ECSE 323 — Group 47 Lab 4 Report Permutation

Jun Young Shin id. 260499663 Timothee Flichy id. 260557686

April 1, 2016

1 Permutation

The permutation is used to both encode and decode the input letter. To do so, we were given a table which depicts the character encryption list given in the figure 1. We were told to implement the first 4 rotor types. To make the permutation circuit, we need 2 input and 2 outputs. The inputs will receive a 2 bit rotor_type and the second input is a 5-bit input_code (letter) that must be encrypted. The outputs are a 5 bit output_code which outputs the encrypted version of the input bits determined by the rotor position and the second input is the inv_output_code giving the inverted or decrypted 5 bit code. This is given by the figure 2. We tested out vhdl code on the ModelSim

Figure 1: Permutation graph.

Figure 2: Permutation symbol.

and got what we were expected to get from the permutation graph as you can see from the figures 3, 4, 5, 6, and 7.

Figure 3: Tested circuit on ModelSim

Figure 4: With rotor I.

Figure 5: With rotor II.

Figure 6: With rotor III.

Figure 7: With rotor V.

$2 ext{fsm}$

For the FSM also known as Finite State Machine, we had build a circuit that work at a specific sequence mentioned on the lab sheet. The states are as following shown in the figure 8. To make this work, we wrote a FSM where we

Figure 8: State Diagram.

have 5 inputs and 4 outputs as shown in the figure 9. Circuit goes as follows. The circuit check for the INIT to go high. When INIT is high, the LOAD will go high. After this, it waits for the KEYPRESS to go low in the case of the Altera board is active high. Next it checks the KNOCK_M and KNOCK_R. When both KNOCK are low, then only the EN_R is set high. When only KNOCK_R is high, then the EN_R and EN_M is set high. When only KNOCK_M is high, the all EN is go high. When both KNOCK's are high, is will go to the state where all EN are high. After the states where EN are set, it will return to state 1 and start over again. At this, point, the INIT does not need to be checked. The figure 10 shows the circuit in a simulated environment.

Figure 9: FSM symbol.

Figure 10: FSM symbol.

$3 fsm_testbed$