MATHEMATICS 2090 Practice Problems

(1) Using Gaussian elimination to determine the solution set to the lienar system

$$x_1 + 2x_2 + x_3 = 1$$
$$3x_1 + 5x_2 + x_3 = 3$$

$$2x_1 + 6x_2 + 7x_3 = 1$$

- (2) Let $A = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 3 \end{bmatrix}$.

 - b) Is A invertible? Please justify your answer.
 - c). If A is invertible, please compute its inverse A^{-1} and compute $A \cdot A^{-1}$.
- (3) Compute the eigenvalues of the matrix

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

- (4) Show that $\mathbf{v}_1 = (-1, 3, 2), \mathbf{v}_2 = (1, -2, 1), \mathbf{v}_3 = (2, 1, 1)$ span \mathbb{R}^3 , and express $\mathbf{v} = (0, 1, -1)$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
- (5) Compute the Wronskian of the functions $\{x, \sin x, \cos x\}$.
 - Are they linearly dependent? Please justify.
- (6) Compute the dimension of the linear span of $\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \right\}$.
 - Are $\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \right\}$ linearly dependent or independent?
- (7) Does $\{1+x,2+x+x^2,x-x^2\}$ form a basis for the vector space of polynomials in variable x with degree at most 2? Please justify your answer.

1

- (8) For $A = \begin{pmatrix} 2 & -1 & 4 & 0 \\ 1 & 4 & 0 & 5 \end{pmatrix}$.
 - a) Please determine its null space.
 - b) Write down a basis for the null space of A.
 - c) Determine the dimension of for the null space of A.
- (9) Does the following subset of $M_2(\mathbb{R})$ form a subspace? Please justify your answer.

(a)
$$S = \begin{cases} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{R}) \mid a_{11} + a_{22} = 0. \end{cases}$$

(a)
$$S = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{R}) \mid a_{11} + a_{22} = 0. \right\}$$

(b) $S = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{R}) \mid a_{11} + a_{22} = 1. \right\}$