

Konsep Tambahan, Agreement, dan Closure

MSIM 4103 – Logika Informatika Program Studi Sistem Informasi Jurusan Tehnik, FST

Materi Inisiasi 8

- 1. Konsep Tambahan
 - Satisfiabel Kalimat Tertutup
 - Contradictory Kalimat Tertutup
 - Consistent Kalimat Tertutup
- 2. Agreement
 - Agree on Simbol
 - Agree on Ekspresi dan Kalimat
- 3. Closure

1. Konsep Tambahan

- Satisfiabel Kalimat Tertutup
- Contradictory Kalimat Tertutup
 - Consistent Kalimat Tertutup

Review Materi Sebelumnya

- Kalimat dikatakan tertutup jika semua variabel yang muncul tidak memiliki permunculan bebas/ tidak memuat variabel bebas.
- Variabel bebas: variabel yang **tidak termasuk** dalam scope kuantifier universal (for all) atau exsintensial (for some).
- Suatu interpretasi dikatakan interpretasi untuk kalimat logika predikat \mathcal{E} jika / memberikan nilai kepada masing-masing simbol bebas (konstanta, variabel bebas, fungsi, predikat) dalam \mathcal{E}.

Satisfiabel untuk Kalimat Tertutup

- Suatu kalimat tertutup 7 dikatakan satisfiabel jika ada suatu interpretasi untuk kalimat 7 yang menyebabkan kalimat 7 bernilai true.
- Cara membuktikan kalimat logika predikat 7 bersifat satisfiabel:
 - 1. Periksa apakah kalimat logika predikat 7 tertutup atau tidak. Bila ya, lanjut ke langkah 2 dan 3.
 - 2. Tentukan suatu domain dan interpretasi untuk kalimat 7 yang menyebabkan nilainya adalah true.
 - 3. Tunjukan nilai kebenaran kalimat 🗲 adalah true pada interpretasi tersebut.

Contoh 8.1

Periksa apakah kalimat berikut ini bersifat satisfiabel!

 \mathcal{P} : (for some x) (p(x) and r(x))

Langkah 1
Periksa apakah kalimat merupakan kalimat tertutup, yaitu kalimat yang tidak memuat variabel bebas. (Pemeriksaan lihat materi sesi 6)

 \mathcal{P} : (for some x) (p(x) and q(x))

merupakan kalimat tertutup karena variabel x yang muncul dalam p(x) dan q(x) terikat oleh kuantifier eksistensial for some.

Langkah 2
Tentukan domain interpretasi untuk kalimat 7: (for some x) (p(x) and q(x)).
(Contoh cara memberikan interpretasi ada dalam materi sesi 6)

Misalkan Domain untuk kalimat \mathcal{F} adalah bilangan bulat dan interpretasi untuk kalimat \mathcal{F} dinotasikan dengan interpretasi I. Interpretasi I akan memberikan interpretasi terhadap simbol bebas dalam kalimat, yaitu simbol predikat p dan q.

Untuk simbol bebas p akan diberikan interpretasi berikut ini: $p \leftarrow p_1(d_1)$: $d_1>0$ Untuk simbol bebas q akan diberikan interpretasi berikut ini: $q \leftarrow q_1(d_1)$: $d_1>d_1-2$.

Interpretasi / dapat dituliskan sebagai /: $\{p \leftarrow p_1(d_1): d_1 > 0, q \leftarrow q_1(d_1): d_1 > d$

Langkah 3 Tunjukan nilai kebenaran kalimat 7 adalah true pada interpretasi tersebut.

Karena pada interpretasi $I: \{p \leftarrow p_1(d_1): d_1 > 0, q \leftarrow q_1(d_1): d_1 > d_1 > d_1 > 2\}$, dapat dipilih bilangan bulat yang lebih dari 0 (misalkan adalah 1), sehingga

p(1): 1>0 (bernilai true) dan q(1): 1>1-2 = 1>-1 (bernilai true)

p(1) and q(1): true and true (bernilai true)

Jadi, (**for some x**) (**p(x) and q(x)**) bernilai true pada suatu interpretasi *l*. Oleh karena itu, **kalimat 7 bersifat satisfiabel.**

Contradictory untuk Kalimat Tertutup

- Suatu kalimat tertutup 7 dikatakan contradictory jika untuk setiap interpretasi untuk kalimat 7 menyebabkan kalimat 7 bernilai false.
- Cara membuktikan kalimat logika predikat 7 bersifat contradictory:
 - 1. Tentukan apakah kalimat logika predikat 7 tertutup atau tidak. Bila ya, lanjut ke langkah 2a atau 2b.
 - 2. Buktikan sifat contradictory
 - a. Langsung menggunakan Proof by Falsification.
 - Asumsikan kalimat 7 tidak bersifat contradictory, artinya ada suatu interpretasi untuk kalimat 7 yang menyebabkan kalimat 7 bernilai true.
 - Uraikan hingga menemukan kontradiksi.
 - b. Mengubah kalimat 7 menjadi not 7 dan menunjukan kalimat not 7 bersifat valid. (Lihat materi sesi 7)

Contoh 8.2

Periksa apakah kalimat berikut ini bersifat satisfiabel!

 \mathcal{P} : not (for all x) (p(x)) and (for all x) (p(x))

Periksa kalimat \mathcal{P} : not (for all x) (p(x)) and (for all x) (p(x)) dengan Proof by Falsification (PbF)

Langkah 1

Asumsikan 7 tidak bersifat contradictory, artinya ada suatu interpretasi *I* atas suatu *domain D* sedemikian sehingga 7 bernilai true di bawah *I*.

Langkah 2

Uraikan kalimat \mathcal{F} : not (for all x) (p(x)) and (for all x) (p(x)) hingga menemukan/tidak menemukan kontradiksi.

Kalimat \mathcal{F} : not (for all x) (p(x)) and (for all x) (p(x)) merupakan kalimat konjungsi dari kalimat **not** (**for all** x) (p(x)) dan kalimat (**for all** x) (p(x)). Kalimat \mathcal{F} bernilai true apabila kedua kalimat, **not** (**for all** x) (p(x)) dan (**for all** x) (p(x)) bernilai true.

Kalimat **not** (**for all** x) (p(x)) bernilai true diperoleh apabila nilai kalimat (**for all** x) (p(x)) bernilai false. Namun, ini kontradiksi dengan nilai kalimat (**for all** x) (p(x)) bernilai true.

Perhatikan garis putus-putus, terjadi perbedaan nilai kebenaran (**for all** x) (p(x)) di sisi kanan dan kiri (kontradiksi). Jadi, haruslah **7** bernilai salah untuk setiap interpretasi (bersifat contradictory).

Konsisten untuk Kalimat Tertutup

- Suatu kalimat tertutup \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , ... dikatakan konsisten apabila terdapat interpretasi untuk \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , ... yang membuat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , ... bernilai true.
- Cara membuktikan kalimat logika predikat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , ... bersifat konsisten:
 - 1. Periksa apakah kalimat logika predikat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , ... tertutup atau tidak. Bila ya, lanjut ke langkah 2 dan 3
 - 2. Tentukan suatu domain dan interpretasi untuk kalimat $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \dots$
 - 3. Tunjukan nilai kebenaran kalimat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , ... adalah true pada interpretasi tersebut.

Contoh 8.3

Periksa apakah kalimat berikut bersifat konsisten.

 \mathcal{P}_1 : (for some x) p(x)

 \mathcal{F}_2 : (for some y) q(y)

 \mathcal{P}_3 : (for some z) (if p(z) then q(z))

Langkah 1

Periksa apakah kalimat logika predikat $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ tertutup atau tidak.

Pada \mathcal{F}_1 : (for some x) p(x), variabel x dalam p(x) terikat oleh kuantifier for some.

Pada \mathcal{F}_2 : (for some y) q(y) , variabel y dalam q(y) terikat oleh kuantifier for some.

Pada \mathcal{F}_3 : (for some z) (if p(z) then q(z)), variabel z dalam p(z) dan q(z) terikat oleh kuantifier for some.

Jadi, kalimat logika predikat 7, 7, 7, 7, tertutup.

Langkah 2

Tentukan suatu domain dan interpretasi untuk kalimat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 .

Simbol bebas pada kalimat \mathcal{F}_1 adalah predikat p.

Simbol bebas pada kalimat \mathcal{F}_2 adalah predikat q.

Simbol bebas pada kalimat \mathcal{F}_3 adalah predikat p dan predikat q.

Oleh karena itu, interpretasi harus memuat semua simbol bebas kalimat $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$.

Langkah 2 (lanjutan)

Misalkan domain yang diambil adalah bilangan real dan interpretasi dinotasikan dengan J. Interpretasi J akan memberikan interpretasi terhadap simbol bebas dalam kalimat, yaitu simbol predikat p dan q.

Untuk simbol bebas p akan diberikan interpretasi berikut ini: $p \leftarrow p_J(d_1)$: $0.5d_1 \neq 1$

Untuk simbol bebas q akan diberikan interpretasi berikut ini: $q \leftarrow q_J(d_1)$: $d_1>1,25$.

Interpretasi *J* dapat dituliskan sebagai *J*: $\{p \leftarrow p_J(d_1): 0,5d_1 \neq 1, q \leftarrow q_J(d_1): d_1 > 1,25\}$

Langkah 3 Tunjukan nilai kebenaran kalimat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 adalah true pada interpretasi tersebut.

Kalimat 7₁

Karena dapat dipilih bilangan real $x\neq 2$ (misalkan x=3) sehingga p(3): $0,5(3)\neq 1\equiv 1,5\neq 1$ (bernilai true) maka kalimat \mathcal{F}_1 : (for some x) p(x) bernilai true pada J.

Kalimat 7₂

Karena dapat dipilih bilangan real y>1,25 (misalkan y=1,3) sehingga q(1,3): 1,3>1,25 (bernilai true) maka kalimat \mathcal{F}_2 : (for some y) q(y) bernilai true pada J.

Langkah 3 (lanjutan)

Kalimat 7₃

Karena da pat dipilih bilangan real z≠2 dan z>1,25 (misalkan z=2,1) sehingga

p(2,1): $0,5(2,1)\neq 1 \equiv 1,05\neq 1$ (bernilai true),

q(2,1): 2,1>1,25 (bernilai true), dan

If p(2,1) then q(2,1): if true then true (bernilai true)

maka kalimat \mathcal{F}_3 : (for some z) (if p(z) then q (z)) bernilai true pada J.

Karena interpretasi J dapat membuat nilai kalimat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 adalah true, maka kalimat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 konsisten.

2. Agreement

- Agree on Simbol

- Agree on Ekspresi dan Kalimat

Agree on Simbol

Dua atau lebih interpretasi dikatakan agree on simbol (simbol variabel, konstanta, fungsi dan predikat) jika:

- Dua atau lebih interpretasi memberikan nilai yang sama kepada setiap simbol (khususnya simbol bebas, yaitu simbol konstanta, variabel bebas, fungsi, predikat), atau
- Dua atau lebih interpretasi tidak memberikan nilai kepada simbol (terdapat simbol bebas yang tidak diberi nilai).

Contoh 8.4

Misalkan interpretasi I dan J merupakan interpretasi atas domain bilangan bulat. Interpretasi $I=\{a\leftarrow 2,b\leftarrow 3,x\leftarrow 0,f\leftarrow f_1(d_1,d_2)=d_1-d_2,q\leftarrow q_1(d_1,d_2,d_3)=d_1>d_2\}$ dan interpretasi $J=\{a\leftarrow 2,b\leftarrow 0,x\leftarrow 0,f\leftarrow f_1(d_1,d_2,d_3)=d_1>d_2\}$.

- a. Tentukan pada simbol apa saja kedua interpretasi agree on simbol?
- b. Tentukan pada simbol apa saja kedua interpretasi tidak *agree on* simbol?

Perhatikan simbol yang ada dalam interpretasi I dan J.

Pada interpretasi *I*, simbol yang diberikan interpretasi adalah:

$$a \leftarrow 2$$
, $b \leftarrow 3$, $x \leftarrow 0$, $f \leftarrow f_1(d_1, d_2) = d_1 - d_2$, $q \leftarrow q_1(d_2, d_2, d_3) = d_1 > d_2$

Pada interpretasi *J*, simbol yang diberikan interpretasi adalah:

$$a\leftarrow 2$$
, $b\leftarrow 0$, $x\leftarrow 0$, $f\leftarrow f_1(d_1, d_2)=d_1+d_2$, $q\leftarrow q_1(d_2, d_2, d_3)=d_1>d_2$

- a. Berdasarkan penjelasan tersebut, interpretasi *I* dan *J agree on* simbol konstanta a, variabel x, dan predikat q.
- b. Berdasarkan penjelasan tersebut, interpretasi I dan J tidak agree on simbol konstanta b, variabel x, dan fungsi f.

Agree on Ekspresi dan Kalimat

Dua interpretasi I dan J agree on ekspresi atau kalimat 🗲 jika

- Nilai ekspresi 🗗 pada interpretasi I dan J sama, atau
- Kedua interpretasi (I dan J) bukan merupakan interpretasi untuk ekspresi 🕫

Contoh 8.5

Misalkan interpretasi I dan J merupakan interpretasi atas domain bilangan bulat. Interpretasi $I=\{a\leftarrow 2, b\leftarrow 0, f\leftarrow f_1(d_1, d_2)=d_1-d_2, q\leftarrow q_i(d_1, d_2, d_3)=d_1+d_2>d_3\}$ dan interpretasi $J=\{a\leftarrow 2, b\leftarrow 0, f\leftarrow f_1(d_1, d_2)=d_1+d_2, q\leftarrow q_1(d_1, d_2, d_3)=d_1+d_2>d_3\}$. Apakah interpretasi I dan J agree on kalimat \mathcal{F} : (for some X) q(a, x, f(b, x))?

- Tentukan semua simbol bebas dalam kalimat 7: (for some x) q(a, x, f(b,x)), yaitu a, b, fungsi f dan predikat q.
- Periksa apakah interpretasi I dan J memberikan nilai pada semua simbol bebas dalam kalimat.

Karena $I=\{a\leftarrow 2, b\leftarrow 0, f\leftarrow f_1(d_1, d_2)=d_1-d_2, q\leftarrow q_i(d_1, d_2, d_3)=d_1+d_2>d_3\}$ dan $J=\{a\leftarrow 2, b\leftarrow 0, f\leftarrow f_1(d_1, d_2)=d_1+d_2, q\leftarrow q_i(d_1, d_2, d_3)=d_1+d_2>d_3\}$ memberikan nilai pada a, b, f, dan q, artinya keduanya merupakan interpretasi untuk kalimat \mathcal{F} .

• Periksa nilai kalimat pada interpretasi I dan J. Pada interpretasi $I = \{a \leftarrow 2, b \leftarrow 0, f \leftarrow f_1(d_1, d_2) = d_1 - d_2, q \leftarrow q_1(d_1, d_2, d_3) = d_1 + d_2 > d_3\}$, q(a, x, f(b,x)) adalah q(2, x, f(0, x)): $2+x > f(0,x) \equiv 2+x > 0-x \equiv 2x > -2 \equiv x > -1$. Dapat dipilih x > -1 (misalnya x = 1), sehingga $q(2, 1, f(0,1)) \equiv 1 > -1$ bernilai true. Jadi, kalimat \mathcal{F} : (for some x) q(a, x, f(b,x)) bernilai true pada interpretasi I.

Pada interpretasi $J = \{a \leftarrow 2, b \leftarrow 0, f \leftarrow f_1(d_1, d_2) = d_1 + d_2, q \leftarrow q_1(d_1, d_2, d_3) = d_1 + d_2 > d_3\}$, q(a, x, f(b, x)) adalah q(2, x, f(0, x)): $2 + x > f(0, x) \equiv 2 + x > 0 + x \equiv 2 > 0$. Untuk x berapapun (misalnya x=3), berlaku $q(2, 3, f(0, 1)) \equiv 2 > 0$ bernilai true. Jadi, kalimat \mathcal{F} : (for some x) q(a, x, f(b, x)) bernilai true pada interpretasi J. Karena nilai kalimatnya sama pada interpretasi J dan J, maka J dan J agree on kalimat \mathcal{F} .

3. Closure

Operasi Closure

- Suatu kalimat yang tidak tertutup bisa diubah menjadi kalimat tertutup dengan menambahkan operator closure (kuantifier yang diikuti tanda *, yaitu for all * atau for some *).
- Misalkan x_1 , x_2 , x_3 , ... x_n merupakan variabel bebas yang ada dalam suatu kalimat \mathcal{F} yang muncul secara berurutan. Operator Closure:
- 1. Universal Closure (for all *) adalah kalimat tertutup (for all x_1) (for all x_2) (for all x_3) ... (for all x_n) \mathcal{F}
- 2. Existential Closure (for some *) adalah kalimat tertutup (for some x_1) (for some x_2) (for some x_3) ... (for some x_n) \mathcal{F}

Contoh 8.6

Ubahlah kalimat berikut ini menjadi kalimat tertutup:

 \mathcal{P} : if q(a, b, x) then p(f(a), y))

Tentukan semua variabel bebas dalam kalimat dan urutkan sesuai permunculannya

```
if q(a, b, x) then p(f(a), y))
Variabel bebas 1 Variabel bebas 2
```

- Untuk mengubah menjadi kalimat tertutup bisa menggunakan universal closure atau existential closure.
 - Universal closure: (for all *) 7: (for all x) (for all y) if q(a, b, x) then p(f(a), y))
 - Existential closure: (for some *) 7: (for some x) (for some y) if q(a, b, x) then p(f(a), y))

Referensi

1. Suprapto. (2020). Logika Informatika (BMP). Tangerang Selatan: Universitas Terbuka.