	School:	Campus:
Centurion	Academic Year: Subject Name:	Subject Code:
University Superplies. Security Community.	Semester: Program:	Branch: Specialization:
	Data	

Applied and Action Learning

(Learning by Doing and Discovery)

Name of the Experiement: Stake Your Claim - Proof of Stake Simulation

* Coding Phase: Pseudo Code / Flow Chart / Algorithm

Initialize the Network:

- Define a set of nodes (validators).
- Assign each node a certain stake value (representing their coin balance).

Calculate Total Stake:

• Compute the sum of all stakes across validators.

 $Total\ Stake = \sum_{i=1}^{n} take(Nodei) \setminus \{Total\ Stake\} = \sum_{i=1}^{n} \{n\} \setminus \{Stake\}(Nodei)\}$ $text\{Stake\}(Nodei) \setminus \{Stake\}(Nodei)\}$

Determine Selection Probability:

• Calculate each node's probability of being chosen as:

 $P(Nodei) = Stake(Nodei) Total Stake P(Node_i) = \frac{\text{Stake}(Node_i)}{\text{Stake}(Node_i)} = \frac{\text{Stake}(Node_i)}{\text{Stake}(Nodei)}$

Random Validator Selection:

• Generate a random number and choose the validator according to assigned probabilities.

Block Validation:

- The selected validator adds a new block to the blockchain (simulated).
- •

Reward Distribution:

• Increase the stake of the chosen validator by a reward value.

Repeat the Process:

• Continue for several rounds to simulate continuous block production.

Display Final Results:

• Show validator selection frequency and final stakes.

Software used

- 1. MetaMask Wallet
- 2. VS Code.
- 3. MS Word.
- 4. Brave for researching.

* Implementation Phase: Final Output (no error)

Initial Stakes:

Node A: 50 Node B: 30 Node C: 20

Simulation Result:

Round 1 \rightarrow Selected Validator: Node A (Reward +10) Round 2 \rightarrow Selected Validator: Node B (Reward +10) Round 3 \rightarrow Selected Validator: Node A (Reward +10) Round 4 \rightarrow Selected Validator: Node C (Reward +10)

Final Stakes:

Node A: 70 Node B: 40 Node C: 30

* Observations:

- Validators with higher stakes were more frequently selected.
- The selection process is fair yet random, allowing smaller stakers a chance to validate occasionally.
- The reward system gradually increases the stake of active validators.
- No mining power or computational work is required, unlike PoW.
- Demonstrates energy efficiency and economic fairness in blockchain consensus.
- Over time, rich validators may gain more rewards showing wealth concentration, a real-world concern in PoS networks.