

دانشکدهی علوم ریاضی

نیمسال دوم ۱۳۹۸

مدرس: دكتر عليرضا بحريني

جبرخطی۱

۶ اسفندماه ۱۳۹۸

كارگاه حل مسأله

مساله ١

- $a \in F$ داریم: $a \in F$ داریم: $a \in F$ فرض کنید $a \in F$ داریم: $a \in F$ داریم: $a \in F$ داریم:
 - (ب) ثابت کنید عضو خنثی ضرب یک میدان، یکتاست.
 - رج) فرض کنید F یک میدان باشد. ثابت کنید اگر $a \times b = \circ$ آنگاه حداقل یکی از $a \times b = \circ$ صفر است.

مساله ۲

میدان (x,+,x) را در نظر بگیرید. (+e) همان جمع و ضرب معمولی است.) حال (+e) را به شکل زیر تعریف میکنیم:

$$a +' b = a \times b$$
 $a \times' b = a + b$

- (آ) الف) آیا ($\mathbb{R},+',\times'$) میدان است
- (ب) ه و ۱ میدان با این تعریف از ضرب و جمع را بیابید.
- (ج) قسمت الف و $(F,+,\times)$ میدان دلخواه (ج) جواب دهید.

مسأله ٣

- (آ) ثابت کنید هر میدان با مشخصه (سرشتنما)ی صفر، شامل یک کپی از مجموعهی اعداد گویاست.
 - (ب) آیا میدان ۴ عضوی وجود دارد؟
- (ج) بدون استفاده از قضیه گفته شده در کلاس مبنی بر این که تعداد اعضای میدانهای متناهی به فرم p^n است، ثابت کنید میدان p^n عضوی نداریم.

مسأله ۴

منظور از عملگر دوتایی \otimes روی مجموعه G یک تابع $G \times G \times G \times G \times G$ است. زوج (G,\otimes) را یک گروه میGاه:

$$a,b,c\in G$$
 بر\ي هر $a\otimes (b\otimes c)=(a\otimes b)\otimes c$ $($

$$e\otimes g=g\otimes e=g$$
 ، $g\in G$ هر باشد به نحوی که برای هر G موجود باشد به نحوی (ب)

$$g \otimes g' = g' \otimes g = e$$
 عضو $g \in G$ موجود باشد بهنحویکه: $g \in G$ عضو، $g \in G$ برای هر عضو

 $a\otimes b=b\otimes a$ را آبلی گویند هرگاه برای هر دو عضو a و ط در G را آبلی گویند هرگاه برای هر

آیا مجموعه ی \mathbb{F} و عملگرهای دوتایی +، + و + و جود دارند بهطوری که $(\mathbb{F},+)$ گروه آبلی باشد و $(\mathbb{F},+,\times_1)$ و $(\mathbb{F},+,\times_1)$ نیز هر دو، گروه آبلی باشند، اما فقط یکی از $(\mathbb{F},+,\times_1)$ و $(\mathbb{F},+,\times_1)$ میدان باشد؟

مسأله ۵

فرض کنید ماتریسهای $0 \neq 0$ هستند، جوابهای دستگاه $0 \neq 0$ باشند که $0 \neq 0$ ثابت کنید فرض کنید ماتریسهای $0 \neq 0$ باشند که $0 \neq 0$ ثابت کنید $0 \neq 0$ باشند که $0 \neq 0$ ثابت کنید $0 \neq 0$ باشند که $0 \neq 0$ ثابت کنید اگر و تنها اگر $0 \neq 0$ باشند که $0 \neq 0$ باشند که $0 \neq 0$ باشند کنید اگر و تنها اگر $0 \neq 0$ باشند کنید اگر و تنها اگر $0 \neq 0$ باشند کنید اگر و تنها اگر $0 \neq 0$ باشند کنید اگر و تنها اگر $0 \neq 0$ باشند کنید اگر و تنها اگر $0 \neq 0$ باشند کنید اگر و تنها اگر $0 \neq 0$ باشند کنید اگر و تنها اثر و تنها اگر و تنها اگر و تنها اثر و تنها اث

مسأله ۶

نشان دهید در صورت برقراری شرایط زیر، $A^{\mathsf{Y}} + B^{\mathsf{Y}}$ وارون پذیر نیست.

$$A, B \in M_n(\mathbb{C})$$

 $A^{\mathsf{r}}B = B^{\mathsf{r}}A$
 $A^{\mathsf{r}} = B^{\mathsf{r}}$
 $A \neq B$

مسألهي ٧

 $A^T=I+A+A^\intercal+\cdots+A^{n-1}$ وجود ندارد که $A^n=\circ$ و ندارد که $A^n=\circ$ و ثابت کنید ماتریس

مسألهي ٨

 $AB - xI_m$ میدان T و عنصر T و ماتریس T و T و T و T را در نظر بگیرید به طوری که T و ماتریس T و ماتریس T و ارون پذیر باشد. T و ارون پذیر باشد.

مسأله ٩

AB - BA = I هستند، موجودند به طوری که A = B و B که $A \times n$