ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20181 Mã HP: MI1111, Khóa: 63, Nhóm ngành 1, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Chứng minh $\cos(\arcsin x) = \sqrt{1 - x^2}$, $\forall x \in [-1, 1]$. **Câu 2 (1đ).** So sánh cặp vô cùng lớn sau khi $x \to +\infty$

$$\alpha(x) = x + x^2, \quad \beta(x) = e^x - 1.$$

Câu 3 (1đ). Tìm hàm ngược của hàm số $y = \ln \frac{1-x}{1+x}$, $x \in (-1,1)$.

Câu 4 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \cot\left(\arctan\frac{1}{x}\right)$$
.

Câu 5 (1đ). Cho hàm số $f(x)=\begin{cases} \ln(x+\cos x), & \text{nếu } x>0, \\ 0, & \text{nếu } x=0. \end{cases}$ Tính $f'_+(0)$.

Câu 6 (1đ). Tính giới hạn $\lim_{x\to 0} \frac{x^2+x^3}{x-\ln(1+x)}$.

Câu 7 (1đ). Tính tích phân $\int \frac{x^2+2}{x^3-1} dx$.

Câu 8 (1đ). Cho $y = \frac{3x^2}{x^3+1}$. Tính đạo hàm cấp cao $y^{(5)}(0)$.

Câu 9 (1đ). Tính giới hạn của dãy số $\lim_{n\to+\infty} \sqrt[n]{n^2+2}$.

Câu 10 (1đ). Viết phương trình tiếp tuyến của đường cong $r=2+\cos \varphi$ tai điểm ứng với $\varphi=0$.

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20181 Mã HP: MI1111, Khóa: 63, Nhóm ngành 1, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Chứng minh $\sin(\arccos x) = \sqrt{1 - x^2}$, $\forall x \in [-1, 1]$. **Câu 2 (1đ).** So sánh cặp vô cùng lớn sau khi $x \to +\infty$

$$\alpha(x) = x + x^2, \quad \beta(x) = \ln(1+x).$$

Câu 3 (1đ). Tìm hàm ngược của hàm số $y = \ln \frac{1+x}{1-x}$, $x \in (-1,1)$.

Câu 4 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \tan\left(\operatorname{arccot}\frac{1}{x}\right).$$

Câu 5 (1đ). Cho hàm số $f(x) = \begin{cases} \ln(x + e^x), & \text{nếu } x > 0, \\ 0, & \text{nếu } x = 0. \end{cases}$ Tính $f'_+(0)$.

Câu 6 (1đ). Tính giới hạn $\lim_{x\to 0} \frac{x^3+x^4}{x-\sin x}$.

ĐỀ 2

Câu 7 (1đ). Tính tích phân $\int \frac{x^2-2x}{x^3+1} dx$.

Câu 8 (1đ). Cho $y = \frac{2x}{x^2+1}$. Tính đạo hàm cấp cao $y^{(7)}(0)$.

Câu 9 (1đ). Tính giới hạn của dãy số $\lim_{n\to+\infty} \sqrt[n]{n^2+1}$.

Câu 10 (1đ). Viết phương trình tiếp tuyến của đường cong $r=1+\cos \varphi$ tai điểm ứng với $\varphi=0$.

ĐỂ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20181 Mã HP: MI1111, Khóa: 63, Nhóm ngành 1, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Hàm số $y = \arctan x$ có tuần hoàn không? Tại sao? Câu 2 (2đ). Tính các giới hạn

a)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\sin x}}$$

a)
$$\lim_{x\to 0} (\cos x)^{\frac{1}{\sin x}}$$
, b) $\lim_{x\to 0} \frac{\sin x - x \cos x}{x^3}$.

Câu 3 (1đ). Cho hàm số $f(x) = \begin{cases} a + e^{\frac{1}{x}}, & \text{nếu } x < 0, \\ \frac{1}{\ln x}, & \text{nếu } x > 0. \end{cases}$

Tìm a để x = 0 là điểm gián đoạn bỏ được của hàm số f(x).

Câu 4 (1đ). Tính $\lim_{n\to+\infty} [\sin(\ln n) - \sin(\ln(n+1))]$.

Câu 5 (1đ). Tìm a, b để hai vô cùng bé sau là tương đương khi $x \to 0$

$$\alpha(x) = ax + bx^2 + x^3, \quad \beta(x) = \sin(x^2).$$

Câu 6 (1đ). Úng dụng vi phân, tính gần đúng $\sqrt[4]{\frac{2}{2+0.02}}$.

Câu 7 (1đ). Tính tích phân $\int \arccos^2 x dx$.

Câu 8 (1đ). Viết phương trình tiếp tuyến của đường cycloid

$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t \end{cases}$$

tai điểm ứng với $t = \frac{\pi}{2}$

Câu 9 (1đ). Cho hàm số f(x) xác định và có đạo hàm trên \mathbb{R} . Chứng minh rằng nếu f(x) là một hàm số lẻ thì f'(x) là một hàm số chẵn.

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20181 Mã HP: MI1111, Khóa: 63, Nhóm ngành 1, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Hàm số $y = \operatorname{arccot} x$ có tuần hoàn không? Tại sao? Câu 2 (2đ). Tính các giới hạn

a)
$$\lim_{x \to 0} (\cos x)^{\frac{1}{\tan x}}$$
, b) $\lim_{x \to 0} \frac{\sin x - xe^x}{x^2}$.

ĐỀ 4

b)
$$\lim_{x\to 0} \frac{\sin x - xe^x}{x^2}$$
.

Câu 3 (1đ). Cho hàm số $f(x) = \begin{cases} \frac{1}{\ln(-x)}, & \text{nếu } x < 0, \\ a + e^{-\frac{1}{x}}, & \text{nếu } x > 0. \end{cases}$

Tìm a để x = 0 là điểm gián đoạn bỏ được của hàm số f(x).

Câu 4 (1đ). Tính $\lim_{n\to+\infty} [\sin(\ln(n+1)) - \sin(\ln n)].$

Câu 5 (1đ). Tìm *a, b* để hai vô cùng bé sau là tương đương khi $x \to 0$

$$\alpha(x) = ax^2 + bx^3 + x^4, \quad \beta(x) = \sin(x^3).$$

Câu 6 (1đ). Úng dụng vi phân, tính gần đúng $\sqrt[4]{\frac{2}{2-0.02}}$.

Câu 7 (1đ). Tính tích phân $\int \arcsin^2 x dx$.

Câu 8 (1đ). Viết phương trình tiếp tuyến của đường cycloid

$$\begin{cases} x = 1 - \cos t, \\ y = t - \sin t \end{cases}$$

tại điểm ứng với $t = \frac{\pi}{2}$

Câu 9 (1đ). Cho hàm số f(x) xác định và có đạo hàm trên \mathbb{R} . Chứng minh rằng nếu f(x) là một hàm số chẵn thì f'(x) là một hàm số lẻ.