제 3 장 반복이 없는 이원배치 분산분석

□ 반복이 없는 이원배치 분산분석의 특징

- 1. 반복이 없는 이원배치 분산분석의 특징
 - 이원배치법은 문제가 되는 요인을 두 개 취하여 행하는 실험
 - 두 요인이 모두 모수 요인인 모수모형
 - 1개 요인은 모수, 또 다른 1개 요인은 변량인 혼합모형
 - 실험의 랜덤화는 실험전체를 완전 랜덤화

	A ₁	A2	A3	A4
B1	3	11)	9	6
B2	(5)	①	12	4
B3	8	7	2	10

② 자료 구조와 모형

1. 자료의 구조와 모형

	A_1	A_2	•••	A_l	합계	평균
B_1	Y_{11}	Y_{21}	•••	Y_{l1}	$Y_{\cdot 1}$	$\overline{Y}_{\cdot 1}$
B_{2}	Y_{12}	Y_{22}		Y_{l2}	$Y_{\cdot 2}$	$\overline{Y}_{\cdot 2}$
	:	÷	÷	÷	÷	
$B_{\!m}$	Y_{1m}	Y_{2m}	•••	Y_{lm}	$Y_{\cdot m}$	$\overline{Y}_{\cdot m}$
합계	$Y_{1\cdot}$	$Y_{2\cdot}$	•••	$Y_{l\cdot}$	Y	
 평균	$\overline{Y}_{1.}$	$\overline{Y}_{2\cdot}$	•••	$\overline{Y}_{l\cdot}$		$\overline{\overline{Y}}_{}$

$$\begin{split} Y_{ij} &= \mu + a_i + b_j + \epsilon_{ij} \ i = 1, \ 2, \ \cdots, \ l, \ j = 1, \ 2, \ \cdots, \ m), \ \epsilon_{ij} \sim N(0, \ \sigma^2) \\ \sum_{i=1}^l a_i &= 0, \ \sum_{i=1}^m b_j = 0 \end{split}$$

2. 제곱합과 자유도

1) 총편차의 분해식

$$Y_{ij} - \overline{Y}_{\cdot \cdot} = (\overline{Y}_i - \overline{Y}_{\cdot \cdot}) + (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot}) + (Y_{ij} - \overline{Y}_i - \overline{Y}_{\cdot j} + \overline{Y}_{\cdot \cdot})$$

2) 제곱합의 분해

; $Y_{ij}-\overline{Y}_{..}=(\overline{Y}_i-\overline{Y}_{..})+(\overline{Y}_j-\overline{Y}_{..})+(Y_{ij}-\overline{Y}_i-\overline{Y}_{.j}+\overline{Y}_{..})$ 의 양변을 제곱하고 모든 관측값들에 대하여 합을 취한다.

$$\begin{split} &\Rightarrow \sum_{i=1}^{l} \sum_{j=1}^{m} (Y_{ij} - \overline{Y}_{..})^{2} \\ &= \sum_{i=1}^{l} \sum_{j=1}^{m} ((\overline{Y}_{k} - \overline{Y}_{..}) + (\overline{Y}_{.j} - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_{k} - \overline{Y}_{.j} + \overline{Y}_{..}))^{2} \\ &= \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{k} - \overline{Y}_{..})^{2} + \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..})^{2} + \sum_{i=1}^{l} \sum_{j=1}^{m} (Y_{ij} - \overline{Y}_{k} - \overline{Y}_{.j} + \overline{Y}_{..})^{2} \\ &+ 2 \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{k} - \overline{Y}_{..})(\overline{Y}_{.j} - \overline{Y}_{..}) + 2 \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{k} - \overline{Y}_{..})(Y_{ij} - \overline{Y}_{k} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &+ 2 \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..})(Y_{ij} - \overline{Y}_{..} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..})(Y_{ij} - \overline{Y}_{..} - \overline{Y}_{..})^{2} + \sum_{i=1}^{l} \sum_{j=1}^{m} (Y_{ij} - \overline{Y}_{..} - \overline{Y}_{.j} + \overline{Y}_{..})^{2} \\ &: \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..})(\overline{Y}_{.j} - \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(\overline{Y}_{.j} - \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \sum_{j=1}^{m} \overline{Y}_{.j} - \overline{X}_{.j} - \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{..} - m \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} + \overline{Y}_{.j}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j} - \overline{Y}_{.j}) \\ &= \sum_{i=1}^{l} (\overline{Y}_{.j} - \overline{Y}_{..})(m \overline{Y}_{.j} - \overline$$

$$\begin{split} &\sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..}) (Y_{ij} - \overline{Y}_{i} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..}) \sum_{i=1}^{l} (Y_{ij} - \overline{Y}_{i} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ &= \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..}) \left(\sum_{i=1}^{l} Y_{ij} - \sum_{i=1}^{l} \overline{Y}_{i} - \sum_{i=1}^{l} \overline{Y}_{.j} + \sum_{i=1}^{l} \overline{Y}_{..} \right) \\ &= \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..}) \left(l \sum_{i=1}^{l} \frac{Y_{ij}}{l} - \sum_{i=1}^{l} \overline{Y}_{i} - l \overline{Y}_{..} + l \overline{Y}_{..} \right) \\ &= \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..}) \left(l \overline{Y}_{.j} - \sum_{i=1}^{l} \overline{Y}_{i} - l \overline{Y}_{..} + l \overline{Y}_{..} \right) \\ &= 0 \end{split}$$

3) 제곱합의 자유도

;
$$SS_T$$
의 자유도 $=SS_A$ 의 자유도 $+SS_B$ 의 자유도 $+SS_E$ 의 자유도 $\Rightarrow (N-1) = (l-1) + (m-1) + (l-1)(m-1)$

4) 제곱합의 간단식

①
$$CT = \frac{Y_{..}^{2}}{lm}$$
② $SS_{T} = \sum_{i=1}^{l} \sum_{j=1}^{m} (Y_{ij} - \overline{Y}_{..})^{2}$

$$= \sum_{i=1}^{l} \sum_{j=1}^{m} (Y_{ij}^{2} - 2Y_{ij}\overline{Y}_{..} + \overline{Y}_{..}^{2})$$

$$= \sum_{i=1}^{l} \sum_{j=1}^{m} Y_{ij}^{2} - 2\sum_{i=1}^{l} \sum_{j=1}^{m} Y_{ij}\overline{Y}_{..} + \sum_{i=1}^{l} \sum_{j=1}^{m} \overline{Y}_{..}^{2}$$

$$= \sum_{i=1}^{l} \sum_{j=1}^{m} Y_{ij}^{2} - 2N\overline{Y}_{..} \frac{\sum_{i=1}^{l} \sum_{j=1}^{m} Y_{ij}}{N} + \sum_{i=1}^{l} \sum_{j=1}^{m} \overline{Y}_{..}^{2}$$

$$= \sum_{i=1}^{l} \sum_{j=1}^{m} Y_{ij}^{2} - 2N\overline{Y}_{..}^{2} + N\overline{Y}_{..}^{2}$$

$$= \sum_{i=1}^{l} \sum_{j=1}^{m} Y_{ij}^{2} - CT$$
③ $SS_{A} = \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{i} - \overline{Y}_{..})^{2}$

 $= m \sum_{i=1}^{l} (\overline{Y}_{i} - \overline{Y}_{..})^{2}$

 $= m \sum_{i=1}^{l} \overline{Y}_{i}^{2} - CT$

$$\begin{split} &= \sum_{i=1}^{l} \frac{Y_{i}^{2}}{m} - CT \\ & \textcircled{4} \quad SS_{B} = \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot})^{2} \\ &= l \sum_{j=1}^{m} (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot})^{2} \\ &= l \sum_{j=1}^{m} \overline{Y}_{\cdot j}^{2} - CT \\ &= \sum_{j=1}^{m} \frac{Y_{\cdot j}^{2}}{l} - CT \\ & \textcircled{5} \quad SS_{E} = SS_{T} - SS_{A} - SS_{B} \end{split}$$

3. 분산분석표

source	SS	df	MS	F
요인 (A)	$S\!S_A$	l-1	$M\!S_{\!A}$	MS_A/MS_E
요인(<i>B</i>)	SS_B	m-1	MS_B	MS_B/MS_E
오차(<i>E</i>)	$S\!S_{\!E}$	(l-1)(m-1)	$M\!S_{\!E}$	
합계(Total)	SS_T	lm-1		

4. 분산분석 후 추론

1) 요인 A의 모평균의 추정

$$Var(\overline{Y}_{i.}) = Var(\mu + a_i + \overline{\epsilon}_{ij}) = Var(\overline{\epsilon}_{ij}) = \frac{\sigma^2}{m}$$

②
$$100(1-\alpha)\%$$
 신뢰구간

$$\overline{Y}_i \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{M\!S_{\!E}}}{\sqrt{m}}$$

2) 요인 *B*의 모평균의 추정

$$\widehat{\mu}(B_j) = \widehat{\mu + b_j} = \overline{Y}_{.j}$$

$$Var(\overline{Y}_{\cdot j}) = Var(\mu + b_j + \overline{\epsilon}_{ij}) = Var(\overline{\epsilon}_{ij}) = \frac{\sigma^2}{I}$$

②
$$100(1-\alpha)\%$$
 신뢰구간

$$\overline{Y}_{\cdot j} \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{MS_E}}{\sqrt{l}}$$

- 3) 요인 A, B의 수준을 조합한 조건에 있어서 모평균의 추정
 - ① 2요인 A, B가 모두 유의한 경우에 의미

$$\textcircled{2} \ \ \widehat{\mu}(A_iB_j) = \widehat{\mu + a_i + b_j} = \widehat{\mu + a_i} + \widehat{\mu + b_j} - \widehat{\mu} = \overline{Y}_{i\cdot} + \overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot}$$

$$Var(\overline{Y}_{i\cdot} + \overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot}) = \frac{\sigma^2}{lm/(l+m-1)}$$

③ $100(1-\alpha)$ % 신뢰구간

반복이 없는 이원배치법의 유효반복수 $n_e = \frac{lm}{l+m-1}$

$$(\overline{Y}_{i\cdot} + \overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot}) \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{M\!S_{\!E}}}{\sqrt{n_{\!e}}}$$

4) 요인 A의 i수준과 i^* 수준간의 모평균의 차의 추정

$$\widehat{\mu}(A_i) - \widehat{\mu}(A_{i^*}) = \overline{Y}_{i\cdot} - \overline{Y}_{i^*\cdot}$$

$$Var(\overline{Y}_{i\cdot} - \overline{Y}_{i^*\cdot}) = \frac{2\sigma^2}{m}$$

② $100(1-\alpha)$ % 신뢰구간

$$(\overline{Y}_{i \cdot} - \overline{Y}_{i^{\ast} \cdot}) \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{2MS_E}}{\sqrt{m}}$$

5) 요인 B의 j수준과 j^* 수준간의 모평균의 차의 추정

$$\textcircled{1} \quad \hat{\mu}(B_j) - \hat{\mu}(B_{j^*}) = \overline{Y}_{\cdot j} - \overline{Y}_{\cdot j^*}$$

$$Var(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot j^*}) = \frac{2\sigma^2}{l}$$

② $100(1-\alpha)$ % 신뢰구간

$$(\overline{Y}_{\cdot j} - \overline{Y}_{\cdot j^*}) \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{2MS_E}}{\sqrt{l}}$$

에제 3-1. 어느 돼지를 사육하는 농가에서 4가지 종류의 '사료'와 3가지 종류의 '사육환경'에 따라서 새끼돼지의 체중이 어떻게 증가하는지를 조사한 결과 아래와 같이 나왔다고 한다. 그럼 사료와 사육환경에 따라서 새끼돼지의 체중 증가량에 차이가 있는지 유의수준 5%에서 검정하여라.

사료 환경	사료1	사료2	사료3	사료4
사육환경1	54.2	46.3	55.3	56.1
사육환경2	50.7	49.5	49.4	53.9
사육환경3	49.8	45.7	51.9	55.2

(1) 제곱합

$$\begin{split} &(Y_{ij} - \overline{Y}_{..}) = (\overline{Y}_i - \overline{Y}_{..}) + (\overline{Y}_j - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_i - \overline{Y}_j + \overline{Y}_{..}) \\ &\begin{bmatrix} 2.7 & -5.2 & 3.8 & 4.6 \\ -0.8 & -2.0 & -2.1 & 2.4 \\ -1.7 & -5.8 & 0.4 & 3.7 \end{bmatrix} = \begin{bmatrix} 0.067 & -4.333 & 0.700 & 3.567 \\ 0.067 & -4.333 & 0.700 & 3.567 \\ 0.067 & -4.333 & 0.700 & 3.567 \end{bmatrix}$$

$$+ \begin{bmatrix} 1.475 & 1.475 & 1.475 & 1.475 \\ -0.625 & -0.625 & -0.625 & -0.625 \\ -0.850 & -0.850 & -0.850 & -0.850 \end{bmatrix} + \begin{bmatrix} 1.158 & -2.342 & 1.625 & -0.442 \\ -0.242 & 2.958 & -2.175 & -0.542 \\ -0.917 & -0.617 & 0.550 & 0.983 \end{bmatrix}$$

$$\begin{split} SS_T &= 2.7^2 + (-5.2)^2 + \cdots + 3.7^2 = 135.12 \\ SS_A &= 0.067^2 + 0.067^2 + \cdots + 3.567^2 = 95.98 \\ SS_B &= 1.475^2 + (-0.625)^2 + \cdots + (-0.850)^2 = 13.155 \\ SS_F &= 1.158^2 + (-0.242)^2 + \cdots + (0.983)^2 = 25.985 \end{split}$$

$$\therefore \sum_{i=1}^{l} \sum_{j=1}^{m} (Y_{ij} - \overline{Y}_{..})^{2}
= \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{i} - \overline{Y}_{..})^{2} + \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{Y}_{.j} - \overline{Y}_{..})^{2} + \sum_{i=1}^{l} \sum_{j=1}^{m} (Y_{ij} - \overline{Y}_{i} - \overline{Y}_{.j} + \overline{Y}_{..})^{2}$$

(2) 간단식

사료 환경	사료1	사료2	사료3	사료4	합계
사육환경1	54.2	46.3	55.3	56.1	211.9
사육환경2	50.7	49.5	49.4	53.9	203.5
사육환경3	49.8	45.7	51.9	55.2	202.6
합 계	154.7	141.5	156.6	165.2	618

$$CT = \frac{Y_{\cdot \cdot}^2}{lm} = \frac{618^2}{12} = 31827$$

$$\begin{split} SS_T &= \sum_{i=1}^l \sum_{j=1}^m Y_{ij}^2 - CT \\ &= \sum_{i=1}^4 \sum_{j=1}^3 Y_{ij}^2 - CT \\ &= 54.2^2 + 46.3^2 + \cdots + 55.2^2 - 31827 \\ &= 31962.12 - 31827 \\ &= 135.12 \end{split}$$

$$\begin{split} SS_A &= \sum_{i=1}^l \frac{Y_i^2}{m} - CT \\ &= \sum_{i=1}^4 \frac{T_i^2}{3} - CT \\ &= \frac{1}{3} (154.7^2 + 141.5^2 + 156.6^2 + 165.2^2) - 31827 \\ &= 31922.98 - 31827 \\ &= 95.98 \end{split}$$

$$\begin{split} SS_B &= \sum_{i=1}^m \frac{T_{.j}^2}{l} - CT \\ &= \sum_{i=1}^3 \frac{T_{.i}^2}{4} - CT \\ &= \frac{1}{4} (211.9^2 + 203.5^2 + 202.6^2) - 31827 \\ &= 31840.155 - 31827 \\ &= 13.155 \end{split}$$

$$\begin{split} SS_E &= SS_T - SS_A - SS_B \\ &= 25.985 \end{split}$$

(2) 자유도

요인
$$A$$
 자유도= $l-1=4-1=3$
요인 B 자유도= $m-1=3-1=2$
오차 자유도= $(l-1)(m-1)=(4-1)(3-1)=6$

(3) 분산분석표

source	SS	df	MS	F
요인 (A)	95.98	3	31.9933	7.39
요인(<i>B</i>)	13.155	2	6.5775	1.52
오차(<i>E</i>)	25.985	6	4.3308	
합계(Total)	135.12	11		

(4) 가설검정

$$F_0 \geq F(3,~6~;0.05)$$
, $7.39 \geq 4.76$, H_0 reject $F_0 \geq F(2,~6~;0.05)$, $1.52 \leq 5.14$, H_0 not reject

(5) 분산분석 후 추정

① 사료(A)의 모평균의 추정

$$\begin{split} \overline{Y}_i &\pm t_{(l-1)(m-1), \ \alpha/2} \times \sqrt{\frac{MS_E}{m}} \\ \overline{Y}_i &\pm t_{6, \, 0.025} \times \sqrt{\frac{4.3308}{3}} \\ 51.567 &\pm 2.447 \times \sqrt{\frac{4.3308}{3}} = (48.627, \ 54.507) \\ 41.167 &\pm 2.447 \times \sqrt{\frac{4.3308}{3}} = (44.227, \ 50.107) \\ 52.20 &\pm 2.447 \times \sqrt{\frac{4.3308}{3}} = (49.260, \ 55.140) \\ 55.087 &\pm 2.447 \times \sqrt{\frac{4.3308}{3}} = (52.127, \ 58.007) \end{split}$$

② 사육환경(B)의 모평균의 추정

$$\overline{Y}_{.j} \pm t_{(l-1)(m-1), \alpha/2} \times \sqrt{\frac{MS_E}{l}}$$

$$\overline{Y}_{.j} \pm t_{6, 0.025} \times \sqrt{\frac{4.3308}{4}}$$

$$52.975 \pm 2.447 \times \sqrt{\frac{4.3308}{4}} = (50.429, 55.521)$$

$$50.875 \pm 2.447 \times \sqrt{\frac{4.3308}{4}} = (50.429, 55.521)$$

$$50.850 \pm 2.447 \times \sqrt{\frac{4.3308}{4}} = (48.104, 53.196)$$

③ A, B의 조합에서 모평균의 추정 $(A, B \mathbf{PF} \mathbf{PP})$ 자이가 있는 경우)

$$(\overline{Y}_{i\cdot} + \overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot}) \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{MS_E}}{\sqrt{n_e}}, \ n_e = \frac{lm}{l+m-1}$$

$$n_e = \frac{4\times3}{4+3-1} = 2$$

$$(\overline{Y}_{i\cdot} + \overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot}) \pm t_{6,\ 0.025} \frac{\sqrt{4.3308}}{\sqrt{2}},$$

$$(51.587 + 52.975 - 51.5) \pm 2.447 \times \frac{\sqrt{4.3308}}{\sqrt{2}} = (49.441,\ 56.542)$$

$$(51.587 + 50.875 - 51.5) \pm 2.447 \times \frac{\sqrt{4.3308}}{\sqrt{2}} = (47.341,\ 54.542)$$

$$(51.587 + 50.650 - 51.5) \pm 2.447 \times \frac{\sqrt{4.3308}}{\sqrt{2}} = (47.116,\ 54.317)$$

$$(47.167 + 52.975 - 51.5) \pm 2.447 \times \frac{\sqrt{4.3308}}{\sqrt{2}} = (45.041,\ 52.242)$$

$$(47.167 + 50.875 - 51.5) \pm 2.447 \times \frac{\sqrt{4.3308}}{\sqrt{2}} = (42.941,\ 50.142)$$

$$(47.167 + 50.650 - 51.5) \pm 2.447 \times \frac{\sqrt{4.3308}}{\sqrt{2}} = (47.416,\ 49.917)$$

④ 사료(A)간의 모평균의 차

$$(\overline{Y}_{i} - \overline{Y}_{i}^{*}) \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{2MS_{E}}}{\sqrt{m}}$$

$$(\overline{Y}_{i} - \overline{Y}_{i}^{*}) \pm t_{6, 0.025} \frac{\sqrt{2 \times 4.3308}}{\sqrt{3}}$$

$$(51.567 - 47.167) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{3}} = (0.242, 8.558)$$

$$(51.567 - 52.20) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{3}} = (-4.791, 3.525)$$

$$(51.567 - 55.067) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{3}} = (-7.658, 0.658)$$

$$(47.167 - 52.20) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{3}} = (-9.191, -0.875)$$

$$(47.167 - 55.087) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{3}} = (-12.078, -3.762)$$

$$(52.20 - 55.067) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{3}} = (-7.025, 1.291)$$

⑤ 사육환경(B)간의 모평균의 차

$$\begin{split} &(\overline{Y}_{.j} - \overline{Y}_{.j^*}) \pm t_{(l-1)(m-1),\alpha/2} \frac{\sqrt{2MS_E}}{\sqrt{l}} \\ &(\overline{Y}_{.j} - \overline{Y}_{.j^*}) \pm t_{6,\ 0.025} \frac{\sqrt{2 \times 4.3308}}{\sqrt{4}} \\ &(52.975 - 50.875) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{4}} = (-1.501,\ 5.701) \\ &(52.975 - 50.650) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{4}} = (-1.276,\ 5.926) \\ &(50.875 - 50.65) \pm 2.447 \times \frac{\sqrt{2 \times 4.3308}}{\sqrt{4}} = (-3.376,\ 3.826) \end{split}$$

(5) SPSS 분석결과

① 분산분석

개체-간 효과 검정

종속 변수:체중증가

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	109.1354	5	21.827	5.040	.037
절편	31827.000	1	31827.000	7348.932	.000
사료	95.980	3	31.993	7.387	.019
사육환경	13,155	2	6.578	1.519	.293
오차	25.985	6	4.331		
합계	31962.120	12			
수정 합계	135.120	11			

a. R 제곱 = .808 (수정된 R 제곱 = .647)

사료는 유의수준 5%에서 통계적으로 유의한 차이가 있었으며 사육환경은 통계적으로 유의한 차이가 나타나지 않았다.

② 분산분석 후의 추정

추정된 주변평균

1. 사료

종속 변수:체중증가

사료			95% 신뢰구간	
	평균	표준오차	하한값	상한값
사료1	51.567	1.202	48.627	54.507
사료2	47.167	1.202	44.227	50.107
사료3	52.200	1.202	49.260	55.140
사료4	55.067	1.202	52.127	58.007

2. 사육환경

종속 변수:체중증가

사육환경			95% 신뢰구간				
	평균	표준오차	하한값	삼한값			
사육환경1	52.975	1.041	50.429	55.521			
사육환경2	50.875	1.041	48.329	53.421			
사육환경3	50.650	1.041	48.104	53.196			

3. 사료 * 사육환경

종속 변수:체중증가

사료	사육환경			95% 신뢰구간	
		평균	표준오차	하한값	상한값
사료1	사육환경1	53.042	1.472	49.441	56.642
	사육환경2	50.942	1.472	47.341	54.542
	사육환경3	50.717	1.472	47.116	54.317
사료2	사육환경1	48.642	1.472	45.041	52.242
	사육환경2	46.542	1.472	42.941	50.142
	사육환경3	46.317	1.472	42.716	49.917
사료3	사육환경1	53.675	1.472	50.074	57.276
	사육환경2	51.575	1.472	47.974	55.176
	사육환경3	51.350	1.472	47.749	54.951
사료4	사육환경1	56.542	1.472	52.941	60.142
	사육환경2	54.442	1.472	50.841	58.042
	사육환경3	54.217	1.472	50.616	57.817

③ 사료 다중비교

다중 비교

종속 변수:체중증가

	(I) 사료	(J) 사료				95% 신뢰구간	
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Tukey HSD	사료1	사료2	4.400	1.6992	.141	-1.482	10.282
		사료3	633	1.6992	.981	-6.515	5.249
		사료4	-3.500	1.6992	.266	-9.382	2.382
	사료2	사료1	-4.400	1.6992	.141	-10.282	1.482
		사료3	-5.033	1.6992	.090	-10.915	.849
		사료4	-7.900*	1.6992	.014	-13.782	-2.018
	사료3	사료1	.633	1.6992	.981	-5.249	6.515
		사료2	5.033	1.6992	.090	849	10.915
		사료4	-2.867	1.6992	.405	-8.749	3.016
	사료4	사료1	3.500	1.6992	.266	-2.382	9.382
		사료2	7.900*	1.6992	.014	2.018	13,782
		사료3	2.867	1.6992	.405	-3.015	8,749
LSD	사료1	사료2	4.400*	1.6992	.041	.242	8.558
		사료3	633	1.6992	.722	-4.791	3.524
		사료4	-3,500	1.6992	.085	-7.658	.658
	사료2	사료1	-4.400*	1.6992	.041	-8.558	-,242
		사료3	-5.033*	1.6992	.025	-9.191	876
		사료4	-7.900*	1.6992	.004	-12.058	-3.742
	사료3	사료1	.633	1.6992	.722	-3.524	4.791
		사료2	5.033	1.6992	.025	.876	9.191
		사료4	-2.867	1.6992	.143	-7.024	1.291
	사료4	사료1	3.500	1.6992	.085	658	7.658
		사료2	7.900*	1.6992	.004	3.742	12.058
		사료3	2.867	1.6992	.143	-1.291	7.024

동일집단군

체중증가

	사료		집단	··군
		N	1	2
Tukey HSD ^{a,b}	사료2	3	47.167	
	사료1	3	51.567	51.567
	사료3	3	52.200	52.200
	사료4	3		55.067
	유의확률		.090	.266

동일 집단구에 있는 집단에 대한 평균이 표시됩니다. 환축평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.331입니다.

사료2와 사료4간에 유의한 차이가 있었다.

관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.331입니다.

^{*.} 평균차는 .05 수준에서 유의합니다.

a. 조화평균 표본 크기 3.000을(를) 사용합니다.

b. 유의수준 = .05.

④ 사육환경 다중비교

사육환경

다중 비교

종속 변수:체중증가

	(I) 사육환경	(J) 사육환경				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Tukey HSD	사육환경1	사육환경2	2.100	1.4715	.387	-2.415	6.615
		사육환경3	2.325	1.4715	.324	-2.190	6.840
	사육환경2	사육환경1	-2.100	1.4715	.387	-6.615	2.415
		사육환경3	.225	1.4715	.987	-4.290	4.740
	사육환경3	사육환경1	-2.325	1.4715	.324	-6.840	2.190
		사육환경2	225	1.4715	.987	-4.740	4.290
LSD	사육환경1	사육환경2	2.100	1.4715	.203	-1.501	5.701
		사육환경3	2.325	1.4715	.165	-1.276	5.926
	사육환경2	사육환경1	-2.100	1.4715	.203	-5.701	1.501
		사육환경3	.225	1.4715	.883	-3.376	3.826
	사육환경3	사육환경1	-2.325	1.4715	.165	-5.926	1.276
		사육환경2	225	1.4715	.883	-3.826	3.376

동일집단군

체중증가

	사육환경		집단군
		N	1
Tukey HSD ^{a,b}	사육환경3	4	50.650
	사육환경2	4	50.875
	사육환경1	4	52.975
	유의확률		.324

동일 집단군에 있는 집단에 대한 평균이 표시됩니다. 관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.331입니다.

- a. 조화평균 표본 크기 4.000을(를) 사용합니다.
- b. 뮤믜수준 = .05.

모든 집단에 대하여 유의한 차이가 나타나지 않았다.

관측평균을 기준으로 합니다. 오류 조건은 평균 제곱(오류) = 4.331입니다.

에제 3-2. 어떤 화학공장에서 제품의 수율(yield, %)에 영향을 미칠 것으로 생각되는 반응 온도와 원료를 요인으로 취하여 반복이 없는 이원배치의 실험을 하였다.

반응온도 원료	$A_1(180^{\circ}\mathbb{C})$	$A_2(190{}^{\circ}\!$	$A_3(200{\mathbb C})$	$A_4(210^{\circ}\mathbb{C})$
$B_1(S\lambda \dagger)$	97.6	98.6	99.0	98.0
$B_{\!\scriptscriptstyle 2}(P\!\! \perp \!\! \mid)$	97.3	98.2	98.0	97.7
$B_3(H\lambda arrayce)$	96.7	96.9	97.9	96.5

(1) 분산분석

=2.22

반응온도 원료	$A_1(180^{\circ}\mathbb{C})$	$A_2(190^{\circ}\mathbb{C})$	$A_3(200^{\circ}\mathbb{C})$	$A_4(210^{\circ}\!$	합계	평균
$B_1(S\lambda \dagger)$	97.6	98.6	99.0	98.0	393.3	98.3
$B_{\!2}(P \mbox{$\downarrow$})$	97.3	98.2	98.0	97.7	391.2	97.8
$B_3(H\lambda)$	96.7	96.9	97.9	96.5	388.0	97.0
합계	291.6	293.7	294.9	292.2	1172.4	
평균	97.2	97.9	98.3	97.4		97.7

$$\begin{split} CT &= \frac{T_{\cdot \cdot}^2}{lm} = \frac{1172.4^2}{4 \times 3} = 114543.48 \\ SS_T &= \sum_{i=1}^l \sum_{j=1}^m Y_{ij}^2 - CT \\ &= \sum_{i=1}^4 \sum_{j=1}^3 Y_{ij}^2 - CT \\ &= 97.6^2 + 98.6^2 + \cdots + 96.5^2 - 114543.48 \\ &= 6.22 \\ SS_A &= \sum_{i=1}^l \frac{Y_i^2}{m} - CT \\ &= \sum_{i=1}^4 \frac{T_i^2}{3} - CT \\ &= \frac{1}{3} (296.1^2 + 293.7^2 + 294.9^2 + 292.2^2) - 114543.48 \end{split}$$

$$\begin{split} SS_B &= \sum_{i=1}^m \frac{Y_{\cdot j}^2}{l} - CT \\ &= \sum_{i=1}^3 \frac{Y_{\cdot i}^2}{4} - CT \\ &= \frac{1}{4} (393.3^2 + 391.2^2 + 388.0^2) - 114543.48 \\ &= 3.44 \\ SS_E &= SS_T - SS_A - SS_B \\ &= 0.56 \end{split}$$

source	SS	df	MS	F
요인(A)	2.22	3	0.740	7.957
요인(<i>B</i>)	3.44	2	1.720	18.495
오차(<i>E</i>)	0.56	6	0.093	
합계(Total)	6.22	11		

개체-간 효과 검정

종속 변수:수율

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	5.660ª	5	1.132	12.129	.004
절편	114543.480	1	114543.480	1227251.571	.000
반응온도	2.220	3	.740	7.929	.016
원료	3.440	2	1.720	18.429	.003
오차	.560	6	.093		
합계	114549.700	12			
수정 합계	6.220	11			

a. R 제곱 = .910 (수정된 R 제곱 = .835)

SPSS 패키지 결과와 차이가 나는 이유는 소숫점 때문.

(2) 분산분석 후 추정

① A의 모평균의 추정

$$97.2 \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{3}} = (96.77, 97.63)$$

$$97.9 \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{3}} = (97.47, 98.33)$$

$$98.3 \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{3}} = (97.87, 98.73)$$

$$97.4 \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{3}} = (96.97, 97.83)$$

② *B*의 모평균의 추정

$$98.3 \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{4}} = (96.77, 97.63)$$
$$97.8 \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{4}} = (97.43, 98.17)$$
$$97.0 \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{4}} = (97.87, 97.37)$$

③ A, B의 조합에서 모평균의 추정

반응온도 '원료

종속 변수:수율

반응온도	원료			95% 신	뢰구간
		평균	표준오차	하한값	상한값
180°C	SYF	97.800	.216	97.271	98.329
	PAF	97.300	.216	96.771	97.829
	НW	96.500	.216	95.971	97.029
190°C	SYF	98.500	.216	97.971	99.029
	만사	98.000	.216	97.471	98.529
	H사	97.200	.216	96.671	97.729
200°C	SAH	98.900	.216	98.371	99.429
	PAF	98.400	.216	97.871	98.929
	사사	97.600	.216	97.071	98.129
250°C	SYF	98.000	.216	97.471	98.529
	Ρλŀ	97.500	.216	96.971	98.029
	사	96.700	.216	96.171	97.229

$$\begin{split} n_e &= \frac{4 \times 3}{4 + 3 - 1} = 2 \\ A_1 B_1 \ : \ (97.2 + 98.3 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_1 B_2 \ : \ (97.2 + 97.8 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_1 B_3 \ : \ (97.2 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_2 B_1 \ : \ (97.9 + 98.3 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_2 B_2 \ : \ (97.9 + 97.8 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_2 B_3 \ : \ (98.3 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_3 B_1 \ : \ (98.7 + 98.3 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = (98.37, \ 99.43) \\ A_3 B_2 \ : \ (98.7 + 97.8 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_3 B_3 \ : \ (98.7 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_1 \ : \ (97.4 + 98.3 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_2 \ : \ (97.4 + 97.8 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.8 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.8 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_3 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_4 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_5 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_4 B_5 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{0.093}}{\sqrt{2}} = \\ A_5 B_5 \ : \ (97.4 + 97.0 - 97.7) \pm 2.447 \times \frac{\sqrt{$$

정답은 p102에 패키지 결과

$\P(A)$ 간의 모평균의 차

수율 LSD

(I) 반응온도	(J) 반응온도				95% 신	뢰구간
		평균차(I-J)	표준오차	유의확률	하한값	상한값
180°C	190℃	700*	2494	.031	-1,310	090
	200°C	-1.100*	2494	.005	-1.710	- 490
	250°C	200	.2494	.453	810	.410
190°C	180°C	.700*	.2494	.031	.090	1.310
	200°C	400	.2494	.160	-1.010	.210
	250°C	.500	.2494	.092	110	1.110
200°C	180°C	1.100*	.2494	.005	.490	1.710
	190°C	.400	.2494	.160	210	1.010
	250°C	.900*	.2494	.011	.290	1.510
250°C	180℃	.200	.2494	.453	410	.810
	190℃	500	.2494	.092	-1.110	.110
	200℃	900*	.2494	.011	-1.510	290

 A_1A_2 :

$$A_1A_3 \; : \; (97.2 - 98.3) \pm 2.447 \times \frac{\sqrt{2 \times 0.093}}{\sqrt{3}} = (-1.71, \; -0.49)$$

 A_1A_4 :

 A_2A_3 :

 A_2A_4 :

 A_3A_4 :

정답은 패키지 결과 참고

⑤ B 간의 모평균의 차

수율 LSD

235									
(I) 원료	(J) 원료				95% 신	뢰구간			
		평균차(I-J)	표준오차	유의확률	하한값	상한값			
S사	만사	.500	.2160	.060	029	1.029			
	H사	1.300*	.2160	.001	.771	1.829			
P\h	S사	500	.2160	.060	-1.029	.029			
	Ηλł	.800*	.2160	.010	.271	1.329			
H사	8사	-1.300 [*]	.2160	.001	-1.829	771			
	P사	800 *	.2160	.010	-1.329	271			

 B_1B_2 :

$$B_1B_3$$
: $(98.3-97.0) \pm 2.447 \times \frac{\sqrt{2 \times 0.093}}{\sqrt{4}} = (0.77, 1.83)$

 B_2B_3 :

정답은 패키지 결과 참고

에제 3-3. 물의 존재 아래에서 카프로락탐(Caprolactame)의 중합을 행할 때, 산(acid)을 첨가 시킴으로써 중합이 촉진되느냐의 여부를 보기 위하여 여러 가지 반응시간에 대한 락탐중화률을 측정한 결과 다음과 같은 데이터를 얻었다.

시간 산	$A_1 \\ (참가제 없음)$	A_2 (아미노카프론산)	A_3 (안식향산)	A_4 (세바신산)
$B_{\!1}(2$ 시간)	18.2	65.0	68.0	41.5
$B_{\!2}(3$ 시간)	47.4	73.8	79.5	61.5
$B_{\!3}(4$ 시간)	79.8	80.1	87.8	77.9
$B_4(5$ 시간)	92.1	93.8	93.4	92.7

(1) 분산분석

개체-간 효과 검정

종속 변수:락탐중화율

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	5810.389ª	6	968.398	8.455	.003
절편	83016.016	1	83016.016	724.830	.000
산	1256.032	3	418.677	3.656	.057
반응시간	4554.357	3	1518.119	13.255	.001
오차	1030.786	9	114.532		
합계	89857.190	16			
수정 합계	6841.174	15			

a. R 제곱 = .849 (수정된 R 제곱 = .749)

반복이 없는 이원배치법 (해석의 POINT)

- ① 주효과에 대한 분석
- ② 주효과에 대한 사후검정
- ③ 각각의 신뢰구간 및 평균 차이에 대한 신뢰구간(A, B, AB, A집단간, B집간간)
- ④ 신뢰구간 계산 및 간단식 계산 체크
- ⑤ 실험순서 체크

'산'은 유의수준 5%에서 유의한 차이가 나타나지 않았고 반응시간은 유의수준 5%에서 유의한 차이를 나타내었다. 반응시간에 대한 사후검정 필요

(2) 분산분석 후 추정

1 A의 모평균의 추정

종속 변수:락탐중화율

산			95% 신뢰구간	
	평균	표준오차	하한값	상한값
참가제없음	59.375	5.351	47.270	71.480
아미노카프론산	78.175	5.351	66.070	90.280
만식향산	82.175	5.351	70.070	94.280
세바신산	68.400	5.351	56.295	80.505

② *B*의 모평균의 추정

종속 변수:락탐중화율

반응시간			95% 신뢰구간	
	평균	표준오차	하한값	상한값
2시간	48.175	5.351	36.070	60.280
3시간	65.550	5.351	53.445	77.655
4시간	81.400	5.351	69.295	93.505
5시간	93.000	5.351	80.895	105.105

③ A, B의 조합에서 모평균의 추정

종속 변수:락탐중화율

반응시간	산			95% 신	뢰구간
		평균	표준오차	하한값	상한값
2시간	참가제없음	35.519	7.079	19.506	51.532
	마미노카프론산	54.319	7.079	38.306	70.332
	만식향산	58.319	7.079	42.306	74.332
	세바신산	44.544	7.079	28.531	60.557
3시간	참가제없음	52.894	7.079	36.881	68.907
	아미노카프론산	71.694	7.079	55.681	87.707
	만식향산	75.694	7.079	59.681	91.707
	세바신산	61.919	7.079	45.906	77.932
4시간	참가제없음	68.744	7.079	52.731	84.757
	아미노카프론산	87.544	7.079	71.531	103.557
	만식향산	91.544	7.079	75.531	107.557
	세바신산	77.769	7.079	61.756	93.782
5시간	참가제없음	80.344	7.079	64.331	96.357
	마미노카프론산	99.144	7.079	83.131	115.157
	만식향산	103.144	7.079	87.131	119.157
	세바신산	89.369	7.079	73.356	105.382

$\P(A)$ 집단간의 모평균의 차

락탐중화율 LSD

(1) 산	(J) 산				95% 신	뢰구간
		평균차(I-J)	표준오차	유의확률	하한값	상한값
참가제없음	아미노카프론산	-18.800*	7.5674	.035	-35.919	-1.681
	만식향산	-22.800*	7.5674	.015	-39.919	-5.681
	세바신산	-9.025	7.5674	.264	-26.144	8.094
아미노카프론산	참가제없음	18.800*	7.5674	.035	1.681	35.919
	만식향산	-4.000	7.5674	.610	-21.119	13.119
	세바신산	9.775	7.5674	.229	-7.344	26.894
만식향산	참가제없음	22.800*	7.5674	.015	5.681	39.919
	마미노카프론산	4.000	7.5674	.610	-13.119	21.119
	세바신산	13.775	7.5674	.102	-3.344	30.894
세바신산	참가제없음	9.025	7.5674	.264	-8.094	26.144
	아미노카프론산	-9.775	7.5674	.229	-26.894	7.344
	만식향산	-13.775	7.5674	.102	-30.894	3.344

⑤ B 집단간의 모평균의 차

락탐중화율 LSD

(1) 빈	:응시간	(J) 반응시간				95% 신	뢰구간	
			평균차(I-J)	표준오차	유의확률	하한값	상한값	
	2시간	3시간	-17.375 [*]	7.5674	.047	-34.494	256	
		4시간	-33.225 [*]	7.5674	.002	-50.344	-16.106	
		5시간	-44.825 [*]	7.5674	.000	-61.944	-27.706	
'	3시간	2시간	17.375	7.5674	.047	.256	34.494	
		4시간	-15.850	7.5674	.066	-32.969	1.269	
		5시간	-27.450*	7.5674	.006	-44.569	-10.331	
'	4시간	2시간	33.225*	7.5674	.002	16.106	50.344	
		3시간	15.850	7.5674	.066	-1.269	32.969	
		5시간	-11.600	7.5674	.160	-28.719	5.519	
'	5시간	2시간	44.825*	7.5674	.000	27.706	61.944	
		3시간	27.450 [*]	7.5674	.006	10.331	44.569	
		4시간	11.600	7.5674	.160	-5.519	28.719	

⑥ 사후검정

락탐중화율

Student-Newman-Keulsa,b

산		집단군
	N	1
참가제없음	4	59.375
세바신산	4	68.400
아미노카프론산	4	78.175
만식향산	4	82.175
유의확률		.059

락탐중화율

Student-Newman-Keulsa,b

반응시간		집단군				
	N	1	2	3		
2시간	4	48.175				
3시간	4		65.550			
4시간	4		81.400	81.400		
5시간	4			93.000		
유의확률		1.000	.066	.160		

반응시간에 대한 사후검정 결과는 2시간과 3시간, 4시간, 5시간 간에 유의한 차이를 나타내었고, 3시간과 5시간도 유의한 차이를 나타내었다. 에제 3-4. 한 화학공정에서 압력(A)와 온도(B) 두 변수가 제품의 특성치에 미치는 영향을 조사하기 위하여 공정에서 사용될 수 있는 압력 4가지(150, 200, 250, 300)(psi)과 온도 5 가지 수준(120, 135, 150, 165, 180)($^{\circ}$ C)의 각 조합에서 실험하여 특성치를 관측하여 다음 데이터를 얻었다. 제품 특성치가 두 변수들의 수준에 차이가 있는지를 검정하여라.

압력 온도	120psi	135psi	150psi	165psi	180psi
150℃	30	28	28	27	27
200℃	32	30	28	28	26
250℃	33	31	30	29	27
300℃	33	31	30	30	27

(1) 분산분석

개체-간 효과 검정

종속 변수:특성치

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	76.150ª	7	10.879	23.311	.000
절편	17111.250	1	17111.250	36666.964	.000
압력	60.000	4	15.000	32.143	.000
온도	16.150	3	5.383	11.536	.001
오차	5.600	12	.467		
합계	17193.000	20			
수정 합계	81.750	19			

a. R 제곱 = .931 (수정된 R 제곱 = .892)

압력과 온도 모두 유의수준 1%에서 유의한 차이가 있었고 온도와 압력 모두 사후검정 필요.

(2) 분산분석후의 추정

1. 압력

종속 변수:특성치

압력			95% 신뢰구간		
	평균	표준오차	하한값	상한값	
120psi	32.000	.342	31.256	32.744	
135psi	30.000	.342	29.256	30.744	
150psi	29.000	.342	28.256	29.744	
165psi	28.500	.342	27.756	29.244	
180psi	26.750	.342	26.006	27.494	

2. 온도

종속 변수:특성치

온도			95% 신뢰구간		
	평균	표준오차	하한값	상한값	
150℃	28.000	.306	27.334	28.666	
200℃	28.800	.306	28.134	29.466	
250℃	30.000	.306	29.334	30.666	
300℃	30.200	.306	29.534	30.866	

3. 압력 * 온도

종속 변수:특성치

압력	온도			95% 신	뢰구간
		평균	표준오차	하한값	상한값
120psi	150℃	30.750	.432	29.809	31.691
	200℃	31.550	.432	30.609	32.491
	250℃	32.750	.432	31.809	33.691
	300℃	32.950	.432	32.009	33.891
135psi	150℃	28.750	.432	27.809	29.691
	200℃	29.550	.432	28.609	30.491
	250℃	30.750	.432	29.809	31.691
	300℃	30.950	.432	30.009	31.891
150psi	150℃	27.750	.432	26.809	28.691
	200℃	28.550	.432	27.609	29.491
	250℃	29.750	.432	28.809	30.691
	300℃	29.950	.432	29.009	30.891
165psi	150℃	27.250	.432	26.309	28.191
	200℃	28.050	.432	27.109	28.991
	250℃	29.250	.432	28.309	30.191
	300℃	29.450	.432	28.509	30.391
180psi	150℃	25.500	.432	24.559	26.441
	200℃	26.300	.432	25.359	27.241
	250℃	27.500	.432	26.559	28.441
	300℃	27.700	.432	26.759	28.641

(3) 사후검정 ; LSD : 집단간 평균차의 신뢰구간

특성치 LSD

(I) 압력	(J) 압력				95% 신	뢰구간
		평균차(I-J)	표준오차	유의확률	하한값	상한값
120psi	135psi	2.00*	.483	.001	.95	3.05
	150psi	3.00*	.483	.000	1.95	4.05
	165psi	3.50*	.483	.000	2.45	4.55
	180psi	5.25*	.483	.000	4.20	6.30
135psi	120psi	-2.00*	.483	.001	-3.05	95
	150psi	1.00	.483	.061	05	2.05
	165psi	1.50*	.483	.009	.45	2.55
	180psi	3.25	.483	.000	2,20	4.30
150psi	120psi	-3.00*	.483	.000	-4.05	-1.95
	135psi	-1.00	.483	.061	-2.05	.05
	165psi	.50	,483	.321	55	1,55
	180psi	2.25*	.483	.001	1.20	3.30
165psi	120psi	-3.50*	.483	.000	-4.55	-2.45
	135psi	-1.50*	,483	.009	-2.55	45
	150psi	-,50	.483	.321	-1.55	.55
	180psi	1.75*	.483	.003	.70	2.80
180psi	120psi	-5,25*	.483	.000	-6.30	-4.20
	135psi	-3.25	.483	.000	-4.30	-2.20
	150psi	-2.25*	.483	.001	-3.30	-1.20
	165psi	-1.75*	.483	.003	-2.80	70

특성치 LSD

(1) 온도	(J) 온도				95% 신	뢰구간
		평균차(I-J)	표준오차	유의확률	하한값	상한값
150℃	200℃	80	.432	.089	-1.74	.14
	250℃	-2.00 [*]	.432	.001	-2.94	-1.06
	300℃	-2.20 [*]	.432	.000	-3.14	-1.26
200℃	150℃	.80	.432	.089	14	1.74
	250℃	-1.20 [*]	.432	.017	-2.14	26
	300℃	-1.40*	.432	.007	-2.34	46
250℃	150℃	2.00*	.432	.001	1.06	2.94
	200℃	1.20*	.432	.017	.26	2.14
	300℃	20	.432	.652	-1.14	.74
300℃	150℃	2.20*	.432	.000	1.26	3.14
	200℃	1.40*	.432	.007	.46	2.34
	250℃	.20	.432	.652	74	1.14

(4) 사후검정 ; 듀키, SNK

종속 변수:특성치

	(I) 압력	(J) 압력				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Tukey HSD	120psi	135psi	2.00 [*]	.483	.010	.46	3.54
		150psi	3.00 [*]	.483	.000	1.46	4.54
		165psi	3.50 [*]	.483	.000	1.96	5.04
		180psi	5.25*	.483	.000	3.71	6.79
	135psi	120psi	-2.00 [*]	.483	.010	-3.54	46
		150psi	1.00	.483	.293	54	2.54
		165psi	1.50	.483	.057	04	3.04
		180psi	3.25*	.483	.000	1.71	4.79
	150psi	120psi	-3.00 [*]	.483	.000	-4.54	-1.46
		135psi	-1.00	.483	.293	-2.54	.54
		165psi	.50	.483	.835	-1.04	2.04
		180psi	2.25*	.483	.004	.71	3.79
	165psi	120psi	-3.50 [*]	.483	.000	-5.04	-1.96
		135psi	-1.50	.483	.057	-3.04	.04
		150psi	50	.483	.835	-2.04	1.04
		180psi	1.75*	.483	.024	.21	3.29
	180psi	120psi	-5.25 [*]	.483	.000	-6.79	-3.71
		135psi	-3.25*	.483	.000	-4.79	-1.71
		150psi	-2.25*	.483	.004	-3.79	71
		165psi	-1.75 [*]	.483	.024	-3.29	21

특성치

		70/				
	압력			집단	난군	
		N	1	2	3	4
Student-Newman-Keuls ^a	180psi	4	26.75			
۵.	165psi	4		28.50		
	150psi	4		29.00	29.00	
	135psi	4			30.00	
	120psi	4				32.00
	유의확률		1.000	.321	.061	1.000
Tukey HSD ^{a,b}	180psi	4	26.75			
	165psi	4		28.50		
	150psi	4		29.00		
	135psi	4		30.00		
	120psi	4			32.00	
	유의확률		1.000	.057	1.000	

종속 변수:특성치

	(I) 온도	(J) 온도				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Tukey HSD	150℃	200°C	80	.432	.298	-2.08	.48
		250℃	-2.00 [*]	.432	.003	-3.28	72
		300℃	-2.20*	.432	.001	-3.48	92
	200℃	150°C	.80	.432	.298	48	2.08
		250℃	-1.20	.432	.069	-2.48	.08
		300℃	-1.40*	.432	.031	-2.68	12
	250℃	150°C	2.00*	.432	.003	.72	3.28
		200℃	1.20	.432	.069	08	2.48
		300℃	20	.432	.966	-1.48	1.08
	300℃	150°C	2.20 [*]	.432	.001	.92	3.48
		200℃	1.40*	.432	.031	.12	2.68
		250℃	.20	.432	.966	-1.08	1.48

특성치

	온도			집단군	
		N	1	2	3
Student-Newman-Keuls ^a	150℃	5	28.00		
,b	200℃	5	28.80		
	250℃	5		30.00	
	300℃	5		30.20	
	유의확률		.089	.652	
Tukey HSD ^{a,b}	150℃	5	28.00		
	200℃	5	28.80	28.80	
	250℃	5		30.00	30.00
	300℃	5			30.20
	유의확률		.298	.069	.966

예제 3-5. 무연탄에서 코크스(cokes)를 제조하는 목적으로 10% 첨가하는 역청탄(A)을 5종류 선택하고, 타르피치(tar pitcj)의 참가량(B)을 4%, 6%, 8%, 10%의 4수준을 택하여 참가한 후에 이것을 가열 성형하고, 코크스의 내압강도(kg/cm^2)를 측정한 결과 다음의 데이터를 얻었다.

역청탄 첨가량	A_1	A_2	A_3	A_4	A_5
$B_1(4\%)$	79	72	53	58	68
$B_{2}(6\%)$	74	66	48	57	65
$B_{3}(8\%)$	69	64	44	52	61
$B_4(10\%)$	66	62	39	45	58

(1) 분산분석

source	SS	df	MS	F
요인 (A)	1736			
요인(<i>B</i>)	400			
오차 (E)				
합계(Total)	2160			

아래 분석결과 참고하여 분산분석표 완성

개체-간 효과 검정

종속 변수:내압강도

소스	제 III 유형 제곱합	자유도	평균 제곱	F	유의확률
수정 모형	2136.000ª	7	305.143	152.571	.000
절편	72000.000	1	72000.000	36000.000	.000
역청탄	1736.000	4	434.000	217.000	.000
타르피치	400.000	3	133.333	66.667	.000
오차	24.000	12	2.000		
합계	74160.000	20			
수정 합계	2160.000	19			

a. R 제곱 = .989 (수정된 R 제곱 = .982)

(2) 사후검정 ; 듀키, SNK

종속 변수:내압강도

	(I) 역청탄	(J) 역청탄				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Tukey HSD	A1	A2	6.00 [*]	1.000	.000	2.81	9.19
		А3	26.00 [*]	1.000	.000	22.81	29.19
		A4	19.00*	1.000	.000	15.81	22.19
		A5	9.00*	1.000	.000	5.81	12.19
	A2	A1	-6.00*	1.000	.000	-9.19	-2.81
		А3	20.00*	1.000	.000	16.81	23.19
		A4	13.00 [*]	1.000	.000	9.81	16.19
		A5	3.00	1.000	.069	19	6.19
	A3	A1	-26.00*	1.000	.000	-29.19	-22.81
		A2	-20.00*	1.000	.000	-23.19	-16.81
		A4	-7.00 [*]	1.000	.000	-10.19	-3.81
		A5	-17.00 [*]	1.000	.000	-20.19	-13.81
	A4	A1	-19.00*	1.000	.000	-22.19	-15.81
		A2	-13.00 [*]	1.000	.000	-16.19	-9.81
		А3	7.00*	1.000	.000	3.81	10.19
		A5	-10.00*	1.000	.000	-13.19	-6.81
	A5	A1	-9.00 [*]	1.000	.000	-12.19	-5.81
		A2	-3.00	1.000	.069	-6.19	.19
		А3	17.00*	1.000	.000	13.81	20.19
		A4	10.00*	1.000	.000	6.81	13.19

내압강도

	멱청탄				집단군		
		N	1	2	3	4	5
Student-Newman-Keuls ^a	A3	4	46.00				
,b	A4	4		53.00			
	A5	4			63.00		
	A2	4				66.00	
	A1	4					72.00
	유의확률		1.000	1.000	1.000	1.000	1.000
Tukey HSD ^{a,b}	A3	4	46.00				
	A4	4		53.00			
	A5	4			63.00		
	A2	4			66.00		
	A1	4				72.00	
	유의확률		1.000	1.000	.069	1.000	

종속 변수:내압강도

	(I) 타르피치	(J) 타르피치				95% 신	뢰구간
			평균차(I-J)	표준오차	유의확률	하한값	상한값
Tukey HSD	4%	6%	4.00 [*]	.894	.004	1.34	6.66
		8%	8.00 [*]	.894	.000	5.34	10.66
		10%	12.00*	.894	.000	9.34	14.66
	6%	4%	-4.00 [*]	.894	.004	-6.66	-1.34
		8%	4.00 [*]	.894	.004	1.34	6.66
		10%	8.00*	.894	.000	5.34	10.66
	8%	4%	-8.00*	.894	.000	-10.66	-5.34
		6%	-4.00 [*]	.894	.004	-6.66	-1.34
		10%	4.00*	.894	.004	1.34	6.66
	10%	4%	-12.00 [*]	.894	.000	-14.66	-9.34
		6%	-8.00 [*]	.894	.000	-10.66	-5.34
		8%	-4.00*	.894	.004	-6.66	-1.34

내압강도

	타르피치			집단	··군	
		N	1	2	3	4
Student-Newman-Keuls ^a	10%	5	54.00			
l . ⁵	8%	5		58.00		
	6%	5			62.00	
	4%	5				66.00
	유믜확률		1.000	1.000	1.000	1.000
Tukey HSD ^{a,b}	10%	5	54.00			
	8%	5		58.00		
	6%	5			62.00	
	4%	5				66.00
	유의확률		1.000	1.000	1.000	1.000