# **Poisson Statistics**

Sükrü Çağlar, Ertuğrul Yavuz, Eren Önen, Ali Oğuzhan Kumrulu

PHYS442 Spring 2025 Experiment Report

# Abstract:

In this experiment, we explored the Poisson distribution as a special case of the binomial distribution. We also investigated the differences between the Poisson and Gaussian distributions, focusing on their behavior under varying mean values. The primary objective is to assess how well the Gaussian distribution approximates the Poisson distribution as the mean increases—a convergence expected from statistical theory-. Additionally, the study aimed to evaluate the suitability of the Poisson distribution for modeling the time distribution between independent random events. Using a GM counter and a chart recorder, we investigated gamma radiation emission events from different sources with varying mean emission rates over a fixed time interval. We also recorded a continuous sequence of 103 emissions to obtain the time distribution between events. Altogether, these datasets allowed us to successfully demonstrate the relationship between variance and mean in the Poisson distribution, the convergence behavior between the Poisson and Gaussian distributions as the mean increases, and finally, the effectiveness of the timedependent Poisson distribution in modeling interevent timing.

# I Introduction and Theory

**History**: The study of the Poisson distribution has its roots in the early 19th century, introduced by Siméon Denis Poisson to model the probability of rare events over fixed intervals. Its relevance grew significantly with the development of nuclear physics, where it provided a mathematical foundation for describing random processes such as radioactive decay. In particular, early experiments using simple detectors like the Wulf electroscope laid the groundwork for modern understanding of discrete stochastic events. The motivation behind this experiment is to explore how well the Poisson distribution models real-world random processes, such as gamma radiation detection, and to examine under what conditions it can be approximated by the Gaussian distribution. This investigation not only reinforces key concepts in probability theory but also provides insight into the statistical nature of nuclear phenomena.

# Part A: Poisson Distribution

Poisson distribution is a type of discrete probability distribution. It is a special case of binomial distribution:

$$B(n; m, p) = \binom{m}{n} p^n (q)^{m-n} \tag{1}$$

where the number fo trials m is infinitely large and probability of a success p is infinitesimally small. In that case, above distribution can be expressed as:

$$P(\lambda, n) = \frac{\lambda^n e^{-\lambda}}{n!} \tag{2}$$

Where  $\lambda$  is the mean of the distribution and n is the number of desired counts of an event in m number of trials. One can observe by taking the limit as  $m \to \infty$ , this result comes up naturally from the binomial distribution. Detailed derivation is given in **Appendix 1**. Since poisson distribution is a kind of binomial distribution, it is normalized to the unity:

$$\sum_{n} P(\lambda, n) = 1 \tag{3}$$

with its variance being:

$$\sigma^2 = \lambda$$

This distribution conveniently approximates to gaussian distribution as  $\lambda$  gets large. Gaussian distribution is another special case of binomial distribution where m becomes large and probability distribution becomes continuous. This kind of distribution is of great importance in probability theory since central limit theorem suggests that the sum (or average) of a large number of independent, identically distributed random variables tends to follow a Normal distribution, even if the original variables themselves are not normally distributed. As long as each variable has finite mean and variance, a discrete distribution like

poisson distribution approaches to a normal distribution when the number of variables is large. This phenomenon constitutes our main objective in this experiment which is to observe differences between two distributions with different  $\lambda$  values.

# Part B: Distribution of Successive events

However, poisson distribution behaves more differently when it comes to distribution of successive events. If we express the poisson distribution in a time dependent way:

$$P(\lambda, n) = P(\alpha, t, n) = \frac{(\alpha t)^n e^{-\alpha t}}{n!}$$
(4)

where  $\alpha$  represents the rate of events per unit time, we can find out the probability of having an event occurring in a time interval dt.

$$P(\alpha, dt, 1) = \frac{(\alpha dt)e^{-\alpha dt}}{1!}$$
 (5)

one more useful step would be calculating the probability of having n events in a time t followed by another event in time interval dt:

$$P_{q}(n+1,t) dt = P(\alpha,t,n)P(\alpha,dt,1)$$

$$= \frac{(\alpha t)^{n}e^{-\alpha t}}{n!} \cdot \frac{(\alpha dt)^{1}e^{-\alpha dt}}{1!}$$

$$\simeq \frac{(\alpha t)^{n}e^{-\alpha t}\alpha dt}{n!}$$

if we assume  $e^{-\alpha dt}\simeq 1$ . Finally, when dt is reduced from both sides of the equation, we end up with:

$$P_q(n+1,t) = \frac{(\alpha t)^n e^{-\alpha t} \alpha}{n!}$$
 (6)

This provides us with the poisson probability for having n successive events in a time interval t which also approximates to normal distribution as n gets larger. In our experiment however, we shall investigate the cases for n = 0 and n = 1.

# II Setup and Method

# Setup:

The experimental setup consists of:

- Geiger Counter
- Sample tray whit adjustable positions
- Gamma-ray sources (Cesium-137 and Barium-133)
- Chart recorder

Geiger Counter is set 5 to 10cm above the tray, catching gamma radiation from the samples. Chart recorder is also connected to the counter for a time series record of detections spanning around 100 seconds.





(a) Geiger-Muller Tube

(b) Chart recorder

Figure 1: Geiger-tube and chart recorder



Figure 2: Counter for the Geiger-Tube and chart recorder



Figure 3: Barium-133 and Cesium-137 as gamma-ray sources

### Method:

The experiment consist of 2 parts and was conducted following these steps:

Part A: In this part of the experiment, we investigate how does the distribution of gamma-ray detection event behaves. specifically, we hope to observe how does the distribution changes from poisson to normal as the mean of the distribution increases.

- A radioactive source was selected and placed on the tray beneath the GM tube. The Geiger counter was set to operate in radioactivity and single mode with a counting interval of 100 seconds. The applied high voltage (HV) was varied in 20 V increments, and the voltage range at which the count rate seems to plateau is determined. A voltage value within this plateau region was selected as the operating voltage of the detector to ensure stable performance.
- 2. The GM tube was then set to operate in continuous mode using the previously determined operating voltage. The counting interval was reduced to 10 seconds.
- C-137 gamma-ray source and was positioned to yield approximately 100 counts per 10 seconds.
   The number of counts was recorded over 100 10second intervals.
- 4. The counting interval was reduced to 1 second, and the measurements were repeated under the same conditions to achieve higher time resolution.
- 5. Previous two step is repeated for Ba-133 gammaray source to achieve a count rate of 20–30 counts per 10-second interval. The same data collection procedure as described in steps 3 and 4 was followed.
- 6. 4 datasets with 100 data points each is thus obtained for gamma radiation event. Each dataset contributes to analysis of gaussian and poisson behaviour for different λ values. Expected differences or similarities are explained in Theory.

**Part B**: This part of the experiment focuses on the distribution fo time intervals between counts. To achieve that, a continuous stream of detections is listed using a chart recorder.

- Ba-133 is placed on to the tray in a position to give about 1 count per second under the GM tube.
- 2. Chart recorder is connected to the counter and detected gamma-rays are recorded as pulses in the recorder paper.
- 3. Chart recorder runs for about 2 minutes and obtains approximately 100 pulses.
- Since the chart recorder runs with constant speed, distance between each peak gives us a measure in terms of absolute time between the detections.
- 5. Paper is removed from the chart recorder and distance between each pulse is measured and recorded. As mentioned before this values will be used to observe the time distribution between successive pulses(n=0 case). By adding the two successive intervals, n=1 case is also obtained from the dataset.

# III Data

There are 5 datasets in this experiment used in the analysis of poisson statistics. 4 datasets of 100 data points from 2 gamma-ray sources are used to study the effects of mean value. Mean value and deviation of those datasets as well as a simple histogram are presented below. Additionally, full list of those datasets are presented in **data list**.

| Dataset    | Mean   | Standard Deviation |
|------------|--------|--------------------|
| Cs-137 10s | 192.94 | 13.76              |
| Cs-137 1s  | 19.19  | 4.29               |
| Ba-133 10s | 22.54  | 4.82               |
| Ba-133 1s  | 2.46   | 1.58               |

Table 1: Mean and Standard Deviation of the Datasets



Figure 4: 4 distribution obtained from the experiment with 100 samples each

The other dataset is the timeseries output from the chart recorder used in the Part B of the experiment. It contains 107 data points, spanning around 2 minutes. Some part of that chart is presented below. n=o case is obtained directly from reading the chart and n=1 case is calculated by concatenating two data points in n=0 case. Full list datasets in both cases can be found in **data list**.



Figure 5: Some part of the chart recorder output

# IV Analysis

# Operating voltage:

Gm counter operates in a range form 300 to 500 Volts. The optimal operating voltage where potential difference is enough to allow a complete discharge along the anode for each detected radiation count and not high enough to create cascading electron avalanches and continuous discharge where the tube cannot de-

tect radiation, and may be damaged. This region is called the "Geiger Plateau" and Gm-Tube operates in a voltage around the middle of that plateau for reliability. We have taken counts of the same gammaray source under 20V intervals from 300-500V region to determine the optimal operating voltage which is found to be around 440V.



Figure 6: Geiger Region and operating voltage

# Part A:

4 datasets recorded in the first part of the experiment with Cesium-137 and Barium-133 are represented in histograms below. Their mean and deviation values are also known. A poisson and Gaussian fit is applied to each distribution and their fitted mean and deviation values are compared with each other as well as the actual value.



Figure 7: Cesium-137 (about 190 counts per 10s)



Figure 8: Cesium-137 (about 19 counts per 1s)

# Barium-133 10s sampling



Figure 9: Barrium-133 (about 22 counts per 10s)

# Barium-133 1s sampling Gaussian Fit Gaussian Fit: Mean = 2.797 ± 0.178 Sigma = -1.562 ± 0.140 Poisson Fit: Lambda = 2.861 ± 0.149 Entries 100 Mean 2.414 Std Dev 1.484

Figure 10: Barrium-133 (about 3 counts per 1s)

It is also possible to calculate a probability value

for the fitness of gaussian and poisson distributions using  $\chi^2$  value.

| Mea | an Value | $\chi^2/\mathrm{ndf}$ | Probability |
|-----|----------|-----------------------|-------------|
|     | 190.67   | 2.08706/5 = 0.417     | 0.837       |
|     | 22.32    | 5.39116/4 = 1.348     | 0.249       |
|     | 19.42    | 5.06427/4 = 1.266     | 0.281       |
|     | 2.80     | 6.83144/5 = 1.366     | 0.233       |

Table 2: Gaussian fit probabilities for each mean value

| Mean Value | $\chi^2/\mathrm{ndf}$ | Probability |
|------------|-----------------------|-------------|
| 190.99     | 1.91326 / 6 = 0.319   | 0.927       |
| 22.44      | 5.15318 / 5 = 1.031   | 0.397       |
| 19.57      | 5.40501 / 5 = 1.081   | 0.368       |
| 2.86       | 9.03362 / 6 = 1.506   | 0.172       |

Table 3: Poisson fit probabilities for each mean value

One can observe that the Poisson distribution achieves a lower  $\chi^2/\text{ndf}$  score and has a higher probability compared to the Gaussian distribution. Another important behavior to note is the degradation of probability as the mean value decreases. Although this trend is present in both the Poisson and Gaussian distributions, the Poisson distribution appears to represent the data more accurately than the Gaussian up to a mean value of approximately 2.5.

The inconsistency observed in the last batch of the dataset may be due to an inadequate sample size. Since counting gamma radiation using a GM counter is a discrete process, many regions in the probability distribution remain unfilled (or result in empty bins, one might say) when the sample size is small. These empty bins affect the  $\chi^2$  calculations, as the test assumes a continuous distribution, leading to low probabilities for both Poisson and Gaussian estimates.

However, a visual assessment can still be made to distinguish the separation between the Gaussian and Poisson distributions for small mean values, regardless of the calculated probabilities.

# Plotting $\sqrt{\lambda}/\sigma$ vs $\lambda$ :

We deduced in the **Appendix 1** that the variance of poisson distribution is equal to square root of its mean. We can validate this finding by making a plot of  $\sqrt{\lambda}/\sigma$  vs  $\lambda$  which in ideal case, should give a slope of 0 and intercept at 1. To remind the reader, the means and variances of the datasets are given in the table below:

| $\mu$ | $\sigma$ | $\sqrt{\lambda}/\sigma$ |
|-------|----------|-------------------------|
| 192.4 | 13.14    | 1.055                   |
| 22.44 | 4.661    | 1.016                   |
| 19.03 | 4.167    | 1.046                   |
| 2.414 | 1.484    | 1.047                   |

Table 4: Values of  $\mu$  and  $\sigma^2$  used in the analysis.

If we apply a linear fit to this 4 data points we obtain a line with slope  $9.5 \times 10^{-5}$  and intercept 1.036 which coincides with the expectation.



Figure 11: Plot for the relation between variance and mean

# Part B:

As explained in theory, poisson distribution can be useful to calculate the probability distribution of time intervals between events. In order to use 6 as a template for n=0 and n=1 cases, value for  $\alpha$  needs to be calculated. This is possible by simply dividing the total number of counts to the interval of the measurement T (in millimeters) since chart recorder records with constant speed. For the case of this experiment:

$$\alpha = \frac{counts}{T} = \frac{103}{1119} = 0.09205$$

This result is used to create theoretical distributions which are shown with red in histograms below. Moreover, a function fit with the template in accordance with 6 is used to see if actual distribution resembles what we expect.

for n=0: The version of 6 for the n=0 case is

$$P_a(1,t) = e^{-\alpha t} \alpha$$

We found the experimental  $\alpha$  value to be 0.1096  $\pm$  0.0138 in this case. Distribution is in well agreement with the theory with the probability of representing the distribution for the equation above is measured to be 0.7884.



Figure 12: n=0 case for time dependent poisson dist.

for n=1: The version of 6 for the n=1 case is

$$P_q(1,t) = e^{-\alpha t} \alpha^2 t$$

We found the experimental  $\alpha$  value to be  $0.09657\pm0.01138$  in this case. Distribution is once more in well agreement with the theory and the shapes of the fitted and theoretical poisson distribution matches to a good extend. Probability of representing the distribution for the equation above is measured to be 0.8330.



Figure 13: n=1 case for time dependent poisson dist.

# V Conclusion

The experiment successfully demonstrated the effectiveness of the Poisson distribution in representing discrete Bernoulli events that occur independently. The conditions under which the Poisson distribution approximates the Gaussian distribution were also verified, thanks to the decreasing difference between the two distributions as the number of Bernoulli events increased. In Part A, datasets with higher mean values (e.g., 190 counts per 10 seconds) showed strong agreement with both distributions; however, the Poisson fit consistently yielded lower  $\chi/ndf$  values and higher fit probabilities, indicating a more accurate representation of the discrete nature of the events. As the mean decreased, the accuracy of the Gaussian approximation declined significantly, and for the lowest mean (2.8), the fit quality of both distributions degraded—though the Poisson distribution remained superior. One potential improvement would be to use larger sample sizes for each mean value, allowing for more precise histogram binning.

In Part B, the time-dependent Poisson probability equations for successive events (n = 0 and n = 1) were tested against experimental data obtained from the chart recorder. The theoretical expressions derived from the Poisson process matched the observed distributions remarkably well, with high agreement probabilities (0.7884 for n = 0 and 0.8330 for n = 1). The  $\alpha$  values derived from the fits were also reasonably close—within 1 to 2 standard deviations—of the actual value  $\alpha=0.09205$  (0.1096  $\pm$  0.0138 for n = 0 and 0.09657  $\pm$  0.01138 for n = 1). These results confirm the applicability of the Poisson process in modeling inter-arrival times of independent random events and validate the theoretical framework used in time-based event analysis

# References

distribution

- [1] E. Gülmez, Advanced Physics Experiments. Boğaziçi University, 1997.
- [2] GitHub repository for codes and scripts used in this experiment: https://github.com/capta1Nemo/PHYS442-experiments.git
- [3] Wikipedia contributors. (n.d.). Poisson distribution. In Wikipedia. https://en.wikipedia.org/wiki/Poisson\_

# **Appendix**

# A.1 Derivation of Poisson Distribution

We can express the binomial distribution as:

$$P(X = k) = \binom{m}{n} p^{n}(q)^{m-n} = \frac{m!}{n!(m-n)!} p^{n}(q)^{m-n}$$

Before we take limit as  $m \to \infty$ , we will make a substitution using the fact  $\lambda = mp$ . This simply represents the mean of distribution since mean value of a binomial distribution is given as the probability of desired event (p) times the number of trials (m). Then we obtain:

$$P(\lambda, n) = \lim_{m \to \infty} \frac{m!}{n!(m-n)!} \left(\frac{\lambda}{m}\right)^n \left(1 - \frac{\lambda}{m}\right)^{m-n}$$

If we simplify further:

$$P(\lambda, n) = \lim_{m \to \infty} \left(\frac{\lambda^n}{n!}\right) \frac{m!}{m^n (m-n)!} \left(1 - \frac{\lambda}{m}\right)^{m-n}$$

we should observe some of the terms in limit reduce to 1:

$$\lim_{m \to \infty} \frac{m!}{m^n(m-n)!} = 1$$

$$\lim_{m \to \infty} \left( 1 - \frac{\lambda}{m} \right)^{-n} = 1$$

and using the approximation for

$$e = \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x$$

we have:

$$\left(1 - \frac{\lambda}{m}\right)^m \to e^{-\lambda} \quad \text{as } m \to \infty$$

So we get:

$$P(\lambda, n) \approx \frac{\lambda^n}{k!} \cdot e^{-\lambda} = \frac{\lambda^k e^{-\lambda}}{k!}$$

Which is exactly the formula for poisson distribution.

Variance of poisson distribution can also be approximated as:

$$\sigma^2 = \lim_{m \to \infty} mp(1-p) = m\left(\frac{\lambda}{m}\right)\left(1 - \frac{\lambda}{m}\right) = \lambda$$

# **Additional Material**

# Full list of datasets

The dataset in text format can also be found in [2].

| Full staset with 100 samples each           Cs-137 1os         Ba-133 1os         Cs-137 1s         Ba-133 1s           196         193         31         20         23         22         5         4           235         205         19         20         23         22         1         1           184         170         19         25         27         16         1         4           199         182         17         20         17         20         1         1           189         186         28         22         19         12         4         3           186         189         22         23         17         21         3         1           194         186         23         17         22         12         6         2           186         215         16         19         20         19         2         0           196         191         27         29         21         27         1         1           210         199         20         20         23         25         5         2           197         1 |      |                                    |     |                     |      |        |    |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|-----|---------------------|------|--------|----|---------|
| 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Full dataset with 100 samples each |     |                     |      |        |    |         |
| 235         205         19         20         23         22         1         1           184         170         19         25         27         16         1         4           199         182         17         20         17         20         1         1           189         186         28         22         19         12         4         3           186         189         22         23         17         21         3         1           194         186         23         17         22         12         6         2           186         215         16         19         20         19         2         0           196         191         27         29         21         27         1         1           210         199         20         20         23         25         5         2           197         181         18         25         20         19         1         4           181         186         21         21         16         24         4         4           177         193         19                  | Cs-1 | 37 10s                             | Ba- | $133  10\mathrm{s}$ | Cs-1 | 137 1s | Ba | -133 1s |
| 184       170       19       25       27       16       1       4         199       182       17       20       17       20       1       1         189       186       28       22       19       12       4       3         186       189       22       23       17       21       3       1         194       186       23       17       22       12       6       2         186       215       16       19       20       19       2       0         196       191       27       29       21       27       1       1         210       199       20       20       23       25       5       2         197       181       18       25       20       19       1       4         181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19<                                                                                                                  | 196  | 193                                | 31  | 20                  | 23   | 22     | 5  | 4       |
| 199       182       17       20       17       20       1       1         189       186       28       22       19       12       4       3         186       189       22       23       17       21       3       1         194       186       23       17       22       12       6       2         186       215       16       19       20       19       2       0         196       191       27       29       21       27       1       1         210       199       20       20       23       25       5       2         197       181       18       25       20       19       1       4         181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3       3       2         182       182 <td>235</td> <td>205</td> <td>19</td> <td>20</td> <td>23</td> <td>22</td> <td>1</td> <td>1</td>                     | 235  | 205                                | 19  | 20                  | 23   | 22     | 1  | 1       |
| 189       186       28       22       19       12       4       3         186       189       22       23       17       21       3       1         194       186       23       17       22       12       6       2         186       215       16       19       20       19       2       0         196       191       27       29       21       27       1       1         210       199       20       20       23       25       5       2         197       181       18       25       20       19       1       4         181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3         182       182       27       22       13       20       3       2         184       174       22       20<                                                                                                                  | 184  | 170                                | 19  | 25                  | 27   | 16     | 1  | 4       |
| 186       189       22       23       17       21       3       1         194       186       23       17       22       12       6       2         186       215       16       19       20       19       2       0         196       191       27       29       21       27       1       1         210       199       20       20       23       25       5       2         197       181       18       25       20       19       1       4         181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3       2         182       182       27       22       13       20       3       2       1         182       182       27       22       13       20       3       2       1         184                                                                                                                       | 199  | 182                                | 17  | 20                  | 17   | 20     | 1  | 1       |
| 194       186       23       17       22       12       6       2         186       215       16       19       20       19       2       0         196       191       27       29       21       27       1       1         210       199       20       20       23       25       5       2         197       181       18       25       20       19       1       4         181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3         182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22<                                                                                                                  | 189  | 186                                | 28  | 22                  | 19   | 12     | 4  | 3       |
| 186       215       16       19       20       19       2       0         196       191       27       29       21       27       1       1         210       199       20       20       23       25       5       2         197       181       18       25       20       19       1       4         181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3         182       183       22       16       21       23       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         186       197       29       30       17       21       2       1         185       187       21       22<                                                                                                                  | 186  | 189                                | 22  |                     | 17   | 21     | 3  | 1       |
| 196         191         27         29         21         27         1         1           210         199         20         20         23         25         5         2           197         181         18         25         20         19         1         4           181         186         21         21         16         24         4         4           177         193         19         28         11         21         5         0           182         192         15         20         23         21         2         7           193         194         21         19         21         21         1         3           182         183         22         16         21         23         3         2           184         174         22         20         15         19         2         1           186         197         29         30         17         21         2         1           186         197         29         30         17         21         2         1           185         187         21                  | 194  | 186                                | 23  | 17                  | 22   | 12     | 6  | 2       |
| 210         199         20         20         23         25         5         2           197         181         18         25         20         19         1         4           181         186         21         21         16         24         4         4           177         193         19         28         11         21         5         0           182         192         15         20         23         21         2         7           193         194         21         19         21         21         1         3           182         183         22         16         21         23         3         2           182         182         27         22         13         20         3         2           184         174         22         20         15         19         2         1           186         197         29         30         17         21         2         1           185         187         21         22         24         22         3         5           174         173         18                  | 186  | 215                                | 16  | 19                  | 20   | 19     | 2  | 0       |
| 197       181       18       25       20       19       1       4         181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3         182       183       22       16       21       23       3       2         182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24<                                                                                                                  | 196  | 191                                | 27  | 29                  | 21   | 27     | 1  | 1       |
| 181       186       21       21       16       24       4       4         177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3         182       183       22       16       21       23       3       2         182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18<                                                                                                                  | 210  | 199                                | 20  | 20                  | 23   | 25     | 5  | 2       |
| 177       193       19       28       11       21       5       0         182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3         182       183       22       16       21       23       3       2         182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18       29       19       2       2         213       224       25       19<                                                                                                                  | 197  | 181                                | 18  | 25                  | 20   | 19     | 1  | 4       |
| 182       192       15       20       23       21       2       7         193       194       21       19       21       21       1       3         182       183       22       16       21       23       3       2         182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18       29       19       2       2         213       224       25       19       25       22       8       2         192       185       17       24<                                                                                                                  | 181  | 186                                | 21  | 21                  | 16   | 24     | 4  | 4       |
| 193       194       21       19       21       21       1       3         182       183       22       16       21       23       3       2         182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18       29       19       2       2         213       224       25       19       25       22       8       2         192       185       17       24       12       18       3       0         180       196       29       18<                                                                                                                  | 177  | 193                                | 19  | 28                  | 11   | 21     | 5  | 0       |
| 182       183       22       16       21       23       3       2         182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18       29       19       2       2         213       224       25       19       25       22       8       2         192       185       17       24       12       18       3       0         180       196       29       18       13       12       4       0         180       196       29       18<                                                                                                                  | 182  | 192                                | 15  | 20                  | 23   | 21     | 2  | 7       |
| 182       182       27       22       13       20       3       2         184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18       29       19       2       2         213       224       25       19       25       22       8       2         192       185       17       24       12       18       3       0         180       196       29       18       13       12       4       0         186       218       25       30       9       14       3       4         193       189       36       20 </td <td>193</td> <td>194</td> <td>21</td> <td>19</td> <td>21</td> <td>21</td> <td>1</td> <td>3</td>               | 193  | 194                                | 21  | 19                  | 21   | 21     | 1  | 3       |
| 184       174       22       20       15       19       2       1         186       197       29       30       17       21       2       1         185       187       21       22       24       22       3       5         174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18       29       19       2       2         213       224       25       19       25       22       8       2         192       185       17       24       12       18       3       0         180       196       29       18       13       12       4       0         186       218       25       30       9       14       3       4         193       189       36       20       15       17       4       5         214       193       23       25 </td <td>182</td> <td>183</td> <td>22</td> <td>16</td> <td>21</td> <td>23</td> <td>3</td> <td>2</td>               | 182  | 183                                | 22  | 16                  | 21   | 23     | 3  | 2       |
| 186         197         29         30         17         21         2         1           185         187         21         22         24         22         3         5           174         173         18         26         27         16         3         1           185         210         29         32         13         20         2         4           192         196         21         24         14         20         1         2           176         194         18         18         29         19         2         2           213         224         25         19         25         22         8         2           192         185         17         24         12         18         3         0           180         196         29         18         13         12         4         0           186         218         25         30         9         14         3         4           193         189         36         20         15         17         4         5           214         193         23                   | 182  | 182                                | 27  | 22                  | 13   | 20     | 3  | 2       |
| 185         187         21         22         24         22         3         5           174         173         18         26         27         16         3         1           185         210         29         32         13         20         2         4           192         196         21         24         14         20         1         2           176         194         18         18         29         19         2         2           213         224         25         19         25         22         8         2           192         185         17         24         12         18         3         0           180         196         29         18         13         12         4         0           186         218         25         30         9         14         3         4           193         189         36         20         15         17         4         5           214         193         23         25         22         16         1         2           189         203         20                   | 184  | 174                                | 22  | 20                  | 15   | 19     | 2  | 1       |
| 174       173       18       26       27       16       3       1         185       210       29       32       13       20       2       4         192       196       21       24       14       20       1       2         176       194       18       18       29       19       2       2         213       224       25       19       25       22       8       2         192       185       17       24       12       18       3       0         180       196       29       18       13       12       4       0         186       218       25       30       9       14       3       4         193       189       36       20       15       17       4       5         214       193       23       25       22       16       1       2         189       203       20       25       17       16       1       4         212       195       18       23       18       17       1       1         196       210       21       19 </td <td>186</td> <td>197</td> <td>29</td> <td>30</td> <td>17</td> <td>21</td> <td>2</td> <td>1</td>               | 186  | 197                                | 29  | 30                  | 17   | 21     | 2  | 1       |
| 185         210         29         32         13         20         2         4           192         196         21         24         14         20         1         2           176         194         18         18         29         19         2         2           213         224         25         19         25         22         8         2           192         185         17         24         12         18         3         0           180         196         29         18         13         12         4         0           186         218         25         30         9         14         3         4           193         189         36         20         15         17         4         5           214         193         23         25         22         16         1         2           189         203         20         25         17         16         1         4           212         195         18         23         18         17         1         1           196         210         21                   | 185  | 187                                | 21  | 22                  | 24   | 22     | 3  | 5       |
| 192         196         21         24         14         20         1         2           176         194         18         18         29         19         2         2           213         224         25         19         25         22         8         2           192         185         17         24         12         18         3         0           180         196         29         18         13         12         4         0           186         218         25         30         9         14         3         4           193         189         36         20         15         17         4         5           214         193         23         25         22         16         1         2           189         203         20         25         17         16         1         4           212         195         18         23         18         17         1         1           196         210         21         19         20         18         2         4           206         182         20                   | 174  | 173                                | 18  | 26                  | 27   | 16     | 3  | 1       |
| 176     194     18     18     29     19     2     2       213     224     25     19     25     22     8     2       192     185     17     24     12     18     3     0       180     196     29     18     13     12     4     0       186     218     25     30     9     14     3     4       193     189     36     20     15     17     4     5       214     193     23     25     22     16     1     2       189     203     20     25     17     16     1     4       212     195     18     23     18     17     1     1       196     210     21     19     20     18     2     4       206     182     20     23     14     18     2     2       188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237                                                                                                                                                                                                                    | 185  | 210                                | 29  | 32                  | 13   | 20     | 2  | 4       |
| 213       224       25       19       25       22       8       2         192       185       17       24       12       18       3       0         180       196       29       18       13       12       4       0         186       218       25       30       9       14       3       4         193       189       36       20       15       17       4       5         214       193       23       25       22       16       1       2         189       203       20       25       17       16       1       4         212       195       18       23       18       17       1       1         196       210       21       19       20       18       2       4         206       182       20       23       14       18       2       2         188       195       16       13       21       27       4       2         207       223       33       22       20       20       1       3         191       173       23       15 </td <td>192</td> <td>196</td> <td>21</td> <td>24</td> <td>14</td> <td>20</td> <td>1</td> <td>2</td>               | 192  | 196                                | 21  | 24                  | 14   | 20     | 1  | 2       |
| 192         185         17         24         12         18         3         0           180         196         29         18         13         12         4         0           186         218         25         30         9         14         3         4           193         189         36         20         15         17         4         5           214         193         23         25         22         16         1         2           189         203         20         25         17         16         1         4           212         195         18         23         18         17         1         1           196         210         21         19         20         18         2         4           206         182         20         23         14         18         2         2           188         195         16         13         21         27         4         2           207         223         33         22         20         20         1         3           191         173         23                   | 176  | 194                                | 18  | 18                  | 29   | 19     | 2  | 2       |
| 180     196     29     18     13     12     4     0       186     218     25     30     9     14     3     4       193     189     36     20     15     17     4     5       214     193     23     25     22     16     1     2       189     203     20     25     17     16     1     4       212     195     18     23     18     17     1     1       196     210     21     19     20     18     2     4       206     182     20     23     14     18     2     2       188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201                                                                                                                                                                                                                    | 213  | 224                                | 25  | 19                  | 25   | 22     | 8  | 2       |
| 186       218       25       30       9       14       3       4         193       189       36       20       15       17       4       5         214       193       23       25       22       16       1       2         189       203       20       25       17       16       1       4         212       195       18       23       18       17       1       1         196       210       21       19       20       18       2       4         206       182       20       23       14       18       2       2         188       195       16       13       21       27       4       2         207       223       33       22       20       20       1       3         191       173       23       15       22       17       2       2         202       237       29       23       30       22       3       1         183       183       23       20       14       18       3       1         178       178       15       13 </td <td>192</td> <td>185</td> <td>17</td> <td>24</td> <td>12</td> <td>18</td> <td>3</td> <td>0</td>               | 192  | 185                                | 17  | 24                  | 12   | 18     | 3  | 0       |
| 193         189         36         20         15         17         4         5           214         193         23         25         22         16         1         2           189         203         20         25         17         16         1         4           212         195         18         23         18         17         1         1           196         210         21         19         20         18         2         4           206         182         20         23         14         18         2         2           188         195         16         13         21         27         4         2           207         223         33         22         20         20         1         3           191         173         23         15         22         17         2         2           202         237         29         23         30         22         3         1           183         183         23         20         14         18         3         1           178         178         15                  | 180  | 196                                | 29  | 18                  | 13   | 12     | 4  | 0       |
| 214     193     23     25     22     16     1     2       189     203     20     25     17     16     1     4       212     195     18     23     18     17     1     1       196     210     21     19     20     18     2     4       206     182     20     23     14     18     2     2       188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209                                                                                                                                                                                                                   | 186  | 218                                | 25  | 30                  | 9    | 14     | 3  | 4       |
| 189     203     20     25     17     16     1     4       212     195     18     23     18     17     1     1       196     210     21     19     20     18     2     4       206     182     20     23     14     18     2     2       188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209                                                                                                                                                                                                                   | 193  | 189                                | 36  | 20                  | 15   | 17     | 4  | 5       |
| 212     195     18     23     18     17     1     1       196     210     21     19     20     18     2     4       206     182     20     23     14     18     2     2       188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                     | 214  | 193                                | 23  | 25                  | 22   | 16     | 1  | 2       |
| 196     210     21     19     20     18     2     4       206     182     20     23     14     18     2     2       188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                               | 189  | 203                                | 20  | 25                  | 17   | 16     | 1  | 4       |
| 206     182     20     23     14     18     2     2       188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                         | 212  | 195                                | 18  | 23                  | 18   | 17     | 1  | 1       |
| 188     195     16     13     21     27     4     2       207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                   | 196  | 210                                | 21  | 19                  | 20   | 18     | 2  | 4       |
| 207     223     33     22     20     20     1     3       191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 206  | 182                                | 20  | 23                  | 14   | 18     | 2  |         |
| 191     173     23     15     22     17     2     2       202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188  | 195                                | 16  | 13                  | 21   | 27     | 4  |         |
| 202     237     29     23     30     22     3     1       183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 207  | 223                                | 33  | 22                  | 20   | 20     | 1  | 3       |
| 183     183     23     20     14     18     3     1       178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 191  | 173                                | 23  | 15                  | 22   | 17     | 2  | 2       |
| 178     178     15     13     19     19     1     2       194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 202  | 237                                | 29  | 23                  | 30   | 22     | 3  | 1       |
| 194     201     33     25     16     19     2     5       194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 183  | 183                                | 23  | 20                  | 14   | 18     | 3  | 1       |
| 194     167     19     22     18     14     0     1       173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178  | 178                                | 15  | 13                  | 19   | 19     | 1  | 2       |
| 173     169     23     27     15     24     1     2       190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 194  | 201                                | 33  | 25                  | 16   | 19     | 2  | 5       |
| 190     209     30     25     13     10     3     2       182     209     30     29     22     18     3     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 194  | 167                                | 19  | 22                  | 18   | 14     | 0  |         |
| 182 209 30 29 22 18 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 173  | 169                                | 23  | 27                  | 15   | 24     | 1  | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190  | 209                                | 30  | 25                  | 13   | 10     |    | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 182  | 209                                | 30  | 29                  | 22   | 18     | 3  | 0       |
| 194  173  28  23  26  19  2  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 194  | 173                                | 28  | 23                  | 26   | 19     | 2  | 1       |
| 187 200 28 31 23 23 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 187  | 200                                | 28  | 31                  | 23   | 23     | 3  | 4       |
| 204  206  17  23  19  15  4  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204  | 206                                |     |                     |      | 15     | 4  | 1       |
| 210 200 20 19 24 24 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 210  | 200                                | 20  | 19                  | 24   | 24     | 5  | 1       |

Table 5: Dataset for Part A



Figure 14: Distribution of unit time between successive pulses obtained from the chart recorder for n=0 and n=1 cases

# Codes

All the codes here and more can be found in the GitHub repository [2].

```
from ROOT import TH1F, TF1, TMath
   data = np.loadtxt("outputa.txt", delimiter="\t", skiprows=1)
   hist_list=[]
   bin_list=[8,7,8,8]
   for i in range(4):
       col1_data = data[:, i]
       hist = TH1F("", f"Dataset{i+1}", bin_list[i], min(col1_data), max(col1_data))
9
       hist.SetDirectory(0)
       for value in col1 data:
11
           hist.Fill(value)
13
       gauss_fit = TF1("gauss_fit", "gaus", min(col1_data), max(col1_data))
14
       gauss_fit.SetParameters(1, (min(col1_data) + max(col1_data)) / 2.0, 4)
       gauss_fit.SetParName(0, "GAmplitude")
16
       gauss_fit.SetParName(1, "GMean")
17
       gauss_fit.SetParName(2, "GSigma")
18
       gauss_fit.SetLineColor(TColor.GetColor(0, 200, 0))
19
20
       gauss_fit.SetLineWidth(3)
       result=hist.Fit(gauss_fit,"S")
21
       chi2_gauss = result.Chi2()
23
       ndf_gauss = result.Ndf()
       prob_gauss = TMath.Prob(chi2_gauss, ndf_gauss)
24
       print(f"GaussianFit:mean={gauss_fit.GetParameter(1):.5g},sigma={gauss_fit.GetParameter
25
           (2):.5g},prob={prob_gauss:.5f}")
       poisson_fit = TF1("poisson_fit", "[0]*TMath::Poisson(x,[1])", 0, max(col1_data))
       poisson_fit.SetParameters(1, (min(col1_data) + max(col1_data)) / 2.0)
27
       poisson_fit.SetParName(0, "PAmplitude")
28
       poisson_fit.SetParName(1, "PLambda")
29
       poisson_fit.SetLineColor(TColor.GetColor(255, 0, 0))
30
       poisson_fit.SetLineWidth(3)
31
       result=hist.Fit(poisson_fit, "S")
32
       chi2_poss = result.Chi2()
33
       ndf_poss = result.Ndf()
34
       prob_poss = TMath.Prob(chi2_poss, ndf_poss)
       print(f"PoissonFit:mean={poisson_fit.GetParameter(1):.5g},sigma={np.sqrt(poisson_fit.
36
           GetParameter(1)):.5g},prob={prob_poss:.5f}")
       hist_list.append(hist)
37
```

Code 1: PyRoot code for calculating the probabilties and best parameters for gaussian and poisson

```
import numpy as np
   from ROOT import TH1F, TF1, TCanvas, gStyle, TColor, TPaveText, TLegend
                          # No default statistics box
   gStyle.SetOptStat(1)
   gStyle.SetOptFit(0)
                           # No automatic fit results
   gStyle.SetTitleFont(42, "xyz") # Nicer font
gStyle.SetLabelFont(42, "xyz")
   gStyle.SetTitleSize(0.04, "xyz")
   gStyle.SetLabelSize(0.03, "xyz")
9
   gStyle.SetPadTopMargin(0.08)
10
11
   gStyle.SetPadBottomMargin(0.12)
   gStyle.SetPadLeftMargin(0.12)
12
   gStyle.SetPadRightMargin(0.08)
13
   c = TCanvas("", "", 800, 600)
14
   data = np.loadtxt("outputa.txt", delimiter="\t", skiprows=1)
   hist_list=[]
16
   bin_list=[8,7,8,8]
17
   title_list=["Cesium-137-10","Cesium-137-1","Barium-133-10","Barium-133-1"]
18
   # adjust here [0..3]
19
   for i in [1]:
       col1_data = data[:, i]
21
```

```
hist = TH1F(f"", f"{title_list[i]}s-sampling", bin_list[i], min(col1_data), max(
23
           col1_data))
       hist.SetDirectory(0)
24
25
       hist.SetFillColorAlpha(4, 0.4) # Blue fill with transparency
       hist.SetLineColor(1)
26
       hist.SetLineWidth(2)
       hist.SetFillStyle(1001)
28
29
       for value in col1_data:
30
           hist.Fill(value)
31
       # --- Gaussian fit ---
33
       gauss_fit = TF1(f"gauss_fit_{i}", "gaus", min(col1_data), max(col1_data))
       gauss_fit.SetParameters(1, (min(col1_data) + max(col1_data)) / 2.0, 4)
35
36
       gauss_fit.SetParName(0, "GAmplitude")
       gauss_fit.SetParName(1, "GMean")
37
       gauss_fit.SetParName(2, "GSigma")
38
       gauss_fit.SetLineColor(TColor.GetColor(0, 200, 0)) # Green
39
       gauss_fit.SetLineWidth(3)
40
       hist.Fit(gauss_fit,"Q")
41
42
       gauss_params = [gauss_fit.GetParameter(j) for j in range(3)]
43
       gauss_errors = [gauss_fit.GetParError(j) for j in range(3)]
44
45
       # --- Poisson fit ---
46
       poisson_fit = TF1(f"poisson_fit_{i}", "[0]*TMath::Poisson(x,[1])", 0, max(col1_data))
47
       poisson_fit.SetParameters(1, (min(col1_data) + max(col1_data)) / 2.0)
48
       poisson_fit.SetParName(0, "PAmplitude")
49
       poisson_fit.SetParName(1, "PLambda")
       poisson_fit.SetLineColor(TColor.GetColor(255, 0, 0)) # Red
51
       poisson_fit.SetLineWidth(3)
52
       hist.Fit(poisson_fit,"Q")
53
54
       poisson_params = [poisson_fit.GetParameter(j) for j in range(2)]
       poisson_errors = [poisson_fit.GetParError(j) for j in range(2)]
56
57
       hist_list.append(hist)
58
59
       hist.Draw()
       gauss_fit.Draw("same")
60
       poisson_fit.Draw("same")
61
62
       stats_box = TPaveText(0.6, 0.6, 0.88, 0.83, "NDC")
       stats_box.SetFillColor(0)
64
       stats box.SetTextFont(42)
65
       stats_box.SetTextSize(0.03)
       stats_box.SetBorderSize(1)
67
68
       stats_box.AddText("GaussianFit:")
69
       stats_box.AddText(f"Mean={gauss_params[1]:.3f}+-{gauss_errors[1]:.3f}")
       stats_box.AddText(f"Sigma={-gauss_params[2]:.3f}+-{gauss_errors[2]:.3f}")
71
       stats box.AddText("PoissonFit:")
72
       stats_box.AddText(f"Lambda={poisson_params[1]:.3f}+-{poisson_errors[1]:.3f}")
73
74
       stats_box.Draw()
       legend = TLegend(0.55, 0.4, 0.85, 0.5)
76
       legend.AddEntry(gauss_fit, "GaussianFit", "1")
77
       legend.AddEntry(poisson_fit, "PoissonFit", "1")
78
79
       legend.SetBorderSize(0)
80
       legend.SetFillStyle(0)
       legend.SetTextSize(0.03)
81
       legend.Draw()
82
83
       c.Update()
84
```

Code 2: PyRoot code for drawing the histograms gaussian and poisson distributions

```
gStyle.SetOptStat(1)
                          # No default statistics box
2
   gStyle.SetOptFit(1111)
                             # No automatic fit results
3
   gStyle.SetTitleFont(42, "xyz")
   gStyle.SetLabelFont(42, "xyz")
   gStyle.SetTitleSize(0.04, "xyz")
   gStyle.SetLabelSize(0.03, "xyz")
   gStyle.SetPadTopMargin(0.08)
   gStyle.SetPadBottomMargin(0.12)
9
10
   gStyle.SetPadLeftMargin(0.12)
   gStyle.SetPadRightMargin(0.08)
   c = TCanvas("", "", 1000, 600)
13
14
   hist_list=[]
15
   #adjust the for loop in the list [0,1]
16
   for i in [1]:
17
       col1_data = L2[i]
18
       hist = TH1F(f"", f"n={i}", 9, min(col1_data), max(col1_data))
19
       hist.SetDirectory(0)
       hist.SetFillColorAlpha(4, 0.4) # Blue fill with transparency
21
       hist.SetLineColor(1)
22
       hist.SetLineWidth(2)
23
       hist.SetFillStyle(1001)
24
25
       for value in col1 data:
26
27
           hist.Fill(value)
28
       if i == 0:
29
30
           func = TF1("n0", "[0]*[1]*exp(-[1]*x)", min(col1_data), max(col1_data))
31
           func.SetParameter(0, 1.0)
           func.SetParameter(1, alpha)
33
           bin_min = hist.FindBin(min(col1_data))
35
           bin_max = hist.FindBin(max(col1_data))
           integral1 = hist.Integral(bin_min, bin_max, "width")
36
           integral2 = func.Integral(min(col1_data), max(col1_data))
37
           scale = integral1 / integral2
38
           func.SetParameter(0, func.GetParameter(0) * scale),min(col1_data), max(col1_data)
39
40
           func.SetLineWidth(3)
           n0_{fit} = TF1(f"n0_{fit_{i}}",
                                        [0]*[1]*exp(-[1]*x), min(col1_data), max(col1_data))
41
42
           nO_fit.SetParameters(10,0.1)
           n0_fit.SetParName(0, "Amplitude")
43
           nO_fit.SetParName(1, "Alpha")
44
           nO_fit.SetLineColor(TColor.GetColor(0, 200, 0)) # Green
45
46
           nO_fit.SetLineWidth(3)
47
           hist.Fit(n0_fit, "SQ")
48
           fit=n0_fit
           n0_params = [n0_fit.GetParameter(j) for j in range(3)]
49
           n0_errors = [n0_fit.GetParError(j) for j in range(3)]
50
51
           hist_list.append(hist)
           hist.Draw()
           n0_fit.Draw("same")
53
           func.Draw("same")
54
       if i == 1:
           func = TF1("n0", "[0]*x*([1]**2)*exp(-[1]*x)", min(col1_data), max(col1_data))
56
           func.SetParameter(0, 1.0)
           func.SetParameter(1, alpha)
58
59
           bin_min = hist.FindBin(min(col1_data))
           bin_max = hist.FindBin(max(col1_data))
60
            integral1 = hist.Integral(bin_min, bin_max, "width")
61
           integral2 = func.Integral(min(col1_data), max(col1_data))
62
           scale = integral1 / integral2
           func.SetParameter(0, func.GetParameter(0) * scale),min(col1_data), max(col1_data)
64
           func.SetLineWidth(3)
65
           n1_{fit} = TF1(f"n1_{fit}_{i}", "[0]*x*([1]**2)*exp(-[1]*x)", min(col1_data), max(
                col1 data))
```

```
n1_fit.SetParameters(10,0.1)
67
            n1_fit.SetParName(0, "Amplitude")
            n1_fit.SetParName(1, "Alpha")
69
70
            n1_fit.SetLineColor(TColor.GetColor(0, 200, 0)) # Red
            n1_fit.SetLineWidth(3)
71
            hist.Fit(n1_fit, "SQ")
73
            fit=n1_fit
            n1_params = [n1_fit.GetParameter(j) for j in range(2)]
74
            n1_errors = [n1_fit.GetParError(j) for j in range(2)]
75
            hist_list.append(hist)
76
77
            hist.Draw()
78
            n1_fit.Draw("same")
79
            func.Draw("same")
80
81
       legend = TLegend(0.55, 0.4, 0.85, 0.5)
82
       legend.AddEntry(func, "TheoreticalDist.", "1")
83
       legend.AddEntry(fit, "PoissonFit", "1")
84
       legend.SetBorderSize(0)
85
       legend.SetFillStyle(0)
86
87
       legend.SetTextSize(0.03)
       legend.Draw()
88
89
       c.Update()
```

Code 3: PyRoot code for Part B

```
means = [192.4, 19.03, 22.44, 2.414]
   var = [13.14,4.167,4.661,1.484]
   def func2(means, var):
4
       return [np.sqrt(means[i])/var[i] for i in range(len(means))]
6
   x_values=means
   y_values=func2(means,var)
8
   plt.figure(figsize=(8, 6))
9
10
   plt.scatter(means, func2(means,var), color='blue', label='$\sqrt{\mu}/\sigma$')
11
   # Optional: Fit a line (like in the image)
12
   fit = np.polyfit(x_values, y_values, 1) # linear fit
13
   fit_fn = np.poly1d(fit)
15
16
   # Print slope and intercept
17
   slope, intercept = fit
   print(f"Slope:{slope:.6f}")
18
   print(f"Intercept:{intercept:.6f}")
   plt.plot(x_values, fit_fn(x_values), color='brown', label='LinearFit')
20
   plt.axhline(y=1, linestyle=':', linewidth=1.5, label=r'expectedline(y=1)')
   # Labels and Title
22
   plt.title(r'$\sqrt{\mu}/\sigma$Graph')
23
24
   plt.xlabel(r'$\mu$')
   plt.ylabel(r'$\sqrt{\mu}/\sigma$')
25
27
   # Axes limits and grid
   plt.ylim(0.8, 1.2)
28
29
   plt.xlim(0, 200)
   plt.grid(True, linestyle='--', alpha=0.5)
30
   plt.legend()
32
   # Show
   plt.show()
```

Code 4: Mean value and variance comparison plot in python