A COMBINATORIAL THEOREM WITH AN APPLICATION TO LATIN RECTANGLES

H. J. RYSER

1. Introduction. In the present paper a study is made of matrices of r rows and n columns, composed entirely of zeros and ones, with exactly k ones in each row. The problem considered is that of adjoining n-r rows of zeros and ones to obtain a square matrix with exactly k ones in each row and in each column. In §2 it is shown that the obvious necessary conditions for the adjunction of n-r rows are also sufficient. The theorem of §2 has an immediate application to the study of latin squares, and yields in §3 a generalization of the basic existence theorem of Marshall Hall [2].

2. A combinatorial theorem.

THEOREM 1. Let A be a matrix of r rows and n columns, composed entirely of zeros and ones, where $1 \le r < n$. Let there be exactly k ones in each row, and let N(i) denote the number of ones in the ith column of A. If, for each $i = 1, 2, \dots, n$,

$$k - (n - r) \le N(i) \le k,$$

then n-r rows of zeros and ones may be adjoined to A to obtain a square matrix with exactly k ones in each row and in each column.

The proof is by mathematical induction. Let t denote the number of columns of A with N(i) < k. Then n-t denotes the number of columns of A with N(i) = k, and consequently $kr = N(1) + \cdots + N(n) \ge (n-t)k + (k-(n-r))t$. Thus $k(r-n) \ge t(r-n)$, whence $t \ge k$. Next let p denote the number of columns of A with N(i) = k - (n-r). Then n-p denotes the number of columns with N(i) > k - (n-r). Consequently $kr = N(1) + \cdots + N(n) \le p(k-(n-r)) + (n-p)k$, whence $k(r-n) \le p(r-n)$ and $p \le k$.

We now adjoin to A a row consisting of k ones and n-k zeros. Since $t \ge k$, there are at least k positions where ones may be inserted so that the resulting (r+1)-rowed matrix will have at most k ones in each column. Moreover, since $p \le k$, the ones may be inserted in all of those columns with N(i) = k - (n-r). In the resulting (r+1)-rowed matrix, let M(i) denote the number of ones in the ith column.

Presented to the Society, November 25, 1950; received by the editors September 16, 1950.

¹ Numbers in brackets refer to the references at the end of the paper

Because of the structure of the adjoined row, it is clear that

$$k - (n - (r + 1)) \le M(i) \le k.$$

The process may be continued inductively, and the resulting square matrix possesses k ones in each row and column.

A rectangular matrix L composed of zeros and ones is called a permutation matrix provided that it satisfies the equation $LL^T = I$, where L^T is the transpose of L and I is the identity matrix. Let A be a square matrix of zeros and ones, with exactly k ones in each row and in each column. A classical theorem of König asserts that

$$A = L_1 + L_2 + \cdots + L_k,$$

where the L_i are permutation matrices [5]. Actually König's theorem is a special case of P. Hall's theorem on the distinct representatives of subsets [4]. The latter theorem has been the subject of the recent investigations of Everett and Whaples [1], and Marshall Hall [3].

COROLLARY. For the matrix A of Theorem 1, $A = L_1 + L_2 + \cdots + L_k$, where the L_i are permutation matrices.

The corollary follows immediately upon and application of Theorem 1 and König's theorem.

3. The application to latin rectangles. A latin rectangle of order r by s based upon the integers $1, 2, \dots, n$ is defined as an array of r rows and s columns formed from the integers $1, 2, \dots, n$ in such a way that the integers in each row and in each column are distinct. The latin rectangle is said to be extendible to an n by n latin square provided that it is possible to adjoin n-s columns and n-r rows in such a way that the resulting array is an n by n latin square. By utilizing the theory of distinct representatives of subsets, Marshall Hall has shown that every r by n latin rectangle may be extended to an n by n latin square n

THEOREM 2. Let T be an r by s latin rectangle based upon the integers $1, 2, \dots, n$. Let N(i) denote the number of times that the integer i occurs in T. A necessary and sufficient condition in order that T may be extended to an n by n latin square is that for each $i = 1, 2, \dots, n$,

$$N(i) \ge r + s - n$$
.

Let T_i denote the set of s integers formed from the *i*th row of T. Let S_i denote the set of the k=n-s integers among $1, 2, \dots, n$ which are not in T_i , and let M(i) denote the number of times that the integer i occurs among the sets S_1, S_2, \dots, S_r . Now if T is extendible to a latin square, then the integer i cannot occur among the sets S_1, S_2, \dots, S_r more than k=n-s times. Hence $M(i) \le n-s$. But N(i)+M(i)=r, whence $N(i) \ge r+s-n$. Thus the condition of the theorem is a necessary one.

To prove the sufficiency we form from the sets S_i a matrix A of order r by n, composed of zeros and ones. Let S_i be composed of the integers i_1, i_2, \cdots, i_k . In the *i*th row of A insert ones in columns i_1, i_2, \dots, i_k , and zeros elsewhere in this row. The matrix A has then exactly k ones in each row, and M(i) is now the sum of the *i*th column of A. By hypothesis $N(i) = r - M(i) \ge r + s - n$, so that for i $=1, 2, \cdots, n, M(i) \leq k$. Since T is an r by s latin rectangle, $N(i) \leq s$, whence $k - (n - r) \le M(i)$. By the corollary of Theorem 1, it now follows that $A = L_1 + L_2 + \cdots + L_k$, where the L_t are rectangular permutation matrices. Let the one in row j of L_t occur in column t_j . From the integers t_j form the k sets (t_1, t_2, \dots, t_r) , each containing r distinct integers. These sets may now be adjoined to T to obtain a latin rectangle of order r by n. The latter may then be extended to an n by n latin square as in [2]. This does not differ essentially from completing the transposed n by r latin rectangle to an n by n latin square by the method already indicated, the condition on N(i) being then trivially satisfied.

REFERENCES

- 1. C. J. Everett and G. Whaples, Representations of sequences of sets, Amer. J. Math. vol. 71 (1949) pp. 287-293.
- 2. Marshall Hall, An existence theorem for latin squares, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 387-388.
- 3. ——, Distinct representatives of subsets, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 922-926.
- 4. P. Hall, On representatives of subsets, J. London Math. Soc. vol. 10 (1935) pp. 26-30.
- 5. Dénes König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. vol. 77 (1916) pp. 453-465.

OHIO STATE UNIVERSITY