11. Reflection Seismology

M. Ravasi ERSE 210 Seismology

Seismic recordings

Seismic propagation movie

Make video of wave propagation in Marmousi

Seismic sources

Vibroseis

Seismic receivers

Geophones

Streamer

OBC

Seismic marine geometries

Simultaneous shooting

$$J = \|\mathbf{\Gamma}^H \mathbf{b} - \mathbf{Lm}\|_p + \varepsilon \|\mathbf{m}\|_1$$

Seismic Data Arrangements

Seismic Data Visualization

Seismic Processing flow

NMO Analysis

^{*} Figures from Yilmaz book

Deghosting

$$d(t,\theta) = d_p(t,\theta) - d_p \left(t - \frac{2z_r cos\theta}{v_{water}} \right)$$

$$D(f, k_x) = D_p(f, k_x) [1 - e^{-j2\pi k_z(2z_r)}]$$

Migration

^{*} This is a timeline of industry adoption (most theories have been developed some 20 years before the method becomes practical for real applications

Zero-offset seismic sections

Diffraction hyperbolas

$$t(x_{MID}; D) = \sqrt{t_0^2 + \frac{4h^2}{v^2}}$$

$$t_0 = \frac{ZZ_D}{v}$$