Radicali

Definizione

Si definisce Radice Aritmetica n-esima di a, e si indica con $\sqrt[n]{a}$, quel numero b tale che: $b^n = a$, con $a, b \in \mathbb{R}$, $a \ge 0$, $b \ge 0$, $n \in \mathbb{N}$, n > 0.

Quindi:
$$\sqrt[n]{a} = b \leftrightarrow b^n = a$$

Esempio:
$$\sqrt[3]{8} = +2 \leftrightarrow 2^3 = 8$$

Radice con n pari

Radice con n dispari

Il grafico ha una pendenza simile al grafico del log.

Le differenze principali sono:

- la radice pari interseca l'asse nel punto (0,0), mentre il log in (1,0)
- la radice pari non è mai < 0, mentre il log può essere < 0

• Condizioni d'Esistenza

Per radice con n pari: 1) $a \ge 0$ 2) $b \ge 0$

Per radice con n dispari: $\forall x \in \mathbb{R}$

Perché, per n pari, b < 0? Quindi $\sqrt{4} \neq \pm 2$? Ma (-2) · (-2) non è 4?

Sì, ma si accetta solo +2 perché una funzione, per definizione, non può restituire DUE risultati.

Perché nella definizione n < 0? Non serve porlo nelle C.E., basta riscrivere il valore. Esempio: $\sqrt[-2]{16} = \frac{1}{\sqrt{16}}$

• Proprietà derivate dalle potenze

 $\sqrt[6]{a} \quad \text{e} \quad \sqrt[n]{b} \quad \rightarrow \quad \sqrt[6-n]{a^n} \quad \text{e} \quad \sqrt[6-n]{b^c} \quad \text{(per portarli alla stessa radice)} \quad \text{Esempio: } \sqrt[4]{5} + \sqrt[3]{2} = \sqrt[4-3]{5^3} + \sqrt[3-4]{2^4} = [\dots]$

$$a\cdot \sqrt[n]{b} \ \leftrightarrow \ \sqrt[n]{a^n\cdot b}$$

$$\sqrt[c+n]{a^n} = a^c$$

$$\sqrt[n]{a^{n+c}} = \sqrt[n]{a^n \cdot a^c} = a \cdot \sqrt[n]{a^c}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[n]{a} \cdot \sqrt[c]{b} = \sqrt[n+c]{a^c \cdot b^n}$$

$$\sqrt[c]{\sqrt[n]{a}} = \sqrt[n+c]{a}$$

$$(\sqrt[n]{a})^c = \sqrt[n]{a^c}$$

$$\alpha \cdot \sqrt[n]{a} \pm \beta \cdot \sqrt[n]{a} = (\alpha \pm \beta) \cdot \sqrt[n]{a}$$

• Proprietà delle radici con l'incognita

Si definisce Radice Algebrica n-esima di e si indica con $\sqrt[n]{a}$, quel numero b tale che: $b^n = a$, con (diversamente dalla radice aritmetica) $a, b \in \mathbb{R}$ (non per forza > 0), ed $n \in \mathbb{N}$, n > 0. Si amplia la definizione di radice aritmetica per risolvere le equazioni in forma $x^n = a$.

Radici pari: $\sqrt{(x)^2} = |x|$ (Errore comune: Scrivere $\sqrt{(x)^2} = x$) Esempio: $\sqrt{4} = |2|$, che è diverso da dire $\sqrt{4} = +2$

$$x^2 = 9 \to x = \pm \sqrt{9} \to x = \pm 3$$
; $x^2 = -9 \to x = \pm \sqrt{-9} \to \emptyset$

Radici dispari: $\sqrt[3]{x^3} = x$; $x^3 = 8 \to x = \sqrt[3]{8} = 2$; $x^3 = -8 \to x = \sqrt[3]{-8} = -2$

• Razionalizzazione del denominatore

Cos'è?

Un numero reale (\mathbb{R}) è definito come un numero frazionario (\mathbb{Q}) diviso un numero razionale (\mathbb{Z}) . Una frazione con un radicale al denominatore è irrazionale.

La razionalizzazione è l'operazione atta ad eliminare i radicali al denominatore, per rendere "razionale" il denominatore.

Caso 1) Denominatore con una sola radice quadra

Moltiplico e divido per la radice al denominatore

$$\frac{x}{\sqrt{a}} \rightarrow \frac{x}{\sqrt{a}} \cdot \frac{\sqrt{a}}{\sqrt{a}} = \frac{x \cdot \sqrt{a}}{a}$$

Caso 2) Denominatore con una sola radice NON quadra

Moltiplico e divido per una radice di indice pari alla radice al denominatore, con un argomento di indice complementare

$$\frac{x}{\sqrt[n]{a^c}} \rightarrow \frac{x}{\sqrt[n]{a^c}} \cdot \frac{\sqrt[n]{a^{n-c}}}{\sqrt[n]{a^{n-c}}} = \frac{x \cdot \sqrt[n]{a^c}}{\sqrt[n]{a^c \cdot a^{n-c}}} = \frac{x \cdot \sqrt[n]{a^c}}{\sqrt[n]{a^{c+n-c}}} = \frac{x \cdot \sqrt[n]{a^c}}{\sqrt[n]{a^n}} = \frac{x \cdot \sqrt[n]{a^c}}{a}$$

Caso 3) Denominatore con un polinomio con una o più radici quadre

Moltiplico somma per differenza, usando la scomposizione della differenza di quadrati. (metto quindi l'operazione OPPOSTA a quella nel denominatore).

Caso 3.1) binomio di una radice e un numero

$$\frac{x}{a \pm \sqrt{b}} \rightarrow \frac{x}{a \pm \sqrt{b}} \cdot \frac{a \mp \sqrt{b}}{a \mp \sqrt{b}} = \frac{x}{a^2 - (\sqrt{b})^2} \cdot (a \mp \sqrt{b}) = \frac{x \cdot (a \mp \sqrt{b})}{a^2 - b}$$

Caso 3.2) binomio di due radici

$$\frac{x}{\sqrt{a} \pm \sqrt{b}} \quad \rightarrow \quad \frac{x}{\sqrt{a} \pm \sqrt{b}} \cdot \frac{\sqrt{a} \mp \sqrt{b}}{\sqrt{a} \mp \sqrt{b}} = \frac{x}{\left(\sqrt{a}\right)^2 - \left(\sqrt{b}\right)^2} \cdot \left(\sqrt{a} \mp \sqrt{b}\right) = \frac{x \cdot \left(\sqrt{a} \mp \sqrt{b}\right)}{a - b}$$

Caso 4) Denominatore con un polinomio con una o più radici cubiche

Uso la scomposizione di una somma o differenza di cubi.

$$\frac{x}{\sqrt[3]{a} \pm \sqrt[3]{b}} \rightarrow \frac{x}{\sqrt[3]{a} \pm \sqrt[3]{b}} \cdot \frac{\sqrt[3]{a^2} \mp \sqrt[3]{a \cdot b} + \sqrt[3]{b^2}}{\sqrt[3]{a^2} \mp \sqrt[3]{a \cdot b} + \sqrt[3]{b^2}} = \frac{x \cdot (\sqrt[3]{a^2} \mp \sqrt[3]{a \cdot b} + \sqrt[3]{b^2})}{(\sqrt[3]{a})^3 + (\sqrt[3]{b})^3} = \frac{x \cdot (\sqrt[3]{a^2} \mp \sqrt[3]{a \cdot b} + \sqrt[3]{b^2})}{a \pm b}$$

• Radicale doppio

Si può applicare la formula per il radicale doppio se e solo se:

- 1) sia il radicale esterno che quello interno sono quadrati (n = 2)
- 2) $(a^2 b)$ è un quadrato perfetto (ovvero se $\sqrt{(a^2 b)} \in \mathbb{N}$; altrimenti non si può estrarre dalla radice interna)

$$\sqrt{a \pm \sqrt{b}}$$
 $\rightarrow \sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}$

Esempi:

$$\sqrt{6 - \sqrt{20}} \rightarrow (6^2 - 20) = 16 \rightarrow quadrato \ perfetto \rightarrow \sqrt{\frac{6 + \sqrt{16}}{2}} - \sqrt{\frac{6 - \sqrt{16}}{2}} = \sqrt{\frac{10}{2}} - \sqrt{\frac{2}{2}} = \sqrt{5} - \sqrt{1} = \sqrt{5} - 1$$

$$\sqrt{3 + 2 \cdot \sqrt{2}} \rightarrow \sqrt{3 + \sqrt{2^2 \cdot 2}} \rightarrow \sqrt{3 + \sqrt{8}} \rightarrow (3^2 - 8) = 1 \rightarrow quadrato \ perfetto \rightarrow \sqrt{\frac{3 + \sqrt{1}}{2}} + \sqrt{\frac{3 - \sqrt{1}}{2}} = \sqrt{2} + 1$$

• Equazioni con radicali - Risoluzione con i sistemi

1) Radici quadrate

Un polinomio al secondo membro	Un numero positivo al secondo membro	Un numero negativo al secondo membro	Lo zero al secondo membro
$\sqrt{A} = B \qquad \rightarrow \qquad \left\{ \begin{aligned} B &\geq 0 \\ A &= B^2 \end{aligned} \right.$	$\sqrt{A} = n \rightarrow A = n^2$	$\sqrt{A} = -n \rightarrow impossibile$	$\sqrt{A} = 0 \to A = 0$

Per le C.E., prendo ad esempio il 1° caso:

Le C.E. in questo caso sarebbero: $A \ge 0$; $B \ge 0$

E poi bisogna risolvere elevando ambo i membri al quadrato.

Questo sistema contiene le C.E. al suo interno, in quanto prima controlla che $B \ge 0$, e poi $A = B^2$.

Ma se $B \ge 0 \rightarrow B^2 \ge 0 \rightarrow Se A = B^2 \rightarrow A \ge 0$

Lo stesso tipo di ragionamento vale negli altri casi.

2) Caso particolare: due radici quadrate

2.1) Una radice quadrata ad ambo i membri

$$\sqrt{A} = \sqrt{B} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ A = B \end{cases}$$

Qui le C.E sarebbero:

Per \sqrt{A} : $A \ge 0$; $\sqrt{B} \ge 0$; Per \sqrt{B} : $B \ge 0$; $\sqrt{A} \ge 0$

E poi bisognerebbe risolvere: A = B.

Ma le C.E. vengono incluse nel sistema.

2.2) Un binomio con due radici quadrate

$$\sqrt{A} \pm \sqrt{B} = C \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ \left(\sqrt{A} \pm \sqrt{B}\right)^2 = C^2 \end{cases} \rightarrow risolvo$$

$$\rightarrow \begin{cases}
A \ge 0 \\
B \ge 0
\end{cases}$$

$$A \ge 0 \\
B \ge 0$$

$$A \ge 0$$

$$B \ge 0$$

$$A \ge 0$$

$$B \ge 0$$

$$A \ge 0$$

$$A \ge 0$$

$$B \ge 0$$

$$A \ge 2\sqrt{AB} + B = C^2$$

$$A \ge 0$$

$$B \ge 0$$

$$\pm 2\sqrt{AB} = C^2 - A - B$$

$$\Rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ \sqrt{AB} = \pm \left(\frac{C^2 - A - B}{2}\right) \end{cases} \rightarrow risolvo \ il \ radicale, e \ inserisco \ il \ risultato \ in \ questo \ sistema$$

Qui le C.E. sarebbero:

 $\operatorname{Per} \sqrt{A} \colon A \geq 0 \ ; \ \mp \sqrt{B} + C \geq 0 \qquad ; \qquad \operatorname{Per} \sqrt{B} \colon B \geq 0 \ ; \ -\sqrt{A} - C \geq 0$

Le C.E. vengono incluse nel sistema.

3) Radici cubiche

Un polinomio al secondo membro	Una radice cubica ad ambo i membri
$\sqrt[3]{A} = B \to A = B^3$	$\sqrt[3]{A} = \sqrt[3]{B} \to A = B$

Per le radici cubiche non ci sono C.E.

• Errori comuni

1) Dimenticarsi di porre il valore assoluto quando si esce un'incognita o un valore dal radicale

Esempio: $\sqrt{5 \cdot x^6} = \sqrt{5} \cdot |x^3| \neq \sqrt{5} \cdot x^3$; infatti $\sqrt{5 \cdot x^6} = \sqrt{5} \cdot x^3$ è vero solo per $x \ge 0$.

2) Dimenticarsi di usare i sistemi "semplificati" quando possibile:

Esempio 1:

$$\sqrt{-3x+1} = 8$$

È inutile usare questo: $\sqrt{A}=B$ \rightarrow $\begin{cases} B\geq 0 \\ A=B^2 \end{cases}$; Si può risolvere così: $\sqrt{A}=n$ \rightarrow $A=n^2$

Esempio 2:

$$\sqrt{x^2 + 3x} + \sqrt{x + 3} = 0$$

È inutile usare questo:
$$\sqrt{A} \pm \sqrt{B} = C \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ \sqrt{AB} = \pm \left(\frac{C^2 - A - B}{2}\right) \end{cases}$$
; Si può risolvere così: $\sqrt{A} = \sqrt{B} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ A = B \end{cases}$

Per l'esempio 2:

Soluzione col sistema standard:

$$\sqrt{x^{2} + 3x} + \sqrt{x + 3} = 0 \to \begin{cases}
x^{2} + 3x \ge 0 \\
x + 3 \ge 0
\end{cases}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0^{2}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0^{2}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0^{2}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0^{2}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0^{2}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0^{2}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0^{2}$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x + 3}\right)^{2} = 0$$

$$\left(\sqrt{x^{2} + 3x} + \sqrt{x +$$

Soluzione col sistema semplificato:

Soluzione coi sistema semplificato:
$$\sqrt{x^2 + 3x} + \sqrt{x + 3} = 0 \rightarrow \sqrt{x^2 + 3x} = -\sqrt{x + 3} \rightarrow \begin{cases} x^2 + 3x \ge 0 \\ x + 3 \ge 0 \\ \left(\sqrt{x^2 + 3x}\right)^2 = \left(-\sqrt{x + 3}\right)^2 \rightarrow [\dots] \rightarrow \begin{cases} x \le -3 \lor x \ge 0 \\ x \ge -3 \\ x^2 + 2x - 3 = 0 \end{cases} \rightarrow \begin{cases} x \le -3 \lor x \ge 0 \\ x \ge -3 \\ x = -3 \lor x = 1 \end{cases}$$

• Equazioni con radicali – Risoluzione con le C.E.

Utili se: - il professore richiede esplicitamente che vengano mostrate le C.E.

- si è in dubbio se vengano coperte o meno tutte le C.E. usando il metodo del sistema

Sten:

- 1) Calcolo le C.E. per tutti i radicali presenti nell'equazione
- 2) Porto eventualmente tutte le radici allo stesso grado (se es. c'è una radice quadrata e una cubica)
- 3) Risolvo normalmente elevando per il grado n delle radici (es. "alla seconda") ambo i membri
- 4) Controllo quali dei risultati ottenuti rispettano le C.E.

• Equazioni con radicali – Risoluzione con sostituzione dei risultati

È il metodo più semplice e veloce, ma non è "formale", e potrebbe non essere accettato ad un esame.

Ctoni

- 1) Risolvo normalmente (elevando ambo i membri)
- 2) Provo a sostituire ogni valore della x ottenuto al punto 1 nell'equazione, e vedo se si verifica o meno l'identità

Esempio

• Disequazioni con radici

1) Una radice quadrata e un polinomio

Con ">"
$$\sqrt{A} > B \to \begin{cases} A \ge 0 \\ B < 0 \end{cases} \cup \begin{cases} B \ge 0 \\ A > B^2 \end{cases} \qquad \sqrt{A} > B \to \begin{cases} A \ge 0 \\ B < 0 \end{cases} \cup \begin{cases} B \ge 0 \\ A > B^2 \end{cases}$$

Con "<"
$$\sqrt{A} < B \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A < B^2 \end{cases} \qquad \sqrt{A} < B \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A \le B^2 \end{cases}$$

Spiegazione dietro il sistema (per non doverlo ricordare a memoria):

Colonna 1) $\sqrt{A} > B$ o $\sqrt{A} \ge B$:

C'è da controllare: 1) A > 0 ; $\sqrt{A} > B$

In una disequazione in forma $\sqrt{A} > B$, B può essere sia negativo che positivo (esempio: $\sqrt{4} > -5$). Ci sono quindi 2 casi:

Caso 1) Se B < 0, c'è da controllare: A > 0; $\sqrt{A} > B$

Ma è superfluo controllare $\sqrt{A} > B$ (perché la radice è sicuramente positiva, e B è negativo, quindi \sqrt{A} è sicuramente maggiore di B).

Caso 2) Se $B \ge 0$, c'è da controllare: A > 0; $\sqrt{A} > B \rightarrow A > B^2$

Ma è superfluo controllare A > 0 (perché se B è positivo, anche B^2 è positivo, e se $A > B^2$, allora A > 0).

Colonna 2) $\sqrt{A} < B$ o $\sqrt{A} \le B$:

In questo caso B dev'essere per forza positivo, perché è maggiore di una quantità positiva (la radice). Quindi:

- Si controlla l'esistenza della radice (A > 0)
- Si controlla che B sia per forza positivo (perché è maggiore della radice, che è per forza positiva)
- Si risolve $\sqrt{A} < B \rightarrow A < B^2$

2) Una radice quadrata e un numero (Caso particolare dell'1)

n positivo	n negativo	n = 0	
$\sqrt{A} > n \to A > n^2$	$\sqrt{A} > -n \rightarrow A \ge 0$	$\sqrt{A} > 0 \rightarrow A > 0$	
$\sqrt{A} \ge n \to A > n^2$	$\sqrt{A} \ge -n \rightarrow A \ge 0$	$\sqrt{A} \ge 0 \to A \ge 0$	
$\sqrt{A} < n \to \begin{cases} A \ge 0 \\ A < n^2 \end{cases}$	$\sqrt{A} < -n \rightarrow \emptyset$	$\sqrt{A} < 0 \rightarrow \emptyset$	
$\sqrt{A} \le n \to \begin{cases} A \ge 0 \\ A \le n^2 \end{cases}$	$\sqrt{A} \le -n \rightarrow \emptyset$	$\sqrt{A} \le 0 \rightarrow A = 0$	

 $\sqrt{A} > n \to A > n^2$. È superfluo controllare la C.E. (A \geq 0), in quanto già controllo che $A > n^2$ (e se $A > n^2$, dato che $n^2 \geq 0$, allora $A \geq 0$).

 $\sqrt{A} > -n \rightarrow A \ge 0$. La radice, se definita (ovvero se $A \ge 0$), è sempre maggiore di un numero negativo (perciò il risultato sono le C.E. della radice).

 $\sqrt{A} \le 0 \to A = 0$. \sqrt{A} non può essere < 0. Quest'equazione è vera solo quando $\sqrt{A} = 0$, ovvero quando A = 0.

3) Due radici quadrate

Con ">"	
$\sqrt{A} > \sqrt{B} \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A > B \end{cases}$	$\sqrt{A} \ge \sqrt{B} \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A \ge B \end{cases}$

Con "<"
$$\sqrt{A} < \sqrt{B} \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A < B \end{cases} \quad \sqrt{A} \le \sqrt{B} \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A \le B \end{cases}$$

4) Radici cubiche

Una radice cubica $\sqrt[3]{A} \ge B \to A \ge B^3$

Due radici cubiche $\sqrt[3]{A} \geqslant \sqrt[3]{B} \rightarrow A \geqslant B$

5) Radici di indice diverso

Per radici con indici diversi, portano le radici ad uno stesso indice, si sviluppano i calcoli, e si applica il sistema appropriato fra quelli nei punti qui sopra.

Esempio: $\sqrt{A} > \sqrt[3]{B} \rightarrow \sqrt[6]{A^3} > \sqrt[6]{B^2} \rightarrow [\dots]$

• Disequazioni con radici

$$\sqrt{3x+10} = -3x+2$$

$$A = 3x + 10$$

$$B = -3x + 2$$

MODO 1 (Sistema):

$$\begin{cases} B \ge 0 \\ A = B^2 \end{cases} \to \begin{cases} -3x + 2 \ge 0 \\ 3x + 10 = (-3x + 2)^2 \end{cases} \to \begin{cases} x \le \frac{2}{3} \\ x = -\frac{1}{3} \lor x = 2 \end{cases} \to x = -\frac{1}{3}$$

MODO 2 (C.E.):

C.E.:

$$\begin{cases} radicando \ge 0 \\ risultato \ge 0 \end{cases} \rightarrow \begin{cases} 3x + 10 \ge 0 \\ -3x + 2 \ge 0 \end{cases} \rightarrow \begin{cases} x \ge -\frac{10}{3} \\ x \le \frac{2}{3} \end{cases} \rightarrow -\frac{10}{3} \le x \le \frac{2}{3}$$

$$\left(\sqrt{3x+10}\right)^2 = (-3x+2)^2$$

$$3x + 10 = 9x^2 - 12x + 4$$

$$9x^2 - 15x - 6 = 0 \rightarrow (...) \rightarrow x = 2 \lor x = -\frac{1}{3} \rightarrow \text{Controllo le C. E.} \rightarrow x = -\frac{1}{3}$$

$$\sqrt{3x + x^2} + \sqrt{x + 3} = 0$$

MODO 1 (C. E):

C.E.

$$\begin{cases} radicando \ 1 \geq 0 \\ radicando \ 2 \geq 0 \end{cases} \rightarrow \begin{cases} 3x + x^2 \geq 0 \\ x + 3 \geq 0 \end{cases} \rightarrow \begin{cases} -6 \leq x \leq 0 \\ x \leq -3 \end{cases} \rightarrow -3 \leq x \leq 0$$

$$\left(\sqrt{3x+x^2}\right)^2 = \left(-\sqrt{x+3}\right)^2$$

$$3x + x^2 = x + 3 \rightarrow x^2 + 2x - 3 = 0 \rightarrow x = 1 \lor x = -3 \rightarrow \text{Controllo le C. E.} \rightarrow x = -3$$

MODO 2 (Sistema del binomio di radicali):

NB: E' una risoluzione chilometrica, sconsigliata

$$\sqrt{A} \pm \sqrt{B} = C \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ \left(\sqrt{A} \pm \sqrt{B}\right)^2 = C^2 \end{cases} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ \sqrt{AB} = \pm \left(\frac{C^2 - A - B}{2}\right) \end{cases} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ \left(\sqrt{AB}\right)^2 = \left[\pm \left(\frac{C^2 - A - B}{2}\right)\right]^2 \end{cases}$$