VERGLEICHENDE SOZIALFORSCHUNG MIT MEHREBENENMODELLEN IN R

Forschungspraktikum I und II Dr. Christian Czymara Logistic multi-level models

AGENDA

- So far: hierarchical linear models for continuous outcomes
- And logistic regression
- Today: the combination of both
- And hierarchical linear probability models
- Exercise: Predicting political protest

LOGISTIC MULTI-LEVEL MODELS

RECAP: LOGISTIC REGRESSION

- Binary outcome
- Model probability of y = 1 (given x)
- → Logistic distribution function

$$\Rightarrow pr(y=1) = \frac{e^{\beta_0 + \beta_1 x_1}}{1 + e^{\beta_0 + \beta_1 x_1}} \Leftrightarrow ln\left(\frac{pr(y=1)}{1 - pr(y=1)}\right) = \beta_0 + \beta_1 x_1$$

· Does not minimize residuals, but maximize the likelihood

LOGISTIC LINK FUNCTION FOR MULTI-LEVEL MODELS

• Logit link function ensures predicted probabilities of [0, 1]

LOGISTIC MULTI-LEVEL MODELS

- Interpretation of coefficients follow the same scheme of general logistic regression
- 1. Logit coefficients

$$ln\left(\frac{pr(y=1)}{1-pr(y=1)}\right) = \gamma_0 + \beta x_{ij} + \dots + \gamma z_j + u_j$$

- 2. Odds ratios $\frac{pr(y=1)}{1 pr(y=1)} = e^{\gamma_0 + \beta x_{ij} + \dots + \gamma z_j + u_j} = e^{\gamma_0} * e^{\beta x_{ij}} * \dots * e^{\gamma z_j} * e^{u_j}$
- 3. Average marginal effects
- 4. Predicted probabilities

$$pr(y = 1) = \frac{e^{\gamma_0 + \beta x_{ij} + \dots + \gamma z_j + u_j}}{1 + e^{\gamma_0 + \beta x_{ij} + \dots + \gamma z_j + u_j}}$$

INTERPRETING LOGISTIC REGRESSION COEFFICIENTS

Coefficient	Interpretation
γ_0	logged odds of $y=1$ (instead of $y=0$) when $x=0$ and $z=0$ (and $u_j=0$)
e^{γ_0}	odds of $y=1$ (instead of $y=0$) when $x=0$ and $z=0$ (and $u_j=0$)
β_1 (or γ_1)	change in logged odds of $y=1$ (instead of $y=0$) for an increase in x (or z) by one unit
e^{β_1} (or e^{γ_1})	change in odds of $y = 1$ (instead of $y = 0$) for increase in x (or z) by one unit \rightarrow odds ratio
$\frac{e^{\gamma_0 + \beta x_{ij} + \dots + \gamma z_j + u_j}}{1 + e^{\gamma_0 + \beta x_{ij} + \dots + \gamma z_j + u_j}}$	Probability of $y = 1$ given x , z and u_j

VARIANCE COMPONENTS FOR LOGISTIC REGRESSION

LOGISTIC REGRESSION AND VARIANCE

- Logistic regression fixes σ_e^2 (variance of residual part / of level 1 error) to $\frac{\pi^2}{3}$ (probit models fixes σ_e^2 to 1)
- Variance components difficult to interpret
- Moreover, effects of all variables are rescaled for each model (cf. Hox 2010, p. 133 ff.)
- →Do not compare variance components between models
- ightarrowNo useful interpretation of within country variance σ_e^2

EXAMPLE: NULL MODEL

- Data: ESS 2002/03
- Outcome: (not) being in paid work (0: yes, 1: no)
- Cluster variable: cntry
- Question: How large is share of between country variance?
- →estimate null model
- →R command (for binary outcomes):

 glmer(nipw ~ 1 + (1 | cntry), data = ESS, family = binomial)

ICC FOR LOGISTIC MODELS

Being unemployed	Model 0
Intercept	-0.147 *

Random effects

Intercept

0.0902

* p<0.05, ** p<0.01, *** p<0.001

- $\sigma_u^2 = 0.09$
- $\sigma_e^2 = \frac{\pi^2}{3}$
- ICC = $\frac{0.09}{0.09 + \frac{\pi^2}{3}} = 0.027$
- → About three percent of the variance of being unemployed is between countries

EXAMPLE: ADDING EXPLANATORY VARIABLES

- Individual level: education (eduyrs)
- Country level: GDP/c (rgdpc)
- Question: Is unemployment related to education and national economic wealth?

```
→glmer(nipw ~ eduyrs + rgdpc + (1 | cntry), data = ESS, family = binomial)
```

EXAMPLE: LOGITS

Being unemployed	Model 0	Model 1
Education		-0.180 ***
GDP		-0.00
Intercept	-0.147 *	2.078 ***
Random effects		
Intercept	0.0902	0.0918
		* p<0.05, ** p<0.01, **

- One year more of education decreases logged odds of being unemployed by -0.18
- GDP does not have a statistically significant influence
- Differences in the random intercept (σ_u^2) can not be interpreted because the latent y is rescaled between Model 0 and Model 1

HIERARCHICAL LINEAR PROBABILITY MODEL

HIERARCHICAL LINEAR PROBABILITY MODELS

- Everything we learned about hierarchical linear models applies to hierarchical linear probability models
- Only difference: Interpretation of coefficients as "percentage point change in probability of y=1" (see session on linear probability model)
- Main benefits
 - Easy interpretation of effects
 - Meaningful (changes of) variance components
 - Comparability of coefficients between models
 - Fast estimation
- Main drawbacks
 - Predicted probabilities can be < 0 or > 1
 - Effects do not depend on the level of x (relevant when effects for "extreme" observations are calculated)

EXAMPLE: LPM

Being unemployed	Model 0	Logit	LPM
Education		-0.180 ***	-0.0386***
GDP		-0.00	-0.00
Intercept	-0.147 *	2.078 ***	0.948***
Random effects			
Intercept	0.090	0.092	0.004
Residual			0.221

- One year more of education decreases probability of unemployment by 4 percentage points
- Still no significant effect of GDP

EXAMPLE: COMPARING LOGISTIC REGRESSION AND LPM

DISTRIBUTION OF YEARS OF EDUCATION

PROBLEMATIC?

EXTENSIONS OF LOGISTIC MULTI-LEVEL MODELS

POSSIBLE EXTENSIONS

- Ordinally scaled outcome: Ordered multi-level models
- Nominally scaled outcome: Multinominal multi-level models
- Logistic random slope models
- →The logic is similar to what we learned in our sessions on logistic and random slopes models, respectively
- Computational demand usually increases significantly for more complex nonlinear multilevel models

LITERATURE

Hox (2002): Chapter 6 in: <u>Multilevel Analysis. Techniques and Applications</u>. Routledge