实验05

指令总线运用实验

实验目的与要求

- 熟悉指令总线数据通路
- 掌握手动搭接/在线模式下
 - 数据总线与指令寄存器间的数据通路
 - 主存与指令寄存器间的数据通路
- 掌握由操作码产生微程序入口地址的过程

- 手动搭接方式下
 - 1/0→BUS→IR
 - $Mem[PC] \rightarrow IR$
 - $Mem[AR] \rightarrow IR$
- 手动在线方式下
 - $I/0 \rightarrow BUS \rightarrow IR$
 - $Mem[PC] \rightarrow IR$
 - $Mem[AR] \rightarrow IR$
 - · Wem[AK] → II

实验原理——数据总线和指令总线

- DBUS 数据总线
 - 与寄存器、内存等相连
- iBUS 指令总线
 - 注意其与DBUS相连
 - 数据来源不同, 支持的数据位数不同:
 - DBUS来数据时,可16位数据
 - 主存来数据时
 - 作为操作码8位
 - 同时送Id译码并产生微程序入口地址

实验原理——DBUS→IR

- 注意
 - 虽然MWR有效,但不写内存
 - 16位、8位均可
 - 数据写时: 进入IR的是数据, 不译码
 - 因此不产生微地址
 - 数据来源可以是INPUT等
 - 程序写时: 进入IR的是指令, 译码, 并产生微地址

IR	MWR	
0	1	内存写
1	0	IR程序写
1	1	IR数据写

DBUS

实验原理——Mem→IR

- 注意
 - 8位指令码
 - 内存需预先确定地址 PC/AR

- 搭接
 - 需要连线
- 在线
 - 连线在后台(电路板背面)已连好
 - 不需要连线

- 参考实验参考书
 - p. 7 > 2.1 > 2)工作模式设置
 - 键盘上2个按键功能
 - "减址": 相当于"菜单"/"确定"
 - "增址": 相当于"下一项"

实验原理——机器指令与微指令执行过程

- 译码
 - 由Id(Instruction Decoder)
 - 根据指令操作码
 - 产生微程序入口地址
- 机器指令的功能
 - 由微程序具体实现
 - 一条机器指令对应一段微程序
 - 机器指令
 - 相当于函数名
 - 微程序
 - 相当于函数体
 - 位于Control Memory (CM, 控制存在器)
- 因此
 - 必须保证找到正确的微程序入口

实验原理——散转规则

微总线	ud10	ud9	ud8	ud7	ud6	ud5	ud4	ud3	ud2	ud1	ud0
指令总线 (8位操作码)	1	1	id7	id6	id5	id4	id3	id2	id1	id0	0
指令总线 (4位操作码)	1	1	id7	id6	id5	id4	0	0	0	0	0

- 微总线
 - 共11位
- 指令总线
 - 0/1固定值
 - idx来自操作码

• 操作码位数

- 由 Ids 位确定
- 0 表示8位操作
- 1 表示4位操作
- 实验箱上存在的问题

- 在线操作时,将产生散转地址(见uPC)
 - Mem→ IR
 - Mem→ Id

实验要求

- 手动搭接模式下,实现
 - I/0→IR 字和字节写
 - Mem→IR 字和字节写
 - 注意留意uPC的变化

- 手动在线模式下,实现
 - I/0→IR 字和字节写
 - Mem→IR 字和字节写
 - 注意留意uPC的变化
- 任何编程语言写一个函数,实现4位操作码和8位操作码情况下,不同指令产生的16进制微地址,并验证在线模式下Mem→1d时产生的微地址是否正确