

Modul TA.PR+SY Lagerungen und Führungen

Linearführungen und Gewindetriebe

Bild: Bosch Rexroth AG

FH Zentralschweiz

Hochschule Luzern

Inhalt

- Geschichte
- · Grundlagen der Lineartechnik
- Auslegung von Linearführungen
- · Grundlagen Kugelgewindetriebe
- · Auslegung von Kugelgewindetrieben

Weiterführende Literatur:

- [1] Roloff / Matek; Maschinenelemente: Normung, Berechnung, Gestaltung; 22. Auflage, Verlag Vieweg, Wiesbaden 2015
- [2] Schlecht, B.; Maschinenelemente 2: Getriebe Verzahnungen Lagerungen; Pearson, München 2010
- [3] Bosch Rexroth AG; Handbuch Lineartechnik; R310DE 2017 (2006.07)

Geschichte

- Schon die Ägypter haben beim Bau der Pyramiden Wälzführungen angewendet. Die schweren Steinquader wurden mit Baumstämmen unterlegt und Wasser reduzierte zusätzlich die Reibung.
- Dieses Grundprinzip wird heute noch bei modernen Linearführungen angewendet.
- Der Kugelgewindetrieb wurde erstmals im 19. Jahrhundert in der Literatur erwähnt.

US Patent 992897; 23.5.1911

Bilder: Bosch Rexroth AG

© HSLU PR+SY_H16: Lagerungen und Führungen

3

Hochschule Luzern Technik & Architektu

Technische Grundlagen der Lineartechnik

© HSLU PR+SY_H16: Lagerungen und Führungen

4

Elemente einer Maschine (Beispiel)

Hochschule Luzern

Einteilung der Linearführungen

Quelle: Bosch Rexroth AG

Einteilung von Wälzführungen

- Profilschienenführung
- · Kugelbüchsenführung

Laufrollenführung

Prinzip des Wälzkörperumlaufs

Wälzführung ohne Wälzkörperumlauf

© HSLU PR+SY_H16: Lagerungen und Führungen

Wälzführung mit Wälzkörperumlauf

Bilder: Bosch Rexroth AG

7

Bilder: ina

Hochschule Luzern Technik & Architektu

Auswahl von Linearführungen

- Führungen werden in einer Vielzahl von Bauformen und Typen angeboten. Um die richtige Führung zu wählen muss man sich über die verschiedenen, die Konstruktion beeinflussenden Grössen klar werden.
 - · Belastungsart
 - · Belastungswerte
 - · Verfahrgeschwindigkeiten
 - Bauraum
 - · Einbauverhältnisse
 - Montage
 - Genauigkeiten
 - Verschmutzung
 - Kosten

© HSLU PR+SY H16: Lagerungen und Führungen

8

Tragfähigkeit und nominelle Lebensdauer

Die nominelle Lebensdauer eines Linearlagers mit Kugel- und Rollenführung berechnet sich analog zu Wälzlagern.

$$L_{10} = \left(\frac{C}{P}\right)^p \cdot 10^5$$

$$L_{10h} = \frac{L_{10}}{2 \cdot s_{Hub} \cdot n_{Hub} \cdot 60}$$
 bzw. $L_{10h} = \frac{L_{10}}{60 \cdot v_m}$

$$L_{10h} = \frac{L_{10}}{60 \cdot v_m}$$

 L_{10} Nominelle Lebensdauer in m

dynamische Tragzahl

kombinierte äquivalente Lagerbelastung

p Lebensdauerexponent

s_{Hub} Hublänge n_{Hub} Hubfrequenz; Doppelhübe pro min v_m mittlere Verfahrgeschwindigkeit

Die kombinierte äquivalente Lagerbelastung wird durch arithmetische Addition der Kraftbeträge ermittelt.

$$P = |F_{\mathcal{V}}| + |F_{\mathcal{Z}}|$$

© HSLU PR+SY_H16: Lagerungen und Führungen

Hochschule Luzern

Einfluss der Belastungsrichtung bei Profilschienenführungen

Nennberührungswinkel α

Zug- oder Druckbelastung

Seitenbelastung

Zulässige Last für die volle Lebensdauer Erforderliche Tragzahl für die volle Lebensdauer

Einfluss der Belastungsrichtung bei Kugelbüchsen

Einfluss der Lastrichtung bei geschlossenen und offenen Kugelbüchsen auf die Tragzahlen.

• Die Tragzahl C ist mit dem Lastrichtungsfaktor zu korrigieren.

$$C_{korr} = C * f_{\rho 0}$$

© HSLU PR+SY_H16: Lagerungen und Führungen

Bilder: Bosch Rexroth AG

11

Hochschule Luzern Technik & Architektu

Verschiedene Bauformen von Kugelbüchsen

Geschlossene Kugelbüchse

• Offene Kugelbüchse

Wellenunterstützung

Verschiedene Bauformen von Schienenführungen

Kugelschienenführungen

Rollenschienenführung

Bilder: Bosch Rexroth AG

© HSLU PR+SY_H16: Lagerungen und Führungen

13

Hochschule Luzern

Verschiedene Bauformen von Laufrollenführungen

Laufrollenführung Standard

Laufrollenführung U-Form

Laufrollenführung für Kurven

Bilder: INA, Rollon

Kugelgewindetriebe

- Kugelgewindetriebe sind Bewegungsschrauben und dienen zur Umsetzung einer Drehbewegung in eine Längsbewegung oder umgekehrt.
- Aufbau:

Spindel mit gerollter oder geschliffener Spindellaufbahn. Mutter mit

Kugellaufbahnen

Bild: Bosch Rexroth AG

© HSLU PR+SY_H16: Lagerungen und Führungen

15

Hochschule Luzern

Aufbau von Kugelgewindetrieben

Geometrie der Spindel

Kontaktpunkte am Wälzkörper

Kraftfluss im Gewindetrieb

Einzelumlenkung

Rohrumlenkung mehrfach

Rohrumlenkung gesamt

Gesamtlumlenkung integriert

Vergleich Kugelgewindetrieb mit Trapezspindel

- Auswahlkriterien für Kugelgewindetriebe:
 - Genauigkeitsanforderungen
 - Spielfreiheit
 - Belastung
 - Lebensdauer
 - · kritische Drehzahl
 - Knickung
 - · Steifigkeit

versus

- Vorteile von Kugelgewindetrieben:
- · höherer mechanischer Wirkungsgrad
- höhere Lebensdauer
- kein "stick-slip"-Effekt
- grössere Verfahrgeschwindigkeiten
- · geringere Erwärmung
- hohe Positionier- und Wiederholgenauigkeit
- Vorteile von Trapezspindeln:
- tiefere Kosten
- Selbsthemmung

© HSLU PR+SY_H16: Lagerungen und Führungen

17

Hochschule Luzern Technik & Architektu

Wirkungsgradvergleich

$$\eta = \frac{\tan \varphi}{\tan(\varphi + \rho')}$$

 $rho' = arctan(\mu)$

Beispiel:

Kugelgewindespindel 25 x 5, μ = 0.01

Trapezspindel

TR 24 x 5, μ = 0.2

© HSLU PR+SY_H16: Lagerungen und Führungen

Vorspannung und Steifigkeit

Spielfreiheit und Vorspannung kann durch folgende Möglichkeiten erreicht werden:

Vorgespannte Einzelmutter

Spielfrei einstellbare Einzelmutter

Doppelmutter

Bilder: Bosch Rexroth AG

© HSLU PR+SY_H16: Lagerungen und Führungen

19

Hochschule Luzern

Berechnung der Lebensdauer

Nominelle Lebensdauer analog Wälzlagerberechnung:

$$L = \left(\frac{C}{F_m}\right)^3 \cdot 10^6 \qquad L_h = \frac{L}{n_m \cdot 60} \qquad \begin{array}{c} \text{C dynamische Tragzahl} \\ F_m \text{ dynamisch "aquivalente Axialbelastung} \\ L \text{ Nominelle Lebensdauer in Umdrehungen} \end{array}$$

$$L_h = \frac{L}{n_m \cdot 60}$$

 L_h Lebensdauer in h

 n_m Drehzahl in min-1

Antriebsmoment und Wirkungsgrad:

$$M_{An} = \frac{F * P_h}{2 * \pi * \eta} \qquad n_{Sp} = \frac{v}{P_h}$$

$$n_{Sp} = \frac{v}{P_h}$$

 M_{An} Antriebsmoment

Axialbelastung

P_h Steigung

d₀ Nenndurchmesser

 n_{Sp} Spindeldrehzahl

Verfahrgeschwindigkeit

Steifigkeit von Linearsystemen

Hochschule Luzern Technik & Architektur

Spindellagerungen

Gewindetrieb, an beiden Enden von einseitig wirkenden Lagern unterstützt

Verlängerter Gewindetrieb mit Kartuschen für besonders hohe Steifigkeit

Steifigkeit von Kugelgewindetrieben

 Unter Steifigkeit versteht man den Widerstand gegen elastische Vorformung.

$$R = \frac{\Delta F}{\Delta I}$$
 $R [N/\mu m]$

 Die Steifigkeit eines Kugelgewindetriebes wird neben der Mutternsteifigkeit auch durch sämtliche Anschlussteile, Lagerungen und der Spindel beeinflusst.

$$\frac{1}{R_{\textit{Tot}}} = \frac{1}{R_{\textit{Geh\"ause}}} + \frac{1}{R_{\textit{Lagerung}}} + \frac{1}{R_{\textit{Spindel}}} + \frac{1}{R_{\textit{Mutter}}}$$

© HSLU PR+SY_H16: Lagerungen und Führungen

23

Hochschule Luzern Technik & Architektur

Steifigkeit der Spindel

• Einseitige Festlagerung der Spindel

$$R_{Spindel} = \frac{\pi \cdot (d_0 - D_W \cdot \cos \alpha)^2 \cdot E}{4 \cdot l_{s1} \cdot 10^3}$$

 $\alpha = 45^{\circ}$ Kontaktwinkel zwischen Kugel und Laufbahn d_0 = Nenndurchmesser D_W = Kugeldurchmesser

Beidseitige Festlagerung der Spindel

$$R_{Spindel} = \frac{\pi \cdot (d_0 - D_W \cdot \cos \alpha)^2 \cdot E}{4 \cdot l_{s2} \cdot 10^3} \cdot \frac{l_s}{l_s - l_{s2}}$$

$$I_{s2} = 0$$
 bis 0.5 * I_s

Beispiel Kugelgewindespindel

nicht vorgespannt

vorgespannt

© HSLU PR+SY_H16: Lagerungen und Führungen

25

Hochschule Luzern

Biegekritische Drehzahl

Die Biegekritische Drehzahl ist abhängig von:

- Einbauart der Endenlagerung
- Kerndurchmesser der Spindel
- Kritische Spindellänge, d.h. maximal ungestützte Spindellänge

$$n_k = f_{nk} \cdot \frac{d_2}{l_n^2} \cdot 10^7 \quad \text{(min-1)}$$

$$n_{kzul} = n_k \cdot 0.8$$

 n_k = Biegekritische Drehzahl [min⁻¹] f_{nk} = Beiwert der von der Endenlagerung bestimmt wird

 d_2 = Kerndurchmesser [mm]

 $I_n = \text{kritische Spindellänge [mm]}$ I_1 = Lagerabstand [mm]

Zulässige axial Belastung (Knicken)

Die maximal zulässig axiale Belastung hängt ab von:

- Endenlagerung
- Kerndurchmesser der Spindel
- Wirksame Knicklänge, d.h. die maximal ungestützte Spindellänge im Kraftfluss

$$F_{kzul} = \frac{F_k}{2}$$

 F_{kzul} = zulässige Spindelbelastung [N] F_k = Theoretische Knickbelastung [N] f_{Fk} = Beiwert der von der Endenlagerung bestimmt wird

 d_2 = Kerndurchmesser [mm] I_k^{2} = wirksame Knicklänge der Spindel [mm]

© HSLU PR+SY_H16: Lagerungen und Führungen

Bilder: Bosch Rexroth AG

27