PRODUTO VECTORIAL E PRODUTO MISTO

- 3. Sejam $\vec{a} = x\vec{i} + \vec{j} y\vec{k}$, $\vec{b} = (y x)\vec{j} \vec{k}$ e $\vec{c} = \vec{i} \vec{j} 2\vec{k}$ vectores do espaço \mathbb{R}^3 . Calcule o valor de:
 - **a**) $\vec{a} \times \vec{b}$, o produto vectorial de \vec{a} por \vec{b} .
 - **b**) O que se pode concluir em relação a $\vec{b} \times \vec{a}$?
 - c) $\vec{a} \cdot \vec{b} \times \vec{c}$, o produto misto $[\vec{a} \ \vec{b} \ \vec{c}]$.
 - **d**) O que se pode concluir em relação a $\vec{b} \cdot \vec{a} \times \vec{c}$?
- **5.** Calcule, recorrendo ao produto vectorial, a área do triângulo com vértices nos pontos:

a)
$$A = (0,1,2)$$
, $B = (2,0,1)$, $C = (3,4,0)$.

b)
$$O = (0,0,0)$$
, $B = (0,2,1)$, $C = (1,-1,1)$.

- **6.** Os pontos A = (1,2,3), B = (1,5,2), C = (1,6,3), D = (1,5,5) e E = (1,3,4) são vértices consecutivos de um pentágono. Determine:
 - a) A área do pentágono recorrendo ao produto vectorial.
 - **b**) O ângulo interno, θ , do pentágono com vértice no ponto A.
- **8.** Calcule, recorrendo ao produto misto, o volume do paralelipípedo definido pelos vectores:

a)
$$\vec{i} - \vec{i} + \vec{k}$$
, $\vec{i} + 2\vec{i} - \vec{k}$, $-\vec{i} + \vec{k}$

a)
$$\vec{i} - \vec{j} + \vec{k}$$
, $\vec{i} + 2\vec{j} - \vec{k}$, $-\vec{i} + \vec{k}$. **b**) $2\vec{i} + \vec{j} - 3\vec{k}$, $-\vec{i} - \vec{j} + 2\vec{k}$, $\vec{i} + \vec{j} - \vec{k}$.

9. Determine o vector $\vec{x} \in \mathbb{R}^3$, tal que $\vec{x} \cdot (2\vec{i} + \vec{j} - \vec{k}) = -1$ e $\vec{x} \times (-\vec{i} + \vec{j} - \vec{k}) = -\vec{i} - \vec{j}$.

- 11. Seja $\{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$ um conjunto ortonormado. Tendo em atenção as propriedades do produto vectorial calcule $(\vec{a} \times \vec{b}) \times \vec{a} = (\vec{a} \times \vec{b}) \times \vec{b}$.
- 13. Sejam $\vec{a}, \vec{b}, \vec{c}$ vectores do espaço \mathbb{R}^3 , em que \vec{a} é não nulo. Mostre que se $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ e $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, então $\vec{b} = \vec{c}$.
- 15. Identifique quais dos seguintes produtos mistos são iguais:

$$\vec{b} \cdot \vec{c} \times \vec{a}$$

$$\vec{b} \cdot \vec{a} \times \vec{c}$$

$$\vec{b} \times \vec{c} \cdot \vec{a}$$

$$\vec{a} \times \vec{b} \cdot \vec{c}$$

$$\vec{c} \times \vec{a} \cdot \vec{b}$$

$$\vec{a} \cdot \vec{c} \times \vec{b}$$

$$\vec{c} \times \vec{a} \cdot \vec{b}$$
 $\vec{a} \cdot \vec{c} \times \vec{b}$ $-\vec{b} \times \vec{c} \cdot \vec{a}$

$$\vec{b} \times (-\vec{a}) \cdot \vec{c}$$

- 17. Seja $\{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$ um conjunto linearmente independente e $\vec{c} = (\vec{a} \times \vec{b}) \vec{b}$. Designe-se por β o ângulo formado pelos vectores \vec{b} e \vec{c} .
 - a) Prove que os vectores \vec{a} e $\vec{b} + \vec{c}$ são perpendiculares.
 - **b**) Mostre que $\beta \in \left(\frac{\pi}{2}, \pi\right)$.
 - **c**) Calcule a norma do vector \vec{c} , sabendo que \vec{b} é versor e $\|\vec{b} \times \vec{a}\| = 3$.
- **18.** Considere o conjunto ortogonal $S = \{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$, em que \vec{b} é versor, e seja \vec{d} o vector dado por $\vec{d} = \vec{c} - 2(\vec{a} \times \vec{b})$, sendo $\vec{c} \in L(S)$. Admitindo que $\|\vec{d}\| = \sqrt{8}$ e que $\angle(\vec{d}, \vec{c}) = \pi/3$, calcule a norma do vector \vec{a} .

- **19.** Sejam $\vec{a}, \vec{b}, \vec{c}$ vectores do espaço \mathbb{R}^3 , tais que $\vec{a} \cdot \vec{b} = 2$, $\|\vec{a}\| = \sqrt{3}$, $\|\vec{b}\| = \sqrt{2}$ e $\vec{c} = \sqrt{3}(\vec{a} \times \vec{b}) \sqrt{2}\vec{b}$. Determine:
 - **a**) $\vec{a} \cdot (\vec{b} + \vec{c})$.

- **b**) A norma do vector \vec{c} .
- c) O ângulo, α , formado pelos vectores \vec{b} e \vec{c} .
- **20.** Seja $S = \{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$ um conjunto linearmente independente. Verifique se cada um dos conjuntos seguintes é, ou não, linearmente independente:

a)
$$T = \{\vec{a} + 2\vec{b}, 3\vec{a} - \vec{b}, -\vec{a} \times \vec{b}\}.$$

b) U =
$$\{\vec{a} - 2\vec{b}, \vec{a} + (\vec{a} \times \vec{b}), 2\vec{b} + (\vec{a} \times \vec{b})\}$$
.

c)
$$V = \{\vec{a}, \vec{a} + \vec{b}, (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\}.$$

- **21.** Recorrendo ao produto misto, determine os valores de ω , de modo que o conjunto de vectores $S = \{(1, \omega, 1), (\omega, 1, 0), (0, 1, \omega)\} \subset \mathbb{R}^3$ seja linearmente independente.
- **24.** Sejam \vec{a}, \vec{b} vectores não nulos do espaço \mathbb{R}^3 . Mostre que:

$$\mathbf{a}) \ \vec{a} \times \vec{b} = (\vec{a} \cdot \vec{b} \times \vec{i}) \vec{i} + (\vec{a} \cdot \vec{b} \times \vec{j}) \vec{j} + (\vec{a} \cdot \vec{b} \times \vec{k}) \vec{k} \ .$$

b)
$$-2\vec{a} = (\vec{a} \times \vec{i}) \times \vec{i} + (\vec{a} \times \vec{j}) \times \vec{j} + (\vec{a} \times \vec{k}) \times \vec{k}$$
.

25. Sejam $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ vectores do espaço \mathbb{R}^3 , tais que $\vec{a} \times \vec{c} \cdot \vec{b} = -1$, $\vec{a} \times \vec{d} \cdot \vec{b} = 7$, $\vec{c} + \vec{d} = (3,0,3)$ e $\vec{c} - \vec{d} = (-1,-2,1)$. Determine o vector $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$.

- **27.** Considere os vectores $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$, tais que $\|\vec{a}\| = \|\vec{b}\| = 2$, $\|\vec{c}\| = 4$ e $\vec{c} = (\vec{a} \times \vec{b}) \vec{a}$. Calcule:
 - a) O volume do paralelepípedo definido pelos vectores dados.
 - **b**) O ângulo, φ , formado pelos vectores $\vec{a} \in \vec{b}$.
- **28.** Os pontos A = (1,-1,4), B = (5,-1,4), C = (6,1,4) e D = (2,1,4) são vértices consecutivos de um quadrilátero.
 - a) Identifique o quadrilátero.

- **b**) Calcule a sua área.
- c) Obtenha todos os pontos possíveis, E, tais que \overline{AE} seja a aresta de um paralelipípedo que tem por base o quadrilátero dado e 24 unidades de volume.
- **29.** Calcule o volume do tetraedro [ABCD] em que:
 - a) A = (2,3,-2), B = (1,6,2), C = (2,4,-3) e D = (3,2,4).
 - **b**) $\overrightarrow{AB} = (1,1,0)$, $\overrightarrow{AC} = (0,1,1)$ e $\overrightarrow{AD} = (-4,0,0)$.
- **30.** Sejam os vectores $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^3$, tais que $\|\vec{a}\| = \|\vec{b}\|$, $\|\vec{c}\| = \|\vec{d}\| = 1$, $\angle(\vec{c}, \vec{d}) = \pi/3$, $\vec{a} + \vec{b} = \vec{c} \times \vec{d}$ e $\angle(\vec{a}, \vec{c} \times \vec{d}) = \pi/6$. Calcule:
 - a) A norma do vector \vec{b} .
 - **b**) O ângulo, θ , formado pelos vectores $\vec{a} \in \vec{b}$.
- **32.** Considere os vectores $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^3$, tais que $S = \{\vec{a}, \vec{b}\}$ é um conjunto ortonormal, \vec{c} é um vector paralelo a $\vec{a} \times \vec{b}$, $\|\vec{c}\| = 3$, $\vec{a} \cdot \vec{c} \times \vec{b} > 0$ e $\vec{a} \times \vec{b} = \vec{c} \vec{d} + \vec{a}$. Determine:
 - **a**) A norma do vector $\vec{a} + \vec{b}$.

- **b**) A norma do vector \vec{d} .
- c) O ângulo, θ , formado pelos vectores \vec{d} e $\vec{a} + \vec{b}$.

J.A.T.B.

- **33.** Sejam os vectores $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^3$, tais que $\vec{a} \times \vec{b} \cdot \vec{c} = 0$, $\angle(\vec{a}, \vec{c}) = \pi/6$, $||\vec{a}|| = 1$, $||\vec{b}|| = ||\vec{c}||$, $||\vec{d}|| = (\vec{a} \times \vec{c}) + \vec{b}$ e $\angle(\vec{c}, \vec{d}) = \pi/3$. Calcule o ângulo, θ , formado pelos vectores \vec{b} e \vec{c} .
- **35.** Considere a base ortonormal directa $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^3$ e o vector $\vec{d} = \vec{a} + 3\vec{b} + 4\vec{c}$. Calcule:
 - **a**) A norma do vector $\vec{a} \times \vec{d}$.

- **b**) O vector $\vec{c} \times (\vec{a} \times \vec{d})$.
- **c**) O ângulo, β , formado pelos vectores $\vec{a} \times \vec{d}$ e \vec{c} .
- **36.** Considere os vectores $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^3$, tais que $\vec{a} \cdot \vec{b} = 1$, $\|\vec{a}\| = 3$, $\|\vec{b}\| = 1$, $\|\vec{c}\| = 2$, $\|\vec{a} + \vec{c}\| = 1$, $\|\vec{c}\| = 2$, $\|\vec{a} + \vec{c}\| = 1$, $\|\vec{c}\| = 2$, $\|\vec{a} + \vec{c}\| = 1$, $\|\vec{c}\| = 3$, $\|\vec{b}\| = 1$, $\|\vec{c}\| = 2$, $\|\vec{a} + \vec{c}\| = 1$, $\|\vec{c}\| = 3$, $\|\vec{c}\|$
 - **a**) A norma do vector \vec{d} .
 - **b**) O ângulo, ϕ , formado pelos vectores \vec{c} e $\vec{a} \times \vec{b}$.
 - **c**) O ângulo, β , formado pelos vectores \vec{a} e \vec{d} .
 - **d**) A norma do vector $\vec{c} \times \vec{d}$.
- **37.** Sejam os vectores $\vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^3$, tais que $\{\vec{a} \times \vec{b}, \vec{c}\}$ é um conjunto ortogonal, $\|\vec{a}\| = \|\vec{b}\|$, $\|\vec{a} \times \vec{b}\| = 2$, $\|\vec{a} \cdot \vec{b}\| = 2\sqrt{3}$, $\|\vec{a} \vec{c}\| = 2$, $\|\vec{a} \cdot \vec{c}\| =$
 - a) As normas dos vectores \vec{a} e \vec{d} .
- **b**) A norma do vector $\vec{a} + \vec{d}$.
- c) O ângulo, α , formado pelos vectores $\vec{a} + \vec{d} = \vec{a} \times \vec{b}$.

- **38.** Sejam $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ vectores do espaço \mathbb{R}^3 , em que $S = \left\{ \vec{a}, \vec{b} \times \vec{c} \right\}$ é um conjunto ortonormal, $\left\| \vec{a} \vec{b} \right\| = 1$, $\left\| \vec{c} \right\| = \sqrt{2}$, $\left\| \vec{a} + \vec{c} \right\| = \sqrt{5}$, $\angle (\vec{c}, \vec{b}) = \pi/6$ e $\vec{d} = 2\vec{a} + 2\vec{b} + \alpha(\vec{a} \times \vec{c})$, $\alpha \in \mathbb{R}$. Calcule:
 - **a**) A norma do vector \vec{b} .

- **b**) A norma do vector $\vec{a} \times \vec{b}$.
- **c**) O valor de α , admitindo que $\|\vec{d}\| = 5$.
- **39.** Considere os vectores $\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{e} \in \mathbb{R}^3$, tais que $S = \{\vec{a}, \vec{b}\}$ é um conjunto ortonormal, $\vec{a} \cdot \vec{c} = 1$, $\angle(\vec{c}, \vec{b}) = \pi/4$, $\vec{a} \cdot \vec{b} \times \vec{c} = 1$, $\vec{d} = \vec{c} \vec{a} + \vec{b}$, $\vec{e} = (\vec{c} \times \vec{b}) \vec{a} + \vec{b}$ e $\|\vec{e}\| = \sqrt{5}$. Obtenha:
 - **a**) A norma dos vectores $\vec{b} \times \vec{c}$ e \vec{c} .
 - **b**) A norma do vector \vec{d} .
 - c) O ângulo, $\, \alpha \,$, formado pelos vectores $\, \vec{d} \,$ e $\, \vec{b} \,{ imes} \vec{c} \,$.
 - **d**) A norma do vector $(\vec{e} \vec{b}) \times \vec{b}$.
- **40.** Seja o conjunto $S = \{\vec{a}, \vec{b}\} \subset \mathbb{R}^3$, em que $\vec{a} = (1,1,1)$ e $\vec{b} = (0,1,2)$. Obtenha uma base ortonormal positiva para o espaço \mathbb{R}^3 , $T = \{\vec{u}, \vec{v}, \vec{w}\}$, que verifique as condições seguintes:
 - i) O vector \vec{u} é paralelo a \vec{a} e $\vec{u} \cdot \vec{a} < 0$;
 - ii) O vector $\vec{v} \in L(S)$ e $\vec{v} \cdot \vec{i} < 0$.
- **42.** Sejam os vectores $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$; mostre que $(\vec{a} \times \vec{b}) \times \vec{c} + (\vec{c} \times \vec{a}) \times \vec{b} + (\vec{b} \times \vec{c}) \times \vec{a} = \vec{0}$.