Serial Peripheral Interface (SPI)

- Synchronous serial data transfers
 - Multipoint serial communication between a "master" and a "slave" device
 - Clock permits faster data rates than async communications (framing unnecessary)
 - Signals = clock, data in/out, "slave select"
 - Master controls data transfers:
 - transmit a synchronization clock
 - activate slave select signal
 - All device data registers effectively linked into a single "shift register"

Single master, single-slave SPI connections

SCLK – serial clock, generated by the master

MOSI – master output/slave input

MISO – master input/slave output

SS – slave select/enable signal

Single master, multiple slave SPI implementation

Single master, multiple slave SPI implementation – daisy chained

SPI serial data timing

- Programmable clock rate and timing for flexibility
 - CPOL = clock polarity (0=active-high, 1= active-low)
 - CPHA = clock phase (sample on leading/trailing pulse edge)

CPHA=0 : data output immediately when PCSn active data sampled on leading edge

Figure 22-16. DSPI Transfer Timing Diagram (MTFE=0, CPHA=0, FMSZ=8)

SPI serial data timing

- CPHA=1
 - data output on 1st clock edge after PCSn active
 - data sampled on <u>trailing</u> edge

Figure 22-17. DSPI Transfer Timing Diagram (MTFE=0, CPHA=1, FMSZ=8)

Maxim MAX5154

12-Bit Serial DAC

MAX5154 serial data format

Command and address bits select channel and conversion properties.

VTI Technologies SCP1000 Pressure Sensor

Supports SPI or I2C (factory programmed) 19 bit pressure, 14 bit temperature

Analog Devices ADIS16003 Dual-axis accelerometer

12-bit acceleration/10-bit temperature

ADIS16003 Dual-axis accelerometer SPI interface timing

Figure 3. Accelerometer Serial Interface Timing Diagram

Figure 4. Temperature Serial Interface Timing Diagram

SST: SST25VF016B

16 Mbit SPI serial flash memory

SST25VF016B serial flash: device operation instructions

TABLE 5: DEVICE OPERATION INSTRUCTIONS

Instruction	Description	Op Code Cycle ¹	Address Cycle(s) ²	Dummy Cycle(s)	Data Cycle(s)	Maximum Frequency
Read	Read Memory at 25 MHz	0000 0011ь (03Н)	3	0	1 to ∞	25 MHz
High-Speed Read	Read Memory at 50 MHz	0000 1011ь (0ВН)	3	1	1 to ∞	50 MHz
4 KByte Sector-Erase ³	Erase 4 KByte of memory array	0010 0000ь (20Н)	3	0	0	50 MHz
32 KByte Block-Erase ⁴	Erase 32 KByte block of memory array	0101 0010b (52H)	3	0	0	50 MHz
64 KByte Block-Erase ⁵	Erase 64 KByte block of memory array	1101 1000b (D8H)	3	0	0	50 MHz
Chip-Erase	Erase Full Memory Array	0110 0000b (60H) or 1100 0111b (C7H)	0	0	0	50 MHz
Byte-Program	To Program One Data Byte	0000 0010ь (02Н)	3	0	1	50 MHz
AAI-Word-Program ⁶	Auto Address Increment Programming	1010 1101b (ADH)	3	0	2 to ∞	50 MHz
RDSR ⁷	Read-Status-Register	0000 0101ь (05Н)	0	0	1 to ∞	50 MHz
EWSR	Enable-Write-Status-Register	0101ь 0000ь (50Н)	0	0	0	50 MHz
WRSR	Write-Status-Register	0000 0001ь (01Н)	0	0	1	50 MHz
WREN	Write-Enable	0000 0110ь (06Н)	0	0	0	50 MHz
WRDI	Write-Disable	0000 0100ь (04Н)	0	0	0	50 MHz
RDID ⁸	Read-ID	1001 0000b (90H) or 1010 1011b (ABH)	3	0	1 to ∞	50 MHz
JEDEC-ID	JEDEC ID read	1001 1111b (9FH)	0	0	3 to ∞	50 MHz
EBSY	Enable SO to output RY/BY# status during AAI programming	0111 0000ь (70Н)	0	0	0	50 MHz
DBSY	Disable SO to output RY/BY# status during AAI programming	1000 0000ь (80Н)	0	0	0	50 MHz

Motorola MC14499 7-segment LED display decoder/driver with SPI

- 7-segment alphanumeric LED decoder/driver
- drives 4 characters with decimal points
- NPN output drivers for common-cathode LEDs

STM32 Serial Peripheral Interface (SPI)

- Dual function: SPI (default) or I²S
- Synchronous, serial, full-duplex communication
- Configurable as SPI master or slave
- Programmable clock polarity/phase
- Programmable baud rate
- Supports busy-wait, interrupt, and DMA I/O

STM32 SPI block diagram

SPI data register (SPI_DR)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DR[15:0]															
rw r															

Transmit buffer for writing / Receive buffer for reading

```
SPI 8-bit data frame format (DFF = 0):
    DR[7:0] = data; DR[15:8] = 00000000

SPI 16-bit data frame format (DFF = 1):
    DR[15:0] = data
```

SPI control register 1 (SPI_CR1)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIDI MODE	BIDI OE	CRC EN	CRC NEXT	DFF	RX ONLY	SSM	SSI	LSB FIRST	SPE		BR [2:0]		MSTR	CPOL	СРНА
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

BIDIMODE: 0 = 2-line/unidirectional, 1 = 1-line/bidirectional

BIDIOE: bidirectional mode output enable (0 = receive, 1 = xmit)

CRCEN: hardware CRC calculation enable

CRCNEXT: 1 = next xfer is data (no CRC), 0 = next xfer is CRC

DFF: data frame format (0 = 8-bit, 1 = 16-bit)

RXONLY: receive only (0 = full duplex, 1 = output disabled/receive-only)

SSM: software slave management - NSS pin ignored (1 = enable)

SSI: internal slave select (this bit forced onto NSS pin if output enabled: SSOE)

LSBFIRST: frame format (0 = shift out MSB first, 1 = shift out LSB first)

SPE: SPI enable

BR[2:0] – baud rate control (master) Fbaud = Fpclk / (2^(BR+1))

MSTR: master selection (0 = slave, 1 = master)

CPOL: clock polarity (idle value)

CPHA: clock phase (0 = 1^{st} clk transition to capture data, $1 = 2^{nd}$)

SPI control register 2 (SPI_CR2)

8	7	6	5	4	3	2	1	0
	TXEIE	RXNEIE	ERRIE	FRF	Res.	SSOE	TXDMAEN	RXDMAEN
	rw	rw	rw	rw		rw	rw	rw

TXEIE: Tx buffer empty interrupt enable (on TXE flag set)

RXNEIE: Rx buffer not empty interrupt enable (on RXNE flag set)

ERRIE: error interrupt enable (CRCERR, OVR, MODF in SPI mode)

FRF: frame format (0 = Motorola mode, 1 = TI mode)

SSOE: SS output enable (if in Master mode)

TXDMAEN: Tx buffer DMA enable (DMA request when TXE flag set)

RXDMAEN: Rx buffer DMA enable (DMA request when RXNE flag set)

DMA automatically xfers data between memory and SPI_DR

SPI status register (SPI_SR)

9	8	7	6	5	4	3	2	1	0
	FRE	BSY	OVR	MODF	CRC ERR	UDR	CHSID E	TXE	RXNE
	r	r	r	r	rc_w0	r	r	r	r

FRE: frame format error (for SPI TI slave mode or I2S slave mode)

BSY: SPI/I2S busy communicating (set/cleared by hardware)

OVR: overrun error – master sends before RXNE cleared by slave

MODF: master mode fault – master NSS pin lulled low(SPI only)

CRCERR: CRC error in received value (SPI only)

UDR: underrun error (I2S only) 1st clock before data in DR

CHSIDE: channel side to xmit/has been received (0 = left/1 = right) (12S only)

TXE: 1 = Tx buffer empty: can load next data to buffer;

clears on DR write

RXNE: 1 = Rx buffer not empty: valid received data in buffer; clears on DR read

- Use TXE/RXNE rather than BSY for each transmission.
- Trigger SPI interrupts with TXE, RXNE, MODF, OVR, CRCERR, FRE

Master Operation Setup

MOSI pin = data output; MISO pin = data input. SPI CR1:

- 1. Select BR[2:0] bits to define the serial clock baud rate
- Select CPOL and CPHA bits to define one of the four relationships between the data transfer and the serial clock.
- 3. Select DFF bit to define 8- or 16-bit data frame format
- Select LSBFIRST bit to define the frame format (MSB or LSB first).
- Set MSTR and SPE bits.
- 6. If the NSS pin is required in input mode, in hardware mode, connect the NSS pin to a high-level signal during the complete byte transmit sequence. In NSS software mode, set the SSM and SSI bits in the SPI_CR1 register. If the NSS pin is required in output mode, the SSOE bit only should be set.
- 7. Select FRF bit in SPI_CR2 to select the Motorola or TI SPI protocol.