

DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustc.edu.cn

Assignment #2

Please collect your assignments!

Assume we have a set of objects with certain properties

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

Assume we have a set of objects with certain properties Counting is used to determine the number of these objects.

How many different ways are there to choose 2 balls from

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

How many different ways are there to choose 2 balls from

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

How many different ways are there to choose 2 balls from

What about when order counts?

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

How many different ways are there to choose 2 balls from

What about when order counts?

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

Examples

- the number of steps in a computer program
- \diamond the number of passwords between 6 10 characters
- the number of telephone numbers with 8 digits

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

Examples

- the number of steps in a computer program
- \diamond the number of passwords between 6 10 characters
- the number of telephone numbers with 8 digits

Counting may be very hard, not trivial.

Assume we have a set of objects with certain properties
 Counting is used to determine the number of these objects.

Examples

- the number of steps in a computer program
- \diamond the number of passwords between 6 10 characters
- the number of telephone numbers with 8 digits

Counting may be very hard, not trivial.

simplify the solution by decomposing the problem

Basic Counting Rules

the Product Rule

• the Sum Rule

Basic Counting Rules

the Product Rule

 A count decomposes into a sequence of dependent counts (each element in the first count is associated with all elements of the second count)

the Sum Rule

 A count decomposes into a set of independent counts (elements of counts are alternatives)

 A count decomposes into a sequence of dependent counts (each element in the first count is associated with all elements of the second count)

 A count decomposes into a sequence of dependent counts (each element in the first count is associated with all elements of the second count)

Example

In an auditorium, the seats are labeled by a letter and numbers in between 1 to 50 (e.g., A23). What is the total number of seats?

 A count decomposes into a sequence of dependent counts (each element in the first count is associated with all elements of the second count)

Example

In an auditorium, the seats are labeled by a letter and numbers in between 1 to 50 (e.g., A23). What is the total number of seats?

We may either list all or use the product rule.

$$26 \times 50 = 1300$$

Product Rule: If a count of elements can be broken down into a sequence of dependent counts where the first count yields n_1 elements, the second n_2 elements, and kth count n_k elements, then the total number of elements is

$$n = n_1 \cdot n_2 \cdot \cdots \cdot n_k$$

■ **Product Rule**: If a count of elements can be broken down into a sequence of dependent counts where the first count yields n_1 elements, the second n_2 elements, and kth count n_k elements, then the total number of elements is

$$n = n_1 \cdot n_2 \cdot \cdots \cdot n_k$$

Example

How many different bit strings of length 7 are there?

■ **Product Rule**: If a count of elements can be broken down into a sequence of dependent counts where the first count yields n_1 elements, the second n_2 elements, and kth count n_k elements, then the total number of elements is

$$n = n_1 \cdot n_2 \cdot \cdots \cdot n_k$$

Example

How many different bit strings of length 7 are there?

How many different functions are there from a set with m elements to a set with n elements?

■ **Product Rule**: If a count of elements can be broken down into a sequence of dependent counts where the first count yields n_1 elements, the second n_2 elements, and kth count n_k elements, then the total number of elements is

$$n = n_1 \cdot n_2 \cdot \cdots \cdot n_k$$

Example

How many different bit strings of length 7 are there?

How many different functions are there from a set with m elements to a set with n elements?

How many one-to-one functions are there from a set with m elements to a set with n elements?

■ **Product Rule**: If a count of elements can be broken down into a sequence of dependent counts where the first count yields n_1 elements, the second n_2 elements, and kth count n_k elements, then the total number of elements is

$$n = n_1 \cdot n_2 \cdot \cdots \cdot n_k$$

Example

How many different bit strings of length 7 are there?

How many different functions are there from a set with m elements to a set with n elements?

How many one-to-one functions are there from a set with m elements to a set with n elements?

How many onto functions?

The following loop is a part of program computing the product of two matrices.

```
(1) for i = 1 to r
(2) for j = 1 to m
(3) S = 0
(4) for k = 1 to n
(5) S = S + A[i,k] * B[k,j]
(6) C[i,j] = S
```


The following loop is a part of program computing the product of two matrices.

```
(1) for i = 1 to r
(2) for j = 1 to m
(3) S = 0
(4) for k = 1 to n
(5) S = S + A[i,k] * B[k,j]
(6) C[i,j] = S
```

How many multiplications (in terms of r, m, n) does this program carry out in total among all iterations of line 5?

 A count decomposes into a set of independent counts (elements of counts are alternatives)

 A count decomposes into a set of independent counts (elements of counts are alternatives)

Example

You need to travel from city A to B. You may either fly, take a train, or a bus. There are 12 different flights, 5 different trains and 10 buses. How many options do you have to get from A to B?

 A count decomposes into a set of independent counts (elements of counts are alternatives)

Example

You need to travel from city A to B. You may either fly, take a train, or a bus. There are 12 different flights, 5 different trains and 10 buses. How many options do you have to get from A to B?

We may use the sum rule.

$$12 + 5 + 10$$

Sum Rule: If a count of elements can be broken down into a set of independent counts where the first count yields n_1 elements, the second n_2 elements, and kth count n_k elements, then the total number of elements is

$$n = n_1 + n_2 + \cdots + n_k$$

The following loop is from selection sort.

```
(1) for i = 1 to n-1
(2) for j = i+1 to n
(3) if (A[i] > A[j])
(4) exchange A[i] and A[j]
```


The following loop is from selection sort.

```
(1) for i = 1 to n-1
(2) for j = i+1 to n
(3) if (A[i] > A[j])
(4) exchange A[i] and A[j]
```

How many comparisons (in terms of n) does this program carry out in total among all iterations of line 3?

More Complex Counting

Typically requies a combination of the sum and product rules.

More Complex Counting

Typically requies a combination of the sum and product rules.

Example

Each password is 6 to 8 characters long, where each character is an lowercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

More Complex Counting

Typically requies a combination of the sum and product rules.

Example

Each password is 6 to 8 characters long, where each character is an lowercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

$$P = P_6 + P_7 + P_8$$

Inclusion-Exclusion Principle

Used in counts where the decomposition yields two independent counting tasks with overlapping elements

Inclusion-Exclusion Principle

Used in counts where the decomposition yields two independent counting tasks with overlapping elements

If we use the sum rule, some elements would be counted twice.

Inclusion-Exclusion Principle

Used in counts where the decomposition yields two independent counting tasks with overlapping elements

If we use the sum rule, some elements would be counted twice.

Inclusion-Exclusion Principle: uses a sum rule and then corrects for the overlapping elements.

Used in counts where the decomposition yields two independent counting tasks with overlapping elements

If we use the sum rule, some elements would be counted twice.

Inclusion-Exclusion Principle: uses a sum rule and then corrects for the overlapping elements.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

⋄ it is easy to count bit strings starting with '1':

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

 \diamond it is easy to count bit strings starting with '1': 2^7

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

- \diamond it is easy to count bit strings starting with '1': 2^7
- it is easy to count bit strings ending with '00':

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

- \diamond it is easy to count bit strings starting with '1': 2^7
- ♦ it is easy to count bit strings ending with '00': 26

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

- \diamond it is easy to count bit strings starting with '1': 2^7
- ♦ it is easy to count bit strings ending with '00': 26

Overcounting!!!

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

- \diamond it is easy to count bit strings starting with '1': 2^7
- ♦ it is easy to count bit strings ending with '00': 2⁶

Overcounting!!!

deduct the number of strings starting with '1' and ending with "00":

Example

How many bit strings of length 8 either start with a '1' bit or end with the two bits '00'?

- \diamond it is easy to count bit strings starting with '1': 2^7
- ♦ it is easy to count bit strings ending with '00': 26

Overcounting!!!

deduct the number of strings starting with '1' and ending with '00":
 25

Two sets

$$|E \cup F| = |E| + |F| - |E \cap F|$$

Two sets

$$|E \cup F| = |E| + |F| - |E \cap F|$$

Three sets

Two sets

$$|E \cup F| = |E| + |F| - |E \cap F|$$

Three sets

$$|E \cup F \cup G|$$

$$= |E| + |F| + |G|$$

$$-|E \cap F| - |E \cap G| - |F|$$

$$+|E \cap F \cap G|$$

$$|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

$$|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

Proof by induction

$$|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

Proof by induction

Base case
$$(n = 2)$$

 $|E \cup F| = |E| + |F| - |E \cap F|$

$$|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

Proof by induction

Base case (n = 2)

$$|E \cup F| = |E| + |F| - |E \cap F|$$

Inductive Hypothesis

$$\left| \cup_{i=1}^{n-1} E_i \right| = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n-1} \left| E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k} \right|$$

Inductive step

Set
$$E = E_1 \cup \cdots \cup E_{n-1}$$
, and $F = E_n$.

Inductive step

Set
$$E=E_1\cup\cdots\cup E_{n-1}$$
, and $F=E_n$.
By $|E\cup F|=|E|+|F|-|E\cap F|$

Inductive step

Set
$$E = E_1 \cup \cdots \cup E_{n-1}$$
, and $F = E_n$.
By $|E \cup F| = |E| + |F| - |E \cap F|$

$$|\bigcup_{i=1}^n E_i| = |\bigcup_{i=1}^{n-1} E_i| + |E_n| - |(\bigcup_{i=1}^{n-1} E_i) \cap E_n|$$

Inductive step

Set
$$E = E_1 \cup \dots \cup E_{n-1}$$
, and $F = E_n$.
By $|E \cup F| = |E| + |F| - |E \cap F|$

$$|\bigcup_{i=1}^n E_i| = |\bigcup_{i=1}^{n-1} E_i| + |E_n| - |(\bigcup_{i=1}^{n-1} E_i) \cap E_n|$$

The first term is given by i.h.

Inductive step

Set
$$E = E_1 \cup \cdots \cup E_{n-1}$$
, and $F = E_n$.

By
$$|E \cup F| = |E| + |F| - |E \cap F|$$

$$|\cup_{i=1}^n E_i| = |\cup_{i=1}^{n-1} E_i| + |E_n| - |(\cup_{i=1}^{n-1} E_i) \cap E_n|$$

The first term is given by i.h.

For the third term, by distributive law,

$$\left| \left(\cup_{i=1}^{n-1} E_i \right) \cap E_n \right| = \left| \cup_{i=1}^{n-1} (E_i \cap E_n) \right| = \left| \cup_{i=1}^{n-1} G_i \right|$$

where $G_i = E_i \cap E_n$.

So far

$$|\bigcup_{i=1}^n E_i| = |\bigcup_{i=1}^{n-1} E_i| + |E_n| - |\bigcup_{i=1}^{n-1} G_i|$$

where $G_i = E_i \cap E_n$.

So far

$$|\bigcup_{i=1}^n E_i| = |\bigcup_{i=1}^{n-1} E_i| + |E_n| - |\bigcup_{i=1}^{n-1} G_i|$$

where $G_i = E_i \cap E_n$.

Note that (why?)

$$-(-1)^{k+1}|G_{i_1}\cap G_{i_2}\cap \cdots \cap G_{i_k}|$$

$$=(-1)^{k+2}|E_{i_1}\cap E_{i_2}\cap \cdots \cap E_{i_k}\cap E_n|$$

So far

$$|\bigcup_{i=1}^n E_i| = |\bigcup_{i=1}^{n-1} E_i| + |E_n| - |\bigcup_{i=1}^{n-1} G_i|$$

where $G_i = E_i \cap E_n$.

Note that (why?)

$$-(-1)^{k+1}|G_{i_1}\cap G_{i_2}\cap\cdots\cap G_{i_k}|$$

= $(-1)^{k+2}|E_{i_1}\cap E_{i_2}\cap\cdots\cap E_{i_k}\cap E_n|$

Some discussion:

first summation sums $(-1)^{k+1}|E_{i_1}\cap E_{i_2}\cap\cdots\cap E_{i_k}|$ over all lists i_1,i_2,\ldots,i_k that do not contain n $|E_n|$ and second summation together sum $(-1)^{k+1}|E_{i_1}\cap E_{i_2}\cap\cdots\cap E_{i_k}|$ over all lists i_1,i_2,\ldots,i_k that do contain n

$$|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

 $|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$

This can be used to determine the number of onto functions

$$|\cup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

This can be used to determine the number of onto functions

A, B are two sets with |A| = m and |B| = n.

$$|\cup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

This can be used to determine the number of onto functions

- A, B are two sets with |A| = m and |B| = n.
- (a) How many onto functions are there from A to B?
- (b) How many functions are there from A to B that map nothing to at least one element of B?

$$|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

This can be used to determine the number of onto functions

- A, B are two sets with |A| = m and |B| = n.
- (a) How many onto functions are there from A to B?
- (b) How many functions are there from A to B that map nothing to at least one element of B?

$$\#(a) + \#(b) = n^m$$

- This can be used to determine the number of onto functions
 - A, B are two sets with |A| = m and |B| = n.
 - (a) How many onto functions are there from A to B?
 - (b) How many functions are there from A to B that map nothing to at least one element of B?

$$\#(a) + \#(b) = n^m$$

- This can be used to determine the number of onto functions
 - A, B are two sets with |A| = m and |B| = n.
 - (a) How many onto functions are there from A to B?
 - (b) How many functions are there from A to B that map nothing to at least one element of B?

$$\#(a) + \#(b) = n^m$$

- This can be used to determine the number of onto functions
 - A, B are two sets with |A| = m and |B| = n.
 - (a) How many onto functions are there from A to B?
 - (b) How many functions are there from A to B that map nothing to at least one element of B?

$$\#(a) + \#(b) = n^m$$

$$\#(b) = |\cup_{i=1}^n E_i|$$

- This can be used to determine the number of onto functions
 - A, B are two sets with |A| = m and |B| = n.
 - (a) How many onto functions are there from A to B?
 - (b) How many functions are there from A to B that map nothing to at least one element of B?

$$\#(a) + \#(b) = n^m$$

$$\#(b) = |\cup_{i=1}^{n} E_{i}|$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 < i_{1} < i_{2} < \dots < i_{k} < n} |E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}}|$$

- This can be used to determine the number of onto functions
 - A, B are two sets with |A| = m and |B| = n.
 - (a) How many onto functions are there from A to B?
 - (b) How many functions are there from A to B that map nothing to at least one element of B?

$$\#(a) + \#(b) = n^m$$

$$\begin{aligned}
\#(b) &= |\cup_{i=1}^{n} E_{i}| \\
&= \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} |E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}}| \\
&= \sum_{k=1}^{n} (-1)^{k+1} {n \choose k} (n-k)^{m}
\end{aligned}$$

Tree Diagrams

A tree is a structure that consists of a root, branches and leaves.

Tree Diagrams

A tree is a structure that consists of a root, branches and leaves.

Can be useful to represent a counting problem and record the choices we made for alternatives. The count appears on the leaves.

Tree Diagrams

A tree is a structure that consists of a root, branches and leaves.

Can be useful to represent a counting problem and record the choices we made for alternatives. The count appears on the leaves.

Example

What is the number of bit strings of length 4 that do not have two consecutive 1's?

Tree Diagrams

A tree is a structure that consists of a root, branches and leaves.

Tree Diagram

How many different ways can a "best 3 of 5" playoff occur?

Tree Diagram

How many different ways can a "best 3 of 5" playoff occur?

Assume that there are a set of objects and a set of bins to store them.

Assume that there are a set of objects and a set of bins to store them.

The pigeonhole principle states that if there are more objects than bins then there is at least one bin with more than one object.

Assume that there are a set of objects and a set of bins to store them.

The pigeonhole principle states that if there are more objects than bins then there is at least one bin with more than one object.

Example: 7 balls and 5 bins to store them

Assume that there are a set of objects and a set of bins to store them.

The pigeonhole principle states that if there are more objects than bins then there is at least one bin with more than one object.

Example: 7 balls and 5 bins to store them

■ **Theorem** If there are k + 1 objects and k bins, then there is at least one bin with two or more objects.

■ **Theorem** If there are k + 1 objects and k bins, then there is at least one bin with two or more objects.

Proof by contradiction

Theorem If there are k + 1 objects and k bins, then there is at least one bin with two or more objects.

Proof by contradiction

Example

Assume that there are 367 students. Are there any two people who has the same birthday?

There are 5 bins and 12 objects. Then there must be a bin with at least 3 objects. Why?

Generalized Pigeonhole Principle

If N objects are placed into k bins, then there is at least one bin containing at least $\lceil N/k \rceil$ objects.

Generalized Pigeonhole Principle

If N objects are placed into k bins, then there is at least one bin containing at least $\lceil N/k \rceil$ objects.

Example

Assume there are 100 students. How many of them were born in the same month?

A function that is both one-to-one and onto is called a bijection, or a one-to-one correspondence.

A function that is both one-to-one and onto is called a bijection, or a one-to-one correspondence.

How many bijections are there?

A function that is both one-to-one and onto is called a bijection, or a one-to-one correspondence.

How many bijections are there?

$$f: \{a, b, c\} \rightarrow \{1, 2, 3\}$$
 defined by $f(a) = 3, f(b) = 2, f(c) = 1$ is a bijection.

A function that is both one-to-one and onto is called a bijection, or a one-to-one correspondence.

How many bijections are there?

$$f: \{a, b, c\} \rightarrow \{1, 2, 3\}$$
 defined by $f(a) = 3, f(b) = 2, f(c) = 1$ is a bijection.

A bijection from a set onto itself is called a *permutation*.

A function that is both one-to-one and onto is called a bijection, or a one-to-one correspondence.

How many bijections are there?

$$f: \{a, b, c\} \rightarrow \{1, 2, 3\}$$
 defined by $f(a) = 3, f(b) = 2, f(c) = 1$ is a bijection.

A bijection from a set onto itself is called a *permutation*.

$$f: \{1,2,3\} o \{1,2,3\}$$
 defined by $f(1) = 3, f(2) = 2, f(3) = 1$ is a bijection.

A function that is both one-to-one and onto is called a bijection, or a one-to-one correspondence.

A bijection from a set onto itself is called a *permutation*.

In a bijection,

exactly one arrow leaves each item on the left and exactly one arrow arrives at each item on the right.

A function that is both one-to-one and onto is called a bijection, or a one-to-one correspondence.

A bijection from a set onto itself is called a *permutation*.

In a bijection,

exactly one arrow leaves each item on the left and exactly one arrow arrives at each item on the right.

Thus,

the left and right sides must have the same size.

The Bijection Principle

■ The following loop is a part of program to determine the number of triangles formed by *n* points in the plane.

```
(1) trianglecount = 0
(2)  for i = 1 to n
(3)  for j = i+1 to n
(4)  for k = j+1 to n
(5)  if points i, j, k are not collinear
trianglecount = trianglecount + 1
```


The Bijection Principle

The following loop is a part of program to determine the number of triangles formed by n points in the plane.

```
(1) trianglecount = 0
(2)  for i = 1 to n
(3)  for j = i+1 to n
(4)  for k = j+1 to n
(5)  if points i, j, k are not collinear
(6)  trianglecount = trianglecount + 1
```

Among all iterations of line 5, what is the total number of times this line checks three points to see if they are collinear?

$$1 - 2 - 7$$
: yes

$$1 - 2 - 7$$
: yes

$$1 - 2 - 7$$
: yes $1 - 2 - 5$: yes

$$1 - 2 - 7$$
: yes

$$1 - 2 - 5$$
: yes

$$1 - 2 - 3$$
: no

$$1 - 2 - 7$$
: yes

$$1 - 2 - 5$$
: yes

$$1 - 2 - 3$$
: no

$$1 - 5 - 6$$
: yes

$$1 - 2 - 7$$
: yes

$$1 - 2 - 5$$
: yes

$$1 - 2 - 3$$
: no

$$1 - 5 - 6$$
: yes

$$3 - 4 - 7$$
: yes

$$1 - 2 - 7$$
: yes

$$1 - 2 - 5$$
: yes

$$1 - 2 - 3$$
: no

$$1 - 5 - 6$$
: yes

$$3 - 4 - 7$$
: yes

$$4 - 5 - 6$$
: no


```
(1) trianglecount = 0
(2)  for i = 1 to n
(3)  for j = i+1 to n
(4)  for k = j+1 to n
(5)   if points i, j, k are not collinear
trianglecount = trianglecount + 1
```

```
(1) trianglecount = 0
(2)   for i = 1 to n
(3)   for j = i+1 to n
(4)   for k = j+1 to n
(5)    if points i, j, k are not collinear
    trianglecount = trianglecount + 1
```

A loop

```
(1) trianglecount = 0
(2)  for i = 1 to n
(3)  for j = i+1 to n
(4)  for k = j+1 to n
(5)   if points i, j, k are not collinear
  trianglecount = trianglecount + 1
```

A loop embedded in a loop

```
(1) trianglecount = 0
(2) for i = 1 to n
(3) for j = i+1 to n
(4) for k = j+1 to n
(5) if points i, j, k are not collinear trianglecount = trianglecount + 1
```

A loop embedded in a loop embedded in another loop.

```
(1) trianglecount = 0
(2) for i = 1 to n
(3) for j = i+1 to n
(4) for k = j+1 to n
(5) if points i, j, k are not collinear trianglecount = trianglecount + 1
```

A loop embedded in a loop embedded in another loop.

Second loop begins with j = i + 1 and j increases up to n. Third loop begins with k = j + 1 and k increases up to n.

```
(1) trianglecount = 0
(2) for i = 1 to n
(3) for j = i+1 to n
(4) for k = j+1 to n
(5) if points i, j, k are not collinear trianglecount = trianglecount + 1
```

A loop embedded in a loop embedded in another loop.

Second loop begins with j = i + 1 and j increases up to n. Third loop begins with k = j + 1 and k increases up to n.

Thus each triple i, j, k with i < j < k is examined exactly once.

```
(1) trianglecount = 0
(2) for i = 1 to n
(3) for j = i+1 to n
(4) for k = j+1 to n
(5) if points i, j, k are not collinear trianglecount = trianglecount + 1
```

A loop embedded in a loop embedded in another loop.

Second loop begins with j = i + 1 and j increases up to n. Third loop begins with k = j + 1 and k increases up to n.

Thus each triple i, j, k with i < j < k is examined exactly once.

For example, if n = 4, then triples (i, j, k) used by algorithm are (1,2,3), (1,2,4), (1,3,4), and (2,3,4).

■ Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Claim: Number of increasing triples is exactly the same as number of 3-element subsets from $\{1, 2, ..., n\}$

• Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Claim: Number of increasing triples is exactly the same as number of 3-element subsets from $\{1, 2, ..., n\}$

```
Why? Let X = \text{set of increasing triples and}

Y = \text{set of 3-element subsets from } \{1, 2, ..., n\}
```

• Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Claim: Number of increasing triples is exactly the same as number of 3-element subsets from $\{1, 2, ..., n\}$

Why? Let X = set of increasing triples and $Y = \text{set of 3-element subsets from } \{1, 2, ..., n\}$

Define: $f: X \to Y$ by $f((i, j, k)) = \{i, j, k\}$

Claim: f is a bijection (why) so |X| = |Y|

Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$. **Claim**: Number of increasing triples is exactly the same as number of 3-element subsets from $\{1, 2, \ldots, n\}$ Why? Let X = set of increasing triples and $Y = \text{set of 3-element subsets from } \{1, 2, \dots, n\}$ Define: $f: X \to Y$ by $f((i, j, k)) = \{i, j, k\}$ Claim: f is a bijection (why) so |X| = |Y|f is a bijection because f is one-to-one if $(i, j, k) \neq (i', j', k') \Rightarrow f((i, j, k)) \neq f((i', j', k'))$ f is onto if γ is a 3-element subset then it can be written as $\gamma = \{i, j, k\}$

where i < j < k so $f((i, j, k)) = \gamma$.

Counting Pairs

We've already seen something very similar. The number of increasing pairs (i, j) with 1 ≤ i < j ≤ n is the same as the number of 2-sets from {1, 2, ..., n}

Counting Pairs

We've already seen something very similar.
 The number of increasing pairs (i, j) with 1 ≤ i < j ≤ n is the same as the number of

```
2-sets from \{1, 2, ..., n\}
```

Define $f: X \to Y$ by $f((i,j)) = \{i,j\}$ Claim: f is a bijection so |X| = |Y|

Counting Pairs

We've already seen something very similar.
The number of

```
increasing pairs (i,j) with 1 \le i < j \le n is the same as the number of 2-sets from \{1, 2, \dots, n\}
```

Define $f: X \to Y$ by $f((i,j)) = \{i,j\}$ Claim: f is a bijection so |X| = |Y|

We actually already saw that $|X| = |Y| = \binom{n}{2}$

Two sets have the same size if and only if there is a one-to-one function from one set onto the other.

Two sets have the same size if and only if there is a one-to-one function from one set onto the other.

A standard first step in counting the size of a set is to use a bijection to show that it has the same size as a 2nd set, and then count the 2nd set instead.

Two sets have the same size if and only if there is a one-to-one function from one set onto the other.

A standard first step in counting the size of a set is to use a bijection to show that it has the same size as a 2nd set, and then count the 2nd set instead.

In practice, in real problems we often only *implicitly* use the bijection and don't *explicitly* describe it

Two sets have the same size if and only if there is a one-to-one function from one set onto the other.

A standard first step in counting the size of a set is to use a bijection to show that it has the same size as a 2nd set, and then count the 2nd set instead.

In practice, in real problems we often only *implicitly* use the bijection and don't *explicitly* describe it

Currently, we started with the problem of counting the # of increasing triples and changed it to the problem of counting the # of 3-element sets from $\{1, 2, ..., n\}$

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

A list of k distinct elements chosen from a set N is called a k-element permutation of N

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

A list of *k* distinct elements chosen from a set *N* is called a *k*-element permutation of *N*

Note that the case of k = n is special;

An *n*-element permutation of a set N of size |N| = n is what we earlier simply called a permutation.

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

• How many three-element permutations of $\{1, 2, ..., n\}$ are there?

n choices for first number

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

For each way of choosing first two numbers, there are n-2 choices for the third number

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

For each way of choosing first two numbers, there are n-2 choices for the third number

By product principle, there are n(n-1)(n-2) ways to choose the permutation

An Example

■ By product principle, there are n(n-1)(n-2) ways to choose the permutation

An Example

By product principle, there are n(n-1)(n-2) ways to choose the permutation

```
Ex: When n = 4, there are 4 \times 3 \times 2 = 24
3 -element permutations of \{1, 2, 3, 4\}
```

```
L = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432\}.
```


An Example

By product principle, there are n(n-1)(n-2) ways to choose the permutation

```
Ex: When n = 4, there are 4 \times 3 \times 2 = 24
3 -element permutations of \{1, 2, 3, 4\}
```

$$L = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432\}.$$

Note: This type of "dictionary" ordering of tuples (assuming that we treat numbers the same as letters) is called a *lexicographic ordering* and is used quite often.

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with *n* distinct elements.

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

(# 3-element perms) =
$$6 \times (\# 3\text{-element subsets})$$

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

$$(\# 3\text{-element perms}) = 6 \times (\# 3\text{-element subsets})$$

 $P(n,3) = 3! \cdot C(n,3)$

Binomial Coefficient

■ **Theorem** For integers n and k with $0 \le k \le n$, the number of k-element subsets of an n-element set is

$$\binom{n}{k} = C(n, k) = \frac{P(n, k)}{k!} = \frac{n!}{k!(n-k)!}.$$

This is the number of k-combinations of a set with n elements.

Some Properties of Binomial Coefficients

$$\binom{n}{0} = 1$$
 only one set of size 0.

$$\binom{n}{n} = 1$$
 only one set of size n .

 $\binom{n}{k} = \binom{n}{n-k}$ Obvious from equation. Can you think of a simple bijection that explains this?

Some Properties of Binomial Coefficients (cont.)

Some Properties of Binomial Coefficients (cont.)

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Use Sum Rule

```
Let P = \text{set of all subsets of } \{1,2,\ldots,n\}

S_i = \text{set of all } i \text{ subsets of } \{1,2,\ldots,n\}
```


Some Properties of Binomial Coefficients (cont.)

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Use Sum Rule

Let
$$P = \text{set of all subsets of } \{1,2,\ldots,n\}$$

 $S_i = \text{set of all } i \text{ subsets of } \{1,2,\ldots,n\}$

$$\Rightarrow |P| = \sum_{i=0}^{n} |S_i| = \sum_{i=0}^{n} \binom{n}{i}$$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If $L \in \mathcal{L}$ then f(L) is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \iff L_i = 1$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$

There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If $L \in \mathcal{L}$ then f(L) is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \Leftrightarrow L_i = 1$

f is a bijection between \mathcal{L} and P (why?) so $|\mathcal{L}| = |P|$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If $L \in \mathcal{L}$ then f(L) is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \iff L_i = 1$

f is a *bijection* between $\mathcal L$ and P (why?) so $|\mathcal L|=|P|$

Ex:
$$n = 5$$

$$f(10101) = \{1, 3, 5\}, \ f(11101) = \{1, 2, 3, 5\}, \ f(00000) = \emptyset$$

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

n^{k}			2			5	6
0	$\sqrt{1}$		1 3 6 10 15				
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Second half of each row is the reverse of the first half.

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Second half of each row is the reverse of the first half. Sum of items on n-th row is 2^n

Take the table

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Take the table

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

and shift each row slightly so that middle element is in middle

What is the next row in the table?


```
10 10
      15 20 15
1 7 21 35 35 21
```


Pascal identity

Each (non-1) entry in Pascal's

Triangle is the sum of
the two entries directly above it (to
sleft and to right).

Pascal identity

Each (non-1) entry in Pascal's

Triangle is the sum of
the two entries directly above it (to
sleft and to right).

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

A purely *algebraic* proof (manipulating formulas) is possible.

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

A purely *algebraic* proof (manipulating formulas) is possible.

We will use a combinatorial proof.

 $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

 $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Therefore, each term (left and right) represents the number of subsets of a particular size chosen from an appropriately sized set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

Number of k-subsets of an (n-1)-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

Number of k-subsets of an (n-1)-element set.

Try to use sum principle to explain relationship among these three terms.

Example:
$$n = 5$$
, $k = 2$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S can be partitioned into 2 disjoint parts.

 S_2 the 2-subsets that contain E and

 S_3 , the set of 2-subsets that do not contain E.

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S can be partitioned into 2 disjoint parts.

 S_2 the 2-subsets that contain E and

 S_3 , the set of 2-subsets that do not contain E.

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

Let S_1 be set of all k-element subsets.

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

Let S_1 be set of all k-element subsets.

To apply sum rule, partition S_1 into S_2 and S_3 .

Let S_2 be set of k-element subsets that contain x_n .

Let S_3 be set of k-element subsets that don't contain x_n

Blaise Pascal

Born 1623; Died 1662

French Mathematician

A Founder of Probability Theory

Inventor of one of the first mechanical calculating machines

Pascal Programming Language named for him

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y)^2 = x^2 + 2xy + y^2 = {2 \choose 0}x^2 + {2 \choose 1}x^1y^1 + {2 \choose 2}y^2$$

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y)^2 = x^2 + 2xy + y^2 = {2 \choose 0}x^2 + {2 \choose 1}x^1y^1 + {2 \choose 2}y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$
$$= {3 \choose 0}x^3 + {3 \choose 1}x^2y + {3 \choose 2}xy^2 + {3 \choose 3}y^3$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \geq 0$,

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \ge 0$,

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \geq 0$,

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Proof?

Application of the Binomial Theorem

We may use the Binomial Theorem to prove

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Show that if we have k_1 labels of one kind, e.g., red, k_2 labels of a second kind, e.g., blue, and $k_3 = n - k_1 - k_2$ labels of a third kind, then there are $\frac{n!}{k_1!k_2!k_3!}$ ways to apply these labels to n objects

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Show that if we have k_1 labels of one kind, e.g., red, k_2 labels of a second kind, e.g., blue, and $k_3 = n - k_1 - k_2$ labels of a third kind, then there are $\frac{n!}{k_1!k_2!k_3!}$ ways to apply these labels to n objects

What is the coefficient of $x^{k_1}y^{k_2}z^{k_3}$ in $(x+y+z)^n$?

There are $\binom{n}{k_1}$ ways to choose the red items There are then $\binom{n-k_1}{k_2}$ ways to choose the blue items from the remaining $n-k_1$. The remaining k_3 items get labelled a third color.

There are $\binom{n}{k_1}$ ways to choose the red items There are then $\binom{n-k_1}{k_2}$ ways to choose the blue items from the remaining $n-k_1$. The remaining k_3 items get labelled a third color.

Using the *product rule* the total number of labellings is

$$\binom{n}{k_1} \binom{n-k_1}{k_2} = \frac{n!}{k_1!(n-k_1)!} \frac{(n-k_1)!}{(k_2)!(n-k_1-k_2)!}$$

$$= \frac{n!}{k_1!k_2!(n-k_1-k_2)!} = \frac{n!}{k_1!k_2!k_3!}$$

• When $k_1 + k_2 + k_3 = n$, we call

$$\frac{n!}{k_1!k_2!k_3!}$$

a trinomial coefficient and denote it as

$$\begin{pmatrix} n \\ k_1 & k_2 & k_3 \end{pmatrix}$$

• When $k_1 + k_2 + k_3 = n$, we call

$$\frac{n!}{k_1!k_2!k_3!}$$

a trinomial coefficient and denote it as

$$\begin{pmatrix} n \\ k_1 & k_2 & k_3 \end{pmatrix}$$

What is the coefficient of $x^{k_1}y^{k_2}z^{k_3}$ in $(x+y+z)^n$?

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

This will be very similar to the analysis of hashing *n* keys into a table of size 365.

 \blacksquare A_n – "there are n students in a room and at least two of them share a birthday."

Sample space: $|S| = 365^n$

 \blacksquare A_n – "there are n students in a room and at least two of them share a birthday."

Sample space: $|S| = 365^n$

 B_n – "there are n students in a room and none of them share a birthday."

 \blacksquare A_n — "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

• A_n – "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

$$\#A_n + \#B_n = 365^n$$

n	A_{n}	B_n	n	A_{n}	B_n
1	0.00000000	1.00000000	16	0.28360400	0.71639599
2	0.00273972	0.99726027	17	0.31500766	0.68499233
3	0.00820416	0.99179583	18	0.34691141	0.65308858
4	0.01635591	0.98364408	19	0.37911852	0.62088147
5	0.02713557	0.97286442	20	0.41143838	0.58856161
6	0.04046248	0.95953751	21	0.44368833	0.55631166
7	0.05623570	0.94376429	22	0.47569530	0.52430469
8	0.07433529	0.92566470	23	0.50729723	0.49270276
9	0.09462383	0.90537616	24	0.53834425	0.46165574
10	0.11694817	0.88305182	25	0.56869970	0.43130029
11	0.14114137	0.85885862	26	0.59824082	0.40175917
12	0.16702478	0.83297521	27	0.62685928	0.37314071
13	0.19441027	0.80558972	28	0.65446147	0.34553852
14	0.22310251	0.77689748	29	0.68096853	0.31903146
15	0.25290131	0.74709868	30	0.70631624	0.29368375

Next Lecture

counting II, relation, ...

