

Protocolos de Encaminhamento

Processo de encaminhamento

Sumário

- Endereçamento IP
- Formas de entrega
- Estratégias de encaminhamento
- Algoritmos de selecção de rotas
- Sistemas autónomos

Endereçamento IP

Endereços e tipos

- Os endereços IP têm a dimensão de 32bit (4 bytes)
 - Potencial espaço de endereçamento para 2³² máquinas (4.294.967.296)
- Dois tipos base de endereços definidos
 - Unicast Destinatário único
 - Multicast (inclui Broadcast) Múltiplos destinatários

Endereços Multicast

- Indicados para aplicações que pretendem a difusão de mensagens
 - Difusão de conteúdos
 - Muito usada para fins multimédia
 - Atingir máquinas que não são conhecidas à partida
 - Processos de descoberta de vizinhos usados nos protocolos
 - Processo escalável de distribuição de informação para muitos receptores
 - A difusão de um canal de TV com qualidade "PAL" em unicast necessita na origem de cerca de 6Mbit/s por destinatário
 - Com o uso de multicast necessitará apenas dos mesmos 6Mbit/s mas uma única vez, independentemente do número de destinatários

Endereços *Unicast*

- Para troca de mensagens entre duas máquinas
- Recentemente foi introduzido o conceito de anycast proveniente do desenvolvimento do IPv6
 - Endereços pertencentes aos blocos de endereçamento unicast
 - Não podem servir para iniciar ligações
 - Usado em situações em que se pretende atingir a máquina mais próxima que presta o serviço
 - Actualmente em uso na Internet
 - DNS Root Servers (ex. f.root-servers.net)
 - Na IPLNet
 - NTP Actualização de relógios (ntp.net.ipl.pt)
 - DNS Servidores de resolução de endereços (forwarders)

Hierarquização a dois níveis

- Só os endereços unicast têm estas duas componentes
- Á semelhança de rede telefónica
 - A componente de maior peso identifica a rede onde a máquina está
 - Os encaminhadores do tráfego (routers) só precisam dela para tomar decisões (analogia: em qualquer país +351... é para Portugal)
 - A componente de menor peso identifica a máquina dentro da rede
 - Uma diferença de salientar em relação à rede telefónica
 - Não existe uma relação rígida entre os identificadores de rede e a sua localização geográfica
 - Para acomodar diferentes necessidades de dimensão de rede o espaço de endereçamento *unicast* foi subdividido em classes com diferentes dimensões da componente **rede** e **máquina**

Classes de endereços

		8	16	24	32
Classe A	0	Rede		Máquina	
Classe B	10	Rede		Mác	quina
Classe C	110	Rede			Máquina
Classe D	1110		N	1ulticast	
Classe E	1111		Ехр	erimental	

- Classe A unicast
 - 2⁷ (127) redes com 2²⁴ (16M) máquinas cada
- Classe B unicast
 - 2¹⁴ (16K) redes com 2¹⁶ (64K) máquinas cada
- Classe C unicast
 - 2²¹ (2M) redes com 2⁸ (256) máquinas cada
- Classe D multicast
 - 2²⁸ grupos (endereços de multicast
- Classe E experimental
 - 2²⁸ endereços sem comportamento definido

Notação e manipulação

- Os 32 bit do endereço são representados em decimal, bytea-byte, do maior para o menor peso, separados pelo caracter ponto (.)
 - Exemplo: 192.0.2.100 = 11000000 00000000 00000010 01100100
- As operações sobre endereços são normalmente operações lógicas realizadas bit-a-bit

Classes na notação

Classe	Início	Fim
Α	1.0.0.0	126.255.255.255
В	128.0.0.0	191.255.255.255
С	192.0.0.0	223.255.255.255
D	224.0.0.0	239.255.255.255
E	240.0.0.0	255.255.254

Endereços reservados

 Diversas porções do espaço de endereçamento estão reservados para fins específicos (revisão mais recente no

RFC3330)

Address Block	Present Use	Reference
0.0.0.0/8	"This" Network	[RFC1700, page 4]
10.0.0.0/8	Private-Use Networks	[RFC1918]
14.0.0.0/8	Public-Data Networks	[RFC1700, page 181]
24.0.0.0/8	Cable Television Networks	
39.0.0.0/8	Reserved but subject to allocation	[RFC1797]
127.0.0.0/8	Loopback	[RFC1700, page 5]
128.0.0.0/16	Reserved but subject to allocation	
169.254.0.0/16	Link Local	
172.16.0.0/12	Private-Use Networks	[RFC1918]
191.255.0.0/16	Reserved but subject to allocation	
192.0.0.0/24	Reserved but subject to allocation	
192.0.2.0/24	Test-Net	
192.88.99.0/24	6to4 Relay Anycast	[RFC3068]
192.168.0.0/16	Private-Use Networks	[RFC1918]
198.18.0.0/15	Network Interconnect Device Benchmark Testing	[RFC2544]
223.255.255.0/24	Reserved but subject to allocation	
224.0.0.0/4	Multicast	[RFC3171]
240.0.0.0/4	Reserved for Future Use	[RFC1700, page 4]

Endereçamento IP - Endereços especiais

Rede	Máquina	Uso	
<valor></valor>	tudo "0"	Endereço de rede	
<valor></valor>	tudo "1"	Endereço de broadcast directo a uma rede [1]	
tudo "1"		Broadcast limitado à rede local	
tudo "0"		A própria máquina [2]	
tudo "0"	<valor></valor>	Uma máquina na mesma rede [2]	
127	<qualquer></qualquer>	Loopback	

[1] É recomendável os routers não encaminharem este tráfego

[2] Situações de uso abandonado, para compatibilidade

 Limita na prática o número de endereços disponíveis para máquinas a 2ⁿ-2 por rede (com "n" – sendo o número de bits da componente máquina atribuídos à rede em questão)

Problemas do endereçamento IP clássico (1)

- Quando foi concebido o espaço de endereçamento IP (32 bits) pensava-se que era impossível de esgotar
 - Face ao número de máquinas e redes que existiam na altura

- Rapidamente se percebeu que não era bem assim ...
 - O encaminhamento IP obriga a que cada rede física tenha um endereço de rede diferente
 - Com a popularização da Internet o número de máquinas e redes cresceu exponencialmente
 - O esquema de classes de endereços é muito pouco flexível
 - Provoca um grande desperdício de endereços

Problemas do endereçamento IP clássico (2)

- O esquema de classes de endereços provoca um grande desperdício de endereços
 - Uma rede com mais de 254 máquinas necessita de usar um endereço de rede de classe B
 - Endereços de rede classe B são os mais requisitados
 - Há muitas redes com mais de 254 máquinas mas com muito menos que que 65.534 endereços de máquinas
 - Endereços de rede classe B subaproveitados
 - Não há (muitas) redes com 16.777.214 de máquinas
 - Endereços de rede classe A subaproveitados

Máscara de rede (Subnet Mask)

- Define onde se situa a divisão do endereço IP em parte de rede (net) e parte de máquina (host)
 - A máscara tem "1" nos bits que correspondem à parte do endereço que identifica a rede e "0" nos bits que correspondem à parte do endereço que identifica a máquina

Representação da Máscara de rede

- Notação de pontos (usada nos endereços)
 - Ex.: 192.0.2.0 255.255.255.0
 - Indicação dos bits da máscara em numeração decimal
- Notação CIDR (Classless Inter-Domain Routing)
 - Ex.: 192.0.2.0 / 24
 - Indicação do números de bits a 1 existentes na máscara

Subnet Addressing (Sub-Redes IP)

- Mecanismo que permite distribuir uma classe de endereços IP por várias redes físicas (sub-redes IP)
 - Utiliza o conceito de máscara de rede
 - Tem que haver cooperação entre máquinas e routers
 - Só são visíveis pelas máquinas e routers da rede
 - Não são visíveis pelos routers de fora da rede
 - Definido no RFC 950 [1985]

Conceito de sub-rede (Subnet)

- A classe do endereço IP identifica implicitamente os bits da componente de rede e a máscara divide a parte de sub-rede (subnet) e parte de máquina (host)
 - Ex.: subdivisão de uma classe B em várias redes de dimensão equivalente a classes C

Operações usando a máscara de rede

 Para obter o endereço de rede ou de broadcast dirigido a partir de um endereço qualquer da rede e a máscara desta:

Rede = IP AND Mask

Broadcast = IP AND NOT Mask

200=	11001000
127=	01111111

Operações mais comuns		
X AND 0 = 0	X OR 255 = 255	
X AND 255 = X	NOT 0 = 255	
X OR 0 = X	NOT 255 = 0	

Variable Length Subnet Mask (VLSM)

- Subneting: especifica uma máscara que divide o bloco de endereços definido pela máscara natural (i.e. classe A, B C) em subredes iguais
 - Uma única máscara de rede (ex.: 255.255.25.0) é usada para todas as subredes
- VLSM: Múltiplas máscaras definem subredes de diferentes dimensões no espaço de endereçamento de uma classe.
 - Ex: 255.255.255.128 e 255.255.255.224 podem ser usadas para dividir o espaço de endereçamento de uma rede classe C
 - Permite o uso mais eficiente do espaço de endereçamento.

Prefixos de 31 Bit em ligações IPv4

Objectivo

 Uso blocos de 2 endereços (/31) em ligações ponto-a-ponto - em vez de blocos de 4 endereços (/30) - para poupar

Características

- Os 2 endereços são considerados de "host"
 - Atribuídos às máquinas nas extremidades da ligação
- O endereço de sub-rede é o mais baixo
- Não existe endereço de "directed broadcast" para a sub-rede
 - Ligações ponto-a-ponto não há broadcast
- Ainda não suportado genericamente pelos equipamentos
- Aumenta a eficiência da utilização do espaço de endereçamento de 50% para 100%
- Documentado no RFC 3021 [12/2000]

Superneting (1)

- Mecanismo que permite agregar vários blocos de endereçamento para usar numa única rede (RFC1338)
 - Os blocos a agregar têm de ser contíguos
 - A dimensão agregada tem de ser uma potência de 2
 - A rede resultante tem de se iniciar numa posição do espaço de endereçamento múltipla da dimensão do bloco
- Pretende resolver problema da falta de endereços IP
 - Antes, redes com mais que 254 máquinas tinham que usar um endereço de rede de classe B (desperdiçando muitos endereços)
 - Com Superneting, redes com até 510 máquinas podem usar dois blocos de endereçamento de classe C como uma só rede IP
 - As tabelas de encaminhamento dos routers exteriores só precisam de ter uma entrada para cada super-rede
 - As redes englobadas n\u00e3o necessitam de ser anunciadas individualmente \u00e0 Internet

Superneting (2)

 Os Internet service providers (ISP) atribuem a uma entidade um número N de endereços contíguos e com o mesmo prefixo (bits de maior peso iguais para ser possível aglomerar/sumariar)

• Ex.: Supondo que foi atribuído um bloco de 1024 endereços a partir do endereço 193.137.128.0

Decimal Equivalente binário

193.137.128.0 193.137.131.255

193.137.128.0 255.255.252.0 - Com máscaras ou 193.137.128.0 / 22 - CIDR

Sumarização de Rotas (Route Aggregation)

Subnetting:

Criação de multiplas subredes tornando o prefixo maior

Sumarização:

prefix host

prefix length

Agregação de multiplas sub-redes tornando o prefixo mais pequeno (para simplificar as tabelas de encaminhamento)

Sumarização e CIDR

Sem Sumarização

Com Sumarização

A importância da sumarização

• Evolução das tabelas de encaminhamento centrais da Internet

desde 1994

CIDR – Classless Inter-Domain Routing

Definição:

"an Address Assignment and Aggregation Strategy"

Funcionamento

- Permite englobar endereços IP em gamas (prefixos)
- Propõe uma estratégia de atribuição de endereços de rede tendencialmente de acordo com a topologia física e geográfica
 - Atribuição por continente, país, ISP, etc

Vantagens

- Permite diminuir as tabelas de encaminhamento dos *routers* que só precisam de ter uma entrada para cada gama
- Definido nos RFC 1518 e 1519 [Set 1993]
 (torna obsoleto o RFC 1338 Superneting)

Agregação de endereços com CIDR

 Para se poder aproveitar a capacidade de agregação de endereços é necessário que estes sejam atribuídos de forma organizada.

Ex.: Europa 194.0.0.0 a 195.255.255.255 - 194.0.0.0/7
 EUA 198.0.0.0 a 199.255.255.255 - 198.0.0.0/7

- Simplifica as tabelas de encaminhamento:
 - Nos routers na Europa basta uma entrada na tabela para encaminhar para os EUA e vice-versa. (utopia ...)

CIDR – Classless Inter-Domain Routing

Problemas

- Organizações que são multi-homed (ligadas a vários ISP)
- Organizações que mudam de ISP mas não de endereçamento

Exercício

Distribuição de endereço classe C por 4 sub-redes

Exercício: (VLSM)

 Distribuição de um endereço classe C pelas LAN otimizando o número de endereços

Exercício: (VLSM)

 Distribuição do bloco 10.2.3.0/25 pelas LAN otimizando o número de endereços

Entrega Direta e Indireta de Datagramas Tabelas de Encaminhamento

Encaminhamento IP

Características

- Baseado em tabelas de encaminhamento (routing)
- Efectuado pelos routers e pelas máquinas
- Complexidade das tabelas preferencialmente nos routers
 - Máquinas Caminho por omissão (ou o destino é adjacente ou envia para um router – default gateway)
- Configuração de encaminhamento estática (manual) ou dinâmica (automática - protocolos)
- Máquinas com várias interfaces de rede podem fazer encaminhamento (routers)

Que tramas aceita uma placa de rede ethernet?

- Em modo promíscuo Todas
 - Usado por analisadores de protocolos e bridges/switches
- Em modo normal de funcionamento
 - Destinadas a sí (com endereço MAC destino igual ao seu)
 - Com endereço destino de broadcast (48 bit a "1" => ff:ff:ff:ff:ff:ff)
 - Com endereço destino igual a um dos endereços de grupo (multicast) a que a placa está receptiva
 - As placas têm normalmente uma tabela que permite que as aplicações que usam multicast lá coloquem o endereço de grupo que lhes interessa
 - Por limitações de hardware algumas placas de rede não têm esta tabela e para receberem multicast têm de ficar receptivas a todas as tramas destinadas a endereços de grupo

Uso de routers como intermediários

- Como conseguir que o router intermediário aceite um datagrama IP que não é destinado a si?
- O modelo de camadas foi inventado para isso!
 - Datalink Trata da entrega entre nós adjacentes
 - IP Trata do encaminhamento ao longo da rede
- Ao nível datalink (MAC) a mensagem é destinada ao router mas ao recebe-la este, como verifica que o endereço IP destino não é local, procura na sua tabela de encaminhamento e reenvia-a para o próximo nó

Entrega Directa

- Quando a tabela de encaminhamento indica que se pode atingir imediatamente o endereço IP destino, enviando para um nó adjacente
- É usado o protocolo ARP (explicado à frente) para determinar o endereço MAC associado ao endereço IP destino do datagrama

 O datagrama é enviado encapsulado numa <u>trama com o</u> endereço MAC destino (da máquina destino) determinado pelo passo anterior

Entrega Indirecta

- Quando a tabela de encaminhamento indica que para atingir o endereço IP destino do datagrama tem de se usar um router como intermediário
- É usado o protocolo ARP (explicado à frente) para determinar o endereço MAC associado ao endereço IP inidicado na tabela como o intermediário

 O datagrama é enviado <u>sem qualquer alteração dos</u> <u>endereços IP</u> encapsulado numa <u>trama com o endereço</u> <u>MAC destino (do *router*) determinado pelo passo anterior
</u>

Entrega de Datagramas

Entrega directa

- Quando a máquina destino está na mesma rede física (IP) da máquina origem
- No envio do datagrama tanto o endereço IP destino como o endereço MAC destino (da trama que o transporta) pertencem à máquina alvo
- Na comunicação entre duas máquinas existe sempre uma entrega directa

Entrega indirecta

- Quando a máquina destino não está na rede física (IP) da máquina origem
- No envio do datagrama este é encapsulado numa trama com o endereço MAC destino do router escolhido pela tabela de encaminhamento
- O conteúdo do datagrama não é alterado em trânsito! (excepto TTL e checksum)
- Na comunicação entre duas máquinas poderão existir 0 ou mais entregas indirectas
- Ao longo do caminho irão existir várias tramas distintas, uma em cada troço de rede.

Cuidado com as ambiguidades nestas questões...

- Temos tendência para associarmos uma relação não ambígua entre máquina - IP, router – IP, router – MAC, etc
 - «envia para o endereço IP da máquina» Ambíguo
 - «qual é o endereço MAC do router?» Ambíguo
- Qualquer máquina/router pode ter:
 - Múltiplas interfaces/placas de rede
 - Cada interface Ethernet tem <u>um</u> endereço MAC gravado de fábrica (possível de alterar, embora não seja usual fazê-lo)
 - Cada interface pode ter <u>um ou mais</u> endereços IP
- Sem ambiguidade
 - «envia para o endereço IP da interface eth2 da máquina»
 - «qual é o endereço MAC da interface Ethernet0 do router?»

Conteúdo das tabelas de Encaminhamento

Parâmetros base essenciais

- Rede destino
 - Definida pelo endereço de rede e máscara
- Próximo router
 - Router a ser usado como intermediário na entrega, caso seja directa, neste campo estará 0.0.0.0 ou o endereço IP da interface local de saída
- Interface
 - Interface local a ser usada no encaminhamento definida com o seu nome ou endereço IP
- Parâmetros adicionais (dependem da implementação)
 - Métrica
 - Flags de estado (ex. origem da informação estática/dinâmica)
 - MTU do percurso

Processo de decisão de encaminhamento (1)

- As tabelas de encaminhamento são listas ordenadas por ordem decrescente do número bits activos na máscara
 - Ex. uma rota com máscara 255.255.255.0 (/24) é avaliada antes de outra com máscara 255.255.0.0 (/16)
 - As rotas mais específicas são avaliadas primeiro pois têm máscaras com mais bits activos
- O router usa o endereço destino do datagrama a encaminhar como chave da pesquisa na lista
 - Se chegar ao fim da lista (não encontra rota) descarta o datagrama e gera uma mensagem ICMP network-unrechable destinada ao IP origem do datagrama original e incluindo uma amostra do datagrama (cabeçalho IP+8bytes) no corpo desta

Processo de decisão de encaminhamento (2)

- Para cada entrada da tabela (rota) o router faz a operação:
 - Se IPdestino (do datagrama a encaminhar) AND Máscara ==
 Rede, encaminha-o pelo router indicado na coluna de próximo router ou faz a entrega directamente se o valor deste for 0.0.0.0 ou igual ao endereço da interface de saída
 - Caso contrário repete o processo para a rota seguinte

Kernel IP routing table							
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
193.137.220.251	193.137.237.173	255.255.255.255	UGH	0	0	0	eth2
193.137.220.252	193.137.237.173	255.255.255.255	UGH	0	0	0	eth2
193.137.237.160	0.0.0.0	255.255.255.240	U	0	0	0	eth2
193.137.220.0	0.0.0.0	255.255.255.128	U	0	0	0	bond0
192.68.221.0	193.137.220.126	255.255.255.0	UG	0	0	0	bond0
192.104.48.0	193.137.220.126	255.255.255.0	UG	0	0	0	bond0
193.137.237.0	193.137.220.126	255.255.255.0	UG	0	0	0	bond0
193.137.220.0	193.137.220.126	255.255.254.0	UG	0	0	0	bond0
10.0.0.0	193.137.220.126	255.0.0.0	UG	0	0	0	bond0
127.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0	10
0.0.0.0	193.137.237.173	0.0.0.0	UG	0	0	0	eth2

Exercício: Tabelas de encaminhamento (1)

 Interprete cada uma das entradas da tabela de encaminhamento apresentada retirada de uma máquina Windows XP

NetworkDestination	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	10.100.255.254	10.100.255.99	8
10.100.255.0	255.255.255.0	10.100.255.99	10.100.255.99	10
10.100.255.99	255.255.255.255	127.0.0.1	127.0.0.1	10
10.255.255.255	255.255.255.255	10.100.255.99	10.100.255.99	10
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
224.0.0.0	240.0.0.0	10.100.255.99	10.100.255.99	10
255.255.255.255	255.255.255.255	10.100.255.99	10.100.255.99	1

Exercício: Tabelas de encaminhamento (2)

NetworkDestination	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	10.100.255.254	10.100.255.99	8
10.100.255.0	255.255.255.0	10.100.255.99	10.100.255.99	10
10.100.255.99	255.255.255.255	127.0.0.1	127.0.0.1	10
10.255.255.255	255.255.255.255	10.100.255.99	10.100.255.99	10
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
224.0.0.0	240.0.0.0	10.100.255.99	10.100.255.99	10
255.255.255.255	255.255.255.255	10.100.255.99	10.100.255.99	1

- 1 Rota *default* via 10.100.255.254
- 2 Para a rede local fazer entrega directa
- 3 Para o próprio IP enviar pela interface loopback
- 4 Para o endereço de broadcast da classe fazer entrega directa

- 5 Para a rede *loopback* enviar via interface de *loopback*
- 6 Para a classe D (multicast) fazer entrega directa
- 7 Para o endereço broadcast local fazer entrega directa

Endereços IP privados

- Endereços reservados para uso em redes privadas
 - Podem ser usados internamente em várias redes privadas
 - Não devem circular na Internet

```
• 10.0.0.0 - 10.255.255.255 (10/8)
```

- 172.16.0.0 172.31.255.255 (172.16/12)
- 192.168.0.0 192.168.255.255 (192.168/16)

 Definidos pela (IANA) Internet Assigned Numbers Authority no RFC 1918 [1996]

Exemplo de Tabela de routing (Win2K)

47

C:\WIN2K>route print

Active Routes:

Network Destination	n Netmask	Gateway	Interface	Metric
Network Destination	i Neullask	Gateway	Interrace	Mecric
0.0.0.0	0.0.0.0	141.29.155.254	141.29.155.108	1
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
141.29.155.0	255.255.255.0	141.29.155.108	141.29.155.108	1
141.29.155.108	255.255.255.255	127.0.0.1	127.0.0.1	1
141.29.255.255	255.255.255.255	141.29.155.108	141.29.155.108	1
200.0.0.0	255.0.0.0	141.29.155.245	141.29.155.108	3
224.0.0.0	224.0.0.0	141.29.155.108	141.29.155.108	1
255.255.255.255	255.255.255.255	141.29.155.108	141.29.155.108	1
Default Gateway:	141.29.155.254			

Persistent Routes:

Network Address	Netmask	Gateway Address	Metric
200.0.0.0	255.0.0.0	141.29.155.245	3

Exercício

- Descreva as tabelas de routing dos Routers (R1, R2 e R3)
 - Assuma que cada router conhece todas as redes da figura

Exercício

- Descreva as tabelas de routing dos Routers (R1, R2 e R3)
 - Assuma que cada router conhece todas as rede da figura

Exercício

 A partir da tabela de encaminhamento desenhe uma topologia de rede possível

Rede	Máscara	ProximoRouter	Interface
0.0.0.0	0.0.0.0	192.168.9.254	192.168.9.227
128.1.0.0	255.255.0.0	10.1.1.1	10.1.1.9
192.1.1.226	255.255.255.254	10.1.1.2	10.1.1.9
192.168.9.224	255.255.255.224	192.168.9.227	192.168.9.227
195.16.1.224	255.255.255.240	192.168.9.252	192.168.9.227
223.0.0.0	255.0.0.0	12.18.1.1	12.18.9.27
12.18.0.0	255.255.0.0	12.18.9.27	12.18.9.27
193.137.220.0	255.255.254.0	192.168.9.253	192.168.9.227
10.1.1.0	255.255.224.0	10.1.1.9	10.1.1.9

Proxy ARP (1)

Objectivo

 Permitir que um endereço IP pertencente a uma rede se encontre fisicamente noutra

Características

- O router responde aos pedidos ARP como se da máquina em questão se tratasse
 - Normalmente tem de se activar a funcionalidade na interface do router
- Apenas pode ser usado em redes que utilizam o protocolo ARP para resolução de endereços
- Apenas funciona em máquinas com implementações de ARP que permitam ter vários endereços IP mapeados no mesmo endereço MAC
- Documentado no RFC 1027 [1987]

Proxy ARP (2)

56

Proxy ARP (3)

Funcionamento

- Um utilizador liga-se via VPN ao local de trabalho e obtém um endereço IP para o "túnel" que faz parte do bloco atribuído ao segmento de rede do seu departamento
- As máquinas do departamento não sabem à partida que aquele endereço em particular tem de sofrer uma entrega indirecta
- Uma máquina do segmento que tentar comunicar com a do utilizador tentará fazer uma entrega directa
- O router que termina a VPN do lado do departamento irá responder aos pedidos de ARP dirigidos à máquina como se de ele próprio se tratasse (actua em nome dela – proxy)
- Quando recebe o datagrama a sua tabela de encaminhamento terá uma rota específica para aquele IP a apontar para o "túnel" da VPN e encaminhará até à máquina remota