Отчет по лабораторной работе «Метод сеток для приближенного решения задачи Дирихле»

Альвинский Александр.2 курс 2 группа

April 18, 2023

1 Введение

В данном отчете мы рассмотрим метод сеток для приближенного решения задачи Дирихле и представим результаты численных экспериментов, реализованных в виде программного кода на языке Python.

2 Метод сеток

Метод сеток является численным методом решения дифференциальных уравнений, основанным на аппроксимации производных разностными отношениями. Метод применяется для решения задач, связанных с граничными условиями на заранее заданной области.

2.1 Задача Дирихле

Задача Дирихле заключается в поиске решения дифференциального уравнения на заранее заданной области $\Omega \subset \mathbb{R}^n$ с граничными условиями, заданными на границе области $\partial\Omega$. Математически задачу можно записать в виде:

$$\begin{cases} \Delta u = f(x), & x \in \Omega \ u(x) = g(x), \\ x \in \partial \Omega \end{cases}$$
 (1)

где Δ - оператор Лапласа, u(x) - искомая функция, f(x) - правая часть уравнения, g(x) - граничные условия.

2.2 Алгоритм метода сеток

Алгоритм метода сеток можно описать следующим образом:

1. Разбиваем область Ω на сетку с шагами Δx и Δy .

- 2. Выполняем итерационный процесс, используя разностную схему, которая аппроксимирует оператор Лапласа на сетке.
- 3. Повторяем шаг 2 до тех пор, пока изменение значения функции на каждой точке сетки не станет меньше некоторой заданной точности ϵ .

2.3 Решение задачи Дирихле методом сеток

Для решения задачи Дирихле методом сеток мы используем следующую разностную схему:

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta y^2} = f_{i,j}$$
 (2)

где $u_{i,j}$ - значение функции u в узле (i,j) на сетке, $f_{i,j}$ - значение правой части уравнения в этом же узле.

Для граничных условий на границе области мы используем формулу:

$$u_{i,j} = g_{i,j} \tag{3}$$

где $g_{i,j}$ - значение граничной функции g в узле (i,j) на границе $\partial\Omega$. Алгоритм решения задачи Дирихле методом сеток может быть описан следующим образом:

- 1. Задаем начальное приближение для функции u на сетке.
- 2. Выполняем итерационный процесс, используя разностную схему и формулу для граничных условий.
- 3. Повторяем шаг 2 до тех пор, пока изменение значения функции на каждой точке сетки не станет меньше некоторой заданной точности ϵ .

3 Численные эксперименты

Для проверки работы метода сеток и сравнения его с аналитическим решением мы реализовали программный код на языке Python, используя библиотеку NumPy для работы с массивами и Matplotlib для визуализации результатов.

Мы провели численные эксперименты на примере задачи Дирихле на единичном квадрате $\Omega = [0,1] \times [0,1]$ с правой частью $f(x) = 2\pi^2 \sin(\pi x) \sin(\pi y)$ и граничной функцией $g(x) = \sin(\pi x) \sin(\pi y)$.

Результаты численных экспериментов показали, что метод сеток дает хорошие результаты для данной задачи и сходится к аналитическому решению с достаточно быстрой скоростью.

4 Заключение

В данной работе мы рассмотрели метод сеток для приближенного решения задачи Дирихле и продемонстрировали его работу на примере численных экспериментов.