Answer all questions

Describe how in a mass spectrome	(@02 ma
(i) formed	
(ii) accelerated	
(iii)separated	
(iv) detected	
(11) 45155154	

b) State two advantages and or	<u> </u>
spectrometer.	(@0½ mark)
Advantages	
Nine december :	
Disadvantage	
oxygen gas. On cooling to room occupied 70.0cm³, when the re potassium hydroxide solution,	C _x H _y) was exploded in 90.0cm ³ of a temperature, the residual gases esidual gases were passed through the volume reduced to 40.0cm ³ . reaction between hydrocarbon P (01 mark)
b) Determine the molecular fo	rmula of hydrocarbon P. (03 marks)
••••••	••••••
•••••	••••••
••••••	••••••
••••••	••••••
•••••	•••••

c)	Complete the following equations and write the	suggested
	mechanism with hydrocarbon, P.	$(@02\frac{1}{2} \text{ marks})$
(i)	Hydrocarbon, P with concentrated nitric acid	d /400°C.
•••••	••••••	•••••
•••••	••••••	•••••
•••••	••••••••••••	••••••
•••••	••••••••••••	••••••
•••••	••••••	•••••
•••••	••••••••••••	•••••
•••••	•••••••••••	•••••
•••••	•••••••••••••••••••••••••••••••••••••••	••••••
•••••	••••••	•••••
•••••		•••••
(ii)	Hydrocarbon,P with concentrated sulphuric o	
•••••	•••••••••••••••••••••••••	••••••
•••••	••••••••••••	•••••
•••••	••••••	•••••
•••••	•••••••	••••••
•••••	•••••••••••	•••••
•••••	••••••	•••••
•••••	••••••	•••••
•••••	•••••••••••	•••••
•••••	•••••	•••••
3.(a)	Bromine has two isotopes 79 Br and 81 Br and the of bromine shows peaks at $\mathbf{m/e}$ of 158, 160 and the formula(e) of the ion(s) corresponding to the	d 162. Write

Peal	k at m/e of value	Formula of the ion
158	3	
160)	
162		
	•	of the isotopes in (b) above is atomic mass of bromine is 79.9. (02 marks)
	•••••	•••••
	•••••	
	••••••	••••••
	•••••	••••••
	•••••	••••••
	••••••	
	•••••	••••••
	•••••	
	•••••	•••••
	•••••	•••••••••••••••••••••••••••••••••••••••
	•••••	••••••
4.(a)	State Graham's law of diffus	sion. (01 mark)
	•••••	•••••

b) A certain volume of oxygen diffused through a por membrane in 120s. Under the same conditions, the of a gas X diffused in 112s. Calculate the formula	same volume
		•••••
	••••••	•••••
	•••••	•••••
	••••••	•••••
ร	The combustion of a hydrocarbon T gave 8.8g of car	hon diavide
а	and 4.5g of water, if the molecular mass of T is 58 . The	
a)) Empirical formula of hydrocarbon , T .	$(03\frac{1}{2} \text{ marks})$
		•••••
	••••••	
	•••••	•••••
	•••••	•••••
	••••••	•••••
	••••••	•••••
	•••••••••••••	•••••
	••••••	•••••
Ь) Molecular formula of hydrocarbon, T .	(02 marks)
	•••••	•••••
	••••••	•••••
	••••••	•••••

•••••••••••	
c) Write the possible isomers and IUPAC names hydrocarbon, T.	s for the (02 marks)
	(02
•••••	
6.(a) Complete the following nuclear equations.	(@01 mark)
(i) $^{27}_{13}Al + ^{4}_{2}He$	$+ \frac{1}{0}n$
(ii) ${}_{3}^{7}Li$ + ${}_{2}^{4}He$ + ${}_{2}^{4}$	⁴ He
(iii) $^{233}_{91}Pa$ +	$_{-1}^{0}e$
(iv) ${}^{42}_{19}Kr + {}^{4}_{2}He \longrightarrow$	$\frac{1}{0}n$
b) In an experiment, the radioactive decay of by 25% in 96 minutes. Determine the half-	life of bromine.
	(02 marks)
7.(a) Explain what is meant by the term first elec	ctron affinity? (02 marks)

	kJ/mol Plot a graph o
mol mol a graph of 1st electron affinity against atomic nur period 2 elements. (03 raph papers are provided]	KJ/mol Plot a graph o
t a graph of 1 st electron affinity against atomic nu period 2 elements. (03 raph papers are provided]	Plot a graph o
plain the shape of the graph. (06	[Graph paper:
	Explain the sl
	•••••
ne what is meant by the term diagonal relationship.	efine what is r

b)	State reasons as to why lithium resembles magnesic	
		(02 marks)
		•••••••
		••••••
		••••••
c)	State any two properties why boron resembles silic	
		(05 marks)
		••••••
		•••••
		······
9.(a)	Write the IUPAC names of the following compound	ls.
• •		(@0½ mark)
	a). $CH_3(CH_2)_8CH_3$	
	b). CH ₃ CH ₂ CH=CHCH ₂ CH ₂ CH ₃	•••••••••••••••••••••••••••••••••••••••
		······································

c). CH ₃	
d).	
b) Write the structural formula of the following compound (@0 (i) Butane	
(ii) Cyclopentane	
(iii) Methylcyclohexane	
(iv) But-2-ene	
c) An organic compound, Q has the structure; CH ₃ CH=0 Name the functional groups present in compound, Q . (0	
10.(a) Discuss the reactions of: (i) Na, Mg & P with oxygen gas. (05	marks)

	(ii) Si, Cl ₂ & Be with water.	(06 marks)
c)	Define the term "Disproportionation".	(01 mark)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1							· · · · · · · · · · · · · · · · · · ·									1.0 H	4.0 He 2
6.9 Li 3	9.0 Be	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	1
Na	24.3 Mg 12											27.0 Al 13		31.0 P 15	32.1 S 16	35.4 Cl 17	
39.1 K 19	40.1 Ca 20	1		50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28							79.9 Br 35	83.8 Kr 36
85.5 Rb 37	1	88.9 Y 39	91.2 Zr 40		95.9 Mo 42	98.9 Tc 43	101 Ru 44	1	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				2 13 2 13 19 135	4	9 55				3 1 Cal					2 1 3 95 1 3
2		() () () () () () () () () ()		140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		17	227 Ac 89		231 Pa 91	238 U 92	237 Np 93						Es	Fm	256 Md 101	No	Lw

y ===END===

WELCOME TO SENIOR FIVE, YEAR 2024 This is the last page of the printed paper, Page 11