

### Einführung in Data Science und maschinelles Lernen

## BEHANDLUNG VON FEHLENDEN WERTEN

- Quiz
- Nutzung von Dropout-Layern
- Behandlung fehlender Werte
- (Support-Vektor-Maschinen)

#### QUIZ



#### NEURONALES NETZ MIT DROPOUT LAYER

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense, BatchNormalization, Dropout
from tensorflow.keras.optimizers import Adam
model = Sequential([
  InputLayer(input_shape=(training_features.shape[1], )),
  BatchNormalization(),
  Dense(10, activation='relu'),
  Dropout(.3),
  Dense(4, activation='relu'),
  Dense(1)
7 \
```

| Layer (type)                                 | Output Shape | Param # |
|----------------------------------------------|--------------|---------|
| batch_normalization (Batch<br>Normalization) | (None, 34)   | 136     |
| dense (Dense)                                | (None, 10)   | 350     |
| dropout (Dropout)                            | (None, 10)   | 0       |
| dense_1 (Dense)                              | (None, 4)    | 44      |
| dense_2 (Dense)                              | (None, 1)    | 5       |

\_\_\_\_\_\_

Total params: 535 (2.09 KB)

Trainable params: 467 (1.82 KB)

Non-trainable params: 68 (272.00 Byte)

# DROPOUT LAYER ALS FORM DER REGULARISIERUNG

- Setzt bei jedem Iterationsschritt die einzelnen Aktivierungen im vorherigen Layer mit der definierten Dropout-Wahrscheinlichkeit auf 0.
- Integriert Redundanz in das Netz.
- Hilft Overfitting zu vermeiden.
- Wird nur angewendet im Training, für die Inferenz werden immer alle Neuronen genutzt.

## FEHLENDE WERTE

## GRÜNDE FÜR FEHLENDE WERTE

- Nicht gegebene Antworten in Umfragen

Zusammenführung von Daten aus verschiedenen Quellen mit unterschiedlichen Variablen

 Technische Probleme in der Datenerhebung oder Aufzeichnung

• • •

#### TYPEN VON FEHLENDEN WERTEN

Missing Completely at Random (MCAR)

- Missing at Random (MAR)

Missing not at Random (MNAR)

#### BREAKOUT

#### Diskutiert Lösungen für folgende mögliche Fälle im Wetterdatensatz:

Temperaturdaten f\u00fcr einen Monat mit fehlenden Daten f\u00fcr zwei Tage:

[20, 19, 23, 19, 17, 17, NA, 24, 16, 20, 22, 21, 20, 19, 17, 22, 24, 21, 23, 15, 18, 18, 21, 19, 19, 21, 21, 19, 23, NA]

Temperaturdaten für einen Monat mit fehlenden Daten für ein Woche:

[18, 15, 21, 15, 24, 16, 21, 16, 22, 18, 17, 25, 22, 21, 16, 19, 17, 23, NA, NA, NA, NA, NA, NA, NA, 21, 20, 20, 16, 15]

Wettercode-Daten für 20 Tage mit fehlenden Daten für einen Tag:

[10, 60, NA, 95, 61, 1, 29, 81, 21, 25, 25, 80, 80, 63, 81, 80]

#### BEHANDLUNG VON FEHLENDEN WERTE

- Zugehörige Fälle löschen (listwise deletion)
- Einfache "Spender"-basierte Imputation (donor-based)
  - Mittelwertschätzung (bzw. Median oder Mode)
  - nach "Ähnlichkeit" (Hot-Deck Imputation)
  - durch minimalen Abstand (k Nearest Neighbors)
- Einfache modellbasierte Imputation
  - Iterative Regression
- Multiple Imputation

#### HOT-DECK IMPUTATION

#### Nach Domänen



#### Nach Korrelation



### K-NEAREST NEIGHBORS (KNN)

#### Suche nach den k Fällen mit minimalem Abstand

- je nach Variablentyp unterschiedliche Abstandsmessung
- Zusammenführung der Abstände über eine Summenfunktion

## Verschiedene Vorgehensweisen zur Berechnung des Imputationswerts:

- Der Wert mit minimalem Abstand wird genommen (1NN)
- Zufällige Ziehung aus den k Fällen
- Berechnung aus den k-Fällen über den (gewichteten Mittelwert)

#### 1) Vorhersage fehlender Werte in A

| A  | В  | С  | D |
|----|----|----|---|
| 5  | 34 | NA | 1 |
| 1  | 22 | NA | 4 |
| NA | 65 | 55 | 2 |
| 4  | 87 | 27 | 2 |
| NA | 23 | 10 | 1 |

#### 1) Vorhersage fehlender Werte in A

| A | В  | С  | D |
|---|----|----|---|
| 5 | 34 | NA | 1 |
| 1 | 22 | NA | 4 |
| 5 | 65 | 55 | 2 |
| 4 | 87 | 27 | 2 |
| 2 | 23 | 10 | 1 |

## 2) Vorhersage Fehlender Werte in C mit den imputierten werten von A

| Α | В  | С  | D |
|---|----|----|---|
| 5 | 34 | NA | 1 |
| 1 | 22 | NA | 4 |
| 5 | 65 | 55 | 2 |
| 4 | 87 | 27 | 2 |
| 2 | 23 | 10 | 1 |

## 2) Vorhersage Fehlender Werte in C mit den imputierten werten von A

| A | В  | С  | D |
|---|----|----|---|
| 5 | 34 | 32 | 1 |
| 1 | 22 | 16 | 4 |
| 5 | 65 | 55 | 2 |
| 4 | 87 | 27 | 2 |
| 2 | 23 | 10 | 1 |

3) Vorhersage fehlender Werte in A mit den imputierten Werten von C

| A  | В  | С  | D |
|----|----|----|---|
| 5  | 34 | 32 | 1 |
| 1  | 22 | 16 | 4 |
| NA | 65 | 55 | 2 |
| 4  | 87 | 27 | 2 |
| NA | 23 | 10 | 1 |

→ Wiederholung bis keine Änderung mehr eintritt

- 1) Gehe schrittweise durch alle Variablen des Datensatz
- 2) Stelle dabei für jede Variable eine Regressionsmodell basierend auf allen anderen Variablen auf
- 3) Berechne für alle fehlenden Werte eine Vorhersage
- Jetzt wiederhole Schritt 1) bis 3) erneut und schätze die fehlenden Werte erneut - dieses Mal mit den bereits imputierten fehlenden Werten.
- Wiederhole dies, bis sich die imputierten Werte nicht mehr ändern.

#### IMPUTATION EXAMPLES



# BERECHNUNG DES IMPUTATIONSFEHLERS

- 1. Erstellen eines vollständigen Datensatz ("Referenz-Datensatz")
- 2. Zufälliges Entfernen von Daten
- 3. Imputieren der fehlenden Daten mit der gewählten Methode (ggf. auch mehreren zum Vergleich)
- 4. Vergleich der imputierten Daten mit den Originaldaten:, z.B. durch Berechnung
  - des mittleren quadratischen Fehlers (MSE) oder
  - des absoluten Fehlers.
- 5. Bewertung des Fehlers (ggf. Anpassung des Imputationsverfahrens)

#### BREAKOUT

- Nutzt die missingno library, um Euro fehlenden Werte darzustellen.

- Führt eine erste Imputation durch.

#### LERNMATERIAL

- Schaut <u>dieses Video</u> (5 Minuten) zu Zeitreihenanalysen.
- Als zusätzlichen Input zu Missing Values könnt Ihr das erste Kapitel <u>dieses Kurses</u> bei datacamp absolvieren.

#### AUFGABEN

- Wählt ein (bzw. verschiedene) Verfahren, um die fehlenden Werte in Eurem Datensatz zu ersetzen.
- Teilt Euch die Aufgaben im Team gut auf: Wer arbeitet an der Datenoptimierung, wer an der Modelloptimierung?