Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau

Prof. Dr. Thomas Carraro Dr. Frank Gimbel Janna Puderbach

Mathematik III

Blatt 2

FT 2022

Integration

Einführende Bemerkungen

- Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.
- Die mit einem Stern *) markierten (Teil-)Aufgaben entfallen in diesem Trimester. Stattdessen werden einzelne Online-Aufgaben im ILIAS-Kurs kenntlich gemacht, zu denen Sie dort Ihre Lösungswege zur Korrektur hochladen können.
- Die mit zwei Sternen **) markierten (Teil-)Aufgaben richten sich an Studierende, die die übrigen Aufgaben bereits gelöst haben und die Inhalte weiter vertiefen möchten.

Aufgabe 2.1: Uneigentliche Integrale

Welche der folgenden uneigentlichen Integrale besitzen einen endlichen Wert? Bestimmen Sie den Wert dieser Integrale.

a)
$$\int_{0}^{1} \frac{1}{x^{1/4}} \, \mathrm{d}x$$

$$\int_{0}^{1} \frac{1}{x} \, \mathrm{d}x$$

c)
$$\int_{0}^{1/\pi} \frac{1}{x^2} \sin \frac{1}{x} \, \mathrm{d}x$$

$$\int_{0}^{\infty} 2x e^{-x^2} dx$$

Lösung 2.1:

a) Dieses Integral existiert:

$$\int_{0}^{1} x^{-\frac{1}{4}} dx = \lim_{a \to 0} \int_{a}^{1} x^{-\frac{1}{4}} dx = \lim_{a \to 0} \left(\frac{4}{3} x^{\frac{3}{4}} \Big|_{a}^{1} \right) = \frac{4}{3} \lim_{a \to 0} (1 - a^{3/4}) = \frac{4}{3}.$$

b) Dieses Integral existiert nicht:

$$\int_{0}^{1} \frac{1}{x} dx = \lim_{a \to 0} \int_{a}^{1} \frac{1}{x} dx = \lim_{a \to 0} \left(\ln|x| \Big|_{a}^{1} \right) = \lim_{a \to 0} (\ln 1 - \ln a) = +\infty.$$

c) Hier ist

$$\int_{0}^{1/\pi} \frac{1}{x^2} \sin \frac{1}{x} dx = \lim_{a \to 0} \int_{0}^{1/\pi} \frac{1}{x^2} \sin \frac{1}{x} dx = \lim_{a \to 0} \cos \frac{1}{x} \Big|_{a}^{1/\pi} = \lim_{a \to 0} \left(\cos(\pi) - \cos \frac{1}{a} \right).$$

Der Grenzwert existiert nicht, da $\cos(1/a)$ für $a \to 0$ immer wieder alle Werte zwischen -1 und +1 annimmt. Also existiert auch kein Wert für das Integral.

d) Dieses Integral existiert:

$$\int_{0}^{\infty} 2x e^{-x^{2}} dx = \lim_{a \to \infty} \int_{0}^{a} 2x e^{-x^{2}} dx = \lim_{a \to \infty} \left(-e^{-x^{2}} \Big|_{0}^{a} \right)$$
$$= \lim_{a \to \infty} \left(-e^{-a^{2}} + e^{0} \right) = 0 + 1 = 1.$$

Aufgabe 2.2: Volumenintegrale

Berechnen Sie

$$\int_{V} \frac{\mathrm{e}^{-x^2 - y^2}}{1 + z^2} \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

mit

1

$$V = \{(x, y, z) \in \mathbb{R}^3 : z \ge 0\}.$$

Hinweise:

- Es empfiehlt sich die Rechnung in Zylinderkoordinaten.
- Der Integrationsbereich ist unendlich groß. Dadurch treten uneigentliche Integrale auf.

Lösung 2.2:

Es werden Zylinderkoordinaten (r, φ, z) verwandt: $x = r \cos \varphi$, $y = r \sin \varphi$, z = z. Dann gilt

$$\left| \frac{\partial(x, y, z)}{\partial(r, \varphi, z)} \right| = r.$$

Es folgt

$$V' = \{(r, \varphi, z) : r \in [0, \infty), \varphi \in [0, 2\pi], z \in [0, \infty)\}$$

$$\int_{V} \frac{e^{-x^{2}-y^{2}}}{1+z^{2}} dx dy dz = \int_{V'} \frac{e^{-r^{2}}}{1+z^{2}} r dr d\varphi dz$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{\infty} \left(\int_{0}^{\infty} \frac{e^{-r^{2}}}{1+z^{2}} dr \right) dz \right) d\varphi$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{\infty} \left[\frac{-e^{-r^{2}}}{2(1+z^{2})} \right]_{0}^{\infty} dz \right) d\varphi$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{\infty} \frac{1}{2(1+z^{2})} dz \right) d\varphi$$

$$= \int_{0}^{2\pi} \left[\frac{1}{2} \arctan z \right]_{0}^{\infty} d\varphi$$

$$= \int_{0}^{2\pi} \frac{\pi}{4} d\varphi = \frac{\pi^{2}}{2}.$$

Aufgabe 2.3: Masse einer Halbkugel

Berechnen Sie die Masse einer Halbkugel mit Mittelpunkt $(0,0,0)^{\top}$, Radius a>0 sowie $z\geq 0$ und der Massendichte

$$\rho(x, y, z) = \frac{z}{\sqrt{x^2 + y^2}}.$$

Hinweis: Die Masse M eines Körpers K mit Massendichte $\rho(x)$ ergibt sich aus

$$M = \int_K \rho(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}.$$

Lösung 2.3:

Es bietet sich die Rechnung in Kugelkoordinaten an. Wegen der Bedingung $z \ge 0$ wird θ auf das Intervall $[0, \pi/2]$ eingeschränkt.

$$M = \int_{\theta=0}^{\pi/2} \int_{\varphi=0}^{2\pi} \int_{r=0}^{a} \rho \cdot r^2 \sin\theta dr d\varphi d\theta = \int_{\theta=0}^{\pi/2} \int_{\varphi=0}^{2\pi} \int_{r=0}^{a} \frac{r \cos\theta}{r \sin\theta} r^2 \sin\theta dr d\varphi d\theta$$
$$= \frac{a^3}{3} \cdot 2\pi \int_{\theta=0}^{\pi/2} \cos\theta d\theta = \frac{2\pi a^3}{3}.$$

Aufgabe 2.4: Wiederholung: Schwerpunkt und Trägheitsmoment

Gegeben sei der Kreissektor B in der x-z-Ebene in Abhängigkeit von den Parametern

$$R > 0$$
 und $0 < \alpha \le \pi$.

Durch die Rotation der Fläche B um die z-Achse wird ein Kugelsegment K gebildet. Bestimmen Sie den Schwerpunkt und das Trägheitsmoment bezüglich der z-Achse des homogenen Rotationskörpers.

Lösung 2.4:

Zunächst benötigen wir das Volumen des Rotationskörpers. Wir führen die Berechnung in Kugelkoordinaten durch:

$$V = \int_{K} dV = \int_{0}^{2\pi} \int_{0}^{R} \int_{0}^{\alpha} r^{2} \sin\theta d\theta dr d\varphi$$
$$= 2\pi \frac{R^{3}}{3} \int_{0}^{\alpha} \sin\theta d\theta = \frac{2\pi R^{3}}{3} \left(-\cos(\alpha) + \cos(0) \right) = \frac{2\pi R^{3}}{3} (1 - \cos(\alpha)).$$

Wegen der Symmetrie des Rotationskörpers liegt der Schwerpunkt auf der z-Achse des Koordinatensystems. Es ist also nur die z-Komponente $z_{\rm S}$ zu berechnen:

$$z_{\rm S} = \frac{1}{V} \int_{K} z \, dV = \frac{1}{V} \int_{0}^{2\pi} \int_{0}^{R} \int_{0}^{\alpha} r \cos \theta r^2 \sin \theta \, d\theta \, dr \, d\varphi$$
$$= \frac{2\pi}{V} \cdot \frac{R^4}{4} \int_{0}^{\alpha} \sin \theta \cos \theta \, d\theta = \frac{3R}{4(1 - \cos \alpha)} \cdot \frac{\sin^2 \theta}{2} \Big|_{0}^{\alpha}$$
$$= \frac{3R \sin^2 \alpha}{8(1 - \cos \alpha)} = \frac{3R}{8} \cdot \frac{1 - \cos^2 \alpha}{1 - \cos \alpha} = \frac{3R}{8} (1 + \cos \alpha).$$

Das Trägheitsmoment bezüglich der z-Achse ergibt sich zu:

$$\Theta_z = \int_K r_\perp^2 dV = \int_0^{2\pi} \int_0^R \int_0^{\alpha} (r \sin \theta)^2 r^2 \sin \theta d\theta dr d\varphi$$

$$= \frac{2\pi R^5}{5} \int_0^{\alpha} \sin^2 \theta \cdot \sin \theta d\theta = \frac{2\pi R^5}{5} \int_0^{\alpha} (1 - \cos^2 \theta) \sin \theta d\theta$$

$$= \frac{2\pi R^5}{5} \left[-\cos \theta + \frac{\cos^3 \theta}{3} \right]_0^{\alpha} = \frac{2\pi R^5}{5} \left(1 - \cos \alpha + \frac{\cos^3 \alpha - 1}{3} \right)$$

$$= \frac{2\pi R^5}{15} (\cos^3 \alpha - 3\cos \alpha + 2).$$

Aufgabe 2.5: Parametrisierung von Integrationsbereichen

Gegeben seien die folgenden drei Körper im \mathbb{R}^3 :

- ein Quader $Q = \{x \in \mathbb{R}^3 | 0 \le x_1 \le 1, 0 \le x_2 \le 1, -3 \le x_3 \le 3\}$
- eine Kugel $K = \{x \in \mathbb{R}^3 | ||x|| < 1\}$

• ein Zylinder
$$Z = \{ x \in \mathbb{R}^3 | x_1^2 + x_2^2 \le 1, \ 0 \le x_3 \le 3 \}$$

Skizzieren und parametrisieren Sie die Schnittmenge eines jeden einzelnen dieser Körper mit den beiden folgenden Mengen:

$$M_1 = \{ \boldsymbol{x} \in \mathbb{R}^3 | 0 \le \boldsymbol{x}_3 \}, M_2 = \{ \boldsymbol{x} | 3x_1 \le x_3 \}.$$

D. h. geben Sie die Integrationsgrenzen der zugehörigen Volumenintegrale über die Bereiche $Q \cap M_1$, $Q \cap M_2$, $K \cap M_1$, ... an.

Lösung 2.5:

 M_1 beschreibt den oberen Halbraum $z\geq 0$. M_2 beschreibt die Menge der Punkte oberhalb der Ebene z=3x. Für die Schnittmengen mit den drei Körpern hat man jeweils:

• Für den Quader:

$$Q \cap M_1 = \{ \boldsymbol{x} \in \mathbb{R}^3 | 0 \le x_1 \le 1, \ 0 \le x_2 \le 1, \ 0 \le x_3 \le 3 \}$$
$$Q \cap M_2 = \{ \boldsymbol{x} \in \mathbb{R}^3 | 0 \le x_1 \le 1, \ 0 \le x_2 \le 1, \ 3x_1 \le x_3 \le 3 \}$$

Für $Q \cap M_2$ muss man keine Fallunterscheidung der x_3 -Grenzen vornehmen, da die Obergrenze des Quaders (z=3) die Ebene 3y=z nur an der Kante des Quaders schneidet.

• Für die Kugel:

$$K \cap M_1 = \left\{ \boldsymbol{x} \in \mathbb{R}^3 | -1 \le x_1 \le +1, -\sqrt{1-x_1^2} \le x_2 \le +\sqrt{1-x_1^2}, 0 \le x_3 \le \sqrt{1-x_2^2-x_3^2} \right\}$$

Die zweite Schnittmenge $K\cap M_2$ besteht aus zwei Bereichen: B_1 der Bereich, der von oben durch die Kugeloberfläche und von unten durch die Ebene 3x=z begrenzt wird.

 B_2 , der von oben und von unten durch die Kugeloberfläche begrenzt wird, da die Ebenbe dort außerhalb der Kugel liegt.

Für die Schnittkurve der Kugeloberfläche $x^2+y^2+z^2=1$ mit der Ebene3x=zgilt

$$x^{2} + y^{2} + 9x^{2} = 1$$

$$\Leftrightarrow \qquad \qquad x = \pm \sqrt{\frac{1 - y^{2}}{10}}$$

Damit darf y nur Werte zwischen -1 und +1 annehmen.

 B_1 lässt sich somit parametrisieren als

$$B_1 = \left\{ \boldsymbol{x} \in \mathbb{R}^3 | -1 \le x_2 \le 1, -\sqrt{\frac{1-x_2^2}{10}} \le x_1 \le \sqrt{\frac{1-x_2^2}{10}}, 3x_1 \le x_3 \le \sqrt{1-x_1^2-x_2^2} \right\}$$

Für den zweiten Teil von $K \cap M_2$ ergibt sich

$$B_2 = \left\{ \boldsymbol{x} \in \mathbb{R}^3 | -1 \le x_2 \le 1, -\sqrt{1 - x_2^2} \le x_1 \le -\sqrt{\frac{1 - x_2^2}{10}}, -\sqrt{1 - x_1^2 - x_2^2} \le x_3 \le \sqrt{1 - x_1^2 - x_2^2} \right\}$$

Eine Parametrisierung in Kugelkoordinaten, deren z-Achse (\tilde{z} in der Skizze) senkrecht auf der Ebene 3x=z steht, wäre für diesen Körper deutlich einfacher. Die entsprechende Rotation um die y-Achse wird durch die (orthogonale) Matrix

$$\mathbf{R} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

beschrieben. Damit ergibt sich dann

$$\boldsymbol{x}(r,\theta,\varphi) = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} r\sin\theta\cos\varphi \\ r\sin\theta\sin\varphi \\ r\cos\theta \end{pmatrix}$$
$$= \frac{r}{\sqrt{10}} \begin{pmatrix} \sin\theta\cos\varphi - 3\cos\theta \\ \sin\theta\sin\varphi \\ 3\sin\theta\cos\varphi + \cos\theta \end{pmatrix}$$

und weiter

$$K \cap M_2 = \{ x(r, \theta, \varphi) | 0 \le r \le 1, 0 \le \theta \le \pi/2, 0 \le \varphi \le 2\pi \}.$$

• Für den Zylinder nutzen wir die Parametrisierung in Zylinderkoordinaten

$$m{x}(r,arphi,z) = egin{pmatrix} r\cosarphi \ r\sinarphi \ z \end{pmatrix}$$

Die erste Menge $Z \cap M_1$ stimmt mit dem Zylinder überein.

$$Z = Z \cap M_1 = \{ \boldsymbol{x}(r, \varphi, z) | 0 \le r \le 1, \ 0 \le \varphi \le 2\pi, \ 0 \le z \le 3 \}$$
$$Z \cap M_2 = \{ \boldsymbol{x}(r, \varphi, z) | 0 \le r \le 1, \ 0 \le \varphi \le 2\pi, \ z_0(r, \varphi) \le z \le 3 \}$$

Dabei berücksichtigt $z_0(r,\varphi)$, dass die Ebene 3x=z den Zylinderboden in der Mitte schneidet. Dies führt dazu, dass für positive x die Untergrenze des Integrationsbereichs von der Ebene beschrieben wird und für negative x durch den Zylinderboden z=0:

$$z_0(r,\varphi) = \begin{cases} 0, & \text{für } \frac{\pi}{2} \le \varphi \le \frac{3\pi}{2} \\ 3r\cos(\varphi), & \text{sonst} \end{cases}.$$

Aufgabe 2.6: Online Aufgabe

Bearbeiten Sie die aktuelle Online-Aufgabe im ILIAS-Kurs.

Beachten Sie, dass Sie dort auch die Lösungswege zu einzelnen Aufgaben zur Korrektur hochladen können.