Chap 10 非线性方程组
2022年11月5日 20:24
范数距离:
$\mathbf{x} - \mathbf{y} \mid_{2} = \left\{ \sum_{i=1}^{n} (x_{i} - y_{i})^{2} \right\}^{1/2} \neq 1 \mid \mathbf{x} - \mathbf{y} \mid_{\infty} = \max_{1 \le i \le n} x_{i} - y_{i} $
(i=1
ቴቤስ⁄ე-
一般的不动点法 • 收敛条件: $\left \frac{\partial g_i(\vec{x})}{\partial x_i}\right \leq \frac{\kappa}{n}$
• 有error boundx $ k - P_{\omega} \le \frac{K^k}{1-K} k - X^{(0)} $
牛顿方法:
• 雅可比矩阵,f下标为行,x下表为列
• $\vec{x}^{(k)} = \vec{x}^{(k-1)} - \vec{K}^{(k-1)} \vec{K}^{(k-1)}$ • 仍需要精确的初值
$\frac{\partial f_j}{\partial x_k}(\mathbf{x}^{(i)}) \approx \frac{f_j(\mathbf{x}^{(i)} + \mathbf{e}_k h) - f_j(\mathbf{x}^{(i)})}{h},$
最陡下降法:
• $x^{(1)} = x^{(0)} - \alpha \nabla g(0) / \chi g(x) = \Sigma f_i^2(x), $
• 问题是步长α的选择