# How to choose your test? Probability and Statistical Inference

Bojan Božić

TU Dublin

Winter 2020

## Descriptive Statistics and Visuals

### Dependent on measurement type and shape of distribution:

- For continuous, normally distributed variables:
  - Count, mean, standard deviation (minimum, maximum).
  - Histograms, dot plots, box plots, scatter plots.
- For continuous, skewed variables:
  - Count, median, inter-quartile range (minimum, maximum).
  - Histograms, dot plots, box plots, scatter plots.
- For categorical variables:
  - Frequency counts, percentages.
  - One-way tables, two-way tables.
  - Bar charts, pie charts.



# **Exploring Data**

| Descriptive Statistics |            |                | Visuals       |                 |
|------------------------|------------|----------------|---------------|-----------------|
| Categorical            | Continuous | Continuous     | Categorical   | Continuous      |
|                        | Central    | Variation      |               |                 |
|                        | Tendency   |                |               |                 |
| Frequency              | Mean       | Standard       | Bar chart     | Histogram       |
|                        | (non-      | Deviation      |               | (with density   |
|                        | skewed)    | (non-skewed)   |               | curve)          |
| Percentage             | Median     | Inter-quartile | Clustered     | Box plot        |
| (row,                  | (skewed)   | range          | bar charts    | (can be plotted |
| column                 |            | (skewed)       | (two cate-    | against a       |
| or total)              |            |                | gorical vari- | categorical     |
|                        |            |                | ables)        | variable)       |
|                        |            |                | Pie chart     | Scatter plot    |
|                        |            |                |               | two continuous  |
|                        |            |                |               | variables       |

## **Deciding Normality**

#### Visual

### Inspect:

- Histogram with density curve.
- QQPlot.

### Skew

Calculate standardised skew:

 Approaching normality if [-2, +2].

### Kurtosis

Calculate standardised kurtosis:

 Approaching normality if [-2,+2].

### **Z** Scores

Create standardised scores for variable (Z scores):

- Approaching normality if 95% between:
  - [-3.29, +3.29] for sample size > 80.
  - [-2.5, +2.5] for sample size  $\le 80$ .



## **Deciding Normality**

- There are statistical tests for normality.
  - Shapiro-Wilks for small samples.
  - Kolmogorov-Smirnov for large samples (> 50).
- We have not covered these yet as they will usually return a result to indicate non-normality.
  - This does not mean you can't proceed with parametric tests.
- You will complete a normality assessment in your CA as outlined during the module.
  - You cannot rely solely on normality tests, however.

### Which test?

### What is your measurement type?

- For the outcome variable?
  - Continuous (normal, skew) or categorical?
  - If more than one outcome, are they paired or related?
- For your independent variable?
  - Continuous or Categorical (1 group, 2 groups, more than 2 groups).
  - For 2 or more than 2 groups: Independent (Unrelated) / Paired (Related).

## How to choose your test?



| Independent                                   | Outcome(Dependent) variable                                                                                                          |                                                                               |                                                                                              |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| variable/<br>Number of<br>groups              | Continuous and Normally distributed (Parametric)                                                                                     | Continuous and skewed / Ordinal<br>(Non-parametric)                           | Binary<br>(2 categories)                                                                     |  |  |
| Continuous                                    | Pearson correlation<br>cor.test method='Pearson'                                                                                     | Spearman/Kendall correlation<br>cor.test<br>method=`Spearman'/method=`Kendall |                                                                                              |  |  |
| 2 independent groups                          | T test t.test var.equal=TRUE/FALSE Pre-check Levene                                                                                  | Mann-Whitney U test coin::wilcox.test                                         | Chi-square test /<br>Fisher's Exact<br>gmodels::Crosstable<br>fisher=TRUE<br>chisq=TRUE      |  |  |
| Paired (related)<br>sample<br>(2 time points) | Paired t test<br>t.test paired=TRUE/FALSE<br>var.equal=TRUE/FALSE                                                                    | Wilcoxon signed rank test<br>coin::wilcox.test<br>Paired=TRUE                 | McNemar's test                                                                               |  |  |
| >2 independent groups                         | One-way ANOVA test aov posthoc: Tukey/Games Howell posthoc Pre-check Bartlett Userfriendlyscience::onewaypost hoc=tukey/games-howell | Kruskal-Wallis test<br>kruskal.test<br>Posthoc test: FSA::dunnTest            | Chi-square test /<br>Fisher's Exact Test<br>gmodels::Crosstable<br>fisher=TRUE<br>chisq=TRUE |  |  |
| >2 related samples (>2 time points)           | Repeated measures ANOVA<br>Aov                                                                                                       | Friedman's Test Friedman.test                                                 | < E > E 900                                                                                  |  |  |

### Parametric Difference Tests - Pre-Check

#### T-test

#### Levene's Test:

- Non-significant result variances homogenous in groups (var.equal=TRUE).
- Significant result variances heterogeneous (var.equal=FALSE).

### **ANOVA**

#### Bartlett's Test:

- Non-significant result variances homogeneous in groups (Tukey post-hoc).
- Significant result variances heterogeneous (Games Howell post-hoc).



| Test                                               | Effect                                                                                               |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Correlation                                        | Pearson, Spearman and Kendall<br>Cohen's d<br>.10 Small; .30 Moderate; .50 Large                     |  |  |  |  |
| Difference (t-test)                                | Cohen's d<br>.10 Small; .30 Moderate; .50 Large<br>Eta<br>0.01 = small, 0.06 = moderate, 0.14 =large |  |  |  |  |
| Difference (Mann-<br>Whitney/Wilcoxon Signed Rank) | Rosentahl's r<br>0.1 small<br>0.5 moderate<br>0.8 large                                              |  |  |  |  |
| Difference (ANOVA)                                 | Eta<br>0.01 = small, 0.06 = moderate, 0.14 = large                                                   |  |  |  |  |
| Difference (Kruskal-Wallis)                        | Eta<br>0.01 = small, 0.06 = moderate, 0.14 =large                                                    |  |  |  |  |
| Difference (Chi-squared)                           | Phi (2 x 2)  0.1 small,;0.3 medium and 0.5 large.  Cramer's V     df   small   medium   large     1  |  |  |  |  |