StuDocu.com

Examenes 9 March 2009, questions

Projectmanagement (Universiteit Gent)

Project Management

Final Exam

Prof. Dr. Marlo Vanhoucke

Name:	***************************************

Vakgroep Beleidsinformatie en Operationeel Beheer Faculteit Economie en Bedrijfskunde Tweekerkenstraat 2, B-9000 Gent

Final exam Project Management course
Duration: 3 hours
You may use a calculator. PCs are not allowed.
Please hand in this exam sheet at the end of the exam.

Good luck! Mario Vanhoucke

Question 1. Project Scheduling (PERT)

Find the project data in the table below.

Activity	Predecessor	Optimistic time (days)	Normal time (days)	Pessimistic time (days)
A	*	2	4	6
В	-	3	5	9
С	А	4	5	7
D	А	4	6	10
E	B, C	4	5	7
F	D	3	4	8
G	Е	3	5	8

A normal table is given in the appendix.

(Qa) Network analysis

Find the expected time and standard deviation for each activity.

Draw the activity-on-the-node network and find the critical path and time.

[20 marks]

(Qb) Critical path analysis 1

Find the probability that the entire network will be completed in 23 days (motivate your calculations).

Explain the use and importance of the central theorem in your calculations.

[20 marks]

(Qc) Critical path analysis 2

How many days are required for the critical path to have a 90% probability of completion?

[25 marks]

(Qd) Scheduling approach

PERT is known to slightly underestimate the real project duration. Explain the weaknesses of PERT and suggest improvements. [35 marks]

Question 2. Project Scheduling (CPM)

Find the project data in the table below.

Activity	Predecessor	Normal time (days)	Normal cost (£)	Grash time (days)	Crash cost (£)
A		5	50.00 £	3	150.00 £
В	•	4	40.00 £	2	200.00 €
C	В	7	70.00 £	6	160.00 £
D	A, C	2	20,00 £	1	50.00 £
E	A, C	3	30,00 €		#E
F	В	8	€ 00.00	5	290.00 £
G	D	5	50.00 £	4	100.00 £
н	E, F	6	€0.00	3	180.00 £

(Qa) Network analysis

Draw the activity-on-the-node network and find the critical path, time, and cost for an all-normal level of project activity.

Calculate the crash cost-per-day for each activity.

[20 marks]

(Qb) Activity crashing 1

Find the optimal way of getting an 18-day delivery time. What is the project cost?

Find the optimal way of getting a 16-day delivery time. What is the project cost?

[20 marks]

(Qc) Activity crashing 2

Calculate the shortest delivery time for the project. What is your cost?

[25 marks]

(Qd) Scheduling approach

Explain how an automatic computerized scheduling software tool should find the optimal project cost given a predefined project deadline. Explain how an automatic computerized scheduling software tool should find the optimal project duration

given a predefined project budget and compare with the first scheduling approach.

[35 marks]

Question 3. Project Scheduling (Resources)

Find the project data in the table below.

Activity	Predecessor	Duration (days)	Resource use	Cash
Α		2	X, Y	+50 £
В	Α	2	Х	+20 £
С	A	3	Х	-10.00 £
D	В, С	4	X, Y	+100 £
E	D	3	W, X	-50.00 £
F	D	1	W, X, Y	+40 £
G	E, F	2	X, Y	+300 £

Three renewable resource types are used in this project (W, X, Y). All resources have a constant availability of one unit per day.

(Qa) Scheduling (ignore resource use)

- Draw the activity-on-the-node network and an earliest start Gantt chart.
- Assuming a seven-day week, find the critical path and project duration in days.

[20 marks]

(Qb) Scheduling 1 (with limited resource use and ignoring cash flows)

- · Given that each resource is assigned 100 percent to each activity, identify the resource conflicts.
- · Level the resources and determine the new project durations and critical chain.

[20 marks]

(Qc) Scheduling 2 (with limited resource use and cash flows)

Identify the critical chain taking the cash flows into account (+ = cash inflow and - = cash outflow) and determine the new project duration (motivate your answer).
 [25 marks]

(Qd) Priority based scheduling

- Calculate the priority sequence for all activities using the Greatest Rank Positional Weight (GRPW)
 priority rule.
- Use this rule to schedule the project with a serial or parallel generation scheme. Explain your calculations
 and compare the schedule with the schedules from questions b and c.
 [35 marks]

Question 4. Project Scheduling (Critical Chain)

Find the project data in the table below.

Activity	Predecessor	Duration (days)	Resource use
A	4	10 ,	٧
В	24	16	W
С	Væ:	2	V, W
D	В	10	X, Z
E	A, B	8	X
F	С	8	V
G	F	2	V
Н	D, E, F	2	Υ
I	G, H	12	Z

Five renewable resource types are used in this project (V, W, X, Y, Z). All resources have a constant availability of one unit per day.

Note that the activity duration estimates are considered to be the 90% estimates, and therefore, the durations should be cut in two to obtain the aggressive time estimates.

(Qa) Scheduling (ignore resource use)

- Draw the network (AoA or AoN).
- Assuming a seven-day week, find the critical path and project duration in days using normal durations (no aggressive estimates).

(Qb) Scheduling (with limited resource use)

Construct a Gantt chart using Eli Goldratt's "Theory Of Constraints" approach, known as the "Critical Chain/Buffer Management (CC/BM)" and show the critical chain.

[35 marks]

(Qc) Buffer management

- Insert all buffers (project buffer, feeding buffers and resource buffers) using the 50% rule.
- Discuss the impact on the total duration of the project.

[40 marks]

Question 5. Project Control (EVM)

Find the project data in the table below.

Activity	Predecessor	Duration (weeks)	Budget	Actual cost	% Completed
Α	-	2	300.00 £	400.00 €	100%
В	-	3	200.00 £	180,00 £	100%
С	А	2	250,00 £	300.00 £	100%
D	А	5	600.00 £	400.00 €	20%
E	В, С	4	400.00 £	200.00 €	20%

The project is at the end of its sixth week.

(Qa) Earned Value Management

- · Find the cost and schedule variances CV and SV. Also find the CPI and SPI.
- Calculate the EAC for the project (using one or different formulas and motivate your choice (1 sentence)).
 [20 marks]

(Qb) Earned Schedule

- · Calculate the earned schedule metric (ES). Also find the SPI(t).
- Calculate the EAC(t) using earned schedule (using one or different formulas and motivate your choice (1 sentence)).

[20 marks]

(Qc) Progress reporting.

- Draw general conclusions on the current project performance (linking the metric values with general conclusions in words).
- Define proposals for Improvements to your management.

[25 marks]

(Qd) Earned schedule.

- Explain why SPI(t) is a better performance indicator than the SPI.
- · Illustrate the weaknesses of SPI and the strengths of SPI(t) on the project data.

435 marks

<u>Appendix</u>

Tabel 9.1: Standaard normale verdeling

				Twe	ede dec	maal va				-7
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	,5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	,8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	,9429	,9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9856	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1,9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	,9793	.9798	.9803	.9808	.9812	.9817
2,1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.995
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.996
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.997
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999

Exam Broject Management 2011-2012

200	
()	VAL 1
YVY	ron 1
10-0	

	. 1	
Activity	u	0
A	4	2/3
В	32/6	1
C	31/6	1/2
D	38/6	1
\in	31/6	1/2
F	27/6	5/6
G	31/6	5/6
	31/6	27/6

$$M = 19.5 \text{ olays}$$

$$\sigma^{2} = \sigma_{A} + \sigma_{C} + \sigma_{E}^{2} + \sigma_{G}^{2}$$

$$= \frac{4}{9} + \frac{1}{4} + \frac{1}{4} + \frac{25}{36}$$

$$= 1.64$$

$$\Rightarrow \sigma = 1.28$$

$$\int \left(\frac{23-u}{\sigma}\right) = \int \left(\frac{23-19.5}{1.28}\right) = \int \left(2.734\right) \times 99.7\%$$

la more prease vier lineaux inversalation

Co linear interpolation in rable

$$=> Z = 1.28 + \frac{1.29. - 1.18}{0.9015 - 0.8997} \left(\frac{0.90 - 0.8997}{19.5}\right)$$

$$= 1.2817$$

Weaknesser

· everything starts with went:
wrong imput (e.g. bad estimation a, b, m) => wrong or faut

· statistical simplifications . focus on CP; every just our become critical

6 imprevements?

· good communication with ream promise always a sufficient high service level to your client (e.g. 90 or 95%) => risk to

question 2	3	
u) 5		
4 7	2 56	
(B)		(H)
Mexic	8	164

7 cp= B-C-E-H 2 time = 20 days

cost = 5 all activities cont = 400,00 £

6 crash	cost per day?
Actively	ocash cost / day (£)
A	50.00 50,00
В	100,00 80,00
C	26.67 90,00
D	50,00 30,00
ϵ	
F	58,00 70,00
G	25,00 50,00
Н	60.00 40 0

ocash cost-mount ast mountal time-crash time erash cost per clay =

· level services (My on Gant chart)

c) time value of money: * cash in: the sooner, the letter * cash av : the better, the better

A	X,Y	11	30			1	-	
B		X						
C			X	M.			H.	
D				-	×,y			
ϵ							WX	
F			4.48	Selection		Willy		
6								X, Y

- D PD = 17 days -> CC = A - B - D - E - G

{D,A,C,B,E,F,G}

CP = B-D-H-I PD = 40 days

aggressive estimales	
A	- 5
В	8
c	1
D	5
E	4
F	4
G	1
Н	1
ĺ	6

ALAF .

la resource buffers

Activity

e

Province
$$4 = 300 + 200 + 250 + 250 + 250 + 250 + (\frac{1}{2}) \cdot 250 + (\frac{1}{2}) \cdot 250 + (\frac{1}{2}) \cdot 600 = 745$$

$$=> 65 = 3 + \frac{950 - 745}{490 - 745} = 3,84$$

(c) project not on time and not within any

(project mot on time and not within any

if lower ponalty for not meeting given decidline => crosh activities

(d) Spi(t): more reliable than SPI

(a) spi(t) more reliable than SPI

(a) end of project: always SPI = 1

(a) end of project: always SPI = 1

(b) at end of project: always SPI = 1

(c) SPI(t) gives time performance because you work with ES

