

Workshop IoT – Internet of Things

DotNetLiguria presso l'Ordine degli Ingegneri di Genova

Agenda del pomeriggio

- Benvenuti al Workshop IoT
- Introduzione al mondo IoT (Raffaele Rialdi Erica Barone)
- In principio era l'hardware (Raffaele Rialdi)
- Il nuovo core di Windows 10 per IoT (Alessio Gogna)
- NUI Natural User Interface (Andrea Sassetti Marco Dal Pino)
- Microsoft Azure, la "I" di IoT (Erica Barone Microsoft)

Internet of Things: I devices

Raffaele Rialdi

Twitter: @raffaeler

Email: raffaeler@vevy.com

Website: http://iamraf.net

Raffaele Rialdi Chi sono?

- Developer dal 1987
- Microsoft MVP dal 2003
- Architetto Software, Speaker, Trainer, Consulente
- Guida le attività di development di Vevy Europe
- Frenetico appassionato di hardware (digitale)

Una regola di buon senso

Chi vuole un OS?

- I vantaggi non mancano ma con il prezzo da pagare:
 - I driver: l'astrazione sull'hardware ne semplifica l'accesso
 - Le updates: nessun OS attuale può astenersi da manutenzione e updates frequenti
 - Real-time: con poche eccezioni, un OS non può dare garanzie di timing molto stretti
 - Watchdog: il costo del reboot di un OS non è pragonabile alla velocità di un ripristino con watchdog (in caso di problemi)

I microcontrollori

Arduino: la soluzione «easy»

- Arduino war
 - Arduino.cc è quello originale, ora rinominato «Genuino»
 - Arduino.org è nato dopo da uno dei soci fondatori
- È un hardware open-source, modulare, economico
 - Per la prototipazione non è necessario un saldatore
 - Hardware modulare da aggiungere
 - Utilizza un microcontrollore (differente a seconda dei modelli)
 - Provvede un linguaggio proprietario (molto simile al C)
 - Disponibile gratuitamente un IDE
 - Ampia scelta di librerie

Cosa offre un microcontrollore?

Esempi con PIC a 8 bit

- È un singolo chip che fornisce molte funzionalità
 - È una CPU dotata di un assembler specifico
 - RAM da 16 byte (PIC10) in su: 2Kb (PIC18)
 - Flash da 256 word (PIC10) in su: 32Kb (PIC18)
 - E²PROM da 16 byte (PIC12) in su: 256 (PIC18)
 - Clock da 4MHz (PIC10) a 48MHz (PIC18)
 - PIC: 4 clock per istruzione tranne i jump (il doppio).
 - Tempo per istruzione:
 - 4MHz 🛨 1μs

 - 40MHz → 100ns
 - 48MHz → 83ns
 - Consumo da 0.1μA (sleep) a 200mA (tutti i pin erogano corrente)

Un confronto su alcune caratteristiche

	PIC12F509	PIC16F628	PIC18F4550
PIN	8	18	40
1/0	5	16	36
Livelli di stack	2	8	31
Clock Max	20MHz	20MHz	48MHz
USART 8/9 bit	-	Si	Si
Timers	1	3	4
PWM	No	1 x 10 bit	2 x 10bit
A/D	No	Comparatore, 10 bit	Input, 10 bit
Moltiplicazioni	No	No	Si
Watchdog, sleep	Si	Si	Si
Costo orientativo	~ 1.15 Eur	~ 2 Eur	~ 3.8 Eur

I sensori

- IR Transmitter
 - Normalissimo led infrarosso, usato da tutti i telecomandi
- IR Receiver
 - Fornisce un segnale pulito direttamente utilizzabile da Arduino / microcontroller
 - Meglio usare una porta interrupt che risveglia dallo sleep
 - Disponibile libreria per Arduino
 - ~ 1,5 Eur

https://learn.adafruit.com/ir-sensor/using-an-ir-sensor

Sensori

- Sensore di luce
 - Il pin AD fornisce un valore analogico
 - Il pin DD è un bit di soglia
 - ~ 3 Eur
- Sensore di umidità del terreno
 - Stesse regolazioni del sensore di luce
 - ~ 6 Eur
- Sensore di temperatura e umidità dell'aria DHT11
 - Protocollo non banale
 - Disponibili librerie per Arduino e PIC
 - ~ 3 Eur

Altri sensori ...

- Accelerometri, giroscopi e bussole
 - Anche sensori "combo" con i tre sensori insieme
 - ~ 7 Eur
- Contatore
 - Forcella con fotoled/fototransistor
 - ~ 4 Eur
- Rilevatori di movimento (PIR)
 - Singolo pin di uscita sul movimento
 - ~ 2,5 Eur
- Fotocamera 640x480 (I2C bus)
 - ~ 9 Eur

Le comunicazioni

Comunicazioni con cavo *12C, RS232 e RS485*

- I2C è un bus della Philips (100KHz 400KHz)
 - Ottimo per comunicazione a 2 fili tra chip su una scheda
- Molti micro hanno la RS232 a bordo
 - Necessitano un «MAX232» per elevare il livello elettrico a quello di un PC
- La RS485 è un vero e proprio BUS
 - MAX1487 è uno dei tanti transciever per convertire la seriale di un microcontrollore in RS485
 - Preferibile il canale half-duplex
 - Facile da usare se si usa la USART a 9 bit
- FTDI ha transciever 232, 485, I2C per la USB

Bluetooth e WiFi

- È raccomandato il Bluetooth BLE
 - Consuma poca batteria
 - Bluino: la versione di Arduino con Bluetooth BLE
 - Schedine micro ~ 9 Eur

• ESP8266

- Gestisce lo stack TCP/IP
- Comandi seriali via AT commands
- Accusato di nascondere una backdoor nel boot firmware
- ~ 4 Eur

11 x20 mm

Zigbee

- Standard 802.15.4
 - Range 2.4GHz in versione short e long
 - Digi è il principage produttore di XBEE
 - Passo 2mm invece di 2.54mm

Coordinator

Router

End Devices

Demo

Comunicazione uomo – macchina Natural User Interface

- «Project Soli» by Google
 - Gesture tridimensionali per smart devices
 - Lancio atteso a breve

- Leap Motion (~ 80 Eur)
 - Controller USB per PC
 - I calcoli sono fatti dal PC
 - La potenza computazionale di un Raspberry PI <u>non</u> è sufficiente

Wave Y

La tecnologia GestIC

- È un controller di gesture (~3 Eur)
- Non richiede host di calcolo
- Può funzionare come controller per PC
- Può funzionare in un progetto embedded

⊘ Hold	⊘ Pr	Presence								
West -> East	East ->	East -> West			South -> North		North	North -> South		
✓ Flick	✓ Flick				⊘ Flick			✓ Flick		
Edge Flick	dge Flick			Edge Flick		Edge Flick				
Oouble Flick	Do	Oouble Flick			Double Flick AirWheel			Oouble Flick		
Circle CW	⊘ Circle CCW									
			G	esture I	Port Co	nfigurat	ion			
Event	Gesture/Electrode	EIO F				-	Action	Pulse Width	Interval	
Gesture ▼	Flick West -> East	1 ▼ Ø	2	3	6	7	permanent high	▼ 100 ms	100 ms 🖨 🧂	
Gesture ▼	Flick East -> West	T	0	0	0	0	permanent low	▼ 100 ms 🕏	100 ms 🖨 🦷	
Gesture ▼	Flick South -> North	T o	\checkmark	0	0	0	permanent high	▼ 100 ms ÷	100 ms 🔁 🧻	
Gesture $lacksquare$	Flick North -> South	▼0	\checkmark	0	0	0	permanent low	▼ 100 ms ÷	100 ms 🔁 🧰	
Gesture $ extstyle $	Circle CW	▼0	0	\checkmark		0	permanent high	▼ 100 ms 🕏	100 ms 🔁 🧻	
Gesture $ extstyle $	Cirde CCW	▼0	0	\checkmark	0	0	permanent low	100 ms 🚉	100 ms 🔁 🧻	
Gesture $ extstyle $	Wave X	▼0	0	0	\checkmark	0	high pulse	▼ 100 ms ÷	100 ms 🔁 🧻	
Gesture \blacktriangledown	Presence	▼0	0	0	0	\checkmark	high pulse	▼ 100 ms ÷	100 ms 💠 🧻	
Single Tap	West	▼ 🕢	\checkmark	\checkmark	\checkmark	\checkmark	permanent low	▼ 100 ms 🚉	100 ms 💠 🦷	
Single Tap	East	▼ 🗹	\checkmark	\checkmark	\checkmark	\checkmark	permanent high	▼ 100 ms ÷	100 ms 🔹 🦷	
select 🔻	select	₹ 0				-	select	100 ms +	100 ms 🔹	
	Carlo at			1000	(000)		and and	100	100	

Active Features

✓ Wave X

✓ Touch Detection

Sicurezza e IoT

- I device medium/high-end (Tablet, PC, RPi)
 - Con Windows beneficiano tutti di Secure-Boot, certificati, validazione dei driver, comunicazioni protette, etc.
- I device low-end sono molto vulnerabili
 - La rete cablata offre maggiori garanzie
 - Isolare i sensori in una sottorete
 - La vulnerabilità deve essere coperta con priorità basata sul rischio
- I rischi maggiori
 - DoS (Denial of Service)
 - Ri-programmazione del firmware
 - Spoofing / Tampering
- OWASP «IoT Top 10»
 - https://www.owasp.org/images/7/71/Internet_of_Things_Top_Ten_2014-OWASP.pdf

Domande?