

Frame-Recurrent Video Super-Resolution

Raviteja Vemulapalli²

Matthew Brown²

Mehdi S. M. Sajjadi 1,2 ¹ Max Planck Institute for Intelligent Systems ² Google msajjadi.com

Overview

► Common approach - Consider video SR task as a multi-frame SR task:

- ► Process several surrounding input frames to generate a single output frame.
- ► Apply this to the entire video in a sliding window fashion.

► Weaknesses of the multi-frame SR approach:

- ► Each output video frame is produced independently limiting the system's ability to produce temporally consistent results.
- ► Each input video frame is processed multiple times increasing the computational cost.

► Proposed frame-recurrent video super-resolution (FRVSR) framework

- ► achieves a significant boost in image quality despite being more efficient.
- ▶ produces more temporally consistent output videos.
- ▶ is fully convolutional and **end-to-end trainable from scratch**.
- ▶ Illustration of the results for 4x upscaling: The input image lacks significant amount of details which are restored by the proposed recurrent approach using information from the past.

FRVSR Framework

our result

ground truth

Overview of the proposed FRVSR framework (left) and the loss functions used for training (right).

► Inference steps:

low-resolution input

- ▶ Compute the flow F^{LR} in LR-space using FNet.
- ▶ Upscale the LR flow F^{LR} to HR flow F^{HR} (bilinear interpolation used in our implementation).
- ▶ Warp the HR estimate I_{t-1}^{est} of the previous frame onto the current frame using F^{HR} .
- ▶ Map the warped previous output $\tilde{I}_{t-1}^{\text{est}}$ to LR-space using the space-to-depth transformation.
- ▶ Feed the previous output frame (after warping and mapping to LR space) and the current LR input frame I_t^{LR} to the super-resolution network SRNet which outputs an estimate for the current HR frame.
- ► Training: Both FNet and SRNet are trained from scratch in an end-to-end fashion by unrolling a fixed number of recurrent steps.

► Loss functions for training:

- ▶ The super-resolution loss $\mathcal{L}_{sr} = ||I_t^{est} I_t^{HR}||_2^2$ on the HR output encourages the network to produce video frames that are similar to the groundtruth.
- ▶ The flow loss $\mathcal{L}_{flow} = ||WP(I_{t-1}^{LR}, F^{LR}) I_t^{LR}||_2^2$ on the warped previous LR frame aids the training of FNet.
- ▶ Dataset: Our training dataset consists of 256x256 image patches extracted from 40 highresolution videos (720p, 1080p and 4K) downloaded from vimeo.com.

Network architecture

Architectures for super-resolution SRNet (top) and optical flow estimation FNet (bottom).

- ► We use fully convolutional neural networks operating in LR space for both super-resolution and optical flow estimation.
- ► For super-resolution, we use the architecture of EnhanceNet [1], which consists of several residual blocks followed by upsampling layers.
- ► For optical flow estimation, we use the standard encoder-decoder style architecture to increase the receptive field.

Comparison with baselines and prior art on Vid4 dataset [5]

Method	Bicubic	RAISR	BRCN	VESPCN	$ B_{1,2,3}$ + $T $	DRVSR	Bayesian	SISR	VSR	FRVSR	FRVSR
		[6]	[7]	[2]	[3]	[4]	[5]	10-128	10-128	3-64	10-128
PSNR	23.53	24.24	24.43*	25.35*	25.35	25.87	26.16	24.96	26.25	26.17	26.69
SSIM	0.628	0.665	0.662*	0.756*	0.738	0.772	0.815	0.721	0.803	0.798	0.822

▶ Baselines:

- ► SISR: Single image super-resolution using SRNet.
- ▶ VSR: The previous and next input frames are warped onto the current frame using optical flow, and all the three frames are given as input to SRNet.

▶ Results:

- ► Amongst prior art, [5] produces the best results, but their method uses a slow optimization procedure.
- ▶ Our baseline VSR already produces results that are comparable to state-of-the-art.
- ▶ The proposed FRVSR produces significantly better results (both visually and quantitatively) compared to state-of-the-art.
- ► Temporal profiles for a video from Vid4
- ► The VSR approach produces finer details than SISR, but its output still contains temporal inconsistencies (jitter in red box).
- ► Only FRVSR is able to produce temporally consistent results while reproducing fine details.

Ablation studies

► We use a dataset of ten 3-5s high-quality 1080p video clips downloaded from YouTube.

► Effect of blur kernel size:

- ▶ The blur kernel size used for downsampling has a significant effect on the performance of the models.
- ► Video SR methods (VSR and FRVSR) benefit from more aliased inputs compared to single image SR.

► Performance under input degradations:

- ► Average PSNR under Gaussian noise (left two columns) and JPEG artifacts (right two columns).
- ► FRVSR achieves the best results.

29.5 29.0 28.5				
0.0		2.0 2.5 3.0 deviation for Gaus		4.5 5.0
	Standard (deviation for Gaus	ssian blur	
model	$\sigma = 0.025$	$\sigma = 0.075$	Q40	Q70
SISR	29.93	28.20	27.94	28.88

► Effect of FRVSR training clip length:

▶ The PSNR has started to saturate with a length of 5 and going beyond 10 may not yield significant improvements.

J	L=3	L=5	L = 10
,	31.60	32.01	32.10

28.62 | 28.30 | 29.29

- ► Range of information flow Performance of FRVSR as a function of the number of previous frames processed:
 - ▶ In the normal mode (blue), PSNR increases up to 12 frames, after which it remains stable.
- ► When we have access to the first groundtruth HR frame (red), FRVSR propagates high-frequency details across a large number of frames and performs better than the normal mode even after 50 frames.

- ▶ Network size Runtime vs PSNR for different numbers of convolution filters (64 / 128) and residual blocks (3 / 5 / 10) in SRNet.
- ▶ Inference time is measured for generating a single 1080p frame with 4x upsampling on an Nvidia P100 GPU.
- ► FRVSR achieves better results than both SISR and VSR with significantly smaller super-resolution networks and less computation time. For example, FRVSR with 5 residual blocks is **both** faster and better than VSR with 10 residual blocks.

References

- [1] M. S. M. Sajjadi et al. EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis. ICCV 2017.
- [2] J. Caballero et al. Realtime video super-resolution with spatio-temporal networks and motion compensation. CVPR 2017.
- [3] D. Liu et al. Robust video super-resolution with learned temporal dynamics. CVPR 2017.
- [4] X. Tao et al. Detail-revealing deep video super-resolution. ICCV 2017.
- [5] C. Liu et al. A Bayesian approach to adaptive video super resolution. CVPR 2011.
- [6] Y. Romano et al. RAISR: Rapid and accurate image super resolution. 2016.
- [7] Y. Huang et al. Bidirectional recurrent convolutional networks for multi-frame super-resolution. NIPS 2015.