7.3 Half-Life

1. Measuring the rate of radioactive decay processes: Half-life

Neon-19 has a half-life of 17.22 s. What mass of neon-19 will remain from a 100 mg initial sample after 30 s?

G: h = 17.22, $A_0 = 100$ mg, t = 30s

R: A = E: $A = A_0(\frac{1}{2})^{\frac{1}{2}}$ S: A = (100mg) $(\frac{1}{2})^{(30/17.28)} = 29.9$ mg = 30mg

S: $\therefore 30$ mg remain.

A 100 mg sample of magnesium-27 decays by 7% of its previous mass every minute.

Determine its half-life and state the half-life decay equation.

Time	Initial	Final mass (mg)
(min)	mass (mg)	(0,
0	106	100-7:93
1	93	93-6,51 = 86.49
2	86.49	-6.05 < 80.44
3	80.44	24.81
4	74.81	69.57
5	69.57	64.70
6	64.70	60.17
7	60.17	55.96
8	55.96	52.04
9	57.04	48.40
10	पुरु-पुत	45.01

= 80.44 × 0.93

2. Applications of half-life: Carbon dating

Half-life of carbon-14: \$730 years

Carbon-14 decay: 19 (> 14 N + 1e (β - negative)

Carbon-14 absorption: (O2 > Plants > animals > Us (Fixed ratio of C-14: C-12 while living)

Half-life of aluminum-26: 720 000 years

Aluminum-26 decay: 26 A1 > 26 Mg + 1e (β - positive).

Adate interstellar racks (meteorites)

Homework: page 333: #1-4