Data 621 Blog 2

Bryan Persaud

10/10/2020

Multiple Linear Regression

For my second blog I will continue to demonstrate a linear regression model by showing how to do a multiple linear regression model. A multiple linear regression model is a model that shows the relationship between an dependent variable, y, and one or more independent variables.

Load Dataset

I will be using the diamonds dataset again to show an example on how to create a multiple linear regression model. The diamond dataset is under the ggplot2 library.

```
library(ggplot2)
```

```
## Warning: package 'ggplot2' was built under R version 3.6.3
```

Multiple Linear Regression Model

Use the lm model again to create the model.

```
model <- lm(price ~ carat + cut + color + clarity + depth + table + x + y + z, data = diamonds)
##
## lm(formula = price ~ carat + cut + color + clarity + depth +
##
        table + x + y + z, data = diamonds)
##
## Coefficients:
   (Intercept)
                                                                       cut.C
                                                                                       cut<sup>4</sup>
##
                                         cut.L
                                                        cut.Q
                         carat
##
       5753.762
                     11256.978
                                      584.457
                                                     -301.908
                                                                     148.035
                                                                                     -20.794
                                                      color<sup>4</sup>
##
        color.L
                     color.Q
                                      color.C
                                                                     color<sup>5</sup>
                                                                                     color<sup>6</sup>
##
     -1952.160
                      -672.054
                                     -165.283
                                                       38.195
                                                                     -95.793
                                                                                     -48.466
     clarity.L
                     clarity.Q
                                    clarity.C
                                                    clarity<sup>4</sup>
                                                                   clarity<sup>5</sup>
                                                                                  clarity<sup>6</sup>
##
##
      4097.431
                     -1925.004
                                      982.205
                                                     -364.918
                                                                     233.563
                                                                                       6.883
##
     clarity<sup>7</sup>
                         depth
                                         table
                                                                            у
##
         90.640
                       -63.806
                                       -26.474
                                                    -1008.261
                                                                       9.609
                                                                                     -50.119
```

Here we see a model created with every variable in the diamond dataset and their corresponding coefficients and intercepts displayed.

summary(model)

```
##
## Call:
## lm(formula = price ~ carat + cut + color + clarity + depth +
       table + x + y + z, data = diamonds)
##
##
## Residuals:
##
        Min
                  1Q
                        Median
                                     3Q
                                              Max
## -21376.0
              -592.4
                        -183.5
                                  376.4
                                         10694.2
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                5753.762
                             396.630
                                       14.507
                                                < 2e-16 ***
## carat
               11256.978
                              48.628
                                      231.494
                                                < 2e-16 ***
## cut.L
                 584.457
                              22.478
                                       26.001
                                                < 2e-16 ***
                -301.908
                              17.994
                                      -16.778
## cut.Q
                                                < 2e-16 ***
## cut.C
                 148.035
                              15.483
                                        9.561
                                                < 2e-16 ***
## cut^4
                 -20.794
                              12.377
                                       -1.680
                                                0.09294 .
## color.L
               -1952.160
                              17.342 -112.570
                                                < 2e-16 ***
## color.Q
                -672.054
                              15.777
                                      -42.597
                                                < 2e-16 ***
## color.C
                                      -11.225
                                                < 2e-16 ***
                -165.283
                              14.725
## color<sup>4</sup>
                  38.195
                              13.527
                                        2.824
                                               0.00475 **
## color^5
                 -95.793
                              12.776
                                       -7.498 6.59e-14 ***
## color^6
                                       -4.173 3.01e-05 ***
                 -48.466
                              11.614
## clarity.L
                4097.431
                              30.259
                                      135.414
                                                < 2e-16 ***
               -1925.004
                              28.227
                                      -68.197
                                                < 2e-16 ***
## clarity.Q
## clarity.C
                 982.205
                              24.152
                                       40.668
                                                < 2e-16 ***
                                      -18.922
                                                < 2e-16 ***
## clarity^4
                -364.918
                              19.285
## clarity^5
                 233.563
                                       14.828
                                                < 2e-16 ***
                              15.752
## clarity^6
                    6.883
                              13.715
                                        0.502 0.61575
## clarity^7
                  90.640
                              12.103
                                        7.489 7.06e-14 ***
## depth
                  -63.806
                               4.535
                                      -14.071
                                                < 2e-16 ***
## table
                               2.912
                                       -9.092
                                                < 2e-16 ***
                 -26.474
## x
               -1008.261
                              32.898
                                      -30.648
                                                < 2e-16 ***
## y
                   9.609
                              19.333
                                        0.497
                                                0.61918
## z
                  -50.119
                              33.486
                                       -1.497 0.13448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1130 on 53916 degrees of freedom
## Multiple R-squared: 0.9198, Adjusted R-squared: 0.9198
## F-statistic: 2.688e+04 on 23 and 53916 DF, p-value: < 2.2e-16
```

The summary function is once again used to show additional information of the model.

Let's create a model where we narrow down some of the variables. Let's create a model using price, carat, and depth.

```
model2 <- lm(price ~ carat + depth, data = diamonds)</pre>
model2
##
## Call:
## lm(formula = price ~ carat + depth, data = diamonds)
## Coefficients:
##
  (Intercept)
                                   depth
                      carat
##
        4045.3
                     7765.1
                                  -102.2
summary(model2)
##
## Call:
## lm(formula = price ~ carat + depth, data = diamonds)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
## -18238.9
              -801.6
                        -19.6
                                 546.3
                                       12683.7
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4045.333
                           286.205
                                     14.13
                                             <2e-16 ***
## carat
               7765.141
                            14.009 554.28
                                             <2e-16 ***
                             4.635 -22.04
               -102.165
## depth
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1542 on 53937 degrees of freedom
## Multiple R-squared: 0.8507, Adjusted R-squared: 0.8507
## F-statistic: 1.536e+05 on 2 and 53937 DF, p-value: < 2.2e-16
```

This is the information for the model created by the price, carat, and depth variables.

Plot

Let's plot the residuals to check for normality. This is done by using the qqnorm and qqline functions.

```
qqnorm(model2$residuals)
qqline(model2$residuals)
```

Normal Q-Q Plot

Here we see that a good amount of residuals follow the straight line, but there are a lot that deviate away from the line. We can say that the distribution is nearly normal. The model is an okay fit to the data, but there could be a model that is a better fit. This means that there is not really a strong relationship and having both carat and depth doesn't affect the price of a diamond too much.