

PCM1861, PCM1863, PCM1865

SLAS831B-MARCH 2014-REVISED MARCH 2014

PCM186x 110dB 2ch and 4ch Audio ADCs with Universal Front End

TI Information - Selective Disclosure

Features

- Universal Analog Mic Input, 2.1V_{RMS} Full Scale
 - 8 Analog Inputs with MUX and PGA
 - Analog pre-mix function before PGA/MUX
 - Single Ended, Pseudo-Differential or Differential Inputs with Mic Bias
 - 4x Digital Microphone Inputs
- Up to 4 Mono ADC channels (PCM1865)
- Hardware Control (PCM1861)
- I²C or SPI Control (PCM1863/5)
- H/W Programmable Gain Amplifier
 - Fixed Mic Pregain select : 20, 32dB (Analog)
- S/W Programmable Gain Amplifier
- Integrated High Performance Audio PLL
- Single 3.3V Supply for Analog and Digital
 - Additional 1.8V Core and Interface for lower power consumption
- Power Dissipation at 3.3V: <85mW (PCM1861/3), <145mW (PCM1865)
- 'Energysense' Audio Content Detector for auto system wakeup and sleep
- Master or Slave Audio Interface:
- Mixer functionality:
 - Digital Mixer to mix ADC outputs and I²S synchronous inputs
 - Zero Crossing PGA Gain changes
- Auto PGA Clipping Suppression Control

2 Applications

- Home Theater and TV
- **Automotive Head Units**
- Bluetooth® Speaker
- Microphone Array Processors

3 Description

The PCM186x family of audio front-end devices takes a new approach to audio-function integration to ease compliance with European Ecodesign legislation while enabling high-performance end products at reduced cost. With no need for a 5-volt supply or an programmable-gain amplifier, smarter products are feasible at reduced cost.

The PCM186x highly flexible audio front end supports input levels from small-mV microphone inputs all the way to 2.1V_{RMS} line Inputs without external resistor dividers. The PCM186x family integrates many system-level functions that assist or even replace some DSP functions.

All these features are available using a single 3.3V power supply. An integrated bandgap voltage reference provides excellent PSRR, so that a dedicated analog 3.3V rail may not be required.

Device Information

ORDER NUMBER	PACKAGE	BODY SIZE
PCM1861DBT		
PCM1863DBT	TSSOP (30)	7,80mm × 4,40mm
PCM1865DBT		

Simplified Diagrams

SLAS831B-MARCH 2014-REVISED MARCH 2014

5 Simplified Diagrams

Typ. Performance (3.3V Supply, -1dB FS Input)

Typ. I citorinance (5.54 oup)	ny, rab i o input,
Parameter	PCM1861
SNR	<110dB
Single Ended Input Dynamic Range	106dB
Differential Input Dynamic Range	110dB
THD+N at - 1dBFS	-93dB
Full Scale Input	2.1V _{RMS}
Normal Group Delay:	30/f _S
Low Latency - Group Delay Latency:	10/f _S
Sampling Frequency	32kHz to 192kHz

Device Comparison Table

PART NUMBER	NUMBER CONTROL SNR PERFORMANCE ANALOG FRONT END		Simultaneous Channel Capability	
PCM1861	Hardware	110dB Differential	1 or 2V _{RMS} MUX with fixed PGA gains	2
PCM1863	I ² C or SPI	110dB Differential	1 or 2V _{RMS} MUX, Mix, PGA and Aux ADC	2
PCM1865	I ² C or SPI	110dB Differential	1 or 2V _{RMS} MUX, Mix, PGA and Aux ADC, 4 mono ADCs	4

Table of Contents

1	Features 1		9.12 Digital PDM Microphones	. 23
2	Applications 1		9.13 Clocks	. 24
3	Description 1		9.14 ADCs	. 34
4	Simplified Diagrams 1		9.15 Audio Processing	. 39
5	Simplified Diagrams		9.16 Fade-In and Fade-Out Functions	
6	Revision History		9.17 Mappable GPIO Terminals	
7	Terminal Configuration and Functions		9.18 Current Status Registers	. 41
•	7.1 Terminal Assignments, PCM1861		9.19 Control	
	7.2 Terminal Assignments, PCM1863, PCM1865 6		9.20 Interrupt Controller	
8	Specifications8		9.21 Audio Format Selection and Timing Details	
0			9.22 Device Functional Modes	
	8.1 Absolute Maximum Ratings	10	Applications and Implementation	
	8.3 Recommended Operating Conditions		10.1 Application Information	
	8.4 THERMAL CHARACTERISTICS		10.2 Typical Applications	. 55
	8.5 Electrical Characteristics, DC	11	Power Supply Recommendations	59
	8.6 Electrical Characteristics, Primary PGA and ADC AC		11.1 Power Supply Distribution and Requirements	. 59
	Performance		11.2 1.8V Support	. 59
	8.7 Electrical Characteristics, Secondary ADC		11.3 Power Up Sequence	. 59
	Performance11		11.4 Lowest Power Down Modes	. 59
	8.8 Digital Filter Characteristics		11.5 Power On Reset Sequencing Timing Diagram	. 61
	8.9 Timing Requirements, External Clock		11.6 Power Connection Examples	. 61
	8.10 I ² C Control Interface Timing Requirements 11		11.7 Fade In	. 62
	8.11 SPI Control Interface Timing Requirements 12	12	Layout	64
	8.12 Typical Characteristics14		12.1 PCM186x Grounding and System Partitioning	. 64
9	Detailed Description 17	13	Programming and Registers Reference	66
	9.1 Overview of Additional Features 17		13.1 Coefficient Data Formats	. 66
	9.2 Functional Block Diagram 17		13.2 Register Map	. 66
	9.3 Terminology 17		13.3 Programming DSP Coefficients	108
	9.4 Analog Front End 18	14	Device and Documentation Support	110
	9.5 Microphone Support		14.1 Development Support	110
	9.6 PCM1861 Input Multiplexer		14.2 Related Links	110
	9.7 PCM1863/5 Mixers and Multiplexers		14.3 Trademarks	110
	9.8 Programmable Gain Amplifier		14.4 Electrostatic Discharge Caution	110
	9.9 Automatic Clipping Suppression 20		14.5 Glossary	110
	9.10 Zero-Crossing Detect22	15	Mechanical, Packaging, and Orderable	
	9.11 Digital Inputs		Information	111
	-			

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision initial release (March 2014) to Revision A	Page
Changed from Advance Information to Production Data status	1
Deleted "Device Power Dissipation" row	8
Changes from Revision A (March 2014) to Revision B	Page
Changes from Revision A (March 2014) to Revision B Added PCM1861 example system diagram	
,	2

Terminal Configuration and Functions

7.1 Terminal Assignments, PCM1861

Figure 1. Device Terminal Assignments, PCM1861

Terminal Descriptions PCM1861

TERMINAL		1/0	DESCRIPTIONS			
NAME	NO.	1,0	DESCRIPTIONS			
VINL2/VIN1M	1	I	Analog input 2, L-channel (or Differential M input for input 1)			
VINR2/VIN2M	2	- 1	Analog input 2, R-channel (or Differential M input for input 2)			
VINL1/VIN1P	3	I	Analog input 1, L-channel (or Differential P input for input 1)			
VINR1/VIN2P	4	I	Analog input 1, R-channel (or Differential P input for input 2)			
Mic Bias	5		Mic Bias			
VREF	6	_	Reference voltage decoupling (= 0.5 VCC)			
AGND	7	_	Analog GND			
AVDD	8	_	Analog power supply, +3.3V			
DVDD	9	_	Digital power supply, +3.3V			
IOVDD	10	-	Power Supply for I/O Voltages (for example, +3.3V or +1.8V)			
DGND	11	-	Digital GND			
LDO	12	_	LDO output (or +1.8V input to bypass LDO)			
XO	13	_	Oscillation amplifier output			
XI	14	- 1	Oscillation amplifier input			
SCKI	15	- 1	CMOS Level (+3.3V) Master Clock Input			
LRCK	16	I/O	Audio data latch enable input/output ⁽¹⁾			
BCK	17	I/O	Audio data bit clock input/output ⁽¹⁾			
DOUT	18	0	Audio data digital output			
INT	19	0	Interrupt Output (for Analog Input Detect). Pull High for Active Mode, Pull Low for Idle.			

Schmitt trigger input with internal pull-down ($50k\Omega$ typically). (1)

www.ti.com

Terminal Assignments, PCM1861 (continued)

Terminal Descriptions, PCM1861 (continued)

TERMINAL			-						
NAME	NO.	1/0		DESCRIPTIONS					
MD6	20	ı	Analog MUX and	MD6	MD5	MD2	Analog MUX and Gain Select		
MD5	21	I	Gain Selection:	SE Ch 1 (VINL1 / VINR1)					
				0	0	1	SE Ch 2 (VINL2 / VINR2)		
				0	1	0	SE Ch 3 (VINL3 / VINR3)		
				0	1	1	SE Ch 4 (VINL4 / VINR4)		
				1	0	0	SE Ch 4 with 12dB gain		
				1	0	1	SE Ch 4 with 32dB gain		
				1	1	0	Diff Ch 1 (VIN1P / VIN1M, VIN2P / VIN2M)		
				1	1	1	Diff Ch 2 (VIN3P / VIN3M, VIN4P / VIN4M) with 12dB gain		
MD4	22	I	Audio Format: high = Left Justified, low = I ² S						
MD2	23	I/O	Configuration (See MD6, MD5)						
MD3	24	I	Filter Select: 0 = FIF	R Decima	ation Filte	er, 1 = II	R Short Latency Decimation Filter		
MD1	25	I	Audio Interface Mode:	MD1	MD0	Interfa	ce Mode		
MD0	26	I		0	0	Slave N	Mode, 256f _S , 384f _S , 512f _S Auto Detect		
				0	1	Master	Mode (512f _S)		
				1	0	Master	Mode (384f _S)		
			1 1 Master Mode (256f _S)						
VINL4/VIN4M	27	I	Analog input 4, L-channel (or Differential M input for input 4)						
VINR4/VIN3M	28	I	Analog input 4, R-channel (or Differential M input for input 3)						
VINL3/VIN4P	29	I	Analog input 3, L-channel (or Differential P input for input 4)						
VINR3/VIN3P	30	I	Analog input 3, R-ch	nannel (o	r Differe	ntial P ir	nput for input 3)		

Product Folder Links: PCM1861 PCM1863 PCM1865

7.2 Terminal Assignments, PCM1863, PCM1865

A. The DMIN2 option for terminal 22 is only available on the PCM1865 device.

Figure 2. Device Terminal Assignments, PCM1863, PCM1865

Table 1. Terminal Descriptions PCM1863, PCM1865

TERMINAL		1/0	DESCRIPTIONS	
NAME	NO.	1/0	DESCRIPTIONS	
VINL2/VIN1M	1	I	Analog input 2, L-channel (or Differential M input for input 1)	
VINR2/VIN2M	2	- 1	Analog input 2, R-channel (or Differential M input for input 2)	
VINL1/VIN1P	3	I	Analog input 1, L-channel (or Differential P input for input 1)	
VINR1/VIN2P	4	I	Analog input 1, R-channel (or Differential P input for input 2)	
Mic Bias	5		Mic Bias	
VREF	6	_	Reference voltage decoupling (= 0.5 VCC)	
AGND	7	_	Analog GND	
AVDD	8	_	Analog power supply, +3.3V	
DVDD	9	_	Digital power supply, +3.3V	
IOVDD	10	-	Power Supply for I/O Voltages (for example, +3.3V or +1.8V)	
DGND	11	-	Digital GND	
LDO	12	_	LDO output (or +1.8V input to bypass LDO)	
XO	13	_	Oscillation amplifier output (Connect External Crystal if needed here)	
XI	14	I	Oscillation amplifier input (Connect External Crystal if needed here)	
SCKI	15	I	CMOS Level (+3.3V) Master Clock Input	
LRCK	16	I/O	Audio data latch enable input/output ⁽¹⁾	
BCK	17	I/O	Audio data bit clock input/output ⁽¹⁾	
DOUT	18	0	Audio data digital output	
GPIO 3 / INT C	19	I/O	GPIO 3 or Interrupt C	
GPIO2 / INT B / DMCLK	20	I/O	GPIO 2, Interrupt B or Digital Microphone Clock Output	

Schmitt trigger input with internal pull-down (50kΩ typically).

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Terminal Assignments, PCM1863, PCM1865 (continued)

Table 1. Terminal Descriptions PCM1863, PCM1865 (continued)

TERMINAL		1/0	DESCRIPTIONS	
NAME	NO.	1/0	DESCRIPTIONS	
GPIO1 / INT-A / DMIN	21	I/O	GPIO 1, Interrupt A or Digital Microphone Input	
MISO / GPIO0 / DMIN2	22	I/O	SPI-Mode Master In, Slave Out OR I2C-Mode GPIO0, OR DMIN2 (PCM1865 Only)	
MOSI / SDA	23	I/O	SPI-Mode Master Out, Slave IN OR I2C-Mode SDA	
MC / SCL	24	I	SPI-ModeSerial Bit Clock I2C-Mode Serial Bit Clock	
MS / AD	25	I	SPI-Mode Chip Select OR I2C-Mode Address Terminal	
MD0	26	I	Control Method Select Terminal: I ² C (tied high) or SPI (tied low)	
VINL4/VIN4M	27	I	Analog input 4, L-channel (or Differential M input for input 4)	
VINR4/VIN3M	28	ı	Analog input 4, R-channel (or Differential M input for input 3)	
VINL3/VIN4P	29	1	Analog input 3, L-channel (or Differential P input for input 4)	
VINR3/VIN3P	30	ı	Analog input 3, R-channel (or Differential P input for input 3)	

Product Folder Links: PCM1861 PCM1863 PCM1865

8 Specifications

8.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted) (1)

		PCM1861/3/5
	AVDD to AGND	-0.3V to 3.9V
Supply voltage	DVDD to DGND	-0.3V to 3.9V
	IOVDD to DGND	-0.3 V to +3.9V
Ground voltage differences	AGND, DGND	±0.3 V
Digital input voltage	to DGND	-0.3 V to IOVDD + 0.3
XI	to DGND	-0.3V to 2.1V
Analog input voltage	V _{IN} xx	-1.7V to 5.0V

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 Handling Ratings

		MIN	MAX	UNIT
Storage Temperature		-40	125	°C
LCD.	НВМ		4000	\/
ESD	CDM		1500	V

8.3 Recommended Operating Conditions

over operating temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Analog Supply Voltage	AVDD to AGND	3.0	3.3	3.6	V
Digital Supply Voltage	DVDD to DGND	3.0	3.3	3.6	V
IO Supply Voltage to DGND	IOVDD at 1.8V to DGND	1.62	1.8	1.98	V
IO Supply Voltage to DGND	IOVDD at 3.3V to DGND	3.0	3.3	3.6	V
LDO to DGND	LDO is an input when using external 1.8V power supply	IOVDD – 0.3	IOVDD	IOVDD + 0.3	V
Operating Junction Temperature Range		-40		125	°C

8.4 THERMAL CHARACTERISTICS

over operating temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
θ_{JA}	Theta JA	High K		91.2		
ΨЈТ	Psi JT	•		1.0		
ΨЈВ	Psi JB			41.5		°C/W
θ_{JC}	Theta JC	Тор		25.3		
θ_{JB}	Theta JB			42.0		

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

8.5 Electrical Characteristics, DC

all specifications at T_A = 25°C, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, f_S = 48kHz, system clock = 256× f_S , 24-bit data (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Power				•
	3.3V AVDD Current	2ch 48kHz, XTAL Master Mode	16	mA
	3.3V AVDD Current	4ch, 48kHz, Slave mode	31	mA
	3.3V DVDD Current	2ch 48kHz, XTAL Master Mode	10	μA
	3.3V DVDD Current	4ch 48kHz, XTAL Master Mode	10	μA
	1.8V DVDD Current	DVDD=1.8V, 2ch, 48kHz, XTAL	10	μA
	PSRR	Valid with recommended values on Analog Rails (AVDD, VREF etc)	80	dB
	Power Consumption	48kHz 2ch Active 3.3V source for all	80	mW
	Power Consumption	48kHz Sleep (Energysense) 3.3V source for all	24	mW
	Power Consumption	48kHz Standby 3.3V source for all	0.59	mW
	Power Consumption	48kHz 4ch Active 3.3V source for all	145	mW
	3.3V AVDD Current	2ch 48kHz with XTAL - Sleep Mode	2.7	mA
	3.3V AVDD Current	2ch 48kHz with XTAL - Standby Mode	17.1	mA
	3.3V AVDD Current	2ch 48kHz with XTAL - Powerdown Mode	1.2	mA
	3.3V DVDD Current	3.3V DVDD 2ch Mode, 48kHz, Master Mode - Sleep Mode	353	μA
	3.3V DVDD Current	3.3V DVDD 2ch Mode, 48kHz, Master Mode - Standby Mode	353	μA
	3.3V DVDD Current	3.3V DVDD 2ch Mode, 48kHz, master mode - Powerdown	353	μΑ
	1.8V DVDD Current	DVDD=1.8V, 2ch, 48kHz, XTAL Sleep Mode	384	μΑ
	1.8V DVDD Current	DVDD=1.8V, 2ch, 48kHz, XTAL Powerdown	384	μΑ
	1.8V DVDD Current	DVDD=1.8V, 2ch, 48kHz, XTAL. Powerdown	384	μA
	Power Consumption (3.3V AVDD, 1.8V DVDD)	48kHz 2ch Active 3.3V analog, 1.8V digital	68	mW
	Power Consumption (3.3V AVDD, 1.8V DVDD)	48kHz 4ch Active 3.3V analog, 1.8V digital	128	mW
	3.3V AVDD Current	4ch, 48kHz, Master mode	31	mA
Mic Bias	1			
	Mic Bias Noise		5	μVRMS
	Mic Bias Current Capability		4	mA
	Mic Bias Voltage		2.6	V
Digital IC	0			
V_{OH}	Output Logic "High" Voltage Level	IOH = 2 mA	75	%IOVDD
V _{OL}	Output Logic "Low" Voltage Level	IOH = -2mA	25	%IOVDD
I _{IH} 1	Input Logic "High" Current Level	All digital pins	10	μA
I _{IL} 1	Input Logic "Low" Current Level	All digital pins	-10	μΑ

Copyright © 2014, Texas Instruments Incorporated

8.6 Electrical Characteristics, Primary PGA and ADC AC Performance

all specifications at T_A = 25°C, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, f_S = 48kHz, system clock = 256× f_S , 24-bit data (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input Channel Signal to Noise ratio	0dB PGA Gain, –60dB input signal, Master Mode. at DIFF Input	97	110		dB
	Input Channel Signal to Noise ratio at 32dB	32dB PGA Gain, –92dB input signal, Master Mode at DIFF Input	85	93		dB
	Input Channel THD	0dB PGA Gain, -1dB input signal, Master Mode at DIFF Input	-85	-93		dB
	Input Channel THD at 32dB	32dB PGA Gain, –33dB input signal, Master Mode at DIFF Input	-68	-84		dB
	L channel to R channel separation line input	0dB PGA Gain, -1dB input signal, Master Mode		-105		dB
	L channel to R channel separation mic input	20dB PGA Gain, -1dB input signal, Master Mode		-105		dB
	L1 channel to L2 channel separation line input	0dB PGA Gain, –1dB input signal, Master Mode		-105		dB
	R1 channel to R2 channel separation line input	0dB PGA Gain, -1dB input signal, Master Mode		-105		dB
	L1 channel to L2 channel separation mic input	20dB PGA Gain, -1dB input signal, Master Mode		-105		dB
	R1 channel to R2 channel separation mic input	20dB PGA Gain, -1dB input signal, Master Mode		-105		dB
	Range of the analog PGA	-12 to +12dB (1dB STEP) , 20dB and 32dB	-12 ⁽¹⁾		32	dB
	Accuracy of the PGA + ADC			0.5		dB
	Matching between PGA + ADCs onchip			0.05		dB
	Full Scale Voltage Input per input pin	Single Ended Mode			2.1	V_{RMS}
	Full Scale Voltage Input per input pin	Differential Input Mode			2.1	V_{RMS}
	Input Channel Signal to Noise ratio	0dB PGA Gain, –60dB input signal, Master Mode. at SE input		106		dB
	Input Channel Signal to Noise ratio at 32dB	32dB PGA Gain, –92dB input signal, Master Mode at SE input		75		dB
	Input Channel THD	0dB PGA Gain, –1dB input signal, Master Mode at SE input		87		dB
	Input Channel THD at 32dB	32dB PGA Gain, –33dB input signal, Master Mode at SE input		68		dB
	lanut lanadanaa nar nin	PCM1865		10		ŀO.
	Input Impedance per pin	PCM1861/3		20		kΩ
CMRR	Common Mode Rejection Ratio	Differential Input, 1kHz signal on both pins and measure level at output.		56		dB

⁽¹⁾ Specified by design.

10

Submit Documentation Feedback

Product Folder Links: PCM1861 PCM1863 PCM1865

8.7 Electrical Characteristics, Secondary ADC Performance

all specifications at $T_A = 25$ °C, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, $f_S = 48$ kHz, system clock = 256xf_S, 24-bit data (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Energysense Detection Threshold			– 57		dBFS
	Energysense Signal Bandwidth			10		kHz
	Energysense Accuracy			1		dB
	Secondary ADC Accuracy			10		Bits
	Secondary ADC Sampling Rate			same as ADC1		

8.8 Digital Filter Characteristics

all specifications at $T_A = 25$ °C, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, $f_S = 48$ kHz, system clock = 256x f_S , 24-bit data (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX UNI
Classic FIR			
Pass Band		0.454	f _S
Stop Band		0.583	f _S
Pass Band Ripple		±0.05	dB
Stop Band Attenuation		-65	dB
Group Delay / Latency		30	Samp
HPF Frequency Response		1	Hz
Low Latency IIR			<u>. </u>
Pass Band		0.454	f _S
Stop Band		0.546	f _S
Pass Band Ripple		±0.02	dB
Stop Band Attenuation		-75	dB
Group Delay / Latency		10	Samp
HPF Frequency Response		1	Hz

8.9 Timing Requirements, External Clock

all specifications at T_A = 25°C, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, f_S = 48kHz, system clock = 256× f_S , 24-bit data (unless otherwise noted)

		MIN	TYP MAX	UNIT
XTAL Support		15	35	MHz
MCLK Frequency	3.3V on MCLK Pin	1	50	MHz
MCLK	1.8V MCLK Input on XI pin.	1	50	MHz
MCLK Input Duty Cycle	1.8V	48	52	%

8.10 I²C Control Interface Timing Requirements

	PARAMETER	CONDITIONS	MIN	MAX	UNIT
4	SCL clock frequency	Standard		100	kHz
f _{SCL}	ISCL SOL GOOK Hequency	Fast		400	kHz
t _{BUF} Bus free time between a STOP and START condition	Due free time between a STOD and START condition	Standard	4.7		μs
	Fast	1.3			
	Law region of the CCL sheet.	Standard	4.7		μs
t _{LOW}	Low period of the SCL clock	Fast	1.3		
	Lligh poriod of the CCL plant	Standard	4.0		μs
t _{HI}	High period of the SCL clock	Fast	600		ns

Product Folder Links: PCM1861 PCM1863 PCM1865

I²C Control Interface Timing Requirements (continued)

	PARAMETER	CONDITIONS	MIN	MAX	UNIT
	Saturatime for (repeated) START condition	Standard	4.7		μs
t _{RS-SU}	Setup time for (repeated) START condition	Fast	600		ns
t _{S-HD}	Held time for (separated) CTART and dition	Standard	4.0		μs
t _{RS-HD}	Hold time for (repeated) START condition	Fast	600		ns
	Data active time	Standard	250		ns
t _{D-SU}	Data setup time	Fast	100		
	Data hald time	Standard	0	900	ns
t _{D-HD}	Data hold time	Fast	0	900	
	Rise time of SCL signal	Standard	20 + 0.1C _B	1000	ns
t _{SCL-R}		Fast	20 + 0.1C _B	300	
	Rise time of SCL signal after a repeated START condition and after an	Standard	20 + 0.1C _B	1000	ns
t _{SCL-R1}	acknowledge bit	Fast	20 + 0.1C _B	300	
	Fall time of COL signal	Standard	20 + 0.1C _B	1000	ns
t _{SCL-F}	Fall time of SCL signal	Fast	20 + 0.1C _B	300	
	Disa time of CDA simed	Standard	20 + 0.1C _B	1000	ns
t _{SDA-R}	Rise time of SDA signal	Fast	20 + 0.1C _B	300	
	Fall time of ODA sincel	Standard	20 + 0.1C _B	1000	ns
t _{SDA-F}	Fall time of SDA signal	Fast	20 + 0.1C _B	300	
	Output time for OTOD and titles	Standard	4.0		μs
t _{P-SU}	Setup time for STOP condition	Fast	600		ns
C _B	Capacitive load for SDA and SCL line			400	pF
t _{SP}	Pulse width of spike suppressed	Fast		50	ns
V_{NH}	Noise margin at High level for each connected device (including hysteresis)		0.2V _{DD}		V

Figure 3. I²C Control Interface Timing

8.11 SPI Control Interface Timing Requirements

• • • •	or reciniter internace rinning responsible			
	PARAMETERS	MIN	MAX	UNITS
t_{MCY}	MC Pulse Cycle Time	100		ns
t_{MCL}	MC Low Level Time	40		ns
t_{MCH}	MC High Level Time	40		ns
t_{MHH}	High Level Time	20		ns
t_{MSS}	Fall Edge to MC Rise Edge	30		ns
t _{MSH}	Hold Time ⁽¹⁾	30		ns
t _{MDH}	MOSI Hold Time	15		ns

(1) MC fall edge for LSB to MS rise edge.

SLAS831B - MARCH 2014 - REVISED MARCH 2014

SPI Control Interface Timing Requirements (continued)

	PARAMETERS	MIN	MAX	UNITS
t _{MDS}	MOSI Set-up Time	15		ns
t _{MOS}	MC Rise Edge to MDO Stable		20	ns

Figure 4. SPI Control Interface Timing

8.12 Typical Characteristics

all specifications at $T_A = 25^{\circ}C$, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, $f_S = 48 \text{kHz}$, system clock = $256xf_S$, 24-bit data (unless otherwise noted)

Typical Characteristics (continued)

all specifications at $T_A = 25$ °C, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, $f_S = 48$ kHz, system clock = 256x f_S , 24-bit data (unless otherwise noted)

Copyright © 2014, Texas Instruments Incorporated

Typical Characteristics (continued)

all specifications at T_A = 25°C, AVDD = 3.3V, DVDD = 3.3V, IOVDD = 3.3V, Master Mode, Single Speed Mode, f_S = 48kHz, system clock = 256× f_S , 24-bit data (unless otherwise noted)

9 Detailed Description

9.1 Overview of Additional Features

- Advanced Clocking support
 - External XTAL support for Master Mode
 - External CMOS Master Clock Support for Master Mode
 - Integrated PLL for generating audio clocks from any BCK/MCK Source.
 - Device can output Audio Master Clock when running from Non-Audio Master Clock, for use with other converters. Device must be in Master mode for this function.
 - BCK PLL available to avoid using External SCK
 - Clock (SCK, BCK, LRCK) Error Detection with Smart Mute
 - BIT Clock (BCK) for PLL Reference: 48xf_S or

- $64xf_S$ ($32xf_S$ support in software controlled devices)
- Secondary ADC can be used for control signals
 - Measure External DC voltages such as control potentiometers
 - Generate Interrupts on programmable thresholds
- Extensive Interrupt Sources

9.2 Functional Block Diagram

An internal block diagram of the PCM186x family is shown below. Note that power supplies and references have been omitted from this diagram to aid simplicity.

Figure 18. Internal Block Diagram of the PCM186x

9.3 Terminology

Control registers in this datasheet are given by **REGISTER BIT/BYTE NAME (Page.x HEX ADDRESS).**. SE refers to "Single Ended" analog inputs, DIFF refers to "Differential" analog inputs. SCK (System Clock) and MCLK (Master Clock) are used interchangeably. Sampling frequency is symbolized by "fs". Full scale is symbolized by "FS". Sample time as a unit is symbolized by "ts".

Copyright © 2014, Texas Instruments Incorporated

9.4 Analog Front End

Figure 19. High Level View of PCM186x Front End Circuitry

The PCM186x has a universal front end that accepts differential or single ended inputs, from microphone level to 2.1V_{RMS}. The highest performance (up to 110dB SNR) can be achieved using differential inputs.

The front-end Mix and MUX circuit allows both differential and single ended inputs to be used in the products, as well as direct Input mixing. This feature is mainly enabled on the software controlled devices, while the hardware controlled devices mainly support single ended or differential inputs. The Mix and MUX circuits are summing circuits, done pre-PGA. No individual volume controls are available before the PGA.

DC blocking capacitors are required on the inputs, to ensure that the DC bias conditions are known (assumed to be GND, but **not** certain). Also, the value of output short protection resistor in the source product is not known, which could cause issues such as gain error and DC shift.

9.5 Microphone Support

The PCM186x supports analog and digital microphones. Analog signals are treated in much the same way as line level signals, except for the requirement for mic bias. Digital microphone Inputs (PDM inputs) use GPIOs on the device. Two-channel ADC variants of the PCM186x family can support two digital microphones using a single data terminal and a single clock terminal. The 4-channel variants can support up to 4 digital microphones (2 data terminals).

The PCM1863/5 devices support electret condenser mics through a mic bias circuit and a PGA input providing up to 32dB of gain.

Digital microphones typically have a PDM output that can be brought into an ADC digital decimation filter. PDM microphones require power and a clock. Power should be handled from an external source.

Digital microphone mode Gain can be added in the digital PGA and in the mixer. The Maximum gain is 30dB (18dB in the mixer + 12dB in the digital PGA).

On the PCM1865, a 2ch dig mic + 2ch ADC mode is possible. Four channels are not possible in any combination other than ADC + I^2S input on the PCM1863.

9.5.1 Mic Bias

The PCM186x can provide a microphone bias to power and bias microphones at 2.6V on terminal 5. Mic Bias should be decoupled/filtered with an external capacitor. Mic Bias is typically used with a electret microphone. An on-chip series resistor can be bypassed using register MIC_BIAS_CTRL (Page.3, 0x15). By default the device is configured to bypass the on-chip resistor.

Mic Bias Generator

Figure 20. On-Chip Mic Bias Resistor Bypassed (Default)

Figure 21. On-Chip Mic Bias Resistor In Use

9.6 PCM1861 Input Multiplexer

The hardware controlled devices can support a wide gain range using the MD2, MD5 and MD6 configuration terminals as follows:

Table 2. Channel and Gain Selection for Hardware Controlled Devices

MD6	MD5	MD2	ADC1_L / PGA1_L	ADC1_R / PGA1_R
L	L	L	S.E - VINL1 / 0 dB	S.E - VINR1 / 0 dB
L	L	Н	S.E - VINL2 / 0 dB	S.E - VINR2 / 0 dB
L	Н	L	S.E - VINL3 / 0 dB	S.E - VINR3 / 0 dB
L	Н	Н	S.E - VINL4 / 0 dB	S.E - VINR4 / 0 dB
Н	L	L	S.E - VINL4 / 12 dB	S.E - VINR4 / 12 dB
Н	L	Н	S.E - VINL4 / 32 dB	S.E - VINR4 / 32 dB
Н	Н	L	DIFF(VIN1P/VIN1M) / 0 dB	DIFF(VIN2P/VIN2M) / 0 dB
Н	Н	Н	DIFF(VIN3P/VIN3M) / 12 dB	DIFF(VIN4P/VIN4M) / 12 dB

9.7 PCM1863/5 Mixers and Multiplexers

The PCM1863/5 offers a mix/multiplex level of functionality on the front end as shown in Figure 19. The switches integrated into the multiplexer can also be switched on in parallel, offering a direct mix of inputs. This function can be selected by register for each ADC input selection, **ADCX1_INPUT_SEL_X (Page.0, 0x06** \rightarrow **0x09)**. In single ended mode, each Audio ADC is tightly coupled to a dedicated PGA and MUX. ADC1L (and ADC2L on the PCM1865) is connected a mux that has input terminals VINLx, (x = 1 to 4). ADC1R (and ADC2R on the PCM1865) is connected to a mux that has input terminals VINRx (x = 1 to 4).

Mixing between the left channels of stereo pairs is possible in the mux dedicated to ADC1L and right channels of stereo pairs in the mux dedicated to ADC1R. In addition, polarity of the inputs can be inverted using the MSB of the select register. Mixing left and right sources to create mono mixes can only be done in the digital mixer, post ADC conversion, or alternatively, other analog inputs can be connected for mixing.

The examples available are below - where [SE] is single ended, and [DIFF] is a differential input. Bold items are the single channel selects.

MUX, Mix and Polarity Input Selection

mox, mix and rolarly input octobron					
ADC1L and ADC2L	ADC1R and ADC2R				
No Selection (Mute)	No Selection (Mute)				
VINL1[SE] (Default)	VINR1[SE] (Default)				
VINL2[SE]	VINR2[SE]				
VINL2[SE] + VINL1[SE]	VINR2[SE] + VINR1[SE]				
VINL3[SE]	VINR3[SE]				
VINL3[SE] + VINL1[SE]	VINR3[SE] + VINR1[SE]				
VINL3[SE] + VINL2[SE]	VINR3[SE] + VINR2[SE]				
VINL3[SE] + VINL2[SE] + VINL1[SE]	VINR3[SE] + VINR2[SE] + VINR1[SE]				
VINL4[SE]	VINR4[SE]				
VINL4[SE] + VINL1[SE]	VINR4[SE] + VINR1[SE]				
VINL4[SE] + VINL2[SE]	VINR4[SE] + VINR2[SE]				
VINL4[SE] + VINL2[SE] + VINL1[SE]	VINR4[SE] + VINR2[SE] + VINR1[SE]				
VINL4[SE] + VINL3[SE]	VINR4[SE] + VINR3[SE]				
VINL4[SE] + VINL3[SE] + VINL1[SE]	VINR4[SE] + VINR3[SE] + VINR1[SE]				
VINL4[SE] + VINL3[SE] + VINL2[SE]	VINR4[SE] + VINR3[SE] + VINR2[SE]				
VINL4[SE] + VINL3[SE] + VINL2[SE] + VINL1[SE]	VINR4[SE] + VINR3[SE] + VINR2[SE] + VINR1[SE]				
{VIN2P, VIN2M}[DIFF]	{VIN2P, VIN2M}[DIFF]				
{VIN3P, VIN3M}[DIFF]	{VIN3P, VIN3M}[DIFF]				
{VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]	{VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]				
	ADC1L and ADC2L No Selection (Mute) VINL1[SE] (Default) VINL2[SE] VINL2[SE] + VINL1[SE] VINL3[SE] VINL3[SE] + VINL1[SE] VINL3[SE] + VINL2[SE] VINL3[SE] + VINL2[SE] VINL4[SE] + VINL3[SE] VINL4[SE] + VINL3[SE] VINL4[SE] + VINL3[SE] VINL4[SE] + VINL3[SE] + VINL2[SE] VINL4[SE] + VINL3[SE] + VINL2[SE]				

Product Folder Links: PCM1861 PCM1863 PCM1865

9.8 Programmable Gain Amplifier

The PCM186x has a two stage programmable gain amplifier. Coarse gain is done in the analog domain, whilst fine gain is done in the digital domain. The ±12dB Analog gain steps are designed for varying line level inputs, whilst the +20dB and +32dB are primarily designed for microphone inputs, which will likely need additional gain that can be done in the digital domain. The analog gain steps between -12dB and +12dB are in 1dB steps. Half dB steps between those points are done in the digital PGA. Gain steps between 12dB and 20dB are all done in the digital domain. (for example, 18dB gain = 12dB analog + 6dB Digital). The gain structure in the PCM186x is shown below.

Figure 22. Complete Gain Structure (PGAs and Attenuator) inside PCM186x

The analog gain steps within the analog PGA are shown below. Again, from -12dB to +12dB, the steps are 1dB each. The digital PGA has granularity down to 0.5dB.

Figure 23. Analog Gain Steps within PCM1863/5

The PGA in the PCM186x is a hybrid analog/digital programmable gain amplifier. The devices integrate a lookup table with the optimal gain balance between analog and digital gain, allowing the gain to be set in a single register per channel. For example, set 18dB Gain, and the system will allocate 12dB to the analog PGA and 6dB to the digital.

The PGA is a zero crossing detect type, and has the ability to set target gain, and have the device work towards it (with a timeout if there is no zero crossing). Any changes in the Analog PGA and Digital PGA are designed to step towards the final level. However, any changes in the Mixer PGA are immediate. Care should be taken when changing gain levels in the digital mixer PGA. Alternatively, multiple writes can be made of small enough values that will not cause significant pops/clicks.

For example, Current level 0dB, set target as 3.5dB – PGA increases gain in 0.5dB steps towards 3.5dB.

The Auto Gain Mapping function can by bypassed if required. Bypass is particularly useful when using digital microphones, as the PDM input signal bypasses the analog PGA and need to be amplified using the digital PGA. This bypass mode is known as "User Mapping Mode" (**PGA MODE Register(Page.0, 0x19).**

NOTE

Using the device with a differential signal lowers the PGA gain by 6dB. Designers should account for this in their software, the PCM186x does not compensate for this.

Differential Analog Gain points are -18 to 6dB, 14dB, 26dB.

9.9 Automatic Clipping Suppression

The PCM186x software controlled devices have the ability to automatically lower the gain in 0.5dB steps under the following conditions if the ADC is clipping.

The device detects clipping at various points in the signal chain (shown in Figure 24), and counts the number of successive clips before responding.

The device can also generate an internal interrupt that can be mapped to a GPIO or interrupt terminal, allowing the system microcontroller to make the decision to increase the gain and consider the clipping an isolated event, or make the decision that the new gain setting is appropriate.

Automatic Clipping Suppression (continued)

Figure 24. Sampling points within the PCM186x for Auto Clipping Suppression

Maximum Attenuation Level

This feature is not designed to be a complete AGC (Analog Gain Control). This feature was defined to avoid clipping, and to inform the system microcontroller of a clipping event, to allow the microcontroller (or the end user) to decide if the gain should be increased again.

The maximum attenuation is programmable to be -3 / -4 / -5 / -6 dB.

Channel Linking

Depending on the application, users may not want to link input channels, however, for the majority of Stereo input applications, its strongly recommended to set the system to track gain across inputs, to maintain balance.

The Auto PGA Clipping Suppression Control has the following settings:

Table 3. Auto Clipping Suppression Control Registers

Register Name	Register Location	Usage	Values
AGC_EN	Pg0 0x05	Enable Auto Gain Control.	0: Disable (Default) 1: Enable
CLIP_NUM[1:0]	Pg0 0x05	Start auto gain control after detects CLIP_NUM times of ADC sample clips	0: 80 1: 40 2: 20 3: 10 (Default)
MAX_ATT[1:0]	Pg0 0x05	Maximum automatic attenuation	0: -3dB (Default) 1: -4dB 2: -5dB 3: -6dB
DPGA_CLIP_EN	Pg0 0x05	Enable Clipping detection after the digital PGA. Note, digital PGA is post ADC, meaning that there will be a short delay before clipping is noticed.	0: Disable (Default) 1: Enable
LINK	Pg0 0x05	Link all channels together. Should be linked if dealing with stereo sources to maintain balance.	0: Independent control (Default) 1: Ch1[R]/Ch2[L]/Ch2[R] follow Ch1[L] PGA value.
SMOOTH	Pg0 0x05	Enable Smooth transition from step to step. (zero crossing)	0: Immediate Change 1: Smooth Change (Default)

Product Folder Links: PCM1861 PCM1863 PCM1865

TEXAS INSTRUMENTS

9.10 Zero-Crossing Detect

The PCM186x uses a zero crossing detector to make gain changes only when the incoming signal crosses its halfway point between negative and positive swing, reducing "zipper noise".

There are two sources for the controller, the output of the ADC Modulator and the output from the digital PGA. The Analog PGA is sampled at 4x the audio sampling rate to detect the zero crossing. The digital PGA is sampled at a similar rate.

The process for changing gain in the PCM186x is as follows:

- 1. Detect a zero crossing of the oversampled analog input channel.
- 2. Increment or Decrement the gain toward the target PGA value step by 0.5dB.
- 3. Repeat from (1) until arrival at the target PGA value.
- 4. If zero crossing does not occur for 8192 sample times (= time out), change the gain per sample.

This process does not require intervention by the user. This data serves as information only.

9.11 Digital Inputs

9.11.1 Stereo PCM Sources

The PCM186x can support Stereo PCM data on GPIO terminals so that I²S sources, such as wireless modules can have their data mixed with the incoming analog content. The clock rate of the incoming data (known as DIN) must be synchronous with the PCM1863/5 main clocks. There is no integrated sample rate converter on-chip. The DIN signal can be received on GPIO0,1,2,3. configured on GPIO_FUNC_X (Page.0 0x10 and 0x11). The incoming data is then driven to the digital mixer running on DSP2.

The audio format can be configured separately from the output serial port using register **RX_TDM_OFFSET (P0, 0x0E).**

Inputs can be mixed and volume controlled before going to a digital amplifier. Typical uses could be the connection to a *Bluetooth* module. The mixing and crossfading could be done all in the PCM186x, rather than a hard switch in external logic. The on-chip PLL can also help create the system master clock (SCKOUT) for poorly designed I²S *Bluetooth* modules that don't provide an system clock to drive the system DACs.

22

9.12 Digital PDM Microphones

Up to four digital microphones are supported on the PCM1865, using a shared output clock (configured from GPIO2) and two data lines, GPIO0 or GPIO1. Two digital microphones are supported on the PCM1863, mainly using GPIO1 as the data input. The PCM1861 does not support digital microphones. The typical connection and protocol diagrams for these microphones are shown in Figure 25 and Figure 26.

Figure 25. Digital Microphone Example Connection

Figure 26. Digital Microphone Protocol

Supported Digital Microphone clock frequency is as follows, and the frequency depends on required operating sampling frequency as follows:

- 2.0480MHz (32kHz × 64)
- 2.8224MHz (44.1kHz × 64)
- 3.072MHz (48kHz × 64)
- 3.072MHz (96kHz × 32)

The Recommended operating conditions for the Digital MIC to get good performance are:

- Sampling frequency is 32kHz or 44.1kHz
- SCK is 256xf_S.
- Enable Auto Clock Detector (Default)

9.13 Clocks

9.13.1 Description

The PCM186x family has an extremely flexible clocking architecture. All converters require a Master Clock (typically a 2ⁿ power of the sampling rate, known as MCK), a bit clock (BCK) which is used to clock the data bit by bit out of the device (typically running at 64f_S - to allow up to 32bits per channel output) and finally a Wordclock/Left-Right Clock (LRCK) that is used to set the exact sampling point for the ADC.

The PCM186x family can be a clock master (where BCK and LRCK can be internally divided from a provided master clock) or can be a clock slave, where all clocks (MCK, BCK and LRCK) must be provided by an external source.

Unlike many competing devices, the PCM186x family can source its master clock from two different sources, either an external crystal, or a CMOS level (3.3V or 1.8V) clock, eliminating the usual external crystal oscillator circuit required to source a CMOS clock signal.

The PCM186x also differentiates itself by integrating an on-chip Phase Locked Loop (PLL) that can generate real audio-rate clocks from any clock source between 1MHz and 50MHz. The PCM1861 hardware-controlled devices have the ability to detect an absence of MCK in Slave Mode and automatically generate an MCK signal. Software Controlled devices, such as the PCM1863/5 can have their PLL programmed to generate audio clocks based on any incoming clock rate. For example, a 12MHz clock in the system can be used to generate clocks for a 44.1kHz system.

9.13.2 External Clock-Source Limits

The 3 different clock sources for the device each have some limits in terms of their input circuitry. These limits are separate from the internal PLL capability.

Table 4. External Clock-Source Limitations and notes

Clock Source	Limits	Notes
XTAL	15MHz → 35MHz	
3.3V CMOS MCLK	1MHz → 50MHz	
1.8V CMOS MCLK	1MHz → 50MHz	Should be input to XI terminal.

9.13.3 Device Clock Distribution and Generation

Figure 27. PCM186x Main Audio Clock Tree and Clock Generation

PLLs are used in all modes mode to generate the clocks required to run both fixed-function DSPs. The dividers are automatically configured based on the clock rate detection. The clock architecture above allows non-audio clock sources to be used as clock sources and the PCM186x to continue to run in a Master mode, providing all PCM/I²S Clocks for other converters in the system.

9.13.4 PCM186x Clocking Modes

There are four different clocking modes available on the device which can take advantage of the onboard PLL and clock detection. Advanced clock detection and a smart internal state engine in the PCM186x can automatically configure the various dividers in the device (shown in Device Clock Distribution and Generation) with optimized values. Automatic clock configuration is enabled by default, using the register **CLKDET_EN** (Page.0, 0x20).

NAME	Device	External XTAL/MCK INPUT	BCK, LRCK Direction	PLL Configuration
ADC Master Mode	PCM1861,3,5	YES	OUT	Not Required
ADC Slave Mode	PCM1861,3,5	YES	IN	Not Required
ADC Slave PLL Mode	PCM1863,5	NO	IN	Automatic for standard audio rates
ADC Non-Audio MCK	PCM1863,5	YES	OUT	Manual

9.13.4.1 PCM1861 Clock Configuration and selection

The PCM186x offers both Master and Slave functionality. In master mode, a source master clock (of 256, 384 or 512x the sampling rate) can be sourced from either an external crystal (XI/XO) or on an incoming SCK. (see External Clock-Source Limits for input rate limitations on SCK sources) The clock from XI and SCK are OR'd internally, allowing either to be used.

The device can generate the other I²S clocks (BCK and LRCK) in master mode (with dividers set in MD0 and MD1) or be a clock slave to MCK,BCK and LRCK. In which case, it will auto detect the clock divider ratio.

Copyright © 2014, Texas Instruments Incorporated

In master mode BCK per LRCK is fixed at 64. This allows up to 32 bits per channel.

Selection of the appropriate master/slave and clock ratio between MCK and f_S can be done using MD0 and MD1.

Table 5 shows the suggested master clock rates for each of the sample rates supported.

Table 5. External Master Clock Rate versus Sampling Frequency

SAMPLING RATE FREQUENCY	SYSTEM	M CLOCK FREQUENCY (MHz)
(kHz)	256f _S	384f _S	512f _S
8.0	2.048	3.072	4.096
16.0	4.096	6.144	8.192
32.0	8.1920	12.2880	16.3840
44.1	11.2896	16.9344	22.5792
48.0	12.2880	18.4320	24.5760
64.0	16.3840	24.5760	32.7680
88.2	22.5792	33.8688	45.1584
96.0	24.5760	36.8640	49.1520
176.4	45.1584		
192.0	49.1520		

For slave mode, BCK per LRCK should be set to 64.

9.13.4.2 Clock Sources (PCM1863/5)

The PCM186x devices support a wide range of options for generating the clocks required operation for the ADC section as well as interface and other control blocks as shown in Figure 28.

The clocks for the PLL require a source reference clock. This clock source can be configured on software devices as the XTAL, SCK or BCK.

The PCM1863/5 share a similar clock tree for the generation and distribution of clocks Figure 27.

CLK_MODE (Page.0 0x20) is used to configure the clock configuration. Bits [5:7] configure the OR and MUX for the incoming MCLK.

Register MST_MODE (Page.0 0x20) is used to set the device in Master or Slave Mode. Bits [1:3] set clock sources for the ADC, DSP1 and DSP2. These can mostly be ignored for the most common applications, but remain visible for advanced users.

The CLKDET_EN (Page.0, 0x20) register bit (Auto Clock Detector) is an important bit as the clock detector is mainly functional for slave modes, and for master modes where the master clock is a 256/384/512x multiple of the incoming data rate.

NOTE

Non audio related master clock sources can be used with the PCM1863/5 providing the PLL is programmed manually. CLKDET_EN should be set to 0.

The result of configurations can be checked by reading registers FS INFO / CURRENT BCK RATIO (Page.0 0x73 and 0x74).

Table 6. PLL Configuration Registers

	-					
CLOCK MULTIPLEXER	FUNCTION	BITS				
MST_SCK_SRC	PLL Reference	Page 0, Register 0x20				
DIVIDER	FUNCTION	BITS				
CLK_DIV_PLL_SCK	Clock Divider of PLL to emulate SCK	Pg0, Reg 0x25, b[0:6]				
CLK_DIV_MST_SCK	Master Mode SCK to SCKOUT Ratio	Pg0, Reg 0x26, b[0:6]				

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Table 6. PLL Configuration Registers (continued)

CLOCK MULTIPLEXER	FUNCTION	BITS
CLK_DIV_MST_BCK	Master Mode SCK to BCK Ratio	Pg0, Reg 0x27, b[0:6]

Figure 28. PLL Clock Source and Clock Distribution

9.13.4.3 PCM1863/5 Clocking Configuration and Selection

9.13.4.3.1 Configuration of Master Mode

If an external, high quality MCLK is available (either on the SCK terminal or XTAL), then the PCM186x should be configured to run in Master Mode where possible, with the ADC and serial ports being driven from the MCLK/SCK source. The on-chip DSPs will continue to require clocks from the PLL, as they run from a much higher clock rate.

Clock MUXs and overall configuration can be done in register Page0, 0x20. For the best performance in master mode, where possible, the automatic clock configuration circuitry will configure the clocks as shown in Table 7, depending on if the part is a PCM1863 or a PCM1865. The tables below show data at 48kHz multiples, the ratios for multiples of 44.1kHz are identical, while the absolute MHz values will be multiples of 44.1kHz instead of 48kHz.

This automatic configuration can be bypassed using registers, starting from CLKDET EN (Page.0, 0x20).

28

www.ti.com

Table 7. PCM1863 Clock Divider and Source Control In The Presence Of External SCK

f _s	SCK Ratio	SCK Frequency (MHz)	PLL Ratio	PLL Frequency (MHz)	PLL Configuration	DSP1 Clock (MHz)	DSP1 Clock		DSP 2 Clock (MHz)	DSP2 Clock		ADC Clock (MHz)	ADC Clock	
							Source	Divider		Source	Divider		Source	Divider
8 kHz	128	1.024	12288	98.304	P=0,R=1, J=48, D=0	2.048	PLL	48	2.048	PLL	48	1.024	PLL	96
	256	2.048	12288	98.304	P=0,R=1, J=24, D=0	2.048	SCK	1	2.048	SCK	1	1.024	SCK	2
	384	3.072	12288	98.304	P=0,R=1, J=16, D=0	2.048	SCK	1	2.048	SCK	1	1.024	SCK	3
	512	4.096		off		2.048	SCK	2	2.048	SCK	2	1.024	SCK	4
	768	6.144		off		3.072	SCK	2	3.072	SCK	2	1.024	SCK	6
16 kHz	128	2.048	6144	98.304	P=0,R=1, J=24, D=0	4.096	PLL	24	4.096	PLL	24	2.048	PLL	48
	256	4.096	6144	98.304	P=0,R=1, J=12, D=0	4.096	SCK	1	4.096	SCK	1	2.048	SCK	2
	384	6.144	6144	98.304	P=0,R=1, J=8, D=0	6.144	SCK	1	6.144	SCK	1	2.048	SCK	3
	512	8.192		off		4.096	SCK	2	4.096	SCK	2	2.048	SCK	4
	768	12.288		off		6.144	SCK	2	6.144	SCK	2	2.048	SCK	6
48 kHz	128	6.144	2048	98.304	P=0,R=1, J=8, D=0	12.288	PLL	8	12.288	PLL	8	6.144	PLL	16
	256	12.288	2048	98.304	P=1,R=1, J=8, D=0	12.288	SCK	1	12.288	SCK	1	6.144	SCK	2
	384	18.432	2048	98.304	P=2,R=1, J=8, D=0	18.432	SCK	1	18.432	SCK	1	6.144	SCK	3
	512	24.576		off		12.288	SCK	2	12.288	SCK	2	6.144	SCK	4
	768	36.864		off		18.432	SCK	2	18.432	SCK	2	6.144	SCK	6
96 kHz	128	12.288	1024	98.304	P=3,R=1, J=16, D=0	24.756	PLL	4	24.756	PLL	4	6.144	SCK	2
	256	24.576	1024	98.304	P=7,R=1, J=16, D=0	24.756	SCK	1	24.756	SCK	1	6.144	SCK	4
	384	36.864	1024	98.304	P=11,R=1, J=16, D=0	24.756	SCK	1	24.756	SCK	1	6.144	SCK	6
	512	49.152		off		24.756	SCK	2	24.756	SCK	2	6.144	SCK	8
192 kHz	128	24.576	512	98.304	P=3,R=1, J=8, D=0	49.152	PLL	2	49.152	PLL	2	6.144	SCK	4
	256	49.152	512	98.304	P=7,R=1, J=8, D=0	49.152	SCK	1	49.152	SCK	1	6.144	SCK	8

Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated

Table 8. PCM1865 Clock Divider and Source Control In The Presence Of External SCK

f _S	SCK Ratio	SCK Frequency (MHz)	PLL Ratio	PLL Frequency (MHz)	PLL Configuration	DSP1 Clock (MHz)	DSP1 Clock		DSP 2 Clock (MHz)	DSP2 Clock		ADC Clock (MHz)	ADC Clock	
							Source	Divider		Source	Divider		Source	Divider
8 kHz	128	1.024	12288	98.304	P=0,R=1, J=48, D=0	2.048	PLL	48	2.048	PLL	48	1.024	PLL	96
	256	2.048	12288	98.304	P=0,R=1, J=24, D=0	2.048	SCK	1	2.048	SCK	1	1.024	SCK	2
	384	3.072	12288	98.304	P=0,R=1, J=16, D=0	2.048	SCK	1	2.048	SCK	1	1.024	SCK	3
	512	4.096		off		2.048	SCK	2	2.048	SCK	2	1.024	SCK	4
	768	6.144		off		3.072	SCK	2	3.072	SCK	2	1.024	SCK	6
16 kHz	128	2.048	6144	98.304	P=0,R=1, J=24, D=0	4.096	PLL	24	4.096	PLL	24	2.048	PLL	48
	256	4.096	6144	98.304	P=0,R=1, J=12, D=0	4.096	SCK	1	4.096	SCK	1	2.048	SCK	2
	384	6.144	6144	98.304	P=0,R=1, J=8, D=0	6.144	SCK	1	6.144	SCK	1	2.048	SCK	3
	512	8.192		off		4.096	SCK	2	4.096	SCK	2	2.048	SCK	4
	768	12.288		off		6.144	SCK	2	6.144	SCK	2	2.048	SCK	6
48 kHz	128	6.144	2048	98.304	P=0,R=1, J=8, D=0	12.288	PLL	8	12.288	PLL	8	6.144	PLL	16
	256	12.288	2048	98.304	P=1,R=1, J=8, D=0	12.288	SCK	1	12.288	SCK	1	6.144	SCK	2
	384	18.432	2048	98.304	P=2,R=1, J=8, D=0	18.432	SCK	1	18.432	SCK	1	6.144	SCK	3
	512	24.576		off		12.288	SCK	2	12.288	SCK	2	6.144	SCK	4
	768	36.864		off		18.432	SCK	2	18.432	SCK	2	6.144	SCK	6
96 kHz	128	12.288	1024	98.304	P=3,R=1, J=16, D=0	24.756	PLL	4	24.756	PLL	4	6.144	SCK	2
	256	24.576	1024	98.304	P=7,R=1, J=16, D=0	24.756	SCK	1	24.756	SCK	1	6.144	SCK	4
	384	36.864	1024	98.304	P=11,R=1, J=16, D=0	24.756	SCK	1	24.756	SCK	1	6.144	SCK	6
	512	49.152		off		24.756	SCK	2	24.756	SCK	2	6.144	SCK	8
192 kHz	128	24.576	512	98.304	P=3,R=1, J=8, D=0	49.152	PLL	2	49.152	PLL	2	6.144	SCK	4
	256	49.152	512	98.304	P=7,R=1, J=8, D=0	49.152	SCK	1	49.152	SCK	1	6.144	SCK	8

9.13.4.4 PCM186x BCK Input Slave PLL Mode

The PCM1863/5 can generate an internal MCLK system clock using it's PLL (referenced from an external input BCK) in slave mode. BCK must be 64fs. Supported sampling frequencies are listed in Table 9. Whilst the PCM186x can support down to 8kHz, analog performance is not tested at this rate.

Table 9. Auto PLL BCK Requirements

Sampling Frequency	BCK Ratio to LRCK	BCK Frequency
8kHz	256	2.048
16kHz	64	1.024
	256	4.096
48kHz	32	1.536
	48	2.304
	64	3.072
	256	12.288
96kHz	32	3.072
	48	4.608
	64	6.144
	256	24.576
192kHz	32	6.144
	48	9.216
	64	12.288
	256	49.152

In software SPI/I²C mode, the PCM1863/5 can use its on-chip crystal oscillator, if a CMOS clock source is not available. Audio Clocks can be generated through the PLL from the non-audio standard CMOS/Crystal frequency (and then can be divided down as described above). This function is not available in hardware mode.

8kHz is only supported if an external MCK is provided. The Autodetect and PLL system support frequencies as low as 32kHz. Analog performance is not tested in this mode.

The clock tree can also be programmed manually, with the settings shown in Table 10.

Table 10. PCM1863 (2ch) PLL BCK Settings

f _s	BCK Ratio	BCK Freq. (MHz)	PLL Ratio	PLL Frequenc y (MHz)	PLL Configur ation	DSP1 Clock (MHz) 2CH	DSP1 Clock Divider 2 CH Mode		DSP 2 Clock (MHz)	DSP2 Clock Divider		ADC Clock (MHz)	ADC Clock Divider	
							Source	Divider		Source	Divider		Source	Divider
8 kHz	256	2.048	12288	98.304	P=0,R=1, J=24, D=0	2.048	PLL	48	2.048	PLL	48	1.024	PLL	96
16 kHz	64	1.024	6144	98.304	P=0,R=1, J=48, D=0	4.096	PLL	24	4.096	PLL	24	2.048	PLL	48
	256	4.096	6144	98.304	P=1,R=1, J=24, D=0	4.096	PLL	24	4.096	PLL	24	2.048	PLL	48
48 kHz	32	1.536	2048	98.304	P=0,R=1, J=32, D=0	12.288	PLL	8	12.288	PLL	8	6.144	PLL	16
	48	2.304	2048	92.16	P=0,R=1, J=20, D=0	15.36	PLL	6	15.36	PLL	6	6.144	PLL	15
	64	3.072	2048	98.304	P=0,R=1, J=16, D=0	12.288	PLL	8	12.288	PLL	8	6.144	PLL	16
	256	12.288	2048	98.304	P=3,R=1, J=16, D=0	12.288	PLL	8	12.288	PLL	8	6.144	PLL	16
96 kHz	32	3.072	1024	98.304	P=0,R=1, J=16, D=0	24.576	PLL	4	24.576	PLL	4	6.144	PLL	16

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Table 10. PCM1863 (2ch) PLL BCK Settings (continued)

fs	BCK Ratio	BCK Freq. (MHz)	PLL Ratio	PLL Frequenc y (MHz)	PLL Configur ation	DSP1 Clock (MHz) 2CH	DSP1 Clock Divider 2 CH Mode		DSP 2 Clock (MHz)	DSP2 Clock Divider		ADC Clock (MHz)	ADC Clock Divider	
							Source	Divider		Source	Divider		Source	Divider
	48	4.608	1024	98.304	P=2,R=1, J=32, D=0	24.576	PLL	4	24.576	PLL	4	6.144	PLL	16
	64	6.144	1024	98.304	P=1,R=1, J=16, D=0	24.576	PLL	4	24.576	PLL	4	6.144	PLL	16
	256	24.576	1024	98.304	P=7,R=1, J=16, D=0	24.576	PLL	4	24.576	PLL	4	6.144	PLL	16
192 kHz	32	6.144	512	98.304	P=1,R=1, J=16, D=0	49.152	PLL	2	49.152	PLL	2	6.144	PLL	16
	48	9.216	512	98.304	P=2,R=1, J=16, D=0	49.152	PLL	2	49.152	PLL	2	6.144	PLL	16
	64	12.288	512	98.304	P=3,R=1, J=16, D=0	49.152	PLL	2	49.152	PLL	2	6.144	PLL	16
	256	49.152	512	98.304	P=15,R=1 , J=16, D=0	49.152	PLL	2	49.152	PLL	2	6.144	PLL	16

PCM1865 (4ch) PLL BCK Settings

f _S	BCK Ratio	BCK Freq. (MHz)	PLL Ratio	PLL Frequenc y (MHz)	PLL Configur ation	DSP1 Clock (MHz) 4ch	DSP1 Clock Divider 4 CH Mode		DSP1 Clock (MHz) 2CH	DSP2 Clock Divider		ADC Clock (MHz)	ADC Clock Divider	
							Source	Divider		Source	Divider		Source	Divider
8 kHz	256	2.048	12288	98.304	P=0,R=1, J=24, D=0	4.096	PLL	24	2.048	PLL	48	1.024	PLL	96
16 kHz	64	1.024	6144	98.304	P=0,R=1, J=48, D=0	8.192	PLL	12	4.096	PLL	24	2.048	PLL	48
	256	4.096	6144	98.304	P=1,R=1, J=24, D=0	8.192	PLL	12	4.096	PLL	24	2.048	PLL	48
48 kHz	32	1.536	2048	98.304	P=0,R=1, J=32, D=0	24.576	PLL	4	12.288	PLL	8	6.144	PLL	16
	48	2.304	2048	92.16	P=0,R=1, J=20, D=0	30.72	PLL	3	15.36	PLL	6	6.144	PLL	15
	64	3.072	2048	98.304	P=0,R=1, J=16, D=0	24.576	PLL	4	12.288	PLL	8	6.144	PLL	16
	256	12.288	2048	98.304	P=3,R=1, J=16, D=0	24.576	PLL	4	12.288	PLL	8	6.144	PLL	16
96 kHz	32	3.072	1024	98.304	P=0,R=1, J=16, D=0	49.152	PLL	2	24.576	PLL	4	6.144	PLL	16
	48	4.608	1024	98.304	P=2,R=1, J=32, D=0	49.152	PLL	2	24.576	PLL	4	6.144	PLL	16
	64	6.144	1024	98.304	P=1,R=1, J=16, D=0	49.152	PLL	2	24.576	PLL	4	6.144	PLL	16
	256	24.576	1024	98.304	P=7,R=1, J=16, D=0	49.152	PLL	2	24.576	PLL	4	6.144	PLL	16
192 kHz	32	6.144	512	98.304	P=1,R=1, J=16, D=0	98.304	PLL	1	49.152	PLL	2	6.144	PLL	16
	48	9.216	512	98.304	P=2,R=1, J=16, D=0	98.304	PLL	1	49.152	PLL	2	6.144	PLL	16
	64	12.288	512	98.304	P=3,R=1, J=16, D=0	98.304	PLL	1	49.152	PLL	2	6.144	PLL	16

Copyright © 2014, Texas Instruments Incorporated

www.ti.com

PCM1865 (4ch) PLL BCK Settings (continued)

fs	BCK Ratio	BCK Freq. (MHz)	PLL Ratio	PLL Frequenc y (MHz)	PLL Configur ation	DSP1 Clock (MHz) 4ch	DSP1 Clock Divider 4 CH Mode		DSP1 Clock (MHz) 2CH	DSP2 Clock Divider		ADC Clock (MHz)	ADC Clock Divider	
							Source	Divider		Source	Divider		Source	Divider
	256	49.152	512	98.304	P=15,R=1 , J=16, D=0	98.304	PLL	1	49.152	PLL	2	6.144	PLL	16

9.13.4.5 PCM1863/5 ADC Non-Audio MCK PLL Mode

This mode is mainly used for systems driving TDM ports or systems where the MCK is not related to the audio sampling rate. Examples may be where the Audio ADC needs to share a clock source with the central processor. (This is commonly 12MHz, 24MHz or 27MHz.)

Under these conditions, the automatic configuration register **CLKDET_EN** (**Page 0, 0x20**) should be set to 0, and the PLL manually configured, using registers (**Page 0, 0x28 - 0x2D**). See PCM1863/5 Manual PLL Calculation .

2 Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

www.ti.com

SLAS831B - MARCH 2014 - REVISED MARCH 2014

9.13.5 PCM1863/5 Manual PLL Calculation

The PCM186x has an on-chip PLL with fractional multiplication to generate the clock frequency required by the audio ADC, Modulator and Digital Signal Processing blocks. The programmability of the PLL allows operation from a wide variety of clocks that may be available in the system. The PLL input supports clocks varying from 1MHz to 50MHz and is register programmable to enable generation of required sampling rates with fine precision.

The PLL by default is enabled because the on-chip fixed function DSPs require high clock rates to complete all various decimation, mixing and level-detection functions. The PLL output clock PLLCK is given by Equation 1: PLL Rate Calculation:

$$PLLCK = \frac{PLLCKIN \times R \times JD}{P} \text{ or } PLLCK = \frac{PLLCKIN \times R \times K}{P}$$
(1)

 $R = 1, 2, 3, 4, \dots 15, 16$

J = 1, 2, 3, 4,...63, and D = 0000, 0001, 0002...9999

K = J.D

P = 1, 2, 3...15

R, J, D, and P are register programmable. J is the integer portion of K (the numbers to the left of the decimal point), while D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of precision).

Examples:

If K = 8.5, then J = 8, D = 5000

If K = 7.12, then J = 7, D = 1200

If K = 14.03, then J = 14, D = 0300

If K = 6.0004, then J = 6, D = 0004

When the PLL is enabled and D = 0000, the following conditions must be satisfied:

1 MHz = (PLLCKIN / P) = 20 MHz

64 MHz < (PLLCK IN x K x R / P) < 100 MHz

1 = J = 63

When the PLL is enabled and D /= 0000, the following conditions must be satisfied:

6.667 MHz = PLLCLK IN / P = 20 MHz

64 MHz < (PLLCK IN x K x R / P) < 100 MHz

4 = J = 11

R = 1

When the PLL is enabled.

 $f_Sref = (PLLCLK_IN \times K \times R) / (N \times P)$:

N is selected so that f_{S} ref × N = PLLCLK IN × K × R / P is in the allowable range.

Example:

MCLK = 12 MHz and
$$f_Sref = 44.1$$
 kHz, (N=2048)
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264

Example:

MCLK = 12 MHz and f_S ref = 48.0 kHz, (N=2048) Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920

The PLL can be programmed via Page 0, Registers 20 thru 24. The PLL can be turned on via Page 0, Register 4, D(0). The variable P can be programmed via Page 0, Register 20, D(3:0). The variable R can be programmed via Page 0, Register 24, D(3:0). The variable J can be programmed via Page 0, Register 21, D(5:0). The variable D is 14-bits and is programmed into two registers. The MSB portion can be programmed via Page 0, Register 22, D(5:0), and the LSB portion is programmed via Page 0, Register 23, D(7:0). The variable D is set when the LSB portion is programmed.

Values are programmed in the registers in Table 11.

Table 11. PLL Coefficient Registers

Register	FUNCTION	BITS		
PLL_EN	PLL enable, Lock Status and PLL Reference	Page 0, Register 0x28		
PLL_P	PLL P	Page 0, Register 0x29		
PLL_J	PLL J	Page 0, Register 0x2B		
DI Dv	PLL D	Page 0, Register 0x2C (Least Significant Bits)		
PLL_Dx	PLL D	Page 0, Register 0x2D (Most Significant Bits)		
PLL_R	PLL R	Page 0, Register 0x2A		

9.13.6 Clock Halt and Error

The PCM186x has a clock error detection block inside that continues to monitor the ratio of BCK to LRCK.

Should the clock error detector see a clock error - such as an unexpected number of BCKs per LRCK, then the device will go into Standby mode and an interrupt can be configured (PCM1863 and PCM1865) to inform the host.

Should all clocks be stopped going into the device, then the device will shift into Sleep state and begin Energysense Signal Detect Mode.

The status of the halt and error detector can be read from register: CLK_ERR_STAT (Page.0, 0x75).

9.14 ADCs

9.14.1 Main Audio ADCs

The main ADCs in the PCM1861/3/5 are 110dB, 40kHz bandwidth ADCs that are tightly coupled to dedicated PGAs and input multiplexers. Often in this document, you'll see reference to ADC1L and ADC1R (or CH1_L and CH1_R), those are the main Left/Right ADCs present in both PCM1863 and PCM1865. References to ADC2L and ADC2R are the other pair of L/R ADCs present only in the PCM1865.

9.14.2 Secondary ADC - Energysense and Analog Control

The PCM186X has a secondary ADC which is used for signal level detection or DC level change detection.

Figure 29. Secondary ADC Architecture

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

ADCs (continued)

The secondary ADC has two main purposes in the PCM186x family. The primary purpose is to act as a low power signal detection system, to aid with system wakeup from sleep. TI calls this functionality "Energysense". Other functionality includes the ability to use any spare analog inputs as "generic" ADC inputs, for connection to simple analog sources, such as voltages from control potentiometers. TI calls this functionality "Controlsense".

The secondary ADC is a one-bit delta-sigma type ADC. The sampling rate is directly connected to the main ADC audio sampling clocks during ACTIVE functionality. When the device is in SLEEP state, then the secondary ADC will switch clock source to an on-chip oscillator. (If there are no other clock sources.)

In sleep mode, the inputs are all treated as single ended inputs. Differential inputs are not supported in this mode, as the PGA would need to be powered up, which would consume more power.

To make the secondary ADC as flexible as possible in both Energysense and ControlSense modes, the following controls and coefficients are open in the register map. More details on each are in the relevant following sections.

- · Coefficients for the Low Pass Filter
- · Coefficients for the High Pass Filter
- Reference Voltage and Interrupt Voltage Delta for each input in ControlSense mode
- · Signal Loss Conditions (Time and Threshold)
- Signal Resume Conditions (Time and Threshold)
- Interrupt behavior (Ping every X ms if host does not clear, for example.)
- Scan time for each single ended input.

9.14.2.1 Secondary ADC Analog Input Range

To match the dynamic range of the secondary ADC to an incoming line level signal, an overall attenuation is applied to the incoming signal. This attenuation is also present in ControlSense mode. The impact of this is that the secondary ADC in control sense mode can only detect control signals up to 1.65 volts. Control signals should be appropriately attenuated external to the PCM186x. This could be easily done by putting a resistor of the same value as a control potentiometer in series.

9.14.2.2 Energysense Description

Energysense functionality has been added to the PCM186x to aid with auto-sleep and auto-wakeup for audio systems that expect to be sold within the European Union. The latest EcoDesign legislation in Europe has demanded that products consume less than 500 mW in standby. Most off-the-shelf external power adaptors can burn 300 mW when idling, leaving the system with 200 mW. In many systems that requires that almost everything be powered down in sleep mode, to be powered back up when signal enterers the system again.

Energysense is split into two pieces of functionality. Signal Loss Flag and Signal Resume Flag. Both are available on the PCM186x software controlled devices. The PCM1861 only support signal resume. Usage is shown below. By default, the Signal Resume Threshold is set at –57dBFS.

Table 12. Energysense States

MODE	PURPOSE	CONDITIONS	POSITIVE OUTCOME	WORST CASE	
SLEEP (Signal Detect	Detect Input Signal and Wake up from SLEEP	BCK and LRCK stopped (not locked) or Register Set.	Host Wakes and services interrupt (reads register)	Host Doesn't respond or start clocks.	
Mode)		Trigger Interrupt when input crosses above (threshold)	Host Starts BCK/LRCK. (Moving system to ACTIVE mode) or writes to register.	PCM186x keeps triggering interrupts until host responds.	
		Trigger for 1ms every X seconds until clocks start (x=1 by default)			
ACTIVE (Signal Loss Mode)	Detect content below (threshold) over time	BCK and LRCK are currently running	System can choose to go to sleep or not. If not, reset interrupt	If system does not sleep, remain in Mode 2, and prompt every Y.	
	Assist system to sleep after audio inactivity (for example, Source is off, but speaker still on)	If no content above -(threshold) dB for Y minutes, drive interrupt.	If System decides to sleep, stop BCK/LRCK. This will move PCM186x to SLEEP mode.	MCU will need to mask that interrupt.	

Product Folder Links: PCM1861 PCM1863 PCM1865

9.14.2.3 Energysense Signal Loss Flag

The main ADC constantly monitors the input signal level while in ACTIVE mode. Should the input level remain below a register defined threshold (for example –60dB) for a register defined amount of time (for example 1 minute), and interrupt will be generated.

Should the system MCU decide to move to SLEEP mode, the PCM186x can be moved to SLEEP by stopping BCK/LRCK or using a register. See Table 12 for detail. If BCK and LRCK are stopped by the Host after the interrupt, goes to the sleep state as Figure 30. Otherwise, repeats the interrupt every Y minutes as shown in Figure 31. The interrupt can be cleared by reading out the status register.

Figure 30. Energysense Signal Loss

In a typical application, the host MCU will note and reset this register multiple times until a system sleep number is hit. For example, a 5-minute signal loss could be implemented by using the default 1-minute timeout on the PCM186x, and counting 5 interrupts. An example can be seen in the diagram below.

Figure 31. Interrupt Behavior for Signal Loss.

Alternatively, the **SIGDET_LOSS_TIME** (Page.0, 0x34) register in the device can be changed from 1 minute (Default) to 5 minutes.

The duration of the interrupt can also be modified using **INT_PLS** (Page.0 0x62) to be pulses or to be a sticky flag until cleared.

9.14.2.4 Energysense Signal Detect Circuitry

In SLEEP mode (BCK and LRCK stop, or by register), the PCM186X monitors the signal level or DC level change using the secondary ADC. All 8 channels are converted one after the other in a circular manner. The scan time can be specified with a register SIGDET_SCAN_TIME. All 8 channels will be measured, even if some have their interrupt outputs muted. Accuracy and frequency response are a function of scan time. A long scan time allows detection of lower frequency content.

Figure 32. Energysense Signal Wakeup Logic

There is a balance between lowest frequency detectable, and time on that particular channel. There are three options in register SIGDET_INT_INTVL (Page.0 0x36):

- 50 Hz detect (160ms per channel)
- 100 Hz detect (80ms per channel)
- 200 Hz detect (40ms per channel)

9.14.2.4.1 Energysense Threshold Levels for both Signal Loss and Signal Detect

There are two threshold levels used for Energysense. One is the loss of signal level, another one is the resume of signal level.

Figure 33. Dual Thresholds for Energysense

As both thresholds are DSP based, their coefficients are stored in virtual coefficient space that is programmed through the device register map.

For example, to change the resume threshold value to -30 dB (0x040C37):

Write 0x00 0x01; # change to register page 1

Write 0x02 0x2D; # write the memory address of resume threshold

Write 0x04 0x04; # bit[23:15] Write 0x05 0x0C; # bit[15:8] Write 0x06 0x37; # bit[7:0]

Write 0x01 0x01; # execute write operation

9.14.2.5 Frequency Response of the Secondary ADC

The natural response of the secondary ADC is not flat by frequency. However, the frequency response can be flattened, so that all frequencies are equally sensitive to the energystar detector by modifying the LPF/HPF biquads in the DSP.

An example of the code required is shown in Table 13.

9.14.3 Programming Various Coefficients for Energysense

Programming the DSP coefficients for the Energysense secondary ADC is done through the indirect virtual programming registers in Page1. The Low Pass Filter (LPF) and High Pass filter (HPF) coefficients can be written to flatten out the frequency response, as well as the Energysense Loss and Resume thresholds. Visually, one can imagine the DSP flow as shown in Figure 34.

Figure 34. Energysense process flow

To flatten out the response of the secondary ADC, so that all frequencies are detected evenly, the following biquads should be written to the virtual DSP memory, using the techniques discussed in Programming DSP Coefficients.

Table 13. Secondary ADC Biquad Coefficients at 48kHz Sampling

Coefficient	Virtual RAM Address
LPF_B0:	0x20
LPF_B1:	0x21
LPF_B2:	0x22
LPF_A1:	0x23
LPF_A2:	0x24
HPF_B0:	0x25
HPF_B1:	0x26
HPF_B2:	0x27
HPF_A1:	0x28
HPF_A2:	0x29

9.14.4 Secondary ADC DC Level Change Detection

This function is used for external analog controls, such as potentiometers to set volume, tone control, or a sensor.

There are two parameters for the DC level change detection. Reference level (REF_LEVEL) and Difference level (DIFF LEVEL). Each input terminal (input 1 through 8) has a different reference and difference level.

Users set a reference point, and a difference point. If the voltage at the control point crosses the difference point then an interrupt is driven from the device. This is useful for filtering out noise, as well as reducing the load on the host processor for controls that tend to be "set and forget" (such as volume).

The data from the secondary ADC can also be streamed out of the device in TDM form and directly from the I²C register map. **AUXADC_DATA_CTRL** (**Page.0 0x58**) is used to configure and check the status of the DC detector.

Figure 35. DC Detection function

9.15 Audio Processing

Both DSP1 and DSP2 are fixed function processors that are not custom programmable. They are used in this design to perform multiple filtering and mixing functions. Programming the DSP coefficients is done indirectly using registers on Page1. The data and target DSP memory address are stored in registers, and once the DSPs are ready for the data (that is done by request) the data is then latched into the DSP memory.

This indirect method of programming the DSP allows multiple registers to be written, without consuming valuable register map space. More details can be found at Programming DSP Coefficients.

9.15.1 DSP1 Processing Features

9.15.1.1 Digital Decimation Filters

The decimation filter used to convert the high-data-rate modulator to I²S rates is selectable between a Classic FIR response and a low latency IIR response. A high pass filter is also available to remove any DC bias that may be present in the signal.

Details can be found in the DSP_CTRL register (Page.0, 0x71).

9.15.1.2 Digital PGA Gain

As discussed in Programmable Gain Amplifier, the digital PGA gain can be controlled by the auto gain mapping function, that will use the analog gain settings in register PGA_VAL_CH1_L (Page.0 0x01) and related registers to achieve the target gain with a combination of digital and analog gain. However, digital gain can be also controlled directly by disabling the auto gain mapping function using register PGA_CONTROL_MAPPING (Page.0 0x19).

9.15.2 DSP2 Processing Features

9.15.2.1 Digital Mixing Function

This function allows post ADC mixing, as well as ADC+Incoming I²S mix. Volume control functionality can be performed prior to outputting the signal to an I²S DAC or Amplifier.

Gain range is from -100dB to + 18dB (20 bits negative up +18dB, 4.20 format).

As the DSP coefficients are directly written, no soft ramping available. If the user wants to use RX of I²S, they must sacrifice 2 channels of digital mic (due to terminal limitation).

Coefficients are written indirectly to virtual memory addresses using the registers on Page 1. Details of the registers is shown in Register Map.

An diagram of the digital mixing functionality is shown in Figure 36.

Audio Processing (continued)

Figure 36. Digital Mixer Functionality

9.16 Fade-In and Fade-Out Functions

The PCM186x has Fade-In and Fade-Out functions on DOUT to avoid pop noise. This function is engaged on device power up/down and mute/unmute. The level changes from 0dB to mute or mute to 0dB are performed using pseudo S-shaped characteristics calculation with zero cross detection. Because of the zero cross detection, the time needed for the Fade-In and Fade-Out depends upon the analog input frequency (f_{IN}). Fade takes $48/f_{IN}$ until processing is completed. If there is no zero cross during $8192/f_{S}$, DOUT is faded in or out by force during $48/f_{S}$ (TIME OUT). Figure 37 illustrates the Fade-In and Fade-Out operation processing.

Figure 37. Fade-In and Fade-Out Operations

9.17 Mappable GPIO Terminals

All the GPIO devices on the PCM1863 and PCM185 can be configured for various functions. They can each have their polarity inverted to make control of following circuits easier. See the control registers for each GPIO for a better explanation of mapping. (such as **GPIO1_FUNC at Page.0 0x10**)

The type of function can also be controlled, including such behavior as regular inputs, inputs with toggle detection, or sticky bits. The device can also be configured as an open drain output, so that multiple interrupt outputs from different devices in the system can be connected together.

9.18 Current Status Registers

Page.0, Registers 0x72 through 0x75 and 0x78 can be used to read the status on the part at any time. Sample Rate, Power Rail status, Clock Error and Clock Ratios can all be read from these registers.

9.19 Control

9.19.1 Hardware Control Configuration

PCM186x devices require the following things to be configured on startup. Hardware Programmable devices require a subset of configuration.

- 1. Control Interface type and address for PCM1863/5
- The Clock Mode and Rate (Automatic in Slave Mode, or divider ratio in Master Mode) (for more details see Clocks)
- 3. The Interface Audio Data Format
- 4. Digital Filter Selection (FIR or IIR) (requires a power cycle to change)
- 5. Analog Input Channels and PGA Gain

Control (continued)

9.19.2 Software Controlled Device Configuration

PCM1863/5 devices are configured and controlled by using either I2C or SPI using MD0.

Table 14. MD0 - Control Protocol Select

MD0	Control Protocol
Low	I2C Mode
High	SPI Mode

Table 15. MD1 - I2C Address or SPI Chip Select

Mode	MD1 Usage	Static MD1 Value	Configuration
I2C	Address terminal	Low	I2C Address: 0x94
I2C	Address terminal	High	I2C Address: 0x96
SPI	MS (SPI Chip Select)	N/A	N/A

9.19.3 SPI Interface

The SPI interface is a 4-wire synchronous serial port which operates asynchronously to the serial audio interface and the system clock (SCK). The serial control interface is used to program and read the on-chip mode registers.

The control interface includes MISO, MOSI, MC, and MS. MISO (Master In Slave Out) is the serial data output, used to read back the values of the mode registers; MOSI (Master Out Slave In) is the serial data input, used to program the mode registers.

MC is the serial bit clock, used to shift data in and out of the control port by falling edge of MC, and MS is the mode control enable with LOW active, used to enable the internal mode register access. If feedback from the device is not required, the MISO terminal can be assigned to GPIO1 by register control.

9.19.3.1 Register Read/Write Operation

All read/write operations for the serial control port use 16-bit data words. Figure 38 shows the control data word format. The most significant bit is the read/write (R/W) bit. For write operations, the bit must be set to 0. For read operations, the bit must be set to 1. There are seven bits, labeled IDX[6:0], that hold the register index (or address) for the read and write operations. The least significant eight bits, D[7:0], contain the data to be written to, or the data that was read from, the register specified by IDX[6:0].

Figure 39 and Figure 40 show the functional timing diagram for writing or reading through the serial control port. MS should be held at logic 1 state until a register needs to be written or read. To start the register write or read cycle, MS should be set to logic 0. Sixteen clocks are then provided on MC, corresponding to the 16 bits of the control data word on MOSI and readback data on MISO. After the eighth clock cycle has completed, the data from the indexed-mode control register appears on MISO during the read operation. After the sixteenth clock cycle has completed, the data is latched into the indexed-mode control register during the write operation. To write or read subsequent data, MS should be set to logic 1 once.

NOTE: B8 is used for selection of "Write" or "Read". Setting = 0 indicates a "Write", while = 1 indicates a "Read". Bits 15–9 are used for register address. Bits 7–0 are used for register data.

Figure 38. Control Data Word Format for MDI

42

Figure 40. Serial Control Format for Read

Μ

Sp

9.19.4 I²C Interface

The PCM1863/5 support the I²C serial bus and the data transmission protocol for standard and fast mode as a slave device. This protocol is explained in I2C specification 2.0.

In I²C mode, the control terminals are changed as follows:

Table 16. I2C Terminals and Functions

TERMINAL NAME	TERMINAL NUMBER	PROPERTY	DESCRIPTION
SDA	15	Input / output	I ² C data
SCL	16	input	I ² C clock
AD	14	input	I ² C address 1

9.19.4.1 Slave Address

Table 17, I2C Slave Address

MSB							LSB	
1	0	0	1	0	1	AD	R/W	1

The PCM1863/5 has a 7-bit slave address. The first six bits (MSBs) of the slave address are factory preset to 1001 01. The next bit of the address byte is the device select bit, which can be user-defined by the AD terminal. A maximum of two PCM186x devices can be connected on the same bus at one time. Each device responds when it receives its own slave address.

9.19.4.2 Packet Protocol

A master device must control packet protocol, which consists of start condition, slave address, read/write bit, data if write or acknowledge if read, and stop condition. The PCM1863/5 supports only slave receivers and slave transmitters.

		address								•
read operation										
Transmitter	М	М	М	S	М	S	М	S	S	М

ACK

DATA

ACK

DATA

M: Master Device St: Start Condition

slave address

> S: Slave Device Sp: Stop Conditiion

ACK

R/W

Figure 41. Basic I²C Framework

9.20 Interrupt Controller

St

The hardware controlled PCM1861 have the Energysense signal detect as their default output on the INT. They do not have any other sources for interrupt. The INT terminal on the PCM1861 is also used to put the device into power-down mode.

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

ACK

Data Type

Interrupt Controller (continued)

The Software controlled PCM1863/5 have multiple signals that can be mapped to the interrupt outputs. These include:

- Energysense (DEFAULT)
- Secondary ADC Controlsense Interrupt
- Clock Error
- DIN Toggle

The Interrupt controller has the following features

- The Interrupt sources can be filtered by the enable register (INT_EN).
- The Interrupt flags can be monitored by reading the status register (INT_STAT).
- The interrupt flags can be cleared by writing the status register.
- The polarity of the interrupt signal can be changed between active high, active low and Open Collector (High Impedance is pulled to GND) (INT_PLS).
- The pulse width of the interrupt signal can be Can be changed between 1ms, 2ms, 3ms and Infinity (until the flag is cleared).

Figure 42. Interrupt Logic

Using a combination of these features, as well as the interrupt sources allows the PCM186x to flag an event to a host microcontroller, using whichever polarity signal required (Pull High, Pull Low, Hiz-Open Collector). The Host controller can then communicate with the device to poll the interrupt flag register to find out "what happened". Additional registers can then be read for more details. (For instance, which input triggered an ESense event.)

9.20.1 Clock Error Detect

When a clock error occurred, the PCM186X starts the following sequences:

- 1. Mute audio output immediately (without volume ramp down)
- 2. Generate an interrupt if the clock error interrupt is enabled.
- 3. Wait until proper clock is supplied. (Known as "Clock Waiting State")
- 4. restart the clock detection. The PLL and all of clock dividers are re-configured with the result of the detection.
- 5. Start Fade-IN

www.ti.com

Interrupt Controller (continued)

The clock error status can be read in register CLK_ERR_STAT (Page.0 0x20). The clock detection logic is shown below

Table 18. Summary of Clock Detection Logic

SCK	ВСК	LRCK	Result	Action
ACTIVE	ACTIVE	ACTIVE	No Error	Normal Operation
ACTIVE	ACTIVE	HALT	Clock Error	Enter Clock Waiting State
ACTIVE	HALT	ACTIVE	Clock Error	Enter Clock Waiting State
ACTIVE	HALT	HALT	Clock Error	Enter SLEEP
HALT	ACTIVE	ACTIVE	No Error	Enter BCK PLL Mode
HALT	ACTIVE	HALT	Clock Error	Enter Clock Waiting State
HALT	HALT	ACTIVE	Clock Error	Enter Clock Waiting State
HALT	HALT	HALT	Clock Error	Enter SLEEP

In addition, the device uses an on-chip oscillator to detect errors in the rate of present clocks. That logic is shown below

Table 19. Summary of Clock Error Logic

SCK/LRCK Ratio	BCK/LRCK Ratio	LRCK	Error Detect	Action
-	-	< 8kHz or > 192kHz	f _S error	Enter Clock Waiting State
Not 128/256/384/512/ 768	-	8 /16 /32/44.1/48 kHz	SCK error	Enter the clock waiting state, tie I ² S output to 0
Not 128/256/384/512	-	- 88.2/96kHz SCK error Enter the clock waiting s output to 0		Enter the clock waiting state, tie I ² S output to 0
Not 128/256	-	176.4/192kHz	SCK error	Enter the clock waiting state, tie I ² S output to 0
	Not 256/64/48/32	8/16/32/44.1/48/8 8.2/96/174.6/196k Hz	BCK error	Enter the clock waiting state, tie I ² S output to 0
		>192kHz	f _S error	Enter the clock waiting state, tie I ² S output to 0

In a mode where you have a non-audio standard SCK coming into the product, the clock error detection on the SCK terminal can be ignored by disabling the Auto Clock Detector (CLKDET_EN Page.0 0x20).

9.21 Audio Format Selection and Timing Details

9.21.1 Audio Format Selection

Format selection for the PCM1861 is done using a hardware terminal configuration. There is a choice of Left Justified Data (known as "LJ") or I²S.

However, on the PCM1863 and PCM1865 it is done with the registers in **I2S_FMT (Page.0 0x0B)**, which offers additional support for Right Justified "RJ" and Time Division Multiplexed data "TDM" for multiple channels.

PCM1863 and PCM1865 also offer an additional DOUT terminal that can be driven through the GPIO terminals. For example, see register details at **GPIO1_FUNC** (Page.0 0x10).

9.21.2 Serial Audio Interface Timing details

Figure 43. Audio Data Format (LRCK and BCK work as inputs in slave mode and as outputs in master mode)

9.21.3 Digital Audio Output 2 Configuration

The PCM1863 and PCM1865 offer an additional DOUT through the use of a GPIO with its rate synchronized along with the primary DOUT. DOUT2 is configured using the digital mixer, shown in Digital Mixing Function.

9.21.4 Decimation Filter Select

The PCM186x offers a choice of two different digital filters, a Classic FIR response and a low latency IIR.

9.21.5 Serial Audio Data Interface

The PCM186x devices interface the audio system through LRCK, BCK and DOUT.

The PCM1861 is configured using terminal MD4 to select between Left Justified Data and I²S.

The PCM1863 and PCM1865 are configured using register I2S_FMT (Page.0 0x0B). Register I2S_TX_OFFSET (Page.0 0x0D) should be used when dealing with TDM systems to offset the data transmit.

In addition, the offset required for receiving 24-bit data can be programmed using RX_TDM_OFFSET (P0, R0x0E).

9.21.5.1 Interface Timing

Figure 44 and Figure 45 illustrate the interface timing in slave mode, and Figure 46 shows master mode.

Audio Format Selection and Timing Details (continued)

	PARAMETER ⁽¹⁾	MIN	TYP	MAX	UNIT
t _{BCKP}	BCK Period	1/(64f _S)			ns
t _{BCKH}	BCK Pulse Width HIGH	1.5 × t _{SCKI}			ns
t _{BCKL}	BCK Pulse Width LOW	1.5 × t _{SCKI}			ns
t _{LRSU}	LRCK Set Up Time to BCK Rising Edge	50			ns
t _{LRHD}	LRCK Hold Time to BCK Rising Edge	10			ns
t _{LRCP}	LRCK Period	10			μs
t _{CKDO}	Delay time BCK Falling Edge to DOUT Valid	-10		40	ns
t _{LRDO}	Delay time LRCK Edge to DOUT Valid	-10		40	ns
t_R	Rising Time of All Signals			20	ns
t _F	Falling Time of All Signals			20	ns

Timing measurement reference level is 1.4 V for input and 0.5VDD for output. Rising and falling time is measured from 10% to 90% of IN/OUT signals' swing. Load capacitance of DOUT is 20 pF. t_{SCKI} means SCKI period.

Figure 44. Audio Data Interface Timing (Slave Mode: LRCK and BCK work as inputs)

	PARAMETER ⁽¹⁾	MIN	TYP	MAX	UNIT
t _{BCKP}	BCK Period	150	1/(64f _S)	2000	ns
t _{BCKH}	BCK Pulse Width HIGH	65		1000	ns
t _{BCKL}	BCK Pulse Width LOW	65		1000	ns
t _{CKLR}	Delay Time BCK Falling Edge to LRCK Valid	-10		20	ns
t _{LRCP}	LRCK Period	10	1/f _S	125	μs
t _{CKDO}	Delay time BCK Falling Edge to DOUT Valid	-10		20	ns
t _{LRDO}	Delay time LRCK Edge to DOUT Valid	-10		20	ns
t _R	Rising Time of All Signals			20	ns
t _F	Falling Time of All Signals			20	ns

Timing measurement reference level is 0.5V_{DD}. Rising and falling time is measured from 10% to 90% of IN/OUT signals' swing. Load
capacitance of all signals are 20 pF.

Figure 45. Audio Data Interface Timing (Master Mode: LRCK and BCK work as outputs)

(1) Timing measurement reference level is 1.4 V for input and 0.5 V_{DD} for output. Load capacitance of BCK is 20 pF. This timing is applied when SCKI frequency is less than 25 MHz.

Figure 46. Audio Data Interface Timing (Master Mode: BCK works as outputs)

www.ti.com

9.22 Device Functional Modes

9.22.1 Power Mode Descriptions

The PCM186x family have multiple power states. They are "Active", "Sleep", "Idle" and "Standby".

Active Mode describes the active mode where the device is targeting full performance and functionality.

Sleep Mode describes a mode where the main ADCs are not in use, but the device continues to do Energysense input level detection.

Idle Mode describes a mode where the digital output is muted and the analog side (such as PGAs) are still powered up.

Standby/Shutdown drops the power into an ultra-low power mode where only the control port is available.

Table 20. Power Modes

Analog Functions	ACTIVE	Idle (Mute)	Sleep (Energysense)	Standby/Shutdown
Programmable Gain Amps	ON	TBD	OFF	OFF
ADC	ON	TBD	OFF	OFF
ADC Reference	ON	TBD	OFF	OFF
CMBF	ON	TBD	ON	ON
Reference	ON	TBD	ON	ON
Mic Bias	ON	TBD	ON	OFF
Secondary ADC PGA	ON	TBD	ON	OFF
Secondary PGA	ON	TBD	ON	OFF
Accessory Functions				
LDO	ON	TBD	ON	ON
Oscillator	ON	TBD	ON	ON
Clock Halt Detection	ON	TBD	ON	ON
PLL	ON	TBD	ON	OFF
Digital Cores	ON	TBD	20% ON	5% ON (Control Port Only)

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

9.22.1.1 PCM1861 Hardware Device Power Down Functions

Enter/Exit Chip Standby mode for PCM1861

Enter Standby mode (from active mode):

The external host should drive the INT terminal (GPIO3) HIGH whilst there is no interrupt to move the device in Idle mode.

The INT terminal is configured as an energysense interrupt output on the H/W device, therefore, the external host microcontroller should use it as multiple functional terminal. (MCU INPUT when not requiring to move to standby, MCU OUTPUT drive HIGH when needing to push to Idle.)

NOTE

While the device is driving its interrupt high, any external voltage on the INT terminal will be ignored by the device, until the interrupt event/pulse is done.

Exit From Standby Mode:

The external MCU host release INT terminal (GPIO3). This typically involves making the external MCU GPIO into an INPUT or HI-Z.

Enter/Exit Sleep/Energysense mode for PCM1861

Enter to sleep mode: Halt BCK and LRCK

Exit from sleep mode: Resume BCK and LRCK

9.22.1.2 PCM1863/5 Software Device Power Down Functions

Enter/Exit To/From Stand-by mode for Software Device

Enter to standby mode: Send power down command by writing register PWRDN_CTRL (Page.0 0x70)

Exit from standby mode: Send power up command by writing register PWRDN_CTRL (Page.0 0x70)

Enter/Exit To/From Sleep mode for Software Device:

- (1) Send sleep command by writing register PWRDN_CTRL (Page.0 0x70) or
- (2) Halt BCK and LRCK when I2S is configured as I2S Slave mode

Exit from Sleep mode:

- (1) Send resume from sleep command by writing register PWRDN_CTRL or
- (2) Resume BCK and LRCK when I²S is configured as I²S master mode

9.22.1.3 Bypassing The Internal LDO To Reduce Power Consumption

The PCM186x has an integrated LDO allowing single 3.3V supply operation. However, developers looking to save on wasted power consumption can bypass the on-chip LDO and provide 1.8V to DVDD under the following conditions

- TDM Mode is not possible (the I/O or other function requires 3.3V)
- IOVDD MUST be 1.8V along with LDOO, if an external 1.8V supply is used to bypass LDOO.

10 Applications and Implementation

10.1 Application Information

The PCM186x family is extremely flexible, and this flexibility gives rise to a number of design questions that define the design requirements for a given application. In this section, the design choices are described, followed by a typical system implementation.

- Device Control Method
 - Hardware Control
 - Software Control
 - SPI
 - I^2C
- Power Supply Options
 - Single supply
 - Separate analog and digital supplies
 - Separate IO supply
- Master Clock Source
 - External CMOS-level clock
 - External crystal with integrated oscillator
- Analog Input Configuration
 - Single-ended
 - Differential

10.1.1 Device Control Method

10.1.1.1 Hardware Control

The control for the PCM1861 is done with pullup or pulldown voltages on terminals MD0 through MD6. The INT terminal is ideally designed to be used with a microcontroller that can treat the terminal as both an input (when used as an interrupt) and as an output to pull the terminal high, and force power-down. See Terminal Assignments, PCM1861 for specific configuration details.

Figure 47. PCM1861 Hardware Control Interface

52

Application Information (continued)

10.1.1.2 Software Control

10.1.1.2.1 SPI Control

SPI control is selected by the MD0 terminal; in this case, MDO connects to GND, so that the device acts as an SPI slave.

Figure 48. SPI Control Interface Including Interrupt Signals

10.1.1.2.2 I²C Control

I²C control is selected by the MD0 terminal; in this case, MDO is pulled up to 3.3V, so that the device acts as an I²C slave. One address line is supported to select between two devices on the same bus.

Figure 49. I²C Control Interface Including Interrupt Signals

10.1.2 Power Supply Options

10.1.2.1 3.3V AVDD, DVDD and IOVDD

3.3V AVDD, DVDD and IOVDD is the most typical power supply configuration.

Copyright © 2014, Texas Instruments Incorporated

Application Information (continued)

Figure 50. Single 3.3V Supply

10.1.2.2 3.3V AVDD, DVDD and 1.8V IOVDD

For details regarding lower power applications, please see 3.3V AVDD, DVDD with a 1.8V IOVDD for lower power applications.

10.1.3 Master Clock Source

The PCM186x family offers 3 different clock sources. For the highest performance, run the ADC in master mode from a stable, well-known SCK source, such as a CMOS SCK, or a external crystal (XTAL). The PCM186x is easy to hook up to a crystal, simply connect to XI and XO, and add capacitors to ground, as suggested in the XTAL manufacturers datasheet (typically 15pF).

External CMOS clock sources can be brought directly into the SCKI terminal (for 3.3V sources) or into the XI terminal (1.8V sources).

If you have a clock source that is unrelated to the audio rate, then the PLL will need to be engaged. For instance, a 12MHz USB crystal will require custom PLL settings to generate the 48kHz rate clocks and the 44.1kHz rate clocks required by many audio systems. An example with a 12MHz clock is shown in PCM1863/5 Manual PLL Calculation .

10.1.4 Analog Input Configuration

10.1.4.1 Analog Front End Circuit For Single-Ended Line-In Applications

Most systems can simply use an input filter similar to Figure 51. However, for systems with significant out of band noise, a simple filter such as that shown in Figure 52 can be used for pre-ADC anti-aliasing filtering. The recommended R value is 100Ω . Film-type capacitors of $0.01\mu F$ should be located as close as possible to the VINLx and VINRx terminals and should be terminated to GND as close as possible to the AGND terminal to maximize the dynamic performance of the ADC.

Figure 51. Analog Input Circuit for Single Ended Input Applications

Figure 52. Analog Input Circuit with Additional Anti Aliasing Filter for Single Ended Applications

Application Information (continued)

10.1.4.2 Analog Front End Circuit Differential Line In Applications

Most systems can simply use an input filter similar to Figure 53. However, for systems with significant out of band noise, a simple filter such as that shown in Figure 54 can be used for pre-ADC anti-aliasing filtering. The recommended R value is 47Ω . Film-type capacitors of $0.01\mu F$ should be located as close as possible to the VINLx and VINRx terminals and should be terminated to GND as close as possible to the AGND terminal to maximize the dynamic performance of ADC. To maintain common mode rejection, the series resistors should be matched as closely as possible.

Differential + Audio Source $10~\mu\text{F}$ 47Ω 47Ω 4

Figure 53. Analog Input Circuit for Differential Input Applications

Figure 54. Differential Input Circuit with Additional Anti Aliasing Filter for Single Ended Applications

10.2 Typical Applications

10.2.1 PCM1861 with 3.3V AVDD, DVDD and IOVDD, Master Mode with XTAL

Figure 55. Simplified Schematic, PCM1861 Hardware-Controlled Subsystem

Copyright © 2014, Texas Instruments Incorporated

Typical Applications (continued)

10.2.1.1 Design Requirements

- Device control method: Hardware control by digital GPIO terminals of a microcontroller
- XTAL used for master mode
- · Single-ended analog inputs

10.2.1.2 Detailed Design Procedure

- Device control method: Hardware control by digital GPIO terminals of a microcontroller
- Select XTAL capacitors by reading the XTAL datasheet
- · Single-ended analog inputs
 - MD2, MD5, MD6 configuration (See Terminal Assignments, PCM1861)
- · Audio slave mode
 - MD0, MD1 grounded (See Figure 55, Terminal Assignments, PCM1861)
- The power rails in this application allow the usage of X7R Ceramic capacitors. A maximum voltage rating of 6.3V should be enough for the power supply capacitors.
- Configure the microcontroller INT terminal to be an input for interrupts, or change the function to output to pull high to power down the PCM1861.

10.2.1.3 Application Curves

Figure 56. Frequency Response with -60dB Input at 1kHz

56 Submit

Typical Applications (continued)

10.2.2 PCM1863 with 3.3V AVDD, DVDD , 1.8V IOVDD, BCK Input Slave PLL

Figure 57. Simplified Schematic, PCM1863 I²C Controlled Subsystem

10.2.2.1 Design Requirements

- Device control method: Software control by I²C
- Clock slave to a 1.8V device that only supplies BCK and LRCK (such as a Bluetooth Module)
- · Single-ended analog inputs

10.2.2.2 Detailed Design Procedure

- Device control method: Configure for I²C by Pulling MD0 to GND, and setting I²C address by setting AD terminal High/Low
- Ensure BCK is configured in clock master device to be 64xf_S for automatic PLL setting to function.
- Single-ended analog inputs
 - MD2, MD5, MD6 configuration see Table 1
- Audio slave mode
 - Configure appropriate clock registers
 - Page.0 0x20 Set MST_MODE=1 (I²S Slave)
- The power rails in this application allow the usage of X7R Ceramic capacitors. A maximum voltage rating of 6.3V should be enough for the power supply capacitors.

Copyright © 2014, Texas Instruments Incorporated

Typical Applications (continued)

10.2.2.3 Application Curves

Figure 58. Frequency Response with -60dB Input at 1kHz

11 Power Supply Recommendations

11.1 Power Supply Distribution and Requirements

The PCM186x has the following terminals used for powering the device.

Figure 59. Power Distribution Tree within PCM186x

The PCM186x uses a combination of 3.3V IP blocks and 1.8V IP blocks to achieve high analog performance, combined with high levels of digital integration. As such, there are 3 power rails internal to the device. AVDD provides the analog circuits with a clean 3.3V rail. DVDD is used for 3.3V digital clock circuits. Externally, AVDD and DVDD can be connected together without significant impact to performance.

The PCM186x integrates an on-chip LDO to convert an external 3.3V to 1.8V required by the digital core. The LDO input is derived from the IOVDD.

Table 21. Power Supply Terminal Descriptions

NAME	USAGE / DESCRIPTION
AVDD	Analog Voltage Supply - should be 3.3V. Powers the ADC, PGA, Reference, and Secondary ADC
DVDD	Digital Voltage Supply - should be 3.3V. Used for the PLL and the Oscillator Circuit
IOVDD	Input/Output Terminal Voltage. Also used as a source for the internal LDO for the digital circuit.
LDOO	Output from the on-chip LDO. Should be used with a 0.1uF decoupling capacitor. Can be driven (used as power input) with a 1.8V supply to bypass the on-chip LDO for lower power consumption.
AGND	Analog Ground
DGND	Digital Ground

11.2 1.8V Support

All PCM186x devices can support 1.8Vio. This is configured by driving IOVDD with 1.8V.

11.3 Power Up Sequence

The Power up sequence consists of the following steps

- 1. Power On Reset
 - (a) Powerup AVDD, DVDD and IOVDD
 - (b) Check if LDOO is being driven with an external 1.8V, or is an output. Enable LDO if required.
 - (c) Release Digital Reset
- 2. Wait Until Analog Voltage Reference is stable
- 3. Clock Configuration
- 4. Fade-IN Audio ADC Content

11.4 Lowest Power Down Modes

To achieve the lowest levels of power down and sleep current, the following recommended writes are suggested on PCM1863 and PCM1865 devices:

Copyright © 2014, Texas Instruments Incorporated

www.ti.com

Lowest Power Down Modes (continued)

11.4.1 Lowest Power In Standby (AVDD=DVDD=IOVDD=3.3V)

Consumption as low as 0.59mW

0x00=0x00 //select page0

0x70=0x14 //power down reference

0x00=0x03 //select page3

0x12=0x41 //disable OSC

0x00=0x00 //select page0

11.4.2 Lowest Power In Sleep/Energysense Mode (AVDD=DVDD=IOVDD=3.3V)

Consumption as low as 14mW

Clocks must be running during this process

0x00=0x00 //select page0

0x70=0x72 //enter in sleep mode

0x00=0xfd //select page253

0x14=0x10 //change global bias current

0x00=0x00 //select page0

Now stop the clocks

11.4.3 Lower Power In Sleep/Energysense Mode (AVDD=DVDD 3.3V and IOVDD=1.8V)

Consumption as low as 11.15mW

Clocks must be running during this process

0x00=0x00 //select page0

0x70=0x72 //enter in sleep mode

0x00=0xfd //select page253

0x14=0x10 //change global bias current

0x00=0x00 //select page0

stop the clocks (note: make sure the clock IO is 1.8V)

11.5 Power On Reset Sequencing Timing Diagram

Figure 60. Power On Reset Timing Diagram

11.6 Power Connection Examples

11.6.1 3.3V AVDD, DVDD and IOVDD

This is the most typical usage. One single supply, shared between all three voltage inputs. Decoupling capacitors not shown for those rail connected. Note, there is no disadvantage in separating the AVDD and DVDD, as the device will wait until both are present before powering up.

Copyright © 2014, Texas Instruments Incorporated

Power Connection Examples (continued)

Figure 61. 3.3V for all supplies

Figure 62. Separate 3.3V for AVDD and DVDD

11.6.2 3.3V AVDD, DVDD with a 1.8V IOVDD for Lower Power Applications

The PCM186x also supports interfacing to lower power 1.8V processors. In the presence of an external 1.8V connected to LDO, the internal LDO that takes DVDD (3.3V) and converts it to the 1.8V core voltage is bypassed. Under such conditions, IOVDD will then be used as the 1.8V source for the digital core of the device. In such systems, it is still important to have 3.3V for DVDD, as specific sections of the digital core in the device run from 3.3V.

Figure 63. 1.8V IOVDD with 3.3V for AVDD and DVDD

11.7 Fade In

This is the final stage of the Power Up Sequence. Once the PLL has locked, The ADC will start running, and the data will Fade-IN sequence according to the following steps:

- 1. Detect a zero crossing audio input
- 2. Increment the volume towards 0dB with S-shaped volume.
- 3. Repeat from (1) until arrive at the 0dB. The number of steps from mute to 0dB is 48 steps.
- 4. If zero crossing does not occur for 8192 sample times (= time out), change the volume per sample time.

Fade In (continued)

Figure 64. S-Curve Fade-In Behavior

12 Layout

12.1 PCM186x Grounding and System Partitioning

Designers should try to use the same ground between AGND and DGND to avoid any potential voltage difference between them. On the PCM186x EVM, we achieve up to 110dB SNR using a single ground plane, and ensuring that the return currents for digital signals do not go near the AGND terminal or the input signals. Avoid running high frequency clock and control signals near AGND, or any of the VIN terminals where possible.

The terminal layout of the PCM1861/3/5 partitions into two parts - analog section and digital section. Providing the system is partitioned in such a way that digital signals are routed away from the analog sections, then no digital return currents (for example, clocks) should be generated in the analog circuitry.

Figure 65. Single Ground with Analog Partitioned to the top, Digital at the bottom

With this in mind, when we laid out the EVM, we made sure that any digital return currents had a ground plane to their source/destination that didn't require passing below any analog circuitry, shown in Figure 66

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

PCM186x Grounding and System Partitioning (continued)

Figure 66. PCM186x EVM signal partitioning

13 Programming and Registers Reference

13.1 Coefficient Data Formats

All mixer gain coefficients are 24-bit coefficients using a 4.20 number format. Numbers formatted as 4.20 numbers have 4 bits to the left of the binary point and 20 bits to the right of the binary point. If the most significant bit is logic 0, the number is a positive number. If the most significant bit is a logic 1, then the number is a negative number. In this case, every bit must be inverted, a 1 added to the result. See SLAC663.

13.2 Register Map

The register map is the primary way to configure the PCM1863 and PCM1865. The register map is separated into four pages (Page 0,1,3 and 253). Page 0 handles all of the device configuration whilst Page 1 is used to indirectly program coefficients into the two fixed function DSPs on the IC. Page 3 contains some additional registers for lower power usage along with page253. All undocumented registers should be considered reserved and should not be written.

Changing between pages is done by writing to register 0x00 with the page that you want.

Resetting registers is done by writing 0xFF to register 0x00.

13.2.1 Register Map Summary

Register Map Summary

Page 0			•	kegister ivia	ip Gaillina	,			
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
1	0x01	PGA_VAL_CH1 _L 7	PGA_VAL_CH1 _L 6	PGA_VAL_CH1 _L 5	PGA_VAL_CH1 _L 4	PGA_VAL_CH1 _L 3	PGA_VAL_CH1 _L 2	PGA_VAL_CH1 _L 1	PGA_VAL_CH1 _L 0
2	0x02	PGA_VAL_CH1 _R7	PGA_VAL_CH1 _R6	PGA_VAL_CH1 _R5	PGA_VAL_CH1 _R4	PGA_VAL_CH1 _R3	PGA_VAL_CH1 _R2	PGA_VAL_CH1 _R1	PGA_VAL_CH1 _R0
3	0x03	PGA_VAL_CH2 _L	RSV						
4	0x04	PGA_VAL_CH2 _R7	PGA_VAL_CH2 _R6	PGA_VAL_CH2 _R5	PGA_VAL_CH2 _R4	PGA_VAL_CH2 _R3	PGA_VAL_CH2 _R2	PGA_VAL_CH2 _R1	PGA_VAL_CH2 _R0
5	0x05	SMOOTH	LINK	DPGA_CLIP_E N	MAX_ATT1	MAX_ATT0	START_ATT1	START_ATT0	AGC_EN
6	0x06	POL	RSV	SEL_L5	SEL_L4	SEL_L3	SEL_L2	SEL_L1	SEL_L0
7	0x07	POL	RSV	SEL_R5	SEL_R4	SEL_R3	SEL_R2	SEL_R1	SEL_R0
8	0x08	POL	RSV	SEL_L5	SEL_L4	SEL_L3	SEL_L2	SEL_L1	SEL_L0
9	0x09	POL	RSV	SEL_R5	SEL_R4	SEL_R3	SEL_R2	SEL_R1	SEL_R0
10	0x0A	RSV	RSV	RSV	RSV	SEL3	SEL2	SEL1	SEL0
11	0x0B	RX_WLEN1	RX_WLEN0	RSV	TDM_LRCK_M ODE	TX_WLEN1	TX_WLEN0	FMT1	FMT0
12	0x0C	RSV	RSV	RSV	RSV	RSV	RSV	TDM_OSEL1	TDM_OSEL0
13	0x0D	TX_TDM_OFFS ET[7:0]7	TX_TDM_OFFS ET[7:0]6	TX_TDM_OFFS ET[7:0]5	TX_TDM_OFFS ET[7:0]4	TX_TDM_OFFS ET[7:0]3	TX_TDM_OFFS ET[7:0]2	TX_TDM_OFFS ET[7:0]1	TX_TDM_OFFS ET[7:0]0
14	0x0E	RX_TDM_OFFS ET[7:0]7	RX_TDM_OFFS ET[7:0]6	RX_TDM_OFFS ET[7:0]5	RX_TDM_OFFS ET[7:0]4	RX_TDM_OFFS ET[7:0]3	RX_TDM_OFFS ET[7:0]2	RX_TDM_OFFS ET[7:0]1	RX_TDM_OFFS ET[7:0]0
15	0x0F	DPGA_VAL_CH 1_L[7:0]7	DPGA_VAL_CH 1_L[7:0]6	DPGA_VAL_CH 1_L[7:0]5	DPGA_VAL_CH 1_L[7:0]4	DPGA_VAL_CH 1_L[7:0]3	DPGA_VAL_CH 1_L[7:0]2	DPGA_VAL_CH 1_L[7:0]1	DPGA_VAL_CH 1_L[7:0]0
16	0x010	GPIO1_POL	GPIO1_FUNC2	GPIO1_FUNC1	GPIO1_FUNC0	GPIO0_POL	GPIO0_FUNC2	GPIO0_FUNC1	GPIO0_FUNC0
17	0x011	GPIO3_POL	GPIO3_FUNC2	GPIO3_FUNC1	GPIO3_FUNC0	GPIO2_POL	GPIO2_FUNC2	GPIO2_FUNC1	GPIO2_FUNC0
18	0x012		GPIO1_DIR2	GPIO1_DIR1	GPIO1_DIR0	RSV	GPIO0_DIR2	GPIO0_DIR1	GPIO0_DIR0
19	0x013		GPIO3_DIR2	GPIO3_DIR1	GPIO3_DIR0	RSV	GPIO2_DIR2	GPIO2_DIR1	GPIO2_DIR0
20	0x014	GPIO3_OUT3	GPIO2_OUT2	GPIO1_OUT1	GPIO0_OUT0	GPIO3_IN3	GPIO2_IN2	GPIO1_IN1	GPIO0_IN0
21	0x015	PULL_DOWN_ DIS[7]	PULL_DOWN_ DIS[6]	PULL_DOWN_ DIS[5]	PULL_DOWN_ DIS[4]	PULL_DOWN_ DIS[3]	PULL_DOWN_ DIS[2]	PULL_DOWN_ DIS[1]	PULL_DOWN_ DIS[0]
22	0x016	DPGA_VAL_CH 1_R[7:0]7	DPGA_VAL_CH 1_R[7:0]6	DPGA_VAL_CH 1_R[7:0]5	DPGA_VAL_CH 1_R[7:0]4	DPGA_VAL_CH 1_R[7:0]3	DPGA_VAL_CH 1_R[7:0]2	DPGA_VAL_CH 1_R[7:0]1	DPGA_VAL_CH 1_R[7:0]0
23	0x017	DPGA_VAL_CH 2_L[7:0]7	DPGA_VAL_CH 2_L[7:0]6	DPGA_VAL_CH 2_L[7:0]5	DPGA_VAL_CH 2_L[7:0]4	DPGA_VAL_CH 2_L[7:0]3	DPGA_VAL_CH 2_L[7:0]2	DPGA_VAL_CH 2_L[7:0]1	DPGA_VAL_CH 2_L[7:0]0
24	0x018	DPGA_VAL_CH 2_R[7:0]7	DPGA_VAL_CH 2_R[7:0]6	DPGA_VAL_CH 2_R[7:0]5	DPGA_VAL_CH 2_R[7:0]4	DPGA_VAL_CH 2_R[7:0]3	DPGA_VAL_CH 2_R[7:0]2	DPGA_VAL_CH 2_R[7:0]1	DPGA_VAL_CH 2_R[7:0]0
25	0x019	DPGA_CH2_R	DPGA_CH2_L	DPGA_CH1_R	DPGA_CH1_L	APGA_CH2_R	APGA_CH2_L	APGA_CH1_R	APGA_CH1_L

www.ti.com

Register Map (continued)

Register Map Summary (continued)

			- 3	inap can	7 (,			
26	0x01A	DIGMIC_IN1_S EL1	DIGMIC_IN1_S EL0	DIGMIC_IN0_S EL1	DIGMIC_IN0_S EL0	RSV	RSV	DIGMIC_4CH	DIGMIC_EN
27	0x01B	RSV	RSV	RSV	RSV	RSV	RSV	DIN_RESAMP[1 :0]1	DIN_RESAMP[1 :0]0
32	0x020	SCK_XI_SEL1	SCK_XI_SEL0	MST_SCK_SRC	MST_MODE	ADC_CLK_SRC	DSP2_CLK_SR C	DSP1_CLK_SR C	CLKDET_EN
37	0x025	RSV	DIV_NUM6	DIV_NUM5	DIV_NUM4	DIV_NUM3	DIV_NUM2	DIV_NUM1	DIV_NUM0
38	0x026	RSV	DIV_NUM6	DIV_NUM5	DIV_NUM4	DIV_NUM3	DIV_NUM2	DIV_NUM1	DIV_NUM0
39	0x027	DIV_NUM7	DIV_NUM6	DIV_NUM5	DIV_NUM4	DIV_NUM3	DIV_NUM2	DIV_NUM1	DIV_NUM0
40	0x028	RSV	RSV	RSV	LOCK	RSV	RSV	PLL_REF_SEL	PLL_EN
41	0x029	RSV	P6	P5	P4	P3	P2	P1	P0
42	0x02A	RSV	RSV	RSV	RSV	R3	R2	R1	R0
43	0x02B	RSV	RSV	J5	J4	J3	J2	J1	J0
44	0x02C	D	RSV	RSV	RSV	RSV	RSV	RSV	RSV
45	0x02D	RSV	RSV	D[13:8]5	D[13:8]4	D[13:8]3	D[13:8]2	D[13:8]1	D[13:8]0
48	0x030	CH4R	CH4L	CH3R	CH3L	CH2R	CH2L	CH1R	CH1L
49	0x031	CH4R	CH4L	CH3R	CH3L	CH2R	CH2L	CH1R	CH1L
50	0x032	CH4R	CH4L	CH3R	CH3L	CH2R	CH2L	CH1R	CH1L
52	0x034	RSV	RSV	RSV	TIME4	TIME3	TIME2	TIME1	TIME0
53	0x035	RSV	RSV	RSV	RSV	RSV	TIME2	TIME1	TIME0
54	0x036	RSV	RSV	RSV	RSV	RSV	INT_INTVL2	INT_INTVL1	INT_INTVL0
64	0x040	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
65	0x041	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
66	0x042	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
67	0x043	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
68	0x044	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
69	0x045	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
70	0x046	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
71	0x047	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
72	0x048	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
73	0x049	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
74	0x04A	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
75	0x04B	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
76	0x04C	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
77	0x04D	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
78	0x04E	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
79	0x04F	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
80	0x050	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
81	0x051	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
82	0x052	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
83	0x053	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
84	0x054	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
85	0x055	REF7	REF6	REF5	REF4	REF3	REF2	REF2	REF0
86	0x056	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
87	0x057	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
88	0x058	DC_NOLATCH	AUXADC_RDY	DC_RDY	AUXADC_LATC H	AUXADC_DATA	DC_CH2	DC_CH1	DC_CH0
89	0x059	AUXADC_DATA 7	AUXADC_DATA 6	AUXADC_DATA 5	AUXADC_DATA 4	3	AUXADC_DATA 2	1	AUXADC_DATA 0
90	0x05A	AUXADC_DATA [15:8]7	AUXADC_DATA [15:8]6	AUXADC_DATA [15:8]5	AUXADC_DATA [15:8]4	[15:8]3	AUXADC_DATA [15:8]2	AUXADC_DATA [15:8]1	AUXADC_DATA [15:8]0
96	0x060	RSV	RSV	RSV	POSTPGA_CP	CLKERR	DC_CHANG	DIN_TOGGLE	ENGSTR
97	0x061	RSV	RSV	RSV	POSTPGA_CP	CLKERR	DC_CHANG	DIN_TOGGLE	ENGSTR
98	0x062	RSV	RSV	POL1	POL0	RSV	RSV	WIDTH1	WIDTH0
112	0x070	RSV	RSV	RSV	RSV	RSV	PWRDN	SLEEP	STBY
113	0x071	2CH	RSV	FLT	HPF_EN	MUTE_CH2_R	MUTE_CH2_L	MUTE_CH1_R	MUTE_CH1_L
114	0x072	RSV	RSV	RSV	RSV	STATE3	STATE2	STATE1	STATE0
115	0x073	RSV	RSV	RSV	RSV	RSV	INFO2	INFO1	INFO0

Copyright © 2014, Texas Instruments Incorporated

Register Map (continued)

Register Map Summary (continued)

			•	•	• •	•			
116	0x074	RSV	BCK_RATIO2	BCK_RATIO1	BCK_RATIO0	RSV	SCK_RATIO2	SCK_RATIO1	SCK_RATIO0
117	0x075	RSV	LRCKHLT	BCKHLT	SCKHTL	RSV	LRCKERR	BCKERR	SCKERR
120	0x078		RSV	RSV	RSV	RSV	DVDD	AVDD	LDO
Page 1									
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
1	0x01	RSV	RSV	RSV	DONE	RSV	BUSY	R_REQ	W_REQ
2	0x02	RSV	MEM_ADDR[6:0]6	MEM_ADDR[6:0]5	MEM_ADDR[6:0]4	MEM_ADDR[6:0]3	MEM_ADDR[6:0]2	MEM_ADDR[6:0]1	MEM_ADDR[6:0]0
4	0x04	MEM_WDATA_ 0 7	MEM_WDATA_ 0 6	MEM_WDATA_ 0 5	MEM_WDATA_ 0 4	MEM_WDATA_ 0 3	MEM_WDATA_ 0 2	MEM_WDATA_ 0 1	MEM_WDATA_ 0 0
5	0x05	MEM_WDATA_ 17	MEM_WDATA_ 16	MEM_WDATA_ 15	MEM_WDATA_ 14	MEM_WDATA_ 13	MEM_WDATA_ 12	MEM_WDATA_ 11	MEM_WDATA_ 10
6	0x06	MEM_WDATA_ 27	MEM_WDATA_ 26	MEM_WDATA_ 25	MEM_WDATA_ 24	MEM_WDATA_ 23	MEM_WDATA_ 22	MEM_WDATA_ 21	MEM_WDATA_ 20
7	0x07	MEM_WDATA_ 3	RSV						
8	0x08	MEM_RDATA_0 7	MEM_RDATA_0 6	MEM_RDATA_0 5	MEM_RDATA_0 4	MEM_RDATA_0 3	MEM_RDATA_0 2	MEM_RDATA_0 1	MEM_RDATA_0 0
9	0x09	MEM_RDATA_1 7	MEM_RDATA_1 6	MEM_RDATA_1 5	MEM_RDATA_1 4	MEM_RDATA_1 3	MEM_RDATA_1 2	MEM_RDATA_1 1	MEM_RDATA_1 0
10	0x0A	MEM_RDATA_2 7	MEM_RDATA_2 6	MEM_RDATA_2 5	MEM_RDATA_2 4	MEM_RDATA_2 3	MEM_RDATA_2 2	MEM_RDATA_2 1	MEM_RDATA_2 0
Page 3									
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
18	0x012	RSV	RSV	RSV	RSV	RSV	RSV	RSV	PD
21	0x015	RSV	RSV	RSV	TERM	RSV	RSV	RSV	PDZ
Page 253									
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
20	0x014	PGA_ICI1	PGA_ICI0	REF_ICI1	REF_ICI0	RSV	RSV	RSV	RSV

13.2.2 Page 0 Registers

Page 0 / Register 1

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
1	0x01	PGA_VAL_ CH1_L 7	PGA_VAL_ CH1_L 6	PGA_VAL_ CH1_L 5	PGA_VAL_ CH1_L 4	PGA_VAL_ CH1_L 3	PGA_VAL_ CH1_L 2	PGA_VAL_ CH1_L 1	PGA_VAL_ CH1_L 0
Reset	Value	0	0	0	0	0	0	0	0

PGA_VAL_CH1_L [7:0] | PGA Value Channel 1 Left

Different functions depending on Auto Gain Mapping Mode or Analog Direct Control. (Pg0/Reg0x19) Auto Gain Mapping Control: (Default) Set PGA value in gain auto mapping mode for both analog PGA and digital PGA. The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. There are two special setting for analog PGA, 20 dB and 32 dB respectively. They are supposed for Microphone input application. User Programmable Mapping Mode: The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. In User Programmable Mode, the digital gain is modified on (Pg0,Reg0x0F) Gain Mapping Mode for Channels 1 and 2 are set in (Pg0,Reg0x19) Note, the analog pga steps are ±12 in 1dB steps, then 20dB and 32dB discrete steps. All other steps are digital (in 0.5dB)

Default value: 00000000

Specify 2s complement value with 7.1 format.

1110100_0: -12.0dB (Min)

.

1111111_0: -1.0dB 1111111_1: 0.5dB 0000000_0: 0.0dB

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

0000000_1: +0.5dB
0000001_0: +1.0dB
0001100_0: +12.0dB
:
:
0100000_0: +32.0dB
:
:
0101000_0: +40.0dB (Max)

Page 0 / Register 2

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
2	0x02	PGA_VAL_ CH1_R7	PGA_VAL_ CH1_R6	PGA_VAL_ CH1_R5	PGA_VAL_ CH1_R4	PGA_VAL_ CH1_R3	PGA_VAL_ CH1_R2	PGA_VAL_ CH1_R1	PGA_VAL_ CH1_R0
Reset	Value	0	0	0	0	0	0	0	0

PGA_VAL_CH1_R[7:0]

PGA Value Channel 1 Right

Different functions depending on Auto Gain Mapping Mode or Analog Direct Control. (Pg0/Reg0x19) Auto Gain Mapping Control: (Default) Set PGA value in gain auto mapping mode for both analog PGA and digital PGA. The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. There are two special setting for analog PGA, 20 dB and 32 dB respectively. They are supposed for Microphone input application. User Programmable Mapping Mode: The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. In User Programmable Mode, the digital gain is modified on (Pg0, Reg0x16) Gain Mapping Mode for Channels 1 and 2 are set in (Pg0,Reg0x19) Note, the analog pga steps are ±12 in 1dB steps, then 20dB and 32dB discrete steps. All other steps are digital (in 0.5dB)

Default value: 00000000

Specify 2s complement value with 7.1 format.

1110100_0: -12.0dB (Min)

1111111_0: -1.0dB

1111111_1: 0.5dB 0000000_0: 0.0dB

0000000_1: +0.5dB

0000001_0: +1.0dB

0001100_0: +12.0dB

0100000_0: +32.0dB

0101000_0: +40.0dB (Max)

Page 0 / Register 3

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
3	0x03	PGA_VAL_ CH2_L	RSV						
Reset	Value	0							

RSV	Reserved
	Reserved. Do not access.
PGA_VAL_CH2_L	PGA Value Channel 2 Left
	Different functions depending on Auto Gain Mapping Mode or Analog Direct Control. (Pg0/Reg0x19) Auto Gain Mapping Control: (Default) Set PGA value in gain auto mapping mode for both analog PGA and digital PGA. The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. There are two special setting for analog PGA, 20 dB and 32 dB respectively. They are supposed for Microphone input application. User Programmable Mapping Mode: The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. In User Programmable Mode, the digital gain is modified on (Pg0,Reg0x17) Gain Mapping Mode for Channels 1 and 2 are set in (Pg0,Reg0x19) Note, the analog pga steps are ±12 in 1dB steps, then 20dB and 32dB discrete steps. All other steps are digital (in 0.5dB)
	Default value: 0
	Specify 2s complement value with 7.1 format.
	1110100_0: -12.0dB (Min)
	:
	1111111_0: -1.0dB
	1111111_1: 0.5dB
	0000000_0: 0.0dB
	0000000_1: +0.5dB
	0000001_0: +1.0dB
	0001100_0: +12.0dB
	0100000_0: +32.0dB
	0101000_0: +40.0dB (Max)

Page 0 / Register 4

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
4	0x04	PGA_VAL_ CH2_R7	PGA_VAL_ CH2_R6	PGA_VAL_ CH2_R5	PGA_VAL_ CH2_R4	PGA_VAL_ CH2_R3	PGA_VAL_ CH2_R2	PGA_VAL_ CH2_R1	PGA_VAL_ CH2_R0
Reset	Value	0	0	0	0	0	0	0	0

70

www.ti.com

SLAS831B - MARCH 2014 - REVISED MARCH 2014

PGA_VAL_CH2_R[7:0]	PGA Value Channel 2 Right
	Different functions depending on Auto Gain Mapping Mode or Analog Direct Control. (Pg0/Reg0x19) Auto Gain Mapping Control: (Default) Set PGA value in gain auto mapping mode for both analog PGA and digital PGA. The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. There are two special setting for analog PGA, 20 dB and 32 dB respectively. They are supposed for Microphone input application. User Programmable Mapping Mode: The Analog PGA is adjusted with 1 dB each step ranging from -12 dB to 12 dB. The digital PGA is adjusted with 0.5 dB each step. From the user point of view, gain can be adjusted with fine step 0.5 dB. In User Programmable Mode, the digital gain is modified on (Pg0,Reg0x18) Gain Mapping Mode for Channels 1 and 2 are set in (Pg0,Reg0x19) Note, the analog pga steps are ±12 in 1dB steps, then 20dB and 32dB discrete steps. All other steps are digital (in 0.5dB)
	Default value: 00000000
	Specify 2s complement value with 7.1 format.
	1110100_0: -12.0dB (Min)
	1111111_0: -1.0dB
	1111111_1: 0.5dB
	0000000_0: 0.0dB
	0000000_1: +0.5dB
	0000001_0: +1.0dB
	:
	0001100_0: +12.0dB
	:
	:
	0100000_0: +32.0dB
	:
	:
	0101000_0: +40.0dB (Max)

Page 0 / Register 5

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
5	0x05	SMOOTH	LINK	DPGA_CLI P_EN	MAX_ATT1	MAX_ATT0	START_AT T1	START_AT T0	AGC_EN
Reset	Value	1	0	0	0	0	1	1	0

SMOOTH	PGA Control							
	Enable PGA Smooth Change.							
	Default value: 1							
	0: Immediate Change							
	1: Smooth Change (Default)							
LINK								
	Link PGA control.							
	Default value: 0							
	0: Independent control (Default)							
	1: Ch1[R]/Ch2[L]/Ch2[R] follow Ch1[L] PGA value.							
DPGA_CLIP_EN								
	Enable Clipping Detection After Digital PGA							
	Default value: 0							

Copyright © 2014, Texas Instruments Incorporated

	0: Disable (Default)							
	1: Enable							
MAX_ATT[1:0]								
	Attenuation limit of the auto gain control.							
	Default value: 00							
	00: -3dB (Default)							
	01: -4dB							
	10: -5dB							
	11: -6dB							
START_ATT[1:0]								
	Start auto gain control after detects CLIP_NUM times of ADC sample clips							
	Default value: 11							
	00: 80							
	01: 40							
	10: 20							
	11: 10 (Default)							
AGC_EN								
	Enable Auto Gain Control.							
	Default value: 0							
	0: Disable (Default)							
	1: Enable							

Page 0 / Register 6

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
6	0x06	POL	RSV	SEL_L5	SEL_L4	SEL_L3	SEL_L2	SEL_L1	SEL_L0
Reset Value		0		0	0	0	0	0	1

RSV	Reserved					
	Reserved. Do not access.					
POL	ADC1_INPUT_SEL_L					
	Change signal polarity.					
	Default value: 0					
	0: Normal (Default)					
	1: Invert the phase with one Pi					
SEL_L[5:0]						
	ADC Input Channel Select (Left)					
	Default value: 000001					
	00_0000: No Select					
	00_0001: VINL1[SE] (Default)					
	00_0010: VINL2[SE]					
	00_0011: VINL2[SE] + VINL1[SE]					
	00_0100: VINL3[SE]					
	00_0101: VINL3[SE] + VINL1[SE]					
	00_0110: VINL3[SE] + VINL2[SE]					
	00_0111: VINL3[SE] + VINL2[SE] + VINL1[SE]					
	00_1000: VINL4[SE]					
	00_1001: VINL4[SE] + VINL1[SE]					
	00_1010: VINL4[SE] + VINL2[SE]					

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

00_1011: VINL4[SE] + VINL2[SE] + VINL1[SE]
00_1100: VINL4[SE] + VINL3[SE]
00_1101: VINL4[SE] + VINL3[SE] + VINL1[SE]
00_1110: VINL4[SE] + VINL3[SE] + VINL2[SE]
00_1111: VINL4[SE] + VINL3[SE] + VINL2[SE] + VINL1[SE]
01_0000: {VIN1P, VIN1M}[DIFF]
10_0000: {VIN4P, VIN4M}[DIFF]
11_0000: {VIN1P, VIN1M}[DIFF] + {VIN4P, VIN4M}[DIFF]

Page 0 / Register 7

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
7	0x07	POL	RSV	SEL_R5	SEL_R4	SEL_R3	SEL_R2	SEL_R1	SEL_R0
Reset	Value	0		0	0	0	0	0	1

RSV	Reserved							
	Reserved. Do not access.							
POL	ADC1_INPUT_SEL_R							
	Change signal polarity.							
	Default value: 0							
	0: Normal (Default)							
	1: Invert the phase with one Pi							
SEL_R[5:0]								
	ADC Input Channel Select (R)							
	Default value: 000001							
	00_0000: No Select							
	00_0001: VINR1[SE] (Default)							
	00_0010: VINR2[SE]							
	00_0011: VINR2[SE] + VINR1[SE]							
	00_0100: VINR3[SE]							
	00_0101: VINR3[SE] + VINR1[SE]							
	00_0110: VINR3[SE] + VINR2[SE]							
	00_0111: VINR3[SE] + VINR2[SE] + VINR1[SE]							
	00_1000: VINR4[SE]							
	00_1001: VINR4[SE] + VINR1[SE]							
	00_1010: VINR4[SE] + VINR2[SE]							
	00_1011: VINR4[SE] + VINR2[SE] + VINR1[SE]							
	00_1100: VINR4[SE] + VINR3[SE]							
	00_1101: VINR4[SE] + VINR3[SE] + VINR1[SE]							
	00_1110: VINR4[SE] + VINR3[SE] + VINR2[SE]							
	00_1111: VINR4[SE] + VINR3[SE] + VINR2[SE] + VINR1[SE]							
	01_0000: {VIN2P, VIN2M}[DIFF]							
	10_0000: {VIN3P, VIN3M}[DIFF]							
	11_0000: {VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]							

Page 0 / Register 8

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
8	0x08	POL	RSV	SEL_L5	SEL_L4	SEL_L3	SEL_L2	SEL_L1	SEL_L0
Reset	Value	0		0	0	0	0	1	0

RSV	Reserved							
	Reserved. Do not access.							
POL	ADC2_INPUT_SEL_L							
	Change signal polarity.							
	Default value: 0							
	0: Normal (Default)							
	1: Invert the phase with one Pi							
SEL_L[5:0]								
	ADC 2 Input Channel Select (Left)							
	Default value: 000010							
	00_0000: No Select							
	00_0001: VINL1[SE]							
	00_0010: VINL2[SE] (Default)							
	00_0011: VINL2[SE] + VINL1[SE]							
	00_0100: VINL3[SE]							
	00_0101: VINL3[SE] + VINL1[SE]							
	00_0110: VINL3[SE] + VINL2[SE]							
	00_0111: VINL3[SE] + VINL2[SE] + VINL1[SE]							
	00_1000: VINL4[SE]							
	00_1001: VINL4[SE] + VINL1[SE]							
	00_1010: VINL4[SE] + VINL2[SE]							
	00_1011: VINL4[SE] + VINL2[SE] + VINL1[SE]							
	00_1100: VINL4[SE] + VINL3[SE]							
	00_1101: VINL4[SE] + VINL3[SE] + VINL1[SE]							
	00_1110: VINL4[SE] + VINL3[SE] + VINL2[SE]							
	00_1111: VINL4[SE] + VINL3[SE] + VINL2[SE] + VINL1[SE]							
	01_0000: {VIN1P, VIN1M}[DIFF]							
	10_0000: {VIN4P, VIN4M}[DIFF]							
	11_0000: {VIN1P, VIN1M}[DIFF] + {VIN4P, VIN4M}[DIFF]							

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
9	0x09	POL	RSV	SEL_R5	SEL_R4	SEL_R3	SEL_R2	SEL_R1	SEL_R0
Reset	Value	0		0	0	0	0	1	0

RSV	Reserved					
	Reserved. Do not access.					
POL	ADC2_INPUT_SEL_R					
	Change signal polarity.					
	Default value: 0					
	0: Normal (Default)					
	1: Invert the phase with one Pi					
SEL_R[5:0]						
	ADC 2 Input Channel Select M					
	Default value: 000010					
	00_0000: No Select					
	00_0001: VINR1[SE]					

Submit Documentation Feedback

00_0010: VINR2[SE] (Default)
00_0011: VINR2[SE] + VINR1[SE]
00_0100: VINR3[SE]
00_0101: VINR3[SE] + VINR1[SE]
00_0110: VINR3[SE] + VINR2[SE]
00_0111: VINR3[SE] + VINR2[SE] + VINR1[SE]
00_1000: VINR4[SE]
00_1001: VINR4[SE] + VINR1[SE]
00_1010: VINR4[SE] + VINR2[SE]
00_1011: VINR4[SE] + VINR2[SE] + VINR1[SE]
00_1100: VINR4[SE] + VINR3[SE]
00_1101: VINR4[SE] + VINR3[SE] + VINR1[SE]
00_1110: VINR4[SE] + VINR3[SE] + VINR2[SE]
00_1111: VINR4[SE] + VINR3[SE] + VINR2[SE] + VINR1[SE]
01_0000: {VIN2P, VIN2M}[DIFF]
10_0000: {VIN3P, VIN3M}[DIFF]
11_0000: {VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
10	0x0A	RSV	RSV	RSV	RSV	SEL3	SEL2	SEL1	SEL0
Reset Value						0	0	0	0

RSV	Reserved
	Reserved. Do not access.
SEL[3:0]	
	Secondary ADC Input Channel (Note, Do not select the same channel is already being used by an audio ADC)
	Default value: 0000
	0: No Select (Default)
	1: Ch1(L)
	2: Ch1(R)
	3: Ch2(L)
	4: Ch2(R)
	5: Ch3(L)
	6: Ch3(R)
	7: Ch4(L)
	8: Ch4(R)

Page 0 / Register 11

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
11	0x0B	RX_WLEN1	RX_WLEN0	RSV	TDM_LRCK _MODE	TX_WLEN1	TX_WLEN0	FMT1	FMT0
Reset	Value	0	1			0	1		

RSV	eserved					
	Reserved. Do not access.					
RX_WLEN[1:0]	2S_FMT					
	Word length					
	Default value: 01					

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback

	00: Reserved
	01: 24bit (Default)
	10: 20bit
	11: 16bit
TDM_LRCK_MODE	
	TDM_MODE (Note 1. TDM format can support 2 channels / 4 channels / 6 channels with one device 2. When BCK to LRCK ratio is 256, FMT must be configured as TDM format.)
	Configure the duty cycle of LRCK when I2S is configured as TDM mode
	0: duty cycle of LRCK is 50%
	1: duty cycle of LRCK is 1/256 (similar DSP mode)
TX_WLEN[1:0]	
	Word length
	Default value: 01
	00: Reserved
	01: 24bit (Default)
	10: 20bit
	11: 16bit
FMT[1:0]	
	Serial Audio Interface Format
	0: I2S (Default)
	1: Left Justified
	2: Right Justified
	3: TDM (256Fs BCK is required)

				- 3	- 3				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
12	0x0C	RSV	RSV	RSV	RSV	RSV	RSV	TDM_OSEL 1	TDM_OSEL 0
Reset Value								0	0

RSV	Reserved							
	Reserved. Do not access.							
TDM_OSEL[1:0]								
	Select TDM transmission data. Ch2 Data only available on PCM1865.							
	Default value: 00							
	00: 2ch TDM (Default)							
	DOUT1: ch1[L], ch1[R]							
	DOUT2: ch2[L], ch2[R]							
	01: 4ch TDM							
	DOUT1: ch1[L], ch1[R], ch2[L], ch2[R]							
	DOUT2: ch1[L], ch1[R], ch2[L], ch2[R]							
	10: 6ch TDM							
	DOUT1: ch1[L], ch1[R], ch2[L], ch2[R], sec_ADC_LPF, sec_ADC_HPF							
	DOUT2: ch1[L], ch1[R], ch2[L], ch2[R], sec_ADC_LPF, sec_ADC_HPF							
	11: RESERVED							

Submit Documentation Feedback

				3	<u> </u>				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
13	0x0D	TX_TDM_O FFSET[7:0]	TX_TDM_O FFSET[7:0]		TX_TDM_O FFSET[7:0]	TX_TDM_O FFSET[7:0]		TX_TDM_O FFSET[7:0]	TX_TDM_O FFSET[7:0]
		7	6	5	4	3	2	1	0
Reset Value		0	0	0	0	0	0	0	0

TX_TDM_OFFSET[7:0][7: 0]	I2S_TX_OFFSET
	Set offset position in a serial audio data frame. This setting is enabled when I2S_TX_FMT is set to the DSP format.
	Default value: 00000000
	0: 0 (Default)
	1: 1 BCK (Same as I2S)
	2: 2 BCK
	3: 3 BCK
	:
	:
	255: 255 BCK

Page 0 / Register 14

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
14	0x0E		RX_TDM_O						
		FFSET[7:0]							
		7	6	5	4	3	2	1	0
Reset Value		0	0	0	0	0	0	0	0

RX_TDM_OFFSET[7:0][7:0]	RX TDM offset
	Set offset position in a serial audio data frame. This setting is enabled when I2S_RX_FMT is set to the DSP format.
	Default value: 00000000
	Offset position in a serial audio data frame.
	0: 0 (Default)
	1: 1 BCK (Same as I2S)
	2: 2 BCK
	3: 3 BCK
	:
	:
	255: 255 BCK

Page 0 / Register 15

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
15	0x0F	DPGA_VAL _CH1_L[7:0	DPGA_VAL _CH1_L[7:0	_	DPGA_VAL _CH1_L[7:0	DPGA_VAL _CH1_L[7:0	_		DPGA_VAL _CH1_L[7:0
]/]6]5]4]3	J2]1	JO
Reset Value		0	0	0	0	0	0	0	0

DPGA_VAL_CH1_L[7:0][7:0]	DPGA_VAL_CH1
	Gain setting for digital PGA when the device is used in the below two scenarios: i. Analog PGA gain and digital PGA are set separately ii. Digital Microphone Interface is used
	Default value: 00000000
	Specify 2s complement value with 7.1 format.
	0100000_0: 0.0 dB
	0100000_1: 0.5 dB
	0100001_0: 1.0 dB
	0100001_1: 1.5 dB
	0100111_1: 11.5 dB (Max)
	Others: Invalid

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
16	0x010	GPIO1_PO L	GPIO1_FU NC2	GPIO1_FU NC1	GPIO1_FU NC0	GPIO0_PO L	GPIO0_FU NC2	GPIO0_FU NC1	GPIO0_FU NC0
Reset Value		0	0	0	0	0	0	0	1

GPIO1_POL	GPIO_FUNC_1
	GPIO1 Polarity Control
	Default value: 0
	0: Normal (Default)
	1: Invert
GPIO1_FUNC[2:0]	
	Function select of the GPIO1.
	Default value: 000
	000: GPIO1(Default)
	001: Digital MIC Input 1(In)
	010: INT
	011: Internal SCK (Out)
	100: Digital Mute (In)
	101: DOUT2 (Out)
	110: DIN (In)
	111: Test monitoring
GPIO0_POL	
	GPIO0 Polarity Control
	Default value: 0
	0: Normal (Default)
	1: Invert
GPIO0_FUNC[2:0]	
	Function select of the GPIO0.
	Default value: 001
	000: GPIO0
	001: SPI MISO (Out:Default)

Submit Documentation Feedback

010: RESERVED	
011: Internal SCK (Out)	
100: Digital Mute (In)	
101: DOUT2 (Out)	
110: DIN (In)	

111: Test monitoring

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
17	0x011	GPIO3_PO L	GPIO3_FU NC2	GPIO3_FU NC1	GPIO3_FU NC0	GPIO2_PO L	GPIO2_FU NC2	GPIO2_FU NC1	GPIO2_FU NC0
Reset	Value	0	0	1	0	0	0	0	0

GPIO_FUNC_2
GPIO3 Polarity Control
Default value: 0
0: Normal (Default)
1: Invert
Function select of the GPIO3.
Default value: 010
000: GPIO3
001: (Reserved)
010: INT (Default)
011: Internal SCK (Out)
100: Digital Mute (In)
101: DOUT2 (Out)
110: DIN (In)
111: Test monitor
GPIO2 Polarity Control
Default value: 0
0: Normal (Default)
1: Invert
Function select of the GPIO2.
Default value: 000
000: GPIO2(Default)
001: Digital MIC Clock Output (Out)
010: INT
011: Internal SCK (Out)
100: Digital Mute (In)
101: DOUT2 (Out)
110: DIN (In)
111: Test monitor

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
18	0x012		GPIO1_DIR	GPIO1_DIR	GPIO1_DIR	RSV	GPIO0_DIR	GPIO0_DIR	GPIO0_DIR
Reset	Value	0	0	0	0		0	0	0

RSV	Reserved						
	Reserved. Do not access.						
GPIO1_DIR[2:0]							
	Direction control of GPIO1 when it is configured as GPIO function						
	Default value: 000						
	000: Input (Default)						
	001: Input with sticky						
	010: Input with toggle detection						
	011: Raw input (not deglictched)						
	100: Output						
	101: Open Drain						
	110: (Reserved)						
	111: (Reserved)						
GPIO0_DIR[2:0]							
	Direction control of GPIO0 when it is configured as GPIO function						
	Default value: 000						
	000: Input (Default)						
	001: Input with sticky						
	010: Input with toggle detection						
	011: Raw input (not deglictched)						
	100: Output						
	101: Open Drain						
	110: (Reserved)						
	111: (Reserved)						

Page 0 / Register 19

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
19	0x013		GPIO3_DIR	GPIO3_DIR	GPIO3_DIR	RSV	GPIO2_DIR	GPIO2_DIR	GPIO2_DIR
Dooot	Value	0	0		0		0		0
Reset Value		U	U	U	U		U	U	U

RSV	Reserved				
	Reserved. Do not access.				
GPIO3_DIR[2:0]					
	Direction control of GPIO3 when it is configured as GPIO function				
	Default value: 000				
	000: Input (Default)				
	001: Input with sticky				
	010: Input with toggle detection				
	011: Raw input (not deglictched)				
	100: Output				
	101: Open Drain				
	110: (Reserved)				

Submit Documentation Feedback

	111: (Reserved)
GPIO2_DIR[2:0]	
	Direction control of GPIO2 when it is configured as GPIO function
	Default value: 000
	000: Input (Default)
	001: Input with sticky
	010: Input with toggle detection
	011: Raw input (not deglictched)
	100: Output
	101: Open Drain
	110: (Reserved)
	111: (Reserved)

Page 0 / Register 20

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
20	0x014	GPIO3_OU T3	GPIO2_OU T2	GPIO1_OU T1	GPIO0_OU T0	GPIO3_IN3	GPIO2_IN2	GPIO1_IN1	GPIO0_IN0
Reset	Value	0	0	0	0	0	0	0	0

GPIO3_OUT	GPIO_INOUT
	Output status of the GPIOs
GPIO2_OUT	(All output status bits similar)
GPIO1_OUT	(All output status bits similar)
GPIO0_OUT	(All output status bits similar)
GPIO3_IN	Input status of the GPIOs
GPIO2_IN	(All input status bits similar)
GPIO1_IN	(All bits similar)
GPIO0_IN	(All bits similar)

Page 0 / Register 21

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
21	0x015	PULL_DOW							
		N_DIS[7]	N_DIS[6]	N_DIS[5]	N_DIS[4]	N_DIS[3]	N_DIS[2]	N_DIS[1]	N_DIS[0]
Reset	Value	0	0	0	0	0	0	0	0

PULL_DOWN_DIS
Disable the pull down resistor of MD0 ~ INT pin with high active
Default value: 0
0: Enable the pull down of INT pin
1: Disable the pull down of INT pin
Default value: 0
0: Enable the pull down of MD6 pin
1: Disable the pull down of MD6 pin
Default value: 0
0: Enable the pull down of MD5 pin
1: Disable the pull down of MD5 pin

PULL_DOWN_DIS[4]	
	Default value: 0
	0: Enable the pull down of MD4 pin
	1: Disable the pull down of MD4 pin
PULL_DOWN_DIS[3]	
	Default value: 0
	0: Enable the pull down of MD3 pin
	1: Disable the pull down of MD3 pin
PULL_DOWN_DIS[2]	
	Default value: 0
	0: Enable the pull down of MD2 pin
	1: Disable the pull down of MD2 pin
PULL_DOWN_DIS[1]	
	Default value: 0
	0: Enable the pull down of MD1 pin
	1: Disable the pull down of MD1 pin
PULL_DOWN_DIS[0]	
	Default value: 0
	0: Enable the pull down of MD0 pin
	1: Disable the pull down of MD0 pin

Page 0 / Register 22

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
22	0x016	DPGA_VAL							
		_CH1_R[7:0							
]7]6]5]4]3]2]1]0
Reset	Value	0	0	0	0	0	0	0	0

DPGA_VAL_CH1_R[7:0][7:0]	DPGA_VAL_CH1_R
	Gain setting for digital PGA when the device is used in the below two scenarios: i. Analog PGA gain and digital PGA are set separately ii. Digital Microphone Interface is used
	Default value: 00000000
	Specify 2s complement value with 7.1 format.
	0100000_0: 0.0 dB
	0100000_1: 0.5 dB
	0100001_0: 1.0 dB
	0100001_1: 1.5 dB
	•••
	0100111_1: 11.5 dB (Max)
	Others: Invalid

Page 0 / Register 23

				- 3	- J				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
23	0x017	DPGA_VAL							
		_CH2_L[7:0							
]7]6]5]4]3]2]1]0
Reset Value		0	0	0	0	0	0	0	0

Submit Documentation Feedback

SLAS831B - MARCH 2014-REVISED MARCH 2014

DPGA_VAL_CH2_L[7:0][
7:0]

DPGA_VAL_CH2_L
7:0]

Gain setting for digital PGA when the device is used in the below two scenarios: i. Analog PGA gain and digital PGA are set separately ii. Digital Microphone Interface is used

Default value: 00000000

Specify 2s complement value with 7.1 format.

0100000_0: 0.0 dB

0100000_1: 0.5 dB

0100001_0: 1.0 dB

0100001_1: 1.5 dB

...

Page 0 / Register 24

0100111_1: 11.5 dB (Max)

Others: Invalid

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
24	0x018	DPGA_VAL							
		_CH2_R[7:0							
]7]6]5]4]3]2]1]0
Reset Value		0	0	0	0	0	0	0	0

DPGA_VAL_CH2_R[7:0][7:0]	DPGA_VAL_CH2_R
	Gain setting for digital PGA when the device is used in the below two scenarios: i. Analog PGA gain and digital PGA are set separately ii. Digital Microphone Interface is used
	Default value: 00000000
	Specify 2s complement value with 7.1 format.
	0100000_0: 0.0 dB
	0100000_1: 0.5 dB
	0100001_0: 1.0 dB
	0100001_1: 1.5 dB
	0100111_1: 11.5 dB (Max)
	Others: Invalid

Page 0 / Register 25

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
25	0x019	DPGA_CH2	DPGA_CH2	DPGA_CH1	DPGA_CH1	APGA_CH2	APGA_CH2	APGA_CH1	APGA_CH1
		_R	_L	_R	_L	_R	_L	_R	_L
Reset	Value	0	0	0	0	0	0	0	0

DPGA_CH2_R	PGA Control Mapping
	Gain control mode for digital PGA of CH2_R channel.
	Default value: 0
	0: Auto mapping (Default)
	1: User programming mode
DPGA_CH2_L	
	Gain control mode for digital PGA of CH2_L channel.
	Default value: 0
	0: Auto mapping (Default)

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback

	1: User programming mode
DPGA_CH1_R	
	Gain control mode for digital PGA of CH1_R channel.
	Default value: 0
	0: Auto mapping (Default)
	1: User programming mode
DPGA_CH1_L	
	Gain control mode for digital PGA of CH1_L channel.
	Default value: 0
	0: Auto mapping (Default)
	1: User programming mode
APGA_CH2_R	
	Gain control mode for analog PGA of CH2_R channel.
	Default value: 0
	0: Auto mapping (Default)
	1: User programming mode
APGA_CH2_L	
	Gain control mode for analog PGA of CH2_L channel.
	Default value: 0
	0: Auto mapping (Default)
	1: User programming mode
APGA_CH1_R	
	Gain control mode for analog PGA of CH1_R channel.
	Default value: 0
	0: Auto mapping (Default)
	1: User programming mode
APGA_CH1_L	
	Gain control mode for analogPGA of CH1_L channel.
	Default value: 0
	0: Auto mapping (Default)
	1: User programming mode

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
26	0x01A	DIGMIC_IN 1_SEL1	DIGMIC_IN 1_SEL0	DIGMIC_IN 0_SEL1	DIGMIC_IN 0_SEL0	RSV	RSV	DIGMIC_4C H	DIGMIC_E N
Reset	Value	0	0	0	0			0	0

RSV	Reserved
	Reserved. Do not access.
DIGMIC_IN1_SEL[1:0]	DIGMIC_CTRL
	Select which pin is used for digital mic data input for MIC1 interface (PCM1865 Only)
	Default value: 00
	00: GPIO0 (Default)
	01: GPIO1
	10: Invalid
	11: Invalid
DIGMIC_IN0_SEL[1:0]	

Submit Documentation Feedback

TRUMENTS

	Select which pin is used for digital mic data input for MIC0 interface
	Default value: 00
	00: GPIO0 (Default)
	01: GPIO1
	10: Invalid
	11: Invalid
DIGMIC_4CH	
	Select if the second pair of filters will be used for digital Microphone as signal processing
	Default value: 0
	0: configured for analog ADC signal processing (Default)
	1: configured for digital MIC signal processing
DIGMIC_EN	
	Select if the first pair of filters will be used for digital Microphone as signal processing
	Default value: 0
	0: configured as analog ADC signal processing (Default)

Page 0 / Register 27

1: configured as digital MIC signal processing

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
27	0x01B	RSV	RSV	RSV	RSV	RSV	RSV	DIN_RESA MP[1:0]1	DIN_RESA MP[1:0]0
Reset Value								0	0

RSV	Reserved
	Reserved. Do not access.
DIN_RESAMP[1:0][1:0]	
	Resample DIN with internal BCK to avoid internal timing issue
	Default value: 00
	00: No resample (Default)
	01: resample DIN with rising edge of BCK
	10: resample DIN with falling edge of BCK
	11: Not supported

Page 0 / Register 32

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
32	0x020	SCK_XI_SE L1	SCK_XI_SE L0	MST_SCK_ SRC	MST_MOD E	ADC_CLK_ SRC	DSP2_CLK _SRC	DSP1_CLK _SRC	CLKDET_E N
Reset Value		0	0	0	0	0	0	0	1

SCK_XI_SEL[1:0]	CLK_MODE
	SCK/Xtal selection
	Default value: 00
	00: SCK or Xtal (Default)
	01: SCK
	10: Xtal
	11: (Reserved)
MST_SCK_SRC	
	SCK source selection at the Master Mode
	Default value: 0
	0: SCK or XI(Default)

	1: PLL
MST_MODE	
	I2S Master/Slave selection
	Default value: 0
	0: Slave (Default)
	1: Master
ADC_CLK_SRC	
	ADC Clock Source selection. Note: This setting is ignored if CLKDET_EN = 1.
	Default value: 0
	0: SCK(Default)
	1: PLL
DSP2_CLK_SRC	
	DSP2 Clock Source selection. Note: This setting is ignored if CLKDET_EN = 1.
	Default value: 0
	0: SCK(Default)
	1: PLL
DSP1_CLK_SRC	
	DSP1 Clock Source selection. Note: This setting is ignored if CLKDET_EN = 1.
	Default value: 0
	0: SCK(Default)
	1: PLL
CLKDET_EN	
	Enable the Auto Clock Detector.
	Default value: 1
	0: Disable
	1: Enable (Default)

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
37	0x025	RSV	DIV_NUM6	DIV_NUM5	DIV_NUM4	DIV_NUM3	DIV_NUM2	DIV_NUM1	DIV_NUM0
Reset	Value		0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
DIV_NUM[6:0]	
	Set the PLL SCK Clock Divider value
	Default value: 0000000
	Divider value.
	0: 1
	1: 1/2
	2: 1/3
	3: 1/4
	:
	:
	7: 1/8 (Default)
	:
	:
	127: 1/128

Submit Documentation Feedback

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
38	0x026	RSV	DIV_NUM6	DIV_NUM5	DIV_NUM4	DIV_NUM3	DIV_NUM2	DIV_NUM1	DIV_NUM0
Reset Value			0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
DIV_NUM[6:0]	
	Set the Master SCK Clock Divider value . This is the ratio of Mastck SCK to Bit Clock (BCK)
	Default value: 0000000
	Divider value.
	0: 1
	1: 1/2
	2: 1/3
	3: 1/4
	:
	:
	7: 1/8 (Default)
	:
	:
	127: 1/128

Page 0 / Register 39

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
39	0x027	DIV_NUM7	DIV_NUM6	DIV_NUM5	DIV_NUM4	DIV_NUM3	DIV_NUM2	DIV_NUM1	DIV_NUM0
Re	set Value	0	0	1	1	1	1	1	1

DIV_NUM[7:0]	CLK_DIV_MST_BCK
	Set the Master SCK Clock Divider value
	Default value: 00111111
	Divider value.
	0: 1
	1: 1/2
	2: 1/3
	3: 1/4
	:
	:
	63: 1/64 (Default)
	:
	:
	127: 1/128
	255: 1/256

Page 0 / Register 40

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
40	0x028	RSV	RSV	RSV	LOCK	RSV	RSV	PLL_REF_ SEL	PLL_EN

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback

Page 0 / Register 40 (continued)

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
Reset	Value				0			0	1

RSV	Reserved
	Reserved. Do not access.
LOCK	
	PLL Lock Status
	Default value: 0
	0: Not locked
	1: Locked
PLL_REF_SEL	
	PLL Reference clock selection. Note: This setting is ignored if CLKDET_EN = 1.
	Default value: 0
	0: SCK (Default)
	1: BCK
PLL_EN	
	Enable the PLL. Note: This setting is ignored if CLKDET_EN = 1.
	Default value: 1
	0: Disable
	1: Enable (Default)

Page 0 / Register 41

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
41	0x029	RSV	P6	P5	P4	P3	P2	P1	P0
Reset Value			0	0	0	0	0	0	0

Reserved. Do not access.
PLL_P
PLL P-Divider value. Note: This setting is ignored if CLKDET_EN = 1.
Default value: 0000000
0: 1
1: 1/2
2: 1/3
3: 1/4
:
127: 1/128

Page 0 / Register 42

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
42	0x02A	RSV	RSV	RSV	RSV	R3	R2	R1	R0
Reset Value						0	0	0	0

RSV	Reserved
	Reserved. Do not access.
R[3:0]	PLL_R
	PLL R-Divider value. This setting is ignored if CLKDET_EN = 1.

Submit Documentation Feedback

Default value: 0000
0: 1
1: 1/2
2: 1/3
3: 1/4
:
:
15: 1/16

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
43	0x02B	RSV	RSV	J5	J4	J3	J2	J1	J0
Reset Value				0	0	0	0	0	1

Reserved
Reserved. Do not access.
PLL_J
Integer part of the PLL J.D-Divider value. Note: This setting is ignored if CLKDET_EN = 1.
Default value: 000001
0: (Prohibit)
1: 1
2: 2
:
63: 63

Page 0 / Register 44

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
44	0x02C	D	RSV						
Reset Value		0							

RSV	Reserved
	Reserved. Do not access.
D	PLL_D_L
	Fractional part of the PLL J.D-Divider value. (Least Significant Bits) Note: This setting is ignored if CLKDET_EN = 1.
	Default value: 0
	0: 0
	1: 1
	2: 2
	3: 3
	· ·
]	9999: 9999

				- 3	3				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
45	0x02D	RSV	RSV	D[13:8]5	D[13:8]4	D[13:8]3	D[13:8]2	D[13:8]1	D[13:8]0
Reset Value				0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
D[13:8][5:0]	10.5.5 PLL_D_LH
	Fractional part of the PLL J.D-Divider value. (Most Significant Bits) Note: This setting is ignored if CLKDET_EN = 1.
	Default value: 000000
	0: 0
	1: 1
	2: 2
	3: 3
	:
	:
	9999: 9999

Page 0 / Register 48

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
48	0x030	CH4R	CH4L	CH3R	CH3L	CH2R	CH2L	CH1R	CH1L
Reset	t Value	0	0	0	0	0	0	0	0

CH4R	SIGDET_CH_MODE
	Select the signal detection mode per channel in SLEEP Mode
	Default value: 0
	0: Audio signal detection (Default)
	1: DC level change detection
CH4L	(All bits similar)
CH3R	(All bits similar)
CH3L	(All bits similar)
CH2R	(All bits similar)
CH2L	(All bits similar)
CH1R	(All bits similar)
CH1L	(All bits similar)

Page 0 / Register 49

				- 3	3				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
49	0x031	CH4R	CH4L	CH3R	CH3L	CH2R	CH2L	CH1R	CH1L
Reset	Value	0	0	0	0	0	0	0	0

CH4R	SIGDET_TRIG_MASK
	Mask bits of the interrupt trigger. All channels are scanned, even if they are masked. Developers can ignore specific channels and avoid them from generating interrupts using this register.
	Default value: 0
	0: No mask (Default)
	1: Mask

Submit Documentation Feedback

SLAS831B - MARCH 2014-REVISED MARCH 2014

CH4L
CH3R
(All bits similar)
CH3L
(All bits similar)
CH2R
(All bits similar)
CH2L
(All bits similar)
CH1R
(All bits similar)
CH1R
(All bits similar)
(All bits similar)
(All bits similar)

Page 0 / Register 50

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
50	0x032	CH4R	CH4L	CH3R	CH3L	CH2R	CH2L	CH1R	CH1L
Reset	Value	0	0	0	0	0	0	0	0

CH4R	SIGDET_STAT
	Status of the signal level detection In both Audio Signal Detection Mode and DC Level Detection Mode
	Default value: 0
	[In the Audio Signal Detection Mode]
	a) In the Active/Run state
	0: Signal active
	1: Signal lost
	b) In the Sleep mode
	0: Signal lost
	1: Signal active
	[In the DC Level Detection Mode]
	0: No change.
	1: Changed DC level
CH4L	(All bits similar)
CH3R	(All bits similar)
CH3L	(All bits similar)
CH2R	(All bits similar)
CH2L	(All bits similar)
CH1R	(All bits similar)
CH1L	(All bits similar)

Page 0 / Register 52

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
52	0x034	RSV	RSV	RSV	TIME4	TIME3	TIME2	TIME1	TIME0
Reset	Value								

RSV	Reserved
	Reserved. Do not access.
TIME[4:0]	SIGDET_LOSS_TIME
	If the signal drops below the threshold on the current audio input for this set amount of time, the device will generate an interrupt. 0: Prohibit
	1: 1 minute (Default)
	2: 2 minutes
	3: 3 minutes
	:
	30: 30 minutes (Max)

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
53	0x035	RSV	RSV	RSV	RSV	RSV	TIME2	TIME1	TIME0
Reset	Value						0	0	0

Reserved
Reserved. Do not access.
SIGDET_SCAN_TIME
Configures the scan time for each channel in the SLEEP state
Default value: 000
000: 160[msec] (Default)
001: 80[msec]
010: 40[msec]
011: 20[msec]
100: 10[msec]
Others: Invalid

Page 0 / Register 54

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
54	0x036	RSV	RSV	RSV	RSV	RSV	INT_INTVL 2	INT_INTVL 1	INT_INTVL 0
Reset	Value						0	0	1

RSV	Reserved
	Reserved. Do not access.
INT_INTVL[2:0]	SIGDET_INT_INTVL
	Interval time of the signal detector interrupt when there is signal detection. This time value is used for wakeup from sleep interrupt and from DC level change interrupts
	Default value: 001
	Interval time of the signal resume interrupt.
	000: No repeat
	001: 1 sec (Default)
	010: 2 sec
	011: 3 sec
	100: 4 sec
	Others: Invalid

Page 0 / Register 64

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
64	0x040	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
Reset	Value	1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH1_L
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

SLAS831B – MARCH 2014–REVISED MARCH 2014

Page 0 / Register 65

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
65	0x041	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
Reset	Value	1	0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH1_L
	Difference level of the DC level change detection
	Default value: 10000000
	0x80: Default

Page 0 / Register 66

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
66	0x042	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Reset	Value	0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH1_L
	Current DC level.
	Default value: 00000000

Page 0 / Register 67

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
67	0x043	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
Reset	Value	1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH1_R
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

Page 0 / Register 68

D	Оес	Hex	b7	b6	b5	b4	b3	b2	b1	b0
(68	0x044	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
	Reset	Value	1	0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH1_R
	Difference level of the DC level change detection
	Default value: 10000000
	0x80: Default

Page 0 / Register 69

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
69	0x045	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Reset	Value	0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH1_R
	Current DC level.
	Default value: 00000000

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
70	0x046	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
Reset	Value	1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH2_L
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

Page 0 / Register 71

1	Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
	71	0x047	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
	Reset Value		1	0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH2_L
	Difference level of the DC level change detection
	Default value: 10000000
	0x80: Default

Page 0 / Register 72

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
72	0x048	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Reset Value		0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH2_L
	Current DC level.
	Default value: 00000000

Page 0 / Register 73

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
73	0x049	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
Reset Value		1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH2_R
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

Page 0 / Register 74

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
74	0x04A	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
Reset	Reset Value		0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH2_R
	Difference level of the DC level change detection
	Default value: 10000000
	0x80: Default

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
75	0x04B	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Reset Value		0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH2_R
	Current DC level.
	Default value: 00000000

Page 0 / Register 76

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
76	0x04C	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
Reset	Value	1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH3_L
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

Page 0 / Register 77

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
77	0x04D	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
Reset	Value	1	0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH3_L
	Difference level of the DC level change detection
	Default value: 10000000
	0x80: Default

Page 0 / Register 78

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
78	0x04E	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Reset	Value	0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH3_L
	Current DC level.
	Default value: 00000000

Page 0 / Register 79

					0				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
79	0x04F	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
Reset	Value	1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH3_R
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
80	0x050	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
Reset	Value	1	0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH3_R
	Difference level of the DC level change detection
	Default value: 10000000
	0x80: Default

Page 0 / Register 81

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
81	0x051	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Re	set Value	0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH3_R
	Current DC level.
	Default value: 00000000

Page 0 / Register 82

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
82	0x052	REF7	REF6	REF5	REF4	REF3	REF2	REF1	REF0
Reset	Value	1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH4_L
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

Page 0 / Register 83

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
83	0x053	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
Reset	Reset Value		0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH4_L
	Difference level of the DC level change detection
	Default value: 10000000
	0x80: Default

Page 0 / Register 84

					0				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
84	0x054	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Rese	Value	0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH4_L					
	urrent DC level.					
	Default value: 00000000					

Page 0 / Register 85

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
85	0x055	REF7	REF6	REF5	REF4	REF3	REF2	REF2	REF0
Reset	Value	1	0	0	0	0	0	0	0

REF[7:0]	SIGDET_DC_REF_CH4_R
	Reference level of the DC level change detection.
	Default value: 10000000
	0x80: Default

Page 0 / Register 86

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
86	0x056	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
Reset	Value	1	0	0	0	0	0	0	0

DIFF[7:0]	SIGDET_DC_DIFF_CH4_R				
	Difference level of the DC level change detection				
	Default value: 10000000				
	0x80: Default				

Page 0 / Register 87

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
87	0x057	LEVEL7	LEVEL6	LEVEL5	LEVEL4	LEVEL3	LEVEL2	LEVEL1	LEVEL0
Reset	Value	0	0	0	0	0	0	0	0

LEVEL[7:0]	10.7.3 SIGDET_DC_LEVEL_CH4_R					
	current DC level.					
	Default value: 00000000					

Page 0 / Register 88

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
88	0x058	DC_NOLAT CH	AUXADC_R DY	DC_RDY	AUXADC_L ATCH	AUXADC_D ATA_TYPE	DC_CH2	DC_CH1	DC_CH0
Reset Value		0	0	0	0	0	0	0	0

DC_NOLATCH	AUXADC_DATA_CTRL
	Read Directly without latch operation
	Default value: 0
	0: With latch operation
	1: Without latch operation when read DC value
AUXADC_RDY	
	Indicate the latch operation is finished and AUXADC value is ready for read operation
	Default value: 0
	0: Latch operation is running
	1: AUXADC value is ready for read operation
DC_RDY	
	Indicate the latch operation is finished and DC value is ready
	Default value: 0
	0: Latch operation is running

	1: DC value is ready for read operation						
AUXADC_LATCH							
	Frigger to latch 16 bit AUXADC value for read operation Rising edge is the trigger signal						
	Default value: 0						
AUXADC_DATA_TYPE							
	Data to be read from Control Interface						
	Default value: 0						
	0: read LPF data						
	1: read HPF data						
DC_CH[2:0]							
	Configuration which channel DC value will be latched for control interface read operation						
	Default value: 000						
	000: CH1_L						
	001: CH1_R						
	010: CH2_L						
	011: CH2_R						
	100: CH3_L						
	101: CH3_R						
	110: CH4_L						
	111: CH4_R						

Page 0 / Register 89

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
89	0x059	AUXADC_D ATA7	AUXADC_D ATA6	AUXADC_D ATA5	AUXADC_D ATA4	AUXADC_D ATA3	AUXADC_D ATA2	AUXADC_D ATA1	AUXADC_D ATA0
Reset	Value	0	0	0	0	0	0	0	0

AUXADC_DATA[7:0]	AUXADC_DATA0
	Low byte of Secondary ADC output The data is depends on AUXADC_DATA_TYPE setting AUXADC_DATA_TYPE = 0: reading LPF of secondary ADC AUXADC_DATA_TYPE = 1: reading HPF of secondary ADC
	Default value: 00000000

Page 0 / Register 90

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
90	0x05A	_	_	_	_	_	_	AUXADC_D	_
		ATA[15:8]7	ATA[15:8]6	ATA[15:8]5	ATA[15:8]4	ATA[15:8]3	ATA[15:8]2	ATA[15:8]1	ATA[15:8]0
Reset Value		0	0	0	0	0	0	0	0

AUXADC_DATA[15:8][7: 0]	AUXADC_DATA01
	High byte of Secondary ADC output The data is depends on AUXADC_DATA_TYPE setting AUXADC_DATA_TYPE = 0: reading LPF of secondary ADC AUXADC_DATA_TYPE = 1: reading HPF of secondary ADC
	Default value: 00000000

Page 0 / Register 96

					rogioto. Co				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
96	0x060	RSV	RSV	RSV	POSTPGA_ CP	CLKERR	DC_CHAN G	DIN_TOGG LE	ENGSTR
Reset Value					1	1	1	1	1

SLAS831B -MARCH 2014-REVISED MARCH 2014

RSV	Reserved					
	Reserved. Do not access.					
POSTPGA_CP						
	Enable the Post-PGA Clipping Interrupt.					
	Default value: 1					
	0: Disable (Default)					
	1: Enable					
CLKERR						
	Enable the Clock Error Interrupt.					
	Default value: 1					
	0: Disable (Default)					
	1: Enable					
DC_CHANG						
	Enable the DC Level Change Interrupt.					
	Default value: 1					
	0: Disable (Default)					
	1: Enable					
DIN_TOGGLE						
	Enable I2S RX DIN toggle Interrupt.					
	Default value: 1					
	0: Disable (Default)					
	1: Enable					
ENGSTR						
	Enable the Energysense Interrupt.					
	Default value: 1					
	0: Disable					
	1: Enable (Default)					

Page 0 / Register 97

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
97	0x061	RSV	RSV	RSV	POSTPGA_ CP	CLKERR	DC_CHAN G	DIN_TOGG LE	ENGSTR
Reset Value					0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
POSTPGA_CP	
	Status of Post-PGA Clipping Interrupt.
	Default value: 0
	0: None
	1: Interrupt Occurred
	Status is cleared by writing a 0
CLKERR	
	Status of the Clock Error Interrupt.
	Default value: 0
	0: None
	1: Interrupt Occurred
	Status is cleared by writing a 0

DC_CHANG	
	Status of the DC Level Change Interrupt.
	Default value: 0
	0: None
	1: Interrupt Occurred
	Status is cleared by writing a 0
DIN_TOGGLE	
	Status of I2S RX DIN toggle Interrupt.
	Default value: 0
	0: None
	1: Interrupt Occurred
	Status is cleared by writing a 0
ENGSTR	
	Status of the Energysense Interrupt.
	Default value: 0
	0: None
	1: Interrupt Occurred
	Status is cleared by writing a 0

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
98	0x062	RSV	RSV	POL1	POL0	RSV	RSV	WIDTH1	WIDTH0
Reset Value				0	0			0	0

Reserved
Reserved. Do not access.
Polarity of the interrupt pulse.
Default value: 00
00: Low Active (Default)
01: High Active
10: Open Drain (L-Active)
11: Reserved
Width of the interrupt pulse.
Default value: 00
00: 1 msec(Default)
01: 2 msec
10: 3 msec
11: Infinity for level sense

Page 0 / Register 112

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
112	0x070	RSV	RSV	RSV	RSV	RSV	PWRDN	SLEEP	STBY
Reset Value							0	0	0

SLAS831B – MARCH 2014 – REVISED MARCH 2014

RSV	Reserved
	Reserved. Do not access.
PWRDN	
	Enter the Analog Power Down state.
	Default value: 0
	0: Power Up(Default)
	1: Power Down
SLEEP	
	Enter the Device Sleep state, once the chip goes into SLEEP state, Energysense application will be triggered.
	Default value: 0
	0: Power Up(Default)
	1: Sleep
STBY	
	Enter the Digital Stand-by state.
	Default value: 0
	0: Run(Default)
	1: Stand-by

Page 0 / Register 113

					0				
Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
113	0x071	2CH	RSV	FLT	HPF_EN	MUTE_CH2 _R	MUTE_CH2 _L	MUTE_CH1 _R	MUTE_CH1 _L
Reset Value		0		0	1	0	0	0	0

RSV	Reserved								
	Reserved. Do not access.								
2CH	DSP_CTRL								
	Select the processing mode for 4 channel part (PCM1865 only). User can ^{\(\text{\Pi}\)} change the configuration from 4 channels to 2 channels on the fly in \(\text{\JUNM}\) state and vice verso.								
	Default value: 0								
	0: 4 channels are on(Default)								
	1: 2 channels are on								
FLT									
	Select the decimation filter type.								
	Default value: 0								
	0: Normal (Default)								
	1: Short Latency								
HPF_EN									
	Enable the high pass filter.								
	Default value: 1								
	0: Disable								
	1: Enable (Default)								
MUTE_CH2_R									
	Mute Ch2(R).								
	Default value: 0								
	0: Unmute (Default)								
	1: Mute								

MUTE_CH2_L	
	Mute Ch2(L).
	Default value: 0
	0: Unmute (Default)
	1: Mute
MUTE_CH1_R	
	Mute Ch1(R).
	Default value: 0
	0: Unmute (Default)
	1: Mute
MUTE_CH1_L	
	Mute Ch1(L).
	Default value: 0
	0: Unmute (Default)
	1: Mute

Page 0 / Register 114

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
114	0x072	RSV	RSV	RSV	RSV	STATE3	STATE2	STATE1	STATE0
Reset Value						0	0	0	0

RSV	Reserved
	Reserved. Do not access.
STATE[3:0]	Device Current Status
	Current Power State of the device
	Default value: 0000
	0000: Power Down
	0001: Wait clock stable
	0010: Release reset
	0011: Stand-by
	0100: Fade IN
	0101: Fade OUT
	0110: (Reserved)
	0111: (Reserved)
	1000: (Reserved)
	1001: (Sleep)
	1010: (Reserved))
	1011: (Reserved)
	1100: (Reserved)
	1101: (Reserved)
	1110: (Reserved)
	1111: Run

Page 0 / Register 115

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
115	0x073	RSV	RSV	RSV	RSV	RSV	INFO2	INFO1	INFO0
Reset Value							0	0	0

RSV	Reserved							
	Reserved. Do not access.							
INFO[2:0]								
	Current Sampling Frequency							
	Default value: 000							
	000: Out of range (Low) or LRCK Halt							
	001: 8kHz							
	010: 16kHz							
	011: 32-48kHz							
	100: 88.2-96kHz							
	101: 176.4-192kHz							
	110: Out of range (High)							
	111: Invalid Fs							

Page 0 / Register 116

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
116	0x074	RSV	BCK_RATI O2	BCK_RATI O1	BCK_RATI O0	RSV	SCK_RATI O2	SCK_RATI O1	SCK_RATI O0
Reset Value			0	0	0		0	0	0

RSV	Reserved							
	Reserved. Do not access.							
BCK_RATIO[2:0]	Current BCK Ratio							
	Current receiving BCK ratio							
	Default value: 000							
	000: Out of range (L) or BCK Halt							
	001: 32							
	010: 48							
	011: 64							
	100: 256							
	101: (Not assigned)							
	110: Out of range (H)							
	111: Invalid BCK ratio or LRCK Halt							
SCK_RATIO[2:0]	Current SCK Ratio							
	Current receiving SCK ratio.							
	Default value: 000							
	000: Out of range (L) or SCK Halt							
	001: 128							
	010: 256							
	011: 384							
	100: 512							
	101: 768							
	110: Out of range (H)							
	111: Invalid SCK ratio or LRCK Halt							

Page 0 / Register 117

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
117	0x075	RSV	LRCKHLT	BCKHLT	SCKHTL	RSV	LRCKERR	BCKERR	SCKERR
Reset Value			0	0	0		0	0	0

RSV	Reserved
	Reserved. Do not access.
LRCKHLT	
	LRCK Halt Status
	Default value: 0
	0: No Error
	1: Halt
BCKHLT	
	BCK Halt Status
	Default value: 0
	0: No Error
	1: Halt
SCKHTL	
	SCK Halt Status
	Default value: 0
	0: No Error
	1: Halt
LRCKERR	
	LRCK Error Status
	Default value: 0
	0: No Error
	1: Error
BCKERR	
	BCK Error Status
	Default value: 0
	0: No Error
	1: Error
SCKERR	
	SCK Error Status
	Default value: 0
	0: No Error
	1: Error

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
120	0x078		RSV	RSV	RSV	RSV	DVDD	AVDD	LDO
Reset Value							0	0	0

RSV	Reserved
	Reserved. Do not access.
DVDD	
	DVDD Status
	Default value: 0
	0:Bad/Missing
	1:Good
AVDD	
	AVDD Status
	Default value: 0

Submit Documentation Feedback

LDO

0:Bad/Missing 1:Good Digital LDO Status Default value: 0

Page 1 Registers 13.2.3

Page 1 / Register 1

0:Bad/Missing 1:Good

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
1	0x01	RSV	RSV	RSV	DONE	RSV	BUSY	R_REQ	W_REQ
Reset Value					1		1	1	1

RSV	Reserved
	Reserved. Do not access.
DONE	
	Default value: 1
	1: Access done
	0: Accessing now
BUSY	
	Default value: 1
	1: Access ready
	0: Busy
R_REQ	Memory Mapper Register Access to DSP-2 - READ
	Default value: 1
	1: Access ready
	0: Busy
W_REQ	Memory Mapper Register Access to DSP-2 - WRITE
	Default value: 1
	1: Access ready
	0: Busy

Page 1 / Register 2

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
2	0x02	RSV	MEM_ADD R[6:0]6	MEM_ADD R[6:0]5	MEM_ADD R[6:0]4	MEM_ADD R[6:0]3	MEM_ADD R[6:0]2	MEM_ADD R[6:0]1	MEM_ADD R[6:0]0
Reset Value			0	0	0	0	0	0	0

RSV	Reserved
	Reserved. Do not access.
MEM_ADDR[6:0][6:0]	Memory Mapped Register Address
	Status of the memory mapped register access
	Default value: 0000000

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
4	0x04	MEM_WDA TA_0 7	MEM_WDA TA_0 6	MEM_WDA TA_0 5	MEM_WDA TA_0 4	MEM_WDA TA_0 3	MEM_WDA TA_0 2	MEM_WDA TA_0 1	MEM_WDA TA_0 0
Reset Value		0	0	0	0	0	0	0	0

MEM_WDATA_0 [7:0]	Write Data to 24bit memory[23:16]
	GAIN [23:16]
	Default value: 00000000

Page 1 / Register 5

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
5	0x05	MEM_WDA TA_17	MEM_WDA TA_16	MEM_WDA TA_15	MEM_WDA TA_14	MEM_WDA TA_13	MEM_WDA TA_12	MEM_WDA TA_11	MEM_WDA TA_10
Reset Value		0	0	0	0	0	0	0	0

MEM_WDATA_1[7:0]	Write Data to 24bit memory - [15:8]
	GAIN [15:8]
	Default value: 00000000

Page 1 / Register 6

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
6	0x06	MEM_WDA							
		TA_27	TA_26	TA_25	TA_24	TA_23	TA_22	TA_21	TA_20
Reset	Value	0	0	0	0	0	0	0	0

MEM_WDATA_2[7:0]	Write Data to 24bit memory - [7:0]
	GAIN [7:0]
	Default value: 00000000

Page 1 / Register 7

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
7	0x07	MEM_WDA TA_3	RSV						
Reset	Value								

RSV	Reserved					
	Reserved. Do not access.					
MEM_WDATA_3	Write Data to 24bit memory - Reserved					
	RESERVED					

Page 1 / Register 8

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
8	0x08	MEM_RDA							
		TA_0 7	TA_0 6	TA_0 5	TA_0 4	TA_0 3	TA_0 2	TA_0 1	TA_0 0
Reset	Value	0	0	0	0	0	0	0	0

MEM_RDATA_0 [7:0]	Read Data from 24bit memory[23:16]					
	GAIN [23:16]					
	Default value: 00000000					

h.E	h.4	L2	L.O	L 4	L٥	l
Page 1 / I	Register 9					

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
9	0x09	MEM_RDA							
		TA_17	TA_16	TA_15	TA_14	TA_13	TA_12	TA_11	TA_10
Reset	Value	0	0	0	0	0	0	0	0

MEM_RDATA_1[7:0]	Read Data from 24bit memory - [15:8]
	GAIN [15:8]
	Default value: 00000000

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
10	0x0A	MEM_RDA TA_27	MEM_RDA TA_26	MEM_RDA TA_25	MEM_RDA TA_24	MEM_RDA TA_23	MEM_RDA TA_22	MEM_RDA TA_21	MEM_RDA TA_20
Reset	Reset Value		0	0	0	0	0	0	0

MEM_RDATA_2[7:0]	Read Data from 24bit memory - [7:0]
	GAIN [7:0]
	Default value: 00000000

13.2.4 Page 3 Registers

Page 3 / Register 18

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
18	0x012	RSV	PD						
Reset Value									

RSV	Reserved
	Reserved. Do not access.
PD	
	Power Down Control
	0: Power up (Default)
	1: Power down

Page 3 / Register 21

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
21	0x015	RSV	RSV	RSV	TERM	RSV	RSV	RSV	PDZ
Reset Value					0				1

RSV	Reserved
	Reserved. Do not access.
TERM	
	Output Pull down control
	0: Disable (Default)
	1: Enable
PDZ	
	Power down control.
	0: Power down
	1: Power up (Default)

13.2.5 Page 253 Registers

Page 253 / Register 20

Dec	Hex	b7	b6	b5	b4	b3	b2	b1	b0
20	0x014	PGA_ICI1	PGA_ICI0	REF_ICI1	REF_ICI0	RSV	RSV	RSV	RSV
Reset Value		0	0	0	0				

RSV	Reserved
	Reserved. Do not access.
PGA_ICI[1:0]	PGA_ICI
	PGA bias current trim
	Default value: 00
	00: 100% (default)
	01: Reserved
	10: 75%
	11: Reserved
REF_ICI[1:0]	
	Global bias current trim
	Default value: 00
	00: 100% (default)
	01: 75%
	10: Reserved
	11: Reserved

13.3 Programming DSP Coefficients

The two fixed function DSPs on chip can have coefficients for filters and mixers programmed to them. This is done indirectly using specific registers on Page 1 (see Register map)

The internal DSP coefficient memory space is mapped as follows:

Table 22. Virtual 24bit DSP Coefficient Registers

	Coefficient	Address	Description
Mixer-1	MIX1_CH1L	0x00	4.20 Format
	MIX1_CH1R	0x01	
	MIX1_CH2L	0x02	
	MIX1_CH2R	0x03	
	MIX1_I2SL	0x04	
	MIX1_I2SR	0x05	
Mixer-2	MIX2_CH1L	0x06	
	MIX2_CH1R	0x07	
	MIX2_CH2L	0x08	
	MIX2_CH2R	0x09	
	MIX2_I2SL	0x0A	
	MIX2_I2SR	0x0B	
Mixer-3	MIX3_CH1L	0x0C	
	MIX3_CH1R	0x0D	
	MIX3_CH2L	0x0E	
	MIX3_CH2R	0x0F	
	MIX3_I2SL	0x10	
	MIX3_I2SR	0x11	
Mixer-4	MIX4_CH1L	0x12	

Submit Documentation Feedback

Programming DSP Coefficients (continued)

Table 22. Virtual 24bit DSP Coefficient Registers (continued)

	Coefficient	Address	Description
	MIX4_CH1R	0x13	
	MIX4_CH2L	0x14	
	MIX4_CH2R	0x15	
	MIX4_I2SL	0x16	
	MIX4_I2SR	0x17	
Secondary ADCLPF/HPF	LPF_B0	0x20	1.23 Format
Coefficients	LPF_B1	0x21	
	LPF_B2	0x22	
	LPF_A1	0x23	
	LPF_A2	0x24	
	HPF_B0	0x25	
	HPF_B1	0x26	
	HPF_B2	0x27	
	HPF_A1	0x28	
	HPF_A2	0x29	
Energysense	Loss_threshold	0x2C	1.23 Format
Energysense	Resume_threshold	0x2D	

A great example of how to write to these registers is shown below

For example, change the Energysense resume threshold value to -30 dB (0x040C37)

Write 0x00 0x01; # change to register bank 1

Write 0x02 0x2D; # write the memory address of resume threshold

Write 0x04 0x04; # bit[23:15] Write 0x05 0x0C; # bit[15:8] Write 0x06 0x37; # bit[7:0]

Write 0x01 0x01; # execute write operation

14 Device and Documentation Support

14.1 Development Support

See The PCM186xEVM User Guide, SLAU559

14.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 23. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
PCM1861	Click here	Click here	Click here	Click here	Click here
PCM1863	Click here	Click here	Click here	Click here	Click here
PCM1865	Click here	Click here	Click here	Click here	Click here

14.3 Trademarks

Bluetooth is a registered trademark of Bluetooth SIG, Inc.. All other trademarks are the property of their respective owners.

14.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

14.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

Submit Documentation Feedback

PCM1861, PCM1863, PCM1865

SLAS831B - MARCH 2014 - REVISED MARCH 2014

www.ti.com

15 Mechanical, Packaging, and Orderable Information

The following packaging information and addendum reflect the most current data available for the designated devices. This data is subject to change without notice and revision of this document.

28-Mar-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
PCM1861DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125		Samples
PCM1861DBTR	ACTIVE	TSSOP	DBT	30	2000	TBD	Call TI	Call TI	-40 to 125		Samples
PCM1863DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125		Samples
PCM1863DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125		Samples
PCM1865DBT	ACTIVE	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125		Samples
PCM1865DBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

28-Mar-2014

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBT (R-PDSO-G30)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>