Drosophila melanogaster

Drosophila

means "dew-loving"

Latin: drósos phílos

English: dew loving

露水

also called: fruit flies

reason: linger around overripe or rotting

fruits, in particular, grapes.

Drosophila

about 1,500 species totally

found all around the world, in deserts, tropical rainforest, cities, and alpine zones

more species in the tropical regions

493 species in China

Food: fruit, decaying plant, flowers, fungal and mushrooms

Drosophila melanogaster

Scientific classification

Kingdom: Animalia 动物界

Phylum: Arthropoda 节肢动物门

Class: Insecta 昆虫纲

Order: Diptera 双翅目

Family: Drosophilidae 果蝇科

Genus: Drosophila 果蝇属

Species: Drosophila melanogaster 黑腹果蝇

Developmental biology

Drosophila melanogaster

The most important model organism for studies in Genetics and Developmental Biology

Small size: 5 mm

A short generation time: 10 days

Large number of offspring: a female lays 50 - 80 eggs everyday

Life span: 60 - 90 days

Compact genome: sex chromosome 1 pair

autosome 3 pairs

Easy to obtain mutant animals: X-ray, chemical mutagen (EMS),

transposable element

Genetic manipulation is easy: 100 years of genetics

Easily cultured and Inexpensive: fruits or medium

Genome: sequenced in 2000, about 15000 genes

77% of human disease genes (714/929 genes)

"for his discoveries concerning the role played by the chromosome in heredity "

Thomas Hunt Morgan (1866 –1945)

1906, began his work on D. melanogaster at Columbia University

1910, reported the white eyed mutant – the first gene (white) identified

1933, rewarded Nobel Prize in Medicine

Table 1: Expected Mendelian Ratios versus Morgan's Actual Results

Cross	Outcome			
	Expected Phenotypes	Observed Phenotypes		
P ₁ Red ♀ × P ₁ White δ	F ₁ = All Red	F ₁ = All Red*		
F ₁ Red 우 × F ₁ Red 8	75% Red ♀and 含	50% Red ♀ 25% Red 含 25% White 含		

Thomas Morgan

Alfred Sturtevant

Identified chromosomes as the carriers of the hereditary material as a undergraduate student of Morgan in 1911

Calvin Bridges

Ph.D. thesis - the 1st paper in the 1st issue of *Genetics* in 1916

Polytene chromosome and banding pattern

Thomas Morgan

Alfred Sturtevant

Calvin Bridges

Ph.D. thesis - the 1st paper in the 1st issue of *Genetics* in 1916

Chromosome

The Nobel Prize in Physiology or Medicine 1946

"for the discovery of the production of mutations by means of X-ray irradiation "

Hermann Joseph Muller (1890 –1967)

The life cycle of Drosophila melanogaster

Drosophila oocyte

Figure 21-30. A Drosophila oocyte in its follicle. The oocyte is derived from a germ cell that divides four times to give a family of 16 cells that remain in communication with one another via cytoplasmic bridges (gray). One member of the family group becomes the oocyte, while the others become nurse cells, which make many of the components required by the oocyte and pass them into it via the cytoplasmic bridges. The follicle cells that partially surround the oocyte have a separate ancestry. As indicated, they are the sources of terminal and ventral egg-polarizing signals. (From 5 Bruce Albert Book)

syncytial blastoderm

Drosophila embryogenesis

Dorsal

Ventral

Drosophila embryogenesis

Drosophila embryo morphogenesis is the process from which a fertilized single cell egg becomes a multicellular embryo with structured tissues and specialized cells/organs. This process occurs through many complex cell shape changes and movements, including the formation of cellular blastoderm, gastrulation, and germ band elongation/retraction.

The life cycle of Drosophila melanogaster

Drosophila Development

Haeckel's 1874 version of vertebrate embryonic development.

Segmentation in Drosophila

Developmental Biology S. F. Gilbert

The Nobel Prize in Physiology or Medicine 1995

"for their discoveries concerning the genetic control of early embryonic development "

Edward B. Lewis

Christiane Nüsslein-Volhard

Eric Wieschaus

Segmentation genes

the segmentation genes divide the embryo into 14 parasegments
which include the posterior part of an anterior segment
and the anterior portion of the segment behind it

Christiane Nüsslein-Volhard

Eric Wieschaus

Christiane Nüsslein-Volhard

Eric Wieschaus

Four classes of genes responsible for formation of segments

- Maternal genes
- Gap genes
- Pair-rule genes
- Segmentation polarity genes
- Function in a hierarchy that progressively subdivides the embryo into successively smaller units

Christiane Nüsslein-Volhard

Eric Wieschaus

Anterior-posterior (A/P) polarity and Segmentation

bicoid

Maternal gene

Hunchback (red)
kruppel (green)
Gap gene

fushi tarazu

Pair-rule gene

engrailedSegment polarity gene

Maternal effect gene bicoid control anterior structures

Morphogen Theory

Morphogens: Substances that define different cell fate in a concentration-dependent manner

Klaus Sander proposed:

- Each pole of the egg produces a different substance
- · These substance form the opposing gradients by diffusion
- Concentrations of these substances determine the type of structure produced at each position long the body axis

Bicoid (Bcd) is a morphogen

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Maternal effect gene bicoid control anterior structures

Maternal Effect Genes

Anterior-posterior (A/P) polarity and Segmentation

Gap genes

- Gap mutants show a gap in segmentation pattern at positions where particular gene is absent
- Binding sites in promoter have different affinities for maternal transcription factors
- Gap genes encode transcription factors that influence expression of other gap genes

Gap genes

Zones of expression of four gap genes: hunchback, Kruppel, knirps, and giant in late syncytial blastoderm embryos

(a) Zones of gap gene expression

Mutations in gap gene result in loss of segments corresponding to zone of expression

Defects in segmentation from mutations in gap genes

Fig. **13**.22b

Pair-rule Genes

Segment polarity genes are lowest level of segmentation hierarchy

 Mutations in segment polarity genes cause deletion of part of each segment and its replacement by mirror image of different part of next segment

Drosophila embryogenesis: Segmentation genes

Homeotic selector genes: determine the fate of each segment

Drosophila Homeotic mutants

Edward B. Lewis

Wild type

Antp

Ubx

The homeotic genes contain a highly conserved homeobox (Hox)

The Homeobox (*Hox*) genes are transcription regulators the Homeobox encodes a Homeodomain

Which is the first known DNA-binding domain

Evolution of Metazoan Hox genes

The Nobel Prize in Physiology or Medicine 2011

"for their discoveries concerning the activation of innate immunity"

Jules Hoffmann

Toll/NF-кB 信号通路 调控先天免疫

Cell, Vol. 86, 973-983, September 20, 1996, Copyright @1996 by Cell Press

The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults

Bruno Lemaitre, Emmanuelle Nicolas, Lydia Michaut, Jean-Marc Reichhart, and Jules A. Hoffmann

The Nobel Prize in Physiology or Medicine 2017

"for their discoveries of molecular mechanisms controlling the circadian rhythm"

Michael Rosbash

Michael W. Young

Seymour Benzer 1921 - 2007

Clock Mutants of Drosophila melanogaster

(eclosion/circadian/rhythms/X chromosome)

RONALD J. KONOPKA AND SEYMOUR BENZER

Division of Biology, California Institute of Technology, Pasadena, Calif. 91109

Ronald Konopka 1947 - 2015

ABSTRACT Three mutants have been isolated in which the normal 24-hour rhythm is drastically changed. One mutant is arrhythmic; another has a period of 19 hr; a third has a period of 28 hr. Both the eclosion rhythm of a population and the locomotor activity of individual flies are affected. All these mutations appear to involve the same functional gene on the X chromosome.

The Morgan pedigree

Current Biology 1996

