Malca de classo	Pictercia	o Vi	
0+10		N° sericces	
0+10 = 5	0-10	5	
15	05-01		
25		17	
72	72	1	
z = 1 (5 + 5) + (15.11)+	(25.17)+(77.1	
		n=34	
z 20,205			
	4 32		
$b^{2} = 1 (5^{3})$	5 - 34.29205	2) + (15211 - 3	4.20,205)
+ (25 ² .)	7 - 13887,1) +	n = 2 = 13885	7, 1
- ALYZ MA	180/34 137	,03	
			_ 2
de quelquer emos Kin. \$\frac{2}{34} = \frac{1}{34}	média comostra trace de 34 sen 34 E X.		rédia
	do servico, i,		1 km
	V(X;) = 82		
Pelo Jeorema do X N N ()	limit central;	nas n=3473	o, ten-se

$$\lambda = \Phi^{-1}(q,95)$$

00 extremos ven:

$$\begin{cases}
d = \bar{z} - A \\
g = \bar{z} + A
\end{cases}$$

$$\begin{cases}
d = 10, 6 - 1,96 \cdot 6,7 \\
80 \\
\hline
\end{cases}$$

$$\begin{cases}
d = 10, 6 + 1,96 \cdot 0,7 \\
\hline
\end{cases}$$

$$\begin{cases}
d = 10, 6 + 1,96 \cdot 0,7 \\
\hline
\end{cases}$$

2 B = 10,85

com 95% le consideras esta aprisos

EDJONISTICO TP F302 3/12/2014 19:10 Ficha 7 3) Al- tempo medio prese readizaco ANN(M, 8 I.C (M)=? n= 15 alunos $\bar{T} = 1$ $\xi z_i = 120 + 120 + 125 + 125 + 126$ V.a media amostral tempo medio de realizació de em mintos numa omostra de tempo de realização de uma proser de exame x: N(11;52 Pela editividade do allotribuico NORMAL X15 NN (4, 15 Predendo-so dederminar intersato de conficença pora u a 95% x, B] = ?

P(d S M SB) = 0,95 (=> P(-X < Z S X) =0,95
onde as%
ande 95%
$7 = \overline{X} - \mu$ (1) $N(0, 1)$
15
15
$7 = \overline{X} - M$ $N(0, 1)$ $\overline{X} = 0.975$ 1.8 1.96 1.96
teebela.
= 1.96
Os extremos le intervalo, es abtilos a portir de:
$ \begin{cases} Q = \overline{x} - \Lambda & \overline{z} = 13\overline{z}, 1 \\ Q = \overline{x} + \Lambda & \Lambda = \Lambda, \underline{S} & (2) \Lambda = 1,96, \underline{S} \\ \overline{V}_{1} & \overline{V}_{1}\overline{S} \end{cases} $
80= Z+A A= A, & (2) A=1,96,5
VI VIS
$\begin{cases} 2 & 32, 1 - 1,96.5 = 29,54 \\ 9 & 32, 1 + 1,96.5 = 34,6 \end{cases}$
2 8 = 132, 1 + 1,96.5 = 134,6
IC (41) = [129,54; 134,6]
95%
4)

Estatistica ITP F30Z 3/12/2014 20:00
5) Y - Deucas a govar de uma dada medida E
N= 200
a) P - proported amostred que referención o numero le cidados esta contra o medido como soria
cidados esta contra o medido como sono
pora una amostro de zoo alados mummum
P = X X - numero de cidades
200 X - Numero de cidaçãos 200 em 200 que asta contre a medida
XNB; (200, 0,45) p=0,45
p- percedege que estos contro u
midials.
Polo teore a 20 limile central Pro NN(0,45; 345×0,55)
$P(\hat{P}_{200} > 0, 5) = 1 - P(\hat{P}_{200} \leq 0, 5)$ related to the second set
$= 1 - \overline{\mathbb{Q}} \left(1, 42 \right)$ $NN(91)$
= 1-0,0778 2000
b)
125 cidados contro a medida carravera. versetare
N=200
p = 125
P(x 5 p 5 g) = 990 5 = n.p = 125 P(Z 6 x) = 0,99
Xz
XNB: (200;p) Pelo teoreno de limit control

Pro NN(p; 100) 125 = 0,625 =0,625 para adamo determinar un P(d < p < B) =0,98 P(-x < 2 5 x) = 0,98 \$ \$ P(Z 5 x) = 999 X = 2,33 capemos do interior d=0,625-2, 3, 0625×0,375