试 卷 (二)

-,	选择题 (每题 2 分,共 20 分)			
	1. 已知 $P(B) > 0$, $A_1 A_2 = \emptyset$,则下列各式不正确的是	()
	$(A) P(A_1 \cup A_2 \mid B) = P(A_1 \mid$	$B) + P(A_2 \mid B);$		
	(B) $P(A_1A_2 \mid B) = 0;$			
	(C) $P(\overline{A}_1 \overline{A}_2 \mid B) = 1;$			
	(D) $P(\overline{A}_1 \cup \overline{A}_2 \mid B) = 1$.	3 (1)		
	2. 设 A , B , C 是三个相互独立的	随机事件,且 $0 < P(C) <$	1,则下	;
列匹	对事件中,不相互独立的是		()
	(A) $\overline{A \cup B}$ 与 C ;	(B) \overline{AC} 与 \overline{C} ;		
	(C) $\overline{A-B}$ 与 \overline{C} ;	(D) \overline{AB} 与 \overline{C} .		
	3. 设随机变量 X 服从参数为 2	的指数分布,则随机变量 Y	= 1 -	_
e^{-2X}			()
	(A) 服从(0,1)上的均匀分布;	(B) 仍服从指数分布;		
	(C) 服从正态分布;	(D) 服从参数为 2 的泊松	分布.	
	4. 设随机变量 X 和 Y 相互独立	立,其分布函数分别为 F_X	(x) 	П
$F_{Y}($	y),则随机变量 $Z=\max(X,Y)$	的分布函数 $F_z(z)$ 等于	()
	(A) $\max\{F_X(z), F_Y(z)\};$			
	(B) $F_X(z)F_Y(z)$;			
	(C) $\frac{1}{2}[F_X(z)+F_Y(z)];$			
	(D) $F_X(z) + F_Y(z) - F_X(z)F_Y$	(z).		
	5. 随机变量 X,Y 和 X+Y 的	方差满足 $D(X+Y) = D$	(X)	H
D(Y	7) 是 X 与 Y		()
	(A) 不相关的充分条件,但不是	必要条件:		

(C)独立的必要条件,但不是充	分条件;					
(D) 独立的充分必要条件.						
6. 设存在常数 $a, b (a \neq 0)$,使						
必有	()					
(A) $\rho_{XY} = 1$;	(B) $\rho_{XY} = -1$;					
(C) $\rho_{XY} = \frac{a}{ a };$	(D) $\rho_{XY} < 1$.					
7. 设 $X_1, X_2,, X_n,$ 为随	机变量序列, a 为常数,则 $\{X_n\}$ 依					
概率收敛于a是指	()					
(A) $\forall \varepsilon > 0$, $\lim_{n \to \infty} P(X_n - a $	$\geqslant \varepsilon) = 0;$					
(B) $\forall \varepsilon > 0$, $\lim_{n \to \infty} P(X_n - a \geqslant \varepsilon) = 1$;						
(C) $\lim_{n\to\infty} X_n = a;$						
(D) $\lim_{n\to\infty} P(X_n = a) = 1.$	a a					
8. 设 X_1, X_2, \dots, X_n 是取自正	E态总体 $X \sim N(0, \sigma^2)$ 的简单随机					
样本,则 σ^2 的无偏估计量是	()					
$(A) \frac{1}{n} \sum_{i=1}^{n} X_i^2;$	(B) $\frac{1}{n-1} \sum_{i=1}^{n} X_i^2$;					
(C) $\frac{1}{n^2} \sum_{i=1}^n X_i^2$;	(D) $\frac{1}{n+1} \sum_{i=1}^{n} X_i^2$.					
9. 在假设检验中,记 H ₁ 为备择	假设,则犯第一类错误是指					
	()					
(A) H ₁ 为真,接受 H ₁ ;	(B) H ₁ 不真,接受 H ₁ ;					
(C) H_1 为真,拒绝 H_1 ;	(D) H ₁ 不真,拒绝 H ₁ .					
10. 设 $X \sim N(0, 16), Y \sim$	$N(0, 9), X, Y$ 相互独立, X_1 ,					
X_2 , …, X_9 和 Y_1 , Y_2 , …, Y_{16} 分别						
本,则 $\frac{X_1^2+X_2^2+\cdots+X_9^2}{Y_1^2+Y_2^2+\cdots+Y_{16}^2}$ 服从的分						
(A) $F(9, 16)$;	(B) $F(16, 9)$;					
• 28 •	8					

(B) 不相关的必要条件,但不是充分条件;

(C) F(9, 9);

(D) F(16, 16).

二、填空题 (每题 2 分,共 20 分)

- 1. 设 A,B 为随机事件,已知 $P(\overline{A}) = 0.3$, P(B) = 0.4, P(A B) = 0.5,则 $P(B \mid A \cup \overline{B}) = _____.$
- - 3. 设连续型随机变量 X 的密度函数

$$f(x) = \begin{cases} x & (0 < x < 1), \\ A - x & (1 < x < 2), \\ 0 & (4), \end{cases}$$

则 *A*=____.

- 4. 设测量的随机误差 $X \sim N(0, 100)$,则测量的误差的绝对值大于 19.6 的概率为_____.
- 5. 设随机变量 X 的密度函数 $f(x) = \begin{cases} 3x^2 & (0 < x < 1), \\ 0 & (其他). \end{cases}$ 若随机变量 Y 表示对 X 的三次独立观察中事件 $\left\{X \leqslant \frac{2}{3}\right\}$ 出现的次数,则 P(Y=0) =_____.
- 6. 在区间(0, 1)中随机地取两个数,则事件"两数之积大于 $\frac{1}{4}$ "的概率为
- 7. 设随机变量 X 和 Y 相互独立,且都服从参数为 p (0 < p < 1) 的 (0 1) 分布. 令随机变量 $Z = \begin{cases} 1 & (X+Y) \text{ 为偶数}, \\ 0 & (X+Y) \text{ 为奇数}, \end{cases}$ 要使 X 和 Z 相 互独立,则 p =

- 8. 设 X_1 , X_2 , …, X_n 为正态总体 $X \sim N(1, 4)$ 的一个简单随机样本,则随机向量(X_1 , X_2 , …, X_n) 的联合密度函数 $f(x_1, x_2, …, x_n) = ______.$
- 9. 设随机变量 X 服从自由度为(n, n)的 F 分布,已知 $P(X > \alpha) = 0.05$,则 $P(X > \frac{1}{\alpha}) = _____.$
- 10. 设总体 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知. 为使总体均值 μ 的置信度为 $1-\alpha$ 的置信区间的长度不大于L,则样本容量至少应取_____(只需给出表达式).

三、计算题 (每题 8 分, 共 56 分)

1. 设二维连续型随机变量(X,Y)的概率密度函数

$$f(x, y) = \begin{cases} Axy, & (x, y) \in G, \\ 0, & (x, y) \notin G, \end{cases}$$

其中 $G = \{(x, y) \mid 0 \le x \le 2, 0 < y \le x^2\}.$ 求:

- (1) 系数 A:
- (2) X和Y的边缘密度函数;
- (3) 条件概率密度函数 $f_{x|y}(x \mid y)$ 和 $f_{y|x}(y \mid x)$.
- 2. 设二维随机变量(X, Y)的联合密度函数

$$f(x, y) = \begin{cases} 3y & (0 < x < y, 0 < y < 1), \\ 0 & (\text{\sharp}\text{d}\text{u}), \end{cases}$$

随机变量 Z = X - 2Y,求 Z的概率密度函数.

3. 设(X, Y)的联合分布律为

Y	0	1
0	0. 1	<i>b</i>
1	a	0.4

已知 $P(X=1 \mid Y=1) = \frac{2}{3}$. 试求:

- (1) a, b 的值;
- (2) cov(X, 2Y).
- 4. 设随机变量 3X + Y 和 2X 3Y 的方差、协方差分别是

$$D(3X+Y) = 333, D(2X-3Y) = 280,$$

$$cov(3X+Y, 2X-3Y) = -42,$$

求随机变量 X-2Y 和 2X+3Y 的方差及协方差.

5. 某农贸市场的某种商品每日的价格为

$$Y_n = Y_{n-1} + X_n \quad (n \geqslant 1),$$

其中 Y_n 表示第n 天该商品的价格, X_n 表示第n 天较前一天商品价格的变化.

- (1) 写出 Y_n 与 Y_0 , X_1 , X_2 , …, X_n 之间的关系.
- (2) 已知 X_1 , X_2 , …, X_n , …相互独立,且 $E(X_n) = 0$, $D(X_n) = 2$ ($n = 1, 2, \dots$). 如果今天该商品的价格为 100 元,用中心极限定理估计 18 天后该商品的价格在 96 元与 104 元之间的概率.
 - 6. 设总体 X 服从参数为 p 的几何分布,即

$$P(X = k) = (1-p)^{k-1}p$$
 $(k = 1, 2, \dots),$

且 X_1 , X_2 , …, X_n 是 X 的一个简单随机样本,求参数 p 的矩估计量 和极大似然估计量.

7. 某厂在所生产的汽车蓄电池的说明书上写明: 使用寿命的标准差不超过 0.9 年. 现随机地抽取了 10 个蓄电池,测得样本的标准差为 1.2 年. 假定使用寿命服从正态分布 $N(\mu, \sigma^2)$,取显著性水平 $\alpha=0.05$,试检验

$$H_0: \sigma^2 \geqslant 0.81, H_1: \sigma^2 < 0.81.$$

四、证明题(4分)

设随机变量 X 和 Y 相互独立,且方差 D(X), D(Y), D(XY) 存

在.证明:

$D(XY) \geqslant D(X)D(Y)$.

试卷(二)考核内容分值表

	概	率 论	72		数理统计 28		
随机事件	一维变量	二维变量	数字特征	极限定理	抽样分布	参数估计	假设检验
10	8	24	20	10	6	12	10