Courbes à boucles convergeant vers un cercle

Ce problème commence par l'étude d'une similitude directe, et il aboutit à la formation d'une suite de courbes présentant des boucles de plus en plus nombreuses mais qui s'estompent peu à peu pour donner finalement un cercle.

Dans le plan complexe, avec son repère orthonormé d'origine O, on considère la suite de points $M_0, M_1, M_2, ..., M_n$, ... avec M_0 en O et M_1 d'affixe 1. La règle de passage d'un point au suivant, avec $n \ge 1$, obéit aux deux conditions : en matière de longueurs, $M_n M_{n+1} = r M_{n-1} M_n$, avec r nombre réel > 0 donné, et en matière d'angles $(\mathbf{M}_{n-1} \mathbf{M}_n, \mathbf{M}_n \mathbf{M}_{n+1}) = t^{-1}$, avec t angle donné compris entre 0 et 2π .

1) On appelle v_n l'affixe du vecteur $\mathbf{M}_n \mathbf{M}_{n+1}$. Montrer que pour $n \ge 1$: $v_n = r e^{it} v_{n-1}$. En déduire la forme explicite de v_n , en fonction de n, r et t.

On passe du vecteur $\mathbf{M}_{n-1}\mathbf{M}_n$ au vecteur $\mathbf{M}_n\mathbf{M}_{n+1}$ en multipliant sa longueur par r et en le tournant de l'ange t, ce qui signifie en complexes que l'on passe de l'affixe v_{n-1} du premier vecteur à l'affixe v_n du second en le multipliant par le nombre complexe de module r et d'argument t, soit $v_n = r e^{it} v_{n-1}$. Cette relation de récurrence correspond à une suite géométrique de raison $r e^{it}$ et de terme initial v_0 affixe de $\mathbf{M}_0\mathbf{M}_1$. On en déduit la forme explicite $v_n = v_0 (r e^{it})^n$, avec $v_0 = 1$, d'où $v_n = r^n e^{i n t}$.

2) En prenant comme cas particulier dans cette question $r = \frac{1}{\sqrt{2}}$ et $t = \frac{\pi}{4}$, placer les points de M_0

Figure 1: Trajectoire des points M_n pour $r = \frac{1}{\sqrt{2}}$ et $t = \frac{\pi}{4}$

3) On suppose maintenant dans tout ce qui suit que 0 < r < 1. Et l'on appelle z_n l'affixe du point M_n . En exprimant v_n en fonction de z_n et z_{n+1} , en déduire que $z_n = v_0 + v_1 + v_2 + ... + v_{n-1}$.

Avec v_n affixe de $\mathbf{M}_n \mathbf{M}_{n+1}$, on a aussi $z_{n+1} - z_n = v_n$ pour $n \ge 0$, grâce à Chasles. Ainsi :

$$z_{n} - z_{n-1} = v_{n-1}$$

$$z_{n-1} - z_{n-2} = v_{n-2}$$
...
$$z_{2} - z_{1} = v_{1}$$

$$z_{1} - z_{0} = v_{0}$$

En additionnant membre à membre, il se produit des simplifications en cascade, et il reste :

$$z_n - z_0 = v_{n-1} + v_{n-2} + \dots + v_1 + v_0$$
, avec $z_0 = 0$, ou

¹ Comme d'habitude, les vecteurs sont marqués en gras.

$$z_n = v_0 + v_1 + v_2 + \dots + v_{n-1}$$

4) Donner la forme explicite de z_n en fonction de n, r et θ .

Grâce à la formule précédente, $z_n = 1 + r e^{it} + (r e^{it})^2 + ... + (r e^{it})^{n-1} = \frac{1 - (r e^{it})^n}{1 - r e^{it}}$ puisque $r e^{it}$ est différent de 1, avec 0 < r < 1.

5) Montrer que le module du nombre complexe $z_n - \frac{1}{1 - re^{it}}$ tend vers 0 lorsque n tend vers l'infini. En notant P le point d'affixe $p = \frac{1}{1 - re^{it}}$, interpréter géométriquement le comportement de la suite des points (M_n) à l'infini. Placer sur la figure commencée au 2° le point P obtenu pour $r = \frac{1}{\sqrt{2}}$ et $t = \frac{\pi}{4}$.

D'après la formule précédente, $z_n - \frac{1}{1 - re^{it}} = -\frac{(re^{it})^n}{1 - re^{it}}$, soit en module $\left| z_n - \frac{1}{1 - re^{it}} \right| = \frac{r^n}{\left| 1 - re^{it} \right|}$ où l'on a pris le quotient des modules. Avec 0 < r < 1, r^n tend vers 0 pour n infini, tandis que $\left| 1 - re^{it} \right|$ reste fixe. Donc avec son module qui tend vers 0, le nombre complexe $z_n - \frac{1}{1 - re^{it}}$ tend vers 0 et z_n tend vers $p = \frac{1}{1 - re^{it}}$. La suite des points M_n tend vers P.

6) Pour tout n entier naturel, on note Z_n l'affixe du vecteur PM_n . Calculer Z_n en fonction de n, r et t. Puis établir une relation entre Z_n et Z_{n-1} . En déduire que l'on passe de M_{n-1} à M_n par une similitude directe dont on précisera le centre, le rapport et l'angle.

 $Z_n = z_n - \frac{1}{1 - re^{it}} = -\frac{(re^{it})^n}{1 - re^{it}} = -p (re^{it})^n$. On reconnaît la forme explicite d'une suite géométrique de raison r e^{it} avec comme terme initial $Z_0 = -p$. D'où la relation de récurrence $Z_n = re^{it}Z_{n-1}$, qui s'écrit aussi $z_n - p = re^{it}(z_{n-1} - p)$. C'est de la forme $z_n = a z_{n-1} + b$ avec $a \neq 0$. On passe de M_{n-1} à M_n par une similitude directe de rapport |a| = r et d'angle arg a = t, avec comme centre le point fixe P. La suite des points M_n vient s'enrouler en spirale sur le point P.

7) Déterminer les coordonnées X et Y du point P précédemment défini, en fonction de r et de t.

$$p = \frac{1}{1 - r(\cos t + i\sin t)} = \frac{1}{1 - r\cos t - ir\sin t} = \frac{1 - r\cos t + ir\sin t}{(1 - r\cos t)^2 + r^2\sin^2 t}$$

$$= \frac{1 - r\cos t + ir\sin t}{1 + r^2 - 2r\cos t}$$

$$P\begin{pmatrix} X = \frac{1 - r\cos t}{1 + r^2 - 2r\cos t} \\ Y = \frac{r\sin t}{1 + r^2 - 2r\cos t} \end{pmatrix}$$

8) Gardons r fixé entre 0 et 1. Lorsque l'angle t varie de 0 à 2π , le point P décrit une courbe C. Mettre les équations paramétriques de C sous la forme $X = \frac{a - \cos t}{b - 2\cos t}$ et $Y = \frac{\sin t}{b - 2\cos t}$ et préciser les valeurs des constantes a et b. Puis montrer que cette courbe est symétrique par rapport à l'axe des x et indiquer dans quel intervalle pour t on peut réduire l'étude. Déterminer les points P obtenus pour t = 0 et $t = \pi$.

En divisant par r en haut et en bas, X et Y s'écrivent :

$$P = \frac{1/r - \cos t}{(1+r^2)/r - 2\cos t}$$
$$Y = \frac{\sin t}{(1+r^2)/r - 2\cos t}$$

d'où
$$a = 1 / r$$
 et $b = (1 + r^2) / r$.

On a là les équations paramétriques de la courbe C décrite par P. Lorsque l'on change t en -t (ou $2\pi - t$), X ne change pas (le cosinus étant une fonction paire) et Y est changé en -Y à cause de la fonction sinus impaire. La courbe C est symétrique par rapport à l'axe des x, et l'on peut réduire l'intervalle d'étude à $[0, \pi]$. Pour t = 0, on trouve le point A (1/(1-r), 0), et pour $t = \pi$ on a le point B (1/(1+r), 0).

9) Montrer que la courbe C est un cercle dont on précisera le centre Ω et le rayon R.

Utilisant les résultats précédents en t=0 et π , en prenant comme point Ω le milieu de [AB], soit Ω (1 / (1 - r^2), 0), le rayon R éventuel ne pouvant être que r / (1 - r^2). Il s'agit de prouver que $\Omega P = R$, c'est-à-dire $\Omega P^2 = r^2$ /(1 - r^2), ce qui signifie que P sera bien sur un cercle.

$$\begin{split} x_{\Omega P} &= X - \frac{1}{1-r^2} = \frac{1-r\cos t}{1+r^2-2r\cos t} - \frac{1}{1-r^2} = \frac{(1-r^2)(1-r\cos t)-1-r^2+2r\cos t}{(1-r^2)(1+r^2-2r\cos t)} \\ &= \frac{r((1+r^2)\cos t-2r)}{(1-r^2)(1+r^2-2r\cos t)} \\ y_{\Omega P} &= \frac{r\sin t}{1+r^2-2r\cos t} = \frac{r(1-r^2)\sin t}{(1-r^2)(1+r^2-2r\cos t)} \\ \Omega P^2 &= x_{\Omega P}^2 + y_{\Omega P}^2 = \frac{r^2((1+r^2)\cos t-2r)^2+r^2(1-r^2)^2\sin^2 t}{(1-r^2)^2(1+r^2-2r\cos t)^2} \\ &= \frac{r^2 \left((1+r^2)\cos t-2r \right)^2+(1-r^2)^2\sin^2 t}{(1-r^2)^2(1+r^2-2r\cos t)^2} \\ &= \frac{r^2 \left((1+r^2)\cos t-2r \right)^2+(1-r^2)^2\sin^2 t-4r(1+r^2)\cos t+4r^2 \right)}{(1-r^2)^2(1+r^2-2r\cos t)^2} \\ &= \frac{r^2 \left((1+r^4+2r^2\cos^2 t+2r^2-4r\cos t-4r^3\cos t) - (1-r^2)^2(1+r^2-2r\cos t)^2 \right)}{(1-r^2)^2(1+r^2-2r\cos t)^2} \\ &= \frac{r^2 \left((1+r^4+4r^2\cos^2 t+2r^2-4r\cos t-4r^3\cos t) - (1-r^2)^2(1+r^2-2r\cos t)^2 - (1-r^2)^2(1+r^2-2r\cos t)^2(1+r^4+4r^2\cos^2 t+2r^2-4r\cos t-4r^3\cos t)} \\ &= \frac{r^2 \left((1+r^4+4r^2\cos^2 t+2r^2-4r\cos t-4r^3\cos t) - (1-r^2)^2(1+r^2-2r\cos t)^2 - (1-r^2)^2(1+r^2-2r\cos t)^2 - (1-r^2)^2(1+r^2-2r\cos t)^2 - (1-r^2)^2(1+r^2-2r\cos t)^2(1+r^4+4r^2\cos^2 t+2r^2-4r\cos t-4r^3\cos t)} \\ &= \frac{r^2 \left((1-r^2)^2(1+r^2-2r\cos t)^2(1+r^4+4r^2\cos^2 t+2r^2-4r\cos t-4r^3\cos t) - (1-r^2)^2(1+r^2-2r\cos t)^2 - (1-r^$$

Le point P se trouve bien sur le cercle C de centre Ω et de rayon R. Mais le décrit-il lorsque t décrit $[0, 2\pi]$?

Il suffit de constater que X(t) est une fonction continue sur $[0 \pi]$. Avec X(0)=1/(1-r) et $X(\pi)=1/(1+r)$, correspondant aux extrémités A et B du diamètre du cercle, X doit nécessairement parcourir tout l'intervalle [1/(1-r), 1/(1+r)] (sans qu'on ait besoin de démontrer que X(t) est une fonction strictement décroissante), et le point P parcourt bien le demi-cercle sur $[0, \pi]$, et par suite tout le cercle sur $[0, 2\pi]$ (figure 2).

Figure 2 : Cercle décrit par le point P, avec, pour quatre valeurs de t les trajectoires des points M_n menant à leurs points P limites respectifs

10) Déterminer les coordonnées xn et yn des points Mn, à partir de leur affixe z_n .

Reprenons z_n :

$$\begin{split} z_n &= \frac{1 - r^n e^{\mathrm{int}}}{1 - r e^{\mathrm{it}}} = \frac{1 - r^n (\cos nt + i \sin nt)}{1 - r (\cos t + i \sin nt)} = \frac{1 - r^n \cos nt - i r^n \sin nt}{1 - r \cos t - i r \sin t} \\ &= \frac{(1 - r^n \cos nt - i r^n \sin nt)(1 - r \cos t + i r \sin t)}{(1 - r \cos t)^2 + r^2 \sin^2 t} \\ &= \frac{(1 - r^n \cos nt)(1 - r \cos t) + r^{n+1} \sin nt \sin t + i((1 - r^n \cos nt)r \sin t - r^n \sin nt(1 - r \cos t))}{1 + r^2 - 2r \cos t} \\ \left(xn = \frac{1 - r^n \cos nt - r \cos t + r^{n+1}(\cos nt \cos t + \sin nt \sin t)}{1 + r^2 - 2r \cos t} = \frac{1 - r^n \cos nt - r \cos t + r^{n+1} \cos(n - 1)t}{1 + r^2 - 2r \cos t} \\ yn = \frac{r \sin t - r^n \sin nt + r^{n+1}(\sin nt \cos t - \cos nt \sin t)}{1 + r^2 - 2r \cos t} = \frac{r \sin t - r^n \sin nt + r^{n+1} \sin(n - 1)t}{1 + r^2 - 2r \cos t} \end{split}$$

11) On garde r fixe. Pour chaque valeur de n, on considère la courbe Γ_n décrite par le point M_n lorsque t varie de 0 à 2π . Montrer que les courbes Γ_n sont symétriques par rapport à l'axe des x. Quelles sont les courbes Γ_0 , Γ_1 et Γ_2 ?

A cause des cosinus, le fait de changer t en $2\pi - t$ conserve xn, et à cause des sinus yn est transformé en son opposé. Les courbes Γ_n sont symétriques par rapport à l'axe des x. Les courbes Γ_0 et Γ_1 sont respectivement réduites aux points O et (1,0). Comme $M_1M_2 = r$, le point M_2 décrit le cercle de centre (1,0) et de rayon r.

12) Prendre la courbe Γ_3 et montrer qu'elle coupe l'axe des x en trois points ou deux points suivant les valeurs de r.

Pour n = 3, faisons yn = 0. Cette équation en t s'écrit :

$$r \sin t - r^3 \sin 3t + r^4 \sin 2t = 0$$

 $\sin t - r^2 \sin 3t + r^3 \sin 2t = 0$
 $\sin t - r^2 (3 \sin t - 4 \sin^3 t) + 2 r^3 \sin t \cos t = 0$
 $\sin t (1 - 3 r^2 + 4 r^2 \sin^2 t + 2 r^3 \cos t) = 0$
Lorsque $\sin t t = 0$, on obtient deux points pour $t = 0$ et $t = \pi$.

Reste l'équation $1 - 3r^2 + 4r^2 \sin^2 t + 2r^3 \cos t = 0$, ou $1 + r^2 - 4r^2 \cos^2 t + 2r^3 \cos t = 0$, $4r^2 \cos^2 t - 2r \cos t - 1 - r^2 = 0$, équation du second degré en $\cos t$.

Le trinôme $4 r^2 X^2 - 2 r^3 X - r^2 - 1$ admet comme discriminant réduit $r^6 + 4 r^2 (1 + r^2) = r^6 + 4 r^4 + 4 r^2 = r^2 (r^4 + 4 r^2 + 4) = r^2 (r^2 + 2)^2 > 0$, et par suite deux racines $\frac{r^3 \pm r(r^2 + 2)}{4r^2} = -\frac{1}{2r}$ ou $\frac{r^2 + 1}{2r}$. Puisque X doit être un cosinus, cela impose que $-1 \le X \le 1$.

Prenons la racine $(r^2 + 1) / (2r)$ qui est > 0, elle doit vérifier $(r^2 + 1) / (2r) \le 1$, $(r - 1)^2 \le 0$, ce qui n'est jamais possible avec 0 < r < 1. Prenons l'autre racine -1 / (2r) qui est négative. Elle doit vérifier $-1 / (2r) \ge -1$, ou $1 / (2r) \le 1$, $r \ge 1 / 2$.

Finalement, on trouve, outre les deux points correspondant à t = 0 et $t = \pi$, un troisième point d'intersection de la courbe avec l'axe des x, pour $t = \arccos(-1/(2r))$, lorsque $r \ge 1/2$. Sinon il n'y a que deux points.

13) Faire un programme permettant de dessiner les courbes Γ_3 pour diverses valeurs de r.

Les résultats sont donnés sur la *figure 3*. Pour r supérieur à 0,5, la courbe présente une boucle, avec un point double, comme cela était prévisible avec la présence de trois points d'intersection avec l'axe des x. Pour le cas frontière r = 0,5, on constate que la courbe a un point de rebroussement.

Figure 3: Courbes Γ_3 pour r = 0.2, r = 0.4, r = 0.5, r = 0.6, r = 0.8

14) Prendre une valeur assez élevée de r, par exemple r = 0.8, et tracer par programme les courbes Γ_3 , Γ_4 , Γ_5 , ... en constatant leur convergence progressive vers le cercle C.

On a pris r = 0.8. La courbe Γ_3 présente une boucle, la courbe Γ_4 en compte deux, et quand n augmente, il y a une boucle de plus à chaque fois. Mais ces boucles diminuent peu à peu en dimension. Pour n = 11 environ, elles laissent place à des points de rebroussement, puis au-delà on obtient des oscillations qui se font de plus en plus douces, pour aboutir quasiment, vers n = 30, au cercle limite C (figure 4).

On remarque qu'en prenant des valeurs supérieures de r, plus proches de 1, les boucles sont de plus en plus nombreuses avant de disparaître.

Figure 4 : Les courbes Γ_3 , Γ_4 , Γ_6 , Γ_{11} , Γ_{20} , Γ_{29}