Sebastian Mohr - 23141808 - Part II

а

\$\$ \omega = (ac * b)^\omega \$\$

It's an infinite loop, that can starts with the \$a\$ transformation. Afterwards it can revolve around \$c\$ or take path \$b\$, which brings it back to the state where the next transformation is \$a\$.

b

\$\$ \omega = \emptyset + ((authReq (accept access * release)) + (authReq reject))^\omega \$\$

To reach the accepted state \$q_0\$, the automaton can take 3 different paths:

- 1. 0 transitions, start state is accepted state.
- 2. The transition goes to \$q_1\$ and back to \$q_0\$, with \$authReq\$ and \$reject\$ each executing once.
- 3. The transition goes to \$q_1\$ with transition \$authReq\$. Afterwards it reaches \$q_2\$ by executing \$accept\$ once, then \$access\$ \$0 \infty\$ times. Executes \$release\$ once to reach final state \$q_0\$.

The automaton is a loop, which means it can execute infinite times.

 C

The automaton accepts $\omega = (a * b * c) \omega$, which translates to:

- \$0 \infty\$ times \$a\$
- \$0 \infty\$ times \$b\$
- exactly 1 times \$c\$

This process can loop inifinite times, that means that the accepting state always has to have a \$c\$ leading to it.

d

The automaton accepts \$\omega = a ((a a) * b b)\\omega\$, which translates to:

- exactly 1 \$a\$
- and then looping the following:
 - 0 \$\infty\$ times \$a\$ and \$a\$
 - exactly 1 times \$b\$ and \$b\$

e

LTL-formula: \$F\ (p \rightarrow G\ q)\$

Alphabet: \$\sum := {\emptyset, {p}, {q}, {p, q} }\$

The given LTL-formula means: in the Future \$p\$ leads to Globally \$q\$ being true

As the automaton switches to the accepted state \$q_1\$ when executing \$p\$, there is a path that proves the LTL-formula.

Also the automaton can switch to accepted state \$q_2\$ when executing \$q\$ first. There the entire alphabet loops over the state, so the LTL-formula can also be proved.

That means, that the Büchi automaton accepts the runs staisfying the LTL-formula.

f

Alphabet: $\sum = 2^{{p, q}}$

LTL-formula: $G\ p\ U\ (q\ p, q)$

The automaton accepts only \$p\$, until at least one \$q\$ or \${p, q}\$ is put in. Afterwards the entire alphabet is staying in the accepted state.

g

The automaton accepts $G\ p \ f\ (p \ q)$, which translates to:

- Globally \$p\$ is true, **OR**
- in the *Future* \$p\$ **AND** \$q\$ are true