Data Science Intern Final Report

Implementation and Automation of **Data Science Workflow and Visualization**

William Su

CSBG Summer Intern

06/01/2018 - 07/31/2018

Data Science Intern Final Report

This is a full report of the project I completed and the lessons I learned during my time as a Data Science intern at Lam Research under Mr. DC Lin and Mr. Li Peng's supervision. Below is a table of contents of the upcoming slides.

- 1. Title
- 2. Introduction (current slide)
 - 3. Overview Data Workflow
 - 4-5. Complete Flowchart
- 6-7. Case Study: Climate in China's Major Cities
 - 8-10. Lessons learned

Data Science Intern Final Report

► Overview of Data Science Workflow

Central Question:

• How can each step be automated?

Data Collection

Process of gathering information and formatting them for future analysis

Database Update

Updating and storing data collected into a structured database

Data Visualization

Extracting data and outputting graphs/visuals for analysis

Workflow Process Flowchart

Workflow Process Flowchart

Case Study: Climate in China's Major Cities

► Topic: The Climate in 7 China Cities

- To practice the entire workflow, I was given a project that has to deal with the daily weather in 7 Chinese cities.
- Everyday (except a few days), I collected the weather data for each city on my own and inserted them into CSV files.
- The end goal is to go through the process of data collection, data upload, and data visualization so that ultimately, I can produce graphs that make sense of the climate in every one of these cities.
- Below are the 7 cities I researched on:
 - Shanghai
 - Beijing
 - Shenzhen
 - Nanjing
 - Wuhan
 - Hangzhou
 - Chengdu

Case Study: Climate in China's Major Cities

- ► Examples of graphs outputted in Qlik View.
- ▶ Data is extracted from SQL database.
- ► Click to enlarge/minimize the graphs on the right.

Lessons Learned Regarding Data

▶ Data Collection

- Data can be inputted in many numerable ways → can lead to major problems later on (example: data fail to upload to database).
- 2. Always provide an easy/standardized interface for users.

▶ Database Update

- 1. Importance of recording the history that data is added ("historical snapshot").
- 2. Advantages of using database over excel:
 - 1. Tables can interact with each other.
 - 2. Can store larger tables.
 - 3. Cloud/supports multiple user at the same time*.
 - *many Excel sheets can support cloud services too today

▶ Data Visualization

- 1. Raw data gets confusing. Use tools such as views to organize data for specific graphs.
- 2. See through behind the numbers: what's the story/context behind the data?
 - 1. Helps with identifying missing/wrong data.
 - 2. Creates better graphics.
 - 3. Makes you a better presenter as you know what points to focus on.

Lessons Learned Regarding Data

- ▶ There is no right or wrong in how these three steps can be operated.
 - Choose the way that best fits what is needed.
 - -Current size/complexity of data
 - -Potential growth of the size of the data
 - -Financial costs

Lessons Learned Regarding Industry

▶ PowerPoint Presentations

- Make sure the PowerPoints' format is standardized.
- Highlight key points in all graphics.

► Paperwork/Formality/Goals

- The bigger the company, usually the more paperwork/surveys an employee needs to fill out. This is also because usually the bigger the company, the more guidelines there are.
- Companies may often ask employees to set yearly, career, or personal goals on some sort of company website.
 Using these goals as a metric to measure an employee's work performance is very common, especially in bigger companies where there are too many people to keep track of.