Diskretne Coonsove ploskveva urnikov

Matej Rojec, Vito Rozman

3. december 2022

Kazalo

1	Uvod in motivacija		
	1.1	Uvod v Bézierjeve ploskeve	1
	1.2	Coonsove ploskve	2
2	Last	tnosti Coonsovih ploskev	3

1 Uvod in motivacija

1.1 Uvod v Bézierjeve ploskeve

Bézierjevo ploskev $\mathbf{p}:[0,1]^2\to\mathbb{R}^3$ iz tenzorskega produkta stopnje $(m,n)\in\mathbb{N}\times\mathbb{N}$ definiramo s parametrizacijo:

$$\mathbf{p}(u,v) := \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{b}_{i,j} B_{i}^{m}(u) B_{j}^{n}(v),$$

kjer sta u,v iz enotskega kvadrata, t.j $(u,v)\in [0,1]^2$ ter $(\frac{i}{m},\frac{j}{n})$ domenske točke, ki ustrezajo kontrolni točki $\mathbf{b}_{i,j}$.

Pri fiksnem v,množica $\{\mathbf{b}(u,v)\mid u\in[0,1]\}$ predstavlja kontrolnimi točkami

$$\sum_{i=0}^{n} \mathbf{b}_{i,j} B_{j}^{n}(v), \qquad i = 0, 1, \dots, m,$$

ki so izračunane kot točke na Bézierjevih krivuljah stopnje n pri parametru v.

1.2 Coonsove ploskve

Denimo, da imamo podane kontrole točke $\mathbf{b}_{i,j}, i = 0, \dots, m, j = 0, \dots, n$. Te določajo štiri robne krivulje Te omejujejo iskano ploskev \mathbf{p} iz tenzorskega produkta stopnje (n, m). Kontrolne točke

določajo štiri Bézierjev krivulje:

$$\mathbf{p}(u,0) = \sum_{i=0}^{m} \mathbf{b}_{i,0} B_{i}^{n}(u),$$

$$\mathbf{p}(u,1) = \sum_{i=0}^{m} \mathbf{b}_{i,n} B_{i}^{n}(u),$$

$$\mathbf{p}(0,v) = \sum_{j=0}^{n} \mathbf{b}_{0,j} B_{j}^{n}(v),$$

$$\mathbf{p}(1,v) = \sum_{j=0}^{n} \mathbf{b}_{m,j} B_{j}^{n}(v),$$

kjer je domena enotski kvadrat, t.j. $(u,v) \in [0,1]^2$. Kontrolne točke torej omejujejo ploskev **p**. Sedaj potrebujemo definirati še ostale kontrolne točke $\mathbf{b}_{i,j}, \ i=1,\ldots,m-1, j=1,\ldots,n-1$. V ta namen definiramo tri dodatne ploskve:

1. Prva je Bézierjeva ploskev stopnje (m, 1), ki je kot ploskev stopnje (m, n) podana s kontrolnimi točkami:

$$\mathbf{b}_{i,j}^{(1)} = \left(1 - \frac{j}{n}\right)\mathbf{b}_{i,0} + \frac{j}{n}\mathbf{b}_{i,n}$$

2. Druga je Bézierjeva ploskev stopnje (1, n), ki je kot ploskev stopnje (m, n) podana s kontrolnimi točkami:

$$\mathbf{b}_{i,j}^{(2)} = \left(1 - \frac{i}{m}\right)\mathbf{b}_{0,j} + \frac{i}{m}\mathbf{b}_{m,j}$$

3. Tretja je Bézierjeva ploskev stopnje (1,1), ki je kot ploskev stopnje (m,n) podana s kontrolnimi točkami:

$$\mathbf{b}_{i,j}^{(3)} = \left(1 - \frac{i}{m}\right) \left(1 - \frac{j}{n}\right) \mathbf{b}_{0,0} + \frac{i}{m} \left(1 - \frac{j}{n}\right) \mathbf{b}_{m,0} + \left(1 - \frac{i}{m}\right) \frac{j}{n} \mathbf{b}_{0,n} + \frac{i}{m} \frac{j}{n} \mathbf{b}_{m,n}$$

Coonsova ploskev \mathbf{p} je definirana s kontrolnimi točkami

$$\mathbf{b}_{i,j} := \mathbf{b}_{i,j}^{(1)} + \mathbf{b}_{i,j}^{(2)} + \mathbf{b}_{i,j}^{(3)}.$$

2 Lastnosti Coonsovih ploskev

Coonsova ploskve minimzirajo zasuk, definiran kot:

$$\int_{[0,1]^2} \left(\frac{\partial^2}{\partial u \partial v} \mathbf{p}(u, v) \right) dS. \tag{1}$$

Torej coonsova ploskve doseže minimum izraza (1).

Posledica tega je, da so coonsova ploskve lahko v primerih preveč ravne in ne interpolirajo dobro kontrolnih točk.