Electrochemical Supercapacitors

Scientific Fundamentals and Technological Applications

Electrochemical Supercapacitors

Scientific Fundamentals and Technological Applications

B. E. Conway

Fellow of the Royal Society of Canada University of Ottawa Ottawa, Ontario, Canada

Library of Congress Cataloging-in-Publication Data

Conway, B. E.

Electrochemical supercapacitors : scientific fundamentals and technological applications / B.E. Conway.

cm.

Includes bibliographical references and index.

1. Storage batteries. 2. Electrolytic capacitors. 3. Electric double layer. I. Title.

TK2941.C66 1999

621.31'2424--dc21

98-48209

CIP

ISBN 978-1-4757-3060-9 ISBN 978-1-4757-3058-6 (eBook) DOI 10.1007/978-1-4757-3058-6

© 1999 Springer Science+Business Media New York

Originally published by Kluwer Academic / Plenum Publishers, New York in 1999. Softcover reprint of the hardcover 1st edition 1999

10987654321

A C.I.P. record for this book is available from the Library of Congress.

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

To my son, Dr. Adrian and his sons, Alexander and the "Little B"

Foreword

The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman independently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the structure of electrolyte solutions into the model of a metal/solution interface, by envisaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreticians have introduced a number of new parameters of which people were not aware 50 years ago.

Irrespective of the structural details, it has long been accepted that a double layer exists at the electrode/electrolyte solution boundary, which governs adsorption phenomena and influences charge transfer reaction rates, and where electrostatic energy is stored as in a capacitor a few molecular diameters thick. Nevertheless, the existence of a double layer has always been inferred from indirect observations of related properties and quantities, but never directly

viii Foreword

probed, so much that it was compared to the Arab Phoenix: "Everybody says it exists, nobody knows where it is." This until recently, when it was realized that the energy stored per unit surface area of an electrode is noticeable per se and becomes technologically very interesting with the introduction of new materials with an exceptionally extended active surface: especially treated carbons, some transition metal oxides, electrosynthesized conducting polymers. The interfacial capacity is further increased if the purely capacitive charge is supplemented by a Faradaic charge related to bidimensional redox reactions or tridimensional intercalation processes.

"Supercapacitors" are devices that store electrical energy on the basis of the above phenomena and that can be discharged at a much higher rate than conventional batteries. They have aroused interest for various applications, including electric vehicles, in particular cars as well as trains. I should say that in spite of our awareness of the principles, supercapacitors have appeared on the scientific scene rather suddenly, or at least this has been the impression of those who have realized that something was happening at the technological level. Of the many examples we can produce of innovations developed in technology first and then "discovered" from a fundamental point of view, supercapacitors furnish an authoritative example of the reverse: a technological innovation pushed by fundamental knowledge.

The situation is now that fundamental researchers know everything of the electrical double layer but ignore its application to supercapacitors, while engineers know of supercapacitors but may ignore the fundamentals of their operation. This monograph comes at an opportune time to fill this gap, with a balanced presentation of fundamentals aimed at applications, and applications related to fundamental principles. B. E. Conway has worked for more than 50 years in almost all areas of electrochemistry, particularly interfacial electrochemistry. He is therefore a "veteran" in the field, being the first to realize the potentialities of some materials for their double layer energy.

This volume offers what cannot be found in any other work for its comprehensiveness, exhaustiveness, and focus. For the first time a highly theoretical topic, the electrical double layer at electrodes, is shown to manifest itself in highly technological applications. It is with a real sense of pride that electrochemists in the near future will press the accelerator in their electric car knowing that certain performances are possible only thanks to the discharge of the "so-called" (but is it indeed there?) *electrical double layer* of which technologists have long maintained "electrochemistry can do without it."

The content of this book is useful both for scientists working in fundamental research and technologists, in particular those interested in electrochemical energy conversion and chemistry and physics of electrified interfaces, as well as for engineers working in the field of electrochemical power sources and electrical energy storing devices. They will find the book an invaluable source of in-

Foreword ix

formation and inspiration. For the way the topics are presented, people working in the area of materials chemistry and physics will find this book of great general interest in view of the typical dependence of the performance of supercapacitors on the structure of materials.

Milan, Italy Sergio Trasatti

Preface

Systems for electrochemical energy production originated with Volta's discovery in 1800 of "voltaic electricity" and were developed in various forms during the nineteenth century. Toward the end of that period, reversibly chargeable batteries for electrical energy storage and utilization became a major development in applied electrochemistry and during the present century have been improved to a high state of the art. They also represent a large fraction of the economic activity in industrial electrochemistry.

In relatively recent years, but originating with Becker's patent in 1957, a new type of electrochemically reversible energy storage system has been developed that uses the capacitance associated with charging and discharging of the double layer at electrode interfaces or, complementarily, the pseudocapacitance associated with electrosorption processes or surface redox reactions. In the first case, large interfacial capacities of many tens of farads per gram of active electrode material can be achieved at high-area carbon powders, fibers, or felts, while, in the second case, large pseudocapacitances can be developed at certain high-area oxides or conducting polymers where extents of Faradaic charge (Q) transfer are functionally related to the potential of the electrode (V), giving rise to a derivative corresponding to a capacitance dQ/dV.

These large specific-value capacitors, especially of the double-layer type, are perceived as electrical energy storage systems that can offer high power-density in discharge and recharge, and cycle lives on the order of 10^5 to 10^6 , many times those of conventional batteries. A variety of uses of such electrochemical or so-called "supercapacitors" are now recognized and a new direction of power-source development, complementary to that of batteries, is well established.

xii Preface

An important aspect of this monograph is that it gives a comprehensive account of the electrochemical science and technology of these capacitor systems. An attempt is made to present a self-contained and unified treatment of the field, including essential details of the background science (e.g. of double-layer capacitance and the origins of pseudocapacitance, the electrolyte solutions used in electrochemical capacitors) as well as basic concepts of electrode kinetics and interfacial electrochemistry, dielectric polarization theory, porous electrodes, and conducting polymer materials that give rise to large specific capacitances. In this way, understanding and study of the material presented in this volume will not require frequent reference to other textbooks of physical chemistry or electrochemistry.

The text contains many illustrative diagrams and cross-references between chapters, and includes many literature references. For the convenience of the reader, three or four diagrams have been duplicated from one chapter or another to avoid the necessity of seeking earlier or later pages in the volume where cross-referenced material is cited.

The author's work in this field originated with a research contract between Continental Group Inc. and the University of Ottawa's Electrochemistry Group. We would like to acknowledge here the work carried out by Drs. H. Angerstein-Kozlowska, V. Birss, J. Wojtowicz, and Visiting Professor S. Hadzi-Jordanov (University of Skopje) with Mr. Dwight Craig (electrical engineer) of Continental Group in the period 1975 to 1981. More recently, new work in this field is being carried out at the University of Ottawa and is supported by the Natural Sciences and Engineering Research Council of Canada. For this work, acknowledgment is made to Dr. W. J. Pell and Mr. T. C. Liu.

Special thanks are due to Dr. B. V. Tilak of Occidental Chemical Corp., N.Y., for his critical reading of the manuscript before its submission for publication, and for his suggestions for additions and revisions. Appreciation is expressed to Dr. Tilak and Dr. S. Sarangapani (ICET Inc., Norwood, Mass.) for their detailed examination of Chapter 20 on technology development, and in particular for their suggestions for the best systematic organization of the manifold aspects of the subject treated in that chapter. Thanks are also due to Drs. S. Gottesfeld (Los Alamos National Laboratory) and J. Miller (J. M. Inc., Shaker Heights, Ohio) for reading the chapters on conducting-polymer capacitors and ac impedance, respectively. We are grateful to Dr. Miller for permission to reproduce some of his computer-generated graphs and data on ac impedance evaluation of capacitors.

The author is also most grateful to Drs. S. P. Wolsky and N. Marincic for their permission to draw on various diagrams and tables from the proceedings of papers presented at the seminars on electrochemical capacitors held at Deerfield Beach and Boca Raton, Fla, over the period 1991 to 1997, under the auspices of Florida Educational Seminars Inc. (abbreviated as FES in the text).

Preface xiii

Finally, special thanks are due to Denise Angel, who typed, with great efficiency and accuracy, all the chapters of this volume in several drafts, exercising literacy and care that would be difficult to match. Grateful thanks are also due to Eva Szabo for drafting most of the diagrams.

Ottawa, Canada

B. E. Conway

Contents

Chapter 1	Intro	duction	and Historical Perspective	
			al Overview	1
			f the Monograph	8
	1.2.	_	ices	9
		Referen		,
Chapter 2	Simi	larities a	nd Differences between Supercapacitors and	
	Batte	eries for	Storing Electrical Energy	
	2.1.	Introdu	action	11
		2.1.1.		11
		2.1.2.		
			Capacitors and Batteries	12
	2.2.	Farada	ic and Non-Faradaic Processes	13
		2.2.1.	Non-Faradaic	14
		2.2.2.	Faradaic	14
	2.3.	Types	of Capacitors and Types of Batteries	15
		2.3.1.	1	15
		2.3.2.	Cell Design and Equivalent Circuits	17
	2.4.		ences of Densities of Charge Storage in	
			tors and Batteries	18
		•	Electron Densities per Atom or Molecule	18
			Comparison of Energy Densities Attainable	
			in Electrochemical Capacitors and	
			Batteries	19
	2.5.	Compa	rison of Capacitor and Battery	1,
	2.3.	•	ng Curves	20
		CHAIRI	iig Cui voo	20

xvi Contents

	2.6. Comparison of Charge and Discharge Behavior of	
	Electrochemical Capacitors and Battery Cells	
	Evaluated by Cyclic Voltammetry	22
	2.7. Li Intercalation Electrodes—A Transition Behavior	25
	2.8. Charging of a Nonideally Polarizable Capacitor	
	Electrode	28
	2.9. Comparative Summary of Properties of	
	Electrochemical Capacitors and Batteries	29
	References	31
	General Reading References	31
Chapter 3	Energetics and Elements of the Kinetics of Electrode	
	Processes	
	3.1. Introduction	33
	3.2. Energetics of Electrode Processes	34
	3.3. Energy Factors in Relation to Electrode Potential	37
	3.4. Kinetics of Electrode Reactions at Metals	41
	3.4.1. Currents and Rate Equations	41
	3.4.2. Linearization of the Butler-Volmer	
	Equation for Near-Equilibrium Conditions	
	$(\text{low }\eta)$	45
	3.5. Graphical Representation of the Exchange Current	
	Density, i_o , and Behavior Near Equilibrium	46
	3.6. Onset of Diffusion Control in the Kinetics of	
	Electrode Processes	48
	3.7. Kinetics when Steps Following an Initial Electron	
	Transfer Are Rate Controlling	50
	3.8. Double-Layer Effects in Electrode Kinetics	51
	3.9. Electrical Response Functions Characterizing	
	Capacitative Behavior of Electrodes	53
	3.10. Instruments and Cells for Electrochemical	
	Characterization of Capacitor Behavior	59
	3.10.1. Cells and Reference Electrodes	59
	3.10.2. Instruments	61
	3.10.3. Two-Electrode Device Measurements	63
	References	64
	General Reading References	64
Chapter 4	Elements of Electrostatics Involved in Treatment of Double	
	Layers and Ions at Capacitor Electrode Interphases	
	4.1. Introduction	67
	4.2 Electrostatic Principles	40

Contents xvii

		4.2.1. Coulomb's Law: Electric Potential and Field, and the Significance of the Dielectric	
		Constant	68
		4.2.1.1. Units	68
		4.2.1.2. Dielectric Constant	70
		4.2.1.3. Electrostatic Potential, Field, and	, ,
		Force	71
		4.2.1.4. Potential ϕ and Field E at an Ion	72
	4.3.	Lines of Force and Field Intensity—A Theorem	73
	4.4.	Capacity of a Condenser or Capacitor	74
	4.5.	Field Due to a Surface of Charges: Gauss's Relation	74
	4.6.	Poisson's Equation: Charges in a 3-Dimensional	
		Medium	75
	4.7.	The Energy of a Charge	76
	4.8.	Electric Tension in a Dielectric in a Field	77
	4.9.	Electric Polarization Responses at the Molecular	
		Level	78
		4.9.1. Atoms and Molecules in Fields: Electronic	
		Polarization	78
		4.9.2. Interaction of a Permanent Dipole with a Field	79
		4.9.2.1. Uniform Field	79
		4.9.2.2. Nonuniform Field	79
		4.9.2.3. Forces on a Quadrupole in a Field	80
	4.10.	Atoms and Molecules in Fields: Dielectric Properties	
		and Dielectric Polarization	81
		4.10.1. Dielectrics	81
		4.10.2. Polarization of Solvent Molecules in	
		Double-Layer and Ion Fields	81
		4.10.3. Dipole Moments of Complex Molecules	82
	4.11.	Electric Polarization in Dielectrics	83
	4.12.	Energy and Entropy Stored by a Capacitor	83
		References	86
		General Reading References	86
Chapter 5	Behav	vior of Dielectrics in Capacitors and Theories of	
	Diele	ectric Polarization	
	5.1.	Introduction	87
	5.2.	Definitions and Relation of Capacitance to	
		Dielectric Constant of the Dielectric Medium	88
	5.3.	Electric Polarization of Dielectrics in a Field	91
	5.4.	Formal Electrostatic Theory of Dielectrics	92
		•	

xviii Contents

	5.5.	Dielectric Behavior Due to Induced, Distortional	
		Polarization	98
	5.6.	Dielectric Polarization in a Simple Condensed	
		Phase	98
	5.7.	Dielectric Polarization in a System of Noninteracting	
		but Orientable Dipoles	99
	5.8.	Dielectric Polarization of Strongly Interacting	
		Dipoles (High Dielectric Constant Solvents)	100
	5.9.	Dielectric Behavior of the Solvent in the	
		Double Layer	102
		References	104
Chapter 6		Double Layer at Capacitor Electrode Interfaces: Its	
	Struc	cture and Capacitance	
	6.1.	Introduction	105
	6.2.	Models and Structures of the Double Layer	108
	6.3.	Two-Dimensional Density of Charges in the Double	
		Layer	114
	6.4.	Ionic Charge Density and Interionic Distances on the	
		Solution Side of the Double Layer	116
	6.5.	Electron-Density Variation: "Jellium" Model	117
	6.6.	Electric Field across the Double Layer	119
	6.7.	Double-Layer Capacitance and the Ideally	
		Polarizable Electrode	121
	6.8.	Equivalent Circuit Representation of Double-Layer	
		Electrical Behavior	123
		References	124
Chapter 7	Theo	oretical Treatment and Modeling of the Double Layer at	
•		trode Interfaces	
	7.1.	Early Models	125
	7.2.	Treatment of the Diffuse Layer	127
	7.3.	Capacitance of the Diffuse Part of the Double	
		Layer	129
	7.4.	Ion Adsorption and the Treatment of the Compact or	
		Helmholtz Layer	133
		7.4.1. Stern's Treatment	133
		7.4.2. Quasi-Chemical Aspect of Anion Adsorption	
	7.5.	The Solvent as Dielectric of the Double-Layer	155
	1.5.	Capacitor	136
		7.5.1. General	136
		7.5.2. Types of Solvents that Constitute the	150
		Double-Layer Interphase	137
		DOUDIC-DAYOL HIGH DHASC	1.01

Contents xix

	7.5.3.	Dielectric Constant in the Double-Layer	
		Interphase	138
	7.5.4.	Electrostatic Polarization of Water as	
		Solvent in the Double Layer	139
	7.5.5.	Molecular-Level Treatments of Solvent	
		Dipole Orientation at Charged Interfaces	141
		7.5.5.1. Two-State Dipole Orientation	
		Treatments	141
		7.5.5.2. Cluster Models for Water	
		Adsorption and Orientation	143
	7.5.6.	H-Bonded Lattice Models	148
	7.5.7.	Spontaneous Orientation of Water at	
		Electrode Surfaces Due to Chemisorption	149
	7.5.8.	Solvent Adsorption Capacitance at Solid	
		Metals	151
	7.5.9.	Recent Modeling Calculations	152
	7.6. The Me	etal Electron Contribution to Double-Layer	
	Capacit	tance	156
	7.6.1.	Origin of the Metal Contribution	156
	7.6.2.	Profile of Electron Density at Electrode	
		Surfaces	157
	7.7. The Pot	tential Profile across the Diffuse Layer	160
	7.8. The Do	uble Layer in Pores of a Porous Capacitor	
	Electro	de	161
	Referen	nces	165
	General	Reading References	168
Chapter 8	Behavior of th	ne Double Layer in Nonaqueous Electrolytes	
	and Nonaqueo	ous Electrolyte Capacitors	
	8.1. Introdu	ction	169
	8.2. Fundam	nental Aspects of Double-Layer Capacitance	
		or in Nonaqueous Solvent Media	170
	8.3. Compar	rative Double-Layer Capacitance Behavior in	
	Several	Nonaqueous Solutions	176
	8.4. General	Outlook	180
	Referen	ces	180
Chapter 9	The Double l	Layer and Surface Functionalities at Carbon	
_	9.1. Introduc	ction	183
	9.1.1.	Historical	183
	9.1.2.	Carbon Materials for Electrochemical	
		Capacitors	185

xx Contents

	9.2.	Surface Properties and Functionalities of Carbon	
		Materials	186
	9.3.	Double-Layer Capacitance of Carbon Materials	193
	9.4.	Oxidation of Carbon	196
	9.5.	Surface Specificity of Double-Layer Capacitance	
		Behavior at Carbon and Metals	198
	9.6.	Double-Layer Capacitance at Edge and Basal Planes	
		of Graphite	199
	9.7.	Materials Science Aspects of Carbon Materials for	
		Conditioned Double-Layer Capacitors	203
		9.7.1. Heat and Chemical Treatments of Carbon	
		Materials for Capacitors	203
		9.7.2. Research Requirements for Carbon Materials	
		in Electrochemical Capacitors	208
		9.7.3. Electron Spin Resonance Characterization of	
		Free Radicals at Carbon Surfaces	209
		Interaction of Oxygen with Carbon Surfaces	212
	9.9.	Electronic Work Function and Surface Potentials of	
		Carbon Surfaces	213
	9.10.	Intercalation Effects	217
		References	219
		General Reading References	220
Chapter 10	Elect	rochemical Capacitors Based on Pseudocapacitance	
•		Origins of Pseudocapacitance	221
		Theoretical Treatments of Pseudocapacitance (C_{ϕ})	224
		10.2.1. Types of Treatment	224
		10.2.2. Electrosorption Isotherm Treatment of	
		Pseudocapacitance: A Thermodynamic	
		Approach	224
	10.3.	Kinetic Theory of Pseudocapacitance	236
		10.3.1. Electrode Kinetics under Linearly	
		Time-Variant Potential	236
		10.3.2. Evaluation of Characteristic Peak Current	
		and Peak Potential Quantities	239
		10.3.3. Transition between Reversibility and	
		Irreversibility	241
		10.3.4. Relation to Behavior under dc Charge and	
		Discharge Conditions	243
	10.4.	Potential Ranges of Significant	
		Pseudocapacitances	246

Contents xxi

		Desired of Redox and Intercalation	248
		Pseudocapacitances	240
		Adsorption of Anions and the Phenomenon of	
		Partial Charge Transfer	253
		Pseudocapacitance Behavior at High-Area Carbon	255
		Materials	255
		Procedures for Distinguishing Pseudocapacitance	255
		(C_{ϕ}) from Double-Layer Capacitance (C_{dl})	255
		References	
		General Reading References	
Chapter 11	The El	lectrochemical Behavior of Ruthenium Oxide (RuO ₂)	
-		laterial for Electrochemical Capacitors	
	11.1.	Historical Aspects	259
	11.2.	Introduction	264
	11.3.	Formation of RuO ₂ Films that Have Capacitative	
		Properties	265
	11.4.	The Transition from Monolayer to Multilayer	
		Electrochemical Formation of RuO ₂	267
	11.5.	States and Chemical Constitution of	
		Electrochemically and Thermochemically Formed	
		RuO ₂ for Capacitors	270
		Mechanism of Charging and Discharging RuO ₂	276
	11.7.	Oxidation States Involved in Voltammetry of	
		RuO ₂ and IrO ₂ Electrodes	277
		11.7.1. Oxidation States and Redox Mechanisms	277
		11.7.2. Charging in Inner and Outer Surface	
		Regions of RuO ₂ Films	279
	11.8.	Conclusions on Mechanisms of Charging RuO ₂	
	44.0	Capacitor Materials	
		Weight Changes on Charge and Discharge	284
	11.10.	dc and ac Response Behavior of RuO ₂	
		Electrochemical Capacitor Electrodes	285
	11.11.	Other Oxide Films Exhibiting Redox	
		Pseudocapacitance Behavior	286
	11.12.	Surface Analysis and Structure of RuO ₂ -TiO ₂	•
		Films	290
	11.13.	Impedance Behavior of RuO ₂ –TiO ₂ Composite	
		Electrodes	
	11.14.	Use and Behavior of IrO ₂	293

xxii Contents

	11.15.	Comparative Oxide Film Behavior at Transition Metal Electrodes	293 295
		General Reading References	297
Chapter 12	Capaci	itance Behavior of Films of Conducting,	
	Electro	ochemically Reactive Polymers	
	12.1.	Introduction and General Electrochemical Behavior	299
	12.2.	Chemistry of the Polymerization Processes	304
	12.3.	General Behavior in Relation to	
		Pseudocapacitance	312
	12.4.	Forms of Cyclic Voltammograms for Conducting	
		Polymers	314
	12.5.	Classification of Capacitor Systems Based on	
		Conducting Polymer Active Materials	320
	12.6.	Complementary Studies Using Other Procedures	322
	12.7.	Ellipsometric Studies of Conducting Polymer Film	
		Growth and Redox Pseudocapacitative Behavior	327
	12.8.	Other Developments on Conducting Polymer	
		Capacitors	331
		References	332
		General Reading References and Tabulations	334
Chapter 13	The El	ectrolyte Factor in Supercapacitor Design and	
-		mance: Conductivity, Ion Pairing and Solvation	
	13.1.	Introduction	335
	13.2.	Factors Determining the Conductance of	
		Electrolyte Solutions	337
	13.3.	Electrolyte Conductance and Dissociation	338
	13.4.	Mobility of the Free (Dissociated) Ions	343
	13.5.	Role of the Dielectric Constant and Donicity of the	
		Solvent in Dissociation and Ion Pairing	344
	13.6.	Favored Electrolyte-Solvent Systems	345
		13.6.1. Aqueous Media	345
		13.6.2. Nonaqueous Media	347
		13.6.3. Molten Electrolytes	350
	13.7.	Properties of Solvents and Solutions for	
		Nonaqueous Electrochemical Capacitor	
		Electrolytes	351
	13.8.	Relation of Electrolyte Conductivity to	
		Electrochemically Available Surface Area and	
		Power Performance of Porous Electrode	
		Supercapacitors	360

Contents xxiii

	13.9. Separation of Cations and Anions on Charge and Its	
	Effect on the Electrolyte's Local Conductivity	361
	13.10. The Ion Solvation Factor	362
	13.11. Compilations of Solution Properties	365
	13.12. Appendix: Selection of Experimental Data on	
	Properties of Electrolyte Solutions in Nonaqueous	
	Solvents and Their Mixtures	366
	13.12.1. Summary Tables	366
	13.12.2. Some Graphically Represented Data from	
	the Literature	366
	13.12.3. Selected Tabulations	366
	13.12.4. Conductivities	373
	References	374
	General Reading References	375
	•	
Chapter 14	Electrochemical Behavior at Porous Electrodes;	
	Applications to Capacitors	
	14.1. Introduction	377
	14.2. Charging and Frequency Response of RC Networks	380
	14.3. General Theory of Electrochemical Behavior of	
	Porous Electrodes	383
	14.3.1. System Requirements	383
	14.3.2. The de Levie Model and its Treatment	383
	14.3.3. Configuration of Double Layers in Porous	
	Electrodes	403
	14.4. Porous Electrode Interfaces as Fractal Surfaces	405
	14.5. Atom Densities in Surfaces and Bulk of Fine	
	Particles	406
	14.6. Pore Size and Pore-Size Distribution	408
	14.7. Real Area and Double-Layer Capacitance	411
	14.8. Electro-osmotic Effects in Porous Electrodes	415
	References	416
Chapter 15	Energy Density and Power Density of Electrical Energy	
Chapter 15		
	Storage Devices	417
	15.1. Ragone Plots of Power Density vs. Energy Density	417
	15.2. Energy Density and Power Density, and Their	401
	Relationship	421
	15.2.1. General Considerations	421
	•	
	15.2.3. Relation to Energy Density	427
	15.2.4. Power and Energy Density Relationships for	
	Capacitors	433

xxiv Contents

	15.2.5. Power Density Rating of a Capacitor 4.				
	15.3. Power Limitation Due to Concentration Polarization 44	40			
	15.4. Relation between C-Rate Specification and Power				
		43			
	15.4.1. Formal Definition 4	43			
	15.4.2. Significance of C-Rate in Battery and				
	Capacitor Discharge 4	44			
	15.5. Optimization of Energy Density and Power Density 44	48			
	15.5.1. Capacitor-Battery Hybrid Systems 4	48			
		52			
	15.5.3. Test Modes	56			
	15.5.4. Constant Power Discharge Regime for a				
	Capacitor 4:	59			
	15.5.5. Effects of Temperature 40	62			
	15.6. The Entropy Component of the Energy Held by a				
		63			
		64			
	15.8. Some Application Aspects of Power-Density				
	• • • • • • • • • • • • • • • • • • • •	68			
		74			
		75			
G1 . 16	AGY I DI CELL I I I I I I I I I I I I I I I I I I				
Chapter 16	AC Impedance Behavior of Electrochemical Capacitors and				
	Other Electrochemical Systems	- -			
		79			
	16.2. Elementary Introductory Principles Concerning	0.			
	±	86			
	16.2.1. Alternating Current and Voltage	~ ~			
		86			
	16.2.2. Root-mean-square and Average Currents in	00			
		89			
	16.3. Origin of the Semicircular Form of Complex-Plane	.			
	5 1	91			
	16.3.1. Impedance Relationships as a Function of				
	1 7	91			
	16.3.2. Time Constant and Characteristic				
	1 ,	96			
	<i>5</i>	97			
	C	97			
	16.4.2. Formal Significance of the RC Product as a				
	Time Constant	01			
	16.5. Measurement Techniques 50	02			

Contents xxv

	16.5.1. AC Bridges	502
	16.5.2. Lissajous Figures	503
	16.5.3. Phase-Sensitive Detection Using Lock-in	
	Amplifiers	504
	16.5.4. Digital Frequency-Response Analyzers	
	(Solartron and Other Instruments)	505
	16.6. Kinetic and Mechanistic Approach to Interpretation	
	of Impedance Behavior of Electrochemical Systems	506
	16.6.1. Procedures and Role of Diffusion Control	506
	16.6.2. Principles of the Kinetic Analysis Method	509
	16.6.3. Example of the Kinetic Analysis of ac	
	Behavior of the Cathodic H ₂ Evolution	
	Reaction	510
	16.6.4. Relation to Linear-Sweep Modulation and	
	Cyclic Voltammetry	513
	16.6.4.1. Methodology	513
	16.6.4.2. Response-Current Behavior	513
	16.6.4.3. Relation between Response	
	Currents in Cyclic Voltammetry	
	and Alternating Voltage	
	Modulation	515
	16.6.5. Impedance of a Pseudocapacitance	518
	References	524
Chapter 17	Treatments of Impedance Behavior of Various Circuits and	
-	Modeling of Double-Layer Capacitor Frequency Response	
	17.1. Introduction and Types of Equivalent Circuits	525
	17.2. Equivalent Series Resistance	528
	17.2.1. Significance of esr	528
	17.2.2. Impedance Limits for Some Commercial	
	Capacitors Due to esr	530
	17.3. Impedance Behavior of Selected Equivalent Circuit	
	Models	532
	17.4. Discharge of a Capacitor with esr into a Load	
	Resistance, R_L	538
	17.5. Simulation of Porous Electrode Frequency Response	
	by Multielement RC Equivalent Circuits	547
	17.6. Impedance Behavior of a Redox Pseudocapacitance	549
	17.7. Electrochemistry at Porous Electrodes	555
	References	556
	Meterences	220

xxvi Contents

Chapter 18		Discharge of Electrochemical Capacitors in Relation	
		at at Batteries	
	18.1.	Introduction	557
	18.2.	Practical Phenomenology of Self-Discharge	557
	18.3.	Self-Discharge Mechanisms	559
	18.4.	Methodologies for Self-Discharge Measurements	561
		Self-Discharge by Activation-Controlled Faradaic	
		Processes	562
	18.6.	Slope Parameters for Decline of Potential on	
		Self-Discharge	567
	18.7.	Comparison with a Regular Capacitor Discharging	
		through an Ohmic Leakage Resistance	568
	18.8.	Self-Discharge under Diffusion Control	569
		Charging of a Nonideally Polarizable Electrode	573
		Self-Discharge of Double-Layer-Type	
	10.10.	• • • • • • • • • • • • • • • • • • • •	574
	18.11.	Time-Dependent Redistribution of Charge in	
	101111	•	575
	18 12	Temperature Effects on Self-Discharge	
		•	579
		Examples of Experimental Measurements on	317
	10.14.	Self-Discharge of Carbon Capacitors and Carbon	
			582
		18.14.1. Introduction	582
		18.14.2. Potential Decay (Self-Discharge) and	
		Recovery in Terms of a Faradaic	
		Process	583
		18.14.3. Self-Discharge Behavior of a Commercial	
		Capacitor	584
	18.15.	Self-Discharge and Potential Recovery Behavior at	
		an RuO ₂ Electrode	586
		18.15.1. Background	586
		18.15.2. Potential Decay (Self-Discharge) and	
		Recovery in Relation to Charge and	
		Discharge Curves	587
		18.15.3. Model for Potential Recovery	591
		18.15.4. Quasi-Reversible Potentials of RuO ₂ after	
		Self-Discharge	592
	18.16.	Self-Discharge in a Stack	595
		References	595

Contents xxvii

Chapter 19	Practical Aspects of Preparation and Evaluation of				
	Electrochemical Capacitors				
	19.1. Introduction			597	
	19.2.	Preparatio	on of Electrodes for Small Aqueous		
		Carbon-B	ased Capacitors for Testing Materials	598	
	19.3.	Preparatio	on of RuO _x Capacitor Electrodes	599	
	19.4.	Preparation of RuO_x Capacitors with a Polymer			
		Electrolyt	e Membrane (U.S. Patent 5,136,477)	600	
	19.5.	Assembly	of Capacitors	600	
	19.6.	Experimental Evaluation of Electrochemical			
		Capacitor	s	602	
		19.6.1. C	yclic Voltammetry	602	
		19.6.2. In	npedance Measurements	602	
		19.6.3. C	onstant Current Charge or Discharge	603	
		19.6.4. C	onstant Potential Charge or Discharge	605	
		19.6.5. C	onstant Power Charge or Discharge	605	
		19.6.6. L	eakage Current and		
		Se	elf-Discharge Behavior	605	
	19.7. Other Test Procedures		606		
		Reference	·s	606	
Chapter 20	Technology Development				
Chapter 20	20.1. Introduction				
	20.2.	Development of the Technology of Electrochemical		00)	
	20.2.			610	
		•	Classes of Capacitors	610	
	20.3.		les of Device Developments and	010	
	20.5.		ogy Advances	612	
	20.4.		s Requirements	613	
	20	20.4.1.	Electrodes	613	
		20.4.2.	Carbon Electrode Materials	615	
		20.4.3.	Activation Procedures for Carbon		
			Particles and Fibers	615	
		20.4.4.	Oxide, Redox-Pseudocapacitance Systems	618	
		20.4.5.	Conducting-Polymer Electrodes	618	
		20.4.6.	Electrolyte Systems	618	
		20.4.7.	Practical Design Aspects	620	
		20.4.8.	Capacitor Stacking	620	
		20.4.9.	Bipolar Electrode Arrangements	622	
		20.4.10.		623	
			Scale-up Factors	625	
	20.5.		he Art	627	

xxviii Contents

		20.5.1. Electrode Development	627
		20.5.2. Ruthenium Oxide Materials	634
		20.5.3. Other Embodiments	635
	20.6.	Self-Discharge: Phenomenological Aspects	641
	20.7.	Thermal Management	643
	20.8.	Other Variables that Affect Capacitor Performance	644
		20.8.1. Temperature Dependence of Capacitance	
		and Capacitor Performance	644
		20.8.2. Constant Current versus Constant Potential	
		Charging Modes	648
		20.8.3. Rate Effects on Charge or Discharge	649
	20.9.	Safety and Health Hazards in the Use of	
		Electrochemical Capacitors	649
		Recent Advances in the Use of Materials	651
	20.11.	Usage Basis	655
		Commercial Development and Testing	658
	20.13.	Capacitor-Battery Hybrid Application for Electric	
		Vehicle Drive Systems	663
	20.14.	Market Aspects	666
		20.14.1. Electrochemical Capacitors in the	
		Capacitor Market	666
		20.14.2. Market Status and Future Opportunities	667
		Technology Summary Based on Patent Literature	667
	20.16.	Energy Storage by High-Voltage Electrostatic	
		Capacitors	668
		Concluding Summary	670
	20.18.	Appendix on Information Sources	671
		References	673
		General Reading References	674
Chapter 21	Patent	Survey	675
Index			685

Electrochemical Supercapacitors

Scientific Fundamentals and Technological Applications