<u>REMARKS</u>

This Preliminary Amendment is to clarify portions of the Application, including the Specification and Claims, to add a new claim and to add a replacement Abstract of the Disclosure. Also included are a Substitute Specification, a marked-up copy of the Substitute Specification showing the changes made and an English-translation of the International Application. No new matter has been added.

The Application is now in condition for allowance, and such is respectfully requested.

It is respectfully requested that, if necessary to effect a timely response, this paper be considered as a Petition for an Extension of Time sufficient to effect a timely response and shortages in other fees, be charged, or any overpayment in fees be credited, to the Account of Barnes & Thornburg LLP, Deposit Account No. 02-1010 (677/44948).

Respectfully submitted,

/Richard P. Krinsky

Reg. No. 47,720

(202) 289-1313

BARNES & THORNBURG LLP

Suite 900

750 17th Street, N.W.

Washington, DC 20006-4607

Enclosures RPK/cu

MARKED-UP COPY

OF SUBSTITUTE SPECIFICATION

SEPARATOR HAVING A CENTRIFUGAL DRUM AND A PISTON SLIDE

BACKGROUND AND SUMMARY

[00001]

The invention present disclosure relates to a separator having a rotatable drum with a vertical axis of rotation, in which preferably a plate stack is arranged, as well as having.

The separator includes a piston slide for the opening and closing of solids discharge openings in the drum, in the. In an opened condition of the piston slide, a radial gap being is formed between the drum 2, particularly between a top part of the drum, and the piston slide.

[00002]

In the case of separators of this type, which have piston slides, there is the need to reduce the occurrence of erosive phenomena in the area of the solids discharge openings, particularly evacuation slots, and to minimize the effect of the depositing of contaminations in this area.

[00003]

Separators with piston slides are illustrated in German Patent Documents DE 38 03 762 A1, DE 102 20 757 A 1, DE 44 36 459 C2 and U.S. Patent Document US 5,916,083. Separators with nozzle openings are illustrated in German Patent Document DE 195 27 039 C1 and U.S. Patent Document US 290060,239.

[00004]

It is an object of the invention to reduce these disadvantageous effects. The present disclosure addresses the above-referenced needs.

[00005]

The invention achieves this task by means of the object of Claim 1 present disclosure relates to a separator that includes a rotatable drum having a drum top part, a vertical axis of rotation and a disk stack arranged therein. Also included is a piston slide for opening and closing solids discharge openings in the drum. A radial gap is formed between the drum top part and the piston slide in an open condition of the piston slide. Also included is at least one annular chamber located on both sides of the radial gap in

front of the solids discharge openings in an outer circumference area of the piston slide and the drum top part.

[00006]

Accordingly, as noted above, at least one annular chamber is constructed on both sides of the gap, radially in front of the solids discharge openings in the outer circumference area of the piston slide and the drum, particularly in the top part-of the drum.

[00007]

Particularly preferably, It may be that two radially successive annular chambers are constructed in the piston slide and in the top part of the drum, the. The two annular chambers being are constructed symmetrically with respect to the contact surface of the piston slide on the top part of the drum in the closed condition. Specifically, this construction causes considerably optimized flow conditions in the area of the discharge openings.

[80000]

Preferably, the The two annular chambers in the closed condition of the piston slide are constructed symmetrically with respect to the contact surface of the piston slide on the top part of the drum.

[00009]

The A radially interior annular chamber of the annular chambers is preferably constructed as a fanning-out chamber for an exiting stream of solid matter.

[00010]

It is also advantageous for the A radially exterior annular chamber of the annular chambers to be constructed as a swirl chamber for the exiting stream of solid matter.

[00011]

The <u>invention optimizespresent disclosure relates to</u> the flow conditions in the area in front of the solids discharge openings in a simple manner by an optimization of the geometry in the piston solid and drum elements, [[(]]particularly the top part of the drum[[)]], which are connected in front of the solids discharge openings, which only. This results in a corresponding treatment of these elements but not in additional expenditures of material. The <u>invention can therefore separator of the present disclosure can</u> be implemented in a simple manner and minimizes not only the effect of the erosive

phenomena in the area of the solids discharge openings but also reduces the tendency to form deposits. It therefore The separator according to the present disclosure contributes to a high operative readiness of the separator and to a reduction of the necessity of cleaning operations, particularly if two annular chambers are provided which follow one another radially and are connected by way of a bottleneck.

In the following, the device according to the invention will be explained in detail 43][00012] by means of an embodiment with reference of the attached drawing. Other aspects of the present disclosure will become apparent from the following descriptions when considered in conjunction with the accompanying drawings. **BRIEF DESCRIPTION OF THE DRAWINGS** 44][00013] Figure 1 is a schematic, sectional view of a separator; and, according to the present disclosure. 45][00014] Figure 2 is a view of a detail of thean area of a solids discharge opening on the drum of the separator of Figure 1 when the piston slide is open;—and. 46][00015] Figure 3 is a view similar to that of a detail from Figure 2, when the piston slide is closed. **DETAILED DESCRIPTION** 47|[00016] Figure 1 is a schematic sectional view of a separator 1 with a rotatable drum 2 and a one-piece or multiple-piece non-rotatable hood 3 which surrounds the drum completely or for the most part. The drum 2 with thehas a vertical drum axis and axis of rotation M, and has an intake pipe 4 extending, for example, into the drum 2 from above. A distributor 5 is connected on the an output side of the intake pipe 4, through which distributor 5 the centrifugal material ean beis guided into the drum 2. A disk stack 6 of a plurality of conical disks 7 is arranged in the drum 2. 48][00017] The removal of, here, for example, two liquid phases from the drum 2 takes place

[00012] Advantageous embodiments and further developments are indicated in the subclaims.

between these elements, mainly in the an axial gap between the piston slide 13 and the bottom part 15 of the drum 2 and between the top part 16 of the drum 2 and the bottom part 15 of the drum 2.

241[00023]

While-Figure 2 illustrates the open condition of the piston slide 13, in which the gap 19 is formed, and Figure 3 shows the closed condition of piston slide 13. The gap A width S-of gap 19 may slightly vary in practice from one opening operation to the next. The following conditions therefore relate to a desired opening position, as suggested in [[{]]Figure 2[[]], which, on average, is to be achieved by means of the piston slide 13. The lower surface 20 of the top part 16 of the drum 2 represents a fixed reference plane, from which the piston slide 13 moves away during the opening.

25][00024]

Two radially successive annular chambers 22 and 23 respectively are constructed radially outside the sealing groove 18 in the piston slide 13 and the top part 16 of the drum 2 in each case on both sides of the gap 19 or here. The chambers 22, 23 lie symmetrically in the open condition with respect to the a center plane E of the gap 19, [[(]]] and in the closed condition, symmetrically with respect to the surface 20), which annular. Annular chambers 22 and 23 extend either in a surrounding manner over the an entire circumference or at least in each case on the a circumference over the an area which corresponds with the solids discharge openings 14.

26][00025]

When, in the following, References to the interior and the exterior annular ehamber chambers 22, 23 is addressed, this applies in each case apply to the two-interior and exterior annular chambers in the piston slide 13 and in the top part 16 of the drum 2.

27][00026]

The radially interior annular chamber 22 of the two annular chambers 22-starts just radially outside the sealing groove 18 in the top part 16 of the drum $\underline{2}$ or at the \underline{a} corresponding point of the piston slide 13 at a kind of sharp edge 24 at a radius $\underline{r1}$ - $\underline{r_1}$ [[$\underline{1}$] starting from the drum axis M —see Figure 1— or here also measurable from the \underline{a} groove edge of the groove) and 18. Chamber 22 widens at a radius point $\underline{r2}$ - $\underline{r_2}$ to a

<u>23</u> abut the <u>an</u> inner circumferential wall of the bottom part 15 of the drum $\underline{2}$ at the outer radius $\underline{r4}$ at the \underline{a} gap between the piston slide $\underline{13}$ and the bottom part 15 of the drum $\underline{2}$ or between the top part 16 of the drum $\underline{2}$ and the bottom part 15 of the drum $\underline{2}$.

341[00033]

During the exiting of the solids from the interior annular chamber 22, the solids impact at a high speed on the inner circumferential wall of the bottom part 15 of the drum 2, so that a portion of the exiting stream of solids is reflected back into the annular chamber 23. These particles are guided in the annular chamber 23 in the curved manner of arrows P and then exit from the solids discharge openings 14, so that. Thus, a depositing of solids in the annular chambers 22, 23 and/or of the gaps between the bottom part 15 of the drum 2 and the piston slide 13 and the top part 15 of the drum 2 is effectively prevented.

351[00034]

While, in In the case of conventional separators, the an exit height of the gap 19 is smaller than that of the solids discharge openings 14, this is reversed here. In the present disclosure, the exit height H₃ of gap 19 is larger than a height H₂ of the solids discharge openings 14.

[00035]

Although the present disclosure has been described and illustrated in detail, it is to be clearly understood that this is done by way of illustration and example only and is not to be taken by way of limitation. The scope of the present disclosure is to be limited only by the terms of the appended claims.

LIST OF REFERENCE SYMBOLS	
Separator	1
drum-	2
hood	3
drum top part	X
intake pipe	4
distributor	5
disk stack	6
disks	7
centripetal pumps	8, 9
outlet pipes	10, 11
solids space	12
piston slide	13
solids discharge openings	14
- drum bottom part	15
drum top part	16
sealing ring	17
groove	18
gap	19
surfaces	20, 21
annular chambers	22, 23
- sharp edge	24
narrowing	25
radii	 r1 - r4
extensions	H1 - H3
drum axis	M