204 Connexité. Exemples d'applications.

I - Diverses approches de la connexité

Soit (E, d) un espace métrique.

1. Une approche topologique

Proposition 1. Les assertions suivantes sont équivalentes.

[GOU20] p. 38

- (i) Il n'existe pas de partition de *E* en deux ouverts disjoints non vides.
- (ii) Il n'existe pas de partition de *E* en deux fermés disjoints non vides.
- (iii) Les seules parties ouvertes de E sont \emptyset et E.

Définition 2. Un espace métrique vérifiant l'une des assertions de Proposition 1 est dit **connexe**.

Remarque 3. Remarquons qu'il s'agit-là d'une définition *topologique* : tous les résultats de cette sous-section sont donc valables dans le cadre plus général d'un espace topologique.

Proposition 4. Soit $A \subseteq E$. Les assertions suivantes sont équivalentes.

- (i) A est connexe.
- (ii) Si $A \subseteq O_1 \cap O_2$ avec O_1 , O_2 ouverts de E tels que $A \cap O_1 \cap O_2 = \emptyset$, alors

$$(A \cap O_1 = \emptyset \text{ et } A \subseteq O_2) \text{ ou } (A \cap O_2 = \emptyset \text{ et } A \subseteq O_1)$$

(iii) Si $A \subseteq F_1 \cap F_2$ avec F_1 , F_2 fermés de E tels que $A \cap F_1 \cap F_2 = \emptyset$, alors

$$(A \cap F_1 = \emptyset \text{ et } A \subseteq F_2) \text{ ou } (A \cap F_2 = \emptyset \text{ et } A \subseteq F_1)$$

Exemple 5. \mathbb{Q} n'est pas un connexe de \mathbb{R} .

Proposition 6. Une partie ouverte et fermée d'un espace connexe est vide ou égale à l'espace entier.

p. 350

Proposition 7. L'image d'un connexe par une application continue est connexe.

p. 39

p. 44

[DEV]

Application 8. Soit $f: \mathbb{U} \to \mathbb{R}$ continue. Alors il existe deux points diamétralement opposés de \mathbb{U} qui ont la même image par f.

Corollaire 9. E est connexe si et seulement si toute application continue de E dans $\{0,1\}$ est constante.

p. 39

Proposition 10. Soit $(C_i)_{i \in I}$ une famille de parties connexes de E. On suppose que

$$\exists i_0 \in I \text{ tel que } \forall i \in I, \, C_{i_0} \, \cap \, C_i \neq \emptyset$$

Alors, $\bigcup_{i \in I} C_i$ est connexe.

Contre-exemple 11. $\{0\}$ et $\{1\}$ sont des connexes de \mathbb{R} , mais pas $\{0\} \cup \{1\} = \{0, 1\}$.

Proposition 12. Un produit fini d'espaces métriques est connexe si et seulement si ces espaces métriques sont tous connexes.

[**I-P**] p. 116

Application 13. Soit (E, d) un espace métrique compact. Soit (u_n) une suite de E telle que

 $d(u_n, u_{n-1}) \longrightarrow 0$. Alors l'ensemble Γ des valeurs d'adhérence de (u_n) est connexe.

Corollaire 14 (Lemme de la grenouille). Soient $f : [0,1] \to [0,1]$ continue et (x_n) une suite de [0,1] telle que

$$\begin{cases} x_0 \in [0,1] \\ x_{n+1} = f(x_n) \end{cases}$$

Alors (x_n) converge si et seulement si $\lim_{n\to+\infty} x_{n+1} - x_n = 0$.

[**GOU20**] p. 42

2. Une approche géométrique

Définition 15. On appelle **chemin** de E tout application $\gamma:[0,1] \to E$ continue. L'image $\gamma^* = \gamma([0,1])$ du chemin s'appelle un **arc**, $\gamma(0)$ **l'origine** de l'arc et $\gamma(1)$ son **extrémité**.

Définition 16. E est dit **connexe par arcs** si pour tout $(a, b) \in E^2$, il existe un arc inclus dans E d'origine a et d'extrémité b.

Remarque 17. Il s'agit là encore d'une définition topologique.

Théorème 18. Un espace connexe par arcs est connexe.

Contre-exemple 19. L'ensemble

$$\Gamma = \left(\bigcup_{x \in \mathbb{Q}} (\{x\} \times \mathbb{R}^+)\right) \cup \left(\bigcup_{x \in \mathbb{R} \setminus \mathbb{Q}} (\{x\} \times \mathbb{R}^-_*)\right)$$

est un connexe de \mathbb{R}^2 non connexe par arcs.

Proposition 20. La réciproque est vraie dans un ouvert d'un espace vectoriel normé.

Application 21. \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.

3. Une approche algébrique

Définition 22. On définit la relation \mathcal{R} suivante sur E:

$$x\mathcal{R}y \iff \exists C \subseteq E \text{ connexe tel que } x, y \in E$$

Proposition 23. (i) \mathcal{R} est une relation d'équivalence sur E.

(ii) Si $x \in E$, sa classe d'équivalence est la réunion des connexes contenant x.

Définition 24. Une classe d'équivalence pour la relation $\mathcal R$ est une **composante connexe** de E.

Remarque 25. E est la réunion disjointe de ses composantes connexes. E est donc connexe s'il n'admet qu'une seule composante connexe.

Exemple 26. On se place dans le cadre où E est un espace vectoriel euclidien. Alors, $\mathcal{O}(E)$ est non-connexe. Ses composantes connexes sont SO(E) et $\{u \in \mathcal{O}(E) \mid \det(u) = -1\}$.

[ROM21] p. 724

Proposition 27. Les composantes connexes de E sont des fermés de E. Si elles sont en nombre fini, ce sont également des ouverts de E.

[**GOU20**] p. 41

II - Exemples d'applications en analyse

1. En analyse réelle

Théorème 28. Les connexes de \mathbb{R} sont les intervalles.

p. 41

Théorème 29 (Des valeurs intermédiaires). Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue sur I. Alors f(I) est un intervalle.

Remarque 30. Une autre manière d'écrire ce résultat est que si $f(a) \le f(b)$ (resp. $f(a) \ge f(b)$) avec a < b, alors pour tout $\gamma \in [f(a), f(b)]$ (resp. pour tout $\gamma \in [f(b), f(a)]$), il existe $c \in [a, b]$ tel que $f(c) = \gamma$.

Corollaire 31 (Théorème de Darboux). Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ dérivable sur I. Alors f'(I) est un intervalle.

p. 47

2. En calcul différentiel

Proposition 32. Soit U un ouvert connexe d'un espace vectoriel normé E. Soit $f: U \to F$ où F est un espace vectoriel normé. Si f est différentiable telle que $\forall x \in U$, $\mathrm{d} f_x = 0$, alors f est constante sur U.

p. 328

Exemple 33. Soit f une fonction holomorphe sur un ouvert connexe Ω de \mathbb{C} telle que la suite $(f^{(n)})$ converge uniformément sur tout compact de Ω . On note g la limite de la suite $(f^{(n)})$. Alors, il existe $C \in \mathbb{C}$ tel que $g = C \exp$.

[BMP] p. 80

Proposition 34. Soit U un ouvert connexe d'un espace vectoriel normé E. Soit $f: U \to E$. Si f est de classe \mathscr{C}^1 telle que $\forall x \in U$, d f_x est une isométrie, alors f est une isométrie affine.

[**GOU20**] p. 349

3. En analyse complexe

Soit $\Omega \subseteq \mathbb{C}$ un ouvert. On suppose Ω connexe. Soit $f : \Omega \to \mathbb{C}$.

[**BMP**] p. 53

Théorème 35 (Zéros isolés). Si f est une fonction analytique sur Ω et si f n'est pas identiquement nulle, alors l'ensemble des zéros de f n'admet pas de point d'accumulation dans Ω .

Corollaire 36. L'ensemble des zéros d'une fonction analytique non nulle sur Ω est au plus dénombrable.

Remarque 37 (Prolongement analytique). Reformulé de manière équivalente au Théorème 35, si deux fonctions analytiques coïncident sur un sous-ensemble de Ω qui possède un point d'accumulation dans Ω , alors elles sont égales sur Ω .

Exemple 38. Il existe une unique fonction g holomorphe sur \mathbb{C} telle que

$$\forall n \in \mathbb{N}^*, g\left(\frac{1}{n}\right) = \frac{1}{n}$$

et c'est la fonction identité.

Contre-exemple 39. Il existe au moins deux fonctions g holomorphes sur $\Omega = \{z \in \mathbb{C} \mid \text{Re}(z) > 0\}$ telles que

$$\forall n \in \mathbb{N}^*, g\left(\frac{1}{n}\right) = 0$$

Application 40 (Transformée de Fourier d'une Gaussienne). On a

$$\forall x \in \mathbb{R}, \int_{\mathbb{R}} e^{-t^2} e^{-itx} dt = \sqrt{\pi} e^{-\frac{x^2}{4}}$$

Théorème 41 (Principe du maximum). On suppose Ω borné et f holomorphe sur Ω et continue sur $\overline{\Omega}$. On note M le maximum de f sur la frontière de Ω . Alors,

- (i) Pour tout $z \in \Omega$, $|f(z)| \le M$.
- (ii) S'il existe $z_0 \in \Omega$ tel que |f(z)| = M, alors f est constant sur Ω .

Application 42. Soit (f_n) une suite de fonctions holomorphes sur Ω et continues sur $\overline{\Omega}$. Si (f_n) converge uniformément sur la frontière de Ω , alors (f_n) converge uniformément sur Ω et la limite est holomorphe.

Application 43. On suppose que $D(0,1) \subseteq \Omega$ et f holomorphe sur Ω . On suppose de plus que f(0) = 1 et $|f(z)| \ge 2$ sur le cercle unité. Alors f s'annule sur le cercle unité.

p. 77

p. 83

p. 72

n 80

III - Exemple d'application en algèbre

Proposition 44. $GL_n(\mathbb{R})$ n'est pas connexe. Ses composantes connexes sont $GL_n(\mathbb{R})^+$ et $GL_n(\mathbb{R})^-$.

[**BMP**] p. 213

Application 45. $\exp: \mathcal{M}_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R})$ n'est pas surjective.

Proposition 46. $GL_n(\mathbb{C})$ est connexe par arcs.

[ROM21] p. 770

Lemme 47. (i) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Alors $\exp(A) \in \mathrm{GL}_n(\mathbb{C})$.

- (ii) exp est différentiable en 0 et d $\exp_0 = id_{\mathcal{M}_n(\mathbb{C})}$.
- (iii) Soit $M \in GL_n(\mathbb{C})$. Alors $M^{-1} \in \mathbb{C}[M]$.

[**I-P**] p. 396

(iii) Soft $M \in \operatorname{GL}_n(\mathbb{C})$. Alors $M \in \mathbb{C}[M]$

[DEV]

Théorème 48. $\exp: \mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.

Application 49. $\exp(\mathcal{M}_n(\mathbb{R})) = \mathrm{GL}_n(\mathbb{R})^2$, où $\mathrm{GL}_n(\mathbb{R})^2$ désigne les carrés de $\mathrm{GL}_n(\mathbb{R})$.

Bibliographie

Objectif agrégation [BMP]

Vincent Beck, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$