

Academic

CHEMISTRY TRIAL 2001 MARKING GUIDELINES

The Core
Multiple choice (1 mark each)
1D 2A 3B 4A 5B 6C 7B 8A 9B 10D 11A 12C 13D 14C 15D

Extended answers

Q	Answer Answer	Mark
16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2
17	fluorine-18 – used in positron emission tomography to study brain function, to diagnose epilepsy, heart disease and certain types of cancer phosphorus-32 – treating excess red blood cells cobalt-60 – source of external radiation for cancer treatment technetium-99 – detection of blood vessel constrictions, blood clots, brain tumours iodine-121 – destroying (some of the overactive) thyroid gland iodine-123 – diagnosis of thyroid diseases iridium-192 – internal source of radiotherapy	2
	correct element but incorrect isotope	1
18a	one of protein, cellulose, starch	1
18b	*biopolymers are biodegradable, polymers from petroleum products are not *petroleum reserves are diminishing	1
19a i	$C_6H_{12}O_{6(aq)} \rightarrow 2CO_{2(g)} + 2C_2H_5OH_{(aq)}$ catalyst: yeast ½ for equation. ½ for catalyst	1
19a ii	$\frac{\text{CII}_{3}\text{CII}_{2}\text{OH}_{(1)} \rightarrow \text{CII}_{2}=\text{CH}_{2(g)} + \text{II}_{2}\text{O}_{(1)}}{\text{$\prime$$s catalyst: concentrated $H_{2}\text{SO}_{4}$}} $	1
19b	Water dissolves ionic and polar compounds by forming dipole-ion, dipole-dipole or H bonds with the solute particles. The OH end of ethanol can form the same type of bonds.	I 1
19c	Energy from ethanol = $n \times \Delta H = 785/46.1 \times 1367 = 23278 \text{ kJ}$ Energy from octane = $n \times \Delta H = 698/114.2 \times 5470 = 33433 \text{ kJ}$ Since more energy from octane, can travel further on octane.	1 1 1
20a	any copper solution, eg copper (II) sulfate	1
20b	$Cu^{2^{+}} + 2e^{-} \rightarrow Cu_{(s)}$	1
20c	oxidation	1
21a	To minimise the decrease in pressure caused by the opening of the bottle, the equilibrium shifts towards the side with the greater number of gas molecules, ie towards the formation of CO ₂ gas bubbles.	i

16	Solubility of gases is greater at lower temperature, ic dissolving is exothermic. So lowering the temperature favours the reaction which
	produces heat so equilibrium shifts towards CO _{2(aq)} , away from the formation of gas bubbles.
lc	As CO _{2(g)} is removed each of the equilibrium reactions shifts to the left
	(towards the reactants). [H ₃ O ⁺] decreases, pH increases.
2a	Reduction. An electron is gained (or e ⁻ is a reactant) or there is a decrease in the oxidation number of vanadium (from +5 to +4)
	If there is no reason or the reason is wrong, no mark at all
2b	+5
3a	$CuS_{(s)} + O_{2(g)} \rightarrow Cu_{(s)} + SO_{2(s)}$
.3b	$n_{\text{CuS}} = 1000000/95.6 = 10460 \text{ mol}$
	$n_{SO2} = n_{CuS} = 10460 \text{ mol}$
 23c	$V_{SO2} = n \times V_{yyolar} = 10460 \times 24.45 = 255753 \text{ L} (= 2.56 \times 10^5 \text{ L})$ $SO_{2(g)} + H_2O(1) \rightarrow H_2SO_{3(aq)}$
23d	$H_2SO_{4(aq)} + CaCO_{3(s)} \rightarrow H_2O_{(1)} + CO_{2(g)} + CaSO_{3(aq)}$
	• •
24a i	$CH_3CH_2COOCH_2CH_{3(aq)} + H_2O_{(1)}$
24a	ethyl propanoate
<u>ii</u> 24b	[OH*] = 0.5 mol L*1
:40 i	$[I]+]=2x[0^{-14}$ (or p() $II=0.30$)
	$pH = -log 2x 10^{-14} = 13.7$ (or $pH = 14 - pOH = 13.7$)
24b ii	$H_2SO_4 + 2NaOH \rightarrow 2H_2O + Na_2SO_4$ $n_{NaOH} = CV = 0.5 \times 0.068 = 0.034 \text{ mol}$
11	$n_{\text{H2SO4}} = \frac{1}{2} n_{\text{NaOH}} = 0.017 \text{ mol}$
25a	HCl provides H ⁺ ions (H ₃ O ⁺) in aqueous solutions
i	$HCl + H_2O \rightarrow H_3O^+ + Cl^-$
25a	The ammonium ion of NH ₄ OH is a proton donor
ii	$NH_4^+ + OH^- = NH_3 + H_2O$
25b	
	; F : H ; F : H
	:F:B +:N:H → :F:B:N:H
	: F : H : F : H
	Lewis acid (BF ₃)
26a	At higher pressure equilibrium favours side with fewer gas molecules, i.e.
	an increase in NH ₃ formation At high temperature equilibrium is reached quickly but with low yield
cont)	(equilibrium position is towards the reactants).

26a		
11111111	The temperature equipment visit is both but it tolers to the	
	i months to reach equilibrium	
ļ	(At moderate temperature get reasonable yield in reasonable time.)	1
26ь	inon (re), or magnetic (Fe ₂ () ₁) with its surface reduced to	1.
26b	The alternative pathway offered by the catalyst has a lower activation	1_
ii	CHCLEY.	
	Therefore the number of molecules at the low temperature which have	1
	sufficient energy to overcome this lowered energy barrier can be the same	
	as the number of molecules of the high same	1
	as the number of molecules at the high temperature with sufficient energy to overcome the higher energy barrier.	
27a		ı
214	NaOH reacted = NaOH originally - NaOH remaining to be neutralised by HC!	
27b		3
270	$n_N = nNH_4^* = n_{NaOH reacted} = 0.0097 \text{ mol}$	1
27c	percent of N = n x MM(tmark) x 100/m (t mark)	L'
	= 0.0007 v. 14 v. 1000/0.05	
28a	$= 0.0097 \times 14 \times 1000/0.95 = 14.3\%$	2
	porous polypropylene, polysulfone or teflon	1
28b	cross section of a microscopic membrane filter	ļ
	memorane filter	1
	direction of water flow	ĺ
	direction of water flow folded porous membrane	ĺ
	dirty watersolid porous sore	ĺ
	core solid porous core	ĺ
	clean watermesh	1
i		٠.
30		
28c	Dirty water under pressure is pushed against the membrane. The pores in	_,
28c	Dirty water under pressure is pushed against the membrane. The pores in the membrane are too small to allow microorganisms and other particulate.	
28c	matter through, but are large enough to allow the passage of surface	
	matter through, but are large enough to allow the passage of water and small ions.	
	matter through, but are large enough to allow the passage of water and small ions.	1
	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living account.	1
29a	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation.	1
29a	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause hereful element.	
29a 29b	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms.	
29a 29b	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms.	1
29a 29b	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85	1
29a 29b 30a	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard 1.087	1
29a 29b 0a	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard = 1.087 = 0.42 ppm	1 1
29a 29b 30a	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard = 1.087 = 0.42 ppm	1
29a 29b 30a 0b	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard = 0.42 ppm nbaso4 = in/MM 0.27/233.34 = 1.157x 10 ⁻³	1 1
29a 29b 30a 0b i	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard = 0.42 ppm nbaso4 = in/MM 0.27/233.34 = 1.157x 10 ⁻³ The number of moles of HsO4 = 2.05 x 0.01 = 0.0205 met which a the	1 1
29a 29b 30a 0b i	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard = 1.087 = 0.42 ppm n _{BaSO4} = in/MM 0.27/233.34 = 1.157x 10 ⁻³ The number of moles of H ₂ SO ₄ = 2.05 x 0.01 = 0.0205 mol, which would be enough to precipitate 0.0005 moles of B. CO.	1 1
29a 29b 30a 60b i 0b ii	matter through, but are large enough to allow the passage of water and small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard = 0.42 ppm nbaso4 = in/MM 0.27/233.34 = 1.157x 10 ⁻³ The number of moles of H ₂ SO ₄ = 2.05 x 0.01 = 0.0205 mol, which would be enough to precipitate 0.0205 moles of BaSO ₄ . The reaction stopped before this, so all the Ba ²⁺ must have been used up, i.e. sulfuric acid was in	1 1
29a 29b 30a 30b i 0b ii	matter through, but are large enough to allow microorganisms and other particulate small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078 x 5.85 of sample absorbance of standard = 1.087 = 0.42 ppm The number of moles of H ₂ SO ₄ = 2.05 x 0.01 = 0.0205 mol, which would be enough to precipitate 0.0205 moles of BaSO ₄ . The reaction stopped before this, so all the Ba ^{2*} must have been used up, i.e. sulfuric acid was in excess.	1 1 1 1
i Ob ii	matter through, but are large enough to allow microorganisms and other particulate small ions. The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation. Ozone, being a powerful oxidising agent, can cause harmful chemical changes in the cells of living organisms. concentration = absorbance of sample x concentration of standard = 0.078×5.85 of sample absorbance of standard = 0.078×5.85 of sample absorbance of standard = 0.078×5.85 of sample absorbance of standard = 0.078×5.85 of sample absorbance of standard = 0.078×5.85 of sample absorbance of standard = 0.0205×5.85 of sample absorbance of standard = $0.0205 \times $	1 1

:1.59g67

OPTION 1. INDUSTRIAL CHEMISTRY

la	Wool – increasing population and – alternative cheaper Rubber – increased number of vel – limited supply Soap – increased population → inc	hicles → car	n't keep up [.]		and
	 starting material (fat) used 	elsewhere	(for food)		
њ	Wool - acrylic, nylon		A: 7: 21: 11: 11: 12: 22: 22: 22: 22: 22: 22	Patrick Committee Company	
	Rubber - styrene-butadiene				
-	Soap – detergents				
2 3a	C				
311	concentration (mol L-1)		[12]	[NH ₃]	
	initial	0.19	0 38	0 23	1
	change	+0.04	+0.12	- 0.08	
	at equilibrium	0.23	0.50	0.15	
3Ь	$K = \underbrace{[NI]_3]^2}_{[N_2][H_2]^3}$ $K = \underbrace{0.15^2}_{0.75^2} = 0.783$		0.00		
3c	$K = \underbrace{0.15^2}_{0.23 \times 0.5^3} = 0.783$				
4	is not soluble in water				
4	is not soluble in water has low melting point				
	is not soluble in water has low melting point has low density				
4 5a i	is not soluble in water has low melting point has low density The energy used to remove an H than the energy released in forming	rom an H ₂ S ; a new bon	O4 molecul d between t	e is much less he II and a wa	ter
5a i	is not soluble in water has low melting point has low density The energy used to remove an H [*] fi than the energy released in forming molecule,	a new bon	d between t	he H [*] and a wa	ter
5a	is not soluble in water has low melting point has low density The energy used to remove an H [*] fi than the energy released in forming molecule. The heat released when a small vol- insufficient to suddenly vaporise a sufficient to vaporise a small volum	ume of acid	d between t l and water ne of (acidif	he II' and a wa	is
5a i	is not soluble in water has low melting point has low density The energy used to remove an H f than the energy released in forming molecule. The heat released when a small vol insufficient to suddenly vaporise a sufficient to vaporise a small volum sulfuric acid is much higher, so it w Wear eye protection, apron and glor Have some solid NayCO ₁ handy to	ume of acid large volum le of water. vill not vapo ves.	d between the damage of (acidifortise.)	he II' and a wa react is ied) water, but ng point of	is
Sa i Sa ii	is not soluble in water has low melting point has low density The energy used to remove an H than the energy released in forming molecule. The heat released when a small vol- insufficient to suddenly vaporise a sufficient to vaporise a small volum sulfuric acid is much higher, so it w Wear eye protection, apron and glor Have some solid Na ₂ CO ₃ handy to r (and/or) Perform the dilution near a Place water and stirring rod into a b	ume of acid arge volum e of water. vill not vapo ves. neutralise an	d between the date of (acidif (The boiling) orise.) The spills of the boiling orise of (acidif (The boiling) orise.)	he II' and a wa react is icd) water, but a ng point of	is
Sa i Sa ii	is not soluble in water has low melting point has low density. The energy used to remove an H fithan the energy released in forming molecule. The heat released when a small volum insufficient to suddenly vaporise a sufficient to vaporise a small volum sulfuric acid is much higher, so it we wear eye protection, apron and glow Have some solid Na ₂ CO ₃ handy to a (and/or). Perform the dilution near a Place water and stirring rod into a be Slowly pour a small quantity of the Stir.	ume of acid large volum ee of water. vill not vape ves. neutralise a a sink to qui eaker acid along i	d between the distribution of the boiling orise.) The boiling orise.) The boiling orise.) The boiling orise.) The boiling orise.	he II' and a wa react is ied) water, but a ng point of any spill.	is
5a i ii iib	is not soluble in water has low melting point has low density The energy used to remove an H than the energy released in forming molecule. The heat released when a small volum insufficient to suddenly vaporise a sufficient to vaporise a small volum sulfuric acid is much higher, so it w Wear eye protection, apron and glor Have some solid Na ₂ CO ₃ handy to r (and/or) Perform the dilution near a Place water and stirring rod into a b Slowly pour a small quantity of the Stir. If the mixture becomes too hot allow	ume of acid large volum ee of water. vill not vape ves. neutralise a a sink to qui eaker acid along i	d between the distribution of the boiling orise.) The boiling orise.) The boiling orise.) The boiling orise.) The boiling orise.	he II' and a wa react is ied) water, but a ng point of any spill.	
5a i ii iib	is not soluble in water has low melting point has low density The energy used to remove an H [*] fi than the energy released in forming molecule. The heat released when a small volu- insufficient to suddenly vaporise a sufficient to vaporise a small volum sulfuric acid is much higher, so it w Wear eye protection, apron and glor Have some solid Na ₂ CO ₃ handy to a (and/or) Perform the dilution near a Place water and stirring rod into a b Slowly pour a small quantity of the Stir. If the mixture becomes too hot allow B	ume of acid large volum te of water. vill not vapo ves. neutralise at a sink to qui eaker acid along to vit to cool l	d between the of (acidiforise.) my spills. ickly dilute the rod to an before addin	he II and a wa react is ied) water, but ing point of any spill. yoid splashing.	is
5a i 5a ii b	is not soluble in water has low melting point has low density The energy used to remove an H than the energy released in forming molecule. The heat released when a small volu- insufficient to suddenly vaporise a sufficient to vaporise a small volum suffuric acid is much higher, so it w Wear eye protection, apron and glor Have some solid Na ₂ CO ₃ handy to a (and/or) Perform the dilution near a Place water and stirring rod into a be Slowly pour a small quantity of the Stir. If the mixture becomes too hot allow B Only the magnesium-lead cell is gal-	ume of acid large volume le of water. vill not vapo ves. neutralise an sink to qui eaker acid along to vit to cool l	I and water the of (acidif (The boiling) orise.) The spills of the rod to an acid the rod to acid the	he II and a wa react is ied) water, but ag point of any spill. void splashing.	is
5a i 5a ii b	is not soluble in water has low melting point has low density The energy used to remove an H [*] fi than the energy released in forming molecule. The heat released when a small volu- insufficient to suddenly vaporise a l sufficient to vaporise a small volum sulfuric acid is much higher, so it w Wear eye protection, apron and glow Have some solid Na ₂ CO ₃ handy to a (and/or) Perform the dilution near a Place water and stirring rod into a be Slowly pour a small quantity of the Stir. If the mixture becomes too hot allow B Only the magnesium-lead cell is gal- (exothermic). The released energy of	ume of acid large volume of water. vill not vapoves. neutralise an isink to qui caker acid along to vit to cool large. The	I and water the of (acidif (The boilin orise.) my spills. ickly dilute the rod to an before addin reaction is a	he II' and a wa react is ied) water, but ng point of any spill. void splashing. ng more acid.	is
55a i 55a ii ii iib	is not soluble in water has low melting point has low density. The energy used to remove an H fit than the energy released in forming molecule. The heat released when a small volum sufficient to suddenly vaporise a sufficient to vaporise a small volum sulfuric acid is much higher, so it we wear eye protection, apron and glow Have some solid Na ₂ CO ₃ handy to a (and/or). Perform the dilution near a Place water and stirring rod into a busyloy pour a small quantity of the stir. If the mixture becomes too hot allow B. Only the magnesium-lead cell is galve (exothermic). The released energy of Chemical energy converted to election.	ume of acid large volume the of water. vill not vapoves. neutralise and sink to que eaker acid along to vit to cool leaven. The	I and water ne of (acidif (The boilin orise.) ny spills. ickly dilute the rod to an before addin reaction is a	he II' and a wa react is ied) water, but ng point of any spill. void splashing. ng more acid. spontaneous sectrical energy.	is
55a i 55a ii ii iib	is not soluble in water has low melting point has low density The energy used to remove an H [*] fi than the energy released in forming molecule. The heat released when a small volu- insufficient to suddenly vaporise a l sufficient to vaporise a small volum sulfuric acid is much higher, so it w Wear eye protection, apron and glow Have some solid Na ₂ CO ₃ handy to a (and/or) Perform the dilution near a Place water and stirring rod into a be Slowly pour a small quantity of the Stir. If the mixture becomes too hot allow B Only the magnesium-lead cell is gal- (exothermic). The released energy of	ume of acid large volume to of water. vill not vapo ves. neutralise an sink to qui eaker acid along to vit to cool large vanic. The an be in the	I and water le of (acidif (The boilin orise.) my spills. ickly dilute the rod to an before addin reaction is a form of ele read unless	he H' and a wa react is ied) water, but in g point of any spill. yoid splashing. g more acid. spontaneous cetrical energy.	is I

OPTION 2 SHIPWRECKS AND SALVAGE

la	Galvani	1
16	Davy	ı
le	Faraday	1
2	The aluminium quickly forms aluminium oxide with air. This oxide layer is strongly bonded to the underlying aluminium, forming a protective layer preventing further oxidation.	1
3a	0.34 - (-0.13) = 0.47 V	1
3b	i. at anode: iodine at cathode: copper ii. at anode: oxygen at cathode: hydrogen	1
4	Container 11	1
5a	sea water e ——steel hull	
	Mg or Zn —	2
	Electrons are lost by both the steel and the sacrificial metal. As the electrons are removed from the steel, they are immediately replaced by electrons from the sacrificial metal.	1
5b	On metal tanks buried in moist ground.	1

OPHON 3 The Biochemistry of Movement

la	mitochondria	
16	to store energy (which is to be used to drive other metabolic reactions.)	
le	O O O O O P O P O P O P O CH2 O O O C C C	1
		1
2a	1,2,3-propanetriol	+ _i $-$
2b i	Up to three H bonds hold each glycerol molecule to its neighbour. These bonds slow down the movement of each glycerol molecule past another molecule.	
2b ii 2c	The strength of the H bonds between glycerol and water is similar to the strength of the glycerol-glycerol and the water-water H bonds.	1
2c i	The H bonds holding the water molecules to each other are too strong to be broken by the weak dispersion forces on non-polar coconut oil.	1
ii 2e	(R) - C - O - (R)	1
iii	They are concentrated stores of energy.	I
3a	hydrogen bond	i
3b	The H bond gets broken	1
3c i	NH ₂ CHCOOH or NH ₂ CHCOOH or NH ₂ CHCOOH or NH ₂ CH ₂ COOH (CH2) ₄ NH ₂ OH CH ₂ O	
3c ii	The folds in the protein (enzyme) are such that only a particular (part of a particular) substrate can fit into the folds and bind to the enzyme.	1
i 4a	myocin and actin	1
ii 4a		1
iii	they form temporary bonds	1
iv	ATP → ADP + P + energy	1
4a v	Type I cell contracts more slowly has more mitochondria is better supplied with blood has fewer contractile fibres (any two of these)	2

4b	CH ₃ CHORCOOH → ČH ₃ CH ₂ OH + CO ₂	1
4b	Similarities:	ļ
ii	*The two processes give the same product. *Both processes are anaerobic.	
	Differences	
	*One mole of glucose gives twice the number of moles of each product as one mole of lactose.	
1	*Lactic acid removal occurs in animal cells, fermentation occurs in yeast cells.	,
<u> </u>	cens. (any 3 points)	.,

OPTION 4. THE CHEMISTRY OF ART

la	a pigment and a liquid to carry the pigment
16	d block - transition metals
2a i	Emission spectrum is produced when excited electrons (which absorbed energy as a result of heating or radiation) give out characteristic quanta of energy as they return to lower energy levels.
2a ii	The sample is vaporised (by flame or electricity). The emissions from the sample are (concentrated with a lens and) passed through a prism-(which separates the emitted radiation into its different wavelengths).
2b i	The characteristic lines are at the same wavelength for both spectra.
2b іі	Emission spectrum appears as coloured lines on a black background. Absorption spectrum appears as black lines on a background of the visible spectrum of white light.
2c i	potassium
2c ii	strontium .
2c	sodium
2c iv	copper
3a i	2.8.16.2
3a ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ²
Ba iii	1s 2s 2p 3s 3p 3d 4s [] [] [] [] [] [] [] [] [] [] [] [] [] [
ь	the vanadium (II) ion, V ²⁺