

Projet Mécanique

Partie 1 : Etude du plan incliné

Crée par

Groupe Projet N°02

Table des matières

I.	Membres du groupe	. 3
II.	Objectifs de cette partie	. 3
III.	Schématisation de la maquette	.3
IV.	Calcul de la vitesse (Sans frottements)	.4
٧.	Calcul de la vitesse (Avec frottements)	. 5
	Tracé de la courbe de la vitesse de sortie en fonction de la hauteur de la	
	Tracé de la courbe de la vitesse de sortie en fonction de la hauteur de la	

I. Membres du groupe

- ATOUGA II Emmanuel Désiré
- DJISSOU HAPPI Franck Sean
- KUITANG Audrey Michelle
- NKOULOU Joseph Emmanuel
- OLINGA Jean Donald
- TANESSOK Larelle Sandra

II. Objectifs de cette partie

L'objectif est de calculer par différents moyens (à l'aide de la 2ème loi de newton puis à l'aide des énergies) la vitesse de sortie de la voiture en bas de la pente en fonction de la hauteur de la pente (sans, puis avec frottements du sol).

III. Schématisation de la maquette

Calcul de la vitesse (Sans frottements)

Pour ce faire, nous allons utiliser la méthode des énergies.

- > Système étudié : Voiture
- → → →
 → Bilan des forces appliquées : F, P, Rn

Le système n'étant soumis à aucun frottements, il est donc conservatif et d'après la loi de conservation de l'énergie mécanique on a :

$$\Delta Em = 0 \Leftrightarrow Em_f - Em_i = 0$$

$$\Leftrightarrow Em_f = Em_i$$

$$\Leftrightarrow Ep_f + Ec_f = Ep_i + Ec_i \text{ or } Vi = 0 \text{ m/s et } Hf = 0 \text{ m}$$

$$\Leftrightarrow Ec_f = Ep_i$$

$$\Leftrightarrow \frac{1}{2} mv_f^2 = mgh$$

Ainsi ,
$$oldsymbol{V_f} = \sqrt{2gh}$$

$$\underline{AN}: V_f = \sqrt{2 \times 9,81 \times 0,93}$$

$$V_f = 4,272 \, m/s$$

Ainsi, la vitesse à la sortie de la pentes sans considérer les frottements est de $4,272\ m/s$

V. Calcul de la vitesse (Avec frottements)

Pour ce faire, nous allons utiliser la méthode des énergies, ainsi que **la deuxième loi de Newton**.

♣ D'après la 2^e loi de Newton on a :

$$\sum \vec{F}_{ext} = \vec{\text{ma}} \Leftrightarrow \vec{P} + \vec{\text{Rn}} + \vec{\text{f}} = \vec{\text{ma}}$$

Suivant l'axe (yy') : $Rn - mgcos\alpha = 0 \Leftrightarrow Rn = mgcos\alpha$

♣ D'après le TEC on a :

$$\Delta Em = W(P) + W(f)$$

$$\Leftrightarrow Ec_f - Ec_i = mgh - \mu mgcos\alpha \frac{h}{sin\alpha}$$

$$\Leftrightarrow \frac{1}{2}mv_f^2 = mgh - \mu mgcos\alpha \frac{h}{sin\alpha}$$

Ainsi,
$$V_f = \sqrt{2gh(1 - \mu \frac{\cos \alpha}{\sin \alpha})}$$

AN:
$$V_f = \sqrt{2 \times 9.81 \times 0.93 \times (1 - 0.002 \frac{\cos{(40)}}{\sin{(40)}}}$$

$$V_f = 4,267 \, m/s$$

Ainsi, la vitesse à la sortie de la pente en considérant les frottements est de **4**, **267 m/s**

VI. Tracé de la courbe de la vitesse de sortie en fonction de la hauteur de la pente (Sans frottements)

VII. Tracé de la courbe de la vitesse de sortie en fonction de la hauteur de la pente (Avec frottements)

