

Issue / Rev.: 1/0

Date: 04 .12.2019 CI-No.: 15300000 Model.: EM,QM,FM,FS





# **Document Approval Sheet**

| Document title.                                               | r-ree Modes and CCD Sequencer          |           |
|---------------------------------------------------------------|----------------------------------------|-----------|
| Document num-<br>ber:                                         | PLATO-DLR-PL-TN-0063                   |           |
| lssue:                                                        | 1                                      |           |
| Revision:<br>Date of Rev.:<br>Project Phase:<br>Work package: | 0<br>04 .12.2019<br>Phase B2           |           |
| File name:                                                    | F-<br>FEE_Modes_and_CCD_Sequencer.docm | and ~.pdf |
| Classification:                                               | Commercial in confidence               |           |
|                                                               |                                        |           |
| Prepared by:                                                  | (Konstantinos Vasiliou, DLR)           |           |
| Released by:                                                  | (Alexander Koncz, DLR)                 |           |
| Approved by:                                                  | (Sergio Rufini Mastropasqua, DLR)      |           |

PLATO - F-FEE - Phase B2



## **Table of Contents**

| D                    | ocumer         | nt Approval Sheet                        | 2  |
|----------------------|----------------|------------------------------------------|----|
| T                    | able of        | Contents                                 | 3  |
| D                    | istribut       | ion List                                 | 5  |
| D                    | ocumei         | nt Change Record                         | 6  |
| $\boldsymbol{L}_{i}$ | ist of A       | cronyms                                  | 7  |
| 1                    | Doc            | uments                                   | 8  |
|                      | 1.1            | Applicable Documents                     | 8  |
|                      | 1.2            | Reference Documents                      |    |
| 2                    | Intr           | oduction                                 | g  |
| _                    | 2.1            | Purpose                                  |    |
|                      | 2.2            | Overview of F-FEE                        |    |
| 3                    |                | ernal RMAP F-FEE Configuration Interface |    |
| 4                    |                | B FPGA Modes                             |    |
| 7                    | 4.1            | Entering DEB FPGA Modes                  |    |
|                      | 4.2            | Modes description                        |    |
|                      | 4.2.1          | Mode OFF                                 |    |
|                      | 4.2.2          |                                          |    |
|                      | 4.2.3          |                                          |    |
|                      | 4.2.4          |                                          |    |
|                      | 4.2.5          |                                          |    |
|                      | 4.2.6          |                                          |    |
|                      | 4.2.7          |                                          |    |
| 5                    | AEE            | 3 FPGA Modes                             | 14 |
|                      | 5.1            | Entering the Modes                       | 14 |
|                      | 5.2            | Modes description                        |    |
|                      | 5.2.1          |                                          |    |
|                      | 5.2.2          |                                          |    |
|                      | 5.2.3          |                                          |    |
|                      | 5.2.4          |                                          |    |
|                      | 5.2.5<br>5.2.6 |                                          |    |
|                      | 5.2.7          |                                          |    |
|                      | 5.3            | Setting Configuration parameters         | 16 |
|                      | 5.3.1          |                                          |    |
|                      | 5.3.2          | *                                        |    |
| 6                    | CCI            | Sequencer architecture and functionality | 20 |
|                      | 6.1            | CCD readout procedure                    |    |
|                      | 6.1.1          | IDLE                                     |    |
|                      | 6.1.2          | WAIT_SYNC                                | 23 |





| PLATO - F- | FEE - | Phase | В2 |
|------------|-------|-------|----|
|------------|-------|-------|----|

|   | 6.1.3 |                               | 23                           |
|---|-------|-------------------------------|------------------------------|
|   | 6.1.4 | LINE TRANSFER                 | 24                           |
|   | 6.1.5 | PIXEL READOUT                 |                              |
|   | 6.1.6 | INTEGRATE WAIT 1              | 26                           |
|   | 6.1.7 | ITEGRATE WAIT 2               | 26                           |
|   | 6.1.8 | PRECLEANING                   |                              |
| 7 | Sequ  | uencer configuration          | Error! Bookmark not defined. |
|   | 7.1   | Sequencer Limitations         | Error! Bookmark not defined. |
| 8 | Тур   | ical Operation Scenarios      |                              |
|   | 8.1   | Readout of the full image     |                              |
|   | 8.2   | Partial readout of the sensor | Error! Bookmark not defined. |
|   | 83    | Pattern testing mode          | Frror! Rookmark not defined  |

Title: F-FEE Modes and CCD Sequencer

Issue / Revision: 1/0

Date of Rev.: 04 .12.2019

Identifier: Page:

PLATO-DLR-PL-TN-0063

4/32

PLATO - F-FEE - Phase B2



## **Distribution List**

| Name      | Contact information | Quantity |
|-----------|---------------------|----------|
| PLATO PMC |                     | 1        |
|           |                     |          |
|           |                     |          |
|           |                     |          |
|           |                     |          |

#### Restriction on Use and Disclosure of Information given in this document

The information given in this document about the instrument F-FEE must not be used outside the PLATO project and distributed outside the PLATO team and must not be disclosed to other parties without prior permission from DLR or CEA Saclay as the proprietor of the information.

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 5/32

PLATO - F-FEE - Phase B2



## **Document Change Record**

| Issue/ Re-<br>vision | Date             | Affected pages | Description                    |
|----------------------|------------------|----------------|--------------------------------|
| 0/1                  | October 08, 2019 | All            | First release of the document. |
|                      |                  |                |                                |
|                      |                  |                |                                |
|                      |                  |                |                                |
|                      |                  |                |                                |

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 6/32

PLATO - F-FEE - Phase B2



7/32

## **List of Acronyms**

ADC Analog to Digital Converter Analog Electronic Board AEB CDS Correlated Double Sampling Digital to Analog Converter DAC Digital Electronic Board DEB **Data Processing Unit** DPU

Error Detection And Correction **EDAC** F-DPU Fast Data Processing Unit F-FEE Fast Front End Electronic

Field Programmable Gate Array **FPGA** 

FSM Finite State Machine Frame Transfer FT To be confirmed TBC TBD To be defined

VASP Video Acquisition Signal Processor

Title: F-FEE Modes and CCD Sequencer Identifier: PLATO-DLR-PL-TN-0063 Issue / Revision: 1/0 Page:

04.12.2019 Date of Rev.:

PLATO - F-FEE - Phase B2



## 1 **Documents**

## 1.1 Applicable Documents

| AD    | Title                                                        | Identifier            | Issue/Rev., Date   |
|-------|--------------------------------------------------------------|-----------------------|--------------------|
| AD-01 | PLATO FEE-to-DPU Interface<br>Requirement Document (IRD)     | PLATO-DLR-PL-ICD-0011 | 22/05/2019         |
| AD-02 | F-FEE AEB FPGA Architecture<br>Design Document               | PLATO-DLR-PL-DD-0005  | 1.0                |
| AD-03 | F-FEE DEB FPGA architectural design document                 | PLATO-CEA-DD-ADD-0001 | 1.0                |
| AD-04 | F-FEE - Command / Data Inter-<br>face Control Document (ICD) | PLATO-DLR-PL-ICD-0007 | idraft.4           |
| AD-05 | SimuCam Pattern Requirement<br>Technical Note                | PLATO-LESIA-PL-TN-023 | 1.01<br>27/03/2017 |

## 1.2 Reference Documents

| RD    | Title                                             | Identifier            | Issue/Rev., Date |
|-------|---------------------------------------------------|-----------------------|------------------|
| RD-01 | Frame Transfer CCD270 Inter face Control Document | PTO-CCD-E2V-ICD-0020  | 4.20, 12/2017    |
| RD-02 | VASP1 Datasheet                                   | 1005357050            | 3.2, 04.07.2014  |
| RD-03 | SimuCam Pattern Require-<br>ment Technical Note   | PLATO-LESIA-PL-TN-023 | 1.01             |

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0

Identifier: PLATO-DLR-PL-TN-0063
Page: 8/32



#### 2 Introduction

#### 2.1 Purpose

The purpose of this document is to describe the F-FEE modes as seen from the user's perspective, giving information of the CCD sequencing. The full architecture of AEB and DEB FPGAs are described in detail in AD-02 and AD-03. The interface between AEB and DEB FPGA is described in detail in AD-04.

#### 2.2 Overview of F-FEE

As shown in Figure 2-1, each F-FEE consists of one DEB (Digital Electronic Board) and four AEBs (Analog Electronic Boards). Each F-FEE is connected to the F-DPU with four Space-Wire links. This interface is used for configuration and commanding the DEB and the four AEBs as well as the data (image, overscan, housekeeping) transmission from the DEB and AEBs towards the F-DPU. Internally the DEB is connected with each of the four AEBs using two interfaces. The Internal AEB Command Interface is used for configuration and commanding of the AEB, while the Internal AEB Data Interface is used for transmission of data (image, overscan, housekeeping) from the AEB to the DEB FPGA. The external SpaceWire interface can be used to send RMAP commands for configuration and control of the DEB and the four AEBs. This document will focus in the different modes of the AEB and DEB FPGAs and the operation of the CCD Sequencer, used to clock the CCD and sample the CCD data. In chapter 3, the external interface is presented, in chapter 4 the DEB FPGA modes are presented, in chapter 5 the AEB FPGA modes are presented and finally in chapter 6 the CCD sequencer block function is described.



Figure 2-1: F-FEE Block diagram

## **3 External RMAP F-FEE Configuration Interface**

The SpaceWire RMAP protocol defined in RD-02 is used for communication between F-FEE, or more precisely the DEB, and F-DPU. All RMAP transfers are initiated by the F-DPU.

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 9/32

PLATO - F-FEE - Phase B2



The F-FEE (DEB) is the target of the RMAP transfers. For communication between F-DPU and each of the four AEBs, the DEB operates as a SpW-to-SPI-bridge. The RMAP memory mapping is shown in Table 3-2 and described in detail in AD-04. The supported RMAP commands are shown in Table 3-1. The configuration of the CCD sequencer, AEB, DEB FPGAs is done through RMAP write commands directly to the respective registers.

| RMAP command                     | Applicable to:                            |
|----------------------------------|-------------------------------------------|
| Write acknowledged, verified     | Critical configuration areas              |
| Write acknowledged, non-verified | General configuration and Windowing areas |
| Read                             | All the memory                            |

Table 3-1: Supported RMAP commands

| Start Address  | End Address    | Size (bytes) | Target | Description            |
|----------------|----------------|--------------|--------|------------------------|
|                |                |              |        |                        |
| 0x00 0000 0000 | 0x00 0000 00FF | 256          | DEB    | Critical Configuration |
| 0x00 0000 0100 | 0x00 0000 0FFF | 3840         | DEB    | General Configuration  |
| 0x00 0000 1000 | 0x00 0000 1FFF | 4096         | DEB    | Housekeeping           |
| 0x00 0000 2000 | 0x00 0000 2FFF | 4096         | DEB    | Windowing              |
|                |                |              |        |                        |
| 0x00 0001 0000 | 0x00 0001 00FF | 256          | AEB1   | Critical Configuration |
| 0x00 0001 0100 | 0x00 0001 0FFF | 3840         | AEB1   | General Configuration  |
| 0x00 0001 1000 | 0x00 0001 1FFF | 4096         | AEB1   | Housekeeping           |
|                |                |              |        |                        |
| 0x00 0002 0000 | 0x00 0002 00FF | 256          | AEB2   | Critical Configuration |
| 0x00 0002 0100 | 0x00 0002 0FFF | 3840         | AEB2   | General Configuration  |
| 0x00 0002 1000 | 0x00 0002 1FFF | 4096         | AEB2   | Housekeeping           |
|                |                |              |        |                        |
| 0x00 0004 0000 | 0x00 0004 00FF | 256          | AEB3   | Critical Configuration |
| 0x00 0004 0100 | 0x00 0004 0FFF | 3840         | AEB3   | General Configuration  |
| 0x00 0004 1000 | 0x00 0004 1FFF | 4096         | AEB3   | Housekeeping           |
|                |                |              |        |                        |
| 0x00 0008 0000 | 0x00 0008 00FF | 256          | AEB4   | Critical Configuration |
| 0x00 0008 0100 | 0x00 0008 0FFF | 3840         | AEB4   | General Configuration  |
| 0x00 0008 1000 | 0x00 0008 1FFF | 4096         | AEB4   | Housekeeping           |

Table 3-2: F-FEE RMAP memory mapping

Title: **F-FEE Modes and CCD Sequencer**Identifier: PLATO-DLR-PL-TN-0063
Issue / Revision: 1/0 Page: 10/32



### 4 DEB FPGA Modes

The DEB FPGA Modes are described in Figure 5-1.



Figure 4-1: DEB states

## 4.1 Entering DEB FPGA Modes

In order to enter a mode, change the value according to the register DTC\_FEE\_MOD, see in AD-04. As described in the Figure 5-1, there are two types of mode change. Asynchronous mode change means that the mode changes immediately according to the value of the register DTC\_FEE\_MOD (between three modes: OFF, ON, and STANDBY). Synchronous mode change means that mode change on falling edge of synchronization signal (external or internal to the F-FEE) according to the value of the register DTC\_FEE\_MOD.

A special "immediate ON" command from the F-DPU, allows entering the ON mode whatever the current mode.

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 11/32

PLATO - F-FEE - Phase B2



| Address        | Name     | Description                | Command mnemonics & comments |
|----------------|----------|----------------------------|------------------------------|
| 0x00 0000 0100 | ı        | FEE_MOD: defines operating | -DTC_FEE_MOD                 |
| 0x00 0000 0101 | -        | mode of the F-FEE          | (Accepted in all modes)      |
| 0x00 0000 0102 | -        |                            |                              |
| 0x00 0000 0103 | OPER_MOD |                            |                              |

| Value | State              |
|-------|--------------------|
| 000   | FULL IMAGE         |
| 001   | FULL IMAGE PATTERN |
| 010   | WINDOWING          |
| 011   | WINDOWING PATTERN  |
| 111   | ON/ STANDBY MODE   |

Table 4-1: DEB modes

### 4.2 Modes description

In this chapter, the different modes are described.

#### 4.2.1 Mode OFF

The DEB (F-FEE) is switched off.

#### **4.2.2** Mode ON

The DEB (F-FEE) is powered and ready to receive RMAP commands.

#### 4.2.3 Mode STANDBY

In this mode, the CCDs and the F-FEE shall reach a thermal stable state, so that valid data are available immediately after changing to the FULL\_IMAGE or WINDOWING modes.

#### 4.2.4 Mode FULL-IMAGE

The F-FEE will read-out all CCDs in parallel in a 2.5 second cycle and will transfer the image data of one CCD using two SpaceWire link to the F-DPU. The complete focal plane is transferred to the F-DPU after a minimum of four frames.

#### 4.2.5 Mode FULL-IMAGE PATTERN

While the AEBs (and thus CCDs) are switched off, the F-FEE operates as in FULL\_IMAGE mode (i.e. all lines will be transferred to the F-DPU) and delivers generated data instead of ADC data, according to AD-05.

#### 4.2.6 Mode WINDOWING

The F-FEE will read-out all CCDs in parallel in a 2.5 second cycle and will transfer the windowing image data to the F-DPU.

#### 4.2.7 Mode WINDOWING PATTERN

While the AEBs (and thus CCDs) are switched off, the F-FEE operates as in WINDOWING mode and delivers generated data instead of ADC data, according to AD-05.

Title: **F-FEE Modes and CCD Sequencer**Identifier: PLATO-DLR-PL-TN-0063
Issue / Revision: 1/0 Page: 12/32

PLATO - F-FEE - Phase B2



Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 13/32



#### 5 AEB FPGA Modes

The AEB FPGA Modes are described in AD-01 is shown in Figure 5-1. Two intermediate states S\_POWER\_UP and S\_POWER\_DOWN guarantee that the analogue voltages are set before entering state S\_CONFIG and removed before entering state S\_INIT. The transitions between S\_CONFIG, S\_IMAGE and S\_PATTERN are synchronous to the 2.5 second sync signal, while the other transitions are asynchronous to the sync signal.



## **5.1 Entering the Modes**

|                                        |                             |       |          |       |                  |          | Register and B | lit Description |            |           |     |
|----------------------------------------|-----------------------------|-------|----------|-------|------------------|----------|----------------|-----------------|------------|-----------|-----|
| Adress Register Title (hex) (Mnemonic) | Default<br>value            | Bit 7 | Bit 6    | Bit 5 | Bit 4            | Bit 3    | Bit 2          | Bit 1           | Bit O      | R/W Mode  |     |
|                                        | Critical Configuration Area |       |          |       |                  |          |                |                 |            |           |     |
| 0x0000                                 |                             | 0x00  | Reserved |       | nerved NEW_STATE |          |                |                 | SET_STATE  | AEB_RESET | R/W |
| 0x0001                                 | AEB_CONTROL                 | 0x00  |          | Not U |                  | ·        | ADC_DATA_RD    | ADC_CFG_WR      | ADC_CFG_RD | DAC_WR    | R/W |
| 0x0002                                 | ALB_CONTROL                 | 0x00  |          |       |                  | Reserved |                |                 |            |           |     |
| 0x0003                                 |                             | 0x00  |          |       | Reserved         |          |                |                 |            |           | R/W |

In order to enter a mode (state), the following registers have to be updated. Register 0x0000 bits 3 to 5 define the new state and bit 1 sets the state to the next state. The

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 14/32

PLATO - F-FEE - Phase B2



values for each state can be seen in Table 5-1 below. Please note that states AEB\_STATE\_POWER\_UP and AEB\_STATE\_POWER\_DOWN cannot be commanded, as they are intermediate states.

All four AEBs have to be commanded by the F-DPU to the desired state. For each AEB, the start addresses are the following:

AEB1: 0x00 0001 0000
AEB2: 0x00 0002 0000
AEB3: 0x00 0004 0000
AEB4: 0x00 0008 0000

| Value | State                 |
|-------|-----------------------|
| 0000  | AEB_STATE_OFF         |
| 0001  | AEB_STATE_INIT        |
| 0010  | AEB_STATE_CONFIG      |
| 0011  | AEB_STATE_IMAGE       |
| 0100  | AEB_STATE_POWER_DOWN* |
| 0101  | AEB_STATE_POWER_UP*   |
| 0110  | AEB_STATE_PATTERN     |
| 0111  | AEB_STATE_FAILURE     |
| 1xxx  | unused / spare        |

<sup>\*</sup>Intermediate states, cannot be commanded Table 5-1: AEB states

## 5.2 Modes description

In this chapter, the different states are described.

#### 5.2.1 Mode OFF

State entered after power-up. After one clock cycle, state INIT is entered automatically.

#### 5.2.2 Mode INIT

In INIT mode the DEB shall be able to switch on the AEB digital voltages, which starts the AEB-FPGA and the AEB-FPGA can than switch on the analog voltages.

#### 5.3 Mode POWER\_UP

In this mode the CCD is powered up, using the recommended power-up sequence.

#### 5.3.1 Mode POWER DOWN

In this mode the CCD is powered down, using the recommended power-down sequence.

Title: **F-FEE Modes and CCD Sequencer**Identifier: PLATO-DLR-PL-TN-0063
Issue / Revision: 1/0 Page: 15/32

PLATO - F-FEE - Phase B2



#### 5.3.2 Mode CONFIG

In CONFIG mode the CCD and VASP are already powered. It is possible to configure all parameters for PATTERN and IMAGE mode in this mode.

#### 5.3.3 Mode PATTERN

In PATTERN mode the AEB sends pattern to the DEB instead of CCD data according to AD-05 in the same timing as in the CCD read-out.

The F-DPU shall command the following configuration in the F-FEE, before changing from AEB-CONFIG mode to AEB-PATTERN mode:

- Width of the image
- Height of the image
- CCD ID

#### 5.3.4 Mode IMAGE

In IMAGE mode the AEB reads-out the CCD and sends the data to the DEB.

The F-DPU shall command the following configuration in the F-FEE, before changing from AEB-CONFIG mode to AEB-IMAGE mode:

- CCD timing
- Number of parallel overscan lines
- Number of serial overscan pixels

### 5.4 Setting Configuration parameters

The different parameters that can be set before entering IMAGE and PATTERN modes are described in this section.

#### 5.4.1 Pattern mode parameters

In order to change the Pattern parameters, an RMAP verified-write to the Critical Configuration area of the AEB has to be performed while AEB is in CONFIG mode. In Table 5-2 the relevant parameters are shown.

|                                   | AEB Addr. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |                                                    |
|-----------------------------------|-----------|---|---|---|---|---|---|---|---|----------------------------------------------------|
| 0                                 | 0x0010    | Ν | Ν | С | C | С | C | C | C | N: Bits 1:0 of CCD ID, C: Bits 13:8 of Colum Count |
| 1                                 | 0x0011    | C | C | С | C | С | C | C | C | C: Bits 7:0 of Colum Count                         |
| 2                                 | 0x0012    | 0 | 0 | R | R | R | R | R | R | R: Bits 13:8 of Row Count                          |
| 3                                 | 0x0013    | R | R | R | R | R | R | R | R | R: Bits 7:0 of Row Count                           |
| Table 5-2: AEB Pattern parameters |           |   |   |   |   |   |   |   |   |                                                    |

#### 5.4.2 IMAGE Mode parameters

In order to change the Image mode parameters, an RMAP verified-write to the General Configuration area of the AEB has to be performed while AEB is in CONFIG mode. In Table 5-3 the parameters related to the VASP clocking are presented. In Table 5-4 the function and the default values of the parameters are presented. A timing diagram of the VASP clocking with the default values is presented in Figure 5-2.

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 16/32

PLATO - F-FEE - Phase B2



17/32

|   | AEB Addr. | 7 6 5 4 3 2 1 0    |
|---|-----------|--------------------|
| 0 | 0x0120    | 0 0 SEQ_OE[21:16]  |
| 1 | 0x0121    | SEQ_OE[15:8]       |
| 2 | 0x0122    | SEQ_OE[7:0]        |
| 3 | 0x0123    | ADC_CLK_DIV        |
| 4 | 0x0124    | ADC_CLK_LOW_POS    |
| 5 | 0x0125    | ADC_CLK_HIGH_POS   |
| 6 | 0x0126    | CDS_CLK_LOW_POS    |
| 7 | 0x0127    | CDS_CLK_HIGH_POS   |
| 8 | 0x0128    | RPHIR_CLK_LOW_POS  |
| 9 | 0x0129    | RPHIR_CLK_HIGH_POS |

Table 5-3: AEB Sequencer parameters

| Parameter          | Function                                                                                                                                                                                                                                                  | Default Value |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                    |                                                                                                                                                                                                                                                           | (decimal)     |
| SEQ_OE             | Sequencer outputs enable                                                                                                                                                                                                                                  | -             |
| ADC_CLK_DIV        | Set the divider by which the main 100 MHz clock should be divided in order to generate a lower frequency pixel clock. The frequency and period of the pixel clock are given by the following equations: $F_{pixel} = \frac{1}{(ADC\_CLK\_DIV+1)*10^{-8}}$ | 33            |
|                    | $T_{pixel} = (ADC_{CLK_{DIV}} + 1) * 10 ns$                                                                                                                                                                                                               |               |
| ADC_CLK_LOW_POS    | Position in the pixel (from 0 to ADC_CLK_DIV) when the VASP ADC clock goes from high to low (negative edge).                                                                                                                                              | 31            |
|                    | <b>Note:</b> According to RD-02, the VASP ADC clock duty cycle should be                                                                                                                                                                                  |               |
|                    | 50%. ADC_CLK_LOW_POS and ADC_CLK_HIGH_POS should be set so                                                                                                                                                                                                |               |
|                    | that the 50% duty cycle is assured.                                                                                                                                                                                                                       |               |
| ADC_CLK_HIGH_POS   | Position in the pixel (from 0 to ADC_CLK_DIV) when the VASP ADC clock goes from low to high (positive edge).                                                                                                                                              | 14            |
|                    | <b>Note:</b> According to RD-02, the VASP ADC clock duty cycle should be 50%. ADC_CLK_LOW_POS and ADC_CLK_HIGH_POS should be set so that the 50% duty cycle is assured.                                                                                   |               |
| CDS_CLK_LOW_POS    | Position in the pixel (from 0 to ADC_CLK_DIV) when the VASP CDS clock goes from high low (negative edge).                                                                                                                                                 | 17            |
| CDS_CLK_HIGH_POS   | Position in the pixel (from 0 to ADC_CLK_DIV) when the VASP CDS clock goes from low to high (positive edge).                                                                                                                                              | 0             |
| RPHIR_CLK_LOW_POS  | Position in the pixel (from 0 to ADC_CLK_DIV) when the VASP RØR clock goes from high to low (negative edge).                                                                                                                                              | 7             |
| RPHIR_CLK_HIGH_POS | Position in the pixel (from 0 to ADC_CLK_DIV) when the VASP RØR clock goes from low to high (positive edge).                                                                                                                                              | 3             |

Table 5-4: Parameters function and default values



Figure 5-2: Default VASP clocking timing diagram

Title: F-FEE Modes and CCD Sequencer Identifier: PLATO-DLR-PL-TN-0063 Issue / Revision: 1/0 Page:

04.12.2019 Date of Rev.:

PLATO - F-FEE - Phase B2



The parameters related to the CCD sequencer are presented in Table 5-3. These parameters are used to control the CCD clocks ( $I\varnothing[1:4]$ ,  $S\varnothing[1:4]$ ,  $R\varnothing[1:3]$ ). In Table 5-4, the function and default values of each parameter are presented.

| AEB Addr. | 7                  | 6                   | 5                   | 4          | 3         | 2 | 1 | 0 |
|-----------|--------------------|---------------------|---------------------|------------|-----------|---|---|---|
| 0x0130    | Not U              | sed                 |                     | FT_LOOP_C  | NT[13:8]  |   |   |   |
| 0x0131    |                    |                     |                     | FT_LOOP_C  | NT[7:0]   |   |   |   |
| 0x0132    | LTO_EN             | Not Used            |                     | LTO_LOOP_  | CNT[13:8] |   |   |   |
| 0x0133    |                    |                     |                     | LTO_LOOP_  | CNT[7:0]  |   |   |   |
| 0x0134    | LT1_EN             | Not Used            |                     | LT1_LOOP_  | CNT[13:8] |   |   |   |
| 0x0135    |                    |                     |                     | LT1_LOOP_  | CNT[7:0]  |   |   |   |
| 0x0136    | LT2_EN             | Not Used            |                     | LT2_LOOP_  | CNT[13:8] |   |   |   |
| 0x0137    |                    |                     |                     | LT2_LOOP_  | CNT[7:0]  |   |   |   |
| 0x0138    | LT3_EN             | Not Used            |                     | LT3_LOOP_  | CNT[13:8] |   |   |   |
| 0x0139    | LT3_LOOP_CNT[7:0]  |                     |                     |            |           |   |   |   |
| 0x013A    |                    | PIX_LOOP_CNT[31:24] |                     |            |           |   |   |   |
| 0x013B    |                    | PIX_LOOP_CNT[23:16] |                     |            |           |   |   |   |
| 0x013C    |                    |                     |                     | PIX_LOOP_C |           |   |   |   |
| 0x013D    |                    |                     |                     | PIX_LOOP_0 | CNT[7:0]  |   |   |   |
| 0x013E    | PC_ENABLED         | Not Used            |                     | PC_LOOP_C  | NT[13:8]  |   |   |   |
| 0x013F    |                    |                     |                     | PC_LOOP_0  | CNT[7:0]  |   |   |   |
| 0x0140    | Not U              | sed                 | INT1_LOOP_CNT[13:8] |            |           |   |   |   |
| 0x0141    | INT1_LOOP_CNT[7:0] |                     |                     |            |           |   |   |   |
| 0x0142    | Not U              | sed                 | INT2_LOOP_CNT[13:8] |            |           |   |   |   |
| 0x0143    |                    | INT2_LOOP_CNT[7:0]  |                     |            |           |   |   |   |
| 0x0144    | SPHI_INV           |                     | Not Used            |            |           |   |   |   |
| 0x0145    | RPHI_INV           |                     |                     | Not Used   | t l       |   |   |   |

Table 5-5: AEB Sequencer parameters

| Parameter     | Function                                                                                                  | Default Value |
|---------------|-----------------------------------------------------------------------------------------------------------|---------------|
|               |                                                                                                           | (decimal)     |
| FT_LOOP_CNT   | Frame Transfer loop count. Number of lines to be transferred from CCD Image section to CCD store section. | 2245          |
| LTO_EN        | Line Transfer 0 (Line Dump) enable                                                                        | 0             |
| LT1_EN        | Line Transfer 1 (Image Transfer) enable                                                                   | 1             |
| LT2_EN        | Line Transfer 2 (Line Dump) enable                                                                        | 0             |
| LT3_EN        | Line Transfer 4 (Parallel Overscan) enable                                                                | 1             |
| LT1_LOOP_CNT  | Number of lines to be dumped                                                                              | 0             |
| LT2_LOOP_CNT  | Number of image lines, after line dump to be transferred                                                  | 2245          |
| LT3_LOOP_CNT  | Number of lines, after line transfer to be dumped                                                         | 0             |
| LT4_LOOP_CNT  | Number of Overscan Lines to be transferred                                                                | 10            |
| PIX_LOOP_CNT  | Number of pixels (image and serial overscan) per line                                                     | 2245          |
| PC_ENABLED    | Pre-cleaning function enabled                                                                             | 0             |
| PC_LOOP_CNT   | Number of lines to be dumped during the Pre-cleaning operation                                            | 0             |
| INT1_LOOP_CNT | Desired integration time before pre-cleaning                                                              | 0             |
| INT2_LOOP_CNT | Desired integration time after pre-cleaning                                                               | 0             |

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 18/32





| SPHI_INV | CCD SØ[1:3] reverse clocking. When set to 1, reverse clocking enabled | 0 |
|----------|-----------------------------------------------------------------------|---|
| RPHI_INV | CCD RØ[1:3] reverse clocking. When set to 1, reverse clocking enabled | 0 |

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 19/32



## 6 CCD Sequencer architecture and functionality

The sequencer corresponds to AEB mode IMAGE which is described in §5.3.4. As shown in Figure 6-1, the CCD Sequencer generates 19 clocking signals that drive the CCD and the two VASP inputs. The function of each generated clock is described in Table 6-1.



Figure 6-1: CCD Sequencer block diagram

|         | Signal          | Function                                                   |
|---------|-----------------|------------------------------------------------------------|
| IØ[1:4] | Image clocks    | Used for transferring pixel lines from the image to the    |
|         |                 | storage area of the CCD                                    |
| SØ[1:4] | Store clocks    | Used for transferring pixel lines from store area to the   |
|         |                 | serial registers.                                          |
| RØ[1:3] | Register clocks | Used for transferring the pixels to outputs E and F        |
| SW      | Summing Well    | Used for transferring charges from the serial registers to |
|         |                 | the outputs E and F                                        |
| RØR     | Reset clocks    | Clock applied to the reset gate to reset the potential of  |
|         |                 | the output node before the detection of a charge sig-      |
|         |                 | nal.                                                       |
| TG      | Transfer Gate   | Controls the advance of signal from the last store row     |
|         |                 | into the serial register.                                  |

Title: F-FEE Modes and CCD Sequencer

Issue / Revision: 1/0

Date of Rev.: 04 .12.2019

Identifier: PLATO-DLR-PL-TN-0063 Page: 20/32

PLATO - F-FEE - Phase B2



| DG  | Dump gate                             | Used to remove unwanted charge lines durin g line                     |
|-----|---------------------------------------|-----------------------------------------------------------------------|
|     |                                       | transfer phase.                                                       |
| ADC | VASP ADC clock                        | Both VASP#1 and VASP#1 ADC clocks are driven by the                   |
|     |                                       | same FPGA signal.                                                     |
| CDS | VASP Correlated double sampling clock | Both VASP#1 and VASP#1 CDS clocks are driven by the same FPGA signal. |

Table 6-1: Sequencer clocks functionality

### **6.1 CCD Sequencer State Machine**

The CCD consists of 4510x4510 pixels divided into two areas. An image area of 4510x2255 pixels where 4490x2245 pixels are uncovered and a completely covered storage area of 4510x2255 pixels as shown in Figure 6-2 and described in RD-01. The readout of the CCD data is done in three distinct steps:

- 1. After the integration time, with the falling edge of the 2.5 second sync signal, a fast transfer moves the charges from the image section to the storage section (Frame Transfer state)
- 2. Each line on the storage section is shifted to the readout registers (Line Transfer state)
- 3. Each pixel on the readout registers is shifted to the output where it will be sampled. (Pixel Readout state)



Figure 6-2:CCD270 simplified schematic

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 21/32

PLATO - F-FEE - Phase B2



22/32

The CCD readout is done through the CCD sequencer block of AEB FPGA. A simplified state diagram for the CCD Sequencer is shown in Figure 6-3. The state transition conditions are summarized in Table 6-2 and the states are described below.



Figure 6-3: CCD Sequencer state machine

| State               | Next state       | State transition condition                                           |
|---------------------|------------------|----------------------------------------------------------------------|
| IDLE                | WAIT SYNC        | -                                                                    |
| WAIT SYNC           | IDLE             | seq_enabled = 0                                                      |
| WAII SYNC           | FRAME TRANSFER   | Sync falling edge and ADC falling edge                               |
| FRAME TRANSFER      | LINE TRANSFER    | LTO_EN ='1' or<br>LT1_EN ='1' or<br>LT2_EN ='1' or<br>LT3_EN ='1' or |
| THO WILL THE WASTER | INTEGRATE WAIT 1 | LTO_EN ='0' and<br>LT1_EN ='0' and<br>LT2_EN ='0' and<br>LT3_EN ='0' |

Title: F-FEE Modes and CCD Sequencer Identifier: PLATO-DLR-PL-TN-0063 Issue / Revision: 1/0 Page:

04.12.2019 Date of Rev.:

PLATO - F-FEE - Phase B2



|               | PIXEL READOUT     | LT0_EN ='1' or                 |
|---------------|-------------------|--------------------------------|
|               |                   | LT3_EN ='1'                    |
| LINE TRANSFER | INTEGRATE WAIT 1  | LTO_EN ='0' and                |
|               |                   | LT1_EN ='0' and                |
|               |                   | LT2_EN ='0' and                |
|               |                   | LT3_EN ='0'                    |
|               | LINE TRANSFER     | counter+1 < LT0_LOOP_CNT or    |
|               |                   | counter+1 < LT1_LOOP_CNT or    |
|               |                   | counter+1 < LT2_LOOP_CNT or    |
| PIXEL READOUT |                   | counter+1 < LT3_LOOP_CNT       |
|               | INTERGRATE WAIT 1 | counter+1 >= LTO_LOOP_CNT and  |
|               |                   | counter+1 >= LT1_LOOP_CNT and  |
|               |                   | counter+1 >= LT2_LOOP_CNT and  |
|               |                   | counter+1 >= LT3_LOOP_CNT      |
| INTERGRATE    | PRECLEANING       | counter+1 >= INT1_LOOP_CNT and |
| INTERGRATE    |                   | PC_ENABLED = '1'               |
| WAIT 1        | INTEGRATE WAIT 2  | counter+1 >= INT1_LOOP_CNT and |
|               |                   | PC_ENABED = '0'                |
| PRECLEANING   | INTEGRATE WAIT 2  | counter+1>= PC_LOOP_CNT        |
|               | WAIT SYNC         | counter+1 >= INT1_LOOP_CNT     |

Table 6-2: Sequencer state transition conditions

#### 6.1.1 IDLE

Initial state is entered after power-up or reset.

#### 6.1.2 WAIT\_SYNC

State entered automatically after the IDLE state.

#### 6.1.3 FRAME TRANSFER

State entered from state WAIT\_SYNC, after an internal or external sync signal is received (on falling edge of sync signal). In this state a fast transfer of all the charges from the image to the storage area is performed. If flag SPHI\_INV is set to 1, reverse clocking is active, transferring the charges from the storage to the image section. Figure 6-4 shows a typical frame transfer timing diagram in forward clocking. The number of repetitions of this state is given by the variable FT\_LOOP\_CNT. A transfer of one line takes:

$$T_{FT} = 440 * (ADC\_CLK\_DIV + 1) * 10 ns$$

While for all the lines to be transferred the time is given by the following equation:

$$T_{FT}(total) = 440 * (ADC\_CLK\_DIV + 1) * 10 ns * FT\_LOOP\_CNT$$

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 23/32



**Note:** The user must make sure that the time taken by each state is less than the time between two succeeding sync pulses (nominal 2.5 seconds)



Figure 6-4: Frame transfer timing diagram

#### **6.1.4 LINE TRANSFER**

Entered if any of the line transfer modes are enabled (LTO\_EN, LT1\_EN, LT2\_EN, LT3\_EN). Lines from the store area are transferred to the serial registers to be readout. In this state, partial image readout is possible as shown in Figure 6-5. Line transfer modes 0 to 3 represent the following possibilities:

- LTO: Lines to be dumped (before readout)
- LT1: Lines to be readout
- LT2: Lines to be dumped (after readout)
- LT3: Overscan lines to be read



Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 24/32

PLATO - F-FEE - Phase B2



For modes LT1 and LT3, the state PIXEL READOUT is visited after every line transfer. For modes LT0 and LT2, the lines are dumped, so the state remains the same.

The time taken for one line transfer is given by the following equation:

$$T_{LT} = 322 * (ADC\_CLK\_DIV + 1) * 10 ns$$

The time taken for the transfer or dump of all the lines is given by the following equation:

$$T_{LT}(total) = 322 * (ADC\_CLK\_DIV + 1) * 10 ns * (LTO\_LOOP\_CNT + LT1\_LOOP\_CNT + LT2\_LOOP\_CNT + LT3\_LOOP\_CNT)$$

Figure 6-6 shows a typical line transfer timing diagram for one line transfer.



Figure 6-6: Line transfer timing diagram

#### 6.1.5 PIXEL READOUT

Entered when LTO\_EN (image readout) or LT3\_EN (overscan readout) are set. In this state the clocks that move the charges from the serial register to the two outputs (RØR, RØ[1:3], SW) are active. VASP ADC and CDS clocks are running in all states. The timing diagram of the active clocks is shown in Figure 6-7.

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 25/32

PLATO - F-FEE - Phase B2





Figure 6-7: Pixel readout timing diagram

The time taken for one pixel readout is given by the following equation:

$$T_{PR} = (ADC\_CLK\_DIV + 1) * 10 ns$$

The time taken for the readout of all the pixels in the serial register is given by the following equation:

$$T_{PR}(total) = (ADC\_CLK\_DIV + 1) * 10 \text{ ns} * PIX\_LOOP\_CNT$$

#### 6.1.6 INTEGRATE WAIT 1

Entered from PIXEL READOUT state after readout has completed. This state acts as waiting time before pre-cleaning. The time taken for integration is given by the following equation:

$$T_{INT1}(total) = 32 * (ADC_{CLK_{DIV}} + 1) * 10 ns * INT1\_LOOP\_CNT$$

#### 6.1.7 ITEGRATE WAIT 2

Entered after state INTEGRATE WAIT 1 if pre-cleaning is disabled (PC\_ENABED = '0') or from state PRECLEANING when pre-cleaning is complete. In this state an integration time defined by INT2\_LOOP\_CNT is elapsed before the state changes to state SYNC, waiting for the next sync pulse to start the reading of the next image. The time taken for the integration is given by the following equation:

$$T_{INT2}(total) = 32 * (ADC_{CLK_{DIV}} + 1) * 10 ns * INT2\_LOOP\_CNT$$

#### 6.1.8 PRECLEANING

This state is entered after state INTEGRATE WAIT 1if pre-cleaning is enabled PC\_ENABLED = '1'). In this state the clocks that transfer the charges from the image and storage areas are active (IØ[1:3] and SØ[1:3]). The CCD dump gate (DG) is active, thus the charges are discarded. Depending on the value of PC\_LOOP\_CNT, the whole of part of the image can be discarded. The timing diagram for this state is shown in Figure 6-8 and it is similar to that timing diagram of state FRANE TRANSFER. The total time taken for pre-cleaning is given by the following equation:

$$T_{PC}(total) = 440 * (ADC\_CLK\_DIV + 1) * 10 ns * PC\_LOOP\_CNT$$

Title: **F-FEE Modes and CCD Sequencer**Identifier: PLATO-DLR-PL-TN-0063
Issue / Revision: 1/0 Page: 26/32

PLATO - F-FEE - Phase B2





Figure 6-8: Pre-cleaning timing diagram

#### 6.1.9 Note:

The user must take care to define the counters mentioned in the previous sections so that the total time taken for an image readout does not exceed the time between two successive sync pulses (nominal 2.5 seconds) plus margin of TBC ns.

## 7 AEB register mapping

The registers that are responsible for the CCD Sequencer parameters are listed below. As shown in example in chapter 8, specific registers need to be written in order to change the CCD Sequencer parameters.

| Address<br>(hex) | Register Title<br>(Mnemonic) | Default<br>value | Bit 7                  | Bit 6                      | Bit 5    | Bit 4              | Bit 3           | Bit 2             | Bit 1          | Bit 0                | R/W<br>Mode |
|------------------|------------------------------|------------------|------------------------|----------------------------|----------|--------------------|-----------------|-------------------|----------------|----------------------|-------------|
| 0x0000           |                              | 0x00             | Re                     | Reserved NEW_STATE SET_STA |          | Reserved NEW_STATE |                 | SET_STATE         | AEB_R<br>ESET  | R/W                  |             |
| 0x0001           | AEB_CONTROL                  | 0x00             |                        | N                          | lot Used |                    | ADC_DAT<br>A_RD | ADC_CFG<br>_WR    | ADC_CFG_<br>RD | DAC_<br>WR           | R/W         |
| 0x0002           |                              | 0x00             |                        |                            |          | Resei              | ved             | •                 | •              |                      | R/W         |
| 0x0003           |                              | 0x00             |                        |                            |          | Resei              | ved             |                   |                |                      | R/W         |
| 0x0004           |                              | 0x00             |                        | Reserved                   |          |                    |                 | WATCH-<br>DOG_DIS | INT_S<br>YNC   | R/W                  |             |
| 0x0005           | AEB_CONFIG                   | 0x00             |                        | Reserved VASP_CDS VASP2_CA |          |                    |                 |                   |                | VASP1<br>_CAL_<br>EN | R/W         |
| 0x0006           |                              | 0x00             |                        | Reserved                   |          |                    |                 |                   |                | R/W                  |             |
| 0x0007           |                              | 0x00             |                        | Reserved                   |          |                    |                 |                   |                | R/W                  |             |
| 0x0008           |                              | 0x00             |                        |                            |          | KEY[3              | 1:24]           |                   |                |                      | R/W         |
| 0x0009           | AEB_CONFIG_K                 | 0x00             |                        | KEY[23:16]                 |          |                    |                 |                   |                | R/W                  |             |
| 0x000A           | EY                           | 0x00             |                        | KEY[15:8]                  |          |                    |                 |                   |                | R/W                  |             |
| 0x000B           |                              | 0x00             |                        | KEY[7:0]                   |          |                    |                 |                   | R/W            |                      |             |
| 0x000C           | AEB_CONFIG_<br>AIT1          | 0x00             | OVERRI<br>RI-<br>DE_SW | Not                        | Used     | SW_VAN3            | SW_VAN2         | SW_VAN1           | SW_VCLK        | SW_VC<br>CD          | R/W         |

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 27/32

PLATO - F-FEE - Phase B2



| 0x000D            |                     | 0x00 | OVERRI<br>RI-<br>DE_VA<br>SP | Not Used                              | VASP2_PIX_<br>EN | VASP1_PIX_EN        | VASP2_ADC<br>_EN | VASP1_ADC<br>_EN     | VASP2_RESE<br>T   | VASP1_<br>RESET       | R/W |
|-------------------|---------------------|------|------------------------------|---------------------------------------|------------------|---------------------|------------------|----------------------|-------------------|-----------------------|-----|
| 0x000E            |                     | 0x00 | OVERRI<br>RI-<br>DE_AD<br>C  | ADC2_EN_P<br>5V0                      | ADC1_EN_P<br>5V0 | PT1000_CAL_O<br>N_N | EN_V_MUX_<br>N   | ADC2_PWD<br>N_N      | ADC1_PWDN<br>_N   | ADC_C<br>LK_EN        | R/W |
| 0x000F            |                     | 0x00 |                              |                                       |                  | Resei               | rved             |                      |                   |                       | R/W |
| 0x0010            | AEB_CONFIG_P        | 0x00 | l                            | PAT-<br>CCDID[1:0]                    |                  |                     | PATTERN_CO       | LS[13:8]             |                   |                       | R/W |
| 0x0011            | AEB_CONFIG_F ATTERN | 0x00 |                              |                                       |                  | PATTERN_0           | COLS[7:0]        |                      |                   |                       | R/W |
| 0x0012            | ATTLINI             | 0x00 | Re                           | served                                |                  | F                   | PATTERN_RO\      | NS[13:8]             |                   |                       | R/W |
| 0x0013            |                     | 0x00 |                              |                                       |                  | PATTERN_F           | ROWS[7:0]        |                      |                   |                       | R/W |
| 0x0014            |                     | 0x00 |                              |                                       |                  | VASP_CFG_           | ADDR[7:0]        |                      |                   |                       | R/W |
| 0x0015            |                     | 0x00 |                              |                                       |                  | VASP1_CFG           | _DATA[7:0]       |                      |                   |                       | R/W |
| 0x0016            | VASP_I2C_CON        | 0x00 |                              |                                       |                  | VASP2_CFG           | _DATA[7:0]       |                      |                   |                       | R/W |
| 0x0017            | TROL                | 0x00 | Reserved                     |                                       | l                | VASP2_SELE<br>CT    | VASP1_SE<br>LECT | Calibration<br>Start | I2C Read<br>Start | I2C<br>Write<br>Start | R/W |
| 0x0018            |                     | 0x00 | Not Used                     |                                       | Reserv           | ved (=00)           |                  | DAC_VOC              | 5[11:8]           |                       | R/W |
| 0x0019            | DAC_CONFIG_         | 0x00 |                              | DAC VOG[7:0]                          |                  |                     |                  | R/W                  |                   |                       |     |
| 0x001A            | 1                   | 0x00 | No                           | Not Used Reserved (=00) DAC VRD[11:8] |                  |                     |                  |                      | R/W               |                       |     |
| 0x001B            |                     | 0x00 |                              | DAC VRD[7:0]                          |                  |                     |                  | R/W                  |                   |                       |     |
| 0x001C            |                     | 0x00 | No                           | Not Used Reserved (=00) DAC VOD[11:8] |                  |                     |                  |                      | R/W               |                       |     |
| 0x001D            | DAC_CONFIG_         | 0x00 |                              | DAC_VOD[7:0]                          |                  |                     |                  | R/W                  |                   |                       |     |
| 0x001E            | 2                   | 0x00 |                              |                                       |                  | Resei               | ved              |                      |                   |                       | R/W |
| 0x001F            |                     | 0x00 |                              |                                       |                  | Rese                | ved              |                      |                   |                       | R/W |
| 0x0020            |                     | 0x00 |                              |                                       |                  | Resei               | ved              |                      |                   |                       | R/W |
| 0x0021            |                     | 0x00 |                              |                                       |                  | Resei               | ved              |                      |                   |                       | R/W |
| 0x0022            | -                   | 0x00 |                              |                                       |                  | Resei               | ved              |                      |                   |                       | R/W |
| 0x0023            |                     | 0x00 |                              |                                       |                  | Rese                | ved              |                      |                   |                       | R/W |
| 0x0024            |                     | 0x00 |                              |                                       |                  | TIME_VCCI           | D_ON[7:0]        |                      |                   |                       | R/W |
| 0x0025            | PWR CONFIG1         | 0x00 |                              |                                       |                  | TIME_VCL            | _ ,              |                      |                   |                       | R/W |
| 0x0026            | PWK_CONFIGI         | 0x00 |                              |                                       |                  | TIME_VAN            | 1_ON[7:0]        |                      |                   |                       | R/W |
| 0x0027            |                     | 0x00 |                              |                                       |                  | TIME_VAN            |                  |                      |                   |                       | R/W |
| 0x0028            |                     | 0x00 |                              |                                       |                  | TIME_VAN:           |                  |                      |                   |                       | R/W |
| 0x0029            | PWR_CONFIG2         | 0x00 |                              | TIME_VCCD_OFF[7:0]                    |                  |                     |                  | R/W                  |                   |                       |     |
| 0x002A            | F VVN_COINFIGZ      | 0x00 |                              |                                       |                  | TIME_VCLK           | (_OFF[7:0]       |                      |                   |                       | R/W |
| 0x002B            |                     | 0x00 |                              | _                                     | -                | TIME_VAN1           | 1_OFF[7:0]       |                      |                   |                       | R/W |
| 0x002C            |                     | 0x00 |                              |                                       |                  | TIME_VAN2           | 2_OFF[7:0]       |                      |                   |                       | R/W |
| 0x002D            | PWR CONFIG3         | 0x00 |                              |                                       |                  | TIME_VAN3           | 3_OFF[7:0]       |                      |                   |                       | R/W |
| 0x002E            | LAAV_COIALIG3       | 0x00 |                              |                                       |                  | Resei               | ved              |                      |                   |                       | R/W |
| 0x002F            |                     | 0x00 |                              | Reserved                              |                  |                     |                  | R/W                  |                   |                       |     |
| 0x0030-<br>0x00FF | -                   | 0x00 |                              | Not Used                              |                  |                     |                  | R/W                  |                   |                       |     |

Figure 7-1:AEB Critical Configuration area

| Address<br>(hex) | Default value | Bit 7                      | Bit 6                | Bit 5   | Bit 4   | Bit 3  | Bit 2  | Bit 1  | Bit 0 | R/W<br>Mode |
|------------------|---------------|----------------------------|----------------------|---------|---------|--------|--------|--------|-------|-------------|
| 0x0120           | 0b00000000    | Not Used                   |                      |         |         | SE     | Q_OE[2 | 21:16] |       | R/W         |
| 0x0121           | 0b00000000    |                            | SEQ_C                | )E[15:8 | 3]      |        |        |        |       | R/W         |
| 0x0122           | 0b00000000    |                            | SEQ_0                | OE[7:0] |         |        |        |        |       | R/W         |
| 0x0123           | 0b00000000    | Not Used                   |                      | F       | ADC_C   | LK_DI\ | /[6:0] |        |       | R/W         |
| 0x0124           | 0b00000000    |                            | ADC_CLK_L            | OW_P    | OS[7:0] |        |        |        |       | R/W         |
| 0x0125           | 0b00000000    |                            | ADC_CLK_H            | IGH_P   | OS[7:0] |        |        |        |       | R/W         |
| 0x0126           | 0b00000000    |                            | CDS_CLK_LOW_POS[7:0] |         |         |        | R/W    |        |       |             |
| 0x0127           | 0b00000000    | CDS_CLK_HIGH_POS[7:0]      |                      |         |         | R/W    |        |        |       |             |
| 0x0128           | 0b00000000    | RPHIR_CLK_LOW_POS[7:0]     |                      |         |         | R/W    |        |        |       |             |
| 0x0129           | 0b00000000    | RPHIR_CLK_HIGH_POS[7:0]    |                      |         |         | R/W    |        |        |       |             |
| 0x012A           | 0b00000000    | Reserved                   |                      |         |         | R/W    |        |        |       |             |
| 0x012B           | 0b00000000    | Reserved                   |                      |         |         | R/W    |        |        |       |             |
| 0x012C           | 0b00000000    |                            | Rese                 | erved   |         |        |        |        |       | R/W         |
| 0x012D           | 0b00000000    |                            | Reserved             |         |         |        | R/W    |        |       |             |
| 0x012E           | 0b00000000    | Reserved                   |                      |         |         | R/W    |        |        |       |             |
| 0x012F           | 0b00000000    | Reserved                   |                      |         |         | R/W    |        |        |       |             |
| 0x0130           | 0b00000000    | Not Used FT_LOOP_CNT[13:8] |                      | R/W     |         |        |        |        |       |             |
| 0x0131           | 0b00000000    |                            | FT_LOOP_CNT[7:0]     |         |         |        | R/W    |        |       |             |

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 28/32

PLATO - F-FEE - Phase B2



| 0x0132 | 0600000000 | LTO_ENABLED       | Not Used  | LTO_LOOP_CNT[13:8]  | R/W        |  |  |
|--------|------------|-------------------|-----------|---------------------|------------|--|--|
| 0x0132 | 0b00000000 | ETO_ENABLED       |           | P_CNT[7:0]          | R/W        |  |  |
| 0x0133 | 0b00000000 | LT1_ENABLED       | Not Used  | LT1_LOOP_CNT[13:8]  | R/W        |  |  |
| 0x0134 | 0b00000000 | ETT_ENABLED       |           | P_CNT[7:0]          | R/W        |  |  |
| 0x0136 | 0b00000000 | LT2_ENABLED       | Not Used  | LT2_LOOP_CNT[13:8]  | R/W        |  |  |
| 0x0130 | 0b00000000 | LIZ_LIV (DLLD     |           | P_CNT[7:0]          | R/W        |  |  |
| 0x0137 | 0b00000000 | LT3 ENABLED       | Not Used  | LT3 LOOP CNT[13:8]  | R/W        |  |  |
| 0x0130 | 0b00000000 | 213_214/ (0220    |           | P_CNT[7:0]          | R/W        |  |  |
| 0x013A | 0b00000000 |                   |           | CNT[31:24]          | R/W        |  |  |
| 0x013B | 0b00000000 |                   |           | CNT[23:16]          | R/W        |  |  |
| 0x013C | 0b00000000 |                   | PIX_LOOP_ |                     | R/W        |  |  |
| 0x013D | 0b00000000 |                   |           | _CNT[7: 0]          | R/W        |  |  |
| 0x013E | 0b00000000 | PC ENABLED        | Not Used  | PC_LOOP_CNT[13:8]   | R/W        |  |  |
| 0x013F | 0b00000000 | <del>-</del>      |           | _CNT[7:0]           | R/W        |  |  |
| 0x0140 | 0b00000000 | Not Used          |           | INT1_LOOP_CNT[13:8] | R/W        |  |  |
| 0x0141 | 0b00000000 |                   | INT1_LOO  | P_CNT[7:0]          | R/W        |  |  |
| 0x0142 | 0b00000000 | Not Used          | _         | INT2_LOOP_CNT[13:8] | R/W        |  |  |
| 0x0143 | 0b00000000 |                   | INT2 LOO  | P CNT[7:0]          | R/W        |  |  |
| 0x0144 | 0b00000000 | SPHI INV          | _         | Not Used            | R/W        |  |  |
| 0x0145 | 0b00000000 | RPHI INV          |           | Not Used            | R/W        |  |  |
| 0x0146 | 0b00000000 |                   | R/W       |                     |            |  |  |
| 0x0147 | 0b00000000 | Reserved Reserved |           |                     |            |  |  |
| 0x0148 | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x0149 | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x014A | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x014B | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x014C | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x014D | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x014E | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x014F | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x0150 | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x0151 | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x0152 | 0b00000000 |                   | Reserved  |                     |            |  |  |
| 0x0153 | 0b00000000 |                   | Rese      | erved               | R/W        |  |  |
| 0x0154 | 0b00000000 |                   | Rese      | erved               | R/W        |  |  |
| 0x0155 | 0b00000000 |                   | Rese      | erved               | R/W        |  |  |
| 0x0156 | 0b00000000 |                   | Reserved  |                     |            |  |  |
| 0x0157 | 0b00000000 |                   | Reserved  |                     |            |  |  |
| 0x0158 | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x0159 | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x015A | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x015B | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x015C | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x015D | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x015E | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x015F | 0b00000000 | Reserved          |           |                     |            |  |  |
| 0x015E | 0b00000000 |                   |           | erved               | R/W<br>R/W |  |  |
| 0x015F | 0b00000000 |                   | Reserved  |                     |            |  |  |

Table 7-1: AEB General Configuration Area registers

## 8 Typical Operation Scenarios

## 8.1 Readout in Full image mode

User wants to readout the whole image area (4510 x 2255 pixels), including 25 the prescan pixels, 15 serial overscan pixels and 10 parallel overscan lines.

PIX COUNT = 4510/2 + 25 + 15 = 2272 pixels FT COUNT = 2255 + 10 = 2265 lines

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 29/32

PLATO - F-FEE - Phase B2



LT3 COUNT = 15 lines

LT2 COUNT = 0

LT1 COUNT = 2255 lines

LT0 COUNT = 0

#### 1. Set DEB in STANDBY Mode

| Address        | Value |
|----------------|-------|
| 0x00 0000 0100 | 0x00  |
| 0x00 0000 0101 | 0x00  |
| 0x00 0000 0102 | 0x00  |
| 0x00 0000 0103 | 0x07  |

#### 2. Set AEBs in CONFIG Mode

| AEB  | Address        | Value |
|------|----------------|-------|
| AEB1 | 0x00 0001 0000 | 0x0A  |
|      | 0x00 0001 0001 | 0x00  |
|      | 0x00 0001 0002 | 0x00  |
|      | 0x00 0001 0003 | 0x00  |
| AEB2 | 0x00 0001 0000 | 0x0A  |
|      | 0x00 0001 0001 | 0x00  |
|      | 0x00 0001 0002 | 0x00  |
|      | 0x00 0001 0003 | 0x00  |
| AEB3 | 0x00 0001 0000 | 0x0A  |
|      | 0x00 0001 0001 | 0x00  |
|      | 0x00 0001 0002 | 0x00  |
|      | 0x00 0001 0003 | 0x00  |
| AEB4 | 0x00 0001 0000 | 0x0A  |
|      | 0x00 0001 0001 | 0x00  |
|      | 0x00 0001 0002 | 0x00  |
|      | 0x00 0001 0003 | 0x00  |

# 3. Set DEB INPUT MODE TBC

## 4. Set AEB registers to following values:

| Parameter        | Value (decimal) |
|------------------|-----------------|
| SEQ_OE           | 0x3FFFFF        |
|                  | (hexadecimal)   |
| ADC_CLK_DIV      | 33              |
| ADC_CLK_LOW_POS  | 31              |
| ADC_CLK_HIGH_POS | 14              |

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 30/32

PLATO - F-FEE - Phase B2



| CDS_CLK_LOW_POS    | 17   |
|--------------------|------|
| CDS_CLK_HIGH_POS   | 0    |
| RPHIR_CLK_LOW_POS  | 7    |
| RPHIR_CLK_HIGH_POS | 3    |
| FT_LOOP_CNT        | 2265 |
| LTO_EN             | 0    |
| LTO_LOOP_CNT       | 0    |
| LT1_EN             | 1    |
| LT1_LOOP_CNT       | 2255 |
| LT2_EN             | 0    |
| LT2_LOOP_CNT       | 0    |
| LT3_EN             | 1    |
| LT3_LOOP_CNT       | 15   |
| PIX_LOOP_CNT       | 2272 |
| PC_ENABLED         | 0    |
| PC_LOOP_CNT        | 0    |
| INT1_LOOP_CNT      | 0    |
| INT2_LOOP_CNT      | 0    |
| SPHI_INV           | 0    |
| RPHI_INV           | 0    |

#### 5. Set DEB to FULL IMAGE mode

| Address        | Value |  |  |  |  |  |
|----------------|-------|--|--|--|--|--|
| 0x00 0000 0100 | 0x00  |  |  |  |  |  |
| 0x00 0000 0101 | 0x00  |  |  |  |  |  |
| 0x00 0000 0102 | 0x00  |  |  |  |  |  |
| 0x00 0000 0103 | 0x00  |  |  |  |  |  |

## 6. Set AEBs to IMAGE mode

| AEB  | Address        | Value |
|------|----------------|-------|
| AEB1 | 0x00 0001 0000 | 0x0E  |
|      | 0x00 0001 0001 | 0x00  |
|      | 0x00 0001 0002 | 0x00  |
|      | 0x00 0001 0003 | 0x00  |
| AEB2 | 0x00 0001 0000 | 0x0E  |
|      | 0x00 0001 0001 | 0x00  |
|      | 0x00 0001 0002 | 0x00  |
|      | 0x00 0001 0003 | 0x00  |
| AEB3 | 0x00 0001 0000 | 0x0E  |
|      | 0x00 0001 0001 | 0x00  |

Title: F-FEE Modes and CCD Sequencer

Issue / Revision: 1/0

Date of Rev.: 04 .12.2019

Identifier: PLATO-DLR-PL-TN-0063 Page: 31/32

PLATO - F-FEE - Phase B2



|      | 0x00 0001 0002 | 0x00 |
|------|----------------|------|
|      | 0x00 0001 0003 | 0x00 |
| AEB4 | 0x00 0001 0000 | 0x0E |
|      | 0x00 0001 0001 | 0x00 |
|      | 0x00 0001 0002 | 0x00 |
|      | 0x00 0001 0003 | 0x00 |

- END OF DOCUMENT -

Title: **F-FEE Modes and CCD Sequencer**Issue / Revision: 1/0 Identifier: PLATO-DLR-PL-TN-0063
Page: 32/32