Solutions to the book: Fulton, Algebraic Curves

Meng-Gen Tsai plover@gmail.com

March 11, 2021

Contents

Chapter 1: Affine Algebraic Sets 4
1.1. Algebraic Preliminaries
Problem 1.1.*
Problem 1.5.*
Problem 1.6.*
1.2. Affine Space and Algebraic Sets 6
Problem 1.8.*
Problem 1.9
Problem 1.11
Problem 1.15.*
1.3. The Ideal of a Set of Points
Problem 1.18.*
Problem PLACEHOLDER
1.4. The Hilbert Basis Theorem
1.5. Irreducible Components of an Algebraic Set
1.6. Algebraic Subsets of the Plane
1.7. Hilbert's Nullstellensatz
Problem 1.41.*
Problem 1.42
Problem 1.43.* (WIP)
1.9. Integral Elements
1.10. Field Extensions
Chapter 2: Affine Varieties 12
2.1. Coordinate Rings
Problem 2.1.*
Problem PLACEHOLDER
2.2. Polynomial Maps

2.3. Coordinate Changes							13
2.4. Rational Functions and Local Rings							13
2.5. Discrete Valuation Rings							13
2.6. Forms							13
2.7. Direct Products of Rings							13
2.8. Operations with Ideals							13
Problem 2.39.*	•	•		٠	·	•	13
2.9. Ideals with a Finite Number of Zeros	•	•	•	•	•	•	15
2.10. Quotient Modules and Exact Sequences							15
Problem 2.51							15
2.11. Free Modules							16
Chapter 3: Local Properties of Plane Curves							17
3.1. Multiple Points and Tangent Lines							17
Problem PLACEHOLDER							17
3.2. Multiplicities and Local Rings							17
3.3. Intersection Numbers							17
Chapter 4: Projective Varieties							18
4.1. Projective Space							18
Problem PLACEHOLDER							18
4.2. Projective Algebraic Sets							18
4.3. Affine and Projective Varieties							18
4.4. Multiprojective Space							18
Chapter 5: Projective Plane Curves							19
5.1. Definitions							19
Problem PLACEHOLDER							19
5.2. Linear Systems of Curves							19
5.3. Bézout's Theorem	•	•		•	•	•	19
5.4. Multiple Points							19
5.5. Max Noether's Fundamental Theorem							19
5.6. Applications of Noether's Theorem							19
5.0. Applications of Noether's Theorem	•	•		٠	•	•	19
Chapter 6: Varieties, Morphisms, and Rational Maps							20
6.1. The Zariski Topology							20
6.2. Varieties							20
6.3. Morphisms of Varieties							20
6.4. Products and Graphs							20
6.5. Algebraic Function Fields and Dimension of Varieties							20
6.6. Rational Maps	٠	•			٠		20
Chapter 7: Resolution of Singularities							21
7.1. Rational Maps of Curves							21
Problem PLACEHOLDER							21
7.2. Blowing up a Point in A^2							21

7.3. Blowing up a Point in \mathbf{P}^2	. 21
7.4. Quadratic Transformations	. 21
7.5. Nonsingular Models of Curves	. 21
Chapter 8: Riemann-Roch Theorem	22
8.1. Divisors	. 22
Problem PLACEHOLDER	. 22
8.1. The Vector Spaces $L(D)$. 22
8.1. Riemann's Theorem	. 22
8.1. Derivations and Differentials	. 22
8.1. Canonical Divisors	. 22
8.6. Riemann-Roch Theorem	. 22

Chapter 1: Affine Algebraic Sets

1.1. Algebraic Preliminaries

Problem 1.1.*

Let R be a domain.

- (a) If f, g are forms of degree r, s respectively in $R[x_1, \ldots, x_n]$, show that fg is a form of degree r + s.
- (b) Show that any factor of a form in $R[x_1, ..., x_n]$ is also a form.

Proof of (a).

(1) Write

$$f = \sum_{(i)} a_{(i)} x^{(i)},$$
$$g = \sum_{(j)} b_{(j)} x^{(j)},$$

where $\sum_{(i)}$ is the summation over $(i) = (i_1, \dots, i_n)$ with $i_1 + \dots + i_n = r$ and $\sum_{(j)}$ is the summation over $(j) = (j_1, \dots, j_n)$ with $j_1 + \dots + j_n = s$.

(2) Hence,

$$fg = \sum_{(i)} \sum_{(j)} a_{(i)} b_{(j)} x^{(i)} x^{(j)}$$
$$= \sum_{(i),(j)} a_{(i)} b_{(j)} x^{(k)}$$

where $(k) = (i_1 + j_1, \dots, i_n + j_n)$ with $(i_1 + j_1) + \dots + (i_n + j_n) = r + s$. Each $x^{(k)}$ is the form of degree r + s and $a_{(i)}b_{(j)} \in R$. Hence fg is a form of degree r + s.

Proof of (b).

- (1) Given any form $f \in R[x_1, ..., x_n]$, and write f = gh. It suffices to show that g is a form as well. (So does h.)
- (2) Write

$$g = g_0 + \dots + g_r, \qquad h = h_0 + \dots + h_s$$

where $g_r \neq 0$ and $h_s \neq 0$. So

$$f = gh = g_0h_0 + \dots + g_rh_s.$$

Since R is a domain, $R[x_1, \ldots, x_n]$ is a domain and thus $g_r h_s \neq 0$. The maximality of r and s implies that $\deg f = r + s$. Therefore, by the maximality of r + s, $f = g_r h_s$, or $g = g_r$, or g is a form.

Problem 1.5.*

Let k be any field. Show that there are an infinitely number of irreducible monic polynomials in k[x]. (Hint: Suppose f_1, \ldots, f_n were all of them, and factor $f_1 \cdots f_n + 1$ into irreducible factors.)

Proof (Due to Euclid).

(1) If f_1, \ldots, f_n were all irreducible monic polynomials, then we consider

$$g = f_1 \cdots f_n + 1 \in k[x].$$

So there is an irreducible monic polynomial $f=f_i$ dividing g for some i since

$$\deg g = \deg f_1 + \dots + \deg f_n \ge 1.$$

(2) However, f would divide the difference

$$g - f_1 \cdots f_{i-1} f_i f_{i+1} \cdots f_n = 1,$$

contrary to $\deg f_i \geq 1$.

Problem 1.6.*

Show that any algebraically closed field is infinite. (Hint: The irreducible monic polynomials are x-a, $a \in k$.)

Proof (Due to Euclid).

(1) Let k be an algebraically closed field. If a_1, \ldots, a_n were all elements in k, then we consider a monic polynomials

$$f(x) = (x - a_1) \cdots (x - a_n) + 1 \in k[x].$$

(2) Since k is algebraically closed, there is an element $a \in k$ such that f(a) = 0. By assumption, $a = a_i$ for some $1 \le i \le n$, and thus $f(a) = f(a_i) = 1$, contrary to the fact that a field is a commutative ring where $0 \ne 1$ and all nonzero elements are invertible.

1.2. Affine Space and Algebraic Sets

Problem 1.8.*

Show that the algebraic subsets of $\mathbf{A}^1(k)$ are just the finite subsets, together with $\mathbf{A}^1(k)$ itself.

Proof.

- (1) Show that k[x] is a PID if k is a field.
 - (a) Let I be an ideal of k[x].
 - (b) If $I = \{0\}$ then I = (0) and I is principal.
 - (c) If $I \neq \{0\}$, then take f to be a polynomial of minimal degree in I. It suffices to show that I = (f). Clearly, $(f) \subseteq I$ since I is an ideal. Conversely, for any $g \in I$,

$$q(x) = f(x)h(x) + r(x)$$

for some $h, r \in k[x]$ with r = 0 or $\deg r < \deg f$. Now as

$$r = g - fh \in I$$
,

r=0 (otherwise contrary to the minimality of f), we have $g=fh\in (f)$ for all $g\in I.$

- (2) Let Y be an algebraic subset of $\mathbf{A}^1(k)$, say Y = V(I) for some ideal I of k[x]. Since k[x] is a PID, I = (f) for some $f \in k[x]$.
 - (a) If f = 0, then I = (0) and $Y = V(0) = \mathbf{A}^{1}(k)$.
 - (b) If $f \neq 0$, then f(x) = 0 has finitely many roots in k, say $a_1, \ldots, a_m \in k$. Hence,

$$Y = V(I) = V(f) = \{f(a) = 0 : a \in k\} = \{a_1, \dots, a_m\}$$

is a finite subsets of $A^1(k)$.

By (a)(b), the result is established.

Notes.

(1) By the Hilbert basis theorem, k[x] is Noetherian as k is Noetherian. Hence, for any algebraic subset Y = V(I) of $\mathbf{A}^1(k)$, we can write $I = (f_1, \dots, f_m)$. Note that

$$Y = V(I) = V(f_1) \cap \cdots \cap V(f_m).$$

Now apply the same argument to get the same conclusion.

(2) Suppose $k = \overline{k}$. $\mathbf{A}^1(k)$ is irreducible, because its only proper closed subsets are finite, yet it is infinite (because k is algebraically closed, hence infinite).

Problem 1.9.

If k is a finite field, show that every subset of $\mathbf{A}^{n}(k)$ is algebraic.

Proof.

- (1) Every subset of $\mathbf{A}^n(k)$ is finite since $|\mathbf{A}^n(k)| = |k|^n$ is finite.
- (2) Note that $V(x_1 a_1, \dots, x_n a_n) = \{(a_1, \dots, a_n)\} \subseteq \mathbf{A}^n(k)$ (property (5) in this section) and any finite union of algebraic sets is algebraic (property (4) in this section). Thus, every subset of $\mathbf{A}^n(k)$ is algebraic (by (1)).

Problem 1.11.

Show that the following are algebraic sets:

- (a) $\{(t, t^2, t^3) \in \mathbf{A}^3(k) : t \in k\};$
- (b) $\{(\cos(t), \sin(t)) \in \mathbf{A}^2(\mathbb{R}) : t \in \mathbb{R}\};$
- (c) the set of points in $\mathbf{A}^2(\mathbb{R})$ whose polar coordinates (r, θ) satisfy the equation $r = \sin(\theta)$.

Proof of (a).

(1) The twisted cubic curve

$$Y = \{(t, t^2, t^3) \in \mathbf{A}^3(k) : t \in k\} = V(x^2 - y) \cap V(x^3 - z)$$

is algebraic. We say that Y is given by the parametric representation $x=t,\,y=t^2,\,z=t^3.$

- (2) The generators for the ideal I(Y) are $x^2 y$ and $x^3 z$.
- (3) Y is an affine variety of dimension 1.
- (4) The affine coordinate ring A(Y) is isomorphic to a polynomial ring in one variable over k.

Proof of (b). The circle

$$\{(\cos(t), \sin(t)) \in \mathbf{A}^2(\mathbb{R}) : t \in \mathbb{R}\} = V(x^2 - y^2 - 1)$$

is algebraic. \square

Proof of (c). The circle

$$\{(r,\theta): r = \sin(\theta)\} = V(x^2 + y^2 - y)$$

is algebraic again. \square

Problem 1.15.*

Let $V \subseteq \mathbf{A}^n(k)$, $W \subseteq \mathbf{A}^m(k)$ be algebraic sets. Show that

$$V \times W = \{(a_1, \dots, a_n, b_1, \dots, b_m) : (a_1, \dots, a_n) \in V, (b_1, \dots, b_m) \in W\}$$

is an algebraic set in $\mathbf{A}^{n+m}(k)$. It is called the **product** of V and W.

Proof.

(1) Write

$$V = V(S_V) = \{ a \in \mathbf{A}^n(k) : f(a) = 0 \,\forall f \in S_V \}$$

$$W = V(S_W) = \{ b \in \mathbf{A}^m(k) : g(b) = 0 \,\forall g \in S_W \},$$

where $S_V \subseteq k[x_1, \ldots, x_n]$ and $S_W \subseteq k[y_1, \ldots, y_m]$. It suffices to show that

$$V \times W = V(S),$$

where $S \subseteq k[x_1, \ldots, x_n, y_1, \ldots, y_m]$ is the union of S_V and S_W .

(2) Here we can identify S_V with the subset of $k[x_1, \ldots, x_n, y_1, \ldots, y_m]$ by noting that

$$k[x_1, \dots, x_n] \hookrightarrow (k[y_1, \dots, y_m])[x_1, \dots, x_n] = k[x_1, \dots, x_n, y_1, \dots, y_m].$$

Here we regard k as a subring of $k[y_1, \ldots, y_m]$. Similar treatment to S_W .

(3) By construction, $V \times W \subseteq V(S)$. Conversely, given any $(a,b) \in V(S)$, we have h(a,b) = 0 for all $h \in S = S_V \cup S_W$ (by (2)). By construction, f(a) = 0 for all $f \in S_V$ since f only involve x_1, \ldots, x_n . Hence, $a \in V$. Similarly, $b \in W$. Therefore, $(a,b) \in V \times W$.

1.3. The Ideal of a Set of Points

Problem 1.18.*

Let I be an ideal in a ring R. If $a^n \in I$, $b^m \in I$, show that $(a + b)^{n+m} \in I$. Show that rad(I) is an ideal, in fact a radical ideal. Show that any prime ideal is radical.

Proof.

(1) Show that $(a+b)^{n+m} \in I$ if $a^n \in I$, $b^m \in I$. By the binomial theorem,

$$(a+b)^{n+m} = \sum_{i=0}^{n+m} a^i b^{n+m-i}.$$

For each term a^ib^{n+m-i} , either $i \geq n$ holds or $n+m-i \geq m$ holds, and thus $a^ib^{n+m-i} \in I$ (since $a^n \in I$, $b^m \in I$ and I is an ideal). Hence, the result is established.

- (2) Show that rad(I) is an ideal.
 - (a) $0 \in \text{rad}(I)$ since $0 = 0^1 \in I$ for any ideal in R.
 - (b) $(a+b)^{n+m} \in I$ if $a^n \in I$, $b^m \in I$ by (1).
 - (c) $(-a)^{2n} = (a^n)^2 \in I$ if $a^n \in I$ (since I is an ideal).
 - (d) $(ra)^n = r^n a^n \in I$ if $a^n \in I$ and $r \in R$ (since I is an ideal and R is commutative).
- (3) Show that $\operatorname{rad}(\operatorname{rad}(I)) = \operatorname{rad}(I)$. It suffices to show $\operatorname{rad}(\operatorname{rad}(I)) \subseteq \operatorname{rad}(I)$. Given any $a \in \operatorname{rad}(\operatorname{rad}(I))$. By definition $a^n \in \operatorname{rad}(I)$ for some positive integer n. Again by definition $(a^n)^m = a^{nm} \in I$ for some positive integer m. As nm is a positive integer, $a \in \operatorname{rad}(I)$.
- (4) Show that every prime ideal \mathfrak{p} is radical. Given any $a \in \operatorname{rad}(\mathfrak{p})$, that is, $a^n \in \mathfrak{p}$ for some positive integer. Write $a^n = aa^{n-1}$ if n > 1. By the primality of \mathfrak{p} , $a \in \mathfrak{p}$ or $a^{n-1} \in \mathfrak{p}$. If $a \in \mathfrak{p}$, we are done. If $a^{n-1} \in \mathfrak{p}$, we continue this descending argument (or the mathematical induction) until the power of a is equal to 1. Hence \mathfrak{p} is radical.

Problem PLACEHOLDER

PLACEHOLDER

Proof.

- (1) PLACEHOLDER
- 1.4. The Hilbert Basis Theorem
- 1.5. Irreducible Components of an Algebraic Set
- 1.6. Algebraic Subsets of the Plane
- 1.7. Hilbert's Nullstellensatz
- 1.8. Modules; Finiteness Conditions

Problem 1.41.*

If S is module-finite over R, then S is ring-finite over R.

Proof.

- (1) $S = \sum Rs_i$ for some $s_1, \ldots, s_n \in S$ since S is module-finite over R.
- (2) Let I be the minimal subset of $\{s_1, \ldots, s_n\}$ which also spans S, say $\{t_1, \ldots, t_m\}$ with $m \leq n$. Clearly we can write

$$S = R[t_1, \dots, t_m],$$

that is, S is ring-finite over R.

(3) The converse is not true (Problem 1.42).

Problem 1.42.

Show that S = R[x] (the ring of polynomials in one variable) is ring-finite over R, but not module-finite.

Proof.

- (1) S = R[x] is ring-finite over R by definition (as $x \in S$).
- (2) (Reductio ad absurdum) If $S=\sum Rs_i$ for some $s_1,\ldots,s_n\in S$ were module-finite over R. Any element $s\in\sum Rs_i$ is of degree

$$\deg s \le \max_{1 \le i \le n} \deg s_i := m.$$

So that $x^{m+1} \in S = R[x]$ but not in $\sum Rs_i$, which is absurd.

Problem 1.43.* (WIP)

If L is ring-finite over K (K, L fields) then L is a finitely generated field extension of K.

Proof.

- (1) $L=K[v_1,\cdots,v_n]$ for some $v_i\in L$. To show $L=K[v_1,\cdots,v_n]=K(v_1,\cdots,v_n)$, it suffices to show that all v_i are algebraic over L.
- (2)

1.9. Integral Elements

1.10. Field Extensions

Chapter 2: Affine Varieties

2.1. Coordinate Rings

Problem 2.1.*

Show that the map which associates to each $f \in k[x_1, ..., x_n]$ a polynomial function in $\mathcal{F}(V, k)$ is a ring homomorphism whose kernel is I(V).

Proof.

(1) Define a map $\alpha: k[x_1, \ldots, x_n] \to \mathscr{F}(V, k)$. Every polynomial $f \in k[x_1, \ldots, x_n]$ defines a function from V to k by

$$\alpha(f)(a_1,\ldots,a_n)=f(a_1,\ldots,a_n)$$

for all $(a_1, \ldots, a_n) \in V$.

- (2) α is a ring homomorphism by construction in (1).
- (3) Show that $\ker(\alpha) = I(V)$. In fact, given any $f \in k[x_1, \dots, x_n]$, we have $\alpha(f) = 0$ (sending all $a \in V$ to $0 \in k$) if and only if f(a) = 0 for all $a \in V$ if and only if $f \in I(V)$.
- (4) Hence $k[x_1, \ldots, x_n]/I(V) = \Gamma(V) \hookrightarrow \mathscr{F}(V, k)$ is an injective homomorphism.

Problem PLACEHOLDER

PLACEHOLDER

Proof.

(1) PLACEHOLDER

2.2. Polynomial Maps

2.3. Coordinate Changes

2.4. Rational Functions and Local Rings

2.5. Discrete Valuation Rings

2.6. Forms

2.7. Direct Products of Rings

2.8. Operations with Ideals

Problem 2.39.*

Prove the following relations among ideals I_i , J in a ring R:

(a)
$$(I_1 + I_2)J = I_1J + I_2J$$
.

(b)
$$(I_1 \cdots I_N)^n = I_1^n \cdots I_N^n$$
.

Proof of (a).

- (1) Note that $(I_1 + I_2)J$ and $I_1J + I_2J$ are ideals.
- (2) Show that $(I_1 + I_2)J \subseteq I_1J + I_2J$. Given any

$$\alpha = (a_1 + a_2)b \in (I_1 + I_2)J$$

where $a_i \in I_i$ and $b \in J$. It suffices to show that $\alpha \in I_1J + I_2J$ (by (1)). In fact,

$$\alpha = (a_1 + a_2)b = a_1b + a_2b \in I_1J + I_2J.$$

(3) Show that $(I_1 + I_2)J \supseteq I_1J + I_2J$. Given any

$$\alpha = a_1 b_1 + a_2 b_2 \in I_1 J + I_2 J$$

where $a_i \in I_i$ and $b_i \in J$. It suffices to show that $\alpha \in (I_1 + I_2)J$ (by (1)). In fact,

$$\alpha = a_1 b_1 + a_2 b_2 = (a_1 + \underbrace{0}_{\in I_2}) b_1 + (\underbrace{0}_{\in I_1} + a_2) b_2 \in (I_1 + I_2) J$$

since $(I_1 + I_2)J$ is an ideal.

Proof of (b).

- (1) Note that $(I_1 \cdots I_N)^n$ and $I_1^n \cdots I_N^n$ are ideals.
- (2) Show that $(I_1 \cdots I_N)^n \subseteq I_1^n \cdots I_N^n$. Given any

$$\alpha = \alpha_1 \cdots \alpha_n$$

where $\alpha_i \in I_1 \cdots I_N$. It suffices to show that $\alpha \in I_1^n \cdots I_N^n$ (by (1)). For each $\alpha_i \in I_1 \cdots I_N$, write

$$\alpha_i = \sum_{j(i)} \alpha_{j(i),1} \cdots \alpha_{j(i),N}$$

where $\alpha_{j(i),k} \in I_k$ for $1 \leq k \leq N$. Hence

$$\alpha = \alpha_1 \cdots \alpha_n$$

$$= \left(\sum_{j(1)} \alpha_{j(1),1} \cdots \alpha_{j(1),N} \right) \cdots \left(\sum_{j(n)} \alpha_{j(n),1} \cdots \alpha_{j(n),N} \right)$$

$$= \sum_{j(1),\dots,j(n)} (\alpha_{j(1),1} \cdots \alpha_{j(1),N}) \cdots (\alpha_{j(n),1} \cdots \alpha_{j(n),N})$$

$$= \sum_{j(1),\dots,j(n)} (\alpha_{j(1),1} \cdots \alpha_{j(n),1}) \cdots (\alpha_{j(1),N} \cdots \alpha_{j(n),N})$$

$$\in I_1^n \cdots I_N^n.$$

(3) Show that $(I_1 \cdots I_N)^n \supseteq I_1^n \cdots I_N^n$. Given any

$$\alpha = \alpha_1 \cdots \alpha_N \in I_1^n \cdots I_N^n$$

where $\alpha_i \in I_i^n$ $(1 \le i \le N)$. It suffices to show that $\alpha \in (I_1 \cdots I_N)^n$ (by (1)). For each $\alpha_i \in I_i^n$, write

$$\alpha_i = \sum_{j(i)} \alpha_{j(i),1} \cdots \alpha_{j(i),n}$$

where $\alpha_{j(i),k} \in I_i$ for $1 \le k \le n$. Hence

$$\begin{split} &\alpha = \alpha_1 \cdots \alpha_N \\ &= \left(\sum_{j(1)} \alpha_{j(1),1} \cdots \alpha_{j(1),n} \right) \cdots \left(\sum_{j(N)} \alpha_{j(N),1} \cdots \alpha_{j(N),n} \right) \\ &= \sum_{j(1),\dots,j(N)} (\alpha_{j(1),1} \cdots \alpha_{j(1),n}) \cdots (\alpha_{j(N),1} \cdots \alpha_{j(N),n}) \\ &= \sum_{j(1),\dots,j(N)} (\underbrace{\alpha_{j(1),1} \cdots \alpha_{j(N),1}}_{\in I_1 \cdots I_N}) \cdots (\underbrace{\alpha_{j(1),n} \cdots \alpha_{j(N),n}}_{\in I_1 \cdots I_N}) \\ &\in (I_1 \cdots I_N)^n. \end{split}$$

2.9. Ideals with a Finite Number of Zeros

2.10. Quotient Modules and Exact Sequences

Problem 2.51.

Let

$$0 \longrightarrow V_1 \longrightarrow \cdots \longrightarrow V_n \longrightarrow 0$$

be an exact sequence of finite-dimensional vector spaces. Show that $\sum (-1)^i \dim(V_i) = 0$.

Proof (Proposition 7 in this section).

(1) For $i=0,\ldots,n$, by the rank-nullity theorem for a linear transformation $\varphi_i:V_i\to V_{i+1}$, we have

$$\dim V_i = \dim \operatorname{im}(\varphi_i) + \dim \ker(\varphi_i).$$

(Here $V_0 = V_{n+1} := 0$ by convention.)

- (2) By the exactness of the sequence, we have
 - (a) $\operatorname{im}(\varphi_i) = \ker(\varphi_{i+1})$ for $i = 0, \dots, n-1$. In particular, $\ker(\varphi_1) = \operatorname{im}(\varphi_0) = 0$.
 - (b) $\ker(\varphi_n) = V_n$.

Hence,

$$\sum_{i=1}^{n-1} (-1)^i \dim(V_i) = \sum_{i=1}^{n-1} (-1)^i \dim \operatorname{im}(\varphi_i) + \sum_{i=1}^{n-1} (-1)^i \dim \ker(\varphi_i)$$

$$= \sum_{i=1}^{n-1} (-1)^i \dim \ker(\varphi_{i+1}) + \sum_{i=1}^{n-1} (-1)^i \dim \ker(\varphi_i)$$

$$= (-1)^{n-1} \dim \ker(\varphi_n) + (-1)^1 \dim \ker(\varphi_1)$$

$$= (-1)^n \dim V_n,$$

or $\sum (-1)^i \dim(V_i) = 0$.

2.11. Free Modules

Chapter 3: Local Properties of Plane Curves

3.1. Multiple Points and Tangent Lines

Problem PLACEHOLDER

PLACEHOLDER

Proof.

(1) PLACEHOLDER

- 3.2. Multiplicities and Local Rings
- 3.3. Intersection Numbers

Chapter 4: Projective Varieties

4.1. Projective Space

Problem PLACEHOLDER

PLACEHOLDER

Proof.

(1) PLACEHOLDER

- 4.2. Projective Algebraic Sets
- 4.3. Affine and Projective Varieties
- 4.4. Multiprojective Space

Chapter 5: Projective Plane Curves

5.1. Definitions

Problem PLACEHOLDER

PLACEHOLDER

Proof.

(1) PLACEHOLDER

- 5.2. Linear Systems of Curves
- 5.3. Bézout's Theorem
- 5.4. Multiple Points
- 5.5. Max Noether's Fundamental Theorem
- 5.6. Applications of Noether's Theorem

Chapter 6: Varieties, Morphisms, and Rational Maps

- 6.1. The Zariski Topology
- 6.2. Varieties
- 6.3. Morphisms of Varieties
- 6.4. Products and Graphs
- 6.5. Algebraic Function Fields and Dimension of Varieties
- 6.6. Rational Maps

Chapter 7: Resolution of Singularities

7.1. Rational Maps of Curves

Problem PLACEHOLDER

PLACEHOLDER

Proof.

(1) PLACEHOLDER

- 7.2. Blowing up a Point in A^2
- 7.3. Blowing up a Point in P^2
- 7.4. Quadratic Transformations
- 7.5. Nonsingular Models of Curves

Chapter 8: Riemann-Roch Theorem

8.1. Divisors

Problem PLACEHOLDER

PLACEHOLDER

Proof.

(1) PLACEHOLDER

- 8.2. The Vector Spaces L(D)
- 8.3. Riemann's Theorem
- 8.4. Derivations and Differentials
- 8.5. Canonical Divisors
- 8.6. Riemann-Roch Theorem