МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Компьютерная графика»

Тема: Формирования различных поверхностей с использованием ее пространственного разворота и ортогонального проецирования на плоскость при ее визуализации (выводе на экран дисплея)

Студент гр. 1335	Максимов Ю.Е
Преподаватель	Матвеева И.В.

Санкт-Петербург 2024

Оглавление

Цель работы	3
Задание	3
Используемые ресурсы	3
Основные теоретические положения	4
Пример работы программы	6
Вывод	7
Список литературы	8

Цель работы

Формирование различных поверхностей с использованием её пространственного разворота и ортогонального проецирования на плоскость при её визуализации (выводе на экран дисплея).

Задание

Сформировать билинейную поверхность на основе произвольного задания её четырёх угловых точек. Обеспечить её поворот относительно осей X и Y.

Используемые ресурсы

Для выполнения лабораторной работы использовался язык C++ и фреймворк Qt для визуализации.

Основные теоретические положения

Поверхности задаются параметрически от двух независимых параметров и и w (отдельно по каждому параметру), т.е. можем задавать неоднозначные поверхности (т.е. для одного и того же значения одного параметра второй может иметь несколько значений): $\underline{Q}(u,w) = f(\underline{P}_i(u,w))$ - параметрическая зависимость поверхности, позволяющая определить положение координат любой её точки в функции от значений координат этой поверхности в заданных точках. При этом значение Q(u,w) на промежутках задания параметров и и w может определяться (меняться) непрерывно, а значения $P_i(u,w)$ задаются для конкретных значений и и w.

При этом координаты любой точки (X, Y и Z), относящейся к поверхности определяются исходя из соответствующих координат (X, Y и Z) точек задания и задающей функции, которая для всех координат одинаковая, т.е. $X(u,w)f(X_i(u,w))$ и т.д.

1. Простейшими трехмерными поверхностями являются Билинейные поверхности, их задают на ограниченном участке. Для такого участка поверхности требуется задание в пространстве 4-х угловых точек поверхности.

Тогда уравнение билинейчатой поверхности представляется как:

$$\underline{Q}(u,w) = \underline{P_{00}}(1-u)(1-w) + \underline{P_{01}}(1-u)w + \underline{P_{10}}u(1-w) + \underline{P_{11}}uw$$
 Если $u=0$; $w=0$, то попадаем в точку $\underline{P_{00}} = \underline{Q}(u,w)$; Если $u=1$; $w=0$, то попадаем в точку $\underline{P_{10}} = \underline{Q}(u,w)$; Если $u=1$; $w=1$, то попадаем в точку $\underline{P_{11}} = \underline{Q}(u,w)$.

Если по каждому параметру разделим на 5 участков, то получаем сетку с линейной аппроксимацией.

Если по каждому параметру разделим на 5 участков:

Пример.

$$Q(0.5,0.5) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (1-0.5) (1-0.5) + \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} (1-0.5) (0.5) + \\ + \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (0.5) (1-0.5) + \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} (0.5) (0.5) = \\ = 0.25 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} + 0.25 \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + \\ + 0.25 \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + 0.25 \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = \\ = \begin{bmatrix} 0.5 & 0.5 & 0.5 \end{bmatrix}.$$

(а) Определяющие угловые точки; (b) билинейная поверхность.

Пример работы программы

Вывод

При выполнении лабораторной работы были изучены формирования различных поверхностей с использованием её пространственного разворота и ортогонального проецирования на плоскость при её визуализации. В частности, исследована билинейная поверхность и ее построение в пространстве.

Список летературы

Шамалов М. Н., Рыжиков С. М. *Основы проектирования в компьютерной графике.* — М.: Питер, 2007.

- Руденко О. Н., Краснов С. В. *Вычислительная геометрия и графы.* СПб.: Изд-во СПбГУ, 2010.
- Маренков Н. Л. Основы проективной и аффинной геометрии. М.: МИФИ, 1997.