OCENIANIE ARKUSZA POZIOM PODSTAWOWY

Numer zadania	Htany rozwiazania zadania		Liczba punktów	Uwagi dla sprawdzającego
	1.1	Zapisanie ceny wycieczki po podwyżce, np. $x + 5\%x$, gdzie x oznacza pierwotną cenę wycieczki.	1	
	1.2	Zapisanie równania: $0.92 \cdot (1.05 \cdot x) = 1449$.	1	
	1.3	Rozwiązanie równania: $x = 1500$ i sformułowanie odpowiedzi.	1	Jeśli zdający nie wprowadzi opisu niewiadomej i nie sformułuje odpowiedzi, to za tę czynność nie przyznajemy punktu.
1.	1.1	II sposób rozwiązania. Obliczenie ceny wycieczki przed obniżką: 1449: 0,92 = 1575 zł.	1	
	1.2	Obliczenie ceny wycieczki przed podwyżką: 1575:1,05=1500 zł.	1	
	1.3	Podanie odpowiedzi: 1500 zł.	1	
2.	2.1	Zapisanie długości boków prostokąta: $ AB = 2a$, $ AD = a - 2$.	1	Jeśli zdający zapisze $ AD = a + 2$ wtedy otrzymuje równanie $2a(a+2) = a^2 + 12$. Rozwiązaniem tego równania są liczby: $a_1 = -6$, $a_2 = 2$. Zdający zapisze odpowiedź: żadna z tych liczb nie spełnia warunków zadania. Punktujemy to rozwiązanie następująco: 0, 2, 1.

	2.2	Zapisanie i rozwiązanie równania: $2a \cdot (a-2) = a^2 + 12$ a = 6 lub $a = -2$. 1 pkt za napisanie równania, 1 pkt za rozwiązanie równania. Uwaga! Zdający może napisać równanie w następujący sposób: $a(a-4) = 12$.	2	Jeśli równanie nie jest dobrze ułożone, ale jest to równanie kwadratowe zupełne i zdający rozwiąże je poprawnie, to punktujemy następująco: czynność 2.2 – 1 punkt, czynność 2.3 – 0 punktów.
	2.3	Wybór i podanie odpowiedzi: $a = 6$ cm.	1	
	3.1	Wykorzystanie do analizy zadania warunku styczności zewnętrznej dwóch okręgów, np. zaznaczenie na rysunku odcinka łączącego "środki półkoli".	1	
3.	3.2	Za skorzystanie z twierdzenia Pitagorasa lub własności trójkąta prostokątnego, w którym jeden z kątów ostrych ma miarę 60°.	1	
	3.3	Obliczenie długości odcinka d : $d = 60\sqrt{3}$ cm.	1	Dopuszczamy operacje na wartościach przybliżonych pod warunkiem, że pozwalają uzyskać poprawne żądane zaokrąglenie.
	3.4	Obliczenie szukanej długości prostokąta: $120 + 60\sqrt{3} = 60(2 + \sqrt{3})$ cm.	1	
	3.5	Podanie długości z wymaganym zaokrągleniem: 224 cm.	1	

	4.1	Podzielenie wielomianu $W(x)$ przez dwumian $2x + 1$: $W_1(x) = (-2x^4 + 5x^3 + 9x^2 - 15x - 9) : (2x + 1) = -x^3 + 3x^2 + 3x - 9.$	1	Po zastosowaniu schematu Hornera zdający otrzyma inny wynik częściowy: $ (-2x^4 + 5x^3 + 9x^2 - 15x - 9) : \left(x + \frac{1}{2}\right) = $ $ = -2x^3 + 6x^2 + 6x - 18 . $ Zdający może wyłączyć (-1) przed nawias i też otrzyma inny wynik częściowy: $ -(2x^4 - 5x^3 - 9x^2 + 15x + 9) : (2x + 1) = $ $ = -\left(x^3 - 3x^2 - 3x + 9\right) . $
4.	4.2	Rozłożenie wielomianu $W_1(x)$ na czynniki: $-x^3 + 3x^2 + 3x - 9 = (x - 3) \cdot (3 - x^2).$	1	
	4.3	Podanie pierwiastków wielomianu: $-\sqrt{3}$, $-\frac{1}{2}$, $\sqrt{3}$, 3.	1	
	4.2	II sposób rozwiązania. Znalezienie drugiego pierwiastka $x = 3$ i wykonanie dzielenia: $(-x^3 + 3x^2 + 3x - 9)$: $(x - 3) = (3 - x^2)$.	1	
	4.3	Rozwiązanie równania $3-x^2=0$ i podanie pierwiastków: $-\sqrt{3}$, $-\frac{1}{2}$, $\sqrt{3}$, 3.	1	
5.	5.1	Zaznaczenie półpłaszczyzny $2x - y - 3 \le 0$.	1	
	5.2	Zaznaczenie półpłaszczyzny $2x-3y-7 \le 0$.	1	
	5.3	Zaznaczenie szukanego kąta.	1	Punkt przyznajemy tylko wtedy, gdy kąt jest wyraźnie zaznaczony.

	5.4	Obliczenie współrzędnych punktu $P: P = \left(\frac{1}{2}, -2\right)$.	1	Dopuszczamy możliwość, że zdający odczyta z wykresu współrzędne punktu <i>P</i> . Musi jednak sprawdzić poprawność odczytu przez podstawienie współrzędnych do obu równań.
	5.5	Obliczenie długości odcinka PS : $ PS = 6,5$.	1	
	6.1	Wyznaczenie liczby wszystkich kul w urnie: 1230.	2	1 pkt przyznajemy za zastosowanie wzoru na sumę S_{41} ciągu arytmetycznego, gdzie a_1 = 10, r = 1 lub $(S_{50} - S_9)$ gdzie a_1 = 1, r = 1. 1 pkt za poprawne obliczenia. Jeśli zdający wykona obliczenia na kalkulatorze i poda prawidłową odpowiedź przyznajemy 2 pkt.
6.	6.2	Wyznaczenie liczby wszystkich kul w urnie z numerami parzystymi: 630.	2	1 pkt za za zastosowanie wzoru na sumę S_{21} ciągu arytmetycznego, gdzie $a_1 = 10$, $r = 2$. 1 pkt za poprawne obliczenia. Jeśli zdający wykona obliczenia na kalkulatorze i poda prawidłową odpowiedź przyznajemy 2 pkt.
	6.3	Obliczenie prawdopodobieństwa: $\frac{21}{41}$.	1	Jeśli metody zastosowane w czynnościach 6.1 i 6.2 są poprawne, ale wystąpiły błędy rachunkowe, to przyznajemy punkt w czynności 6.3. W przypadku błędu merytorycznego w czynności 6.1 lub 6.2 nie przyznajemy punktu w czynności 6.3.

7.	7.1	Przyjęcie oznaczeń, np. a – długość krawędzi podstawy, b – długość krawędzi bocznej, c – długość przekątnej ściany bocznej, a – miara kąta jaki tworzy przekątna ściany bocznej z przekątną podstawy, lub wykonanie rysunku graniastosłupa z zaznaczonymi powyżej oznaczeniami.	1	
	7.2	Obliczenie długości krawędzi podstawy: $a = 4\sqrt{2}$ cm.	1	
	7.3	Obliczenie długości przekątnej ściany bocznej: $c = 6$ cm.	1	
	7.4	Obliczenie długości krawędzi bocznej: <i>b</i> = 2 cm.	1	
	7.5	Obliczenie objętości graniastosłupa: $V = 64 \text{ cm}^3$.	1	
	7.6	Obliczenie pola powierzchni całkowitej graniastosłupa: $32(2+\sqrt{2})$ cm ² .	1	Zdający może pominąć w rozwiązaniu jednostki.

8.	8.1	Podanie przedziałów, w których funkcja jest rosnąca: $\langle -3,0 \rangle$ i $\langle 3,6 \rangle$.	1	Przyjmujemy również odpowiedzi, w których zdający podaje przedziały (-3,0) i (3,6) (również jednostronnie domknięte).
	8.2	Podanie zbioru argumentów, dla których funkcja przyjmuje wartości dodatnie: $\langle -6, -5 \rangle \cup (-1, 1) \cup (5, 6)$.	1	Zdający może zapisać odpowiedzi w postaci nierówności.
	8.3	Podanie największej wartości funkcji f w przedziale $\langle -5,5 \rangle$: 1.	1	Możemy przyjąć jako poprawne odpowiedzi: $f(0)$ lub "dla $x = 0$ ".
	8.4	Podanie miejsc zerowych funkcji g: -4, 0, 2, 6.	1	
	8.5	Wyznaczenie najmniejszej wartości funkcji <i>h</i> : −2.	1	
9.	9.1	Obliczenie średniego wyniku testu w każdej z klas I A i I B: średnia w klasie I A = 5,6, średnia w klasie I B = 6,08.	2	Po 1 punkcie za każdy poprawny wynik.
	9.2	Podanie odpowiedzi: 48%.	1	
	9.3	Wyznaczenie mediany dla klasy I A: mediana = 5,5.	1	

10.	10.1	Zaznaczenie zbioru A na osi liczbowej:. ———————————————————————————————————	1	Zapis algebraiczny $A = (-\infty, 2) \cup (8, +\infty)$ nie jest oceniany. Jeśli zdający nie zaznaczy, jaki jest charakter końców odcinków, nie przyznajemy punktów. Zapis algebraiczny $B = (-\infty, -3) \cup (3, +\infty)$ nie jest oceniany.
	10.2			Jeśli zdający nie zaznaczy, jaki jest charakter końców odcinków, nie przyznajemy punktów.
	10.3	Zaznaczenie zbioru <i>C</i> na osi liczbowej: This is a prawidłowe rozwiązanie nierówności, 1 pkt za zaznaczenie zbioru na osi liczbowej.	2	 1 pkt przyznajemy gdy zdający: algebraicznie rozwiąże nierówność, np. mnoży przez (x-1)² i w odpowiedzi nie uwzględni warunku x ≠ 1, rozwiąże graficznie (poprawnie narysuje wykres funkcji homograficznej ale źle odczyta zbiór argumentów), doprowadzi nierówność do postaci 2/(x-1) ≤ 0 (dalej nie potrafi rozwiązać). Jeżeli zdający pomnoży obie strony nierówności przez (x-1) otrzymuje 0 pkt.
	10.4	Wyznaczenie zbioru $A \cap B$: $A \cap B = (-\infty, -3) \cup (8, +\infty)$.	1	Jeśli zdający wykonał rysunek, to takiej odpowiedzi nie oceniamy.
	10.5	Wyznaczenie zbioru $C \setminus (A \cap B)$: $C \setminus (A \cap B) = (-3,1)$.	1	Jeśli zdający popełnił błędy przy wyznaczaniu zbiorów <i>A, B, C,</i> ale błędy te nie ułatwiły rozwiązania podpunktu b), to przyznajemy punkty za czynności 10.4 i 10.5.

11.	11.1	Zapisanie wzoru funkcji: $f(x) = \frac{1}{2}x^2 - 8$.	1	
	11.2	Podanie pierwszej współrzędnej wierzchołka paraboli: $x_w = 0$ i $x_w \notin \langle -4, -2 \rangle$.	1	
	11.3	Obliczenie wartości funkcji na końcach przedziału: $f(-4) = 0$, $f(-2) = -6$.	1	Zdający może narysować wykres funkcji i na jego podstawie rozwiązać podpunkt b).
	11.4	Sformułowanie wniosku dotyczącego wartości najmniejszej.	1	

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.