### **L6** Cache Exercises



# **Key Equations**

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

Tag size does not affect cache capacity; depends on memory address length

SI size determines # sets = 2<sup>SI size</sup> Offset size determines

Bytes/block = 2<sup>Offset size</sup>

Tag

Set Index

Offset

4/20/2018



# 2D Visualization of Cache Organization





# Decimal, Binary and Hex

| Decimal | Binary | Hex |
|---------|--------|-----|
| 0       | 0000   | 0x0 |
| 1       | 0001   | 0x1 |
| 2       | 0010   | 0x2 |
| 3       | 0011   | 0x3 |
| 4       | 0100   | 0x4 |
| 5       | 0101   | 0x5 |
| 6       | 0110   | 0x6 |
| 7       | 0111   | 0x7 |
| 8       | 1000   | 0x8 |
| 9       | 1001   | 0x9 |
| 10      | 1010   | 0xA |
| 11      | 1011   | 0xB |
| 12      | 1100   | 0xC |
| 13      | 1101   | 0xD |
| 14      | 1110   | 0xE |
| 15      | 1111   | 0xF |

Prefix 0x denotes hex

### Q: 12-bit DM Cache

- Consider 12-bit memory address; DM cache with block size 4B; contents shown below ("—" means invalid data). All values are in hex. In each block, B0 refers to Byte address 00, B1 refers to Byte address 01, and so on.
  - 1. What are the sizes of Tag, Set Index, Offset?
  - 2. Cache hit or miss for referencing the following memory addresses? If cache hit, give the actual value returned: 0x7AC, 0x024, 0x99F
     <u>Direct-Mapped</u>:

| Set | Valid | Tag | В0 | B1 | B2 | В3 |
|-----|-------|-----|----|----|----|----|
| 0   | 1     | 15  | 63 | В4 | C1 | A4 |
| 1   | 0     |     |    |    | _  | _  |
| 2   | 0     |     |    |    | _  | _  |
| 3   | 1     | D   | DE | AF | BA | DE |
| 4   | 0     |     |    |    | _  | _  |
| 5   | 0     |     |    |    |    | _  |
| 6   | 1     | 13  | 31 | 14 | 15 | 93 |
| 7   | 0     | _   | _  | _  | _  | _  |

| Set | Valid | Tag | В0 | B1 | B2 | В3 |
|-----|-------|-----|----|----|----|----|
| 8   | 0     | _   | _  | _  | _  | _  |
| 9   | 1     | 0   | 01 | 12 | 23 | 34 |
| A   | 1     | 1   | 98 | 89 | СВ | ВС |
| В   | 0     | 1E  | 4B | 33 | 10 | 54 |
| С   | 0     | _   | _  | _  |    |    |
| D   | 1     | 11  | C0 | 04 | 39 | AA |
| Е   | 0     | _   | _  | _  |    | _  |
| F   | 1     | F   | FF | 6F | 30 | 0  |

### A: 12-bit DM Cache

|     | •     |     |    |    |    |    |
|-----|-------|-----|----|----|----|----|
| Set | Valid | Tag | В0 | B1 | B2 | В3 |
| 0   | 1     | 15  | 63 | В4 | C1 | A4 |
| 1   | 0     |     | 1  | 1  |    |    |
| 2   | 0     |     | 1  |    | _  | _  |
| 3   | 1     | D   | DE | AF | BA | DE |
| 4   | 0     | l   | ı  |    | -  | -  |
| _   |       |     |    |    |    |    |

| t | Valid | Tag | В0 | B1 | B2 | В3 |
|---|-------|-----|----|----|----|----|
| 3 | 0     | _   | -  | _  | _  | _  |
| 9 | 1     | 0   | 01 | 12 | 23 | 34 |
| 1 | 1     | 1   | 98 | 89 | СВ | ВС |
| 3 | 0     | 1E  | 4B | 33 | 10 | 54 |
| ] | 0     | l   | _  |    | -  | -  |
| ) | 1     | 11  | C0 | 04 | 39 | AA |
| 3 | 0     | 1   |    |    |    |    |
| 7 | 1     | F   | FF | 6F | 30 | 0  |

- 1. What are the sizes of Tag, Set Index, Offset?
- # Bytes/block=4, hence Offset size=2
- # Sets=(# Blocks for DM cache)=16, hence SI size=4
- Tag size=12-4-2=6

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### A: 12-bit DM Cache

|     | or race | <del>роск</del> . |    |    |    |    |
|-----|---------|-------------------|----|----|----|----|
| Set | Valid   | Tag               | В0 | B1 | B2 | В3 |
| 0   | 1       | 15                | 63 | В4 | C1 | A4 |
| 1   | 0       |                   | 1  | 1  |    | _  |
| 2   | 0       |                   |    | _  | -  | _  |
| 3   | 1       | D                 | DE | AF | ВА | DE |
| 4   | 0       | l                 | ı  |    | 1  | _  |
| 5   | 0       |                   | -  | _  |    | _  |
| 6   | 1       | 13                | 31 | 14 | 15 | 93 |
| _   | 0       |                   |    |    |    |    |

Direct-Mapped:

| et | Valid | Tag | В0 | B1 | B2 | В3 |
|----|-------|-----|----|----|----|----|
| 8  | 0     | -   |    |    | -  | _  |
| 9  | 1     | 0   | 01 | 12 | 23 | 34 |
| Α  | 1     | 1   | 98 | 89 | СВ | ВС |
| В  | 0     | 1E  | 4B | 33 | 10 | 54 |
| C  | 0     | _   | _  | _  | _  | _  |
| D  | 1     | 11  | C0 | 04 | 39 | AA |
| E  | 0     | -   |    | _  | -  | _  |
| F  | 1     | F   | FF | 6F | 30 | 0  |

- 2. Cache hit or miss for referencing the following memory addresses? If cache hit, give the actual value returned: 0x7AC, 0x024, 0x99F
- 0x7AC = 0111 1010 1100 (bin). Set Index=1011(bin)=0xB. The set with index 0xB has a single block with Valid=0, hence it is a cache miss (no need to check for tag match. Even though the table shows some data in this block, all data is invalid with Valid=0).
- 0x024 = 0000 0010 0100 (bin). Set Index=1001(bin)=0x9. The set with index 0x9 has a single block with Valid=1, and the Tag 000000 (bin) = 0x0 matches, hence it is a cache hit. The Byte offset is 00, hence the actual data returned is 0x01 contained in B0.
- 0x99F = 1001 1001 1111 (bin). Set Index=0111(bin)=0x7. The set with index 0x7 has a single block with Valid=0, hence it is a cache miss (no need to check for tag match).

# Q: 12-bit 2-way SA Cache

- Consider 12-bit memory address; 2-way SA cache with block size 4B; contents shown below ("—" means invalid data). All values are in hex.
  - 1. What are the sizes of Tag, Set Index, Offset?
  - 2. If cache hit, give the actual value returned: 0x7AC, 0x024, 0x99F
     2-way Set Associative:

| Set | Valid | Tag | B0  | B1 | B2 | В3  |
|-----|-------|-----|-----|----|----|-----|
| 0   | 0     | _   |     |    |    | _   |
| 1   | 0     | _   |     | 1  | -  | _   |
| 2   | 1     | 3   | 4 F | D4 | A1 | 3B  |
| 3   | 0     | _   | 1   | 1  | 1  | _   |
| 4   | 0     | 6   | CA  | FE | FO | 0 D |
| 5   | 1     | 21  | DE  | AD | BE | EF  |
| 6   | 0     | _   |     |    |    | _   |
| 7   | 1     | 11  | 00  | 12 | 51 | 55  |

| ,   |       |     |    |    |    |    |
|-----|-------|-----|----|----|----|----|
| Set | Valid | Tag | B0 | B1 | B2 | В3 |
| 0   | 0     | 1   | 1  | 1  | 1  | 1  |
| 1   | 1     | 2F  | 01 | 20 | 40 | 03 |
| 2   | 1     | ΟE  | 99 | 09 | 87 | 56 |
| 3   | 0     | 1   |    | 1  | 1  | 1  |
| 4   | 0     | 1   |    | 1  | 1  | -  |
| 5   | 0     |     |    | -  |    | _  |
| 6   | 1     | 37  | 22 | В6 | DB | AA |
| 7   | 0     |     |    | _  | _  |    |

# A: 12-bit 2-way SA Cache

| Set | Valid | Tag | В0  | B1 | B2 | В3  |
|-----|-------|-----|-----|----|----|-----|
| 0   | 0     | _   | _   | _  | _  | _   |
| 1   | 0     | I   | _   | -  | _  | _   |
| 2   | 1     | 3   | 4 F | D4 | A1 | 3B  |
| 3   | 0     | ı   | ı   | ı  | -  | _   |
| 4   | 0     | 6   | CA  | FE | F0 | 0 D |
| 5   | 1     | 21  | DE  | AD | BE | EF  |
| 6   | 0     | _   | _   | _  | _  | _   |
| 7   | 1     | 11  | 00  | 12 | 51 | 55  |

2-wav Set Associative:

| et  | Valid | Tag | B0 | B1 | B2 | В3 |
|-----|-------|-----|----|----|----|----|
| 0   | 0     | _   | -  | 1  | -  | -  |
| 1   | 1     | 2F  | 01 | 20 | 40 | 03 |
| 2 3 | 1     | ΟE  | 99 | 09 | 87 | 56 |
| 3   | 0     | _   | 1  | -  | -  | -  |
| 4   | 0     | _   | _  | _  | -  | _  |
| 5   | 0     |     |    | ı  | _  | _  |
| 6   | 1     | 37  | 22 | В6 | DB | AA |
| 7   | 0     | _   | _  | _  | _  | _  |

- 1. What are the sizes of Tag, Set Index, Offset?
- # Bytes/block=4, hence Offset size=2
- # Sets=#blocks/#ways=16/2=8, hence SI size=3
- Tag size=12-3-2=7

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

# A: 12-bit 2-way SA Cache

| Set | Valid | Tag | B0  | B1 | B2 | В3  |
|-----|-------|-----|-----|----|----|-----|
| 0   | 0     | _   | _   | _  | _  | _   |
| 1   | 0     | 1   | _   | -  | -  | _   |
| 2   | 1     | 3   | 4 F | D4 | A1 | 3B  |
| 3   | 0     | I   |     | I  |    |     |
| 4   | 0     | 6   | CA  | FE | FΟ | 0 D |
| 5   | 1     | 21  | DE  | AD | BE | EF  |
| 6   | 0     | -   | _   | ı  | _  | _   |
| 7   | 1     | 11  | 00  | 12 | 51 | 55  |

2-way Set Associative:

| Set      | Valid | Tag | B0 | B1 | B2 | В3 |
|----------|-------|-----|----|----|----|----|
| 0        | 0     | ı   | 1  | 1  | 1  | _  |
| 1        | 1     | 2F  | 01 | 20 | 40 | 03 |
| 2        | 1     | ΟE  | 99 | 09 | 87 | 56 |
| 3        | 0     | _   | _  | _  | _  |    |
| 4        | 0     | _   | _  | _  | -  | -  |
| 5        | 0     | _   | _  | -  | _  | _  |
| 6        | 1     | 37  | 22 | В6 | DB | AA |
| 7        | 0     |     | _  | _  | -  | _  |
| <u> </u> |       |     |    |    |    |    |

- 2. Cache hit or miss for referencing the following memory addresses? If cache hit, give the actual value returned: 0x435, 0x388, 0x0D3
- 0x435 = 0100 0011 0101 (bin). Set Index=101(bin)=0x5. The set with index 0x5 has 2 blocks, but only one block with Valid=1. The Tag 0100001 (bin) = 0x21 matches the valid block Tag, hence it is a cache hit. The Byte offset is 01, hence the actual data returned is 0xAD contained in B1.
- $0x388 = 0011\ 1000\ 1000\ (bin)$ . Set Index=010(bin)=0x2. The set with index 0x2 has 2 blocks, both with Valid=1, but the Tag  $0011100\ (bin) = 0x1C\ does$  not match any valid block Tag (0x03, 0x0E), hence it is a cache miss.
- 0x0D3 = 0000 1101 0011 (bin). Set Index=100(bin)=0x4. The set with index 0x4 has 2 blocks, both with Valid=0, hence it is a cache miss (no need to check for tag match).

### Q: 12-bit FA Cache

- Consider 12-bit memory address; FA cache with block size 4B; contents shown below ("—" means invalid data). All values are in hex.
  - 1. What are the sizes of Tag, Set Index, Offset?
  - 2. If cache hit, give the actual value returned: 0x1DD, 0x719, 0x2AA
     Fully Associative:

| Set | Valid | Tag | B0 | B1  | B2 | В3 |
|-----|-------|-----|----|-----|----|----|
| 0   | 1     | 1F4 | 00 | 01  | 02 | 03 |
| 0   | 0     |     |    | _   |    | _  |
| 0   | 1     | 100 | F4 | 4 D | EE | 11 |
| 0   | 1     | 77  | 12 | 23  | 34 | 45 |
| 0   | 0     |     |    | _   | _  | _  |
| 0   | 1     | 101 | DA | 14  | EE | 22 |
| 0   | 0     |     |    | _   |    |    |
| 0   | 1     | 16  | 90 | 32  | AC | 24 |

| Set | Valid | Tag | В0 | B1 | B2 | В3 |
|-----|-------|-----|----|----|----|----|
| 0   | 0     | _   | _  |    |    | _  |
| 0   | 1     | AB  | 02 | 30 | 44 | 67 |
| 0   | 1     | 34  | FD | EC | BA | 23 |
| 0   | 0     |     |    |    |    | _  |
| 0   | 1     | 1C6 | 00 | 11 | 22 | 33 |
| 0   | 1     | 45  | 67 | 78 | 89 | 9A |
| 0   | 1     | 1   | 70 | 00 | 44 | A6 |
| 0   | 0     | _   | _  | _  | _  |    |

### A: 12-bit FA Cache

| Set | Valid | Tag | В0 | B1  | B2 | В3 |
|-----|-------|-----|----|-----|----|----|
| 0   | 1     | 1F4 | 00 | 01  | 02 | 03 |
| 0   | 0     |     | 1  | _   |    |    |
| 0   | 1     | 100 | F4 | 4 D | EE | 11 |
| 0   | 1     | 77  | 12 | 23  | 34 | 45 |
| 0   | 0     | _   | _  | _   | _  | _  |
| 0   | 1     | 101 | DA | 14  | EE | 22 |
| 0   | 0     |     |    |     |    |    |
| 0   | 1     | 16  | 90 | 32  | AC | 24 |

| et | Valid | Tag | В0 | B1 | B2 | В3 |
|----|-------|-----|----|----|----|----|
| 0  | 0     | ı   |    | 1  |    | 1  |
| 0  | 1     | AB  | 02 | 30 | 44 | 67 |
| 0  | 1     | 34  | FD | EC | ВА | 23 |
| 0  | 0     |     | -  |    |    | -  |
| 0  | 1     | 1C6 | 00 | 11 | 22 | 33 |
| 0  | 1     | 45  | 67 | 78 | 89 | 9A |
| 0  | 1     | 1   | 70 | 00 | 44 | A6 |
| 0  | 0     | _   | _  | _  | _  | _  |

- 1. What are the sizes of Tag, Set Index, Offset?
- # Bytes/block=4, hence Offset size=2
- # Sets=1 for FA cache, hence SI size=0
- Tag size=12-0-2=10

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### A: 12-bit FA Cache

| Set | Valid | Tag | В0 | B1  | B2 | В3 |
|-----|-------|-----|----|-----|----|----|
| 0   | 1     | 1F4 | 00 | 01  | 02 | 03 |
| 0   | 0     |     | 1  |     | 1  | 1  |
| 0   | 1     | 100 | F4 | 4 D | EE | 11 |
| 0   | 1     | 77  | 12 | 23  | 34 | 45 |
| 0   | 0     | -   | _  | _   | _  | _  |
| 0   | 1     | 101 | DA | 14  | EE | 22 |
| 0   | 0     | ı   | 1  | -   | 1  | -  |
| 0   | 1     | 16  | 90 | 32  | AC | 24 |

| t | Valid | Tag      | В0 | B1 | B2 | В3 |
|---|-------|----------|----|----|----|----|
| 0 | 0     |          |    | 1  |    | _  |
| 0 | 1     | AB       | 02 | 30 | 44 | 67 |
| 0 | 1     | 34       | FD | EC | ВА | 23 |
| 0 | 0     | _        | -  |    |    | _  |
| 0 | 1     | 1C6      | 00 | 11 | 22 | 33 |
| 0 | 1     | 45       | 67 | 78 | 89 | 9A |
| 0 | 1     | 1        | 70 | 00 | 44 | A6 |
| 0 | 0     | _        |    |    | _  | _  |
|   | 7     | <u> </u> |    |    |    |    |

- 2. Cache hit or miss for referencing the following memory addresses? If cache hit, give the actual value returned: 0x1DD, 0x719, 0x2AA
- 0x1DD = 00001 1101 1101 (bin). The Tag 00001110111 (bin) = 0x77, which matches a block with Valid=1, hence it is a cache hit. The Byte offset is 01, hence the actual data returned is 0x23 contained in B1
- $0x719 = 0111\ 0001\ 1001\ (bin)$ . The Tag  $0111000110\ (bin) = 0x1C6$ , which matches a block with Valid=1, hence it is a cache hit. The Byte offset is 01, hence the actual data returned is 0x11 contained in B1
- $0x2AA = 0010 \ 1010 \ 1010 \ (bin)$ . The Tag  $0010101010 \ (bin) = 0xAA$ , which does not match any block with Valid=1, hence it is a cache miss.

### Question: Tag



- Assume: DM cache; 6-bit memory address: 2-bit Tag, 2-bit index, 2-bit Offset. Compute cache capacity acity and memory size.
  - 2-bit Offset => Bytes/block = 4;
  - # sets =  $2^{SI \, Size} = 4$
  - # cache blocks = # ways \* # sets = 1\*4 = 4
  - cache capacity = # cache blocks \* Bytes/block = 4\*4 = 16B
- Memory size: 2^4 (2-bit tag +2-bit SI) = 16 blocks = 64 Bytes

```
# ways = # blocks/cache set = associativity
# cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block
```

### **Question: T-SI-O Distribution**

Consider 32-bit memory address, DM cache with size 64KB, 16
 Bytes/block. What are the bit-widths of Tag-SetIndex-Offset?

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### **Answer: T-SI-O Distribution**

- Consider 32-bit memory address, DM cache with size 64KB, 16
   Bytes/block. What are the bit-widths of Tag-Set Index-Offset?
- A: 16 Bytes/block → Offset size=4
- For DM cache, # Sets = # blocks = 64 KB/16 Bytes/block = 4K →
   SI size=12
- Tag size = 32-12-4=16

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### Question: T-SI-O Distribution

 Consider 32-bit memory address, 8-way SA cache with size 64KB, 16 Bytes/block. What are the bit-widths of Tag-Set Index-Offset?

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### **Answer: T-SI-O Distribution**

- Consider 32-bit memory address, 8-way SA cache with size 64KB, 16 Bytes/block. What are the bit-widths of Tag-Set Index-Offset?
- A: 16 Bytes/block → Offset size=4
- For 8-way SA cache, # Sets = # blocks/8 = (64 KB/16 Bytes/block)/8 = 0.5K → SI size=9
- Tag size = 32-9-4=19

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

# Q: Alternative Cache Organizations (4-block cache)



Where are possible locations in cache that block #12 in memory can be placed?

Set Number







```
# ways = # blocks/cache set = associativity
# cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block
```

### A: Alternative Cache Organizations (4-block cache)

- Memory block #12 (decimal) corresponds to memory address 01100XXXX in binary (we don't care about block size)
- For DM cache:
  - # cache blocks = 4 = # ways (1) \* # sets
     => # sets = 4 = 2² => Set Index has 2b => Set Index is 00 (last 2b in 01100)
  - Tag (3b); Set Index (2b)
- For 2-way SA cache:
  - # cache blocks = 4 = # ways (2) \* # sets
  - =># sets = 2 = 2<sup>1</sup> => Set Index has 1b => Set Index is 0 (last 1b in 01100)
  - Tag (4b); Set Index (1b)
- For FA (4-way SA) cache:
  - # cache blocks = 4 = # ways (4) \* # sets
  - $=> \# sets = 1 = 2^0 => No Set Index$
  - Tag (5b)

```
# ways = # blocks/cache set = associativity
# cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block
```

### A: Alternative Cache Organizations (4-block cache)



Where are possible locations in cache that block #12 in memory can be placed?

Set Number







```
# ways = # blocks/cache set = associativity
# cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block
```

# Q: Alternative Cache Organizations (8-block cache)



Where are possible locations in cache that block #12 in memory can be placed?



# ways = # blocks/cache set = associativity
# cache blocks = # ways \* # sets
cache capacity = # cache blocks \* Bytes/block

### A: Alternative Cache Organizations (8-block cache)

- Memory block #12 (decimal) corresponds to memory address 01100XXXX in binary (we don't care about block size)
- For DM cache:
  - # cache blocks = 8 = # ways (1) \* # sets
  - $=> \# sets = 8 = 2^3 => Set Index has 3b => Set Index is 100 (4) (last 3b in 01100)$
  - Tag (2b); Set Index (3b)
- For 2-way SA cache:
  - # cache blocks = 8 = # ways (2) \* # sets
  - $=> \# sets = 4 = 2^2 => Set Index has 2b => Set Index is 00 (last 2b in 01100)$
  - Tag (3b); Set Index (2b)
- For 4-way SA cache:
  - # cache blocks = 8 = # ways (4) \* # sets
  - $=> \# sets = 2 = 2^1 => Set Index has 1b => Set Index is 0 (last 1b in 01100)$
  - Tag (4b); Set Index (1b)
- For FA (8-way SA) cache:
  - # cache blocks = 8 = # ways (8) \* # sets
  - $=> \# sets = 1 = 2^0 => No Set Index$
  - Tag (5b)

```
# ways = # blocks/cache set = associativity
# cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block
```

# A: Alternative Cache Organizations (8-block



Where are possible locations in cache that block #12 in memory can be placed?



# ways = # blocks/cache set = associativity
# cache blocks = # ways \* # sets
cache capacity = # cache blocks \* Bytes/block

### A: Alternative Cache Organizations (4-block cache)

- # cache blocks = 32; Block #12 in decimal is 01100 in binary
- For DM cache: Tag (2b); Set Index (3b)
  - Set Index=100, hence it is set 4 (1 block)
- For 2-way SA cache: Tag (3b); Set Index (2b)
  - Set Index=00, hence it is set 0 (2 blocks)
- For 4-way SA cache: Tag (4b); Set Index (1b)
  - Set Index=0, hence it is set 0 (2 blocks)
- For FA (8-way SA) cache: Tag (5b)
  - Can be anywhere for SA cache

```
# ways = # blocks/cache set = associativity
# cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block
```

# Question: Cache Address Mapping

- What are the possible locations in the cache that memory address 0x1833 (0b0001 1000 0011 0011) be mapped? Assuming: 16-bit memory address, Bytes/block=16, # cache blocks=8
- For DM cache:
- For 2-way SA cache:
- For 4-way SA cache:
- For FA cache (8-way SA):

|                       |     | DM   |
|-----------------------|-----|------|
| Set                   | Tag | Data |
| 0                     |     |      |
| 0<br>1                |     |      |
| 2                     |     |      |
| 3                     |     |      |
| 4                     |     |      |
| 2<br>3<br>4<br>5<br>6 |     |      |
| 6                     |     |      |
| 7                     |     |      |

|     | Ζ'  | -way SA |
|-----|-----|---------|
| Set | Tag | Data    |
| 0   |     |         |
| 1   |     |         |
| 2   |     |         |
| 3   |     |         |
| 0   |     |         |
| 1   |     |         |
| 2   |     |         |
| 3   |     |         |
|     |     |         |

2-W2V SA

|     | 4-way 3A |      |  |  |  |
|-----|----------|------|--|--|--|
| Set | Tag      | Data |  |  |  |
| 0   |          |      |  |  |  |
| 1   |          |      |  |  |  |
| 0   |          |      |  |  |  |
| 1   |          |      |  |  |  |
| 0   |          |      |  |  |  |
| 1   |          |      |  |  |  |
| 0   |          |      |  |  |  |
| 1   |          |      |  |  |  |

 $\Delta$ -way  $\Delta$ 

|     | 177 | o way sa, |
|-----|-----|-----------|
| Set | Tag | Data      |
| 0   |     |           |
| 1   |     |           |
| 0   |     |           |
| 1   |     |           |
| 0   |     |           |
| 1   |     |           |
| 0   |     |           |
| 1   |     |           |

FA (8-way SA)

# **Answer: Cache Address Mapping**

- What are the possible locations in the cache that memory address 0x1833 (0b0001 1000 0011 XXXX) be mapped? Assuming: 16-bit memory address, Bytes/block=16, # cache blocks=8
- For DM cache: Tag (9b); Set Index (3b); Offset (4b)
  - Set Index=011, hence it is set 3 (1 block)
- For 2-way SA cache: Tag (10b); Set Index (2b); Offset (4b)
  - Set Index=11, hence it is set 3 (2 blocks)
- For 4-way SA cache: Tag (11b); Set Index (1b); Offset (4b)
  - Set Index=1, hence it is set 1 (4 blocks)
- For FA cache (8-way SA): Tag (12b); Offset (4b)

|                            |     | DM   |
|----------------------------|-----|------|
| Set                        | Tag | Data |
| 0                          |     |      |
| 1                          |     |      |
| 2                          |     |      |
| 3                          |     |      |
| 4                          |     |      |
| 1<br>2<br>3<br>4<br>5<br>6 |     |      |
| 6                          |     |      |
| 7                          |     |      |



| 4-way SA |     |      |  |  |  |
|----------|-----|------|--|--|--|
| Set      | Tag | Data |  |  |  |
| 0        |     |      |  |  |  |
| 1        |     |      |  |  |  |
| 0        |     |      |  |  |  |
| 1        |     |      |  |  |  |
| 0        |     |      |  |  |  |
| 1        |     |      |  |  |  |
| 0        |     |      |  |  |  |
| 1        |     |      |  |  |  |

1-14/21/51

| FA (8-way SA) |     |      |  |  |
|---------------|-----|------|--|--|
| Set           | Tag | Data |  |  |
| 0             |     |      |  |  |
| 1             |     |      |  |  |
| 0             |     |      |  |  |
| 1             |     |      |  |  |
| 0             |     |      |  |  |
| 1             |     |      |  |  |
| 0             |     |      |  |  |
| 1             |     |      |  |  |

### Question: Cache Capacity 1

Work out the cache capacity :





```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

# **Answer: Cache Capacity 1**

Work out the cache capacity :

```
DM

N-1 4 3 2 1 0

Tag S.I O

# cache blocks = 1 way * 2^2
sets = 4 blocks
cache capacity = 4 blocks *
4B/block = 16B
```

```
2 Way SA

N-1
3 2 1 0

Tag

S.I
0

# cache blocks = 2 ways * 2^1
sets = 4 blocks
cache capacity = 4 blocks *
4B/block = 16B
```



```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

# Question: Cache Capacity 2

Q: What is the cache capacity of a DM cache with 15 Tag bits,
 15 Set Index bits, and 2 Offset bits?

• Q: What is the cache capacity of a 2-way SA cache with 15 Tag bits, 15 Set Index bits, and 2 Offset bits?

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

# **Answer: Cache Capacity 2**

- Q: What is the cache capacity of a DM cache with 15 Tag bits,
   15 Set Index bits, and 2 Offset bits?
- A: Bytes/block =  $2^2$ ; # sets =  $2^{15}$ ; # cache blocks = 1 way \*  $2^{15}$  =  $2^{15}$ ; cache capacity =  $2^{15}$  blocks \*  $2^2$  Bytes/blocks= $2^{17}$  Bytes
- Q: What is the cache capacity of a 2-way SA cache with 15 Tag bits, 15 Set Index bits, and 2 Offset bits?
- A: Bytes/block =  $2^2$ ; # sets =  $2^{15}$ ; # cache blocks = 2 ways \*  $2^{15}$  =  $2^{16}$ ; cache capacity =  $2^{16}$  blocks \*  $2^2$  Bytes/blocks= $2^{18}$  Bytes

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### Question: Cache Capacity 3

- For a cache of 64 blocks, each block 4 Bytes in size:
- 1. The capacity of the cache is: \_\_\_\_ bytes.
- 2. Given a 2-way SA organization, there are \_\_\_\_ sets, each of \_\_\_ blocks, and \_\_\_ places a block from memory could be placed.
- 3. Given a 4-way SA organization, there are \_\_\_\_\_ sets each of \_\_\_ blocks and \_\_\_ places a block from memory could be placed.
- 4. Given an 8-way SA organization, there are \_\_\_\_\_ sets each of \_\_\_ blocks and \_\_\_ places a block from memory could be placed.

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### **Answer: Cache Capacity 3**

- For a cache of 64 blocks, each block 4 Bytes in size:
- 1. The capacity of the cache is: <u>256</u> bytes.
- Given a 2-way SA organization, there are <u>32</u> sets, each of <u>2</u> blocks, and <u>places a block from memory could be placed.
  </u>
- Given a 4-way SA organization, there are <u>16</u> sets each of <u>4</u> blocks and <u>4</u> places a block from memory could be placed.
- 4. Given an 8-way SA organization, there are <u>8</u> sets each of <u>8</u> blocks and <u>8</u> places a block from memory could be placed.

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### Question: Cache Capacity 4

- For an N-way SA cache, # cache blocks = B, # sets = S, which statements hold?
  - (i) The cache has B number of tags
  - (ii) The cache needs N comparators
  - (iii)  $B = N \times S$
  - (iv) Size of Set Index (in # bits) =  $Log_2(S)$

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

### **Answer: Cache Capacity 4**

- For an N-way SA cache, # cache blocks = B, # sets = S, which statements hold true?
  - (i) The cache has B number of tags
  - (ii) The cache needs N comparators
  - (iii)  $B = N \times S$
  - (iv) Size of Set Index (in # bits) =  $Log_2(S)$
- A: All statements are true

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

# Question: Bits in Memory Address 1

• 32 bit address space, 32KB 4-way SA cache with 8-word blocks. What are the lengths of Tag - Set Index - Offset in the memory address?

| 1 | T - 21 | SI - 8  | 0-3   |
|---|--------|---------|-------|
| 2 | T - 19 | SI - 10 | O – 3 |
| 3 | T - 17 | SI - 12 | O – 3 |
| 4 | T - 19 | SI - 8  | O – 5 |
| 5 | T - 18 | SI - 10 | O – 4 |
| 6 | T - 15 | SI - 12 | 0-5   |

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

• 32 bit address space, 32KB 4-way SA cache with 8-word blocks. What are the lengths of Tag - Set Index - Offset in the memory address?

| 1 | T - 21 | SI - 8  | O – 3 |   |
|---|--------|---------|-------|---|
| 2 | T - 19 | SI - 10 | 0-3   |   |
| 3 | T - 17 | SI - 12 | 0-3   |   |
| 4 | T - 19 | SI - 8  | O – 5 |   |
| 5 | T - 18 | SI - 10 | O – 4 | ' |
| 6 | T - 15 | SI - 12 | O - 5 |   |

Bytes/block=8 words=32B => Offset is 5b

cache capacity (32KB) = # cache blocks\*32B/block
=> # cache blocks = 1K = 2<sup>10</sup>

# cache blocks (2<sup>10</sup>) = # ways (4) \* # sets
=> # sets = 2<sup>8</sup> => Set Index has 8b

Memory address length (32)
=> T = 32b - (8b+5b) = 19b

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

# Question: Bits in Memory Address 2

• 32 bit address space, 16KB DM cache with 4-word blocks. What are the lengths of Tag - Set Index - Offset?

| 1 | T - 21 | SI - 8  | 0-3   |
|---|--------|---------|-------|
| 2 | T - 19 | SI - 10 | O – 3 |
| 3 | T - 17 | SI - 12 | O – 3 |
| 4 | T - 19 | SI - 8  | O – 5 |
| 5 | T - 18 | SI - 10 | O – 4 |
| 6 | T - 15 | SI - 12 | 0-5   |

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

• 32 bit address space, 16KB DM cache with 4-word blocks. What are the lengths of Tag - Set Index - Offset?

| 1 | T - 21 | SI - 8  | 0-3   |
|---|--------|---------|-------|
| 2 | T - 19 | SI - 10 | O – 3 |
| 3 | T - 17 | SI - 12 | O – 3 |
| 4 | T - 19 | SI - 8  | O – 5 |
| 5 | T - 18 | SI - 10 | O – 4 |
| 6 | T - 15 | SI - 12 | O - 5 |

Bytes/block=4 words=16B => Offset is 4b

cache capacity (16KB) = # cache blocks\*16B/block
=> # cache blocks = 1K = 2<sup>10</sup>

# cache blocks (2<sup>10</sup>) = # ways (1) \* # sets
=> # sets = 2<sup>10</sup> => Set Index has 10b

Memory address length (32)
=> T = 32b - (10b+4b) = 18b

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

## Question: Bits in Memory Address 3

■ We have a cache of size 2 KB with block size of 128 Bytes. If our cache has 2 sets, what is its associativity? If memory address is 16 bits, how wide is the Tag field?

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

■ We have a cache of size 2 KB with block size of 128 Bytes. If our cache has 2 sets, what is its associativity? If memory address is 16 bits, how wide is the Tag field?

```
Bytes/block=128B = 2^7B \Rightarrow 0ffset has 7b
cache capacity (2KB=2^{11}B) = # cache blocks*2^7B/block
=> # cache blocks = 16 = 2^4
# cache blocks (16) = # ways * # sets (2)
\Rightarrow # ways = 8 = 2^3
Set Index has 1b
Memory address length (16) = T + SI + O
=> T = 16b - (1b+7b) = 8b
```

```
# sets = 2<sup>SI size</sup>; # Bytes/block=2<sup>Offset size</sup>
# blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block
```

## Question: Bits in Memory Address 4

• 32 bit address space, 32KB DM cache with 8-word blocks

32 bit address space, 16KB 2-way SA cache with 4-word blocks

32 bit address space, 32KB FA cache with 8-word blocks

- 32 bit address space, 32KB DM cache with 8-word blocks
- T 17, SI 10, O 5 (# blocks = # sets = 2<sup>10</sup> => SI has 10b, T = 32b-(10b+5b)=17b)
- 32 bit address space, 16KB 2-way SA cache with 4-word blocks
- T 19, SI 9, O 4 (# blocks =  $2^{10}$ ; # sets =  $2^{10}/2=2^9$  => SI has 9b, T = 32b-(9b+4b)=19b)
- 32 bit address space, 32KB FA cache with 8-word blocks
- T 27, SI 0, O 5 (# blocks = 2<sup>10</sup>; # sets = 1 => SI has 0b, T = 32b-(0b+5b) = 27b)

### Question: Associativity 1

 For a cache with fixed total size, if we increase the number of ways by a factor of two, which statement is false:

A: The number of sets is halved

B: The tag width decreases

C: The block size stays the same

D: The set index decreases

# **Answer: Associativity 1**

 For a cache with fixed total size, if we increase the number of ways by a factor of two, which statement is false:

A: The number of sets is halved

B: The tag width decreases

C: The block size stays the same

D: The set index width decreases

More Associativity (more ways)



## Question: Associativity 2

```
Push red bar right 1 bit tag_size?; # sets?; # ways/associativity?; # HW comparators?
Push red bar left 1 bit tag_size?; index_size?; # sets?; # ways/associativity?; # HW comparators?
```

Tag Set Index Offset

### **Answer: Associativity 2**

```
Push red bar right 1 bit tag_size +1; index_size -1; # sets halved; # ways/associativity doubled; # HW comparators doubled
Push red bar left 1 bit tag_size -1; index_size +1; # sets doubled; # ways/associativity halved; # HW comparators halved
```

More associativity (more ways)



Less associativity (fewer ways)

4/20/2018 47

## Question: Associativity vs. Performance

For a cache of fixed capacity and block size, increasing associativity causes \_\_\_\_\_ in hit time, and \_\_\_\_\_ in miss rate

# Answer: Associativity vs. Performance

For a cache of fixed capacity and block size, increasing associativity causes \_increase\_ in hit time, and \_decrease\_ in miss rate

Question: Tag bits & Offset bits

- Q: Under what condition will we have # Offset bits = 0? Under what condition will we have # Tag bits = 0?
- A: # Offset bits = 0 when size of a cache block = 1 Byte
  - (not realistic, since it cannot even fit a 16b short or 32b int)
- # Tag bits = 0 when we have a DM cache with the same size as memory
  - Tag bits are needed to disambiguate among multiple possible memory blocks that may be mapped to one cache block; if there is a 1-to-1 correspondence between cache blocks and memory blocks, then Tag bits are not needed
  - (not realistic, since cache must be small in order to be fast)

Set Index Offset

