Cyclic Sales Analysis

A question arose as to the cyclic nature of sales at Carolina Precast Concrete. Not surprisingly, monthly sales are somewhat cyclic (periodic sub-behavior of function in first plot), but interestingly, over a twelve year period, the monthly sales plot has a near symmetric form (primary shape of function in first plot). A fourth order polynomial was fit to the data, not as an explanatory model, but simply to add a smooth function to highlight trends. All programming was accomplished in R.

CPC Sales Volume

The following plot shows sales contribution (annual proportion) by month. Years are symbol and color coded for isolation.

CPC Monthly Sales Proportion

Program Listing

```
# Carolina Precast Concrete Seasonal Sales Model
# Collect historical sales data
library(RODBC)
db=odbcConnect('CPCData',uid='sa',pw='')
sales <- sqlQuery(db,</pre>
        paste("select
                         Year as SalesYear, Month as SalesMonth, sum(BilledThisMonth) as
BilledVal ",
                       CPCBillingHist ",
Year between 2001 and 2012 ",
               "from
                "where
               "group by Year, Month"))
odbcClose(db)
# Setup predictor variables - 4th deg polynomial for year/month, linear adder for season
\# Center time values to set correlation between x, x^{*}x,\;x^{**}3,\;\text{and}\;x^{**}4 to 0
\# x div by 100 reduces scale of higher products (x^2, x^3, x^4)
\# Note that x and x^3 have been omitted as a result of non-significance in regression analysis
x1 <- (0:(nrow(sales)-1)-nrow(sales)/2)/100</pre>
X \leftarrow cbind(rep(1, nrow(sales)), "x2"=x1*x1, "x4"=x1^4, "s1"=0, "s2"=0, "s3"=0)
# Set season indicator variables: 000 for jan-mar, 100 for apr-jun, 010 for jul-sep, and 001 for
oct.-dec
X[which(sales$SalesMonth>3 \& sales$SalesMonth<7), "s1"] <- 1
X[which(sales$SalesMonth>6 & sales$SalesMonth<10), "s2"] <- 1</pre>
X[which(sales$SalesMonth>9 & sales$SalesMonth<13), "s3"] <- 1</pre>
# Calculate model coefficents
beta <- as.vector(solve(t(X)%*%X)%*%t(X)%*%sales$BilledVal)</pre>
names(beta) <- c("b0", "b2", "b4", "s1", "s2", "s3")
# Calculate estimated sales values
Y \leftarrow beta["b0"] + beta["b2"]*x1*x1 + beta["b4"]*x1^4 + beta["s1"]*X[,"s1"] + beta["b0"]
     beta["s2"]*X[,"s2"] + beta["s3"]*X[,"s3"]
# Plot supplied data and 4th order regression polynomial
plot(sales$BilledVal~x1, main="CPC Sales Volume", xlab="Year", ylab="$ (Thousands)", cex=.5,
cex.axis=.75, xaxt="n")
lines(Y~x1, col="blue")
axis(1, labels=sales$SalesYear[seq(1, nrow(sales), 12)], at=x1[seq(1, nrow(sales), 12)],
cex.axis=.75)
# Accumulate annual sales for proportion calculation
year <- min(sales$SalesYear):max(sales$SalesYear)</pre>
ySales <- cbind(rep(0, NROW(year)))</pre>
rownames(ySales) <- year
for(i in 1:NROW(year)) ySales[i] <- sum(sales$BilledVal[which(sales$SalesYear==year[i])])</pre>
# Now, plot annual sales proportions by month
sYear==vear[1])],
    main="CPC Monthly Sales Proportion", ylim=c(0,.15), xlab="Month", ylab="Proportion",
     pch=1, cex=.75, cex.axis=.75)
cpal <- palette()</pre>
# Note the slight shift in the x-dimension to prevent symbol overlay
for(i in 2:NROW(year))
 points(sales$SalesMonth[which(sales$SalesYear==year[i])]+i*.05,
sales$BilledVal[which(sales$SalesYear==year[i])]/ySales[i],
         pch=i, col=i%%NROW(cpal)+1, cex=.75)
legend("topright", legend=year, pch=c(1:NROW(year)), cex=.6, col=cpal)
```