ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯƠNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

XUÂN TÌNH NGUYỆN 2022 ĐỘI HÌNH XUÂN CÔNG NGHỆ

ĐỀ THI THỬ CUỐI KỲ MÔN ĐẠI SỐ TUYẾN TÍNH

Học kỳ I, năm học 2021 – 2022

Ngày thi: 23/01/2022 Thời gian làm bài: 75 phút

(Đề thi có 3 trang, gồm 12 câu trắc nghiệm và 1 câu tự luận) Không được sử dụng tài liệu.

A. PHẦN TRẮC NGHIỆM (7,0 điểm)

A. PHẦN TRẮC NGHIỆM (7,0 điểm)

Câu 1: Cho 2 số thực
$$a$$
, b thỏa mãn $\begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 3 & 2 \end{pmatrix}\begin{pmatrix} a & 1 \\ -1 & b \end{pmatrix} = \begin{pmatrix} 1 & 9 \\ -3 & -1 \\ 7 & 11 \end{pmatrix}$. Giá trị của $a+b$ là:

A. 1.

B. 3.

C. 7.

D. 5.

Câu 2: Tìm hạng của ma trận $A = \begin{pmatrix} 4 & 1 & 3 & 3 \\ 0 & 6 & 10 & 2 \\ 1 & 4 & 7 & 2 \\ 6 & -6 & -8 & 2 \end{pmatrix}$.

A. r(A) = 1.

B. r(A) = 2.

C. r(A) = 3.

D. r(A) = 4.

Câu 3: Cho ma trận $A = \begin{bmatrix} -1 & 2-b & -1 \\ 4-b & 1 & 1 \\ 3 & 3 & -1 \end{bmatrix}$ $(b \neq 2)$. Với giá trị nào của tham số thực b để A^3 khả nghịch?

A. $b \neq 3$.

B. $b \neq 9$.

Câu 4: Tìm ma trận X thỏa mãn: $\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + X$

A. $\begin{bmatrix} -\frac{5}{4} & 1 & \frac{3}{4} \\ -\frac{3}{4} & 0 & \frac{3}{4} \end{bmatrix}$ **B.** $\begin{bmatrix} \frac{5}{4} & 1 & \frac{3}{4} \\ \frac{3}{4} & 0 & \frac{3}{4} \end{bmatrix}$ **C.** $\begin{bmatrix} \frac{5}{4} & -1 & \frac{3}{4} \\ \frac{3}{4} & 0 & \frac{3}{4} \end{bmatrix}$ **D.** $\begin{bmatrix} \frac{5}{4} & 1 & \frac{3}{4} \\ -\frac{3}{4} & 0 & \frac{3}{4} \end{bmatrix}$

Câu 5: Cho hệ phương trình tuyến tính $\begin{cases} x_1 + 2x_2 - x_3 + 4x_4 = 2 \\ x_1 + 7x_2 - 4x_3 + 11x_4 = m \\ 4x_1 + 8x_2 - 4x_3 + 16x_4 = m + 1 \end{cases}$. Với giá trị nào của tham số thực m

để hệ phương trình vô nghiệm?

A. $m \neq 7$. **B.** $m \neq 5$. C. $m \neq 4$. **D.** $m \neq 6$.

Câu 6: Tìm tất cả các giá trị của tham số thực m để hệ vécto sau đây phụ thuộc tuyến tính trên \mathbb{R}^4 :

 $S = \{u = (m,1,3,4), v = (m,m,m+4,6), w = (2m,2,6,m+10)\}$

A. m = 1.

D. $m = 0 \lor m = 1 \lor m = -2$. **C.** $m = 1 \lor m = -2$.

Câu 7: Gọi W là không gian nghiệm của hệ phương trình tuyến tính thuần nhất $\begin{cases} 2x_1 - x_2 + x_3 - x_4 = 0 \\ x_1 + 2x_2 + x_3 + 3x_4 = 0 \\ -x_1 + 3x_2 + 4x_4 = 0 \end{cases}$ $3x_1 - 4x_2 + x_3 + mx_4 = 0$

Phát biểu nào sau đây là sai?

A. dim W ≤ 2 với mọi $m \in \mathbb{R}$.

B. Với moi $m \in \mathbb{R}$ thì W luôn có cơ sở.

C. Tổn tai $m \in \mathbb{R}$ sao cho $W \equiv \mathbb{R}^4$.

D. Mọi hệ gồm 3 phần tử của W đều phụ thuộc tuyến tính.

Đề thi thử Đại số tuyến tính – Xuân tình nguyện 2022 – Trang 1/3

Câu 8: Trong không gian $P_2[x]$, cho tích vô hướng $(p(x),q(x)) = \int p(x).q(x)dx$ và hai véctor p(x) = 8x, $q(x) = x^2 + 1$. Tính khoảng cách giữa hai vécto p(x) và q(x).

A.
$$\frac{13}{3}$$
.

B.
$$\frac{\sqrt{39}}{3}$$
.

C.
$$\frac{2\sqrt{70}}{5}$$
.

D.
$$\frac{56}{5}$$
.

Câu 9: Tìm một cơ sở trực chuẩn của không gian véctơ con V của \mathbb{R}^4 biết:

$$E = \{(1,1,0,0), (1,1,1,1), (0,-1,0,1)\}$$

A.
$$\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right), (0, 0, 1, 0), \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right) \right\}.$$

B.
$$\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right), \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0 \right) \right\}.$$

C.
$$\left\{ \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(\frac{2}{\sqrt{7}}, \frac{1}{\sqrt{7}}, -\frac{1}{\sqrt{7}}, -\frac{1}{\sqrt{7}}\right) \right\}.$$

D.
$$\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right), \left(0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right) \right\}$$

Câu 10: Cho ma trận $A = \begin{bmatrix} 2 & 2 & 3 \\ -2 & -3 & -6 \\ 1 & 2 & 4 \end{bmatrix}$. Tìm bội đại số (BĐS) và bội hình học (BHH) ứng với trị riêng

 $\lambda = 1$.

A. $B \to S = 3$, B + H = 2. **B.** BDS = 2, BHH = 2. **C.** BDS = 2, BHH = 1. D. Các câu kia sai. Câu 11: Cho A là một ma trận vuông cấp 3 có ba vécto riêng là (2,2,1), (1,1,1), (2,0,0) lần lượt ứng với các trị riêng là -3, 2 và 4. Tìm một ma trận B thỏa mãn $B = A^{2022}$.

A. B =
$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} -3^{2022} & 0 & 0 \\ 0 & 2^{2022} & 0 \\ 0 & 0 & 4^{2022} \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix}^{-1}$$
.

B. B = $\begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3^{2022} & 0 & 0 \\ 0 & 2^{2022} & 0 \\ 0 & 0 & 4^{2022} \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$.

B. B =
$$\begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3^{2022} & 0 & 0 \\ 0 & 2^{2022} & 0 \\ 0 & 0 & 4^{2022} \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}^{=1}$$
.

$$\mathbf{C.\ B} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3^{2022} & 0 & 0 \\ 0 & 2^{2022} & 0 \\ 0 & 0 & 4^{2022} \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix}^{-1}.$$

D. B =
$$\begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -3^{2022} & 0 & 0 \\ 0 & 2^{2022} & 0 \\ 0 & 0 & 4^{2022} \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$
.

Câu 12: Cho dạng toàn phương $Q = x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$. Bằng phép đổi Lagrange, dạng toàn phương này có thể đưa về dạng chính tắc:

A.
$$Q = y_1^2 + 4y_2^2 + 9y_3^2$$
.

B.
$$Q = y_1^2 + 4y_2^2 - 9y_3^2$$
.

$$\mathbf{C.} \ \ Q = y_1^2 - 4y_2^2 + 9y_3^2.$$

D.
$$Q = y_1^2 - 4y_2^2 - 9y_3^2$$
.

II. PHAN TŲ LUẬN (3,0 diem)
Trên \mathbb{R}^3 , cho tập hợp $\alpha = \{\alpha_1 = (1, -1, 2), \alpha_2 = (-1, 2, -3), \alpha_3 = (2, 1, 2)\}$
và tập hợp $\beta = \{\beta_1 = (1, 2, 1), \beta_2 = (1, 3, 3), \beta_3 = (2, 2, -1)\}$
a) Cho vecto $\alpha_0 = (-3, -12, 5)^T \in \mathbb{R}^3$. Biết rằng $[\alpha_0]_{\alpha} = (m, n, l)^T \ (m, n, l \in \mathbb{R})$.
Khi đó: $m-n+l=$
b) Gọi $\beta_0 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ là cơ sở chính tắc của \mathbb{R}^3 .
Hãy cho biết:
$-$ Vết ma trận (tổng tất cả các phần tử trên đường chéo chính) của ma trận chuyển cơ sở $P = P_{\beta_0 \to \alpha}$ là:
$-$ 1-chuẩn (số lớn nhất trong tổng trị tuyệt đối của từng cột) của ma trận chuyển cơ sở $S=P_{\alpha o \beta}$ là:
HÉT

Chúc các bạn sinh viên có một mùa xuân hạnh phúc, bình an và đạt nhiều thành công trong cuộc sống!