PolyChord 2.0

Advances in nested sampling with astrophysical applications

Will Handley wh260@cam.ac.uk

Astrophysics Group Cavendish Laboratory University of Cambridge

January 11, 2021

What is nested sampling?

▶ Nested sampling is an alternative way of sampling posteriors.

What is nested sampling?

- ▶ Nested sampling is an alternative way of sampling posteriors.
- ▶ Uses ensemble sampling to compress prior to posterior.

What is nested sampling?

- Nested sampling is an alternative way of sampling posteriors.
- Uses ensemble sampling to compress prior to posterior.
- ▶ In doing so, it circumvents many issues (dimensionality, topology, geometry) that beset standard approaches.

1. Background theory

- 1. Background theory
- 2. Review existing sampling approaches

- 1. Background theory
- 2. Review existing sampling approaches
- 3. Nested Sampling & Historical implementations.

- 1. Background theory
- 2. Review existing sampling approaches
- 3. Nested Sampling & Historical implementations.
- 4. PolyChord

- 1. Background theory
- 2. Review existing sampling approaches
- 3. Nested Sampling & Historical implementations.
- 4. PolyChord
- 5. Applications

Bayes' theorem Parameter estimation

Bayes' theorem Parameter estimation

$$P(\Theta|D,M) = \frac{P(D|\Theta,M)P(\Theta|M)}{P(D|M)}$$

$$P(\Theta|D, M) = \frac{P(D|\Theta, M)P(\Theta|M)}{P(D|M)}$$

$$\mathsf{Posterior} \ = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Evidence}}$$

Parameter estimation

$$P(\Theta|D,M) = \frac{P(D|\Theta,M)P(\Theta|M)}{P(D|M)}$$

$$\mathsf{Posterior} \ = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Evidence}}$$

$$\mathcal{P}(\Theta) = rac{\mathcal{L}(\Theta)\pi(\Theta)}{\mathcal{Z}}$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_\ell\}$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}\}$$
$$M = \Lambda CDM$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}\}$$
$$M = \Lambda CDM$$

$$\Theta = \Theta_{\Lambda CDM}$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}\}$$
$$M = \Lambda CDM$$

$$\Theta_{\Lambda\mathrm{CDM}} = (\Omega_b h^2, \Omega_c h^2, 100 \theta_{MC}, \tau, \ln(10^{10} A_s), n_s)$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}^{(\mathrm{Planck})}\}$$

$$M = \Lambda \mathrm{CDM}$$

$$\Theta = \Theta_{\Lambda \mathrm{CDM}}$$

$$\Theta_{\Lambda \mathrm{CDM}} = (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s)$$

$$\begin{split} \mathcal{L}(\Theta) &= P(D|\Theta, M) \\ D &= \{C_{\ell}^{(\mathrm{Planck})}\} \\ M &= \Lambda \mathrm{CDM} \\ \Theta &= \Theta_{\Lambda \mathrm{CDM}} + \Theta_{\mathrm{Planck}} \\ \Theta_{\Lambda \mathrm{CDM}} &= (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s) \end{split}$$

$$\begin{split} \mathcal{L}(\Theta) &= P(D|\Theta, M) \\ D &= \{C_{\ell}^{\text{(Planck)}}\} \\ M &= \Lambda \text{CDM} \\ \Theta &= \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} \\ \Theta_{\Lambda \text{CDM}} &= (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s) \\ \Theta_{\text{Planck}} &= (y_{\text{cal}}, A_{217}^{CIB}, \xi^{tSZ-CIB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{dust TT}, A_{143}^{dust TT}, A_{217}^{dust TT}, A_{217}^{dust TT}, A_{100}^{dust TT}, A_{143}^{dust TT}, A_{217}^{dust TT}, A_$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}^{(\text{Planck})}\}$$

$$M = \Lambda \text{CDM} + \text{extensions}$$

$$\Theta = \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}}$$

$$\Theta_{\Lambda \text{CDM}} = (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s)$$

$$\Theta_{\text{Planck}} = (y_{\text{cal}}, A_{217}^{CIB}, \xi^{tSZ - CIB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{PS}, A_{143 \times 217}^{PS}, A_{100}^{CST}, A_{143 \times 217}^{CIOO}, A_{217}^{CIOO}, A_{2$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}^{(\text{Planck})}\}$$

$$M = \Lambda \text{CDM} + \text{extensions}$$

$$\Theta = \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}}$$

$$\Theta_{\Lambda \text{CDM}} = (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s)$$

$$\Theta_{\text{Planck}} = (y_{\text{cal}}, A_{217}^{ClB}, \xi^{tSZ-ClB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{PS}, A_{100}^{$$

$$\begin{split} \mathcal{L}(\Theta) &= P(D|\Theta, M) \\ D &= \{C_{\ell}^{\text{(Planck)}}\} \\ M &= & \text{ΛCDM + extensions} \\ \Theta &= & \Theta_{\Lambda\text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}} \\ \Theta_{\Lambda\text{CDM}} &= & (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s) \\ \Theta_{\text{Planck}} &= & (y_{\text{cal}}, A_{217}^{CIB}, \xi^{tSZ-CIB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, \\ & A^{kSZ}, A_{100}^{\text{dust}\,TT}, A_{143}^{\text{dust}\,TT}, A_{143 \times 217}^{\text{dust}\,TT}, A_{217}^{\text{dust}\,TT}, c_{100}, c_{217}) \\ \Theta_{\text{extensions}} &= & (n_{\text{run}}) \end{split}$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}^{(\text{Planck})}\}$$

$$M = \Lambda \text{CDM} + \text{extensions}$$

$$\Theta = \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}}$$

$$\Theta_{\Lambda \text{CDM}} = (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10}A_s), n_s)$$

$$\Theta_{\text{Planck}} = (y_{\text{cal}}, A_{217}^{CIB}, \xi^{tSZ-CIB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{Asz}, A_{100}^{Asz}, A_{100}^{Asz}, A_{100}^{Asz}, A_{143 \times 217}^{Asz}, A_{100}^{Asz}, A_{143 \times 217}^{Asz}, A_{217}^{Asz}, A_{100}^{Asz}, A_{100}^{Asz$$

$$\begin{split} \mathcal{L}(\Theta) &= P(D|\Theta, M) \\ D &= \{C_{\ell}^{(\text{Planck})}\} \\ M &= \Lambda \text{CDM} + \text{extensions} \\ \Theta &= \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}} \\ \Theta_{\Lambda \text{CDM}} &= (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s) \\ \Theta_{\text{Planck}} &= (y_{\text{cal}}, A_{217}^{ClB}, \xi^{tSZ-ClB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, \\ A^{kSZ}, A_{100}^{\text{dust}\,TT}, A_{143}^{\text{dust}\,TT}, A_{143 \times 217}^{\text{dust}\,TT}, A_{217}^{\text{dust}\,TT}, c_{100}, c_{217}) \\ \Theta_{\text{extensions}} &= (n_{\text{run}}, n_{\text{run,run}}, w) \end{split}$$

$$\begin{split} \mathcal{L}(\Theta) &= P(D|\Theta, M) \\ D &= \{C_{\ell}^{(\text{Planck})}\} \\ M &= \Lambda \text{CDM} + \text{extensions} \\ \Theta &= \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}} \\ \Theta_{\Lambda \text{CDM}} &= (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s) \\ \Theta_{\text{Planck}} &= (y_{\text{cal}}, A_{217}^{ClB}, \xi^{tSZ-ClB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{dust TT}, A_{143}^{dust TT}, A_{143 \times 217}^{dust TT}, A_{217}^{dust TT}, c_{100}, c_{217}) \\ \Theta_{\text{extensions}} &= (n_{\text{run}}, n_{\text{run,run}}, w, \Sigma m_{\nu}, m_{\nu, \text{sterile}}^{\text{eff}}) \end{split}$$

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}^{(\text{Planck})}\} + \{\text{LSS}\}$$

$$M = \Lambda \text{CDM} + \text{extensions}$$

$$\Theta = \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}}$$

$$\Theta_{\Lambda \text{CDM}} = (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s)$$

$$\Theta_{\text{Planck}} = (y_{\text{cal}}, A_{217}^{ClB}, \xi^{tSZ-ClB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{WSZ}, A_{100}^{\text{dust}TT}, A_{143}^{\text{dust}TT}, A_{143 \times 217}^{\text{dust}TT}, A_{217}^{\text{dust}TT}, c_{100}, c_{217})$$

$$\Theta_{\text{extensions}} = (n_{\text{run}}, n_{\text{run,run}}, w, \Sigma m_{\nu}, m_{\nu, \text{sterile}}^{\text{eff}})$$

$$\begin{split} \mathcal{L}(\Theta) &= P(D|\Theta, M) \\ D &= \{C_{\ell}^{(\text{Planck})}\} + \{\text{LSS}\} + \{\text{"Big Data"}\} \\ M &= \Lambda \text{CDM} + \text{extensions} \\ \Theta &= \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}} \\ \Theta_{\Lambda \text{CDM}} &= (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10}A_s), n_s) \\ \Theta_{\text{Planck}} &= (y_{\text{cal}}, A_{217}^{ClB}, \xi^{tSZ-ClB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{dust TT}, A_{143}^{dust TT}, A_{217}^{dust TT}, A_{217}^{dust TT}, C_{100}, C_{217}) \\ \Theta_{\text{extensions}} &= (n_{\text{run}}, n_{\text{run,run}}, w, \Sigma m_{\nu}, m_{\nu, \text{sterile}}^{\text{eff}}) \end{split}$$

A concrete example.

$$\mathcal{L}(\Theta) = P(D|\Theta, M)$$

$$D = \{C_{\ell}^{(\text{Planck})}\} + \{\text{LSS}\} + \{\text{"Big Data"}\}$$

$$M = \Lambda \text{CDM} + \text{extensions}$$

$$\Theta = \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}}$$

$$\Theta_{\Lambda \text{CDM}} = (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_s), n_s)$$

$$\Theta_{\text{Planck}} = (y_{\text{cal}}, A_{217}^{ClB}, \xi^{tSZ-ClB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{tSZ}, A_{100}^{dust TT}, A_{143}^{dust TT}, A_{143 \times 217}^{dust TT}, A_{217}^{dust TT}, c_{100}, c_{217})$$

$$\Theta_{\text{extensions}} = (n_{\text{run}}, n_{\text{run,run}}, w, \Sigma m_{\nu}, m_{\nu, \text{sterile}}^{\text{eff}})$$

Likelihoods can be quite complicated!

$$\begin{split} \mathcal{L}(\Theta) &= P(D|\Theta, M) \\ D &= \{C_{\ell}^{(\text{Planck})}\} + \{\text{LSS}\} + \{\text{"Big Data"}\} \\ M &= \Lambda \text{CDM} + \text{extensions} \\ \Theta &= \Theta_{\Lambda \text{CDM}} + \Theta_{\text{Planck}} + \Theta_{\text{extensions}} \\ \Theta_{\Lambda \text{CDM}} &= (\Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10}A_s), n_s) \\ \Theta_{\text{Planck}} &= (y_{\text{cal}}, A_{217}^{ClB}, \xi^{tSZ-ClB}, A_{143}^{tSZ}, A_{100}^{PS}, A_{143 \times 217}^{PS}, A_{217}^{PS}, A_{100}^{PS}, A_{143}^{PS}, A_{100}^{TT}, A_{143}^{\text{dust}TT}, A_{143 \times 217}^{\text{dust}TT}, A_{217}^{\text{dust}TT}, c_{100}, c_{217}) \\ \Theta_{\text{extensions}} &= (n_{\text{run}}, n_{\text{run,run}}, w, \Sigma m_{\nu}, m_{\nu, \text{sterile}}^{\text{eff}}) \end{split}$$

- Likelihoods can be quite complicated!
- We need advanced sampling approaches.

Parameter estimation

$$P(\Theta|D, M) = \frac{P(D|\Theta, M)P(\Theta|M)}{P(D|M)}$$

$$Posterior = \frac{Likelihood \times Prior}{Evidence}$$

$$P(\Theta) = \frac{\mathcal{L}(\Theta)\pi(\Theta)}{\mathcal{Z}}$$

Parameter estimation

What does data D tell us about the params Θ of our model M?

$$P(\Theta|D, M) = \frac{P(D|\Theta, M)P(\Theta|M)}{P(D|M)}$$

$$Posterior = \frac{Likelihood \times Prior}{Evidence}$$

$$P(\Theta) = \frac{\mathcal{L}(\Theta)\pi(\Theta)}{\mathcal{Z}}$$

Prior: Usually uniform, but can be source of controversy.

Parameter estimation

What does data D tell us about the params Θ of our model M?

$$P(\Theta|D, M) = \frac{P(D|\Theta, M)P(\Theta|M)}{P(D|M)}$$

$$Posterior = \frac{Likelihood \times Prior}{Evidence}$$

$$P(\Theta) = \frac{\mathcal{L}(\Theta)\pi(\Theta)}{\mathcal{Z}}$$

Prior: Usually uniform, but can be source of controversy.

Evidence: Just a normalising constant

Parameter estimation

What does data D tell us about the params Θ of our model M?

$$P(\Theta|D, M) = \frac{P(D|\Theta, M)P(\Theta|M)}{P(D|M)}$$

$$Posterior = \frac{Likelihood \times Prior}{Evidence}$$

$$P(\Theta) = \frac{\mathcal{L}(\Theta)\pi(\Theta)}{\mathcal{Z}}$$

Prior: Usually uniform, but can be source of controversy.

Evidence: Just a normalising constant?

Model comparison

Model comparison

What does data tell us about our model M_i ?

Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$P(M_i|D) = \frac{\mathcal{Z}_i \,\mu_i}{\sum_k \mathcal{Z}_k \,\mu_k}$$

Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$P(M_i|D) = \frac{\mathcal{Z}_i \,\mu_i}{\sum_k \mathcal{Z}_k \,\mu_k}$$

e.g. Should we include running?

Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$P(M_i|D) = \frac{\mathcal{Z}_i \, \mu_i}{\sum_k \mathcal{Z}_k \, \mu_k}$$

e.g. Should we include running? Neutrinos?

Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$P(M_i|D) = \frac{\mathcal{Z}_i \, \mu_i}{\sum_k \mathcal{Z}_k \, \mu_k}$$

e.g. Should we include running? Neutrinos? Dark energy?

Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$P(M_i|D) = \frac{\mathcal{Z}_i \,\mu_i}{\sum_k \mathcal{Z}_k \,\mu_k}$$

e.g. Should we include running? Neutrinos? Dark energy? **Model averaging:**

Multiple models with posterior on the same parameter: $P(y|M_i, D)$

$$P(y|D) = \sum_{i} P(y|M_i, D)P(M_i|D)$$

Why do sampling?

In high dimensions, posterior P occupies a vanishingly small region of the prior π.

- In high dimensions, posterior P occupies a vanishingly small region of the prior π.
- Describing an N-dimensional posterior fully is impossible.

- In high dimensions, posterior P occupies a vanishingly small region of the prior π.
- ► Describing an *N*-dimensional posterior fully is impossible.
- Sampling the posterior is an excellent compression scheme.

- 1. Metropolis Hastings.
- 2. Hamiltonian Monte-Carlo (HMC).

- 1. Metropolis Hastings.
- 2. Hamiltonian Monte-Carlo (HMC).
- 3. Ensemble sampling (e.g. emcee).

Turn the *N*-dimensional problem into a one-dimensional one.

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length
 - 3. If uphill, make step...

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length
 - 3. If uphill, make step...
 - 4. ... otherwise sometimes make step.

Struggles with...

1. Burn in

- 1. Burn in
- 2. Multimodality

- 1. Burn in
- 2. Multimodality
- 3. Correlated Peaks

- 1. Burn in
- 2. Multimodality
- 3. Correlated Peaks
- 4. Phase transitions

Hamiltonian Monte-Carlo

Hamiltonian Monte-Carlo

• Key idea: Treat $\log L(\Theta)$ as a potential energy

- ▶ Key idea: Treat $\log L(\Theta)$ as a potential energy
- Guide walker under "force":

$$F(\Theta) = \nabla \log L(\Theta)$$

- ▶ Key idea: Treat $\log L(\Theta)$ as a potential energy
- Guide walker under "force":

$$F(\Theta) = \nabla \log L(\Theta)$$

Walker is naturally "guided" uphill

- Key idea: Treat $\log L(\Theta)$ as a potential energy
- Guide walker under "force":

$$F(\Theta) = \nabla \log L(\Theta)$$

- ► Walker is naturally "guided" uphill
- Conserved quantities mean efficient acceptance ratios.

Problems

Hamiltonian Monte-Carlo Problems

"Uphill" is not covariant.

Problems

► "Uphill" is not covariant.

Problems

► "Uphill" is not covariant.

► Requires gradients (autograd – python)

▶ Instead of one walker, evolve a set of *n* walkers.

- ▶ Instead of one walker, evolve a set of *n* walkers.
- ▶ Can use information present in ensemble to guide proposals.

- ▶ Instead of one walker, evolve a set of *n* walkers.
- ► Can use information present in ensemble to guide proposals.
- emcee: affine invariant proposals.

- ▶ Instead of one walker, evolve a set of *n* walkers.
- Can use information present in ensemble to guide proposals.
- emcee: affine invariant proposals.
- emcee is not the only (or even best) affine invariant approach.

► MCMC does not give you evidences!

► MCMC does not give you evidences!

$$\mathcal{Z} = P(D|M)$$

MCMC does not give you evidences!

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

MCMC does not give you evidences!

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \langle \mathcal{L} \rangle_{\pi}$$

MCMC does not give you evidences!

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \langle \mathcal{L} \rangle_{\pi}$$

MCMC fundamentally explores the posterior, and cannot average over the prior.

MCMC does not give you evidences!

$$egin{aligned} \mathcal{Z} &= \mathrm{P}(D|M) \ &= \int \mathrm{P}(D|\Theta,M) \mathrm{P}(\Theta|M) d\Theta \ &= \langle \mathcal{L} \rangle_{\pi} \end{aligned}$$

- MCMC fundamentally explores the posterior, and cannot average over the prior.
- Simulated annealing gives one possibility for computing evidences.

MCMC does not give you evidences!

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \langle \mathcal{L} \rangle_{\pi}$$

- MCMC fundamentally explores the posterior, and cannot average over the prior.
- Simulated annealing gives one possibility for computing evidences.
 - Inspired by thermodynamics.
 - Suffers from similar issues to MCMC.
 - Unclear how to choose correct annealing schedule

John Skilling's alternative to traditional MCMC!

John Skilling's alternative to traditional MCMC!

New procedure:

John Skilling's alternative to traditional MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

John Skilling's alternative to traditional MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate n samples uniformly over the space (from the prior π).

John Skilling's alternative to traditional MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate n samples uniformly over the space (from the prior π).

 S_{n+1} : Delete the lowest likelihood sample in S_n , and replace it with a new uniform sample with higher likelihood

John Skilling's alternative to traditional MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate n samples uniformly over the space (from the prior π).

 S_{n+1} : Delete the lowest likelihood sample in S_n , and replace it with a new uniform sample with higher likelihood

Requires one to be able to uniformly within a region, subject to a hard likelihood constraint.

Graphical aid

lacktriangle

•

Exponential volume contraction

At each iteration, the likelihood contour will shrink in volume by $\approx 1/n$.

- At each iteration, the likelihood contour will shrink in volume by $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.

- At each iteration, the likelihood contour will shrink in volume by $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.

$$\mathcal{Z} \approx \sum_{i} \Delta \mathcal{L}_{i} X_{i} \tag{1}$$

- At each iteration, the likelihood contour will shrink in volume by $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.

$$\mathcal{Z} \approx \sum_{i} \Delta \mathcal{L}_{i} X_{i} \tag{1}$$

$$X_{i+1} \approx \frac{n}{n+1} X_i, \qquad X_0 = 1 \tag{2}$$

Parameter estimation

Parameter estimation

▶ NS can also be used to sample the posterior

Parameter estimation

- ▶ NS can also be used to sample the posterior
- ► The set of dead points are posterior samples with an appropriate weighting factor

Sampling from a hard likelihood constraint

"It is not the purpose of this introductory paper to develop the technology of navigation within such a volume. We merely note that exploring a hard-edged likelihood-constrained domain should prove to be neither more nor less demanding than exploring a likelihood-weighted space."

— John Skilling

Sampling from a hard likelihood constraint

"It is not the purpose of this introductory paper to develop the technology of navigation within such a volume. We merely note that exploring a hard-edged likelihood-constrained domain should prove to be neither more nor less demanding than exploring a likelihood-weighted space."

— John Skilling

► Most of the work in NS to date has been in attempting to implement a hard-edged sampler in the NS meta-algorithm.

Sampling within an iso-likelihood contour

Previous attempts

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian M.J. Betancourt (2010)

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian M.J. Betancourt (2010)

Galilean F. Feroz & J. Skilling (2013)

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian M.J. Betancourt (2010)

Galilean F. Feroz & J. Skilling (2013)

Requires gradients and tuning

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian M.J. Betancourt (2010)

Galilean F. Feroz & J. Skilling (2013)

Requires gradients and tuning

Diffusive Nested Sampling B. Brewer et al. (2009,2016).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian M.J. Betancourt (2010)

Galilean F. Feroz & J. Skilling (2013)

Requires gradients and tuning

Diffusive Nested Sampling B. Brewer et al. (2009,2016).

Very promising

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian M.J. Betancourt (2010)

Galilean F. Feroz & J. Skilling (2013)

Requires gradients and tuning

Diffusive Nested Sampling B. Brewer et al. (2009,2016).

- Very promising
- Still needs tuning.

Correlated distributions

▶ Need *N* reasonably large $\sim \mathcal{O}(n_{\text{dims}})$ so that x_N is de-correlated from x_1 .

- Need N reasonably large $\sim \mathcal{O}(n_{\mathrm{dims}})$ so that x_N is de-correlated from x_1 .
- Does not deal well with correlated distributions.

- Need N reasonably large $\sim \mathcal{O}(n_{\mathrm{dims}})$ so that x_N is de-correlated from x_1 .
- Does not deal well with correlated distributions.
- ► Need to "tune" w parameter.

Correlated distributions

► We make an affine transformation to remove degeneracies, and "whiten" the space.

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points
- Cholesky decomposition is the required skew transformation

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points
- Cholesky decomposition is the required skew transformation
- $\triangleright w = 1$ in this transformed space

Multimodality

Issues with Slice Sampling Multimodality

1. Although it satisfies detailed balance practically this isn't good enough.

Issues with Slice Sampling Multimodality

- 1. Although it satisfies detailed balance practically this isn't good enough.
- 2. Affine transformation is useless.

PolyChord 1.0's solutions

Multimodality

PolyChord 1.0's solutions Multimodality

1. Identifies separate modes via clustering algorithm on live points.

PolyChord 1.0's solutions Multimodality

- 1. Identifies separate modes via clustering algorithm on live points.
- 2. Evolves these modes "semi-independently"

PolyChord 1.0's Additions

PolyChord 1.0's Additions

▶ Parallelised up to number of live points with openMPI.

PolyChord 1.0's Additions

- Parallelised up to number of live points with openMPI.
- Implemented in CosmoMC, as "CosmoChord", with fast-slow parameters.

PolyChord vs. MultiNest

Gaussian likelihood

► Well tested.

- ► Well tested.
- ► arXiv:1502.01856

- ► Well tested.
- ► arXiv:1502.01856
- ► arXiv:1506.00171

- ► Well tested.
- arXiv:1502.01856
- arXiv:1506.00171
- ccpforge.cse.rl.ac.uk/gf/project/polychord/

Scaling with dimensionality

▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$

- ▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$
- ▶ PolyChord 1.0 has $N_{\mathcal{L}} \sim \mathcal{O}(D^3)$

- ▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$
- ▶ PolyChord 1.0 has $N_{\mathcal{L}} \sim \mathcal{O}(D^3)$
 - ▶ Need $\sim \mathcal{O}(D)$ to de-correlate at each step

- ▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$
- ▶ PolyChord 1.0 has $N_{\mathcal{L}} \sim \mathcal{O}(D^3)$
 - ▶ Need $\sim \mathcal{O}(D)$ to de-correlate at each step
 - ▶ Forced to throw $\sim \mathcal{O}(D)$ inter-chain points away.

Inter-chain evaluations

► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- ▶ MCMC-like approaches generate many (correlated) samples

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- ► At each iteration:

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.
 - Generate n_{chain} new (correlated) samples to replace them.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.
 - Generate n_{chain} new (correlated) samples to replace them.
- ▶ If $n_{\text{chain}} \sim \mathcal{O}(D)$ (as required), then overall $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.
 - Generate n_{chain} new (correlated) samples to replace them.
- ▶ If $n_{\text{chain}} \sim \mathcal{O}(D)$ (as required), then overall $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.
- Need to be able to quantify degree of correlation for correct inference.

► In his original paper, John Skilling noted that nested sampling runs can be merged.

- ► In his original paper, John Skilling noted that nested sampling runs can be merged.
- ► Take two complete nested sampling runs generated by $n_{\text{live}}^{(1)}$ and $n_{\text{live}}^{(2)}$ live points.

- ► In his original paper, John Skilling noted that nested sampling runs can be merged.
- ► Take two complete nested sampling runs generated by $n_{\text{live}}^{(1)}$ and $n_{\text{live}}^{(2)}$ live points.
- Combining the two runs in likelihood order gives a new run generated by $n_{\text{live}}^{(1)} + n_{\text{live}}^{(2)}$ live points.

Aside: Unweaving nested sampling runs

Aside: Unweaving nested sampling runs

► The reverse is also true.

Aside: Unweaving nested sampling runs

- ► The reverse is also true.
- Figure Given a nested sampling run with n_{live} points, there is a unique way of separating it into n_{live} single-point runs (threads).

Handling correlations

PolyChord 2.0 Handling correlations

▶ Unweave the run into n_{live} threads.

PolyChord 2.0 Handling correlations

- ▶ Unweave the run into n_{live} threads.
- ► Each thread is a "true" nested sampling run, although threads are correlated.

PolyChord 2.0 Handling correlations

- Unweave the run into n_{live} threads.
- ► Each thread is a "true" nested sampling run, although threads are correlated.
- Can use traditional techniques on threads to quantify correlation

PolyChord 2.0 Handling correlations

- ▶ Unweave the run into n_{live} threads.
- ► Each thread is a "true" nested sampling run, although threads are correlated.
- Can use traditional techniques on threads to quantify correlation
 - Batch means
 - Jacknifing
 - Bootstrapping

Handling correlations

- Unweave the run into n_{live} threads.
- ► Each thread is a "true" nested sampling run, although threads are correlated.
- Can use traditional techniques on threads to quantify correlation
 - Batch means
 - Jacknifing
 - Bootstrapping
- With this in hand, can produce correct inferences from correlated runs.

PolyChord 2.0 vs. MultiNest

Gaussian likelihood

Object detection

Toy problem

Object detection

Toy problem

Bayes Factors

Marginalised plot

Same thing, but for Dark energy equation of state w(z) (quintessence).

- Same thing, but for Dark energy equation of state w(z) (quintessence).
- ▶ Data used is Planck 2015, BOSS DR 11, JLA supernovae and BOSS Ly α data

Flat, variable w

Tilted

1 internal node

2 internal nodes

3 internal nodes

Marginalised plot - just extension models

Marginalised plot - including LCDM

▶ Using intermediate points so $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.

- ▶ Using intermediate points so $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.
- ▶ Unweaving runs to quantify correlations.

PolyChord 2.0

- ▶ Using intermediate points so $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.
- Unweaving runs to quantify correlations.
- Affine invariant sampling.

Future work

1. Parallelisation

Future work

- 1. Parallelisation
- 2. Affine invariant mode detection.

▶ The optimal exploration technique is be affine invariant.

- ▶ The optimal exploration technique is be affine invariant.
- ▶ Treat distribution P(x) and P(Rx) the same.

- ▶ The optimal exploration technique is be affine invariant.
- ▶ Treat distribution P(x) and P(Rx) the same.
- No need to worry about correlations.

- ▶ The optimal exploration technique is be affine invariant.
- ▶ Treat distribution P(x) and P(Rx) the same.
- No need to worry about correlations.
- Good example: Now highly successful emcee (MCMC hammer).
 - Important: emcee is not unique (or necessarily best)

Subspace collapse

Subspace collapse

► The main problem that besets these techniques is "subspace collapse".

Subspace collapse

Subspace collapse

Subspace collapse

Solution

Subspace collapse Solution

▶ Need to use $\sim \mathcal{O}(D)$ points to avoid this.

Other variations

► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).

- ► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).
- ▶ Slice through a "random" linear combination of *D* points.

- ► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).
- ▶ Slice through a "random" linear combination of *D* points.
- Slice through a "random" linear combination of all points

- ► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).
- ▶ Slice through a "random" linear combination of *D* points.
- Slice through a "random" linear combination of all points
- ► There are lots of variations: This is an underused area of the field.