Math 108B Homework 4

Rad Mallari

March 1, 2022

For all problems:

- V is a vector space over \mathbb{C}
- $\dim V = n$
- $x, y \in V$
- $V, T, S, N \in \mathcal{L}(V)$
- $N \in \mathcal{L}(V)$ is nilpotent if $N^k = 0$ for some k > 0.

1 Problem 1

Prove that if $T^{m-1}x \neq 0$, $T^mx = 0$, then the set $\{x, Tx, ..., T^{m-1}x\}$ is linearly independent.

Proof.

2 Problem 2

Prove that if ST is nilpotent, then TS is nilpotent.

Proof.

1

3 Problem 3

Prove that if N is nilpotent, then 0 is the only eigenvalue of N. **Proof.**

4 Problem 4

Prove that if null $N^{n-1} \neq$ null N^n , then N is nilpotent. **Proof.**

5 Problem 5

Prove that if null $N^{n-2} \neq$ null N^{n-1} , then N has at most two distinct eigenvalues.

Proof.

6 Problem 6

Prove that for any T,

$$\text{null } T^n \cap \text{range } T^n = \{0\}$$

Proof.

7 Problem 7

Find a 3×3 matrix whose minimal polynomial is z^2 . **Proof.**

8 Problem 8

Find a 4×4 matrix whose minimimal polynomial is $z(z-1)^2$. **Proof.**

9 Problem 9

Suppose T is invertible. Prove that there is a polynomial p such that $T^{-1} = p(T)$.

Proof.

10 Problem 10

Prove that V has a basis consisting of eigenvectors of T if and only if the minimal polynomial of T has no repeated roots.

Proof.

11 Problem 11

Suppose $x \neq 0$. Let p be the monic polynomial of the smallest degree such that p(T)x = 0. Prove that p divides the minimal polynomial of T. **Proof.**