# **SMART INDIA HACKATHON 2025**



- Problem Statement ID –25044
- Problem Statement Title-Al-Powered Crop Yield Prediction and Optimization
- Theme- Agriculture & Rural Development
- PS Category- Software
- Team ID- CodeSages
- Team Name CodeSages





## Idea Title: KrishiAI - Smart Crop Yield Prediction & Advisory Platform



#### **Proposed Solution:**

- Al platform predicting crop yield using historical yield data, soil health, and real-time weather.
- Provides crop-specific recommendations (irrigation, fertilizer, pest control).
- Web app in regional languages with voice support.

#### **How it Addresses the Problem:**

- Helps small farmers increase productivity & reduce input costs.
- Converts raw data into localized, simple advisory.
- Acts as a bridge between scientific research and grassroots farming.

#### **Innovation & Uniqueness:**

- Combines AI + real-time weather APIs + soil & satellite data (NDVI).
- Personalized yield forecasts + "What-If" simulations.
- Voice-enabled, multilingual platform for inclusivity.



## TECHNICAL APPROACH



### **Technologies Used:**

- Backend: Node.js, Express.js, PostgreSQL
- Frontend: React.js (Web), React Native (Mobile), Tailwind CSS
- ML/AI: XGBoost, TensorFlow/PyTorch, SHAP (Explainability)
- APIs: OpenWeatherMap, SoilGrids, Sentinel/Landsat NDVI
- Deployment: Docker, Vercel/Render

### **Methodology:**

- Data Collection → Weather, Soil, Crop data
- Feature Engineering → Rainfall, NDVI, Soil fertility, Crop stage
- ML Models → Yield prediction (tons/hectare) + optimization engine
- Recommendation Engine → Irrigation, Fertilizer, Pest risk forecast
- Delivery → Multilingual app + SMS/Voice support
- Feedback Loop → Farmer input → Model retrains → Accuracy improves





# **Workflow Diagram**







## FEASIBILITY AND VIABILITY



### Feasibility:

- Uses open-source datasets & APIs (no expensive sensors).
- Works on low-bandwidth (2G-friendly).
- Scalable across regions with minimal setup.

#### **Challenges & Risks:**

- Local farm-level data may be limited.
- Low tech literacy among farmers.
- Weather unpredictability.

#### **Strategies to Overcome:**

- Using regional averages + satellite data for cold start.
- Visual & voice-based UI for easy adoption.
- Partner with Krishi Kendras, cooperatives & NGOs for outreach.





## IMPACT AND BENEFITS



#### **Impact on Farmers:**

- 10–15% increase in yield with optimized practices.
- 15–20% savings on fertilizer & irrigation costs.
- Lower pest losses → more stable income.

#### **Broader Benefits:**

- **Economic:** Better income, reduced input costs.
- **Social:** Improves rural livelihood, reduces farmer stress.
- **Environmental:** Conserves water, reduces chemical overuse.
- Government: Supports Digital Agriculture Mission 2025.



# RESEARCH AND REFERENCES



#### **Research Papers:**

- Crop yield prediction in agriculture: A comprehensive review of ML & DL approaches (2024) <u>ScienceDirect</u>
- Integration of ML and remote sensing in crop yield prediction (2025) <u>Agronomy Journals</u>
- Enhanced crop yield forecasting with deep learning & remote sensing (2024) Springer
- Next-gen agriculture: AI + Explainable AI for precision farming (2024) <u>Frontiers</u>

#### **Datasets & APIs:**

- OpenWeatherMap API <u>openweathermap.org</u>
- SoilGrids Database soilgrids.org
- Copernicus Sentinel Data (NDVI/EVI) copernicus.eu