17 November, 2023

tworzącej dla ciągu $s_n = a_0 + a_1 + a_2 + ... + a_n$ Wskazówka:Trzeba użyć funkcji tworzącej $\frac{1}{1-x}$

Wyznacz funkcje tworzące ciągów:

(a) $a_n = n^2$

(b) $a_n = n^3$

Wskazówka:Przyda się funkcja tworząca $\frac{1}{1-x}.$

- 3. (+) Wyznacz funkcję tworzącą ciągu: $\binom{n+k}{k}$ Wskazówka: Odpowiednia potęga funkcji $\frac{1}{1-x}$
- 4. Oblicz funkcje tworzące ciągów:

(a) $a_n = n$ dla parzystych n i $a_n = 1/n$ dla nieparzystych n

(b) $H_n = 1 + 1/2 + \ldots + 1/n \ (H_0 = 0).$

5. Niech A(x) będzie funkcją tworzącą ciągu a_n . Znajdź funkcję tworzącą ciągu b_n postaci $(a_0,0,0,a_3,0,0,a_6,\ldots)$, czyli takiego, że dla każdego naturalnego k, $b_{3k}=a_{3k}$ oraz $b_{3k+1}=b_{3k+2}=0$.

Wskazówka: Użyj zespolonych pierwiastków stopnia 3 z 1

6. Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzącej dla ciągu

 $(a_k, a_{k+1}, a_{k+2}, \ldots)$. Tzn. szukamy funkcji tworzącej dla ciągu
 $< b_n > = E^k < a_n > .$

- 7. Na ile sposobów można wybrać zbiór k-elementowy ze zbioru $\{1,2,\dots,n\}$ tak, by różnica dowolnych dwóch wybranych liczb wynosiła przynajmniej r?
- 8. Sprawdź prawdziwość następujących relacji: $n^2\in O(n^3);\, n^3\in O(n^{2.99});\, 2^{n+1}\in O(2^n);\, (n+1)!\in O(n!);\, \log_2 n\in O(\sqrt{n});\, \sqrt{n}\in O(\log_2 n).$

9. Niech $f, g, h : N \rightarrow R$. Pokaź,że:

- (a) jeśli f(n) = O(g(n) i g(n) = O(h(n)), to f(n) = O(h(n)),
- (b) f(n) = O(g(n)) wtedy i tylko wtedy, gdy $g(n) = \Omega(f(n))$,
- (c) $f(n) = \Theta(g(n))$ wtedy i tylko wtedy, gdy $g(n) = \Theta(f(n))$.
- 10. Niech f i g będą dowolnymi wielomianami o stopniach k i l takimi, że k < l

Pokaż, że wówczas f(n) = o(g(n)).

11. (3p) Przestrzeń R^n to zbiór wszystkich punktów (x_1,x_2,\ldots,x_n) o n rzeczywistych współrzędnych. Hiperplaszczyzna w R^n zadana jest wzorem $a_1x_1+a_2x_2+\ldots+a_nx_n=b$, gdzie przynajmniej jedno a, jest niezerowe. Na ile maksymalnie obszarów można podzielić n-wymiarową przestrzeń R^n za pomocą m hiperplaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.

17 November, 2023 10:34 Niech $< a_n >$ będzie pewnym ciągiem a $A(x) = \sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \ldots + a_i x^i + \ldots$ jego funkcją tworzącą.

 Niech A(x) będzie funkcją tworzącą ciągu a_n. Podaj postać funkcji tworzącej dla ciągu

$$s_n = a_0 + a_1 + a_2 + \ldots + a_n$$
.

Wskazówka: Trzeba użyć funkcji tworzącej $\frac{1}{1-x}$.

 $S_{n} = Q_{0} + Q_{1} + Q_{2} + \dots + Q_{n} = \sum_{k=0}^{n} Q_{k}$ $\int_{A=0}^{\infty} S_{n} \times^{n} = \sum_{k=0}^{\infty} \left(\sum_{k=0}^{n} Q_{k}\right) \times^{n} = \sum_{k=0}^{\infty} \left(\sum_{k=0}^$

17 November, 2023 10:34

- 2. Wyznacz funkcje tworzące ciągów:
 - (a) $a_n = n^2$
 - (b) $a_n = n^3$

Wskazówka: Przyda się funkcja tworząca $\frac{1}{1-x}$.

Funkcje tworzące

Niech $< a_n >$ będzie pewnym ciągiem a $A(x) = \sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + ... + a_i x^i + ...$ jego funkcją

$$A'(x) = \sum_{i=0}^{\infty} i a_i x^{i-1} = a_1 + a_2 x + \ldots + i a_i x^{i-1} + \ldots$$

Jak znaleźć funkcę tworzącą dla ciągu: $(0, a_1, 2a_2, 3a_3, 4a_4, \ldots, ia_i, \ldots)$?

prekstotenia z wykładu

 $\frac{x}{(1-x)^2} = \sum_{n=1}^{pricestricte} 0 \times 20,1,2,3,000$

znów pochodno

$$\frac{\times + 1}{1 - \times \beta} = \sum_{n=1}^{\infty} \frac{e}{n} \times n^{-1}$$

$$\frac{\chi(\chi+1)}{(\chi-\chi)^3} = \sum_{n=1}^{\infty} n^2 \chi^n$$

 $\frac{x(x+1)}{(1-x)^3} = \sum_{n=1}^{\infty} n^2 x^n$ Many Furkye two reacq dla n²: $A(x) = \frac{x(x+1)}{(1-x)^3}$

(b) $a_n = n^3$ Mamy j'uz funkçie tworqeq ella n' pozostaje policzenie j'eszcze j'ednej podrobnej $A'(X) \circ X = \frac{X^3 + 4x + 1}{(1-x)^4} \circ X = \frac{X^3 + 4x + 1}{(1-x)^4} = \sum_{n=1}^{\infty} \frac{3}{1-x}$

3. (+) Wyznacz funkcję tworzącą ciągu: $\binom{n+k}{k}$. Wskazówka: Odpowiednia potęga funkcji $\frac{1}{1-x}.$

- 4. Oblicz funkcje tworzące ciągów:
 - (a) $a_n=n$ dla parzystych ni $a_n=1/n$ dla nieparzystych n
 - (b) $H_n = 1 + 1/2 + \ldots + 1/n \ (H_0 = 0).$

5. Niech A(x) będzie funkcją tworzącą ciągu a_n . Znajdź funkcję tworzącą ciągu b_n postaci $(a_0,0,0,a_3,0,0,a_6,\ldots)$, czyli takiego, że dla każdego naturalnego $k,\,b_{3k}=a_{3k}$ oraz $b_{3k+1}=b_{3k+2}=0$.

Wskazówka: Użyj zespolonych pierwiastków stopnia 3 z 1.

6. Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzącej dla ciągu

 $(a_k, a_{k+1}, a_{k+2}, \ldots)$. Tzn. szukamy funkcji tworzącej dla ciągu
 $< b_n > = E^k < a_n >$.

7. Na ile sposobów można wybrać zbiór k-elementowy ze zbioru $\{1,2,\ldots,n\}$ tak, by różnica dowolnych dwóch wybranych liczb wynosiła przynajmniej r?

8. Sprawdź prawdziwość następujących relacji: $n^2\in O(n^3); \ n^3\in O(n^{2.99}); \ 2^{n+1}\in O(2^n); \ (n+1)!\in O(n!); \ \log_2 n\in O(\sqrt{n}); \ \sqrt{n}\in O(\log_2 n).$

 $\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) = \int_{0}^{\infty}$

$$C) 2^{n+1} \in O(2^{n})$$

$$C \stackrel{?}{\Rightarrow} 2 \cdot 2^{n}$$

$$\begin{array}{l} (n+1)! \ni (n+1) \cdot n! \\ (n+1) \cdot n! \leqslant C \cdot n! \quad \text{Foo musi zochodzie } C \nearrow n+1 \\ (n+1) \cdot n! \leqslant C \cdot n! \quad \text{Foo musi zochodzie } C \nearrow n+1 \\ (n+1) \cdot n! \leqslant C \cdot n! \quad \text{Foo musi zochodzie } C \nearrow n+1 \\ (n+1) \cdot n! \leqslant C \cdot n! \quad \text{Foo musi zochodzie } C \nearrow n+1 \\ \log_2 n \in O(\sqrt{n}) \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 n = x \ni 2^x = n \\ \log_2 (n) \leqslant C \cdot n! \quad \log_2 (n) \leqslant C \cdot n! \quad \log_2 (n) \leqslant C \cdot n! \quad \log_2 (n) \leqslant C \cdot n!$$

$$2^{c} \cdot 2^{n} \leqslant n$$

$$f) \sqrt{n} \in O(\log_{2} n).$$

$$\sqrt{n} \leqslant C \cdot \log_{2}(n)$$

$$\log_{2}(n) \frac{\sqrt{n}}{c}$$

$$2^{\frac{n}{2}} \frac{7}{7} \frac{n}{1}$$

Funkcja duże O

Niech $f, g: N \to R \ge 0$. $f(n) = O(g(n)) \Leftrightarrow \exists_{c>0} \exists_{n_0 \in N} \forall_{n \ge n_0} f(n) \le cg(n)$

Duże O

Niech $C, a, \alpha, \beta \in R > 0$.

- $\forall_{\alpha,\beta}\alpha \leq \beta \Rightarrow n^{\alpha} = O(n^{\beta})$
- $\bullet \ \forall_{a>1} n^C = O(a^n)$
- $\forall_{\alpha>0}(\ln n)^C = O(n^\alpha)$

Przydatna może się okazać reguła de l'Hospitala:

Jeśli f(n) i g(n) dążą do nieskończości, to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$

17 November, 2023 10:34

- 9. Niech $f,g,h:N\to R$. Pokaż,
że:
 - (a) jeśli f(n) = O(g(n)) i g(n) = O(h(n)), to f(n) = O(h(n)),
 - (b) f(n) = O(g(n)) wtedy i tylko wtedy, gdy $g(n) = \Omega(f(n))$,
 - (c) $f(n) = \Theta(g(n))$ wtedy i tylko wtedy, gdy $g(n) = \Theta(f(n))$.

$$f(n) = O(g(n)) \Leftrightarrow \exists_{c>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} f(n) \leq cg(n)$$

(a) jesti f(n) = O(g(n))i g(n) = O(h(n)), to f(n) = O(h(n)).

Z defini (i) funkçi (i) wiemy, že funkçie f(n) jest egla

co nojwyżej g(n). Oznaczny rząd tukći f(n) jako r_{f} , g(n) jako r_{g} Możerny zapisać wtedy $r_{f} \ge r_{g}$. Zapisując otrupie równonie anologicznie Momy $r_{g} \le r_{h}$.

rf < rg < rh => rf < rh => f(n)=O(h(n))

(b) f(n) = O(g(n)) where g(n) = O(f(n)) g(n) = O(g(n)) g(n) = O(g(

(c) $f(n) = \Theta(g(n))$ where $g(n) = \Theta(f(n))$ where $g(n) = \Theta(g(n))$ where $g(n) = \Theta(g(n))$ where $g(n) = \Theta(g(n))$ is $g(n) = \Theta(g(n))$ and $g(n) = \Theta(g(n))$ and $g(n) = \Theta(g(n))$ is $g(n) = \Theta(g(n))$. The second of $g(n) = \Theta(g(n))$ is $g(n) = \Theta(g(n))$.

17 November, 2023 10:34

10. Niech f i g będą dowolnymi wielomianami o stopniach k i l takimi, że

 \nearrow Pokaż, że wówczas f(n) = o(g(n)).

Funkcja małe o

Niech $f, g: N \to R \ge 0$.

$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Z définique o z tresci zodante wiemu z e o(n) jest f(n) = o(n) $\Rightarrow lim_{prod} f(n) = o(n)$ z def. \Rightarrow proudziwe.

11(3p)

17 November, 2023 10:34

11. (3p) Przestrzeń R^n to zbiór wszystkich punktów (x_1,x_2,\ldots,x_n) o n rzeczywistych współrzędnych. Hiperpłaszczyzna w R^n zadana jest wzorem $a_1x_1+a_2x_2+\ldots+a_nx_n=b$, gdzie przynajmniej jedno a_i jest niezerowe. Na ile maksymalnie obszarów można podzielić n-wymiarową przestrzeń R^n za pomocą m hiperpłaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.

Asymptotyka - skrót

17 November, 2023

Cfoz wyldadu:

Funkcja duże O

Niech $f, g: N \to R \ge 0$.

$$f(n) = O(g(n)) \Leftrightarrow \exists_{c>0} \exists_{n_0 \in N} \forall_{n \geq n_0} f(n) \leq cg(n)$$

Funkcja małe o

Niech $f, g: N \to R \ge 0$.

$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Duże O

Niech $C, a, \alpha, \beta \in R > 0$.

- $\forall_{\alpha,\beta}\alpha \leq \beta \Rightarrow n^{\alpha} = O(n^{\beta})$
- $\forall_{a>1} n^C = O(a^n)$
- $\forall_{\alpha>0}(\ln n)^C = O(n^\alpha)$

Przydatna może się okazać reguła de l'Hospitala:

Jeśli f(n) i g(n) dążą do nieskończości, to $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$.

Inne funkcje

Niech $f, g: N \to R > 0$.

Niech
$$f, g: N \to R \ge 0$$

$$OMeg \circ f(n) = \Omega(g(n)) \Leftrightarrow \exists_{c>0} \exists_{n_0 \in N} \forall_{n \geq n_0} f(n) \geq cg(n)$$

$$\downarrow f(n) = \Theta(g(n)) \Leftrightarrow f(n) = \Omega(g(n)) \land f(n) = O(g(n))$$

$$\downarrow \cap_{\Omega} \circ f(n) = \Theta(g(n)) \Leftrightarrow f(n) = \Omega(g(n)) \wedge f(n) = O(g(n))$$

$$\inf_{n \in \mathbb{N}} f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$