Assignment 2 STAT 315-463: Multivariable Statistical Methods and Applications

Lisa Lu 31088272

Due date: Friday 24 March 2023

- Your assignment needs to show the R code you used, and your well discussed answers to the questions.
- Submit your assignments on Learn.

Background

In the dataset, USJudgeRatings.csv, you are presented with ratings of State Judges on the Superior Court on 12 variables provided by 43 Lawyers in 1977.

CONT	Number of contacts of lawyer with judge	INTG	Judicial integrity	DMNR	Demeanour
DILG	Diligence	CFMG	Case flow managing	DECI	Prompt decisions
PREP	Preparation for trial	FAMI	Familiarity with law	ORAL	Sound oral rulings
WRIT	Sound written rulings	PHYS	Physical ability	RTEN	Worthy of retention

```
# Read in the data
dataset <- read.csv("USJudgeRatings.csv")</pre>
```

Principal Component Analysis of the Rating Data.

Perform a PCA on the standardised ratings. Note, you will need to standardise the ratings yourself. Then answer the following questions.

```
# Standardise the ratings
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dataset %>% mutate(across(where(is.numeric),scale))
```

```
##
               Lawver
                             CONT
                                         INTG
                                                     DMNR
                                                                  DILG
                                                                              CFMG
## 1
       AARONSON, L.H. -1.84637275 -0.15702273 0.16063659 -0.436257319 -0.44072232
                                                                        0.37312687
##
       ALEXANDER, J.M. -0.67725051 1.14143449
                                              1.12242274 0.895747277
## 3
       ARMENTANO, A.J. -0.25211515
                                  0.10266871
                                              0.24807169
                                                           0.118744596
                                                                        0.02433436
## 4
         BERDON, R.I. -0.67725051
                                  1.01158876 0.86011742
                                                          1.228748425
                                                                        0.95444771
## 5
        BRACKEN, J. J. -0.14583132 -2.10470856 -2.81215696 -1.324260383 -1.71962817
## 6
          BURNS.E.B. -1.31495355 1.01158876
                                             1.03498763 0.895747277 0.48939104
## 7
        CALLAHAN, R.J. 3.36153540 1.27128021 1.20985784 1.117748042 1.18697605
## 8
           COHEN, S.S. -0.46468283 -2.75393717 -2.28754634 -2.878265744 -2.41721319
## 9
            DALY, J. J. -0.14583132 1.14143449 1.20985784 1.117748042 1.30324022
## 10
        DANNEHY, J.F. 0.81072324 -0.15702273 -0.71371446 0.451745745 0.48939104
            DEAN, H.H. -0.46468283 -0.02717701 0.07320148 -0.325256936 -0.20819398
## 11
## 12
         DEVITA, H.J. -0.99610203 -0.02717701 0.07320148 -0.547257702 -0.55698648
## 13
        DRISCOLL, P.J. -0.78353435 0.75189732 0.59781211 -0.991259234 -0.67325065
## 14
          GRILLO, A.E. -0.46468283 -0.67640562 -0.97601977 -0.991259234 -1.13830733
## 15
       HADDEN, W.L.JR. -0.99610203 0.10266871 0.42294190 0.340745362 0.48939104
## 16
         HAMILL, E.C. -0.14583132 -0.02717701 -0.10166873 0.007744213 -0.20819398
## 17
         HEALEY.A.H. 0.59815556 -0.54655990 -0.80114956 -0.547257702 -1.13830733
                      0.27930404 -0.41671418 -0.71371446 -0.214256553 -0.09192981
## 18
           HULL, T.C.
## 19
           LEVINE, I.
                      0.91700708 0.23251443 -0.10166873 0.118744596 0.25686270
## 20
       LEVISTER,R.L. 2.29869700 -1.45547995 -1.58806550 -1.213260000 -0.67325065
## 21
         MARTIN, L.F. -0.35839899 0.23251443 0.16063659 -0.658258085 -1.02204316
## 22
         MCGRATH, J.F. 0.17302020 -0.93609706 -0.53884425 -0.991259234 -0.90577899
        MIGNONE, A.F. -0.88981819 -0.80625134 -1.15088998 -1.657261532 -2.41721319
## 23
## 24
         MISSAL, H.M. -1.31495355 0.36236015 0.51037700 0.007744213 -0.09192981
## 25
         MULVEY, H.M. 0.06673636
                                  0.88174304
                                              0.86011742
                                                          1.006747659
                                                                       1.18697605
## 26
          NARUK, H.J.
                                  1.14143449
                                               1.03498763
                                                          1.339748808
                                                                        1.41950439
                      0.38558788
##
  27
         O'BRIEN, F.J. -0.35839899
                                  0.62205160
                                               0.68524721
                                                          0.340745362
                                                                        0.48939104
                                               1.20985784
## 28 O'SULLIVAN, T.J. 0.06673636
                                  1.27128021
                                                          1.117748042
                                                                        1.07071188
## 29
           PASKEY,L. 0.06673636
                                  0.10266871
                                               0.16063659
                                                           0.562746128
                                                                        0.60565521
## 30
         RUBINOW, J.E. -0.35839899
                                   1.53097165
                                              1.29729294
                                                           1.450749191
                                                                        1.07071188
## 31
           SADEN.G.A. -0.88981819 -0.80625134 -0.53884425
                                                           0.784746894
                                                                        0.60565521
##
  32 SATANIELLO, A.G. 1.02329092 -0.02717701
                                              0.33550680
                                                           0.229744979
                                                                        0.37312687
## 33
           SHEA, D.M. -0.57096667
                                  0.62205160
                                              0.24807169
                                                           0.895747277
                                                                        0.72191938
## 34
         SHEA, J.F. JR. -0.14583132
                                  1.14143449
                                              1.12242274
                                                          1.117748042
                                                                        1.07071188
## 35
          SIDOR, W.J. 0.27930404 -2.36440001 -2.11267613 -2.323263830 -2.18468485
## 36
       SPEZIALE, J.A. 1.12957476 0.36236015 0.51037700 0.673746511
                                                                       1.07071188
## 37
          SPONZO, M.J. -0.57096667 0.36236015 0.42294190
                                                          0.451745745
                                                                        0.48939104
## 38
      STAPLETON, J.F. -0.99610203 0.23251443 0.16063659
                                                          0.118744596
                                                                        0.14059853
           TESTO,R.J. 0.91700708 -0.93609706 -0.45140914 -0.991259234 -0.55698648
## 39
## 40
     TIERNEY, W.L.JR. 0.91700708 0.23251443 0.24807169 0.673746511 1.07071188
                      1.66099396 -1.32563423 -1.41319529 -0.769258468 -0.55698648
## 41
            WALL, R.A.
## 42
         WRIGHT.D.B. -0.35839899 0.49220588 0.77268232 0.007744213 0.02433436
##
  43
       ZARRILLI, K.J. 1.23585860 -0.80625134 -0.45140914 -0.214256553
                                                                       0.02433436
##
            DECI
                        PREP
                                    FAMI
                                                 ORAL
                                                             WRIT
                                                                         PHYS
     -0.2056406 -0.38541362 -0.40924922 -0.191103867 -0.39923819
## 1
                                                                   0.38859714
##
  2
       0.6661597
                 0.55860582
                             0.53913072 0.501935459
                                                      0.53715684
                                                                   0.60145927
## 3
       0.0434452
                 0.03415057
                              0.01225297
                                         0.006907369
                                                      0.01693738 -0.03712712
## 4
       1.1643313
                 1.29284316
                             1.27675956 1.095969167
                                                      1.16142020
                                                                  0.92075246
## 5
      -1.7001554 -1.85388831 -1.88450691 -2.171216227 -2.16798436 -2.59147264
## 6
      0.5416168 0.66349687
                             0.53913072 0.699946695
                                                      0.64120073
                                                                  0.70789033
## 7
       1.1643313 1.08306107 1.06600846 1.293980403 1.05737630
                                                                  1.24004565
## 8
     -2.0737841 -2.79790775 -2.51676020 -2.567238699 -2.58415993 -1.20786881
       1.1643313 0.97817002 0.96063291 1.095969167 1.16142020 0.92075246
## 9
```

```
## 10 0.5416168 0.45371477 0.64450626 0.402929841 0.43311295 0.60145927
## 11 -0.0810977 -0.38541362 -0.30387368 -0.191103867 -0.19115041 0.49502820
## 12 -0.5792693 -0.59519572 -0.51462477 -0.290109485 -0.29519430 -1.10143775
## 13 -1.2019838 -0.38541362 -0.19849813 -0.092098249 -0.19115041 0.17573501
## 14 -0.7038122 -0.90986887 -0.72537587 -0.983148811 -0.81541376 -1.84645520
## 15  0.5416168  0.45371477  0.32837962  0.501935459  0.43311295  0.49502820
## 16 -0.3301835 -0.17563152 -0.30387368 -0.191103867 -0.19115041 0.06930395
## 17 -1.3265267 -0.70008677 -0.83075142 -0.884143193 -0.91945765 -1.10143775
## 18 -0.0810977 -0.38541362 -0.19849813 -0.191103867 -0.08710651 0.17573501
## 20 -1.2019838 -1.32943307 -1.56838026 -1.478176901 -1.64776490 -0.78214456
## 21 -1.2019838 -0.80497782 -0.83075142 -0.488120721 -0.60732598 -0.46285137
## 22 -0.9528980 -1.11965097 -1.25225362 -0.983148811 -1.12754544 -0.56928243
## 23 -2.3228698 -1.74899726 -1.67375581 -2.072210609 -1.64776490 -3.44292115
## 24 -0.3301835 -0.17563152 -0.19849813 -0.092098249 -0.08710651 -0.14355818
## 25
      1.0397884 1.08306107 1.06600846
                                        1.095969167 1.05737630
                                                                0.81432139
## 26
      1.5379600
                 1.50262526
                            1.59288620
                                        1.491991639
                                                     1.57759577
                                                                 1.13361458
## 27
      0.4170739 0.34882372
                            0.32837962 0.501935459
                                                     0.32906906
                                                                 0.38859714
## 28
      1.1643313 0.97817002 0.85525736 0.996963549 0.95333241
                                                                 0.92075246
       0.6661597
                 0.76838792  0.96063291  0.699946695
                                                     0.74524463
                                                                 0.49502820
##
  30
      1.2888742
                1.71240736 1.69826175
                                        1.590997257
                                                     1.68163966
                                                                 1.02718352
      0.4170739 0.76838792 0.96063291 0.402929841
                                                     0.53715684
                                                                 0.49502820
      0.2925310
                 0.13904162 -0.09312258
                                        0.105912987 0.01693738
                                                                 0.17573501
## 32
## 33
      0.7907026
                 0.97817002 1.06600846
                                        0.798952313 0.95333241
                                                                 0.81432139
## 34
      1.1643313 1.08306107 1.06600846
                                        1.095969167 1.05737630
                                                                0.92075246
     -2.0737841 -1.95877936 -1.98988246 -1.973204991 -1.95989658 -1.74002413
      0.7907026 0.76838792 0.64450626
                                        0.600941077
                                                     0.64120073
  36
                                                                 0.06930395
  37
      0.4170739 0.45371477 0.22300407 0.303924223 0.32906906
                                                                 0.17573501
      0.1679881 \quad 0.24393267 \quad 0.22300407 \quad 0.204918605 \quad 0.22502516
                                                                 0.60145927
## 39 -0.5792693 -0.80497782 -0.83075142 -0.587126339 -0.71136987
                                                                 0.06930395
      0.9152455   0.24393267   0.11762852   0.204918605   0.32906906
                                                                 0.17573501
## 41 -0.4547264 -0.59519572 -0.62000032 -0.785137575 -0.81541376 -0.35642031
      0.1679881 0.34882372 0.74988181 0.699946695 0.74524463 0.38859714
      0.1679881 \ -0.07074048 \ -0.30387368 \ -0.389115103 \ -0.39923819 \ -0.14355818
## 43
##
            RTEN
## 1
      0.17954551
## 2
      0.99700568
## 3
      0.17954551
## 4
      0.99700568
## 5
     -2.54532170
## 6
      0.90617677
## 7
      1.26949240
## 8
     -2.36366389
## 9
      1.08783459
## 10 0.27037442
## 11
      0.08871661
## 12 -0.36542793
## 13 0.08871661
## 14 -1.00123028
## 15
      0.36120333
## 16 -0.00211230
## 17 -0.81957246
## 18 -0.18377011
## 19 0.36120333
```

```
## 20 -1.45537481
## 21 -0.27459902
## 22 -0.91040137
## 23 -2.18200607
  24 -0.00211230
  25
       0.99700568
##
## 26
       1.26949240
## 27
       0.54286114
## 28
       0.99700568
## 29
       0.45203224
  30
       1.45115021
## 31 -0.09294121
##
  32
       0.27037442
## 33
       0.63369005
## 34
       1.08783459
## 35 -2.09117716
## 36
       0.54286114
##
  37
       0.36120333
       0.08871661
## 38
## 39 -0.54708574
## 40
       0.27037442
## 41 -0.91040137
## 42
       0.45203224
## 43 -0.45625684
```

- 1. How many principal components do you believe should be retained. Justify your answer by looking at the variation in the data explained by each component.
- 2. In your own words, describe what you believe the first principal component is measuring.
- 3. What do you think the second principal component represents?
- 4. You are told *Judicial Integrity* and *Demeanour* are particularly important traits, and should be given 5 times the weight of the other variables. Re-run the Principal Component Analysis such that Integrity and Demeanour is given 5 times the weight of all other variables. What impact does this have?

Factor Analysis for the Rating Data

Perform Factor Analysis on the standardised Ratings Data.

- 1. What happens when you try to fit a 3 and a 4 factor solution with no rotation. Hint: For the three factor solution, you may need to add control=list(nstart=100) as an additional argument in the factanal function.
- 2. Which variables are grouped by the first two factors? (e.g. threshold $|loading| \ge 0.25$)
- 3. Compare the factor loadings for the first two factors to the first two principal components of the standardised data found in the previous section. Comment on any similarities and/or differences.
- 4. Comment on the observed variable specific variances (the uniquenesses). Do you believe all observed variables are explained by the factors discovered.
- 5. Re-fit the 3 factor solution with a varimax rotation. How does this change the interpretation of the factors? In this case, do you find the rotated or non-rotated solution easier to interpret. Explain why or why not?