6:02 PM

18.06-Pan

LU, QR and SVD

Worksheet 3

- 1. LU factorization: A square matrix A = LU where L is a <u>lower-triangular</u> matrix and U is a <u>upper-triangular</u> atrix.
 - (a) Suppose a 2×2 matrix A has a LU factorization A = LU and $U = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. How are the column vectors A_1, A_2 of A related to column vectors L_1, L_2 of L?

$$(A_1A_2) = (L_1L_2)\begin{pmatrix} & & 2\\ & & & 1\end{pmatrix}$$

- 2. QR decomposition: A $m \times n$ matrix A = QR where Q is a orthogonal matrix and R is a upper-triangularatrix.
 - (a) Write down a QR decomposition for

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Hint: what is the dot product of the first column with the second column of A.

$$A = \begin{pmatrix} \frac{1}{52} & -\frac{1}{53} \\ \frac{1}{52} & -\frac{1}{53} \\ \frac{1}{53} & \frac{1}{53} \end{pmatrix} \begin{pmatrix} 52 & 0 \\ 0 & 53 \end{pmatrix}$$

(b) Let
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Can you solve $Ax = b$?

$$N_0 \qquad Sin Le \qquad \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \text{means}$$

$$X_1 - X_2 = \begin{vmatrix} 1 \\ 1 \end{pmatrix} = \begin{vmatrix} 1 \\ 1 \end{pmatrix} \times_1 = 2$$

$$X_1 + X_2 = \begin{vmatrix} 1 \\ 1 \end{pmatrix} = \begin{vmatrix} 1 \\ 1 \end{pmatrix} \times_1 = 2$$

$$X_1 = \begin{vmatrix} 1 \\ 1 \end{pmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$$

(c) Find a vector \hat{x} that minimizes ||Ax - b||.

$$A^{T}A x = A^{T}b$$

$$\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 10 \\ -1 & 11 \end{pmatrix} \begin{pmatrix} 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Page 1 of 2

18.06-Pan

LU, QR and SVD

Worksheet 3

3. SVD: A $m \times n$ matrix A has the rank-r SVD as $A = U \Sigma V^T$. What are U, V, Σ and what are their matrix size?

Suppose that a 3×3 matrix A has the SVD as

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}, \Sigma = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}, V = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

(a) What is the rank of A?

(b) Write the column space of A as all the linear combinations of two column vectors of U, Σ or V.

The two columns of 1

(c) Let $B = U\Sigma$. How are the columns of A related to columns of B?

$$A = B V^T$$

$$(A_1 A_2 A_3) = (B_1 B_2) \begin{pmatrix} 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A_1 = B_2, \quad A_2 = 0 \quad A_3 = B_1$$

(d) What is the norm of the third column of A?

$$|A_3| = |B_1| = 5 \cdot |A_1| = 5$$

Page 2 of 2