ORES ASSIGNMENT on Units

a) Consider the network given as in the figure below find the minimum spanning tree using Kruskals Algorithm

-> Kruekaus algorithm is to find the minimum cost spanning tree using greedy approach

Step 1:

Given arcs and their weights

ARC	WEIGHT	ARC	WEIGHT
A-B	1	B-E	3
A- C	7	C-E	6
B-c	5	D- E	8
B-D	4	in stage	AND THE

Stel 2:

Sort the weights in accending order

ARC	WEIGHT
A-B	1
D-E	· 2
B-E	3
B-D	4

ARC P	WEIGHT	-
B-c	5	
CTE	6	
 A-C	7	1
		5
	5-81	-

	a	Ь	C	d	e	f	
a	0	1	9	8	7	2	
Ь	1	0	3	6	4	00	
C	9	3	0	ವಿ	8	Ø	
٩	8	6	Ø	0	8	10	
e	7	4	0	2			
f	۵	<) &	10	3	0	•
	1						

Step 1: consider low a. The smallest weight is 1.

Eliminate ath row and bth column.

1 6

Step 2: consider Row b. Least value is 3

Eliminate and add to the graph.

Q 2 3

step3: in Rowe, least value is 8.

Row e, least value is 8

In Row F, least value is 10.

Num of vertices = 6. Number of edges = n-1=6-1=5.

: Minimum spanning tree is obtained

Minimal Cost = 1+3+8+8+10

= 25

Find the shortest path from modes to moder of the distance shown in figure below using Dijkstra Algorithm.


```
det G2(V,6), V={1,1,3,4,5,6}
                                    We really to the trop of or the contract
        71: { 1 } 71 = {2,3,4,5,6}
                                            CIBRAGE MOVE
         1(3) = 9
                                ((2) = (7)
          1(6) = 14
          114)=0
                                            dressed in the
           115)=0
          Min weight is 7 which is 1-2.
        P2={1,29 T2={3,4,5,6}
(ii)
        (3)= min { old (13), (12) + w(2,3)]
               = min {9,7+10} = min{9,17} = 9.
        (4) = min { od (4) , (12) + w(2,4)}
               · min { 00,7+15} = 22.
        ((5) = min fold (cr), ((2) + 10 (2) 57}
               = min { 00, 7+0} = 0
         LC6) = min { old LC6), L(2) + W(2>6)} : in in in
                  = min (14,7+0}=14
 iii)
           P3: {1,2,3} T3 = {4,5,6}.
           1(4) = min { old ((4), ((3)+w(3)4)}
                = min { 22 3 9+11 } = 20.
           ((5) = min { old t(r) 2(3) + 20(3) +) }
                  = min { 0 , 9+0 } = 0
           ((3) c min fold (6), ((3)+ w (3)6)}
                  = min { 11, 9+20 } = (14)
```

P+=
$$\{1,2,3,6\}$$
 $\{14 = \{4,5\}\}$
 $\{(4) = \min \{ \text{old } \{(4)\}, \{(6) + w(6,4)\}\}$
 $= \min \{ 20, 11 + 0 \} = 20$
 $\{(x) = \min \{ \text{old } \{(x)\}, \{(6) + w(5,6)\}\}$
 $= \min \{ 0, 11 + 9 \} = 20$.

	1 2	3 4	5 6		7		Set 1	
	• •	00	20	120 301		<i>:1</i>		••
	- [7]	9 0	\$ 11.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	e Can	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
1,2,3	-	191 11		- P				
1,2,3,6		- 20	0 [11	1 8.14				
1,2,3,6,	4	12	0 20	\$ \$				
1,2,3,6,4			[30]	1 5 (21)	27 E			

:. The path is

The state of the s