Consolidation Theory

Objectives: Settlement & Time rate

- Consolidation?
- Difference between compaction and consolidation
- Excess (or transient) pore pressure?
- Drained vs. undrained?
- Primary and secondary consolidation?
- Lab consolidation test (i.e., oedometer test)
- Compression index C_c, Recompression index C_r

Leaning Tower of Pisa

Review – Total/Effective Stress

Principle of Effective Stress

$$\sigma' = \sigma - u$$

$$\sigma(=\sigma_z) = \gamma_t z$$

$$u = \gamma_w z$$

- Load is carried by both the solid skeleton and the fluid.
- Applies only to normal stresses not shear stresses.
- Applies only to saturated soils
- Soil deformation is determined by <u>effective stress</u>, not total stress.

Consolidation

Consolidation

The time-dependent settlement of soils resulting from the expulsion of water from the soil pores.

In a confined space, the water phase is incompressible, and is 'stronger' than the soil skeleton.

Compaction

Densification of soils through expulsion of air by mechanical means

Consolidation

Objectives: Settlement & Time rate

- Consolidation?
- Difference between compaction and consolidation
- Excess (or transient) pore pressure?
- Drained vs. undrained?
- Primary and secondary consolidation?
- Lab consolidation test (i.e., oedometer test)
- Compression index C_c, Recompression index C_r

Drained vs. Undrained

Drained: excessive pore pressure has dissipated; use effective stress for analysis.

<u>Undrained</u>: pore water does not yet have time to escape; soil can be treated as a solid+water mixture; use total stress for analysis.

Drained vs. Undrained

Coarse-grained:

- high permeability, good drainage capability;
- short period of pore pressure dissipation;
- consolidation is not a critical issue in engineering design.

Fine-grained:

- low permeability, poor drainage capability;
- long period of pore pressure dissipation;
- consolidation a critical issue in engineering design.

Primary vs. Secondary Consolidation

Objectives: Settlement & Time rate

- Consolidation?
- Difference between compaction and consolidation
- Excess (or transient) pore pressure?
- Drained vs. undrained?
- Primary and secondary consolidation?
- Lab consolidation test (i.e., oedometer test): drainage path
- Compression index C_c, Recompression index C_r

One-Dimensional Consolidation

Oedometer test

Drainage path - the longest distance that a fluid element travels to exit the soil sample.

Single drainage - one fluid drainage outlet

Double drainage - two fluid drainage outlets

One-Dimensional Consolidation

One-Dimensional Consolidation

Vertical effective stress, $\sigma_{v}^{'}$

Summary

