

DEFINICIÓN:

EL FILTRO M-DERIVADO, SE OBTIENE A PARTIR DEL FILTRO DE K-CONSTANTE Y SE EMPLEA EN CASCADA CON ESTOS.

ESPECIFICACIONES:

DEBE CUMPLIR CON LAS SIGUIENTES CONDICIONES :

- A. TENER IGUAL IMPEDANCIA CARACTERÍSTICA QUE EL FILTRO DE K-CONSTANTE.
- B. TENER IGUAL BANDA DE FRECUENCIA Y POR LO TANTO LAS MISMAS FRECUENCIAS DE CORTE QUE EL FILTRO DE K-CTE.

A. IMPEDANCIAS CARACTERÍSTICAS IGUALES

PARTIMOS DE LA Zo DE UN CUADRIPOLO TIPO "T"

$$Z_{OT} = \sqrt{Z_{IN_{OC}} \cdot Z_{IN_{SH}}} = \sqrt{Z_{OUT_{OC}} \cdot Z_{OUT_{SH}}} =$$

$$Z_{OT} = \sqrt{Z_{1K} \cdot Z_{2K} + \frac{Z_{1K}^{2}}{4}} =$$

$$Z_{OT} = \sqrt{\frac{Z_{1K}}{2} \cdot \left(2 \cdot Z_{2K} + \frac{Z_{1K}}{2}\right)}$$
(1)

INTRODUCIMOS UN COEFICIENTE REAL $0 < m \le 1$

$$Z_{OT} = \sqrt{\frac{m}{2}} \frac{Z_{1K}}{2} \cdot \left(2 \cdot Z_{2K} + \frac{Z_{1K}}{2}\right) \frac{1}{m}$$
 (2)

DE LA ECUACIÓN (1) DEFINIMOS LA Zo DE UNA SECCIÓN M-DERIVADA :

$$Z_{OT} = \sqrt{\frac{Z_{1K}}{2}} \bullet \left(2 \bullet Z_{2K} + \frac{Z_{1K}}{2}\right) \tag{1}$$

$$Z_{OTm} = \sqrt{\frac{Z_{1Km}}{2} \cdot \left(2 \cdot Z_{2Km} + \frac{Z_{1Km}}{2}\right)} \tag{3}$$

DADO QUE Zot = Zotm , IGUALANDO (2) Y (3) :

$$Z_{OT} = \sqrt{\frac{Z_{1Km}}{2} \bullet \left(2 \bullet Z_{2Km} + \frac{Z_{1Km}}{2}\right)} = Z_{OTm} = \sqrt{\frac{mZ_{1K}}{2} \bullet \left(2 \bullet Z_{2K} + \frac{Z_{1K}}{2}\right) \frac{1}{m}}$$

$$\frac{Z_{1Km}}{2} \bullet \left(2 \bullet Z_{2Km} + \frac{Z_{1Km}}{2}\right) = \frac{mZ_{1K}}{2} \bullet \left(2 \bullet Z_{2K} + \frac{Z_{1K}}{2}\right) \frac{1}{m} \quad (4)$$

DE LA ECUACIÓN (4) DESPEJANDO OBTENEMOS :

$$\frac{Z_{1Km}}{2} = \frac{m \cdot Z_{1K}}{2} \qquad \therefore$$

$$Z_{1Km} = m \bullet Z_{1K}$$

DE LA ECUACIÓN (4) ADEMÁS:

$$\left(2 \bullet Z_{2Km} + \frac{Z_{1Km}}{2}\right) = \left(2 \bullet Z_{2K} + \frac{Z_{1K}}{2}\right) \frac{1}{m}$$

DESPEJANDO DE LA ÚLTIMA EXPRESIÓN :

$$Z_{2Km} = \frac{Z_{2K}}{m} + Z_{1K} \left(\frac{1 - m^2}{4m} \right)$$

B. MISMA BANDA PASANTE

EN LOS FILTROS DE K-CTE TENEMOS :

$$|X_{\kappa}| = 0$$
 \longrightarrow (DENTRO DE LA BANDA PASANTE)

EN LA SECCION DE K-CTE:

$$X_K = \sqrt{\frac{Z_{1K}}{4*Z_{2K}}}$$

Y EN LA m-DERIVADA SERÁ :

$$X_{Km} = \sqrt{\frac{Z_{1Km}}{4*Z_{2Km}}}$$

$$X_{Km} = \sqrt{\frac{m Z_{1K}}{4*\left(\frac{Z_{2K}}{m} + Z_{1K} \bullet \frac{1 - m^2}{4m}\right)}} = \sqrt{\frac{m Z_{1K}}{4 Z_{2K}} *\left(1 + \frac{Z_{1K}}{4 Z_{2K}} \bullet (1 - m^2)\right)}$$

$$X_{Km} = \sqrt{\frac{Z_{1K} \quad m^2}{4 \ Z_{2K} * \left(1 + \frac{Z_{1K}}{4 \ Z_{2K}} \bullet \left(1 - m^2\right)\right)}} \quad \text{Recordando } X_K^2 = \frac{Z_{1K}}{4 \ Z_{2K}}$$

$$X_{Km} = \sqrt{\frac{X_K^2 m^2}{\left(1 + X_K^2 \bullet \left(1 - m^2\right)\right)}}$$

Cuando $X_K \to \infty$ $X_{Km} \rightarrow \text{valor finito Real}$

$$X_{Km} = \frac{X_K m}{\sqrt{1 + X_K^2 \bullet (1 - m^2)}}$$

$$\therefore \left| X_{Km} \right|_{X_K \to \infty} = \frac{m}{\sqrt{1 - m^2}}$$

LA EXPRESIÓN DE XK PARA OBTENER XKm →∞ RECORDANDO QUE $X_K = j | X_K | ESTARA DADA POR$:

$$X_{Km} = j \frac{\left| X_K \right| m}{\sqrt{1 - \left| X_K \right|^2 \bullet \left(1 - m^2 \right)}} = j \frac{\left| X_K \right| m}{0} = \infty$$

$$|1-|X_K|^2 \bullet (1-m^2) = 0$$
 : $|X_K|^2 \bullet (1-m^2) = 1$

$$\therefore |X_K|^2 \bullet (1-m^2) = 1$$

$$\left|X_K\right|^2 = \frac{1}{\left(1 - m^2\right)}$$

$$\therefore |X_K| = \frac{1}{\pm \sqrt{(1-m^2)}}$$

TOMANDO m = 0,6 (VALOR MUY UTILIZADO) TENEMOS

$$|X_K| = \frac{1}{\pm \sqrt{(1-m^2)}} = \frac{1}{\pm \sqrt{(1-0.6^2)}} = \pm \frac{1}{0.8} = \pm 1.25$$

CURVA DE CORRESPONDENCIA ENTRE XK Y XKm

ETERMINACIÓN DE a y B EN FILTROS M-DERIVADOS

$$X_{K} = senh \frac{\gamma}{2} = j \ [X_{K}] = \sqrt{\frac{Z_{1K}}{4 * Z_{2K}}}$$

POR SIMILITUD CON LOS FILTROS DE K-CTE ESCRIBIMOS:

$$X_{Km} = j[X_{Km}] = \sqrt{\frac{Z_{1Km}}{4*Z_{2Km}}} = senh\frac{\alpha}{2}*cos\frac{\beta}{2} + jcosh\frac{\alpha}{2}*sen\frac{\beta}{2}$$

EN LA ZONA EN QUE X_{Km} ES IMAGINARIO PURO $|X_K| = \frac{1}{\pm \sqrt{(1-m^2)^2}}$ SUCEDE QUE:

$$senh\frac{\alpha}{2} * \cos\frac{\beta}{2} = 0$$

$$\beta = 0$$

$$\left| X_K \right| = \frac{1}{\pm \sqrt{1 - m^2}}$$

LA PARTE REAL DE senh (y/2) DEBE SER CERO:

$$senh\frac{\alpha}{2} * \cos\frac{\beta}{2} = 0$$

ESTO OCURRE SI : $\alpha = 0$

$$\alpha = 0$$

$$\beta = \pm \Pi$$

PARA
$$\alpha = 0 \rightarrow \cosh \alpha = 1$$

$$X_{Km} = \mathcal{N}[X_{Km}] = \mathcal{N}[\cos \frac{\alpha}{2} * \operatorname{sen} \frac{\beta}{2} \quad \therefore \quad \beta = 2 \operatorname{sen}^{-1}[X_{Km}]$$

$$\beta = 2 \operatorname{sen}^{-1} \left[X_{Km} \right]$$

VÁLIDO PARA $-1 \leq |X_{KM}| \leq +1$

PARA

$$\beta = \pm \Pi$$
 $\rightarrow sen \frac{\beta}{2} = \pm 1$

$$X_{Km} = \mathcal{N}[X_{Km}] = \mathcal{N}\cosh\frac{\alpha}{2} * sen\frac{\beta}{2} \quad \therefore \quad \alpha = 2 \cosh^{-1}[X_{Km}]$$

VÁLIDO PARA $|X_{KM}| \geq \pm 1$

EN LA ZONA EN QUE XKM ES REAL, LA PARTE IMAGINARIA DE senh (y/2) DEBE SER CERO :

$$X_{Km} = j[X_{Km}] = \sqrt{\frac{Z_{1Km}}{4*Z_{2Km}}} = senh\frac{\alpha}{2}*cos\frac{\beta}{2} + jcosh\frac{\alpha}{2}*sen\frac{\beta}{2}$$

$$\cosh \frac{\alpha}{2} * sen \frac{\beta}{2} = 0$$
ESTO OCURRE CUANDO: $\beta = 0$

ENTONCES EN ESTA ZONA:

$$X_{Km} = j \left[X_{Km} \right] = senh \frac{\alpha}{2} * cos \frac{\beta}{2} : \alpha = 2 senh^{-1} \left[X_{Km} \right]$$

CURVAS DE ATENUACION Y FASE DE FILTROS KCTE, M-DERIVADO Y COMPUESTO CON m = 0,6

CURVAS DE ATENUACIÓN DE FILTROS KCTE Y m-DERIVADOS

DISEÑO DE FILTRO PASA-BAJOS m-DERIVADO

PARTIMOS DE UN FILTRO PASA BAJOS DE K_{KTE} Y APLICAMOS

NORMALIZACIÓN:

$$Z_{1Km} = m \bullet Z_{1K} = m \bullet pL = p mL$$

$$Z_{2Km} = \frac{Z_{2K}}{m} + Z_{1K} \left(\frac{1 - m^2}{4m} \right) = \frac{1}{P(mC)} + P\left(L \left(\frac{1 - m^2}{4m} \right) \right)$$

DISEÑO DE FILTRO PASA-ALTOS m-DERIVADO

PARTIMOS DE UN FILTRO PASA ALTOS DE K_{KTE} Y APLICAMOS

NORMALIZACIÓN:

$$Z_{2Km} = \frac{Z_{2K}}{m} + Z_{1K} \left(\frac{1 - m^2}{4m} \right) = P \left(\frac{L}{m} \right) + \frac{1}{P \left(C \left(\frac{4m}{1 - m^2} \right) \right)}$$

DISEÑO DE FILTRO PASA-BANDA m-DERIVADO

PARTIMOS DE UN FILTRO PASA BANDA DE K_{KTF} Y APLICAMOS

DISEÑO DE FILTRO ELIMINA-BANDA m-DERIVADO

PARTIMOS DE UN FILTRO ELIMINA BANDA DE K_{KTF} Y APLICAMOS

$$Z_{2Km} = \frac{Z_{2K}}{m} + Z_{1K} \left(\frac{1 - m^2}{4m} \right)$$

DETERMINACIÓN DEL VALOR DE m A PARTIR DE ωc Y ω∞

PARTIMOS DE LAS CURVAS DE REACTANCIA DE UN FILTRO PASA BAJOS DE K_{KTE}.

DONDE $4Z_{2KM} = 0$ SE PRODUCE LA ATENUACIÓN INFINITA ($\alpha = \infty$) y CORREPONDE A $X_{KM\infty}$.

$$Z_{2Km} = \frac{Z_{2K}}{m} + Z_{1K} \left(\frac{1 - m^2}{4m} \right) = 0$$

$$\left| \frac{Z_{1K}}{Z_{2K}} = -\frac{4}{1 - m^2} \right|$$

$$\frac{\omega_{\infty}L_1}{-\frac{1}{\omega_{\infty}C_2}} = -\frac{4}{1-m^2}$$

$$\omega_{\infty} = \frac{2}{\sqrt{L_1 \cdot C_2}} \cdot \frac{1}{\sqrt{1 - m^2}}$$

DE LA ÚLTIMA EXPRESIÓN:

$$\omega_{\infty} = \omega_{C}|_{pb} \bullet \frac{1}{\sqrt{1 - m^{2}}}$$

$$m = \sqrt{1 - \left(\frac{\omega_C}{\omega_\infty}\right)^2} = \sqrt{1 - \left(\frac{f_C}{f_\infty}\right)^2}$$

IMPEDANCIA CARACTERÍSTICA EN FILTROS TIPO "T" Y "Π" DE K_{CTE}

$$Zo_T = \sqrt{Z_1 \times Z_2} \times \sqrt{1 + \frac{Z_1}{4Z_2}}$$

$$Zo_T = Ro \times \sqrt{1 - |X_K|^2}$$

EN FILTROS DE K-CONSTANTE TENEMOS QUE:

$$Ro = \sqrt{Z_1 \times Z_2}$$

$$-|X_K|^2 = \frac{Z_1}{4Z_2}$$

$$Zo_{\pi} = \frac{\sqrt{Z_1 \times Z_2}}{\sqrt{1 + \frac{Z_1}{4Z_2}}}$$

$$Zo_{\pi} = \frac{Ro}{\sqrt{1 - |X_K|^2}}$$

$$Zo_T = Ro \times \sqrt{1 - |X_K|^2}$$

$$Zo_{\pi} = \frac{Ro}{\sqrt{1-|X_K|^2}}$$

IMPEDANCIA CARACTERÍSTICA DE UN FILTRO TIPO "Π" m-DERIVADO

$$Z_{O\Pi m} = \frac{\sqrt{Z_{1Km} \times Z_{2Km}}}{\sqrt{1 + \frac{Z_{1Km}}{4Z_{2Km}}}}$$

$$Z_{1Km} = m \cdot Z_{1K}$$

$$Z_{2Km} = \frac{Z_{2K}}{m} + Z_{1K} \left(\frac{1 - m^2}{4m} \right)$$

REEMPLAZANDO Y OPERANDO NOS QUEDA:

$$Z_{O\Pi m} = \frac{Ro}{\sqrt{1 - \left|X_K\right|^2}} \bullet \left[1 - \left|X_K\right|^2 \bullet \left(1 - m^2\right)\right]$$

PARTIENDO DE LA EXPRESIÓN:

$$Z_{O\Pi m} = \frac{Ro}{\sqrt{1 - \left|X_K\right|^2}} \bullet \left[1 - \left|X_K\right|^2 \bullet \left(1 - m^2\right)\right]$$

DERIVANDO CON RESPECTO A |XK| E IGUALANDO A CERO

$$\frac{d(Z_{O\Pi m})}{d|X_K|} = 0$$

$$\left|X_{K}\right|_{\min} = \pm \sqrt{\frac{1-2m^{2}}{1-m^{2}}} \quad \begin{array}{c} VALOR\ DE\ |X_{K}| \\ PARA\ EL\ CUAL\ LA \\ Zorim\ ES\ MÍNIMA \end{array}$$

PARA |XK| = |XK| minimo

$$|Z_{O\Pi m}|_{\text{(minimo)}} = 2 \bullet Ro \bullet m \sqrt{1 - m^2}$$

PARA
$$m = 0.6$$

$$Z_{O\Pi m}|_{\text{(minimo)}} = 0.96|_{m=0.6}$$

LA TOLERANCIA \mathcal{E} SE DEFINE COMO LA DIFERENCIA ENTRE LA IMPEDANCIA CARACTERÍSTICA DE UN FILTRO M DERIVADO EN CONFIGURACIÓN PI CUANDO $|X_K| = 0$ Y LA MISMA IMPEDANCIA CUANDO $|X_K| = |X_K|$ minimo DIVIDIDO POR EL VALOR DE Ro.

$$\varepsilon = \frac{Z_{O\Pi m}|_{\left(|X_K|=0\right)} - Z_{O\Pi m}|_{\left(|X_K|=|X_K|_{\min imo}\right)}}{Ro}$$

$$\varepsilon = \frac{Ro - 2 \cdot Ro \cdot m \sqrt{1 - m^2}}{Ro}$$

$$\varepsilon = 1 - 2 \bullet m \sqrt{1 - m^2}$$

PARA
$$m = 0.6$$

$$|\varepsilon = 0.04|_{m=0.6}$$

PARA OBTENER EL VALOR DE ZOMM (máximo) HACEMOS:

$$Z_{O\Pi m}|_{(\text{maximo})} = Ro + \varepsilon$$

$$Z_{O\Pi m}|_{\text{(maximo)}} = Ro + \frac{\left(Ro - 2 \bullet Ro \bullet m \bullet \sqrt{1 - m^2}\right)}{Ro}$$

$$Z_{O\Pi m}|_{\text{(maximo)}} = Ro \bullet \left[1 + \left(1 - 2 \bullet m \bullet \sqrt{1 - m^2}\right)\right]$$

PARA
$$m = 0.6$$
 $Z_{O\Pi m}|_{(\text{maximo})} = 1.04|_{m=0.6}$

PARA OBTENER EL VALOR DE XK PARA CADA VALOR DE $Z_{O\Pi m}$ CON m = 0.6, DESPEJAMOS DE LA SIGUIENTE EXPRESIÓN EL VALOR DE XK:

$$Z_{O\Pi m} = \frac{Ro}{\sqrt{1 - \left|X_K\right|^2}} \bullet \left[1 - \left|X_K\right|^2 \bullet \left(1 - m^2\right)\right]$$

$$Z_{O\Pi m} \bullet \sqrt{1 - |X_K|^2} = Ro \bullet \left[1 - |X_K|^2 \bullet (1 - m^2)\right] \quad pero \quad Ro = 1$$

$$Z_{O\Pi m}^2 \bullet \left(1 - |X_K|^2\right) = \left\{1 \bullet \left[1 - |X_K|^2 \bullet (1 - m^2)\right]^2\right\}$$

$$Z_{O\Pi m}^2 - Z_{O\Pi m}^2 |X_K|^2 = \left[1 - 2 \bullet |X_K|^2 \bullet (1 - m^2) + |X_K|^4 \bullet (1 - m^2)^2\right]$$

$$|X_K|^4 \bullet (1-m^2)^2 + |X_K|^2 \bullet [Z_{O\Pi m}^2 - 2 \bullet (1-m^2)] + (1-Z_{O\Pi m}^2) = 0$$

DE LA ÚLTIMA EXPRESIÓN:

$$|X_K|^4 \bullet (1-m^2)^2 + |X_K|^2 \bullet [Z_{O\Pi m}^2 - 2 \bullet (1-m^2)] + (1-Z_{O\Pi m}^2) = 0$$

OBTENEMOS LOS VALORES DE XK PARA CADA VALOR NOTABLE

DE ZOMM:
$$|X_K|_{Z_{O\Pi m = 0.96}} = \pm 0.66143 \implies Z_{O\Pi m \text{(MINIMO)}}$$

$$|X_K|_{Z_{O\Pi m=1}} = \pm 0.8267$$
 \Rightarrow $Z_{O\Pi m(Ro)}$

$$|X_K|_{Z_{O\Pi m = 1,04}} = \pm 0,86602$$
 \Rightarrow $Z_{O\Pi m \text{(MAXIMO)}}$

EL ÚLTIMO VALOR DEFINE LA COVERTURA = 86,6% PARA m = 0,6

FORMATO DE FILTRO COMPUESTO

EJEMPLO FILTRO PASA BAJOS COMPUESTO NORMALIZADO Y $\omega \infty = 2$ [rps]

<u>EJEMPLO</u>: DISEÑE UN FILTRO PASA BAJOS COMPUESTO CON FRECUENCIA DE CORTE fc = 1[KHz], $f\infty=1,05$ [KHz] y Zo=600 Ohms. EMPLEE SECCIONES DE TERMINACIÓN CON m=0,6.

CÁLCULO DE LA SECCIÓN DE KCTE:

$$\omega_c = 1 \text{ rad/s}$$

$$\frac{L_1}{2} = \frac{\frac{L_{1N}}{2} \bullet b}{a} = \frac{1 \bullet 600}{6283,185} = 95,492 \text{ [mH]}$$

$$C_2 = \frac{C_{2N}}{a \bullet b} = \frac{2}{6283,185 \bullet 600} = 530,516 \text{ [nF]}$$

COMPROBACION:

$$\omega_C = \frac{2}{\sqrt{L_1 \cdot C_2}} = \frac{2}{\sqrt{0.095 \cdot 2 \cdot 530.51 \cdot 10^{-9}}} \cong 6283.185 \ [rps]$$

CÁLCULO DE LA SECCIÓN m-DERIVADA PARA fc=1,05 [KHz]:

RECORDANDO:

$$m = \sqrt{1 - \left(\frac{\omega_C}{\omega_\infty}\right)^2} = \sqrt{1 - \left(\frac{f_C}{f_\infty}\right)^2} = \sqrt{1 - \left(\frac{1000}{1050}\right)^2} = 0,305$$

Y LAS RELACIONES:

$$Z_{1Km} = m \bullet Z_{1K}$$

$$Z_{2Km} = \frac{Z_{2K}}{m} + Z_{1K} \left(\frac{1 - m^2}{4m} \right)$$

CÁLCULAMOS LA SECCIÓN m-DERIVADA PARA fc=1,05 [KHz] A PARTIR DE LA SECCIÓN DE KCTE

CÁLCULO DE LA SECCIÓN m-DERIVADA TIPO Π ADAPTADORA:

CÁLCULAMOS LA SEMI-SECCIÓN m-DERIVADA CON m=0,6 A PARTIR DE LA SEMI-SECCIÓN m-DERIVADA NORMALIZADA:

APLICAMOS CONCEPTO
DE NORMALIZACIÓN,
RECORDANDO:

FINALMENTE EL FILTRO COMPUESTO PROPUESTO ES TAL, COMO EL DE LA FIGURA:

POR ÚLTIMO:

CIRCUITO SIMULADO MEDIANTE EWB5 :

CURVAS OBTENIDAS MEDIANTE EWB5 :

