categories are too much for non-experts.

:PROPERTIES: :CUSTOM_ID:

h:6e0924f1-7b65-49d0-b350-38bdba466572

 With more coders on the same document, error of coding decreases

FIGURE 5. Standard Errors of Manifesto-level Policy Estimates as a Function of the Number of Workers, for the Oversampled 1987 and 1997 Manifestos

Note: Each point is the bootstrapped standard deviation of the mean of means aggregate manifesto scores, computed from sentencelevel random n subsamples from the codes.

- The crowd-source coding produce high-quality results, on par with expert coding
- And it is quick
- E.g., Benoit et al. want to code a new variable related to immigrants
 - "Within 5 hours of launching their project, the results were in.
 They had collected more than 22,000 responses at a total cost of \$360", based on around 51 coders

How many labeled document is enough?

- Depending on problems.
- (always try some dictionary methods first!)
- First collect several hundreds or a thousand, if your Y is binary
- Then start to fit some models and see performances
- And see if you need to code more

Various algorithms you will commonly used

- We have introduced how do you transform text data into a matrix X in the last lecture
- And we have labels (Y)
- Then we can use the algorithms that you have used for Assignment 1 to make prediction for texts
 - Linear/logistic regression
 - LASSO and Elastic Net: linear regression
 - Tree and Forests
 - SVM

LASSO and Elastic Net

- We have p variables
- Linear regression:

$$\hat{\beta}_{OLS} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 \tag{1}$$

Lasso estimator

$$\hat{\beta}_{LASSO} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda_1 \sum_{i=1}^{p} |\beta_i|$$
 (2)

ElasticNet

$$\hat{\beta}_{Ridge} = \operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} \beta_j^2 \quad (3)$$

LASSO and Elastic Net

- Forcing coefficient estimates to be small is called regularization, or adding penalty
- Larger λ_1 forces more coefficients to be 0
- Larger λ_2 forces more coefficients to be small (but not 0)
- How do we choose the value of λ ?
- These are often called hyperparameters;
 - We do not care about their values
 - But we need to set them in order to run our algorithms

Train/validation/test split to select

• We use validation data to select the values of hyperparameters

Cross validation

Decision Tree Example

https://archive.nytimes.com/www.nytimes.com/ imagepages/2008/04/16/us/20080416_OBAMA_GRAPHIC.html? emc=polb1&nl=pol

Decision Tree: The Obama-Clinton Divide

Growing a Tree

- The above data cannot easily be separated by drawing a straight line (i.e., simplest linear regression)
- Let us draw a tree by ourselves to distinguish Y = 0 vs. Y = 1, based on X_1 and X_2
 - We want a binary tree: split into two branches

Some details

- 1. There are usually multiple ways to grow a tree
 - How do we pick the order we draw branches?
- 2. We usually work with binary tree. Otherwise:
 - For continuous X, we can split it in many ways
 - For categorical X, if the number of levels is large, we can still have a very wide tree
- 3. What if we there are multiple outcomes on a same leaf?
 - For continuous outcomes, the prediction is the mean
 - For categorical outcomes, the prediction is the mode
- 4. No need to use all predictors: tree automatically does variable selection
- 5. One predictor can be used multiple times

Desision Tree Algorithms

- Decision Tree Algorithms help you to draw a tree from more complex data
- What are the steps we should take
- We have a list of features $X_1, \cdots X_m$
- Which feature X_i to choose first?
- The intuitive answer is that:
 - Choose X_i that best separates Y
 - i.e., the left branch is mostly one category and the right branch is mostly the other category
 - Thus predicts *Y* the best)

Some details

- The above procedure tells you how to grow the first branch
- For any internal nodes, the procedure is the same, expect that you only use observations that belong to this branch to
 - This is known as greedy recursive binary splitting
 - It is possible that a particular choice of X_j may not be the current best, but may turn out to be the best choice in the future (locally best vs. globally best)
 - But we do not consider the above possibility; just greedily choose the best partition and do not look back
- Intuitively, whenever we grow a new branch, we are adding more interactions, using regression analogy.

Decision Tree: Over-fitting and Regularization

- The tree grown using the above procedure can be quite complex
- We can always make a very complex tree by:
 - Try your best to make every single leaf contains only one Y
- In this way, we overfit the data
 - Complex trees fit the data nearly perfectly
 - But it does not generalize well to the test set
 - Each time you have a new observation, the tree may look entire different
- We need to regularize to make tree simpler
- In decision trees, people often call regularization as pruning

Pruning strategy

- Intuitively, we are pruning leaves that are too small
- Many different ways to make your tree simpler:
 - Force the tree to have no more than certain number of leaves
 - Force the tree to have no more than certain depth

Decision Tree: un-pruned

Decision Tree: pruned

Pros and Cons of Decision Trees

- Pros:
 - visualize
 - easy to recognize which feature is more important (those on top of a tree)
 - easy to understand
 - handles complex interactive data with ease
 - handles categorical variables easily: no need for dummies
- Cons:
 - If your data are not that complex, tree easily overfit
 - And it is slow

Random Forest

- Random Forests further extend the idea of bagging
- The key innovation of random forests:
- For each sample from the original training data, randomly select m variables (not using all p variables), and grow a tree;
 - A common choice: $m = \sqrt{p}$
- In other words, we just force p m predictors to be non-relevant each time
- Why? High-dimensional data!

SVM: linear case

· Least square: minimize mean square error

SVM: linear case

• SVM: maximize margin

SVM: nonlinear case

- Some data are not linearly separable
- That is, it's mathematically impossible that you write a linear/logistic regression and use different interactions of X to perfectly classify Y

SVM: kernel tricks

- SVM performs kernel tricks
 - By projecting data to a higher-dimension space
 - And then the projected data becomes linearly separable
 - https://towardsdatascience.com/ mathematics-behind-svm-support-vector-machines-84742ddd

SVM: practice

- First developed for binary classification; some extensions are made for multiple
- Has dominated the CS literature for a while (in the 90s and early 00s)
- Can be slower than LASSO
- Commonly used kernels
 - Radial basis function kernel (RBF): more explicitly project the data onto higher dimension, thus is more powerful
 - but slow
 - Linear/polynomial kernel: less powerful