Report sull'Esercitazione S11L5: Analisi e Attacco con Strumenti di Cybersecurity

1. Accesso a PowerShell

Per avviare PowerShell ho seguito questi passaggi:

- 1. Apertura di PowerShell:
 - Ho cliccato su Start, digitato PowerShell nella barra di ricerca e selezionato Windows PowerShell.
 - Ho avviato la console con privilegi amministrativi cliccando con il tasto destro e scegliendo Esegui come amministratore.
- 2. Apertura del Prompt dei comandi:
 - o Ho ripetuto la procedura cercando cmd e avviando il Prompt dei comandi.

2. Confronto tra il Prompt dei comandi e PowerShell

Per confrontare le funzionalità dei due strumenti, ho eseguito alcuni comandi base:

2.1. Utilizzo del comando dir

Nel **Prompt dei comandi**, ho digitato:

dir

• Questo ha mostrato un elenco di file e cartelle della directory corrente.

In **PowerShell**, ho eseguito lo stesso comando:

dir

• Il risultato è stato simile, ma il formato dell'output conteneva più dettagli sulle proprietà dei file.

Per verificare la differenza interna, ho usato il comando:

Get-Alias dir

Output:

Alias dir -> Get-ChildItem

Questo mi ha confermato che dir in PowerShell è un alias per il cmdlet Get-ChildItem.

2.2. Utilizzo di altri comandi di base

Ho eseguito alcuni comandi comuni in entrambi gli ambienti:

- ping google.com → Test della connettività di rete.
- ipconfig → Visualizzazione della configurazione IP del computer.
- cd → Navigazione tra le cartelle.

Tutti questi comandi hanno dato risultati simili in entrambi gli ambienti.

3. Esplorazione dei Cmdlet in PowerShell

Dopo aver verificato che dir è un alias di Get-ChildItem, ho provato altri cmdlet nativi di PowerShell:

Visualizzazione degli alias disponibili:

Get-Alias

1. Questo comando ha mostrato l'elenco completo degli alias disponibili.

Elenco dei comandi di PowerShell:

Get-Command

2. Ho ottenuto una lista di tutti i comandi e cmdlet disponibili nel sistema.

Ottenere informazioni su un cmdlet:

Get-Help Get-ChildItem

3. Questo ha mostrato una descrizione dettagliata del cmdlet Get-ChildItem, con esempi di utilizzo.

4. Uso di netstat per monitorare la rete

Ho poi testato netstat, un comando utile per visualizzare connessioni attive e statistiche di rete.

Visualizzazione delle connessioni attive:

netstat -a

1. Questo ha mostrato un elenco delle connessioni di rete attive e delle porte in ascolto.

Visualizzazione dettagliata con informazioni sui processi:

netstat -abno

2. Questo comando ha fornito informazioni dettagliate sui processi associati a ciascuna connessione.

Verifica della tabella di routing:

netstat -r

3. Ho ottenuto una panoramica delle rotte di rete configurate sul sistema.

5. Pulizia del Cestino con PowerShell

Infine, ho testato l'utilizzo di PowerShell per eseguire operazioni amministrative, come lo svuotamento del Cestino.

Visualizzazione del contenuto del Cestino:

Get-ChildItem C:\\$Recycle.Bin -Recurse

1. Ho potuto vedere tutti i file eliminati ma ancora presenti nel Cestino.

Svuotamento del Cestino:

Clear-RecycleBin -Force

2. Questo ha eliminato definitivamente tutti i file nel Cestino senza richiedere conferma.

Analisi del Traffico HTTP e HTTPS con Wireshark

Parte 1: Cattura e Analisi del Traffico HTTP

1. Avvio della Macchina Virtuale:

 Ho avviato la VM CyberOps Workstation e ho effettuato l'accesso con le credenziali fornite.

2. Avvio di tcpdump per Catturare il Traffico HTTP:

- Ho aperto un terminale e identificato l'interfaccia di rete attiva utilizzando il comando appropriato.
- Ho avviato tcpdump sull'interfaccia identificata, specificando la cattura completa dei pacchetti e salvando l'output in un file denominato httpdump.pcap.

3. Generazione di Traffico HTTP:

- Ho aperto un browser web all'interno della VM e navigato al sito web http://www.altoromutual.com/login.jsp, che utilizza il protocollo HTTP non crittografato.
- Nella pagina di login, ho inserito le credenziali "Admin" sia per il nome utente che per la password, quindi ho cliccato su "Login".
- Dopo aver completato queste operazioni, ho chiuso il browser.

4. Interruzione della Cattura e Analisi dei Dati:

- Sono tornato al terminale e ho interrotto tcpdump utilizzando la combinazione di tasti appropriata.
- Ho aperto il file httpdump.pcap con Wireshark per analizzare il traffico catturato.
- Filtrando per il protocollo HTTP, ho individuato le richieste e le risposte HTTP associate al login effettuato. Ho notato che le credenziali inserite erano visibili in chiaro all'interno dei pacchetti, confermando la mancanza di crittografia nel protocollo HTTP.

Parte 2: Cattura e Analisi del Traffico HTTPS

1. Avvio di una Nuova Cattura con tcpdump:

 Ho aperto un nuovo terminale e avviato tcpdump, salvando l'output in un file denominato httpsdump.pcap.

2. Generazione di Traffico HTTPS:

- Ho aperto il browser web e navigato al sito https://www.google.com, che utilizza il protocollo HTTPS crittografato.
- Ho interagito con la pagina per generare traffico, ad esempio effettuando una ricerca.

3. Interruzione della Cattura e Analisi dei Dati:

- Ho interrotto tcpdump e aperto il file httpsdump.pcap con Wireshark.
- Filtrando per il protocollo TLS (Transport Layer Security), ho osservato che, sebbene fosse possibile identificare la comunicazione tra il client e il server, il contenuto dei messaggi risultava crittografato, impedendo la visualizzazione dei dati effettivi scambiati.

Esplorazione di Nmap

Parte 1: Esplorazione di Nmap

1. Avvio della Macchina Virtuale:

 Ho avviato la VM CyberOps Workstation e ho effettuato l'accesso con le credenziali fornite.

2. Apertura del Terminale:

• Ho aperto una finestra del terminale per interagire con il sistema.

3. Consultazione del Manuale di Nmap:

- Ho digitato man nmap per accedere alle pagine manuali di Nmap.
- All'interno del manuale, ho utilizzato le frecce per navigare e la barra spaziatrice per avanzare di una pagina.
- Per cercare termini specifici, ho utilizzato la funzione di ricerca digitando /example e premendo Invio, trovando così esempi di utilizzo di Nmap.

4. Analisi degli Esempi:

- Nel primo esempio, il comando mostrato era nmap -A -T4 scanme.nmap.org.
- Ho approfondito il significato delle opzioni:
 - -A: Abilita il rilevamento del sistema operativo, la rilevazione delle versioni, la scansione degli script e il traceroute.
 - -T4: Imposta la velocità della scansione su un livello più veloce, adatto per connessioni a banda larga o Ethernet.

Parte 2: Scansione per Porte Aperte

1. Scansione del Localhost:

- Ho eseguito una scansione sul mio host locale per identificare le porte aperte e i servizi in esecuzione.
- L'output ha mostrato diverse porte aperte, indicando i servizi attivi sul sistema.

2. Scansione della Rete Locale:

- Ho eseguito una scansione sulla rete locale per identificare gli host attivi e le loro porte aperte.
- La scansione ha rilevato diversi dispositivi sulla rete, ciascuno con un elenco di porte aperte e servizi associati.

3. Scansione di un Server Remoto:

- Ho eseguito una scansione sul server remoto scanme.nmap.org per identificare le porte aperte e i servizi offerti.
- L'output ha mostrato diverse porte aperte, indicando i servizi disponibili su quel server.

Attacco a un Database MySQL

Parte 1: Apertura di Wireshark e Caricamento del File PCAP

1. Avvio della Macchina Virtuale:

 Ho avviato la VM CyberOps Workstation e ho effettuato l'accesso con le credenziali fornite.

2. Apertura di Wireshark:

 Ho cliccato su "Applicazioni" > "CyberOps" > "Wireshark" per avviare l'applicazione.

3. Caricamento del File PCAP:

 All'interno di Wireshark, ho cliccato su "File" > "Open" e ho navigato fino alla directory /home/analyst/lab.support.files/ per aprire il file SQL_Lab.pcap.

4. Esame del Traffico Catturato:

 Il file PCAP conteneva il traffico di rete catturato durante un attacco di SQL Injection, con una durata complessiva di circa 8 minuti (441 secondi).

5. Identificazione degli IP Coinvolti:

Analizzando il traffico, ho identificato due indirizzi IP coinvolti nell'attacco:
10.0.2.4 (attaccante) e 10.0.2.15 (vittima).

Parte 2: Analisi dell'Attacco di SQL Injection

1. Esame Iniziale dell'Attacco:

- o Ho individuato una richiesta HTTP GET sospetta al pacchetto numero 13.
- Cliccando con il tasto destro su questa riga, ho selezionato "Follow" > "HTTP Stream" per visualizzare l'intero flusso di dati.

2. Identificazione del Payload Malevolo:

- All'interno del flusso HTTP, ho cercato la stringa 1=1 per individuare l'injezione SOI
- L'attaccante aveva inserito la query 1=1 in un campo UserID sul server 10.0.2.15.

 Invece di restituire un messaggio di errore, l'applicazione ha risposto con un record del database, indicando che l'iniezione SQL aveva avuto successo.

Parte 3: Continuazione dell'Attacco di SQL Injection

1. Ulteriore Analisi del Traffico:

 Ho esaminato il pacchetto numero 19 seguendo lo stesso metodo descritto in precedenza.

2. Raccolta di Informazioni Sensibili:

- L'attaccante ha eseguito la query: 1' or 1=1 union select database(), user()#.
- Questa query ha restituito il nome del database (dvwa) e l'utente del database (root@localhost), oltre a diversi account utente presenti nel sistema.

Parte 4: Informazioni di Sistema Ottenute dall'Attacco

1. Determinazione della Versione del Database:

- Analizzando il pacchetto numero 22, ho osservato che l'attaccante ha eseguito la query: 1' or 1=1 union select null, version()#.
- Questa query ha restituito la versione del database: MySQL 5.7.12-0.

Parte 5: Informazioni sulle Tabelle del Database Ottenute dall'Attacco

1. Elenco delle Tabelle del Database:

- Nel pacchetto numero 25, l'attaccante ha eseguito la query: 1'or 1=1 union select null, table_name from information schema.tables#.
- Questa query ha restituito un elenco di tutte le tabelle presenti nel database, fornendo all'attaccante una panoramica completa della struttura del database.

2. Accesso ai Dati Sensibili:

 Modificando la query in: 1' OR 1=1 UNION SELECT null, column_name FROM INFORMATION_SCHEMA.columns WHERE table_name='users', l'attaccante potrebbe ottenere i nomi delle colonne della tabella users, facilitando l'accesso a dati sensibili come nomi utente e password.

Parte 6: Conclusione dell'Attacco di SQL Injection

1. Estrazione di Hash delle Password:

 Nel pacchetto numero 28, l'attaccante ha eseguito una query per ottenere gli hash delle password degli utenti, concludendo l'attacco.