$11n_{126} (K11n_{126})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b+u,\ a-u-1,\ u^5+2u^4+4u^3+2u^2+2u-1\rangle \\ I_2^u &= \langle b+u,\ a-u+1,\ u^4-u^3+u^2+u-1\rangle \\ I_3^u &= \langle b+u,\ u^5+u^3+u^2+a,\ u^6-u^5+2u^4-u^3+2u^2-2u+1\rangle \\ I_4^u &= \langle -u^5-3u^4-4u^3-3u^2+b-3u-1,\ u^5+4u^4+7u^3+7u^2+2a+6u+4, \\ u^6+4u^5+7u^4+7u^3+6u^2+4u+2\rangle \\ I_5^u &= \langle -u^5+u^4-2u^3+u^2+b-2u+1,\ u^5-u^4+2u^3-u^2+a+2u-2,\ u^6-u^5+2u^4-u^3+2u^2-2u+1\rangle \\ I_6^u &= \langle b-u+1,\ a+u,\ u^2+1\rangle \\ I_7^u &= \langle b-u+1,\ 2a+u-2,\ u^2-2u+2\rangle \\ I_8^u &= \langle b+u,\ a-2u-1,\ u^2+1\rangle \end{split}$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b+u, \ a-u-1, \ u^5+2u^4+4u^3+2u^2+2u-1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u+1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{2}+u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3}-u+1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3}-u+1 \\ u^{4}+3u^{3}+2u^{2}+3u-1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4}-u^{3}-u^{2}+1 \\ -2u^{3}-2u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{4}+2u^{3}+2u^{2}-1 \\ 5u^{3}+2u^{2}+6u-2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4}-u^{3}-u^{2}+u+1 \\ -2u^{3}-u^{2}-3u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4}-u^{3}-u^{2}+u+1 \\ -2u^{3}-u^{2}-3u+1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3u^4 9u^3 12u^2 9u 9$

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_5 \ c_8$	$u^5 + 4u^4 + 3u^3 - 2u^2 + u + 1$
c_2	$u^5 + 10u^4 + 27u^3 + 6u^2 + 5u + 1$
c_4, c_7, c_{10} c_{11}	$u^5 - 2u^4 + 4u^3 - 2u^2 + 2u + 1$
c_6, c_9	$u^5 - 6u^4 + 12u^3 - 9u^2 + 5u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_8	$y^5 - 10y^4 + 27y^3 - 6y^2 + 5y - 1$
c_2	$y^5 - 46y^4 + 619y^3 + 214y^2 + 13y - 1$
c_4, c_7, c_{10} c_{11}	$y^5 + 4y^4 + 12y^3 + 16y^2 + 8y - 1$
c_{6}, c_{9}	$y^5 - 12y^4 + 46y^3 + 63y^2 + 61y - 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.260956 + 1.064160I		
a = 0.739044 + 1.064160I	4.11394 - 0.50358I	-4.17139 + 2.42983I
b = 0.260956 - 1.064160I		
u = -0.260956 - 1.064160I		
a = 0.739044 - 1.064160I	4.11394 + 0.50358I	-4.17139 - 2.42983I
b = 0.260956 + 1.064160I		
u = -0.89902 + 1.33981I		
a = 0.100977 + 1.339810I	-11.1448 + 10.7639I	-11.61144 - 5.00628I
b = 0.89902 - 1.33981I		
u = -0.89902 - 1.33981I		
a = 0.100977 - 1.339810I	-11.1448 - 10.7639I	-11.61144 + 5.00628I
b = 0.89902 + 1.33981I		
u = 0.319959		
a = 1.31996	-0.742760	-13.4340
b = -0.319959		

II.
$$I_2^u = \langle b+u, \ a-u+1, \ u^4-u^3+u^2+u-1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u - 1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - u + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - 2u^{2} + 3u - 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -u^{3} + 2u^{2} - 4u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-6u^3 + 3u^2 18$

Crossings	u-Polynomials at each crossing
c_1	$u^4 + 3u^3 + 2u^2 - 1$
c_2	$u^4 + 5u^3 + 2u^2 + 4u + 1$
c_3, c_5, c_8	$u^4 - 3u^3 + 2u^2 - 1$
c_4, c_7, c_{11}	$u^4 - u^3 + u^2 + u - 1$
c_{6}, c_{9}	$u^4 - 2u^3 - 2u^2 + u + 1$
c_{10}	$u^4 + u^3 + u^2 - u - 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_8$	$y^4 - 5y^3 + 2y^2 - 4y + 1$
c_2	$y^4 - 21y^3 - 34y^2 - 12y + 1$
c_4, c_7, c_{10} c_{11}	$y^4 + y^3 + y^2 - 3y + 1$
c_6, c_9	$y^4 - 8y^3 + 10y^2 - 5y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.848375		
a = -1.84837	-13.8089	-12.1770
b = 0.848375		
u = 0.593691 + 1.196160I		
a = -0.406309 + 1.196160I	3.04056 - 6.31855I	-7.20042 + 6.94067I
b = -0.593691 - 1.196160I		
u = 0.593691 - 1.196160I		
a = -0.406309 - 1.196160I	3.04056 + 6.31855I	-7.20042 - 6.94067I
b = -0.593691 + 1.196160I		
u = 0.660993		
a = -0.339007	-2.14179	-18.4220
b = -0.660993		

III.
$$I_3^u = \langle b+u, \ u^5+u^3+u^2+a, \ u^6-u^5+2u^4-u^3+2u^2-2u+1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} - u^{3} - u^{2} \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} - u^{3} - u^{2} - u \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} + u^{4} - u^{3} + 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} - 2u^{3} + 3u^{2} - 2u + 2 \\ -u^{5} - u^{2} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} + 2u^{2} - 3u + 3 \\ -u^{5} + u^{4} - 2u^{3} + 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{5} - u^{4} + 2u^{3} + 3u^{2} - 2u + 1 \\ u^{4} - 2u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - 2u^{3} + u^{2} - 3u + 2 \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - 2u^{3} + u^{2} - 3u + 2 \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^5 2u^4 + 2u^3 + 2u 14$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_8	$u^6 - 3u^5 + 3u^3 + 2u^2 + 1$
c_2	$u^6 + 9u^5 + 22u^4 + 7u^3 + 4u^2 - 4u + 1$
<i>c</i> 3	$u^6 + 4u^5 + u^4 - 9u^3 + 16u + 10$
C4	$u^6 - 4u^5 + 7u^4 - 7u^3 + 6u^2 - 4u + 2$
c_6	$u^6 + 4u^5 + u^4 - 2u^3 + 13u^2 - 2u + 1$
c_7, c_{10}, c_{11}	$u^6 + u^5 + 2u^4 + u^3 + 2u^2 + 2u + 1$
<i>C</i> 9	$u^6 - 5u^5 + 9u^4 - 7u^3 + 8u^2 - 12u + 8$

Crossings	Riley Polynomials at each crossing		
c_1, c_5, c_8	$y^6 - 9y^5 + 22y^4 - 7y^3 + 4y^2 + 4y + 1$		
c_2	$y^6 - 37y^5 + 366y^4 + 201y^3 + 116y^2 - 8y + 1$		
<i>c</i> ₃	$y^6 - 14y^5 + 73y^4 - 189y^3 + 308y^2 - 256y + 100$		
C_4	$y^6 - 2y^5 + 5y^4 + 7y^3 + 8y^2 + 8y + 4$		
c_6	$y^6 - 14y^5 + 43y^4 + 40y^3 + 163y^2 + 22y + 1$		
c_7, c_{10}, c_{11}	$y^6 + 3y^5 + 6y^4 + 5y^3 + 4y^2 + 1$		
<i>c</i> ₉	$y^6 - 7y^5 + 27y^4 - 9y^3 + 40y^2 - 16y + 64$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.601492 + 0.919611I		
a = -0.43524 + 2.43997I	-13.38990 + 2.37783I	-11.38532 - 2.96944I
b = 0.601492 - 0.919611I		
u = -0.601492 - 0.919611I		
a = -0.43524 - 2.43997I	-13.38990 - 2.37783I	-11.38532 + 2.96944I
b = 0.601492 + 0.919611I		
u = 0.560586 + 0.395699I		
a = 0.081238 - 0.765128I	-0.389538 - 0.233200I	-13.01274 + 1.15455I
b = -0.560586 - 0.395699I		
u = 0.560586 - 0.395699I		
a = 0.081238 + 0.765128I	-0.389538 + 0.233200I	-13.01274 - 1.15455I
b = -0.560586 + 0.395699I		
u = 0.540906 + 1.210940I		
a = -0.14600 + 1.47596I	2.26485 - 4.47692I	-9.60193 + 3.00061I
b = -0.540906 - 1.210940I		
u = 0.540906 - 1.210940I		
a = -0.14600 - 1.47596I	2.26485 + 4.47692I	-9.60193 - 3.00061I
b = -0.540906 + 1.210940I		

$$\text{IV. } I_4^u = \langle -u^5 - 3u^4 - 4u^3 - 3u^2 + b - 3u - 1, \ u^5 + 4u^4 + 7u^3 + 7u^2 + 2a + 6u + 4, \ u^6 + 4u^5 + 7u^4 + 7u^3 + 6u^2 + 4u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{5} - 2u^{4} - \frac{7}{2}u^{3} - \frac{7}{2}u^{2} - 3u - 2 \\ u^{5} + 3u^{4} + 4u^{3} + 3u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{5} + u^{4} + \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - 1 \\ u^{5} + 3u^{4} + 4u^{3} + 3u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{3}{2}u^{5} - 5u^{4} - \frac{13}{2}u^{3} - \frac{9}{2}u^{2} - 4u - 2 \\ -u^{5} - 4u^{4} - 6u^{3} - 5u^{2} - 3u - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{5} + u^{4} + \frac{1}{2}u^{3} - \frac{1}{2}u^{2} \\ u^{5} + 4u^{4} + 6u^{3} + 5u^{2} + 4u + 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{5} - u^{4} - \frac{3}{2}u^{3} - \frac{3}{2}u^{2} - u \\ -u^{5} - 3u^{4} - 3u^{3} - 2u^{2} - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{5} + u^{4} + \frac{1}{2}u^{3} + \frac{1}{2}u^{2} + u + 1 \\ 2u^{5} + 6u^{4} + 7u^{3} + 7u^{2} + 5u + 3 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} - 2u^{3} - u^{2} - 2u - 1 \\ 3u^{5} + 7u^{4} + 5u^{3} + 5u^{2} + 4u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{5} + 2u^{4} + \frac{5}{2}u^{3} + \frac{1}{2}u^{2} + u + 1 \\ -u^{5} - 2u^{4} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{5} + 2u^{4} + \frac{5}{2}u^{3} + \frac{1}{2}u^{2} + u + 1 \\ -u^{5} - 2u^{4} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^5 6u^4 6u^3 4u^2 6u 14$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$u^6 - 3u^5 + 3u^3 + 2u^2 + 1$
c_2	$u^6 + 9u^5 + 22u^4 + 7u^3 + 4u^2 - 4u + 1$
c_4, c_7, c_{10}	$u^6 + u^5 + 2u^4 + u^3 + 2u^2 + 2u + 1$
<i>C</i> ₆	$u^6 - 5u^5 + 9u^4 - 7u^3 + 8u^2 - 12u + 8$
c ₈	$u^6 + 4u^5 + u^4 - 9u^3 + 16u + 10$
<i>c</i> ₉	$u^6 + 4u^5 + u^4 - 2u^3 + 13u^2 - 2u + 1$
c_{11}	$u^6 - 4u^5 + 7u^4 - 7u^3 + 6u^2 - 4u + 2$

Crossings	Riley Polynomials at each crossing
c_1,c_3,c_5	$y^6 - 9y^5 + 22y^4 - 7y^3 + 4y^2 + 4y + 1$
c_2	$y^6 - 37y^5 + 366y^4 + 201y^3 + 116y^2 - 8y + 1$
c_4, c_7, c_{10}	$y^6 + 3y^5 + 6y^4 + 5y^3 + 4y^2 + 1$
<i>c</i> ₆	$y^6 - 7y^5 + 27y^4 - 9y^3 + 40y^2 - 16y + 64$
c ₈	$y^6 - 14y^5 + 73y^4 - 189y^3 + 308y^2 - 256y + 100$
<i>c</i> 9	$y^6 - 14y^5 + 43y^4 + 40y^3 + 163y^2 + 22y + 1$
c_{11}	$y^6 - 2y^5 + 5y^4 + 7y^3 + 8y^2 + 8y + 4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.692483 + 0.688444I		
a = -0.726263 - 0.722027I	2.26485 + 4.47692I	-9.60193 - 3.00061I
b = -0.540906 + 1.210940I		
u = -0.692483 - 0.688444I		
a = -0.726263 + 0.722027I	2.26485 - 4.47692I	-9.60193 + 3.00061I
b = -0.540906 - 1.210940I		
u = 0.190623 + 0.840421I		
a = 0.256681 - 1.131660I	-0.389538 + 0.233200I	-13.01274 - 1.15455I
b = -0.560586 + 0.395699I		
u = 0.190623 - 0.840421I		
a = 0.256681 + 1.131660I	-0.389538 - 0.233200I	-13.01274 + 1.15455I
b = -0.560586 - 0.395699I		
u = -1.49814 + 0.76160I		
a = -0.530418 - 0.269644I	-13.38990 - 2.37783I	-11.38532 + 2.96944I
b = 0.601492 + 0.919611I		
u = -1.49814 - 0.76160I		
a = -0.530418 + 0.269644I	-13.38990 + 2.37783I	-11.38532 - 2.96944I
b = 0.601492 - 0.919611I		

$$\text{V. } I_5^u = \langle -u^5 + u^4 - 2u^3 + u^2 + b - 2u + 1, \ u^5 - u^4 + 2u^3 - u^2 + a + 2u - 2, \ u^6 - u^5 + 2u^4 - u^3 + 2u^2 - 2u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} + u^{2} - 2u + 2 \\ u^{5} - u^{4} + 2u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{5} - u^{4} + 2u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - u^{3} - u^{2} - u + 1 \\ u^{4} - u^{3} + 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{5} + u^{4} - 3u^{3} + 2u^{2} - 3u + 1 \\ -u^{4} + 2u^{3} - 3u^{2} + 3u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} - u + 1 \\ u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} + u - 2 \\ -2u^{5} + 2u^{4} - 3u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} - u + 1 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} - u + 1 \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^5 2u^4 + 2u^3 + 2u 14$

Crossings	u-Polynomials at each crossing	
c_1, c_5	$u^6 + 4u^5 + u^4 - 9u^3 + 16u + 10$	
c_2	$u^6 + 14u^5 + 73u^4 + 189u^3 + 308u^2 + 256u + 100$	
c_3, c_8	$u^6 - 3u^5 + 3u^3 + 2u^2 + 1$	
c_4, c_{11}	$u^6 + u^5 + 2u^4 + u^3 + 2u^2 + 2u + 1$	
c_{6}, c_{9}	$u^6 + 4u^5 + u^4 - 2u^3 + 13u^2 - 2u + 1$	
c_{7}, c_{10}	$u^6 - 4u^5 + 7u^4 - 7u^3 + 6u^2 - 4u + 2$	

Crossings	Riley Polynomials at each crossing	
c_1, c_5	$y^6 - 14y^5 + 73y^4 - 189y^3 + 308y^2 - 256y + 100$	
c_2	$y^6 - 50y^5 + 653y^4 + 2279y^3 + 12696y^2 - 3936y + 10000$	
c_{3}, c_{8}	$y^6 - 9y^5 + 22y^4 - 7y^3 + 4y^2 + 4y + 1$	
c_4, c_{11}	$y^6 + 3y^5 + 6y^4 + 5y^3 + 4y^2 + 1$	
c_{6}, c_{9}	$y^6 - 14y^5 + 43y^4 + 40y^3 + 163y^2 + 22y + 1$	
c_7,c_{10}	$y^6 - 2y^5 + 5y^4 + 7y^3 + 8y^2 + 8y + 4$	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.601492 + 0.919611I		
a = -0.498140 - 0.761597I	-13.38990 + 2.37783I	-11.38532 - 2.96944I
b = 1.49814 + 0.76160I		
u = -0.601492 - 0.919611I		
a = -0.498140 + 0.761597I	-13.38990 - 2.37783I	-11.38532 + 2.96944I
b = 1.49814 - 0.76160I		
u = 0.560586 + 0.395699I		
a = 1.19062 - 0.84042I	-0.389538 - 0.233200I	-13.01274 + 1.15455I
b = -0.190623 + 0.840421I		
u = 0.560586 - 0.395699I		
a = 1.19062 + 0.84042I	-0.389538 + 0.233200I	-13.01274 - 1.15455I
b = -0.190623 - 0.840421I		
u = 0.540906 + 1.210940I		
a = 0.307517 - 0.688444I	2.26485 - 4.47692I	-9.60193 + 3.00061I
b = 0.692483 + 0.688444I		
u = 0.540906 - 1.210940I		
a = 0.307517 + 0.688444I	2.26485 + 4.47692I	-9.60193 - 3.00061I
b = 0.692483 - 0.688444I		

VI.
$$I_6^u = \langle b - u + 1, \ a + u, \ u^2 + 1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u - 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ u - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ 2u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ 3u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ u - 2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^2 + 2u + 2$
c_2	$u^2 + 4$
c_{3}, c_{8}	$(u+1)^2$
c_4, c_6, c_9 c_{11}	$u^2 + 1$
c_5, c_7	$u^2 - 2u + 2$

Crossings	Riley Polynomials at each crossing		
c_1, c_5, c_7 c_{10}	y^2+4		
c_2	$(y+4)^2$		
c_3,c_8	$(y-1)^2$		
c_4, c_6, c_9 c_{11}	$(y+1)^2$		

Solutions to I_6^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	$-\ 1.000000I$	1.64493	-8.00000
b = -1.00000 -	+ 1.00000I		
u =	-1.000000I		
a =	1.000000I	1.64493	-8.00000
b = -1.00000 -	- 1.00000 <i>I</i>		

VII.
$$I_7^u = \langle b - u + 1, 2a + u - 2, u^2 - 2u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 2u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u + 1 \\ u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u \\ u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u + 1 \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u + 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u + 1 \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u + 2 \\ 3u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -2u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{2}u + 2 \\ 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{2}u + 2 \\ 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing		
c_1	$(u-1)^2$		
c_2, c_3, c_5	$(u+1)^2$		
c_4, c_6, c_7 c_9, c_{10}	$u^2 + 1$		
c_{8}, c_{11}	$u^2 - 2u + 2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_5	$(y-1)^2$		
c_4, c_6, c_7 c_9, c_{10}	$(y+1)^2$		
c_8, c_{11}	$y^2 + 4$		

	Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000 + 1.00000I		
a =	0.500000 - 0.500000I	1.64493	-8.00000
b =	1.000000I		
u =	1.00000 - 1.00000I		
a =	0.500000 + 0.500000I	1.64493	-8.00000
b =	-1.000000I		

VIII.
$$I_8^u=\langle b+u,\; a-2u-1,\; u^2+1\rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u+1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u+1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u-1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

- $a_6 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $a_9 = \begin{pmatrix} 2u 1 \\ -u + 1 \end{pmatrix}$ $a_9 = \begin{pmatrix} 2u 1 \\ -u + 1 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing		
c_1	$(u-1)^2$		
c_2, c_5, c_8	$(u+1)^2$		
c_3, c_4	$u^2 - 2u + 2$		
$c_6, c_7, c_9 \\ c_{10}, c_{11}$	$u^2 + 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5 c_8	$(y-1)^2$		
c_3, c_4	$y^2 + 4$		
$c_6, c_7, c_9 \\ c_{10}, c_{11}$	$(y+1)^2$		

	Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	1.00000 + 2.00000I	1.64493	-8.00000
b =	-1.000000I		
u =	-1.000000I		
a =	1.00000 - 2.00000I	1.64493	-8.00000
b =	1.000000I		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^2 + 2u + 2)(u^4 + 3u^3 + 2u^2 - 1)(u^5 + 4u^4 + \dots + u + 1)$ $\cdot (u^6 - 3u^5 + 3u^3 + 2u^2 + 1)^2(u^6 + 4u^5 + u^4 - 9u^3 + 16u + 10)$
c_2	$(u+1)^{4}(u^{2}+4)(u^{4}+5u^{3}+2u^{2}+4u+1)$ $\cdot (u^{5}+10u^{4}+27u^{3}+6u^{2}+5u+1)$ $\cdot (u^{6}+9u^{5}+22u^{4}+7u^{3}+4u^{2}-4u+1)^{2}$ $\cdot (u^{6}+14u^{5}+73u^{4}+189u^{3}+308u^{2}+256u+100)$
c_3, c_5, c_8	$((u+1)^4)(u^2 - 2u + 2)(u^4 - 3u^3 + 2u^2 - 1)(u^5 + 4u^4 + \dots + u + 1)$ $\cdot (u^6 - 3u^5 + 3u^3 + 2u^2 + 1)^2(u^6 + 4u^5 + u^4 - 9u^3 + 16u + 10)$
c_4, c_7, c_{11}	$(u^{2}+1)^{2}(u^{2}-2u+2)(u^{4}-u^{3}+u^{2}+u-1)$ $\cdot (u^{5}-2u^{4}+4u^{3}-2u^{2}+2u+1)(u^{6}-4u^{5}+\cdots-4u+2)$ $\cdot (u^{6}+u^{5}+2u^{4}+u^{3}+2u^{2}+2u+1)^{2}$
c_6, c_9	$(u^{2}+1)^{3}(u^{4}-2u^{3}-2u^{2}+u+1)(u^{5}-6u^{4}+12u^{3}-9u^{2}+5u+2)$ $\cdot (u^{6}-5u^{5}+9u^{4}-7u^{3}+8u^{2}-12u+8)$ $\cdot (u^{6}+4u^{5}+u^{4}-2u^{3}+13u^{2}-2u+1)^{2}$
c_{10}	$(u^{2}+1)^{2}(u^{2}+2u+2)(u^{4}+u^{3}+u^{2}-u-1)$ $\cdot (u^{5}-2u^{4}+4u^{3}-2u^{2}+2u+1)(u^{6}-4u^{5}+\cdots-4u+2)$ $\cdot (u^{6}+u^{5}+2u^{4}+u^{3}+2u^{2}+2u+1)^{2}$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_8	$(y-1)^{4}(y^{2}+4)(y^{4}-5y^{3}+2y^{2}-4y+1)$ $\cdot (y^{5}-10y^{4}+27y^{3}-6y^{2}+5y-1)$ $\cdot (y^{6}-14y^{5}+73y^{4}-189y^{3}+308y^{2}-256y+100)$ $\cdot (y^{6}-9y^{5}+22y^{4}-7y^{3}+4y^{2}+4y+1)^{2}$
c_2	$(y-1)^{4}(y+4)^{2}(y^{4}-21y^{3}-34y^{2}-12y+1)$ $\cdot (y^{5}-46y^{4}+619y^{3}+214y^{2}+13y-1)$ $\cdot (y^{6}-50y^{5}+653y^{4}+2279y^{3}+12696y^{2}-3936y+10000)$ $\cdot (y^{6}-37y^{5}+366y^{4}+201y^{3}+116y^{2}-8y+1)^{2}$
c_4, c_7, c_{10} c_{11}	$((y+1)^4)(y^2+4)(y^4+y^3+\cdots-3y+1)(y^5+4y^4+\cdots+8y-1)$ $\cdot (y^6-2y^5+\cdots+8y+4)(y^6+3y^5+6y^4+5y^3+4y^2+1)^2$
c_{6}, c_{9}	$((y+1)^6)(y^4 - 8y^3 + \dots - 5y + 1)(y^5 - 12y^4 + \dots + 61y - 4)$ $\cdot (y^6 - 14y^5 + 43y^4 + 40y^3 + 163y^2 + 22y + 1)^2$ $\cdot (y^6 - 7y^5 + 27y^4 - 9y^3 + 40y^2 - 16y + 64)$