Student's Name: WANG XIANGBO Course Name: CSPP58001

6)Answer:

According to the definition, such eigenvalue λ exists if there is a non-zero vector v such that $(A - \lambda I)v = 0$. Thus following formula should be held that $det(A - \lambda I) = 0$.

However, in this case, since $A = [0 -1; 1 \ 0]$, no matter what value λ is, $(A - \lambda I)$ will always equal to A. And because det(A) = -1, $det(A - \lambda I)$ would never equal to zero. Therefore matrix A has no real eigenvalue. And eigenvector doesn't exist either.