PHY517 / AST443: Observational Techniques

Homework 1

- 1. If you have not done so, fill out the pre-class survey (https://goo.gl/forms/jHbiEHcrWO3kXoNr1).
- 2. Form your observational team (a group of 3 people). Send an e-mail to the instructor with your team members as soon as you have formed the team.
- 3. Read the Course Notes for PHY517 / AST443 and for PHY515 / PHY445 (pages 1-13).
- 4. Read the wiki pages on Computing Resources³ and on Astro Software Overview⁴.
- 5. Your code returns a number of $99.123456789 \pm 0.00455679$ for your calculation. How should you report it in your lab write-up?
- 6. On the days of the equinox (day and night are equal length), at what azimuth angle does the Sun rise? Where does it set?
- 7. The celestial coordinates of the star Altair are approximately 19^h50^m, +08°52′.
 - What is the maximum altitude it can be seen from Stony Brook?
 - What is its distance from the zenith then?
 - At a Local Sidereal Time (LST) of $18^{\rm h}50^{\rm m}$, what is the hour angle of Altair? Is it to the East or to the West of the meridian?
- 8. Let's practice finding an object:
 - Convert your birthday to a position on the sky using the following transformation:
 - Multiply the month of your birthday by 2. This number becomes the right ascension (if the result is $24^{\rm h}$, make it $0^{\rm h}$).
 - Subtract 2 from the day of your birthday, and multiply the result by 3. This number becomes the declination.
 - Look up the resulting sky position on simbad⁵. Search for all objects within at least 0.5 degrees.
 - Sort the results by the number of references, and pick the most referenced object.
 - Make a finding chart for this object using the AAVSO finding chart tool⁶. The finding chart should be 15 degrees across, and be orientated as if you were looking at the sky with the naked eye.

¹https://github.com/anjavdl/PHY517_AST443/blob/master/documents/phy517_ast443_specifics.pdf

²https://github.com/anjavdl/PHY517_AST443/blob/master/documents/phy515_445_course_notes.pdf

³https://github.com/anjavdl/PHY517_AST443/wiki/Computing-Resources

⁴https://github.com/anjavdl/PHY517_AST443/wiki/Astro-Software

⁵http://simbad.u-strasbg.fr/simbad/sim-fcoo

⁶https://www.aavso.org/apps/vsp/

• Use the ING StarAlt tool⁷ to determine when your object is best visible from Stony Brook. The higher up in the sky it is, the better visible it is. Save one figure for each of the 4 modes of StarAlt, choosing the best observing date when appropriate. Note that Mt Stony Brook is not a predefined option in StarAlt, so you have to enter the coordinates manually (pay attention to the format!).

Note: for the next homework, you will need to include these figures into a LATEX document, so make sure to save them to disk.

⁷http://catserver.ing.iac.es/staralt/index.php