Homework 3

Assigned: Feb 5, 2021 Due: Feb 12, 2021

Problem 1

Let us consider an op-amp circuit in Figure 1. We assume that the op-amp input impedance is infinite, the output impedance is R_o , and the open-loop gain is A(s). Note that the output impedance R_o is pulled out of the op-amp.

Figure 1: Schematic of a non-inverting amplifier.

- (a) Draw a block diagram that shows the relation between the input voltage V_i , disturbance current I_o , and the output voltage V_o . The block diagram should show a feedback loop around A(s).
- (b) Find the expression for the loop transfer function L(s). Also, find the expression for the output impedance $Z_o(s) = V_o/I_o$ in terms of L(s), R_o , R_1 , and R_2 .
- (c) Assuming the op-amp high-frequency open-loop gain is zero, i.e., $A(j\omega)|_{\omega\to\infty} = 0$, find the expression for the high-frequency output impedance $Z_o(j\omega)|_{\omega\to\infty}$ in terms of R_o , R_1 , and R_2 . Also, find the expression for the output impedance normalized to the high-frequency value, i.e.,

$$\hat{Z}(s) \equiv \frac{Z_o(s)}{Z_o(j\omega)|_{\omega \to \infty}}$$

in terms of L(s).

(d) Using MATLAB, draw the Bode plots of L(s) and $\hat{Z}(s)$ for

$$R_o = 50 \Omega$$
 $R_1 = 1 \text{ k}\Omega$ $R_2 = 1 \text{ k}\Omega$ $A(s) = \frac{10^4}{(s+1)(0.001s+1)}$

on the same graph. Find the gain crossover frequency ω_c and phase margin ϕ_m of L(s), and also find the cutoff frequency ω_l where $|\hat{Z}(j\omega_l)| = 0.7071(-3 \,\mathrm{dB})$. Discuss how the shapes of $|L(j\omega)|$ and $|\hat{Z}(j\omega)|$ are related at frequencies below ω_c .

(e) Find the output dc impedance $Z_o(j\omega)|_{\omega=0}$

Problem 2

Let us consider a brushed dc motor driven by a voltage amplifier shown in Figure 2. Here, L_m is the winding inductance, R_m is the winding resistance, J_m is the rotor rotational inertia, and K_t is the motor torque constant. There is a wheel mounted on the motor shaft, whose rotational inertia is J_w . On the current return path, there is a shunt resistor R_s to measure the current through the motor winding.

Figure 2: Brushed dc motor driven by an op-amp circuit.

- (a) Find the electrical impedance $Z_{eq}(s)$ looking into the electrical port of the motor.
- (b) Draw an equivalent circuit diagram where all mechanical elements are referred to the electrical domain as passive electrical elements. Find the parameter(s) of the equivalent circuit element(s) in terms of L_m , R_m , J_m , K_t , and J_w .

(c) Find the analytic expression for the transconductance from $V_r(s)$ to $I_o(s)$. Then, draw the Bode plot of $I_o(s)/V_r(s)$ using MATLAB for

$$A(s) = \frac{10^7}{s}$$
 $R_1 = 1 \,\mathrm{k}\Omega$ $R_2 = 9 \,\mathrm{k}\Omega$ $R_m = 4.8 \,\Omega$ $L_m = 1 \,\mathrm{mH}$ $R_s = 0.2 \,\Omega$ $L_t = 250 \,\mathrm{mNm/A}$ $J_m = 1 \,\mathrm{kg} \cdot \mathrm{cm}^2$ $J_w = 9 \,\mathrm{kg} \cdot \mathrm{cm}^2$

- (d) Let us assume that the shunt resistor R_s is rated for 1 W power. That is, the resistor fails when it dissipates more than 1 W. What is the maximum rms current $I_{o,\text{rms}}$ allowed for the shunt resistor?
- (e) Let the input voltage V_r be sinusoidal at 50 Hz. What is the maximum rms voltage $V_{r,\text{rms}}$ that the shut resistor can accommodate for its power rating?