Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring

Leonardo R. Domingues Helio Pedrini

Eldorado Research Institute Institute of Computing - University of Campinas Brazil

High-Performance Graphics Conference August 07, 2015

Summary

- Introduction
- Related Work
- Methodology
- 4 Results
- Conclusion

- Introduction
- 2 Related Work
- Methodology
- 4 Results
- Conclusion

Introduction Motivation

Construction time x structure quality

- Lower construction time is important for:
 - Animated scenes
 - Interactive applications
- Higher quality is important for:
 - Tracing a large number of rays
- GPU methods typically increase speed but reduce quality

Introduction Objectives

Objectives

- Expand on the current state of the art¹
- Test heuristics to replace exhaustive search
- Reduce construction times further
- Keep quality competitive with the most time demanding algorithms

¹T. Karras and T. Aila. Fast parallel construction of high-quality bounding volume hierarchies. High-Performance Graphics Conference, pages 89-99. ACM, 2013.

- Introduction
- 2 Related Work
- Methodology
- 4 Results
- Conclusion

Figure: Bounding Volume Hierarchy

Related Work BVH Quality

The quality of a BVH can be measured using the Surface Area Heuristic (SAH)

$$SAH = \frac{1}{A_t} \left(C_i \sum_{n \in I} A(n) + C_t \sum_{n \in L} A(n) N(n) \right)$$
 (1)

- A_t = surface area of the root node
- A(n) =surface area of node n
- C_i = relative cost for traversing an internal node
- C_t = relative cost for performing ray-triangle intersection
- I = set of internal nodes
- L = set of leaves
- N(n) = number of triangles referenced by leaf n

Related Work BVH Construction

GPU construction:

- Faster methods
- Lower quality trees
- LBVH² is the fastest method:

LBVH

- Sort triangles along the Z curve
- Split the sorted array to create the internal nodes

²C. Lauterbach, M. Garland, S. Sengupta, D. P. Luebke, and D. Manocha. Fast BVH construction on GPUs. Computer Graphics Forum, 28(2):375-384, Apr. 2009.

Related Work BVH Optimization

Karras and Aila (2013) is the state of the art on GPU optimization

TRBVH

- Treelets = small neighborhood of nodes
- Bottom-up traversal of the tree
- Form a treelet for each traversed node
- Restructure treelet nodes to find the optimal topology

- Introduction
- 2 Related Work
- Methodology
- 4 Results
- Conclusion

Methodology ATRBVH

- Improvement on TRBVH
- Approximate the search for the optimal treelet structure
 - Greedy
 - Bottom-up
 - Agglomerative

Methodology ATRBVH

Algorithm 1: Rearrange Treelets

```
for internal node i in BVH do
       treelet \leftarrow FormTreelet(i)
       clusters ← treeletl eaves
 3
       while length(clusters) > 1 do
           distances \leftarrow []
           foreach pair of clusters (x, y) do
                d \leftarrow Dissimilarity(x, y)
                distances \leftarrow (d, x, y)
 9
           end
           (m, n) \leftarrow FindMinimumDistance(distances)
10
           o \leftarrow MergeClusters(m, n)
11
           clusters.remove(m)
12
            clusters.remove(n)
13
           clusters.add(o)
14
       end
15
16 end
```

Methodology ATRBVH

Figure: Agglomerative treelet restructuring

Methodology Distance

Distance Metric

Surface area of the bounding box containing the two nodes

Minimizes SAH

Distance Cache

- Cache distances in a triangular matrix
- Borrowed from Gu et al. (2013)³

³Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via approximate agglomerative clustering. In Proceedings of the High-Performance Graphics Conference, pages 81-88. ACM, 2013.

Figure: Updating the distance matrix

Methodology Treelet Reconstruction

- Store modifications in a list.
- Check if the new structure will reduce the tree SAH
- Only apply changes that improve the tree SAH

- Collapse the tree
- More than one triangle per node
- Compare cost of the subtree with cost of the collapsed subtree

Cost of the collapsed tree

$$c = C_t A(n) N(n) \tag{2}$$

- C_t = Relative cost of ray-triangle intersection
- A(n) =Surface area of node n
- N(n) = Number of triangles contained in the subtree

- Introduction
- 2 Related Work
- Methodology
- 4 Results
- Conclusion

Results Test Setup

Compared methods

- LBVH
- TRBVH
- ATRBVH

Results Test Setup

- TRBVH is not publicly available
- Build times for our TRBVH are 3x higher than reported by the authors
 - GTX 770 x GTX Titan
 - Low-level optimizations
- TRBVH and ATRBVH share a large similarity

Results Test Setup

- NVIDIA GTX 770
- 16 scenes
- Aila et al. $(2009)^4(2012)^5$ traversal framework
- LBVH as basis for optimization
- Treelet size of 9 for ATRBVH
- All trees are collapsed as post-processing

⁴T. Aila and S. Laine. Understanding the efficiency of ray traversal on GPUs. In Proceedings of the High-Performance Graphics Conference, pages 145-149. ACM, 2009.

⁵T. Aila, S. Laine, and T. Karras. Understanding the efficiency of ray traversal on GPUs - Kepler and Fermi addendum. NVIDIA Technical Report NVR-2012-02, NVIDIA Corporation, June 2012.

Results Measurements

	Method	Mrays/s	Time (ms)	SAH	Relative (%)
	LBVH	41.73	10.61	127.15	65.27
a a a a a a a a a a a a a a a a a a a	TRBVH	63.93	56.75	77.89	100.00
Arabic (412K)	ATRBVH	61.50	38.44	77.45	96.20
	Method	Mrays/s	Time (ms)	SAH	Relative (%)
	LBVH	75.31	23.53	89.14	85.11
	TRBVH	88.49	134.64	70.38	100.00
Buddha (1.1M)	ATRBVH	87.67	90.33	70.73	99.07
	Method	Mrays/s	Time (ms)	SAH	Relative (%)
A CONTRACTOR OF THE PARTY OF TH	LBVH	98.14	8.59	65.53	71.45
	TRBVH	137.36	39.25	39.53	100.00
Conference (282K)	ATRBVH	139.67	27.76	38.93	101.68

Results Measurements

An a	Method	Mrays/s	Time (ms)	SAH	Relative (%)
70	LBVH	84.13	19.64	75.50	89.19
	TRBVH	94.33	105.61	62.04	100.00
Dragon (870K)	ATRBVH	94.23	72.21	62.10	99.89
	Method	Mrays/s	Time (ms)	SAH	Relative (%)
	LBVH	9.43	95.29	308.61	86.91
3 may	TRBVH	10.85	583.55	248.99	100.00
Time Machine (4.7M)	ATRBVH	11.21	415.50	246.78	103.32
Fig. 1	Method	Mrays/s	Time (ms)	SAH	Relative (%)
	LBVH	58.59	40.92	90.11	89.23
C. C	TRBVH	65.66	256.53	73.51	100.00
Welsh Dragon (2.2M)	ATRBVH	65.18	176.62	74.38	99.27

Table: Test results

Method	Performance (%)	Time (%)
LBVH	80.8	20.3
TRBVH	100	100
ATRBVH	99.7	69.5

Table: Results averaged over all test scenes

- Introduction
- 2 Related Work
- Methodology
- 4 Results
- Conclusion

Conclusions and Future Work

ATRBVH

- 30% faster than TRBVH
- Virtually same quality (99.7%)
- Implementation publicly available⁶

⁶https://github.com/leonardo-domingues/atrbvh

Conclusions and Future Work

- Treelet sizes > 32
- Dynamically adjust treelet size
- Test with triangle splitting

Authors Contact Info

leonardo.domingues@eldorado.org.br helio@ic.unicamp.br

Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring

Leonardo R. Domingues Helio Pedrini

Eldorado Research Institute Institute of Computing - University of Campinas Brazil

High-Performance Graphics Conference August 07, 2015

