Obliczenia

Przyrządy pomiarowe

Woltomierz do pośredniego pomiaru temperatury	M-830B
Omomierz do pomiaru rezystancji na pierwszym termistorze	M3900
Omomierz do pomiaru rezystancji na drugim termistorze	M3900

Miernik M-3900, pomiar rezystancji			
Używany zakres	Rozdzielczość	Dokładność	
200 kΩ	100 Ω	$\pm (0.8\% + 1 dgts)$	

Pomiary

Dokładność pomiaru temperatury na podstawie specyfikacji miernika jest stosunkowo niska. Skorygowaliśmy tę ocenę w górę i subiektywnie oceniliśmy dokładność ΔT jako równą 5 K. W naszej ocenie uwzględniliśmy duże wahania odczytów oraz to, że termistory mogły nagrzewać się w różnym tempie.

$$\Delta T = 5 \text{ K}$$

$$u_b(T) = \frac{\Delta T}{\sqrt{3}}$$

$$u_b(T) \approx 2.9 \text{ K}$$

Niepewności typu B przyrządów cyfrowych obliczyliśmy w następujący sposób:

$$\Delta x = a\% \cdot wynik + b \cdot rozdzielczość$$

gdzie a% – podawana w % klasa przyrządu, b – dgts

$$u_b(x) = \frac{\Delta x}{\sqrt{3}}$$

Na przykład niepewność rezystancji pierwszego termistora w pierwszym pomiarze:

$$\Delta R_1 = 0.8\% \cdot 24.1 \text{ k}\Omega + 2 \cdot 0.1 \text{ k}\Omega = 0.2928 \text{ k}\Omega$$

$$u(R_1) = \frac{\Delta R_1}{\sqrt{3}} = 0.17 \text{ k}\Omega$$

In	T,°C	D IrO	D 1.0
Lp.		R_1 , k Ω	R_2 , k Ω
1	22.0	24.1	35.3
2	24.0	21.4	31.0
3	26.8	18.5	27.5
4	28.0	17.5	25.8
5	30.0	16.0	23.6
6	32.0	14.6	22.0
7	34.6	12.9	19.5
8	37.0	11.6	18.3
9	39.4	10.5	15.6
10	41.0	9.8	15.0
11	43.1	9.0	13.4
12	45.5	8.1	12.3
13	47.9	7.3	11.0
14	50.0	6.6	9.9
15	52.2	6.1	9.0
16	54.3	5.6	8.4
17	56.0	5.2	7.8
18	58.1	4.8	7.2
19	60.3	4.4	6.6
20	62.5	4.0	6.1
21	65.4	3.6	5.3
22	67.2	3.4	5.1
23	70.3	3.0	4.5
24	68.0	3.4	5.2
25	66.0	3.6	5.5
26	64.0	4.0	5.8
27	62.0	4.3	6.4
28	60.0	4.6	6.8
29	58.0	5.0	7.5
30	56.0	5.4	8.0
31	54.0	5.9	8.8
32	52.0	6.4	9.5
33	50.0	7.0	10.3
34	48.0	7.6	11.3
35	46.0	8.3	12.4
36	44.0	9.0	13.5
37	42.0	9.9	14.7
38	40.0	10.7	15.9
39	38.0	11.6	17.3
40	36.0	12.8	18.9
41	34.0	14.0	20.7
42	32.0	15.2	22.9
43	30.0	16.7	24.9
44	28.0	18.3	27.8
45	26.0	20.0	29.7
46	25.0	21.2	31.3
47	24.0	22.0	32.6
48	22.7	23.4	34.1
fU	22.7	₽9.T	J 1.1

			T			
Lp.	<i>T</i> , K	R_1 , k Ω	R_2 , k Ω	u(T), K	$u(R_1)$, k Ω	$u(R_2)$, k Ω
1	295	24.1	35.3		0.17	0.22
2	297	21.4	31.0		0.16	0.20
3	300	18.5	27.5		0.14	0.18
4	301	17.5	25.8		0.14	0.18
5	303	16.0	23.6		0.13	0.17
6	305	14.6	22.0		0.13	0.16
7	308	12.9	19.5		0.12	0.15
8	310	11.6	18.3		0.11	0.14
9	313	10.5	15.6		0.11	0.13
10	314	9.8	15.0		0.10	0.13
11	316	9.0	13.4		0.10	0.12
12	319	8.1	12.3		0.10	0.11
13	321	7.3	11.0		0.09	0.11
14	323	6.6	9.9		0.09	0.10
15	325	6.1	9.0		0.09	0.10
16	328	5.6	8.4		0.08	0.10
17	329	5.2	7.8		0.08	0.09
18	331	4.8	7.2		0.08	0.09
19	334	4.4	6.6		0.08	0.09
20	336	4.0	6.1	.0	0.08	0.09
21	339	3.6	5.3		0.07	0.08
22	340	3.4	5.1	Olla	0.07	0.08
23	344	3.0	4.5	4.0	0.07	0.08
24	341	3.4	5.2	2.0	0.07	0.08
25	339	3.6	5.5	2.9	0.07	0.08
26	337	4.0	5.8		0.08	0.08
27	335	4.3	6.4		0.08	0.09
28	333	4.6	6.8		0.08	0.09
29	331	5.0	7.5		0.08	0.09
30	329	5.4	8.0		0.08	0.09
31	327	5.9	8.8		0.08	0.10
32	325	6.4	9.5		0.09	0.10
33	323	7.0	10.3		0.09	0.11
34	321	7.6	11.3		0.09	0.11
35	319	8.3	12.4		0.10	0.12
36	317	9.0	13.5		0.10	0.12
37	315	9.9	14.7		0.10	0.13
38	313	10.7	15.9		0.11	0.13
39	311	11.6	17.3		0.11	0.14
40	309	12.8	18.9		0.12	0.15
41	307	14.0	20.7		0.12	0.15
42	305	15.2	22.9		0.13	0.16
43	303	16.7	24.9		0.13	0.17
44	301	18.3	27.8		0.14	0.19
45	299	20.0	29.7		0.15	0.19
46	298	21.2	31.3		0.16	0.20
47	297	22.0	32.6		0.16	0.21
48	296	23.4	34.1		0.17	0.22

Zależność oporu od temperatury dla obu termistorów

Zależność logarytmu naturalnego oporności od odwrotności temperatury

Współczynniki prostych wyznaczonych metodą regresji liniowej

Termistor nr	a, K	b	<i>u</i> (<i>a</i>), K	u(b)
1	4328	-4.566	23.13	0.07293
2	4305	-4.094	24.42	0.07700

Zapisy skrócone

Termistor nr 1	a = 4328(23) K	b = -4.566(73)
Termistor nr 2	a = 4305(24) K	b = -4.094(77)

Szerokość przerw energetycznych

$$R = R_0 \exp\left(\frac{\Delta E}{2kT}\right)$$

$$k = 1.381 \cdot 10^{-23} \frac{J}{K} - stała Boltzmanna$$

$$\ln R = \ln R_0 + \frac{\Delta E}{2k} \cdot \frac{1}{T}$$

$$\ln R = a \cdot \frac{1}{T}$$

$$a = \frac{\Delta E}{2k}$$

$$\Delta E = a \cdot 2k$$

$$\Delta E_1 = 1.195 \cdot 10^{-19} \text{ J} = 0.7459 \text{ eV}$$

$$\Delta E_2 = 1.189 \cdot 10^{-19} \text{ J} = 0.7420 \text{ eV}$$

NOTOSIIIS:IITING Niepewność szerokości przerw energetycznych z prawa propagacji niepewności

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(\Delta E) = \sqrt{\left(\frac{\partial \Delta E}{\partial a}u(a)\right)^2} = \sqrt{\left(2k \cdot u(a)\right)^2}$$

$$u(\Delta E_1) = 6.387 \cdot 10^{-22} \text{ J} = 0.003986 \text{ eV}$$

$$u(\Delta E_2) = 6.744 \cdot 10^{-22} \,\text{J} = 0.004209 \,\text{eV}$$

Zapisy skrócone:

$$\Delta E_1 = 0.7459(40) \text{ eV}$$

$$\Delta E_2 = 0.7420(42) \text{ eV}$$

Test zgodności

Warunek zgodności dwóch niezależnych pomiarów

$$|x_1 - x_2| < U(x_1 - x_2)$$

Niepewność rozszerzona

$$U(x_1 - x_2) = k\sqrt{[u(x_1)]^2 + [u(x_2)]^2}$$

$$k=2$$

$$U(\Delta E_1 - \Delta E_2) = 1.858 \cdot 10^{-21} \text{ J} = 0.01159 \text{ eV}$$

$$|\Delta E_1 - \Delta E_2| = 0.0039 \text{ eV} < 0.0116 \text{ eV} = U(\Delta E_1 - \Delta E_2)$$

93UISHINK .any
. Nie są
.orów możn Pomiary szerokości przerw energetycznych obu badanych termistorów są zgodne, co oznacza, że termistory są zbudowane z podobnych materiałów. Nie są jednak jednakowe, ponieważ na wykresie zależności oporu od temperatury dla obu termistorów można zauważyć, że termistor nr 2 ma większą rezystancję niż termistor nr 1.

Zestawienie wyników końcowych

szerokość przerwy energetycznej termistora nr 1	$\Delta E_1 = 0.7459(40) \text{ eV}$
szerokość przerwy energetycznej termistora nr 2	$\Delta E_2 = 0.7420(42) \text{ eV}$

Wnioski

Zgodnie z teorią właściwości elektrycznych ciał stałych obserwowaliśmy spadek rezystancji termistorów przy wzrastającej temperaturze. Uzyskane przez nas wartości ΔE_1 i ΔE_2 świadczą o tym, że badane termistory zbudowane są z materiałów półprzewodnikowych o wąskiej przerwie energetycznej. Takie termistory mogą zostać zastosowane na przykład w celu monitorowania niewielkich zmian temperatury. Oba termistory prawdopodobnie są zbudowane z podobnych materiałów, ponieważ wykonane dla nich pomiary szerokości przerwy energetycznej są zgodne. Jednak termistory nie są jednakowe, ponieważ przy tej samej temperaturze termistor nr 2 ma większą rezystancję niż termistor nr 1. Być może różnica w rezystancji wynika z nierównego nagrzewania się termistorów.