Claims

1. Process for the production of a meso-substituted cyanine dye of the formula (I) or (II)

$$R^1$$
 R^1
 R^2
 R^2
 R^2
 R^2
 R^3
 R^2
 R^3
 R^2

$$R^{2}$$
 R^{4}
 R^{4}
 R^{4}
 R^{2a}
 R^{1}
 R^{1}

wherein

each R^1 is independently selected from -COOH, -SO₃H, a hydrogen atom, an optionally substituted C_1 - C_{12} alkyl, halogen, optionally substituted C_1 - C_{12} alkoxy, -NO₂, -CN and fused aromatic and heteroaromatic ring systems,

each X independently represents -CR3=CR4-, -O-, -S-, -NR6- or -CR52-,

 R^2 is an optionally substituted C_1 - C_{12} alkyl, an optionally substituted aryl, -(C_1 - C_{12} alkanediyl)-SO₃H or -(C_1 - C_{12} alkanediyl-)COOH,

 R^{2a} is an optionally substituted C_1 - C_{12} alkyl, an optionally substituted aryl, - $(C_1$ - C_{12} alkanediyl)- SO_3^- , - $(C_1$ - C_{12} alkanediyl)- COO^- or - $(C_1$ - C_{12} alkanediyl)- $NR^6_3^+$,

 R^3 and R^4 are independently selected from -COOH, -SO₃H, -COOR⁶, -CN, -NO₂, -OH, -NR⁶₂, a hydrogen atom, an optionally substituted C₁-C₁₂ alkyl, an optionally substituted C₁-C₁₂ alkoxy, halogen and aryl,

each R⁵ is independently C₁-C₁₂ alkyl,

Z is selected from Cl, Br, I, SCN, PF₆, SbF₆, AsF₆, aryl-SO₃, alkyl-O-SO₃, PO₄H₂, CH₃SO₃, CF₃SO₃, (CF₃SO₂)₂N, HSO₄, BF₄ and ClO₄,

n is 0 if \mathbb{R}^{2a} is $-(C_1-C_{12}$ alkanediyl)- SO_3^- or $-(C_1-C_1$ alkanediyl)- COO^- ,

n is 1 if R^{2a} is an optionally substituted C_1 - C_{12} alkyl or aryl,

n is 2 if R^{2a} is -(C_1 - C_{12} alkanediyl)- NR_3^{6} ,

Y is selected from -S-Ar, -Se-Ar-, -O-Ar, -NR⁶-Ar, -SO₂-Ar and -(N-heterocycle),

 R^6 is a hydrogen atom or an optionally substituted C_1 - C_{12} alkyl,

Ar is an aromatic group wherein one or more ring carbon atoms are optionally replaced with heteroatoms selected from N, O and S, and

represents C₂-C₃ alkanediyl, optionally comprising one or more substituents selected from C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, aryl and halogen atoms,

said process comprising the single-step reaction of the dye of formula (III)

wherein A is selected from Cl and Br and

is as defined above for formulas (I) and (II), with

- (a) a compound selected from
 - (i) a methylene derivative of formula (IV) or (V)

$$R^2$$
 (IV)
 R^1
 R^3
 R^4
 (V)

and

(ii) a quaternary salt of formula (VI) or (VII),

$$R^{1}$$
 Z
 (VII)
 R^{1}
 Z
 (VII)
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 (VII)

wherein X, R^1 , R^2 , R^3 , R^4 and Z are as defined in formulas (I) and (II), and

- (b) a compound selected from
 - (i) aromatic and heteroaromatic functionalized compounds Ar-B,
 - (ii) saturated 5- or 6-membered cyclic amines II-H and
 - (iii) 5- or 6-membered heteroaromatic compounds N comprising at least one nitrogen atom as heteroatom in the aromatic ring, which nitrogen atom is bonded to the two adjacent ring carbon atoms via a single and a double bond and furthermore comprises a free electron pair

wherein

Ar represents a 5- or 6-membered aryl, wherein one or more ring carbon atoms are optionally replaced with heteroatoms selected from N, O and S,

B is selected from -NHR⁶, -SH, -OH, -SeH and -SO₂H,

PCT/EP2003/013727

 R^6 is a hydrogen atom or an optionally substituted C_1 - C_{12} alkyl and the saturated cyclic amines optionally comprise an additional heteroatom selected from \tilde{N} , \tilde{O} and \tilde{S} in the ring,

29

in an inert organic solvent miscible with water.

- 2. Process according to claim 1, wherein the dye (III) is reacted with at least one methylene compound (IV) or at least one quaternary salt (VI) and a compound (b), and a cyanine dye of formula (I) is obtained.
- 3. Process according to claim 1, wherein the dye (III) is reacted with at least one methylene compound (V) or at least one quaternary salt (VII) and a compound (b), and a cyanine dye of formula (II) is obtained.
- 4. Process according to any of claims 1 to 3, wherein represents -CH₂-CH₂- or -CH₂-CH₂-CH₂-.
- 5. Process according to any of claims 1 to 4, wherein Y represents -S-Ar.
- 6. Process according to any of claims 1 to 5, wherein only one methylene derivative or quaternary salt is used and a dye with a symmetrical structure I or II is obtained.
- 7. Process according to any of claims 1 to 6, wherein the compound (b) and the dye (III) are provided in the reaction vessel and the methylene compound or the quaternary salt is added in dissolved form.
- 8. Process according to any of claims 1 to 7, wherein an alkali hydroxide is added to the reaction mixture if B is selected from -SH, -OH, -SeH and -SO₂H.
- 9. Process according to any of claims 1 to 8, wherein a quaternary salt (VI) or (VII) is used and an amount of a base equimolar to the amount of quaternary salt is added to the reaction mixture.

- 10. Process according to any of claims 1 to 9, wherein the cyanine dye (I) or (II) is precipitated by the addition of a mineral acid.
- 11. Process according to any of claims 1 to 10, wherein compound (b) is a (hetero)aromatic functionalized compound Ar-B.
- 12. Process according to any of claims 1 to 4 and 6 to 10, wherein compound (b) is a heteroaromatic compound \underbrace{N} .
- 13. Process according to any of claims 1 to 12, wherein the obtained cyanine dye (I) or (II) is subsequently subjected to an extraction with a non-solvent.
- 14. Process according to any of claims 1 to 13, wherein the obtained cyanine dye (I) or (II) is subjected to an anion exchange.