

Introduction to Convolutional Neural Networks

Beating humans since 2015

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)
Object localisation on 1000 categories.
Test and validation set of 150,000 images.

Computer Vision Tasks

How do you process visual information at the pixel level?

Can we use a Multilayer Perceptron?

- ✓ Each perceptron in layer N will have #Perceptrons(Layer(N-1))+1 weights.
- ✓ 1000x1000 pixel image = 1M weights per perceptron.
- ✓ If 1 perceptron per pixel, there will be ~1,000,000,000,000 weights in each of N layers. Intractable!

Overview of a Convolutional Neural Net for Classification

- ✓ The aim is to choose layers that go
 from a large input image to a
 specific desired output format.
- ✓ Repeated stacking of layers in a specific order.

Convolutions

$$Output = \sum Kernel_{i,j} * Input_{i,j}$$

- ✓ The kernel represents the pattern to be detected.
- ✓ The more the input matches the kernel, the more positive the output response would be.
- ✓ Convolutions are pattern detectors.

Convolution Example

Input patch

10	6	6
0	10	6
0	0	10

Kernel

Output

1	0.5	0.5
-1	1	0.5
-1	-1	1

: 39

Good match

*

1	0.5	0.5
-1	1	0.5
-1	-1	1

=

8

Poor match

*

1	0.5	0.5
-1	1	0.5
-1	-1	1

=

-7

Poor match

Pooling

10	6	6	0			
5	-3	14	-2		10	14
0	2	-7	-3	-	2	-3
0	0	-5	-5	'		

Max pooling

- ✓ Slide a window across the input and pick a value at every window position.
- ✓ Max pooling take the max value.
- ✓ Average pooling take the average value.
- ✓ Pooling layers are information filters.

Activation Functions

Hyperbolic Tangent

1
0
-1
-1
0
1
y=(e^x-e^{-x})/(e^x+e^{-x})

- ✓ Introduces nonlinearities to the network.
- ✓ Allows for the modelling of more complex non-linear functions.
- ✓ Most popular is the ReLU.

Fully Connected Layers

- ✓ Nodes in one layer are connected to every node in the next layer.
- ✓ Used to "see the big picture" of what is happening.
- ✓ An aggregator of information.

Softmax

$$Softmax(x)_{j} = \frac{e^{x_{j}}}{\sum_{k=1}^{K} e^{x_{k}}}$$

- ✓ Converts all input to a range between 0 and +infinity.
- ✓ Then normalises all values between 0 and 1.
- ✓ A convenient way to interpret network output as probabilities.
- $\checkmark e^x$ used because it is easily differentiable.

Building a Convolutional Neural Net

- ✓ Convolutions to find features, activations to filter good features, pooling to select the best features.
- ✓ Repeat stacking of layers to find features of features -> high level features.

ConvNet Configuration									
A	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
	input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
			pool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
		max	pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
FC-4096									
FC-4096									
FC-1000									
soft-max									

Table 2: Number of parameters (in millions).

r						
Network	A,A-LRN	В	С	D	E	
Number of parameters	133	133	134	138	144	

Variants of the VGG network

Visualising Layers of a Convolutional Neural Net

- ✓ Low level features consists of simple geometrical patterns.
- ✓ The higher you go, the more object-like patterns you can identify.

Low level features

High level features

GoogleNet

Residual Networks - Resnet

- ✓ The right branch contains the typical layers of a conv-net.
- ✓ The left branch allows the backpropagated errors to flow directly through without being diminished through the layers on the right.
- ✓ Avoids the vanishing gradient problem.

Resnet-56, 2015

Pixel-wise Predictions for Segmentation

- ✓ Regenerates an output the same size as the input.
- ✓ Skip connections are vital in maintaining spatial coherency.
- ✓ Often called a U-net architecture.

Pixel-wise Predictions for Segmentation

FC Densenet

- ✓ The input to a layer is a concatenation of the outputs of all layers before it within a block.
- ✓ Allows each layer to "see" low and high level features at the same time.

Bounding Box Predictions

- ✓ Conv-net that predicts the location and size of boxes enveloping an object.
- ✓ Can represent an entire object with just 5 values: x, y, h, w, class.

