

Objetivo

Aquisição de variáveis em ambiente industrial

Utilização de base de dados

Aplicação de Inteligência artificial e deep learning

Avaliação da variação dos dados para identificar avarias

Layout geral

Receção dos dados

Obtidos pelos sensores

Armazenar informação

Base de dados

Processamento

Inteligência artificial

Prevenção

- Avisos
- Atuadores

Equipamentos e materiais

- Pressão (Bar)
- Temperatura (°C)
- Vibração
- Ruído

Servidor

- MQTT
- Base de dados (MySQL)
- Inteligência artificial (Python)

Interface

 Computador/ Tablet (HTML e PHP) Projeto mecânico

- Vibração
- Ruído

Sensores

Interface

- Tablet
- Computador

Sistema de alimentação

Conjunto de baterias

MQTT

ESP32

- Boot.py
- umqttsimple.py
- main.py

main.py (ESP32)

- Configuração dos pinos do ESP32
- Ciclos de leitura dos valores dos sensores
- Criação da mensagem completa
- Publicação da mensagem no tópico

AP3

```
import pandas as pd

from sklearn.ensemble import IsolationForest

df = pd.read_csv('temperatura, teste.csv', sep=';')

# model training
model = IsolationForest(n_estimators=100, max_samples='auto', contamination=float(0.2), max_features=1.0)
model.fit(df[['temperatura']])
IsolationForest(contamination=0.2)

# prediction
df['temperature_anomalies'] = model.decision_function(df[['temperatura']])
df['Anomaly'] = model.predict(df[['temperatura']])
print(df[df['Anomaly']==-1].head())
```

INPUT

	DIA	temperatura
0	1	22
1	2	24
2	3	26
3	4	20
4	5	18
5	6	45
6	7	23
7	8	28
8	9	90
9	10	24

Pandas – manipulação e análise de dados, usado para leitura do ficheiro csv com os dados

IsolationForest - Deteção de anomalias

OUTPUT

	DIA	temperatura	temperature_anomalies	Anomaly
5		45	-0.119131	-1
8	9	90	-0.250869	-1

adtk - Anomaly detection toolkit

Dados a medir Insira o ID da máquina e do componente ID Máquina: ID Componente:

Observações:	
Manutenções:	04 / 07 / 2022

Submit

Gravação de dados

Verifique o ID do componente

ID Componente

Carregue no botão

Gravar Dados

Diagnóstico

Obrigatório preencher pelo menos uma dos componentes.

Componentes								
Adicione um componente à base de dados								
ID Componente 1:	0	ID Componente 2:	©	ID Componente 3:	•			
Nome:		Nome:		Nome:				
Descrição:		Descrição:		Descrição:				
Temperatura		Temperatura		Temperatura				
Humidade		Humidade		Humidade				
☐ Vibração		─ Vibração		Vibração				
Ruído		Ruído		Ruído				

Dificuldades

- Bases de programação
- Experiência em machine learning e Base de dados
- Pouca informação
- Obter valores aceitáveis
- MQTT

Em Falta

APLICAÇÃO DO ALGORITMO DE MACHINE LEARNING AOS DADOS OBTIDOS

