

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

Matemáticas II (MA-1112) Abril-Julio 2008

Nombre:	
Carné:	Sección:

2^{do} Examen Parcial (30 %) Duración: 1h 50min Tipo B

Justifique todas sus respuestas

Pregunta 1. (6 puntos) Calcule el volumen del sólido de revolución que se obtiene al girar alrededor de del eje X la región acotada por $x^2 = y - 2$, 2y - x - 2 = 0, x = 0, x = 1.

Pregunta 2. (6 puntos) Demuestre la siguiente identidad:

$$senh(2x) = 2 senh(x) cosh(x)$$

Pregunta 3. Calcule las siguientes integrales

a) (6 puntos)
$$\int \frac{dx}{1 + e^{-x}}$$

b) (6 puntos)
$$\int \frac{dx}{x\sqrt{(\ln|x|)^2 - 1}}$$

c) (6 puntos)
$$\int \frac{6x-8}{3x^2+2} dx$$

Soluciones

1) La región a rotar se indica a continuación

Por el método de las arandelas es claro cuales son los límites de integración. Tenemos entonces que

$$V = \pi \int_0^1 \left((x^2 + 2)^2 - \left(\frac{x}{2} + 1 \right)^2 \right) dx = \pi \int_0^1 \left(x^4 + 4x^2 + 4 - \frac{x^2}{4} - x - 1 \right) dx$$

$$= \pi \int_0^1 \left(x^4 + \frac{15}{4}x^2 - x + 3 \right) dx = \pi \left(\frac{x^5}{5} + \frac{5x^3}{4} - \frac{x^2}{2} + 3x \Big|_0^1 \right)$$

$$= \pi \left(\frac{1}{5} + \frac{5}{4} - \frac{1}{2} + 3 \right) = \frac{79}{20}\pi$$

El volumen por el método de los cascarones es algo más complicado de plantear:

$$V = 2\pi \int_{1}^{\frac{3}{2}} y(2y-2)dy + 2\pi \int_{\frac{3}{2}}^{2} y(1)dy + 2\pi \int_{2}^{3} y(1-\sqrt{y-2})dy$$
$$= \frac{2}{3}\pi + \frac{7}{4}\pi + \frac{23}{15}\pi = \frac{79}{20}\pi$$

2) Recordamos que

$$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2} \operatorname{y} \operatorname{cosh}(x) = \frac{e^x + e^{-x}}{2}.$$

Entonces

$$2 \operatorname{senh}(x) \cosh(x) = 2 \left(\frac{e^x - e^{-x}}{2} \right) \left(\frac{e^x + e^{-x}}{2} \right) = \frac{e^{2x} - e^{-2x}}{2} = \operatorname{senh}(2x),$$

2

donde usamos que $(x - y)(x + y) = x^2 - y^2$ y $e^a e^b = e^{a+b}$.

3) a) Sea $I=\int \frac{dx}{1+e^{-x}}$. Multiplicando en el numerador y denominador por e^x obtenemos

$$I = \int \frac{e^x dx}{e^x + e^x e^{-x}} = \int \frac{e^x dx}{e^x + e^x e^{-x}} = \int \frac{e^x dx}{e^x + 1}.$$

Ahora usamos la sustitución $u = 1 + e^x$, $du = e^x dx$

$$I = \int \frac{du}{u} = \ln|u| + C = \ln|1 + e^x| + C = \ln(1 + e^x) + C$$

Alternativamente se ha podido resolver $\int \frac{e^x dx}{e^x+1}$ haciendo primero la sustitución $u=e^x$ y luego v=1+u.

b) Sea $I = \int \frac{dx}{x\sqrt{(\ln|x|)^2-1}}$. Usamos la sustitución $u = \ln|x|, du = \frac{dx}{x}$

$$I = \int \frac{du}{\sqrt{u^2 - 1}} = \cosh^{-1}(u) + C = \cosh^{-1}(\ln|x|) + C$$

c) Sea $I = \int \frac{6x-8}{3x^2+2} dx$. Entonces

$$I = \int \frac{6x}{3x^2 + 2} dx - \int \frac{8}{3x^2 + 2} dx = \int \frac{6x}{3x^2 + 2} dx - \frac{8}{2} \int \frac{dx}{\left(\frac{\sqrt{3}}{\sqrt{2}}x\right)^2 + 1}.$$

En la primera integral usamos la sustitución $u=3x^2+2,\,du=6xdx,$ en la segunda $v=\frac{\sqrt{3}}{\sqrt{2}}x,$ $dv=\frac{\sqrt{3}}{\sqrt{2}}dx$

$$I = \int \frac{du}{u} - 4\frac{\sqrt{2}}{\sqrt{3}} \int \frac{dv}{v^2 + 1} = \ln|u| - \frac{4\sqrt{6}}{3}\arctan(v) + C$$

$$= \ln|3x^2 + 2| - \frac{4\sqrt{6}}{3}\arctan\left(\frac{\sqrt{3}}{\sqrt{2}}x\right) + C = \ln(3x^2 + 2) - \frac{4\sqrt{6}}{3}\arctan\left(\frac{\sqrt{6}}{2}x\right) + C$$