

Hardware: Discovery stm32f4, SoC Stm32f40vg

Reference: RM0090 reference manual (DM00031020.pdf)

Contact: Mustapha.hamdi@insat.rnu.tn

Institut national des sciences appliquées et de technologie, Tunisia

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each with its own converter.

Figure 64. DAC channel block diagram DAC control register TSELx[2:0] bits SWTRIGX TIM2_TRGO **DMAENx** TIM4 TRGO: TIM5 TRGO-TIM6 TRGO-TIM7 TRGO-TIM8 TRGO-EXTI_9 DM A requestx Control logicx TENx ,12-bit, DHRx MAMPx[3:0] bits LFSRx trianglex WAVENx[1:0] bits 12-bit DORx 12-bit V_{DDA} DAC_OUTx Digital-to-analog ${\rm V}_{\rm SSA}$ converterx V_{REF+} ai14708b

Contact: Mustapha.hamdi@insat.rnu.tn

Contact: Mustapha.hamdi@insat.rnu.tn

6.3.13 RCC APB1 peripheral clock enable register (RCC_APB1ENR)

Address offset: 0x40

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	Γ.	29	28	27	26	25	24	23	22	21	20	19	18	17	16
UART8 EN	UAR EN	7	DAC EN	PWR EN	Reser- ved	CAN2 EN	CAN1 EN	Reser- ved	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART 3 EN	USART 2 EN	Reser- ved
rw	rw		rw	rw		rw rw			rw	rw	rw	rw	rw	rw	rw	
15	14		13	12	11	10	10 9		7	6	5	4	3	2	1	0
SPI3 EN		SPI2 EN Resen		rved	wwDG ved EN		erved	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
rw rw		•		rw		'	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Page 183, DM00031020.pdf

Contact : Mustapha.hamdi@insat.rnu.tn

DAC register map |=(1<<0)+(1<<16)=0x00010001;

Table 76 summarizes the DAC registers Activation de deux chaines de sortie

		Table 76. DAC register map																										ſ					
Offset	Register name	31	30	29	28	27	56	25	24	23	22	21	20	19	18	-	16	15	14	13	12	11	10	6	8	7	9	5	4	8	2	-	0
0x00	DAC_CR	Reserved		DMAUDRIE2	DMAEN2	MAMP2[3:0]				WA 2[2		TSEL2[2:0]			EN2	Pointogo	Nesel ved	DMAUDRIE1	DMAEN1	MA	MP	1[3:(0]	WA 1[2		TS	EL1 :0]	1[2	TEN1	BOFF1	EN1		
0x04	DAC_ SWTRIGR		Reserved															SWTRIG	SWTRIG														
0x08	DAC_ DHR12R1		Reserved DACC1DHR[11:0]																														
0x0C	DAC_ DHR12L1	Reserved DACC1DHR[11:0] R													Re	Reserved																	
0x10	DAC_ DHR8R1	Reserved DACC1DHR[7:0]													:0]]																	
0x14	DAC_ DHR12R2	Reserved													DACC2DHR[11:0]																		
0x18	DAC_ DHR12L2		Reserved												DACC2DHR[11:0]								F	Reserved									

450/1713

DocID018909 Rev 7

STM32CubeMX which is a graphical software configuration allows us to find DAC Pins output; PA4 and PA5 as analog output:

Cubemx Link: http://www.st.com/en/development-tools/stm32cubemx.html

Contact: Mustapha.hamdi@insat.rnu.tn

solution please see attached code DAC output :

Contact: Mustapha.hamdi@insat.rnu.tn