Théorie des langages (Introduction/Rappels)

Alexis Nasr Franck Dary Pacome Perrôtin

Compilation – L3 Informatique Département Informatique et Interactions Aix Marseille Université

Langages

Grammaires

Arbres de dérivation Types de grammaires

Reconnaisseurs

Généralités Automates finis Automates à pile Machines de Turing

Langages

Grammaires

Arbres de dérivation Types de grammaires

Reconnaisseurs

Généralités Automates finis Automates à pile Machines de Turing

Le paysage syntaxique

- Les symboles sont des éléments indivisibles qui vont servir de briques de base pour construire des mots.
- Un alphabet est un ensemble fini de symboles. On désigne conventionnellement un alphabet par la lettre grecque Σ .
- Une suite de symboles, appartenant à un alphabet Σ , mis bout à bout est appelé un mot (ou une *chaîne*) sur Σ . Le mot de longueur zéro est noté ε .
- On note |m| la longueur du mot m (le nombre de symboles qui le composent) et |m|_s le nombre de symboles s que possède le mot m.
- L'ensemble de tous les mots que l'on peut construire sur un alphabet Σ est noté Σ^* .
- Un langage sur un alphabet Σ est un ensemble de mots construits sur Σ . Tout langage défini sur Σ est donc une partie de Σ^* .

Exemples de langages

$$\Sigma = \{a\}$$
 $L_1 = \{\varepsilon, a, aa, aaa, \ldots\}$ $\Sigma = \{a, b\}$ $L_2 = \{\varepsilon, ab, aabb, aaabbb, aaaabbb, \ldots\}$ $\Sigma = \{a, b\}$ $L_3 = \{\varepsilon, aa, bb, aaaa, abba, baab, bbbb, \ldots\}$ $\Sigma = \{a, b, c\}$ $L_4 = \{\varepsilon, abc, aabbcc, aaabbbccc, \ldots\}$

Opérations sur les langages

Union	$L_1 \cup L_2$	$\{x \mid x \in L_1 \text{ ou } x \in L_2\}$
Intersection	$L_1 \cap L_2$	$\{x \mid x \in L_1 \text{ et } x \in L_2\}$
Différence	$L_1 - L_2$	$\{x \mid x \in L_1 \text{ et } x \notin L_2\}$
Complément	$ar{L}$	$\{x \in \Sigma^* \mid x \notin L\}$
Concaténation	L_1L_2	$\{xy \mid x \in L_1 \text{ et} y \in L_2\}$
	n	
Auto concaténation	$\hat{L} \dots \hat{L}$	L^n
Fermeture de Kleene	L^*	$\bigcup_{k>0} L^k$
		· · · · · · · · · · · · · · · · · · ·

Comment décrire un langage?

- Énumération $L_2 = \{\varepsilon, ab, aabb, aaabbb, aaaabbb, ...\}$
- Description littéraire Ensemble des mots construits sur l'alphabet {a,b}, commençant par des a et se terminant par des b et tel que le nombre de a et le nombre de b soit égal
- Grammaire de réécriture $G = \langle \{S\}, \{a,b\}, \{S \rightarrow aSb \mid \epsilon\}, S \rangle$

Langages

Grammaires

Arbres de dérivation Types de grammaires

Reconnaisseurs

Généralités Automates finis Automates à pile Machines de Turing

Grammaires de réécriture

Une grammaire de réécriture est un 4-uplet $\langle N, \Sigma, P, S \rangle$ où :

- N est un ensemble de symboles non terminaux, appelé l'alphabet non-terminal.
- Σ est un ensemble de symboles terminaux, appelé l'alphabet terminal, tel que N et Σ soient disjoints.
- P est un ensemble fini de fini de règles de production ou règles de réécriture.
- Une règle est de la forme :

$$\alpha \rightarrow \beta$$

 α est appelé partie gauche de la règle β est appelé partie droite de la règle

- α et β peuvent prendre des formes différentes mais on a toujours $\alpha \in (N \cup \Sigma)^*N(N \cup \Sigma)^*$ $\beta \in (N \cup \Sigma)^*$
- *S* est un élément de *N* appelé l'axiome de la grammaire.

Notation

Pour alléger les notations, on note :

$$\alpha \rightarrow \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

les n règles :

$$lpha
ightarrow eta_1$$
 , $lpha
ightarrow eta_2$,..., $lpha
ightarrow eta_n$

Quelques exemples de grammaires

- $\langle \{S\}, \{a\}, \{S \rightarrow Sa \mid \varepsilon\}, S \rangle$
- $\langle \{S\}, \{a,b\}, \{S \rightarrow aSb \mid \varepsilon\}, S \rangle$

Proto-mots d'une grammaire

Les proto-mots d'une grammaire $G = \langle N, \Sigma, P, S \rangle$ sont des mots construits sur l'alphabet $\Sigma \cup N$, on les définit récursivement de la façon suivante :

- *S* est un proto-mot de *G*
- si $\alpha\beta\gamma$ est un proto-mot de G et $\beta \to \delta \in P$ alors $\alpha\delta\gamma$ est un proto-mot de G.

Un proto-mot de G ne contenant aucun symbole non-terminal est appelé un mot engendré par G. Le langage engendré par G, noté L(G) est l'ensemble des mots engendrés par G.

Dérivation

L'opération qui consiste à générer un proto-mot $\alpha \delta \gamma$ à partir d'un proto-mot $\alpha \beta \gamma$ et d'une règle de production r de la forme $\beta \to \delta$ est appelée l'opération de dérivation. Elle se note à l'aide d'une double flèche :

$$\alpha\beta\gamma \Rightarrow \alpha\delta\gamma$$

- On note $\alpha \stackrel{k}{\Rightarrow} \beta$ pour indiquer que β se dérive de α en k étapes.
- On définit aussi les deux notations $\stackrel{+}{\Rightarrow}$ et $\stackrel{*}{\Rightarrow}$ de la façon suivante :

Attention

Les symboles \Rightarrow et \rightarrow ne représentent pas la même chose.

Conventions

- Les symboles non terminaux appartenant à N sont représentés par des lettres latines majuscules : $A, B, C, S, E, T \dots$
- Les symboles terminaux appartenant à Σ sont représentés par des lettres latines minuscules : $a, b, c, d \dots$
- Les proto-mots appartenant à $(N \cup \Sigma)^*$ sont représentés par des lettres grecques minuscules : $\alpha, \beta, \gamma, \varepsilon...$
- L'axiome est représenté par le non-terminal *S* et constitue la partie gauche de la première règle de production

Langage engendré par une grammaire

 \blacksquare *L*(*G*) est défini de la façon suivante :

$$L(G) = \{ m \in \Sigma^* \mid S \stackrel{+}{\Rightarrow} m \}$$

■ Deux grammaires G et G' sont équivalentes si L(G) = L(G').

$$L_1 = \{\varepsilon, a, aa, aaa, \ldots\}$$

$$G = \langle \{S\}, \{a\}, \{S \to Sa \mid \varepsilon\}, S \rangle$$

sous-ensemble des proto-mots de *G*

$L_2 = \{\varepsilon, ab, aabb, aaabbb, aaaabbbb, \ldots\}$

$$G = \langle \{S\}, \{a, b\}, \{S \to aSb \mid \varepsilon\}, S \rangle$$

sous-ensemble des proto-mots de ${\cal G}$

$L_3 = \{aa, bb, aaaa, abba, baab, bbbb, \ldots\}$

$L_4 = \{\varepsilon, abc, aabbcc, aaabbbccc, \ldots\}$

$$G = \langle \{S, S_1, S_2\}, \{a, b, c\}, \left\{ \begin{array}{ccc} S & \rightarrow & aS_1c, & S_1 & \rightarrow & b \mid SS_2, \\ cS_2 & \rightarrow & S_2c, & bS_2 & \rightarrow & bb \end{array} \right\}, S \rangle$$

sous-ensemble des proto-mots de G

Sens de dérivation

$$G = \langle \{E, T, F\}, \{+, *, a\}, \{E \rightarrow T + E \mid T, T \rightarrow F * T \mid F, F \rightarrow a\}, E \rangle$$

Les proto-mots engendrés lors d'une dérivation peuvent comporter plus d'un symbole non-terminal :

$$E \Rightarrow T + E$$

$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow F + F * T$$

$$\Rightarrow F + a * T$$

$$\Rightarrow F + a * F$$

$$\Rightarrow a + a * F$$

$$\Rightarrow a + a * a$$

Sens de dérivation

Dérivation gauche : on réécrit le non-terminal le plus à gauche :

$$E \Rightarrow T + E$$

$$\Rightarrow F + E$$

$$\Rightarrow a + E$$

$$\Rightarrow a + T$$

$$\Rightarrow a + F * T$$

$$\Rightarrow a + a * T$$

$$\Rightarrow a + a * F$$

$$\Rightarrow a + a * a$$

Dérivation droite :

..

$$E \Rightarrow T + E$$

$$\Rightarrow T + T$$

$$\Rightarrow T + F * T$$

$$\Rightarrow T + F * F$$

$$\Rightarrow T + F * a$$

$$\Rightarrow T + a * a$$

$$\Rightarrow F + a * a$$

$$\Rightarrow a + a * a$$

Arbre de dérivation

Un arbre de dérivation pour G ($G = \langle N, \Sigma, P, S \rangle$) est un arbre ordonné et étiqueté dont les étiquettes appartiennent à l'ensemble $N \cup \Sigma \cup \{\varepsilon\}$. Si un nœud de l'arbre est étiqueté par le non terminal A et ses fils sont étiquetés $X_1, X_2, ..., X_n$ alors la règle $A \to X_1, X_2, ..., X_n$ appartient à P.

Arbre de dérivation

- Un arbre de dérivation indique les règles qui ont été utilisées dans une dérivation, mais pas l'ordre dans lequel elles ont été utilisées.
- À un arbre de dérivation correspondent une seule dérivation droite et une seule dérivation gauche.

Ambiguïté

Une grammaire G est **ambiguë** s'il existe au moins un mot m dans L(G) auquel correspond plus d'un arbre de dérivation. *Exemple* :

Symboles et règles de production utiles

Pour manipuler une grammaire, il est souhaitable que tous les symboles et règles de production soient utiles :

- Un symbole terminal ou non-terminal est utile s'il apparaît dans une règle de production utile
- Une règle de production est utile si :
 - elle peut générer des mots
 - 2 le symbole non-terminal de la partie gauche peut être généré (sauf l'axiome, qui peut par définition ne pas être généré)
 - 3 elle n'est pas de la forme $\alpha \to \alpha$

Types de règles

Les grammaires peuvent être classées en fonction de la forme de leurs règles de production. On définit cinq types de règles de production :

- Une règle est régulière à gauche si et seulement si elle est de la forme $A \to xB$ ou $A \to x$ avec $A, B \in N$ et $x \in \Sigma^*$.
- Une règle est régulière à droite si et seulement si elle est de la forme $A \to Bx$ ou $A \to x$ avec $A, B \in N$ et $x \in \Sigma^*$.
- Une règle $A \to \alpha$ est un règle hors-contexte si et seulement si : $A \in N$ et $\alpha \in (N \cup \Sigma)^*$
- Une règle $\alpha \to \beta$ est une règle contextuelle si et seulement si : $\alpha = gAd$ et $\beta = gBd$ avec $g,d,B \in (N \cup \Sigma)^*$ et $A \in N$. Le nom "contextuelle" provient du fait que A se réecrit B uniquement dans le contexte g_d .
- Une règle $\alpha \rightarrow \beta$ est une règle sans restriction si elle n'est pas contextuelle.

Type d'une grammaire

Une grammaire est:

- régulière ou de type 3 si elle est régulière à droite ou régulière à gauche. Une grammaire est régulière à gauche si toutes ses règles sont régulières à gauche et une grammaire est régulière à droite si toutes ses règles sont régulières à droite.
- hors contexte ou de type 2 si toutes ses règles de production sont hors contexte.
- dépendante du contexte ou de type 1 si toutes ses règles de production sont dépendantes du contexte.
- sans restrictions ou de type 0 si toutes ses règles de production sont sans restrictions.

Hiérarchie de Chomsky

Type d'un langage

Un langage pouvant être engendré par une grammaire de type x et pas par une grammaire d'un type supérieur dans la hiérarchie, est appelé un langage de type x.

Туре	Nom
3	régulier
2	hors contexte
1	dépendant du contexte
0	récursivement énumérable

$$L_1 = \{m \in \{a,b\}^*\}$$

$$L_2 = \{m \in \{a,b\}^* \mid |m|_a \mod 2 = 0\}$$

$$L_3 = \{m \in \{a,b\}^* \mid m = xaaa \text{ avec } x \in \{a,b\}^*\}$$

$$L_4 = \{m \in \{a,b\}^* \mid |m|_a \mod 2 = 0 \text{ et} |m|_b \mod 2 = 0\}$$

$$L_{1} = \{m \in \{a,b\}^{*}\}$$

$$G_{1} = \{S\}, \{a,b\}, \{S \to aS \mid bS \mid \varepsilon\}, S\}$$

$$L_{2} = \{m \in \{a,b\}^{*} \mid |m|_{a} \mod 2 = 0\}$$

$$L_{3} = \{m \in \{a,b\}^{*} \mid m = xaaa \text{ avec } x \in \{a,b\}^{*}\}$$

$$L_{4} = \{m \in \{a,b\}^{*} \mid |m|_{a} \mod 2 = 0 \text{ et}|m|_{b} \mod 2 = 0\}$$

```
L_{1} = \{m \in \{a,b\}^{*}\}\
G_{1} = \{S\}, \{a,b\}, \{S \to aS \mid bS \mid \varepsilon\}, S\}
L_{2} = \{m \in \{a,b\}^{*} \mid |m|_{a} \mod 2 = 0\}
G_{2} = \{S,T\}, \{a,b\}, \{S \to aT \mid bS \mid \varepsilon, T\}, S\}
L_{3} = \{m \in \{a,b\}^{*} \mid m = xaaa \text{ avec } x \in \{a,b\}^{*}\}
L_{4} = \{m \in \{a,b\}^{*} \mid |m|_{a} \mod 2 = 0 \text{ et}|m|_{b} \mod 2 = 0\}
```

```
\begin{array}{lll} L_{1} &=& \{m \in \{a,b\}^{*}\} \\ G_{1} &=& \langle \{S\}, \{a,b\}, \{S \rightarrow aS \mid bS \mid \varepsilon\}, S \rangle \\ \\ L_{2} &=& \{m \in \{a,b\}^{*} \mid |m|_{a} \mod 2 = 0\} \\ \\ G_{2} &=& \langle \{S,T\}, \{a,b\}, \left\{ \begin{array}{ccc} S & \rightarrow & aT \mid bS \mid \varepsilon, \\ T & \rightarrow & aS \mid bT \end{array} \right\}, S \rangle \\ \\ L_{3} &=& \{m \in \{a,b\}^{*} \mid m = xaaa \ \text{avec} \ x \in \{a,b\}^{*}\} \\ \\ G_{3} &=& \langle \{S,T,U\}, \{a,b\}, \left\{ \begin{array}{ccc} S & \rightarrow & aS \mid bS \mid aT, \\ T & \rightarrow & aU, \\ U & \rightarrow & a \end{array} \right\}, S \rangle \\ \\ L_{4} &=& \{m \in \{a,b\}^{*} \mid |m|_{a} \mod 2 = 0 \ \text{et} |m|_{b} \mod 2 = 0\} \end{array}
```

```
L_1 = \{m \in \{a,b\}^*\}
G_1 = \langle \{S\}, \{a,b\}, \{S \rightarrow aS \mid bS \mid \epsilon\}, S \rangle
 L_2 = \{m \in \{a, b\}^* \mid |m|_a \mod 2 = 0\}
G_2 = \langle \{S,T\}, \{a,b\}, \left\{ \begin{array}{ccc} S & \to & aT \mid bS \mid \varepsilon, \\ T & \to & aS \mid bT \end{array} \right\}, S \rangle
 L_3 = \{m \in \{a, b\}^* \mid m = xaaa \text{ avec } x \in \{a, b\}^*\}
G_{3} = \langle \{S, T, U\}, \{a, b\}, \left\{ \begin{array}{ccc} S & \rightarrow & aS \mid bS \mid aT, \\ T & \rightarrow & aU, \\ U & \rightarrow & a \end{array} \right\}, S \rangle
 L_4 = \{m \in \{a,b\}^* \mid |m|_a \mod 2 = 0 \text{ et}|m|_b \mod 2 = 0\}
G_4 = \langle \{S, T, U, V\}, \{a, b\}, 

\left\{
\begin{array}{ccc}
S & \rightarrow & aT \mid bU \mid \varepsilon, & T & \rightarrow & aS \mid bV, \\
V & \rightarrow & aU \mid bT, & U & \rightarrow & aV \mid bS
\end{array}
\right\}, S
```

Exemples de langages hors-contexte

$$L_1 = \{a^n b^n \mid n \ge 0\}$$

 $L_2 = \{mm^{-1} \mid m \in \{a, b\}^*\}$ (langage miroir - palindromes paires)

Exemples de langages hors-contexte

```
L_1 = \{a^n b^n \mid n \ge 0\}
G_1 = \langle \{S\}, \{a, b\}, \{S \to aSb \mid \varepsilon\}, S \rangle
L_2 = \{mm^{-1} \mid m \in \{a, b\}^*\} \quad \text{(langage miroir - palindromes paires)}
```

Exemples de langages hors-contexte

```
L_{1} = \{a^{n}b^{n} \mid n \geq 0\}
G_{1} = \langle \{S\}, \{a, b\}, \{S \rightarrow aSb \mid \varepsilon\}, S \rangle
L_{2} = \{mm^{-1} \mid m \in \{a, b\}^{*}\} \quad \text{(langage miroir - palindromes paires)}
G_{2} = \langle \{S\}, \{a, b\}, \{S \rightarrow aSa \mid bSb \mid \varepsilon\}, S \rangle
```

Exemples de langages contextuels

$$L_1 = \{a^n b^n c^n \mid n \ge 0\}$$

$$L_2 = \{m \sharp m \mid \text{avec } m \in \{a, b\}^*\}$$

Exemples de langages contextuels

```
\begin{array}{lll} L_{1} & = & \{a^{n}b^{n}c^{n} \mid n \geq 0\} \\ G_{1} & = & \langle \{S,B,\bar{B},C\}, \{a,b,c\}, \\ & & \left\{ \begin{array}{cccc} S & \to & aSBC \mid \varepsilon, & CB & \to & \bar{B}B, \\ \bar{B}B & \to & \bar{B}C, & \bar{B}C & \to & BC, \\ aB & \to & ab, & bB & \to & bb, \\ bC & \to & bc, & cC & \to & cc \end{array} \right\}, S \rangle \\ L_{2} & = & \{m\sharp m \mid \operatorname{avec} m \in \{a,b\}^{*}\} \\ & \dots \end{array}
```

Grammaire v/s Reconnaisseur

- Une grammaire d'un langage *L* permet de générer tous les mots appartenant à *L*.
- Un reconnaisseur pour un langage *L* est un programme qui prend en entrée un mot *m* et répond oui si *m* appartient à *L* et non sinon.
- Pour chaque classe de grammaire, il existe une classe de reconnaisseurs qui définit la même classe de langages.

Type de grammaire	Type de reconnaisseur
régulière	Automate fini
hors contexte	Automate à pile
contextuelle	Automate linéairement borné
sans restriction	Machine de Turing

Langages

Grammaires

Arbres de dérivation Types de grammaires

Reconnaisseurs

Généralités Automates finis Automates à pile Machines de Turing

Représentation graphique d'un reconnaisseur

Éléments d'un reconnaisseur

Un reconnaisseur est composé de quatre parties :

1 une bande de lecture

- elle est composée d'une succession de cases.
- Chaque case pouvant contenir un seul symbole d'un alphabet d'entrée.
- C'est dans les cases de cette bande de lecture qu'est écrit le mot à reconnaître.

2 une tête de lecture

- Elle peut lire une case à un instant donné.
- La case sur laquelle se trouve la tête de lecture à un moment donné s'appelle la case courante.
- La tête peut être déplacée par le reconnaisseur pour se positionner sur la case immédiatement à gauche ou à droite de la case courante.

3 une mémoire

- Elle peut prendre des formes différentes.
- La mémoire permet de stocker des éléments d'un alphabet de mémoire.

Éléments d'un reconnaisseur

4 une unité de contrôle

- Elle constitue le cœur d'un reconnaisseur.
- Elle peut être vue comme un programme qui dicte au reconnaisseur son comportement.
- Elle est définie par un ensemble fini d'états ainsi que par une fonction de transition qui décrit le passage d'un état à un autre en fonction du contenu de la case courante de la bande de lecture et du contenu de la mémoire.
- L'unité de contrôle décide aussi de la direction dans laquelle déplacer la tête de lecture et choisit quels symboles stocker dans la mémoire.
- Parmi les états d'un reconnaisseur, on distingue
 - des états initiaux, qui sont les états dans lesquels doit se trouver le reconnaisseur avant de commencer à reconnaître un mot
 - des états d'acceptation qui sont les états dans lequel doit se trouver le reconnaisseur après avoir reconnu un mot.

Configuration et mouvement

- Configuration d'un reconnaisseur :
 - Etat de l'unité de contrôle
 - Contenu de la bande d'entrée et position de la tête
 - Contenu de la mémoire
- Mouvement : passage d'une configuration à une autre $(C_1 \vdash C_2)$

Configurations

- configuration initiale
 - L'unité de contrôle est dans un état initial
 - La tête est au début de la bande
 - La mémoire contient un élément initial.
- configuration d'acceptation
 - L'unité de contrôle est dans un état d'acceptation
 - La tête de lecture est à la fin de la bande
 - La mémoire se trouve dans un état d'acceptation.

Déterminisme

- L'unité de contrôle est dite déterministe si à toute configuration correspond au plus un mouvement. S'il peut exister plus d'un mouvement, elle est dite non déterministe.
- Le déterminisme est une propriété importante :
 - Un reconnaisseur déterministe reconnaît un mot de longueur n en O(n)

- Un mot *m* est acceptée par un reconnaisseur si, partant de l'état initial, avec *m* sur la bande d'entrée, le reconnaisseur peut faire une série de mouvements pour se retrouver dans un état d'acceptation.
- Le langage accepté par un reconnaisseur est l'ensemble de tous les mots qu'il accepte.

Automates finis

- Le modèle le plus simple de reconnaisseur.
- Mémoire limitée aux seuls états.

Un état initial (0), un ou plusieurs états finaux (1 et 3).

Définition

Un automate fini est un 5-uplet $\langle Q, \Sigma, \delta, q_0, F \rangle$

- *Q* est l'ensemble des états,
- Σ est l'alphabet de l'entrée
- \bullet δ est la fonction de transition :

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \wp(Q)$$

- $q_0 \in Q$ est l'état initial,
- $F \subseteq Q$ est l'ensemble des états d'acceptation.

Exemple

Configurations et mouvement

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle$$

- Configuration : $(q, m) \in Q \times \Sigma^*$ où :
 - *q* représente l'état courant de l'unité de contrôle
 - **m** est la partie du mot à reconnaître non encore lue. Le premier symbole de m (le plus à gauche) est celui qui se trouve sous la tête de lecture. Si $m = \varepsilon$ alors tout le mot a été lu.
- Configuration initiale : (q_0, m) où m est le mot à reconnaître
- Configuration d'acceptation : (q, ε) avec $q \in F$
- Mouvement : $(q, aw) \vdash (q', w)$ si $q' \in \delta(q, a)$.

(0,ababbc)

$$(0,ababbc) \\ \vdash (1,babbc) \\ \vdash (0,abbc)$$

$$\begin{array}{ccc} & (0,ababbc) \\ \vdash & (1,babbc) \\ \vdash & (0,abbc) \\ \vdash & (1,bbc) \end{array}$$

$$(0,ababbc) \\ \vdash (1,babbc) \\ \vdash (0,abbc) \\ \vdash (1,bbc) \\ \vdash (0,bc)$$

$L_1 = \{m \in \{a, b\}^*\}$

$$G_1 = \langle \{S\}, \{a,b\}, \{S \rightarrow aS \mid bS \mid \varepsilon\}, S \rangle$$

 $L_2 = \{m \in \{a, b\}^* \mid |m|_a \mod 2 = 0\}$

$$L_2 = \{m \in \{a, b\}^* \mid |m|_a \mod 2 = 0\}$$

$$G_2 = \langle \{S,T\}, \{a,b\}, \{S \rightarrow aT \mid bS \mid \varepsilon, T \rightarrow aS \mid bT\}, S \rangle$$

 $L_3 = \{xaaa \mid x \in \{a,b\}^*\}$

$L_3 = \{xaaa \mid x \in \{a,b\}^*\}$

$$G_3 = \langle \{S,T,U\}, \{a,b\}, \{S \rightarrow aS \mid bS \mid aT,T \rightarrow aU,U \rightarrow a\}, S \rangle$$

$$L_3 = \{xaaa \mid x \in \{a,b\}^*\}$$

$$G_3 = \langle \{S, T, U\}, \{a, b\}, \{S \rightarrow aS \mid bS \mid aT, T \rightarrow aU, U \rightarrow a\}, S \rangle$$

Non-déterminisme!

$L_3 = \{xaaa \mid x \in \{a,b\}^*\}$

$L_3 = \{xaaa \mid x \in \{a,b\}^*\}$

Déterminisme

- Tout langage régulier peut être reconnu par un automate fini déterministe
- Pour tout automate fini non déterministe A, on peut construire un automate déterministe A' avec L(A) = L(A')
- Prix à payer : dans le pire des cas, $|Q(A')| = 2^{|Q(A)|}$

Limite des automates finis

- Certains langages ne peuvent pas être reconnus par les automates finis (ne peuvent être engendrés par une grammaire régulière)
- Exemple : $L = \{a^n b^n \mid n \ge 0\}$
- Il faut mémoriser le nombre de *a* que l'on a lu pour vérifier que le mot possède autant de *b*.
- Pour mémoriser un nombre potentiellement infini de *a*, il faut un ensemble infini d'états!

Automates à pile

- Forme simple de mémoire : une pile.
- Mode de stockage *Last In First Out*.
- On ne peut accéder qu'à l'élément se trouvant au sommet de la pile.
- Deux opérations possibles :
 - empiler : ajouter un élément au sommet.
 - dépiler : enlever l'élément se trouvant au sommet.
- Elle commence avec un *symbole de fond de pile* \bot , que l'on ne peut pas dépiler.

La pile permet de stocker de l'information sans forcément multiplier le nombre d'états.

Représentation graphique

Si l'automate est en 1, et que la tête de lecture est sur *a*, l'automate :

- décale la tête de lecture d'une case vers la droite
- dépile *B* (*B* doit être présent au sommet de la pile)
- empile *c*
- va en 2

Représentation graphique

Si l'automate est en 1, et que la tête de lecture est sur *a*, l'automate :

- décale la tête de lecture d'une case vers la droite
- dépile *B* (*B* doit être présent au sommet de la pile)
- empile c
- va en 2

cas particuliers

- si $a = \varepsilon$, l'automate peut franchir cet arc sans lire de symbole.
- si $B = \varepsilon$, l'automate peut franchir cet arc indépendamment du symbole se trouvant en sommet de pile (et ne le dépile pas).
- si $c = \varepsilon$, l'automate peut franchir cet arc sans rien empiler.

Représentation graphique

Définition formelle

Un automate à pile est un 6-uplet $\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$

- Q est l'ensemble des états
- Σ est l'alphabet d'entrée
- Γ est l'alphabet de symboles de pile (en particulier, $\bot \in \Gamma$)
- \bullet δ est la fonction de transition :

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to \wp(Q \times \Gamma^*)$$

- $q_0 \in Q$ est l'état initial
- $F \subseteq Q$ est l'ensemble des états d'acceptation

Configurations et mouvement

$$A = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$$

- Configuration : $(q, m, \alpha) \in Q \times \Sigma^* \times \Gamma^*$ où :
 - *q* représente l'état courant de l'unité de contrôle
 - **•** m est la partie du mot à reconnaître non encore lue. Le premier symbole de m (le plus à gauche) est celui qui se trouve sous la tête de lecture. Si $m = \varepsilon$ alors tout le mot a été lu.
 - α représente le contenu de la pile. Le symbole le plus à gauche est le sommet de la pile. Si $\alpha = \varepsilon$ alors la pile est vide.
- Configuration initiale : (q_0, m, \bot) où m est le mot à reconnaître
- Configuration d'acceptation : (q, ε, \bot) avec $q \in F$
- Mouvement : $(q, aw, Z\alpha) \vdash (q', w, \gamma\alpha)$ si $(q', \gamma) \in \delta(q, a, Z)$.

Équivalence

Représentation graphique

Définition formelle

$$\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$$

$$Q = \{0, 1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{A, \bot\}$$

$$\delta(1, a, \varepsilon) = \{(1, A)\}$$

$$\delta(1, b, A) = \{(2, \varepsilon)\}$$

$$\delta(2, b, A) = \{(2, \varepsilon)\}$$

$$\delta(2, \varepsilon, \bot) = \{(3, \bot)\}$$

$$q_0 = 1$$

$$F = \{3\}$$

$$L = \{ mm^{-1} \mid m \in \{a, b\}^* \}$$

$$G = \langle \{S\}, \{a,b\}, \{S \rightarrow aSa \mid bSb \mid \varepsilon\}, S \rangle$$

$L = \{ mm^{-1} \mid m \in \{a, b\}^* \}$

$$L = \{m \in \{a,b\}^*, |m|_a = |m|_b\}$$

$$G = \langle \{S\}, \{a,b\}, \{S \rightarrow aSb \mid bSa \mid SS \mid \epsilon\}, S \rangle$$

$$L = \{m \in \{a, b\}^*, |m|_a = |m|_b\}$$

$$b, B \to BB$$

$$b, \bot \to B\bot$$

$$b, A \to \varepsilon$$

$$\downarrow$$

$$\uparrow$$

$$a, A \to AA$$

$$a, \bot \to A\bot$$

$$a, B \to \varepsilon$$

$$G = \langle \{S\}, \{a,b\}, \{S \rightarrow aSb \mid bSa \mid SS \mid \varepsilon\}, S \rangle$$

 $L = \{a^i b^j c^k \mid i \ge 0, i = j \text{ ou } i = k\}$

$L = \{a^i b^j c^k \mid i \ge 0, i = j \text{ ou } i = k\}$

$L = \{a^i b^j c^k \mid i \ge 0, i = j \text{ ou } i = k\}$

 $L = \{a^i b^j c^k \mid i = j \text{ ou } i = k\}$ ne peut être reconnu par un automate à pile déterministe!

Langages hors-contexte déterministes

Automate à pile déterministe :

- $|\delta(q, a, Z)| \le 1$ pour tout $q \in Q, a \in \Sigma \cup \{\varepsilon\}, Z \in \Gamma$
- si $\delta(q, \varepsilon, Z)$ est défini, alors $\delta(q, a, Z)$ ne peut être défini pour aucun $a \in \Sigma$.

Limites des automates à pile

- Certains langages ne peuvent être reconnus par les automates à pile (ne peuvent être engendrés par une grammaire hors-contexte).
- Exemple : le langage $m \sharp m$ avec $m \in \{0,1\}^*$:
 - 1 L'automate lit le premier m et le stocke dans la pile.
 - 2 Il lit le premier symbole du second m.
 - 3 Comment vérifier qu'il est identique au symbole se trouvant au fond de la pile?

Machines de Turing

- Proches des automates finis mais avec une mémoire infinie et à accès direct.
- Modèle plus proche d'un ordinateur.
- Une machine de Turing (MT) peut faire tout ce qu'un ordinateur peut faire.
- Thèse de Church-Turing : tout traitement réalisable par un algorithme peut être accompli par une machine de Turing.

Généralités

- La mémoire de la MT est matérialisée par une bande de lecture/écriture.
- Elle possède une tête de lecture/écriture pouvant se déplacer vers la gauche et vers la droite.
- Au départ, la bande contient le mot à reconnaître et possède des
 □ dans toutes les autres cases.

Caractéristiques

- Une MT peut lire et écrire sur la bande de lecture/écriture.
- La tête de lecture/écriture peut se déplacer vers la droite et vers la gauche.
- La bande de lecture écriture est infinie.
- Lorsque la MT atteint l'état d'acceptation ou l'état de rejet, elle s'arrête et accepte ou rejette le mot.
- Si la MT n'atteint pas l'état d'acceptation ou de rejet, elle peut continuer indéfiniment.

Représentation graphique

La machine est en 1, la tête de lecture est sur *a*, elle :

- écrit un *b* sur la bande (à la place du *a*),
- décale la tête de lecture d'une case vers la droite (*D*)
- va en 2.

Représentation graphique

La machine est en 1, la tête de lecture est sur *a*, elle :

- écrit un *b* sur la bande (à la place du *a*),
- décale la tête de lecture d'une case vers la droite (*D*)
- va en 2.

Cas particuliers:

- $a \rightarrow G$: la machine n'écrit rien.
- a: la machine n'écrit rien et ne bouge plus (elle arrive généralement dans un état final).

Définition

Une MT est un octuplet $\langle Q, \Sigma, \Gamma, \square, \delta, q_0, q_A, q_R \rangle$ où :

- Q est l'ensemble des états,
- Σ est l'alphabet de l'entrée (qui ne contient pas le symbole spécial \square),
- Γ est l'alphabet de la bande ($\square \in \Gamma$ et $\Sigma \subseteq \Gamma$),
- \bullet δ est la fonction de transition :

$$\delta: Q \times (\Gamma \cup \{\varepsilon\}) \to \wp(Q \times \Gamma \times \{D,G\})$$

- $q_0 \in Q$ est l'état initial,
- $q_A \in Q$ est l'état d'acceptation,
- $q_R \in Q$ est l'état de rejet, avec $q_R \neq q_A$.

Configurations et mouvement

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A \rangle$$

- Configuration : $(u, q, av) \in \Gamma^* \times Q \times \Gamma^*$ où :
 - *q* représente l'état courant de l'unité de contrôle
 - *u* est la partie de la bande se trouvant à gauche de la tête.
 - lacktriangle v est la partie de la bande se trouvant à droite de la tête.
 - *a* est le symbole se trouvant sous la tête.
- Configuration initiale : (ε, q_0, m) où m est le mot à reconnaître
- Configuration d'acceptation : (u, q_A, v)
- **Configuration** de rejet : (u, q_R, v)
- Mouvement :

$$(ua, q_i, bv) \vdash (u, q_j, acv) \operatorname{si}(q_j, c, G) \in \delta(q_i, b)$$

$$(ua, q_i, bv) \vdash (uac, q_j, v) \operatorname{si}(q_j, c, D) \in \delta(q_i, b)$$

•

Exemple

Principe d'une machine reconnaissant $L = \{m \sharp m \mid m \in \{0,1\}^*\}.$

- Fait des allers-retours entre les deux occurrences de *m* pour vérifier qu'elles contiennent bien le même symbole. Si ce n'est pas le cas, ou qu'un # supplémentaire est détecté, va dans l'état de rejet. Les symboles sont éliminés au fur et à mesure qu'ils sont vérifiés (par le symbole *x* à gauche, et *z* à droite).
- 2 Lorsque tous les symboles à gauche de # ont été éliminés, vérifie qu'il ne reste plus de symboles à droite de #. Si c'est le cas, va dans l'état d'acceptation, sinon va dans l'état de rejet.

$$\delta(1,a) = (x,2_a,D)$$

enregistre a

$$\delta(1,a) = (x,2_a,D)$$
 enregistre a $\delta(2_a,\alpha) = (\alpha,2_a,D)$ pour $\alpha \neq \#$ cherche $\#$

$$\delta(1,a) = (x,2_a,D)$$
 enregistre a $\delta(2_a,\alpha) = (\alpha,2_a,D)$ pour $\alpha \neq \#$ cherche $\#$

$$\begin{array}{lcl} \delta(1,a) & = & (x,2_a,D) & \text{enregistre a} \\ \delta(2_a,\alpha) & = & (\alpha,2_a,D) \text{ pour $\alpha \neq \#$} & \text{cherche $\#$} \\ \delta(2_a,\#) & = & (\#,3_a,D) & 3_a \text{ cherche une lettre non-z} \end{array}$$

$$\begin{array}{lll} \delta(1,a) & = & (x,2_a,D) & \text{enregistre a} \\ \delta(2_a,\alpha) & = & (\alpha,2_a,D) \text{ pour $\alpha \neq \#$} & \text{cherche $\#$} \\ \delta(2_a,\#) & = & (\#,3_a,D) & \text{3$_a$ cherche une lettre non-z} \\ \delta(3_a,a) & = & (z,4,G) & \text{v\'erifie la lettre} \end{array}$$

$$\delta(1,a) = (x,2_a,D)$$
 enregistre a
 $\delta(2_a,\alpha) = (\alpha,2_a,D)$ pour $\alpha \neq \#$ cherche $\#$
 $\delta(2_a,\#) = (\#,3_a,D)$ 3a cherche une lettre non- z
 $\delta(3_a,a) = (z,4,G)$ vérifie la lettre
 $\delta(4,\alpha) = (\alpha,4,G)$ pour $\alpha \neq x$ revient vers x

$$\begin{array}{lll} \delta(1,a) & = & (x,2_a,D) & \text{enregistre a} \\ \delta(2_a,\alpha) & = & (\alpha,2_a,D) \text{ pour $\alpha \neq \#$} & \text{cherche $\#$} \\ \delta(2_a,\#) & = & (\#,3_a,D) & 3_a \text{ cherche une lettre non-z} \\ \delta(3_a,a) & = & (z,4,G) & \text{vérifie la lettre} \\ \delta(4,\alpha) & = & (\alpha,4,G) \text{ pour $\alpha \neq x$} & \text{revient vers x} \end{array}$$

$$\delta(1,a) = (x,2_a,D)$$
 enregistre a
 $\delta(2_a,\alpha) = (\alpha,2_a,D)$ pour $\alpha \neq \#$ cherche $\#$
 $\delta(2_a,\#) = (\#,3_a,D)$ 3a cherche une lettre non- z
 $\delta(3_a,a) = (z,4,G)$ vérifie la lettre
 $\delta(4,\alpha) = (\alpha,4,G)$ pour $\alpha \neq x$ revient vers x

$$\begin{array}{lll} \delta(1,a) & = & (x,2_a,D) & \text{enregistre a} \\ \delta(2_a,\alpha) & = & (\alpha,2_a,D) \text{ pour $\alpha \neq \#$} & \text{cherche $\#$} \\ \delta(2_a,\#) & = & (\#,3_a,D) & 3_a \text{ cherche une lettre non-z} \\ \delta(3_a,a) & = & (z,4,G) & \text{v\'erifie la lettre} \\ \delta(4,\alpha) & = & (\alpha,4,G) \text{ pour $\alpha \neq x$} & \text{revient vers x} \\ \delta(4,x) & = & (x,1,D) & \text{relance le processus} \end{array}$$

$$\begin{array}{lll} \delta(1,a) & = & (x,2_a,D) & \text{enregistre a} \\ \delta(2_a,\alpha) & = & (\alpha,2_a,D) \text{ pour $\alpha \neq \#$} & \text{cherche $\#$} \\ \delta(2_a,\#) & = & (\#,3_a,D) & 3_a \text{ cherche une lettre non-z} \\ \delta(3_a,a) & = & (z,4,G) & \text{vérifie la lettre} \\ \delta(4,\alpha) & = & (\alpha,4,G) \text{ pour $\alpha \neq x$} & \text{revient vers x} \\ \delta(4,x) & = & (x,1,D) & \text{relance le processus} \\ \delta(1,b) & = & (x,2_b,D) \dots \end{array}$$

Exemple — machine

$$\alpha = \Gamma \setminus \{\#\}, \quad \beta = \Gamma \setminus \{x\}.$$

Déterminisme

- Pour toute MT A non déterministe, il existe une MT A' telle que L(A) = L(A').
- Le non déterminisme n'augmente pas la puissance du modèle des MT.

Langages récursivement énumérables

- Un langage est récursivement énumérable si et seulement si il existe une MT qui le reconnaît.
- Un langage est récursivement énumérable si et seulement si il existe une MT déterministe qui le reconnaît.

Rapports avec la compilation

- Analyse lexicale et automates finis
- Analyse syntaxique et automates à pile
- Production de code et machines de Turing

Sources

- Michael Sipser, Introduction to the Theory of Computation. PWS Publishing Company, 1997.
- John Hopcroft, Rajeev Motwani, Jeffrey Ullman, Introduction to Automata Theory, Languages and Computation.
 2ème édition, Pearson Education International, 2001.
- John Aho, Jeffrey Ullman, *The Theory of Parsing, Translation and Compiling, Vol I : Parsing.*Prentice-Hall, 1972