

Verifica di Fisica

17 maggio 2021

La prova consiste di 3 esercizi da svolgere sul foglio protocollo allegato

Esercizio 1

Consideriamo il campo elettrico \vec{E} generato da una carica puntiforme $Q=-8.5~\mu\mathrm{C}$ posizionata nell'origine di un piano cartesiano.

- a) Calcolare la differenza di potenziale elettrico ΔV tra il punto A = (-4 cm, 0 cm) e il punto B = (0 cm, 7 cm), specificando in quale dei due punti il potenziale è maggiore.
- b) Descrivere le superfici equipotenziali del campo elettrico \vec{E} .
- c) Una carica $q = -1 \mu C$ viene lanciata da un punto molto lontano (V = 0) verso l'origine a una velocità di 100 m/s. Se la massa di q è di 1 g, a quale distanza dall'origine si fermerà?

Esercizio 2

Consideriamo una carica puntiforme positiva $q = 3.2 \mu C$.

- a) Se q si sposta da un punto a potenziale $V_A = -100$ V a un punto a potenziale $V_B = 220$ V, qual è il lavoro $L_{A\to B}$ compiuto dalla forza elettrica sulla carica q?
- b) Consideriamo la stessa situazione descritta al punto a). Supponendo che q si muova in linea retta per effetto di un campo elettrico uniforme $E=1,2\cdot 10^6$ N/C, qual è la distanza tra i due punti A e B?

c) Calcolare l'energia potenziale elettrica del sistema costituito da quattro cariche $q_1 = q_2 = q_3 = q_4 = q$ poste ai vertici di un quadrato di lato 1 cm.

Esercizio 3

Le armature di un condensatore di capacità $5\cdot 10^{-12}~\mathrm{F}$ hanno una superficie di 1 cm² ciascuna.

- a) Qual è la distanza tra le armature?
- b) Collegando il condensatore a una batteria, le due armature raggiungono una differenza di potenziale di 5000 V. Determinare l'intensità, la direzione e il verso del campo elettrico generato tra le armature e la carica totale presente su ciascuna di esse.
- c) Facendo riferimento al punto b), calcolare l'energia elettrica accumulata nel condensatore.