Al Fundamentals Course A Project: Face Recognition

本项目主要依托 人脸检测数据集.zip 与 dlib 组件进行班级内人脸识别的训练与验证,并附加了签到、活体检测功能,实时准确率可达40%,图片准确率可达70%。 dlib 组件为 dlib_face_recognition_resnet_model_v1.dat (人脸识别模型)和 shape_predictor_68_face_landmarks.dat (人脸关键点检测模型)

且由四个py文件构成

下面将详细介绍

dlib_face_recognition_resnet_model_v1.dat

这是一个基于ResNet架构的深度学习模型,其作用为输入一张对齐后的人脸图像,输出一个128维的特征向量(嵌入向量),通过欧氏距离衡量人脸的相似性。

$$ext{Distance} = \sqrt{\sum_{i=1}^{128} ~(x_i - y_i)^{-2}}$$

shape_predictor_68_face_landmarks.dat

这是一个一个**68点人脸关键点检测器**,用于定位人脸的眉毛、眼睛、鼻子、嘴巴、 轮廓等特征点。

68点人脸关键点主要为眉毛(8点×2)、眼睛(6点×2)、鼻子(9点)、嘴巴(20点)、下巴(17点)。

其在项目中的作用主要为

- 1. 人脸对齐:通过关键点调整人脸姿态(如旋转、缩放),使输入图像标准化,提升识别精度。
- 2. 辅助特征提取:使得对齐后的人脸图像更适合 dlib_face_recognition_resnet_model_v1.dat 处理。

UI_setup.py

模块	功能	
工具函数	计算眼睛/嘴巴纵横比、点头/摇头动作判断	
人脸识别	核心识别逻辑(特征比对+标注绘制)	
活体检测	眨眼、张嘴、头部动作验证	
Gradio界面	5个交互式选项卡的Web界面	

1. 签到系统

- 实时摄像头画面 + 签到名单
- 开始/停止签到按钮
- 阈值调节滑块

2. 详细识别结果

- 显示人脸框坐标和置信度
- 可开关FPS显示

3. 图片人脸识别

- 上传图片批量识别
- 输出带标注的图片和文字报告

4. 活体检测

- 分步骤引导完成动作验证
- 实时反馈检测进度

5. 系统参数设置

- 展示评估指标(混淆矩阵、准确率)
- 超参数调整指南

代码结构说明

模块	功能描述	
train_face_model.py	训练模型并生成特征数据库,输出评估报告 (混淆矩阵、ROC曲线等)	
image_recognition.py	对指定目录中的图片批量进行人脸识别,标注 结果并显示置信度	

模块	功能描述	
real_time_recognition.py	调用摄像头实时识别人脸,适用于动态场景 (如考勤签到)	

模型训练模块(train_face_model.py)

- 从数据集中提取人脸特征,构建特征数据库
- 划分训练集/测试集(默认8:2比例),至少保证有一张图片用于测试集
- 生成模型评估报告(准确率、混淆矩阵、ROC曲线)

函数名	输入	输出	功能说 明
extract_face_features	数据集 路径、 测试集 比例	特征字典 (face_features.pkl)	提取特 征并划 分数据 集
evaluate_model	特征字 典、测 试集、 阈值	评估报告(图片格式,保存至 evaluation/)	计算性 能指标 并可视 化

数据集要求如下

静态图片识别模块 (image_recognition.py)

- 批量处理指定目录(demo/)下的图片文件(支持 .jpg, .png)
- 标注识别结果(姓名+置信度百分比)
- 按图片顺序逐张显示结果(按任意键切换下一张)

核心参数 RECOGNITION_THRESHOLD

demo

RECOGNITION_THRESHOLD = 0.45 # 判定阈值(欧氏距离<0.45视为同一人)

实时视频识别模块 (real_time_recognition.py)

- 调用摄像头实时捕获视频流(默认设备索引为0)
- 实时标注识别结果(无置信度显示,优化计算效率)

参数调优建议

参数	推荐范 围	影响说明
RECOGNITION_THRESHOLD	0.4-0.6	值越小判定越严格(减少误报,但增 加漏报)
test_ratio (训练模块)	0.1-0.3	测试集比例,影响评估结果可信度

扩展数据库

• 新增人物时,只需在数据集中添加对应文件夹并重新运行训练模块

环境配置

依赖库

python环境: 3.8

conda create -n py38 python=3.8 -y

库环境

```
conda install -c conda-forge numpy=1.21.5 opencv=4.5.5 dlib=19.24 - y
```

通过conda-forge渠道避免Cmake等支持库的安装

再安装剩余库

```
pip install scikit-learn matplotlib seaborn gradio==3.47.0 # 最新版本gradio用value调用Webcam,而会出现浏览器无法调用电脑摄像头的问题,因此指定版本3.47.0,此版本用source调用Webcam,无上述问题
```

版权声明

代码遵循 MIT 开源协议,模型文件(.dat)版权归dlib官方所有。