Sequential recommender model

Student: Pavel Fakanov

Supervisor: Vadim Filippovich

Programming project

Sequential Recommender Models

Model and understand **sequential** user behaviours to increase the quality of recommendations

Recommender systems are extremely popular in our world

 $\hat{r}_{ui} = \langle oldsymbol{p}_u, oldsymbol{q}_i
angle$

Traditional approaches ignore consideration of sequential dependencies between user interactions

Objective:

Increase the quality of recommendations using sequential models

Tasks:

Implement baseline LSTM-based model

Implement BERT4Rec model

 Compare models performance on two different tasks

Similarity User vector Score Mode History History Candidate History History History Item 2 Item Item Item 3 Item 4 Item 5

Relevance prediction

Learn a function F, to predict the probability of user liking the *given item* given user's interaction history

Probability Distribution over items

Next Item prediction

Model the probability of user liking the item over *all possible items* given user's interaction history

LSTM - recurrent neural network capable of learning order dependence in sequence prediction problems

User representation

User embedding is a weighted sum of LSTM output and mean pooling output over input items' vectors

Relevance Prediction

- Randomly sample negative candidates
- Build user embedding
- Binary cross-entropy loss

User embedding

Cosine similarity

Item embedding

$$\mathcal{L} = -\frac{1}{|\mathcal{D}|} \sum_{x,y \in |D|} (y \log p(x) + (1-y) \log(1-p(x))) + \lambda \sum_{i=1}^{N} ||x_i||^2$$

Next Item Prediction

Build user embedding

Cross-entropy loss

User embedding

Probability
Distribution over items

$$\mathcal{L} = -\frac{1}{|\mathcal{D}|} \sum_{x, v_{n_x+1}^x \in |D|} \sum_{v \in \mathcal{V}} [v = v_{n_x+1}^x] \log p(v|x) + \lambda \sum_{i=1}^N ||x_i||^2$$

BERT4Rec

Model architecture

BERT4Rec is stacked by L bidirectional Transformer layers.

At each layer, it iteratively revises the representation of every position by exchanging information across all positions at the previous layer.

BERT4Rec

Relevence prediction

- Randomly sample negative candidates
- Apply L Transformer Layers
- Mean pooling over hidden vectors
- Binary cross-entropy loss

BERT4Rec

Next Item Prediction

- Randomly mask some positions in interaction history
- Apply L Transformer Layers
- Softmax for masked items
- Cross-entropy loss

Input:
$$[v_1, v_2, v_3, v_4, v_5] \xrightarrow{\text{randomly mask}} [v_1, [\text{mask}]_1, v_3, [\text{mask}]_2, v_5]$$
Labels: $[\text{mask}]_1 = v_2$, $[\text{mask}]_2 = v_4$

Evaluation Metrics

Accuracy (Relevance Prediction)

hit@10 (Next Item Prediction)

ndcg@10 (Next Item Prediction)

Experiment Data

Datasets	#users	#items	#actions	Avg. length	Density
ML-1m	6040	3416	1.0m	163.5	4.79%
Yandex films	63727	25654	0.94m	14.7	0.0573%

Results

Relevance Prediction

	LSTM-based model	BERT4Rec
Yandex small dataset	0.908	0.841*
Yandex full dataset	0.906	0.912

^{*}Model overfitting

Results

Next Item Prediction

Conclusion

Achieved 0.5% quality boost in the final metrics

Implemented baseline LSTM-based model

Implemented BERT4Rec model

Compared models performance on two different tasks