CS 5/7320 Artificial Intelligence

Solving problems by searching AIMA Chapter 3

Slides by Michael Hahsler based on slides by Svetlana Lazepnik with figures from the AIMA textbook.

This work is licensed under a <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License.

Contents

What are search problems?

- We will consider the problem of designing goal-based agents in known, fully observable, and deterministic environments.
- Example:

What are search problems?

- We will consider the problem of designing goal-based agents in , known, fully observable, deterministic environments.
- For now, we consider only a discrete environment using an atomic state representation (states are just labeled 1, 2, 3, ...).
- The state space is the set of all possible states of the environment and some states are marked as goal states.

Initial state

Phases:

- 1) Search: the process of looking for the sequence of actions that reaches a goal state.
- **2) Execution**: Once the agent begins executing the search solution in a deterministic, known environment, it can ignore its percepts (open-loop system).

Search problem components

- Initial state: state description
- Actions: set of possible actions A
- Transition model: a function that defines the new state resulting from performing an action in the current state $f: S \times A \rightarrow S$ (S is the set of states)
- Goal state: state description
- Path cost: the sum of nonnegative step costs

..... Discretization grid

Notes:

- The **state space** is typically too large to be enumerated or it is continuous. Therefore, the problem is defined by initial state, actions and the transition model and not the set of all possible states.
- The **optimal solution** is the sequence of actions (or equivalently a sequence of states) that gives the lowest path cost for reaching the goal.

Example: Romania Vacation

- On vacation in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
- Initial state: Arad
- Actions: Drive from one city to another.
- Transition model and states: If you go from city A to city B, you end up in city B.
- Goal state: Bucharest
- Path cost: Sum of edge costs.

- Initial State: Defined by agent location and dirt location.
- Actions: Left, right, suck
- Transition model and states
 - There are 8 possible atomic states of the system.
 - Why is the number of states for n possible locations $n(2^n)$?
- Goal state: All locations are clean.
- Path cost: E.g., number if actions

Example: Sliding-tile puzzle

- Initial State: A given configuration.
- Actions: Move blank left, right, up, down
- States as a result of the Initial state and the Transition model
 - The location of each tile (including the empty one, ½ of the permutations are unreachable)
 - 8-puzzle: 9!/2 = 181,440 states
 - 15-puzzle: $16!/2 \approx 10^{13}$ states
 - 24-puzzle: $25!/2 \approx 10^{25}$ states
- Goal state: Tiles are arranged empty and 1-8
- Path cost: 1 per tile move.

Start State

Goal State

Example: Robot motion planning

- Initial State: Current arm position.
- States: Real-valued coordinates of robot joint angles.
- Actions: Continuous motions of robot joints.
- Goal state: Desired final configuration (e.g., object is grasped).
- Path cost: Time to execute, smoothness of path, etc.

Solving search problems

Given a search problem definition

- Initial state
- Actions
- Transition model
- Goal state
- Path cost

How do we find the optimal solution (sequence of actions/states)?

State space

Solving search problems

Given a search problem definition

- Initial state
- Actions
- Transition model
- Goal state
- Path cost

How do we find the optimal solution (sequence of actions/states)?

State space

Construct a search tree for the state space graph!

Search tree

- Superimpose a "what if" tree of possible actions and outcomes (states) on the state space graph.
- The Root node represents the starting state.
- An action child node is reached by an edge representing an action. The corresponding state is defined by the transition model.
- Trees have no cycles or redundant paths. Cycles in the search space need to be broken. Removing redundant paths improves search efficiency.
- A path through the tree corresponds to a sequence of actions (states).
- A solution is a path ending in a node representing a goal state.
- Nodes vs. states: Each node represents a state of the environment. It contains the data structure that creates the search tree.

Differences between typical Tree search and Al search

Typical tree search

 Assumes a given tree that fits in memory.

 Trees have no cycles or redundant paths.

Al tree/graph search

- The search space is too large to fit into memory.
 - a. Builds parts of the tree from initial state and transition function.
 - **b.** Memory management is very important.
- The search space is typically a complicated graph. Memoryefficient cycle checking is very important to avoid infinite loops or minimize searching parts of the search space multiple times.
- Redundant paths are often too memory-expensive to check.

Tree Search Algorithm Outline

- Initialize the frontier (set of unexplored know nodes) using the starting state/root node.
- 2. While the frontier is not empty:
 - a) Choose a frontier node to expand according to **search strategy.**
 - b) If the node represents a **goal state**, return it as the solution.
 - c) Else **expand** the node (i.e., apply all possible actions to the transition model) and add its children nodes representing the newly reached states to the frontier.

Tree search example

Tree search example

Tree search example

Search strategies

- A search strategy is defined by picking the order of node expansion.
- Strategies are evaluated along the following dimensions:
 - Completeness: does it always find a solution if one exists?
 - Optimality: does it always find a least-cost solution?
 - Time complexity: how long does it take?
 - Space complexity: how much memory does it need?
- Worst case time and space complexity are measured in terms of the size
 of the state space n. Metrics used if the state space is only implicitly
 defined by initial state, actions and a transition function are:
 - *d:* depth of the optimal solution (= number of actions needed)
 - m: the number of actions in any path (may be infinite with loops)
 - b: maximum branching factor of the search tree (number of successor nodes for a parent)

State Space

- Number of different states the agent and environment can be in.
- Reachable states are defined by the initial state and the transition model.
- Search tree spans the state space. Note that a single state can be represented by several search tree nodes.
- State space size is an indication of problem size.
- Even if the used algorithm represents the state space using atomic states, we may know that internally they are factored.
- Basic rule to calculate (estimate) the state space size for factored state representation with n variables is:

$$|x_1| \times |x_2| \times \cdots \times |x_n|$$

where $|\cdot|$ is the number of possible values.

State representation

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Binomial Coefficient: $\binom{n}{r} = C(n,r) = {}_{n}C_{r}$ In how many ways can we choose r out of n objects?

Special case for r = 2: $\binom{n}{2} = \frac{n(n-1)}{2}$

#Python import scipy.special

the two give the same results scipy.special.binom(10, 5) scipy.special.comb(10, 5)

Examples: What is the state space size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Uninformed search strategies

The search algorithm/agent is **not** provided information about how close a state is to the goal state.

It blindly searches until it finds the goal state by chance.

Algorithms:

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Iterative deepening search

Breadth-first search (BFS)

• **Expansion rule:** Expand shallowest unexpanded node in the frontier (first added).

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be expanded next is indicated by the triangular marker.

- **Frontier** data structure: holds references to the green nodes (green) and is implemented as a FIFO queue.
- Reached data structure: holds references to all visited nodes (gray and green)
 and is used to prevent visiting nodes more than once (cycle checking).

Implementation: BFS

```
function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
    node \leftarrow Node(problem.INITIAL)
    if problem.IS-GOAL(node.STATE) then return node
    frontier \leftarrow a FIFO queue, with node as an element
    reached \leftarrow \{problem.INITIAL\}
     while not IS-EMPTY(frontier) do
       node \leftarrow Pop(frontier)
                                                                        reached makes sure
      for each child in EXPAND(problem, node) do
                                                                       we do not visit nodes
         s \leftarrow child.STATE
                                                                          twice (e.g., in a
         if problem.IS-GOAL(s) then return child
                                                                        loop). Fast lookup is
         if s is not in reached then -
                                                                             important.
            add s to reached
           add child to frontier
    return failure
                                                                          Node structure:
                                                                          Yield can also be
function EXPAND(problem, node) yields nodes
                                                                         implemented by
  s \leftarrow node.STATE
                                                                         returning a list of
  for each action in problem. ACTIONS(s) do
                                                                               Nodes.
     s' \leftarrow problem.RESULT(s, action)
     cost \leftarrow node.PATH-COST + problem.ACTION-COST(s, agnon, s')
     yield Node(State=s', Parent=node, Action=action, Path-Cost=cost)
```

Properties of breadth-first search

Complete?

Yes

d: depth of the optimal solutionm: max. depth of treeb: maximum branching factor

Optimal?

Yes – if cost is the same per step (action). Otherwise: Use uniform-cost search.

Time?

Number of nodes created in a *b*-ary tree of depth *d* (depth of optimal solution): $1 + b + b^2 + \cdots + b^d = O(bd)$

Space?

Stored nodes: $O(b^d)$

Notes:

- The state space is typically very large: $O(b^d) << O(n)$
- Space is usually a bigger problem than time!

Breadth-first search

ullet Time and Space: $Oig(b^dig)$ - all paths to the depth of the goal are expanded

Uniform-cost search (= Dijkstra's shortest path algorithm)

- A best-first search strategy: Expand least-cost unexpanded node
- Implementation: frontier is a queue ordered by path cost (priority queue)
- Breadth-first search is a special case when all step costs all equal.

Complete?

Yes, if all step cost is greater than some positive constant $\varepsilon > 0$

Optimal?

Yes – nodes expanded in increasing order of path cost

Time?

Number of nodes with path cost \leq cost of optimal solution (C^*) is $O(b^{1+C^*/\varepsilon})$. This can be greater than $O(b^d)$: the search can explore long paths consisting of small steps before exploring shorter paths consisting of larger steps

• Space? *O*(*b*^{1+C*/ε})

d: depth of the optimal solutionm: max. depth of treeb: maximum branching factor

Implementation: Best-First-Search Strategy

```
function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
  node \leftarrow \text{NODE}(\text{STATE}=problem.\text{INITIAL})
  frontier \leftarrow a priority queue ordered by f, with node as an element
  reached \leftarrow a lookup table, with one entry with key problem. INITIAL and value node
  while not IS-EMPTY(frontier) do
    node \leftarrow Pop(frontier)
    if problem.IS-GOAL(node.STATE) then return node
    for each child in EXPAND(problem, node) do
       s \leftarrow child.STATE
       if s is not in reached or child. PATH-COST < reached[s]. PATH-COST then
          reached[s] \leftarrow child
          add child to frontier
  return failure
                                                           The order for expanding the frontier (can
                                                            be implemented as a priority queue) and
function EXPAND(problem, node) yields nodes
                                                              this check is the difference to BFS! It
  s \leftarrow node.STATE
                                                            visits a node again if it can be reached by
  for each action in problem. ACTIONS(s) do
                                                                     a better (cheaper) path.
    s' \leftarrow problem.RESULT(s, action)
     cost \leftarrow node.PATH-COST + problem.ACTION-COST(s, action, s')
    yield Node(State=s', Parent=node, Action=action, Path-Cost=cost)
```

function UNIFORM-COST-SEARCH(problem) returns a solution node, or failure

return BEST-FIRST-SEARCH(problem, PATH-COST)

Depth-first search (DFS)

- Expansion rule:

 Expand deepest
 unexpanded
 node in the
 frontier (last
 added).
- Frontier: stack (LIFO)
- Reached: No reached data structure! Cycle checking can only check the current path and the frontier. This may lead to infinite loops!

Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking the node to be expanded next. Previously expanded nodes are lavender, and potential future nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint lines) can be discarded.

Implementation: DFS

- DFS could be implemented like BFS/Best-first search and just taking the last element from the frontier (LIFO).
- However, to reduce the space complexity to O(bm), the reached data structure needs to be removed! Options:
 - Recursive implementation (cycle checking is a problem).
 - We can use a search tree where the abandoned branches are removed from memory (cycle checking is only done against the current path). This is similar to Backtracking search.

```
function Depth Limited Search (problem, \ell) returns a node or failure or cutoff
  frontier \leftarrow a LIFO queue (stack) with NODE(problem.INITIAL) as an element
  result \leftarrow failure
  while not IS-EMPTY(frontier) do
     node \leftarrow Pop(frontier)
     if problem.IS-GOAL(node.STATE) then return node
    if DEPTH(node) > \ell then
       result \leftarrow cutoff
     else if not IS-CYCLE(node) do -
       for each child in EXPAND(problem, node) do
          add child to frontier
  return result
```

If we only keep the current branch in memory, then we can only check against the path from the root to the current node to prevent cycles.

Properties of depth-first search

Complete?

- Only in finite search spaces. Some cycles can be avoided by checking for repeated states along the path.
- **Incomplete in infinite search spaces** (e.g., with cycles).

Optimal?

No – returns the first solution it finds.

d: depth of the optimal solutionm: max. depth of treeb: maximum branching factor

Time?

Could be the time to reach a solution at maximum depth m in the last path: $O(b^m)$ Terrible if $m\gg d$, but if there are many shallow solutions, it can be much faster than BFS.

Space?

 $O(bm) \Leftrightarrow$ linear space! (if the reached data structure is not stored)

This makes DFS into the workhorse of AI.

Depth-first search

• Time: $O(b^m)$ – worst case is expanding all paths.

• Space: O(bm) - if it only stores the frontier nodes and the current path.

Note: The order in which we add new nodes to the frontier can change what goal we find!

Iterative deepening search (IDS)

Can we get

- a) DFS's good memory footprint, and
- b) BFS's optimality guaranty?

Use depth-restricted DFS and gradually increase the depth.

- 1. Check if the root node is the goal.
- 2. Do a DFS searching for a path of length 1
- 3. If there is no path to the goal of length 1, do a DFS searching for a path of length 2
- 4. If there is no path of length 2, do a DFS searching for a path of length 3
- 5. ..

Iterative deepening search (IDS)

Implementation: IDS

```
\begin{aligned} \textbf{function} & \text{ ITERATIVE-DEEPENING-SEARCH}(\textit{problem}) \textbf{ returns} \text{ a solution node or } \textit{failure} \\ & \textbf{for } \textit{depth} = 0 \textbf{ to} \propto \textbf{do} \\ & \textit{result} \leftarrow \text{DEPTH-LIMITED-SEARCH}(\textit{problem}, \textit{depth}) \\ & \textbf{if } \textit{result} \neq \textit{cutoff} \textbf{ then return } \textit{result} \end{aligned}
```

```
function DEPTH-LIMITED-SEARCH(problem, \ell) returns a node or failure or cutoff frontier \leftarrow a LIFO queue (stack) with NODE(problem.INITIAL) as an element result \leftarrow failure while not IS-EMPTY(frontier) do node \leftarrow POP(frontier) if problem.IS-GOAL(node.STATE) then return node if DEPTH(node) > \ell then result \leftarrow cutoff else if not IS-CYCLE(node) do for each child in EXPAND(problem, node) do add child to frontier return result
```

Properties of iterative deepening search

Complete?

Yes

d: depth of the optimal solution

m: max. depth of tree

b: maximum branching factor

Optimal?

Yes, if step cost = 1

Time?

Consists of rebuilding trees up to d times $d b^1 + (d-1)b^2 + ... + bd = O(bd) \Leftrightarrow$ Slower than BFS, but the same complexity!

Space?

O(bd) ⇔ linear space. Even less than DFS since m<=d. Cycles need to be handled by the depth-limited DFS implementation.

Note: IDS produces the same result as BFS but trades better space complexity for worse run time.

Informed search

- Al search problems are typically very large. We would like to improve efficiency by expanding as few nodes as possible.
- The agent can use additional information in the form of "hints" about how promising different states/nodes are to lead to the goal. These hints are derived from
 - information the agent has (e.g., a map) or
 - percepts coming from a sensor.
- The agent uses a heuristic function to rank nodes in the frontier and select the most promising state in the frontier for expansion using a best-first search strategy.
- Algorithms:
 - Greedy best-first search
 - A* search

Heuristic function

- Heuristic function h(n) estimates the cost of reaching a node representing the goal state from the current node n.
- Examples:

Euclidean distance

Start state

Manhattan distance

Start state

Goal state

Goal state

Heuristic for the Romania problem

traight-line distan	ce
Bucharest	h(n
\rad	366
Bucharest	0
Craiova	160
)obreta	242
Eforie	161
agaras	176
lagaras Siurgiu	77
lirsova	151
asi	226
ugoj	244
fehadia -	241
leam t	234
)radea	380
itesti	10
Rimnicu V ilcea	193
iibiu	253
limisoara	329
Jrziceni	80
/aslui	199
Zerind	374

Expansion rule: Expand the node that has the lowest value of the heuristic function h(n)

Total:

140 + 99 + 211 = 450 miles

Straight-line distand to Bucharest	ce
Arad	36
Bucharest	
Craiova	16
Dobreta	243
Eforie	16
Fagaras	170
Giurgiu	7
Hirsova	15
Iasi	22
Lugoj	24
Mehadia	24
Neamt	23
Oradea	38
Pitesti	1
Rimnicu Vilcea	19
Sibiu	25
Timisoara	32
Urziceni	8
Vaslui	19
Zerind	37.

Properties of greedy best-first search

Complete?

Yes – Best-first search if complete in finite spaces.

Optimal?

No

Total:

Alternative through Rimnicu Vilcea:

ce
366
0
160
242
161
176
77
151
226
244
241
234
380
10
193
253
329
80
199
374

Implementation of greedy best-first search

Properties of greedy best-first search

Complete?

Yes — Best-first search if complete in finite spaces.

Optimal?

No

d: depth of the optimal solutionm: max. depth of tree

b: maximum branching factor

Time?

Worst case: $O(b^m) \Leftrightarrow \text{like DFS}$

Best case: O(bm) – If h(n) is 100% accurate

Space?

Same as time complexity.

How can we fix the optimality problem with greedy best-first search?

A* search

- **Idea**: Take current path cost into account and avoid further expanding paths that are already very expensive.
- The evaluation function f(n) is the estimated total cost of the path through node n to the goal:

$$f(n) = g(n) + h(n)$$

g(n): cost so far to reach n (path cost)

h(n): estimated cost from n to goal (heuristic)

Note: For greedy best-first search we just use f(n) = h(n).

Expansion rule: Expand the node with the smallest f(n)

An animation of A* search

BFS

Source: Wikipedia Note: The path cost is equivalent!

Implementation of A* Search

Admissible heuristics

Definition: A heuristic h(n) is **admissible** if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.

I.e., an admissible heuristic is a **lower bound** and never overestimates the true cost to reach the goal.

Example: straight line distance never overestimates the actual road distance.

Theorem: If h(n) is admissible, A^* is optimal.

Proof of Optimality of A*

- Suppose A* terminates its search at n*.
- It has found a path whose actual cost $f(n^*) = g(n^*) + 0$ is lower than the estimated cost f(n) of any path going through any frontier node.
- Since f(n) is an *optimistic* estimate, it is impossible for n to have a successor goal state n' with $g(n') < C^*$.

Guarantees of A*

- A* is optimally efficient
 - No other tree-based search algorithm that uses the same heuristic can expand fewer nodes and still be guaranteed to find the optimal solution.
 - Any algorithm that does not expand all nodes with $f(n) < C^*$ (the lowest cost of going to a goal node) risks missing the optimal solution.

Properties of A*

• Complete?

Yes

Optimal?

Yes

• Time?

Number of nodes for which $f(n) \le C^*$ (exponential)

• Space?

Same as time complexity.

Designing heuristic functions

Heuristics for the 8-puzzle

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance (number of squares from desired location of each tile)

$$h_1(\text{start}) = 8$$

 $h_2(\text{start}) = 3+1+2+2+3+3+2 = 18$

• Are h_1 and h_2 admissible?

1 needs to move 3 positions

Heuristics from relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.

$$h_1(\text{start}) = 8$$

$$h_2(\text{start}) = 3+1+2+2+3+3+2 = 18$$

Heuristics from relaxed problems

What relaxations are used in these two cases?

Euclidean distance

Start state

Manhattan distance

Start state

Goal state

Goal state

Heuristics from subproblems

- Let h₃(n) be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions. The final order of the * tiles does not matter.
- Small subproblems are often easy to solve.
- Can precompute and save the exact solution cost for every or many possible subproblem instances – pattern database.

Dominance

Definition: If h_1 and h_2 are both admissible heuristics and $h_2(n) \ge h_1(n)$ for all n, then h_2 dominates h_1

Which one is better for search?

- A* search expands every node with $f(n) < C^* \Leftrightarrow h(n) < C^* g(n)$
- A* search with h_2 will expand less nodes and is therefore better.

Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths d):

```
• d=12 IDS = 3,644,035 nodes

A^*(h_1) = 227 nodes

A^*(h_2) = 73 nodes
```

•
$$d=24$$
 IDS $\approx 54,000,000,000$ nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Combining heuristics

- Suppose we have a collection of admissible heuristics $h_1(n), h_2(n), \dots, h_m(n)$, but none of them dominates the others
- How can we combine them?

$$h(n) = \max\{h_1(n), h_2(n), \dots, h_m(n)\}$$

• That is, always pick for each node the heuristic that is closest to the real cost to the goal $h^*(n)$.

Satisficing Search: Weighted A* search

- Often it is sufficient to find a "good enough" solution if it can be found very quickly or with way less computational resources.
- We could use inadmissible heuristics in A* search that sometimes overestimate the optimal cost to the goal slightly.
 - 1. It potentially reduces the number of expanded nodes significantly.
 - 2. This will break the algorithm's optimality guaranty!

$$f(n) = g(n) + W \times h(n)$$

A* search: g(n) + h(n) (W = 1)

Uniform cost search: g(n) (W = 0)

Greedy best-first search: h(n) $(W = \infty)$

Weighted A* search: $g(n) + W \times h(n)$ $(1 < W < \infty)$

Example of weighted A* search

Exact A* Search
$$f(n) = g(n) + h_{Eucl}(n)$$

Weighted A* Search
$$f(n) = g(n) + 5 h_{Eucl}(n)$$
from goal

Source: Wikipedia

Memory-bounded search

- The memory usage of A* (search tree and frontier) can still be exorbitant.
- How can we make A* more memory-efficient while maintaining completeness and optimality?
 - Iterative deepening A* search.
 - Recursive best-first search, SMA*: Forget some subtrees but remember the best f-value in these subtrees and regenerate them later if necessary.
- **Problems**: memory-bounded strategies can be complicated to implement, suffer from "thrashing" (regenerating forgotten nodes).

Uninformed search strategies

Algorithm	Complete?	Optimal?	Time complexity	Space complexity
BFS	Yes	If all step costs are equal	O(b ^d)	O(b ^d)
Uniform-cost Search	Yes	Yes	Number of nodes with g(n) ≤ C*	
DFS	In finite spaces (cycles checking)	No	O(b ^m)	O(bm) More with cycles
IDS	Yes	If all step costs are equal	O(b ^d)	O(bd) More with cycles

b: maximum branching factor of the search tree

d: depth of the optimal solution

m: maximum length of any path in the state space

C*: cost of optimal solution

All search strategies

Algorithm	Complete?	Optimal?	Time complexity	Space complexity
BFS	Yes	If all step costs are equal	O(b ^d)	O(b ^d)
Uniform-cost Search	Yes	Yes	Number of nod	es with g(n) ≤ C*
DFS	In finite spaces (cycles checking)	No	O(b ^m)	O(bm) more with cycles
IDS	Yes	If all step costs are equal	O(b ^d)	O(bd) More with cycles
Greedy best- first Search	In finite spaces (cycles checking)	No		rst case: O(b ^m) st case: O(bd)
A* Search	Yes	Yes	Number of nodes	with $g(n)+h(n) \le C^*$

Implementation as Best-first Search

- All discussed search strategies can be implemented using Best-first search.
- Best-first search expands always the **node with the minimum value** of an evaluation function.

Search Strategy	Evaluation function
BFS	Path cost $g(n)$
Uniform-cost Search	g(n)
DFS (see below)	-g(n)
Greedy best-first Search	Heuristic $h(n)$
A* Search	g(n) + h(n)

Only DFS is typically implemented differently to save memory.