What is Arrow's Impossibility Theorem?

Jesse He

OSU What Is?

17 June, 2021

Let A be a set of $M \ge 3$ alternatives, $A = \{a_1, a_2, \dots, a_M\}$ and let $V = \{1, 2, \dots, N\}$ be a set of N voters.

Let A be a set of $M \ge 3$ alternatives, $A = \{a_1, a_2, \dots, a_M\}$ and let $V = \{1, 2, \dots, N\}$ be a set of N voters.

Denote by $\mathcal{L}(A)$ the set of linear orders (preference orders) on A.

Let A be a set of $M \ge 3$ alternatives, $A = \{a_1, a_2, \dots, a_M\}$ and let $V = \{1, 2, \dots, N\}$ be a set of N voters.

Denote by $\mathcal{L}(A)$ the set of linear orders (preference orders) on A.

Each voter $v \in V$ has an associated preference ordering \leq_v , and a preference profile (or situation) $P = (\leq_1, \dots, \leq_N) \in \mathcal{L}(A)^V$ is an N-tuple of preference orders.

Let A be a set of $M \ge 3$ alternatives, $A = \{a_1, a_2, \dots, a_M\}$ and let $V = \{1, 2, \dots, N\}$ be a set of N voters.

Denote by $\mathcal{L}(A)$ the set of linear orders (preference orders) on A.

Each voter $v \in V$ has an associated preference ordering \leq_v , and a preference profile (or situation) $P = (\leq_1, \dots, \leq_N) \in \mathcal{L}(A)^V$ is an N-tuple of preference orders.

A social welfare function is a function $F: \mathcal{L}(A)^V \to \mathcal{L}(A)$. We denote the resulting ordering by $\leq_{F(P)}$, or just \leq .

More definitions

Let $a_i, a_i \in A$.

- 1. Unanimity (Pareto efficiency)
 - If $a_i <_{v} a_j$ (that is, $a_i \leq_{v} a_j$ and $a_j \not\leq_{v} a_i$) for each $v \in V$, then $a_i \leq_{F} a_j$.
- 2. Independence of irrelevant alternatives (IIA)

If
$$P = (\leq_v)$$
, $P' = (\leq'_v) \in \mathcal{L}(A)^V$ such that for all $v \in V$, $a_i \leq_v a_j$ iff $a_i \leq'_v a_j$, then $a_i \leq_{F(P)} a_j$ iff $a_i \leq_{F(P')} a_j$.

3. Non-dictatorship

There is no $v \in V$ such that for all $P \in \mathcal{L}(A)^V$, $a_i <_v a_j$ implies $a_i <_{F(P)} a_j$.

The statement

Theorem (Arrow's Impossibility Theorem)

There is no social welfare function that satisfies all three conditions.

Suppose F satisfies unanimity and IIA.

Suppose F satisfies unanimity and IIA. Consider an arbirary $P \in \mathcal{L}(A)^V$ such that $a_i >_{v} a_j$ for each v, and swap the rankings of a_i and a_j sequentially from 1 to N.

Suppose F satisfies unanimity and IIA. Consider an arbirary $P \in \mathcal{L}(A)^V$ such that $a_i >_{v} a_j$ for each v, and swap the rankings of a_i and a_j sequentially from 1 to N.

By unanimity, we begin with $a_i > a_i$ and end with $a_i < a_i$.

Suppose F satisfies unanimity and IIA. Consider an arbitrary $P \in \mathcal{L}(A)^V$ such that $a_i >_V a_j$ for each v, and swap the rankings of a_i and a_j sequentially from 1 to N.

By unanimity, we begin with $a_i > a_j$ and end with $a_i < a_j$. Denote the first voter whose swap changes the social preference ordering by v_{ij} , the (i,j)-th *pivotal voter*. By IIA, this definition does not depend on P.

Let
$$P' = (\leq'_v) \in \mathcal{L}(A)^V$$
 such that $a_i <'_v a_k <'_v a_j$ for $v = 1, 2, \dots, v_{ij} - 1$ and $a_k <'_v a_j <'_v a_i$ for $v = v_{ij}, v_{ij} + 1, \dots, N$.

Let $P' = (\leq'_v) \in \mathcal{L}(A)^V$ such that $a_i <'_v a_k <'_v a_j$ for $v = 1, 2, \ldots, v_{ij} - 1$ and $a_k <'_v a_j <'_v a_i$ for $v = v_{ij}, v_{ij} + 1, \ldots, N$. Then $a_k <' a_j <' a_i$ by the definition of v_{ij} and by unanimity.

 $v = v_{ii} + 1, \ldots, N$.

Proof

Let $P' = (\leq'_v) \in \mathcal{L}(A)^V$ such that $a_i <'_v a_k <'_v a_j$ for $v = 1, 2, \ldots, v_{ij} - 1$ and $a_k <'_v a_j <'_v a_i$ for $v = v_{ij}, v_{ij} + 1, \ldots, N$. Then $a_k <' a_j <' a_i$ by the definition of v_{ij} and by unanimity. Let $P'' = (\leq''_v) \in \mathcal{L}(A)^V$ such that $a_i <'' a_j$ and $a_i <'' a_k$ for $v = 1, \ldots, v_{ij} - 1$, $a_k <_{v_{ii}} a_i <_{v_{ii}} a_i$, and $a_i <'' a_i$ and $a_k <'' a_i$ for

Let $P'=(\leq'_v)\in\mathcal{L}(A)^V$ such that $a_i<'_v a_k<'_v a_j$ for $v=1,2,\ldots,v_{ij}-1$ and $a_k<'_v a_j<'_v a_i$ for $v=v_{ij},v_{ij}+1,\ldots,N$. Then $a_k<'a_j<'a_i$ by the definition of v_{ij} and by unanimity. Let $P''=(\leq''_v)\in\mathcal{L}(A)^V$ such that $a_i<''a_j$ and $a_i<''a_k$ for $v=1,\ldots,v_{ij}-1$, $a_k<_{v_{ij}}a_i<_{v_{ij}}a_j$, and $a_j<''a_i$ and $a_k<''a_i$ for $v=v_{ij}+1,\ldots,N$. Then $a_k<''a_i\leq''a_j$ by the definition of v_{ij} and by IIA.

Let $P'=(\leq_v')\in\mathcal{L}(A)^V$ such that $a_i<_v'$ $a_k<_v'$ a_j for $v=1,2,\ldots,v_{ij}-1$ and $a_k<_v'$ $a_j<_v'$ a_i for $v=v_{ij},v_{ij}+1,\ldots,N$. Then $a_k<'$ $a_j<'$ a_i by the definition of v_{ij} and by unanimity.

Let $P'' = (\leq_v'') \in \mathcal{L}(A)^V$ such that $a_i <'' a_j$ and $a_i <'' a_k$ for $v = 1, \ldots, v_{ij} - 1$, $a_k <_{v_{ij}} a_i <_{v_{ij}} a_j$, and $a_j <'' a_i$ and $a_k <'' a_i$ for $v = v_{ij} + 1, \ldots, N$. Then $a_k <'' a_i \leq'' a_j$ by the definition of v_{ij} and by IIA.

Then by IIA we see that $a_k <_{v_{ij}} a_j$ implies $a_k < a_j$ for all $i \neq j \neq k$.

	1	 $v_{ij}-1$	V_{ij}	$v_{ij}+1$	 Ν
	aj	 a_j	a_i	a _i aj	 a_i
P'	a_k	 a_k	a_j	a_j	 a_j
	ai	 a¡	a_k	a _k	 a_k
			a_j	a_i	 a_i
	$a_j\Box$	 $a_j\square$	a_i		
P''			a_k	\Box $a_j\Box$	 $a_j\square$

				$v_{ij}+1$	
	aj	 a_j	a_i	a _i a _j a _k	 ai
P'	a_k	 a_k	a_j	a_j	 a_j
	aį	 a¡	a_k	a_k	 a_k
				ai	
	$a_j\Box$	 $a_j\square$	a_i		
P''			a_k	\Box $a_j\Box$	 $a_j\square$
		a_i			

Thus $a_k < a_j$ does not change as long as $a_k <_{v_{ij}} a_j$, so $v_{ij} \le v_{jk}$. Further, $v_{kj} \le v_{ij}$.

				$v_{ij}+1$	
	aj	 a_j	a_i	a _i a _j a _k	 ai
P'	a_k	 a_k	a_j	a_j	 a_j
	aį	 a¡	a_k	a_k	 a_k
			a_i	a_i	 a_i
	$a_j\square$	 $a_j\square$	a_i		
P''			a_k	\Box $a_j\Box$	 $a_j\square$
	aį	 a_i			

Thus $a_k < a_j$ does not change as long as $a_k <_{v_{ij}} a_j$, so $v_{ij} \le v_{jk}$. Further, $v_{kj} \le v_{ij}$. But $j \ne k$ are arbitrary, so $v_{kj} \le v_{ij} \le v_{jk}$ and $v_{jk} \le v_{kj}$, so $v_{kj} = v_{ij} = v_{jk}$.

		$v_{ij}-1$			
	a_j	 a _j a _k a _i	a_i	a_i	 aį
P'	a_k	 a_k	a_j	a_j	 a_j
	aį	 a_i	a_k	a_k	 a_k
			ai	ai	
	$a_j\square$	 $a_j\Box$	a_i		
P''		 $a_j\square$ \square a_i	a_k	$a_j\square$	 $a_j\square$
	aį	 a_i			

Thus $a_k < a_j$ does not change as long as $a_k <_{v_{ij}} a_j$, so $v_{ij} \le v_{jk}$. Further, $v_{kj} \le v_{ij}$. But $j \ne k$ are arbitrary, so $v_{kj} \le v_{ij} \le v_{jk}$ and $v_{jk} \le v_{kj}$, so $v_{kj} = v_{ij} = v_{jk}$.

Hence v_{ij} is a dictator.

For simplicity, let $A = \{a, b, c\}$, and assume individual preference orders are strict total orders.

For simplicity, let $A = \{a, b, c\}$, and assume individual preference orders are strict total orders.

Consider a situation where a > b; by IIA, this depends only on the set $U \subseteq V$ of voters who prefer a to b. Call U a "winning set" for a over b iff a > b iff a > u b for each $u \in U$.

For simplicity, let $A = \{a, b, c\}$, and assume individual preference orders are strict total orders.

Consider a situation where a > b; by IIA, this depends only on the set $U \subseteq V$ of voters who prefer a to b. Call U a "winning set" for a over b if a > b iff $a >_{u} b$ for each $u \in U$.

We want to be able to find a suitable collection $\mathcal{U} \subseteq \mathcal{P}(V)$ such that if $\{v : a <_v b\} \in \mathcal{U}$, then a < b. That is, we want \mathcal{U} to be a collection of winning sets.

Suppose we have such a collection $\ensuremath{\mathcal{U}}$ of winning sets.

Suppose we have such a collection ${\cal U}$ of winning sets.

Of course, $\varnothing \notin \mathcal{U}$.

Suppose we have such a collection ${\cal U}$ of winning sets.

Of course, $\varnothing \notin \mathcal{U}$.

Further, voting is decisive: if $U \in \mathcal{U}$, then $U^c \notin \mathcal{U}$, and if $U \notin \mathcal{U}$, then $U^c \in \mathcal{U}$.

Suppose we have such a collection $\ensuremath{\mathcal{U}}$ of winning sets.

Of course, $\emptyset \notin \mathcal{U}$.

Further, voting is decisive: if $U \in \mathcal{U}$, then $U^c \notin \mathcal{U}$, and if $U \notin \mathcal{U}$, then $U^c \in \mathcal{U}$.

Additional votes for an ordering should only help that ordering; if $U \in \mathcal{U}$ and $U \subseteq W \subseteq V$, then $W \in \mathcal{U}$, so in particular $V \in \mathcal{U}$.

Let $U = \{u : a <_u b\}$ and $W = \{w : b <_w c\}$, and suppose $U, W \in \mathcal{U}$. Then a < b and b < c, hence a < b < c.

Let $U = \{u : a <_u b\}$ and $W = \{w : b <_w c\}$, and suppose $U, W \in \mathcal{U}$. Then a < b and b < c, hence a < b < c.

Then $U \cap W \subseteq \{v : a <_v c\}$, and $\{v : a <_v c\} \in \mathcal{U}$.

```
Let U = \{u : a <_u b\} and W = \{w : b <_w c\}, and suppose U, W \in \mathcal{U}. Then a < b and b < c, hence a < b < c. Then U \cap W \subseteq \{v : a <_v c\}, and \{v : a <_v c\} \in \mathcal{U}. It may be that U \cap W = \{v : a <_v c\}; as when \{v : c <_v a <_v b\} = U \setminus W, \\ \{v : b <_v c <_v a\} = W \setminus U, \\ \{v : c <_v b <_v a\} = (U \cup V)^c.
```

Let $U = \{u : a <_u b\}$ and $W = \{w : b <_w c\}$, and suppose $U, W \in \mathcal{U}$. Then a < b and b < c, hence a < b < c.

Then $U \cap W \subseteq \{v : a <_v c\}$, and $\{v : a <_v c\} \in \mathcal{U}$.

It may be that $U \cap W = \{v : a <_v c\}$; as when

$$\{v : c <_{v} a <_{v} b\} = U \setminus W,$$

$$\{v : b <_{v} c <_{v} a\} = W \setminus U,$$

$$\{v : c <_{v} b <_{v} a\} = (U \cup V)^{c}.$$

Thus it must be in fact that $U \cap W \in \mathcal{U}$.

So we have a collection $\mathcal{U} \subseteq \mathcal{P}(V)$ such that

- 1. $\emptyset \notin \mathcal{U}$.
- 2. If $U \in \mathcal{U}$ and $U \subseteq W \subseteq V$, then $W \in \mathcal{U}$.
- 3. If $U, W \in \mathcal{U}$, then $U \cap W \in \mathcal{U}$.
- 4. For each $U \subseteq V$, either $U \in \mathcal{U}$ or $U^c \in \mathcal{U}$.

So we have a collection $\mathcal{U} \subseteq \mathcal{P}(V)$ such that

- 1. $\emptyset \notin \mathcal{U}$.
- 2. If $U \in \mathcal{U}$ and $U \subseteq W \subseteq V$, then $W \in \mathcal{U}$.
- 3. If $U, W \in \mathcal{U}$, then $U \cap W \in \mathcal{U}$.
- 4. For each $U \subseteq V$, either $U \in \mathcal{U}$ or $U^c \in \mathcal{U}$.

The collection \mathcal{U} is an ultrafilter on V!

Principal and nonprincipal ultrafilters

We have already seen an example of an ultrafilter:

Principal and nonprincipal ultrafilters

We have already seen an example of an ultrafilter:

Recall our dictator v_{ij} , and call them \hat{v} .

Principal and nonprincipal ultrafilters

We have already seen an example of an ultrafilter:

Recall our dictator v_{ij} , and call them \hat{v} . Any set of voters containing \hat{v} is a winning set, and the winning sets are precisely those containing \hat{v} .

Principal and nonprincipal ultrafilters

We have already seen an example of an ultrafilter:

Recall our dictator v_{ij} , and call them \hat{v} . Any set of voters containing \hat{v} is a winning set, and the winning sets are precisely those containing \hat{v} .

Our collection \mathcal{U} of winning sets is a *principal ultrafilter*.

An alternate statement

Armed with this revelation, Arrow's theorem can be stated more generally:

An alternate statement

Armed with this revelation, Arrow's theorem can be stated more generally:

Theorem (Arrow's Impossibility Theorem (Version 2))

There are no nonprincipal ultrafilters on finite sets.

An alternate statement

Armed with this revelation, Arrow's theorem can be stated more generally:

Theorem (Arrow's Impossibility Theorem (Version 2))

There are no nonprincipal ultrafilters on finite sets.

We could in fact create a nondictatorial Pareto IIA social welfare function by constructing a *nonprincipal ultrafilter*, provided we have infinite voters and the Axiom of Choice.

Ultraproducts

It turns out that the social choice function *F* is an *ultraproduct*:

Ultraproducts

It turns out that the social choice function F is an ultraproduct:

Given an index set I, a family of "structures" (in our case, an ordered set) $(M_i)_{i\in I}$, and an ultrafilter \mathcal{U} on I, we define the equivalence relation $a\sim b$ if $\{i\in I: a_i=b_i\}\in \mathcal{U}$. Then the ultraproduct is the quotient structure $\prod_{i\in I} M_i/\sim$, sometimes written $\prod_{i\in I} M_i/\mathcal{U}$.

Theorem (Łoś's theorem)

Let σ be a signature, $\mathcal U$ an ultrafilter on a set I, and let $(M_i)_{i\in I}$ be a family of σ -structures. Let $M=\prod_{i\in I}M_i/\mathcal U$. Then for each $a^1,\ldots,a^n\in\prod_{i\in I}M_i$, where $a^k=(a_i^k)_{i\in I}$, and every σ -formula ϕ ,

Theorem (Łoś's theorem)

Let σ be a signature, $\mathcal U$ an ultrafilter on a set I, and let $(M_i)_{i\in I}$ be a family of σ -structures. Let $M=\prod_{i\in I}M_i/\mathcal U$. Then for each $a^1,\ldots,a^n\in\prod_{i\in I}M_i$, where $a^k=(a_i^k)_{i\in I}$, and every σ -formula ϕ ,

$$M \models \phi[[a^1], \ldots, [a^n]] \iff \{i \in I : M_i \models \phi[a_i^1, \ldots, a_i^n]\} \in \mathcal{U}.$$

Theorem (Łoś's theorem)

Let σ be a signature, $\mathcal U$ an ultrafilter on a set I, and let $(M_i)_{i\in I}$ be a family of σ -structures. Let $M=\prod_{i\in I}M_i/\mathcal U$. Then for each $a^1,\ldots,a^n\in\prod_{i\in I}M_i$, where $a^k=(a_i^k)_{i\in I}$, and every σ -formula ϕ ,

$$M \models \phi[[a^1], \ldots, [a^n]] \iff \{i \in I : M_i \models \phi[a_i^1, \ldots, a_i^n]\} \in \mathcal{U}.$$

Proof.

Theorem (Łoś's theorem)

Let σ be a signature, $\mathcal U$ an ultrafilter on a set I, and let $(M_i)_{i\in I}$ be a family of σ -structures. Let $M=\prod_{i\in I}M_i/\mathcal U$. Then for each $a^1,\ldots,a^n\in\prod_{i\in I}M_i$, where $a^k=(a_i^k)_{i\in I}$, and every σ -formula ϕ ,

$$M \models \phi[[a^1], \ldots, [a^n]] \iff \{i \in I : M_i \models \phi[a_i^1, \ldots, a_i^n]\} \in \mathcal{U}.$$

Proof.

Bonus Exercise.

A Big Black Box

Theorem (Uniqueness of winning ultrafilters)

A Big Black Box

Theorem (Uniqueness of winning ultrafilters)

1. For each Pareto IIA social welfare function F there is a unique ultrafilter \mathcal{U}_F such that for each $U \in \mathcal{U}_F$, each $a, b \in A$, and any preference profile P, if $\{u : a \leq_u b\} \in \mathcal{U}_F$ then $a \leq_{F(P)} b$.

A Big Black Box

Theorem (Uniqueness of winning ultrafilters)

- 1. For each Pareto IIA social welfare function F there is a unique ultrafilter \mathcal{U}_F such that for each $U \in \mathcal{U}_F$, each $a, b \in A$, and any preference profile P, if $\{u : a \leq_u b\} \in \mathcal{U}_F$ then $a \leq_{F(P)} b$.
- 2. For each ultrafilter U_F on V there exists such an F.

Some more black boxes

Some more black boxes

Fact (Fact 1)

For any atomless measure space (X, \mathcal{M}, μ) , for all $\varepsilon > 0$, there is a finite partition $X = \bigsqcup_{i=1}^r C_i$, such that each $C_i \in \mathcal{M}$ and $\mu(C_i) < \varepsilon$.

Some more black boxes

Fact (Fact 1)

For any atomless measure space (X, \mathcal{M}, μ) , for all $\varepsilon > 0$, there is a finite partition $X = \bigsqcup_{i=1}^r C_i$, such that each $C_i \in \mathcal{M}$ and $\mu(C_i) < \varepsilon$.

Fact (Fact 2)

Let \mathcal{U} be an ultrafilter on a set X. For any finite partition $X = \bigsqcup_{i=1}^r C_i$, exactly one $C_i \in \mathcal{U}$.

Arbitrarily small coalitions

In the case where V is infinite, consider an atomless measure space $(V, \mathcal{V}, \lambda)$.

Arbitrarily small coalitions

In the case where V is infinite, consider an atomless measure space $(V, \mathcal{V}, \lambda)$.

Theorem

For any $\varepsilon > 0$ there exists $C \in \mathcal{V}$, $C \neq \emptyset$, $\lambda(C) < \varepsilon$ such that for any $a, b \in A$ and any situation P, if $\{v : a \leq_c b\} \subseteq C$ then $a \leq_{F(P)} b$.

Arbitrarily small coalitions

In the case where V is infinite, consider an atomless measure space $(V, \mathcal{V}, \lambda)$.

Theorem

For any $\varepsilon > 0$ there exists $C \in \mathcal{V}$, $C \neq \emptyset$, $\lambda(C) < \varepsilon$ such that for any $a, b \in A$ and any situation P, if $\{v : a \leq_C b\} \subseteq C$ then $a \leq_{F(P)} b$.

Proof.

Apply the first fact to $(V, \mathcal{V}, \lambda)$. Then we have a partition $X = \bigsqcup_{i=1}^r C_i$ such that each $C_i \in \mathcal{M}$ and $\mu(C_i) < \varepsilon$. Take the ultrafilter \mathcal{U}_F guaranteed by the uniqueness of winning ultrafilters and apply the second fact.

Consider V as a discrete topological space and suppose the set A of alternatives is finite. Then $\mathcal{L}(A)$ is finite, so it is also a discrete topological space.

Consider V as a discrete topological space and suppose the set A of alternatives is finite. Then $\mathcal{L}(A)$ is finite, so it is also a discrete topological space.

We have the following commutative diagram:

$$V \xrightarrow{i_V} \beta V$$

$$\downarrow^{\beta P}$$

$$\mathcal{L}(A)$$

Consider V as a discrete topological space and suppose the set A of alternatives is finite. Then $\mathcal{L}(A)$ is finite, so it is also a discrete topological space.

We have the following commutative diagram:

$$V \xrightarrow{i_V} \beta V$$

$$\downarrow^{\beta P}$$

$$\mathcal{L}(A)$$

This is the universal property for βV , the Stone-Čech compactification of V.

Consider V as a discrete topological space and suppose the set A of alternatives is finite. Then $\mathcal{L}(A)$ is finite, so it is also a discrete topological space.

We have the following commutative diagram:

$$V \xrightarrow{i_V} \beta V$$

$$\downarrow^{\beta P}$$

$$\mathcal{L}(A)$$

This is the universal property for βV , the Stone-Čech compactification of V.

Note that V is dense in βV .

One more black box

Fact

Let $\mathcal U$ be an ultrafilter on a topological space X. Then $\mathcal U$ has a (unique) limit in βX .

Theorem.

There exists a point $\hat{v} \in \beta V$ such that for all $a, b \in A$ and $P \in \mathcal{L}(A)^V$, if $a \leq_{\hat{v}} b$ then $a \leq_{F(P)} b$.

Proof.

Theorem.

There exists a point $\hat{v} \in \beta V$ such that for all $a, b \in A$ and $P \in \mathcal{L}(A)^V$, if $a \leq_{\hat{v}} b$ then $a \leq_{F(P)} b$.

Proof.

We know that there is a unique winning ultrafilter \mathcal{U}_F .

Theorem

There exists a point $\hat{v} \in \beta V$ such that for all $a, b \in A$ and $P \in \mathcal{L}(A)^V$, if $a \leq_{\hat{v}} b$ then $a \leq_{F(P)} b$.

Proof.

We know that there is a unique winning ultrafilter \mathcal{U}_F . By the previous fact, \mathcal{U}_F has a unique limit $\hat{v} \in \beta V$.

Theorem

There exists a point $\hat{v} \in \beta V$ such that for all $a, b \in A$ and $P \in \mathcal{L}(A)^V$, if $a \leq_{\hat{v}} b$ then $a \leq_{F(P)} b$.

Proof.

We know that there is a unique winning ultrafilter \mathcal{U}_F .

By the previous fact, \mathcal{U}_F has a unique limit $\hat{\mathbf{v}} \in \beta V$.

Then $\beta P(\hat{v}) = \mathcal{U}_{\mathcal{F}} \lim_{v} P(v)$. Since $\mathcal{L}(A)$ is discrete, there is some $U \in \mathcal{U}_F$ with $P(U) = \beta P(\hat{v})$.

Theorem

There exists a point $\hat{v} \in \beta V$ such that for all $a, b \in A$ and $P \in \mathcal{L}(A)^V$, if $a \leq_{\hat{v}} b$ then $a \leq_{F(P)} b$.

Proof.

We know that there is a unique winning ultrafilter \mathcal{U}_F .

By the previous fact, \mathcal{U}_F has a unique limit $\hat{\mathbf{v}} \in \beta V$.

Then $\beta P(\hat{v}) = \mathcal{U}_{\mathcal{F}} \lim_{v} P(v)$. Since $\mathcal{L}(A)$ is discrete, there is some $U \in \mathcal{U}_{\mathcal{F}}$ with $P(U) = \beta P(\hat{v})$.

By the properties of \mathcal{U}_F , U is a winning set, and hence \hat{v} dictates F.

References

- Kenneth J. Arrow. "A Difficulty in the Concept of Social Welfare". In: Journal of Political Economy 58.4 (1950).
- Alan P Kirman and Dieter Sondermann. "Arrow's theorem, many agents, and invisible dictators". In: Journal of Economic Theory 5.2 (1972).
- David Pierce. Ultraproducts. 2012.
- Ning Neil Yu. "A one-shot proof of Arrow's impossibility theorem". In: *Economic Theory* 50.2 (2012).
- ▶ Intern et al.