THE GROUP OF LINE BUNDLES

We'll first show: Vect'(X) is a group under \otimes . and then: Vect'(X) \cong H'(X; \mathbb{Z}_2). The isom is w_i !

Gluing construction of vector bundles. Given $p: E \to B$, {Ua}, $h_x: p^{-1}(U_x) \longrightarrow U_x \times \mathbb{R}^n$, can recover $E = (\coprod U_x \times \mathbb{R}^n)/\sim$

where $(x,v) \in U_{\alpha} \times \mathbb{R}^n \sim h_{\beta}h_{\alpha}(x,v) \in U_{\beta} \times \mathbb{R}^n \times \in U_{\alpha} \cap U_{\beta}$.

Write $g_{\beta\alpha}$ for the gluing func. $h_{\beta}h_{\alpha}: U_{\alpha} \cap U_{\beta} \rightarrow GLn(\mathbb{R})$. $\longrightarrow cocycle\ condition: g_{\beta\beta}g_{\beta\alpha}=g_{\beta\alpha}\ on\ U_{\alpha} \cap U_{\beta} \cap U_{\beta}$.

Conversely: any collection of gluing functions satisfying cocycle cond gives rise to a vector bundle.

The gluing functions for $E_1\otimes E_2$ are the tensor products of the gluing functions for E_1 , E_2 .

In general, \otimes on Vectⁿ(X) is comm, assoc, and has identity = trivial line burdle.

For n=1, also have inverses. In fact, each elt is its own inverse.

Example. Möbius $\rightarrow S^1$ has gluing fins 1, -1 $1 \otimes 1 = 1 - 1 \otimes -1 = 1$ \Rightarrow Möbius \otimes Möbius $\rightarrow S^1$ is trivial.

For general line bundles, we obtain inverse by replacing gluing matrices by their inverses, as $t \otimes t^{-1} = 1$.

Cocycle condition still works since 1x1 matrices commute.

Endow E w/inner product \sim rescale all ha with isometries \Rightarrow all gluing fins ± 1 . \Rightarrow gluing fins for $E \otimes E$ all 1. \Rightarrow $E \otimes E$ trivial.

We have: Vect¹(X) =
$$[X, G_1] \cong H^1(X; \mathbb{Z}_2)$$

 \uparrow \downarrow Since $G_1 = \mathbb{RP}^{\infty}$ is $K(\mathbb{Z}_2, 1)$.
isom. of sets

Prop. W1: Vect'(X) = H'(X; 7/2) X = CW-complex.

If. First show W, a homomorphism.

Step 1. Wi(Li \otimes Lz) = Wi(Li) + Wi(Lz) for Li \rightarrow Gi×Gi the pullback of Ei \rightarrow Gi via \Re : Gi×Gi \rightarrow Gi.

> Have $H^*(G_1 \times G_1) \cong \mathbb{Z}_2[\alpha_1] \otimes \mathbb{Z}_2[\alpha_1] \cong \mathbb{Z}_2[\alpha_1] \cong \mathbb{Z}_2[\alpha_1] \otimes \mathbb{Z}_2[\alpha_1] \cong \mathbb{Z}_2[\alpha_1] \otimes \mathbb{Z}_2[\alpha_2]$ This is an isom. on $H^1: \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \{0, \alpha_1, \alpha_2, \alpha_1 + \alpha_2\}$ So suffices to compute $W_1(L_1 \otimes L_2 \rightarrow G_1 \vee G_1)$

Over G_1V* , L_2 trivial $\Rightarrow L_1 \otimes L_2 \cong L_1 \otimes 1 \cong L_1$ Similar for $*VG_1$ $\Rightarrow W_1(L_1 \otimes L_2) = X_1 + X_2 = W_1(L_1) + W_1(L_2)$. Luse naturality of pullback via $G_1 \rightarrow G_1VG_1$

Step 2. (Naturality)
$$E_1, E_2$$
 arbitrary bundles
$$E_i = f_i^*(E_1) \quad f_i : X \to G_1.$$
Let $F = (f_1, f_2) : X \to G_1 \times G_1$

$$F^*(L_i) = f_i^*(E_1) = E_i$$

follow your nose ...

$$W_{1}(E_{1} \otimes E_{2}) = W_{1}(F^{*}(L_{1}) \otimes F^{*}(L_{2})) = W_{1}(F^{*}(L_{1} \otimes L_{2}))$$

$$= F^{*}(W_{1}(L_{1} \otimes L_{2})) = F^{*}(W_{1}(L_{1}) + W_{1}(L_{2}))$$

$$= F^{*}(W_{1}(L_{1})) + F^{*}(W_{1}(L_{2}))$$

$$= W_{1}(F^{*}(L_{1})) + W_{1}(F^{*}(L_{2}))$$

$$= W_{1}(E_{1}) + W_{1}(E_{2}).$$

The isomorphism
$$[X,G_1] \longrightarrow H^1(X;\mathbb{Z}_2)$$

is $[f] \longmapsto f^*(x)$
It factors as $[X,G_1] \longrightarrow \text{Vect}^1(X) \longrightarrow H^1(X;\mathbb{Z}_2)$
 $[f] \longmapsto f^*(E_1) \longmapsto W_1(f^*(E_1)) = f^*(W_1(E_1)) = f^*(X)$
First map is bij, comp is isom $\implies 2^{nd}$ map bij. \square

We can unravel the last step. Want to define $H^1(X; \mathbb{Z}_2) \longrightarrow \text{Vect}^1(X)$

inverse to w. Given $c_0 \in H'$, define an R-bundle skeleton by skeleton. On 1-skeleton, use c_0 to decide between Möbius & trivial burdle. As c_0 is a cocycle, it is trivial on any loop bounding a 2-cell, so can extend over 2-skeleton and higher.