Course: CM-072

Presentation 8

Dimensionality Reduction

Unsupervised learning

Goal: Find hidden patterns in the data

Used

- Visualization
- Data compression
- Data Preprocessing step for supervised algorithms

Reduce the number of considered data dimensions

- Feature selection: Keep a subset of the existing dimensions
- Feature extraction: Identify combinations of the features that can be used to replace the existing features. Typically, they are more informative and better suited for analysis in high dimensional spaces.

Dimensionality Reduction

Unsupervised learning

Goal: Find hidden patterns in the data

Used

- Visualization
- Data compression
- Data Preprocessing step for supervised algorithms

Reduce the number of considered data dimensions

- Feature selection: Keep a subset of the existing dimensions
- Feature extraction: Identify combinations of the features that can be used to replace the existing features. Typically, they are more informative and better suited for analysis in high dimensional spaces.
- Feature extraction: Principal Component Analysis algorithm.

Dimensionality Reduction

- Assumption:data (approximately) lies on a lower dimensional space.
- Examples:

Principal Component Analysis

 Question: Are our data features appropriate for analyzing our data? Is there a better set of features that we could use?

Answer:

- Investigate how much correlated the original features are and how much the values of each feature are distributed in the value space.
 - Feature that are very correlated with each other contain redundancy.
 - Feature with a small variation contain low information.
- Construct a new set of features based on the notions of variance and covariance of the original features.

Circle area= π r² circumference=2 π r

Here, our data are described by two features: area and circumference, which are obviously correlated! What truly matters is the radius of the circle!

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

So, how can we obtain a new feature that is truly informative of our data?

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

Find directions of maximal variance!

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

Find directions of maximal variance!
Find directions that are mutually orthogonal.

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

The red and the green directions are the principal components, the new dimensions for the data!

As the data vary (a lot) more on the red direction, this is the first principal component. The green one, is the second principal component.

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

So, let's transform the data space by rotating the axes.

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

On the new dimensions, we can easily see that the most of the information is carried on PCI, and that PC2 can be safely dropped.

 $\frac{\text{Circle}}{\text{area} = \pi \, \text{r}^2}$ $\text{circumference} = 2 \, \pi \, \text{r}$

This means that the data points will be projected on PCI.

Finally, we got the one dimension that we were intuitively seeking in the beginning.

Data transformation with PCA

PCA objectives

$$\min_{X', \operatorname{rank}(X') = r} \|X - X'\|$$

PCA objectives

$$\max_{u_1\in R^p, \|u_1\|=1} \mathrm{var}(Xu_1)$$

$$\max_{u_1 \in R^p, \|u_1\|=1} u_1^T \mathrm{cov}(X) u_1$$

PCA Computation

- Center X (subtract mean).
- In practice: Also scale to unit variance.
- Compute singular value decomposition:

Diagonal (containing singular values)

n_samples x n_samples orthogonal matrix (not necessarily computed in practice) n_features x n_features orthogonal matrix Contains component vectors. Drop rows (of V^T) for dimensionality reduction.

Principal Component Analysis

- Principal component analysis (PCA) is a statistical procedure that uses an
 orthogonal transformation to convert a set of observations of possibly
 correlated variables into a set of values of linearly uncorrelated variables called
 principal components.
- The principal components analysis finds directions of maximal variance.
- All principle components are orthogonal to one another
- If there are N feature in the original data, there are N possible principal components. These are ordered based on their eigenvalue (capturing their variance).
- The principal components with the lowest variance (eigenvalue) are not informative and may be discarded to obtain M<N features (feature selection).

PCA: Algorithm

- Make the input data zero-mean, i.e., subtract the mean from each observation
 of each feature. (Sometimes we will have to also make them unit-variance by
 scaling).
- Compute the covariance matrix for the zero-mean data.
- Compute the eigenvectors and eigenvalues for the covariance matrix
 - The eigenvectors are the principal components; the first principal component
 has the highest eigenvalue, the second principal component the second
 highest, etc.
- Build the new feature vector and perform feature selection if necessary
 - If the eigenvalue of some principal component is zero, the feature selection is done automatically
- Transform the data to the new feature system.

PCA Step 1: zero-mean

Original data	
X	У
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2	1.6
1	1.1
1.5	1.6
1.1	0.9

Substract the mean

Zero-mean data		
X	У	
0.69	0.49	
-1.31	-1.21	
0.39	0.99	
0.09	0.29	
1.29	1.09	
0.49	0.79	
0.19	-0.31	
-0.81	-0.81	
-0.31	-0.31	
-0.71	-1.01	

PCA Step 1: zero-mean

PCA Step 2: covariance matrix

The covariance matrix for two variables is:

	×	у
X	$\sigma^2(x)$	cov(x,y)
у	cov(y,x)	$\sigma^2(y)$

The (co)variance for zero-mean data is given by:

$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{N-1} \mathbf{x} \mathbf{y}^T$$

and

$$\sigma^2(\mathbf{x}) = \frac{1}{N-1} \mathbf{x} \mathbf{x}^T$$

For our example we find (verify the result):

	X	У
X	0.616555556	0.615444444
у	0.615444444	0.716555556

Since the covariance is positive, we expect the variables to increase together.

PCA Step 3: eigenvectors- eigenvalues

For our running example, we can find:

OIL	MAN	10	LICC
	1611	vai	ues
	,		

0.490833989	
	_

eigenvectors

-0.735178656	-0.677873399
0.677873399	-0.735178656

Eigenvectors are the principal components.

The eigenvalues designate the first and second principal components. Here, we can see that the first principal component is far more informative than the second one, because its eigenvalue is much higher.

PCA Step 4: New feature vector

New feature vector = (eigv1, eigv2...eigvn) a matrix of column vectors.

```
New Feature vector 1
```

```
-0.677873399 -0.735178656
-0.735178656 0.677873399
```

If we keep both principal components.

New Feature vector 2

-0.677873399
-0.735178656

If we discard the second principal component.

PCA Step 5: New dataset

To transform the data to the new features system we apply the following formula:

<u>TransformedData=RowNewFeatureVector x RowZeroMeanData</u> where

- RowNewFeatureVector: Each row represents an eigenvector. Dimensions: (#eigenvectors,#originalFeatures).
- RowZeroMeanData: Each row is a feature and each column is a (zero-mean)
 data item.

Dimensions: (#originalFeatures,#dataltems).

So, Transformed Data is a (#eigenvectors, #dataltems) matrix.

It is thus evident that the data have been transformed to the new feature system that is a linear combination of the original one.

PCA Step 5: New dataset

For our example

	1
x	y
827970186	175115307
1.77758033	.142857227
992197494	.384374989
274210416	.130417207
-1.67580142	209498461
912949103	.175282444
.0991094375	349824698
1.14457216	.0464172582
.438046137	.0177646297
1.22382056	162675287

Data transformed with 2 eigenvectors

PCA Step 6: Next

- The new data and features are used as input to a subsequent supervised learning algorithm.
- If it used for compression we may want to get the original data back
 - Lossless: If we had kept all the principal components
 - Lossy If we kept only a number of the principal components.

PCA: Getting the original data back

Apply the formula

<u>OriginalData=NewFeatureVector x TransformedData + OriginalMean*</u>

For our example and for transformed data using one

eigenvector we have

the reconstructed

data shown here:

^{*}Note that if we had also normalized to unit-variance we should revert also this normalization.

PCA

PCA is Unsupervised

Manifold Learning

Manifold Learning

- When you think of a manifold, imagining a sheet of paper. In the parlance of manifold learning, we can think of this sheet as a two-dimensional manifold embedded in three-dimensional space.
- Manifold learning algorithms would seek to learn about the fundamental two-dimensional nature of the paper, even as it is contorted to fill the three-dimensional space.
- Axes don't correspond to anything in the input space.
- Often can't transform new data.

LDA and QDA classifiers

- Both LDA and QDA can be derived from simple probabilistic models which model the class conditional distribution of the data for each class k.
- In the case of LDA, the Gaussians for each class are assumed to share the same covariance matrix. In the case of QDA, there are no assumptions on the covariance matrices of the Gaussians, leading to quadratic decision surfaces.
- If in the QDA model one assumes that the covariance matrices are diagonal, then the inputs are assumed to be conditionally independent in each class, and the resulting classifier is equivalent to the Gaussian Naive Bayes classifier.

Linear Discriminant Analysis

$$P(y=k|X) = rac{P(X|y=k)P(y=k)}{P(X)} = rac{P(X|y=k)P(y=k)}{\sum_{l} P(X|y=l) \cdot P(y=l)}$$
 $p(X|y=k) = rac{1}{(2\pi)^{n} |\Sigma|^{1/2}} \exp\left(-rac{1}{2} (X - \mu_{k})^{t} \Sigma^{-1} (X - \mu_{k})
ight)$

$$\log \left(rac{P(y=k|X)}{P(y=l|X)}
ight) = 0 \Leftrightarrow (\mu_k-\mu_l)\Sigma^{-1}X = rac{1}{2}(\mu_k^t\Sigma^{-1}\mu_k-\mu_l^t\Sigma^{-1}\mu_l)$$

Quadratic Discriminant Analysis

$$p(X|y=k) = rac{1}{(2\pi)^n \left| \Sigma_k
ight|^{1/2}} \mathrm{exp}igg(-rac{1}{2} (X-\mu_k)^t \Sigma_k^{-1} (X-\mu_k) igg)$$

LDA VS QDA

Linear Discriminant Analysis Quadratic Discriminant Analysis

varying covariances Data with

Discriminants and PCA

- Both fit Gaussian model
- PCA for the whole data
- LDA multiple Gaussians with shared covariance
- Can use LDA to transform space!
- At most as many components as there are classes (needs between class variance).

PCA vs Linear Discriminants

Data where PCA failed

Non-linear methods

Linear

Principal Component Analysis (PCA)

Factor Analysis
Independent Component Analysis (ICA)

Nonlinear

Laplacian Eigenmaps

ISOMAP

Local Linear Embedding (LLE)

Slide from Aarti Singh

Algorithms in sklearn

- Spectral embedding (Laplacian Eigenmaps). Uses eigenvalues of graph Laplacian → <u>Spectral Embedding</u>
- Locally Linear Embedding → <u>Locally Linear Embedding</u>
- Isomap. Kernel PCA on manifold→ <u>Isomap</u>
- t-SNE (t-distributed stochastic neighbor embedding) \rightarrow t-SNE
- KernelPCA. Eigenvalues of kernel matrix→ <u>Kernel PCA</u>