NSWI021: Počítačové sítě II (verze 4.0)

Lekce 10: mobilní komunikace

Jiří Peterka

využití frekvencí

chtějí-li spolu (bezdrátově) komunikovat dvě strany, potřebují k tomu vhodný frekvenční kanál

- problém: frekvencí je málo, komunikujících stran naopak hodně (čím dál tím více)
 - navíc: různé dvojice komunikujících stran potřebují různé frekvenční kanály
 - aby se nerušily, pokud jsou vzájemně v dosahu
- řešením je opakované využití frekvenčních kanálů (frequency reuse)

nejčastěji: na buňkovém principu (cellular principle):

plocha, která má být pokryta, je rozdělena na buňky

• v různých buňkách se používají různé frekvenční kanály

ale: není jich dost, proto se mohou opakovat v nesousedních buňkách

• v mobilních sítích se jednotlivé buňky dělí ještě na 2 až 3 sektory

• v každé buňce je umístěna základnová stanice (base station)

mobilní buňkové sítě

využití frekvencí, FDD a TDD

- mobilní sítě využívají (ve své přístupové síti) licenční části spektra
 - tj. s ochranou proti rušení jinými přenosy
- důsledek
 - operátor musí nejprve získat určitý příděl frekvencí
 - s odpovídající licencí (dnes v ČR: s individuálním oprávněním)

• otázky:

- jde o souvislý blok frekvencí, nebo o jednotlivé frekvenční kanály?
 - pokud jde o větší blok, musí si jej operátor sám "naporcovat" na jednotlivé kanály
 - šířka kanálů musí odpovídat použité technologii (NMT, GSM,)
 - řeší se na principu frekvenčního multiplexu

- jak je řešen přenos v obou směrech?
 - jsou pro různé směry využívány různé frekvence?
 - pak jde o tzv. frekvenční duplex (FDD)
 - jsou pro různé směry využívány stejné frekvence (se "střídáním" v čase)?
 - pak jde o tzv. časový duplex (TDD)

generace mobilních sítí

- mobilní sítě se rozdělují do generací
 - 1. generace byla ještě analogová a určená jen k poskytování hlasových služeb
 - v ČR se jednalo o síť Eurotelu na bázi technologie NMT (Nordic Mobile Technology)
 - 2. generace již je digitální a určená k poskytování hlasových služeb, ale také datových
 - v ČR (i jinde v Evropě a řadě zemí na celém světě) jde o sítě GSM
 - 2 ½ generace: 2. generace, obohacená o datové služby na principu přepojování paketů
 - 3. generace je digitální a určená k poskytování datových služeb (ale také hlasových)
 - v ČR (i jinde v Evropě) jde o sítě na bázi technologie UMTS
 - má ještě "nativní" hlasové a SMS služby
 - 4. generace je digitální a určená k poskytování (rychlých) datových služeb
 - jde o sítě na bázi technologie LTE (správně až LTE-Advanced)
 - již nemá "nativní" hlasové služby
 - tyto se přidávají alespoň dodatečně, pomocí řešení VoLTE (Voice over LTE)
 - 5. generace je digitální a určená k poskytování (rychlých) datových služeb velkému počtu klientů (v rámci Internetu věcí)
 - konkrétní technologie pro 5G teprve vznikají

mobilní sítě 1. generace

byly analogové

- přenášely hlas v analogové podobě (nikoli jako data)
- pro 1 hovor využívaly 1 frekvenční kanál
 - důsledek: stačily relativně úzké frekvenční kanály, např. 20, 25 či 30 kHz
 - ještě nedokázaly využití 1 kanál pro více hovorů současně
- pro zajištění obousměrné komunikace byl využíván princip FDD
 - tj. jiné frekvence pro uplink a jiné pro downlink

technologie:

- **NMT**: Nordic Mobile Telephone
 - kanály o šířce 25 nebo 20 kHz
 - velký dosah buněk až 30 km
 - pracuje v pásmu 450 MHz nebo 900 MHz
- AMPS: Advanced Mobile Phone Service
 - využíváno hlavně v USA
- **TACS**: Total Access Control System

v ČR:

- 1991: EuroTel zvolil technologii NMT
 - pracovala s kanály o šířce 20 kHz
 - používala frekvenční duplex (FDD)
 - tj. potřebuje tzv. párové pásmo: 2 sady frekvencí, po jedné pro každý směr
- 1991: EuroTel získal příděl kmitočtů v pásmu 450 MHz (na 20 let), za cca 800 milionů Kč
 - 461,3 až 465,74 MHz pro downlink
 - 451,3 až 455,74 MHz pro uplink
 - lze rozdělit (pomocí FDM) na 221 kanálů o šířce 20 kHz
 - a ještě nechat "na obou stranách" ochranné intervaly 10 kHz
- NMT síť Eurotel Classic/T!P byla spuštěna 12.9.1991
 - a provoz ukončen 30.6.2006
 - maximem bylo cca 100 000 uživatelů

mobilní sítě 1. generace - ceny

ceny v roce 1991:

aktivace: 29 000 Kč

měsíční paušál: 2 500 Kč

1 minuta hovoru: 15 Kč

odchozího i příchozího

• ceny v roce 1995:

volání mimo síť Eurotel: + 2 Kč Aktivace: 8 295 Kč

ceny včetně 5 % DPH

ceny v srpnu 1999

již po nástupu GSM

mobilní sítě 2. generace

• jsou již digitální:

- obecně: přenáší proud dat (o určité přenosové rychlosti)
 - přenášená data mohou představovat zdigitalizovaný lidský hlas (hovor)
 - pak jde o hlasovou službu
 - vyžadují vhodný kodek pro převod analogového hlasu na digitální data
 - přenášená data mohou představovat "uživatelem dodaná" data
 - pak jde o datovou službu (službu přenosu dat)
- po jenom frekvenčním kanálu mohou přenášet více hovorů současně
 - technologie GSM: pomocí techniky časového multiplexu (TDM)
 - kdy se jeden kanál rozdělí v čase na 8 časových slotů (timeslotů)

- technologie CDMA: pomocí techniky kódového multiplexu může několik přenosů využívat stejný frekvenční kanál
 - příjemce dokáže jednotlivé přenosy

GSM

původně:

- GSM = Groupe Spécial Mobile
- později:
 - GSM = Global System for Mobile
 Telecommunications
- první komerčně provozovaný systém 2. generace.
 - vyvinutý v 80-tých letech v Evropě
 - pod patronací a za peníze Evropské unie
 - standardizován organizací ETSI.
- dnes:
 - nejrozšířenější standard 2. generace.
 - V Evropě je provozován v pásmu 900 a 1800 MHz od roku 1992,
 - v USA v pásmu 1900 MHz od roku 1996
 - často též pod označením PCS 1900 (Personal Communications Standard)

- v ČR je používán od roku 1996:
 - O2 CR (Eurotel, Telefónica O2 CR):
 - od 1. července 1996 v pásmu 900 MHz
 - od 8. července 2000 v pásmu 1800 MHz
 - T-Mobile (Paegas/Radiomobil):
 - od 30. září 1996 v pásmu 900 MHz
 - od 8. července 2000 v pásmu 1800 MHz
 - Vodafone (Oskar/Český Mobil):
 - od 1.3.2000 v pásmu 1800 (i 900 MHz)
 - komerční provoz

GSM

• pracuje s frekvenčními kanály o šířce 200 kHz

- které dělí na 8 časových slotů (timeslot-ů)
- využívá princip FDD
 - tj. vyžaduje párové pásmo
 - stejný rozsah frekvencí pro oba směry komunikace
- v ČR je využíváno (2016):
 - pásmo 900 MHz:
 - 880-915 MHz pro uplink
 - celkem 35 MHz, využít lze 34,8 MHz
 - k dispozici je 174 kanálů á 200 kHz
 - přiděleny jsou všechny !!
 - 925 až 960 MHz do downlink
 - dtto (jde o párové pásmo)

- **pásmo 1800 MHz**:
 - 1710-1785 MHz pro uplink
 - celkem 75 MHz, využít lze 74,8 MHz
 - k dispozici je 374 kanálů á 200 kHz
 - přiděleno je 295 kanálů (59 MHz)
 - zbývá volných 15,8 MHz
 - 1805-1880 MHz pro downlink
 - dtto (párové pásmo)
- jednotliví operátoři mají přidělen určitý počet takovýchto frekvenčních kanálů
 - nejde ale o souvislé úseky
 - 02: 2 x 62 kanálů (2x 12,4 MHz), 13297 sektorů
 - T-M: 2 x 62 kanálů (2x 12,4 MHz), 12594 sekt.
 - VF: 2 x 50 kanálů (2x 10 MHz), 10969 sektorů
- 02: 2x 85 kanálů (2x 17 MHz)
- T-M: 2x 100 kanálů (2x 20 MHz)
- VF: 2x 110 kanálů (2x 22 MHz)

architektura GSM sítě

architektura GSM sítě - registry

fyzicky: je replikován

HLR (Home Location Register)

- "domovský lokační registr"
- obsahuje informace o uživatelích sítě GSM
 - včetně rozsahu aktivovaných služeb
- dále informace o tom, kde se mobil nachází
 - ve které buňce (BSC a BTS)

AuC (Authentication Center)

- slouží k identifikaci uživatelů
 - součást HLR, slouží jeho potřebám
- HLR (a AUC) může být sdílen více ústřednami

EIR (Equipment Identity Register)

- obsahuje údaje o odcizených a neoprávněně používaných mobilech
 - blacklist, whitelist, greylist
- spolupracuje s AUC při ověřování identity a oprávněnosti mobilů ke komunikaci

VLR (Visitor Location Register)

- "návštěvnický lokační registr"
- obvykle 1x pro každou ústřednu MSC
- obsahuje údaje o všech uživatelích, kteří jsou právě v dosahu dané ústředny MSC
 - včetně údajů o návštěvnících v rámci roamingu
- jde o jakousi "cache" pro údaje z
 HLR
 - dočasné uchování údajů z HLR

GSM síť dále musí mít:

- OMC: Operation and Maintenance Center
- NMC: Network Management
 Center
- ADC: Administrative center

přihlašování do GSM sítě

když operátor získá nového zákazníka:

- přidělí mu registrační číslo
 - MSIN, stane se součástí IMSI
 - uloží se na SIM kartu
- přidělí mu telefonní číslo
 - MSISDN, např. 420 776 123 456
 - uloží se v HLR, spolu s IMSI

když se mobil (MS) přihlašuje do sítě:

- předá síti:
 - IMEI: identifikuje zařízení
 - IMSI: identifikuje uživatele
- EIR (Equipment Identity Register)
 - zkontroluje IMEI se svými black/white/grey listy
 - zda je zařízení OK
- HLR (Home Location Register)
 - podle IMSI si zjistí MSISDN
 - zapamatuje si polohu MS
 - předá údaje do VLR

- AUC (Authentication Center)
 - vyšle do MS náhodné číslo
 - MS jej transformuje pomocí klíče na SIM kartě
 - MS vrátí výsledek do AUC
 - AUC tím ověřuje identitu uživatele (SIM karty)
- VLR (Visitor Location Register)
 - získá údaje od HLR/AUC
 - přidělí MS dočasné TMSI
 - Temporary Mobile Subsrcriber Identity
 - pod TMSI jej eviduje po dobu pobytu MS v dosahu VLR/MSC

přenos hovoru v sítích GSM

GSM je digitální síť

- hlas je přenášen v digitální formě
- obecný postup:
 - hlas je snímán 8000x za sekundu
 - stejně jako u PCM
 - každý vzorek je vyjádřen pomocí 13 bitů
 - celkově 8000 x 13 = 104 kbit/s
 - je aplikována komprese RPE/LTP
 - Regular Pulse Excitation/Long TermPrediction13 kbit/s
 - sníží datový tok ze 104 kbit/s na 13 kbit/s
- následuje:
 - přidání zabezpečovacích údajů
 - pro detekci a korekci chyb během rádiových přenosů: + 9,8 kbit/s
 - výsledkem je datový tok 22,8 kbit/s
 - přidání režijních dat
 - pro zajištění funkcí GSM sítí: + 11 kbit/s
 - výsledkem je datový tok 33,8 kbit/s

- 1 časový slot (timeslot) v GSM
 - "pojme" právě rychlost 33,8 kbit/s
 - jde o "hrubou" rychlost, včetně veškeré režie
 - celý frekvenční kanál "pojme" 8x 33,8 kbit/s

CSD a HSCSD

závěr z předchozího slidu:

- pro každý jednotlivý hovor je v GSM síti k dispozici datový tok 13 kbit/s
 - fakticky jde o přenosový okruh, vedoucí "skrz" mobilní síť
- využití tohoto okruhu je zpoplatněno podle doby, po kterou je okruh zřízen
 - podle délky hovoru, v minutách
 - CSD: Circuit Switched Data
 - "základní" datová služba sítí GSM
 - kdy je (jeden) "hlasový" okruh využit pro přenos uživatelských dat
 - na principu přepojování okruhů
 - se zpoplatněním podle času
 - jak dlouho je okruh zřízen
 - HSCSD: High Speed CSD
 - "vyšší" datová služba sítí GSM

kdy je pro přenos dat využito více "hlasových" okruhů současně

- problém:
 - 13 kbit/s není "normovaná" rychlost
 - nižší je 9,6 kbit/s, vyšší je 14,4 kbit/s
- řešení:

v ČR toto

dělal Eurotel

- operátor může "ubrat" režijní data na zabezpečení přenosů
 - z 9,8 kbit/s na menší hodnotu, tak aby "zbývalo" 14,4 kbit/s pro uživatel. data

- nebo může "přidat" režijní data a učinit přenos robustnějším
 - a přenášet data rychlostí 9,6 kbit/s

v ČR od

paketové přenosy v GSM sítích

problém:

- CSD i HSCSD fungují na principu přepojování okruhů
 - trvale "obsazují" zdroje mobilní sítě: CSD se chová jako 1 hovor, HSCSD jako N hovorů
- není to vhodné pro dlouhá připojení
 - např. k Internetu
 - mobilní sítě nejsou dimenzovány na velké počty dlouhých hovorů
 - např. v délce několik hodin
 - navíc uživatelé by se nedoplatili zpoplatněna je každá minuta
 - zdroje mobilní sítě (timeslot-y atd.) jsou čerpány i v době, kdy se nic nepřenáší
 - protože okruh je vyhrazen (a zpoplatněn)
 bez ohledu na to, zda je skutečně využíván

řešení:

- zavést do mobilní sítě podporu datových přenosů na principu přepojování paketů
 - tak, aby zdroje mobilní sítě (timesloty) byly čerpány jen tehdy, kdy se nějaká data skutečně přenáší (a jinak ne)
 - pak je možné zpoplatnit uživatele podle objemu přenesených dat, místo podle času
- pak: mobilní síť může nabízet trvalé připojení
 - už jí nebude vadit velký počet (neaktivních) uživatelů
 - kteří aktuálně nic nepřenáší, a tedy nespotřebovávají žádné zdroje mobilní sítě

důležité:

- celá páteřní síť GSM sítě (mob. ústředny,) funguje na principu přepojování okruhů
 - je nutné přidat do GSM "paralelní" páteřní část, fungující na principu přepojování paketů!!!!

GPRS

GPRS: General Packet Radio Service

- je řešením pro přenos dat v sítích GSM na principu přepojování paketů
 - umožňuje trvalé připojení uživatele, přenáší IP pakety (datagramy)
- vyžaduje "zdvojení" páteřních částí sítě GSM, nově přidává:
 - uzel SGSN (Serving GPRS Support Node)
 - obdoba mobilní ústředny, ale pro data
 - uzel **GGSN** (Gateway GPRS Support Node)
 - brána do jiných datových sítí
 - registr **GR** (GPRS Register)
 - pro údaje spojení s GPRS
- GPRS přenosům jsou přidělovány timesloty podle potřeby
 - když je co k přenesení
 - může být přiděleno i více timeslotů současně
 - kolik jich síť dokáže uvolnit
 - kolik jich mobil dokáže využít
 - jde o fungování na principu best effort
 - přenosová kapacita není garantována !!!

v ČR od 10/2000

PDP kontext, attach, detach

- GPRS umožňuje přenos IP paketů (skrze GSM síť) mezi 2 body
 - například mezi 2 mobilními stanicemi (MS)
 - mobilními telefony, GSM modemy,

Packet Data Protocol

Packet - Temporal

Mobile Subscriber

Identity

- nejčastěji: jde o připojení MS k Internetu (ev. do jiné datové sítě)
 - jedním bodem je mobilní stanice (MS)
 - musí mít přidělenu IP adresu
 - druhým bodem je "přístupový bod"
 - APN: Access Point Name
 - operátor GSM sítě může nabízet více bodů APN
 - s různými vlastnostmi/parametry/cenou atd.

připomenutí:

- GSM síť s GPRS se chová jako IP síť
 - přenáší IP pakety (datagramy)
- koncové uzly od ní potřebují získat určité konfigurační údaje: tzv. PDP kontext
 - zahrnující IP adresu (ve vazbě na IMSI a IMEI, resp. dočasné P-TMSI)
- k přidělení PDP kontextu dochází v rámci operace GPRS Attach
 - tím se MS stává dostupné skrze GSM/GPRS síť (na přidělené IP adrese)
 - a je dostupné po celou dobu, kdy má přidělen PDP kontext
- k odhlášení (vrácení PDP kontextu) dochází v rámci operace GPRS Detach

třídy GPRS, kódovací schémata

připomenutí:

- GPRS funguje na principu přepojování paketů, stylem best effort
 - pokud potřebuje něco přenést, využije tolik časových slotů (timeslotů), kolik jich od sítě dostane

ale:

- ještě záleží na schopnostech koncového zařízení
 - kolik časových slotů dokáže využít současně
 - to vyjadřuje tzv. **třída GPRS**

třída	down	up	max. slotů	
1	1	1	2	
2	2	1	3	
3	2	2	3	
28	8	6	neomez.	
29	8	8	neomez.	

kódovací schémata

- u CSD/HSCSD byla jen jedna varianta velikosti režijních a "užitečných" dat
 - 13 kbit/s "užitečných" dat
 - 11+9,8 = 20,8 kbit/s režijních dat

- u GPRS existují 4 varianty
 - tzv. **kódovací schémata** (CS, Coding Scheme)
 - mezi kterými si podle aktuálních podmínek přenosu volí obě strany (MS a BTS) automaticky
 - v závislosti na volbě kód. schématu jsou data přenášena různými rychlostmi

Kódovací schéma	CS-1	CS-2	CS-3	CS-4
Max. kbit/s	9.05	13.4	15.6	21.4
na 1 timeslot	kbit/s	kbit/s	kbit/s	kbit/s
Maximum při využití	72.4	107.2	124.8	171.2
všech 8 timeslotů	kbit/s	kbit/s	kbit/s	kbit/s

EDGE

- EDGE: Enhanced Data Rate for GSM Evolution
 - jde o další vylepšení přenosů dat v GSM sítích
- vylepšuje jak přenosy na principu přepojování okruhů, tj. HSCSD
 - pak jde o Enhanced HSCSD, EHSCSD
- · tak i přenosy na principu přepojování paketů, tj. GPRS
 - pak jde o Enhanced GPRS, EGPRS
- ale:
 - když se dnes řekne EDGE, myslí se tím EGPRS (Enhanced GRPS)
 - neboli: jen vylepšené GPRS (nikoli již vylepšené HSCSD)
- v čem spočívá vylepšení?
 - hlavně: ve vyšší přenosové rychlosti, dosahované <u>díky změně rádiových přenosů</u>
 - GPRS: s jedním časovým slotem (timeslot-em) dosahuje max. 21,4 kbit/s (při CS4)
 - používá 2-stavovou fázovou modulaci (1 změna = 1 bit)
 - EDGE: s jedním časovým slotem dosahuje až 59,2 kbit/s (s více timesloty pak Nx více)
 - díky dokonalejšímu kódování: používá 8-stavovou fázovou modulaci (tj. 1 změna = 3 bity)
 - má celkem 9 kódovacích schémat
 - 4 schémata z GPRS (s 2-stavovou modulací), 5 nových kódovacích schémat s 8-stavovou modulací)
 - vyžaduje upgrade rádiové části základnových stanic
 - je nutný upgrade transceiverů v každém sektoru základnové stanice

3G / UMTS

- příprava další (již 3.) generace mobilních sítí začala již kolem roku 1985
 - pod patronací Mezinárodní telekomunikační unie (ITU-T)
- pod pracovním názvem FPLMTS
 - Future Public Land Mobile Telecommunication System
- cca 1995: přejmenování na (snáze zapamatovatelné) IMT 2000
 - IMT = International Mobile Telecommunications
 - 2000 měl být rok předpokládaného spuštění
 - 2000 (kbit/s) měla být dosahovaná rychlosti přenosu
 - 2000 MHz: toto frekvenční pásmo mělo být využíváno

- práce probíhají souběžně (a nezávisle na sobě) ve více částech světa
 - v Evropě připravuje nový standard organizace ETSI
 - European Telecommunications Standards Institute
 - vznikající evropské řešení pro mobilní sítě 3. generace (3G) dostává jméno UMTS
 - UMTS = Universal Mobile Telecommunications System
 - nikoli "Unlimited Money To Spend"
 - ale: není to jediné řešení pro 3G, které vzniklo a používalo se
 - jiným řešením (z USA) je technologie CDMA2000
 - proto se (pro rozlišení) uvádí 3G/UMTS

3G (IMT 2000) není jen UMTS, ale třeba také CDMA2000!!

3GPP a 3GPP2

• (lokální) problém:

- práce na novém 3G řešení pro Evropu (UMTS) jen v rámci ETSI moc nepokročily
 - předpokládaný termín spuštění se rychle blížil
- řešení: sdružit síly "globálně"
 - koncem roku 1998 převzala vývoj technického řešení iniciativa 3GPP
 - 3rd Generation Partnership Project
 - sdružuje celkem 7 standardizačních organizací z celého světa (včetně ETSI)
 - připravuje řešení, vycházející z technologie GSM a navazující na ni
 - důsledek: UMTS "pochází od 3GPP" (a "vychází z GSM")
 - nevzniklo ale najednou, nýbrž postupně
 - Release 99, Release 00,
 - iniciativa EGPP se stará i o další vývoj GSM, a také o přípravu technologií pro 4G: LTE
- srovnání:
 - obdobný vývoj se odehrál i u dalších řešení pro 3G:
 - koncem roku 1998 vzniká iniciativa 3GPP2
 - 3rd Generation Partnership Project 2
 - hlavně z USA, Japonska, Jižní Koreje,
 - připravuje 3G řešení, navazující na 2G technologii CDMAone
 - výsledkem je 3G technologie CDMA2000

A GLOBAL INITIATIVE

UMTS

UMTS (Universal Mobile Telecommunications System) nepřišlo najednou

- ale postupně, ve verzích standardů (tzv. Release), které byly schvalovány postupně
- 1999: Release 99 (první verze UMTS)
 - původní představa:
 - nabídne již "definitivní podobu UMTS":
 - stacionární terminál: data až 2 Mbit/s
 - při pomalém pohybu: 384 kbit/s
 - např. chůze
 - při rychlém pohybu: 144 kbit/s

- realita:
 - datové služby: jen 384 kbit/s
 - i pro stacionární terminály
 - na principu přepojování paketů
 - nebo: 64 kbit/s na principu přepojování okruhů
 - poskytuje i hlasové služby
 - kompatibilní s hlasovými službami GSM

UMTS vs. GSM

UMTS přináší některé významné změny oproti GSM

- celkové zaměření:
 - GSM: primární je hlas, ale data jsou podporována také
 - UMTS (a 3G obecně): primární jsou data, ale hlas je podporován také
 - primární je přepojování paketů (pro přenos dat), ale současně funguje i přepojování okruhů (pro hlas)
- hospodaření s frekvencemi:
 - GSM: pracuje s "úzkými" frekvenčními kanály (200 kHz)
 - jednotlivé kanály jsou "děleny" mezi jednotlivé hovory na principu čas. multiplexu (TDMA)
 - viz 8 časových slotů (time slot-ů)
 - pro rychlejší datové přenosy je využíváno více časových slotů současně
 - sousední buňky používají různé frekvenční kanály
 - pro eliminaci vzájemného rušení

- UMTS: pracuje s "širokými" frekvenčními kanály (5 MHz)
 - kvůli datovým přenosům (dosahování co nejvyšších přenosových rychlostí)
 - obecně: čím větší šířka pásma je k dispozici, tím vyšších rychlostí lze dosahovat
 - jednotlivé přenosy (dat i hovorů) jsou "odděleny" pomocí kódového multiplexu (CDMA)
 - jelikož jde o relativně "široké" frekvenční kanály, hovoří se o "širokopásmovém" CDMA (W-CDMA)
 - důsledek: sousední buňky <u>nemusí</u> používat různé frekvence (odliší se kódováním)

frekvence pro UMTS

- UMTS může fungovat 2 různými způsoby:
 - jako FDD-UMTS: pro přenosy v různých směrech používá frekvenční duplex (FDD)
 - tj. různé frekvenční kanály vyžaduje tzv. párové pásmo (dvě "sady" frekvencí")
 - dnes převažuje: když se řekne UMTS, jde o tuto variantu (FDD-UMTS)
 - jak TDD-UMTS: pro přenosy v různých směrech používá časový duplex (TDD)
 - tj. stejný frekvenční kanál vystačí s tzv. nepárovým pásmem
 - v ČR provozoval T-Mobile, od 19.10.2005 do 31.5.2012, s rychlostí 2 Mbit/s
 - pod obchodním názvem Internet 4G
- mobilní operátoři potřebují pro své UMTS sítě příděl vhodných frekvencí
 - pro UMTS se používá (především) pásmo 2,1 GHz
 - v ČR byly 2 licence vydraženy v roce 2001 (Eurotel a T-Mobile)
 - třetí licenci získal v roce 2005 Oskar (Vodafone)

	uděleno	cena	párové pásmo (pro FDD)	nepárové pásmo (TDD)
T-Mobile	12/2001	3,861 mld. Kč	1920-1940 MHz a 2110-2130 MHz	1900-1905 MHz
Eurotel (O2 CR)	12/2001	3,535 mld. Kč	1940-1960 MHz a 2130-2150 MHz	1905-1910 MHz
Oskar (Vodafone)	2/2005	2 mld. Kč	1960-1980 MHz a 2150-2170 MHz	1910-1915 MHz

4x kanál 5 MHz

přístupová síť pro UMTS

- UMTS používá stejnou páteřní síť jako GSM
 - tj. "zdvojenou" –jedna část funguje na principu přepojování okruhů, druhá paketů
- ale má zcela novou rádiovou přístupovou síť
 - GSM používá síť GERAN
 - <u>GSM/EDGE</u> <u>Radio</u> <u>Access</u> <u>Network</u>
 - základnové stanice se označují jako BTS
 - <u>B</u>ase <u>T</u>ransceiver <u>S</u>tation
 - vždy několik BTS je napojeno na 1 řadič
 - BSC: Base Station Controller

- UMTS používá síť UTRAN
 - <u>UMTS Terrestrial Radio Access Network</u>
 - základnové stanice se označují jako Node B
 - buňky/sektory mohou používat stejné frekvenční kanály
 - vždy několik Node B je napojeno na 1 řadič
 - RNC: Radio Network Controller

HSDPA, HSUPA, HSPA

• připomenutí:

- první verze UMTS (Release 99) nedosahovala slibovaných rychlostí
 - místo 2 Mbit/s dosahovala jen 384 kbit/s
- další vývoj:
 - postupně přicházela různá zrychlení
 - využívající dokonalejších technik (hlavně kódování)

někdy je to označováno také jako 3,5 G

v ČR nasazeno v říjnu 2006 (Eurotel)

- HSDPA (High Speed Downlink Packet Access, Release 5, 2005)
 - zvyšuje rychlost na downlinku (stále na frekvenčních kanálech o šířce 5 MHz):
 - od 1,2 Mbit/s až po 14,4 Mbit/s
 - v závislosti na schopnostech (třídě) koncového zařízení (UE, User Equipment)
- HSUPA (High Speed Uplink Packet Access, Release 6, 2007)
 - zvyšuje rychlost na uplinku
 - od 0,73 Mbit/s až po 5,76 Mbit/s

v ČR nasazeno v lednu 2010 (T-Mobile)

HSPA (High Speed Packet Access)

- společné označení pro HSDPA a HSUPA
 - vyšší rychlosti na downlinku i uplinku
 - oproti původní verzi UMTS (Release 99)

HSPA+, Dual Carrier

- další vývoj směrem k vyšším rychlostem
 - využívá technická zdokonalení, techniku MIMO a sdružování frekvenčních kanálů
 - HSPA+ (Evolved HSPA, HSPA Evolution, Release 7)
- v ČR od října 2011 (Vodafone)

- používá 2x2 MIMO, kódování 16QAM
- slibuje až 21 / 11 Mbit/s
 - reálně dosahované rychlosti max. 15 Mbit/s na downlinku
 - ale v nezatížené buňce/sektoru
- **HSPA+ 42 DC (Dual Carrier, Release 8)**
 - využívá dva frekvenční kanály á 5 MHz (proto: Dual Carrier)
 - slibuje dvojnásobné (max.) rychlosti: až 42/11 Mbit/s
 - reálně max. 30 Mbit/s na downlinku
 - připomenutí:
 - mobilní operátoři v ČR mají (v párovém pásmu) licenci na 4 kanály (Carriers)

přesněji: Dual-Cell HSDPA

Operation on Adjacent Carriers

v ČR od dubna 2012 (T-Mobile, Vodafone)

	uděleno	cena	párové pásmo (pro FDD)	nepárové pásmo (TDD)
T-Mobile	12/2001	3,861 mld. Kč	1920-1940 MHz a 2110-2130 MHz	1900-1905 MHz
Eurotel (O2 CR)	12/2001	3,535 mld. Kč	1940-1960 MHz a 2130-2150 MHz	1905-1910 MHz
Oskar (Vodafone)	2/2005	2 mld. Kč	1960-1980 MHz a 2150-2170 MHz	1910-1915 MHz

LTE: Long Term Evolution

HSDPA, HSUPA, HSPA, HSPA+

- jsou všechno snahy o vylepšení původní UMTS sítě
 - bez zásadnějších změn, jen zdokonalování rádiové části
 - potenciál změn se ale (v podstatě) vyčerpal

LTE (Long Term Evolution)

- je společné označení pro "další" zdokonalování, které je ale spojeno se zásadnějšími změnami
- žádný hlas, jen (rychlé) datové přenosy
 - LTE již nemá "nativní" hlasové služby (fungující na principu přepojování paketů)
- plochá páteřní síť
 - připomenutí: UMTS ještě má "zdvojenou" páteřní část sítě (jádro/core)
 - část funguje na principu přepojování okruhů (MSC, ...), pro potřeby hlasových přenosů
 - část funguje na principu přepojování paketů (SGSN, GGSN,), pro potřeby datových přenosů
 - LTE již má jen "jednu" páteřní část sítě (jádro/core)
 - fungují na principu přepojování paketů, konkrétně IP paketů
- co nejširší frekvenční kanály
 - jsou podporovány šířky kanálů 1,5 / 3 / 5 / 10 / 15 / 20 MHz ("čím širší tím vyšší rychlost")
- OFDM místo WCDMA
 - pro vyšší efektivnost (spektrální účinnost) se přechází k technice OFDM (Ortogonální FDM)
- techniky MIMO, beamforming a další technická vylepšení

LTE už je "all-IP"

EPS, EPC a e-UTRAN

připomenutí:

LTE již funguje výhradně na principu přepojování paketů, a to na bázi protokolu IP

důsledek:

- mění se i architektura LTE sítě
- EPC: Evolved Packet Core
 - označení pro páteřní část (core) LTE sítě
 - je již jen "paketová" (proto: Packet Core)
 - funguje již jen na IP
 - nemá "nativní" hlas (na principu přepojování okruhů)
 - zahrnuje následující (hlavní) uzly
 - MME (Mobility Management Entity)
 - obdoba registru VLR, "spravuje mobilitu"
 - HSS (Home Subscriber Server)
 - obdoba HLR, s údaji o uživatelích
 - S-GW (Serving Gateway)
 - obdoba SGSN ("přepínač" pro data)
 - PDN-GW (Packet Data Network GW)
 - brána pro napojení do dalších sítí

- E-UTRAN: Evolved Universal Terrestrial Access Network
 - označení pro přístupovou část LTE sítě
 - má jen 1 typ uzlu (základnové stanice) :
 - eNode B (eNB): Evolved Node B
 - jsou napojeny přímo na EPC
 - mohou být propojeny i mezi sebou
 - každý eNB obsluhuje několik buněk/sektorů

přístupová síť e-UTRAN

připomenutí:

- GSM, přístupová síť GERAN: rádiová část pracuje s úzkými frekv. kanály (200 kHz)
 - takovýchto kanálů je "hodně" a musí se střídat
 - sousední buňky musí používat různé frekvenční kanály

- každý kanál je dělen na principu časového multiplexu / TDM (na 8 časových slotů)
- UMTS, přístupová síť UTRAN: pracuje s podstatně širšími kanály / carriers (5 MHz)
 - kterých je "málo" (dle licence, v ČR má každý operátor 4), a nemusí se střídat
 - sousední buňky mohou používat stejné frekvenční kanály
 - W-CDMA: celý kanál je sdílen využívá jej více přenosů, které probíhají současně
 - jsou odděleny pomocí kódového multiplexu (viz W-CDMA)

- sousední buňky používají stejné frekvenční kanály
- jediný frekvenční kanál je využíván pro více (datových) přenosů současně
- <u>na downlinku</u>: je použita technika **OFDMA** (Orthogonal FDMA), místo WCDMA u 3G/UMTS
 - celý frekvenční kanál přenáší více (užších) nosných
- na uplinku: je použita technika SC-FDMA (Single Carrier FDMA)
- celý frekvenční kanál přenáší menší počet (širších) nosných

rychlosti přenosu dat v LTE

- (skutečně) dosahované rychlosti přenosu dat závisí na celé řadě faktorů:
 - míře sdílení
 - kolik aktivních uživatelů právě sdílí kapacitu jedné buňky/sektoru
 - kolik různých přenosů právě probíhá
 - šířce frekvenčního kanálu
 - zde jde o kanál šířky 20 MHz, 15 MHz, 10 MHz atd.

když se mluví o max. rychlostech, předpokládá se jen 1 uživatel (nevytížená buňka)

- stupni MIMO
 - pro nejvyšší vyšší rychlosti se využívá 4x4 MIMO a tzv. MU-MIMO (MultiUser MIMO)
- použitém způsobu modulace (64 QAM, QPSK,)
- dalších technikách (např. beamforming)
- schopnostech koncového zařízení pro LTE (UE, User Equipment)
 - dělí se do 5 kategorií (nejvyšší je 5)

"titulkové" rychlosti

- teoretické maximum LTE: downlink 300 Mbit/s, uplink 75 Mbit/s
 - ale s buňkou "jen pro sebe" (žádní další uživatelé / žádné další přenosy), a navíc:
 - frekvenční kanál 20 MHz a koncové zařízení UE kategorie 5 (4x4 MIMO, 64 QAM i na uplinku)

kategorie UE	1	2	3	4	5
teoretická max. rychlost (kanál šířky 20 MHz)	10/5 Mbit/s	50/25 Mbit/s	100/50 Mbit/s	150/50 Mbit/s	300/75 Mbit/s
MIMO	žádné	2x2	2x2	2x2	4x4

LTE Carrier Aggregation

- LTE kategorie 1 až 5 představuje "1. vlnu LTE"
 - je definováno ve standardu 3GPP Release 8 (prosinec 2008)
 - počítá s využitím jednoho frekvenčního kanálu
 - teoretické maximální rychlosti ("titulkové" rychlosti) předpokládají kanál o šířce 20 MHz
- další možnost zrychlení: využít více frekvenčních kanálů současně
 - označováno jako Carrier Aggregation

- poprvé definováno ve standardu 3GPP Release 10 (červen 2011)
 - zavádí kategorie 6, 7 a 8

Iratogonia	max. agregace		MIMO		max. teoretická rychlost	
kategorie	downlink	uplink	downlink	uplink	downlink	uplink
kat. 6	20+20 MHz (nebo 1x40 MHz)	20 MHz	2x2 (nebo 4x4)	1x1	300 Mbit/s	50 Mbit/s
kat. 7	20+20 MHz (nebo 1x40 MHz)	20 MHz	2x2 (nebo 4x4)	2x2	300 Mbit/s	100 Mbit/s
kat. 8	5x 20 MHz	5x 20 MHz	8x8	4x4	3 Gbit/s	1,5 Gbit/s

- maximem je agregování 5 frekvenčních kanálů o šířce 20 MHz
 - tj. v součtu 100 MHz

teoretické maximum, reálně nevyužitelné

LTE Carrier Aggregation

agregované kanály (CC) mohou být:

- mobilní operátoři mohou využívat pro LTE jen některé frekvenční kanály
 - ze svého přídělu (pro které mají individuální oprávnění)
 - jen některé jsou "technologicky neutrální" a umožňují nasazení LTE

situace v ČR, 1H2016				v závorce: příděl neumožň	uje využití pro LTE	
Operátor Operátor	Kmitočtové pásmo					
	800 MHz	900 MHz	1800 MHz	2100 MHz	2600 MHz	
02	10 MHz	0 (12,4 MHz)	15 MHz (17 MHz)	0 (20 MHz)	20 MHz	
T-Mobile	10 MHz	0 (12,4 MHz)	15 MHz (20 MHz)	10 MHz (20 MHz)	5 MHz (20 MHz)	
Vodafone	10 MHz	3 MHz (10 MHz)	15 MHz (22 MHz)	10 MHz (20 MHz)	0 (20 MHz)	

LTE-A (LTE Advanced)

- obecné označení pro "druhou vlnu" LTE
 - s cílem dosahovat ještě vyšších rychlostí (a nižší latence) než LTE, díky:
 - dokonalejším metodám a postupům
 - ještě dokonalejší kódování, vyšší stupně MIMO,
 - agregaci více frekvenčních kanálů (CC, Component Carrier)
 - ve stejném/jiném pásmu, souvislých/nesouvislých kanálů
- konkrétní varianty jsou definovány (jako kategorie) v jednotlivých 3GPP Release:
 - Release 10 (2011):
 - kategorie 6 (max. 150/50 Mbit/s) a 7 (max. 150/100 Mbit/s)
 - kategorie 8 (max. 3/1,5 Gbit/s) reálně nevyužitelné
 - Release 11 (2012)
 - kategorie 9 (max. 450/50 Mbit/s) a 10 (max. 450/100 Mbit/s)
 - Release 12 (2014)
 - kategorie 11 (max. 600/50 Mbit/s) a 12 (max. 600/100 Mbit/s)

–

LTE vs. 4G

- mobilní generace (1G / 2G / 3G /4G) nejsou nikde formálně definovány
 - neformálně se 3G a 4G odvozují od standardů ITU-T (Mezinárodní telekom. unie):
 - 3G vychází ze standardu **IMT-2000** (1995), původně FPLMTS (1985)
 - požaduje 2 Mbit/s pro stacionární terminál
 - 384 kbit/s při pomalém pohybu, 144 kbit/s při rychlém pohybu
 - technologie UMTS tyto požadavky zpočátku také nesplňovala !!!
 - a začala je splňovat až později (HSDPA, HSUPA, HPSA,
 - 4G vychází ze standardu IMT-Advanced (2008)
 - požaduje 1 Gbit/s pro stacionární terminál
 - a 100 Mbit/s při rychlém pohybu (jízda autem)
 - objevily se 2 "kandidátské" technologie, s ambicemi splnit požadavky IMT-Advanced
 - mobilní WiMAX
 - LTE (Long Term Evolution)
- u LTE se opakuje historie s UMTS
 - LTE nesplňuje požadavky standardu IMT-Advanced
 - obdobně, jako UMTS nesplňovala požadavky IMT-2000
 - zejména pokud jde o rychlost a spektrální účinnost
 - požadavky IMT-Advanced splňuje až LTE-Advanced (Release 8)
 - ovšem Release 8 je spíše "teoretická" varianta, v praxi obtížně realizovatelná
- LTE by správně měla být označována jako (pokročilejší) 3G technologie

přesto je LTE běžně označováno a nabízeno jako 4G technologie

• díky tomu, že jednotlivé generace (3G, 4G) nejsou nikde formálně definovány ©