Efficient Loss-Based Decoding on Graphs for Extreme Classification

Itay Evron, Edward Moroshko, and Koby Crammer

Extreme multiclass classification

- Tasks with an extremely large number of classes K.
- Time and space complexities during training and inference become critical.
- We propose a graph-based classification scheme with time and space complexities logarithmic in K.

One vs Rest – Simple but expensive

Inference for $x \in \mathcal{X}$:

- Score all: $f(x) = [f_1(x), ..., f_K(x)]$
- Predict: $\hat{y} = \arg \max_{k} f_k(x)$

Model size (#classifiers) Inference time O(K)0

Error Correcting Output Coding

Training:

- Get a coding matrix $M \in \{-1,1\}^{K \times \ell}$
- Map each codeword to a class (e.g. arbitrarily)
- Learn ℓ binary classifiers $f_1, ..., f_\ell \colon \mathcal{X} \to \mathbb{R}$

Inference for $x \in \mathcal{X}$:

- Score all: $f(x) = [f_1(x), ..., f_{\ell}(x)]$
- Predict: $\hat{y} = \arg\min_{k} d_{Hamm} (M_k, sign(f(x)))$

Inference example:

 $O(K\ell) = O(K \log K$

Loss based decoding

- Instead of minimizing the Hamming distance, predict the class that minimizes some loss: $\hat{y} = \arg\min_{k} \sum_{j=1}^{\ell} \mathcal{L}\left(M_{k,j} \times f_{j}(x)\right)$
- An upper bound of the training multiclass error is proportional to:
- Number of classifiers $\ell \times \varepsilon$ Average binary loss Minimum row distance --- ρ
- The decoding loss function matters.

Our model – Wide-LTLS

- Based on LTLS [Jasinska and Karampatziakis 2016].
- Build a trellis graph with exactly K paths.
- Map each path to a class (e.g. arbitrarily).
- For each edge e (in parallel):
- Train a binary classifier $f_e \colon \mathcal{X} \to \mathbb{R}$ on the entire training set:
- Separate classes (=paths) that use this edge, from the classes that do not.

Inference for $x \in \mathcal{X}$:

- Set all edge weights: $w(e) = f_e(x)$.
- Find the heaviest path and predict its class.

Increasing the graph width

- ullet The same number of classes can be represented with different graph widths b.
- For instance, the following graphs all have K=64 paths (=classes):

Graph width controls performance

• Our model offers a tradeoff between accuracy and model size.

l am not

a neural network

W-LTLS as loss-based decoding

- We prove that W-LTLS performs loss-based decoding with the squared loss $\mathcal{L}(z) = (1-z)^2$.
- We show how to generalize W-LTLS to any loss function \mathcal{L} , and perform loss based decoding in time logarithmic in K.
- The decoding loss function matters!
- The loss function can be chosen quickly <u>after</u> training.

Wider graph – Easier binary problems

• The subproblems are $\frac{K}{h^2}$ vs rest, thus get <u>easier</u>.

