#### Northwestern

# Predicting Mushroom Edibility: Classification & Clustering Analysis

## **Data Mining Final Project - Winter 2025**

Team 02: Haowen Geng, Runxuan Li, Ruyi Lu, Wenfei Wu, Wenyang Miao



Outcome: A data-driven approach to classify mushrooms as edible or poisonous with high accuracy, while identifying natural groupings based on ecological and physical characteristics.

#### **Class Imbalance**

Majority of mushrooms are poisonous

#### **Data Complexity**

Most features are categorical

## Feature Importance

May strongly influence edibility

## Cluster Interpretability

Need to have known ecological groups

#### Machine Learning Strategies to Implement:

## Feature Engineering

One-hot encoding

#### **Data Handling**

Oversampling (SMOTE)

## Dimensionality Reduction

PCA & t-SNE

#### **Clustering Methods**

K-Means, DBSCAN, and Hierarchical Clustering

Classification Performance: Random Forest & XGBoost models achieved high accuracy (~98%).

- **Key Features:** Spore print color, gill attachment, and cap surface texture. **Clustering Insights:** K-Means clustering (k=4) provided meaningful groupings.
- Some clusters aligned with known ecological and taxonomic categories of mushrooms.

Clustering

## **Dataset Overview & Data Cleaning Steps**

Discuss project scope and preliminary steps taken

The mushroom dataset consists of 61,069 mushrooms with 21 features (categorical & numerical).



Two key objectives:

- 1. Clustering: Group mushrooms based on physical and ecological traits.
- 2. Classification: Predict whether a mushroom is edible (e) or poisonous (p).

#### **Steps Performed: Data Cleaning**

- 📌 4. Feature Standardization
  - Numerical features were standardized for uniform scaling.
    - Min-Max Scaling
    - Z-score normalization
- ★ 5. Outlier Detection
- **Extreme values** were checked to ensure not data entry errors.

## 📌 1. Handling Missing Values

- Missing categorical values were imputed using the mode (most frequent category).
- Some missing values were treated as a separate category to retain information.
- 📌 2. Encoding Categorical Variables
  - One-hot encoding was applied.
  - Ordinal encoding considered for ordered variables.
- 📌 3. Addressing Class Imbalance

Clustering

Oversampling: SMOTE for synthetic samples

## **Exploratory Data Analysis**

Missing value and data balance

The dataset has **21 features**, with significant missing values in some columns.

Features with the most missing values:

- Veil-type (57,892 missing)
- Spore-print-color (54,715 missing)
- Stem-root (51,538 missing)



Introduction

| Missing Values:      |       |
|----------------------|-------|
| cap-diameter         | 0     |
| cap-shape            | 0     |
| cap-surface          | 14120 |
| cap-color            | 0     |
| does-bruise-or-bleed | 0     |
| gill-attachment      | 9884  |
| gill-spacing         | 25063 |
| gill-color           | 0     |
| stem-height          | 0     |
| stem-width           | 0     |
| stem-root            | 51538 |
| stem-surface         | 38124 |
| stem-color           | 0     |
| veil-type            | 57892 |
| veil-color           | 53656 |
| has-ring             | 0     |
| ring-type            | 2471  |
| spore-print-color    | 54715 |
| habitat              | 0     |
| season               | 0     |
| class                | 0     |
| dtype: int64         |       |

The dataset contains **more poisonous (p) mushrooms** than edible (e).

Approximate counts:

• **Poisonous (p):** 33,888

• Edible (e): 27,181

The dataset is **not perfectly balanced**, but the difference is not extreme.

## **Exploratory Data Analysis**

#### Correlation Analysis



#### **Correlation Heatmap of Encoded Features**

- Displays correlation among one-hot encoded categorical variables.
- Most features do not show strong correlations, indicating relatively independent categorical attributes.
- Some weak correlations suggest certain features may co-occur more frequently (e.g., cap-surface and cap-color variations).

#### **Correlation Heatmap of Numerical Features**

- Correlations between cap-diameter, stem-height, and stem-width.
- Cap-diameter and stem-width have a strong positive correlation (0.70) – larger mushrooms tend to have wider stems.
- Stem-height has moderate correlations with both cap-diameter (0.42) and stem-width (0.44).
- These relationships suggest that mushroom size-related features could be useful in classification models.



Clustering

## **Clustering–Factor Analysis**

Choice of Dimension Reduction Method

## Why PCA May Not Be a Suitable Dimensionality Reduction Method in This Case:

## Low Explained Variance with First Few Components

Even after **10 components**, the cumulative explained variance is only around **60%** 

#### Loss of Interpretability

Many categorical features (e.g., **cap shape**, **gill color**, **habitat**) are converted into numerical components, losing their biological meaning.

#### Dataset Contains Many Nominal Features

The mushroom dataset contains **mostly categorical variables**, making PCA less effective in reducing meaningful dimensions.

#### Non-Linear Relationships Exist in the Data

Methods like **t-SNE** or **UMAP** may better preserve non-linear relationships.





**EDA** 

## **Clustering–Results & Interpretations**

Identify natural groupings of mushrooms

#### t-SNE + DBSCAN Clustering

- X Over-fragmentation
- The -1 label (outliers) is visible, but most points assigned to very tiny clusters
- X DBSCAN struggles
- Extremely high Silhouette Score(0.826)



#### **UMAP + DBSCAN Clustering**

- ✓ DBSCAN successfully detects outliers
- X Almost all points assigned to a single cluster
- X Extremely low Silhouette Score(-0.208)
- X Outliers mistakenly identify as new cluster



## **Clustering–Results & Interpretations**

Identify natural groupings of mushrooms

#### **UMAP + K Means Clustering**

Silhouette Score: 0.327

Davies-Bouldin Index: 1.241

KNN Preservation Score: 0.100



#### t-SNE + K Means Clustering

Silhouette Score: 0.330

Davies-Bouldin Index: 1.236

KNN Preservation Score: 0.101



Overall Results: Moderate clustering quality. Good separation of two clusters

Introduction

- tSNE somewhat better than UMAP in terms of silhouette score and Davies-Bouldin Index.

**EDA** 

## **Clustering–Results & Interpretations**

Identify natural groupings of mushrooms

#### K-Means with Poisonous/Edible Labels

- Suboptimal performance
- Overlappings in edible and poisonous mushrooms clustering



Introduction

#### **Possible Reasons for Overlap:**

- Feature Similarity → Some edible and poisonous mushrooms share very similar physical or chemical characteristics.
- t-SNE Projection Loss → The visualization uses t-SNE, which reduces dimensions and might lose information.
- Limitations of K-Means →
  K-Means assumes clusters are
  spherical, but the actual
  distribution of mushrooms might not
  fit this assumption.



K-Means identifies some structure but is not a perfect classifier for identifying edible vs. poisonous mushrooms.

## **Clustering–Factor Analysis**

Determine number of clustering





Introduction

#### **Elbow Method**

 Elbow Method: SSE curve with gradual decline and no sharp elbow

#### **Silhouette Score Analysis**

• Silhouette Score: fluctuates across different k values, with peaks at lower k values

#### **Optimal K**

 Both stabilize around k = 23: coincides with number of mushroom species

## **Clustering – Conclusions and Recommendations**

Mushrooms by species? Mushrooms by edibility?



#### **Clustering Improvement**

- different distance metrics
- models with different data shape assumptions

- Natural Groupings of Mushroom: by species rather than edibility
  - improved Davies-Bouldin Index (0.804)
  - Mushroom edibility not naturally separated by feature similarity
  - Edibility not the primary differentiator or too well-defined
    - multi-layered edibility assessment?



## **Classification–Results**

Identify whether mushrooms are edible





**ROC Curve Comparison** 



| Model                | Accuracy | ROC-AUC | Misclassification Rate |
|----------------------|----------|---------|------------------------|
| Naïve Bayes          | 75%      | 0.838   | 0.253                  |
| Logistic Regression  | 66%      | 0.714   | 0.337                  |
| LDA                  | 65%      | 0.715   | 0.349                  |
| Random Forest        | 98%      | 1.000   | 0.024                  |
| XGBoost              | 100%     | 1.000   | 0.000                  |
| KNN (k=5)            | 100%     | 1.000   | 0.001                  |
| MLP (Neural Network) | 99.9%    | 1.000   | 0.003                  |

## Classification-Interpretation & Insights

Identify whether mushrooms are edible

#### **Best Models-Performance Metrics**

#### **Overall Performance Trends**

- Naïve Bayes, Logistic Regression, and LDA had moderate performance, with accuracy between 65%-75%.
- Random Forest significantly outperformed basic models, achieving 98% accuracy.
- XGBoost, KNN (k=5), and MLP (Neural Network) achieved perfect or near-perfect classification with 100% accuracy.

#### **Insight 1: Tree-Based Models Outperform Linear Models:**





#### Insight 2: XGBoost and KNN (k=5) Achieve Perfect Classification:

- XGBoost handles feature importance & interactions effectively.
- KNN works well in this dataset but may not scale efficiently.



## Classification–Models Explained

Identify important features for explaining mushroom edibility

#### **Models Explained**:

- Decision Tree + Logistic Regression
- Random Forest + ALE Plot





#### Key features affecting mushroom edibility:

- Stem width (thin)
- Gill spacing (dense)
- Has ring
- Has bruise (red/orange)

**EDA** 

## **Future Steps and Business Impact**

Highlight key strategies based on analysis and modelling result

**Enhanced Food Safety & Compliance** – Establishes metrics for classifying mushrooms, reducing misclassification risks and improving regulatory standards.

**Research & Innovation** – Provides a scalable, data-driven classification approach, reducing reliance on costly fieldwork and lab testing.

01

#### **Deploy the Best Prediction Model in a Production Setting**

- Convert best-performing models into an API using Flask/FastAPI.
- Deploy the model as a mushroom edibility identifier mobile app or website.

#### **Consider Expanding to Multiclass Classification**

02

- Current binary classification (edible vs. poisonous) could be expanded.
- Add multi-layered edibility assessment levels for real-world purposes (such as for medicine, for food).

03

#### **Integrate External Data for Better Predictions**

• Enhance model performance by adding environmental and contextual factors, such as: Geolocation (region-specific mushroom species), Weather conditions (humidity, temperature), Altitude and terrain (affects mushroom growth patterns)

04

#### **Employ mixture model for Better Feature Learning and Representation**

• Clusters mushrooms by species and then classify mushroom edibility to mine potential relationships between species and edibility (see appendix 5 for business application)

Northwestern

Classification

# Thank you!



Appendix

## **Appendix 1:** Most Important Categorical Variable Distribution



Northwestern 16

## **Appendix 2:** Model Interpretation



Northwestern 17

## **Appendix 3:** Future Study - Mixture Model

## **Technical Advantages**

- Better feature learning and representation (uncover hidden structure)
- Reduce noise
- Better performance with limited labeled data
- Higher flexibility and interpretability for decision-making

## **Business Application Case**

- Poisonous mushrooms with bioactive compounds of high pharmaceutical value
- Identify similar species with the same chemical structure
  - Lower research costs
  - Drug discovery opportunities