المادة: الرياضيات الشهادة: المتوسطة نموذج رقم - ٤ -المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١ وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I - (2points)

Répondre par vrai ou faux à chacune des propositions suivantes. Justifier la réponse.

- 1) Le nombre $\sqrt{3} 1$ est une solution de l'équation $x^2 + 2x 2 = 0$.
- 2) Le prix d'un article a baisséde 20 % puis de 20 %. Après ces deux diminutions, le prix de l'article a baissé de 40 %.
- 3) Pour n'importe quel nombre réel positif x, le nombre $[(x+1)^2 (x-1)^2]$ est un réel positif.
- 4) Si ABC est un triangle rectangle en A, alors $\cos^2 \hat{B} + \cos^2 \hat{C} = 1$.

II- (5,5 points)

Dans le plan rapporté à un repère orthonormé d'axes (x'Ox) et (y'Oy), on donne les points A(-1; -3), B(-5; 1) et E(2; 0).

- 1) a)Placer les points A, B et E.
 - b) Soit (D) la droite d'équation y = x + 2. Montrer que (D) est la médiatrice du segment [AB].
- 2) Soit (C) le cercle de diamètre [BE].
 - a) Calculer les coordonnées de K,centre de (C), et montrer que A est un point du cercle (C).
 - b) Soit M le point de coordonnées $\left(-\frac{3}{2}; m\right)$ ou m est un réel. Calculer m pour que M soit un point de (C).
- 3) Soit F le translaté de E par la translation de vecteur AB.
 - a) Déterminer les coordonnées du point F, et déterminer la nature du quadrilatère ABFE.
 - b) Écrire une équation de la droite (D') translatée de la droite (D) par la translation de vecteur \overrightarrow{KA} .

III- (2,5 points)

Avant la coupe du monde, un grand magasin avait un stock de 1500 téléviseurs. Sur la durée d'une semaine, le directeur du magasin a noté chaque jour le pourcentage de téléviseurs vendus par rapport au stock existant.

Letableau ci-dessous montreles ventesfaites durant cette semaine.

Jour de la semaine	lundi	mardi	mercredi	jeudi	vendredi	samedi
Pourcentage des ventes	8%	10%	15%	12%	20%	30%

- 1) Calculer le nombre de téléviseurs vendus chaque jour.
- 2) Quel est le pourcentage des téléviseurs non vendus ?
- 3) Tracer le diagramme en bâtons représentant cette série statistique.

IV- (3points)

1) Soit $Q(x) = (x-2)^2 - 5(x-3)(x-2) + x^2 - 4$.

- a) Développer, réduire et ordonner Q(x).
- b) Résoudre l'équation Q(x) = -30.
- c) Montrer que Q(x) = (x 2)(-3 x + 15).

2) Soit D(x) =
$$x^2 - 4x + 4 + (2x - 4)(x + 3)$$
 et $F(x) = \frac{Q(x)}{D(x)}$.

- a) Factoriser D(x).
- b)Déterminer les valeurs de x pour lesquelles F(x) est définie.
- c)Simplifier F(x) puis résoudre l'équation F(x) = 2.

V-(2points)

Ma cousine dit à son mari :« j'ai acheté 4 chemises identiques et 3 pantalons identiques à 100 000 LL.Mais si j'avais acheté 6 de ces mêmes chemises et 5 de ces mêmes pantalons, j'aurais payé 120 000 L.L »

Il lui répond : « ce que tu dis est impossible ».

- a) Ecrire un système qui traduit les informations données par ma cousine.
- b) Qui a raison, ma cousine ou son mari? Justifier.

VI- (5points)

Soit (C) un demi-cercle de centre O et de diamètre [AB] de 6cm.

La perpendiculaire en O à [AB] coupe (C) en F. M est un point de l'arc \widehat{BF} .

Le segment [AM] coupe [OF] en D. La bissectrice de FOM coupe [AM] en I et le demi-cercle(C) en E.

- 1) Faire une figure.
- 2) a)Démontrer que les triangles AMB et AOD sont semblables. b)Calculer AM x AD .
- 3) Démontrer que FIM est un triangle rectangle isocèle.
- 4) La droite (FI) coupe (AB) en L.

Montrer que
$$\frac{LA}{LB} = \frac{IA}{IE}$$
.

5) H est le projeté orthogonal de M sur [AB].

Démontrer que MH =
$$\frac{3MB}{AD}$$
.

المادة:الرياضيات الشهادة: المتوسطة نموذج رقم -٤-المدة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١٧ وحتى صدور المناهج المطوّرة)

Quest	tion	Barème	
	1)	La réponse est correcte.	
I	2)	Justification : si on remplace x par $(\sqrt{3} - 1)$ l'équation est vérifiée. La réponse est fausse. Justification : si x est le prix initial après la première baisse le prix est 0.8×10^{-2} après la	
	3)	La réponse est correcte. Justification : $(x+1)^2 - (x-1)^2 = 4x$ est un nombre positif, c'est le produit de 2 nombres positifs.	
	4)	La réponse est correcte. Justification: $\cos^2 \hat{C} + \cos^2 \hat{B} = \frac{AC^2}{BC^2} + \frac{AB^2}{BC^2} = \frac{AC^2 + AB^2}{BC^2} = 1$	0.5
II	1)	B (D) (D) (D) (D) (D) (AB) (AB)	0.5
		b) La pente de (AB)= -1 par suite $a_{(AB)}$ x $a_{(D)}$ = -1 donc (D) $\pm a$ (AB). Le milieu de [AB] a pour coordonnées (-3,-1) et -1= -3 +2 donc appartient à (D) et par suite (D) sera la médiatrice de [AB] car elle passe par le milieu de [AB]et elle est perpendiculaire à [AB].	1
	2)	a) K milieu de[EB] donc K(-3/2,1/2) Le rayon du cercle = $\frac{EB}{2} = \frac{\sqrt{50}}{2}$ or AK = $\sqrt{\frac{50}{4}} = \frac{EB}{2}$, donc K est un point de (C)	1

		b) KM = $\sqrt{(m-\frac{1}{2})^2}$ M est un point du cercle donc $\sqrt{(m-\frac{1}{2})^2}$ = $\sqrt{\frac{50}{4}}$ alors						
		$(m - \frac{1}{2})^2 = \frac{50}{4}$ $(m - \frac{1}{2}) = \frac{\sqrt{50}}{2} \text{ ou } (m - \frac{1}{2}) = \frac{-\sqrt{50}}{2} \text{ donc } m = \frac{\sqrt{50}}{2} + \frac{1}{2} \text{ ou } m = \frac{-\sqrt{50}}{2} + \frac{1}{2}.$						
		a) $\overrightarrow{EF} = \overrightarrow{AB}$ donc $x_F - 2 = -4$ et $y_F = 4$ d'où F (-2, 4). ABFE est un rectangle (parallélogramme et a un angle droit).						
	b) K est un point de (D) et A translaté de K et (AE) // à (D) alors (D')= (AE). $a(AE) = \frac{yE - yA}{xE - xA} = 1 \text{ ou bien a }_{(D')} = a_{(D)} = 1, y = x + b \text{ or A appartient à (D') donc } y_A = x_A + b \text{ et par suite } b = -2.$							
		Jour de la semaine lundi mardi mercredi jeudi vendredi samedi						
	1)	effectifs 120 150 225 180 300 450	1,25					
	2)	Le pourcentage des téléviseurs non vendu $\frac{75}{1500} = 5 \%$						
III	3)	500 450 400 350 300 250 200 150 100 50 0 lundi mardi mercredi jeudi vendredi samedi						
	1)	a- Q(x) = $(x-2)^2 + 5(x-3)(2-x) + x^2 - 4$. = $x^2 - 4x + 4 + 5(-x^2 + 5x - 6) + x^2 - 4$ = $-3x^2 + 21x - 30$ c- Q(x) = -30 donc Q(x) + $30 = 0$ d'où x= 0 ou x= 7						
IV	1)	$d- Q(x) = (x-2)^2 + 5(x-3)(2-x) + (x-2)(x+2)$ $= (x-2)[(x-2)-5(x-3)+(x+2)]$						
	2)	$= (x-2)(-3x+15).$ $a-D(x) \neq 0 \text{donc } x^2 - 4x + 4 + (2x-4)(x+3) \neq 0$ $(x-2)(3x+4) \neq 0. \text{Donc } x \neq 2 \text{et } x \neq \frac{-4}{3}$						
		b- F(x) = $\frac{(x-2)(-3x+15)}{(x-2)(3x+4)} = \frac{(-3x+15)}{(3x+4)}$ - F(x) = 2 alors $\frac{-3x+15}{3x+4} = 2$						
		3x + 4 $-3x + 15 = 2(3x + 4)$						

		$x = \frac{7}{9}$	0.5	
V		Soit x le prix d'une chemise et y le prix d'un pantalon. $\begin{cases} 4x + 3y = 100\ 000 \\ 6x + 5y = 120\ 000 \end{cases}$		
		y= - 80 000 LL impossible donc ma voisine n'a pas raison.	0,75	
VI	1)	F E M B	0,5	
	2)	a) $\widehat{AMB} = 90^{\circ}$ (le triangle AMB est inscrit dans le demi-cercle (C)) $\widehat{AOD} = 90^{\circ}$ $\widehat{ADO} = \widehat{ABM} = 90 - \widehat{ADO}$.		
		b) $\frac{AM}{AO} = \frac{AB}{AD}$ donc AM x AD = AB x AO = 6x3 = 18.		
	3)	(OE) est l'axe de symétrie dans le triangle isocèle OFM. I est un point de cet axe, alors IF = IM par suite le triangle IFM est isocèle. d'autre part $\widehat{AMF} = \widehat{IMF} = 90 / 2 = 45^{\circ}$, alors le triangle FIM est rectangle isocèle.		
	4)	(FI) // (MB) deux perpendiculaires a une même troisième. D'après Thalès $\frac{LA}{LB} = \frac{IA}{IM}$ or IM=IF alors $\frac{LA}{LB} = \frac{IA}{IF}$.		
	5)	Dans le triangle AMB on a : MH x AB = MA x MB 18 x MB $\frac{18 \times MB}{1}$ $\frac{3 \times MB}{1}$		