Redes TCP/IP Móvil

Luis Marrone

LINTI - UNLP

4 de mayo de 2016

Estamos en:

- Introducción
- IP Móvi
- IPv4 Móvil
- 4 IPv6 Móvil
- 5 TCP Móvil
- Bibliografía

Redes Móviles vs. Redes Portables

- No confundir redes móviles con redes portátiles
- Una red portátil requiere conexión al mismo AP
- Una red móvil mantiene la conexión al cambiar de AP

Movilidad – IP

- El uso de las direcciones IP contradice los requerimientos de movilidad
- Las direcciones identifican unívocamente a los usuarios
- Esa identidad define el ruteo resultante
- La movilidad cambia la identidad
- El usuario móvil o fijo necesita mantener su identidad para permanecer visible/alcanzable

X ejecuta ping a Y

Y se desplaza

Soluciones a la portabilidad

- DHCP
 - Y recibe una IP ∈ a la red visitada
- DNS dinámico
 - Y solicita al DNS principal de su dominio que asocie su nombre con

la nueva IP

DHCP - DNS dinámico

Soluciones a la portabilidad

- Solución propietaria
 - CISCO: LAM (Local Area Mobility)
 - Incluir direcciones de host en las tablas de ruteo

Estamos en:

- Introducción
- IP Móvil
- IPv4 Móvi
- 4 IPv6 Móvil
- 5 TCP Móvi
- Bibliografía

Mobile IP

- Cubre portabilidad y movilidad
- Especificado en IPv4 e IPv6

IPv4	IPv6
RFC 2002 - 10/1996	RFC 3775 - 06/2004
RFC 3220 - 01/2002	RFC 6275 - 07/2011
RFC 3344 - 08/2002	
RFC 5944 - 10/2010	

Mobile IP

- Cubre portabilidad y movilidad
- Especificado en IPv4 e IPv6

IPv4	IPv6
RFC 2002 - 10/1996	RFC 3775 - 06/2004
RFC 3220 - 01/2002	RFC 6275 - 07/2011
RFC 3344 - 08/2002	
RFC 5944 - 10/2010	

Generalidades

- Confluyen tres mecanismos
 - Descubrimiento de la red visitada
 - Registro de la nueva ubicación del móvil
 - Actualización del ruteo
- No se pierden las conexiones
- Depende de la velocidad del nodo móvil
- Depende del alcance del área de cobertura

Mobile IP en acción

Estamos en:

- Introducción
- IP Móvi
- IPv4 Móvil
- 4 IPv6 Móvil
- 5 TCP Móvil
- Bibliografía

Integrantes

- Nodo Móvil(Mobile Node MN)
- Red Nativa(Home Network HN)
- Dirección Nativa(Home Address HAd)
- Agente Local(Home Agent HA)
- Red Visitada(Foreign Network FN)
- Nodo Corresponsal(Correspondent Node CN)
- Care of Address CoA

Integrantes ...

Servicios

- Descubrimiento de Agente
- Registro
- Descarte Silencioso

Resumen de operaciones

- Los agentes móviles se anuncian con Aviso de Agente o mediante Solicitud de Agente
- ✓ El nodo móvil determina si se encuentra en red nativa o de visita
- √ Si red nativa
 - Opera normalmente
 - Si de regreso anula el Registro con Solicitud de Registro Respuesta de Registro
- ✓ Si red de visita obtiene CoA
- ✓ El nodo móvil registra el CoA con su agente local, intercambiando Solicitud de Registro – Respuesta de Registro
- √ El corresponsal envía normalmente los datagramas al nodo móvil
- Esos datagramas son interceptados por el agente local.
- √ El agente local los encapsula en un túnel con destino CoA
- ✓ El nodo móvil envía datagramas al corresponsal normalmente.

Mecanismos y Mensajes de Mobile IPv4

Operación	Mecanismo
Descubrimiento de agentes(HA, FA)	ICMP y extensiones
Registro	UDP
Túnel	IP-en-IP Encapsulado mínimo GRF

Registro

- √ Mensajes encapsulados en UDP
- ✓ Paradigma cliente servidor
- ✓ Port bien conocido 434
- ✓ Mensajes:
 - Solicitud de Registro
 - Respuesta de Registro

Descubrimiento de Agentes, HA, FA

- ✓ ICMP
- ✓ Aviso de Router
- √ Solicitud de Router
- ✓ Dos Tipos de Extensiones
 - √ Asociados a Control UDP
 - √ Asociados a los de aviso ICMP
- ✓ Tres formatos según extensión

Descubrimiento de Agentes

✓ Aviso de Agente – Extensión del Aviso de Router de ICMP

- ✓ IP TTL = 1
- √ Frecuencia de envío = 1/3 del tiempo de vida
- ✓ Frecuencia ajustada aleatoriamente

Descubrimiento de Agentes

Type: 16

Length: La longitud de la extensión en bytes, a partir del Sequence Number.

Sequence Number: Representa el número de mensajes enviados desde que se activó el agente.

Registration Lifetime: El tiempo de vida máximo que este agente aceptará en el pedido de registro recibido.

- R: Se requiere registro.
- B: Ocupado. El agente no acepta más pedidos de registro.
- H: El agente que envía este mensaje actúa como agente local (HA).
- F: Ídem para el caso que actúe como agente extranjero (FA).
- M: Recibe datagramas provenientes de túneles con encapsulamiento mínimo.
- G: Acepta datagramas provenientes de túneles con encapsulamiento de ruteo genérico (GRE).
- r: Fijo en 0.
- T: Soporta túnel inverso.
- U: Soporta túnel de UDP.
- X: El agente soporta revocación de registro.
- I: El agente soporta registro regional.

reserved: Por el momento sin uso, se transmiten los bits en 0.

Registro

- ✓ El nodo móvil anuncia su ubicación
- ✓ Renueva su registro
- ✓ Anula el registro
- Descubre su dirección nativa
- √ Mantener múltiples registros simultáneos
- ✓ Anular parcialmente los registros
- Descubrir la dirección del Agente local

Registro en Acción

Algunos Inconvenientes

Corresponsal en la misma red que el móvil

- ✓ Los datagramas enviados por Y a X llegarán sin inconvenientes
- √ Los datagramas que X envíe a Y no llegan
- ✓ X aplicará direccionamiento directo al ∈ Y a la misma red

Algunos Inconvenientes Soluciones

- √ "Proxy ARP" en HA
- √ "ARP gratuito" por parte de HA
 - HA envía un ARP broadcast: MAC Y CoA

Algunos Inconvenientes

Firewalls - Listas de Acceso

Algunos Inconvenientes

Soluciones - Firewalls - Listas de Acceso

- ✓ Túnel $FA \rightarrow HA D \Rightarrow A$
- ✓ Observación:
 - Paso obligado por B
 - Ruteo no óptimo

Redes Móviles

Nodo Móvil se conecta a una red móvil

- √ Y viaja en tren (T) con servicio de IP Móvil
- √ Y se registra con CoAT
- √ El Home Agent de Y (HAY) actualiza su tabla
- ✓ El tren se registra con un FAD (Foreign Agent Disponible), según su marcha, con CoAD
- √ El corresponsal X envía un datagrama a Y
- √ El datagrama es ruteado a la red fija de Y
- √ El HAY lo encapsula con el CoAT
- √ El datagrama llega a la red fija de T
- √ Lo captura el HAT y lo encapsula con el CoAD
- √ El FAD lo desencapsula y lo envía al FAT
- ✓ El FAT lo desencapsula y lo envía a Y

Estamos en:

- Introducción
- IP Móvi
- IPv4 Móvil
- 4 IPv6 Móvil
- 5 TCP Móvil
- Bibliografía

Generalidades

- RFC 3775 junio 2004
- ✓ RFC 6275 julio 2011
- Participan:
 - Neighbour Discovery (RFC 4861)
 - Autoconfiguración sin memoria (RFC 4862/7527)
- ✓ Corresponsal ⇒ Nodo Móvil Direccionamiento tradicional
- ✓ Nodo Móvil ⇒ Corresponsal:
 - No se requiere FA para obtener el CoA.
 Autoconfiguración y Neighbour Discovery lo suplen

Generalidades...

- Mejoras de ruteo
 - Extensiones de header para que el nodo móvil actualice el "binding" al corresponsal antes de su desplazamiento
 - Extensiones de header con opciones de ruteo para evitar túneles
- ✓ Independencia del nivel de enlace al utilizar Neighbour Discovery (Nivel de Red) en lugar de ARP(Nivel de Enlace, aprox)

Operación básica de IPv6

- Túnel bidireccional
 - No necesita soporte del corresponsal
 - Los datagramas se encapsulan desde el nodo móvil al HA
 - El HA recurre al Neighbour Discovery para interceptar los datagramas destinados al nodo móvil

Operación básica de IPv6

- Ruta óptima
 - El nodo móvil registra su CoA con el corresponsal
 - Los datagramas desde el corresponsal se enrutan directamente al CoA del móvil
 - El corresponsal acude a la extensión de ruteo tipo = 2
 - La ruta óptima queda asegurada
 - La extensión utilizada permite incorporar la dirección nativa del móvil

```
| Next Header | Hdr Ext Len-2 | Routing Type-2|Segments Left-1|
| Reserved | Reserved | Reserved | Routing Type-2|Segments Left-1|
```


- Ruta óptima
 - El nodo móvil registra su CoA con el corresponsal
 - Los datagramas desde el corresponsal se enrutan directamente al CoA del móvil
 - El corresponsal acude a la extensión de ruteo tipo = 2
 - La ruta óptima queda asegurada
 - La extensión utilizada permite incorporar la dirección nativa del móvil

```
| Next Header | Hdr Ext Len-2 | Routing Type-2|Segments Left-1 |
| Reserved | Reserved |
| Home Address |
```


- Ruta óptima
 - El nodo móvil registra su CoA con el corresponsal
 - Los datagramas desde el corresponsal se enrutan directamente al CoA del móvil
 - El corresponsal acude a la extensión de ruteo tipo = 2
 - La ruta óptima queda asegurada
 - La extensión utilizada permite incorporar la dirección nativa del móvil

```
| Next Header | Hdr Ext Len-2 | Routing Type-2|Segments Left-1 |
| Reserved | Reserved |
| Home Address |
```


Extensión de Opción Nativa, type = 201

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
```


- Extensión de Movilidad, type = 135
- Utilizada por los corresponsales, nodos móviles y home agents
- Mensajes de "bindings"

Payload Proto: Identifica el tipo de header que sigue a esta extensión. Serán los headers de IPv6 tradicional.

Header Len: La longitud del header en unidades de 8 bytes.

MH Type: Identifica el mensaje de movilidad particular que transporta.

Reserved: para uso futuro.

Checksum: Con una operatoria similar a la de IP conocida y con el agregado de un pseudo header con componentes relevantes del header del datagrama [RFC 2460].

Message Data: Contiene el dato acorde con tipo de header mobility que le corresponde.

Entre los varios tipos de mensajes de movilidad que transporta tenemos:

Home Test Init, Home Test, Care-of Test Init, Care-of Test.

Mensajes que le permiten al nodo corresponsal verificar la ubicación del nodo móvil. Es decir verificar el CoA asociado con la dirección IP del nodo móvil

ICMPv6 en IP Móvil

- Nuevos mensajes enviados por el nodo móvil y home agent
 - Home Agent Address Discovery Request
 - Home Agent Address Discovery Reply

- Nuevos mensajes enviados por el nodo móvil y su home agent
 - Mobile Prefix Solicitation
 - Mobile Prefix Advertisement

Seguridad en IPv6 Móvil

- Protege:
 - Actualizaciones de "binding"
 - Aviso de prefijos
 - Transporte de datos
 - Alcance sobre nodo móvil, corresponsal y home agent
- El nodo móvil y el home agent utilizan IPsec ESP en modo transporte
- Las actualizaciones a los corresponsales van por mensajes de ruteo(RFC 4225)

Estamos en:

- Introducción
- 2 IP Móvi
- IPv4 Móvil
- 4 IPv6 Móvil
- TCP Móvil
- Bibliografía

Generalidades

- Control de congestión afecta la performance
- "Slow Start" disparado por RTO
- En redes fijas alta probabilidad que el RTO expire por congestión
- En redes móviles mayor probabilidad de pérdida con disparo del RTO en ausencia de congestión
- ✓ Debido al enlace inalámbrico y su método de acceso
- Debido a la propia movilidad

I-TCP (TCP Indirecto)

Divide la sesión en parte fija/estándard y parte móvil/inalámbrica

I-TCP (TCP Indirecto)

Divide la sesión en parte fija/estándard y parte móvil/inalámbrica

I-TCP en acción

- El AP actúa como proxy de TCP
- El AP es el nodo móvil para el corresponsal
- El AP es el nodo fijo para el móvil
- ✓ El corresponsal no percibe el enlace inalámbrico
- ✓ El FA despacha los segmentos en ambas direcciones
- Los datagramas transmitidos por el corresponsal son validados por el FA y éste los transmite al móvil
- El nodo móvil lo recibe y lo valida
- La validación queda en el FA.
- En sentido contrario lo mismo

I-TCP Tareas adicionales

- Desplazamiento del nodo móvil con "handover"
- ✓ El AP almacena los datagramas a retransmitir temporariamente
- El nodo móvil se registra en el nuevo AP
- El nuevo FA avisa al anterior de la nueva ubicación
- Se traslada al nuevo FA el "socket"

I-TCP - Ventajas

- ✓ Los errores de transmisión de un sector no se transfieren al otro
- ✓ No requiere cambios de TCP en aquéllos que no participan de la conexión
- ✓ Los cambios se dan en actores que no están vinculados a Internet

I-TCP – Desventajas

- ✓ La pérdida de la sesión puede generar problemas si FA sale de servicio
- La división no es visible para el corresponsal. Una caída en el AP provocará la caída de la sesión sin motivos para el corresponsal
- ✓ El FA debe integrarse a la infraestructura de seguridad

- Modalidad transparente
- Mantiene la sesión end-to-end
- Almacena temporariamente los daatagramas en un "buffer" para retransmitirlos en caso que haga falta
- ✓ Reside en el FA del nodo móvil

- Modalidad transparente
- Mantiene la sesión end-to-end
- Almacena temporariamente los daatagramas en un "buffer" para retransmitirlos en caso que haga falta
- ✓ Reside en el FA del nodo móvil

- Modalidad transparente
- Mantiene la sesión end-to-end
- Almacena temporariamente los daatagramas en un "buffer" para retransmitirlos en caso que haga falta
- ✓ Reside en el FA del nodo móvil

- Modalidad transparente
- Mantiene la sesión end-to-end
- Almacena temporariamente los daatagramas en un "buffer" para retransmitirlos en caso que haga falta
- Reside en el FA del nodo móvil

Snoop-TCP Operatoria

Datos del corresponsal al nodo móvil

- ✓ El FA almacena los datos
- ✓ Los descarta cuando recibe el ACK del nodo móvil
- ✓ Monitorea el tráfico en ambos sentidos
- ✓ Análisis particular de los ACK
- ✓ Frente a ACK repetidos que evidencian la pérdida de segmentos los captura/filtra y procede a la retransmisión

Snoop-TCP Operatoria

Datos del nodo móvil al corresponsal

- √ El FA revisa si se perdió un segmento
- ✓ Si detecta la pérdida envía un NACK al nodo móvil
- ✓ El nodo móvil retransmite inmediatamente el segmento

Snoop-TCP - Ventajas

- ✓ Mantiene la sesión TCP end-to-end
- ✓ No requiere cambios en el corresponsal
- No requiere actualización de estado si el nodo móvil se desplaza a otro FA
- ✓ Si el nuevo FA no soporta este mecanismo se pasa a operar en TCP estándar

Snoop-TCP - Desventajas

- ✓ El enlace inalámbrico es visble para el corresponsal
- ✓ Incorporación del NACK a los AP y nodos móviles
- ✓ Si se trabaja con IPsec en la modalidad de Security Payload, la retransmisión por parte del FA se puede entender como ataque de "replay"
- √ La seguridad debe subir de nivel

MTCP-Mobile TCP

- ✔ Protocolo que emula la funcionalidad de TCP entre el nodo móvil y el fijo
- Presente en el segmento directo entre el AP y el nodo móvil
- Escenario de un nivel de enlace
- ✓ Divide en tramo fijo y tramo inalámbrico
- Optimiza el tramo inalámbrico

MTCP-Características

- Elimina el procesamiento IP
- Elimina mecanismos de control de congestión
- ✓ Pasa a ser control de flujo
- Compresión del encabezado
- Técnicas de recuperación optimizadas
- No hay ventana en el segmento inalámbrico
 - En el tramo inalámbrico los segmentos llegan en orden
 - Técnicas de recuperación sencillas
 - Validaciones selectivas, SACK

MTCP – Estructuras de Datos

Paquete de Control

01	16 31	
1 Code Bits	Connection ID	
Sequence Number	Acknowledgment Number	
Reverse Connection ID	Checksum	
Max Buffer Size	Maximum Packet Size	
Destination Port	Source Port	
Destination IP Address		
Source IP Address		

MTCP - Estructuras de Datos

Paquete de Datos

MTCP-Code Bits

<u>Bit</u>	<u>Name</u>	Meaning (when set)
1-2	Reserved	
3	RET	Retransmit request
4-6	MFC	MH Flow Control bits
7	ONF	Mobile Gateway ON/OFF
		Flow Control
8	SYN	Synchronize the connection parameters
9	ACK	Acknowledgement field is valid
10	URG	Urgent pointer is valid
11	PSH	This packet is to be pushed
12	RST	Reset the connection
13	POL	Poll for the status of the
		receiver
14	FIN	Terminate the connection
15	Reserved	·

MTCP-Establecimiento de Sesión (Open Active)

Control de Conexión

- Secuenciamiento por paquetes, no por bytes.
- Connection ID, identificación de la conexión a la que pertenece el paquete
- Sequence Number y Acknowledgment Number como en TCP, pero en 16 bits
- ✓ Checksum extensible a todo el paquete
- Max Buffer Size y Maximum Buffer Size como en TCP
- En ausencia de tráfico se dispone de un mecanismo de "Persist Timer" similar al de TCP
- Control de Flujo asimétrico

Retransmisión y Timers

- Diferentes esquemas en cada sentido de la transmisión
- "Go-Back-N" para la retransmisión de paquetes por el "Mobile-Gateway"
- ✓ Implementar timers en el "Mobile-Gateway"
- "Selective Reject" en las retramsmisiones del "Mobile Host"

Retransmisiones del Mobile Gateway

Retransmisiones del Mobile Host

Control de Flujo en Mobile Gateway

- ✓ Mecanismo ON/OFF
- Dos umbrales, "high.threshold" y "low.threshold"
- Señaliza con Code Bit 7
- ON, continuar trasnsmisión. Si el nivel de ocupación del buffer es menor que "low.threshold"
- OFF, detenerse. Si el nivel de ocupación supera al "high.threshold"

$$high.threshold = Buffer - RTT \times DR$$

$$low.threshold = RTT \times DR$$

DR = Data Rate

El MH valida el Bit 7 recibido repitiéndolo en los paquetes que envía al MG

Control de Flujo MG

Control de Flujo en Mobile Host

- Realizado por el MG
- Estima la capacidad del buffer del MH
- El MH envía los Code Bits BO para la estimación por parte del MG

Performance de MTCP

Estamos en:

- Introducción
- 2 IP Móvi
- IPv4 Móvil
- 4 IPv6 Móvi
- TCP Móvi
- Bibliografía

Bibliografía I

- A. BAKRE ET AL., I-TCP: Indirect TCP for Mobile Hosts, Department of Computer Science Rutgers University, Piscataway, NJ. DCS-TR-314. Octubre, 1994,
- H. ELAARAG, Improving TCP Performance over Mobile Networks, ACM Computing Surveys, Vol. 34, No. 3, September 2002, pp. 357-374.
- Z. J. HAAS Y A. WARKHEDI, The design and performance of Mobile TCP for wireless networks, Journal of High Speed Networks 10 (2001) 187-207.
- C. E. PERKINS, Request for Comments: 5944 IP Mobility Support for IPv4, Revised, IETF November 2010.
- C. E. PERKINS, Request for Comments: 6275 Mobility Support in IPv6, IETF July 2011.

Bibliografía II

CHI HO NG, J.CHOW, Y L.TRAJKOVIC, *Performance Evaluation of TCP over WLAN 802.11 with the Snoop Performance Enhancing Proxy*.

