Algorithms (Hash Tables)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

March 19, 2021

Contents

- (Sorted) Sets, Maps, Multisets, Multimaps
- Hash Tables
- Hash Functions
- Collisions
- Collision-Avoiding Techniques
 - Separate Chaining
 - Open Addressing

Dictionary ADTs

These ADTs are collection of items, where, each item can be a key or a (key, value) pair.

ADT	ltem	Ordered?	Duplicates?	Implementation
Set	key	X	×	Hash table
Sorted set	key	✓	×	Balanced tree
Multiset	key	X	✓	Hash table
Sorted multiset	key	✓	✓	Balanced tree
Мар	(key, value)	Х	×	Hash table
Sorted map	(key, value)	✓	×	Balanced tree
Multimap	(key, value)	X	✓	Hash table
Sorted multimap	(key, value)	✓	✓	Balanced tree

3

Set ADT (java.util.Set interface)

Method	Functionality					
add(e)	Adds the element e to S (if not already present).					
remove(e)	Removes the element e from S (if it is present).					
contains(e)	Returns whether e is an element of S .					
iterator()	Returns an iterator of the elements of S .					
addAll(T)	Updates S to also include all elements of set T ,					
	effectively replacing S by $S \cup T$.					
retainAll(T)	Updates S so that it only keeps those elements					
	that are also elements of set T , effectively replac-					
	ing S by $S \cap T$.					
removeAll(T)	Updates S by removing any of its elements that					
	also occur in set T , effectively replacing S by $S\!-\!T$.					

Set = unordered set; Map = unordered map.
 java.util.HashSet is an implementation of the set ADT.
 java.util.HashMap is an implementation of the map ADT.

4

Sorted set ADT (java.util.SortedSet interface)

Method	Functionality
first()	Returns the smallest element in S .
last()	Returns the largest element in S .
<pre>ceiling(e)</pre>	Returns the smallest element $\geq e$.
floor(e)	Returns the largest element $\leq e$.
lower(e)	Returns the largest element $< e$.
higher(e)	Returns the smallest element $> e$.
<pre>subSet(e1,e2)</pre>	Returns an iteration of all elements greater than
	or equal to $e1$, but strictly less than $e2$.
<pre>pollFirst()</pre>	Returns and removes the smallest element in S .
pollLast()	Returns and removes the largest element in S .

java.util.TreeSet is an implementation of the sorted set ADT.
 java.util.TreeMap is an implementation of the sorted map ADT.

Multiset ADT

Method	Functionality
add(e)	Adds a single occurrences of \boldsymbol{e} to the multiset.
<pre>contains(e)</pre>	Returns true if the multiset contains an element $=e$.
<pre>count(e)</pre>	Returns the number of occurrences of \boldsymbol{e} in the multiset.
remove(e)	Removes a single occurrence of \boldsymbol{e} from the multiset.
remove(e, n)	Removes n occurrences of e from the multiset.
size()	Returns the number of elements of the multiset
	(including duplicates).
<pre>iterator()</pre>	Returns an iteration of all elements of the multiset
	(repeating those with multiplicity greater than one).

- Java does not include any form of a multiset.
 Guava = Google Core Libraries for Java.
 Guava's Multiset is an implementation of the multiset ADT.
 Guava's Multimap is an implementation of the multimap ADT.
- Similarly, one can define sorted multiset ADT

Hash Tables

Hash tables

- A hash table is an efficient dictionary data structure to implement a set/multiset/map/multimap.
- A hash table performs put, remove, and get operations in constant expected time.
- Hashing is the implementation of hash tables.

Balanced search trees vs. Hash tables

- Balanced search tree ⇔ sorted, Hash table ⇔ unsorted
- ullet Worst = worst-case, avg. = expected time (useful in practice)

		Balanced tree	Hash table		
Operations		(worst)	(avg.)	(worst)	
Cautina a consolata d	Insert	$\mathcal{O}\left(\log n\right)$	$\mathcal{O}\left(1\right)$	$\mathcal{O}\left(n\right)$	
Sorting-unrelated	Delete	$\mathcal{O}\left(\log n\right)$	$\mathcal{O}\left(1\right)$	$\mathcal{O}\left(n\right)$	
operations	Search	$\mathcal{O}\left(\log n\right)$	$\mathcal{O}\left(1\right)$	$\mathcal{O}\left(n\right)$	
	Sort	$\mathcal{O}\left(n\right)$		X	
	Minimum	$\mathcal{O}\left(\log n\right)$	X		
	Maximum	$\mathcal{O}\left(\log n\right)$	Х		
Sorting-related	Predecessor	$\mathcal{O}\left(\log n\right)$	Х		
operations	Successor	$\mathcal{O}\left(\log n\right)$		X	
	Range-Minimum	$\mathcal{O}\left(\log n\right)$		X	
	Range-Maximum	$\mathcal{O}\left(\log n\right)$		X	
	Range-Sum	$\mathcal{O}\left(n\right)$		X	

Applications of hash tables

- Web page search using URLs
- Password verification
- Symbol tables in compilers
- Filename-filepath linking in operating systems
- Plagiarism detection using Rabin-Karp string matching algorithm
- English dictionary search
- Used as part of the following concepts:
 - finding distinct elements
 - counting frequencies of items
 - finding duplicates
 - message digests
 - commitment
 - Bloom filters

Map

ullet A map is a collection of key-value pairs (k,v), where, keys are unique.

Key	Value
User ID	User record
Employee ID	Employee record
Student ID	Student record
Patient ID	Patient record
Profile ID	Person details
Order ID	Order details
Transaction ID	Transaction details
URL	Web page
Full file name	File

1

Hash tables

- A hash table is an efficient implementation of a set or map, i.e., insert, delete, and search operations take constant expected time.
- Example: Suppose we store (name, favorite color) pairs
 We place the key-value pairs in the cells of the hash table array

Hash tables

Questions

- Why do we need to think in terms of (key, value) pairs? Why not k-tuples?
- How are keys of arbitrary objects mapped to array indices which are whole numbers?
- A hash table is a data structure of finite size. How can an infinite number of keys be mapped to a finite number of indices?
- Can there be collisions during mapping?
 That is, isn't there a nonzero chance that different keys get mapped to the same index?
- ullet Is there a relation between the table size N and the number of elements n?

Questions

- 1. How are keys of arbitrary objects mapped to array indices which are whole numbers?
- 2. A hash table is a data structure of finite size. How can an infinite number of keys be mapped to a finite number of indices?

Solution

Solution (continued) 14,45 Hash table Arbitram object Hash Junction ej: Strina number object etc

- A hash function is a mapping from arbitrary objects to the set of indices [0, N-1].
- A hash function stores key-value pair (k, v) in array A[h(k)].
- A hash function is good when it is easy to compute, fast to compute, and leads to few collisions.

- A hash function is a mapping from arbitrary objects to the set of indices [0, N-1].
- ullet A hash function stores key-value pair (k,v) in array A[h(k)].
- A hash function is good when it is easy to compute, fast to compute, and leads to few collisions.

Solution (continued)

- For modularity, assume a hash function consists of two stages:
 - 1. Hash code
 - 2. Compression function

Advantage: The hash code portion of the computation is independent of a specific hash table size

Hash codes

- Consider bits as integer.
 - $\begin{array}{lll} \mbox{Hashcode(byte | short | char)} = 32\mbox{-bit int} & \rhd \mbox{ upscaling } \\ \mbox{Hashcode(float)} = 32\mbox{-bit int} & \rhd \mbox{ change representation } \\ \mbox{Hashcode(double)} = 32\mbox{-bit int} & \rhd \mbox{ downscaling } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 + x_1 + \dots + x_{n-1} & \rhd \mbox{ sum } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{ xor } \rightarrow x_1 \oplus x_1 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor } \\ \mbox{ xor } \rightarrow x_1 \oplus x_1 \oplus x_1 \oplus x_1 \oplus x_1 \oplus x_2 \oplus x_$
- Polynomial hash codes.

Hashcode
$$(x_0, x_1, \dots, x_{n-1}) = x_0 a^{n-1} + x_1 a^{n-2} + \dots + x_{n-2} a + x_{n-1}$$

 \triangleright polynomial

Cyclic-shift hash codes.

$$\mathsf{Hashcode}_k(x) = \mathsf{Rotate}(x, k \mathsf{ bits})$$

e.g.: $\mathsf{Hashcode}_2(111000) = 100011$

▷ cyclic-shift

19

Compression functions

A good compression function minimizes the number of collisions for a given set of distinct hash codes.

Division method.

$$\mathsf{Compression}(i) = i \ \% \ N$$

> remainder

 $\overline{N \geq 1}$ is the size of the bucket array.

Often, N being prime "spreads out" the distribution of primes.

Ex. 1: Insert codes $\{200, 205, \dots, 600\}$ into N-sized array.

Which is better: N = 100 or N = 101?

Ex. 2: Insert multiple codes $\{aN+b\}$ into N-sized array.

Which is better: N = prime or N = non-prime?

• Multiply-Add-and-Divide (MAD) method.

$$\mathsf{Compression}(i) = ((ai+b)\ \%\ p)\ \%\ N$$

 $N \ge 1$ is the size of the bucket array.

p is a prime number larger than N.

a,b are random integers from the range [0,p-1] with a>0. Usually eliminates repeated patterns in the set of hash codes.

Collisions

Suppose you want to insert two entries (k_1,v_1) and (k_2,v_2) into a hashtable such that $h(k_1)=h(k_2)$. This is called collision as you cannot insert both the entries at the same location. So, we need to handle collisions.

Collision-handling schemes

There are two major collision-handling schemes or collision-resolution strategies.

Collision-handling scheme	Features
Separate chaining	Extra space (for secondary data structures)
	Simpler implementation
Open addressing	No extra space
	More complicated implementation

Separate chaining

- ullet Have each bucket A[j] store its own secondary container.
- We use secondary data structures (e.g. array list, linked list, balanced search trees, etc) for each bucket.

Separate chaining (via arraylist/linkedlist)

```
\begin{array}{|c|c|c|}\hline \text{Put}((key, value))\\ \hline 1. \ hash \leftarrow \text{HASH}(key)\\ 2. \ A[hash].\text{AddLast}((key, value))\\ \hline \\ \text{Get}(key)\\ \hline \\ 1. \ hash \leftarrow \text{HASH}(key)\\ 2. \ \textbf{return} \ A[hash].\text{Get}(key)\\ \hline \\ \hline \\ \text{Remove}(key)\\ \hline \\ 1. \ hash \leftarrow \text{Hash}(key)\\ \hline \\ 2. \ \textbf{return} \ A[hash].\text{Remove}(key)\\ \hline \\ \hline \\ 2. \ \textbf{return} \ A[hash].\text{Remove}(key)\\ \hline \\ \hline \end{array}
```

Open addressing

- All entries are stored in the bucket array itself.
- Strict requirement: Load factor must be at most 1.
- Useful in applications where there are space constraints, e.g.: smartphones and other small devices.
- Iteratively search the bucket A[(HASH(key) + f(i)) % N] for i = 0, 1, 2, 3, ... until finding an empty bucket.

Scheme	Function
Linear probing	f(i) = i
Quadratic probing	$f(i) = i^2$
Double hashing	$f(i) = i \cdot \text{Hash2}(key)$
	e.g. $\text{HASH2}(key) = p - (key \% p)$ for prime $p < N$.
	Here, N should be a prime number.
Random generator	f(i) = Random(i, Hash(key))

Linear probing: Put

• Suppose Hash(key) = key % 10

	Put			Array									
Key	\rightarrow	Hash	0	1	2	3	4	5	6	7	8	9	
18	\rightarrow	8									18		
41	\rightarrow	1		41							18		
22	\rightarrow	2		41	22						18		
32	\rightarrow	2		41	22						18		
(2	prob	es)		41	22	32					18		
98	\rightarrow	8		41	22	32					18		
(2	prob	es)		41	22	32					18	98	
58	\rightarrow	8		41	22	32					18	98	
				41	22	32					18	98	
(3	(3 probes)		58	41	22	32					18	98	
78	\rightarrow	8		How i	many	probe	es are	requi	red to	o inse	rt 781	?	

Linear probing: Remove

• Suppose HASH(key) = key % 10

Remove	Array										
Key	0	1	2	3	4	5	6	7	8	9	
_	58	41	22	32	78	19			18	98	
58	58	41	22	32	78	19			18	98	
		41	22	32	78	19			18	98	
19		41	22	32	78	19			18	98	
	Не	ence,	we ca	nnot	simpl	y rem	ove a	foun	d ent	ry.	

Remove	Array										
Key		0	1	2	3	4	5	6	7	8	9
_		58	41	22	32	78	19			18	98
58		58	41	22	32	78	19			18	98
		58	41	22	32	78	19			18	98
19		58	41	22	32	78	19			18	98
		58	41	22	32	78	19			18	98
		Rep	lace t	the de	eleted	entry	with	the o	defun	ct obj	ect.

Linear probing

Put((key, value))

- 1. $hash \leftarrow Hash(key)$; $i \leftarrow 0$
- 2. while $(hash + i) \% N \neq null$ and i < N do $i \leftarrow i + 1$
- 3. if i = N then throw Bucket array is full
- 4. else $A[(hash+i) \% N] \leftarrow (key, value)$

Get(key)

- 1. $hash \leftarrow Hash(key)$; $i \leftarrow 0$
- 2. while $(hash + i) \% N \neq null$ and i < N do
- 3. $index \leftarrow (hash + i) \% N$
- 4. if A[index].key = key then return A[index].value
- 5. $i \leftarrow i + 1$
- 6. return null

Remove(key)

- 1. $index \leftarrow FINDSLOTFORREMOVAL(key)$
- 2. if index < 0 then return null
- 3. $value \leftarrow A[index].value; A[index] \leftarrow defunct; n \leftarrow n-1$
- 4. return value

Separate chaining, Open addressing: Complexity

- Suppose N =bucket array size and n =number of entries.
- Ratio $\lambda = n/N$ is called the load factor of the hash table.
- If $\lambda > 1$, rehash. Make sure $\lambda < 1$.
- Assuming good hash function, expected size of bucket is $\mathcal{O}(\lceil \lambda \rceil)$.
- Separate chaining: Maintain $\lambda < 0.75$ Open addressing: Maintain $\lambda < 0.5$
- Assuming good hash function and $\lambda \in \mathcal{O}(1)$, complexity of put, get, and remove is $\mathcal{O}(1)$ expected time.