Домашнее задание №2, Марченко М.

Задача 1. Докажите, что вещественное число определимо в структуре (\mathbb{R} ; =, +, ·, 0, 1) тогда и только тогда, когда оно алгебраическое. Охарактеризуйте вещественные числа, определимые в структуре (\mathbb{R} ; =, +, ·, 0, 1).

Примите без доказательства, что в упорядоченном поле вещественных чисел любая формула равносильна подходящей бескванторной формуле

Решение. Термы в структуре (\mathbb{R} ; =, +, ·, 0, 1) представляют собой многочлены с рациональными коэффициентами. Из этого очевидным образом следует достаточность, обсудим необходимость.

Если предикат $x=\alpha$ задаётся атомарной формулой, она представляет собой $t_1=t_2$, где t_1,t_2 термы. Тогда α является корнем t_1-t_2 — многочлена с рациональными коэффициентами.

Если $x = \alpha$ задаётся формулой вида $\psi_1 \wedge \psi_2$, где ψ_1, ψ_2 — атомарные, перейдём к рассмотрению ψ_1, ψ_2 и таким же образом заключим, что α — алгебраическое. Аналогично с \vee , \neg и \rightarrow .

Если же $x=\alpha$ задаётся формулой $\forall y \ \psi$, где ψ — бескванторная, можно зафиксировать значение y и получить, что α является корнем некоторого многочлена с рациональными коэффициентами. Аналогично с \exists .

Из предыдущих рассуждений получаем, что для всех вещественных чисел, определимых в $(\mathbb{R};=,+,\cdot,0,1)$, соответствующий предикат задаётся формулой вида t=0, где t — некоторый терм.

Задача 3. Докажите, что в стандартной модели арифметики (\mathbb{N} ; =, +, ·) определимы: любое конкретное натуральное число; отношения строгого порядка и делимости; множество всех простых чисел; отношение быть простыми близнецами; множества степеней двойки, тройки, четвёрки, пятёрки.

Решение. • Число n определимо тогда и только тогда, когда определим предикат x=n. Предикат x=1 задаётся формулой $\forall n \ x\cdot n=n$. Индуктивно можно определить произвольное натуральное число: предикат x=n задаётся формулой x=(n-1)+1;

- Предикат x < y задаётся формулой $\exists n \ y = x + n$, а предикат $x \mid y$ формулой $\exists n \ y = x \cdot n$;
- Предикат «x простое число» задаётся формулой ($x \neq 1$) \land ($\forall n \ n \neq x \land n \neq 1 \rightarrow n \nmid x$).
- Предикат «x и y простые близнецы» задаётся следующей формулой:

$$(x - \text{простое}) \land (y - \text{простое}) \land (y = x + 2 \lor x = y + 2).$$

• Предикат «x — степень двойки» задаётся следующей формулой:

$$\forall n \ (n \mid x \land n - \text{простое}) \rightarrow n = 2.$$

Аналогично можно задать множество степеней тройки и пятёрки. Множество же степеней четвёрки можно задать индуктивно с помощью формулы

$$(x=1) \lor (\exists n \ x=4 \cdot n \land n$$
 — степень четвёрки).

Задача 4. Пусть A-k-буквенный алфавит, где $k\geqslant 2$. Определим бинарные отношения $\leqslant_p,\leqslant_s,\leqslant_i$ $u\preceq$ на A^* следующим образом:

- $u \leqslant_p v$, если ux = v для некоторого $x \in A^*$;
- $u \leqslant_s v$, если xu = v для некоторого $x \in A^*$;
- $u \leqslant_i v$, если xuy = v для некоторых $x, y \in A^*$;
- $u \leq v$, если u получается из v стиранием некоторых букв.

Докажите, что:

- 1. Отношение \leqslant_i определимо через отношения \leqslant_p и \leqslant_s ;
- 2. Пустое слово определимо через любое из этих отношений;
- 3. Множество всех слов фиксированной длины определимо через любое из этих отношений;
- 4. Никакое фиксированное непустое слово не определимо через все эти отношения;
- 5. Существует двухбуквенное слово, не определимое через отношения \leqslant_i, \preceq и однобуквенные слова;
- 6. Опишите все слова, не определимые как в предыдущем вопросе.

Peшение. 1. Отношение \leqslant_i задаётся формулой $\exists x \ u \leqslant_p x \land x \leqslant_s v;$

- 2. Предикат $x = \epsilon$ задаётся формулой $\forall u \ x \leqslant u$, где $\leqslant -$ любое из введённых отношений;
- 3. Соответствующий предикат задаётся формулой $\forall x \ \forall y \ x \leqslant y,$ где \leqslant любое из введённых отношений;

TODO