Die **Carboxygruppe** als funktionelle Gruppe für **organische Säuren** ist in der Lage, ein Proton abzuspalten und deshalb auch für die Säurewirkung dieser Stoffklasse verantwortlich.

Wichtige anorganische Säuren

Name der Säure	Formel	Säurerest	Formel	
Chlorwasserstoff	HCI	Chlorid-Ion	Cl	→ Salzsäure
Fluorwasserstoff	HF	Fluorid-Ion	F ⁻	→ Flusssäure
Salpetersäure	HNO ₃	Nitrat-Ion	NO ₃	
Oxoniumion	H ₃ O ⁺	Wasser	H ₂ O	
Schwefelsäure	H ₂ SO ₄	Sulfat-Ion	SO ₄ ²⁻	Zweiprotonige Säuren
Schweflige Säure	H ₂ SO ₃	Sulfit-Ion	SO ₃ ²⁻	
Kohlensäure	H ₂ CO ₃	Carbonat-Ion	CO ₃ ²⁻	→ Dreiprotonige Säure
Phosphorsäure	H ₃ PO4	Phosphat-Ion	PO ₄ ³⁻	