Содержание

1	Теория групп	4
	Простейшие св-ва групп	4
	Теорема Лагранжа	4
	Циклическая группа	ļ
	Изоморфные группы	
	Нормальная подгруппа	ě
	Гомоморфизм	1
	1.1 Лействие группы на множестве	14

1 Теория групп

2019-09-17

Опр

G - мн-во,
$$*: G*G \to G, \ (g_1,g_2) \to (g_1*g_2) \ (g_1g_2)$$

- 1. $(g_1g_2)g_3 = g_1(g_2g_3) \quad \forall g_1, g_2, g_3 \in G$
- 2. $\exists e \in G : eg = ge = g \quad \forall g \in G$
- 3. $\forall g \in G \quad \exists \widetilde{g} \in G : g\widetilde{g} = g\widetilde{g} = e$
- 4. $g_1g_2 = g_2g_1 \quad \forall g_1, g_2 \in G$

Примеры

- 1. $(\mathbb{Z}, +)$ группа
- 2. (ℤ, •) не группа
- 3. (R, +) группа кольца
- 4. (R^*, \bullet)
- 5. Группа самосовмещения D_n , например D_4 квадрат, композиция группа, $|D_n| = 2n$
- 6. $GL_n(K) = \{A \in M_n(K) : |A| \neq 0\}$, умножение группа
- 7. $\mathbb{Z}n\mathbb{Z}$ частный случай п.3,4

Теорема (простейшие св-ва групп)

- 1. е единственный, e,e^\prime нейтральные: $e=ee^\prime=e^\prime$
- 2. \widetilde{g} единственный Пусть \widetilde{g} , \widehat{g} - обратные, тогда $\widetilde{g}g = g\widetilde{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{g} = e = \widehat{g}g = g\widehat{g}$
- 3. $(ab)^{-1}=b^{-1}a^{-1}$ Это верно, если $(ab)(b^{-1}a^{-1})=(b^{-1}a^{-1})(ab)=e$, докажем первое: $(ab)(b^{-1}a^{-1})=((ab)b^{-1})a^{-1}=(a(bb^{-1}))a^{-1}=(ae)a^{-1}=aa^{-1}=e$
- 4. $(g^{-1})^{-1} = g$

$$g \in G$$
 $n \in \mathbb{Z}$, тогда $g = \begin{bmatrix} \overbrace{g...g}^n, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1}...g^{-1}}_n, & n < 0 \end{bmatrix}$

Теорема (св-ва)

$$1. \ g^{n+m} = g^n g^m$$

2.
$$(g^n)^m = g^{nm}$$

Опр

$$g \in G, n \in N$$
 - порядок g $(ordg = n)$, если:

1.
$$q^n = e$$

2.
$$a^m = e \rightarrow m \geqslant n$$

Примеры

1.
$$D_4$$
 ord(поворот 90°) = 4 D_4 ord(поворот 180°) = 2

2.
$$(\mathbb{Z}/6\mathbb{Z}, +)$$
 $ord(\overline{1}) = 6$ $ord(\overline{2}) = 3$

y_{TB}

$$g^m = e \quad ord(g) = n \rightarrow m : n \text{ (n>0)}$$

Док-во

$$m = nq + r, \ 0 \leqslant r < n \ e = g^m = g^{nq+r} = (g^n)^q g^r = g^r \to r = 0$$

Опр

 $H \subset G$ называется подгруппой G (H < G) (и сама является группой), если:

1.
$$g_1, g_2 \in H \to g_1 g_2 \in H$$

$$2. e \in H$$

3.
$$g \in H \to g^{-1} \in H$$

Примеры

1.
$$n\mathbb{Z} < \mathbb{Z}$$

 $2. D_4$

3.
$$SL_n(K) = \{A \in M_n(K) : |A| = 1\}, SL_n(K) < GL_n(K)$$

Мультипликативная запись	Аддитивная запись
g_1g_2	$g_1 + g_2$
e	0
g^{-1}	-g
g^n	ng

Опр

 $H < G, g_1, g_2 \in G$, тогда $g_1 \sim g_2$, если:

- 1. $g_1 = g_2 h, h \in H$ (левое)
- 2. $q_2 = hq_1, h \in H$ (правое)

Док-во (эквивалентность)

- 1. (симметричность) $g_1 = g_2 h \stackrel{*h^{-1}}{\to} g_2 = g_1 h^{-1}$
- 2. (рефлексивность) g = ge
- 3. (транзитивнось) $g_1 = g_2 h, g_2 = g_3 h \rightarrow g_1 = g_3 (h_2 h_1),$ где $h_2 h_1 \in H$

Опр

$$[a] = \{b : ab\}$$
классы эквивалентности

Опр

$$[g]=gH=\{gh,h\in H\}$$
 (левый класс смежности)
$$gh\sim g\to gh\in [g]$$
 $q_1\in [q]\to q_1\sim q\to q_1=gh$

$\mathbf{y}_{\mathbf{TB}}$

$$[e] = H$$
 Установим биекцию: $[a] - ab \leftarrow H$

$$[g] = gh \leftarrow H$$
$$gh \leftarrow h$$

Очевидно, сюръекция, почему инъекция? $gh_1 = gh_2 \stackrel{*g^{-1}}{\rightarrow} h_1 = h$

Теорема (Лагранжа)

$$H < G, |G| < \infty$$
, тогда $|G| : |H|$ (уже доказали!)

2019-09-10

Следствие (теорема Эйлера)

Напоминание

$$n, a \in \mathbb{N}, (a, n) = 1$$
, тогда $a^{\varphi(n)} \equiv 1 (mod n)$

Док-во

Рассмотрим
$$G=(\mathbb{Z}/n\mathbb{Z})*\ |G|=\varphi(n)$$
 $\overline{a}\in G,\ ord\overline{a}=k$ $\varphi(n)$: $k\Rightarrow \varphi(n)=kl$ $\overline{a}=\overline{1}$ $\overline{a}^{\varphi(n)}=\overline{1}$

Опр

G - циклическая группа, если $\exists g \in G : \forall g' \in G : \exists k \in \mathbb{Z} : g' = g^k$ Такой g называется образующим

Опр

ℤ (образующий - единица и минус единица)

Замечание

Любая циклическая группа - коммунитативна

Док-во

$$q'q'' = q''q' = q^kq^l = q^lq^k$$

Пусть G,H - группы, рассмотрим $G \times H = \{(g,h) : g \in G, h \in H\}$

Введем операцию $(g,h)*(g',h') \stackrel{def}{=} (g*_{G}g',h*_{H}h')$

Докажем, что это группа.

Доказательство ассоциативности: $((g,h)(g',h'))(g'',h'') \stackrel{?}{=} (g,h)((g',h')(g'',h'')$

 $(gg', hh')(g'', h'') \stackrel{?}{=} (g, h)(g'g'', h'h'')$

 $((gg')g'',(hh')h'')\stackrel{?}{=}(g(g',g''),h(h'h'')$ - очевидно

Нейтральный элемент:

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{1}, \overline{1})\}$

Опр

Конечная группа порядка
 п является циклической тогда и только тогда, когда она содержит элемент порядка
п $(|G|=n,\, {\rm G}$ - циклическая $\equiv \exists g \in G : ordg=n)$

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ - циклическая $((\overline{1},\overline{1}),(\overline{0},\overline{2}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{2}))$ Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ - не циклическая

Опр

 $\varphi:G\to H$ - биекция и $\varphi(g_1,g_2)=\varphi(g_1)\varphi(g_2)$ $\ \, \forall g_1,g_2\in G,$ тогда φ - изоморфизм

Примеры

- 1. $D_3 \rightarrow S_3$
- 2. $U_n = \{z \in \mathbb{C} : z^n = 1\} \leftarrow \mathbb{Z}/n\mathbb{Z}$ $(\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n} = \varphi \overline{a}\overline{a})$ $\overline{a} = \overline{b} \rightarrow \varphi(\overline{a}) = \varphi(\overline{b})$ $\varphi(\overline{a} + \overline{b}) \stackrel{?}{=} \varphi(\overline{a})\varphi(\overline{b})$ $\cos\frac{2\pi(a+b)}{n} + i\sin\frac{2\pi(a+b)}{n} = (\cos\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n})$

Опр

Две группы называются изоморфными, если между ними существует изоморфизм

y_{TB}

Изоморфизм - отношение эквивалентности

Док-во

т.к. композиция изоморфизмов - изоморфизм $G \stackrel{e}{\to} H \stackrel{\psi}{\to} H$ $(\psi \circ \varphi)(g_1g_2) = \psi(\varphi(g_1g_2) = \psi(\varphi(g_1)\varphi(g_2)) = \psi(\varphi(g_1))\psi(\varphi(g_2)) = (\psi \circ \varphi)(g_1) \circ (\psi \circ \varphi)(g_2)$

Рефлексивность - тождественное отображение - изоморфизм

Транзитивность: $G \underset{\varphi}{\rightarrow} H, H \underset{\varphi^{-1}}{\rightarrow} G$

Теорема

G - циклическая группа

- 1) $|G| = n \Rightarrow G \cong \mathbb{Z}/n\mathbb{Z}$
- 2) $|G| = \infty \Rightarrow G \cong \mathbb{Z}$

Док-во

1) g - обр. G, значит $G = \{e, g, g^2, ..., g^{n-1}\}$ (среди них нет одинаковых), построим изоморфизм в $\mathbb{Z}/n\mathbb{Z}$: $\varphi(g^k) = \overline{k}$ Проверим, что $\varphi(g^kg^l) = \varphi(g^k) + \varphi(g^l) = \overline{k} + \overline{l}$

1 ТЕОРИЯ ГРУПП

Левая часть: $\varphi(g^{k+l} = \overline{(k+l) \mod n} = \overline{k} + \overline{l}$

2) $G = \{..., g^{-1}, e, g, g^2, ...\}$ (тоже нет совпадающих элементов, иначе $g^k = g^l$, при k > l, тогда $g^{k-l} = e$, но тогда конечное число элементов, потому что оно зацикливается через каждые k-l элементов), построим отображение в \mathbb{Z} .

 $arphi(g^n)=n$ -, очевидно, биекция. И нужно доказать, что $arphi(g^ng^k)=arphi(g^n)-arphi(g^k)=n+k$

2019-09-17

y_{TB}

$$|G|=p,$$
 простое
$$\Rightarrow G\simeq \mathbb{Z}_{/p\mathbb{Z}} \qquad g\in G, g\neq e$$
 ord $g=p$
$$\Rightarrow G=\{e=g^0,g^1,...,g^{p-1}\}$$

y_{TB}

$$H,G$$
 - группы, $g \in G$ $\varphi:G \to H$ - изоморфизм \Rightarrow ord $g=$ ord $\varphi(g)$ ord $g=n$ $g^n=e$ $\varphi(g)^n=\varphi(g^n)=\varphi(e)=e$ $\varphi(e)^2=\varphi(e^2)=\varphi(e)$ $\varphi(g)^n\overset{?}{\Rightarrow}e\Rightarrow m\geqslant n$ $m\in\mathbb{N}$ $\varphi(g^m)=\varphi(g)^m=e=\varphi(e)$ $\Rightarrow g^m=e\Rightarrow m\geqslant n$

Опр

H - нормальная подгруппа, если $\forall h \in H, g \in G$ $g^{-1}hg \in H$ - сопряжение элемента h с помощью элемента g рисунок 1

 $H \triangleleft G$

y_{TB}

 $H \lhd G \Leftrightarrow$ - разбиение на л. и п. классы смежности по H совпадают $\forall g \quad gH = Hg$

Док-во

$$\Rightarrow h \in H \qquad gh \in gH$$

$$gh = \underbrace{(g^{-1})^{-1}hg^{-1}}_{\in H}g = h_1g$$

$$\Leftarrow g \in G, h \in H$$

$$g^{-1}hg = h_1$$

$$hg \in Hg = gH \Rightarrow gh_1, h_1 \in H$$

$$H \triangleleft G$$

$$g_1 H * g_2 H \stackrel{def}{=} g_1 g_2 H$$

$$\widetilde{g}_1 H = g_1 H$$

$$\widetilde{g}_2 H = g_2 H \stackrel{?}{\Rightarrow} \widetilde{g}_1 \widetilde{g}_2 H = g_1 g_2 H$$

$$g_2^{-1} h_1 g_2 = h_3 \in H$$

$$\widetilde{g}_1\widetilde{g}_2h = g_1h_1g_2h_2h = g_1g_2(g_2^{-1}h_1g_2)h_2h$$

$$\widetilde{g}_1 H = g_1 H \Rightarrow \widetilde{g}_1 = g_1 h_1$$

 $\widetilde{g}_2 H = g_2 H \Rightarrow \widetilde{g}_2 = g_2 h_2$

$$eH=H$$

$$1) \quad eH * gH = (eg)H = gH$$

2)
$$(g_1H * g_2H) * g_3H \stackrel{?}{=} g_1H * (g_2H * g_3H)$$

$$(g_1g_2)H * g_3H = (g_1g_2)g_3H$$

3)
$$gH * g^{-1}H = (gg^{-1})H = eH$$

$$G_{/H}$$

$$a \sim b \Leftrightarrow a - b \stackrel{.}{:} h$$

$$G = \mathbb{Z}$$

$$H = h\mathbb{Z} \quad g_1 - g_2 \in n\mathbb{Z}$$

$$[a] + [b] = [a+b]$$

Пример

$$[g,h] = ghg^{-1}h^{-1}$$
 - коммутатор $g,h \in G$ $K(G) = \{[q_1,h_1],...,[q_n,h_n],q_i,h_i \in G\}$ - коммутант

Док-во

Коммутант - подгруппа

$$\begin{split} K(G) &< G \\ [e,e] &= e \\ [g_1,h_1]...[g_n,h_n] \\ [g,h]^{-1} &= (ghg^{-1}h^{-1})^{-1} = hgh^{-1}g^{-1} = [h,g] \\ ([g_1,h_1]...[g_n,h_n])^{-1} &= [h_1,g_1]...[g_n,h_n] \\ g^{-1}[g_1,h_1]...[g_n,h_n]g &= \\ &= (g^{-1}[g_1,h_1]g)(g^{-1}[g_2,h_2]g)...(g^{-1}[g_n,h_n]g) \\ g^{-1}g_1h_1g_1^{-1}h_1^{-1}g &= \\ &= (g^{-1}g_1h_1g_1^{-1}(gh_1^{-1})h_1g^{-1})h_1^{-1}g \\ [g^{-1}g_1,h_1] & [h_1,g^{-1}] \end{split}$$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

$$G_{/K(G)}$$
 - Komm

Док-во

$$g_1, g_2 \in G$$
 $g_1K(G)g_2K(G) \stackrel{?}{=} g_2K(G)g_1K(G)$
 $g_1g_2K(G) = g_1g_2K(G)$ $g_2K(G)g_1K(G) = g_2g_1K(G)$
 $[g_1, g_2] = g_1g_2(g_2g_1)^{-1} \in K(G)$

y_{TB}

$$\mathbb{Z}_n \times \mathbb{Z}_m \simeq \mathbb{Z}_{mn}$$
, если $(m,n) = 1$
 $[a]_{nm} \to ([a]_n, [a]_m)$
 $[a]_{nm} = [a']_{mn} \Rightarrow [a]_n = [a']_n, [a']_m = [a']_m$
 $\forall b, c \in \mathbb{Z} \exists x \in \mathbb{Z} : \begin{cases} [x]_n = [b]_n \\ [x]_m = [c]_m \end{cases}$
 $[a]_n = [b]_n$
 $[a]_n = [b]_m \Rightarrow [a]_{mn} = [b]_{mn}$
 $a \equiv b(n)$
 $a \equiv b(m) \Rightarrow a \equiv b(mn)$

Опр

$$arphi:G o H$$
 - гомоморфизм
$$arphi(g_1g_2)=arphi(g_1)arphi(g_2)$$
 изоморфизм = гомоморфизм + биективность
$$arphi\in \mathrm{Hom}(G,H)$$
 - множество гомоморфизмов

Примеры

1)
$$\mathbb{C}^* \to \mathbb{R}^*$$
 $z \to |z|$
2) $GL_n(K) \to K^*$
 $A \to \det A$
3) $S_n \to \{\pm 1\}$
 $\sigma \to \begin{cases} +1, & \text{если } \sigma \text{ - четн.} \\ -1, & \text{если } \sigma \text{ - неч.} \end{cases}$
4) $a \in G \quad G \to G$
 $g \to a^{-1}ga$
 $(a^{-1}ga)(a^{-1}g_1a) = a^{-1}g_g1a$

 $../../template/template \\ 2019-09-24$

Напоминание

$$G/K(G)$$
 - коммпутативна

y_{TB}

$$H \triangleleft G \quad G/_H$$
 - комм
$$\forall g_1, g_2 \in G \quad (g_1 H)(g_2 H) = (g_2 H)(g_1 H)$$

$$[g_1, g_2] = g_1^{-1} g_2^{-1} g_1 g_2 \in H \Rightarrow K(G) \subset H$$

Свойства (гомоморфизма)

$$f \in \text{Hom}(G, H)$$

1.
$$f(e_G) = e_H$$
 $f(e) = f(e \cdot e) = f(e) \cdot f(e)$

2.
$$f(a^{-1}) = f(a)^{-1}$$

$$f(a)f(a^{-1}) = f(aa^{-1}) = f(e) = e$$

3. Композиция гомоморфизмов

Опр

$$f \in \text{Hom}(G, H)$$

$$Ker f = \{g \in G : f(g) = e\} \subset G$$

$$Im f = \{f(g) : g \in G\} \subset H$$

y_{TB}

Ker и Im - подгруппы G

Док-во

1.
$$f(g_1) = f(g_2) = e \Rightarrow f(g_1g_2) = f(g_1)f(g_2) = e \cdot e = e$$

2.
$$f(e) = e$$

3.
$$f(g) = e \Rightarrow f(g^{-1}) = f(g)^{-1} = e^{-1} = e$$

1.
$$f(g_1) \cdot f(g_2) = f(g_1g_2)$$

2.
$$e = f(e)$$

3.
$$f(g)^{-1} = f(g^{-1})$$

y_{TB}

Ker - нормальная подгруппа G

Док-во

$$Kerf \triangleleft G?$$

$$g \in G \qquad a \in Kerf$$

$$f(g^{-1}ag) = f(g)^{-1} f(a) f(g) = e$$

Утв (основная теорема о гомоморфизме)

$$G/_{Kerf} \cong \operatorname{Im} f$$

Док-во

$$Kerf = K$$

$$\varphi(gK) \stackrel{def}{=} f(g) \qquad \varphi : G/_{Kerf} \to \operatorname{Im} f$$

$$gK = g'K \stackrel{?}{\Rightarrow} f(g) = f(g')$$

$$g' = g \cdot a, \quad a \in K \qquad f(g') = f(g) \cdot \underbrace{f(a)}_{=e} = f(g)$$

$$f(g_1)f(g_2) = \varphi(g_1K)\varphi(g_2K) \stackrel{?}{=} \varphi(g_1Kg_2K) = \varphi((g_1g_2)K) = f(g_1g_2)$$

$$\varphi(g_1K) = \varphi(g_2K) \stackrel{?}{\Rightarrow} g_1K = g_2K$$

$$f(g_1) = f(g_2) \qquad \Rightarrow g_1g_2^{-1} \in K$$

$$\underbrace{f(g_1)f(g_2)^{-1}}_{=f(g_1)f(g_2^{-1})} = e$$

Напоминание

$$SL_N(K)$$
 - квадратные матрицы с $\det = 1$

Опр

$$\det: GL_n(K) \to K^*$$

$$GL_n(K)/_{SL_n(K)} \cong K^*$$

$$SL_n(K) = \{ A \in M_n(K) : |A| = 1 \}$$

Пример (1)

$$S_n \to \{\pm 1\}$$

 $S_n/A_n \cong \{\pm 1\} (\cong \mathbb{Z}/2\mathbb{Z})$

Пример (2)

$$G \times H \to G$$

 $(g_1 h) \to g$
 $G \times H/_{e \times H} \cong G$

1.1 Действие группы на множестве

Опр

$$M$$
 - множество

$$G$$
 - группа

$$G\times M\to M$$

$$(g,m) \to gm$$

1.
$$g_1(g_2m) = (g_1g_2)m \quad \forall g_1g_2 \in G, \quad m \in M$$

2.
$$em = m \quad \forall m \in M$$

Пример (1)

$$A = k^{n} (A, v) \to A_{v}$$

$$G = GL_{n}(K)$$

$$A(B_{v}) = (AB)_{v}$$

$$E_{n} = v$$

Пример (2)

 $M = \{$ количество раскрасок вершин квадрата в два цвета $\}$

$$G = D_4$$

$$M = G$$

$$gm = gm$$

Опр

$$m \in M$$

\mathbf{y}_{TB}

$$Stab \ m < G$$

Док-во

1. $g_1, g_2 \in Stab \ m$

$$(g_1g_2)m = g_1(g_2m) = g_1m = m$$

$$2. \ e \cdot m = m$$

3.
$$gm = m \stackrel{?}{\Rightarrow} g^{-1}m = m$$

$$gm = m$$

$$g^{-1}gm = g^{-1}m$$

$$= (g^{-1}g)m = em = m$$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

$$m_1, m_2 \in M$$

$$m_1 \sim m_2$$
, если $\exists g \in G : gm_1 = m_2$

Док-во

$$gm_1 = m_2 \Rightarrow g^{-1}m_2 = m_1 \quad g^{-1} \in G$$

 $em = m, \quad e \in G$
 $gm_1 = m_2 \atop g'm_2 = m_3$ $\Rightarrow (g'g)m_1 = g'(gm_1) = g'm_2 = m_3$

y_{TB}

$$|Orb \ m| \cdot |Stab \ m| = |G|$$

Док-во

$$Stab m = H$$

$$\{gH, g \in G\} \to Orb m$$

$$aH \to am$$

Хотим доказать, что это корректно

$$gH = g'H \stackrel{?}{\Rightarrow} gm = g'm$$

 $g' = ga, \quad g \in H$
 $g'm = (ga)m = g(am) = gm$

Хотим доказать биективность. Сюръективность - очев. Инъективность:

$$gm = g'm \Rightarrow gH = g'H$$

$$m = em = (g^{-1}g')m = g^{-1}(gm) = g^{-1}(g'm) = (g^{-1}g')m$$

$$\Rightarrow g^{-1}g' \in H \Rightarrow gH = g'H$$

<u>Лемма</u> (Бернсайда)

Кол-во орбит
$$= \frac{1}{|G|} \sum_{g \in G} |M^g|$$

$$M^g = \{ m \in M : gm = m \}$$