

重磅! 一文读懂 Attention注意力机制来龙去脉!

Insights from HVS(Human Visual System)

Bottom-up Influence

- □ Factors that are low level, early, and normative
- □ Light/dark contrast, edge detection, horizontality/verticality

Top Down Influence

- ☐ High level, cognitive in nature, and individuating
- ☐ Statement of the task, the test environment/use context, prior knowledge or experience level

Start from Neural Machine Translation

Recurrent Neural Network

□ Based on David Rumelhart's work in 1986

$$O_t = g(V \cdot S_t)$$

$$S_t = f(U \cdot X_t + W \cdot S_{t-1})$$

LSTM

□ Proposed in 1997 by S. Hochreiter

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ ilde{c}_t &= \sigma_h(W_c x_t + U_c h_{t-1} + b_c) \ c_t &= f_t \circ c_{t-1} + i_t \circ ilde{c}_t \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

Start from Neural Machine Translation

Encoder-Decoder Structure: Seq2Seq

Attention in Seq2Seq

NMT by Jointly Learning

D. Bahdanau, 2015. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR.

Towards Transformer: Query, Key and Value

Towards Transformer: Query, Key and Value

Self-attention

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Towards Transformer: Query, Key and Value

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Define Types of Attentions

- Feed Forward Attention
 - □ Query is learnable, donate as *w*
 - □Key=Value!
 - $\square \ \alpha = Softmax(w^Tv_1, w^Tv_2, \cdots, w^Tv_K)$
 - \square $Attnig(\{v_i\}_{i=1}^Kig) = \sum_{i=1}^K lpha_i v_i$
- Self Attention
 - □ Query=Key=Value
 - \square $Attn(V) = softmax_{row}(VV^T)V$

https://mp.weixin.qq.com/s/t6IboWbX5ztdscDqUjdxXg https://www.bilibili.com/video/av48285039?p=92

Figure 1: The Transformer - model architecture.

C. Raffel et al. 2015. Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems. ICLR.

Attention in Vision

- Recurrent Models of Visual Attention
 - □ Based on pure RNN, image/video classification
 - $\square l_t$: attention location; a_t : classification

Attention in Vision: Spatial

Look Closer to See Better

- □ APN inspired by RPN
- □ Training:
 - keep APN,optimize L_{cls}
 - fix params,optimize L_{rank}
- □ APN inspired by RPN

J. Fu et al. "Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition," 2017, CVPR.

Attention in Vision: Spatial

Attention Guide CNN: Medical Image Analysis

Guan, Qingji, et al. "Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification.", 2018

Attention in Vision: Channel

Squeeze and Excitation Network

$$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j). \quad \mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(g(\mathbf{z}, \mathbf{W})) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z}))$$

□ Main idea: include global information

Attention in Vision: Channel and Spatial

Convolutional Block Attention Module

Attention in Visual: Pyramid Pooling in Segmentation

Figure 4: Global Attention Upsample module structure

Li, Hanchao et al. (2018). Pyramid Attention Network for Semantic Segmentation. BMVC, 2018.

Attention in Visual: Pyramid Feature

Pyramid Feature Attention Network

VGG net

T. Zhao and X. Wu, "Pyramid Feature Attention Network for Saliency Detection," 2019 CVPR.

Attention in Lane Line Detection

- Self Attention Distillation
 - \square $\underbrace{\gamma \mathcal{L}_{\text{distill}}(A_m, A_{m+1})}_{\text{distillation loss}}$, without softmax+weighted sum up.

Attention is Really All You Need!

Stand-Alone Self-Attention in Visual Models

□ Recall that key, qeury, value form output y

□ Stand-Alone Self-Attention to

replace convolution

Figure 3: An example of a local attention layer over spatial extent of k = 3.

What the hell is attention?

WEIGHTED SUM!