

Advanced Mathematics

East China University of Science and Technology

目录

第一章	预备知识	2
1.1	基础知识	2
	1.1.1 函数的概念和特性	2
	1.1.2 函数的图像	3
	1.1.3 常用基础知识	8
第二章	数列极限	12
2.1	基础知识	12
	2.1.1 数列极限的定义	12
	2.1.2 收敛数列的性质	12
	2.1.3 极限运算规则	12
	2.1.4 夹逼准则	12
	2.1.5 单调有界准则	12
2.2	习题	13
第三章	函数极限	14
3.1	基础知识	14
	3.1.1 邻域	14
	3.1.2 函数极限的定义	14
	3.1.3 函数极限的性质	15
	3.1.4 极限运算法则	15
	3.1.5 夹逼准则	15
	3.1.6 洛必达法则	15
	3.1.7 泰勒公式	16

1.1 基础知识

1.1.1 函数的概念和特性

函数

反函数

设函数 y = f(x) 的定义域为 D, 值域为 R, 若对于每一个 $y \in R$, 必存在唯一的 $x \in D$ 使得 y = f(x) 成立, 则由此 定义了一个新的函数 $x = \varphi(y)$, 称这个函数是 y = f(x) 的反函数, 一般记作 $x = f^{-1}(y)$, 它的定义域为 R, 值域为 D.

- 1. 严格单调的函数一定有反函数 (严格单调函数不一定是反函数, 如某些分段函数)
- 2. $x = f^{-1}(y)$ 和 y = f(x) 是同一个函数, 只有写成 $y = f^{-1}(x)$, 图像才关于 y = x 对称

复合函数

函数 u=g(x) 在 $x\in D$ 上有定义, 函数 y=f(u) 在 $u\in D_1$ 上有定义, 且 $g(D)\subset D_1$, 则称 y=f(g(x)) 为复合函数, 定义域为 D,u 为中间变量.

函数的四种特性和重要结论

1. 有界性

设 f(x) 的定义域为 D, 数集 $I \subset D$. 若存在某个正数 M, 使得对于任一 $x \in I$, 有 $|f(x)| \leq M$ 成立, 则称 f(x) 在 I 上有界. 如果这样的 M 不存在, 则称 f(x) 在 I 上无上界.

2. 单调件

设 f(x) 的定义域为 D, 区间 $I \subset D$, 如果对于区间上的任一两点 x_1, x_2 , 当 $x_1 < x_2$ 的时候有 $f(x_1) < f(x_2)$ 成立,则称 f(x) 在 I 上单调增加. 反之如果 $f(x_1) > f(x_2)$ 成立,则称 f(x) 在 I 上单调减少.

3. 奇偶性

设 f(x) 的定义域 D 关于原点对称. 如果对于任一 $x \in D$, 恒有 f(x) = f(-x), 则称 f(x) 为偶函数. 如果对于任一 $x \in D$, 恒有 f(x) = -f(-x), 则称 f(x) 为奇函数. 偶函数的图像关于 y 轴对称, 奇函数的图像关于原点对称.

- (a) 奇函数在 0 点有定义则 f(0) = 0
- (b) 偶函数当 f'(0) 存在时则 f'(0) = 0
- (c) 函数 f(x) 和 -f(x) 关于 x 轴对称, 函数 f(x) 和 f(-x) 关于 y 轴对称, 函数 y(x) 和 -y(-x) 关于原 点对称
- (d) 函数 f(x) 关于 x = T 对称 $\Leftrightarrow f(x + T) = f(T x)$

4. 周期性

设 f(x) 的定义域为 D, 若存在一个正数 T, 使得对于任一 $x \in D$, 有 $x \pm T \in D$, 且 f(x + T) = f(x). 则称 f(x) 为 周期函数, T 称为 f(x) 的周期.

- 5. 重要结论
 - (a) 函数和其导函数

偶函数的导函数是奇函数 奇函数的导函数是偶函数 周期函数的周期和其导函数的周期相同

(b) 函数和其原函数

连续的奇函数的原函数是偶函数 连续的偶函数的原函数只有一个是奇函数 连续的周期函数和其原函数的周期相同

(c) 若 f(x) 在 (a,b) 内可导且 f'(x) 有界, 则 f(x) 在 (a,b) 内有界

1.1.2 函数的图像

直角坐标系

- 1. 常见图像
 - (a) 基本初等函数与初等函数
 - i. 常数函数 y = C, C 为常数, 图形为平行于 x 轴的水平直线.
 - ii. 幂函数 $y = x^{\mu} (\mu \text{ 是实数})$
 - A. 见到 \sqrt{u} , $\sqrt[3]{u}$, 用 u 来研究最值
 - B. 见到 |u| 时, 用 u^2 来研究最值
 - C. 见到 $u_1u_2u_3$ 时, 用 $ln(u_1u_2u_3) = lnu_1 + lnu_2 + lnu_3$ 来研究最值
 - D. 见到 $\frac{1}{u}$ 时, 用 u 来研究最值
 - iii. 指数函数 $y = a^x \ (a > 0, a \neq 1)$

iv. 对数函数 $y = log_a x \ (a > 0, a \neq 1)$

常用公式:
$$x=e^{lnx}$$
 $(x>0), u^v=e^{lnu^v}=e^{vlnu}$ $(u>0)$

v. 三角函数

A. 正弦函数和余弦函数 正弦函数 $y = \sin x$, 余弦函数 $y = \cos x$.

B. 正切函数和余切函数 正切函数 $y = \tan x$, 余切函数 $y = \cot x$.

vi. 反三角函数

B. 反正切函数和反余切函数 反正切函数 $y = \arctan x$, 反余切函数 $y = \operatorname{arccot} x$

vii. 初等函数

由基本初等函数经过有限次的四则运算,以及有限次的复合所构成的可以用一个式子表示的函数称为初等函数.

(b) 分段函数

在自变量的不同范围中,对应法则不同式子来表示的函数称为分段函数.一般来说它不是初等函数.

i. 绝对值函数

$$y = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

ii. 符号函数

$$y = \operatorname{sgn} x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

iii. 取整函数

y = [x], 设 x 为任一实数, 不超过 x 的最大整数称为 x 的整数部分, 记作 [x].

2. 图像变换

(a) 平移变换

- i. 将函数 y = f(x) 沿 x 轴向左平移 x_0 $(x_0 > 0)$ 个单位长度, 得到函数 $f(x + x_0)$ 的图像; 将函数 y = f(x) 沿 x 轴向右平移 x_0 $(x_0 > 0)$ 个单位长度, 得到函数 $f(x x_0)$ 的图像
- ii. 将函数 y = f(x) 沿 y 轴向上平移 y_0 $(y_0 > 0)$ 个单位长度,得到函数 $f(x) + y_0$ 的图像;将函数 y = f(x) 沿 y 轴向下平移 y_0 $(y_0 > 0)$ 个单位长度,得到函数 $f(x) y_0$ 的图像

(b) 对称变换

- i. 将函数 y = f(x) 的图像关于 x 轴对称, 得到函数 y = -f(x) 的图像
- ii. 将函数 y = f(x) 的图像关于 y 轴对称, 得到函数 y = f(-x) 的图像
- iii. 将函数 y = f(x) 的图像关于原点对称, 得到函数 y = -f(-x) 的图像
- iv. 将函数 y = f(x) 的图像关于直线 y = x 对称, 得到函数 $y = f^{-1}(x)$ 的图像
- v. 保留函数 y = f(x) 在 x 轴及 x 轴上方的部分, 把 x 轴下方的部分关于 x 轴对称到 x 轴上方并去掉原来下方的部分, 得到函数 y = |f(x)| 的图像
- vi. 保留函数 y = f(x) 在 y 轴及 y 轴右侧的部分,去掉 y 轴左侧的部分,再将 y 轴右侧图像对称到 y 轴左侧,得到函数 y = f(|x|) 的图像

(c) 伸缩变换

- i. 水平伸缩: y = f(kx)(k > 1) 的图像, 可由 y = f(x) 的图像上每点的横坐标缩短到原来的 $\frac{1}{k}$ 倍且纵坐标不变得到. y = f(kx)(0 < k < 1) 的图像, 可由 y = f(x) 的图像上每点的横坐标伸长到原来的 $\frac{1}{k}$ 倍且纵坐标不变得到
- ii. 垂直伸缩: y = kf(x)(k > 1) 的图像, 可由 y = f(x) 的图像上每点的纵坐标伸长到原来的 k 倍且横坐标不变得到; y = kf(x)(0 < k < 1) 的图像, 可由 y = f(x) 的图像上每点的纵坐标缩短到原来的 k 倍且横坐标不变得到

极坐标系

1. 用描点法画常见图像

(a) 心形线

$$r = a(1 - \cos \theta)(a > 0)$$

图 1.5: 心形线

(b) 玫瑰线

 $r = a \sin 3\theta (a > 0)$

图 1.6: 玫瑰线

(c) 阿基米德螺线

 $r = a\theta(a > 0, \theta \ge 0)$

图 1.7: 阿基米德螺线

(d) 伯努利双纽线

$$r^2 = a^2 \cos 2\theta (a > 0)$$
 或 $r^2 = a^2 \sin 2\theta (a > 0)$.

图 1.8: 伯努利双纽线

参数方程

1. 摆线

$$\begin{cases} x = r(t - \sin t) \\ y = r(1 - \cos t) \end{cases}$$

图 1.9: 摆线

2. 星形线

$$\begin{cases} x = r\cos^3 t \\ y = r\sin^3 t \end{cases}$$

图 1.10: 星形线

1.1.3 常用基础知识

数列

1. 等差数列

首项为 a_1 , 公差为 $d(d \neq 0)$ 的数列 $a_1, a_1 + d, a_1 + 2d, ..., a_1 + (n-1)d,$

- (a) 通项公式: $a_n = a_1 + (n-1)d$
- (b) 前 n 项的和: $S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]$

2. 等比数列

首项为 a_1 , 公比为 $r(r \neq 0)$ 的数列 $a_1, a_1 r, ..., a_1 r^{n-1},$

- (a) 通项公式: $a_n = a_1 r^{n-1}$
- (b) 前 n 项的和 $S_n = \begin{cases} na_1 & r = 1 \\ \frac{a_1(1-r^n)}{1-r} & r \neq 1 \end{cases}$
- (c) 一些常见数列前 n 项的和

i.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(1+n)}{2}$$

$$\begin{array}{ll} \text{i. } \sum_{k=1}^n k=1+2+3+\ldots+n=\frac{n(1+n)}{2}\\ \text{ii. } \sum_{k=1}^n k^2=1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6} \end{array}$$

iii.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

三角函数

1. 三角函数的基本关系

$$\csc \alpha = \frac{1}{\sin \alpha}, \ \sec \alpha = \frac{1}{\cos \alpha}, \ \cot \alpha = \frac{1}{\tan \alpha}$$
$$\sin^2 \alpha + \cos^2 \alpha = 1, \ 1 + \tan^2 \alpha = \sec^2 \alpha, \ 1 + \cot^2 \alpha = \csc^2 \alpha$$
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}, \ \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

- 2. 重要公式
- 3. 倍角公式

$$\begin{split} \sin 2\alpha &= 2 \sin \alpha \cos \alpha, \ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha \\ &= 2 \cos^2 \alpha - 1, \ \tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \end{split}$$

4. 半角公式

$$\sin^2\frac{\alpha}{2} = \frac{1}{2}(1-\cos\alpha), \ \cos^2\frac{\alpha}{2} = \frac{1}{2}(1+\cos\alpha)$$
$$\tan\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

5. 和差公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

6. 积化和差公式

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

7. 和差化积公式

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{split}$$

8. 万能公式

若
$$u = \tan \frac{x}{2}(-\pi < x < \pi)$$
, 则 $\sin x = \frac{2u}{1+u^2}$, $\cos x = \frac{1-u^2}{1+u^2}$.

指数运算法则

$$a^{\alpha} \cdot a^{\beta} = a^{\alpha+\beta}, \ \frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}$$
$$(a^{\alpha})^{\beta} = a^{\alpha\beta}, \ (ab)^{\alpha} = a^{\alpha}b^{\alpha}, \ (\frac{a}{b})^{\alpha} = \frac{a^{\alpha}}{b^{\alpha}}$$

对数运算法则

- 1. $\log_a(MN) = \log_a M + \log_a N$
- 2. $\log_a \frac{M}{N} = \log_a M \log_a N$
- $3. \, \log_a^n = n \log_a M$
- $4. \log_a \sqrt[n]{M} = \frac{1}{n} \log_a M$

一元二次方程基础

- 1. 一元二次方程: $ax^2 + bx + c = 0 (a \neq 0)$
- 2. 根的公式: $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 3. 根和系数的关系: $x_1 + x_2 = -\frac{b}{a}$, $x_1 x_2 = \frac{c}{a}$
- 4. 判别式: $\Delta = b^2 4ac$
- 5. 抛物线定点坐标: $(-\frac{b}{2a}, c \frac{b^2}{4a})$

因式分解公式

- 1. $(a+b)^2 = a^2 + b^2 + 2ab$
- 2. $(a-b)^2 = a^2 + b^2 2ab$
- 3. $(a+b)^3 = a^3 + 3a^2b + 3b^2a + b^3$
- 4. $(a-b)^3 = a^3 3a^2b + 3b^2a b^3$
- 5. $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- 6. $a^3 b^3 = (a b)(a^2 + ab + b^2)$
- 7. $a^2 b^2 = (a+b)(a-b)$
- 8. 二项式定理: $(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$

阶乘和双阶乘

- 1. $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$, 规定 0! = 1
- 2. $(2n)!! = 2 \cdot 4 \cdot 6 \cdot ... \cdot (2n) = 2^n n!$
- 3. $2(n-1)!! = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)$

常用不等式

- 1. 设 *a*, *b* 为实数,则有:
 - (a) $|a \pm b| \le |a| + |b|$
 - (b) $||a| |b|| \le |a b|$
- 2. $\sqrt{ab} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}}(a,b>0)$
- 4. 若 0 < a < x < b, 0 < c < y < d, 则 $\frac{c}{b} < \frac{y}{x} < \frac{d}{a}$
- 5. $\sin x < x < \tan x (0 < x < \frac{\pi}{2})$
- 6. $\sin x < x(x > 0)$
- 7. $\arctan x \le x \le \arcsin x (0 \le x \le 1)$
- 8. $e^x \ge x + 1(\forall x)$
- 9. $x-1 \ge \ln x (x > 0)$
- 10. $\frac{1}{1+x} < \ln(1+\frac{1}{x}) < \frac{1}{x}(x>0)$

第二章 数列极限

2.1 基础知识

2.1.1 数列极限的定义

设 $\{x_n\}$ 为一数列, 若存在常数 a, 对于任意的 $\epsilon>0$, 总存在正整数 N, 使得当 n>N 的时候, $|x_n-a|<\epsilon$ 恒成立, 则称数 a 是数列 $\{x_n\}$ 的极限, 或者称数列 $\{x_n\}$ 收敛于 a, 记为

$$\lim_{n\to\infty}x_n=a\ or\ x_n\to a(n\to\infty).$$

2.1.2 收敛数列的性质

- 1. 唯一性: 若数列存在极限, 则极限唯一
- 2. 有界性: 若数列存在极限,则数列有界
- 3. 保号性
 - (a) 脱帽: 设有数列 $\{x_n\},$ 若 $\lim_{n\to\infty}x_n=a>0$ (或 <0) \Rightarrow 存在正整数 N, 当 n>N 时, 有 $x_n>0$ (或 $x_n<0)$
 - (b) 戴帽: 设有数列 $\{x_n\}$, 若存在正整数 N, 当 n>N 时, 有 $x_n\geq 0$, 且数列存在极限 $\Rightarrow \lim_{n\to\infty}x_n=a\geq 0$

2.1.3 极限运算规则

设
$$\lim_{n \to \infty} x_n = a$$
, $\lim_{n \to \infty} y_n = b$, 则

- $1. \lim_{n \to \infty} (x_n \pm y_n) = a \pm b$
- $2. \lim_{n \to \infty} x_n y_n = ab$
- 3. 若 $b \neq 0, y_n \neq 0 \Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$

2.1.4 夹逼准则

若数列 $\{x_n\}$, $\{y_n\}$ 及 $\{z_n\}$ 满足条件:

- $1. \ y_n \le x_n \le z_n (n=1,2,3...)$
- 2. $\lim_{n\to\infty}y_n=a, \lim_{n\to\infty}z_n=a$ 则数列 $\{x_n\}$ 的极限存在,且 $\lim_{n\to\infty}x_n=a.$

2.1.5 单调有界准则

单调有界数列必有极限.

2.2 习题

第三章 函数极限

3.1 基础知识

3.1.1 邻域

一维

- 1. 邻域: 点 x_0 的邻域为数轴上以 x_0 为中心的任何开区间, 记作 $U(x_0)$
- 2. δ 邻域: 点 x_0 的 δ 邻域为 $(x_0 \delta, x_0 + \delta)$, 记作 $U(x_0, \delta)$
- 3. 去心 δ 邻域: 点 x_0 的去心 δ 邻域为 $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, 记作 $\mathring{U}(x_0, \delta)$
- 4. 左右 δ 邻域
 - (a) 左邻域: 点 x_0 的左邻域为 $(x_0 \delta, x_0)$, 记作 $U^+(x_0, \delta)$
 - (b) 右邻域: 点 x_0 的右邻域为 $(x_0,x_0+\delta)$, 记作 $U^-(x_0,\delta)$

二维

- 1. δ 邻域: 与点 $P_0(x_0,y_0)$ 的距离小于 δ 的点 P(x,y) 的全体, 称为点 P_0 的 δ 邻域, 记作 $U(P_0,\delta)$
- 2. 去心 δ 邻域: 与点 $P_0(x_0,y_0)$ 的距离小于 δ 但不等于 0 的点 P(x,y) 的全体, 称为点 P_0 的去心 δ 邻域, 记作 $\mathring{U}(P_0,\delta)$

3.1.2 函数极限的定义

设函数 f(x) 在某点 x_0 的某一去心邻域内有定义. 若存在常数 A, 对于任意给定的 $\epsilon>0$, 总存在正数 δ , 使得当 $0<|x-x_0|<\delta$ 时, 满足 $|f(x)-A|<\epsilon$, 则 A 就叫作函数 f(x) 当 $x\to x_0$ 时的极限, 记为

$$\lim_{x \to \infty} f(x) = A \text{ or } f(x) \to A \ (x \to x_0)$$

用 $\epsilon - X$ 语言表示为: $\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \ \ \exists |x| > X$ 时, 有 $|f(x) - A| < \epsilon$

单侧极限

- 1. 左极限: $\lim_{x \to x_0^-} f(x) = A$ or $f(x_0^-) = A$
- 2. 右极限: $\lim_{x \to x_0^+} f(x) = A \text{ or } f(x_0^+) = A$

充要条件

- $1. \ \lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$
- $2. \ \lim_{x \to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha(x), \lim_{x \to x_0} \alpha(x) = 0$

第三章 函数极限 15

3.1.3 函数极限的性质

- 1. 唯一性: 若函数存在极限, 则极限唯一
- 2. 局部有界性: 若函数存在极限,则函数在某一区间内有界
- 3. 局部保号性
 - (a) 脱帽: 设有函数 f(x), 若 $\lim_{x\to x_0} f(x) = A > 0$ (或A < 0) ⇒ 存在常数 δ , 当 $0 < |x-x_0| < \delta$ 时, 有 f(x) > 0(或f(x) < 0)
 - (b) 戴帽: 设有函数 f(x), 若存在常数 δ , 当 $0 < |x x_0| < \delta$ 时, 有 $f(x) \ge 0$ (或 $f(x) \le 0$) $\Rightarrow \lim_{x \to x_0} f(x) = A \ge 0$ (或 ≤ 0)

3.1.4 极限运算法则

设
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = B$, 则

- 1. $\lim_{x\to x_0}[kf(x)\pm lg(x)]=k\lim_{x\to x_0}f(x)\pm l\lim_{x\to x_0}g(x)=kA\pm lB,$ 其中 k,l 为常数
- $2. \ \lim_{x \rightarrow x_0} [f(x) \cdot g(x)] = \lim_{x \rightarrow x_0} f(x) \cdot \lim_{x \rightarrow x_0} g(x) = A \cdot B$
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{A}{B} (B \neq 0)$
- 4. $\lim_{x \to x_0} [f(x)]^n = [\lim_{x \to x_0} f(x)]^n$, n 为正整数

3.1.5 夹逼准则

若函数 f(x), g(x) 及 h(x) 满足条件:

- 1. $g(x) \le f(x) \le h(x)$
- 2. $\lim_{x \to x_0} g(x) = A$, $\lim_{x \to x_0} h(x) = A$

则函数 f(x) 极限存在, 且 $\lim_{x \to x_0} f(x) = A$.

3.1.6 洛必达法则

- 1. $\frac{0}{0}$: $\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x \to \infty} \frac{f(x)}{F(x)} = \lim_{x \to \infty} \frac{f'(x)}{F'(x)}$), 需要以下条件:
 - (a) 若 $x \to a(\vec{u}x \to \infty)$ 时, 函数 f(x) 及 F(x) 都趋近于 0
 - (b) 且 f'(x) 及 F'(x) 在点 a 的去心邻域内 (或当 |x| > X 时, X 为充分大的正数) 存在, 且 $F'(x) \neq 0$
 - (c) $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x\to\infty} \frac{f'(x)}{F'(x)}$) 存在或者无穷大
- 2. $\frac{\infty}{\infty}$: $\lim_{x\to a} \frac{f(x)}{F(x)} = \lim_{x\to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x\to\infty} \frac{f(x)}{F(x)} = \lim_{x\to\infty} \frac{f'(x)}{F'(x)}$), 需要以下条件:
 - (a) 若 $x \to a($ 或 $x \to \infty)$ 时, 函数 f(x) 及 F(x) 都趋近于 ∞
 - (b) 且 f'(x) 及 F'(x) 在点 a 的去心邻域内 (或当 |x|>X 时, X 为充分大的正数) 存在, 且 $F'(x)\neq 0$
 - (c) $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x\to\infty} \frac{f'(x)}{F'(x)}$) 存在或者无穷大

对于 $\lim_{x\to a} \frac{f(x)}{F(x)} = \lim_{x\to a} \frac{f'(x)}{F'(x)}$, 右存在, 则左存在; 但左存在, 并不意味着右存在

3.1.7 泰勒公式

泰勒公式表

•
$$\sin x = x - \frac{x^3}{3!} + o(x^3)$$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

•
$$\arcsin x = x + \frac{x^3}{3!} + o(x^3)$$

•
$$\tan x = x + \frac{x^3}{3} + o(x^3)$$

用泰勒公式求极限

1. $\frac{A}{B}$: 适用于 "上下同阶" 的原则

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

•
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

•
$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$

•
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + o(x^3)$$