4 It is easy to generalize these results to N (sosmal) scatterings. The 1th scattering takes place at \$i and lasts for time Δt_i , $1 \le i \le N$. With time ordering implicit, i.e. $t < t_1 < t_2 < \dots < t_N < t'$, $\forall (\xi')$ in (31) picks up new terms...

And so on. We get a series of terms, containing higher 20(123) and higher powers of the interaction so, and representing higher-order multiple scatterings of 40(8) enroute from $\xi=(x,t)$ to $\xi'=(x',t')$.

(5) The scatterings represented by the terms in $G(\xi',\xi)$ of (33) are <u>discrete</u>—scattering at ξ_i takes place in Δt_i at t_i (with $t < t_i < t'$), and there could be a period of time from t_i to the next interaction at t_{i+1} when there is no interaction at all. To file in the gaps, he pass to the limit of a <u>continuous</u> interaction by Ω over the entire path $\xi \rightarrow \xi'$. As follows...

Keep initial and final points ξ and ξ' fixed. Let $N \to \infty$ in Eq.(33). Then $\Delta t_i \to dt_i$ (true ∞ smal), and $\sum \Delta t_i \to \int dt_i$. Use notation: $\sum_i \int dx_i \, \Delta t_i \to \int dx_i \, \int dt_i = \int d\xi_i$. Replace indices i,j,k... by 1,2,3,...

 $G(\xi',\xi) = G_0(\xi',\xi) + \int d\xi_1 G_0(\xi',\xi_1) \Omega(\xi_1) G_0(\xi_1,\xi) + \\ + \int d\xi_2 \int d\xi_1 G_0(\xi',\xi_2) \Omega(\xi_2) G_0(\xi_2,\xi_1) \Omega(\xi_1) G_0(\xi_1,\xi) + \\ + \int d\xi_3 \int d\xi_2 \int d\xi_1 G_0(\xi',\xi_3) \Omega(\xi_3) G_0(\xi_3,\xi_2) \Omega(\xi_2) G_0(\xi_2,\xi_1) \Omega(\xi_1) G_0(\xi_3,\xi_2) + \\ + \dots G(\Omega^4), etc.$ (34)

| Each integral obeys the time-ordering tot, strot.

REMARKS on propagator G(5', 3) of Eq. (34).

1 The "Scattered" wavefor: $\Psi(\xi') = i \int dx G(\xi', \xi) \Psi_0(\xi)$, together with $G(\xi', \xi)$ of Eq. (34), is a solution to the Schrödinger problem: $(H_0' + h\Omega') \Psi(\xi') = ih \frac{\partial}{\partial t'} \Psi(\xi')$. All the dynamics of the operator $\{H_0(free) + h\Omega - ih \frac{\partial}{\partial t'}\}$ is incorporated in the propagator $G(\xi', \xi)$. Then, remarkably, the solution $\Psi(\xi')$ can be generated from a free-particle state $\Psi_0(\xi)$, with $G(\xi', \xi)$ expressible in terms of the interaction $\Omega(\xi)$ and free-particle propagators $G(\xi', \xi)$.*

2 The series for G in Eq. (34) can be written symbolically as ...

The diagrams are elementary forms of the celebrated "Feynman diagrams", where the wavy lines each represent one coupling via $\Omega(\xi)$, during which the particle and source can exchange an interaction quantum (for EM interactions, the quantum is a photon). The exchanges are <u>not</u> Localized at one space-time point—the integrals $\int \iff \int d\xi = \int dx \int dt$ add up contributions all along the particle's path.

3 When G of (35) is used in $\Psi=i\int dxG\Psi_0$, we get a series of terms for Ψ , in powers Ω^n , with n=0,1,2,3,.... This is, in effect, a perturbation series for Ψ , with the n^{th} order dgm in (35) $\leftrightarrow n^{th}$ order perturbation. If Ω is "weak" (e.g. if $\Omega \ll 1$) particle energy), then the series will converge, and just the first few terms ought to give a good approximation to Ψ .

^{*} G(x,x) of Eq. (34) replaces solving Eq. (15) [tt. source] or evaluating Eq. (A5) [sum over].