I.S.W. DEPARTMENT OF EDUCATION HIGHER SCHOOL CERTIFICATE EXAMINATION 1976

MATHEMATICS - 3 UNIT (AND 4 UNIT - FIRST PAPER)

in every question, all necessary working should be shown. Marks will instructions: Time allowed 3 hours. All questions may be attempted. be deducted for careless or badly arranged work. Nathematical tables will be supplied. Slide rules (or calculatons) may

QUESTION 1 (12 Marks)

- (i) The perpendicular to the line $2\pi y = 0$ which passes through (-1, -1) meets the line at P. Find the coordinates of P.

(11) Differentiate (a)
$$\frac{1}{(1+x)^2}$$
 (b) $x \sin x$

- (1111) The first two terms of an arithmetic sequence are -48, -41.
 - (b) the sum of the first n terms. (a) the n-th term
- (iv) A number is selected at random from the integers 2 to 25. Find the probabilities that it is
- (a) a perfect square
- (c) either a prime on a perfect square.

(Express your answers as fractions)

QUESTION 2 (9 Marks)

(i) White down primitives (indefinite integrals) of:

$$(a)$$
 $1 + \frac{1}{2}x$ (b) $x^{-3/2}$

(ii) Evaluate (a)
$$f(1-x)^3 dx$$

origin at time t is given by $s = t^3 - 9t^2 + 15t - 7$. Find when and (iii) A particle moves on a line so that its distance s from the where the particle first comes to rest.

QUESTION 3 (9 Marks)

- ii) On a sketch indicate by shading the region in which -1 < x + y < 1
- coordinate axes are translated to parallel axes through the point (3, 1). [ii] Find the equation of the curve $x^2 + y^2 - 6x - 2y - 6 = 0$ when the
- [iii] Find the equation of the parabola with vertex (-1, -1) which passes through the origin and whose axis is parallel to the y-axis.

1976 HSC PAPER - BUNIT (AND 4U - IST PAPER) QUESTION 4 (10 Marks)

- (1) Express cos 80° + cos 50° in the form 2 cos A cos B
- [iii] Shetch (not on graph paper) $y = \cos 2x$ for $-11 \le x \le 11$
- (111) The three sides of a triangle ABC are AB = 3, AC = 5, BC = 7. Find the angle A.

QUESTION 5 (10 Marks)

- (1) Find the stationary points of $y = x^4 18x^2 + 32$ and sketch the
- (ii) A particle moves along the x- axis with acceleration

 $\frac{d^2x}{dt^2}$ = 10 + 12t - 12t². If the particle is initially at nest at the

origin, i.e. $x = \frac{dx}{dt} = 0$ at t = 0, find:

- (a) its maximum displacement in the positive direction;
- (b) the time at which it again reaches the origin.

QUESTION 6 [10 Marks)

- (i) For what values of x is sin-1x defined?
- (ii) Find the maximum value of 2x(1-x)
- (1111) Find the range of the function f given by $f(x) = \sin^{-1} (2x(1-x))$ with domain 0 < x < 1.
- (iv) Differentiate logo cos x.

QUESTION 7 (10 Marks)

(1) A ditch is 12 metres wide and its banks are vertical. Measurements of the depth (in metres) are taken at intervals of 3 metres across a section with the following results:

	•	6	12
Depth 0.85 1.30	1.65	1.10	0.70

Calculate the area of this section of the ditch using Simpson's rule with five function values. (ii) Use induction to prove that, for any positive integer n, 5m - 1 is divisible by 1.

A QUESTION 8 (10 Marks)

O A (0, 3, -9) B (-3, -3, -3), C (5, 1, 5) are three points reserved to a M Cartesian system of axes. Find:

(i) the Length of BC;

T (ii) the direction cosines of BC;

(iii) the angle ABC;

(iv) the equation of the plane through the origin perpendicular to BC;

(v) the equation of the sphere with BC as diameter.

QUESTION 9 (10 Marks)

(i) Four dice, each with faces tabelled 1 to 6, are thrown in succession. Find the probability that the total score is 7. Express your answer as a fraction.

(ii) A machine produces bolts to meet certain specifications and 90% of the bolts produced meet these specifications. For a sample of 10 bolts find the probability that exactly 3 fail to meet the specifications.

QUESTION 10 (10 Marks)

(Express your answer as a fraction.)

(i) Sketch (not on graph paper) the curve $y=e^{\pi}\cos x$ for $0 \le x \le 1/2$ and find its maximum ordinate in this interval.

[ii] Tangents from the point $P(x_0, y_0)$ touch the parabola $x^2 = 4y$ at 0 and R. Prove that the midpoint T of 0R is $|x_0, \frac{1}{2}x_0^2 - y_0|$. If P moves on the line x - y = 1, find the equation of the locus of T.