```
In [1]: ! ls /Users/user/Downloads/FARS2019NationalCSV/
                        Factor.CSV
                                       NMDistract.CSV Person.CSV
                                                                     Vehicle.CSV
         ACC_AUX.csv
         CEvents.CSV
                        MIACC.csv
                                       NMImpair.CSV
                                                      Race.CSV
                                                                     Violatn.CSV
         Damage.CSV
                        MIDRVACC.csv
                                       NMPrior.CSV
                                                      SafetyEq.CSV
                                                                     Vision.CSV
         Distract.CSV
                                       PBType.CSV
                                                                      accident.CS
                        MIPER.csv
                                                      VEH_AUX.csv
         DrImpair.CSV
                        Maneuver.CSV
                                       PER AUX.csv
                                                      VEvent.CSV
         Drugs.CSV
                        NMCrash.CSV
                                       Parkwork.CSV
                                                      VSOE.CSV
In [79]: import pandas as pd
         import numpy as np
 In [2]: import glob
         from tqdm.notebook import tqdm
         import seaborn as sns
         sns.set()
         from datetime import datetime
         import matplotlib.pyplot as plt
 In [3]: import importlib
         # importlib.reload(sns)
 In [4]: gsa codes = pd.read excel('/Users/user/Downloads/FRPP GLC - United State
         sDEC72020.xlsx')
         gsa_codes = gsa_codes.rename(columns={'City Name':'CITY NAME', 'City Cod
         e':'CITY', 'State Name':'STATE NAME', 'State Code':'STATE'})
         # let's look at the info for the cites we want to compare
         gsa codes['(gsa codes['CITY NAME']=='NEW YORK')&(gsa codes['STATE NAME']
         =='NEW YORK'))
                   |((gsa codes['CITY NAME']=='DETROIT')&(gsa codes['STATE NAME']
```

Out[4]:

=='MICHIGAN'))]

	Territory	STATE NAME	STATE	CITY	CITY NAME	County Code	County Name	Country Code	Old City Name	Date Record Added	С
15948	U	MICHIGAN	26	1260	DETROIT	163	WAYNE	840	NaN	NaT	2
23761	U	NEW YORK	36	4170	NEW YORK	61	NEW YORK	840	NEW YORK CITY	NaT	3

```
In [5]: # let's load up all of the tables we plan to use
        DFdict = {
            'accident': None,
            'Person': None
        # grab the tables we want and concatenate them across years
        for key in tqdm(DFdict.keys()):
            dflist = []
            fids = glob.glob(f'/Users/user/Downloads/*/{key}.CSV')
            for fid in tqdm(fids, leave=False):
                dflist.append(pd.read csv(fid, encoding="ISO-8859-1", engine='py
        thon'))
            DFdict[key] = pd.concat(dflist, axis=0)
In [6]: # we only care about DETROIT and NEW YORK right now so let's filter all
         of our data just keep those
        # let's join the city and state names onto our data using the GSA datafr
        ame
        df_a = DFdict['accident']
        df_a = df_a.merge(gsa_codes[['CITY NAME', 'CITY', 'STATE NAME', 'STATE'
        ]], on=['STATE', 'CITY'], how='left')
        # we can also filter the DF to only include the data for the cities we c
        are about
        df a = df a[((df a['CITY NAME']=='NEW YORK')&(df a['STATE NAME']=='NEW Y
        ORK'))
                 |((df_a['CITY NAME']=='DETROIT')&(df_a['STATE NAME']=='MICHIGAN'
        ))]
        nyc det cases = set(df a.ST CASE.dropna().unique())
```

```
In [111]: # we also only want to look at pedestrian cases, so we will filter for S
    T_CASEs that include at least one pedestrian
    # this is where PER_TYPE = 4, 5, 6, 7, 8, 10 or 19
    df_p = DFdict['Person']
    pedestrian_cases = set(df_p[df_p.PER_TYP.isin([4,5,6,7,8,10,19])].ST_CAS
    E.dropna().unique())
```

```
In [112]: # we want to now just keep cases that are either in NYC or DET, and have
    at least one pedestrian involved
    # here we take the intersection of the cases we collected above
    keep_cases = nyc_det_cases.intersection(pedestrian_cases)

# now we can filter out data to just those rows matching the selected ST
    _CASEs
    df_a = df_a[df_a.ST_CASE.isin(keep_cases)]
    df_p = df_p[df_p.ST_CASE.isin(keep_cases)]
```

```
In [113]: # let's also merge the city info into the person data, so it's easier to
    look at the comparative aggregates
    df_p = df_p.merge(df_a[['ST_CASE', 'CITY NAME', 'YEAR']], on='ST_CASE',
    how='left')

# the documentation also indicates that for the person dataframe only 0-
    120 are actual ages
    df_p['AGE'] = df_p['AGE'].map(lambda x: None if x>120 else x)
```

In [114]: # Let's first look at whether there is a significant difference in the a
 ge of people involved in fatal pedestrian crashes
 # and how that may change over time
 fig, axes = plt.subplots(1, 2, figsize=(15, 5))
 sns.boxenplot(data=df_p, x="YEAR", y="AGE", hue="CITY NAME", ax=axes[0])

 crash_ages = df_p.groupby(['CITY NAME', 'YEAR']).AGE.quantile(0.5).reset
 _index()
 sns.lineplot(data=crash_ages, x='YEAR', y='AGE', hue='CITY NAME', ax=axe
 s[1])

clearly the age of people involved in crashes tends to be lower in DET
 ROIT than in NYC
For future we can explore this further by looking at the breakdown of
 persons by sex, in-vehicle/pedestrian, and fatality

Out[114]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd3ab692690>


```
In [120]: # Let's first look at whether there is a significant difference in the a
          ge of people involved in fatal pedestrian crashes
          # and how that may change over time
          fig, axes = plt.subplots(1, 2, figsize=(15, 5))
          # let's create a new column to indicate whether person involved in accid
          ent was a pedestrian or not
          df p['IS PEDESTRIAN'] = df p.PER TYP.map(lambda x: True if x in [4,5,6,7]
          ,8,10,19] else (False if x in [1,2,3,9] else None))
          crash_ped = df_p.groupby(['CITY NAME', 'YEAR', 'IS_PEDESTRIAN']).ST_CASE
          .count().reset index()
          sns.lineplot(data=crash_ped, x='YEAR', y='ST_CASE', style='IS_PEDESTRIA
          N', hue='CITY NAME', ax=axes[0])
          # we will map the SEX column to more readable format
          sex_map = {1:'MALE', 2:'FEMALE', 8:None, 9:None, 'MALE':'MALE', 'FEMALE'
          :'FEMALE'} # there are a low enough count of unknown/not reported cases
           that we will drop them for the viz
          df p['SEX'] = df p.SEX.map(sex map, na action='ignore')
          crash sex = df_p.groupby(['CITY NAME', 'YEAR', 'SEX']).ST_CASE.count().r
          eset index()
          sns.lineplot(data=crash_sex, x='YEAR', y='ST_CASE', style='SEX', hue='CI
          TY NAME', ax=axes[1])
```

Out[120]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd3ab464290>


```
In [ ]:
```

In [9]: # let's get the population lvl information
we can group things by Sex, Age, number of fatalities, drug use(?)

In [121]: # let's get the total elapsed minutes in the day for each row, so we can plot it over the course of time df a['tMINUTE'] = df a.apply(lambda row: None if not (0<=row.HOUR<=23 an d 0<=row.MINUTE<59) else row.HOUR*60 + row.MINUTE, axis=1)</pre> sns.kdeplot(data=df a, x='tMINUTE', hue='CITY NAME', cut=0, common norm= False, bw_adjust=.3) # we notice that there is a pretty obvious peak late at night for DETROI T between ~10pm and ~3am ## (not that there is a dip n the KDE at the ends, this is just b/c of t he way the KDE is fit ## -- ideally we would use a KDE method that can handle cyclic data... a future improvement for vizualization purposes) # Whereas for NYC the cases fluctuate but there is no dominant time of d ay # There is a upward shift starting after ~5-6pm for NYC, which might rel ate to when people leaving work # a future analysis might be to investigate if the increase in incidents in detroit late at night might be related to # the type of drivers who would be driving during this time, namely comm ercial drivers. We can look at the cross-section of drivers # by license type and see if this uptick in DETROIT associated with high er

Out[121]: <matplotlib.axes. subplots.AxesSubplot at 0x7fd3ab471410>

We can look at the overall cases and deaths yr-over-yr for each city In [120]: # to see if there is any significant difference in trend crash_counts = df_a.groupby(['CITY NAME', 'YEAR']).ST_CASE.count().reset _index().assign(TYPE='CASES').rename(columns={'ST_CASE':'COUNT'}) fatal_counts = df_a.groupby(['CITY NAME', 'YEAR']).FATALS.sum().reset_in dex().assign(TYPE='FATALS').rename(columns={'FATALS':'COUNT'}) all_counts = pd.concat([crash_counts, fatal_counts], axis=0) sns.lineplot(data=all_counts, x="YEAR", y="COUNT", hue="CITY NAME", styl e='TYPE') # Both cities seem to have an overall downward trend (thought NYC has an uptick in 2019) # It would be interesting to see how much of this could be driven by dec lining numbers of licensed drivers in each city # To explore this we could join data from NHTSA showing the number of li censed drivers per city per year for 2014-2019.

Out[120]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb66bbb11d0>


```
In [77]: # we can look at more granular time series trends
         df a['date'] = df a.apply(lambda row: datetime(year=row.YEAR, month=row.
         MONTH, day=row.DAY), axis=1)
         day_crash_counts = df_a.sort_values('date').groupby(['CITY NAME', 'date'
         ]).ST_CASE.count().reset_index()
         week_crash_counts = day_crash_counts.groupby(['CITY NAME', pd.Grouper(ke
         y='date', freq='W-SUN')]).ST CASE.sum().reset index()
         month crash_counts = day_crash_counts.groupby(['CITY NAME', pd.Grouper(k
         ey='date', freq='M')]).ST_CASE.sum().reset_index()
         fig, axes = plt.subplots(figsize=(16,5))
         sns.lineplot(data=month_crash_counts, x="date", y="ST_CASE", hue="CITY N
         AME")
         plt.show()
         # as a future step, we can look at seasonality (using something like ARI
         MA modeling) to determine if there is any interesting
         # differences in seasonal peaks between the two cities. For example, one
         hypothesis is that more people visit NYC during
         # the winter holiday, in which case there may be an increase in the numb
         er of pedestrian fatal crashes due to the higher volume
         # of pedestrians on the street and travelling around the city.
```


In []: