1 Kodaira Vanishing

Theorem 1.0.1. Let k be a field of characteristic 0 and X is smooth projective of pure dimension d over k. Let \mathcal{L} be an ample line bundle. Then,

(a)
$$H^j(X, \mathcal{L} \otimes \Omega_X^i) = 0$$
 if $i + j > d$

(b)
$$H^j(X, \mathcal{L}^{\vee} \otimes \Omega^i) = 0$$
 if $i + j < d$.

Remark. These two statements are Serre dual. Indeed, there is a perfect pairing

$$\bigwedge^i \Omega \times \bigwedge^{d-i} \Omega \to \bigwedge^d \Omega = \omega_X$$

and therefore,

$$H^{j}(X, \mathcal{L} \otimes \Omega_{X}^{i}) = H^{d-j}(X, \mathcal{L}^{\vee} \otimes (\Omega_{X}^{i})^{\vee} \otimes \omega)^{\vee} = H^{d-j}(X, \mathcal{L}^{\vee} \otimes \Omega_{X}^{d-i})^{\vee}$$

and
$$(d-j) + (d-i) = 2d - (i+j) < d \iff i+j > d$$
.

Remark. In order to prove this theorem, we will deduce it from a positive characteristic version.

Theorem 1.0.2. Suppose that k has char k = p. If X is smooth and projective over k pure of dimension d with d < p and X lifts (smoothly) over $W_2(k)$ then,

(a)
$$H^j(X, \mathcal{L} \otimes \Omega_X^i) = 0$$
 if $i + j > d$

(b)
$$H^j(X, \mathcal{L}^{\vee} \otimes \Omega_X^i) = 0$$
 if $i + j < d$.

Remark. Because these are equivalent by Serre duality, it suffices to prove the second statement.

Remark. Our first case comes from the following classic result of Serre.

Theorem 1.0.3. If X is projective over k and \mathcal{L} is ample for any coherent sheaf \mathcal{E} there exists n_0 such that for $n \geq n_0$ then,

$$H^i(X, \mathcal{E} \otimes \mathcal{L}^{\otimes n}) = 0$$

for all i > 0.

Remark. We apply this to $\mathcal{E} = \Omega_X^{d-i}$ then for $n \geq n_0$ we have,

$$H^{j}(X, \mathcal{L}^{\otimes -n} \otimes \Omega_{X}^{i}) = H^{d-j}(X, \mathcal{L}^{\otimes n} \otimes \Omega_{X}^{d-i})^{\vee} = 0$$

for all j < d.

Proof of Thm. 1.0.2. In particular, we can choose some power $n = p^m$ such that $n \ge n_0$ and thus,

$$H^j(X, (\mathcal{L}^{\vee})^{\otimes p^m} \otimes \Omega_X^i) = 0$$

for all j < d and thus also whenever i + j < d. Therefore, we can apply descending induction to prove that,

$$H^j(X, \mathcal{L}^{\vee} \otimes \Omega_X^i) = 0$$

for all i + j < d by applying the following results.

1.1 The Induction

Proposition 1.1.1. Let \mathcal{M} be any invertible sheaf. Suppose that,

$$H^j(X, \mathcal{M}^{\otimes p} \otimes \Omega^i) = 0$$

for all i + j < d then,

$$H^j(X, \mathcal{M} \otimes \Omega^i) = 0$$

for all i + j < d.

Remark. Let F_X denote the absolute Frobenius $F_X: X \to X$ and $F: X \to X^{(p)}$ the relative Frobenius.

Lemma 1.1.2. For any invertible module \mathcal{M} ,

$$F_X^* \mathcal{M} \xrightarrow{\sim} \mathcal{M}^{\otimes p}$$

Proof. Consider the map $\mathcal{M} \to (F_X)_* \mathcal{M}^{\otimes p}$ via $m \mapsto m^{\otimes p}$ which is linear because,

$$am \mapsto (am)^p = a^p m^p = a \cdot m^p$$

because this is $(F_X)_*\mathcal{M}^{\otimes p}$. Then by adjunction, we get a map $F_X^*\mathcal{M} \to \mathcal{M}^{\otimes p}$ via $m \otimes r \mapsto m^{\otimes p}r$ which is well-defined because,

$$(am) \otimes r = m \otimes a^p r \mapsto m^{\otimes p} a^p r = (am)^{\otimes p} r$$

Then it suffices to check for the case $\mathcal{M} = \mathcal{O}_X$ in which case we get $\mathcal{O}_X \xrightarrow{\sim} \mathcal{O}_X$ by $1 \otimes r \mapsto r$. \square

Corollary 1.1.3. Let \mathcal{M}' be the pullback of \mathcal{M} under $\pi: X^{(p)} \to X$. Then $F^*\mathcal{M}' = \mathcal{M}^{\otimes p}$.

Proof of induction (Prop. 1.1.1). By the projection formula,

$$F_*(\mathcal{M}^{\otimes p} \otimes \Omega_X^i) \cong F_*(F^*\mathcal{M}' \otimes \Omega^i) \cong \mathcal{M}' \otimes F_*\Omega_X^i$$

Now we apply the hypercohomlogy exact sequence,

$$E_1^{ij} = R^j T(K^i) \implies R^{i+j} T(K^{\bullet})$$

Then we apply this to the above complex with $T = \Gamma(X^{(p)}, -)$ giving,

$$E_1^{ij} = H^j(X^{(p)}, \mathcal{M}' \otimes F_*\Omega_X^i) \implies \mathbb{H}^{i+j}(X^{(p)}, \mathcal{M}' \otimes F_*\Omega_X^{\bullet})$$

However,

$$H^{j}(X^{(p)}, \mathcal{M}' \otimes F_{*}\Omega_{X}^{i}) = H^{j}(X^{(p)}, F_{*}(\mathcal{M}^{\otimes p} \otimes \Omega_{X}^{i})) = H^{j}(X, \mathcal{M}^{\otimes p} \otimes \Omega_{X}^{i}) = 0$$

for i + j < d by the induction hypothesis. Therefore, we conclude from the spectral sequence,

$$\mathbb{H}^n(X^{(p)}, \mathcal{M}' \otimes F_*\Omega_X^{\bullet}) = 0$$

for n < d. Now we need to recall the Cartier isomorphism and decomposability in positive characteristic to complete the proof.

Proposition 1.1.4. The complex $F_*\Omega_X^{\bullet}$ is decomposable meaning there is a quasi-isomorphism,

$$F_*\Omega_X^{\bullet} \xrightarrow{\sim} \bigoplus_i \mathcal{H}^i(F_*\Omega_X^{\bullet})[-i]$$

Then from the Cartier isomorphism,

$$\gamma: \mathcal{H}^i(F_*\Omega_X^{\bullet}) \to \Omega_{X^{(p)}}^{\bullet}$$

we get a quasi-isomorphism,

$$F_*\Omega_X^{\bullet} \xrightarrow{\sim} \bigoplus_i \Omega_{X^{(p)}}^i[-i]$$

Completing the proof of induction (Prop. 1.1.1). Then the hypercohomlogy of,

$$\mathcal{M}' \otimes F_* \Omega_X^{\bullet} \xrightarrow{\sim} \bigoplus_i \mathcal{M}' \otimes \Omega_X^i[-i]$$

is given by,

$$\mathbb{H}^n(X^{(p)}, \mathcal{M}' \otimes F_*\Omega_X^{\bullet}) = \bigoplus_{i+j=n} H^j(X^{(p)}, \mathcal{M}' \otimes \Omega_{X^{(p)}}^i)$$

and thus by vanihsing of the hypercohomology for n < d we get vanishing,

$$H^j(X^{(p)}, \mathcal{M}' \otimes \Omega^i_{X^{(p)}}) = 0$$

for i + j < d. However, in general, for a Cartesian diagram,

$$X' \xrightarrow{g'} Y'$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

we get a natural isomorphism $g'^*\Omega_{X/Y} = \Omega_{X'/Y'}$. Applying this to $\pi: X^{(p)} \to X$ over $F_S:$ Spec $(k) \to \text{Spec }(k)$ we get $\pi^*\Omega_{X/k} = \Omega_{X^{(p)}/k}$ (where this is $X^{(p)} \to \text{Spec }(k)$ is the structure map not composed with F_S i.e. meaning that π is not k-linear). Then we have $\mathcal{M}' \otimes \Omega^i_{X^{(p)}} = \pi^*(\mathcal{M} \otimes \Omega^i_X)$. However, F_S is flat because k is a field so π is also flat by preservation under base change. Applying flat base change,

$$F_S^*H^j(X,\mathcal{M}\otimes\Omega_X^i)=H^j(X^{(p)},\pi^*(\mathcal{M}\otimes\Omega_X^i))=H^j(X^{(p)},\mathcal{M}'\otimes\Omega_{X^{(p)}}^i)=0$$

for i + j < d thus completing the induction.

1.2 Spreading Out

Proposition 1.2.1. Ampleness spreads out. Meaning given L ample on X/k then we can spread out to $\mathfrak{X}/S = \operatorname{Spec}(A)$ then we can spread out to \mathcal{L} ample on \mathfrak{X}/S .

Proof. WLOG can assume that \mathcal{L} is very ample. Then spread out the closed embedding to a closed embedding into projective space.

Remark. Now we finally prove the main theorem.

Theorem 1.2.2. Let K be a field of characteristic 0 and X is smooth projective of pure dimension d over K. Let L be an ample line bundle. Then,

(a)
$$H^j(X, L \otimes \Omega_X^i) = 0$$
 if $i + j > d$

(b)
$$H^j(X, L^{\vee} \otimes \Omega^i) = 0$$
 if $i + j < d$.

Proof. Recall that by Serre duality we need only prove the second statement.

We consider,

$$K=\varinjlim A$$

where A runs over finite-type \mathbb{Z} -algerbas. Thus we can spread out over a smooth $S = \operatorname{Spec}(A) \to \operatorname{Spec}(\mathbb{Z})$ to give a smooth, projective, finite type $f: \mathfrak{X} \to S$ pure of relative dimension d and \mathcal{L} is an ample invertible sheaf on \mathfrak{X} . Then by restricting S we can assume that $R^j f_*(\mathcal{L} \otimes \Omega^i_{\mathfrak{X}/S})$ are all free of constant rank (via semicontinuity and cohomlogy and base change). Then we choose a point $s_0: \operatorname{Spec}(k) \to S$ such that $d < \operatorname{char}(k)$ and now by smoothness of S over \mathbb{Z} the point s_0 lifts to $g: \operatorname{Spec}(W_2(k)) \to S$. Then $g^*\mathfrak{X}$ gives a lift of \mathfrak{X}_{s_0} over $W_2(k)$ and therefore we have proved that,

$$H^i(\mathfrak{X}_{s_0}, \mathcal{L}_{s_0}^{\vee} \otimes \Omega^i_{\mathfrak{X}_{s_0}/k}) = 0$$

for all i + j < d. However, by cohomology and base change, for any point $s \in S$,

$$H^{j}(X, \mathcal{L}_{s}^{\vee} \otimes \Omega_{\mathfrak{X}_{s}/\kappa(s)}^{i}) = (R^{j} f_{*}(\mathcal{L}^{\vee} \otimes \Omega_{\mathfrak{X}/S}^{i}))_{s} \otimes \kappa(s)$$

However, because the pushforwards $R^j f_*(\mathcal{L}^{\vee} \otimes \Omega^i_{\mathfrak{X}/S})$ are locally free of constant rank and thus the cohomology has constant dimension in s. Taking $s = s_0$ we see that this dimension is zero so,

$$R^j f_*(\mathcal{L}^{\vee} \otimes \Omega^i_{\mathfrak{X}/S}) = 0$$

In particular, taking the fiber over the point $\xi : \operatorname{Spec}(K) \to S$ we find that,

$$H^{j}(X, \mathcal{L}_{s}^{\vee} \otimes \Omega_{X}^{i}) = (R^{j} f_{*}(\mathcal{L}^{\vee} \otimes \Omega_{\mathfrak{X}/S}^{i}))_{\xi} \otimes K = 0$$

for i + j < d.

1.3 Counterexamples

Theorem 1.3.1 (Raynaud). Kodaira vanishing can fail in characteristic p when no lifting to $W_2(k)$ exists.

Theorem 1.3.2 (Serre). There exists X in characteristic p not lifting to characteristic 0.

1.3.1 The Proof

Let k be of characteristic p and k either infinite or "large" (we will see what this means in a bit).

Proposition 1.3.3 (Godeaux). Suppose we have an action $r_0: G \to \mathrm{PGL}_n(K)$ then there exists a smooth closed subvariety Y_0 of \mathbb{P}^{n-1}_K a complete intersection such that $G \subset Y_0$ without fixed-points.

Proposition 1.3.4 (Serre). Suppose $\forall g \neq 1$ the fixed scheme in \mathbb{P}_K^{n-1} has codimension ≥ 4 then can take dim $Y_0 \geq 3$ and if $X_0 = Y_0/G$ lifts to some A complete noetherian local ring of char(A) = 0 then r_0 lifts to a map $r: G \to \mathrm{PGL}_n(A)$.

Remark. Therefore, it suffices to produce a group action with these properties that does not lift to characteristic zero.

Consider the standard order 5 nilpotent matrix $N \in M_5(k)$. Let $G = \mathbb{G}_a$ or $G = \mathbb{F}_p^5 \subset k$. Then take $G \to \mathrm{PGL}_n$. Then we consider the map $g \mapsto \exp(gN)$. It is not hard to show that there is a unique fixed point in $\mathbb{P}^4(k)$ so it has codimension 4. If we can lift $G \to \mathrm{PGL}_n(A)$ we may assume that A is a domain (because A has characteristic 0 so p is not nilpotent so we can quoitent by a prime not containing p) then we get $G \to \mathrm{PGL}_n(L)$ with $\mathrm{char}(L) = 0$. Then we would get $\mathbb{F}_p^5 \subset \mathrm{PGL}_5(L)$ but this is abelian so we can simultaneously diagonalize but this is not possible because these would have to be diagonal matrices of which we can have at most \mathbb{F}_p^4 .