WHAT IS CLAIMED IS:

1	1. An integrated circuit device, the device comprising:					
2	a substrate;					
3	an insulating layer overlying the substrate;					
4	a copper metal layer overlying the insulating layer;					
5	an etch stop layer overlying the copper metal layer;					
6	an interlayer dielectric material overlying the etch stop layer, the interlayer					
7	dielectric material including an upper surface;					
8	a plurality of via openings defined within a region of the interlayer dielectric					
9	layer from the upper surface through the etch stop layer to the copper metal layer;					
10	a copper fill material within each of the plurality of via openings to define a					
11	plurality of copper structure extending from the upper surface through the etch stop layer to					
12	the copper metal layer;					
13	a first barrier metal layer overlying each of the plurality of copper structures to					
14	define a first electrode of a capacitor structure;					
15	an insulating layer overlying the first barrier metal layer to define an insulating					
16	layer for the capacitor structure; and					
17	a second barrier metal layer overlying the insulating layer to define the second					
18	electrode.					
1	2. The device claim 1 wherein the insulating layer is silicon nitride and					
2	the etch stop layer is nitride.					
2	the etch stop layer is intride.					
1	3. The device of claim 1 wherein the insulating layer has a thickness of					
2	about 200 to about 1000 Angstroms and more preferably 300 to 700 Angstroms.					
1	4. The device of claim 1 wherein the insulating layer is PECVD nitride.					
1	5. The device of claim 1 wherein the first barrier metal layer and the					
2	second barrier metal layer comprises a tantalum material or a titanium material.					
1	6. The device of claim 1 wherein each of the plurality of metal structures					
2	has a width of less than 0.3 microns and a height of greater than about 7000 Angstroms.					
1	7. The device of claim 1 wherein the capacitor structure has a capacitance					
2	ranging from about 0.5 to about 5 Fempto Farads per square micron.					

1	8. The device of claim 1 further comprising a metal connector rayer			
2	overlying the second barrier metal layer.			
1	9. The device of claim 1 wherein the plurality of metal structures include			
2	at least ten or more.			
1	10. The device of claim 1 wherein the copper layer comprises a second			
2	portion, the second portion defines an interconnect layer.			
1	11. An integrated circuit device, the device comprising:			
2	a substrate;			
3	an insulating layer overlying the substrate;			
4	a copper metal interconnect layer overlying the insulating layer;			
5	a capping layer overlying the copper interconnect metal layer to isolate the			
6	copper metal interconnect layer form overlying structures;			
7	a first barrier metal layer overlying the capping layer, the first barrier metal			
8	layer being free from the copper interconnect layer to define a first electrode structure;			
9	an insulating layer overlying the first barrier metal layer to define a capacitor			
10	dielectric structure;			
11	a second barrier metal layer overlying the insulating layer to define a second			
12	electrode structure;			
13	an etch stop layer overlying the second barrier metal layer;			
14	an interlayer dielectric material overlying the etch stop layer, the interlayer			
15	dielectric material including an upper surface;			
16	a plurality of via openings defined within a region of the interlayer dielectric			
17	layer from the upper surface through the etch stop layer to the second barrier metal layer;			
18	a copper fill material within each of the plurality of via openings to define a			
19	plurality of copper structure extending from the upper surface through the etch stop layer to			
20	the second barrier metal layer; and			
21	an upper metal layer formed overlying the plurality of copper metal structures			
1	12. The device of claim 11 wherein the capping layer and the first barrier			
2	metal layer maintain the capacitor insulating layer free from copper impurities.			

1	13. The device of claim 11 wherein the capping layer maintains the					
2	capacitor-insulating layer free from copper impurities during subsequent processing of the					
3	device.					
1	14. The device of claim 11 wherein the device is a mixed signal device					
2	having a frequency range from about 1 MHz and greater.					
1	15. The device of claim 11 wherein the capping layer PE CVD nitride.					
1	16. The device of claim 11 wherein the capping layer has a thickness of	•				
2	over 300 Angstroms.					
1	17. A method for manufacturing integrated circuit devices, the method					
2	comprising:					
3	providing a substrate;					
4	forming an insulating layer overlying the substrate;					
5	forming a copper metal interconnect layer overlying the insulating layer;					
6	forming a capping layer overlying the copper interconnect metal layer to					
7	isolate the copper metal interconnect layer form overlying structures;					
8	forming a first barrier metal layer overlying the capping layer, the first barr	iei				
9	metal layer being free from the copper interconnect layer to define a first electrode structure					
0	forming an insulating layer overlying the first barrier metal layer to define	a				
11	capacitor dielectric structure;					
12	forming a second barrier metal layer overlying the insulating layer to define	e a				
13	second electrode structure;					
14	forming an etch stop layer overlying the second barrier metal layer;					
15	forming an interlayer dielectric material overlying the etch stop layer, the					
16	interlayer dielectric material including an upper surface;					
17	forming a plurality of via openings defined within a region of the interlayer	ľ				
18	dielectric layer from the upper surface through the etch stop layer to the second barrier me	ta				
19	layer;					
20	providing a copper fill material within each of the plurality of via openings	to				
21	define a plurality of copper structure extending from the upper surface through the etch sto	эp				
22	layer to the second barrier metal layer; and					

23		forming an upper metal layer formed overlying the plurality of copper metal			
24	structures.				
1		18.	The method of claim 17 further comprising planarizing exposed		
2	portions of the copper fill material.				
1		19.	The method of claim 17 wherein the upper metal layer comprises		
2	copper material.				
1		20.	A method for forming an integrated circuit device, the method		
2	comprising:				
3		provid	ling a substrate;		
4	forming an insulating layer overlying the substrate;				
5		formi	ng a copper metal layer overlying the insulating layer;		
6		formi	ng an etch stop layer overlying the copper metal layer;		
7		formi	ng an interlayer dielectric material overlying the etch stop layer, the		
8	interlayer dielectric material including an upper surface;				
9		formi	ng a plurality of via openings defined within a region of the interlayer		
10	dielectric layer from the upper surface through the etch stop layer to the copper metal layer;				
11		formi	ng a copper fill material within each of the plurality of via openings to		
12	define a plura	lity of	copper structure extending from the upper surface through the etch stop		
13	layer to the copper metal layer;				
14		formi	ng a first barrier metal layer overlying each of the plurality of copper		
15	structures to define a first electrode of a capacitor structure;				
16		formi	ng an insulating layer overlying the first barrier metal layer to define an		
17	insulating layer for the capacitor structure; and				
18		formi	ng a second barrier metal layer overlying the insulating layer to define		
19	the second electrode.				