Reinforcement Learning

Temporal-Difference Learning

Stefano Albrecht, Pavlos Andreadis 31 January 2020

Lecture Outline

- Temporal-difference (TD) policy evaluation
- TD control:
 - Sarsa
 - Q-learning
 - Expected Sarsa
- n-step TD methods

Method Comparison

Method	Model-free?	Bootstrap?
Dynamic Programming	No	Yes
Monte Carlo	Yes	No
Temporal-Difference	Yes	Yes

Recap: Dynamic Programming

Recap: Monte Carlo Methods

Now: Temporal-Difference Learning

Temporal-Difference Policy Evaluation

General iterative update rule:

NewEstimate ← OldEstimate + StepSize [Target − OldEstimate]

MC update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

Note:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1})|S_{t} = s]$$
Use as target

Temporal-Difference Policy Evaluation

General iterative update rule:

MC update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

TD(0) update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

TD(0) for Policy Evaluation

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0, 1]
Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       A \leftarrow \text{action given by } \pi \text{ for } S
       Take action A, observe R, S'
       V(S) \leftarrow V(S) + \alpha \left[ R + \gamma V(S') - V(S) \right]
       S \leftarrow S'
   until S is terminal
```

Example: Driving Home

		$\gamma=1$		
		R_t	$v(S_t)$	$V(S_0)$
		$Elapsed\ Time$	Predicted	Predicted
	State	(minutes)	$Time\ to\ Go$	$Total\ Time$
S_0	leaving office, friday at 6	0	30	30
S_1	reach car, raining	5	35	40
S_2	exiting highway	20	15	35
S_3	2ndary road, behind truck	30	10	40
S_4	entering home street	40	3	43
S_5	arrive home	43	0	43

Example: Driving Home

Example: Driving Home (Extra)

Convergence of TD(0)

TD(0) converges to v_{π} with prob. 1 if:

- all states visited infinitely often and
- standard stochastic approximation conditions (α -reduction)

$$\forall s: \quad \sum_{t:S_t=s} \alpha_t \to \infty \quad \text{and} \quad \sum_{t:S_t=s} \alpha_t^2 < \infty$$

Convergence of TD(0)

Intuition: what is TD(0) update on *expectation*?

$$V(S_{t}) \leftarrow \mathbb{E}_{\pi}[(1 - \alpha)V(S_{t}) + \alpha [R_{t+1} + \gamma V(S_{t+1})]]$$

$$= (1 - \alpha)V(S_{t}) + \alpha \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$

$$= (1 - \alpha)V(S_{t}) + \alpha \sum_{a} \pi(a|S_{t}) \sum_{s',r} p(s',r|S_{t},a) [r + \gamma V(s')]$$

$$= (1 - \alpha)V(S_{t}) + \alpha V_{\pi}(S_{t})$$

Bellman operator $v_{\pi}(S_t)$ is contraction mapping with fixed point $v_{\pi}!$

- Expected TD update moves $V(S_t)$ toward $v_{\pi}(S_t)$ by α
- \bullet α used to control averaging in sampling updates

(rewrite)

Advantages of TD Learning

- Like MC: TD does not require full model p(s', r|s, a), only experience
- Unlike MC: TD can be fully incremental
 - ⇒ Learn *before* final return is known
 - ⇒ Less memory and computation
- Both MC and TD converge to v_{π}/q_{π} under certain assumptions
 - ⇒ But TD often faster in practice

Example: Random Walk

Values learned by TD(0) after 0/1/10/100 episodes ($\alpha = 0.1$)

Example: Random Walk

Root mean-squared error averaged over all states and 100 episodes

TD methods usually learn faster than MC

On-Policy TD Control: Sarsa

On-policy: learn q_{π} and improve π while following π

Sarsa:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

- If S_{t+1} terminal state, define $Q(S_{t+1}, A_{t+1}) = 0$
- ullet Ensure exploration by using ϵ -soft policy π

On-Policy TD Control: Sarsa

On-policy: learn q_{π} and improve π while following π

Sarsa:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

- If S_{t+1} terminal state, define $Q(S_{t+1}, A_{t+1}) = 0$
- Ensure exploration by using ϵ -soft policy π

Converges to π_* with prob 1. if all (s,a) infinitely visited and standard α -reduction

$$\forall s, a: \sum_{t:S_t=s, A_t=a} \alpha_t \to \infty, \sum_{t:S_t=s, A_t=a} \alpha_t^2 < \infty$$

and ϵ gradually goes to 0

On-Policy TD Control: Sarsa

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]
       S \leftarrow S' : A \leftarrow A' :
   until S is terminal
```

Example: Windy Gridworld with Sarsa

Off-Policy TD Control: Q-Learning

Off-policy: Learn q_{π} and improve π while following μ

Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\frac{R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)}{Q(S_t, A_t)} - Q(S_t, A_t) \right]$$

Why is there no importance sampling ratio?

- Recall: for q_{π} , ratio defined as $\prod_{k=t+1}^{T-1} \pi(A_k|S_k)/\mu(A_k|S_k)$
- Because a in $q_{\pi}(s, a)$ is no random variable

Converges to π_* with prob. 1 if all (s,a) infinitely visited and standard α -reduction

Off-Policy TD Control: Q-Learning

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
      Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]
      S \leftarrow S':
   until S is terminal
```

Example: Cliff Walking with Sarsa and Q-Learning

 ϵ -greedy exploration ($\epsilon=0.1$)

Expected Sarsa

Can we speed-up learning by reducing variance of updates?

Expected Sarsa:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \mathbb{E}_{\pi} [Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_t, A_t) \right]$$

$$= Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- Moves deterministically in same direction as Sarsa on expectation
- Can use as on-policy or off-policy
 - \Rightarrow Q-learning is special case where π is greedy and μ explores (e.g. ϵ -greedy)

Expected Sarsa in Cliff Walking

All algorithms used ϵ -greedy with $\epsilon=0.1$

Solid circles mark best interim perfformance

n-step TD Methods

TD(0) uses 1-step return:

$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

MC uses full return:

$$G_{t:\infty} \doteq \sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k}$$

n-step return bridges TD(0) and MC:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} V_{t+n-1}(S_{t+n})$$

1-step TD

∞-step TD

n-step TD Methods

n-step return:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} V_{t+n-1} (S_{t+n})$$

n-step TD uses n-step return as target:

$$V_{t+n}(S_t) \doteq V_{t+n-1}(S_t) + \alpha \left[G_{t:t+n} - V_{t+n-1}(S_t) \right]$$

n-step TD Methods in Random Walk Example

Average RMS error over 19 states and first 10 episodes

On/Off-Policy Learning with n-Step Returns

Can similarly define n-step TD policy learning:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} Q_{t+n-1}(S_{t+n}, A_{t+n})$$

$$Q_{t+n}(S_t, A_t) \doteq Q_{t+n-1}(S_t, A_t) + \alpha \rho_{t+1:t+n} \left[G_{t:t+n} - Q_{t+n-1}(S_t, A_t) \right]$$

with importance ratio

$$\rho_{t:h} \doteq \prod_{k=t}^{\min(h,T-1)} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}$$

n-step TD Control in a Gridworld

Unified View

Reading

Required:

• RL book, chapter 6 (6.1–6.6) and chapter 7 (7.1–7.3)

Optional (convergence proofs):

- For TD(0): Dayan, P. (1992). The convergence of TD(λ) for general λ . Machine Learning, 8(3):341–362
- For Sarsa: Singh, S., Jaakkola, T., Littman, M., Szepesvri, C. (2000). Convergence results for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308
- For Q-learning: Watkins, C., Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4):279–292