Rodzaje dowodów

Przypomnijmy, że wyróżniamy 4 główne metody dowodzenia prawdziwości twierdzeń:

- a) wprost rozpoczynamy od założeń lub wcześniej udowodnionych twierdzeń, a następnie przeprowadzając logiczne rozumowanie dochodzimy do tezy,
- b) nie wprost polega on na zaprzeczeniu tezy dowodzonego twierdzenia i wykazaniu, że przyjęcie takiego zaprzeczenia prowadzi do sprzeczności. Zatem dane twierdzenie należy uznać za prawdziwe,
- c) **przez kontrapozycję**^a stosujemy prawo kontrapozycji, czyli zamiast dowodzić implikacji $p \Rightarrow q$ dowodzimy implikację $\neg q \Rightarrow \neg p$,
- d) **przez indukcję** stosujemy zasadę indukcji matematycznej. Tą metodą dowodzimy twierdzeń dotyczących liczb naturalnych.

Aby udowodnić, że twierdzenie jest fałszywe, wystarczy wskazać jeden kontrprzykład, czyli przykład, który spełnia założenia twierdzenia, ale nie spełnia jego tezy.

Poniżej znajdują się 4 zadania na dowodzenie. W każdym przypadku zapisz założenie i tezę, na następnie rozwiąż zadanie wskazaną metodą.

Zadanie 1 (Wprost).

Udowodnij, że sześcian dowolnej liczby całkowitej dającej resztę 3 z dzielenia przez 8 daje resztę 3 z dzielenia przez 4.

Zadanie 2 (Nie Wprost).

Udowodnij, że liczba log₂ 7 jest niewymierna.

Zadanie 3 (Przez Kontrapozycję).

Udowodnij, że dla x > 0 zachodzi nierówność: $x + \frac{4}{r^2} \ge 3$.

Zadanie 4 (Przez Indukcje).

Udowodnij, że dla $n \in \mathbb{N}$, $n \ge 3$ zachodzi nierówność: $2^{n-1} < n!$.

Zadanie domowe

Zadanie 5 (Wprost).

Udowodnij, że suma sześcianów trzech kolejnych liczb nieparzystych daje resztę 3 z dzielenia przez 6.

Zadanie 6 (Nie Wprost).

Udowodnij, że liczba log₃ 13 jest niewymierna.¹

Zadanie 7 (Przez Kontrapozycję).

Udowodnij, że dla x < 0 zachodzi nierówność: $x + \frac{9}{x} \le 6$.

Zadanie 8 (Przez Indukcję).

Udowodnij, że dla $n \in \mathbb{N}$, $n \ge 10$ zachodzi nierówność: $2^n > n^3$.

Zadanie 2025.

Używając dowodzenia wprost i nie odwołując się do monotoniczności funkcji $t\mapsto t^3$ (czyli nie podnosząc po prostu obustronnie do potęgi trzeciej), uzasadnij, że jeśli $x\leqslant y$, to $x^3\leqslant y^3$.

Piotr Bury

¹Zastanowić się, jak zmieni się rozumowanie, gdy podstawa logarytmu będzie ułamkiem.