Programmazione Funzionale

Esonero 1 – Giovedi 30 novembre 2023

Esercizio 1 (Liste Palindrome). Un palindrome e una parola che si legge uguale sia dalla sinistra alla destra che dalla destra alla sinistra. Questa nozione puo essere definita anche per le liste. Ad esempio le liste [1;1] e [1;2;3;3;2;1] sono palindrome, invece [1;2] e [2;3;3] non sono palindrome.

- 1. Definire la funzione invert : a' list > a' list che prende una lista $[a_1; ...; a_n]$ e ritorna la lista $[a_n; ...; a_1]$.
- 2. Definire la funzione pali : a' list -> bool che ritorna true se la lista e un palindrome e false altrimenti.

La funzione precedente risolve il problema, pero quando viene applicata a una lista di lunghezza *n* necessita l'uso dell'ugualianza per le liste di lunghezza *m*.

Un altro metodo puo essere usato per le liste di lunghezza m > 2 che usa l'ugualianza per liste di lunghezza m/2, cerchiamo di implementare una tale funzione:

- 1. Definire la funzione length che prende una lista e restituisce la sua lunghezza.
- 2. Definire una funzione invertWithControl di tipo a' list * a' list * int che prende una tripla (l_1, l_2, n) e restituisce la coppia (l'_1, l'_2) dove l'_1 corrisponde a l_1 da cui sono stati tolti i primi n elementi, e l'_2 corrisponde concatenazione $l_p \cdot l_2$ di l_p la lista dei n primi elementi di l invertita, con l_2 .
- 3. Definire la funzione divide che prende una lista $[a_1; ...; a_{2n}]$ di lunghezza pari e ritorna la coppia di liste $[a_1; ...; a_n]$ e $[a_{n+1}; ...; a_{2n}]$. Se la lunghezza e dispari la funzione sollevera un eccezione Dispari.
- 4. Mediante le funzione invert, length, divide definire una funzione pali1 che verifica se una lista e un palindrome. Cioè, *per ogni* liste l, pali(l) e pali1(l) sono uguali.

Esempi di comportamento delle funzione;

- invert [2;15;6] restituisce [6;15;2].
- length [3;3;2] restituisce 3. length [88] restituisce 1.
- invertWithControl ([3;45;7;1] , [11;5] , 2) restituisce ([7;1], [45;3;11;5]).
- divide [1;2;5] soleva l'eccezione Dispari. Invece divide [2;3;15;7] restituisce ([2;3],[15;7]).

Esercizio 2 (Clausole). Una clausola e un proposizione della forma seguente

$$C = p_1 \wedge \cdots \wedge p_n \Rightarrow q_1 \vee \cdots \vee q_k$$

Dove $(p_i)_{1 \le i \le n}$ e $(q_i)_{1 \le i \le k}$ sono liste di booleani. Una clausola C e vera se e solo se tutti p_i sono veri e almeno uno dei q_j e vero oppure quando un p_i e falso.

- 1. Definire la funzione andList: bool list -> bool che prende una lista di booleani [b1; . . . ;bn] e ritorna true se tutti i booleani bi sono veri. Se la lista e vuota restituisce true.
- 2. Definire la funzione orList : bool list -> bool che prende una lista di booleani [b1; . . . ;bn] e ritorna true se un booleano bi e vero. Se la lista e vuota restituisce false.
- 3. Definire la funzione clausola : bool list * bool list -> bool che dato una coppia di liste ([p1; . . . ; pk], [q1; . . . ; qk]) restituisce true se la clausola $p_1 \wedge \cdots \wedge p_n \Rightarrow q_1 \vee \cdots \vee q_k$ e vera e false altrimenti.

Esempi di comportamento delle funzione;

- andList [true; false; true] restituisce false, mentre andList [true; true; true] restituisce true.
- orList [true; false; true] restituisce true, invece orList[false; false] restituisce false.
- clausola([true; true; false], [false; false]) restituisce true.
- clausola([true;true;true],[false;false]) restituisce false.
- clausola([true; true; true], [true; false]) restituisce true.

Esercizio 3 (Massimo Comune Divisore). Un intero n divide un intero m se esiste un intero k tale che $m = n \times k$. Il massimo comune divisore di due interi n e m e il piu grande intero che divide sia n che m.

Ad esempio, 3 divide 12 perche $12 = 3 \times 4$, pero 5 non divide 12. Il massimo comune divisore di 12 e 18 e 6.

- 1. Definire una funzione divide : int * int− > int che prende una coppia di interi (n, m) e restituisce true se n divide m e false altrimenti.
- 2. La funzione divisors : int- > intlist che prende un intero *n* e restituisce la lista dei divisori di *n*.

 Ad esempio, possiamo usare una funzione ausiliaria e ricorsiva di coda divTailAux di tipo int*int* (int list).
- 3. Definire la funzione mcd: int * int -> int che prende due interi n e m e restituisce il loro massimo comune divisore. Per esempio possiamo definire due funzione ausiliaria max: int list -> int che restituisce il piu grande elemento di una lista di interi e divisors2:int *int -> int list che restituisce la lista dei interi che dividono i due interi di una coppia (n, m).

Esempi di comportamento delle funzione;

- divide(3,6) = true, divide(2,17) = false e divide(6,9) = false.
- divisors(18) = [1; 2; 3; 6; 9; 18], mcd(7,5) = 1 e mcd(12,30) = 6.

Esercizio 4 (Iterazione e Interi di Church). Dato un intero n l'iterazione di una funzione f si scrive f^n e applicata a un intero k restituisce $f(f(\ldots(f(k))\ldots)$ dove f occore n volte. Piu formalmente:

$$f^{0}(k) = k$$
 e $f^{n}(k) = f(f^{n-1}(k)).$

- 1. Definire la funzione cur che prende una funzione f : A*B -> C e ritorna la sua versione curryficata cioé di tipo A -> (B -> C).
- 2. Definire una funzione i ter che prende una funzione f e un intero n e restituisce la **funzione** f^n . Si puo per esempio, usare una funzione ausiliaria che prende tre argomenti (f, n, k) e ritorna $f^n(k)$ e poi usare una forma curryficata.

```
Ad esempio, dato f = function x \rightarrow x+2 allora iter(f,3) = function x \rightarrow (((x+2)+2)+2).
```

Gli interi di church sono una rappresentazione degli interi basata sul costruttore function e l'applicazione iterata delle funzioni;

$$n \mapsto \lambda x.\lambda f.f^n(x)$$
 cioè $n \mapsto$ function x -> function f -> $f^n(x)$.

- 3. Definire la funzione church che prende un intero *n* e restituisce la sua rappresentazione di Church.
- 4. Dato un intero n indicare il tipo della sua rappresentazione di Church function $x \rightarrow function f \rightarrow f^n(x)$.
- 5. Semplicemente usando il punto precedente, indicare il tipo della funzione church.

Esercizio 5 (Espressione ricorsive e stringhe). Consideriamo di aver dichiarato il tipo ricorsivo seguente:

```
type espr = Name of String | Space of espr | Concat of espr*espr
```

Un elemento di tipo espr e della forma Name s, Space e o Concat (e1, e2) dove s e una stringha, e, e_1 , e_2 sono espressione. La sostituzione in un espressione E di un nome Name s con un espressione E' si scrive E [Name s <- E'], e corrisponde a l'espression E dove tutte le occorrenze di Name s vengono sostituite con l'espressione E'.

1. Definire la funzione substitution : espr * string * espr -> espr che implementa la sostituzione, cioè il valore di substitution(e,s,e') corrisponde a E [Name s <- E'].

Ad esempio,

- substitution(Name "a", "a", Space(Name "c")) restituisce Space(Name c).
 substitution(Name "b", "a", Space(Name "c")) restituisce Name "b".
 substitution(Concat(Space(Name "a"), Name "cd"), "a", Space(Name "c")) restituisce Concat(Space(Space((Name "c"))) , Name "cd").
- 2. Definire la funzione eval: espr -> string che prende un espressione e e ritorna una stringa interpretando Concat come la concatenazione e Space come la concatenazione con " ".

Ad esempio,

- eval Name "frase" restituisce "frase".
 eval Space(Name "frase") restituisce "frase ".
 eval Concat (Space(Name "una"), Name "frase") restituisce "una frase".

Esercizio 6 (Ordinamento di liste). Una lista di interi [a1; ...; an] e crescente se [$a_1 \le \cdots \le a_n$]. Ordinare una lista corrisponde a trasformare una lista qualsiasi in una lista crescente. Ad esempio [2;1;7;8;4] diventa [1;2;4;7;8].

L'obiettivo del esercizio e di implementare un modo per ordinare le liste di interi.

- 1. Definire un funzione transition che prende due liste $(1_1, 1_2)$ e se l'elemento in testa di 1_2 e piu piccolo dell'elemento in testa h_1 di l_1 restituisce $h: l_2$, altrimenti restituisce l_2 . Se $l_1 = []$ allora restituisce l_2 . Se l_1 non e vuota e $l_2 = []$ restituisce [x].
- 2. Definire una funzione suborder che prende una lista 1 una lista che corrisponde alla lista 1 ottenuta togliendo i elementi non ordinati in 1. Si puo usare la funzione invert e la funzione transition.
- 3. Definire una funzione orderSplit che prende una lista l e restituisce la coppia di liste (11,12) dove 11 corrisponde a suborder(1) e 12 corrisponde ai elementi di 1 che non occorono in 11.
- 4. definire una funzione orderAdd che prende una lista di interi [a1; . . . ;an] e un intero n restituisce la lista [a1; . . .; ai; n; a_{i+1} ; . . .; an] tale che per tutti $1 \le k \le i$ l'intero n maggiora ak.
- 5. Definire la funzione order che prende una lista e restituisce la sua versione ordinata.

Si puo per esempio, usare le funzione orderSplit e orderAdd con un altra funzione che gestisce l'iterazione. Esempi di comportamento delle funzione;

- transition([3;4;1] , [6;2]) restituisce [6;2], transition([6;2] , [3;4;1]) restituisce [6;3;4;1].
- transition([],[2;2]) restituisce [2;2].
- suborder [2;1;7;8;4] restituisce [2;7;8].
- orderSplit [2;1;7;8;4] restituisce ([2;7;8],[1;4]). orderAdd ([2;3;6;4],4) restituisce [2;3;4;6;4]. Oppure orderAdd ([1;3;5;6],4) restituisce [1;3;4;5;6].
- order [2;1;7;8;4] restituisce [1;2;4;7;8].