Multinomial Naive Bayes

Multinomial Naïve Bayes

- Multinomial Naïve Bayes is designed for text
 - based on word appearance only, not non-appearance
 - can account for multiple repetitions of a word
 - treats common words differently from unusual ones
- It's a lot faster than plain Naïve Bayes!
 - ignores words that do not appear in a document
 - internally, Weka uses a sparse representation of the data
- The StringToWordVector filter has many interesting options
 - although they don't necessarily give the results you're looking for!
 - outputs results in "sparse data" format, which MNB takes advantage of

Example- Normal Vs Spam mail

INTERNSHIPSTUDIO

- We received a lot of emails from friends, family, office and we also receive spam mails. Initially, we consider eight normal messages and four spam messages.
- Let see the histogram of all the words that occur in the normal messages from family and friends.

Normal mail

INTERNSHIPSTUDIO

- We can use the histogram to calculate the probabilities of seeing each word, given that it was a normal message.
 The probability of word dear given that we saw in normal message is-
- Probability (Dear|Normal) = 8 /17 = 0.47

Similarly, the probability of word Friend is-

- Probability (Friend/Normal) = 5/17 = 0.29
- Probability (Lunch/Normal) = 3/17 = 0.18
- Probability (Money/Normal) = 1/17 = 0.06

Normal Vs Spam mail

Now, let's say we have received a normal message as **Dear Friend** and we want to find out if it's a normal message or spam.

- We start with an initial guess that any message is a Normal Message.
- From our initial assumptions of 8 Normal messages and 4
 Spam messages, 8 out of 12 messages are normal messages. The prior probability, in this case, will be:
- Probability (Normal) = 8 / (8+4) = 0.67
- We multiply this prior probability with the probabilities of **Dear Friend** that we have calculated earlier.
- -0.67*0.47*0.29=0.09

0.09 is the probability score considering **Dear Friend** is a normal message.

Spam mail

 The probability of word dear given that we saw in spam message is-

Probability (Dear|Spam) =
$$2/7 = 0.29$$

Similarly, the probability of word Friend is-

Probability (Friend/Spam) =
$$1/7 = 0.14$$

Probability (Lunch/Spam) = $0/7 = 0.00$
Probability (Money/Spam) = $4/7 = 0.57$

Normal Vs Spam mail

- Alternatively, let's say that any message is a Spam.
 - 4 out of 12 messages are Spam. The prior probability in this case will be:
 - Probability (Normal) = 4 / (8+4) = 0.33
 - Now we multiply the prior probability with the probabilities of **Dear Friend** that we have calculated earlier.
 - -0.33*0.29*0.14=0.01

0.01 is the probability score considering **Dear Friend** is a Spam.

Conclusion- The probability score of **Dear Friend** being a normal message is greater than the probability score of **Dear Friend** being spam. We can conclude that **Dear Friend** is a normal message.

What is a Support Vector Machine?

- **Support Vector Machine** is a discriminative algorithm that tries to find the optimal hyperplane.
- In a 2D space, a hyperplane is a line that optimally divides the data points into two different classes.
- In a higher-dimensional space, the hyperplane would have a different shape rather than a line.

Support Vector Machine

- **Hyperplane**: A hyperplane is a plane which is used to divide categories based on their values.
- A hyperplane is always 1 dimension less than the actual plane used for plotting the outcomes or for analyses.
 - Linear Regression with 1 feature and 1 outcome we can make a 2-D plane to depict the relationship and the regression line fitted to that is a 1-D plane.
 - Similarly, for a 3-D relationship, we get a 2-D hyperplane.

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

Support Vector Machine

- Support Vectors: Support Vectors are those points in the space that are closer to the hyperplane and also decide the orientation of the hyperplane.
- The lines or planes drawn is called Support Vector Lines or Support Vector Planes.

Margin Width

INTERNSHIPSTUDIO

The perpendicular distance between the 2 support vector lines or planes is called Margin Width.

SVM example

Suppose we see a strange cat that also has some features of dogs, so if we want a model that can accurately identify whether it is a cat or dog

- We will first train our model with lots of images of cats and dogs so that it can learn about different features
- and then we test it with this strange creature.
- So as support vector creates a decision boundary between these two data and choose extreme cases (support vectors).

Support Vector Regression

O

The key advantages

- SVM works really well with high dimensional data. If your data is in higher dimensions, it is wise to use SVR.
- For data with a clear margin of separations, SVM works relatively well.
- When data has more features than the number of observations,
 SVM is one of the best algorithms to use.
- As a discriminative model, it need not memorize anything about data. Therefore, it is memory efficient.

Some drawbacks

- It is a bad option when the data has no clear margin of separation i.e. the target class contains overlapping data points.
- It does not work well with large data sets.
- For being a discriminative model, it separates the data points below and above a hyperplane. So, you will not get any probabilistic explanation of the output.
- It is hard to understand and interpret SVM as its underlying structure is quite complex.

- Q.1 Explain Multinomial Naïve Bayes?
- Q.2 Write the probabilities of different normal words coming in Multinomial Naïve Bayes example?
- Q.3 Define support boundaries and margin in SVM?
- Q.4 Define support vectors and hyperplane.
- Q.5 What are the key advantages/disadvantages of SVR.