

## NU1680:低成本、无固件、高集成度无线 电力接收器

#### 1特点

- · 超简单的电路结构,总共仅12个元件
- · 低成本且应用非常简单,无需额外固件
- · 12C 可编程性
- · 集成低压降 LDO,提供稳压输出、可编程Vout

从 3.5V 至 9V,步长为 39mV

- ·或输出Vout实时跟踪外部电池电压以优化效率
- ·通过 I 2C 或电阻器进行可编程和可配置的 FOD 增益和偏移
- · 集成高效同步整流器,无需自举电容
- · 强大的 OVP、OCP、SCP 和 OTP 保护
- · 10 位 ADC 用于电池电压、输出电流和温度测量
- · 小尺寸,16-QFN 3.0mm x 3.0mm,0.5mm 间距

### 2 应用

- · WPC 5W BPP 兼容接收器 最大5W接收功率
- · TWS 无线电源接收器, 电动牙刷、电动剃须刀、电动 卷烟及其他消费品 设备

### 3 说明

NU1680是一款高度集成的无线电源接收器,与NU1610相比,其所需的外围元件数量较少。它提供了非常低的好处

无线电源接收器解决方案的总系统成本和更少的 PCB 面积。此外,由于不需要固件进行编程,因此它将大大简化设计工作,并更轻松、更快速地整合解决方案。它集成了一个无自举电容器的同步整流器,专为高效率而设计

目的和低成本。该稳压器可提供 3.5V 至 9V 的宽范围稳压电压,以适应不同的应用。此外,它还可以跟踪电池电压来调节输出电压,以进一步降低充电系统的功率损耗。

NU1680可以通过ASK与发射机系统进行通信。通信符合 WPC V1.2.4。

FOD参数可通过I 2C配置接口或外部电阻来传递 FOD测试。

NU1680还支持连接到主AP,通过I2C接口进行通信。提供外部中断、电池电压和输出电流的ADC值等。

NU1680还包括标准保护功能,如过流保护、短路保护、 过压保护和热关断。这些规定进一步增强了系统解决方 案的可靠性。

该设备安装在一个紧凑的 3.0mm×3.0mm QFN 封装。

本文档包含 NuVolta 的机密和专有信息。未经 NuVolta 事先书面同意,禁止以任何形式和/或通过任何方式使用、复制或向任何第三方传播本文档中的任何信息。版权所有。



### 内容1特

| 点                                       |           |
|-----------------------------------------|-----------|
| 2 应用                                    | 1         |
| 3 说明                                    | 1         |
| 4 引脚配置及功能                               | 4         |
| 5 规格                                    | 6         |
| 5.1 绝对最大额定值                             |           |
| 值                                       |           |
| 值                                       | 6         |
| 5.4 电气特性                                | 7         |
| 6 寄存器映射                                 | 9         |
| 6.1 通用寄存器                               | 9         |
| 6.2 参数配置寄存器                             | 11        |
| 6.3 ADC 通道寄存器                           | 13        |
| 7 功能框图                                  | 14        |
| 8 典型特征                                  | 15        |
| 9 应用说明                                  |           |
| 9.1 系统概述                                |           |
| 9.2 电源                                  |           |
| 512 - Carrotte                          |           |
| 9.4 功率LDO                               |           |
| 9.5 过压保护                                | 10        |
| 9.6 过流保护                                |           |
| 9.7 短路保护                                |           |
|                                         |           |
| 9.8 外部温度保护                              |           |
| 9.9 IC 过温保护                             |           |
| 9.10 跟踪电池电压                             |           |
| 9.11 I2C\OS1\SINK\EN_B                  |           |
| 9.12 模数转换器                              |           |
| 9.13 通过 SCL/OS2、SCL/ACR、OS1 复用进行 FOD 配置 | 20        |
| 10 布局指南                                 | 21 11 典型应 |
| 用电路                                     | 22 12 包装信 |
| 息                                       | 22        |
| 13 机械数据                                 | 23        |





# 4引脚配置和功能



图 1. NU1680-QFN 顶视图

| 别针            |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|---------------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 姓名            | 不。           | 输入/输出   | 描述<br>The control of the control of th |  |  |  |
| 接地            | 1, 4, 17 GND | 系统电源和   | 模拟地。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 通讯1/CO<br>MM2 | 2/3          | O 开源    | 扇输出,用于与<br>发射机。在该引脚和之间连接一个电容器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|               |              |         | 交流1/交流2。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 交流1/交流2       | 5/16         | l 交流    | 输入电源。连接到L的谐振电路回路<br>和C。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 虚拟现实断层扫描      | 6, 15        | 0 励     | 步整流器的输出。连接电容<br>该引脚和地之间。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 下沉            | 7            | 0 刑     | -控制整流器钳位的开漏输出。<br>在此引脚和 VRECT 引脚之间连接一个电阻。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 操作系统1         | 8            | 输入/输出   | 如果配置为 FOD_RES_MODE,则此 PIN 用作负载 #0 时 FOD 参数偏移的输入。<br>如果不使用,请接地。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| SDA/OS2       | 9            | I/OI 20 | 数据引脚。如果配置为 FOD_RES_MODE,则此 PIN<br>用作负载 #1 和 #2 处 FOD 参数偏移的输入。如果没有用,让它漂浮。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| SCL/ACR       | 10           | 我       | I 2C 时钟引脚。如果配置为 FOD_RES_MODE,则该 PIN 用作 FOD 参数的 ACR 的输入。如果没有用,让它漂浮。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| EN_B          | 11           | IA 逻    | 辑高电平输入用于禁用电源 LDO 输出。有内部下拉,如果不用则保持浮动。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |





| 温度/VBAT | 12 | I 温度传感引脚。连接一个R25 = 100K, beta = 4250 NTC 电阻接地。或者可以配置为电池电压检测引脚,使Vout能够跟踪外部电池电压。如果没有用,让它漂浮。 |
|---------|----|-------------------------------------------------------------------------------------------|
| V5V     | 13 | O 5V 电源供IC 内部使用。在该引脚和地之间连接一个典型的 1uF/10V 电容器。                                              |
| 输出电压    | 14 | O 负载输出引脚。                                                                                 |



# 5 规格

# 5.1 绝对最大额定值

| 针脚                            | 评         | 单位 |
|-------------------------------|-----------|----|
| AC1、AC2、通讯1、通讯2               | 分-0.3~17  | 在  |
|                               |           |    |
|                               |           |    |
| VRECT,水槽                      | -0.3~17   | 在  |
| V5V\SCL/ACR\SCL/OS2\OS1\EN_B\ | -0.3~6    | 在  |
| 温度/VBAT                       |           |    |
| 输出电压                          | -0.3~10   | 在  |
| SINK 上的最大电流                   | 500       | 毫安 |
| COMM1/2 上的最大电流                | 500       | 毫安 |
| AC1/AC2 上的最大 RMS 电流           |           | 温  |
| 工作结温,TJ                       | 2 -40~125 | 度_ |
| 环境工作温度, TA                    | -40~85    | °C |
| 储存温度,Tstg                     | -55~125   | °C |

# 5.2 ESD 额定值

|        |         | 单元 |
|--------|---------|----|
| 人体模型   | +/-2000 | 在  |
| 带电器件模型 | +/-500  | 在  |

# 5.3 封装热额定值

|                                  |    | 单元   |
|----------------------------------|----|------|
| 结至环境热阻,RθJA                      | 38 | °C/W |
| (FR4双层,2oz,IC层1.9mm*1.9mm尺寸铜,另一面 |    |      |
| 8mm*8mm尺寸铜)                      |    |      |
|                                  |    |      |



## 5.4 电气特性

VRECT=5.2V, Tj=-40 ℃至125℃ (除非另有说明)

| 参数                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 测试 状况            | 最小   | 典型最大學 | 单位    |    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|-------|-------|----|
| <br>电源             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1/76           |      |       |       |    |
| VUVLO_RECT_R<br>然而 | VRECT欠压锁定阈值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VRECT加速          | 2.9  | 3.05  | 3.2   | 在  |
| VUVLO_RECT_F<br>全部 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VRECT逐渐下降        |      | 2.83  |       | 在  |
| VUVLO_V5V          | 欠压锁定阈值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V5V 上升           | 2.9  | 3.05  | 3.2   | 在  |
| VUVLO_V5V_HY       | 欠压锁定迟滞电压                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V5V 斜坡下降         | 80   | 220   | 360毫伏 |    |
| IQ_RECT            | VRECT的静态工作电流                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EN_B=低,无切换       |      | 2     | 3     | 嘛  |
| V5V低压差稳压器          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |       |       |    |
| VV5V               | 5V 电源 5V 电源                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV5V=10mA        | 4.6  | 4.83  | 5.1   | 在  |
| IV5V               | R流VV5V=4.6V 5V 短路电流VV5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |      |       | 80毫安  | -  |
| 短篇                 | TO THE TOTAL TO TH |                  |      |       | 360毫安 |    |
| 输出调节(功率            | I DO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |      |       |       |    |
|                    | ー<br>輸出电压范围VOUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 3.5  |       | 9     | 在  |
| VOUT_STEP输让        | #电压步进Vout=3.5V 至 9V 输出电压                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E精度VOUT=5V、      |      | 39    |       | 毫伏 |
|                    | VOUT_ACC IOUT=1mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 4.85 | 5     | 5.15  | 在  |
| 输出寄存器              | 输出电压调节                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VOUT=5V, IOUT=1A | -3   |       | 3%    |    |
| ILIM_范围            | 电流限制范围<br>(发送EPT包)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 输出电压=5V          | 1.2  | 1.4   | 1.6   | A  |
| 同步整流桥              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |       |       |    |
| RDSON              | 导通阻抗<br>整流MOSFET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VRECT=6V         |      | 100   |       | 毫欧 |
| TMOT               | 最短开启时间                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |      | 350   |       | 纳秒 |
| <br>保护             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |       |       |    |
| 托普                 | 热关断                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 温升阈值             |      | 150   |       | °C |
| TOTP_HYS           | 热关断滞后现象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 温度下降阈值           |      | 25    |       | °C |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1    |       |       |    |



| NuVelta  | ) |
|----------|---|
| IVUVUILA | 1 |

| VOVP1       | <br>VRECT 低电平过压保护阈值                   |                                       |      | 1    |         |     |
|-------------|---------------------------------------|---------------------------------------|------|------|---------|-----|
| VOW 1       | VICE IN TO PERMIT PAIR                | 保护                                    | 12.1 | 12.8 | 13.5    | 在   |
| VOVP1_HYS   | VRECT 过压恢复迟滞                          |                                       | 0.4  | 0.6  | 0.9     | 在   |
| VOVP2       | VRECT 高电平过压保护阈值                       | SINK ON 和内部<br>硬保护                    | 14.6 | 15.4 | 16.2    | 在   |
| VOVP2_HYS   | VRECT 过压<br>恢复                        |                                       | 6.7  | 8.5  | 9.5     | 在   |
|             |                                       |                                       |      |      |         |     |
| 下沉<br>RSINK | 下拉电阻                                  | 我=100mA                               |      |      | 7       | 哦   |
| ILKG_SINK   | 水槽销<br>SINK针漏电<br>当前的                 | 汇=5.5V                                | -1   |      | 1       | 微安  |
| EN_B        |                                       |                                       |      |      |         |     |
| VIH_ENB     | <br>  输入电压逻辑高电平 输入上升                  |                                       | 1.5  |      |         | 在   |
| WILL_ENB    | 输入电压逻辑低 输入下降                          |                                       |      |      | 0.6     | 在   |
| 伦布          | 逻辑引脚输入阻抗                              | 下拉至 GND                               |      | 2    |         | 兆欧姆 |
| 操作系统1       |                                       |                                       |      |      |         |     |
| ILKG_INT    | OS1漏电流                                | VIN=0V和5V                             | -1   |      | 1       | 微安  |
|             | CL/ACR\SCL/OS2)                       |                                       |      |      |         |     |
| 艾滋病病毒       | · · · · · · · · · · · · · · · · · · · |                                       | 1.4  |      |         | 在   |
| VIL         | 输入电压逻辑低 输入下降                          |                                       |      |      |         | 在   |
| fSCL        | <br>  时钟频率                            |                                       |      |      | 0.64001 | Hz  |
| 音量_SDA      | 下拉电压低电平                               | 5mA 灌电流                               |      |      | 0.2     | 在   |
| ILKG_I2C    | 输入漏电流 V=0V 和 5V                       |                                       | -1   |      | 1       | 微安  |
| 田干 FOD 参数   | 数配置和温度检测的偏置电流                         |                                       |      |      |         |     |
|             | 电流流过                                  | 在 TEMP/                               |      |      |         |     |
|             | 引脚和电阻(TEMP,<br>SDA、SCL/ACR、OS1)       | VBAT、SDA、SCL/ACR、<br>OS1 上进行测试<br>引脚。 | 3.8  | 4    | 4.2     | 微安  |

笔记: 意味着性能由设计保证。



# 6寄存器映射

# 6.1 通用寄存器

| 地址和位<br>0x00[7:0] | 寄存器字段名称 R/W         |             | 重置或<br>默认0x16 | 功能及说明                                                                        |
|-------------------|---------------------|-------------|---------------|------------------------------------------------------------------------------|
| CHIP_ID_H [7:0    | 0x01[7:0] CHIP_ID_L | 右           |               | 芯片ID信息高字节                                                                    |
| [7:0] 0x02 保留。    |                     | 右           | 0x80          | 芯片ID信息低字节                                                                    |
|                   |                     |             |               |                                                                              |
|                   |                     | 1_          | 000           | 1/241D-4-                                                                    |
| 0x03[7:0] 状态 [    | 7:0]                | 右           | 0x00          | 当前状态                                                                         |
| 0x03[0]           | LDO_ON              | 右           | 0             | 0 = LDO 电源关闭;<br>1 = 电源 LDO 打开                                               |
| 0x03[1]           | RECT_ON             | 右           | 0             | 0 = 整流器 MOSFET 禁用;<br>1 = 整流器 MOSFET 使能                                      |
| 0x03[2]           | 预订的                 |             |               |                                                                              |
| 0x03[3]           | ОСР                 | 右           | 0             | 0 = 无过电流发生;<br>1 = 发生过流                                                      |
|                   |                     |             |               | 0=VRECT 未发生高电平电压;                                                            |
| 0x03[4]           | 过压保护2               | 右           | 0             | 1 = VRECT 高电平电压<br>发生                                                        |
|                   |                     |             |               | 0 = VRECT 未发生过低电平电压;                                                         |
| 0x03[5]           | 过压保护1               | 右           | 0             | 1 = VRECT 处于低电平电压<br><sub>发生</sub>                                           |
|                   |                     |             |               | 0 = IC 结点未发生过温现象;                                                            |
| 0x03[6]           | 一次性TP               | <br>  右<br> | 0             | 1 = IC 结温度过高<br><sub>发生</sub>                                                |
|                   |                     |             |               | 0 = TEMP/VBAT 均未发生过温情况;                                                      |
| 0x03[7] 温度        |                     | 右           | 0             | 1 = TEMP/VBAT 过热<br>发生                                                       |
|                   | T                   | T           | T.            | L                                                                            |
| 0x04[4:0] 控制 [    | <b>4</b> :0]        | 读/写 0x0     | 10            | 控制寄存器                                                                        |
| 0x04[0]           | FORCE_LDO_ON        | 读/写 0       |               | 0 = 正常功率 LDO 开/关操作;<br>1 = 强制打开电源 LDO,无论其他条件如何,除<br>了<br>FORCE_LDO_OFF=1     |
| 0x04[1]           | FORCE_RECT_ON       | 读/写 0       |               | 0 = 普通整流MOSFET<br>开/关操作;<br>1 = 在除 FORCE_RECT_OFF=1 之外的<br>任何负载下使能整流器 MOSFET |



|                |                        |                 |      | 0 = 正常功率 LDO 开/关操作;                                                                 |
|----------------|------------------------|-----------------|------|-------------------------------------------------------------------------------------|
| 0x04[2]        | FORCE_LDO_OFF          | 读/写 0           |      | 1 = 强制关闭电源 LDO,无论其他条件如何                                                             |
| 0x04[3]        | 强制_矩形_关闭               | 读/写 0           |      | 0 = 整流器 MOSFET 的开/关取决于<br>FORCE_RECT_ON 位;<br>1 = 强制关闭所有四个整流器 MOSFET,无论其他<br>条件如何   |
| 0x04[4]        | FORCE_VBAT_TRK_OFF 读/写 | 0               |      | 0 = 跟踪 VBAT 功能取决于 MTP_OPTION 中的 MTP_VBAT_TRK_EN;  1 = 关闭跟踪功能,无论 MTP_VBAT_TRK_EN 如何。 |
|                |                        | \_ <u></u>      | Ι.   |                                                                                     |
| 0x05[7:0] AP_I | <u>=PT[7:0]</u>        | <u>读/写 0x</u> 0 | 00   | EPT控制寄存器                                                                            |
| 0x05[0:6] EPT_ | MESSAGE                | 读/写 0           |      | EPT数据包中包含的消息内容                                                                      |
| 0x05[7]        | AP_EPT_EN              | 读/写 0           |      | 0 = 禁用包括消息<br>EPT_MESSAGE放入EPT包中;<br>1 = 启用,包括消息<br>EPT_MESSAGE 放入 EPT 包中           |
| 0x06[7:0] INT_ | FLAG[7:0]              | 右               | 0x00 | 中断和保护事件标志寄存器。如果AP/MCU收到中断信号,则先读取该寄存器,然后再对其他寄存器进行操作。  否则该字节将被清除。                     |
| 0x06[0]        | 预订的。                   |                 |      |                                                                                     |
| 0x06[1]        | STARTUP_FLAG           | 右               | 0    | V5V 上升至 UVLO 后,该位将被设置。读取它会<br>清除该位。                                                 |
| 0x06[2]        | 预订的。                   |                 |      |                                                                                     |
| 0x06[3]        | OCP_FLAG               | 右               | 0    | OCP 事件设置该位,将 EPT 发送到 Tx。读取它会<br>清除该位。                                               |
| 0x06[4]        | OVP2_FLAG              | 右               | 0    | OVP2事件设置该位,发送EPT到Tx。读取它会清除该位。                                                       |
| 0x06[5]        | OVP1_FLAG              | 右               | 0    | OVP1 事件设置该位,如果 MTP_OVP1_EPT_EN<br>= 1,则将 EPT 发送到 Tx。<br>读取它会清除该位。                   |
| 0x06[6]        | OTP_FLAG               | 右               | 0    | OTP(IC 芯片过热保护)事件设置该位,<br>将 EPT 发送到 Tx。读取它会清除该位。                                     |



| 0x06[7] | 临时标志 | 右 | 0 | TEMP/VBAT(感测外部组件)过温事件设置该位,将 EPT 发送到 Tx。 |
|---------|------|---|---|-----------------------------------------|
|         |      |   |   | 读取它会清除该位。                               |

# 6.2 参数配置寄存器

| 地址和位            | 寄存器字段<br>姓名                 | 重置<br>读/写 <sup>或者</sup><br>默认                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 功能及说明                               |
|-----------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------|
| 0x10 [7:0] MFG  | CODE_H [7:0] 读/写 0x00 0x1:  | L [7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 制造信息高字节                             |
| MFG_CODE_L[7    | :0] 读/写 0x5C 0x12 [7:0] DEV | CE_ID_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 [7:0] | 制造信息低字节                             |
| 读/写 0x00 0x13   | [ 0:0] INFO1_LOCK [0:0] 读/写 | 0x00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 设备ID信息                              |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | OTP 程序的锁定位                          |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | LC谐振回路等效电阻                          |
| 0x14[5:0] MTP_A | ACR[5:0]                    | 读/写 0x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16      | (ACR) 为 FOD 参数。                     |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | ACR = 参考设计工具。                       |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                     |
| 0x15 [4:0] MTP  | OPTION [4:0] 读/写 0x12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                     |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 0 = 禁用输出跟踪 VBAT 功能;                 |
| 0x15[0]         | MTP_VBAT_TRK_EN 读/写(        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ·                                   |
|                 | ,                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 1=使能输出跟踪 VBAT 功能                    |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 0 = 禁用发送 EPT                        |
| 015 [1]         | MTP_TEMP_EPT_EN 读/写:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | TEMP/VBAT 超温;                       |
| 0x15 [1]        |                             | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1 = 启用发送 EPT                        |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | TEMP/VBAT 过温                        |
| 015 [2]         | MTP_TEMP_LOW_E              | \+ (\( \operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operator |         | 0 = 禁用低温保护;                         |
| 0x15 [2]        | 氮                           | 读/写 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1=使能低温保护                            |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 0 = OVP1 发生时禁止发送 EPT,并更快地发送 CE;     |
| 0x15 [3]        | MTP_OVP1_EPT_EN 读/写(        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1 = OVP1 时使能发送 EPT<br><sup>发生</sup> |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 0 = 定义 CE = 0 (VRECT-               |
| 0.15[4]         | MTD OF LABOR                | \ <b>+</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | VRECT_Target)在[+40mV,-40mV]之间;      |
| 0x15 [4]        | MTP_CE_LARGE                | 读/写1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 1 = 定义 CE = 0 (VRECT-               |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | VRECT_Target)在[+80mV,-40mV]之间;      |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                     |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | Vout和 TEMP/VBAT 引脚电压之间的差值。          |
|                 | MTP_VBAT_DELTA              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 00:500毫伏                            |
| 0x16[1:0]       | [1:0]                       | 读/写 0x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00      | 01:400毫伏                            |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 10:300毫伏                            |
|                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 11:600毫伏                            |
| 0x17[1:0]       | MTP_VBAT_LOWLM<br>比赛[1:0]   | 读/写 0x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00      | 使用跟踪VBAT功能时Vout的最小限制。               |



|                 |                            |        |             | NU106U 数据表 Ver1.4                                                                                                                                                                                                               |
|-----------------|----------------------------|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                            |        |             | 00:4.5V<br>01:4.3V<br>10:4.1V<br>11:4.7V                                                                                                                                                                                        |
| 0x18 [3:0] MTP_ | OFFSET [3:0] R/W 0x02 0x19 | 保留。    |             | FOD 参数的接收功率偏移。                                                                                                                                                                                                                  |
|                 |                            |        |             |                                                                                                                                                                                                                                 |
| 0x1A            | 预订的。                       | -      |             |                                                                                                                                                                                                                                 |
| 0x1B            | 预订的。                       |        |             |                                                                                                                                                                                                                                 |
| 0x1C [3:0] MTP_ | DUMMY [3:0] 读/写 0x03       |        |             | 负载 #0 处的假负载。<br>虚拟 = MTP_DUMMY [3:0] *3.5 mA                                                                                                                                                                                    |
| 0x1D [7:0]      | MTP_VOUT_SET [7:0]         | 读/写 0> | (7F         | Vout输出设置。<br>Vout = MTP_VOUT_SET [7:0] * 39.06 mV                                                                                                                                                                               |
| 0x1E[2:0]       | MTP_ILIM_SET [2:0]         | 读/写 0x | 00          | 过流保护极限。<br>000:1.4A<br>001:1.65A<br>010:1.1A<br>011:0.74A<br>100:0.365A<br>101:0.45A<br>110:0.29A                                                                                                                               |
| 0x1F[1:0]       | MTP_TEMP_TH [1:0]          | 读/写 0> | <b>(</b> 00 | 如果将此引脚配置为温度传感,请将R25 = 100K、beta = 4250 NTC 连接到 TEMP/VBAT 的引脚。  00:80°C 01:60°C 10:50°C 11:42°C                                                                                                                                  |
| 0x20            | 预订的。                       |        |             |                                                                                                                                                                                                                                 |
| 0x21 [1:0] MTP_ | VDELTA [1:0] 读/写 0x00      |        |             | 设置负载 #2 处的Vrect和Vout之间的差值。  00:200毫伏 01:280mV 10:360毫伏 11:150mV                                                                                                                                                                 |
| 0x22 [1:0] MTP_ | VLIGHT [1:0] 读/写 0x00      |        |             | 1. 设置负载 #0 和 #1 处的Vrect和Vout之间的附加差值。<br>所以Vrect = Vout + MTP_VDELTA + MTP_VLIGHT。<br>00:2.00V(负载#0),1.00V(负载#1)<br>01:2.50V(负载#0),0.25V(负载#1)<br>10:1.00V(负载#0),0.50V(负载#1)<br>11:0.50V(负载#0),0.25V(负载#1)<br>2. 负载状态区域定义的阈值和迟滞。 |



|                  |                          |            |        | 00:                                              |
|------------------|--------------------------|------------|--------|--------------------------------------------------|
|                  |                          |            |        | 负载 #0 到负载 #1:50mA,迟滞 10mA;                       |
|                  |                          |            |        | 负载 #1 到负载 #2:100mA,迟滞 20mA;                      |
|                  |                          |            |        | 01:<br>负载 #0 到负载 #1:80mA,迟滞 16mA;                |
|                  |                          |            |        | 负载 #1 到负载 #2:160mA,迟滞 32mA;                      |
|                  |                          |            |        | 10:<br>负载 #0 到负载 #1:100mA,迟滞 20mA;               |
|                  |                          |            |        | 负载 #1 到负载 #2:200mA,迟滞 40mA;                      |
|                  |                          |            |        | 11:<br>负载 #0 到负载 #1:40mA,迟滞 8mA;                 |
|                  |                          |            |        | 负载 #1 至负载 #2:80mA,迟滞 16mA;                       |
| 0x23[1:0]        | MTP_CE_LIMIT [1:0]       | 读/写 0x     | 00     | 控制误差的最大极限。<br>00:50<br>01:30<br>10:12<br>11:100  |
| 0x24 [0:0] INFO2 | LOCK [0:0] 读/写 0x00 0x25 | [0:0] INFO | 3_LOCK | MTP1 程序的锁定位                                      |
| [0:0] 读/写 0x00   |                          |            |        | MTP2 程序的锁定位                                      |
| 0x72 [7:0] I2C_C | TP_CTRL [7:0] 读/写 0x00   |            |        | 程序密码,仅在测试模式下可用。  0x3D:次性密码  0x3E:MTP1  0x3F:MTP2 |

# 6.3 ADC 通道寄存器

| 地址和位           | 寄存器字段<br>姓名              | 读/写 | 重置<br><sub>或者</sub><br>默认 | 功能及说明                            |
|----------------|--------------------------|-----|---------------------------|----------------------------------|
| 0x30[1:0] IOUT | FILT[1:0] 0x31[7:0]      | 右   | 0x00                      | lout电流                           |
| IOUT_FILT[9:2] | 0x32[1:0]                | 右   | 0x00                      | lout = IOUT_FILT [9:0] *1.953 mA |
|                | 0x33[7:0] VBAT FILT[9:2] | 右   | 0x00                      | TEMP/VBAT电压                      |
|                |                          | 右   | 0x00                      | VBAT = VBAT_FILT [9:0] *9.766 mV |



| 0x34 [1:0] VREC | T_FILT [1:0] R 0x35 [7:0]   |   | 0x00 | Vrect电压                                        |
|-----------------|-----------------------------|---|------|------------------------------------------------|
| VRECT_FILT [9:  | VRECT_FILT [9:2] R 0x36 保留。 |   | 0x00 | Vrect = VRECT_FILT [9:0] *9.766 mV             |
|                 |                             |   |      |                                                |
| 0x37            | 预订的。                        |   |      |                                                |
| 0x38 [1:0] TEMF | _CONV [1:0] R               |   | 0x00 | NTC电阻。内部 4uA 通过 TEMP/VBAT 引脚。                  |
| 0x39[7:0] TEMP  | _CONV[9:2] R                |   | 0x00 | RNTC = TEMP_CONV [9:0] *0.488 KΩ               |
| 0x3A [1:0] INTB | _CONV [1:0]                 | 右 | 0x00 | 配置启动期间通过 OS1 引脚的内部 4uA 负载 #0 处的                |
| 0x3B[7:0] INTB  | _CONV[9:2]读                 |   | 0x00 | FOD 偏移。<br>代码_OFFSET = 0.128 *R_INT_B/OS1 (ΚΩ) |
| 0x3C[1:0] SDA_  | CONV[1:0]                   | 右 | 0x00 | 配置启动期间通过 SDA 引脚的内部 4uA 负载 #1 和 #2              |
| 0x3D [7:0] SDA_ | CONV [9:2]                  | 右 | 0x00 | 处的 FOD 偏移。<br>代码_OFFSET = 0.128 *R_SDA (ΚΩ)    |
| 0x3E[1:0]       | SCL/ACR_CONV<br>[1:0]       | 右 | 0x00 | 在启动期间通过 SCL/ACR 引脚配置 FOD 的 ACR,内部 4uA 电流。      |
| 0x3F[7:0]       | SCL/ACR_CONV<br>[9:2]       | 右 | 0x00 | 代码_ACR = 0.256 *R_SCL/ACR (KΩ)                 |

# 7功能框图





### 图 2. 功能框图

# 8 典型特征

以下测试使用 NU1020+NU1513 无线发射器 EVM 和 MPA2 Tx <sub>线圈。</sub>



图 3. 效率:VOUT=5V





图 6. 瞬态响应:VOUT=5V,IOUT=0A 至 0.5A; 0.5A至0A

注: (1)图4:CH1-AC1; CH2-VIN\_适配器; CH3-Vout; CH4-V矩形 (2)图5:CH1-AC1; CH2-不适用; CH3-Vout; CH4-V矩形 (3)图6~7:CH1-AC1; CH2-输出; CH3- Vout; CH4-V矩形 (4)除非另有说明,典型特性均在 TA = 25°C 下测试

图 7. 瞬态响应: VOUT=5V,IOUT=0.5A至1A; 1A至0.5A



## 9应用说明

### 9.1 系统概述

在无线功率传输系统中,发射器系统通过将交流电流馈入发射线圈来产生磁场。磁场耦合到接收侧线圈,并且通过匹配发射器侧阻抗来进一步最大化耦合能量。谐振电路的输出连接到IC的AC1和AC2引脚,它们是片上同步整流器的输入。整流器输出是连接至IC的VRECT引脚的未调节电压。为了向下游电路提供良好调节的电压源或电流源,在VRECT引脚和OUT引脚之间连接了一个超低压差LDO。

发送器侧 (Tx) 和接收器侧 (Rx) 之间需要进行通信,以提供从接收器到发送器的功率需求反馈。 NU1680配备符合WPC标准的调幅通信。 Rx 到 Tx 通信是通过打开 COMM1 和 COMM2 内部开关并向 Rx 谐振电路插入附加电容来实现的。这种Rx 阻抗的调制可以在 Tx 侧检测为线圈电压和电流波形的幅度调制。

保护是无线电源接收器的一项关键要求,尤其是 VRECT 引脚上的过压保护。当最终用户在没有通知的情况下改变 Rx 和 Tx 线圈之间的距离时,Tx 和 Rx 之间的耦合系数(即 Tx 和 Rx 之间的耦合能量)可能会突然且显着地变化。当耦合能量快速增加时,VRECT 电压可能会上升并可能超过其最大额定电压,从而导致 IC 损坏。 NU1680

结合了针对任何瞬态条件的全面的两级过压保护。

## 9.2 电源

当接收线圈置于发射器模拟 ping 产生的磁场中时,首先通过整流器 MOSFET 的体二极管在 VRECT 引脚上建立直流电压。

V5V 通过内部启动电路跟随 VRECT 电压。当 V5V 高于 UVLO 时,提供 IC 内部偏置电压的 5V LDO 上电,打开内部电路模块,例如数字控制单元、保护电路和整流器开关。此外,从 Rx 到 Tx 的通信是为了指示 Tx 供电。 VRECT 引脚应放置两个典型值为 4.7uF 至 10uF 的电容器,为 IC 提供直流电压。

当接收线圈从磁场中移开或发射器关闭时,VRECT引脚的电压通过连接到OUT引脚的负载和IC工作电流进行放电。如果V5V电压降至UVLO以下,IC进入关断模式。

## 9.3 同步整流器

NU1680 具有集成同步整流器,可确保高效的交流到直流转换,特别是对于重输出负载。它内置了可靠且高效的开关控制算法,可最大限度地减少死区时间,同时消除整流器内部击穿的可能性。



#### 9.4 功率LDO

Power LDO 的输出电压可通过I2C接口进行编程。可编程电压范围为 3.5V 至 9V,步长为 39mV。

在启动过程中,当 VRECT 引脚上的电压上升到VOUT+VLIGHT+VDELTA 时,电源 LDO 将打开,该电压可由相关寄存器进行编程。

LDO 的输出电流限制也可以通过I2C接口进行编程,详细范围列于寄存器表中。

LDO 受过流保护。在过流保护期间,SINK开关打开以限制耦合能量。并且会触发AP/MCU中断

以便采取更多行动。

LDO 具有软启动功能,可防止启动过程中因对输出电容器充电而产生的浪涌电流。软启动逐渐打开LDO以控制和限制其电流。

#### 9.5 过压保护

由于Rx和Tx之间的反馈环路本质上很慢,因此当接收器侧发生过压情况时,发射器无法立即降低功率输出。延迟可以在几十甚至几百毫秒的范围内,这个时间足以损坏IC。过压保护电路在过压情况发生时立即启动。有两级过压保护。首先,达到低电平 OVP1 阈值,保护电路将在 VRECT 引脚上创建一个"泄放"电阻(建议使用 0805 封装的 220 $\Omega$  电阻),通过 SINK 引脚通过该电阻耗散功率。并且, · MTP\_OVP1\_EPT\_EN=0,禁止发送EPT并更快地发送CE;

· MTP\_OVP1\_EPT\_EN=1,发送EPT; 其次,如果达到高电平OVP2,则发送EPT并触发硬保护切断 能量立即充入 VRECT 电路。

#### 9.6 过流保护

NU1680集成了可靠的过流保护电路。检测 LDO 的电流并将其与过流保护阈值进行比较。如果电流超过阈值,内部过流保护电路被触发,Power LDO 会限制输出电流,并向 Tx 发送 EPT,关闭无线发射。 OCP 阈值可通过 I2C 设置,请参阅寄存器表。

#### 9.7 短路保护

NU1680集成了可靠的短路保护。如果功率LDO的输出低于1V,内部保护电路被触发,功率LDO将被关闭以保护IC。



### 9.8 外部温度保护

NU1680 集成了针对电池或其他外部组件的高低温保护。

要使用此功能,请在 TEMP/VBAT 和地之间连接一个R25 = 100K、beta = 4250 NTC 电阻,并清除 MTP VBAT TRK EN=0。

对于高温保护,MTP\_TEMP\_TH 配置了四级温度阈值。如果温度上升到配置的阈值,IC 将触发温度保护并向 Tx 发送EPT。

对于低温保护,应设置MTP\_TEMP\_LOW\_EN。然后,如果目标组件的温度低于零度,IC 将触发温度保护并向 Tx 发送FPT。

对于以上两种保护,如果MTP TEMP EPT EN=0,则EPT包不会被发送到Tx。

## 9.9 IC过温保护

为了避免NU1680的结点高于150℃,当IC芯片温度达到此时,IC将向Tx发送EPT以切断无线充电。

### 9.10 跟踪电池电压

设置 MTP\_VBAT\_TRK\_EN=1 将启用 NU1680 调节Vout的功能,通过连接到 TEMP/VBAT 引脚的电池电压来跟踪电池电压。该功能能够简化反向充电电路的设计。详细参数设置参见寄存器表。

#### 9.11 I 2C OS1 SINK EN B

NU1680允许通过SCL/ACR和SCL/OS2进行I2C通信,建议通过2.2K电阻上拉至5V。 I2C地址为0x60,一字节地址模式。如果不使用,请将两个引脚悬空。

如果 OS1 引脚配置为 FOD\_RES\_MODE,则该引脚用作负载 #0 时 FOD 参数偏移的输入,详细信息请参阅 FOD 配置部分。如果不使用该引脚,请将其接地。

建议在 SINK 引脚和 VRECT 引脚之间连接一个 220R 的 SMD0805 封装,以耗散某些极端条件下的过能量。过压发生时,SINK 引脚的下拉持续时间典型为 200ms。

EN\_B 为低电平有效引脚,用于启用或禁用 NU1680 的电源 LDO。如果没有,请将此引脚悬空<sub>使用。</sub>

#### 9.12 模数转换器

NU1680 集成了一个精确的 10 位 ADC,它从 VRECT 电压、输出电流等内部信号获取输入。这些信号用于计算正确的接收功率,以便在功率传输阶段向 Tx 报告。

NU1680通过TEMP/VBAT引脚采样NTC或电池电压信号,实现温度保护和电池电压跟踪功能。



另外,在上电启动期间,ADC将检测连接到OS1、SCL/OS2和SCL/ACR的电阻,进入FOD\_RES\_MODE模式以配置FOD参数。

## 9.13 SCL/OS2、SCL/ACR、OS1 复用的 FOD 配置

NU1680 提供SCL/OS2、SCL/ACR 和 OS1 的第二个功能,用于配置 FOD 参数。 IC 上电启动时,会有 4uA 的电流通过三个引脚流向外部电阻,首先检测 OS1 上的电压信号,如果电压在 0.15~1.15V 之间,IC 将设置 FOD\_RES\_MODE 并进入 FOD 配置模式。它使用ADC将相关参数配置到寄存器中。完成此配置后,4uA 电流将停止。 SCL/ACR 引脚上的电阻配置 ACR 参数,OS1 上的电阻配置负载 #0 处的 OFFSET,SCL/OS2 上的电阻配置负载 #1 和 #2 处的 OFFSET。详细FOD参数设计请参考设计工具。



# 10 布局指南

### 顶层如图8所示,

- · 谐振电容C7/C8/C9/C21、COMM电容C1/C2应放置在左侧IC一侧,越近越好。
- · 线圈L1 的走线应较宽。
- · 每侧应分别放置两个VRECT 电容器。 · 在IC 导热垫引脚上放置一些过孔,以实现良好的导热。



图 8:顶层

底层部分如图 9 所示,只需考虑一个因素,即至少 >=0.3mm 宽度的铜连接两个 VRECT 引脚,并在每侧放置至少两个过孔。



图 9:底层

注意:谐振电源走线环路尽可能小,并远离其他信号电路。



# 11 典型应用电路



## 12 封装信息

| 可订购设备          | 状态包    | e型 | 包装<br><sup>減</sup><br>引过来<br>G | 针脚 | 生态计划                       | 铅/球<br>结束 | MSL<br>顶峰<br>温度 | 在临时©设备上         | 标记                         |
|----------------|--------|----|--------------------------------|----|----------------------------|-----------|-----------------|-----------------|----------------------------|
| NU1680QDH<br>Z | 发布 QFN |    | QDH                            | 16 | 绿色(R<br>健康与安全<br>不<br>锑/溴) | 铜/锡银<br>和 | 2级              | -40 至 125 NU168 | 30QDH<br>乙<br>(如图所示<br>以下) |





## 13 机械数据







BOTTOM VIEW



#### NU1680 数据表 Ver1.4

|                     |          | SYMBOL | MIN        | NOM    | MAX    |  |
|---------------------|----------|--------|------------|--------|--------|--|
| TOTAL THICKNESS     |          | А      | 0.5        | 0.55   | 0.6    |  |
| STAND OFF           |          | A1     | 0          | 0.02   | 0.05   |  |
| MOLD THICKNESS      |          | A2     |            | 0.4    |        |  |
| L/F THICKNESS       |          | А3     | 0.152 REF  |        |        |  |
| LEAD WIDTH          |          | b      | 0.18       | 0.23   | 0.28   |  |
| BODY SIZE           | X        | D      |            | 3 BSC  |        |  |
| DODT SIZE           | Y        | E      |            | 3 BSC  |        |  |
| LEAD PITCH          |          | е      | 0.5 BSC    |        |        |  |
| EP SIZE             | X        | D2     | 1.8        | 1.9    | 2      |  |
| LI SIZE             | Y        | E2     | 1.8        | 1.9    | 2      |  |
| LEAD LENGTH         |          | L      | 0.1375     | 0.2375 | 0.3375 |  |
| LEAD EDGE TO PKG EI | OGE      | L1     | 0.0625 REF |        |        |  |
| LEAD TIP TO EXPOSED | PAD EDGE | K      | 0.25 REF   |        |        |  |
| PACKAGE EDGE TOLER  | aaa      | 0.1    |            |        |        |  |
| MOLD FLATNESS       | ccc      | 0.1    |            |        |        |  |
| COPLANARITY         | eee      | 0.08   |            |        |        |  |
| LEAD OFFSET         | bbb      | 0.1    |            |        |        |  |
| EXPOSED PAD OFFSET  | fff      | 0.1    |            |        |        |  |
|                     |          |        |            |        |        |  |



## 14条修订历史

|      | 日期                   | 变化                      |
|------|----------------------|-------------------------|
| V1.0 | 2019年10月26日          | 首次发布。                   |
| V1.1 | 2019年11月7            | 日,TX NU1620 更正为 NU1020。 |
|      |                      | 更新EC表中的一些参数。            |
| V1.2 | 2019年12月20日          | 将一些参数从 EC 表移至应用程序描述。    |
| V1.3 | Mar/22/2022 更改第      | 9 页上保留的 0x02 信息。        |
| V1.4 | │<br>│ 2022年9月 22 日删 | 除引脚 8 上的 INT_B 功能。      |
|      |                      |                         |
|      |                      |                         |
|      |                      |                         |
|      |                      |                         |