Financial Econometrics - Homework 3

In [1]:

```
import time
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from datetime import datetime, timedelta
from scipy import stats
from scipy.stats import norm, ks_2samp
from pandas_datareader import data
from tqdm import tqdm
```

Question 1

In [2]:

```
Ticker = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies')[(
Ticker = Ticker.str.replace(".",'-')
Ticker = pd.DataFrame(Ticker)
```

In [3]:

```
final_list = []
start_date, end = '1984-01-01', '2019-12-30'
factors = pd.read_csv("F-F_Research_Data_5_Factors_2x3_daily.CSV",sep=',',header=2)
lenfact = factors.shape[0]
factors = factors[0:lenfact-1]
factors = factors.rename(columns={'Unnamed: 0':'X'})
factors['X'] = pd.to_datetime(factors['X'].astype(str))
factorsA = factors[factors['X'] > start_date]
factorsA = factorsA.reset_index()
factorsA = factorsA.drop(['index'], axis=1)
```

In [5]:

```
print(factorsA.tail())
```

```
X Mkt-RF
                          SMB
                                HML
                                      RMW
                                            CMA
                                                    RF
9069 2019-12-23
                   0.10
                        0.16 - 0.28 - 0.12 0.31
                                                 0.007
9070 2019-12-24
                   0.01 0.36 -0.07 -0.28
                                          0.02
                                                 0.007
9071 2019-12-26
                   0.49 - 0.56 0.00
                                    0.23 - 0.19
                                                 0.007
9072 2019-12-27
                  -0.09 - 0.54 - 0.07
                                          0.16
                                     0.24
                                                 0.007
9073 2019-12-30
                 -0.57 0.27 0.58 0.15 0.45
                                                 0.007
```

In [5]:

```
T = len(Ticker)
for i in tqdm(range(T)):
    extr = data.DataReader(Ticker.iloc[i][0], 'yahoo', start_date, end)
    extr['Log'] = np.log(extr['Adj Close'])
    Returns = np.diff(extr['Log'])
    extr['Returns'] = np.append(0,Returns)
    extr = extr.reset_index()
    factorsB = factorsA
    if len(extr) != len(factorsA):
        factorsB = factorsA[factorsA['X'] >= extr.Date[0]]
    factorsB = factorsB.reset_index()
    factorsB = factorsB.drop(['X', 'index'], axis=1)
    extr = pd.concat([extr, factorsB], axis=1)
    extr = extr.iloc[1:,:]
    Ri_Rf1 = extr['Returns'] - extr['RF']
    X = extr[['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA']]
    X, y = X.values, Ri_Rf1.values
    X = sm.add_constant(X)
    result = sm.OLS(y, X).fit()
    r2 = result.rsquared
    t val = result.tvalues[0]
    final_list.append([Ticker.iloc[i][0], result.params[0], result.params[1], result
                 result.params[3], result.params[4], result.params[5], t val, r2])
df = pd.DataFrame(final_list, columns=['Ticker', 'Const', 'Mkt-RF', 'SMB', 'HML', 'I
df
```

| 415/505 [21:11<03:09, 2.10s/it]C:\Users\William\Anac onda3\lib\site-packages\pandas\core\series.py:853: RuntimeWarning: inv alid value encountered in log result = getattr(ufunc, method)(*inputs, **kwargs)

resure - getater (drune, method) ("inputs, ""kwargs)

100%| 505/505 [25:28<00:00, 3.03s/it]

Out[5]:

	Ticker	Const	Mkt-RF	SMB	HML	RMW	СМА	T_Val_Const	
0	MMM	-0.013404	0.009556	-0.001232	-0.000197	0.003969	0.005074	-83.087439	0.280{
1	ABT	-0.013045	0.008424	-0.002579	-0.004522	0.006119	0.005433	-71.356049	0.2108
2	ABBV	-0.002716	0.010319	-0.000704	-0.005302	-0.002590	0.002054	-7.421202	0.2610
3	ABMD	-0.011664	0.010842	0.008926	-0.003576	-0.006554	0.001138	-25.396607	0.1082
4	ACN	-0.004783	0.008998	-0.000694	-0.003413	-0.003988	-0.001043	-19.873786	0.3109
500	YUM	-0.007479	0.009041	0.001435	-0.000326	0.005312	0.002604	-30.981652	0.228
501	ZBRA	-0.009416	0.009654	0.006732	-0.002773	-0.001065	-0.002012	-32.419543	0.1980
502	ZBH	-0.005107	0.007903	0.000884	-0.001506	0.001323	0.000437	-22.256971	0.2486
503	ZION	-0.013543	0.011028	0.005040	0.018274	-0.002094	-0.007890	-59.522624	0.333
504	ZTS	-0.002498	0.008876	-0.001168	-0.005418	-0.001651	0.000530	-8.649385	0.3129

505 rows × 9 columns

Question 2

In [6]:

df.describe()

Out[6]:

	Const	Mkt-RF	SMB	HML	RMW	СМА	T_Val_Const	
count	501.000000	501.000000	501.000000	501.000000	501.000000	501.000000	501.000000	50
mean	-0.009824	0.010257	0.002324	0.001218	0.000478	0.000101	-42.155362	
std	0.003946	0.002291	0.003200	0.005522	0.004895	0.004862	24.025818	
min	-0.013964	0.000596	-0.004344	-0.010514	-0.020753	-0.018711	-88.556002	
25%	-0.013335	0.008680	0.000029	-0.002130	-0.001420	-0.002275	-63.479099	
50%	-0.011626	0.010319	0.002130	0.000313	0.001826	0.000962	-42.821532	
75%	-0.006500	0.011886	0.004693	0.003740	0.003558	0.003550	-18.822432	
max	-0.001460	0.017119	0.011063	0.021700	0.013529	0.009794	-3.546225	

Question 3

In [7]:

```
get_info = list(df.columns)[1:]
fig, ax = plt.subplots(nrows=len(get_info),constrained_layout=True,figsize=(15,15))

for i in range(len(get_info)):
    ax[i].hist(df[get_info[i]], bins=150, density=True, alpha=0.6)
    mu, sigma= df[get_info[i]].mean(), df[get_info[i]].std()
    x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
    ax[i].plot(x, stats.norm.pdf(x, mu, sigma))
    ax[i].set_title(get_info[i])
plt.show()
```

C:\Users\William\Anaconda3\lib\site-packages\numpy\lib\histograms.py:8

24: RuntimeWarning: invalid value encountered in greater_equal keep = (tmp a >= first edge)

C:\Users\William\Anaconda3\lib\site-packages\numpy\lib\histograms.py:8

25: RuntimeWarning: invalid value encountered in less_equal

keep &= (tmp_a <= last_edge)</pre>

Question 4

Five companies with the highest constant

```
In [8]:
```

```
df.sort_values(by='Const', ascending=False).head(5)
```

Out[8]:

	Ticker	Const	Mkt-RF	SMB	HML	RMW	СМА	T_Val_Const	
79	AVGO	-0.001460	0.012040	0.001859	-0.002971	-0.000755	-0.005981	-4.200659	0.3282
102	CHTR	-0.001462	0.008321	-0.001556	-0.001991	-0.000994	0.000301	-4.742724	0.205
475	V	-0.001581	0.009379	-0.001943	-0.000103	-0.003010	-0.006423	-6.161144	0.4417
201	FTNT	-0.001619	0.010507	0.004369	-0.006967	-0.005035	-0.007041	-3.830970	0.2637
196	FLT	-0.001624	0.009317	0.002040	-0.001113	-0.002343	-0.002190	-5.248454	0.299 ⁻

Five companies with the lowest constant

In [9]:

```
df.sort_values(by='Const').head(5)
```

Out[9]:

I	T_Val_Const	CMA	RMW	HML	SMB	Mkt-RF	Const	Ticker	
0.2804	-49.469166	-0.005306	-0.003994	0.014633	-0.003737	0.013420	-0.013964	AIG	33
0.3197	-62.895179	0.004496	0.001731	0.004112	0.002592	0.014084	-0.013941	ARNC	52
0.2507	-61.830513	0.004364	0.002727	0.003513	0.000037	0.012142	-0.013900	WY	491
0.3429	-60.743845	-0.002330	0.004532	0.010809	0.006685	0.014304	-0.013831	HST	240
0.3205	-68.674856	0.003470	0.002617	0.005276	0.001241	0.012752	-0.013804	IP	255

Question 5

We will consider momentum as the 6th factor. For this one, we will do the difference between the average percentage return of the portfolio of the 5 highest momentum stocks and the average percentage return of the portfolio of the 5 lowest momentum stocks. Momentum will be calculated on a 5-day basis using the following formula:

M = In(Price Today) - In(Price Five Days Ago)

In [27]:

```
final list = []
T = len(Ticker)
for i in tqdm(range(T)):
    extr = data.DataReader(Ticker.iloc[i][0], 'yahoo', start_date, end)
    extr['Log'] = np.log(extr['Adj Close'])
    Returns = np.diff(extr['Log'])
    extr['Returns'] = np.append(0,Returns)
    momentum = np.diff(extr['Log'], n=2)
    extr['Momentum'] = np.append([0, 0], momentum)
    extr = extr.iloc[6:]
    extr = extr.reset_index()
    factorsB = factorsA
    if len(extr) != len(factorsA):
        factorsB = factorsA[factorsA['X'] >= extr.Date[0]]
    factorsB = factorsB.reset_index()
    factorsB = factorsB.drop(['X', 'index'], axis=1)
    extr = pd.concat([extr, factorsB], axis=1)
    extr = extr.iloc[1:,:]
    Ri_Rf1 = extr['Returns'] - extr['RF']
    X = extr[['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA', 'Momentum']]
    X, y = X.values, Ri_Rf1.values
    X = sm.add\_constant(X)
    result = sm.OLS(y, X, missing='drop').fit()
    r2 = result.rsquared
    t val = result.tvalues[0]
    final_list.append([Ticker.iloc[i][0], result.params[0], result.params[1], result
                 result.params[3], result.params[4], result.params[5], result.params
new df = pd.DataFrame(final list, columns=['Ticker', 'Const', 'Mkt-RF', 'SMB', 'HML
new df
               415/505 [08:31<02:02, 1.36s/it]/Users/semen/anaconda
82%
```

```
82% | 415/505 [08:31<02:02, 1.36s/it]/Users/semen/anaconda 3/lib/python3.6/site-packages/pandas/core/series.py:853: RuntimeWarnin g: invalid value encountered in log result = getattr(ufunc, method)(*inputs, **kwargs) 100% | 505/505 [11:36<00:00, 2.14s/it]
```

Out[27]:

	Ticker	Const	Mkt-RF	SMB	HML	RMW	СМА	Momentum	T_Val_(
0	MMM	-0.013198	0.005887	-0.000124	-0.000086	0.002001	0.002483	0.367546	-91.1
1	ABT	-0.012851	0.004965	-0.000685	-0.002697	0.003863	0.002156	0.416335	-82.3
2	ABBV	-0.002436	0.006055	-0.000666	-0.003015	-0.002708	0.002684	0.421000	-8.4
3	ABMD	-0.011523	0.005508	0.006600	-0.001929	-0.004677	0.000779	0.474100	-35.7
4	ACN	-0.004641	0.005103	-0.000591	-0.001840	-0.003219	-0.002187	0.399290	-24.0
500	YUM	-0.007287	0.004946	0.001202	0.000224	0.002809	0.000516	0.422868	-37.1

	Ticker	Const	Mkt-RF	SMB	HML	RMW	CMA	Momentum	T_Val_(
501	ZBRA	-0.009231	0.005023	0.004271	-0.001563	-0.002265	-0.001509	0.442925	-41.4
502	ZBH	-0.004944	0.004344	0.000323	-0.000308	0.000371	-0.000957	0.414934	-26.4
503	ZION	-0.013330	0.006528	0.003266	0.011260	-0.001975	-0.005282	0.383816	-70.8
504	ZTS	-0.002317	0.005263	-0.000664	-0.003301	-0.001332	0.001366	0.409650	-10.5

505 rows × 10 columns

In [28]:

new_df.describe()

Out[28]:

	Const	Mkt-RF	SMB	HML	RMW	СМА	Momentum	T_\
count	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	505.000000	50
mean	-0.009616	0.005796	0.001871	0.000917	-0.000529	-0.000886	0.414418	-4
std	0.003927	0.001576	0.001933	0.003505	0.003514	0.003038	0.038129	2
min	-0.013714	-0.000730	-0.004530	-0.006292	-0.016948	-0.013312	0.263708	-6
25%	-0.013118	0.004690	0.000518	-0.001195	-0.001704	-0.002278	0.390510	-7
50%	-0.011422	0.005658	0.001826	0.000442	0.000486	-0.000403	0.418737	-5
75%	-0.006449	0.006867	0.003145	0.002560	0.001708	0.001296	0.440822	-2
max	-0.001203	0.011284	0.007313	0.015442	0.010973	0.006183	0.574216	-

In [29]:

```
get_info = list(new_df.columns)[1:]
fig, ax = plt.subplots(nrows=len(get_info),constrained_layout=True,figsize=(15,15))

for i in range(len(get_info)):
    ax[i].hist(new_df[get_info[i]], bins=150, density=True, alpha=0.6)
    mu, sigma= new_df[get_info[i]].mean(), new_df[get_info[i]].std()
    x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
    ax[i].plot(x, stats.norm.pdf(x, mu, sigma))
    ax[i].set_title(get_info[i])
plt.show()
```


Five companies with the highest constant

In [30]:

```
new_df.sort_values(by='Const', ascending=False).head(5)
```

Out[30]:

	Ticker	Const	Mkt-RF	SMB	HML	RMW	СМА	Momentum	T_Val_(
79	AVGO	-0.001203	0.007301	0.000955	-0.002259	-0.000419	-0.002356	0.400729	-4.4
102	CHTR	-0.001239	0.004540	-0.000692	-0.001430	-0.000548	0.000721	0.439960	-5.2
201	FTNT	-0.001393	0.006195	0.002979	-0.004105	-0.002299	-0.003737	0.423757	-4.3
475	V	-0.001414	0.005465	-0.001570	0.000033	-0.003356	-0.005132	0.360546	-7.0!
196	FLT	-0.001464	0.005299	0.001130	-0.000785	-0.001289	-0.001130	0.406607	-6.0

Five companies with the lowest constant

In [31]:

```
new_df.sort_values(by='Const').head(5)
```

Out[31]:

	Ticker	Const	Mkt-RF	SMB	HML	RMW	СМА	Momentum	T_Val_C
33	AIG	-0.013714	0.007732	-0.002011	0.008709	-0.003500	-0.004379	0.389400	-56.62
52	ARNC	-0.013654	0.008407	0.002576	0.002986	-0.000179	0.001330	0.377742	-71.82
491	WY	-0.013628	0.007079	0.001298	0.002094	0.000807	0.001250	0.413284	-73.31
112	С	-0.013598	0.010078	-0.000707	0.013046	-0.003849	-0.010687	0.308457	-68.72
240	HST	-0.013552	0.008794	0.004991	0.006585	0.002493	-0.002340	0.382068	-72.10