Genus Bounds for Some Dynatomic Modular Curves

UWO Final Thesis Exam Public Lecture

Andrew W. Herring

30 August, 2021

Overview

- 1. Introduction
- 2. Function Fields and Curves
- ${\it 3.}$ Flavors of Maximal Subgroups and Genus Bounds

Introduction

 \odot Let $\mathbb F$ be any perfect field with a fixed algebraic closure $\bar{\mathbb F}$;

- \odot Let $\mathbb F$ be any perfect field with a fixed algebraic closure $\bar{\mathbb F}$;
- ⊚ For a non-constant polynomial $g(x) \in \mathbb{F}[x]$ and a positive integer k, let $g^k(x)$ denote the k-th iterate of g;

- \odot Let $\mathbb F$ be any perfect field with a fixed algebraic closure $\bar{\mathbb F}$;
- ⊚ For a non-constant polynomial $g(x) \in \mathbb{F}[x]$ and a positive integer k, let $g^k(x)$ denote the k-th iterate of g;
- ⊚ Define Per(g) := { $\alpha \in \overline{\mathbb{F}} : g^k(\alpha) = \alpha$, some $k \ge 1$ };

- \odot Let \mathbb{F} be any perfect field with a fixed algebraic closure $\overline{\mathbb{F}}$;
- ⊚ For a non-constant polynomial $g(x) \in \mathbb{F}[x]$ and a positive integer k, let $g^k(x)$ denote the k-th iterate of g;
- ⊚ Define Per(g) := { α ∈ $\bar{\mathbb{F}}$: $g^k(\alpha) = \alpha$, some $k \ge 1$ };
- \odot Elements of Per(g) are periodic points of g;

- \odot Let $\mathbb F$ be any perfect field with a fixed algebraic closure $\bar{\mathbb F}$;
- ⊚ For a non-constant polynomial $g(x) \in \mathbb{F}[x]$ and a positive integer k, let $g^k(x)$ denote the k-th iterate of g;
- ⊚ Define Per(g) := { $\alpha \in \overline{\mathbb{F}} : g^k(\alpha) = \alpha$, some $k \ge 1$ };
- \odot Elements of Per(g) are periodic points of g;
- ⊚ The period of $\alpha \in Per(g)$ is $n := min\{k \ge 1 : g^k(\alpha) = \alpha\}$;

- \odot Let \mathbb{F} be any perfect field with a fixed algebraic closure $\overline{\mathbb{F}}$;
- ⊚ For a non-constant polynomial $g(x) \in \mathbb{F}[x]$ and a positive integer k, let $g^k(x)$ denote the k-th iterate of g;
- ⊚ Define Per(g) := { α ∈ $\bar{\mathbb{F}}$: $g^k(\alpha) = \alpha$, some $k \ge 1$ };
- \odot Elements of Per(g) are periodic points of g;
- ⊚ The period of α ∈ Per(g) is $n := \min\{k \ge 1 : g^k(\alpha) = \alpha\}$;
- ⊚ Define $Per_n(g) := \{\alpha \in \overline{F} : \alpha \text{ has period } n\};$

- \odot Let $\mathbb F$ be any perfect field with a fixed algebraic closure $\bar{\mathbb F}$;
- ⊚ For a non-constant polynomial $g(x) \in \mathbb{F}[x]$ and a positive integer k, let $g^k(x)$ denote the k-th iterate of g;
- ⊚ Define Per(g) := { α ∈ \mathbb{F} : $g^k(\alpha) = \alpha$, some $k \ge 1$ };
- \odot Elements of Per(g) are periodic points of g;
- ⊚ The period of α ∈ Per(g) is $n := \min\{k \ge 1 : g^k(\alpha) = \alpha\}$;
- ⊚ Define $Per_n(g) := \{\alpha \in \overline{F} : \alpha \text{ has period } n\};$
- ⊚ For any subset $S \subseteq \overline{F}$, define $\operatorname{Per}_n(g; S) := \operatorname{Per}_n(g) \cap S$

For
$$c \in \mathbb{Q}$$
, let $f_c(x) := x^2 + c \in \mathbb{Q}[x]$

For
$$c \in \mathbb{Q}$$
, let $f_c(x) := x^2 + c \in \mathbb{Q}[x]$

Conjecture: Flynn, Poonen, and Schaefer-1997; [3]

If $n \ge 4$, then $\operatorname{Per}_n(f_c; \mathbb{Q})$ is empty for every $c \in \mathbb{Q}$.

For
$$c \in \mathbb{Q}$$
, let $f_c(x) := x^2 + c \in \mathbb{Q}[x]$

Conjecture: Flynn, Poonen, and Schaefer-1997; [3]

If $n \ge 4$, then $\operatorname{Per}_n(f_c; \mathbb{Q})$ is empty for every $c \in \mathbb{Q}$.

For
$$c \in \mathbb{Q}$$
, let $f_c(x) := x^2 + c \in \mathbb{Q}[x]$

Conjecture: Flynn, Poonen, and Schaefer-1997; [3]

If $n \ge 4$, then $\operatorname{Per}_n(f_c; \mathbb{Q})$ is empty for every $c \in \mathbb{Q}$.

$$o$$
 $n = 4; [6]$

For
$$c \in \mathbb{Q}$$
, let $f_c(x) := x^2 + c \in \mathbb{Q}[x]$

Conjecture: Flynn, Poonen, and Schaefer-1997; [3]

If $n \ge 4$, then $\operatorname{Per}_n(f_c; \mathbb{Q})$ is empty for every $c \in \mathbb{Q}$.

- o n = 4; [6]
- \circ n = 5; [3]

For
$$c \in \mathbb{Q}$$
, let $f_c(x) := x^2 + c \in \mathbb{Q}[x]$

Conjecture: Flynn, Poonen, and Schaefer-1997; [3]

If $n \ge 4$, then $\operatorname{Per}_n(f_c; \mathbb{Q})$ is empty for every $c \in \mathbb{Q}$.

- o n = 4; [6]
- o n = 5; [3]
- $on = 6^*; [9]$

^{*}Conditional on Birch and Swinnerton-Dyer Conjecture

Let
$$c = -1 \in \mathbb{Q}$$
 and consider $f_c(x) = x^2 - 1 \in \mathbb{Q}[x]$.

Let $c = -1 \in \mathbb{Q}$ and consider $f_c(x) = x^2 - 1 \in \mathbb{Q}[x]$.

⊚ Suppose $f_c(\alpha) = \alpha$. Then α is a root of $f_c(x) - x = x^2 - x - 1$.

Let $c = -1 \in \mathbb{Q}$ and consider $f_c(x) = x^2 - 1 \in \mathbb{Q}[x]$.

- ⊚ Suppose $f_c(\alpha) = \alpha$. Then α is a root of $f_c(x) x = x^2 x 1$.
- ⊚ But the discriminant $\Delta(x^2 x 1) = 5$ is not a square in \mathbb{Q} .

Let $c = -1 \in \mathbb{Q}$ and consider $f_c(x) = x^2 - 1 \in \mathbb{Q}[x]$.

- ⊚ Suppose $f_c(\alpha) = \alpha$. Then α is a root of $f_c(x) x = x^2 x 1$.
- ⊚ But the discriminant $\Delta(x^2 x 1) = 5$ is not a square in \mathbb{Q} .
- ⊚ Thus $\alpha \notin \mathbb{Q}$ and $Per_1(f_c; \mathbb{Q})$ is empty.

Let $c = -1 \in \mathbb{Q}$ and consider $f_c(x) = x^2 - 1 \in \mathbb{Q}[x]$.

- ⊚ Suppose $f_c(\alpha) = \alpha$. Then α is a root of $f_c(x) x = x^2 x 1$.
- ⊚ But the discriminant $\Delta(x^2 x 1) = 5$ is not a square in \mathbb{Q} .
- ⊚ Thus $\alpha \notin \mathbb{Q}$ and $Per_1(f_c; \mathbb{Q})$ is empty.
- Meanwhile, we have

$$f_c(0) = (0)^2 - 1 = -1$$
; $f_c(-1) = (-1)^2 - 1 = 0$; and $f_c^2(x) - x = x^4 - 2x^2 - x = x(x+1)(x^2 - x - 1)$.

Let $c = -1 \in \mathbb{Q}$ and consider $f_c(x) = x^2 - 1 \in \mathbb{Q}[x]$.

- ⊚ Suppose $f_c(\alpha) = \alpha$. Then α is a root of $f_c(x) x = x^2 x 1$.
- ⊚ But the discriminant $\Delta(x^2 x 1) = 5$ is not a square in \mathbb{Q} .
- ⊚ Thus $\alpha \notin \mathbb{Q}$ and $Per_1(f_c; \mathbb{Q})$ is empty.
- Meanwhile, we have

$$f_c(0) = (0)^2 - 1 = -1$$
; $f_c(-1) = (-1)^2 - 1 = 0$; and $f_c^2(x) - x = x^4 - 2x^2 - x = x(x+1)(x^2 - x - 1)$.

⊚ Hence, $Per_2(f_c; \mathbb{Q}) = \{0, -1\}.$

For $n \ge 1$ consider the statement

F.E.(n) ="there are at most finitely many $c \in \mathbb{Q}$ such that $\operatorname{Per}_n(f_c; \mathbb{Q})$ is non-empty"

For $n \ge 1$ consider the statement

F.E.(n) ="there are at most finitely many $c \in \mathbb{Q}$ such that $\operatorname{Per}_n(f_c; \mathbb{Q})$ is non-empty"

Theorem: Krumm-2019; [5]

F.E.(n) holds for $n \in \{5, 6, 7, 9\}$.

For $n \ge 1$ consider the statement

F.E.(n) ="there are at most finitely many $c \in \mathbb{Q}$ such that $\operatorname{Per}_n(f_c; \mathbb{Q})$ is non-empty"

Theorem: Krumm-2019; [5]

F.E.(n) holds for $n \in \{5, 6, 7, 9\}$.

Theorem: H.-2021

F.E.(n) holds for every $n \ge 10$.

For $n \ge 1$ consider the statement

F.E.(n) ="there are at most finitely many $c \in \mathbb{Q}$ such that $\operatorname{Per}_n(f_c; \mathbb{Q})$ is non-empty"

Theorem: Krumm-2019; [5]

F.E.(n) holds for $n \in \{5, 6, 7, 9\}$.

Theorem: H.-2021

F.E.(n) holds for every $n \ge 10$.

Thus F.E.(n) holds for every $n \ge 5$ except possibly for n = 8

⊚ Let t be transcendental over \mathbb{C} and consider $K_0 := \mathbb{Q}(t)$, $A_0 := \mathbb{Q}[t]$, and $f(x) := x^2 + t \in A_0[x]$.

- ⊚ Let t be transcendental over \mathbb{C} and consider $K_0 := \mathbb{Q}(t)$, $A_0 := \mathbb{Q}[t]$, and $f(x) := x^2 + t \in A_0[x]$.
- ⊚ For $n \ge 1$, the n-th dynatomic polynomial is

$$\Phi_n(x) := \prod_{d|n} \left(f^d(x) - x \right)^{\mu(n/d)}$$

where μ is the Mobius function.

- ⊚ Let t be transcendental over \mathbb{C} and consider $K_0 := \mathbb{Q}(t)$, $A_0 := \mathbb{Q}[t]$, and $f(x) := x^2 + t \in A_0[x]$.
- ⊚ For $n \ge 1$, the n-th dynatomic polynomial is

$$\Phi_n(x) := \prod_{d|n} \left(f^d(x) - x \right)^{\mu(n/d)}$$

where μ is the Mobius function.

Example:

$$\Phi_{1}(x) = x^{2} - x + t; \quad \Phi_{2}(x) = x^{2} + x + t + 1$$

$$\Phi_{3}(x) = x^{6} + x^{5} + (3t + 1)x^{4} + (2t + 1)x^{3} + (3t^{2} + 3t + 1)x^{2} + (t^{2} + 2t + 1)x + t^{3} + 2t^{2} + t + 1$$

Fix $n \ge 1$. Let L_0 denote the splitting field of $\Phi_n(x)$ over K_0 and let $Z := \{\alpha \in L_0 : \Phi_n(\alpha) = 0\}$ denote the zero set of Φ_n .

Fix $n \ge 1$. Let L_0 denote the splitting field of $\Phi_n(x)$ over K_0 and let $Z := \{\alpha \in L_0 : \Phi_n(\alpha) = 0\}$ denote the zero set of Φ_n .

Proposition

Fix $n \ge 1$. Let L_0 denote the splitting field of $\Phi_n(x)$ over K_0 and let $Z := \{\alpha \in L_0 : \Phi_n(\alpha) = 0\}$ denote the zero set of Φ_n .

Proposition

The following hold:

1. $\Phi_n(x) \in A_0[x]$ and $\Phi_n(x)$ is monic in x; [7]

Fix $n \ge 1$. Let L_0 denote the splitting field of $\Phi_n(x)$ over K_0 and let $Z := \{\alpha \in L_0 : \Phi_n(\alpha) = 0\}$ denote the zero set of Φ_n .

Proposition

- **1.** $\Phi_n(x) \in A_0[x]$ and $\Phi_n(x)$ is monic in x; [7]
- **2.** $\Phi_n(x)$ is irreducible over $\mathbb{C}(t)$; [1]

Fix $n \ge 1$. Let L_0 denote the splitting field of $\Phi_n(x)$ over K_0 and let $Z := \{\alpha \in L_0 : \Phi_n(\alpha) = 0\}$ denote the zero set of Φ_n .

Proposition

- **1.** $\Phi_n(x) \in A_0[x]$ and $\Phi_n(x)$ is monic in x; [7]
- **2.** $\Phi_n(x)$ is irreducible over $\mathbb{C}(t)$; [1]
- 3. $Z = \operatorname{Per}_n(f; \bar{\mathbb{Q}});$

Fix $n \ge 1$. Let L_0 denote the splitting field of $\Phi_n(x)$ over K_0 and let $Z := \{\alpha \in L_0 : \Phi_n(\alpha) = 0\}$ denote the zero set of Φ_n .

Proposition

- **1.** $\Phi_n(x) \in A_0[x]$ and $\Phi_n(x)$ is monic in x; [7]
- **2.** $\Phi_n(x)$ is irreducible over $\mathbb{C}(t)$; [1]
- 3. $Z = \operatorname{Per}_n(f; \bar{\mathbb{Q}});$
- **4**. $\Phi_n(x)$ divides $\Phi_n(f(x))$. [7]

Corollary

Let
$$r := \frac{\deg \Phi_n(x)}{n}$$
. Then

$$Z = \sqcup_{i=1}^r A_i$$

where
$$A_i = \{\alpha_i, f(\alpha_i), \dots, f^{n-1}(\alpha_i)\}$$
 for some $\alpha_i \in L_0$ for every $i = 1, \dots r$.

9

Dynatomic Polynomials

Corollary

Let
$$r := \frac{\deg \Phi_n(x)}{n}$$
. Then

$$Z = \sqcup_{i=1}^r A_i$$

where
$$A_i = \{\alpha_i, f(\alpha_i), \dots, f^{n-1}(\alpha_i)\}$$
 for some $\alpha_i \in L_0$ for every $i = 1, \dots r$.

Each set A_i is an f-orbit.

Let $c \in \mathbb{Q}$

Let $c \in \mathbb{Q}$

⊚ $f_c(x) = x^2 + c = (x^2 + t) \mid_{t=c} = f(x) \mid_{t=c}$, i.e., $f_c(x)$ is a specialization of f(x).

Let $c \in \mathbb{Q}$

- ⊚ $f_c(x) = x^2 + c = (x^2 + t) \mid_{t=c} = f(x) \mid_{t=c}$, i.e., $f_c(x)$ is a specialization of f(x).
- Operation Define

$$\Phi_{n,c}(x) := \Phi_n(x) \mid_{t=c} = \prod_{d|n} \left(f_c^d(x) - x \right)^{\mu(n/d)} \in \mathbb{Q}[x]$$

the n-th dynatomic polynomial at c.

Let $c \in \mathbb{Q}$

- ⊚ $f_c(x) = x^2 + c = (x^2 + t) \mid_{t=c} = f(x) \mid_{t=c}$, i.e., $f_c(x)$ is a specialization of f(x).
- Operation Define

$$\Phi_{n,c}(x) := \Phi_n(x) \mid_{t=c} = \prod_{d|n} \left(f_c^d(x) - x \right)^{\mu(n/d)} \in \mathbb{Q}[x]$$

the n-th dynatomic polynomial at c.

⊚ Let $L_{0,c}$ denote the splitting field of $\Phi_{n,c}(x)$ over \mathbb{Q} , and let $Z_c := \{\alpha \in L_{0,c} : \Phi_{n,c}(\alpha) = 0\}$ denote the zero set of $\Phi_{n,c}$.

Let $c \in \mathbb{Q}$

- ⊚ $f_c(x) = x^2 + c = (x^2 + t) \mid_{t=c} = f(x) \mid_{t=c}$, i.e., $f_c(x)$ is a specialization of f(x).
- Operation

$$\Phi_{n,c}(x) := \Phi_n(x) \mid_{t=c} = \prod_{d|n} \left(f_c^d(x) - x \right)^{\mu(n/d)} \in \mathbb{Q}[x]$$

the n-th dynatomic polynomial at c.

- ⊚ Let $L_{0,c}$ denote the splitting field of $\Phi_{n,c}(x)$ over \mathbb{Q} , and let $Z_c := \{\alpha \in L_{0,c} : \Phi_{n,c}(\alpha) = 0\}$ denote the zero set of $\Phi_{n,c}$.
- ⊚ We have $Per_n(f_c) \subseteq Z_c$, but equality need not hold.

⊚ L_0/K_0 is a finite Galois extension; let $G := \text{Gal}(L_0/K_0)$ and call it the n-th dynatomic Galois group.

- ⊚ L_0/K_0 is a finite Galois extension; let $G := Gal(L_0/K_0)$ and call it the n-th dynatomic Galois group.
- ⊚ For every $c \in \mathbb{Q}$, also have that $L_{0,c}/\mathbb{Q}$ is a finite Galois extension; let $G_c := \operatorname{Gal}(L_{0,c}/\mathbb{Q})$ and call it the n-th dynatomic Galois group at c.

- ⊚ L_0/K_0 is a finite Galois extension; let $G := Gal(L_0/K_0)$ and call it the n-th dynatomic Galois group.
- ⊚ For every $c \in \mathbb{Q}$, also have that $L_{0,c}/\mathbb{Q}$ is a finite Galois extension; let $G_c := \operatorname{Gal}(L_{0,c}/\mathbb{Q})$ and call it the n-th dynatomic Galois group at c.
- Operation

$$D_n := \{c \in \mathbb{Q} : \Phi_{n,c} \text{ is inseparable}\}.$$

- ⊚ L_0/K_0 is a finite Galois extension; let $G := Gal(L_0/K_0)$ and call it the n-th dynatomic Galois group.
- ⊚ For every $c \in \mathbb{Q}$, also have that $L_{0,c}/\mathbb{Q}$ is a finite Galois extension; let $G_c := \operatorname{Gal}(L_{0,c}/\mathbb{Q})$ and call it the n-th dynatomic Galois group at c.
- Operation

$$D_n := \{c \in \mathbb{Q} : \Phi_{n,c} \text{ is inseparable}\}.$$

Proposition

If $c \in \mathbb{Q} - D_n$, then $G_c \leq G$.

- ⊚ L_0/K_0 is a finite Galois extension; let $G := Gal(L_0/K_0)$ and call it the n-th dynatomic Galois group.
- ⊚ For every $c \in \mathbb{Q}$, also have that $L_{0,c}/\mathbb{Q}$ is a finite Galois extension; let $G_c := \operatorname{Gal}(L_{0,c}/\mathbb{Q})$ and call it the n-th dynatomic Galois group at c.
- Operation

$$D_n := \{c \in \mathbb{Q} : \Phi_{n,c} \text{ is inseparable}\}.$$

Proposition

If $c \in \mathbb{Q} - D_n$, then $G_c \leq G$.

 D_n is the zero set of the discriminant of Φ_n , and is therefore finite.

Define

$$E_n := \{ c \in \mathbb{Q} - D_n : G_c \leq G \}$$

and call it the n-th exceptional set. Elements of E_n are exceptional values

Define

$$E_n := \{ c \in \mathbb{Q} - D_n : G_c \leq G \}$$

and call it the n-th exceptional set. Elements of E_n are exceptional values

Proposition

If $c \in \mathbb{Q} - D_n$ and $\operatorname{Per}_n(f_c; \mathbb{Q})$ is non-empty, then $c \in E_n$.

Define

$$E_n := \{ c \in \mathbb{Q} - D_n : G_c \leq G \}$$

and call it the n-th exceptional set. Elements of E_n are exceptional values

Proposition

If $c \in \mathbb{Q} - D_n$ and $\operatorname{Per}_n(f_c; \mathbb{Q})$ is non-empty, then $c \in E_n$.

Thus to prove F.E.(n), it suffices to show that E_n is finite.

Define

$$E_n := \{ c \in \mathbb{Q} - D_n : G_c \leq G \}$$

and call it the n-th exceptional set. Elements of E_n are exceptional values

Proposition

If $c \in \mathbb{Q} - D_n$ and $\operatorname{Per}_n(f_c; \mathbb{Q})$ is non-empty, then $c \in E_n$.

Thus to prove F.E.(n), it suffices to show that E_n is finite.

Remark

By Hilbert's Irreducibility Theorem, E_n is known to be "thin." Thin sets are small (in a suitable sense), but can still be infinite.

Function Fields and Curves

⊚ For a subgroup $H \le G$, let L_0^H denote the fixed field of H in L_0 .

- ⊚ For a subgroup $H \le G$, let L_0^H denote the fixed field of H in L_0 .
- ⊚ Each of the fields K_0 , L_0 , and L_0^H is a function field over \mathbb{Q} . That is, for every $\mathbb{F} \in \{K_0, L_0, L_0^H\}$, \mathbb{F} is a finitely generated extension of \mathbb{Q} with transcendence degree 1 over \mathbb{Q} and \mathbb{Q} is algebraically closed in \mathbb{F} .

- ⊚ For a subgroup $H \le G$, let L_0^H denote the fixed field of H in L_0 .
- ⊚ Each of the fields K_0 , L_0 , and L_0^H is a function field over \mathbb{Q} . That is, for every $\mathbb{F} \in \{K_0, L_0, L_0^H\}$, \mathbb{F} is a finitely generated extension of \mathbb{Q} with transcendence degree 1 over \mathbb{Q} and \mathbb{Q} is algebraically closed in \mathbb{F} .
- ⊚ By a well-known equivalence of categories, there are curves X, Y, W defined over \mathbb{Q} corresponding to L_0 , L_0^H , and K_0 , respectively.

- ⊚ For a subgroup $H \le G$, let L_0^H denote the fixed field of H in L_0 .
- ⊚ Each of the fields K_0 , L_0 , and L_0^H is a function field over \mathbb{Q} . That is, for every $\mathbb{F} \in \{K_0, L_0, L_0^H\}$, \mathbb{F} is a finitely generated extension of \mathbb{Q} with transcendence degree 1 over \mathbb{Q} and \mathbb{Q} is algebraically closed in \mathbb{F} .
- ⊚ By a well-known equivalence of categories, there are curves X, Y, W defined over \mathbb{Q} corresponding to L_0 , L_0^H , and K_0 , respectively.
- ⊚ The curve W corresponding to $K_0 = \mathbb{Q}(t)$ is $\mathbb{P}^1_{\mathbb{Q}}$, the projective line defined over \mathbb{Q} .

⊚ The curve Y corresponding to L_0^H is the quotient curve $X_H \equiv X/H$ whose points are H-orbits under the action of H on X.

⊚ The curve Y corresponding to L_0^H is the quotient curve $X_H \equiv X/H$ whose points are H-orbits under the action of H on X.

We therefore have equivalent diagrams

of function fields and curves over Q.

⊚ The curve Y corresponding to L_0^H is the quotient curve $X_H \equiv X/H$ whose points are H-orbits under the action of H on X.

We therefore have equivalent diagrams

of function fields and curves over Q.

 \odot Any curve of the form X_H is called a dynatomic modular curve.

Let C be any curve defined over \mathbb{Q} . We will use g(C) to denote the genus of C which is one measure of the geometric complexity of C.

Let C be any curve defined over \mathbb{Q} . We will use g(C) to denote the genus of C which is one measure of the geometric complexity of C.

By considering C over \mathbb{C} , we obtain a compact Riemann surface X; then the genus g(C) counts the number of "holes/handles" of X.

" Stereographic Projection"

Let *C* be any curve defined over \mathbb{Q} . Let g(C) denote the genus of *C*, and let $C(\mathbb{Q})$ denote the set of \mathbb{Q} -rational points of *C*.

Let *C* be any curve defined over \mathbb{Q} . Let g(C) denote the genus of *C*, and let $C(\mathbb{Q})$ denote the set of \mathbb{Q} -rational points of *C*.

Theorem: Faltings-1983; [2]

If $g(C) \ge 2$, then $C(\mathbb{Q})$ is finite.

Let *C* be any curve defined over \mathbb{Q} . Let g(C) denote the genus of *C*, and let $C(\mathbb{Q})$ denote the set of \mathbb{Q} -rational points of *C*.

Theorem: Faltings-1983; [2]

If $g(C) \ge 2$, then $C(\mathbb{Q})$ is finite.

Theorem: (see Propositions 3.3.1 and 3.3.5 of [8])

Let $c \in \mathbb{Q} - D_n$. Then $c \in E_n$ if and only if $c \in \pi_H(X_H(\mathbb{Q}))$ for some proper subgroup $H \subseteq G$.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

Proof sketch:

1. Suffices that $g(X_H) \ge 2$ for every proper subgroup $H \le G$.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

- 1. Suffices that $g(X_H) \ge 2$ for every proper subgroup $H \le G$.
 - ∘ If this holds, then $X_H(\mathbb{Q})$ is finite for every H ≤ G by Faltings.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

- 1. Suffices that $g(X_H) \ge 2$ for every proper subgroup $H \le G$.
 - ∘ If this holds, then $X_H(\mathbb{Q})$ is finite for every H ≤ G by Faltings.
 - Thus $\pi_H(X_H(\mathbb{Q})) \subset \mathbb{P}^1_{\mathbb{Q}}$ is finite.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

- 1. Suffices that $g(X_H) \ge 2$ for every proper subgroup $H \le G$.
 - ∘ If this holds, then $X_H(\mathbb{Q})$ is finite for every H ≤ G by Faltings.
 - Thus $\pi_H(X_H(\mathbb{Q})) \subset \mathbb{P}^1_{\mathbb{Q}}$ is finite.
 - Thus E_n is finite by the previous Theorem.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

- 1. Suffices that $g(X_H) \ge 2$ for every proper subgroup $H \le G$.
 - ∘ If this holds, then $X_H(\mathbb{Q})$ is finite for every H ≤ G by Faltings.
 - Thus $\pi_H(X_H(\mathbb{Q})) \subset \mathbb{P}^1_{\mathbb{Q}}$ is finite.
 - Thus E_n is finite by the previous Theorem.
- 2. For every $H \leq G$, there is some maximal subgroup M of G containing H.

Proposition

If $g(X_M) \ge 2$ for every maximal subgroup M of G, then E_n is finite.

- 1. Suffices that $g(X_H) \ge 2$ for every proper subgroup $H \le G$.
 - ∘ If this holds, then $X_H(\mathbb{Q})$ is finite for every H ≤ G by Faltings.
 - Thus $\pi_H(X_H(\mathbb{Q})) \subset \mathbb{P}^1_{\mathbb{Q}}$ is finite.
 - Thus E_n is finite by the previous Theorem.
- 2. For every $H \leq G$, there is some maximal subgroup M of G containing H.
- 3. $M \supseteq H \iff L^M \subseteq L^H \iff X_H \to X_M$, and genus is non-decreasing along curve morphisms: $g(X_H) \ge g(X_M)$.

Genus Bounds

Recall our earlier

Corollary

```
Z = \bigsqcup_{i=1}^{r} A_i, where A_i = \{\alpha_i, f(\alpha_i), \dots, f^{n-1}(\alpha_i)\} is the i-th f-orbit for every i \in [r] := \{1, \dots, r\}.
```

Recall our earlier

Corollary

 $Z = \bigsqcup_{i=1}^r A_i$, where $A_i = \{\alpha_i, f(\alpha_i), \dots, f^{n-1}(\alpha_i)\}$ is the *i*-th *f*-orbit for every $i \in [r] := \{1, \dots, r\}$.

⊚ Let $\Omega := \{A_1, ..., A_r\}$ the set of all f-orbits, and let $\Gamma := \operatorname{Sym}(\Omega) \cong S_r$.

Recall our earlier

Corollary

 $Z = \bigsqcup_{i=1}^r A_i$, where $A_i = \{\alpha_i, f(\alpha_i), \dots, f^{n-1}(\alpha_i)\}$ is the *i*-th *f*-orbit for every $i \in [r] := \{1, \dots, r\}$.

- ⊚ Let $\Omega := \{A_1, ..., A_r\}$ the set of all f-orbits, and let $\Gamma := \text{Sym}(\Omega) \cong S_r$.
- ⊚ For every $\sigma \in G = \operatorname{Gal}(L_0/K_0)$ we have that $\sigma \circ f^j = f^j \circ \sigma$ for every j.

Recall our earlier

Corollary

 $Z = \bigsqcup_{i=1}^r A_i$, where $A_i = \{\alpha_i, f(\alpha_i), \dots, f^{n-1}(\alpha_i)\}$ is the *i*-th *f*-orbit for every $i \in [r] := \{1, \dots, r\}$.

- ⊚ Let $\Omega := \{A_1, ..., A_r\}$ the set of all f-orbits, and let $\Gamma := \operatorname{Sym}(\Omega) \cong S_r$.
- ⊚ For every $\sigma \in G = \operatorname{Gal}(L_0/K_0)$ we have that $\sigma \circ f^j = f^j \circ \sigma$ for every j.
- ⊚ Thus $\sigma(A_i)$ ∈ Ω for every i ∈ [r] and there's a permutation σ on Ω ≡ [r] given by $A_i \mapsto \sigma(A_i)$ ≡ $A_{\sigma(i)}$

Recall our earlier

Corollary

 $Z = \bigsqcup_{i=1}^r A_i$, where $A_i = \{\alpha_i, f(\alpha_i), \dots, f^{n-1}(\alpha_i)\}$ is the *i*-th *f*-orbit for every $i \in [r] := \{1, \dots, r\}$.

- ⊚ Let $\Omega := \{A_1, ..., A_r\}$ the set of all f-orbits, and let $\Gamma := \text{Sym}(\Omega) \cong S_r$.
- ⊚ For every $\sigma \in G = \operatorname{Gal}(L_0/K_0)$ we have that $\sigma \circ f^j = f^j \circ \sigma$ for every j.
- ⊚ Thus $\sigma(A_i)$ ∈ Ω for every i ∈ [r] and there's a permutation σ on Ω ≡ [r] given by $A_i \mapsto \sigma(A_i)$ ≡ $A_{\sigma(i)}$
- ⊚ Get a permutation representation ϕ : $G \rightarrow \Gamma$; let $N := \ker (\phi)$.

ופויו	ım
Clai	

Claim

1.
$$N \cong (\mathbb{Z}/n)^r$$
;

Claim

- 1. $N \cong (\mathbb{Z}/n)^r$;
- 2. ϕ is surjective. Thus ϕ is precisely the quotient homomorphism $\pi: G \twoheadrightarrow G/N \cong \Gamma$;

Claim

- 1. $N \cong (\mathbb{Z}/n)^r$;
- 2. ϕ is surjective. Thus ϕ is precisely the quotient homomorphism $\pi: G \twoheadrightarrow G/N \cong \Gamma$;
- 3. $\Gamma = S_r$ acts by automorphisms on $N = (\mathbb{Z}/n)^r$ via ${}^{\tau}(a_1, \ldots, a_r) := (a_{\tau(1)}, \ldots, a_{\tau(r)});$

Claim

- 1. $N \cong (\mathbb{Z}/n)^r$;
- 2. ϕ is surjective. Thus ϕ is precisely the quotient homomorphism $\pi: G \twoheadrightarrow G/N \cong \Gamma$;
- 3. $\Gamma = S_r$ acts by automorphisms on $N = (\mathbb{Z}/n)^r$ via ${}^{\tau}(a_1, \ldots, a_r) := (a_{\tau(1)}, \ldots, a_{\tau(r)});$
- 4. The semi-direct product $N \rtimes \Gamma = (\mathbb{Z}/n)^r \rtimes S_r$ is defined, and in fact $G \cong N \rtimes \Gamma$ [1].

We partition the maximal subgroups M of G according to whether $\pi(M) = \Gamma$, or $\pi(M) \leq \Gamma$.

We partition the maximal subgroups M of G according to whether $\pi(M) = \Gamma$, or $\pi(M) \leq \Gamma$.

Lemma: Vanilla Maximal Subgroups

If $\pi(M) = \Gamma$, then $N \cap M$ is maximal amongst all Γ-invariant subgroups of N.

We partition the maximal subgroups M of G according to whether $\pi(M) = \Gamma$, or $\pi(M) \leq \Gamma$.

Lemma: Vanilla Maximal Subgroups

If $\pi(M) = \Gamma$, then $N \cap M$ is maximal amongst all Γ-invariant subgroups of N.

We call any maximal M of G with $\pi(M) = \Gamma$ a vanilla maximal subgroup of G.

We partition the maximal subgroups M of G according to whether $\pi(M) = \Gamma$, or $\pi(M) \leq \Gamma$.

Lemma: Vanilla Maximal Subgroups

If $\pi(M) = \Gamma$, then $N \cap M$ is maximal amongst all Γ-invariant subgroups of N.

We call any maximal M of G with $\pi(M) = \Gamma$ a vanilla maximal subgroup of G.

Lemma: Chocolate Maximal Subgroups

If $\pi(M) \leq \Gamma$, then $N \subseteq M$ and $\pi(M)$ is a maximal subgroup of Γ .

We partition the maximal subgroups M of G according to whether $\pi(M) = \Gamma$, or $\pi(M) \leq \Gamma$.

Lemma: Vanilla Maximal Subgroups

If $\pi(M) = \Gamma$, then $N \cap M$ is maximal amongst all Γ-invariant subgroups of N.

We call any maximal M of G with $\pi(M) = \Gamma$ a vanilla maximal subgroup of G.

Lemma: Chocolate Maximal Subgroups

If $\pi(M) \leq \Gamma$, then $N \subseteq M$ and $\pi(M)$ is a maximal subgroup of Γ .

We call any maximal M of G with $\pi(M) \leq \Gamma$ a chocolate maximal subgroup of G.

Theorem

For every $n \ge 5$ and every chocolate maximal subgroup M of G we have $g(X_M) \ge 2$.

Theorem

For every $n \ge 5$ and every chocolate maximal subgroup M of G we have $g(X_M) \ge 2$.

Theorem

For every $n \ge 5$ and every chocolate maximal subgroup M of G we have $g(X_M) \ge 2$.

Ideas:

1. Krumm ([5]) showed that for $n \in \{5, 6, 7, 9\}$, we have $g(X_M) \ge 2$ for *every* maximal subgroup M of G; in particular this holds for the chocolate maximals.

Theorem

For every $n \ge 5$ and every chocolate maximal subgroup M of G we have $g(X_M) \ge 2$.

- 1. Krumm ([5]) showed that for $n \in \{5, 6, 7, 9\}$, we have $g(X_M) \ge 2$ for *every* maximal subgroup M of G; in particular this holds for the chocolate maximals.
- 2. For $n \ge 8$, we can use a powerful theorem of Guralnick and Shareshian ([4]) to show that $g(X_M) \ge 2$ for every chocolate maximal M.

Theorem

For every $n \ge 10$, we have that $g(X_M) \ge 2$ for every vanilla maximal subgroup M of G.

Theorem

For every $n \ge 10$, we have that $g(X_M) \ge 2$ for every vanilla maximal subgroup M of G.

Theorem

For every $n \ge 10$, we have that $g(X_M) \ge 2$ for every vanilla maximal subgroup M of G.

Ideas:

1. For every vanilla maximal M, there is a prime ℓ dividing n and a positive integer e such that $[G:M] = \ell^e$.

Theorem

For every $n \ge 10$, we have that $g(X_M) \ge 2$ for every vanilla maximal subgroup M of G.

- 1. For every vanilla maximal M, there is a prime ℓ dividing n and a positive integer e such that $[G:M] = \ell^e$.
- 2. Further, for one type of ramified point of $X_M \to \mathbb{P}^1$ we will always have ramification index ℓ , and there will be $\varphi(n)$ many such ramified points.

Theorem

For every $n \ge 10$, we have that $g(X_M) \ge 2$ for every vanilla maximal subgroup M of G.

- 1. For every vanilla maximal M, there is a prime ℓ dividing n and a positive integer e such that $[G:M] = \ell^e$.
- 2. Further, for one type of ramified point of $X_M \to \mathbb{P}^1$ we will always have ramification index ℓ , and there will be $\varphi(n)$ many such ramified points.
- 3. Plug this data into the Riemann-Hurwitz genus formula to prove the Theorem in the cases n = 11 and $n \ge 13$.

- 1. For every vanilla maximal M, there is a prime ℓ dividing n and a positive integer e such that $[G:M] = \ell^e$.
- 2. Further, for one type of ramified point of $X_M \to \mathbb{P}^1$ we will always have ramification index ℓ , and there will be $\varphi(n)$ many such ramified points.
- 3. Plug this data into the Riemann-Hurwitz genus formula to prove the Theorem for n = 11 and $n \ge 13$.
- 4. For n=10 and n=12, we have $\varphi(n)=4$ and $\ell=2$ is a possibility—these values do not contribute enough in Riemann-Hurwitz to deduce $g(X_M) \geq 2$

- 1. For every vanilla maximal M, there is a prime ℓ dividing n and a positive integer e such that $[G:M] = \ell^e$.
- 2. Further, for one type of ramified point of $X_M \to \mathbb{P}^1$ we will always have ramification index ℓ , and there will be $\varphi(n)$ many such ramified points.
- 3. Plug this data into the Riemann-Hurwitz genus formula to prove the Theorem for n = 11 and $n \ge 13$.
- 4. For n=10 and n=12, we have $\varphi(n)=4$ and $\ell=2$ is a possibility—these values do not contribute enough in Riemann-Hurwitz to deduce $g(X_M) \geq 2$
- 5. In these cases we consider a second type of ramified point corresponding to prime divisors p of n other than 2, i.e., p = 5 for n = 10 and p = 3 for n = 12.

References I

- [1] Thierry Bousch. "Sur quelques problemes de dynamique holomorphe". PhD thesis. Paris 11, 1992.
- [2] G. Faltings. "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern". In: *Invent. Math.* 73.3 (1983), pp. 349–366.
- [3] E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer. "Cycles of quadratic polynomials and rational points on a genus-2 curve". In: *Duke Math. J.* 90.3 (1997), pp. 435–463.

References II

- [4] Robert M. Guralnick and John Shareshian. "Symmetric and alternating groups as monodromy groups of Riemann surfaces. I. Generic covers and covers with many branch points". In: *Mem. Amer. Math. Soc.* 189.886 (2007), pp. vi+128.
- [5] David Krumm. "A finiteness theorem for specializations of dynatomic polynomials". In: Algebra & Number Theory 13.4 (2019), pp. 963–993.
- [6] Patrick Morton. "Arithmetic properties of periodic points of quadratic maps, II". In: Acta Arithmetica 87.2 (1998), pp. 89–102.

References III

- [7] Patrick Morton and Pratiksha Patel. "The Galois theory of periodic points of polynomial maps". In: *Proc. London Math. Soc.* (3) 68.2 (1994), pp. 225–263. ISSN: 0024-6115.
- [8] Jean-Pierre Serre. Topics in Galois theory. Second. Vol. 1. Research Notes in Mathematics. A K Peters, Ltd., Wellesley, MA, 2008.
- [9] Michael Stoll. "Rational 6-cycles under iteration of quadratic polynomials". In: *LMS Journal of Computation and Mathematics* 11 (2008), pp. 367–380.

THE END