COMP3420: Advanced Databases and Data Mining

Classification and prediction: Introduction and Decision Tree Induction

W

Lecture outline

- Classification versus prediction
- Classification A two step process
- Supervised versus un-supervised learning
- Evaluating classification methods
- Decision tree induction
- Attribute selection measures
 - Information gain, Gain ratio, and Gini index
- Overfitting and tree pruning
- Enhancements to basic decision tree induction
- Classification in large databases

Classification versus prediction

Classification

- Predicts categorical class labels (discrete or nominal)
- Classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Prediction

Models continuous-valued functions, (predicts unknown or missing values)

Typical applications

- Credit approval
- Target marketing
- Medical diagnosis
- Fraud detection

۳

Classification – A two step process

- Model construction: Describing a set of predetermined classes
 - Each tuple/sample/record is assumed to belong to a predefined class, as determined by the *class label attribute*
 - The set of tuples used for model construction is the *training set*
 - The model is represented as classification rules, decision trees, or mathematical formulas
- Model usage: For classifying future or unknown objects
 - Need to estimate the accuracy of the model
 - The known label of a test sample is compared with the classified results from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - The test set is independent of the training set, otherwise *over-fitting* will occur
 - If the accuracy is acceptable, use the model to *classify* data objects whose class labels are not known

Example: Model construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

Example: Using the model in classification

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

Supervised versus un-supervised learning

- Supervised learning (classification and prediction)
 - Supervision: The training data (observations, measurements, etc.)
 are accompanied by labels indicating the class of the observations
 (in previous example: attribute 'Tenured' with classes `yes' and `no')
 - New data is classified based on the training set
- Un-supervised learning (clustering and associations)
 - The class label of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

×

Evaluating classification methods

- Accuracy (or other quality measures)
 - Classifier accuracy: Predicting class label
 - Predictor accuracy: Guessing value of predicted attributes
- Speed and complexity
 - Time to construct the model (training time)
 - Time to use the model (classification/prediction time)
 - Scalability: Efficiency in handling disk-based databases
- Robustness: Handling noise and outliers
- Interpretability: Understanding and insight provided by the model
- Other measures (for example goodness of rules)
 - Such as decision tree size or compactness of classification rules

Decision tree induction: Example training data set

What rule would you learn to identify who buys a computer?

Age	Income	Student	Credit rating	Buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40 <=30	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

۳

Example output: A decision tree for "Buys computer"

Algorithm for decision tree induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a *top-down recursive divide-and-conquer manner*
 - At start, all training examples are at the root
 - Take the best immediate (local) decision while building the tree
 - Data is partitioned recursively based on selected attributes
 - Attributes are categorical (if continuous-valued, they need to be discretised in advance)
 - Attributes are selected on the basis of a heuristic or statistical measure (for example, *information gain, gain ratio,* or *Gini index*)

Conditions for stopping partitioning

- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning (*majority voting* is employed for classifying the leaf)
- There are no samples left

Attribute selection measure: Information gain

- Used in popular decision tree algorithm ID3
- In each step, select the attribute with the highest *information gain*
- Let p_i be the probability that an arbitrary record in data set D belongs to class C_i , estimated as $|C_i|/|D|$ (| | = number of...)
- Expected information (information entropy) needed to classify a record in D is (m being the number of classes): $Info(D) = -\sum_{i=1}^{n} p_{i} log_{2}(p_{i})$
- Information required (after using attribute A to split D into v partitions) to classify D is: $Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$
- The smaller $Info_{\Delta}(D)$ is, the purer the partitions are
- Information gained by using attribute A for branching:

$$Gain(A) = Info(D) - Info_A(D)$$

Information gain example

Class P: "Buys computer" = "yes"

Class N: "Buys computer" = "no"

$$\mathit{Info}(D)\!=\!-\frac{9}{14}\log_2(\frac{9}{14})\!-\!\frac{5}{14}\log_2(\frac{5}{14})\!=\!0.940$$

Age	p _i	n _i	Partition j
<=30	2	3	1
3140	4	0	2
>40	3	2	3

$Info_{age}(D) = \frac{5}{14} Info(D_1) + \frac{4}{14} Info(D_1)$	· ₂)
$+\frac{5}{14} Info(D_3) = 0.694$	

From this follows:

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

And similar:

$$Gain(Income) = 0.029$$

$$Gain(Student) = 0.151$$

$$Gain(Credit\ rating) = 0.048$$

.

Calculate information gain for continuousvalue attributes

- Let A be an attribute with continuous values (e.g. income)
- We have to determine the best split-point for A
 - Sort the values of A in increasing order
 - Typically, the mid-point between each pair of adjacent values is considered as a possible split point
 - $(a_i + a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the *minimum expected information requirement* for A, $Info_{A}(D)$, is selected as the split-point for A

Split:

D₁ is the set of records in D satisfying A ≤ split-point, and D₂ is the set of tuples in D satisfying A > split-point

M

Attribute selection measure: Gain ratio

- The *information gain* measure is biased towards attributes with a large number of values
- *C4.5* (successor of *ID3*) uses *gain ratio* to overcome the problem (normalisation to information gain):

$$\textit{SplitInfo}_{A}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times log_{2}(\frac{|D_{j}|}{|D|})$$

- GainRatio(A) = Gain(A) / SplitInfo(A)
- The attribute with the maximum gain ratio is selected as the splitting attribute
- Example: Gain ratio on attribute income

$$SplitInfo_{A}(D) = -\frac{4}{14} \times log_{2}(\frac{4}{14}) - \frac{6}{14} \times log_{2}(\frac{6}{14}) - \frac{4}{14} \times log_{2}(\frac{4}{14}) = 0.926$$

GainRatio(income) = 0.029 / 0.926 = 0.031

Attribute selection measure: Gini index

- Used in CART, IBM Intelligent Miner
- If a data set D contains records from m classes, the Gini index, *gini(D)*, is defined as: $gini(D)=1-\sum p_j^2$
 - p_i is the relative frequency of class j in D
- If D is split on attribute A into two sub-sets D_1 and D_2 , the Gini index, $gini_{\Delta}(D)$, is defined as:

$$gini_{A}(D) = \frac{|D_{1}|}{|D|}gini(D_{1}) + \frac{|D_{2}|}{|D|}gini(D_{2})$$

- Reduction in impurity: $gini(A) = gini(D) gini_{\Lambda}(D)$
- The attribute that provides the smallest $gini_{\Delta}(D)$ (or the largest reduction in impurity) is chosen to split a node
 - Need to enumerate all possible splitting points for each attribute

Cipi indov o

Gini index example

 Example data set D has 9 records in class "Buys computers" = "yes" and 5 in "Buys computers" = "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

 Suppose the attribute income partitions the data set into 10 records in D₁: {"medium", "low"} and 4 in D₂: {"high"}:

$$\begin{aligned} & gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_1) \\ = & \left(\frac{10}{14}\right) \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \left(\frac{4}{14}\right) \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right) = 0.443 \end{aligned}$$

- Split on {"low","high"} and {"medium"} gives a Gini index of 0.458, and on {"medium", "high"} and {"low"} gives 0.450
 - Best split for attribute *income* is on {"low","medium"} and {"high"} because it minimises the Gini index

м

Comparing attribute selection measures

- The three measures, in general, return good results, but...
- Information gain
 - Is biased towards multivalued attributes
- Gain ratio
 - Tends to prefer unbalanced splits in which one partition is much smaller than the others
- Gini index
 - Is biased to multivalued attributes
 - Has difficulty when the number of classes is large
 - Tends to favor tests that result in equal-sized partitions and purity in both partitions
- There are many other selection measures!

Overfitting and tree pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Classify training records very well, but poor accuracy for unseen records
- Two approaches to avoid overfitting
 - *Prepruning:* Halt tree construction early: do not split a node if this would result in a goodness measure falling below a threshold (difficult to choose an appropriate threshold)
 - *Postpruning:* Remove branches from a "fully grown" tree: get a sequence of progressively pruned trees (use a set of data different from the training data to decide which is the "best pruned tree")

Enhancements to basic decision tree induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
 - Assign probability to each of the possible values
- Attribute (feature) construction
 - Create new attributes based on existing ones that are sparsely represented

v

Classification in large databases

 Classification: a classical problem extensively studied by statisticians and machine learning researchers

 Scalability: classifying data sets with millions of examples and hundreds of attributes with reasonable speed

- Why decision tree induction in data mining?
 - Relatively fast learning speed (compared to other classification methods)
 - Convertible to simple and easy to understand classification rules
 - Can use SQL queries for accessing databases
 - Comparable classification accuracy with other methods