GIẢI CHI TIẾT ĐỀ SỐ 5

BẢNG ĐÁP ÁN PHẦN I

1.A	2.A	3.D	4.A	5.B	6.A	7.B	8.B	9.C	10.B
11.C	12.C								

BẢNG ĐÁP ÁN PHẦN II

Câu 1	a) Đúng	b) Sai	c) Sai	d) Sai
Câu 2	a) Đúng	b) Đúng	c) Sai	d) Đúng
Câu 3	a) Đúng	b) Đúng	c) Đúng	d) Sai
Câu 4	a) Đúng	b) Đúng	c) Đúng	d) Đúng

BẢNG ĐÁP ÁN PHẦN III

Câu 1: 1680	Câu 2: 1,5	Câu 3: 14,1	Câu 4: 116	Câu 5: 0,24	Câu 6: 3927

PHẦN I: Trắc nghiệm nhiều phương án trả lời. Học sinh trả lời từ Câu 1 đến Câu 12. Mỗi Câu chỉ chọn một phương án.

Câu 1: • Họ nguyên hàm của hàm số $y = x^2 - 3x + \frac{1}{x}$ là : $F(x) = \int (x^2 - 3x + \frac{1}{x}) dx = \frac{x^3}{3} - \frac{3}{2}x^2 + \ln|x| + C$ **Chon A.**

Câu 2: • Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số f(x), trục hoành và hai đường thẳng x = a; x = b(a < b) cho bởi công thức : $S = \int_a^b |f(x)| dx$

Chon A.

Câu 3:

- Dựa vào BBT, nhận thấy f'(x) chuyển dấu từ + sang tại điểm x = -1
- \Rightarrow Hàm số đã cho đạt cực đại tại điểm x = -1. Chọn **D.**

Câu 4: • Xét đáp án A, ta có: $\frac{3-3}{1} = \frac{-2+2}{3} = \frac{1-1}{2} = 0 \implies M(3;-2;1)$ thuộc đường thẳng d

- Xét đáp án B, ta có: $\frac{-3-3}{1} \neq \frac{2+2}{3} \implies M\left(-3;2;-1\right)$ không thuộc đường thẳng d
- Xét đáp án C, ta có: $\frac{1-3}{2} \neq \frac{3+2}{3} \implies M(1;3;2)$ không thuộc đường thẳng d
- Xét đáp án D, ta có: $\frac{2-3}{1} = \frac{-5+2}{3} \neq \frac{2-1}{2} \implies M(2;-5;2)$ không thuộc đường thẳng d

Chọn A.

Câu 5: • Tổng của 10 số hạng đầu của cấp số cộng là:

$$S_{10} = \frac{n \cdot \left[2u_1 + (n-1)d \right]}{2} = \frac{10 \cdot \left(2u_1 + 9d \right)}{2} = \frac{10 \cdot \left[2 \cdot 2 + 9 \cdot (-5) \right]}{2} = -205$$

Chọn B.

Câu 6: • Ta có: $2^{x-1} > \frac{5}{2} \Leftrightarrow x-1 > \log_2 \frac{5}{2}$ (Vì cơ số 2 > 1 nên BPT không bị đảo chiều) $\Leftrightarrow x-1 > \log_2 5 - \log_2 2 \Leftrightarrow x-1 > \log_2 5 - 1 \Leftrightarrow x > \log_2 5$

Chon A.

Câu 7: • Xét hình chóp S.ABCD có $SA \perp (ABCD) \Rightarrow SA \perp CD$

• Do tứ giác ABCD là hình vuông $\Rightarrow CD \perp AD$ Vậy $CD \perp (SAD)$

Chon B.

Câu 8: • Phương trình mặt phẳng đi qua điểm A(2;1;0) và có vecto pháp tuyến $\vec{n} = (3;-1;-1)$ là:

 $3(x-2)-(y-1)-z=0 \Leftrightarrow 3x-y-z-5=0$

Chọn B.

Câu 9: • Áp dụng quy tắc hình bình hành, ta có: $\overrightarrow{AA'} + \overrightarrow{AD} = \overrightarrow{AD'}$ $\Rightarrow |\overrightarrow{AA'} + \overrightarrow{AD}| = |\overrightarrow{AD'}| = AD'$

• Xét hình vuông AA'D'D cạnh a có: $AD' = a\sqrt{2}$ $\Rightarrow \left| \overrightarrow{AA'} + \overrightarrow{AD} \right| = \left| \overrightarrow{AD'} \right| = AD' = a\sqrt{2}$. Chọn C.

A B B

Câu 10: • Ta có: $2^{x+1} = 6 \Leftrightarrow 2 \cdot 2^x = 6 \Leftrightarrow 2^x = 3 \Rightarrow (2^x)^2 = 9 \Leftrightarrow 4^x = 9$. Chọn B.

Câu 11: • Xác định khoảng chứa tứ phân vị:

- Cỡ mẫu: n = 50

- Ta có:

- Khi đó, ta suy ra

+ Tứ phân vị thứ nhất của mẫu số liệu là $Q_1 = x_{13}$ thuộc nhóm [290;330)

+ Tứ phân vị thứ ba của mẫu số liệu là $Q_3 = x_{38}$ thuộc nhóm [370;410)

• Tính các tứ phân vị Q_1, Q_3

$$-Q_{1} = a_{p} + \frac{\frac{1}{4}n - (m_{1} + m_{2} + ... + m_{p-1})}{m_{p}} (a_{p+1} - a_{p}) = 290 + \frac{\frac{50}{4} - 3}{13} . (330 - 290) = 319,23$$

$$-Q_{3} = a_{p} + \frac{\frac{3}{4}n - \left(m_{1} + m_{2} + ... + m_{p-1}\right)}{m_{p}} \left(a_{p+1} - a_{p}\right) = 370 + \frac{3 \cdot \frac{50}{4} - \left(3 + 13 + 18\right)}{11} \cdot \left(410 - 370\right) = 382,73$$

• Vậy khoảng tứ phân vị $\Delta Q = Q_3 - Q_1 = 382,73 - 319,23 = 63,5$. **Chọn C.**

Câu 12: • Nhận thấy ĐTHS có tiệm cận xiên \Rightarrow Loại đáp án A

• Xét đáp án B, khi
$$x = 2$$
 thì : $y = \frac{2^2 + 2 \cdot 2 - 2}{2 - 1} = 6$

Mà (2;6) không thuộc ĐTHS \Rightarrow Loại đáp án B

• Xét đáp án D, khi
$$x = 2$$
 thì : $y = \frac{-2^2 + 2 - 2}{2 - 1} = -4$

Mà (2;-4) không thuộc ĐTHS \Rightarrow Loại đáp án D

Chọn C.

PHẦN II. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ Câu 1 đến Câu 4. Trong mỗi ý a), b), c), d) ở mỗi Câu, thí sinh chọn đúng hoặc sai.

Câu 1: a) Đúng – Giải thích:

- Khi x = 0 thì vị trí B trùng vị trí C, khi đó thời gian đi từ A tới B sẽ bằng độ dài đoạn AB chia cho vân tốc chèo thuyền từ A tới B
- Ta có: $AB = 2AO = 2R = 2km = 2000m \implies v = 100m/p$
- Vậy thời gian đi từ A tới B bằng $\frac{2000}{100} = 20$ phút

b) Sai – Giải thích:

- Ta có: COB = 2CAB = 2x (Số đo góc ở tâm gấp đôi số đo góc nội tiếp cùng chắn cung CB)
- Quãng đường xe chở đi ngắm cảnh chính bằng độ dài cung CB và bằng $l = \alpha R = 2xR = 2000x(m)$

c) Sai – Giải thích:

- Thời gian đi từ A tới B bằng tổng thời gian đi đoạn AC và thời gian đi cung CB
- Thời gian đi từ C tới B bằng: $t_{CB} = \frac{CB}{v_{CB}} = \frac{2000x}{200} = 10x$ (phút)
- Tính thời gian đi từ A tới C
- Ta có ACB là góc nội tiếp chắn nửa đường tròn $\Rightarrow ACB = 90^{\circ}$
- Xét tam giác ACB vuông tại C có CAB = x, AB = 2000m

$$\Rightarrow AC = AB.\cos CAB = 2000.\cos x(m)$$

- Khi đó thời gian đi từ A tới C bằng $t_{AC} = \frac{AC}{v_{AC}} = \frac{2000\cos x}{100} = 20\cos x$ (phút)
- Vậy tổng thời gian đi từ A tới B bằng $20\cos x + 10x$ (phút)

d) Sai – Giải thích:

- Từ kết quả câu c) ta có thời gian đi từ A tới B bằng $20\cos x + 10x$ (phút)
- Xét hàm số $f(x) = 20\cos x + 10x$ trên $\left[0; \frac{\pi}{2}\right]$:

- Giải
$$f'(x) = 0 \Leftrightarrow -20\sin x + 10 = 0 \Leftrightarrow \sin x = \frac{1}{2} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix} \quad (k \in \mathbb{Z})$$

$$-\text{Vi } 0 \le x < \frac{\pi}{2} \Rightarrow \begin{cases} 0 \le \frac{\pi}{6} + k2\pi < \frac{\pi}{2} \\ 0 \le \frac{5\pi}{6} + k2\pi < \frac{\pi}{2} \end{cases} \Rightarrow \begin{cases} -\frac{1}{12} \le k < \frac{1}{6} \Rightarrow k = 0 \Rightarrow x = \frac{\pi}{6} \\ -\frac{5}{12} \le k < -\frac{1}{6} (L) \end{cases}$$

- Ta có BBT:

• Vì $\max f(x) = f\left(\frac{\pi}{6}\right) = 10\sqrt{3} + \frac{5\pi}{3} \approx 22,56$ (phút) nên thời gian đi từ A tới B không thể vượt quá $\left[0;\frac{\pi}{2}\right)$

xấp xỉ 22 phút 33 giây

Câu 2: a) Đúng – Giải thích:

- Diện tích một hình thoi là: $\frac{1}{2}.2\sqrt{2}.4\sqrt{2} = 8(cm^2)$
- Vậy diện tích hai hình thoi được khoét để làm mắt là $8.2 = 16cm^2$

b) Đúng – Giải thích:

- Tìm phương trình Parabol (P_1)
- Gọi phương trình (P_1) có dạng: $f(x) = y = ax^2 + bx + c$
- Ta có: (P_1) đi qua các điểm O(0;0); M(5;6); N(-5;6)

$$\Rightarrow \begin{cases} c = 0 \\ 25a + 5b + c = 6 \Leftrightarrow \\ 25a - 5b + c = 6 \end{cases} \Rightarrow Phurong trình của $(P_1): y = \frac{6}{25}x^2$

$$c = 0$$$$

- Tìm phương trình Parabol (P_2)
- Gọi phương trình (P_1) có dạng: $g(x) = y = a_1 x^2 + b_1 x + c_1$
- Ta có: (P_1) đi qua các điểm A(0;4); M(5;6); N(-5;6)

$$\Rightarrow \begin{cases} c_1 = 4 \\ 25a_1 + 5b_1 + c_1 = 6 \Leftrightarrow \\ 25a_1 - 5b_1 + c_1 = 6 \end{cases} \begin{cases} a_1 = \frac{2}{25} \\ b_1 = 0 \\ c_1 = 4 \end{cases} \Rightarrow \text{Phurong trình của } (P_1) : y = \frac{2}{25}x^2 + 4$$

c) Sai – Giải thích:

• Diện tích phần hình phẳng giới hạn bởi (P_1) và (P_2) là:

$$S = \int_{-5}^{5} \left(g(x) - f(x)\right) dx = \int_{-5}^{5} \left(\frac{2}{25}x^2 + 4 - \frac{6}{25}x^2\right) dx = \int_{-5}^{5} \left(4 - \frac{4}{25}x^2\right) dx = \frac{80}{3}$$

d) Đúng – Giải thích:

- Mỗi đơn vị diện tích trên trục tọa độ có độ dài là 3cm, nên diện tích phần hình phẳng giới hạn bởi (P_1) và (P_2) là $\frac{80}{3}$. $3.3 = 240 (cm^2)$
- Diện tích giấy được bạn An sử dụng để làm chiếc mặt nạ này là $240-16=224(cm^2)$

Câu 3: • Theo đề bài ta có:

A: "Học sinh được chọn là học sinh nữ" $\Rightarrow \overline{A}$: "Học sinh được chọn là nam"

B: "Học sinh được chọn tham gia Câu lạc bộ Toán học"

• Khi đó:
$$P(A) = 0.58; P(\overline{A}) = 0.42; P(B|\overline{A}) = 0.16; P(B|A) = 0.1$$

a) Đúng – Giải thích:

- Xác suất chọn được học sinh nữ là: P(A) = 0.58
- b) Đúng Giải thích:
- Xác suất chọn được học sinh tham gia CLB mà đó là nam là: $P(B|\overline{A}) = 0.16$
- c) Đúng Giải thích:
- Xác suất chọn được học sinh có tham gia CLB Toán học là:

$$P(B) = P(B | \overline{A}).P(\overline{A}) + P(B | A).P(A) = 0.16.0, 42 + 0.1.0, 58 = 0.1252$$

d) Sai – Giải thích:

• Xác suất chọn được học sinh nữ có tham gia CLB Toán học là:

$$P(A|B) = \frac{P(B|A).P(A)}{P(B)} = \frac{0.1.0.58}{0.1252} \approx 0.46$$

Câu 4: Ta có:
$$d: \begin{cases} x = 3 + 2t \\ y = -2 - t & (t \in \mathbb{R}) \Rightarrow \overrightarrow{u_d} = (2; -1; -2) \\ z = -2 - 2t \end{cases}$$

- a) Đúng Giải thích:
- d nhận vector $\vec{u} = (2;-1;-2)//(-2;1;2)$ làm một vector chỉ phương
- b) Đúng Giải thích:
- Mặt phẳng đi qua điểm A(3;1;1) và có vecto pháp tuyến là $\vec{n} = \overrightarrow{u_d} = (2;-1;-2)$ có phương trình là $2(x-3)-(y-1)-2(z-1)=0 \Leftrightarrow 2x-y-2z-3=0$
- c) Đúng Giải thích:
- ullet Gọi H là hình chiếu vuông góc của A lên đường thẳng d
- Vì $H \in d \Rightarrow H(3+2t;-2-t;-2-2t)$

$$\Rightarrow \overrightarrow{AH} = (2t; -3-t; -3-2t)$$

• Vì H là hình chiếu vuông góc của A lên đường thẳng d

$$\Rightarrow \overrightarrow{HA} \perp \overrightarrow{u_d}$$

$$\Leftrightarrow$$
 $-2.2t + (-3-t) + 2(-3-2t) = 0$

$$\Leftrightarrow$$
 $-4t-3-t-6-4t=0$

$$\Leftrightarrow$$
 $-9t - 9 = 0$

$$\Leftrightarrow t = -1$$

$$\Rightarrow H(1;-1;0)$$

- d) Đúng Giải thích:
- Ta có $d \subset (P)$, H là hình chiếu vuông góc của A lên d

$$\Rightarrow \max(d,(P)) = d(A,d) = AH$$

- Khi đó mặt phẳng (P) đi qua điểm H(1;-1;0) và nhận vector $\overrightarrow{HA} = (2;2;1)$ là một vector pháp tuyến
- \Rightarrow Mặt phẳng (P) có phương trình là $2(x-1)+2(y+1)+z=0 \Leftrightarrow 2x+2y+z=0$
- Kiểm tra thấy điểm $O(0;0;0) \in (P)$

PHẦN III. Câu trắc nghiệm trả lời ngắn. Học sinh trả lời từ Câu 1 đến Câu 6.

- **Câu 1:** Gọi số lượng dụng cụ A và B mà bạn Nam cần thiết kế lần lượt là x, y (với x, y là các số nguyên không âm)
 - Khi đó:
 - Số giờ công mà bạn Nam cần cho khâu chế tạo là: 9x+12y (giờ)
 - Số giờ công mà bạn Nam cần cho khâu hoàn thiện là: x+3y
 - Theo đề ra ta có: $\begin{cases} 9x + 12y \le 180 & (1) \\ x + 3y \le 30 & (2) \end{cases}$
 - Cộng (1) và (2) vế theo vế ta được: $10x+15y \le 210$
 - Lợi nhuận bạn Nam kiếm được là: 80x+120y (nghìn đồng)
 - Ta cần tìm x, y sao cho 80x+120y đạt giá trị lớn nhất.
 - Nhận thấy: $80x + 120y = 8(10x + 15y) \le 8.210 = 1680$
 - Dấu "=" xảy ra khi $10x+15y=210 \Leftrightarrow \begin{cases} 9x+12y=180 \\ x+3y=30 \end{cases} \Rightarrow \begin{cases} x=12 \\ y=6 \end{cases}$
 - Khi đó, số tiền bạn Nam kiếm được là 1680 000 đồng = 1680 (nghìn đồng).

Đáp án: 1680

- **Câu 2:** Gọi H, E lần lượt là trung điểm của cạnh AB và CD.
 - Do $\triangle SAB$ đều và nằm trong mặt phẳng vuông góc (ABCD) suy ra: $SH \perp (ABCD)$
 - \Rightarrow SH \perp CD.
 - Mặt khác: H, E là trung điểm của AB, CD $\Rightarrow HE \perp CD$.
 - Như vậy: $\begin{cases} CD \perp SH \\ CD \perp HE \end{cases} \Rightarrow CD \perp (SHE)$
 - Kẻ $HI \perp SE$, do $HI \subset (SHE) \Rightarrow CD \perp HI$.

- Ta có:
$$\begin{cases} HI \perp SE \\ HI \perp CD \end{cases} \Rightarrow HI \perp \left(SCD\right) \Rightarrow HI = d_{(H,(SCD))}$$

• Lại có: $AH // CD \Rightarrow AH // (SCD) \Rightarrow d_{(H,(SCD))} = d_{(A,(SCD))}$

$$\Rightarrow HI = d_{(H,(SCD))} = \frac{3\sqrt{7}}{7}$$

- Giả sử hình vuông ABCD có cạnh bằng $a \Rightarrow AB = BC = HE = a$
- Tam giác SAB đều cạnh a có đường cao $SH \Rightarrow SH = \frac{a\sqrt{3}}{2}$
- \bullet Xét ΔSHE vuông tại H có:

$$\frac{1}{HI^{2}} = \frac{1}{SH^{2}} + \frac{1}{HE^{2}} = \frac{1}{\left(\frac{a\sqrt{3}}{2}\right)^{2}} + \frac{1}{a^{2}} = \frac{7}{3a^{2}} \Rightarrow HI = \frac{3\sqrt{7}}{7} \Rightarrow \frac{7}{3a^{2}} = \frac{1}{\left(\frac{3\sqrt{7}}{7}\right)^{2}} = \frac{7}{9} \Rightarrow a^{2} = 3 \Rightarrow a = \sqrt{3}$$

• Vậy thể tích khối chóp S.ABCD là: $V = \frac{1}{3}SH.S_{ABCD} = \frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2 = \frac{3}{2} = 1,5$

Đáp án: 1,5

Câu 3: • Nhận thấy ba điểm A, B, C thẳng hàng. $\Rightarrow C$ là giao của đường thẳng AB với mặt phẳng (Oxy).

• Với
$$\begin{cases} A(4;0;10) \\ B(5;5;6) \end{cases} \Rightarrow \overrightarrow{AB} = (1;5;-4)$$

• Xét đường thẳng AB đi qua điểm A(4;0;10) và nhận vecto $\overrightarrow{AB} = (1;5;-4)$ làm VTCP.

$$\frac{x-4}{1} = \frac{y}{5} = \frac{z-10}{-4}$$

• Do điểm
$$C(a;b;0) \in AB$$
 nên ta có: $\frac{a-4}{1} = \frac{b}{5} = \frac{10}{4} \Rightarrow \begin{cases} a = \frac{13}{2} \\ b = \frac{25}{2} \end{cases} \Rightarrow C\left(\frac{13}{2};\frac{25}{2};0\right)$

• Vị trí tiếp đất của máy bay cách chân đài quan sát khoảng bằng:

$$OC = \sqrt{\left(\frac{13}{2}\right)^2 + \left(\frac{25}{2}\right)^2 + 0} \approx 14.1 \text{ (km)}$$

Đáp án: [14,1]

Câu 4: • Ta mô tả bài toán trên bằng hình vẽ sau:

- Chia tổng quãng đường người đó đi thành 3 chặng:
- Chặng 1: đi từ A đến C (đi trên sa mạc)
- Chặng 2: đi từ C đến D (đi trên đường nhựa)
- Chặng 3: đi từ D đến B (đi trên sa mạc)
- Đặt HC = x và DK = y (0 < x < 70, 0 < y < 70)

- Quãng đường đi từ
$$A$$
 đến C là: $AC = \sqrt{10^2 + x^2} = \sqrt{x^2 + 100} \Rightarrow t_1 = \frac{\sqrt{x^2 + 100}}{30}$

- Quãng đường đi từ
$$C$$
 đến D là: $CD = 70 - (x + y) \Rightarrow t_2 = \frac{70 - (x + y)}{50}$

- Quãng đường đi từ
$$D$$
 đến B là: $DB = \sqrt{10^2 + y^2} = \sqrt{y^2 + 100} \Rightarrow t_3 = \frac{\sqrt{y^2 + 100}}{30}$

• Như vậy tổng thời gian mà nhà địa chất học đi từ A đến B là $T=t_1+t_2+t_3$

$$\Rightarrow T = \frac{\sqrt{x^2 + 100}}{30} + \frac{\sqrt{y^2 + 100}}{30} + \frac{70 - (x + y)}{50}$$

 \bullet Ta cần tìm giá trị nhỏ nhất của biểu thức T .

• Ta có:
$$T = \left(\frac{\sqrt{x^2 + 100}}{30} + \frac{35 - x}{50}\right) + \left(\frac{\sqrt{y^2 + 100}}{30} + \frac{35 - y}{50}\right) = f(x) + f(y)$$

• Xét
$$f(u) = \frac{\sqrt{u^2 + 100}}{30} + \frac{35 - u}{50}$$
 với $0 < u < 70$.

- Đạo hàm
$$f'(u) = \frac{u}{30\sqrt{u^2 + 100}} - \frac{1}{50} = 0 \Leftrightarrow \sqrt{u^2 + 100} = \frac{5u}{3} > 0 \Rightarrow u = \frac{15}{2}$$

• Lập bảng biến thiên của hàm số $f(u) = \frac{\sqrt{u^2 + 100}}{30} + \frac{35 - u}{50}$ trên khoảng (0,70) ta có:

и	$0 \qquad \qquad \frac{15}{2}$	70
f '(u)	- 0 +	
f(u)		1

• Dựa vào bảng biến thiên ta có: $\min_{(0;70)} f(u) = f\left(\frac{15}{2}\right) = \frac{29}{30}$

• Do đó,
$$T = f(x) + f(y) \ge \frac{29}{30} + \frac{29}{30} = \frac{29}{15}$$
 (giờ) = 116 (phút)

Đáp án: 116

Câu 5: • Xác suất để lấy được thẻ xanh ở lần thứ nhất là: $\frac{C_{30}^1}{C_{50}^1} = \frac{3}{5}$

• Xác suất để lấy được thẻ trắng ở lần thứ hai là: $\frac{C_{20}^1}{C_{49}^1} = \frac{20}{49}$

• Như vậy xác suất để lấy được một thẻ xanh ở lần thứ nhất và một thẻ trắng ở lần thứ hai là:

$$\frac{3}{5} \cdot \frac{20}{49} = \frac{12}{49} \approx 0,24$$

Đáp án: 0,24

Câu 6: • Thể tích của khối trụ tay cầm (T_2) được tính bởi: $V_2 = \pi r_2^2 h_2 = 30cm^3$

• Thể tích của khối trụ tay cầm (T_1) được tính bởi: $V_1 = \pi r_1^2 h_1$.

• Do
$$\begin{cases} r_1 = 4r_2 \\ h_1 = \frac{1}{2}h_2 \Rightarrow V_1 = \pi r_1^2 h_1 = \pi . (4r_2)^2 . \frac{h_2}{2} = 8\pi r_2^2 h_2 = 8V_2 \end{cases}$$

- Khi đó: $V_1 = 8V_2 = 240 \, cm^3$

• Tổng thể tích của chiếc tạ là: $V = 2.240 + 30 = 510(cm^3)$

• Khối lượng của chiếc tạ bằng: m = V.D = 510.7, 7 = 3927(g)

Đáp án: 3927