

Mathématiques

Classe: BAC

Chapitre: Fonctions logarithmes

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Définition

On appelle fonction logarithme népérien notée \ln , la fonction primitive sur $]0,+\infty[$ qui s'annule en 1 de la fonction : $t\to \frac{1}{t}$

Limites remarquables

- $\oint \lim_{x \to +\infty} \ln(x) = +\infty, \qquad \lim_{x \to 0^+} \ln(x) = -\infty.$
- $\oint \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0, \qquad \lim_{x \to 0^+} x \ln(x) = 0.$

Propriétés algébriques

- 1. Pour tous réels a et b strictement positifs on a :
 - ln(ab) = ln(a) + ln(b)
 - $\ln\left(\frac{1}{a}\right) = -\ln a$
 - $\ln\left(\frac{b}{a}\right) = \ln b \ln a$
- 2. Soit *a* un réel strictement positif.
 - Pour tout entier n, $\ln(a^n) = n \ln a$
 - Pour tout entier $n \ge 2$, $\ln(\sqrt[n]{a}) = \frac{1}{n} \ln a$
- 3. Pour tous réels strictement positifs $a_1, a_2, ..., a_n$ on $a: \ln\left(\prod_{k=1}^n a_k\right) = \sum_{k=1}^n \ln(a_k)$.

Conséquences

- ♣ La fonction ln est définie, continue et dérivable sur $]0,+\infty[$, $\ln 1 = 0$ et $\ln' x = \frac{1}{x}$.
- A Pour tout réel x > 0, $\ln x = \int_1^x \frac{1}{t} dt$.
- ♣ La fonction ln est strictement croissante sur $]0,+\infty[$.
- ♣ Soit *a* et *b* deux réels strictement positifs.
 - $\ln a = \ln b \Leftrightarrow a = b$
 - $\ln a > \ln b \Leftrightarrow a > b$
 - $\ln a < \ln b \Leftrightarrow a < b$
 - $\ln a > 0 \Leftrightarrow a > 1$
 - $\ln a < 0 \Leftrightarrow 0 < a < 1$
- ♣ La fonction \ln est une application bijective de $]0,+\infty[$ sur \mathbb{R} .
- ♣ Il existe un unique réel strictement positif noté e tel que ln(e) = 1.
- - $\forall p \in \mathbb{N}^*, \forall n \in \mathbb{N} \setminus \{0, 1\}, \quad \ln\left(\sqrt[n]{e^p}\right) = \frac{p}{n}.$
 - $\ln x = a \Leftrightarrow x = e^a$.

Théorème

Soit u une fonction dérivable sur un intervalle I et telle que u(x) > 0, pour tout x dans I. Alors la fonction

 $F: x \longmapsto \ln(u(x))$ est dérivable sur I et $f'(x) = \frac{u'(x)}{u(x)}$

Théorème

Soit u une fonction dérivable sur un intervalle I et telle que $u(x) \neq 0$, pour tout x dans I. Alors la fonction

 $F: x \longmapsto \ln|u(x)|$ est dérivable sur I et $f'(x) = \frac{u'(x)}{u(x)}$

Corollaire

Soit u une fonction dérivable sur un intervalle I et telle que $u(x) \neq 0$, pour tout x dans I. Alors la fonction $f: x \mapsto \frac{u'(x)}{u(x)}$ admet pour primitive sur I la fonction

 $F: x \mapsto \ln |u(x)| + k$ où k = cte.

Théorème

La fonction $F: x \mapsto x \ln x - x$ est une primitive de la fonction $\ln x \mapsto \ln x$ sur $]0, +\infty[$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000