- ก.) เชิงคุณภาพ ชนิด nominal แบบ binary 1.
 - ข.) เชิงปริมาณ interval แบบ continuous
 - ค.) เชิงคุณภาพ ordinal แบบ discrete
 - ง.) เชิงปริมาณ ratio แบบ continuous
 - จ.) เชิงคุณภาพ ordinal แบบ discrete
 - ฉ.) เชิงปริมาณ interval แบบ continuous
 - ช.) เชิงปริมาณ interval แบบ discrete
 - ซ.) เชิงคุณภาพ nominal แบบ discrete
 - ฌ.) เชิงปริมาณ ratio แบบ continuous
 - ญ.) เชิงปริมาณ interval แบบ continuous
 - ฎ.) เชิงคุณภาพ ordinal แบบ discrete
 - ฎ.) เชิงปริมาณ ratio แบบ continuous
- ต้องการรู้ช่วงอายุ 2.
 - ต้องการรู้ช่วงปีจบ
 - ต้องการรู้วิชาที่น่าจะเรียนในปัจจุบัน
- 3. daily temperature เพราะ ข้อมูลจากพื้นที่หนึ่งที่ได้นั้นจะมีค่าใกล้เคียงกลับพื้นที่ ๆ อยู่ใกล้ ๆ
- ก. มีประสิทธิภาพต่ำจากการที่ต้องนำตัวซ้ำมาประมวลผลร่วมด้วย
 - ได้เพื่อนบ้านที่เป็นตัวซ้ำกับตัวต้น
 - หากมีตัวใกล้ ๆ เป็นตัวซ้ำอาจทำให้เพื่อนบ้านที่ได้มีแต่ตัวนั้น ๆ
 - ข. จัดรวมกลุ่มตัวซ้ำเป็นกลุ่มเดียวกันแล้วให้นับกลุ่มนั้นเป็น data object ตัวหนึ่ง

5.)

ก. cosine

$$< x,y > = 1*2 + 1*2 + 1*2 + 1*2 = 8$$

$$||x|| = (1^2 + 1^2 + 1^2 + 1^2)^{1/2} = 2$$
 $||y|| = (2^2 + 2^2 + 2^2 + 2^2)^{1/2} = 4$

$$||y|| = (2^2 + 2^2 + 2^2 + 2^2)^{1/2} =$$

Cosine = 8/2*4 = 1

Correlation mean(x) =
$$(1+1+1+1)/4 = 1$$
 mean(y) = $(2+2+2+2)/4 = 2$

$$mean(y) = (2+2+2+2)/4 =$$

$$S_x = (1/4-1*((1-1)^2+(1-1)^2+(1-1)^2+(1-1)^2))^{1/2} = 0$$

$$S_x = (1/4 - 1*((1-1)^2 + (1-1)^2 + (1-1)^2 + (1-1)^2))^{1/2} = 0 \qquad S_v = (1/4 - 1*((2-2)^2 + (2-2)^2 + (2-2)^2 + (2-2)^2))^{1/2} = 0$$

$$S_{xy} = (1/4 - 1*((1-1)(2-2) + (1-1)(2-2) + (1-1)(2-2) + (1-1)(2-2)))^{1/2} = 0$$

Correlation = 0/0*0 = 0

Jaccard

$$f_{1,2} = 4$$

$$J = 0/4 = 0$$

Euclidean distance

$$d(x,y) = ((1-2)^2 + (1-2)^2 + (1-2)^2 + (1-2)^2)^{1/2} = 2$$

ข.) cosine

$$\langle x,y \rangle = 0*1 + 1*0 + 0*1 + 1*0 = 0$$

$$\|x\| = (0^2 + 1^2 + 0^2 + 1^2)^{1/2} = 2^{1/2} \qquad \qquad \|y\| = (1^2 + 0^2 + 1^2 + 0^2)^{1/2} = 2^{1/2}$$

$$||y|| = (1^2 + 0^2 + 1^2 + 0^2)^{1/2} = 2^{1/2}$$

Cosine =
$$0/2^{1/2}*2^{1/2} = 0$$

Correlation mean(x) = (1+0+1+0)/4 = 1/2 mean(y) = (0+1+0+1)/4 = 1/2

$$mean(y) = (0+1+0+1)/4 = 1/2$$

 $S_x = (1/4 - 1*((1 - 1/2)^2 + (0 - 1/2)^2 + (1 - 1/2)^2 + (0 - 1/2)^2))^{1/2} = 1/3^{1/2} \\ S_y = (1/4 - 1*((0 - 1/2)^2 + (1 - 1/2)^2 + (0 - 1/2)^2 + (1 - 1/2)^2))^{1/2} = 1/3^{1/2}$

$$S_v = (1/4-1*((0-1/2)^2+(1-1/2)^2+(0-1/2)^2+(1-1/2)^2))^{1/2} = 1/3^{1/2}$$

 $S_{xy} = (1/4 - 1*((1-1/2)(0-1/2) + (0-1/2)(1-1/2) + (1-1/2)(0-1/2) + (0-1/2)(1-1/2)))^{1/2} = (-1/3)^{1/2}$

Correlation = $(-1/3)^{1/2}/(1/3)^{1/2}*(1/3)^{1/2} = 1/(-1/3)^{1/2}$

Jaccard

$$f_{1,0} = 2$$
 $f_{0,1} = 2$

$$J = 0/2 + 2 = 0$$

Euclidean distance

$$d(x,y) = ((1-0)^2 + (0-1)^2 + (1-0)^2 + (0-1)^2)^{1/2} = 2$$

ค. cosine

$$\langle x,y \rangle = 0*1 + -1*0 + 0*-1 + 1*0 = 0$$

$$||\mathbf{y}|| = (0^2 + 1^2 + 0^2 + (-1)^2)^{1/2} = 2^{1/2}$$

$$||x|| = (0^2 + 1^2 + 0^2 + (-1)^2)^{1/2} = 2^{1/2}$$
 $||y|| = (1^2 + 0^2 + (-1)^2 + 0^2)^{1/2} = 2^{1/2}$

Cosine = $0/2^{1/2}*2^{1/2} = 0$

Correlation mean(x) = (0+1+0-1)/4 = 0 mean(y) = (1+0-1+0)/4 = 0

$$mean(y) = (1+0-1+0)/4 = 0$$

$$S = (1/4, 1*((0, 0)^2)(1, 0)^2)(0, 0)^2(1, 0)^2)(1/2 - 2/4)$$

$$S_x = (1/4 - 1*((0-0)^2 + (1-0)^2 + (0-0)^2 + (-1-0)^2))^{1/2} = 2/3^{1/2} \\ S_y = (1/4 - 1*((1-0)^2 + (0-0)^2 + (-1-0)^2 + (0-0)^2))^{1/2} = 1/3^{1/2}$$

 $S_{xy} = (1/4 - 1*((0-0)(1-0) + (1-0)(0-0) + (0-0)(-1-0) + (1-0)(0-0)))^{1/2} = 0$

Correlation = $0/1/3^{1/2}*1/3^{1/2} = 0$

Jaccard

$$F_{0,1} = 1$$
 $f_{-1,0} = 1$ $f_{0,-1} = 1$ $f_{-1,0} = 1$

$$J = 0/(1+1+1+1) = 0$$

Euclidean distance

$$d(x,y) = ((0-1)^2 + (1-0)^2 + (0-(-1))^2 + (-1-0)^2)^{1/2} = 2$$

6. ก.

X _j	$P(X=x_j)$	$-P(X=x_j)log_2P(X=x_j)$
-7	1/6	0.43082
-2	1/6	0.43082
0	1/6	0.43082
1	2/6	0.52832
2	1/6	0.43082
	H(x)	2.2516

Y_k	$P(Y=y_k)$	$-P(Y=y_k)log_2P(Y=y_k)$
0	1/6	0.43082
1	2/6	0.52832
4	2/6	0.52832
9	1/6	0.43082
H(y)		1.91828

x _j	Y _k	$P(X=x_j, Y=y_k)$	$-P(X=x_{j}, Y=y_{k}) log_{2}P(X=x_{j}, Y=y_{k})$
-7	9	1/6	0.43082
-2	4	1/6	0.43082
1	1	1/6	0.43082
0	0	1/6	0.43082
1	4	1/6	0.43082
2	1	1/6	0.43082
H(x,y)		H(x,y)	2.58492

l(x,y) = 2.2516+1.91828-2.58492 = 1.58496

ข.

X _j	$P(X=x_j)$	$-P(X=x_j)log_2P(X=x_j)$
1	4/4	0
H(x)		0

Y _k	P(Y=y _k)	$-P(Y=y_k)\log_2 P(Y=y_k)$
2	4/4	0
H(y)		0

X _j	Y_k	$P(X=x_j, Y=y_k)$	$-P(X=x_{j}, Y=y_{k}) \log_{2}P(X=x_{j}, Y=y_{k})$
1	2	4/4	0
H(x,y)		H(x,y)	0

I(x,y) = 0+0-0 = 0