Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №3

з дисципліни "Програмування інтелектуальних інформаційних систем"

Виконала <u>ІП-21 Скрипець О. О.</u>

Перевірив Баришич Л. М.

Завдання

1. Пройти тутор:

https://www.kaggle.com/code/jhoward/linear-model-and-neural-net-from-scratch#Deep-learning

2. Побудувати рендом форест звідси:

https://www.kaggle.com/code/jhoward/how-random-forests-really-work/

```
2.1. Натрейнити на датасеті звідси: '/kaggle/input/car-evaluation-data-set/car_evaluation.csv'

Class - залежна змінна
Важливо! Незабудьте енкодер
encoder = ce.OrdinalEncoder(cols=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety'])
2.2 Вивести confusion matrix, auc, Classification report
Зробити буст попередньої моделі XGBoost. Порівняти результати
```

3 Зробити буст попередньої моделі XGBoost. Порівняти результати https://machinelearningmastery.com/random-forest-ensembles-with-xgboost/

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from google.colab import drive
drive.mount('/content/drive')
data = "/content/drive/My Drive/data/car_evaluation.csv"
df = pd.read_csv(data, header=None, sep=',\s*', engine='python')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount
дивлюсь як виглядає датасет
df.head()
\rightarrow
                                               Ħ
            0
                  1 2 3
                                    5
                              4
                                           6
      0 vhigh vhigh 2 2 small
                                  low
                                      unacc
                                               n.
      1 vhigh vhigh 2 2 small
                                 med
                                       unacc
      2 vhigh vhigh 2 2 small
                                 high
                                      unacc
      3 vhigh vhigh 2 2
                            med
                                  low
                                      unacc
      4 vhiah vhiah 2 2
                            med
                                 med
                                      unacc
 Подальші дії:
                Переглянути рекомендовані графіки
                                                          New interactive sheet
дивлюсь розміри
df.shape
\rightarrow \overline{} (1728, 7)
даю назви стовпцям
df.columns=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'Class']
df.head()
```

→		buying	maint	doors	persons	lug_boot	safety	Class		
	0	vhigh	vhigh	2	2	small	low	unacc	ıl.	
	1	vhigh	vhigh	2	2	small	med	unacc		
	2	vhigh	vhigh	2	2	small	high	unacc		
	3	vhigh	vhigh	2	2	med	low	unacc		
	4	vhiah	vhiah	2	2	med	med	unacc		>
Подальші дії: Переглянути рекомендовані графіки New in							New int	eractive sheet		

df.info()

```
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1728 entries, 0 to 1727
    Data columns (total 7 columns):
         Column Non-Null Count Dtype
     0
         buying
                  1728 non-null
                                  object
         maint
                  1728 non-null
                                  object
     2
         doors
                  1728 non-null
                                  object
         persons
                  1728 non-null
                                  object
         lug_boot 1728 non-null
                                  object
     5
                  1728 non-null
                                  object
         safety
         Class
                  1728 non-null
                                  object
    dtypes: object(7)
    memory usage: 94.6+ KB
```

Переглядаю розподіл серед класів автомобілів

```
df['Class'].value_counts()
```

```
Class

unacc 1210

acc 384

good 69

vgood 65
```

```
X = df.drop(['Class'], axis=1)
y = df['Class']
```

Розділяємо дані на навчальні та тестові набори

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state = 42)
```

```
X_train.shape, X_test.shape
```

```
→ ((1157, 6), (571, 6))
```

встановлюю бібліотеку

!pip install category_encoders

```
Street Collecting category_encoders
               Downloading category_encoders-2.6.4-py2.py3-none-any.whl.metadata (8.0 kB)
          Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.10/dist-packages (+
          Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.10/dist-pack
          Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.10/dist-packages (fr
          Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.10/dist-packas
          Requirement already satisfied: pandas>=1.0.5 in /usr/local/lib/python3.10/dist-packages (
          Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.10/dist-packages (fr
          Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-page 1.8.2 in /usr/loca
          Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (fi
          Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages
          Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy:
          Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (+
          Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-pack
          Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages
          Downloading category encoders-2.6.4-py2.py3-none-any.whl (82 kB)
                                                                                                               - 82.0/82.0 kB 2.0 MB/s eta 0:00:00
          Installing collected packages: category_encoders
```

імпортую бібліотеку

import category_encoders as ce

Successfully installed category encoders-2.6.4

Ініціалізую OrdinalEncoder для перетворення категоріальних змінних в числові значення

```
encoder = ce.OrdinalEncoder(cols=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety']
X_train = encoder.fit_transform(X_train)
X test = encoder.transform(X test)
```

X_train.head()

→		buying	maint	doors	persons	lug_boot	safety	
	48	1	1	1	1	1	1	11.
	468	2	1	1	2	2	1	
	155	1	2	1	1	2	2	!
	1721	3	3	2	1	2	2	!
	1208	4	3	3	1	2	2	: ▶
Пода	альші д	μiï: 💿	Перегл	пянути р	екомендо	вані графіки	1 N	ew interactive sheet

Random Forest

from sklearn.ensemble import RandomForestClassifier

Створюю екземпляр класифікатора та прогнозую результати тестового набору

```
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train)
y_pred = rf_model.predict(X_test)
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(y_test, y_pred, labels=rf_model.classes_)
plt.figure(figsize=(10,7))
sns.heatmap(cm, annot=True, fmt='d', cmap='Reds', xticklabels=rf_model.classes_, yticklabels=r
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()
```


cr = classification_report(y_test, y_pred, target_names=rf_model.classes_)
print(cr)

	precision	recall	f1-score	support	
acc	0.90	0.88	0.89	129	
good	0.57	0.85	0.68	20	
unacc	0.99	0.98	0.98	397	
vgood	0.86	0.76	0.81	25	
accuracy			0.94	571	
macro avg	0.83	0.87	0.84	571	
weighted avg	0.95	0.94	0.94	571	

Точність (Precision):

Найвищу точність показує клас 'unacc' (0.99), що свідчить про рідкісні помилки моделі при прогнозуванні цього класу. Найнижча точність зафіксована у класу 'good' (0.57), що може вказувати на труднощі моделі у правильній класифікації цього класу.

Повнота (Recall):

Найвища повнота також у класу 'unacc' (0.98), що говорить про те, що модель ефективно

ідентифікує більшість випадків цього класу. Найнижча повнота у класу 'vgood' (0.76) свідчить про те, що модель пропускає деякі приклади з цього класу.

F1-оцінка (F1-score):

Найвищу F1-оцінку отримує клас 'unacc' (0.98), що вказує на хорошу збалансованість між точністю та повнотою для цього класу. Найнижча F1-оцінка у класу 'good' (0.68) свідчить про менш сприятливу збалансованість між цими двома метриками.

Загальна точність (Accuracy):

Загальна точність моделі становить 0.94, що свідчить про те, що вона правильно класифікує 94% усіх прикладів.

Середні оцінки:

Для середніх оцінок: Macro avg показує 0.83 для точності, 0.87 для повноти і 0.84 для F1оцінки, що є середнім значенням для всіх класів. Weighted avg показує 0.95 для точності, 0.94 для повноти і 0.94 для F1-оцінки, що враховує дисбаланс класів у тестовій вибірці.

Висновок:

Модель демонструє загалом високу точність і добру здатність до класифікації, особливо для класу 'unacc'. Однак існують проблеми з класифікацією класу 'good', що вимагає вдосконалення.

```
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
y_prob = rf_model.predict_proba(X_test)
# Ініціалізуємо словники для FPR, TPR та AUC
fpr = \{\}
tpr = {}
roc_auc = {}
# Обчислюємо FPR, TPR та AUC для кожного класу
for i, class label in enumerate(rf model.classes ):
    fpr[i], tpr[i], _ = roc_curve(y_test, y_prob[:, i], pos_label=class_label)
    roc_auc[i] = auc(fpr[i], tpr[i])
# Налаштовуємо кольори для кожного класу
colors = ['#FF5733', '#33FF57', '#3357FF', '#FF33A8'] # Задаємо нові кольори
plt.figure(figsize=(12, 8))
# Побудова графіків ROC для кожного класу
for i, class_label in enumerate(rf_model.classes_):
    plt.plot(fpr[i], tpr[i], color=colors[i], label=f'Class {class_label} (AUC = {roc_auc[i]:.2
# Додаємо лінію випадкових прогнозів
plt.plot([0, 1], [0, 1], 'k--')
# Налаштовуємо осі та заголовок
plt.xlim([0.0, 1.0])
```

```
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')

# Додаємо легенду
plt.legend(loc='lower right')
plt.grid() # Додаємо сітку для кращої читабельності
plt.show()
```



```
y_prob = rf_model.predict_proba(X_test)
auc = roc_auc_score(y_test, y_prob, multi_class='ovr')
print(f'AUC: {auc}')
```

→ AUC: 0.9925821283497147

Ми отримали дуже високе значення AUC, що свідчить про відмінну здатність моделі розрізняти між класами. AUC вимірює площу під кривою ROC (Receiver Operating Characteristic) і показує, наскільки ефективно модель може відокремлювати різні класи.

Оптимізація гіперпараметрів моделі може значно поліпшити результати. Рекомендується експериментувати з різними значеннями для параметрів, таких як n_estimators (кількість дерев), max_depth (максимальна глибина дерев), min_samples_split (мінімальна кількість зразків для розділення вузла), min_samples_leaf (мінімальна кількість зразків у листі) тощо.

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import GridSearchCV
from sklearn.metrics import accuracy score
# Створюємо модель випадкового лісу
rf model = RandomForestClassifier(random state=42)
# Визначаємо сітку параметрів для пошуку
param grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}
# Створюємо об'єкт GridSearchCV
grid_search = GridSearchCV(estimator=rf_model, param_grid=param_grid, cv=5, scoring='accuracy'
# Проводимо пошук найкращих параметрів
grid_search.fit(X_train, y_train)
# Виводимо найкращі параметри
print(f'Best parameters: {grid_search.best_params_}')
# Можна також вивести найкращу точність
best accuracy = grid search.best score
print(f'Best accuracy: {best_accuracy:.4f}')
Fitting 5 folds for each of 108 candidates, totalling 540 fits
     Best parameters: {'max depth': None, 'min samples leaf': 1, 'min samples split': 2, 'n est
     Best accuracy: 0.9464
```

Максимальна глибина дерев (max_depth: None) не обмежена, що дозволяє деревам рости до максимальної глибини. Це може бути корисно, але також підвищує ризик переобучення.

Мінімальна кількість зразків у листі (min_samples_leaf: 1) дорівнює 1, що означає, що в кожному листі дерева може бути лише один зразок.

Мінімальна кількість зразків для розділення вузла (min_samples_split: 2) становить 2, що дозволяє розділяти вузли, навіть якщо є лише два зразки.

Кількість дерев у лісі (n_estimators: 200) дорівнює 200, що забезпечує достатню кількість моделей для досягнення стабільних результатів.

Тепер ми можемо створити нову модель, використовуючи ці параметри, і навчити її на наших даних.

```
best_rf_model = grid_search.best_estimator_
```

Можемо перевірити, чи модель з новими параметрами покращила результати

```
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
# Передбачення на тестових даних
y_pred_best = best_rf_model.predict(X_test)
# Обчислення матриці
cm = confusion_matrix(y_test, y_pred_best, labels=best_rf_model.classes_)
# Візуалізація матриці з новими кольорами
plt.figure(figsize=(10, 7))
sns.heatmap(cm, annot=True, fmt='d', cmap='Reds',
            xticklabels=best_rf_model.classes_,
            yticklabels=best rf model.classes ,
            linewidths=0.5, linecolor='black')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()
```


cr = classification_report(y_test, y_pred_best, target_names=best_rf_model.classes_)
print(cr)

→	precision	recall	f1-score	support
acc good unacc vgood	0.90 0.57 0.99 0.86	0.88 0.85 0.98 0.76	0.89 0.68 0.98 0.81	129 20 397 25
accuracy macro avg weighted avg	0.83 0.95	0.87 0.94	0.94 0.84 0.94	571 571 571

Точність (Precision): Найвища точність спостерігається у класу 'unacc' (0.99), що вказує на рідкісні помилки моделі під час класифікації цього класу. Найнижча точність зафіксована у класу 'good' (0.57), що свідчить про труднощі моделі з правильним визначенням цього класу.

Повнота (Recall): Максимальна повнота у класу 'unacc' (0.98) вказує на те, що модель ефективно ідентифікує більшість випадків цього класу. Натомість, найнижча повнота зафіксована у класу 'vgood' (0.76), що свідчить про пропуски деяких прикладів цього класу.

F1-оцінка (F1-score): Найвища F1-оцінка спостерігається у класу 'unacc' (0.98), що свідчить про добру збалансованість між точністю та повнотою для цього класу. Найнижча F1-оцінка зафіксована у класу 'good' (0.68), що вказує на недостатню збалансованість цих двох показників для цього класу.

Загальна точність (Ассигасу): Загальна точність складає 0.94, що означає, що модель правильно класифікує 94% усіх прикладів у тестовій вибірці.

Середні оцінки:

- Macro average: 0.83 для точності, 0.87 для повноти та 0.84 для F1-оцінки, що є середніми значеннями для всіх класів.
- Weighted average: 0.95 для точності, 0.94 для повноти та 0.94 для F1-оцінки, які враховують дисбаланс класів у тестовій вибірці.

```
и налашторусно колрори дли компото класу
colors = ['#FF5733', '#33FF57', '#3357FF', '#FF33A8'] # Задаємо нові кольори
plt.figure(figsize=(12, 8))
# Побудова графіків ROC для кожного класу
for i, class_label in enumerate(best_rf_model.classes_):
    plt.plot(fpr[i], tpr[i], color=colors[i], label=f'Class {class_label} (AUC = {roc_auc[i]:.2
# Додаємо лінію випадкових прогнозів
plt.plot([0, 1], [0, 1], 'k--', linewidth=1)
# Налаштовуємо осі та заголовок
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate', fontsize=14)
plt.ylabel('True Positive Rate', fontsize=14)
plt.title('ROC Curve for Best Random Forest Model', fontsize=16)
# Додаємо легенду
plt.legend(loc='lower right', fontsize=12)
plt.grid(True) # Додаємо сітку для кращої читабельності
plt.show()
```



```
y_prob_best = best_rf_model.predict_proba(X_test)
auc = roc_auc_score(y_test, y_prob_best, multi_class='ovr')
print(f'AUC: {auc}')
```

AUC: 0.993079306311704

Значення 0.9931 трохи перевищує попереднє 0.9926, що вказує на незначне поліпшення в здатності моделі розрізняти між класами після оптимізації гіперпараметрів.

XGboost

```
import xgboost as xgb
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score
```

Перетворюю категоріальні змінні у числові значення

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)
```

Створюю екземпляр XGBClassifier та навчаємо модель на тренувальних даних

```
xgb_model = xgb.XGBClassifier(random_state=42)
xgb_model.fit(X_train, y_train_encoded)
```

```
XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, objective='multi:softprob', ...)
```

Робимо прогнозування на тестових даних

```
y_pred_encoded = xgb_model.predict(X_test)
y pred = label encoder.inverse transform(y pred encoded)
```



```
cr_xgb = classification_report(y_test, y_pred, target_names=label_encoder.classes_)
print(cr_xgb)
```

precision recall f1-score support

acc 0.98 0.94 0.96 129

good	0.73	0.95	0.83	20	
unacc	1.00	1.00	1.00	397	
vgood	0.92	0.88	0.90	25	
accuracy			0.98	571	
macro avg	0.91	0.94	0.92	571	
weighted avg	0.98	0.98	0.98	571	

Загальна точність:

Модель XGBClassifier досягла вражаючої загальної точності 98% на тестовому наборі даних.

Класифікація за класами:

- **асс**: Модель демонструє відмінні результати з точністю 98% і відновлювальністю 94% для цього класу.
- **good**: Точність класифікації для цього класу становить 73%, проте відновлювальність залишається високою на рівні 95%. Це свідчить про те, що модель рідше помиляється при класифікації класу "good", але точність класифікації залишається нижчою.
- **unacc**: Модель ідеально класифікує цей клас, досягаючи 100% точності та відновлювальності.
- **vgood**: Для цього класу модель демонструє високі показники, з точністю 92% та відновлювальністю 88%.

Мета-метрики:

- **Макро-середнє**: Значення точності (91%) та F1-скору (92%) є досить високими, що свідчить про загальну збалансованість моделі.
- Вагове середнє: Високі показники точності, відновлювальності та F1-скору (98%) обумовлені переважно точною класифікацією класу "unacc", який має найбільшу кількість зразків.

```
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

# Отримуємо ймовірності класів для тестових даних
y_prob = xgb_model.predict_proba(X_test)

# Ініціалізуємо словники для FPR, TPR та AUC
fpr = {}
tpr = {}
roc_auc = {}

# Кількість класів
n_classes = len(label_encoder.classes_)

# Обчислюємо FPR, TPR та AUC для кожного класу
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test_encoded == i, y_prob[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
```

```
# Налаштовуємо кольори для кожного класу
colors = ['#FF5733', '#33FF57', '#3357FF', '#FF33A8'] # Вибір нових кольорів
plt.figure(figsize=(12, 8))
# Побудова графіків ROC для кожного класу
for i in range(n_classes):
    plt.plot(fpr[i], tpr[i], color=colors[i], label=f'ROC curve of class {label_encoder.classes
# Додаємо лінію випадкових прогнозів
plt.plot([0, 1], [0, 1], 'k--', linewidth=1)
# Налаштовуємо осі та заголовок
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate', fontsize=14)
plt.ylabel('True Positive Rate', fontsize=14)
plt.title('Receiver Operating Characteristic (ROC) Curve', fontsize=16)
# Додаємо легенду
plt.legend(loc='lower right', fontsize=12)
plt.grid(True) # Додаємо сітку для кращої читабельності
plt.show()
```



```
y_prob_xgb = xgb_model.predict_proba(X_test)
auc_xgb = roc_auc_score(y_test_encoded, y_prob_xgb, multi_class='ovr')
print(f'AUC for XGBoost: {auc_xgb}')
```

AUC for XGBoost: 0.9971999779136288

AUC для XGBoost: 0.9971999779136288

Цей показник є дуже високим, що свідчить про відмінну продуктивність моделі. Значення AUC, близьке до 1, вказує на те, що модель має високу здатність правильно класифікувати зразки між різними класами.

Покращення результатів: Модель XGBoost показала значне поліпшення в порівнянні з попередніми моделями, оскільки AUC зросла з 0.9926 до 0.9972. Це свідчить про те, що XGBoost краще справляється з класифікацією і має менше помилок, ніж інші моделі.

Загалом, XGBoost продемонструвала себе як дуже потужний інструмент для цієї задачі, з надзвичайно високим AUC, що робить її однією з найкращих моделей для класифікації в даному випадку.