Machine Learning in Healthcare

#C06 Regularization

Technion-IIT, Haifa, Israel

Assist. Prof. Joachim Behar Biomedical Engineering Faculty Technion-IIT

Introduction

- You trained a model with its $J \rightarrow 0$. You feel very proud!
- Then you go out in the real world and start making predictions. Surprise, results are not good at all! What happened?
- Very likely your model is overfitting the training examples leading to bad generalization.

Introduction

Table 2. Classification performance measured by F_1 . The table reports the overall and individual rhythm class performance by random forest based and XGBoost based models on the training and unseen test set.

		Recordings	Overall	N	A	O	~
Official challenge entry (Vollmer et al 2017)	Training set	8528	0.94	0.98	0.91	0.94	0.90
	Test set	3658	0.81	0.91	0.81	0.70	0.46
Enhanced post-challenge entry	Training set	8528	0.99	0.99	0.99	0.98	0.99
	Test set	3658	0.82	0.91	0.82	0.74	a

Overfitting

Overfitting

- One of the most important consideration when learning a model is how well it will generalize to new observations. This is called generalization.
- This is important because we train our model on a population sample dataset which has some noise.
- In other words, generalization refers to how well the concepts learned by a machine learning model will translate to new observations not seen by the model when it was trained.
- This is related to the concept of overfitting and underfitting.
- In particular, we will focus on overfitting which is a phenomenon that usually happens with complex models.

Overfitting - Regression

<u>Overfitting</u>: refers to a model where the learned hypothesis fits the training set very well $(J(w) \to 0)$ but fails to generalize to new observations.

$$y = w_0 + w_1 x + w_2 x^2$$

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

- Underfitting
- High bias

- Overfitting
- High variance 6

Overfitting – Classification

- Underfitting
- High bias

- Overfitting
- High variance

Bias-Variance

Bias-Variance

- The prediction error (\mathcal{E}) of a model can be divided into:
 - $\mathcal{E} = \mathcal{E}_b + \mathcal{E}_v + \mathcal{E}_i$
 - \mathcal{E}_h : Bias error
 - \mathcal{E}_{v} : Variance error
 - \mathcal{E}_i : Irreducible error.
- The irreducible error is the one that we cannot fix whatever model we use because of the way the problem is framed.

Bias

- The bias error comes from erroneous assumptions in the learning algorithm. Often these assumptions are made to use a simple model.
 - Low bias: suggests good or too complex hypothesis representation.
 - High bias: suggests the need for a more flexible hypothesis representation.
- A high bias may cause the algorithm to miss the relationship between features and the target output and lead to underfitting.

Bias

- Low-bias ML algorithms:
 - Decision Trees,
 - k-Nearest Neighbors,
 - Support Vector Machines.
- High-bias ML algorithms:
 - Linear Regression,
 - Linear Discriminant Analysis,
 - Logistic Regression.

Variance

- The variance reflects how much the target function will change if different training data was used.
 - Low variance: suggests that changing the training dataset will lead to small changes to the estimate of the target function.
 - High variance: suggests that changing the training dataset will lead to large changes to the estimate of the target function.
- High variance can cause to model the noise in the training set which will lead to overfitting.
- Nonparametric machine learning algorithms have more flexibility and generally a higher variance.

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

Variance

- Low variance ML algorithms:
 - Linear Regression,
 - Linear Discriminant Analysis,
 - Logistic Regression.
- High variance ML algorithms:
 - Decision Trees,
 - k-Nearest Neighbors,
 - Support Vector Machines.

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

Bias-Variance Tradeoff

- In training a classifier we want a low bias and a low variance.
- Parametric or linear machine learning algorithms will often have a high bias but a low variance.
- Non-parametric or non-linear machine learning algorithms will often have a low bias but a high variance.
- In training any classifier we will need to find a tradeoff between bias and variance. This is not an easy task because:
 - Increasing the bias will lead to a lower variance.
 - Increasing the variance will lead to a lower bias.

Bias-variance tradeoff.

Addressing overfitting

- How can we address overfitting?
 - Visualize and adjust your model
 - But does not very help when we have many features
 - What else can we do?
 - Reduce the number of features (manually or using some algorithm).
 - Increase training data set.
 - Ensemble prediction from final models.
 - Regularization: keep all the features but reduce $||w_i||$.

Regularization

Regularization- General

- We seek to control the magnitude of the w_i
- Small values are preferable because it will lead to a simpler hypothesis representation.
- A simpler hypothesis representation is less prone to overfitting.

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n_x} w_i^2 \right]$$

- Blue: the regularization term
- λ : Regularization parameter. It controls the tradeoff between good fitting and keeping the w_i small i.e. a more simple hypothesis representation.
- $\lambda \to 0$: no regularization.
- $\lambda \to \infty$: underfitting $(h_w(x) = w_0)$.
- Thus the λ parameter should be chosen carefully.

- Why regularization? We want to avoid overfitting.
- We saw two ways to find the solution to the linear regression problem:
 - Using gradient descent.
 - Using the normal equation.
- How do we regularize?
- Intuition:
 - We introduce a penalization term E(w)
 - $J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} w^T \cdot x^{(i)})^2 + E(w)$
 - We want this term to "push away" the Value of w from the original overfitted optimal value.

Sum-of-square error for regularization (Ridge Regression):

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - w^T \cdot x^{(i)})^2 + \frac{\lambda}{2} w^T \cdot w$$

- Closed form solution (prove it!):
 - $w = (\lambda \cdot I + X^T X)^{-1} X^T y$
- Gradient descent:

•
$$w_j := w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} w_j \right]$$

- Assuming a sum-of-square regularization term we obtained a closed form solution.
- In statistics this provides an example of parameters shrinkage method because the weights are dragged to be small.
- What about the more general case where the regularization term is not sum-of-square?

- More general expression:
 - $J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} w^T x^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_x} |w_j|^q, q \in \mathbb{N}$
 - If q=2 this is known as **Ridge Regression**. It makes use of the L2 norm.
 - If q=1 this is known as Lasso Regression. It makes use of the L1 norm.
 - In the case of Lasso, if λ is sufficiently large then some coefficients w are driven to zero.
 - $w_j := w_j \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} sign(w_j) \right]$
 - $w_j := w_j \lambda \operatorname{sign}(w_j) \cdots$
 - So if $w_j > 0$ then the correction term will drag $w_j \to 0$
 - So if $w_i < 0$ then the correction term will drag $w_i \to 0$.
 - So in practice Lasso Regression tends to zeros some coefficients. It does some form of feature selection.

Regularized Logistic Regression

Graphical interpretation:

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q=2 on the left and the lasso regularizer q=1 on the right, in which the optimum value for the parameter vector \mathbf{w} is denoted by \mathbf{w}^* . The lasso gives a sparse solution in which $\mathbf{w}_1^*=0$.

Regularized Logistic Regression

Regularized Logistic Regression

Cost function for LR:

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} log \left(h_w(x^{(i)}) \right) - \left(1 - y^{(i)} \right) log \left(1 - h_w(x^{(i)}) \right) \right]$$

If we add the regularization term:

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} log \left(h_w(x^{(i)}) \right) - \left(1 - y^{(i)} \right) log (1 - y^{(i)}) \right]$$

Take Home

- Underfitting and overfitting are not desirable effects and reflect some limitations on our choice made of the hypothesis function. This is related to the tradeoff between bias and variance.
- Bias is the reflection of the hypothesis function complexity.
- Variance reflects how the model generalizes to new observations.
- We want a model with low bias and low variance.
- However, when increasing the bias we decrease the variance and when increasing the variance we decrease the bias. So we need to find a tradeoff.
- Regularization. In particular, Ridge regression (q = 2), Lasso regression (q = 1).
- Lasso has a nice property of cancelling some weights thus enabling some sparsity which is a form of feature selection while keeping the cost function convex.

References

[1] Machine Learning Mastery:

https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/

- [2] Pattern recognition and Machine Learning. Christopher M. Bishop. 2006 Springer Science.
- [3] Coursera, Andrew Ng. Regularization.