Employee Churn

Code **▼**

Hide

#loading the required libraries

library(mlr)

library(survival)

library(pec)

library(survAUC)

library(dplyr)

library(reshape2)

library(ggplot2)

library(plyr)

library(reshape2)

library(plotly)

library(corrplot)

library(ggcorrplot)

library(randomForestSRC)

step 1: Loading the data

Hide

Employees=read.csv("turnover.csv")
Employeess = Employees
Employees

stag <dbl></dbl>		gender <chr></chr>	_	industry <chr></chr>	profession <chr></chr>		traffic <chr></chr>	coach <chr></chr>	•
7.0308008	1	m	35.00000	Banks	HR		rabrecNErab	no	
22.9650924	1	m	33.00000	Banks	HR		empjs	no	
15.9342916	1	f	35.00000	PowerGeneration	HR		rabrecNErab	no	
15.9342916	1	f	35.00000	PowerGeneration	HR		rabrecNErab	no	
8.4106776	1	m	32.00000	Retail	Commercial		youjs	yes	
8.9691992	1	f	42.00000	manufacture	HR		empjs	yes	
8.9691992	1	f	42.00000	manufacture	HR		empjs	yes	
120.4435318	1	f	28.00000	Retail	HR		referal	no	
8.6078029	1	f	29.00000	Banks	HR		empjs	no	
4.4353183	1	f	30.00000	Consult	Marketing		youjs	yes	
1-10 of 1,129 rows	1-8 of	16 column	S		Previ	ous 1 2	2 3 4 5	6 100 N	Vext

step 2: Data manipulation and Exploratory Data Analysis

Hide

#removing null values
Employees=na.omit(Employees)

Hide

Summary statistics
summary(Employees)

stag	event	gender	age	industry	profession	t
raffic						
Min. : 0.3942	Min. :0.0000	Length:1129	Min. :18.00	Length:1129	Length:1129	Len
gth:1129						
1st Qu.: 11.7289	1st Qu.:0.0000	Class :character	1st Qu.:26.00	Class :character	Class :character	Cla
ss :character						
Median : 24.3450	Median :1.0000	Mode :character	Median :30.00	Mode :character	Mode :character	Mod
e :character						
Mean : 36.6275	Mean :0.5058		Mean :31.07			
3rd Qu.: 51.3183	3rd Qu.:1.0000		3rd Qu.:36.00			
Max. :179.4497	Max. :1.0000		Max. :58.00			
coach	head_gender	greywage	way	extraversio	n independ	s
elfcontrol						
Length:1129	Length: 1129	Length:1129	Length:1129	Min. : 1.0	00 Min. : 1.000	Mi
n. : 1.000						
Class :character	Class :character	Class :character	Class :charac	ter 1st Qu.: 4.6	00 1st Qu.: 4.100	1s
t Qu.: 4.100						
Mode :character	Mode :character	Mode :character	Mode :charac	ter Median: 5.4	00 Median : 5.500	Me
dian : 5.700						
				Mean : 5.5	92 Mean : 5.478	Me
an : 5.597						
				3rd Qu.: 7.0	00 3rd Qu.: 6.900	3r
d Qu.: 7.200						
				Max. :10.0	00 Max. :10.000	Ma
x. :10.000						
anxiety	novator					
Min. : 1.700	Min. : 1.00					
	1st Qu.: 4.40					
	Median : 6.00					
	Mean : 5.88					
3rd Qu.: 7.100	3rd Qu.: 7.50					
Max. :10.000	Max. :10.00					

Hide

```
# Structure of the data
str(Employees)
```

```
'data.frame': 1129 obs. of 16 variables:
$ stag
             : num 7.03 22.97 15.93 15.93 8.41 ...
$ event
             : int 1 1 1 1 1 1 1 1 1 ...
             : chr "m" "m" "f" "f" ...
$ gender
             : num 35 33 35 35 32 42 42 28 29 30 ...
$ age
                    "Banks" "Banks" "PowerGeneration" "PowerGeneration" ...
$ industry
             : chr
$ profession : chr
                    "HR" "HR" "HR" "HR" ...
                    "rabrecNErab" "empjs" "rabrecNErab" "rabrecNErab" ...
$ traffic
              : chr
             : chr "no" "no" "no" "no" ...
$ coach
                    "f" "m" "m" "m" ...
$ head_gender : chr
                    "white" "white" "white" ...
$ greywage
             : chr
                    "bus" "bus" "bus" "bus" ...
$ way
             : chr
$ extraversion: num 6.2 6.2 6.2 5.4 3 6.2 6.2 3.8 8.6 5.4 ...
$ independ
             : num 4.1 4.1 6.2 7.6 4.1 6.2 6.2 5.5 6.9 5.5 ...
$ selfcontrol : num 5.7 5.7 2.6 4.9 8 4.1 4.1 8 2.6 3.3 ...
$ anxiety
             : num 7.1 7.1 4.8 2.5 7.1 5.6 5.6 4 4 7.9 ...
             : num 8.3 8.3 8.3 6.7 3.7 6.7 6.7 4.4 7.5 8.3 ...
$ novator
```

```
# converting the data type to int
Employees$age <- as.integer(Employees$age)
head(Employees)</pre>
```

	stag <dbl></dbl>	event gender <int> <chr></chr></int>	a industry <int> <chr></chr></int>	profession <chr></chr>	traffic <chr></chr>	coach <chr></chr>	head_gender <chr></chr>	•
1	7.030801	1 m	35 Banks	HR	rabrecNErab	no	f	
2	22.965092	1 m	33 Banks	HR	empjs	no	m	
3	15.934292	1 f	35 PowerGeneration	HR	rabrecNErab	no	m	
4	15.934292	1 f	35 PowerGeneration	HR	rabrecNErab	no	m	
5	8.410678	1 m	32 Retail	Commercial	youjs	yes	f	

6 8.969199 1 f 42 manufacture HR empjs yes m
6 rows | 1-10 of 16 columns

attach(Employees)
table(gender)

gender f m 853 276

Hide

Hide

table(event)

event 0 1 558 571

Hide

table(industry)

industry						
HoReCa	Agriculture	Banks	Building	Consult	etc	IT
manufacture						
11	15	114	41	74	94	122
145						
Mining	Pharma	PowerGeneration	RealEstate	Retail	State	Telecom
transport						
24	20	38	13	289	55	36
38						

Hide

table(profession)

	Accounting BusinessDe	velopment	Commercial	Consult	Engineer
etc	Finance				
	10	27	23	25	15
37	17				
	HR	IT	Law	manage	Marketing
PR	Sales				
	757	74	7	22	31
5	66				
	Teaching				
	12				

Hide

table(greywage)

greywage grey white 127 1002

Hide

table(way)

way
bus car foot
681 331 117

```
detach(Employees)
```

Label encoding to change the categorical to numerical to feed into our model.

Hide

```
# Gender: Male/Female
Employees$gender=revalue(Employees$gender,c('m' = 0, 'f' = 1))
Employees$gender=as.numeric((Employees$gender))
# Industry: Describes what industry they belong to
Employees$industry=revalue(Employees$industry,c('Retail'= 10, 'manufacture'= 14, 'IT'= 5, 'Banks'= 2, 'etc'= 13,
'Consult'= 4, 'State'= 11, 'Building'= 3, 'PowerGeneration'= 8, 'transport'= 15, 'Telecom'= 12, 'Mining'= 6, 'Pha
rma'= 7, 'Agriculture'= 1, 'RealEstate'= 9, ' HoReCa'= 0))
Employees$industry=as.numeric((Employees$industry))
# Profession: Describes their respective profession
Employees$profession=revalue(Employees$profession,c('HR'=6, 'IT'= 7, 'Sales'= 11, 'etc'= 13, 'Marketing'= 9, 'Bus
inessDevelopment'= 1, 'Consult'= 3, 'Commercial'= 2, 'manage'= 14, 'Finance'= 5, 'Engineer'= 4, 'Teaching'= 12, '
Accounting'= 0, 'Law'= 8, 'PR'= 10))
Employees$profession=as.numeric((Employees$profession))
# Traffic: Describes what pipeline the employee came into the company
Employees$traffic=revalue(Employees$traffic,c('youjs'= 7, 'empjs'= 2, 'rabrecNErab'= 4, 'friends'= 3, 'referal'=
6, 'KA'= 0, 'recNErab'= 5, 'advert'= 1))
Employees$traffic=as.numeric((Employees$traffic))
# Coach: Describes if they had a coach in their probation period
Employees$coach=revalue(Employees$coach,c('no'= 1, 'my head'= 0, 'yes'= 2))
Employees$coach=as.numeric((Employees$coach))
# Head Gender: Gender of their coach during probation.
Employees$head_gender=revalue(Employees$head_gender,c('m' = 0, 'f' = 1))
Employees$head gender=as.numeric((Employees$head gender))
# Grey wage: white - taxed, grey - not taxed
Employees$greywage=revalue(Employees$greywage,c('white'= 1, 'grey'= 0))
Employees$greywage=as.numeric((Employees$greywage))
# Way: Describes the way employee travels to office.
Employees$way=revalue(Employees$way,c(
'bus'= 0, 'car'= 1, 'foot'= 2))
Employees$way=as.numeric((Employees$way))
# Stag: Experience in months, now converted to years
#Employees$stag = Employees$stag/12
```

Hide

head(Employees, 10)

	stag <dbl></dbl>	event <int></int>	gender <dbl></dbl>	_	industry <dbl></dbl>	profession <dbl></dbl>	traffic <dbl></dbl>	coach <dbl></dbl>	head_gender <dbl></dbl>
1	7.030801	1	0	35	2	6	4	1	1
2	22.965092	1	0	33	2	6	2	1	0
3	15.934292	1	1	35	8	6	4	1	0
4	15.934292	1	1	35	8	6	4	1	0
5	8.410678	1	0	32	10	2	7	2	1
6	8.969199	1	1	42	14	6	2	2	0
7	8.969199	1	1	42	14	6	2	2	0
8	120.443532	1	1	28	10	6	6	1	0
9	8.607803	1	1	29	2	6	2	1	1
10	4.435318	1	1	30	4	9	7	2	0

```
Employees <- Employees %>%
    rename(
        supervisor = coach,
        supervisor_gender = head_gender,
        independence = independ,
        innovator = novator
     )
head(Employees)
```

	stag <dbl></dbl>	event <int></int>	gender <dbl></dbl>		industry <dbl></dbl>	profession <dbl></dbl>	traffic <dbl></dbl>	supervisor <dbl></dbl>	supervisor_gender <dbl></dbl>
1	7.030801	1	0	35	2	6	4	1	1
2	22.965092	1	0	33	2	6	2	1	0
3	15.934292	1	1	35	8	6	4	1	0
4	15.934292	1	1	35	8	6	4	1	0
5	8.410678	1	0	32	10	2	7	2	1
6	8.969199	1	1	42	14	6	2	2	0
6 rov	vs 1-10 of 16	columns							

EAD

Hide


```
#corrplot(Employees, method = 'color')
# corr <- round(cor(Employees), 1)
# ggcorrplot(corr, method = 'square')</pre>
```

Hide

```
#distribution of employees as per their experience in months
num_bins <- 16
hist(Employees$stag, breaks = num_bins, main = "Histogram", xlab = "Experience in months", ylab = "Frequency",col
= 'blue')</pre>
```


We could see there are more employees with experience less than 50 months.

```
# Lets see the distribution of employee resigning or not

# create a frequency table of the "fruit" column

df <- table(unique(Employees$event))

# plot the frequency table as a pie chart

pie(df, labels = names(df), main = "Employee Distribution")</pre>
```

Employee Distribution

#we could see the distribution is almost equal

We could see the distribution is almost equal.

```
# Create a box plot with customization
df=data.frame(Employees$age)
boxplot(df,
    main = "Box Plot",
    xlab = "Data",
    ylab = "Values",
    col = "skyblue",
    border = "black",
    notchwidth = 0.5,
    horizontal = FALSE
)
```

Box Plot

Data

```
# Filter data for quitting
data_event0 <- subset(Employees, event == 0)

# Filter data for not quitting
data_event1 <- subset(Employees, event == 1)

# Create box plots for event 0 and event 1
par(mfrow = c(1, 2))  # Set up a 1x2 layout for side-by-side plots
boxplot(age ~ event, data = data_event0, col = "skyblue", main = "box plot of employees who quit with age")
boxplot(age ~ event, data = data_event1, col = "lightgreen", main = "box plot of employees who stay with age")</pre>
```

box plot of employees who quit with a box plot of employees who stay with a

event event

Frequency of Events by Age

#we can see that employees from age 27-30 years tend to quit more often

We can see that employees from age 27-30 years tend to quit more often.

Hide

```
# Create a scatter plot with colors based on gender
p5 <-plot_ly(data = Employees, x = ~Employees$age, y = ~Employees$stag, color = ~Employees$gender)
p5</pre>
```

```
No trace type specified:
   Based on info supplied, a 'scatter' trace seems appropriate.
   Read more about this trace type -> https://plotly.com/r/reference/#scatter

No scatter mode specifed:
   Setting the mode to markers
   Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode

No trace type specified:
   Based on info supplied, a 'scatter' trace seems appropriate.
   Read more about this trace type -> https://plotly.com/r/reference/#scatter

No scatter mode specifed:
   Setting the mode to markers
   Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode
```



```
pca_fit <- prcomp(select(Employees, -c("event")), scale. = TRUE)
pca_fit</pre>
```

```
Standard deviations (1, ..., p=15):
   [1] 1.4293570 1.3118447 1.1627485 1.1140314 1.0583506 1.0305625 0.9980794 0.9906903 0.9551433 0.9419927 0.921007
5 0.8155224 0.7450777
[14] 0.6458678 0.4448485
Rotation (n \times k) = (15 \times 15):
                                                                                                                                              PC2
                                                                                                                                                                                          PC3
                                                                                                                                                                                                                                      PC4
                                                                                                                                                                                                                                                                                 PC5
                                                                                                                                                                                                                                                                                                                                 PC6
                                                                                                                                                                                                                                                                                                                                                                                PC7
                                                                                               PC1
PC8
                                           PC9
                                                                      stag
708 -0.49025763
                                                                  -0.04578407 \ -0.489180206 \ -0.04117965 \ -0.23820358 \ \ 0.11935219 \ \ 0.346059424 \ -0.077581624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.0901981624 \ -0.09
gender
062 0.02631502
                                                                      0.03561515 0.209491108 0.63900952 -0.09879427 0.06576115 0.294390654 -0.008070935 -0.04444
age
247 0.13392075
industry
                                                                      865 -0.20687495
profession
                                                                  -0.09333242 \quad 0.001971635 \quad -0.09308453 \quad 0.14375383 \quad 0.47386001 \quad -0.636666886 \quad 0.138319419 \quad -0.31178
586 0.01051548
traffic
                                                                     0.15418091 \ -0.066627864 \ -0.24040686 \ -0.15414259 \ -0.38454895 \ -0.002143075 \ \ 0.451827683 \ -0.07567889 \ -0.002143075 \ \ 0.451827683 \ -0.0756789 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.451827683 \ -0.002143075 \ \ 0.4518275 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827683 \ \ 0.451827
782 0.39989661
supervisor
                                                                  -0.07235582 \quad 0.016981392 \quad 0.12170878 \quad 0.04335960 \quad -0.40865417 \quad 0.049183426 \quad -0.068897796 \quad -0.78172 \quad 0.049183426 \quad -0.068897796 \quad -0.78172 \quad -0.0723582 \quad 0.016981392 \quad 0.01698
567 -0.41803122
supervisor_gender 0.03799404 -0.271786807 -0.34221184 -0.03803960 0.13990470 0.141699457 -0.659770926 -0.11016
710 0.11151052
                                                                      greywage
436 0.37091931
                                                                  way
067 0.43472418
extraversion
                                                                  939 0.06919987
                                                                     0.02725154 \ -0.441405489 \ 0.43183090 \ 0.32032910 \ 0.02297193 \ -0.125176077 \ -0.027353106 \ 0.19590
independence
048 -0.12828159
selfcontrol
                                                                     0.60911671 0.095720451 -0.05290176 -0.04694869 0.02653949 -0.011512663 -0.072548941 -0.14122
042 0.04935976
anxiety
                                                                  -0.13073054 \quad 0.594733381 \quad -0.17237271 \quad -0.01660031 \quad -0.07967463 \quad 0.054908646 \quad -0.289810476 \quad 0.11885 \quad -0.11885 \quad
486 0.01962038
innovator
                                                                  822 -0.01944254
                                                                                               PC10
                                                                                                                                           PC11
                                                                                                                                                                                                                                                                              PC14
                                                                                                                                                                                                                                                                                                                              PC15
                                                                                                                                                                                      PC12
                                                                                                                                                                                                                                  PC13
                                                                  -0.075482326 0.20368618 0.23674245 -0.39446570 -0.05421891 -0.018274338
stag
                                                                  -0.022192650 \quad 0.06075502 \quad 0.67602568 \quad 0.26004107 \quad -0.13380409 \quad -0.067843406
gender
                                                                     0.055141582 \ -0.07256200 \ \ 0.20626571 \ -0.60597346 \ -0.08584823 \ -0.019000217
age
                                                                      0.373581605 - 0.21467109 - 0.26253694 0.19894857 0.02951384 0.017759126
industry
profession
                                                                      0.193071776 \ -0.13667826 \ \ 0.33409986 \ -0.20212876 \ -0.06724184 \ -0.051537468
traffic
                                                                      0.499941856 0.29967411 0.03086168 -0.16955670 -0.04644295 -0.030872515
                                                                      0.093580120 \ -0.01822360 \ -0.04901220 \ \ 0.06818069 \ -0.03970323 \ -0.007578446
supervisor
supervisor_gender 0.309891923 -0.07022223 -0.25117420 -0.37414299 0.02077301 0.046305178
                                                                      0.008609911 \ -0.67260777 \ \ 0.08103375 \ \ \ 0.09282492 \ -0.04700983 \ \ \ 0.026846684
greywage
                                                                  -0.213839165 0.53112594 -0.09094661 0.13452818 -0.01959072 0.012922377
way
extraversion
                                                                  -0.355705736 -0.13057396 -0.23243247 -0.26940548 -0.05604776 -0.533684834
independence
                                                                     0.317384538 \quad 0.17734182 \quad -0.22392330 \quad 0.12210868 \quad -0.17385121 \quad -0.464857277
                                                                  -0.148475666 -0.05152735 0.10005906 0.01399600 0.49635722 -0.552316523
selfcontrol
                                                                     0.244325040 \ -0.03218289 \ \ 0.18160720 \ \ 0.19750366 \ -0.42314370 \ -0.423768012
anxiety
innovator
                                                                      0.323104779 \quad 0.05510539 \quad 0.18817020 \quad 0.04843840 \quad 0.70770695 \quad -0.046300214
```

Hide

summary(pca_fit)

Importance of components: PC1 PC2 PC3 PC5 PC6 PC10 PC11 PCPC4 PC7 PC8 PC9 12 PC13 PC14 PC15 Standard deviation 1.4294 1.3118 1.16275 1.11403 1.05835 1.0306 0.99808 0.99069 0.95514 0.94199 0.92101 0.81552 0.74508 0.64587 0.44485 Proportion of Variance 0.1362 0.1147 0.09013 0.08274 0.07467 0.0708 0.06641 0.06543 0.06082 0.05916 0.05655 0.044 34 0.03701 0.02781 0.01319 Cumulative Proportion 0.1362 0.2509 0.34107 0.42380 0.49848 0.5693 0.63569 0.70112 0.76194 0.82110 0.87765 0.921 99 0.95900 0.98681 1.00000

```
var_explained <- (pca_fit$sdev)^2 / sum(pca_fit$sdev^2)
round(var_explained,3)</pre>
```

```
[1] 0.136 0.115 0.090 0.083 0.075 0.071 0.066 0.065 0.061 0.059 0.057 0.044 0.037 0.028 0.013
```

Hide

```
cum_var <- cumsum(var_explained)
ggplot(data = data.frame(PC = 1:15, var_explained, cum_var), aes(x = PC)) +
    geom_line(aes(y = var_explained), color = "blue") +
    geom_line(aes(y = cum_var), color = "red") +
    xlab("Principal Component") +
    ylab("Variance Explained") +
    ggtitle("Scree Plot") +
    ylim(0, 1) +
    scale_y_continuous(labels = scales::percent) +
    theme_bw()</pre>
```

Scale for y is already present.

Adding another scale for y, which will replace the existing scale.

PCA can be used to reduce the dimensionality of a dataset while retaining most of its original variability. By projecting the original data onto a smaller number of dimensions, PCA can help identify underlying patterns and relationships between variables that may not be apparent in the original data.

Based on the plot, we can infer that the first principal component explains the most variance (0.136), followed by the second component (0.115), the third component (0.090), and so on.

Using the elbow method we can infer that almost all the PCs would be required to capture a significant amount of variance and hence wouldn't be of much use in this data.

```
library(ggbiplot)
ggbiplot(pca_fit)
```



```
Hide

set.seed(2)
cluster_max <- 10
df_scale <- scale(Employees)
wss <- sapply(1:cluster_max, function(k){kmeans(df_scale, k, nstart=10 )$tot.withinss})
ggplot(data.frame(k=1:cluster_max, WSS=wss), aes(x=k, y=WSS)) +
    geom_point(size=2) +
    geom_line() +
    labs(title="Elbow plot", x="No. of clusters", y="WSS")</pre>
```

Elbow plot

11:44

```
library(cluster)
gap_stat <- clusGap(df_scale, FUNcluster = kmeans, K.max = 10)</pre>
```

Hide

plot(gap_stat)

clusGap(x = df_scale, FUNcluster = kmeans, K.max = 10)

Hide

library(factoextra)
fviz_nbclust(df_scale,kmeans,method="silhouette")

Taking K=3 as 3 clusters.

```
km_out <- kmeans(df_scale, 3)
km_out</pre>
```

K-means clusterin	g with 3 clu	sters	of size	es 402,	463, 2	264											
Cluster means:																	
stag	event	gende	r	age	inc	dustry	y pr	ofess	ion	tra	ffic	supe	rviso	r sup	ervis	or_ge	nde
r greywage	way													_			
1 0.08656047 -0.		522290	2 -0.0	4466913	0.215	02058	-0.1	.02296	783	0.312	5969	-0.09	90321	6	0	.2286	088
8 0.009604948 -0		F10241	F 0 0	2165001	0 15/	- 4 4 2 0 0			262	0 220	2700	0 00	00165	_	0	0107	7074
2 -0.12913758 0. 1 -0.026767500 0	07269125 0.	518341	5 -0.0.	3162001	-0.156	044380	0.0	108082	362 -	0.220	3/08	0.09	82165	5	U	.0107	8/4
0.026767300 0 $0.09467193 - 0.$		704366	6 0 1 °	2252621	0 053	201217	0 1	11505	353	n nga	5161	0 02	1/520	2	0	.3670	1278
0 0.032318800 0		704300	0 0.1	2332031	-0.05	704047	0.1	.41373	333 -	0.000	3101	-0.02	14520	_	-0	. 3070	270
extraversion in		elfcon	trol	anxie	tv ir	novat	or										
1 -0.5257387 -0	-			0.30517	-												
2 0.6339926 0		-0.759				507029											
3 -0.3113319 -0				0.65039		39546	02										
Clustering vector	:																
1 2 3	4 5 6	5 7	8	9 1	0 11	12	13	14	15	16	17	18	19	20	21	22	2
3 24 25 26	27 28																
3 3 2	2 3 2	2 2	1	2	2 2	3	2	2	2	2	2	2	2	2	1	2	
2 1 1 2	2 3																
	32 33 34	35	36	37 3	8 39	40	41	42	43	44	45	46	47	48	49	50	5
1 52 53 54	55 56	_	_	_					_		_						
1 1 2	3 1 2	2 2	1	2	2 2	2	1	1	1	2	1	1	2	2	2	1	
2 3 2 2	2 3		<i>C</i> 1	6	<i>c c</i> 7	60	60	7.0	7.1	7.0	7.0	7.4	7.5	7.6	77	7.0	_
57 58 59 9 80 81 82	60 61 62 83 84	2 63	64	65 6	6 67	68	69	70	71	72	73	74	75	76	77	78	7
3 2 2	3 2 2	2 1	1	1	2 1	3	3	2	2	3	2	2	2	3	2	2	
2 1 1 2	2 2	. 1	1	1	2 1	J	3	2	2	J	2	2	2	J	2	2	
	88 89 90	91	92	93 9	4 95	96	97	98	99	100	101	102	103	104	105	106	10
7 108 109 110		, , , ,	,_	, ,	1)3	30	,	,,,		100	101	102	100	101	103	100	
2 2 1		2 2	2	3	3 1	1	1	1	1	1	2	2	2	2	2	2	
1 1 1 1					_												
113 114 115 1	16 117 118	3 119	120	121 12	2 123	124	125	126	127	128	129	130	131	132	133	134	13
5 136 137 138	139 140																
2 1 2	1 1 3	3	2	1	1 2	1	2	1	1	2	2	3	3	1	3	1	

3 2 2 1 2 2 141 142 143 144 145 146	147	1 / Ω	1/10	150	151	152	152	15/	155	156	157	150	150	160	161	162	16
3 164 165 166 167 168	11/	140	147	130	131	132	133	134	133	130	137	130	133	100	101	102	10
2 2 2 1 1 1	1	1	1	3	2	1	2	2	3	1	2	3	3	3	2	1	
1 3 1 3 2 3																	
169 170 171 172 173 174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	19
1 192 193 194 195 196																	
3 1 3 2 2 1	2	2	2	1	1	2	3	1	3	3	3	2	2	3	1	1	
1 1 2 2 1 2																	
197 198 199 200 201 202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	21
9 220 221 222 223 224																	
1 3 3 1 1 1	2	2	2	1	2	1	2	2	2	1	1	2	3	2	1	1	
3 3 3 1 2	221	222	222	224	225	226	227	220	220	240	241	242	242	244	245	246	2.4
225 226 227 228 229 230 7 248 249 250 251 252	231	232	233	234	233	230	237	238	239	240	241	242	243	244	245	240	24
1 3 2 2 2 1	1	1	2	2	1	1	1	1	1	1	2	3	2	1	1	1	
2 1 1 2 2 2	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	
253 254 255 256 257 258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	27
5 276 277 278 279 280																	
1 3 1 2 1 3	3	2	3	1	2	1	1	1	1	2	2	1	1	2	1	3	
1 1 2 2 2 2																	
281 282 283 284 285 286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	30
3 304 305 306 307 308			•	•	•		•		2	•		2	•	2	2	•	
1 2 3 2 2 2 1 1 1 1 1 3	1	1	2	2	2	1	2	Ţ	3	2	1	3	2	3	3	2	
309 310 311 312 313 314	315	316	317	31 Q	310	320	321	322	323	32/	325	326	327	320	320	330	33
1 332 333 334 335 336	213	210	J 1 /	210	J 1 J	J 2 U	J41	J 4 4	J23	J 4 4	J	J 2 U	J4 /	J 4 0	J 4 J	550	55
1 1 1 1 3 1	1	1	1	2	2	1	1	2	3	1	3	1	1	1	1	1	
1 3 1 1 2																	
337 338 339 340 341 342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	35
9 360 361 362 363 364																	
3 2 2 2 1 2	3	2	2	2	3	2	2	3	1	3	3	1	1	1	1	2	
2 2 2 1 2 2																	
365 366 367 368 369 370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	38
7 388 389 390 391 392	•	•	•			•	•		•		•	•	•		•	•	
2 2 1 3 1 2	2	3	3	1	1	2	2	1	3	3	3	2	2	1	2	2	
2 2 2 3 1 2 393 394 395 396 397 398	300	400	401	402	403	404	405	106	407	400	400	410	<i>1</i> 11	112	112	111	<i>1</i> .1
5 416 417 418 419 420	333	400	401	402	403	404	403	400	407	400	403	410	411	412	413	414	41
1 2 1 3 1 3	2	3	2	2	1	1	2	2	3	2	3	3	2	2	3	2	
3 3 1 1 1 1	_	J	_	_	-	-	_	_	J	_	ŭ	J	_	_	J	_	
421 422 423 424 425 426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	44
3 444 445 446 447 448																	
2 2 1 2 2 3	1	1	1	2	2	2	2	3	2	3	3	1	2	3	2	2	
1 1 1 2 2 1																	
449 450 451 452 453 454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	47
1 472 473 474 475 476								_					_				
3 1 1 3 2 2	2	3	3	2	2	1	2	1	1	2	2	2	1	2	2	2	
2 2 2 2 1 1 477 478 479 480 481 482	102	101	10F	106	107	100	400	400	401	402	402	404	40E	106	407	400	40
9 500 501 502 503 504	403	404	400	400	40/	400	409	490	491	492	493	494	490	490	49/	498	49
1 1 1 1 3 1	1	2	2	1	1	2	3	2	2	2	1	2	1	3	2	1	
3 1 1 3 2 2	_	۷	۷	1	1	۷.	5	_	۷	-	_	_	_	5	۷	1	
505 506 507 508 509 510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	52
7 528 529 530 531 532																	
1 2 2 3 2 2	1	2	2	1	3	3	2	2	2	1	2	2	1	1	1	1	
1 3 2 2 1 1																	
533 534 535 536 537 538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	55
5 556 557 558 559 560																	
2 3 3 2 2 1	2	2	2	1	1	1	3	1	1	1	1	1	1	1	3	3	
1 3 1 3 1 1	E C T	E C C	FCC	F70	E 77 1	F 7 0	F 7 2	E 7 4	F 7 F	F76	F 7 7	F 7 0	F 7 0	E 0 0	F 0 1	FOO	FO
561 562 563 564 565 566 3 584 585 586 587 588	26/	268	269	5/0	2 / I	5/2	5/3	5/4	5/5	5/6	ɔ//	5/8	o / 9	280	281	38Z	эв
3 584 585 586 587 588	2	1	3	3	1	2	3	2	2	3	2	2	3	2	3	2	
2 1 2 2 2 3	2	1	3	3	1	۷	3	۷	2	3	۷	۷	3	۷	3	۷	
589 590 591 592 593 594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	61
1 612 613 614 615 616		0	/										1			0	
2 2 2 3 3 1	2	3	2	1	1	2	1	1	1	3	1	2	2	1	2	1	
2 2 2 3 2 2																	
617 618 619 620 621 622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	63
9 640 641 642 643 644																	
1 2 1 2 2 2	2	2	2	2	3	2	2	1	1	3	2	3	1	2	1	2	
2 3 2 2 1 1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
645 646 647 648 649 650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	66
7 668 669 670 671 672																	

```
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
                                                                                691 692 693 694 69
5 696 697 698 699 700
                                               2
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
                                                                                719
                                                                                    720 721
          726 727
                    728
      725
                             2
729 730 731 732 733 734 735 736 737 738
                                            739
                                                 740
                                                     741 742 743 744
                                                                        745
                                                                           746
                                                                                 747
                                                                                         749
1 752 753 754 755 756
               2
                                 3
                                      1
                                          1
                                               1
                                                   3
                                                        2
                                                                 3
                                                                          2
                                                                                                2
           1
                        3
                             3
                                                            1
                                                                                       2
             3
                 1
                                            767 768 769 770 771 772 773 774 775
757 758 759 760 761 762 763 764 765 766
                                                                                    776 777 778 77
      781 782 783 784
                 1
785 786 787 788 789 790 791 792 793 794
                                             795
                                                 796
                                                      797
                                                          798
                                                               799
                                                                   800
                                                                        801
                                                                            802
                                                                                 803
                                                                                     804
                                                                                          805
                                                                                              806
                                                                                                  80
7 808 809 810 811 812
                                          2
                                               2
                                                                                       2
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
                                                                       829 830
                                                                                 831 832 833
5 836 837 838 839
841 842 843 844 845 846 847 848 849 850
                                            851 852 853 854 855 856
                                                                        857
                                                                            858
                                                                                 859
                                                                                     860
                                                                                         861
                                                                                              862 86
3 864 865 866 867 868
                             3
                                          2
                                                                          3
                 1
869 870 871 872 873 874 875 876 877 878
                                             879
                                                 880
                                                      881
                                                          882
                                                               883
                                                                   884
                                                                        885
                                                                            886
                                                                                 887
                                                                                     888
1 892 893 894 895 896
                    1
               2
                        1
                             2
                                 3
                                      1
                                          1
                                                   3
                                                                 2
                                                                                   3
                                                                                       2
                                                                                                1
             2
     898 899 900 901 902 903 904
                                    905
                                        906
                                             907
                                                 908
                                                      909
                                                          910
                                                              911 912
                                                                        913 914
                                                                                 915
                                                                                     916
      921 922 923
                                 1
                                          1
                 1
925 926 927 928 929 930 931 932 933
                                        934
                                             935
                                                 936
                                                      937
                                                          938
                                                               939
                                                                   940
                                                                        941
                                                                            942
                                                                                              946
7 948 949 950 951 952
                                               2
                                                   2
                                                                                       1
                      2
                 1
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 97
5 976 977 978 979 980
               1
981 982 983 984 985 986 987 988
                                             991
                                                 992
                                                     993
                                    989
                                        990
                                                          994
                                                               995
                                                                   996
                                                                        997
                                                                            998
                                                                                 999 1000
                    1
                        3
                             3
                                 3
                                      1
                                          2
                                               2
                                                   2
                                                            2
                                                                 3
                                                                     2
                                                                          3
                                                                                   2
[ reached getOption("max.print") -- omitted 129 entries ]
Within cluster sum of squares by cluster:
[1] 5448.113 6100.411 3889.063
(between_SS / total_SS = 14.5 %)
```

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size" "ite r" "ifault"

Hide

ggbiplot(pca_fit,groups=km_out\$cluster,scale=0)

fviz_cluster(km_out, data=df_scale)

Clustering is used to group similar observations together based on their similarity. The clusters shows us different sub-groups in our data.

Based on the clusters, we can see this trend in our data:

-Cluster 1 has a relatively higher proportion of female employees, and they are relatively younger and have a lower wage. They also tend to have higher extraversion and innovation scores, but lower self-control and anxiety scores. Additionally, they are less likely to have a supervisor, and if they do, their supervisor is more likely to be male. Employees in this cluster are more likely to quit compared to those in the other clusters.

-Cluster 2 has a higher proportion of male employees and they are relatively older with a higher wage. They tend to have higher self-control and anxiety scores but lower extraversion and innovation scores. They are less likely to have a female supervisor. Employees in this cluster are less likely to quit compared to those in Cluster 1 but more likely to quit compared to those in Cluster 3.

-Cluster 3 has a relatively higher proportion of female employees, and they are relatively older with a higher wage. They tend to have lower extraversion and innovation scores but higher self-control and anxiety scores. They are more likely to have a female supervisor. Employees in this cluster are less likely to quit compared to those in the other clusters.

Hide

```
X <- subset(Employeess, select = -event)
y <- Employeess$event
head(X)</pre>
```

	_	gender <chr></chr>	a industry <dbl>chr></dbl>	profession <chr></chr>	traffic <chr></chr>	coach <chr></chr>	head_gender <chr></chr>	greywage <chr></chr>	•
1	7.030801	m	35 Banks	HR	rabrecNErab	no	f	white	
2	22.965092	m	33 Banks	HR	empjs	no	m	white	
3	15.934292	f	35 PowerGeneration	HR	rabrecNErab	no	m	white	
4	15.934292	f	35 PowerGeneration	HR	rabrecNErab	no	m	white	
5	8.410678	m	32 Retail	Commercial	youjs	yes	f	white	
6	8.969199	f	42 manufacture	HR	empjs	yes	m	white	
6 ro	ws 1-10 of 1	5 columns							

6 rows | 1-10 of 15 columns

```
#Kaplan-Meier survival curve
library(survival)
fit.surv <- survfit(Surv(stag, event) ~ 1, data=Employeess)
summary(fit.surv)</pre>
```

```
Call: survfit(formula = Surv(stag, event) ~ 1, data = Employeess)
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
   0.394
         1129
                     1 0.9991 0.000885
                                              0.99738
                                                              1.000
   0.427
          1128
                     1 0.9982 0.001252
                                               0.99578
                                                              1.000
   0.756 1122
                     1 0.9973 0.001534
                                              0.99434
                                                             1.000
   0.920
         1119
                    1 0.9964 0.001773
                                              0.99298
                                                             1.000
                     2 0.9947 0.002172
                                              0.99042
                                                              0.999
   1.117
          1118
   1.413
          1112
                     1 0.9938 0.002347
                                               0.98918
                                                              0.998
   1.478
          1110
                     1 0.9929 0.002510
                                               0.98797
                                                              0.998
  1.643
          1109
                     1 0.9920 0.002663
                                               0.98677
                                                              0.997
  1.708
          1107
                         0.9911 0.002807
                                                              0.997
                     1
                                               0.98560
   1.741
                         0.9902 0.002944
                                                              0.996
          1105
                     1
                                               0.98443
  1.807
          1104
                         0.9893 0.003075
                                               0.98328
                                                              0.995
                         0.9884 0.003202
          1097
                     1
   2.037
                                               0.98213
                                                              0.995
  2.201
          1086
                     2 0.9866 0.003445
                                               0.97984
                                                              0.993
  2.267
          1082
                     1 0.9857 0.003560
                                               0.97870
                                                              0.993
   2.431
          1079
                     1 0.9847 0.003672
                                               0.97757
                                                              0.992
   2.760
          1076
                     1 0.9838 0.003781
                                               0.97644
                                                              0.991
   2.793
          1073
                     2 0.9820 0.003990
                                               0.97420
                                                              0.990
   2.858
          1069
                     2 0.9802 0.004189
                                               0.97198
                                                              0.988
   2.990
                          0.9792 0.004285
                                                              0.988
          1067
                                               0.97088
   3.121
          1066
                      2
                          0.9774 0.004469
                                               0.96868
                                                              0.986
                          0.9746 0.004732
   3.253
          1062
                                               0.96541
                                                              0.984
                          0.9737 0.004817
   3.351
                                               0.96432
                                                              0.983
          1058
                      1
   3.417
          1057
                          0.9728 0.004899
                                               0.96324
                                                              0.982
                      1
   3.450
                          0.9719 0.004981
                                               0.96216
                                                              0.982
          1056
                      1
   3.483
                          0.9710 0.005061
                                                              0.981
          1054
                      1
                                               0.96109
   3.581
          1051
                          0.9673 0.005368
                                               0.95679
                                                              0.978
   3.811
          1045
                      2
                          0.9654 0.005515
                                               0.95466
                                                              0.976
   3.975
          1041
                          0.9598 0.005933
                                               0.94829
                                                              0.972
   4.008
          1035
                      1
                          0.9589 0.005999
                                               0.94723
                                                              0.971
   4.074
                          0.9580 0.006065
          1033
                      1
                                               0.94617
                                                              0.970
   4.337
          1031
                          0.9571 0.006129
                                               0.94512
                                                              0.969
                                               0.94407
   4.370
          1030
                      1
                          0.9561 0.006194
                                                              0.968
   4.435
          1028
                      2
                          0.9543 0.006320
                                               0.94196
                                                              0.967
                                                              0.965
   4.534
          1024
                      2
                          0.9524 0.006443
                                               0.93986
```

4.961	1019	1	0.9515	0.006504	0.93881	0.964
5.027	1014	2	0.9496	0.006626	0.93670	0.963
5.257	1006	1		0.006686	0.93564	0.962
5.322	1004	1	0.9477	0.006746	0.93458	0.961
5.388	1002	1	0.9468	0.006805	0.93352	0.960
5.421	1001	1		0.006863	0.93246	0.959
5.651	996	1		0.006922	0.93139	0.959
5.749	994	1		0.006980	0.93033	0.958
5.782	991	1		0.007038	0.92927	0.957
5.815	990	1		0.007095	0.92820	0.956
5.848	989	2		0.007207	0.92608	0.954
6.144	982	1		0.007263	0.92502	0.953
6.177	981	3		0.007428	0.92183	0.951
6.275	977	2		0.007535	0.91970	0.949
6.439	974	1		0.007588	0.91864	0.948
6.538	973	1		0.007641	0.91758	0.948
6.604	972	1		0.007693	0.91652	0.947
6.669	971	1		0.007745	0.91546	0.946
7.031	966	4		0.007949	0.91122	0.942
7.129	962	1		0.007998	0.91016	0.942
7.326	955	1		0.008049	0.90909	0.941
7.589	953	5		0.008294	0.90377	0.936
7.819	948	1		0.008341	0.90271	0.935
7.951	940	2		0.008437	0.90057	0.934
8.016	937	1		0.008485	0.89950	0.933
8.082	936	1		0.008532	0.89843	0.932
8.148	935	1		0.008579	0.89736	0.931
8.181	933	3		0.008718	0.89416	0.928
8.279	928	1		0.008763	0.89309	0.927
8.312	927	1		0.008809	0.89202	0.927
8.411	925	1		0.008854	0.89095	0.927
8.575	923	1		0.008899	0.88988	0.925
8.608	922	1		0.008943	0.88881	0.924
8.641	921	2		0.009032	0.88667	0.924
8.772	918	1		0.009075	0.88560	0.921
8.871	914	1		0.009119	0.88453	0.921
8.936	913	1		0.009162	0.88346	0.919
8.969	912	3		0.009102	0.88025	0.917
9.035	909	1		0.009333	0.87918	0.917
9.101	905	2		0.009417	0.87704	0.914
9.199	901	1		0.009459	0.87596	0.914
9.265	900	1		0.009500	0.87489	0.913
9.528	896	1		0.009542	0.87381	0.912
9.593	895	1		0.009583	0.87274	0.911
9.626	894	1		0.009624	0.87166	0.909
9.791	890	6		0.009866	0.86519	0.904
9.823	884	1		0.009906	0.86412	0.903
9.889	883	1		0.009945	0.86304	0.902
10.349	878	1		0.009984	0.86196	0.901
10.480	876	1		0.010023	0.86088	0.900
10.645	869	1		0.010023	0.85979	0.899
10.776	868	2		0.010141	0.85762	0.897
10.842	866	1		0.010180	0.85653	0.896
10.908	865	1		0.010100	0.85545	0.896
10.940	864	1		0.010217	0.85436	0.895
11.006	863	1		0.010295	0.85327	0.894
11.039	862	2		0.010370	0.85110	0.892
11.072	860	1		0.010407	0.85002	0.891
11.236	859	1		0.010444	0.84894	0.890
11.302	857	1		0.010481	0.84785	0.889
11.499	856	2		0.010555	0.84568	0.887
11.696	850	3		0.010664	0.84242	0.884
11.828	842	1		0.010700	0.84132	0.883
11.893	839	1		0.010737	0.84023	0.882
11.959	837	2		0.010809	0.83803	0.880
11.992	835	3		0.010003	0.83474	0.878
12.025	832	2		0.010910	0.83255	0.876
12.023	830	1		0.010307	0.83146	0.875
12.090	829	1		0.011021	0.83036	0.874
12.123	828	1		0.011090	0.82927	0.873
12.123	827	1		0.011125	0.82817	0.873
12.353	822	1		0.011159	0.82707	0.872
12.335	821	1		0.011193	0.82598	0.871
12.682	817	2		0.011262	0.82377	0.868
12.780	815	3		0.011363	0.82047	0.865
. 30		-				

12.813	812	1	0.8414 0.011396	0.81937	0.864
12.879	811	2	0.8393 0.011462	0.81717	0.862
12.977	809	2	0.8373 0.011527	0.81497	0.860
13.010	807	2	0.8352 0.011591	0.81277	0.858
13.076	805	1	0.8341 0.011623	0.81167	0.857
13.109	804	3	0.8310 0.011718	0.80838	0.854
13.142	801	1	0.8300 0.011749	0.80728	0.853
13.175	800	2	0.8279 0.011811	0.80509	0.851
13.273	798	1	0.8269 0.011842	0.80400	0.850
13.339	797	1	0.8258 0.011872	0.80290	0.849
13.405	796	2	0.8238 0.011933	0.80071	0.847
13.569	794	1	0.8227 0.011963	0.79962	0.847
13.667	793	1	0.8217 0.011993	0.79852	0.846
13.864	791	1	0.8207 0.012022	0.79743	0.845
13.897	790	3	0.8175 0.012111	0.79415	0.842
14.226	785	1	0.8165 0.012140	0.79305	0.841
14.587	777	2	0.8144 0.012199	0.79083	0.839
14.620	775	1	0.8133 0.012229	0.78973	0.838
14.719	774	1	0.8123 0.012258	0.78862	0.837
14.850	773	2	0.8102 0.012316	0.78641	0.835
14.949	771	1	0.8091 0.012345	0.78531	0.834
14.982	770	1	0.8081 0.012373	0.78420	0.833
15.113	768	1	0.8070 0.012402	0.78309	0.832
15.146	765	1	0.8060 0.012431	0.78199	0.831
15.211	762	1	0.8049 0.012459	0.78087	0.830
15.310	761	1	0.8039 0.012488	0.77976	0.829
15.343	760	1	0.8028 0.012516	0.77865	0.828
15.409	758	1	0.8018 0.012544	0.77754	0.827
15.540	757	1	0.8007 0.012572	0.77643	0.826
15.573	756	2	0.7986 0.012628	0.77420	0.824
15.737	749	1	0.7975 0.012656	0.77309	0.823
15.934	747	2	0.7954 0.012712	0.77085	0.821
16.000	744	2	0.7932 0.012767	0.76860	0.819
			<pre>.print") omitted</pre>		
	3-20P0	(,	,	

```
plot(fit.surv, xlab = "Months",
   ylab = "Estimated Probability of Quitting")
```


Hide

```
Loading required package: ggpubr

Attaching package: 'ggpubr'

The following object is masked from 'package:plyr':

mutate

Attaching package: 'survminer'

The following object is masked from 'package:survival':

myeloma
```

ggsurvplot(fit = fit.surv)

From the Kaplan-Meier curve above, we can say that with time the probability of an employee decreases. We can see that it does not decrease rapidly over time.

From the graph the median survival time of an employee seems to be around 50 months.

```
#K-M curve stratified by gender
fit.sex <- survfit(Surv(stag, event) ~ gender, data=Employeess)
plot(fit.sex, xlab = "Months",
    ylab = "Estimated Probability of Quitting", col = c(2,4))</pre>
```



```
#log-rank test to compare the survival of males to females, using the
#`survdiff()` function.
logrank.test <- survdiff(Surv(stag, event) ~ gender, data=Employeess)
logrank.test</pre>
```

Hide

logrank.test\$pvalue

```
[1] 0.1254498
```

Hide

```
#Next, we fit Cox proportional hazards models using the `coxph()` function.
fit.cox <- coxph(Surv(stag, event) ~ gender, data=Employeess)
summary(fit.cox)</pre>
```

```
Call:
coxph(formula = Surv(stag, event) ~ gender, data = Employeess)
 n= 1129, number of events= 571
          coef exp(coef) se(coef)
                                   z Pr(>|z|)
0.126
       exp(coef) exp(-coef) lower .95 upper .95
genderm
         0.8596
                   1.163
                            0.708
                                     1.044
Concordance= 0.516 (se = 0.01)
Likelihood ratio test= 2.4 on 1 df, p=0.1
Wald test
                = 2.34 on 1 df, p=0.1
Score (logrank) test = 2.34 on 1 df,
                                  p=0.1
```

Hide

```
#Regardless of which test we use, we see that there is no clear evidence for a #difference in survival between males and females.
```

Above we plotted a K-M curve stratified by gender and we can infer from the curve that there is not much difference between the probabilty of quitting between males and females over time.

Upon further performing a logrank test to compare survival rates of both genders, we can infer from the outcome that survival analysis of employee churn is not affected by the gender of the employee.

```
#K-M curve stratified by profession
fit.pr <- survfit(Surv(stag, event) ~ profession, data=Employeess)
plot(fit.pr, xlab = "Months",
    ylab = "Estimated Probability of Quitting", col = c(2,4))</pre>
```


#log-rank test to compare the survival of different professions , using the `survdiff()` function.
plogrank.test <- survdiff(Surv(stag, event) ~ profession, data=Employeess)
plogrank.test</pre>

```
Call:
survdiff(formula = Surv(stag, event) ~ profession, data = Employeess)
                               N Observed Expected (O-E)^2/E (O-E)^2/V
profession=Accounting
                               10
                                        6
                                             12.83 3.64e+00 3.81e+00
                                             15.90 6.28e-04 6.51e-04
profession=BusinessDevelopment 27
                                       16
profession=Commercial
                                              9.99 2.52e+00 2.57e+00
                               23
                                       15
                               25
                                             10.32 3.13e+00 3.21e+00
profession=Consult
                                       16
profession=Engineer
                                              6.56 3.00e+00 3.05e+00
                              15
                                       11
profession=etc
                               37
                                       20
                                             16.96 5.46e-01 5.66e-01
profession=Finance
                              17
                                       12
                                             14.51 4.34e-01 4.54e-01
profession=HR
                              757
                                       357
                                            370.58 4.98e-01 1.43e+00
                              74
                                       25
profession=IT
                                             39.42 5.27e+00 5.69e+00
                               7
                                        5
                                              4.99 4.07e-05 4.12e-05
profession=Law
                               22
profession=manage
                                       15
                                              8.45 5.08e+00 5.18e+00
profession=Marketing
                               31
                                       21
                                             14.32 3.11e+00 3.21e+00
profession=PR
                               6
                                        5
                                              3.75 4.18e-01 4.23e-01
profession=Sales
                               66
                                       35
                                             34.13 2.23e-02 2.43e-02
profession=Teaching
                               12
                                       12
                                              8.30 1.65e+00 1.69e+00
Chisq= 29.6 on 14 degrees of freedom, p= 0.009
```

Hide

plogrank.test\$pvalue

[1] 0.008684665

Hide

#Next, we fit Cox proportional hazards models using the `coxph()` function
pfit.cox <- coxph(Surv(stag, event) ~ profession, data=Employeess)
summary(pfit.cox)</pre>

```
Call:
coxph(formula = Surv(stag, event) ~ profession, data = Employeess)
  n= 1129, number of events= 571
                                coef exp(coef) se(coef)
                                                            z Pr(>|z|)
professionBusinessDevelopment 0.7726
                                        2.1653
                                                0.4797 1.611 0.10726
professionCommercial
                              1.1801
                                        3.2547
                                                 0.4851 2.433 0.01498 *
professionConsult
                              1.2214
                                        3.3918
                                                 0.4824 2.532 0.01135 *
professionEngineer
                              1.2919
                                        3.6396 0.5094 2.536 0.01121 *
                                                0.4686 2.012 0.04417 *
professionetc
                              0.9431
                                        2.5678
                                                0.5019 1.145 0.25219
professionFinance
                              0.5747
                                        1.7767
                                        2.0881
                                                0.4140 1.779 0.07532 .
professionHR
                              0.7363
professionIT
                              0.3167
                                        1.3727
                                                 0.4565 0.694 0.48779
professionLaw
                              0.7786
                                        2.1784
                                                0.6082 1.280 0.20048
                              1.3543
                                        3.8741
                                                 0.4864 2.784 0.00537 **
professionmanage
                                                0.4649 2.483 0.01304 *
professionMarketing
                              1.1542
                                        3.1714
professionPR
                              1.0649
                                        2.9007
                                                0.6081 1.751 0.07989 .
professionSales
                              0.7921
                                        2.2080
                                                 0.4435 1.786 0.07412 .
professionTeaching
                              1.1303
                                        3.0965
                                                 0.5005 2.258 0.02393 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                              exp(coef) exp(-coef) lower .95 upper .95
professionBusinessDevelopment
                                  2.165
                                            0.4618
                                                      0.8457
                                                                 5.544
                                  3.255
professionCommercial
                                            0.3072
                                                      1.2578
                                                                 8.422
                                 3.392
                                            0.2948
                                                     1.3176
                                                                 8.731
professionConsult
                                                                 9.878
professionEngineer
                                 3.640
                                            0.2748
                                                      1.3411
professionetc
                                            0.3894
                                                      1.0249
                                                                 6.433
                                 2.568
professionFinance
                                                      0.6643
                                 1.777
                                            0.5629
                                                                 4.752
professionHR
                                 2.088
                                            0.4789
                                                      0.9276
                                                                 4.700
professionIT
                                 1.373
                                            0.7285
                                                      0.5610
                                                                 3.359
professionLaw
                                                                 7.175
                                 2.178
                                            0.4591
                                                      0.6614
                                                      1.4932
professionmanage
                                 3.874
                                            0.2581
                                                                10.051
professionMarketing
                                 3.171
                                            0.3153
                                                      1.2751
                                                                 7.887
professionPR
                                                      0.8808
                                 2.901
                                            0.3447
                                                                 9.552
professionSales
                                 2.208
                                            0.4529
                                                      0.9257
                                                                 5.267
professionTeaching
                                 3.097
                                            0.3229
                                                      1.1610
                                                                 8.258
Concordance= 0.558 (se = 0.011)
Likelihood ratio test= 28.28 on 14 df,
                                         p=0.01
Wald test
                    = 28.54 on 14 df,
                                         p=0.01
Score (logrank) test = 29.5 on 14 df,
                                        p=0.009
```

Above we plotted a K-M curve stratified by profession of the employee. We can see from the curves that employees from different professions have different probability of quitting over time, where some are decreasing rapidly (like IT, Law), some are decreasing at a normal rate over time.

The p-value (0.0087) observed from the log-rank test tells us that profession does help in determining the survival rate of the employee as the p-value is way below 0.05.

On fitting the Cox-proportional hazard model, it will help identify the variables that are significantly associated with the survival outcome. From the summary of the model we can see the coefficients and the p-value of different professions and infer that (the larger the coefficient and lower the p-value, the variable has more impact on the final outcome). Hence we can say that, employees from management, marketing, consulting, engineering and teaching have a higher risk of quitting compared to others.

Here the above outcomes are not completely accurate, because above we saw the number of people for each profession are not distributed equally as employees from HR are considerably more than employees from other profession.

```
#K-M curve stratified by industry
fit.ind <- survfit(Surv(stag, event) ~ industry, data=Employeess)
plot(fit.ind, xlab = "Months",
   ylab = "Estimated Probability of Quitting", col = c(2,4))</pre>
```


#log-rank test to compare the survival various industries, using the `survdiff()` function.
ilogrank.test <- survdiff(Surv(stag, event) ~ industry, data=Employeess)
ilogrank.test</pre>

```
Call:
survdiff(formula = Surv(stag, event) ~ industry, data = Employeess)
                         N Observed Expected (O-E)^2/E (O-E)^2/V
industry= HoReCa
                         11
                                  6
                                        5.79
                                               0.00779
                                                         0.00789
                                                         8.32018
industry=Agriculture
                        15
                                 10
                                        4.16
                                              8.21470
industry=Banks
                        114
                                  75
                                       51.11 11.17213 12.32365
industry=Building
                         41
                                  31
                                       20.59
                                              5.26931
                                                        5.49241
industry=Consult
                         74
                                  45
                                       28.17 10.06064 10.69575
industry=etc
                         94
                                  54
                                       43.61
                                              2.47783
                                                        2.70780
industry=IT
                        122
                                       53.53 7.12660
                                                        7.90274
industry=manufacture
                        145
                                  70
                                       76.37 0.53160
                                                        0.61763
                         24
                                 14
                                       13.60
                                              0.01187
                                                        0.01220
industry=Mining
                         20
                                 11
                                       11.93
                                               0.07234
                                                        0.07466
industry=Pharma
                                       18.51 0.66687
industry=PowerGeneration 38
                                 15
                                                        0.69303
industry=RealEstate
                        13
                                  5
                                       10.57 2.93788
                                                        3.04576
industry=Retail
                        289
                                      165.06 5.11503
                                                        7.30153
                                 136
industry=State
                         55
                                 35
                                       27.97 1.76601
                                                        1.86333
industry=Telecom
                         36
                                 14
                                       24.50
                                               4.50264
                                                        4.77265
                                       15.54
industry=transport
                         38
                                  16
                                             0.01341
                                                        0.01385
Chisq= 60.9 on 15 degrees of freedom, p= 2e-07
```

Hide

ilogrank.test\$pvalue

[1] 1.740932e-07

Hide

#Next, we fit Cox proportional hazards models using the `coxph()` function:
ifit.cox <- coxph(Surv(stag, event) ~ industry, data=Employeess)
summary(ifit.cox)</pre>

```
Call:
coxph(formula = Surv(stag, event) ~ industry, data = Employeess)
  n= 1129, number of events= 571
                                                             z Pr(>|z|)
                              coef exp(coef)
                                               se(coef)
industryAgriculture
                        0.8687904 2.3840255 0.5179957 1.677
                                                                 0.0935 .
industryBanks
                        0.3451907 1.4122593 0.4247577 0.813
                                                                 0.4164
industryBuilding
                        0.3681991 1.4451297 0.4466633 0.824
                                                                 0.4098
industryConsult
                        0.4463360 1.5625763 0.4352886 1.025
                                                                 0.3052
industryetc
                        0.1862531 1.2047271 0.4307377 0.432
                                                                 0.6654
industryIT
                       -0.4878455 0.6139477 0.4431102 -1.101
                                                                 0.2709
industrymanufacture
                       -0.1262863 0.8813625 0.4259822 -0.296
                                                                 0.7669
                       -0.0043689 0.9956406 0.4881063 -0.009
industryMining
                                                                 0.9929
                                                                 0.7871
industryPharma
                       -0.1375448 0.8714953 0.5091819 -0.270
                                                                 0.6226
industryPowerGeneration -0.2379344 0.7882544 0.4834113 -0.492
                                                                 0.1784
industryRealEstate
                       -0.8176897 0.4414504 0.6076191 -1.346
industryRetail
                       -0.2386062 0.7877251 0.4176653 -0.571
                                                                 0.5678
industryState
                        0.1857274 1.2040939 0.4421011 0.420
                                                                 0.6744
industryTelecom
                       -0.6189377 0.5385162 0.4890460 -1.266
                                                                 0.2057
                        0.0003095 1.0003096 0.4791301 0.001
industrytransport
                                                                 0.9995
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                        exp(coef) exp(-coef) lower .95 upper .95
industryAgriculture
                          2.3840
                                     0.4195
                                               0.8638
                                                          6.580
                                     0.7081
industryBanks
                          1.4123
                                               0.6143
                                                          3.247
                          1.4451
                                                          3.468
industryBuilding
                                     0.6920
                                               0.6022
industryConsult
                          1.5626
                                     0.6400
                                                          3.667
                                               0.6658
                                                          2.802
industryetc
                          1.2047
                                     0.8301
                                               0.5179
industryIT
                          0.6139
                                     1.6288
                                               0.2576
                                                          1.463
industrymanufacture
                                               0.3824
                                                          2.031
                          0.8814
                                     1.1346
                                               0.3825
industryMining
                          0.9956
                                     1.0044
                                                          2.592
industryPharma
                          0.8715
                                     1.1475
                                               0.3213
                                                          2.364
industryPowerGeneration
                          0.7883
                                     1.2686
                                               0.3056
                                                          2.033
industryRealEstate
                          0.4415
                                     2.2653
                                               0.1342
                                                          1.452
industryRetail
                          0.7877
                                     1.2695
                                               0.3474
                                                          1.786
industryState
                          1.2041
                                     0.8305
                                               0.5062
                                                          2.864
                          0.5385
                                     1.8570
                                               0.2065
industryTelecom
                                                          1.404
industrytransport
                          1.0003
                                     0.9997
                                               0.3911
                                                          2.558
Concordance= 0.58 (se = 0.014)
Likelihood ratio test= 57.67 on 15 df,
                                         p = 6e - 07
Wald test
                    = 58.23 on 15 df,
                                         p = 5e - 07
Score (logrank) test = 60.97 on 15 df,
                                         p = 2e - 07
```

Above we plotted a K-M curve stratified by industry of the employee. We can see from the curves that employees from different industries have different probability of quitting over time, where some are decreasing rapidly (Agriculture), some are decreasing at a normal rate over time and some industries (Retail) remain constant after some time period.

The p-value (1.740932e-07) observed from the log-rank test tells us that industry does help in determining the survival rate of the employee as the p-value is way below 0.05.

On fitting the Cox-proportional hazard model, it will help identify the variables that are significantly associated with the survival outcome. From the summary of the model we can see the coefficients and the p-value of different industries and infer that (the larger the coefficient and lower the p-value, the variable has more impact on the final outcome). Hence we can say that, employees from Real Estate, Telecom and Retail industry do not have a higher risk of quitting compared to other industries.

```
#K-M curve stratified by way of transportation
fit.way <- survfit(Surv(stag, event) ~ way, data=Employeess)
plot(fit.way, xlab = "Months",
    ylab = "Estimated Probability of Quitting", col = c(2,4))</pre>
```



```
#log-rank test to compare the survival of males to females, using the `survdiff()` function.
wlogrank.test <- survdiff(Surv(stag, event) ~ way, data=Employeess)
wlogrank.test</pre>
```

```
Call:
survdiff(formula = Surv(stag, event) ~ way, data = Employeess)
          N Observed Expected (O-E)^2/E (O-E)^2/V
way=bus 681
                 354
                        316.7
                                    4.39
                                            10.06
way=car 331
                 174
                        194.0
                                    2.06
                                              3.19
way=foot 117
                  43
                          60.3
                                    4.95
                                              5.55
Chisq= 11.6 on 2 degrees of freedom, p= 0.003
```

Hide

wlogrank.test\$pvalue

```
[1] 0.003061535
```

Hide

```
#Next, we fit Cox proportional hazards models using the `coxph()` function.
wfit.cox <- coxph(Surv(stag, event) ~ way, data=Employeess)
summary(wfit.cox)</pre>
```

```
Call:
coxph(formula = Surv(stag, event) ~ way, data = Employeess)
 n= 1129, number of events= 571
           coef exp(coef) se(coef)
                                     z Pr(>|z|)
waycar -0.22575 0.79792 0.09363 -2.411 0.01590 *
wayfoot -0.45301 0.63571 0.16180 -2.800 0.00511 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
       exp(coef) exp(-coef) lower .95 upper .95
waycar
          0.7979
                      1.253
                               0.6641
                                        0.9586
wayfoot
          0.6357
                      1.573
                               0.4629
                                        0.8729
Concordance= 0.533 (se = 0.012)
Likelihood ratio test= 12.06 on 2 df,
                                       p=0.002
Wald test
                    = 11.47 on 2 df, p=0.003
Score (logrank) test = 11.59 on 2 df, p=0.003
```

Above we plotted a K-M curve stratified by way of transportation of the employee. We can see from the curves that employees having different ways of transportation do not have much difference in rate of survival probability reduction.

The p-value (0.003) observed from the log-rank test tells us that way of transportation does help in determining the survival rate of the employee as the p-value is below 0.05.

```
Hide
```

```
#K-M curve stratified by employee wages.
fit.wage <- survfit(Surv(stag, event) ~ greywage, data=Employeess)
plot(fit.wage, xlab = "Months",
    ylab = "Estimated Probability of Quitting", col = c(2,4))</pre>
```



```
#log-rank test to compare the survival employee wage, using the `survdiff()` function.
wglogrank.test <- survdiff(Surv(stag, event) ~ greywage, data=Employeess)
wglogrank.test</pre>
```

```
Call:
survdiff(formula = Surv(stag, event) ~ greywage, data = Employeess)

N Observed Expected (O-E)^2/E (O-E)^2/V
greywage=grey 127 73 43.2 20.47 22.3
greywage=white 1002 498 527.8 1.68 22.3

Chisq= 22.3 on 1 degrees of freedom, p= 2e-06
```

Hide

```
wglogrank.test$pvalue
```

```
[1] 2.27932e-06
```

Above we plotted a K-M curve stratified by employee wage type. We can see from the curves that employees having grey wage and white wage have different rate of probability of survival reduction over time. We can see greywage employees quitting earlier than white wage employees.

The p-value (2.27932e-06) observed from the log-rank test tells us that employee wage does help in determining the survival rate of the employee as the p-value is below 0.05.

```
fit.all <- coxph(Surv(stag, event) ~ gender + profession + industry + way, data=Employeess)
summary(fit.all)</pre>
```

```
Call:
coxph(formula = Surv(stag, event) ~ gender + profession + industry +
   way, data = Employeess)
 n= 1129, number of events= 571
                                coef exp(coef) se(coef)
                                                            z Pr(>|z|)
                             -0.17541 0.83912 0.11854 -1.480 0.138963
genderm
professionBusinessDevelopment 0.85119 2.34244 0.49125 1.733 0.083150 .
                             1.27599 3.58223 0.49325 2.587 0.009684 **
professionCommercial
                             0.67774 1.96942 0.50732 1.336 0.181578
professionConsult
professionEngineer
                             1.07415 2.92750 0.51979 2.067 0.038781 *
professionetc
                             0.69128
                                      1.99627 0.47975 1.441 0.149609
professionFinance
                             0.30228 1.35294 0.51265 0.590 0.555430
                             0.49326 1.63765 0.42469 1.161 0.245454
professionHR
                             0.30359 1.35471 0.47031 0.646 0.518597
professionIT
professionLaw
                             0.54049 1.71684 0.63843 0.847 0.397225
professionmanage
                             1.29775
                                       3.66104 0.49796 2.606 0.009158 **
                             0.92119 2.51228 0.47484 1.940 0.052377 .
professionMarketing
professionPR
                                       2.56649 0.62793 1.501 0.133346
                             0.94254
                             0.78789
                                      2.19874 0.45264 1.741 0.081743 .
professionSales
                             0.68350 1.98079 0.55739 1.226 0.220106
professionTeaching
                                       2.02196 0.53819 1.308 0.190803
                             0.70407
industryAgriculture
                                      1.41421 0.42548 0.815 0.415336
industryBanks
                             0.34657
industryBuilding
                             0.36855
                                       1.44564 0.44934 0.820 0.412100
{\tt industryConsult}
                              0.41081
                                       1.50804 0.44026 0.933 0.350758
                             0.07040 1.07294 0.43573 0.162 0.871638
industryetc
                                       0.62876 0.44492 -1.043 0.296995
industryIT
                             -0.46401
industrymanufacture
                                      0.88286 0.42886 -0.291 0.771424
                             -0.12459
industryMining
                                       0.93285 0.50304 -0.138 0.890090
                             -0.06952
industryPharma
                             -0.20312
                                       0.81618 0.51063 -0.398 0.690781
industryPowerGeneration
                            -0.29852
                                       0.74192 0.48512 -0.615 0.538329
industryRealEstate
                             -0.93382
                                       0.39305 0.62429 -1.496 0.134700
                                      0.71649 0.42035 -0.793 0.427707
industryRetail
                            -0.33339
                                       1.03280 0.46616 0.069 0.944802
industryState
                             0.03227
industryTelecom
                             -0.66314
                                       0.51523 0.49254 -1.346 0.178186
industrytransport
                            -0.13737
                                       0.87165 0.48201 -0.285 0.775646
                             -0.17417
waycar
                                       0.84015 0.10104 -1.724 0.084749 .
wayfoot
                                       0.56433 0.16791 -3.407 0.000656 ***
                             -0.57211
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

	- '	exp(-coef)		
genderm	0.8391	1.1917		
professionBusinessDevelopment	2.3424	0.4269	0.8944	6.1351
professionCommercial	3.5822	0.2792	1.3624	9.4191
professionConsult	1.9694	0.5078	0.7286	5.3232
professionEngineer	2.9275	0.3416	1.0569	8.1085
professionetc	1.9963	0.5009	0.7796	5.1119
professionFinance	1.3529	0.7391	0.4953	3.6953
professionHR	1.6377	0.6106	0.7124	3.7646
professionIT	1.3547	0.7382	0.5389	3.4055
professionLaw	1.7168	0.5825	0.4912	6.0002
professionmanage	3.6610	0.2731	1.3795	9.7157
professionMarketing	2.5123	0.3980	0.9906	6.3716
professionPR	2.5665	0.3896	0.7496	8.7868
professionSales	2.1987	0.4548	0.9055	5.3390
professionTeaching	1.9808	0.5048	0.6643	5.9059
industryAgriculture	2.0220	0.4946	0.7041	5.8061
industryBanks	1.4142	0.7071	0.6142	3.2560
industryBuilding	1.4456	0.6917	0.5992	3.4877
industryConsult	1.5080	0.6631		3.5740
industryetc	1.0729	0.9320		2.5204
industryIT	0.6288	1.5904		1.5038
industrymanufacture	0.8829	1.1327		2.0461
industryMining	0.9328	1.0720		2.5003
industryPharma	0.8162	1.2252	0.3000	2.2204
industryPowerGeneration	0.7419	1.3479		1.9200
industryRealEstate	0.3930	2.5442		1.3361
industryRetail	0.7165	1.3957		1.6331
industryState	1.0328	0.9682		2.5752
industryTelecom	0.5152	1.9409		1.3529
industrytransport	0.8716	1.1473		2.2420
waycar	0.8402			
wayfoot	0.5643			
Concordance= 0.612 (se = 0.01	13)			
Likelihood ratio test= 97.32		p=2e-08		
	on 32 df,	_		
Score (logrank) test = 100.7	•	-		

Above code helps us in understanding and identifying the variables that are significantly associated with the survival outcome.