Even More Taylor Series!

Chase Mathison¹

Shenandoah University

8 May 2024

Announcements

- Final exam next Wednesday at 8am.
- ② If you're behind on any assignments, make sure to get them turned it before the final for credit.

Using the Remainder

Because the remainder term for a Taylor polynomial is defined to be

$$R_n(x) = p_n(x) - f(x)$$

We can say that the Taylor series for the function f centered at a will converge to f (on it's interval of convergence) if

$$\lim_{n\to\infty} R_n(x) =$$

This happens with most functions in this class.

Using the Remainder

Find the *n*th Taylor polynomial centered at 0, $p_n(x)$ for the function $f(x) = \cos(x)$, and the corresponding remainder term $R_n(x)$. Show that for any x, $\lim_{n\to\infty} R_n(x) = 0$.

Working with Taylor series

Here are some of the most important power series for you to know:

Working with Taylor series

Find the Maclaurin series for the function $f(x) = \cos(x^2)$. Use this to find $f^{(80)}(0)$.

Working with Taylor series

Find the Taylor series centered at x = 3 for the function $f(x) = e^x$.

Use a Maclaurin series to find

$$\int_{0}^{1} e^{-x^2} dx$$

(Your answer will be in the form of a convergent series).