CS60064 Spring 2022 Computational Geometry

Instructors

Bhargab B. Bhattacharya (BBB)
Partha Bhowmick (PB)
Lecture #15
09 February 2022

Indian Institute of Technology Kharagpur Computer Science and Engineering

Map Overlay

To solve map overlay questions, we need to represent subdivisions

A planar subdivision is a structure induced by a set of line segments in the plane that can only intersect at common endpoints. It consists of vertices, edges, and faces

Representation: DCEL

Computing the Overlay

- Input: DCEL for S₁ and DCEL for S₂
- Output: DCEL for the overlay of S₁ and S₂

Example DCEL

Vertex	Coordinates	IncidentEdge
v_1	(0,4)	$\vec{e}_{1,1}$
ν_2	(2,4)	$\vec{e}_{4,2}$
v_3	(2,2)	$ec{e}_{2,1}$
v_4	(1,1)	$ec{e}_{2,2}$

Face	OuterComponent	InnerComponents
f_1	nil	$ec{e}_{1,1}$
f_2	$ec{e}_{4,1}$	nil

				v_4	
Half-edge	Origin	Twin	IncidentFace	Next	Prev
$ec{e}_{1,1}$	v_1	$\vec{e}_{1,2}$	f_1	$\vec{e}_{4,2}$	$\vec{e}_{3,1}$
$ec{e}_{1,2}$	v_2	$ec{e}_{1,1}$	f_2	$\vec{e}_{3,2}$	$\vec{e}_{4,1}$
$ec{e}_{2,1}$	v_3	$\vec{e}_{2,2}$	f_1	$\vec{e}_{2,2}$	$\vec{e}_{4,2}$
$\vec{e}_{2,2}$	v_4	$\vec{e}_{2,1}$	f_1	$\vec{e}_{3,1}$	$\vec{e}_{2,1}$
$\vec{e}_{3,1}$	v_3	$\vec{e}_{3,2}$	f_1	$ec{e}_{1,1}$	$\vec{e}_{2,2}$
$ec{e}_{3,2}$	v_1	$\vec{e}_{3,1}$	f_2	$ec{e}_{4,1}$	$\vec{e}_{1,2}$
$ec{e}_{4,1}$	v_3	$\vec{e}_{4,2}$	f_2	$\vec{e}_{1,2}$	$\vec{e}_{3,2}$
$ec{e}_{4,2}$	v_2	$ec{e}_{4,1}$	f_1	$\vec{e}_{2,1}$	$ec{e}_{1,1}$

Use the plane-sweep algorithm

Plane-sweep as in line-segment intersection

Status: the edges of S_1 and S_2 intersecting the sweep line in the left-to-right order;

Events happen:

at the vertices of S_1 and S_2 ;

at intersection points from S₁ and S₂

Event Management using DCEL

 For each intersection event, add a new vertex to the merged DCEL

Six types of events:

- A vertex of S_1
- A vertex of S_2
- An intersection point of one edge from S_1 and one edge from S_2
- An edge of S_1 goes through a vertex of S_2
- An edge of S_2 goes through a vertex of S_1
- A vertex of S_1 and a vertex of S_2 coincide

Consider the event:

an intersection point of one edge from S_1 and one edge from S_2

Consider the event: an edge from S_1 goes through a vertex of S_2

Consider the event: a vertex of S_1 and a vertex of S_2 coincide

Overlay Data Structure

When we take an event from the event queue Q, we need quick access to the DCEL to make the necessary changes

We keep a pointer from each leaf in the status structure to one of the representing half-edges in the DCEL

Fixing the Incident Face for a Half-Edge in the Overlay Data Structure

Incident face for $\longrightarrow f_2$ Incident face for $\longrightarrow f_3$ A half-edge object stores:

- Origin (vertex)
- Twin (half-edge)
- ? IncidentFace (face)
 - Next (half-edge in cycle of the incident face)
 - Prev (half-edge in cycle of the incident face)

How do we know whether a cycle is an *outer* boundary or the *inner* boundary of a face?

- Given a half-edge (*e*), determine the directed cycle following half-edges;
- Find the vertex with the least value of x (or y); If the turning angle $< \pi$, then e is outer component of

the incident face; otherwise (when $> \pi$) e is an inner component

Fixing the Incident Face for a Half-Edge in the Overlay Data Structure

A half-edge object stores:

- Origin (vertex)
- Twin (half-edge)
- ? IncidentFace (face)
 - Next (half-edge in cycle of the incident face)
 - Prev (half-edge in cycle of the incident face)

How do we know whether a cycle is an *outer* boundary or the *inner* boundary of a face?

How do we know whether the incident face for the half-edge \longrightarrow is same as the incident face of the half-edge \longrightarrow ? Both are f_2

For each cycle, note the leftmost and rightmost x-values. Move a vertical sweep-line from $L \rightarrow R$; Use orientation test to decide whether an inner vertex lies within the cycle; if so merge the label of the face defined by the inner boundary; finish processing this face when the rightmost vertex of this cycle is crossed

Overlay Face Updating

A face object stores:

- OuterComponent (half-edge of outer cycle)
- InnerComponents (half-edges for the inner cycles)

- Determine all cycles of half-edges, and whether they are inner or outer boundaries of the incident face
- Make a face object for each outer boundary, plus one for the unbounded face, and set the OuterComponent variable of each face. Set the IncidentFace variable for every half-edge in an outer boundary cycle

Overlay Face Updating

outer component of face f

Determine the leftmost vertex of each inner boundary cycle; Determine the edge horizontally left of it, take the downward half-edge; the **InnerComponents** of the corresponding face is set; Set **IncidentFace** for half-edges accordingly;

Analysis

n: sum of the complexities of input DCELs

Every event takes $O(\log n)$ or $O(m + \log n)$ time to handle, where m is the sum of the degrees of any vertex from S_1 and/or S_2 involved

The sum of the degrees of all vertices is exactly twice the number of edges

Theorem: Given two planar subdivisions S_1 and S_2 , their overlay can be computed in $O(n \log n + k \log n)$ time, where k is the number of vertices of the overlay

Boolean Operations on Polygons

The same overlay algorithm can be used for polygon operations;

Boolean operations on two polygons with a total of n vertices take $O(n\log n + k\log n)$ time, where k is the number of intersection points

intersection
union
symmetric difference
difference
or

Problem of the Day

Problem: Given a set *P* of *n* points on the 2D plane, find the minimum-area rectangle *R* that encloses *P*

Claim: R must touch at least one of the edges of the convex hull of P

CS60064 Spring 2022 Computational Geometry

Instructors

Bhargab B. Bhattacharya (BBB)
Partha Bhowmick (PB)
Lecture #16 & Lecture #17
11 February 2022

Indian Institute of Technology Kharagpur Computer Science and Engineering

Problem of the Day

Problem: Given nine random points on the plane in general positions, show that there always exists a convex pentagon!

1933: Budapest, Hungary

Esther Klein gave a puzzle to George Szekeres and Paul Erdős

$$f(3) = 3;$$
 $f(4) = 5;$ $f(5) = 9;$

2006: Szekeres and Peters: f(6) = 17

The value of f(N) is still unknown for all N > 6

1935 Erdős-Szekeres: $f(n) \le 4^{n - o(n)}$

1960 Erdős-Szekeres Conjecture: $f(n) \ge 2^{(n-2)} + 1$

2016: Andrew Suk: $f(n) = 2^{n + 6n^{(2/3)} \log n}$

f(n): the smallest number of points, an arrangement of which always contains a convex n-gon

Erdős-Szekeres Problem of Convex Polygons

Agenda

Convex Hulls: Management of Corners

At any street corner the feeling of absurdity can strike any man in the face.

-- Albert Camus, The Myth of Sisyphus (1942)

Convex hull is like sorting to computational geometry, a first step to apply to unstructured data.

The convex hull C(S) of a set of points S is the smallest convex polygon containing S.

• A set $C \subseteq \mathbb{R}^2$ is *convex* if for every two points $p,q \in C$, the line segment \overline{pq} is fully contained in C

Convex Layering: Onion Peeling

Data depth statistics

Concentric hulls

data-depth(q) = 5

Convex hull as intersection of convex supersets

• The convex hull CH(P) of a point set $P \subseteq \mathbb{R}^2$ is the smallest convex set $C \supseteq P$. In other words $CH(P) = \bigcap_{C \supseteq P} C$

C convex

Convex hull as union of convex subsets

Let S be a set of n points on the plane

convex combinations

Convex hull as union of convex subsets

Let S be a set of n points on the plane

convex hull =
union of all
convex combinations

Convex Hull in Biomedical Applications

Patients are asked to inhale gaseous nano-bots \Rightarrow these fluorescent sensors provide their 3D coordinates via imaging \Rightarrow compute 3D convex hull \Rightarrow volume of hull \propto lung size!

Moving a Sofa Through a Corridor

Sufficiency: If the convex hull of the sofa avoids collision with obstacles, so does it \Rightarrow robot movement avoiding obstacles

Let S be a set of n points on the plane

A point p is an extreme point if \exists a line L(p) through p such that all the remaining points strictly lie on one side of L(p);

An extreme line passes through two points such that the remaining points lie on one side

A point q is an interior point if any line through q splits the point set

A point *b* is a boundary point if it is not an extreme or an interior point

The vertices of Convex_Hull(*S*) comprises only the extreme points of *S*; its edges coincide with the extreme lines only

Let S be a set of n points on the plane

Let S be a set of n points on the plane

Let S be a set of n points on the plane

convex-hull: polygon whose vertices are extreme points

Let S be a set of n points on the plane

Convex Hull: Mechanical Analogy

Hammer nails on the points perpendicular to plane; Stretch elastic rubber band to surround them tightly

- Shortest (perimeter) fence surrounding the points
- Smallest (area) convex polygon enclosing the points

Properties of Convex Hull

- 1. Convex combination of points p, q is any point that can be expressed as $(1 \alpha) p + \alpha q$, where $0 \le \alpha \le 1$
- 2. CH(S) is union of all convex combinations of S.
- 3. S convex iff for all $x, y \in S$, $\overline{xy} \in S$.
- 4. CH(S) is intersection of all convex sets containing S.
- 5. CH(S) is intersection of all halfspaces containing S.
- 6. CH(S) is smallest convex set containing S.
- 7. In R^2 , CH(S) is smallest area (perimeter) convex polygon containing S.
- 8. In R^2 , CH(S) is union of all triangles formed by triples of S.

Convex Hull: Easy Try

Orientation Test:
$$D = \begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix}$$

Observation 1:

Edges of convex hull of P connect pairs of points in P

Observation 2:

- ► AB is an edge of the convex hull iff Orient(A, B, C) have the same sign for all other points C
 - This gives us a simple algorithm
- ► For each A and B: if Orient(A, B, C) > 0 for all $C \neq A, B$:
 - ightharpoonup Record the edge A o B
- ► Walk along the recorded edges to recover the convex hull Complexity: $O(n^3)$

Convex Hull: Easy Try

- ▶ AB is an edge of the convex hull iff Orient(A, B, C) have the same sign for all other points C
 - This gives us a simple algorithm

Retain only those edges that pass the unilateral Orientation Test

$$|P| = n \Rightarrow O(n^2)$$
 pairs $\Rightarrow O(n^3)$ time

Improved Technique: Quick Hull Algorithm

Find four extremal points (leftmost, rightmost, topmost, bottom-most) to define Q

Initialization

Recursive Elimination

- 1. Form initial quadrilateral *Q*, with left, right, top, bottom; they will be hull vertices. discard points inside *Q*
- 2. Recursively, a convex polygon, with some points "outside" each edge
- 3. For an edge *ab*, find the farthest outside point *c*; c will be a hull vertex; discard points inside triangle *abc*
- 4. Split remaining points into "outside" points for ac and bc
- 5. Edge ab on CH when no point outside

Analysis: Quick Hull Algorithm

Initialization

Recursive Elimination

- 1. Initial quadrilateral phase takes O(n) time
- 2. T(n): time to solve the problem for an edge with n points outside
- 3. Let n_1 , n_2 be sizes of subproblems. Then,

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ n + T(n_1) + T(n_2) & \text{where } n_1 + n_2 \le n \end{cases}$$

4. Analogous to QuickSort; Likewise, this has expected running time complexity $O(n \log n)$, but worst-case time $O(n^2)$

Gift Wrapping: Jarvis March

Main Idea

- Find a point p₁ on the convex hull (e.g. the lowest point)
- Rotate counter-clockwise a line through p₁ until it touches one of the other points (start from a horizontal orientation)
- Repeat until you reach p₁ again
- Analogous to selection sort

Gift Wrapping: Jarvis March

Implementation

- Compute angle between current line and all remaining points;
- Pick the vertex with smallest angle
- Repeat until you return to the initial point

Space: O(n)

Gift Wrapping: Jarvis March

Implementation

- Compute angle between current line and all remaining points;
- Pick the vertex with smallest angle
- Repeat until you return to the initial point

Some pre-processing idea that is useful for practical implementation

Faster Algorithm: Graham Scan

Ron Graham

Based on the basic idea of "orientation":

When we travel along the boundary of convex polygon in CCW (CW), we always take left (right) turn!

Faster Algorithm: Graham Scan

- We know that the leftmost given point has to be in the convex hull
- Fix the origin at the leftmost point (assume unique)
- All other points have positive *x* coordinates
- Sort the points in increasing order of y/x, i.,e., angular sorting
- Incrementally construct the convex hull using a stack and Orientation test

Complexity: $O(n \log n)$

Points are numbered in increasing order of y/x (angular sorting)

start from the origin and add first two points (0, 1) on the running hull; this edge will always be on the hull

Adding point 3 causes a consecutive triple 1-2-3, with a right-turn at the concave corner 2; right-turns not allowed in CCW traversal! this can be checked by Orientation Test; corner 2 cannot be on the hull; remove 2, add direct edge (1, 3)

... add direct edge between (1, 3)

Adding point 4 to the chain causes a right-turn, remove 3

Remove 3 and add direct edge (1, 4)

Continue adding points as long as we see left-turns, i.e., convex corners ...

Right-turn again, concave corner ..remove 6, add (5, 7)

.. after adding (5, 7), bad corner still remains at 5; remove 5, add edge (4, 7)

... remove 5, add edge (4, 7)

Continue adding edges ... all convex .. Done!

Main Idea: Graham Scan

We will construct a convex chain of the given points

- For each i, do the following:
- Append point i to the current chain
- If the new point causes a concave corner, remove it from the chain
- Repeat until the new chain becomes convex

Algorithm: Graham Scan

- Set the leftmost point as the origin, and angularly sort the rest of the points in increasing order (of y/x)
- Initialize stack S: push p_i in stack, for i = 0, 1;
- For i = 2, ..., n-1,
- Let A be the second topmost element of S, B be the topmost element of S, and C be the i th point
- If Orient(A,B,C) < 0, pop S and go back
- Push C to S
- Return S; Points in S form the convex hull

Complexity: $O(n \log n)$ for sorting, O(n) for the rest; Each point is pushed onto the stack once, and popped out of it at most once! Space: O(n)

Sort-Hull Algorithm: Same time complexity

Sort the vertices w.r.t. x-coordinates and use a vertical sweep-line; construct convex chains for the upper hull and lower hull in two passes

- For each i, do the following:
- Append point i to the current chain
- If the new point causes a concave corner, remove it from the chain
- Repeat until the new chain becomes convex
- Use stack as before for implementation; time complexity: $O(n \log n)$

Divide and Conquer

x-sort all points \Rightarrow $O(n \log n)$

Recurrence for time complexity:

$$T(n) = 1$$
 if $n \le 3$

=
$$c.n + 2T(n/2)$$
, otherwise

$$\Rightarrow T(n) = O(n \log n)$$

Assuming computation of upper and lower tangents and unification of the two can be done in O(n) time at every step

Main idea:

- Divide a set of points into two subsets by a vertical line at the median *x*-coordinate of the points;
- Compute the convex hull for each subset recursively;
- Merge the two convex hulls into one convex polygon;
 - Find two external tangent lines to merge them
- Analogous to merge sort

Divide and Conquer

A step required in the divide-and-conquer algorithm:

Given a polygon P and a line L joining a point q and a vertex v of P, determine whether L is a tangent to P at v

 \Rightarrow O(1) by Orientation Test

Note:

Two tangents must be distinct for non-trivial cases

The two tangents can also be discriminated using Orientation Test

Merging

- Find upper and lower tangent (outer tangents)
- $ightharpoonup CH(A \cup B)$ can be computed from CH(A) and CH(B) in O(n) time

Finding the outer tangents

```
Finding the lower tangent:
a = \text{rightmost point of A}
b = leftmost point of B
while L=ab not lower tangent to both
      convex hulls of A and B do{
     while L not lower tangent to
     convex hull of A do{
       a = a - 1
     while L not lower tangent to
      convex hull of B do
       b = b + 1
    check with orientation
```


check with orientation test O(1)

Tangent finding and merging: O(n)

Divide and Conquer

x-sort all points \Rightarrow $O(n \log n)$

Recurrence for time complexity:

$$T(n) = 1$$
 if $n \le 3$

=
$$c.n + 2T(n/2)$$
, otherwise

$$\Rightarrow T(n) = O(n \log n)$$

Note that the computation of upper and lower tangents and unification of the two can be done in O(n) time at every step

Main idea:

- Divide a set of points into two subsets by a vertical line at the median *x*-coordinate of the points;
- Compute the convex hull for each subset recursively;
- Merge the two convex hulls into one convex polygon;
 - Find two external tangent lines to merge them
- Analogous to merge sort

Incremental Convex Hull (also online algorithm)

x-sort *n* points and move a vertical sweep-line halting at points $\Rightarrow O(n \log n)$

We have CH on k-1 points and now processing the k-th point (e.g. p_6); initially draw $\Delta 123$

Draw tangents on CH(k-1) from point k; delete all interior points (e.g. 4) that lie in the pocket

Update the convex hull

Analysis: Incremental Convex Hull

x-sort *n* vertices and move a vertical sweep-line halting at points $\Rightarrow O(n \log n)$

We have CH on k-1 points and now processing the k-th vertex (e.g. p_k);

Draw tangents on CH(k-1) from point p_k ; delete all interior points that lie in the pocket

Update the convex hull

Analysis:

Draw a line L passing through p_k and p_{k-1} ; If L is a tangent, record it and find the other tangent by following either $pred(p_{k-1})$ or $succ(p_{k-1})$; otherwise traverse along the direction of both $pred(p_{k-1})$ or $succ(p_{k-1})$ until you find the two tangents;

While performing tests for tangency (O(1) per vertex) and delete the points which do not satisfy tests;

Total number of checks for tangency and deletions from pockets over all iterations is at most (n - 3); Overall time complexity $\Rightarrow O(n \log n) + O(n) \Rightarrow O(n \log n)$

Lower bound on convex hull time complexity

Algorithm CH_Sort(*S*):

/* Sorts a set of numbers using a convex hull algorithm

Converts numbers to points, runs CH, converts back to sorted sequence */

Input: Set of numbers $S \subseteq \mathbb{R}$

Output: A list *L* of numbers in *S* sorted in increasing order

$$P = \emptyset$$

for each $s \in S$ insert (s, s^2) into P

$$L' = CH(P) // compute convex hull$$

Find point $p' \in P$ with minimum xcoordinate

for each $p=(p_x, p_y) \in L$, starting with p, add p_x into L

return L

Goal: sorting of numbers

Map a number $s \to (s, s^2)$ in 2D

Construct the convex hull

Traverse $L \rightarrow R$ along the lower chain \Rightarrow sorted sequence

Thus, sorting \Rightarrow CH; since all other operations need linear time, any convex hull algorithm has to take $\Omega(n \log n)$ time in the worst case; More refined bound: $\Omega(n \log h)$, where h: #hull vertices

Convex Hull: Summary So Far

```
• Brute force algorithm: O(n^3)
```

- Quick-Hull: $O(n^2)$
- Jarvis' march (gift wrapping): O(nh)
- Incremental insertion: $O(n \log n)$
- Divide-and-conquer: $O(n \log n)$
- Graham's scan: $O(n \log n)$
- Lower bound: $\Omega(n \log n)$

Can you improve it further (output-sensitive), e.g. $O(n \log h)$, where h: #hull vertices ?

Homework Set - 03

Homework Set - 03 (Total Marks = 20)

- 1. Let S be a set of n disjoint line segments in the plane, and let p be a point not on any of the line segments of S. We wish to determine all line segments of S that p can see, that is, all line segments of S that contain some point q so that the open segment pq does not intersect any line segment of S. Give an $O(n\log n)$ time algorithm for solving this problem. See the example shown on the right. [5]
- 2. Let S be a subdivision of complexity n, represented using DCEL data structure, and let P be a set of m query points. Give an $O((n + m) \log(n + m))$ time algorithm that computes for every point in P in which face of S it is contained. [5]

- 3. Write a formal proof for the following claim: Any polygon with h holes and a total of n vertices (including those defining the polygon and holes), can always be guarded by $\lfloor (n + 2h)/3 \rfloor$ vertex guards. Note that a hole may be surrounded by other holes, and thus it may not be always visible from the boundary of the polygon. [5]
- 4. Consider an implementation of Hertel-Melhorn (HM) Algorithm for convex-partitioning of a simple polygon P with n vertices. Assume that a triangulation of P is given. Suggest a data structure and the required procedure so that HM-Algorithm can be implemented in O(n)-time. [5]

Submit solutions via Moodle. Due: 24 February 2022, 23:55; Credit: 10%

Announcement of Online Test - 01

Friday, 25 February, 2022; 11:05 am - 12:50 pm

Coverage: Polygons, point-inclusion queries, orientation test, robustness issues, polygonization, diagonals, triangulation, convex partition, art-gallery problems, DCEL, intersections, map overlay, convex hull, related algorithms, data structures, and complexities (material covered until 18 February 2022);

Questions will be made available through Moodle and answers should also be submitted via Moodle. The submission server will open at 10:55 am and close at 1:05 pm, 25 February 2021.

Credit: 25%