Vaje 2: Splošni linearni model

Obravnavamo splošni linearni model

$$\mathbf{X} = \mathbf{Z}\boldsymbol{\beta} + \epsilon$$
,

kjer je $X \in \mathbb{R}^n$ vektor opazovanj, $\beta \in \mathbb{R}^d$ vektor parametrov, $Z \in \mathbb{R}^{n \times d}$ matrika konstant, $\epsilon \in \mathbb{R}^n$ vektor slučajnih odstopanj, za katerega vedno privzamemo $\mathrm{E}(\epsilon) = 0$. Zapišemo Z = SP za matriko $S \in \mathbb{R}^{n \times d}$ s paroma pravokotnimi stolpci, od katerih so nekateri lahko 0 (na stolpcih matrike Z izvajamo Gramm-Schmidtovo ortogonalizacijo). P je zgornjetrikotna matrika s pozitivni elementi na glavni diagonali. Tedaj je

$$Z^TZ = P^TJP$$
.

kjer je $J = \text{diag}(j_1, \dots, j_d), \quad j_i = ||S^i||$. Za reševanje enačbe $(Z^T Z)\hat{\beta} = Z^T \mathbf{x}$ konstruiramo konkretno rešitev

$$\hat{\beta} = (Z^T Z)' Z^T \mathbf{x},$$

kjer je $(Z^{T}Z)' = P^{-1}JP^{-T}$.

NALOGA: Za dano matriko Z (in vektor X) konstruiraj posplošeni inverz $(Z^TZ)'$ ter poišči oceno $\hat{\beta}$.