

# 2SC7990 – What you unwittingly say: decryption and automatic analysis of nonverbal behaviors

**Instructors:** Catherine Soladie

Department: DOMINANTE - MATHÉMATIQUES, DATA SCIENCES, DOMINANTE -

INFORMATIQUE ET NUMÉRIQUE, DOMINANTE - VIVANT, SANTÉ,

**ENVIRONNEMENT** 

Language of instruction: ANGLAIS Campus: CAMPUS DE RENNES

Workload (HEE): 80

On-site hours (HPE): 48,00

#### Description

What you unwittingly say: decryption and automatic analysis of nonverbal behaviors.

Letters, words, sentences: the algorithms we have today are more and more effective in decrypting our grammar, and understanding what we can say. And yet this only covers a tiny part of our communication.

Joy, resignation, irony: only our body and the tone of our voice reveal our deep intentions, our real message, and the automated understanding of such human behaviors and emotions is a big challenge.

To take it up, every year, the audio, video and machine learning communities gather around international challenges of research on the automatic analysis of human behaviors: emotions, depression, mood, motion detection, ... (ex: http://sspnet.eu/avec2017/).

Through this project, you will be able to face one of these challenges. You will have a large dataset representing people in action and will have to automatically determine their behavior and emotions.

Each project team focuses on a particular study (eg the voice, the face, ...), and all teams will gather their work to compare your results to those of the competitors of the international challenge.

#### **Quarter number**

ST7

## Prerequisites (in terms of CS courses)

Statistics et machine learning. Signal processing

# Computer science:



- Algorithms
- Programming langages (basics)

#### **Syllabus**

## Background (5%)

- Introduction by the research team.
- Group organization.
- Provision of the challenge data.

#### State of the art (20%)

- Research and understand research papers on the subject.
- Reproduce a selected subset of state-of-the-art methods (they will serve as a basis for your work).

#### Pre-processing, understanding and visualization of data (40%)

- Depending on the chosen topic (voice, face, ...), extract the interesting features for your analysis
- Explore the relevant visual representation modes
- Use these representations to guide your analysis strategy

#### Statistical analysis and learning (20%)

- Choose and build your analysis and learning models
- Quantify your results and compare them to the state of the art

## Visibility points and final presentation (15%)

- 3 daily feedback will have to be carried out to present your progress as the project progresses (a different member of the team each time).
- Structure your presentations with the objectives, the state of the art, the architecture diagram, the results tables.
- At the end of the project, present as a team your results to our industrial and academic partners.
- Provide a scientific report

#### Class components (lecture, labs, etc.)

- Immersion in the FAST research team: supervision by researchers, PhD students and post-docs.
- Organization in teams of 2 to 5 students. If possible, coordination of the different teams for the production of a single overall final result.
- Presentation of the results to our partners.



## Grading

Individual daily feedback: 1/4 of the mark

Defense in front of the partners: 1/4 of the mark

Scientific results (system performance): 1/4 of the mark

Scientific report: 1/4 of the mark

#### Resources

#### Teaching team:

- Catherine SOLADIE
- Renaud SEGUIER
- Simon LEGLAIVE
- PhD students of AIMAC research team

Software tools and number of licenses needed:

• TensorFlow or equivalent (free)

# Learning outcomes covered on the course

At the end of this project, you will be able to:

- Specify or redefine the need (C4.1)
- Navigate among the research papers of a subject, read them and understand them (C2.4)
- Reproduce a selected subset of state-of-the-art methods in signal processing and / or machine learning (C3.2)
- Mix skills from signal processing, statistical analysis and machine learning to analyze data (C2.2)
- Explore visual representation modes that are relevant to your data (C6.3)
- Use these representations to guide your analysis strategy (C3.3)
- Choose and build your analysis and learning models (C1.2, C6.1)
- Quantify your results and compare them to the state of the art (C2.4, C3.3)
- Conduct a large-scale scientific project in a group (C8.1)
- Decrypt a set of non-verbal messages during human interactions (C7.4)
- Argue your scientific approach (C7.1)



# Description of the skills acquired at the end of the course

- C2 Jalon 2
  - o C2.4 **Données** : Exploiter un ensemble cohérent de données et réaliser un état de l'art exhaustif avec un esprit critique
- C6 Jalon 2
  - C6.3 Traiter des données : Mettre en œuvre des algorithmes traitant ou utilisant des données massives (intelligence artificielle, clustering)
- C4 Jalon 2
  - C4.1 Besoin client: Identifier avec le client les autres dimensions ne figurant pas dans la formulation initiale: techniques, économiques, humaines, etc.
- C7 Jalon 2
  - C7.1 Convaincre sur le fond : Adapter le fond et son argumentation en fonction d'interlocuteurs ou de contextes élargis, « avoir du répondant » pour défendre sa solution (maîtrise du sujet des interlocuteurs, valeurs, engagements, disponibilité, attention, etc.).
- C8 Jalon 2
  - C8.1 Travailler en équipe : Associer chaque membre de l'équipe en fonction de ses forces