I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2017/2018

Maggio 2018

1. Un fascio di mesoni K^+ viene inviato su un bersaglio di neutroni originando la reazione

$$K^+ + n \rightarrow \pi^+ + \Lambda$$

Si determini:

- a. La minima energia $E_{K^+}^{\min}$ nel laboratorio per il K^+ incidente affinchè la reazione avvenga
- b. Se Λ è prodotto a riposo nel laboratorio, l'energia del K^+ incidente
- c. La distanza media percorsa da
i π^+ del punto (b) nel laboratorio prima di decadere
- d. Il pione del punto (b) decade secondo $\pi^+ \to \mu^+ + \nu_\mu$. Siano θ e θ^* gli angoli rispetto alla linea di volo del pione a cui il neutrino viene emesso rispettivamente nel sistema di riferimento del laboratorio e in quello in cui il pione è in quiete. Determinare il valore di θ^* e θ per cui l'energia del neutrino nel laboratorio è pari alla metà del suo valore massimo.

$$m_n = 940 \text{ MeV/c}^2; m_{\Lambda} = 1116 \text{ MeV/c}^2; m_{\pi^+} = 140 \text{ MeV/c}^2; m_{K^+} = 494 \text{ MeV/c}^2; \tau_0(\pi^+) = 2.6 \cdot 10^{-8} \text{ s}$$

Soluzione:

- a. La somma delle masse nello stato finale è inferiore a quella delle masse nello stato iniziale. Pertanto la reazione è sempre permessa e non esiste una soglia.
- b. la massa invariante del sistema è

$$\sqrt{s} = \sqrt{(E_K + m_n)^2 - P_K^2}$$

nello stato iniziale e

$$\sqrt{s} = \sqrt{(E_{\pi} + m_{\Lambda})^2 - P_{\pi}^2}$$

nello stato finale. Uguagliando le due espressioni si ha

$$(E_K + m_n)^2 - P_K^2 = (E_\pi + m_\Lambda)^2 - P_\pi^2$$
(1)

Per la conservazione del tri-impulso vale $P_K = P_{\pi}$ pertanto la (1) diventa

$$E_K + m_n = E_\pi + m_\Lambda$$

da cui

$$E_{\pi} = E_K + m_n - m_{\Lambda}$$

Elevando ambo i membri al quadrato si ha

$$E_{\pi}^{2} = E_{K}^{2} + (m_{n} - m_{\Lambda})^{2} + 2E_{K}(m_{n} - m_{\Lambda})$$

da cui si ricava

$$E_K = ((m_n - m_\Lambda)^2 + E_K^2 - E_\pi^2)/(2(m_\Lambda - m_n))$$
(2)

Utilizzando le relazioni

$$E_{\pi}^{2} = m_{\pi}^{2} + P_{\pi}^{2} = m_{\pi}^{2} + P_{K}^{2}$$
$$E_{K}^{2} = m_{K}^{2} + P_{K}^{2}$$

e sostituendole nella (2) si ottiene

$$E_K = ((m_n - m_\Lambda)^2 + m_K^2 - m_\pi^2)/(2(m_\Lambda - m_n)) = 725.6 \text{ MeV}$$

c. L'impulso del π^+ del punto b) vale

$$P_{\pi^+} = P_K = \sqrt{E_K^2 - m_K^2} = 531.5 \; MeV$$

La distanza media che percorre prima di decadere è

$$L = \beta \gamma c \tau_0 = \frac{P_\pi}{m_\pi} c \tau_0 = 29.6 \ m$$

d. Dall'impulso del π determinato al punto c) si determinano $E_{\pi}=\sqrt{(P_{\pi})^2+(m_{\pi})^2})=549.6~{\rm MeV},$ $\beta_{\pi}=\frac{P_{\pi}}{E_{\pi}}=0.967~{\rm e}~\gamma_{\pi}=3.93.$ L'energia del neutrino nel laboratorio è data da

$$E_{\nu} = \gamma_{\pi} (E_{\nu}^* + \beta_{\pi} E_{\nu}^* cos \theta^*),$$

avendo indicato con E_{ν}^* l'energia del neutrino nel sistema di riferimento in cui il pione è in quiete e considerando il neutrino a massa nulla $(E_{\nu}^* = P_{\nu}^*)$. Tale energia è massima quando $\cos\theta^* = 1$ e $\theta^* = 0$, quindi

$$E_{\nu}^{max} = \gamma_{\pi} E_{\nu}^* (1 + \beta_{\pi}),$$

Per avere $E_{\nu} = \frac{1}{2}(E_{\nu}^{max})$ deve valere

$$\gamma_{\pi} E_{\nu}^{*} (1 + \beta_{\pi} cos \theta^{*}) = \frac{1}{2} \gamma_{\pi} E_{\nu}^{*} (1 + \beta_{\pi})$$

e quindi

$$\cos\theta^* = \frac{\beta_\pi - 1}{2\beta_\pi} = -0.017$$

L'angolo θ nel laboratorio vale

$$tan\theta = \frac{sen\theta^*}{\gamma_{\pi}(\beta_{\pi} \frac{E_{\nu}^*}{P_{\pi}^*} + cos\theta^*)} = 0.26$$

- 2. Un bersaglio d'oro ($Z=79,\,A=197$) di densità superficiale $\rho_S=0.97$ mg/cm² e superficie $S_B=1$ cm² viene colpito da un fascio di particelle α , la cui sezione trasversa è contenuta completamente nell'area del bersaglio. Sul bersaglio impattano 3.7×10^4 α/s . La sezione d'urto di diffusione elastica ad un certo angolo θ vale $d\sigma/d\Omega=1$ barn/sr. Calcolare
 - a. la densità di atomi bersaglio per unità di superficie;
 - b. il numero di particelle α rivelate in un'ora da un rivelatore di superficie $S_R=2~{\rm cm^2}$ posto all'angolo θ e a distanza $D_R=0.1~{\rm m}$ dal bersaglio;
 - c. l'intensità di corrente del fascio.
 - d. Il fascio di particelle viene sostituito da una sorgente radioattiva che emette lo stesso numero di particelle α al secondo con distribuzione isotropa su tutto l'angolo solido. La sorgente è posta sulla

stessa linea del fascio a distanza $D_B = 20$ cm dal bersaglio. Assumendo la stessa sezione d'urto di diffusione elastica, quanto tempo è necessario per rivelare con lo stesso rivelatore lo stesso numero di particelle del punto (b)?

Soluzione:

a. la densità di bersagli per unità di superficie è:

$$n_b^S = \rho_S \cdot N_A/A = (0.97 \ mg/cm^2 \cdot 6.022 \times 10^{23}/mole)/(197 \ g/mole) = 2.97 \times 10^{18}/cm^2$$

b. L'angolo solido sotteso dal rivelatore è $\Delta\Omega=S_R/D_R^2=0.02~sr$. La sezione d'urto differenziale integrata su tale angolo solido è $\sigma^S=\int_S d\sigma/~d\Omega\times d\Omega=d\sigma/~d\Omega\times S_R/D_R^2=2\times 10^{-26}cm^2$. Il numero di particelle α rivelate per unità di tempo è

$$dN_r/dt = dN_\alpha/dt \times \sigma^S \times n_b^S = 3.7 \times 10^4/s \cdot 2 \times 10^{-26} cm^2 \cdot 2.97 \times 10^{18}/cm^2 = 0.0022/s$$

e quindi in 1 ora si rivelano 7.9 particelle α

c. le particelle α hanno una carica pari a 2e, essendo e la carica elementare. L'intensità di corrente è data pertando da

$$I = dN_{\alpha}/dt \times 2e = 3.7 \times 10^4/s \times 2 \cdot 1.6 \cdot 10^{-19}C = 118 \cdot 10^{-4} \ pA$$

d. Dal momento che l'emissione della sorgente è isotropa, se il bersaglio coprisse l'intero angolo solido il numero di particelle α rivelate per unità di tempo sarebbe lo stesso misurato al punto (b). Il bersaglio sottende invece un angolo solido pari a $\Delta\Omega_B = S_B/D_B^2 = 0.0025 \ sr$ rispetto alla sorgente, pertanto il numero di α rivelate in un'ora è $7.9 \times 0.0025/4\pi = 0.0016$. Per rivelare lo stesso numero di particelle del punto precedente occorrono pertanto 5024 ore.

I bonus del corso di Fisica Nucleare e Subnucleare 1 - AA 2015/2016

18-19 Aprile 2016

NOME e COGNOME:

CANALE:

- 1. Con un fascio di pioni in un esperimento a bersaglio fisso si osserva la reazione $\pi^+p \to \Sigma^+K^+$. Nell'esercizio si trascuri l'impulso di Fermi dei protoni.
 - (a) Calcolare l'energia minima che i π^+ devono possedere per dar luogo alla reazione.
 - (b) Calcolare l'energia massima di K e Σ prodotti con un fascio di pioni di energia superiore del 10% rispetto a quella di soglia: E_K^{max} e E_Σ^{max} .
 - (c) Con il fascio del punto b, si pone un rivelatore a D=0.8 metri dal bersaglio, di dimensioni trascurabili. Calcolare l'altezza h del rivelatre affinche' possa rivelare tutti i K^+ prodotti.

$$m_{\pi+} = 139.6 \text{ MeV/c}^2$$

 $m_{K+} = 493.7 \text{ MeV/c}^2$
 $m_{\Sigma+} = 1189 \text{ MeV/c}^2$

Soluzione:

Nella soluzione si pone c = 1. A soglia si ha

$$\begin{split} p_{tot}^{iniziale,LAB} &= (E_\pi + m_p, p_\pi) \\ p_{tot}^{*,finale} &= (m_\Sigma + m_K, 0) \\ \text{da cui} \\ E_\pi^2 + m_P^2 + 2E_\pi m_p - p_\pi^2 &= (m_\Sigma + m_K)^2 \\ \text{e quindi} \\ E_\pi &= \frac{(m_\Sigma + m_K)^2 - (m_p^2 + m_\pi^2)}{2m_p} = 1029.3 \text{ MeV}. \end{split}$$
 Nel caso di pioni con $E' = 1.1E_{soglia}$
$$p_{tot}^{iniziale,LAB} &= (E_\pi' + m_K, p_\pi)$$

$$p_{tot}^{*,finale} &= (E_\Sigma' + E_K^*, 0)$$

$$\sqrt{s} = \sqrt{m_\pi^2 + m_p^2 + 2 \cdot m_p E_\pi'} = 1739.1 \text{ MeV}. \end{split}$$

Valgono inoltre $p_K^* = p_\Sigma^* = p^*$ e $\sqrt{s} = E_\Sigma^* + E_K^*$.

Si ha quindi

$$(\sqrt{s})^2 = s = E_{\Sigma}^{*2} + E_K^{*2} + 2E_{\Sigma}^* E_K^* = m_{\Sigma}^2 + m_K^2 + 2p^{*2} + 2E_K^* (\sqrt{s} - E_K^*) = m_{\Sigma}^2 + m_K^2 + 2p^{*2} + 2E_K^* \sqrt{s} - 2p^{*2} - 2m_K^2$$
 da cui
$$E_K^* = \frac{s + m_K^2 - m_{\Sigma}^2}{2\sqrt{s}} = 533.2 \text{ MeV e } E_{\Sigma}^* = \sqrt{s} - E_K^* = 1205.9 \text{ MeV}$$
 e
$$p^* = \sqrt{E_K^{*2} - m_K^2} = 201.4 \text{ MeV}.$$

Per ottenere le grandezze in laboratorio bisogna calcolare $\beta_{CM}=|p_{LAB}^{tot}|/E_{LAB}^{tot}=0.5426$ e $\gamma_{CM}=E_{LAB}^{tot}/\sqrt{s}=1.191$

L'energia massima si ottiene per particelle emesse in avanti, per le quali

$$\begin{split} E_K^{max} &= \gamma_{CM} (E_K^* + \beta_{CM} p^*) = 765 \text{ MeV} \\ \text{e } E_\Sigma^{max} &= \gamma_{CM} (E_\Sigma^* + \beta_{CM} p^*) = 1566 \text{ MeV}. \end{split}$$

Per i K vale $\beta_K^* = p^*/E_K^* = \langle \beta_{CM}$ e quindi esiste un angolo massimo di emissione pari a $tan\theta_K^{max} = \frac{\beta_K^*}{\gamma_{CM}\sqrt{\beta_{CM}^2-\beta^{*2}}} = 0.814$ mentre per le Σ si trova $tan\theta_{\Sigma}^{max} = 0.272$.

Il rivelatore distante D=0.8 metri deve quindi essere tale da contenere tutti i K, fino all'angolo massimo. Deve essere alto $2 \cdot D \cdot tan\theta^{max} = 1.30$ m per raccogliere tutte le particelle prodotte.

2. LHC utilizza fasci di protoni da 6.5 TeV, composti da 2808 pacchetti (bunch) di protoni che viaggiano a velocita' vicina a c nei 27 km di circonferenza dell'acceleratore. I fasci hanno un'area trasversale approssimabile a $A=256~\mu\mathrm{m}^2$.

A tali energie e' prevista teoricamente una sezione d'urto di produzione per il bosone di Higgs pari a $\sigma(pp \to H) = 55.7$ pb.

La sezione d'urto totale per urti anelastici protone-protone e' $\sigma(pp \to X) = 80$ mb.

- (a) Calcolare la luminosita' istantanea necessaria a ottenere una rate di produzione di bosoni di Higgs pari a $0.3~\mathrm{Hz}$
- (b) Calcolare il numero di urti anelastici protone-protone al secondo che si ottengono a tale luminosita'.
- (c) Assumendo che tutti i bunch di protoni siano composti dallo stesso numero di particelle, calcolare quanti protoni ci devono essere in un bunch per ottenere la luminosita' richiesta.
- (d) Calcolare la corrente di uno dei due fasci di protoni.

Soluzione:

Si ha $dN/dt = \mathcal{L}\sigma$ da cui $\mathcal{L} = (dN/dt)/\sigma = 0.3 \ Hz/(55.7 \cdot 10^{-12}b) = 0.3/s/(55.7 \cdot 10^{-12} \cdot 10^{-24} cm^2) = 5.4 \cdot 10^{33} cm^{-2} s^{-1}$.

A questa luminosita' si ottengono $(dN/dt)=5.4\cdot 10^{33}cm^{-2}s^{-1}\cdot 80\cdot 10^{-3}\cdot 10^{-24}cm^2=431\cdot 10^6$ interazioni inelastiche al secondo.

I pacchetti di protoni viaggiano per 27 km a una velocita' approssimabile a c, quindi hanno una frequenza di rivoluzione pari a $f = (3 \cdot 10^8 m/s)/27 \cdot 10^3 m = 0.111 \cdot 10^5/s$

La luminosita' di un esperimento a fasci incrociati vale

 $\mathcal{L} = f \cdot n_{bunch} \cdot N_1 \cdot N_2 / A$ ma $N_1 = N_2$ in questo caso, da cui

$$N = \sqrt{\frac{\mathcal{L} \cdot A}{f \cdot n_{bunch}}} = 2.1 \cdot 10^{11}$$
 protoni per bunch.

In uno dei due fasci ci sono $2808\cdot 2.1\cdot 10^{11}$ protoni, ognuno con carica $1.6\cdot 10^{-19}C$ che compiono una rivoluzione completa in un tempo pari a $t=1/f=9\cdot 10^{-5}$ s da cui la corrente di uno dei due fasci e'

$$I = Q/t = 2808 \cdot 2.1 \cdot 10^{11} \cdot 1.6 \cdot 10^{-19} C/(9 \cdot 10^{-5} s) = 1.0 \text{ A}.$$