Diffie-Hellman Key Exchange

First published public-key algorithm

- Practical method for public exchange of a secret key
- Used in a number of commercial products

Idea:

- Enables two users to securely exchange a secret or symmetric key for subsequent encryption (Ex. AES)
- Value of the secret key depends on the participants (and their private and public key information)
- Security relies on:
 - Exponentiation in a finite (Galois) field (modulo a prime or a polynomial) is easy
 - Computing discrete logarithms (similar to prime factoring) is hard

Diffie-Hellman Setup

All uses agree on global parameters:

- A large prime integer: q
- A primitive root of q: a

Suppose users A and B wish to exchange a secret key

- User A: selects a random integer $X_a < q$
 - Computes $X_A = a^{x_A} \mod q$
- User B: selects a random integer $X_{\rm b} < q$
 - Computes $X_B = a^{x_B} \mod q$

Each side keeps X as a private key and Y as the private key

K_{AB} is the exchanged secret key for users A and B:

- $K_{AB} = Y_B^{X_A} \mod q$ (User A calculation)
 - $= (a^{X_B} \mod q)^{X_A} \mod q$
 - $= (a^{X_B}) \mod q$
 - $= a^{X_B X_A} \mod q$
 - $= (a^{X_A})^{X_B} \ \mathrm{mod} \ q$
 - $= (a^{X_A} \mod q)^{X_B} \mod q$ $= Y_A^{X_B} \mod q$ (User B calculation)
- A and B subsequently use K_{AB} for symmetric encryption

Attackers knows q, a, Y_A, Y_B; They need to know X_A or X_B

- $X_A = dlog_{a,q} Y_A$, $X_B = dlog_{a,q} Y_B$,
- This is hard for large numbers

Diffie-Hellman Example

Problem: Alice and Bob want to exchange secret keys

- Agree on prime q = 353, a = 3
- Select random private keys:
 - Alice chooses $X_A = 97$
 - Bob chooses $X_B = 233$
- Compute respective public keys:

 - $Y_A = 3^{97} \mod 353 = 40 \text{ (Alice)}$ $Y_B = 3^{233} \mod 353 = 248 \text{ (Bob)}$
- Compute shared session key as:
 - $\begin{array}{l} -\text{ K}_{AB} = \text{ Y}_{B}{}^{\text{X}_{A}} \mod 353 = 248^{97} = 160 \text{ (Alice)} \\ -\text{ K}_{AB} = \text{ Y}_{A}{}^{\text{X}_{B}} \mod 353 = 40^{233} = 160 \text{ (Bob)} \end{array}$

Man-in-the-Middle Attack

Key exchange protocols:

- Public keys could be between two users A and B
- Could be between a group of users
- Both are vulnerable to a Man-in-the-middle attack

Figure 1: Diagram of a man-in-the-middle attack

$$\begin{split} K_{AD} &= {Y_{D2}}^{X_A} \ mod \ q = {Y_A}^{X_{D2}} \ mod \ q \\ K_{BD} &= {Y_B}^{X_{D1}} \ mod \ q = {Y_{D1}}^{X_B} \ mod \ q \end{split}$$

Darth can eavesdrop or modify messages

Due to the authenticity of two parties not being established

Use public-key certificate and digital signatures to overcome this

Ephemeral Diffie-Hellman and Perfect Forward Secrecy (PFS)

Fixed Diffie-Hellman: embeds the server's public parameter in the certificate, and the CA then signs the certificate. The certificate contains the Diffie-Hellman public-key parameters that never change. (Prone to man-in-the-middle attack)

Ephemeral Diffie-Hellman: uses temporary, public keys. Each instance or run of the protocol uses a different public key. Each instance or run of the protocol uses a different public key. The authenticity of the server's temporary key can be verrified by checking the signature on the key. Because the public keys are temporary, a compromise of the server's long term signing key does not jeopardize the privacy of past sessions. This is known as perfect forward secrecy.

Only 44% of connects use ephemeral Diffie-Hellman

ElGamal Cryptography

Uses concepts from Diffie-Hellman and further add security

- Does this by using finite (Galois) field
- Security depends on difficulty of computing discrete logarithms (Like Diffie-Hellman)
- Used in a number of standards
 - Digital signature standard (DSS)
 - Email standard (S/MIME)

ElGamal Setup

All users agree on global parameters:

- A large prime integer: q
- A primitive root of q: a

Users B wants to securely send a message to user A

User A

- Selects a random integer $X_A < q 1$
- Computes $Y_A = a^{X_A} \mod q$
- A's private key is X_A ; A's public key is $\{q, a, Y_A\}$

ElGamal Message Exchange

B encrypts a message to send to A computing

- Represent message M in range: $0 \le M \le q 1$
 - Longer messages must be sent as blocks
- Choose a random integer k with $1 \le k \le q-1$
- Compute a one-time key $K = Y_A{}^K \mod q$
- Encrypt and send M as a pair of integers (C_1, C_2) where
 - $C_1 = a^k \bmod q; C_2 = KM \bmod q$

A then recovers message by:

- Recovering key K as $K = C_1^{X_A} \mod q$
- Computing M as $M = C_2K^{-1} \mod q$
- Proof: (K: same as in Diffie-Hellman; K⁻¹ multiplicative inverse in GF(q))

ElGamal Example

Use field GF(19) q = 19 and a = 10 (a primitive root)

Alice computers her key:

• A chooses $X_A=5$ and computes $Y_A=10^5 \bmod 19=3$

Bob sends message M=17 as (11, 5) by:

- Choosing random k = 6
- Computing $k=Y_A{}^k \mod q=3^6 \mod 19=7$ Computing $C_1=a^k \mod q=10^6 \mod 19=11$
- Computing $C_2 = KM \mod q = 7*17 \mod 19 = 5$

Alice recovers original message by computing:

• Recover $k = C_1^{X_A} \mod q = 11^5 \mod 19 = 7$

ElGamal Long Message Exchange

Longer Messages must be sent as blocks, and a unique value of k should be used for each block

• Otherwise, once one plaintext block, ex M₁, is known by attackers, other can be computed

$$C_{1,1} = \alpha^k \mod q$$
; $C_{2,1} = KM_1 \mod q$
 $C_{1,2} = \alpha^k \mod q$; $C_{2,2} = KM_2 \mod q$

Then,

$$\frac{C_{2,1}}{C_{2,2}} = \frac{KM_1 \bmod q}{KM_2 \bmod q} = \frac{M_1 \bmod q}{M_2 \bmod q}$$

If M_1 is known, then M_2 is easily computed as

$$M_2 = (C_{2,1})^{-1} C_{2,2} M_1 \mod q$$

Figure 2: Example of Long Message being able to be attacked

Elliptic Curve Cryptography (ECC)

The key length of RSA has increased over the years

• A heavier processing load, especially on small devicess

ECC offers same security as RSA with a smaller key size

ECC is newer, but not as well analyzed

Can provide key exchange, encryption, digitical signature

Involves the use of an elliptic curve equation defined over a finite field (variables and coefficients are finite)

Comparable Key Size in terms of Computation Effort for Cryptanalysis

Symmetric key algorithms	Diffie-Hellman, Digital Signature Algorithm	RSA (size of <i>n</i> in bits)	ECC (modulus size in bits)
80	L = 1024 N = 160	1024	160–223
112	L = 2048 N = 224	2048	224–255
128	L = 3072 N = 256	3072	256–383
192	L = 7680 N = 384	7680	384–511
256	L = 15,360 N = 512	15,360	512+

Figure 3: Diagram of Algorithm strength

PRNG Algorithms Based on Asymmetric Ciphers

Asymmetric Encryption Algorithms produce apparently random output.

- Hence can be used to build a pseudorandom number generator (PRNG)
- Much slower than symmetric algorithms
- Hence only used to generate a short pseudorandom bit sequence

PRNG Based on RSA

Micali-Schnorr PRNG using RSA:

Figure 4: Diagram of RSA with PRNG

Similar to OFB mode used as PRNG

A portion of output is used as feedback, ensuring unpredictability

Six Requirements in Micali-Schnorr PRNG

- 1. n = pq (This is from RSA)
- 2. $1 < e < \phi(n)$, GCD(e, $\phi(n)$) = 1 (This is from RSA)
- 3. re $\geq 2 \cdot N$, $N = \text{floor}(\log_2 n) + 1$
 - Ensures exponentiation requires a full modular reduction
- 4. $r \ge 2 \cdot strength$
 - Strength is a value in $\{112,128,192,256\}$
 - 2^{strength} is the amount of work to break the security
- 5. k, r are multiple of 8 (Ease of implementation)
- 6. $k \ge 8$; r + k = N (All bits are used)
 - r should be large to meet the requirements of 3 and 4
 - k should be large to get mroe bits in each encryption