#### Matematika

| Ė             | \doteq      | Přibližně            |
|---------------|-------------|----------------------|
| $\neq$        | \neq        | Nerovná se           |
| ><br><        | \ge         | Větší nebo rovno     |
| $\leq$        | \le         | Menší nebo rovno     |
| $\sum$        | \sum        | Suma                 |
| $\rightarrow$ | \to         | Do                   |
| $\pm$         | \pm         | Plus mínus           |
| $\sqrt{2}$    | \sqrt{2}    | Odmocnina            |
| $\sqrt[3]{2}$ | \sqrt[3]{2} | N-tá odmocnina       |
| $\lim$        | $\lim_{}$   | Limita x jdoucí k n. |

# Množiny

| $\cap$ | \cap      | Průnik (a současně) |
|--------|-----------|---------------------|
| $\cup$ | \cup      | Sjednoceno (nebo)   |
| $\in$  | \in       | Náleží              |
| Ø      | \emptvset | Prázdná množina     |

### Logika

| $\wedge$          | \wedge          | Konjunkce (AND)                 |
|-------------------|-----------------|---------------------------------|
| $\vee$            | \vee            | Disjunkce (OR)                  |
| $\Rightarrow$     | $\Rightarrow$   | Implikace (jestliže, pak)       |
| $\Leftrightarrow$ | \Leftrightarrow | Ekvivalence (právě tehdy, když) |
| $\neg$            | \neg            | Negace                          |
| $\forall$         | \forall         | Pro každé                       |
| ∃                 | \exists         | Existuje                        |
|                   |                 |                                 |

### Zkratky

\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\dlim}{\displaystyle\lim}
\newcommand{\hr}{\hrule}
\newcommand{\hl}{\hline}

### Odkazy

- Matematický korespondenční seminář MUNI
- Wikipedia Matematický symbol
- Art of problem solving
- ČVUT Stručný popis
- VŠB Matematické prostředí
- CSTug symbols
- mff.lokiware
- Detexify<sup>2</sup>

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{A} \wedge \mathbf{B}$ | $\mathbf{A}\vee\mathbf{B}$ | $\mathbf{A}\Rightarrow\mathbf{B}$ | $\mathbf{A} \Leftrightarrow \mathbf{B}$ |
|--------------|--------------|--------------------------------|----------------------------|-----------------------------------|-----------------------------------------|
| 1            | 1            | 1                              | 1                          | 1                                 | 1                                       |
| 1            | 0            | 0                              | 1                          | 0                                 | 0                                       |
| 0            | 1            | 0                              | 1                          | 1                                 | 0                                       |
| 0            | 0            | 0                              | 0                          | 1                                 | 1                                       |

# Diferenciální počet

• 
$$(konst.)' = 0$$

$$\bullet (x^a)' = a \cdot x^{a-1}$$

$$\bullet \ (a^x)' = a^x \cdot \ln(a)$$

• 
$$\log_a(x)' = \frac{1}{x \cdot \ln(a)}$$

$$\bullet$$
  $(e^x)' = e^x$ 

• 
$$(\ln x)' = \frac{1}{x}$$

• 
$$(u \pm v)' = u' \pm v'$$

• 
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

• 
$$\sin(x)' = \cos(x)$$

$$\bullet \ \cos(x)' = -\sin(x)$$

• 
$$\tan(x)' = \frac{1}{\cos^2 x}$$

• 
$$\cot(x)' = \frac{1}{\sin^2 x}$$

• 
$$(x)' = 1$$

$$\bullet \ \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

$$\bullet \ (u \cdot v)' = u' \cdot v + v \cdot u'$$

• 
$$f(x)^{g(x)} = e^{g(x) \cdot \ln g(x)}$$

• 
$$\arcsin(x)' = \frac{1}{\sqrt{1-x^2}}$$

• 
$$\arccos(x)' = -\frac{1}{\sqrt{1-x^2}}$$

• 
$$\arctan(x)' = \frac{1}{1+x^2}$$

• 
$$arccot(x)' = -\frac{1}{1+x^2}$$

• 
$$(\sqrt{x})' = \frac{1}{2 \cdot \sqrt{x}}$$

• 
$$(\log x)' = \frac{1}{x \cdot \ln 10}$$

• 
$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

• 
$$(k \cdot f(x))' = k \cdot f'(x)$$

#### Goniometrické funkce

|                   | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ |
|-------------------|---|----------------------|----------------------|----------------------|-----------------|
| $\sin \mathbf{x}$ | 0 | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               |
| $\cos \mathbf{x}$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0               |
| $\tan \mathbf{x}$ | 0 | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | *               |
| $\cot \mathbf{x}$ | * | $\sqrt{3}$           | 1                    | $\frac{\sqrt{3}}{2}$ | 0               |

• 
$$\sin(x \pm 2k\pi) = \sin x$$

• 
$$\cos(x \pm 2k\pi) = \cos x$$

$$-\cos(x\pm2n\pi)=\cos x$$

• 
$$\tan(x \pm k\pi) = \tan x$$

• 
$$\cot(x \pm k\pi) = \cot x$$

$$\bullet \sin(-x) = -\sin x$$

• 
$$\cos(-x) = \cos x$$

• 
$$\tan(-x) = -\tan x$$

• 
$$\cot(-x) = -\cot x$$
 •  $\sin^2 x \cdot \cos^2 x = 1$ 

• 
$$\tan x = \frac{\sin x}{\cos x}$$

• 
$$\cot x = \frac{\cos x}{\sin x}$$

• 
$$\cot x = \frac{\cos x}{\sin x}$$

$$\bullet \ \tan x \cdot \cot x = 1$$

$$\bullet \sin^2 x \cdot \cos^2 x = 1$$

# Závorky

• 
$$(a+b)^2 = a^2 + 2ab + b^2$$

• 
$$(a-b)^2 = a^2 - 2ab + b^2$$

• 
$$a^2 + b^2 = (a+b)(a+b)$$

• 
$$a^2 - b^2 = (a+b)(a-b)$$

### Mocniny

$$\bullet \ a^{-n} = \frac{1}{a^n}$$

$$\bullet \ a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

$$\bullet \ (a*b)^n = a^n * b^n$$

$$\bullet \ a^m * a^n = a^{m+n}$$

### Odmocniny

$$\bullet \ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

# Logaritmy

$$\bullet \ y = \log_a x \Leftrightarrow a^y = x$$

• 
$$\log_a \{x_1 * x_2\} = \log_a x_1 + \log_a x_2$$

$$\bullet \ (a+b)^3 = a^3b^0 + 3a^2b^1 + 3a^1b^2 + a^0b^3$$

$$(a-b)^3 = a^3b^0 - 3a^2b^1 + 3a^1b^2 - a^0b^3$$

• 
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

• 
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$\bullet \ \frac{a^m}{a^n} = a^{m-n}$$

$$\bullet \ (a^m)^n = a^{m*n}$$

$$\bullet \ \left(\frac{a}{b}\right)^m = \frac{a^m}{a^m}$$

• 
$$\sqrt[n]{a}^m = \sqrt[n]{a^m}$$

$$\bullet \sqrt[n]{\sqrt[m]{a}} = ^{n*m}\sqrt{a}$$

• 
$$\log_a\left(\frac{x_1}{x_2}\right) = log_a x_1 - log_a x_2$$

$$\bullet \ \log_a x^n = n * \log_a x$$