Definíciók

Mátrixok

12.1.

Legyenek *m* és *n* pozitív egész számok. Az

$$A: \{1, ..., m\} \times \{1, ..., n\} \to \mathbb{K}$$

függvényeket ($\mathbb K$ feletti) $m \times n$ -es mátrixoknak nevezzük. Az $m \times n$ -es mátrixok halmazát $\mathbb K^{m \times n}$ jelöli. Az A mátrix (i,j) helyettes(i,j) helyettesítési értékét az i-edik sor j-edik elemének (a j-edik oszlop i-edik elemének) nevezzük, jelölése: a_{ij} , vagy pedig $(A)_{ij}$. A mátrixot (n-edrendű) négyzetes mátrixnak nevezzük, ha m=n, vagyis ha ugyanannyi sora van, mint amennyi oszlopa.

Az $m \times n$ -es mátrixokat $m \times n$ -es táblázatként szokás megadni, innen ered a definícióbeli "sor-oszlop" szóhasználat is:

$$A = \begin{bmatrix} A(1,1) & A(1,2) & \dots & A(1,n) \\ A(2,1) & A(2,2) & \dots & A(2,n) \\ & \vdots & & & \\ A(m,1) & A(m,2) & \dots & A(m,n) \end{bmatrix}$$

Az A mátrix a_{11} , a_{22} , ... elemeit diagonális elemeknek, a táblázatban ezeket összekötő képzeletbeli egyenest a mátrix főátlójának (diagonálisának) nevezzük. A főátló persze csak négyzetes mátrix esetén felel meg a táblázat "igazi" átlójának.

Megemlítünk néhány nevezetes mátrixot:

- Nullmátrixnak nevezzük azt a mátrixot, melynek minden eleme 0. Ha nem okoz félreértést, a nullmátrixot a 0 szimbólummal fogjuk jelölni.
- Sormátrixnak nevezzük az egyetlen sorból álló mátrixot, tehát $\mathbb{K}^{1\times n}$ elemeit. A sormátrixokat sorvektoroknak is szokás nevezni,
- Oszlopmátrixnak nevezzük az egyetlen oszlopból álló mátrixot, tehát $\mathbb{K}^{m\times 1}$ elemeit. Az oszlopmátrixokat oszlopvektoroknak is szokás nevezni. A "sorvektor", "oszlopvektor" elnevezések okára később fogunk vissztérni (14.8 megjegyzés)
- Egy A négyzetes mátrixot alsó háromszögmátrixnak nevezünk, ha főátlója felett minden elem 0, azaz ha j > i esetén $a_{ij}=0$.
- Egy A négyzetes mátrixot felső háromszögmátrixnak nevezünk, ha főátlója alatt minden elem 0, azaz ha j < i esetén $a_{ij}=0$.
- Egy A négyzetes mátrixot diagonálmátrixnak nevezünk, ha egyszerre alsó és felső háromszögmátrix, tehát, ha a főátlón kívüli elemei nullák: $a_{ij}=0$ ha $i\neq j$. A négyzetes mátrixok körében fontos szerepet játszik az egységmátrix:

12.2.

Az $I \in \mathbb{K}^{n \times n}$ mátrixot ($n \times n$ -es) egységmátrixnak nevezzük, ha:

$$\left(I\right)_{ij} \coloneqq \begin{cases} 0 \text{ ha } i \neq j, \\ 1 \text{ ha } i = j \end{cases} \qquad (i, j = 1, ..., n)$$

12.4

Legyen $A, B \in \mathbb{K}^{mxn}$ és $\lambda \in \mathbb{K}$. Az

$$A + B \in \mathbb{K}^{mxn}$$
, $(A + B)_{ij} := (A)_{ij} + (B)_{ij}$

mátrixot az A és B mátrixok összegének, a

$$\lambda A \in \mathbb{K}^{mxn}, \qquad \left(\lambda A\right)_{ij} \coloneqq \lambda \cdot \left(A\right)_{ij}$$

mátrixot pedig az A mátrix λ -szorosának nevezzük.

12.7

Legyen $A \in \mathbb{K}^{mxn}, B \in \mathbb{K}^{nxp}$. Az

$$AB \in \mathbb{K}^{mxp}, \qquad \left(AB\right)_{ij} \coloneqq a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$$

mátrixot az A és B mátrix (ebben a sorrendben vett) szorozták nevezzük.

12.9

Legyen $f(x):=c_kx^k+c_{k-1}x^{k-1}+\ldots+c_1x+c_0$ egy polinom, \mathbb{K} -beli együtthatókkal. Ekkor $A\in\mathbb{K}^{n\times n}$ esetén

$$f(A)\coloneqq c_kA^k+c_{k-1}A^{k-1}+\ldots+c_1A+c_0I$$

Fontos művelet a transzponálás és az adjungálás.

12.10

Legyen $A \in \mathbb{K}^{mxn}$. Az

$$A^T \in \mathbb{K}^{nxm}, \left(A^T\right)_{ij} \coloneqq \left(A\right)_{ji}$$

mátrixot az A transzponáltjának, az

$$A^* \in \mathbb{K}^{nxm}, (A^*)_{ij} := \overline{(A)_{ji}}$$

mártixot pedig az A adjungáltjának nevezzük.

A felülvonás a komplex konjugáltat jelenti. Itt érdemes megállapodni abban, hogy a konjugálást valós számokra is értelmezzük: valós szám konjugáltja önmaga (összhangban a valós tengelyen lévő komplex szám konjugáltjával).

Ezért rögtön látható, hogy $\mathbb{K} = \mathbb{R}$ esetén a transzponálás és az adjungálás művelete ugyanaz.

12.12

Legyen $A, C \in \mathbb{K}^{n \times n}$. C-t az A inverzének nevezzük, ha

$$AC = CA = I$$

(Itt I az $n \times n$ egységmátrixot jelöli.) Az A inverzét így jelöljük: A^{-1} .

12.13

Legyen $A \in \mathbb{K}^{n \times n}$.

- a.) Az A mátrixot regulárisnak (invertálhatónak) nevezzük, ha létezik inverze, azaz ha $\exists A^{-1}$.
- b.) Az A mátrixot szingulárinak (nem invertálhatónak) nevezzük, ha nincs inverze, azaz ha $\nexists A^{-1}$.

Determináns

13.1 Fogalom

Legyen $n\geq 2$ és $A\in\mathbb{K}^{n\times n}$ egy négyzetes mátrix, továbbá (i,j) egy sor-oszlop indexpár $(i,j\in\{1,...,n\})$. Töröljük A-ból az i-edik sort és j-edik oszlopot. A visszamardó $(n-1)\times(n-1)$ -es mátrixot az A mátrix (i,j) indexpárhoz tartozó részmátrixának nevezzük, és A_{ij} -vel jelöljük.

Ezek után rekurzív módon értelmezzük a det : $\mathbb{K}^{n\times n} \to \mathbb{K}$ függvényt:

13.2

1. Ha $A = \left[a_{11} \in \mathbb{K}^{1 \times 1}\right]$, akkor $\det(A) \coloneqq a_{11}$

2. Ha
 $A \in \mathbb{K}^{n \times n}$, akkor:

$$\det(A) \coloneqq \sum_{j=1}^n a_{1j} \cdot (-1)^{1+j} \cdot \det \left(A_{1j} \right) = \sum_{j=1}^n a_{1j} \cdot a'_{1j}$$

ahol az $a'_{1j} \coloneqq \left(-1\right)^{i+j} \cdot \det\left(A_{ij}\right)$ neve: előjelezett aldetermináns (kofaktor)

A fenti definícióban a determinánst az első sor szerinti kifejtéssel értelmeztük.

Vektorterek

14.1

Legyen $V \neq \emptyset$. Azt mondjuk, hogy V \mathbb{K} feletti vektortér, ha léteznek az x+y (összeadás) és $\lambda x = \lambda \cdot x$ (szorzás számmal) műveletek úgy, hogy teljesülnek a következő axiómák:

I.)

- 1.) $\forall x, y \in V : x + y \in V$
- 2.) $\forall x, y \in V : x + y = y + x$
- 3.) $\forall x, y, z \in V : (x + y) + z = x + (y + z)$
- 4.) $\exists 0 \in V \ \forall x \in V : x + 0 = 0$
- 5.) $\forall x \in V \ \exists (-x) \in V : x + (-x) = 0$

II.)

- 1.) $\forall \lambda \in \mathbb{K} \ \forall x \in V : \lambda x \in V$
- 2.) $\forall x \in V \ \forall \lambda, \mu \in \mathbb{K} : \lambda(\mu x) = (\lambda \mu)x$
- 3.) $\forall x \in V \ \forall \lambda, \mu \in \mathbb{K} : (\lambda + \mu)x = \lambda x + \mu x$
- 4.) $\forall x, y \in V \ \forall \lambda \in \mathbb{K} : \lambda(x+y) = \lambda x + \lambda y$
- 5.) $\forall x \in V : 1x = x$

Velemeit vektoroknak, $\mathbb K$ elemeit skalároknak nevezzük. $\mathbb K$ -t pedig a Vskalártartományának nevezzük.

14.9

Legyen $A \in \mathbb{K}^{mxn}, x \in \mathbb{K}^n$. Az

$$Ax \in \mathbb{K}^m, \ \left(Ax\right)_i \coloneqq a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \quad (i = 1, \ldots, m)$$

vektort az A mátrix és az x vektor (ebben a sorrendben vett) szorzatának nevezzük.

Alterek

14.11

Legyen W a V vektortér egy nem üres részhalmaza. Azt mondjuk, hogy W altere V-nek (W altér V-ben), ha W vektortér a V-beli műveletekre nézve.

Generált alterek

15.1 Lineáris kombináció

Legyen $k\in\mathbb{N}^+,x_1,...,x_k\in V$ egy vektorrendszer, $\lambda_1,...,\lambda_k\in\mathbb{K}.$ A

$$\lambda_1 x_1 + \ldots + \lambda_k x_k$$

vektort (ill. magát a kifejezést is) az $x_1,...,x_k$ vektorrendszer (vagy egyszerűen csak vektorok) $\lambda_1,...,\lambda_k$ együtthatókkal vett lineáris kombinációjának nevezzük.

A lineáris kombinációt triviálisnak nevezzük, ha minden együtthatója 0 (ennek eredménye nyilván a nullvektor), nem triviálisnak, ha van nem 0 együtthatója.

15.4

A $Line\acute{a}ris\ kombin\acute{a}ci\acute{o}$ formulával értelmezett W^* alteret, az $x_1, x_2, ..., x_k$ vektorrendszer által generált (vagy kifeszített) altérnek nevezzük, és $\mathrm{Span}(x_1, x_2, ..., x_K)$ -val jelöljük.

15.5

Legyen W a V egy altere. Azt mondjuk, hogy W-nek van vges generátorrendszere, ha

$$\exists k \in \mathbb{N}^+ \ \exists x_1, x_2, ..., x_k \in V : \mathrm{Span}(x_1, x_2, ..., x_k) = W$$

•

Ez esetben az $x_1, x_2, ..., x_k$ vektorrendszert a W altér egy (véges) generátorrendszerének nevezzük.

15.6

Ammenyiben $\mathrm{Span}(x_1,x_2,...,x_k)=V$, az $x_1,x_2,...,x_k$ vektorrendszert röviden csak generátorrendszernek nevezzük.

15.11

A V vektorteret véges dimenziósnak nevezzük, ha van véges gen.rendszere, azaz, ha

$$\exists k \in \mathbb{N}^+ \ \exists x_1, x_2, ..., x_k \in V : \ \operatorname{Span}(x_1, x_2, ..., x_k) = V$$

Azt a tényt, hogy V véges dimenziós, így jelöljük: $\dim(V) < \infty$

15.12

A V vektorteret végetlen dimenziósnak nevezzük, ha nincs véges gen.rendszere, azaz, ha

$$\forall k \in \mathbb{N}^+ \forall x_1, x_2, ..., x_k \in V : \operatorname{Span}(x_1, x_2, ..., x_k) \neq V$$

Azt a tényt, hogy V végtelen dimenziós, így jelöljük: $\dim(V) = \infty$

Lineáris függetlenség

16.1

Legyen $k\in\mathbb{N}^+$ és $x_1,x_2,...,x_k\in V$ egy vektorrendszer a V vektortérben. Ezt a vektorrendszert lineárisan függetlennek nevezzük, ha lineáris kombinációi közül csak a triviális lin. kombináció eredményez nullvektort, azaz ha

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k = 0 \Longrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_k = 0$$

A rendszert lin. összefüggőnek nevezzük, ha nem független, azaz, ha:

$$\exists \lambda_1,...,\lambda_k \in \mathbb{K}, \lambda_i \text{ nem mind 0: } \lambda_1x_1+\lambda_2x_2+...+\lambda_kx_k=0$$

Bázis, dimenzió

17.1 Bázis fogalom

Az $x_1, x_2, ..., x_k \in V$ vektorrendszert (V-beli) bázisnak nevezzük, ha gen.
rendszer is és lineárisan független is.

17.3

A fenti lineáris kombináció együtthatóit a vektor adott bázisra vonatkozó koordinátáinak nevezzük.

17.10

A véges dimenziós (és nem $\{0\}$) vektortér bázisának közös elemszámát a tér dimenziójának nevezzük, és $\dim(V)$ -vel jelöljük. Megállapodunk még abban is, hogy $\dim(\{0\}) := 0$

Rang

18.1

Legyen Vegy vektortér \mathbb{K} felett, $x_1, ..., x_k \in V$.

Az $x_1,...,x_k$ vektorrendszer által generált altér dimenzióját a vektorrendszer rangjának nevezzük. Jele: $\operatorname{rang}(x_1,...x_k)$. Tehát

$$\operatorname{rang}(x_1, ..., x_k) := \dim(\operatorname{Span}(x_1, ..., x_k))$$

18.3

Legyen $A \in \mathbb{K}^{m \times n}$. Az A *i*-edik sorában álló elemek alkotják az *i*-edik sorvektort:

$$s_i := (a_{i1}, a_{i2}, ..., a_{in}) \in \mathbb{K}^n \ (i = 1, ..., m)$$

A sorvektorok által generált (\mathbb{K}^n -beli) alteret a mátrix sorvektorterének (sorterének) nevezzük. Jele: S(A)

18.4

Legyen $A \in \mathbb{K}^{m \times n}$. Az A j-edik oszlopában álló elemek alkotják a j-edik oszlopvektort:

$$a_j \coloneqq \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix} \in \mathbb{K}^m \ (j=1,...,n)$$

Az oszlopvektorok által generált (\mathbb{K}^m -beli) alteret a mátrix oszlopvektorterének (oszlopterének) nevezzük.

Jele: O(A)

18.8

Legyen $A \in \mathbb{K}^{m \times n}$.

 $\dim(\mathcal{O}(A))$ és $\dim(\mathcal{S}(A))$ közös értékét az A mátrix rangjának nevezzük, és rang(A)-val jelöljük. Tehát

$$rang(A) := \dim(S(A)) = \dim(O(A))$$

18.10

Legyenek m és n pozitív egész számok. Az m egyenletből álló, n ismeretlenes lin.egyenletrendszer ált. alakja:

$$\begin{aligned} a_{11}x_1 + \ldots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + \ldots + a_{2n}x_n &= b_2 \\ & \vdots \\ a_{m1}x_1 + \ldots + a_{mn}x_n &= b_m \end{aligned}$$

ahol az $a_{ij} \in \mathbb{K}$ együtthatók és a b_j jobb oldali konstansok adottak. Ezt az alakot a lineáris egyenletrendszer skalár alakjának nevezzük. Keressük az $x_1,...,x_k$ ismeretlenek összes olyan (\mathbb{K} -beli) értékét, amelyre mindegyik egyenlőség igaz. Egy ilyen $x_1,...,x_k$ értékrendszert a lin. egyenletrendszer egy megoldásának nevezzük.

18.11

A lineáris egyenletrendszert konzisztensnek nevezzük, ha van megoldása, inkonzisztensnek (ellentmondásosnak), ha nincs megoldása.

Vezessük be az

$$a_1 := \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, ..., a_n := \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}, b := \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

 \mathbb{K}^m -beli vektorokat. Ezzel egyenletrendszerünk az alábbi, egyszerűbb alakba írható:

$$x_1a_1 + x_2a_2 + \dots + x_na_n = b$$

amit az egyenletrendszer vektoros alakjának nevezünk. A vektoros alak alapján a feladat így is megfogalmazható: Előállítható-e a b vektor az $a_1,...,a_n$ vektorok lineáris kombinációjaként, és ha igen, akkor adjuk meg az összes lehetséges előállítás együtthatóit.

Hat pedig bevezetjük az

$$A \coloneqq [a_1...a_n] \coloneqq \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{K}^{m \times n}$$

mátrixot (melyet az egyenletrendszer mátrixának, vagy együtthatómátrixának nevezünk) valamint az $x\coloneqq (x_1,...,x_n)\in \mathbb{K}^n$ vektort, akkor egyenletrendszerünk legtömörebb alakja:

$$Ax = b$$

Ezt az alakot az egyenletrendszer mátrixos alakjának nevezzük.

A feladat tehát az összes olyan \mathbb{K}^n -beli vektor megkeresése, melyet x helyébe írva a (18.2) egyenlőség igaz. Egy ilyen vektort (amennyiben létezik) az egyenletrendszer egy megoldásának, vagy megoldásvektorának nevezünk.

18.13

Két lineáris egyenletrendszert ekvivalensnek nevezünk, ha megoldáshalmazuk ugyanaz.

18.15

Legyen $A \in \mathbb{K}^{m \times n}$. Ekkor az Ax = 0 lineáris egyenletrendszert homogén rendszernek nevezzük. Azt is szoktuk mondani, hogy Ax = 0 az Ax = b-hez tartozó homogén rendszer.

Jegyezzük meg, hogy a homogén rendszer mindig megoldható, mivel a nullvektor biztosan megoldása $(0 \in O(A))$.

18.17

Legyen $A \in \mathbb{K}^{m \times n}$. Az M_h alteret at Amátrix nullterének vagy magjának nevezzük.

Jelölés: Ker(A)

Tehát

$$\mathrm{Ker}(A)\coloneqq M_h=\{x\in\mathbb{K}^n\mid Ax=0\}\subseteq\mathbb{K}^n$$