F 2.4.35 $f_n \to f$ in measure iff for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $\mu(\{x : |f_n(x) - f(x)| \ge \epsilon\}) < \epsilon$ for $n \ge N$.

Proof. The definition of $f_n \to f$ in measure is as follows: for every $\epsilon > 0$, for every $\delta > 0$, there exists some N_{δ} such that whenever $n > N_{\delta}$ we have

$$\mu(\{x: |f_n(x) - f(x)| \ge \epsilon\}) < \delta.$$

If $f_n \to f$ in measure, then simply taking $\delta = \epsilon$ transforms this statement into exactly what we are trying to prove, so the forward direction is trivial.

For convenience, denote $\{x: |f_n(x) - f(x)| \ge t\}$ by S_t . Suppose now that for every t > 0 there exists $N_t \in \mathbb{N}$ such that $\mu(S_t) < t$ for $n \ge N_t$, and let $\delta, \epsilon > 0$. If $\epsilon \le \delta$, then choosing $N = N_\epsilon$ gives $\mu(S_\epsilon) < \epsilon \le \delta$ when n > N, as desired. If $\delta < \epsilon$, then $S_\epsilon \subseteq S_\delta$, thus taking $N = N_\delta$ gives $\mu(S_\epsilon) \le \mu(S_\delta) < \delta$ when n > N.

F 2.4.38 Suppose $f_n \to f$ in measure and $g_n \to g$ in measure.

(a) $f_n + g_n \to f + g$.

Proof. Let $\epsilon > 0$ and let N_f, N_g be such that $\mu(\{x : |f_n(x) - f(x)| \ge \frac{\epsilon}{2}\}) < \frac{\epsilon}{2}$ if $n > N_f$ and $\mu(\{x : |g_n(x) - g(x)| \ge \frac{\epsilon}{2}\}) < \frac{\epsilon}{2}$ if $n > N_g$, then take $N = \max(N_f, N_g)$. Suppose that that $|(f_n + g_n) - (f + g)| \ge \epsilon$. Then $|f_n - f| + |g_n - g| \ge \epsilon$, and so either $|f_n - f| \ge \frac{\epsilon}{2}$ or $|f_n - f| \ge \frac{\epsilon}{2}$. This means

$$\{x: |(f_n(x) - g_n(x)) - (f(x) - g(x))| \ge \epsilon\} \subseteq \{x: |f_n(x) - f(x)| \ge \frac{\epsilon}{2}\} \cup \{x: |g_n(x) - g(x)| \ge \frac{\epsilon}{2}\}$$

and thus

$$\mu(\{x : |(f_n(x) - g_n(x)) - (f(x) - g(x))| \ge \epsilon\})$$

$$\le \mu(\{x : |f_n(x) - f(x)| \ge \frac{\epsilon}{2}\}) + \mu(\{x : |g_n(x) - g(x)| \ge \frac{\epsilon}{2}\}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

whenever n > N, satisfying the definition from the previous exercise.

(b) $f_n g_n \to fg$ in measure if $\mu(X) < \infty$, but not necessarily if $\mu(X) = \infty$.

Proof. Suppose $\mu(X) < \infty$. For any function h and any $\epsilon > 0$, there is some $M \in \mathbb{N}$ such that $\mu(\{x : |h(x)| > M\}) < \epsilon$. If this were false, we would have $\mu(\{x : |h(x)| > M\}) \ge \epsilon$ for all M, and so

$$\mu(\{x: |h(x)| \le M\}) \le \mu(X) - \epsilon$$

for all M. By continuity from below, we can take limits to produce $\mu(X) = \mu(\{x : |h(x)| \le \infty\}) \le \mu(X) - \epsilon$, a contradiction.

Furthermore, suppose that $h_n \to h$ in measure. Then, using the M from the previous paragraph which satisfies $\frac{\epsilon}{2}$, there is also some N such that n > N implies $\mu(\{x : |h(x) - h_n(x)| > M\}) < \frac{\epsilon}{2}$. If $|h_n(x)| > 2M$, then $|h(x)| + |h(x) - h_n(x)| > 2M$ and so either |h(x)| > M or $|h(x) - h_n(x)| > M$. Thus, we have

$$\mu(\{x:|h_n(x)|>2M\}) \leq \mu(\{x:|h(x)|>M\}) + \mu(\{x:|h(x)-h_n(x)|>M\}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

So, for all $\epsilon > 0$, there exists some N and some M' (namely the value 2M which we found) for which $\mu(\{x : |h_n(x)| > 2M\}) < \epsilon$ whenever n > N.

Therefore, we can find some c_g such that $\mu(\{x:|g(x)|>c_g\})<\frac{\epsilon}{4}$, and we can also find some c_f and some N_0 such that $\mu(\{x:|f_n(x)|>c_f\})<\frac{\epsilon}{4}$ whenever $n>N_0$. We can then find some N_1 so that $\{x:|g_n(x)-g(x)|>\frac{\epsilon}{2c_f}\}$) $<\frac{\epsilon}{4}$ whenever $n>N_1$ and some N_2 so that

 $\{x: |f_n(x)-f(x)|>\frac{\epsilon}{2c_g}\}\}$ $<\frac{\epsilon}{4}$ whenever $n\geq N_2$. Let $N=\max(N_0,N_1,N_2)$. Then for n>N we have

$$\begin{split} &\mu(\{x:|f_n(x)||g_n(x)-g(x)|>\frac{\epsilon}{2}\})\\ &\leq \mu(\{x:|f_n(x)|\leq c_f\}\cap \{x:|g_n(x)-g(x)|>\frac{\epsilon}{2c_f}\}) + \mu(\{x:|f_n(x)|\geq c_f\})\\ &<\frac{\epsilon}{4}+\frac{\epsilon}{4}=\frac{\epsilon}{2}. \end{split}$$

and

$$\mu(\{x: |g(x)||f_n(x) - f(x)| > \frac{\epsilon}{2}\})$$

$$\leq \mu(\{x: |f_g(x)| \leq c_g\} \cap \{x: |f_n(x) - f(x)| > \frac{\epsilon}{2c_g}\}) + \mu(\{x: |g(x)| \geq c_f\})$$

$$< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}.$$

Since $|f_ng_n-fg|=|f_ng_n+f_ng-f_ng-fg|\leq |f_n||g_n-g|+|g||f_n-f|$, we know $|f_ng_n-fg|>\epsilon$ implies that $|f_n(x)||g_n(x)-g(x)|>\frac{\epsilon}{2}$ or $|g(x)||f_n(x)-f(x)|>\frac{\epsilon}{2}$. Thus,

$$\mu(\{x: |f_n(x)g_n(x) - f(x)g(x)| > \epsilon)$$

$$\leq \mu(\{x: |f_n(x)||g_n(x) - g(x)| > \frac{\epsilon}{2}\}) + \mu(\{x: |g(x)||f_n(x) - f(x)| > \frac{\epsilon}{2}\})$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

So our chosen N satisfies the definition.

To see that the requirement $\mu(X) < \infty$ is necessary, consider the sequences $f_n(x) = \frac{1}{n}\chi_{[0,n)}$ and $g_n(x) = \sum_{k=1}^n k \cdot \chi_{[k-1,k)}$. Then $f_n \to 0 = f$ in measure and $g_n \to \sum_{k=1}^\infty k \cdot \chi_{[k-1,k)} = g$, which is

finite for all x. So fg = 0. However, $f_n g_n = \sum_{k=1}^n \frac{k}{n} \cdot \chi_{[k-1,k)}$ does not converge to 0 in measure.

For all n, the set $\{x: |f_n(x)g_n(x) - 0| > \frac{1}{2}\}$ contains [n-1, n), which has measure 1.

- F 2.4.43 Suppose that $\mu(X) < \infty$ and $f: X \times [0,1] \to \mathbb{C}$ is a function such that $f(\cdot,y)$ is measurable for each $y \in [0,1]$ and $f(x,\cdot)$ is continuous for each $x \in X$.
 - (a) If $0 < \epsilon, \delta < 1$ then $E_{\epsilon,\delta} = \{x : |f(x,y) f(x,0)| \le \epsilon \text{ for all } y < \delta\}$ is measurable.

Proof. For each $y \in [0,1]$, define $g_y(x) = |f(x,y) - f(x,0)|$. g_y is the absolute value of a difference of measurable functions, thus g_y is measurable. So we can express $E_{\epsilon,\delta}$ as

$$\bigcap_{y \in [0,\delta)} g_y^{-1}([0,\epsilon]).$$

We will show that this set equals

$$\bigcap_{y\in[0,\delta)\cap\mathbb{Q}}g_y^{-1}([0,\epsilon]),$$

which is a countable intersection of measurable sets (since $[0, \epsilon] \in \mathcal{B}_{\mathbb{R}}$ and g_y is measurable for all y), hence measurable.

The forward inclusion is obvious, because $[0,\delta)\cap\mathbb{Q}\subset[0,\delta)$. For the reverse inclusion, suppose that $x\in g_y^{-1}([0,\epsilon])$ for all $y\in[0,\delta)\cap\mathbb{Q}$. For a given $y\in[0,\delta)$, take a sequence y_n in $[0,\delta)\cap\mathbb{Q}$ converging to y. By assumption, we have $g_{y_n}(x)\leq\epsilon$ for all y_n . Since $g_y(x)$ is the absolute value of a difference of functions that are continuous in y, it is continuous in y as well. So taking limits gives $g_y(x)=\lim_{n\to\infty}g_{y_n}(x)\leq\epsilon$, hence $x\in g_y^{-1}([0,\epsilon])$. Because y was arbitrary, the reverse inclusion is established.

(b) For any $\epsilon > 0$ there is a set $E \subset X$ such that $\mu(E) < \epsilon$ and $f(\cdot, y) \to f(\cdot, 0)$ uniformly on E^c as $y \to 0$.

Proof. Since f(x,y) is continuous in y for all $x \in X$, we know $\lim_{y\to 0} f(x,y) = f(x,0)$. Any sequence $y_n \to 0$ gives a sequence $f_n(x) = f(x,y_n)$ which then converges to f(x,0). So by Egoroff's theorem, there is such a set E for which $f_n \to f$ uniformly on E^c . This holds for all sequences y_n converging to 0, thus $f(\cdot,y) \to f(\cdot,0)$ uniformly on E^c as $y\to 0$.

B 12.1 Suppose μ is a signed measure. Prove that A is a null set with respect to μ if and only if $|\mu|(A)=0$.

Proof. Decompose X into a disjoint union $E \cup F$, where $\mu = \mu^+ - \mu^-$ for some positive measures with $\mu^+(F) = 0 = \mu^-(E)$. First, suppose that A is a null set. We know $0 = \mu(A \cap E) = \mu^+(A \cap E) - \mu^-(A \cap E) = \mu^+(A \cap E)$ and similarly $0 = \mu(A \cap F) = -\mu^-(A \cap F)$, since these are subsets of A. Therefore,

$$|\mu|(A) = \mu^{+}(A) + \mu^{-}(A)$$

= $\mu^{+}(A \cap E) + \mu^{-}(A \cap E) + \mu^{+}(A \cap F) + \mu^{-}(A \cap F)$
= 0.

Now, assume that $|\mu|(A)=0$ and let $B\subset A$. B decomposes as $(B\cap E)\cup(B\cap F)$ with $B\cap E\subset A\cap E$ and $B\cap F\subset A\cap F$. Since $|\mu|(A)=0$ we know that $\mu^+(A\cap E)+\mu^-(A\cap F)=0$. Since both of these are positive measures, we must have $\mu^+(A\cap E)=0=\mu^-(A\cap F)$. Again, because they are positive measures, we then have $\mu^+(B\cap E)\leq \mu^-(A\cap E)=0$ and $\mu^-(B\cap F)\leq \mu^-(A\cap F)=0$, so $\mu(B)=\mu^+(B\cap E)-\mu^-(B\cap F)=0-0=0$.

B 12.2 Let μ be a signed measure. Define

$$\int f d\mu = \int f d\mu^+ - \int f d\mu^-.$$

Prove that

$$\left| \int \! f d\mu \right| \leq \int \! |f| d|\mu|.$$

Proof. First note that, for any two positive measures μ_1 and μ_2 , we have the property

$$\int f d(\mu_1 + \mu_2) = \int f d\mu_1 + \int d\mu_2$$

which we will now prove. This is obvious for simple functions, since

$$\int sd(\mu_1 + \mu_2) = \sum_{i=1}^{n} a_i(\mu_1 + \mu_2)(E_i) = \sum_{i=1}^{n} a_i\mu_1(E_i) + \sum_{i=1}^{n} a_i\mu_2(E_i) = \int sd\mu_1 + \int sd\mu_2.$$

For an arbitrary nonnegative function f, one inequality is now straightforward:

$$\begin{split} \int &fd(\mu_1 + \mu_2) = \sup \left\{ \int sd(\mu_1 + \mu_2) : 0 \le s \le f, s \text{ simple} \right\} \\ &= \sup \left\{ \int sd\mu_1 + \int sd\mu_2 : 0 \le s \le f, s \text{ simple} \right\} \\ &\le \sup \left\{ \int sd\mu_1 : 0 \le s \le f, s \text{ simple} \right\} + \sup \left\{ \int sd\mu_2 : 0 \le s \le f, s \text{ simple} \right\} \\ &= \int &fd\mu_1 + \int &fd\mu_2. \end{split}$$

For the other inequality, we know that for every ϵ there exists a simple function $s_i \leq f$ such that $\int f d\mu_i - \frac{\epsilon}{2} \leq \int s_i d\mu_i$ (for i=1,2). Taking $s=\max(s_1,s_2)$, it is clear that s is a simple function (if $\{E_i\}$ and $\{F_i\}$ are the partitions used for s_1 and s_2 , respectively, then s uses the partition $\{E_i \cap F_j\}$, and value of s on some $E_i \cap F_j$ is the max of the values of s_1 and s_2 on this set, which is constant), and that $\int f d\mu_i - \frac{\epsilon}{2} \leq \int s d\mu_i$ (for i=1,2). The inequality follows from $\int s_i d\mu_i \leq \int s d\mu_i$, since $s_i \leq s$. So

$$\int f d\mu_1 + \int f d\mu_2 - \epsilon \le \int s d\mu_1 + \int s d\mu_2 = \int s d(\mu_1 + \mu_2).$$

Since this holds for an arbitrary ϵ , we have

$$\int f d(\mu_1 + \mu_2) = \sup \left\{ \int s d(\mu_1 + \mu_2) : 0 \le s \le f \right\} \ge \int f d\mu_1 + \int f d\mu_2$$

as desired. The proof for an arbitrary f (not necessarily positive) follows immediately, but we will not even be needing this case, since the function we will be applying this fact to is |f|.

Finally, we have

$$\left| \int f d\mu \right| = \left| \int f d\mu^{+} - \int f d\mu^{-} \right|$$

$$\leq \left| \sup \left\{ \sum_{i=1}^{n} a_{i} \mu^{+}(E_{i}) : 0 \leq \sum_{i=1}^{n} a_{i} \chi_{E_{i}} \leq f \right\} - \sup \left\{ \sum_{i=1}^{n} a_{i} \mu^{-}(E_{i}) : 0 \leq \sum_{i=1}^{n} a_{i} \chi_{E_{i}} \leq f \right\}$$

$$= \left| \int f d\mu^{+} - \int f d\mu^{-} \right|$$

$$\leq \int |f| d\mu^{+} + \int |f| d\mu^{-}$$

$$= \int |f| d(\mu^{+} + \mu^{-})$$

$$= \int |f| d|\mu|.$$