形式语言与自动机理论

正则表达式

王春宇 chunyu@hit.edu.cn

> 计算学部 哈尔滨工业大学

2021年4月

正则表达式

- 正则表达式
 - 语言的运算
 - 正则表达式的递归定义
 - 运算符的优先级
 - 正则表达式示例
- 有穷自动机和正则表达式
- 正则表达式的代数定律

正则表达式

- 有穷自动机
 - 通过机器装置描述正则语言
 - 用计算机编写相应算法, 易于实现
- 正则表达式
 - 通过表达式描述正则语言, 代数表示方法, 使用方便
 - 应用广泛
 - grep 工具 (Global Regular Expression and Print)
 - Emacs / Vim 文本编辑器
 - lex / flex 词法分析器
 - 各种程序设计语言 Python / Perl / Haskull / ···

语言的运算

设 L 和 M 是两个语言, 那么

并
$$L \cup M = \{w \mid w \in L \ \ ext{或} \ w \in M \}$$

连接 $L \cdot M = \{w \mid w = xy, \ x \in L \ \ \ ext{且} \ y \in M \}$
幂 $L^0 = \{\varepsilon\}$
 $L^1 = L$
 $L^n = L^{n-1} \cdot L$
克林闭包 $L^* = \bigcup_{i=0}^{\infty} L^i$

例 1. 若有语言
$$L$$
 = {0,11} 和 M = { $arepsilon$, 001}, 那么 $L \cup M$ = L^0 = LM = L^1 = L^2 =

例 2. 对于空语言 ∅

 $\forall n \geq 1, \quad \emptyset^n =$

Ø* =

四则运算表达式的递归定义:

- 任何数都是四则运算表达式;
- ② 如果 a 和 b 是四则运算表达式, 那么

a+b, a-b, $a \times b$, $a \div b \times 10^{\circ}$ (a)

都是四则运算表达式。

正则表达式的递归定义

定义

如果 Σ 为字母表, 则 Σ 上的正则表达式递归定义为:

- ② 是一个正则表达式,表示空语言;
 € 是一个正则表达式,表示语言 {ε};
 ∀a ∈ Σ, a 是一个正则表达式,表示语言 {a};
- ② 如果正则表达式 \mathbf{r} 和 \mathbf{s} 分别表示语言 R 和 S, 那么

$$r+s$$
, rs , r^* 和 (r)

都是正则表达式,分别表示语言

 $R \cup S$, $R \cdot S$, R^* A R.

运算符的优先级

正则表达式中三种运算以及括号的优先级:

- 首先,"括号"优先级最高;
- ② 其次, "星"运算: **r***;
- 3 然后, "连接"运算: **rs**, **r**⋅**s**;
- 4 最后, "加"最低: r+s, r∪s;

例 3.

$$1 + 01^* = 1 + (0(1^*))$$

$$\neq 1 + (01)^*$$

$$\neq (1 + 01)^*$$

$$\neq (1 + 0)1^*$$

正则表达式示例

例 4.

E	$\mathbf{L}(E)$
$\mathbf{a} + \mathbf{b}$	$\mathbf{L}(\mathbf{a}) \cup \mathbf{L}(\mathbf{b}) = \{a\} \cup \{b\} = \{a, b\}$
bb	$\mathbf{L}(\mathbf{b}) \cdot \mathbf{L}(\mathbf{b}) = \{b\} \cdot \{b\} = \{bb\}$
$(\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})$	$\{a,b\}\{a,b\} = \{aa,ab,ba,bb\}$
$(\mathbf{a} + \mathbf{b})^* (\mathbf{a} + \mathbf{b}\mathbf{b})$	{a,b}*{a,bb} = {a,b}*{a} ∪ {a,b}*{bb} = {w ∈ {a,b}* w 仅以a或bb结尾.}
1+(01)*	$\{1, \varepsilon, 01, 0101, 010101, \ldots\}$
$(0+1)^*01(0+1)^*$	$\{x01y \mid x, y \in \{0, 1\}^*\}$

例 5. 给出正则表达式 $(aa)^*(bb)^*b$ 定义的语言.

例 5. 给出正则表达式 (aa)*(bb)*b 定义的语言.

$$\mathbf{L}((\mathbf{a}\mathbf{a})^*(\mathbf{b}\mathbf{b})^*\mathbf{b}) = \mathbf{L}((\mathbf{a}\mathbf{a})^*) \cdot \mathbf{L}((\mathbf{b}\mathbf{b})^*) \cdot \mathbf{L}(\mathbf{b})$$
$$= (\{a\} \cdot \{a\})^* \cdot (\{b\} \cdot \{b\})^* \cdot \{b\})$$
$$= \{a^2\}^* \cdot \{b^2\}^* \cdot \{b\}$$

 $= \{ a^{2n} \mid n \ge 0 \} \cdot \{ b^{2n} \mid n \ge 0 \} \cdot \{ b \}$

 $= \{ a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0 \}$

例 6. Design regular expression for $L = \{w \mid w \text{ consists of 0's and 1's, and the third symbol from the right end is 1.}$

$$(0+1)^*1(0+1)(0+1)$$

例 7. Design regular expression for $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has no pair of consecutive 0's.} \}$

$$\mathbf{1}^*(\mathbf{011}^*)^*(\mathbf{0}+arepsilon)$$
 或 $(\mathbf{1}+\mathbf{01})^*(\mathbf{0}+arepsilon)$

课堂练习.

Give regular expressions for each of the following languages over $\Sigma = \{0, 1\}$.

1 All strings containing the substring 000.

2 All strings *not* containing the substring 000.

正则表达式

- 正则表达式
- 有穷自动机和正则表达式
 - 由 DFA 到正则表达式, 递归表达式法
 - 由 DFA 到正则表达式, 状态消除法
 - 由正则表达式到 ε -NFA
- 正则表达式的代数定律

DFA, NFA, ε -NFA 和正则表达式的等价性 ε -NFA ε -NFA 和正则表达式

由 DFA 到正则表达式, 递归表达式法

定理 3

若 $L = \mathbf{L}(A)$ 是某 DFA A 的语言, 那么存在正则表达式 R 满足 $L = \mathbf{L}(R)$.

由 DFA 到正则表达式, 递归表达式法

定理 3

若 $L = \mathbf{L}(A)$ 是某 DFA A 的语言, 那么存在正则表达式 R 满足 $L = \mathbf{L}(R)$.

证明: 对 DFA A 的状态编号, 令 1 为开始状态, 即

$$A = (\{1,2,\ldots,n\}, \Sigma, \delta, 1, F),$$

设正则表达式 $R_{ij}^{(k)}$ 表示从 i 到 j 但中间节点不超过 k 全部路径的字符串集:

$$R_{ij}^{(k)} = \{x \mid \hat{\delta}(i,x) = j, x$$
经过的状态除两端外都不超过 $k \}$.

那么与 $A = (\{1,2,...,n\}, \Sigma, \delta, 1, F)$ 等价的正则表达式为

$$igcup_{j\in F} R_{1j}^{(n)}$$

日递归式为

$$egin{aligned} R_{ij}^{(k)} &= R_{ij}^{(k-1)} + R_{ik}^{(k-1)} ig(R_{kk}^{(k-1)} ig)^* R_{kj}^{(k-1)} \ &= \sum_{k=0}^{\infty} ig(a \mid \delta(q_i, a) = q_j ig) \end{aligned}$$

 $R_{ij}^{(0)} = \begin{cases} \left\{ a \mid \delta(q_i, a) = q_j \right\} & i \neq j \\ \left\{ a \mid \delta(q_i, a) = q_j \right\} \cup \left\{ \varepsilon \right\} & i = j \end{cases}$

下面对 k 归纳, 证明可用以上递归式求得 $R_{ii}^{(k)}$.

归纳基础: 当 $i \neq j$, k = 0 时, 即 i 到 j 没经过任何中间节点

没有 i 到 j 的状态转移

$$(i) (j) R_{ij}^{(0)} = \emptyset$$

• 有一个 i 到 j 的状态转移

$$i \longrightarrow j$$
 $R_{ij}^{(0)} = \mathbf{a}$

• 有多个 i 到 j 的状态转移

$$R_{ij}^{(0)} = \mathbf{a}_1 + \mathbf{a}_2 + \dots + \mathbf{a}_t$$

归纳基础 (续): 当 i = j, k = 0 时, 即从 i 到自身没经过任何中间节点

• 状态 i 没有到自己的转移

$$R_{ii}^{(0)} = \boldsymbol{\varepsilon}$$

$$a_t$$

$$R_{ii}^{(0)} = \mathbf{a}_1 + \mathbf{a}_2 + \dots + \mathbf{a}_t + \boldsymbol{\varepsilon}$$

归纳假设: 假设已知 $R_{ij}^{(k-1)}$, $R_{ik}^{(k-1)}$, $R_{kk}^{(k-1)}$ 和 $R_{kj}^{(k-1)}$.

归纳递推: 那么 $R_{ij}^{(k)}$ 中全部路径, 可用节点 k 分为两部分

从 i 到 j 不经过 k 的

$$R_{ij}^{(k)} = R_{ij}^{(k-1)}$$

• 从 *i* 到 *j* 经过 *k* 的

$$(i) \sim \sim (k) \sim \sim (k) \sim (k) \sim (j)$$

$$R_{ij}^{(k)} = R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

因此
$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$
.

例 8. 将如图 DFA 转换为正则表达式.

例 8. 将如图 DFA 转换为正则表达式.

$$\begin{array}{cccc}
1 & 0,1 \\
0 & 0
\end{array}$$
start $\rightarrow q_1 \longrightarrow q_2$

• 计算 $R_{ij}^{(0)}$

$$egin{array}{cccc} R_{ij}^{(k)} & k=0 \ \hline R_{11}^{(0)} & oldsymbol{arepsilon}+\mathbf{1} \ R_{12}^{(0)} & \mathbf{0} \ R_{21}^{(0)} & arnothing \ R_{22}^{(0)} & oldsymbol{arepsilon}+\mathbf{0}+\mathbf{1} \end{array}$$

• 计算
$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$$

$$egin{array}{cccc} R_{ij} & \kappa = 0 \ \hline R_{11}^{(0)} & oldsymbol{arepsilon} + \mathbf{1} \ R_{12}^{(0)} & \mathbf{0} \ R_{21}^{(0)} & arnothing \ R_{22}^{(0)} & arnothing \ + \mathbf{0} + \mathbf{1} \end{array}$$

• 计算 $R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$

k = 0

k = 1

几个基本的化简规则如果 r 和 s 是两个正则表达式

$$(\varepsilon + \mathbf{r})^* = \mathbf{r}^*$$
 $(\varepsilon + \mathbf{r})\mathbf{r}^* = \mathbf{r}^*$
 $\mathbf{r} + \mathbf{r}\mathbf{s}^* = \mathbf{r}\mathbf{s}^*$
 $\emptyset \mathbf{r} = \mathbf{r}\emptyset = \emptyset$
 $\emptyset + \mathbf{r} = \mathbf{r} + \emptyset = \mathbf{r}$

零元

单位元

• 化简 $R_{ij}^{(1)}$

$R_{ij}^{(k)}$	k = 1	化简
$R_{11}^{(1)}$	$(\varepsilon+1)+(\varepsilon+1)(\varepsilon+1)^*(\varepsilon+1)$	1*
$R_{12}^{(ar{1})}$	$0 + (\boldsymbol{\varepsilon} + 1)(\boldsymbol{\varepsilon} + 1)^* 0$	1*0
$R_{21}^{(ar{1})}$	$\varnothing + \varnothing(\varepsilon + 1)^*(\varepsilon + 1)$	Ø
$R_{22}^{(ar{1})}$	$\varepsilon + 0 + 1 + \varnothing (\varepsilon + 1)^* 0$	$\varepsilon + 0 + 1$

• 计算
$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$$

• 化简 $R_{ij}^{(2)}$

• 因只有 q_2 是接受状态, 所以该 DFA 正则表达式为

$$R_{10}^{(2)} = \mathbf{1}^* \mathbf{0} (\mathbf{0} + \mathbf{1})^*.$$

例 9. 将如图 DFA 转换为正则表达式.

例 9. 将如图 DFA 转换为正则表达式.

例 9. 将如图 DFA 转换为正则表达式.

仅状态 2 和 3 是接受状态:

$$R_{12}^{(3)} = R_{12}^{(2)} + R_{13}^{(2)} (R_{33}^{(2)})^* R_{32}^{(2)}$$

$$= \mathbf{0}(\mathbf{0}\mathbf{0})^* + \mathbf{0}^* \mathbf{1} (\boldsymbol{\varepsilon} + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\mathbf{0} + \mathbf{1})(\mathbf{0}\mathbf{0})^*$$

$$= \mathbf{0}(\mathbf{0}\mathbf{0})^* + \mathbf{0}^* \mathbf{1} ((\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\mathbf{0} + \mathbf{1})(\mathbf{0}\mathbf{0})^*$$

$$R_{13}^{(3)} = R_{13}^{(2)} + R_{13}^{(2)} (R_{33}^{(2)})^* R_{33}^{(2)}$$

$$= \mathbf{0}^* \mathbf{1} + \mathbf{0}^* \mathbf{1} (\boldsymbol{\varepsilon} + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\boldsymbol{\varepsilon} + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})$$

$$= \mathbf{0}^* \mathbf{1} ((\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^*$$

$$R_{12}^{(3)} + R_{13}^{(3)} = \mathbf{0}^* \mathbf{1} ((\mathbf{0} + \mathbf{1}) \mathbf{0}^* \mathbf{1})^* (\varepsilon + (\mathbf{0} + \mathbf{1}) (\mathbf{0} \mathbf{0})^*) + \mathbf{0} (\mathbf{0} \mathbf{0})^*.$$

分治 (Divide and Conquer) – 普遍且实用的递归求解方式

- ① 将问题实例分解为子问题实例 divide step
- 2 子问题实例可递归解决
- ③ 将子问题实例合并可得到原问题实例 conquer step

由 DFA 到正则表达式, 状态消除法

- 从 DFA 中逐个删除状态
- 用标记了正则表达式的新路径替换被删掉的路径
- 保持"自动机"等价.

• 更一般的情况如图, 若要删除状态 S, 需添加相应路径

① 利用空转移,添加新的开始s和结束状态f:

● 利用空转移,添加新的开始 s 和结束状态 f:

② 消除状态 q_1 , 添加路径 $q_0 \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

② 消除状态 q_1 , 添加路径 $q_0 \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

③ 消除状态 q_0 , 添加路径 $s \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

③ 消除状态 q_0 , 添加路径 $s \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

4 消除状态 q_2 , 添加路径 $s \rightarrow f$:

start
$$\longrightarrow$$
 (s) $(1*00*1(00*1+11*00*1)*)$

④ 消除状态 q_2 , 添加路径 $s \rightarrow f$:

5 因此该自动机的正则表达式为

$$1*00*1(00*1+11*00*1)*.$$

由正则表达式到有穷自动机

定理 4

正则表达式定义的语言,都可被有穷自动机识别.

由正则表达式构造 ε -NFA

任何正则表达式 \mathbf{r} , 都存在等价的 ε -NFA A, 即 $\mathbf{L}(A) = \mathbf{L}(\mathbf{r})$, 并且 A 满足:

- ① 仅有一个接收状态;
- ② 没有进入开始状态的边;
- 3 没有离开接受状态的边.

证明: 归纳基础:

1 对于 Ø, 有 ε-NFA:

对于 ε, 有 ε-NFA:

$$t \xrightarrow{\mathcal{E}} \mathbb{O}$$

3 ∀a ∈ Σ, 对于 **a**, 有 ε-NFA:

归纳递推: 假设正则表达式 ${\bf r}$ 和 ${\bf s}$ 的 ε -NFA 分别为 ${\bf R}$ 和 ${\bf S}$

那么 $\mathbf{r} + \mathbf{s}$, $\mathbf{r}\mathbf{s}$ 和 \mathbf{r}^* , 可由 R 和 S 分别构造如下:

- ② 对于 \mathbf{rs} , 有 ε -NFA: start $\stackrel{\bullet}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$
- 3 对于 \mathbf{r}^* , 有 ε -NFA: start \rightarrow ε

因此任何结构的正则表达式, 都有等价的 ε -NFA.

例 11. 正则表达式 (0+1)*1(0+1) 构造为 ε-NFA.

思考题

正则表达式到 ε -NFA 构造方法中的 3 个限制条件, 都有必要吗?

正则表达式

- 正则表达式
- 有穷自动机和正则表达式
- 正则表达式的代数定律
 - 基本的代数定律
 - 发现与验证代数定律

正则表达式的代数定律

定义

含有变量的两个正则表达式,如果以任意语言替换其变量,二者所表示的语言仍然相同,则称这两个正则表达式等价.在这样的意义下,正则表达式满足一些代数定律.

• 并运算

$$(L+M)+N=L+(M+N)$$
 结合律
 $L+M=M+L$ 交换律
 $L+L=L$ 幂等律
 $arnothing+L=L+arnothing=L$ 单位元 $arnothing$

连接运算

$$(LM)N=L(MN)$$
 结合律 $oldsymbol{arepsilon}L=Loldsymbol{arepsilon}=L$ 单位元 $oldsymbol{arepsilon}$ 零元 $oldsymbol{arepsilon}$ 表 $LM
eq ML$

分配率

$$L(M+N) = LM+LN$$
 左分配律 $(M+N)L = ML+NL$ 右分配律

• 闭包运算

 $(L^*)^* = L^*$ $\varnothing^* = \varepsilon$ $\varepsilon^* = \varepsilon$

 $(\boldsymbol{\varepsilon} + L)^* = L^*$

 $L^* = L^+ + \varepsilon$

发现与验证正则表达式的代数定律

检验方法

要判断表达式 E 和 F 是否等价, 其中变量为 $L_1, ..., L_n$:

- \bullet 将变量替换为具体表达式, 得正则表达式 \mathbf{r} 和 \mathbf{s} , 例如替换 L_i 为 \mathbf{a}_i :
 - ② 判断 $\mathbf{L}(\mathbf{r}) \stackrel{?}{=} \mathbf{L}(\mathbf{s})$, 如果相等则 E = F, 否则 $E \neq F$.

例 12. 判断
$$(L+M)^* = (L^*M^*)^*$$
.

• 将 L 和 M 替换为 a 和 b:

- $(\mathbf{a} + \mathbf{b})^* \stackrel{?}{=} (\mathbf{a}^* \mathbf{b}^*)^*;$

- 3 因为 $\mathbf{L}((\mathbf{a}+\mathbf{b})^*) = \mathbf{L}((\mathbf{a}^*\mathbf{b}^*)^*);$

- 4 所以 $(L+M)^* = (L^*M^*)^*$.

例 13. 判断 L + ML = (L + M)L.

- 将 L 和 M 替换为 a 和 b;
- 2 判断 $\mathbf{a} + \mathbf{ba} \stackrel{?}{=} (\mathbf{a} + \mathbf{b})\mathbf{a}$;
- ③ 因为 $aa \notin \mathbf{a} + \mathbf{ba}$ 而 $aa \in (\mathbf{a} + \mathbf{b})\mathbf{a}$;

⑤ 即 $L + ML \neq (L + M)L$.

④ 所以 $\mathbf{a} + \mathbf{b} \mathbf{a} \neq (\mathbf{a} + \mathbf{b}) \mathbf{a}$;

注意

这种方法仅限于判断正则表达式, 否则可能会发生错误.

例 14. 若用此方法判断 $L \cap M \cap N \stackrel{?}{=} L \cap M$, 以 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 替换 L, M, N, 有

$$\{a\} \cap \{b\} \cap \{c\} = \varnothing = \{a\} \cap \{b\},\$$

而显然

$$L \cap M \cap N \neq L \cap M$$
.

chunyu@hit.edu.cn
http://nclab.net/~chunyu

