Oxidation of Si

Why spend a whole lecture on oxidation of Si?

Ge has high μ_e , μ_h , Ge stable... ... but no oxide

GaAs has high μ_e and direct band... ... no oxide

Why SiO₂?

 SiO_2 is stable down to 10^{-9} Torr, $T > 900^{\circ}$ C

SiO₂ can be etched with HF which leaves Si unaffected

SiO₂ is a diffusion barrier for B, P, As

SiO₂ is good insulator, $\rho > 10^{16} \,\Omega \text{cm}$, $E_g = 8 \,\text{eV}$!

SiO₂ has high dielectric breakdown field, 500 V/μm

 SiO_2 growth on $Si \Rightarrow clean Si / SiO_2$ interface

because D^{Si} through $SiO_2 \ll D^{Oxy}$ through SiO_2

$$Si + O_2 \rightarrow SiO_2$$
 or

$$Si + 2H_2O = SiO_2 + 2H_2$$

(faster growth, more porous, lower quality)

 O_2

SiO₂ dt_{Oxide}

Si

Sept. 19, 2003

3.155J/6.152J

Extra free volume

in dangling bonds of amorphous SiO₂ =>

Implications different for field vs. patterned oxide.

contaminants and native oxide (by HF-dip) from Si wafers.

Oxidation furnaces for controlled growth of oxide layer on Si:

1050 C and steam for field oxide.

Probably safe to say that

entire course of semiconductor industry would be different without SiO₂.

Device fabrication, especially MOS,

more difficult.

Depositing SiO₂ or Al₂O₃ is not clean.

It's no accident that the world leader in Si chip technology, Intel, has been led by the flamboyant Hungarian, Andy Grove.

As a young researcher at Fairchild Semiconductor, he wrote the book on SiO₂ growth: the *Deal-Grove model*.

Deal-Grove model of silicon oxidation

 O_2

SiO₂ growth occurs

at Si / SiO₂ interface

because $D^{O_2}(SiO_2) >> D^{Si}(SiO_2)$

Growth Process limited by

- 1. $P(O_2) = P_g \propto C_g$
- 2. Transport O_2 to SiO_2 surface across dead layer J_1
- Adhesion of $C_s(O_2)$ at SiO₂ surface C_0
- Diffusion O₂ through SiO₂
- Chemical reaction rate

Deal-Grove model of silicon oxidation

Oxide growth rate

Equate ideal gas $+ J_1$

 $\overline{J_1} = \overline{J_2} = \overline{J_3}$

Ideal gas law: $P_gV = NkT$

$$\frac{N}{V} = C_{\mathbf{g}} = \frac{P_{\mathbf{g}}}{kT}$$

$$J_1 > D \frac{(C_{gg} - C_s)}{t_{dead layer}}$$

Turbulence =>

$$J_1 = h_{\rm g}(C_{\rm g} - C_{\rm s})$$

$$J_2 = D^{O_2}(SiO_2) \frac{C_s - C_0}{x_{ox}}$$

Diffusion ($D \text{ cm}^2/\text{s}$)

$$J_3 = k_i C_i$$
rate constant
$$k_i \text{ (cm/s)}$$

Equate J_2 + Henry to J_3

to
$$J_2$$
 + Henry $\Rightarrow C_1 = f(B_1)$

Sept. 19, 2003

$$\Rightarrow C_i = f_n(P_g, h_g, H, D^{O_2}, x_{oxide}, k_i)$$
3.155J/6.152 P_g

Deal-Grove model of silicon oxidation

Slowest process controls concentration of oxygen at interface...

$$h = \frac{h_g}{HkT} \text{ very large}$$

Limits:

Growth limited by:

reaction

Diffusion limited:

$$D^{O}2/x_{\rm ox} < k_{\rm i}, h_{\rm g},$$

$$C_i = \frac{HP_g D^{O_2}}{k_i x_{\text{ox}}}$$

Reaction-rate limited:

Sept. 19, 2003

Slower process controls concentration of oxygen at interface, which in turn controls growth rate...

Oxide growth rate

Rate of growth
$$=\frac{dx_{ox}}{dt} = \frac{J_3}{N} = \frac{C_i k_i}{N}$$

$$C_{i} = \frac{HP_{g}/k_{i}}{\frac{1}{h} + \frac{x_{\text{ox}}}{D^{O_{2}}} + \frac{1}{k_{i}}}$$

 $(N = \# O_2 \text{ molecules incorporated } / \text{ cm}^3)$

$$N = 2.2 \times 10^{22} / \text{ cm}^3, \text{ dry}$$

 $4.4 \times 10^{22} / \text{ cm}^3, \text{ H}_2\text{O}$

$$\frac{dx_{\text{ox}}}{dt} = \frac{HP_g/N}{\frac{1}{h} + \frac{x_{\text{ox}}}{D} + \frac{1}{k_i}}$$
 rate depends on x_{oxide}

$$\int_{x_0}^{x_{\text{ox}}} \left(\frac{1}{h} + \frac{x_{\text{ox}}}{D} + \frac{1}{k_i} \right) dx_{\text{ox}} = \int_0^t \frac{HP_g}{N} dt$$

$$x_{\text{ox}}^2 + Ax_{\text{ox}} = B(t + \tau)$$

$$X_{\text{ox}}^{2} + AX_{\text{ox}} = B(t + \tau)$$

$$A = 2D\left(\frac{1}{h} + \frac{1}{k_{i}}\right) \text{ (length)}$$

$$B = 2DHP_{g}/N \text{ (}\frac{\text{length}^{2}}{\text{time}}\text{)}$$

$$\tau = (x_{0}^{2} + Ax_{0})/B \text{ (time)}$$

Sept. 19, 2003

3.155J/6.152J

11

$$\int_{x_0}^{x_{\text{ox}}} \left(\frac{1}{h} + \frac{x_{\text{ox}}}{D} + \frac{1}{k_i} \right) dx_{\text{ox}} = \int_0^t \frac{HP_g}{N} dt$$

$$x_{\text{ox}}^2 + Ax_{\text{ox}} = B(t + \tau)$$

$$x_{\text{ox}} = \frac{-A + \sqrt{A^2 + 4B(t + \tau)}}{2}$$

$$A = 2D\left(\frac{1}{h} + \frac{1}{k_i}\right)$$

$$B = 2DH P_g / N$$

$$\tau = \left(x_0^2 + Ax_0\right) / B$$

Rate constants A and B known experimentally; both $\propto D = D_0 e^{-Ea/kT}$

Parabolic and linear growth rates

Thick oxide => parabolic rate constant, B

$$x_{\text{ox}}^2 >> Ax_{\text{ox}} \xrightarrow{Quad.Eq} x_{\text{ox}} = \sqrt{B(t+\tau)}$$

Thin oxide => linear rate constant, B/A

$$x_{\text{ox}}^2 << Ax_{\text{ox}}^2 \qquad \xrightarrow{Quad.Eq} \qquad x_{\text{ox}} \cong \frac{B}{A}(t+\tau)$$
Sept. 19, 2003 3.155J/6.152J

Temperature (°C)	Dry			Wet (640 torr)	
	A (μm)	$B (\mu m^2/hr)$	$\tau (\mathbf{hr})$	A (μm)	$B (\mu m^2/hr)$
800	0.370	0.0011	9	_	-
920	0.235	0.0049	1.4	0.50	0.203
1000	0.165	0.0117	0.37	0.226	0.287
1100	0.090	0.027	0.076	0.11	0.510
1200	0.040	0.045	0.027	0.05	0.720

700-1200°C, 1 atm, 0.1 µm / hr ⇒ **dry oxide**, denser, use for **gate oxide**. 750-1100°C, 25 atm, 1 µm/hr

=> wet oxide,
more porous, poorer diffusion barriers;
use for etch oxide, field oxide.

Dry O_2 + 1-3% Cl; Cl is a metal getter \Rightarrow cleaner oxide.

Exercise: calculate x_{OX} grown for 1 hr. in dry oxidation at 1100 °C.

Γemperature (°C)	Dry			Wet (640 torr)	
	A (μm)	$B (\mu m^2/hr)$	$\tau (\mathrm{hr})$	$A (\mu m)$	$B (\mu m^2/hr)$
800	0.370	0.0011	9	-	
920	0.235	0.0049	1.4	0.50	0.203
1000	0.165	0.0117	0.37	0.226	0.287
1100	0.090	0.027	0.076	0.11	0.510
1200	0.040	0.045	0.027	0.05	0.720

From table, $A = 0.09 \ \mu m$, $B = 0.027 \ \mu m^2 / hr$, $\tau = 0.076 \ hr$.

$$x_{\text{ox}} = \frac{-A + \sqrt{A^2 + 4B(t + \tau)}}{2} = 0.14 \ \mu m$$
 (0.1 - 1.0 \mum/hr is typical)

This is the oxide thickness grown over any thin native oxide present.

Now you calculate x_{ox} for steam oxidation at same time and temp.

SiO₂/Si interface, local charges

SiO₂/Si interface and dry vs. wet oxidation

Initial oxidation regime.

Deal - Grove: at small x_{ox} ,

$$x_{\rm ox} = \frac{B}{A} (t + \tau)$$

$$\frac{dx_{\text{ox}}}{dt} = \frac{B}{A} = \text{const.}$$

To explain this...

many models proposed.

It appears that SiO₂ / Si interface is not sharp.

Oxide grows not just at
$$x_{ox}$$
 but also at $x_{ox} - \frac{\delta x}{2}$

Structure of SiO₂

Effects of Dopants on Oxidation of $Si \rightarrow SiO_2$

We will see segregation coefficient for crystal growth:

$$k = \frac{C_S}{C_L}$$
 generally < 1

Related parameter

for segregation of impurity X on oxidation:

$$m = \frac{C_X \text{ (in Si)}}{C_X \text{ (in SiO}_2)}$$

19

Impurity concentration profiles depend on m, D^x in Si, D^x in SiO₂ and growth rate (not shown below):

m > 1 (oxide rejects impurity, X)

$$D^{x}(\operatorname{SiO}_{2}) < D^{x}(\operatorname{Si})$$

$$J_{x}(\operatorname{SiO}_{2})|_{\operatorname{int}} = J_{x}(\operatorname{Si})$$

$$C_{x}(0)$$

$$M < 1(\text{ oxide consumes } X)$$

$$D^{x}(\operatorname{SiO}_{2}) < D^{x}(\operatorname{Si})$$

$$SiO_{2} \qquad Si$$

$$C_{x}(0)$$

$$SiO_{2} \qquad Si$$

$$SiO_{3} \qquad SiO_{4} \qquad SiO_{5}$$

$$SiO_{4} \qquad SiO_{5} \qquad SiO_$$

Common dopants in Si enhance oxidation at higher concentration

Oxide thickness vs. wet oxidation time For three different boron concentrations

Linear, B/A, and parabolic, B, rate constants vs. phosphorus concentration.