COMP5046: From Classification to Tagging

Joel Nothman joel.nothman@sydney.edu.au

School of Information Technologies University of Sydney

2018-04-17

Part I

Classification Review

Applications of classification

- Wikipedia article entity types page → {person, company, location,...}
- Thematic classification article → {economics, media, health,...}
- Spam filtering
 Email → {spam, notspam}
- Sentiment detection
 Product review → {positive, neutral, negative}
- . . .

Prediction with Naïve Bayes

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(y|\mathbf{x})|$$

$$= \underset{y}{\operatorname{argmax}} \frac{p(\mathbf{x}, y)}{p(\mathbf{x})}$$

$$\propto \underset{y}{\operatorname{argmax}} p(\mathbf{y}) p(\mathbf{x}|y)$$

$$\propto \underset{y}{\operatorname{argmax}} p(y) \prod_{i} \underbrace{p(x_{i}|y)}_{y}$$

$$\underset{y}{\operatorname{argmax}} p(y) \prod_{i} \underbrace{p(x_{i}|y)}_{y}$$

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(y|\mathbf{x}) \int_{\mathbf{N}}^{50 \text{ MC}} \sum_{\mathbf{y}}^{45} d\mathbf{y}$$

$$= \underset{y}{\operatorname{argmax}} \frac{\exp \mathbf{w} \cdot f(x, y)}{\sum_{y'} \exp \mathbf{w} \cdot f(x, y')}$$

$$= \underset{y}{\operatorname{argmax}} \frac{\exp \sum_{i} w_{i} f_{i}(x, y)}{\sum_{y'} \exp \sum_{i} w_{i} f_{i}(x, y')}$$

$$\propto \underset{y}{\operatorname{argmax}} \sum_{i} \underbrace{w_{i} f_{i}(x, y)}_{\mathbf{y}}$$

$$\propto \underset{y}{\operatorname{argmax}} \sum_{i} \underbrace{w_{i} f_{i}(x, y)}_{\mathbf{y}}$$

$$\frac{\exp \sum_{i} w_{i} f_{i}(x, y)}{\mathbf{y}}$$

$$\frac{\exp \sum_{i} w_{i} f_{i}(x, y)}{\mathbf{y}}$$

THE UNIVERSITY OF

THE UNIVERSITY OF SYDNEY

$$\hat{y} = \underset{y}{\operatorname{argmax}} \underbrace{\hat{\mathbf{w}}}_{i} \cdot f(\mathbf{x}, y)$$

$$= \underset{y}{\operatorname{argmax}} \sum_{i} w_{i} f_{i}(\mathbf{x}, y)$$

Example •000

Part of Speech (POS) Tagging

```
Mr.
      Vinken
              is
                    chairman
                               of
                                    Elsevier
                                              N.V.
NNP
      NNP
              VBZ
                    NN
                                IN
                                    NNP
                                              NNP
the
     Dutch
             publishing
                        group
DΤ
     NNP
             VBG
                         NN
```

- 45 POS tags
- 1 million words Penn Treebank WS I text
- 97% state of the art accuracy

Penn Treebank tagset

Tag	Desciption	Tag	Desciption
CC	Coordinating conjunction	PRP\$	Possessive pronoun
CD	Cardinal number	RB	Adverb
DT	Determiner	RBR	Adverb, comparative
EX	Existential "there"	RBS	Adverb, superlative
FW	Foreign word	RP	Particle
IN	Preposition or subordinating conjunction	SYM	Symbol
JJ	Adjective	TO	"to"
JJR	Adjective, comparative	UH	Interjection
JJS	Adjective, superlative	VB	Verb, base form
LS	List item marker	VBD	Verb, past tense
MD	Modal	VBG	Verb, gerund or present participle
NN	Noun, singular or mass	VBN	Verb, past participle
NNS	Noun, plural	VBP	Verb, non-3rd person singular present
NNP	Proper noun, singular	VBZ	Verb, 3rd person singular present
NPS	Proper noun, plural	WDT	Wh-determiner
PDT	Predeterminer	WP	Wh-pronoun
POS	Possessive ending	WP\$	Possessive wh-pronoun
PRP	Personal pronoun	WRB	Wh-adverb

noun

Input:

equity will increase

Features:

THE UNIVERSITY OF SYDNEY

{ }

Input:

equity will increase

Features:

THE UNIVERSITY OF SYDNEY

{pw will}

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305
5	VΒ	w increase	2.60052

Input:

equity will increase

Features:

THE UNIVERSITY OF SYDNEY

{pw will, w increase}

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305
5	VΒ	w increase	2.60052

Classification

Input:

equity will increase

Features:

SYDNEY

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305
5	VΒ	w increase	2.60052

Input:

equity will increase

Features:

```
\operatorname*{argmax}_{v} p(y|\mathbf{x}):
```

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305
5	VΒ	w increase	2.60052

```
Input:
```

equity will increase

Features:

THE UNIVERSITY OF

{pw will, w increase, nw *}

```
areulois word
               next
```

```
\operatorname{argmax} p(y|\mathbf{x}):
p(NN|\mathbf{x}) \propto
```

$$p(VB|\mathbf{x}) \propto$$

I	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305
5	VΒ	w increase	2.60052

Input:

equity will increase

Features:

THE UNIVERSITY OF SYDNEY

```
tag
          attribute
                        weight
   NN
         nw *
                       0.46998
   NN
         w increase
                       2.97384
3
   VB
         nw *
                      -0.08660
   VB
          lliw wg
                       1.47305
5
   VB
         w increase
                       2.60052
```

```
\operatorname{argmax} p(y|\mathbf{x}):
p(NN|\mathbf{x}) \propto 0.0
w_i = NA
f_i(\mathbf{pw\ will}, NN) = 1
p(VB|\mathbf{x}) \propto
```

Input:

equity will increase

Features:

THE UNIVERSITY OF

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305
5	VΒ	w increase	2.60052

```
\begin{aligned} \underset{y}{\operatorname{argmax}} & p(y|\mathbf{x}): \\ p(NN|\mathbf{x}) & \propto 0.0 + 2.97384 \\ & w_5 = 2.97384 \end{aligned} \qquad \textit{f}_5(\mathbf{w} \; \text{increase}, \textit{NN}) = 1 \\ p(VB|\mathbf{x}) & \propto \end{aligned}
```

Input:

equity will increase

Features:

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305
5	VΒ	w increase	2.60052

```
\begin{array}{c} \mathop{\mathsf{argmax}} p(y|\mathbf{x}): \\ p(\textit{NN}|\mathbf{x}) \propto 0.0 + 2.97384 + 0.46998 \\ w_1 = 0.46998 \qquad f_1(\mathbf{nw} *, \textit{NN}) = 1 \\ p(\textit{VB}|\mathbf{x}) \propto \end{array}
```

Input:

THE UNIVERSITY OF

equity will increase

Features:

{pw will, w increase, nw *}

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	pw will	1.47305

w increase

$$\operatorname{argmax} p(y|\mathbf{x})$$
:

$$p(NN|\mathbf{x}) \propto 0.0 + 2.97384 + 0.46998 = 3.44382$$

$$p(VB|\mathbf{x}) \propto$$

VB

Is increase a NN or a VB?

Input: equity will increase

Eastures

Features:

{pw will, w increase, nw *}

w increase

$$\underset{y}{\operatorname{argmax}} p(y|\mathbf{x}):$$

$$p(NN|\mathbf{x}) \propto 0.0 + 2.97384 + 0.46998 = 3.44382$$

$$p(VB|\mathbf{x}) \propto 1.47305$$

 $w_4 = 1.47305$ $f_4(\mathbf{pw will}, VB) = 1$

VB

Input:

equity will increase

Features:

THE UNIVERSITY OF

{pw will, w increase, nw *}

```
tag
         attribute
                       weight
   NN
         nw *
                      0.46998
   NN
         w increase
                      2.97384
3
   VB
         nw *
                     -0.08660
   VB
         lliw wg
                      1.47305
```

w increase

$$\underset{y}{\operatorname{argmax}} p(y|\mathbf{x}):$$

$$p(NN|\mathbf{x}) \propto 0.0 + 2.97384 + 0.46998 = 3.44382$$

$$p(VB|\mathbf{x}) \propto 1.47305 + 2.60052$$

 $w_5 = 2.60052$ $f_5(\mathbf{w increase}, VB) = 1$

2.60052

Is increase a NN or a VB?

Input:

equity will increase

Features:

THE UNIVERSITY OF

{pw will, w increase, nw *}

w increase

5

VB

$$\underset{y}{\operatorname{argmax}} p(y|\mathbf{x}):$$

$$p(NN|\mathbf{x}) \propto 0.0 + 2.97384 + 0.46998 = 3.44382$$

$$p(VB|\mathbf{x}) \propto 1.47305 + 2.60052 - 0.08660$$

$$w_3 = -0.08660$$
 $f_3(\text{nw *}, VB) = 1$

Input:

equity will increase

Features:

{pw will, w increase, nw *}

i	tag	attribute	weight
1	NN	nw *	0.46998
2	NN	w increase	2.97384
3	VΒ	nw *	-0.08660
4	VΒ	lliw wa	1.47305

w increase

$\operatorname{argmax} p(y|\mathbf{x})$:

$$p(NN|\mathbf{x}) \propto 0.0 + 2.97384 + 0.46998 = 3.44382$$

$$p(VB|\mathbf{x}) \propto 1.47305 + 2.60052 - 0.08660 = 3.98697$$

Problems with classification

- Classification ignores structure
 ⇒ No model of dependence between outputs
- POS: VB (e.g., increase) more likely after MD (e.g., will)
- NER: I-PER (e.g., Gillard) more likely after B-PER (e.g., Julia)

Tagging

Mr. Vinken is chairman of Elsevier N.V. NNP NNPVBZ NN IN NNP NNP B-NP I-NP B-VP B-NP B-PP B-NP I-NP B-PER I-PER U O U B-ORG I-ORG

THE UNIVERSITY OF SYDNEY

```
the
       Dutch
                publishing
                             group
DT
       NNP
                VBG
                             NN
B-NP
       I-NP
                I-NP
                             I-NP
0
       0
                0
```

THE UNIVERSITY OF

Find the best sequence:

Classification

- words
- tags
- base pairs
- . . .
- Which sequence is the best sequence?

⇒ the most probable sequence

$$\underset{v_1...v_n}{\operatorname{argmax}} p(y_1 \ldots y_n)$$

we need a probability model of language

Language modelling vs. tagging

- LMs used to measure likelihood of a given sentence p(W) \Rightarrow output is a probability
- Taggers used to predict best tag sequence for sentence p(T|W)
 - ⇒ output is a distribution over possible sequences

THE UNIVERSITY OF

Part II

Tagging

Outline

- sequence tagging
 - Hidden Markov Models
 - Maximum Entropy Markov Models
- finding the optimal sequence
 - using a single history
 - Viterbi
 - Beam search
- features used for:
 - POS tagging (Ratnaparkhi, C&C, Toutanova et al)
 - Named Entity Recognition (Borthwick, C&C, Klein et al)
- Conditional Random Fields

Language Modelling

Markov

 Find the best sequence (words, tags, base pairs, ...) ⇒ the most probable sequence

Training

$$\underset{y_1...y_n}{\operatorname{argmax}} p(y_1...y_n)$$

$$\underset{t \circ \delta}{\downarrow} | \omega^{\delta^r} \delta^s$$

Chain rule expansion:

$$p(y_1 \dots y_n) = p(y_1)p(y_2|y_1)p(y_3|y_1, y_2) \cdots p(y_n|y_1, \dots, y_{n-1})$$
predict y_1
predict y_2 given y_1
predict y_3 given y_1 and y_2
...

Markov Assumption

- Each prediction cannot depend on entire history!
- Markov model approximation:

$$p(y_1...y_n) = p(y_1)p(y_2|y_1)p(y_3|y_1,y_2)\cdots p(y_n|y_1,...,y_{n-1})$$

$$\approx p(y_1)p(y_2|y_1)p(y_3|y_2)\cdots p(y_n|y_{n-1})$$

- Current prediction only based on previous prediction
- In theory can use any fixed length history
- In practice a history of 2 is typically used (for English)

Andrei Markov (1856–1922)

http://en.wikipedia.org/wiki/Andrev Markov

An example of statistial investigation in the text of 'Eugene Onyegin' illustrating coupling of 'tests' in chains. In Proceedings of the Academy of Sciences, St. Petersburg, 7:153–162, 1913.

Tagging with Probabilities

Markov

THE UNIVERSITY OF

• Find the best tag sequence given the words (cond. probability):

$$\underset{t_1...t_n}{\operatorname{argmax}} p(t_1 \ldots t_n | w_1 \ldots w_n)$$

• Alternatively maximise $p(t_1 \dots t_n, w_1 \dots w_n)$ (joint probability):

$$\underset{t_1 \dots t_n}{\operatorname{argmax}} p(t_1 \dots t_n | w_1 \dots w_n) = \underset{t_1 \dots t_n}{\operatorname{argmax}} \frac{p(t_1 \dots t_n, w_1 \dots w_n)}{p(w_1 \dots w_n)}$$

$$= \underset{t_1 \dots t_n}{\operatorname{argmax}} p(t_1 \dots t_n, w_1 \dots w_n)$$

$$\underset{t_1 \dots t_n}{\operatorname{argmax}} p(t_1 \dots t_n, w_1 \dots w_n)$$

$$\underset{t_1 \dots t_n}{\operatorname{argmax}} p(t_1 \dots t_n, w_1 \dots w_n)$$

$$\underset{t_1 \dots t_n}{\operatorname{argmax}} p(t_1 \dots t_n, w_1 \dots w_n)$$

$$\underset{t_1 \dots t_n}{\operatorname{argmax}} p(t_1 \dots t_n, w_1 \dots w_n)$$

- MaxEnt taggers directly maximise conditional probability
- Hidden Markov Model taggers maximise joint probability (easier aenerative Is needs to account for prob of language

Hidden Markov Model Tagging

Maximise the joint probability:

$$p(t_1 \ldots t_n, w_1 \ldots w_n) = p(t_1 \ldots t_n) p(w_1 \ldots w_n | t_1 \ldots t_n)$$

Tag sequence probability (first order Markov Model):

$$p(t_1 \dots t_n) \approx p(t_1)p(t_2|t_1)p(t_3|t_2) \cdots p(t_n|t_{n-1})$$

Word sequence probability (given the tags):

$$p(w_1 \dots w_n | t_1 \dots t_n) \approx p(w_1 | t_1) p(w_2 | t_2) \cdots p(w_n | t_n)$$

• Using $p(w_1 \dots w_n | t_1 \dots t_n)$ is counter-intuitive but correct since we're maximising the joint probability

Three questions for HMMs

Markov

000000

Training

- language modelling: how compute likelihood of a sentence p(W)? (Manning and Schütze, Section 9.3)
- training: how find model that best explains the data?
- tagging: how choose a tag sequence for a given sentence p(T|W)?

Maximum Likelihood Estimation for Markov Models

- Probabilities are estimated from annotated data
- Estimates are simple relative frequencies (MLE):

$$p^*(t_i|t_{i-1}) = \frac{\mathsf{count}(t_{i-1},t_i)}{\mathsf{count}(t_{i-1})}$$

$$p^*(w_i|t_i) = \frac{\mathsf{count}(w_i, t_i)}{\mathsf{count}(t_i)}$$

CPT excerpt for tags (transition probabilities)

http://www.clips.ua.ac.be/conl12000/chunking/

Tagging

23

CPT excerpt for tags (transition probabilities)

CPT excerpt for tags (transition probabilities)

$$\rho^*(T_i|T_{i-1}) = \begin{array}{c|ccccc} & t_i & * & \text{MD} & \text{NN} & \text{VB} \\ \hline * & & 0.00000 & 0.00056 & 0.04521 & 0.00481 \\ & & & & 0.00000 & 0.00000 & 0.00000 & 0.78726 \\ & & & & & & & & & & \\ \text{NN} & & & & & & & & \\ \text{VB} & & & & & & & & \\ \hline \end{array}$$

CPT excerpt for tags (transition probabilities)

$$\operatorname{count}(T_{i-1}, T_i) = \begin{array}{|c|c|c|c|c|c|}\hline t_i & * & \operatorname{MD} & \operatorname{NN} & \operatorname{VB} & \operatorname{Total} \\\hline * & & 0 & 5 & 404 & 43 & 8937 \\ \operatorname{MD} & 0 & 0 & 0 & 1706 & 2167 \\ \operatorname{NN} & 14 & 548 & 3546 & 43 & 30147 \\ \operatorname{VB} & 0 & 5 & 394 & 41 & 6017 \\\hline \end{array}$$

CPT excerpt for words (emission probabilities)

	A	all word!			
	t_i w_i	equity	increase	will	Total
$count(W_i, T_i) \neq$	MD	0	0	658	2167
./	NN	33	78	1	30147
V	VB	0	28	0	6017
110	'	ı		!	

Markov

Training

Generation

iterbi Tagging

eatures

CRFs 00 24

CPT excerpt for words (emission probabilities)

$$count(W_i, T_i) = \begin{array}{|c|c|c|c|c|c|}\hline t_i & equity & increase & will & Total\\\hline MD & 0 & 0 & 658 & 2167\\\hline NN & 33 & 78 & 1 & 30147\\\hline VB & 0 & 28 & 0 & 6017\\\hline \end{array}$$

CPT excerpt for words (emission probabilities)

$$count(W_i, T_i) = \begin{array}{|c|c|c|c|c|}\hline t_i & equity & increase & will & Total\\\hline MD & 0 & 0 & 658 & 2167\\ NN & 33 & 78 & 1 & 30147\\ VB & 0 & 28 & 0 & 6017\\\hline \end{array}$$

Markov

Training 000

Generation

24

CPT excerpt for words (emission probabilities)

$$count(W_i, T_i) = \begin{array}{|c|c|c|c|c|c|}\hline t_i & equity & increase & will & Total\\\hline MD & 0 & 0 & 658 & 2167\\\hline NN & 33 & 78 & 1 & 30147\\\hline VB & 0 & 28 & 0 & 6017\\\hline \end{array}$$

Generative process for a state-emission HMM

Given a HMM instance, we can generate sentences:

i := 1

THE UNIVERSITY OF

- 2 $t_i := \text{sample from } p^*(T|*)$
- do
- do $w_i := \text{sample from } p^*(W|t_i) e^{m_i \cdot 5^{*}}$
- 6 i := i + 1
- 6
- $t_i := \text{sample from } p^*(T|t_{i-1})$ until $t_i \equiv *$ $t_i = t_i$ $t_i = t_i$ $t_i = t_i$ $t_i = t_i$

but this isn't tagging...

how choose a tag sequence for a given sentence p(T|W)?

Finding the most probable sequence

- Current decision depends on previous decision(s)
- Cannot simply take the most probable tag for each word
- Brute force search would take $O(n^{\text{\#toks}})$
- Viterbi algorithm finds the shortest path through the tag lattice
 - $O(n^2)$ in the number of tags (e.g. POS tags 45^2)
- An instance of dynamic programming
 - found throughout NLP for estimation and decoding

Markov Training

ining Generation

Viterbi Tagging

Features

CPT excerpts from CoNLL 2000 data

$$p^*(T_i|T_{i-1}) = \begin{array}{c|ccccc} t_i & * & \text{MD} & \text{NN} & \text{VB} \\ \hline t_{i-1} & * & \text{MD} & \text{NN} & \text{VB} \\ \hline * & 0.00000 & 0.00056 & 0.04521 & 0.00481 \\ \hline \text{MD} & 0.00000 & 0.00000 & 0.00000 & 0.78726 \\ \hline \text{NN} & 0.00046 & 0.01818 & 0.11762 & 0.00143 \\ \hline \text{VB} & 0.00000 & 0.00083 & 0.06548 & 0.00681 \\ \hline \end{array}$$

CPT excerpts from CoNLL 2000 data: log-transformed

Viterbi trace: $\max p(t_0, t_1, \mathbf{w})$

equity will increase

t_0	t_1	Transition		Emission
*	MD	$p(t_1 = \mathrm{MD} t_0 = *)$	×	$p(w_1 = \text{equity} t_1 = \text{MD})$
*	NN	$p(t_1 = \mathrm{NN} t_0 = *)$	×	$p(w_1 = \text{equity} t_1 = \text{NN})$
*	VB	$p(t_1 = VB t_0 = *)$	×	$p(w_1 = \text{equity} t_1 = \text{VB})$

Viterbi trace: max $p(t_0, t_1, t_2, \mathbf{w})$

t_1	t ₂	Transition		Emission		Best history
MD	MD	$p(t_2 = MD t_1 = MD)$	X	$p(w_2 = \text{will} t_2 = \text{MD})$	×	$\max_{t_0} p(t_1 = MD, t_0)$
NN	MD	$p(t_2 = MD t_1 = NN)$	×	$p(w_2 = will t_2 = MD)$	×	$\max_{t_0} p(t_1 = \text{NN}, t_0)$
VB	MD	$\rho(t_2 = \mathrm{MD} t_1 = \mathrm{VB})$	×	$\rho(w_2 = \text{will} t_2 = \text{MD})$	×	$\max_{t_0} p(t_1 = VB, t_0)$
MD	NN	$p(t_2 = NN t_1 = MD)$	×	$p(w_2 = will t_2 = NN)$	×	$max_{t_0} \ p(t_1 = \mathrm{MD}, t_0)$
NN	NN	$p(t_2 = NN t_1 = NN)$	×	$p(w_2 = will t_2 = NN)$	×	$\max_{t_0} p(t_1 = NN, t_0)$
VB	NN	$\rho(t_2 = \text{NN} t_1 = \text{VB})$	×	$\rho(w_2 = \text{will} t_2 = \text{NN})$	×	$max_{t_0}^{c} \ p(t_1 = \mathrm{VB}, t_0)$
MD	VB	$p(t_2 = VB t_1 = MD)$	×	$p(w_2 = \text{will} t_2 = \text{VB})$	×	$max_{t_0} \ p(t_1 = \mathrm{MD}, t_0)$
NN	VB	$p(t_2 = VB t_1 = NN)$	\times	$p(w_2 = will t_2 = VB)$	×	$\max_{t_0} p(t_1 = NN, t_0)$
VB	VB	$p(t_2 = VB t_1 = VB)$	×	$p(w_2 = will t_2 = VB)$	×	$\max_{t_0}^{\circ} p(t_1 = VB, t_0)$

t_1	t_2	log p	argmax	max?
MD	MD	0.50		
MD	MD	$-\infty - 0.52 - \infty = -\infty$	_	
NN	MD	-1.74 - 0.52 - 4.30 = -6.56	*	yes
VB	MD	$-3.08 - 0.52 - \infty = -\infty$	_	
MD	NN	$-\infty - 4.52 - \infty = -\infty$	-	
NN	NN	-0.93 - 4.52 - 4.30 = -9.75	*	yes
VB	NN	$-1.18 - 4.52 - \infty = -\infty$	_	
MD	VB	$-0.10 - \infty - \infty = -\infty$	_	
NN	VB	$-2.84 - \infty - 4.30 = -\infty$	*	
VB	VB	$-2.17 - \infty - \infty = -\infty$	_	

THE UNIVERSITY OF SYDNEY

Viterbi trace: $\max p(t_0, t_1, t_2, t_3, \mathbf{w})$

t ₂	t ₃	Transition		Emission		Best history
MD	MD	$p(t_3 = MD t_2 = *)$	×	$p(w_3 = \text{increase} t_3 = MD)$	×	$\max_{t_0, t_1} p(t_2 = MD, t_0, t_1)$
NN	MD	$p(t_3 = MD t_2 = *)$	×	$p(w_3 = \text{increase} t_3 = MD)$	×	$\max_{t_0, t_1} p(t_2 = NN, t_0, t_1)$
VB	MD	$p(t_3 = MD t_2 = *)$	×	$p(w_3 = \text{increase} t_3 = MD)$	×	$\max_{t_0, t_1} p(t_2 = VB, t_0, t_1)$
MD	NN	$p(t_3 = NN t_2 = MD)$	×	$p(w_3 = \text{increase} t_3 = NN)$	×	$\max_{t_0, t_1} p(t_2 = MD, t_0, t_1)$
NN	NN	$p(t_3 = NN t_2 = NN)$	×	$p(w_3 = increase t_3 = NN)$	×	$\max_{t_0, t_1} p(t_2 = NN, t_0, t_1)$
VB	NN	$p(t_3 = NN t_2 = VB)$	×	$p(w_3 = \text{increase} t_3 = NN)$	×	$\max_{t_0, t_1} p(t_2 = VB, t_0, t_1)$
MD	VB	$p(t_3 = VB t_2 = MD)$	×	$p(w_3 = \text{increase} t_3 = VB)$	×	$\max_{t_0, t_1} p(t_2 = MD, t_0, t_1)$
NN	VB	$p(t_3 = VB t_2 = NN)$	×	$p(w_3 = increase t_3 = VB)$	×	$\max_{t_0, t_1} p(t_2 = NN, t_0, t_1)$
VB	VB	$p(t_3 = VB t_2 = VB)$	×	$p(w_3 = \text{increase} t_3 = VB)$	×	$\max_{t_0,t_1} p(t_2 = VB, t_0, t_1)$

t ₂	t ₃	log p	argmax t ₀ ,t ₁	max?
MD	MD	$-\infty - \infty - 6.56 = -\infty$	*, NN	
NN	MD	$-1.74 - \infty - 9.75 = -\infty$	*, NN	
VB	MD	$-3.08 - \infty - \infty = -\infty$	_	
MD	NN	$-\infty - 2.59 - 6.56 = -\infty$	*, NN	
NN	NN	-0.93 - 2.59 - 9.75 = -13.27	*, NN	yes
VB	NN	$-1.18 - 2.59 - \infty = -15.17$	_	
MD	VB	-0.10 - 2.33 - 6.56 = -8.99	*, NN	yes
NN	VB	-2.84 - 2.33 - 9.75 = -14.92	*, NN	
VB	VB	$-2.17 - 2.33 - \infty = -\infty$	_	

Viterbi trace: $\max p(t_0, t_1, t_2, t_3, \mathbf{w})$

t ₂	t ₃	Transition		Emission		Best history
MD	MD	$p(t_3 = MD t_2 = *)$	×	$p(w_3 = \text{increase} t_3 = MD)$	×	$\max_{t_0, t_1} p(t_2 = MD, t_0, t_1)$
NN	MD	$p(t_3 = MD t_2 = *)$	\times	$p(w_3 = \text{increase} t_3 = MD)$	×	$\max_{t_0, t_1} p(t_2 = NN, t_0, t_1)$
VB	MD	$p(t_3 = \mathrm{MD} t_2 = *)$	×	$p(w_3 = \text{increase} t_3 = MD)$	×	$\max_{t_0, t_1} p(t_2 = VB, t_0, t_1)$
MD	NN	$p(t_3 = NN t_2 = MD)$	×	$p(w_3 = \text{increase} t_3 = NN)$	×	$\max_{t_0, t_1} p(t_2 = MD, t_0, t_1)$
NN	NN	$p(t_3 = NN t_2 = NN)$	×	$p(w_3 = \text{increase} t_3 = NN)$	×	$\max_{t_0,t_1} p(t_2 = NN, t_0, t_1)$
VB	NN	$p(t_3 = NN t_2 = VB)$	×	$p(w_3 = \text{increase} t_3 = NN)$	\times	$\max_{t_0, t_1} p(t_2 = VB, t_0, t_1)$
MD	VB	$p(t_3 = VB t_2 = MD)$	×	$p(w_3 = \text{increase} t_3 = VB)$	×	$\max_{t_0, t_1} p(t_2 = MD, t_0, t_1)$
NN	VB	$p(t_3 = VB t_2 = NN)$	\times	$p(w_3 = \text{increase} t_3 = VB)$	×	$\max_{t_0, t_1} p(t_2 = NN, t_0, t_1)$
VB	VB	$p(t_3 = VB t_2 = VB)$	×	$p(w_3 = \text{increase} t_3 = VB)$	×	$\max_{t_0, t_1} p(t_2 = VB, t_0, t_1)$

t ₂	t ₃	log p	argmax t ₀ ,t ₁	max?
MD	MD	$-\infty - \infty - 6.56 = -\infty$	*, NN	
NN	MD	$-1.74 - \infty - 9.75 = -\infty$	*, NN	
VB	MD	$-3.08 - \infty - \infty = -\infty$	_	
MD	NN	$-\infty - 2.59 - 6.56 = -\infty$	*, NN	
NN	NN	-0.93 - 2.59 - 9.75 = -13.27	*, NN	yes
VB	NN	$-1.18 - 2.59 - \infty = -15.17$	_	
MD	VB	-0.10 - 2.33 - 6.56 = -8.99	*, NN	yes
NN	VB	-2.84 - 2.33 - 9.75 = -14.92	*, NN	
VB	VB	$-2.17 - 2.33 - \infty = -\infty$	_	

The essence of the Viterbi algorithm

for word *i*for each tag *t*we keep track of the best score so far that labels *i* with that tag, and the previous tag that led to it

for word *i*Sequence of the best score so far that labels *i* with that tag, and the previous tag that led to it

Finds the most probable tag sequence under a Markov assumption for tag bigrams $p(t_1, t_2, \ldots, t_n) = p(t_1)p(t_2|t_1)\cdots p(t_n|t_{n-1})$ by solving the problem for t_1 , then t_1, t_2 , then t_1, t_2, t_3, \ldots

Notes on Viterbi

- $\mathbf{O}(n^2)$ in the number of tags (e.g. POS tags 45^2)
- finds max and argmax of score $(t_1, \ldots, t_n, w_1, \ldots w_n)$
 - HMM is generative and probabilistic: score = p is factored into transition and emission
 - can use Viterbi where score is derived from features discriminatively
 - some features would encode previous tag
 - technically can condition on previous k tags for some fixed k

- Beam search works well in practice: approximate search
- $O(n^2)$ in the beam width (typically 5^2)

Part of Speech (POS) Tagging

```
Mr.
      Vinken
               is
                     chairman
                               of
                                    Elsevier
                                            N.V.
NNP
       NNP
               VBZ
                     NN
                               IN
                                    NNP
                                            NNP
the
            publishing
     Dutch
                       group
DT
     NNP
            VBG
                       NN
```

45 POS tags

THE UNIVERSITY OF

- 1 million words Penn Treebank WSJ text
- 97% state of the art accuracy

Chunk Tagging

```
Mr.
       Vinken
                is
                        chairman
                                   of
                                           Elsevier
                                                    N.V.
B-NP
        I-NP
                B-VP
                        B-NP
                                   B-PP
                                           B-NP
                                                    I-NP
the
        Dutch
                publishing
                           group
B-NP
       I-NP
                I-NP
                           I-NP
                                   0
```

Generation

- 18 phrase tags
- 1 million words Penn Treebank WSJ text
- 94% state of the art accuracy
- Alternative: B-XX only used to separate adjacent phrases of same type

THE UNIVERSITY OF

36

Named Entity Tagging

Mr. Vinken chairman of Elsevier N.V. I-PER B-PER $\mathbf{0}$ B-ORG I-ORG Dutch publishing the group 0 B-MISC O

- 4 named entity tags
- 400,000 words CoNLL 2003 shared task data
- Over Reuters newswire text
- 90% state of the art accuracy

Problems with Markov Model Taggers

- unreliable zero or very low counts
 - does a zero count indicate an impossible event?
 - ⇒ smoothing the counts solves this problem
- Words not seen in the data are especially problematic
 - ⇒ would like to include word internal information e.g. capitalisation or suffix information
- Cannot incorporate diverse pieces of evidence for predicting tags e.g. global document information

Tagging with Maximum Entropy Markov Models

• The conditional probability of a tag sequence $t_1 \dots t_n$ is

$$p(t_1 \ldots t_n | w_1 \ldots w_n) \approx \prod_{i=1}^n p(t_i | C_i)$$

given a sentence $w_1 \dots w_n$ and contexts $C_1 \dots C_n$

- The context includes previously assigned tags (for a fixed history)
- Beam search is used to find the most probable sequence in practice

THE UNIVERSITY OF SYDNEY

Ratnaparkhi POS-tagging Contextual Predicates

Condition	Contextual predicate
$freq(w_i) < 5$	X is prefix/suffix of w_i , $ X \le 4$
	<i>w_i</i> contains a digit
	<i>w_i</i> contains uppercase character
	w_i contains a hyphen
$\forall w_i$	$w_i = X$
	$w_{i-1} = X$, $w_{i-2} = X$
	$w_{i+1} = X, \ w_{i+2} = X$
$\forall w_i$	$KLASS_{i-1} = X$
	$KLASS_{i-2}KLASS_{i-1} = XY$

C&C NER Contextual Predicates

Condition	Contextual predicate		
$freq(w_i) < 5$	X is prefix/suffix of w_i , $ X \le 4$		
	w_i contains a digit		
	<i>w_i</i> contains uppercase character		
	w_i contains a hyphen		
$\forall w_i$	$w_i = X$		
	$w_{i-1} = X$, $w_{i-2} = X$		
	$w_{i+1} = X$, $w_{i+2} = X$		
$\forall w_i$	$POS_i = X$		
	$POS_{i-1} = X$, $POS_{i-2} = X$		
	$POS_{i+1} = X$, $POS_{i+2} = X$		
$\forall w_i$	$KLASS_{i-1} = X$		
	$KLASS_{i-2}KLASS_{i-1} = XY$		

THE UNIVERSITY OF SYDNEY

C&C NER Additional Contextual Predicates

Condition	Contextual predicate	
$freq(w_i) < 5$	w_i contains period	
	w_i contains punctuation	
	w_i is only digits	
	w_i is a number	
	w_i is $\{\text{upper,lower,title,mixed}\}$ case	
	w_i is alphanumeric	
	length of w_i	
	w_i has only Roman numerals	
	w_i is an initial $(X.)$	
	w; is an acronym (ABC, A.B.C.)	

THE UNIVERSITY OF SYDNEY

THE UNIVERSITY OF SYDNEY

C&C NER Additional Contextual Predicates

Condition	Contextual predicate		
$\forall w_i$	memory NE tag for w_i		
	unigram tag of w_{i+1}		
	unigram tag of w_{i+2}		
$\forall w_i$	<i>w_i</i> in a gazetteer		
	w_{i-1} in a gazetteer		
	w_{i+1} in a gazetteer		
$\forall w_i$	w_i not lowercase and $f_{lc} > f_{uc}$		
$\forall w_i$	unigrams of word type		
	bigrams of word types		
	trigrams of word types		

THE UNIVERSITY OF

43

Example Word Types (Collins, 2002)

- Moody ⇒ Aa
- A.B.C. ⇒ A.A.A.
- 1,345.00 \Longrightarrow 0,0.0

• Mr. Smith \Longrightarrow Aa. Aa

Fancier NER predicates (Kazama and Torisawa, 2008)

contextual predicate for tagging w_i : X is a Wikipedia category for A $\forall i < i < k$ such that the phrase $\{w_i, \dots w_k\}$ is the title of Wikipedia article A

Thus our discriminative learner can learn an association between Wikipedia categories and named entity types

THE UNIVERSITY OF

Linear Chain Conditional Random Fields

- assign probability to entire sequence as a single classification
- use probabilities of tag-bigrams
- overcomes the label bias problem
 - bias towards tags with few possible successors in HMM/MEMM
 - but in practice this doesn't seem to be the major difficulty
- there are many tasks where CRF is now state-of-the-art
- recently combined with learnt word sequence representations (with BiLSTMs)

Take away

THE UNIVERSITY OF

- Sequence tagging classifies each token
- with dependencies between tags

Markov

- Phrase labelling through sequence tagging
- Applications to identify syntax and reference
- Common features for sequence labelling in English
- Viterbi algorithm: why and how