Lecture 5: Random Variable, Part III

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

April 27, 2021

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

April 27, 2021 1 / 39

April 27, 2021 2 / 39

Roadmap

Derived Distribution: Y = g(X)

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.
- What are easy or difficult cases?
- Easy cases
 - Discrete
 - Linear: Y = aX + b

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

$$p_Y(3) = p_X(2) + p_X(3) = 0.1 + 0.2 = 0.3$$

 $p_Y(4) = p_X(4) + p_X(5) = 0.3 + 0.4 = 0.7$

L5(1) April 27, 2021 5 / 39

If
$$a < 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \ge \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$
 $\to f_Y(y) = -\frac{1}{a}f_X\left(\frac{y - b}{a}\right)$

Therefore,

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

L5(1) April 27, 2021 6 / 39

Linear: Y = aX + b, when X is exponential

 $f_Y(y) = egin{cases} rac{\lambda}{|a|} e^{-\lambda(y-b)/a}, & ext{if} \quad (y-b)/a \geq 0 \\ 0, & ext{otherwise} \end{cases}$

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

Linear: Y = aX + b, when X is normal

Remember? Linear transformation preserves normality. Time to prove.

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and b , $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Proof.

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sqrt{2\pi}} \exp\left\{-\left(\frac{y-b}{a} - \mu\right)^2 / 2\sigma^2\right\}$$
$$= \frac{1}{\sqrt{2\pi}|a|\sigma} \exp\left\{-\frac{(y-b-a\mu)^2}{2a^2\sigma^2}\right\}$$

• If b=0 and a>0, Y is exponential with parameter $\frac{\lambda}{a}$, but generally not.

April 27, 2021 7 / 39

L5(1)

April 27, 2021 8 / 3

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Ex1.
$$Y = X^2$$
.

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$
$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_Y(y) = \frac{1}{2\sqrt{y}}f_X(\sqrt{y}) +$$

$$\frac{1}{2\sqrt{y}}f_X(-\sqrt{y}), \quad y \ge 0$$

Ex2. $X \sim \mathcal{U}[0, 1]. \ Y = \sqrt{X}.$

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

$$f_Y(y) = 2y, \quad 0 < y < 1$$

Ex3. $X \sim \mathcal{U}[0, 2]$. $Y = X^3$.

$$F_Y(y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le \sqrt[3]{y}) = \frac{1}{2}y^{1/3}$$

$$f_Y(y) = \frac{1}{6}y^{-2/3}, \quad 0 \le y \le 8$$

When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Basically, follow two-step approach: (i) CDF and (ii) differentiate.

Ex1.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = \max(X, Y)$.

*
$$\mathbb{P}(X \le z) = \mathbb{P}(Y \le z) = z, \ z \in [0, 1].$$

$$F_{Z}(z) = \mathbb{P}(\max(X, Y) \le z) = \mathbb{P}(X \le z, Y \le z)$$
$$= \mathbb{P}(X \le z)\mathbb{P}(Y \le z) = z^{2} \qquad \text{(from } X \perp \!\!\!\perp Y)$$

$$f_Z(z) = egin{cases} 2z, & ext{if } 0 \leq z \leq 1 \\ 0, & ext{otherwise} \end{cases}$$

L5(1)

April 27, 2021 9 / 39

L5(1)

April 27, 2021 10 / 39

Functions of multiple rvs: Z = g(X, Y) (2)

KAIST EE

Roadmap

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex2. $X, Y \sim \mathcal{U}[0, 1]$, and $X \perp \!\!\!\perp Y$. Z = Y/X.

$$F_Z(z) = \mathbb{P}(Y/X \le z)$$

$$= \begin{cases} z/2, & 0 \le z \le 1\\ 1 - 1/2z, & z > 1\\ 0, & \text{otherwise} \end{cases}$$

$$f_Z(z) = \begin{cases} 1/2, & 0 \le z \le 1\\ 1/(2z^2), & z > 1\\ 0, & \text{otherwise} \end{cases}$$

- Depending on the value of \boldsymbol{z} , two cases need to be considered separately.

(Note) Sometimes, the problem is tricky, which requires careful case-by-case handing. :-)

(1) Derived distribution of Y = g(X) or Z = g(X, Y)

(2) Derived distribution of Z = X + Y

(3) Covariance: Degree of dependence between two rvs.

(4) Correlation coefficient

(5) Conditional expectation and law of iterative expectations

(6) Conditional variance and law of total variance

(7) Random number of sum of random variables

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\! \perp Y$

KAIST EE

Y = X + Y, $X \perp \!\!\!\perp Y$: Continuous

KAIST EE

A very basic case with many applications

• Assume that $X,Y\in\mathbb{Z}$

$$p_{Z}(z) = \mathbb{P}(X + Y = z)$$

$$= \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X = x, Y = y)$$

$$= \sum_{x} \mathbb{P}(X = x, Y = z - x)$$

$$= \sum_{x} \mathbb{P}(X = x) \mathbb{P}(Y = z - x)$$

$$= \sum_{x} p_{X}(x) p_{Y}(z - x)$$

• $p_Z(z)$ is called convolution of the PMFs of X and Y.

- Interpretation (for a given z)

(i) Flip (horizontally) $p_Y(y)$ ($p_Y(-x)$)

(ii) Put it underneath $p_X(x)$ $(p_Y(-x+z))$

• Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

• Example. $X, Y \sim \mathcal{U}[0,1]$ and $X \perp \!\!\! \perp Y$. What is the PDF of Z = X + Y?

L5(2) April 27, 2021 13 / 39 L5(2) April 27, 2021 14 / 39

$Y = X + Y, X \perp \!\!\!\perp Y, \text{ Normal } (1)$

 $Y = X + Y, X \perp \!\!\!\perp Y, \text{ Normal (2)}$

- Very special, but useful case
- X and Y are normal.

Sum of two independent normal rvs

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 and $Y \sim \mathcal{N}(\mu_x, \sigma_x^2)$ Then, $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

- Why normal rvs are used to model the sum of random noises.
- Extension. The sum of finitely many independent normals is also normal.

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{X}} \exp\left\{-\frac{(x - \mu_{X})^{2}}{2\sigma_{X}^{2}}\right\} \frac{1}{\sqrt{2\pi}\sigma_{Y}} \exp\left\{-\frac{(z - x - \mu_{Y})^{2}}{2\sigma_{Y}^{2}}\right\} dx$$

 The details of integration is a little bit tedious, but note where we use the independence condition.

$$f_Z(z) = \frac{1}{\sqrt{2\pi(\sigma_x^2 + \sigma_y^2)}} \exp\left\{-\frac{(z - \mu_x - \mu_y)^2}{2(\sigma_x^2 + \sigma_y^2)}\right\}$$

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- Random number of sum of random variables

• covariance의 필요성을 이야기해주는 example을 찾아서 먼저 이야기를 해준다.

L5(3)

April 27, 2021 17 / 39 L5(3)

April 27, 2021

18 / 39

Making a Metric of Dependence Degree

OK. Let's Design!

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence
- Regs.
 - a) Increases (resp. decreases) as they become more (resp. less) dependent.
 - b) 0 when they are independent.
 - c) Shows the direction of dependence by + and -
 - d) Always bounded by some numbers, e.g., [-1,1]
- Good engineers: Good at making good metrics
 - Metric of how our society is economically polarized
 - A lot of metrics in our professional sports leagues (baseball, basketball, etc)
 - Cybermetrics in MLB (Major League Baseball): http://m.mlb.com/glossary/advanced-stats

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow, Y \uparrow$) or Negative (If $X \uparrow, Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0$ when $X \perp \!\!\! \perp Y$
 - More data points (thus increases) when xy > 0 (both positive or negative)

(Q) What about $\mathbb{E}[X + Y]$?

KAIST EE

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp\!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

• $p_{XY}(1,0) = p_{XY}(0,1) = p_{XY}(-1,0) = p_{XY}(0,-1) = 1/4$.

- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0
- Are they independent? No, because if X = 1, then we should have Y = 0.

L5(3) April 27, 2021 21 / 39 L5(3) April 27, 2021 22 / 39

Some Properties

KAIST EE

Example: The hat problem in Lecture 3. Remember?

cov(X,X)=0

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] - 2cov(X, Y)$$

- *n* people throw their hats in a box and then pick one at random
- ullet X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv X_i = 1 if i selects own hat and 0 otherwise. Then, X = ∑_{i=1}ⁿ X_i.
- Key step 2. Are X_i s are independent?
- $X_i \sim Bernoulli(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $var[X_i] = \frac{1}{n}(1 \frac{1}{n})$

• For $i \neq j$,

$$cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

$$= \mathbb{P}(X_i = 1 \text{ and } X_j = 1) - \frac{1}{n^2}$$

$$= \mathbb{P}(X_i = 1) \mathbb{P}(X_j = 1 | X_i = 1) - \frac{1}{n^2}$$

$$= \frac{1}{n} \frac{1}{n-1} - \frac{1}{n^2} = \frac{1}{n^2(n-1)}$$

$$var[X] = var\left[\sum X_i\right]$$

$$= \sum var[X_i] + \sum_{i \neq j} cov(X_i, X_j)$$

$$= n\frac{1}{n}(1 - \frac{1}{n}) + n(n - 1)\frac{1}{n^2(n - 1)} = 1$$

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- Conditional variance and law of total variance
- Random number of sum of random variables

Regs. a), b), and c) satisfied.

- d) Always bounded by some numbers, e.g., [-1, 1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X - \mu_X)}{\sigma_X} \cdot \frac{(Y - \mu_Y)}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- $-1 < \rho < 1$
- $|\rho| = 1 \Longrightarrow X \mu_X = c(Y \mu_Y)$ (linear relation, VERY related)

L5(4)

April 27, 2021 25 / 39

KAIST EE

L5(4)

April 27, 2021 26 / 39

KAIST EE

Roadmap

(1) Derived distribution of Y = g(X) or Z = g(X, Y)

- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- Conditional variance and law of total variance
- (7) Random number of sum of random variables

A Special Random Variable

Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4\\ 1, & \text{w.p. } 1/4\\ 4, & \text{w.p. } 1/2 \end{cases}$$

Consider other rv X, such that

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

- The rv g(Y) looks special, so let's give a fancy notation to it.
- What about? $X_{exp}(Y)$, $\mathbb{E}[X_Y]$, $\mathbb{E}_X[Y]$?

L5(5)

Conditional Expectation

A random variable $g(Y) = \boxed{\mathbb{E}[X|Y]}$, called conditional expectation of X given Y takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has.
- Often confusing because of the notation.

Expectation of Conditional Expectation

 $\mathbb{E}\big[\mathbb{E}[X|Y]\big] = \mathbb{E}[X]$, Law of iterated expectations

Proof.

$$\mathbb{E}\Big[\mathbb{E}[X|Y]\Big] = \sum_{y} \mathbb{E}[X|Y=y]p_{Y}(y)$$
$$= \mathbb{E}[X]$$

L5(5) April 27, 2021 29 / 39

April 27, 2021 30 / 39

KAIST EE

Examples and Meaning

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

KAISTEE

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$
- End of Jan. new information Y = y (Jan. sales) Revised forecast: $\mathbb{E}[X|Y = y]$ Revised forecast $\neq \mathbb{E}[X]$
- Law of iterated expectations $\mathbb{E}[\text{revised forecast}] = \text{original one}$

Roadmap

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

$$\operatorname{\mathsf{var}}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$var[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

Conditional Variance

A random variable g(Y) = |var[X|Y]| and called conditional variance of X given Y takes the value $g(y) = \text{var}[\overline{X|Y=y]}$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has

	$\mathbb{E}[X Y]$	var[X Y]
Expectation	$\mathbb{E}\Big[\mathbb{E}(X Y)\Big]$	$\mathbb{E}\Big[var(X Y)\Big]$
Variance	$var \Big[\mathbb{E}(X Y) \Big]$	var[var(X Y)]

L5(6) L5(6) April 27, 2021 33 / 39

Law of Total Variance

KAIST EE

Roadmap

April 27, 2021

Law of total variance

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{\mathsf{var}}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

$$\mathbb{E}\Big[\operatorname{var}(X|Y)\Big] = \mathbb{E}[X^2] - \mathbb{E}\Big[(\mathbb{E}[X|Y])^2\Big]$$
(1)

$$\operatorname{var}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}\left[\mathbb{E}(X|Y)\right]\right)^{2} = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}[X]\right)^{2}$$
(2)

$$(1) + (2) = \mathbb{E}[X^2] + (\mathbb{E}[X])^2 = \text{var}[X]$$

(1) Derived distribution of
$$Y = g(X)$$
 or $Z = g(X, Y)$

- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

- N: number of stores visited (random)
- X_i : money spent in store i, independent of other X_i and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + ... X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{\mathsf{var}}[Y] = \mathbb{E}\left[\operatorname{\mathsf{var}}(Y|N)\right] + \operatorname{\mathsf{var}}[\mathbb{E}(Y|N)] = \mathbb{E}[N]\operatorname{\mathsf{var}}[X_i] \mu^2\operatorname{\mathsf{var}}[N]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$ $var[Y|N] = Nvar[X_i]$

 $\mathbb{E}[\mathsf{var}(Y|N)] = \mathbb{E}[N\mathsf{var}[X_i]] = \mathbb{E}[N]\mathsf{var}[X_i]$

Questions?

L5(6) April 27, 2021 37 / 39

Review Questions

L5(6)

- 1) What are the key steps to get the derived distributions of Y = g(X) or Z = g(X, Y)?
- 2) How can we compute the distribution of Z + X + Y when X and Y are independent?
- 3) What are covariance and correlation coefficient? Why do we need them?
- 4) Please explain the concepts of conditional expectation and conditional variance.

L5(6) April 27, 2021 39 / 39 April 27, 2021