Case Study: Production Planning

Prakash Kotecha, Associate Professor Debasis Maharana, Teaching Assistant & Remya Kommadath, Teaching Assistant Indian Institute of Technology Guwahati

Case study: https://www.youtube.com/watch?v=PRjExZxWsNc

Implementation on MATLAB: https://www.youtube.com/watch?v=VjTDGJUQAcg

Constraint handling using correction approach: https://www.youtube.com/watch?v=HwWvfQ9QbYo

Single-Level Production Planning in Petrochemical Industries Using Novel Computational Intelligence Algorithms

Additional resources: tinyurl.com/sksopti, tinyurl.com/sksoptivid

Production Planning: Problem Definition

K type of raw materials, J processes, T different products.

A product can be produced by more than one process.

Production cost and investment costs are known at different production capacity levels.

Cost between successive known levels are a linear function of the quantity that is produced.

- If produced, production below the minimum level or greater than the maximum level is NOT possible.
- Limited amount of budget is available.
- Limited amount of raw materials are available.
- Not all products need to be produced.
- **Maximize** the profit (diff. b/w total selling price and production costs)

Case Study: Production Planning Industry

Sale Price (monetary unit/	Product	Process	(units	Capacity of produ			oduction onetary uni			vestment co			aterial re	
unit of product)			I_j	m_{j}	h_{j}	cl_j	cm_j	ch_j	il_j	im_j	ih_j	rm1	rm2	rm3
		P1	70	135	270	50.7	90.1	170.7	55	81.1	131.6	0.948	0	0
0.975	T1	Р2	75	150	300	56.8	103.8	196.2	58	85.1	132.4	0.9432	0	0
		Р3	77.5	155	310	56.9	103.7	195.7	60.2	86.8	134.1	0.949	0	0
0.975	T2	P4	70	145	2 90	51.7	97.6	184.8	55.1	83.1	132	0.9546	0	0
0.973	12	P5	47.5	95	190	38.2	69.8	130.4	43.3	66.8	104.3	0.955	0	0
0.780	Т3	Р6	40	80	160	38.5	65.2	120.7	66.2	92.8	153.2	1.045	0	0
0.760	13	P 7	40	80	160	31.8	57.1	105.5	40	61.4	95.1	1.05	0	0
0.735	T4	Р8	45	90	180	37.8	57.7	94.9	106.6	151.7	231.5	0.5103	0	0
1.450	Т5	P9	40	80	160	38.5	65.6	119.1	82.8	125.4	207	0.6289	0	0
		P10	90	180	360	92.2	159.2	290.9	233.5	390.7	698.7	0.8648	0	0
		P11	90	180	360	86.7	154.1	287.7	185.8	304.5	537.1	0.9546	0	0
1.130	Т6	P12	90	180	360	95.8	175	330.9	119	179.4	289.2	0.8265	0	0
1.130	10	P13	90	180	360	87.5	157.2	294.9	212.3	362.7	657.7	0.7875	0	0
		P14	90	180	360	105.9	196.6	375.2	109.8	164.3	263.1	0.8101	0	0
		P15	90	180	360	93.1	131.1	239.4	221.7	376.1	672.7	0.8782	0	0
0.830	T7	P16	50	100	200	41.4	68.7	117.2	115.5	180.4	287.4	0.815	0	0
0.030		P17	50	100	200	34.9	62	111.6	63.7	100.2	156.3	0.6994	0	0
0.450	Т8	P18	60	120	240	36.6	62.1	120.8	23.1	33.2	50.7	0.3784	0	0

Case Study: Production Planning Industry

Sale Price (monetary unit/	Product	Process		Capacit of prod	•		roduction c			v estment co nonetary uni			naterial re unit of pro	
unit of product)			I_{j}	m_{j}	h_{j}	cl_j	cm_j	ch_j	il_j	im_j	ih_j	rm1	rm2	rm3
0.74	TO	P19	100	200	400	67.6	125.2	237.2	117.6	186	307.5	0	0	0
0.74	Т9	P20	50	100	300	33	63.1	163.8	62.5	114	209.6	0	0	0
1.25	T10	P21	25	50	100	28.7	48.3	86	73.1	101.1	148	0	0	0
1.25	T10	P22	25	50	100	24	43.1	79.5	46.5	70.7	110.1	0	0	0
		P23	125	250	500	63.8	123.5	241	49.2	74.4	112.8	0	0	0
0.43	T11	P24	125	250	500	68.5	134.5	264	79.1	144.2	258.1	0	0	0
		P25	250	500	1000	101.5	195	377	134	229.9	392.2	0	0.4678	0
0.6	T12	P26	90	180	360	50.3	90	165.6	142.6	234.8	397.5	0	0.7267	0
0.69	T13	P27	67.5	135	200	53.9	101.2	146.4	82.7	133.6	181.3	0	0.393	0
		P28	70	135	270	42.1	75.1	141.8	56.9	84.5	131.5	0	1.02	0
0.86	T14	P29	70	135	270	44.6	77.5	147.7	63.4	84.5	136.9	0	1.02	0
		P30	70	135	270	44.6	78.8	148	66.5	96.2	147.7	0	1.02	0
		P31	100	200	400	55.7	106.8	208.4	51.4	83	144.5	0	0.9461	0
0.9	T15	P32	75	150	300	48.3	90.2	172.8	46.9	66	98.6	0	0.9387	0
		P33	122.5	245	490	92	174	336.2	82.4	116.6	175.6	0	0.943	0
0.87	T16	P34	50	100	200	34.9	63.9	120.4	72	117.7	199.7	0	1.06	0
		P35	182.5	365	540	63.2	111.4	156.6	125.6	195.9	259.6	0	0	0
0.48	T17	P36	182.5	365	540	60.3	103	142.6	116.4	168.2	213.5	0	0	0
		P37	180	360	550	64.7	110.2	154.6	133.2	196.3	248.9	0	0	0

Case Study: Production Planning Industry

Sale Price (monetary unit/	(monetary unit/ Product Process	Process		Capacity of produ		Production cost (monetary unit/yr)		Investment cost (monetary unit)			Raw material required (per unit of product)			
unit of product)			l_j	m_{j}	h_{j}	cl_j	cm_j	ch_j	il_j	im _j	ih_j	rm1	rm2	rm3
		P38	300	430	590	48.3	65	85	210.9	278.2	356	0	0	6.35
0.16	T18	P39	300	430	590	52.8	71.4	92.7	243.5	322.4	412.6	0	0	5.928
		P40	105	170	340	19.4	27.4	47.3	87	119.5	196.7	0	0	6.678
0.5	T19	P41	15	25	50	6.6	9.7	17.7	15.3	20.2	32.7	0	0	0
0.5	117	P42	15	25	50	6.9	10.6	19.4	17.9	26.2	44.9	0	0	0
		P43	415	830	1660	55.2	96.3	184.3	224.6	365.5	682.1	0	0	7.867
0.15	T20	P44	415	830	1660	56.5	100.5	194.3	228.5	384.6	727.6	0	0	7.778
		P45	415	830	1660	51.9	98	187.6	199.1	371.5	702.9	0	0	7.661
		P46	225	450	680	105.8	204.8	306	116.9	190	265.1	0	0.2891	0
0.76	T21	P47	225	450	680	108	209.7	313.5	115.6	191.8	266.8	0	0.2878	0
0.70	121	P48	225	450	680	105.6	202.5	302.6	125.2	192.7	269	0	0.2843	0
		P49	225	450	680	106.7	206.1	308.1	125.2	202	285.5	0	0.2874	0
0.7	T22	P50	12.5	25	50	9.4	16.4	28.4	26	40.8	63.9	0	0	0
0.7	122	P51	12.5	25	50	9	15.4	27.3	27.7	39.6	56.9	0	0	0
0.735	T23	P52	45	90	180	36.8	64	118.7	108.8	157.2	251.6	0	0	0
0.68	T24	P53	125	250	500	81.4	145.8	275.5	208.1	308.6	515.5	0	0	0
0.00	124	P54	125	250	500	78.4	145	277	170.5	267.3	452.7	0	0	0

Decisions

- Products that need to be produced
- Processes to be used for producing selected products
- Amount of production from the processes that have been selected for producing a particular product

					X								
	Product Process Production quantity												
T 1	T1 T2 T3 P1 P2 P6 x1 x2 x6												
Binary variables Binary variables Continuous variables: $0 \le x(j) \le h(j)$													
$l(j) \le x_i \le h(j)$													

P	roduc	ts	Process							Prod	luctio	n qua	ntity	
1	1	0	1	0	1	1	1	0	6	0	10	5	20	0
T 1	T2	T3	P 1	P 2	P 3	P 4	P 5	P 6	x1	x2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6

Consistent

Product	Process	Production level				
		1	m	h		
T1	P1	5	10	20		
11	P2	8	13	22		
	Р3	4	9	20		
T2	P4	2	7	20		
	P5	10	15	25		
Т3	P6	3	8	20		

				X												
	Product			Proc	cess		F		n quantit	y						
T 1	T 2	T 3	P 1	P2	•••	P 6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6						
Binary variables Binary variables Continuous variables: $0 \le x(j) \le h(j)$																

Pı	roduc	ts			Pro	Production quantity									
1	1	0	1	0	1	1	1	0	6	0	10	5	2	20	0
T 1	T2	T3	P 1	P2	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	J	v 5	<i>x</i> 6				
T1 and T2 produced P1, P3, P4 and P5 are used									1	(1 Quanti	ty pr	odu	† ced	
							ľ	1		T2					
Consistent									P	'1 I	23	P4	P5		
										(5 1	10	5	20	

Product	Process	Pro	oducti level	ion
		1	m	h
Т1	P1	5	10	20
11	P2	8	13	22
	Р3	4	9	20
Т2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

	X												
	Product			Pro	cess		F		n quantit	y			
T 1	T2	T3	P 1	P2	•••	P 6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6			
Binary variables													

Products Process									Production quantity					
1	1 0 1 1 0 0 1 0 0									8	10	5	20	10
T1 T2 T3 P1 P2 P3 P4 P5 P6								P6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									ess P2	† 2 produ	ices 8	units		
Inconsistent														

Product	Process	Pro	oduct level	ion	
		1	m	h	
Т1	P1	5	10	20	
11	P2	8	13	22	
	Р3	4	9	20	
T2	P4	2	7	20	
	P5	10	15	25	
Т3	P6	3	8	20	

					X					
	n quantit	y								
T1	T 2	T 3	P 1	P2	•••	P 6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6
Bin	ary variab	oles		Binary v	ariables		Continu	ous varia	bles: 0 ≤ 3	$x(j) \le h(j)$

	Products				Process							Production quantity					
	1	0	1	1	0	0	1	0	0	6	8	10	5	20	10		
	T 1	T2	T3	P 1	P2	P3	P 4	P5	P 6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6		
		1			1	1	1					1	1	1			
T	T2 is not produced P4 for T2 is active								35		of T2	-					
Inconsistent																	

Product	Process	Production level					
		1	m	h			
Т1	P1	5	10	20			
11	P2	8	13	22			
	Р3	4	9	20			
T2	P4	2	7	20			
	P5	10	15	25			
Т3	P6	3	8	20			

					X					
	Product		Production quantity							
T1	T 2	T 3	P 1	P2	•••	P6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6
Bin	ary variab	oles		Binary v	ariables		Continu	ous varia	bles: 0 ≤ 3	$x(j) \le h(j)$

Products Process								Proc	luctio	n qua	ntity			
1	0	1	1	0	0	1	0	0	6	8	10	5	20	10
T 1	T2	T3	P 1	P 2	P3	P 4	P5	P 6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
		1		.1						1				
	T3 is produced P6 for T3 is inactive													its of
Inconsistent														

Product	Process	Production level					
		1	m	h			
T1	P1	5	10	20			
11	P2	8	13	22			
	Р3	4	9	20			
T2	P4	2	7	20			
	P5	10	15	25			
Т3	P6	3	8	20			

Domain of decision variables: $0 \le x_j \le h_j \ \forall j = 1, 2, ..., J$

X	12	9	5	18	14	7

Product	Process used	Total amount
T1	P1, P2	$x_1 + x_2 = 12 + 9 = 21$
T2	P3, P4, P5	$x_3 + x_4 + x_5 = 5 + 18 + 14 = 37$
Т3	P6	$x_6 = 7$

J is the total number of processes

Product	Process	Production level					
		1	m	h			
T'1	P1	5	10	20			
T1	P2	8	13	22			
	Р3	4	9	20			
T2	P4	2	7	20			
	P5	10	15	25			
Т3	P6	3	8	20			

Cost determination

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Production cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = cl, y_2 = cm$$

$$x_1 = l, x_2 = m$$

$$y_1 = cl, y_2 = cm$$

$$c = cl + \frac{cm - cl}{m - l} (X - l)$$

Production cost between medium and high level

$$x = X$$

$$x_1 = m, x_2 = h$$
$$y_1 = cm, y_2 = ch$$

$$c = cm + \frac{ch - cm}{h - m} (X - m)$$

Cost determination

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Production cost between lower and medium level

$$x = X$$

x = X

A
$$x_1 = l, x_2 = m$$

 $y_1 = cl, y_2 = cm$

$$x_1 = l, x_2 = m$$

$$y_1 = cl, y_2 = cm$$

$$PC = cl + \frac{cm - cl}{m - l} (X - l)$$

Production cost between medium and high level

$$x_1 = m, x_2 = h$$
$$y_1 = cm, y_2 = ch$$

$$PC = cm + \frac{ch - cm}{h - m} (X - m)$$

Investment cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = il, y_2 = im$$

$$IC = il + \frac{im - il}{m - l} (X - l)$$

Investment cost between medium and high level

$$x = X$$

$$\mathbf{D} \quad x_1 = m, x_2 = h \\
y_1 = im, y_2 = ih$$

$$IC = im + \frac{ih - im}{h - m} (X - m)$$

Cost determination

Production cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = cl, y_2 = cm$$

$$PC = cl + \frac{cm - cl}{m - l} (X - l)$$

Production cost between medium and high level

$$x = X$$

$$x_1 = m, x_2 = h$$

$$y_1 = cm, y_2 = ch$$

$$PC = cm + \frac{ch - cm}{h - m} (X - m)$$

Investment cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = il, y_2 = im$$

$$IC = il + \frac{im - il}{m - l} (X - l)$$

Investment cost between medium and high level

$$x = X$$

$$x_1 = m, x_2 = h$$

$$y_1 = im, y_2 = ih$$

$$IC = im + \frac{ih - im}{h - m} (X - m)$$

Production cost between lower and medium level

$$x(j) = X(j) x_1 = l(j), x_2 = m(j) y_1 = cl(j), y_2 = cm(j)$$

$$PC(j) = cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j))$$

$$x(j) = X(j) x_1 = l(j), x_2 = m(j) y_1 = il(j), y_2 = im(j)$$

$$IC(j) = il(j) + \frac{im(j) - il(j)}{m(j) - l(j)} (X(j) - l(j))$$

Production cost between medium and high level

$$x(j) = X(j) x_1 = m(j), x_2 = h(j) y_1 = cm(j), y_2 = ch(j)$$

$$PC(j) = cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j))$$

$$x(j) = X(j) x_1 = m(j), x_2 = h(j) y_1 = im(j), y_2 = ih(j)$$

$$IC(j) = im(j) + \frac{ih(j) - im(j)}{h(j) - m(j)} (X(j) - m(j))$$

$$y_1 = im(j), y_2 = ih(j)$$

Investment cost between lower and medium level

$$x(j) = X(j).$$

$$x_1 = l(j), x_2 = m(j)$$

$$y_1 = il(j), y_2 = im(j)$$

$$IC(j) = il(j) + \frac{im(j) - il(j)}{m(j) - l(j)} (X(j) - l(j))$$

Investment cost between medium and high level

$$x(j) = X(j)$$

$$x_1 = m(j), x_2 = h(j)$$

$$y_1 = im(j), y_2 = ih(j)$$

$$IC(j) = im(j) + \frac{ih(j) - im(j)}{h(j) - m(j)} (X(j) - m(j))$$

Products	Processes	Production level			Production cost			In	vestme cost	ent	Raw m requ	naterial pired	Selling
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

$$PC(j) = cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X - l(j)).$$

$$PC(1) = 10 + \frac{20 - 10}{10 - 5} (6 - 5) = 12$$

$$PC(j) = cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X - m(j)).$$

$$PC(3) = 18 + \frac{29 - 18}{20 - 9} (10 - 9) = 19$$

X6 0 10 5 20 0

Products	Processes	Production level			Production cost			In	vestme cost	ent	Raw m	Selling	
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

$$IC(j) = il(j) + \frac{im(j) - il(j)}{m(j) - l(j)} (X - l(j)).$$

$$IC(1) = 50 + \frac{60 - 50}{10 - 5} (6 - 5) = 52$$

$$IC(j) = im(j) + \frac{ih(j) - im(j)}{h(j) - m(j)} (X - m(j)).$$

 $IC(3) = 65 + \frac{76 - 65}{20 - 9} (10 - 9) = 66$

Products Processes		Production level		Production cost		Investment cost		Raw material required		Selling			
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

X	Raw material 1 used
6	$6 \times 0.6 = 3.6$
0	0
10	$10 \times 0.4 = 4$
5	$5 \times 0.7 = 3.5$
20	$20 \times 0.9 = 18$
0	0

Products Processes		Production level		Production cost		Investment cost		Raw material required		Selling			
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

X	Reve	enue
6	6 x 10	= 60
0	0	
10	10 x 30	= 300
5	5 x 30	= 150
20	20 x 30	= 600
0	0	

Products Processes		Production level		Pr	Production cost		Investment cost		Raw material required		Selling		
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

X	Profit					
6	60 - 12	= 48				
0	0					
10	300 - 19	= 281				
5	150 – 16	= 134				
20	600 - 27	= 573				
0	0					

Domain constraint

Quantity produced by a process can be zero or should be greater than or equal to its low level production capacity.

Penalty incurred for a violated variable is $P^{domain}(j) = \begin{cases} 10^5 & \text{if } 0 < X(j) < l(j) \\ 0 & \text{if } l(j) \le X(j) \le h(j) \end{cases} \forall j = 1, 2, ..., J$

X	12	20	5	4	18	0

- P1 produces T1 between M and H valid
- P2 produces T1 between M and H valid
- P3 produces T2 between L and M valid
- P4 produces T2 between L and M valid
- P5 produces T2 between M and H valid
- P6 has not produced T3

Values of all variable are within their domains -
Feasible solution with respect to the domain

$$oxed{P^{domain} = \sum_{j=1}^{J} P^{domain} \left(j
ight) = 0}$$

Product Process		l	m	h
T1	P1	5	10	20
	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

Domain constraint

Quantity produced by a process can be zero or should be greater than or equal to its low level production capacity.

Penalty incurred for a violated variable is $P^{domain}(j) = \begin{cases} 10^5 & \text{if } 0 < X(j) < l(j) \\ 0 & \text{if } l(j) \le X(j) \le h(j) \end{cases} \forall j = 1, 2, ..., J$

X	4	5	2	1	5	2

- P1 produces T1 between 0 and L not valid
- P2 produces T1 between 0 and L not valid
- P3 produces T2 between 0 and L not valid
- P4 produces T2 between 0 and L not valid
- P5 produces T2 between 0 and L not valid
- P6 produces T3 between 0 and L not valid

Values of all variables are in the invalid region –
Infeasible solution with respect to the domain

$$P^{domain} = \sum_{j=1}^{J} P^{domain}(j) = 6 \times 10^{5}$$

Domain constraint

Quantity produced by a process can be zero or should be greater than or equal to its low level production capacity.

Penalty incurred for a violated variable is $P^{domain}(j) = \begin{cases} 10^5 & \text{if } 0 < X(j) < l(j) \\ 0 & \text{if } l(j) \le X(j) \le h(j) \end{cases} \forall j = 1, 2, ..., J$

X	9	7	8	0	6	18

- P1 produces T1 between L and M valid
- P2 produces T1 between 0 and L not valid
- P3 produces T2 between L and M valid
- P4 is not produced T2
- P5 produces T2 between 0 and L not valid
- P6 produces T3 between L and M valid

Troduct	110005	l	m	Tt.
T1	P1	5	10	20
11	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

Values of some variables are in the invalid region – Infeasible solution with respect to the domain

$$P^{domain} = \sum_{j=1}^{J} P^{domain}(j) = 2 \times 10^{5}$$

Production cost

Production cost of j^{th} process can be determined as

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

- Permissible production for each process is known.
- ➤ Production cost cannot be determined if production not in the permissible range.

- Total number of processes
- X(j) Quantity produced by jth process
- cl(j) Production cost of jth process at level l
- cm(j) Production cost of jth process at level m
- ch(j) Production cost of jth process at level h
- *l(j)* Low level production capacity of jth process
- m(j) Medium level production capacity of j^{th} process
- h(j) High level production capacity of j^{th} process

Production cost

Let the solution be

X 9 7 8 15 6 18

Values of some variables are in the invalid region – Infeasible solution with respect to the domain

➤ Production cost of variables violating their domains cannot be calculated.

18	-	16	28	-	35

Total production cost = 18 + 16 + 28 + 35 = 97

	Product	Process	l	m	h	cl	cm	ch
	T1	P1	5	10	20	50	60	70
	11	P2	8	13	22	52	62	71
		Р3	4	9	20	55	65	76
	T2	P4	2	7	20	58	68	81
		P5	10	15	25	60	70	80
	Т3	P6	3	8	20	54	64	76

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

Production cost

Let the solution be

X 4 5 2 1 5 2

Values of all variables are in the invalid region - Infeasible solution with respect to the domain

➤ Production cost cannot be calculated.

	Product	Process	l	m	h	cl	cm	ch
/T/4	P1	5	10	20	50	60	70	
	T1	P2	8	13	22	52	62	71
		Р3	4	9	20	55	65	76
	T2	P4	2	7	20	58	68	81
		P5	10	15	25	60	70	80
	Т3	P6	3	8	20	54	64	76

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, \dots, J$$

➤ Investment cost of jth process can be determined as

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

- Investment cost of the entire production plan should not exceed the available budget.
- \triangleright Violation incurs penalty (P^I)

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

- J Total number of processes
- **X**(j) Quantity produced by jth process
- il(j) Investment cost of jth process at level l
- im(j) Investment cost of jth process at level m
- ih(j) Investment cost of jth process at level h
- *l(j)* Low level production capacity of jth process
- m(j) Medium level production capacity of j^{th} process
- h(j) High level production capacity of j^{th} process
- **B** Budget available

Let the available budget be 400 monetary units

X 12 20 5 4 18 0

Values of all variables are within their domains - Feasible solution with respect to the domain

Investment cost corresponding to each process is as

 62
 69
 57
 62
 73
 0

Total investment cost = 323

Total investment cost < Available budget Feasible solution with respect to the budget constraint

$$P^I = 0$$

Product	Process	l	m	h	il	im	ih
777.4	P1	5	10	20	50	60	70
T1	P2	8	13	22	52	62	71
	Р3	4	9	20	55	65	76
T2	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available budget be 400 monetary units

X 20 21 20 19 23 20

Values of all variables are within their domains - Feasible solution with respect to the domain

Investment cost to each process is as

 70
 70
 76
 80
 78
 76

 \triangleright Total investment cost = 450

Total investment cost > Available budget Infeasible solution with respect to the budget constraint

$$P^I = (400 - 450)^2 = 2500$$

Product	Process	l	m	h	il	im	ih
77.4	P1	5	10	20	50	60	70
T1	P2	8	13	22	52	62	71
	Р3	4	9	20	55	65	76
T2	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available budget be 400 monetary units

X 4 5 2 1 5 2

Values of all variables are in invalid region - Infeasible solution with respect to the domain

Investment cost cannot be calculated.

Product	Process	l	m	h	il	im	ih
T1	P1	5	10	20	50	60	70
	P2	8	13	22	52	62	71
Т2	Р3	4	9	20	55	65	76
	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available budget be 400 monetary units

X 9 7 8 15 6 18

Values of some variables are in the invalid region -Infeasible solution with respect to the domain

Investment cost for domain violating variables is not calculated.

58 - 63 76 - 74

Total investment cost = 58 + 63 + 76 + 74 = 271

Total investment cost < Available budget Feasible solution with respect to the budget constraint

$$P^I = 0$$

Product	Process	l	m	h	il	im	ih
T'1	P1	5	10	20	50	60	70
T1	P2	8	13	22	52	62	71
	Р3	4	9	20	55	65	76
T2	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available raw material be 120 units

X 12 20 5 4 18 0

Values of all variables are within their domains - Feasible solution with respect to the domain

Amount of raw material required for each process is

 24
 26
 4
 6
 45
 0

➤Total	raw	material	rec	mired	105
	law	matchai		Junca	105

Total raw material required < Available raw material Feasible solution with respect to the raw material constraint

$$P^R = 0$$

Product	Process	l	m	h	Raw material required (rm)
T1	P1	5	10	20	2
11	P2	8	13	22	1.3
	Р3	4	9	20	0.8
T2	P4	2	7	20	1.5
	P5	10	15	25	2.5
T3	P6	3	8	20	1

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases} \quad \forall k = 1, 2, ..., K$$

Let the available raw material be 120 units

X 20 10 20 16 24 20

Values of all variables are within their domains - Feasible solution with respect to the domain

Amount of raw material required for each process is

40 13 16 24 60 20

➤ Total raw material required = 173

Total raw material required > Available raw material Infeasible solution with respect to the raw material constraint

$$P^I = (120 - 173)^2 = 2809$$

Product	Process	l	m	h	Raw material required (rm)
T1	P1	5	10	20	2
11	P2	8	13	22	1.3
	Р3	4	9	20	0.8
T2	P4	2	7	20	1.5
	P5	10	15	25	2.5
Т3	P6	3	8	20	1

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$

$$\forall k = 1, 2, ..., K$$

Let the available raw material be 120 units

X 4 5 2 1 5 2

Values of all variables are in the invalid region Infeasible solution with respect to the domain

Amount of raw material required cannot be calculated.

Product	Process	l	m	h	Raw material required (rm)
T1	P1	5	10	20	2
11	P2	8	13	22	1.3
	Р3	4	9	20	0.8
T2	P4	2	7	20	1.5
	P5	10	15	25	2.5
Т3	P6	3	8	20	1

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$

$$\forall k = 1, 2, ..., K$$

Let the available raw material be 120 units

X 9 7 10 18 6 18

Values of some variables are in the invalid region - Infeasible solution with respect to the domain

Raw material required for the domain violating variables is not calculated.

18 - 8 27 - 18

Total raw material required = 18 + 8 + 27 + 18 = 71

Total raw material required < Available raw material Feasible solution with respect to the raw material constraint

$$P^R = 0$$

Product	Process	l	m	h	Raw material required (rm)
T'1	P1	5	10	20	2
T1	P2	8	13	22	1.3
	Р3	4	9	20	0.8
T2	P4	2	7	20	1.5
	P5	10	15	25	2.5
Т3	P6	3	8	20	1

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$
$$\forall k = 1, 2, ..., K$$

Determination of Profit

➤ Profit calculation

$$Profit = \sum_{j=1}^{J} \left(SP(j)X(j) - PC(j) \right)$$

$$X$$
6 4 10 5 20 0

SP(j): S	elling price	for product	produced	using jth	process
----------	--------------	-------------	----------	-----------	---------

PC(j): Production cost for product produced using j^{th} process

X(j): Quantity of product produced from j^{th} process

X	Production cost	Revenue	Profit
6	12	60	48
4	-	-	K - 3
10	19	300	281
5	16	150	134
20	27	600	573
0	0	0	0

,	Products	Processes Production level			Prod	Production cost			stment	cost	Raw m	aterial ired	Selling price	
			1	m	h	cl	cm	ch	iI	im	ih	rm1	rm2	price
.]	T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
	11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
		Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
	T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
		P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
	Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Total Profit = 1036

Determination of fitness function value

$$P = \lambda \left(\left(\sum_{j=1}^{J} P^{domain} \left(j \right) \right) + \left(\sum_{k=1}^{K} P^{R} \left(k \right) \right) + \left(P^{I} \right) \right)$$

$$f = Profit - \lambda(P)$$

 $f = -Profit + \lambda(P)$

Maximization

Minimization

X	Domain constraint	Penalty Budget violation	Raw M	alty Iaterial ıtion	Profit
20	0				170
21	0				180
2	10^{5}	E 477	506.25	0	0
19	0	5476		U	538
23	0				660
20	0				963

$$P = 10^{15} (10^5 + 5476 + 506.25 + 0)$$

$$f = -2511 + 10^{15} (10^5 + 5476 + 506.25 + 0)$$

$$\lambda = 10^{15}$$

$$f = 1.06 \times 10^{20}$$

SP(j): Selling price for product produced using j^{th} process

PC(j): Production cost for product produced using j^{th} process

X(j): Quantity of product produced from j^{th} process

Products	Processes	Production level			Production cost			Inve	stment	cost	Raw m	aterial ired	Selling price
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T'1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
T1	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

X	20	21	2	19	23	20	Total	Available
IC	70	70	0	80	78	76	374	300
rm1	12	10.5	0	13.3	20.7	16	72.5	50
rm2	16	25.2	0	17.1	25.3	26	109.6	120

Products	Processes	Production level		Pr	oducti cost	on	In	vestme cost	ent		Raw material required		
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
T1	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Available budget = 300

Available raw material 1 = 50

Available raw material 2 = 50

$$\lambda = 10^{15}$$

	$X = [6\ 10\ 5\ 20\ 0\ 0]$	X = [18 15 8 10 5 20]
Penalty Domain Hole	0	1×10^5
Penalty Investment Cost	0	1764
Penalty Raw Material 1	0	0
Penalty Raw Material 2	0	492.84
Total Penalty	0	1.02×10^6
Total Production Cost	71	128
Total Revenue	910	1870
Max. Profit (Objective function)	839	1742
Min. Fitness	-839	1.02×10^{20}
PK DM RK IIT Guwahati		

Metaheuristic techniques and optimization problem

Metaheuristic techniques and optimization problem

$$P^{domain}(j) = \begin{cases} 10^5 & \text{if } 0 < X^j < l^j \\ 0 & \text{if } l^j \le X^j \le h^j \end{cases} \forall j = 1, 2, ..., J$$

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$

$$\forall k = 1, 2, \dots, K$$

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, \dots, J$$

40

Metaheuristic techniques and optimization problem

Different correction approaches

Processes		P1	P2	P3	P 4	P 5
Low level capacity (l)	5	9	1	3	4
Decision variables	X	12	6	2	19	2
Approach 1 (Fix it to zero)	X_{c}	12	0	2	19	0
Approach 2 (Fix it to low level)	X_{c}	12	9	2	19	4
Approach 3 (Fix randomly)	X_{c}	12	0	2	19	4

r = 0.3

$$r = 0.8$$

Approach 1

$$egin{aligned} x_i &= egin{cases} 0 & if & x_i < l_i & and & x_i
eq 0 \ x_i & else \end{cases} \ &orall i = \{1, 2, ..., D\} \ &where \ D \ is \ the \ problem \ dimension \end{cases}$$

$$\forall i = \{1, 2, ..., D\}$$

Approach 2

$$x_i = \begin{cases} l_i & \text{if } x_i < l_i \text{ and } x_i \neq 0 \\ x_i & \text{else} \end{cases}$$

$$\forall i = \{1, 2, ..., D\}$$

where D is the problem dimension

Approach 3

$$x_{i} = \begin{cases} 0 & if \quad x_{i} < l_{i} \quad and \quad x_{i} \neq 0 \quad and \quad r \leq 0.5 \\ l_{i} & if \quad x_{i} < l_{i} \quad and \quad x_{i} \neq 0 \quad and \quad r > 0.5 \\ x_{i} & else \end{cases}$$

$$\forall i = \{1, 2, ..., D\}$$

where D is the problem dimension

Thank You !!!