16/17(一)浙江工业大学高等数学 A 考试试卷

学院:		班级:		姓名:		学号:		
任课老师:								
Ę	题 号			Ξ	四	五	总分	
1	身分							
、填空选择是	0 (每小	卜题3分)) :					
2. 设 y =								
3. 函数 $y = 2x + \frac{8}{x}$ $(x > 0)$ 在区间上单调减少。								
4. 函数 $f(x) = x - 2x^4$ 在 $(-\infty, +\infty)$ 上的最大值是。								
5. 曲线 y	=1-x	e^x 在 x	= 0 处的	的切线方程	星是	o		
$6. \int_{-\frac{\pi}{2}}^{\pi} \sqrt{1}$								•h
7. 设在区	间 [a,b	b]上, <i>f</i>	f(x) > 0	, $f'(x)$	>0, f	f''(x) > 0	A = 0	$\int_a^b f(x)dx$
B = f(a)(b - a)	- a),	$C = \frac{1}{2}[f$	f(a) + f(a)	(b)](b-a)	a),则 A	A,B,C的	大小关系是	륃
※ 微分方	程 $\frac{dy}{dx}$ =	= xy 的通	解是			o		
🗙 微分方	程 y" +	y=1的	通解是_			o		
10. $f(x)$	在 <i>x</i> = .	x_0 附近可	「导,且 _]	$\lim_{x \to x_0} \frac{f'(x)}{x - x}$	$\frac{1}{c_0} = \frac{1}{2}$,	则 $x = x$	$_{0}$ 是 $f(x)$ 的	的()。
A) 担 占	-	D) 招十	冶 占	C	据小估。	占	D) 上法邦	不 4
11. 设 <i>f</i> ′(x ₀)存	在,则 1	$\lim_{n\to 0} \frac{f(x_0)}{x_0}$	$\frac{)-f(x_0)}{h}$	$\frac{-h)}{-}$	()	
A) $f'(x)$	$(c_0);$	B) -	$f'(-x_0)$);	C) <i>f</i>	$(-x_0)$;	D)	$-f'(x_0)$.
A) 切点 11. 设 f'(A) f'(12. 若 f($(x) = \begin{cases} x \\ z \end{cases}$	$x^2 0 \le x$	$x < 1$ ≤ 2	削函数 <i>F</i> ($f(x) = \int_0^x dx$	f(t)dt 在	区间[0,1]	内有(
A) 可去	间断点	; B) [跳跃间断	点; C)	连续但是	不可导点	; D) 连续	卖可导。

二、试解下列各题(每小题6分):

1. 求极限
$$\lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1})$$

2. 设
$$\begin{cases} x = \ln \sqrt{1 + t^2} \\ y = \arctan t \end{cases}$$
, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

3. 求不定积分
$$\int \sqrt{\frac{1+x}{1-x}} dx$$

4. 求定积分
$$\int_{-2}^{0} \frac{x+2}{x^2+2x+2} dx$$

求微分方程
$$xy'' + y' = \frac{1}{2}x$$
 的通解

三、试解下列各题(每小题9分):

1. 求椭圆 $x^2 - xy + y^2 = 3$ 上纵坐标最大和最小的点。

2. 过坐标原点作曲线 $y = \ln x$ 的切线,该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D 。 (1) 求图形 D 的面积; (2) 求图形 D 绕直线 x = e 旋转一周所得旋转体的体积。

四、 (4分) 设 f(x), g(x) 在 [a,b] 上连续,且 $g(x) \neq 0$,证明存在 $\xi \in (a,b)$,使得 $\frac{\int_a^b f(x)dx}{\int_a^b g(x)dx} = \frac{f(\xi)}{g(\xi)}$ 。

五、试解下列各题(每小题6分):

1. 设函数 $f(x) = \begin{cases} \frac{\tan x - x}{x^2} & x > 0 \\ ax + b & x \le 0 \end{cases}$,试确定常数 a, b,使 f(x) 在 x = 0 处连续、可导;并求 f'(0)。

文 设 f(x) 连续,且 $\lim_{x \to +\infty} f(x) = 1$,(1)写出微分方程 y' + y = f(x) 满足初始条件 y(0) = 0 的一个特解 y(x);(2)求 $\lim_{x \to +\infty} y(x)$ 。