

21. - 24. april 2016 Tidsafstand

$Tidsafstand^1$

Du har en graf med n knuder og m kanter, der hver har en retning og en vægt mellem 1 og 1000 svarende til den tid det tager at rejse mellem de to knuder. Yderligere er du for hver knude givet et tidsrum a_i, b_i i hvilket man ikke må bevæge sig fra denne knude (men gerne til). Du er givet to knuder u, v og skal finde det tidligste tidspunkt du kan komme til v hvis du starter i u på tid 0.

Input

Første linje indeholder fire tal n, m samt u og v.

De næste n linjer indeholder hver to tal a_i, b_i , der betyder at man ikke må rejse fra knude i i tidsrummet fra a_i til b_i . Man må rejse fra knude i præcist når klokken slår b_i .

De næste m linjer indeholder hver tre tal i, j, t, som angiver at der er en kant fra knude i til knude j, som tager t tid at rejse.

 $1 \le t \le 1000$.

Output

Et heltal: Det tidligste tidspunkt du kan være i knuden v hvis du starter i knude u på tidspunkt 0. Hvis det ikke kan lade sig gøre at komme fra knude u til v skal du skrive -1.

Eksempler

Input	Output	Kommentarer
3 2 1 3 5 5 5 5 5 5 1 2 1 2 3 1	2	Ingen af tidsbegrænsningerne volder problemer.

¹Kraftigt inspireret af http://codeforces.com/problemset/problem/229/B

21. - 24. april 2016 Tidsafstand

Input	Output	Kommentarer
5 6 1 4 1 2 1 3 4 5 2 2 2 6	8	Den bedste vej er $1 \rightarrow 2 \rightarrow 5 \rightarrow 4$, hvor vi skal vente i 2 tidsrum i knude 2 og 1 tidsrum i knude 5.
1 2 1 5 4 2		
1 3 4		
2 5 2 3 5 2 1 5 7		

Pointgivning

Delopgave 1 (100 point): $1 \le n, m \le 10^5$.

Begrænsninger

 ${\bf Tidsbegrænsning:}\ 1\ s.$

Hukommelsesbegrænsning: 256 MB.