

Fase 2 Conocer formalismos usados para definir lenguajes formales

Autómatas y Lenguajes Formales

Integrante **Ángel Andrés Ortiz Meza** CC 1065842893

> Grupo 301405A_761

> > **Tutor**

Vermen Rainer Ayala

Universidad nacional abierta y a distancia (UNAD). Escuela de ciencias básicas tecnología e ingeniera ingeniería de sistemas Santa Marta 2020

EJERCICIOS DE LA FASE 1 ACTIVIDAD INDIVIDUAL

De acuerdo al último dígito de su cédula o tarjeta de identidad, identifique el ejercicio asignado en la siguiente tabla:

Último dígito de la Cédula o TI	Ejercicio
1 y 9	Ejercicio 1
2 y 8	Ejercicio 2
3 y 7	Ejercicio 3
4 y 6	Ejercicio 4
5 y 0	Ejercicio 5

ACTIVIDAD 1: Conversión de un Autómata Finito a Expresión Regular

1. Ejercicio 1

3. **Ejercicio 3**

2. Ejercicio 2

4. Ejercicio 4

5. Ejercicio 5

El diseño solicitado corresponde al diligenciamiento de la siguiente tabla:

EJERCICIO A TRABAJAR

Registre aquí el Ejercicio a trabajar. Por favor agregue la imagen

Caracterización del autómata

Autómata Finito Determinista es un autómata finito que además es un sistema determinista; es decir, para cada estado en que se encuentre el autómata, y con cualquier símbolo del alfabeto leído, existe siempre no más de una transición posible desde ese estado y con ese símbolo

Máquina de estados finitos su quíntupla $A = (Q, \Sigma, \delta, s \in Q, F,)$

Q = q0,q1,q2,q3 numero de conjunto de estados

 Σ = a, b, c alfabeto utilizado sigma

 $\delta: Q \times \Sigma \longrightarrow p(Q)$ función de transición delta

 $s \in Q = q0$ estado inicial

F = q3 estado final

Procedimiento de conversión de Autómata Finito a Expresión Regular paso a paso

Método por eliminación

ER = c * (aa + ba)

Autómata Final convertido

En este espacio se presenta la expresión correspondiente al autómata trabajado.

	ba+aa qs
Lenguaje regular	En este espacio agrega el lenguaje regular correspondiente a la expresión regular. $\Sigma = [\ c^*\ ,\ aa,\ ba]$

ACTIVIDAD 2: Conversión de Autómatas Finitos Deterministas a Autómatas Finitos No deterministas (AFD a AFND) y viceversa

1. Ejercicio 1

3. Ejercicio 3

2. Ejercicio 2

4. Ejercicio 4

5. Ejercicio 5

El diseño solicitado corresponde al diligenciamiento de la siguiente tabla:

decir, que para cada par (estado actual y símbolo de entrada) le corresponde cero, uno, dos, o más estados siguientes, normalmente la relación de transición para un AFND se denota con Δ .

Procedimiento de conversión paso a paso

Realice de manera detallada el procedimiento paso a paso de la conversión del autómata según corresponda y según ejemplo revisado.

Tabla de transición

Transición 1

ESTADO	а	b	С
q0	q1	q2	q0
q1	q3	q1,q2	-
q2	q3	-	-
q3	q1	-	-

Transición 2

ESTADO	а	b	С
q0	q1	q2	q0
q1	q3	q1,q2	-
q2	q3	-	-
q3	q1	-	-
q1,q2	q3	q1,q2	-

Autómata Final convertido

En este espacio se presenta el autómata final

Practicar y verificar lo aprendido

Apoyándose en el simulador JFlap o VAS ejecutar los dos autómatas, el original y el autómata resultado final de la conversión y validar por lo menos tres cadenas válidas y tres cadenas rechazadas.

En este espacio agregar las imágenes tomadas del simulador utilizado.

Autómatas original

Cadena rechazada

Cadena rechazada

Cadena aceptada

Cadena aceptada

Cadena aceptada

Autómata resultado final de la conversión

Cadena rechazada

Cadena aceptada

Cadena aceptada

Bibliografías

Carrasco, R., Calera, R., Forcada, M. (2016). Teoría De Lenguajes, Gramáticas Y Autómatas Para Informáticos. (pp. 127 - 142). Recuperado de

http://bibliotecavirtual.unad.edu.co:2051/login.aspx?direct=true&db=nlebk&AN=3180 32&lang=es&site=edslive&ebv=EB&ppid=pp_Cover

Hernández, R. (2010). Practique la teoría de autómatas y lenguajes formales. (pp. 1 -124). Recuperado de

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?docID=10566114&ppg=10

Alfonseca, C., Alfonseca, M., Mariyón, S. (2009). Teoría de autómatas y lenguajes formales. (pp. 71 - 115). Recuperado de

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?docID=10498456&ppg=6

Millán, J., Antonio J. (2009). Compiladores y procesadores de lenguajes. (pp. 28-62). Recuperado de

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/detail.action?docID=10844351

Ferrando, J.C., and Gregori, V. (2012). Matemática discreta (2a. ed.). (pp. 207-232). Recuperado de

http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=260&docID= 10751543&tm=1481476339478