Experiment 2: DDL Commands

AIM

To study and implement DDL commands and different types of constraints.

THEORY

1. CREATE

Used to create a new relation (table).

Syntax:

```
CREATE TABLE (
  field_1 data_type(size),
  field_2 data_type(size),
   ...
);
```

2. ALTER

Used to add, modify, drop, or rename fields in an existing relation. (a) ADD

ſÒ

ſĊ

Q

```
ALTER TABLE std ADD (Address CHAR(10));
```

(b) MODIFY

```
ALTER TABLE relation_name MODIFY (field_1 new_data_type(size));
```

(c) DROP

ALTER TABLE relation_name DROP COLUMN field_name;

0

(d) RENAME

ALTER TABLE relation_name RENAME COLUMN old_field_name TO new_field_name;

G

3. DROP TABLE

Used to permanently delete the structure and data of a table.

DROP TABLE relation_name;

Q

4. RENAME

Used to rename an existing database object.

RENAME TABLE old_relation_name TO new_relation_name;

g

CONSTRAINTS

Constraints are used to specify rules for the data in a table. If there is any violation between the constraint and the data action, the action is aborted by the constraint. It can be specified when the table is created (using CREATE TABLE) or after it is created (using ALTER TABLE).

1. NOT NULL

When a column is defined as NOT NULL, it becomes mandatory to enter a value in that column. Syntax:

```
CREATE TABLE Table_Name (
  column_name data_type(size) NOT NULL
);
```

2. UNIQUE

Ensures that values in a column are unique. Syntax:

```
CREATE TABLE Table_Name (
  column_name data_type(size) UNIQUE
);
```

3. CHECK

Specifies a condition that each row must satisfy. Syntax:

```
CREATE TABLE Table_Name (
   column_name data_type(size) CHECK (logical_expression)
);
```

4. PRIMARY KEY

Used to uniquely identify each record in a table. Properties: Must contain unique values. Cannot be null. Should contain minimal fields. Syntax:

Q

ſО

ιĠ

```
CREATE TABLE Table_Name (
  column_name data_type(size) PRIMARY KEY
);
```

5. FOREIGN KEY

Used to reference the primary key of another table. Syntax:

```
CREATE TABLE Table_Name (
  column_name data_type(size),
  FOREIGN KEY (column_name) REFERENCES other_table(column)
);
```

6. DEFAULT

Used to insert a default value into a column if no value is specified.

ſĠ

Syntax:

```
CREATE TABLE Table_Name (
  col_name1 data_type,
  col_name2 data_type,
  col_name3 data_type DEFAULT 'default_value'
);
```

Create a table named Products with the following constraints:

- ProductID as INTEGER should be the primary key.
- ProductName as TEXT should be unique and not NULL.
- Price as REAL should be greater than 0.
- StockQuantity as INTEGER should be non-negative.

For example:

Test	Result			
<pre>INSERT INTO Products (ProductID, ProductName, Price, StockQuantity) VALUES (1, 'Laptop', 999.99, 10); select * from Products;</pre>	ProductID	ProductName Laptop	Price 999.99	StockQuantity

Output:

	Test	Expected	Got	
~	INSERT INTO Products (ProductID, ProductName, Price, StockQuantity) VALUES (1, 'Laptop', 999.99, 18); select * from Products;	ProductID ProductName Price StockQuantity 1 Laptop 999.99 18	ProductID ProductName Price StockQuantity 1 Laptop 999.99 10	~
4	INSERT INTO Products (ProductID, ProductName, Price, StockQuantity) VALUES (2, 'Smartphone', 200, 50),(3, 'Smartphone', 100, 50);	Error: UNIQUE constraint failed: Products.ProductName	Error: UNIQUE constraint failed: Products.ProductName	~

Create a table named Attendance with the following constraints:

- AttendanceID as INTEGER should be the primary key.
- EmployeeID as INTEGER should be a foreign key referencing Employees (EmployeeID).
- AttendanceDate as DATE.
- Status as TEXT should be one of 'Present', 'Absent', 'Leave'.

For example:

Test	Result	
INSERT INTO Attendance (AttendanceID, EmployeeID, AttendanceDate, Status) VALUES (1, 1, '2024-08-01', 'Present') SELECT * FROM Attendance;	; AttendanceID	En
	1	1

```
CREATE TABLE Attendance (
   AttendanceID INTEGER PRIMARY KEY,
   EmployeeID INTEGER,
   AttendanceDate DATE,
   Status TEXT CHECK (Status IN ('Present', 'Absent', 'Leave')),
   FOREIGN KEY (EmployeeID) REFERENCES Employees(EmployeeID)
);
```

Output:

41 10	ALL I TD	F 1 TD	Att - 1 P. I	C1 1	A11 - 1 TD	F . 1 TD	644 - 1 B-4 -	C1-1	
1 , Present);	AttendanceID	Embloheeln	AttendanceDate	Status	AttendanceID	Embroheern	AttendanceDate	Status	
	1	1	2024-08-01	Present	1	1	2024-08-01	Present	
03', 'Absent');	Error: FOREIG	N KEY constr	aint failed		Error: FOREIG	N KEY constr	aint failed		~
1	k								
I assed all tests! ∨	/								-
isseu ali tests: V									
rrect									

Question 3

Write a SQL Query to add attribute Date_of_joining as Date and rename the attribute job_title as Designation in the table 'Employees'

Test	Result					
pragma table_info('Employees');	cid	name	type	notnull	dflt_value	pk
	0	employee_id	TNT	0		1
	1		VARCHAR (50			0
	2	last_name	VARCHAR (50	0		0
	3	Designation	VARCHAR(10	0		0
	4	Date_of_joi	Date	0		0

Q

ALTER TABLE Employees
ADD COLUMN Date_of_joining Date;

ALTER TABLE Employees
RENAME COLUMN job_title To Designation;

Output:

Question 4
Correct
Mark 10.00 out
of 10.00

F Flag question

create a table named jobs including columns job_id, job_title, min_salary and max_salary, and make sure that, the default value for job_title is blank and min_salary is 8000 and max_salary is NULL will be entered automatically at the time of insertion if no value assigned for the specified columns.

For example:

Test	Result	
<pre>INSERT INTO jobs (job_id, job_title, min_salary, max_salary) VALUES (1, 'Software Engineer', 9000, 15000) SELECT * FROM jobs;</pre>	job_id 1	job_title Software En

Answer: (penalty regime: 0 %)

```
CREATE TABLE jobs (
    job_id INTEGER PRIMARY KEY,
    job_title TEXT NOT NULL DEFAULT '',
    min_salary INTEGER NOT NULL DEFAULT 8000,
    max_salary INTEGER DEFAULT NULL
);
```

	Expected		Got		
9000, 15000);	job_id	job_title min_salary max_salary	job_id	job_title min_salary max_salary	~
	1	Software Engineer 9000 15000	1	Software Engineer 9000 15000	
	job_id	job_title min_salary max_salary	job_id	job_title min_salary max_salary	~
	2	Data Scientist 8000	2	Data Scientist 8000	
4	di-				
assed all tests!	V				

Question 5

Create a table named Departments with the following columns:

- DepartmentID as INTEGER
- DepartmentName as TEXT

Test	Result									
<pre>pragma table_info('Departments');</pre>	cid	name	type	notnull	dflt_value	pk				
	0	DepartmentID	INTEGER	0		0				
	1	DepartmentName	TEXT	0		0				

ιĊ

```
CREATE TABLE Departments(
DepartmentID INTEGER,
DepartmentName TEXT
);
```

Output:

Insert all books from Out_of_print_books into Books

Table attributes are ISBN, Title, Author, Publisher, YearPublished

For example:

Test	Result										
select * from Books;	ISBN	Title	Author	Publisher	YearPublished						
	978-1234567890	The Lost World	Arthur Conan Doyle	Vintage Books	1912						
	978-0987654321	Gone with the	Margaret Mitchell	Macmillan	1936						
	978-1122334455	Moby Dick	Herman Melville	Harper & Brot	1851						

- -

select *from Out_of_print_books
union all
select *from Books

Q

Create a new table named item with the following specifications and constraints:

```
1. item_id as TEXT and as primary key.
```

- 2. item_desc as TEXT.
- 3. rate as INTEGER.
- 4. icom_id as TEXT with a length of 4.
- 5. icom_id is a foreign key referencing com_id in the company table.
- 6. The foreign key should cascade updates and deletes.
- 7. item_desc and rate should not accept NULL.

Test	Result			
<pre>INSERT INTO item VALUES("ITM5", "Charlie Gold", 700, "COM4");</pre>	item_id	item_desc	rate	icom_id
UPDATE company SET com_id='COM5' WHERE com_id='COM4';				
SELECT * FROM item;	ITM5	Charlie Gold	700	COM5

```
CREATE TABLE item (
    item_id TEXT PRIMARY KEY,
    item_desc TEXT NOT NULL,
    rate INTEGER NOT NULL,
    icom_id TEXT CHECK(4),
    FOREIGN KEY (icom_id) REFERENCES company(com_id)
    ON UPDATE CASCADE
    ON DELETE CASCADE
```

	Expected				Got				
arlie Gold",700,"COM4"); HERE com_id='COM4';	item_id	item_desc	rate 	icom_id	item_id	item_desc	rate 	icom_id	~
a-n-Nut",14,"COM2"); arlie Gold",700,"COM4"); COM2';	item_id	item_desc Charlie Gold	rate 700	icom_id	item_id	item_desc Charlie Gold	rate 700	icom_id	~
■ Passed all tests! ✓	_								

Question 8

Write a SQL Query to add an attribute designation in the employee table with the data type VARCHAR (50).

Test	Result					
<pre>pragma table_info('employee');</pre>	cid	name	type	notnull	dflt_value	pk
	0	id	integer	0		0
	1	salary	number	0		0
	2	designatio	varchar(50	0		0

Q-

ALTER TABLE employee
ADD COLUMN designation varchar(50);

Output:

Insert a product with ProductID 104, Name Tablet, and Category Electronics into the Products table, where Price and Stock should use default values.

For example:

Test	Result					
SELECT ProductID, Name, Category, Price, Stock	ProductID	Name	Category	Price	Stock	
FROM Products						
WHERE ProductID = 104;	104	Tablet	Electronics	100	50	

```
INSERT INTO Products (ProductID, Name, Category)
VALUES (104, 'Tablet', 'Electronics');
```

Output:

✓ SELECT ProductID, Name, Category, Price, Stock ProductID Name Category Price Stock Products	
WHERE ProductID = 104; 104 Tablet Electronics 100 50 100	T.

Create a table named Employees with the following constraints:

- EmployeeID should be the primary key.
- FirstName and LastName should be NOT NULL.
- Email should be unique.
- Salary should be greater than 0.
- DepartmentID should be a foreign key referencing the Departments table.

For example:

Test	Result
Attempt to insert a record with NULL FirstName INSERT INTO Employees (EmployeeID, FirstName, LastName, Email, Salary, DepartmentID) VALUES (1, NULL, 'Doe', 'john.doe@example.com', 50000, 1);	Error: NOT NULL constraint failed: Employees.

CREATE TABLE Employees(
EmployeeID INTEGER primary key,
FirstName INTEGER NOT NULL,
LastName INTEGER NOT NULL,
Email VARCHAR(50) unique,
Salary CHECK (Salary>0),
DepartmentID INTEGER,
foreign key(DepartmentID) references Departments(DepartmentID)
);

RESULT

Thus, the SQL queries to implement different types of constraints and DDL commands have been executed successfully.