VİTMO

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки: 09.03.04 — Системное и прикладное программное обеспечение

Дисциплина «Основы дискретной математики (базовый уровень)»

Отчёт по домашней работе №8

Вариант №65

Выполнил

Галак Екатерина Анатольевна

P3115

Проверил

Поляков Владимир Иванович

Деление чисел с плавающей точкой

Вариант №65

A	В
7,8	0,03

1. Формат Ф1

$$A = 7.8_{10} = (7,CCCCCD)_{16} = (0,7CCCCCD)_{16} \cdot 16^{1}$$

0	1	0	0	0	0	0	1	0	1	1	1	1	1	0	1	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

$$B = 0.03_{10} = (0.07AE14)_{16} = (0.7AE14)_{16} \cdot 16^{-1}$$

0 0 1	1 1	1 1	1 1	0 1	1 1	1	0 1	1
-------	-----	-----	-----	-----	-----	---	-----	---

$$X_C = X_A - X_B + d$$

$$d + P_C = \frac{\mathbf{P_A} + \mathbf{d} - \mathbf{P_B} - \mathbf{d}}{\mathbf{P_C}} + d$$

$$X_C = 1 - (-1) + 64 = 66$$

 $P_C = 2$

№ шага	Действие	Делимое	Частное
0	M_{A} $[-M_{B}]_{\text{ДОП}}$ R_{0} M_{A} \longrightarrow 4 $[-M_{B}]_{\text{ДОП}}$ R_{0}	0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & & & &$
1	$\begin{array}{c} \leftarrow R_0 \\ [M_B]_{\pi p} \\ R_1 \end{array}$	1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1	1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
2	$\begin{array}{c} \leftarrow R_1 \\ [M_B]_{\pi p} \\ R_2 \end{array}$	1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0	0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
3	$\begin{array}{c} \leftarrow R_2 \\ [M_B]_{\pi p} \\ R_3 \end{array}$	1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0	1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4	$\begin{array}{c} \leftarrow R_3 \\ [M_B]_{\pi p} \\ R_4 \end{array}$	1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5	←R ₄ [-M _В] _{доп} R ₅	0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1	0 0 0 0 0 0 1 0
6	$\begin{array}{c} \leftarrow R_5 \\ [M_B]_{\pi p} \\ R_6 \end{array}$	1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1	0 0 0 0 0 1 0 0
7	$\begin{array}{c} \leftarrow R_6 \\ [M_B]_{\pi p} \\ R_7 \end{array}$	1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8	$ \begin{array}{c} \leftarrow R_7 \\ [M_B]_{\pi p} \\ R_8 \end{array} $	1 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$$C^* = (0,1)_{16} \cdot 16^3 = 256.$$

 $C^{T} = 260$ (точное значение).

Определим абсолютную и относительную погрешности результата:

$$\Delta C = C_T - C^* = 260 - 256 = 4$$
, где $\Delta C -$ абсолютная погрешность

$$\delta C = \begin{vmatrix} 4 \\ \hline 260 \end{vmatrix} \cdot 100\% = 1,5384615385\%$$

, где δC — относительная погрешность

2. Формат Ф2

$$A = (7.8)_{10} = (7,CCCCCD)_{16} = (0,1111100110011001101)_2 \cdot 2^3$$

$$B = (0.03)_{10} = (0.07AE14)_{16} = (0.1111010111)_2 \cdot 2^{-5}$$

0	0	1	1	1	1	0	1	1	1	1	1	0	1	1	0
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

$$X_C = X_A - X_B + d$$

$$d + P_C = \frac{\mathbf{P_A} + \mathbf{d} - \mathbf{P_B} - \mathbf{d}}{\mathbf{P_C}} + d$$

$$X_C = 3 - (-5) + 128 = 136$$

$$P_C = 8$$

N шага	Действие	Делимое	Частное
0	$M_{ m A}$ $[-M_{ m B}]_{ m доп}$	0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0	0 0 0 0 0 0 0 0
	R_0	<mark>0</mark> 0 0 0 0 0 1 0 0	00000001
1	←R ₀	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 1 0
1	$[-M_B]_{ ext{доп}}$	1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0	00000010
2	←R ₁	0 0 0 1 0 0 1 0 0	0 0 0 0 0 1 0 0
2	$egin{array}{c} [M_B]_{\pi p} \ R_2 \end{array}$	0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0	00000100
	←R ₂	0 0 0 1 1 0 1 0 0	0 0 0 0 1 0 0 0
3	$[M_B]_{\pi p}$ R_3	0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0	00001000
4	←R ₃	0 0 1 0 1 0 1 0 0	0 0 0 1 0 0 0 0
4	$[M_B]_{\pi p}$ R_4	0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0	0001000
~	←R ₄	0 1 0 0 1 0 1 0 0	0 0 1 0 0 0 0 0
5	$[M_B]_{\pi p}$ R_5	0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 0	0 0 1 0 0 0 0 0
	←R ₅	1 0 0 0 1 0 1 0 0	0 1 0 0 0 0 0 0
6	$[M_B]_{\pi p} onumber \ R_6$	0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0	0 1 0 0 0 0 0 1
	←R ₆	0 0 0 0 1 0 1 0 0	1 0 0 0 0 0 1 0
7	[-М _В] _{доп} R ₇	1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0	1 0 0 0 0 0 1 <mark>0</mark>
	$M_C \rightarrow$	_	0 1 0 0 0 0 0 1 0

$$C^* = (0,1000001)_2 \cdot 2^9 = 260.$$

$$C^{T} = 260$$
 (точное значение)

Определим абсолютную и относительную погрешности результата:

$$\Delta C = 260 - 260 = 0$$
, где $\Delta C -$ абсолютная погрешность

$$\delta C = \left| \frac{0}{260} \right| \cdot 100\% = 0\%$$

, где δC — относительная погрешность

Вывод

Погрешности результатов вызваны неточным представлением операндов. В формате Ф2 операнды представлены более точно, поэтому погрешность меньше.