

Review of Amplitude Modulation and Demodulation

Lab Exercises on June 9, 2021

Department of Electronics and Computer Engineering
Pulchowk Campus, Lalitpur

Ashlesh Pandey
PUL074BEX007

Contents

List of Figures				
Listings			iii	
1	Obj	ective	1	
2	Bac	kground Theory	1	
	2.1	Double Side Band - Transmitted Carrier (DSB-TC)	1	
	2.2	Double Side Band - Suppressed Carrier (DSB-SC)	1	
	2.3	Single Side Band (SSB)	2	
	2.4	Demodulation of a modulated signal	2	
3	Exe	rcises	3	
	3.1	Basic setup	3	
	3.2	DSB-TC modulation with different modulating conditions	3	
	3.3	DSB-SC modulation with time and frequency domain plots	4	
	3.4	SSB modulation with time and frequency domain plots	5	
	3.5	Demodulation of DSB-SC signal	7	
4	Disc	eussion and Conclusion	8	

List of Figures

1	DSB-TC modulation with different modulating conditions	4
2	DSB-SC modulation with time and frequency domain plots	5
3	SSB modulation with time and frequency domain plots	6
4	Demodulation of DSB-SC signal	7

Listings

1	Basic setup for all exercises	3
2	Matlab script for visualization of DSB-TC modulation with different modu-	
	lating conditions	3
3	Matlab script for visualization of DSB-SC modulation in time and frequency	
	domain	5
4	Matlab script for visualization of SSB modulation in time and frequency domain	6
5	Matlab script for visualization of demodulation of DSB-SC signal	7

1 Objective

 Review of amplitude modulation for DSB-TC, DSB-SC, SSB methods and amplitude demodulation.

2 Background Theory

2.1 Double Side Band - Transmitted Carrier (DSB-TC)

DSB-TC is a type of amplitude modulation such that full carrier representation is present in the modulated signal waveform. It is the simplest form of amplitude modulation, whose expression for modulated signal $y_{dsbtc}(t)$, message signal m(t) and carrier frequency f_c is given as,

$$y_{dsbtc}(t) = (1 + \mu m(t))\cos(2\pi f_c t) \tag{1}$$

The modulation index μ gives the different modulating conditions as:

 $\mu < 1 \Rightarrow$ Under modulation

 $\mu = 1 \Rightarrow$ Normal modulation

 $\mu > 1 \Rightarrow$ Over modulation

2.2 Double Side Band - Suppressed Carrier (DSB-SC)

DSB-SC is a type of amplitude modulation such that carrier representation is not present in the modulated signal waveform. It is more effective than the DSB-TC modulation as the carrier is suppressed thus requiring less power and providing a higher bandwidth. For a modulated signal $y_{dsbsc}(t)$, message signal m(t), carrier frequency f_c and carrier amplitude A_c , the DSB-SC expression is given as,

$$y_{dsbsc}(t) = A_c m(t) \cos(2\pi f_c t) \tag{2}$$

2.3 Single Side Band (SSB)

An unique relationship exists between the Upper Side Band (USB) and Lower Side Band (LSB) as they are symmetric about f_c , which is why only transmitting a single band is sufficient to transmit the message contained by the message signal m(t), hence giving rise to SSB modulation. A general SSB signal $y_{ssb}(t)$ modulated for the message signal m(t), carrier frequency f_c is given as,

$$y_{ssb}(t) = m(t)\cos(2\pi f_c t) \pm \hat{m}(t)\sin(2\pi f_c t)$$
(3)

where, $\hat{m}(t)$ is the Hilbert Transform of the message signal given as,

$$\hat{m}(t) = m(t) * \frac{1}{\pi t} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{m(\alpha)}{t - \alpha} d\alpha$$

2.4 Demodulation of a modulated signal

The process of separating the original information or signal from the modulated signal transmitted is called demodulation. A device called a demodulator or detector, which produces a signal corresponding to the instantaneous changes in amplitude or frequency as per the modulation scheme, is used to demodulate a signal.

For a DSB-SC modulated signal, coherent demodulation is performed by first multiplying the modulated signal with the carrier signal, and then passing this resultant signal through a low pass filter to retrieve a scaled version of the original message signal.

3 Exercises

```
fm=input('Enter message frequency :');
fc=input('Enter carrier frequency :');
fs=input('Enter sampling frequency :');
fs=input('Enter sampling frequency :');
t=0:(1/fs):((4/fm)-(1/fs));
x=cos(2*pi*fm*t);
```

Listing 1: Basic setup for all exercises

Problem 1

Visualize amplitude modulation DSB-TC with different modulating conditions.

- a. Under Modulation
- b. Normal Modulation
- c. Over Modulation

```
Ashlesh_setup;
                                                15 xlabel({'Time','(in second)'});
2 y_under=modulate(x, fc, fs, 'amdsb-tc',
                                                16 ylabel('Amplitude');
                                                17 nexttile
3 y_normal=modulate(x, fc, fs, 'amdsb-tc',
                                                18 plot(t,y_normal);
      -1/1);
                                                19 title('Normal modulated signal', 'm=1');
4 y_over=modulate(x, fc, fs, 'amdsb-tc',
                                                20 xlabel({'Time','(in second)'});
      -1/2);
                                                21 ylabel('Amplitude');
5 %Plotting signals as tiles
                                                22 nexttile
6 1=tiledlayout (2,3);
                                                plot(t,y_over);
7 nexttile([1 , 3])
                                                24 title('Over modulated signal', 'm>1');
                                                25 xlabel({'Time','(in second)'});
8 plot(t,x);
9 title('Message signal');
                                                26 ylabel('Amplitude');
10 xlabel({'Time','(in second)'});
                                                27 %Tiledlayout title and figure print
ylabel('Amplitude');
                                                title(1,'AMDSB-TC modulation (PUL074BEX007)
                                                       ');
12 nexttile
                                                29 print('dsbtc','-depsc');
plot(t,y_under);
14 title('Under modulated signal', 'm<1');</pre>
```

Listing 2: Matlab script for visualization of DSB-TC modulation with different modulating conditions

Figure 1: DSB-TC modulation with different modulating conditions

Problem 2

Visualize amplitude modulation DSB-SC with the following plots.

a. Time domain

b. Frequency domain

```
10 xlabel({'Time','(in second)'});
Ashlesh_setup;
y=modulate(x, fc, fs, 'amdsb-sc');
                                                ylabel('Amplitude');
z = abs(fft(y,1024));
                                               12 nexttile
4 f= (-511*fs/1024):(fs/1024):(512*fs/1024);
                                               13 plot(t,y);
5 %Plotting signals as tiles
                                                14 title('Modulated signal','Time Domain');
6 1=tiledlayout (2,2);
                                                15 xlabel({'Time','(in second)'});
 nexttile([1, 2])
                                                  ylabel('Amplitude');
8 plot(t,x);
9 title('Message signal');
                                               18 plot(f,z);
```

Listing 3: Matlab script for visualization of DSB-SC modulation in time and frequency domain

Figure 2: DSB-SC modulation with time and frequency domain plots

Problem 3

Visualize amplitude modulation SSB with the following plots.

a. Time domain

b. Frequency domain

```
Ashlesh_setup;
                                                 14 title('Modulated signal','Time Domain');
                                                 15 xlabel({'Time','(in second)'});
2 y=modulate(x, fc, fs, 'amssb');
z = abs(fft(y, 1024));
                                                 16 ylabel('Amplitude');
4 f= (-511*fs/1024):(fs/1024):(512*fs/1024);
                                                 17 nexttile
5 %Plotting signals as tiles
                                                 18 plot(f,z);
6 1=tiledlayout (2,2);
                                                 19 title ('Modulated signal', 'Frequency Domain'
7 nexttile([1 , 2])
8 plot(t,x);
                                                 20 xlabel({'Frequency','(in Hz)'});
9 title('Message signal');
                                                 21 ylabel('Spectrum amplitude');
10 xlabel({'Time','(in second)'});
                                                 22 %Tiledlayout title and figure print
ylabel('Amplitude');
                                                 23 title(1,'AMSSB modulation (PUL074BEX007)')
                                                 24 print('ssb','-depsc');
12 nexttile
13 plot(t,y);
```

Listing 4: Matlab script for visualization of SSB modulation in time and frequency domain

Figure 3: SSB modulation with time and frequency domain plots

Problem 4 Visualize amplitude demodulation.

```
Ashlesh_setup;
                                                13 title('Modulated signal');
                                                14 xlabel({'Time','(in second)'});
y=modulate(x, fc, fs, 'amdsb-sc');
3 z=demod(y,fc,fs,'amdsb-sc');
                                                   ylabel('Amplitude');
4 %Plotting signals as tiles
                                                 16 nexttile
  1=tiledlayout (3,1);
                                                   plot(t,z);
6 nexttile
                                                  title('Demodulated signal');
  plot(t,x);
                                                   xlabel({'Time','(in second)'});
                                                20 ylabel('Amplitude');
8 title('Message signal');
  xlabel({'Time','(in second)'});
                                                21 %Tiledlayout title and figure print
10 ylabel('Amplitude');
                                                title(1, 'DSB-SC demodulation (PUL074BEX007)
11 nexttile
12 plot(t,y);
                                                23 print('demod','-depsc');
```

Listing 5: Matlab script for visualization of demodulation of DSB-SC signal

Figure 4: Demodulation of DSB-SC signal

4 Discussion and Conclusion

The lab experiment dealt with the review of amplitude modulation. Double side band transmitted carrier (DSB-TC) under three modulating conditions, viz. under, normal and over modulation was visualized. Similarly, double side band suppressed carrier (DSB-SC) and single side band (SSB) modulation were plotted in time and frequency domain. Likewise, a demodulation exercise was also performed for DSB-SC signal. The objective of the lab experiment was fulfilled.