Chapter 7

Exercise 2.1.

For each of the following sequences $(a_n)_{n=1}^{\infty}$, prove whether the series $\sum_{n=1}^{\infty} a_n$ converges or diverges. (If it converges, you do not need to find the limit.)

- (1) $a_n = \sqrt{n+1} \sqrt{n}$.

- $\begin{array}{ll} (2) & \alpha_n = \frac{\sqrt{n+1} \sqrt{n}}{n}. \\ (3) & \alpha_n = (\sqrt[n]{n} 1)^n. \\ (4) & \alpha_n = \frac{(-1)^n}{\log n} \ {\rm for} \ n \geq 2 \ ({\rm and} \ \alpha_1 = 0). \end{array}$

Proof. (1) We make an observation to the series defined by a_n , that is, we note that it is a telescoping:

$$\sum_{n=1}^{M} \sqrt{n+1} - \sqrt{n} = (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + \dots + \sqrt{M+1} - \sqrt{M}$$
$$= \sqrt{M+1} - 1.$$

Then as $M \to \infty$, we have that the sum tends to infinity. Hence we have the series diverges. (2) For $|a_n|$, we have $\frac{\sqrt{n+1}-\sqrt{n}}{n} = \frac{1}{n(\sqrt{n+1}+\sqrt{n})} < \frac{1}{n\sqrt{n}} = \frac{1}{n^{\frac{3}{2}}}$. Hence $\sum_{n=1}^{\infty} a_n = \frac{1}{n}$ $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$ converges as we know that $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges and so we apply the Comparison Test.

(3) We apply the Root Test.

$$|a_n|^{\frac{1}{n}} = |(\sqrt[n]{n} - 1)^n|^{1/n} = |\sqrt[n]{n} - 1|.$$

If $\sqrt[n]{n}-1>0$, then $\limsup (\sqrt[n]{n}-1)=1-1-0<1$, by Theorem 5.1; similarly, if $\sqrt[n]{n}-1<0$, then $\limsup (1 - \sqrt[n]{\pi}) = 1 - 1 = 0 < 1$. Therefore we have that the sequence converges.

(4) Consider $a_k = \frac{1}{\log k}$ for $k \ge 2$ (as $\log 1 = 0$ and $\log 0$ isn't defined). As we have $\log k < \log k + 1$, then $\frac{1}{\log k} > \frac{1}{\log k + 1}$, and so we have a monotonically decreasing sequence and clearly $\lim_{n\to\infty}\frac{1}{\log k}=0$. Therefore after applying the Alternating Series Test we get that

$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{\log k} \right) = \sum_{n=1}^{\infty} a_n \text{ converges.}$$

Exercise 2.2.

Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{1+z^n}.$$

Determine the values of $z \in \mathbb{R}$ $(z \neq -1)$ make the series convergent and which make it divergent. Prove your answers are correct.

Proof. To start off, for z=0, we have $\sum_{n=1}^{\infty}\frac{1}{1+0^n}=1+1+1\cdots$ which makes it divergent. For z=1, $\sum_{n=1}^{\infty}\frac{1}{2}=\frac{1}{2}+\frac{1}{2}+\cdots$ which makes it divergent. Furthermore, if |z|<1, and $z\neq -1$, then $\lim_{n\to\infty}\frac{1}{1+z^n}=\frac{1}{1+0}=1\neq 0$ and so we cannot have convergence. Hence it remains to look at $z\in (-\infty,-1)\cup (1,\infty)$. Fix z>1. Then $z^n< z^n+1$ and so $\frac{1}{z^n}>\frac{1}{z^n+1}$. Now $\sum_{n=1}^{\infty}\frac{1}{z^n}$ converges by the Root Test as $\limsup\left|\left(\frac{1}{z^n}\right)^{\frac{1}{n}}\right|=\limsup|1/z|=0<1$. Hence we have that $\sum_{n=1}^{\infty}\frac{1}{z^{n+1}}$ converges by the Comparison Test for fixed z>1. Lastly, fix z<1. Then $(\frac{1}{1+z^n})_{n=1}^{\infty}$ is monotonically decreasing sequence and $\frac{1}{1+z^n}\to 0$ as $n\to\infty$. By Alternating Series Test we have that $\sum_{n=1}^{\infty}\frac{(-1)^n}{1+z^n}$ converges and thus makes $\sum_{n=1}^{\infty}\frac{1}{1+z^n}$ converge with z<1.

Exercise 3.1.

Assume that $\sum_{n=1}^{\infty} a_n$ converges absolutely. Prove that $\sum_{n=1}^{\infty} \frac{\sqrt{|a_n|}}{n}$ converges. (Hint: Use the inequality $2AB \le A^2 + B^2$, valid for any real numbers A, B.)

Proof. We use the AM-GM inequality as follows.

$$\begin{split} \sqrt{\alpha_n \cdot \frac{1}{n^2}} & \leq \frac{\alpha_n + \frac{1}{n^2}}{2} = \frac{\alpha_n}{2} + \frac{\frac{1}{n^2}}{2} = \frac{\alpha_n}{2} + \frac{1}{2n^2} \\ \Longrightarrow \sqrt{\frac{\alpha_n}{n^2}} & = \frac{\sqrt{\alpha_n}}{n} \leq \frac{\alpha_n}{2} + \frac{1}{2n^2}. \end{split}$$

Now $\sum_{n=1}^{\infty} \frac{\alpha_n}{2} = \frac{1}{2} \sum_{n=1}^{\infty} \text{converges as we assumed absolute converges of } \sum_{n=1}^{\infty} \alpha_n$, and so $\sum_{n=1}^{\infty} \frac{1}{2n^2} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges as this is a p-series with p=2>1. Hence we have that their sum converges, i.e.

$$\sum_{n=1}^{\infty} \left(\frac{\alpha_n}{2} + \frac{1}{2n^2} \right)$$

converges, which forces $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ to converge as well by the Comparison Test and AM-GM.

Exercise 3.2.

- (1) Assume that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge absolutely. Prove that $\sum_{n=1}^{\infty} (a_n + b_n)$ converges absolutely as well.
- (2) Assume that $\sum_{n=1}^{\infty} a_n$ converges. Does it follow that $\sum_{n=1}^{\infty} a_{2n}$ converges? Give a proof or a counterexample.
- (3) Assume that $\sum_{n=1}^{\infty} a_n$ converges absolutely. Does it follow that $\sum_{n=1}^{\infty} a_{2n}$ converges absolutely? Give a proof or counterexample.

Proof. (1) As $\sum_{n=1}^{\infty} |a_n|$ and $\sum_{n=1}^{\infty} |b_n|$ both converge, then for all $\varepsilon > 0$, there exists $N_1, N_2 \in \mathbb{N}$ such that $n \geq m \geq N_1, N_2$ gives $|\sum_{n=k}^{m} |a_k|| < \varepsilon/2$ and $|\sum_{n=k}^{m} |b_k|| < \varepsilon/2$ by Proposition 1.3. And so

$$\begin{split} \left| \sum_{n=k}^{m} |a_k + b_k| \right| &\leq \left| \sum_{n=k}^{m} |a_k| + |b_k| \right| = \left| \sum_{n=k}^{m} |a_k| + \sum_{n=k}^{m} |b_k| \right| \\ &\leq \left| \sum_{n=k}^{m} |a_k| \right| + \left| \sum_{n=k}^{m} |b_k| \right| < \varepsilon/2 + \varepsilon/2 = \varepsilon, \end{split}$$

- (2) We give a counter example. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is convergent where $a_n = \frac{(-1)^n}{n}$, but $a_{2n} = \frac{(-1)^{2n}}{2n} = \frac{1}{2n}$ and so $\sum_{n=1}^{\infty} a_{2n} = \sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ which is the harmonic series scaled by 1/2 and hence this series is divergent.
- (3) We claim that this statements holds true. Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent. Then we have $(|a_n|)$ being a sequence of nonnegative real numbers and now $\sum_{n=1}^{\infty} |a_{2n}| \leq \sum_{n=1}^{\infty} |a_n|$ which makes $\sum_{n=1}^{\infty} |a_{2n}|$ converge absolutely by the Comparison Test.

Exercise 4.1.

Let $B = \{0\} \cup \{\frac{-1}{n^2}\}_{n \in \mathbb{N}}$ and $E = \mathbb{R} \setminus B$. Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$$

on the set E.

- (1) Prove that the series converges absolutely for all $x \in E$; therefore it converges pointwise to a function $f: E \to \mathbb{R}$.
- (2) Prove that the series converges uniformly to f on $[-\infty, -\delta] \cup [\delta, \infty) \setminus B$ for any $\delta > 0$, but that it does not converge uniformly to f on E.
- (3) Prove that f is continuous on E.
- (4) Prove that $f(0+) = +\infty$, and therefore f is not a bounded function.

Proof. (1) For x>0 in E, we have $\sum_{n=1}^{\infty}\left|\frac{1}{1+n^2x}\right|=\sum_{n=1}^{\infty}\frac{1}{1+nx^2}\leq\sum_{n=1}^{\infty}\frac{n^2x}{1}=\frac{1}{x}\sum_{n=1}^{\infty}\frac{1}{n^2}$ and so this is a p-series with p=2>1, and therefore we have that $\sum_{n=1}^{\infty}\frac{1}{1+nx^2}$ converges absolutely by the Comparison Test. Let x<0 in E. Note that after sufficiently large $n\geq N$, we have $1+nx^2<-n^2$; we pick N to be the minimum natural number such that $N^2\geq\frac{1}{|1+x|}$. For $n\geq N$, this gives us $\left|\frac{1}{1+n^2x}\right|\leq\frac{1}{n^2}$. Hence as this is once again the same p-series as before with p=2, we have that $\sum_{n=N}^{\infty}\left|\frac{1}{1+n^2x}\right|$ converges and so our original series $\sum_{n=1}^{\infty}\frac{1}{1+n^2x}$ converges as well as we did so with finitely many terms up to N.

(2) We show this by the Weierstrass M-Test. Let $\delta > 0$. We're going to be assuming that x is not in B in the following argument.

Take $x \in [\delta, \infty)$ and $\ell \in (0, \delta)$. Then $1 + n^2x > n^2x > n^2\ell$, and thus $\frac{1}{1+n^2x} < \frac{1}{n^2\ell}$. As $\sum_{n=1}^{\infty} \frac{1}{n^2\ell} = \frac{1}{\ell} \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, then f converges uniformly by Weierstrass M-Test. Now for $x \in [-\infty, -\delta]$ we've established at the end of part (1) that gives some $N \in \mathbb{N}$ such that for $m \geq N$, we have $\left|\sum_{n=m}^{\infty} \frac{1}{1+n^2x}\right| \leq \sum_{n=m}^{\infty} \frac{1}{n^2}$ and this last series converges so we uniform convergence as well. The reason that f doesn't converge uniformly on all of $E = \mathbb{R} \setminus B$ is because, for example, it does not converge uniformly on $(0, \delta]$ with $\delta > 0$ as if it did by the Cauchy Criterion we have that there is some $N \in \mathbb{N}$ such that $\sum_{n=N}^{\infty} \frac{1}{1+n^2x} < \frac{1}{2}$ for all $x \in (0, \delta]$. But this doesn't work as we could then choose $x = \frac{1}{N^2}$, which gives a contradiction. (3) The function f is continuous where it it is uniformly continuous on by the Uniform Limit Theorem. As shown in (1), f(x) doesn't converge in B. For b > 0 and $t \in [b, \infty)$ or a < 0 and $t \in (-\infty, a]$ we have that f converges uniformly as established in (2). Hence f is continuous at t

(4) Write $x_k = \frac{1}{k}$, then $\sum_{n=1}^{\infty} \frac{1}{1+\frac{n^2}{k}} = k \sum_{n=1}^{\infty} \frac{1}{k+n^2}$ which diverges and hence shows that the function f is not bounded. Alternatively, f cannot be bounded as $f(0) = \sum_{n=1}^{\infty} \frac{1}{1+n^2(0)} = \sum_{n=1}^{\infty} 1$ doesn't converge.

Exercise 4.2.

Find the radius of convergence for each of the following power series:

$$\sum_{n=0}^{\infty} n^n z^n \ \sum_{n=0}^{\infty} \frac{z^n}{n!} \ \sum_{n=0}^{\infty} z^n \ \sum_{n=1}^{\infty} \frac{z^n}{n} \ \sum_{n=1}^{\infty} \frac{z^n}{n^2}.$$

Proof. For the first power series, $c_n = n^n$ and so $\alpha = \limsup (|n^n|)^{\frac{1}{n}} = \limsup |n|$, and thus we have that $R = \frac{1}{\alpha} = 0$. Hence the radius of convergence is R = 0.

For the second, $c_n = \frac{1}{n!}$, so $\alpha = \limsup \left(\left|\frac{1}{n!}\right|\right)^{\frac{1}{n}} = \lim \left(\left|\frac{1}{n!}\right|\right)^{\frac{1}{n}} = 0$. Hence the radius of convergence is $R = +\infty$.

For the third, $c_n = 1$ for all n, and so $\alpha = \limsup |1|^{\frac{1}{n}} = 1$. Thus the radius of convergence is R = 1.

For the fourth, $c_n=\frac{1}{n},$ and so $\alpha=\limsup|\frac{1}{n}|^{\frac{1}{n}}=\lim|\frac{1}{n}|^{\frac{1}{n}}=1.$ Therefore the radius of convergence is R=1.

Lastly, for the fifth, $c_n = \frac{1}{n^2}$ which makes $\alpha = \limsup |\frac{1}{n^2}|^{\frac{1}{n}} = \lim |\frac{1}{n^2}|^{\frac{1}{n}} = \lim \left|\frac{1}{\sqrt[n]{n^2}}\right| = 1$. Hence the radius of convergence is R = 1.

Exercise 4.3.

Consider the power series $\sum_{n=0}^{\infty} c_n z^n$. Let R be the radius of convergence of the power series, and assume R > 0. Let $f: (-R, R) \to \mathbb{R}$ be the function defined by $f(z) = \sum_{n=0}^{\infty} c_n z^n$. Prove the following statements, which refine Theorem 4.4.

- (1) For any $r \in (0,R)$, the series $\sum_{n=0}^{\infty} c_n z^n$ converges uniformly on (-r,r) to f.
- (2) f is continous on all of (-R, R).

Proof. (1) We proceed by applying the Weierstrass M-Test. By Theorem 4.4, since $f\colon (-R,R)\to\mathbb{R}$, i.e. the domain of the function is the radius of convergence of $\sum_{n=0}^\infty c_n z^n$ and $f\colon z\mapsto \sum_{n=0}^\infty c_n z^n$ then the series converges for all z in the domain of f. As $r\in (0,R)$, then it is indeed in the radius of convergence, as $(0,R)\subset (-R,R)$, and furthermore we clearly have that $(-r,r)\subset (-R,R)$. Hence we have convergence of the power series for all (-r,r) to f. Now we choose $M_n=(zr)^n=z^nr^n$ for each f_n in the sequence (f_n) as then this gives us $|f_n(z)|\leq M_n$ for each n and therefore by the Weierstrass M-Test we have that the series $\sum_{n=0}^\infty c_n z^n$ converges uniformly on (-r,r) as for all $z\in (-r,r)$ we have z being less than R or greater than -R and in either case $\sum_{n=1}^\infty M_n=\sum_{n=1}^\infty |c_nr^n|$ converges as (-R,R) is our radius of convergence.

(2) By (1), we have uniform convergence of $\sum_{n=0}^{\infty} c_n z^n$ on (-r,r) for an arbitrary r where 0 < r < R, which means that we have continuity on (-r,r) as we have uniform convergence, and as we have $r \in (0,R)$ for any such r then for |z| < R we get that f is continuous.

Department of Mathematics, University of Southern California, Los Angeles, CA 90007