(1001CJA101021240024)

Test Pattern

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

JEE (Main)
PART TEST
01-12-2024

JEE(Main + Advanced) : ENTHUSIAST COURSE (SCORE-I)

ANSWER KEY PAPER-1 (OPTIONAL)

PART-1	:	PH'	YSI	CS
--------	---	-----	-----	----

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	С	В	А	Α	Α	А	А	Α	D	С
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	С	D	С	А	Α	А	С	D	Α	В
SECTION-II	Q.	1	2	3	4	5					
	A.	3	7	2	21	7					

PART-2: CHEMISTRY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	С	В	В	D	С	Α	А	В	D	В
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	С	С	А	С	D	А	С	С	D	С
SECTION-II	Q.	1	2	3	4	5					
	A.	80	4	7	6	60					

PART-3: MATHEMATICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	D	В	Α	С	В	А	В	В	А	В
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	С	С	А	С	Α	А	В	В	С	В
SECTION-II	Q.	1	2	3	4	5					
	A.	5	2	3	5	1					

(HINT – SHEET)

PART-1: PHYSICS SECTION-I

1. Ans (C)

Radius of circular path described by a charged particle in a magnetic field is given by

$$r = \frac{\sqrt{2mK}}{qB};$$

Where K = Kinetic energy of electron

$$\Rightarrow K = \frac{q^2 B^2 r^2}{2m} = \left(\frac{e}{m}\right) \frac{e B^2 r^2}{2}$$

$$= \frac{1}{2} \times 1.7 \times 10^{11} \times 1.6 \times 10^{-19} \times \left(\frac{1}{\sqrt{17}} \times 10^{-5}\right)^{2} \times (1)^{2}$$

$$= 8 \times 10^{-20} \text{ J} = 0.58 \text{V}$$

By using
$$\Rightarrow$$
 W₀=E-K_{max}

$$= \left(\frac{12375}{2475}\right) \text{ eV} - 0.5 \text{ eV} = 4.5 \text{ eV}$$

2. Ans (B)

Given,

$$m_y = 2m_x$$

$$\Rightarrow Z_v = 2Z_x$$

$$\left(\because \left(\frac{A}{Z} \right)_{x} = \left(\frac{A}{Z} \right)_{y} = 2 \Rightarrow n = p \text{ for both } x \text{ and } y \right)$$

Let
$$Z_x = Z$$
 and $Z_y = 2Z$

Energy of first line balmer $\rightarrow \frac{13.6 \times Z^2 \times 5}{36}$

$$\therefore \frac{13.6 \times 5}{36} \frac{13.6 \times 5}{36} \times \left[(2Z)^2 - Z^2 \right] = \frac{17}{3}$$

$$\Rightarrow$$
 Z = 1

3. Ans (A)

Both A and R are true and R is the correct explanation of A.

5. Ans (A)

 $T = 5 \cos 37^{\circ} + 20 \cos 53^{\circ} = 16 \text{ N}$

$$Y = \frac{F/A}{\frac{\Delta L}{I}}$$

$$\Rightarrow \Delta L = \frac{FL}{YA} = 8 \times 10^{-5} \text{ m}$$

6. Ans (A)

$$VT^{-2} = constant$$

$$\Rightarrow$$
 PV $\frac{1}{2}$ = constant

$$Q = \frac{nR\Delta T}{\gamma - 1} + \frac{nR\Delta T}{1 - x}$$

$$= \frac{nR50}{\frac{7}{5} - 1} + \frac{nR50}{1 - \frac{1}{2}}$$

$$= 225R$$

7. Ans (A)

Thermal resistance of rod A is $R_1 = \frac{3L}{4KA}$

similarly,
$$R_2 = \frac{2L}{3KA}$$
 and $R_3 = \frac{5L}{K_CA}$

If resistance of rod C is R₃ then $\frac{R_1 + R_2}{R_3} = \frac{2}{3}$

8. Ans (A)

$$P_{\text{total}} = \sigma (4\pi R^2) T^4$$

$$P_{cross-section} = P_{square} + P_{circle}$$

$$= \frac{1}{6} \left\{ \sigma (4\pi R^2) T^4 \right\} + \frac{2\pi}{4\pi} \left(1 - \cos \theta \right)$$

$$\{\sigma(4\pi R^2)T^4\}$$

$$= \left(\frac{1}{6} + \frac{1}{10}\right) \{\sigma(4\pi R^2)T^4\}$$

$$\therefore \frac{P_{\text{cross-section}}}{P_{\text{total}}} = \frac{4}{15}$$

9. Ans (D)

In process CA PV^{-2} = constant

$$\Rightarrow$$
 TV⁻³ = constant

$$T_A = T_C \times \left(\frac{V_A}{V_C}\right)^3 = 2400K$$

$$W_{CA} = \frac{nR(T_A - T_C)}{1 - (-2)} = 700R$$

In process AB (Isobaric),

$$T_{\rm B} = T_{\rm A} \times \frac{V_{\rm B}}{V_{\rm A}} = 1200K$$

$$W_{AB} = nR(T_B - T_A) = -1200R$$

$$\Delta U_{BC} = nC_V(T_C - T_B) = -2250R$$

$$Q_{AB} = nC_P(T_B - T_A) = -4200R$$

11. Ans (C)

$$\frac{dN}{dt} = \alpha t^3 - \lambda N$$

At $t = t_1$, 'N' is minimum.

$$\Rightarrow \ N_{t_1} = \frac{\alpha t_1^3}{\lambda} = \frac{\alpha t_1^3}{3}$$

At
$$t = t_2$$
, $\frac{'dN'}{dt}$ is minimum,

$$\frac{d^2N}{dt^2} = 3\alpha t^2 - \lambda \frac{dN}{dt}$$

$$=3\alpha t^2 - \lambda (\alpha t^3 - \lambda N) = 0$$

$$\Rightarrow \frac{\lambda \alpha t_2^3 - 3\alpha t_2^2}{\lambda^2} = N_{t_2}$$

$$\Rightarrow \frac{3\alpha \left(t_2^3 - t_2^2\right)}{9} = N_{t_2}$$

$$\therefore \frac{N_{t_1}}{N_{t_2}} = \frac{t_1^3}{t_2^3 - t_2^3}$$

12. Ans (D)

Inelastic collision

$$Q = \frac{1}{2} \frac{M}{2} \times V^2 = \frac{KE}{2}$$

$$KE_{max} = 2Q_{max} = 2 \times 13.6 = 27.2 \text{ eV}.$$

13. Ans (C)

K.E. =
$$2E_0 - E_0 = E_0$$
 (for $0 \le x \le 1$)

$$\Rightarrow \lambda_1 = \frac{h}{\sqrt{2mE_0}}$$

K.E. =
$$2E_0$$
 (for $x > 1$)

$$\Rightarrow \lambda_2 = \frac{h}{\sqrt{4mE_0}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{2}$$

14. Ans (A)

Given,
$$\frac{\lambda_1}{\lambda_2} = 5$$
 $\frac{M_1}{M_2} = \frac{1}{3}$

$$\therefore \frac{P_1}{P_2} = \frac{\lambda_2}{\lambda_1} = \frac{1}{5} \implies P_2 = 5P_1$$

Also,
$$P_1^2 + P_2^2 + 2P_1P_2\cos 53^0 = P^2$$

$$\Rightarrow 26P_1^2 + 10P_1^2 = \left(\frac{3}{5}\right) = P^2$$

$$\Rightarrow 32P_1^2 + P^2 \Rightarrow P_1 = \frac{P}{\sqrt{32}}$$

$$\therefore P_2 = \frac{5P}{\sqrt{32}}$$

$$\frac{K_{\rm f}}{K_{\rm i}} = \frac{\frac{P_{\rm i}^2}{2M_{\rm i}} + \frac{P_{\rm i}^2}{2M_{\rm i}}}{\frac{P^2}{2M}}.$$

$$=\frac{\left(\frac{P^2}{32}\right)}{2x\left(\frac{M}{4}\right)} + \frac{\left(\frac{25P^2}{32}\right)}{2\times\left(\frac{3M}{4}\right)}$$
$$\left(\frac{P^2}{2M}\right)$$

$$=4\left[\frac{1}{32}+\frac{25}{3(32)}\right]=\frac{7}{6}$$

$$\therefore \frac{\Delta K}{K} = \frac{K_f}{K_i} - 1 = \frac{1}{6}$$

15. Ans (A)

Based on theory

16. Ans (A)

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \Rightarrow \frac{1}{\lambda} = R \left[\frac{1}{9} - \frac{1}{25} \right]$$

$$\Rightarrow \lambda = \frac{225}{16R}$$

ALLEN®

Target : JEE(Main + Advanced) 2025/01-12-2024/Paper-1

17. Ans (C)

'D₁' and 'D₄' in forward bias,

'D2' and 'D3' in reverse bias,

$$V - 10i - 0.7 - 10(i - 0.5) - 0.7 = 0$$

$$\Rightarrow i = \frac{V + 3.6}{20}$$

For zener diode,

Given
$$P = 1W$$
, $V_Z = 2V$

$$\Rightarrow$$
 R_Z = $\frac{V_Z 2}{P}$ = 4 Ω , i_Z = 0.5A

∴ Voltage across " 10Ω ",

$$V_{1} = i \left[\frac{10 (R+4)}{(R+14)} \right]$$

$$V_{1} = i = \left(\frac{V+3.6}{20} \right) \left[\frac{10 (R+4)}{(R+14)} \right]$$

$$= \left(\frac{V+3.6}{2} \right) \left[\frac{(R+4)}{(R+14)} \right]$$

As,
$$V_{max} = 17.4 \text{ V}$$

$$\Rightarrow$$
 V_{1max} = $\frac{21}{2} \left(\frac{R+4}{R+14} \right)$

For safe operation,

$$R = \frac{V_{1 \text{ max}} - V_Z}{i_Z}$$

$$R = \left[\frac{21}{2} \left(\frac{R+4}{R+14}\right)\right] - 2$$

$$0.5$$

$$\Rightarrow R^2 - 3R - 28 = 0$$

$$\Rightarrow R = 7\Omega$$
.

18. Ans (D)

$$y = \overline{\left(\overline{AB}\right) \cdot \left(\overline{CD}\right)} = \overline{\left(\overline{A} + \overline{B}\right) \cdot \left(\overline{C} + \overline{D}\right)}$$
$$= \overline{\left(\overline{A} + \overline{B}\right) + \left(\overline{C} + \overline{D}\right)} = AB + CD$$

20. Ans (B)

$$\frac{dN_{x}}{dt} = -(2\lambda) N_{X} \implies N_{X} = N_{O}e^{-2\lambda t}$$

$$\frac{dN_{Y}}{dt} = +3 (2\lambda) N_{X} - \lambda N_{Y}$$

"N_Y" is max at
$$t = \frac{\ell n 10}{\lambda}$$

$$\Rightarrow$$
 O = $6\lambda N_X - \lambda N_{Ymax}$

$$\Rightarrow$$
 N_{Ymax} = 6 N_X

$$\Rightarrow N_{Ymax} = 6 \text{ Me}^{-2\lambda} \left(\frac{\ell n 10}{\lambda} \right)$$

$$\Rightarrow N_{Ymax} = \frac{6M}{100} = 0.06M$$

PART-1: PHYSICS

SECTION-II

1. $\operatorname{Ans}(3)$

$$\phi = 6 - 2 = 4eV$$

$$KE_{max} = 2 \times 6 - 4 = 8eV$$
 at emitter

At collection

$$KE = 8 - 5 = 3eV$$

3. Ans (2)

$$V = A \ell$$

$$\frac{d\forall}{V} = \frac{dA}{A} + \frac{d\ell}{\ell}$$

$$0 = -2\mu\epsilon + \epsilon$$
.

$$\Rightarrow \mu = \frac{1}{2}$$

Rankers Academy

Enthusiast Course/Score-I/01-12-2024/Paper-1

4. Ans (21)

$$f = f_0 \frac{z^2}{n^3} \implies \frac{z^2}{n^3} = 4 \dots (1)$$

$$E = E_0 \frac{z^2}{n^2} \implies \frac{z^2}{n^2} = 16 \dots (2)$$

(1) and (2)
$$\Rightarrow$$
 n = 4 and z = 16

Now, L =
$$mvr = \frac{nh}{2\pi}$$

$$\Rightarrow \tau = \frac{\Delta L}{\Delta t} = \frac{\Delta n}{\Delta t} \frac{h}{2\pi}$$

$$= \frac{3}{\left(15 \times 10^{-9}\right)} \times \frac{\left(2.1 \times 10^{-34}\right)}{2}$$

$$= 2.1 \times 10^{-26} \text{ N-m}$$

Ans (7) 5.

Max KE converted =
$$\frac{1}{2} \frac{4}{5} m_x V^2$$

$$= \frac{4}{5} \times 2.5 = 2 \,\mathrm{MeV}$$

$$BE_y = \frac{8A + 5 - 2}{A + 1} = 7 \text{ MeV}$$

PART-2: CHEMISTRY

SECTION-I

Ans (C) 1.

Slope of OA =
$$\frac{2}{\frac{1}{5.6}}$$
 = 11.2

Slope of OB =
$$\frac{\frac{4}{4}}{\frac{1}{2.8}}$$
 = 11.2

If slope of OA is equal to slope of OB than AB

is isothermal reversible process.

$$w = -nRT \ln \frac{v_2}{v_1}$$

$$= -PV \ln \frac{v_2}{v_1}$$

$$= -2 \times 5.6 \ln \frac{2.8}{5.62}$$

= 7.84 ltr-atm

= 784 Joule

Ans (B)

$$\Delta H = nC_P \Delta T$$

C_P is highest for XeF₄.

(Non-linear polyatomic gas)

3.

$$\Delta H_{\text{Re action}}^0 = (3 \times 380) - 3(150 + 250)$$

$$= 1140 - 1200$$

$$=$$
 -60 KJ/mol

Resonance energy = $\Delta H_{f(exp)}^{0} - \Delta H_{f(theo)}^{0}$

$$-120 = \Delta H_{f(exp)}^{0} - (-60)$$

$$\Delta H_{f(exp)}^0 = -180 \text{ KJ/mol}$$

Ans (C)

 $\Delta_f H^0 = 0$ for elements in their reference elemental states and for H⁺(aq).

Ans (A)

$$q = n\Delta H_{fusion}$$

$$=\frac{10^3}{18}\times 9$$

$$= 500 \text{ KJ}$$

Ans (A)

$$I_{2}(s) \xrightarrow{\Delta H_{Atom}} 2I(g)$$

$$\Delta H_{Sub.} \downarrow I_{2}(g) \xrightarrow{\Delta H_{Di}} I_{2}(g)$$

$$\Delta H_{Atom} > \Delta H_{Diss}$$

$$\Rightarrow \frac{a}{b} < 1$$

Ans (B)

NCERT

Ans (D)

At equilibrium $\Delta G = 0$, $\Delta \circ G \neq 0$

All the process which are spontaneous has

 $\Delta G < 0$ and non-spontaneous has $\Delta G > 0$.

10. Ans (B)

K K*,
$$\sigma 2s^2$$
, $\sigma *2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$, $\pi *2p_y^0 = \pi *2p_x^0$

Rankers Academy

ALLEN®

11. Ans (C)

$$H_3C$$
 $C=C$
 H
 CH_3
 $(\mu_{net} \neq 0)$

$$\sum_{\mathcal{O}}^{F} N = N \sum_{F}^{\mathcal{O}}$$

XeO₄ (Tetrahedral)

12. Ans (C)

 $(\Delta S)_{\text{syst}}$ for reversible adiabatic process is zero.

as
$$q_{rev} = 0$$

$$\Delta s = \frac{q_{rev}}{T} = 0$$

13. Ans (A)

XeOF₂

Hybridisation sp³d

3-bond pair + 1 lone pair

Two possible structures:

(T-shape) (Trigonal planar)

14. Ans (C)

 $\boldsymbol{\sigma}$ - molecular orbitals are symmetric whereas π -molecular orbitals are unsymmetric about the inter-nuclear axis.

15. Ans (D)

$$Q_{syst} = q$$
 then $Q_{surr} = -q$

 $(\Delta G)_{\text{syst}} < 0$ for all process occurring spontaneously.

16. Ans (A)

$$HA + NaOH \rightarrow NaA + H_2O$$

$$\Delta H = -13.7 + 6.7$$

$$= -7 \text{ Kcal}$$

Energy release = 7 Kcal

17. Ans (C)

Basicity of acid is number of replaceable H⁺ ions.

18. Ans (C)

Factual

19. Ans (D)

SO₂ is sp² hybridised.

NH₃ and H₂O are sp³ hybridised.

H₂S do not hybridise.

PART-2: CHEMISTRY

SECTION-II

Ans (80)

$$\Delta H_{\text{vap}} = \Delta H_{\text{sub}} - \Delta H_{\text{fus}}$$

$$= 38 - 6$$

= 32 kJ/mole

$$\Delta H_{\text{vap}} - T_{\text{b}} \Delta S_{\text{vap}} = \Delta G_{\text{vap}} = 0$$

$$\therefore \Delta S_{\text{vap}} = \frac{\Delta S_{\text{vap}}}{T_b}$$

$$= \frac{8.32 \times 10.00}{\cancel{4.00}}$$
$$= 80 \text{ JK}^{-1} \text{ mol}^{-1}$$

$$= 80 \text{ JK}^{-1} \text{ mol}^{-1}$$

Ans (4)

Ans (4): (1), (2), (3), (5) are correct.

3. Ans (7)

$$PV^{m} = constant$$

$$C_{\rm m} = C_{\rm V} - \frac{\rm R}{\rm m-1}$$

Given $PV^{\frac{1}{2}} = K$

$$m = \frac{1}{2}$$

$$C_{\rm m} = \frac{3}{2}R - \frac{R}{\left(\frac{1}{2} - 1\right)}$$

$$C_{\rm m} = \frac{3}{2}R + 2R$$

$$C_{\rm m} = \frac{7}{2}R$$

$$C_{\rm m} = \frac{7}{2} \times 2 \text{ cal mol}^{-1} \text{ K}^{-1}$$

$$C_m = 7 \text{ cal}$$

Rankers Academy

ALLEN®

Enthusiast Course/Score-I/01-12-2024/Paper-1

4. Ans (6)

$$XeF_3^+, SF_3^+, CF_3^+, I_3^-$$
2 1 0 3

Ans (60) 5.

Resonance energy =
$$(E)R_{S_1} - (E)RH$$

= $-240 - (-300)$

PART-3: MATHEMATICS

SECTION-I

1. Ans (D)

$$f(x) = A_0 + \sum_{k=1}^{20} A_k x^k = \sum_{k=0}^{20} A_k x^k$$

$$\because \sum_{r=0}^{6} f(\alpha^r x) = f(x) + f(\alpha x) + f(\alpha^2 x) + f(\alpha^3 x)$$

$$+ f(\alpha^4 x) + f(\alpha^5 x) + f(\alpha^6 x)$$

$$= \sum_{k=0}^{20} \left(A_k x^k + A_k (\alpha x)^k + A_k (\alpha^2 x)^k + \dots + A_k (\alpha^6 x)^k \right)$$

$$= \sum_{k=0}^{20} \left\{ A_k x^k (1 + \alpha^k + (\alpha^2)^k + (\alpha^3)^k + \dots + (\alpha^6)^k) \right\}$$

$$= A_0 x^0 (7) + A_7 x^7 (7) + A_{14} x^{14} (7) = 7$$

$$[A_0 + A_7 x^7 + A_{14} x^{14}]$$

$$\Rightarrow$$
 n = 7

2. Ans (B)

$$f(r) = \begin{bmatrix} 4r + 1 & 4r^2 + r^3 & 3r^3 + r^5 + r^4 \\ 3r + 2 & 4r^2 + r^3 & 2r^3 + r^5 + 2r^4 \\ 4r + 7 & 10r^2 + r^3 & 3r^3 + r^5 + 7r^4 \end{bmatrix}$$

$$|f(r)| = r^2 \cdot r^3 \begin{vmatrix} 4r + 1 & 4 + r & 3 + r^2 + r \\ 3r + 2 & 4 + r & 2 + r^2 + 2r \end{vmatrix};$$

$$|f(r)| = r^2 \cdot r^3 \begin{vmatrix} 4r+1 & 4+r & 3+r^2+r \\ 3r+2 & 4+r & 2+r^2+2r \\ 4r+7 & 10+r & 3+r^2+7r \end{vmatrix};$$

$$R_2 \longrightarrow R_2 - R$$
, & $R_3 \longrightarrow R_3 - R_1$

$$|f(r)| = r^5 \begin{vmatrix} 4r+1 & 4+r & 3+r^2+r \\ -r+1 & 0 & -1+0+r \\ 6 & 6 & 0+0+6r \end{vmatrix}$$

$$|\mathbf{f}(\mathbf{r})| = 0$$

Ans (A)

$$\cos\theta_1+\cos\theta_2+\cos\theta_3=0=\sin\theta_1+\sin\theta_2+\sin\theta_3$$
 centroid and circum centre are origin.

 \triangle ABC is equilateral. ortho centre is. Also origin.

Ans (C)

$$OA = r \cot\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = 2r \cot\frac{\theta}{2}$$

Let,
$$\tan \frac{\theta}{2} = t$$

$$\Rightarrow \frac{1+t}{1-t} = \frac{2}{t}$$

$$\Rightarrow t = \frac{-3 \pm \sqrt{17}}{2}$$

$$\tan \frac{\theta}{2} = \frac{\sqrt{17} - 3}{2}$$

$$\Rightarrow$$
 a + b + c = 17 + 3 + 2 = 22

Ans (B)

$$|2a-1|=3[a]+2\{a\}=[a]+2a$$

case(i) If
$$a \ge \frac{1}{2}$$

$$2a - 1 = [a] + 2a$$

$$[a] = -1$$

 $a \in [-1, 0)$ Which is not possible

case(ii) If
$$a < \frac{1}{2}$$

$$-2a + 1 = [a] + 2a$$

$$4a - 1 = -[a]$$

Case-1 :
$$0 \le a < \frac{1}{2}$$

$$4a = 1$$

$$a = \frac{1}{4}$$

No further solution possible.

ALLEN®

Target : JEE(Main + Advanced) 2025/01-12-2024/Paper-1

6. Ans (A)

$$\frac{\sin \alpha}{\sqrt{2}} = \frac{\cos(2\alpha)}{4}$$

$$\theta = 180^{\circ} - (90^{\circ} - \alpha + 45^{\circ})$$

$$2\sqrt{2}\sin\alpha = 1 - 2\sin^2\alpha$$

$$\Rightarrow \theta = 45^{\circ} + \alpha$$

$$2\sin^2\alpha + 2\sqrt{2}\sin\alpha - 1 = 0$$

$$\sin \alpha = \frac{-2\sqrt{2} \pm \sqrt{8+8}}{4} = \frac{-2\sqrt{2}+4}{4} = -\frac{1}{\sqrt{2}}+1$$

$$\sin\alpha = \left(\frac{-1 + \sqrt{2}}{\sqrt{2}}\right)$$

7. Ans (B)

Shaded area is the region traced by P,

its area =

$$\Delta ABC - 3\Delta ADC$$

$$= \frac{\sqrt{3}}{4}a^2 - 3\left(\frac{a}{2} \times \frac{a}{2}\tan 15^0\right)$$
$$= \frac{\sqrt{3}}{4}a^2 - \frac{3}{4}a^2\tan 15^0$$
$$= \frac{\sqrt{3}}{2}a^2\left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\right)$$

8. Ans (B)

$$C_3 \rightarrow C_3 + C_2 - C_1$$

Expand along C₃

$$f(n) = \frac{1}{(n+1)(n+2)^2} - \frac{1}{(n+2)(n+3)^2},$$

So
$$\sum_{n=1}^{\infty} f(n) = \left(\frac{1}{2.3^2} - \frac{1}{3.4^2}\right) + \left(\frac{1}{3.4^2} - \frac{1}{4.5^2}\right)$$

+.....+
$$\left(\frac{1}{(n+1)(n+2)^2} - \frac{1}{(n+2)(n+3)^2}\right)$$

So, for
$$n = 7 \sum_{n=1}^{7} f(n) = \frac{49}{900}$$

For
$$n \to \infty \sum f(n) = \frac{1}{18}$$

9. Ans (A)

(A)
$$\log_2 \frac{4}{5}$$
 . $\log_2 20 + (\log_2 5)^2$

$$= (2 - \log_2 5)(2 + \log_2 5) + (\log_2 5)^2$$

$$= 4 - (\log_2 5)^2 + (\log_2 5)^2 = 4$$

(B)
$$\log_6 \frac{2^{x+3}}{3^x - 2} = x$$

$$\Rightarrow 8.2^{x} = 6^{x} \cdot (3^{x} - 2)$$

$$\Rightarrow 8 = (3^{x})^{2} - 2.3^{x}$$

$$\Rightarrow (3^x - 4)(3^x + 2) = 0$$

$$\Rightarrow$$
 3^x = 4 \Rightarrow x = log₃4 = a

$$\Rightarrow 9^{\log_3 4} = 16$$

(C)
$$\log_6^3 4 + 6\log_6 4 \cdot \log_6 9 + \log_6^3 9$$

$$= (\log_6 4 + \log_6 9)^3 = 2^3 = 8$$

(D)
$$(2a+1)^2 + (3b-1)^2 + (c-2)^2 = 0$$

$$\Rightarrow a = -\frac{1}{2}, b = \frac{1}{3}, c = 2$$

$$\Rightarrow$$
 4a + 3b + c = -2 + 1 + 2 = 1

HS-8/12

1001CJA101021240024

ALLEN®

Enthusiast Course/Score-I/01-12-2024/Paper-1

10. Ans (B)

$$z^{3} + (-\alpha z_{1})^{3} + ((\alpha - 1)z_{2})^{3} = 3z(-\alpha z_{1})((\alpha - 1)z_{2})$$

$$\Rightarrow$$
 z - α z₁ + (α - 1)z₂ = 0

$$z = \frac{\alpha z_1 + (1 - \alpha)z_2}{\alpha + (1 - \alpha)}$$

z lies on line joining z_1 and z_2 .

 $|z|_{min}$ = perpendicular distance of origin from line joining z_1 and z_2 .

11. Ans (C)

eq. of circle $x^2 + y^2 - 2x + 4y - 20 = 0$

eq. of chord of central form point P(h,k) to the circle is.

$$T = 0$$

$$\Rightarrow$$
 hx + ky - (h + x) + 2(k + y) - 20 = 0

$$\Rightarrow$$
 (h - 1) x + (k + 2)y - h + 2k - 20 = 0

In $\triangle OAM$,

$$\cos \frac{\pi}{3} = \frac{OM}{OA}$$

$$\Rightarrow$$
 OM = $\frac{5}{2}$

$$\Rightarrow \frac{|(h-1)-2(k+2)-h+2k-20|}{\sqrt{(h-1)^2+(k+2)^2}} = \frac{5}{2}$$

$$\Rightarrow (h-1)^2 + (k+2)^2 = 100$$

$$\Rightarrow$$
 Locus is $(x - 1)^2 + (y + 2)^2 = 100$

Radius
$$= 10$$

12. Ans (C)

Here
$$ABA^T = AB^TA^T = I$$

So
$$C = A(ABA^{T})^{25} (AB^{T}A^{T})^{10} A^{T} = AA^{T}$$

$$= \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$$

 \Rightarrow Trace of matrix C = 6

13. Ans (A)

$$log_2a \cdot log_2 \cdot 2a - log_2 \cdot 2a$$

$$= \log_2 c. \log_2 8c + \log_2 8c$$

$$\Rightarrow$$
 (log₂a -1) log₂2a = log₂8c . (log₂c + 1)

$$\Rightarrow$$
 $(\log_2 a - 1) (\log_2 a + 1) = (\log_2 c + 3) (\log_2 c + 1)$

$$\Rightarrow \log_2^2 a - 1 = \log_2^2 c + 4\log_2 c + 3$$

$$\Rightarrow (\log_2 a)^2 = (\log_2 c + 2)^2$$

$$\log_2 a = \log_2 c + 2 \Rightarrow \frac{a}{c} = 4$$

or
$$\log_2 a = -2 - \log_2 c$$

$$\Rightarrow \log_2 ac = -2 \Rightarrow ac = \frac{1}{4}$$

$$\Rightarrow$$
 a, $\frac{1}{2}$, c are in GP.

14. Ans (C)

$$xy(x-2y-4)=0$$

$$r = \frac{\Delta}{s} = \frac{4}{3 + \sqrt{5}}$$

$$r_1 = \frac{\Delta}{s - a} = \frac{4}{1 + \sqrt{5}}$$

$$r_2 = \frac{4}{\sqrt{5} - 1}$$

$$r_3 = \frac{4}{3 - \sqrt{5}}$$

Sum =
$$\frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{3 + \sqrt{5}}{2}$$

so,
$$a = 3 \& b = 2$$

ALLEN®

Target : JEE(Main + Advanced) 2025/01-12-2024/Paper-1

15. Ans (A)

$$\left(\frac{2x_1+x_2}{3}\cdot\frac{2y_1+y_2}{3}\right)$$

 \therefore P lies in side the \triangle ABC

 \Rightarrow Area of $\triangle PBC <$ area of $\triangle ABC$

16. Ans (A)

Rotate \overrightarrow{PA} to get \overrightarrow{PC} and rotate \overrightarrow{BC} to get \overrightarrow{BA}

Applying rotation formula at P and B we get

$$\frac{p+4}{p-\omega^2} \times \frac{2i\omega - \omega^2}{2i\omega + 4} = -1$$

 $\Rightarrow p$

$$=\frac{2i-8i\omega+8\omega^2}{4i\omega-\omega^2+4}=\frac{2(i-4i\omega+4\omega^2)}{(-4\omega^2-1+4i\omega)}\times i\omega=-2i\omega$$

So,
$$z = \frac{p + 2i\omega}{2} = 0 \Rightarrow |z|^2 = 0$$

17. Ans (B)

$$|z+1| = |z-3i|$$

$$z = \alpha + i$$

$$w = \overline{zz} - 2z + 2$$

$$w = \alpha^2 + 1 - 2(\alpha + i) + 2$$

$$w = \alpha^2 - 2\alpha + 3 - 2i$$

$$Re(w) = \alpha^2 - 2\alpha + 3$$

$$=(\alpha -1)^2 + 2$$

at
$$\alpha = 1$$

Re(w) min = 2, so that

$$w = 2 - 2i$$

$$w = 2(1 - i)$$

$$w^n = 2^n (1 - i)^n$$

so the minimum value of n is

$$n = 4$$

18. Ans (B)

$$\Delta_1 = 3abc - a^3 - b^3 - c^3$$

 Δ_2 is formed by cofactors of elements of Δ_1

Enthusiast Course/Score-I/01-12-2024/Paper-1

19. Ans (C)

Equation of tangent at (6, -8) to the circle

$$x^2 + y^2 = 100 \text{ is}$$
:

$$T = 0$$

$$\Rightarrow$$
 6x - 8y = 100(1)

equation of normal at (6, -8) is

$$(y+8) = -\frac{4}{3}(x-6)$$

$$\Rightarrow$$
 4x + 3y = 0 (2)

Area of triangle

$$= \frac{1}{2} \times \frac{25}{2} \times 6$$
$$= \frac{75}{2} \text{sq units}$$

20. Ans (B)

$$A = \frac{1967 + 1686i \sin \theta}{7 - 3i \cos \theta}$$

$$= \frac{281(7 + 6i \sin \theta)}{7 - 3i \cos \theta} \times \frac{7 + 3i \cos \theta}{7 + 3i \cos \theta}$$

$$= \frac{281(49 - 18 \sin \theta \cos \theta + i(21 \cos \theta + 42 \sin \theta))}{49 + 9\cos^2 \theta}$$

for positive integer

$$Im(A) = 0$$

$$21\cos\theta + 42\sin\theta = 0$$

$$\tan \theta = \frac{-1}{2}, \sin 2\theta = \frac{-4}{5}; \cos^2 \theta = \frac{4}{5}$$

$$Re(A) = \frac{281(49 - 9\sin 2\theta)}{49 + 9\cos^2 \theta}$$

$$= \frac{281\left(49 - 9 \times \frac{-4}{5}\right)}{49 + 9 \times \frac{4}{5}} = 281 \text{ (+ve integer)}$$

PART-3: MATHEMATICS

SECTION-II

1. Ans (5)

$$z = x + iy, \overline{z} = x - iy, (2 iy)^{2} = 12(x^{2} + y^{2}) - 4$$

$$\Rightarrow 12x^{2} + 16y^{2} = 4 \Rightarrow 3x^{2} + 4y^{2} = 1$$

$$\Rightarrow \frac{x^{2}}{\frac{1}{3}} + \frac{y^{2}}{\frac{1}{4}} = 1$$

$$x = \sqrt{\frac{1}{3}\cos\theta}, \ y = \sqrt{\frac{1}{4}\sin\theta}$$

$$3\sqrt{3} \operatorname{Re}(z) + 8\operatorname{Im}(z) = 3\cos\theta + 4\sin\theta$$

2. Ans (2)

max = 5

Point may lie on the same side of the line or

atleast one on the line so

$$4[a^{2} + 2b(a + b + c) + 4] \ge 0$$

$$a^{2} + (2b)a + 2b(b + c) + 4 \ge 0$$

$$D \le 0$$

$$4b^{2} - 4[2b^{2} + 2bc + 4] \le 0$$
$$-b^{2} - 2bc - 4 < 0$$

$$b^2 + 2bc + 4 > 0$$

$$D \le 0$$
; $4c^2 - 16 \le 0$

$$c^2 - 4 < 0$$

$$-2 \le c \le 2$$

Max value of c = 2

$3. \quad Ans(3)$

Hint:
$$XX^{T} = I$$

Now, $PQ = AXB BX^{T}A$
 $= 3A^{2}$

ALLEN®

Target : JEE(Main + Advanced) 2025/01-12-2024/Paper-1

4. Ans (5)

Let
$$f(x) = x^4 + x^3 + ax^2 + bx + c$$

&
$$x^2 + x + 1 = (x + \omega)(x + \omega^2)$$

$$\therefore$$
 f(x) is divisible by $x^2 + x + 1$

$$f(\omega) = 0 \Rightarrow \omega + 1 + a\omega^2 + b\omega + c = 0 \dots (1)$$

$$f(\omega^2) = 0 \Rightarrow \omega^2 + 1 + a\omega + b\omega^2 + c = 0 \dots (2)$$

eq.
$$(1)$$
 – eq. (2)

$$\Rightarrow \omega - \omega^2 - a(\omega - \omega^2) + b(\omega - \omega^2) = 0$$

$$\Rightarrow 1 - a + b = 0 \Rightarrow a - b = 1 \dots (3)$$

& eq.
$$(1)$$
 + eq. (2)

$$\Rightarrow$$
 $(\omega + \omega^2) + 2 + a(\omega + \omega^2) + b(\omega + \omega^2) + 2c = 0$

$$\Rightarrow$$
 $-a - b + 2c + 1 = 0$

$$\Rightarrow$$
 2c = a + b - 1(4)

Now,
$$5a - b - 4c = 5a - b - 2a - 2b + 2$$

$$=3(a-b)+2=3+2=5$$

5. Ans (1)

$$2x^4 + 1 - 2x^3 - x^2 = 1 - x^2 - 2x^3(1 - x) = (1 - x)$$

$$(1+x)-2x^3(1-x)$$

$$= (1 - x)(x + 1 - 2x^{3}) = (1 - x)(x(1 - x^{2}) + 1 - x^{3})$$

$$= (1-x)(x(1-x)(1+x)+(1-x)(1+x+x^2))$$

$$= (1 - x)((1 - x)(x(1 + x) + 1 + x + x^{2}))$$

$$=(1-x)^2((x+1)^2+x^2) \le 0.$$

Equality occurs if and only if x = 1.