Sample Surveys 1

MAPS project statistical training

CApStONE

Capacity in Applied Statistics

Outline

- Introduction to sample surveys: challenges and constraints
- Two-stage cluster sampling: basic ideas
- Notation
- Inclusion probabilities and sample weights
- A general estimator
- Model-based analysis

Introduction

- Sample surveys: typically complex and large-scale tasks such as national-scale surveys of households
- Logistically challenging and costly: sampling a random selection of households from across the country (travel, sensitization, ethics)

Two-stage cluster sampling

Primary sample units (PSU) e.g. survey enumeration areas (EA)

Secondary sample units (SSU) household (HH) within an EA

Two-stage cluster sampling

Part of the sampling frame

Linear n

Step 1: selection of EA

Step 2: sensitization

Linear n

Step 3: sampling SSU within the PSU (here HH within the EA)

Step 4: data collection from selected SSUs

Notation

- N PSUs (EA in our example) in the population..
- We sample n PSUs
- Within each selected PSU we sample SSU, here m_s per PSU
- So the total sample size is $m = n \times m_s$
- m_s might vary from PSU to PSU, m_i in the i^{th} PSU, $m = \sum_{i=1}^{n} m_i$
- The total number of SSU (HH here) in the population is M.

Inclusion probability

- In a design-based sample we can state in advance the inclusion probability for any member of the population
- In a population of N members the *selection* probability for unit i under simple random sampling is $p_i = 1/N$
- If we select a sample of size n with replacement then the probability that unit i is not included is $(1 p_i)^n$
- So the inclusion probability for unit i is

$$\pi_i = 1 - (1 - p_i)^n$$

 If we select a sample of size n without replacement, then the probability that unit i is included in the sample is n/N

Inclusion probability

- If we sample a population of EA by a suitable method we can compute the inclusion probability for the $i^{\rm th}$ EA, $\pi_i^{\rm EA}$.
- If the j^{th} HH in the population occurs in i^{th} EA, then the probability that it is selected in a sample from that EA can be computed: $\pi_{j,i}^{\text{HH}}$
- The overall inclusion probability for HH j in a sample from the population is the product $\pi_j = \pi_i^{\text{EA}} \times \pi_{j,i}^{\text{HH}}$
- We sometimes need the joint inclusion probability for two SSU within the population, $\pi_{k,l}$. This is sometimes difficult to obtain.

Estimation of the population total

• If we have a sample of m units, which take values y_i of our target variable and which have inclusion probabilities π_i , i = 1, 2, ... m then the Horvitz-Thompson (HT) estimate of the population total is given by

$$\widehat{\tau_{\rm HT}} = \sum_{i=1}^m \frac{y_i}{\pi_i}.$$
 (1)

Variance of the estimate of the population total

 We may produce a set of estimates of the population total from each sample unit:

$$t_i = \frac{my_i}{\pi_i},$$

• ... with sample variance

$$s_t^2 = \frac{1}{m-1} \sum_{i=1}^m (t_i - \widehat{\tau}_{HT})^2.$$

Linear n

Variance of the estimate of the population total

 A sample variance of the HT estimate of the population total is then given by

$$\operatorname{Var}\left(\widehat{\tau}_{\mathrm{HT}}\right) = \left(\frac{M-m}{M}\right) \frac{s_{t}^{2}}{m}.$$
 (2)

Estimate and standard error of the population mean

 From the estimate of the population total and its variance we can obtain an estimate for the population mean:

$$\widehat{\mu}_{\rm HT} = \frac{\widehat{\tau}_{\rm HT}}{M} \tag{3}$$

... and its standard error

$$SE(\widehat{\mu}_{HT}) = \frac{\sqrt{Var(\widehat{\tau}_{HT})}}{M}.$$
 (4)

Nested random effects model

$$z_{i,j,k,l} = \mu + \eta_i^{\mathrm{EA}} + \eta_{i,j}^{\mathrm{HH}} + \varepsilon_{i,j,k,l}$$

 μ is the mean (constant fixed effect), $\eta^{\rm EA}$ is a random effect with mean zero and variance $\sigma_{\rm A}^2$, for the difference between EAs, and so on for the other random effects. The residual variance component for $\varepsilon_{i,j,k,l}$ is the between-individual within-HH component, but also includes independent measurement error.

Estimation

In a balanced hierarchical design the number of units at level m within each unit at level m-1 is the same (i.e. the same number of HH in each EA). In this case a simple analysis of variance can be used to estimate variance components.

When a design is unbalanced (deliberately, or by some loss of data), estimation by residual maximum likelihood is preferred

$$C = C_0 + nC_{PSU} + nm_sC_{SSU}$$

where $C_{\rm o}$ is fixed overheads costs, $C_{\rm PSU}$ is the cost per PSU and $C_{\rm SSU}$ is the cost per SSU.

 C_{SSU}

With a fixed budget the optimal value of m_s can be found (assuming this to be fixed over PSU):

$$\tilde{m}_{s} = \sqrt{\frac{C_{\rm PSU}\sigma_{\rm w}^{2}}{C_{\rm SSU}\left(\sigma_{\rm b}^{2} - \sigma_{\rm w}^{2}/\bar{M}\right)}}$$
 (5)

where \bar{M} is the number of SSU (HH) in each PSU (EA), assumed to be uniform.

If the budget is fixed at B then:

$$\tilde{n} = \frac{B - C_{\rm o}}{C_{\rm PSU} + \tilde{m}_{\rm s} C_{\rm SSU}}.$$
 (6)