第二章 范数理论及其应用

- 2.1 向量范数
- 2.2 矩阵范数
- 2.3 范数的一些应用

2.1 向量范数及其性质

一. 向量范数的概念及 l_p 范数

设向量序列
$$\left\{x^{(k)}\right\} \in \mathbb{R}^n$$
, $x^{(k)} = (\xi_1^{(k)}, \xi_2^{(k)}, \cdots, \xi_n^{(k)})(k = 1, 2, \cdots)$

如果

$$\lim_{k\to\infty}\xi_i^{(k)}=\xi_i$$

记 $x = (\xi_1, \xi_2, \dots, \xi_n)$,则称向量序列 $\{x^{(k)}\}$ 有极限x,或称 $\{x^{(k)}\}$ 收敛于x,简称 $\{x^{(k)}\}$ 收敛。

记为
$$\lim_{k \to \infty} x^{(k)} = x$$
 或 $x^{(k)} \to x$

不收敛的向量序列 $\{x^{(k)}\}$ 称为是发散的.

例: 向量序列
$$x^{(k)} = \begin{pmatrix} \frac{1}{2^k} \\ \frac{\sin k}{k} \end{pmatrix} (k = 1, 2, 3, \cdots)$$

所以
$$\lim_{k\to\infty} x^{(k)} = \begin{pmatrix} 0\\0 \end{pmatrix}$$
,故 $\{x^{(k)}\}$ 收敛.

引: 向量序列
$$x^{(k)} = \begin{pmatrix} \sum_{i=1}^{k} \frac{1}{2^{i}} \\ \sum_{i=1}^{k} \frac{1}{i} \end{pmatrix} \quad (k = 1, 2, 3, \dots)$$

因为
$$\sum_{i=1}^{k} \frac{1}{2^{i}} = \frac{1}{2} \frac{1 - (1/2)^{k}}{1 - 1/2} \to 1,$$

$$\sum_{i=1}^{k} \frac{1}{i} \to \infty,$$

所以是发散的.

显然, 当 $x^{(k)} \rightarrow x$ 时, 向量 $x^{(k)} - x$ 的欧式长度

$$|\mathbf{x}^{(k)} - \mathbf{x}| = \sqrt{(\xi_1^{(k)} - \xi_1)^2 + \dots + (\xi_n^{(k)} - \xi_n)^2} \to 0$$

反之亦成立.

所以,向量的长度可用来刻画收敛的性质.

对于一般的线性空间,如何定义向量的长度呢?

范数!!

м

定义 2.1 如果V是数域K上的线性空间,且对于V的任意一向量 x,对应一个实值函数,它满足以下三个条件:

- (1) 非负性: 当 $x \neq 0$ 时,||x|| > 0;当x = 0时,||x|| = 0
- (2) 齐次性: $||ax|| = |a|||x||, a \in K, x \in V$
- (3) 三角不等式: $||x + y|| \le ||x|| + ||y||, x, y \in V$.

则称||x||为V上向量x的范数,简称向量范数.

例2.1 复向量 $x = (\xi_1, \xi_2, ..., \xi_n) \in C^n$, 长度

$$\|\mathbf{x}\| = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_n|^2}$$
 (2.1.1)

是否是范数?

解: (1) 对于
$$||x|| = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_n|^2}$$

 当 $x \neq o$ 时, $||x|| > 0$; 当 $x = o$ 时, $||x|| = 0$.

(2)
$$\forall a \in C, ||ax|| = \sqrt{|a\xi_1|^2 + |a\xi_2|^2 + \dots + |a\xi_n|^2} = |a||x||$$

(3) 对于 $x, y \in C^n$

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2 \operatorname{Re}(x, y) + (y, y)$$

因为
$$\operatorname{Re}(x,y) \le |(x,y)| \le \sqrt{(x,x)(y,y)} = ||x|||y||$$

所以
$$||x + y||^2 \le ||x||^2 + 2||x|||y|| + ||y||^2 = (||x|| + ||y||)^2$$

段り
$$||x + y|| \le ||x|| + ||y||$$

因此,式(2.1.1)是 C^n 上的一种范数。称这种范数为2-范数,记作 $||x||_{2^*}$

可以证明范数
$$||x||_2$$
还满足不等式
$$|||x|| - ||y|| \le ||x - y||$$

两边长度之差不大于第三边的长度.

由此,可以证明向量范数是其分量的连续函数!

м

例2.2 证明 $||x|| = \max_{i} |\xi_{i}|$ 是 C^{n} 上的一种范数, 这里 $x = (\xi_{1}, \xi_{2}, \dots \xi_{n}) \in C^{n}$ 。

证 当 $x \neq o$ 时,有 $||x|| = \max_{i} |\xi_{i}| > 0$; 当x = o时,有||x|| = 0. 又 $\forall a \in C$,有 $||ax|| = \max_{i} |a\xi_{i}| = |a| \max_{i} |\xi_{i}| = |a| ||x||$

 $||x + y|| = \max_{i} |\xi_{i} + \eta_{i}| \le \max_{i} |\xi_{i}| + \max_{i} |\eta_{i}| = ||x|| + ||y||$

因此, $||x|| = \max_{i} |\xi_i|$ 是 C^n 上的一种范数.

称例2. 2中的范数为∞ –范数,记为 $||x||_{\infty}$

例2.3 证明 $||x|| = \sum_{i=1}^{n} |\xi_i|$ 也是 C^n 上的一种范数其中 $x = (\xi_1, \xi_2, ..., \xi_n) \in C^n$

证 (1),(2)略;

对 $\forall x, y \in C^n$,有

$$||x + y|| = \sum_{i=1}^{n} |\xi_i + \eta_i| \le \sum_{i=1}^{n} (|\xi_i| + |\eta_i|) = ||x|| + ||y||$$

因此, $||x|| = \sum_{i=1}^{n} |\xi_i| 是 C^n$ 上的一种范数. 称例2. 3中的范数为1 – 范数,记为 $||x||_1$

PQ距离:

$$\left|\xi_1-\eta_1\right|+\left|\xi_2-\eta_2\right|$$

$$\sqrt{(\xi_1 - \eta_1)^2 + (\xi_2 - \eta_2)^2}$$

$$\max\{|\xi_1 - \eta_1|, |\xi_2 - \eta_2|\}$$

٧

可以证明 $||x|| = (\sum_{i=1}^{n} |\xi_i|^p)^{1/p}, 1 \le p < +\infty$ 是向量范数.

只证明三角不等式

$$\left(\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p} \right)^{1/p} \leq \left(\sum_{i=1}^{n} \left| \xi_{i} \right|^{p} \right)^{1/p} + \left(\sum_{i=1}^{n} \left| \eta_{i} \right|^{p} \right)^{1/p}$$

其中 $y = (\eta_1, \eta_2, \dots, \eta_n) \in \mathbb{C}^n$

注: Holder不等式:

$$\sum_{i=1}^{n} |a_{i}b_{i}| \leq \left(\sum_{i=1}^{n} |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |b_{i}|^{q}\right)^{\frac{1}{q}}$$
其中 $\frac{1}{p} + \frac{1}{q} = 1, p > 1, q > 1.$

м

因为

$$\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p} \leq \sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p-1} \left(\left| \xi_{i} \right| + \left| \eta_{i} \right| \right) = \sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p-1} \left| \xi_{i} \right| + \sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p-1} \left| \eta_{i} \right|$$

$$\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p} \leq \left(\sum_{i=1}^{n} \left| \xi_{i} \right|^{p} \right)^{1/p} \left(\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{(p-1)\frac{p}{p-1}} \right)^{1-\frac{1}{p}} +$$

$$(\sum_{i=1}^{n} \left| \eta_{i} \right|^{p})^{1/p} (\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{(p-1)\frac{p}{p-1}})^{1-\frac{1}{p}}$$

$$= \left[\left(\sum_{i=1}^{n} \left| \xi_{i} \right|^{p} \right)^{1/p} + \left(\sum_{i=1}^{n} \left| \eta_{i} \right|^{p} \right)^{1/p} \right] \times \left(\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p} \right)^{1-\frac{1}{p}}$$

所以,
$$\left(\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p}\right)^{1/p} \leq \left(\sum_{i=1}^{n} \left| \xi_{i} \right|^{p}\right)^{1/p} + \left(\sum_{i=1}^{n} \left| \eta_{i} \right|^{p}\right)^{1/p}$$

称 $(\sum_{i=1}^{n} |\xi_i|^p)^{\frac{1}{p}}$ 为向量x的p -范数或 l_p 范数,记为 $||x||_p$.

当p=1,2,便得 $\|x\|_1,\|x\|_2$,并且 $\|x\|_\infty = \lim_{p\to\infty} \|x\|_p$

证: 设
$$\left| \xi_{\mathbf{i}_0} \right| = \max_i \left| \xi_i \right|, \quad \left\| x \right\|_{\infty} = \max_i \left| \xi_i \right| = \left| \xi_{\mathbf{i}_0} \right|.$$

$$\mathbf{X} \qquad \|x\|_{p} = \left(\sum_{i=1}^{n} \left|\xi_{i_{0}}\right|^{p} \frac{\left|\xi_{i}\right|^{p}}{\left|\xi_{i_{0}}\right|^{p}}\right)^{p} = \left|\xi_{i_{0}}\right| \left(\sum_{i=1}^{n} \frac{\left|\xi_{i}\right|^{p}}{\left|\xi_{i_{0}}\right|^{p}}\right)^{p}$$

$$\left|\xi_{i_0}\right|^p \le \sum_{i=1}^n \left|\xi_i\right|^p \le n \left|\xi_{i_0}\right|^p$$

所以
$$1 \le \left(\sum_{i=1}^{n} \frac{|\xi_{i}|^{p}}{|\xi_{i}|^{p}}\right)^{1/p} \le n^{1/p}$$
, 从而有 $\lim_{p \to \infty} ||x||_{p} = |\xi_{i_{0}}| = ||x||_{\infty}$

- 例2.4 设A 是任意一个n阶对称正定矩阵,列向量 $x \in \mathbb{R}^n$,则函数 $\|x\|_A = (x^T A x)^{1/2}$ 是一种向量范数,称为加权范数或椭圆范数.
- 证: 因为A 正定,所以当x=0时, $||x||_A = 0$ 当 $x \neq 0$ 时, $||x||_A > 0$,即 $||x||_A$ 具有非负性

又对任意 $\forall a \in R$,有

 $\|a\mathbf{x}\|_{A} = \sqrt{(a\mathbf{x})^{\mathsf{T}} \mathbf{A}(a\mathbf{x})} = |a|\sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{A}\mathbf{x}} = |a|\|\mathbf{x}\|_{A}$ 所以 $|\mathbf{x}||_{A}$ 具有齐次性。

由于A为正定,所以存在非奇异矩阵P使

$$A = P^{\mathrm{T}}P.$$

于是
$$\|x\|_A = \sqrt{x^T A x} = \sqrt{x^T P^T P x} = \|Px\|_2$$

从而
$$\|x + y\|_A = \|P(x + y)\|_2 \le \|Px\|_2 + \|Py\|_2 \le \|x\|_A + \|y\|_A$$

所以, $||x||_{\Delta}$ 是一种向量范数。

м

例2.5 设 $\forall f(x) \in C[a,b]$, 可以验证

$$||f(t)||_{p} = \left[\int_{a}^{b} |f(t)|^{p} dt\right]^{1/p}, 1 \le p < \infty$$

$$||f(t)||_{\infty} = \max_{t \in [a,b]} |f(t)|$$

是线性空间 C[a,b] 的范数.

例2.6 给定 V^n 的基 $x_1, x_2, ..., x_n$,设 $x \in V^n$ 在该基下的 坐标向量为 $\tilde{x} = (\xi_1, \xi_2, ..., \xi_n)$, 那么 $\|x\|_p = \|\tilde{x}\|_p$, $1 \le p \le \infty$,是 V^n 上的范数,也称为x的p-范数.

w

二. 向量范数的等价性

定理2.1 设 $\|x\|_{\alpha}$ 和 $\|x\|_{\beta}$ 为有限线性空间V的任意两种向量范数,则存在两个与向量无关的正常数 c_1 和 c_2 使下面不等式成立

$$|c_1||x||_{\beta} \le ||x||_{\alpha} \le |c_2||x||_{\beta}$$

证 只需证每种范数与2-范数等价即可。

设V是n维的, x_1, x_2, \cdots, x_n 是它的一个基,于是,

对于
$$\forall \boldsymbol{x} \in \mathbf{V}$$
有 $\boldsymbol{x} = \xi_1 \boldsymbol{x}_1 + \xi_2 \boldsymbol{x}_2 + \dots + \xi_n \boldsymbol{x}_n$,从而
$$\|\boldsymbol{x}\|_{\alpha} = \|\xi_1 \boldsymbol{x}_1 + \xi_2 \boldsymbol{x}_2 + \dots + \xi_n \boldsymbol{x}_n\|_{\alpha}$$

令 $\phi(\xi_{1}, \xi_{2}, \dots, \xi_{n}) = \|x\|_{\alpha}$, 证明它是连续函数 设 $x' = \xi'_{1}x_{1} + \xi'_{2}x_{2} + \dots + \xi'_{n}x_{n} \in V$, 则 $|\phi(\xi'_{1}, \xi'_{2}, \dots, \xi'_{n}) - \phi(\xi_{1}, \xi_{2}, \dots, \xi_{n})|$ $= \|x'\|_{\alpha} - \|x\|_{\alpha} |\leq \|x' - x\|_{\alpha}$ $= \|(\xi'_{1} - \xi_{1})x_{1} + (\xi'_{2} - \xi_{2})x_{2} + \dots + (\xi'_{n} - \xi_{n})x_{n}\|_{\alpha}$ $\leq |\xi'_{1} - \xi_{1}| \|x_{1}\|_{\alpha} + |\xi'_{2} - \xi_{2}| \|x_{2}\|_{\alpha} + \dots + |\xi'_{n} - \xi_{n}| \|x_{n}\|_{\alpha}$

由于 $||x_i||_{\alpha}$ (i=1,2,...,n)是常数,所以当 $\xi_i' \to \xi_i$ 时

根据连续函数的性质可知,在有界闭集

$$S = \{ (\xi_1, \xi_2, \dots, \xi_n) | |\xi_1|^2 + |\xi_2|^2 + \dots + |\xi_n|^2 = 1 \}$$

上,函数 $\phi(\xi_1, \xi_2, \dots, \xi_n)$ 可以达到最大值 c_1 和最小值 c_2 .

设向量
$$y = \frac{\xi_1}{\|x\|_2} x_1 + \frac{\xi_2}{\|x\|_2} x_2 + \dots + \frac{\xi_n}{\|x\|_2} x_n$$

从而有

$$0 < c_1 \le \|y\|_{\alpha} = \phi \left(\frac{\xi_1}{\|x\|_2}, \frac{\xi_2}{\|x\|_2}, \dots \frac{\xi_n}{\|x\|_2} \right) \le c_2$$

但
$$y = \frac{x}{\|x\|_2}$$
, $c_1 \le \frac{\|x\|_{\alpha}}{\|x\|_2} \le c_2$,

故 $c_1 \|x\|_2 \le \|x\|_{\alpha} \le c_2 \|x\|_2$

证毕

例如:

$$\|x\|_{\infty} \leq \|x\|_{1} \leq n\|x\|_{\infty}$$

$$\|x\|_{\infty} \le \|x\|_2 \le \sqrt{n} \|x\|_{\infty}$$

定义2.2 满足不等式(2.1.9)的两种范数称为是等价的.

定理2.2 C^n 中的 $x^{(k)} = (\xi_1^{(k)}, \xi_2^{(k)}, \dots, \xi_n^{(k)}), k = 1, 2, \dots,$ 收敛到向量 $x = (\xi_1, \xi_2, \dots, \xi_n)$ 的充要条件是对任一种范数 $\|\bullet\|^*$,序列 $\{\|x^{(k)} - x\|_{\infty}\}$ 收敛于0.

证 取 $\|\cdot\| = \|\cdot\|_{\infty}$

充分性. 设 $\|x^{(k)} - x\|_{\infty} \to 0$ 即 $\max_{i} \left| \boldsymbol{\xi}_{i}^{(k)} - \boldsymbol{\xi}_{i} \right| \to \mathbf{0}$ 但是 $\left| \boldsymbol{\xi}_{j}^{(k)} - \boldsymbol{\xi}_{j} \right| \le \max_{i} \left| \boldsymbol{\xi}_{i}^{(k)} - \boldsymbol{\xi}_{i} \right| (j = 1, 2, \dots, n)$ 从而 $\left| \boldsymbol{\xi}_{j}^{(k)} - \boldsymbol{\xi}_{j} \right| \to 0$ $(j = 1, 2, \dots, n)$, 即 $x^{(k)} \to x$

必要性. 设 $x^{(k)} \to x$,则 $x^{(k)} - x \to 0$ 即向量 $(\xi_1^{(k)} - \xi_1, \xi_2^{(k)} - \xi_2, \dots, \xi_n^{(k)} - \xi_n)$ 的每一个分量收敛 到零,于是对 $\forall \epsilon > 0$, $\exists k_i$ 使得当 $k > k_i$ 时,

有 $\left| \xi_i^{(k)} - \xi_i \right| < \epsilon$,取 $N = \max_i k_i \, \exists k > N$ 时有 $\left| \xi_i^{(k)} - \xi_i \right| < \epsilon (i = 1, 2, \cdots, n)$,故 $\max_i \left| \xi_i^{(k)} - \xi_i \right| < \varepsilon$ 即 $\left\| x^{(k)} - x \right\|_{\infty} < \varepsilon$ 从而可知序列 $\left\{ \left\| x^{(k)} - x \right\| \right\}$ 收敛于零

证毕

1

2.2 矩阵范数

2.2.1 定义与性质

定义2.3 设 $A \in \mathbb{C}^{m \times n}$,定义一个实值函数 ||A||,它满足以下三个条件:

- (1) 非负性: 当 $A \neq O$ 时, ||A|| > 0; 当A = O 时, ||A|| = 0
- (2) 齐次性: $||aA|| = |a|||A||, a \in C$
- (3) 三角不等式: $||A + B|| \le ||A|| + ||B||$, $B \in \mathbb{C}^{m \times n}$

则称 ||A|| 为A 的<u>广义</u>矩阵范数.

矩阵之间的乘法运算?

若对 C^{m×n}, C^{n×l} 与C^{m×l}上的同类广义矩阵范数 ||●||有

(4) 相容性: $||AB|| \le ||A|| ||B||, B \in \mathbb{C}^{n \times l}$ (2.2.1)

则称 ||A||为A 的矩阵范数.

м

极限:

设矩阵序列 $\{A^{(k)}\}$,其中 $A^{(k)} \in \mathbb{C}^{m \times n}, k = 1, 2, \cdots$,用 $a_{ij}^{(k)}$ 记 $A^{(k)}$ 的第i 行第j 列的元素,且 $a_{ij}^{(k)} \to a_{ij}$ 则称 $\{A^{(k)}\}$ 有极限A,或称 $A^{(k)}$ 收敛于A:

$$\lim_{k\to\infty} A^{(k)} = A \vec{\boxtimes} A^{(k)} \to A$$

不收敛的矩阵序列称为发散的.

可以证明: (1)
$$A^{(k)} \rightarrow A \Leftrightarrow ||A^{(k)} - A|| \rightarrow 0$$

$$(2) |||A|| - ||B||| \le ||A - B||$$

(3) 连续性.
$$||A^{(k)} - A|| \to 0 \Rightarrow ||A^{(k)}|| \to ||A||$$

例2.7 已知 $A = (a_{ij}) \in C^{n \times n}$ 证明以下两函数

$$||A||_{m_1} = \sum_{i,j=1}^n /a_{ij}/, ||A||_{m_\infty} = n \cdot \max_{i,j} /a_{ij}/$$

都是 Cn×n上的矩阵范数.

证: 仅就三角不等式与相容性加以验证.

$$||A + B||_{m_1} = \sum_{i,j=1}^n |a_{ij} + b_{ij}| \le \sum_{i,j=1}^n (/a_{ij}/+/b_{ij}/)$$

$$= \sum_{i,j=1}^{n} \left| a_{ij} \right| + \sum_{i,j=1}^{n} \left| b_{ij} \right| = \left\| A \right\|_{m_1} + \left\| B \right\|_{m_1}$$

$$||AB||_{m_1} = \sum_{i,j=1} |a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}|$$

$$\leq \sum_{i=1}^{n} \left(\left/ \left(a_{i1} \right) \right/ \left| b_{1j} \right| + \left/ \left| a_{i2} \right| \right/ \left| b_{2j} \right| + \dots + \left| \left| a_{in} \right| \right/ \left| b_{nj} \right| \right)$$

$$\leq \sum_{i,j=1}^{n} (|a_{i1}| + |a_{i2}| + \dots + |a_{in}|) \times \sum_{i,j=1}^{n} (b_{1j} / + /b_{2j} / + \dots + /b_{nj} /)$$

$$= \sum_{i,j=1}^{n} / a_{ij} / \sum_{i,j=1}^{n} / b_{ij} / = ||A||_{m_1} ||B||_{m_1}$$

因此 $//A//_{m_1}$ 是 A 的矩阵范数.

注意: 此处改为 $A = (a_{ij}) \in C^{m \times n}$ 依然成立.

矩阵与向量混用?

Ax

矩阵与向量混用

定义2.4 对于 $\mathbb{C}^{m \times n}$ 上的矩阵范数 $\| \cdot \|_{M}$ 和 \mathbb{C}^{n} 上的 同类向量范数 $| \cdot |_{N}$,如果

 $||Ax||_{V} \le ||A||_{M} ||x||_{V}, \forall A \in \mathbb{C}^{m \times n}, \forall x \in \mathbb{C}^{n}$

则称矩阵范数 ||:||_M与向量范数 //·/_W是相容的.

١,

例2.8 设 $A \in \mathbb{C}^{m \times n}$,证明函数

$$||A||_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2} = \left(tr(A^{H}A)\right)^{1/2}$$

是 C^{m×n}上的矩阵范数,且与向量范数 ● 和容.

证: 设A 的第j 列为 a_j ($j = 1, 2, \dots, n$) $B \in \mathbb{C}^{m \times n}$ 的第j 列为 b_j ($j = 1, 2, \dots, n$), 则有

$$||A + B||_F^2 = ||a_1 + b_1||_2^2 + ||a_2 + b_2||_2^2 + \dots + ||a_n + b_n||_2^2$$

$$\leq (||a_1||_2 + ||b_1||_2)^2 + (||a_2||_2 + ||b_2||_2)^2 + \dots + (||a_n||_2 + ||b_n||_2)^2$$

$$= \|a_1\|_2^2 + \|a_2\|_2^2 + \dots + \|a_n\|_2^2$$

$$+ 2(\|a_1\|_2 \|b_1\|_2 + \|a_2\|_2 \|b_2\|_2 + \dots + \|a_n\|_2 \|b_n\|_2)$$

$$+ (\|b_1\|_2^2 + \|b_2\|_2^{2^2} + \dots + \|b_n\|_2^2)$$

所以

$$\|A + B\|_F^2 \le \|A\|_F^2 + 2\|A\|_F \|B\|_F + \|B\|_F^2 = (\|A\|_F + \|B\|_F)^2$$
即三角不等式成立.

再设
$$B \in C^{n \times l}$$
,则 $AB = \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right) \in C^{m \times l}$,于是有

$$\begin{aligned} \|AB\|_{F}^{2} &\leq \sum_{i=1}^{m} \sum_{j=1}^{l} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|^{2} \leq \sum_{i=1}^{m} \sum_{j=1}^{l} \left(\sum_{k=1}^{n} |a_{ik}| |b_{kj}| \right)^{2} \\ &\leq \sum_{i=1}^{m} \sum_{j=1}^{l} \left[\left(\sum_{k=1}^{n} |a_{ik}|^{2} \right) \left(\sum_{k=1}^{n} |b_{kj}|^{2} \right) \right] \\ &= \left(\sum_{i=1}^{m} \sum_{k=1}^{n} |a_{ik}|^{2} \right) \left(\sum_{j=1}^{l} \sum_{k=1}^{n} |b_{kj}|^{2} \right) = \|A\|_{F}^{2} \|B\|_{F}^{2} \end{aligned}$$

即 $||A||_F$ 是A的矩阵范数.

取 $B = x \in C^{n \times 1}$, 则有

 $\|Ax\|_{2} = \|AB\|_{F} \le \|A\|_{F} \|B\|_{F} = \|A\|_{F} \|x\|_{2}$ 即矩阵范数 $\|\cdot\|_{F}$ 与向量范数 $\|\cdot\|_{2}$ 相容.

范数 $\|\cdot\|_F$ 称为**Frobennius**范数,或简称为**F-范数**,又记为 $//\cdot//_m$,即 m_2 -范数.

|| A || 的特点:

定理2.3 设 $A \in C^{m \times n}$ 且 $P \in C^{m \times m}$ 与 $Q \in C^{n \times n}$ 都是 酉矩阵,则 $\|PA\|_F = \|A\|_F = \|AQ\|_F$.

证: 因为
$$\|PA\|_F^2 = \|P(a_1, a_2, \dots, a_n)\|_F^2 = \|Pa_1, Pa_2, \dots, Pa_n\|_F^2$$

$$= \sum_{i=1}^n \|Pa_i\|_2^2 = \sum_{i=1}^n \|a_i\|_2^2 = \|A\|_F^2$$

即 $\|PA\|_F = \|A\|_F$,于是

$$||AQ||_F = ||(AQ)^H||_F = ||(Q^H A^H)||_F = ||A^H||_F = ||A||_F$$

推论 与A酉相似的矩阵的F-范数是相同的.

м

例2.9 设||·||_M是 C^{m×n}上的矩阵范数,任取Cⁿ中的非零列向量 y ,则函数 $||x||_V = ||xy^H||_M$, $\forall x \in C^n$ 是 Cⁿ上的向量范数,且矩阵范数 $||·||_M$ 与向量范数 $||·||_V$ 相容.

证 非负性. 当 $x \neq O$ 时, $xy^H \neq O$,从而 $||x||_V > 0$ 当 x = O时, $xy^H = O$,从而 $||x||_V = 0$

齐次性. 对 $\forall k \in C$,有 $\| kx \|_{V} = \| kxy^{H} \|_{M} = |k| \| xy^{H} \|_{M} = |k| \| x\|_{V}$

三角不等式. 对 $\forall x_1, x_2 \in \mathbb{C}^n$, 有

$$||x_1 + x_2||_V = ||(x_1 + x_2)y^H||_M = ||x_1y^H + x_2y^H||_M$$

$$\leq ||x_1y^H||_M + ||x_2y^H||_M = ||x_1||_V + ||x_2||_V$$

因此, $||x||_v$ 是 \mathbb{C}^n 上的向量范数.

相容性. 当 $A \in C^{m \times n}$, $x \in C^n$ 时,

$$||Ax||_{V} = ||(Ax)y^{H}||_{M} = ||A(xy^{H})||_{M} \le ||A||_{M} ||xy^{H}||_{M} = ||A||_{M} ||x||_{V}$$

所以矩阵范数 ||·||_M与向量范数 ||·||_V 相容.

2.2.2 几种常用的矩阵范数

定理2.4 已知 C^n 与 C^m 上的同类向量范数 $\|\cdot\|$,设 $A \in C^{m \times n}$,则函数 $\|A\| = \max_{\|x\|=1} \|Ax\|$ 是 $C^{m \times n}$ 上的矩阵范数,且与已知向量范数相容.

证 因为 $\|Ax\|$ 连续,所以 $\max_{\|x\|=1} \|Ax\|$ 存在. 非负性. 当 $A \neq 0$ 时, $\exists x_0 \in C^n$ 满足 $\|x_0\| = 1$,使得 $Ax_0 \neq O$,从而 $\|A\| \ge \|Ax_0\| > 0$ 当A = O 时, $\|A\| = \max_{\|x\|=1} \|Ox\| = 0$.

齐次性. 设 $a \in C$,则有 $||aA|| = \max_{\|x\|=1} ||aAx|| = |a| \max_{\|x\|=1} ||Ax|| = |a||A||$

М

三角不等式. 设 $B \in C^{m \times n}$, 对于A + B, $\exists x_1 \in C^n$ 满足 $||x_1|| = 1$, 使得 $||A + B|| = ||(A + B)x_1||$, 于是 $||A + B|| = ||Ax_1 + Bx_1|| \le ||Ax_1|| + ||Bx_1|| \le ||A|| + ||B||$

$$y_0 = \frac{1}{\|y\|}y$$
, 则 $\|y_0\| = 1$, 且有 $\|Ay_0\| \le \|A\|$,

于是, $||Ay|| = ||A(||y||y_0)|| = ||y|||Ay_0|| \le ||y|||A||$

М

相容性. 对 $\forall A \in C^{m \times n}, B \in C^{n \times l}, \exists x_2 \in C^l$ 满足 $||x_2|| = 1$,使得 $||AB|| = ||(AB)x_2||$. 因为 $||(AB)x_2|| \le ||A||||Bx_2|| \le ||A||||B||||x_2|| = ||A||||B||$

所以 || AB ||≤|| A |||| B ||

因而||A||是矩阵范数,且与已知向量范数相容. 证毕

从属范数:由向量范数导出的矩阵范数.

定理2.5 设 $A = (a_{ij}) \in C^{m \times n}, x = (\xi_1 \xi_2 \dots \xi_n)^T \in C^n$ 则从属于向量 x 的三种范数 $||x||_1, ||x||_2, ||x||_\infty$ 的矩阵 范数依次是:

(1)
$$||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$$

(2)
$$||A||_2 = \sqrt{\lambda_1}$$
, $\lambda_1 \in A^H A$ 的最大特征值

(3)
$$||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

通常称 $\|A\|_1$, $\|A\|_2$, $\|A\|_\infty$ 依次为列和范数、谱范数、行和范数.

证 (1) 设
$$||x||_1 = 1$$
,则

$$||Ax||_{1} = \sum_{i=1}^{m} \left| \sum_{j=1}^{n} a_{ij} \xi_{j} \right| \leq \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| |\xi_{j}| = \sum_{j=1}^{n} |\xi_{j}| \sum_{i=1}^{m} |a_{ij}|$$

$$\leq \left(\max_{j} \sum_{i=1}^{m} |a_{ij}| \right) \sum_{j=1}^{n} |\xi_{j}| = \max_{j} \sum_{i=1}^{m} |a_{ij}|$$

因此有
$$||A||_1 = \max_{\|x\|_1=1} ||Ax||_1 \le \max_j \sum_{i=1}^m |a_{ij}|$$

选取
$$k$$
,使得 $\sum_{i=1}^{m} |a_{ik}| = \max_{j} \sum_{i=1}^{m} |a_{ij}|$

因为
$$Ae_k = (a_{1k}, a_{2k}, \dots, a_{mk})^T$$

所以
$$||Ae_k||_1 = \sum_{i=1}^m |a_{ik}| = \max_j \sum_{i=1}^m |a_{ij}|$$

因此
$$||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$$

(2) 因为 A^HA 是Hermite 正定矩阵,所以其特征值都是非负实数,设为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

又 x_1, x_2, \dots, x_n 为对应的单位特征向量且相互正交. 于是, $\forall x \in C^n$, $\|x\|_2 = 1$ 可由特征向量线性表示,即有 $x = k_1 x_1 + k_2 x_2 + \dots + k_n x_n$

曲于
$$A^H A x = A^H A \left(\sum_{i=1}^n k_i x_i\right) = \sum_{i=1}^n k_i \lambda_i x_i$$

因此
$$||Ax||_{2}^{2} = (x, A^{H}Ax) = (\sum_{i=1}^{n} k_{i}x_{i}, \sum_{i=1}^{n} k_{i}\lambda_{i}x_{i})$$

 $= \lambda_{1}|k_{1}|^{2} + \lambda_{2}|k_{2}|^{2} + \dots + \lambda_{n}|k_{n}|^{2}$
 $\leq \lambda_{1}(|k_{1}|^{2} + |k_{2}|^{2} + \dots + |k_{n}|^{2}) = \lambda_{1}$

从而有
$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\| \le \sqrt{\lambda_1}$$

$$||X_1||_2 = 1 \quad ||Ax_1||_2^2 = (x_1, A^H A x_1) = (x_1, \lambda_1 x_1) = \lambda_1$$

所以
$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2 = \|Ax\|_1 = \sqrt{\lambda_1}$$

(3) 设 $\|x\|_{\infty} = 1$,则

$$||Ax||_{\infty} = \max_{i} |\sum_{j=1}^{n} a_{ij} \xi_{j}| \le \max_{i} \sum_{j=1}^{n} |a_{ij}| |\xi_{j}| \le \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

选取k,使得 $\sum_{j=1}^{n} |a_{kj}| = \max_{i} \sum_{j=1}^{n} |a_{ij}|$

$$\Rightarrow y = (\eta_1, \eta_2, \dots, \eta_n)^T, \eta_i = \begin{cases} 1, & a_{kj} = 0 \\ |a_{kj}|, & a_{kj} \neq 0 \end{cases}$$

则有
$$\|y\|_{\infty} = 1$$
, 且 $Ay = (*, \dots, *, \sum_{j=1}^{n} |a_{kj}|, *, \dots, *)^{T}$

从而
$$||Ay||_{\infty} \ge \sum_{j=1}^{n} |a_{kj}| = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$
所以 $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$

例 已知矩阵
$$A = \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$$
,求 $||A||_1, ||A||_2, ||A||_\infty$

 $\|A\|_{1} = 5$

$$A^{H}A = \begin{pmatrix} 2 & -1 \\ -1 & 13 \end{pmatrix}$$
,由于 $\lambda_{1,2} = \frac{5}{2} (3 \pm \sqrt{5})$
所以 $\|A\|_{2} = \left(\frac{5}{2} (3 + \sqrt{5})\right)^{\frac{1}{2}}$

$$||A||_{\infty} = 4$$

例 已知矩阵
$$A = \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$$
,求 $||A||_1$, $||A||_2$, $||A||_\infty$, $||A||_F$

解
$$||A||_1 = 6$$

$$||A||_2 = \sqrt{15 + \sqrt{221}}$$

$$||A||_{\infty} = 7$$

$$||A||_F = \sqrt{30}$$

2.3 范数的一些应用

一. 矩阵的非奇异条件

$$\left\| \left(\boldsymbol{I} - \boldsymbol{A} \right)^{-1} \right\| \leq \frac{\left\| \boldsymbol{I} \right\|}{1 - \left\| \boldsymbol{A} \right\|}$$

证 设矩阵范数 $\| \bullet \|$ 与向量范数 $\| \bullet \|_{V}$ 相容, $\lambda \in A$ 的任一特征值, x 是对应的特征向量;

因为 $Ax = \lambda x$, 所以 $||Ax||_{V} = |\lambda||x||_{V}$;

又因 $\|\mathbf{A}\mathbf{x}\|_{V} \leq \|\mathbf{A}\| \|\mathbf{x}\|_{V}$,所以 $|\lambda| \leq \|\mathbf{A}\| < 1$.

因此, I - A 非奇异.

 $\dot{\mathbf{H}}(I-A)^{-1}(I-A)=I$,可得

$$(I - A)^{-1} = I + (I - A)^{-1}A$$

所以 $||(I - A)^{-1}|| \le ||I|| + ||(I - A)^{-1}|||A||$

$$\left\| \left(\boldsymbol{I} - \boldsymbol{A} \right)^{-1} \right\| \leq \frac{\left\| \boldsymbol{I} \right\|}{1 - \left\| \boldsymbol{A} \right\|}$$

定理2.7 设 $A \in \mathbb{C}^{n \times n}$,且对 $\mathbb{C}^{n \times n}$ 上的某种矩阵范数 $\| \bullet \|$,有 $\| A \| < 1$,则

$$\left\| \boldsymbol{I} - (\boldsymbol{I} - \boldsymbol{A})^{-1} \right\| \leq \frac{\left\| \boldsymbol{A} \right\|}{1 - \left\| \boldsymbol{A} \right\|}$$

证 因为||A|| < 1,所以 $(I - A)^{-1}$ 存在,又 $(I - A)(I - (I - A)^{-1}) = -A$

设 $S = I - (I - A)^{-1}$ 得

两端取范数, $\|S\| = \|AS - A\| \le \|AS\| + \|A\| \le \|A\| \|S\| + \|A\|$

所以
$$\|S\| \le \frac{\|A\|}{1-\|A\|}$$
 故 $\|I - (I - A)^{-1}\| \le \frac{\|A\|}{1-\|A\|}$

二. 近似逆矩阵的误差---逆矩阵的摄动

定理2.8 设 $A \in \mathbb{C}^{n \times n}$ 非奇异, $B \in \mathbb{C}^{n \times n}$,且对 $\mathbb{C}^{n \times n}$ 上的某种矩阵范数 $\| \bullet \|$,有 $\| A^{-1}B \| < 1$,则

(1) A+B 非奇异;

(2)
$$\exists F = I - (I - A^{-1}B)^{-1}, ||F|| \le \frac{||A^{-1}B||}{1 - ||A^{-1}B||}$$

(3)
$$\frac{\left\| \boldsymbol{A}^{-1} - (\boldsymbol{A} + \boldsymbol{B})^{-1} \right\|}{\left\| \boldsymbol{A}^{-1} \right\|} \leq \frac{\left\| \boldsymbol{A}^{-1} \boldsymbol{B} \right\|}{1 - \left\| \boldsymbol{A}^{-1} \boldsymbol{B} \right\|}$$

证 因为 $A + B = A(I + A^{-1}B)$, 又因 $||A^{-1}B|| < 1$ 所以A + B 非奇异.

由定理2.7,可得(2)

再由 $A^{-1} - (A + B)^{-1} = [I - (I + A^{-1}B)^{-1}]A^{-1}$ 利用 (2) 的结论得 (3).

若令
$$\operatorname{cond}(A) = \|A\| \|A^{-1}\|$$

则当 $|A^{-1}||\delta A| < 1$ 时,有结论(2)与(3)

$$\frac{\left\|\boldsymbol{A}^{-1} - (\boldsymbol{A} + \delta \boldsymbol{A})^{-1}\right\|}{\left\|\boldsymbol{A}^{-1}\right\|} \leq \frac{cond(\boldsymbol{A})}{\left\|\boldsymbol{A}\right\|}$$

$$1 - cond(\boldsymbol{A}) \frac{\left\|\delta \boldsymbol{A}\right\|}{\left\|\boldsymbol{A}\right\|}$$

称cond(A) 为矩阵A 的条件数.

三. 矩阵的谱半径及其性质

定义2.5 设 $A \in \mathbb{C}^{n \times n}$ 的n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$ 称 $\rho(A) = \max_i |\lambda_i|$ 为A 的谱半径.

定理2.9 设 $_{A \in \mathbb{C}^{n \times n}}$,则对 $_{\mathbb{C}^{n \times n}}$ 上的任何一种矩阵范数 $\| \bullet \|$,都有 $_{\rho(A) \leq \| A \|}$.

证 设A的属于特征值 λ 的特征向量为 λ ,取与矩阵范数 \bullet 相容的向量范数 \bullet

则由 $Ax = \lambda x$,可得 $|\lambda||x||_V = ||\lambda x||_V = ||Ax||_V \le ||A|||x||_V$ 因为 $x \ne O$,所以 $|\lambda| \le ||A||$,从而 $\rho(A) \le ||A||$.

习题1 设 $A \in \mathbb{C}^{n \times n}$,则 $\rho(A^k) = \rho^k(A)$.

定理2.10 设 $A \in \mathbb{C}^{n \times n}$, $\forall \varepsilon > 0$, 存在某种 矩阵范数 $\| \bullet \|_{M}$, 使得 $\| A \|_{M} \leq \rho(A) + \varepsilon$.

W

证 \exists 可逆矩阵 $P \in \mathbb{C}^{n \times n}$,使得 $P^{-1}AP = J$.

设 $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$,

$$ilde{I} = egin{pmatrix} 0 & \delta_1 & & & & \\ & 0 & \delta_2 & & & \\ & & \ddots & \ddots & \\ & & 0 & \delta_{n-1} \\ & & & 0 \end{pmatrix}, \, \delta_i = 0$$
或 1

则有 $J = A + \tilde{I}$. 其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的n 个特征值.

D = $diag(1, \varepsilon, \dots, \varepsilon^{n-1})$,则有

$$(PD)^{-1}A(PD) = D^{-1}JD = A + \varepsilon \widetilde{I}$$

设 S=PD, 那么S 可逆, 且有

$$\left\| \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S} \right\|_{1} = \left\| \boldsymbol{A} + \varepsilon \widetilde{\boldsymbol{I}} \right\|_{1} \le \rho(\boldsymbol{A}) + \varepsilon$$

令 $\|A\|_{M} = \|S^{-1}AS\|_{1}$, 容易验证它是 $\mathbb{C}^{n \times n}$ 上的矩阵范数. 所以 $\|A\|_{M} \leq \rho(A) + \varepsilon$

证毕

第二章 总结

- 一. 向量范数
 - 1. 定义(非负性,齐次性,三角不等式)
 - 2. 等价性 $c_1 \|x\|_{\beta} \le \|x\|_{\alpha} \le c_2 \|x\|_{\beta}$
 - 3. 应用 $(x^{(k)} \to x \Leftrightarrow |x^{(k)} x| \to 0)$

- 二. 矩阵范数
 - 1. 定义(非负性, 齐次性, 三角不等式, 相容性)
 - 2. 等价性

三. 应用

- $1. \quad A^{(k)} \to A \Longleftrightarrow \left\| A^{(k)} A \right\| \to 0$
- $2. \quad \rho(A) \leq |A|$
- 3. $\forall \varepsilon > 0, \exists \bullet | 使 | A | \leq \rho(A) + \varepsilon$
- 4. A的逆的相对误差与A的条件数Cond(A)有关.