

Model Development Phase Template

Date	2 June 2025	
Student Name	Prathmesh Arvind Kumbhar	
Project Title	Restaurant Recommendation System	
Maximum Marks	5 Marks	

Model Selection Report:

Model	Description					
Content-Based	Content-based filtering recommends restaurants by comparing user preferences					
Filtering	(e.g., cuisine type, price range, dietary restrictions) with restaurant attributes. It					
	focuses on similarities between items and the user's profile without relying on					
	other users' data. This method is effective for users with unique tastes but may					
	struggle with limited user profiles (cold start).					
Collaborative	Collaborative filtering leverages the preferences of similar users to make					
Filtering	recommendations. It uses historical ratings and reviews to identify patterns. This					
	model is effective in discovering new items but can suffer from sparsity and cold					
	start problems if data is limited.					
Hybrid	This combines content-based and collaborative filtering to overcome the					
Recommendatio	limitations of each method. By integrating both user preference data and behavior					
n Model	of similar users, hybrid models improve recommendation accuracy, diversity, and					
	scalability. It is particularly useful in scenarios with large, sparse datasets like					
	restaurant recommendations.					
Matrix	Matrix factorization techniques decompose the user-item interaction matrix into					
Factorization	latent features, capturing underlying patterns in user preferences. Singular Value					
	Decomposition (SVD) is a common approach. It is computationally efficient and					
	works well for large datasets but requires enough ratings.					
Deep Learning	Neural networks can be used to build recommendation systems by learning					
(Neural	complex, non-linear relationships between users and restaurants from rich feature					
Networks)	sets including reviews, preferences, and metadata. While powerful, they require					
	large datasets and are computationally intensive.					

Conclusion:

Model Selected					
Hybrid	The hybrid model was selected because it addresses the limitations of both				
Recommenda	menda contentbased and collaborative filtering approaches. It effectively handles the cold				
tion Model	del start and sparsity issues by integrating multiple data sources such as user profiles,				
	restaurant attributes, and behavioral data. This results in more personalized, diverse,				
	and accurate recommendations, making it highly suitable for a restaurant				
	recommendation system with varying user preferences and data availability.				