1. Konsep Statistika

STATISTIKA INFERENSI:

Setelah data dikumpulkan, maka dilakukan berbagai metode statistik untuk menganalisis data, dan kemudian dilakukan interpretasi serta diambil kesimpulan. Statistika inferensi akan menghasilkan generalisasi (jika sampel representatif)

2. Statistika & Metode Ilmiah

METODE ILMIAH:

Adalah salah satu cara mencari kebenaran yang bila ditinjau dari segi penerapannya, resiko untuk keliru paling kecil.

LANGKAH-LANGKAH DALAM METODE ILMIAH:

- Merumuskan masalah
- Melakukan studi literatur
- 3. Membuat dugaan-dugaan, pertanyaan-pertanyaan atau hipotesis
- 4. Mengumpulkan dan mengolah data, menguji hipotesis, atau menjawab pertanyaan
- 5. Mengambil kesimpulan

DATA terbagi atas DATA KUALITATIF dan DATA KUANTITATIF

DATA KUALITATIF:

Data yang dinyatakan dalam bentuk **bukan angka**.

Contoh: jenis pekerjaan, status marital, tingkat kepuasan kerja

DATA KUANTITATIF:

Data yang dinyatakan dalam bentuk **angka** Contoh : lama bekerja, jumlah gaji, usia, hasil

ulangan

DATA NOMINAL:

Data berskala nominal adalah data yang diperoleh dengan cara kategorisasi atau klasifikasi.

CIRI: posisi data setara

tidak bisa dilakukan operasi matematika (+, -, x, :)

CONTOH: jenis kelamin, jenis pekerjaan

DATA ORDINAL:

Data berskala ordinal adalah data yang dipeoleh dengan cara kategorisasi atau klasifikasi, tetapi di antara data tersebut terdapat hubungan

CIRI: posisi data tidak setara

tidak bisa dilakukan operasi matematika (+, -, x, :)

CONTOH: kepuasan kerja, motivasi

DATA INTERVAL:

Data berskala interval adalah data yang diperoleh dengan cara pengukuran, di mana jarak antara dua titik skala sudah diketahui.

CIRI: Tidak ada kategorisasi

bisa dilakukan operasi matematika

CONTOH: temperatur yang diukur berdasarkan °C dan °F, sistem kalender

DATA RASIO:

Data berskala rasio adalah data yang diperoleh dengan cara pengukuran, di mana jarak antara dua titik skala sudah diketahui dan mempunyai titik 0 absolut.

CIRI: tidak ada kategorisasi

bisa dilakukan operasi matematika

CONTOH: gaji, skor ujian, jumlah buku

5. Pengolahan Data

PROSEDUR PENGOLAHAN DATA:

- **A. PARAMETER**: Berdasarkan parameter yang ada statistik dibagi menjadi
 - Statistik PARAMETRIK: berhubungan dengan inferensi statistik yang membahas parameter-parameter populasi; jenis data interval atau rasio; distribusi data normal atau mendekati normal.
 - Statistik NONPARAMETRIK: inferensi statistik tidak membahas parameter-parameter populasi; jenis data nominal atau ordinal; distribusi data tidak diketahui atau tidak normal
- **B. JUMLAH VARIABEL**: berdasarkan jumlah variabel dibagi menjadi
 - Analisis UNIVARIAT: hanya ada 1 pengukuran (variabel) untuk n sampel atau beberapa variabel tetapi masing-masing variabel dianalisis sendiri-sendiri. Contoh: korelasi motivasi dengan pencapaian akademik.
 - Analisis MULTIVARIAT: dua atau lebih pengukuran (variabel) untuk n sampel di mana analisis antar variabel dilakukan bersamaan. Contoh: pengaruh motivasi terhadap pencapaian akademik yang dipengaruhi oleh faktor latar belakang pendidikan orang tua, faktor sosial ekonomi, faktor sekolah.

6. Pengolahan Data

7. Penyajian Data

TABEL

Tabel 1.1 Bidang Pekerjaan berdasarkan Latar Belakang Pendidikan

Count

		pendidikan			
		SMU	Akademi	Sarjana	Jumlah
bidang	administrasi	1	8	6	15
pekerjaan	personalia		1	7	8
	produksi	4	3	5	12
	marketing	2	14	11	27
	keuangan	3	4	6	13
Jumlah		10	30	35	75

GRAFIK

Pies show counts

8. Membuat Tabel

TABEL: memberikan informasi secara rinci. Terdiri atas kolom dan baris

Tabel Tabulasi Silang

Asal Wilayah	Sangat perlu	Perlu	Tidak tahu	Tidak perlu	Sangat tdk perlu	Jumlah	
Jawa Barat							
Jawa Tengah							
Jawa Timur							
NTT							
Papua							
Jumlah							

9. Membuat Grafik

GRAFIK: memberikan informasi dengan benar dan cepat, tetapi tidak rinci.

Syarat:

- 1. Pemilihan sumbu (sumbu tegak dan sumbu datar), kecuali grafik lingkaran
- 2. Penetapan skala (skala biasa, skala logaritma, skala lain)
- 3. Ukuran grafik (tidak terlalu besar, tinggi, pendek)

Jenis Grafik:

- Grafik Batang (Bar)
- Grafik Garis (line)
- Grafik Lingkaran (Pie)
- Grafik Interaksi (Interactive)

10. Jenis Grafik

Grafik Batang (Bar)

bidang pekerjaan

Grafik lingkaran (pie)

Grafik Garis (line)

bidang pekerjaan

Grafik Interaksi (interactive)

prestasi kerja

11. Frekuensi

FREKUENSI: banyaknya data untuk satu kelompok/klasifikasi

KELOMPOK	FREKUENSI
Kelompok ke-1	f1
Kelompok ke-2	f2
Kelompok ke-3	f3
Kelompok ke-i	fi
Kelompok ke-k	fk
	$n = \sum_{i=1}^{k} f_i$

Pendidikan	Frekuensi
S1	62
S2	19
S3	9
	90

$$k
 n = \sum_{i=1}^{K} f_i = f_1 + f_2 + f_3 + \dots + f_i + \dots + f_k$$

12. Distribusi Frekuensi

DISTRIBUSI FREKUENSI: mengelompokkan data interval/rasio dan menghitung banyaknya data dalam satu kelompok/klasifikasi

USIA	FREKUENSI
20	5
21	6
22	13
23	4
24	7
25	7
26	7
27	5
28	3
29	4
30	15
31	3
33	5
35	1

Membuat distribusi frekuensi:

- Mencari sebaran (range) yakni selisih antara data paling besar dengan data paling kecil) \rightarrow 35 – 20 = 15
- 2. Menentukan banyak kelas dengan rumus k = 1 + 3,3 log n \rightarrow 7
- Menentukan panjang kelas dengan rumus **p = sebaran / banyak kelas** \rightarrow 15/7 = 2

KELOMPOK USIA	FREKUENSI
20 – 21	11
22 – 23	17
24 – 25	14
26 – 27	12
28 – 29	7
30 – 31	18
33 - 35	6

13. Ukuran Tendensi Sentral

RATA-RATA: suatu bilangan yang bertindak mewakili sekumpulan bilangan **RATA-RATA HITUNG (RERATA)**: jumlah bilangan dibagi banyaknya

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

$$\Sigma Xi$$

$$i = 1$$

Bila terdapat sekumpulan bilangan di mana masing-masing bilangannya memiliki frekuensi, maka rata-rata hitung menjadi :

$$\overline{X} = \frac{X_1 f_1 + X_2 f_2 + X_3 f_3 + ... + X_k f_k}{f_1 + f_2 + f_3 + ... + f_k}$$

$$\begin{array}{c} K \\ \Sigma X_i f_i \\ \\ i = 1 \end{array}$$
Cara menghitung:

Jumlah	10	695
85	2	170
63	5	315
70	3	210
Bilangan (X _i)	Frekuensi (f _i)	$X_i f_i$

Maka :
$$\overline{X} = \frac{695}{10} = 69.5$$

MEDIAN: nilai tengah dari sekumpulan data setelah diurutkan yang fungsinya membantu memperjelas kedudukan suatu data.

Contoh: diketahui rata-rata hitung nilai ulangan dari sejumlah siswa adalah 6.55. Pertanyaannya adalah apakah siswa yang memperoleh nilai 7 termasuk istimewa, baik, atau biasa-biasa saja?

Jika nilai ulangan tersebut adalah : 10 10 8 7 7 6 5 5 5 5 4, maka rata-rata hitung = 6.55, median = 6

Kesimpulan : nilai 7 termasuk kategori baik sebab berada di atas rata-rata hitung dan median (kelompok 50% atas)

Jika nilai ulangan tersebut adalah : $8\ 8\ 8\ 8\ 8\ 7\ 5\ 5\ 4\ 3$, maka rata-rata hitung = 6.55, median = 8

Kesimpulan : nilai 7 termasuk kategori kurang sebab berada di bawah median (kelompok 50% bawah)

Jika sekumpulan data banyak bilangannya genap (tidak mempunyai bilangan tengah)
Maka mediannya adalah rerata dari dua bilangan yang ditengahnya.

Contoh: 1 2 3 4 5 6 7 8 8 9 maka median (5+6): 2 = 5.5

MODUS: bilangan yang paling banyak muncul dari sekumpulan bilangan, yang fungsinya untuk melihat kecenderungan dari sekumpulan bilangan tersebut.

Contoh: nilai ulangan 10 10 8 7 7 6 5 5 5 4

Maka : s = 6 ; k = 3 ; p = 2

rata-rata hitung = 6.55; median = 6

modus = 5; kelas modus = 4 - 5

Nilai	Frekuensi
10	2
8	1
7	2
6	1
5	4
4	1
Jumlah	11

Nilai	Frekuensi
8 – 10	3
6 – 7	3
4 - 5	5
Jumlah	11

Kurva **positif** apabila rata-rata hitung > modus / median Kurva **negatif** apabila rata-rata hitung < modus / median

UKURAN YANG MENYATAKAN HOMOGENITAS / HETEROGENITAS :

- 1. RENTANG (*Range*)
- 2. DEVIASI RATA-RATA (Average Deviation)
- 3. VARIANS (*Variance*)
- 4. DEVIASI STANDAR (Standard Deviation)

Rentang (range): selisih bilangan terbesar dengan bilangan terkecil. Sebaran merupakan ukuran penyebaran yang sangat kasar, sebab hanya bersangkutan dengan bilangan terbesar dan terkecil.

Contoh:

A: 100 90 80 70 60 50 40 30 20 10 B: 100 100 100 100 100 10 10 10 10 10 C: 100 100 100 90 80 30 20 10 10 10

$$\overline{X} = 55$$

r = 100 - 10 = 90

17. Deviasi rata-rata

Deviasi Rata-rata: penyebaran Berdasarkan harga mutlak simpangan bilangan-bilangan terhadap rataratanya.

-		•	•	•	•					
-	 							F	Rata-	rata
-						•	•	•	•	•

Kelompok A

Nilai X	X - X	X – X
100	45	45
90	35	35
80	25	25
70	15	15
60	5	5
50	-5	5
40	-15	15
30	-25	25
20	-35	35
10	-45	45
Jumlah	0	250

k	Celom	ıpok	В
I- : W	V	₩.	

rteletinpert 2				
Nilai X	X - X	X – X		
100	45	45		
100	45	45		
100	45	45		
90	35	35		
80	25	25		
30	-25	25		
20	-35	35		
10	-45	45		
10	-45	45		
10	-45	45		
Jumlah	0	390		
	200	20		

$$DR = \frac{250}{10} = 25$$

$$DR = 390 = 39$$

$$DR = \sum_{i=1}^{n} \frac{|X_i - \overline{X}|}{n}$$

Makin besar simpangan, makin besar nilai deviasi rata-rata

18. Varians & Deviasi Standar

Varians: penyebaran berdasarkan jumlah kuadrat simpangan bilanganbilangan terhadap rata-ratanya; melihat ketidaksamaan sekelompok data

$$s^{2} = \sum_{i=1}^{n} \frac{(Xi - \overline{X})^{2}}{n-1}$$

Deviasi Standar: penyebaran berdasarkan akar dari varians; menunjukkan keragaman kelompok data

$$s = \sqrt{\sum_{i=1}^{n} \frac{(Xi - \overline{X})^2}{n-1}}$$

Kelompok A

Nilai X	X -X	(X−X̄)²
100	45	2025
90	35	1225
80	25	625
70	15	225
60	5	25
50	-5	25
40	-15	225
30	-25	625
20	-35	1225
10	-45	2025
Jumlah		8250

Kelomnok B

Кеюпрок в				
Nilai X	X - X	(X −X) ²		
100	45	2025		
100	45	2025		
100	45	2025		
90	35	1225		
80	25	625		
30	-25	625		
20	-35	1225		
10	-45	2025		
10	-45	2025		
10	-45	2025		
Jumlah		15850		
/15050				

$$s = \sqrt{\frac{8250}{9}} = 30.28$$

$$s = \sqrt{\frac{8250}{9}} = 30.28$$
 $s = \sqrt{\frac{15850}{9}} = 41.97$

Kesimpulan:

Kelompok A : rata-rata = 55 ; DR = 25 ; s = 30.28

Kelompok B : rata-rata = 55 ; DR = 39 ; s = 41.97

Maka data kelompok B lebih tersebar daripada kelompok A

19. Normalitas, Hipotesis, Pengujian

Distribusi Normal: kurva berbentuk bel, simetris, simetris terhadap sumbu yang melalui nilai rata-rata

- Lakukan uji normalitas
- Rasio Skewness & Kurtosis berada –2 sampai +2

Standard error

 Jika tidak berdistribusi normal, lakukan uji normalitas non parametrik (Wilcoxon, Mann-White, Tau Kendall)

20. Normalitas, Hipotesis, Pengujian

Hipotesis: uji signifikansi (keberartian) terhadap hipotesis yang dibuat; berbentuk hipotesis penelitian dan hipotesis statistik (H0); hipotesis bisa terarah, bisa juga tidak terarah; akibat dari adanya Ho, maka akan ada Ha (hipotesis alternatif) yakni hipotesis yang akan diterima seandainya Ho ditolak

HIPOTESIS	TERARAH	TIDAK TERARAH
Hipotesis Penelitian	Siswa yang belajar bahasa lebih serius daripada siswa yang belajar IPS	Ada perbedaan keseriusan siswa antara yang belajar bahasa dengan yang belajar IPS
Hipotesis Nol (Yang diuji) Siswa yang belajar bahasa tidak menunjukkan kelebihan keseriusan daripada yang belajar IPS		Tidak terdapat perbedaan keseriusan belajar siswa antara bahasa dan IPS
	Ho: b < i Ha: b > i	Ho: b = i Ha: b ≠ I

21. Normalitas, Hipotesis, Pengujian

Pengujian: bila Ho terarah, maka pengujian signifikansi satu pihak bila Ho tidak terarah, maka pengujian signifikansi dua pihak

Pengujian signifikansi satu arah (hipotesis terarah):

Siswa yang belajar bahasa tidak menunjukkan kelebihan keseriusan daripada yang belajar IPS **Ho:b < i**

Jika Ho ditolak, maka Ha diterima ; daerah penolakan berada di sebelah kanan

Pengujian signifikansi dua arah (hipotesis tidak terarah):

Tidak terdapat perbedaan keseriusan belajar siswa antara bahasa dan IPS

Ho:b=i

Jika Ho ditolak, maka Ha diterima ; daerah penolakan bisa berada di sebelah kiri atau kanan

Uji t: menguji apakah rata-rata suatu populasi sama dengan suatu harga tertentu atau apakah rata-rata dua populasi sama/berbeda secara signifikan.

1. Uji t satu sampel

Menguji apakah satu sampel sama/berbeda dengan rata-rata populasinya

- hitung rata-rata dan std. dev (s)
- df = n 1
- tingkat signifikansi ($\alpha = 0.025$ atau 0.05)
- pengujian apakah menggunakan 1 ekor atau 2 ekor
- diperoleh t hitung ; lalu bandingkan dengan t tabel : jika t hitung > t tabel Ho ditolak

Contoh:

Peneliti ingin mengetahui apakah guru yang bekerja selama 8 tahun memang berbeda dibandingkan dengan guru lainnya.

Ho: p1 = p2

Diperoleh rata2 = 17.26; std. Dev = 7.6; df = 89; t hitung = 11.55

Berdasarkan tabel df=89 dan α = 0.05 diperoleh t tabel = 1.987

Kesimpulan : t hitung > t tabel sehingga Ho ditolak

guru yang bekerja selama 8 tahun secara signifikan berbeda dengan

guru lainnya

$$t = \frac{(\overline{\chi} - \mu)}{s / \sqrt{n}}$$

2. Uji t dua sampel bebas

Menguji apakah rata-rata dua kelompok yang tidak berhubungan sama/berbeda

$$t = \frac{(\bar{X} - \bar{Y})}{S\bar{x} - \bar{y}}$$

t =
$$\frac{(\bar{X} - \bar{Y})}{S\bar{x} - \bar{y}}$$
 Di mana $S\bar{x} - \bar{y} = \sqrt{\frac{(\Sigma x^2 + \Sigma y^2)(1/n_x + 1/n_y)}{(n_x + n_y - 2)}}$

Contoh:

Peneliti ingin mengetahui apakah ada perbedaan penghasilan (sebelum sertifikasi) antara guru yang lulusan S1 dengan yang lulusan S3

Ho: Pb = Pk

Diperoleh : rata2 x = 1951613 ; y = 2722222 ; t hitung = -7.369

Berdasarkan tabel df=69 dan α = 0.025 diperoleh t tabel = 1.994

Kesimpulan : t hitung > t tabel sehingga Ho ditolak

Rata-rata penghasilan guru yang S1 berbeda secara signifikan dengan

penghasilan guru yang S3

3. Uji t dua sampel berpasangan

Menguji apakah rata-rata dua sampel yang berpasangan sama/berbeda

$$t = \frac{\overline{D}}{S_{\overline{D}}}$$

Di mana \bar{D} = rata-rata selisih skor pasangan

$$s_{D} = \sqrt{\frac{\sum d^2}{N(N-1)}} \qquad \qquad \sum d^2 = \frac{\sum D^2 - (\sum D)^2}{N}$$

Contoh:

Seorang guru ingin mengetahui efektivitas model pembelajaran diskusi. Setelah selesai pembelajaran pertama, ia memberikan tes dan setelah selesai pembelajaran kedua kembali ia memberikan tes. Kedua hasil tes tersebut dibandingkan dengan harapan adanya perbedaan rata-rata tes pertama dengan kedua.

Ho: Nd = Nc

Diperoleh \bar{r} ata2d = 66.28; rata2c = 73.84; t hitung = -8.904

Berdasarkan tabel df=163 dan Ω = 0.05 diperoleh t tabel = 1.960

Kesimpulan : t hitung > t tabel sehingga Ho ditolak

Terdapat perbedaan yang signifikan antara hasil tes pertama dengan hasil tes kedua, sehingga ia menyimpulkan model diskusi efektif meningkatkan hasil belajar siswanya

25. Uji Keterkaitan

Korelasi: hubungan keterkaitan antara dua atau lebih variabel. Angka koefisien korelasi (r) bergerak $-1 \le r \le +1$

POSITIF

makin besar nilai variabel 1
menyebabkan makin besar
pula nilai variabel 2
Contoh: makin banyak waktu
belajar, makin tinggi skor
Ulangan → korelasi positif
antara waktu belajar
dengan nilai ulangan

NEGATIF

makin besar nilai variabel 1
menyebabkan makin kecil
nilai variabel 2
contoh: makin banyak waktu
bermain, makin kecil skor
Ulangan → korelasi negatif
antara waktu bermain
dengan nilai ulangan

NOL

tidak ada atau tidak menentunya hubungan dua variabel contoh : pandai matematika dan jago olah raga ; pandai matematika dan tidak bisa olah raga ; tidak pandai matematika dan tidak bisa olah raga

→ **korelasi nol** antara matematika dengan olah raga

1. KORELASI PEARSON:

apakah di antara kedua variabel terdapat hubungan, dan jika ada hubungan bagaimana arah hubungan dan berapa besar hubungan tersebut.

Digunakan jika data variabel kontinyu dan kuantitatif

$$r = \frac{N\Sigma XY - (\Sigma X) (\Sigma Y)}{\sqrt{N\Sigma X^2 - (\Sigma X)^2} \times \sqrt{N\Sigma Y^2 - (\Sigma Y)^2}}$$

Di mana : $\Sigma XY = jumlah perkalian X dan Y$

 ΣX^2 = jumlah kuadrat X ΣY^2 = jumlah kuadrat Y

N = banyak pasangan nilai

Contoh:

10 orang siswa yang memiliki waktu belajar berbeda dites dengan tes IPS

Siswa : A B C D E F G H I J Waktu (X): 2 2 1 3 4 3 4 1 1 2 Tes (Y): 6 6 4 8 8 7 9 5 4 6

Apakah ada korelasi antara waktu belajar dengan hasil tes?

Siswa	X	X ²	Υ	Y 2	XY
Α					
В					
	ΣΧ	Σ X ²	ΣΥ	ΣY ²	ΣΧΥ

27. Uji Keterkaitan

2. KORELASI SPEARMAN (rho) dan Kendall (tau):

Digunakan jika data variabel **ordinal** (berjenjang atau peringkat). Disebut juga korelasi non parametrik

$$r_p = 1 - \frac{6\Sigma d^2}{N(N^2 - 1)}$$

Di mana : N =banyak pasangan

d = selisih peringkat

Contoh:

10 orang siswa yang memiliki perilaku (sangat baik, baik, cukup, kurang) dibandingkan dengan tingkat kerajinannya (sangat rajin, rajin, biasa, malas)

Siswa : A B C D E F G H I J Perilaku : 2 4 1 3 4 2 3 1 3 2 Kerajinan : 3 2 1 4 4 3 2 1 2 3

Apakah ada korelasi antara perilaku siswa dengan kerajinannya?

Siswa	Α	В	С	D	
Perilaku					
Kerajinan					
d					
d ²					Σd^2

28. Uji Chi-Square (X²)

Chi-Square (tes independensi): menguji apakah ada hubungan antara baris dengan kolom pada sebuah tabel kontingensi. Data yang digunakan adalah **data kualitatif**.

$$X^2 = \sum \frac{(O - E)^2}{E}$$

Di mana O = skor yang diobservasi E = skor yang diharapkan (expected)

Contoh:

Terdapat 20 siswa perempuan dan 10 siswa laki-laki yang fasih berbahasa Inggris, serta 10 siswa perempuan dan 30 siswa laki-laki yang tidak fasih berbahasa Inggris.

Apakah ada hubungan antara jenis kelamin dengan kefasihan berbahasa Inggris?

Ho = tidak ada hubungan antara baris dengan kolom

H1 = ada hubungan antara baris dengan kolom

	Р	L	Σ
Fasih	а	b	
Tidak fasih	С	d	
Σ			

	0	E	(O-E)	(O-E) ²	(O-E) ² /E
a	20	(a+b)(a+c)/N			
b	10	(a+b)(b+d)/N			
С	10	(c+d)(a+c)/N			
d	30	(c+d)(b+d)/N			

df = (kolom - 1)(baris - 1)

Jika X² hitung < X² tabel, maka **Ho diterima**

Jika X² hitung > X² tabel, maka **Ho ditolak**

29. Uji Chi-Square (X2)

Chi-Square dengan menggunakan SPSS

KASUS: apakah ada hubungan pendidikan dengan status marital responden

Ho = tidak ada hubungan antara baris dengan kolom atau tidak ada hubungan pendidikan dengan status marital

H1 = ada hubungan pendidikan dengan status marital

Dasar pengambilan keputusan:

- 1. X^2 hitung $\langle X^2 \rangle$ tabel \rightarrow Ho diterima; X^2 hitung $\langle X^2 \rangle$ tabel \rightarrow Ho ditolak
- 2. probabilitas > 0.05 → Ho diterima; probabilitas < 0.05 → Ho ditolak

		pe	pendidikan terakhir		
		S1	S2	S3	Total
status	belum kawin	21	3	1	25
perkawinan	kawin	32	9	6	47
	janda	5	3	2	10
	duda	4	4	0	8
Total		62	19	9	90

			Asymp. Sig.
	Value	df	(2-sided)
Pearson Chi-Square	9,431	6	,151
Likelihood Ratio	9,541	6	,145
Linear-by-Linear Association	3,070	1	,080,
N of Valid Cases	90		

	Value	Approx. Sig.
Nominal by Nominal Contingency Coefficient	,308	,151
N of Valid Cases	90	

Hasil: tingkat signifikansi = 5%; df = 6; X^2 tabel = 9.431; X^2 hitung = 12.592;

asymp. sig = 0.000; contingency coeff. = 0.526

Karena : X^2 hitung $< X^2$ tabel maka Ho diterima asymp. Sig > 0.05 maka Ho diterima

Artinya tidak ada perbedaan tingkat pendidikan berdasarkan status maritalnya dan hal ini diperlihatkan dengan kuatnya hubungan yang hanya 30.8%

Membuat tabel X²

- Pada file baru, buat variabel dengan nama df
- Isi variabel tersebut dengan angka berurutan
- Buka menu transform > compute
 - Pada target variabel ketik chi_5 (untuk 95%)
 - Numeric expr gunakan fungsi IDF.CHISQ (0.95,df)
 - Tekan OK

Anova: menguji rata-rata satu kelompok / lebih melalui satu variabel dependen / lebih berbeda secara signifikan atau tidak.

ONE WAY ANOVA

Satu variabel dependen (kuantitatif) dan satu kelompok (kualitatif) Contoh: apakah pandangan siswa tentang IPS (kuantitatif) berbeda berdasarkan jenjang pendidikannya (kualitatif: SD, SLTP, SMU)

UNIVARIAT ANOVA

Satu variabel dependen tetapi kelompok berbeda Contoh: apakah rata-rata ulangan berbeda berdasar kan klasifikasi sekolah dan kelompok penelitian

Variabel dependen lebih dari satu tetapi kelompok sama

Contoh: apakah rata-rata ulangan dan pandangan siswa terhadap IPS berbeda untuk tiap daerah

MULTIVARIAT ANOVA

Variabel dependen lebih dari satu dan kelompok berbeda

Contoh: apakah rata-rata ulangan dan pandangan siswa terhadap IPS berbeda berdasarkan klasifikasi Sekolah dan kelompok penelitian

ONE WAY ANOVA

$$F = \frac{RJK_a}{RJK_i}$$

Di mana:

J = jumlah seluruh data

J_i = jumlah data dalam kelompok j

Contoh:

Apakah terdapat perbedaan pandangan terhadap IPS siswa SD, SLTP, SMU? Ho: $\mu 1 = \mu 2 = \mu 3$ (tidak terdapat perbedaan sikap)

	X1	X2	Х3
	3	1	2
	4	1	2
	5	2	3
	4	1	3
	5	2	5
Σ	21	7	15
×	4.2	1.4	3

$$Jk_{a} = \frac{21^{2} + 7^{2} + 15^{2}}{5} - \frac{43^{2}}{15} = 19.73$$

$$Jk_{i} = 3^{2} + 4^{2} + 5^{2} \dots - \frac{21^{2} + 7^{2} + 15^{2}}{5} = 10$$

$$RJK_{a} = \frac{Jk_{a}}{k-1} = 19.73/2 = 9.865$$

$$F = 9.865 / 0.833$$

$$= 11.838$$

$$RJK_{i} = \frac{Jk_{i}}{N_{i} + 1} = 10/15-3 = 0.833$$

Sumber adanya perbedaan	Jumlah Kuadrat (JK)	Derajat Kebebasan (df)	Rata-rata Jumlah Kuadrat (RJK)	F
Antar kelompok	19.73	k - 1 = 2	9.865	11.838
Inter kelompok	10	N - k = 12	0.833	

$$\alpha$$
 = 0.05; df = 2 dan 12; F tabel = 3.88; F hitung = 11.838
F hitung > F tabel , maka Ho ditolak
Terdapat perbedaan pandangan siswa SD, SLTP, SMU terhadap IPS

Cara membaca tabel F:

- 1. Arah horisontal adalah numerator, df nya antar kelompok
- 2. Arah vertikal adalah denominator, df nya inter kelompok
- 3. Skor dalam tiap sel → bagian atas adalah untuk 95% dan bagian bawah untuk 99%

Contoh: kasus di atas, df antar kelompok 2; df inter kelompok 12; distribusi F 95% Maka membaca tabelnya adalah horisontal lihat kolom df 2, vertikal lihat baris 12 Lalu lihat angka pada sel pertemuan 2 dan 12 bagian atas yakni 3.88 Maka F tabel adalah 3.88

One way anova

Apakah ada perbedaan rata-rata penghasilan sesudah sertifikasi jika dilihat dari asal wilayah ?

Ho = rata-rata penghasilan tidak berbeda dilihat dari asal wilayah

Descriptives

penghasilan sesudah lulus sertifikasi

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
jabar	19	3094736,8 4	269719,369	61877,867	2964736,27	3224737,42	2400000	3700000
jateng	14	3057142,8 6	194992,251	52113,871	2944557,68	3169728,03	2600000	3400000
jatim	18	3194444,4	285888,136	67384,480	3052275,62	3336613,27	2800000	3800000
NTT	19	3152631,5	368734,203	84593,428	2974907,38	3330355,78	2100000	3700000
Papua	20	3325000,0	297135,447	66441,506	3185936,33	3464063,67	2700000	3800000
Total	90	3172222,2	301691,031	31801,027	3109034,26	3235410,19	2100000	3800000

Test of Homogeneity of Variances

penghasilan sesudah lulus sertifikasi

Levene			
Statistic	df1	df2	Sig.
1,263	4	85	,291

Ho: varians populasi identik Probabilitas > 0.05 Ho diterima

ANOVA

penghasilan sesudah lulus sertifikasi

	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	782483291	4	19562082289	2 272	069
	562,238	4	0,560	2,272	,068
Within Groups	731807226	85	86094967811,		
	3993,310	00	687		
Total	810055555	00			
	5555,550	89			

F _{hitung} < F _{tabel} maka Ho diterima penghasilan tidak berbeda Berdasarkan asal wilayah

MULTIVARIAT ANOVA dengan menggunakan SPSS

Kasus: apakah status marital mempunyai pengaruh yang signifikan terhadap dana dikeluarkan & usia

- → Variabel **dependen** adalah dana yang dikeluarkan & usia ;
- → Faktor (kelompok) adalah status marital

Uji varians dilakukan 2 tahap :

- Varians tiap-tiap variabel dependen ; Ho = varians populasi identik (sama) alat analisis: **Lavene Test**; keputusan: probabilitas > 0.05 maka Ho diterima
- Varians populasi secara keseluruhan ; Ho = matriks varians sama alat analisis: **Box's M**; keputusan: probabilitas > 0.05 maka Ho diterima

Uji Multivariat ; Ho = rata-rata vektor sampel identik (sama)

alat analisis: Pillai Trace, Wilk Lambda, Hotelling Trace, Roy's keputusan : probabilitas > 0.05 maka Ho diterima

Levene's Test of Equality of Error Variances(a)

	F	df1	df2	Sig.
umur responden	8,811	3	86	,000
dana yang dikeluarkan untuk sertifikasi	,319	3	86	,812

Ho diterima Varians tiap variabel identik Box's Test of Equality of Covariance Matrices(a)

Box's M	16,104
F	1,654
df1	9
df2	4738,050
Sig.	,094

Ho diterima Varians populasi identik

Multivariate Tests©

Effect		Value	F	Hypothesis df	Error df	Sig.
Intercept	Pillai's Trace	,972	1491,496(a)	2,000	85,000	,000
	Wilks' Lambda	,028	1491,496(a)	2,000	85,000	,000
	Hotelling's Trace	35,094	1491,496(a)	2,000	85,000	,000
	Roy's Largest Root	35,094	1491,496(a)	2,000	85,000	,000
marital	Pillai's Trace	,506	9,707	6,000	172,000	,000
	Wilks' Lambda	,505	11,523(a)	6,000	170,000	,000
	Hotelling's Trace	,956	13,390	6,000	168,000	,000
	Roy's Largest Root	,932	26,731(b)	3,000	86,000	,000

 $F_{hitung} > F_{tabel}$ maka Ho tolak \rightarrow rata2 vektor sampel tidak identik Prob $< 0.05 \rightarrow$ Ho ditolak

Kesimpulan : status perkawinan mempunyai pengaruh terhadap dana yang dikeluarkan dan usia

Artinya:

Ada kemungkinan responden yang sudah kawin atau pernah kawin mengeluarkan dana yang berbeda dibandingkan dengan yang belum kawin dan kemungkinan usia responden berpengaruh terhadap status perkawinan, artinya makin tua usia responden kemungkinan sudah menikah makin besar

Perbedaan dapat dilihat jika dilakukan pengujian lanjutan dengan post hoc