Main Topic	Sub-topic	Definition	Where to Use	Formulas	Use Case	Example	Main Goal
Descriptive Statistics	Central Tendency	Measures of average	EDA, reporting	Mean = Σx/n, Median, Mode	Summarize sales data	Mean revenue = ₹10K	Summarize data
	Dispersion	Spread of data	Quality control	Range, Variance, SD	Product dimension variability	SD of delivery time = 2 hrs	Measure consistency
	Skewness	Measures the asymmetry of a distribution	EDA, distribution check	Skewness = 3(Mean – Median)/SD or using 3rd moment	Income distribution skew	Positive skew (long right tail)	Identify direction of data imbalance
	Kurtosis	Measures the tailedness (peakedness) of a distribution	Risk analysis, QC	Excess Kurtosis = $(\mu_4/\sigma^4) - 3$	Financial returns sharp peaks	High kurtosis (leptokurtic)	Detect presence of outliers or heavy tails
Inferential Statistics	Estimation	Estimate population parameters	Survey sampling	CI = Mean ± Z*(SD/Vn)	Predict avg. voter turnout	CI = 60% ± 3%	Generalize from sample
	Hypothesis Testing	Test population assumptions using sample data	A/B testing, drug trials, UX tests	p-value, t-test, z- test, chi-square	Compare control vs test group	p < 0.05 → reject null hypothesis	Make data-driven decisions
	Confidence Interval	Range of values likely to contain population parameter	Estimating unknown parameters	CI = mean ± Z * (σ / √n)	Estimating average income	CI = ₹52,000 ± ₹2,000	Express uncertainty in estimates
Hypothesis Testing	Null Hypothesis (H0)	Default assumption (no effect or no difference)	All tests begin with H0	-	Assume both drugs work equally	Η0: μ1 = μ2	Benchmark to test against
	Alternative Hypothesis (H1)	Contradicts H0, represents a real effect or change	When evidence suggests a change	-	New drug better than old	H1: μ1 ≠ μ2	What we try to prove
	P-value	Probability of observing a test statistic as extreme as sample assuming H0	All statistical tests	P = P(T > t_obs_H0)		Compare with α to decide H0	p = 0.03 < 0.05 → Reject H0

Main Topic	Sub-topic	Definition	Where to Use	Formulas	Use Case	Example	Main Goal
Hypothesis Testing	Significance Level (α)	Threshold below which H0 is rejected	All statistical tests	Common α = 0.05, 0.01	Control Type I error rate	α = 0.05 means 5% false positive rate	Decide cutoff for significance
	One-Tailed Test	Tests effect in one direction	Direction- specific testing	-	Is new design better than old?	Η1: μ1 > μ2	Test for improvement only
	Two-Tailed Test	Tests effect in both directions	General comparisons	-	Is there any difference?	H1: μ1 ≠ μ2	Check for any change
	Type I Error (α)	Rejecting H0 when it's actually true (false positive)	Significance level	1	False claim drug works	α = 0.05	Control false positives
	Type II Error (β)	Not rejecting H0 when it's false (false negative)	Power analysis	1	Miss a real drug effect	β = 0.2	Control false negatives
	T-Test	Compares means between groups (when population SD is unknown, small sample)	Compare two means	t = $(\bar{X}1 - \bar{X}2) / V[(s_1^2/n_1) + (s_2^2/n_2)]$	Drug A vs Drug B effect	Test if new drug has better mean recovery time	Compare means of small samples
	F-Test	Compares variances of two populations	Variance testing before ANOVA	$F = s_1^2 / s_2^2 (s = sample variance)$	Test if two processes have equal variability	F = Var(Group A) / Var(Group B)	Assess equality of variances
	Chi-Square Test	Tests association between categorical variables or goodness of fit	Categorical data, independence, fit	$\chi^2 = \Sigma \left[(O - E)^2 / E \right]$	Gender vs Preference, Dice fairness	χ ² = 10.2, df = 4, p < 0.05	Test independence or distribution shape
	ANOVA (One-Way)	Compare means across 3 or more groups	Group mean comparison	F = MS_between / MS_within	Compare A/B/C variants	F = 3.6, p < 0.05 → Significant difference	Generalize t-test to >2 groups
	Z-Test	Compare sample mean to population mean (large n or known σ)	Mean testing with known SD	z = (X̄ – μ) / (σ / √n)	Population testing with known SD	z = 2.5, p < 0.05 → Significant result	Test population mean with known variance
Sampling Techniques	Simple Random	Equal chance for every item	Surveys	-	General voter polling	Lottery method	Reduce bias

Main Topic	Sub-topic	Definition	Where to Use	Formulas	Use Case	Example	Main Goal
	Stratified	Divide by subgroups	Population analysis	-	Income-based study	Divide by salary ranges	Better representation
	Cluster	Random groups or clusters	Geographical sampling	-	City-wise polling	Random schools in districts	Cost-efficient sampling
	Systematic	Every kth item	Manufacturing, production	-	Quality control	Pick every 10th item	Simple implementation
	Classical	Based on theory	Games, experiments	P(A) = Favorable/Total outcomes	Dice games	P(6) = 1/6	Quantify theoretical outcomes
	Empirical	Based on past data	Forecasting	P = freq(A)/n	Weather prediction	P(Rain) = 0.6	Use observed data
Probability	Subjective	Based on belief	Expert systems	-	Stock forecast	P(Growth) = 0.8 (belief)	Model expert opinion
	Conditional	Probability of A given B	Risk analysis	$P(A/B) = P(A \cap B)/P(B)$		Defects by supplier	P(Defect
	Bayes' Theorem	Update beliefs with evidence	Medical diagnosis	$P(A/B) = [P(B/A) \cdot P(A)]/P(B)$			Test accuracy
Descriptive Summary	5-Number Summary	Statistical spread	Boxplots, visualization	-	Understand distribution	[Min, Q1, Median, Q3, Max]	Summarize distribution shape
Combinato	Permutation s	Arrangements where order matters	Ranking, passwords	nPr = n! / (n-r)!	Arrange 3 of 5 books	P(5,3) = 60	Count ordered outcomes
rics	Combinatio ns	Selections where order doesn't matter	Group selection, lottery	nCr = n! / (r!(n-r)!)	Choose 3 players from 5	C(5,3) = 10	Count unordered outcomes
Distributio ns	Normal Distribution	Bell-shaped, symmetric curve	Heights, exam scores	PDF formula	Model scores	Mean=Median=Mode	Model natural variation
	Binomial Distribution	Success/failure in fixed trials	Surveys, quality checks	P(X=k) = C(n,k)p^k(1-p)^(n -k)	Yes/No answers	P(3 heads in 5 flips)	Model binary outcomes
	Poisson Distribution	Count of rare events in interval	Traffic, calls	$P(X=k) = \lambda^k *$ $e^{\lambda} / k!$	Calls per min	$\lambda = 3 \rightarrow P(2 \text{ calls})$	Model rare events
	Standard Normal Distribution	Normal distribution with μ =0, σ =1	Z-score analysis	Z = (x-μ)/σ	Standardize marks	Z = 1.5	Compare across datasets

Main Topic	Sub-topic	Definition	Where to Use	Formulas	Use Case	Example	Main Goal
	Log-Normal Distribution	Distribution of log(x) is normal	Income, biology, stocks	$log(X) \sim N(\mu, \sigma^2)$	Stock returns, income	log-normal distribution	Model skewed positive data
	Bernoulli Distribution	Only two outcomes: success/failure	Binary outcome modeling	P(X=1)=p, P(X=0)=1-p	Coin toss, trial success	P(success)=0.5	Model single binary event
Relationshi ps	Correlation	Measures strength and direction of relationship	EDA, feature selection	$r = Cov(X,Y)/(\sigma X \cdot \sigma Y)$	Study time vs marks	$r = 0.85 \rightarrow \text{strong +ve}$	Identify linear link
	Covariance	Measures direction of joint movement	Portfolio analysis	$Cov(X,Y) = \Sigma(x-\bar{X})(y-\bar{Y})/(n-1)$	Stocks A & B	$Cov > 0 \rightarrow both rise$	Track co-movement
	Normalizati on	Scale data to 0–1 range	ML, image data	(x-min)/(max-min)	Pixel scaling	[0,1] range	Uniform scale
	Standardizat ion	Scale data to mean=0, SD=1	ML models, z- scores	(x-mean)/SD	PCA, Z-score use	Z = 1.2	Handle different units
Data	Mean Normalizati on	Centers values around 0 using mean	ML preprocessing	(x-mean)/(max-m in)	Salary data scaling	Normalized range: -1 to 1	Center around mean
Scaling	Robust Scaling	Uses median and IQR to scale	Skewed/outlier data	(x-median)/IQR	Income distribution	Less impacted by outliers	Handle outliers robustly
	Log Transformat ion	Reduces skew, compresses data range	Right-skewed data	log(x) or log(x+1)	Sales data	log(1000) = 3	Normalize positive skew
	Decimal Scaling	Scales down by powers of 10	Financial data	x / 10^j (j makes	x	< 1)	₹100000 becomes 1
Outlier Detection	Z-Score Method	Measures distance from mean in SDs	Cleaning data	Z = (x-mean)/SD	Remove extreme points	Z = 4 → outlier	Detect distant values
	IQR Method	Uses quartiles to detect extremes	Boxplots, visuals	Outlier: < Q1-1.5 <i>IQR or ></i> <i>Q3+1.5</i> IQR	Identify anomalies	Value > Q3 + 1.5×IQR	Remove statistical extremes