

Viewport und Clipping

COMPUTERGRAPHIK

Inhaltsverzeichnis

7 Viewport und Clipping

- 7.1 Viewport
- 7.2 Clipping

- Window:
 - Definiert Sichtfenster in der Bildebene
 - Definiert, welcher Teilbereich der Szene abgebildet werden soll
 - Auch "View Window" genannt

- Viewport:
 - Definiert Bildschirmbereich in dem der Inhalt eines Windows dargestellt werden soll

 In der Regel sind sowohl Window als auch Viewport an den Koordinatenachsen ausgerichtete rechteckige Gebiete

- Window-Viewport-Transformation (Windowing Operation):
 - elementare Verschiebungen und Skalierungen

Verschiedene Fenster, dieselben Viewports

Dieselben Fenster, verschiedene Viewports

- Koordinaten des Windows: $W_{xl}, W_{xr}, W_{yb}, W_{yt}$
- Punktkoordinaten im Fenster (window):

$$x_W, y_W$$

- Koordinaten des Viewports im Bildschirmkoordinatensystem $V_{xl},\,V_{xr},\,V_{yb},\,V_{yt}$
- Punktkoordinaten auf dem Bildschirm (screen):

$$x_S, y_S$$

Transformation

- Verschiebung in den Koordinatenursprung
- 2) Skalierung auf die gewünschte Größe

3) Verschiebung an die gewünschte Stelle

$$y = y_W - W_{yb}$$

$$x' = \frac{V_{xr} - V_{xl}}{W_{xr} - W_{xl}} \cdot x$$

$$y' = \frac{V_{yt} - V_{xyb}}{W_{yt} - W_{yb}} \cdot y$$

$$x_S = x' + V_{xl}$$

$$y_S = y' + V_{yb}$$

Transformation

Zusammenfassung zu

$$x_S = a \cdot x_W + b$$

$$y_S = c \cdot y_W + d$$

⇒ Punkttransformation durch zwei Multiplikationen und zwei Additionen a, b, c, d fest für alle Punkttransformationen

$$a := \frac{V_{xr} - V_{xl}}{W_{xr} - W_{xl}}$$

$$c := \frac{V_{yt} - V_{xyb}}{W_{yt} - W_{yb}}$$

$$b = V_{xl} - a \cdot W_{xl}$$

$$d = V_{yb} - c \cdot W_{yb}$$

Clip-Polygon

- Objekte in der Bildebene werden innerhalb eines Fensters dargestellt
- Alle außerhalb des Fensters liegenden Objektteile werden abgeschnitten: Clipping am Fensterrand

- Das Fenster wird Clip-Polygon genannt
 - typischerweise Rechtecke
 - andere Geometrie möglich
 - Nichtkonvexe oder nicht einfache Polygone sind problematisch

Linien

- Clip-Polygon
 - rechteckig
 - achsenparallel
- Fallunterscheidung
 - beide Endpunkte innerhalb des Fensters
 - ⇒ Linie zeichnen
 - 2. beide Endpunkte oberhalb oder unterhalb oder links oder rechts des Fensters
 - ⇒ Linie nicht zeichnen

Linien

3. Sonst

- Berechne die Schnittpunkte der Linie mit dem Fensterrand anhand der Geradengleichungen
- Bestimme daraus die sichtbare Strecke

Liang-Barsky-Algorithmus

Fensterkanten als implizite Gerade

$$Q_{1} = (x_{1}, y_{1}), Q_{2} = (x_{2}, y_{2})$$

$$n = (\Delta y, -\Delta x) = ((y_{2} - y_{1}), -(x_{2} - x_{1}))$$

$$P = (x, y)$$

- Normale n zeigt ins Innere
- Entscheidungsgröße $E(P) = \mathbf{n} \circ \left(P Q_1\right) = n \circ P n \circ Q_1$ ist positiv, wenn P im Inneren liegt

Liang-Barsky-Algorithmus

- Fallunterscheidung:
 - 1) P_1 und P_2 liegen außen $E(P_1) \le 0$, $E(P_2) \le 0$
 - 2) P_1 und P_2 liegen innen $E(P_1) \ge 0$, $E(P_2) \ge 0$
 - 3) P_1 und P_2 liegen auf verschiedenen Seiten

$$E(P_1) < 0, E(P_2) > 0$$

 $E(P_1) > 0, E(P_2) < 0$

Liang-Barsky-Algorithmus

- $\overline{}$ Fall 3: Schnittpunkt P muss berechnet werden
- Parametrische Darstellung der Liniensegmente $P = l(t) = P_1 + t \cdot (P_2 P_1)$
- in implizite Gleichung einsetzen:

$$\begin{split} E(P) &= 0 \\ \Leftrightarrow P \circ n - Q_1 \circ n = 0 \\ \Leftrightarrow \end{split}$$

Liang-Barsky-Algorithmus

- $\overline{}$ Fall 3: Schnittpunkt P muss berechnet werden
- Parametrische Darstellung der Liniensegmente $P = l(t) = P_1 + t \cdot \left(P_2 P_1\right)$
- in implizite Gleichung einsetzen:

$$\begin{split} E(P) &= 0 \\ \Leftrightarrow P \circ n - Q_1 \circ n = 0 \\ \Leftrightarrow \left(P_1 + t \cdot \left(P_2 - P_1 \right) \right) \circ n - Q_1 \circ n = 0 \\ \Leftrightarrow t &= \frac{Q_1 \circ n - P_1 \circ n}{\left(P_2 - P_1 \right) \circ n} \end{split}$$

zurück in die parametrische Gleichung

$$P = P_1 + \frac{Q_1 \circ n - P_1 \circ n}{\left(P_2 - P_1\right) \circ n} \cdot \left(P_2 - P_1\right)$$

Cohen-Sutherland Line-Clipping Algorithmus

- Kern des Algorithmus ist ein schnelles Verfahren zur Bestimmung der Kategorie einer Linie
 - innerhalb
 - außerhalb
 - schneidend

- Gegeben:
 - Ein Fenster: $(x_{min}, y_{min}, x_{max}, y_{max})$ dessen begrenzende Geraden (Halbebenen) die Bildebene in neun Regionen unterteilen
- Jeder Region ist ein eindeutiger 4-Bit-Code (Outcode) zugeordnet, der Auskunft über deren Lage in Bezug auf das Fenster gibt
- Im 3D sind es 27 Regionen (3³) und ein 6-Bit-Outcode

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{min}$
1	rechts des Fensters	$x > x_{max}$
2	unterhalb des Fensters	$y < y_{min}$
3	oberhalb des Fensters	$y > y_{max}$

x_n	nin	x_{max}	
1001	1000	1010	y_{max}
0001	0000	0010	y_{min}
0101	0100	0110	

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{min}$
1	rechts des Fensters	
2	unterhalb des Fensters	
3	oberhalb des Fensters	

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{min}$
1	rechts des Fensters	$x > x_{max}$
2	unterhalb des Fensters	
3	oberhalb des Fensters	

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{min}$
1	rechts des Fensters	$x > x_{max}$
2	unterhalb des Fensters	$y < y_{min}$
3	oberhalb des Fensters	

\mathcal{X}_n	x_{i}	max	
1001	1000	1010	y_{max}
0001	0000	0010	y_{min}
0101	0100	0110	

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{min}$
1	rechts des Fensters	$x > x_{max}$
2	unterhalb des Fensters	$y < y_{min}$
3	oberhalb des Fensters	$y > y_{max}$

X_{p}	nin X	max	
1001	1000	1010	y_{max}
0001	0000	0010	y_{min}
0101	0100	0110	

Cohen-Sutherland Line-Clipping Algorithmus

- Bestimme Outcodes für Endpunkte einer Linie
 - Linie liegt vollständig außerhalb des Fensters (Trivial Reject):
 Durchschnitt der Codes beider Endpunkte ist von 0 verschieden (AND-Verknüpfung ≠ 0)
 - Linie liegt komplett im Fenster (Trivial Accept):
 Beide Endpunkte besitzen den 4-Bit-Code 0000
 (OR-Verknüpfung = 0)

Sonst:

- Schneide die Linie nacheinander mit den das Fenster begrenzenden Geraden
 - → es entstehen zwei Linien
- Außerhalb des Fensters liegende Teile können sofort entfernt werden

Cohen-Sutherland Line-Clipping Algorithmus

Linie AD

- Codes A: 0001 und D: 1000
- 0001 AND 1000 = 0000 (kein reject)
- -0001 OR 1000 = 1001 (kein accept)
 - Schnitt mit linker Fenstergrenze liefert
 - Punkte A und C liegen links: eliminiere AC
- Codes C: 1000 und D: 1000
- 1000 AND 1000 = 1000 (reject)
 - Punkte C und D liegen oberhalb: eliminiere CD

Cohen-Sutherland Line-Clipping Algorithmus

Linie EH

- Codes E: 0001 und H: 0010
- -0001 AND 0010 = 0000 (kein reject)
- -0001 OR 0010 = 1010 (kein accept)
 - Schnitt mit linker Fenstergrenze liefert F
 - eliminiere EF

Cohen-Sutherland Line-Clipping Algorithmus

Linie EH

- Codes F: 0000 und H: 0010
- -0000 AND 0010 = 0000 (kein reject)
- -0000 OR 0010 = 0000 (kein accept)
 - Schnitt von FH mit der rechten
 Fenstergrenze liefert G
 - eliminiere GH
- Codes F: 0000 und G: 0000
- -0000 AND 0010 = 0000 (kein reject)
- -0000 OR 0000 = 0000 (accept)
 - FG wird gezeichnet

Cohen-Sutherland Line-Clipping Algorithmus: Spezialfälle & Beschleunigungen

 Bei senkrecht oder waagrecht verlaufenden Linien muss nur gegen die
 y- bzw. x-Grenzen getestet und

geschnitten werden

 Falls genau ein Endpunkt innerhalb des Fensters liegt, gibt es nur einen Schnitt mit dem Fensterrand

- Einige Schnittoperationen führen nicht zu Schnittpunkten am Fensterrand
 - Jedes Bit korrespondiert genau zu einem der Fensterränder
 - Betrachte nur Fensterränder deren zugehöriges Bit in den zwei Endpunkt-Codes unterschiedlich gesetzt ist

Cohen-Sutherland Line-Clipping Algorithmus: Spezialfälle & Beschleunigungen

- Vermeidung der aufwändigen Schnittpunktberechnung durch Bisektionsmethode
 - Linien, die weder ganz außerhalb, noch ganz innerhalb des Fensters liegen, werden so lange unterteilt, bis ihre Länge kleiner als ein Pixel ist
 - Bei 2^10=1024 Pixel in einer Zeile bzw. Spalte erfordert dies maximal 10 Unterteilungen (⇒ Mittelpunktalgorithmus)

- In Hardware ist diese Variante schneller als eine direkte Schnittberechnung
 - schnelle Division durch 2 (Bitshift)
 - Parallelisierbarkeit

Polygone

- Polygone begrenzen Flächen
 - Polygon-Clipping muss wieder geschlossene Polygone liefern
 - Teile des Fensterrandes müssen eingebaut werden

- Ein einfacher Algorithmus würde jede Seite gegen die Fenster clippen
 - Wenn eine Seite das Fenster verlässt, wird der Austrittspunkt mit dem Wiedereintritt verbunden
 - Ecken können zu Problemen führen

Sutherland-Hodgman Polygon-Clipping Algorithmus

 Problem:
 Clippen jeder Polygonseite gegen alle 4 Fensterseiten

- Vollständiges Clippen des Polygons gegen eine Fensterseite nach der anderen führt zum Ziel
- Die Zwischenergebnisse müssen gespeichert werden

Sutherland-Hodgman Polygon-Clipping Algorithmus

– Ausgangssituation: aktuelles Polygon $\left\{v_0, v_1, v_2\right\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

– Clip oben: aktuelles Polygon $\left\{s_1, v_1, v_2, s_2\right\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

_ Clip rechts: aktuelles Polygon $\left\{s_1, s_3, s_4, v_2, s_2\right\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

_ Clip unten: aktuelles Polygon $\left\{s_1, s_3, s_5, s_6, s_2\right\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

_ Clip links: aktuelles Polygon $\left\{s_8, s_3, s_5, s_6, s_7\right\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

_ Ergebnis-Polygon $\left\{s_8, s_3, s_5, s_6, s_7\right\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

Sutherland-Hodgman Polygon-Clipping Algorithmus

- Fenster konvexes Polygon und
- Kandidat einfaches Polygon
- ⇒ Ergebnis ist immer ein geschlossener Kantenzug

Andere Polygon-Clipping-Verfahren

Vatti-AlgorithmusScan-Line[CACM 35 1992]

Greiner/Hormann[ACM TOG 17(2),1998]

Clipping in 3D

 Clipping nach Transformation in das normalisierte Sichtvolumen (NDC)

- Clippingverfahren lassen sich einfach in 3D übertragen: Clippen an sechs Halbebenen statt vier
- Alternativ:
 Clipping nach Projektion in die zweidimensionale Bildebene
 - → w-Clipping