9.2 Equivalence, and partial and total order relations

Notebook: Discrete Mathematics [CM1020]

Author: SUKHJIT MANN

Cornell Notes

Topic:

9.2 Equivalence, and partial and total order relations

Course: BSc Computer Science

Class: Discrete Mathematics-Lecture

Date: January 14, 2020

Essential Question:

What is the difference between a equivalence class & relation? Also how is order demonstrated in relations?

Questions/Cues:

- What is an equivalence relation?
- What is an equivalence class?
- What is a partial order in relations?
- What is a total order in relations?

Notes

Definition of equivalence relation

Let **R** be a relation of elements on a set S. **R** is an equivalence relation

if and only if

R is reflexive, symmetric and transitive.

- Let R be relation of elements in Z:
 R = { (a, b) ∈ Z² | a mod 2 = b mod 2 }
- · We have already proved that this relation is:
 - reflexive as a R a, \forall a \in Z
 - symmetric as if a R b then b R a, \forall a, b \in Z
 - transitive as if a R b and b R c then a R c, \forall a, b, c \in Z
- · R is an equivalence relation.

Example 2

Let R be a relation of elements in Z:

$$\mathbf{R} = \{ (a, b) \in \mathbb{Z}^2 | a \le b \}$$

- · We have already proved that this relation is:
 - · reflexive as a R a for all a in Z
 - transitive as if a R b and b R c then a R c, ∀ a, b, c ∈ Z
 - not Symmetric as $2 \le 3$ but $3 \le 2$, \forall a, $b \in Z$
- · R is not an equivalence relation.

Definition of equivalence class

Let **R** be an **equivalence relation** on a set S. Then, the **equivalence class** of $a \in S$ is:

the **subset** of S containing all the **elements** related to a through 'R'.

[a] =
$$\{x: x \in S \text{ and } x R a\}$$

- Let S = {1, 2, 3, 4} and R be a relation on elements in S:
 R = { (a, b) ∈ S² | a mod 2 = b mod 2 }
- R is an equivalence relation with 2 equivalence classes:
 - [1] = [3] = {1, 3}
 - [2] = [4] = {2, 4}

Example 2

• Let Z = $\{1, 2, 3, 4, 5\}$ and **R** be relation of elements in Z: **R** = $\{(a, b) \in \mathbb{Z}^2 \mid a - b \text{ is an even number }\}$

 $R = \{ (1,1), (2,2), (3,3), (4,4), (5,5), (2,4), (4,2), (1,3), (3,1), (1,5), (5,1), (3,5), (5,3) \}$

- R is an equivalence relation with 2 equivalence classes:
 - [1] = [3] = [5] = {1, 3, 5}
 - [2] = [4] = {2, 4}

Definition of partial order

Let **R** be a **relation** on elements in a set S. **R** is a partial order

if and only if

R is reflexive, anti-symmetric and transitive.

• Let R be a relation of elements in Z:

R = {
$$(a, b) \in Z^2 | a \le b$$
 }

- It can easily be proved that **R** is:
 - reflexive as $\mathbf{a} \leq \mathbf{a}$, $\forall \mathbf{a} \in \mathbf{Z}$
 - transitive as if a ≤ b and b ≤ c then a ≤ c, ∀ a, b
 ∈ Z
 - anti-symmetric as if a ≤ b and b ≤ a then a = b,
 ∀ a, b ∈ Z
 - · R is a partial order.

Example 2

• Let **R** be a **relation** of elements in **Z**⁺:

$$\mathbf{R} = \{ (a, b) \in Z^+ | a \text{ divides } b \}$$

- · It can easily be proved that R is:
 - reflexive as a divides a, \forall a \in Z⁺
 - transitive as if a divides b and b divides c then a divides c, ∀ a, b, c ∈ Z⁺
 - anti-symmetric as if a divides b and b divides a then a = b, ∀ a, b ∈ Z⁺
- · R is a partial order.

Definition of Total Order

Let *R* be a relation on elements in a set *S*. *R* is a total order

if and only if

R is a partial order & $\{\forall a,b \in S \mid aRb \text{ or } bRa\}$

This means that R has to be a partial order & every two elements of the set S can be comparable with respect to the relation R

• Let R be a relation of elements in Z:

R = {
$$(a, b) \in Z^2 | a \le b$$
 }

- It has been previously shown that R is a partial order
- Also, \forall a, b \in Z, a \leq b or b \leq a is true
- R is a total order.

Example 2

- Let R be a relation on elements in Z⁺:
 R = { (a, b) ∈ Z⁺| a divides b }
- It has been proved that R is a partial order
- Z⁺ contains elements that are incomparable, such as 5 and 7
- R is not totally ordered.

Summary

In this week, we learned what an equivalence relation & class are. Finally we explored the partial & total ordering of a relation.