Rotational Symmetry

Rotational symmetry, also known as radial symmetry in biology, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks the same.

Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the nth order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of $360^{\circ}/n$ (180° , 120° , 90° , 72° , 60° , $51 \frac{3}{7}^{\circ}$, etc.) does not change the object. Note that "1-fold" symmetry is no symmetry (all objects look alike after a rotation of 360°).

Now read a radian value of angle, Find the order of Rotational symmetry.

Input Format

A radian value of angle, R

Constraints

0.00 <= R <= 6.2831

Output Format

Print the order of Rotational symmetry with this R.

Sample Input 0

3.1416

Sample Output 0

2

Explanation 0

3.1416 r = 180.00 degree. So that Rotational symmetry is 2.