Week 2.2 Computing Parameters Analytically

Normal Equation

- Normal equation: Method to solve for θ analytically
- $\theta = (X^T X)^{-1} X^T y$ 详解正规方程(Normal Equation

• X: design matrix

Examples: m=4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
$\rightarrow x_0$		x_1	x_2	x_3	x_4	y	_
(1	2104	5	1	45	460	٦
	1	1416	3	2	40	232	- 1
	1	1534	3	2	30	315	- (
	1	852	2	_1	_36	178	٧
$X = \begin{bmatrix} 1 & 1416 & 3 & 2 & 4 \\ 1 & 1534 & 3 & 2 & 3 \end{bmatrix}$			2 30 36	$\underline{y} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	460 232 315 178	lestor	

• Gradient Descent vs Normal Equation:

Gradient Descent	Normal Equation		
Need to choose alpha	No need to choose alpha		
Needs many iterations	No need to iterate		
$\mathrm{O}\left(kn^{2} ight)$	O (n^3) , need to calculate inverse of $X^T X$		
Works well when n is large	Slow if n is very large		

Normal Equation Noninvertibility

- What if X^TX is non-invertible? (rarely)
- pinv: compute inverse even when invertible
- Causes:

- Redundant features (linearly dependent)
- Too many feastures (e.g. $m \le n$)
 - delete or use regularization