Radio Measurements for the Amateur

November 24, 2014

Jason Milldrum, NT7S Thomas S. Knutsen, LA3PNA

Etherkit

https://github.com/NT7S/RadioMeasurements

Introduction

Glossary

AF Audio Frequency

CW Continuous Wave, i.e. a single tone

DUT Device Under Test RMS Root-mean-square

Test Equipment

Receiver Measurements

4.1 Minimum Discernible Signal (MDS)

Overview

The purpose of this test is to measure the lowest-level CW signal which can be detected by a receiver. This is defined as a signal input at the receiver antenna port which produces the same amount of AF power output as the intrinsic background noise of the receiver. In other words, when a signal at the MDS level is applied to the antenna port, a 3 dB increase in output power is measured over the receiver's internal noise level measurement.

Equipment List

- RF Signal Generator
- 100 dB Step Attenuator (at least 1 dB steps required)
- AC RMS Voltmeter (preferably with dB scale)
- AF Monitor Amplifier or 8 Ω Resistive Load

Test Setup

- • 2 — 50 Ω jumper cables Usually coaxial cables (such as RG-58) with BNC Male-to-BNC Male connectors
- 1 audio jumper cable

 Varies depending on the connectors on your receiver and AF amplifier or load

Figure 4.1: MDS Measurement Setup

• 1 — set of voltage probe test leads Your choice of connector for measuring

AC RMS voltage output

Connections

Make sure all equipment is powered off before making any connections.

- Connect the signal generator output to one port of the step attenuator using a 50 Ω jumper cable.
- Connect the other port of the step attenuator to the DUT (receiver) using a 50 Ω jumper cable.
- Connect the audio output of the DUT (receiver) to the AF amplifier or 8 Ω load using an audio jumper cable.
- Connect the AC RMS voltmeter probes to the properly loaded audio output of the DUT (receiver).

Presets

- Turn ON the signal generator but make sure that the output is OFF. Set the output level to -50 dBm (if you are able to). Set the output frequency to the desired test frequency.
- Set the step attenuator for -40 dB. This will give an initial test signal level of -90 dBm. If you are not able to set your signal generator to -50 dBm, set the step attenuator to give you -90 dBm of test signal output.
- Turn ON the AF amplifier.
- Turn ON the DUT (receiver) and set for the desired measurement band and frequency. Set the AF gain (volume) control fully-counterclockwise

(no AF output), then set to an appropriate level for normal listening. If your receiver has AGC, disable it.

• Turn ON the AC RMS voltmeter. Set the meter scale as necessary.

Test Procedure

- 1. Turn ON the signal generator output. You should hear a CW tone from the AF amplifier.
- 2. Fine-tune the tune control of the DUT (receiver) until the CW tone is centered in the passband and is at maximum level.
- 3. Turn OFF the signal generator output.

AF Noise + MDS Signal Power _

4. Note the reading of the AC RMS voltmeter in dB. If the meter reading is fluctuating quite a bit, you may need to increase the AF gain control of the DUT (receiver) in order to get a more stable reading.

	AF Noise Power
5.	The MDS level will be the AF power level 3 dB higher than the measurement made in the previous step. Calculate it below.

6. Turn ON the signal generator output. The reading from the AC RMS voltmeter should be significantly higher than the calculated level in step 5 (if you are using an external AF amplifier, you may need to turn down its gain control). Use the controls on the step attenuator to step down the test signal level until you have a reading on the AC RMS voltmeter that is closest to the figure derived in previous step. Note the amount of attenuation set on the step attenuator, then subtract that from the output level of the signal generator. This is your MDS figure.

3 FD 0	
MDS	

For example, if your signal generator is set to -50 dBm and the step attenuator is set to 81 dB, then your MDS is -131 dBm.

Hints and Tips

• Many QRP receivers and transceivers have a relatively low-level audio output, designed for either headphones-only or for a small speaker. In

order to make the most accurate measurement, you may need to turn the AF gain control to maximum.

4.2 IF Rejection

Overview

The purpose of this test is to measure the level a CW signal on the IF frequency can bleed into an receiver and get detected as a valid signal. This is defined as a signal on the IF frequency at the receiver antenna port which produces the same amount of AF power output as the intrinsic background noise of the receiver. For this procedure to work its important to have preformed the MDS measurement as outlined earlier in this document or the noise figure measurement.

Equipment List

- RF Signal Generator
- 100 dB Step Attenuator (at least 1 dB steps required)
- AC RMS Voltmeter
- \bullet AF Monitor Amplifier or 8 Ω Resistive Load

Test Setup

Figure 4.2: IF Rejection Setup

- 2 50 Ω jumper cables Usually BNC Male-to-BNC Male
- 1 audio jumper cable Varies depending on the connectors on your receiver and AF amplifier or load
- $\bullet\,$ 1 set of voltage probe test leads Your choice of connector for measuring AC RMS voltage output

Connections

Make sure all equipment is powered off before making any connections.

- Connect the signal generator output to one port of the step attenuator using a 50 Ω jumper cable.
- Connect the other port of the step attenuator to the DUT (receiver) using a 50 Ω jumper cable.
- Connect the audio output of the DUT (receiver) to the AF amplifier or 8
 Ω load using an audio jumper cable.
- Connect the AC RMS voltmeter probes to the properly loaded audio output of the DUT (receiver).

Presets

- Turn ON the signal generator but make sure that the output is OFF. Set the output level to -30 dBm (if you are able to). Set the output frequency to the desired test frequency.
- Set the step attenuator for -40 dB. This will give an initial test signal level of -70 dBm. If you are not able to set your signal generator to -50 dBm, set the step attenuator to give you -70 dBm of test signal output.
- Turn ON the AF amplifier.
- Turn ON the DUT (receiver) and set for the desired measurement band and frequency. Set the AF gain (volume) control fully-counterclockwise (no AF output), then set to an appropriate level for normal listening. If your receiver has AGC, disable it.
- Turn ON the AC RMS voltmeter. Set the meter scale as necessary.

Test Procedure

1.	Turn ON the signal generator output and reduce t	the attenuation. You
	should hear a CW tone from the AF amplifier. Ad	just the frequency so
	the tone is sentered in the receiver's passband.	

$_{ m IF}$	center	frequency	 MHz.

- 2. Turn OFF the signal generator output.
- 3. Note the reading of the AC RMS voltmeter in dB. If the meter reading is fluctuating quite a bit, you may need to increase the AF gain control of the DUT (receiver) in order to get a more stable reading.

	AF noise power
4.	4. The IF rejection power level will be the AF power level 3 dB higher than the measurement made in step 4. Calculate it below.
	AF Noise + IF rejection power level
5.	Turn ON the signal generator output. The reading from the AC RMS voltmeter should be significantly higher than the calculated level in step 4. Use the controls on the step attenuator to step down the test signal level until you have a reading on the AC RMS voltmeter that is closest to the figure derived in step 4. Note the amount of attenuation set on the step attenuator, then subtract that from the output level of the signal generator. This is your IF rejection power level in dBm.
	IF rejection power: dBm.
6.	6. The total IF rejection is now calculated by subtracting the IF rejection power level from the MDS of the receiver.
	IF rejection: dB.
	For example, if your signal generator is set to 0 dBm and the step attenuator is set to 43 dB, then your IF rejection power level is -43dBm. With an receiver MDS of -131dBm the IF rejection will then be: -43dbm

Hints and Tips

-(-131dBm)=88dB.

- Many QRP receivers and transceivers have a relatively low-level audio output, designed for either headphones-only or for a small speaker. In order to make the most accurate measurement, you may need to turn the AF gain control to maximum.
- If the noise vary to much for your readings to be stable, a low pass integrating filter will smooth out the noise and give a stable reading. A suitable filter is a resistor of 10 k in series with the signal lead and a 1 μ F capacitor, if the noise vary to much increase the capacitor to 10 μ F.
- The IF rejection is the product of the mixer balance and the filter attenuation. Improving the mixer balance will improve the IF rejection.

4.3 Image Rejection

4.4 Opposite Sideband Rejection

4.5 Two-Tone Third Order Dynamic Range

4.6 Blocking Gain Compression

4.7 Noise Figure

Noise figure measurement has the advantage of being independent from the bandwidth of the receiver. The MDS can then be calculated from the bandwidth of the receiver.

Equipment List

- Noise source with known output noise (ENR).
- AC RMS Voltmeter (preferably with dB scale)
- \bullet AF Monitor Amplifier or 8 Ω Resistive Load

Test Setup

Figure 4.3: Noise Figure Setup

- 2 50 Ω jumper cables Usually BNC Male-to-BNC Male
- 1 audio jumper cable
 Varies depending on the connectors on your receiver and AF amplifier or load

• 1 — set of voltage probe test leads Your choice of connector for measuring AC RMS voltage output

Connections

Make sure all equipment is powered off before making any connections.

- Connect the noise source to the receiver input, avoid using excessive coax cables and adapters if possible.
- Connect the audio output of the DUT (receiver) to the AF amplifier or 8 Ω load using an audio jumper cable.
- Connect the AC RMS voltmeter probes to the properly loaded audio output of the DUT (receiver).

Presets

- Turn OFF the noise source.
- Turn ON the AF amplifier.
- Turn ON the DUT (receiver) and set for the desired measurement band and frequency. Set the AF gain (volume) control fully-counterclockwise (no AF output), then set to an appropriate level for normal listening. If your receiver has AGC, disable it.
- Turn ON the AC RMS voltmeter. Set the meter scale as necessary

Test Procedure

1.	Record the amplitude in dB of the noise from the receiver with the noise source off.
	AF noise power dB/mV.
2.	Turn on the noise source and let the output stabilize.
3.	Record the amplitude in dB of the noise from the receiver with the noise source on.
	AE noise power dR/mV

4. The ratio of the noise with the noise source on to off is the Y factor. If the noise measurement is in dB, the Y factor is: Y(dB) = dB(on) - dB(off) If the measurement of the noise is in mV then the Y factor is: $Y = \frac{on(mV)}{off(mV)}$

- 5. For the noise figure calculation in dB the noise figure is: NF(dB) = ENR(dB) Y(dB)
- 6. For the noise figure calculations, the calculation is different if the measurements are done in dB or in volts. This is due to how multiplication is done with logarithms.

For mV:
$$f = \frac{ENR}{Y-1}$$
 usually we give noise figure in dB, so in this case: $NF = 20 \cdot \log(f)$

7. The MDS can be calculated from the noise figure: $MDS(dBm) = -174dBm + 10\log(BW) + NF$

4.8 Audio Frequency Response

4.9 Audio Power Output

Transmitter Measurements

- 5.1 Transmitter Power Output
- 5.2 Transmitter Spectral Purity
- 5.3 Transmitter Carrier and Unwanted Sideband Suppression
- 5.4 Transmitter Two-Tone Intermodulation Distortion (IMD)
- 5.5 Transmitter CW Keying Waveform

Components and Circuits

6.1 Crystal Parameters

Overview method 1

This method of measuring crystal parameters utilize the fact that a crystal have both a series resonance and a parallel resonance. The frequency of these are measured and the crystal parameters are then calculated. This (should) gives an improved accuracy compared to simpler methods.

Equipment List

- RF Signal Generator, DDS or synthesized with 1Hz tuning step.
- Crystal measurement jig as described under DIY equipment.
- RF RMS Voltmeter or power meter(preferably with dB scale, HP3400 or HP432 recommended.)
- 100Ω non inductive trim potentiometer

Test Setup

- 2 50 Ω jumper cables Usually N Male-to-N Male
- 1 Adapter Varies depending on the connectors on your generator and meter.

Connections

Make sure all equipment is powered off before making any connections.

- connect the signal generator to the series jig.
- connect the RF RMS voltmeter or power meter to the series jig.

Presets

- Set signal generator to 0dBm (1mW). Most crystals will get damaged at higher power levels.
- connect a wire, as short as possible over the crystal connections, and note the meter reading. This is your 0dB level. For the short, one can also use the shunt jig without any wire connected.

Calibration level:	C 111	1 1	
	Calibration	level:	

Test Procedure

- 1. Measure the parasitic package capacitance of the crystal. This should be done on a frequency far away from the crystal frequency, most meters measure this in the 100 kHz range.
- 2. measure series resonance freq in series jig by inserting the crystal and finding the frequency where the amplitude read on the meter is max. This frequency is your series frequency F_s .

F_{\circ} :	Hz

- 3. Note the amplitude of the meter. This amplitude is proportional to the internal resistance in your crystal. Calculate the dB loss, this should be a negative value.: dB = crystalloss(dB) referencelevel(dB)
- 4. Calculate the internal resistance of the crystal: $R_s = 100 \cdot ((10^{\frac{dB}{20}})^{-1} 1)$

$$R_s$$
: _____ Ω .

5. measure parallel resonance freq. in shunt jig by inserting the crystal and finding the frequency where the amplitude read on the meter is max. This frequency is your parallel frequency F_p .

6.2. THIRD-ORDER INTERCEPT

23

$$F_p$$
: ______ Hz

- 6. do some math on the data, flush and repeat..
- 7. The crystal motional series capacitor C_m is found by calculation: $C_m = C_p \cdot \frac{(F_p^2 F_s^2)}{F_s^2}$
- 8. then the inductance can be found: $L_m = \frac{1}{c_p \cdot 4 \cdot \pi^2 \cdot (F_p^2 F_s^2)}$
- 9. The Q factor of the crystal can then be found: $Q=\frac{L_m\cdot 2\cdot \pi\cdot F_s}{R_s}$
- 10. With these calculations done, the crystal parameters are characterized. The accuracy of the frequency measurement is what defines the accuracy of this method.

Hints and Tips

• An automated test for this can be done with computer controlled equipment, and the crystal parameters can then be calculated automatic. This is the method most network analyzers use for characterizing crystals.

6.2 Third-Order Intercept

6.3 Noise Figure

Overview method 1

Equipment List

 \bullet items

Test Setup

Required Cabling

• 2 — 50 Ω jumper cables Usually BNC Male-to-BNC Male

Connections

Make sure all equipment is powered off before making any connections.

Presets

•

Test Procedure

1.

Hints and Tips

•

6.4 Resonator Q

DIY Test Equipment

7.1 Crystal Measurement Jig

- Cut 2 traces in a PCB (or order it from OSHpark: https://oshpark.com/shared_projects/Ert6eRmg)
- Fit 2 pieces of an IC socket to it so you keep the 50 ohm environment but it allows for measurement of crystals.
- Use good sockets, gold-plated preferred.

7.2 Noise Figure stuff