Definition 1. A group is a set G together with a function $\mu: G \times G \to G$ called a binary operation, defined as $(x,y) \mapsto xy$, that satisfies the following properties:

- 1. (Associativity) For all $x, y, z \in G$, (xy)z = x(yz).
- 2. (Identity element) There exists an element $1 \in G$, called the *identity*, such that 1x = x = x1 for all $x \in G$.
- 3. (Existence of Inverses) For all $x \in G$ there exists an element $y \in G$ (denoted by x^{-1} , see property 2) such that xy = 1 = yx.

A group is called an *abelian group* if furthermore the operation is commutative, that is xy = yx for all $x, y \in G$. In this case the notation becomes additive: $xy \leftrightarrow x + y$, $x^{-1} \leftrightarrow -x$ and for $x^n := x \cdots x$ we denote $E \leftrightarrow nx$.

Properties.

- 1. Identity elements are necessarily unique: if $1, 1' \in G$ are identity elements then 1 = 1'1 = 11' = 1' where the first two equalities hold because 1' is an identity element and the third equality holds because 1 is an identity.
- 2. If $y, z \in G$ are inverses of x then xy = 1 = yx