

Introdução à Engenharia Química e Bioquímica

Aula 8 Balanços Energéticos MIEQB ano lectivo de 2020/2021

Sumário da aula

Balanços energéticos a sistemas reactivos

> Exercícios

5.23.

O gás de síntese, à temperatura de 25°C, é constituído por CO e H₂, na proporção molar de 1:2 e ainda por 1% molar de N₂, como inerte. A alimentação ao reactor é constituída pelo gás de síntese e pelo gás de reciclo, proveniente do condensador. No reactor forma-se metanol segundo a reacção:

A corrente efluente do reactor é alimentada a um condensador, obtendo-se uma corrente líquida, constituída apenas por metanol, e uma corrente gasosa, constituída pelo CO, H_2 e N_2 . A corrente gasosa é reciclada.

- A) Estabeleça o balanço material do processo, considerando que a purga tem 4% molar de N_2 e que a fracção de purga (i.e., 6/5) é igual a 0.25.
- B) Considerando o reactor adiabático, calcule a temperatura da corrente efluente do reactor.
- C) Calcule a quantidade de calor que o condensador troca com o exterior.

5.23.

Dados:

- calores específicos médios (entre 25 e 50°C):

$$C_p H_2 (g) = 7.083 \text{ cal.mol}^{-1}.9^{\circ}C^{-1}$$

$$C_p CO (g) = 7.132 cal.mol^{-1}.{}^{\circ}C^{-1}$$

$$C_p N_2 (g) = 6.972 \text{ cal.mol}^{-1}.{}^{\circ}C^{-1}$$

 $C_p CH_3OH (líq.) = 82.6 \text{ J.mol}^{-1}.{}^{\circ}C^{-1}$

$$C_p CH_3OH (g) = 42.93 J.mol^{-1}.{}^{\circ}C^{-1}$$

- calores de formação padrão:

$$\Delta H_f^{\circ}$$
 (CH₃OH) gasoso = -201.2 kJ.mol⁻¹ ΔH_f° (CO) gasoso = -110.52 kJ.mol⁻¹

- calor de vaporização do metanol:

 $\Delta H_{\text{vap.}}$ a 1 atm; temp. de ebulição normal (64.7°C) = 35.27 kJ.mol⁻¹

IEQB 2020/2

5.23.a)

Base de cálculo: 100 moles na corrente de alimentação (1)

Balanço global ao inerte N2

$$(n_{N_2})_1 = 1 mol = (n_{N_2})_6$$

$$(n_{N_2})_6 = 0.25*(n_{N_2})_5$$

$$(n_{N_2})_1 = 1 mol$$

$$(n_{N_2})_5 = 4mol$$

$$(n_{N_2})_7 = (n_{N_2})_5 - (n_{N_2})_6 = 3mol$$

$$(n_{N_2})_2 = (n_{N_2})_1 + (n_{N_2})_7 = 4mol = (n_{N_2})_3$$

5.23.a)

Caracterização do inerte na corrente de purga

$$0,04 = \frac{(n_{N_2})_7}{n_7} \rightarrow n_7 = 75 mol$$

$$0,04 = \frac{(n_{N_2})_5}{n_5} \to n_5 = 100 mol$$

Caracterização das correntes de purga
$$(n_{H_2})_6 + (n_{CO})_6 = n_6 - (n_{N_2})_6$$

$$(n_{H_2})_6 = 2*(n_{CO})_6$$

Porque a alimentação tem razão 1:2

Composição das correntes de purga:

$$(x_{CO})_6 = 0.32$$

$$(x_{H_2})_6 = 0.64$$

$$(x_{N_2})_6 = 0.04$$

$$(n_{CO})_6 = 8mol$$

$$(n_{H_2})_6 = 16 mol$$

$$(n_{N_2})_6 = 1 mol$$

5.23.a)

Composição das correntes de purga = Composição das correntes 5 e 7

$$n_6 = 25mol$$
 $(x_{co})_6 = 0.32$

$$(x_{H_2})_6 = 0,64$$
 $(n_{H_2})_5 = 64 \text{ mol}$

$$n_5 = 100 mol$$
 $(x_{N_2})_6 = 0.04$ $(n_{CO})_7 = 64 mol$

$$(n_{\rm H2})_7$$
= 48 mol

 $(n_{CO})_5 = 32 \text{ mol}$

Sabemos também que:

$$(n_{co})_5 = 32mol = (n_{co})_3$$

 $n_7 = 75 mol$

$$(n_{H_2})_5 = 64 mol = (n_{H_2})_3$$

E que:

$$(n_{CO})_2 = (n_{CO})_1 + (n_{CO})_7$$

 $(n_{CO})_2 = 57mol$

Sabemos também que:

$$(n_{CH_3OH})_4 = (n_{CO})_{reagiram} = (n_{CO})_1 - (n_{CO})_3 = 25mol$$

5.23.a)

	1	2	3	4	5	6	7
СО	33	57	32	-	32	8	24
H2	66	114	64	-	64	16	48
СНЗОН	-	-	25	25	-	-	-
N2	1	4	4	-	4	1	3
Total	100	175	125	25	100	25	75

5.23.b) Considerando o reactor adiabático, calcule a temperatura da corrente de efluente

5.23.c) Calcule a quantidade de calor que o condensador troca com o exterior

Balanço entálpico:
$$\Delta H_3 = \Delta H_4 + Q + \Delta H_5$$

$$\Delta H_3 = 5,548 \times 10^5 \, cal$$

$$\Delta H_5 = \frac{1}{0,75} * \Delta H_7 = 1,731 \times 10^4 \, cal$$

Na purga não há alteração de T e composição. A fracção da purga é 25% (⑥/⑤)

$$\Delta H_4 = \left[\int_{25}^{64.7} (Cp_{CH3OH_{gasoso}}) dT - \Delta H_{vap}^{64.7} + \int_{64.7}^{50} (Cp_{CH3OH_{liquido}}) dT \right] \times 25 =$$

$$= -2.066x10^5 cal$$

BALANÇOS ENERGÉTICOS

5.23.c) Calcule a quantidade de calor que o condensador troca com o exterior

$$Q = 5.548 \times 10^5 + 2.066 \times 10^5 - 1.732 \times 10^4 = 7.4408 \times 10^5 cal$$

Por cada 100 moles de gás de síntese são removidos 7.44x10⁵ cal do condensador