Mobile Robot Self-Driving Through Image Classification Using Discriminative Learning of Sum-Product Networks

Student: Renato Lui Geh

Advisor: Prof. Denis Deratani Mauá

Institute of Mathematics and Statistics — University of São Paulo

In an Ideal world...

...but life is short

Section 2

Mobile Robot Self-Driving Through Image Classification
Using Discriminative Learning of Sum-Product Networks

Section 1

Section 3: (1+2)

Sum-Product Networks

Definition

Definition 1 (Gens and Domingos 2013).

A sum-product network (SPN) is a DAG where each node can be defined recursively as follows.

- 1. A tractable univariate probability distribution is an SPN.
- 2. A product of SPNs with disjoint scopes is an SPN.
- 3. A weighted sum of SPNs with the same scope is an SPN, provided all weights are positive.
- 4. Nothing else is an SPN.

Sum-product network

The value S(X) of an SPN is equal to $\phi(X)$, an unnormalized probability function, if it obeys certain properties. If all weights sum to one, $S(X) = P_{\phi}(X)$ (Poon and Domingos 2011).

Probability of evidence

Single backward pass computes $S(X = \{X_1 = 0\}) = 0.31$. Linear on the number of edges

Maximum a posteriori probability

Replace sums with max nodes. Backward pass followed by forward pass computes most probable explanation, i.e. find $\max_{x \in X} P(X, E)$.

Learning

Structure

- PD-Dense architecture (Poon and Domingos 2011)
- Clustering on Variables (Dennis and Ventura 2012)
- Gens-Domingos LearnSPN (Gens and Domingos 2013)
- Using deep learning techniques (Peharz et al. 2018)
- many others...

Weights

- Generative and discriminative gradient descent
- Generative Expectation-Maximization
- Extended Baum-Welch (Rashwan, Poupart, and Zhitang 2018)
- many others...

Self-Driving

Dataset

Dataset used: Moraes and Salvatore 2018

Lane tracking dataset with 80 \times 45 RGB images. Each labeled with either UP, LEFT or RIGHT.

Self-driving as image classification

Let $X = \{X_0, X_1, \dots, X_{n-1}\}$ be an **image**. Every $X_i = x_i$ refers to the *i*-th pixel with a grayscale intensity of x_i .

Let $Y = \{UP, LEFT, RIGHT\}$ be the classification variable.

The entire scope of variables is $X \cup Y$.

Objective: $arg max_{y \in Y} P(Y = y | X)$

Pre-processing

Pipeline:

original RGB image o grayscale o some o transformation.

Three transformations tested:

- 1. Otsu binarization (Otsu 1979)
- 2. Quantization (resolution downscaling)
- 3. Histogram equalization

3

Berry

Raspberry Pi 3 Model B — Berry

CPU: Quad Core 1.2GHz Broadcom BCM2837 64bit ARMv7

Memory: 1GB RAM

Storage: 16GB SSD

Brick

Lego Mindstorms NXT v2 — Brick

CPU: Atmel AT91SAM7S256 48MHz 32bit ARMv4

Memory: 64KB RAM

Storage: 256KB Flash

Robot

Berry handles inference, passing predicted label to Brick.

Brick handles motors according to label received from Berry.

Message passing through USB cable.

Driving with SPNs

Modelling

Every pixel X_i is a variable in the distribution represented by the SPN, i.e. no additional feature extraction, end-to-end.

Two architectures:

GD: LearnSPN (Gens and Domingos 2013)

DV: Clustering on Variables (Dennis and Ventura 2012)

Three weight setups:

g: Generative gradient descent (Poon and Domingos 2011)

d: Discriminative gradient descent (Gens and Domingos 2012)

s: Proportional weights for GD, random weights for DV

Accuracy

Accuracy (%)	DV+g	DV+d	DV+s	GD+g	GD+d	GD+s
В	78.8	78.8	78.8	82.8	83.8	85.0
Q_2	78.6	78.0	78.0	78.6	80.4	79.4
$Q_2 + E$	76.6	76.6	76.8	79.6	82.8	81.8
Q_3	77.4	77.4	77.4	77.6	80.2	79.8
$Q_3 + E$	70.4	76.6	76.6	79.2	81.2	77.4
Q_4	78.2	78.4	78.2	76.0	78.2	76.4
$Q_4 + E$	76.6	76.6	76.8	76.0	74.6	80.6
Q_5	77.8	78.4	78.4	77.6	74.0	73.8
$Q_5 + E$	76.6	76.6	76.6	72.0	72.8	72.0
Q_6	77.4	78.4	78.4	75.2	74.4	72.0
$Q_6 + E$	76.0	76.4	76.4	73.0	75.0	73.6
Q_7	78.2	78.4	78.4	62.8	72.2	71.4
$Q_7 + E$	76.2	76.4	76.4	70.6	71.4	71.6
Ø	78.0	78.4	78.4	62.4	62.4	62.4
E	76.4	76.4	76.4	60.4	60.0	61.2

Inference time

Inference (secs)	DV+g	DV+d	DV+s	GD+g	GD+d	GD+s
В	0.23	0.25	0.25	0.38	0.37	0.31
Q_2	0.22	0.24	0.23	0.28	0.34	0.16
$Q_2 + E$	0.22	0.23	0.23	0.38	0.30	0.27
Q_3	0.22	0.23	0.22	0.22	0.32	0.17
$Q_3 + E$	0.22	0.23	0.22	0.34	0.32	0.31
Q_4	0.22	0.22	0.23	0.16	0.17	0.13
$Q_4 + E$	0.23	0.27	0.29	0.13	0.14	0.13
Q_5	0.22	0.26	0.28	0.07	0.05	0.02
$Q_5 + E$	0.22	0.29	0.25	0.05	0.05	0.02
Q_6	0.23	0.24	0.23	0.04	0.05	0.01
$Q_6 + E$	0.22	0.24	0.28	0.03	0.04	0.02
Q_7	0.23	0.23	0.26	0.03	0.01	0.01
$Q_7 + E$	0.22	0.26	0.24	0.01	0.01	0.01
Ø	0.22	0.26	0.23	0.02	0.01	0.01
E	0.23	0.23	0.22	0.01	0.01	0.02

Chosen models

Model 1: Q_4 , GD+d

Accuracy: 78.2%

Desktop time: 170ms

Berry time: 700ms

Model 2: Q_6 , GD+d

Accuracy: 74.4%

Desktop time: 50ms

Berry time: 150ms

Model 3: \emptyset , GD+d

Accuracy: 62.4%

Desktop time: < 10ms

Berry time: 75ms

"Real world" scenario

Mobile Robot Self-Driving Through Image Classification Using Discriminative Learning of Sum-Product Networks — YouTube (https://youtu.be/vhpWQDX2cQU)

Implementation

Inference and learning: GoSPN
(https://github.com/RenatoGeh/gospn)

Mobile robot implementation: GoDrive (https://github.com/RenatoGeh/godrive)

Thank you.

Questions?

References i

- Dennis, Aaron and Dan Ventura (2012). "Learning the Architecture of Sum-Product Networks Using Clustering on Variables". In:

 Advances in Neural Information Processing Systems 25.
- Gens, Robert and Pedro Domingos (2012). "Discriminative Learning of Sum-Product Networks". In: Advances in Neural Information Processing Systems 25 (NIPS 2012).
- (2013). "Learning the Structure of Sum-Product Networks". In: International Conference on Machine Learning 30.
- Moraes, Paula and Felipe Salvatore (2018). Self Driving Data.

 URL: https:

//github.com/felipessalvatore/self_driving_data.

References ii

- Otsu, Nobuyuki (1979). "A Threshold Selection Method from Gray-Level Histograms". In: *IEEE Transactions on Systems, Man, and Cybernetics* 9.1, pp. 62–66.
- Peharz, R. et al. (2018). "Probabilistic Deep Learning using Random Sum-Product Networks". In: *ArXiv e-prints*.
- Poon, Hoifung and Pedro Domingos (2011). "Sum-Product Networks: A New Deep Architecture". In: *Uncertainty in Artificial Intelligence* 27.
 - Rashwan, Abdullah, Pascal Poupart, and Chen Zhitang (2018).

 "Discriminative Training of Sum-Product Networks by Extended Baum-Welch". In: Proceedings of the Ninth International Conference on Probabilistic Graphical Models. Vol. 72.

 Proceedings of Machine Learning Research, pp. 356–367.