The Extended Mind in Young Children: Cost-dependent Trade-off Between External and Internal Memory

Yibiao Liang¹, Erik Blaser¹, Jia Ying Yi², Liyang Sai², & Zsuzsa Kaldy¹

Department of Psychology, University of Massachusetts Boston
100 Morrissey Blvd., Boston, MA, 02125, USA
Department of Psychology, Hangzhou Normal University,
NO.2318, Yuhangtang Rd, Yuhang District, Hangzhou, Zhejiang, 311121, China

RUNNING HEAD: EXTENDED MIND IN CHILDREN

Abstract

Most work on working memory development has children remember a set of items as well as they can. However, this approach sidesteps the *Extended Mind*, the integration of external information with memory. Indeed, adults prefer to use external resources (lists, models) but will remember more as the 'cost' to access them increases. Here, in our Shopping Game, we investigated this trade-off in 5-8-year-olds. Using a touch-screen, children shopped in a virtual store. Their shopping list and the store were not visible simultaneously but could be toggled. We manipulated access cost by varying a delay (0 / 4 s) before the list's reappearance. Across three preregistered experiments at two sites (US / China, N=141), a pattern emerged: when costlier, children revisited the list less often, studied it longer, and selected more correct items. Also, children recognized the costs, identifying the 0-delay condition as easier. Young children show a cost-dependent trade-off of external resource use versus working memory.

Keywords: extended mind, working memory, cognitive effort, cognitive development, preregistered, cross-cultural samples

Introduction

Most people can't imagine living without their phones. Indeed, access to the Internet has inflated people's confidence in their knowledge (Ward, 2021). Of course, people have long used 'external resources' to support problem-solving, from the strings and knots of ancient quipu (Ascher & Ascher, 1981) to writing itself (despite concerns that this might corrupt memory itself (Király et al., 2017; Plato, 1997)). This exploitation of external resources to support internal cognitive processes is a reflection of the Extended Mind (Clark & Chalmers, 1998). For instance, if the information in a notebook is accessible (easily reachable), reliable (available when needed), and trustworthy (accurate), then it extends the mind; the external resources do not just support cognitive processes, but become part of them (Clark, 2008; Gallagher, 2018). This is advantageous, allowing one to overcome internal limitations and solve otherwise intractable tasks (Hayhoe & Ballard, 2005; Risko & Gilbert, 2016). In the current study, we will focus on the effect of accessibility on the extended mind of young children.

The Extended Mind in Adults

Solving a task requires integrating the processing of goal-related information from the environment with the processing of internal representations (e.g. those in working memory). One line of work on this interplay measured participants' ability to switch processing between, versus within, these domains (for a review, see Verschooren et al. (2019)). Alongside this was the related but distinct line of research on the factors that influenced participants' choice to use external versus internal resources (Ballard et al., 1995; Draschkow et al., 2021; Hayhoe et al., 1998; Inamdar & Pomplun, 2003; Somai et al., 2020). For instance, Ballard et al. (1995) asked participants to copy a puzzle-like model. Participants most frequently used a strategy where they looked at the model both before picking up a puzzle piece and before placing the piece down. That is, instead of memorizing the identity and position of multiple pieces, participants referred to the model frequently, memorizing only the identity or the location of a single piece. Indeed, it has been suggested that we are 'cognitive misers', minimizing cognitive effort when possible (e.g., the effort to encode, maintain, and retrieve information in working memory) (Kool et al., 2010; Taylor, 1981), for instance physically rotating a page of text, or tilting one's head, instead of performing mental rotation (Risko et al., 2014).

To manipulate the accessibility of external resources, Ballard et al. (1995) increased the distance between the model and the participant's puzzle, thereby increasing the 'locomotive cost' (eye and head movements) to shift between them. This led participants to increase working memory use.

Time can also be a cost (Grinschgl et al., 2021; Sahakian et al., 2023; Somai et al., 2020). In Somai et al. (2020), participants used more working memory when they had to wait to see the model. (Our paradigm similarly uses a delay-to-access manipulation.) In general, it seems people adaptively trade-off the use of external and internal resources to strike a balance, for a given set of task demands, between the subjective effort of using external resources and the subjective effort of using internal processes like working memory (Ballard et al., 1995; Draschkow et al., 2021; Grinschgl et al., 2021; Kenderla & Kibbe, 2023; Somai et al., 2020).

The mechanisms that underlie the trade-off are those of cognitive control. Cognitive control is commonly understood to underlie flexible, goal-directed, adaptive processing (Badre & Nee, 2018; Botvinick et al., 2001; Egner, 2017). The decision processes that lead to resource distribution are based on cost-benefit computations (see e.g. Chater & Oaksford (1999); Lieder & Griffiths (2019)). For example, gating policies that govern which representations to encode into working memory, and when to discard them, are specified in terms of cost-benefit computations (Chatham & Badre, 2015; O'Reilly & Frank, 2006) (which themselves may be influenced by how confident one is in one's own memory (Gilbert et al., 2020)). Recent models of cognitive control have put cognitive effort at the center of these computations (Agrawal et al., 2022; Inzlicht et al., 2018; Kool et al., 2017; Kool & Botvinick, 2018; Shenhav et al., 2017; Westbrook & Braver, 2015). Cognitive effort exertion is in many ways analogous to physical effort exertion: it is the straining of the "cognitive musculature" (Shenhav et al., 2021). According to the highly influential Expected Value of Control model (Shenhav et al., 2013, 2017), we determine how much cognitive effort to exert by weighing the costs and benefits of allocating cognitive control to various processes, including memory maintenance (Westbrook et al., 2013), and then choose the one with the highest expected value. Here we study the cost-dependent trade-off of external resource use versus working memory, in the extended mind of young children.

The Extended Mind in Children

5-8 years of age is an important period in the development of the extended mind. This is the period where the child's developing working memory abilities (Ahmed et al., 2022) begin to be guided explicitly as they begin formal schooling. As with adults, if children take advantage of external resources, it can help them mitigate demands on internal processing (Armitage et al., 2020; Bulley et al., 2020). This is also the age where the ability to spontaneously monitor cognitive demands (i.e., metacognition) begins to emerge (Niebaum & Munakata, 2020). One of the reasons to use external resources is to avoid exerting cognitive effort (Risko & Gilbert, 2016) and

this likely requires recognizing the demands of different strategies/conditions. On this basis, some researchers have suggested that young children (5-year-olds) are not (yet) cognitive misers, indicating that they do not yet spontaneously minimize their cognitive effort adaptively (O'Leary & Sloutsky, 2017), but that this attribute begins to emerge at around 6 years of age (for instance, 6year-olds, but not 4-5-year-olds, will, similarly to the Risko et al. study (2014) with adults, physically rotate a paper (map) as opposed to engaging in mental rotation (Armitage & Redshaw. 2022)). The present study will test both whether children show a cost-dependent trade-off, and whether they recognize the relative costs.

There are only a few studies that have investigated the extended mind in children. Haselen et al. (2000) and Hoffman et al. (2003) used a model-copying paradigm similar to Hayhoe and Ballard's (1995) and found that 5-11-year-old children showed similar eye movement patterns as adults, indicating that children also will spontaneously use external resources (however, their sample sizes were relatively small). Studies on cognitive offloading have shown that even young children (4-year-olds) can create external resources to help solve problems (e.g., physically marking the location of hidden targets for later search (Armitage & Redshaw, 2022; Bulley et al., 2020), but cost-dependent trade-offs were not tested. In a recent study (Kenderla & Kibbe, 2023), 8-10-yearolds were asked to find a set of cards that satisfied a rule. Cards were face-down, but had faces that differed in features (color, shape, pattern, etc) that could be exposed with a click. Access cost was manipulated by varying the delay before a card was revealed. Children relied more on external resources, that is, viewed cards more often before making their final selections when cards were more accessible. Our work builds on these results, using a streamlined task that targets working memory and can be tailored for younger children. Being able to test younger children is critical in this context. As we discussed above, our reading of the literature identifies 5+ years of age as a plausible age of emergence for this trade-off. In Experiment 1, we cast a wide net testing children from 5 to 8 years of age, and then in Experiment 2, specifically targeted these younger, 5-6-year-olds. By testing children at this particular age, then, our results are certain to have an impact on our understanding of developmental trajectories: we will either corroborate that 5-6 years of age is, indeed, the age of emergence of the cost-dependent tradeoff or, alternatively, help establish that the age of emergence is yet younger.

The Current Study

Here, we use a novel naturalistic working memory task - an innovative, tablet-based "Shopping Game" - to study the extended mind in 5-8-year-old children. In this game, children shop for items

with a shopping list. The list and the store are not visible simultaneously, but children can toggle between them and we manipulate the time delay before the list reappears. We predicted that children would take advantage of the available external resources (here, the shopping list) to conserve cognitive effort and 2) would adaptively trade-off the use of external versus internal resources as the accessibility of the external resources changed: when access cost is increased children will reduce the number of times they use the list, study it longer (consistent with attempting to remember more), and select more correct items in the store (consistent with having remembered more).

Experiment 1

Method

The research aims, hypotheses, methods, and analysis plan were preregistered on 2022-06-18, after data collection which began on 2022-05-21 (only 6 participants were run during this period and their data was not accessed until all data collection was completed). There were major and minor deviations from the preregistration (for details see below and in the Supplemental Material Table S1).

Participants

Sample size was determined a priori using G*Power 3.2 (Faul et al., 2009). Based on a pilot study and theoretical considerations, we expected a medium effect size (d = 0.5). Given a pairedsample t-test focusing on our main contrast (the time spent on the list in the two conditions) and 0.8 power and alpha 0.05, the required minimum sample size was 34. Overall, we recruited and tested 37 children. 27 were tested at the Children's Museum of New Hampshire and 10 were recruited via mailings and recruitment events from the Greater Boston area and tested in the laboratory. Three children did not complete the experiment. The final sample included 34 5- to 8year-old children (M = 6.98 years, SD = 1.23, age range: 5.09 - 8.97, 22 girls). Parents reported that their children were Asian (n = 4), Black or African American (n = 1), White (n = 26), more than one race (n = 1), other (n = 1), or did not report their children's race (n = 1). Of the 34 participants, 5 were reported as being Hispanic/Latino. All procedures received approval from the University of Massachusetts Boston's Institutional Review Board.

Procedure

We developed a child-friendly (but extensible for a wide age range) naturalistic memory paradigm, the "Shopping Game", using PsychoPy (Peirce et al., 2019) on a tablet (Fig. 1). In this game, participants were asked to select several items from a store based on a shopping list. The store and the list were not visible on the screen simultaneously, instead, participants could toggle between them by tapping the store icon (an image of an arrow) or the list icon (an image of an adult+cart), respectively. There was no time limit on the task and, crucially, children were told that they were allowed to go back to the list as many times as they wanted. Correctly selected items were crossed off on the 10-item list (to make it clear that they did not need to be selected again). Since we wanted to focus on measuring the memory component, we minimized the search demands of the game by keeping the same 20 items in the same location in the store across all test trials. To further minimize search, the items on the shelves in the store were grouped into four different, consistent categories: fruits, vegetables, proteins (meat, egg, milk, etc.), and baked goods (cake, cupcake, etc.). In addition, before testing began, the experimenter guided the child through naming all the items in the store.

Children only needed to find 6 out of the 10 items on the list in each trial but this information was not disclosed to the child explicitly. The rationale for this was so that children, throughout the trial, always had a relatively large set of yet-to-be-selected items on the list. As motivation, every correct selection was rewarded with a star and accompanied with a pleasant sound while every incorrect selection resulted in losing a star and an unpleasant sound. (Children were told that the stars indicated how many stickers they would get at the end of the experiment but, in reality, they could get as many stickers as they wanted at the end of the session.) Once the child picked 6 correct items in the store, the trial was over, feedback appeared on the screen, reminding children how many stars they had earned.

The key manipulation in the Shopping Game was the accessibility of the external resource, which was determined by the delay between tapping on the list icon and the appearance of the list. There were two conditions: a 'low-cost', 0s delay (No-Delay condition) and a 'high-cost', 4s delay (Long-Delay condition). The difference between the two conditions was explained to the children with a plausible framing story: finding the items in a small convenience store, where their parent is always close by (No-Delay) versus a large supermarket where the parents have to take a long walk to the children to check the list (Long-Delay). In addition, as a visual reminder cue, a picture of a small convenience store or a large supermarket was presented before each trial. As well, the distance between the adult and the child icons also (in the store view) served as a cue (reminder) of the condition (and, during the 4s time delay, there was an accompanying animation of the list icon (adult+cart) moving toward the icon of the child). Each condition was organized into a block with one initial practice trial followed by three test trials. (Practice trials were identical to test trials, except that the experimenter explained the game as the trial played out, including the meaning of different icons, the reward system, and how to operate the game.) Children participated in both conditions and the order of conditions was counterbalanced between participants. The entire session lasted on average 9.66 minutes (SD = 2.10).

Fig. 1. Schematic overview of the Shopping Game. On each trial, the store was presented first. Participants could then tap on the 'list' icon (adult+cart) to make a trip to the list, and then tap on the 'store' icon (arrow) to go back. In the No-Delay condition, the list appeared immediately after the list icon was tapped. In the Long-Delay condition, the list appeared 4s after the list icon was tapped. There was never any delay from the list to the store in either condition. Importantly, children were allowed to revisit the list as many times as they wanted during a trial. Children won a star for each correctly chosen item and lost a star for each incorrectly chosen one. After the children correctly chose 6 (of the 10) list items, the trial ended.

Measures and analyses

In each trial, we measured three variables. Dwell time: the time children spent studying the shopping list of to-be-remembered items during each trip, which captures the effort they made to encode items in working memory (i.e., use of internal resources); Trips: the number of times participants looked back at the list during each trial, which measures their use of the external resources; and Streak Correct: the length of the run of correct choices on each trip before the first incorrect choice or the child opted to return to the list, whichever came first (Sahakian et al., 2023),

which estimates working memory use¹. Following our general hypotheses, we expect that children would have more Trips, shorter Dwell Time, and shorter Streak Correct in the No-Delay condition compared to the Long-Delay condition. To have a fair comparison with the One Shot condition in Experiment 2a and 2b, Dwell Time and Streak Correct were based just on the first trips from each trial (the preregistered analyses based on all trips, which show the same overall pattern of results, are presented alongside first-trip analyses in Supplemental Tables S2-S10).

We used R (R Core Team, 2023) and Rstudio (Rstudio Team, 2015) for data processing, analyses, and data visualization. We used the lattice package (Sarkar, 2008) and the tidyverse package (Wickham et al., 2019) for data processing and visualization. We run our mixed model analyses with the Ime4 (Bates et al., 2015) and ImerTest (Kuznetsova et al., 2017) packages. The MASS package (Venables & Ripley, 2013) was used for the Box-Cox procedure. We conducted our model comparison and selection with the car package (Fox & Weisberg, 2018) and the MuMIn package (Bartoń, 2023). We used the emmeans package (Lenth, 2023) for posthoc tests and the effectsize package (Ben-Shachar et al., 2020) for calculating effect sizes. Cls of the graph were calculated with the *Hmisc* package (Harrell & Dupont, 2023).

In our data analysis procedure, we first fit the data with a linear mixed model. For continuous data, we visually inspected the distribution of the residuals and used the Box-Cox procedure to calculate the 95% CI for lambda to transform the response variable to approximate a normal distribution. We chose a lambda value in the CI or close to the CI that was easy to interpret (e.g., -1, 0, 1, 2) when possible. We then refit the model with the transformed Dwell Time and visually inspected the distribution of the residuals of the new model. We chose the initial model or the new model based on the distribution of residuals. For count data (Trips, and Streak Correct), we fit the data with generalized linear mixed models with Poisson distribution For our main analyses, we fit each response variable with condition (Long-Delay/No-Delay) as the fixed effect. In our exploratory analyses of the age effect, we fit each response variable with conditions, age, and the interaction between conditions and age as fixed effects. In all these models, we included a by-

¹ We preregistered the measures d' and C, but due to the high number of trips without errors (~90%) they could not be properly calculated. Instead, we opted for Streak Correct. For completeness, we include d' and C analyses in all relevant tables in the Supplemental Material, which show the same overall pattern of results.

participant random slope and a by-participant random intercept to account for the individual variances in the baseline response and in the response difference toward conditions².

Result

Main effects. Trips showed a significant effect of condition ($\chi^2 = 4.50$, p = .034, d = 0.36), revealing more trips to the list in the No-Delay condition (M = 4.07 times, SD = 1.73) compared to the Long-Delay condition (M = 3.52 times, SD = 1.73). For Dwell Time, there was also a significant effect of condition ($\chi^2 = 7.96$, p = .005, d = 0.49), with children studying the list longer in the Long-Delay condition (M = 6.77 s, SD = 4.00) compared to the No-Delay condition (M = 5.81 s, SD =3.70). While there was a longer Streak Correct in the Long-Delay condition (M = 2.42, SD = 1.32) compared to the No-Delay condition (M = 2.00, SD = 1.11) this was not significant ($\chi^2 = 3.41$, p = .065, d = 0.32) (but see Supplemental Tables S4 and S5 for additional analyses that corroborate the trend).

Fig. 2. Individual and group means for the three measures in the No-Delay and Long-Delay conditions. Values above horizontal bars represent the p values. Error bars reflect the 95% confidence intervals.

A note regarding children's performance in our task. False alarm (error) rates per trip were generally very low (~3%), indicating that children adopted a highly conservative, risk-averse

² We preregistered an exploratory analysis of learning (trial) effects. There were no significant effects. Results are shared in Supplemental Table S7. In addition, we preregistered that we would collect additional data (e.g., children's education level, screen time) for exploratory analyses but we did not analyze this data because we realized our survey was not well-designed during data collection.

response bias, likely to avoid losing a reward (star). Future studies should manipulate rewards (similar to Gilbert et al. (2020), in adults) to explore the cost-benefit computations in children's trade-off.

Age effects. We also looked for age effects across our 4-year age range. For Trips, we found a main effect of age ($\chi^2 = 5.44$, p = .020, $\eta_p^2 = 0.15$) with older children making fewer trips, but no interaction with condition ($\chi^2 = 2.18$, p = 0.139, $\eta_p^2 = 0.06$). This main effect of age on *Trips* shows an age-related increase in working memory usage. For Dwell Time, we found no significant main effect of age ($\chi^2 = 0.38$, p = 0.537, $\eta_p^2 = 0.004$) nor an interaction ($\chi^2 = 2.26$, p = 0.133, η_p^2 = 0.07). Finally, for Streak Correct, we also found no significant main effect of age (χ^2 = 2.77, p = 0.096, $\eta_p^2 = 0.08$), nor an interaction ($\chi^2 = 0.03$, p = 0.860, $\eta_p^2 = 0.0003$).

A parallel set of exploratory, preregistered analyses, where the per-trial measures of Dwell Time and Streak Correct were based on all trips (as opposed to just the first trips, as reported here), showed a similar pattern with one notable exception. For Dwell Time, we did find a significant interaction effect of age and condition, with younger children less affected by the manipulation of delay time (see Supplemental Table S6). This result, taken together with the suggestive trends visible in Fig. 3 here (especially for Trips and Dwell Time) and the backdrop of evidence, as discussed above, that related cognitive processes are only beginning to emerge in 5-year-olds, led us to specifically target this younger age group in Experiment 2.

Fig. 3. Age trends for the three measures for both conditions. Dots represent data from the two conditions (Longdelay and No-delay) for each participant. Gray bands reflect 95% confidence intervals (CI).

Results summary. Overall, we found that 5-8-year-old children were able to take advantage of external resources (here, a shopping list) and trade off their use against internal resources (working memory) based on accessibility: when we introduced an annoying delay to access the shopping list, children reduced the number of trips they made to refer back to it, attempted to remember more by studying longer, and tended to select more items correctly with each visit to the virtual store. While we did not find compelling evidence for an interaction of age and trade-off in our exploratory analyses, we did see trends that warranted a targeted follow-up with the younger children in our age range.

EXPERIMENTS 2a (China site) and 2b (US site)

Here we investigate the trade-off in younger children (5-6-year-olds) and how it may be related to their emerging metacognition. We introduced an additional One-Shot condition designed to maximize internal resource use and metacognition questions designed to investigate children's impressions of the subjective effort required for the No-Delay versus Long-Delay conditions. It was not obvious what to predict for children in this age range, which is the reason that we have targeted it here. Shifts in the use of external resources likely require monitoring the effort needed to use working memory (Kelly & Risko, 2022), but children's ability to identify, or opt for, an 'easier' task (Niebaum et al., 2019, 2021; Niebaum & Munakata, 2020; O'Leary & Sloutsky, 2017) or use external resources selectively based on the difficulty of a task (Armitage et al., 2020; Bulley et al., 2020) is only beginning to emerge at 5 years of age. While we did not find compelling age interactions in Experiment 1, there were trends that, combined with this literature, led us to the conservative prediction that children in this 5-6-year age range would not be able to trade off external versus internal resources in response to changing access costs. We found, however, that the opposite was true.

Experiments 2a and 2b had identical procedures, and only differed in the testing site, counterbalancing, and sample size. Most published studies in cognitive developmental psychology are based on samples from WEIRD societies (Singh et al., 2023). This creates a considerable gap in our understanding, given that culture can influence, for instance, memory (Leger & Gutchess, 2021), and response bias (Freire & Pammer, 2020). Given this, researchers have been advocating for the consideration of cultural differences in cognition and developmental research (Qu et al., 2021). Here, alongside a sample from the US (Exp. 2b), we also tested a sample of children in another geographic area and culture: eastern China (Exp. 2a).

Method

The research aims, hypotheses, methods, and analysis plan in Experiment 2a were preregistered on 2023-02-28, prior to collection which began on 2023-03-01. The research aims, hypotheses, methods, and analysis plan in Experiment 2b were preregistered on 2023-03-11, prior to data collection which began on 2023-03-11. There were major and minor deviations from the preregistration (for details see below and in Supplemental Material Table S1).

Participants

In Experiment 2a, the order of the Long-Delay and No-Delay conditions was counterbalanced as in Experiment 1. Now, however, these conditions were either preceded, or followed by, a new One-Shot condition (see below). We therefore doubled our planned sample size to 68 to test for any potential effect of position on the trade-off (i.e., an interaction between position and condition). Overall, 87 5- to 6-year-old children participated in the study, 15 children were excluded due to technical difficulties, leaving 72 in the final sample (M = 6.06 years, SD = 0.31, age range: 5.52 -6.51, 36 girls). (One additional participant's data could not be included for the metacognition questions, leaving a sample of 71 for that particular analysis.) All participants were recruited from the same kindergarten in ShengZhou City, in eastern China. They were tested in a separate quiet room in the kindergarten by a trained local experimenter. All children were from the Han ethnic group.

Since we did not find an interaction between the position of the One-Shot condition (either first or last in the condition order) and condition in Experiment 2a (see Supplemental Table S10), in Experiment 2b we tested just the one positional order, with One-Shot at the end. Because of this, we no longer needed the double sample size of Experiment 2a. 42 5- to 6-year-old children were recruited and tested at the Children's Museum of New Hampshire in Dover, New Hampshire (n =17), or at the Discovery Museum in Acton, Massachusetts (n = 7), or tested in the laboratory (n =18; recruited from the greater Boston area via mailings). Five children in the museums and two in the lab quit the experiment before finishing. The final sample in Experiment 2b included 35 children (M = 6.01 years, SD = 0.60, age range: 5.08 - 6.93, 13 girls). Caregivers reported that their children were Asian (n = 3), Black (n = 1), White (n = 23), more than one race (n = 3), other (n = 3), or did not report their children's race (n = 2). Of the participants, 3 were reported as being Hispanic/Latino. All procedures received approval from the University of Massachusetts Boston's Institutional Review Board.

Procedure

The procedures of Experiments 2a and 2b were largely identical, and similar to Experiment 1, with the following changes. A new *One-Shot* condition was added, where children had only one chance to look at the list, meaning they could not make multiple trips back to the list. This condition served as a frame of reference, assessing children's performance when they are encouraged to maximize their effort to use internal resources. As in Experiment 1, along with instruction and practice, we used visual cues to help children keep track of conditions. For the One-Shot condition, we showed a grocery truck image at the beginning of each trial, and a small shopping list icon (instead of an adult icon) when the store was shown with the framing story that the truck would drive away. As with Experiment 1, each condition was organized into a block with one initial practice trial followed by three test trials (in one minor change, as in Experiment 1, all 20 items on the store shelves were kept in the same locations for all trials within a blocked condition, but now were rearranged between conditions). Most importantly, we now introduced two metacognitive questions. After the Long-Delay and No-Delay conditions, children were asked "Which of the two games did you think was easier?" ('Easier' question) and "Which game would you play again to earn more stars?" ('Preference' question). The entire session lasted on average 16.31 minutes (SD = 2.71) for Experiment 2a and 14.81 minutes (SD = 5.11) for Experiment 2b.

Measures and analyses

Measures were the same as in Experiment 1, with some additional analyses. The first was a comparison of the three conditions (No-Delay, Long-Delay, and One-Shot) using a linear mixed model. We conducted post-hoc comparisons with Holm correction for the p-value (Holm, 1979) if there was a significant interaction. The second new analysis was a comparison of the ratio of choosing the No-Delay condition in the metacognition questions ('Easier' and 'Preference') versus chance level (50%) with a binomial test. Then, to compare the two different sites (China and the US), we ran the linear mixed model with condition, site, and the interaction between these two factors as fixed effects and a random effect structure as the other linear model (a by-participant random intercept and a by-participant random slope). We conducted post-hoc comparisons with Holm correction for the p-value (Holm, 1979) if there was a significant interaction. Experiment 2a showed a main effect of the position of the One-Shot condition with One-Shot at the beginning having generally higher dwell time compared to when One-Shot was at the end ($\chi^2 = 8.20$, p = .004, η_p^2 = 0.09), but there was no interaction effect between order and condition (χ^2 = 0.29, ρ = .866, η_p^2 = 0.004, for all results, see Table S10). To match position and sample size for the site

comparison, we compared the data in Experiment 2a where the One-Shot position was last to data in Experiment 2b (where the One-Shot was always last). We also analyzed the correlation between dwell time and performance.

Result

Comparison between conditions. Our results showed that in both Experiments 2a and 2b, children made more Trips in the No-Delay condition compared to the Long-Delay condition (Exp. 2a, No-Delay: M = 3.88 times, SD = 1.40, Long-Delay: M = 3.32 times, SD = 1.14, $\chi^2 = 5.95$, p = .015, d = 0.29; Exp. 2b, No-Delay: M = 4.69 times, SD = 1.53, Long-Delay: M = 3.59 times, SD = 1.35, $\chi^2 = 10.81$, p = .001, d = 0.56).

Dwell Time³ also showed a significant effect of condition in both experiments (Exp. 2a, $\chi^2 = 79.62$, p < .001, $\eta_p^2 = 0.53$; Exp. 2b $\chi^2 = 37.54$, p < .001, $\eta_p^2 = 0.52$), with Dwell Time significantly longer in the Long-Delay condition compared to the No-Delay condition (Exp. 2a, No-Delay: M = 8.18 s, SD = 6.01, Long-Delay: M = 8.76 s, SD = 5.13, t = 3.36, p = .001, d = 0.40; Exp. 2b, No-Delay: M= 4.54 s, SD = 3.32, Long-Delay: M = 5.74 s, SD = 2.37, t = 4.34, p < .001, d = 0.74). In addition, Dwell Time was significantly higher in the One-Shot condition (Exp. 2a, M = 14.36 s, SD = 7.86, Exp. 2b, M = 9.46 s, SD = 6.49) compared to the No-Delay and the Long-Delay conditions (Exp. 2a, One-Shot versus No-Delay: t = 8.88, p < .001, d = 1.05; One-Shot versus Long-Delay: t = 0.057.27, p < .001, d = 0.86; Exp. 2b, One-Shot versus No-Delay: t = 6.03, p < .001, d = 1.03; One-Shot versus Long-Delay: t = 3.66, p < .001, d = 0.63).

Correspondingly, there was a significant effect on Streak Correct (Exp. 2a, $\chi^2 = 65.97$, p < .001, $\eta_{p}^{2} = 0.36$; Exp. 2b $\chi^{2} = 24.60$, p < .001, $\eta_{p}^{2} = 0.43$). Post-hoc analyses show that Streak Correct was higher in the Long-Delay condition compared to the No-Delay condition, but it was only significant in Experiment 2b (Exp. 2a, No-Delay: M = 1.97, SD = 0.90, Long-Delay: M = 2.18, SD= 0.88, z = 1.75, p = .081, d = 0.21; Exp. 2b, No-Delay: M = 1.55, SD = 0.77, Long-Delay: M = 0.882.16, SD = 0.91, z = 3.16, p = .003, d = 0.53). The One-Shot condition (Exp. 2a, M = 3.23, SD = 0.91). 1.27; Exp. 2b, M = 2.56, SD = 0.82) also had higher Streak Correct compared to the No-Delay condition (Exp. 2a, z = 7.65, p < .001, d = 0.90; Exp. 2b, t = 4.96, p < .001, d = 0.84). Compared

³ We had preregistered to exclude trials with Dwell Times > 30 s based on data from Experiment 1, without anticipating that some children might dwell longer in the One-Shot condition. Therefore, instead of excluding these values, we winsorized them by setting all Dwell Times > 30 s to 31 s (Shete et al., 2004), for all experiments. Results using the strict exclusion (Supplemental Tables S11-S12) show similar patterns.

to the Long-Delay condition, the One-Shot condition had a higher Streak Correct numerically, but this was only significant in Experiment 2a (Exp. 2a, z = 5.43, p < .001, d = 0.64; Exp. 2b, t = 1.81, p = .070, d = 0.31). Longer Dwell Times should lead to a better performance. To explore this, we determined the Kendall correlation between Dwell Time and Streak Correct. This confirmed that there was a significant positive correlation between Dwell Time and Streak Correct in both samples (Exp. 2a, tau = 0.41, z = 14.36, p < .001; Exp. 2b, tau = 0.34, z = 8.13, p < .001).

Fig. 4. Individual participant and group means for the three measures in the No-Delay, Long-Delay, and One-Shot conditions in Experiments 2a (China) and 2b (US). Values above horizontal bars represent p values of post hoc pairwise comparisons. Error bars reflect the 95% confidence interval of the group mean.

Metacognition of cognitive demands. For the Easier question ("Which of the two games did you think was easier?") most children chose the No-Delay condition in both samples (Exp. 2a:

66.20%, Exp. 2b: 82.86%) significantly higher than the 50% chance level (Exp. 2a: p = .009, Exp. 2b: p < .001). For the Preference question ("Which game would you play again to earn more stars?") the pattern was similar, with significantly more of the children choosing the No-Delay condition in Experiment 2a (63.38%, p = .032). The direction of results was consistent, but not significant, for Experiment 2b (60%, p = .311). There was no significant interaction between condition and response to either of the two metacognition questions in any of the measures (Exp. 2a, Easier: Trips, $\chi^2 = 0.42$, p = .519, $\eta_p^2 = 0.006$; Dwell time, $\chi^2 = 0.26$, p = .613, $\eta_p^2 = 0.004$; Streak Correct, $\chi^2 = 1.65$, p = .199, $\eta_p^2 = 0.02$; Preference: Trips, $\chi^2 = 0.09$, p = .763, $\eta_p^2 = 0.001$; Dwell time, $\chi^2 = 0.03$, p = .873, $\eta_p^2 = 0.0004$; Streak Correct, $\chi^2 = 0.21$, p = .646, $\eta_p^2 = 0.003$; Exp. 2b, Easier: Trips, $\chi^2 = 0.43$, p = .512, $\eta_p^2 = 0.01$; Dwell time, $\chi^2 = 0.61$, p = .435, $\eta_p^2 = 0.02$; Streak Correct, $\chi^2 = 0.07$, p = .788, $\eta_p^2 = 0.002$; Preference: Trips, $\chi^2 = 0.04$, p = .846, $\eta_p^2 = 0.001$; Dwell time, $\chi^2 = 0.48$, p = .490, $\eta_p^2 = 0.01$; Streak Correct, $\chi^2 = 0.21$, p = .643, $\eta_p^2 = 0.01$. See results from all trips and other preregistered measures in Supplemental Table S8). These results suggest that most children had an explicit, and valid, impression of the relative cognitive demand and "cost" of conditions.

Comparison between the Chinese and US samples. For trips, there was neither an effect of site (China: M = 3.71 times, SD = 1.13, US: M = 4.14 times, SD = 1.30; $\chi^2 = 3.45$, p = .063, η_p^2 = 0.05), nor an interaction between condition and site (χ^2 = 1.14, p = .286, η_p^2 = 0.02). Similarly, for Streak Correct, there was neither an effect of site (China: M = 2.34, SD = 0.89, US: M = 2.09, SD = 0.59, $\chi^2 = 1.74$, p = .187, $\eta_p^2 = 0.03$) nor an interaction between condition and site $(\chi^2 = 2.63, p = .268, \eta_p^2 = 0.04)$. Dwell Time, however, showed a significant effect of site $(\chi^2 =$ 3.88, p = .049, $n_0^2 = 0.08$) with an overall longer Dwell Time in the Chinese sample (China: M =9.03 s, SD = 5.44, US: M = 6.58 s, SD = 3.22, $\chi^2 = 3.88$, p = .049, $\eta_p^2 = 0.08$), but no significant interaction between condition and site ($\chi^2 = 3.53$, p = .172, $\eta_p^2 = 0.05$). The Dwell Time result suggests that children in the Chinese sample may have devoted greater effort, in general, to memorizing list items. However, while we did find a correlation between Dwell Time and Streak Correct (see above), here we did not see a significant difference in Streak Correct between the two sites. Taken together, this suggests that more time devoted to studying list items, while generally an effective way to remember more, here was not sufficiently different between the sites to yield a meaningful difference in performance.

Results summary. Across two experiments, with independent samples from two testing sites (one in the US and one in China), we found the same pattern: 5-6-year-old children 1) made more trips to visit the shopping list in the No-Delay as compared to the Long-Delay condition 2) spent a significantly shorter time studying the shopping list in the No-Delay condition as compared to the Long-Delay and One-Shot conditions, and 3) showed a consistent trend (that did not always reach significance) toward shorter Streak Correct in the No-Delay condition as compared to the Long-Delay and One-Shot conditions. These results replicate those of Experiment 1, but now with a younger age range (see also the results from a corroborative combined analysis of all 5-6-yearold children from all three experiments (N = 125) in Supplemental Table S13 and S14). In addition, they show that even if there is a substantial cost to access the external resource (as in the Long-Delay condition), this does not immediately elicit maximal effort toward internal resource use. Children gave yet more effort (longer Dwell Times) in the *One-Shot* condition. In short, children balance the costs (effort) associated with using internal resources with those of accessing external resources.

General Discussion

In our Shopping Game paradigm, children were asked to shop for items in a virtual store based on a shopping list. Since the list and the store were not visible simultaneously, children could opt to toggle between the store and the list. When given the chance and the accessibility cost was low, 5-8-year-olds revisited their shopping list relatively frequently, spent a relatively short time studying their shopping list, and chose relatively few items on each visit to the store. However, when we increased the accessibility cost (a 4 s delay until the list appeared), children made fewer trips, studied longer, and chose more correct items per trip. These results show that 5-8-year-old children adaptively trade-off the use of internal versus external resources according to the accessibility of the external resources.

In our second experiment we focused on 5-6-year-olds and tested children in two different sites (in China and in the US). In addition to confirming the same findings regarding the trade-off as in Experiment 1, we tested children's metacognition by asking them which of the games was easier and which one they would prefer to play again. We found that most 5-6-year-olds chose the No-Delay condition as 'easier' and 'preferred' to the Long-Delay condition, indicating they had a subjective impression of the cognitive demands of the different conditions. However, it is also possible that children may have also found the Long-Delay condition more boring (since it actually took a longer time to complete it) and this may affected their answers, especially with respect to the 'preference' question. That said, given that we know that our delay manipulation had an effect on how much cognitive effort children exerted, we believe it is most parsimonious to attribute the

observed differences in the answers to the 'which one was easier' question, at least, to the delay itself.

The extended mind and the trade-off between looking and remembering

Given even 4- to 5-year-olds have been shown to choose to use external resources (Armitage et al., 2020; Bulley et al., 2020), it is not surprising that children in our study could take advantage of their shopping list to support playing the Shopping Game. However, it is surprising that our participants - especially the younger, 5-6-year-olds - can adaptively trade off external versus internal resource use in the face of changing task demands. In line with the literature discussed in the introduction, previous studies have shown that 4-7-year-olds are not good at using external resources selectively based on the difficulty of a task (Armitage et al., 2020; Bulley et al., 2020). In addition, the trade-off we found requires the evaluation of the effort of different strategies, and studies have shown that spontaneous metacognition is only starting to emerge between 5-7 years of age (Niebaum & Munakata, 2020).

Our paradigm had a few design features that may have helped support this trade-off in younger children. First, visual cues can facilitate children's spontaneous metacognitive monitoring (Niebaum & Munakata, 2020). In fact, while 5-year-olds were not able to choose an easier task when given no visual cues or prompts (O'Leary & Sloutsky, 2017), they were able to when the visual cues were provided (Wang & Bonawitz, 2022). In our paradigm, children were informed of the differences between conditions with visual cues throughout the experiment. Second, more experience with a task can improve metacognitive monitoring of task difficulty (O'Leary, 2017) and one's own performance (Urban & Urban, 2021), even without feedback. Our paradigm simulated an everyday task - helping with shopping - so the child may have experience from daily life that transferred advantageously.

Similarities and differences between the Chinese and US samples

In Experiment 2, we found no interaction effect between site (US and China) and condition, indicating that the groups were not significantly different in their ability to trade off the use of internal versus external resources. However, we did find a main effect of site on Dwell Time, showing that the Chinese sample may have devoted greater effort to encoding the shopping list (see a similar pattern for a drawing task in Long et al. (2023)). It might be tempting to attribute this difference to the Asian culture's purported emphasis on hard work (see the criticism of this simple Cultural Essentialism in (Kobakhidze et al., 2023)), but we speculate that there is a more

parsimonious factor. The Chinese sample was tested by researchers in their kindergarten while the US sample was tested by researchers primarily in a children's museum. We speculate that the more quiet setting in the kindergarten versus the more 'free exploration' museum environment might account for the greater overall effort (longer study times) in the Chinese sample (see (Rance et al., 2023) for similar contextual effects). Though, again, this did not affect our main results, it would be interesting to follow up to see how testing context affects overall task motivation.

Limits on the generalizability of our findings

Our convenience sampling yielded child participants representing the racial and ethnic distribution of the Northeastern US and Eastern China, largely from middle-income families. These participants are likely familiar with tablet-based games. While our sample sizes met the a priori requirements for our analyses, they were still relatively modest.

In closing

The ability to exploit external resources to extend one's mind is adaptive, allowing one to increase task performance and reduce cognitive effort. Here we show that even children as young as 5-6 years of age can extend their minds, and do so flexibly in response to task demands. Given this, it will be interesting to see if yet younger children - where the further limited internal resources make external resources that much more valuable – show a similar trade-off. Alongside that, there is an element of practice and experience that may aid adaptive, cost-effective trade-offs, so future work on the influence of schooling, where the skilled use of external resources is explicitly taught, would be especially interesting.

Acknowledgments

We would like to thank Tessyia Roper for her help with participant recruitment, the staff at the children's museums for their help and support, and the families who participated.

REFERENCES

- Agrawal, M., Mattar, M. G., Cohen, J. D., & Daw, N. D. (2022). The temporal dynamics of opportunity costs: A normative account of cognitive fatigue and boredom. Psychological Review, 129(3), 564-585. https://doi.org/10.1037/rev0000309
- Ahmed, S. F., Ellis, A., Ward, K. P., Chaku, N., & Davis-Kean, P. E. (2022). Working memory development from early childhood to adolescence using two nationally representative samples. Developmental Psychology, 58(10), 1962–1973. https://doi.org/10.1037/dev0001396
- Armitage, K. L., Bulley, A., & Redshaw, J. (2020). Developmental origins of cognitive offloading. Proceedings. Biological Sciences / The Royal Society, 287(1928), 20192927. https://doi.org/10.1098/rspb.2019.2927
- Armitage, K. L., & Redshaw, J. (2022). Children boost their cognitive performance with a novel offloading technique. Child Development, 93(1), 25-38. https://doi.org/10.1111/cdev.13664
- Ascher, M., & Ascher, R. (1981). Code of the Quipu. Ann Arbor: University of Michigan Press, 56-74. https://courses.cit.cornell.edu/quipu/data/title-2.pdf
- Badre, D., & Nee, D. E. (2018). Frontal Cortex and the Hierarchical Control of Behavior. Trends in Cognitive Sciences, 22(2), 170–188. https://doi.org/10.1016/j.tics.2017.11.005
- Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 66-80. https://doi.org/10.1162/jocn.1995.7.1.66
- Bartoń, K. (2023). MuMIn: Multi-Model Inference (Version 1.47.5). https://cran.rproject.org/web/packages/MuMIn/index.html
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using Ime4. Journal of Statistical Software, 67, 1-48. https://doi.org/10.18637/jss.v067.i01
- Ben-Shachar, M., Lüdecke, D., & Makowski, D. (2020). Effectsize: Estimation of effect size indices and standardized parameters. Journal of Open Source Software, 5(56), 2815.

- https://doi.org/10.21105/joss.02815
- Botvinick, M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295x.108.3.624
- Bulley, A., McCarthy, T., Gilbert, S. J., Suddendorf, T., & Redshaw, J. (2020). Children Devise and Selectively Use Tools to Offload Cognition. Current Biology: CB, 30(17), 3457-3464.e3. https://doi.org/10.1016/j.cub.2020.06.035
- Chater, N., & Oaksford, M. (1999). Ten years of the rational analysis of cognition. Trends in Cognitive Sciences, 3(2), 57-65. https://doi.org/10.1016/s1364-6613(98)01273-x
- Chatham, C. H., & Badre, D. (2015). Multiple gates on working memory. Current Opinion in Behavioral Sciences, 1, 23-31. https://doi.org/10.1016/j.cobeha.2014.08.001
- Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Oxford University Press, USA. https://play.google.com/store/books/details?id=n5wRDAAAQBAJ
- Clark, A., & Chalmers, D. (1998). The Extended Mind. Analysis, 58(1), 7–19. https://doi.org/10.1093/analys/58.1.7
- Draschkow, D., Kallmayer, M., & Nobre, A. C. (2021). When Natural Behavior Engages Working Memory. Current Biology: CB, 31(4), 869-874.e5. https://doi.org/10.1016/j.cub.2020.11.013
- Egner, T. (2017). The Wiley Handbook of Cognitive Control. John Wiley & Sons. https://play.google.com/store/books/details?id=y75KDwAAQBAJ
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149
- Fox, J., & Weisberg, S. (2018). An R Companion to Applied Regression. SAGE Publications. https://play.google.com/store/books/details?id=uPNrDwAAQBAJ
- Freire, M. R., & Pammer, K. (2020). Influence of culture on visual working memory: evidence of a cultural response bias for remote Australian Indigenous children. Journal of Cultural

- Cognitive Science, 4(3), 323-341. https://doi.org/10.1007/s41809-020-00063-4
- Gallagher, S. (2018). The extended mind: State of the question. The Southern Journal of Philosophy, 56(4), 421–447. https://doi.org/10.1111/sjp.12308
- Gilbert, S. J., Bird, A., Carpenter, J. M., Fleming, S. M., Sachdeva, C., & Tsai, P.-C. (2020). Optimal use of reminders: Metacognition, effort, and cognitive offloading. Journal of Experimental Psychology. General, 149(3), 501-517. https://doi.org/10.1037/xge0000652
- Grinschgl, S., Papenmeier, F., & Meyerhoff, H. S. (2021). Consequences of cognitive offloading: Boosting performance but diminishing memory. Quarterly Journal of Experimental Psychology, 74(9), 1477–1496. https://doi.org/10.1177/17470218211008060
- Harrell, F. E., & Dupont, C. (2023). Hmisc: harrell miscellaneous (Versions 5.1-1). https://hbiostat.org/r/hmisc/
- Haselen, G. C. L.-V., Van Der Steen, J., & Frens, M. A. (2000). Copying Strategies for Patterns by Children and Adults. Perceptual and Motor Skills, 91(2), 603-615. https://doi.org/10.2466/pms.2000.91.2.603
- Hayhoe, M. M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 9(4), 188–194. https://doi.org/10.1016/j.tics.2005.02.009
- Hayhoe, M. M., Bensinger, D. G., & Ballard, D. H. (1998). Task constraints in visual working memory. Vision Research, 38(1), 125-137. https://doi.org/10.1016/s0042-6989(97)00116-8
- Hoffman, J. E., Landau, B., & Pagani, B. (2003). Spatial breakdown in spatial construction: evidence from eye fixations in children with Williams syndrome. Cognitive Psychology, 46(3), 260–301. https://doi.org/10.1016/s0010-0285(02)00518-2
- Inamdar, S., & Pomplun, M. (2003). Comparative search reveals the tradeoff between eye movements and working memory use in visual tasks. Proceedings of the Annual Meeting of the Cognitive Science Society. Annual Meeting of the Cognitive Science Society. https://escholarship.org/content/qt4k01x26b
- Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The Effort Paradox: Effort Is Both Costly and

- Valued. Trends in Cognitive Sciences, 22(4), 337–349. https://doi.org/10.1016/j.tics.2018.01.007
- Kelly, M. O., & Risko, E. F. (2022). Study effort and the memory cost of external store availability. Cognition, 228, 105228. https://doi.org/10.1016/j.cognition.2022.105228
- Kenderla, P., & Kibbe, M. M. (2023). Explore versus store: Children strategically trade off reliance on exploration versus working memory during a complex task. Journal of Experimental Child Psychology, 225, 105535. https://doi.org/10.1016/j.jecp.2022.105535
- Király, I., Takács, S., Kaldy, Z., & Blaser, E. (2017). Preschoolers have better long-term memory for rhyming text than adults. Developmental Science, 20(3). https://doi.org/10.1111/desc.12398
- Kobakhidze, M. N., Ma (马莹), Y., & Tsaloukidis, A. (2023). Tiger Parenting Beyond Cultural Essentialism: Discourses of Class, Culture, and Competition in Hong Kong. ECNU Review of Education, 20965311231198252. https://doi.org/10.1177/20965311231198252.
- Kool, W., & Botvinick, M. (2018). Mental labour. Nature Human Behaviour, 2(12), 899–908. https://doi.org/10.1038/s41562-018-0401-9
- Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems. Psychological Science, 28(9), 1321–1333. https://doi.org/10.1177/0956797617708288
- Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology. General, 139(4), 665-682. https://doi.org/10.1037/a0020198
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82, 1–26. https://doi.org/10.18637/jss.v082.i13
- Leger, K. R., & Gutchess, A. (2021). Cross-Cultural Differences in Memory Specificity:

- Investigation of Candidate Mechanisms. Journal of Applied Research in Memory and Cognition, 10(1), 33–43. https://doi.org/10.1016/j.jarmac.2020.08.016
- Lenth, R. V. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans
- Lieder, F., & Griffiths, T. L. (2019). Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources. The Behavioral and Brain Sciences, 43, e1. https://doi.org/10.1017/S0140525X1900061X
- Long, B., Wang, Y., Christie, S., Frank, M. C., & Fan, J. E. (2023). Developmental changes in drawing production under different memory demands in a U.S. and Chinese sample. Developmental Psychology, 59(10), 1784-1793. https://doi.org/10.1037/dev0001600
- Niebaum, J. C., Chevalier, N., Guild, R. M., & Munakata, Y. (2019). Adaptive control and the avoidance of cognitive control demands across development. Neuropsychologia, 123, 152-158. https://doi.org/10.1016/j.neuropsychologia.2018.04.029
- Niebaum, J. C., Chevalier, N., Guild, R. M., & Munakata, Y. (2021). Developing adaptive control: Age-related differences in task choices and awareness of proactive and reactive control demands. Cognitive, Affective & Behavioral Neuroscience, 21(3), 561–572. https://doi.org/10.3758/s13415-020-00832-2
- Niebaum, J. C., & Munakata, Y. (2020). Deciding what to do: Developments in children's spontaneous monitoring of cognitive demands. Child Development Perspectives, 14(4), 202–207. https://doi.org/10.1111/cdep.12383
- O'Leary, A. P. (2017). Using Scaffolding to Examine The Development of Metacognitive Monitoring and Control [The Ohio State University]. https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=osu1 492172107513459
- O'Leary, A. P., & Sloutsky, V. M. (2017). Carving Metacognition at Its Joints: Protracted Development of Component Processes. Child Development, 88(3), 1015–1032.

- https://doi.org/10.1111/cdev.12644
- O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–328. https://doi.org/10.1162/089976606775093909
- Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y
- Plato. (1997). Plato: Complete Works (J. M. Cooper & D. S. Hutchinson (eds.)). Hackett Publishing Co. https://play.google.com/store/books/details?id=fMhgDwAAQBAJ
- Qu, Y., Jorgensen, N. A., & Telzer, E. H. (2021). A Call for Greater Attention to Culture in the Study of Brain and Development. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 16(2), 275–293. https://doi.org/10.1177/1745691620931461
- R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Risko, E. F., & Gilbert, S. J. (2016). Cognitive Offloading. Trends in Cognitive Sciences, 20(9), 676–688. https://doi.org/10.1016/j.tics.2016.07.002
- Risko, E. F., Medimorec, S., Chisholm, J., & Kingstone, A. (2014). Rotating with rotated text: a natural behavior approach to investigating cognitive offloading. Cognitive Science, 38(3), 537-564. https://doi.org/10.1111/cogs.12087
- Rstudio Team. (2015). RStudio: integrated development environment for R. RStudio. http://www.rstudio.com/
- Sahakian, A., Gayet, S., Paffen, C. L. E., & Van der Stigchel, S. (2023). Mountains of memory in a sea of uncertainty: Sampling the external world despite useful information in visual working memory. Cognition, 234, 105381. https://doi.org/10.1016/j.cognition.2023.105381
- Sarkar, D. (2008). Lattice: Multivariate data visualization with R (1st ed.) [PDF]. Springer.

- https://doi.org/10.1007/978-0-387-75969-2
- Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007
- Shenhav, A., Fahey, M. P., & Grahek, I. (2021). Decomposing the motivation to exert mental effort. Current Directions in Psychological Science, 30(4), 307–314. https://doi.org/10.1177/09637214211009510
- Shenhay, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a Rational and Mechanistic Account of Mental Effort. Annual Review of Neuroscience, 40, 99–124. https://doi.org/10.1146/annurev-neuro-072116-031526
- Shete, S., Beasley, T. M., Etzel, C. J., Fernández, J. R., Chen, J., Allison, D. B., & Amos, C. I. (2004). Effect of winsorization on power and type 1 error of variance components and related methods of QTL detection. Behavior Genetics, 34(2), 153–159. https://doi.org/10.1023/B:BEGE.0000013729.26354.da
- Singh, L., Cristia, A., Karasik, L. B., Rajendra, S. J., & Oakes, L. M. (2023). Diversity and representation in infant research: Barriers and bridges toward a globalized science of infant development. Infancy: The Official Journal of the International Society on Infant Studies, 28(4), 708–737. https://doi.org/10.1111/infa.12545
- Somai, R. S., Schut, M. J., & Van der Stigchel, S. (2020). Evidence for the world as an external memory: A trade-off between internal and external visual memory storage. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 122, 108–114. https://doi.org/10.1016/j.cortex.2018.12.017
- Taylor, S. E. (1981). The interface of cognitive and social psychology. In J. H. Harvey (Ed.), Cognition, social behavior, and the environment (pp. 189-211). Lawrence Erlbaum.
- Urban, K., & Urban, M. (2021). Effects of performance feedback and repeated experience on self-evaluation accuracy in high- and low-performing preschool children. European Journal

- of Psychology of Education, 36(1), 109-124. https://doi.org/10.1007/s10212-019-00460-6
- Venables, W. N., & Ripley, B. D. (2013). *Modern Applied Statistics with S.* Springer New York. https://doi.org/10.1007/978-0-387-21706-2
- Verschooren, S., Schindler, S., De Raedt, R., & Pourtois, G. (2019). Switching attention from internal to external information processing: A review of the literature and empirical support of the resource sharing account. Psychonomic Bulletin & Review, 26(2), 468-490. https://doi.org/10.3758/s13423-019-01568-y
- Wang, J., & Bonawitz, E. (2022). Children's Sensitivity to Difficulty and Reward Probability When Deciding to Take on a Task. Journal of Cognition and Development: Official Journal of the Cognitive Development Society, 1–13. https://doi.org/10.1080/15248372.2022.2152032
- Ward, A. F. (2021). People mistake the internet's knowledge for their own. Proceedings of the National Academy of Sciences, 118(43), e2105061118. https://doi.org/10.1073/pnas.2105061118
- Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective & Behavioral Neuroscience, 15(2), 395-415. https://doi.org/10.3758/s13415-015-0334-y
- Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. *PloS One*, 8(7), e68210. https://doi.org/10.1371/journal.pone.0068210
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., ... Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686