H-1B Visa Labor Condition Application Approval Prediction

Using Classification Models

Team CD-10

Team Members

Juilee Thakur MS in Data Science Mumbai

Akshat Jain MS in Data Science Surat

Jaykumar Patel MS in Data Science Ahmedabad

Prathmesh Desai MS in Information Systems Mumbai

Introduction

- Labor Conditional Application, or LCA, is a required document that before filing the H-1B application with USCIS for whichever non-immigrant worker, Employers must apply with the US Department of Labor.
- LCA is essential to ensuring that you are paid a fair wage as a foreign employee and are not exploited by US businesses.
- Among the first stages to obtaining an H1B work permit in the US is having an LCA approved.
- An H1B Labor Condition Application (LCA) form contains all the pertinent details about the position being offered to the foreign worker, including the wage and location information.

Dataset

- We have captured a dataset from Data World that contains various observations about H-1B LCA applications filed in the year 2017.
- The dataset contains ~528000 observations and 40 columns before any data preprocessing.
- The attributes are a combination of both numerical data and categorical information.
- The main objective of our analysis identify meaningful relationships between the final status of the VISA and the candidate's details.

Dataset Information

FIELD NAME	DESCRIPTION	
CASE_NUMBER	Unique identifier assigned to each application submitted for processing to the Chicago National Processing Center.	
CASE_STATUS	Status associated with the last significant event or decision. Valid values include "Certified," "Certified-Withdrawn," Denied," and "Withdrawn".	
CASE_SUBMITTED	Date and time the application was submitted.	
DECISION_DATE	Date on which the last significant event or decision was recorded by the Chicago National Processing Center.	
VISA_CLASS	Indicates the type of temporary application submitted for processing. R = H-1B; A = E-3 Australian; C = H-1B1 Chile; S = H-1B1 Singapore. Also referred to as "Program" in prior years.	
EMPLOYMENT_START_DATE	Beginning date of employment	
EMPLOYMENT_END_DATE	Ending date of employment	
EMPLOYER_NAME	Name of employer submitting labor condition application.	
EMPLOYER_ADDRESS		
EMPLOYER_CITY		
EMPLOYER_STATE		
EMPLOYER_POSTAL_CODE	Contact information of the Employer requesting temporary labor certification	
EMPLOYER_COUNTRY	certification	
EMPLOYER_PROVINCE		
EMPLOYER_PHONE	1	
EMPLOYER_PHONE_EXT		
AGENT_ATTORNEY_NAME	Name of Agent or Attorney filing an H-1B application on behalf of the employer.	
AGENT_ATTORNEY_CITY	City information for the Agent or Attorney filing an H-1B application on behalf of the employer.	
AGENT_ATTORNEY_STATE	State information for the Agent or Attorney filing an H-1B application on behalf of the employer.	

FIELD NAME	DESCRIPTION Title of the job	
JOB_TITLE		
SOC_CODE	Occupational code associated with the job being requested for temporary labor condition, as classified by the Standard Occupational Classification (SOC) System.	
SOC_NAME	Occupational name associated with the SOC_CODE	
NAICS_CODE	Industry code associated with the employer requesting permanent labor condition, as classified by the North American Industrial Classification System (NAICS)	
TOTAL_WORKERS	Total number of foreign workers requested by the Employer(s)	
FULL_TIME_POSITION	Y = Full Time Position; N = Part Time Position	
PREVAILING_WAGE	Prevailing Wage for the job being requested for temporary labor condition.	
PW_UNIT_OF_PAY	Unit of Pay. Valid values include "Daily (DAI)," "Hourly (HR)," "Bi-weekly (BI)," "Weekly (WK)," "Monthly (MTH)," and "Yearly (YR)"	
PW_SOURCE	Variables include "OES", "CBA", "DBA", "SCA" or "Other"	
PW_SOURCE_YEAR	Year the Prevailing Wage Source was Issued	
PW_SOURCE_OTHER	If "Other Wage Source", provide the source of wage	
WAGE_RATE_OF_PAY_FROM	Employer's proposed wage rate	
WAGE_RATE_OF_PAY_TO	Maximum proposed wage rate	
WAGE_UNIT_OF_PAY	Unit of pay. Valid values include "Hour", "Week", "Bi-Weekly", "Month", or "Year"	
H-1B_DEPENDENT	Y = Employer is H-1B Dependent; N = Employer is not H-1B Dependent	
WILLFUL_VIOLATOR	Y = Employer has been previously found to be a Willful Violator; N = Employer has not been considered a Willful Violator	
WORKSITE_CITY	City information of the foreign worker's intended area of employment	
WORKSITE_COUNTY	County information of the foreign worker's intended area of employment	
WORKSITE_STATE	State information of the foreign worker's intended area of employment	
WORKSITE_POSTAL_CODE	Zip Code information of the foreign worker's intended area of employment	
ORIGINAL_CERT_DATE	Original Certification Date for a Certified_Withdrawn application	

- We identified the important features from the column names and observed the case result based on the features.
- For e.g. we noted that the company "Infosys" has the most H1-B applications and the company "Intel Corp" has the greatest success rate.
- We also looked at the number of applications per state and the success rate per state.
- We further performed an analysis of the job title, income, and nature of work of the applicant with respect to the number of applications and application status
- EDA helped us identify the most important features in our dataset which help determine the success rate for the LCA application

CA has the highest number of employee cases.

Data Preprocessing

- Removing attributes that shall not be used for analysis and classification
- Multi-class classification to Binary class classification
- Feature value re-categorization and re-evaluation
- Handling missing data
- Handling imbalanced dataset
- Encoding categorical data
- Feature Scaling

Data Preprocessing

- Out of all the attributes, we would be using below attributes classification as per our EDA process.
- The original dataset also included details regarding other VISA types, withdrawn cases which needed to be eliminated prior to forming our training data set.
- CASE_STATUS, EMPLOYER_NAME, EMPLOYER_STATE, JOB_TITLE, SOC_NAME, TOTAL_WORKERS, FULL_TIME_POSITION, PREVAILING_WAGE, H-1B_DEPENDENT, WILLFUL_VIOLATOR

Multi-class to Binary class creation

- Grouping CERTIFIED and CERTIFIED-WITHDRAWN cases
- Removing the WITHDRAWN case
- Final result –

[CERTIFIED, DENIED]

```
df['CASE_STATUS'].value_counts()

CERTIFIED 505141

DENIED 6989

Name: CASE STATUS, dtype: int64
```

Feature Value re-categorization and re-evaluation

```
VISA_CLASS: ['H-1B' 'E-3 Australian' 'H-1B1 Singapore' 'H-1B1 Chile']

CERTIFIED 505141

EMPLOYER_COUNTRY: ['UNITED STATES OF AMERICA' 'CANADA' 'CAMBODIA' 'AUSTRALIA' nan 'CHINA']

EMPLOYER_COUNTRY: ['UNITED STATES OF AMERICA' 'CANADA' 'CAMBODIA' 'AUSTRALIA' nan 'CHINA']

EXAMPLE STATUS | .value_counts()

CERTIFIED 505141

IED 6989

e: CASE_STATUS, dtype: int64
```

 Rescaling WAGE attribute based on Unit of Pay, i.e, converting all the wages into yearly wages.

Feature Value re-categorization and re-evaluation

Prevailing Wage

```
print(np.nanpercentile(df.PREVAILING_WAGE,98))
print(np.nanpercentile(df.PREVAILING_WAGE,2))

144961.0
37794.0
```


Feature Value re-categorization and re-evaluation

Prevailing Wage


```
df['PREVAILING WAGE'].mean()
74283,97675386834
df['PREVAILING WAGE'].median()
68827.0
df['PREVAILING WAGE'].max()
144961.0
df['PREVAILING WAGE'].min()
37794.0
```

Handling missing data

- For H-1B Dependent, Willful Violator, Full-time position, Job Title, SOC Name, replace missing data with Mode of respective columns
- Removing Employer Name, removing entire entry
- Additionally, removing Visa Class,
 Employer City and Unit of Pay columns

CASE_STATUS	0
VISA_CLASS	0
EMPLOYER_NAME	43
EMPLOYER_CITY	14
EMPLOYER_STATE	15
EMPLOYER_COUNTRY	107712
JOB_TITLE	3
SOC_NAME	1
TOTAL_WORKERS	0
FULL_TIME_POSITION	4
PREVAILING_WAGE	0
PW_UNIT_OF_PAY	35
H-1B_DEPENDENT	10301
WILLFUL_VIOLATOR	10302
dtype: int64	

Handling missing and unrequired data

Initial result

CASE_STATUS	0
VISA_CLASS	0
EMPLOYER_NAME	43
EMPLOYER_CITY	14
EMPLOYER_STATE	15
EMPLOYER_COUNTRY	107712
JOB_TITLE	3
SOC_NAME	1
TOTAL_WORKERS	0
FULL_TIME_POSITION	4
PREVAILING_WAGE	0
PW_UNIT_OF_PAY	35
H-1B_DEPENDENT	10301
WILLFUL_VIOLATOR	10302
dtype: int64	

• Final result

CASE_STATUS	0
EMPLOYER_NAME	0
EMPLOYER_STATE	0
JOB_TITLE	0
SOC_NAME	0
TOTAL_WORKERS	0
FULL_TIME_POSITION	0
PREVAILING_WAGE	0
H-1B_DEPENDENT	0
WILLFUL_VIOLATOR	0
dtype: int64	

Handling Imbalanced Dataset

• We noted that there was a huge variance between the number cases that were "certified" and "denied", which would lead to an imbalanced data set.

Handling Imbalanced Dataset

Over sampling


```
df_os['CASE_STATUS'].value_counts()

CERTIFIED 395583

DENIED 395583

Name: CASE_STATUS, dtype: int64
```

Under sampling


```
df_us['CASE_STATUS'].value_counts()

DENIED 5026
CERTIFIED 5026
Name: CASE_STATUS, dtype: int64
```

Encoding Categorical Data

- We encoded all categorical type data in order to create a training dataset which is free of "labels"
- Employer_Name, Employer_State, Job_Title, SOC_Name, Full_Time_Position,
 H-1B_Dependent, Willful_Violator have Categorical Values
- Encoded values of each column into binary input by using One Hot Encoder
- Result -> 9 to 119401 columns

Feature Scaling

- Employer_Name, Employer_State, Job_Title, SOC_Name,
 Full_Time_Position, H-1B_Dependent, Willful_Violator are encoded as 0 / 1
- Prevailing_Wage and Total_Workers have numerical data >>> 0/1
- Hence, featured scaled those attributes to have range of those values within 1 and 1

```
# Feature Scaling
from sklearn.preprocessing import StandardScaler
```

```
std_sclr = StandardScaler(with_mean=False)
X[:,[-1, -2]] = std_sclr.fit_transform(X[:,[-1, -2]])
```

Classification Models

- Decision Tree Classifier
- Random Forest Classifier
- Naive Bayes Classifier
- KNN Classifier

DECISION TREE CLASSIFIER

Unsampled

accuracy_score(y_test, y_pred)

0.9821605385121024

precision_score(y_test, y_pred)

0.1503267973856209

recall_score(y_test, y_pred)

0.09187749667110519

fl_score(y_test, y_pred)

0.1140495867768595

OverSampled

accuracy_score(y_test, y_pred)

0.9838677059195281

precision_score(y_test, y_pred)

0.9713837485318154

recall_score(y_test, y_pred)

0.99709130764691

f1_score(y_test, y_pred)

0.984069662463232

UnderSampled

accuracy_score(y_test, y_pred)

0.6296419098143236

precision_score(y_test, y_pred)

0.6249162759544541

recall_score(y_test, y_pred)

0.6261744966442953

fl_score(y_test, y_pred)

0.6255447536037545

RANDOM FOREST CLASSIFIER

Unsampled

accuracy_score(y_test, y_pred)

0.9835916893404225

precision_score(y_test, y_pred)

0.1717877094972067

recall_score(y_test, y_pred)

0.08189081225033289

f1_score(y_test, y_pred)

0.11091073038773672

OverSampled

accuracy_score(y_test, y_pred)

0.9874994733515905

precision_score(y_test, y_pred)

0.9780572297872693

recall_score(y_test, y_pred)

0.9973610994013995

f1_score(y_test, y_pred)

0.9876148454882056

UnderSampled

accuracy score(y test, y pred)

0.666445623342175

precision_score(y_test, y_pred)

0.6430260047281324

recall_score(y_test, y_pred)

0.7302013422818792

f1_score(y_test, y_pred)

0.6838466373350094

NAIVE BAYES CLASSIFIER

Unsampled

accuracy_score(y_test, y_pred)

0.9875023921852508 -100000 -80000 -60000 -40000 -20000

precision_score(y_test, y_pred)

Predicted label

0.0

recall_score(y_test, y_pred)

0.0

f1_score(y_test, y_pred)

0.0

OverSampled

accuracy_score(y_test, y_pred)

0.8588961449336423

precision_score(y_test, y_pred)

0.8363456751096534

recall_score(y_test, y_pred)

0.8922266250737712

f1_score(y_test, y_pred)

0.8633828958371575

UnderSampled

accuracy_score(y_test, y_pred)

0.6757294429708223

precision_score(y_test, y_pred)

0.6836441893830703

recall_score(y_test, y_pred)

0.6395973154362417

f1_score(y_test, y_pred)

0.660887656033287

NAIVE BAYES CLASSIFIER

Unsampled

accuracy_score(y_test, y_pred)

0.9875023921852508 -100000 -80000 -60000 -40000 -20000

precision_score(y_test, y_pred)

Predicted label

0.0

recall_score(y_test, y_pred)

0.0

f1_score(y_test, y_pred)

0.0

OverSampled

accuracy_score(y_test, y_pred)

0.8588961449336423

precision_score(y_test, y_pred)

0.8363456751096534

recall_score(y_test, y_pred)

0.8922266250737712

f1_score(y_test, y_pred)

0.8633828958371575

UnderSampled

accuracy_score(y_test, y_pred)

0.6757294429708223

precision_score(y_test, y_pred)

0.6836441893830703

recall_score(y_test, y_pred)

0.6395973154362417

f1_score(y_test, y_pred)

0.660887656033287

KNN CLASSIFIER

Unsampled

accuracy_score(y_test, y_pred)

precision_score(y_test, y_pred)

0.444444444444444

recall_score(y_test, y_pred)

0.03462050599201065

f1_score(y_test, y_pred)

0.06423718344657195

OverSampled

accuracy_score(y_test, y_pred)

0.9452580577206657

precision_score(y_test, y_pred)

0.9055796628393686

recall_score(y_test, y_pred)

0.99410673636287

f1_score(y_test, y_pred)

0.9477804794727006

UnderSampled

accuracy_score(y_test, y_pred)

precision_score(y_test, y_pred)

0.5898141775636614

recall_score(y_test, y_pred)

0.5751677852348993

f1_score(y_test, y_pred)

0.582398912674142

Accuracy & F1-score comparison (Oversampled data)

Classification Model	<u>Accuracy</u>	F1 score
Decision Tree	98.39%	0.9841
Random Forest	98.75% 🛑	0.9876
Naive Bayes	85.89%	0.8634
KNN	94.53%	0.9478

Conclusion

- We made a comparitive study between the results obtained for undersampled and oversampled dataset. With Imbalanced class data, accuracy was achieved, however, it would fail for minority classes as seen from its Precision, Recall and F1 score.
- With balanced data, in the case of Under Sampled Class data, all the models failed to achieve reasonable accuracy
- In case of Over Sampled Class data, all the models have higher accuracy compared to Imbalanced class and under sampled class

References

- Ian Greenleigh, "Data world", https://data.world/ian/h-1-b-disclosure-data-fy17/workspace/file?filename=H-1B_FY17_Record_Layout.pdf, 2017.
- Kumar, "What is H1B LCA? Why file it? Salary, Processing times DOL", February 2022, https://redbus2us.com/what-is-h1b-lca-why-file-it-salary-processing-timesdol

THANK YOU!