$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\!$	$\frac{i}{\sqrt{2} \; (k r_5 + k^3 r_5)}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6 k^2 r_5 + t_1}{2 (1 + k^2)^2 r_5 t_1}$	0	0	0	0
$\sigma_1^{\#2}{}_+\alpha\beta$	$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$\frac{6k^2r_5+t_1}{2(k+k^3)^2r_5t_1}$	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2 r_5}$	$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$-\frac{i}{\sqrt{2} \left(k r_5 + k^3 r_5\right)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

$ r_{5} \partial_{i} \omega^{\kappa \Lambda}_{\kappa} \partial^{i} \omega_{\lambda}^{\alpha} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\beta} \kappa \omega^{\alpha \Lambda} + r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\alpha \Lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\beta} \kappa \omega^{\alpha \Lambda} + r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \kappa \omega^{\alpha \Lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\beta} \kappa \omega^{\alpha \Lambda} + r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \kappa \omega^{\alpha} \partial_{\kappa} \kappa \omega^{\alpha} \partial_{\kappa} \kappa \partial_{\kappa} \partial_{\kappa}$

	#	I	П	- 0	η	m	Ж	2	17	
Source constraints	SO(3) irreps	$\sigma_{0}^{#1} == 0$	$\tau_{0}^{#2} == 0$	$\tau_{0}^{#1} - 2 i k \sigma_{0}^{#1} == 0$	$t_1^{\pi^2} + 2 i k \sigma_1^{\pi^2} = 0$	$t_1^{\#_1}{}^{\omega} == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2\bar{l}k \ \sigma_{2+}^{\#1}\alpha\beta = 0 \ 5$	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
$f_{1}^{\#2}$	3	0	0	0	$i k t_1$		0	0	0	
$f_{1}^{\#1}$	3	0	0	0	0		0	0	0	
$\omega_{1}^{\#2}$	۲ ۱	0	0	0	t1	7 /	0	0	0	
ω_{1-}^{*1} , ω_{1-}^{*2} , f_{1-}^{*1} , f_{1-}^{*2}		0	0	0	$k^2 r_5 - \frac{t_1}{2}$		$\sqrt{2}$	0	$-ikt_1$	
$f_{1}^{\#1}_{\alpha\beta}$	1 ap	$-\frac{\pi \wedge \epsilon_1}{3 \sqrt{2}}$	<i>ikt</i> 1 3	$\frac{k^2 t_1}{3}$	0	,	0	0	0	
$\omega_{1}^{#2} + \omega_{R}^{#1} + \omega_{R}^{#1}$	t ap	$\frac{1}{3\sqrt{2}}$	£ 3	$-\frac{1}{3}ikt_1$	0	,	0	0	0	
8	, ,	<u>'1</u> 6								1

 $\frac{i\,kt_1}{3\,\sqrt{2}}$

 $\omega_1^{\#2} + \alpha \beta$

0

 $\omega_{1}^{\#2} +^{\alpha}$

0

 $\omega_{1}^{\#1} \uparrow^{\alpha}$

0

0

 $f_{1}^{\#1} +^{\alpha}$

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\!\#\!1}\dagger$	0	0	0	0

$f_0^{\#}$	0	0	0	0
$f_{0}^{\#1}$	$i\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$\omega_{0}^{\#1}$	-t ₁	-i $\sqrt{2}$ kt ₁	0	0
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2} +$	$\omega_{0^-}^{\#1} \dagger$
$r_{2}^{\#1}$ $\alpha \beta \chi$			0	2 t ₁

 $\frac{4\,k^2}{(1+2\,k^2)^2\,t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\tau_2^{\#1} + \alpha \beta$

 $\sigma_{2}^{#1} + ^{\alpha \beta \chi}$

 $\frac{2}{(1+2\,k^2)^2\,t_1}$

 $\sigma_2^{\#1} \dagger^{\alpha\beta}$

 $\sigma_{2}^{\#1}$ $\alpha\beta$

0

0

0

$\omega_{2^{+}lphaeta}^{\#1}f_{2^{+}lphaeta}^{\#1}\omega_{2^{-}lphaeta\chi}^{\#1}$							
$\omega_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	<u>t</u> 1				

? /	Quadratic pole	<u>.</u>
$\xrightarrow{\underline{k^{\mu}}} \bigcirc -?$	Pole residue:	$\frac{1}{r_5 t_1^2 p^2} > 0$
?	Polarisations:	2
?		

Unitarity conditions $r_5 > 0 \&\& t_1 < 0 || t_1 > 0$

(No massive particles)