

Rockchip IO-Domain 开发指南

发布版本:1.0

日期:2016.06

前言

概述

产品版本

芯片名称	内核版本
RK3399	4.4

读者对象

本文档(本指南)主要适用于以下工程师: 技术支持工程师 软件开发工程师

修订记录

日期	版本	作者	修改说明
2016-06-30	V1.0	WDC	初始版本

目录

1	电源域设置	1-1
	1.1 驱动文件 与 DTS 节点:	1-1
	1.2 使用 IO-Domain 驱动好处:	1-1
2	如何配置电源域	2-1
3	无 PMIC 情况如何处理	3-1
4	总结	4-1

1 电源域设置

1.1 驱动文件与 DTS 节点:

驱动文件所在位置:

```
drivers/power/avs/rockchip-io-domain.c
Dts 节点:
    io-domains {
        compatible = "rockchip,rk3399-io-voltage-domain";
        rockchip,grf = <&grf>;

        bt656-supply = <&vcc1v8_dvp>;
        audio-supply = <&vcca1v8_codec>;
        sdmmc-supply = <&vcc_sd>;
        gpio1830-supply = <&vcc_3v0>;
    };

pmu-io-domains {
        compatible = "rockchip,rk3399-pmu-io-voltage-domain";
        rockchip,grf = <&pmugrf>;

        pmu1830-supply = <&vcc_1v8>;
};
```

1.2 使用 IO-Domain 驱动好处:

- 1. 在 IO-Domain 的 DTS 节点统一配置电压域,不需要每个驱动都去配置一次,便于管理:
- 2. 依照的是 Upstream 的做法,以后如果需要 Upstream 比较方便;
 - 3. IO-Domain 的驱动支持运行过程中动态调整电压域,例如 PMIC 的某个 Regulator 可以 1.8v 和 3.3v 的动态切换,一旦 Regulator 电压发生改变,会通知 IO-Domain 驱动去重新设置电压域。

2 如何配置电源域

以下是 RK3399 原理图上的 Power Domain Map 表以及配置示例:

RK3399 Power Domain Map							
Part Port	Domain	Pin name in datasheet	I/O type	Power supply	Power source		
Part C	PMUIO1	PMUIO1_gpio0ab	1.8V only	VCC1V8_PMU	RK808 VLDO3		
Part E	PMUIO2	PMUIO2_gpio1abcd	1.8V(Default) 3.0V	VCC1V8_PMU	RK808 VLDO3		
Part I	APIO1	GMAC_gpio3abc	3.3V only	VCC1V8_IO VCC3V3_IO	RK808 BUCK4 RK808 VSW2		
Part L	APIO2	BT656_gpio2ab	1.8V(Default) 3.0V	VCC1V8_DVP	RK808 VLDO1		
Part G	APIO3	WIFI/BT_gpio2cd	1.8V only	VCC1V8_WIFI	RK808 BUCK4		
Part K	APIO4	GPIO1833_gpio4cd	1.8V(Default) 3.0V	VCC_1V5 VCC3V0_IO	RK808 VLDO6 RK808 VLDO8		
Part J	APIO5	AUDIO_gpio3d_gpio4a	1.8V(Default) 3.0V	VCCA1V8_CODEC	RK808 VLDO7		
Part F	SDMMC0	SDMMC_gpio4b	1.8V(Default) 3.0V	VCC_SDIO	RK808 VLDO4		

通过 RK3399 SDK 的原理图可以看到 bt656-supply 的电压域连接的是 vcc18_dvp, vcc_io 是从 PMIC RK808 的 VLDO1 出来的;

在 DTS 里面可以找到 vcc1v8_dvp, 将 bt656-supply = <&vcc18_dvp>。

其他路的配置也类似,需要注意的是如果这里是其他 PMIC, 所用的 Regulator 也不一样,具体以实际电路情况为标准。

3 无 PMIC 情况如何处理

如果项目硬件上并没有使用 PMIC,可能你找不到相应的 Regulator 来配置,你可以在 DTS 文件里面增加两个固定的 Regulator, vccio_1v8_reg 和 vccio_3v3_reg,一般 3.3v 和 1.8v 就已经够用了。

例如 3228-SDK 的 IO-Domain 配置:

```
io-domains {
       status = "okay";
       vccio1-supply = <&vccio 3v3 reg>;
       vccio2-supply = <&vccio_1v8_reg>;
       vccio4-supply = <&vccio_3v3_reg>;
};
regulators {
       compatible = "simple-bus";
       #address-cells = <1>;
       \#size-cells = <0>;
       vccio 1v8 reg: regulator@0 {
               compatible = "regulator-fixed";
               regulator-name = "vccio_1v8";
               regulator-min-microvolt = <1800000>;
               regulator-max-microvolt = <1800000>;
               regulator-always-on;
       };
       vccio_3v3_reg: regulator@1 {
               compatible = "regulator-fixed";
               regulator-name = "vccio 3v3";
               regulator-min-microvolt = <3300000>;
               regulator-max-microvolt = <3300000>;
               regulator-always-on;
       };
};
```

事实上可以灵活应用,只要可用的 Regulator 的电压与实际电路的电压相符合都可以拿来使用。

4 总结

IO-Domain 的配置是非常重要的,每个项目都可能不一样,在写新的 DTS 文件时,一定要根据硬件实际,去做正确的配置,或者可能会出现无法预知的问题。