Теория чисел (практика)

Владимир Латыпов donrumata03@gmail.com

Vladimir Latypov donrumata03@gmail.com

Содержание

1 Разбор ДЗ 1	
1.1 Поле	
1.2 Корретность определения локализации $S^{-1}R$	9
1.3 Пример, где условие $\cdot s$ существено: $\mathbb Z$	
1.4 Прообраз идеала при гомоморфизме — тоже идеал	
2 Гауссовы числа	

1 Разбор ДЗ 1

1.1 Поле

Теорема 1.1.1
$$\frac{\mathbb{Z}}{p\mathbb{Z}}-$$
 поле из p элементов

Доказательство Решим уравнение $\overline{a}\cdot\overline{b}+\overline{c}\cdot\overline{d}=1$ алгоритмом Евклида, тогда $\overline{a}\cdot\overline{b}=1$. \square

1.2 Корретность определения локализации $S^{-1}R$

Показываем, что отношение из определения $S^{-1}R$ — отношение эквивалентности: $(a_1,s_1)\sim(a_2,s_2) \stackrel{\mathrm{def}}{\Longleftrightarrow} (a_1s_2-a_2s_1)\cdot s$ для некоторого s.

Без s тразитивность для не областей целостности не докажется.

Д: домножим накрест равенства, вынесем за скобку.

1.3 Пример, где условие $\cdot s$ существено: $\mathbb Z$

$$S = \{1, 2, 4\}$$

$$S^{-1}R \cong \mathbb{F}_3$$

Разберём 18 случаев, расположим в 3 ряда, 6 колонок.

1.4 Прообраз идеала при гомоморфизме — тоже идеал

Замечание 1.4.2 Уже доказали для ядра (прообраза $\{0\}$)

Доказательство Для начала покажем, что это

2 Гауссовы числа

Определение 2.3 Z[i] — целые Гауссовы числа ($\mathfrak{R},\mathfrak{I}\in\mathbb{Z}$)

Поле частных Z[i] ($\cong \mathbb{Q}[i] = Z[i] + iZ[i]$) вкладывается в \mathbb{C} .

Евклидова норма определяется почти как для копексных: $d(a+bi)=a^2+b^2.$

Целые гауссовы числа — тоже Евклидово кольцо: для деления с остатком

- делим как комплексные числа
- берём ближайшее из $\mathbb{Z}[i]$