Rを用いたメタボロームデータ解析: Metabolome data analysis using R

ヒューマン・メタボローム・テクノロジーズ株式会社山本 博之

質量分析装置

解析ソフトウェア MS-DIAL

O (10 m. 10 2*

**O (1

Excelデータ

<u>MetaboAnalyst</u>

質量分析装置から得られた信号を解析

代謝物名が不明の未知ピークの 構造を推定

未知ピークの ------

<u>構造推定ソフトウェア</u> MS-FINDER

<u>リポジトリへの登録</u>

MetaboBank

Rで全て実行

質量分析装置

解析ソフトウェア MS-DIAL

Excelデータ

<u>MetaboAnalyst</u>

質量分析装置から得られた信号を解析

代謝物名が不明の未知ピークの 構造を推定

> <u>構造推定ソフトウェア</u> MS-FINDER

<u>リポジトリへの登録</u>

MetaboBank

質量分析装置

Excelデータ

<u>MetaboAnalyst</u>

質量分析装置から得られた信号を解析

MS Data Handling

mzR、Msnbase (BioConductor) rmzTab-M、MRMConverteR、 Chromatogtams、Spectraなど

<u>Peak Picking, Grouping and</u> <u>Alignment</u>

LC-MS Focussed or General

xcms、IPO、Autotuner、yamss、cosmiq (BioConductor) xMSanalyzer、apLCMS、warpgroup、

AMDORAP、anviGCMS、enviPick、massFlowR、KPIC2など

Statistical analysis

ChemoSpec、pcaMethods、multtest、biosigner、OmicsMarkeR、RankProd、ropls、OmicsLonDA、impute、MOFA(Bioconductor)
MetaboAnalystRなど

Stanstrup J. et al., "The metaRbolomics Toolbox in Bioconductor and beyond" Metabolites 2019, 9(10), 200より

質量分析データ処理

質量分析装置から得られた信号を解析

MS Data Handling

mzR、Msnbase (BioConductor) rmzTab-M、MRMConverteR、 Chromatogtams、Spectraなど Peak Picking, Grouping and Alignment

LC-MS Focussed or General

xcms, IPO, Autotuner, yamss, cosmiq (BioConductor)

xMSanalyzer、apLCMS、warpgroup、AMDORAP、anviGCMS、enviPick、massFlowR、KPIC2など

Statistical analysis

ChemoSpec、pcaMethods、multtest、biosigner、OmicsMarkeR、RankProd、ropls、OmicsLonDA、impute、MOFA(Bioconductor)
MetaboAnalystRなど

Stanstrup J. et al., "The metaRbolomics Toolbox in Bioconductor and beyond" Metabolites 2019, 9(10), 200より

質量分析データ処理(I)

データの読み込み

マススペクトル

クロマトグラム

ピークピッキング

ガウス型関数に近い形状の領域を拾い上げる

質量分析データ処理(2)

質量分析データ処理(3)

ピークの対応付け)

ピークアライメント

m/zとRTが同じなので、同一代謝物由来のピーク (実際は測定の誤差があるので、ある範囲に入るピーク)

欠損ピークの穴埋め

質量分析データ処理

統計解析

MS Data Handling

mzR、Msnbase (BioConductor) rmzTab-M、MRMConverteR、 Chromatogtams、Spectraなど

Peak Picking, Grouping and Alignment

LC-MS Focussed or General

xcms、IPO、Autotuner、yamss、
cosmiq (BioConductor)
xMSanalyzer、apLCMS、warpgroup、

AMDORAP、anviGCMS、warpgroup massFlowR、KPIC2など Statistical analysis

ChemoSpec、pcaMethods、multtest、biosigner、OmicsMarkeR、RankProd、ropls、OmicsLonDA、impute、MOFA(Bioconductor)
MetaboAnalystRなど

loadings (2021.9リリース)

露崎さん、西田さん、久米さんにより毎月開催されている

多変量解析によるメタボロームデータの解析の流れ

メタボロミクスでは、 低分子の代謝物を一斉に分析

絶食マウスでの主成分分析の解析例

データの可視化

通常飼育 マウスで<u>低値(-)</u>

絶食12時間 マウスで高値(+)

重み(主成分)係数を用いて変数を選ぶ

主成分スコア=(変数 I)×w_I+(変数2)×w₂+···+(変数P)×w_p

主成分スコアは、各変数のデータを重みwを係数として足し合わせたものであり、wの値が大きい変数が主成分スコアと関連が強く、wの値が小さい変数が主成分スコアと関連が弱い

主成分係数wの値が大きい上位 I O個もしくは30個程度の代謝物を選ぶ

一般的なローディング(主成負荷量)の定義

杉山高一、多変量データ解析入門、朝倉書店(2001) 35ページ

『主成分と変数の相関係数を、主成分の因子負荷量(factor loading)という』

塩谷實、多変量解析概論、朝倉書店(2001) 114ページ

『共分散行列を用いた主成分分析の場合、第i主成分U_iとj番目の成分変数
X_jの間の<mark>相関係数</mark>をX_jのU_iへの因子負荷量という』

(その後に、相関係数行列についても同じであることが書かれている)

中村永友、Rで学ぶデータサイエンス 多次元データ解析法、

共立出版(2009) 102ページ

『得られた主成分と本来の変数の相関係数を主成分負荷量あるいは 因子負荷量という』

主成分分析の主成分負荷量といえば、「主成分スコアと各変数との相関係数」として定義され、主成分負荷量を用いて重要な代謝物が選ばれる。

主成分係数(重み、固有ベクトル)と主成分負荷量の比較

正に値が大きな上位10個

負に値が大きな上位IO個

ピーク	主成分係数	主成分負荷量	ピーク	主成分係数	主成分負荷量
384.2/3993	0.1279	0.7489	306.1/2928	-0.1132	-0.6628
491.2/3398	0.1260	0.7375	414.2/3060	-0.0943	-0.5523
449.1/3290	0.1197	0.7007	246.1/2517	-0.0939	-0.5498
322.1/3392	0.1195	0.6997	591.3/3003	-0.0926	-0.5419
439.3/4056	0.1134	0.6638	288.1/2798	-0.0923	-0.5402
438.3/4056	0.1127	0.6597	590.3/3003	-0.0916	-0.5365
301.2/3389	0.1085	0.6352	546.3/3015	-0.0888	-0.5200
354.2/3618	0.1076	0.6299	532.3/3729	-0.0884	-0.5177
300.2/3392	0.1075	0.6293	547.2/3015	-0.0881	-0.5156
410.3/3937	0.1064	0.6228	576.3/2860	-0.0844	-0.4944

主成分負荷量(=主成分スコアと各代謝物の相関係数)の値が0.7以上が3物質であり、 -0.7以下の代謝物は確認できなかった。 ■■

主成分係数と主成分負荷量は比例関係にあり、値が大きな代謝物の並び順は変わらないが、主成分負荷量を用いて重要な代謝物を選ぶことで、統計的な基準(相関係数の値)で重要な代謝物を選ぶことが出来る。

主成分分析とPLSの解析例

高脂血症ウサギの肝臓のメタボローム解析

3群比較: Wild type、高脂血症ウサギ、薬剤投与後の高脂血症ウサギ

主成分分析の結果、主成分スコアで群間の差が 表れなかったとき、PLSが用いられることが多い

Yamamoto H., "PLS-ROG: Partial least squares with rank order of groups.", Journal of Chemometrics, 31(3) (2017) e2883.

重み(PLS)係数を用いて変数を選ぶ

- PLS係数による変数の選び方
 - PLS係数wは、各代謝物に対する重要度を示す 重みであり、PLS係数wが大きいものが重要な 代謝物となる
 - PLS負荷量を定義し、統計的な基準で重要な代謝物を選ぶ

説明変数のスコア、目的変数のスコアいずれも同様の位置(左、右上、右下)に 配置されており、傾向が一致していることが確認できる。

PLS係数とPLS負荷量(I) 共分散 を最大化 メタボロームデータ X サンプル サンプル スロア スコア 代謝物 (説明変数) (目的変数) 群情報 各群 PLSスコア=(代謝物 I)×w_I+(代謝物2)×w₂+···+(代謝物P)×w_p 比例しない $x_2 | w_2 +$ PLS係数

PLS負荷量は、PLSスコア(説明変数)と各代謝物の相関係数として定義することが出来ない。

PLS負荷量は、PLSスコア(目的変数)と各代謝物の相関係数として定義することが出来る。

主成分係数、主成分負荷量、PLS係数、PLS負荷量

• 主成分分析の場合

- 主成分係数は「主成分スコアと各代謝物 レベルの相関係数」に比例する
- → 主成分負荷量は「主成分スコアと各代謝 物レベルの相関係数」と定義する

• PLSの場合

- PLS係数は「PLSスコア(説明変数)と各 代謝物レベルの相関係数」に比例しない
- PLS係数は「PLSスコア(目的変数)と各 代謝物レベルの相関係数」に比例する
- → PLS負荷量は「PLSスコア(目的変数)と 各代謝物レベルの相関係数」と定義する

loadingsパッケージを用いた主成分分析、PLS

- パッケージのインストール
 - install.packages("loadings")
- ライブラリの読み込み
 - library(loadings)
- 主成分分析
 - pca <- prcomp(X)
 - pca <- pca_loadings(pca)
 - pca\$loading\$R
 - pca\$loading\$p.value

(prcomp関数はstatsのものを利用)

- PLS
 - pls <- pls_svd(X,Y)
 - pls <- pls_loadings(pls)
 - pls\$loading\$R
 - pls\$loading\$p.value

(pls_svd関数の部分は、chemometrics パッケージのpls_eigen関数も利用可能

本ワークショップの進め方

- 全体の説明 (発表資料) (15分)
 - https://github.com/hiroyukiyamamoto/metabolomeanalysisworkshop/blob/master/vig_nettes/発表資料.pdf
- ・xcmsによる質量分析データ処理(IO分)
 - https://hiroyukiyamamoto.github.io/metabolomeanalysisworkshop/articles/xcms.html
- loadingsパッケージによる主成分分析と主成分負荷量を用いた代謝物の選び方 (15分)
 - https://hiroyukiyamamoto.github.io/metabolomeanalysisworkshop/articles/pca.html
- loadingsパッケージによるPartial least squares(PLS)とPLS負荷量を用いた代謝物の選び方(20分)
 - https://hiroyukiyamamoto.github.io/metabolomeanalysisworkshop/articles/pls.html

それぞれの資料を口頭で説明する形で進めて行きます

本ワークショップの楽しみ方(I)

• Githubのwebサイトからコピーして、ローカルで実行

• ワークショップのファイルを全てコピーして、ローカルで実行

https://github.com/hiroyukiyamamoto/metabolomeanalysisworkshop

Githubのツール(Github Desktopなど)で クローンして使っても良い

本ワークショップのその他の楽しみ方(2)

- Orchestraで実行
 - http://app.orchestra.cancerdatasci.org/ からログイン

Choose a workshop

Rstudio Serverがブラウザで利用可能

Github、DockerHubの設定、Orchestraの準備など全て西田さんにやっていただきました。