CHAPTER 11 SECTION 11.3 TREE TRAVERSAL

ORDERED ROOT TREE APPLICATIONS

- Used to store information
- Procedures for visiting each vertex of an ordered rooted tree to access data

 Used to represent various types of expressions (arithmetic expressions involving numbers, variables, and operations)

UNIVERSAL ADDRESS SYSTEMS

To order the vertices of an ordered rooted tree we must first label all the vertices. We do this recursively:

- 1. Label the root with the integer 0. Then label its k children (at level 1) from left to right with 1, 2, 3,..., k.
- 2. For each vertex v at level n with label A, label its k_v children, as they are drawn from left to right, with A.1, A.2,..., A. k_v

UNIVERSAL ADDRESS SYSTEMS

FIGURE 1 The universal address system of an ordered rooted tree.

TRAVERSAL ALGORITHMS

A traversal algorithm is the procedure of systematically visiting each vertex of an ordered rooted tree.

- Tree traversals are defined recursively
- Three types of algorithms for tree traversals are-
- Pre-order Traversal
- 2. In-order Traversal
- Post-order Traversal

TRAVERSAL ALGORITHMS (DEFINITION)

- Pre-order Traversal
- 2. In-order Traversal
- 3. Post-order Traversal

Definition 1

Let T be an ordered rooted tree with root r. If T consists only of r, then r is the preorder traversal of T. Otherwise, suppose that T_1, T_2, \ldots, T_n are the subtrees at r from left to right in T. The preorder traversal begins by visiting r. It continues by traversing T_1 in preorder, then T_2 in preorder, and so on, until T_n is traversed in preorder.

PRE-ORDER TRAVERSAL

Rules: Visit – Step 1: Root

Step 2: Left

Step 3: Right

Example: In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown in Figure 3?

PRE-ORDER TRAVERSAL

Solution:

The Pre-order traversal of T is -----a, b, e, j, k, n, o, p, f, c, d, g, l, m, h, i.

IN-ORDER TRAVERSAL

Rules: Visit – Step 1: Left

Step 2: Root

Step 3: Right

Example: In which order does a inorder traversal visit the vertices in the ordered rooted tree T shown in Figure 3?

IN-ORDER TRAVERSAL

Solution:

The in-order listing of the ordered rooted tree is-----

j, e, n, k, o, p, b, f, a, c, l, g, m, d, h, i.

POST-ORDER TRAVERSAL

Rules: Visit – Step 1: Left

Step 2: Right

Step 3: Root

Example: In which order does a postorder traversal visit the vertices in the ordered rooted tree T shown in Figure 3?

FIGURE 3 The ordered rooted tree T.

POST-ORDER TRAVERSAL

Solution:

The post-order traversal of T is j, n, o, p, k, e, f, b, c, l, m, g, h, i, d, a.

Rules:

- The representation of an arithmetic expression involving the operators + (addition), − (subtraction), *(multiplication), / (division), and ↑ (exponentiation).
- parentheses is used to indicate the order of the operations.
- The internal vertices represent operations, and the leaves represent the variables or numbers.
- Each operation operates on its left and right subtrees (in that order).

Example: What is the prefix form for

$$((x + y) \uparrow 2) + ((x - 4)/3)$$
?

+\paralle y 2 /-x 4 3

Example: What is the postfix form for

$$((x + y) \uparrow 2) + ((x - 4)/3)$$
?

Example: What is the value of the prefix expression

$$+-*235/\uparrow234?$$
 (PREORDER- Root +L +R)

Example: What is the value of the postfix expression

$$723*-4 \uparrow 93/+? (PostORDER- L+R+Root)$$

