Contents

- Upload excel file
- Plot products
- Boxplot for different products
- Getting values to box plot for different values of bottles in the bin.
- Boyplot
- Splitting items
- no zero detections
- Boxplot

Upload excel file

```
close all
clc
clear all
m = readtable('C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\firstneuralnetwork\toExcel2175.csv');
%m = readtable('C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\secondneuralnetwork\toExcel2175.csv');
%m = readtable('C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\thirdneuralnetwork\toExcel2175.csv');
%m = readtable('toExcel2175.csv');
imnr = table2array(m(:,1));
filename = table2array(m(:,2));
bottles = table2array(m(:,3));
detections = table2array(m(:,4));
truepos = table2array(m(:,5));
falsepos = table2array(m(:,6));
iou = table2array(m(:,7));
mind = table2array(m(:,8));
maxd = table2array(m(:,9));
aved = table2array(m(:,10));
% Precision and Recall
precision = truepos./(falsepos+truepos); nanpre = isnan(precision); precision(nanpre) = 0;
recall = truepos./(truepos+(bottles-truepos)); nanrec = isnan(recall); recall(nanrec) = 0; recall(recall<0) = 0;
f1 = 2*((precision.*recall)./(precision+recall)); f1(isnan(f1)) = 0;
m.('Precision') = precision;
m.('Recall') = recall;
m.('F1') = f1;
```

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property. Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Plot products

```
close all
clc
a = 1;
maxY = 0;
minY = 1;
prnames = {'1' '2' '3' '4' '5' '6' '7' '8' '9' '10' '11' '12' '13' '14' '15'};
pr = NaN(145, length(prnames));
prf1 = NaN(145, length(prnames));
counter = 1;
numbersname = zeros(1,2175);
for i = 1:145:length(imnr)
    for j = 1:145
        y(j) = iou(j+(i-1));
        f1curr(j) = f1(j+(i-1));
        numbersname(j+(i-1)) = counter;
    pr(1:145,counter) = y;
    prf1(1:145,counter) = f1curr;
    counter = counter +1:
    x = 1:1:145;
    length(y);
    averageY = mean(y);
    if averageY > maxY
        maxY = averageY;
        maxIndex = a;
    if averageY < minY</pre>
        minY = averageY;
        minIndex = a;
    and
    figure(a)
    scatter(x, y)
    hold on
    plot(x,ones(length(x),1)*averageY,"-r")
    title(['IOU for item nr.' num2str(a)])
    xlabel('IMG number')
    ylabel('Intersection over Union')
    legend('Intersection over Union', 'Average')
    name = "C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\item"+ num2str(a) + ".png";
```

```
%saveas(gcf,name,'png')

a = a+1;
end
% Max averages IOU
maxY
maxIndex
```

maxY =

0.75476

maxIndex =

11

Boxplot for different products

```
iouname = strings(1,2175); iouname(:) = 'IoU';
f1name = strings(1,2175); f1name(:) = 'F1';
name = [iouname,f1name]';
blend = [iou; f1];
blendnum = [numbersname';numbersname'];
```

```
figure()
boxchart(blendnum, blend, 'GroupByColor', name)
title(['Box plot - for different products'])
xlabel('Products')
ylabel('Value')
xticks([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15])
axis([0 16 0 1])
legend('F-score', 'Intersection over Union')
```



```
figure()
%subplot(1,2,1)
boxchart(pr)
title(['Intersection over Union - for unknown products'])
xlabel('Products')
ylabel('Intersection over Union')
name = "C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\iouboxplotForProducts.png";

saveas(gcf,name,'png')
%subplot(1,2,2)
figure()
boxchart(prf1,'BoxFaceColor',[0 0.5 0],'MarkerColor',[0 0.5 0])
title(['F-score - for unknown products'])
xlabel('Products')
ylabel('F1')
name = "C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\f1boxplotForProducts.png";
saveas(gcf,name,'png')
```


Getting values to box plot for different values of bottles in the bin.

```
names = {'one' 'two' 'three' 'four' 'five' 'six' 'seven' 'eight' 'nine' 'ten' 'eleven' 'twelve' 'thirteen'};
M = NaN(787, length(names));
for i=1:1:length(names)
    M(1:length(iou(find(bottles == i))),i) = iou(find(bottles == i));
end
```

Boxplot

```
figure()
boxchart(M)
title(['IoU Box plot for different number of items'])
xlabel('Nr. of bottles in the bin')
ylabel('Intersection over Union')
name = "C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\boxplotBottles.png";
saveas(gcf,name,'png')
```


Splitting items

```
format short g
i1 = m(m.ImageNr <= 145, :); i2 = m((m.ImageNr <= 145*2 & m.ImageNr > 145), :);
i3 = m((m.ImageNr <= 145*3 & m.ImageNr > 145*2), :); i4 = m((m.ImageNr <= 145*4 & m.ImageNr > 145*3), :);
i5 = m(m.ImageNr <= 145*5 & m.ImageNr > 145*4, :); i6 = m(m.ImageNr <= 145*6 & m.ImageNr > 145*5, :);
i7 = m(m.ImageNr <= 145*7 \& m.ImageNr > 145*6, :); i8 = m(m.ImageNr <= 145*8 \& m.ImageNr > 145*7, :);
i9 = m(m.ImageNr <= 145*9 & m.ImageNr > 145*8; !); i10 = m(m.ImageNr <= 145*10 & m.ImageNr > 145*9; !); i11 = m(m.ImageNr <= 145*10 & m.ImageNr > 145*11; !); i13 = m(m.ImageNr <= 145*13 & m.ImageNr > 145*12; !); i14 = m(m.ImageNr <= 145*14 & m.ImageNr > 145*13; !); i15 = m(m.ImageNr <= 145*15 & m.ImageNr > 145*14; .);
for i=1:15
      i=1.15
itemprod(i) = sum(eval(['i' num2str(i) '.Bottles']));
itemdet(i) = sum(eval(['i' num2str(i) '.Detections']));
itemTP(i) = sum(eval(['i' num2str(i) '.TruePositive']));
itemFP(i) = sum(eval(['i' num2str(i) '.FalsePositive']));
      itemIoU(i) = round(mean(eval(['i' num2str(i) '.IOU'])),4);
itemPr(i) = round(mean(eval(['i' num2str(i) '.Precision'])),4);
itemRe(i) = round(mean(eval(['i' num2str(i) '.Recall'])),4);
       itemF1(i) = round(mean(eval(['i' num2str(i) '.F1'])),4);
itemnr = 1:15;
avgtable = table(itemnr', itemprod',itemdet',itemTP', itemFP',itemToU', itemPr', itemFe', itemF1');
avgtable.Properties.VariableNames = {'Item' 'All-Products' 'All-Detections' 'All-True Positive' 'All-False Positive' 'Avg-IoU' 'Avg-Precision' 'Avg-Recall' 'Avwritetable(avgtable, 'table.csv', 'Delimiter',',')
avrageIoU = mean(avgtable.("Avg-IoU"))
avragePrecision = mean(avgtable.("Avg-Precision"))
avrageRecall = mean(avgtable.("Avg-Recall"))
avrageF1 = mean(avgtable.("Avg-F1"))
```

avgtable =

15×9 table

Item	All-Products	All-Detections	All-True Positive	All-False Positive	Avg-IoU	Avg-Precision	Avg-Recall	Avg-F1
1	684	361	334	24	0.6899	0.854	0.5479	0.6373
2	1029	443	385	58	0.6123	0.7729	0.434	0.5231
3	667	412	382	30	0.7145	0.877	0.6299	0.7087
4	683	412	387	24	0.7246	0.8992	0.626	0.7068
5	892	381	291	90	0.494	0.6533	0.3397	0.4317
6	918	225	93	129	0.2944	0.2862	0.115	0.1588
7	851	415	344	71	0.6008	0.7613	0.4117	0.5207
8	788	362	339	23	0.7023	0.9182	0.4631	0.5893
9	887	360	294	66	0.5417	0.7176	0.3551	0.46
10	665	370	332	38	0.6625	0.8184	0.5293	0.6229
11	627	407	386	21	0.7548	0.9264	0.6628	0.75
12	574	453	431	20	0.7428	0.938	0.7891	0.8349
13	618	329	320	9	0.745	0.9552	0.5786	0.6891
14	1031	312	230	70	0.4798	0.6666	0.2746	0.3609
15	616	330	310	18	0.7272	0.904	0.5607	0.6602

```
avrageIoU =
```

0.63244

avragePrecision =

0.79655

avrageRecall =

0.48783

```
avrageF1 = 0.57696
```

no zero detections

```
close all
zerodetect = find(m.("Detections")>0);
newtable = m(zerodetect,:);
```

```
i1 = newtable(newtable.ImageNr <= 145, :); i2 = newtable((newtable.ImageNr <= 145*2 & newtable.ImageNr > 145), :);
is = newtable((newtable.ImageNr <= 145*3 & newtable.ImageNr > 145*2), :); i4 = newtable((newtable.ImageNr <= 145*4 & newtable.ImageNr <= 145*5 & newtable.ImageNr > 145*5, :); i6 = newtable(newtable.ImageNr <= 145*6 & newtable.ImageNr > 145*5, :);
i7 = newtable(newtable.ImageNr <= 145*7 & newtable.ImageNr > 145*6, :); i8 = newtable(newtable.ImageNr <= 145*8 & newtable.ImageNr > 145*7, :);
 i9 = newtable(newtable.ImageNr <= 145*9 & newtable.ImageNr > 145*8, :); i10 = newtable(newtable.ImageNr <= 145*10 & newtable.ImageNr > 145*9, :);
ill = newtable(newtable.ImageNr <= 145*11 & newtable.ImageNr > 145*10, :); il2 = newtable(newtable.ImageNr <= 145*12 & newtable.ImageNr > 145*11, :); il3 = newtable(newtable.ImageNr <= 145*13 & newtable.ImageNr > 145*13, :); il4 = newtable(newtable.ImageNr <= 145*14 & newtable.ImageNr > 145*13, :); il5 = newtable(newtable.ImageNr >= 145*14 & newtable.ImageNr >= 145*14, :); il5 = newtable(newtable.ImageNr >= 145*14, :); il6 = newtable(newtable.ImageNr >= 145*14, :); il7 = newtable(newtable.I
 numbersname1 = []
 for i=1:15
           i=1:15
itemprod(i) = sum(eval(['i' num2str(i) '.Bottles']));
itemdet(i) = sum(eval(['i' num2str(i) '.Detections']));
itemTP(i) = sum(eval(['i' num2str(i) '.TruePositive']));
itemFP(i) = sum(eval(['i' num2str(i) '.FalsePositive']));
itemIoU(i) = sum(mean(eval(['i' num2str(i) '.IoU'])),4);
itemPr(i) = round(mean(eval(['i' num2str(i) '.Precision'])),4);
itemRe(i) = round(mean(eval(['i' num2str(i) '.Recall'])),4);
itemEq(i) = round(mean(eval(['i' num2str(i) '.Recall'])),4);
            itemF1(i) = round(mean(eval(['i' num2str(i) '.F1'])),4);
            value = ones(length(eval(['i' num2str(i) '.ImageNr'])),1).*i';
            test = [numbersname1 ; value];
            numbersname1 = test;
            figure(i)
            scatter(1:1:length((eval(['i' num2str(i) '.IOU']))), (eval(['i' num2str(i) '.IOU'])))
            hold on
            \texttt{plot(1:1:length((eval(['i' \ num2str(i) \ '.IOU']))),ones(length(1:1:length((eval(['i' \ num2str(i) \ '.IOU'])))),1)*(mean(eval(['i' \ num2str(i) \ '.IOU']))),"-r")} \\
            title(['IOU for item nr.' num2str(i)])
            xlabel('IMG number')
            ylabel('Intersection over Union')
           legend('Intersection over Union', 'Average', 'Location','southeast')
name = "C:\Users\Aron Gauti\Dropbox\HR\Meistaraverkefni\Results\item"+ num2str(i) + ".png";
           saveas(gcf,name,'png')
 itemnr = 1:15;
```

numbersname1 =

[]


```
avgtablev2 = table(itemnr', itemprod',itemdet',itemTP', itemFP',itemIoU', itemPr', itemRe', itemF1');

avgtablev2.Properties.VariableNames = {'Item' 'All-Products' 'All-Detections' 'All-True Positive' 'All-False Positive' 'Avg-IoU' 'Avg-Precision' 'Avg-Recall'
writetable(avgtablev2,'table.csv', 'Delimiter',',')
avrageIoU = mean(avgtablev2.("Avg-IoU"))
avragePrecision = mean(avgtablev2.("Avg-Precision"))
avrageRecall = mean(avgtablev2.("Avg-Recall"))
avrageF1 = mean(avgtablev2.("Avg-F1"))
allp = sum(avgtablev2.("All-Products"))
alld = sum(avgtablev2.("All-Detections"))
alltp = sum(avgtablev2.("All-True Positive"))
allfp = sum(avgtablev2.("All-False Positive"))
```

15×9 table

Item	All-Products	All-Detections	All-True Positive	All-False Positive	Avg-IoU	Avg-Precision	Avg-Recall	Avg-F1
1	684	361	334	24	0.68992	0.854	0.5479	0.6373
2	1029	443	385	58	0.61233	0.7729	0.434	0.5231
3	667	412	382	30	0.71451	0.877	0.6299	0.7087
4	683	412	387	24	0.72463	0.8992	0.626	0.7068
5	892	381	291	90	0.49399	0.6533	0.3397	0.4317
6	918	225	93	129	0.29444	0.2862	0.115	0.1588
7	851	415	344	71	0.60083	0.7613	0.4117	0.5207
8	788	362	339	23	0.7023	0.9182	0.4631	0.5893
9	887	360	294	66	0.5417	0.7176	0.3551	0.46
10	665	370	332	38	0.66249	0.8184	0.5293	0.6229
11	627	407	386	21	0.75476	0.9264	0.6628	0.75
12	574	453	431	20	0.74284	0.938	0.7891	0.8349
13	618	329	320	9	0.74502	0.9552	0.5786	0.6891
14	1031	312	230	70	0.4798	0.6666	0.2746	0.3609
15	616	330	310	18	0.72721	0.904	0.5607	0.6602

```
avrageIoU =
```

0.63245

avragePrecision =

0.79655

avrageRecall =

0.48783

avrageF1 =

0.57696

allp =

11530

alld =

5572

alltp =

4858

allfp =

691

```
iouname = strings(1,length(newtable.("IOU"))); iouname(:) = 'IoU';
finame = strings(1,length(newtable.("F1"))); finame(:) = 'F1';
name = [iouname,finame]';
blend = [newtable.IOU; newtable.F1];

blendnum = [numbersname1;numbersname1];
figure()
boxchart(blendnum, blend, 'GroupByColor', name)
title(['Box plot - On unknown Beiersdorf products '])
xlabel('Products')
ylabel('Value')
xticks([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15])
axis([0 16 0 1])
legend('F-score','Intersection over Union')
```



```
figure()
boxchart(numbersname1, newtable.IOU)
title(['Intersection over Union - On unknown Beiersdorf products'])
xlabel('Products')
ylabel('IOU - score')
xticks([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15])
axis([0 16 0 1])
%legend('F-score', 'Intersection over Union')

figure()
boxchart(numbersname1, newtable.F1, 'BoxFaceColor',[0 0.5 0], 'MarkerColor',[0 0.5 0])
title(['F-score - On unknown Beiersdorf products'])
xlabel('Products')
ylabel('FI - score')
xticks([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15])
axis([0 16 0 1])

%legend('F-score', 'Intersection over Union')
```


Boxplot

Published with MATLAB® R2021a