## Cálculo 1

# Lista de Aplicações – Semana 07 – Soluções

 $Temas\ abordados$ : Regras da cadeia; Derivação implícita; Derivada de funções inversas  $Seções\ do\ livro$ : 3.6, 3.7, 3.8 e 3.9

1) Suponha que a relação entre o comprimento L, em metros, e o peso P, em kg, de um determinado peixe seja dada por  $P(L) = 10L^3$ . Suponha ainda que a taxa de variação do comprimento em relação ao tempo, dado em anos, satisfaz a equação

$$\frac{d}{dt}L(t) = 0, 2(2 - L(t)).$$

- (a) Determine o comprimento do peixe no caso em que P = 20 kg.
- (b) Determine a taxa de variação do peso em relação ao tempo.
- (c) Use os itens anteriores para determinar a taxa de variação do peso do peixe, em relação ao tempo, para um peixe de 20 kg.

### Soluções:

(a) Note que  $P(t) = 10L(t)^3$ . No instante  $t_0$  em que  $P(t_0) = 20$  temos que

$$L(t_0) = 2^{1/3}. (1)$$

(b) Derivando e usando a regra da cadeia obtemos

$$P'(t) = 30L(t)^{2} \frac{d}{dt}L(t) = 6L(t)^{2}(2 - L(t)).$$
(2)

(c) Combinando (1) e (2) obtemos

$$P'(t_0) = 6 \cdot 2^{2/3} (2 - 2^{1/3}).$$

- 2) Um avião de caça sobrevoa uma cidade percorrendo uma trajetória retilínea conforme a figura abaixo. Sua posição escalar sobre tal trajetória é uma função do tempo x(t) = 3t-2 se  $t \le 1$  e  $x(t) = t^3$  se t > 1, onde t é o tempo medido em minutos. A distância entre o caça e a cidade é dada por  $y(t) = \sqrt{H^2 + x^2(t)}$ .
  - (a) Calcule os limites laterais

$$\lim_{h \to 0^{\pm}} \frac{x(1+h) - x(1)}{h}$$

e em seguida decida sobre a existência de x'(1).



- (b) Determine a velocidade escalar do avião v(t) = x'(t), para cada t real.
  - (c) Dada  $f(z) = \sqrt{H^2 + z^2}$ , encontre  $\frac{d}{dz}f(z)$ .
  - (d) Sabendo que y(t) = f(x(t)), determine  $\frac{d}{dt}y(t)$ .
  - (e) Em quais instantes o avião se aproxima e em quais ele se afasta da cidade?

### Soluções:

(a) Temos que

$$\lim_{h \to 0^{-}} \frac{x(1+h) - x(1)}{h} = 3$$

е

$$\lim_{h \to 0^+} \frac{x(1+h) - x(1)}{h} = \lim_{h \to 0^+} \frac{(1+h)^3 - 1}{h} = \lim_{h \to 0^+} \frac{3h + 3h^2 + h^3}{h} = 3.$$

Dessa forma,

$$x'(1) = 3.$$

(b) Segue diretamente da expressão para  $\boldsymbol{x}(t)$  e do item acima que

$$v(t) = x'(t) = \begin{cases} 3, & \text{se } 0 < t \le 1, \\ 3t^2, & \text{se } t > 1. \end{cases}$$

(c) Aqui, lembre-se que  $(\sqrt{z})' = 1/(2\sqrt{z})$ . Logo, pela regra da cadeia,

$$f'(z) = \frac{1}{2\sqrt{H^2 + z^2}}(z^2)' = \frac{z}{\sqrt{H^2 + z^2}}$$

(d) Do mesmo modo, para o item d), temos que

$$y'(t) = \frac{d}{dt}f(x(t)) = f'(x(t))x'(t),$$

e é suficiente agora usar os itens (b) e (c).

(e) Veja que o avião se aproxima sempre que a distância y(t) diminui, isto é, para o valores de t que satisfazem y'(t) < 0.

- 3) Indique por W(V) o trabalho realizado por um gás ideal ao se expandir isotermicamente, desde um volume inicial  $V_0$  até o volume V. Pode-se mostrar que em unidades apropriadas,  $W(V) = C \cdot \ln\left(\frac{V}{V_0}\right)$ , onde C > 0 é uma constante que depende da temperatura e do número de mols do gás. Suponha que o volume seja uma função do tempo dada por  $V(t) = 2t^4 + 1$ ,  $t \ge 0$ . A potência gerada pelo sistema é a taxa de variação do trabalho em relação ao tempo.
  - (a) Encontre as derivadas  $\frac{d}{dV}W(V)$  e  $\frac{d}{dt}V(t)$ .
  - (b) Encontre a expressão da potência gerada pelo sistema,  $P(t) = \frac{d}{dt}W(V(t))$ .
  - (c) Sabendo que C=10, obtenha a potência do sistema quando o volume é 33.

#### Soluções:

(a) A derivada de V com relação ao tempo é dada por  $V'(t) = 8t^3$ . Para o cálculo da derivada de W com respeito a V temos que usar a regra da cadeia como segue

$$\frac{dW}{dV} = C \frac{1}{V/V_0} \frac{d}{dV} \left(\frac{V}{V_0}\right) = C \frac{V_0}{V} \frac{1}{V_0} = \frac{C}{V}.$$

O termo  $\frac{1}{V/V_0}$  acima é exatamente a derivada da função  $\ln(s)$  aplicada no ponto  $s = V/V_0$ .

(b) Usando a regra da cadeia novamente obtemos

$$P(t) = \frac{dW}{dt} = \frac{dW}{dV}\frac{dV}{dt} = \frac{C}{V}8t^3 = C\frac{8t^3}{2t^4 + 1}.$$

(c) Usando a expressão de V(t) concluímos que o instante em que o volume é igual a 33 é exatamente  $t_0 = 2$ . Agora basta usar a expressão acima para calcular P(2) = 640/33.

- 4) Suponha que o número de indivíduos de uma população de bactérias seja dado, no instante  $t \geq 0$ , por  $N(t) = 2N_0/(1+e^{kt})$ , onde k > 0 é uma constante e  $N_0 > 0$  é a população inicial. Sabendo que a derivada da exponencial é ela própria,  $(e^x)' = e^x$ , resolva os itens seguintes.
  - (a) Determine o instante  $t_0$  em que o número de indivíduos é metade do inicial.
  - (b) Determine a derivada  $\frac{d}{dt}e^{kt}$ .
  - (c) Determine a taxa de variação do número de indivíduos em relação ao tempo.
  - (d) Sabendo que  $N_0 = 1000$  e k = 4, determine a taxa acima no instante  $t_0$  calculado no item (a).

### Soluções:

(a) Procuramos por  $t_0$  tal que  $N(t_0) = 2N_0/(1 + e^{kt_0}) = N_0/2$ . Isto é,

$$1 + e^{kt_0} = 4 \Rightarrow e^{kt_0} = 3 \Rightarrow t_0 = (\ln 3)/k,$$

onde aplicamos o logaritmo em ambos os lados da penúltima expressão.

(b) Pela regra da cadeia

$$(e^{kt})' = e^{kt}(kt)' = ke^{kt}.$$

(c) Uma outra aplicação da regra da cadeia nos fornece

$$N'(t) = (2N_0(1+e^{kt})^{-1})' = -2N_0(1+e^{kt})^{-2}ke^{kt}.$$

Note que, no cálculo da derivada acima, poderíamos ter utilizado a regra do quociente.

(d) Para obter a reposta do último item basta fazer  $t = t_0 = \ln 3/k$  na expressão acima e lembrar que  $e^{\ln 3} = 3$ .

5) A função secante, com o domínio restrito ao intervalo  $[0, \pi/2)$  e contradomínio restrito ao intervalo  $[1, \infty)$ , é bijetiva sendo portanto invertível. Sua inversa arcsec :  $[1, \infty) \longrightarrow [0, \pi/2)$  é definida por

$$y(x) = \operatorname{arcsec}(x) \Leftrightarrow y \in [0, \pi/2) \text{ e } \operatorname{sec}(y(x)) = x.$$

Sabendo que ela é derivável em  $(1, +\infty)$ , siga os passos abaixo para calcular y'(x).

- (a) Use a regra do quociente (ou a da cadeia) para mostrar que  $\frac{d}{dy}\sec(y) = \sec(y) \operatorname{tg}(y)$ .
- (b) Aplique o operador de derivação  $\frac{d}{dx}$  em ambos os lados da igualdade  $x = \sec(y(x))$ , não esquecendo de usar a regra da cadeia para derivar o lado direito da igualdade.
- (c) Isole o termo y'(x) na expressão encontrada acima.
- (d) Lembrando que  $x = \sec(y)$  e  $\sec^2(y) = \operatorname{tg}^2(y) + 1$ , escreva  $\operatorname{tg}(y)$  como função de x.
- (e) Substitua sec(y) e tg(y) na resposta do item c) para obter a expressão de y'(x) como função apenas da variável x.

#### Soluções:

(a) Temos que

$$\frac{d}{dy}\sec(y) = \frac{d}{dy}\frac{1}{\cos(y)} = \frac{-1\cdot(\cos(y))'}{\cos^2 y} = \sec(y)\operatorname{tg}(y).$$

(b) Usando a regra da cadeia para derivar a igualdade  $x = \sec(y(x))$  com respeito à variável x, obtemos

$$1 = \frac{d}{dx}x = \frac{d}{dx}\sec(y(x)) = \sec(y(x))\operatorname{tg}(y(x))y'(x).$$

(c) Note que o termo y'(x) do lado direito é exatamente a derivada da função "de dentro" na composição  $\sec(y(x))$ . Segue da expressão acima que

$$y'(x) = \frac{1}{\sec(y) \operatorname{tg}(y)}.$$

(d) Usando a identidade trigonométrica citada no enunciado obtemos  $\tan^2(y) = \sec^2(x) - 1$ . Uma vez que  $y \in [0, \pi/2)$  temos que  $\tan(y) \ge 0$ . Desse modo, concluímos que

$$tg(y) = \sqrt{\sec^2(y) - 1}. (3)$$

Substituindo-se  $y = \operatorname{arcsec}(x)$  na expressão acima obtemos que

$$tg(arcsec(x)) = \sqrt{x^2 - 1}. (4)$$

(e) Combinando-se (3) e (4) segue que a derivada da função arco secante é

$$\frac{d}{dx}\operatorname{arcsec}(x) = \frac{1}{x\sqrt{x^2 - 1}}, \quad x \in (1, +\infty).$$

Uma observação importante é que a função secante pode ser invertida em um intervalo maior, a saber  $(-\infty, -1] \cup [1, +\infty)$ . Nesse caso o contradomínio seria  $[0, \pi/2) \cup (\pi/2, \pi]$  e, procedendo como acima, obteríamos a seguinte derivada (verifique!)

$$\frac{d}{dx}\operatorname{arcsec}(x) = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1.$$