Segunda Lei da Termodinâmica

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

3 de Novembro de 2020

- Transformações cíclicas
- Máquinas térmicas
- **Entropia**
- **Aplicações**
- **Apêndice**

Diagrama pressão versus volume em processos cíclicos

Corollary

Transformações cíclicas

•00

Definimos como processo cíclico quando o gás retorna para o seu estado inicial.

A energia interna U(T) de um gás é uma função da temperatura. Se os estados i e f estão em equilíbrio térmico, podemos determinar U(T) sabendo a temperatura nesses estados, os valores não irão mudar independente do processo termodinâmico que esse gás poderá sofrer.

Corollary

Durante uma transformação cíclica, a variação da energia interna do gás será zero ($\Delta U = 0$).

Exemplo de processo cíclico.

Trabalho realizado pelo gás em processos cíclicos

Podemos definir o trabalho total realizado pelo gás num processo cíclico subtraindo os trabalhos individuais nos processos de i para f e o retorno (f para i).

$$\tau = \tau_{(i \to f)} - \tau_{(f \to i)}.$$

Corollary

Transformações cíclicas

000

Durante uma transformação cíclica, o trabalho realizado pelo gás, ao percorrer o ciclo, é fornecido pela área entre as curvas.

Representação de trabalho em um processo cíclico.

Corollary

Transformações cíclicas

000

- O trabalho será positivo se o processo for no sentido horário.
- O trabalho será negativo se o processo for no sentido anti-horário.

Sentido horário

Sentido anti-horário

Máguina térmica

Toda máquina térmica opera num processo cíclico, onde ela recebe calor Q_1 de uma fonte quente a temperatura T_1 e parte desse calor (Q_2) ela devolve para uma fonte fria que está a temperatura T_2 , onde $T_2 < T_1$.

Motor a combustão de 4 tempos

Corollary

Parte do calor recebido pela fonte quente é convertido em trabalho e o restante é desperdiçado para a fonte fria.

Aplicação da Primeira Lei da Termodinâmica em máquinas térmicas

O calor total absorvido pelo gás durante o processo será o calor Q_1 recebido menos o calor Q_2 desperdicado. Pela Primeira Lei da Termodinâmica temos

$$\Delta U = (Q_1 - Q_2) - \tau.$$

Mas $\Delta U = 0$ num processo cíclico, portanto

$$\tau = Q_1 - Q_2.$$

Representação de calor entrando (Q_1) e saindo (Q_2) do sistema.

Rendimento de uma máquina térmica

Definimos o rendimento R de uma máguina térmica pela quantidade de calor que ela consegue transformar em trabalho à partir do calor que recebe da fonte quente,

$$R = \frac{\overline{Q_1}}{\overline{Q_1}},$$
 $R = \frac{\overline{Q_1} - \overline{Q_2}}{\overline{Q_1}},$
 $R = 1 - \frac{\overline{Q_2}}{\overline{Q_1}} \Rightarrow R < 1.$

Representação de calor entrando (Q_1) e saindo (Q_2) .

Corollary

O rendimento de uma máquina térmica será sempre menor que 1.

Uma máquina de Carnot é uma máquina térmica que funciona em um processo cíclico formado por dois processos isotérmicos mais dois processos adiabáticos.

Corollary

Nenhuma máquina térmica que opere entre duas fontes às temperaturas T_1 e T_2 , pode ter rendimento maior que uma máquina de Carnot operando entre essas mesmas fontes.

Rendimento de uma máquina de Carnot

$$R=1-\frac{T_2}{T_1}.$$

Representação gráfica de uma máquina de Carnot.

O objetivo de um refrigerador é remover calor de uma fonte fria e transferí-la para uma fonte mais quente. Nesse processo inevitavelmente ele realiza trabalho. Portanto, um refrigerador seria uma máquina térmica funcionando no sentido contrário. O rendimento é medido pela capacidade de transferir calor Q_2 em relação ao trabalho τ que ele realiza,

$$R=rac{Q_2}{ au},
onumber \ R=rac{Q_2}{Q_1-Q_2}.$$

Representação de calor Q_2 saindo de uma fonte fria e calor Q_1 transferida para a fonte quente.

O que é entropia?

Entropia

A entropia, definida pela letra S, está associada com o grau de desordem de um sistema. No SI a unidade de medida da entropia é Joule por Kelvin (J/K).

Por exemplo, se o processo ocorre sem variar a sua temperatura (isotérmico) a variação da entropia ΔS associado ao sistema será

$$\Delta S = \frac{Q}{T}$$

onde Q é a quantidade de calor que o sistema irá receber ou ceder e T a sua temperatura.

Exemplo de entropia usando tijolos.

Segunda lei da termodinâmica

Na natureza, a entropia total, que é a soma da entropia do sistema com a vizinhanca, sempre aumenta.

Entropia

Definindo ΔS_u como a variação da entropia do universo, ΔS_s a variação de entropia do sistema e ΔS_{ν} a variação da entropia da vizinhança, onde

$$\Delta S_u = \Delta S_s + \Delta S_v$$

podemos dizer que para qualquer fenômeno que ocorre na natureza ΔS_{ii} será sempre maior ou no mínimo igual a zero ($\Delta S_{ii} > 0$).

Entropia e máquinas térmicas

No ciclo de Carnot temos que a variação da entropia ΔS nos processos adiabáticos é zero, pois Q=0. Sabendo que nos processos isotérmicos temos $\Delta S = \frac{Q}{7}$ e que $\Delta S_{\text{Total}} > 0$. Se $\Delta S_{\text{sistema}} = 0$ temos

$$\Delta \mathcal{S}_{\text{sistema}} = \Delta \mathcal{S}_1 + \Delta \mathcal{S}_2 = 0,$$

$$rac{Q_1}{T_1} - rac{Q_2}{T_2} = 0 \ rac{Q_1}{T_1} = rac{Q_2}{T_2}$$

Sabemos que $T_1 \neq 0$ e $T_2 \neq 0$, portanto a única maneira de termos $Q_2 = 0$ é se $Q_1 = 0$ (uma máquina que não existe!).

Corollary

A segunda lei da termodinâmica impede que todo calor Q₁ recebido pela máquina térmica seja inteiramente convertido na forma de trabalho.

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1~\text{mm} = 1\times 10^{(-1)\times \textcolor{red}{2}}~\text{dm} \rightarrow 1\times 10^{-2}~\text{dm}$$

$$2,5~kg=2,5\times10^{(1)\times6}~mg\rightarrow2,5\times10^{6}~mg$$

10 ms =
$$10 \times 10^{(-1) \times 3}$$
 s $\to 10 \times 10^{-3}$ s

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2.5 \text{ km}^3 = 2.5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2.5 \times 10^{18} \text{ mm}^3$$

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	heta
lota	1	ι
Capa	Κ	κ
Lambda	٨	λ
Mi	Μ	μ

Ni Ν ν Csi ômicron 0 Ρi П π Rô ρ Sigma σ Tau Ípsilon vFi Φ ϕ,φ Qui χ Psi Ψ ψ Ômega Ω ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.