Assignment -4

Assignment Date	18 October 2022
Student Name	Krishna R
Student Roll Number	811519104060
Maximum Marks	2 Marks

```
[1]: import pandas as pd
     from matplotlib import pyplot as plt
     %matplotlib inline
     import seaborn as sns
     from sklearn.experimental import enable_iterative_imputer
     from sklearn_impute import IterativeImputer
     import pickle
     import numpy as np
     from sklearn.preprocessing import StandardScaler
[2]: | df=pd_read_csv(r"C:\Users\Admin\Downloads\Mall_Customers.csv")
[3]: df.head()
[3]:
        CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
                      Male
                                                                          39
                 1
                 2
                      Male
                                                  15
                                                                          81
     1
                             21
     2
                 3 Female
                             20
                                                  16
                                                                           6
     3
                 4 Female
                              23
                                                                          77
                                                  16
     4
                 5 Female
                                                  17
                             31
                                                                          40
[4]: df.shape
[4]: (200, 5)
    Checking the Null Values
[5]: df.isnull().sum()
[5]: CustomerID
                               0
     Gender
                               0
                               0
     Age
     Annual Income (k$)
                               0
     Spending Score (1-100)
                               0
     dtype: int64
```

Renaming The Columns

[6]: df_columns=["CustomerID", "Gender", "Age", "Annual_Income", "Spending_Score"]
Univariant Plot

[7]: plt.figure()
df_Annual_Income_plot(kind="hist", figsize=(12,6))

[7]: <AxesSubplot:ylabel='Frequency'>

[8]: plt_scatter(df_index,df["Annual_Income"])

[8]: <matplotlib.collections.PathCollection at 0x15b1393a340>

[9]: plt_scatter(df_index,df["Spending_Score"])

[9]: <matplotlib.collections.PathCollection at 0x15b139bb7f0>


```
[10]: # z score computation
      outliers=[]
      def detect_outliers(data):
              threshold=3
              mean=np_mean(data)
              std=np_std(data)
              for i in data:
                   z_score=(i-mean)/std
                   if np.abs(z_score)>threshold:
                       outliers.append(i)
              return outliers
```

Bivariant Plot

1

```
[11]: sns.barplot(x="Gender",y="Annual_Income",data=df)
```

[11]: <AxesSubplot:xlabel='Gender', ylabel='Annual_Income'>

Male

21

[12]: df CustomerID Gender Age Annual_Income Spending_Score [12]: Male 19 15 2

15

81

2	3 Female	20	16	6
3	4 Female	23	16	77
4	₅ Female	31	17	40
195	196 Female	35	120	79
196	197 Female	45	126	28
197	198 Male	32	126	74
198	199 Male	32	137	18
199	200 Male	30	137	83

[200 rows x 5 columns]

Checking Outliers

[13]: sns_boxplot(data=df)

[13]: <AxesSubplot:>

Description About the Dataset

[14]: df.describe()

[14]:		CustomerID	Age	Annual_Income	Spending_Score
	count	200.000000	200.000000	200.000000	200.000000
	mean	100.500000	38.850000	60.560000	50.200000
	std	57.879185	13.969007	26.264721	25.823522
	min	1.000000	18.000000	15.000000	1.000000

25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

[15]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual_Income	200 non-null	int64
4	Spending_Score	200 non-null	int64

dtypes: int64(4), object(1) memory usage: 7.9+ KB Label Encoding for Gender

[16]: df["Gender"]=df["Gender"].replace(["Male", "Female"],[0,1])

[17]: df.head()

[17]: CustomerID Gender Age Annual_Income Spending_Score

0	1	0	19	15	39
1	2	0	21	15	81
2	3	1	20	16	6
3	4	1	23	16	77
4	5	1	31	17	40

[18]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	int64
2	Age	200 non-null	int64
3	Annual_Income	200 non-null	int64
4	Spending_Score	200 non-null	int64

dtypes: int64(5)

memory usage: 7.9 KB

Multivariant Plot

[19]: sns.pairplot(df)

[19]: <seaborn.axisgrid.PairGrid at 0x15b13bb63a0>

Scaling The Data

[20]: scaler = StandardScaler() scaler.fit(df)

[20]: StandardScaler()

[21]: print(scaler.transform(df))

 $[[-1.7234121 \ -1.12815215 \ -1.42456879 \ -1.73899919 \ -0.43480148]$

```
[-1.70609137 -1.12815215 -1.28103541 -1.73899919
                                               1.19570407]
[-1.68877065 0.88640526 -1.3528021 -1.70082976 -1.71591298]
[-1.67144992 0.88640526 -1.13750203 -1.70082976
                                                1.04041783]
[-1.6541292\ 0.88640526\ -0.56336851\ -1.66266033\ -0.39597992]
[-1.63680847 0.88640526 -1.20926872 -1.66266033
                                                1.001596271
[-1.61948775 0.88640526 -0.27630176 -1.62449091 -1.71591298]
[-1.60216702 0.88640526 -1.13750203 -1.62449091
                                                1.70038436]
[-1.5848463 -1.12815215 1.80493225 -1.58632148 -1.83237767]
[-1.56752558 0.88640526 -0.6351352 -1.58632148
                                                0.84631002]
[-1.55020485 -1.12815215 2.02023231 -1.58632148 -1.4053405 ]
[-1.53288413 0.88640526 -0.27630176 -1.58632148
                                               1.89449216]
[-1.5155634 0.88640526 1.37433211 -1.54815205 -1.36651894]
[-1.49824268 0.88640526 -1.06573534 -1.54815205
                                                1.040417831
[-1.48092195 -1.12815215 -0.13276838 -1.54815205 -1.44416206]
[-1.46360123 -1.12815215 -1.20926872 -1.54815205
                                               1.118060951
[-1.4462805 0.88640526 -0.27630176 -1.50998262 -0.59008772]
[-1.42895978 -1.12815215 -1.3528021 -1.50998262 0.61338066]
[-1.41163905 -1.12815215 0.94373197 -1.43364376
                                               -0.82301709
[-1.39431833 0.88640526 -0.27630176 -1.43364376
                                                1.8556706 1
[-1.3769976 -1.12815215 -0.27630176 -1.39547433 -0.59008772]
[-1.35967688 -1.12815215 -0.99396865 -1.39547433
                                                0.885131581
[-1.34235616 0.88640526 0.51313183 -1.3573049 -1.75473454]
[-1.32503543 -1.12815215 -0.56336851 -1.3573049 0.88513158]
[-1.30771471 0.88640526 1.08726535 -1.24279661 -1.4053405 ]
[-1.29039398 -1.12815215 -0.70690189 -1.24279661
                                                1.23452563]
[-1.27307326 0.88640526 0.44136514 -1.24279661 -0.7065524]
[-1.25575253 -1.12815215 -0.27630176 -1.24279661
                                                0.41927286
[-1.23843181 0.88640526 0.08253169 -1.20462718 -0.74537397]
[-1.22111108 0.88640526 -1.13750203 -1.20462718
                                               1.42863343]
[-1.20379036 -1.12815215 1.51786549 -1.16645776 -1.7935561]
[-1.18646963 0.88640526 -1.28103541 -1.16645776 0.88513158]
[-1.16914891 -1.12815215 1.01549866 -1.05194947 -1.7935561 ]
[-1.15182818 -1.12815215 -1.49633548 -1.05194947 1.62274124]
[-1.13450746 0.88640526 0.7284319 -1.05194947 -1.4053405]
[-1.11718674 0.88640526 -1.28103541 -1.05194947 1.19570407]
[-1.09986601 0.88640526 0.22606507 -1.01378004 -1.28887582]
[-1.08254529 0.88640526 -0.6351352 -1.01378004 0.88513158]
[-1.06522456\ 0.88640526\ -0.20453507\ -0.89927175
                                               -0.93948177
[-1.04790384 0.88640526 -1.3528021 -0.89927175
                                                0.962774711
[-1.03058311 0.88640526 1.87669894 -0.86110232 -0.59008772]
[-1.01326239 -1.12815215 -1.06573534 -0.86110232
                                                1.62274124]
[-0.99594166 -1.12815215 0.65666521 -0.82293289 -0.55126616]
[-0.97862094 0.88640526 -0.56336851 -0.82293289
                                                0.41927286
[-0.96130021 \ 0.88640526 \ 0.7284319 \ -0.82293289 \ -0.86183865]
[-0.94397949 0.88640526 -1.06573534 -0.82293289
                                                 0.5745591
[-0.92665877 0.88640526 0.80019859 -0.78476346 0.18634349]
[-0.90933804 \ 0.88640526 \ -0.85043527 \ -0.78476346 \ -0.12422899]
[-0.89201732\ 0.88640526\ -0.70690189\ -0.78476346\ -0.3183368\ ]
```

```
[-0.87469659 0.88640526 -0.56336851 -0.78476346 -0.3183368]
[-0.85737587 0.88640526 0.7284319 -0.70842461
                                                 0.069878811
[-0.84005514 -1.12815215 -0.41983513 -0.70842461
                                                 0.38045129]
[-0.82273442 0.88640526 -0.56336851 -0.67025518
                                                 0.147521931
[-0.80541369 -1.12815215 1.4460988 -0.67025518
                                                 0.38045129]
[-0.78809297 \ 0.88640526 \ 0.80019859 \ -0.67025518 \ -0.201872121]
[-0.77077224 -1.12815215 \ 0.58489852 \ -0.67025518 \ -0.35715836]
[-0.75345152 \ 0.88640526 \ 0.87196528 \ -0.63208575 \ -0.007764311]
[-0.73613079 -1.12815215 2.16376569 -0.63208575 -0.16305055]
[-0.71881007 0.88640526 -0.85043527 -0.55574689
                                                 0.031057251
[-0.70148935 -1.12815215 1.01549866 -0.55574689
                                                -0.163050551
[-0.68416862 -1.12815215 2.23553238 -0.55574689
                                                 0.22516505]
[-0.6668479 -1.12815215 -1.42456879 -0.55574689
                                                 0.186343491
[-0.64952717 \ 0.88640526 \ 2.02023231 \ -0.51757746
                                                 0.06987881]
[-0.63220645 0.88640526 1.08726535 -0.51757746
                                                 0.341629731
[-0.61488572 -1.12815215 1.73316556 -0.47940803
                                                 0.03105725]
[-0.597565 -1.12815215 -1.49633548 -0.47940803 0.34162973]
[-0.58024427 \ 0.88640526 \ 0.29783176 \ -0.47940803 \ -0.00776431]
[-0.56292355 0.88640526 2.091999 -0.47940803 -0.08540743]
[-0.54560282 -1.12815215 -1.42456879 -0.47940803
                                                 0.34162973]
[-0.5282821 \ 0.88640526 \ -0.49160182 \ -0.47940803 \ -0.124228991]
[-0.51096138 -1.12815215 2.23553238 -0.4412386 0.18634349]
[-0.49364065 0.88640526 0.58489852 -0.4412386 -0.3183368]
[-0.47631993 0.88640526 1.51786549 -0.40306917 -0.04658587]
[-0.4589992 0.88640526 1.51786549 -0.40306917
                                                 0.22516505]
[-0.44167848 -1.12815215 1.4460988 -0.25039146 -0.12422899]
[-0.42435775 -1.12815215 -0.92220196 -0.25039146
                                                 0.14752193]
[-0.40703703 0.88640526 0.44136514 -0.25039146 0.10870037]
[-0.3897163 -1.12815215 0.08253169 -0.25039146 -0.08540743]
[-0.37239558 0.88640526 -1.13750203 -0.25039146 0.06987881]
[-0.35507485 0.88640526 0.7284319 -0.25039146 -0.3183368]
[-0.33775413 -1.12815215 1.30256542 -0.25039146 0.03105725]
[-0.3204334 -1.12815215 -0.06100169 -0.25039146 0.18634349]
[-0.30311268 -1.12815215 2.02023231 -0.25039146 -0.35715836]
[-0.28579196 \ 0.88640526 \ 0.51313183 \ -0.25039146 \ -0.24069368]
[-0.26847123 0.88640526 -1.28103541 -0.25039146 0.26398661]
[-0.25115051 -1.12815215 \ 0.65666521 -0.25039146 \ -0.16305055]
[-0.23382978 0.88640526 1.15903204 -0.13588317
                                                 0.30280817]
[-0.21650906 0.88640526 -1.20926872 -0.13588317
                                                 0.186343491
[-0.19918833 0.88640526 -0.34806844 -0.09771374
                                                 0.380451291
[-0.18186761 \ 0.88640526 \ 0.80019859 \ -0.09771374 \ -0.16305055]
[-0.16454688 0.88640526 2.091999 -0.05954431 0.18634349]
[-0.14722616 -1.12815215 -1.49633548 -0.05954431 -0.35715836]
[-0.12990543 -1.12815215 \ 0.65666521 -0.02137488 \ -0.04658587]
[-0.11258471 \ 0.88640526 \ 0.08253169 \ -0.02137488 \ -0.39597992]
[-0.09526399 0.88640526 -0.49160182 -0.02137488 -0.3183368]
[-0.07794326 -1.12815215 -1.06573534 -0.02137488 0.06987881]
[-0.06062254 \ 0.88640526 \ 0.58489852 \ -0.02137488 \ -0.12422899]
```

```
[-0.04330181 \ 0.88640526 \ -0.85043527 \ -0.02137488 \ -0.00776431]
[-0.02598109 -1.12815215 0.65666521 0.01679455 -0.3183368]
[-0.00866036 -1.12815215 -1.3528021 0.01679455 -0.04658587]
[ 0.00866036  0.88640526  -1.13750203  0.05496398  -0.35715836]
[ 0.02598109 0.88640526 0.7284319 0.05496398 -0.08540743]
[ 0.04330181 -1.12815215 2.02023231 0.05496398 0.341629731
[ 0.06062254 -1.12815215 -0.92220196 0.05496398 0.18634349]
[ 0.07794326 -1.12815215 0.7284319 0.05496398 0.22516505]
[ 0.09526399  0.88640526 -1.28103541  0.05496398 -0.3183368 ]
[ 0.11258471  0.88640526  1.94846562  0.09313341  -0.00776431]
[ 0.12990543 -1.12815215 1.08726535 0.09313341 -0.16305055]
[ 0.14722616 -1.12815215 2.091999 0.09313341 -0.27951524]
[ 0.16454688 -1.12815215 1.94846562 0.09313341 -0.08540743]
[ 0.18186761 -1.12815215 1.87669894 0.09313341 0.06987881]
[ 0.19918833  0.88640526 -1.42456879  0.09313341  0.14752193]
[ 0.21650906  0.88640526  -0.06100169  0.13130284  -0.3183368 ]
[ 0.23382978 -1.12815215 -1.42456879 0.13130284 -0.16305055]
[ 0.25115051  0.88640526 -1.49633548  0.16947227 -0.08540743]
[ 0.26847123  0.88640526 -1.42456879  0.16947227 -0.00776431]
[ 0.28579196  0.88640526  1.73316556  0.16947227  -0.27951524]
[ 0.30311268 0.88640526 0.7284319 0.16947227 0.34162973]
[ 0.33775413  0.88640526  0.80019859  0.24581112  0.26398661]
[ 0.35507485 -1.12815215 -0.85043527 0.24581112 0.22516505]
[ 0.37239558 0.88640526 -0.06100169 0.24581112 -0.39597992]
[ 0.40703703 -1.12815215  0.010765  0.32214998  1.58391968]
[ 0.42435775  0.88640526 -1.13750203  0.36031941 -0.82301709]
[ 0.44167848  0.88640526  -0.56336851  0.36031941  1.04041783]
[ 0.4589992 -1.12815215 0.29783176 0.39848884 -0.59008772]
[ 0.47631993 -1.12815215 0.08253169 0.39848884 1.73920592]
[ 0.49364065 -1.12815215 1.4460988 0.39848884 -1.52180518]
[ 0.51096138 -1.12815215 -0.06100169 0.39848884 0.96277471]
[ 0.5282821 -1.12815215 0.58489852 0.39848884 -1.5994483 ]
[ 0.54560282 -1.12815215  0.010765  0.39848884  0.96277471]
[ 0.56292355  0.88640526 -0.99396865  0.43665827 -0.62890928]
[ 0.58024427 0.88640526 -0.56336851 0.43665827 0.80748846]
           -1.12815215 -1.3528021 0.4748277 -1.75473454]
0.597565
[ 0.61488572  0.88640526 -0.70690189  0.4748277  1.467454991
[ 0.63220645  0.88640526  0.36959845  0.4748277  -1.67709142]
[ 0.6668479 -1.12815215 -1.42456879 0.51299713 -1.56062674]
[ 0.68416862  0.88640526 -0.27630176  0.51299713  0.84631002]
[ 0.70148935  0.88640526  1.30256542  0.55116656  -1.75473454]
[ 0.71881007 -1.12815215 -0.49160182 0.55116656 1.6615628 ]
[ 0.73613079 0.88640526 -0.77866858 0.58933599 -0.39597992]
[ 0.75345152  0.88640526 -0.49160182  0.58933599  1.42863343]
[ 0.77077224 -1.12815215 -0.99396865 0.62750542 -1.48298362]
```

```
[ 0.78809297 -1.12815215 -0.77866858 0.62750542 1.81684904]
[ 0.80541369 -1.12815215 0.65666521
                                    0.62750542 - 0.55126616
[ 0.82273442 0.88640526 -0.49160182
                                    0.62750542 0.92395314]
[ 0.84005514 0.88640526 -0.34806844
                                    0.66567484 -1.094768011
[ 0.85737587 -1.12815215 -0.34806844
                                    0.66567484 1.54509812]
[ 0.87469659 -1.12815215 0.29783176
                                    0.66567484 -1.288875821
[ 0.89201732 -1.12815215  0.010765
                                    0.66567484 1.46745499]
[ 0.90933804 0.88640526 0.36959845
                                    0.66567484 -1.172411131
[ 0.92665877 0.88640526 -0.06100169
                                    0.66567484 1.00159627]
[ 0.94397949 0.88640526 0.58489852
                                    0.66567484 -1.327697381
[ 0.96130021 0.88640526 -0.85043527
                                    0.66567484 1.50627656]
[ 0.97862094 -1.12815215 -0.13276838  0.66567484 -1.91002079]
[ 0.99594166 0.88640526 -0.6351352
                                    0.66567484 1.07923939]
[ 1.01326239 -1.12815215 -0.34806844
                                    0.66567484 -1.91002079]
[ 1.03058311 0.88640526 -0.6351352
                                    0.66567484 0.885131581
[ 1.04790384 0.88640526 1.23079873
                                    0.70384427 - 0.59008772
[ 1.06522456 0.88640526 -0.70690189
                                    0.70384427 1.27334719]
[ 1.08254529 -1.12815215 -1.42456879
                                    0.78018313 -1.75473454]
[ 1.09986601 0.88640526 -0.56336851 0.78018313 1.6615628 l
[ 1.11718674 -1.12815215 0.80019859
                                    0.93286085 -0.93948177]
[ 1.13450746 0.88640526 -0.20453507 0.93286085 0.96277471]
[ 1.15182818 -1.12815215 0.22606507
                                    0.97103028 -1.17241113]
[ 1.16914891 0.88640526 -0.41983513 0.97103028 1.739205921
[ 1.18646963 0.88640526 -0.20453507 1.00919971 -0.90066021]
[ 1.20379036 -1.12815215 -0.49160182
                                   1.00919971 0.49691598]
[ 1.22111108 -1.12815215 0.08253169
                                    1.00919971 -1.44416206]
[ 1.23843181 -1.12815215 -0.77866858
                                   1.00919971 0.96277471]
                                    1.00919971 -1.56062674]
[ 1.25575253 -1.12815215 -0.20453507
[ 1.27307326 -1.12815215 -0.20453507
                                    1.00919971 1.62274124]
[ 1.29039398 0.88640526 0.94373197
                                    1.04736914 -1.444162061
[ 1.30771471 0.88640526 -0.6351352
                                    1.04736914 1.38981187]
[ 1.32503543 -1.12815215 1.37433211
                                    1.04736914 -1.36651894]
[ 1.34235616 -1.12815215 -0.85043527
                                    1.04736914 0.72984534]
[ 1.35967688 -1.12815215 1.4460988
                                    1.23821628 -1.4053405 ]
[ 1.3769976 -1.12815215 -0.27630176
                                    1.23821628 1.54509812]
[ 1.39431833  0.88640526  -0.13276838
                                    1.390894 -0.7065524]
[ 1.41163905 0.88640526 -0.49160182
                                     1.390894
                                               1.38981187]
[ 1.42895978 -1.12815215 0.51313183
                                    1.42906343 -1.36651894]
[ 1.4462805  0.88640526  -0.70690189
                                    1.42906343 1.467454991
[ 1.46360123 0.88640526 0.15429838
                                    1.46723286 -0.43480148]
[ 1.48092195 -1.12815215 -0.6351352
                                    1.46723286 1.816849041
[ 1.49824268 0.88640526 1.08726535
                                    1.54357172 -1.01712489]
[ 1.5155634 -1.12815215 -0.77866858
                                   1.54357172 0.691023781
[ 1.53288413 0.88640526 0.15429838
                                    1.61991057 -1.28887582]
[ 1.55020485 0.88640526 -0.20453507 1.61991057 1.35099031]
[ 1.56752558 0.88640526 -0.34806844 1.61991057 -1.05594645]
[ 1.5848463  0.88640526  -0.49160182  1.61991057  0.72984534]
[ 1.60216702 -1.12815215 -0.41983513 2.00160487 -1.63826986]
```

```
[ 1.61948775 0.88640526 -0.06100169 2.00160487 1.58391968]
      [ 1.63680847 0.88640526 0.58489852 2.26879087 -1.32769738]
      [1.6541292 0.88640526 -0.27630176 2.26879087 1.11806095]
      [ 1.67144992  0.88640526  0.44136514  2.49780745  -0.86183865]
      [ 1.68877065 -1.12815215 -0.49160182 2.49780745 0.92395314]
      [ 1.70609137 -1.12815215 -0.49160182 2.91767117 -1.25005425]
      [1.7234121 -1.12815215 -0.6351352 2.91767117 1.27334719]]
[22]: X = df.iloc[:, [3, 4]].values
[23]: X
[23]: array([[ 15, 39],
             [ 15, 81],
             [ 16,
                    6],
             [ 16, 77],
             [ 17, 40],
             [ 17, 76],
             [ 18,
                    6],
             [ 18, 94],
             [ 19,
                    3],
             [ 19, 72],
             [19, 14],
             [ 19, 99],
             [ 20, 15],
             [ 20, 77],
             [ 20, 13],
             [ 20, 79],
             [21, 35],
             [21, 66],
             [ 23, 29],
             [ 23, 98],
             [ 24, 35],
             [ 24, 73],
             [ 25.
                    5],
             [25, 73],
             [ 28, 14],
             [ 28, 82],
             [ 28, 32],
             [ 28, 61],
             [29, 31],
             [ 29, 87],
             [ 30,
                   4],
             [ 30, 73],
             [ 33,
                    4],
             [ 33, 92],
             [33, 14],
```

- [33, 81],
- [34, 17],
- [34, 73],
- [37, 26],
- [37, 75],
- [38, 35], [38, 92],
- [39, 36],
- [39, 61],
- [39, 28],
- [39, 65],
- [40, 55],
- [40, 47],
- [40, 42],
- [40, 42], [42, 52],
- [42, 60],
- [43, 54],
- [43, 60],
- [43, 45],
- [43, 41],
- [44, 50],
- [44, 46],
- [46, 51],
- [46, 46],
- [46, 56],
- [46, 55],
- [47, 52],
- [47, 59],
- [48, 51],
- [48, 59],
- [48, 50],
- [48, 48],
- [48, 59],
- [48, 47],
- [49, 55],
- [49, 42],
- [50, 49],
- [50, 56],
- [54, 47],
- [54, 54],
- [54, 53],
- [54, 48],
- [54, 52],
- [54, 42],
- [54, 51],
- [54, 55],

- [54, 41],
- [54, 44],
- [54, 57],
- [54, 46],
- [57, 58],
- [57, 55],
- [58, 60],
- [58, 46],
- [59, 55],
- [59, 41],
- [60, 49],
- [60, 40],
- [60, 42],
- [60, 52],
- [60, 47], [60, 50],
- [61, 42],
- [61, 49], [62, 41],
- [62, 48],
- [62, 59],
- [62, 55],
- [62, 56],
- [62, 42],
- [63, 50],
- [63, 46],
- [63, 43],
- [63, 48],
- [63, 52],
- [63, 54],
- [64, 42],
- [64, 46],
- [65, 48],
- [65, 50],
- [65, 43],
- [65, 59],
- [67, 43],
- [67, 57],
- [67, 56],
- [67, 40],
- [69, 58],
- [69, 91],
- [70, 29],
- [70, 77],
- [71, 35], [71, 95],
- [71, 11],

- [71, 75],
- [71, 9],
- [71, 75],
- [72, 34],
- [72, 71],
- [73, 5],
- [73, 88],
- [73, 7],
- [73, 73],
- [74, 10],
- [74, 72],
- [75, 5],
- [75, 93],
- [76, 40],
- [76, 87],
- [77, 12],
- [77, 97],
- [77, 36],
- [77, 74],
- [78, 22],
- [78, 90],
- [78, 17],
- [78, 88],
- [78, 20],
- [78, 76],
- [78, 16],
- [78, 89],
- [78, 1],
- [78, 78],
- [78, 1],
- [78, 73],
- [79, 35],
- [79, 83],
- [81, 5],
- [81, 93],
- [85, 26],
- [85, 75],
- [86, 20],
- [86, 95],
- [87, 27],
- [87, 63],
- [87, 13],
- [87, 75], [87, 10],
- [87, 92],
- [88, 13],
- [88, 86],

```
[ 88,
                    15],
             [ 88,
                    69],
             [ 93,
                    14],
             [ 93,
                    90],
             [ 97,
                    32],
             [ 97,
                    86],
             [ 98,
                    15],
             [ 98,
                    88],
             [ 99,
                    39],
             [ 99,
                    97],
             [101,
                   24],
             [101,
                    68],
             [103,
                    17],
             [103,
                    85],
             [103,
                    23],
             [103,
                   69],
             [113,
                     8],
             [113,
                    91],
             [120,
                    16],
             [120,
                   79],
             [126,
                   28],
             [126,
                    74],
             [137, 18],
             [137, 83]], dtype=int64)
     DBSCAN Clustering Algorithm
[24]: from sklearn.cluster import DBSCAN
      dbscan=DBSCAN(eps=3,min_samples=4)
[25]: model=dbscan_fit(X)
      labels=model_labels
[26]: from sklearn import metrics
[27]: sample_cores=np_zeros_like(labels,dtype=bool)
      sample_cores[dbscan_core_sample_indices_]=True
[28]: #Calculating the number of clusters
      n_clusters=len(set(labels))- (| if -| in labels else 0)
[29]: n_clusters
[30]: print(metrics.silhouette_score(X,labels))
     -0.1908319132560097
```

[29]: 9

[31]: # Plot the clusters

plt.scatter(X[:, 0], X[:,1], c = labels, cmap= "plasma") # plotting the clusters

plt.xlabel("Income") # X-axis label

plt.ylabel("Spending Score") # Y-axis label

plt.show() # showing the plot

KNN Algorithm

- [33]: # Sort and plot the distances results
 distances = np.sort(distances, axis = 0) # sorting the distances
 distances = distances[:, 1] # taking the second column of the sorted distances
 plt.rcParams["figure.figsize"] = (5,3) # setting the figure size
 plt.plot(distances) # plotting the distances
 plt.show() # showing the plot

