D-BIOL, D-CHAB

Prüfung zur Vorlesung Mathematik I/II

Bitte ausfüllen!

Name:	
Vorname:	

Bitte nicht ausfüllen!

Aufgabe	Punkte	Kontrolle
1		
2		
3		
4		
5		
6		
Total		

Vollständigkeit	
-----------------	--

Hinweise zur Prüfung

Prüfungsdauer: 3 Stunden.

Hilfsmittel: Aufzeichnungen im Umfang von 20 Seiten A4.

Bitte beachten Sie folgende Punkte:

- Tragen Sie **jetzt** Ihren Namen in das Deckblatt ein und geben Sie es **am Ende** der Prüfung als vorderstes Blatt Ihrer Arbeit ab.
- $\bullet\,$ Legen Sie Ihre Legi offen auf den Tisch.
- Beginnen Sie jede Aufgabe auf einem neuen Blatt.
- Begründen Sie Ihre Lösungen. Dabei können bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwendet werden.
- Schreiben Sie nicht mit Bleistift, rotem oder grünem Kugelschreiber.
- Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt.
- Wir erwarten nicht, dass Sie alle Aufgaben lösen. Tun Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet.

Viel Erfolg!

Aufgaben

1. (10 Punkte)

Die Antworten in dieser Aufgabe müssen nicht begründet werden. Schreiben Sie die Resultate direkt $auf\ das\ Aufgabenblatt$ und vereinfachen Sie so weit wie möglich.

a) Berechnen Sie

$$\lim_{x \to \infty} \frac{x^3 + 2 + x^{-1}}{2x^5 + x^4 + x^2} = \underline{\qquad}.$$

b) Berechnen Sie

$$\lim_{x \downarrow 0} x \log(x) = \underline{\qquad}.$$

c) Berechnen Sie

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \underline{\qquad}.$$

d) Das Taylorpolynom zweiter Ordnung der Funktion

$$f(x) = (1+x)\log(1+x)$$

(im Punkt $x_0 = 0$) ist gegeben durch ______.

e) Die Hesse-Matrix der Funktion

$$f(x,y) = x^2 e^y$$

im Punkt (0,0) ist gegeben durch H(0,0) =

() , 0 0

f) Gegeben sei die Funktion $f:[0,\infty)\to\mathbb{R},\ f(x)=x^4+5.$ Dann ist die Umkehrfunktion f^{-1} gegeben durch

$$f^{-1}(y) = \underline{\hspace{1cm}}$$

und der Definitionsbereich von f^{-1} ist ______.

g) Die Menge der Nullstellen der Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x^2 - 2x$, ist gegeben durch $\{\underline{\hspace{1cm}}\}$.

h) Die Lösung der Differentialgleichung

$$f'(x) = -2f(x), \quad f(0) = 3$$

ist gegeben durch $f(x) = \underline{\hspace{1cm}}$.

i) Berechnen Sie das folgende bestimmte Integral

$$\int_{-1}^{1} |x|^3 \, dx = \underline{\qquad}.$$

Aufgaben 2. a) - e) müssen nicht begründet werden. Schreiben Sie die Antworten zu diesen Teilaufgaben vollständig gekürzt (!) auf das Aufgabenblatt.

a) Gegeben ist die komplexe Zahl $w=1-i\pi$. Bestimmen Sie Real- und Imaginärteil von $z=\frac{\bar{w}(1-w)}{\pi e^w}$.

$$Re(z) =$$
_______, $Im(z) =$ _______.

b) Schreiben Sie die Zahl $z = \frac{1}{1 + \frac{1}{1+i}}$ in der Form $a + ib, a, b \in \mathbb{R}$:

$$z = \underline{\hspace{1cm}} + i \underline{\hspace{1cm}}.$$

c) Bestimmen Sie die Lösungen von

$$z^2 = \frac{1-3i}{1+3i} - \frac{1}{5} + \frac{3i}{5}.$$

d) Berechnen Sie die Potenzen.

$$z = \left(\frac{2-i}{1+2i}\right)^{11} = \underline{\qquad}, \qquad w = \frac{(1-i\sqrt{3})^3}{(-2+2i)^4} = \underline{\qquad}.$$

e) Gegeben sind die komplexen Zahlen $z_1 = 4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$ und $z_2 = 1 + i\sqrt{3}$. Berechnen Sie den Betrag und das Argument von $z = \frac{z_1}{z_2}$.

$$|z| =$$
______, $\arg(z) =$ _____.

- a) Die Antworten in dieser Teilaufgabe müssen *nicht* begründet werden. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind und kreuzen Sie die entsprechende Antwort direkt *auf dem Aufgabenblatt* an.
 - Die Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 7 \end{pmatrix}$$

hat Determinante det(A) = 0.

- □ richtig
- \square falsch
- \bullet Jede 2 \times 2-Matrix hat 2 verschiedene Eigenwerte.
 - □ richtig
 - \square falsch
- Jede Matrix B mit det(B) = 0 hat mindestens einen Eigenwert $\lambda = 0$.
 - □ richtig
 - \square falsch
- Jedes lineare Gleichungssystem mit mehr Gleichungen als Unbekannten hat keine Lösung.
 - □ richtig
 - \square falsch
- **b)** Finden Sie alle $x \in \mathbb{R}$ so, dass

$$\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} = 1.$$

c) Sei

$$C = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

Berechnen Sie C^{-1} .

d) Berechnen Sie alle Eigenwerte von

$$D = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

a) Man bestimme die allgemeine Lösung x(t) der Differentialgleichung

$$\ddot{x} + 2\dot{x} - 3x = 0.$$

b) Man betrachte für $t \in [1, \infty)$ die inhomogene Differentialgleichung

$$\ddot{x} - 6\dot{x} + 9x = 2e^{3t}. (*)$$

(i) Verifizieren Sie, dass die allgemeine Lösung der homogenen Gleichung von (*) durch

$$x_H(t) = c_1 e^{3t} + c_2 t e^{3t}, \quad c_1, c_2 \in \mathbb{R},$$

gegeben ist.

- (ii) Finden Sie eine partikuläre Lösung von (*). Hinweis: Verwenden Sie den Ansatz $x_P(t) = At^2e^{3t}$, $A \in \mathbb{R}$.
- (iii) Lösen Sie das Anfangswertproblem für (*) unter der Anfangsbedingung $x(1)=-e^3,\,\dot{x}(1)=-6e^3.$

Hinweis: Falls Sie Teil (ii) nicht gelöst haben, so können Sie annehmen, dass $x_P(t) = -e^{3t} \ln(t)$ eine partikuläre Lösung sei.

a) Bestimmen Sie die kritischen Punkte der Funktion

$$f(x,y) = e^{-x^2 - xy - y^2}$$

und geben Sie jeweils an, ob es sich um ein lokales Minimum, lokales Maximum oder um einen Sattelpunkt handelt.

b) Bestimmen Sie die Extrema der Funktion

$$f(x,y) = xy$$

unter der Nebenbedingung $x^2 + y^2 = x + \frac{1}{2}$.

6. (5 Punkte)

In der Ebene \mathbb{R}^2 sei der durch

$$\gamma(t) = (\cos t, \sin t)$$
 für $0 \le t \le 2\pi$

parametrisierte Weg γ gegeben.

- a) Stellen Sie den Weg γ graphisch dar, indem Sie diesen in ein Koordinatensystem einzeichnen. Geben Sie auch die Richtung an.
- **b)** Berechnen Sie das folgende Linienintegral direkt mit Hilfe der Parametrisierung des Weges:

$$I = \int_{\gamma} y \, dx + 2x \, dy,$$

 \mathbf{c}) Berechnen Sie das Linienintegral I mit Hilfe des Satzes von Green.