Пример решения данашиего задания:

Для заданной системы требуется:

- 1. Начертить вал в масштабе. Расставить крутящие моменты в соответствии с заданием.
- 2. Построить эпюры крутящих моментов, наибольших касательных напряжений, угловых перемещений (в общем виде). Вычислить угол поворота свободного сечения и коэффициент запаса прочности вала по пределу текучести.
- 3. Определить работу внешних сил и потенциальную энергию деформации бруса. Дано: d=20 мм, l=160 мм, m=50 Н·м, G=0,8·10⁵ МПа, Сталь 10 $\tau_{\rm r}$ =137 МПа; Сталь 20 $\tau_{\rm r}$ =157 МПа; Сталь 30 $\tau_{\rm r}$ =167 МПа; Сталь 35 $\tau_{\rm r}$ =186 МПа; Сталь 45 $\tau_{\rm r}$ =216 М<u>П</u>а.

49 - may
To gargen 12/1

0	<i>l</i> ₁	21	<i>l</i> ₃ 2 <i>l</i>	21	malescarrows and a second and a second	$\frac{d_2}{2d}$	$\frac{d_3}{d}$	d ₄ 2d	<i>M</i> ₁ −5 <i>m</i>	M ₂ 3 <i>m</i>	M ₃	M ₄	материал	
						2.4	<i>a</i>				- 7/11	2111	Clails 43.	
	5	m	3 n	7	911	?	2m							
ød	\otimes	V	ψ 	00	\otimes	<u> </u>)				2 2			
		# 2d		14		Ø2d			Ød		7 _ 7	πα	[8 A y	
	Ф	1	\otimes		0	- K)	03		VIVI			(° <u>±</u> y	
Œ)	2		3		Ð				Visit V	$W_n = W_k$	7 = 76	$\frac{\alpha^3}{5} \stackrel{\triangle}{=} \overline{W}$	
l d		26	>	21	2	°e >			02d		J _o	T /	(2d) Tid'	e = 16
				Ų.		5					Ter	N 12	$\frac{2}{\alpha l^3} = \frac{\pi \alpha^3}{2} = \frac{2}{2}$	- 0.
				•		72.			>		P2	- 16	2 =	- 0
<i>G</i> ,.	8	M G,16:7	3 K		\otimes	5,16:7	2m)		ød	200	7	· - T		
G,.	_	8W		<i>(</i>		2,165		3 4	2 1996.1	VQ.		P3 = TA		
	0	0 44	\otimes		lacksquare	(E)		92d			(5)	27.3	
£	2	2.2		21		· e	5		920		9	Py = 1	6.7	

$$\begin{aligned} y_{i} &= y_{i} + \int \frac{dd_{i} x_{i}}{dt_{i} x_{i}} dt_{i} = \int \frac{g_{i} \cdot dt_{i}}{g_{i}} = -\frac{g_{i} \cdot dt_{i}}{g_{i$$

Patoma business manieremoli.

$$J = \sum_{i} \int_{i} M_{i} U_{i}^{i} = \int_{i} M_{0} U_{0}^{i} + \int_{i} M_{0}^{i} U_{0}^{i}$$

Maxima conoe nanpencenne: Emax = max (/ Emax, 1, / Emax2 / , / Emax3 / , / Emax4 /) = $= \frac{9m}{W} = \frac{16 \cdot 9 \cdot m}{16 \cdot d^3} = \frac{144 \cdot 50}{56 \cdot 0,02^3}$ = 286478897,6 Ma = 286.10 Ta = 286 MMa Когоронциент запаса протости: 1 = 27 = 216 = 0,755 KL => Konempersel repado-That nobapama chodoguero cereveul (cereveul G): 93 ml = 93 50.0,160.32 = 0,148 pag = 8°28'
0,810" 77.0,02" = 0,148 pag = 8°28'