A Coinductive Axiomatisation of Regular Expressions under Bisimulation

Clemens Grabmayer

Dept. of Computer Science Vrije Universiteit Amsterdam

CMCS 2006 Short Contributions
March 27, 2005

Overview

- The process interpretation of regular expressions.
- Milner's 3 questions (1984) concerning the process interpretation; i.p. the (still open) axiomatisation question.
- Relationship of the proc. int. with Antimirov's partial derivatives.
- A coinductively motivated proof system for regular expressions under bisimulation.
- A partial answer to the axiomatisation question.

Language Interpretation L

```
0 \quad \stackrel{L}{\longmapsto} \quad \text{empty set } \emptyset
        \mathbf{1} \quad \stackrel{L}{\longmapsto} \quad \{\lambda\} \qquad (\lambda \text{ the empty word})
        a \stackrel{L}{\longmapsto} \{a\}
e + f \stackrel{L}{\longmapsto} union of L(e) and L(f)
  e \cdot f \overset{L}{\longmapsto} element-wise concatenation of m{L}(e) and m{L}(f)
      e^* \stackrel{L}{\longmapsto} set of "words over of L(e)"
```

Process Interpretation *P*

- $0 \stackrel{P}{\longmapsto} \operatorname{deadlock} \delta$
- $1 \stackrel{P}{\longmapsto} \text{empty process } \epsilon$
- $a \stackrel{P}{\longmapsto}$ atomic action a
- $e+f \stackrel{P}{\longmapsto}$ alternative composition between P(e) and P(f)
 - $e \cdot f \stackrel{P}{\longmapsto}$ sequential composition of P(e) and P(f)
 - $e^* \stackrel{P}{\longmapsto}$ unbounded iteration of P(e)

Process Interpretation *P*

$$P(a(a(b+ba))^*.0)$$

$$P((aa(ba)*b)*.0)$$

Process Interpretation *P*

$$P(a(a(b+ba))^*.0)$$

$$P((aa(ba)^*a)^*.0)$$

Regular Expressions under Bisimulation

$$P(a(a(b+ba))^*.0) \Longrightarrow P((aa(ba)^*a)^*.0)$$

Regular Expressions under Bisimulation

$$(a(a(b+ba))^*.0 \qquad \Longleftrightarrow_{\mathbf{P}} \qquad (aa(ba)^*a)^*.0$$

Regular Expressions under Bisimulation

"Two-exit iteration"

 $\notin im(\mathbf{P})$

Properties of *P*

- Not every finite-state process is the process interpretation P(e) of a regular expression e.
- What is more: not every finite-state process is bisimilar to the process interpretation P(e) of a regular expression e.
- ullet Fewer identities hold w.r.t. $\cong_{I\!\!P}$ than w.r.t. $=_{I\!\!L}$.

The Axiom System REG for $=_L$ (Salomaa's axiomatisation F_1 reversed)

Axioms:

(B1)
$$x + (y + z) = (x + y) + z$$
 (B7) $x.1 = x$
(B2) $(x.y).z = x.(y.z)$ (B8) $x.0 = 0$
(B3) $x + y = y + x$ (B9) $x + 0 = x$
(B4) $(x + y).z = x.z + y.z$ (B10) $x^* = 1 + x.x^*$
(B5) $x.(y + z) = x.y + x.z$ (B11) $x^* = (1 + x)^*$
(B6) $x + x = x$

Inference rules: equational logic plus

$$\frac{e=f.e+g}{e=f^*.g}$$
 FIX (if $\lambda \notin \boldsymbol{L}(f)$)

Sound and Unsound Axioms of REG w.r.t. \rightleftharpoons_P

(B1)
$$x + (y + z) = (x + y) + z$$
 (B7) $x.1 = x$
(B2) $(x.y).z = x.(y.z)$ (B8) $x.0 = 0$
(B3) $x + y = y + x$ (B9) $x + 0 = x$
(B4) $(x + y).z = x.z + y.z$ (B10) $x^* = 1 + x.x^*$
(B5) $x.(y + z) = x.y + x.z$ (B11) $x^* = (1 + x)^*$
(B6) $x + x = x$

Also sound are:

$$0.x = 0$$

$$\frac{e = f.e + g}{e = f^*.g} \text{FIX (if } \lambda \notin \boldsymbol{L}(f))$$

Milner's Adaptation for \rightleftharpoons_P : $\mathsf{BPA}_{0,1}^* + 1 - \mathsf{RSP}_{0,1}^*$

Axioms:

(B1)
$$x + (y + z) = (x + y) + z$$
 (B7) $x.1 = x$
(B2) $(x.y).z = x.(y.z)$ (B8)' $0.x = 0$
(B3) $x + y = y + x$ (B9) $x + 0 = x$
(B4) $(x + y).z = x.z + y.z$ (B10) $x^* = 1 + x.x^*$
(B11) $x^* = (1 + x)^*$
(B6) $x + x = x$

Inference rules: equational logic plus

$$\frac{e=f.e+g}{e=f^*.g}$$
1-RSP $^*_{0,1}$ (if $\lambda \notin \boldsymbol{L}(f)$)

Milner's Questions (1984)

- (1) Is a variant of Salomaa's axiomatisation for language equality complete for \bowtie_{P} ?
 - To my knowledge: Yet unsolved. (But: partial & related results.)
- (2) What structural property characterises the finite-state processes that are bisimilar to processes in the image of P?
 - Definiability by "well-behaved" specifications (Baeten, Corradini, 2005); this is decidable (Baeten, Corradini, and C.G., 2005).
- (3) Does "minimal star height" over single-letter alphabets define a hierarchy modulo \bowtie_{P} ?
 - Yes! (Hirshfeld and Moller, 1999).

Antimirov and Brzozowkski Derivatives

Brzozowski derivative (1963) Antimirov's partial derivatives (1995)

$$(\cdot)_{\cdot}: \mathcal{R}(\Sigma) \times \Sigma \to \mathcal{R}(\Sigma) \qquad \qquad \partial: \mathcal{R}(\Sigma) \times \Sigma \to \mathcal{P}_{\mathsf{f}}(\mathcal{R}(\Sigma))$$

$$\langle e, a \rangle \mapsto e_{a} \qquad \qquad \langle e, a \rangle \mapsto \partial_{a}(e)$$

- Brzozowski der's mimic language derivatives on a synatactic level: $L(e_a) = (L(e))_a (=_{def} \{v \mid a.v \in L(e)\}).$
- Partial derivatives are mathematically motivated refinements.
- Both defined syntactically by induction on the size of reg. expr's.
- Relationship: For all $e \in \mathcal{R}(\Sigma)$, $e_a \equiv_{\mathsf{ACI}} \sum_{e' \in \partial_a(e)} e'$.
- Every regular expression has only finitely many Brzozowski (Antimirov) derivatives.

The Coalgebra Induced by Partial Derivatives

Antimirov's partial derivatives induce an F-coalgebra $(\mathcal{R}(\Sigma), \langle o, t \rangle)$, for the functor $F(X) = 2 \times \mathcal{P}_f(\Sigma \times X)$, by:

$$\langle o, t \rangle : \mathcal{R}(\Sigma) \longmapsto 2 \times \mathcal{P}_{f}(\Sigma \times \mathcal{R}(\Sigma)), \text{ where}$$

$$\begin{array}{c}
\mathbf{o}: \ \mathcal{R}(\Sigma) \longrightarrow 2 \\
e \longmapsto \mathbf{o}(e) =_{\mathsf{def}} \begin{cases}
0 & \dots \mathbf{P}(e) \not\downarrow & (\lambda \notin \mathbf{L}(e)) \\
1 & \dots \mathbf{P}(e) \downarrow & (\lambda \in \mathbf{L}(e))
\end{cases}$$

$$t: \mathcal{R}(\Sigma) \longrightarrow \mathcal{P}_{f}(\Sigma \times \mathcal{R}(\Sigma))$$

$$e \longmapsto t(e) =_{def} \{\langle a, e' \rangle \mid a \in \Sigma, e' \in \partial_{a}e \}.$$

∼: bisimilarity on this coalgebra;

 $e \sim_{\mathsf{fin}} f$: there is a finite bisimulation between e and f.

Relationship with the Process Interpretation

Lemma. For all $e, f \in \mathcal{R}(\Sigma)$: $\left[\mathbf{P}(e) \xrightarrow{a} \mathbf{P}(f) \iff f \in \partial_a(e) \right]$.

Lemma. For all $e, f \in \mathcal{R}(\Sigma)$:

$$e \cong_{\mathbf{P}} f \iff e \sim f \ in (\mathcal{R}(\Sigma), \langle o, t \rangle)$$
.

As a refinement we get a *finitary coinduction principle* (*finite bisimulation principle*).

Theorem. For all $e, f \in \mathcal{R}(\Sigma)$:

$$e \cong_{\mathbf{P}} f \iff e \sim_{fin} f \ in (\mathcal{R}(\Sigma), \langle o, t \rangle)$$
.

The Proof System c-BPA $_{0,1}^*$

Inference rule in $\mathbf{c}\text{-}\mathbf{BPA}_{0,1}^*$:

(Given
$$\Sigma = \{a_1, \ldots, a_n\}$$
).

$$[e = f]^{\mathbf{u}}$$

$$\mathcal{D}_{1}^{(i)}$$

$$\cdots$$

$$e_{1}^{(i)} = f_{1}^{(i)}$$

$$e = f$$

$$[e = f]^{\mathbf{u}}$$

$$\mathcal{D}_{m_{i}}^{(i)}$$

$$e_{m_{i}}^{(i)} = f_{m_{i}}^{(i)} \cdots \text{COMP/FIX, } \mathbf{u} \text{ (if (*))}$$

$$e = f$$

where (*) demands:

- o(e) = o(f) holds, and
- $\partial_{a_{i}} e = \{e_{1}^{(i)}, \dots, e_{m_{i}}^{(i)}\} \quad \text{and} \quad \partial_{a_{i}} f = \{f_{1}^{(i)}, \dots, f_{m_{i}}^{(i)}\}$ (for all $i \in \{1, \dots, n\}$).

A Derivation in c-BPA $_{0,1}^*$

For $e =_{\text{def}} \mathbf{1}.(a.a.(b.a)^*.b)^*.0$ and $f =_{\text{def}} a.(a.(b+b.a)^*).0$, for which $e \rightleftharpoons_{\mathbf{P}} f$ holds, we find the following proof in $\mathbf{c}\text{-}\mathbf{BPA_{0,1}^*}$:

$$\frac{(e_1=f_1)^{\boldsymbol{u}}}{e=f_3} \text{COMP} \quad \frac{(e_2=f_2)^{\boldsymbol{v}}}{e_3=f_1} \text{COMP} \\ \frac{e_2=f_2}{e_1=f_1} \text{COMP/FIX, } \boldsymbol{v} \\ \frac{e_1=f_1}{e=f} \text{COMP}$$

where, in particular,

$$e_2 \equiv 1.(b.a)^*.b.(a.a.(b.a)^*.b)^*.0$$
, $f_2 \equiv 1.(b+b.a).(a.(b+b.a))^*.0$, $\partial_b(e_2) = \{e,e_3\}$ and $\partial_b(f_2) = \{f_1,f_3\}$.

A Derivation in c-BPA $_{0,1}^*$ (the Intuition)

"Two-exit iteration"

 $\notin im(\mathbf{P})$

Completeness of c-BPA $_{0,1}^*$

Theorem. c-BPA_{0,1} is sound and complete w.r.t. \rightleftharpoons_{P} :

$$(\forall e, f \in \mathcal{R}(\Sigma)) \left[\vdash_{\mathbf{c-BPA}_{0.1}^*} e = f \iff e \bowtie_{\mathbf{P}} f \right].$$

Proof. By the finitary coinduction principle for $\rightleftharpoons_{\mathbf{P}}$.

Reconstructing Regular Expressions from Partial Derivatives

Let
$$\Sigma = \{a_1, \ldots, a_n\}$$
.

Lemma 1. For all $e \in \mathcal{R}(\Sigma)$ it holds:

$$\vdash_{\mathsf{BPA}_{0,1}^*} e = o(e) + \sum_{i=1}^n \sum_{e' \in \partial_{a_i}(e)} a_i \cdot e'.$$

(This is reminiscent of the *fundamental theorem of calculus* that links differentiation and integration.)

Unique Solvability Principle(s)

$$1-\mathsf{RSP}_{0,1}^*\frac{x=f.x+g}{x=f^*.g} \text{ (if } \lambda \notin \boldsymbol{L}(f)\text{)}$$

$$1 ext{-}\mathsf{USP}_{0,1}^*rac{x=f.x+g}{x=y}rac{y=f.y+g}{x=y}$$
 (if $\lambda
otin m{L}(f)$)

$$\mathsf{USP}_{0,1}^* \frac{\left\{ \ x_j = E_j(x_1, \dots, x_m) \ \right\}_{j=1}^m \quad \left\{ \ y_j = E_j(y_1, \dots, y_m) \ \right\}_{j=1}^m}{x_i = y_i}$$

where, for all $i \in \{1, \dots, m\}$,

$$E_j(\mathbf{x_1},\ldots,\mathbf{x_m})$$
 is of the form $[1+]\sum_{k=1}^{m_j}a_{l_k}.\mathbf{x}_{l_{j,k}}$.

Transforming into $\mathsf{BPA}^*_{0,1}+\mathsf{USP}^*_{0,1}$ -der's (Example)

Using the "expression reconstruction lemma", one finds that in the example the vectors $\langle e, e_1, e_2, e, e_3 \rangle$ and $\langle f, f_1, f_2, f_3, f_1 \rangle$ of regular expressions satisfy the same system of equations. This enables to extract from the proof in **c-BPA** $_{0,1}^*$ the following proof in **BPA** $_{0,1}^*$ +USP $_{0,1}^*$:

$$e \stackrel{!}{=} a.e_1$$
 $e_3 \stackrel{!}{=} a.e_2$ $f_3 \stackrel{!}{=} a.f_1$ $f_1 \stackrel{!}{=} a.f_2$ $e_2 \stackrel{!}{=} b.e + b.e_3$ $f_2 \stackrel{!}{=} b.f_3 + b.f_1$ $e_1 \stackrel{!}{=} a.e_2$ $f_1 \stackrel{!}{=} a.f_2$ $f \stackrel{!}{=} a.f_1$ $USP_{0,1}^*$ $e = f$

Completeness of $\mathsf{BPA}^*_{0,1} + \mathsf{USP}^*_{0,1}$

Theorem. BPA $_{0,1}^*$ +USP $_{0,1}^*$ is sound and complete w.r.t. $\rightleftharpoons_{\mathbf{P}}$:

$$(\forall e, f \in \mathcal{R}(\Sigma)) \left[\; \vdash_{\mathsf{BPA}_{0.1}^* + \mathsf{USP}_{0.1}^*} e = f \quad \iff \quad e \backsimeq_{\boldsymbol{P}} f \; \right].$$

Remaining Question (equivalent to Milner's first question):

Is
$$BPA_{0,1}^* + 1 - USP_{0,1}^*$$
 complete for \rightleftharpoons_P ?

Observations and Results

- Antimirov's partial derivatives guide the operational behaviour of regular expressions under the process interpretation.
- A finitary coinduction principle for \triangle_{P} .
- The coind. motivated, complete proof system $\mathbf{c}\text{-}\mathbf{BPA}_{0,1}^*$ for \cong_P .
- Replacing the rule 1-RSP $_{0,1}^*$ in Milner's system $\mathbf{BPA}_{0,1}^*+1$ -RSP $_{0,1}^*$ by the *unique solvability principle* $\mathsf{USP}_{0,1}^*$ gives a complete axiomatisation for $\boldsymbol{\bowtie_P}$: the system $\mathbf{BPA}_{0,1}^*+\mathsf{USP}_{0,1}^*$.

My thanks to Jan Rutten for a number of discussions and suggestions!

Thanks for your attention!