BLG456E Robotics Particle Filter (simple version)

- Particle Filter Algorithm
 - Reweighting.
 - Resampling.
 - Prediction.
- Application to laser-based localisation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Particle Filter: A generate and test algorithm

- Generate hypotheses.
- Loop:
 - Score hypotheses against observed data.
 - Select and reproduce according to score.
 - Perturb them.

- Hypotheses ←→ particles.
- Related concept: Kalman Filter.

Particle Filter Algorithm for localisation (simple version)

Generate a set H of N location hypotheses $(x_1, y_1, \theta_1)...(x_N, y_N, \theta_N)$ For each new laser scan:

Reweighting:

Calculate a score $p_1 \dots p_N$ for each hypothesis by comparing it to the scan Ensure that these to sum to 1

Resampling:

Make a new empty set *G* of hypotheses.

For *i* in 1...*N*:

Pick a j from 1.. N with probabilities $p_1...p_N$

Add (x_j, y_j, θ_j) to G

There should now be *N* hypotheses in *G*

Prediction:

Move each (x_i, y_i, θ_i) randomly

Initial poses

Cupboard Location Location Outside

Reweighting

Resampling

Cupboard Location Location Outside

Prediction

BLG456E Robotics Particle Filter (simple version)

- Particle Filter Algorithm
 - Reweighting.
 - Resampling.
 - Prediction.
- Application to laser-based localisation.

Lecturer: Damien Jade Duff

Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Particle Filter Algorithm for localisation (simple version)

Generate a set H of N location hypotheses $(x_1, y_1, \theta_1)...(x_N, y_N, \theta_N)$ For each new laser scan:

Reweighting:

Calculate a score $p_1 \dots p_N$ for each hypothesis by comparing it to the scan Ensure that these to sum to 1

Resampling:

Make a new empty set *G* of hypotheses.

For *i* in 1...*N*:

Pick a j from 1.. N with probabilities $p_1...p_N$

Add (x_j, y_j, θ_j) to G

There should now be *N* hypotheses in *G*

Prediction:

Move each (x_i, y_i, θ_i) randomly

Reweighting using laser scans? A simple scheme

$$Score_1 = \frac{\text{num values correctly classfied as NAN}}{\text{num actual NAN values}}$$

$$Score_2 = \frac{\text{num values correctly classfied as OK}}{\text{num actual OK values}}$$

$$Score_3 = \frac{\text{num estimated values closer than 0.5 to actual values}}{\text{num actual OK values}}$$

$$Score_4 = \frac{\text{num estimated values closer than } 0.03 \text{ to actual values}}{\text{num actual OK values}}$$

$$total = \left(\frac{Score_1 + Score_2 + Score_3 + Score_4}{4}\right)^4$$

Predicting new random poses A simple scheme

```
prediction (x, y, \theta):

\Delta x \sim \text{Random Normal Distribution}(\sigma = 0.1)

\Delta y \sim \text{Random Normal Distribution}(\sigma = 0.1)

\Delta \theta \sim \text{Random Normal Distribution}(\sigma = 0.2)

return (x + \Delta x, y + \Delta y, \theta + \Delta \theta)
```

Reading

- Chapter 4. Perception.
- **Chapter 5**. Mobile Robot Localization.

Also:

https://rse-lab.cs.washington.edu/projects/mcl/