LAN Interconnection and Basic Networking Devices

Computer Networks
Lecture 3

What are Networking Devices used for ?

- Interconnection of (originally separate) network segments
- Division of too large (congested) networks

Reasons for Network Interconnection and Division

- Increase of the coverage
 - Overcoming of reach limitation of the particular network technology
 - Interconnection of originally independent and/or geographically distant networks
- Traffic separation
 - Reduction of collisions and broadcast traffic
 - Better fault resiliency (fault isolation)
 - Security (eavesdropping, attacks etc.)

Network Devices for LAN Interconnection

Hub

Bridge/switch

Collision and Broadcast Domains

Bridge

- Operates at OSI RM layer 2
- Bound to a single network LAN technology
 - the same frame format on all interfaces
- Transparent (self-learning) or source-route bridging
- May convert media, encoding, etc.

In today's wired LANs, bridges have been replaced by switches

Transparent Bridging

- Forwards frames according to bridging table
 - Set of <MAC_address, port> records
- Bridging table is filled according to source MAC addresses and incoming ports of incoming frames
- Records of bridging table have a limited lifetime
 - Expiration counter of a record is reset whenever a frame with a particular MAC address arrives
- Frames with unknown destination MAC address are flooded to all ports
- Broadcast frames are forwarded to all ports
 - but not the one they came from
- A "Plug-and-Play" device
 - its presence is transparent to the stations

Source-route Bridging

- The path over the network is determined by the source station
- Each frame contains a list of network segments (bridge IDs) it has to travel through
 - Routing Information Field (RIF)
- Has been used in Token Ring
 - a structure of interconnected rings

Determination of the Path in SRB

- Before a source sends a data frame to a destination for the first time, it broadcasts a route discovery frame
- every bridge appends its Bridge ID to the RIF in discovery frame and forwards it to all ports
 - to avoid loops, bridge ignore discovery packets that already contains its Bridge ID in the RIF
- After the intended destination station receives the discovery frame, it reverses RIF and sends the discovery frame back to the source
 - along an already known path
- The source uses the RIF of the returned discovery frames as a path to the destination for subsequent data packets
 - it chooses one of the alternative paths multiple discovery packet responses arrive

Problem with Looped Frames in Transparent Bridging

- In case of 3 parallel bridges extra frames are also generated
 - The number of frames grows exponentially
- A solution: The Spanning Tree Protocol

Spanning Tree

- Bridges and switches implement an algorithm according to IEEE 802.1d
- A tree that spans a whole network topology graph is continually constructed
- One of the ports on redundant links will be blocked
- In case of link/port/bridge failure, the tree will be recalculated automatically
 - Some blocked port(s) will be unblocked

Stages of Spanning Tree Algorithm

- Election of the tree root (root bridge)
 - Selected according to configured bridge priorities or factory-set Bridge ID in case of equal priorities
- Creation of the shortest paths tree (from the root bridge to every other bridge)
 - Preferences of links may be influenced by configuration of link costs
 - A link cost is set in reverse proportion to the link speed by default (faster link → lower cost)
- Ports on the tree will forward frames, other ones will be blocked

An Example: Result of STP Operation

Terminology:

- Root port, Root Path Cost
- Designated Port
- Blocked Port

Spanning Tree: Operation in Converged State

- Root bridge generates BPDU message every 2 seconds
 - it travels down the tree
- Every bridge checks presence of BPDUs on its root port
- SPT algorithm defines transient port states (learning, listening)
 - needed to avoid temporary loops during reconvergence
- After a failure, a re-convergence may take up to 50 seconds

Networking Devices used in WAN

Router

What is routing?

- Forwarding packets hop by hop along the shortest path through the network to the destination
- Includes methods of finding shortest paths

Usage of Routers

Interconnects LANs at layer 3 of OSI RM

 allows interconnection of LANs with different networking technologies (Ethernet, WiFi, ...)

Routing

Responsibilities of a Router (1)

- Routes packets of a particular network protocol (s)
 - e.g. IP, IPv6, IPX, Apple Talk,...
 - Processes headers of the passing packets
 - e.g. decreases the Time-to-Live field of IP header used to protect against loops, recalculates checksum, processes options, etc.
- Searches the next-hop router according to destination address contained in the incoming packet header in the routing table
 - Hierarchical addressing helps to limit a number of records in the routing table
 - Packets for stations on directly connected networks are encapsulated properly and sent directly

Responsibilities of a Router (2)

- The routing table may be configured manually (static routing) or calculated automatically based on the routing information exchange between neighboring routers (dynamic routing)
 - the routing information exchange is called a routing protocol
- A router may perform a lot of additional functions
 - Network Address Translation
 - Firewalling, IDS/IPS
 - VPN Termination

Routing of Packets over the Network (1)

Routing of Packets over the Network (2)

Routing of Packets over the Network (3)

Routing of Packets over the Network (4)

