Fundamentos de Algoritmos y Computabilidad

- * Definición de autómatas de pila
- * Diseño de autómatas de pila

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	A →γ
3	Regulares	Autómata finito	A→aB A→a

La cabeza del autómata sólo puede leer (no puede escribir) y se mueve siempre a la derecha

Analice por qué no es posible diseñar un autómata finito que acepte $\mathbf{a}^n\mathbf{b}^n,\mathbf{n}\geq 1$

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	A →γ
3	Regulares	Autómata finito	A→aB A→a

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	<i>A</i> → γ
3	Regulares	Autómata finito	A→aB A→a

Autómata de pila

- Tiene una cinta auxiliar donde se puede escribir cualquier símbolo
- La cinta se comporta como una pila y sirve como memoria de los símbolos leídos
- El símbolo inicial en la pila es Z

Autómata de pila

- Cada avance de la máquina depende de:
 - estadoInterno
 - símboloLeído
 - símboloEnLaPila

Autómata de pila

 $\cdot (q_1,b,X)$

Autómata de pila

• $(q_1,b,X) \rightarrow (q_2,YX)$

Autómata de pila

• $(q_2,b,Y) \rightarrow (q_3,W)$

Autómata de pila

• $(q_2,b,Y) \rightarrow (q_3,W)$

$$\Delta(q_1, \alpha, A) = (q_1, B)$$

 $\Delta(q_1, \alpha, B) = (q_1, C)$
 $\Delta(q_1, b, A) = (q_1, B)$
 $\Delta(q_1, b, B) = (q_1, A)$

$$\Delta(q_1, \alpha, A) = (q_1, B)$$

 $\Delta(q_1, \alpha, B) = (q_1, C)$
 $\Delta(q_1, b, A) = (q_1, B)$
 $\Delta(q_1, b, B) = (q_1, A)$

$$\Delta(q_1, \alpha, A) = (q_1, B)$$

 $\Delta(q_1, \alpha, B) = (q_1, C)$
 $\Delta(q_1, b, A) = (q_1, B)$
 $\Delta(q_1, b, B) = (q_1, A)$

 q_1

$$\Delta(q_1,\alpha,Z)=(q_1,BAAZ)$$

 $\Delta(q_1,\alpha,A)=(q_1,AA)$
 $\Delta(q_1,\alpha,B)=(q_1,ABB)$

Casos especiales de transiciones:

- $\Delta(q,a,s)=(q',s)$. El contenido de la pila no se altera
- $\Delta(q,a,s)=(q',\epsilon)$. El símbolo s en el tope se borra y el tope de la pila es ahora el símbolo colocado debajo de s
- $\Delta(q, \epsilon, s) = (q', \gamma)$. El símbolo sobre la cinta no se procesa pero el tope de la pila s se reemplaza por γ . Transición ϵ

Caso1. El contenido de la pila no se altera

Caso1. El contenido de la pila no se altera

Caso2. El símbolo s en el tope se borra y el tope de la pila es ahora el símbolo colocado debajo de s

Caso2. El símbolo s en el tope se borra y el tope de la pila es ahora el símbolo colocado debajo de s

Caso 3. Transición ϵ

Caso3. Transición ϵ

Realice las siguientes transiciones:

$$\Delta(q_1, \alpha, Z) = (q_1, AAZ)$$

$$\Delta(q_1, \alpha, A) = (q_1, AAA)$$

$$\Delta(q_1, b, A) = (q_2, \epsilon)$$

$$\Delta(q_2, b, A) = (q_2, \epsilon)$$

Realice las siguientes transiciones:

Autómata de pila no determinista (ADPND)

Es una colección de 7 elementos:

- Q conjuntos de estados
- Σ alfabeto de entrada
- \bullet Γ alfabeto de la pila
- q∈Q estado inicial
- Z∈Γ símbolo inicial de la pila
- F⊆Q estados de aceptación
- Δ relación de transición

$$\Delta(q_i,\Sigma,\Gamma) = \{(q_j,\Gamma)\}$$

Autómata de pila no determinista (ADPND)

Es una colección de 7 elementos:

- Q conjuntos de estados
- Σ alfabeto de entrada
- \bullet Γ alfabeto de la pila
- q∈Q estado inicial
- Z∈Γ símbolo inicial de la pila
- F⊆Q estados de aceptación
- ∆ relación de transición

$$\Delta(q_i,\Sigma,\Gamma) = \{(q_j,\Gamma)\}$$

Condición de aceptación en un ADPND

La cinta llega al final, q es un estado de aceptación y la pila tiene solamente el símbolo inicial Z

Siendo $F=\{q_3\}$, indique si se acepta o rechaza la cadena dada

 q_1

Siendo $F=\{q_2\}$, indique si se acepta o rechaza la cadena dada

Siendo $F=\{q_2\}$, indique si se acepta o rechaza la cadena dada

Diagrama de transición en ADPND

Permite representar gráficamente la definición formal del autómata de pila

Diagrama de transición en ADPND

- $Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{a,b\}$
- Γ={Z,A}
- Estado inicial q₁
- Símbolo inicial de la pila Z
- $F = \{q_3\}$
- Δ relación de transición

$$\Delta(q_1,\alpha,Z)=(q_1,AZ)$$

$$\Delta(q_1,\alpha,A)=(q_2,AA)$$

$$\Delta(q_2,b,A)=(q_3,\varepsilon)$$

Diagrama de transición en ADPND

- $Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{a,b\}$
- Γ={Z,A}
- Estado inicial q1
- Símbolo inicial de la pila Z
- $F = \{q_3\}$
- Δ relación de transición

$$\Delta(q_1,\alpha,Z)=(q_1,AZ)$$

$$\Delta(q_1,\alpha,A)=(q_2,AA)$$

$$\Delta(q_2,b,A)=(q_3,\varepsilon)$$

1

92

q₃

Diagrama de transición en ADPND

- Q= $\{q_1, q_2, q_3\}$
- $\Sigma = \{a,b\}$
- Γ={Z,A}
- Estado inicial q₁
- Símbolo inicial de la pila Z
- $F = \{q_3\}$
- Δ relación de transición

$$\Delta(q_1,\alpha,Z)=(q_1,AZ)$$

$$\Delta(q_1,\alpha,A)=(q_2,AA)$$

$$\Delta(q_2,b,A)=(q_3,\varepsilon)$$

92

 \mathbf{q}_3

Diagrama de transición en ADPND

$$\Delta(q_1,a,Z)=(q_1,AZ)$$

$$\Delta(q_1,a,A)=(q_2,AA)$$

$$\Delta(q_2,b,A)=(q_3,\varepsilon)$$

Diagrama de transición en ADPND

$$\Delta(q_1,a,Z)=(q_1,AZ)$$

$$\Delta(q_1,a,A)=(q_2,AA)$$

$$\Delta(q_2,b,A)=(q_3,\epsilon)$$

$$q_1$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

$$q_4$$

$$q_4$$

$$q_4$$

$$q_4$$

$$q_4$$

Muestre el estado final para el siguiente cómputo:

ADPND que acepte $L=\{a^nb^n, n\geq 1\}$

ADPND que acepte $L=\{a^nb^n, n\geq 1\}$

ADPND que acepte $L=\{a^nb^n, n\geq 1\}$

Idea: colocar en la pila el símbolo A por cada a que se encuentre en la cinta. Borrar una A por cada b que se encuentre en la cinta. Pasar a un estado de aceptación cuando se saquen todas las B's de la pila

ADPND que acepte $L=\{a^nb^n, n\geq 1\}$

Idea: colocar en la pila el símbolo A por cada a que se encuentre en la cinta. Borrar una A por cada b que se encuentre en la cinta. Pasar a un estado de aceptación cuando se saquen todas las B's de la pila

$$a,Z:AZ$$
 $a,A:AA$
 $b,A:\varepsilon$

$$q_1$$

$$q_2$$

$$e,Z:Z$$

$$q_3$$

Construir un ADPND que acepte $L=\{wcw^{I} \mid w\in\{a,b\}^*\}$

Construir un ADPND que acepte $L=\{wcw^{I} \mid w\in\{a,b\}^*\}$

ADPND que acepte $L=\{wcw^{I} \mid w\in\{a,b\}^*\}$

Idea: colocar en la pila el símbolo A por cada a que se encuentre en la cinta y una B por cada b. Cuando encuentre una c se pasa a un estado en el que, si hay una a en la cinta, se saca una A y si encuentra una b, se saca una B de la pila

ADPND que acepte $L=\{wcw^{I} \mid w\in\{a,b\}^*\}$

Idea: colocar en la pila el símbolo A por cada a que se encuentre en la cinta y una B por cada b. Cuando encuentre una c se pasa a un estado en el que, si hay una a en la cinta, se saca una A y si encuentra una b, se saca una B de la pila

ADPND para L={wcw¹ | w∈{a,b}*}

- $Q = \{q_1, q_2, q_3\}$
- Σ ={a,b,c}
- Γ ={Z,A,B}
- q₁ estado inicial
- · Z símbolo inicial de la pila
- $F=\{q_3\}$ estado final
- ∆ relación de transición

$$\Delta(q_i,\Sigma,\Gamma) = \{(q_j,\Gamma)\}$$

ADPND para L={wcw¹ | w∈{a,b}*}

• A relación de transición

$$\Delta(q_1, a, Z) = (q_1, AZ)$$
 $\Delta(q_1, c, Z) = (q_2, Z)$
 $\Delta(q_1, a, A) = (q_1, AA)$ $\Delta(q_1, c, A) = (q_2, A)$
 $\Delta(q_1, a, B) = (q_1, AB)$ $\Delta(q_1, c, B) = (q_2, B)$
 $\Delta(q_1, b, Z) = (q_1, BZ)$ $\Delta(q_2, a, A) = (q_2, E)$
 $\Delta(q_1, b, A) = (q_1, BA)$ $\Delta(q_2, b, B) = (q_2, E)$
 $\Delta(q_1, b, b) = (q_1, BB)$ $\Delta(q_2, E, Z) = (q_3, Z)$

Diseñe un ADPND que acepte L={w∈{a,b}*| w contiene la misma cantidad de a's que b's}

Diseñe un ADPND que acepte L={w∈{a,b}*| w contiene la misma cantidad de a's que b's}

Idea: colocar en la pila el símbolo A por cada a que se encuentre en la cinta y eliminar una A con cada b de la cinta. Si no hay símbolos en la pila y se lee una b, se coloca una B y por cada a de la cinta se elimina una B

Diseñe un ADPND que acepte L={aⁿb²ⁿ, n≥1}

Diseñe un ADPND que acepte L={aⁿb²ⁿ, n≥1}

Idea: colocar en la pila dos símbolos A por cada a que se encuentre en la cinta. Eliminar una A con cada b de la cinta.

Idea: colocar en la pila dos símbolos A por cada a que se encuentre en la cinta. Eliminar una A con cada b de la cinta.

$$a,Z:AAZ$$
 $a,A:AAA$
 $b,A:\varepsilon$

$$q_1$$

$$q_2$$

$$e,Z:Z$$

$$q_3$$

Diseñe un ADPND que acepte L={aⁿb^mc^{n+m},n,m≥1}

Diseñe un ADPND que acepte L={aⁿb^mc^{n+m},n,m≥1}

Idea: colocar en la pila una A por cada a que se encuentre en la cinta, una A por cada b. Se elimina una A por cada c

Idea: colocar en la pila una A por cada a que se encuentre en la cinta, una A por cada b. Se elimina una A por cada c

$$a,A:AA$$
 $a,Z:AZ$
 $b,A:AA$
 $c,A:\varepsilon$

$$q_1$$

$$q_2$$

$$q_3$$

$$q_4$$

Diseñe un ADPND que acepte L={ambncm-n,n,m≥1 y m>n}

Diseñe un ADPND que acepte L={ambncm-n,n,m≥1 y m>n}

Diseñe un ADPND que acepte L={ambncm-n,n,m≥1 y m>n}

Idea: colocar en la pila una A por cada a que se encuentre en la cinta, quitar una A por cada b. La cantidad de A's que resten serán las que debe haber de c's. Se elimina una A por cada c. Si se alcanza el final de la cinta y se tiene Z en la pila se acepta la cadena

$$a,A:AA$$
 $a,Z:AZ$
 $b,A:\varepsilon$
 $c,A:\varepsilon$

$$q_1$$
 q_2
 $c,A:\varepsilon$

$$q_3$$
 $e,Z:Z$

$$q_4$$

Diseñe un ADPND que acepte L={a³nbn,n≥1}

Diseñe un ADPND que acepte L={a³nbn,n≥1}

Diseñe un ADPND que acepte L={a³nbn,n≥1}

Idea: colocar en la pila una A por cada tres a en la cinta. Se saca una A por cada b

Diseñe un ADPND que acepte L={aⁿb^mcⁿ, m, n≥1}

Diseñe un ADPND que acepte L={aⁿb^mcⁿ, m, n≥1}

Diseñe un ADPND que acepte L={aⁿb^mcⁿ, m, n≥1}

Idea: colocar en la pila una A por cada a que se encuentre en la cinta. Con cada b se avanza en la cinta sin modificar la pila. Por cada c se saca una A de la pila

Diseñe un ADPND que acepte L={a²nbmc²mdn,m,n≥1}

Diseñe un ADPND que acepte L={a²nbmc²mdn,m,n≥1}

Diseñe un ADPND que acepte L={a²nbmc²mdn,m,n≥1}

Diseñe un ADPND que acepte L={aⁿb^{n+m}c^m, m, n≥1}

Diseñe un ADPND que acepte L={aⁿb^{n+m}c^m, m, n≥1}

Diseñe un ADPND que acepte L={aⁿb^{n+m}c^m, m, n≥1}

$$a,A:AA$$
 $a,Z:AZ$
 $b,A:\varepsilon$
 q_1
 $b,A:\varepsilon$
 q_2
 $b,A:AA$
 $c,A:\varepsilon$
 q_3
 q_4
 $e,Z:Z$
 q_5

Diseñe un ADPND que acepte $L=\{a^+b^+\}$

Diseñe un ADPND que acepte L={a+b+}

Idea: si se lee la primer a se pasa a un estado donde se pueden leer más a's. Cuando se lea la primer b se pasa a un estado donde se pueden leer más b's. No se escribe nada en la pila

Diseñe un ADPND que acepte el lenguaje regular dado por (a∪b)*aa(a∪b)*

Diseñe un ADPND que acepte el lenguaje regular dado por (a∪b)*aa(a∪b)*

