CAPSTONE PROJECT

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By:

Gowtham S

Pollachi Institute of Engineering and Technology

Computer Science and Engineering

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

- Industrial Machines Are Prone To Failures Such As Tool Wear, Eat Dissipation Issues, And Power Faults.
- These Failures Lead To Unplanned Downtime, Increased Maintenance Costs, And Reduced Operational Efficiency.
- Traditional Maintenance Strategies Are Reactive Or Scheduled, Often Missing Early Warning Signs.
- The Challenge Is To Build A System That Predicts Failures Before They Occur—enabling Proactive Maintenance And Minimizing Disruptions.

PROPOSED SOLUTION

Develop a machine learning-based classification model that:

- Analyzes real-time sensor data (e.g., torque, rotational speed, temperature)
- Predicts the type of failure before it happens
- Enables automated alerts for maintenance teams
- Reduces downtime and improves asset reliability

SYSTEM APPROACH

Platform & Tools:

- IBM Cloud Lite (AutoAl, Deployment Spaces)
- Python (Pandas, scikit-learn, imbalanced-learn)
- SMOTE for class balancing
- Snap ML Random Forest Classifier (P4 pipeline)

Dataset Source:

Kaggle – Predictive Maintenance Classification

ALGORITHM & DEPLOYMENT

- Task: Multi-class classification
- **Target Column**: Failure Type
- Classes: Tool Wear (TWF), Heat Dissipation (HDF), Power Failure (PWF), Overstrain (OSF), Random Failure (RNF), No Failure
- Model Used: Snap ML Random Forest Classifier
- Optimized Metric: F1 Weighted Score
- Deployment: IBM Cloud Lite Deployment Spaces (AutoAl export)

RESULT

Metric	Holdout Score	Cross-Validation
Accuracy	0.997	0.995
F1 Weighted	0.996	0.994
Precision Macro	0.814	0.784
Recall Macro	0.818	0.768
Log Loss	0.025	0.094

Insights:

- Model performs exceptionally well across all failure types
- SMOTE preprocessing helped balance rare classes
- Low log loss confirms high confidence in prediction

RESULT

lt_I	Type_pred	diction Open	oyed Online						
erence	e Test								
erence									
rinnı	ut data								
прс	ur data								
	JSC	ON							
	330								
	330								
		a CSV file to populate the	e spreadsheet. Ma	ax file size is 50 MB.					
er data	manually or use a	a CSV file to populate the						Clear all	>
er data		a CSV file to populate the						Clear all	;
er data	manually or use a				Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)	Clear all	
er data	manually or use a	Browse local files 7	7 Search in sp	pace 7	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)		
r data nload (manually or use a	Browse local files 7	7 Search in sp	pace 7	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)		
er data nload (manually or use a	Browse local files 7	7 Search in sp	pace 7	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)		
er data Inload (1 2 3	manually or use a	Browse local files 7	7 Search in sp	pace 7	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)		
er data nload (1 2	manually or use a	Browse local files 7	7 Search in sp	pace 7	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)		

RESULT

CONCLUSION

- The predictive maintenance model successfully anticipates machine failures with near-perfect accuracy.
- By leveraging IBM Cloud Lite and AutoAI, the system is scalable, interpretable, and ready for real-world deployment.
- It empowers industries to shift from reactive to proactive maintenance—saving time, cost, and resources.

FUTURE SCOPE

- Integrate real-time IoT sensor streams
- Extend to regression for failure severity prediction
- Deploy on edge devices for low-latency alerts
- Add explainability using SHAP or LIME
- Expand to other domains (e.g., HVAC, robotics, power grids)

REFERENCES

Github Repository Link:

https://github.com/Gowtham9503/Predictive_Maintenance_ML_Model.git

- IBM Snap ML Random Forest Classifier
- Scikit-learn documentation
- IBM Cloud Lite Deployment Spaces
- Kaggle Predictive Maintenance Dataset

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Gowtham S

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence Gowtham S Has successfully satisfied the requirements for: Journey to Cloud: Envisioning Your Solution Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild Verify: https://www.credly.com/badges/bc684201-dac0-4c59-aff0-842fab96cf25

IBM CERTIFICATIONS

THANK YOU

