הוכחות לחלק א' מבחן אינפי מתקדם 1, 2015-2016

איל כהן ועמית טרופ - מההרצאות של גנאדי לוין

2016 בינואר 20

קבוצה ב־ \mathbb{R}^d קומפקטית אמ"מ היא חסומה וסגורה 1

חסומה וסגורה $K \iff K \subset (\mathbb{R}^d, \|\cdot\|_p)$

הוכחה (⇒=):

. תקיים את $K\subset (\mathbb{R}^d,\|\cdot\|_p)$ נוכיח כי אם $K\subset K$ קב' קומפקטית אזי אחסומה וסגורה ואז בפרט $K\subset K$

נניח בשלילה ש־K לא חסומה, אזי עבור $a\in X$ ועבור כל a מתקיים $K\not\subset B(a,n)$, כלומר, קיימת סדרה עבור $a\in X$ ועבור כל $a\in X$ ועבור כל $\rho(a,x_{n_k})\le \rho(a,x)+\rho(x,x_{n_k})\to x$ אזי איזי עבור $\alpha\in X$ הסדרה מתכנסת כי היא לא חסומה. אם $\alpha\in X$ אזיי עבור $\alpha\in X$ לא מכילה תת סדרה מתכנסת כי היא לא חסומה. אם $\alpha\in X$ אזיי עבור $\alpha\in X$ לא מכילה תת סדרה מתכנסת כי היא לא חסומה. אם $\alpha\in X$ אזיי עבור $\alpha\in X$ לא מכילה תת סדרה מתכנסת כי היא לא חסומה. אם $\alpha\in X$ וואו סתירה לכך ש־ $\alpha\in X$ שר מתקיים $\alpha\in X$ ועבור כל מתקיים מתקיים לא מתקיים לא מתקיים מתקי

נניח בשלילה ש־ $A=\{y\in X\mid \exists \{x_n\}\subset A\mid \lim_{n\to\infty}x_n=y\}\iff$ סגורה סגורה. מהטענה " $A=\{y\in X\mid \exists \{x_n\}\subset A\mid \lim_{n\to\infty}x_n=y\}$ סגורה אורה. מהטענה " $x_n\neq x$ אבל $x_n\neq x$ אבל $x_n\neq x$ אבל $x_n\neq x$ אבל $x_n\neq x$ המתכנסת לנק' ב־ $x_n\neq x$ בסתירה לקומפקטיות. (x_n):

תהי X חסומה וסגורה ו $x^n = (x_1^n,...,x_d^n)$ ($x^n > 0$), לכן עבור כל $x^n = (x_1^n,...,x_d^n)$ ($x^n > 0$), לכן עבור כל $x^n = (x_1^n,...,x_d^n)$ ($x^n > 0$), לכן עבור כל $x^n = (x_1^n)_{n=1}^\infty$, כלומר, כל סדרה $x^n > 0$), חסומה. לפי משפט בולצ'אנו ויירשטראס, הסדרה $x^n > 0$, כלומר, כל סדרה $x^n > 0$, סדרה $x^n > 0$, מתקיים $x^n > 0$, כלומר, כל סדרה $x^n > 0$, כל סדרה $x^n > 0$, כלומר, כל סדרה $x^n > 0$, כל סדרה מתכנסת $x^n > 0$, כל $x^n > 0$, כל עבור כל סדרה $x^n > 0$, לכן עבור כל סדרה ווירשטראס, הסדרה ביים ($x^n > 0$), לכן עבור כל סדרה ביים ($x^n > 0$), לכן עבור כל סדרה ביים ($x^n > 0$), לכן עבור כל סדרה ביים ($x^n > 0$), לכן עבור כל סדרה ביים ($x^n > 0$), לכן עבור כל סדרה ביים ($x^n > 0$), לכן עבור ביי

2 היינה בורל

התנאים הבאים שקולים:

- מ"מ קומפקטיX .1
- 2. כל כסוי פתוח של X מכיל תת כיסוי סופי
- גם אזי גם (F_{lpha}) אט קבוצות מ"ל מס' מופי של כל מס' מתקיים אם מתקיים מתקיים אורות, מתקיים אורות, מתקיים אורות, מתקיים $\emptyset
 eq \bigcap_{\alpha \in I} F_{lpha}$

הוכחה (2 ⇒ 3):

מחוקי דה־מורגן נקבל כי

$$X \setminus \bigcup_{\alpha} E_{\alpha} = \bigcap_{\alpha} (X \setminus E_{\alpha}), \ X \setminus \bigcap_{\alpha} F_{\alpha} = \bigcup_{\alpha} (X \setminus F_{\alpha})$$

תהי $(F_{\alpha})_{\alpha\in I}$ אוסף קבוצות סגורות כך שחיתוך של כל מספר סופי של קבוצות מ־ $(F_{\alpha})_{\alpha\in I}$ לא ריק. צ"ל $\emptyset=\cap_{\alpha\in I}$ אזי של כל מספר סופי של קבוצות מ"ל $\emptyset=\cap_{\alpha\in I}$ אזי

$$\bigcup_{\alpha \in I} (X \backslash F_{\alpha}) = X \backslash \bigcap_{\alpha \in I} F_{\alpha} = X \backslash \emptyset = X$$

כלומר $(X ackslash F_lpha)$ כיסוי פתוח (כי כל F_lpha קבוצה סגורה), לכן מ־2 הוא מכיל כיסוי סופי, כלומר קיימים F_lpha ווא המכיל $(X ackslash F_lpha)$ כיסוי פתוח (כי כל F_lpha קבוצה סגורה), לכן מ־2 הוא מכיל כיסוי סופי, כלומר קיימים לכן $\bigcup_{i=1}^{m} (X \backslash F_{\alpha_i}) = X$

$$X \setminus \bigcap_{i=1}^{m} F_{\alpha_i} = \bigcup_{i=1}^{m} (X \setminus F_{\alpha_i}) = X$$

.כלומר, $\emptyset = \bigcap_{i=1}^m F_{\alpha_i}$ סתירה

.אפון הראשון זהה לכיוון הראשון (2 \iff 3)

תהי $(x_n) \subset X$, נגדיר קבוצה אריך למצוא לה תת סדרה מתכנסת. עבור כל $(x_n) \subset X$

$$L_n(x_n, x_{n+1}, \ldots) \subset X$$

 $\overline{L_{n+1}} \subset \overline{L_n}$ מכיוון ש' $\overline{L_{n+1}} \subset \overline{L_n}$ מתקיים $\overline{L_{n+1}} \subset \overline{L_n}$ מתקיים $\overline{L_{n+1}} \subset \overline{L_n}$ מתבונן באוסף $\overline{L_{n+1}} \subset \overline{L_n}$ של קבוצות סגורות. עבור כל מס' סופי $\overline{L_{n+1}} \subset \overline{L_n} \subset \overline{L_n}$ אם $\overline{L_{n+1}} \subset \overline{L_n}$ אזי $\overline{L_{n+1}} \subset \overline{L_n}$ מתבונן באוסף $\overline{L_{n+1}} \subset \overline{L_n}$ של קבוצות סגורות. עבור כל מס' סופי עבור על $B(a,\frac{1}{k})$ נחתך $B(a,\frac{1}{k})$. ניקח $A\in\overline{L_n}$ ניקח $B(a,\frac{1}{k})$. ניקח $A\in\bigcap_{n=1}^\infty\overline{L_n}$ ניקח $A\in\bigcap_{n=1}^\infty\overline{L_n}$

 $(x_{n_k} o a, x_{n_k}) o a$, לכן $(x_{n_k}) o a$, לכן $(x_{n_k}) o a$, לכן בתת סדרה

נתון X מ"מ קומפקטי. צ"ל אם $(E_{lpha})_{lpha\in I}$ כיסוי פתוח של X, אזי הוא מכיל תת כיסוי סופי.

 E_{α} הכדור מקבוצות מוכל כולו באחת מקבוצות $x\in X$ הכדור קיים $\epsilon>0$

נניח בשלילה שלא קיים $\epsilon>0$ כמתואר. אז לכל n קיימת נק' xכך ש־ $B(x_n, rac{1}{n})$ אינו מוכל באף X מ"מ קומפקטי, לכן $\epsilon>0$ כיסוי, לכן קיים $a\in E_{\alpha_0}$. $a\in E_{\alpha_0}$ כיסוי, לכן קיים $(E_{\alpha})_{\alpha\in I}$. $x_{n_k}\to a$ מכילה תת סדרה מתכנסת $(E_{\alpha})_{\alpha\in I}$. $x_{n_k}\to a$ כיסוי, לכן קיים $(E_{\alpha})_{\alpha\in I}$ שר $(E_{\alpha})_{\alpha\in I}$ מכיוון שר $(E_{\alpha})_{\alpha\in I}$. מכיוון שר $(E_{\alpha})_{\alpha\in I}$. $(E_{\alpha})_{\alpha\in I}$ מכיוון שר $(E_{\alpha})_{\alpha\in I}$. מכיוון שר $(E_{\alpha})_{\alpha\in I}$. $(E_{\alpha})_{\alpha\in I}$ טבי שר $(E_{\alpha})_{\alpha\in I}$ כך שר $(E_{\alpha})_{\alpha\in I}$. מכיוון שר $(E_{\alpha})_{\alpha\in I}$. מכיוון שר $(E_{\alpha})_{\alpha\in I}$. $A(x_n)$ בסתירה לבחירה של אונר, $B(x_{n_{k_0}}, \frac{1}{n_{k_0}}) \subset E_{\alpha_0}$, ולכן אונר, ולכן אונר, ולכן

:2 למה

 $\bigcup_{i=1}^p B(x_i,\epsilon) = X$ כך ש־ $x_1,...,x_p$ לכל מס' סופי של מס' סופי של נק' $\epsilon>0$

 $B(x_1,\epsilon)\cup$ מיימנו, אחרת, קיימת נק' $x_2
otin X_2 = x$ כך שר $ho(x_1,x_2) \geq \epsilon$ ניקח x_1 אם ט $x_2
otin X_2
otin X_2$ אחרת, קיימת נק' $x_2
otin X_2
otin X_2$ $...
ho(x_1,x_3)\geq\epsilon$ היימנו, אחרת, קיימת $x_3\in X$ כך שי $x_3\in X$ סיימנו, אחרת, קיימת $C(x_2,\epsilon)=X$

אזי או שמצאנו כיסוי סופי של הכדורים עם ה־ ϵ הנתון, או שמצאנו סדרה $(x_n)_{n=1}^\infty$ כך ש־ ϵ לכל i< j לכל לכל חידים עם ה־ ϵ א מכילה תת סדרה מתכנסת, סתירה. מכאן שמצאנו כיסוי סופי של כדורים עם ה־ ϵ הנתון. $(x_n)_{n=1}^\infty$

חזרה להוכחת המשפט:

 ϵ ניקח $\epsilon>0$ כמו בלמה 1. עבור ϵ זה, לפי למה 2 קיימות נק' $x_1,...,x_p$ כך ש־ t=1. לפי למה 1 ובחירתו של $\epsilon>0$ ניקח $\epsilon>0$ כדור $B(x_1,\epsilon)\subset E_{lpha_i}$ כך ש־ E_{lpha_i} קיימת קיימת פרים איימת פריים

$$X = \bigcup_{i=1}^{p} B(x_i, \epsilon) \subset \bigcup_{i=1}^{p} E_{\alpha_i}$$

X ולכן פופי של תת כיסוי חופי של ולכן ולכן

על סדרה יורדת של כדורים 3

 B_n של r_n ורדיוס n=1,2,... עבור עבור $B_{n+1}\subset B_n$ של כדורים סגורים של כדורה לכל סדרה לכל סדרה לכל סדרה אם מטרי $.igcap_{n=1}^{\infty}B_n
eq\emptyset$ מקיים $r_n \xrightarrow[n
ightarrow\infty]{} r_n$ מקיים

וכחה (⇒):

יהי X מ"מ שלם ו־ $(B_n)_{n=1}^\infty$ כאשר $B_n=\overline{B}(x_n,r_n)$ סדרה כנ"ל. צ"ל \emptyset \neq \emptyset סדרה כנ"ל. צ"ל $B_n=\overline{B}(x_n,r_n)$ כאשר $(B_n)_{n=1}^\infty$ כאשר $(B_n)_{n=1}^\infty$ סדרה כנ"ל. צ"ל $B_n=B_n$ סדרה $B_n=B_n$ פיים $B_n=B_n$ (כי $B_n=B_n$), לכן $B_m=B_n$ כלומר $B_n=B_n$ היא סדרת קושי. $B_n=B_n$ היא סדרת קושי. $B_n=B_n$ שלם, לכן קיים גבול $B_n=B_n$ נוכיח כי $A\in B_n$ לכל $A\in B_n$ עבור כל $A\in B_n$ ו־ $A=\lim_{m\to\infty,m< n}x_m\in B_n$ לכך $A=\lim_{m\to\infty,m< n}x_m\in B_n$

. נניח שכל סדרה של כדורים כנ"ל בעלת חיתוך לא ריק, ונוכיח כי X שלם.

תהי $n>n_2$ סדרת קושי ב־X, אזי קיים $n>n_1$ כך שלכל $n>n_1$ יתקיים $n>n_1$ יתקיים $n>n_1$ סדרת קושי ב־X, אזי קיים $n>n_1$ כך שלכל $n>n_1$ יתקיים $n>n_2$ סדרת קושי ב־ $n>n_2$ סדרת קושי ב־ $n>n_2$ כך שלכל $n>n_2$ יתקיים $n>n_2$ יתקיים $n>n_2$ כך שלכל $n>n_2$ כך שלכל $n>n_2$ יתקיים $n>n_2$ ית

מתקיים $y\in B_{k+1}$ לכל (כלומר, זוהי סדרה יורדת). מתקיים $B_k=\overline{B}(x_{n_k},\frac{1}{2^{k-1}})$ מתקיים

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}) \le \frac{1}{2^k} + \frac{1}{2^k} = \frac{1}{2^{k-1}}$$

 $y\in B_k$ לכן , $rac{1}{2^{k-1}}$ הוא הוא והרדיוס של

 $(x_{n_k})_{k=1}^\infty$ הסדרה הגבול של תת הסדרה a, כלומר, a כלומר, a היימת נק' a, $a \in \bigcap_{k=1}^\infty B_k$ אזי לכל a מתקיים a מתכנסת, ולכן a שלם. a מתכנסת ל־a קיימת נק' a קיימת ניס כל סדרת קושי ב־a מתכנסת, ולכן a שלם.

4 עיקרון של ההעתקה המכווצת

 $\lim_{n o \infty} A^n y = x_0$ קיים גבול $y \in X$ פיים גבול נק' שבת, x_0 , יחידה ולכל A: X o X קיים גבול A: X o X יהי

הוכחה עבור $y \in X$ נגדיר

$$y_n = \begin{cases} A^n y & n = 1, 2, \dots \\ y & n = 0 \end{cases}$$

$$\forall x_1, x_2 \in X \quad \rho(Ax_1, Ax_2) \leq \alpha \rho(x_1, x_2)$$

אזי לכל m>n מתקיים־

$$\rho(y_{m}, y_{n}) = \rho(Ay_{m-1}, Ay_{n-1}) \le \alpha \rho(y_{m-1}, y_{n-1}) \le \dots \le \alpha^{n} \rho(y_{m-n}, y_{0}) \le$$

$$\le \alpha^{n} \sum_{i=0}^{m-n-1} \rho(y_{i}, y_{i+1}) \le \alpha^{n} \sum_{i=0}^{m-n-1} \alpha^{i} \rho(y_{0}, y_{1}) \le \alpha^{n} \rho(y_{0}, y_{1}) \sum_{i=0}^{\infty} \alpha^{i} = \frac{\alpha^{n}}{1-\alpha} \rho(y_{0}, y_{1}) \xrightarrow[n \to \infty]{} 0$$

לכן־ אולכן ווכן פוו $x_0 = \lim_{n \to \infty} y_n = \lim_{n \to \infty} A^n y$ ולכן קיים הגבול שלם וואלם איז סדרת קושי ו

$$A(x_0) = A(\lim_{n \to \infty} A^n y) \stackrel{(*)}{=} \lim_{n \to \infty} A(A^n y) = \lim_{n \to \infty} A^{n+1} y = x_0$$

A מרציפות (*)

.ולכן x_o נקודת שבת

יחידות בת, אזי $y_0 \neq x_0$ נקודת שבת, אזי

$$0 \neq \rho(x_0, y_0) = \rho(Ax_0, Ay_0) \leq \alpha \rho(x_0, y_0)$$

.lpha < 1 סתירה לכך ש

אי שוויון בסל 5

 $\sum_{u\in A}\langle x,u
angle^2\leq \|x\|^2$ מתקיים $x\in\mathcal{Y}$ מערכת אורתוגונלית סופית או בת מניה במרחב אוקלידי \mathcal{Y} , אזי לכל

טענה U מערכת אורתונורמלית סופית במרחב אוקלידי $\mathcal Y$ ויהי ויהי M תת מרחב הנפרש ע"י U. ההטלה y של וקטור ער תהי $U=(u_i)_{i=1}^n$ תהי u_i אזי u_i

$$\forall y \neq z \in M \ \|x - y\| < \|x - z\|$$

מתקיים $M\ni z=\sum_{i=1}^n\lambda_ju_j$ מתקיים

$$\langle x - y, z \rangle = \langle x - \sum_{i=1}^{n} \langle x, u_i \rangle u_i, \sum_{j=1}^{n} \lambda_j u_j \rangle = \langle x, \sum_{j=1}^{n} \lambda_j u_j \rangle - \langle \sum_{i=1}^{n} \langle x, u_i \rangle u_i, \sum_{j=1}^{n} \lambda_j u_j \rangle =$$

$$= \sum_{j=1}^{n} \lambda_j \langle x, u_j \rangle - \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x, u_i \rangle \lambda_j \langle u_i, u_j \rangle = \sum_{j=1}^{n} \lambda_j \langle x, u_j \rangle - \sum_{j=1}^{n} \langle x, u_i \rangle \lambda_j = 0$$

 $.z \in M$ כלומר עבור כל $z \perp (x-y)$ מתקיים לכל על לכל ע $y \neq z \in M$ לכל

$$||x - z||^2 = ||(x - y) + (y - y)||^2 \stackrel{\text{(1)}}{=} ||x - y||^2 + ||y - z||^2 \stackrel{\text{(2)}}{\geq} ||x - y||^2$$

$$x - y \perp y - z$$
 (1)
 $y \neq z$ (2)

מסקנה

$$||x - \sum_{i=1}^{n} (x, u_i)u_i||^2 = \langle x - \sum_{i=1}^{n} \langle x, u_i \rangle u_i, x - \sum_{i=1}^{n} \langle x, u_i \rangle u_i \rangle =$$

$$= \langle x - \sum_{i=1}^{n} \langle x, u_i \rangle u_i, x \rangle - \langle x - \sum_{i=1}^{n} \langle x, u_i \rangle u_i, \sum_{i=1}^{n} \langle x, u_i \rangle u_i \rangle \stackrel{(*)}{=} \langle x - \sum_{i=1}^{n} \langle x, u_i \rangle u_i, x \rangle =$$

$$= ||x||^2 - \sum_{i=1}^{n} \langle x, u_i \rangle \langle u_i, x \rangle = ||x||^2 - \sum_{i=1}^{n} \langle x, u_i \rangle^2$$

. ניצבים הם ניצבים $\sum_{i=1}^n \langle x, u_i \rangle u_i = y \in M$ ו ר $\sum_{i=1}^n \langle x, u_i \rangle u_i = x - y \text{ or } \langle x - \sum_{i=1}^n \langle x, u_i \rangle u_i, \sum_{i=1}^n \langle x, u_i \rangle u_i \rangle = 0 \text{ or } (*)$

הוכחת אי שוויון בסל אם A קבוצה סופית, אזי מתקיימת המסקנה. $\sum_{i=1}^{\infty}\langle x,u_i\rangle^2\leq \|x\|^2$ מתקיים $\sum_{i=1}^{n}\langle x,u_i\rangle^2\leq \|x\|^2$ לכן (במעבר לגבול) מתקיים $\sum_{i=1}^{n}\langle x,u_i\rangle^2\leq \|x\|^2$

על מערכת אורתונורמלית שלמה ושוויון פרסבל

תהי $\phi=(arphi_i)_{i=1}^\infty$ מערכת אורתונורמלית במרחב אוקלידי $\phi=(arphi_i)_{i=1}^\infty$

שלמה ϕ .1

- $x = \sum_{i=1}^{\infty} (x, \varphi_i) \varphi_i$ מתקיים $x \in \mathcal{Y}$ כן, עבור כל כן, עבור ϕ .2
 - :טבור כל \mathcal{Y} מתקיים שוויון פרסבל:

$$||x||^2 = \sum_{i=1}^{\infty} \langle x, \varphi_i \rangle^2$$

:(2 ← 1) זוכחה

נתון ϕ מערכת אורתונורמלית שלמה. צ"ל עבור כל \mathcal{Y} קיימת הצגה יחידה $x=\sum_{i=1}^\infty \langle x, \varphi_i \rangle \varphi_i$ כלומר, לכל x=1 קיים אורתונורמלית שלמה. צ"ל עבור כל x=1 מתקיים x=1 מתקיים x=1 מתקיים x=1 אורתונורמלית ועלוי ב־x=1 מתקיים x=1 מתקיים x=1 מתקיים x=1 הוא יחיד, לכן x=1 הוא יחיד, לכן

$$0 = x - x = \sum_{i=1}^{\infty} (\lambda_i - \langle x, \varphi_i \rangle) \varphi_i$$

$$0 = \langle 0, \varphi_j \rangle = \sum_{i=1}^{\infty} (\lambda_i - \langle x, \varphi_i \rangle) \langle \varphi_i, \varphi_j \rangle = \lambda_j - \langle x, \varphi_j \rangle$$

מתקיים <<<י>>>> מתקיים אלמה לכם קיים $\|x-\sum_{i=1}^{n_0}\lambda_i\varphi_i\|<\epsilon$ כך ש־ כך א $\lambda_1,...,\lambda_{n_0}\in\mathbb{R}$ ו ו $n_{0(\epsilon)}$

$$||x - \sum_{i=1}^{n_0} \langle x, \varphi_i \rangle \varphi_i|| \le ||x - \sum_{i=1}^{n_0} \lambda_i \varphi_i|| < \epsilon$$

$$||x - \sum_{i=1}^{n} \langle x, \varphi_i \rangle \varphi_i|| \le ||x - \sum_{i=1}^{n_0} \langle x, \varphi_i \rangle \varphi_i|| < \epsilon$$

:(3 == 2)

לפי המסקנה בהוכחה של בסל נקבל

$$||x - \sum_{i=1}^{n} \langle x, \varphi_i \rangle \varphi_i||^2 = ||x||^2 - \sum_{i=1}^{n} \langle x, \varphi_i \rangle^2$$

 $\|x\|^2=\sum_{i=1}^n\langle x,\varphi_i
angle^2$ לכן $\lim_{n o\infty}\|x-\sum_{i=1}^n\langle x,\varphi_i
angle\varphi_i\|=0$ מ־2 נקבל (1 \Longleftrightarrow 3):

אזי לכל n אזי לכל $\|x\|^2 = \sum_{i=1}^n \langle x, \varphi_i \rangle^2$ יתקיים אזי עבור $x \in \mathcal{Y}$ אם עבור

$$||x - \sum_{i=1}^{n} \langle x, \varphi_i \rangle \varphi_i||^2 = ||x||^2 - \sum_{i=1}^{n} \langle x, \varphi_i \rangle^2 \xrightarrow[n \to \infty]{} 0$$

 $x \in span(\phi)$ כלומר,

7 משפט על טור פורייה של פונקציה הגזירה ברציפות למקוטעין

תהי f אזי בכל $x\in[0,2\pi]$ אזי בכל $f(0)=f(2\pi)$ ור $f(0,2\pi)$ במינה למקוטעין ב־ $f(0,2\pi)$ ווגזירה ברציפות למקוטעין ב־ $f(0,2\pi)$ במידה שווה ב־ $f(0,2\pi)$ ל־ $f(0,2\pi)$

$$f(x) = a_0(f) + \sum_{n=1}^{\infty} a_n(f)\cos(nx) + \sum_{n=1}^{\infty} b_n(f)\sin(nx)$$

 $a_n(f')$ רבור $a_n(f')$ וי $a_n(f')$ אינטגרבילית רימן ב־ $a_n(f')$ לכן קיימות אינטגרבילית רימן ב־

$$a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx \stackrel{\star}{=} \frac{1}{\pi} [f(x) \frac{\sin(nx)}{n}]_0^{2\pi} - \int_0^{2\pi} \frac{\sin(nx)}{n} f'(x) dx] =$$

$$= -\frac{1}{n} \frac{1}{\pi} \int_0^{2\pi} f'(x) \sin(nx) dx = -\frac{1}{n} b_n(f')$$

* ז אינטגרציה בחלקים

$$b_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx \stackrel{\star}{=} \frac{1}{\pi} [-f(x) \frac{\cos(nx)}{n} |_0^{2\pi} + \int_0^{2\pi} \frac{\cos(nx)}{n} f'(x) dx] =$$

$$= \frac{1}{\pi} [-\frac{1}{n} (f(2\pi) - f(0)) + \frac{1}{n} \int_0^{2\pi} f'(x) \cos(nx) dx] = \frac{1}{n} a_n(f')$$

* ז אינטגרציה בחלקים

מתקיים $f\in H[0,2\pi]$ מנקיים בסל שיוויון אי שני, לפי שני, מצד שני

$$\sum_{n=1}^{\infty} a_n(f')^2 < \infty, \ \sum_{n=1}^{\infty} b_n(f')^2 < \infty$$

מכיוון ש־

$$|a_n(f)| = \frac{1}{n}|b_n(f')| \le \frac{1}{2}(b_n(f')^2 + \frac{1}{n^2})$$

٦٦

$$|b_n(f)| = \frac{1}{n}|a_n(f')| \le \frac{1}{2}(a_n(f')^2 + \frac{1}{n^2})$$

XI

$$|a_0(f)| + \sum_{n=1}^{\infty} (|a_n(f)| + |b_n(f)|) \le |a_0(f)| + \frac{1}{2} \left[\sum_{n=1}^{\infty} (a_n(f')^2 + b_n(f')^2) + 2 \sum_{n=1}^{\infty} \frac{1}{n^2} \right] < \infty$$

 $x \in [0,2\pi]$ אבל לכל

$$|a_n(f)\cos(nx)| \le |a_n(f)|$$

 $|b_n(f)\sin(nx)| \le |b_n(f)|$

לפי קריטריון ויירשטראס, טור פורייה:

$$\mathscr{S}_n^f(x) = a_0(f) + \sum_{k=1}^n a_k(f)\cos(nx) + \sum_{k=1}^n b_k(f)\sin(nx)$$

 $[0,2\pi]$ ב"ם ב"ם פונקציות הם פונקציות ב"ה (כי אברי הטור הם פונקציות ב"פות ב" $\mathcal{S}^f(x)$ אשר היא פונקציות ב"החלט ובמידה שווה). אבל $\mathcal{S}^f_n o f$ בממוצע, כלומר

$$(1) \int_0^{2\pi} (\mathscr{S}_n^f(x) - \mathscr{S}^f(x))^2 dx \xrightarrow[n \to \infty]{} 0$$

ולכן $f\in H[0,2\pi]$ ולכן

$$(2) \int_0^{2\pi} (\mathscr{S}_n^f(x) - f(x))^2 dx \xrightarrow[n \to \infty]{} 0$$

 $\|\mathscr{S}_n^f-f\|_2 o 0\iff (2)$ ר ו $\|\mathscr{S}_n^f-\mathscr{S}^f\|_2 o 0\iff (1)$. איי $[f]=[\mathscr{S}^f]$ ב' ב' $[f]=[\mathscr{S}^f]$, כלומר $[f]=[\mathscr{S}^f]$ רציפות ולכן שוות.

8 תנאי דיני

יהיו $\delta>0$ רד $x_0\in(0,2\pi)$, $f\in H[0,2\pi]$ יהיו

$$\int_{x_0 - \delta}^{x_0 + \delta} \left| \frac{f(x) - f(x_0)}{x - x_0} \right| dx < \infty$$

 $f(x_0)$ ל־ x_0 מתכנס ב־ מתכנס לי

 $a\in\mathbb{R}$ טענה ψ מוגדרת ב־ \mathbb{R} , אינטגרבילית ב־ [0,T] עבור [0,T] איי עבור כל איי עבור כל $\forall x\in\mathbb{R}$ מתהיים מוגדרת מחהיים

$$\int_{a}^{a+T} \psi(x)dx = \int_{0}^{T} \psi(x)dx$$

הוכחת הטענה

$$\int_{a}^{a+T} \psi(x)dx - \int_{0}^{T} \psi(x)dx = \int_{a}^{T} \psi(x)dx + \int_{T}^{a+T} \psi(x)dx - \left(\int_{a}^{T} \psi(x)dx + \int_{0}^{a} \psi(x)dx\right) =$$

$$= \int_{T}^{a+T} \psi(x)dx - \int_{0}^{a} \psi(x)dx \stackrel{x=y+T}{=} \int_{0}^{a} \psi(y+t)dy - \int_{0}^{a} \psi(x)dx = 0$$

הוכחת המשפט מהטענה נקבי

$$\int_0^{2\pi} D_n(x_0 - t) dt = \int_{x_0}^{x_0 - 2\pi} D_n(\tau) d\tau = \int_{x_0 - 2\pi}^{x_0} D_n(\tau) d\tau = \int_0^{2\pi} D_n(\tau) d\tau = 2\pi$$

לכן

$$f(x_0) - \mathcal{S}_n^f(x_0) = \frac{1}{2\pi} \int_0^{2\pi} f(x_0) D_n(x_0 - t) dt - \frac{1}{2\pi} \int_0^{2\pi} f(t) D_n(x_0 - t) dt =$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left[\frac{f(x_0) - f(t)}{x_0 - t} \right] \left[\frac{x_0 - t}{\sin(\frac{x_0 - t}{2})} \right] \sin(\frac{2n + 1}{2}(x_0 - t)) dt \stackrel{\star}{=} \dots$$

- $x\in$ עבור $(x_0-\delta,x_0+\delta)$ לפי תנאי דיני. עבור $g(t)=\frac{f(t)-f(x_0)}{t-x_0}$ פונקציה $g(t)=\frac{f(t)-f(x_0)}{t-x_0}$ מתקיים $g(t)=\frac{f(t)-f(x_0)}{t-x_0}$ מתקיים $g(t)=\frac{f(t)-f(x_0)}{t-x_0}$ מתקיים $g(t)=\frac{f(t)-f(x_0)}{t-x_0}$
- :• פונקציה $\frac{x_0-t}{\sin(\frac{x_0-t}{2})}$ אינטגרבילית ב־ $(0,2\pi]$ כי: $(0,2\pi)$ אינטגרבילית ב־ $(0,2\pi)$ אינטגרבילית בי $\frac{x_0-t}{\sin(\frac{x_0-t}{2})}$ אינטגרבילית בי $(0,2\pi)$ אינטגרבילים בי $(0,2\pi)$ אינטגרב

$$H[0, 2\pi] \ni \frac{f(t) - f(x_0)}{t - x_0} \cdot \frac{x_0 - t}{\sin(\frac{x_0 - t}{2})} = \varphi(t)$$

ולכן

...
$$\stackrel{\star}{=} \frac{1}{2\pi} \int_0^{2\pi} \varphi(t) \sin(\frac{2n+1}{2}(x_0-t)) dt \xrightarrow[n\to\infty]{} 0$$

לפי למת רימן לבג.

9 משפט בייר

לא ניתן להציג מרחב מטרי שלם כאיחוד בן מניה של קבוצות דלילות: אם X שלם ולכל $A_n\subset X$ הקבוצה מטרי שלם לא ניתן להציג מרחב מטרי שלם כאיחוד בן מניה של קבוצות דלילות: אם $X
eq I_{n\in\mathbb{N}}A_n$

. מרחב מטרי שלם $X=igcup_{n\in\mathbb{N}}A_n$ מניח בשלילה ו־ $X=igcup_{n\in\mathbb{N}}A_n$ כאשר כל

 $\overline{B_1}\cap A_1=\emptyset$ בקח כדור סגור $\overline{B_0}$ עם רדיוס $\overline{B_1}\subset \overline{B_0}$ עם רדיוס $\overline{B_1}$ הלילה לכן קיים כדור סגור $\overline{B_1}$ עם רדיוס $\overline{B_1}\cap A_1=\emptyset$ עם רדיוס $\overline{B_2}\cap A_1=\emptyset$ עם רדיוס $\overline{B_2}\cap A_1=\emptyset$ עם רדיוס $\overline{B_2}\cap A_1=\emptyset$ עם רדיוס $\overline{B_2}\cap A_1=\emptyset$ בס $\overline{B_2}\cap A_1=\emptyset$ ולכן גם $\overline{B_2}\cap A_1=\emptyset$ עם רדיוס $\overline{B_2}\cap A_1=\emptyset$ עם רדיוס $\overline{B_2}\cap A_1=\emptyset$ בדער העור $\overline{B_n}\cap A_n=\emptyset$ ובהכרח $\overline{B_n}\cap A_n=\emptyset$ ובהכרח $\overline{B_n}\cap A_n=\emptyset$ בעם רדיוס $\overline{B_n}\cap A_n=\emptyset$ בדעים כדור סגור $\overline{B_n}\cap A_n=\emptyset$ עם רדיוס $\overline{B_n}\cap A_n=\emptyset$ בדעים $\overline{B_n}\cap A_n=\emptyset$ ובהכרח $\overline{B_n}\cap A_n=\emptyset$ בדעים כדור סגור $\overline{B_n}\cap A_n=\emptyset$ עם רדיוס בדעים רדיוס בדעים $\overline{B_n}\cap A_n=\emptyset$ ובהכרח $\overline{B_n}\cap A_n=\emptyset$ בדעים רדיוס בדעים ר

ער בי עס לפן, לפי משפט קודם, קיימת z כך של סגורים עם רדיוס שואף ל־ 0. לכן, לפי משפט קודם, קיימת כך של סדרה מטרי שלם $z \notin A_n$ סדרה יורדת של כדורים סגורים עם רדיוס שואף ל־ $z \notin A_n$ אזי $z \in \bigcap_{n \in \mathbb{N}} B_n$

. ניסוח שקול במילים אחרות, אם כל קבוצה E_n היא פתוחה וצפופה בי אזי במילים אחרות, אם כל קבוצה בוצה פתוחה וצפופה בי

מסקנה מרחב מטרי שלם ללא נקודות מבודדות לא ניתן למניה.

10 משפט פייר

 $[0,2\pi]$ אזי סכומי f במידה מתכנסים ל־ $\{\sigma_n(x)\}_{n=1}^\infty$ איזי סכומי היי f, אזי סכומי f במידה שווה על ווה f

 $x:x\in [0,2\pi]$ נקח (ב־ \mathbb{R} נקח מחזורית ב־ π מחזורית עד פונקציה רציפה הוכחה

$$\sigma_{n}(x) - f(x) \stackrel{(1)}{=} \frac{1}{2\pi} \int_{0}^{2\pi} f(t)k_{n}(x-t)dt - \frac{1}{2\pi} \int_{0}^{2\pi} f(x)k_{n}(x-t)dt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} (f(t) - f(x))k_{n}(x-t)dt$$

$$\stackrel{(2)}{=} \frac{1}{2\pi} \int_{-x}^{2\pi-x} (f(x+\tau) - f(x))k_{n}(\tau)d\tau$$

$$= \frac{1}{2\pi} \int_{-x}^{\pi} (f(x+\tau) - f(x))k_{n}(\tau)d\tau$$

 $k_n(t-x)=k_n(x-t)=k_n(au)$ מתקיים מתכונה 2. נסמן au=x-t ואז (2) מתקיים כי מתקיים מתכונה 2. נסמן au=x-t ואז (3) מתקיים מתכונה 2. $\forall x\in\mathbb{R}\ |f(x)|\leq M$ כך ש־ M>0 כך ש־ M>0 כך ש־ π ולכן חסומה ורציפה במידה שווה. יהא π כך ש־ π ולכן חסומה ורציפה במידה שווה. יהי π כך ש־ π כך ש־ π ולכן חסומה ורציפה ב π וואז (3) בייהי π כך ש־ π כך ש־ π ולכן חסומה ורציפה במידה שווה. יהי π כך ש־ π ולכן חסומה ורציפה במידה שווה.

$$|\sigma_n(x) - f(x)| = |\frac{1}{2\pi} \int_{-\pi}^{-\delta} + \frac{1}{2\pi} \int_{-\delta}^{\delta} + \frac{1}{2\pi} \int_{\delta}^{\pi} |$$

נמצא חסמים לשלושת האינטגרלים הללו:

$$\left|\frac{1}{2\pi} \int_{-\delta}^{\delta} [f(x+\tau) - f(x)] k_n(\tau) d\tau\right| \leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |f(x-\tau) - f(x)| k_n(\tau) d\tau \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} k_n(\tau) d\tau \stackrel{(2)}{=} \epsilon$$

(2) מתקיים מתכונה מהינטגרל. (2) מתקיים מתכונה כאשר (1) מתקיים

$$\left|\frac{1}{2\pi}\int_{-\pi}^{-\delta} \left[f(x+\tau) - f(x)\right]k_n(\tau)d\tau + \frac{1}{2\pi}\int_{\delta}^{\pi} \left[f(x+\tau) - f(x)\right]k_n(\tau)d\tau\right| \le$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{-\delta} |f(x+\tau) - f(x)| k_n d\tau + \frac{1}{2\pi} \int_{\delta}^{\pi} |f(x+\tau) - f(x)| k_n d\tau \leq
\leq 2M \frac{1}{2\pi} \left[\int_{-\pi}^{-\delta} k_n(\tau) d\tau + \int_{\delta}^{\pi} k_n(\tau) d\tau \right] \stackrel{(1)}{=} \frac{2M}{2\pi} \left[\int_{\delta}^{\pi} k_n(\tau) d\tau + \int_{\pi}^{2\pi - \delta} k_n(t') dt' \right] =
= \frac{2M}{2\pi} \int_{\delta}^{2\pi - \delta} k_n(\tau) d\tau \stackrel{(2)}{<} \epsilon$$

 $\pi \leq t' \leq 2\pi - \delta$ עבור עבור $\tau = t' - 2\pi$ נסמן (1) מתכונה $n > n_0$ כך שלכל קיים n_0 מתקיים (2)

$$\frac{1}{2\pi} \int_{\delta}^{2\pi - \delta} k_n(\tau) d\tau < \frac{\epsilon}{2M}$$

עבור $x \in \mathbb{R}$ ולכל $n > n_0$ כך שלכל מתקיים ϵ מתקיים

$$|\sigma_n(x) - f(x)| < 2\epsilon$$

$rac{\partial^2 f}{\partial x \partial u} = rac{\partial^2 f}{\partial u \partial x}$ משפט על תנאים המבטיחים 11

תהי $(x,y)\in\Omega$ קיימות נגזרות בכל נקודה $(x,y)\in\Omega$ קיימות נגזרות בעלת נגזרות פרימות בכל $f:\Omega\to\mathbb{R}$ קיימות נגזרות $\Omega\subset\mathbb{R}^2$ קיימות נגזרות בנקודה $(x,y)\in\Omega$ הון רציפות בנקודה בנקודה $(x,y)\in\Omega$ אזי

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$

הפוקנציה: עבור את הפוקנציה $h,k\in\mathbb{R}\backslash\{0\}$. עבור כל $(x_0,y_0)\in\Omega$ מספיק הוכחה הוכחה

$$w(h,k) = f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) - f(x_0 + h, y_0) + f(x_0, y_0)$$

ונגדיר פונקציה

$$\varphi(x) = \frac{f(x, y_0 + k) - f(x, y_0)}{k}$$

עבור כל |k| מספיק קטן. כעת

$$w(h,k) = \frac{\varphi(x_0 + h) - \varphi(x_0)}{h}$$

ע מכיוון ש
ד בכל x מספיק קרוב ל־ מכיוון ש־ גזירה (לפי לפי גזירה לפי מ

$$\varphi'(x) = \frac{\frac{\partial f}{\partial x}(x, y_0 + k) - \frac{\partial f}{\partial x}(x, y_0)}{k}$$

אזי לפי משפט ערך הביניים, קיים $\theta_1 \in (0,1)$ כך ש־

$$w(h,k) = \frac{\varphi'(x_0 + \theta_1 h)h}{h} = \varphi'(x_0 + \theta_1 h) = \frac{\frac{\partial f}{\partial x}(x_0 + \theta_1 h, y_0 + k) - \frac{\partial f}{\partial x}(x_0 + \theta_1 h, y_0)}{k}$$

נשתמש במשפט ערך הביינים לפונקציה $y\in (y_0,y_0+k)$ עבור $y\in [y_0,y_0+k]$ עבור עבור לפונקציה או גזירה לפי לפונקציה לפונקציה ערך עבור לפונקציה עבור לפי

$$\frac{\partial}{\partial y}(\frac{\partial f}{\partial x}(x_0 + \theta_1 h, y)) = \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta_1 h, y)$$

לכן קיימת $\theta_2 \in (0,1)$ כך ש־

$$w(h,k) = \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta_1 h, y_0 + \theta_2 k)$$

באופן דומה אם נגדיר

$$\psi(y) = \frac{f(x_0 + h, y) - f(x_0, y)}{h}$$

אזי

$$w(h,k) = \frac{\psi(y_0 + k) - \psi(y_0)}{k}$$

ילען קיימת $\theta_3 \in (0,1)$ כך ש־

$$w(h,k) = \psi'(y_0 + \theta_3 k) = \frac{\frac{\partial f}{\partial y}(x_0 + h, y_0 + \theta_3 k) - \frac{\partial f}{\partial y}(x_0, y_0 + \theta_3 k)}{h} = \frac{\partial^2 f}{\partial y \partial x}(x_0 + \theta_4 h, y_0 + \theta_3 k)$$

עבור $\theta_i \in (0,1)$ עבור $h,k \neq 0$ כך לכל $h,k \neq 0$ עבור . הוכחנו $\theta_i \in (0,1)$

$$\frac{\partial^2 f}{\partial y \partial x}(x_0 + \theta_4 h, y_0 + \theta_3 k) = w(h, k) = \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta_1 h, y_0 + \theta_2 k)$$

מרציפות (x_0,y_0) ב־ ב $\frac{\partial^2 f}{\partial x \partial y}$ רו ב $\frac{\partial^2 f}{\partial y \partial x}$ הרציפות מרציפות

$$\lim_{h,k\to 0} \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta_1 h, y_0 + \theta_2 k) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \lim_{h,k\to 0} w(h, k) =$$

$$= \lim_{h,k\to 0} \frac{\partial^2 f}{\partial y \partial x}(x_0 + \theta_4 h, y_0 + \theta_3 k) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$

12 פיתוח לטור טיילור בכמה משתנים

 $\overline{\Delta x}=(\Delta x_1,...,\Delta x_d)$ עבור $\overline{x_0}\in\mathbb{R}^d$ עבור $\overline{x_0}\in\mathbb{R}^d$ בעלת כל הנגזרות החלקיות מסדר $f:B(\overline{x_0},\epsilon)\to\mathbb{R}$ והן רציפות. תהי $f:B(\overline{x_0},\epsilon)\to\mathbb{R}$ כך ש־ $f:B(\overline{x_0},\epsilon)\to\mathbb{R}$ בך ש־ $f:B(\overline{x_0},\epsilon)\to\mathbb{R}$ בעלת כל הנגזרות החלקיות מסדר $f:B(\overline{x_0},\epsilon)\to\mathbb{R}$

$$f(\overline{x_0} + \overline{\Delta x}) = f(\overline{x_0}) + \sum_{n=1}^{m} \frac{1}{n!} \sum_{\substack{k_1, \dots, k_d \ge 0 \\ k_1 + \dots + k_d = n}} \frac{n!}{k_1! k_2! \cdots k_d!} \cdot \frac{\partial^n f}{\partial^{k_1} x_1 \cdots \partial^{k_d} x_d} (\overline{x_0}) \Delta x_1^{k_1} \cdots \Delta x_d^{k_d} + R$$

כאשר

$$R = \frac{1}{(m+1)!} \sum_{\substack{k_1, \dots, k_d \ge 0 \\ k_1 + \dots + k_d = m+1}} \frac{(m+1)!}{k_1! k_2! \cdots k_d!} \cdot \frac{\partial^{m+1} f}{\partial^{k_1} x_1 \cdots \partial^{k_d} x_d} (\overline{x_0} + \theta \overline{\Delta x}) \Delta x_1^{k_1} \cdots \Delta x_d^{k_d}$$

הוכחה נגדיר פונקציה ($T=rac{\epsilon}{\|\overline{\Delta x}\|}>1$ כך ש־ F כך ש־ F ונוכיח: F ונוכיח: F ונוכיח: F ונוכיח: F גזירה ברציפות F פעמים ב־ $F^{(n)}(t)=f_n(\overline{x})$, $\overline{x}=\overline{x_0}+t\overline{\Delta x}$ כאשר F בר $F^{(n)}(t)=f_n(\overline{x})$ ברF ווערים: F ברציפות ברציפות F ברציים F ברציים

.2

$$f_n(\overline{x}) = \sum_{\substack{k_1, \dots, k_d \ge 0 \\ k_1 + \dots + k_d = n}} \frac{n!}{k_1! k_2! \cdots k_d!} \cdot \frac{\partial^n f}{\partial^{k_1} x_1 \cdots \partial^{k_d} x_d} (\overline{x}) \Delta x_1^{k_1} \cdots \Delta x_d^{k_d}$$

מתקיים

$$F'(t) = \frac{d}{dt} f(\overline{x_0} + t\overline{\Delta x}) = \frac{d}{dt} f(x_1^0 + t\Delta x_1, x_2^0 + t\Delta x_2, ..., x_d^0 + t\Delta x_d) = \sum_{i=1}^d \frac{\partial f}{\partial x_i}(\overline{x}) \Delta x_i = f_1(\overline{x})$$

$$F''(t) = \frac{d}{dt} f_1(\overline{x_0} + t\overline{\Delta x}) = \sum_{i=1}^d \frac{\partial f_1}{\partial x_i}(\overline{x}) \Delta x_i = \sum_{i=1}^d \Delta x_i \frac{\partial}{\partial x_i}(\sum_{i_2=1}^d \frac{\partial f}{\partial x_{i_2}}(\overline{x}) \Delta x_{i_2}) =$$

$$= \sum_{i_1, i_2=1}^d \Delta x_{i_1} \Delta x_{i_2} \frac{\partial^2 f}{\partial x_{i_2} \partial x_{i_1}}$$

גיי n נכון. אם נכון עבור n=0 .1

$$F^{(n+1)}(t) = \frac{d}{dt} f_n(\overline{x_0} + t \overline{\Delta x}) = \sum_{i=1}^n f_n(\overline{x}) \Delta x_i = f_{n+1}(\overline{x})$$

$$f_1(\overline{x}) = \sum_{i_1=1}^d \frac{\partial f}{\partial x_i}(\overline{x}) \Delta x_i$$

$$f_2(\overline{x}) = \sum_{i_1=1}^d \Delta x_{i_1} \frac{\partial}{\partial x_{i_1}} (\sum_{i_2=1}^d \frac{\partial f}{\partial x_{i_2}}(\overline{x}) \Delta x_{i_2}) = \sum_{i_1,i_2=1}^d \Delta x_{i_1} \Delta x_{i_2} \frac{\partial^2 f}{\partial x_{i_2} \partial x_{i_1}}(\overline{x}) =$$

$$\stackrel{\star}{=} \sum_{\substack{k_1,\dots,k_d\\k_i>0}} \frac{2!}{k_1!\dots k_d!} \Delta x_1^{k_1} \cdots \Delta x_d^{k_d} \frac{\partial^2 f}{\partial x_1^{k_1} \cdots \partial x_d^{k_d}}$$

כאשר * מתקיים כי

$$(a_1 + \dots + a_d)^2 = \sum_{\substack{i_1, i_2 = 1 \\ k_1, \dots k_d \\ \sum k_i \ge 0 \\ \sum k_i = 2}}^d \frac{2!}{k_1! \dots k_d!} a_1^{k_1} \dots a_d^{k_d}$$

2. לפי (1) מתקיים

$$f_n(\overline{x}) = \sum_{1 \le i_1, \dots, i_n \le d} \Delta x_{i_1} \frac{\partial}{\partial x_{i_1}} (\Delta x_{i_2} \frac{\partial}{\partial x_{i_2}} (\dots \Delta x_{i_{n-1}} \frac{\partial}{\partial x_{i_{n-1}}} (\Delta x_{i_n} \frac{\partial}{\partial x_{i_n}} f) \dots)) =$$

$$= \sum_{1 \le i_1, \dots, i_n \le d} \Delta x_{i_1} \cdots \Delta x_{i_d} \frac{\partial^n f}{\partial x_{i_n} \cdots \partial x_{i_1}} (\overline{x})$$

נשווה עם

$$(a_1 + \dots + a_d)^n = \sum_{1 \le i_1, \dots, i_n \le d} a_{i_1} \cdots a_{i_n}$$

שני אים אם שווים $a_{j_1},...,a_{j_n}$, $a_{i_1},...,a_{i_n}$ שני איברים

$$\Delta x_{i_1} \cdots \Delta x_{i_n} \frac{\partial^n f}{\partial x_{i_n} \cdots \partial x_{i_1}} = \Delta x_{j_1} \cdots \Delta x_{j_n} \frac{\partial^n f}{\partial x_{j_n} \cdots \partial x_{j_1}}$$

ולכן

$$f_n(\overline{x}) = \sum_{\substack{(k_1, \dots k_d) \\ k_1 + \dots + k_d = n \\ k_i > 0}} \frac{n!}{k_1! \cdots k_d!} \Delta x_1^{k_1} \cdots \Delta x_d^{k_d} \frac{\partial^n f}{\partial^{k_1} x_1 \cdots \partial^{k_d} x_d}$$

t=1 עבור T>0 כאשר (-T,T) פעמים בי m+1 עבור ברציפות אזירה ברציפות ש־

$$F(1) = F(0) + \sum_{n=1}^{m} \frac{F^{(n)}(0)}{n!} 1^{n} + \frac{1}{(m+1)!} F^{(m+1)}(\theta)$$

עבור (2) מתקיים: $\theta \in (0,1)$ מתקיים:

$$f(\overline{x_0} + \overline{\Delta x}) = f(\overline{x_0}) + \sum_{n=1}^{m} \frac{1}{n!} \sum_{\substack{(k_1, \dots, k_d) \\ k_1 + \dots + k_d = n}} \Delta x_1^{k_1} \cdots \Delta x_d^{k_d} \frac{\partial^n f}{\partial^{k_1} x_1 \cdots \partial^{k_d} x_d} (\overline{x_0}) + \frac{1}{(m+1)!} \sum_{\substack{(k_1, \dots, k_d) \\ k_1 + \dots + k_d = n}} \Delta x_1^{k_1} \cdots \Delta x_d^{k_d} \frac{\partial^{m+1} f}{\partial^{k_1} x_1 \cdots \partial^{k_d} x_d} (\overline{x_0} + \theta \overline{\Delta x})$$

$$(k_1, \dots, k_d)$$

$$k_1 + \dots + k_d = m + 1$$

13 תנאים על נגזרות מסדר ראשון ושני עבור מינימום ומקסימום

. משפט l_f אזי אזי $\overline{x_0}$ נקודת מינימום. אם שלילית לחלוטין אזי היובית לחלוטין אזי היובית מינימום. אם משפט ואם ואם ואם $\overline{x_0}$ נקודת מקסימום.

הוכחה ראינו כי עבור $\overline{\Delta x}$ עם $\|\overline{\Delta x}\|$ קטן מתקיים:

$$f(\overline{x_0} + \overline{\Delta x}) - f(\overline{x_0}) = \frac{1}{2} l_f(\overline{\Delta x}) + \frac{1}{2} R(\overline{\Delta x})$$

כאשר

$$R(\overline{\Delta x}) = \sum_{i=1}^{d} \alpha_{ii}(\overline{\Delta x}) \Delta x_i^2 + 2 \sum_{1 \le i < j \le \alpha} \alpha_{ij}(\overline{\Delta x}) \Delta x_i \Delta x_j$$

$$orall i, j \ lpha_{ij}(\overline{\Delta x}) \xrightarrow{\overline{\Delta x}
ightarrow 0} 0$$
 כאשר

$$S^{d-1}\ni ar t=rac{\overline{\Delta x}}{\|\overline{\Delta x}\|}$$
 נניח ש־ f חיובית לחלוטין, $0\neq 0$. נגדיר ו

$$l_f(\overline{\Delta x}) = l_f(\|\overline{\Delta x}\|\overline{t}) = \|\overline{\Delta x}\|^2 l_f(\overline{t}) \ge M \|\overline{\Delta x}\|^2$$

עבור $\delta>0$ וכל $\delta>0$ כך שלכל $\alpha_{ij}(\overline{\Delta x})\xrightarrow[\overline{\Delta x}\to 0]{}$ מתקיים $\delta>0$ כך שלכל $\overline{\Delta x}\neq 0$ כך שלכל $\delta>0$ מתקיים עבור $\overline{\Delta x}\to 0$ ולכך ולכך ולכך ולכך $\|\overline{\Delta x}\|<\delta \implies |\alpha_{ij}(\overline{\Delta x})|<\epsilon$

$$|R(\overline{\Delta x})| \le \sum_{i=1}^{d} |\alpha_{ii}(\overline{\Delta x})| \Delta x_i^2 + 2 \sum_{1 \le i < j \le d} |\alpha_{ij}(\overline{\Delta x})| |\Delta x_i| |\Delta x_j| < \infty$$

$$< \epsilon (\sum_{i=1}^{d} \Delta x_i^2 + 2 \sum_{1 \le i \le j \le d} |\Delta x_i| |\Delta x_j|) = \epsilon (\sum_{i=1}^{d} |\Delta x_i|)^2 \le \epsilon \sum_{i=1}^{d} 1^2 \sum_{i=1}^{d} |\Delta x_i|^2 = \epsilon d ||\overline{\Delta x}||^2$$

נבחר $\|\overline{\Delta x}\| < \delta_0$ כך שלכל כי קיים $\delta_0 > 0$ יתקיים $\epsilon = \frac{M}{2d}$ יתקיים

$$f(\overline{x_0} + \overline{\Delta x}) - f(\overline{x_0}) = \frac{1}{2}(l_f(\overline{\Delta x}) + R(\overline{\Delta x})) \ge \frac{1}{2}(M\|\overline{\Delta x}\|^2 - \frac{M}{2d}d\|\overline{\Delta x}\|^2) > 0$$

לכל $\delta < \|\overline{\Delta x}\| < \delta$ נקודת מינימום. לכל $\delta < \|\overline{\Delta x}\| < \delta$ עבור f שלילית לחלוטין מחליפים בור t_f