## GRAPH THEORY: RETAKE EXAM

## 17 AUGUST 2021

Throughout the entire exam, G = (V, E) denotes a finite simple graph.

**Problem 1.** Recall from the lectures that a subset  $S \subseteq V$  is a vertex cover of G if every edge  $e \in E$  has an endpoint in S. The vertex covering number  $\beta(G)$ is the minimum size of a vertex cover of G. Denote by  $\alpha(G)$  the independence number of G, and let  $\delta(G)$  be the minimum degree of G.

- (a) Show that  $\beta(C_n) = \lceil n/2 \rceil$  for  $n \geq 3$ .
- (b) Show that a set  $S \subseteq V$  is a vertex cover if and only if  $V \setminus S$  is independent. Conclude that  $\alpha(G) + \beta(G) = |V|$ .
- (c) Show that, if G is a graph on n vertices, then  $\beta(G) = n 1$  if and only if G is complete.
- (d) Determine  $\beta(K_{a_1,\dots,a_r})$ . (You can assume without loss of generality that  $a_1 \leq \cdots \leq a_r$ ) (e) Show  $\beta(G) \geq \delta(G)$ .

**Problem 2.** Consider the graph  $M_3$  obtained by connecting all pairs of opposite vertices in a  $C_6$ . Use the matrix-tree-theorem to show that  $M_3$  has  $3^4 = 81$  spanning trees.

**Problem 3.** Consider the weighted graph



- (a) Use Prim's or Kruskal's algorithm to find a minimum weight spanning tree. Your solution must contain all relevant steps in the algorithm. (2p)
- (b) What is the Prüfer sequence of the tree obtained in (a)? (1p)
- (c) Is the minimum spanning tree obtained in (a) unique? Why (not)? (2p)

**Problem 4.** Consider the flow network



- (a) By applying the Ford-Fulkerson algorithm, find a maximal flow from s to t in the above network. Your solution must contain all relevant steps in the algorithm. (3p)
- (b) Construct a minimum s-t-cut, and verify that the capacity of the cut equals the value of the flow in (a). (2p)

**Problem 5.** Show that if a (finite) tree T has a perfect matching M, then M is the unique perfect matching of T. (5p)

## **Problem 6.** Let $n \geq 3$ .

- (a) Construct a graph  $G_n$  in the following way: Start with a cycle  $C_n$  with vertices labelled clockwise 1, 2, ..., n and a complete graph  $K_n$  whose vertices are labelled by n + 1, n + 2, ..., 2n. Then draw edges between vertices i and n + i for all  $1 \le i \le n$ . Determine the chromatic number  $\chi(G_n)$ .
- (b) Construct a graph  $H_n$  in the following way: Start with a cycle  $C_{2n}$  where the vertices are labelled clockwise  $1, 2, \ldots, 2n$ . Then draw an edge between any two vertices i, j with  $1 \le i \le n$  and  $n+1 \le j \le 2n$  that are not already neighbours. Determine the chromatic number  $\chi(H_n)$ . (3p)

**Problem 7.** Let  $n \geq 1$ . Consider the complete bipartite graph  $K_{n,n}$  and denote its two partition sets by A and B (each containing n vertices).

- (a) For every edge of  $K_{n,n}$ , flip a fair coin to determine whether this edge should be red or blue. What is the probability that a fixed set consisting of a vertices from A and b vertices from B induces a monochromatic  $K_{a,b}$ ? (1p)
- (b) Let X denote the (random) number of such monochromatic  $K_{a,b}$  in  $K_{n,n}$ . Determine  $\mathbf{E}[X]$ . (3p)
- (c) Using (b), conclude that there always is a red/blue-colouring of  $K_{n,n}$  such that the number of monochromatic  $K_{a,b}$  is at most

$$\binom{n}{a} \binom{n}{b} 2^{1-ab}.$$
 (1p)

**Please note:** The only aids allowed are course lecture notes/videos and Diestel's book "Graph Theory". Aids not listed here are not permitted.

The problems above are to be solved and written down individually.

Upload your solutions as **one** pdf-file to studium, or send it by mail if uploading causes problems. Please take care that the solution is clearly readable, and that your name/anonymity code is written on it.