

Basketball IV

Produced by Dr. Mario UNC STOR 538

- Based on WAR in Baseball
- Assumed Replacement Player Costs \$500,000
- Team of Replacement Players Cost \$12.5M (48-114 Record)
- Average Team's Salary was \$114M (81-81 Record)
- \$101.5M Needed for Replacement Team to Get to Average

- Designed by Jermias Engelmann and Steve Ilardi
- Utilized Modified Ridge Regression to Shrink Coefficients Toward the Box Plus-Minus of the Player
- Leaders in 2018-2019

RANK	NAME	TEAM	GP	MPG	ORPM	DRPM	RPM
1	Paul George, SG	OKC	77	36.9	4.55	3.08	7.63
2	James Harden, SG	HOU	78	36.8	7.4	0.02	7.42
3	Stephen Curry, PG	GS	69	33.8	5.99	0.85	6.84
4	Giannis Antetokounmpo, PF	MIL	72	32.8	3.16	3.53	6.69

- Numbers are Per 100 Possessions
- Giannis RPM = 6.69
- If Giannis Replaced an Average Player, then his Team Improves by 6.69 Points Over the Opponent Per 100 Possessions
- RPM of an Average Player = 0
- RPM of a Replacement Player = -3.1 (Equivalent to 10 Percentile)
- Team of Replacement Players
 - Deficit Versus an Average Team

$$5(-3.1) = -15.5$$
 Points Per 100 Possessions

- Average Pace in 2017-2018 = 96 Possessions Per Game
- Conversion of Deficit Per 100 Possessions to Per Game

$$\left(-\frac{15.5}{100}\right) * 96 = -14.88$$
 Points Per Game

- Replacement Team Versus Average Team
 - Average Team Scored 105.6 Points Per Game
 - Expected Final Score: 90.72 to 105.6 (Difference of 14.88)
 - Scoring Ratio

$$\frac{90.72}{105.6} = 0.86$$

• Basketball Pythagorean Theorem From Chapter 1 (lpha=14)

$$\frac{0.86^{14}}{0.86^{14} + 1} = 10.7\%$$

Conclusion: Expect Replacement Team to Win 10.7% of Games

 $Final\ Record = 8.7\ Wins\ and\ 73.3\ Losses$

- Application to NBA Salaries (Based off 2017-2018)
 - Average Team Payroll Was Approximately \$93M
 - Minimum Player Salary Between \$500K and \$1.5M
 - Assume Average Minimum= \$1M
 - Payroll of Replacement Team = \$12M
 - Costs \$93M \$12M = \$81M to Go From Replacement to Average
 - This is Equivalent to Go From 9 Wins to 41 Wins
 - Equivalent:

32 Wins = \$81M

- For Simplicity/Laziness, 32 Wins = \$80M
- Each Win Above Replacement is Worth \$2.5 Million

Suppose Player Generated 20 Wins in 2016-2017

$$Fair Salary = 20 * 2.5 = $50M$$

• What is the Problem Here?

	Player Wins This Year	Player Wins Next Year		
Team Salaries This Year	Fair Pay This Year	Not Helpful?		
Team Salaries Next Year	Determining Fair Salary	Fair Pay in Next Year		

NBA Salary Information Across the Years

- Data from Basketball-Reference.com
- Data Preview

Code for Summary Table

```
Salary.Data=Salary %>%
group_by(team,season_start) %>%
summarize(total.salary=sum(salary)/1000000) %>%
ungroup() %>%
group_by(season_start) %>%
summarize(n=n(),mean.salary=mean(total.salary),
sd.salary=sd(total.salary))
```

Figure Showing Change

- Pythagorean Theorem For Basketball
 - Modeling Win Percentage Using Points

- From Textbook, α =14 Based on Data
- Question: Can We Confirm This?
- Data from 2014 to 2018 Found on Kaggle

- Pythagorean Theorem For Basketball
 - Modifying Data for Estimating α

103.


```
head(Games2)
A tibble: 6 x 5
Groups: Team [2]
Team Season Win.Per Scored Allowed
<chr> <db1> <db1> <db1>
                              \langle db 1 \rangle
       2014
             0.732 103.
                               97.1
ATL
             0.585 103.
                               99.2
       2015
ATL
       2016
             0.524 103.
                              104.
ATL
       2017
             0.293
                       103.
                              109.
ATL
              0.488
                              101.
       2014
                       101.
BOS
```

0.585

106.

2015

BOS

- Pythagorean Theorem For Basketball
 - Minimize Sum of Squares (Predicted Win % Versus Actual Win %)


```
pythag.func=function(data,par){
   R=data$Scored/data$Allowed
   y=data$Win.Per
   resid=y-(R^(par[1]))/(R^(par[1])+1)
   return(sum(resid^2))
}
result=optim(par=c(13),fn=pythag.func,data=Games2,method="BFGS")
```

Based on Recent Data, Best α is 14.4564

```
print(result$par[1])
.] 14.4564
```


- \$12M is \$81M Less Than the Average Salary (2017-2018)
- Assumption: Costs \$81M to Be Average
- This Implies:

$$Price\ Per\ Win = \frac{\$81M}{41 - 9} = \$2.5M$$

- Team Salaries are Highly Skewed and Influenced by Outliers
- Recommendation: Use Median

Criticism 2

- Average Salary may not be the Salary of an Average Team
- Recommendation: Regress Salary on Wins and Predict When Wins = 41

Observe Interesting Data From 2006

```
Salary06 = Salary %>%
  filter(season_start==2006) %>%
  group_by(team) %>%
  summarize(total.salary=sum(salary)/1000000) %>%
  arrange(desc(total.salary))
```


head(Salary06)	
A tibble: 6 x 2	
team	total.salary
<chr></chr>	<db7></db7>
New York Knicks	117.
Dallas Mavericks	88.4
Los Angeles Lakers	77.1
Portland Trail Blazers	75.0
Philadelphia 76ers	69.1
Minnesota Timberwolves	66.8

Team: New York Knicks

Payroll: \$117M Record: 33-49

Conclusion: Idiots

Fix Based on Criticism 1

120

Total Payroll (in Millions)

140

100

Distribution of Team Salaries in 2017

2017-2018 Season

Average Salary: \$110M

<u>Fix</u> Median Salary: \$111M

Getting Wins and Losses Into Data

Scraping Team Records From Wikipedia

```
head(wins3)

team wins
Toronto Raptors 59
Boston Celtics 55
Philadelphia 76ers 52
New York Knicks 29
Brooklyn Nets 28
Cleveland Cavaliers 50
```



```
salarywins17=inner_join(Salary17,wins3)
bining, by = "team"
salarywins17$wins=as.numeric(as.character(salarywins17$wins))
head(salarywins17)
A tibble: 6 \times 3
                        total.salary wins
team
<chr>
                                <db1> <db1>
Cleveland Cavaliers
                                 138.
                                         50
Golden State Warriors
                                 135.
                                         58
Oklahoma City Thunder
                                 134.
                                         48
Miami Heat
                                 129.
                                         44
Washington Wizards
                                 124.
                                         43
Portland Trail Blazers
                                 119.
                                         49
```


Linear Regression Model and Fit

- Prediction for 41 Wins is Almost Identical to Actual Average Salary
- What is the Value of Knowing the Lower and Upper Limits?

Final Inspiration

There is no "I" in team, but there is in win.

- Michael Jordan