ANT 6973: DATA VISUALIZATION AND EXPLORATION

DATA MANIPULATION, PART 2

SINGLE TABLE VERBS

summarise()

A NOTE ON SPELLING...

But both the British and American spellings work:
summarize() = summarise()
color() = colour()

Compute table of summaries.

Compute table of summaries.


```
summarise(.data, ...)
```

data frame to summarize

Name-value pairs of summary functions

Compute table of summaries.

summarise(babynames, max_prop = max(prop))

data frame to summarize

Name of new variable

Summary function

Column of data to summarize

Compute table of summaries.

summarise(babynames, max_prop = max(prop))

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

max_prop 0.0815

Compute table of summaries.

Multiple summaries separated by commas

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

max_n	min_n
99686	5

- Center: mean(), median()
- Spread: sd(), var()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

- Center: mean(), median()
- Spread: sd(), var()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

Base R functions

- Center: mean(), median()
- Spread: sd(), var()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

dplyr functions

ACTIVITY 1

- Use summarise() to compute three statistics about babynames:
 - The smallest (minimum) year in the dataset
 - The largest (maximum) year in the dataset
 - The total number of children represented in the data

```
babynames %>%
 summarise(first_yr = min(year),
           last_yr = max(year),
           total_n = sum(n)
first_yr last_yr total_n
    <dbl> <dbl> <int>
   1880 2017 348120517
```

ACTIVITY 2

- Extract the rows where name is "Khaleesi". Then use summarise() to find:
 - The total number of children named Khaleesi
 - The first year Khaleesi appeared in the data

```
babynames %>%
  filter(name == "Khaleesi") %>%
  summarise(total = sum(n),
            first_year = min(year))
 total first_year
 <int> <dbl>
1 1964 2011
```

- Center: mean(), median()
- Spread: sd(), var()
- Range: min(), max(), quantile()
- Logical: any(), all()
- Position: first(), last(), nth()
- Count: n(), n_distinct()

dplyr functions

n()

The number of rows in a dataset/group


```
babynames %>%
summarise(n_rows = n())
```

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

n_rows 1924665

n_distinct()

The number of distinct values in a column/group.

year	sex	name	n	prop
1880	F	Mary	7065	0.07238
1880	F	Anna	2604	0.02667
1880	F	Emma	2003	0.02052
1880	F	Elizabet	1939	0.01986
1880	F	Minnie	1746	0.01788
1880	F	Margare	1578	0.01616

n_names	n_rows
97310	1924665

Grouping cases

GROUP_BY()

- group_by() changes the unit of analysis to groups in the data
- Any dplyr verbs used on a grouped tibble will be applied "by group"
- Especially useful when paired with summarise()
- Use ungroup() to remove the grouping

GROUP_BY()

Groups cases by common values of one or more columns.

```
babynames %>%
  group_by(sex)
```

```
Source: local data frame [1,825,433 x 5]

Groups: sex [2]

year sex name n prop

<dbl> <chr> <chr> <int> <dbl> 1 1880 F Mary 7065 0.07238359
```

GROUP_BY()

Groups cases by common values of one or more columns.

```
babynames %>%
  group_by(sex) %>%
  summarise(total = sum(n))
```

Grouping variable

sex	total
F	172371079
M	175749438

New summary variable

Note that all other columns in original data are not in summary

PRACTICE DATA

```
000
                                                                                               ~/OneDrive - University of Texas at San Antonio/Teaching/Data Visualization/activities/ant6973-activities - RStudio Source Editor
 reshape.Rmd*
                                                             🥄 🏿 🌠 Knit 🕝 🌣 😽
                                                                                                                                                                                                                                          Onsert - 1 Insert - 1
        1 ---
        2 title: "Tidy Data"
         3 output: html_document
         4 editor_options:
                          chunk_output_type: console
        8 * ```{r setup, include=FALSE}
                                                                                                                                                                                                                                                                                                                                        # ▶
        9 knitr::opts_chunk$set(echo = TRUE)
     10
     11 library("gapminder")
     12 library("tidyverse")
                   library("knitr")
      15
      16
     17 · ```{r}
                                                                                                                                                                                                                                                                                                                                ☆ ≥ →
                   cases ← tibble(country = c("FR", "DE", "US"),
                                                                            2011 = c(7000, 5800, 15000),
     19
                                                                            2012 = c(6900, 6000, 14000),
      20
                                                                             2013 = c(7000, 6200, 13000)
      22
                                                                                                                                                                                                     pollution <- tibble(city = ...,</pre>
      23
     24
      26 pollution ← tibble(city = c("New York", "New Yor
                                                                                                                                                                                                                                                                                                                                                                                 size = ...,
                                                                                          size = c("large", "small", "]
     27
                                                                                          amount = c(23, 14, 22, 16, 12)
     28
    29 ...
                                                                                                                                                                                                                                                                                                                                                                                    amount = ...)
     30
   18:1 C Chunk 2 $
```

pollution %>% summarise(mean = mean(amount), sum = sum(amount), n = n())

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

mean		sum		n
4	42		252	6

_				mean	sum	n
iarge	23			18.5	37	2
small	14					
	00					
large	22			100	20	2
small	16			19.0	38	2
large	121			00 5	477	2
small	56			88.5		2
	large small small	size (µg/m³) large 23 small 14 large 22 small 16 large 121	size large 23 small 14 large 22 small 16 large 121	large 23 small 14 large 22 small 16 large 121	size (μg/m³) large 23 small 14 large 22 small 16 large 121 88.5	size (μg/m³) large 23 small 14 large 22 small 16 large 121 88.5 177

group_by() + summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

London	large	22
London	small	16

Beijing	large	121
Beijing	small	56

mean	sum	n
18.5	37	2
19.0	38	2
88.5	177	2

group_by() + summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	mean	sum	n
New York	18.5	37	2
London	19.0	38	2
Beijing	88.5	177	2

```
pollution %>%
  group_by(city) %>%
  summarise(mean = mean(amount), sum = sum(amount), n = n())
```

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	mean	sum	n
New York	large	23	23	1
New York	small	14	14	1
London	large	22	22	1
London	small	16	16	1
Beijing	large	121	121	1
Beijing	small	56	56	1

```
pollution %>%
  group_by(city, size) %>%
  summarise(mean = mean(amount), sum = sum(amount), n = n())
```

ACTIVITY 3

• Use group_by() and summarise() to calculate the number of male and female babies born in each year.

```
babynames %>%
  group_by(year, sex) %>%
  summarise(n_babies = sum(n))
```

```
# Groups: year [138]
   year sex n_babies
  <dbl> <chr> <int>
 1 1880 F 90993
               110491
 2 1880 M
 3 1881 F
               91953
 4 1881 M
               100743
 5 1882 F
               107847
 6 1882 M
               113686
  1883 F
               112319
 8 1883 M
               104627
 9 1884 F
               129020
10 1884 M
              114442
# ... with 266 more rows
```

Note that each call to summarise() removes a layer of grouping.

ACTIVITY 4

 On the storms data set, calculate the maximum wind speed and minimum pressure for each hurricane in each year, and arrange the summary in descending order of wind speed (hint: filter first).

name	year	month	day	hour	lat	long	status	category	wind	pressure	ts_diameter	hu_diameter
Amy	1975	6	27	0	27.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	6	28.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	12	29.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	18	30.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	28	0	31.5	-78.8	tropical depression	-1	25	1012	NA	NA
Amy	1975	6	28	6	32.4	-78.7	tropical depression	-1	25	1012	NA	NA

```
storms %>%
  filter(status == "hurricane") %>%
  group_by(year, name) %>%
  summarise(wind_max = max(wind),
             pressure_min = min(pressure)) %>%
  arrange(desc(wind_max))
# Groups: year [41]
   year name wind_max pressure_min
  <dbl> <dbl> <dbl> <dbl>
1 1988 Gilbert 160
                           888
2 2005 Wilma 160
                           882
3 1998 Mitch 155
                           905
4 2005 Rita 155
                           895
5 1977 Anita 150
                           926
6 1979 David
                150
                           924
7 1992 Andrew
                 150
                           922
  2005 Katrina
             150
                           902
# ... with 200 more rows
```

ACTIVITY 5

• Building on the previous code, calculate the average hurricane wind_max for each year. Which year had the most intense hurricanes, on average?

```
storms %>%
  filter(status == "hurricane") %>%
  group_by(year, name) %>%
  summarise(wind_max = max(wind)) %>%
  summarise(avg_wind_max = mean(wind_max)) %>%
  arrange(desc(avg_wind_max))
    year avg_wind_max
   <dbl>
                <dbl>
 1 1999
                133.
                117.
 2 1988
 3 1992
                113.
                108.
 4 2008
 5 2004
                104.
   2005
                103.
   2009
                103.
   2002
                 98.8
# ... with 33 more rows
```

Second call to summarise() uses the year grouping only.

You might want to make the groupings explicit for readability.

```
storms %>%
 filter(status == "hurricane") %>%
 group_by(year, name) %>%
 summarise(wind_max = max(wind)) %>%
 ungroup() %>%
 group_by(year) %>%
 summarise(avg_wind_max = mean(wind_ma
 arrange(desc(avg_wind_max))
   year avg_wind_max
   <dbl>
                <dbl>
               133.
 1 1999
               117.
 2 1988
  1992
                113.
   2008
                108.
   2009
                103.
   2002
                 98.8
```

Second call to summarise() uses the year grouping only.

You might want to make the groupings explicit for readability.

THINGS TO WATCH OUT FOR

- Many summary functions will return NA if there are any missing values
- Fortunately, many summary functions have an na.rm = TRUE argument to avoid this problem.

THINGS TO WATCH OUT FOR

- Once grouped, the tibble will remain grouped. Careful with carrying out futher summaries!
- It's good practice to always use ungroup() after finishing your grouped operations.

ACTIVITY 6

• What is the average diameter of the area experiencing hurricane strength winds (hu_diameter) for each category of hurricane (category)?

```
storms %>%
  group_by(category) %>%
  summarise(mean_diameter = mean(hu_diameter))
  category mean_diameter
  <ord>
                    <dbl>
                                      Many of these values
1 -1
                        NA
                                           are missing
2 0
                        NA
3 1
                        NA
4 2
                        NA
                                      This causes the means
                                            to be NA
                        NA
                        NA
```

```
storms %>%
  group_by(category) %>%
  summarise(mean_diameter = mean(hu_diameter, na.rm = TRUE)))
  category mean_diameter
  <ord>
                    <dbl>
                                           Remove missing values
1 -1
                                             before calculating
2 0
                                                  means
3 1
                     57.3
4 2
                     78.8
                     91.4
                    120.
```

SUMMARISE()'S VARIANTS

- Similarly to the filter(), select() and mutate() functions, summarise() comes with three additional variants for doing things to multiple columns in one go:
 - summarise_all() will summarise all columns with the summary function(s).
 - summarise_if() requires a function that returns a TRUE/FALSE. If that is true, the summary function(s) will be applied.
 - sumarise_at() requires you to specify columns on which to apply the summary function(s) inside a vars() argument.

msleep (lots of missing values)

name	genus	vore	order	conservation	sleep_total	sleep_rem	sleep_cycle	awake	brainwt	bodywt
Cheetah	Acinonyx	carni	Carnivora	lc	12.1	NA	NA	11.9	NA	50.000
Owl monkey	Aotus	omni	Primates	NA	17.0	1.8	NA	7.0	0.01550	0.480
Mountain beaver	Aplodontia	herbi	Rodentia	nt	14.4	2.4	NA	9.6	NA	1.350
Greater short-tailed shrew	Blarina	omni	Soricomorpha	lc	14.9	2.3	0.1333333	9.1	0.00029	0.019
Cow	Bos	herbi	Artiodactyla	domesticated	4.0	0.7	0.6666667	20.0	0.42300	600.000
Three-toed sloth	Bradypus	herbi	Pilosa	NA	14.4	2.2	0.7666667	9.6	NA	3.850
Northern fur seal	Callorhinus	carni	Carnivora	vu	8.7	1.4	0.3833333	15.3	NA	20.490
Vesper mouse	Calomys	NA	Rodentia	NA	7.0	NA	NA	17.0	NA	0.045
Dog	Canis	carni	Carnivora	domesticated	10.1	2.9	0.3333333	13.9	0.07000	14.000
Roe deer	Capreolus	herbi	Artiodactyla	lc	3.0	NA	NA	21.0	0.09820	14.800

ACTIVITY 7A

- For each vore, calculate the average of all columns in the msleep data set.
 - Hint: use na.rm = TRUE

msleep %>% group_by(vore) %>%

summarise_all(mean, na.rm = TRUE)

```
name genus order conservation sleep_total sleep_rem sleep_cycle awake brainwt
                                                                                         bodywt
 vore
                                               <dbl>
          <dbl> <dbl> <dbl>
                                  <dbl>
                                                         <dbl>
                                                                                          <dbl>
                                                                    <dbl> <dbl> <dbl>
  <chr>
                                                                                          0.858
                                              10.2
                                                                    0.183 13.8 0.00763
1 NA
             NA
                  NA
                        NA
                                      NA
                                                         1.88
2 carni
                                                                    0.373 13.6 0.0793
             NA
                  NA
                        NA
                                      NA
                                              10.4
                                                         2.29
                                                                                         90.8
3 herbi
                        NA
                                     NA
                                               9.51
                                                         1.37
                                                                    0.418 14.5 0.622
                                                                                         367.
             NA
                  NA
4 insecti
                        NA
                                                                    0.161 9.06 0.0216
                  NA
                                     NA
                                              14.9
                                                         3.52
                                                                                         12.9
             NA
                                              10.9
                                                         1.96
                  NA
                        NA
                                                                    0.592 13.1 0.146
                                                                                         12.7
5 omni
             NA
                                     NA
```

Note that mean()
doesn't make sense for
the text variables.

ACTIVITY 7B

• For each vore, calculate the average of *only the numeric columns* in the msleep data set.

• Hint: use na.rm = TRUE

```
msleep %>%
  group_by(vore) %>%
  summarise_if(is.numeric, mean, na.rm = TRUE)
        sleep_total sleep_rem sleep_cycle awake brainwt
                                                   bodywt
 vore
                                <dbl> <dbl> <dbl> <dbl> <
              <dbl>
                      <dbl>
 <chr>
             10.2 1.88
                                0.183 13.8 0.00763 0.858
1 NA
                                0.373 13.6 0.0793
                    2.29
2 carni
                                                   90.8
             10.4
           9.51
                      1.37
                                0.418 14.5 0.622
3 herbi
                                                  367.
                                0.161 9.06 0.0216 12.9
        14.9
                       3.52
4 insecti
                                0.592 13.1 0.146 12.7
             10.9
                      1.96
5 omni
```

Grouping variable isn't numeric, but it still appears in the summary.

ACTIVITY 7C

- For each vore, calculate the average of *only the columns that start with* "sleep" in the msleep data set.
 - Hint: use na.rm = TRUE

```
msleep %>%
  group_by(vore) %>%
  summarise_at(vars(starts_with("sleep")), mean, na.rm = TRUE)
 vore sleep_total sleep_rem sleep_cycle
 <chr>
              The _at() functions expect a
1 NA
                 select()-style column
2 carni
               specification within vars()
3 herbi
                         3.52
              14.9
4 insecti
                                   0.161
              10.9 1.96
                                  0.592
5 omni
```

Equivalent to...

```
msleep %>%
 group_by(vore) %>%
 summarise(sleep_total = mean(sleep_total, na.rm = TRUE),
           sleep_rem = mean(sleep_rem, na.rm = TRUE),
           sleep_cycle = mean(sleep_cycle, na.rm = TRUE))
 vore sleep_total sleep_rem sleep_cycle
 <chr>
            <dbl>
                    <dbl>
                             <dbl>
1 NA
           10.2 1.88 0.183
2 carni 10.4 2.29 0.373
     9.51 1.37 0.418
3 herbi
           14.9 3.52
4 insecti
                             0.161
5 omni
            10.9 1.96
                             0.592
```

OTHER GROUPED OPERATIONS

- group_by() can also be used with mutate() and filter() to do some interesting things.
- Reminder: mutate() creates a new variable of the same length as the original data.

ACTIVITY 8

- In babynames, try to recreate the **prop** column using a grouped mutate (call it "new_prop"). Specifically, divide each row's n by the total number of n for that sex and year.
- Why are the values slightly different?

```
babynames %>%
                                      Current group's
  group_by(sex, year) %>%
                                           total n
  mutate(grp_sum = sum(n),
                                               Current row's
          new_prop = n / grp_sum)
# Groups:
           sex, year [276]
   year sex
              name
                                prop grp_sum new_prop
   <dbl> <chr> <chr>
                        <int>
                               <dbl>
                                                <dbl>
                                       <int>
                         7065 0.0724
                                       90993
   1880 F
              Mary
                                               0.0776
                         2604 0.0267
   1880 F
                                       90993
                                               0.0286
              Anna
   1880 F
              Emma
                         2003 0.0205
                                       90993
                                               0.0220
              Elizabeth
   1880 F
                         1939 0.0199
                                       90993
                                               0.0213
   1880 F
              Minnie
                         1746 0.0179
                                       90993
                                               0.0192
                         1578 0.0162
   1880 F
              Margaret
                                       90993
                                               0.0173
                                               0.0162
   1880 F
              Ida
                         1472 0.0151
                                       90993
   1880 F
              Alice
                         1414 0.0145
                                       90993
                                               0.0155
                         1320 0.0135
                                       90993
              Bertha
   1880 F
                                               0.0145
                                               0.0112
              Sarah
                                       90993
   1880 F
                         1288 0.0132
# ... with 1,924,655 more rows
```

new_prop

Note that the result has as many rows as the original data (it's not a summary)

```
babynames %>%
                                             More concisely...
  group_by(sex, year) %>%
  mutate(new\_prop = n / sum(n))
                                            Group denominator
# Groups: sex, year [276]
                                           calculated for each for
   year sex
                              prop new_pro
             name
                          n
                                                 each row
   <dbl> <chr> <chr>
                   <int> <dbl>
                                      <dbl>
                      7065 0.0724
   1880 F
             Mary
                                     0.0776
   1880 F
                        2604 0.0267
                                     0.0286
              Anna
   1880 F
                        2003 0.0205
                                     0.0220
              Emma
   1880 F
              Elizabeth
                        1939 0.0199
                                     0.0213
   1880 F
             Minnie
                        1746 0.0179
                                     0.0192
             Margaret
                        1578 0.0162
   1880 F
                                     0.0173
   1880 F
                        1472 0.0151
              Ida
                                     0.0162
             Alice
   1880 F
                        1414 0.0145
                                     0.0155
                     1320 0.0135
 9 1880 F Bertha
                                    0.0145
   1880 F Sarah 1288 0.0132 0.0142
# ... with 1,924,655 more rows
```

MORE ON GROUPED MUTATES

• Grouped mutates are useful for calculating deviations.

ACTIVITY 9

• Using msleep, determine how much each species' log body weight differs from the average log body weight for its order.

name	genus	vore	order	conservation	sleep_total	sleep_rem	sleep_cycle	awake	brainwt	bodywt
Cheetah	Acinonyx	carni	Carnivora	lc	12.1	NA	NA	11.9	NA	50.000
Owl monkey	Aotus	omni	Primates	NA	17.0	1.8	NA	7.0	0.01550	0.480
Mountain beaver	Aplodontia	herbi	Rodentia	nt	14.4	2.4	NA	9.6	NA	1.350
Greater short-tailed shrew	Blarina	omni	Soricomorpha	lc	14.9	2.3	0.1333333	9.1	0.00029	0.019
Cow	Bos	herbi	Artiodactyla	domesticated	4.0	0.7	0.6666667	20.0	0.42300	600.000
Three-toed sloth	Bradypus	herbi	Pilosa	NA	14.4	2.2	0.7666667	9.6	NA	3.850
Northern fur seal	Callorhinus	carni	Carnivora	vu	8.7	1.4	0.3833333	15.3	NA	20.490

```
Each row's log
msleep %>%
                                                            bodywt
   group_by(order) %>%
   mutate(log_bodywt = log(bodywt),
            order_mean = mean(log_bodywt, na.rm = TRUE),
            bodywt_dev = log_bodywt - order_mean)
# Groups:
       order [19]
                        conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt log_bodywt order_m
                vore order
  name
                <chr> <chr> <chr>
                                                  <dbl> <dbl>
                                                                       <dbl>
                                    <dbl>
                                           <dbl>
                                                                <dbl>
  <chr>
```

12.1

17

14.4

14.9

4

14.4

8.7

7

10.1

3

NA

1.8

2.4

2.3

0.7

2.2

1.4

2.9

NA

NA

11.9 NA

9.6 NA

9.6 NA

NA

0.0982

0.383 15.3 NA

0.333 13.9 0.07

0.667

0.767

9.1 0.00029

0.0155

50

600

0.48

1.35

0.019

3.85

20.5

14

14.8

0.045

3.91

-0.734

0.300

-3.96

6.40

1.35

3.02

-3.10

2.64

2.69

1 Cheetah

5 Cow

9 Dog

10 Roe deer

2 Owl monkey

8 Vesper mouse

Acinon... carni Carniv... lc

Aotus omni Primat... NA

Calomys NA Rodent... NA

Capreo... herbi Artiod... lc

Canis carni Carniv... domesticated

herbi Artiod... domesticated

3 Mountain beav... Aplodo... herbi Rodent... nt

4 Greater short... Blarina omni Sorico... lc

6 Three-toed sl... Bradyp... herbi Pilosa NA

7 Northern fur ... Callor... carni Carniv... vu

Bos

Current order's mean bodywt

Current row's

deviation from mean

of current order

2.28

-0.423

1.75

-0.130

-1.12

-0.511

-1.95

0

-1.98

-3.54

4.65

1.35

3.15

-1.98

3.15

4.65

ACTIVITY 10A

- When building statistical models, it's often useful to standardize numeric variables by converting to z-scores:
 - z = (observed value mean) / standard deviation
- Using msleep, use mutate() to convert log(bodywt) to a z-score for each row in the data set.
- Plot the data using a violin plot and stat_summary()

```
ggplot(msleep, aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```

```
msleep %>%
  mutate(log_bodywt = log(bodywt),
         z_{\log_bodywt} = (\log_bodywt - mean(\log_bodywt, na.rm = TRUE)) /
                         sd(log_bodywt, na.rm = TRUE)) %>%
  ggplot(aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```


ACTIVITY 10B

 Now do the same, but standardize within groups by using group_by(vore).

```
ggplot(msleep, aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```

```
msleep %>%
  mutate(log_bodywt = log(bodywt)) %>%
  group_by(vore) %>%
  mutate(z_log_bodywt = (log_bodywt - mean(log_bodywt, na.rm = TRUE)) /
                        sd(log_bodywt, na.rm = TRUE)) %>%
  ggplot(aes(x = vore, y = z_log_bodywt)) +
  geom_violin() +
  stat_summary(fun.data = "mean_se")
```


SINGLE TABLE VERBS

ACKNOWLEDGEMENTS

• Some ideas, examples, and figures from <u>RStudio webinars</u>, which are licensed CC by SA.