PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-214250

(43)Date of publication of application: 19.09.1991

(51)Int.CI.

G06F 13/16

(21)Application number: 02-009656

(71)Applicant: NEC CORP

(22)Date of filing:

19.01.1990

(72)Inventor: YANAGIDA HIROMI

(54) MEMORY CONTROL CIRCUIT

(57)Abstract:

PURPOSE: To set an optimum division rate based on a control program by dividing a memory into smaller blocks when the same memory are divided and used by plural microprocessors.

CONSTITUTION: In regard of the memory data switch circuits 41, 42...4n, a data bus (b) of a main microprocessor 1 is connected to the memory data hi (i=1=n) as long as the memory switch signals gi (i-1-n) are turned on. Meanwhile a data bus (e) of a secondary microprocessor 2 is connected to the data hi when the signals gi are turned off. In regard of the address switch circuits 51, 52...5n, the address state of the microprocessor 1 is transmitted as the memory addresses hi when the signals gi are turned on. Meanwhile the address state of the microprocessor 2 is transmitted as the addresses hi when the signals gi are turned off respectively. In such a constitution, an optimum division rate is set.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑪特許出願公開

◎ 公 開 特 許 公 報 (A) 平3-214250

⑤Int. Cl. 5

識別記号

庁内整理番号

@公開 平成3年(1991)9月19日

G 06 F 13/16

5 1 0

8841-5B

審査請求 未請求 請求項の数 1 (全4頁)

会発明の名称 メモリ制御回路

②特 願 平2-9656

20出 願 平2(1990)1月19日

烟発 明 者 柳 田 浩 美 東京都港区芝5丁目33番1号 日本電気株式会社内

⑪出 願 人 日本電気株式会社 東京都港区芝5丁目7番1号

個代 理 人 弁理士 内 原 晋

明 組 書

1. 発明の名称

メモリ制御回路

2. 特許請求の範囲

 とし、該主マイクロブロセッサのデータバスを入力とするメモリ切りかえ信号設定レジスタと、それぞれのマイクロブロセッサの該アドレスバスと、該メモリ切りかえ信号とを入力とし該メモリが所属するところのマイクロブロセッサのアドレスバスを該メモリに対して該メモリアドレスとして送出するメモリではないでは、

3. 発明の詳細な説明

〔産棄上の利用分野〕

本発明はメモリ制御回路に関し、特に、複数のマイクロプロセッサによって制御を行うメモリ制御回路に関する。

〔従来の技術〕

従来との種のメモリ制御回路は、複数のマイクロプロセッサによって同一アドレス空間に定義されているメモリを分割して使用する場合、ハードウェア設計時に分割領域が決定され、それぞれのプロセッサが使用するメモリの定義領域や最大容

量は不可変であった。

(発明が解決しようとする課題)

上述した従来の複数マイクロプロセッサを有するメモリ制御回路は、それぞれのプロセッサが使用するメモリの最大容量が不可変であったので、メモリ制御方式の異なる複数のプログラムに関して、それぞれのプロセッサの使用するメモリの最小容量を確保しなければならず、不経済であるという欠点がある。

[課題を解決するための手段]

本発明のメモリ制御回路は、アドレスパスとコントロール信号と、データパスとを有する主マイクロブロセッサかよび1個以上の関マイクロブロセッサと、コントロール信号とメモリアトレスパスとを入力とし、メモリデータパスとをスカとですった。であるメモリ切りかえ信号によってメモリカのマイクロブロセッサに属するかを決定し、メモ

として持っている。

第1図ではメモリをn分割して使用する例を示しており、それぞれメモリ31,メモリ32,---,メモリ30である。

メモリデータ切りかえ回路41,42,---,4nは主マイクロプロセッサ1のデータバスとというコータルスを入出力とをリデータト1,b2,---,bnとを入出力とした。メモリ切りかえ信号設定レジスタ6の出力であるメモリ31,32,---,3nのそれぞれに対応するメモリ切りかえ信号81,82,---,8nを入力として、メモリ切りかえ信号8i(i=1~n)がON状態であれば主マイクロデータバストがメモリデータトi(i=1~n)と接続される回路である。

リデータパスをメモリの属するところのプロセッタ サに対してのみ聞くととを可能にするメモリのかえ回路と、メモリデータ切りかえ回路と、メモリ切りかえ信号を出力としてカークログロセッサのアドレスパスと、メモリ切りなとして、そのメモリカとして、そのアロセッサのアドレスパスの内容をメモリアドレスとして、送出するメモリアドレスとして、ジェリカを回路とを有している。

〔寒旌例〕

次に本発明について図面をお照して説明する。 第1図は本発明の一実施例の回路である。第1 図にかいて、主マイクロブロセッサ1はアドレス パスョとコントロール信号 c とを出力信号として持ち、データパス b を入出力信号として持つ。 剛 マイクロブロセッサ 2 もマイクロブロセッサ 1 と 同様にアドレスパス d とコントロール信号 「とを 出力信号として持ち、データパス e を入出力信号

モリ切りかえ信号 gi(i=1~n)とを入力として、メモリ切りかえ信号 gi(i=1~n)がON 状態であれば主マイクロプロセッサ1のアドレス状態をメモリアドレスhi(i=1~n)として送出し、メモリ切りかえ信号 gi(i=1~n)がOFF 状態であれば、副マイクロプロセッサ2のアドレス状態をメモリアドレスhi(i=1~n)として送出する。

次に第2図は本実施例の具体例として主,劇マイクロブロセッサ1ケずつと4Mパイトを8分割した0.5Mパイトのメモリが8ケのシステムのメモリ制御をする場合を示し、第3図はメモリデータ切りかえ回路を示す。

第2図および第3図において、データパッファ 71、72は双方向にデータ入出のできるパッファであり、データパッファ71の主マイクロブロセッサ1のデータパス b と、メモリデータ b i (i=1~8)を入出力とし、メモリ切りかえ信号gi(i=1~8)が 1 " のときに開く。データパッファ72は副マイクロブロセッサ2のデー

特別平3-214250 (3)

タパスeとメモリデータhi(i=1~8)を入 出力とし、メモリ切りかえ信号gi(i=1~8) が『0″の時に開く。したがって、メモリデータ h i はメモリ切りかえ信号giが *1 * の時は主 マイクロプロセッサ1のデータパスりと、メモリ 切りかえ信号giが *0 * の時は刷マイクロプロ セッサ2のデータパスcと接続することになる。

同様に第4図においてアドレスパッファ81. 82 bメモリ切りかえ信号giが"1"の時には 主マイクロブロセッサ1のアドレスパスaが、メ モリ切りかえ信号giが"0"の時には国マイク ロプロセッサ2のアドレスパスd がメモリアドレ スjiと接続する。

上記システムにおいて、メモリ切りかえ信号gi (i=1~8)をi=1から順に"11100000" 4. 図面の簡単な説明 と設定すると、メモリ31,32,33は主マイ クロブロセッサのメモリとして、メモリ34から メモリ38までは副マイクロプロセッサのメモリ として使用され、主マイクロプロセッサが 1.5 M パイト、 則マイクロプロセッサが 2.5 Mパイトの

メモリ容量を持つことになる。更に、メモリ切り かえ信号gi(i=1~8)をi=1から順に *11111110"と設定すると、4 Mパイト中メ モリ38の0.5Mパイトのみ副マイクロブロセッ サが使用し、残りの3.5 Mパイトは主マイクロブ ロセッサの領域となる。

〔発明の効果〕

以上説明したように本発明は同一メモリを複数 のマイクロブロセッサによって分割使用する場合 更に小さなプロックに分けておくことによって分 割塞をソフトウェアで変更することができ、制御 プログラムによって最適な分割率を設定するとと ができるという効果がある。

第1図は本発明の一実施例を示すプロック図、 第2回は本実施例においてメモリを8分割した場 合を示すプロック図、第3図は本実施例における メモリデータ切りかえ回路を示す図、第4図は本 実施例におけるメモリアドレス切りかえ回路を示

す図である。

1……主マイクロプロセッサ、2……副マイク ロプロセッサ、31~3n……メモリ、41~4n ……メモリデータ切りかえ回路、51~5n…… メモリアドレス切りかえ回路、 6 ……メモリ切り かえ信号設定レジスタ、11,12……データバ ッファ、81,82……アドレスパッファ、a… …主マイクロプロセッサのアドレスパス、b…… 主マイクロブロセッサのデータパス、c……主マ イクロブロセッサのコントロール信号、 d ……副 マイクロプロセッサのアドレスパス、 e ……副マ イクロプロセッサのデータパス、「……闘マイク ロプロセッサのコントロール信号、gl~gn… …メモリ切りかえ信号、hl~hn……メモリデ ータ、j1~jn……メモリアドレス。

> 代理人 弁理士 内 原

特開平3-214250 (4)

