

PRACA DYPLOMOWA INŻYNIERSKA

Aplikacja mobilna wspomagająca monitorowanie dziennego spożycia kalorii z wykorzystaniem technologii speech to text

Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej

Promotor: dr inż. Krzysztof Lichy

Dyplomant: Adam Jóźwiak

Nr albumu: 216786

Kierunek: Informatyka Stosowana

Specjalność: Technologie gier i symulacji komputerowych

Łódź, 2020/2021

Spis treści

1	\mathbf{Wstep}		3
	1.1	Problematyka	3
	1.2	Cel i zakres pracy	4
2	Teoria		4
	2.1	Rynek aplikacji mobilnych	4
	2.2	Programowanie aplikacji na urządzenia mobilne	7
	2.3	Speech to text	7
	2.4	Bazy danych i ich rodzaje	10
	2.5	Chmurowe bazy danych	10
	2.6	API	10
	2.7	Analiza konkurencyjnych rozwiązań	10
	2.8	Wymagania funkcjonalne	10
	2.9	Wymagania niefunkcjonalne	10
3	Technologie i narzędzia wykorzystane w projekcie		10
	3.1	Flutter	10
	3.2	Dart	10
	3.3	Cloud Firestore	10
	3.4	Android Studio	10
	3.5	Android Emulator	10
	3.6	VIM	10
4	\mathbf{Pro}	Proces powstawania aplikacji	
5	Pod	Isumowanie	10
6	\mathbf{Ind}	eks rysunków	10
7	Rih	liografia	10

1 Wstęp

1.1 Problematyka

W epoce internetu XXI wieku, gdy wiedza jest narzędziem powszechnie dostępnym, a każdy ma możliwość zdobycia informacji na interesujący go w mniejszym, lub większym stopniu temat, gdy media oraz tak zwani "influencerzy" promują zdrowy styl życia, popularnym trendem ostatnich lat staje się dbanie o własne ciało. Trend popędzany również łatwym dostępem do najróżniejszych portali społecznościowych i chęcią pokazania Swoich zdjęć na forum publicznym sprawił, że co roku znacznie zwiększa się ogólna ilość ludzi chętnych do uczęszczania na siłownie i odbywania regularnych treningów.

Równie ważną częścią dbania o Swoje ciało, oprócz treningów siłowych, jest zastosowanie odpowiedniej diety. Nie jest to zadanie trywialne, ponieważ jest ono w pełni zależne od zapotrzebowania osoby zainteresowanej, stąd istnienie zawodów takich jak "dietetyk". W związku z tym wiele osób zainteresowanych rozpoczęciem procesu odchudzania sięga po jedną z najprostszych i skutecznych metod, a mianowicie liczenie zjedzonych kalorii. Rekomendowana ilość dziennego ich spożycia jest zależna od bardzo dużego wachlarza czynników, takich jak, przykładowo: płeć, wiek, wzrost, tryb życia, oraz wiele innych, jednak w pracy naukowej zatytułowanej "How many calories should I eat a day?" [4], autor podsumował, iż rekomendowaną dzienną ilością spożytych kalorii dla przeciętnego mieszkańca Stanów Zjednoczonych, jest:

- mężczyzna około 2500 kcal
- kobieta około 2000 kcal

Bez odpowiedniego notowania procedura liczenia kalorii nie jest jednak efektywna, stąd ludzie przyzwyczajeni do wygody oferowanej przez technologię, sięgają po różnego rodzaju aplikacje, mające jeszcze bardziej ułatwić to, i tak już trywialne zadanie.

Chodź na rynku istnieje już wiele aplikacji udostępniających taką funkcjonalność, używanie ich jest często zadaniem nieprzyjemnym i czasochłonnym, polegającym na wykonaniu całych serii kliknięć przeprowadzających użytkownika z jednego menu do drugiego, w celu wyszukania i dodania składników do listy spożytych artykułów, co długofalowo przekłada się na porzucenie chęci prowadzenia notatek dotyczących spożytych kalorii. Brakuje na rynku rozwiązania, które udostępniłoby łatwy i szybki w użyciu interfejs, oraz w bardzo krótkim okresie czasowym

pozwoliłoby wyszukać i dodać interesujące użytkownika produkty. Dodatkowym atutem byłoby wzbogacenie takiej aplikacji o moduł wykorzystujący mowę ludzką, do jeszcze większego usprawnienia całego procesu.

1.2 Cel i zakres pracy

Celem niniejszej pracy dyplomowej jest stworzenie aplikacji mobilnej, mającej za zadanie wspomóc użytkownika w prowadzeniu notatek świadczących o dziennym spożyciu kalorii. Aplikacja udostępniać będzie moduł speech to text, który w jeszcze większym stopniu ułatwi proces wyszukiwania produktów, a całość będzie uporządkowana w postaci przejrzystego i prostego w obsłudze interfejsu graficznego.

Praca obejmuje implementację logiki przy użyciu języka programowania *Dart*, natomiast wygląd aplikacji, oraz interakcje pomiędzy poszczególnymi modułami zarządzane są przy pomocy frameworku *Flutter*.

???????????????

2 Teoria

2.1 Rynek aplikacji mobilnych

Urządzenia mobilne są obok komputerów uważane za jedne z najbardziej rewolucyjnych i przełomowych technologii opracowanych w XX wieku. I chodź pierwsze prototypy powstawały już wcześniej niż lata czterdzieste, nie przypominały w obsłudze urządzeń dostępnych dzisiaj i wykorzystywane były głównie w celach militarnych. Oficjalnie za pierwszy telefon w historii uważany jest egzemplarz Motorola DynaTAC 8000x, wynaleziony przez Martina Coopera, pracującego wtedy dla firmy Motorola [6]. I chodź zamienienie prototypu na urządzenie dostępne komercyjnie zajęło następną dekadę, tak relatywnie ciężkie początki telefonów zamieniły się w prawdziwą lawinę nowych rozwiązań. Chodź nie jest to wiedza powszechna, tak pierwszy smartphone powstał już w 1994 roku, a był to IBM's Simon [5]. Tak więc przez następne lata firmy prześcigały się technologicznie, każda przyczyniając się w mniejszym lub większym stopniu do rozwoju rynku urządzeń mobilnych, aż do 2007 roku, niosącego wydarzenie znane powszechnie jako jedno z najważniejszych w historii telefonów komórkowych. Rok w którym Steve Jobs zaprezentował na konferencji MacWorld 2007 pierwszy model smartphone'a iPhone 2G, który w pełni pozbył się przycisków na rzecz dotykowego ekranu. Moment ten wyznaczył

tor po jakim aż po dziś dzień poruszają się wszystkie firmy zajmujące się tworzeniem urządzeń mobilnych i w ten sposób oficjalnie rozpoczęła się era smartphone'ów.

Początkowo wszelkie aplikacje mobilne były dostarczane głównie przez producentów telefonów i były one "wbudowane" - nie istniała możliwość zainstalowania ich po zakupie produktu. W roku 1983 Steve Jobs planował już jednak stworzenie miejsca, w którym oprogramowanie mogłoby być kupowane przy użyciu linii telefonicznych [11]. Tak oto w 2008 roku została uruchomiona usługa "App Store", wraz z flotą 500 dostępnych aplikacji. Jednak Apple jest firmą restrykcyjną i tworzenie nowych aplikacji na system operacyjny iOS nie było zadaniem trywialnym. Na szczęście codziennego użytkownika i ogólnego rozwoju, iOS nie posiadał monopolu na aplikacje mobilne, ponieważ w 2005 roku Google wykupiło firmę, której flagowy produkt jest bardzo dobrze pod nazwą Android OS [2].

Android jest to system operacyjny oparty na rodzinie systemów Linux, co bezpośrednio przełożyło się na jego darmowość i pozwoliło szturmem podbić świat, jak można zaobserwować na raporcie przygotowanym przez firmę StatCounter [7].

Rysunek 1: Wykres udziału w rynku poszczególnych mobilnych systemów operacyjnych na przestrzeni 12 lat

Łatwa dostępność, ilość urządzeń na których jest on zainstalowany, szeroki wachlarz możliwości - te cechy napędzały ambicje twórców aplikacji mobilnych. Zaoferowany przez firmę Google Play Store, w przeciwieństwie do App Store pozwala na darmowe udostępnienie produktów o ile spełniają one odpowiednie warunki.

Wraz z tak prężnym rozwojem rynku smartphone'ów, rozpoczęła się zmiana trendów. I o ile od początku XXI wieku światem królowały komputery, oferujące cały zasób możliwości od nauki, po rozrywkę, tak smartphony z roku na rok coraz bardziej zaczęły przypominać swoich stacjonarnych braci.

Rysunek 2: Komputery, a smartphony na przestrzeni lat 2013-2016

Rysunek 3: Komputery, a smartphony na przestrzeni lat 2016-2019

Jednak urządzenia mobilne były i są w stanie zaoferować dużą większą wygodę użytkowania,

przenośność, oraz system znacznie łatwiejszy do przyswojenia dla przeciętnego człowieka, nie wymagający szczególnej wiedzy do poprawnego zarządzania. Stąd u młodzieży umiejętności obsługi komputerów stacjonarnych zaczęła zanikać, jako że przestaje ona być tak kluczowa jak była jeszcze 10 lat temu. Jak podaje strona Broadbandsearch [8], już w 2016 roku większość "ruchu" internetowego była spowodowana przez urządzenia mobilne, bo aż 51.3%, i po rok 2021 oscyluje stabilnie w granicach 52%. Jak podaje ten sam portal, różnice pomiędzy rokiem 2013, a 2019 w ilości czasu spędzanego dziennie na użytkowaniu smartphonów i desktopów wygląda następująco:

- Średni czas użytkowania komputerów/laptopów spadł ze 144 minut dziennie, do 128 minut
- Średni czas użytkowania urządzeń mobilnych wzrósł z 88 minut, do średnio 203 minut dziennie

Takie wyniki sprawiły, że coraz więcej firm musiało zacząć liczyć się z rynkiem urządzeń mobilnych, a obecnie częstą praktyką przy tworzeniu aplikacji przeznaczonych zarówno na komputery stacjonarne, jak i smartphony, lub przy pisaniu stron internetowych, jest stylizowanie ich najpierw na mniejsze ekrany, a następnie dostosowywanie pod urządzenia desktopowe. W przypadku marketingu, zamiast "optymalizować" go pod kątem urządzeń mobilnych, zaczęto tworzyć zupełnie oddzielne kampanie marketingowe zarówno dla desktopów jak i smartphone'ów [10].

2.2 Programowanie aplikacji na urządzenia mobilne

2.3 Speech to text

Popularną opinią jest, iż lenistwo idzie w parze z ludzkim rozwojem technologicznym. Wiele przypadków potwierdza tą regułę, sam Bill Gates, założyciel firmy Microsoft powiedział: "I choose a lazy person to do a hard job. Because a lazy person will find an easy way to do it." W duchu tych słów, ludzie jako rasa mają w zwyczaju być leniwymi, dlatego naturalną rzeczą stał się fakt, iż pisanie na klawiaturze nie jest najbardziej optymalną techniką "porozumiewania się" z maszynami.

W roku 1952, Bell Laboratories stworzyło system "Audrey", który był w stanie rozpoznać wypowiedziane pojedyńcze cyfry, a 10 lat później, "Shoebox" od IBM mógł zrozumieć i odpowiedzieć na 16 słówek w języku Angielskim [1]. W latach siedemdziesiątych XX wieku, Amerykański Departament Obrony rozpoczął projekt o nazwie "SUR" - The Speech Understanding Research, którego owocem był "Harpy", system będący w stanie rozpoznać 1000 słów.

Współzawodnictwo wielu firm w zakresie rozpoznawania mowy doprowadzało do powstawania dużej ilości nowych modeli, oraz metod, jeszcze bardziej optymalizujących cały proces.

Do roku 2001, estymowana dokładność systemów rozpoznawania mowy wynosiła około 80%, i przez dłuższy nie zostały osiągnięte godne uwagi postępy. Sytuacja jednak zmieniła się dzięki firmie Google, która uaktywniła w roku 2012 usługę Google Voice Search. Okazała się ona być ogromnym sukcesem, jako że była to darmowa aplikacja dostępna na urządzeniach mobilnych, stąd dzięki jej szerokiej dostępności, firma miała okazję zebrać dane pochodzące od milionów użytkowników, co przełożyło się bezpośrednio na poprawę dokładności algorytmu. Z czasem kolejne firmy zaczęły inwestować w technologię, a okres od roku 2010 do 2020 jest uważany za szczególnie ważny dla historii technologii rozpoznawania mowy. Tak oto w roku 2021 użytkownicy mają dostęp do:

- Google Voice Search / Google Assistant Google
- Siri Apple
- Cortana Microsoft
- Alexa Amazon
- I wiele innych ...

Firmy te prześcigają się o tytuł dokładności rozpoznawania mowy. W roku 2016, IBM osiągnęło wartość błędu 6,9%. W 2017, Microsoft udało się osiągnąć błąd o wartości 5,9%, jednak IBM szybko kontratakowało swoim 5,5%. Firmy te nadal pozostają w tyle przy Google, którego błąd w 2017 roku osiągnął 4,9% i do dziś pozostaje najdokładniejszym systemem rozpoznawania mowy dostępnym na rynku. Wraz z upływem czasu, technologia ta stawać się będzie coraz szybsza i efektywniejsza i bardzo możliwe jest, iż stanie się ona głównym interfejsem służącym komunikacji pomiędzy człowiekiem, a maszyną.

Przez większą część historii technologii "Speech Recognition", najpopularniejszą metodą był HMM - "Hidden Markov Model" [9], opracowany już w latach osiemdziesiątych. W dużym skrócie, zamiast używania słów i szukania w nich dźwiękowego wzorca, ma on za zadanie przewidzieć prawdopodobieństwo tego, że nieznane dźwięki mogą być słowami.

Proces analizy rozpoczyna się od zebrania informacji dźwiękowej, zwykle przy użyciu mikrofonu, i już na tym stadium pojawiają się pierwsze problemy, takie jak:

• wyłapanie odpowiednich słów spośród dźwięków tła - szumu samochodów na ulicy, lub inne osoby rozmawiające w bliskiej odległości.

- w przypadku szybko mówiącego rozmówcy, rozróżnienie w którym momencie wypowiedzi słowa kończą się, oraz kiedy zaczynają się kolejne.
- rozróżnianie różnych akcentów i sposobów mówienia pojedynczych jednostek, na przykład to samo zdanie wypowiedziane przez 10 letnią dziewczynkę, brzmieć będzie zupełnie inaczej, wypowiedziane przez 70 letniego mężczyznę.
- odróżnianie homofonów słów wymawianych w ten sam sposób, ale mających inne znaczenie
- poprawne zinterpretowanie zdań brzmiących w bardzo podobny sposób, ale oznaczających zupełnie różne rzeczy

Dodatkowo, różne języki mają różną gramatyczną strukturę, co dodatkowo utrudnia stworzenie zunifikowanego systemu, zdolnego do przetwarzania wielu języków w podobny sposób.

Kolejnym krokiem jest przetworzenie zebranych danych na spektogram przy użyciu Szybkiej Transformaty Fouriera [3], oraz rozszczepienie rezultatu na mniejsze części, które poddawane są analizie mającej na celu określenie w jakich momentach znajdują się słowa. Następnie każde z nich są porównywane pod względem fonetycznego brzmienia i w ten sposób program stara się przewidzieć dokładne słowo, wypowiedziane przez użytkownika.

W dzisiejszych czasach, technologia rozpoznawania mowy w głównej mierze opiera się na algorytmach sztucznej inteligencji połączonych z HMM.

- Bazy danych i ich rodzaje 2.4 Chmurowe bazy danych 2.52.6 API2.7Analiza konkurencyjnych rozwiązań Wymagania funkcjonalne 2.8 Wymagania niefunkcjonalne 2.93 Technologie i narzędzia wykorzystane w projekcie 3.1 Flutter 3.2 Dart 3.3 Cloud Firestore Android Studio 3.43.5 Android Emulator
- 3.6 VIM
- Proces powstawania aplikacji 4
- 5 Podsumowanie
- Indeks rysunków 6
- Bibliografia 7

References

A short history of speech recognition. URL: https://sonix.ai/history-of-speechrecognition.

- [2] John Callaham. The history of Android: The evolution of the biggest mobile OS in the world. URL: https://www.androidauthority.com/history-android-os-name-789433/.
- [3] Fast Fourier Transformation FFT Basics. URL: https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft.
- [4] Abdallah Ismail. How many calories should I eat a day? URL: https://www.researchgate.net/publication/324943266_How_many_calories_should_I_eat_a_day.
- [5] Kevin Jackson. A brief history of the smartphone. URL: https://sciencenode.org/feature/How%20did%20smartphones%20evolve.php.
- [6] John Loeffler. The History Behind the Invention of the First Cell Phone. URL: https://interestingengineering.com/the-history-behind-the-invention-of-the-first-cell-phone.
- [7] Mobile Operating System Market Share Worldwide. URL: https://gs.statcounter.com/os-market-share/mobile/worldwide.
- [8] Mobile VS. Desktop Internet Usage. URL: https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics.
- [9] L. R. Rabiner. "An Introduction to Hidden Markov Models". In: (). URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.957.202&rep=rep1&type=pdf.
- [10] The exodus from desktop to mobile: Why it matters and what to do about it. URL: https://www.smartinsights.com/mobile-marketing/mobile-marketing-strategy/from-desktop-mobile-why-matters/.
- [11] The History of Mobile Apps. URL: https://inventionland.com/inventing/the-history-of-mobile-apps/.