CMPS 101

Homework Assignment 2

Solutions

1. p.52: 3.1-1

Let f(n) and g(n) be asymptotically non-negative functions. Using the basic definition of Θ -notation, prove that $f(n) + g(n) = \Theta(\max(f(n), g(n)))$.

Proof:

Since f(n) and g(n) are asymptotically non-negative, there exists a positive constant n_0 such that $f(n) \ge 0$ and $g(n) \ge 0$ for all $n \ge n_0$. For such n we have

$$0 \le \max(f(n), g(n))$$

$$\le \min(f(n), g(n)) + \max(f(n), g(n))$$

$$\le 2 \cdot \max(f(n), g(n)).$$

But $f(n) + g(n) = \min(f(n), g(n)) + \max(f(n), g(n))$, so for all $n \ge n_0$ we have

$$0 \le 1 \cdot \max(f(n), g(n)) \le f(n) + g(n) \le 2 \cdot \max(f(n), g(n)).$$

Thus
$$f(n) + g(n) = \Theta(\max(f(n), g(n)))$$
, as required.

2. p. 53: 3.1-4

Determine whether the following statements are true or false.

a.
$$2^{n+1} = O(2^n)$$

Solution: True since
$$2^{n+1} = 2 \cdot 2^n = \text{const} \cdot 2^n = O(2^n)$$
.

b.
$$2^{2n} = O(2^n)$$

Solution: False since
$$2^{2n} = (2^2)^n = 4^n = \omega(2^n)$$
 and since $\omega(2^n) \cap O(2^n) = \emptyset$.

3. p.61: 3-2abcdef

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\varepsilon > 0$, and c > 1 are constants. Place 'yes' or 'no' in each of the empty cells below, and justify your answers.

	A	В	0	0	Ω	ω	Θ
a.	$\lg^k n$	$n^{arepsilon}$	yes	yes	no	no	no
b.	n^k	c^n	yes	yes	no	no	no
c.	\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
d.	2 ⁿ	$2^{n/2}$	no	no	yes	yes	no
e.	$n^{\lg c}$	$c^{\lg n}$	yes	no	yes	no	yes
f.	lg(n!)	$\lg(n^n)$	yes	no	yes	no	yes

Justifications:

- a. Applying l'Hopital's rule [k] times, we get $\lim_{n\to\infty} \frac{(\lg n)^k}{n^{\varepsilon}} = 0$, whence $\lg^k n = o(n^{\varepsilon})$.
- b. Again, by $\lceil k \rceil$ applications of l'Hopital's rule, $\lim_{n \to \infty} \frac{n^k}{c^n} = 0$, whence $n^k = o(c^n)$.
- c. Let c>0, and observe that $n^{\sin n}>c\sqrt{n}$ for $n=2\pi k+\frac{\pi}{2}$, where k is a sufficiently large positive integer. Therefore the inequality $n^{\sin n}\leq c\sqrt{n}$ is false for arbitrarily large n, and hence $n^{\sin(n)}\neq O(\sqrt{n})$. Also note that $n^{\sin n}< c\sqrt{n}$ for $n=2\pi k+\frac{3\pi}{2}$, where k is sufficiently large, and therefore the inequality $n^{\sin n}\geq c\sqrt{n}$ is false for arbitrarily large n, whence $n^{\sin(n)}\neq \Omega(\sqrt{n})$.
- d. Observe $\lim_{n\to\infty} (2^n/2^{n/2}) = \lim_{n\to\infty} (\sqrt{2})^n = \infty$, and therefore $2^n = \omega(2^{n/2})$.
- e. The identity $x^{\log_b y} = y^{\log_b x}$ implies that the two functions are equal: $n^{\lg c} = c^{\lg n}$.
- f. Note $\lg(n^n) = n \lg(n)$, and Stirling's formula implies $\lg(n!) = \Theta(n \lg(n))$.
- 4. p.62: 3-4deh

Let f(n) and g(n) be asymptotically positive functions (i.e. f(n) > 0 and g(n) > 0 for sufficiently large n.) Prove or disprove the following statements.

d. f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$. False Counter-Example:

Let
$$f(n) = 2n$$
 and $g(n) = n$. Then $2^{g(n)} = 2^n$ and $2^{f(n)} = 2^{2n} = 4^n = \omega(2^n)$, so $2^{f(n)} = \omega(2^{g(n)})$, and therefore $2^{f(n)} \neq O(2^{g(n)})$.

e. $f(n) = O((f(n))^2)$. False

Counter-Example:

Let
$$f(n) = 1/n$$
. Then $f(n) = \omega((f(n))^2)$ since $\lim_{n \to \infty} \frac{f(n)}{f(n)^2} = \lim_{n \to \infty} \frac{1}{f(n)} = \lim_{n \to \infty} n = \infty$, and hence $f(n) \neq O((f(n))^2)$.

h. $f(n) + o(f(n)) = \Theta(f(n))$. True

Proof:

In the above formula, o(f(n)) stands for some anonymous function h(n) in the class o(f(n)), whence $\lim_{n\to\infty}\frac{h(n)}{f(n)}=0$. Thus $\lim_{n\to\infty}\frac{f(n)+h(n)}{f(n)}=\lim_{n\to\infty}\left(1+\frac{h(n)}{f(n)}\right)=1$, and $f(n)+h(n)=\Theta(f(n))$, as claimed.

5. Let g(n) be an asymptotically non-negative function. Prove that $o(g(n)) \cap \Omega(g(n)) = \emptyset$.

Proof:

Assume to get a contradiction that $f(n) \in o(g(n)) \cap \Omega(g(n))$. Then since $f(n) = \Omega(g(n))$ we have

(1)
$$\exists c_1 > 0, \ \exists n_1 > 0, \forall n \ge n_1: \ 0 \le c_1 g(n) \le f(n)$$

and since f(n) = o(g(n)) we have

(2)
$$\forall c_2 > 0, \ \exists n_2 > 0, \forall n \ge n_2: \ 0 \le f(n) < c_2 g(n)$$

Let $c_2 = c_1$. Then $c_2 > 0$, and by (2) there exists $n_2 > 0$ such that $0 \le f(n) < c_1 g(n)$ for all $n \ge n_2$. Pick any $m \ge \max(n_1, n_2)$. Then by (1) and (2) we have $0 \le c_1 g(m) \le f(m) < c_1 g(m)$, and hence $c_1 g(m) < c_1 g(m)$, a contradiction. Our assumption was therefore false, and no such function f(n) can exist. We conclude that $o(g(n)) \cap \Omega(g(n)) = \emptyset$.

6. Prove that $3^{2^n} = o(2^{3^n})$.

Proof:

Observe that $\ln\left(\frac{3^{2^{n}}}{2^{3^{n}}}\right) = 2^{n}(\ln 3) - 3^{n}(\ln 2) \to -\infty$, since $3^{n} = \omega(2^{n})$. Therefore $\frac{3^{2^{n}}}{2^{3^{n}}} \to e^{-\infty} = 0$, whence $3^{2^{n}} = o(2^{3^{n}})$.