

Slot: G1+TG1

School of Computer Science Engineering and Information Systems

Fall Semester 2023-2024

Continuous Assessment Test - I

Programme Name & Branch B. Tech - IT

Course Name & code: Principles of Communication Systems & BITE203L Class Number (s): VL2023240102604/ VL2023240102606/ VL2023240102610

Faculty Name (s): Jerart Julus L, Senthilkumar T, Karthikeyan D

Exam Duration: 90 Min. Maximum Marks: 50

General instruction(s): Answer all the questions

Q.No.	Question	Max
X.	One input to an AM modulator is an 800 khz carrier with a peak amplitude of	Mark
	30v. The second input is a 14kHz modulating signal whose amplitude is	
	sufficient to produce a 16v change in the amplitude of the envelope. Determine	
	the following:	
	(y) Upper and Lower frequencies	10
	Modulation coefficient and percent modulation	
	Maximum and minimum amplitudes of envelope	
7	d) Draw the output envelope.	
	e) Draw the output frequency spectrum	
2.	Derive an expression for a signal, which has a modulation index greater than	
	one, Amplitude remains constant, and the frequency of the carrier signal is	10
	varied with respect to the modulating signal.	
7.	With the help of mathematical expressions, show that a sinusoidally	
	modulated, suppressed carrier type AM signal passed through a squaring	
	circuit has a capability of recovering the modulating signal after passing	06
	the output of squaring circuit through low pass filter circuits.	
	If a modulated wave with an average voltage of 20v changes in amplitude	04
	5v, determine the minimum and maximum envelope amplitudes, the	
	modulation co-efficient and percent modulation.	
А.	An angle modulated wave for frequency modulation is represented by	
	$20\cos(7.28 \times 10^6 t + 10\sin 7.283 \times 10^6 t)$. Determine	0.5
	i. The carrier frequency in radians/sec.	
	ii. The modulating frequency in radians/sec.	