01204211 Discrete Mathematics Lecture 9a: Finite automata¹

Jittat Fakcharoenphol

August 26, 2025

Example: syntax highlighting

HTML tokenizer

Game programming

State-transition graphs

More examples over $\Sigma = \{0, 1\}$

All strings, except 010.

Strings containing the subsequence 010.

A finite-state machine or a deterministic finite-state automaton (DFA) has five components:

ightharpoonup the input alphabet Σ ,

- ightharpoonup the input alphabet Σ ,
- ightharpoonup a finite set of states Q,

- ightharpoonup the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- \triangleright a transition function δ

- \blacktriangleright the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- ightharpoonup a transition function $\delta: Q \times \Sigma \longrightarrow Q$

- ightharpoonup the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- ightharpoonup a transition function $\delta: Q \times \Sigma \longrightarrow Q$
- ightharpoonup a start state $s \in Q$, and
- ightharpoonup a subset $A \subseteq Q$ of accepting states.

Example 1

Example 2

Moves

One step move: from state q with input symbol a, the machine changes its state to

Moves

One step move: from state q with input symbol a, the machine changes its state to $\delta(q,a)$.

Extension: from state q with input string w, the machine changes its state to $\delta^*(q,w)$ defined as

Moves

One step move: from state q with input symbol a, the machine changes its state to $\delta(q,a)$.

Extension: from state q with input string w, the machine changes its state to $\delta^*(q,w)$ defined as

$$\delta^*(q,w) = \left\{ \begin{array}{ll} q & \text{if } w = \varepsilon, \\ \delta^*(\delta(q,a),x) & \text{if } w = ax. \end{array} \right.$$

The signature of δ^* is $Q \times \Sigma^* \longrightarrow Q$.

Acceptance

For a finite-state machine with starting state s and accepting states A, it accepts string w iff

Acceptance

For a finite-state machine with starting state s and accepting states A, it accepts string w iff

$$\delta^*(s, w) \in A$$
.

Multiple of 5

Multiple of 5

```
def multiple_of_5(w):
    r = 0
    for i in w:
        r = (2*r + w) % 5
    return r == 0
```

Multiple of 5

```
def multiple_of_5(w):
    r = 0
    for i in w:
        r = (2*r + w) % 5
    return r == 0
```


Digital design: Implementation

Digital design: Moore and Mealy machines

In the digital design class, you will encounter finite-state machines as well. The version we consider in this class is refered to as a **Moore machine**. In practices, there is another variant of FSM called **Mealy machines**, whose outputs depend on input symbols as well.

Digital design: Moore and Mealy machines

In the digital design class, you will encounter finite-state machines as well. The version we consider in this class is referred to as a **Moore machine**.

In practices, there is another variant of FSM called **Mealy machines**, whose outputs depend on input symbols as well.

Formally, they differ in output function.

- ▶ Moore machine: $G: Q \longrightarrow [0,1]$
- ▶ Mealy machine: $G: Q \times \Sigma \longrightarrow [0,1]$

Example: even number of 1's

Example: strings containing 00 as a substring

Combining DFAs

What if we want to build a DFA that accepts strings with an even number of 1's and containing 00 as a substring?

Product construction

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

 $\blacktriangleright \ \mathsf{Let} \ Q = Q_1 \times Q_2,$

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

- $\blacktriangleright \ \mathsf{Let} \ Q = Q_1 \times Q_2,$
- ▶ Let $\delta: (Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

- $\blacktriangleright \ \mathsf{Let} \ Q = Q_1 \times Q_2,$
- ▶ Let $\delta: (Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$$

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

- $\blacktriangleright \ \mathsf{Let} \ Q = Q_1 \times Q_2,$
- ▶ Let $\delta: (Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$$

▶ Let $s = (s_1, s_2)$, and

Given a DFA $M_1=(\Sigma,Q_1,\delta_1,s_1,A_1)$ that accepts strings from language L_1 and $M_2=(\Sigma,Q_2,\delta_2,s_2,A_2)$ that accepts strings from language L_2 , we can construct a DFA $M=(\Sigma,Q,\delta,s,A)$ that accepts strings from $L_1\cap L_2$ as follows:

- $\blacktriangleright \ \mathsf{Let} \ Q = Q_1 \times Q_2,$
- ▶ Let $\delta: (Q_1 \times Q_2) \times \Sigma \longrightarrow (Q_1 \times Q_2)$ be such that

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)),$$

- ▶ Let $s = (s_1, s_2)$, and
- $\blacktriangleright \text{ Let } A = A_1 \times A_2.$

Recall the definition of $\delta^*(q, w)$, i.e.,

Recall the definition of $\delta^*(q, w)$, i.e.,

$$\delta^*(q,w) = \left\{ \begin{array}{ll} q & \text{if } w = \varepsilon, \\ \delta^*(\delta(q,a),x) & \text{if } w = ax \text{ where } a \in \Sigma \end{array} \right.$$

Recall the definition of $\delta^*(q,w)$, i.e.,

$$\delta^*(q,w) = \left\{ \begin{array}{ll} q & \text{if } w = \varepsilon, \\ \delta^*(\delta(q,a),x) & \text{if } w = ax \text{ where } a \in \Sigma \end{array} \right.$$

Lemma 1

$$\delta^*((q_1,q_2),w)=(\delta_1^*(q_1,w),\delta_2^*(q_2,w))$$
 for any string w .

Proof.

We prove by induction. I.H.: Assume that $\delta^*((q_1,q_2),x)=(\delta_1^*(q_1,x),\delta_2^*(q_2,x)),$ for any string x such that |x|<|w|.

Correctness

From the previous lemma, we have that

$$\delta^*(s,w) = \delta^*((s_1,s_2),w)$$

Correctness

From the previous lemma, we have that

$$\delta^*(s, w) = \delta^*((s_1, s_2), w)
= (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$$

Correctness

From the previous lemma, we have that

$$\delta^*(s, w) = \delta^*((s_1, s_2), w)
= (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$$

Thus, for an input w, M would reach the state $(\delta_1^*(s_1, w), \delta_2^*(s_2, w))$; it accepts w when

$$(\delta_1^*(s_1, w), \delta_2^*(s_2, w)) \in A_1 \times A_2.$$

This implies that M accepts w when $\delta_1^*(s_1,w) \in A_1$ and $\delta_2^*(s_2,w) \in A_2$, i.e., M accepts w iff M_1 and M_2 accept w.

Finally, we conclude that M accepts strings from language $L_1 \cap L_2$.

Language of a DFA

L(M)

For a DFA M , let L(M) be the set of all strings that M accepts. More formally, for $M=(\Sigma,Q,\delta,s,A)$,

$$L(M) = \{ w \in \Sigma^* \mid \delta^*(s, w) \in A \}.$$

We refer to L(M) as the language of M.

Lemma 2

If L_1 and L_2 are languages of some DFAs M_1 and M_2 , we have that

▶ there is a DFA M that accepts $L_1 \cap L_2$,

Lemma 2

If L_1 and L_2 are languages of some DFAs M_1 and M_2 , we have that

- ▶ there is a DFA M that accepts $L_1 \cap L_2$,
- ▶ there is a DFA M that accepts $L_1 \cup L_2$,

Lemma 2

If L_1 and L_2 are languages of some DFAs M_1 and M_2 , we have that

- ▶ there is a DFA M that accepts $L_1 \cap L_2$,
- ▶ there is a DFA M that accepts $L_1 \cup L_2$,
- \blacktriangleright there is a DFA M that accepts $L_1 \setminus L_2$,

Lemma 2

If L_1 and L_2 are languages of some DFAs M_1 and M_2 , we have that

- ▶ there is a DFA M that accepts $L_1 \cap L_2$,
- \blacktriangleright there is a DFA M that accepts $L_1 \cup L_2$,
- \blacktriangleright there is a DFA M that accepts $L_1 \setminus L_2$,
- there is a DFA M that accepts $\Sigma^* \setminus L_1$,

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

²Taken directly from Erickson's lecture notes

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

$$ightharpoonup L_1 \cap L_2$$
,

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,
- $ightharpoonup L_1 \setminus L_2$, and

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,
- $ightharpoonup L_1 \setminus L_2$, and
- $ightharpoonup \Sigma^* \setminus L_1$,

are also automatic.

²Taken directly from Erickson's lecture notes

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 3

If L_1 and L_2 are automatic languages over alphabet Σ , then

- $ightharpoonup L_1 \cap L_2$,
- $ightharpoonup L_1 \cup L_2$,
- $ightharpoonup L_1 \setminus L_2$, and
- $ightharpoonup \Sigma^* \setminus L_1$,

are also automatic.

The set of automatic languages is closed under these boolean operations.

²Taken directly from Erickson's lecture notes