CPSC 335 Project 1

Donald Novasky dnovasky@csu.fullerton.edu CPSC335 Professor Himani Tawade

```
student@tuffix-vm: ~/CPSC335-Project1
student@tuffix-vm:~/CPSC335-Project1$ make
g++ -std=c++11 -Wall disks_test.cpp -o disks_test
./disks_test
disk_state still works: passed, score 1/1
sorted_disks still works: passed, score 1/1
disk_state::is_initialized: passed, score 3/3
disk_state::is_sorted: passed, score 3/3
alternate, n=4: passed, score 1/1
alternate, n=3: passed, score 1/1
alternate, other values: passed, score 1/1
lawnmower, n=4: passed, score 1/1
lawnmower, n=3: passed, score 1/1
lawnmower, other values: passed, score 1/1
TOTAL SCORE = 14 / 14
student@tuffix-vm:~/CPSC335-Project1$
```

Alternate Algorithm

Pseudocode w/ step count and Big-O proof

ALTERNATE ALGORITHM PSUEPOCODE

swaps = 0
For
$$i = 0$$
 to 1 do
For $j = 0$ to $2n-1$ do
 if disk[i] 7 disk[j +1]

Swap [j] Swaps tt

STEP COUNT

$$2n \cdot 5 \cdot (n+1) + 1 = [0n^2 + (0n+1)]$$

SWAP ++

IN THE OPDER OF O(12)

Lawnmower Algorithm

Pseudocode w/ step count and Big-O proof

	ALGOPITHM PSUEDOCODE	
SWAPS = 0		
For 100 to	0 N/2	
Ind = 0		
while 11	nd < N-l	
Į Ę	disk[ind] > disk[ind+1]	
	Swap disks [ind]	
	Swapstt	
	ind ++	
white in	nd > 0	
16	disk [and] < disk [and - []	
	Swap disks [ind-1]	
	Ind	

STEP COUNT	
SWAPS = 0	→ (()
for i=0 to 11/2	+ M2+1 tu
ind =0	* (tu
white ind < n-1	→ N +0
if disk[ind] > disks	[Ind+] - 3 tu
	J - 1 tu
SWAPS ++	-b (+v
	- 1 tV
while and >0	→ N+\
if disk [ind] < dis	
	d-1] - (tv - 1tv
1NG	
(100)	(60
$((U+I)\cdot Q + (Q\cdot M) \cdot$	1/2+2
$(12n+6)(^{N}2+$	$2)=6n^2+27n+12$
IN THE OPDER	of O(N2)