Netflix Stock Data Visualization

James Tam

Python Visualization

This capstone project involves the data visualization of Netflix's stock data (NFLX) in 2007

Visualization involves:

- The distribution of the stock prices for the past year
- Netflix's earnings and revenue in the last four quarters
- The actual vs. estimated earnings per share for the four quarters in 2017
- A comparison of the Netflix Stock price vs the Dow Jones Industrial Average price in 2017

Data gathered from Yahoo Finance

Netflix stock distribution in 2017

 General upward trend in stock prices

Highest distribution in stock price occurred in Q3

Max price: \$202

Min price: \$127

Netflix stock distribution in 2017 code

```
fig, ax = plt.subplots(figsize = (12,6))
sns.set_palette('Pastel1')
sns.set_style('darkgrid')
sns.set_context('notebook')
sns.violinplot(data = netflix_stocks_quarterly, x = 'Quarter', y = 'Price')
ax.set_title('Distribution of 2017 Netflix Stock Prices by Quarter')
ax.set_xlabel('Business Quarters in 2017')
ax.set_ylabel('Closing Stock Price')
plt.savefig('violin.png')
```


Earnings Per Share (EPS)

- Actual EPS vs. Estimated EPS projected from data
- Actual and Estimated EPS is the same in Q2 and Q4
- +8.1% increase in earnings in Q1 than estimates
- -9.3% decrease in earnings in Q3 than estimates

Earnings Per Share (EPS) code

```
x_positions = [1, 2, 3, 4]
chart_labels = ["102017","202017","302017","402017"]
earnings_actual = [.4, .15, .29, .41]
earnings_estimate = [.37, .15, .32, .41]
plt.scatter(x_positions, earnings_actual, label = 'Actual', color= 'red', alpha=0.5, edgecolor = 'none')
plt.scatter(x_positions, earnings_estimate, label = 'Estimate',color='blue', alpha = .5, edgecolor = 'none')
plt.legend(loc = 'best')
plt.sticks(ticks = x_positions, labels = chart_labels)
plt.savefig('actual&estimated_earning.png')
Earning Per Share (EPS) in
```


Revenue vs. Earnings

- Revenue increased by 32.62% by end of Q1 2018
- Earnings increased by 342.26% by the end of Q1 2018
 Earnings were 2.3% of the revenue in Q1
- Earnings were 2.3% of the revenue in Q1 2017, while it rose to 7.27% of revenue in Q1 2018

Revenue vs. Earnings | code

```
# The metrics below are in billions of dollars
revenue by quarter = [2.79, 2.98, 3.29, 3.7]
earnings_by_quarter = [.0656,.12959,.18552,.29012]
quarter labels = ["202017", "302017", "402017", "102018"]
# Revenue
n = 2 # This is our first dataset (out of 2)
t = 2 # Number of dataset
d = 4 # Number of sets of bars
W = 3 # Width of each bar
bars1 x = [t*element + w*n for element]
             in range(d)]
# Earninas
n = 2 # This is our second dataset (out of 2)
t = 2 # Number of dataset
d = 4 # Number of sets of bars
w = 3 # Width of each bar
bars2 x = [t*element + w*n for element]
             in range(d)]
middle x = [(a + b) / 2.0 \text{ for a, b in } zip(bars1 x, bars2 x)]
labels = ["Revenue", "Earnings"]
plt.bar(middle x, revenue by quarter, label = 'Revenue')
plt.bar(middle x, earnings by quarter, label = 'Earnings')
plt.title('Quarterly Revenue & Earning for year 2017')
plt.xlabel('Quarter')
plt.vlabel('Revenue/Earnings')
plt.xticks(middle x,quarter labels)
plt.legend(loc= 'upper left')
plt.savefig('Quartely earnings&revenue.png')
```


Netflix stock compared to DJIA

- Netflix did fairly well compared to the Dow Jones
- Netflix was more volatile in prices
- Sharp decrease in Netflix stocks during May while DJIA was stable

Netflix stock compared to DJIA

```
x1 = netflix stocks['Date']
y1 = netflix stocks['Price']
x2 = dowjones stocks['Date']
y2 = dowjones stocks['Price']
fig = plt.figure(figsize = (12,7))
ax1= plt.subplot(1,2,1)
ax1.plot(x1, y1, linestyle = ':',marker = 'o',color='red')
ax1.set title('Netflix stocks')
ax1.set xlabel('Date')
ax1.set ylabel('Price')
plt.xticks(rotation = 45, fontsize = 'x-small')
ax2 = plt.subplot(1,2,2)
ax2.plot(x2, y2, linestyle = '--', marker = 'o', color = 'purple')
ax2.set title('Dowjones stocks')
ax2.set xlabel('Date')
ax2.set ylabel('Price')
plt.xticks(rotation = 45, fontsize = 'x-small')
plt.subplots adjust(wspace = .5)
plt.savefig('Comparison netflix&DJI.png')
```


