高等代数 I 习题课讲义

龚诚欣

gong cheng xin @pku.edu.cn

2024年10月16日

目录

1	第 1 次习题课:向量,Gauss-Jordan 消元法	2
	1.1 问题	2
	1.2 解答	2
2	第 2 次习题课: 线性方程组的解, 集合	3
	2.1 问题	3
	2.2 解答	4
3	第 3 次习题课: 行列式 (1)	5
	3.1 问题	5
	3.2 解答	6
4	第 4 次习题课: 行列式 (2)	8
	4.1 问题	8
	4.2 解答	9
5	第 5 次习题课: 线性空间, 行列式 (3)	11
	5.1 问题	11
	5.2 解答	12
6	第 6 次习题课: TBD	13
7	致谢	13

1 第 1 次习题课:向量, Gauss-Jordan 消元法

1.1 问题

- 1.1 问应 1.用 Gauss 消元法解以下方程组,并用向量表示解的集合: $\begin{cases} x_1 2x_2 + 3x_3 4x_4 &= 4 \\ x_2 x_3 + x_4 &= -3 \\ x_1 + 3x_2 4x_4 &= 1 \\ -7x_2 + 3x_3 + x_4 &= -3 \end{cases}$
- 何时表示系数唯一?
- 3. 用向量运算的性质证明: 若一组向量 $\alpha_1, \cdots, \alpha_s$ 线性表出某个向量 β 的方式唯一 (不唯一), 则 $\alpha_1, \cdots, \alpha_s$ 表出任何 向量-如果能表出的话,方式都唯一(不唯一).
- 4. 某食品厂有四种原料 A, B, C, D. 问能否用这四种原料配制含脂肪 5%, 碳水化合物 12%, 蛋白质 15% 的食品?

单位: %	A	В	С	D
脂肪	8	6	3	2
碳水化合物	5	25	10	15
蛋白质	15	5	20	10

- 5. (1) 求复矩阵 $A = \begin{bmatrix} 1 & -i & -1 \\ 2 & 2 & -2 \\ i & 1+i & -i \end{bmatrix}$ 的行简化阶梯型矩阵 $\operatorname{rref}(A)$; (2) 求齐次方程组 AX = 0 在复数域上的解集合; (3) 求齐次方程组 AX = 0 在实数域上的解集合; (4) 当 y_1, y_2, y_3 满足什么关系时, 方程组 $AX = (y_1, y_2, y_3)^T$ 有解?
- 6. 已知向量 α, β 不共线, 并看成是由原点出发的有向线段 OA 与 OB. 设 $u, v \in \mathbb{R}$ 且 u+v=1, 问向量 $OC=u\alpha+v\beta$ 的终点 C 在什么位置, \overrightarrow{AC} 与 \overrightarrow{CB} 的比值是多少, 何时比值为正数.
- 7. 求单叶双曲面 $x^2 + y^2 z^2 = 1$ 上的所有直线.
- 8. (1) 利用向量运算求空间中三角形重心的公式; (2) 四面体 ABCD 每个顶点到对面三角形的重心作连线. 证明: 这四 条线交于一点,这一点称为四面体的重心;且每条连线被重心分割为长度比为3:1的两条线段.
- 9. 求以下两个方程组的解,并解释这两组解为何有较大差异? $\begin{cases} .835x + .667y = .168 \\ .333x + .266y = .067 \end{cases}, \begin{cases} .835x + .667y = .168 \\ .333x + .266y = .067 \end{cases}$
- 10. 考虑带截距的线性回归 $y \sim x_1 + \cdots + x_p$, 参考上一题, 你有什么想

1.2 解答

1.
$$\begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 1 & 3 & 0 & -4 & 1 \\ 0 & -7 & 3 & 1 & -3 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 5 & -3 & 0 & -3 \\ 0 & -7 & 3 & 1 & -3 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 5 & -3 & 0 & -3 \\ 0 & -7 & 3 & 1 & -3 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 0 & 2 & -5 & 12 \\ 0 & 0 & -4 & 8 & -24 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 0 & 2 & -5 & 12 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix} \Rightarrow (x_1, x_2, x_3, x_4) = (-8, 3, 6, 0).$$

$$\begin{vmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 0 & 2 & -5 & 12 \\ 0 & 0 & 0 & -2 & 0 \end{vmatrix} \Rightarrow (x_1, x_2, x_3, x_4) = (-8, 3, 6, 0)$$

②一三①
$$\begin{bmatrix}
1 & -2 & a & 1 \\
1 & 1 & 2 & b \\
4 & 5 & 10 & -1
\end{bmatrix}
3 - = 4 * ①
$$\begin{bmatrix}
1 & -2 & a & 1 \\
0 & 3 & 2 - a & b - 1 \\
0 & 13 & 10 - 4a & -5
\end{bmatrix}
3 - = \frac{13}{3} * ②
\begin{bmatrix}
1 & -2 & a & 1 \\
0 & 3 & 2 - a & b - 1 \\
0 & 0 & \frac{4}{3} + \frac{1}{3}a & -\frac{13}{3}b - \frac{2}{3}
\end{bmatrix}$$
因此, 当
$$a \neq -4 \quad \text{或} \quad a = -4, b = -\frac{13}{2} \quad \text{th}, \beta \text{ 能被线性表出, 且对于前者表出系数唯一.}$$$$

3. 只需注意到表出某个向量 β 唯一 $\Leftrightarrow (k_1\alpha_1 + \cdots + k_s\alpha_s = 0) \Rightarrow k_1 = \cdots = k_s = 0)$.

$$2 - 8 * 1$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -5 & -6 & -3 \\ 0 & 0 & -45 & -50 & -23 \\ 0 & 0 & 30 & 25 & 15 \end{bmatrix}$$

$$* \ \Im \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -5 & -6 & -3 \\ 0 & 0 & -45 & -50 & -23 \\ 0 & 0 & 0 & -\frac{25}{3} & -\frac{1}{3} \end{bmatrix},$$

数向量是 $(y_1, \frac{y_2-2y_1}{2+2i}, y_3 - \frac{1+i}{4}y_2 + \frac{1-i}{2}y_1)$, 因此只有当 $y_3 - \frac{1+i}{4}y_2 + \frac{1-i}{2}y_1 = 0$ 时才有解. 6. $\overrightarrow{AC} = (u-1)\alpha + v\beta$, $\overrightarrow{CB} = -u\alpha + (1-v)\beta$, $\frac{\overrightarrow{AC}}{\overrightarrow{CB}} = \frac{1-u}{u} = \frac{v}{1-v}$, 因此 $A, C, B \equiv$ 点共线, 且当 0 < u, v < 1 时比值为 正数.

7.
$$(x-z)(x+z) = (1-y)(1+y)$$
,因此直线可以表示形式为
$$\begin{cases} x-z = k(1-y) \\ x+z = \frac{1}{k}(1+y) \end{cases}$$
,即是
$$\begin{cases} x+ky-z = k \\ kx-y+kz = 1 \end{cases}$$
.特别

地, 当 $y = \pm 1$ 时, $z = \pm x$ 也是位于该曲面上的直线.

- 8. $A = (x_1, y_1, z_1), B = (x_2, y_2, z_2), C = (x_3, y_3, z_3),$ 设 BC, AC, AB 中点分别为 D, E, F, 设 $G = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3})$ 只需验证 \overrightarrow{AG} , \overrightarrow{BG} , \overrightarrow{CG} 分别与 \overrightarrow{AD} , \overrightarrow{BE} , \overrightarrow{CF} 共线即可. 第二问同理, 重心是取四个点的坐标平均.
- 9. 用 Gauss 消元法可求得解为 (1,-1) 和 (-666,834). 原因是系数矩阵比较奇异, 用现在的知识来说, 就是行简化阶梯 型矩阵的对角元数值比较小.
- 10. 可以对回归系数做适当的惩罚, 如 L_2 正则 (Ridge); 回归变量中可能存在着强相关变量, 干扰回归结果.

第 2 次习题课:线性方程组的解,集合

2.1 问题

1. (1) 用向量表示平面 x + 2y + 3z = 1; (2) 用向量表示直线 $\begin{cases} x + 2y + 3z = 1 \\ 3x + 2y + z = -1 \end{cases}$; (3) 求平面 $\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \\ 2 \end{vmatrix} + k \begin{vmatrix} 1 \\ 2 \\ 0 \end{vmatrix} + k \begin{vmatrix} 1 \\ 2 \\ 0 \end{vmatrix}$

$$\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, k, l \in \mathbb{R}$$
的平面方程.

2. 设矩阵
$$A = \begin{bmatrix} 2 & 4 & 1 & 0 & 8 \\ 3 & 6 & -1 & 0 & 7 \\ 1 & 2 & 2 & 0 & 7 \\ 2 & 4 & 1 & 1 & 9 \end{bmatrix}$$
. (1) 解齐次方程组 $AX = 0$; (2) 已知 $X = (1,1,2,3,0)^T$ 是方程组 $AX = \beta$ 的一个

解, 写出 $AX = \beta$ 的所有解

- 3. 用 $\mathbb{Q}(\sqrt{3})$ 表示从全体有理数及 $\sqrt{3}$ 出发, 反复作加减乘除四则运算能得到的所有数的集合, 称为由 $\sqrt{3}$ 生成的数域. (1) 证明 $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}$; (2) 数域 $\mathbb{Q}(\sqrt{3})$ 中的每个数写成 $a + b\sqrt{3}, a, b \in \mathbb{Q}$ 的方式唯一.
- 4. 用 $\mathbb{Z}(\sqrt{-5})$ 表示从全体整数及 $\sqrt{-5}$ 出发, 通过加乘二则运算能得到的所有数的集合, 称为由 $\sqrt{-5}$ 生成的整环. 证 明在此环中,不可约数和素数不等价.

- 5. 若 $\alpha_1, \dots, \alpha_r$ 能线性表出 β_1, \dots, β_s , 且 β_1, \dots, β_s 又能线性表出 $\gamma_1, \dots, \gamma_t$, 证明 $\alpha_1, \dots, \alpha_r$ 能线性表出 $\gamma_1, \dots, \gamma_t$.
- 6. 考虑 n 个城市之间的航班问题: 记 $H=(a_{ij})$ 为邻接矩阵, 这里 a_{ij} 表示从城市 i 到 j 的航班数. (1) 解释 H^k 的

$$(i,j)$$
 元的含义; (2) 设 $H=\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$, 从哪个城市到哪个城市恰好要倒两次飞机?有几种不同的航班选择?哪

两个城市的通行需要倒的航班次数最多?

- 7. 设 A 是有向图 G 的邻接矩阵, 证明 G 中的循环三角形的个数等于 $tr(A^3)/3$.
- 8. 由集合 A 的所有子集组成的集合称为 A 的幂集, 记为 P(A). 设集合 A 非空, 证明 card(P(A)) > card(A).
- 9. X 为非空集合, 映射 $f: P(X) \to P(X)$ 满足 $f(A) \subset f(B), \forall A \subset B$. 那么存在 $T \subset X$ 使得 f(T) = T.
- 10. (1) 找到 [0,1] 到 $[0,1] \times [0,1]$ 的双射; (2) 找到 (0,1) 到 \mathbb{R} 的双射.
- 11. 罗素悖论: 某班的同学在习题课上作游戏. 每个学生可以给班里任意多同学发一次短信 (可包括自己). 记 X 是全体没有给自己发短信的同学构成的集合. 若某同学猜中 X 并给且只给 X 中的每个同学发了短信,则该同学获胜. 问:此游戏有无获胜者?
- 12. 学习使用 numpy 包, 并实现矩阵的基本运算.

2.2 解答

- 1. (1) 先求得一个点坐标 (1,0,0), 再去求 x+2y+3z=0 的一组基础解系:(2,-1,0) 和 (3,0,-1), 因此向量表示为 $(1,0,0)+k(2,-1,0)+l(3,0,-1),k,l\in\mathbb{R}$.
- (2) 先求得一个点坐标 (0,-1,1), 再去求方向向量 $(1,2,3)\times(3,2,1)=(-4,8,4)$, 因此向量表示为 (0,-1,1)+t(-1,2,1), $t\in\mathbb{R}$
- (3) 先求得一个点坐标 (1,1,2), 再去求法向量 $(1,2,0)\times(2,0,1)=(2,-1,-4)$, 因此平面可表示为 2x-y-4z=-7.

$$2 - = \frac{3}{2} * \mathbb{O}$$

$$3 - = \frac{1}{2} * \mathbb{O}$$

$$3 - = \frac{1}{2} * \mathbb{O}$$

$$4 \quad 1 \quad 0 \quad 8 \\ 3 \quad 6 \quad -1 \quad 0 \quad 7 \\ 1 \quad 2 \quad 2 \quad 0 \quad 7 \\ 2 \quad 4 \quad 1 \quad 1 \quad 9$$

$$3 - = \frac{1}{2} * \mathbb{O}$$

$$4 \quad 1 \quad 0 \quad 8 \\ 0 \quad 0 \quad -\frac{5}{2} \quad 0 \quad -5 \\ 0 \quad 0 \quad \frac{3}{2} \quad 0 \quad 3 \\ 0 \quad 0 \quad 0 \quad 1 \quad 1$$

$$2 + = \frac{5}{3} * \mathbb{O}$$

$$2 + = \frac{5}{3} * \mathbb{O}$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad \frac{3}{2} \quad 0 \quad 3 \\ 0 \quad 0 \quad 0 \quad 1 \quad 1$$

$$\Rightarrow \begin{cases} x_4 = -x_5 \\ x_3 = -2x_5 \\ x_1 + 2x_2 = -3x_5 \end{cases} \Rightarrow$$

 $X = (-3n - 2m, m, -2n, -n, n)^T, m, n \in \mathbb{R}$ 是自由变元.

- (2) 解集是基础解系加上代表元, 即 $(1-3n-2m,1+m,2-2n,3-n,n)^T$.
- 3. (1) 只需证明 $\{a+b\sqrt{3}: a,b\in\mathbb{Q}\}$ 对于加减乘除封闭. (2) 只需证明 $\sqrt{3}$ 不是有理数 (因为 $a_1+b_1\sqrt{3}=a_2+b_2\sqrt{3}\Leftrightarrow \sqrt{3}=\frac{a_1-a_2}{b_2-b_1}\in\mathbb{Q}$). 用反证法, $\sqrt{3}=\frac{a}{b}$, $\gcd(a,b)=1$, 那么 $a^2=3b^2\Rightarrow 3|a\Rightarrow 9|a^2\Rightarrow 3|b^2\Rightarrow 3|b$, 矛盾.
- 4. 类似可知 $\mathbb{Z}(\sqrt{-5}) = \{a+b\sqrt{-5}: a,b\in\mathbb{Z}\}$. 容易证明 $2+\sqrt{-5}$ 是不可约数: $2+\sqrt{-5} = (a+b\sqrt{-5})(c+d\sqrt{-5}) \Rightarrow 9 = (2+\sqrt{-5})(2-\sqrt{-5}) = (a+b\sqrt{-5})(a-b\sqrt{-5})(c+d\sqrt{-5})(c-d\sqrt{-5}) = (a^2+5b^2)(c^2+5d^2)$ 无解; 但是 $2+\sqrt{-5}|3\times 3$ 而 $2+\sqrt{-5}|3$, 因此不是素数.
- 5. $(\beta_1, \dots, \beta_s) = (\alpha_1, \dots, \alpha_r)A, (\gamma_1, \dots, \gamma_t) = (\beta_1, \dots, \beta_s)B \Rightarrow (\gamma_1, \dots, \gamma_t) = (\alpha_1, \dots, \alpha_r)(AB)$, 因此可以线性表出.
- 6. (1) 从 $a_{ij}^2 = \sum_s a_{is} a_{sj}$ 可以看出 H^k 的 (i,j) 元表示从 i 到 j 乘坐恰 k 次航班有多少种乘坐方式. (2) $1 \to 3, 1 \to 4, 2 \to 1, 2 \to 5, 3 \to 2, 3 \to 4, 4 \to 1, 5 \to 2, 5 \to 3$,分别有 1, 1, 1, 3, 1, 3, 3, 1, 2 种航班选择; $2 \to 4, 4 \to 2$ 都要倒 3 次,是最多的.
- 7. 由上题知 A^3 的 (i,i) 元表示从 i 到 i 有几条恰走 3 次的路径, 三角形会在结点上算 3 次, 因此要除以 3.
- 8. 本题的关键是处理集合 A 包含无穷元素的情形. 假设存在一一映射 $f: A \mapsto P(A)$, 则考虑集合 $A = \{x: x \notin f(x)\}$. 此时若 $f^{-1}(A) \notin A$, 则根据定义 $f^{-1}(A) \in A$; 反之亦矛盾.
- 9. 我们的思路应当去找满足条件 $A \subset f(A)$ 的最大集合, 即令 $T = \{ \cup_{\alpha} A_{\alpha} : A_{\alpha} \subset f(A_{\alpha}) \}$. 根据定义有 $T = \cup_{\alpha} A_{\alpha} \subset \cup_{\alpha} f(A_{\alpha}) = f(U_{\alpha} A_{\alpha}) = f(T)$, 再根据题给条件有 $f(T) \subset f(f(T)) \Rightarrow f(T) \subset T$.

- 10. (1) 全部写成无限小数, 然后作映射 $0.a_1a_2a_3a_4a_5a_6\cdots \to (0.a_1a_3a_5\cdots,0.a_2a_4a_6\cdots)$; (2) $y=\tan(\pi x-\frac{\pi}{2})$.
- 11. 因此在 ZF 公理体系中, 我们不考虑包含自身作为元素的集合.
- 12. 从 pip install numpy 开始. 学习使用 np.zeros, np.random, np.mean, np.sum, np.dot, np.linalg.det, np.eye 等函 数,并做切片和取值运算.

3 第 3 次习题课: 行列式 (1)

3.1 问题

- 1. 用行列式求解线性方程组 $\begin{cases} 2x_1 3x_2 = 7 \\ 5x_1 + 4x_2 = 6 \end{cases}$
- 2. 求以下向量在三维几何空间张成的平行六面体体积: $\alpha_1 = (3, 2, 1), \alpha_2 = (0, 3, 0), \alpha_3 = (7, 4, 2).$
- 3. 判断以下向量组的定向: (1,1), (3,-2); (2,1,0), (1,0,3), (1,1,1); (x,y,z), (z,x,y), (y,z,x); (x,y,z), (y,z,x), (z,x,y); 其中 x+y+z>0 且互不相等
- 4. 计算行列式: (1) $\begin{vmatrix} x-2 & 2 & -2 \\ 2 & x+1 & -4 \\ -2 & -4 & x+1 \end{vmatrix}$; (2) $\begin{vmatrix} 3 & 2 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -12 & -4 & 3 & 4 \\ 3 & x & 5 & 7 \end{vmatrix}$.
- 5. 对 n 阶矩阵 A 作如下操作: 第 1 行加上第 2 行的 k 倍, 第 2 行加上第 3 行的 k 倍, 以此类推; 最后, 第 n 行加上此 时第 1 行的 k 倍. 问做这些变换相当于在 A 左边乘一个什么样的矩阵? A 的行列式值会如何变化? 如果第 n 行加上 的是原来第 1 行的 k 倍呢?

6. 计算行列式
$$\begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ b_2 & 1 & 0 & \cdots & 0 \\ b_3 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_n & 0 & 0 & \cdots & 1 \end{vmatrix}$$
 $\begin{vmatrix} 1 + x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \end{vmatrix}$

7. 计算行列式
$$\begin{vmatrix} x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}$$

3. 计算行列式
$$\begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ & & & \ddots & \ddots & \vdots \end{vmatrix}$$
, 其中 $a_1a_2 \cdots a_n \neq a_1a_2 \cdots a_n \neq a$

7. 计算行列式
$$\begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}$$
8. 计算行列式
$$\begin{vmatrix} x_1-a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2-a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3-a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n-a_n \end{vmatrix}$$
9. 计算行列式
$$D_n = \begin{vmatrix} \alpha & \beta \\ \gamma & \alpha & \beta \\ \gamma &$$

10. 计算行列式
$$D_n = \begin{vmatrix} \cos \alpha & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2\cos \alpha & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2\cos \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2\cos \alpha & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2\cos \alpha \end{vmatrix} \in \mathbb{R}^{n \times n}.$$

11. 计算行列式
$$D_n = \begin{vmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} & \cdots & \frac{1}{a_1+b_n} \\ \frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} & \cdots & \frac{1}{a_2+b_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n+b_1} & \frac{1}{a_n+b_2} & \cdots & \frac{1}{a_n+b_n} \end{vmatrix} \in \mathbb{R}^{n \times n}.$$

3.2 解答

3.
$$\begin{vmatrix} 1 & 3 \\ 1 & -2 \end{vmatrix} = -5 \Rightarrow$$
 $£ \$; \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 3 & 1 \end{vmatrix} = -4 \Rightarrow$ $£ \$; \begin{vmatrix} x & z & y \\ y & x & z \\ z & y & x \end{vmatrix} = x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - y^2)$

$$yz - zx$$
) $\geq 0 \Rightarrow$ 右手; $\begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix} = 3xyz - x^3 - y^3 - z^3 \leq 0 \Rightarrow$ 左手.

4. (1)
$$\begin{vmatrix} x-2 & 2 & -2 \\ 2 & x+1 & -4 \\ -2 & -4 & x+1 \end{vmatrix} = (x-2)(x+1)^2 + 16 + 16 - 4(x+1) - 16(x-2) - 4(x+1) = x^3 - 27x + 54;$$
(2)
$$\begin{vmatrix} 3 & 2 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -12 & -4 & 3 & 4 \\ 3 & x & 5 & 7 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} * \begin{vmatrix} 3 & 4 \\ 5 & 7 \end{vmatrix} = -1.$$

$$(2) \begin{vmatrix} 3 & 2 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -12 & -4 & 3 & 4 \\ 3 & x & 5 & 7 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} * \begin{vmatrix} 3 & 4 \\ 5 & 7 \end{vmatrix} = -1.$$

5. 相当于左乘
$$\begin{bmatrix} 1 & k & 0 & 0 & \cdots & 0 \\ 0 & 1 & k & 0 & \cdots & 0 \\ 0 & 0 & 1 & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ k & k^2 & 0 & 0 & \cdots & 1 \end{bmatrix}$$
, 其行列式无变化, 因为是初等变换. 后面一问相当于左乘
$$\begin{bmatrix} 1 & k & 0 & 0 & \cdots & 0 \\ 0 & 1 & k & 0 & \cdots & 0 \\ 0 & 0 & 1 & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ k & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

其行列式有变化, 因为最后一步不是初等变换, 相较于原值乘上了 $1 + (-1)^{n-1}k^n$.

6. 用第一列减去第
$$i$$
 列的 b_i 倍, $i=2,3,\cdots,n$, 得到
$$\begin{vmatrix} a_1-\sum_{i=2}^n a_ib_i & a_2 & a_3 & \cdots & a_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \end{vmatrix} = 0$$

7. 法 1(加边法):
$$\begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} = \begin{vmatrix} 1 & x_1 & x_2 & x_3 & x_4 \\ 0 & 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ 0 & x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}, 然后用第 $i+1$ 行减去第 $1$$$

行的
$$x_i$$
 倍, $i = 1, 2, 3, 4$, 得到
$$\begin{vmatrix} 1 & x_1 & x_2 & x_3 & x_4 \\ -x_1 & 1 & 0 & 0 & 0 \\ -x_2 & 0 & 1 & 0 & 0 \\ -x_3 & 0 & 0 & 1 & 0 \\ -x_4 & 0 & 0 & 0 & 1 \end{vmatrix} = 1 + x_1^2 + x_2^2 + x_3^2 + x_4^2.$$

法 2(拆项法):
$$\begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} = \begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0+x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ 0+x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0+x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} = \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}$$

$$\begin{vmatrix} x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}$$

, 然后再依次拆第 2、3、4 列, 只需注意到若两列成比例则行列式为 0, 因此最后只剩下五

 $\begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}, \begin{vmatrix} x_1^2 & 0 & 0 & 0 \\ x_2x_1 & 1 & 0 & 0 \\ x_3x_1 & 0 & 1 & 0 \\ x_4x_1 & 0 & 0 & 1 \end{vmatrix}, \begin{vmatrix} 1 & x_1x_2 & 0 & 0 \\ 0 & x_2^2 & 0 & 0 \\ 0 & x_3x_2 & 1 & 0 \\ 0 & x_3x_2 & 1 & 0 \\ 0 & x_4x_2 & 0 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 0 & x_3x_1 & 0 \\ 0 & 1 & x_3x_2 & 0 \\ 0 & 0 & x_3^2 & 0 \\ 0 & 0 & x_3x_4 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 & x_4x_1 \\ 0 & 1 & 0 & x_4x_2 \\ 0 & 0 & 1 & x_4x_3 \\ 0 & 0 & 0 & x_4^2 \end{vmatrix}$

 $\begin{bmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & -a_2 & 0 & \cdots & 0 \\ 0 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -a_n \end{bmatrix}, \begin{bmatrix} x_1 & 0 & 0 & \cdots & 0 \\ x_1 & -a_2 & 0 & \cdots & 0 \\ x_1 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1 & 0 & 0 & \cdots & -a_n \end{bmatrix},$ 8. 采用第 7 题的法 2(拆项法), 最后剩下 n+1 项:

$$\begin{vmatrix} -a_1 & x_2 & 0 & \cdots & 0 \\ 0 & x_2 & 0 & \cdots & 0 \\ 0 & x_2 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_2 & 0 & \cdots & -a_n \end{vmatrix}, \dots, 它们分别是 $(-1)^n a_1 a_2 \cdots a_n, (-1)^{n-1} x_1 a_2 \cdots a_n, (-1)^{n-1} a_1 x_2 \cdots a_n, \dots, \underbrace{\text{整理得到原}}_{\text{行列式为}} (-1)^{n-1} a_1 a_2 \cdots a_n \left[\left(\sum_{i=1}^n \frac{x_i}{a_i} \right) - 1 \right].$
9. 若 $\beta \gamma = 0$, 则行列式为 α^n . 对于一般情形,按第一行展开得到 $D_n = \alpha D_{n-1} - \beta \gamma D_{n-2}$, 且有初值条件 $D_1 = \alpha$, $D_2 = \alpha^2 - \beta \gamma$, 然后用数列的特征值和特征公式设 $D_n = A \left(\frac{\alpha + \sqrt{\alpha^2 - 4\beta \gamma}}{2} \right)^n + B \left(\frac{\alpha - \sqrt{\alpha^2 - 4\beta \gamma}}{2} \right)^n$, 代入 $n = 1, 2$ 解出 $A \cap B$, 得到 $D_n = \frac{(\alpha + \sqrt{\alpha^2 - 4\beta \gamma})^{n+1} - (\alpha - \sqrt{\alpha^2 - 4\beta \gamma})^{n+1}}{2^{n+1} \sqrt{\alpha^2 - 4\beta \gamma}}.$$$

10. n=1 时, $D_1=\cos\alpha$; n=2 时, $D_2=\cos2\alpha$; 因此可以猜测 $D_n=\cos n\alpha$. 然后用数学归纳法, 对第一行展开得到 $D_{n+1} = 2\cos\alpha D_n - D_{n-1} = \cos(n+1)\alpha$, 知该假设成立.

11. 法 1: 将第 1 行至第 n-1 行减去第 n 行, 并提出各行和各列公因子, 得

$$D_n = \frac{\prod_{i=1}^{n-1} (a_n - a_i)}{\prod_{j=1}^{n} (a_n + b_j)} \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_{n-1} + b_1} & \frac{1}{a_{n-1} + b_2} & \cdots & \frac{1}{a_{n-1} + b_n} \\ 1 & 1 & \cdots & 1 \end{vmatrix};$$

再将第 1 列至第 n-1 列减去第 n 列, 并提出各行和各列的公因子, 得

$$D_n = \frac{\prod_{i=1}^{n-1} (a_n - a_i) \prod_{j=1}^{n-1} (b_n - b_j)}{\prod_{j=1}^{n} (a_n + b_j) \prod_{i=1}^{n-1} (a_i + b_n)} \begin{vmatrix} \frac{1}{a_1 + b_1} & \ddots & \frac{1}{a_1 + b_{n-1}} & 1\\ \vdots & \vdots & \ddots & \vdots\\ \frac{1}{a_{n-1} + b_1} & \cdots & \frac{1}{a_{n-1} + b_{n-1}} & 1\\ 0 & \cdots & 0 & 1 \end{vmatrix}.$$

按第 n 行展开得到递推式 $D_n = \frac{\prod_{i=1}^{n-1}(a_n - a_i) \prod_{j=1}^{n-1}(b_n - b_j)}{\prod_{j=1}^{n}(a_n + b_j) \prod_{i=1}^{n-1}(a_i + b_n)} D_{n-1}$, 并直接计算出 D_2 , 得

$$D_n = \frac{\prod_{1 \le j < i \le n} (a_i - a_j)(b_i - b_j)}{\prod_{i=1}^n \prod_{j=1}^n (a_i + b_j)}.$$

法 2: 若 $a_i = a_j$ 或 $b_i = b_j (i \neq j)$, 即两行 (或两列) 相同, 则 $D_n = 0$. 因此 D_n 含有因子 $\prod_{1 < j < i < n} (a_i - a_j)(b_i - b_j)$. 将 D_n 的每一行的公分母都作为公因子提到行列式符号之外,得 $D_n = \frac{1}{\prod_{i=1}^n \prod_{j=1}^n (a_i + b_j)} D_n'$. 显然 D_n' 也含有上述因子. 另一方面, 由于 D'_n 的 (i,j) 元为 $\prod_{k\neq j}(a_i+b_k)$, 所以每一个 a_i 在 D'_n 的展开式中的次数均为 n-1, 因此设 $D_n=$ $\lambda \prod_{1 \leq j < i \leq n} (a_i - a_j)(b_i - b_j)$. 为确定常数 λ 的值, 我们不妨令 $a_i = -b_i, i = 1, 2, \cdots, n$. 此时 D'_n 为对角行列式, 且有 $D_n = \prod_{i \neq j} (a_i - a_j) = \prod_{1 \leq j \leq i \leq n} (a_i - a_j)(b_i - b_j) \Rightarrow \lambda = 1$. 因此可得一样的结果.

4 第 4 次习题课: 行列式 (2)

4.1 问题

1. 计算行列式
$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ n & 1 & 2 & \cdots & n-1 \\ n-1 & n & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2 & 3 & 4 & \cdots & 1 \end{vmatrix}$$
. 你能求出行列式 $E_n = \begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{vmatrix}$ 的通式吗?
$$\begin{vmatrix} a & b & b & \cdots & b \\ c & a & b & \cdots & b \\ c & a & b & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a_n \end{vmatrix}$$
 3. $A \not\in n$ 阶矩阵, $\alpha = (1, 1, \cdots, 1)^T \not\in n$ 维列向量,且 $|A| = a, |A - \alpha\alpha^T| = b,$ 求 $|A + 2\alpha\alpha^T|$.

$$2. (1) 计算行列式 $D_n = \begin{vmatrix} a & b & b & \cdots & b \\ c & a & b & \cdots & b \\ c & c & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a \end{vmatrix}; (2) 计算行列式 $E_n = \begin{vmatrix} a_1 & b & b & \cdots & b \\ c & a_2 & b & \cdots & b \\ c & c & a_3 & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a_n \end{vmatrix}.$$$$

- 4. 考虑 3 线行列式 $D_n = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$,记其顺序主子式为 D_1, D_2, \cdots, D_n ,并假设它们都不为 0. 证明递推

关系 $D_s = a_s D_{s-1} - b_s c_s D_{s-2}, s \ge 3$, 并将该矩阵 M_n 写成下三角矩阵和对角元都为 1 的上三角矩阵的乘积.

5. 试确定所有 3 阶 (0,1) 行列式 (即所有元素只能是 0 或 1) 的最大值, 并给出证明和取到最大值的一个构造

6. 设
$$a_1, a_2, \dots, a_n \in \mathbb{N}_+$$
, 证明 n 阶行列式 $D_n = \begin{vmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{vmatrix}$ 能被 $2!3! \cdots (n-1)!$ 整除.

- 7. 设矩阵 $A \in \mathbb{R}^{n \times n}$ 非平凡. 证明: 若矩阵 A 的每一个元素 a_{ij} 的代数余子式 $A_{ij} = a_{ij}$, 则 $|A|^{n-2} = 1$.
- 8. 若方阵每一行每一列都恰有一个元素为 1, 其余的元素都是 0, 则称此方阵为置换矩阵. (1) 写出所有的 3 阶置换矩阵 这些矩阵最少可由其中的几个通过反复作乘法得到? (2) 证明任意 n 阶置换矩阵都可由以下 n-1 个矩阵反复作乘法得

到:
$$\begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, \dots, \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

进一步, 任意 n 阶置换矩阵都可由以下两个矩阵反复作乘法得到: $T=\begin{bmatrix}0&1&0&0&\cdots&0\\1&0&0&0&\cdots&0\\0&0&1&0&\cdots&0\\0&0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\cdots&1\end{bmatrix}, S=\begin{bmatrix}0&1&0&0&\cdots&0\\0&0&1&0&\cdots&0\\0&0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\cdots&1\\1&0&0&0&\cdots&0\end{bmatrix}.$

9. 设
$$n \geq 3, f_1, f_2, \dots, f_n$$
 是次数 $\leq n-2$ 的多项式, 证明: 对 $\forall a_1, a_2, \dots, a_n \in \mathbb{R}$, 行列式
$$\begin{vmatrix} f_1(a_1) & f_2(a_2) & \cdots & f_n(a_1) \\ f_1(a_2) & f_2(a_2) & \cdots & f_n(a_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(a_n) & f_2(a_n) & \cdots & f_n(a_n) \end{vmatrix} \equiv$$

0, 并举例说明条件"次数 $\leq n-2$ "不可去.

10. 计算行列式
$$D_n = \begin{vmatrix} 1 & \cos \phi_1 & \cos 2\phi_1 & \cdots & \cos(n-1)\phi_1 \\ 1 & \cos \phi_2 & \cos 2\phi_2 & \cdots & \cos(n-1)\phi_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cos \phi_n & \cos 2\phi_n & \cdots & \cos(n-1)\phi_n \end{vmatrix}$$
.

4.2 解答

1. 把后 n-1 列加到第一列, 提出公因子 $\frac{1}{2}n(n+1)$, 用第 (1,1) 元消去同列其他元素, 再按第一列展开得到 n-1 阶行列式:

$$D_{n} = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & 1 & 2 & \cdots & n-2 & n-1 \\ 1 & n & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 4 & 5 & \cdots & 1 & 2 \\ 1 & 3 & 4 & \cdots & n & 1 \end{vmatrix} = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & -1 & -1 & \cdots & -1 & -1 \\ 0 & n-2 & -2 & \cdots & -2 & -2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 2 & 2 & \cdots & 2-n & 2-n \\ 0 & 1 & 1 & \cdots & 1 & 1-n \end{vmatrix}$$
$$= \frac{1}{2}n(n+1) \begin{vmatrix} -1 & -1 & \cdots & -1 & -1 \\ n-2 & -2 & \cdots & -2 & -2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & \cdots & 2-n & 2-n \\ 1 & 1 & \cdots & 1 & 1-n \end{vmatrix}.$$

用所得 n-1 阶行列式的第 (1,1) 元消去同行的其他元素, 再按第一行展开得到 n-2 阶上三角行列式:

$$D_{n} = \frac{1}{2}n(n+1) \begin{vmatrix} -1 & 0 & \cdots & 0 & 0 \\ n-2 & -n & \cdots & -n & -n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 0 & \cdots & -n & -n \\ 1 & 0 & \cdots & 0 & -n \end{vmatrix} = -\frac{1}{2}n(n+1) \begin{vmatrix} -n & \cdots & -n & -n \\ & \ddots & \vdots & \vdots \\ & & -n & -n \\ & & & -n \end{vmatrix} = (-1)^{n-1} \frac{n+1}{2}n^{n-1}.$$

2. (1) 用倒数第一行减去倒数第二行, 然后用倒数第二行减去倒数第三行, 以此类推, 得到

$$D_n = \begin{vmatrix} a & b & b & \cdots & b & b \\ c - a & a - b & 0 & \cdots & 0 & 0 \\ 0 & c - a & a - b & \cdots & 0 & 0 \\ 0 & 0 & c - a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & c - a & a - b \end{vmatrix}.$$

接最后一列展开, 知 $D_n = b(-1)^{n+1}(c-a)^{n-1} + (a-b)D_{n-1}$. 初始条件是 $D_1 = a$, 因此知 $D_n = \frac{b(a-c)^n - c(a-b)^n}{b-c}$.

(2) 按第
$$n$$
 列拆项, 得 $E_n = \begin{vmatrix} a_1 & b & b & \cdots & b+0 \\ c & a_2 & b & \cdots & b+0 \\ c & c & a_3 & \cdots & b+0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & b+(a_n-b) \end{vmatrix} = \begin{vmatrix} a_1 & b & b & \cdots & b \\ c & a_2 & b & \cdots & b \\ c & c & a_3 & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & b+(a_n-b) \end{vmatrix} + (a_n-b)E_{n-1} = b(a_1-c)(a_2-b)$
 $c) \cdots (a_{n-1}-c) + (a_n-b)E_{n-1};$ 按第 n 列拆项 (或由对称性), 得 $E_n = c(a_1-b)(a_2-b)\cdots(a_{n-1}-b) + (a_n-c)E_{n-1}$.

$$c)\cdots(a_{n-1}-c)+(a_n-b)E_{n-1};$$
 接第 n 列拆坝 (政田対称性),得 $E_n=c(a_1-b)(a_2-b)\cdots(a_{n-1}-b)+(a_n-c)E_{n-1}.$ 两式联立得 $E_n=\frac{bf(c)-cf(b)}{b-c}$,其中 $f(x)=(a_1-x)(a_2-x)\cdots(a_n-x).$

$$\begin{vmatrix} a_{11}+x & a_{12}+x & \cdots & a_{1n}+x \\ a_{21}+x & a_{22}+x & \cdots & a_{2n}+x \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}+x & a_{n2}+x & \cdots & a_{nn}+x \end{vmatrix}=\begin{vmatrix} a_{11}+x & a_{12}+x & \cdots & a_{1n}+x \\ a_{21}-a_{11} & a_{22}-a_{12} & \cdots & a_{2n}-a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}-a_{11} & a_{n2}-a_{12} & \cdots & a_{nn}-a_{1n} \end{vmatrix}$$
,因此是线性函数,由 $f(0)=a, f(-1)=b$ 知 $f(x)=a+(a-b)x$,因此 $f(2)=3a-2b$.

是线性函数. 由 f(0) = a, f(-1) = b 知 f(x) = a + (a - b)x, 因此 f(2) = 3a - 2b.

定线性函数. 田
$$f(0) = a, f(-1) = b$$
 知 $f(x) = a + (a - b)x$, 因此 $f(2) = 3a - 2b$.

4. 按最后一行展开立刻得到递推关系, $M_n = \begin{bmatrix} D_1 & 0 \\ b_2 & \frac{D_2}{D_1} & 0 \\ & b_3 & \frac{D_3}{D_2} & \ddots \\ & \ddots & \ddots & 0 \\ & & b_{n-1} & \frac{D_{n-1}}{D_{n-2}} & 0 \\ & & b_n & \frac{D_n}{D_{n-1}} \end{bmatrix} \begin{bmatrix} 1 & c_2 \frac{1}{D_1} \\ & 1 & c_3 \frac{D_1}{D_2} \\ & & 1 & c_4 \frac{D_2}{D_3} \\ & & \ddots & \ddots \\ & & & \ddots & \ddots \\ & & & & 1 \end{bmatrix}$

5. 按第 1 行展开,得到 $D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \begin{vmatrix} a_{23} & a_{21} \\ a_{33} & a_{31} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \le 3$. 下面证明 $D \neq 3$. 若不然,则必有 $a_{11} = a_{12} = a_{13} = 1$, 且 $a_{12} = a_{13} = 1$, 且 $a_{13} = a_{14} = a_{15} = a_{15}$

5. 按第 1 行展开,得到
$$D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \begin{vmatrix} a_{23} & a_{21} \\ a_{33} & a_{31} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \le 3$$
. 下面证明 $D \neq 3$. 若不然,则必有 $a_{11} = a_{12} = a_{13} = 1$,且 $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{21} \end{vmatrix} = \begin{vmatrix} a_{23} & a_{21} \\ a_{21} & a_{22} \end{vmatrix} = 1$. 前两个行列式为 1 可以得到 $a_{22} = a_{33} = 1$, $a_{23} = a_{31} = 1$,

而此时
$$\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21}a_{32} - a_{22}a_{31} = a_{21}a_{32} - 1 \le 0$$
,矛盾. 因此 $D \le 2$,一个构造是 $\begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 2$.

6. 注意到
$$D_n = \begin{vmatrix} 1 & a_1 & a_1(a_1-1) & \cdots & a_1(a_1-1) \cdots (a_1-n+2) \\ 1 & a_2 & a_2(a_2-1) & \cdots & a_2(a_2-1) \cdots (a_2-n+2) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & a_n & a_n 1(a_n-1) & \cdots & a_n(a_n-1) \cdots (a_n-n+2) \end{vmatrix}$$
 (利用初等列变换,用后面的列加减前面的列),

再将第 k 列提取公因子 $(k-1)!, k=3,4,\dots,n$ 即可.

7. 首先容易看出
$$|A| = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij}^{2} > 0$$
. 其次 $|A|^{2} = |AA^{T}| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \begin{vmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{vmatrix} =$

$$\begin{vmatrix} |A| & 0 & \cdots & 0 \\ 0 & |A| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |A| \end{vmatrix} = |A|^n \Rightarrow |A|^{n-2} = 1.$$

相邻对换的乘积, 因此可被这 n-1 个相邻对换生成; 进一步, 所有相邻对换都可被表示为 $S^{n-k}TS^k, k=0,1,\cdots,n-1$, 因此可被 S,T 生成.

9. 不妨设
$$a_1, a_2, \dots, a_n$$
 互不相同. 考虑 $F(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f_1(a_2) & f_2(a_2) & \dots & a_n(a_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(a_n) & f_2(a_n) & \dots & f_n(a_n) \end{vmatrix}$, 这是一个至多 $n-2$ 次多项式, 有至少

 a_2, a_3, \dots, a_n 这 n-1 个不同的根, 因此必恒等于 0. 若删去条件 "次数 $\leq n-2$ ", 则可令 $f_k(x) = x^{k-1}$, 此时原行列式 构成 Vandermonde 行列式, 只要 a_1, a_2, \dots, a_n 两两不同就不为 0.

10. 由高中三角函数知识知 $\cos k\theta = 2^{k-1}\cos^k\theta + P_{k-2}(\cos\theta)$, 其中 P_{k-2} 是 k-2 次多项式. 因此通过初等列变换有

$$D_{n} = 2^{\frac{(n-1)(n-2)}{2}} \begin{vmatrix} 1 & \cos\phi_{1} & \cos^{2}\phi_{1} & \cdots & \cos^{n-1}\phi_{1} \\ 1 & \cos\phi_{2} & \cos^{2}\phi_{2} & \cdots & \cos^{n-1}\phi_{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cos\phi_{n} & \cos^{2}\phi_{n} & \cdots & \cos^{n-1}\phi_{n} \end{vmatrix} = 2^{\frac{(n-1)(n-2)}{2}} \prod_{1 \leq j < i \leq n} (\cos\phi_{i} - \cos\phi_{j}).$$

第 5 次习题课:线性空间,行列式 (3)

5.1 问题

- 1. 在正实数集 \mathbb{R}^+ 上定义运算加法 $a \oplus b = ab, \forall a, b \in \mathbb{R}^+$ 和数乘 $ka = a^k, \forall k \in \mathbb{Q}$, 证明 \mathbb{R}^+ 在这两种运算下构成 \mathbb{Q} -线 性空间; 并问 $110, \sqrt{105}$ 是否属于 $span\{1, 2, \dots, 10\}$.
- 2. 设 $W = \{f(x)|f(1) = 0, f(x) \in \mathbb{R}[x]_n\}$, 这里 $\mathbb{R}[x]_n$ 表示实数域 \mathbb{R} 上的次数小于 n 的多项式添上零多项式构成的线 性空间. (1) 证明 W 是 $\mathbb{R}[x]_n$ 的线性子空间; (2) 求 W 的维数和一组基.
- 3. 判断以下向量组线性相关还是线性无关; 若线性相关, 试找出其中一个线性无关的部分组, 同时能线性表出向量组其

余的每个向量. (1)
$$A$$
 的列向量组; (2) A 的行向量组. $A = \begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 5 \end{bmatrix}$.

- 4. 已知 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关, 试判断以下各向量组的线性相关性: (1) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$; (2) $\alpha_1, \alpha_2 \alpha_3$ $\alpha_3, \alpha_1 - \alpha_3 + \alpha_4; (3) \alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4; (4) \alpha_1 + \alpha_4, \alpha_2 + 8\alpha_4, \alpha_2 + 5\alpha_3 + \alpha_4, 3\alpha_1 + 7\alpha_2 + \alpha_3, \alpha_1 - \alpha_3.$ 5. 设 $\alpha_1, \alpha_2, \cdots, \alpha_s, \beta$ 为 s+1 个 n 维向量, 且 $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_s$. 证明向量组 $\beta - \alpha_1, \beta - \alpha_2, \cdots, \beta - \alpha_s$ 线性无 关的充要条件是 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关.
- 6. 设 f(x) 是复系数一元多项式, 且对于任意整数 n 有 f(n) 仍是整数. 证明或否定: (1) f(x) 系数都是有理数; (2) f(x)系数都是整数.

7. 计算行列式
$$D = \begin{vmatrix} 1 & 2 & 4 & 5 & 7 & 4 \\ 2 & 3 & 0 & 0 & 2 & 2 \\ 3 & 0 & 0 & 0 & 0 & 1 \\ 5 & 0 & 0 & 0 & 0 & 2 \\ 5 & 5 & 0 & 0 & 6 & 8 \\ 3 & 5 & 7 & 8 & 6 & 4 \end{vmatrix}$$

8. 计算行列式 $D_1 = \begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{vmatrix}$ 和 $D_2 = \begin{vmatrix} 0 & 741 & 886 & 114 & 514 \\ -741 & 0 & 1919 & 810 & 2002 \\ -886 & -1919 & 0 & 520 & 1314 \\ -114 & -810 & -520 & 0 & 220 \\ -514 & -2002 & -1314 & -220 & 0 \end{vmatrix}$

- 9. 设 $A, B \in \mathbb{R}^{n \times n}$, I 表示 n 阶单位矩阵. 计算行列式 $D_1 = \begin{vmatrix} I & -B \\ A & 0 \end{vmatrix}$ 和 $D_2 = \begin{vmatrix} I & -B \\ 0 & AB \end{vmatrix}$, 并证明 $D_1 = D_2$.
- 10. 求 n 阶方阵 $A = (a_{ij})$ 的行列式 A, 其中 $a_{ij} = \frac{\alpha_i^n \beta_j^n}{\alpha_i \beta_i}, i, j = 1, 2, \dots, n$.

5.2 解答

- 1. 交換律结合律显然; 零元存在: $1 \oplus a = a \oplus 1 = a$; 负元存在: $a \oplus \frac{1}{a} = \frac{1}{a} \oplus a = 1$; 幺元存在: $1a = a^1 = a$; 左分配律: $(k+l)a=a^{k+l}=a^ka^l=ka\oplus la;$ 右分配律: $k(a\oplus b)=(ab)^k=a^kb^k=ka\oplus kb.$ 都不属于, 因为整数只能生成整数, 而 110 = 11 × 10 其中 11 是素数无法生成.
- 2. (1) 容易证明对 $\forall f(x), g(x) \in W \Rightarrow af(x) + b(x) \in W$, 因此是线性子空间. (2) 令 $f(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, $f(1) = 0 \Rightarrow a_0 + a_1 + \dots + a_{n-1} = 0$, 因此 $f(x) = a_1(x-1) + a_2(x^2-1) + \dots + a_{n-1}(x^{n-1}-1)$. 下面我们只需证明 $x-1, x^2-1, \dots, x^{n-1}-1$ 确实是 W 的一组基, 而其线性无关性是显然的, 所以 $\dim W = n-1$.
- 3. (1) 线性相关; 其中第 1 列、第 2 列和第 5 列构成线性无关组, 且 $2\alpha_1 + 3\alpha_2 = \alpha_3$, $-5\alpha_1 4\alpha_2 = \alpha_4$;
- (2) 线性相关; 其中第 2 行、第 3 行和第 4 行构成线性无关组, 且 $-\frac{3}{5}\beta_2 \frac{1}{5}\beta_3 = \beta_1$.
- 4. (1) 线性相关; $(\alpha_1 + \alpha_2) (\alpha_2 + \alpha_3) + (\alpha_3 + \alpha_4) (\alpha_4 + \alpha_1) = 0$. (2) 线性无关. (3) 线性无关. (4) 线性相关; 因为 这有五个向量却只有四个自由度.
- 5. 用矩阵表示为 $(\beta \alpha_1, \beta \alpha_2, \dots, \beta \alpha_s) = (\alpha_1, \alpha_2, \dots, \alpha_s)$ $\begin{pmatrix} 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & 1 & 0 \end{pmatrix} := (\alpha_1, \alpha_2, \dots, \alpha_s)P.$ 容易计算得

到
$$\det P = (s-1)(-1)^{s-1} \neq 0$$
,因此两者线性无关等价.

6. (1) 设 $f(x) = a_0 + a_1 x + \dots + a_m x^m (a_m \neq 0)$. 取 $x_k = k$ 代入,得到线性方程组
$$\begin{cases} a_0 + a_1 x_0 + \dots + a_m x_0^m = f(x_0), \\ a_0 + a_1 x_1 + \dots + a_m x_1^m = f(x_1), \\ \dots \\ a_0 + a_1 x_m + \dots + a_m x_m^m = f(x_m). \end{cases}$$
其系数行列式是 Vandermonde 行列式不为 0,因此由 Cramer 法则其有唯一解 $a_i = \frac{D_i}{D}, i = 0, 1, \dots, m$. 由于 D_i 的元

素均为整数, 因此 a_i 是有理数. (2) 结论不对, 反例是 $f(x) = \frac{1}{2}x^2 + \frac{1}{2}x$.

7. 按第
$$3\sqrt{4}$$
 行展开: $D = (-1)^{3+4+1+6} \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} * \begin{vmatrix} 2 & 4 & 5 & 7 \\ 3 & 0 & 0 & 2 \\ 5 & 0 & 0 & 6 \\ 5 & 7 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 5 & 7 \\ 3 & 0 & 0 & 2 \\ 5 & 0 & 0 & 6 \\ 5 & 7 & 8 & 6 \end{vmatrix} .$ 再按第 $2\sqrt{3}$ 行展开: $D = (-1)^{2+3+1+4} \begin{vmatrix} 3 & 2 \\ 5 & 6 \end{vmatrix} *$

$$\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = -24.$$

8. 前者是偶数阶斜对称矩阵.若 a=0.则按第 1、2 行展开,得到 $D_1=(-1)^{1+2+3+4}\begin{vmatrix} b & c \\ d & e \end{vmatrix}*\begin{vmatrix} -b & -d \\ -c & -e \end{vmatrix}=(be-cd)^2$. 若 $a\neq 0$,则将第 1 行的 $\frac{d}{a}$ 倍和第 2 行的 $\frac{b}{a}$ 倍加到第 3 行上,将第 1 行的 $\frac{e}{a}$ 倍和第 2 行的 $\frac{e}{a}$ 倍加到第 4 行上,得到 $\begin{vmatrix} 0 & a & b & c \end{vmatrix}$

$$D_2 = \begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ 0 & 0 & 0 & f + \frac{cd}{a} - \frac{be}{a} \\ 0 & 0 & -f + \frac{be}{a} - \frac{cd}{a} & 0 \end{vmatrix}. \text{ M fix β 1, 2 fix β}, \text{ β 2 fix β}, \text{ β}$$

后者是奇数阶斜对称矩阵, 因此行列式为 $D_2=0$ (因为 $|M_2|=|M_2^T|=|-M_2|=(-1)^{2k+1}|M_2|\Rightarrow |M_2|=0$).

- 9. 按前 n 行展开, 得到 $D_1 = |A||B|$, $D_2 = |AB|$. 将后面 n 行减去前面 n 行的 A 倍 (按矩阵 (I, -B) 左乘 A 理解), 可使 M_1 转化为 M_2 .
- 10. 利用 $x^n y^n = (x y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1})$ 及行列式乘法规则 |AB| = |A||B|, 知

$$|A| = \begin{vmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{vmatrix} \begin{vmatrix} \beta_1^{n-1} & \beta_2^{n-1} & \cdots & \beta_n^{n-1} \\ \beta_1^{n-2} & \beta_2^{n-2} & \cdots & \beta_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_1 & \beta_2 & \cdots & \beta_n \\ 1 & 1 & \cdots & 1 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \prod_{1 \le j < i \le n} (\alpha_i - \alpha_j)(\beta_i - \beta_j).$$

6 第 6 次习题课: TBD

7 致谢

感谢北京大学数学科学学院的高峡老师、王福正老师和田青春老师,他们教会了笔者高等代数的基本知识,他们的讲义也成为了笔者的重要参考. 感谢北京大学数学科学学院 22 级本科生吕承融同学,他提供了大量精彩的题目. 感谢选修 2024 秋高等代数 I 习题课 3 班的全体同学,他们提供了很多有意思的做法和反馈.