Lecture 2c Digital Logic - Digital (Preliminaries 3)

Chintan Kr Mandal

Digital and Analog Quantities What is DIGITAL ?? Digital Review ...

Having studied LOGIC !!

Let us have a look about the DIGITAL ... in DIGITAL LOGIC

Digital and Analog Quantities

Analog Quantities Digital Quantities

Analog Quantities

Analog Quantities [1]

Analog Quantity

An analogue quantity is one having continuos values

Figure: Analog Signal

The Analog Advantage

- One of the major advantages of the analog signal is that they have power to define infinite amount of data.
- Potential for an infinite amount of signal resolution compared to digital signals, analog signals are of higher density.
- Analog signals have easy processing.
- E.g. A public address system, used to amplify sound so that it can be heard by a large audience.

Analog Quantities Digital Quantities

Digital Quantities

Digital Quantities

Digital Quantity

An digital quantity is one having discrete set of values

Figure: Digital Signal

The DIGITAL Advantage

- Digital data can be processed and transmitted more efficientlt and reliably than analog data.
- Dital data has a great advantage when storage is necessary.
- E.g. Music when converted to digital form can be stored more compactly and reproduced with greater accuracy and clarity than is possible when it is in analog form
 - Noise (unwanted voltage fluctuations) does not affect data nearly as much as it does analog signals.

Digital to Analog

Figure: Basic Principle of a CD-Player

Question: Figure out how data is stored in the CD.

From Boolean Algebra to Digital Parallel switches Series Switches

What is DIGITAL ??

Digital and Analog Quantities
What is DIGITAL ??
Digital
Review ...

From Boolean Algebra to Digital Parallel switches Series Switches

From Boolean Algebra to Digital

From Boolean Algebra to Digital

To understand the relation between Boolean algebra and digital, let us consider a small example with the help of circuits.

Let us go through some basic concepts in circuits

Basic concepts in circuits [2]

- A switch is a device which is attached to a point in an electric circuit and which may assume either of two states, closed or open.
- In the closed state the switch allows current to flow through the point, whereas in the open state no current can flow through the point.
- We shall indicate a switch by means of the symbol A where A denotes a sentence such that the switch is closed when A is TRUE (T) and open when A is FALSE (F)
- We say that two points are connected by a switching circuit if and only if they are connected by wires (lines) on which a finite number of switches are located.

From Boolean Algebra to Digital **Parallel switches** Series Switches

Parallel switches

Parallel Switches

- Points x and y are connected by a switching circuit by parallel switches.
- The current flows between x and y if and only if $A \lor B \lor C \lor D$ is **TRUE** [Figure 4(a)].

Figure: Parallel Connection

• Current flows through the circuit of [Figure 4(b)] if and only if $A_1 \lor A_2 \lor ... \lor A_n$

From Boolean Algebra to Digital Parallel switches Series Switches

Series Switches

Series Switches

- Points x and y are connected by a switching circuit by series switches.
- The current flows between x and y if and only if $A \wedge B$ is **TRUE** [Figure 5(a)].

Figure: Series Connection

• Current flows through the circuit of [Figure 5(b)] if and only if $A_1 \wedge A_2 \wedge ... \wedge A_n$

Combination of Switches

The Switches can be connected in parallel and series also.

Figure: Switches combined in connection for $(A \land C) \lor (\neg A \lor B)$

A condition for flow of current through a series-parallel switching circuit can be written by means of *conjunctions* and *disjunctions*, starting from the expressions representing the closure of the individual switches.

Example I

Situation

A committe of three decides questions by majority vote. Each member can press a button to signify a "YES" vote. Construct a switching circuit which will pass current when and only when a majority votes "YES"?

- Let A stand for "member 1 approves"
- Let B stand for "member 2 approves"
- Let C stand for "member 3 approves"

Example II

Then a necessary and sufficient condition for a majority vote is [Figure 7(a)]

$$(A \wedge B) \vee (A \wedge C) \vee (B \wedge C)$$

Figure: Solutions

An alternate solution is given in [Figure 7(b)], which is equivalent to [Figure 7(a)]

Digital

SO What is DIGITALLLL ??

What is DIGITAL ??

Expressed as series of the digits ${\bf 0}$ and ${\bf 1}$, typically represented by values of a physical quantity such as voltage or magnetic polarization, where ${\bf HIGH}={\bf 1}$ and ${\bf LOW}={\bf 0}$.

NOTE: This is referred to as *positive* logic.

Another system in which a LOW = 1 and HIGH = 0 is referred to as *negative* logic.

A review of the Analog and Digital world !!

Advantages of being DIGITAL !!

Advantages of being DIGITAL !!

Disadvantages of being DIGITAL !!

Disadvantages of being DIGITAL !!

"I thought we'd go for a digital tree this year."

References

- [1] Thomas L. Floyd.

 Digital Fundamentals, 8th edition.

 Pearson Education Inc., 2003.
- [2] E. Mendelson.

Schaum's Outline of Theory and Problems of Boolean Algebra and Switching Circuits.

Schaum's outline series in mathematics. McGraw-Hill, 1970.

Digital and Analog Quantities What is DIGITAL ?? Digital Review ...

QUESTIONS!!!