Agenda

- 1. Submatrix sum queries
- 2. Max Submatrix Sum
- 3. Sum of all submatrices

Representing a submatrix

Top-left and bottom right corners are required. Qui viven a NXM matrix and queries, for each query find submatrix sum.

							٥	1	2	3	ч
q	ueri	e 5				0	7	1	- 6	3	12
					$A \Rightarrow$		10	5	- (0	9
(T	L)	LBR)			2	6	ч	-3	8	(1)
XI	91	X 2	42	ans				·		0	
2	1	4	3	20		3	13	- 8	-5	12	4
3	2	5	4	36		ч	3	2	1	9	8
						5	4	3	- 2	6	3

i) brute force: go on every query, and travel that submatrix to find sum.

ii) Improvise: Predix Sum

		٥	1	2	3	ч
	0	7	1	- 6	3	12
A =>	1	10	5	- (0	9
	2	6	4	-3	8	11
	3	13	- 8	-5	12	4
	4	3	2	1	9	8
	5	4	3	- 2	6	3

		regix		Prefix sur		2)
	٥	1	2	3	4	
0	7			5		
1		23	16			
2						
3					·	
4						
5					X.	

PSSID(j) -> Sum of matrix

Joom 0.0 to i.j

(TL) (BR)

			0	1	2
A :		0	a	, d	c
	:	1	d	9	d
		2	В	h	ì

apply	5010 - wise
Preg	ix sum

	0	ı	2
0	a	a+b	atb+c
•	d	d+e	dtetj
2	9	gth	97641

=) PS[x2] [y2] - PS[x1-1] [y2] - PS[x2] [y1-1] + PS[x1-1][y1-1]


```
submatrix Sum avery ( int [] [] A, int [] [] a) ?
bior
     int [ ) [] PS= Predix Sum 20 (A);
      Jur(int i= 0; i < a-length; itt) }
            int x1 = a rid Lod;
            Collecto = 14 toi
            int x2 = a rin [27]
            int 42 = 0 TiJ [37]
                                 it v: 2 (N=M) + Q
             int sum= 0;
                                           T(: 0 (N=M+a)
             sum+ = PS [x2] [y2];
                                            SC: 0(N*M)
             id (x1>0)
             sum = PS [x1-17 [427]
              ig (41 >0)
              Sum -= PS [x2] [y1-1];
              id (x120 88 A120)
               sum += PS[X1-17 [41-17]
               softn (sum);
```

		0	1	2
A :	0	a	b'	c
	: ,	d	9	d
	2_	В	ካ	ì

apply	70W-Wi	se \
Preg	'x sum	,

	0	ı	2
0	α	Q+6	atsta
1	d	d+e	d+1+J
2	9	gth	97hti


```
int [)[] Came x is predix sum 2 D (int [)[] A) }
                                         int n= A-length;
                                             int m = Aros. length;
                                               int [] col + ni won = 29 (1) [m];
                                                   Il apply sow by sow ps
                                                    dor (int i=0; i<n; i++) 3
                                                                                  dor (in+ j=0's jem's j++) }
                                                              if (j==0) \delta

PST i \delta \delta is a serial 
                                                                                                                                       3
                                                 3
                                                   lapply col by col PS
                                                      dor (int 5=0; j < m; j+4) ?
                                                                         Jor (i=1; i=n; i++) ?

PST() [j]= PST(-1)[j]+ PST()];
                                                    5
                                                      return Ps;
```

Q.2 Liven row wise and column wise sorted matrix, find maximum submatrix sum.

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ -20 & -16 & -4 & 8 \\ 1 & -10 & -8 & 2 & 14 \\ 2 & -1 & 6 & 21 & 30 \\ 3 & 5 & 7 & 28 & 42 \end{bmatrix}$$

		0	1	2	3
A -	0	-2 ₀	-16	ح	- 1
	1	-10	-8	- 2	5
	2	-4	2	4	8

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ -20 & -16 & -4 & -1 \\ 1 & -10 & -8 & -2 & 5 \\ 2 & -4 & 2 & 4 & 8 \end{bmatrix}$$

max element is always a part of our ans and max element is present at (n-1, m-1)

In ans submatrix

BR is fixed to

N-1, m-1

11

go on all the possible and find the best ans.

TL

0,0 2,0

0)1 211

0,2 2,2

0,3 2,3

0 ر ۱

1,1

1,2

1,3

```
max Sum Sub matrix (int [][] A) }
+ni
     int [)[) ps= prejix sum 20 (A);
      int n= Allength;
       int m= A POJ- length;
       int x_2 = n - 1, y_2 = m - 1, y_3 = m - 1
        int ans = Integer. MIN-VALUE;
        dor (int i=0; i<n; i++) {

dor (int j=0; j<m; j++) {
                   ( C = 18 , i = 1x +ni
                  Il sum of submatoix Tl: X1, y1 8 BR: X2, y2
                   int sum= 0;
                   sumt = PS [x2] [y2];
                   if (x1>0)
                   Sum - = PS [X1-1] [42]
                    ig (41 >0)
                    Sum -= PS (x2) [41-17)
                     ig ( * 1 > 0 & 8 4 1 > 0)
                     sum += PS [ X1-17 | Y1-17 ;
                     ans = Math. max (ans, sum);
         5
```

Q-3 Criven a NXM Submatrix, find sum of all submatrices sum.

	O	١
O	2	1
1	3	4

TL	BR	sum
٥,٥	0,0	2
٥ ر ٥	0,1	3
0,0	0,1	5
0,0	15.1	10
0,1	0,1	1
١ر٥	١٦١	5
1,0	٥ را	3
٥ را	ارا	7
١ر١	ا ر ا	+ 4
		40

	٥	1	2	3	4
0	ŤĽ	τį	7L		
1	Tι	Τ'L	+լ		
2	+1	ΤL	τL		
3	† L	JT	TL BR	BR	BR
4			BR	BR	BR
5			.BR	BR	BR

Many submatises.

ralid
$$7L \rightarrow 12$$
valid $8R \rightarrow 9$
 $12*4 = 108$

```
int n= A-length;

int n= A-length;

int m= A To 2. length;

dox (int i=o; i< n; i++) ?

dox (int j=o; j<m; j++) ?

int dreq = (i+1) = (n-i) = (m-j);

ans + = dreq = A [i][j];

3

return ans;
```

2000045

N=2, m=2

			() 3)	2100
	O	١	0,0	1 4
O	2	1		1
1	3	4	0,1	1+
			٥را	2-

(1,5)
$$3req$$
 ans

0,0 $1^{+}1^{+}2^{+}2 = 4$ 8

0,1 $1^{+}2^{+}2 \times 1 = 4$ 4

1,0 $2^{+}1^{-}1^{+}2 = 4$ 12

0.10. Of minimum swaps to make all ele = B together.

A:
$$\begin{bmatrix} 1 & 10 & 15 & 2 & 4 & 13 & 4 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$$
 $\theta = 5$ ans = 2

A: [19 11 3 9 7 25 6 20 47
$$\beta = 10$$

A: $\begin{bmatrix} 19 & 11 & 3 & 9 & 7 & 25 & 6 & 20 & 45 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$