Felipe Bravo-Marquez

Department of Computer Science, University of Waikato

14 September, 2017

Introduction

Message-level Polarity Classification (MPC)

1. Automatically classify a tweet to classes **positive**, **negative**, or **neutral**.

- Challenge: Tweets use a unique informal dialect including many abbreviations, acronyms, misspelled words, hashtags, and emoticons, e.g., IoI, omg, hahaha, #hatemonday, #SweetAsBro, #yeahnah, :) .
- 3. State-of-the-art solutions use **supervised** machine learning models trained from **manually** annotated examples [Kiritchenko et al., 2014].
- Label sparsity problem (LS): manual annotation is labour-intensive and time-consuming.

Research Problem

The models presented in this talk address the label sparsity problem for Twitter sentiment classification by automatically building two type of resources.

- 1. **Twitter-specific opinion lexicons**: we develop machine learning models to induce polarity lexicons from tweets.
- 2. Synthetically labelled tweets: we develop distant supervision methods based on lexical knowledge (we go beyond emoticons).

Word-sentiment Associations for Polarity Lexicon Induction

- This SGD-SO association is calculated by incrementally training a linear support vector machine from the collection of hard-labelled tweets.
- We use **stochastic gradient descent** (SGD) online learning process.

$$\frac{\lambda}{2}||w||^2 + \sum [1 - y(\mathbf{x}\mathbf{w} + b)]_+. \tag{1}$$

We use a squared loss function over the log odds $z = \log_2(\frac{pos(d)}{pod(d)})$ for soft-annotated tweets.

$$\frac{\lambda}{2}||w||^2 + \sum (z - (\mathbf{x}\mathbf{w} + b))^2. \tag{2}$$

The PMI-SO association

The second association for hard-annotated tweets corresponds to the PMI semantic orientation (PMI-SO).

$$PMI-SO(w) = log_2\left(\frac{count(w \land y = 1) \times count(y = -1)}{count(y = 1) \times count(w \land y = -1)}\right)$$
(3)

For soft-annotated tweets:

$$PMI-SO'(w) = log_2\left(\frac{\sum_{d \in C(w)} pos(d) \times \sum_{d \in C} neg(d)}{\sum_{d \in C} pos(d) \times \sum_{d \in C(w)} neg(d)}\right)$$
(4)

Feature Visualisation

Figure: PMI-SO vs SGD-SO scatterplot.

Word-level Classification Results using RBF SVMs

Weighted AUC					
Dataset	PMI-SO	ALL FEATURES			
ED.EM	0.62 ± 0.02	$0.65 \pm 0.02 +$			
STS	0.64 ± 0.02	0.66 \pm 0.01 $+$			
ED.SL	0.63 ± 0.02	0.65 \pm 0.02 $+$			

Table: World-level classification performance.

Message-level classification performance

AUC						
Dataset	Baseline	STS	ED			
Sanders	0.78 ± 0.04	$0.80 \pm 0.04 +$	0.83 \pm 0.04 $+$			
6-human	0.79 ± 0.03	$0.82 \pm 0.03 +$	0.83 \pm 0.02 $+$			
SemEval	0.78 ± 0.02	$0.82 \pm 0.02 +$	0.84 \pm 0.02 $+$			

Multi-Label Classification of Emotions with TCM

spaz no-show shite dismisses >:/ f*cking killn slapped s**t psychotic nazi indZ ingS nem fk ifc b fukin laggy stung thiink worryin in chainsaw #hate murders anger

unforgettable o:] yaaay b nov18 9 0 squee in familyy d t-day mib st hvz ii-# muppets b #fun140 whole in the state of the state favotter }}}

starshine caunderway 70th caroling exited hark #lft bright excitedd runno srv-load wedding previst = prezzies succes ≥ gbu suppo pisces 5t buuuk 15yo merrier have #webradio #wahm may 11.23.09 anticipation

suckss ignores missin bitter withdrawls sleepless E cryin ≥ #626 sobs © crashes
8 ober sucky © upsets

"" the surp → kills
dead ; 6 deflated
2 gunshot o ∞ > gunshot bombings

sadness

humiliated racists relle arrah rapists hick whatt genocide ick liars raggedy b***h sena hmph talenties E nawl skanky E lier sodding cheating
wacka w

disaust

whooo #doodleiump duper #couponcabin moorning oorning suprisej-e-t-s^{c.c.} grinch noobie #Inv- engadgets
Se boffer.co.uk
bluegreen hi pressie bluegreen histatsx N popstar

surprise

#sog psycho faked #amnesty ក្នុ executions ក cbp executions #hcrmovies #dvd mutated prox hitler & deaths tnet 48 botnet strangled hippos o robbers #chld

fear

servants worthwhile meister clement locum #happybirthday > :) ny- set the part of the par usd/cad star-ledger prayers eckhart -thank offi d- kaplan il-

trust

Transfer Learning with Tweet Centroids

Lexicon Induction with Transfer Learning

- What if we don't have a seed lexicon?
- We can train a message-level classifier f_M from a corpus of sentiment annotated tweets C_L and deploy it on words found in a corpus of unlabelled tweets represented by tweet centroids.
- Tweets are represented by sparse vectors using unigrams, Brown clusters, and POS tags.
- Note that tweets and words reside in the same feature space.

AUC					
Source Dataset	PMI-SO	TCM			
Sanders	0.757	0.864			
6HumanCoded	0.861	0.930			
SemEval	0.858	0.916			

Table: Word-level Polarity Classification Results for the AFINN lexicon.

- Lexicons showed to be useful features for MPC.
- But we still need labelled tweets for training a message-level classifier.
- We will try to **directly use** lexical knowledge for training message-level classifiers.
- We propose two distant supervision models: Partitioned Tweet Centroids and Annotate-Sample-Average (ASA).
- Proposed methods generate positive and negative training instances by averaging tweets containing words with the same polarity.

A tweet containing a word with a certain polarity is more likely to express the **same polarity** than the **opposite** $p_d > 0.5$ (Bernoulli experiment).

The opposite polarity may also be expressed due to the presence of **negation**, sarcasm, or other opinion words with the opposite polarity.

Why Averaging?

Distant Supervision 000000000

- Averaging multiple tweets with words with the same polarity increases the confidence of generating instances located in the **region** of the desired polarity.
- We assume that the average tweet will behave similarly to the **majority**.
- Probability that the majority of the tweets sampled from a collection of tweets with at least one word with the target polarity have the desired polarity:

$$P(M) = \sum_{i=\lfloor \frac{a}{2} \rfloor + 1}^{a} {a \choose i} p_d^i (1 - p_d)^{a-i}$$

	$p_d = 0.6$	$p_d = 0.7$	$p_d = 0.8$	$p_d = 0.9$
a = 3	0.648	0.784	0.896	0.972
a = 5	0.683	0.837	0.942	0.991
a = 10	0.633	0.850	0.967	0.998
a = 50	0.902	0.998	1	1
a = 100	0.973	1	1	1
a = 500	1	1	1	1
a = 1000	1	1	1	1

• $P(M) > p_d$, when a > 3 and $p_d > 0.5$. This is analogous to the **Condorcet's** Jury Theorem!!

TCM for message-level classification

- TCM can be used as a distant supervision model for MPC.
- We use a word-level classifier f_W trained with TCM vectors calculated from C_U labelled by a polarity lexicon £ (AFINN).
- The classifier is deployed on the target tweets represented by sparse vectors.
- The number of labelled words for training f_W is limited to the number of words from L.
- TCM is not capable of exploiting large collections of unlabelled tweets for producing training datasets larger than the size of L.

- We propose a modification of our method for increasing the number labelled instances it produces.
- The word-tweet set $\mathcal{M}(w)$ for each word from the lexicon ($w \in \mathcal{L}$) is **partitioned** into smaller disjoint subsets $\mathcal{M}(w)_1, \dots \mathcal{M}(w)_Z$ of a fixed size determined by a parameter p.
- We calculate one tweet centroid vector \overrightarrow{w} for **each partition** labelled according to \mathcal{L} .

Emoticon-Annotation Approach (EAA)

- Labels tweets with positive or negative emoticons according to the emoticon's polarity after removing the emoticon from the message.
- Tweets containing both positive and negative emoticons are discarded.

Lexicon-annotation approach (LAA)

- Uses a given polarity lexicon L.
- Tweets with at least one positive word and no negative word are labelled positive.
- Tweets with at least one negative word and no positive word are labelled negative.

	6HumanCoded		Sanders		SemEval	
EAA	0.805 ± 0.005	= -	0.800 ± 0.017	= +	$\textbf{0.802} \pm \textbf{0.006}$	= -
LAA	0.809 ± 0.001	+=	0.778 ± 0.002	- =	0.814 ± 0.000	+=
TCM	0.776 ± 0.004		0.682 ± 0.024		0.779 ± 0.008	
TCM (<i>p</i> =5)	0.834 ± 0.002	+ +	0.807 ± 0.008	= +	$\textbf{0.833} \pm \textbf{0.002}$	+ +
TCM (p=10)	0.845 ± 0.003	+ +	0.817 ± 0.006	+ +	0.841 ± 0.002	+ +
TCM (p=20)	0.850 ± 0.003	+ +	0.815 ± 0.011	+ +	$\textbf{0.844} \pm 0.003$	+ +
TCM (p=50)	0.844 ± 0.004	+ +	0.785 ± 0.010	- +	$\textbf{0.836} \pm \textbf{0.004}$	+ +
TCM (p=100)	0.829 ± 0.003	+ +	0.752 ± 0.019		0.821 ± 0.004	++

Table: Message-level Polarity Classification Results. Best results per column are given in bold.

- Partitioned TCM can generate **very large** training datasets.
- TCM instances are obtained by averaging tweets containing the same word.
- What if we average random tweets containing different words with the same polarity?
- What if we can define the **number of instances** to generate?
- This could be useful for creating **compact and balanced** training datasets.

- **Annotation**: every time a word from \mathcal{L} is found, the tweet is added to sets **posT** or **negT** (depending on the polarity).
- Sample: randomly sample with replacement a tweets from either posT or negT for each generated instance.
- **Averaging**: average and label sampled feature vectors.
- We create balanced training datasets with size equal to 1% of the size of the source corpus (20, 000 in our experiments).

ASA results

	6HumanCoded		Sanders		SemEval	
EAA_U	0.805 ± 0.005	==	0.800 ± 0.017	= = + +	$\textbf{0.802} \pm \textbf{0.006}$	= +
EAA_B	0.809 ± 0.001	====	0.795 ± 0.016	= = + +	$\textbf{0.798} \pm \textbf{0.007}$	- =
LAA_U	0.809 ± 0.001	+ = = =	0.778 ± 0.002	= =	$\textbf{0.814} \pm \textbf{0.000}$	+ + = =
LAA_B	0.809 ± 0.001	+===	0.778 ± 0.003	= =	$\textbf{0.813} \pm \textbf{0.001}$	+ + = =
$ASA\;(a=1,m=F)$	0.793 ± 0.005		0.762 ± 0.016		0.787 ± 0.007	
ASA ($a = 5, m = F$)	0.837 ± 0.004	++++	0.807 ± 0.010	= = + +	$\textbf{0.833} \pm \textbf{0.003}$	++++
ASA ($a = 10, m = F$)	0.845 ± 0.001	++++	0.812 ± 0.015	++++	$\textbf{0.840} \pm 0.003$	++++
ASA ($a = 50, m = F$)	0.815 ± 0.003	++++	0.759 ± 0.006		0.810 ± 0.004	++
ASA ($a = 100, m = F$)	0.781 ± 0.003		0.720 ± 0.007		$\textbf{0.779} \pm \textbf{0.004}$	
ASA ($a = 500, m = F$)	0.723 ± 0.002		0.670 ± 0.008		$\textbf{0.729} \pm \textbf{0.005}$	
ASA ($a = 1000, m = F$)	0.712 ± 0.002		0.665 ± 0.007		0.721 ± 0.005	

Table: AUC measure for different distant supervision models. Best results per column are given in bold.

The methods presented in this talk can be used to acquire and exploit lexical knowledge for Twitter sentiment analysis under label sparsity conditions.

- We proposed two methods (Word Sentiment Associations and TCM) for building Twitter-specific **opinion lexicons** (acquisition of lexical knowledge).
- These methods could be used to create **domain-specific** lexicons.
- They could also be used to study the **dynamics** of opinion-words.
- Future work: try **non-linear representations** on TCM (Auto-Encoders or RBM).

Other projects

- WASSA 2017 Shared Task in Emotion Intensity: given a tweet an emotion X (anger, fear, joy, or sadness) determine the intensity or degree of emotion X felt by the speaker—a real-valued score between 0 and 1.
- English tweets were annotated using Best-Worst scaling.
- Twenty-two teams participated. Best system: ensemble of deep learning models (r = 0.74).
- SemEval 2018 Task 1: Affect in Tweets. Extension of previous task including VAD emotions and two more languages: Spanish and Arabic.
- AffectiveTweets Weka Package

Thanks for your Attention!

Acknowledgements

- University of Waikato Doctoral Scholarship
- Machine Learning Group at the University of Waikato

Kiritchenko, S., Zhu, X., and Mohammad, S. M. (2014). Sentiment analysis of short informal texts. Journal of Artificial Intelligence Research, 50:723-762.