Rubidium Bromide (RbBr)

Space group: Fm-3m, 225, rocksalt

Lattice vectors: $R_1 = (-a/2, 0, a/2)$; $R_2 = (0, a/2, a/2)$; $R_3 = (-a/2, a/2, 0)$

Atom positions Cartesian: Rb = (0, 0, 0); Br = (a/2, a/2, a/2)

Atom positions crystallographic: Rb = (0, 0, 0); Br = (1/2, 1/2, 1/2)

Isotopes: 72.17% ⁸⁵Rb (84.912 amu); 27.83% ⁸⁷Rb (86.909 amu);

50.69% ⁷⁹Br (78.918 amu); 49.31% ⁸¹Br (80.916 amu)

DFT: Use VASP or QE. PBE PAW (USE PLAIN PBE!!) The QE website does not have pbesol for Rb)

(QE: Rb.pbe-spn-kjpaw_psl.1.0.0.UPF and Br.pbe-n-kjpaw_psl.1.0.0.UPF;

VASP: standard version; Rb sv) –

Checklist (all data should be reported for the 2-atom primitive cell)

• Please provide all computational costs in cores*hours

Structure/electrons

- Converged relaxed 'temperature (T)=0' lattice constant a (target accuracy < 0.005 Å)
 - Single value with 4 significant figures: X.XXX
- Methods / convergence criteria
 - Energy/force thresholds
 - Integration mesh / grid shifting
 - Fermi band shift
 - Smearing used?
- Other notes / cpu hours (e.g., multiple relaxations, compilers, hardware)
- All input files to run fully converged calculations (e.g., qe.scf.in, POSCAR)
- Converged electron band dispersion (target accuracy < 0.1 eV for $\Gamma/X/L$ frequencies)
 - Numerical data: normalized wavevectors (q) and band energies (E): top 3 valence bands and 5 conduction bands (excel file, text file, or google sheet)
 - q in units of $2\pi/a$ and f in eV
 - 3 segments: $\Gamma \rightarrow X$, $\Gamma \rightarrow K \rightarrow X$, and $\Gamma \rightarrow L$ evenly divided with ~100 q points per segment
 - 3 files, one for each segment. For each scaled q from 0 to 1 list (~100 rows): q, E₁, E₂, E₃, E₄, E₅, E₆, E₇, E₈
- Methods / convergence criteria
- Evidence of converged band structure
 - Band structure with varying integration meshes
- Other notes / cpu hours
- All input files to run fully converged calculations

Harmonic

- Converged dispersion (target accuracy < 0.1 THz for $\Gamma/X/L$ frequencies)
 - Numerical data: normalized wavevectors (q) and frequencies (f) for 6

- polarizations (j) (excel or text file)
- q in units of $2\pi/a$ and f in THz (f= $\omega/2\pi$)
- 3 segments: Γ→X, Γ→K→X, and Γ→L evenly divided with ~100 q points per segment
- 3 files, one for each segment. For each scaled q from 0 to 1 list (~100 rows): q, f₁, f₂, f₃, f₄, f₅, f₆
- Converged harmonic interatomic force constants (IFCs)
 - Supercell perturbations or DFPT (provide relevant details)
 - Standard format for code used (e.g., QE, Phonopy)
 - Will be supplied as supplemental material upon publication
- Long range Coulomb corrections
 - Dielectric matrix (1-3x3 matrix)
 - Born effective charge matrices (2-3x3 matrices)
 - Method of long-range Coulomb corrections
- Methods / convergence criteria
 - Thresholds
 - Supercell size / integration mesh
 - Symmetries / irreducibility / number of calculations (*linked to cpu hours below*)
 - Post-processing (e.g., enforce invariance constraints)
- Evidence of converged dispersion
 - Dispersions with varying supercell sizes and integration meshes
- Other notes / cpu hours (e.g., accuracy vs cpu cost, shifted meshes)
- All input files to run fully converged calculations

Anharmonic thermal transport

- Four converged T-dependent thermal conductivities (k) (target accuracy <2% difference between successive grids please contact us if a problem): natural isotopes with full BTE solution ($k_{nat,full}$), natural isotopes with the relaxation time approximation (RTA) ($k_{nat,RTA}$), isotopically pure (e.g., 100% ⁸⁵Rb and 100% ⁷⁹Br) with full BTE solution ($k_{pure,full}$), and isotopically pure with RTA ($k_{pure,RTA}$). If only RTA available, then only $k_{nat,RTA}$ and $k_{pure,RTA}$
 - Do not include boundary scattering, even at low T. We want to see how the codes behave at low T without this extrinsic scattering.
 - Numerical data: T (K) and k (W/m/K) in range 10K < T < 1000K (excel or text file)
 - For 10K ≤ T ≤ 50K increments of 10K (5 data points); for 50K < T ≤ 300K increments of 25K (10 data points); for 300K < T ≤ 1000K increments of 100K (7 data points).</p>
 - 1 file with T from 10K to 1000K list (22 rows): T, k_{nat,full}, k_{nat,RTA}, k_{pure,full}, k_{pure,RTA}
 - Masses used for pure and natural calculations
- Accumulated T=300K k_{acc} vs frequency and k_{acc} vs mean free path (mfp) for converged $k_{nat,RTA}$ value
 - Numerical data for each mode (q, j) sampled in the Brillouin zone integration: f (THz), mfp=|sqrt($v_x^2+v_y^2+v_z^2$)×lifetime| (nm), mode contribution to k (W/m/K) for $k_{nat,RTA}$

- 1 file (excel or text) with row for each mode (q, j): f, mfp, mode contribution to k
- RTA T=300K three-phonon scattering rates $(1/\tau_{3ph})$ and phonon-isotope scattering rates for natural abundance $(1/\tau_{iso})$
 - Numerical data: f (THz), $1/\tau_{3ph}$ (THz=1/ps), and $1/\tau_{iso}$ (THz)
 - 1 file (excel or text) with row for each mode (q, j): f, $1/\tau_{3ph}$, $1/\tau_{iso}$
- Converged third-order anharmonic IFCs
 - Standard format for code used
 - Will be supplied as supplemental material upon publication
- Methods / convergence criteria: thermal conductivity
 - Delta function representation (with details; e.g., adaptive smearing, cutoff)
 - Integration grid
 - Symmetries used
- Methods / convergence criteria: anharmonic IFCs
 - Cutoff radius, supercell size, integration mesh, thresholds, displacement parameter for supercell derivatives
 - Post-processing
- Evidence of converged *k* at T=300K
 - Varying integration meshes
 - Target accuracy <2% difference between successive grids
- Other notes / cpu hours
- All input files to run fully converged calculations