24 Turingovy stroje. (A4B01JAG)

Turingův stroj si můžeme představit takto: skládá se

- z řídící jednotky, která se může nacházet v jednom z konečně mnoha stavů,
- potenciálně nekonečné pásky rozdělené na jednotlivá pole a
- hlavy, která umožňuje číst obsah polí a přepisovat obsah polí pásky.

Na základě informace X, která je přečtena na pásce, a na základě stavu q, ve kterém se nachází řídící jednotka Turingova stroje, se řídící jednotka přesune do stavu p, pole pásky přepíše na Y a hlava se přesune buď doprava nebo doleva (tato akce je popsána tzv. přechodovou funkcí).

24.1 Formální definice

Turingův stroj je sedmice $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$, kde

- \bullet Q je konečná množina stavů,
- \bullet Σ je konečná množina vstupních symbolů,
- Γ je konečná množina páskových symbolů, přitom $\Sigma \subset \Gamma$,
- B je prázdný symbol (též nazývaný blank), jedná se o páskový symbol, který není vstupním symbolem, (tj. $B \in \Gamma \setminus \Sigma$),
- δ je přechodová funkce, tj. parciální zobrazení z množiny $Q \times \Gamma$ do množiny $Q \times \Gamma \times \{L, R\}$, (zde L znamená pohyb hlavy o jedno pole doleva, R znamená pohyb hlavy o jedno pole doprava),
- $q_0 \in Q$ je počáteční stav a
- $F \subseteq Q$ je množina koncových stavů.

24.2 Konfigurace

Konfiguraci Turingova stroje plně popisuje páska, pozice hlavy na pásce a stav, ve kterém se nachází řídící jednotka. Jestliže na pásce jsou v prvních k polích symboly $X_1X_2...X_k$, všechna pole s větším číslem již obsahují pouze B, řídící jednotka je ve stavu q a hlava čte symbol X_i , tak danou konfiguraci zapisujeme

$$X_1X_2 \dots X_{i-1}qX_iX_{i+1} \dots X_k$$
.

24.3 Počátek práce Turingova stroje

Na začátku práce se Turingův stroj nachází v počátečním stavu q_0 , na pásce má na prvních n polích vstupní slovo $a_1 a_2 \dots a_n$ ($a_i \in \Sigma$), ostatní pole obsahují blank B a hlava čte první pole pásky, tj. symbol a_1 . Tedy formálně je počáteční konfigurace $q_0 a_1 \dots a_n$.

24.4 Krok Turingova stroje

Předpokládejme, že se Turingův stroj nachází v konfiguraci $X_1X_2...X_{i-1}qX_i...X_k$. Pak v jednom kroku udělá následující:

Jestliže $\delta(q, X_i) = (p, Y, R)$, stroj se přesune do stavu p, na pásku napíše symbol Y a hlavu posune o jedno pole doprava. Formálně to zapisujeme:

$$X_1X_2 \dots X_{i-1}qX_i \dots X_k \vdash X_1X_2 \dots X_{i-1}YpX_{i+1} \dots X_k$$
.

Jestliže $\delta(q, X_i) = (p, Y, L)$, a hlava nečte nejlevnější pole, stroj napíše na pásku Y (místo X_i) a posune hlavu o jedno pole doleva. Formálně to zapisujeme:

$$X_1 X_2 \dots X_{i-1} q X_i \dots X_k \vdash X_1 X_2 \dots X_{i-2} p X_{i-1} Y X_{i+1} \dots X_k.$$

Jestliže $\delta(q, X_i) = (p, Y, L)$, a hlava čte první pole pásky, tj. pole, které je "nejvíce vlevo", nebo jestliže $\delta(q, X_i)$ není definováno, stroj se neúspěšně zastaví.

24.5 Výpočet Turingova stroje

je posloupnost jeho kroků, která začíná v počáteční konfiguraci. Tedy jedná se o reflexivní a tranzitivní uzávěr \vdash^* relace \vdash (na množině všech konfigurací daného Turingova stroje).

24.6 Jazyk přijímaný Turingovým strojem

Vstupní slovo $w \in \Sigma^*$ je *přijato* Turingovým strojem právě tehdy, když se Turingův stroj při práci na slově w dostane do koncového stavu. Tedy formálně: slovo $w \in \Sigma^*$ je *přijato* Turingovým strojem právě tehdy, když

$$q_0w \vdash^{\star} \alpha q\beta$$
 pro nějaké $q \in F$ a $\alpha, \beta \in \Gamma^{\star}$.

Množina slov $w \in \Sigma^*$, které Turingův stroj přijímá, se nazývá jazyk přijímaný Turingovým strojem M a značíme ho L(M).

Věta: Turingovy stroje přijímají právě třídu jazyků typu 0. Přesněji:

Ke každé gramatice G typu 0 existuje Turingův stroj M takový, že

$$L(G) = L(M)$$
.

Ke každému stroji M existuje gramatika G typu 0 taková, že

$$L(M) = L(G)$$
.