Multicore Architectures:

Interconnect Network

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-739: Processor Design

Switching/Flow Control Overview

- Topology: determines connectivity of network
- Routing: determines paths through network
- Flow Control: determine allocation of resources to messages as they traverse network

Routing Summary

- Latency paramount concern
 - Minimal routing most common for NoC
 - Non-minimal can avoid congestion and deliver low latency
- To date: NoC research favors DOR for simplicity and deadlock freedom
 - On-chip networks often lightly loaded
- Only covered unicast routing
 - Recent work on extending on-chip routing to support multicast

Switching/Flow Control Overview

- Topology: determines connectivity of network
- Routing: determines paths through network
- Flow Control: determine allocation of resources to messages as they traverse network
 - Buffers and links
 - Significant impact on throughput and latency of network

Switching

- Different flow control techniques based on granularity
- Circuit-switching: operates at the granularity of messages
- Packet-based: allocation made to whole packets
- Flit-based: allocation made on a flit-by-flit basis

Deadlock

- Using flow control to guarantee deadlock freedom give more flexible routing
- Escape Virtual Channels
 - If routing algorithm is not deadlock free
 - VCs can break resource cycle
 - Place restriction on VC allocation or require one VC to be DOR

Buffer Backpressure

- Need mechanism to prevent buffer overflow
 - Avoid dropping packets
 - Upstream nodes need to know buffer availability at downstream routers
- Significant impact on throughput achieved by flow control
- Credits
- On-off

Credit-Based Flow Control

- Upstream router stores credit counts for each downstream VC
- Upstream router
 - When flit forwarded
 - Decrement credit count
 - Count == 0, buffer full, stop sending
- Downstream router
 - When flit forwarded and buffer freed
 - Send credit to upstream router
 - Upstream increments credit count

Credit Timeline

Round-trip credit delay:

- Time between when buffer empties and when next flit can be processed from that buffer entry
- If only single entry buffer, would result in significant throughput degradation
- Important to size buffers to tolerate credit turn-around

On-Off Flow Control

- Credit: requires upstream signaling for every flit
- On-off: decreases upstream signaling
- Off signal
 - Sent when number of free buffers falls below threshold $F_{\it off}$
- On signal
 - Send when number of free buffers rises above threshold F_{on}

On-Off Timeline

overflowing

On-chip buffers more expensive than wires

11

Flow Control Summary

- On-chip networks require techniques with lower buffering requirements
 - Wormhole or Virtual Channel flow control
- Dropping packets unacceptable in on-chip environment
 - Requires buffer backpressure mechanism
- Complexity of flow control impacts router microarchitecture (next)

Router Microarchitecture Overview

- Consist of buffers, switches, functional units, and control logic to implement routing algorithm and flow control
- Focus on microarchitecture of Virtual Channel router
- Router is pipelined to reduce cycle time

Virtual Channel Router

13 Mar 2015 EE-739@IITB 14

Baseline Router Pipeline

- Canonical 5-stage (+link) pipeline
 - BW: Buffer Write
 - RC: Routing computation
 - VA: Virtual Channel Allocation
 - SA: Switch Allocation
 - ST: Switch Traversal
 - LT: Link Traversal

Baseline Router Pipeline

- Routing computation performed once per packet
- Virtual channel allocated once per packet
- body and tail flits inherit this info from head flit

Router Pipeline Optimizations

Baseline (no load) delay

$$= (5cycles + linkdelay) \times hops + t_{serialization}$$

- Ideally, only pay link delay
- Techniques to reduce pipeline stages
 - Lookahead routing: At current router perform routing computation for next router
 - Overlap with BW

BW NRC	VA	SA	ST	LT
-----------	----	----	----	----

Router Pipeline Optimizations

Speculation

- Assume that Virtual Channel Allocation stage will be successful
 - Valid under low to moderate loads
- Entire VA and SA in parallel

- If VA unsuccessful (no virtual channel returned)
 - Must repeat VA/SA in next cycle
- Prioritize non-speculative requests

Router Pipeline Optimizations

- Bypassing: when no flits in input buffer
 - Speculatively enter ST
 - On port conflict, speculation aborted

 In the first stage, a free VC is allocated, next routing is performed and the crossbar is setup

Buffer Organization

Multiple fixed length queues per physical channel

Arbiters and Allocators

- Allocator matches N requests to M resources
- Arbiter matches N requests to 1 resource
- Resources are VCs (for virtual channel routers) and crossbar switch ports.
- Virtual-channel allocator (VA)
 - Resolves contention for output virtual channels
 - Grants them to input virtual channels
- Switch allocator (SA) that grants crossbar switch ports to input virtual channels
- Allocator/arbiter that delivers high matching probability translates to higher network throughput.
 - Must also be fast and able to be pipelined

Round Robin Arbiter

- Last request serviced given lowest priority
- Generate the next priority vector from current grant vector
- Exhibits fairness

Crossbar Dimension Slicing

Crossbar area and power grow with O((pw)²)

Replace 1 5x5 crossbar with 2 3x3 crossbars

Crossbar speedup

- Increase internal switch bandwidth
- Simplifies allocation or gives better performance with a simple allocator
- Output speedup requires output buffers
 - Multiplex onto physical link

Evaluating Interconnection Networks

- Network latency
 - Zero-load latency: average distance * latency per unit distance
- Accepted traffic
 - Measure the max amount of traffic accepted by the network before it reaches saturation
- Cost
 - Power, area, packaging

Interconnection Network Evaluation

- Trace based
 - Synthetic trace-based
 - Injection process
 - Periodic, Bernoulli, Bursty
 - Workload traces
- Full system simulation

Traffic Patterns

- Uniform Random
 - Each source equally likely to send to each destination
 - Does not do a good job of identifying load imbalances in design
- Permutation (several variations)
 - Each source sends to one destination
- Hot-spot traffic
 - All send to 1 (or small number) of destinations

Microarchitecture Summary

- Ties together topological, routing and flow control design decisions
- Pipelined for fast cycle times
- Area and power constraints important in NoC design space

Interconnection Network

Latency vs. Offered Traffic

Thank You

