

https://youtu.be/DuYkqCQEbpo

Noisy channel model

Vauquois' Pyramid

Questions to Ponder

- What makes machine translation such a difficult problem?
- Are all language pairs equally difficult to translate? Why or why not?
- How do humans translate between languages (ie. what are the cognitive steps involved)?

Project Checkpoint #1

- Decide and submit (through teams post) the following:
 - Your team members
 - L and a short note on why you chose L and its resource levels
 - The end-to-end application over translation that you are going to build.
 - What?
 - Why is it interesting?
 - How is it useful?
 - Any challenges you foresee.
- Deadline: 7th March

LECTURE 2 Evaluation & Training

3rd Mar 2023

Evaluation of Machine Translation Systems

- What are the Challenges?
- What are the features/dimensions?

$HUMAN \\ EVALUATION$

5-point **comprehensibility** and fluency scale

Grade -1	No Output OR buffer clearance issue
Grade o	Nonsense (If the sentence doesn't make any sense at all – it is like someone speaking to you in a language you don't know)
Grade 1	Some parts make sense but is not comprehensible over all (e.g., listening to a language which has lots of borrowed words from your language – you understand those words but nothing more)
Grade 2	Comprehensible but has quite a few errors (e.g., someone who can speak your language but would make lots of errors. However, you can make sense out of what is being said)
Grade 3	Comprehensible, occasional errors (e.g., someone speaking Hindi getting all its genders wrong)
Grade 4	Perfect (e.g., someone who knows the language)

Automatic Evaluation

BLEU = Bilingual Evaluation Understudy Score

- N-gram overlap between machine translation output and reference translation
- Compute precision for n-grams of size 1 to 4
- Add brevity penalty (for too short translations)

$$\text{BLEU} = \min\left(1, \frac{\textit{output-length}}{\textit{reference-length}}\right) \ \big(\prod_{i=1}^{4} \textit{precision}_i\big)^{\frac{1}{4}}$$

• Typically computed over the entire corpus, not single sentences

Autimatic Evaluation

BLEU = Bilingual Evaluation Understudy Score

http://webcast.in2p3.fr/videos-how_can_we_measure_machine_translation_quality

What is a Better Translation? Reflections on Six Years of Running Evaluation Campaigns
Philipp Koehn

$Automatic \\ Evaluation$

Adaptations of BLEU

- NIST: Like BLEU but higher weights to rare n-grams
- METEOR (Metric for Evaluation of Translation with Explicit ORdering): Considers recall, precision, word order and synonyms.

CharacTER

Translation Edit-distance
(in post-editing machine translation)

How many edit operations are required to convert the translator output to a satisfactory form?

Two paradigms of machine translation:

- Information preserving non-critical
- Information+style preserving critical

CheckList: Behavioral Testing of NLP Models (ACL 2020 best paper)

 Usually, evaluation of NLP systems results in a single number. However, it is important to know which linguistic (and other) capabilities the system has, and which it doesn't.

• Therefore, instead of a functional testing, can we resort to behavioral testing of NLP models?

Case-Study I: Sentiment Analysis

Labels: positive, negative, or neutral; INV: same pred. (INV) after removals/ additions; DIR: sentiment should not decrease (↑) or increase (↓)

Test TYPE and Description		Failure Rate (%)			(%)		Example test cases & expected behavior
			G	<u>a</u> ,	٠	RoB	
	<i>MFT:</i> Short sentences with neutral adjectives and nouns	0.0	7.6	4.8	94.6	81.8	The company is Australian. neutral That is a private aircraft. neutral
Vocab.+POS	<i>MFT:</i> Short sentences with sentiment-laden adjectives	4.0	15.0	2.8	0.0	0.2	That cabin crew is extraordinary. pos I despised that aircraft. neg
	<i>INV</i> : Replace neutral words with other neutral words	9.4	16.2	12.4	10.2	10.2	 @ Virgin should I be concerned that → when I'm about to fly INV @ united the → our nightmare continues INV
>	DIR: Add positive phrases, fails if sent. goes down by > 0.1	12.6	12.4	1.4	0.2	10.2	@SouthwestAir Great trip on 2672 yesterday You are extraordinary. ↑ @AmericanAir AA45 JFK to LAS. You are brilliant. ↑
	DIR: Add negative phrases, fails if sent. goes up by > 0.1	0.8	34.6	5.0	0.0	13.2	@USAirways your service sucks. You are lame. ↓@JetBlue all day. I abhor you. ↓
Robust.	<i>INV</i> : Add randomly generated URLs and handles to tweets	9.6	13.4	24.8	11.4	7.4	@JetBlue that selfie was extreme. @pi9QDK INV @united stuck because staff took a break? Not happy 1K https://t.co/PWK1jb INV
Ttoodou	<i>INV</i> : Swap one character with its neighbor (typo)	5.6	10.2	10.4	5.2	3.8	@JetBlue → @JeBtlue I cri INV @SouthwestAir no thanks → thakns INV
NER	<i>INV</i> : Switching locations should not change predictions	7.0	20.8	14.8	7.6	6.4	@JetBlue I want you guys to be the first to fly to # Cuba → Canada INV @VirginAmerica I miss the #nerdbird in San Jose → Denver INV
Z	<i>INV:</i> Switching person names should not change predictions	2.4	15.1	9.1	6.6	2.4	Airport agents were horrendous. Sharon → Erin was your saviour INV @united 8602947, Jon → Sean at http://t.co/58tuTgli0D, thanks. INV
Temporal	<i>MFT:</i> Sentiment change over time, present should prevail	41.0	36.6	42.2	18.8	11.0	I used to hate this airline, although now I like it. pos In the past I thought this airline was perfect, now I think it is creepy. neg
	<i>MFT:</i> Negated negative should be positive or neutral	18.8	54.2	29.4	13.2	2.6	The food is not poor. pos or neutral It isn't a lousy customer service. pos or neutral
Negation	<i>MFT:</i> Negated neutral should still be neutral	40.4	39.6	74.2	98.4	95.4	This aircraft is not private. neutral This is not an international flight. neutral
Neg	MFT: Negation of negative at the end, should be pos. or neut.	100.0	90.4	100.0	84.8	7.2	I thought the plane would be awful, but it wasn't. pos or neutral I thought I would dislike that plane, but I didn't. pos or neutral
	<i>MFT:</i> Negated positive with neutral content in the middle	98.4	100.0	100.0	74.0	30.2	I wouldn't say, given it's a Tuesday, that this pilot was great. neg I don't think, given my history with airplanes, that this is an amazing staff. neg
	<i>MFT:</i> Author sentiment is more important than of others	45.4	62.4	68.0	38.8	30.0	Some people think you are excellent, but I think you are nasty. neg Some people hate you, but I think you are exceptional. pos
SRL	<i>MFT:</i> Parsing sentiment in (question, "yes") form	9.0	57.6	20.8	3.6	3.0	Do I think that airline was exceptional? Yes. neg Do I think that is an awkward customer service? Yes. neg
	<i>MFT:</i> Parsing sentiment in (question, "no") form	96.8	90.8	81.6	55.4	54.8	Do I think the pilot was fantastic? No. neg Do I think this company is bad? No. pos or neutral

Table 1: A selection of tests for sentiment analysis. All examples (right) are failures of at least one model.

Capability		
Vocabulary		
NER		
Negation		

Capability	Minimum Functionality Test	Invariance	Directional
Vocabulary			
NER			
Negation			

Capability	Minimum Functionality Test	Invariance	Directional
Vocabulary			
NER			
Negation			

Template I: | < NEGATION > < POS_VERB > the < THING >

Test1: *I did not like the acting*.

Test2: I can't say I recommend the book.

Test3: ...

Template II: I thought <**POS_STMT**>, but <**PRON** ><**VERB**> not.

Test1: I thought the movie was great, but it was not.

Test2: I thought I will like the book, but I did not.

Capability	Minimum Functionality Test	Invariance	Directional
Vocabulary			
NER		\wedge	
Negation			

Same prediction after changing the named entity.

Test1: Thanks to the staff, we were put in another flight to Delhi → Bangalore

Test2: @SouthWestern Great trip on $\frac{2374}{2}$ yesterday.

Test3: ...

Same prediction after addition of a random URL

Test1: The movie is certainly worthy of watching. aka.ms\gluecos

Test2: You won't regret visiting this hotel. Github.io/microsoft

Capability	Minimum Functionality Test	Invariance	Directional
Vocabulary			1
NER			
Negation			

Adding intensifiers should not change sentiment polarity

Test1: I absolutely love this restaurant.

Test2: I couldn't move past the third chapter. It was very boring.

Test3: ...

Adding negative/positive phrases at the end should not make predictions more positive/negative.

Test1: Service wasn't great. You are lame.

Test2: You won't regret visiting this hotel. It is fantastic.

Capability	Min Func Test	INV ariance	DIR ectional		
Vocabulary	Fail. rate=15.0%	16.2%	C 34.6%		
NER	0.0%	B 20.8%	N/A		
Negation	A 76.4%	N/A	N/A		

Test case	Expected	Predicted	Pass?				
A Testing Negation with MFT Labels: negative, positive, neutral							
Template: I {NEGATION} {POS_VERB	} the {TH	IING}.					
I can't say I recommend the food.	neg	pos	X				
I didn't love the flight.	neg	neutral	X				
	Failu	re rate = 7	6.4%				
B Testing NER with INV Same pred. (inv) after re	emovals / ad	ditions				
@AmericanAir thank you we got on a different flight to [Chicago → Dallas].	inv	pos neutral	x				
@VirginAmerica I can't lose my luggage, moving to [Brazil → Turkey] soon, ugh.	inv	neutral neg	x				
	Failu	ıre rate = 2	20.8%				
Testing Vocabulary with DIR Sent	iment mono	tonic decrea	sing (↓)				
@AmericanAir service wasn't great. You are lame.	Ţ	neg neutral	x				
@JetBlue why won't YOU help them?! Ugh. I dread you.	Ţ	neg neutral	x				
111							
Failure rate = 34.6%							

Figure 1: CheckListing a commercial sentiment analysis model (**G**). Tests are structured as a conceptual matrix with capabilities as rows and test types as columns (examples of each type in A, B and C).

How CheckList works

- Decide on capabilities.
- Come up with test templates
- Generate test cases with the help of tools
 - Available online
 - Variety of abstractions and support provided, including MLM type predictions to support semi-automatic test case generation.
- Run the system and calculate accuracy
- Report the findings in the table

Problem to ponder

- Can you use LLMs like ChatGPT to evaluate translations?
- Does Automatic metrics work equally well for all languages and language pairs?

Further Reading

- https://slator.com/machine-translation/a-quick-primeron-edit-distance-a-key-metric-in-post-editingmachine-translation/
- https://www.topbots.com/evaluation-metrics-for-dialogsystems/#:~:text=Evaluation%20is%20a%20crucial%2
 opart%20of%20the%20dialog,rely%20on%20automatice%20metrics%20when%20developing%20dialog%20systems.

•