## Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks

Nicola Di Mauro

nicola.dimauro@uniba.it

Antonio Vergari

antonio.vergari@uniba.it

Teresa M. A. Basile

teresamaria.basile@uniba.it

Floriana Esposito

floriana.esposito@uniba.it











University of Bari - Department of Computer Science - Department of Physics

LACAM Machine Learning Lab

National Institute for Nuclear Physics

### 1. Density estimation

**Density estimation** is the unsupervised task of learning an estimator for the joint probability distribution  $p(\mathbf{X})$  from a set of i.i.d. samples  $\mathcal{D} = \{\mathbf{x}^i\}_{i=1}^m$  over RVs  $\mathbf{X} = \{X_1, \dots, X_n\}$ 

Given such an estimator, one uses it to answers probabilistic queries about configurations on X, i.e. to do *inference*.

The main challenge in density estimation is balancing:

- the *representation expressiveness* of a model
- ⊕ the *cost of learning* it
- and the cost of performing inference on it.

# 2. Tractable Probabilistic Models (TPMs)

Classical Probabilistic Graphical Models like *Bayesian Networks* (BNs) and *Markov Networks* (MNs) are highly expressive but exact inference is generally *NP-hard* [6].

Tractable Probabilistic Models (TPMs) on the other hand, are density estimators for which some kind of exact inference is tractable, i.e. polynomial in the number of RVs or their domains.

→ learning may still not scale to multidimensional data

**2.1 Product of Bernoullis (PoBs)** PoBs are the least expressive TPMs, assuming all RVs to be independent:



However, learning a PoBs is fast:  $\rightarrow$  linear complexity O(nm)

#### 2.2 Chow-Liu Trees (CLTrees)

A directed tree-structured model [3] over  $\mathbf{X}$  is a BN in which each node  $X_i \in \mathbf{X}$  has at most one parent,  $\mathrm{Pa}_{X_i}$ .



Learning a CLtree takes quadratic time  $O(n^2(m + \log n))$ 

### 3. Cutset Networks (CNets)

A Cutset Network (CNet)  $\mathcal C$  is TPM represented via a weighted probabilistic model tree over  $\mathbf X$  and recursively defined as:

- 1. a TPM  $\mathcal{M}$ , with  $\mathsf{scope}(\mathcal{M}) = \mathbf{X}$
- 2. a weighted disjunction (OR node) of two CNets  $\mathcal{C}_0$  and  $\mathcal{C}_1$  conditioned on RV  $X_i \in \mathbf{X}$ , with weights  $w_i^0$  and  $w_i^1$  s.t.  $w_i^0 + w_i^1 = 1$ , where  $\mathsf{scope}(\mathcal{C}_0) = \mathsf{scope}(\mathcal{C}_1) = \mathbf{X}_{\backslash i}$



A CNet over binary RVs  $\mathbf{X} = \{X_1, \dots, X_6\}$ . Or nodes are rounded, while leaf squared nodes represent CLtrees.

Therefore, the joint pdf modeled by a CNet  ${\mathcal C}$  is:

 $p(\mathbf{x}) = p_l(\mathbf{x}_{|\mathsf{scope}(\mathcal{C}) \setminus \mathsf{scope}(\mathcal{M}_l)}) p_{\mathcal{M}_l}(\mathbf{x}_{|\mathsf{scope}(\mathcal{M}_l)}) \tag{1}$ 

## 4. Learning CNets

All top-down greedy CNet learners can be unified in single template, LearnCNet:



different select implementations have different complexities:

entCNet [5] choosing  $X_i$  to lower approximate average joint entropy  $\rightarrow O(mn^2)$ 

**dCSN** [2] choosing  $X_i$  in a principled way improving likelihood  $\rightarrow O(n^3(m + \log n))$ 

#### References

- [1] Nicola Di Mauro, Antonio Vergari, and Teresa M.A. Basile. "Learning Bayesian Random Cutset Forests". In: *Proceedings of ISMIS*. Springer, 2015, pp. 122–132.
- [2] Nicola Di Mauro, Antonio Vergari, and Floriana Esposito. "Learning Accurate Cutset Networks by Exploiting Decomposability". In: *Proceedings of AIXIA*. Springer, 2015, pp. 221–232.
- [3] Marina Meilă and Michael I. Jordan. "Learning with mixtures of trees". In: *Journal of Machine Learning Research* 1 (2000), pp. 1–48.
- Tahrima Rahman and Vibhav Gogate. "Learning Ensembles of Cutset Networks". In: *Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence*. AAAI'16. Phoenix, Arizona: AAAI Press, 2016, pp. 3301–3307. URL: http://dl.acm.org/citation.cfm?id=3016100.3016365.

## 5. XCNets

**XCNets** (Extremely Randomized CNets) are CNets built by LearnCNet when select chooses one RV completely at random. select time complexity  $\rightarrow$  O(1)

#### **5.1 Mixture of Experts Interpretation**

A single CNet can be seen as a peculiar *mixture of experts*: the OR tree plays as a *deterministic gating function* and leaf distributions as *local experts*.

A path  $p=p_{(1)}p_{(2)}\cdots p_{(k)}$  connects the root to a single leaf  $\mathcal{M}_l$  after observing  $x_1x_2\cdots x_k$ , Equation 1.

 $\mathsf{p}_l(\mathbf{x}_{|\mathsf{sc}(\mathcal{C})\setminus\mathsf{sc}(\mathcal{M}_l)})$  is decomposed by the chain rule across path p .  $\to$  shuffling  $X_{p(0)},\ldots,X_{p_k}$  does not influence inference!

Therefore, a single XCNet is only only slightly less accurate than a CNet and as good at generating samples.



Samples obtained from a CNet (a), resp. XCNet (c), learned on a binarized version of MNIST, and their nearest neighbor in training set (b), resp. (d).

#### **5.2 Regularizing learning**

Single CNets learned with LearnCNet are prone to overfitting, randomization in XCNets alleviate this issue



Learning curves of CNets and XCNets (negative log-likelihoods) on KddCup2k and EachMovie. The latter overfits much later that the former.

**5.3 Ensembles** of XCNets do not require to additionally diversify components and learning up to 500 components is still faster than learning 40 of other variants:

 ${f CNet}_{bag}$  bagging entCSN models as in [4]  ${f CNet}_{boost}$  boosting entCSN models as in [4]  ${f dCSN}^k$  bagging dCSN models as in [2, 1]

- [5] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. "Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees". In: *Machine Learning and Knowledge Discovery in Databases*. Vol. 8725. LNCS. Springer, 2014, pp. 630–645.
- [6] Dan Roth. "On the hardness of approximate reasoning". In: Artificial Intelligence 82.1–2 (1996),

## 6. Experiments

**6.1 Single model comparisons** single XCNets are comparable (same order of magnitude) to entCNet and dCSN.

| dataset    | entCNet | dCSN    | XCNet                     | $dCSN_{PoB}$ | $XCNet_{PoB}$      |                                |
|------------|---------|---------|---------------------------|--------------|--------------------|--------------------------------|
| NLTCS      | -6.06   | -6.03   | 6.06±0.01                 | -6.09        | -6.17±0.05         | Table 1.                       |
| MSNBC      | -6.05   | -6.05   | -6.09±0.02                | -6.05        | -6.18±0.03         | Average test                   |
| KDDCup2k   | -       | -2.18   | -2.19±0.01                | -2.19        | -2.21±0.01         | log-likelihoods for            |
| Plants     | -13.25  | -13.25  | -13.43±0.07               | -14.89       | -15.66±0.22        | entCNet, dCSN, XCNet           |
| Audio      | -42.05  | -42.10  | -42.66±0.14               | -42.95       | $-44.02\pm0.22$    | , ,                            |
| Jester     | -55.56  | -55.40  | -56.10±0.19               | -56.23       | $-57.39\pm0.15$    | and their PoB variants         |
| Netflix    | -58.71  | -58.71  | -59.21±0.06               | -60.20       | $-61.40\pm0.25$    | $dCSN_{PoB}$ and $XCNet_{PoB}$ |
| Accidents  | -30.69  | -29.84  | -31.58±0.24               | -36.24       | $-40.22 \pm 0.46$  | For randomized models,         |
| Retail     | -10.94  | -11.24  | -11.44±0.09               | -11.06       | $-11.19 \pm 0.04$  | <i>,</i>                       |
| Pumsb-star | -24.42  | -23.91  | $-25.55 \pm 0.34$         | -32.11       | $-39.91\pm2.48$    | mean and standard              |
| DNA        | -87.59  | -87.31  | -87.67±0.00               | -98.83       | $-99.84 \pm 0.05$  | deviation over 10 runs are     |
| Kosarek    | -11.04  | -11.20  | -11.70±0.13               | -11.38       | $-11.80\pm0.07$    | reported).                     |
| MSWeb      | -10.07  | -10.10  | -10.47±0.10               | -10.19       | $-10.43 \pm 0.07$  | ,                              |
| Book       | -37.35  | -38.93  | -42.36±0.28               | -38.21       | $-39.47 \pm 0.33$  |                                |
| EachMovie  | -58.37  | -58.06  | $-60.71 \pm 0.89$         | -59.70       | $-62.58 \pm 0.38$  |                                |
| WebKB      | -162.17 | -161.92 | -167.45±1.59              | -168.7       | $-174.78 \pm 0.81$ |                                |
| Reuters-52 | -88.55  | -88.65  | -99.52±1.93               | -90.51       | $-100.25 \pm 0.57$ |                                |
| 20NewsG    | -       | -161.72 | -172.6±1.40               | -162.25      | $-167.39 \pm 0.74$ |                                |
| BBC        | -263.08 | -261.79 | <b>-261.79</b> $\pm$ 0.00 | -264.56      | -274.83±1.15       |                                |
| Ad         | -16.92  | -16.34  | -18.70±1.44               | -36.44       | -36.94±1.41        |                                |

**6.2 Ensemble model comparisons** ensembles of XCNets set new *state-of-the-art* log-likelihoods 11/20 standard

benchmark datasets for density estimation...

|            | Chetipas | (Nethood | S ACSINGO | +Chethod | ther there | +Chetan | (RM)    | 4       |         |
|------------|----------|----------|-----------|----------|------------|---------|---------|---------|---------|
| dataset    | Merr     | Merr     | 8C2,      | 400      | ton        | ton     | DSPN    | ACMIN   | M       |
| NLTCS      | -6.00    | -6.01    | -6.00     | -6.01    | -6.00      | -5.99   | -6.02   | -6.00   | -6.02   |
| MSNBC      | -6.08    | -6.15    | -6.05     | -6.11    | -6.06      | -6.06   | -6.04   | -6.04   | -6.04   |
| KDDCup2k   | -2.14    | -2.15    | -2.15     | -2.13    | -2.13      | -2.13   | -2.13   | -2.17   | -2.16   |
| Plants     | -12.32   | -12.67   | -12.59    | -13.09   | -11.99     | -11.84  | -12.54  | -12.80  | -12.65  |
| Audio      | -40.09   | -39.84   | -40.19    | -40.30   | -39.77     | -39.39  | -39.79  | -40.32  | -40.50  |
| Jester     | -52.88   | -52.82   | -52.99    | -53.64   | -52.65     | -52.21  | -52.86  | -53.31  | -53.85  |
| Netflix    | -56.55   | -56.44   | -56.69    | -57.64   | -56.38     | -55.93  | -56.36  | -57.22  | -57.03  |
| Accidents  | -29.88   | -29.45   | -29.27    | -36.92   | -29.31     | -29.10  | -26.98  | -27.11  | -26.32  |
| Retail     | -10.84   | -10.81   | -11.17    | -10.88   | -10.93     | -10.91  | -10.85  | -10.88  | -10.87  |
| Pumsb-star | -23.98   | -23.46   | -23.78    | -32.91   | -23.44     | -23.31  | -22.41  | -23.55  | -21.72  |
| DNA        | -81.07   | -85.67   | -85.95    | -98.28   | -84.96     | -84.17  | -81.21  | -80.03  | -80.65  |
| Kosarek    | -10.74   | -10.60   | -10.97    | -10.91   | -10.72     | -10.66  | -10.60  | -10.84  | -10.83  |
| MSWeb      | -9.77    | -9.74    | -9.93     | -9.83    | -9.66      | -9.62   | -9.73   | -9.77   | -9.70   |
| Book       | -35.55   | -34.46   | -37.38    | -34.77   | -36.35     | -35.45  | -34.14  | -35.56  | -36.41  |
| EachMovie  | -53.00   | -51.53   | -54.14    | -51.66   | -51.72     | -50.34  | -51.51  | -55.80  | -54.37  |
| WebKB      | -153.12  | -152.53  | -155.47   | -155.83  | -153.01    | -149.20 | -151.84 | -159.13 | -157.43 |
| Reuters-52 | -83.71   | -83.69   | -86.19    | -85.16   | -84.05     | -81.87  | -83.35  | -90.23  | -87.55  |
| 20NewsG    | -156.09  | -153.12  | -156.46   | -152.21  | -153.89    | -151.02 | -151.47 | -161.13 | -158.95 |
| BBC        | -237.42  | -247.01  | -248.84   | -251.31  | -238.47    | -229.21 | -248.93 | -257.10 | -257.86 |
| Ad         | -15.28   | -14.36   | -15.55    | -26.25   | -14.20     | -14.00  | -19.05  | -16.53  | -18.35  |

Table 2. CNet ensemble log-likelihoods vs state-of-the-art density estimators as Sum-Product Networks (ID-SPN), Markov Networks (ACMN) and Bayesian Networks (WM).

#### 6.3 Learning time comparison

... in a fraction of the time other competitor need

| dataset    | dCSN2 | XCNet c | SN <sub>PoB</sub> ) | XCNet <sub>PoB</sub> ( | dCSN <sup>40</sup> | XCNet <sup>40</sup> <sub>PoB</sub> | XCNet <sup>40</sup> | XCNet <sup>500</sup> | ID-SPN |
|------------|-------|---------|---------------------|------------------------|--------------------|------------------------------------|---------------------|----------------------|--------|
| NLTCS      | 0     | 0.2     | 0.1                 | 0.01                   | 10                 | 0.2                                | 0.01                | 3                    | 310    |
| MSNBC      | 12    | 0.3     | 0.7                 | 0.01                   | 499                | 13.1                               | 13                  | 155                  | 46266  |
| KDDCup2k   | 112   | 0.5     | 12.0                | 0.32                   | 4126               | 21.2                               | 16                  | 247                  | 32067  |
| Plants     | 15    | 0.3     | 45.5                | 0.22                   | 325                | 1.0                                | 6                   | 77                   | 18833  |
| Audio      | 58    | 0.3     | 74.8                | 0.48                   | 980                | 0.8                                | 6                   | 136                  | 21009  |
| Jester     | 50    | 0.2     | 95.6                | 0.26                   | 989                | 0.3                                | 4                   | 83                   | 10412  |
| Netflix    | 75    | 0.2     | 2.8                 | 0.02                   | 1546               | 0.4                                | 9                   | 118                  | 30294  |
| Accidents  | 54    | 0.2     | 153.7               | 0.04                   | 996                | 0.7                                | 11                  | 138                  | 15472  |
| Retail     | 263   | 0.8     | 5.8                 | 0.01                   | 3780               | 3.2                                | 13                  | 164                  | 4041   |
| Pumsb-star | 118   | 0.6     | 26.2                | 0.02                   | 2260               | 0.8                                | 23                  | 290                  | 20952  |
| DNA        | 30    | 0.1     | 4.4                 | 0.01                   | 224                | 0.06                               | 3                   | 40                   | 3040   |
| Kosarek    | 588   | 2.4     | 41.2                | 0.01                   | 10033              | 10.8                               | 43                  | 524                  | 17799  |
| MSWeb      | 1215  | 7.2     | 7.4                 | 0.01                   | 17123              | 13.2                               | 129                 | 1592                 | 19682  |
| Book       | 9235  | 9.7     | 113.0               | 0.04                   | 155634             | 1.9                                | 316                 | 3476                 | 61248  |
| EachMovie  | 1297  | 7.1     | 4.7                 | 0.01                   | 16962              | 1.1                                | 127                 | 2601                 | 118782 |
| WebKB      | 4997  | 11.0    | 238.0               | 0.03                   | 18875              | 0.9                                | 190                 | 2237                 | 45451  |
| Reuters-52 | 9947  | 39.3    | 24.3                | 0.05                   | 65498              | 2.7                                | 414                 | 8423                 | 70863  |
| 20NewsG    | 16866 | 51.3    | 40.7                | 0.01                   | 153908             | 4.4                                | 506                 | 9883                 | 163256 |
| BBC        | 21381 | 8.4     | 7.3                 | 0.02                   | 69572              | 0.4                                | 256                 | 4251                 | 61471  |
| Ad         | 5212  | 116.5   | 134.0               | 0.08                   | 75694              | 4.2                                | 2403                | 30538                | 87522  |

Table 3. Times (in seconds) taken to learn the best models on each dataset