Simulating Blood Flow in Arteries Using Poiseuille's Law

Ingrid Rubio Miro

May 2025

Abstract

This project simulates blood flow in an artery using Poiseuille's law. Using python, the blood flow rate was analyzed as a function of the artery radii to understand how the size of the vessel influences circulation. The results were also fitted to a power law model to verify if the flow really follows the r^4 relationship from theory. Finally, error bars were added based on the uncertainty in the radius measurements, and the chi-squared value was calculated to evaluate how well the model aligns with the simulated data.

1 Introduction

Blood flow is very sensitive to the radius of an artery. When the arteries narrow as a result of plaque build-up, the amount of blood that can flow through them quickly drops. Poiseuille's law gives us a way to understand this by modeling the artery as a cylindrical tube. The equation is as follows:

$$Q = \frac{\pi r^4 \Delta P}{8\eta L} \tag{1}$$

Here, Q is the flow rate, r is the radius, ΔP is the pressure difference, η is the viscosity of the blood, and L is the length of the artery. This equation shows that the flow rate strongly depends on the radius raised to the fourth power.

2 Methods

A Python script was written to calculate the blood flow rate for artery radii ranging between 1 mm and 5 mm. I used values of:

- $\eta = 0.0035 \text{ Pa·s (viscosity)}$
- L = 0.5 m (length)
- $\Delta P = 1333$ Pa (pressure difference, equal to 10 mmHg)

The flow was computed using Poiseuille's law. The $curve_fit$ from SciPy was used to fit the data to a power law model $(Q = ar^b)$ and the fitted exponent b was compared to the theoretical value of 4. An uncertainty of ± 0.1 mm in radius was assumed and propagated to estimate the resulting uncertainty in Q. Finally, a chi-squared test was conducted to assess how well the fitted model aligned with the simulated data.

3 Results

The flow rate increased very quickly as the radius increased, which agrees with the theory.

Figure 1: Simulated blood flow rate vs. artery radius. This Figure demonstrates the strong non-linear increase in flow rate with radius, reflecting the expected r^4 dependence. This highlights the physiological importance of small radius changes in arterial flow.

Next, the flow data were fitted to a power law model, revealing a best-fit exponent of b = 4.00, which is exactly what Poiseuille's Law predicts.

Figure 2: Shows the fitted power-law curve. The exponent b = 4.00 confirms agreement with the theoretical model.

To include uncertainty, error bars were added based on the radius uncertainty.

Figure 3: Flow rate with propagated uncertainty from radius. Includes error bars based on ± 0.1 mm uncertainty in radius. As radius increases, error bars grow larger due to sensitivity of flow rate to radius at higher values.

The chi-squared value of 98.21 indicates a good match between the model and the simulated data.

4 Conclusion

This project confirmed that Poiseuille's Law accurately describes how blood flows through arteries. The flow rate follows the r^4 pattern very closely, which means even small changes in radius can have a big effect on circulation. Using Python helped simulate the system, visualize the results, and perform a fit with uncertainty analysis.

5 References

- OpenStax, "Viscosity and Laminar Flow: Poiseuille's Law," College Physics, LibreTexts, 2022. Available at: https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/12:_Fluid_Dynamics_and_Its_Biological_and_Medical_Applications/12.04:_Viscosity_and_Laminar_Flow_Poiseuilles_Law
- MedlinePlus, "Blood Viscosity," U.S. National Library of Medicine, 2023. Available at: https://medlineplus.gov/ency/article/003357.htm
- TeachMePhysiology, "Blood Flow in Vessels," 2023. Available at: https://teachmephysiology.com/cardiovascular-system/circulation/blood-flow-in-vessels/