

CS5340 Uncertainty Modeling in Al

Lecture 4: Variable Elimination and Belief Propagation

Assoc. Prof. Lee Gim Hee

AY 2022/23

Semester 1

Course Schedule

Week	Date	Торіс	Remarks
1	10 Aug	Introduction to probabilistic reasoning	Assignment 0: Python Numpy Tutorial (Ungraded)
2	17 Aug	Bayesian networks (Directed graphical models)	
3	24 Aug	Markov random Fields (Undirected graphical models)	
4	31 Aug	Variable elimination and belief propagation	Assignment 1: Belief propagation and maximal probability (15%)
5	07 Sep	Factor graph and the junction tree algorithm	
6	14 Sep	Parameter learning with complete data	Assignment 1: Due Assignment 2: Junction tree and parameter learning (15%)
-	21 Sep	Recess week	No lecture
7	28 Sep	Mixture models and the EM algorithm	Assignment 2: Due
8	05 Oct	Hidden Markov Models (HMM)	Assignment 3: Hidden Markov model (15%)
9	12 Oct	Monte Carlo inference (Sampling)	
*	15 Oct	Variational inference	Makeup Lecture (LT15) Time: 9.30am – 12.30pm (Saturday)
10	19 Oct	Variational Auto-Encoder and Mixture Density Networks	Assignment 3: Due Assignment 4: MCMC Sampling (15%)
11	26 Oct	No Lecture	I will be traveling
12	02 Nov	Graph-cut and alpha expansion	Assignment 4: Due
13	09 Nov	-	

CS5340 :: G.H. Lee 2

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- Michael I. Jordan "An introduction to probabilistic graphical models", 2002
 Chapters 3 and 4.1
 http://people.eecs.berkeley.edu/~jordan/prelims/chapter3.pdf (Section 4.1)
- 2. Kevin Murphy, "Machine learning: a probabilistic approach" Chapter 20.1, 20.2, 20.3
- Daphne Koller and Nir Friedman, "Probabilistic graphical models" Chapter 9
- 4. David Barber, "Bayesian reasoning and machine learning" Chapter 5
- 5. Christopher Bishop "Machine learning and pattern recognition" Chapter 8.4

Learning Outcomes

- Students should be able to:
- 1. Use the Variable Elimination algorithm to compute the conditional probability of a single random variable X_f , i.e. $p(x_f|x_E)$.
- 2. Explain the computational complexity of variable elimination using the constituted graph.
- 3. Use the sum-product algorithm to compute all single-node marginals for "tree-like" graphical models.

- Let *E* and *F* be disjoint subsets of the node indices of a graphical model.
- X_E and X_F are disjoint subsets of the random variables in the domain.
- Our goal is to calculate $p(X_F|X_E)$ for arbitrary subsets E and F.
- This is the general probabilistic inference problem for graphical models (directed or undirected).

Conditional probability:

$$p(x_F \mid x_E) = \frac{p(x_E, x_F)}{p(x_E)}$$

Marginals from joint probability:

$$p(x_E, x_F) = \sum_{x_R} p(x_E, x_F, x_R),$$

 $p(x_E) = \sum_{x_E} p(x_E, x_F)$

 X_R : nuisance variables

 $\{X_E, X_R, X_F\}$: all random variables in the graphical model

- Dark shading indicates the "evidence nodes" X_E on which we condition.
- Unshaded node is the "query node" X_F for which we wish to compute conditional probabilities.
- Lightly shaded nodes $X_R = X_V \setminus (X_E, X_F)$ are the nodes that must be marginalized out of the joint probability.

Marginals from joint probability:

$$p(x_E, x_F) = \sum_{x_E} p(x_E, x_F, x_R), \quad p(x_E) = \sum_{x_F} p(x_E, x_F)$$

- Σ_{x_R} expands into a sequence of summations, one for each of the random variables indexed by R.
- A naïve summation over the joint distribution of n variables that takes k states will incur a computational complexity of $O(k^n)!$

Variable Elimination Algorithm

- We will first look at how to calculate the conditional probability of a single node X_F given an arbitrary set of nodes X_E .
- Refer to X_F as the "query node", and X_E as the "evidence nodes".
- Variable elimination algorithm: an efficient algorithm based on marginalization and conditional independence of the graphical model.

Naive Summation

Naïve summation is intractable!

Consider:

Joint probability table size is k^6

$$p(x_1, x_2, x_3, x_4, x_5) = \sum_{x_6} p(x_1, x_2, x_3, x_4, x_5, x_6)$$

 $o(k^6)$ operations to do a single sum $\Rightarrow O(k^n)$ complexity!

Variable Elimination

• To reduce computational complexity let's represent the joint probability in its factored form and exploit the distributive law:

$$p(x_1, x_2, ..., x_5) = \sum_{x_6} p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2) p(x_5 | x_3) p(x_6 | x_2, x_5)$$

$$= p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2) p(x_5 | x_3) \sum_{x_6} p(x_6 | x_2, x_5)$$

 $O(k^6)$ to $O(k^3)$ operations to do a single sum!

Table size of k^3

 $\Rightarrow O(k^r)$ instead of $O(k^n)$ complexity, where $r \ll n$

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Evidence Node

Consider:

$$p(x_1|x_6) = \frac{p(x_1, x_6)}{p(x_6)} ,$$

where

 X_6 : evidence node

 X_1 : query node

- Evidence node X_6 is observed, hence a fixed constant that does not contribute to the computational complexity.
- Let us denote an observed evidence node as \bar{X}_i :

$$p(x_1|\bar{x}_6) = \frac{p(x_1, \bar{x}_6)}{p(\bar{x}_6)}$$

Evidence Node

Example: $x_i \in \{0,1\}$

We observed that $\bar{X}_6 = 1$

X_2	X_5	X_6	$p(x_6 x_2,x_5)$
0	0	0	v_0
0	0	1	v_1
0	1	0	v_2
0	1	1	v_3
1	0	0	v_4
1	0	1	v_5
1	1	0	v_6
1	1	1	v_7

X_2	X_5	$p(\overline{x}_6=1 x_2,x_5)$
0	0	v_1
0	1	v_3
1	0	v_5
1	1	v_7

We are taking a 2d slice of the 3d probabilities or potentials!

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Variable Elimination

Conditional probability:

$$p(x_1|\bar{x}_6) = \frac{p(x_1, \bar{x}_6)}{p(\bar{x}_6)}$$

Marginal probability:

$$\begin{array}{lcl} p(x_{1},\bar{x}_{6}) & = & \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p(x_{1}) p(x_{2} \mid x_{1}) p(x_{3} \mid x_{1}) p(x_{4} \mid x_{2}) p(x_{5} \mid x_{3}) p(\bar{x}_{6} \mid x_{2}, x_{5}) \\ & = & p(x_{1}) \sum_{x_{2}} p(x_{2} \mid x_{1}) \sum_{x_{3}} p(x_{3} \mid x_{1}) \sum_{x_{4}} p(x_{4} \mid x_{2}) \sum_{x_{5}} p(x_{5} \mid x_{3}) p(\bar{x}_{6} \mid x_{2}, x_{5}) \\ & = & p(x_{1}) \sum_{x_{2}} p(x_{2} \mid x_{1}) \sum_{x_{3}} p(x_{3} \mid x_{1}) \sum_{x_{4}} p(x_{4} \mid x_{2}) m_{5}(x_{2}, x_{3}) & \text{eliminate } X_{5} \end{array}$$

- Summands can be pushed in due to the distributive law.
- $m_i(x_{S_i})$ denote the expression from performing Σ_{x_i} , where X_{S_i} are the variables, other than X_i , that appear in the summand.

Variable Elimination

Marginal probability:

$$\begin{array}{lll} p(x_1,\bar{x}_6) & = & \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2) p(x_5 \mid x_3) p(\bar{x}_6 \mid x_2,x_5) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) \sum_{x_4} p(x_4 \mid x_2) \sum_{x_5} p(x_5 \mid x_3) p(\bar{x}_6 \mid x_2,x_5) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) m_5(x_2,x_3) \sum_{x_4} p(x_4 \mid x_2) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) m_4(x_2) \sum_{x_3} p(x_3 \mid x_1) m_5(x_2,x_3) \end{array} \begin{array}{l} \text{eliminated } X_4, \\ \text{Independent of } X_3 \end{array}$$

$$= & p(x_1) \sum_{x_2} p(x_2 \mid x_1) m_4(x_2) \sum_{x_3} p(x_3 \mid x_1) m_5(x_2,x_3) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) m_4(x_2) m_3(x_1,x_2) \end{array} \begin{array}{l} \text{eliminated } X_4, \\ \text{Independent of } X_3 \end{array}$$

Marginalization Table

Example: $x_i \in \{0,1\}$ We observed that $\overline{X}_6 = 1$

X_2	X_5	$p(\overline{x}_6=1 x_2,x_5)$
0	0	a_1
0	1	a_2
1	0	a_3
1	1	a_4

X_3	X_5	$p(x_5 x_3)$
0	0	b_1
0	1	b_2
1	0	b_3
1	1	b_4

X_2	X_3	$\sum_{x_5} p(x_5 x_3) p(\overline{x}_6 = 1 x_2, x_5)$
0	0	$p(x_5 = 0 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 0) + $ $p(x_5 = 1 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 1) = $ $(b_1)(a_1) + (b_2)(a_2)$
0	1	$p(x_5 = 0 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 0) + $ $p(x_5 = 1 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 1) = $ $(b_3)(a_1) + (b_4)(a_2)$
1	0	$p(x_5 = 0 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 0) + $ $p(x_5 = 1 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 1) = $ $(b_1)(a_3) + (b_2)(a_4)$
1	1	$p(x_5 = 0 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 0) +$ $p(x_5 = 1 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 1) =$ $(b_3)(a_3) + (b_4)(a_4)$

Variable Elimination

Marginal probability:

$$p(x_1, \bar{x}_6) = p(x_1)m_2(x_1)$$

From this result we can obtain the probability $p(\bar{x}_6)$ by taking an additional sum over X_1 :

$$p(\bar{x}_6) = \sum_{x_1} p(x_1) m_2(x_1)$$

The desired conditional is obtained by:

$$p(x_1 \mid \bar{x}_6) = \frac{p(x_1)m_2(x_1)}{\sum_{x_1} p(x_1)m_2(x_1)}$$

- Notational trick in which conditioning is viewed as a summation.
- This trick will allow us to treat marginalization and conditioning as formally equivalent.
- Make it easier to bring the key operations of the inference algorithms into focus.

• To capture the fact that X_i is fixed at the value \overline{X}_i , we define an evidence potential:

$$\delta(x_i, \bar{x}_i) = \begin{cases} 1 & if \ x_i = \bar{x}_i \\ 0 & otherwise \end{cases}$$

The evidence potential allows us to turn evaluations into sums:

$$g(\bar{x}_i) = \sum_{x_i} g(x_i) \delta(x_i, \bar{x}_i)$$

• A trick that also extends to multivariate functions with X_i as one of the arguments.

Proof:

$$g(\bar{x}_i) = \sum_{x_i} g(x_i) \delta(x_i, \bar{x}_i)$$

$$\sum_{x_i} g(x_i)\delta(x_i, \bar{x}_i)$$

$$= g(x_i = 0)\delta(x_i = 0) + \dots + g(x_i = \bar{x}_i)\delta(x_i = \bar{x}_i) + \dots + g(x_i = k)\delta(x_i = k)$$

$$= g(x_i = \bar{x}_i)$$

Example:

(Directed Graph)

 $p(\bar{x}_6|x_2,x_5)$ from the previous example can be written as:

$$m_6(x_2, x_5) = \sum_{x_6} p(x_6 | x_2, x_5) \delta(x_6, \bar{x}_6)$$
$$= p(\bar{x}_6 | x_2, x_5)$$

(Undirected Graph)

 $\psi(x_2, x_5, \bar{x}_6)$ can be written as:

$$m_6(x_2, x_5) = \sum_{x_6} \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)$$
$$= \psi(x_2, x_5, \bar{x}_6)$$

We have turned conditioning into marginalization!

• We further define the total evidence potential on a set of nodes X_E to be conditioned on:

$$\delta(x_E, \bar{x}_E) = \prod_{i \in E} \delta(x_i, \bar{x}_i) = \begin{cases} 1 & if \ x_E = \bar{x}_E \\ 0 & otherwise \end{cases}$$

• The numerator and the denominator of the conditional probability $p(x_F|\bar{x}_E)$ can be obtained by summation:

$$p(x_F|\bar{x}_E) = \frac{p(x_F, \bar{x}_E)}{p(\bar{x}_E)} = \frac{\sum_{x_E} p(x_F, x_E) \delta(x_E, \bar{x}_E)}{\sum_{x_E} \sum_{x_E} p(x_F, x_E) \delta(x_E, \bar{x}_E)}$$

Again, we have turned conditioning into marginalization!

- Note: evidence potentials is merely a piece of formal trickery to simplifies our description of various inference algorithms.
- In practice, we would not perform the sum over a function that we know to be zero over most of the sample space.
- But rather we would take "slices" of the appropriate probabilities or potentials.


```
// main steps of the "Variable Elimination Algorithm"
       ELIMINATE(\mathcal{G}, E, F)
            Initialize(\mathcal{G}, F)
            EVIDENCE(E)
             UPDATE(G)
             Normalize(F)
1:
                                      // choose elimination ordering, and add local condition probabilities in active list
       Initialize(\mathcal{G}, F)
            choose an ordering I such that F appears last
            for each node X_i in \mathcal{V}
                 place p(x_i | x_{\pi_i}) on the active list
            end
2:
       Evidence(E)
                                      // add evidence potentials in active list
            for each i in E
                  place \delta(x_i, \bar{x}_i) on the active list
            end
                                     // marginalization, and update active list
3:
       Update(\mathcal{G})
            for each i in I
                 find all potentials from the active list that reference x_i and remove them from the active list
                 let \phi_i(x_{T_i}) denote the product of these potentials
                 let m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})
                 place m_i(x_{S_i}) on the active list
            end
                                    // compute the desired conditional probability
       Normalize(F)
            p(x_F | \bar{x}_E) \leftarrow \phi_F(x_F) / \sum_{x_F} \phi_F(x_F)
```


Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 24

// choose elimination ordering, and add local condition probabilities in active list

1: Initialize(\mathcal{G}, F)

```
choose an ordering I such that F appears last
```

for each node X_i in \mathcal{V} place $p(x_i | x_{\pi_i})$ on the active list end

Example:

Evidence node is X_6 and query node is X_1 . We choose the elimination ordering:

$$I = \{6, 5, 4, 3, 2, 1\},\$$

in which the query node appears last.

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 25

// choose elimination ordering, and add local condition probabilities in active list

1: Initialize(\mathcal{G}, F)

choose an ordering I such that F appears last

for each node X_i in \mathcal{V} place $p(x_i | x_{\pi_i})$ on the active list end

Example:

Active list:

$$\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), p(x_6|x_2, x_5)\}$$

// add evidence potentials in active list

2: EVIDENCE(E)

```
for each i in E
place \delta(x_i, \bar{x}_i) on the active list end
```

Example:

27

Active list:

$$\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), p(x_6|x_2, x_5), \delta(x_6, \bar{x}_6)\}$$

// marginalization, and update active list

3: Update(\mathcal{G})

for each i in I

find all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials

let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$

place $m_i(x_{S_i})$ on the active list

end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

$$i = 6$$
: $\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), \frac{p(x_6|x_2, x_5), \delta(x_6, \bar{x}_6)}{\delta(x_6, \bar{x}_6)}\}$

$$\phi_6(x_2, x_5, x_6) = p(x_6|x_2, x_5)\delta(x_6, \bar{x}_6)$$

$$m_6(x_2, x_5) = \sum_{x_6} \phi_6(x_2, x_5, x_6) = \sum_{x_6} p(x_6 | x_2, x_5) \delta(x_6, \bar{x}_6)$$

$$\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), m_6(x_2, x_5)\}$$

// marginalization, and update active list

3: UPDATE(\mathcal{G})

for each i in Ifind all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$ place $m_i(x_{S_i})$ on the active list end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

 $i = 5$: $\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), \frac{p(x_5|x_3)}{m_6(x_2, x_5)}\}$
 $\phi_5(x_2, x_3) = p(x_5|x_3)m_6(x_2, x_5)$
 $m_5(x_2, x_3) = \sum_{x_5} \phi_5(x_2, x_3) = \sum_{x_5} p(x_5|x_3)m_6(x_2, x_5)$
 $\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), \frac{m_5(x_2, x_3)}{m_5(x_2, x_3)}\}$

// marginalization, and update active list

3: UPDATE(\mathcal{G})

for each i in I

find all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials

let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$

place $m_i(x_{S_i})$ on the active list

end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

$$i = 4$$
: { $p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), m_5(x_2, x_3)$ }

$$\phi_4(x_2) = p(x_4|x_2)$$

$$m_4(x_2) = \sum_{x_4} \phi_4(x_2) = \sum_{x_4} p(x_4|x_2) = 1$$

$${p(x_1), p(x_2|x_1), p(x_3|x_1), m_5(x_2, x_3)}$$

Ignore $m_4(x_2)$ since its 1!

// marginalization, and update active list 3: UPDATE(\mathcal{G})

for each i in Ifind all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$ place $m_i(x_{S_i})$ on the active list

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

 $i = 3$: $\{p(x_1), p(x_2|x_1), \frac{p(x_3|x_1), m_5(x_2, x_3)}{}\}$
 $\phi_3(x_1, x_2) = p(x_3|x_1)m_5(x_2, x_3)$
 $m_3(x_1, x_2) = \sum_{x_3} \phi_3(x_1, x_2) = \sum_{x_3} p(x_3|x_1)m_5(x_2, x_3)$
 $\{p(x_1), p(x_2|x_1), \frac{m_3(x_1, x_2)}{}\}$

end

// marginalization, and update active list

3: UPDATE(\mathcal{G})

for each i in Ifind all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$ place $m_i(x_{S_i})$ on the active list end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

 $i = 2$: $\{p(x_1), p(x_2|x_1), m_3(x_1, x_2)\}$
 $\phi_2(x_1) = p(x_2|x_1)m_3(x_1, x_2)$
 $m_2(x_1) = \sum_{x_2} \phi_2(x_1) = \sum_{x_2} p(x_2|x_1)m_3(x_1, x_2)$
 $\{p(x_1), m_2(x_1)\}$

// marginalization, and update active list

3: UPDATE(\mathcal{G})

for each i in I

find all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials

let
$$m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$$

place $m_i(x_{S_i})$ on the active list

end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

i = 1:

$$\{p(x_1), m_2(x_1)\}$$

$$\phi_1(x_1) = p(x_1) m_2(x_1)$$

$$m_1(x_1) = \sum_{x_1} \phi_1(x_1) = \sum_{x_1} p(x_1) m_2(x_1)$$

Unnormalized conditional probability, $p(x_1, \bar{x}_6)$

Normalization factor, $p(\bar{x}_6)$

// compute the desired conditional probability

4: Normalize(F)

$$p(x_F | \bar{x}_E) \leftarrow \phi_F(x_F) / \sum_{x_F} \phi_F(x_F)$$

Example:

From the previous step, we have $\phi_1(x_1)$ and $m_1(x_1) = \sum_{x_1} \phi_1(x_1)$, which we use to compute the desired conditional probability:

$$p(x_1|x_6) = \frac{\phi_1(x_1)}{\sum_{x_1} \phi_1(x_1)}$$

Elimination order: $I = \{6, 5, 4, 3, 2, 1\}$ $p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} p(x_1) p(x_2 | x_1)$ $p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2,x_5)\delta(x_6,\bar{x}_6)$ i = 6: $p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2|x_1) p(x_3|x_1) p(x_4|x_2) p(x_5|x_3)$ $\sum_{x_6} p(x_6|x_2,x_5)\delta(x_6,\bar{x}_6)$ $m_6(x_2, x_5)$ $= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2|x_1) p(x_3|x_1) p(x_4|x_2) p(x_5|x_3) m_6(x_2, x_5)$ i = 5: $p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2) \sum_{x_5} p(x_5 | x_3) m_6(x_2, x_5)$ $m_5(x_2, x_3)$ $= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1) p(x_2|x_1) p(x_3|x_1) p(x_4|x_2) m_5(x_2, x_3)$

Elimination order: $I = \{6, 5, 4, 3, 2, 1\}$

$$\begin{array}{l} \pmb{i} = \pmb{4}: \\ p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1) p(x_2|x_1) p(x_3|x_1) m_5(x_2,x_3) \sum_{x_4} p(x_4|x_2) \\ \pmb{i} = \pmb{3}: & m_4(x_2) = 1 \\ p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} p(x_1) p(x_2|x_1) \sum_{x_3} p(x_3|x_1) m_5(x_2,x_3) \\ \pmb{i} = \pmb{2}: & m_3(x_1,x_2) \\ p(\bar{x}_6) = \sum_{x_1} p(x_1) \sum_{x_2} p(x_2|x_1) m_3(x_1,x_2) \\ \pmb{i} = \pmb{1}: & m_2(x_1) \\ \pmb{i} = \pmb{1}: & p(\bar{x}_6) = \sum_{x_1} p(x_1) m_2(x_1) & \text{Normalization factor} \\ & \text{Unnormalized conditional probability,} \\ p(x_1,\bar{x}_6) = p(x_1) m_2(x_1) & \end{array}$$

- Entire variable eliminate algorithm for directed graph goes through without essential change to the undirected case.
- Only change needed in the initialize procedure.
- Instead of using local conditional probabilities we initialize the active list to contain the potentials of $\{\psi_{x_C}(x_C)\}$.

Example:

$$p(x_{1}, \bar{x}_{6}) = \frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi(x_{1}, x_{2}) \psi(x_{1}, x_{3}) \psi(x_{2}, x_{4}) \psi(x_{3}, x_{5}) \psi(x_{2}, x_{5}, x_{6}) \delta(x_{6}, \bar{x}_{6})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) \sum_{x_{4}} \psi(x_{2}, x_{4}) \sum_{x_{5}} \psi(x_{3}, x_{5}) \sum_{x_{6}} \psi(x_{2}, x_{5}, x_{6}) \delta(x_{6}, \bar{x}_{6})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) \sum_{x_{4}} \psi(x_{2}, x_{4}) \sum_{x_{5}} \psi(x_{2}, x_{5})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) m_{5}(x_{2}, x_{3}) \sum_{x_{4}} \psi(x_{2}, x_{4})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) m_{4}(x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) m_{5}(x_{2}, x_{3})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) m_{4}(x_{2}) m_{3}(x_{1}, x_{2})$$

$$= \frac{1}{Z} m_{2}(x_{1}).$$

• Marginalizing further over X_1 yields:

$$p(\bar{x}_6) = \frac{1}{Z} \sum_{x_1} m_2(x_1),$$

We calculate the desired conditional as:

$$p(x_1 \mid \bar{x}_6) = \frac{m_2(x_1)}{\sum_{x_1} m_2(x_1)}$$

- where the normalization factor Z cancels.
- **Important note**: For a marginal probability, the normalization factor *Z* does not cancel, and must be calculated explicitly.

- The variable elimination algorithm successively eliminates the nodes of \mathcal{G} in the ordering I.
- "Eliminate" means removing the node from the graph and connecting the (remaining) neighbors of the node.
- The original and newly created edges created during the elimination process are recorded in the reconstituted graph $\tilde{\mathcal{G}} = (\mathcal{V}, \tilde{\mathcal{E}})$.

Example: Elimination ordering (6; 5; 4; 3; 2; 1)

Example: Elimination ordering (6; 5; 4; 3; 2; 1)

Original undirected graph

Reconstituted graph: additional edges (red) added during the elimination process

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

- A simple greedy algorithm for eliminating nodes in an undirected graph.
- The additional edges added during the elimination process forms the reconstituted graph.

```
Under Under Ethinian X_i in X_i for each node X_i in X_i connect all of the remaining neighbors of X_i remove X_i from the graph end
```


Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

- Elimination process adds new edges between (remaining) neighbors of the node.
- This creates new "elimination cliques" in the graph.
- Overall complexity depends on the size of the largest elimination clique.
- Which depends on the choice of elimination ordering.

- Treewidth: one less than the smallest achievable cardinality of the largest elimination clique over all possible elimination orderings.
- Elimination ordering with the lowest complexity must achieve the treewidth of the graph.
- Unfortunately, the general problem of finding the best elimination ordering that achieves the treewidth is NP-hard.

Example:

- A graph whose treewidth is equal to one.
- However, the wrong choice of eliminating the center node would immediately leads to an elimination clique with all the neighbors!

 Computation complexity of DGMs can be analyzed in the same way as UGMs by moralization.

```
DIRECTEDGRAPHELIMINATE(G, I)
G^m = \text{Moralize}(G)
\text{UndirectedGraphEliminate}(G^m, I)
\text{Moralize}(G)
\text{for each node } X_i \text{ in } I
\text{connect all of the parents of } X_i
\text{end drop the orientation of all edges}
\text{return } G
```


Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Parents are "married"

 A DGM is converted into UGM, where the computational complexity can be analyzed.

Limitation of Variable Elimination

Limitation:

 We have to re-run the variable elimination algorithm with every new query node.

Solution:

• The sum-product or belief propagation algorithm allows us to compute all single-node marginals for certain "tree-like" graphs in a single run.

"Tree-Like" Graphs

- a) Undirected tree: without any loop.
- b) Directed tree: only 1 single parent for every node, moralizations lead to an undirected tree.
- Polytree: nodes with more than 1 parent. Not a directed tree, moralizations lead to loops.
- d) Chain: this is also a directed tree (more on chains when we look at Hidden Markov Models).

CS5340 :: G.H. Lee

51

Parameterization

Undirected Trees:

• The cliques are single and pairs of nodes, thus the joint probability is:

$$p(x) = \frac{1}{Z} \left(\prod_{i \in \mathcal{V}} \psi(x_i) \prod_{(i,j) \in \mathcal{E}} \psi(x_i, x_j) \right)$$
 ,

where \mathcal{V} and \mathcal{E} are the nodes and edges of a tree $\mathcal{T}(\mathcal{V}, \mathcal{E})$.

Parameterization

Directed Trees:

Joint probability is given by:

$$p(x) = p(x_r) \prod_{(i,j) \in \mathcal{E}} p(x_j \mid x_i) ,$$

where

- $p(x_r)$: marginal probability at the root, and
- $\{p(x_i|x_i)\}$: conditional probabilities at all other nodes.
- (i, j) is a directed edge such that i is the parent of j.

Parameterization

Directed Tree → **Undirected Tree**:

We define

$$\psi(x_r) = p(x_r)$$

$$\psi(x_i, x_j) = p(x_j | x_i),$$

for i the parent of j, and define all other singleton potentials $\psi(x_i) = 1 \ \forall \ i \neq r$.

The partition function Z = 1.

We will not make any distinction between directed and undirected trees since they are formally identical!

Conditioning

• To capture conditioning i.e. $p(x | \bar{x}_E)$ for some subset E, let us define the local potentials as:

$$\psi_i^E(x_i) \triangleq \begin{cases} \psi_i(x_i)\delta(x_i, \bar{x}_i) & i \in E \\ \psi_i(x_i) & i \notin E \end{cases}$$

where $\delta(x_i, \bar{x}_i)$ is the "evidence potential" defined earlier.

Conditioning

 Making use of the joint probability of undirected trees, we get the conditional probability:

$$p(x \mid \bar{x}_E) = \frac{1}{Z^E} \left(\prod_{i \in V} \psi^E(x_i) \prod_{(i,j) \in \mathcal{E}} \psi(x_i, x_j) \right)$$

where the original Z vanishes and

$$Z^{E} = \sum_{x} \left(\prod_{i \in V} \psi^{E}(x_i) \prod_{(i,j) \in \mathcal{E}} \psi(x_i, x_j) \right)$$

From Elimination to Message Passing

 Question: What are the special features of the variable elimination algorithm when the graph is a tree?

 Answer: We can consider elimination orderings that arise from a depth-first traversal of the tree.

Depth-First Tree Traversal

- Take advantage of the recursive structure of a tree to specify an elimination ordering.
- Treat query node X_f as the root.
- View the tree as a directed tree by directing all edges of the tree to point away from X_f .
- Elimination proceeds inward from the leaves, with treewidth equals to one!

Intermediate Factor: "Message"

- Consider nodes X_i and X_j that are neighbors in the tree, where X_i is closer to the root node.
- To eliminate X_j , we take the product over all potentials that reference X_i and sum over X_i :

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi^E(x_j) \psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j) \right)$$

• This is the intermediate factor ("message") that X_i sends to X_i .

Message at Final Node (Root)

- All other nodes have been eliminated when we arrive at X_f .
- Thus, messages $m_{ef}(x_f)$ have been computed for each of the neighbours $e \in N(f)$.
- We write the marginal of X_F as:

$$p(x_f | \bar{x}_E) \propto \psi^E(x_f) \prod_{e \in \mathcal{N}(f)} m_{ef}(x_f)$$

Messages

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi^E(x_j) \psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j) \right)$$
$$p(x_f \mid \bar{x}_E) \propto \psi^E(x_f) \prod_{e \in \mathcal{N}(f)} m_{ef}(x_f)$$

 It turns out that these messages are sufficient for obtaining not only a single marginal, but also obtaining all of the marginals in the tree!

Reuse Messages

Obtain all of the marginals in the tree.

Key idea:

Messages can be "reused"!

We can achieve the effect of computing over all possible elimination orderings (huge number) by computing all possible messages (small number).

Example:

Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Example: Messages are "reused"!

Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Example:

 All of the messages needed to compute all singleton marginals.

 The sum-product algorithm is an algorithm to compute all messages in a tree, and hence all singleton marginals

efficiently!

Nus National University of Singapore School of Computing

Message-Passing Protocol

A node can send a message to a neighboring node when (and only when) it has received messages from all of its other neighbors.

- Two phases:
- Messages flow inward from leaves toward the root.
- 2. Initiated once all incoming messages have been received by the root node messages flow outward from root toward the leaves.


```
// main steps of the "Sum-Product Algorithm"
Sum-Product(\mathcal{T}, E)
     EVIDENCE(E)
     f = \text{ChooseRoot}(\mathcal{V})
     for e \in \mathcal{N}(f)
          Collect(f, e)
     for e \in \mathcal{N}(f)
          DISTRIBUTE(f, e)
     for i \in \mathcal{V}
          ComputeMarginal(i)
EVIDENCE(E)
                                     // add evidence potentials (convert conditioning into marginalization)
     for i \in E
          \psi^E(x_i) = \psi(x_i)\delta(x_i, \bar{x}_i)
     for i \notin E
          \psi^E(x_i) = \psi(x_i)
                                    // messages flow inward from leaves toward the root
Collect(i, j)
     for k \in \mathcal{N}(j) \setminus i
          Collect(j, k)
     SENDMESSAGE(i, i)
                                    // messages flow outward from root toward the leaves
DISTRIBUTE(i, j)
     SENDMESSAGE(i, j)
     for k \in \mathcal{N}(j) \setminus i
          DISTRIBUTE(j,k)
                                    // intermediate factors (messages)
SENDMESSAGE(j, i)
     m_{ji}(x_i) = \sum_{x_j} (\psi^E(x_j)\psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j))
Compute Marginal (i) // message to final node
     p(x_i) \propto \psi^E(x_i) \prod m_{ji}(x_i)
                      j \in \mathcal{N}(i)
```



```
// main steps of the "Sum-Product Algorithm"
Sum-Product(\mathcal{T}, E)
     EVIDENCE(E)
     f = \text{ChooseRoot}(\mathcal{V})
     for e \in \mathcal{N}(f)
          Collect(f, e)
     for e \in \mathcal{N}(f)
          DISTRIBUTE(f, e)
     for i \in \mathcal{V}
          ComputeMarginal(i)
EVIDENCE(E)
                                     // add evidence potentials (convert conditioning into marginalization)
     for i \in E
          \psi^E(x_i) = \psi(x_i)\delta(x_i, \bar{x}_i)
     for i \notin E
          \psi^E(x_i) = \psi(x_i)
                                                                                                                      Send Message
                                    // messages flow inward from leaves toward the root
Collect(i, j)
     for k \in \mathcal{N}(j) \setminus i
          Collect(j, k)
     SENDMESSAGE(i, i)
                                                                                                                                              Collect
                                                                                                                       Collect
                                    // messages flow outward from root toward the leaves
DISTRIBUTE(i, j)
     SENDMESSAGE(i, j)
     for k \in \mathcal{N}(j) \setminus i
          DISTRIBUTE(j,k)
                                    // intermediate factors (messages)
SENDMESSAGE(i, i)
     m_{ji}(x_i) = \sum_{x_j} (\psi^E(x_j)\psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j))
Compute Marginal(i) // message to final node
     p(x_i) \propto \psi^E(x_i) \prod_i m_{ji}(x_i)
                      j \in \mathcal{N}(i)
```



```
// main steps of the "Sum-Product Algorithm"
Sum-Product(\mathcal{T}, E)
     EVIDENCE(E)
     f = \text{ChooseRoot}(\mathcal{V})
     for e \in \mathcal{N}(f)
          Collect(f, e)
     for e \in \mathcal{N}(f)
          DISTRIBUTE(f, e)
     for i \in \mathcal{V}
          ComputeMarginal(i)
EVIDENCE(E)
                                     // add evidence potentials (convert conditioning into marginalization)
     for i \in E
          \psi^E(x_i) = \psi(x_i)\delta(x_i, \bar{x}_i)
     for i \notin E
          \psi^E(x_i) = \psi(x_i)
                                                                                                                     Send Message
                                    // messages flow inward from leaves toward the root
Collect(i, j)
     for k \in \mathcal{N}(j) \setminus i
          Collect(j, k)
                                                                                                                   Distribute
     SENDMESSAGE(i, i)
                                                                                                                                             Distribute
                                    // messages flow outward from root toward the leaves
DISTRIBUTE(i, j)
     SENDMESSAGE(i, j)
     for k \in \mathcal{N}(j) \setminus i
          DISTRIBUTE(j,k)
                                    // intermediate factors (messages)
SENDMESSAGE(i, i)
     m_{ji}(x_i) = \sum_{x_j} (\psi^E(x_j)\psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j))
Compute Marginal(i) // message to final node
     p(x_i) \propto \psi^E(x_i) \prod_i m_{ji}(x_i)
                      j \in \mathcal{N}(i)
```


Summary

- You have learned how to:
- 1. Use the Variable Elimination algorithm to compute the conditional probability of a single random variable X_f , i.e. $p(x_f|x_E)$.
- 2. Explain the computational complexity of variable elimination using the constituted graph.
- 3. Use the sum-product algorithm to compute all single-node marginals for "tree-like" graphical models.

