Jeonghyeon Woo

Math 301

HW₅

1. For all integers a, b, c, if a^2 | b and b^3 | c, then a^6 | c

Proof.

If $a^2|b$, then there is an integer x_1 that $a^2x_1 = b$.

$$a^2x_1=b$$

$$(a^2x_1)^3 = b^3$$

$$a^6x_1^3=b^3$$

If $b^3|c$, then there is an integer x_2 that $b^3x_2 = c$.

By substitution, $a^6x_2x_1^3 = c$. Let $x_3 = x_2x_1^3$ which is an integer.

$$a^6x_3 = c$$

Therefore, $a^6|c$

2. For all $n \in \mathbb{Z}$, $n^2 + 5n + 4$ is even.

Proof.

Case 1: when n is odd, we can express n = 2k + 1

$$n^{2} + 5n + 4 = (2k + 1)^{2} + 5(2k + 1) + 4$$
$$= 4k^{2} + 4k + 1 + 10k + 5 + 4$$
$$= 4k^{2} + 14k + 10$$
$$= 2(k^{2} + 7k + 5)$$

 $k^2 + 7k + 5$ should be an integer, so it is legal to express:

$$m = k^2 + 7k + 5$$

$$n^2 + 5n + 4 = 2m$$

Case 2: when n is even, we can express n = 2k

$$n^{2} + 5n + 4 = (2k)^{2} + 5(2k) + 4$$
$$= 4k^{2} + 10k + 4$$
$$= 2(2k^{2} + 5k + 2)$$

 $2k^2 + 5k + 2$ should be an integer, so it is legal to express:

$$m = 2k^2 + 5k + 2$$

$$n^2 + 5n + 4 = 2m$$

Since all the cases of integer n agrees, $n^2 + 5n + 4$ is even.

3. For all real numbers $r, s, t, |r+s+t| \le |r| + |s| + |t|$ Given: if $|r+s| \le |r| + |s|$ is true, then $rs \le |rs|$ is also true Proof.

$$|r + s + t| \le |r| + |s| + |t|$$

$$|(r + s) + t| \le (|r| + |s|) + |t|$$

$$|rs + t| \le |rs| + |t|$$

$$\sqrt{(rs + t)^2} \le |rs| + |t|$$

$$(rs + t)^2 \le (|rs| + |t|)^2$$

$$(rs)^2 + 2rst + t^2 \le (rs)^2 + 2|rs||t| + t^2$$

$$rst \le |rs||t|$$

$$rst \le |rst|$$

Thus, $|r + s + t| \le |r| + |s| + |t|$ as the inequality is true.

4. For all $n, p \in \mathbb{Z}$, if np is even then either n is even or p is even. Proof.

Contrapositive state:

For all $n, p \in \mathbb{Z}$, if n is odd and p is odd then np is odd.

Let
$$n = 2k_1 + 1$$
 and $p = 2k_2 + 1$
 $np = (2k_1 + 1)(2k_2 + 1)$
 $np = 4k_1k_2 + 2k_1 + 2k_2 + 1$
 $np = 2(2k_1k_2 + k_1 + k_2) + 1$
Since $2k_1k_2 + k_1 + k_2$ is an integer,

 $let \ m \ is an integer that \ m = 2k_1k_2 + k_1 + k_2$

$$np = 2m + 1$$

Since the contrapositive state is true, the given statement is also true.

Thus, for all $n, p \in \mathbb{Z}$, if np is even then either n is even or p is even.

5. For all integers p, q, if 3|(p-1) and 3|(q-1) then 3|(pq-1) Proof.

There are x_1 and x_2 that $3x_1 = p - 1$ and $3x_2 = q - 1$.

$$p = 3x_1 + 1$$

$$q = 3x_2 + 1$$

$$pq = (3x_1 + 1)(3x_2 + 1)$$

$$= 9x_1x_2 + 3x_1 + 3x_2 + 1$$

$$pq - 1 = 9x_1x_2 + 3x_1 + 3x_2$$

$$pq - 1 = 3(3x_1x_2 + x_1 + x_2)$$

Since the result of $3x_1x_2 + x_1 + x_2$ is an integer, there is an integer x_3 such that $x_3 = 3x_1x_2 + x_1 + x_2$

$$pq - 1 = 3x_3$$

Thus, if 3|(p-1) and 3|(q-1) then 3|(pq-1).

6. For all integers p, q, if $pq \neq 1 \mod 3$ then $p \neq 1 \mod 3$ or $q \neq 1 \mod 3$ Proof.

There exists p, q, such that $pq \neq 1 \mod 3$ and $p = 1 \mod 3$ and $q = 1 \mod 3$.

$$pq \neq 3n + 1$$
 for $n \in \mathbb{Z}$

$$p = 3x_1 + 1$$
 for $x_1 \in \mathbb{Z}$

$$q = 3x_2 + 1$$
 for $x_2 \in \mathbb{Z}$

$$pq = 9x_1x_2 + 3x_1 + 3x_2 + 1$$

$$= 3(3x_1x_2 + x_1 + x_2) + 1$$

 $3x_1x_2 + x_1 + x_2 \notin \mathbb{Z}$ #contradiction

Since negative of the given statement is false, the given statement is true.

Thus, if $pq \neq 1 \mod 3$ then $p \neq 1 \mod 3$ or $q \neq 1 \mod 3$