LP 15: Transitions de phases

Niveau : L3 Prérequis :

- Physique statistique,
- Fluide de Van der Waals,
- Paramagnétisme de Brillouin

Diagramme de phase de l'eau

Pour l'eau:

 $p_{\rm C} = 221.2 \text{ bars}$

 $T_{\rm C} = 374.15 \, {\rm ^{\circ}C}$

Rappel: fluide de Van der Waals

Hypothèses:

- Modèle de sphères dures,
- Fluide homogène,
- Interactions entre particules modélisées par un potentiel moyen.

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

Transition liquide-vapeur pour un fluide de Van der Waals

Transition liquide-vapeur pour un fluide de Van der Waals

Équilibre diphasique

Evolution de l'enthalpie libre du mélange avec la fraction molaire de liquide

Rappels : paramagnétisme de Brillouin

Micro-état : {σ_i}₋

$$\mathcal{H}_{para} = -B\sum_{i=1}^{N} \sigma_i$$

Aimantation moyenne par spin:

$$m = \tanh\left(\frac{B}{k_B T}\right)$$

Rappels : paramagnétisme de Brillouin

Pas de transition de phase en température à B ≠ 0

Pour T<Tc fixée : Transition ferromagnétique ferromagnétique du 1er ordre à B=0

Analogie: Transitions de phases du 1er ordre pour T<Tc, en variant p ou B Transitions de phases du 2nd ordre pour p=pc ou B=0, en variant T

Bilan sur les transitions liquide / gaz et paramagnétique / ferromagnétique

	Liquide / gaz	Paramagnétique / ferromagnétique			
Grandeurs conjuguées	$v = \left(\frac{\partial g}{\partial p}\right)_T$	$m = -\left(\frac{\partial f}{\partial B}\right)_T$			
T > Tc	Volume par particule v variant continûment avec (p,T) Phase supercritique	Aimantation par particule m variant continûment avec (B,T) Phase paramagnétique			
T < Tc	Transition du 1er ordre liquide / gaz Discontinuité de v, en variant p Présence d'états métastables Enthalpie de vaporisation : présence d'états de mélange diphasique	Transition du 1er ordre ferro / ferro Discontinuité de m, en variant B Présence d'états métastables Brisure spontanée de symétrie à B=0			
T = Tc	Transition du 2nd ordre en un point critique à (Pc, vc, Tc)	Transition du 2nd ordre en un point critique à (B=0, m=0, Tc)			

Exposants critiques en champ moyen

Liquide / gaz	Paramagnétique / ferromagnétique	Champ moyen
$C_V(T) \propto T - T_c ^{-\alpha}$	$C_m(T) \propto T - T_c ^{-\alpha}$	$\alpha = 0$
$(n(P_c,T)-n_c) \propto (T_c-T)^{\beta}$	$m(B=0,T) \propto (T_c-T)^{\beta}$	$\beta = 1/2$
$(n(P,T_c)-n_c) \propto (P-P_c)^{1/\delta}$	$m(B, T_c) \propto B^{1/\delta}$	$\delta = 3$
$\chi_T(P_c, T) \propto T - T_c ^{-\gamma}$	$\chi_m(T) \propto T - T_c ^{-\gamma}$	$\gamma = 1$

Exposants critiques expérimentaux

	liquide-	gaz	para-ferro	
Capacité		CO ₂		FeF ₂
calorifique	$C(T) \sim t ^{-\alpha}$	$\alpha = 0.111(1)$	$C(T) \sim t ^{-\alpha}$	$\alpha = 0.11(3)$
Paramètre	densité	CO ₂	aimantation	FeF ₂
d'ordre	$n(T) - n_c \sim (-t)^{\beta}$	$\beta = 0.324(2)$	$m(T,0) \sim (-t)^{\beta}$	$\beta = 0.325(2)$
Suscep-	Compressibilité	Xe	Susceptibilité	FeF ₂
tibilité	$\kappa_T(T) \sim t ^{-\gamma}$	$\gamma = 1.246(10)$	$\chi(T) \sim t ^{-\gamma}$	$\gamma = 1.25(1)$

Données de H. W. Blöte, E. Luijten & J. R. Heringa, Journal of Physics A 28, p. 6289 (1995)