WUOLAH

exam_14ene2019.pdf

Examen Enero y Soluciones FFT 2019

- 1º Fundamentos Físicos y Tecnológicos
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

ASIGNATURAS
DE UNIVERSIDAD:
HACEMOS GRUPOS
PARA CLASES DE APOYO

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fundamentos Físicos y Tecnológicos GIM – GIADE – GI	Examen final 14 de enero del 2019	
Apellidos:			Firma:
Nombre:	DNI:	Curso y grupo:	

INSTRUCCIONES:

- Sólo puede usar calculadora no programable para resolver el examen. No se permite el uso de libros ni de ningún tipo de apuntes.
- Su teléfono móvil debe permanecer durante el examen dentro del sobre pequeño suministrado; y éste, encima de la mesa y visible en todo momento.
- Resuelva cada ejercicio en folios separados. No hacerlo penalizará 0.25 puntos.
- No utilice color rojo para realizar el examen. Aquellas partes que complete a lápiz serán preteridas en la corrección.
- Indique en cada hoja su nombre, el número de página y el número de páginas totales que entrega. No hacerlo penalizará 0.25 puntos.
- Dispone de tres horas para realizar el examen. Al finalizar, deberá entregar también esta hoja.
- 1. (2 puntos) Sean dos placas paralelas, indefinidamente extensas y verticales separadas una distancia d en las que se distribuyen respectivamente las densidades de carga superficiales $\sigma_1 = 2 \frac{C}{m^2}$ y $\sigma_2 = 4 \frac{C}{m^2}$.
 - a) Calcule el campo eléctrico entre las dos placas, así como en el espacio a la izquierda y a la derecha de ellas.
 - b) Indique los puntos en que el campo eléctrico se anula.
- 2. (2 puntos) En el circuito siguiente, calcule la tensión V_A en función de las tensiones V_1 y V_2 .

Datos: $R_1 = R_2 = R_3 = R_4 = 1 \ k\Omega$.

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Continúa do

Top de tu gi

3. (2 puntos) Calcule el valor de la fuente de corriente del circuito mostrado a continuación para que el fasor de la tensión entre los puntos A y B sea $V_{\rm AB}=5\,e^{j\,\frac{\pi}{6}}.$

Datos: $R_1 = 2~\Omega; R_2 = 10~\Omega; R_3 = 2~\Omega; Z_{L1} = 2j~\Omega; Z_{L2} = 5j~\Omega; Z_{L3} = 5j~\Omega; Z_C = -2j~\Omega.$

4. (2 puntos) Sea el circuito de la figura donde supondremos que los diodos utilizados se pueden aproximar en conducción por fuentes de tensión de valor $V_{\gamma} = 0.6 \text{ V}.$

Obtenga el valor de la tensión V_o e indique el estado de cada uno de los diodos para los siguientes casos:

a)
$$V_1 = 0 \text{ V}.$$

b)
$$V_1 = 5 \text{ V}.$$

c)
$$V_1 = 9.5 \text{ V}.$$

Datos: $V_2=10$ V; $V_3=6$ V; $R_1=10$ $k\Omega$; $R_2=10$ $k\Omega$.

Se pide:

- a) Demuestre razonadamente que $I_1 = I_2 \ \forall R$.
- b) Calcule el valor de ambas intensidades.
- c) Calcule el máximo valor de R_L para que el transistor M2 se mantenga en saturación.

Datos: $V_{\rm SS}=10~{
m V};$ $R=1~k\Omega;$ $k_1=k_2=2~{
m mA/V^2};$ $|V_{\rm T1}|=|V_{\rm T2}|=1~{
m V}.$