Codebusters

Project 2 - Final Presentation

General task overview

- Our chosen model:
 - → DistilbertForSequenceClassification

- What dataset?
 - → Imdb, containing information if review is negative or positive

- 'Actual' Bert task:
 - → Sentiment Analysis

Visualize Attention Difference

- Visualizing the attention of each head (columns) and each layer (rows)
- Used library: BertViz
- Visualize the difference of the attention between a trained and untrained model to explain what has been learned by the model
- Only positive attention is visualized

Img 1: Attention of Trained model on positive sentence "The movie was not bad at all, highly recommend"

Visualize Attention Difference

Sentence: The movie was not bad at all, highly recommend

Img 2: Attention Diff between trained and untrained model

Img 3: Example of reinforced attention in trained model

Visualize Attention Difference

Sentence: This movie was not really good, I did not enjoy it at all

Img 4: Attention Diff between trained and untrained model

Img 5: Example of reinforced attention in trained model

Embeddings visualized

somewhat

Word **embeddings downprojected** with carrying t-SNE sometimes Downprojected words are colored much semi according to its SHAP value: Red → Negative sson overcome Blue → Positive soon lot members Black → Neutral iche thrilling shrugs worth choices apparent spends ian whereas somewhat charm mor scribe shed miniseries interfere

loved

Sentiment Analysis: Hidden States per Layer and Epoch

- Trained DistilBERT model for 5 epochs
- Saved hidden states of model for 200 samples for each of the 6 layers (rows) and 5 epochs (columns)
- Visualized hidden states by Downprojection to 2 Dimensions with PCA

Sentiment Analysis: Visual Representation with SHAP

What is SHAP?

- SHAP uses Shapley-Value to determine marginal contribution of each token on output
- Can be used on global level & on sentence level

Observations:

- Analysis of global feature importance shows the tokens with the highest Shapely values
- Includes tokens that generally have a strong sentiment
- Also includes movie-specific vocabulary ('precursor', 'loops')

	Attention Visualization	Embedding visualization	Hidden states	SHAP
Why?	Interpretability & Explainability	Interpretability & Explainability	Interpretability & Explainability	Interpretability & explainability of the model/the input-output mapping, as well as for improving or comparing models
What?	Learned Model Parameters Computational Graph & Network Architecture	Aggregated Information	Aggregated Information	Learned model parameters, aggregated information
When?	After Training	After Training	During/After Training	After training
Who?	Model Developers & Builders	Model Users	Model Users	Model Developers & Builders / Model Users
How?	Algorithms for Attribution & Feature Visualization	Dimensionality Reduction & Scatter Plots	Dimensionality Reduction & Scatter Plots	Marginal contribution (Shapely Value), various plots (e.g. barcharts)
Where?	Interpretability of NLP Tasks	NLP Sentiment Research	NLP Sentiment Research	NLP, Image classification/object detection, Tabular data