

Figura 1: Sistema de controle.

Trabalho Computacional 03

Última Atualização: 3 de outubro de 2024

Objetivo: O propósito deste trabalho é determinar a região de estabilidade de um sistema de controle composto de uma planta e um controlador com dois ganhos. Para isso utiliza-se a tabela de Routh-Hurwitz e a manipulação de variáveis simbólicas disponível no Matlab/Octave.

Definição do Sistema: Considere o sistema de controle ilustrado na Figura 1 em que P(s) é uma planta a ser controlada e $C(s, k_1, k_2)$ é um controlador que depende de dois ganhos de controle k_1 e k_2 . O objetivo é determinar faixas para k_1 e k_2 tais que o sistema realimentado G(s) = Y(s)/R(s) seja BIBO estável.

Tarefas: A primeira tarefa é implementar um script para construir a tabela de Routh-Hurwitz considerando k_1 e k_2 como variáveis simbólicas. Com a primeira coluna da tabela determinada, implementa-se a segunda tarefa, que é construir uma figura para ilustrar graficamente a região definida pelas desigualdades geradas pela primeira coluna da tabela.

A terceira tarefa consiste em aplicar o script programado nos sistemas de controle que possuem os seguintes polinômios característicos:

1.
$$\Delta(s) = s^4 + s^3 + (k_1k_2 + 2)s^2 + (k_2 + 3)s + k_1 + 4;$$

2.
$$\Delta(s) = s^4 + 7s^3 + (2k_2 - k_1)s^2 + (5 + k_1k_2)s + 1;$$

3.
$$\Delta(s) = s^4 + 2s^3 + (k_1 + 2)s^2 + (3 + k_2)s + k_1k_2;$$

4. Proponha um polinômio com grau entre 3 e 10, e com k_1 e k_2 aparecendo nos coeficientes (escolha arbitrária) de modo que exista uma região estável não vazia.

A especificação do polinômio característico de interesse e a chamada do *script* desenvolvido são exemplificadas no Apêndice A.

Auxílio para desenhar o gráfico: No apêndice B é apresentado um código que determina a região de interesse a partir da primeira coluna da tabela usando a "força bruta". Basicamente o código realiza uma grade no espaço de k_1 e k_2 e testa as desigualdades ponto a ponto. No final tem-se armazenado todos os pares (k_1, k_2) tais que a primeira

Figura 2: Região estável para $k_i \in [-3, 3], i = 1, 2, \text{ com } \Delta(s) = s^4 + 2s^3 + (k_1 + 2)s^2 + (3 + k_2)s + 1.$

coluna é positiva, ou seja, o sistema é estável. Quando mais pontos forem considerado na grade, melhor é o resultado gráfico, mas ao preço de um maior esforço computacional. O espaço de k_1 e k_2 está limitado às faixas:

$$-3 \le k_1 \le 3$$
, $-3 \le k_2 \le 3$

Com os pontos da região de estabilidade determinados, a função plot pode ser utilizada para desenhá-los. A Figura 2 mostra como o resultado deve ficar.

Formato de entrega: Arquivo PDF contendo a identificação da disciplina e dos alunos (nome e RA), e

- Quatro gráficos, um para cada um dos polinômios característicos indicados anteriormente.
- Informar quantos pontos foram considerados na grade, e o tempo computacional (sem segundos) demandado para criar as figuras.
- Todos os códigos fontes utilizados, incluindo aqueles que foram disponibilizados;

Pontos Extras:

• A região de interesse deve ser desenhada com um gradiente entre duas cores C_1 e C_2 arbitrárias. Seja t_{\min} o menor valor obtido na primeira coluna da tabela para certos valores de k_1 e k_2 . O menor valor de t_{\min} (entre todos os pares (k_1, k_2)

admissíveis) deve ser desenhado na cor C_1 e o maior na cor C_2 . Interpola-se os casos intermediários. A Figura 2 foi feita considerando essa opção. Valor da tarefa: 0,5 ponto (escala de 0 a 10);

- Utilize uma linguagem de programação diferente de Matlab e Octave, e ganhe 0,5 ponto;
- Substitua o código de desenho baseado na força bruta por algo melhor. A nova proposta deve funcionar para qualquer outro polinômio característico que o professor queira testar. Valor da tarefa: 2,0 pontos.

Apêndice A

O código a seguir ilustra como o script programado deve ser chamado, por exemplo, para o polinômio característico $\Delta(s) = s^4 + 2s^3 + (k_1 + 2)s^2 + (3 + k_2)s + 1$.

```
1
2    syms k1 k2;
3
4    polinomio = [1 2 k1+2 3+k2 1];
5    regiaoEstavel_k1k2(polinomio);
```

Apêndice B

O código a seguir fornece uma maneira de determinar os pares (k_1, k_2) que estabilizam o sistema em malha fechada. A variável tabela é a tabela de Routh-Hurwitz construída. vars é uma variável contendo as variáveis simbólicas, neste caso k_1 e k_2 . Os limites para k_1 e k_2 são especificados por meio de k_1 e k_2 na forma

$$limk1 = [-3, 3], limk2 = [-3, 3].$$

Finalmente, a variável numPontos especifica o número de pontos a serem utilizados na grade. A variável de saída ptsEstaveis é estruturada na forma

$$\begin{bmatrix} k_{1_1} & k_{2_1} & t_{1_{\min}} \\ k_{1_2} & k_{2_2} & t_{2_{\min}} \\ k_{1_3} & k_{2_3} & t_{3_{\min}} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

sendo (k_{1i}, k_{2i}) os valores de k_1 e k_2 de uma ocorrência i e $t_{i_{\min}}$ o menor valor da primeira coluna associado (garantidamente positivo).

```
2 function [ptsEstaveis] = regiaoEstavel(tabela, vars, limk1, limk2,
      numPontos)
3
4 k1=linspace(limk1(1),limk1(2),numPontos);
   k2=linspace(limk2(1),limk2(2),numPontos);
6
  ptsEstaveis = [];
7
8
   for i=1:length(k1)
9
       for j=1:length(k2)
10
            estavel = 1;
11
            minV=1e10;
12
            for k=1:size(tabela,1)
13
                elemento=tabela(k,1);
                if ~isempty(symvar(elemento))
14
15
                     valor=subs(elemento, vars,[k1(i) k2(j)]);
16
                    if valor <= 0</pre>
17
                         estavel = 0;
18
                         break;
19
                     end
20
                     if valor < minV</pre>
21
                         minV = valor;
22
                     end
23
                end
24
            end
25
            if estavel
                ptsEstaveis = [ptsEstaveis; k1(i) k2(j) minV];
26
27
            end
28
       end
29
   end
```