B) F5	t	0	1	2	3	4	0	0	1	2	3	4	
	0	0	1	2	3	4	0	0	0	0	0	0	
	1	1	2	3	4	0	1	0	1	2	3	4	
	2	2	3	4	0	1	2	0	2	4	1	3	
	3	3	Ч	0	1	2	3	0	3	1	4	2	
	4	Ч	0	1	2	3	4	D	4	3	2	1	

			1	
1	0	1	100	1.4 , .2
1	1	3	010	
3	2	2	001	4
1	0	1	100	
0	1	2	410	1.37
0	\mathcal{Z}	4	201	
1	0	1	100	
0	1	2	410	
(0	0	0	431	

Beim berechnen von At kommt es zu eine Nullzeile somit ist ANICHT invertierbar.

c) F3 +	0 1 2	0	D	1	2
	0 1 2	0	0	0	0
1	120	1	0	1	2
2	201				1

$$3 = 0 F_3 = 0 A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 2 & 2 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 2 & 2 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

$$A2 \quad B := \begin{pmatrix} a & x \end{pmatrix}^2 = 1_2$$

$$a^2 + bx = 1$$

$$ax + xy = 0 \iff x(a + y) = 0 \implies x = 0$$
 oder $a + y = 0$
 $ab + by = 0 \iff b(a + y) = 0 \implies b = 0$ oder $a + y = 0$
 $bx + y^2 = 1$

A3 a) Scien:
$$\frac{c_1}{c_1} = \frac{c_2}{c_2} = \frac{c_3}{c_4} = \frac{c_4}{c_4} = \frac{c_5}{c_4} = \frac$$

$$(\text{Sym}(e_g))_{Bs_3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix}^T$$

$$(sym(eg))_{Bs_3} = \begin{pmatrix} 000 \\ 000 \end{pmatrix} = \begin{pmatrix} 100 & 000 & 000 \end{pmatrix}^T$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 & 0 \\
0 & 0 & 1/2 & 0 & 0 & 0 & 1/2 & 0 & 0
\end{pmatrix}$$

$$= > M_{BS_3, BR^{3x_3}}(Sym) =
\begin{pmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0$$

$$0 & 1/2 & 0 & 1/2 & 0 & 0$$

$$0 & 0 & 0 & 0 & 0 & 0$$

fluh vn.

$$B := \begin{pmatrix} 0 & b_2 & b_3 & c_1 & c_2 & c_3 \\ 0 & 0 & 2 & c_2 & c_3 \\ 0 & 2 & 0 & 0 & c_3 \\ 0 & 2 & 2 & c_4 \end{pmatrix}$$

$$= > (C_1)_B = (2 2 1)^T$$

$$\stackrel{\text{(ii)}}{=} > (c_2)_{\beta} = (2 2 2)^{T}$$

$$C_3 = 1 \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$

$$\stackrel{\text{(iii)}}{=} (C_3)_{\mathcal{B}} = (1 \ 0 \ 1)^{\mathsf{T}}$$

Aus (i), (ii), (iii) =
$$M_{Bic}$$
 (id_{F3}) = $\begin{pmatrix} 2 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$

$$M_{C,B}(id_{F_3}^3) = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$