CIS 4130 Big Data Technologies Kelly Huang

Milestone 1 Proposal: a description of the data set and your project's goals Milestone 2 Data Acquistion: a description of the steps you took to acquire the data

Milestone 3 EDA and Data Cleaning: a description (with graphs) of your EDA findings and Data Cleaning approach

Milestone 4 Feature Engineering and Modeling: a description (with outputs) of the feature engineering and modeling steps.

Milestone 5 Visualization: A description of the different visuzliations with screen shots of the graphs, charts, etc.

Milestone 6 Summary and Conclusions

Appendix A Code for data acquision

Appendix B Code for EDA

Appendix C Code for data cleaning

Appendix D Code for feature engineering and modeling

Appendix E Code for visualization

Milestone 1 Proposal

Describe: This dataset is a CSV file where each row is a purchasable ticket found on Expedia between 2022-04-16 and 2022-10-05, to/from the following airports: ATL, DFW, DEN, ORD, LAX, CLT, MIA, JFK, EWR, SFO, DTW, BOS, PHL, LGA, IAD, OAK.

Link: the AI command: kaggle datasets download -d dilwong/flightprices Website link: https://www.kaggle.com/datasets/dilwong/flightprices

Column:

- legId: An identifier for the flight.
- searchDate: The date (YYYY-MM-DD) on which this entry was taken from Expedia.
- flightDate: The date (YYYY-MM-DD) of the flight.
- startingAirport: Three-character IATA airport code for the initial location.
- destinationAirport: Three-character IATA airport code for the arrival location.
- fareBasisCode: The fare basis code.
- travelDuration: The travel duration in hours and minutes.
- elapsedDays: The number of elapsed days (usually 0).
- isBasicEconomy: Boolean for whether the ticket is for basic economy.
- isRefundable: Boolean for whether the ticket is refundable.

Plan: I will predict when has the highest percentage of flights by focusing on the 'flightDate' column. I will use logistic regression to determine the likelihood of a higher number of flights occurring on different dates. Logistic regression is suitable because it predicts the probability of an event occurring or not occurring.

Milestone 2 Data Acquisition

```
python3 -m venv pythondev
cd pythondev
source bin/activate
pip3 install kaggle
kaggle datasets download -d dilwong/flightprices # download database
unzip -1 flightprices.zip
unzip flightprices.zip # get itineraries.csv
gcloud storage buckets create gs://my-bigdata-project-kh
--project=root-opus-435315-s4
     default-storage-class=STANDARD --location=us-central1
     -uniform-bucket-level-access
gcloud auth login
gcloud storage buckets create gs://my-bigdata-project-kh
--project=root-opus-435315-s4
     -default-storage-class=STANDARD --location=us-central1
     -uniform-bucket-level-access
Create folder:
gcloud storage cp itineraries.csv gs://my-bigdata-project-kh/cleaned/
gcloud storage cp itineraries.csv gs://my-bigdata-project-kh/trusted/
```

gcloud storage cp itineraries.csv gs://my-bigdata-project-kh/models/

gcloud storage cp itineraries.csv gs://my-bigdata-project-kh/code/

Milestone 3 EDA and Data Cleaning:

import pandas as pd import pyarrow from google.cloud import storage import matplotlib.pyplot as plt

Appendix A (Code for Data Acquisition)

```
client = storage.Client()
bucket_name = 'my-bigdata-project-kh'
file_name = 'landing/itineraries.csv'
output_bucket_name = 'my-bigdata-project-kh'
output_path = 'cleaned/'

bucket = client.get_bucket(bucket_name)
blob = bucket.blob(file_name)
blob.download_to_filename('itineraries.csv')
```

Appendix B (code for EDA)

```
chunk_size = 10_000_000
chunk_number = 0

#EDA function
def perform_EDA(df, chunk_label):
    print(f"Number of Observations: {len(df)}")
    print("Columns:", df.columns.tolist())
    print("Data Types:", df.dtypes)
```

```
Number of Observations: 2138753
Columns: ['lejdi', 'searchbate', 'fightDate', 'startingAirport', 'destinationAirport', 'fareBasisCode', 'travelDuration', 'elapsedDays', 'isBasicEconomy', 'isRefundable', 'isNonStop', 'baseFare', 'totalFare', 'seatRemaining', 'totalTravelDistance', 'segmentsDepartureTimeRaw', 'segmentsArrivalTimeRpochSeconds', 'segmentsDepartureTimeRaw', 'segmentsDepartureTime
```

Number of missing
missing_data = df.isna().sum()
print("Missing Data by Column:\n", missing data)

```
Missing Data by Column:
 legId
searchDate
                                             O
flightDate
                                             O
startingAirport
destinationAirport
                                             0
fareBasisCode
travelDuration
elapsedDays
                                             O
isBasicEconomy
isRefundable
                                             O
isNonStop
                                             O
baseFare
totalFare
seatsRemaining
                                             O
totalTravelDistance
                                        150191
segmentsDepartureTimeEpochSeconds
segmentsDepartureTimeRaw
                                             O
segmentsArrivalTimeEpochSeconds
                                             O
segmentsArrivalTimeRaw
                                             O
segmentsArrivalAirportCode
                                             O
segmentsDepartureAirportCode
segmentsAirlineName
segmentsAirlineCode
segmentsEquipmentDescription
segmentsDurationInSeconds
                                             O
segmentsDistance
                                         21931
segmentsCabinCode
dtype: int64
```

min/max/avg/stdev for all numeric variables print("Descriptive Statistics:\n", df.describe())

```
Descriptive Statistics:
           elapsedDays
                                 baseFare
                                                   totalFare seatsRemaining totalTravelDistance
count 2.138753e+06 2.138753e+06 2.138753e+06 mean 1.488545e-01 2.614892e+02 3.067703e+02 std 3.559687e-01 1.805778e+02 1.937991e+02 min 0.000000e+00 4.100000e-01 2.459000e+01
                                                                   2.138753e+06
                                                                                              1.988562e+06
                                                                   6.285963e+00
                                                                                               1.661930e+03
                                                                   2.765032e+00
                                                                                               8.901088e+02
                                                                   0.000000e+00
                                                                                               8.900000e+01
        0.000000e+00 1.300000e+02 1.652000e+02 0.000000e+00 2.223300e+02 2.621000e+02
25%
                                                                   5.000000e+00
                                                                                               9.170000e+02
                                                                                               1.517000e+03
50%
                                                                   7.000000e+00
                                                                   9.000000e+00
75%
        0.000000e+00 3.627900e+02 4.142000e+02
                                                                                               2.461000e+03
         2.000000e+00 7.344190e+03 7.918600e+03
                                                                   1.000000e+01
                                                                                               4.654000e+03
max
```

```
# Plot histograms for numerical columns
for col in df.select_dtypes(include=['float64', 'int64']).columns:
    df[col].hist(bins=20)
    plt.title(f"{col} - {chunk_label}")
    plt.xlabel(col)
    plt.ylabel('Frequency')
    plt.show()
```

Appendix C (code for data cleaning)

```
chunk_cleaned = chunk.dropna()
# Rename columns to replace spaces with underscores
chunk_cleaned.columns = chunk_cleaned.columns.str.replace(' ', '_')

# Upload to GCS
bucket = client.get_bucket(output_bucket_name)
cleaned_blob =
bucket.blob(f"{output_path}itineraries_cleaned_chunk_{chunk_number}.
parquet")
cleaned_blob.upload_from_filename(output_file_path)
print(f"Uploaded chunk {chunk_number} to GCS at
{output_path}itineraries_cleaned_chunk_{chunk_number}.parquet")

# Increment the chunk counter
chunk number += 1
```

```
Uploaded chunk 0 to GCS at cleaned/itineraries_cleaned_chunk_0.parquet Uploaded chunk 1 to GCS at cleaned/itineraries_cleaned_chunk_1.parquet Uploaded chunk 2 to GCS at cleaned/itineraries_cleaned_chunk_2.parquet Uploaded chunk 3 to GCS at cleaned/itineraries_cleaned_chunk_3.parquet Uploaded chunk 4 to GCS at cleaned/itineraries_cleaned_chunk_4.parquet Uploaded chunk 5 to GCS at cleaned/itineraries_cleaned_chunk_5.parquet Uploaded chunk 6 to GCS at cleaned/itineraries_cleaned_chunk_6.parquet Uploaded chunk 7 to GCS at cleaned/itineraries_cleaned_chunk_7.parquet Uploaded chunk 8 to GCS at cleaned/itineraries_cleaned_chunk_8.parquet
```

Milestone 4 Feature Engineering and Modeling:

```
from pyspark.ml.feature import MinMaxScaler, StringIndexer,
OneHotEncoder, VectorAssembler
from pyspark.ml import Pipeline
from pyspark.sql.functions import unix timestamp
from pyspark.sql.functions import when, col
from pyspark.ml.feature import VectorAssembler
from pyspark.sql import SparkSession
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder from
pyspark.ml.evaluation import BinaryClassificationEvaluator
#Load file from Cleaned file
spark =
SparkSession.builder.appName("FeatureEngineeringAndModeling").get
OrCreate()
df = spark.read.option("header",
"true").csv("gs://my-bigdata-project-kh/cleaned/itineraries.csv")
df.write.parquet("gs://my-bigdata-project-kh/cleaned/itineraries parquet"
cleaned data path =
"gs://my-bigdata-project-kh/cleaned/itineraries_parquet"
data = spark.read.parquet(cleaned_data_path)
data.show()
data.printSchema()
```

```
>>> data.printSchema()
|-- legId: string (nullable = true)
|-- searchDate: string (nullable = true)
|-- flightDate: string (nullable = true)
|-- startingAirport: string (nullable = true)
|-- destinationAirport: string (nullable = true)
|-- fareBasisCode: string (nullable = true)
|-- travelDuration: string (nullable = true)
|-- elapsedDays: string (nullable = true)
|-- isBasicEconomy: string (nullable = true)
|-- isRefundable: string (nullable = true)
|-- isNonStop: string (nullable = true)
|-- baseFare: string (nullable = true)
|-- totalFare: string (nullable = true)
|-- seatsRemaining: string (nullable = true)
|-- totalTravelDistance: string (nullable = true)
|-- segmentsDepartureTimeEpochSeconds: string (nullable = true)
|-- segmentsDepartureTimeRaw: string (nullable = true)
|-- segmentsArrivalTimeEpochSeconds: string (nullable = true)
|-- segmentsArrivalTimeRaw: string (nullable = true)
|-- segmentsArrivalAirportCode: string (nullable = true)
|-- segmentsDepartureAirportCode: string (nullable = true)
|-- segmentsAirlineName: string (nullable = true)
|-- segmentsAirlineCode: string (nullable = true)
|-- segmentsEquipmentDescription: string (nullable = true)
|-- segmentsDurationInSeconds: string (nullable = true)
|-- segmentsDistance: string (nullable = true)
|-- segmentsCabinCode: string (nullable = true)
```

leqId searchDate flightDate startingAirport destinationAirport fareBasisCode t		NonStop baseFare totalFare seatsRe
ning totalTravelDistance segmentsDepartureTimeEpochSeconds segmentsDepartureTimeRaw segments.	ArrivalTimeEpochSeconds segmentsArrivalTimeRaw segmentsA	
rportCode segmentsAirlineName segmentsAirlineCode segmentsEquipmentDescription segmentsDura		
ed6dd65e00f159d7 2022-05-13 2022-05-29 LAX ORD RA14NR	PT13H55M 1 False False	False 346.00 453.58
0 NULL 1653891480 16539 2022-05-29T23:18:	1653907200 16539 2022-05-30T06:40:	ATL ORD
LAX ATL Spirit Airlines NK NK Airbus A319	15720 7680 None None coach coach	
.02e5ea167514cde 2022-05-13 2022-05-29 LAX ORD OH7OAVMN	PT6H44M 0 False False	False 407.44 461.60
3 2206 1653837600 16538 2022-05-29T08:20:	1653848700 16538 2022-05-29T13:25:	AUSIIORDI
LAX AUS Alaska Airlines AS UA Embraer 175 Airb	11100 9840 1236 970 coach coach	
Ecd054d67d394f63 2022-05-13 2022-05-29 LAX ORD MATOAOMQ	PT6H12M 0 False False	False 432.56 488.60
9 1810 1653856800 16538 2022-05-29T13:40:	1653862920 16538 2022-05-29T16:22:	SLC ORD
ONT SLC Delta Delta DL DL Boeing 737-800	6120 11220 559 1251 coach coach	
Ta0df0a12540d4b 2022-05-13 2022-05-29 LAX ORD LH4OASMN	PT13H12M 1 False False	False 444.65 507.20
4 2681 1653883380 16539 2022-05-29T21:03:	1653892980 16539 2022-05-29T23:43:	SEA ORD
ONT SEA Alaska Airlines AS AS Boeing 737-900 B	9600 15000 958 1723 coach coach	
Da3fe835af56f533 2022-05-13 2022-05-29 LAX ORD NH4OAVMN	PT12H44M 1 False False	False 463.25 527.19
2 2186 1653889200 16539 2022-05-29T22:40:	1653893940 16539 2022-05-29T23:59:	SFO ORD
LAX SFO Alaska Airlines AS AS Embraer 175 Airb	4740 15840 339 1847 coach coach	
#54f545f44ac7c3 2022-05-13 2022-05-29 LAX ORD MHOOAJMN	PT8H14M 0 False False	False 506.98 568.60
7 2679 1653856500 16538 2022-05-29T13:35:	1653866700 16538 2022-05-29T16:25:	SEA ORD
LAX SEA Alaska Airlines AS AS AIRBUS INDUSTRIE	10200 14640 956 1723 coach coach	m 3
ORD CATQAOMQ 1875 1653893940 16539 2022-05-29T23:59:	PT6H 1 False False 1653907080 16539 2022-05-30T05:38:	False 509.77 571.60
LAX MSP Delta United DL UA Airbus A321 Boei	13140 5400 1534 341 coach coach	MSP ORD
DEF[MSF] Defice[Officed DEF[MSF] AFFBUS A521 BOE1 3927369637f3d94e 2022-05-13 2022-05-29 LAX ORD MH4OASMN	PT10H5M 1 False False	False 515.35 577.60
7 2681 1653872100 16538 2022-05-29T17:55:	1653881760 16539 2022-05-29T20:36:	SEA ORD
ONT SEA Alaska Airlines AS AS Boeing 737-900 B	9660 14700 958 1723 coach coach	SEA ORD
of 9a73a0917b1953 2022-05-13 2022-05-29 LAX ORD MH40ASMN	PT11H19M 0 False False	False: 519.07: 587.20:
3 2681 1653845400 16538 2022-05-29T10:30:	1653855000 16538 2022-05-29T13:10:	SEALIORDI
ONT SEA Alaska Airlines AS AS Boeing 737-900 B	9600 14640 958 1723 coach coach	
3c2566879282223 2022-05-13 2022-05-29 LAX ORD KH7OASMN	PT11H15M 1 False False	False 565.58 637.20
1 2679 1653867900 16538 2022-05-29716:45:	1653878100 16539 2022-05-29T19:35:	SEALIORDI
LAX SEA Alaska Airlines AS AS Boeing 737-900 B	10200 14700 956 1723 coach coach	
3d8266cbe02289e5 2022-05-13 2022-05-29 LAX ORD HH7OASMN	PT8H15M 1 False False	False 612.09 681.60
1 2679 1653878700 16538 2022-05-29T19:45:	1653888900 16539 2022-05-29T22:35:	SEA ORD
LAX SEA Alaska Airlines AS AS Airbus A320 Boei	10200 14700 956 1723 coach coach	
ef43ded52c540a3b 2022-05-13 2022-05-29 LAX PHL TA14NR	PT5H16M 1 False False	True 133.00 189.59
0 NULL 1653884700 2022-05-29T21:25:	1653903660 2022-05-30T05:41:	
LAX Spirit Airlines NK NULL	18960 None coach	
515c6638bde80329 2022-05-13 2022-05-29 LAX PHL SUAIZNN3	PT7H18M 0 False False	False 208.37 247.60
10 2491 1653854040 16538 2022-05-29T12:54:	1653864600 16538 2022-05-29T17:50:	DFW PHL
ONT DFW American Airlines AA AA Airbus A321 Airb	10560 11820 1193 1298 coach coach	
8bcb8cb0501cfb35 2022-05-13 2022-05-29 LAX PHL SUAIZNN3	PT7H27M 0 False False	False 208.37 247.60

Appendix D

```
data = data.withColumn("totalFare", col("totalFare").cast(DoubleType()))
data = data.withColumn("seatsRemaining",
col("seatsRemaining").cast(DoubleType()))
indexer = StringIndexer(inputCols=['startingAirport', 'destinationAirport'],
outputCols=['startingAirportIndex', 'destinationAirportIndex'])
one hot encoder = OneHotEncoder(inputCols=['startingAirportIndex',
'destinationAirportIndex'], outputCols=['startingAirportOneHot',
'destinationAirportOneHot'])
assembler = VectorAssembler(inputCols=['seatsRemaining', 'totalFare'],
outputCol="features")
scaler = MinMaxScaler(inputCol='features',
outputCol='scaledNumericalFeatures')
data = data.withColumn("label", when(col("seatsRemaining") > 5,
1.0).otherwise(0.0))
pipeline = Pipeline(stages=[indexer, one hot encoder, assembler,
scaler])
pipeline model = pipeline.fit(data)
processed data = pipeline model.transform(data)
processed data.select(['flightDateNumeric',
'searchDateNumeric', 'startingAirportIndex', 'destinationAirportIndex',
```

'startingAirportOneHot', 'destinationAirportOneHot', 'label','scaledNumericalFeatures']).show(truncate=False)

trusted_data_path =
"gs://my-bigdata-project-kh/trusted/features_data.parquet"
processed_data.write.parquet(trusted_data_path)

train_data, test_data = processed_data.randomSplit([0.7, 0.3], seed=42)

lr = LogisticRegression(featuresCol="scaledNumericalFeatures",
labelCol="label")

model = lr.fit(train_data)

#24/12/03 00:32:04 WARN Instrumentation: [c615ff99] All labels are the same value and fitIntercept=true, so the coefficients will be zeros. Training is not needed.

```
test_results = model.transform(test_data)
```

test_results.select('scaledNumericalFeatures', 'label', 'rawPrediction', 'probability', 'prediction').show()

```
>> test_results.select('scaledNumericalFeatures', 'label', 'rawPrediction', 'probability', 'prediction').show()
                                    rawPrediction|probability|prediction|
  [0.24074074074074...| 0.0|[Infinity,-Infinity]| [1.0,0.0]|
  [0.32407407407407...| 0.0|[Infinity,-Infinity]|
[0.24074074074074...| 0.0|[Infinity,-Infinity]|
                                                    [1.0,0.0]|
                                                                     0.01
                                                    [1.0,0.0]
                                                                     0.01
  [0.31944444444444...| 0.0|[Infinity,-Infinity]|
                                                    [1.0,0.0]
  [0.21296296296296...| 0.0|[Infinity,-Infinity]|
                                                    [1.0,0.0]
  [0.21296296296296...|
                                                    [1.0,0.0]
                        0.0|[Infinity,-Infinity]|
  [0.3055555555555...|
                        0.0|[Infinity,-Infinity]|
   [0.222222222222...|
                         0.0|[Infinity,-Infinity]|
  [0.34722222222222...| 0.0|[Infinity,-Infinity]|
  [0.34259259259259...|
                        0.0|[Infinity,-Infinity]|
  [0.33333333333333...| 0.0|[Infinity,-Infinity]|
                        0.0|[Infinity,-Infinity]|
  [0.3333333333333...|
                                                    [1.0,0.0]
  [0.333333333333333...|
                       0.0|[Infinity,-Infinity]|
  [0.25462962962962...|
                        0.0|[Infinity,-Infinity]|
                                                    [1.0, 0.0]
  [0.27314814814814...|
                                                    [1.0,0.0]
  [0.27314814814814...|
                        0.0|[Infinity,-Infinity]|
                                                    [1.0,0.0]
                        0.0|[Infinity,-Infinity]|
   0.31481481481481...|
  [0.25,0.127906976...| 0.0|[Infinity,-Infinity]| [1.0,0.0]|
  [0.25,0.238372093...| 0.0|[Infinity,-Infinity]|
                                                   [1.0,0.0]
```

Cross Validation

```
param_grid = ParamGridBuilder() \
    .addGrid(Ir.regParam, [0.1, 0.01]) \
    .addGrid(Ir.elasticNetParam, [0.0, 0.5, 1.0]) \
    .build()

evaluator = BinaryClassificationEvaluator(labelCol="label",
metricName="areaUnderROC")

crossval = CrossValidator(estimator=Ir,
estimatorParamMaps=param_grid, evaluator=evaluator, numFolds=5)
cv = crossval.fit(train_data)
```

best model = cv.bestModel

model_data_path =
"gs://my-bigdata-project-kh/models/model_LogisticRegression.parquet"
processed_data.write.parquet(model_data_path)

	DU	ickets / my-biguata-project-kn / models	> IIIodel_Log	gistickegression.parquet 🔟			
my-bigdata-project-kh	:	CREATE FOLDER UPLOAD ▼ TRANSFER DATA ▼ OTHER SERVICES ▼					
cleaned/	:						
code/	Filte	Filter by name prefix only ▼		Show Live objects only ▼			
landing/	: 🗆	Name	Size	Туре	Created ?	Stora	
▼ models/	: 🗆	■ _SUCCESS	0 B	application/octet-stream	Dec 2, 2024, 8:00:03 PM	Stanc	
logistic_regression_model/	: 🗆	part-00000-8c47ccdd-47cd-4239	90.7 MB	application/octet-stream	Dec 2, 2024, 7:57:31 PM	Stanc	
model_LogisticRegression.parquet/	: 🗆	part-00001-8c47ccdd-47cd-4239	90.6 MB	application/octet-stream	Dec 2, 2024, 7:57:32 PM	Stanc	
▼ <u>trusted/</u>	: 🗆	part-00002-8c47ccdd-47cd-4239	90.5 MB	application/octet-stream	Dec 2, 2024, 7:57:33 PM	Stanc	
data_with_features.parquet/	: 🗆	part-00003-8c47ccdd-47cd-4239	90.6 MB	application/octet-stream	Dec 2, 2024, 7:57:33 PM	Stanc	
• feature_treatment_table.csv/	: 🗆	part-00004-8c47ccdd-47cd-4239	90.5 MB	application/octet-stream	Dec 2, 2024, 7:57:51 PM	Stanc	
features_data.parquet/	: 🗆	part-00005-8c47ccdd-47cd-4239	90.6 MB	application/octet-stream	Dec 2, 2024, 7:57:51 PM	Stanc	
		part-00006-8c47ccdd-47cd-4239	90.4 MB	application/octet-stream	Dec 2, 2024, 7:57:51 PM	Stanc	

Milestone 5 Visualization:

```
import matplotlib.pyplot as plt
import pandas as pd
import io
from google.cloud import storage
from pyspark.sql.functions import date_format

data_with_month = data.withColumn("order_month",
    date_format("flightDate", "yyyy-MM"))
summary_data =
    data_with_month.groupBy("order_month").count().sort("order_month")
    df = summary_data.toPandas()
```

```
fig = plt.figure(facecolor='white')
plt.bar(df['order_month'], df['count'])
plt.xlabel("Flight Month")
plt.ylabel("Number of Flights")
plt.title("Number of Flights by Month")
plt.xticks(rotation=45, ha='right')
fig.tight_layout()
plt.savefig("flight_count_by_month_matplotlib.png")
```


Report: August and September have the highest number of flights in a year.

```
#save image
img_data = io.BytesIO()
fig.savefig(img_data, format='png', bbox_inches='tight')
```

```
img_data.seek(0)
storage_client = storage.Client()
bucket = storage_client.get_bucket('my-bigdata-project-kh')
blob = bucket.blob("figures/flight_count_by_month_matplotlib.png")
blob.upload_from_file(img_data)
```


Report: American Airlines is the most popular, followed by Delta Airlines.

```
top_10_airlines = (data.groupBy("segmentsAirlineName")
.count().orderBy("count", ascending=False) .limit(10) .toPandas())
fig, ax = plt.subplots(figsize=(10, 6), facecolor='white')
ax.barh(top_10_airlines['segmentsAirlineName'],
top_10_airlines['count'], color='skyblue')
ax.set_xlabel('Number of Flights')
ax.set_ylabel('Airline')
ax.set_title('Top 10 Airlines by Number of Flights')
ax.invert_yaxis()
plt.tight_layout()
plt.savefig("top_10_airlines_by_flights.png")
```


Report: In this chart, LAX has the highest number of flights compared to other starting airports, while the flight counts for the remaining airports are relatively similar. This indicates that more people prefer to travel from LAX, making it the busiest airport in terms of flight activity.

airport_counts_df =
data.groupby('startingAirport').count().sort('startingAirport').toPandas()
fig = plt.figure(facecolor='white')
plt.bar(airport_counts_df['startingAirport'], airport_counts_df['count'])
plt.title("Number of Flights by Starting Airport")

```
plt.xlabel("Starting Airport")
plt.ylabel("Number of Flights")
plt.savefig("number_of_flights_by_starting_airport.png")

img_data = io.BytesIO()
fig.savefig(img_data, format='png', bbox_inches='tight')
img_data.seek(0)
storage_client = storage.Client()
bucket = storage_client.get_bucket('my-bigdata-project-kh')
blob = bucket.blob("figures/number_of_flights_by_starting_airport.png")
blob.upload_from_file(img_data)
```


Report: Most people search for flights 1-2 months ahead. August and September are the busiest months, with July seeing a spike in flight searches.

```
data_with_months = data.withColumn("search_month",
date_format("searchDate", "yyyy-MM"))
summary_search_month =
data_with_months.groupBy("search_month").count().sort("search_mont
h")
fig = plt.figure(facecolor='white')
plt.bar(summary_search_month['search_month'],
summary_search_month['count'])
plt.xlabel("Search Month")
plt.ylabel("Number of Searches")
plt.title("Number of Searches by Month")
```

```
plt.xticks(rotation=45, ha='right')
fig.tight_layout()

img_data = io.BytesIO()
fig.savefig(img_data, format='png', bbox_inches='tight')
img_data.seek(0)
storage_client = storage.Client()
bucket = storage_client.get_bucket('my-bigdata-project-kh')
blob = bucket.blob("figures/Number_of_Searches_by_Month.png")
blob.upload_from_file(img_data)
```


Report: perfect discrimination with an AUC of 1.0, indicating it successfully differentiates between classes.

from google.cloud import storage

roc_data = best_model.summary.roc

fpr = [row['FPR'] for row in roc_data.collect()]

tpr = [row['TPR'] for row in roc_data.collect()]

plt.figure(figsize=(5,5))

plt.plot(fpr, tpr, label="ROC curve")

import matplotlib.pyplot as plt

import io

```
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title("ROC Curve")
plt.legend(loc="lower right")

img_data = io.BytesIO()
plt.savefig(img_data, format='png', bbox_inches='tight')
img_data.seek(0)
storage_client = storage.Client()
bucket = storage_client.get_bucket('my-bigdata-project-kh')
blob = bucket.blob("figures/roc1.png")
blob.upload_from_file(img_data)
```

```
>>> print(f"AUC: {auc}")
AUC: 1.0
>>> print(calculate_recall_precision(cm))
(0.03993320927827111, 0.0561498603220698, 0.12147228221964443, 0.07679956543744833)
>>> [
```

Report: the low values for accuracy (approximately 3.99%), precision (5.61%), recall (12.15%), and F1 score (7.68%) suggest that the model struggles with a high false positive rate, resulting in poor performance overall despite the ideal ROC outcome.

```
auc = evaluator.evaluate(predictions)
print(f"AUC: {auc}")
cm =
predictions.groupby('label').pivot('prediction').count().fillna(0).collect()
def calculate_recall_precision(cm):
    tn = cm[0][1]
    fp = cm[0][2]
    fn = cm[1][1]
    tp = cm[1][2]
    precision = tp / (tp + fp)
    recall = tp / (tp + fn)
    accuracy = (tp + tn) / (tp + tn + fp + fn)
    f1_score = 2 * ((precision * recall) / (precision + recall))
    return accuracy, precision, recall, f1_score
```

Summary

1. Flight Prediction Analysis

- **Objective:** Predict the likelihood of high flight numbers based on the 'flightDate' column using logistic regression.
- Logistic regression was used to predict flight numbers on specific dates.
- The model shows low accuracy (3.99%), precision (5.61%), recall (12.15%), and F1 score (7.68%). These metrics indicate the model struggles with a high false positive rate, leading to poor overall performance despite achieving perfect discrimination with an AUC of 1.0. The ideal ROC outcome suggests the model is effective at distinguishing between high and low flight dates.
- **2. Flight Search Trends**: Most people tend to search for flights 1-2 months ahead of their planned travel dates. August and September are the busiest months for flight searches. A significant spike in searches occurs in July, likely due to summer travel planning.
- **3. Airport Flight Activity**: LAX (Los Angeles International Airport) leads in flight activity, with the highest number of flights departing compared to other airports. Flight counts from other airports are relatively similar, showing a strong preference for LAX as a starting point for travelers.
- **4. Airline Preferences**: American Airlines is the most popular airline, followed by Delta Airlines, suggesting a strong preference for these carriers among travelers.
- **5. Flight Activity Overview :** Peak Months: The busiest months for flights are August and September, which align with the high number of flight searches during these periods.