

Сбалансированные и специальные деревья Лекция 5

#### План лекции

- 1. Интерфейс абстракции отображение.
- 2. Деревья поиска.
- 3. Декартовы деревья.
- 4. Сбалансированные деревья поиска.
  - Красно-чёрные деревья.
  - AVL-деревья.
- 5. Списки с пропусками.
- 6. Внешний поиск. В-деревья.

# Интерфейс абстракции *отображение*.

#### Абстракция отображение

 Абстракция отображение устанавливает соответствие между двумя множествами — множеством ключей и множеством данных.



# Абстракция отображение

- Абстракция отображение есть аналог дискретной функции.
- Одно из определений математической функции: **Функция** есть отображение множества D на множество E.



# Отображение как полезная структура данных

- ▶ Разновидность отображения таблица символов, словарь
- Цель словаря удобная реализация операций вставки и поиска.
- ▶ В обычном словаре ключи словарные входы, данные словарные статьи.
- ▶ Банк: ключ номер счёта, данные информация о счёте.

#### Абстракция отображение

 Самый удобный способ создать отображение воспользоваться синтаксисом индексации.

```
map<string,int> m;
т["Шанхай"] = 24150000;
m["Карачи"] = 23500000;
m["Пекин"] = 21150000;
m["Дели"] = 17830000;
int BeijingPopulation = m["Пекин"];
for (auto x: m) {
  printf("Population of '%s' is %d\n",
     x.first, x.second);
}
```

# Абстракция отображение

#### Интерфейс абстракции отображение

- insert(key, value) добавить элемент с ключом key и значением value
- ► Item find(key) найти элемент с ключом key и вернуть его.
- ► erase(key) удалить элемент с ключом key
- walk получить все ключи (или все пары ключ/значение) в каком-либо порядке.

# Абстракция отображение: С++

#### Интерфейс абстракции отображение

- insert(key, value) m[key] = value;
- ltem find(key) auto val = m[key];
  или auto r = m.find(key); if (r != m.end()) {
  found }
- erase(key) m.erase(key);
- ▶ walk for (auto q: m) { use q.first, q.second; }

# Абстракция отображение

#### Цели:

- Реализовать операции, исполняющиеся минимальное время:
  - Вставки
  - Замены
  - Удаления
  - Поиска
  - Перечисления

В дальнейшем под термином  $\kappa n \omega u$  мы понимаем пару  $\kappa n \omega u + 3 u$  сравнения по ключу.

#### Связь множества и отображения

- Возможная реализация отображения множество с прикреплёнными данными.
- Каждое представление множества, кроме битовой карты, расширяется на отображение.
- С другой стороны множество есть отображение множества ключей на логическую истину.
- Наиболее универсальное представление и множеств, и отображений — бинарное дерево поиска.

# Деревья поиска

#### Деревья: поиск

Использование деревьев для поиска.

#### Задача:

- Вход: последовательность чисел.
- Выход: 2-дерево, в котором все узлы справа от родителя больше родителя, а слева — не больше.

# Деревья: поиск

 $\{10,\,5,\,35,\,7,\,3,\,23,\,94,\,2,\,5,\,7\}$ 



#### Деревья: поиск

#### Поиск по дереву после получения элемента с ключом X:

- 1. Делаем текущий узел корневым
- 2. Переходим в текущий узел С.
- 3. Если X = C. Кеу то алгоритм завершён.
- 4. Если X > C. Key и C имеет потомка справа, то делаем текущим узлом потомка справа. Переходим к п. 2.
- 5. Если X < C. Key и C имеет потомка слева, то делаем текущим узлом потомка слева. Переходим к п. 2.
- 6. Ключ не найден. Конец алгоритма.

Наивное построением бинарных деревьев поиска. Неплохое дерево

 $\{10, 5, 35, 7, 3, 23, 94, 2, 5, 7\}$ 



#### Отвратительное дерево

{1, 5, 10, 20, 30}



#### Определение:

▶ Случайное бинарное дерево Т размера п — дерево, получающееся из пустого бинарного дерева поиска после добавления в него п узлов с различными ключами в случайном порядке и все n! возможных последовательностей добавления равновероятны.

Определение средней глубины случайного дерева.

- lacktriangle Пусть  $ar{d}(N+1)$  средняя глубина всех узлов случайного дерева с N+1 узлами.
- lacktriangle Пусть k узел, добавленный первым. Вероятность добавления узла k есть  $p_k = rac{1}{N+1}$
- Остальные узлы разобьются на группы, каждая из которых начнётся с высоты 1. В левую группу войдут элементы  $\{0,\ldots,k-1\}$ , в правую  $\{k+1,\ldots,N\}$ .

$$\bar{d}(N+1) = \sum_{k=0}^{N} \frac{1}{N+1} \left( 1 + \frac{k}{N} \cdot \bar{d}(k) + \frac{N-k}{N} \cdot \bar{d}(N-k) \right)$$

$$\bar{d}(N+1) = \frac{2}{N(N+1)} \sum_{k=0}^{N} k \cdot \bar{d}(k)$$

Используя предел

$$\lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \gamma = 0.57721...$$

получаем

$$\lim_{N\to\infty}(\bar{d}(N)-2\ln N)\to C$$

- **Средняя** глубина узлов случайного бинарного дерева есть  $\Theta(\log_2 N)$ .
- **Средние** времена выполнения операций вставки, удаления и поиска в случайном бинарном дереве есть  $\Theta(\log_2 N)$ .

#### Полезные свойства бинарного дерева поиска:

- Наименьший элемент всегда находится в самом низу левого поддерева.
- Наибольший элемент всегда находится в самом низу правого поддерева.

```
tree * minNode(tree *t) {
   if (t == NULL) return NULL;
   while (t->left != NULL) {
      t = t->left;
   }
   return t;
}
```

Простая процедура поиска

```
tree * searchNode(tree *t, keytype key) {
   tree *p = t;
   while (t != NULL) {
      p = t;
      if (t->key == key) return t;
      t = key > t->key? t->right : t->left;
   }
   return p;
}
```

Простая процедура вставки

```
tree * insertNode(tree *t, keytype key, valtype value) {
  tree *parent = t;
  while (t != NULL) {
      parent = t;
      if (t->key == key) return; // Уже есть
      t = key > t->key? t->right : t->left;
   tree *node = new tree(key, value);
   if (key < parent->key) parent->left = node;
   else
                          parent->right = node;
```

- Процедура удаления сложнее, три случая:
  - 1. Нет потомков удаляем узел у родителя.
  - 2. Один потомок переставляем узел у родителя на потомка

- Процедура удаления сложнее, три случая:
  - 1. Нет потомков удаляем узел у родителя.
  - 2. Один потомок переставляем узел у родителя на потомка
  - 3. Два потомка находим самый левый лист в правом поддереве и им замещаем удаляемый

#### Первый случай: до удаления



#### Первый случай: после удаления



#### Второй случай: до удаления



#### Второй случай: после удаления



#### Третий случай: до удаления



Третий случай: после удаления



| Структура хранилища    | вставка     | удаление    | поиск       |
|------------------------|-------------|-------------|-------------|
| Бинарное дерево поиска |             |             |             |
| (наихудшее)            | O(N)        | O(N)        | O(N)        |
| Бинарное дерево поиска |             |             |             |
| (среднее)              | $O(\log N)$ | $O(\log N)$ | $O(\log N)$ |

# Борьба с дисбалансом

- 1. Сложность всех алгоритмов в бинарных деревьях поиска (BST) определяется средневзвешенной глубиной
- 2. Операции вставки/удаления могут привести к дисбалансу и ухудшению средних показателей
- 3. Для борьбы с дисбалансом применяют рандомизацию и балансировку.

# Борьба с дисбалансом

- Предлагается: вставлять новые элементы всегда в корень.
- Последствия: если вставляемый элемент больше корня, то старый корень сделаем левым поддеревом, а его правое поддерево — нашим правым поддеревом.
- Аналогично рассуждаем для случая, когда вставляемый элемент меньше корня.
- Упорядоченность может нарушиться в обоих случаях.

# Борьба с дисбалансом

- Чтобы нарушений не происходило, требуется сохранять инвариант упорядоченности.
- Для этого введём понятие поворота, не изменяющего свойства дерева, но меняющего высоту поддеревьев.

#### Перед поворотом



#### После поворота направо



```
void rotateRight(node* &head) {
   node *temp = head->left;
   head->left = temp->right;
   temp->right = head;
   head = temp;
void rotateLeft(node* &head) {
   node *temp = head->right;
   head->right = temp->left;
   temp->left = head;
   head = temp;
```

#### После поворота налево



# Вставка в корневой узел

Рекурсивный алгоритм.

```
void insert(node* &head, item x) {
   if (head == nullptr) {
      head = new node(x);
      return;
   if (x.key < head->item->key) {
      insert(head->left, x);
      rotateRight(head);
   } else {
      insert(head->right, x);
      rotateLeft(head);
```

# Рандомизированное дерево

- Проблема вырождения дерева при вставке в корень не решена.
- Однако имеется инфраструктура для достижения лучшей сложности.
- ightharpoonup С вероятностью  $\frac{1}{N+1}$  вставляем новый узел в корень дерева размером N.
- Свойства любого дерева будут соответствовать свойствам случайного дерева.

# Декартовы деревья

# Декартовы деревья

- ightharpoonup Случайные бинарные деревья поиска близки к идеальным по сложности ( $H = O(\log N)$ ).
- Можно внести ещё более серьёзный элемент случайности, добавив второй ключ, генерируемый случайно.
- Декартово дерево есть комбинация бинарного дерева поиска (BST) и бинарной кучи (ВН) .
- ▶ При поиске информации декартово дерево (BST) .
- Узлы упорядочиваются по отношениям (ВН) .

# Декартовы деревья: свойства

- ▶ При вставке в (BST) можно получить комбинаторное количество различных деревьев, содержащих те же самые элементы.
- ▶ При вставке в (BST) с вторичным упорядочиванием по отношениям (ВН) получается единственное дерево со свойствами случайного BST.

# Декартовы деревья: пример



# Декартовы деревья: операции

find — Декартово дерево есть BST. ( $\log N$ )

# Декартовы деревья: операции

insert — Декартово дерево есть BST + BH.

- ▶ Первичная вставка проводится в ВЅТ. При этом может быть нарушено свойство (ВН) .
- Если вставленный элемент не нарушает свойства (ВН), то вставка завершена.
- Если свойство ВН нарушается, проводится вращение, поднимающее вставленный элемент.
- ▶ Подъём происходит до тех пор, пока нарушено свойство (ВН) .



Элемент вставлен по правилам BST, но он не упорядочен по правилам BH.



Попытка обмена с родителем нарушает свойства BST.



Вращение в сторону родителя не нарушает свойства BST, но свойство ВН ещё нарушено.



Ещё одно вращение в сторону родителя и все свойства восстановлены.



# Декартовы деревья: операции

#### remove — Декартово дерево есть BST + BH.

- Так как удаление узлов, отличных от вершин, нетривиально, а удаление вершин — тривиально, задача сделать удаляемый узел терминальным.
- Для этого на каждом шаге вращаем удаляемый узел с его ребёнком, имеющим наибольшее значение у до тех пор, пока он не станет терминальной вершиной.
- ► На этапе спуска мы не обращаем внимания на сохранение свойства ВН, нас интересуют только значения *у*.

Попытаемся удалить корневой элемент. Элемент (1633,89) имеет наибольшее значение y из детей, вращаем его по направлению к родителю.



Теперь новый объект для вращения — узел (1991,77).



Следующее направление — узел (1821,15).



Последнее направление — узел (1650,2).



Удаляемый узел добрался до вершин и может быть удалён.



Заключительное состояние.



▶ Задача: реализовать операции с деревьями, имеющие время в худшем  $\Theta(\log N)$ .

$$H < A \cdot \log N + B$$
,

где A и B — некоторые фиксированные константы.

- Решение:
  - использовать сбалансированные деревья;
  - использовать алгоритмы, не нарушающие сбалансированность.

# Сбалансированные деревья поиска: критерии сбалансированности

Высота дерева  $H_t$  не превосходит  $A \log N + B$ , если в бинарном дереве с N узлами выполнено хотя бы одно из условий:

1. для любого узла количество узлов в левом и правом поддереве  $N_I,\ N_r$  отличаются не более, чем на 1

$$N_r \leqslant N_l + 1, \quad N_l \leqslant N_r + 1$$

2. для любого узла количество подузлов в левом и правом поддеревьях удовлетворяют условиям

$$N_r \leqslant 2N_l + 1$$
,  $N_l \leqslant 2N_r + 1$ 

3. для любого узла высоты левого и правого поддеревьев  $H_l, H_r$  удовлетворяют условиям

$$H_r \leqslant H_l + 1, H_l \leqslant H_r + 1$$



Случай 1 — идеально сбалансированное дерево. Пусть  $H_{ideal}(N)$  — максимальная высота идеально сбалансированного дерева.

N — нечётно и равно 2M+1. Тогда левое и правое поддеревья должны содержать ровно по M вершин.

$$H_{ideal}(2M+1) = 1 + H_{ideal}(M)$$

N — чётно и равно 2M. Тогда

$$H_{ideal}(2M) = 1 + \max(H_{ideal}(M-1), H_{ideal}(M))$$

Так как  $H_{ideal}(M)$  — неубывающая функция, то

$$H_{ideal}(2M) = 1 + H_{ideal}(M)$$

$$H_{ideal}(N) \leqslant \log_2 N$$



Случай 2. Примерная сбалансированность количества узлов. Пусть H(M) — максимальная высота сбалансированного дерева со свойством 2.

- ► Тогда H(1) = 0, H(2) = H(3) = 1.
- ▶ При добавлении узла один из узлов будет корнем, остальные N-1 распределятся в отношении  $N_l:N_r$ , где  $N_l+N_r=N-1$ .
- ▶ Не умаляя общности, предположим, что  $N_r \geqslant N_l$ , тогда  $N_r \leqslant 2N_l + 1$ .

$$H(N) = \max_{N_I, N_r} (1 + \max(H(N_I), H(N_r)))$$

Функция H(N) — неубывающая, поэтому

$$H(N) = 1 + H(\max(N_r, N_l))$$

При ограничениях  $N_r\leqslant 2N_l+1$  и  $N_l+N_r=N+1$  получаем

$$H(N) = 1 + H\left(\left\lfloor \frac{2N-1}{3} \right\rfloor\right)$$

$$H(N) > 1 + H\left(\left\lfloor \frac{2N}{3} \right\rfloor\right)$$

$$H(N) > \log_{3/2} N + 1 \approx 1.71 \log_2 N + 1$$

Случай 3. Примерная сбалансированность высот. АВЛ-деревья. Пусть N(H) — минимальное число узлов в АВЛ-дереве с высотой H (минимальное АВЛ-дерево).

- ▶ Пусть левое дерево имеет высоту H-1.
- ▶ Правое дерево будет иметь высоту H-1 или H-2.
- N(H) неубывающая, для минимального АВЛ-дерева высота правого равна H-2.
- Число узлов в минимальном АВЛ-дереве:

$$N(H) = 1 + N(H-1) + N(H-2)$$

$$\lim_{h \to \infty} \frac{N(h+1)}{N(h)} = \varphi = \frac{\sqrt{5}+1}{2}$$

$$H(N) \approx \log_{\varphi}(N-1) + 1 \approx 1.44 \log_2 N + 1$$

Красно-чёрное дерево это сбалансированное бинарное дерево поиска.

- Вершины разделены на красные и чёрные.
- Каждая вершина хранит поля ключ и значение.
- ► Каждая вершина имеет указатель left, right, parent
- Отсутствующие указатели помечаются указателями на фиктивный узел nil
- ▶ Каждый лист nil чёрный
- ▶ Если вершина красная, то её потомки чёрные
- Все пути от корня root к листьям содержат одинаковое число чёрных вершин. Это число называется чёрной высотой дерева, black height, bh(root)



Теорема: красно-чёрное дерево с N внутренними листьями имеет высоту не более  $\log_2\left(N+1\right)$ 

- Для листьев чёрная высота равна нулю.
- ightharpoonup Докажем, что  $|T_x| >= 2^{bh(x)}$ .
- ightharpoonup База индукции: Пусть вершина x является листом. Тогда bh(x)=0 и  $|T(x)|=0<2^{bh(x)}$
- ▶ Пусть вершина x не является листом и bh(x) = k. Тогда для обоих потомков  $bh(l) \geqslant k-1$ ,  $bh(r) \geqslant k-1$ , т. к. красный будет иметь высоту k, чёрный k-1.
- lacktriangle По предположению индукции  $|T_I|, |T_r|>=2^{k-1} 
  ightarrow |T_k|=|T_I|+|T_r|>=2^k-1$

- По свойству (3) не менее половины узлов составляют чёрные вершины.
- ▶  $bh(t) \geqslant H/2$
- ►  $N \ge 2^{H/2} 1$

$$H \leqslant 2 \cdot \log_2 N + 1$$

#### Красно-чёрные деревья: операция вставки

- При обычной вставке свойства красно-чёрности могут нарушаться.
- Для изменения структуры применяются операции поворота деревьев.
- Для изменения красно-чёрности применяется корректировка.
- ▶ Для удобства полагаем, что для дерева имеется узел nil

# Красно-чёрные деревья: структуры данных

```
struct tree {
   struct tnode *root, *nil;
   tree();
   ~tree() { delete nil; }
};
struct tnode {
   tnode *left, *right, *parent;
   bool black;
   mydata data;
   tnode(tree *t) {
      left = right = parent = t->nil;
};
tree::tree() {
   nil = new tnode(); nil->black = true;
};
```

#### Красно-чёрные деревья: повороты

Для поддержания сбалансированности применяется операция вращение или поворот.

Для этого отцепляется поддерево и переносится на другую сторону.



Левый поворот дерева.

#### Красно-чёрные деревья: вставка

- ▶ Вставляем почти как в обычное бинарное дерево поиска.
- ▶ Красим узел в красный цвет
- Корректируем дерево для сохранения красно-чёрности.

#### Красно-чёрные деревья: вставка

```
void tree_insert(tree *t, tnode *z) {
   tree *y = t->nil; tree *x = t->root;
   while (x != t->nil) {
      v = x;
      if (z->key < x->key) x = x->left;
      else
                         x = x->right;
   z-parent = y;
   if (y == t->nil) t->root = z;
   else {
      if (z->key < y->key) y->left = z;
      else
                           y->right = z;
   z->left = z->right = t->nil;
   z->black = false;
   insert_fixup(t, z);
```

# Красно-чёрные деревья: коррекция (фрагмент)

```
void insert_fixup(tree *t, tnode *z) {
   while(!z->parent->black) {
      if (z->parent == z->parent->parent->left) {
        tnode *y = z->parent->right;
         if (!v->black) {
            z->parent->black = true;
            y->black = true;
            z->parent->parent->black = false;
            z = z->parent->parent;
         } else {
             if (z == z->parent->right) {
                z = z-parent;
                rotate_left(t, z);
                z->parent->black = true;
                z->parent->parent->black = false;
                rotate_right(t, z->parent->parent);
        } else ... left <-> right
    t->root->black = true:
```

# Красно-чёрные деревья



# Красно-чёрные деревья

#### Поворот

Вставка 4, корректирование



# Красно-чёрные деревья

#### Заключительная коррекция



# Красно-чёрные деревья vs АВЛ-деревья

|                        | RB-tree  | AVL-tree  |
|------------------------|----------|-----------|
| Средняя высота         | до 1.38Н | Н         |
| Поиск/вставка          | до 1.38t | t         |
| Поворотов при вставке  | до 2     | до 1      |
| Поворотов при удалении | до 3     | до log N  |
| Дополнительная память  | 1 бит    | 1 счётчик |

Параллельное использование алгоритмов поиска. Списки с пропусками.

- ▶ При параллельном программировании к одному элементу данных может обратиться несколько потоков.
- Результат при этом может быть недетерминирован.

```
int a = 0, b = 0;
//thread 1
b = 2;
a = b + 1;
//thread 2
a = 4;
b = a - 3;
```

- **Р** Критерий Бернстайна: Поместим объекты, которые читаются в потоке i в множество  $R_i$ , а те, которые пишутся, в множество  $W_i$ .
- lackДля нашего кода  $R_1=\{b\},\ W_1=\{a,b\},\ R_2=\{a\},\ W_2=\{a,b\}.$
- ▶ Критерий гласит, что если все пересечения множеств  $R_1 \cap W_2$ ,  $R_2 \cap W_1$ ,  $W_1 \cap W_2$  пусты, то конфликтов (race conditions) не возникнет.
- ightharpoonup В нашем случае:  $R_1 \cap W_2 = \{a\}$ ,  $R_2 \cap W_1 = \{a\}$ ,  $W_1 \cap W_2 = \{a,b\}$ , то есть *race conditions* возможны.

- ▶ Одно из средство избежать race conditions использование атомарных операций.
- ► Существуют машинные команды типа *Compare-And-Swap*, исполняющиеся атомарно.
- Они позволяют атомарно обменять две ячейки памяти, которые, возможно, содержат указатели.
- При вставке в односвязный список достаточно атомарных операций для замены цепочки указателей.
- Односвязный список идеальная структура данных для параллельного программирования.

- lacktriangle Операция поиска в односвязном списке T(N)=O(N)
- ightharpoonup Операции вставки и удаления в односвязном списке T(N) = O(N)
- Требуется по возможности сохранить свойства операций вставки и удаления в лучшем случае и ускорить операцию поиска.

#### Рассмотрим следующую структуру данных:



- Она представляет из себя несколько списков, организованных в виде списков.
- Каждый следующий список примерно в два раза короче предыдущего и он пропускает примерно половину элементов предыдущего.

Поиск существующего элемента.



Поиск несуществующего элемента.



#### Вставка элемента.



> Удаление элемента. Поиск и пометка столбца.



▶ Удаление элемента. Удаление из строк.



▶ Удаление элемента. Заключительное удаление.



► Вставка 10<sup>6</sup> элементов в структуру данных.

| Укладывание    | Array     | RBTree  | SkipList |
|----------------|-----------|---------|----------|
| Случайно       | 127033 ms | 1020 ms | 1737 ms  |
| По возрастанию | 108 ms    | 457 ms  | 536 ms   |
| По убыванию    | 256337 ms | 358 ms  | 407 ms   |

#### Амортизационная сложность списков с пропусками:

- ightharpoonup Вставка  $T(N) = O(\log N)$
- ▶ Поиск  $T(N) = O(\log N)$
- ▶ Удаление  $T(N) = O(\log N)$

# Внешний поиск. В-деревья.

#### Внешний поиск с использованием В-деревьев

- Основной носитель информации жёсткий диск.
- ► Информация на жёстком диске располагается в *секторах*, которые логически расположены на *дорожках*.
- Размер сектора типично 512/2048/4096 байт.
- Информация считывается и записывается головками чтения/записи.
- Для чтения/записи информации требуется подвести головку чтения записи к нужной дорожке и дождаться подхода нужного сектора.
- ► Типичные скорости вращения жёстких дисков 5400/7200/10033/15000 оборотов в минуту.
- Один оборот совершается за время от 1/90 до 1/250 секунды.
- Операция перехода на соседнюю дорожку примерно 1/1000 секунды.

#### Работа с внешними носителями

- Внешние сортировки используют многократный последовательный проход по данным, расположенным на носителях информации.
- Последовательное считывание информации с жёсткого диска 100-150 мибибайт в секунду.
- Смена позиции в файле часто требует:
  - ожидания подвода головки на нужную дорожку;
  - ожидания подхода нужного сектора к головкам чтения/записи;
- lacktriangle Операция последовательного чтения 4096 байт занимает  $rac{4096}{100 imes10^6}pprox 40 imes10^{-6}$  секунд
- ▶ Операция случайного чтения 4096 байт занимает не менее  $5-10\times 10^{-3}$  секунд.

#### Работа с внешними носителями

- ▶ Второй популярный носитель SSD диск.
- Информация хранится в энергонезависимой памяти на микросхемах.
- Операции производятся блоками размером 64-1024 кибибайт.
- ▶ Время доступа к блоку  $\approx 10^{-6}$  секунд.
- HDD и SSD используют буферизацию для ускорения работы.
- Алгоритмы поиска во внешней памяти должны минимизировать число обращений к внешней памяти.

#### Работа с SSD носителями

- ► На логическом уровне обращения происходят блоками любого размера, кратного 512 байт.
- На физическом уровне всё сложнее.
- Размер физического блока от 64 до 1024 кибибайт.
- Операция частичной записи 512 байт:
  - 1. Считывается полный блок (всегда).
  - 2. Заменяется 512 байт в требуемом месте.
  - 3. Записывается полный блок (всегда).
- Выровненная запись целого блока минимум двукратное ускорение.

#### Оценка применимости внешнего поиска

- Пусть имеется бинарное дерево поиска, состоящее из:
  - 1. Данных размером 64 байта.
  - 2. Ключа размером 8 байт.
  - 3. Указателей left и right размером 8 байт.
- Общий размер узла 88 байт.
- ightharpoonup В оперативную память размером 16 гибибайт поместится  $rac{16 imes 2^{30}}{88}pprox 195 imes 10^6$  узлов.
- ▶ Как хранить словарь из 10<sup>9</sup> элементов?

#### В-деревья

- ► *В-дерево* сбалансированное дерево поиска, узлы которого хранятся во внешней памяти.
- В оперативной памяти хранится часть узлов.

#### В-деревья: свойства



- ▶ Высота дерева не более  $O(\log N)$ , где N— количество узлов.
- Каждый узел может содержать 1 ключ и больше.
- ightharpoonup Количество детей узла равно K+1, где K- количество ключей в узле.

#### В-деревья: свойства



- Пусть в узле помещается 128 ключей.
- Высота дерева 3
- ▶ Тогда общее количество узлов

$$1 + 129 + 129^2 = 16771$$

▶ Общее количество ключей

$$16771 \times 128 = 2146688$$

#### В-деревья: определение

- ▶ В-дерево корневое дерево, обладающее свойствами:
  - 1. Каждый узел содержит:
    - ightharpoonup количество ключей n, хранящихся в узле.
    - ▶ индикатор листа final.
    - n ключей в порядке возрастания.
    - ▶ n+1 указатель на детей, если узел не корневой.
  - 2. Ключи есть границы диапазонов ключей в поддеревьях.
  - 3. Все листья расположены на одинаковой глубине h.
  - 4. Имеется показатель t минимальная степень дерева.
  - 5. В корневом узле от 1 до 2t-1 ключей.
  - 6. Во внутренних узлах минимум t-1 ключей.
  - 7. Во внешних узлах максимум 2t-1 ключей.
  - 8. Заполненный узел имеет 2t-1 ключ.

#### В-деревья: высота

- ▶ **Теорема**: Высота В-дерева с  $n \geqslant 1$  ключами и минимальной степенью  $t \geqslant 2$  в худшем случае не превышает  $\log_t \frac{n+1}{2}$
- ightharpoonup Доказательство. В максимально высоком дереве высоты h в каждом узле, кроме корневого, содержится t-1 ключ. Тогда общее количество ключей в дереве есть

$$1 + 2 + 2t + 2t^{2} + \dots + 2t^{h-1} =$$

$$= 1 + 2(t-1)(1+t+t^{2} + \dots + t^{h-1}) =$$

$$= 1 + 2(t-1)\frac{t^{h} - 1}{t-1}$$

Отсюда

$$h = \log_t \frac{n+1}{2}$$

#### В-деревья: операции

- ▶ Используем операции Load и Store.
- Корень сохраняем в оперативной памяти.
- Минимизируем количество операций.

#### B-деревья: операция find поиска ключа k

- 1. Операцией бинарного поиска ищем самый левый ключ  $key_i\geqslant k$
- 2. Если  $key_i = k$ , то узел найден.
- 3. Исполняем Load для дочернего узла и рекурсивно повторяем операцию.
- 4. Если final = true, то ключ не найден.

Количество операций 
$$T_{load} = O(h) = O(\log_t n)$$

#### Добавление ключа

- 1. Операцией find находим узел для вставки.
- 2. Если лист не заполнен, сохраняя упорядоченность вставляем ключ.
- 3. Если лист заполнен (2t-1 ключей), разбиваем его на два листа по t-1 ключу поиском медианы.
- 4. Медиана рекурсивно вставляется в родительский узел.

Сложность в худшем случае: каждый раз разбивается узел на каждом уровне,  $O(t\log_t n)$ 

Количество операций:  $T_{ext} = O(h) = O(\log_t n)$ 

#### Разновидности В-деревьев

- ▶ В<sup>+</sup>-дерево содержит информацию только в листьях, ключи только во внутренних узлах.
- ► Используется в файловых системах XFS, JFS, NTFS, Btrfs, HFS, APFS, ...
- ► Используется для хранения индексов в базах данных Oracle, Microsoft SQL, IBM DB2, Informix, ...

Спасибо за внимание.

Следующая лекция— Обобщённый быстрый поиск.