仪器科学与工程学院

检测技术与系统设计

任课教师: 李煊鹏

联系方式: <u>li xuanpeng@seu.edu.cn</u>

办公室: 中心楼330

手机: 13770666889

東南大學

2.1 检测系统组成一传感器

定义: 系统与被测对象直接发生联系的器件

作用:感受被测对象指定被测参量的变化,并按一定的规律转换成一个

相应的便于传递的输出信号。

通常是将非电被测物理、化学成分参量转换成电信号

2.2 检测系统组成一信号调理

作用:对传感器输出的微弱、含噪声信号再进行预处理、包括检波、 放大、转换、滤波等步骤,以便显示或供进一步处理。

电平调整

信号形式变换

滤波

2.2 检测系统组成一电平调整

电平调整: 最常见的信号调理,如对电压信号进行放大或衰减

怎么选,如何用?

2.2 检测系统组成一电平调整(1)

2.2 检测系统组成一电平调整(2)

- 高输入阻抗
- 低噪声
- 低线性误差
- 低失调漂移增益 应用于医疗心电、 脑电、音频信号、 视频信号采集等

東南大學

2.2 检测系统组成一电平调整(3)

电平调整

比例放大

仪用放大

低漂移放大

隔离放大

数控增益放大

输入为0时(输入端对 地短接),放大器输 出端电压偏离初始值 漂动,称为零点漂移。

- 1. 自稳零型放大器
- 2. 斩波型放大器

自稳零型	斩波型	斩波 + 自稳零
极低失调	极低失调	极低失调
采样保持	调制 / 解调	采样保持+调制/解调
混叠导致低频噪声较高	类似于平带噪声	随频率分布的组合噪声
功耗较高	功耗较低	功耗较高
宽带宽	窄带宽	带宽最宽
纹波最小	纹波最大	纹波水平中等
在自稳零频率上能量很小	在斩波频率上能量很大	在自稳零频率上能量很小

10

2.2 检测系统组成一电平调整 (3)

低漂移放大

ICL7650 斩波自稳零型运算放大器(直流/低频)

适用于预期寿命10年以上的系统,以及使用高闭环增益和低频、低幅度信号

2.2 检测系统组成一电平调整(4)

- 隔离放大器是一种输入电路和输出电路之间电气绝缘的放大器
- 采用变压器和光耦合传递信号输入电路、输出 电路和电源间无直接电路耦合

VDD VCC Q

优点:

- 可承受上千伏共模电压
- 保护仪器设备和人身安全

2.2 检测系统组成一电平调整(5)

电阻网络 +差分放大器 => 放大倍数可调

2.2 检测系统组成一电平调整 (6)

2.2 检测系统组成一电平调整 (7)

X9511直插数字电位器

手动模式: 按钮选择切换

自动模式: 自动存储模式

2.2 检测系统组成一信号形式变换

信号形式变换:将传感器输出信号从一种形式变换为另一种形式,如电压一电流间相互转换。

10

2.2 检测系统组成一信号形式变换(1)

if $u_i > U_R$, then $U_o = 0$ "
elseif $u_i < U_R$, then $U_o = 1$ "

UR: 门限电平或基准电压

2.2 检测系统组成一信号形式变换(1)

比较和整形

比较器的应用1

 V_{I} 和光强度成正比,

- 白天, $V_I > V_{REF}$,晶体管截止,继电器中无电流,使得街灯关闭。
- 夜间, $V_I < V_{REF}$,晶体管导通,继电器开关中的电流使街灯打开。

2.2 检测系统组成一信号形式变换(1)

比较和整形

比较器的应用2

单门限电压比较器

正弦波变换为矩形波

有干扰正弦波变换为方波

۲

2.2 检测系统组成一信号形式变换(1)

比较和整形

比较器的应用2

双门限电压比较器 (施密特触发器)

专用电压比较芯片用作比较器比通用的运放速度快

東南大學

.

2.2 检测系统组成一信号形式变换(2)

2.2 检测系统组成一信号形式变换(2)

2.2 检测系统组成一信号形式变换(3)

2.2 检测系统组成一滤波

滤波:滤除信号中的<u>噪声</u>,减小由于传感器内阻或传输线阻抗等因素带来的测量误差,达到提高测量精度的目的。

电源噪声

信号噪声

- 分贝(dB)来表示噪声的强度
- 信噪比(S/N)来衡量噪声对有用信号的影响程度

2.2 检测系统组成一滤波

2.2 检测系统组成一选频作用分类(1)

低通滤波器

高通滤波器

带通滤波器

带阻滤波器

2.2 检测系统组成一选频作用分类(2)

串联结构

带通滤波器

2.2 检测系统组成一选频作用分类(3)

并联结构

带阻滤波器

2.2 检测系统组成一低通滤波器(1)

低通滤波器

東南大學

2.2 检测系统组成—低通滤波器(2)

低通滤波器的主要技术指标

- 通带截止频率
- 通带增益

2.2 检测系统组成一低通滤波器(3)

阶低通滤波器

通带增益 A_{vp}

当 f=0 或频率很低时,各电容器可视为开路,通带内的增益为

$$A_{vp} = 1 + \frac{R_2}{R_1}$$

通带传递函数 $A_v(s)$

$$V_o(s) = A_{vp}V_{-}(s)$$
$$V_{+}(s) = V_i(s)\frac{1}{1 + sCR}$$

$$A_v(s) = \frac{V_o(s)}{V_i(s)} = \frac{A_{vp}}{1 + sCR}$$

2.2 检测系统组成—低通滤波器(4)

二阶低通滤波器

通带增益

当 f=0 或频率很低时,各电容器可视为开路,通带内的增益为

$$A_{vp} = 1 + \frac{R_f}{R}$$

通带传递函数

$$V_{o}(s) = A_{vp}V_{-}(s) \frac{1}{1 + sC_{2}R}$$

$$V_{+}(s) = V_{N}(s) \frac{1}{1 + sC_{2}R}$$

$$V_{N}(s) = \frac{\frac{1}{sC_{1}} / / (R + \frac{1}{sC_{2}})}{R + \left[\frac{1}{sC_{1}} / / (R + \frac{1}{sC_{2}})\right]} V_{i}(s)$$

$$A_{v}(s) = \frac{V_{o}(s)}{V_{i}(s)} = \frac{A_{vp}}{1 + 3sCR + (sCR)^{2}}$$

$$R + \left[\frac{1}{sC_{1}} / / (R + \frac{1}{sC_{2}})\right] V_{i}(s)$$

$$A_v(s) = rac{V_o}{V_o}$$

$$\frac{V_o(s)}{V_i(s)} = \frac{A_{vp}}{1 + 3sCR + (sO)}$$

r,

2.2 检测系统组成—低通滤波器(5)

一阶低通滤波器

二阶低通滤波器

阻带衰减快, 选择性较好

2.2 检测系统组成一最佳逼近特性标准(1)

最佳逼近特性标准分类

- 巴特沃斯
- 切比雪夫
- 贝塞尔
- 电路形式是一样的,只是数值不同
- 只能通过频率响应识别

2.2 检测系统组成一最佳逼近特性标准(2)

一阶巴特沃斯低通滤波器

二阶巴特沃斯低通滤波器

五阶巴特沃斯低通滤波器

М

2.2 检测系统组成一最佳逼近特性标准(3)

7阶切比雪夫低通滤波器

2.2 检测系统组成一最佳逼近特性标准(4)

通带内最大平坦幅度特性,不考虑相频特性

2.2 检测系统组成一最佳逼近特性标准(5)

切比雪夫滤波器

波特图

通带或阻带有波纹, 过渡带衰减更陡峭

2.2 检测系统组成一最佳逼近特性标准(6)

贝塞尔滤波器

具有较高线性度的相脚位移, 可减少非线性相位失真, 用于音频系统中

2.2 检测系统组成一最佳逼近特性标准(7)

2.2 检测系统组成一滤波器设计(1)

模拟滤波器设计基本步骤

- +根据实际需要确定滤波器相关参数,如截止频率等
- → 寻求一个合适的、可实现的传递函数,该函数的特性应该符合所提出的要求
- ➡ 选择合适的电路结构来实现所选定的有理函数
- → 计算电路中各器件的参数,如电阻阻值和电容容值,选择合适的运算放大器

2.2 检测系统组成一滤波器设计(2)

用Filter Wiz Pro 3.0进行滤波器设计

2.2 检测系统组成一滤波器设计(3)

用Filter Wiz Pro 3.0进行滤波器设计

2.2 检测系统组成一滤波器设计(4)

```
% 巴特沃斯低通滤波器
              % 通带截止频率, HZ
     fp=5000:
    Ap=2; % 通带最大衰减, dB
     fs=12000; % 阻带截止频率, HZ
              % 阻带最大衰减, dB:
     As=30:
10 - wp=2*pi*fp;ws=2*pi*fs;
                                                % 求模拟滤波器的最小阶数和截止频率(-3dB)
11 - [N, wc]=buttord(wp, ws, Ap, As, 's');
12
    % N = 3:
13
    % wc = wp:
14 - [B, A]=butter(N, wc, 's');
                                                % 设计带阻滤波器
15 - k=0:511; fk=0:14000/512:14000; wk=2*pi*fk;
16 - [Hk Wb]=freqs(B, A, wk):
                                                % 计算给定频率点的复数频率响应,Wb是以rad/second为单位的
17 - Wb = Wb/(2*pi):
18 - subplot(3, 2, 1);
    plot(Wb, abs(Hk), 'LineWidth', 2); grid on;
20 - xlabel('频率/Hz');ylabel('幅值');
21 - subplot(3, 2, 2);
22 - plot(Wb, unwrap(angle(Hk)), 'LineWidth', 2); grid on;
23 - xlabel('频率/Hz');ylabel('相位');
```


2.2 检测系统组成一参考书目

- ❖ 《电子滤波器设计》
- ❖ 《LC滤波器设计》
- «Filter Theory and Practice»

2.2 检测系统组成一信号调理总结

电平调整

信号形式变换

滤波

对信号调理电路的一般要求

- > 能准确转化、稳定放大、可靠地传输信号
- > 信噪比高,抗干扰性能要好

