Estensioni normali e gruppo di Galois

di Gabriel Antonio Videtta

Nota. Per K, L ed F si intenderanno sempre dei campi. Se non espressamente detto, si sottintenderà anche che $K \subseteq L$, F, e che L ed F sono estensioni costruite su K. Per [L:K] si intenderà $\dim_K L$, ossia la dimensione di L come K-spazio vettoriale. Per scopi didattici, si considerano solamente campi perfetti, e dunque estensioni che sono sempre separabili, purché non esplicitamente detto diversamente.

Si introduce adesso il fondamentale concetto di *estensione normale*, prerequisito per introdurre a sua volta la teoria di Galois.

Definizione (estensione normale). Un'estensione algebrica L/K si dice **normale** se per ogni K-immersione $\varphi: L \to \overline{K}$ vale che $\varphi(L) = L$.

Questa definizione viene immediatamente caratterizzata attraverso i coniugati dei suoi elementi, come mostra la:

Proposizione. Sono equivalenti i seguenti fatti:

- (i) $L_{/K}$ è un'estensione normale,
- (ii) Per ogni $\alpha \in L_K$, ogni coniugato di α appartiene a L,
- (iii) L_{K} è il campo di spezzamento di una famiglia di polinomi di K[x].

Dimostrazione. Si mostra l'equivalenza delle proprietà:

- $(i) \Longrightarrow (ii)$ Sia $\varphi: L \to \overline{K}$ una K-immersione di L. Allora, poiché L è normale su K, $\varphi(L) = L$. Sia $\alpha \in L \setminus K$. Dal momento che $K \subseteq K(\alpha) \subseteq L$, $\varphi|_{K(\alpha)}$ è in particolare una K-immersione di $K(\alpha)$, e quindi deve associare ad α un suo coniugato. Dal momento però che $\varphi(\alpha) \in L$, questo significa che ogni coniugato di α appartiene ad L.
- (ii) \Longrightarrow (iii) Sia \mathcal{F} la famiglia dei polinomi minimi degli elementi di L/K. Si dimostra che L è il campo di spezzamento di \mathcal{F} su K. Chiaramente $\mathcal{F} \subseteq L$, dal momento che L contiene una radice per ipotesi di ogni polinomio minimo, e per (ii) contiene tutti i suoi coniugati (e dunque tutte le radici di ogni polinomio della famiglia \mathcal{F}). Inoltre vale anche che $L \subseteq \mathcal{F}$, dal momento che ogni elemento di L è radice di un polinomio di \mathcal{F} , per costruzione. Pertanto $L = \mathcal{F}$.

(iii) \Longrightarrow (i) Sia $\varphi: L \to \overline{K}$ una K-immersione di L. Sia $\alpha \in L \setminus K$.Dal momento per che L è campo di spezzamento di una famiglia \mathcal{F} di polinomi, L è generato dalle radici di \mathcal{F} . Per ogni α generatore di L, allora, φ deve mappare α ad un suo coniugato, ancora appartenente ad L dacché \mathcal{F} è campo di spezzamento. Pertanto $\varphi(\alpha) \in L$. Allora, dal momento che L è generato dalle radici di \mathcal{F} , ogni suo elemento viene ancora mappato ad un elemento di L, e quindi L/K è un'estensione normale.

Osservazione. Per esempio, $\mathbb{Q}(\sqrt[3]{2})_{\mathbb{Q}}$ non è normale, dal momento che $\sqrt[3]{2}\zeta_3$, un coniugato di $\sqrt[3]{2}$, non appartiene a $\mathbb{Q}(\sqrt[3]{2})$. Al contrario, $\mathbb{Q}(\zeta_3)_{\mathbb{Q}}$ è normale, dal momento che l'unico coniugato di ζ_3 è ζ_3^2 .

Dimostriamo inoltre che le estensioni di grado 2 sono sempre normali, come mostra la:

Proposizione. Sia L/K un'estensione di grado 2. Allora L è normale su K, se char $K \neq 2$.

Dimostrazione. Chiaramente L è un'estensione algebrica di K, essendo finita. Sia¹ allora $\alpha \in L \setminus K$. Dal momento che $\alpha \notin K$, $[K(\alpha):K]=2$, e quindi $L=K(\alpha)$. Inoltre $\deg_K \alpha = 2$, pertanto, poiché char $K \neq 2$, esiste un polinomio irriducibile $p(x) = x^2 + bx + c$ con b, $c \in K$ di cui α è radice. In particolare, α , $\overline{\alpha} = \frac{-b \pm \sqrt{\Delta}}{2}$, dove $\overline{\alpha}$ il coniugato di α . Allora α , $\overline{\alpha} \in K(\sqrt{\Delta})$. Dal momento allora che $L=K(\alpha)=K(\sqrt{\Delta})$, L è campo di spezzamento di $p \in K[x]$, e dunque, per la proposizione precedente, è normale su K.

Infine, si esplora la normalità su un diagramma di estensioni.

Proposizione (normalità nel composto e nell'intersezione). Siano L/K e M/K estensioni normali. Allora LM/K e $L \cap M/K$ sono a loro volta normali.

 $^{^{1}}L$ è di grado 2 su K, e quindi K deve essere un suo sottinsieme proprio.

Dimostrazione. Chiaramente LM e $L\cap M$ sono estensioni algebriche di K, in quanto sia L che M lo sono. Sia $\varphi:LM\to \overline{K}$ una K-immersione di LM. Allora $\varphi(LM)=\varphi(L(M))=L(\varphi(M))=L(M)=LM$, e quindi LM è normale su K. Analogamente, se $\varphi:L\cap M\to \overline{K}$ è una K-immersione di $L\cap M$, $\varphi(L\cap M)=\varphi(L)\cap \varphi(M)=L\cap M$, e quindi $L\cap M$ è normale su K.

Proposizione. Sia $K \subseteq F \subseteq L$ una torre di campi. Allora L/K normale $\implies L/F$ normale.

Dimostrazione. Poiché L è normale su K, L è un campo di spezzamento di una famiglia \mathcal{F} di polinomi di K[x]. A maggior ragione, allora, L è campo di spezzamento di \mathcal{F} come polinomi di F[x], e quindi è normale anche su F.

Si può adesso introdurre la teoria di Galois introducendo prima l'insieme $\operatorname{Aut}_K L$ e poi il gruppo $\operatorname{Gal}(^L\!\!/_K)$.

Definizione. Si definisce l'insieme $\operatorname{Aut}_K L$ come l'insieme delle K-immersioni di L, ossia delle immersioni $\varphi: L \to \overline{K}$ tali per cui $\varphi|_K = \operatorname{Id}_K$.

Se L è normale su K, le immersioni di $\operatorname{Aut}_K L$ possono essere ristrette al codominio su L (infatti $\varphi(L) = L$ per definizione) e sono tali per cui mandano gli elementi di L nei loro coniugati su K. Inoltre, se L è un'estensione finita di K, la separabilità di L garantisce che² $|\operatorname{Aut}_K L| = [L:K]$. Pertanto, riducendoci a considerare le estensioni normali e separabili di K, ogni immersione, ristretta opportunamente sul codominio, ammette un inverso, e quindi si può considerare $\operatorname{Aut}_K L$ come gruppo sulla composizione, denotato come $\operatorname{Gal}(\stackrel{L}{\searrow}_K)$. Tali estensioni sono speciali, e vengono pertanto dette $\operatorname{di} \operatorname{Galois}$.

Definizione (estensioni di Galois). Si dice che L/K è un'estensione di Galois se L è sia normale che separabile su K.

Definizione (gruppo di Galois di L/K). Si definisce il gruppo di Galois di L/K, denotato come Gal(L/K), il gruppo rispetto alla composizione delle immersioni di $Aut_K L$ ristrette sul codominio a L.

La maggior parte dei teoremi della teoria di Galois si fondano particolarmente sul fatto che il gruppo di Galois di un campo di spezzamento di un irriducibile f agisce sulle radici di f, come mostra la:

Proposizione. Sia $f(x) \in K[x]$ un irriducibile. Allora, se L è il suo campo di spezzamento, Gal(L/K) agisce fedelmente e transitivamente sulle radici di L. Pertanto $Gal(L/K) \hookrightarrow S_n$, dove $n = [L : K] = \deg f(x)$, e quindi $n \mid [L : K] \mid n!$.

²In generale, se L è un'estensione finita e normale di K, $|\operatorname{Aut}_K L| = [L:K]$ se e solo se L separabile su K

Dimostrazione. Si consideri l'azione $\Xi : \operatorname{Gal}(L/K) \to S(\{\alpha_1, \dots, \alpha_n\})$ tale per cui $\varphi \stackrel{\Xi}{\mapsto} [\alpha_i \mapsto \varphi(\alpha_i)]$, dove³ le α_i sono le radici distinte di f(x). Allora chiaramente $n \mid [L : K]$, dal momento che $[K(\alpha_1) : K] = n$ e $K(\alpha_1) \subseteq L$.

Inoltre Ξ è un'azione fedele dacché Ker Ξ è banale. Infatti l'unica K-immersione che fissa ogni radice è necessariamente l'identità. Allora Ξ è un'immersione di $\operatorname{Gal}(^L/_K)$ in $S(\{\alpha_1,\ldots,\alpha_n\})\cong S_n$, e quindi $[L:K]=\left|\operatorname{Gal}(^L/_K)\right|\mid n!$. Infine, esiste sempre una K-immersione di L che mappa un qualsiasi α_i ad un altro α_j , purché $i\neq j$. Pertanto $\operatorname{Gal}(^L/_K)$ agisce transitivamente sulle radici di f(x).

³Si ricorda l'ipotesi di K campo perfetto; pertanto f(x) è separabile.