

Probability and Statistics for Business and Data

PART 5 - ANOVA

• In the previous section we used Z- and t-Distributions to answer the question "What is the probability that two samples come from the same population?"

- In this section we introduce a new distribution – the F-Distribution
- Used to answer the question "What is the probability that two samples come from populations that have the same variance?"

- In this section we introduce a new distribution – the F-Distribution
- Can also answer the question "What is the probability that three or more samples come from the same population?"

ANOVA Analysis of Variance

- In the previous section we tested two samples to see if they likely came from the same parent population.
- What if we had three (or more) samples?
- Could we do the same thing?

 Our null hypothesis would look like:

$$H_0: \mu_A = \mu_B = \mu_C$$

We could test each pair:

$$H_0$$
: $\mu_A = \mu_B \ \alpha = 0.05$

$$H_0$$
: $\mu_A = \mu_C \ \alpha = 0.05$

$$H_0$$
: $\mu_B = \mu_C \ \alpha = 0.05$

The problem is, our overall confidence drops:

$$H_0$$
: $\mu_A = \mu_B \ \alpha = 0.05$

$$H_0$$
: $\mu_A = \mu_C \ \alpha = 0.05$

$$H_0$$
: $\mu_B = \mu_C \ \alpha = 0.05$

$$.95 \times .95 \times .95 = .857$$

85.7% confidence level

- This is where ANOVA comes in!
- We compute an F value, and compare it to a critical value determined by our degrees of freedom (the number of groups, and the number of items in each group)

Let's work with some data:

First calculate the sample means

Next calculate the overall mean

GroupA

GroupB GroupC

 μ_{TOT}

 $\mu_{A,B,C}$

ANOVA considers two types of variance:

Between Groups

how far group means stray from the total mean

Within Groups

how far individual values stray from their respective group mean

The F value we're trying to calculate is simply the ratio between these two variances!

$$F = \frac{Variance\ Between\ Groups}{Variance\ Within\ Groups}$$

Recall the equation for variance:

$$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1} = \frac{SS}{df}$$

Here $\Sigma(x-\bar{x})^2$ is the "sum of squares" *SS* and n-1 is the "degrees of freedom" df

So the formula for the F value becomes:

$$F = rac{Variance\ Between\ Groups}{Variance\ Within\ Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

SSG = Sum of Squares Groups $df_{groups} = degrees \text{ of freedom (groups)}$ $df_{error} = degrees \text{ of freedom (error)}$

SSG = 420

GroupA

GroupB GroupC

Sum of Squares Groups

$$(\mu_A - \mu_{TOT})^2 = (44 - 49)^2 = 25$$

$$(\mu_B - \mu_{TOT})^2 = (50 - 49)^2 = 1$$

 $(\mu_C - \mu_{TOT})^2 = (53 - 49)^2 = 16$

 $\mu_{A,B,C}$

 Multiply by the number of items in each group:

$$42 \times 10 = 420$$

 μ_{TOT}

PIERIAN 🈂 DATA

$$SSG = 420$$

 $df_{groups} = 2$

GroupA	GroupB	GroupC
37	62	50

$$\alpha Jgroups - 2$$

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

SSG = 420
$df_{groups} = 2$
SSE = 3300

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43

50

53

Sum of Squares Error

$(x_A-\mu_A)^2$	$(x_A-\mu_A)^2$	$(x_B - \mu_B)^2$	$(x_B - \mu_B)^2$	$(x_{C}-\mu_{C})^{2}$	$(x_C-\mu_C)^2$
49	64	144	16	9	1
256	121	529	36	100	0
64	25	361	361	25	100
1	25	196	1	1	144
16	441	49	49	16	100
	1062		1742		496

TOTAL 3300

 $\mu_{\mathsf{A},\mathsf{B},\mathsf{C}}$

μτοτ 49

$$SSG = 420$$

 $df_{groups} = 2$
 $SSE = 3300$
 $df_{error} = 27$

2	
_	
)	
7	

$$df_{error} = (n_{rows} - 1) * n_{groups}$$

= $(10 - 1) * 3$
= 27

$$\mu_{A,B,C}$$
 μ_{TOT}

PIERIAN 🈂 DATA

$$SSG = 420$$

 $df_{groups} = 2$
 $SSE = 3300$
 $df_{error} = 27$

 $\mu_{A,B,C}$

 μ_{TOT}

33G = 420
$df_{groups} = 2$
SSE = 3300
$df_{error} = 27$

60	27	63
52	69	58
43	64	54
4 0	43	49

62

GroupB GroupC

50

GroupA

37

49

Plug these into our formula:

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{420}{2}}{\frac{3300}{27}} = \frac{210}{122.22} = 1.718$$

PIERIAN 🈂 DATA

ANOVA with Excel Data Analysis

	Α	В	С	D	Е	D	ata Analysis				?	×	
1	Anova: Single Factor												
2							<u>A</u> nalysis Tools	5			О	K	
3	SUMMARY					Anova: Single Factor Anova: Two-Factor With Replication Anova: Two-Factor Without Replication			_				
4	Groups	Count	Sum	Average	Variance				Car	icel			
5	GroupA	10	440	44	118	118 Correlation				He	lp		
6	GroupB	10	500	50	193.555556		Covariance Descriptive S	tatistics					
7	GroupC	10	530	53	55.11111111	· ·							
8													
9													
10	ANOVA												
11	Source of Variation	SS	df	MS	F	F	P-value	F crit					
12	Between Groups	420	2	210	1.718181818	0.1	98430533	3.354130829					
13	Within Groups	3300	27	122.2222									
14													
15	Total	3720	29										
16													

F Distribution

Look up our critical value from an F-table

use a table set for 95% confidence find numerator df find denominator df critical value = 3.35

 In Microsoft Excel, the following function returns an F-score:

α	dfl	df2	Formula	Output Value		
0.05	2	27	=FINV(A2,B2,C2)	3.3541308285292		

F-Scores in Python

```
>>> from scipy import stats
>>> stats.f.ppf(1-.05,dfn=2,dfd=27)
3.3541308285291986
```


$$H_0: \mu_A = \mu_B = \mu_C$$

Since F is less than F_{critical}

1.718 < 3.354

we fail to reject the

null hypothesis!

- Sun 10
- In an effort to receive faster payment of invoices, a company introduces two discount plans
- One set of customers is given a 2% discount if they pay their invoice early
- Another set is offered a 1% discount
- A third set is not offered any incentive

- The results are as follows:
- Using ANOVA, can we say that the offers result in faster payments?

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21

1. Calculate the means

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
μ _{2,1,0}	12	17	16
μ _{тот}	15		

ANOVA Exercise #1

F AN

SSG = 70

 $\mu_{2,1,0}$

 μ_{TOT}

2. Find Sum of Squares Groups

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

 $(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$
 $(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$

2% disc 1% disc no disc

Multiply by the number of items in each group:

$$14 \times 5 = 70$$

ANOVA Exercise #1

SSG = 70 $df_{groups} = 2$

 $\mu_{2,1,0}$

 μ_{TOT}

3. Degrees of Freedom Groups

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16
15		

SSG = 70 $df_{groups} = 2$ SSE = 198

4. Sum of Squares Error

$(x_2-\mu_2)^2$	$(x_1-\mu_1)^2$	$(x_0-\mu_0)^2$
1	16	4
16	4	25
9	36	4
4	49	0
4	1	25
34	106	58
	TOTAL	198

	2% disc	1% disc	no disc		
	11	21	14		
	16	15	11		
	9	23	18		
	14	10	16		
	10	16	21		
μ _{2,1,0}	12	17	16		
μ _{тот}	15				

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$
 $df_{error} = 12$

 $\mu_{2,1,0}$

 μ_{TOT}

5. Degrees of Freedom Error

$$df_{error} = (n_{rows} - 1) * n_{groups}$$

= $(5 - 1) * 3$
= 12

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16
15		

 $\mu_{2,1,0}$

6. Calculate F value:

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{groups}}} = \frac{\frac{70}{2}}{\frac{198}{12}} = \frac{35}{16.5} = 2.121$$

7. Look up F_{critical}: 3.885

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16
15		

Since F falls to the left of F_{critical}

2.121 < 3.885

we fail to reject the null hypothesis!

We don't have enough to support the idea that our offers changed the average number of days that customers took to pay their invoices!

Two-Way ANOVA

- In the previous examples we used one-way ANOVA to test one independent variable.
- For the invoice problem, the independent variable was the incentive offered.
- The dependent variable was the time it took to receive payment.

- Two-Way ANOVA lets us test two independent variables at the same time
- For the invoice example, we might also consider the amount due
- We would have 3 invoices for \$50, 3 for \$100, etc. and offer different incentives at each dollar amount.

One-Way vs Two-Way ANOVA

- The resulting data might look like this:
- Here, each row or dollar amount is called a block.

	2%	1%	no
	disc	disc	disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

• Essentially, we want to isolate and remove any variance contributed by the blocks, to better understand the variance in the groups.

So how do we do that?

	2% disc	1% disc	no disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

- The goal of ANOVA is to separate different aspects of the total variance.
- In the previous examples we had only
 - Sum of Squares Groups (SSG) and Sum of Squares Error (SSE)

- » between groups
- » within groups

 These two variances
 SSG and SSE add up to our total variance
 Sum of Squares Total (SST)

Sum of Squares Groups (SSG) and Sum of Squares Error (SSE)

» between groups

» within groups

 Now we'll look at variance between rows, or blocks

	Group 1	Group 2	
Block A	8	11	
Block B	10	12	
Block C	12	13	μ _{тот}
μ _{1,2}	10	12	11

Sum of Squares Groups (SSG) and Sum of Squares Error (SSE)

» between groups

» within groups

 First calculate the block means

	Group 1	Group	2	$\mu_{A,B,C}$
Block A	8	11		- 9.5
Block B	10	12		- 11
Block C	12	13	ľ	- 12.5
μ _{1,2}	10	12	L	≣ 11

Then calculate the

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
and Sum of Squares Error (SSE)

» between blocks

» between groups

» within groups

$$F = rac{Var.Between\ Groups}{Var.Within\ Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

 ANOVA still considers the relationship between the SSG and the SSE

	Group 1	Group	2	μ _{A,B,C}
Block A	8	11		9.5
Block B	10	12	٢	- 11
Block C	12	13	l	- 12.5
$\mu_{1,2}$	10	12		11

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
and Sum of Squares Error (SSE)

- » between blocks
- » between groups
- » within groups

 $F = rac{Var.Between\ Groups}{Var.Within\ Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$

 By calculating the SSB, we remove some of the variance in SSE

	Group 1	Group	2	$\mu_{A,B,C}$
Block A	8	11		- 9.5
Block B	10	12	٢	- 11
Block C	12	13		- 12.5
μ _{1,2}	10	12		≣ 11

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
and Sum of Squares Error (SSE)

- » between blocks
- » **between** groups
- » within groups

$$F = rac{Var.Between\ Groups}{Var.Within\ Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

Sum of Squares Groups (SSG)

$$(\mu_1 - \mu_{TOT})^2 = (10 - 11)^2 = 1$$

 $(\mu_2 - \mu_{TOT})^2 = (12 - 11)^2 = 1$

		Group 1	Group 2	$\mu_{A,B,C}$
Blo	ck A	8	11	9.5
Blo	ck B	10	12	11
Blo	ck C	12	13	12.5
	μ _{1,2}	10	12	11
		SSC -	6	

multiply by the number of items in each group: $2 \times 3 = 6$

$$2 \times 3 = 0$$

$$F = rac{Var.Between\ Groups}{Var.Within\ Groups} = rac{rac{SSG}{df_{groups}}}{SSE}$$

Sum of Squares Blocks (SSB)

$$(\mu_A - \mu_{TOT})^2 = (9.5 - 11)^2 = 2.25$$

 $(\mu_B - \mu_{TOT})^2 = (11 - 11)^2 = 0$

$$(\mu_C - \mu_{TOT})^2 = (12.5 - 11)^2 = 2.25$$

4.5

	Group 1	Group	2	$\mu_{A,B,C}$
Block A	8	11		- 9.5
Block B	10	12	٢	- 11
Block C	12	13		- 12.5
μ _{1,2}	10	12		■ 11

$$SSG = 6$$
$$SSB = 9$$

multiply by the number of items in each block:

$$4.5 \times 2 = 9$$

Sum of Squares Total (SST)

$$(8-11)^{2}+(11-11)^{2}+$$

$$(10-11)^{2}+(12-11)^{2}+$$

$$(12-11)^{2}+(13-11)^{2}=16$$

no need to multiply since every item is represented

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11 🔨	9.5
Block B	10	12	11
Block C	12 🗨	13/1	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

$$F = rac{Var.Between\ Groups}{Var.Within\ Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

Sum of Squares Error (SSE)

$$SSE = SST - SSG - SSB$$
$$= 16 - 6 - 9 = 1$$

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

no need to multiply since we're working with totals already

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

$$SSE = 1$$

$$F = \frac{Var. Between \ Groups}{Var. Within \ Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

So how do we calculate F?

Degrees of Freedom Groups is unchanged:

$$df_{groups} = n_{groups} - 1$$

$$= 2 - 1$$

$$= 1$$

	701101		
	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

$$SSE = 1$$

$$df_{groups} = 1$$

$$F = rac{Var.\,Between\,Groups}{Var.\,Within\,Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

So how do we calculate F?

Degrees of Freedom Error has changed:

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

= $(3 - 1)(2 - 1)$
= 2

So how do we calculate F?

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{6}{1}}{\frac{1}{2}} = \mathbf{12}$$

Var. Between Groups _	$\overline{df_{groups}}$
Var.Within Groups	SSE
•	$\overline{df_{error}}$

SSG

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1 2}	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

$$F = rac{Var.\,Between\,Groups}{Var.\,Within\,Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

 $F_{groups} = 12$ feels like a high value.

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5

12

10

 $\mu_{1,2}$

However, in a two-way ANOVA,

 $F_{critical}$ is found for groups and blocks separately!

$$F_{groups} = 12$$
 feels like a high value.

For groups, with 1 df in the numerator and 2 df in the denominator,

$$F_{critical} = 18.5$$

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ ₁₂	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

- Let's go back to the invoice problem, and add a new independent variable
- Here each block represents an invoice amount
- The dependent variable is still days elapsed until payment

2%	1%	no
disc	disc	disc
16	23	21
14	21	16
11	16	18
10	15	14
9	10	11
	16 14 11 10	disc disc 16 23 14 21 11 16 10 15

1. Calculate the group means, the block means, and the total mean

			1 /	/ 3
	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

2. Sum of Squares Groups

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

$$(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$$

$$14$$

Multiply by the number of items in each group:

$$14 \times 5 = 70$$

$$SSG = 70$$

3. Degrees of Freedom Groups

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

	2% disc	1% disc	no disc	μ_{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$

ANOVA Exercise #2

4. Sum of Squares Blocks

$$(\mu_{50} - \mu_{TOT})^2 = (20 - 15)^2 = 25$$

$$(\mu_{100} - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_{200} - \mu_{TOT})^2 = (15 - 15)^2 = 0$$

$$(\mu_{200} - \mu_{TOT})^2 = (13 - 15)^2 = 4$$

$$(\mu_{200} \ \mu_{TOT})^2 - (13 \ 13)^2 - 4$$
$$(\mu_{250} - \mu_{TOT})^2 = (10 - 15)^2 = 25$$

$$58 \times 3 = 174$$

58

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$

5. Sum of Squares Total

$(\mathbf{x}_2 - \mu_{\text{tot}})^2$	$(x_1-\mu_{tot})^2$	$(x_0$ - $\mu_{tot})^2$
1	64	36
1	36	1
16	1	9
25	0	1
36	25	16
79	126	63

TOTAL	268
-------	-----

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$

$$SST = 268$$

ANOVA Exercise #2

6. Sum of Squares Error

$$SSE = SST - SSG - SSB$$

= $268 - 70 - 174 = 24$

	2% disc	1% disc	no disc	$\mu_{ extsf{block}}$
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

$$SSB = 174$$

$$SST = 268$$

$$SSE = 24$$

 $df_{groups} = 2$

7. Degrees of Freedom Error

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

= $(5 - 1)(3 - 1)$
= 8

	2% disc	1% disc	no disc	μ_{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

SSB = 174 $df_{error} = 8$ SST = 268SSE = 24

 $df_{groups} = 2$

SSG = 70

ANOVA Exercise #2

8. Calculate F

$$F = \frac{\frac{SSG}{df_{groups}}}{SSE} = \frac{\frac{70}{2}}{\frac{24}{24}} = \frac{35}{3} = \frac{35}{3}$$

 $df_{error} = 8$

F = 11.67

SSB = 174

SST = 268

SSE = 24

ANOVA Exercise #2

9. Find F_{critical}

$$\alpha = 0.05$$

$$df_{numerator} = 2$$

$$df_{denominator} = 8$$

$$F_{critical} = 4.46$$

	2% disc	1% disc	no disc	$\mu_{ extsf{block}}$
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$
 $df_{error} = 8$
 $SST = 268$
 $F = 11.67$
 $SSE = 24$
 $F_{critical} = 4.46$

SSG = 70

Since F falls to the right of $F_{critical}$ 4.46 < 11.67

we reject the null hypothesis!

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$ $df_{error} = 8$
 $SST = 268$ $F = 11.67$
 $SSE = 24$ $F_{critical} = 4.46$

2-way ANOVA in Excel

	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	Anova: Two-Factor Without Replication									_		
2						Data Analysis ? X				×		
3	SUMMARY	Count	Sum	Average	Variance Analysis Tools OK				v			
4	Row 1	3	60	20	Anova: Single Factor Anova: Two-Factor With Replication Cancel				`			
5	Row 2	3	51	17					cel			
6	Row 3	3	45	15	Anova: Two-Factor Without Replication Correlation							
7	Row 4	3	39	13	7						lp	
8	Row 5	3	30	10	Descriptive Statistics Exponential Smoothing							
9					F-Test Two-Sample for Variances							
10	Column 1	5	60	12	8.5 Fourier Analysis							
11	Column 2	5	85	17	26.5 Histogram							
12	Column 3	5	80	16	14.5							
13												
14												
15	ANOVA											
16	Source of Variation	SS	df	MS	F	P-value	F crit					
17	Rows	174	4	43.5	14.5	0.000974668	3.837853355					
18	Columns	70	2	35	11.666667	0.004249458	4.458970108					
19	Error	24	8	3								
20												
21	Total	268	14									
27	10101	200	17									

Two-Way ANOVA with Replication

Without vs With Replication

without replication

	GroupA	GroupB	GroupC
Block1	16	23	21
Block2	14	21	16
Block3	11	16	18
Block4	10	15	14
Block5	9	10	11
Block6	8	8	10

with replication

	GroupA	GroupB	GroupC	
Block1	16	23	21	
	14	21	16	
	11	16	18	
Block2	10	15	14	
	9	10	11	
	8	8	10	

Samples have multiple values Samples have a mean value

- Introduces the concept of sample means and sample variance
- Introduces the concept of interactions

Two-Way ANOVA with Replication

- As with our previous 2-way ANOVA, we consider two independent variables organized into groups and blocks
- We sample every block/group combination
- With replication, block/group samples have multiple measurements

Two-Way ANOVA with Replication

- Consider an experiment that measures the height of plants
- We apply three types of fertilizer A, B & C
 - these are our Groups
- Plants are kept at two temperatures (warm & cold) - these are our Blocks
- We assign 3 plants to each sample

- First calculate the mean for each 3-item sample
- Calculate column means
- Calculate block means
- Calculate the overall mean

	Fertilizer:	Α	В	С	_
\	Warm	13	21	18	B
		14	19	15	16
		12	17	15	16 oc k
	Cold	16	14	15	M
		18	11	13	14 a
		17	14	8	n s
	Sample	13	19	16	
1	Means	17	13	12	
	Column Means	15	16	14	15

 As before, calculate the Sum of Squares Blocks

$$(16-15)^2 + (14-15)^2 = 2$$

 \times 9 items per block = **18**

Fertilizer:	A	В	С	_
Warm	13	21	18	В
	14	19	15	16 0
	12	17	15	16 o c k
Cold	16	14	15	M
	18	11	13	14 a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

$$SSB = 18$$

As before, calculate the Sum of Squares Columns

$$(15-15)^2+(16-15)^2+$$

$$(14 - 15)^2 = 2$$

$$\times$$
 6 items per column = **12**

Fertilizer:	Α	В	С	
Warm	13	21	18	В
	14	19	15	16 0
	12	17	15	16 o c k
Cold	16	14	15	M
	18	11	13	14 a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

 As before, calculate the Degrees of Freedom Columns

$$df_{columns} = (3-1) = 2$$

Fertilizer:	Α	В	С	
Warm	13	21	18	В
	14	19	15	16
	12	17	15	16 oc k
Cold	16	14	15	M
	18	11	13	14 a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

SSB =
$$18$$
 SSC = 12 df_{columns} = 2

- We have a new statistic:SS Interactions
- For each sample mean, subtract the matching block and column means, add back the overall mean square the result

Fertilizer:	Α	В	С	_
Warm	13	21	18	В
	14	19	15	16
	12	17	15	16 o c k
Cold	16	14	15	M
	18	11	13	14 e
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

SSB = 18 SSC = 12 $df_{columns} = 2$

$$(13 - 16 - 15 + 15)^{2} +$$

$$(19 - 16 - 16 + 15)^{2} +$$

$$(16 - 16 - 14 + 15)^{2} +$$

$$(17 - 14 - 15 + 15)^{2} +$$

$$(13 - 14 - 16 + 15)^{2} +$$

$$(12 - 14 - 14 + 15)^{2} = 28$$

 \times 3 items per sample = **84**

SSI = 84

Calculate the Sum of Squares Total

4	36	9		
1	16	0		
9	4	0		
1	1	0		
9	16	4		
4	1	49	164	

SSI = 84

SST = 164

 Calculate the Sum of Squares Error by subtracting the other values from the SST:

$$164 - 18 - 12 - 84 = 50$$

Fertilizer:	Α	В	С	_
Warm	13	21	18	В
	14	19	15	16 o c
	12	17	15	k
Cold	16	14	15	M
	18	11	13	14 e a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$

SST = 164

Degrees of Freedom Error

blocks
$$\times$$
 columns \times (items -1)
 $-2 \times 3 \times (3-1) - 12$

$$= 2 \times 3 \times (3 - 1) = 12$$

Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		o c k
Cold	16	14	15		M
	18	11	13	14	e a
	17	14	8		n s
Sample	13	19	16		
Means	17	13	12		

В

Fertilizer:

Column Means 15 16 14 15 15 SSB = 18 SSC = 12 $df_{columns} = 2$ SSI = 84 SSE = 50 $df_{error} = 12$ SST = 164

PIERIAN 🈂 DATA

Calculate F

$$F = \frac{\frac{SSC}{df_{columns}}}{\frac{SSE}{df_{error}}} = \frac{\frac{12}{2}}{\frac{50}{12}} = \mathbf{1}.4$$

Warm	13	21	18		В
	14	19	15	16	1 0
	12	17	15		o c k
Cold	16	14	15		M
	18	11	13	14	e a
	17	14	8		n s
Sample	13	19	16		
Means	17	13	12		
Column Means	15	16	14	15	

SSI = 84 SSE = 50 $df_{error} = 12$

SST = 164

 $df_{columns} = 2$

Fertilizer:

$$F = 1.44$$

Look up F_{critical}

$$F_{(0.05, 2, 12)} = 3.885$$

Fertilizer:	Α	В	C	
Warm	13	21	18	В
	14	19	15	16 o c k
	12	17	15	k
Cold	16	14	15	M
	18	11	13	14 e
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

SSB = 18 SSC = 12 $df_{columns} = 2$ SSI = 84 SSE = 50 $df_{error} = 12$ SST = 164

A look at Interaction:

Fertilizer:	Α	В	С	
Warm	13	21	18	В
	14	19	15	16 o
	12	17	15	16 o c k
Cold	16	14	15	М
	18	11	13	14 e a
	17	14	8	n s
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

2-way with Replication in Excel

	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	Anova: Two-	Factor With F	Replication									
2						Data Analysis					7	' ×
3	SUMMARY	Fertilizer A	Fertilizer B	Fertilizer C	Total	Analysis Tools						
4	WARM					Anova: Single F	actor					ОК
5	Count	3	3	3	9	Anova: Two-Fa	ctor With Re					Cancel
6	Sum	39	57	48	144	Anova: Two-Fa Correlation	ctor Without	t Replication	1			
7	Average	13	19	16	16							<u>H</u> elp
8	Variance	1	4	3	8.75	Descriptive Sta						
9						Exponential Sm F-Test Two-Sar		iances				
10	COLD					Fourier Analysi					_	
11	Count	3	3	3	9	Histogram						
12	Sum	51	39	36	126							
13	Average	17	13	12	14							
14	Variance	1	3	13	9.5							
15												
16	Total					ANOVA						
17	Count	6	6	6		Source of Variation	SS	df	MS	F	P-value	F crit
18	Sum	90	96	84		Sample	18	1	18	4.32	0.059785686	4.747225347
19	Average	15	16	14		Columns	12	2	6	1.44	0.275086887	3.885293835
20	Variance	5.6	13.6	11.2		Interaction	84	2	42	10.08	0.002698928	3.885293835
21						Within	50	12	4.16667			

Next Up: REGRESSION

