Total Pages: 01	Total Time: 120 Minutes
Premier University	
Department of Computer Science & Engineering	
3 rd Semester Special Retake Final Exam, Spring 2020 (Total 35 Marks)	
Course Code: MAT 201	Course Title: Engineering Mathematics-III

Instructions: Answer five questions. Each question carries equal marks.

Find $z^{1/n}$; for n=3, z = 1-i in C (, the Argand Plane).

3

7

7

Let f(z) = 2/z, (z is in C) and c is the unit circle about the origin oriented counterclockwise. Can we apply Cauchy Integral Theorem to evaluate $\oint_c f(z)dz$? Evaluate $\oint_c f(z)dz$, if possible.

Find the direction cosines and direction angles of the vector $\vec{F} = 2\hat{\imath} + \hat{\jmath} - 3\hat{k}$.

- 7
- 4 Let S be the sphere of radius r about the origin, given in spherical coordinates by: x = 7 rSinφCosθ, y = rSinφSinθ, and z = rCosφ, $0 \le \theta \le 2\pi$, and $0 \le \varphi \le \pi$. Let $\vec{F} = 3yz$ ĵ, and \vec{F} and div \vec{F} are continuous over S, and the region V is enclosed by S. Compute both sides of Gauss's formula (as given in the class) and show that they are equal.
- Suppose that X has a normal probability distribution with mean 10 and standard deviation 7 3. Determine the value of P(3 < x < 12), for x in X (; you do not need to give values from the table).

(Page 1 of 1)