Álgebra Linear Algorítmica - ICP115 (2021-2) João Vitor de Oliveira Silva

Lista para Revisão - P3

1. Use o algoritmo de Gram-Schimdt para achar uma base ortonormal para o espaço de colunas das seguintes matrizes. Usando as bases ortonormais obtidas, diga qual é o posto destas matrizes.

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & -2 & -1 & -1 & -1 \\ -4 & 2 & -2 & -3 & 0 \\ 2 & 3 & 5 & 4 & -2 \end{bmatrix}$$

2. Determine todos os valores para a, b e c para os quais a matriz

$$Q = \begin{bmatrix} 1/3 & 2/3 & -2/3 \\ a & 2/3 & 1/3 \\ b & 1/3 & c \end{bmatrix}$$

é ortogonal.

- 3. Considere que o algoritmo de Gram-Schimdt foi executado na lista de vetores $w_1, w_2, w_3 \in \mathbb{R}^3$ e, na terceira iteração do algoritmo, houve uma divisão por zero. Foram dadas as seguintes justificativas para isso ter ocorrido:
 - (a) w_1, w_2 são colineares
 - (b) w_2, w_3 são colineares
 - (c) w_1, w_2, w_3 são coplanares

Quais destas afirmações estão corretas? Justifique em palavras.

4. Calcule uma base para os autoespaços de cada um dos operadores cujas matrizes são dadas abaixo e determine se são diagonalizáveis. Quando possível, ache uma base ortonormal de autovetores que diagonaliza o operador.

$$A_{1} = \begin{bmatrix} 37 & -288 & 0 & 27 \\ 4 & -31 & 0 & 3 \\ -9 & 72 & 2 & -9 \\ -6 & 48 & 0 & -4 \end{bmatrix}, \qquad A_{2} = \frac{1}{25} \begin{bmatrix} 17 & -16 & 8 & -4 \\ -16 & -7 & 16 & -8 \\ 8 & 16 & 17 & 4 \\ -4 & -8 & 4 & 23 \end{bmatrix}$$

- 5. Considere o hiperplano $S=\{(x,y,z,w)\in\mathbb{R}^4|3x+4y+2z-w=0\}$. Usando diagonalização, determine:
 - (a) a matriz P de projeção ortogonal sobre este hiperplano;
 - (b) a matriz E que possui este hiperplano como espelho.
- 6. Determine o volume do seguinte paralelepípedo, sabendo que $r_1 = (2,0,1)$, $r_2 = (1,2,-1)$ e $r_3 = (\frac{1}{2},\frac{1}{4},2)$. Dica: determinantes.

- 7. Determine quais das afirmações abaixo são verdadeiras e quais são falsas. Você deve dar um contra-exemplo para as afirmações falsas e provar as verdadeiras.
 - (a) todo operador diagonalizável admite uma base ortonormal de autovetores;
 - (b) Se uma matriz quadrada tem determinante não-nulo, é possível que um de seus autovalores seja igual a 0;
 - (c) $det(I + A) \ge det(A)$ para toda matriz quadrada A;
 - (d) o operador linear do \mathbb{R}^3 que tem autovalores -1, 1 e 2 associados aos autovetores (1,1,0), (0,1,0) e (1,2,0) é diagonalizável.
- 8. Considere uma matriz quadrada A, de tamanho 3×3 , que tem autovalores $\lambda_1=1$, $\lambda_2=3$ e $\lambda_3=-5$. Seus autovetores correspondentes são vetores $v_1,\,v_2$ e v_3 .
 - (a) Qual será o autovetor obtido, se aplicarmos o método da potência à matriz A?

- (b) Determine os autovalores da matriz B = A + 2I.
- (c) Qual será o autovetor obtido, se aplicarmos o método da potência à matriz B?
- (d) Determine os autovalores da matriz $C = A^{-1}$.
- (e) Qual será o autovetor obtido, se aplicarmos o método da potência à matriz C?
- 9. Analisando uma população de uma dada espécie de coelho, observou-se que:
 - 1. uma fêmea se torna fértil aos 3 meses de idade de idade;
 - 2. o período de gestação de cada fêmea também é de 3 meses;
 - 3. em cada gestação uma fêmea produz dois filhotes fêmeas.

A quantidade de fêmeas em uma dada população destes coelhos pode ser representada por um vetor $x^{(t)} \in \mathbb{R}^2$ cuja primeira coordenada é a quantidade de filhotes e cuja segunda coordenada é o total de adultos em um dado trimestre t.

- (a) Determine a matrix A, de tamanho 2×2 , para a qual $x^{(t+1)} = Ax^{(t)}$.
- (b) Supondo que a população inicial tinha duas fêmeas filhotes, calcule o total de coelhos filhotes e adultos após 7 trimestres.
- (c) Se o estudo tivesse iniciado com 2 filhotes e 1 adulto fêmea, qual seria o total de coelhos filhotes e adultos após 7 trimestres?
- (d) Calcule o ângulo entre os vetores obtidos no item (c) e (d). Os vetores são quase próximos de serem paralelos ou ortogonais entre si?
- (e) Justifique a razão do resultado obtido no item anterior usando o método da potência.
- 10. Rotações no espaço tridimensional podem ser representadas por ângulos de Euler. Uma das matrizes usadas neste processo é

$$R = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) Usando propriedades de matrizes ortogonais e determinantes, mostre que trata-se de uma matriz de rotação;
- (b) Rotações no espaço tridimensional possuem o chamado eixo de rotação. Vetores $w \in \mathbb{R}^3$ que pertencem ao eixo de rotação respeitam a seguinte relação:

$$Rw = w$$
.

Calcule qual é o eixo de rotação desta matriz.

- (c) É possível relacionar sua resposta anterior com o conceito de autovalores/autovetores? Justifique.
- (d) O método da potência funcionaria com sucesso em \mathbb{R} ? Justifique.