Name:

## Midterm 1 June 23, 2016

**Instructions:** Do all the problems on **both sides** of each page. Show all your work and box your answers. If you get stuck on a problem, skip it and come back to it at the end.

- 1. [10 points] Invent a function f satisfying the following conditions:
  - The domain of f is [-2, 2]
  - f(-2) = f(2) = 1
  - f(0) = f(1) = -1
  - f(-1) = 2

- $\bullet \lim_{x \to 1^+} f(x) = 0$
- $\bullet \lim_{x \to 1^-} f(x) = 2$
- f is continuous at x = 0
- $\lim_{x \to -1} f(x) = \infty$



2. [8 points] Find  $\lim_{x\to -2} f(x)$  from the following table of functional values

| X      | f(x)  |
|--------|-------|
| -2.25  | 9.047 |
| -2.1   | 9.069 |
| -2.01  | 9.010 |
| -2.001 | 9.001 |
| -2     | -7    |
| -1.999 | 8.999 |
| -1.99  | 8.990 |
| -1.9   | 8.871 |
| -1.75  | 8.578 |

3. [8 points] Show that the polynomial  $x^4 + 3x^3 - 2x^2 - x + 1$  has a root on the interval [-1, 0]. (*Hint:* Intermediate Value Theorem)

4. [5 points each] Compute the following limits:

(a) 
$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x^2 - 2x - 8}$$

(b) 
$$\lim_{x \to -2} \frac{x+2}{x^2 - x - 6}$$

(c) 
$$\lim_{x \to \pi/2^{-}} \frac{\cos x}{x \sin x}$$

(d) 
$$\lim_{\theta \to 0} \frac{\tan 5\theta}{\sin 6\theta}$$

5. [12 points] Shown below is the graph of the function f(x). Find the following:



(a) 
$$\lim_{x \to 1} f(x) =$$
\_\_\_\_\_

(b) 
$$\lim_{x \to -2^+} f(x) =$$
\_\_\_\_\_

(c) 
$$\lim_{x \to 3^{+}} f(x) =$$
 (d)  $\lim_{x \to 3^{-}} f(x) =$ 

(d) 
$$\lim_{x \to 0.2^{-}} f(x) =$$

(e) 
$$f(-2) =$$
\_\_\_\_\_

(f) 
$$f(3) =$$
\_\_\_\_\_

6. [5 points each] Compute each of the following limits.

(a) 
$$\lim_{x \to 3^-} \frac{x}{[[x]]}$$

(b) 
$$\lim_{x \to 0^-} \frac{|x|}{x}$$

- 7. [10 points] State whether this function is continuous or not. If the function is discontinuous, give the x-value(s) where the discontinuities occur and also state what type of discontinuities occur at each of those x-values. Then "patch" the hole(s), if possible.
  - (a)  $f(x) = \frac{(x+1)(x-3)}{x^2+x-12}$  Continuous everywhere? Yes or No (circle one)

If no, it's discontinuous at x =

(b) For each of the x-values you listed above, why is it discontinuous? (You may not need all of the lines provided). Show work to support your answer.

At  $x = \underline{\hspace{1cm}}$ , there is a hole or jump discontinuity or vertical asymptote

At  $x = \underline{\hspace{1cm}}$ , there is a hole or jump discontinuity or vertical asymptote

At  $x = \underline{\hspace{1cm}}$ , there is a hole or jump discontinuity or vertical asymptote

(c) If f(x) has any discontinuities, how can we re-define f(x) so that its holes are "patched"? (Recall that we cannot patch vertical asymptotes or jumps. For this problem, just patch any holes that exist.)

8. [5 points each] Let  $f(x) = \frac{2x^2 - 6x + 4}{x^2 - 6x + 9}$  and let  $g(x) = \frac{x}{x^2 - 9}$ . Compute:

(a) 
$$\lim_{x \to 3^+} f(x) =$$

(b) 
$$\lim_{x \to \infty} f(x) =$$

(c) 
$$\lim_{x \to -\infty} g(x) =$$

9. [7 points] Find  $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$  and be sure to justify your steps. (*Hint:* Squeeze Theorem)

10. **Extra Credit:** [5 points] Let f be a continuous function defined on [0,1] and suppose that  $0 \le f(x) \le 1$ . Prove that f has a fixed point. That is, prove there is a point  $c \in [0,1]$  such that f(c) = c.