

HYPERGRAPHS: THEORY, APPLICATIONS AND CHALLENGES HyTAC, September 22-25, 2020

A Design-Methodology for Epidemic Dynamics via Time-Varying Hypergraphs

In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (pp. 61-69).

Alessia Antelmi¹, Gennaro Cordasco², Carmine Spagnuolo¹, Vittorio Scarano¹

¹Università degli Studi di Salerno, Italy

²Università degli Studi della Campania "Luigi Vanvitelli", Italy

 $\stackrel{lack}{\mathbb{F}}$ Bob's story at the time of the pandemic

Bob's story at the time of the pandemic

The potion pot of epidemic modeling

- Mathematical modeling
 - Compartmental models (SIS, SIR, ...)
- Human mobility patterns
- Human behavior
- Contagious patterns
- Pathogen properties
 - Contagiousness
 - Length of infectious period
 - Ability to persist on surfaces and environments
 - Severity

The ingredients of our 'potion'

- Agent-based modeling
- Contagious pathways
 - Human-to-human
 - Human-to-environment
 - Environment-to-human
- Epidemic models on time-varying networks

The ideas behind our contribution

We propose an innovative modeling approach to study and analyze the **propagation** of an epidemic over a set of autonomous **individuals** (agents) modeling the contagious patterns using **many-to-many** relationships by exploiting **hypergraphs**.

Outline

1. Epidemic Dynamics via Time-Varying Hypergraphs

2. Experiments and Results

3. Evaluating Non-Pharmaceutical Interventions (ongoing research..)

4. Conclusion

Exploiting hypergraphs in epidemiological analysis

In 2016, Bodó et al. highlighted two *key* properties of a real model of an epidemic outbreak.

- Community structure built-up from smaller units. This idea is translated into practice using different contagion probabilities according to the place.
- *Infection pressure*. The probability that a susceptible individual becomes infected in a unit is not proportional to the number of infected individuals.

Outline

1. Epidemic Dynamics via Time-Varying Hypergraphs

2. Experiments and Results

3. Evaluating Non-Pharmaceutical Interventions (ongoing research..

Conclusion

Time-Varying Hypergraphs (TVHs)

A TVH for an **epidemic diffusion** is a hypergraph $\mathcal{H} = (V, E, \mathcal{T}, \rho)$, where

- V is the set of n vertices (people);
- *E* is the set of *m* hyperedges (*locations*);
- ullet ${\cal T}$ is the lifetime of the system;
- $\rho: V \times E \times \mathcal{T} \to \{0, ct_{v,\ell}\}$ is a function mapping whether a given vertex v has visited the location e in a given time span t. The value $ct_{v,\ell}$ is the last check-in time of v in ℓ .

Building a TVH and epidemic model parameters

- A check-in specifies when an individual has visited a location.
 - Φ: time-span of the data sampling.
- Indirect contacts (oval shapes): touching furniture, eating contaminated food, airborne.
 - Δ: time interval within which an indirect contact may occur.
- **Direct interactions** (dotted lines): sneezing, whispering, shaking hands.
 - δ : time interval within which an direct contact may occur.

Time interval i		
Agent	Location	Time
A ₁	L ₁	08:00:00
A ₂	L ₁	08:00:49
l Aa	L ₁	08:30:00
A ₃	L ₂	09:00:00
A ₄	L ₂	09:30:00
A ₅	L ₂	09:30:40
l A ₆	L ₂ L ₂ L ₂ L ₂ L ₃	09:30:45
A ₆	L ₃	10:00:00
A ₇	L ₃	09:00:00
A ₈	L ₃	09:00:10
l A _o	L ₃	09:00:15
A ₇	L ₄	09:30:00
A ₈	L ₄	09:40:00
A _a	L ₄	10:00:00
A ₁₀	L ₄	10:00:10
A ₁₁	L ₄	10:00:20

Our design methodology

Suppose we want to analyze the spreading of an epidemic over a population of agents through a compartmental model, such as SIS.

- Given a set of check-ins, build a TVH from it.
- ② Define model parameters regulating the contagion:
 - the probabilities of a direct and an indirect contagion;
 - the probabilities of a spontaneous recovery;
 - the infection pressure of indirect propagation.
- **3** For each time interval in $|\mathcal{T}|$, simulate the epidemic spreading over a population of agents according to a **diffusion algorithm**.

Our design methodology

• Γ_t and N_t define the neighborhood functions of an agent $a \in V$ in a given simulation time t. Specifically,

$$\Gamma_t(a) = \{\ell \in E : \omega(a,\ell,t) = 1\}$$

is the set of locations visited by a during the interval t.

• $N_t(a)$ is the set of neighbors of a during the simulation time t, which corresponds to the agents that visited at least one of the locations visited by a. Formally,

$$N_t(a) = \bigcup_{\ell \in \Gamma_t(a)} V_t(\ell),$$

where $V_t(\ell)$ denotes the set of agents that visited the location ℓ during the interval t.

Our design methodology

- $\Upsilon(a,\ell)$ is a time function which provides the last check-in time of the agent a in the venue ℓ . In other words, it returns the weight of a in ℓ in the hypergraph \mathcal{H} .
- $T_t(a)$ and $T_t(\ell)$ denote the infection state of an agent or a location at a given time t, respectively.
- $X_t(a,b)$ is a direct contact function. Given two agents a and b, it returns 1 if they have a direct contact in the time span t, 0 otherwise. Formally,

$$\mathrm{X}_t(a,b) = \begin{cases} 1, & \text{if} \quad \exists \ell \in \Gamma_t(a) \cap \Gamma_t(b) \text{ AND } |\Upsilon(a,\ell) - \Upsilon(b,\ell)| < \delta \\ 0, & \text{otherwise}. \end{cases}$$

Our diffusion algorithm on TVHs

Each iteration of the diffusion algorithm consists of three contagion phases:

- Agent-to-Environment → Infection of environment by agents;
 - Evaluated on the number of infected agents that have visited a non-contaminated location.
- ② Agent-to-Agent → Direct propagation to agents;
 - Evaluated on number of infected neighbors for each non-infected agent.
- **3** Environment-to-Agent \rightarrow Indirect propagation to agents;
 - Evaluated on number of infected locations visited for each non-infected agent.

(1) Agent-to-Environment

For all non contaminated locations, (i.e., $\ell \in E : T(\ell) = 0$), we compute the number of infected agents that have visited that location:

$$I^e(\ell) = \sum_{a \in V(\ell)} \mathrm{T}(a).$$

This value is then used to update the contagiousness level of ℓ as expressed by the following:

$$T(\ell) = \begin{cases} 1, & \text{infected according to the value } f^e(I^e(\ell)) \\ 0, & \text{not infected}, \end{cases}$$

where $f^{e}()$ is a non-linear function:

$$f^{e}(x) = \begin{cases} x, & \text{if } 0 \le x \le c \\ c, & \text{if } x > c, \end{cases}$$

where c is a constant value given as parameter.

(2) Agent-to-Agent

For all non infected agents (i.e., $a \in V : T(a) = 0$), the total number of infected neighbors is computed. Formally,

$$I^d(a) = \sum_{b \in \mathcal{N}(a)} \mathcal{T}(b) \mathcal{X}(a, b).$$

This value is then used to update the infection state of a, as

$$T(a) = \begin{cases} 1, & \text{infected according to the value } I^d(a) \\ 0, & \text{not infected.} \end{cases}$$

(3) Environment-to-Agent.

For all non infected agents, (i.e., $a \in V : T(a) = 0$), we compute the number of infected locations visited. Formally,

$$I^{i}(a) = \sum_{\ell \in \Gamma(a)} \mathrm{T}(\ell).$$

This value is then used to update the infection state of a, as

$$T(a) = \begin{cases} 1, & \text{infected according to the value } I^{i}(a) \\ 0, & \text{not infected.} \end{cases}$$

Diffusion Algorithm Parameters

Parameter	Description
eta_d	Probability that an agent a_i is infected by another agent a_j via a direct-contact in $Agent-to-Agent$
eta_i	Probability that an agent a is infected via an indirect-contact due to a location ℓ in $\it Environment-to-Agent$
$eta_{m{e}}$	Probability that a location ℓ is infected by an agent in Agent-to-Environment
γ_{a}	Probability that an agent a spontaneously recovers
γ_e	Probability that a location ℓ is sanitized
C	Number of contact in Agent-to-Environment

Diffusion Algorithm


```
\triangleright a random number generator \in [0, 1].
for t \in \mathcal{T} do
    \mathcal{H} \leftarrow \xi(t)
    for \ell \in E do
                                                                                                                ▶ Agent-to-Environment.
         if T_t(\ell) == 0 then
              if r_{next} < 1 - e^{-\beta_e f^e(I^e(\ell))} then
                  T_{t+1}(\ell) = 1
         else if r_{next} < 1 - e^{-\gamma_e} then
              T_{t+1}(\ell) = 0
    for a \in V do
                                                                                                                         ▶ Agent-to-Agent.
         if T_t(a) == 0 then
              if r_{next} < 1 - e^{-\beta_d I^d(\ell)} then
                  T_{t+1}(a) = 1
    for a \in V do
                                                                                                                ▷ Environment-to-Agent.
         if T_t(a) == 0 then
              if r_{next} < 1 - e^{-\beta_i I^i(\ell)} then
                  T_{t+1}(a) = 1
         else if r_{next} < 1 - e^{-\gamma_{\sigma}} then
              T_{t+1}(a) = 0
```

Outline

1. Epidemic Dynamics via Time-Varying Hypergraphs

2. Experiments and Results

3. Evaluating Non-Pharmaceutical Interventions (ongoing research...

Conclusion

- Foursquare social network data [YANG2015+].
- Tokyo, from 12 April 2012 to 16 February 2013.
- 573,703 check-ins, 2,293 users, 61,858 locations.
- Most crowded month: May, 2012.

Time difference distribution of check-ins within the same place in 7 days and $\Delta=4$ hours.

Time Intervals

The BI EBeacon Data set.

- BLEBeacon data [Sikeridis2018+].
- A collection of Bluetooth Low Energy (BLE) advertisement packets/traces generated from BLE beacons carried by people following their daily routine inside a university building.
- From 15 September 2016 to 17 October 2016.
- 46 users, 32 locations.

The BLEBeacon Data set: Weekly check-ins

The BLEBeacon Data set: Daily check-ins

Experiments

- We experimented the SIS model on the contact-network built upon the Foursquare and BLEBeacon data sets.
- Experimental scenarios:
 - **Direct** *vs* **Indirect**, testing the model expressiveness in distinguishing direct and indirect contagion pathways.
 - 2 Time proprieties of contacts, effect of time varying intervals length when direct or indirect contacts happen.

Direct vs Indirect Contagions Settings: Foursquare

- Goal. Testing the model expressiveness in distinguishing direct and indirect contagion pathways;
- $\Delta = 4$ hours, $\delta = 1$ minutes;
- 80% of the agents susceptible, the remaining 20% to infected;
- Two parameters configurations has been investigated:
 - Low: $\beta_d = 0.2$, $\beta_i = 0.1$, $\beta_e = 0.06$, $\gamma_e = 0.06$, $\gamma_a = 0.1$, and c = 5;
 - High: $\beta_d=0.8$, $\beta_i=0.4$, $\beta_e=0.26$, $\gamma_e=0.06$, $\gamma_a=0.1$, and c=5
 - Fixed β_d
 - $\beta_i = \frac{\beta_d}{2}$;
 - $\bullet \ \beta_e = \frac{\bar{\beta}_d}{4}.$

Direct vs Indirect Contagions: Foursquare

Indirect contacts are crucial in spreading the epidemic.

They should be investigated when studying epidemic diffusion processes.

Direct vs Indirect Contagions: BLEBeacon

- 1 randomly infected at time t = 0.
- $\beta_d=0.56$, $\beta_i=0.29$, $\beta_e=0.29$, $\gamma_e=0.017$, $\gamma_a=0.034$, and c=5.

Contacts time analysis: Foursquare

Time Intervals

First and last of the 16 configurations in the paper.

 Changing the direct and indirect contagious contact-time dramatically shift the epidemic spreading pathways.

Outline

1. Epidemic Dynamics via Time-Varying Hypergraphs

2. Experiments and Results

3. Evaluating Non-Pharmaceutical Interventions (ongoing research..)

Conclusion

Non-Pharmaceutical Interventions (ongoing research..)

- WHO World Health Organization. 2019. Non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza.
 - Personal protective measures (PPMs).
 - 2 Environmental measures (EMs).
 - Social distancing measures (SDMs):
 - Isolation;
 - Quarantine;
 - Avoiding crowding;
 - Contact Tracing.
- Experiments on NPIs

NPIs - PPMs

- The transmission probabilities for both direct/indirect are reduced.
- ullet Varying the lpha% of agents that adopt the PPM.

NPIs - EMs

• Each location is cleaned (the infection is removed) at the end of the most crowded intervals: 12:00-16:00 — 16:00-20:00 — 20:00-24:00.

NPIs - SDMs: Isolation and quarantine

- **Isolation** (left): at the beginning of each step, an agents put itself in isolation with a probability $\beta_{isolation}$, proportional to the number of the infected meets, if it is infected.
- Quarantine (right): at the beginning of each step, an agent put itself in quarantine with probabilities $\beta_{q-direct}$, proportional to the number of the infected meets, and $\beta_{i-direct}$, proportional to the number of the infected location visited.

NPIs - SDMs: Location closure (lockdown)

- By type (left): all location of a certain type is closed.
- Most crowded (right): a % of the most crowded location is closed.

NPIs - SDMs: Avoiding crowding

Direct thr=1

Direct thr=2

175

200

- For each day the building capacity is reduced of 50%.
- Special Number (thr): only a limited number of agents (1-3-6) are allowed to stay in a location together.

NPIs - SDMs: Contact tracing

- Quarantine approach: at the beginning of each step, an agent put itself in quarantine with probability $\beta_{tracing}$, proportional to the number of the infected reported by a tracing application.
- Only a α % of the agents use the tracing application.
- Percentage of quarantined individuals on the right.

Outline

1. Epidemic Dynamics via Time-Varying Hypergraphs

2. Experiments and Results

3. Evaluating Non-Pharmaceutical Interventions (ongoing research..

4. Conclusion

Conclusion

- We formally defined the **Time Varying Hypergraphs** for modeling contact-networks.
- We provided a design-methodology for enhancing the accuracy in epidemiological study combining:
 - Agent-based Modeling and Hypergraphs.
- We showed how hypergraphs allow us to distinguish different contagious pathways among the contact-network: direct and indirect.
- We experimented the SIS model on Foursquare users-mobility data, revealing:

- the **importance of indirect** propagation in epidemic contact-network;
- 2 the consequence of modeling contact-time in epidemic simulation for both direct and indirect contacts.

What's next

- Study epidemic control strategies (NPIs, ongoing research).
- Analyze immunization and quarantine techniques on agents or environment:
 - by developing dedicated immunization strategies for hypergraphs.
- Testing our methodology on other classical epidemic models.
- Experiments on more real-world datasets.
 - Unfortunately, now we should find data about human mobility patterns during the COVID-19 pandemic, generated by pandemic control applications already adopted in many countries.

Time for questions

Thank You For Your Attention!

cspagnuolo@unisa.it

