This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AMENDMENT TO THE CLAIMS

Please **AMEND** claims 1, 15 and 16 as shown below. Please **ADD** claim 18 as shown below The following is a listing of the claims in this application:

1. (Currently Amended) A method of reducing film growth rate when growing a carbonor boron-doped silicon film or silicon-germanium film, comprising:

carbon or boron-doping while supplying a silicon precursor and optionally a germanium precursor to a substrate, at reduced pressure of about 0.1 to 100 millitorr, at a temperature of below about 800°C, wherein said step of doping while supplying includes supplying a dopant precursor from a single source to the substrate at a substantially constant flow rate while lowering a flow rate of the silicon precursor, whereby a concentration of the dopant in the substrate increases and a dopant profile can be spiked.

- 2. (Original) The method of Claim 1, including supplying germanium precursor to the substrate.
- 3. (Original) The method of Claim 1, wherein the film has a dopant content of about 1 x 10^{17} to 1 x 10^{21} / cm³.
- 4. (Original) The method of Claim 1, wherein the doping is at a temperature of less than 800°C.
- 5. (Previously presented) The method according to claim 1, wherein the dopant is carbon.
- 6. (Previously presented) The method according to claim 2, wherein the dopant is carbon..

- 7. (Previously presented) The method according to claim 6, wherein the carbon doping is by a carbon precursor supply that is a single source.
- 8. (Previously presented) The method according to claim 2, wherein the film has a germanium content of 1 to 30% by weight.
- 9. (Previously presented) The method according to Claim 1, wherein the silicon precursor is silane supplied at a partial pressure in a range of about 0.1 to 10 millitorr.
 - 10-14. (Withdrawn).
- 15. (Currently Amended) A method of growing a film without sharp pressure transitions, comprising:

carbon or boron-doping while supplying a silicon precursor and optionally a germanium precursor to a substrate, at reduce pressure of about 0.1 to 100 millitorr, wherein a dopant profile of the carbon or boron-doping is spiked.

- 16. (Currently amended) The method of claim 15 18, wherein the step of carbon or boron-doping comprises carbon and boron-doping while supplying a silicon precursor and optionally a germanium precursor to a substrate, at reduced pressure of about 0.1 to 100 millitorr, is provided at a temperature of below about 800°C, wherein said step of doping while supplying includes supplying a dopant precursor from a single source to the substrate at a substantially constant flow rate while lowering a flow rate of the silicon precursor, whereby a concentration of the dopant in the substrate increases.
- 17. (Previously presented) The method of claim 15, wherein the step of carbon or boron-doping comprises carbon and boron-doping while supplying a silicon precursor and optionally a germanium precursor to a substrate, at reduced pressure of about 0.1 to 100 millitorr, at a temperature of below about 800°C, wherein said step of doping while supplying includes supplying a dopant precursor from a single source to the substrate at a substantially constant flow

rate while lowering a flow rate of the silicon precursor, whereby a concentration of the dopant in the substrate increases.

18. (Added) A method of reducing film growth rate when growing a carbon- or boron-doped silicon film or silicon-germanium film, comprising:

carbon or boron-doping while supplying a silicon precursor and optionally a germanium precursor to a substrate, at reduced pressure of about 0.1 to 100 millitorr,

wherein at least one of Si and SiGe films have spiked borders where dopant introduction of the carbon or boron-doping has been first introduced or stopped.