# **CYI101 Common CHEMISTRY(Organic)**

Pericyclic reactions: Cycloaddition Reactions

## **Cycloaddition Reaction:**

A concerted combination of two  $\pi$ -electron systems to form a ring of atoms having two new  $\sigma$  bonds and two fewer  $\pi$  bonds is called a cycloaddition reaction.

### Two important classifications of cycloaddition reactions

(i) [4 + 2] Cycloaddition (ii) [2+2] Cycloaddition

The most common cycloaddition reaction is the  $[4\pi+2\pi]$  cyclization known as the **Diels**-Alder reaction. Discovered by Professor Otto Diels and his student Kurt Alder in 1928 and received Nobel prize in 1950.



- Reaction between a conjugated diene and dienophile
- Highly effective method for the formation of cyclohexene ring

### Diels-Alder Reaction: $\Delta \sigma = \pm 2$



#### **Diels-Alder Mechanism**

Can draw the direction of electron flow two ways (both give same result)

"clockwise" flow:

"counter-clockwise" flow:



- A Break  $C_1$ - $C_2$  ( $\pi$ ), form  $C_1$ - $C_6$
- B Break  $C_5$ - $C_6$  ( $\pi$ ), form  $C_4$ - $C_5$
- C Break  $C_3$ - $C_4$  ( $\pi$ ), form  $C_2$ - $C_3$  ( $\pi$ )
- A Break  $C_1$ - $C_2$  ( $\pi$ ), form  $C_2$ - $C_3$  ( $\pi$ )
- B Break  $C_3$ - $C_4$  ( $\pi$ ), form  $C_4$ - $C_5$ 
  - C Break  $C_5$ - $C_6$  ( $\pi$ ), form  $C_1$ - $C_6$

# Diels-Alder Reaction: "Diene" & "Dienophile"

In general: **Diene** should be **e'-rich** & **Dienophile** should be **e'-deficient** (or *Vive-versa*) for better reaction.

The diene must be conjugated in order for the Diels-Alder to occur:



Electron withdrawing groups on the dienophile increase the reaction rate

**Relative Rate** 





#### **Reactive Diene:**









Dienes locked in the s-trans conformation cannot undergo the Diels Alder







### **Diels-Alder Reaction:** *Diversity*





### **Diels-Alder Reaction:** Regioselectivity

#### Regioselectivity In The Diels Alder

When non-symmetrical dienes react with non-symmetrical dienophiles, two "regioisomers" are possible

Case 1: "1-substituted" dienes: give the "ortho" product, not the "meta"

Case 2: "2-substituted" dienes: give the "para" product, not the "meta"

The "1,3" ("meta-") product is disfavored in both cases

https://www.MasterOrganicChemistry.com





# **Diels-Alder Reaction:** *Stereochemistry*

• Stereochemistry of both *diene* and *dienophile* retained in the product



## Diels-Alder Reaction of Cyclic Diene: Regioselectivity





endo product

exo product

endo: exo = 4: 1

#### Lewis acid catalysis improves selectivity for endo:

### **Diels-Alder Reaction:** *Endo vs Exo Products*

#### exo and endo Transition States and Molecular Orbitals



Because the C<sub>2</sub>-C<sub>3</sub> orbitals of the diene HOMO are positioned close to the C=O orbitals of the dienophile LUMO, they can interact: "secondary orbital interaction"

## [2+2] Cycloaddition: Under Photo-irradiation

#### Example of a [2+2] Cycloaddition

no reaction in the absence of UV light

Q. What about dienes? Can we combine two dienes to make an 8-membered ring?



A. Doesn't work. We get a Diels-Alder product instead!

## **Diels-Alder Reaction:** [4+2] Cycloaddition