ДЗ №5: Свойства логистической регрессии

Bec = 0.5

Дедлайн - 30.03.2023

В лекциях была рассмотрена модель логистической регрессии.

Напомним, в этой модели с практической точки зрения есть два ключевых свойства:

• Вероятность для объекта быть объектом класса c=1 в бинарном случае моделируется как математическое ожидание случайной величины y_i :

$$y_i \sim \mathcal{B}(p_i),$$
 (1)

где $\mathcal{B}\left(p_{i}\right)$ - обозначение распределения Бернулли с параметром p_{i} , i - индекс, нумерующий объекты выборки. При этом параметр p_{i} этого распределения предполагается связанным с признаковым описанием x_{i} объекта следующей обобщенной линейной функцией (сигмоидой):

$$p = \frac{1}{1 + e^{-z}},$$

$$z = \theta \cdot x$$
(2)

где $\, heta$ - параметры модели, оптимизируемые в подходе максимального правдоподобия (MLE, Maximum Likelihood Estimation).

• Подход оптимизации (максимизации) правдоподобия в случае бинарной задачи приводит к следующей функции потерь:

$$\mathcal{L}\left(heta,X
ight) = -\sum_{i=1}^{N}\left(y_{i}*\ln p_{i}+\left(1-y_{i}
ight)*\ln\left(1-p_{i}
ight)
ight) \tag{3}$$

На лекции без доказательства были произнесены следующие свойства логистической регрессии:

1.

У функции потерь (3) есть минимум, он единственный и потому глобальный. Покажите это.

Подсказка: для этого необходимо показать, что:

- функции $f_1 = -\ln\left(\sigma\left(z\right)\right)$ и $f_2 = -\ln\left(1 \sigma\left(z\right)\right)$ выпуклые на одномерном пространстве z. А именно: производная этих функций по z везде возрастает, или, что эквивалентно с допущением о двойном дифференцировании, вторая производная по z везде положительна;
- Дважды дифференцируемая функция аффинной функции ($\theta \cdot x$) выпукла на пространстве θ .

2.

Разделяющая гиперповерхность в решении с применением модели логистической регрессии линейна. То есть, в случае двумерного признакового описания это прямая, в случае трехмерного - плоскость, в случае многомерного - гиперплоскость. **Покажите это.**

Подсказка: для этого имеет смысл воспользоваться смыслом разделяющей поверхности: это поверхность, во всех точках которой выполняется условие $p=\mathit{C}$, где C - некоторая константа, например, $\mathit{C}=0,5$.