Computing Galois groups of Fano problems

Thomas Yahl thomas jyahl@tamu.edu

arXiv:

Texas A&M University
June 2022

The problem of lines on a cubic surface

- Cayley and Salmon showed there are 27 distinct lines that lie on a smooth cubic surface.
- Schläfli determined these lines lie in a "remarkable configuration"
- A <u>Fano problem</u> is the problem of enumerating linear spaces of a fixed dimension on a variety.

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

• The set of r-planes on X = V(F), written $V_r(F)$, is a subvariety of the Grassmanian $\mathbb{G}(r, \mathbb{P}^n)$.

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \dots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

- The set of r-planes on X = V(F), written $V_r(F)$, is a subvariety of the Grassmanian $\mathbb{G}(r, \mathbb{P}^n)$.
- The combinatorial data (r, n, d_{\bullet}) determines a Fano problem when n s 2r > 0 and

$$(r+1)(n-r) - \sum_{i=1}^{s} {d_{i+r} \choose r} = 0.$$

Examples

Debarre and Manivel determined the number of solutions to the Fano problem determined by the data (r, n, d_{\bullet}) by intersection theoretic means. Write this number as $\deg(r, n, d_{\bullet})$.

We list all Fano problems with less than 1000 solutions below.

r	n	d•	$\deg(r, n, d_{\bullet})$	Galois group
1	4	(2, 2)	16	D_5
1	3	(3)	27	E ₆
2	6	(2, 2)	64	D_7
3	8	(2, 2)	256	D_9
1	7	(2, 2, 2, 2)	512	S ₅₁₂
1	6	(2, 2, 3)	720	S ₇₂₀

Incidence correspondence

Write $\mathbb{C}^{(r,n,d_{\bullet})}$ for the parameter space of homogeneous forms (f_1,\ldots,f_s) in n+1 variables of degrees $d_{\bullet}=(d_1,\ldots,d_s)$.

Fix (r, n, d_{\bullet}) . There is an incidence correspondence

- $\Gamma_{(r,n,d_{\bullet})}$ is irreducible.
- $\deg \pi_{(r,n,d_{\bullet})} = \deg(r,n,d_{\bullet})$ and the fiber over $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ is the set of r-planes $V_r(F)$.
- π restricts to a covering space over a Zariski open set $U_{(r,n,d_{\bullet})} \subseteq \mathbb{C}^{(r,n,d_{\bullet})}$.

Galois groups of Fano problems

- The Galois group, $\mathcal{G}_{(r,n,d_{\bullet})}$, of the Fano problem determined by (r,n,d_{\bullet}) is the monodromy group of $\pi_{(r,n,d_{\bullet})}$.
- Jordan/Harris: $\mathcal{G}_{(1,3,(3))} = E_6$
- Harris: $\mathcal{G}_{(1,n,(2n-3))}$ is symmetric for $n \geq 4$
- Hashimoto/Kadets: $G_{(r,2r+2,(2,2))} = D_{2r+3}$
- Hashimoto/Kadets: All other $\mathcal{G}_{(r,n,d_{\bullet})}$ contain the alternating group

<u>Goal:</u> use numerics <u>prove</u> remaining Galois groups contain a simple transposition and are therefore symmetric.

Harris' method of proof

Lemma (Harris)

Let $\pi: Y \mapsto X$ be a smooth map of degree n between irreducible varieties. If there exists a point $p \in X$ such that the fiber $\pi^{-1}(p)$ consists of exactly n-2 simple points and one double point then the monodromy group of π contains a simple transposition.

For remaining Fano problems of moderate size, we construct $p \in \mathbb{C}^{(r,n,d_{ullet})}$ satisfying the above.

Harris' method in context

We have a smooth map $\pi: \Gamma_{(r,n,d_{\bullet})} \to \mathbb{C}^{(r,n,d_{\bullet})}$ of degree $\deg(r,n,d_{\bullet})$ between irreducible varieties. For $F \in \mathbb{C}^{(r,n,d_{\bullet})}$, the fiber is the set of linear spaces $V_r(F)$.

- We construct $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ so that $V_r(F)$ consists of $\deg(r,n,d_{\bullet})-2$ simple points and one double point.
- To show our $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ has this property, we write our points as solutions to a system \overline{F} with exact coefficients.
- We verify our system \overline{F} has $\deg(r, n, d_{\bullet}) 2$ simple solutions and one solution of multiplicity 2 by certification.

Constructing systems with a unique simple double root

- A simple double root of a system F is a root x satisfying $\ker DF(x) = \langle v \rangle$ and $D^2F(x)(v,v) \notin \operatorname{im} DF(x)$.
- By work of Shub, simple double roots are isolated solutions of multiplicity 2.

Construct a system with complex rational coefficients and a unique simple double root as follows.

- 1. Choose $x, v \in \mathbb{C}^n$ with complex rational coordinates.
- 2. Randomly choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ with complex rational coefficients such that F(x) = 0 and DF(x)v = 0.
- 3. Check that dim ker DF(x) = 1 and $D^2F(x)(v, v) \notin \text{im } DF(x)$.

Smale's α -theory

Given a system $F: \mathbb{C}^n \to \mathbb{C}^n$ and $x \in \mathbb{C}^n$, there are associated quantities $\alpha(F, x)$, $\beta(F, x)$, and $\gamma(F, x)$.

Theorem (Smale et al.)

If $F: \mathbb{C}^n \mapsto \mathbb{C}^n$ is a system and $x \in \mathbb{C}^n$ with

$$\alpha(F,x)<\frac{13-3\sqrt{17}}{4},$$

then x converges (quadratically) under Newton's method to a solution x^* of F. Further, $||x - x^*|| \le 2\beta(F, x)$.

- When F and x are given by complex rationals, this provides an exact isolating ball for the solution x*.
- alphaCertified will check the inequality above and certify balls isolating solutions are disjoint, with exact arithmetic.

Results and timings

Theorem (Y.)

The Fano problems (1,7,(2,2,2,2)), (1,6,(2,2,3)), (2,8,(2,2,2)), (1,5,(3,3)), and (1,5,(2,4)) have symmetric Galois groups.

Timings (via my laptop) to check that the constructed systems have a simple double root and to certify the remaining solutions lie in disjoint balls.

r	n	d•	$\deg(r, n, d_{\bullet})$	Computation time (h)
1	7	(2, 2, 2, 2)	512	2.66
1	6	(2, 2, 3)	720	2.88
2	8	(2, 2, 2)	1024	27.32
1	5	(3,3)	1053	2.69
1	5	(2,4)	1280	6.09

Moving forward

This is ongoing work, there are many avenues to explore!

- Generate systems with a single simple double root for larger Fano problems (in progress).
- Use interval arithmetic for faster certification (in progress).
- Show that such a system exists for all remaining Fano problems.

•

References