Beta Test Plan – Prototroller

Merrick R., Britton M., Caleb O., Evan Z., Yu-yang H.

Alpha Test Results

We have not been able to perform some parts of the alpha testing because we do not have all the hardware yet (very soon!). However, where functionality can be efficiently tested on our prototype board, we have done so. The rest we have refined in test procedures as part of the Beta Test Plan.

Results: Verification of Average Power Draw by Software Measurement (Pico Prototype)

Test Procedures	Expected Results	Results	Expected Results	Results
	(0 Modules)		(n Modules)	
1. Choose USB	N/A	N/A	N/A	N/A
port to plug				
Prototroller into				
on Windows host				
2. Measure power	Consuming 0mA	Consuming 0mA	Consuming 0mA	Consuming 0mA
consumption for				
this port using				
USBDeview				
3. Plug	N/A	N/A	Windows does	Windows did not
Prototroller into			not report "Power	report "Power
host			Limit Exceeded"	Limit Exceeded"
4. Measure power	Consuming <=50	Consuming	Consuming ≤	1-3 Modules:
consumption for	mA	100mA	500mA (following	Consuming
port using			n * 20mA line)	100mA
USBDeview				

Interpretation: it would seem measuring power draw via software is not completely accurate. For example, with no modules connected, it was reporting 100mA when, in fact, Pico's do not draw that much.

Results: Verification of Module Rescanning (Pico Prototype)

Test Procedures	Expected Results	Results
1. Ensure Prototroller is plugged	N/A	N/A
into host with no connected		
modules		
2. Establish a serial connection	Output is displayed on serial	Output is displayed on serial
to the master board with a	console	console
console such as PuTTY		
3. Press and release the rescan	Module rescan initiated and all	Rescanning for active modules
button	modules identified as	message. Modules 0 through 24
	disconnected on serial console	are DISCONNECTED

4. Plug-in a module with an	No change on serial console	No change
invalid ID to a random slot k		
5. Press and release the rescan	Module rescan initiated, no	No change
button	change on serial console	
	(module <i>k</i> shown as	
	disconnected).	
6. Plug-in a module with a valid	No change on serial console	No change
ID to another random slot m		
7. Press and release the rescan	Module rescan initiated, only	Module shown as connected
button	module <i>m</i> shown as connected	
	with corresponding ID	
8. Observe serial console	Data from module in slot <i>m</i> is	Data from module is output
	output	
9. Disconnect the module in slot	No output on serial console	Disconnect triggered log
m		messages indicating the new
		state. "Module 0 appears to
		have disconnected or is invalid:
		DISCONNECTED"
10. Press and release the rescan	Module rescan initiated; all	Rescanning for active modules
button	modules shown as disconnected	message. Modules 0 through 24
		are DISCONNECTED
11. Disconnect the module in	No change on serial console	No change on serial console
slot k		
12. Repeat 6-9 until every slot	See 6-9 expected results	
has been evaluated		

Interpretation: Our design changed from using 25 modules to 20, so the firmware should be updated to reflect this. Testing for the win!

Results: Firmware Behavioral Testing (Debug Firmware)

Master Device			
Test Procedures	Expected Result	Results	
Device Boots and outputs serial	Visible COM Port when using	Utilizing USBDeview, master	
(console) data	debug firmware version	device appears as "Master", and	
		is listed under a COM Port.	
Device completes initial scan	Console output of connected	Console outputs a list of all 25	
	modules	disconnected modules (no	
		modules connected). Note,	
		console output does not appear	
		until the rescan button is	
		pressed, but the scan is initiated	
		as soon as the master device is	
		connected to power.	
Device Rescan Button begins	Console output of rescanned	Rescanning for active modules	
scan	modules	message. Modules 0 through 24	
		are DISCONNECTED.	

Device receives correct data	Console output displays proper	Console receives correct rescan
packets	data/state of module device	output, displaying button
		module as connected. The data
		packets are correct, pressing
		button outputs a '1', releasing it
		outputs a '0'.
Device maintains module	Console does not display	Console maintains a steady
connection	disconnect messages	output and displays no
		disconnect messages if the
		module is connected and
		powered.
	Module Device	T
Test Procedures	Expected Result	Results
Device Boots and outputs serial	Visible COM Port when using	COM port was not visible due to
(console) data	debug firmware version	it being disabled in fear that
		print statements would affect
		our SPI baud rate. After
		enabling it, the COM port was
		visible, and we could read serial
		outputs.
Device reads ADC/GPIO data	Console output of raw data	Joystick module outputs raw
		data, button module outputs
		logical high and logical low.
Device calculates computation	Console output of computed	Joystick module outputs raw
of data	data	data, button module outputs
		logical high and logical low.
		Master module takes Joystick
		data and calculates it into
		normalized data that ranges
		between (-5, 5).
Device sends data when	Console output of successful	Console continually outputs
requested	transmission	data as master board cycles it
		via CS.
Device blocks when data not	Console does not display	Console does not output data
requested	additional messages	when not requested, as
		evidenced by Master device's
		output being uniform and
		outputting consistent data in
		the order of currently
		connected modules.
Data read is within accurate	Console outputs acceptable	The data in master is accurate
bounds	data value (tolerance differs	and module side is more precise
	based on module type)	and within accurate bounds.
	/' /	and within accurate bounds.

Interpretation: Behavioral testing was a success. We had commented out serial logging module-side to not interfere with SPI (i.e., module readily available to transmit and receive data). This brings up a good point – determining if we want module-side logging at all. Perhaps a debug mode since the logging would only be visible via SWD (no USB-C connector on the module boards) and never during normal use.

Expected Behavior

The core expected behavior has <u>not</u> changed since the Alpha Test Plan. We have already encapsulated the bulk of it, save for a few minor details. These details are related to the fact that we are now utilizing our own custom hardware rather than the RP2040 Pico's utilized in the prototype and alpha builds.

Overall Coarse Expected Behavior

Master Board Flashing Expected Behaviors

<u>Action</u>	<u>Result</u>
Do Nothing (*Powered*)	N/E - Master RP2040 stays in current mode
Press the "BOOTSEL" button (*Powered*)	N/E - Master RP2040 stays in current mode
Press the "RESET" button (*Powered*)	Master RP2040 begins executing program code
	from the beginning of flash
Press and hold the "BOOTSEL" button, press and	Master RP2040 mounts to the host in bootloader
release the "RESET" button, drag UF2 binary	mode. Master RP2040 de-mounts after firmware
firmware to mount (*Powered*)	is flashed and begins executing program code
	from the beginning.
Press and hold the "BOOTSEL" button, disconnect	Master RP2040 mounts to the host in bootloader
USB (if applicable), connect USB, drag UF2 binary	mode. Master RP2040 de-mounts after firmware
firmware to mount	is flashed and begins executing program code
	from the beginning.
Alternative: flash master firmware with SWD	Master RP2040 begins executing program code
debug apparatus	from the beginning

Module Board Flashing Expected Behaviors

<u>Action</u>	<u>Result</u>
Do Nothing (*Powered*)	N/E – Module RP2040 stays in current mode
Short "BOOTSEL" pad (*Powered*)	N/E - Module RP2040 stays in current mode
Pull "RESET" pin low (*Powered*)	Module RP2040 begins executing program code
	from the beginning of flash
Short "BOOTSEL" pad, pull "RESET" pin low, pull	Module RP2040 does not mount, because it does
"RESET" pin high	not have a USB connection with the host
Flash unique module firmware with SWD debug	Module RP2040 begins executing program code
apparatus	from the beginning

Master ⇔ Module SPI Communication Expected Behaviors

SPI Communication Behavior

Host ⇔ Master USB Communication / HID Report Expected Behaviors

USB Communication Behavior

Module Rescanning / Data Verification Expected Behaviors

Rescan Button Behavior

Additionally, most logical blocks of source-code are documented with functional purpose, parameters, edge-cases, etc.

Beta Test Procedures

Many test procedures are borrowed from the Alpha Test Plan, since again we physically have not been able to test on our custom hardware. We would like to repeat these on the custom hardware.

Firmware Behavioral Testing (Debug Firmware)

NOTE: An initial test suite for functionality testing master firmware has been created, please see repository for more details.

Master Device		
Test	Expected Result	
Device Boots and outputs serial (console) data	Visible COM Port when using debug firmware	
	version	
Device completes initial scan	Console output of connected modules, HID	
	packet descriptor matches connected modules,	
	LED Complete indicator code displayed	
Device Rescan Button begins scan	Console output of rescanned modules, LED	
	Scanning indicator code displayed	
Device receives correct data packets	Console output displays proper data/state of	
	module device, HID Report packets contain data	
	matching serial port	
Device maintains module connection	Console does not display disconnect messages	
Module Device		
Test	Expected Result	
Device Boots and outputs serial (console) data	Visible COM Port when using debug firmware	
	version	
Device reads ADC/GPIO data	Console output of raw data	
Device calculates computation of data	Console output of computed data	
Device sends data when requested	Console output of successful transmission	
Device blocks when data not requested	Console does not display additional messages	
Data read is within accurate bounds	Console outputs acceptable data value (tolerance	
	differs based on module type)	

<u>Verification of Average Power Draw by USB Multimeter Tool</u>

Test Procedures	Expected Results (0 Modules)	Expected Results (n Modules)
1. Plug in the Prototroller to the	N/A	N/A
host through a USB Multimeter		
Tool		
2. Measure power consumption	Consuming ≤ 100 mA	Consuming n* ~50mA, not
with the tool		exceeding 500mA

Verification of Module Rescanning

Test Procedures	Expected Results
1. Ensure Prototroller is plugged into host with no	N/A
connected modules	
2. Establish a serial connection to the master	Output is displayed on serial console
board with a console such as PuTTY	
3. Press and release the rescan button	Module rescan initiated and all modules
	identified as disconnected on serial console
4. Plug-in a module with an invalid ID to a	No change on serial console
random slot k	
5. Press and release the rescan button	Module rescan initiated, no change on serial
	console (module <i>k</i> shown as disconnected).
6. Plug-in a module with a valid ID to another	No change on serial console
random slot <i>m</i>	
7. Press and release the rescan button	Module rescan initiated, only module <i>m</i> shown as
	connected with corresponding ID
8. Observe serial console	Data from module in slot <i>m</i> is output
9. Disconnect the module in slot <i>m</i>	No output on serial console
10. Press and release the rescan button	Module rescan initiated; all modules shown as
	disconnected
11. Disconnect the module in slot <i>k</i>	No change on serial console
12. Repeat 6-9 until every slot has been	See 6-9 expected results
evaluated	

Verification of SPI Communication

Test Procedures	Expected Results
Probe Rx and Tx bus lines for master board with	Handshake is sent, and data is correctly received
oscilloscope triggers	
Probe CS bus lines for master board with	All modules currently connected are visibly
oscilloscope triggers	shown on the oscilloscope

Verification of HID Drivers

Test Procedures	Expected Results
Use Device Monitoring Studio to view HID reports	All data packets via reports are correct, and are
	consistent with module board inputs

Verification of Latency Constraints

Measuring the latency of controllers in general is difficult, but not impossible with the right hardware. In our case, the methodology is to aim a high-speed camera at our host display and a LED connected to a button module mapped to a left-click schema. Then we can compare – in editing software - the delta time between the LED lighting and a UI element on the display changing in response to the left-click. Preferably, use a monitor with 144+Hz refresh rate for a more accurate measurement.

Test Procedures	Expected Results
1. Plug in Prototroller to host with one module	N/A
connected: button, with left-click schema.	
Connect Switch => LED => Resistor => +3V3	
2. Press and release the rescan button	N/A
3. Set up mouse on element to be left-clicked	N/A
(action must modify UI in some way)	
4. Start recording with 240fps, giving smallest	N/A
possible increment of 4.16ms	
5. Press and release the button	LED ON for as long as the button is pressed.
6. Stop recording	N/A
7. In post-processing software, find the frame the	N/A
LED lights up and the frame the UI responds.	
8. Convert the difference in frames to a response	Response time should be ≤ 20 ms for acceptable
time: #frames * (1/240)	result, or ≤ 6ms for nominal result

<u>Verification of Hardware Signals + Circuitry</u>

Test Procedures	Expected Results
Continuity Test between all 7 connection points	Continuity between each line, no continuity
of master-module connectors	across lines
No shorting across decoupling capacitors	No continuity across capacitor pads
Line value fluctuations across decoupling capacitors	No noise/wobble exceeding 3% of the average constant value of the line (ex: 3Volt ±0.1V), idle or under load
Flash storage interfacing properly executing with RP2040	Program memory is maintained upon loss of power
Oscillator clock speed is within proper limits	Frequency of crystal oscillator signal is within 3% of 12 MHz
Chip Select signals properly activate through decoders	Each numbered chip select trace is held at logical high unless signaled in firmware. Firmware value (1,2,3, etc.) corresponds to proper CS line