Models_kNN_LDA_QDA_DT_RF

Group 4: Kiet Ly, Mary Monroe, and Shaswati Mukherjee

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model selection import cross val score, train test split
from sklearn.utils import resample
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy score,r2 score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import scale
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from sklearn.discriminant analysis import QuadraticDiscriminantAnalysis
%matplotlib inline
import seaborn as sns
sns.set(style='whitegrid')
pd.set option('display.width', 1500)
pd.set option('display.max columns', 100)
import warnings
warnings.filterwarnings('ignore')
```

Create train/test set for accounts and tweets

Discussion:

The dataset for accounts and tweets are split into train/test ratio of 2/3 and 1/3. From Milestone#3, we have determined only these features are important.

Base Tweets Features

retweet_count
favorite_count
num_urls
num_mentions
num_hashtags

In [2]:

```
combine_df = []
for file_ in ['../../data/tweets_nlp_1_2_ld.csv','../../data/tweets_nlp_2_2_ld.c
sv','../../data/tweets_nlp_3_2_ld.csv']:
    df = pd.read_csv(file_,index_col=None, header=0,keep_default_na=False)
    combine_df.append(df)
all_tweets = pd.concat(combine_df, axis = 0, ignore_index = True)
all_tweets_df = all_tweets[['retweet_count', 'favorite_count', 'num_hashtags', 'num_urls', 'num_mentions','user_type']]
train_base_tweets_df, test_base_tweets_df = train_test_split(all_tweets_df, test_size=0.33, random_state=42, stratify=all_tweets_df['user_type'])
display(train_base_tweets_df.head(2))
print('train_tweets_shape:',train_base_tweets_df.shape)
print('test_tweets_shape:',test_base_tweets_df.shape)
```

retweet_count favorite_count num_hashtags num_urls num_mentions user_type

54933	0	0	0	1	0	0
80644	0	0	0	1	0	0

train tweets shape: (80574, 6) test tweets shape: (39686, 6)

In [3]:

Out[3]:

	retweet_count	favorite_count	num_hashtags	num_urls	num_mentions	user_type	sentimer
0	0	0	0	1	0	1	
1	0	0	0	1	1	1	

In [4]:

Out[4]:

retweet_count favorite_count num_hashtags num_urls num_mentions user_type sentimer

0	0	0	0	1	0	1	
1	0	0	0	1	1	1	

kNN without NLP

In [5]:

```
#kNN or take forever.
all_tweets_df = all_tweets[['retweet_count', 'favorite_count', 'num_hashtags', '
num_urls', 'num_mentions', 'user_type']].sample(frac=.30)
train base tweets df, test base tweets df = train test split(all tweets df, test
size=0.33, random state=42, stratify=all tweets df['user type'])
X_train, y_train = train_base_tweets_df.drop('user_type',axis=1), train_base_twe
ets df['user type']
X test, y test = test base tweets df.drop('user type',axis=1), test base tweets
df['user type']
Xs train, Xs test = scale(X train), scale(X test)
neighbors, train_scores, cvmeans, cvstds, cv_scores = [], [], [], []
for n in range(1,11):
    neighbors.append(n)
    knn = KNeighborsClassifier(n_neighbors = n)
    train scores.append(knn.fit(X train, y train).score(X train, y train))
    scores = cross val score(estimator=knn, X=Xs train, y=y train, cv=5)
    cvmeans.append(scores.mean())
    cvstds.append(scores.std())
#Alter data structure for using internal numpy functions
cvmeans = np.array(cvmeans)
cvstds = np.array(cvstds)
#Plot Means and Shade the +-2 SD Interval
plt.plot(neighbors, cvmeans, '*-', label="Mean CV")
plt.fill between(neighbors, cvmeans - 2*cvstds, cvmeans + 2*cvstds, alpha=0.3)
ylim = plt.ylim()
plt.plot(neighbors, train scores, '-+', label="Train")
plt.ylim(ylim)
plt.legend()
plt.ylabel("Accuracy")
plt.xlabel("Neighbors")
plt.title('Tweets Mean CV accuracy vs max depth')
plt.xticks(neighbors)
plt.show()
```


kNN with NLP

```
#scale down to 10% or take forever.
all tweets df = all tweets[['retweet count', 'favorite count', 'num hashtags', '
num_urls', 'num_mentions',
                               'user type', 'sentiment negative', 'sentiment neu
tral', 'sentiment positive',
                               'ratio pos', 'ratio neg', 'ratio neu', 'token cou
nt', 'url token ratio', 'ant',
                               'disgust', 'fear', 'joy', 'sadness', 'surprise',
'trust','jaccard']].sample(frac=.30)
train_base_tweets_df, test_base_tweets_df = train_test_split(all_tweets_df, test_
size=0.33, random state=42, stratify=all tweets df['user type'])
X train, y train = train base tweets df.drop('user type',axis=1), train base twe
ets df['user type']
X test, y test = test base tweets df.drop('user type',axis=1), test base tweets
df['user type']
Xs_train, Xs_test = scale(X_train), scale(X test)
neighbors, train_scores, cvmeans, cvstds, cv_scores = [], [], [], []
for n in range(1,11):
    neighbors.append(n)
    knn = KNeighborsClassifier(n neighbors = n)
    train scores.append(knn.fit(X train, y train).score(X train, y train))
    scores = cross val score(estimator=knn, X=Xs_train, y=y_train, cv=5)
    cvmeans.append(scores.mean())
    cvstds.append(scores.std())
#Alter data structure for using internal numpy functions
cvmeans = np.array(cvmeans)
cvstds = np.array(cvstds)
#Plot Means and Shade the +-2 SD Interval
plt.plot(neighbors, cvmeans, '*-', label="Mean CV")
plt.fill between(neighbors, cvmeans - 2*cvstds, cvmeans + 2*cvstds, alpha=0.3)
ylim = plt.ylim()
plt.plot(neighbors, train scores, '-+', label="Train")
plt.ylim(ylim)
plt.legend()
plt.ylabel("Accuracy")
plt.xlabel("Neighbors")
plt.title('Tweets Mean CV accuracy vs max depth')
plt.xticks(neighbors)
plt.show()
```


LDA/QDA without NLP

In [7]:

```
all_tweets_df = all_tweets[['retweet_count', 'favorite_count', 'num_hashtags', 'num_urls', 'num_mentions', 'user_type']]
train_base_tweets_df, test_base_tweets_df = train_test_split(all_tweets_df, test_size=0.33, random_state=42, stratify=all_tweets_df['user_type'])

X_train, y_train = train_base_tweets_df.drop('user_type',axis=1), train_base_tweets_df['user_type']

X_test, y_test = test_base_tweets_df.drop('user_type',axis=1), test_base_tweets_df['user_type']

lda = LinearDiscriminantAnalysis().fit(X_train, y_train)
qda = QuadraticDiscriminantAnalysis().fit(X_train, y_train)
print("LDA score: %f, CV score: %f" % (accuracy_score(y_test, lda.predict(X_test_out)), cross_val_score(estimator=lda, X=X_test, y=y_test, cv=5).mean()))
print("QDA score: %f, CV score: %f" % (accuracy_score(y_test, qda.predict(X_test_out)), cross_val_score(estimator=qda, X=X_test, y=y_test, cv=5).mean()))
```

LDA score: 0.715240, CV score: 0.716122 QDA score: 0.753943, CV score: 0.754397

LDA/QDA with NLP

```
#scale down to 10% or take forever.
all tweets df = all tweets[['retweet count', 'favorite count', 'num hashtags', '
num_urls', 'num_mentions',
                               'user type', 'sentiment negative', 'sentiment neu
tral', 'sentiment positive',
                               'ratio pos', 'ratio neg', 'ratio neu', 'token cou
nt', 'url_token_ratio', 'ant',
                               'disgust', 'fear', 'joy', 'sadness', 'surprise',
'trust', 'jaccard']]
train base tweets df, test base tweets df = train test split(all tweets df, test
size=0.33, random state=42, stratify=all tweets df['user type'])
X train, y train = train base tweets df.drop('user type',axis=1), train base twe
ets df['user type']
X test, y test = test base tweets df.drop('user type',axis=1), test base tweets
df['user type']
lda = LinearDiscriminantAnalysis().fit(X train, y train)
qda = QuadraticDiscriminantAnalysis().fit(X train, y train)
print("LDA score: %f, CV score: %f" % (accuracy score(y test, lda.predict(X test
)), cross val score(estimator=lda, X=X test, y=y test, cv=5).mean()))
print("QDA score: %f, CV score: %f" % (accuracy score(y test, qda.predict(X test
)), cross val score(estimator=qda, X=X_test, y=y_test, cv=5).mean()))
```

LDA score: 0.810487, CV score: 0.810311 QDA score: 0.762057, CV score: 0.763493

Base Decision Tree without NLP

First we determine the optimal depth for Decision Tree, then use that depth to train Random Forest. From the plot, the depth > 6 does not improve accuracy. We will pick depth = 6 as best depth. The test accurracy is 0.793 and training accuracy 0.795 so nearly match, we can conlude there is no overfit issue.

In [9]:

```
#Perform 5-fold cross validation and store results
all tweets df = all tweets[['retweet count', 'favorite count', 'num hashtags', '
num_urls', 'num_mentions', 'user_type']]
train_base_tweets_df, test_base_tweets_df = train_test_split(all tweets df, test
size=0.33, random state=42,
                                                              stratify=all tweets
_df['user_type'])
X train, y train = train base tweets df.drop('user type',axis=1), train base twe
ets df['user type']
X test, y test = test base tweets df.drop('user type',axis=1), test base tweets
df['user type']
depths, train scores, cvmeans, cvstds, cv_scores = [], [], [], [], []
for depth in range(1,21):
    depths.append(depth)
    dt = DecisionTreeClassifier(max depth=depth)
    train scores.append(dt.fit(X train, y train).score(X train, y train))
    scores = cross val score(estimator=dt, X=X train, y=y train, cv=5)
    cvmeans.append(scores.mean())
    cvstds.append(scores.std())
#Alter data structure for using internal numpy functions
cvmeans = np.array(cvmeans)
cvstds = np.array(cvstds)
#Plot Means and Shade the +-2 SD Interval
plt.plot(depths, cvmeans, '*-', label="Mean CV")
plt.fill between(depths, cvmeans - 2*cvstds, cvmeans + 2*cvstds, alpha=0.3)
ylim = plt.ylim()
plt.plot(depths, train scores, '-+', label="Train")
plt.ylim(ylim)
plt.legend()
plt.ylabel("Accuracy")
plt.xlabel("Max Depth")
plt.title('Tweets Mean CV accuracy vs max depth')
plt.xticks(depths)
plt.show()
```


In [10]:

Accuracy: Mean=0.795, +/- 2 SD: [0.789 -- 0.801]

In [11]:

```
#Evaluate performance on Test Set
best_cv_depth = 7
fitted_tree = DecisionTreeClassifier(max_depth=best_cv_depth).fit(X_train, y_train)
best_cv_tree_train_score = fitted_tree.score(X_train, y_train)
best_cv_tree_test_score = fitted_tree.score(X_test, y_test)
print(f"The tree of depth {best_cv_depth} achieved an Accuracy of {best_cv_tree_test_score:.3f} on the test set.")
```

The tree of depth 7 achieved an Accuracy of 0.794 on the test set.

Base Random Forest without NLP features

In [12]:

```
#Fit a Random Forest model
fitted_rf = RandomForestClassifier(n_estimators=7, max_depth=7).fit(X_train,y_tr
ain)
random_forest_train_score = fitted_rf.score(X_train, y_train)
random_forest_test_score = fitted_rf.score(X_test, y_test)
print(f"The Random Forest scored {random_forest_train_score:.3f} on the training
set.")
print(f"The Random Forest scored {random_forest_test_score:.3f} on the test set.
")
```

The Random Forest scored 0.796 on the training set. The Random Forest scored 0.794 on the test set.

Decision Tree with NLP features

In [13]:

	retweet_count	favorite_count	num_hashtags	num_urls	num_mentions	user_type	sen
54933	0	0	0	1	0	0	
80644	0	0	0	1	0	0	

train tweets shape: (80574, 17) test tweets shape: (39686, 17)

In [14]:

```
#Perform 5-fold cross validation and store results
X train, y train = train base tweets df.drop('user type',axis=1), train base twe
ets_df['user_type']
X test, y test = test base tweets df.drop('user type',axis=1), test base tweets
df['user type']
depths, train_scores, cvmeans, cvstds, cv_scores = [], [], [], [], []
for depth in range (1,21):
    depths.append(depth)
    dt = DecisionTreeClassifier(max depth=depth)
    train scores.append(dt.fit(X train, y train).score(X train, y train))
    scores = cross val score(estimator=dt, X=X train, y=y train, cv=5)
    cvmeans.append(scores.mean())
    cvstds.append(scores.std())
#Alter data structure for using internal numpy functions
cvmeans = np.array(cvmeans)
cvstds = np.array(cvstds)
#Plot Means and Shade the +-2 SD Interval
plt.plot(depths, cvmeans, '*-', label="Mean CV")
plt.fill between(depths, cvmeans - 2*cvstds, cvmeans + 2*cvstds, alpha=0.3)
ylim = plt.ylim()
plt.plot(depths, train scores, '-+', label="Train")
plt.ylim(ylim)
plt.legend()
plt.ylabel("Accuracy")
plt.xlabel("Max Depth")
plt.title('Tweets Mean CV accuracy vs max depth')
plt.xticks(depths)
plt.show()
```



```
#Fit a Random Forest model
fitted_rf = RandomForestClassifier(n_estimators=10, max_depth=12).fit(X_train,y_
train)
random_forest_train_score = fitted_rf.score(X_train, y_train)
random_forest_test_score = fitted_rf.score(X_test, y_test)
print(f"The Random Forest scored {random_forest_train_score:.3f} on the training
set.")
print(f"The Random Forest scored {random_forest_test_score:.3f} on the test set.
")
```

The Random Forest scored 0.933 on the training set. The Random Forest scored 0.927 on the test set.

```
In [ ]:
```

```
In [ ]:
```