NORMAL DISTRIBUTION

Jerzy Szulga

Department of Mathematics and Statistics Auburn University

MATH 5670-6670 FALL 2019

PROBABILITY I

October 21, 2019

Outline

Normal

2 Tables

CLT

The famous Gauss' bell

A **standard normal** (a.k.a. **Gaussian**) random variable, distribution, mgf, etc., has the

pdf:
$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

cdf:
$$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$$
 (a special function).

$$P(a \le X \le b) = \Phi(b) - \Phi(a)$$

Ambiguous "bell curve"

There are infinitely many bell curves. Some may gave light tails, others have fat tails. For example, the **Cauchy** bell-shaped pdf

$$f(x) = \frac{1}{\pi(x^2+1)}$$

(named after French mathematician Augustin Cauchy) has no mean.

Exercise. Prove that the mean does not exist. Hence it has no (natural) moments. Its mgf does not exist.

Exercise. Explain where the constant π comes from.

More bells

Exercise. Let $r \ge 2$ be an integer. Introduce a power:

$$f(x) = \frac{c}{(x^2+1)^r}$$

Find c, for what r does the mean exist? The variance?

As r increases, the tails of the pdf become lighter and lighter. It's still Pareto-like. The mgf doesn't exist.

The constant $1/\sqrt{2\pi}$

Problem. Find c to turn $c e^{-x^2}$ to a pdf.

Solution. We must compute the integral over \mathbb{R} . By symmetry, it suffices to compute $I = \int_0^\infty e^{-x^2/2} dx$. First, the "x" in the integral is a "dummy variable" – any reasonable letter can be used, e.g., y. So,

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}/2} dx\right) \cdot \left(\int_{0}^{\infty} e^{-y^{2}/2} dy\right)$$
$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}/2} e^{-y^{2}/2} dx dy = \int_{Q} \int e^{-(x^{2}+y^{2})/2} dx dy,$$

where Q denotes the first quadrant of the plane.

Switching to polar coordinates:

$$I^2 = \int_0^{\pi/2} \int_0^\infty e^{-r^2/2} \, r \, dr \, d\theta = \frac{\pi}{2}.$$

So, $I = \sqrt{\pi/2}$, and thus

$$c=\frac{1}{2I}=\frac{1}{\sqrt{2\pi}}.$$

Mean, variance, mgf of normal

Let X have the standard normal density $\phi(x)$.

Exercise. Show that EX = 0 (easy) and Var(X) = 1 (integration by parts twice).

Exercise. Show that the mgf $M(t) = E e^{tX} = e^{t^2/2}$.

Hint. Expand the formula for the mgf, use the HS Algebra (The Rule of Exponents, Completion of Squares), and basic Calculus (Substitution).

Higher moments

Exercise. Compute a few higher moments $E X^3$, $E X^4$,...

Hint: Differentiate the mgf. It's rather tedious.

Exercise. Find easily the formula for any moment. Obviously, odd moments are 0 by symmetry.

Hint: Expand $e^{t^2/2}$ and $E e^{tX}$ into the Maclaurin series. Compare.

Exercise. Show that the pdf of X^2 is $\Gamma(\alpha = \frac{1}{2}, \theta = 2)$.

Hint. Put $Y = X^2$. Then $G(y) = P(Y \le y) = P(X^2 \le y), y \ge 0$.

Solving the inequality yields $G(y) = 2\Phi(\sqrt{y}) - 1$. Differentiate.

$\chi^2(r)$

Exercise. Let X_1, \ldots, X_r be iid standard normal. Find the mgf of

$$X_1^2 + X_2^2 + \cdots + X_r^2$$

and then show that its probability distribution is $\Gamma(\alpha = r/2, \theta = 2)$.

We call it chi-squared with r degrees of freedom.

Each independent r.v. provides one degree of freedom.

There are r of them, so (acronym) df = r.

The general normal

Let Z be a standard normal. Let's scale and shift it:

$$X = \sigma Z + \mu$$
.

Clearly,

$$\mathsf{E} X = \mu, \quad \mathsf{Var}(X) = \sigma^2.$$

We shall write $X \sim N(\mu, \sigma^2)$.

Affine transformation

The general normal r.v. is more complex but in a simple way.

Any r.v. Z (not necessarily normal) with a pdf f(z) and mgf M(t) entails the following pdf and mgf of the transformed r.v.

$$X = \sigma Z + \mu$$
.

The parameters represent just the scale and shift, and are not necessarily mean and standard deviation:

$$\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right), \quad e^{\mu t}M\left(\sigma t\right)$$

General normal pdf

In the normal case

$$\phi_{\mu,\sigma}(x) = rac{1}{\sigma\sqrt{2\pi}} e^{-rac{(x-\mu)^2}{2\sigma^2}}, \quad extit{M}_{\mu,\sigma}(t) = e^{\mu\,t + \sigma^2 t^2/2}$$

Most of textbooks and other sources begin with complex, and derive the simple ($\mu=0,\,\sigma=1$) from the complex.

Indeed: Google up "normal distribution". Check the order of introduction in Wikipedia, Wolfram's Mathworld, etc.

Normal tables

Let us normalize (or standardize) $X \sim N(\mu, \sigma^2)$:

$$Z=rac{X-\mu}{\sigma}\sim N(0,1).$$

Then the values up to 4 decimal places of the cdf $\Phi(z) = P(Z \le z)$ are given in Tables 5.1, p. 189. There are many online normal (or other) calculators.

Tables can be read "in reverse": given the probability, find the z (usually, approximately).

χ^2 tables

No tables in Ross. A chi-squared calculator is available online.

However, for even r we can compute probabilities ourselves.

Put
$$n = r/2$$
 for an even r . Then $X \sim \chi_r^2 = \Gamma(n, 2)$.

Hence, $X=S_n$, the $n^{\rm th}$ signal in a Poisson process with intensity $\lambda=1/\theta=1/2$. By Poisson-Gamma duality

$$P(X \le x) = P(S_n \le x) = P(N_x \ge n) = 1 - P(N_x \le n - 1)$$

$$= 1 - e^{-x/2} \sum_{k=1}^{n-1} \frac{x^k}{2^k k!}$$

Old Bernoulli's CLT

The original Bernoulli's layout involved 01 Bernoulli random variables.

The bell-shaped pmf's or pdf's emerge for many distributions. They may be skewed but the skewness diminishes when their shape parameters grow large:

binomial for large n negative binomial for large r Poisson for large λ Gamma for large α

Symmetric Bernoulli's CLT

We will use symmetric ± 1 iid random variables, calling them R_k . Clearly, E $R_k = 0$, Var $(R_k) = 1$, and the mgf

$$M_R(t) = rac{e^t + e^{-t}}{2} pprox 1 + rac{t^2}{2}, \quad ext{for small } t.$$

The latter follows from the Maclaurin series for the exponentials where the odd powers cancel out, then higher order terms are omitted.

The sum represents a random walk along the 1D integer grid and yields the simple normalization

$$S_n = R_1 + \cdots + R_n \quad \mapsto \quad \widetilde{S}_n = \frac{S_n}{\sqrt{n}},$$

since the mean is zero. Then, the mgf and the limit as $n \to \infty$ are as follows:

$$\mathsf{E}\,\mathsf{e}^{t\widetilde{S_n}}pprox \left(1+rac{t^2}{2n}
ight)^n o \mathsf{e}^{t^2}$$

We recognize the mgf of the standard normal in the limit.

General CLT

The observed phenomenon is not accidental but "normal".

The normalized sum of n iid random variable approaches the standard normal N(0,1) distribution in the limit as $n \to \infty$.

Theorem (CLT - Central Limit Theorem)

Let X_k be iid with mean μ and variance σ^2 . Standardize

$$S_n = X_1 + \dots + X_n \quad \mapsto \quad \widetilde{S}_n = \frac{S_n - \operatorname{E} S_n}{\sqrt{\operatorname{Var}(S_n)}} = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

Then $P(\widetilde{S}_n \leq x) \approx \Phi(x)$ as $n \to \infty$.

Practical use of CLT

If a probability distribution stems from a sum of many iid random variables then in the computation of probabilities we may apply the normal probabilities in lieu of the original, often tedious, distribution.

The procedure is simple:

- standardize the sum,
- work the basic algebra,
- use normal tables or normal calculator.

Still, there is a question when "large" is factually large enough.

Practitioners of statistics have empirical answers.

Rigorous mathematical answers require quite advanced methods.