Abstract Algebra

Rohan Jain

Contents

Chapter 1		_ Page 2
1.	1 Introductory Notes	2
	Things to Remember — $2 \bullet$ Set Review — $2 \bullet$ Cartesian Products and Functions — $3 \bullet$ Equivalence — $4 \bullet$ Complex Numbers and Matrices — $4 \bullet$ Number Theory — 5	ce Relations
1.	2 Group Theory Introduction to Groups — 6 • Properties of Groups — 7	6

Chapter 1

1.1 Introductory Notes

1.1.1 Things to Remember

Note:

- Definitions will usually be stated as "if" even though they mean "if and only if".
- Any form of proof is valid. Avoid proofs by contradiction because of disbelief in the law of excluded middle.
- When you define an object, you can *only* utilize its definition to prove anything about it.

1.1.2 Set Review

Definition 1.1.1: Set

In mathematics, a set is an undefined term. Basically, "everyone knows what it is." A few examples of sets are:

- The empty set is the set with no elements. It is denoted by ϕ or \emptyset .
- ullet N is the set of natural numbers.
- **Z** is the set of integers.
- ullet Q is the set of rational numbers.
- \bullet \mathbb{R} is the set of real numbers.
- $\bullet~\mathbb{C}$ is the set of complex numbers.

Note:

- A set is a well-defined collection of objects. The objects in a set are called elements of the set.
- A set is generally defined as a capital letter.
- $(A = B) \iff (\forall x : x \in A \iff x \in B)$
- $(A \subset B) \iff (\forall x \in A : x \in B)$
- A is a proper subset of B if $A \subset B$ and $A \neq B$.

Theorem 1.1.1

$$A = B \iff A \subset B \land B \subset A$$

Note:

- $\bullet \ A \cup B = x : x \in A \lor x \in B$
- $A \cap B = x : x \in A \land x \in B$
- $A \setminus B = x : x \in A \land x \notin B$
- $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$

1.1.3 Cartesian Products and Functions

Note:

• $A \times B = \{(a,b) : a \in A \land b \in B\}$

Example 1.1.1 (Cartesian Product of two sets)

Let $A = \{1, 2, \Delta\}$ and $B = \{0, \pi\}$

- (1,0)
- (2,0)
- $(\Delta,0)$
- $(1, \pi)$
- $(2,\pi)$
- (Δ, π)

Note:

Relations are subsets of Cartesian Products. For example, we can say that < is a relation on the subset of $\mathbb{R} \times \mathbb{R}$ consisting of all ordered pairs of real numbers such that the first element is less than the second.

Definition 1.1.2: Function

A function f from a set A to a set B is a subset of $A \times B$ such that for every $a \in A$, there is exactly one $b \in B$ such that $(a,b) \in f$.

Note:

Let R be a relation from A to B.

- A is the domain
- \bullet B is the codomain
- $\{b : aRb\}$ is the image
- R is injective (one-to-one) if $a_1Rb \wedge a_2Rb \implies a_1 = a_2$
- R is surjective (onto) if $\forall b \in B : \exists a \in A : aRb$. Basically if the image is the entire codomain.
- R is bijective if it is injective and surjective

Note:

 $A \xrightarrow{\mathbf{R}} B$ $B \xrightarrow{\mathbf{S}} C$

Define the composition as $S \circ R = \{(a,c) : \text{there is some } b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

Theorem 1.1.2

Let $f: A \to B$, $g: B \to C$, and $h: C \to D$. Then

- $h \circ (g \circ f) = (h \circ g) \circ f$
- If f and g are injective, so is $g \circ f$
- If f and g are surjective, so is $g \circ f$
- If f and g are bijective, so is $g \circ f$

1.1.4 Equivalence Relations

Definition 1.1.3: Equivalence Relation

An equivalence relation is a relation that has the following special properties:

- Reflexivity: aRa for all $a \in A$
- Symmetry: $aRb \implies bRa$
- Transitivity: $aRb \wedge bRc \implies aRc$

Definition 1.1.4: Partition

Given a set S, a partition of S is a collection of subsets of S such that their union is S.

Note:

Equivalence relations go hand in hand with partitions.

Note:

If \sim is an equivalence relation $a \sim b$, then \sim partiations a set X into chunks. X/\sim is the set of chunks. Addition is well-defined as an operation on $\mathbb{Z}/x\mathbb{Z}$ for $x \in \mathbb{Z}$.

1.1.5 Complex Numbers and Matrices

Definition 1.1.5: Complex Number

A complex number is a number of the form a + bi, where a and b are real numbers and i is the imaginary unit. $i^2 = -1$.

Note:

Complex numbers generally take the from z = a + bi.

 $\bar{z} = a - bi$ is the complex conjugate of z.

Divide complex numbers by multiplying by the complex conjugate of the denominator

Definition 1.1.6: Matrix

A matrix is a rectangular array of numbers. A $m \times n$ matrix is an array of m rows and n columns. Define the group of $m \times n$ matrices over a field \mathbb{F} as $\mathbb{F}^{m \times n}$.

Note:

Multiplication by an $m \times n$ matrix is a function from \mathbb{F}^n to \mathbb{F}^m . It is associative because all functions are associative.

Example 1.1.2 $(2 \times 2 \text{ matrix exercise})$

Consider $\mathbb{Z}^{2\times 2}$. Define a relation $A\sim B$ if there is an integer matrix P whose determinant is one and $B=P^{-1}AP$. Note that if an integer matrix has a determinant 1 it is invertible and its inverse is also an integer matrix with determinant 1.

- 1. Show that this is an equivalence relation.
- 2. Show that two matrices with different determinants cannot be similar.
- 3. Determine whether $\begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix}$ is similar to $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.
- 4. Determine whether $\begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix}$ is similar to $\begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}$.

Solution:

1. Reflexive: $A = P^{-1}AP$ for $P = I_2$.

Symmetric: $P^{-1}AP = P^{-1}BP$ for some P with determinant 1.

Transitive: $B=P_1^{-1}AP_1\wedge C=P_2^{-1}BP_2\Rightarrow C=P_2^{-1}P_1^{-1}AP_1P_2$

- 2. Determinants are a multiplicative property. If $B = P^{-1}AP$ and $\det(B) \neq \det(A)$, then $\det(B) \neq 1 * \det(A) * 1$.
- 3. No, different JCF.
- 4. Yes, same JCF.

1.1.6 Number Theory

Note:

Know induction, division algorithm, GCD and Bezout's lemma, and Primes and the Fundmental Theorem of Arithmetic.

Example 1.1.3 (Weak Induction)

Prove that $5|n^5 - n$ for all n.

Proof: Proof by induction.

- 1. n = 1 is true, 5|0.
- 2. If it is true then n=k, show that it is true when n=k+1.

 $(k+1)^5 - (k+1) = k^5 + 5k^4 + 10k^3 + 10k^3 + 5k + 1 - (k+1) = (k^5 - k) + (5k^4 + 10k^3 + 10k^2 + 5k).$

☺

Both quantities are divisible by 5.

Therefore, $5|n^5 - n$ for all n.

Example 1.1.4 (Strong Induction)

Prove that every integer n can be written as $n = d_1 1! + d_2 2! + \cdots + d_k k!$ for some $d_1, \ldots, d_k \le k \in \mathbb{Z}$ and $k \ge 1$.

Proof: Strong induction.

Given n, chose s s.t. $s! \le n < (s+1)!$. Then we can write $n = q \cdot s! + r$.

1. $q \le s$ (if $q \ge s+1$, then $n \ge (s+1)!$, which goes against our claim)

2. r < s!

Assume that this is true for any k < n. Then we can write $n = q \cdot s! + r$ for some r < s!. Then we can write r in the same format since it is true for all k < n.

Example 1.1.5 (Well-ordering)

Prove that given $a, b, b \neq 0$, there exists unique q, r such that a = qb + r and $0 \leq r < |b|$.

Proof: Well-ordering.

Consider all the integeres of the form a - xb for $x \in \mathbb{Z}$. At least one of these is nonnegative. If a > 0, choose x = 0. If $a \le 0$, then choose x = -ab|b|. So let the set of all negative a - xb be nonempty. Let q = x be the smallest. Define r = a - qb so that a = qb + r and r < |b|.

To prove uniqueness, consider two sets: qr and q'r'. Then qb+r=q'b+r' and r<|b|. Or, (q-q')b=r'-r. The absolute value of the RHS has to be between 1-|b| and |b|-1. This has to be 0 since its the only multipe of b in that range. So q-q'=0 and q=q' and r=r'.

Lenma 1.1.1 Bezout's Lemma

Given integers $a, b \neq 0$, their GCD can be written in the form ra + sb for some r, s.

Definition 1.1.7

An integer is prime if it only has 1 and itself as positive divisors.

Note:

1 is not a prime.

Lenma 1.1.2

If p is prime and p|ab, then either p|a or p|b.

Theorem 1.1.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is either a prime or can be written as a product of primes in a unique way.

1.2 Group Theory

1.2.1 Introduction to Groups

Definition 1.2.1: Binary Operation

Given a set S, a binary operation on S is a function $S \times S \to S$.

Definition 1.2.2: Group

A group is a set G with a binary operation * such that for all $a,b,c\in G$, the following hold:

- 1. (a * b) * c = a * (b * c) (associativity)
- 2. e * a = a * e = a (identity)
- 3. $a * a^{-1} = e$ (inverse)
- 4. * is closed under G.

Note:

A set that only has associativity and identity is called a monoid.

Note:

Examples of groups

- \mathbb{Z} , \mathbb{R} , $\mathbb{R}^{3\times3}$, \mathbb{C} , \mathbb{Q} with addition.
- $z \in \mathbb{C} : |z| = 1$ with multiplication.
- $GL(2,\mathbb{R})$ with matrix multiplication. However, this is not abelian.
- D_4 = symmetries of a square.
- D_2 = symmetries of a triangle.
- U(n) with multiplication modulo n.

If we take a random group, say U(5), then we can create a table for how the multiplication works:

A table like this is called a *Cayley Table*. Notice that this table is actually symmetric. This means that the group is *commutative*, but more properly, *abelian*.

Definition 1.2.3: Abelian Group

An abelian group, G, is a group where a * b = b * a for all $a, b \in G$.

1.2.2 Properties of Groups

Theorem 1.2.1

The identity element of a group is unique.

Proof: Let e_1 and e_2 be the identity elements. Then $e_1 * e_2 = e_2 * e_1 = e_1$. So $e_1 = e_2$.

Theorem 1.2.2

Each element has a unique inverse.

Proof: Let a^{-1} and b both be inverses of a then consider the product baa^{-1} . Then $b = be = b(aa^{-1}) = (ba)a^{-1} = ea^{-1} = a^{-1}$. So $b = a^{-1}$.

7

☺

Corollary 1.2.1

$$(ab)^{-1} = b^{-1}a^{-1}$$

Proof: $abb^{-1}a^{-1} = aea^{-1} = aa^{-1} = e$.

Corollary 1.2.2

 $(a_1 a_2 a_3 \dots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} a_{n-2}^{-1} \dots a_1$

Proof: Induction from 1.2.1.

Corollary 1.2.3

 $(a^{-1})^{-1} = a$

Proof: $(a^{-1})^{-1}a^{-1} = e = aa^{-1}$, so by uniqueness of inverses...

⊜

⊜

Theorem 1.2.3

Given any $a, b \in G$, the equations ax = b and ya = b have unique solutions, though not necessary equal.

Proof: Let $x = a^{-1}b$ and $y = ba^{-1}$. Then $ax = a(a^{-1}b) = eb = b$ and $ya = ba^{-1}a = be = b$. To show uniqueness, consider $ax_1 = ax_2$ then left multiply by a^{-1} .

Corollary 1.2.4 Cancellation Laws

In any group G, if ac = bc, then a = b. And if ca = cb, then a = b.

Proof: Right or left multiply by c^{-1} for appropriate equation.

⊜

Note:

Proving that a group is associative from its Cayley digram takes too long. It is easier to show an isomorphism to a well-established group.

Note:

Groups of order n:

- 1: \mathbb{Z}_1
- 2: \mathbb{Z}_2
- 3: **Z**₃
- 4: \mathbb{Z}_4 , V
- 5: **Z**₅
- 6: D_3, \mathbb{Z}_6
- 7: \mathbb{Z}_7
- 8: \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, D_4 , H
- 9: \mathbb{Z}_9 , $\mathbb{Z}_3 \times \mathbb{Z}_3$