Social Network Outreach Analysis Capstone 2 Project Step-By-Step

Springboard Data Science Career Track

Eric Cruz

- 1) Roster download from Web Scraping
 - a) Octoparse
 - i) Filenames
 - (1) CornellW.csv
 - (2) CornellM.csv
- 2) Roster Data Wrangling to produce input file for LinkedIn Search
 - a) Groupby() to consolidate same name on multiple rosters
 - b) Supplement Roster downloads with All-time Letter Winner lists
 - c) Parse Out Names for future use
 - i) Nameparser utility HumanName(): First, Last, M.I., Suffix
 - (1) Future Development: Nickname Database
 - d) Output file is "FirstLast" list of names
 - i) Future Development: Utilize Married vs. Maiden Name info but not needed in base case due to previous research
 - i) Analyze gathered LinkedIn Profiles not found in Search Result
 - e) <u>Program File Capstone2_DataWrangling_Roster_CornellW.ipynb</u>
 - i) <u>Input</u>
 - (1) CornellW.csv
 - (2) CornellWpdf.csv (letterwinner list if applicable)
 - ii) Output
 - (1) CornellW RosterGroup.csv
 - (2) NamelistCornellW.csv
 - (3) <u>CriteriaListCornellW.csv</u>
 - f) <u>Program File Capstone2_DataWrangling_Roster_CornellM.ipynb</u>
 - i) <u>Input</u>
 - (1) CornellM.csv
 - (2) CornellMpdf.csv (letterwinner list if applicable)
 - ii) Output
 - (1) CornellM RosterGroup.csv
 - (2) NamelistCornellM.csv
 - (3) <u>CriteriaListCornellM.csv</u>
- 3) LinkedIn Search
 - a) Selenium with Google Chrome Extension used in Jupyter Notebook script
 - b) Uses personal login but not counted in LinkedIn limits (only restrict outreach attempts), but applied for whitelist crawler exemption 3/15/20. Applied for PeopleSearch API under Marketing Developer application 2/8/20, received denial response 3/30/20.
 - c) Program File LinkedIn_Selenium_CornellM.ipynb
 - i) Input
 - (1) NamelistCornellM.csv
 - (2) CriteriaListCornellM.csv
 - ii) Output

- (1) CornellM LinkedIn.csv (actual old)
- (2) CornellMenLinkedIn.csv to re-rerun and use new file
- d) Program File LinkedIn Selenium CornellW.ipynb
 - i) <u>Input</u>
 - (1) NamelistCornellM.csv
 - (2) CriteriaListCornellM.csv
 - ii) Output
 - (1) <u>CornellWomenLinkedIn.csv</u>
- 4) LinkedIn/Roster Data Wrangling to produce Model Features
 - a) Gender label
 - b) FuzzyWuzzy ratios for partial name matching
 - c) Boolean classification for Tennis, School, SameName, and combination Same/Tennis
 - d) Decade as function of Year
 - e) <u>Program File Capstone2 DataWrangling LinkedIn CornellM.ipynb</u>
 - i) <u>Input</u>
 - (1) CornellM RosterGroup.csv
 - (2) CornellMenLinkedIn.csv
 - ii) <u>Output</u>
 - (1) RosterLinkedIn_CornellM.csv
 - f) <u>Program File Capstone2_DataWrangling_LinkedIn_CornellW.ipynb</u>
 - i) <u>Input</u>
 - (1) CornellW_RosterGroup.csv
 - (2) CornellWomenLinkedIn.csv
 - ii) Output
 - (1) RosterLinkedIn_CornellW.csv
- 5) Labelled Data from base cases
 - a) Cornell Women manual search as part of 50th Anniversary Event outreach
 - b) Cornell Men is base case for collection followed by manual labelling
 - c) <u>Program File Capstone2_Merge_LinkedIn_Labels</u>
 - i) <u>Input</u>
 - (1) RosterLinkedIn CornellM.csv
 - (2) RosterLinkedIn CornellW.csv
 - (3) CornellM match feedback.csv
 - (4) CWTAMasterRoster50.csv
 - ii) <u>Output</u>
 - (1) RosterLinkedInLabel CornellM.csv
 - (2) RosterLinkedInLabel CornellW.csv
 - (3) RosterLinkedInLabel CornellMW.csv
- 6) Model and Feature Selection for Binary Classification (*Iteratively built into LinkedIn/Roster wrangling*)
 - a) Random Forest Classifier (RFC); KNN, Logistic Regression evaluated
 - b) Natural Language Processing with Fuzzy Wuzzy python library
 - i) Use for approximate name matching as proxy for nicknames
 - c) Year, Decade, Fuzzy Scores are numerical features
 - d) Binary classification features are NameMatch, Tennis Activity, School, and Hybrid NameMatch&Tennis

- 7) Model Application
 - a) Train Models on Men's Data and Predict on Women's Data and vice versa
 - b) Combine Men and Women with Gender Classification feature and Re-train
 - c) Apply model to unseen data from sample of other schools
 - d) <u>Program File Capstone Project 2-rfc-feature-build-CornellMMWW.ipynb</u>
 - i) <u>Input</u>
 - (1) RosterLinkedInLabel CornellMW.csv
 - ii) Output
 - (1) modelmmww.joblib
 - (2) Xdata12 CornellMMWW.csv (Contains predictions)
- 8) Analysis of Model Results
 - a) For each selected feature, use bar charts to get frequency distributions and pie charts to get percentage scores
 - b) Compare true labelled results with model predictions in feedback loop to identify important features
 - c) Supplement Model Predictions with simple feature sorting to identify likely false predictions
 - d) <u>Program File Capstone2_DataAnalysis-CornellMMW.ipynb</u>
 - i) <u>Input</u>
 - (1) Xdata12 CornellMMWW.csv (contains predictions)
 - (2) RosterLinkedInLabel_CornellMW.csv
 - ii) Output
 - (1) Note that prediction column is appended to Labelled dataframe
 - (2) Only the Cornell Data is used to build the model, and predictions are taken while building other schools will not build, only run
 - e) Program File -
- 9) Deliverable is Roster List with LinkedIn search results, scores, feature data, and supplemental personal information
 - a) Location, Employment, Schools, Activities, Roster Info
 - b) Supplemental Letter Winner list downloads