Lesson 15-2 - Simulations

Simulation

- Simulation is a more advanced approach where random sampling is used from the probability distributions of one or more variables for analysis.
- Simulation can be done by hand using a table of random numbers and only a few iterations.
- More commonly, it is done with a computer using a spreadsheet random function or some other simulation package.
- Using a computer allows for larger numbers of iterations to be calculated and/or more variables to be randomized.
- As well, using a computer allows for the evaluation of a number of different types of probability distributions.

Simulation

- When any of the project components is a random variable, the outcome of the project, e.g. the NPV, is also a random variable.
- If we want to assess a project with uncertain parameters, we estimate the probability distribution of the outcome using the relative frequency approach.
- We can do this by repeatedly sampling from the distributions of the project's parameters. Spreadsheets are helpful in this procedure.

Simulation Process

- Monte Carlo simulation procedure:
 - 1. Formulate the model for determining the project outcome from the project components.
 - 2. Determine the probability distributions of all project components that are random variables.
 - 3. Use a random number generator to produce values for the project components that are random variables and calculate the project outcome using the model.
 - 4. Repeat step 3 until a large enough sample has been taken (250 is usually a sufficient number as a rule of thumb, but look at your output histogram)
 - 5. Produce a frequency distribution and a histogram to estimate the probability distribution of the project outcome.
 - 6. Produce summary statistics of the project outcome, e.g. mean, median, standard deviation, range, minimum, maximum, ...

Step 1 – Develop the model

- What is the output variable of interest?
 - NPV
 - IRR
 - Benefit/Cost Ratio
 - Future Value
 - Other?
- Develop a model that gives us this output variable, based on our known (but potentially random) inputs

Step 1 Example

A business wants to invest in a production line that will run for three years. The initial investment will cost \$100,000 and the firm has an interest rate of 14%.

The annual benefits are estimated to be \$73,000 on average, with a standard deviation of \$5000.

The annual costs are variable as well, and will be uniformly distributed between \$18000 and \$26000.

After three years there is a 25% chance the line will be needed for a fourth year. The costs and benefits would be the same.

Use a simulation to evaluate the NPV of this investment.

Step 1 Example

• Set up the initial model:

	Nominal	Variable	
Initial Investment	\$100,000		
Annual Benefits	\$73,000	\$73,000	\$5,000
Annual Costs	\$22,000	\$18,000	\$26,000
Lifetime	3	25%	
Interest Rate	14%		
Nominal NPV	\$18,403.23	=PV(E7, E6	5, -(E4-E5))-E3

Step 2 – Determine the distribution of input variables

- Common distributions:
 - Constant fixed output, does not change
 - E.g. MARR is fixed at 16%
 - Uniform variable output, all outcomes equally likely
 - E.g. the number that comes up on a roulette table
 - Normal variable output, defined by mean and standard deviation
 - Values closer to the mean are more likely
 - Less likely to occur farther from the mean
 - E.g. a small food truck might have annual revenues that are normally distributed, with a mean of \$680,000 and a standard deviation of \$40,000.
 - Or a production line might output a mean of 2,000 units per month, with a standard deviation of 125 units.
 - Cases variable output, but discrete
 - E.g. coin toss 50% chance of heads, 50% chance of tails
 - Roulette table 47.4% chance of red, 47.4% chance of black, 5.2% chance of neither

Step 2 Example

- Our variables were given in the first example slide.
- Initial cost: Fixed, \$100,000
- Annual Benefits: Variable, normal distribution (mean \$73,000, std. dev. \$5000)
- Annual costs: Variable, uniform distribution between \$18000 and \$26000
- Interest: Fixed at 14%
- Lifetime: Variable, case: 75% chance = 3 years, 25% = 4 years

Step 2 Example

- Write the formula for these
- Initial costs: \$100,000
- Annual benefits: =NORM.INV(RAND(), \$73000, \$5000)
- Annual Costs: =RANDBETWEEN(\$18000, \$26000)
- Cashflow per year: =Benefits Costs
- YEAR FOUR:
- Conditional, only a 25% chance.
- =IF(RAND()<25%, NORM.INV(RAND(), \$73000,\$5000)-
 RANDBETWEEN(18000,26000), 0)

Step 3 – Run a simulation

- For each random variable, select a value from its distribution
- Typically feed a randomly generated number (=RAND()) into the distribution function.
- Uniform distribution: =RANDBETWEEN(bottom, top)
 - Can use =round() as well to get desired level of precision
- Normal distribution: =NORM.INV(probability, mean, standard dev)
 - Feed a random number, =rand(), into the probability
 - Function will then output the cumulative normal value for the given mean and standard deviation
 - E.g. if mean = 100,000, and standard deviation = 10,000, then = NORM.INV(rand(), 100000, 10000) = 99611 if rand() = 0.4844
- Use these values to calculate our output variable

Step 3 Example **Nominal Variable Initial Investment** \$100,000 **Annual Benefits** \$73,000 \$5,000 \$73,000 **Annual Costs** \$22,000 \$18,000 \$26,000 Lifetime 25% 14% **Interest Rate** \$18,403.23 |=PV(E7, E6, -(E4-E5))-E3 **Nominal NPV Period Cashflow** 0 1 NPV 61,084 \$ 53,751 \$ 44,926 \$ -(100,000) \$ 25,266 Benefits: =NORM.INV(RAND(), \$E\$4, \$F\$4) Costs = RANDBETWEEN(18000, 26000) Periodic Cashflow: =Benefits - Costs Extra Year? =IF(RAND()<\$F\$6, NORM.INV(RAND(),\$E\$4,\$G\$4)-RANDBETWEEN(18000,26000), 0)

Step 4 – Run many more simulations

- Generate new random numbers and new input variables, and record the output variable again
- Repeat ad naseum
- 250 simulations is a good starting point as a rule of thumb
- When looking at your histogram, evaluate for sufficient data points

Step 4 Ex

xam)	ΔL	P					Nor	ninal	Variable		
Mari	'					Initi	al Investment	ξ.	\$100,000			
						Ann	ual Benefits		\$73,000	\$73,000		\$5,000
						Ann	ual Costs		\$22,000	\$18,000		\$26,000
						Life	time		3	25%		
						Inte	rest Rate		14%			
						Non	ninal NPV	\$1	8,403.23	=PV(E7, E6	5, -(E4	-E5))-E3
		Period Cashflow										
Sim #			0		1		2		3	4	NPV	
	1	\$	(100,000)	\$	48,576	\$	44,879	\$	55,809	\$ -	\$	14,813
	2	\$	(100,000)	\$	46,977	\$	62,444	\$	54,723	\$ -	\$	26,192
	3	\$	(100,000)	\$	55,314	\$	63,668	\$	57,347	\$ -	\$	36,219
	4	\$	(100,000)	\$	64,204	\$	47,156	\$	53,003	\$ -	\$	28,381
	5	\$	(100,000)	\$	46,691	\$	56,003	\$	49,866	\$ 56,321	\$	51,054
	6	\$	(100,000)	\$	52,051	\$	50,327	\$	53,128	\$ -	\$	20,244
	7	\$	(100,000)	\$	45,267	\$	46,478	\$	63,574	\$ 43,725	\$	44,271
	8	\$	(100,000)	\$	52,549	\$	42,783	\$	52,052	\$ 50,712	\$	44,175
	9	\$	(100,000)	\$	48,912	\$	46,214	\$	50,914	\$ -	\$	12,831
:	10	\$	(100,000)	\$	53,488	\$	50,703	\$	55,915	\$ 41,100	\$	48,009
	11	\$	(100,000)	\$	58,346	\$	50,203	\$	54,897	\$ 53,535	\$	58,562

Steps 5 and 6 – Analyze the results

- We now have a long list of randomly determined output variables
- Individual simulation results don't tell us anything. But the distribution of many of those results does
- Create a histogram, and ensure you have completed enough simulations (look for empty bins)
- Try and fit a distribution to the histogram
- Evaluate the summary statistics

Analysis Example

Summary Statistics					
Mean	\$	25,180			
Median	\$	21,280			
Maximum	\$	63,029			
Minimum	\$	(4,056)			
St. Dev.	\$	14,975			
Bin	Fre	equency			
\$0		1			
\$10,000		27			
\$20,000		84			
\$30,000		70			
\$40,000		17			
\$50,000		25			
\$60,000		23			
More		3			

