Contrôle de mathématiques nº 3

Exercice 1 (4 points)

On donne ci-dessous la courbe représentative d'une fonction f définie et dérivable sur $]0; +\infty[$. On a tracé les tangentes à la courbe de f aux points A et B.

- 1. Lire graphiquement f(1) et f(2).
- 2. Déterminer deux nombres dérivés de f à l'aide du graphique. Justifier.
- 3. On admet désormais que pour tout x > 0, $f(x) = -x + 7 \frac{4}{x}$.
 - (a) Justifier que pour tout x > 0, $f'(x) = \frac{(2-x)(2+x)}{x^2}$.
 - (b) Vérifier que $f'(4) = -\frac{3}{4}$.
 - (c) Tracer la tangente à la courbe de f au point d'abscisse 4. Aucune justification n'est attendue.

Exercice 2 (6 points)

Soit f la fonction dérivable définie sur \mathbb{R} par $f(x) = -x^2 + 4x + 1$. On note \mathscr{C} sa courbe représentative dans un repère.

- 1. Déterminer une expression de f'(x) pour tout x dans \mathbb{R} .
- 2. Montrer que la tangente à la courbe $\mathscr C$ au point d'abscisse 1 est la droite d'équation y=2x+2.
- 3. Pour tout nombre réel a, on note T_a la tangente à $\mathscr C$ au point d'abscisse a.
 - (a) Déterminer a pour que T_a soit parallèle à la droite (d) d'équation

$$y = -4x + 1.$$

(b) Justifier que pour tout $a \in \mathbb{R}$, la tangente T_a a pour équation

$$y = (-2a + 4)x + a^2 + 1.$$

- (c) En déduire qu'il existe 2 tangentes à $\mathscr C$ passant par le point K(3;8).
- (d) Pour chacune de ces tangentes, donner une équation et les coordonnées du point de contact avec la courbe.

Exercice 3 (6 points)

Soit (u_n) la suite définie par $u_0 = 2$ et pour tout n de \mathbb{N} , $u_{n+1} = u_n - \frac{1}{(u_n)^2 + 1}$.

- 1. Calculer, en précisant vos calculs, u_1 et u_2 (on donnera des valeur exactes).
- 2. Sur le graphique ci-dessous, on a représenté la courbe représentative de la fonction f définie sur $\mathbb R$ par $f(x)=x-\frac{1}{x^2+1}$.

Représenter sur ce graphique les 6 premiers termes de la suite (u_n) .

- 3. Déterminer le sens de variation de la suite (u_n) (On démontrera sa réponse).
- 4. Écrire un algorithme qui calcule et affiche la valeur de u_n pour un entier n supérieur ou égal à 1 donné en entrée.
- 5. Donner une valeur approchée de u_{50} arrondie à 10^{-2} .
- 6. Compléter l'algorithme suivant qui qui détermine et affiche le plus petit entier p tel que $u_p < -6$.

variableU est un réel. n est un entierentréen prend la valeur 0U prend la valeur ...traitementTant que faire......Fin Tant quesortieafficher ...

- 7. Programmer cet algorithme à la calculatrice et donner la valeur de p.
- 8. Peut-on affirmer que pour tout $n \ge p$, $u_n < -6$? Justifier.

Exercice 4 (4 points)

Dire si les affirmations suivantes sont vraies ou fausses et justifier votre réponse.

1. Soit (U_n) la suite définie pour tout entier $n \in \mathbb{N}$ par $U_n = \frac{6n-1}{n+2}$.

(a)
$$\ll U_2 = \frac{5}{2} \gg$$

- (b) « (U_n) est majorée par 6 »
- (c) « (U_n) est minorée »
- 2. Soit (V_n) la suite définie par $V_0=4$ et pour tout $n\geqslant 0,\ V_{n+1}=V_n-2n+5.$
 - (a) $\ll V_2 = 12 \gg$
 - (b) $\ll (V_n)$ est croissante \gg

Exercice 5 (bonus, 2 points)

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = x\sqrt{x}$.

- 1. Calculer l'expression de f'(x) pour tout x > 0.
- $2.\ f$ est-elle dérivable en 0? Si oui donner son nombre dérivé en 0. Justifier.
- 3. Vrai-Faux. Justifier si les affirmations suivantes sont vraies ou fausses.
 - (a) « La tangente au point d'abscisse 1 passe par B(3;4) »
 - (b) « Il existe au moins une tangente parallèle à la droite d'équation $y=-2x+5\, >\! >$