Calcolo Numerico - A.A. 2013/14 Appello 1 luglio 2014

Esercizio 1 Data un'asta di sezione quadrata di area $A = 1 \text{cm}^2$, di lunghezza L = 2 m e densità lineare variabile $\lambda(x) = \sin(x)/x \text{ kg/m}$, si vuole calcolare

- 1. la massa $m = A \int_0^L \lambda(x) dx$ dell'asta,
- 2. la posizione (lungo l'asse x) del centro di massa

$$\overline{x} = \frac{\int_0^L x \lambda(x) dx}{\int_0^L \lambda(x) dx},$$

utilizzando un metodo opportuno di quadratura composita, garantendo che i valori calcolati distino dai valori esatti al più di un errore pari a $\epsilon=10^{-5}$.

Esercizio 2 Si vuole risolvere il sistema di equazioni non lineari

$$\begin{cases} e^{x_1^2 + x_2^2} = 2\\ e^{x_1^2 - x_2^2} = \alpha, \end{cases}$$
 (1)

essendo $\alpha \in \mathbb{R}$.

Punto 2.1

- Si consideri $\alpha = 1.5$, si localizzino graficamente le radici del sistema e si dica quante sono.
- Si risolva il sistema con il metodo di Newton prendendo $\mathbf{x}^{(0)} = (0.4, 0.4)^T$, tolleranza 10^{-8} e numero massimo di iterazioni pari a 100. Dire quante iterazioni sono servite per giungere a convergenza, rappresentare la storia di convergenza in scala semilogaritmica, dedurre l'ordine di convergenza e dire se l'ordine di convergenza mostrato dal metodo corrisponde a quanto previsto dalla teoria.

Punto 2.2

Sempre con $\alpha = 1.5$ si prenda come dato iniziale il punto $\mathbf{x}^{(0)} = (4,4)^T$ e si risolva ancora con il metodo di Newton con tolleranza 10^{-8} . Dire quante iterazioni sono servite per giungere a convergenza, rappresentare la storia di convergenza in scala semilogaritmica e spiegare il comportamento della storia di convergenza del metodo.

Punto 2.3

Come il punto **2.1**, ma con $\alpha = 2$ e $\mathbf{x}^{(0)} = (1, 1)^T$.

Figure 1: La regione di assoluta stabilità del metodo implementato in schema010714.m è la parte di piano interna alla curva chiusa

Esercizio 3 Si vuole risolvere numericamente il problema di Cauchy

$$\begin{cases}
0.5y''(t) + y'(t) + y(t) = 0.5e^{-t} + 0.5\sin(t) + \cos(t) & t \in (0, 10] \\
y(0) = 1 & y'(0) = 0
\end{cases}$$
(2)

con il metodo numerico implementato nella function schema010714.m (fare il download da http://paola-gervasio.unibs.it/CS/matlab).

Punto 3.2. Riformulare l'equazione del secondo ordine come un sistema di equazioni del primo ordine nella forma $\mathbf{y}'(t) = A\mathbf{y}(t) + \mathbf{g}(t)$.

Punto 3.2. Determinare numericamente l'ordine di accuratezza del metodo implementato in schema010714.m utilizzando $h \leq 0.1$ e sapendo che la soluzione esatta del problema (2) è $y(t) = e^{-t} + \sin(t)$.

Punto 3.2. In Figura 1 è rappresentata la regione di assoluta stabilità del metodo implementato in schema010714.m. Sfruttando la definizione di regione di assoluta stabilità e partendo da questa figura, determinare in maniera approssimativa (con due cifre decimali) il valore $h_0 > 0$ tale che il metodo dato risulti assolutamente stabile per ogni $0 < h < h_0$ quando viene applicato al problema di Cauchy $\mathbf{y}'(t) = A\mathbf{y}(t)$, per $t \in (0, 100]$, con $\mathbf{y}(0) = [1; 1]$.

Quindi verificare quanto trovato su carta, calcolando la soluzione numerica con alcuni valori di h maggiori e minori di h_0 .