

Certification All Examinations

Family Name: Wang First Name: Haiqing Student-ID: 340863

Degree: Master

Field of Study: Software Systems Engineering

Central Examination Office

Date: 11/21/2016

Born On: 05/23/1990 in: Chongqing

Courses	MA	AN	Ex	Sub	Ac	Cr	hpw	Sen
Seminars, depth area colloquium, lab courses and	2,00		MK	Р	N	18,0	8,0	2016
non-technical courses								
Lab Course	1,30		VL	Р	Ν	7,0	4,0	2014
Current Topics in Computer Vision and Machine	5,00		VL	Р	Ν		2,0	2014
Learning								
Topics in High-Performance and Scientific Computing	2,00		VL	Р	Ν	4,0	2,0	2014
Medical Image Processing	5,00		VL	Р	Ν		2,0	2014
Principles of Programming Languages	5,00		VL	Р	Ν		2,0	2015
Complexity Theory	2,30		VL	Р	Ν	4,0	2,0	2015
Depth Area Colloquium Applied Computer Science	3,30		VL	Р	Ν	3,0	0,0	2016
Theoretical Foundations of Software Systems	2,50		MK	Р	N	12,0	10,0	2015
Engineering								
Foundations of the UML		RT	FP	Р	Ν		5,0	2014
Foundations of the UML	3,00		FP	Р	Ν	6,0	5,0	2014
Functional Programming		AT	FP	Р	Ν		5,0	2014
Functional Programming	5,00		FP	Р	Ν		5,0	2014
Logic Programming	2,00		FP	Р	Ν	6,0	5,0	2015
Data and Informationmanagement	3,30		MK	Р	N	6,0	5,0	2015
Introduction to Bioinformatics	5,00	NE	FP	Р	Ν	•	3,0	2013
Introduction to Bioinformatics	•	RT	FP	Р	Ν		3,0	2014
Content-based Similarity Search	5,00		FP	Р	Ν		5,0	2013
Content-based Similarity Search	-,	RT	FP	P	N		5,0	2014
Content-based Similarity Search		RT	FP	Р	N		5,0	2014
Data Mining Algorithms II	3,30		FP	Р	N	6,0	5,0	2013
Data Mining Algorithms II	0,00	AT	FP	Р	N	0,0	5,0	2014
Data Mining Algorithms II	5,00	NE	FP	Р	N		5,0	2014
Data Mining Algorithms II	0,00	RT	FP	Р	N		5,0	2015
Applied Computer Science	2,90	131	MK	Р	N	34,0	24, 0	2013
Pattern Recognition and Neural Networks	2,30		FP	P	N	8,0	6,0	2014
Automatic Speech Recognition	2,30	RT	FP	P	N	0,0		2014
Automatic Speech Recognition	3,30	KI	FP	P		0.0	6,0	2014
•					N	8,0	6,0	
Machine Learning	5,00		FP	Р	N	0.0	4,0	2013
Machine Learning	2,70	A T	FP	Р	N	6,0	4,0	2013
Computer Vision	= 00	AT	FP	Р	N		4,0	2013
Computer Vision	5,00		FP	P -	N		4,0	2013
Computer Vision		RT	FP	P -	N		4,0	2014
Computer Vision	3,70		FP	Р	N	6,0	4,0	2014
Languages for Scientific Computing I		RT	FP	Р	N		4,0	2014
Languages for Scientific Computing I	5,00	NE	FP	Р	N		4,0	2014
Computer Vision 2	5,00	NE	FP	Р	N		4,0	2014
Computer Vision 2	3,00		FP	Р	Ν	6,0	4,0	2014
Practical Software Engineering	2,60		MK	Р	N	16,0	11,0	2015
Software - Projectmanagement		NZ	FP	Р	Ν		2,0	2014
Software - Projectmanagement		RT	FP	Р	Ν		2,0	2014
Software - Projectmanagement	3,70		FP	Р	Ν	4,0	2,0	2015
Object Oriented Software Construction	5,00		FP	Р	Ν		5,0	2014
Object Oriented Software Construction	2,70		FP	Р	Ν	6,0	5,0	2014
Implementation of Databases		AT	FP	Р	Ν		4,0	2013
Implementation of Databases	2,00		FP	Р	Ν	6,0	4,0	2013

Computing Distributed Representations for	1,70	MS	DI	N	30,0	0,0	20161
Polysemous Words							
Current Total Credits and Preliminary Average	2,60	MK	NO	N	86,0	58,0	20161
Mark (without Weighting and Final Thesis)							

Ma = Marks: 1,0-1,5 = very good (A) / 1,6-2,5 = good (B) / 2,6-3,5 = satisfactory (C) / 3,6-4,0 = sufficient (D) / 4,1-5,0 = failed (E) / ++ = passed (no mark)

AN = Annotation: ++ = with success / AT = cancelled because of sickness / NE = absent = failed / NMP = oral part of examination still open / NZ = not licensed / RU/RT = cancelled / Z2 = interdisciplinary examination / mAb = passed with excellence / pa = examination annulled / PMG = registration cancelled / GLL = deleted exam / PRA = exam aborted / NG = deleted grade

EX = type of examination: BC = Bachelor degree / FP = Major examination / HA = State teaching examination / HD = Diplom degree / HM = Magister degree / HS = State examination / MK = Module / MS = Master degree / MZ = Magister interim examination / TL = part of examination / TN = confirmation of attendance / VA = interim teaching examination / VD = interim diplom examination / VL = assessment / VS = interim state examination

Sub = subject: DI = final thesis / GN = overall mark / P = compulsory subject / PW = compulsory optional subject / W1-W4, WA, WM = optional subject / ZU = additional subject (not included in overall mark)

Ac = accepted subject from other studies or data transfer from older version of the examination regulations: (J); accepted subject from professional qualification (Q); accepted subject from temporary studies in foreign countries (A); regular exam (N)

Cr = Credits/ECTS-points
hpw = hours per week

Sem = Semester: __1 = Summersemester / __2 = Wintersemester

This document has been electronically generated and is valid without signature.