MNM Study Guide Coursework 2

Notation:

Scalars – a or a

Vectors – \mathbf{v} or $\mathbf{\vec{v}}$ or $\mathbf{\vec{v}}$, vector length $|\mathbf{v}|$

Tensors – \mathbf{T} or (if rank 2) \mathbf{T}

Unit vector along direction of \mathbf{v} : $\hat{\mathbf{e}}_{v} = \frac{\mathbf{v}}{|\mathbf{v}|}$

Unit outward normal for a plane: $\hat{\mathbf{n}}$

Equations/concepts you are expected to know and be able to apply:

Examples given here all for 3-D, orthonormal Cartesian reference frame

- Index notation: vector or tensor components written as v_i or T_{ij} with i,j=1,2,3 or i,j=x,y,z
- Einstein convention implied summation of the same index repeated twice within a single term, e.g. $v_i w_i = \sum_{i=1}^{3} v_i w_i$
- <u>Vector and tensor products</u>:
 - dot product: $\mathbf{v} \cdot \mathbf{w} = v_i w_i$ or $\mathbf{T} \cdot \mathbf{v} = T_{ij} v_j$
 - multiple contraction, e.g. $\sigma = \mathbf{C} \cdot \boldsymbol{\varepsilon} = C_{ijkl} \, \varepsilon_{kl}$
 - cross product: $\mathbf{v} \times \mathbf{w} = \varepsilon_{ijk} v_i w_j \hat{\mathbf{e}}_k$
 - tensor product: **vw**=v_iw_i
- <u>Transpose</u>: $T_{ji}=T_{ij}^T$
- <u>Tensor symmetry</u>:
 - Symmetric in $i,j:T_{ji}=T_{ij}$,
 - Antisymmetric in i,j: T_{ii}=-T_{ii}
- Tensor trace: for rank 2 tensor $tr(T)=T_{11}+T_{22}+T_{33}=T_{ii}$.
- Kronecker delta $\delta_{ij} = 1$ if i = j, = 0 if $i \neq j$
- <u>Levi-Civita tensor</u> $\varepsilon_{ijk} = 1$ for even permutations of 1,2,3, $\varepsilon_{ijk} = -1$ for odd permutations of 1,2,3, $\varepsilon_{ijk} = 0$ if any i,j,k are equal
- <u>Lagrangian</u> or material description of motion following a 'particle', all fields described as a function of position ξ at a reference time t_0 and time t.
- <u>Eulerian</u> or spatial description of motion from a fixed observation point. All fields described as a function of position **x** and time *t*.
- Material Derivative
 - in spatial description, the full time derivative of a field $P(\mathbf{x},t)$ becomes: $\frac{DP}{Dt} = \frac{\partial P}{\partial t} + \mathbf{v} \cdot \nabla P$, i.e., contains a time and advective term

1

– in material description, the time derivative of the field $P(\xi,t)$ is $\frac{DP}{Dt} = \frac{\partial P}{\partial t}$

- <u>Divergence:</u> $\nabla \cdot \mathbf{v} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}$
 - represents source/sink of a v field
 - can also be applied to tensors, e.g. $(\nabla \cdot \mathbf{T})_i = \frac{\partial T_{1i}}{\partial x_1} + \frac{\partial T_{2i}}{\partial x_2} + \frac{\partial T_{3i}}{\partial x_3}$
- <u>Curl:</u> $\nabla \times \mathbf{v} = \left(\frac{\partial v_3}{\partial x_2} \frac{\partial v_2}{\partial x_3}, \frac{\partial v_1}{\partial x_3} \frac{\partial v_3}{\partial x_1}, \frac{\partial v_2}{\partial x_1} \frac{\partial v_1}{\partial x_2}\right)$ represents vorticity of a \mathbf{v} field
- - of a scalar $\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right)$
 - or of a vector $(\nabla \mathbf{v})_{ij} = \frac{\partial v_j}{\partial x_i}$
- <u>Laplacian:</u> $\nabla \cdot \nabla f = \nabla^2 f = \Delta f = \frac{\partial^2 f}{\partial x_i \partial x_i}$
- Cauchy Stress tensor:
 - stress tensor component σ_{ij} represents a force in $\hat{\mathbf{e}}_i$ direction on a plane with normal in $\hat{\mathbf{e}}_i$ direction. Positive normal stress corresponds to extension.
 - stress tensor is symmetric: $\sigma_{ij} = \sigma_{ji}$ (conservation of angular momentum)
 - traction t on a plane with normal $\hat{\mathbf{n}}$ is $\mathbf{t} = \boldsymbol{\sigma} \cdot \hat{\mathbf{n}}$
 - the stress tensor can be diagonalised, with principal components σ_1 , σ_2 , σ_3 which include maximum and minimum normal stress
 - Can be decomposed into isotropic stress (pressure $p = -\sigma_{kk}/3$) and deviatoric stress σ' such that σ_{ij} =-p δ_{ij} + σ'_{ij}
- Conservation of linear momentum (per unit volume): $\rho \frac{D^2 \mathbf{u}}{Dt^2} = \mathbf{f} + \nabla \cdot \boldsymbol{\sigma}$, where ρ is density, **u** is displacement and **f** is body force.
- <u>Infinitesimal strain tensor:</u>
 - Infinitesimal strain tensor component $\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_i} \right)$, where **u** is the displacement field. Applicable if $\nabla \mathbf{u} \ll 1$.
 - An original line segment described by vector \mathbf{x} deforms to a new line segment \mathbf{x}' as: $\mathbf{x}' = \mathbf{\epsilon} \cdot \mathbf{x}$
 - Diagonal components of ε_{ij} represent fractional length changes, i.e., if x is a vector in $\hat{\mathbf{e}}_1$ direction than $\mathbf{\varepsilon}_{11} = \frac{|\mathbf{x}'| - |\mathbf{x}|}{|\mathbf{x}|}$. Similarly, for a given vector \mathbf{s} , the product $\mathbf{s} \cdot \mathbf{\epsilon} \cdot \mathbf{s}$ corresponds to the fractional change in $|\mathbf{s}|$ by the strain $\mathbf{\epsilon}$.
 - Off-diagonal components represent changes in angle (i.e., shape), such that $2\varepsilon_{12}$ equals the change in angle between a line segment originally in $\hat{\mathbf{e}}_1$ direction and one originally in $\hat{\mathbf{e}}_2$ direction. Given two originally perpendicular vectors s and p, 2 x the product $\mathbf{p} \cdot \mathbf{\epsilon} \cdot \mathbf{s}$ corresponds to the change in the angle between **s** and **p** by the strain ε .
 - $tr(\mathbf{\varepsilon}) = \nabla \cdot \mathbf{u}$ and represents the fractional change in volume.
 - ε_{ij} is symmetric and can be diagonalised, such that principal strain components ε_1 , ε_2 , ε_3 include the maximum and minimum fractional length changes in the strain field described by ε .

- Can be decomposed into isotropic and deviatoric strain, like the stress tensor

• Strain rate tensor

- Strain rate tensor **D**=D ϵ /Dt has same kind of properties as the infinitesimal strain tensor, but depends on the velocity field **v**: $D_{ij} = \frac{1}{2} \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} \right)$.
- $tr(\mathbf{D}) = \nabla \cdot \mathbf{v} = 0$ means no change in volume and is the conservation of mass equation for an incompressible material.
- <u>Energy equation</u> if given the equation, understand the different terms (conduction, advection, heat production, power dissipated by deformation) and be able to use (e.g., to solve for temperature for simple case)
- Rheology know difference between elastic and viscous rheology. Be able to apply. If more complex equations are necessary, they will be given.
 - <u>Elasticity</u> **σ**=**C**:**ε**, linear relationship between stress and infinitesimal strain. For an isotropic medium, only two independent parameters, e.g. Lamé parameters (λ , μ), bulk and shear moduli (K, μ), or Young's modulus and Poisson's ratio (E, ν). In terms of Lamé parameters: **σ**= λ θI +2 μ **ε**, where θ = tr(**ε**). Bulk modulus:-p=Kθ, $K = \lambda + \frac{2}{3}\mu$; In uniaxial stress: Young's modulus E = $\sigma_{11}/\epsilon_{11}$, and Poisson's ratio ν =- $\epsilon_{33}/\epsilon_{11}$
 - Newtonian Viscosity linear relationship between deviatoric stress σ ' and strain rate **D**. If isotropic => bulk viscosity ζ and shear viscosity η as the two material parameters: $\sigma = (-p + \zeta \Delta)\mathbf{I} + 2\eta \mathbf{D}$
- <u>Equations of motion</u> wave equation for elastic media and Navier Stokes for fluids, understand terms and derive simple solutions if equations given.

• <u>Dimensional analysis</u>

- For non-dimensionalising equations, understand how to produce dimensionless versions of the dependent and independent variables and to use those to form the dimensionless the dimensionless version of the equations.
- Understand how to use Buckingham Pi theory to determine the number of dimensionless groups required to describe a system and to produce an appropriate set of dimensionless groups