1 Systèmes

1.1 Mouvement et trajectoire

1.2 Systèmes invariants

Un système est dit invariant si

- $\bullet\,$ T est un groupe additif
- Pour tout $u \in \Omega$ et pour chaque $s \in T$ la fonction $u^s(\cdot)$ obtenue par translation $(u(t) = u^s(t+s))$ appartient également à Ω
- La fonction de translation à la propriété $\varphi(t,\tau,x,u(\cdot))=\varphi(t+s,\tau+s,x,u^s(\cdot))$
- La transformation de sortie ne dépend pas explicitement du temps $y(t) = \eta(x(t))$
- $\bullet\,$ Si $T=\mathbb{N}$ nous avons un système à temps discret
- $\bullet\,$ Si $T=\mathbb{R}$ nous avons un système à temps continu

1.3 Systèmes réguliers

- Si les ensembles U, X, et Y sont des espaces vectoriels de dimensions finies, le système est dit de dimensions finies
- Le 'circuit électrique' et les '2 bacs' sont deux exemples de systèmes de dimensions finies
- Si une norme est définie pour les espaces vectoriels, il est possible de mesurer la distance entre deux éléments et d'introduire la notion de régularité

Un système est regulier si

- U, X, Y, Γ, Ω sont des espaces normés
- φ est continue dans tous ses arguments et $\frac{d\varphi(t,\tau,x,u(\cdot))}{dt}$ est aussi continue en t partout où u() est continue
- η est continue dans tous ses arguments

Le mouvement d'un système régulier de dimension finie est la solution d'un équation différentielle de la forme: $\frac{dx(t)}{dt} = f(x(t), u(t), t)$ qui satisfait la condition initiale $x(\tau) = x$

Donc un système régulier est représenté par:

$$\begin{cases} \dot{x}(t) = f(x(t), u(t), t) \\ y(t) = g(x(t), t) \end{cases}$$

$$\tag{1}$$

1.4 Systèmes linéaires

Un système est dit linéaire si

- U, X, Y, Γ, Ω sont des espaces normés
- φ est linéaire en $X \times \Omega$ pour tout $t, \tau \in T$:
- η est linéaire en X pour tout t dans T $\eta(t) = C(t)x(t)$

Avec un système linéaire. le mouvement peut être décomposé en la somme des mouvements libre et forcé $x(t) = x(\tau) + \int_{\tau}^{t} \frac{u}{C(\xi)} d\xi = MouvementLibre + MouvementForce$

1.5 Système linéaires et réguliers

ullet Si un système de dimensions finies est linéaire et régulier, alors son état x satisfait:

$$\frac{dx(t)}{dt} = f(x(t), u(t), t)$$
(1)

- Comme φ , solution de (1), est linéaire en x et u f(x(t), u(t), t) = A(t)x(t) + B(t)u(t)
- Alors, un système linéaire est décrit par:

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) \\ y(t) = C(t)x(t) \end{cases}$$
(2)