Node Clustering with Traditional and Neural Network Approaches

Ruizhe XIA, Fa ZHANG

HKUST

May 18, 2023

Graph is a widely existing type of data that can capture the dependency between samples.

- Graph is a widely existing type of data that can capture the dependency between samples.
- Let G = (V, E) be an undirected graph with vertex set $V = \{v_1, \dots, v_n\}$, we use $i \sim j$ to denote that $v_i \in V$ is a neighbor of $v_j \in V$, i.e. $(i, j) \in E$.

- Graph is a widely existing type of data that can capture the dependency between samples.
- Let G = (V, E) be an undirected graph with vertex set $V = \{v_1, \dots, v_n\}$, we use $i \sim j$ to denote that $v_i \in V$ is a neighbor of $v_j \in V$, i.e. $(i, j) \in E$.
- ▶ The adjacency matrix A of the graph G is the matrix

$$A_{ij} = \begin{cases} 1 & i \sim j \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- Graph is a widely existing type of data that can capture the dependency between samples.
- Let G = (V, E) be an undirected graph with vertex set $V = \{v_1, \dots, v_n\}$, we use $i \sim j$ to denote that $v_i \in V$ is a neighbor of $v_j \in V$, i.e. $(i, j) \in E$.
- ▶ The adjacency matrix A of the graph G is the matrix

$$A_{ij} = \begin{cases} 1 & i \sim j \\ 0 & \text{otherwise} \end{cases}$$
 (1)

▶ The degree of a vertex $v_i \in V$ is defined as

$$d_i = \sum_{j=1}^n A_{ij},\tag{2}$$

and then we define a diagonal matrix $D = diag(d_i)$.

Datasets

(a) Zachary's Karate Club Dataset Coach(red) & Owner(blue)

(b) Political Blogs Dataset Liberal(red) & Conservative(blue)

Figure: Visualization

Problem

- ▶ Given an undirected and connected graph G = (V, E), partition into two disjoint sets A, B, where $A \cup B = V$ and $A \cap B = \emptyset$.
- Metric

$$Accuarcy = \frac{Number of correct predictions}{Total number of predictions}.$$
 (3)

Traditional Methods

Spectral Clustering
 The Normalized Graph Laplacian

$$L_{sym} = D^{-1/2}LD^{-1/2}.$$

Traditional Methods

Spectral Clustering
 The Normalized Graph Laplacian

$$L_{sym} = D^{-1/2}LD^{-1/2}$$
.

► Transition Path Theory

The transition probability matrix

$$P = D^{-1}A.$$

Let $V = V_0 \cup V_1 \cup V_u$ be a partition of V. The committor function q(i) gives the probability of first hitting V_1 before V_0 .

Node Clustering

(a) Bisection(Acc = 58.82%)

(b) Transition Path(Acc = 97.06%)

Figure: Traditional Methods

Transition Path (Zachary's Karate Club Dataset)

Important nodes: 2,3,9,14,20,32,33

Isolated nodes: 5,6,7,11,12,17

Figure: Effective/Transition Flux of Zachary's Karate Club Dataset

Transition Path(Political Blogs Dataset)

The labels matter.

(a) Good source/target state (Acc = 94.68%)

(b) Random source/target state (Acc = 48.04%)

Figure: Subgraph of Top 15 Nodes in Political Blogs Network

Neural Network Methods

▶ DeepWalk

A method for learning embeddings of nodes. DeepWalk first uses random walks on a graph to generate sequences of nodes. And then uses the skip-gram model on these sequences to learn embeddings for each node.

Neural Network Methods

► Node2Vec

Follow a similar process to DeepWalk, but Node2Vec uses a biased random walk strategy that captures both the local and global structure of the graph.

$$\begin{array}{c} x_1 \\ \alpha = 1 \\ \alpha = 1/q \\ \alpha = 1$$

Figure: The walk transitioned from t to v and is evaluating its next step

Accuracy

Accuracy % Methods Dataset	SC	TPT	DeepWalk	Node2Vec
Karate Club	58.82	97.06	97.06	97.06
Political Blogs	51.80	94.68*	95.51	96.16

Table: Accuracy

Perturbation Analysis

	1	2	3	4	5	6	7
SC	50.92+10.60	47.86+10.68	46.90+10.26	46.20+10.14	44.40+9.75	44.61+9.98	44.62+9.99
TPT	96.39+1.54	96.13+1.68	95.75+1.92	95.60+2.15	95.56+2.22	95.33+2.35	95.14+2.47
DeepWalk	96.76+0.01	96.53+0.01	96.24+0.01	96.20+0.02	96.12+0.01	96.12+0.01	96.02+0.02
Node2Vec	96.88+0.01	96.59+0.01	96.82+0.01	96.41+0.01	96.41+0.02	96.82+0.01	96.12+0.02

Table: Missing Edges

Summary

► The advantage of traditional methods is their interpretability. However, it loses the flexibility to capture complex nonlinear relationships, and it's also computationally expensive.

► The data-driven approach makes neural network methods very flexible. Besides, they are scalable and efficient.