Multimedia: Streaming Video & Audio

CS 352, Lecture 22, Spring 2020

http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

Course announcements

- Quiz 8 (the last one!) will go online later today
 - Due Tuesday at 10 PM on Sakai
- Project 3 due next Friday

Synthesis of protocols

Synthesis: a day in the life of a web request

- Our journey down protocol stack complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - *scenario:* student attaches laptop to campus network, requests/receives www.google.com

A day in the life... connecting to the Internet

- connecting laptop needs to get its own IP address, addr of firsthop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life... connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation at DHCP server, frame forwarded through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

DNS server

demuxed to DNS server

DNS UDP

IΡ

Eth

Phy

Comcast network

68.80.0.0/13

DNS

DNS

DNS

DNS server replies to client with IP address of www.google.com

A day in the life...TCP connection carrying HTTP

A day in the life... HTTP request/reply

Multimedia Networking

Multimedia networking

- Many applications on the Internet use audio or video
- IP video traffic will be 82 percent of all IP traffic [...] by 2022, up from 75 percent in 2017
- Internet video surveillance traffic will increase sevenfold between 2017 to 2022
- Internet video to TV will increase threefold between 2017 to 2022.
- Consumer Video-on-Demand (VoD) traffic will nearly double by 2022

Source: Cisco visual networking index 2017--22

What's different about these applications?

- Traditional applications (HTTP(S), SMTP)
 - Delay tolerant but not loss tolerant
 - Data used after transfer complete
- But multimedia applications are often "real time"
 - Data delivery time during transfer has implications
- Video/audio streaming
 - Delay-sensitive
- Real-time audio and video
 - Delays > 400 ms for audio is a bad user experience
 - Somewhat loss tolerant

Digital representation of audio and video

Digital representation of audio

- Must convert analog signal to digital representation
- Sample
 - How many times (twice the max frequency in the signal)
- Quantize
 - How many levels or bits to represent each sample
 - More levels → more accuracy
 - More levels → more bits to store & more bandwidth to transmit
- Compress
 - Compact representation of quantized values

Audio representation

- analog audio signal sampled at constant rate
 - telephone: 8,000 samples/sec
 - CD music: 44,100 samples/sec
- each sample quantized, i.e., rounded
 - e.g., 2⁸=256 possible quantized values
 - each quantized value represented by bits, e.g., 8 bits for 256 values

Audio representation

- example: 8,000 samples/sec, 256 quantized values
- Bandwidth needed: 64,000 bps
- receiver converts bits back to analog signal:
 - some quality reduction

Example rates

- CD: 1.411 Mbps
- MP3: 96, 128, 160 Kbps
- Internet telephony: 5.3 Kbps and up

Video representation

- Video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- Digital image: array of pixels
 - each pixel represented by bits
- Coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)
- Coding/decoding algorithm often called a codec

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Video representation

- Video bit rate: effective bits per second of the video after encoding
- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- examples:
 - MPEG 1 (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet,
 1 Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example:\instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Multimedia networking: 3 application types

- streaming, stored audio, video
 - streaming: can begin playout before downloading entire file
 - stored (at server): can transmit faster than audio/video will be rendered (implies storing/buffering at client)
 - e.g., YouTube, AmazonPrime, Disney, Netflix, Hulu
- conversational voice/video over IP
 - interactive nature of human-to-human conversation limits delay tolerance
 - e.g., Skype
- streaming live audio, video
 - e.g., live sporting event

Streaming video

Streaming stored content

- Media is prerecorded
- Client downloads an initial portion and starts viewing
- Rest downloaded as time progresses
- No need to wait for entire content to be downloaded
- Can change content sites mid-stream based on network conditions

Streaming stored video:

Streaming stored video: challenges

- continuous playout constraint: once client playout begins, playback must match original timing
 - ... but network delays are variable (jitter), so will need client-side buffer to match playout requirements
- other challenges:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - video packets may be lost, retransmitted

Streaming stored video: revisited

client-side buffering and playout delay:
 compensate for network-added delay, delay jitter

Client-side buffering, playout

Client-side buffering, playout

- 1. Initial fill of buffer until playout begins at tp
- 2. playout begins at t_{p,}
- 3. buffer fill level varies over time as fill rate x(t) varies and playout rate r is constant

Client-side buffering, playout

playout buffering: average fill rate (\bar{x}) , playout rate (r):

- \overline{x} < r: buffer eventually empties (causing freezing of video playout until buffer again fills)
- $\overline{x} > r$: buffer will not empty, provided initial playout delay is large enough to absorb variability in x(t)
 - initial playout delay tradeoff: buffer starvation less likely with larger delay, but larger delay until user begins watching

Streaming multimedia: UDP

- server sends at rate appropriate for client
 - often: send rate = encoding rate = constant rate
 - transmission rate can be oblivious to congestion levels
- short playout delay (2-5 seconds) to remove network jitter
- error recovery: application-level, time permitting
- RTP [RFC 2326]: multimedia payload types
- UDP traffic may not get through firewalls

Streaming multimedia: HTTP/TCP

- multimedia file retrieved via HTTP GET
- send at maximum possible rate under TCP

- fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
- larger playout delay: smooth TCP delivery rate
- HTTP/TCP passes more easily through firewalls

Streaming multimedia with DASH

- Dynamic Adaptive Streaming over HTTP
- Used by Netflix and other video streaming services
- Client-centric approach to video delivery
 - Adaptive: Client performs video bit rate adaptation
 - Dynamic: Can retrieve a single video from multiple sources
- Retain benefits of existing Internet and end host systems
- Server is standard HTTP server
 - Provides video/audio content in multiple formats and encodings
 - DASH allows the use of CDNs for data delivery

Dynamic Adaptive Streaming over HTTP (DASH)

DASH: Key ideas

- Content chunks
- Each chunk can be independently retrieved
- Client-side algorithms to determine and request a varying bit rate for each chunk
 - Goal: ensure good quality of service

Source: Stockhammer MMSys 2011

DASH Data model

Media has several periods

Each period has several Adaptation Sets: Audio, video, close caption Several Representations (ex: codecs, bit rates) per Adaptation set Several Chunks/Segments per Representation

Dynamic bit rate changing of streams

Media Presentation Descriptor (MPD)

- MPD requested over http
 - Also called "manifest"
- Describes all segments
- Timing information and byte ranges of chunks
- Client uses HTTP GET RANGE from a given AS + representation to ask a given bit rate
- Client could use a different URL for each AS + representation

Video Delivery using CDN

Server Selection

- File \rightarrow server mapping done in at least three ways
- Dynamic DNS resolution
 - DNS returns different IP addresses for a given DNS name
- HTTP redirect
 - Use HTTP status code 3xx [with new URL]
 - Web browser does a GET from the new site
- IP anycast
 - Use BGP to announce the same IP address from different locations
 - Client reaches "nearest" location according to inter-domain routing

DASH Summary

- Widely used in video streaming services
- Allows independent requests per segment
 - Hence, independent segment quality and data sizes
 - Encoded through separate HTTP objects and corresponding HTTP byte ranges
 - Combined or separate audio & video streams
- Works well with CDNs
 - Independent representations or chunks can be queried from different locations if needed