

Karunya Institute of Technology and Sciences

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

MoE, UGC & AICTE Approved; NAAC Accredited A++

Karunya Nagar, Coimbatore - 641 114, Tamil Nadu, India.

END SEMESTER EXAMINATION - APRIL / MAY 2024

Course Code	20CS2021	Duration	3hrs
Course Name	DISTRIBUTED COMPUTING	Max. Marks	100

Q. No.	Questions	СО	BL	M
	$\underline{PART - A (10 X 1 = 10 MARKS)}$			
1.	Define transparency.	CO1	R	1
2.	List the generations of distributed systems.	CO1	R	1
3.	Define Remote Object Reference.	CO2	R	1
4.	Predict the method used by clients to invoke remote operations	CO2	U	1
5.	Differentiate Synchronous and Asynchronous Communication.	CO3	U	1
6.	Illustrate the concept of deadlock with its representation.	CO3	Α	1
7.	Describe the characteristics of Multicast Communication.	CO4	R	1
8.	Summarize the limitations of Bully algorithm.	CO4	U	1
9.	State the importance of linearizability in data replication.	CO5	R	1
10.	Define distributed shared memory.	CO6	R	1
	$\underline{PART - B (6 X 3 = 18 MARKS)}$			
11.	Distinguish between the physical and architectural models of distributed systems.	CO1	An	3
12.	Explain publish-subscribe paradigm.	CO2	U	3
13.	Describe Christian's method of clock synchronization.	CO3	R	3
14.	Differentiate growing phase and shrinking phase of 2PL protocol.	CO4	An	3
15.	Describe Update propagation in gossip architecture.	CO5	R	3
16.	Explain EDF scheduling.	CO6	U	3
	$\frac{PART - C (6 \times 12 = 72 \text{ MARKS})}{(Answer any five Questions from Q. No. 17 to 23, Q. No. 24 is Compulso$	orv)		
17.	a. Discuss the different client-server architectures employed in a distributed	CO1	U	8
	environment. Explain the rationale behind focusing on thin clients instead of fat clients. State a few relevant applications of client-server architecture.			
	b. Distinguish between different types of omissions and arbitrary failures that affect channels and processes in a distributed environment.	CO1	An	4
18.	with a suitable diagram.	CO2	U	6
	b. Describe the modules of distributed file service architecture.	CO2	R	6
				<u> </u>

19.	a.	Illustrate the mechanism by which pastry routes messages to the addressed node in the distributed system.	CO3	An	12
		node in the distributed system.			
20.	a	Explain the edge-chasing protocol for deadlock detection. Consider a distributed system with three sites in the following situation: i) Site S1 has 3 processes, P1, P2, and P3, where process P2 is waiting to acquire a resource held by process P4. ii) Site S2 has 2 processes, P4, and P5, where process P4 is waiting to acquire a resource held by process P7. iii) Site 3 has 3 processes, P6, P7, and P8, where process P7 is waiting to acquire a resource held by process P2.	CO4	An	6
		Analyze the edge-chasing protocol and identify if any deadlock arises for the given scenario.			
	b	Illustrate two phase commit protocol with suitable example.	CO4	A	6
21.	a	Determine the strategies and operations to minimize the overhead associated with maintaining primary replication manager in passive replication.	CO5	A	6
	b	Describe the role of group communication in a distributed environment.	CO5	R	6
22.	a.	Explain network partition algorithm. Why is it not suitable for banking applications?	CO5	An	6
		Describe the components of a gossip replica manager.	CO5	U	6
23.		Discuss various mamory consistency models	CO6	U	12
23.	a.	Discuss various memory consistency models.	C00	U	12
	1	COMPULSORY QUESTION			
24.	a.	Analyze the distributed multimedia systems by considering its characteristics, QoS management and parameters.	CO6	An	12

REGISTER NO.						

Karunya Institute of Technology and Sciences

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956) MoE, UGC & AICTE Approved; NAAC Accredited A++

Karunya Nagar, Coimbatore - 641 114, Tamil Nadu, India.

END SEMESTER EXAMINATION - NOV / DEC - 2023

Course Code	20CS2021	Duration	3hrs
Course Name	DISTRIBUTED COMPUTING	Max. Marks	100

Q. N o.	Questions	со	BL	Mark s							
$\underline{PART - A (10 \times 1 = 10 \text{ MARKS})}$											
(Answer all the questions)											
1.	List the challenges of a distributed system.	CO1	R	1							
2.	State the difference between concurrency and replication transparency.	CO1	R	1							
3.	Identify the middleware layers of inter-process communication.	CO2	U	1							
4.	Give examples of network operating systems.	CO2	U	1							
5.	Define the term binding.	CO4	R	1							
6.	Differentiate between pure and non-pure names.	CO4	U	1							
7.	State the pictorial representation for multicast communication for a process in mutual exclusion.	CO3	R	1							
8.	Identify the technique used in a distributed approach for deadlock detection.	CO3	U	1							
9.	Summarize the basic operations of a gossip service in a distributed system.	CO5	U	1							
10	State the meaning of granularity in distributed shared memory.	CO6	R	1							
	$\underline{PART - B (6 \times 3 = 18 \text{ MARKS})}$										
	(Answer all the questions)	ı	ı								
11	Differentiate between a physical model and an architectural model.	CO1	U	3							
12	State the strengths and weaknesses of a remote procedure call.	CO2	R	3							
13	Summarize the three conditions for mutual exclusion.	CO3	U	3							
14	Describe the drawbacks of Napster.	CO4	R	3							
15	Identify the fault tolerance services available in the distributed environment.	CO5	U	3							
16	List the update options available in distributed shared memory with example.	CO6	R	3							
	$PART - C (6 \times 12 = 72 \text{ MARKS})$										

(Answer any five Questions from Q.No. 17 to 23, Q.No. 24 is Compulsory)

17	a	Explain architectural elements and show how they are mapped onto the physical distributed infrastructure with their placement. Indicate their roles and responsibilities.	CO1	U	8
	b	Describe object serialization in Java.	CO1	R	4
18	a	Explain the working principle of the Remote Procedure Call protocol.	CO2	A	6
	b	Explain the notification of an event to a subscriber in the publish-subscribe paradigm with a neat diagram.	CO2	A	6
19	a	Analyze the pitfalls of Cristian's algorithm and explain how Berkley's algorithm tries to resolve them.	CO4	An	6
	b	Explain how the URL "http://www.flowers.in:1212/pictures/rose.png" can be resolved by Name Service.	CO4	A	6
20	a .	Explain the edge-chasing protocol for deadlock detection. Consider a distributed system with three sites in the following situation: i) Site S1 has 3 processes, P1, P2, and P3, where process P2 is waiting to acquire a resource held by process P4. ii) Site S2 has 2 processes, P4, and P5, where process P4 is waiting to acquire a resource held by process P7. iii) Site 3 has 3 processes, P6, P7, and P8, where process P7 is waiting to acquire a resource held by process P2. Analyze the edge-chasing protocol and identify if any deadlock arises for the given scenario.	CO5	An	12
21	a .	Analyze Ricart-Agarwala and Maekawa non-token based mutual exclusion algorithms with suitable examples.	CO3	An	12
22	a	Illustrate the active and passive models of replication for fault tolerance with suitable diagrams.	CO5	U	12
23	a	State the four problems caused by concurrent transactions and discuss them with suitable examples.	CO5	R	8
	b	Describe the methods through which QoS is maintained in distributed systems.	CO6	R	4
		COMPULSORY QUESTION			
24	a .	Correlate various consistency models used in distributed shared memory and discuss the release-consistency model with a case study.	CO6	An	12

REGISTER NO.											
--------------	--	--	--	--	--	--	--	--	--	--	--

Karunya institute of technology and sciences

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

MoE, UGC & AICTE Approved; NAAC Accredited A++

Karunya Nagar, Coimbatore - 641 114, Tamil Nadu, India.

END SEMESTER EXAMINATION - NOV / DEC - 2022

Course Code	20CS2021	Duration	3hrs
Course Name	DISTRIBUTED COMPUTING	Max. Marks	100

Q. No.	Questions	Course Outcome / Bloom's level	Marks
	$\underline{PART - A (10 \times 1 = 10 \text{ MARKS})}$		
1.	A is one in which components located at networked computers communicate and coordinate their actions only by passing messages.	CO1/R	1
2.	Interaction models deals with the structure and sequencing of the communication between the elements of the system. True or False.	CO2 / U	1
3.	is used to establish a server on remote machine that can respond to queries and to retrieve information by calling a query by other computers.	CO1 / R	1
4.	Define thread.	CO2 / U	1
5.	Define name space.	CO2 / U	1
6.	Why are logical clocks required in distributed system?	CO1 / R	1
7.	Define nested transaction.	CO1 / R	1
8.	is a set of technologies for copying and distributing data and database objects from one database to another.	CO1 / R	1
9.	What is the purpose of using distributed shared memory?	CO2 / U	1
10.	The planned allocation and scheduling of resources to meet the needs of multimedia and other applications is referred to as	CO1 / R	1

	$\underline{PART - B (6 X 3 = 18 MARKS)}$								
11.	Write the important characteristics of IPC.	CO1/R	3						
12.	List the major goals of Sun NFS?	CO2 / U	3						
13.	Give the important features of peer-to-peer systems.	CO2 / U	3						
14.	How are transactions recovered in distributed system?	CO3 / A	3						
15.	Why do we require replication in distributed system?	CO2 / U	3						
16.	Discuss the sequential consistency in DSM.	CO2 / U	3						

PART - C (6 X 12 = 72 MARKS)

	(A	nswer any five Questions from Q.no 17 to 23. Q.No 24 is	Compulsory)	
17.	a.	Describe the architectural models of distributed systems.	CO1 / R	8
	b.	List the approaches used in external data representation in	CO2 / U	4
		distributed system. Explain.		
18.	a.	Sketch the file service architecture and explain in detail	CO 2 / U	8
10.	a.	the functions of these components in file service architecture.	CO 27 C	O
	b.	How does the NFS Auto mounter help to improve the performance and scalability of NFS?	CO4/ An	4
19.		Write short notes on the following:		
	a.	Napster and its legacy	CO 2 / U	6
	b.	Peer-to-peer middleware	CO 2 / U	6
20.	a.	Describe the working of bully algorithm with an example.	CO 2 / U	8
	b.	Give the read and write rules based on timestamp ordering.	CO 2 / U	4
		ordering.		
21.	a.	Describe the view-synchronous group communication with illustration.	CO3 / A	8
	b.	Write in brief about fault tolerant services offered by replication.	CO2 / U	4
22.	a.	Discuss the working procedure for RPC Model.	CO2 / U	8
	b.	Cite few examples of distributed systems.	CO1 / R	4
23.	a.	How the clock synchronization done in Cristian's method?	CO3 / A	8
۵۵.	a.	Explain with illustration.	CO3 / A	0
	b.	List the two ways for synchronizing a clock? Explain.	CO2 / U	4
		COMPULSORY		
24.	a.	Discuss about design and implementation issues of DSM.	CO2 / U	8
	b.	Describe the resource management in DMS.	CO2 / U	4

REGISTER NO.

Karunya Institute of Technology and Sciences

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

MoE, UGC & AICTE Approved; NAAC Accredited A++

Karunya Nagar, Coimbatore - 641 114, Tamil Nadu, India.

END SEMESTER EXAMINATION - MAY / JUNE 2023

Course Code	20CS2021	Duration	3hrs
Course Nam	e DISTRIBUTED COMPUTING	Max. Marks	100

Q. No.	Questions	CO	BL	Marks			
	$\underline{PART - A (10 X 1 = 10 MARKS)}$						
1	(Answer all the questions)	CO1	R	1			
1.	Define Inter-process Communication.	CO1	R	1			
2.	List the characteristics of Distributed System.			1			
3.	Differentiate Synchronous and Asynchronous Communication.		U	1			
4.	Differentiate shared memory and distributed memory.	CO4	R	1			
5.	What is concurrency in Distributed Systems?		U	1			
6.	List the types of system model.		A	1			
7.	Define Multicast operation.		U	1			
8.	What is peer to peer system?	CO2	R	1			
9.	Name the two basic file system used in distributed computing.	CO1	U	1			
10.	List out the design issues in threads.	CO3	R	1			
	$\underline{PART - B (6 X 3 = 18 MARKS)}$						
(Answer all the questions)							
11.	Write a short note on quality of service in distributed systems.		R	3			
12.	Write the key design issues for distributed file systems.		U	3			
13.	What is the need of Name service?		U	3			
14.	State the use of election algorithm. Mention the different election algorithms.		U	3			
15.	Mention the use of Locking.		U	3			
16.	What type of infrastructure is provided by multicast message for distributed system?		R	3			
	$\frac{PART - C (6 \times 12 = 72 \text{ MARKS})}{6 \times 12 \times 12 \times 12 \times 12}$	<u> </u>					
	(Answer any five Questions from Q. No. 17 to 23, Q. No. 24 is Compulsory)						
17.	a. Distinguish between Centralized vs Distributed scheduling algorithm.	CO1	U	6			
	b. What are the different types of models for developing distributed systems? Explain each model in brief.	CO2	R	6			

18.	a.	Differentiate between Structured vs unstructured peer-to-peer systems.	CO4	С	6
	b.	What are the different ways to control concurrency in distributed transactions? Explain with examples.	CO5	R	6
19.	a.	Discuss in detail the design and implementation of name services and Domain Name services.	CO1	U	6
	b.	Explain optimistic concurrency control in detail.	CO2	C	6
20.	a.	What is resource sharing? Explain.	CO3	U	6
	b.	What are the characteristics of inter-process communications? Explain.	CO5	Е	6
21.	a.	Explain about Sun network file system.	CO3	R	6
	b.	Discuss the design issues for Remote Procedure Call.	CO4	U	6
22.	a.	Write short notes on Napster and its legacy and Peer to Peer Middleware.	CO2	С	6
	b.	Explain directory services.	CO1	R	6
23.	a.	Briefly discuss the architecture and server operation of NFS.	CO1	R	6
	b.	What are the different ways of synchronizing physical clocks? Explain.	CO2	U	6
	ı	COMPULSORY QUESTION	1		
24.	a.	Explain the basic model for the management of replicated data.	CO1	U	6
	b.	Explain passive replication model for fault tolerance.	CO2	R	6

CO – COURSE OUTCOME

BL – BLOOM'S LEVEL