(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-111845

(43)公開日 平成11年(1999) 4月23日

(51)Int.Cl.6		識別記号	FΙ					
HO1L	21/768		H01L 2	1/90		M		
;	21/316		21/316		16 M			
;	21/318		2	1/318	/318		M	
			2	21/90		K		
			審査請求	未請求	請求項の数(oL	(全 8 頁	
(21)出願番号		特願平9-271134	(71)出顧人	0000030				
(22)出顧日		平成9年(1997)10月3日			東川崎市幸区 排	扒门町72	野地	
			(72)発明者				-	
		·		神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内				
			17A\ 41\30H 3	-68 THILL	鈴江 武彦	144 A		

(54) 【発明の名称】 半導体装置及びその製造方法

(57)【要約】

【課題】不純物の拡散、並びに水や水酸イオンの侵入を 抑制し、素子の信頼性の向上を図る。

【解決手段】絶縁膜11上に複数本の第1の金属配線2 〇が形成されている。素子分離絶縁膜11及び第1の金 属配線20上に、フッ素が高濃度に添加されたシリコン 酸化膜31、シリコン窒化膜32及びSiO2膜33が 積層されている。SiO2膜33の比誘電率は、SiO F膜31より高く、シリコン窒化膜32より低い値を有 する。SiOF膜31、シリコン窒化膜32、SiO2 膜33に第1の金属配線20に接続するヴィア・ホール が形成され、ヴィア・ホール中にWプラグ材41が埋め 込み形成されている。SiO2膜33上に第2の金属配 線50が形成されている。

【特許請求の範囲】

【請求項1】基板上に形成された下層配線と、

前記基板及び下層配線上に形成された比誘電率が3.9 未満の下層絶縁膜と、

この下層絶縁膜上に形成され、比誘電率が該下層絶縁膜より高く、水及び水酸イオンの透過率が低い拡散抑制絶縁膜と、

この拡散抑制絶縁膜上に形成され、比誘電率が該拡散抑 制絶縁膜より低い上層絶縁膜と、

前記上層絶縁膜上に形成、又は前記上層配線に埋め込み 形成された上層配線とを具備してなることを特徴とする 半導体装置。

【請求項2】前記拡散抑制絶縁膜は、シリコン酸化膜或いはシリコン窒化膜であることを特徴とする請求項1に記載の半導体装置。

【請求項3】前記下層絶縁膜或いは上層絶縁膜は、フッ 素或いはホウ素が添加されたシリコンを含む絶縁膜であ ることを特徴とする請求項1に記載の半導体装置。

【請求項4】前記下層絶縁膜の膜密度が、熱酸化により 得られるシリコン酸化膜の膜密度より低いことを特徴と 20 する請求項1に記載の半導体装置。

【請求項5】前記拡散抑制絶縁膜の膜厚が、前記最下層 配線上の下層絶縁膜の膜厚より薄いことを特徴とする請 求項1に記載の半導体装置。

【請求項6】基板上に下層配線を形成する工程と、 前記基板及び下層配線上に比誘電率が3.9未満である

下層絶縁膜を形成する工程と、

前記下層絶縁膜を平坦化した後、該下層絶縁膜上に、比 誘電率が該下層絶縁膜より高く、水及び水酸イオンの拡 散係数が低い拡散抑制絶縁膜を形成する工程と、

前記拡散抑制絶縁膜上に、比誘電率が該拡散抑制絶縁膜 より低い上層絶縁膜を形成する工程と、

前記上層絶縁膜上に上層配線を形成するか、又は該上層 絶縁膜に溝を形成しこの溝内に上層配線を埋め込み形成 する工程とを含むことを特徴とする半導体装置の製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、多層配線を絶縁する層間絶縁膜を有する半導体装置及びその製造方法に関 40 する。

[0002]

【従来の技術】近年、配線間並びに多層層間絶縁膜容量が半導体デバイス性能(処理速度、消費電力)に与える影響が大きくなってきており、従来層間絶縁膜として使用されていたSiO2の比誘電率(=3.9)より低い低誘電率絶縁膜を層間絶縁膜に用いる技術の開発が進められている。

【0003】低誘電率の絶縁膜としては、SiO2 構造 に対しフッ素(F)やホウ素(B)を添加した材料が知 られている。しかしながら、通常のSiO2 膜の成膜方法では、これらの添加物を安定な状態でSiO2 膜中に取り込むことは容易ではない。これらの添加物をSiO2 膜中に安定した状態で取り込むために、従来よりさらにプラズマ密度を高めたHDP-CVD (High Density Plasma — Chemical Vapor Deposition) 法を用いて成

膜する技術が知られている。

【0004】しかし、カーボンを含有しないガス系を用いてHigh-Density-Plasma(HDP)によって成膜された膜内には、従来成膜方法では膜内部に生成されていたダングリングボンドやCHxからなる不安定構造の絶対量が激減する。そのため、膜中に取り込まれた余剰のFや水酸イオンは、上記の欠陥領域に反応・再結合することなく、上層配線方向へ拡散して金属と絶縁膜との密着性を劣化させるという問題があった。

【0005】さらには、半導体外部環境より拡散導入される水、水酸イオンが前記絶縁体内部に拡散しやすく、 素子特性や金属配線特性の劣化が起こりやすいという問題があった。

【0006】また、SiOF膜以外にも、比誘電率が3.9未満であるSOG膜やポリイミド等の有機系低誘電率膜の低誘電率膜においても同様に吸湿性に富み、素子特性及び金属配線の特性を劣化させてしまうという問題がある。

[0007]

30

50

【発明が解決しようとする課題】上記したように、上層 配線及び下層配線間を絶縁分離する層間絶縁膜に比誘電 率が3.9未満である低誘電率絶縁膜を用いた場合、層 間絶縁膜に添加されている不純物が上層配線方向へと拡 散して金属と絶縁膜との密着性を劣化させるという問題 があった。また、低誘電率絶縁膜は、透過性に富み水や 水酸イオン等が拡散しやすく、素子特性や配線等を劣化 させるという問題があった。

【0008】本発明の目的は、上層配線及び下層配線間を分離絶縁する層間絶縁膜に添加されている不純物の拡散、並びに該層間絶縁膜への水や水酸イオンの侵入を抑制し、素子の信頼性の向上を図り得る半導体装置を提供することにある。

【0009】

【課題を解決するための手段】

[構成] 本発明は、上記目的を達成するために以下のように構成されている。

(1) 本発明(請求項1)の半導体装置は、基板上に 形成された下層配線と、前記基板及び下層配線上に形成 された比誘電率が3.9未満の下層絶縁膜と、この下層 絶縁膜上に形成され、該下層絶縁膜より比誘電率が高 く、水及び水酸イオンの透過率が低い拡散抑制絶縁膜 と、この拡散抑制絶縁膜上に形成され、比誘電率が該拡 散抑制絶縁膜より低い上層絶縁膜と、前記上層絶縁膜上

2.

に形成、又は該上層絶縁膜に埋め込み形成された上層配線とを具備してなることを特徴とする。

(2) 本発明(請求項6)の半導体装置の製造方法は、基板上に下層配線を形成する工程と、前記基板及び下層配線上に比誘電率が3.9未満である下層絶縁膜を形成する工程と、前記下層絶縁膜上に、比誘電率が該下層絶縁膜より高く、水及び水酸イオンの拡散係数が低い拡散抑制絶縁膜を形成する工程と、前記拡散抑制絶縁膜上に、比誘電率が該拡散抑制絶縁膜より低い上層絶縁膜を形成する工程と、前記上層絶縁膜上に上層配線を形成するか、又は該上層絶縁膜に溝を形成しこの溝内に上層配線を埋め込み形成する工程とを含むことを特徴とする。

【0010】本発明の好ましい実施態様を以下に示す。 (A-1) 前記最下層及び上層絶縁膜は、フッ素, ホウ素若 しくは炭素が不純物として添加されたシリコンを含む絶 縁膜である。

(A-2) 前記下層絶縁膜は、HDP-CVD法で形成された。

(A-3) 前記拡散抑制絶縁膜は、少なくとも298.15 ~400.15Kの範囲内において、前記下層絶縁膜より水及び水酸イオンの透過率が低い。なお、水とは、H2 O及びD2 Oを含む。

(B-1) 前記下層絶縁膜の膜密度が、熱酸化により得られるシリコン酸化膜の膜密度より低い。

(B-2) 前記下層絶縁膜或いは上層絶縁膜が、SOG膜或いは有機系絶縁膜である。

(C) 前記拡散抑制絶縁膜の膜厚が、前記下層配線上の下層絶縁膜の膜厚より薄い。

(D) 前記下層配線或いは上層配線が金属配線である。 【0011】[作用]本発明は、上記構成によって以下の作用・効果を有する。拡散抑制絶縁膜によって、下層 絶縁膜中に添加されている不純物が、上層絶縁膜と上層 配線との界面まで拡散することを防止し、上層絶縁膜と 上層配線との密着性の劣化を防止することが可能とな る。

【0012】また、拡散抑制絶縁膜は、水や水酸イオン等の透過率が低いので、その下層の下層絶縁膜に水や水酸イオンが拡散することを抑制することが可能となり、信頼性が向上する。

【0013】水や水酸イオン透過率が低い絶縁膜は、一般的に比誘電率が高い物質である。従って、拡散抑制絶縁膜上に上層配線を形成すると、上層配線間の容量が増加する。そこで、拡散抑制絶縁膜より比誘電率が低い上層絶縁膜を形成し、該上層絶縁膜上に上層配線が形成することによって、多層層間配線容量の増加を防いでいる。

【0014】また、配線間容量は、容量は線間を埋め込む絶縁膜でなく、配線直下の絶縁膜にも強く影響される。従って、配線が形成される上層絶縁膜は、拡散抑制

絶縁膜より比誘電率が低いので、線間容量の増加も抑制 される。

【0015】また、上層と下層配線との間の層間容量を低減するためには、拡散抑制絶縁膜の膜厚が、下層絶縁膜の下層配線上の膜厚より薄くしなければならない。また、下層絶縁膜を平坦化した後拡散抑制絶縁膜を形成することによって、特性のバラツキのない半導体装置を形成することができる。

[0016]

【発明の実施の形態】本発明の実施の形態を以下に図面を参照して説明する。

[第1実施形態]図1は、本発明の第1実施形態に係わる2層配線を有する半導体装置の構成を示す断面図である。なお、本実施形態では、素子分離並びにMOSFE T等の形成工程は省略し、多層金属配線に直接関わる部分のみを図示している半導体基板10上に素子分離絶縁膜11が形成されている。素子分離絶縁膜11上に複数本の第1の金属配線(下層配線)20が形成されている。第1の金属配線20は、Ti膜21,TiN膜22及びA1-Cu合金膜23が積層されて構成されている。

【0017】素子分離絶縁膜11及び第1の金属配線20上に、HDP-CVD法によって形成され、フッ素が高濃度に添加されているシリコン酸化膜(以下SiOF膜)(下層絶縁膜)31が形成されている。SiOF膜31は、その比誘電率の値が3.6であり、SiO2膜の比誘電率値3.9に比べて低い値を有する。従って、従来層間絶縁膜と用いられていたSiO2膜に比べて配線間容量を低減することができる。

【0018】SiOF膜31上に、第1の金属配線20上のSiOF膜31の膜厚より薄い膜厚のシリコン窒化膜(拡散抑制絶縁膜)32が形成されている。シリコン窒化膜32は、Si-Nのネットワークが強固即ち緻密な膜であることから、水及び水酸イオンの拡散に寄与する経路が極端に少ない構造体として存在することが可能となり、水(H2O,D2O)及び水酸イオンの透過率がSiOF膜31と比べて低い絶縁膜となり、水及び水酸イオンがSiOF膜31の中に侵入することを抑制する。また、同様に、SiOF膜31中の余剰なFが後述するSiO2膜中に拡散することを防ぎ、該SiO2膜と後述する第2の金属配線の密着性の劣化を防止することが可能となる。

【0019】シリコン窒化膜32上に SiO_2 膜 (上層絶縁膜) 33が形成されている。 SiO_2 膜33の比誘電率は、SiOF 膜31より高く、シリコン窒化膜32より低い値を有する。

【0020】SiOF膜31,シリコン窒化膜32,SiO2膜33に第1の金属配線20に接続するヴィア・ホールが形成され、ヴィア・ホール中にWプラグ材41が埋め込み形成されている。

【0021】SiO2 膜33上に複数本の第2の金属配線(上層配線)50が形成されている。この第2の金属配線50は、Ti膜51, TiN膜52, Al-Cu合金膜53が積層されて構成されている。また、1本の第2の金属配線50は、Wプラグ材41に接続されている。

【0022】SiO2 膜33及び第2の金属配線50上にチップを保護するためのパッシベーション絶縁膜としてSiON膜61が形成されている。SiON膜61には、第2の金属配線50に接続する接続窓62が形成されている。

【0023】次いで、この半導体装置の製造工程を説明する。図2,3は、本発明の第1実施形態に係わる2層金属配線の製造方法を示す工程断面図である。本工程断面図においては、素子分離並びにMOSFET形成工程は省略し、2層金属配線形成に直接関わる工程部分のみを図示している。

【0024】先ず、半導体基板10上に、後に形成する配線の絶縁分離層となる素子分離絶縁膜11を堆積した後、絶縁膜11上にTi膜21を20nm積層する。そして、Ti膜21上にTiN膜22を700nmの膜厚でスパッタ法により堆積する。連続して、TiN膜22上にスパッタ法を用いてA1-Cu合金膜23を400nmの膜厚で堆積する。次いで、リソグラフィ技術を用いて配線部分のA1-Cu合金膜23上にレジストパターンを形成する。そして、レジストパターンをでスクとしてRIE (Reactive Ion Etching) 法を用いて、A1-Cu合金膜23, TiN膜22及びTi膜21を順次エッチングして第1の金属配線20を形成加工した後、レジストパターンを除去する(図2(a))。

【0025】次いで、図2(b)に示すように、Bias-HDP CVD(Bias-HighDensityPlasma ChemicalVaporDeposition)法を用いてSiOF膜31を1.3μm堆積する。SiOF膜31の成膜は、ICP-TypeのHDP-CVD装置内に、SiF4/O2からなる反応ガスにBiasスパッタ効果を得るためのArガスを添加したガス系を導入して、1×10¹²cm⁻³のプラズマ密度で行った。

【0026】SiOF膜31を形成するための反応ガスには、Si源となるTEOS/O2/NF3, TEOS/O2/CF4, TEOS/O2/C2 F2 等のTEOSガスにフッ素を構成ガス中に持つ材料を添加したガス系、Si源となるSiH4/O2/CF4, SiH4/O2/C2 F6 等のSiH4 ガスフッ素を構成ガス中に持つ材料を添加したガス系、或いはSiF4/O2, SiH2F2/O2SiF4/SiH4/O2, SiH2F2/SiH4/O2等のSi及びFが反応ガスの1分子中に含まれるガス系等を用いることができる。上記のうち、Si源となるガスに炭素を含有しない単純な系となる材料ガスを用いるほうがより望ましい。

:

【0027】HDP-CVD法を用いることによって、成膜の際に得られるイオンが従来と比較してより単純且つ安定なイオンの形態でウェハ上に供給可能となることから、膜を構成する分子ネットワーク内に欠陥数の少ない絶縁膜を得ることが可能となる。例えば、従来の平行平板型電極のCVD装置によって得られた膜をESR法による測定した結果、 6×10^{18} [$spin/cm^3$]のE'centerが観測されたのに対し、HDP-CVD法によって得られた膜の値が検出限界以下であった。本実施形態においては、 SiF_4 / SiH_4 · O_2 成膜ガスにより、SiOF膜31を堆積した。

【0028】次いで、図2(c)に示すように、CMP法を用いてSiOF膜31の表面を研磨し、平坦化処理を行う。この研磨工程において、第1の金属配線20上のSiOF膜31の膜厚が0.8μmになるまで、SiOF膜31を研磨する。

【0029】次いで、図3(d)に示すように、SiOF膜31上に減圧プラズマCVD法により、シリコン窒化膜32を50nm堆積し、続いて反応ガス及び成膜条件を変え、同一チャンバー中にてSiO2膜33を150nm堆積する。

【0030】SiO2 膜33の成膜には、TEOS/O2系、更に少量のF化合物ガスが添加された状態での成膜が考えられ、SiO2膜33中には、フッ素、炭素等の不純物が混入していても良い。

【0031】なお、シリコン窒化膜32とSiO₂膜33とを同一チャンバー中にて連続成膜しているが、別チャンバー又は別装置を用いた非連続成膜を行うことも可能である。

30 【0032】次いで、図3(e)に示すように、SiO F膜31,シリコン窒化膜32及びSiO2 膜33に前記第1の金属配線20と接続するヴィア・ホールをリソグラフィ技術とRIE技術によって開孔形成する。そして、選択W CVD技術によりヴィア・ホール内にのみWプラグ材41を埋め込み形成する。

【0033】次いで、図3(f)に示すように、SiO 2 膜33上にスパッタ法を用いてTi膜51を20nm, TiN膜52を700nm及びA1-Cu合金膜53を400nmの膜厚で順次連続して堆積する。次いで、リソグラフィ技術により、配線パターンとなる部分のA1-Cu膜53上にレジストパターンを形成する。そして、レジストパターンをマスクとして、RIEによってTi膜51, TiN膜52及びA1-Cu膜53を順次エッチングし、第2の金属配線50を形成する。【0034】そして、全面に、チップ保護を目的としたパッシベーション絶縁膜として例えばSiON膜61を減圧CVD法によって200nm堆積する。そして、第2の金属配線50上のSiON膜61を選択的に除去し、外部接続用の接続窓62を形成し、半導体装置が完

50 成する。

40

【0035】本実施形態によれば、シリコン窒化膜32 によって、SiOF膜31の中に水酸イオンが侵入する ことを防ぎ、能動素子 (MOSFET) 及び第1の金属 配線の特性の劣化を防止することができる。また、シリ コン窒化膜32は、SiOF膜31中の余剰なFが第2 の金属配線50とSiO2膜33の界面に到達するのを 防ぎ、金属配線50とSiO2 膜33との密着性の劣化 を防ぐ。

【0036】なお、シリコン窒化膜32以外にも、Si ON等の緻密な膜を用いることも可能である。

[第2実施形態] 図4は、本発明の第2実施形態に係わ る2層金属配線を有する半導体装置の構成を示す断面図 である。なお、図4において、図1と同一の部分には同 一符号を付しその説明を省略する。

【0037】本実施形態の特徴は、SiOF膜31上の 拡散抑制絶縁膜が、SiOx (0<x<2) 膜34であ ることである。SiOx (0<x<2) 膜34は、酸素 が欠損することによって、膜中にSi-となるE'ce nterが形成される。SiOx 膜34の中に水酸イオ ン(-OH基)が侵入すると、Si-の欠陥部を-OH 基が終端する反応が生じる。従って、SiOx 膜34下 のSiOF膜31に供給される水酸イオンの絶対量が低 減され、第1の金属配線20が劣化することを防止す る。

【0038】また、同様にSiOF膜31の中の余剰な Fが、SiO2 膜33に拡散することを防ぎ、SiO2 膜33と第2の金属配線50との密着性の劣化を防止す る。次いで、この半導体装置の製造工程を説明する。図 5,6は、本発明の第2実施形態に係わる微細化2層金 属配線の製造方法を示す工程断面図である。

【0039】先ず、第1実施形態における図3(c)の SiOF膜31の平坦化後、図5(a)に示すように、 SiOF膜31上に、減圧CVD法を用いてSiOx (0<x<2) 膜34を50 nm成膜する。SiOx 膜 34は、SiO2 に比べてSi比率の高いシリコン酸化 膜とすべく、Siの供給源であるガス、例えばSiH4 の全ガス量に対する比率を、通常のプラズマCVDによ るSiO2の成膜条件より高めた環境を用いて形成す る。

【0040】SiH4 ガスの分解効率は、装置仕様によ り異なるが、今回SiH4 ガス量を通常の1.2倍と し、その他の成膜条件については通常と同じ条件を用い ることで、SiとOとの比がSi:1に対しO:1.7 の膜を得ることができた。

【0041】SiOx 膜34の形成後、SiH4 ガス量 を1/1.2に低下させてSiO2膜が成長する条件に 変更し、同一チャンバー中にてSiO2 膜33を150 nm堆積する。そして、SiOF膜31, SiOx 膜3 4及びSiO2 膜33に第1の金属配線20と接続する ヴィア・ホールを形成し、ヴィア・ホール内にWプラグ 材41を埋め込み形成する。なお、本実施形態では、S

iOx 膜34とSiO2 膜33とを同一チャンバー中に て連続成膜しているが、別チャンバー又は別装置を用い た比連続成膜を行うことも可能である。

【0042】次いで、第1実施形態と同様に、SiO2 膜33上にTi膜51, TiN膜52, Al-Cu合金 膜53が積層された第2の金属配線50を形成する。そ して、第1実施形態と同様に、SiON膜61を減圧C VD法によって200nm堆積する。そして、第2の金 10 属配線50上のSiON膜61を選択的に除去し、接続 窓62を形成する(図5(b))。

【0043】本実施形態によれば、SiOx 膜下のSi OF膜に供給される水酸イオンの絶対量が低減すること から、能動素子 (MOSFET) 及び金属配線の特性の 劣化を防止することができる。同様に、SiOF膜中の 余剰なFがSiO2 膜に拡散することを防ぎ、SiO2 膜と第2の金属配線との密着性の劣化を防止することが できる。

【0044】[第3実施形態]図6は、本発明の第3実 施形態に係わる2層配線の構造を示す断面図である。図 6において、図1と同一な部分には、同一符号を付しそ の詳しい説明を省略する。本実施形態の特徴は、絶縁膜 11及び第1の金属配線20上に形成された絶縁膜(下 層絶縁膜)が、低誘電率シリケイト膜35で構成されて いることである。低誘電率シリケイト膜35としは、B PSG, PSG或いはBSG等を用いることができる。 低誘電率シリケイト膜は、SiO2 膜に比べて膜密度が 低い膜であることから、水酸イオン等が透過しやすい膜 である。

30 【0045】下層絶縁膜がシリケイト膜35であって も、緻密なシリコン窒化膜32によって水酸イオン等が シリケイト膜35に拡散することを防ぎ、第1の金属配 線20が劣化することを防止する。また、第2実施形態 と同様に、SiOx (0 < x < 2) 膜を用いることも可 能である。

【0046】次に、この半導体装置の製造工程を説明す る。図7は、本発明の第2実施形態に係わる微細化2層 金属配線の製造方法を示す工程断面図である。先ず、第 1実施形態と同様に、半導体基板10上に形成された絶 縁膜11上に、Ti膜21, TiN膜22, A1-Cu 合金膜23からなる第1の金属配線20を形成する(図 7(a))。

【0047】次いで、シリケイト材をレジスト塗布と同 様に、例えば3000rpmの回転を施しながら塗布し た後、250度, 30secの第1次熱処理、450 度、30minの第2次熱処理を順次施すことにより、 膜中の溶媒を気化させて硬化・膜化させ、膜厚1.5μ mの低誘電率シリケイト膜35を形成する(図7

【0048】なお、シリケイト材として、日立化成社製

a

有機SOGR7 (Spin-OnGlass: SOG, HitachiChemicalCo., Ltd., HSG-2209S-R7) や旭ガラス社製サイトップ、Sehumacher社製PAE (ポリアリルエーテル)、ダウケミカル社製BCB (ベンゾシクロブテン)、ダウケミカル社製PFCB (バーフルオロシクロブテン)、ダウケミカル社製無機SOGHSQ等が用いることができる。

【0049】次いで、図7(c)に示すように、CMP(Chemical Mechanical Polishing)技術を用い、低誘電率シリケイト膜35を研磨し、表面の平坦化処理を施す。例えば、第1の金属配線20上の絶縁膜厚が、0.8μmになるまで研磨する。【0050】第1実施形態の図3(d)~(f)説明した工程を経ることによって、図6に示した半導体装置が形成される。本実施形態によれば、シリコン窒化膜下のシリケイト膜に供給される水酸イオンの絶対量が低減することから、能動素子(MOSFET)及び金属配線の特性の劣化を防止することができる。

【0051】上層絶縁膜として、下層絶縁膜と同一の材 20 料を用いても良い。なお、本発明は、上記実施形態に限定されるものではない。例えば、層間絶縁膜は3層で形成されていたが、拡散抑制絶縁膜と上層絶縁膜との間に異なる絶縁膜を挿入して4層以上で絶縁膜で構成することも可能である。

【0052】また、上記実施形態において、上層配線は、上層絶縁膜上に形成されていたが、図8に示すように、上層絶縁膜33に形成された配線溝63に埋め込み形成することも可能である。

【0053】これは、図2(d)に示す構造に対して、SiO2膜33に配線溝63を形成し、さらに所定配線溝63内に、前記第1の金属配線20と接続するようにヴィア・ホールを形成する。このヴィア・ホール内にのみWプラグ材41を埋め込み形成した後、全部の配線溝63内にTi膜51,TiN膜52を順次形成し、Al-Cu合金膜53を堆積することによって形成される。【0054】また、HDPの形成にはICP以外にも、ECR(Electron Cyclotron Resonance)やHelicon (Helicon WaveExcited Plasma)等が用いることができる。

【0055】さらには、上層絶縁膜として下層絶縁膜として挙げた塗布型膜を用いても良い。その他、本発明は、その要旨を逸脱しない範囲で、種々変形して実施することが可能である。

[0056]

10

【発明の効果】以上説明したように本発明によれば、透水性に富み、且つ不安定な不純物を有する下層絶縁膜、下層絶縁膜より水及び水酸イオンの透過率の低い拡散抑制絶縁膜、比誘電率が下層絶縁膜より高く拡散抑制絶縁膜より低い上層絶縁膜を積層することで、配線容量の低下を図りつつ、能動素子や配線の特性の劣化を防止することができる。

【図面の簡単な説明】

【図1】第1実施形態に係わる半導体装置の構成を示す 10 断面図。

【図2】第1実施形態に係わる半導体装置の製造工程を 示す工程断面図。

【図3】第1実施形態に係わる半導体装置の製造工程を 示す工程断面図。

【図4】第2実施形態に係わる半導体装置の構成を示す断面図。

【図5】第2実施形態に係わる半導体装置の製造工程を 示す工程断面図。

【図6】第3施形態に係わる半導体装置の構成を示す断 面図

【図7】第3実施形態に係わる半導体装置の構成を示す工程断面図。

【図8】本発明の一変形例に係わる半導体装置の構成を 示す断面図。

【符号の説明】

- 10…半導体基板
- 11…絶縁膜
- 20…第1の金属配線(下層配線)
- 21…Ti膜
- 30 22···TiN膜
 - 23…A1-Cu合金膜
 - 31…SiOF膜(下層絶縁膜)
 - 32…シリコン窒化膜(拡散抑制絶縁膜) 33…SiO₂ 膜(上層絶縁膜)
 - 34…SiOx (0<x<2)膜(拡散抑制絶縁膜)
 - 35…低誘電率シリケイト膜(拡散抑制絶縁膜)
 - 41…Wプラグ材
 - 50…第2の金属配線(上層配線)
 - 51…Ti膜
- 40 52…TiN膜
 - 53…A1-Cu合金膜
 - 61…SiON膜
 - 62…接続窓
 - 63…配線溝

【図5】

【図7】

【図6】

【図8】

