

PMB2023

PATHOGEN MULTIOMICS AND BIOINFORMATICS

Rio Grande/RS 2023

Module 6: RNA-Seq and Transcriptomics

Omics Cascade

The OMICS cascade:

Why using RNA-Seq?

Use of new sequencing technologies to capture and study the transcriptome

- Identify novel transcripts
- Exon/transcript boundaries
- Splice junctions/alternative splicing
- Measure transcript abundance
- Gene expression differences across multiple samples (i.e. differential expression)

RNA-Seq: General Workflow

What is RNA-Seq?

RNA-Seq consists of a method to analyze the transcriptomics of thousands of features in a single assay and, hence, evaluate and compare gene expression in a genome-wide manner.

Two main stages:

RNA-Seq vs cDNA/EST Seq vs Microarrays

Technology	Tiling microarray	cDNA or EST sequencing	RNA-Seq
Technology specifications			
Principle	Hybridization	Sanger sequencing	High-throughput sequencing
Resolution	From several to 100 bp	Single base	Single base
Throughput	High	Low	High
Reliance on genomic sequence	Yes	No	In some cases
Background noise	High	Low	Low
Application			
Simultaneously map transcribed regions and gene expression	Yes	Limited for gene expression	Yes
Dynamic range to quantify gene expression level	Up to a few-hundredfold	Not practical	>8,000-fold
Ability to distinguish different isoforms	Limited	Yes	Yes
Ability to distinguish allelic expression	Limited	Yes	Yes
Practical issues			
Required amount of RNA	High	High	Low
Cost for mapping transcriptomes of large genomes	High	High	Relatively low

Ability to detect novel transcripts

Wang et al 2009

Wider dynamic range

Higher specificity and sensitivity

Simple detection of rare and low-abundance transcripts

RNA-Seq vs Microarrays

The plots show that the overall dynamic range of the 18,306 common genes generated by the two platforms is much broader in RNA-Seq (2.66105) than in microarray (3.66103).

Zhao et al 2014

RNA-Seq vs Microarrays

RNA-Seq is able to detect subtle changes to the level of genes with low expression levels whereas microarrays are not

Library Preparation

Aspects and factors to consider:

- RNA Source: Total RNA, mRNA, depletion of rRNA?
- Strand specific?
- Replicates?
 - Technical (multiple libraries from the same sample)
 - Biological (multiple samples from the same condition)
- Which platform?
- Multiple samples/multiplexing

Library Preparation: comparison between technologies and limitations

m⁶A AAAAAAAAAAAA

Stark et al 2019

Library Preparation: comparison between technologies and limitations

Sequencing technology	Platform	Advantages	Disadvantages	Key applications
Short-read cDNA	Illumina, Ion Torrent	 Technology features very high throughput: currently 100–1,000 times more reads per run than long-read platforms Biases and error profiles are well understood (homopolymers are still an issue for Ion Torrent) A huge catalogue of compatible methods and computational workflows are available Analysis works with degraded RNA 	 Sample preparation includes reverse transcription, PCR and size selection adding biases to all methods Isoform detection and quantitation can be limited Transcript discovery methods require a de novo transcriptome alignment and/or assembly step 	Nearly all RNA-seq methods have been developed for short-read cDNA sequencing: DGE, WTA, small RNA, single-cell, spatialomics, nascent RNA, translatome, structural and RNA-protein interaction analysis, and more are all possible
Long-read cDNA	PacBio, ONT	 Long reads of 1–50 kb capture many full-length transcripts Computational methods for de novo transcriptome analysis are simplified 	 Technology features low-to-medium throughput: currently only 500,000 to 10 million reads per run Sample preparation includes reverse transcription, PCR and size selection (for some protocols), adding biases to many methods Degraded RNA analysis is not recommended 	Sequencing is particularly suited to isoform discovery, de novo transcriptome analysis, fusion transcript discovery, and MHC, HLA or other complex transcript analysis
Long-read RNA Stark et al 2019	ONT	 Long reads of 1–50 kb capture many full-length transcripts Computational methods for de novo transcriptome analysis are simplified Sample preparation does not require reverse transcription or PCR-reducing biases RNA base modifications can be detected Poly(A) tail lengths can be directly estimated from single-molecule sequencing 	 Technology features low throughput: currently only 500,000 to 1 million reads per run Sample preparation and sequencing biases are not well understood Degraded RNA analysis is not recommended 	 Sequencing is particularly suited to isoform discovery, de novo transcriptome analysis, fusion transcript discovery, and MHC, HLA or other complex transcript analysis Ribonucelotide modifications can be detected

Analytical Pipeline Overview

Searching for Differentially Expressed Genes

For differential expression the number of reads mapping to each gene (read count) is used to evaluate expression levels...

In which sample is Gene X overexpressed?

Raw counts cannot be used to evaluate or compare expression beween samples! And within a sample?

Factors to consider:

Sequencing Depth

Gene Length

RNA Composition

Normalizing Raw Read Counts: CPM/RPM, RPKM/FKPM and TPM

The answer: Normalization - this is required for differential expression analysis vizualization, etc.

Some Normalization Methods:

<u>CPM/RPM – Counts/Reads per</u> <u>million</u>

$$CPM = \frac{No.reads\ mapped\ to\ gene\ x\ 10^6}{Total\ number\ of\ mapped\ reads}$$

RPKM/FPKM – Reads/fragments per kilobase million

Scaling Factor (SF) =
$$\frac{Total\ number\ of\ mapped\ reads}{10^6}$$

$$RPM = \frac{No.reads\ mapped\ to\ gene}{SF}$$

$$RPMK = \frac{RPM}{gene\ length(Kbp)}$$

$$RPMK = \frac{No.reads\ mapped\ to\ gene\ x\ 10^3\ x\ 10^6}{Total\ number\ of\ mapped\ reads\ x\ gene\ length(bp)}$$

<u>TPM – Transcripts per kilobase</u> million

$$RPK = \frac{No.reads\ mapped\ to\ gene}{gene\ length(Kbp)}$$

Scaling Factor (SF) =
$$\frac{\sum RPK}{10^6}$$

$$TPM = \frac{RPK}{SF}$$

Normalizing Raw Read Counts: Median of Ratios (DESeq2)

DESeq2 – Median of Ratios Method Normalization

Accounts for sequencing depth and RNA composition... but not gene length

Anders and Huber Genome Biology 2010, 11:R106 http://genomebiology.com/2010/11/10/R106

METHOD

Open Access

Differential expression analysis for sequence count data

Simon Anders*, Wolfgang Huber

- **1.** Starting on raw counts, calculate the geometric mean for each gene across all sample pseudo-reference;
- **2.** Calculate the ratio of each sample to the pseudo-reference;

3. Calculate the normalization factor for each sample (**size factor**) by taking the median of all ratios;

4. Normalized counts are obtained by dividing the raw count of each gene by the normalization factor;

Gene	Sample A	Sample B	Pseudo-reference
гроВ	1100	750	$\sqrt[2]{1100 \times 750} = 908,30$
eis	15	10	$\sqrt[2]{15 \times 10} = 12,25$

Gene	Ratio Sample A	Ratio Sample B	
rpoB	1100/908,30=1,21	750/908,30=0,83	
eis	15/12,25=1,22	10/12,25=0,82	

Normalization Factors:

Sample A – Median(1,21; 1,22)= 1,215

Sample B - Median(0,83; 0,82)= 0,825

Gene	Normalized Count A	Normalized Count B
гроВ	1100/1,215=905,35	750/0,825=909,09
eis	15/1,215=12,35	10/0,825=12,12

Comparison of Normalization Methods

	Factors Accounted		Applications			
Method	Sequencing Depth	Gene Length	RNA Composition	Within sample	Comparisons between samples	DE Analysis
СРМ		X	X	X		X
RPKM/FPKM			X		X	X
TPM			X			X
Median of Ratios (DESeq2)		X		X		
Trimmed Mean of M Values (<i>EdgeR</i>)						

Other than bulk RNA-Seq ...

Single-cell RNA-Seq

Single-cell capture and cDNA synthesis Analysis Tissue dissociation Tubes Flow sorting 10^{3} Full-length cDNA Full-length cDNA 0 25 50 75 100 Sequence reads (%) 10^{3} Nanowells Microfluidics DGE Sequencing Full-length cDNA Full-length cDNA 10⁵ Barcoding Droplets tSNE Barcode Barcode 3 Cell 1 3'or5'mRNA 3'or5'mRNA

Spatialomics

