Erasmus School of Economics

MOOC Econometrics

Lecture 4.1 on Endogeneity: Motivation

Dennis Fok

Erasmus University Rotterdam

Interpretation of parameters

Given the estimates (y: flights, x: insurances)

$$y = 10,000 + .25x + e$$

Correct: 4,000 insurances sold \rightarrow expected number of flights = $10,000 + .25 \times 4,000 = 11,000$

- High x tends to go together with high y.
- The identified correlation yields adequate predictions.

Incorrect: Selling 4,000 additional insurances causes $.25 \times 4,000 = 1,000$ additional flights

- The regression does not identify a causal impact!
- A third variable (*travel demand*) affects y (*flights*) and x (*insurances*).

Motivating example

We want to explain

- Number of flights at an airport per month (y) using
- Number of travel insurances made in previous month (x)

Suppose OLS yields

$$y = 10,000 + .25x + e$$

Test

How should we interpret the obtained coefficients? What does the estimate .25 really mean?

Erafus

Lecture 4.1, Slide 2 of 12, Erasmus School of Economics

Endogeneity

OLS requires some assumptions:

- explanatory variables should be exogenous
- violation of this: endogeneity.

In this set of lectures, you will learn to:

- Understand/recognize endogeneity.
- 2 Know the consequences of endogeneity.
- 3 Estimate parameters under endogeneity.
- Mow the intuition of the new estimator.
- **1** Argue/test assumptions underlying this new estimator.

Ezafus

Stochastic vs. non-stochastic regressors

Standard assumptions for linear model ($y = X\beta + \varepsilon$) include A2 Explanatory variables are *non-stochastic*

Implications:

- Obtain new data: X stays constant (and y changes)
- Need "controlled experiment"
- OLS estimator b converges to true coefficient β for $n \to \infty$ (OLS is consistent)

Ezafus,

Lecture 4.1, Slide 5 of 12, Erasmus School of Economics

Other examples of endogeneity - Omitted variables

True model is

$$y = X_1 \beta_1 + X_2 \beta_2 + \eta$$

but we ignore X_2 and perform OLS on

$$y = X_1\beta_1 + \varepsilon$$

- We have: $\varepsilon = X_2\beta_2 + \eta$
- X_1 correlated with ε (X_1 is endogenous) if
 - \triangleright X_1 correlated with X_2 and
 - $\beta_2 \neq 0$

Derivation:

$$\mathsf{Cov}(X_1, arepsilon) = \mathsf{Cov}(X_1, X_2 eta_2 + \eta) = \mathsf{Cov}(X_1, X_2) eta_2 + \underbrace{\mathsf{Cov}(X_1, \eta)}_{=0}$$

Economic models

In economics:

- Controlled (or natural) experiments are rare
- New data with same X cannot be obtained
- Explanatory variables are stochastic!

If X stochastic:

- new data set \rightarrow new X values
- X can be correlated with other variables
- If X correlated with ε
 - ▶ *X* is endogenous
 - ▶ There is another variable that affects *y* and *X*
 - ▶ OLS does not properly estimate β (inconsistent)
- ullet If X uncorrelated with arepsilon
 - ▶ *X* is exogenous
 - ▶ OLS consistent

Crafus

Lecture 4.1, Slide 6 of 12, Erasmus School of Economics

Omitted variable – Example

Model student's grade using attendance at lectures.

Test

Which omitted factor would lead to endogeneity of attendance?

Three possible omitted factors:

- Difficulty of exam
 - NO: not correlated with attendance.
- Motivation of the students?
 - YES: correlates with attendance and affects grade.
- Compulsory attendance yes/no?
 - NO: does not directly impact the grade

Erafus

Other examples - Strategic behavior

Other examples – Measurement errors

Consider a model explaining demand using price.

Strategic price setting:

- Sets high price when high demand is expected
- Price and sales positively correlated
- 3 Price will be endogenous in regression of demand on price.

Erafus

Lecture 4.1, Slide 9 of 12, Erasmus School of Economics

• y (eg. salary) depends on x^* (eg. intelligence)

- x^* (intelligence) difficult to observe
- $x = x^* + \text{measurement error}$: noisy measurement (eg. IQ score)
- measurement error: x is endogenous in $y = \alpha + \beta x + \varepsilon$

Ezafus

Lecture 4.1, Slide 10 of 12, Erasmus School of Economic

Summary & what's next?

- Endogeneity is a common problem
- OLS is not useful under endogeneity

Upcoming topics:

- How to solve for endogeneity?
- How to test for endogeneity?

TRAINING EXERCISE 4.1

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus

Erafus