# Paraguayan Guarani progressive nasalization as phonologically conditioned allomorphy

Marisabel (Isa) Cabrera<sup>1</sup> • UCLA isacabrera@ucla.edu

#### 1 Introduction

- Most Tupi-Guarani languages show extensive nasalization processes.
- Some TG languages show both regressive and progressive nasal spread simultaneously.
- An example from Paraguayan Guarani:

b. ne-mita-'ŋguera 2sg-child-pl 'your children'

• Although regressive nasalization in P. Guarani is exceptionless, **progressive** nasalization is morpheme-specific.

b. ne-mita-'ŋguera 2sg-child-PL 'your children'

b. o-kosînā-'meve 3-cook-until 'until he cooks'



b.  $\delta$ -k $\delta$ s $\tilde{i}$ 'n $\tilde{a}$ -ta

3-cook-FUT

'he will cook'

5

- \* often dismissed as idiosyncratic and unproductive
- \* remains understudied compared to regressive nasalization

#### 2 This talk

First formal analysis of Guarani progressive nasalization as phonologically conditioned suppletive allomorphy

- morphemes have different lexical specifications
- predicts some productivity, given phonological conditioning
- Consequences for analyzing exceptional causative constructions
- no straightforward analysis
- mixed evidence on their productivity vs. lexical status (Russell 2021, Estigarribia 2021)

#### 3 Roadmap

- 1. Background on Paraguayan Guarani
- 2. Empirical facts on progressive harmony
- **3.** The analysis
- 4. Exceptional causative constructions
- 5. Conclusions and future directions

#### 4 Background

• Paraguayan Guarani (Tupi-Guarani, Tupian) is spoken by 5-6 million in Paraguayan and neighboring areas of Argentina and Brazil.

A huge thank you to Irma Ovelar, Maria Gómez, Elvira Martínez, Laure Galeano, Alfredo Almirón, Armando, and Analía Garcia for sharing their language with me; aguyjevete! Also thank you to Ben Eischens, Claire Moore-Cantwell, Sam Zukoff, Kie Zuraw, Hunter Johnson, and audiences at the UCLA Phonology Seminar for helpful discussion and feedback. All errors are my own.

- Guarani and Spanish are the official languages of Paraguay (Guarani since 1992).
- Learned as a first language for many. Around 80% of the population speak Guarani at home (Estigarribia 2020).
- Guarani has been described for decades (Gregores & Suárez 1965) and has significantly contributed to phonological theory (Beckman 1998, Walker 1998, Piggott 2003).
- All data collected in consultation with 8 native speakers.
  - 6: in-situ fieldwork in Coronel Oviedo, Paraguay
  - 2: virtual fieldwork; Asunción and Concepción

**Age range:** 24 to 70 y.o.



- 12 phonemic vowels of 6 qualities (i, , u, e, o, a), all contrasting in nasality.
- No voiced stops, instead has nasal-oral stops  $[m^b,\,n^d,\,\eta^g].$  All contrast with plain voiceless stops.

• Nasal-oral stops and full nasal consonants are in complementary distribution. Similarly, j [ $\phi$ ] and  $\tilde{n}$  [ $\eta$ ].

$$(4) \quad a. \quad -\overline{m^b}a \quad b. \quad -\overline{m}\tilde{a} \qquad (5) \quad a. \quad a'\overline{\parallel}a \quad b. \quad \tilde{a}'\overline{n}\tilde{a}$$
 
$$\quad \text{TOT} \qquad \quad \text{CMPL} \qquad \qquad \text{'during'} \qquad \text{'evil'}$$

• Extensive and exceptionless **regressive** (leftward) nasalization.

- → triggered by phonemic nasal vowels and nasal-oral stops
- $\rightarrow$  voiceless segments are transparent
- (5) nda-ja-jo-hai'hu-i

  NEG-1PL.IN-REC-love-NEG

  'we don't love each other'
- (6) a.  $\underbrace{\overline{\mathbb{n}}\tilde{a}-\overline{\mathbb{n}}\tilde{a}-\overline{\mathbb{n}}\tilde{o}-h\tilde{e}'n\tilde{\mathbf{o}}^{-1}}_{1PL.IN-REC-call-NEG}$  b.  $\underbrace{\overline{\mathbb{n}}\tilde{a}-\overline{\mathbb{n}}\tilde{a}-\overline{\mathbb{n}}\tilde{o}-h\tilde{e}'n^{\mathbf{d}}u^{-i}}_{NEG-1PL.IN-REC-listen-NEG}$  'we don't call e.o.' 'we don't listen to e.o.'

\* nasal consonants post-oralize before oral vowels (Stanton 2017).

• Location of vowel contrast in nasality previously thought to be at the stressed syllable (Beckman 1998), but is recently challenged.

\* vowel nasality is specified at the right edges of words (Cabrera 2024).

• Some evidence from words with non-final stress:

(7) mã'mõmẽ 'papaya' mãrãmõ 'never' memã 'hãmĩrĩ 'nahaniri'

• Roots and suffixes behave independently in regressive spread (Cabrera 2024).

11

8

7

14

16

| (8) | a. | avati-mĩ′r <b>ĩ</b>                                                | b. | pɨʔa-põˈr̃ <b>ã</b>                                                                                                                 |
|-----|----|--------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------|
|     |    | corn-small                                                         |    | heart-pretty                                                                                                                        |
|     |    | 'wheat'                                                            |    | 'kindness'                                                                                                                          |
| (9) | a. | che-sy-pe- <u>\$\frac{\tilde{g}u\tilde{a}}{\tilde{r}\tilde{a}}</u> | b. | $\overleftarrow{\hat{o}}$ - $\widetilde{n}\widetilde{e}$ ? $\overrightarrow{e}$ -se- $\overleftarrow{m}$ ba-ta- $\overleftarrow{m}$ |
|     |    | 1sG-mother-DOM-for                                                 |    | 3-talk-des-tot-fut-cmpl                                                                                                             |
|     |    | 'for my mother'                                                    |    | 'he will want to finish talking'                                                                                                    |

<sup>\*</sup> suffixes (and roots) form their own prosodic domain.

#### 5 Regressive vs. progressive nasalization

• Regressive and progressive nasaliation and different mechanisms (Estigarribia 2020, Russell 2021, Cabrera 2024).

|           | regressive              | progressive            |
|-----------|-------------------------|------------------------|
| triggers  | rightmost nasal vowels, | root nasal vowels      |
|           | nasal-oral stops        |                        |
| targets   | voiced segments         | initial voiceless stop |
| locality  | local                   | non-local              |
| productiv | ity productive          | lexically-specific     |

### 6 Progressive nasalization: the facts

• Only a handful of stop-initial morphemes undergo progressive harmony alternations.

(11) a. jagua-ˈkuera dog-PL 'dogs'

b. mita-inguera child-PL 'children'

 $(13) \quad a. \quad a-jero'ky-\underline{m}\tilde{a} \\ 1SG-dance-CMPL \\ \text{'I finished dancing'} \qquad b. \quad \frac{\overleftarrow{\tilde{a}^{\tilde{l}}}-p\tilde{t}\tilde{t}^{\tilde{l}}\tilde{v}\tilde{\mathbf{0}}-\underline{m}\tilde{a}}{1SG-help-CMPL} \\ \text{'I finished helping'} \qquad \text{'I finished helping'}$ 

• Suffix targets are affected differently by progressive nasalization.

(15) a. che-ˈsi-pe b. chē-mĩ tã-mẽ 1sG-mother-DOM 1sG-child-DOM 'my mother' 'the child'

• Progressive nasalization triggered only by phonemic nasal vowels.

(16) panam<sup>b</sup>i-'kuera \*-'ŋ<sup>9</sup>uera butterfly-PL 'butterflies'

• Alternations may stack and occur non-locally.

(17) a. o-karu-se-pa-pota-'peve
3-eat-DES-TOT-INCIP-until
'until he is about to finish eating'

b.  $\overleftarrow{\tilde{o}}$ - $\widetilde{n}\widetilde{e}$ ? $\overleftarrow{e}$ -se- $\overrightarrow{m^b}$ a- $\overrightarrow{m^b}$ ota- $\overrightarrow{m\tilde{e}}$  $\widetilde{v}\widetilde{e}$ 3-talk-DES-TOT-INCIP-until
'until he is about to finish talking'

12

13

st across intervening suffixes (-se DES)

\* across oral vowels of alternating suffixes

17

- Verbal and nominal roots also show lexically-specific progressive harmony alternations, as seen in compounds.
  - (18) a. o-'ki 3-rain 'it rains'
  - (19) a.  $\tilde{a}m\tilde{a}$   $\tilde{n}^9$ i rain-rain 'rain'
- b. hū-ˈŋgɨ black-rain

'grey; brown'

c. h-ãs**ẽ**- ng i 3POSS-cry-rain 'weep'

18-19

• List of stop-initial suffixes

(Estigarribia 2020, Russell 2021)

|        |                             |       | under | going (T | V ~ NV)  | non-ui | ndergoing |
|--------|-----------------------------|-------|-------|----------|----------|--------|-----------|
| 'kuera | 'ŋ <sup>g</sup> uera        | PL    | pe    | me       | LOC; DOM | ta     | FUT       |
| ˈpa    | $m^b$ a                     | TOT   | 'peve | meve     | 'until'  | pa     | Q         |
| po'ta  | m <sup>b</sup> o'ta         | INCIP |       |          |          | ke     | FORCE     |
| ˈtɨ    | $\mathbf{n^d}_{\mathbf{i}}$ | COLL  |       |          |          | mã     | CMPL      |
|        |                             |       |       |          |          | nã     | REQ       |
|        |                             |       |       |          |          | nẽ     | DUB       |
|        |                             |       |       |          |          | mo'?a  | NEG.FUT   |
|        |                             |       |       |          |          | 'mi    | PLEA      |

 $(T = voiceless stop; N^D = nasal-oral stop)$ 

#### 7 The analysis

20

21

#### 1. Lexical specificity

→ Morphemes differ in their lexical specification in three ways.

 $(T = voiceless stop; N^D = nasal-oral stop)$ 

| (19) | undergoing     | 'kuera ~ 'ŋ <sup>g</sup> uera PL | $\{TV, NV\}\ NV \rightarrow N^DV$ |  |
|------|----------------|----------------------------------|-----------------------------------|--|
|      | undergoing     | $pe \sim m \tilde{e}$ LOC; DOM   | $\{TV, N\tilde{V}\}$              |  |
|      | non-undergoing | ta ғит                           | $\{TV\}$                          |  |
|      |                | mã cmpl                          | $\{N\tilde{V}\}$                  |  |

<sup>\*</sup> post-oralization: N  $\rightarrow$  N<sup>D</sup> / \_ V (Stanton 2017, Cabrera 2023)

## 2. Phonological conditioning

(20)  $*[\alpha NAS]]_{ROOT} \dots [-\alpha NAS]$  (PROGHARM)

Assign a violation to every non-local sequence of a rightmost  $[\alpha NAS]$  segment in a root followed by a  $[-\alpha NAS]$  segment in the output.

| Root | control (non-local)                                                                                                                                     | Syn  | nmetric (α)                  |              |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------|--------------|
| (21) | $\overleftarrow{\tilde{o}}$ - $\widetilde{n}\widetilde{\tilde{e}}$ ? $\overleftarrow{e}$ -se- $\overrightarrow{m}^{b}$ a- $\overrightarrow{m}^{b}$ o'ta | (22) | *jagua-ˈŋ <sup>g</sup> uera, | *mĩtã-ˈkuera |
|      | 3-talk-des-tot-incip                                                                                                                                    |      | dog-PL                       | child-PL     |

 $<sup>^{\</sup>ast}$  Lexical stress (or historical status; Russell 2021) doesn't fully predict the pattern.

21

morph.

• PROGHARM selects nasal-initial allomorphs in the presence of nasal roots.

| (23) | mĩt <b>ã-</b> ˈŋguera *-ˈkuera<br>child-PL | IDEN'I | MASI CY | ARM *CONT | JUR  |  |
|------|--------------------------------------------|--------|---------|-----------|------|--|
|      | $/\tilde{V}_{RT}$ - { TV, NV }/            |        | IDEM.   | PROG      | *Coz |  |
|      | a. $\tilde{V}$ - TV                        |        |         | *!        |      |  |
| (24) | b. V - TV                                  |        | *!      |           |      |  |
|      | c. $\tilde{V}$ - NV                        | *!     |         |           |      |  |
|      | $\tilde{V} - N^D V$                        |        |         |           | *    |  |

22

• Similarly, oral-initial allomorphs are selected in the presence of an oral root.

 $(25) \quad \text{jagua-'kuera *-'\eta^9uera} \\ \quad \text{dog-PL} \\ \\ /V_{RT} - \{TV, NV\}/ \\ \\ \hline \text{a.} \quad V - TV \\ \\ \hline \text{b.} \quad V - NV \\ \\ \hline \text{c.} \quad V - N^DV \\ \\ \hline \text{d.} \quad \tilde{V} - N^DV \\ \\ \text{*!} \quad * \\ \\ \\ \text{*}$ 

• Suffixes with full nasalization have a nasal vowel in their nasal allo-

| (27) | kosi'n <b>ã</b> -me *-pe<br>kitchen-LOC   | .1  | IDEN'I | PROGI | ARM *CONT | OUR |
|------|-------------------------------------------|-----|--------|-------|-----------|-----|
|      | $/\tilde{V}_{RT}$ - { TV, $N\tilde{V}$ }/ | *47 | MEIL   | PROT  | *CO,      |     |
| (28) | a. $\tilde{V}$ - TV                       |     |        | *!    |           |     |
|      | b. $\tilde{V}$ - $N\tilde{V}$             |     |        |       |           |     |
|      | c. $\tilde{V} - N^D \tilde{V}$            |     |        |       | *!        |     |

24

• Non-alternating morphemes violate PROGHARM optimally.

| (29) | ã <sup>ĩ</sup> -pɨtɨˈv̄o<br>1sg-dan |                       | IDEN'I | PROGI | ARM *CONT | OUR  |  |
|------|-------------------------------------|-----------------------|--------|-------|-----------|------|--|
| (30) | $/	ilde{V}_{RT}$ -                  | [TV}/                 | *27    | MEIL  | PRO       | *Co, |  |
|      | r a                                 |                       |        |       | *         |      |  |
|      | b                                   | . $\tilde{V} - N^D V$ |        | *!    |           | *    |  |
|      | С                                   | . V - TV              |        | *!    |           |      |  |

\*similar analysis for oral roots and non-alternating nasal morphemes (o-jero'ki-mã)