February 1, 2024

$1 \quad Linear \ Regression \ In \ R$

• load the car data using data() and see what it contains

```
[45]: # Load the 'cars' dataset
data(cars)

# View the dataset
View(cars)
```

	1	1
	speed	dist
A data.frame: 50×2	<dbl></dbl>	<dbl></dbl>
	4	2
	4	10
	7	4
	7	22
	8 9	16 10
		10
	10	18
	10 10	26
	10	34
	11	17 28
	11	28 14
	12 12	20
	12	$\frac{20}{24}$
	$\frac{12}{12}$	28
	13	26 26
	13 13	34
	13 13	34 34
	13 13	46
	13 14	26
	14	36
	14	60
	14	80
	14 15	20
	15 15	26
	15 15	54
	16	32
	16	40
	10 17	32
	17	40
	17	50
	18	42
	18	56
	18	76
	18	84
	19	36
	19	46
	19	68
	20	32
	20	48
	20	52
	20	56
	20	64
	$\frac{20}{22}$	66
	23	54
	$\frac{23}{24}$	70
	$\frac{24}{24}$	92
	24	93
	24	120
	25	85

2 Visualization and Training the Model

```
[46]: install.packages('caTools')
      library(caTools)
     Installing package into '/usr/local/lib/R/site-library'
     (as 'lib' is unspecified)
     we will train a model of the form Y = 1 + 2X + W where Y is the car breaking distance and X is
     the car's speed. To train a linear model on the data, we use the lm() command.
[47]: split = sample.split(cars$dist, SplitRatio = 0.7)
      trainingset = subset(cars, split == TRUE)
      testset = subset(cars, split == FALSE)
      # Fitting Simple Linear Regression to the Training set
      model = lm(formula = cars$dist ~ cars$speed)
[48]: # Display a summary of the linear regression model
      summary(model)
     Call:
     lm(formula = cars$dist ~ cars$speed)
     Residuals:
                                          Max
         Min
                  1Q Median
                                  3Q
     -29.069 -9.525 -2.272 9.215 43.201
     Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
     (Intercept) -17.5791 6.7584 -2.601
                                               0.0123 *
     cars$speed
                   3.9324
                              0.4155
                                       9.464 1.49e-12 ***
     ___
     Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
     Residual standard error: 15.38 on 48 degrees of freedom
     Multiple R-squared: 0.6511,
                                         Adjusted R-squared: 0.6438
     F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```

We now have a trained linear model that predicts the stopping distance of a car given its speed.

Regression Line : Distance = -17.58+3.93*Speed

To visualize our regression line, we can overlay it with the original training data.

```
[49]: # Create a scatter plot of 'dist' against 'speed'
plot(dist ~ speed, data = cars)

# Add the regression line to the plot in red color
abline(model, col = "red")
```


To view additional details of the model, use the summary() command:

summary provides lots of data on the model such as the R squared and adjusted R squared values, the F statistic, and the p-value and is a valuable tool for evaluating the model. Since p < 0.05, we can reject the null hypothesis.

We can also view other information such as the error sum of squares and mean sum of squares through the anova() command.

[50]: # Perform an analysis of variance (ANOVA) on the linear regression model anova(model)

Additionally, we can graphically analyze the statistical properties of our model.

[51]: # Plot diagnostic plots for the linear regression model plot(model)

