Programozási alapismeretek Feladatgyűjtemény megoldókulccsal

Kiss-Bartha Nimród

2023. január 27.

Tartalomjegyzék

El	őszó	v
1.	Specifikáció és struktogram	1
	1.1. feladat (M)	2
	1.2. feladat (M)	3
	1.3. feladat (M)	5
	1.4. feladat (M)	6
	1.5. feladat (M)	7
	1.6. feladat (M)	8
	1.7. feladat (M)	8
	1.8. feladat (M)	9
	1.9. feladat (M)	10
	1.10. feladat (M)	10
	1.11. feladat (M)	12
	1.12. feladat	12
	1.13. feladat	12
	1.14. feladat	13
	1.15. feladat	13
	1.16 folodot	12

						-	
-	RTA	T /	\ \ \ T	TTT	$\gamma \tau_Z$	$\sigma m r$,
Ι.Δ	$R \cap \Delta$		1/1//	IHI	_ · V	7. H K	
$I \cap I$	$IUI \cap$	$II \setminus I$	/ I V I •	,,,,	TI .	7.11.71.1	ı

7	

	1.17	. feladat	13
2.	Pro	gramozási tételek	14
	2.1.	Összegzés / Sorozatszámítás	14
		2.1.1. feladat (M)	14
		2.1.2. feladat	14
		2.1.3. feladat	15
		2.1.4. feladat	15
		2.1.5. feladat	15
	2.2.	Megszámolás	15
		2.2.1. feladat	15
		2.2.2. feladat	15
		2.2.3. feladat	15
		2.2.4. feladat	16
		2.2.5. feladat (M)	16
	2.3.	Maximumkiválasztás	17
		2.3.1. feladat	17
		2.3.2. feladat	17
		2.3.3. feladat	17
		2.3.4. feladat	17
		2.3.5. feladat (M)	17
	2.4.	Eldöntés	18
		2.4.1. feladat	18
		2.4.2. feladat	18
		2.4.3. feladat	18

TARTA	LOMJE	EGYZÉP	K											iii
	2.4.4.	feladat		 	 				 ٠		 ٠	 ٠		 18
	2.4.5.	feladat		 	 						 •	 •		 19
	2.4.6.	feladat		 	 									 19
2.5.	Keresé	s		 	 		 •							 19
	2.5.1.	feladat		 	 	•	 •	 •	 •		 •		 •	 19
	2.5.2.	feladat		 	 			 •	 •		 ٠	 ٠		 19
	2.5.3.	feladat		 	 	•	 •	 •	 •		 •		 •	 19
	2.5.4.	feladat		 	 	•	 •	 •	 •		 •		 •	 20
	2.5.5.	feladat		 	 			 •	 •		 ٠	 ٠		 20
2.6.	Kiválas	sztás .		 	 			 •	 •		 ٠	 ٠		 20
	2.6.1.	feladat		 	 			 •	 •		 ٠	 ٠		 20
	2.6.2.	feladat		 	 						 •	 •	 •	 20
	2.6.3.	feladat		 	 						 •	 •		 20
	2.6.4.	feladat		 	 						 •	 •		 21
2.7.	Másolá	is		 	 						 •	 •		 21
	2.7.1.	feladat		 	 						 •	 •	 •	 21
	2.7.2.	feladat		 	 						 •	 •	 •	 21
	2.7.3.	feladat		 	 						 •	 •	 •	 21
	2.7.4.	feladat		 	 						 •	 •	 •	 21
	2.7.5.	feladat		 	 						 •	 •	 •	 22
2.8.	Kiválo	gatás .		 	 		 •				 •			 22
	2.8.1.	feladat		 	 		 ·	 •		 •	 •		 •	 22
	2.8.2.	feladat		 	 									 22
	2.8.3.	feladat		 	 									 22

ARTA	LOMJI	EGYZEI	Ĺ												1V	
	2.8.4.	feladat		 											 22	
	2.8.5.	feladat		 			 •		•						 23	
	2.8.6.	feladat		 			 •								 23	
2.9.	Szétvá	logatás		 			 •								 23	
	2.9.1.	feladat		 			 •								 23	
	2.9.2.	feladat		 			 •								 23	
	2.9.3.	feladat		 			 •								 23	
	2.9.4.	feladat		 			 •								 24	
	2.9.5.	feladat		 						 					 24	

Előszó

Ez a feladatgyűjtemény a *Programozási alapok – Egyetemi jegyzet* mellékleteként készült,

amely rendszerezi a feladatokat tételekre bontva, illusztrálja azok megoldását és egyben

az önálló vagy a gyakorlati órákon történő gyakorlásra is lehetőséget nyújt.

A feladatokat a 2022/2023/1. félév prezentációiból 1 , a tantárgy hivatalos oldalán talált

dokumentumokból², a gyakorlaton megoldott feladatokból, valamint korábbi évek zárthe-

lyi feladataiból állítottam össze.

Nem minden feladathoz tartozik megoldókulcs. A feladat mellett egy az (M) jelölés jelzi,

hogy tartozik-e hozzá megoldókulcs.

Értelemszerűen a jegyzet kizárólag specifikációs feladatokat tartalmaz. A programozás

gyakorlásához a Bírón találsz erre a célra kitűzött gyakorlófeladatokat.

A jegyzet **nem helyettesíti a gyakorlati órák anyagát**, pusztán megkönnyíti a felké-

szülést!

A jegyzetet ugyan a legjobb tudásom szerint állítottam össze, ám tévedések egészen

biztosan lesznek benne (helyesírási hibák, rossz magyarázat, tömb indexében i helyett

j-nek kéne szerepelnie, stb.). Ha ilyet találsz, kérlek jelezd nekem ezt e-mailben a

email.address@gmail.com címen.

Kellemes tanulást és sikeres félévet kívánok!

Nimr'od

¹Forrás: https://progalap.inf.elte.hu/?Előadás

²Forrás: https://progalap.inf.elte.hu/downloads/

V

1. fejezet

Specifikáció és struktogram

Ez a fejezet az 1-2. előadás diasorainak feladatait tartalmazza a megoldókulccsal együtt. A megoldások sok esetben eltérhetnek azoktól, amik a prezentációkban szerepelnek, mivel a gyakorlati órák és a zárthelyi vizsgák követelményei szerint lettek megoldva.

1.1. feladat (M)

3 szám lehet-e egy derékszögű háromszög 3 oldala?

• Bemenet: $x, y, z \in \mathbb{R}$

• Kimenet: $lehet \in \mathbb{L}$

• Előfeltétel₁: $(x > 0) \land (y > 0) \land (z > 0)$

• Előfeltétel₂: $0 < x \le y \le z$

Megjegyzés

Előfeltétel₁: a 3 szám sorrendjét ezek szerint **implicite** rögzítettük, azaz z az átfogó hossza!

Előfeltétel₂: a 3 szám sorrendjét ezek szerint **explicite** rögzítettük, azaz z az átfogó hossza!

Az előfeltétel nem befolyásolja a struktogram felírását. Az alábbi 3 ugyanazt fejezi mi.

1.2. feladat (M)

Adjuk meg a másodfokú egyenlet megoldását. Az egyenlet: $ax^2 + bx + c = 0$.

Mielőtt nekiugranánk, át kell gondolnunk, hogy egyáltalán létezik-e olyan eset, amikor nincs megoldás. Mivel a valós számok halmazában (\mathbb{R}) dolgozunk, ezért tudjuk, hogy van. Ezt előtte kezelnünk kell, amit a $van \in \mathbb{L}$ logikai változó segítségével tehetünk meg.

A feladatunk megkönnyítése érdekében bevezethetjük a d segédváltozót a determináns számára.

A segédváltozókat a kimenetbe szoktuk helyezni.

Figyeljük meg, hogy az utófeltétel 3. állítása csak abban az esetben "fut" le, ha a van változó igaz eredménnyel tér vissza. Ehhez szükséges az \implies (implikáció) jel.

• Bemenet: $a, b, c \in \mathbb{R}$

• Kimenet: $x \in \mathbb{R}, d \in \mathbb{R}, van \in \mathbb{L}$

• Előfeltétel: $a \neq 0$

• Utófeltétel: $d:=b^2-4ac$ \land $van:=d\geq 0 \quad \land$ $van \implies x:=\frac{-b+\sqrt{d}}{2a}$

Következő lépésnek megvizsgálhatjuk, hogy hány megoldásra is számíthatunk – jelen esetben kettőre. Ilyenkor lekezelhetjük az egyes eseteket is (ahogyan a megoldóképletben \pm látató).

Ne feledkezzünk meg a(z) x_1 , x_2 változók bevezetéséről.

- Be: $a, b, c \in \mathbb{R}$
- Ki: $x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, van \in \mathbb{L}$
- Ef: $a \neq 0$
- Uf: $d := b^2 4ac \land van := d \ge 0 \land van \implies \left(x_1 := \frac{-b + \sqrt{d}}{2a} \land x_2 := \frac{-b \sqrt{d}}{2a}\right)$

A specifikáció jelenlegi állapota szerint 1 megoldás esetén 2 eredményt kapunk, ahol $x_1 == x_2$. Ha kedvünk tartja, tovább bonthatjuk a megoldásokat az alábbi módon.

Vegyük észre, hogy ezen a ponton a d segédváltozó értékeit vizsgáljuk, azaz itt a van-tól meg is szabadulhatunk. Helyette felírhatjuk switch-case formában. Ilyenkor az \land (és) helyett \lor (vagy) köti össze az állításokat. A félreértés elkerülése végett érdemes lehet zárójelek közé helyezni.

- Be: $a, b, c \in \mathbb{R}$
- Ki: $x, x_1, x_2 \in \mathbb{R}, d \in \mathbb{R}$
- Ef: $a \neq 0$
- Uf: $d := (b^2 4ac) \land$ $(d = 0) \implies x := \frac{-b + \sqrt{d}}{2a} \lor$ $(d > 0) \implies (x_1 := \dots \land x_2 := \dots)$

Be: a, b, c [a ≠ 0]									
$d := b^2 - 4*a*c$									
d == 0	d d > 0								
$x := (-b + d^{(1/2)}) / 2*a$	x1 := (-b + d^(1/2)) / 2*a								
Ki: x	x2 := (-b - d^(1/2)) / 2*a								
	Ki: x1, x2								

Az utófeltételben a "..." a fenti specifikáció utófeltételének törtjeire utal vissza.

Megjegyzés: Struktogramok élesben

Amint azt lehet látni, az első 2 feladatban törekedtem az előadások diasoraihoz hűen felírni a struktogramokat, de közben a zárthelyik követeményeit követve itt-ott
átírni. A most következő feladatokban már teljes mértékben a gyakoorlati követelmények szerint fogom felírni őket. Az alábbi változásokat érdemes szem előtt
tartani:

- A struktogram legelső "blokkja" tartalmazza a bemenetet és a kimenetet (Be: ...). Eddig erre példát nem láttunk, de élesben fel kellene sorakoztatnuk az összes bemenetet, majd ;-vel elválasztva az összes kimeneti változót.
 - Az 1. feladatnál így: Be: x, y, z; lehet
 - A 2. feladatnál így: Be: a, b, c; x, x1, x2
- A struktogram legutolsó "blokkja" kizárólag a kimenet azon változóit, amikre kíváncsiak vagyunk (Ki: ...).
- Az előfeltétel(eke)t [] közé helyezzük, ahogy a feladatokban is alkalmaztuk. Azonban a gyakorlatban sosem tesszük ki ezeket (csupán azért hagytam ott, hogy illusztráljam, hogy van ilyen is).

A következő feladatokban következetesen ezt a jelölésrendszert fogom használni.

1.3. feladat (M)

Egy ember vércsoportját (Rh negatív vagy pozitív) egy génpár határozza meg. Mindkét gén lehet "+" vagy "-" típusú. A "++" és a "+ –" típusúak az "Rh pozitívok", a "- –" típusúak pedig az "Rh negatívok".

Íri programot, amely megadja egy ember vércsoportját a génpárja ismeretében!

A bemenet itt egyetlen karakter lesz (jelölése: \mathbb{K}) és a kimenet típusa szöveg (string, jelölése: \mathbb{S}). Érdemes észben tartani, hogy a szöveg típusú változók 1 darab egységként kezelendők, azaz nem módosíthatók (ellentétben egy karakterek tömbjével).

- Be: $x, y \in \mathbb{K}$
- Ki: $v \in \mathbb{S}$
- Ef: $x, y \in \{"+", "-"\}$
- Uf₁: $(x = " + " \lor y = " + ") \implies v := "Rh + " \lor (x = " " \land y = " ") \implies v := "Rh "$
- Uf₂: $(x = " + " \lor y = " + ") \implies v := "Rh + " \land (x \neq " + " \land y \neq " + ") \implies v := "Rh "$

Megjegyzés

Vegyük észre, hogy az $(x = "+" \lor y = "+")$ és az $(x = "-" \land y = "-")$ kifejezések együtt minden lehetőséget leírnak. Ezért írhatnánk az utófeltételt így is:

$$(x = " +" \lor y = " +") \implies v := "Rh +" \land (x \neq " +" \land y \neq " +") \implies v := "Rh -"$$

Amiből már ránézésre is nyilvánvaló, hogy algoritmizálható a fenti kétirányú elágazással.

Hogy matematikai értelemben is ekvivalensek az utófeltételek, lássuk be az alábbi állítást:

$$(A \to B) \land (\neg A \to C) \equiv (A \land B) \lor (\neg A \land C)$$

Ehhez először is azt kell tudni, hogy $X \to Y \equiv \neg X \vee (X \wedge Y)$

1.4. feladat (M)

Egy ember vércsoportját (A, B, AB vagy 0) egy génpár határozza meg. Mindkét gén lehet a, b vagy 0 típusú.

A vércsoport meghatározása: $A = \{aa, a0, 0a\}; B = \{bb, b0, 0b\}; AB = \{ab, ba\}; 0 = \{00\}.$

Írj programot, amely megadja egy ember vércsoportját a génpárja ismeretében!

- Be: $x, y \in \mathbb{K}$
- Ki: $v \in \mathbb{S}$
- Ef: $x, y \in \{"a", "b", "0"\}$
- Uf: $((x = "a" \land y \neq "b") \lor (x \neq "b" \land y = "a")) \implies v := "A" \lor ((x = "b" \land y \neq "a") \lor (x \neq "a" \land y = "b")) \implies v := "B" \lor ((x = "a" \land y = "b") \lor (x = "b" \land y = "a")) \implies v := "AB" \lor (x = "0" \land y = "0") \implies v := "0"$

1.4.2			
Be: x, y			
			-
(x="a" && y≠"b") (x≠"b" && y="a")	(x="b" && y≠"a") (x≠"a" && y="b")	(x="a" && y="b") (x="b" és y="a")	x="0" && y="0"
v := "A"	v:= "B"	v := "AB"	v := "0"
Ki: v			

1.5. feladat (M)

Adjuk meg, hogy egy p síkbeli pont melyik síknegyedbe esik!

A diasorban szereplő specifikáció még nem használja rekordok elegánsabb jelölését.

- Bemenet: $p \in pont, pont := x \times y, x, y = \mathbb{R}$
- Kimenet: $sn \in \mathbb{N}$
- Előfeltétel: –
- Ufófeltétel: $(p.x \ge 0 \land p.y \ge 0) \implies sn := 1 \land (p.x < 0 \land p.y \ge 0) \implies sn := 2 \land (p.x < 0 \land p.y < 0) \implies sn := 3 \land (p.x \ge 0 \land p.y < 0) \implies sn := 4$

Ugyanez, csak a "hivatalos" jelölési konvenciók szerint:

- Definíció: $pont := rec(x \in \mathbb{R} \times y \in \mathbb{R})$
- Bemenet: $p \in pont$
- Kimenet: $sn \in \mathbb{N}$
- Előfeltétel: –
- Ufófeltétel: $(p.x \ge 0 \land p.y \ge 0) \implies sn := 1 \land (p.x < 0 \land p.y \ge 0) \implies sn := 2 \land (p.x < 0 \land p.y < 0) \implies sn := 3 \land (p.x \ge 0 \land p.y < 0) \implies sn := 4$

1.6. feladat (M)

Add meg egy természetes szám (n>1) 1-től különböző legkisebb osztóját!

- Be: $n \in \mathbb{N}$
- Ki: $o \in \mathbb{N}$
- Ef: n > 1
- Uf: $1 < o \le n \quad \land \quad o | n \quad \land$ $\forall i \ (2 \le i < o) : i \not | n$

Be: n; o	
i := 2	
i∤n	
i := i + 1	
Ki: o	

Megjegyzés

A megoldás ötlete: próbáljuk ki a 2-t; ha nem jó, akkor a 3-at, ha az sem, akkor a 4-et, stb ...; legkésőbb az n jó lesz!

Az ezt kifejező lényegi algoritmus: az i változó szerepe: végigmenni egy halmaz elemein.

1.7. feladat (M)

Határozzuk meg egy természetes szám (n>1) 1-től különböző legkisebb és önmagától különböző legnagyobb osztóját!

- Be: $n \in \mathbb{N}$
- Ki: $lko, lno \in \mathbb{N}$
- Ef: n > 1
- Uf₁: $1 < lko \le n \land 1 \le lno < n \land$ $lko|n \land \forall i \ (2 \le i < lko) : i \not|n \land$ $lno|n \land \forall i \ (lno < i \le n-1) : i \not|n$
- Uf₂: $1 < lko \le n \land lko | n \land$ $\forall i \ (2 \le i < lko) : i \not| n \land$ $lko \cdot lno = n$

Be: n; lko, lno
i := 2
i∤n
i := i + 1
lko := i
lno := n div lko
Ki: Iko, Ino

Megjegyzés: Uf₂

A specifikációból az algoritmus megkapható, de az lno az utófeltételben az lko ismeretében másképp is megfogalmazható: $lko \cdot lno = n!$ Így az algoritmus (a struktogram) erre épül.

1.8. feladat (M)

Határozzuk meg egy természetes szám (n>1) 1-től és önmagától különböző legkisebb osztóját (ha van)!

- Be: $n \in \mathbb{N}$
- Ki: $o \in \mathbb{N}, van \in \mathbb{L}$
- Ef: n > 1
- Uf: $van := \exists i \ (2 \le i < n) : i | n \land van \implies 2 \le o < n \land o | n \land \forall i \ (2 \le i < o) : i \not | n$

Megjegyzés

Ha i osztója n-nek, akkor (n div i) is osztója, azaz elég az osztókat a szám gyökéig keresni!

$$2 \to i \le (n \text{ div } i) \leftarrow (n \text{ div } 2) \quad \Longrightarrow \quad i \cdot i \le n \quad \Longrightarrow \quad i \le \sqrt{n}$$

1.9. feladat (M)

Határozzuk meg egy természetes szám (n>1) osztói összegét!

- Be: $n \in \mathbb{N}$
- Ki: $sum \in \mathbb{N}$
- Ef: n > 1
- Uf: $sum := \sum_{\substack{i:=1\\i|n}}^{n} i$

1.1. táblázat. A feltételes szumma értelmezéséhez egy példa

A sum változót nem egy képlettel számoljuk, hanem gyűjtjük benne az eredményt.

Kérdés: Lehetne itt is \sqrt{n} -ig menni? A sum := sum + i + (n div i) értékadással?

1.10. feladat (M)

Határozzuk meg egy természetes szám (n>1) páratlan osztói összegét!

- Definíció: $odd: \mathbb{N} \to \mathbb{L}$, odd(n) := (n % 2) == 1
- Bemenet: $n \in \mathbb{N}$
- Kimenet: $sum \in \mathbb{N}$
- Előfeltétel: n > 1
- Utófeltétel: $sum := \sum_{\substack{i:=1\\i|n\ \land\ odd(i)}}^n i$

Függvénydefinícióval kapcsolatos szakkifejezések

Világos, hogy a "páratlan"-ság függvénye egyszerűen megalkotható a Mod "maradék" (itt: %) operátor ismeretében. Azaz a specifikációt kiegészíthetnénk az alábbi, 5. résszel:

```
Definíció: odd: \mathbb{N} \to \mathbb{L}, \ odd(n) := (n \% 2) == 1
```

A függvénydefiníció első sora az ún. **szignatúra**, vagyis a függvény azonosítójának, értelmezési tartományának és értékkészletének megadása. Az algoritmizálás során ez az "előképe" a függvény **fejsor**ának.

A definíció második sora a kiszámítás módját határozza meg. Ebből képződik majd a **függvény törzs**e.

Ugyanez kísértetiesen hasonlít arra, ahogyan Haskellban definiálnánk meg. (Az aposztróf csupán azért szükséges, mert a nyelvben már létezik egy odd nevű előredefiniált függvény.)

```
odd' :: Int -> Bool
odd' n = (n 'mod' 2) == 1
```

Ugyanez C#-ban, ahol az "értelmezési tartomány" (int n, argumentum) és az "értékkészlet" (bool, valójában visszatérési érték) helye megcserélődik.

```
static bool odd(int n)
{
    return (n % 2) == 1;
}
```

1.11. feladat (M)

Határozzuk meg egy természetes szám (n>1) prímosztói összegét!

- Definíció: $prime : \mathbb{N} \to \mathbb{L}$, prime(n) := ???
- Bemenet: $n \in \mathbb{N}$
- Kimenet: $sum \in \mathbb{N}$
- \bullet Előfeltétel: n > 1
- Utófeltétel: $sum := \sum_{\substack{i:=2\\i|n\ \land\ prime(i)}}^n$

1.12. feladat

A japán naptár 60 éves ciklusokat tartalmaz, az éveket párosítják, s mindegyik párhoz valamilyen színt rendelnek (zöld, piros, sárga, fehér, fekete).

- 1, 2, 11, 12, ..., 51, 52: zöld évek
- 3, 4, 13, 14, ..., 53, 54: piros évek
- 5, 6, 15, 16, ..., 55, 56: sárga évek
- 7, 8, 17, 18, ..., 57, 58: fehér évek
- 9, 10, 19, 20, ..., 59, 60: fekete évek

Tudjuk, hogy 1984-ben indult az utolsó ciklus, amely 2043-ban fog véget érni. Írj programot, amely megadja egy m évről (1984 \leq m \leq 2043), hogy milyen színű!

1.13. feladat

Írj programot, amely egy 1 és 99 közötti számot betűkkel ír ki!

1.14. FELADAT 13

1.14. feladat

Írj programot, amely egy hónapnévhez a sorszámát rendeli!

1.15. feladat

Egy nap a nem szökőév hányadik napja?

1.16. feladat

Feljegyeztük egy játszma végállását. Számoljuk meg, hány világos és hány sötét bábu maradt a táblán!

1.17. feladat

Határozzuk meg az egyes áruházakban tárolt készlet összértékét, ha ismerjük az egyes termékek árát!

2. fejezet

Programozási tételek

2.1. Összegzés / Sorozatszámítás

2.1.1. feladat (M)

Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére mennyivel nőtt a vagyona!

- Def: $strukt\acute{u}ra := rec(be \in \mathbb{N} \times ki \in \mathbb{N})$
- Be: $n \in \mathbb{N}$, $j\ddot{o}v_{1..n} \in strukt\acute{u}ra^n$
- Ki: $sum \in \mathbb{N}$
- Ef: −
- Uf: $sum := \sum_{i=1}^{n} j \ddot{o} v_{i}.be j \ddot{o} v_{i}.ki$

Be: n, jöv[n]; sum	
sum := 0	
i := 1 n	
sum := sum + (jöv[i].be - jöv[i].ki)	
Ki: sum	

2.1.2. feladat

Ismerjük egy autóversenyző körönkénti idejét. Adjuk meg az átlagkörének idejét!

2.1.3. feladat

Adjuk meg az n számhoz az n faktoriális értékét!

2.1.4. feladat

Ismerjük egy iskola szakköreire járó tanulóit, szakkörönként. Adjuk meg, kik járnak szakkörre!

2.1.5. feladat

Ismerünk n szót. Adjuk meg a belőlük összeállított mondatot!

2.2. Megszámolás

2.2.1. feladat

Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy hány hónapban nőtt a vagyona!

2.2.2. feladat

Adjuk meg egy természetes szám osztói számát!

2.2.3. feladat

Adjuk meg egy ember nevében levő "a" betűk számát!

2.2.4. feladat

Adjunk meg az éves statisztika alapján, hogy hány napon fagyott!

2.2.5. feladat (M)

Adjuk meg n születési hónap alapján, hogy közöttük hányan születtek télen!

- 1. megoldás: függvénydefiníció nélkül
 - Be: $n \in \mathbb{N}$, $h \acute{o}_{1..n} \in \mathbb{N}^n$
 - Ki: $db \in \mathbb{N}$
 - Ef: $\forall i \ (1 \le i \le n) : h \acute{o}_i \in [1..12]$
 - Uf: $db := \sum_{\substack{i:=1 \ (h\phi_i < 3) \ \lor \ (h\phi_i = = 12)}}^n 1$

Megjegyzés: a konkrét feladat előfeltétele mindig lehet szigorúbb a tétel előfeltételénél! Itt az előfeltétel azért szükséges, hogy megtiltsuk a rossz eseteket (például egy -1-edik hónapot, ami télinek számítana).

- 2. megoldás: függvénydefinícióval
 - Def: $t\acute{e}li: \mathbb{N} \to \mathbb{L}$ $t\acute{e}li(x):=(x<3) \ \lor \ (x==12)$
 - Be: $n \in \mathbb{N}$, $h \acute{o}_{1..n} \in \mathbb{N}^n$
 - Ki: $db \in \mathbb{N}$
 - Ef: $\forall i \ (1 \le i \le n) : h \acute{o}_i \in [1..12]$
 - Uf: $db := \sum_{\substack{i:=1\\t \neq bi(b\alpha)}}^{n} 1$

Ne feledkezzünk el a segédfüggvényről

2.3. Maximumkiválasztás

2.3.1. feladat

Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt legjobban a vagyona!

2.3.2. feladat

Adjuk meg n ember közül az ábécében utolsót!

2.3.3. feladat

Adjuk meg n ember közül azt, aki a legtöbb ételt szereti!

2.3.4. feladat

Adjunk meg az éves statisztika alapján a legmelegebb napot!

2.3.5. feladat (M)

Adjuk meg n születésnap alapján azt, akinek idén először van születésnapja!

- Def: $struct := rec(h\acute{o} \in \mathbb{N} \times nap \in \mathbb{N})$
- Be: $n \in \mathbb{N}$, $d_{1..n} \in struct^n$
- Ki: $els \tilde{o} \in \mathbb{N}$
- Ef: $n > 0 \land$ $\forall i \in [1..N] : d_i.h\acute{o} \in [1..12] \land$ $d_i.nap \in [1..31]$

2.4. ELDÖNTÉS 18

• Uf: $1 \leq els \tilde{o} \leq n \land \forall i \in [1..N]: d_{els \tilde{o}}.h \acute{o} < d_i.h \acute{o} \lor d_{els \tilde{o}}.h \acute{o} == d_i.h \acute{o} \land d_{els \tilde{o}}.nap \leq d_i.nap$

2.4. Eldöntés

2.4.1. feladat

tartalom...

• Def:

• Be:

• Ki:

• Ef:

• Uf:

Be: n; lko, lno

i := 2

i∤n

i := i + 1

lko := i

Ino := n div Iko

Ki: Iko, Ino

2.4.2. feladat

tartalom...

2.4.3. feladat

tartalom...

2.4.4. feladat

2.5. KERESÉS 19

2.4.5. feladat

tartalom...

2.4.6. feladat

tartalom...

2.5. Keresés

2.5.1. feladat

tartalom...

- Def:
- Be:
- Ki:
- Ef:
- Uf:

Be: n; lko, lno

i := 2

i∤n

i := i + 1

lko := i

Ino := n div Iko

Ki: Iko, Ino

2.5.2. feladat

tartalom...

2.5.3. feladat

20

2.5.4. feladat

tartalom...

2.5.5. feladat

tartalom...

2.6. Kiválasztás

2.6.1. feladat

tartalom...

- Def:
- Be:
- Ki:
- Ef:
- Uf:

Be: n; lko, lno

i := 2

i∤n

i := i + 1

lko := i

Ino := n div Iko

Ki: Iko, Ino

2.6.2. feladat

tartalom...

2.6.3. feladat

2.7. MÁSOLÁS 21

2.6.4. feladat

tartalom...

2.7. Másolás

2.7.1. feladat

tartalom...

- Def:
- Be:
- Ki:
- Ef:
- Uf:

Be: n; Iko, Ino
i := 2
i∤n
i := i + 1
Iko := i
Ino := n div Iko

Ki: Iko, Ino

2.7.2. feladat

tartalom...

2.7.3. feladat

tartalom...

2.7.4. feladat

22

2.7.5. feladat

tartalom...

2.8. Kiválogatás

2.8.1. feladat

tartalom...

- Def:
- Be:
- Ki:
- Ef:
- Uf:

Be: n; Iko, Ino

i := 2

i∤n

i := i + 1

lko := i

Ino := n div Iko

Ki: Iko, Ino

2.8.2. feladat

tartalom...

2.8.3. feladat

tartalom...

2.8.4. feladat

2.8.5. feladat

tartalom...

2.8.6. feladat

tartalom...

2.9. Szétválogatás

2.9.1. feladat

tartalom...

- Def:
- Be:
- Ki:
- Ef:
- Uf:

Be: n; Iko, Ino

i := 2

i∤n

i := i + 1

lko := i

Ino := n div Iko

Ki: Iko, Ino

2.9.2. feladat

tartalom...

2.9.3. feladat

24

2.9.4. feladat

tartal	0.300
1.211.21	16 31 1 1

2.9.5. feladat