ANALIZA MATEMATYCZNA

LISTA ZADAŃ 3

21.10.2019

(1) Wyznacz dziedziny naturalne następujących funkcji:

(a)
$$f(x) = \frac{\sqrt{x}}{\sin \pi x}$$
, (b) $f(x) = \sqrt{2 + x - x^2}$
(c) $f(x) = \sqrt{3x - x^3}$, (d) $f(x) = \log(x^2 - 4)$,

(c)
$$f(x) = \sqrt{3x - x^3}$$
, (d) $f(x) = \log(x^2 - 4)$,

(e)
$$f(x) = \log(1 - 2\cos x)$$
, (f) $f(x) = \sqrt{\sin(\sqrt{x})}$.

(2) Zapisz wzorem y = f(x) złożenie następujących funkcji, i wyznacz dziedzinę naturalną złożenia:

(a)
$$t = 2^x$$
, $z = \sqrt[3]{t+1}$, $y = z^2$, (b) $t = \sin x$, $z = \log t$, $y = \sqrt{1+z^2}$.

(3) Naszkicuj wykres funkcji danej wzorem ([...] oznacza część całkowitą, a {...} oznacza część ułamkowa):

(a)
$$f(x) = |x+1| + |x-1|$$
, (b) $f(x) = |x-3| - 2|x+1| + 2|x| - x + 1$, (c) $f(x) = x^3 + 3x^2$, (d) $f(x) = -x^3 + 2x - 2$,

(c)
$$f(x) = x^3 + 3x^2$$
, (d) $f(x) = -x^3 + 2x - 2$,

(e)
$$f(x) = x + 6x$$
, (d) $f(x) = x + 2x + 2x + 2x$, (e) $f(x) = 1 - \sin x$, (f) $f(x) = 2\sin\left(x - \frac{\pi}{3}\right)$, (g) $f(x) = |\sin x|$, (h) $f(x) = \frac{1}{\cos x}$, (i) $f(x) = |x^2 - 1| - |x^2 - 4|$, (j) $f(x) = |x^2 - 8x + 15|$, (k) $f(x) = x^2 + x + 2 - |x^2 - x - 2|$, (l) $f(x) = \{\cos x\}$, (m) $f(x) = [\frac{4}{\pi} \arctan x]$, (n) $f(x) = 2\{\sin x\} - \{2\sin x\}$.

(g)
$$f(x) = |\sin x|$$
, (h) $f(x) = \frac{1}{\cos x}$,

(i)
$$f(x) = |x^2 - 1| - |x^2 - 4|$$
, (j) $f(x) = |x^2 - 8x + 15|$,

(k)
$$f(x) = x^2 + x + 2 - |x^2 - x - 2|$$
, (l) $f(x) = {\cos x}$,

(m)
$$f(x) = \left[\frac{4}{\pi} \arctan x\right],$$
 (n) $f(x) = 2\{\sin x\} - \{2\sin x\}.$

(4) Znajdź funkcje odwrotne do:

(a)
$$f(x) = 1 - 3x$$
, (b) $f(x) = \frac{1}{1 - x}, x \neq 1$,

(c)
$$f(x) = x^2 - 2x, \ x \ge 1,$$
 (d) $f(x) = \sqrt[3]{x^2 + 1}, \ x \ge 0,$

(5) Ciąg Fibonacciego określony jest rekurencyjnie w sposób następujący: $F_1 = F_2 =$ 1, a następnie $F_{n+2}=F_{n+1}+F_n$ dla $n=1,2,3,\ldots$ Znajdź wyrazy ciągu Fibonacciego o numerach od 3 do 12. Udowodnij, że dla każdej liczby naturalnej n prawdziwa jest równość: $F_{n+2} \cdot F_n - F_{n+1}^2 = (-1)^{n+1}$.

(6) Udowodnij, korzystając jedynie z definicji, zbieżność ciągów, znajdując ich granice:

graince.
(a)
$$a_n = \frac{1}{n^2}$$
, (b) $a_n = \frac{(-1)^n}{n}$,
(c) $a_n = \left(\frac{2}{3}\right)^n$, (d) $a_n = \frac{n+2}{n-1}$, $n \ge 2$,
(e) $a_n = \frac{1}{1+\sqrt{n}}$, (f) $a_n = \frac{3n^3 - 2n^2 - 7n + 5}{4n^3 + n - 6}$.

(e)
$$a_n = \frac{1}{1 + \sqrt{n}}$$
, (f) $a_n = \frac{3n^3 - 2n^2 - 7n + 5}{4n^3 + n - 6}$

(7) Udowodnij, że jeśli x jest liczbą rzeczywistą o rozwinięciu dziesiętnym

$$\beta, \alpha_1 \alpha_2 \cdots,$$

to ciąg określony wzorem

$$a_n = \beta, \alpha_1 \cdots \alpha_n$$

jest zbieżny do x (, jest punktem dziesiętnym, a $\beta \in \mathbf{Z}$).

- (8) Udowodnij, że granica sumy (różnicy, ilorazu) ciągów zbieżnych jest suma (różnicą, ilorazem) ich granic. Oczywiście w przypadku ilorazu zakładamy, że ciąg w mianowniku ma wyrazy różne od zera, i że jego granica jest różna od zera.
- (9) Zbadaj monotoniczność następujących ciągów:

(a)
$$a_n = n + \frac{1}{n}$$
, (b) $a_1 = 3$, $a_{n+1} = a_n^2 - 2$, (c) $a_n = \sqrt[n]{n!}$, (d) $a_n = \sqrt[n]{2^n + 3^n}$

(c)
$$a_n = \sqrt[n]{n!}$$
, (d) $a_n = \sqrt[n]{2^n + 3^n}$

(a)
$$a_n = n + \frac{1}{n}$$
, (b) $a_1 = 3$, $a_{n+1} = a_n^2 - 2$, (c) $a_n = \sqrt[n]{n!}$, (d) $a_n = \sqrt[n]{2^n + 3^n}$ (e) $a_n = \frac{2^n}{n!}$, (f) $a_1 = 1$, $a_{n+1} = \frac{a_n}{1 + a_n}$.

(10) Oblicz granice (być może niewłaściwe) ciągów:

(a)
$$a_n = \frac{7n + (\sqrt[3]{n}\sqrt[6]{n})^5\sqrt{9n+1}}{11n^3 + 7n + 3}$$
, (b) $a_n = \sqrt{n^2 + n} - n$,

(c)
$$a_n = \frac{\sin n}{n}$$
, (d) $a_n = r^n, r > 1$,

(e)
$$a_n = \sqrt[n]{r}, \ 0 < r < 1,$$
 (f) $a_n = 2^n - \frac{1}{r},$

(g)
$$a_n = \frac{\sqrt[3]{n^2 + n}}{n + 2}$$
,
(h) $a_n = \frac{1 + 2 + 4 + \dots + 2^n}{1 + 3 + 9 + \dots + 3^n}$,
(i) $a_n = \frac{1 - 2 + 3 - 4 + 5 - 6 + \dots - 2n}{\sqrt{n^2 + 2}}$,
(j) $a_n = \frac{1 + 2 + \dots + n}{n^2}$,
(k) $a_n = \frac{1 + 3 + 9 + \dots + 3^n}{3^n}$,
(l) $a_n = \sqrt{3^n + 2^n}\sqrt{3^n + 1}$,

(i)
$$a_n = \frac{1-2+3-4+5-6+\cdots-2n}{\sqrt{n^2+2}}$$
, (j) $a_n = \frac{1+2+\cdots+n}{n^2}$,

(k)
$$a_n = \frac{1+3+9+\dots+3^n}{3^n}$$
, (l) $a_n = \sqrt{3^n+2^n}\sqrt{3^n+1}$,

(m)
$$a_n = \sqrt[n^2]{n}$$
, (n) $a_n = \sqrt[n]{n^2}$,

(m)
$$a_n = \sqrt[n^2]{n}$$
, (n) $a_n = \sqrt[n]{n^2}$, (o) $a_n = n(\sqrt{n^2 + 7} - n)$, (p) $a_n = \frac{n^2 + n + 1}{(n + \sin n)^2}$,

(q)
$$a_n = \frac{n^2 + 1}{n^3 + 1} + \frac{n^2 + 2}{n^3 + 2} + \frac{n^2 + 3}{n^3 + 3} + \dots + \frac{n^2 + n}{n^3 + n}$$

(r)
$$a_n = \frac{1}{n^2} + \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{(n+1)^2}$$

(s)
$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+7} - \sqrt{n}}$$
, (t) $a_n = r^n, -1 < r < 1$.

(11) Wypisz wzorem ciąg, dla którego $a_1=1,\ a_2=\frac{1}{2},$ i każdy z wyrazów jest średnią harmoniczną dwóch wyrazów sąsiednich:

$$\frac{1}{a_n} = \frac{1}{2} \left(\frac{1}{a_{n-1}} + \frac{1}{a_{n+1}} \right), \quad n \ge 2.$$

(12) Wypisz wzorem ciąg, dla którego $a_1 = 1$, $a_2 = 2$, i każdy z wyrazów jest średnią geometryczną dwóch wyrazów sąsiednich:

$$a_n = \sqrt{a_{n-1}a_{n+1}}, \quad n \ge 2.$$