

编译原理

第七章 语义分析和中间代码生成

授 课 教 师 : 郑艳伟

手 机 : 18614002860 (微信同号)

邮 : zhengyw@sdu.edu.cn

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - ▶ 7.6.4 多态函数

□ 静态语义检查通常包括:

- 类型检查:如果操作符作用于不相容的操作数,编译程序必须报告出错信息。
- ➤ 控制流检查:控制流语句必须使控制转移到合法的地方,如c语言中,break如果不包含在while、for或switch等语句中,则报错。
- 一致性检查:很多场合要求对象只能被定义一次。
- 相关名字检查:有时同一名字必须出现两次或多次,需要检测出现的名字是否相同。
- 名字的作用域分析:确定作用域范围。

- 虽然源程序可以直接翻译为目标语言代码,但许多编译程序却采用了独立于机器的、复杂性介于源语言和机器语言之间的中间语言,这样做的好处是:
 - 便于进行与机器无关的代码优化工作;
 - 使编译程序改变目标机更容易;
 - 使编译程序的结构在逻辑上更为简单明确。

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - ▶ 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - > 7.6.3 函数和运算符的重载
 - 7.6.4 多态函数

- □ 过程中是说明语句需要处理的问题:
 - ① 过程中的说明语句形式: $id_1, id_2, ..., id_n$: type
 - ② 每个变量需要记录名字、类型、字宽信息,分别用属性name、type、width记录
 - ③ 当新出现一个名字时,需要记录进符号表,用offset记录该名字在目标代码运行时数据区中的相对地址偏移量,在识别前置初值为0。
 - ④ 过程enter(name, type, offset)用来把名字name填入到符号表,并给出该名字的类型type及在过程数据区中的相对地址offset。
 - ⑤ 全局变量的符号表,在编译器运行时的某个合适时刻创建,在编译器退出时销毁;每个过程的符号表,在过程开始时创建,在过程结束时出栈,但应保持可访问状态。
 - ⑥ 假定整数类型域宽为4,实型域宽为8。

过程中的说明语句翻译模式:

```
P \rightarrow \{offset = 0\}D
D \rightarrow D; D
D \rightarrow id:T
                             {enter(id.name, T.type, of fset);
                               offset = offset + T.width
T \rightarrow integer
                             \{T. type = integer; T. width = 4\}
                             \{T.type = real; T.width = 8\}
T \rightarrow real
T \rightarrow array|num| of T_1 \{T.type = array(num.val, T_1.type)\}
                               T.width = num.val \times T_1.width
                             \{T.type = pointer(T_1.type); T.width = 4\}
T \rightarrow {}^{\wedge}T_1
```

□ 过程中的说明语句翻译模式:

 $D \rightarrow D; D$

 $D \rightarrow D:T$

 $D \rightarrow id$

【例6.21】

 $D \rightarrow L:T$

 $T \rightarrow integer \mid char$

 $L \rightarrow L$, $id \mid id$

【修改】

 $D \rightarrow id L$

 $L \rightarrow$, $id L \mid : T$

 $T \rightarrow integer \mid char$

 $T \rightarrow {}^{\wedge}T_{1}$

□ 过程中的说明语句翻译模式:

$$P \rightarrow \{offset = 0\}D$$
 $D \rightarrow D; D$
 $D \rightarrow id \ L$ $\{enter(id. name, L. type, offset); \ offset = offset + L. width\}$
 $L \rightarrow id \ L_1$ $\{enter(id. name, L_1. type, offset); \ offset = offset + L_1. width; \ L. type = L_1. type; L. width = L_1. width\}$
 $L \rightarrow :T$ $\{L. type = T. type; L. width = T. width\}$
 $T \rightarrow integer$ $\{T. type = integer; T. width = 4\}$
 $T \rightarrow real$ $\{T. type = real; T. width = 8\}$
 $T \rightarrow array[num] \ of \ T_1$ $\{T. type = array(num. val, T_1. type); \ T. width = num. val \times T_1. width\}$

 $\{T.type = pointer(T_1.type); T.width = 4\}$

□ 过程中的说明语句翻译模式:

$$P o MD$$
 $D o D; D$
 $M o \varepsilon$ $\{offset = 0\}$
 $D o id L$ $\{enter(id. name, L. type, offset); offset = offset + L. width\}$
 $L o, id L_1$ $\{enter(id. name, L_1. type, offset); offset = offset + L_1. width; L. type = L_1. type; L. width = L_1. width\}$
 $L o: T$ $\{L. type = T. type; L. width = T. width\}$
 $T o integer$ $\{T. type = integer; T. width = 4\}$
 $T o real$ $\{T. type = real; T. width = 8\}$
 $T o array[num] of T_1$ $\{T. type = array(num. val, T_1. type); T. width = num. val imes T_1. width\}$
 $T o ^T_1$ $\{T. type = pointer(T_1. type); T. width = 4\}$

□ 【例7.8】分析句子: p,q,r:real

$$D \rightarrow id\ L$$
 {enter(id.name, L. type, offset);
$$offset = offset + L.width \}$$

$$L. type = L_1. type; L. width = L_1. width \}$$

步骤	文法符号栈	输入串	
1	#	p,q,r:real#	
2	# <i>M</i>	p,q,r:real#	
3	#Mp,q,r:real	#	
4	#Mp,q,r:T	#	
5	#Mp,q,rL	#	
6	#Mp,qL	#	
7	#MpL	#	
8	#MD	#	
9	# <i>P</i>	#	
10	асс	#	

id	type	offset
r	real	0
q	real	8
р	real	16

offset=24

L.type = real; L.width = 8

郑艳伟, zhengyw@sdu.edu.cn

□ 过程中的说明语句翻译模式:

 $P \rightarrow MD$

 $D \rightarrow D$; D

 $M \to \varepsilon$

 $\{offset = 0\}$

 $D \rightarrow id L$

 $\{enter(val[top-1].name,val[top].type,offset);$

offset = offset + val[top].width

 $L \rightarrow id L_1$

 $\{enter(val[top-1].name, val[top].type, offset);$

offset = offset + val[top].width;

val[ntop] = val[top]

 $L \rightarrow : T$

 $\{val[ntop] = val[top]\}$

 $T \rightarrow integer$

 $\{val[ntop].type = integer; val[ntop].width = 4\}$

 $T \rightarrow real$

 $\{val[ntop].type = real; val[ntop].width = 8\}$

 $T \rightarrow array[num] \ of \ T_1 \ \{val[ntop]. \ type = array(num. \ val, val[top]. \ type);$

 $val[ntop].width = num.val \times val[top].width$

 $T \rightarrow ^T_1$ { $val[ntop].type = pointer(val[top].type); val[ntop].width = A}$

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - ▶ 7.6.4 多态函数

7.1.2 保留作用域的信息

郑艳伟, zhengyw@sdu.edu.cn

```
program Sort (input, output);
2
        var a: array[0..10] of integer;
3
            x: integer;
4
         procedure ReadArray;
(5)
             var i: integer;
6
             begin ... a... end {ReadArray};
7
         procedure Exchange (i, j: integer);
8
             begin x=a[i]; a[i] = a[j]; a[j] = x; end {Exchange};
9
         procedure QuickSort (m, n: integer);
10
             var k, v: integer;
11)
             function Partition (y, z: integer): integer;
(12)
                  var i, j: integer;
13
                  begin ...a...v... Exchange(i, j);... end {Partition};
(14)
             begin ... end {QuickSort};
15)
         begin ... end {Sort}.
```


嵌套过程的符号表

保留作用域的信息

□ 语义规则中的操作:

- ▶ mktable(previous): 创建一张新符号表,并返回指向新表的指针;参数
 previous指向先前创建的一张符号表。
- ▶ enter(table, name, type, of fset): 在指针table指向的符号表中,为名字name建立一个新项,并把类型type、相对地址of fset填入到该项中。
- ➤ addwidth(table, width): 在指针table指向的符号表表头中,记录下该表中所有
 名字占用的总宽度。
- ▶ enterproc(table, name, newtable): 在指针table指向的符号表中,为名字为name的过程建立一个新项;参数newtable指向过程name的符号表。
- ▶ tblptr是一个栈,用于存放指向嵌套外层过程的符号表指针。
- ▶ offset是一个栈,用于存放变量的相对地址,当过程结束时, offset里记录的 是过程占用的所有字节数。

□ 保留作用域信息:

```
P \rightarrow MD
                             \{addwith(top(tblptr), top(offset));
                               pop(tblptr); pop(offset); }
                             \{t = mktable(null); \frac{push(t, tblptr); push(0, offset);}{}\}
M \to \varepsilon
                             {t = top(tblptr); addwidth(t, top(offset));}
D \rightarrow proc id ND; S
                               pop(tblptr); pop(offset);
                               enterproc(top(tblptr), id. name, t); }
D \rightarrow id L
                             {enter(top(tblptr), id. name, L. type, top(offset));
                               top(offset) = top(offset) + L.width
                             \{enter(top(tblptr), id. name, L_1. type, top(offset));
L \rightarrow id L_1
                               top(offset) = top(offset) + L_1.width;
                               L.type = L_1.type, L.width = L_1.width
L \rightarrow : T
                             \{L. type = T. type\};
                  \{t = mktable(top(tblptr)); \frac{push(t, tblptr); push(0, offset);}{push(t, tblptr); push(0, offset);}\}_{17}
N \to \varepsilon
```

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - 7.6.4 多态函数

7.2.1 简单算术表达式及赋值语句

 \square 简单算术表达式及赋值语句的开始符号为S,来自如下部分的相应 V_N :

```
P \rightarrow MD
M \rightarrow \varepsilon
D \rightarrow id \ L \mid proc \ id \ ND; S
L \rightarrow, id \ L_1
L \rightarrow: T
```

 $N \to \varepsilon$

7.2.1 简单算术表达式及赋值语句

- □ 简单算术表达式及赋值语句的操作:
 - ▶ tblptr: 是一个栈, 栈顶为当前过程的符号表, 所以可以取到符号信息。
 - ▶ lookup(name): 从top(tblptr)符号表寻找名字,找到即返回,找不到则转到外围(上层)符号表继续查找,直到找到或者所有外围过程都找不到为止。
 - ▶ gen(op, arg1, arg2, result): 生成三地址代码。
 - ➤ newtemp: 是一个方法, 生成一个临时变量。
 - ▶ place: 是一个属性, 存放文法符号的值 (变量) 的名字。

□ 简单算术表达式及赋值语句:

```
S 	oup id = E   \{p = lookup(id.name); \ if \ p \neq null \ then \ gen(=, E.place, -, p); \ else \ error; \}
E 	oup E_1 + E_2   \{E.place = newtemp; gen(+, E_1.place, E_2.place, E.place)\}
E 	oup E_1 * E_2   \{E.place = newtemp; gen(*, E_1.place, E_2.place, E.place)\}
E 	oup - E_1   \{E.place = newtemp; gen(@, E_1.place, -, E.place)\}
E 	oup (E_1)   \{E.place = E_1.place\}
E 	oup id   \{p = lookup(id.name); \ if \ p \neq null \ then \ E.place = p; \ else \ error; \}
```


7.2.1 简单算术表达式及赋值语句

 $S \rightarrow id = E \quad \{p = lookup(id.name); \\ if \ p \neq null \ then \ gen(=, E.place, -, p); else \ error; \}$

E.place)}

步骤	文法符号栈	输入串	动作
1	#	x = (a+b) * -c#	初始
2	#x = (a	+ <i>b</i>) ∗ − <i>c</i> #	移进
3	#x = (E	+ <i>b</i>) ∗ − <i>c</i> #	归约
4	#x = (E + b)) * -c#	移进
5	#x = (E + E) * -c#	归约
6	#x = (E) * -c#	归约
7	#x = (E)	* -c#	移进
8	#x = E	* -c#	归约
9	#x = E * -c	#	移进
10	#x = E * -E	#	归约
11	#x = E * E	#	归约
12	#x = E	#	归约
13	# <i>S</i>	#	归约
14	#S	#	成功

三地址码

(+, a, b, T1)

(@, c, -, T2)

(*, T1, T2, T3)

(=, T3, -, x)

$$E.place = T2$$

$$E.place = T3$$

栈属性 (给人看的)

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - ▶ 7.6.4 多态函数

- □ 数组连续存储,一维数组A[i]地址为: $base + (i low) \times w$
 - ▶ w:数组中每个元素的宽度;
 - ▶ low:数组下标下界;
 - \triangleright base: 分配给数组的相对地址,即base为A的第一个元素A[low]的相对地址。
- **旦** 整理为: $i \times w + (base low \times w)$

 - $\rightarrow A[i]$ 的相对地址计算变为: $i \times w + C$ 。

□ 行存储的二维数组*A*[*i*₁, *i*₂]地址:

- $\triangleright base + [(i_1 low_1) \times n_2 + i_2 low_2] \times w$
- $= (i_1 \times n_2 + i_2) \times w + [base (low_1 \times n_2 + low_2) \times w]$

- □ 行存储的二维数组*A*[*i*₁, *i*₂]地址:
 - $\triangleright base + [(i_1 low_1) \times n_2 + i_2 low_2] \times w$
 - $= (i_1 \times n_2 + i_2) \times w + [base (low_1 \times n_2 + low_2) \times w]$
- □ 行存储的多维数组 $A[i_1,i_2,...,i_k]$ 地址:
 - \blacktriangleright 基准地址: $C = base ((...((low_1 \times n_2 + low_2) \times n_3)...) \times n_k + low_k) \times w$
 - ▶ 处理声明语句时, 计算出 "base -" 后面的部分, 作为C存储到符号表
 - ▶ 动态地址: $(((...(i_1 \times n_2 + i_2) \times n_3)...) \times n_k + i_k) \times w$

□ 生成数组的文法:

```
L \rightarrow id [Elist] \mid id

Elist \rightarrow Elist, E \mid E
```

□ 要想知道数组的全部信息,需要有一个产生式把*id* (提供符号表地址)和 最左下标*E* (提供下标值)联系起来,因此修改文法如下:

```
L \rightarrow Elist] \mid id
```

 $Elist \rightarrow Elist, E \mid id[E \mid // 这样Elist$ 的翻译过程中随时知道id的信息,因为要查某个维度的长度信息

□ 最终文法:

$$(\mathfrak{I})$$
 $S \to L = E$

$$(2)$$
 $E \rightarrow E + E$

$$\mathfrak{G}$$
 $E \to E * E$

$$\cancel{4} E \rightarrow -E$$

$$\mathfrak{G}$$
 $E \to (E)$

$$\bigcirc L \rightarrow Elist$$

(8)
$$L \rightarrow id$$

$$\mathcal{D}$$
 Elist \rightarrow Elist, E

$$\mathscr{D}$$
 $Elist \rightarrow id[E$

// E也可以是数组,如果是变量,也需要通过L过渡

// L是数组

// L是普通变量

- □ Elist的属性:
 - ② array, 记录指向符号表中相应数组名字表项的指针。
 - ② ndim, 记录Elist中下标表达式的个数, 即维数。
 - ③ place,表示临时变量,用来临时存放由Elist中的下标表达式计算出来的值。
- **□** *L*的属性:
 - ▶ place, 存放变量的名字。
 - ▶ offset, 简单名字为null, 数组则为地址偏移量。
- □ 函数:
 - $\rightarrow limit(array, j)$, 返回 n_i , 即由array所指示的数组,其第j维的长度。
- \square 多维数组 $A[i_1,i_2,...,i_k]$ 的前m维下标:
 - ▶ 动态下标: $(...((i_1 \times n_2 + i_2) \times n_3)...) \times n_m + i_m$
 - \blacktriangleright 递归计算: $e_1 = i_1, e_2 = e_1 \times n_2 + i_2, ..., e_m = e_{m-1} \times n_m + i_m$


```
(1) S \rightarrow L = E
    \{ \text{ if } L.offset = null // L 是简单变量 \}
        gen(=, E. place, -, L. place);
    else
                               // L是数组
        gen(=, E.place, -, L.place[L.offset]); 
(2) E \to E_1 + E_2
    {E.place = newtemp;}
     gen(+, E_1, place, E_2, place, E, place); \}
(3) E \rightarrow E_1 * E_2
    {E.place = newtemp;}
     gen(*, E_1. place, E_2. place, E. place);
```

```
(4) E \rightarrow -E_1
   \{E.place = newtemp;
    gen(@, E_1. place, -, E. place); 
(5) E \rightarrow (E_1)
   \{E.place = E_1.place;\}
(6) E \rightarrow L
   { if L.offset = null // L} 是简单变量
       E.place = L.place;
   else {
                            //L是数组,转到E后会丢失数组信息,因此此处赋值
       E.place = newtemp;
       gen(=, L. place[L. of fset], -, E. place); \}
```



```
(7) L \rightarrow Elist
   \{L.place = newtemp;
    gen(-, Elist. array, C, L. place); // C的计算参考前述公式, 在符号表中
     L.offset = newtemp;
                                            // w在符号表中
    gen(*, w, Elist. place, L. of f set); }
(8) L \rightarrow id
   \{L.palce = id.place;
    L.offset = null;
```



```
(9) Elist \rightarrow Elist_1, E
   \{ t = newtemp; 
    m = Elist.ndim + 1; // 用一次维度+1
    gen(*, Elist_1, place, limit(Elist_1, array, m), t);
    gen(+,t,E.place,t); // 递归计算e_k = e_{k-1} \times n_k + i_k
    Elist.array = Elist_1.array;
    Elist.palce = t;
    Elist.ndim = m; 
(10) Elist \rightarrow id[E]
   {Elist.palce = E.place;}
    Elist.ndim = 1;
    Elist.array = id.place;
```


(*, y, 20, T1)

【例7.10】赋值语句x = A[y,z];其中A[10,20]: integer; low = 1 三地址码

步骤	文法符号栈	输入串	动作
1	#	x = A[y, z] #	初始
2	# <i>x</i>	= A[y,z]#	移进
3	#L	= A[y,z]#	归约
4	#L = A[y	,z]#	移进
5	#L = A[L	,z]#	归约
6	#L = A[E]	,z]#	归约
7	#L = Elist	,z]#	归约
8	#L = Elist, z]#	移进
9	#L = Elist, L]#	归约
10	#L = Elist, E]#	归约
11	#L = Elist]#	归约
12	#L = Elist	#	移进
13	#L = L	#	归约
14	#L = E	#	归约
15	# <i>S</i>	#	归约
16	# <i>S</i>	#	成功

```
(+, T1, z, T1)
                                     (-, A, 21, T2)
                                     (*, 4, T1, T3)
                                 (=, T2[T3], -, T4)
(9) Elist \rightarrow Elist_1, E
                                     (=, T4, -, x)
\{ t = newtemp; 
(1) S \rightarrow L = E
\{ if L. of fset = null \}
gen(=, E.place, -, L.place);
else
gen(=, E.place, -, L.place[L.offset]);
```

```
E.place = z
E.place = T4
L.place = x, .offset = null
```

栈属性 (给人看的)

- **□** 多维数组 $A[n_1, n_2, ..., n_k]$: Type需要记入符号表的内容:
 - ➤ 数组类型: Type
 - ▶ 数组名称: A (base)
 - ➤ 数组偏移量: offset
 - ▶ 字宽: w
 - \triangleright 每个维度的元素数: n_i
 - \blacktriangleright 基准地址: $C = ((...(low_1 \times n_2 + low_2) \times n_3)...) \times n_k + low_k) \times w$

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - > 7.6.4 多态函数

7.2.3 类型转换

- □ 当两个不同类型的量运算时,需要二选一:
 - > 拒绝运算
 - > 自动进行类型转换

【例7.11】 x = y + i * j,其中i,j为整型, y为实型,对应四元式为:

- (1) (*, i, j, T1)
- ② (int2real, T1, null, T2)
- \mathfrak{G} (+, y, T2, T3)
- \mathscr{A} (=, T3, null, x)

 $E \rightarrow E_1 \theta E_2$

翻译模式

```
\{E.place = newtemp;
if E_1. type == integer && E_2. type == integer {
   gen(\theta^{i}, E_{1}. place, E_{2}. place, E. place); E. type = integer; \}
else if E_1. type == real \&\& E_2. type == real \{
    gen(\theta^r, E_1, place, E_2, place, E, place); E, type = real; \}
else if E_1 type == integer && E_2 type == real {
   u = newtemp; gen(int2real, E_1. place, -, u);
    gen(\theta^r, u, E_2, place, E, place); E, type = real; 
else if E_1. type == real \&\& E_2. type == integer {
   u = newtemp; gen(int2real, E_2. place, -, u);
    gen(\theta^r, E_1, place, u, E, place); E, type = real; 
else E.type = type\_error; }
```

第七章 语义分析和中间代码生成

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - ▶ 7.6.4 多态函数

7.3 布尔表达式的翻译

□ 布尔表达式的作用

- ▶ 作为控制语句的条件式;
- ▶ 作为逻辑运算,获得逻辑值。

□ 算符优先级的说明:

- ▶ 优先级由高到低: ¬.∧.∨;
- ^,∨服从左结合规则, ¬服从右结合规则;
- \triangleright 关系表达式形如 $E_1\theta E_2$, 其中关系符 θ 包括<, \leq , =, \neq , >, \geq , E_i 为算术表达式;
- 各关系符优先级相同,高于布尔算符,低于算术算符;
- \triangleright 关系符不得结合, 如a < b < c为非法。

7.3 布尔表达式的翻译

- □ 计算方法1:如同算术表达式,一步不差的从表达式各部分值计算整个表达式的值
 - $ightharpoonup 1 \lor (\neg 0 \land 0) = 1 \lor (1 \land 0) = 1 \lor 0 = 1$
- □ 计算方法2: 优化算法
 - \triangleright $A \lor B$: if A then true else B
 - \triangleright $A \land B$: if A then B else false
 - \rightarrow $\neg A$: if A then false else true

第七章 语义分析和中间代码生成

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - 7.6.4 多态函数

7.3.1 数值表示法

【例7.12】布尔表达式生成四元式: $a \lor b \land \neg c$

- $\mathcal{D} (\neg, c, -, T1)$
- \bigcirc $(\land, b, T1, T2)$
- \mathfrak{G} (V, a, T2, T3)

【例7.13】关系式a < b可以看作: if a < b then 1 else 0

100. (j <, a, b, 103)

101.
$$(=, 0, -, T1)$$

102.
$$(j, -, -, 104)$$

103.
$$(=, 1, -, T1)$$

104. ...

□ nextstat: 为将要生成尚未生成的四元式地址索引, 每生成一条自动加1

```
(\mathcal{D} E \to E_1 \vee E_2) {E.place = newtemp; gen(\vee, E_1.place, E_2.place, E.place); }
(2) E \rightarrow E_1 \land E_2 \qquad \{E.place = newtemp; gen(\land, E_1.place, E_2.place, E.place); \}
(3) E \rightarrow \neg E_1 {E.place = newtemp; gen(\neg, E_1.place, \neg, E.place); }
(4) E \rightarrow (E_1) \{E.place = E_1.place;\}
(5) E \rightarrow id {E.place = id.place;}
gen(i\theta, id_1, place, id_2, place, next + 3);
                    gen(=, 0, -, E. place);
                    gen(i, -, -, nextstat + 2);
                    gen(=, 1, -, E. place); \}
```

7.3.1 数值表示法

【例7.14】布尔表达式: $a < b \lor c \le d \land e > f$,其中nextstat=100 地址码

$$E \rightarrow id_1 \theta id_2$$
 {E.place = newtemp;
 $E \rightarrow E_1 \lor E_2$ {E.place = newtemp;
 $gen(\lor, E_1.place, E_2.place, E.place);$ }

步骤	文法符号栈	输入串	动作
1	#	$a < b \lor c \le d \land e > f \#$	初始
2	#a < b	$\forall \ c \le d \land e > f \#$	移进
3	# <i>E</i>	$\forall \ c \le d \land e > f \#$	归约
4	$\#E \lor c \le d$	∧ <i>e</i> > <i>f</i> #	移进
5	$\#E \vee E$	∧ <i>e</i> > <i>f</i> #	归约
6	$#E \lor E \land e > f$	#	移进
7	$\#E \vee E \wedge E$	#	归约
8	$\#E \vee E$	#	归约
9	# <i>E</i>	#	归约
10	# <i>E</i>	#	成功

	_
	100: $(j <, a, b, 103)$
	101: (=, 0, -, <i>T</i> 1)
	102: (<i>j</i> , –, –, 104)
	103: (=, 1, -, <i>T</i> 1)
	104: $(j \le, c, d, 107)$
	105: (=, 0, -, T2)
	106: (<i>j</i> , –, –, 108)
	107: (=, 1, -, T2)
	108: $(j >, e, f, 111)$
	109: (=, 0, -, T3)
	110: (<i>j</i> , –, –, 112)
	111: (=, 1, -, T3)
E.place = T3	112: (\(\Lambda\), T2, T3, T4)
E.place = T4	113: (V, T1, T4, T5)
E.place = T5	
上 <u>·</u> お屋性	

栈属性

第七章 语义分析和中间代码生成

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - ▶ 7.6.4 多态函数

口 条件语句 $if\ E\ then\ S_1\ else\ S_2$ 中的布尔表达式E,仅用于控制对 S_1 和 S_2 的选择,不需要用一个临时变量保留其值,因此可以为布尔式E设置两个出口:

▶ 真出口:指向S₁的第一个四元式;

 \triangleright 假出口:指向 S_2 的第一个四元式。

【例7.15】 if $a > c \lor b < d$ then S_1 else S_2

这两个语句都跳转到 L_2 ,但 L_2 需要分析到 S_1 才能确定,其它类似。

if a > c goto L_2

 $goto L_1$

 L_1 : if b < d goto L_2 goto L_3

 L_2 : (关于 S_1 的代码序列) $goto\ L_{next}$

 L_3 : (关于 S_2 的代码序列)

 L_{next} :

100. $(j > \alpha, c, 104)$

101. (j, -, -, 102)

102. (j <, b, d, 104)

103. (j, -, -, 116)

104. *S*₁...

115. (j, -, -, 120)

116. *S*₂ ...

120. ...

□ 思路:

- ▶ 生成四元式时, 暂不确定跳转标号, 而是把指向同一目标的四元式组成一个链表, 确定目标后再回填;
- ightharpoonup 为非终结符号E赋予两个综合属性E. truelist和E. falselist,分别记录真、假出口链;
- ▶ 需要回填的四元式,借助第四区块构造真、假出口链。

□ 用到四元式:

- \triangleright (jnz, a, -, p): if a goto p
- \triangleright $(j\theta, x, y, p)$: if $x \theta y$ goto p
- \triangleright (j,-,-,p): goto p

□ 需要用到的变量或函数:

- > nxq: 即Next Quadruplet, 指向下一条将要产生, 但尚未产生的四元式地址 (标号), 执行一次gen增1。
- ➤ mklist(i): 创建一个链表,这个链表仅含标号为i的四元式,并返回链表指针。
- ightharpoonup merge(p1,p2): 把以p1和p2为链首的两条链合并,返回新的链首。当遇到 $E_1 \land E_2$ 时,它们的falselist链表需要合并;当遇到 $E_1 \lor E_2$ 时,它们的turelist链表需要合并。
- \blacktriangleright backpatch(p,t): 回填,把p所链接的每个四元式的第四区段都填t。当遇到 $E_1 \land E_2$ 时, E_2 确定了 E_1 的truelist链表需要回填的地址;当遇到 $E_1 \lor E_2$ 时, E_2 确定了 E_1 的truelist的。

Merge操作


```
Quad * Merge(void * p1, void * p2)
{
  if (p1 == null) return p2;
  if (p2 == null) return p1;
  // 找p2链的链尾
  Quad * p = p2;
  while (p的第四区段内容 \neq null)
       p = p的第四区段内容;
  p的第四区段内容 = p1;
  return p2;
```


backpatch操作


```
void backpatch(Quad * p, Quad * t)
{
   Quad * q;
   while (p \neq null)
      q = p的第四区段内容;
      p的第四区段内容 = t;
      p = q;
```


翻译模式

```
(1) E \rightarrow E_1 \lor ME_2 \ \{backpatch(E_1. falselist, M. quad);
                       E. truelist = merge(E_1. truelist, E_2. truelist);
                       E. falselist = E_2. falselist;
(2) E \rightarrow E_1 \land ME_2 {backpatch(E_1.truelist, M.quad);
                       E. falselist = merge(E_1. falselist, E_2. falselist);
                       E.truelist = E_2.truelist;
(3) M \rightarrow \varepsilon
                     \{M.quad = nxq;\} // 在E_2之前把它记下来,E_2之后使用。
(4) E \rightarrow \neg E_1 { E.truelist = E_1.falselist;
                       E. falselist = E_1. truelist;
(5) E \rightarrow (E_1)
                    {E.truelist = E_1.truelist;}
                       E. falselist = E_1. falselist;
```


翻译模式

```
(6) E \rightarrow id_1 \theta id_2 {E.truelist = mklist(nxq);

E.falselist = mklist(nxq + 1);

gen(j\theta, id_1.place, id_2.place, 0);

gen(j, -, -, 0);}

(7) E \rightarrow id {E.truelist = mklist(nxq);

E.falselist = mklist(nxq + 1);

gen(jnz, id. place, -, 0);

gen(j, -, -, 0);}
```

下面通过构造LR(0)分析表确定文法的归约顺序。

$(0) E' \to E$ $(A) E \to -E$	$(1) E \to E \lor ME$ $(5) E \to (E)$		F ∧ ME	$(3) M \to \varepsilon$ $(7) E \to id$
$(4) E \rightarrow \neg E$	$(5) E \to (E)$	$(0) E \rightarrow$	id θ id	$(7) E \rightarrow id$
$I_0: E' \to E$ $E \to E \lor ME$ $E \to E \land ME$	$I_{1} = Go(I_{0}, E):$ $E' \to E \cdot$ $E \to E \cdot \lor ME$	$I_2 = Go(I_0, \neg):$ $E \to \neg \cdot E$ $E \to E \lor ME$	$I_3 = Go(I_0, ():$ $E \to (\cdot E)$ $E \to \cdot E \lor ME$	$I_5 = Go(I_1, \vee):$ $E \to E \vee ME$ $M \to \bullet$
$E \rightarrow \neg E$	$E \to E \cdot \wedge ME$	$E \rightarrow \cdot E \wedge ME$	$E \rightarrow \cdot E \wedge ME$	$I_6 = Go(I_1, \wedge):$
$E \to (E)$ $E \to id \theta id$ $E \to id$	$I_4 = Go(I_0, id):$ $E \to id \cdot \theta \ id$ $E \to id \cdot \theta$	$E \rightarrow \neg E$ $E \rightarrow (E)$ $E \rightarrow id \theta id$	$E \rightarrow \neg E$ $E \rightarrow (E)$ $E \rightarrow id \ \theta \ id$	$E \to E \land \cdot ME$ $M \to \cdot$
$E \rightarrow id$ $I_7 = Go(I_2, E):$	$E \to id \cdot$ $I_2 = Go(I_2, \neg):$	$E \rightarrow id$	$E \rightarrow id \theta id$ $E \rightarrow id$	$I_9 = Go(I_4, \theta):$ $E \to id \ \theta \cdot id$
$E \to \neg E \cdot \\ E \to E \cdot \lor ME$	$I_3 = Go(I_2, ():$ $I_2 = Go(I_2, id):$	$I_8 = Go(I_3, E):$ $E \to (E \cdot)$	$I_2 = Go(I_3, \neg):$ $I_3 = Go(I_3, ():$	$I_{10} = Go(I_5, M):$ $E \to E \lor M \cdot E$
$E \to E \cdot \wedge ME$ $I = Go(I \cdot M)$	$I_4 = Go(I_2, id):$ $I_5 = Go(I_7, \lor):$	$E \to E \cdot \vee ME$ $E \to E \cdot \wedge ME$	$I_4 = Go(I_3, id):$	$E \rightarrow E \lor ME$ $E \rightarrow E \land ME$
$I_{11} = Go(I_6, M):$ $E \to E \land M \cdot E$	$I_6 = Go(I_7, \wedge)$:	$I_{14} = Go(I_{10}, E):$ $E \to E \lor ME \cdot$	$I_{15} = Go(I_{11}, E):$ $E \to E \land ME \cdot$	$E \to E \land ME$ $E \to \neg E$
$E \to E \lor ME$ $E \to E \land ME$	$I_{12} = Go(I_8,)):$ $E \to (E) \cdot$	$E \to E \cdot \vee ME$	$E \to E \cdot \vee ME$ $E \to E \cdot \wedge ME$	$E \to (E)$ $E \to id \theta id$
$E \rightarrow \neg E$	$I_5 = Go(I_8, \vee):$	$E \to E \cdot \wedge ME$		$E \rightarrow id$
$E \to (E)$ $E \to id \theta id$	$I_6 = Go(I_8, \wedge)$:	$I_2 = Go(I_{10}, \neg):$ $I_2 = Go(I_{10}, \neg):$	$I_2 = Go(I_{11}, \neg)$: $I_3 = Go(I_{11}, ()$:	$I_5 = Go(I_{14}, V):$
$E \rightarrow id b id$ $E \rightarrow id$	$I_{13} = Go(I_9, id):$ $E \to id \ \theta \ id \cdot$	$I_3 = Go(I_{10}, ():$ $I_4 = Go(I_{10}, id):$	$I_4 = Go(I_{11}, id)$:	$I_6 = Go(I_{14}, \land)$: $I_5 = Go(I_{15}, \lor)$:
			_	$I_6 = Go(I_{15}, \land):$ $I_6 = Go(I_{15}, \land):$

 $(0)~E'\to E$

(1) $E \rightarrow E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \rightarrow \varepsilon$

 $(4) E \rightarrow \neg E$

 $(5) E \to (E)$

(6) $E \rightarrow id \ \theta \ id$

		Action								
状态		٨	V	θ	id	()	#	Gc E	М
0					S_4				1	
1								acc		
2	S_2				S_4	S_3			7	
3										
4	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7		
5										
6										11
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4		
8		S_6	S_5				S_{12}			
9					S_{13}					
10										
11										
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5		
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6		
14										
15										

$I_0: E' \to \cdot E$	$I_1 = Go(I_0, E):$
$E \rightarrow E \vee ME$	$E' \to E$.
$E \rightarrow \cdot E \wedge ME$	$E \to E \cdot \vee ME$
$E \rightarrow \cdot \neg E$	$E \to E \cdot \wedge ME$
$E \rightarrow \cdot (E)$	$I_4 = Go(I_0, id):$
$E \rightarrow id \theta id$	$E \rightarrow id \cdot \theta id$
$E \rightarrow id$	$E \rightarrow id$.
$I_7 = Go(I_2, E):$	$I_2 = Go(I_2, \neg):$
$E \rightarrow \neg E \cdot$	$I_3 = Go(I_2, ():$
$E \rightarrow E \cdot \vee ME$	
$E \to E \cdot \wedge ME$	$I_4 = Go(I_2, id):$
$I_{11} = Go(I_6, M):$	$I_5 = Go(I_7, \vee):$
$E \to E \land M \cdot E$	$I_6 = Go(I_7, \wedge)$:
$E \rightarrow \cdot E \vee ME$	$I_{12} = Go(I_8,))$:
$E \rightarrow \cdot E \wedge ME$	$E \rightarrow (E)$.
$E \rightarrow \neg E$	$I_5 = Go(I_8, \vee)$:
$E \rightarrow \cdot (E)$	$I_6 = Go(I_8, \wedge)$:
$E \rightarrow id \theta id$	
$E \rightarrow id$	$I_{13} = Go(I_9, id)$: $E \rightarrow id \ \theta \ id \cdot$

 $(0)~E'\to E$

 $(1) E \to E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \rightarrow \varepsilon$

 $(4) E \rightarrow \neg E$

 $(5) E \to (E)$

(6) $E \rightarrow id \ \theta \ id$

				Act	ion				Go	oto
状态	\neg	٨	>	θ	id	()	#	Ш	М
0	S_2				S_4	S_3			1	
1								acc	7	
2	S_2				S_4	S_3				
3	S_2				S_4	S_3			8	
4	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7		
5										
6										11
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4		
8		S_6	S_5				S_{12}			
9					S_{13}					
10	S_2				S_4	S_3			14	
11	S_2				S_4	S_3			15	
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5		
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6		
14	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1		
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		

$I_2 = Go(I_0, \neg):$	$I_3 = Go(I_0, ():$
$E \rightarrow \neg \cdot E$	$E \to (\cdot E)$
$E \rightarrow \cdot E \vee ME$	$E \rightarrow \cdot E \vee ME$
$E \rightarrow \cdot E \wedge ME$	$E \rightarrow \cdot E \wedge ME$
$E \rightarrow \cdot \neg E$	$E \rightarrow \neg E$
$E \rightarrow (E)$	$E \rightarrow (E)$
$E \rightarrow id \theta id$	$E \rightarrow id \theta id$
$E \rightarrow id$	$E \rightarrow id$
$I_8 = Go(I_3, E):$	$I_2 = Go(I_3, \neg)$:
$E \to (E \cdot)$	$I_3 = Go(I_3, ():$
$E \rightarrow E \cdot \vee ME$	
$E \rightarrow E \cdot \wedge ME$	$I_4 = Go(I_3, id):$
$I_{14} = Go(I_{10}, E)$:	$I_{15} = Go(I_{11}, E)$:
$E \rightarrow E \vee ME$.	$E \to E \land ME \cdot$
$E \rightarrow E \cdot \vee ME$	$E \rightarrow E \cdot \vee ME$
$E \to E \cdot \wedge ME$	$E \to E \cdot \wedge ME$
$I_2 = Go(I_{10}, \neg):$	$I_2 = Go(I_{11}, \neg):$
$I_3 = Go(I_{10}, ():$	$I_3 = Go(I_{11}, ():$
$I_4 = Go(I_{10}, id):$	$I_4 = Go(I_{11}, id):$

4	'n	E'		7
	U) Ľ	\rightarrow	l

(1) $E \rightarrow E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \rightarrow \varepsilon$

$$(4) E \rightarrow \neg E$$

 $(5) E \to (E)$

(6) $E \rightarrow id \theta id$

	Action									Goto	
状态	Γ	Λ	V	θ	id	()	#	Е	M	
0	S_2				S_4	S_3			1		
1		S_6	S_5					acc	7		
2	S_2				S_4	S_3					
3	S_2				S_4	S_3			8		
4	r_7	r_7	r_7	S_9	r_7	r_7	r_7	r_7			
5	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		10	
6	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		11	
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4			
8		S_6	S_5				<i>S</i> ₁₂				
9					S_{13}						
10	S_2				S_4	S_3			14		
11	S_2				S_4	S_3			15		
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5			
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6			
14	r_1	S_6	r_1	r_1	r_1	r_1	r_1	r_1			
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2			

$$I_5 = Go(I_1, \vee)$$
:
 $E \to E \vee ME$
 $M \to \vee$

$$I_6 = Go(I_1, \wedge)$$
:
 $E \to E \wedge ME$
 $M \to \Phi$

$$I_9 = Go(I_4, \theta)$$
:
 $E \to id \ \theta \cdot id$

$$I_{10} = Go(I_5, M)$$
:
 $E \rightarrow E \lor M \cdot E$

$$E \rightarrow \cdot E \vee ME$$

$$E \rightarrow \cdot E \wedge ME$$

$$E \rightarrow \cdot \neg E$$

$$E \rightarrow \cdot (E)$$

$$E \rightarrow id \theta id$$

$$E \rightarrow id$$

$$I_5 = Go(I_{14}, V):$$

$$I_6 = Go(I_{14}, \wedge)$$
:

$$I_5 = Go(I_{15}, \vee):$$

$$I_6 = Go(I_{15}, \wedge)$$
:

 $(0)~E'\to E$

(1) $E \rightarrow E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \to \varepsilon$

 $\textbf{(4)}\ E \rightarrow \neg E$

 $(5) E \to (E)$

(6) $E \rightarrow id \theta id$

				Act	ion				Go	oto
状态	\neg	^	V	θ	id	()	#	Е	М
0	S_2				S_4	S_3			1	
1		S_6	S_5					acc	7	
2	S_2				S_4	S_3				
3	S_2				S_4	S_3			8	
4	r_7	r_7	r_7	S_9	r_7	r_7	r_7	r_7		
5	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		10
6	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		11
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4		
8		S_6	S_5				S_{12}			
9					S_{13}					
10	S_2				S_4	S_3			14	
11	S_2				S_4	S_3			15	
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5		
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6		
14	r_1	S_6	r_1	r_1	r_1	r_1	r_1	r_1		
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		

_			
	步骤	状态/符号栈	输入串
	1	0 #	$a < b \lor c \le d \land e \#$
	2	04 #a	$< b \lor c \le d \land e \#$
	3	049 # <i>a</i> <	$b \lor c \le d \land e \#$
	4	049 <u>13</u> # <i>a</i> < <i>b</i>	$\forall c \leq d \land e \#$
	5	01 #E	$\forall c \leq d \land e \#$
	6	015 # <i>E</i> V	$c \leq d \wedge e \#$
	7	015 <u>10</u> # <i>E</i> ∨ <i>M</i>	$c \leq d \wedge e \#$
	8	015 <u>10</u> 4 # <i>E</i> ∨ <i>Mc</i>	$\leq d \wedge e \#$
	9	015 <u>10</u> 49 # <i>E</i> ∨ <i>Mc</i> ≤	d ∧ e#
	10	$015\underline{10}49\underline{13}$ $#E \lor Mc \le d$	∧ e#
	11	015 <u>10 14</u> # <i>E</i> ∨ <i>ME</i>	∧ <i>e</i> #

 $(0)~E'\to E$

(1) $E \rightarrow E \vee ME$

(2) $E \rightarrow E \wedge ME$

(3) $M \rightarrow \varepsilon$

 $\textbf{(4)}\ E \rightarrow \neg E$

 $(5) E \to (E)$

(6) $E \rightarrow id \ \theta \ id$

	Action									Goto	
状态	\neg	Λ	V	θ	id	()	#	Е	М	
0	S_2				S_4	S_3			1		
1		S_6	S_5					асс	7		
2	S_2				S_4	S_3					
3	S_2				S_4	S_3			8		
4	r_7	r_7	r_7	S_9	r_7	r_7	r_7	r_7			
5	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		10	
6	r_3	r_3	r_3	r_3	r_3	r_3	r_3	r_3		11	
7	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4			
8		S_6	S_5				S_{12}				
9					S_{13}						
10	S_2				S_4	S_3			14		
11	S_2				S_4	S_3			15		
12	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5			
13	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6			
14	r_1	S_6	r_1	r_1	r_1	r_1	r_1	r_1			
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2			

步骤	状态/符号栈	输入串
11	015 <u>10 14</u> #E ∨ ME	∧ e#
12	015 <u>10</u> <u>14</u> 6 #E ∨ ME ∧	e#
13	015 <u>10</u> <u>14</u> 6 <u>11</u> # <i>E</i> ∨ <i>ME</i> ∧ <i>M</i>	e#
14	015 <u>10</u> <u>14</u> 6 <u>11</u> 4 # <i>E</i> ∨ <i>ME</i> ∧ <i>Me</i>	#
1 15	015 <u>10 14</u> 6 <u>11 15</u> # <i>E</i> ∨ <i>ME</i> ∧ <i>ME</i>	#
16	015 <u>10</u> <u>14</u> # <i>E</i> ∨ <i>ME</i>	#
17	01 #E	#
18	01成功 # <i>E</i>	#

 $| #E \lor Mc < d$

郑艳伟, zhengyw@sdu.edu.cn

【例7.15】布尔表达式: $a < b \lor c \le d \land e$,假设nxq = 100

$E \rightarrow id$	${E.truelist = mklist(nxa)}$:

 $E \rightarrow E_1 \lor ME_2$ {backpatch(E_1 . falselist, M. quad);

 $E. truelist = merge(E_1. truelist, E_2. truelist);$

 $E.falselist = E_2.falselist;$

步骤	文法符号栈	输入串	动作
1	#	$a < b \lor c \le d \land e \#$	初始
2	#a < b	$\forall c \leq d \land e \#$	移进
3	# <i>E</i>	$\forall c \leq d \land e \#$	归约
4	# <i>E</i> ∨	$c \leq d \wedge e \#$	移进
5	$\#E\vee M$	$c \leq d \wedge e \#$	旧约

)
7	$\#E \vee ME$	∧ <i>e</i> #	归约
0	#E \/ ME \	о. Ш	1427.11

0	#EVMEA	ен	修姓
9	$\#E \vee ME \wedge M$	e#	归约

10	$ #E \lor ME \land Me $	#	移进
11	$\#E \vee ME \wedge ME$	#	归约

13	# <i>E</i>	#	归约
14	# <i>E</i>	#	成功

三地址码

100: (j <, a, b, 0)

101: (j, -, -, 102)

102: $(j \le, c, d, 104)$

103: (j, -, -, 0)

104: (*jnz*, *e*, –, 100)

105: (j, -, -, 103)

两个未填充四元式链,需要等 到确定布尔式为真做什么、为 假做什么时才能回填。

E.truelist = 104, E.falselist = 105

M.quad = 104

E.truelist = 104, E.falselist = 105

M.quad = 102

E.truelist = 104, E.falselist = 105

第七章 语义分析和中间代码生成

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - 7.6.4 多态函数

7.4.1 控制流语句

□ 控制流语句:

 \triangleright S \rightarrow if E then S_1 | if E then S_1 else S_2 | while E do S_1

7.4.1 控制流语句

□ 控制流语句的完整文法:

- $(\mathcal{D} S \rightarrow if E then S)$
- (2) | if E then S else S
- (3) | while E do S
- (4) | begin L end
- (5) | A // 赋值语句,对应7.3节的S
- ⑥ *L* → *L*; *S* // 语句表
- ⑦ | S // 语句

□ 新的属性S.nextlist和L.nextlist:

ightharpoonup 表示紧接语句S(L)之后要执行的语句。


```
(1) S \rightarrow if E then M_1S_1N else M_2S_2
                     \{backpatch(E.truelist, M_1.quad)\}
                     backpatch(E.falselist, M_2.quad);
                     S.nextlist = merge(S_1.nextlist, N.nextlist, S_2.nextlist);
                   \{M.quad = nxq;\} // 在S之前把它记下来, S之后使用。
(2) M \rightarrow \varepsilon
(3) N \rightarrow \varepsilon
                   \{N.nextlist = mklist(nxq)\}
                     gen(j,-,-,0); } // 跳到S_2之后, 也就是整个语句之后
(4) S \rightarrow if E then MS_1
                     {backpatch(E.truelist, M.quad);
                     S.nextlist = merge(E.falselist, S_1.nextlist);
```

翻译模式

```
(5) S \rightarrow while M_1E do M_2S_1
                     \{backpatch(S_1.nextlist, M_1.quad)\}
                     backpatch(E.truelist, M_2.quad);
                     S.nextlist = E.falselist;
                     gen(i, -, -, M_1, quad); 
(6) S \rightarrow begin L end
                            \{S.nextlist = L.nextlist; \}
(7) S \rightarrow A \{S. nextlist = mklist(); \} // 初始化为空表
(8) L \rightarrow L_1; MS {backpatch(L_1.nextlist, M. quad); // L_1的结束是S的开始
                     L.nextlist = S.nextlist;
(9) L \rightarrow S
                   \{L.nextlist = S.nextlist;\}
```

	→ <i>iEtMSNeMS</i> (2) <i>I</i> → <i>A</i> (8) <i>L</i> →	$M \to \varepsilon$ (3) $N \to \varepsilon$ L; MS (9) $L \to S$	$(4) S \rightarrow iEtMS \qquad (5)$	$S) S \to wMEdMS$
$I_0: S' \to S$ $S \to iEtMSNeMS$	$I_5 = Go(I_0, A)$ $S \to A \cdot$	$I_{11} = Go(I_7, E)$ $S \to wME \cdot dMS$	$I_{16} = Go(I_{13}, M)$ $L \to L; M \cdot S$	$I_{20} = Go(I_{17}, N)$ $S \to iEtMSN \cdot eMS$
$S \rightarrow iEtMS$ $S \rightarrow wMEdMS$ $S \rightarrow \{L\}$	$I_{6} = Go(I_{2}, E)$ $S \rightarrow iE \cdot tMSNeMS$ $S \rightarrow iE \cdot tMS$	$I_{12} = Go(I_8, \})$ $S \to \{L\} \cdot$ $I_{13} = Go(I_8, ;)$	$S \rightarrow iEtMSNeMS$ $S \rightarrow iEtMS$ $S \rightarrow wMEdMS$	$I_{21} = Go(I_{20}, e)$ $S \rightarrow iEtMSNe \cdot MS$ $M \rightarrow \cdot$
$S \to A$ $I_1 = Go(I_0, S)$ $S' \to S$	$I_7 = Go(I_3, M)$ $S \to wM \cdot EdMS$	$L \to L; MS$ $M \to \cdot$	$S \to \{L\}$ $S \to A$ $I_2 = Go(I_{14}, i)$	$I_{22} = Go(I_{21}, M)$ $S \rightarrow iEtMSNeM \cdot S$ $S \rightarrow iEtMSNeMS$
$I_{2} = Go(I_{0}, i)$ $S \to i \cdot EtMSNeMS$	$I_{8} = Go(I_{4}, L)$ $S \to \{L \cdot\}$ $L \to L \cdot; MS$	$I_{14} = Go(I_{10}, M)$ $S \to iEtM \cdot SNeMS$ $S \to iEtM \cdot S$	$I_3 = Go(I_{14}, w)$ $I_4 = Go(I_{14}, \{\})$	$S \rightarrow iEtMS$ $S \rightarrow wMEdMS$
$S \rightarrow i \cdot EtMS$ $I_{3} = Go(I_{0}, w)$ $S \rightarrow w \cdot MEdMS$	$I_9 = Go(I_4, S)$ $L \to S \cdot$	S →· iEtMSNeMS S →· iEtMS S →· wMEdMS	$I_5 = Go(I_{14}, A)$ $I_{18} = Go(I_{15}, S)$	$S \to \{L\}$ $S \to A$ $I_{23} = Go(I_{22}, S)$
$M \rightarrow \cdot$	$I_2 = Go(I_4, i)$ $I_3 = Go(I_4, w)$	$S \to \{L\}$ $S \to A$	$S \to wMEdMS \cdot$ $I_{19} = Go(I_{16}, S)$	$S \rightarrow iEtMSNeMS \cdot$
$I_{4} = Go(I_{0}, \{)$ $S \to \{\cdot L\}$ $L \to L; MS$	$I_4 = Go(I_4, \{\})$ $I_5 = Go(I_4, A)$	$I_{15} = Go(I_{11}, d)$ $S \to wMEdM \cdot S$	$L \rightarrow L; MS \cdot$ $I_{2} = Go(I_{16}, i)$	$I_{2} = Go(I_{22}, i)$ $I_{3} = Go(I_{22}, w)$ $I_{4} = Go(I_{22}, \{\})$
$L \rightarrow S$ $S \rightarrow iEtMSNeMS$ $S \rightarrow iEtMS$	$I_{10} = Go(I_6, t)$ $S \to iEt \cdot MSNeMS$	$M \rightarrow \cdot$ $I_{17} = Go(I_{14}, S)$ $S \rightarrow iEtMS \cdot NeMS$	$I_3 = Go(I_{16}, w)$ $I_4 = Go(I_{16}, \{\})$	$I_{5} = Go(I_{22}, A)$
$S \rightarrow wMEdMS$ $S \rightarrow \{L\}$ $S \rightarrow A$	$S \to iEt \cdot MS$ $M \to \cdot$	$S \to iEtMS \cdot \\ N \to \cdot$	$I_5 = Go(I_{16}, A)$	67

(0)	$S' \rightarrow$	• S	(1)	$S \rightarrow i$	iEtM	SNe	MS	(2)	<i>M</i>	ε	(3) <i>l</i>	V →	ε (4) <i>S</i>	$\rightarrow iE$	tMS	$(5) S \to wMEdMS$
(6)	$S \rightarrow$	<i>{L}</i>	(7)	$S \rightarrow$			(8)	$L \rightarrow$	L; M	1S	(9) L	a o S	5				
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L		$I_0: S' \to S$
0	S_2			S_3		S_4						1					$S \rightarrow iEtMSNeMS$
1											acc						$S \rightarrow iEtMS$
2																	$S \rightarrow wMEdMS$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						$S \rightarrow \{L\}$
4																	$S \rightarrow A$
5																	$I_1 = Go(I_0, S)$
6																	$S' \to S \cdot$
7																	
8																	$I_2 = Go(I_0, i)$
9																	$S \rightarrow i \cdot EtMSNeMS$
10																	$S \rightarrow i \cdot EtMS$
11																	$I_3 = Go(I_0, w)$
12																	$S \rightarrow w \cdot MEdMS$
13																	$M \rightarrow \cdot$
14																	$I_4 = Go(I_0, \{)$
15																	$S \to \{\cdot L\}$
16																	$L \rightarrow L; MS$
17																	$L \rightarrow S$
18																	$S \rightarrow iEtMSNeMS$
19																	$S \rightarrow iEtMS$
20																	$S \rightarrow wMEdMS$
21																	$S \rightarrow \{L\}$
22																	$S \rightarrow A$
23																	

						SNe	MS	(2)	М —	€	(3)	$N \rightarrow$	ε (4) <i>S</i>	→ il	$EtMS \qquad \textbf{(5) } S \rightarrow wMEdMS$
(6)	$S \rightarrow$	<i>{L}</i>	(7)	$S \rightarrow$	• <i>A</i>		(8)	$L \rightarrow$	L; N	1S	(9) <i>I</i>	$L \to S$	5			
状态	i	t	е	W	d	{	}	;	E	Α	#	S	М	N	L	$I_5 = Go(I_0, A)$
0	S_2			S_3		S_4				S_5		1				$S \to A$.
1											acc					
2									S_6							$I_6 = Go(I_2, E)$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			$S \rightarrow iE \cdot tMSNeMS$
4	S_2			S_3		S_4				S_5		9			8	$S \rightarrow iE \cdot tMS$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					$I_7 = Go(I_3, M)$
6		S_{10}														$S \rightarrow wM \cdot EdMS$
7																$I_8 = Go(I_4, L)$
8																$S \to \{L \cdot\}$
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9		r_9	r_9	r_9					$L \rightarrow L \cdot ; MS$
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2					$I_9 = Go(I_4, S)$
11																$L \to S \cdot$
12																
13																$I_2 = Go(I_4, i)$
14																$I_3 = Go(I_4, w)$
15																$I_4 = Go(I_4, \{)$
16																
17																$I_5 = Go(I_4, A)$
18																$I_{10} = Go(I_6, t)$
19																$S \rightarrow iEt \cdot MSNeMS$
20																$S \rightarrow iEt \cdot MS$
21																$M \rightarrow \cdot$
22																69
23																

(0)	S' -	> S	(1)	$S \rightarrow 0$	iEtM	SNe	MS	(2)	М —	ε	(3) <i>I</i>	$V \rightarrow$	ε (4) <i>S</i>	$\rightarrow iE$	tM.	$S \qquad \textbf{(5) } S \rightarrow wMEdMS$
(6)	$S \rightarrow$	<i>{L}</i>	(7)	$S \rightarrow$	$\rightarrow A$		(8)	$L \rightarrow$	L; M	1S	(9) L	a o S	5				
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L		I = Co(I - F)
0	S_2			S_3		$\overline{S_4}$				S_5		1					$I_{11} = Go(I_7, E)$ $S \to wME \cdot dMS$
1											acc						
2									S_6								$I_{12} = Go(I_8, \})$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7				$S \to \{L\}$.
4	S_2			S_3		S_4				S_5		9			8		$I_{13} = Go(I_8,;)$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7						$L \rightarrow L$; MS
6		S_{10}															$M \rightarrow \cdot$
7									S_{11}								$I_{14} = Go(I_{10}, M)$
8							S_{12}	S_{13}									$S \rightarrow iEtM \cdot SNeMS$
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9						$S \rightarrow iEtM \cdot S$
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14				$S \rightarrow iEtMSNeMS$
11					S_{15}												$S \rightarrow iEtMS$
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6						$S \rightarrow wMEdMS$
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						$S \rightarrow \{L\}$
14												17					$S \rightarrow A$
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2						$I_{15} = Go(I_{11}, d)$
16																	$S \rightarrow wMEdM \cdot S$
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4						$M \rightarrow \cdot$
18																	
19																	$I_{17} = Go(I_{14}, S)$
20																	$S \rightarrow iEtMS \cdot NeMS$
21																	$S \rightarrow iEtMS \cdot$
22																	$N \rightarrow \cdot$
23																	

(0)	$S' \rightarrow$	S	(1) .	$S \rightarrow i$	iEtM	SNe	MS	(2)	$M \rightarrow$	<i>€</i>	(3) <i>I</i>	$V \rightarrow$	ε (4) <i>S</i>	→ iEt	SMS (5) $S \rightarrow wMEdMS$
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	\cdot A		(8)	$L \rightarrow$	L; M	1S	(9) L	a o S	•			
状态	i	t	е	W	d	{	}	;	Е	Α	#	S	М	N	L	
0	S_2			S_3		S_4				S_5		1				$I_{16} = Go(I_{13}, M)$
1											acc					$L \rightarrow L; M \cdot S$
2									S_6							$S \rightarrow iEtMSNeMS$
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			$S \rightarrow iEtMS$
4	S_2			S_3		S_4				S_5		9			8	$S \rightarrow wMEdMS$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					$S \rightarrow \{L\}$
6		S_{10}														$S \rightarrow A$
7									S_{11}							$I_2 = Go(I_{14}, i)$
8							S_{12}	S_{13}								$I_3 = Go(I_{14}, w)$
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14			$I_4 = Go(I_{14}, \{)$
11					S_{15}											$I_5 = Go(I_{14}, A)$
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6					$I_{18} = Go(I_{15}, S)$
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		16			$S \rightarrow wMEdMS$.
14	S_2			S_3		S_4				S_5		17				
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	18				$I_{19} = Go(I_{16}, S)$
16	S_2			S_3		S_4				S_5		19				$L \rightarrow L; MS \cdot$
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4					$I_2 = Go(I_{16}, i)$
18	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5					$I_3 = Go(I_{16}, w)$
19	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					
20																$I_4 = Go(I_{16}, \{)$
21																$I_5 = Go(I_{16}, A)$
22																71
23																_

 $I_{20} = Go(I_{17}, N)$ $S \rightarrow iEtMSN \cdot eMS$ $I_{21} = Go(I_{20}, e)$ $S \rightarrow iEtMSNe \cdot MS$ $M \rightarrow \cdot$ $I_{22} = Go(I_{21}, M)$ $S \rightarrow iEtMSNeM \cdot S$ $S \rightarrow iEtMSNeMS$ $S \rightarrow iEtMS$ $S \rightarrow wMEdMS$ $S \rightarrow \{L\}$ $S \rightarrow A$ $I_{23} = Go(I_{22}, S)$ $S \rightarrow iEtMSNeMS \cdot$ $I_2 = Go(I_{22}, i)$ $\overline{I_3} = Go(\overline{I_{22}}, w)$ $I_4 = Go(I_{22}, \{)$ $I_5 = Go(I_{22}, A)$

72

(0)	<i>S</i> ′ →	S	(1)	$S \rightarrow i$	iEtM	SNe	MS	(2)	М —	<i>E</i>	(3)	$N \rightarrow$	ε (4) <i>S</i>	$\rightarrow iB$	$EtMS$ (5) $S \rightarrow$	wME	dMS
(6)	$S \rightarrow$	$\{L\}$	(7)	$S \rightarrow$	\cdot A		(8)	$L \rightarrow$	L; M	1S	(9) I	$L \rightarrow S$	5					
状态	i	t	е	W	d	{	}	.,	Е	Α	#	S	М	N	L	状态/符号栈	输	入串
0	S_2			S_3		S_4				S_5		1				0	;E+(/	1. 4) . 4#
1											acc					#	IE L{F	l; A}eA#
2									S_6							02	 Ft{ /	l; A}eA#
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			#i	Lt(1	1,71,07111
4	S_2			S_3		S_4				S_5		9			8	026	$ t\{A$	$\{A\}eA\#$
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					# <i>iE</i>		, ,
6		S_{10}														026 <u>10</u>	A	l; A}eA#
7								_	S_{11}							# <i>iEt</i> 026 <u>10</u> <u>14</u>		
8							S_{12}	S_{13}								# <i>iEtM</i>	$\{A$	l; <i>A</i> } <i>eA</i> #
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					026 <u>10</u> <u>14</u> 4		
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14			# <i>iEtM</i> {	A	l; A}eA#
11					S_{15}											026 <u>10</u> 1445		42 44
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	<i>r</i> ₆	r_6					$\#iEtM\{A$; <i>A</i> } <i>eA</i> #
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		16			026 <u>10</u> <u>14</u> 49		. 4) . 4#
14	S_2			S_3		S_4				S_5		17				#iEtM{S		; <i>A</i> } <i>eA</i> #
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	18				026 <u>10</u> <u>14</u> 48		; A}eA#
16	S_2			S_3		S_4				S_5		19				#iEtM{L		, 11301111
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4			20		026 <u>10</u> <u>14</u> 48 <u>13</u>		<i>A</i> } <i>eA</i> #
18	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5					# <i>iEtM</i> { <i>L</i> ;	1.6	11,011
19	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					026 <u>10</u> <u>14</u> 48 <u>13</u>	<u>16</u>	<i>A</i> } <i>eA</i> #
20			S_{21}													# <i>iEtM</i> { <i>L</i> ; <i>M</i>	165	
21	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	22	22			026 <u>10</u> <u>14</u> 48 <u>13</u> #iEtM{L; MA	<u>10</u> 5	}eA#
22	S_2			S_3		S_4				S_5	_	23				TILLIN (L, MA	,	/3
23	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1							

(0)	$S' \rightarrow$	S	(1) 3	$S \rightarrow i$	iEtM	SNe	MS	(2)	<i>M</i> –	<i>€</i>	(3) <i>I</i>	$V \rightarrow$	ε ((4) <i>S</i>	$\rightarrow iB$	$EtMS \qquad (5) S \to wMEC$	lMS
(6)	$S \rightarrow$	{ <i>L</i> }	(7)	$S \rightarrow$	\cdot A		(8)	$L \rightarrow$	L; M	1S	(9) L	$a \to S$	•				
状态	i	t	е	W	d	{	}	• ;	Е	Α	#	S	М	N	L	状态/符号栈 输	 入串
0	S_2			S_3		S_4				S_5		1				02610 144813 165	2 4 11
1											acc					$\#iEtM\{L; MA$	} <i>eA</i> #
2									S_6							026 <u>10 14</u> 48 <u>13 16 19</u>) 0 1 #
3	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		7			#iEtM{L; MS	}eA#
4	S_2			S_3		S_4				S_5		9			8	026 <u>10</u> <u>14</u> 48	} <i>eA</i> #
5	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7	r_7					#iEtM{L	зелπ
6		S_{10}														026 <u>10 14</u> 48 <u>12</u>	eA#
7									S_{11}							$\#iEtM\{L\}$	
8							S_{12}	S_{13}								026 <u>10</u> <u>14</u> <u>17</u>	eA#
9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9	r_9					#iEtMS	9
10	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		14			026 <u>10 14 17 20</u>	eA#
11					S_{15}											# <i>iEtMSN</i>	
12	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6	r_6					026 <u>10 14 17 20 21</u> # <i>iEtMSNe</i>	A#
13	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		16			026 <u>10</u> 14 17 20 21 22	
14	S_2			S_3		S_4				S_5		17				#iEtMSNeM	A#
15	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	18				026 <u>10 14 17 20 21 22</u>	5
16	S_2			S_3		S_4				S_5		19				#iEtMSNeMA	A#
17	r_4	r_4	r_3	r_4	r_4	r_4	r_4	r_4	r_4	r_4	r_4			20		02610 14 17 20 21 22	23
18	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5	r_5					#iEtMSNeMS	23 #
19	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8	r_8					01	щ
20	<u> </u>		S_{21}		J					Ŭ						# <i>S</i>	#
21	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2	r_2		22			01成功	#
22	S_2			S_3		S_4				S_5		23				# <i>S</i>	
23	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1	r_1					- /-	+

【例7.16】续例【7.15】 if $a < b \lor c \le d \land e \text{ then } x = y + z \text{ else } x = 0$

3 →	$S \rightarrow ij$ E then M_1S_1N else M_2S_2							
{ba	$\{backpatch(E.truelist, M_1.quad); \\ backpatch(E.falselist, M_2.quad); \}$							
S n	_							
$S.nextlist = merge(S_1.nextlist, N.nextlist, S_2.nextlist); }$								
3	#iEtM	x = y +	z e x = 0#					
4	#iEtMx = y	+	+z e x = 0#					
5	#iEtMx = E	+	z e x = 0#					
6	#iEtMx = E + 1	Z	e x = 0#					
7	#iEtMx = E +	E	e x = 0#	[→] 现在剩下最后- 个链S. nextlist				
8	#iEtMx = E		e x = 0#	此处我们手工的				
9	#iEtMA		e x = 0#	用nxq填充。				
10	#iEtMS		e x = 0#	715 111 7 5 5 6				
11	#iEtMSN		e x = 0#					
12	#iEtMSNe		x = 0#	S.nextlist = nu				
13	#iEtMSNeM		x = 0#	M.quad = 109				
14	#iEtMSNeMx =	= 0	#	N.nextlist = 10				
15	#iEtMSNeMx =	= <i>E</i>	#					
16	#iEtMSNeMA		#	S.nextlist = nu				
17	#iEtMSNeMS		#	M.quad = 106				
18	# <i>S</i>		#	S.nextlist = 10				

 $S \rightarrow if E then M_4 S_4 N else M_2 S_2$

三地址码

100: (*j* <, *a*, *b*, 106)

101: (<i>j</i> , –, –, 102)
102: $(j \le, c, d, 104)$
103: (<i>j</i> , –, –, 109)
104: (jnz, e, -, 106)
105: (<i>j</i> , –, –, 109)
106: (+, <i>y</i> , <i>z</i> , <i>T</i> 1)
107: $(=, T1, -, x)$
108: (<i>j</i> , –, –, 110)
109: $(=, 0, -, x)$

S.nextlist = null	
M.quad = 109	
N.nextlist = 108	
S.nextlist = null	
M.quad = 106	
S.nextlist = 108	

现在剩下最后一

个链S.nextlist,

此处我们手工使

【例7.17】 while a < b do if c < d then x = y + z,假设nxq = 100

$S \rightarrow$	$S \rightarrow while M_1E do M_2S_1$					
{ba	$ckpatch(S_1.ne$	$xtlist, M_1. qu$	ad);			
	backpatch(E	$'$. $truelist$, M_2	.quad);			
S.n	extlist = E.fa	lselist;				
gen	$(j,-,-,M_1.qu)$					
Т	#	wa < bdic <	dtx = y + z#			
2	#w	a < bdic <	dtx = y + z#			
3	#wM	a < bdic <	dtx = y + z#			
4	#wMa < b	dic <	dtx = y + z#			
5	#wME	dic <	dtx = y + z#			
6	#wMEd	ic <	dtx = y + z#			
7	#wMEdM	ic <	dtx = y + z#			
8	#wMEdMic < d	d	tx = y + z#			
9	#wMEdMiE		tx = y + z#			
10	#wMEdMiEt		x = y + z #			
11	#wMEdMiEtM		x = y + z #			
12	#wMEdMiEtM:	x = y + z	#			
13	#wMEdMiEtM	A	#			
14	#wMEdMiEtM	S	#			
15	#wMEdMS		#			
16	# <i>S</i>		#			

三地址码 100: (*j* <, *a*, *b*, 102)

101: (j, -, -, 107)102: (j <, c, d, 104)

 $\frac{103: (j, -, -, 100)}{104: (+, y, z, T1)}$

 $\frac{105: (=, T1, -, x)}{106: (j, -, -, 100)}$

此处用nxq手工填充S.nextlist

M.quad = 102

S.nextlist = null M.quad = 104 S.nextlist = 103

E.truelist = 100, E.falselist = 101

S.nextlist = 101

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - > 7.6.4 多态函数

7.4.2 标号与goto语句

- □ 标号语句形式: L:S;
 - (I) $S \rightarrow label S \mid goto i$
 - (2) label \rightarrow i:
- □ 若标号已存在且已定义
 - ▶ 生成四元式: (j, -, -, p)
- □ 若标号已存在且未定义
 - ▶ 生成四元式: (j, -, -, x);
 - $\Rightarrow x = nxq 1;$
 - 当遇到定义标号语句时, 回填。

	名字	类型	•••	定义否	地址	
	•••••					
→	L_1	标号		是	p	
	•••••					
	L_2	标号		否	nxq	—
>	L_3	标号		否	x	
	•••••					

□ 若标号不存在

- ➢ 符号表中增加标号,定义否为"否
 - , 地址为nxq;
- ▶ 生成四元式: (j, -, -, -);
- 当遇到定义标号语句时,回填。

7.4.2 标号与goto语句

シェスタ 郑艳伟, zhengyw@sdu.edu.cn

```
(1) S \rightarrow label S
```

```
(2) label \rightarrow i: \{p = lookup(i.name)\}
                   if p = null then addlabel(i.name, label, true, nxq);
                   else if p.type \neq label || p.isdefined = true then Error;
                   else {
                   modifylabel(p, isdefined = true);
                   backpatch(p.address);} }
              \{p = lookup(i.name);
(3)S \rightarrow goto i
                   if p = null then \{addlabel(i.name, label, false, nxq);
                                      gen(i, -, -, -);
                   else if p. type \neq label then Error;
                   else if p. isdefined = true then gen(j, -, -, p. address);
                   else \{gen(j, -, -, p. address)\}
                   modifylabel(p, address = nxq - 1); \}
```

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - ▶ 7.6.4 多态函数


```
□ Case语句形式:
   switch E
       case c_1: S_1;
       case c_2: S_2;
       case c_{n-1}: S_{n-1};
       default: S_n;
```

```
文法:
// Case内部不含default部分
I → AS; // S是各类语句
A → case c: | I case c: // c是常数
// 加上switch和default
W \rightarrow switch E\{ID\}
D \rightarrow default: S; \mid \varepsilon
// 考虑多个语句
S \rightarrow S; S
```



```
□ Case语句形式:
   switch E
       case c_1: S_1;
       case c_2: S_2;
       case c_{n-1}: S_{n-1};
       default: S_n;
```

```
□ 生成四元式:
```

goto test

 L_1 : S_1 ; goto next

•••••

 L_{n-1} : S_{n-1} ; goto next

 L_n : S_n ; goto next

 $test: if T = c_1 goto L_1$

•••••

 $if \ T = c_{n-1} \ goto \ L_{n-1}$

 $goto L_n$

next:

□ 遇到switch

- ➤ 产生标号test;
- ➤ 产生标号next;
- 产 产生临时变量T,存放E 值;
- ➤ 生成goto test。

\square 遇到 c_i

- ightharpoonup 产生标号 L_i ,填入符号表
- ▶ 记下标号和符号表位置 , 生成test时使用;
- ▶ S之后要有个四元式 goto next。

□ 文法:

```
// Case内部不含default部分 I \to AS; A \to case\ c: |I\ case\ c: // 加上switch和default W \to switch\ E\{ID\} D \to default:\ S; |\varepsilon // 考虑多个语句 S \to S; S
```

□ 文法存在问题:

- ➤ 考虑到标号名字冲突问题,可以考虑为每个Case语句创建一个符号表,这个动作在遇到switch时发生,至少不能晚于{。
- ▶ 遇到}生成test标号里面的语句时,需要知道临时变量的名字,如果把 switch E提出来,需要考虑如何传递的问题。

□ 新的文法:

```
// Case内部不含default部分
I \rightarrow AS;
A \rightarrow case c: | I case c:
// 加上switch和default
W \to T\{ID\}
T \rightarrow switch E
D \rightarrow default: MS; \mid \varepsilon
M \to \varepsilon
// 考虑多个语句
S \rightarrow S; S
```


翻译模式

```
{ mktable(top(tblptr)); Init(Que);// 创建一张新的符号表和队列
T \rightarrow switch E
                     t = newtemp; gen(=, E.place, -, t); T.place = t;
                     addlabel(test, case, false, nxg); gen(i, -, -, -);
                     addlabel(next, case, false, null); }
A \rightarrow case c:
                   \{ Que.add(c,nxq); \}
              A \rightarrow I case c:
D \rightarrow default: MS; \{ \frac{D.quad = M.quad;}{D.quad = M.quad;} \}
                     p = lookup(next); a = p. address
                     modifylabel(p, address = nxq);
                     gen(j, -, -, a); // 待回填链 }
                   \{D. quad = null;\}
                   \{ M. quad = nxq; \}
```


翻译模式

```
I 	o AS; { p = lookup(next); a = p.address; modifylabel(p, address = nxq); gen(j, -, -, a); // 待回填链 } W 	o T\{ID\} { p = lookup(test); backpatch(p.address, nxq); while (! Que.IsEmpty) { (c, a) = Que.de(); gen(j =, T.place, c, a); } if (D.quad \neq null) gen(j, -, -, D.quad); p = lookup(next); W.nextlist = p.address}
```

【例7.18】 switch $x \{ case \ 0 : x = x + 1 ; case \ 1 : x = y ; default : x = 0 ; \}$,假设

```
I \rightarrow AS; { p = lookup(next); a = p. address; = t; modifylabel(p, address = nxq); -); gen(j, -, -, a); }
```

步骤	文法符号栈	输入串
1	#	$sx\{c0: x = x + 1; c1: x = y; d: x = 0; \}$
2	#sx	${c0: x = x + 1; c1: x = y; d: x = 0; }$
3	#sE	${c0: x = x + 1; c1: x = y; d: x = 0; }$
4	# <i>T</i>	${c0: x = x + 1; c1: x = y; d: x = 0; }$
5	$#T{c0:$	$x = x + 1$; $c1$: $x = y$; d : $x = 0$; }#
6	$\#T\{A$	$x = x + 1$; $c1$: $x = y$; d : $x = 0$; }#
7	$\#T\{Ax=x$	+1; c1: x = y; d: x = 0;
8	$\#T\{Ax=E$	+1; c1: x = y; d: x = 0;
9	$\#T\{Ax = E + 1$; c1: x = y; d: x = 0;
10	$\#T\{Ax = E + E$; c1: x = y; d: x = 0;
11	$\#T\{Ax=E$; c1: x = y; d: x = 0;
12	$\#T\{AS$; c1: x = y; d: x = 0;
13	$\#T\{AS;$	c1: x = y; d: x = 0;
14	$\#T\{I$	c1: x = y; d: x = 0;
15	# <i>T</i> { <i>Ic</i> 1:	x = y; d: x = 0;

三地址码

100: $(=, x, -, T1)$
101: (<i>j</i> , –, –, –)
102: (+, <i>x</i> , 1, <i>T</i> 2)
103: $(=, T2, -, x)$
104: (<i>j</i> , –, –, –)

名字	类型	定义	地址
test	case	F	101
next	case	F	104

0 102

E.place = 1
E.place = T2
T.place = T1

【例7.18】 $switch\ x\ \{case\ 0: x = x + 1; case\ 1: x = y; default: x = 0; \}$,假设

```
W \to T\{ID\} { p = lookup(test);
backpatch(p.address,nxq);
                                                     三地址码
while (! Que. IsEmpty)
\{(c,a) = Que.de(); gen(j = T.place, c, a); \}
                                               100: (=, x, -, T1)
                                                                      109: (j = T1,0,102)
if (D.quad \neq null) gen(j, -, -, D.quad);
                                               101: (j, -, -, 109)
                                                                      110: (j = T1,1,105)
p = lookup(next);
                                                                      111: (j, –, –, 107)
                                               102: (+, x, 1, T2)
W.nextlist = p.address
                                               103: (=, T2, -, x)
   |#T\{Ax = y|
               ; a: x = 0; \}#
                                               104: (j, -, -, -)
18 \#T\{Ax = E \mid
                 d: x = 0; 
                                               105: (=, y, -, x)
19 \#T\{AS\}
                    ; d: x = 0; \}#
                                               106: (j, -, -, 104)
20 \#T\{AS\}
                      d: x = 0; \}#
                                               107: (=, 0, -, x)
21 \#T\{I
                      d: x = 0; \}#
                                               108: (j, -, -, 106)
22 | #T{Id}:
                        x = 0; \}#
23
    | #T{Id: M}
                        x = 0; \}#
24 | #T{Id: Mx = 0}
                             ;}#
                                                                类型
                                                                                 地址
                                                       名字
                                                                        定义
25
    | #T{Id: Mx = E}
                             ;}#
26
    \#T\{Id:MS
                             ;}#
                                                                          F
                                                                                  101
                                                        test
                                                                case
                                  E.place = 0
27
    \#T\{Id:MS;
                                                                          F
                                                                                  108
                                                       next
                                                                case
28
    \#T\{ID
                              ||H|| D. quad = 107
29
    \#T\{ID\}
                                  W.nextlist = 108 |_{102|105|}
                                                                                   88
30
    #W
```

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - > 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - 7.6.4 多态函数

7.5 过程调用的处理

```
□ call S(A+B, Z):

[+, A, B, T1]

[param, -, -, T1]

[param, -, -, Z]

[call, -, -, S]
```

```
S \rightarrow call \ id \ (Elist)
 \{ for each \ p \ in \ Que \ gen(param, -, -, p); 
 gen(call, -, -, id. \ place); \}
 Elist \rightarrow Elist, E
 \{ Que. add(E. \ place); \}
 Elist \rightarrow E
 \{ Que. add(E. \ place); \}
```

- □ 7.1 说明语句
 - ▶ 7.1.1 过程中的说明语句
 - ▶ 7.1.2 保留作用域的信息
- □ 7.2 赋值语句的翻译
 - ▶ 7.2.1 简单算术表达式及赋值语句
 - ▶ 7.2.2 数组元素的引用
 - ▶ 7.2.3 类型转换
- □ 7.3 布尔表达式的翻译
 - ▶ 7.3.1 数值表示法
 - ▶ 7.3.2 作为条件控制的布尔式翻译

- □ 7.4 控制语句的翻译
 - ▶ 7.4.1 控制流语句
 - ▶ 7.4.2 标号与goto语句
 - ▶ 7.4.3 Case语句的翻译
- □ 7.5 过程调用的处理
- □ 7.6 类型检查
 - ▶ 7.6.1 类型系统
 - ▶ 7.6.2 类型检查器的规格说明
 - ▶ 7.6.3 函数和运算符的重载
 - 7.6.4 多态函数

第七章作业

【作业7-1】7.4.2节中,关系式 $i^{(1)} < i^{(2)}$ 被翻译成相继的两个四元式:

$$(j <, i^{(1)}, i^{(2)}, -)$$
 // 真出口

$$(j, -, -, -)$$

// 假出口

这种翻译常常浪费一个四元式。如果我们翻译成如下四元式:

$$(j \ge, i^{(1)}, i^{(2)}, -)$$

 $(i \ge i^{(1)}, i^{(2)}, -)$ // 假出口跳转,真出口自动滑到下一个四元式

那么,在 $i^{(1)} < i^{(2)}$ 的情况下就不发生跳转(自动滑下来)。但若这个关系后有一个 或运算,则另一个无条件转移指令是不可省的,例如 $if A < B \lor C < D then x = y$

100: $(j \ge A, B, 102)$

101: (j, -, -, 103) // 或运算前的无条件跳转不能省略

102: $(j \ge C, D, 104)$

103: (=, y, -, x)

请按上述要求改写翻译布尔表达式的语义动作。

第七章作业

【作业7-2】根据本章所述翻译模式,将如下语句翻译为四元式,假设所有变量已声明 ,数据类型均为整型。

```
i = 1;
j = 1;
while i \le 9 do
begin
      while j \leq 9 do
      begin
                 a[i,j] = i * j;
                 j = j + 1;
      end
      i = i + 1;
end
```


The End

谢谢

授 课 教 师 : 郑艳伟

手 机 : 18614002860 (微信同号)

邮 箱: zhengyw@sdu.edu.cn