Scratch paper

Anonymous Università di Torino April 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Preliminaries

The finite (fractional) expansion of a structure M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , the set of real numbers, and a sort for the finite fractional multisets of elements of M^n , for any $n < \omega$. A (fractional) multiset is a function $s: M^n \to \mathbb{R}^+ \cup \{0\}$. We say that s is finite if it is almost always 0. We interpret s(a) as the number of occurreces of a in s. For this reason, we use the following suggestive notation:

1.
$$a \in s = s(a)$$
 this is called the multiplicity of a in s ;

2.
$$|s| = \sum_{a \in M} a \in s$$
 this is called the size of s ;

3.
$$\left|\left\{a \in s : \varphi(a;b)\right\}\right| = \sum_{a \models \varphi(x;b)} a \in s$$

We say sample-sort for the sort of these multisets.

We will write M^f for the expansion above. The language of M^f is denoted by L^f . It expands L and the language of arithmetic. Moreover, L^f has a symbols for the functions in 1-3 above. In particular, claim 3 requires a symbol for every $\varphi(x;z) \in L$.

Let \mathcal{U} be a monster model of cardinality κ , a cardinal larger than the cardinality of L. We introduce two elementary extension of \mathcal{U}^f .

2.1 Definition We denote by \mathfrak{U}^{f_*} a saturated elementary extension of \mathfrak{U}^f of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that \mathfrak{U} is the homesort of \mathfrak{U}^{f_*} . We denote by \mathfrak{U}^{f_*} some elementary extension of \mathfrak{U}^{f_*} that realizes all types in $S(\mathfrak{U}^{f_*})$. Hence we have $\mathfrak{U}^f \prec \mathfrak{U}^{f_*} \prec \mathfrak{U}^{f_*}$. Elements of sample-sort in these models are called finite samples, samples, and external samples respectively.

The use of $\mathcal{U}_{*}^{f_{*}^{+}}$ is not ideal, it is introduced to replace the use of global types of sample-sort which also have drawbacks.

We write $\operatorname{supp}(s)$ for the support of s, that is, the set of those a in \mathcal{U}^{f_*} such that $a \in s$ is positive.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_s \varphi(x;b) = \frac{\left|\left\{a \in s : \varphi(a;b)\right\}\right|}{|s|},$$

Below, ε always ranges over the positive standard reals. If a and b are hyperreals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε . We write $\operatorname{st}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathcal{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

2.2 Theorem Let $\varphi(x;z) \in L$ be a nip formula. Let M be a model. For every external sample s, and every ε , there is a finite sample $s_{M,\varepsilon} \in M^f$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b)$ for all $b \in M^{|z|}$.

Moreover, the cardinality of $s_{M,\varepsilon}$ soley depends on ε , namely

$$|s_{M,\varepsilon}| \le c \frac{k}{\varepsilon^2} \ln \frac{k}{\varepsilon}$$

where c is an absolute constant and k is the VC-dimension of $\varphi(x;z)$.

Proof Questo è Vapnik-Chervonenkis.

2.3 Lemma For every nip formula $\varphi(x;z) \in L$, every external sample s and every infinite set $B \subseteq \mathbb{U}^{|z|}$ such that $\operatorname{Av}_s \varphi(x;b) > \varepsilon$ for every $b \in B$, there is a finite cover of B, say B_1, \ldots, B_n , such that all types $p_i(x) = \{\varphi(x;b) : b \in B_i\}$ are consistent.

Proof Let M be any model containing B. Fix some $\varepsilon' < \varepsilon$. Let $s_{M,\varepsilon'}$ be the hyper given by Theorem 2.2. Then $\operatorname{supp}(s_{M,\varepsilon'})$ is finite, say $\operatorname{supp}(s_{M,\varepsilon'}) = \{a_1,\ldots,a_n\}$. Let $B_i = \{b \in B : \varphi(a_i;b)\}$. As $\operatorname{Av}_{s_{M,\varepsilon'}}\varphi(x;b) > 0$ for all $b \in B$, these B_i are the required cover of B.

2.4 Corollary Let $\psi(x;z) \in L$ be a nip formula and let s be an external sample. Then there is no infinite set C such that $\operatorname{Av}_s[\psi(x;c) \leftrightarrow \psi(x;c')] > \varepsilon$ for all $c,c' \in C$, $c \neq c'$.

Proof Suppose for a contradiction that a set C as above exists. Apply Lemma 2.3 to the folmula $\varphi(x;z,z')=[\psi(x;z)\not\leftrightarrow\psi(x;z')]$ and the set $B=\{\langle c,c'\rangle\in C^2:c\neq c'\}$. The sets B_i obtained from the lemma induce a finite coloring of the complete graph on C. By the Ramsey theorem there is an infinite monochromatic set $A\subseteq C$. Hence $\{\psi(x;a)\not\leftrightarrow\psi(x;a'):a,a'\in A,a\neq a'\}$ is consistent. This is impossible for |A|>2. \square

The following is another immediate consequence of the lemma (it holds also when $\varphi(x;z)$ is not nip, though the proof is lengthier).

2.5 Corollary For every nip formula $\varphi(x;z) \in L$, every external sample s and every sequence of indiscernibles $\langle b_i : i < \omega \rangle$ such that $\operatorname{Av}_s \varphi(x;b_i) > \varepsilon$ for every $i < \omega$, the type

$\{\varphi(x;b_i):i<\omega\}$	is consistent.	
-------------------------------	----------------	--

2.6 Definition Let $\varphi(x;z) \in L$. We say that the external sample s is smooth for $\varphi(x;z)$ over M if, for every $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\operatorname{Av}_{s'} \varphi(x;b) \approx \operatorname{Av}_s \varphi(x;b)$.

It follows immediately that if s is smooth for $\varphi(x;z)$ over M, then there is an internal sample $s' \in \mathcal{U}^{f_*}$ such that $\operatorname{Av}_{s'} \varphi(x;b) \approx \operatorname{Av}_s \varphi(x;b)$ for all $b \in \mathcal{U}^{|z|}$.

2.7 Definition Let $\varphi(x;z) \in L$. We say that the external sample s is invariant for $\varphi(x;z)$ over M if, for every $b' \equiv_M b \in \mathcal{U}^{|z|}$, we have $\operatorname{Av}_s \varphi(x;b) \approx \operatorname{Av}_s \varphi(x;b')$.

As authomorphisms of \mathcal{U} extend to automorphisms of \mathcal{U}^{f_*} , hence an external sample that is smooth over M is invariant over M. The converse need not be true in general, but we have the following.

- 2.8 Fact For every internal sample s following are equivalent
 - 1. s is invariant for $\varphi(x;z)$ over M;
 - 2. s is smooth for $\varphi(x;z)$ over M.

Proof As remarked above, implication $2\Rightarrow 1$ holds for every external sample. We prove $1\Rightarrow 2$. Let $s\in \mathcal{U}^{f_*}$ be an invariat internal sample. Assume for a contradiction that $\operatorname{Av}_{s'}\varphi(x\,;b)\not\approx_{\varepsilon}\operatorname{Av}_s\varphi(x\,;b)$ for some $b\in \mathcal{U}^{|x|}$ and some external sample $s'\equiv_M s$. Pick a internal sample $s''\equiv_{M,s} s'$. Then $\operatorname{Av}_{s''}\varphi(x\,;b)\not\approx_{\varepsilon}\operatorname{Av}_s\varphi(x\,;b)$. As $s''\equiv_M s$ are both in \mathcal{U}^{f_*} , this contradicts the invariance of s.

For smooth external samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathcal{U}^{|z|}$.)

2.9 Corollary Let $\varphi(x;z) \in L$ be nip. For every external sample s that is smooth for $\varphi(x;z)$ over M there is a sample $s_{M,\varepsilon} \in M^f$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b)$ for all $b \in \mathcal{U}^{|z|}$.

Proof By Theorem 2.2, there is an $s_{M,\varepsilon} \in M^f$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b)$ for all $b \in M^{|z|}$.

Suppose for a contradiction that $\operatorname{Av}_s \varphi(x;b') \not\approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b')$ for some $b' \in \mathcal{U}^{|z|}$. Pick a $s' \subseteq \mathcal{U}^{|x|}$ such that $b' \downarrow_M s' \equiv_M s$. By the smoothness of s, we obtain $\operatorname{Av}_{s'} \varphi(x;b') \not\approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b')$. As $b' \downarrow_M s'$, the same formula holds for some $b \in M^{|z|}$. Once again by smoothness, $\operatorname{Av}_s \varphi(x;b) \not\approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b)$. A contradiction.

The following non-uniform version of the corollar above holds without assumption of nip.

- **2.10 Lemma** The following are equivalent for every external sample s
 - 1. s is smooth over M;

	2. for every $b \in \mathcal{U}^{ z }$ there is an $s_b \in M^t$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_b} \varphi(x;b)$.	
	Proof Implication $2\Rightarrow 1$ is clear. We prove $1\Rightarrow 2$, so, fix a $b\in \mathcal{U}^{ z }$. Let μ be the standard part of $\operatorname{Av}_s \varphi(x;b)$ Let s' be an external sample such that $s\equiv_M s'\downarrow_{M^f}b$. By smoothness, $\operatorname{Av}_{s'}\varphi(x;b)\approx \mu$. As $s'\downarrow_{M^f}b$ there is an $s_b\in M^f$ such that $\operatorname{Av}_{s_b}\varphi(x;b)\approx_{\varepsilon}\mu$.	
2.11	Definition A external sample s is finitely satisfiable for $\varphi(x;z)$ in M if, for every $b \in \mathbb{U}^{ z }$ such that $\operatorname{Av}_s \varphi(x;b) \not\approx 0$, there is $a \in M^{ z }$ such that $\varphi(a;b)$.	
2.12	Fact Let $\varphi(x;z) \in L$. Let M be any model. Every external sample s that is smooth for $\varphi(x;z)$ over M, is finitely satisfied in M.	
	Proof Let $b \in \mathcal{U}^{ z }$ be such that $\operatorname{Av}_s \varphi(x;b) > \varepsilon$. Pick a external sample s' such that $s \equiv_M s' \downarrow_{M^f} b$. By the smoothness of s , we obtain $\operatorname{Av}_{s'} \varphi(x;b) > \varepsilon$. Let $s_0 \in M^f$ such that $\operatorname{Av}_{s_0} \varphi(x;b) > \varepsilon$. Clearly, some element of $\operatorname{supp}(s_0)$ proves the fact.	
2.13	Definition A external sample s is definable for $\varphi(x;z)$ over M if, for every ε , the set $\{b \in \mathcal{U}^{ z } : \operatorname{Av}_s \varphi(x;b) < \varepsilon\}$ is definable over M.	
2.14	Definition We say that s is generically stable for $\varphi(x;z)$ over M if it is both definable and finitely satisfiable for $\varphi(x;z)$ over M.	
2.15	Definition A formula $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,z_n) \in L$ such that for every finite sample $s \in \mathcal{U}^f$ and every $b \in \mathcal{U}^{ x }$ there are $a_1,,a_n \in \text{supp}(s)$ such that $\psi(x;a_1,,a_n) \leftrightarrow p(x)$, where $p(x) = \text{tp}_{\varphi}(b/\text{supp}(s))$.	

- **2.16 Theorem (false)** *The following are equivalent*
 - 1. $\varphi(x;z) \in L$ is distal;
 - 2. If s is generically stable for $\varphi(x;z)$ over M then s is smooth for $\varphi(x;z)$ over M.