עוצמות

הקדמה:

- שונות גודל $\{1,2,3\},\{4,5,\}$.1
- 2. זיווג מתאים בין קבוצה אחת לאחרת. אין הקבוצות לעיל אין זיווג
 - 3. קבוצות סופיות באותו הגודל אמ"מ יש ביניהן פונקצית זיווג

?מי יותר גדול – $\mathbb{N}_{\mathrm{even}}, \mathbb{N}$

ביניהן קיימת פונקצית זיווג ולכן הן בעוצמה שווה. אפשר גם לכתוב אחת את השנייה בעקרון ההחלפה (לא להצמד לרעיון הזה).

. דוגמה לפונקציה כזו: $f \colon \mathbb{N} \to \mathbb{N}_{\mathrm{even}}$ דוגמה לחע ועל $f \colon \mathbb{N} \to \mathbb{N}_{\mathrm{even}}$ ולכן זיווג.

 $|\mathbb{N}_{ ext{even}}| = |\mathbb{N}|$ מקיום הזיווג,

אפשר להגדיר עוצמה כאובייקט מתמטי, אך ההגדרה לא תינתן בקורס זה.

:דוגמאות

- $|\mathbb{N}|=|\mathbb{N}_{\mathrm{odd}}|$ באופן דומה, $|\mathbb{N}|=|\mathbb{N}_{\mathrm{even}}|$. בהקדמה הראינו ש
- . נבחר $n\in\mathbb{N}$ בחר $n\in\mathbb{N}$. נבחר $f:\mathbb{N}\to\mathbb{N}\setminus\{0,1,2\}$. נגדיר: $|\mathbb{N}|=|\mathbb{N}\setminus\{0,1,2\}$. נראה ש
- , גם קטן ממש, $f\colon X\to \mathcal{P}(X), f=\lambda a\in X.\{a\}$. נמצא פונ חחע: $|X|\le |\mathcal{P}(X)|$ נמצא (זה גם קטן ממש, $|X|\le |\mathcal{P}(X)|$ נוכיח את זה בהמשך הקורס].
 - $f=\lambda n\in\mathbb{N}.n,f\colon\mathbb{N} o\mathbb{R}$ בהמשך הקורס נוכיח שזה קטן ממש): נבחר פונקצית זיווג $\mathbb{N}|f=\lambda n\in\mathbb{N}.n,f$

הוכחות קטנות למשפטים:

- $(f = \lambda a \in A.a, f \colon A \to B$ נבחר זיווג $A \subseteq B \implies |A| \le |B|$.1
 - $(id_A | |A| = |A| | A|$.2
- (נתון קיום זיווג שיתאים לכן $h\colon A\to A$ לכן $h\colon A\to B$ נתון קיום זיווג $|A|=|B|\implies |B|=|A|$.3
- זיווג $h=h_1\circ h_2$ נבחר, גבחר, ובחר, $h_1:A\to B,h_2\colon B\to C$ נתון קיום זיווגים $|A|=|B|\wedge |B|=|C|$ נבחר |A|=|C| שיתאים [ישנו משפט הרכבת זיווגים היא זיווג])
- .6 (כניח בשלילה שכן, וניח בשלילה שכן, וניח בשלילה שכן, לכן און (פי $|A| \neq |C|$ בנוסף, נוכיח $|A| \neq |C|$ בנוסף, נוכיח בשלילה שכן, לכן און $|A| \neq |C|$ וסהכ סתירה לכך ש־|B| = |C| ולפי 3 נובע $|B| = |A| \land |A| = |C|$ ולפי 4 (בגלל שנתון $|B| = |A| \land |A| = |C|$ וסהכ סתירה לכך ש־|B| < |C|

. נניח f,g כאשר $f\colon A \to A', g\colon B \to B'$ נקבע וקבע . $|A| = |A'| \wedge |B| = |B'|$ נניח

- h נוכיח $h=\lambda\langle a,b\rangle\in A\times B.\langle f(a),g(b)\rangle$, $h\colon (A\times B)\to (A'\times B')$ נגדיר $|A\times B|=|A'\times B'|$ נוכיח 1. זיווג (זה אמור היות קל אז אנחנו לא עושים את זה בכיתה).
- כדי $.\varphi\colon (A\to B)\to (A'\to B'), \varphi=\lambda h\in A\to B. g\circ h\circ f^{-1}$ נוכיח $.|A\to B|=|A\to B|=|A\to B|$ נוכיח ש־ φ היא זיווג, נוכיח שהיא הפיכה (יש משפט המאפשר את זה). נגדיר:

$$\psi \colon (A' \to B') \to (A \to B), \psi = \lambda \tilde{h} \in A' \to B'.g^{-1} \circ \tilde{h} \circ f$$

נוכיח ש־ φ,ψ הופכיות משני הצדדים.

$$\varphi(\psi(h)) = h$$
 נוכיח $h \colon A' \to B'$ יהי איבר: $\varphi \circ \psi = id_{A' \to B'} \circ \varphi$

$$\varphi \circ \psi(h) = \varphi(\psi(h)) = \varphi(g^{-1} \circ h \circ f) = \underbrace{g \circ g^{-1}}_{id_{B'}} \circ h \circ \underbrace{f \circ f^{-1}}_{id_{A'}} = h$$

$$\psi \circ \varphi = id_{A o B}$$
 , באופן דומה \circ

$$|A o B|=|A' o B'|$$
 סה"כ