Multi-Task Vehicle Routing Solver via Mixture of Specialized Experts under State-Decomposable MDP

Yuxin Pan^{1*} Zhiguang Cao² Chengyang Gu³ Liu Liu^{4†}
Peilin Zhao^{4,6} Yize Chen^{5†} Fangzhen Lin^{1†}

¹The Hong Kong University of Science and Technology

²Singapore Management University

³The Hong Kong University of Science and Technology (Guangzhou)

⁴Tencent AI Lab

⁵University of Alberta

⁶Shanghai Jiao Tong University

yuxin.pan@connect.ust.hk

Abstract

Existing neural methods for multi-task vehicle routing problems (VRPs) typically learn unified solvers to handle multiple constraints simultaneously. However, they often underutilize the compositional structure of VRP variants, each derivable from a common set of basis VRP variants. This critical oversight causes unified solvers to miss out the potential benefits of basis solvers, each specialized for a basis VRP variant. To overcome this limitation, we propose a framework that enables unified solvers to perceive the shared-component nature across VRP variants by proactively reusing basis solvers, while mitigating the exponential growth of trained neural solvers. Specifically, we introduce a State-Decomposable MDP (SDMDP) that reformulates VRPs by expressing the state space as the Cartesian product of basis state spaces associated with basis VRP variants. More crucially, this formulation inherently yields the optimal basis policy for each basis VRP variant. Furthermore, a Latent Space-based SDMDP extension is developed by incorporating both the optimal basis policies and a learnable mixture function to enable the policy reuse in the latent space. Under mild assumptions, this extension provably recovers the optimal unified policy of SDMDP through the mixture function that computes the state embedding as a mapping from the basis state embeddings generated by optimal basis policies. For practical implementation, we introduce the Mixtureof-Specialized-Experts Solver (MoSES), which realizes basis policies through specialized Low-Rank Adaptation (LoRA) experts, and implements the mixture function via an adaptive gating mechanism. Extensive experiments conducted across VRP variants showcase the superiority of MoSES over prior methods. The source code is available at https://github.com/panyxy/moses_vrp.

1 Introduction

Vehicle routing problems (VRPs) are a canonical class of combinatorial optimization problems (COPs) with broad applications spanning transportation [19], logistics [6], and manufacturing [80]. While exact methods are computationally prohibitive [36], and heuristic methods rely on substantial domain-specific knowledge [23, 66], recent studies craft learning-based neural solvers for empirically sound performance with lower makespan and marginal domain expertise [67, 54, 34, 35]. Prevailing

^{*}This work is done when Yuxin Pan works as an intern in Tencent AI Lab.

[†]Corresponding Authors.

approaches primarily target one specific VRP, with tremendous efforts dedicated to out-of-distribution (OOD) generalization [4, 84, 25, 15, 46, 77, 82, 56, 47]. However, practical applications involve multiple VRP variants with diverse node attributes and solution constraints, making the development of specialized neural solver costly due to the need for retraining from scratch.

Recent advances in multi-task neural solvers are conscious of inherent partial similarities present among these variants, enabling efficient knowledge transfer via shared embeddings. These methods commonly resort to specialized adaptations of a pretrained backbone model [41, 11]. Although these methods perform favorably without requiring training from scratch, they struggle to scale due to the combinatorial explosion of VRP variants. This is because arbitrary combinations of orthogonal attributes can introduce new variants, inevitably leading to costly repetitive fine-tuning and adapter proliferation. As an alternative, unified neural solvers instead are capable of handling numerous VRP variants simultaneously. These methods typically unify VRP variants via attribute composition [42], and propose various architectural innovations [83, 3, 38]. Although these methods treat VRP variants as combinations of attributes, they fail to fully exploit this compositional structure inherent in VRP variants. This structure implies that attributes of each VRP variant actually derive from a shared set of basis VRP variants, each characterized by a unique attribute. We argue that there exist basis solvers, each tailored to a specific basis VRP variant, may enjoy experience valuable for unified solvers.

To elucidate the possible valuable insights that basis neural solvers could offer for unified solvers, we exemplify the widely-used encoder-decoder based neural solver as a case study. The encoder is tasked with yielding static node embeddings for the subsequent step-wise solution decoding. Thus, each basis solver's encoder produces embeddings capturing unique attribute of its corresponding basis VRP variant. Since attributes of each VRP variant stem from shared basis variants, the unified solver's encoder possibly perceive both individual attribute information and inter-attribute connections in its embeddings. The decoder gradually builds solutions using static node embeddings and the dynamic context while adhering to constraints. Likewise, two critical properties emerge within each VRP variant: its dynamic context can be broken down into conditionally independent components, each corresponding to a distinct basis variant; and its constraints form a superset of those associated with corresponding basis variants. The internal embeddings of the unified solver's decoder thus may partially coincide with those of the decoders of basis solvers. Therefore, we argue that *the unified solver could benefit from valuable insights of basis solvers*. Moreover, the key insights of a neural solver predominantly reside in its continuous embeddings. This motivates us to reformulate VRPs with the aim of reusing basis solvers in the latent space.

In this paper, to seamlessly bridge between VRP variants and basis VRP variants, we propose a VRPs reformulation through the novel State-Decomposable MDP (SDMDP) framework. To be specific, this framework expresses the state space as the Cartesian product of basis state spaces, each associated with a basis VRP variant. As a result, any state admits a decomposition into conditionally independent basis states. Indeed, as disclosed above, SDMDP is fundamentally grounded in the observation that both static attributes and dynamic contexts of VRP variants originate from their corresponding basis variants. More importantly, SDMDP not only targets towards an optimal unified policy, but also yields optimal basis policies inherently, each tailored to a specific basis variant in cases where a VRP variant comprises only a single attribute. To fully reuse optimal basis policies, we operate under the primary assumptions that any unified policy can generate basis state embeddings and a mixture function exists to map these resulting basis state embeddings to the corresponding state embedding. Built upon this, we further develop a Latent Space-based SDMDP (LS-SDMDP) extension by incorporating the optimal basis policies and the mixture function. In this extension, each basis state inherent in a state is fed to its corresponding optimal basis policy for the basis state embedding. These embeddings are then transformed into the state embedding through the mixture function, which subsequently informs the action selection. Under mild assumptions, LS-SDMDP provably recovers the optimal unified policy for SDMDP. For practical implementation, we introduce the Mixture-of-Specialized-Experts Solver (MoSES), which realizes basis policies through specially designed Low-Rank Adaption (LoRA) [26] experts, each fine-tuned for a specific basis variant from a frozen pretrained backbone model, and implements the mixture function via an adaptive gating mechanism. In addition, we design multiple adaptive gating mechanisms for comparative analysis, and implement MoSES with different backbone networks to show its plug-and-play versatility. Extensive experiments across VRP variants validate the superiority of MoSES against prior methods.

2 Related Works

This Section reviews recent advances in task-specific neural VRP solvers, multi-task learning approaches for VRPs, and mixture-of-specialized-experts (MoSE) methods. Please refer to Appendix D for more detailed reviews.

Task-Specific Neural VRP solvers. Neural solvers, individually developed for each specific VRP, fall into three main categories: constructive methods end-to-end infer solutions via autoregressive mechanisms [67, 34, 35, 33, 51, 60, 84, 4, 17, 22, 30, 15, 46, 47], iterative methods refine solutions via local search operators until convergence [45, 7, 24, 50, 74, 49], and divide-and-conquer methods decompose problem instances into smaller solvable sub-instances [16, 32, 8, 39, 85, 25, 77, 82, 56]. However, these methods typically require specialized network architectures and retraining from scratch to handle numerous VRP variants, bringing about excessively high costs.

Multi-Task Learning for VRPs. To cope with practical scenarios involving multiple VRP variants, the efficient transfer learning is leveraged to obtain specialized neural solvers by considering inherent similarities among VRP variants. Current methods predominantly adopt either full-parameter fine-tuning [11] or problem-specific adapter fine-tuning [41, 14], both built on a pretrained backbone model. However, these methods struggle with the combinatorial explosion of VRP variants. Notably, although the LoRA adapter is used for problem-specific adaptation in [41], its potential as part of a unified solver to handle the exponential growth of variants remains unexplored. In contrast, unified solvers are designed to handle multiple VRP variants simultaneously. These methods commonly unify VRP variants via attribute compositions [42] and employ various architectural innovations such as mixture of experts (MoE) [83], modified Transformer [3], large language model (LLM) based encoder [29], dual attention model [38], mixture of depths (MoD) [20], specialized decoders [68, 40], diffusion model [37], or mixed-curvature based encoder [43]. However, the potential benefits of incorporating explicitly specialized basis solvers remain unexplored. Notably, while MoE is employed in [83], it learns an implicit and less interpretable specialization rather than incorporating off-the-shelf basis solvers as experts.

Mixture of Specialized Experts. Prevailing MoSE methods can be broadly categorized into two paradigms: merging entire models and module composition. Approaches based on merging entire models seek to combine independently trained models to efficiently achieve the performance comparable to model ensembling or multi-task learning [70, 52, 75, 64, 12, 1, 63, 61, 31, 76]. However, these approaches exhibit inferior OOD generalization, compared to layer-wise aggregation of expert models. Our implementation aligns more closely with the module composition paradigm which supports the finer-grained aggregation. These methods primarily include: selective adapter averaging [9, 59], module fusion via arithmetic operations [10, 81, 28], adapter routing based on task similarity [48, 21, 72], and adaptive mixture of LoRA experts (MoLE) [27, 78, 73, 44, 5, 13, 58, 53, 55, 79, 18]. However, the potential of MoLE methods for unified VRP solvers remains underexplored, and existing composition methods possibly prove inadequate for multi-task VRP scenarios.

3 Preliminaries

VRP Variants. We adopt the vehicle routing environment from [3]. A capacitated VRP (CVRP) instance of size N is defined on a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with nodes $\mathcal{V} = \{v_0\} \bigcup \{v_i\}_{i=1}^N$ (depot and customers) and edges $\mathcal{E} = \{e(v_i, v_j) | 0 \leq i \neq j \leq N\}$. Each node v_i ($i \geq 0$) has coordinates (x_i, y_i) , with each customer v_j ($j \geq 1$) having demand $q_j^{\mathrm{LH}} > 0$. Each vehicle has a capacity Q. A feasible solution (i.e., tour) τ consists of subtours, each beginning and ending at the depot while visiting a customer subset, with each customer visited exactly once and total demand of each subtour not exceeding Q. The cost function $c(\cdot)$ is the total Euclidean length of the tour. The objective is to find the optimal tour τ^* with the minimal cost. CVRP, as a $Basis\ VRP\ Variant$, features the capacity constraint (C), serving as the foundation for deriving the remaining $Basis\ VRP\ Variants$ by adding one of the following constraints. 1) $Open\ Route\ (O)$: A binary variable o indicates whether the vehicle needs to return to depot (o=0) or not (o=1); 2) $Backhaul\ (B)$: Each customer v_j is either a linehaul with $q_j^{\mathrm{LH}} > 0$ or a backhaul with $q_j^{\mathrm{BH}} < 0$, where linehauls require deliveries and backhauls require pickups. VRPs with backhaul allow traversing both types in a mixed manner, but linehauls must precede backhauls in each subtour [62]. In VRPs without backhaul, only linehaul customers are present; 3) $Duration\ Limit\ (L)$: Each subtour's cost cannot exceed a threshold l^{dur} ; 4) $Time\ Window$

(TW): Each node v_i has a time window $[w_i^{\mathrm{beg}}, w_i^{\mathrm{end}}]$ and a service duration w_i^{dur} , requiring service to begin within this window. Vehicles arriving before w_i^{beg} must wait until the window opens, and all vehicles must return to the depot by w_0^{end} . Thus, 16 VRP variants emerge from adding arbitrary combinations of the remaining four constraints to CVRP. Please refer to Appendix A.1 A.2 for details of the VRP variants.

Learning to Solve VRPs. We adopt the widely-used attention-based neural network [34, 3, 38] to parameterize the VRP policy π_{θ} , which generates feasible solutions autoregressively through masked decoding. The encoder generates static node embeddings, which, with the dynamic context of the constructed partial tour $\tau^{(< t)}$, are fed to the decoder to output the probabilities of valid nodes for the next node $\tau^{(t)}$. The policy factorizes as $\pi_{\theta}(\tau|\mathcal{G}) = \prod_{t=1}^{T} \pi_{\theta}(\tau^{(t)}|\tau^{(< t)},\mathcal{G})$, where T is the solution horizon. REINFORCE [69] algorithm with reward $-c(\tau)$ is used to optimize the policy.

Mixture of LoRA Experts. LoRA [26] is a parameter-efficient fine-tuning method that adapts pretrained frozen LLMs through low-rank matrix factorization. For a linear layer with weights $W_0 \in \mathbb{R}^{d_1 \times d_2}$, it introduces trainable matrices $A \in \mathbb{R}^{r \times d_2}$ and $B \in \mathbb{R}^{d_1 \times r}$ (where $r < \min(d_1, d_2)$ denotes the LoRA rank), modifying the forward pass as $h^{\text{out}} = W_0 h^{\text{in}} + \beta B A h^{\text{in}}$, where $h^{\text{in}} \in \mathbb{R}^{d_2}$ and $h^{\text{out}} \in \mathbb{R}^{d_1}$ are the input and the output, and $\beta \in (0,1]$. To enhance the cross-task generalization, K task-specific LoRA experts $\{B_k A_k\}_{k=1}^K$ are integrated into the LLM [44]. A trainable gating function $G(h^{\text{in}}) = \operatorname{softmax}(W^G h^{\text{in}})$ with weights $W^G \in \mathbb{R}^{K \times d_2}$ computes coefficients $\{\alpha_k\}_{k=1}^K$ for LoRA experts, yielding the forward pass as $h^{\text{out}} = W_0 h^{\text{in}} + \sum_{k=1}^K \alpha_k B_k A_k h^{\text{in}}$.

4 Methodology

In this Section, we first present the State-Decomposable MDP framework to reformulate VRP variants. To efficiently reuse readily available basis neural solvers, we extend it to the Latent Space-based SDMDP to enable the unified neural solver. Finally, we propose the Mixture-of-Specialized-Experts Solver which implements basis neural solvers using specialized LoRA experts.

4.1 State-Decomposable MDP

The State-Decomposable Markov Decision Process (SDMDP) framework is described by a 7-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \mu, \gamma, \bar{\mathcal{S}})$, which extends the standard MDP by introducing a $\mathit{Full State Space \bar{\mathcal{S}}}$. This full state space $\bar{\mathcal{S}}$ can be partitioned into T+1 disjoint sets over a finite horizon T: $\bar{\mathcal{S}} = \bigcup_{t=0}^T \bar{\mathcal{S}}_t$. For each time step $0 \le t \le T$, the full state space $\bar{\mathcal{S}}_t$ can be further represented as the Cartesian product of n+1 basis state spaces: $\bar{\mathcal{S}}_t = \prod_{i=0}^n \mathcal{S}_t^{(i)}$. This allows any full state $\bar{s}_t \in \bar{\mathcal{S}}_t$ to be broken down into n+1 conditionally independent basis states: $\bar{s}_t = \{s_t^{(i)}\}_{i=0}^n$, where $s_t^{(i)} \in \mathcal{S}_t^{(i)}$, for $i=0,\ldots,n$. Please note that the full state \bar{s}_t is neither observed nor influenced by the agent.

Likewise, the State Space $\mathcal S$ can be partitioned as: $\mathcal S = \bigcup_{t=0}^T \mathcal S_t$. During each episode, prior to the policy rollout, the initial state space $\mathcal S_0$ is built by randomly sampling m+1 basis state spaces, where $0 \leq m \leq n$. This results in $\mathcal S_0 = \prod_{i=0}^m \mathcal S_0^{(b_i)}$, where $\forall 0 \leq i \neq j \leq m, \ 0 \leq b_i \neq b_j \leq n$. Especially, we stipulate that $\mathcal S_0^{(b_0)} = \mathcal S_0^{(0)}$. Please note that the value of m may vary across different episodes. The initial state distribution μ is thus defined on $\mathcal S_0$. The state space $\mathcal S_t$ ($0 \leq t \leq T$) is defined as the joint space of m+1 basis state spaces evolving from the initial sampled basis state spaces, such that $\mathcal S_t = \prod_{i=0}^m \mathcal S_t^{(b_i)}$. The state $s_t \in \mathcal S_t$ can be decomposed into m+1 conditionally independent basis states: $s_t = \{s_t^{(b_i)}\}_{i=0}^m$, where $s_t^{(b_i)} \in \mathcal S_t^{(b_i)}$, for $i=0,\ldots,m$.

The Action Space \mathcal{A} is conditioned on the state s_t , denoted as $\mathcal{A}_t = \mathcal{A}(s_t)$, indicating that the basis states in the state s_t jointly define the feasible action space. The Transition Probability Function \mathcal{P} returns the probability distribution of the next state $s_{t+1} \in \mathcal{S}_{t+1}$ given the current state-action pair $(s_t, a_t) \in \mathcal{S}_t \times \mathcal{A}_t$. Due to the conditional independence of the basis states, the transition probability function \mathcal{P} factorizes as: $\mathcal{P}(s_{t+1}|s_t, a_t) = \prod_{i=0}^m \mathcal{P}(s_{t+1}^{(b_i)}|s_t^{(b_i)}, a_t)$. The Reward Function \mathcal{R} maps the state-action pair (s_t, a_t) to a scalar reward R_t . $\gamma \in (0, 1]$ is the discount factor. Given the state s_t , the policy π yields the probability distribution over \mathcal{A}_t .

Figure 1: **Left:** SDMDP employs the policy that incorporates a mixture function. **Right:** LS-SDMDP integrates both the optimal basis policies and the mixture function.

We abuse τ to denote the trajectory (s_0, a_0, \ldots, s_T) . The objective of the SDMDP framework is to identify an $Optimal\ Unified\ Policy\ \pi^* = \arg\max_{\pi} \mathbb{E}_{s \sim \mu} \mathbb{E}_{\tau \sim (\pi, \mathcal{P})} [\sum_{t=0}^{T-1} \gamma^t R_t | s_0 = s] = \arg\max_{\pi} \mathbb{E}_{s \sim \mu} [V^{\pi, \mathcal{P}}(s)]$, where $V^{\pi, \mathcal{P}}$ is the value function. This framework defines the 0-th $Basis\ Task$ using the initial state distribution over $\mathcal{S}_0^{(0)}$, while the i-th $Basis\ Task\ (1 \leq i \leq n)$ extends this with initial state distribution over $\mathcal{S}_0^{(0)} \times \mathcal{S}_0^{(i)}$. The i-th $Optimal\ Basis\ Policy\ \pi^{(i)*}\ (0 \leq i \leq n)$ is the policy that maximizes the expected cumulative rewards for the i-th basis Task.

Remark. To reformulate VRP variants within the SDMDP framework, we begin by aligning basis states with basis VRP variants. At each step t, the state s_t decomposes into 5 basis states: 0) CVRP: $s_t^{(0)}$ consists of node coordinates $\{x_i, y_i\}_{i=0}^N$, linehaul demands $\{q_i^{\text{LH}}\}_{i=1}^N$, and the remaining linehaul capacity Q_t^{LH} ; 1) $Open\ Route$: $s_t^{(1)}$ introduces the binary variable o; 2) Backhaul: $s_t^{(2)}$ integrates backhaul demands $\{q_i^{\text{BH}}\}_{i=1}^N$ and the remaining backhaul capacity Q_t^{BH} ; 3) $Duration\ Limit$: $s_t^{(3)}$ encompasses the duration limit l^{dur} and the current traveled length l_t^{cur} along the present subtour; 4) $Time\ Window$: $s_t^{(4)}$ includes time windows $\{w_i^{\text{beg}}, w_i^{\text{end}}\}_{i=0}^N$, service durations $\{w_i^{\text{dur}}\}_{i=0}^N$, and the current time w_t^{cur} . Each VRP variant can be formed by composing $(m+1)\ (0 \le m \le 4)$ basis state spaces, using SDMDP's initial sampling mechanism prior to the policy rollout. During rollout, each current basis state evolves conditionally independently from its corresponding previous basis state given the action. The action space is defined by a masking mechanism that filters out nodes according to visitation status and VRP constraints. Please refer to Appendix A.3 A.4 for details on VRP constraints and formulation. There exist 5 basis tasks, each associated with a basis VRP variant.

Theorem 1. The optimal unified policy π^* and the *i*-th optimal basis policy $\pi^{(i)*}$ coincide in their value functions for each state s_t associated with the *i*-th basis task: $V^{\pi^*,\mathcal{P}}(s_t) = V^{\pi^{(i)*},\mathcal{P}}(s_t)$. Furthermore, if both the optimal unified policy and the optimal basis policy are unique, then for each state-action pair (s_t, a_t) corresponding to the *i*-th basis task, it holds that $\pi^*(a_t|s_t) = \pi^{(i)*}(a_t|s_t)$.

Proof. Please refer to Appendix C for a detailed proof of Theorem 1.

Assumption 1. In the SDMDP framework, any state s is composed of m+1 conditionally independent basis states, denoted as $s = \{s^{(b_i)}\}_{i=0}^m$. Accordingly, we assume that any policy π is capable of extracting the basis state embedding $z^{(b_i)} \in \mathbb{R}^d$ for each $s^{(b_i)}$, where $i = 0, \ldots, m$. Under this assumption, we further posit that there exists a deterministic bijective mixture function $f_{\phi}: \mathcal{S} \times \prod_{i=0}^m \mathbb{R}^d \to \mathbb{R}^d$, parameterized by ϕ , which maps the basis state embeddings $\{z^{(b_i)}\}_{i=0}^m$ to the state embedding $z \in \mathbb{R}^d$ for the given state s, represented as $z = f_{\phi}(z^{(b_0)}, \ldots, z^{(b_m)}; s)$. Thus, the policy defined over the action space can be rewritten as

$$\pi(a|s) = \sum_{z} \pi(a|z)\pi(z|s) = \sum_{z^{(b_0)},\dots,z^{(b_m)}} \pi(a|f_{\phi}(z^{(b_0)},\dots,z^{(b_m)};s)) \prod_{i=0}^{m} \pi(z^{(b_i)}|s^{(b_i)})$$
(1)

where $\prod_{i=0}^m \pi(z^{(b_i)}|s^{(b_i)}) = \pi(z^{(b_0)},\ldots,z^{(b_m)}|s)$. The second equivalence in Equation 1 holds because f_{ϕ} is assumed to be deterministic.

Assumption 2. For any state s, and for any two policies π and π' , we assume that if $\forall a \in \mathcal{A}(s), \pi(a|s) = \pi'(a|s)$, then $\forall z \in \mathbb{R}^d, \pi(z|s) = \pi'(z|s)$, and conversely.

Remark. Theorem 1 discloses the partial consensus between the optimal unified policy and each optimal basis policy, laying the foundation of the policy reuse. Motivated by the observation that neural

networks primarily encode knowledge in their embeddings, with distinct features captured at different layers, we develop a latent space approach for reusing optimal basis policies. Assumptions 1 2 serve as the prerequisites for Theorem 2. Figure 1(a) illustrates the SDMDP framework.

4.2 Latent Space-based SDMDP

The Latent Space-based SDMDP (LS-SDMDP) incorporates all elements of SDMDP, and extends SDMDP by introducing $(\pi^{(0)*},\ldots,\pi^{(n)*},f_\phi)$. During each episode, at each time step $0 \le t \le T$, a state $s_t \in \mathcal{S}_t$ is sampled from either the initial distribution $\mu(s_0)$ or the transition probability function $\mathcal{P}(s_{t+1}|s_t,a_t)$, both of which are well defined within the SDMDP framework. Following that, each component $s_t^{(b_i)}$ of s_t $(0 \le i \le m)$ is fed to the corresponding optimal basis policy $\pi^{(b_i)*}$ for the embedding $z_t^{(b_i)} \in \mathbb{R}^d$. Collectively, these embeddings form a tuple, denoted as $(z_t^{(b_0)},\ldots,z_t^{(b_m)})$. To infer the state embedding z_t for the state s_t , f_ϕ takes as input this tuple along with the state, formally expressed as $z_t = f_\phi(z_t^{(b_0)},\ldots,z_t^{(b_m)};s_t)$. The policy, exclusively designed for LS-SDMDP, directly observes the embedding vector z_t and outputs an action distribution, denoted as π_z . For brevity, the integration of f_ϕ into the policy π_z is abbreviated as π_{f_ϕ} , such that $\pi_z(\cdot|z_t) = \pi_{f_\phi}(\cdot|z_t^{(b_0)},\ldots,z_t^{(b_m)};s)$. Accordingly, the underlying initial distribution over z_0 and the transition probability function for z_{t+1} given s_t and a_t are written as follows

$$\mu_z(z_0) = \mu(s_0) \prod_{i=0}^m \pi^{(b_i)*}(z_0^{(b_i)}|s_0^{(b_i)}); \quad \mathcal{P}_z(z_{t+1}|s_t, a_t) = \mathcal{P}(s_{t+1}|s_t, a_t) \prod_{i=0}^m \pi^{(b_i)*}(z_{t+1}^{(b_i)}|s_{t+1}^{(b_i)}). \quad (2)$$

Equation 2 holds due to the deterministic and bijective nature of f_{ϕ} . The reward function remains unchanged. The objective is to discover an optimal unified policy $\pi_{f_{\phi}}^*$ which can maximize the expected discounted cumulative rewards.

Theorem 2. Let $J(\pi, \mathcal{P}, \mu)$ and $J(\pi_{f_{\phi}}, \mathcal{P}_{z}, \mu_{z})$ denote the objective functions (expected returns) in SDMDP and LS-SDMDP, respectively. By Theorem 1 and Assumptions 1 2, it follows that the values of the objective functions are equal at their respective optimal policies, formally written as $J(\pi^*, \mathcal{P}, \mu) = J(\pi^*_{f_{\phi}}, \mathcal{P}_{z}, \mu_{z})$. Moreover, the value functions of SDMDP and LS-SDMDP at their respective optimal policies satisfy the following relationship $V^{\pi^*, \mathcal{P}}(s) = \mathbb{E}_{z^{(b_0)} \sim \pi^{(b_0)^*}} \cdots \mathbb{E}_{z^{(b_m)} \sim \pi^{(b_m)^*}} V^{\pi^*_{f_{\phi}}, \mathcal{P}_{z}}(z^{(b_0)}, \dots, z^{(b_m)}; s)$.

Proof. Please refer to Appendix C for a detailed proof of Theorem 2. \Box

Remark. Theorem 2 indicates that the optimal unified policy π^* of SDMDP can be recovered given both the optimal unified policy $\pi_{f_{\phi}}^*$ of LS-SDMDP and optimal basis policies $(\pi^{(0)*}, \dots, \pi^{(n)*})$. Figure 1(b) depicts the LS-SDMDP framework.

4.3 Mixture-of-Specialized-Experts Solver

For the practical implementation, we need to realize both the optimal basis policies and the mixture function to enable the policy reuse in the latent space. If we consider the embedding $z^{(b_i)}$ ($0 \le i \le m$) generated by the optimal basis policy $\pi^{(b_i)*}$ to encapsulate all layer-wise embeddings, the mixture function would effectively perform entire-model merging. However, as disclosed in [55, 53], such entire-model merging leads to inferior OOD generalization. We therefore introduce the Mixture-of-Specialized-Experts Solver (MoSES), which implements a layer-wise and token-wise aggregation approach through three stages: 1) pretraining a shared backbone model; 2) fine-tuning specialized experts, and 3) dynamically aggregating experts.

Pretraining a shared backbone model. Since all the other basis VRP variants are derived from CVRP by adding different constraints, we pretrain the shared backbone model exclusively on CVRP instances and freeze its parameters throughout subsequent stages. Please note the backbone model indeed acts as the 0-th optimal basis policy $\pi^{(0)*}$.

Fine-tuning specialized experts. To obtain the optimal basis policy $\pi^{(i)*}$ (i > 0), we employ the specialized LoRA expert that performs parameter-efficient fine-tuning on the frozen backbone model. Problem instances of any basis VRP variant (excluding CVRP) are OOD inputs to the frozen

backbone model, leading to task-misaligned features in embeddings generated from the backbone model. We thus propose the Gated-LoRA method that uses a dynamic gating mechanism with the trainable weights $W^g \in \mathbb{R}^{d_2}$ to suppress these irrelevant features from the backbone. Specifically, for the i-th optimal basis policy $\pi^{(i)*}$ (i>0), the forward pass through a frozen backbone linear layer with weights W_0 augmented with trainable LoRA matrices B_i and A_i is computed as:

$$h^{\text{out}} = \text{sigmoid}(\langle W^g, h^{\text{in}} \rangle) W_0 h^{\text{in}} + B_i A_i h^{\text{in}}. \tag{3}$$

Dynamically aggregating experts. In this stage, we freeze both the backbone weights W_0 and the LoRA weights $\{B_iA_i\}_{i=1}^4$ in the unified policy. The adaptive gating function $G(h^{\mathrm{in}}) = \mathrm{act}(W^Gh^{\mathrm{in}})$ with weights $W^G \in \mathbb{R}^{5 \times d_2}$ computes coefficients $\{\alpha_i\}_0^4$, where $\mathrm{act}(\cdot)$ is the activation function. Let \tilde{h}^{out} denote the output of the unknown optimal unified solver. The aggregation goal is to determine coefficients $\{\alpha_i\}_0^4$ satisfying the linear system $\sum_{i=0}^4 \alpha_i W_i h^{\mathrm{in}} = \tilde{h}^{\mathrm{out}}$ (where $W_i = B_i A_i$, for $i \geq 1$). However, this linear system may not be solvable. We thus introduce the trainable LoRA weights $\hat{B}\hat{A}$ to model the residual. The forward pass of a linear layer in the unified policy is written as:

$$h^{\text{out}} = \alpha_0 W_0 h^{\text{in}} + \sum_{i=1}^4 \alpha_i B_i A_i h^{\text{in}} + \hat{B} \hat{A} h^{\text{in}}; \quad \{\alpha_i\}_{i=0}^4 = G(h^{\text{in}}) = \text{act}(W^G h^{\text{in}}). \tag{4}$$

We propose three activation functions for the gating mechanism: 1) $\operatorname{softmax}(\cdot)$ enforces the convex combination; 2) $\operatorname{norm_softplus}(\cdot)$ L_1 -normalizes $\operatorname{softplus}(W^G h^{\operatorname{in}})$ to prevent gradient vanishing; 3) $\operatorname{sigmoid}(\cdot)$ expands the coefficient space by relaxing the unit-sum constraint. Additionally, we introduce three routing strategies: 1) $\operatorname{Dense\ Routing\ activates\ all\ optimal\ basis\ policies\ ; 2)} \operatorname{Variant-Aware\ Routing-II}$ selects Top-K optimal basis policies, where K is the number of basis variants in the current VRP variant. 3) $\operatorname{Variant-Aware\ Routing-II}$ selects optimal basis policies corresponding to basis variants present in the current VRP variant;

5 Experiments

In this Section, we empirically validate the superiority of MoSES through evaluations on 16 VRP variants with five constraints, supplemented by hyperparameter and ablation studies. All experiments are conducted on NVIDIA Tesla V100-32GB GPUs on and Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz. Please refer to Appendix B for more empirical results, hyperparameter and ablation studies, along with the analysis.

Baselines. *Traditional Solvers:* We benchmark against the open-source PyVRP [71] solver built on HGS-CVRP [65], and the widely-used Google OR-Tools [57]. Both solvers process each instance on a single CPU core with time limits of 10s for instances with 50 nodes; and 20s for instances with 100 nodes, while we parallelize their execution across 16 CPU cores for efficiency. *Neural Solvers:* We compare our method with state-of-the-art unified neural solvers for multi-task VRPs. MTPOMO [42] extends POMO [35] and unifies VRP variants. MVMoE [83] introduces mixture-of-experts. RouteFinder [3] utilizes the mixed batch training to produce three models: RF-POMO (MTPOMO-based), RF-MoE (MVMoE-based) and RF-TE (modiled Transformer-based). CaDA [38] enhances model capacity through dual attention mechanism. Since CaDA lacks publicly available code, we implement it according to the original paper specifications. Our reproduction of CaDA achieves comparable performance to the reported results.

MoSES Architecture. To demonstrate the plug-and-play versatility of MoSES, we implement it upon both RF-TE and CaDA, denoted as MoSES(RF) and MoSES(CaDA) respectively. MoSES(RF) uses norm_softplus(·) activation for its adaptive gating function $G(\cdot)$, while MoSES(CaDA) utilizes sigmoid(·) activation. Both adopt the dense routing strategy, and set LoRA rank as 32 for both frozen modules $\{B_iA_i\}_{i=1}^4$ and the trainable module $\hat{B}\hat{A}$.

Training and Evaluation. We consider two problem scales $N = \{50, 100\}$, and adopt the same training settings with prior works [3, 38] for baseline models. We optimize MoSES using REIN-FORCE [69]. The backbone model is first pretrained on randomly generated CVRP instances. Then, the LoRA adapter fine-tuning produces 4 specialized experts, each optimized for a distinct VRP variant: OVRP, VRPB, VRPL, and VRPTW. Finally, the unified solver is trained on all 16 VRP variants. All phases share the training hyperparameters. Each model undergoes 300 training epochs,

Table 1: Performance comparison of multi-task VRP solvers. The lower, the better (\downarrow) .

			N = 50			N = 100		1		1	N = 50			N = 100	
	Solver	Cost	Gap	Time	Cost	Gap	Time	İ	Solver	Cost	Gap	Time	Cost	Gap	Time
	HGS-PyVRP	10.372	*	10.4m	15.628	*	20.8m	İ	HGS-PyVRP	16.031	*	10.4m	25.423	*	20.8m
	OR-Tools	10.572	1.907%	10.4m	16.280	4.178%	20.8m		OR-Tools	16.089	0.347%	10.4m	25.814	1.506%	20.8m
	MTPOMO MVMoE	10.518 10.501	1.408% 1.241%	2s 3s	15.933 15.888	1.986% 1.692%	8s 11s	١.	MTPOMO MVMoE	16.409 16.405	2.358% 2.333%	2s 3s	26.410 26.391	3.863% 3.793%	9s 11s
₽	RF-POMO	10.501	1.315%	2s	15.908	1.830%	8s	Ž	RF-POMO	16.366	2.089%	2s	26.335	3.570%	9s
CVRP	RF-MoE	10.499	1.228%	3s	15.877	1.624%	11s	VRPTW	RF-MoE	16.390	2.239%	_3s	26.319	3.506%	11s
	RF-TE MoSES(RF)	10.504 10.465	1.276% 0.900%	2s 6s	15.857 15.808	1.507% 1.190%	8s 21s	_	RF-TE MoSES(RF)	16.363 16.264	2.069% 1.445%	2s 6s	26.234 26.143	3.177% - 2.822%	8s 21s
	CaDA	10.483	- 1.072% -	3 s	15.831	1.336%	$-\frac{218}{108}$	ł	CaDA	16.297	1.652%	os	26.128	- 2.822 % - 2.753% -	$-\frac{218}{108}$
	MoSES(CADA)	10.462	0.873%	7s	15.833	1.354%	24s		MoSES(CaDA)	16.262	1.435%	7s	26.032	2.383%	25s
	HGS-PyVRP	6.507	*	10.4m	9.725	*	20.8m		HGS-PyVRP	10.587	*	10.4m	15.766	*	20.8m
	OR-Tools	6.553	0.686%	10.4m	9.995	2.732%	20.8m		OR-Tools	10.570	2.343%	10.4m	16.466 16.151	5.302%	20.8m
	MTPOMO MVMoE	6.718 6.702	3.211% 2.969%	2s 3s	10.210 10.176	4.959% 4.615%	8s 11s		MTPOMO MVMoE	10.775 10.751	1.732% 1.508%	2s 3s	16.151	2.445% 2.117%	8s 11s
OVRP	RF-POMO	6.698	2.906%	2s	10.181	4.671%	8s	VRPL	RF-POMO	10.751	1.525%	2s	16.106	2.166%	8s
6	RF-MoE RF-TE	6.697 6.684	- 2.879% - 2.693%	$-\frac{3s}{2s}$	10.139 10.121	- 4.238% - 4.060%	$-\frac{11s}{8s}$	5	RF-MoE RF-TE	10.737 10.748	1.388%	$-\frac{3s}{2s}$	16.070	- 1.937% - 1.829%	- 11s - 8s
	MoSES(RF)	6.632	1.892%	2s 5s	10.121	3.469%	20s		MoSES(RF)	10.748	1.089%	2s 5s	16.005	1.532%	20s
	CaDA	6.662	2.350%	2s	10.093	3.763%	10s	1	CaDA	10.722	1.252%		16.062	1.662%	10s
	MoSES(CaDA)	6.629	1.857%	7s	10.084	3.679%	24s	<u> </u>	MoSES(CaDA)	10.704	1.083%	7s	16.024	1.659%	24s
	HGS-PyVRP	9.687 9.802	* 1.159%	10.4m	14.377 14.933	* 3.853%	20.8m 20.8m		HGS-PyVRP OR-Tools	10.510	* 0.078%	10.4m 10.4m	16.926 17.027	* 0.583%	20.8m 20.8m
	OR-Tools MTPOMO	10.033	3.564%	10.4m 2s	15.082	3.853% 4.917%	20.8III 8s		MTPOMO	10.519 10.667	1.472%	2s	17.027	2.896%	20.8III 9s
~	MVMoE	10.005	3.268%	3s	15.022	4.506%	10s	≥	MVMoE	10.669	1.495%	3s	17.416	2.874%	12s
VRPB	RF-POMO RF-MoE	9.996 9.980	3.173% 3.014%	2s 3s	15.016 14.973	4.465% 4.165%	8s 10s	RPTW	RF-POMO RF-MoE	10.657 10.673	1.376% 1.533%	2s 3s	17.392 17.387	2.725% 2.698%	9s 12s
> .	RF-TE	9.978	2.996%	2 s	14.973	- 3.950% -	- 8s -	6	ŘF-TE	10.652	1.328%	$-\frac{3s}{2s}$	17.326	- 2.098% - 2.341%	
	MoSES(RF)	9.915	2.342%	5s	14.884	3.546%	19s		MoSES(RF)	10.613	0.959%	6s	17.284	2.101%	21s
	CaDA MoSES(CaDA)	9.945 9.904	2.654% 2.225%	2s 7s	14.905 14.901	3.684% 3.668%	10s 23s		CaDA MoSES(CaDA)	10.621 10.611	1.037% 0.946 %	3s 8s	17.253 17.217	1.906% 1.702%	11s 26s
	HGS-PyVRP	10.186	*	10.4m	14.779	*	20.8m	<u> </u> 	HGS-PyVRP	18.361	*	10.4m	29.026	*	20.8m
	OR-Tools	10.130	1.390%	10.4m	15.426	4.338%	20.8m		OR-Tools	18.422	0.332%	10.4m	29.830	2.770%	20.8m
	MTPOMO	10.672	4.699%	2s	15.712	6.253%	8s	_	MTPOMO	18.990	2.130%	3s	30.896	3.616%	9s
BL	MVMoE RF-POMO	10.637 10.592	4.349% 3.937%	3s 2s	15.640 15.628	5.763% 5.696%	11s 8s	VRPBLTW	MVMoE RF-POMO	18.986 18.937	2.106% 1.853%	3s 2s	30.893 30.794	3.612% 3.278%	12s 9s
VRPBI	RF-MoE	10.575	3.767%	2s 3s	15.541	5.121%	10s	BB.	RF-MoE	18.956	1.956%	2s 3s	30.807	3.321%	12s
>	RF-TE	10.578	3.798%	2s	15.528	5.038%	8s	😤	RF-TE	18.941	1.877%	2s	30.688	2.923%	- 9s
	MoSES(RF) CaDA	10.518 10.535	3.185% 3.379%	6s	15.469 15.481	- 4.638% - 4.713%	$-\frac{20s}{10s}$	-	MoSES(RF) CaDA	18.846 18.877	1.370% 1.531%	$-\frac{6s}{2s}$	30.627 30.586	- 2.712% - 2.579% -	- 22s 11s
	MoSES(CaDA)	10.517	3.193%	7s	15.478	4.705%	24s		MoSES(CaDA)	18.858	1.425%	8s	30.510	2.329%	26s
	HGS-PyVRP	18.292	*	10.4m	29.467	*	20.8m	l	HGS-PyVRP	16.356	*	10.4m	25.757	*	20.8m
	OR-Tools	18.292 18.366	0.383%	10.4m	29.945	1.597%	20.8m		OR-Tools	16.441	0.499%	10.4m	26.259	1.899%	20.8m
*	OR-Tools MTPOMO	18.292 18.366 18.639	0.383% 1.876%	10.4m 2s	29.945 30.435	1.597% 3.278%	20.8m 9s		OR-Tools MTPOMO	16.441 16.823	0.499% 2.818%	10.4m 2s	26.259 26.891	1.899% 4.364%	20.8m 9s
BTW	OR-Tools	18.292 18.366	0.383%	10.4m	29.945	1.597%	20.8m	LTW	OR-Tools	16.441	0.499%	10.4m	26.259	1.899%	20.8m
/RPBTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE	18.292 18.366 18.639 18.640 18.601 18.617	0.383% 1.876% 1.884% 1.669% 1.760%	10.4m 2s 3s 2s 3s	29.945 30.435 30.438 30.343 30.339	1.597% 3.278% 3.287% 2.967% 2.947%	20.8m 9s 12s 9s 12s	VRPLTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE	16.441 16.823 16.811 16.750 16.776	0.499% 2.818% 2.751% 2.383% 2.547%	10.4m 2s 3s 2s 3s	26.259 26.891 26.866 26.784 26.775	1.899% 4.364% 4.271% 3.951% 3.918%	20.8m 9s 12s 9s 12s
VRPBTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE	18.292 18.366 18.639 18.640 18.601 18.617 18.600	0.383% 1.876% 1.884% 1.669% - 1.760%	10.4m 2s 3s 2s - \frac{3s}{2s} - \frac{3s}{2s}	29.945 30.435 30.438 30.343 30.339 30.240	1.597% 3.278% 3.287% 2.967% - 2.947% - 2.618%	20.8m 9s 12s 9s - 12s 12s 79s	VRPLTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE	16.441 16.823 16.811 16.750 16.776 16.763	0.499% 2.818% 2.751% 2.383% 2.547% 2.460%	$ \begin{array}{r} 10.4m \\ 2s \\ 3s \\ 2s \\ -\frac{3s}{2s} - \cdots \end{array} $	26.259 26.891 26.866 26.784 26.775 26.691	1.899% 4.364% 4.271% 3.951% - 3.918% - 3.587%	20.8m 9s 12s 9s - 12s 12s
VRPBTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534	0.383% 1.876% 1.884% 1.669% 1.760% -\(\bar{1}.675\)\(\bar{5}\)\(\bar{5}\)\(\bar{1}.302\)\(\bar{5}\)	10.4m 2s 3s 2s	29.945 30.435 30.438 30.343 30.3240 30.148 30.131	1.597% 3.278% 3.287% 2.967% - 2.947% - 2.618% - 2.303% - 2.242%	20.8m 9s 12s 9s - 12s - 9s - 21s - 11s	VRPLTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF)	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% - 1.811% 2.038%	10.4m 2s 3s 2s - 3s - 2s - 6s - 2s	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592	1.899% 4.364% 4.271% 3.951% - 3.587% - - 3.320% - - 3.204% -	20.8m 9s 12s 9s - 12s - 9s - 21s - 11s
VRPBTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MoSES(RF) CaDA MoSES(CaDA)	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495	0.383% 1.876% 1.884% 1.669% 1.760% - Ī.675% - 1.121% - Ī.302% 1.095%	10.4m 2s 3s 2s	29.945 30.435 30.438 30.343 30.339 30.240 30.148 30.131 30.050	1.597% 3.278% 3.287% 2.967% 2.947% - 2.618% - 2.303% - 2.242% 1.969%	20.8m 9s 12s 9s - 12s - 2s - 21s 25s	VRPLTW	OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MoSES(RF) CaDA MOSES(CaDA)	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694 16.667	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 1.864%	10.4m 2s 3s 2s - 3s - 2s - 6s - 2s 8s	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493	1.899% 4.364% 4.271% 3.951% 3.918% 3.587% 3.320% 3.204% 2.824%	20.8m 9s 12s 9s - 12s - 9s - 21s - 25s
VRPBTW	OR-Tools MTPOMO MYMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MoSES(CaDA) HGS-PyVRP	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495	0.383% 1.876% 1.884% 1.669% 1.760% - Ī.675% - 1.121% - Ī.302% 1.095%	10.4m 2s 3s 2s - 3s - 2s - 6s - 8s 10.4m	29.945 30.435 30.438 30.343 30.339 30.240 30.148 30.131 30.050	1.597% 3.278% 3.287% 2.967% - 2.947% - \(\bar{2}\).618% - \(\bar{2}\).242% - \(\bar{2}\).242% 1.969%	20.8m 9s 12s 9s - 12s - 2s - 21s - 21s 25s 20.8m	VRPLTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MoSES(CaDA)	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694 16.667	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 1.864%	10.4m 2s 3s 2s - 3s - 2s - 6s - 2s 8s 10.4m	26.259 26.891 26.866 26.784 26.775 26.691 26.592 26.493	1.899% 4.364% 4.271% 3.951% - 3.918% - 3.587% - 3.320% - 3.204% - 2.824%	20.8m 9s 12s 9s 12s 9s - 21s - 21s 25s 20.8m
VRPBTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MoSES(CaDA) HGS-PyVRP OR-Tools	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495 6.898 6.928	0.383% 1.876% 1.884% 1.669% 1.760% - Ī.675% - 1.121% - Ī.302% 1.095% * 0.412%	10.4m 2s 3s 2s - 3s - 2s - 6s - 3s 8s 10.4m 10.4m	29.945 30.435 30.438 30.343 30.339 30.240 30.148 30.131 30.050 10.335 10.577	1.597% 3.278% 3.287% 2.967% - 2.947% - 2.618% - 2.303% - 2.242% 1.969% * 2.315%	20.8m 9s 12s 9s - 12s - 21s - 21s 25s 20.8m 20.8m	VRPLTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694 16.667	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 1.864% * 0.386%	10.4m 2s 3s 2s - 3s - 2s - 6s - 2s 8s 10.4m 10.4m	26.259 26.891 26.866 26.784 26.775 26.691 26.592 26.493 10.335 10.582	1.899% 4.364% 4.271% 3.951% - 3.918% - 3.587% - 3.320% - 3.204% - 2.824% * 2.363%	20.8m 9s 12s 9s 12s - 12s - 21s 11s 25s 20.8m 20.8m
_	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE	18.292 18.366 18.639 18.640 18.601 18.617 18.500 18.534 18.495 6.898 6.928 7.108 7.090	0.383% 1.876% 1.884% 1.669% 1.760% -1.675% -1.121% -1.302% 1.095% * 0.412% 3.004% 2.743%	10.4m 2s 3s 2s 2s - 3s - 6s - 3s 8s 10.4m 10.4m 2s 3s	29.945 30.435 30.438 30.343 30.339 -30.240 30.131 30.050 10.335 10.577 10.878 10.840	1.597% 3.278% 3.287% 2.967% 2.947% 2.618% 2.303% 2.3242% 1.969% * 2.315% 5.224% 4.859%	20.8m 9s 12s 9s - 12s - 2s - 21s - 21s 25s 20.8m		OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MoSES(RF) ČaDA HGS-PyVRP OR-Tools MTPOMO MVMoE	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694 16.667 6.899 6.927 7.112 7.098	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 1.864% * 0.386% 3.056% 2.850%	10.4m 2s 3s 2s - 3s - 2s - 6s - 2s 8s 10.4m 10.4m 2s 3s	26.259 26.891 26.866 26.784 26.795 26.695 26.592 26.493 10.335 10.582 10.883 10.847	1.899% 4.364% 4.271% 3.951% 3.918% 3.587% - 3.320% 3.204% - 2.824% * 2.363% 5.272% 4.928%	20.8m 9s 12s 9s - 12s - 9s - 21s - 21s 25s 20.8m 20.8m 8s 11s
_	OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE F-TE MoSES(RF) CaDA MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO	18.292 18.366 18.639 18.640 18.601 18.617 18.550 18.495 6.928 7.108 7.090 7.086	0.383% 1.876% 1.884% 1.669% 1.760% - Ī.675% 1.121% - Ī.302% 1.095% * 0.412% 3.004% 2.743% 2.689%	10.4m 2s 3s 2s 3s 2s - 3s 6s 3s 8s 10.4m 10.4m 2s 3s 2s	29.945 30.435 30.438 30.343 30.339 30.7240 30.131 30.050 10.335 10.577 10.878 10.840 10.836	1.597% 3.278% 3.287% 2.967% - 2.947% - 2.618% - 2.303% - 5.242% - 2.315% 5.224% 4.859% 4.823%	20.8m 9s 12s 9s 		OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694 16.667 16.927 7.112 7.098 7.087	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 1.864% * 0.386% 3.056% 2.850% 2.695%	10.4m 2s 3s 2s - 3s - 2s - 6s - 2s - 8s 10.4m 10.4m 2s 3s 2s	26.259 26.891 26.866 26.784 26.675 26.692 26.592 26.493 10.335 10.582 10.883 10.847 10.837	1.899% 4.364% 4.271% 3.951% 3.918% - 3.587% - 3.320% - 3.204% - 2.824% * 2.363% 5.272% 4.928% 4.835%	20.8m 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 8s 11s 8s
OVRPB	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE	18.292 18.366 18.639 18.640 18.601 18.617 18.500 18.534 18.495 6.898 6.928 7.108 7.090	0.383% 1.876% 1.884% 1.669% - Ī.675% - 1.121% - Ī.302% 1.095% * 0.412% 3.004% 2.689% 2.613%	10.4m 2s 3s 2s 2s - 3s - 6s - 3s 8s 10.4m 10.4m 2s 3s	29.945 30.435 30.438 30.343 30.339 -30.240 30.131 30.050 10.335 10.577 10.878 10.840	1.597% 3.278% 3.287% 2.967% 2.947% 2.618% 2.303% 2.3242% 1.969% * 2.315% 5.224% 4.859%	20.8m 9s 12s 9s - 12s - 79s - 21s 25s 20.8m 20.8m 8s 11s	OVRPBL VRPLTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MoSES(RF) ČaDA HGS-PyVRP OR-Tools MTPOMO MVMoE	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694 16.667 6.899 6.927 7.112 7.098 7.083	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 1.864% * 0.386% 3.056% 2.695% 2.635%	10.4m 2s 3s 2s - 3s - 2s - 6s - 2s 8s 10.4m 10.4m 2s 3s	26.259 26.891 26.866 26.784 26.795 26.695 26.592 26.493 10.335 10.582 10.883 10.847	1.899% 4.364% 4.271% 3.951% - 3.918% - 3.587% - 3.320% - 3.204% - 2.824% * 2.363% 5.272% 4.922% 4.835% 4.540%	20.8m 9s 12s 9s - 12s - 9s - 21s - 21s 25s 20.8m 20.8m 8s 11s
_	OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MoSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(RF)	18.292 18.366 18.639 18.640 18.601 18.607 18.534 18.499 18.534 18.495 6.928 7.108 7.090 7.086 7.071 7.071	0.383% 1.876% 1.884% 1.669% -1.760% -1.760% -1.302% 1.095% * 0.412% 3.004% 2.743% 2.689% 2.613% -1.979%	10.4m 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 6s 2s 6s 6s	29.945 30.435 30.438 30.343 30.339 30.7240 30.148 30.7131 30.050 10.577 10.878 10.840 10.836 - T0.772 10.733	1.597% 3.278% 3.287% 2.967% - 2.618% - 2.303% - 2.242% 1.969% * 4.859% 4.859% 4.823% 4.526% - 4.526% - 4.526% 3.829%	20.8m 9s 12s 9s - 12s - 9s - 21s - 25s 20.8m 8s 11s 8s - 11s 8s - 20s		OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MoSES(RF) CaDA MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MoSES(RF)	16.441 16.823 16.811 16.750 16.763 16.657 16.694 16.667 6.992 7.098 7.087 7.083 7.075 7.040	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 1.864% * 0.386% 3.056% 2.695% 2.635% 2.2355% 2.014%	10.4m 2s 3s 2s 3s 2s 6s 2s 6s 10.4m 10.4m 2s 3s 2s 3s 2s 6s 6s	26.259 26.891 26.866 26.775 26.691 26.592 26.493 10.382 10.883 10.847 10.837 10.877 10.779	1.899% 4.364% 4.271% 4.271% 3.951% 3.9587% 3.3204% 3.204% 2.824% * 2.363% 5.272% 4.928% 4.835% 4.4540% - 4.268% 3.862%	20.8m 9s 12s 9s 12s - 12s - 2s 21s 21s 25s 20.8m 8s 11s 8s 20s
_	OR-Tools MTPOMO MYMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MoSES(RF) CaDA	18.292 18.366 18.639 18.640 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.108 7.090 7.086 7.080 7.071 7.040	0.383% 1.876% 1.884% 1.669% 1.760% - Γ.675% 1.121% - Γ.302% * 0.412% 3.004% 2.689% 2.613% - Σ.477% - Σ.477% - Σ.034%	10.4m 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 3s 2s	29.945 30.435 30.438 30.343 30.3240 30.1240 30.131 30.050 10.355 10.876 10.836 10.836 10.836 10.836 10.836 10.772 10.733	1.597% 3.287% 3.287% 2.967% 2.947% - 2.618% 2.303% * 2.315% 5.224% 4.859% 4.823% 4.526% - 4.212% 3.829% - 3.738%	20.8m 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 8s 11s 8s - 11s 8s - 20s - 20s - 3 s - 20s - 3 s - 20s - 3 s - 3		OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-FE RF-TE RF-FE RF-FE ROSES(RF)	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.654 16.667 6.899 6.927 7.112 7.098 7.083 7.075 7.083 7.075	0.499% 2.818% 2.751% 2.450% 1.814% 1.864% * 0.386% 3.056% 2.695% 2.635% 2.615% 2.0145%	10.4m 2s 3s 2s -3s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s -3s -2s -6s -2s	26.259 26.891 26.866 26.784 26.775 26.691 26.592 26.493 10.352 10.883 10.847 10.837 10.877 10.779 10.779 10.736	1.899% 4.364% 4.271% 3.951% 3.951% 3.320% 2.824% * 2.363% 5.272% 4.928% 4.835% 4.540% 4.268% 3.366% 5.3732% 5.3732%	20.8m 9s 12s 9s 12s 9s 12s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 11s
_	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(RF) CaDA MOSES(RF) CaDA	18.292 18.366 18.639 18.640 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.108 7.080 7.070 7.037 7.040 7.034	0.383% 1.876% 1.884% 1.669% 1.760% - 1.675% 1.121% - 1.302% - 1.302% 3.004% 2.743% 2.689% 2.613% - 2.477% 1.979% - 2.0334% 1.942%	10.4m 2s 3s 2s 3s - 3s - 6s - 3s 10.4m 10.4m 2s 3s 2s 3s - 7s - 7s	29,945 30,435 30,343 30,339 30,240 30,138 30,050 10,335 10,577 10,878 10,840 10,836 10,806 10,772 10,772 10,772 10,724 10,726	1.597% 3.278% 3.287% 2.967% 2.947% - 2.618% - 2.2303% - 2.242% - 1.969% * 5.224% 4.823% 4.526% - 4.212% 3.829% 3.765%	20.8m 9s 12s 9s 12s- 9s 21s- 11s- 25s 20.8m 8s 11s- 8s 11s- 20s- 10s- 21s- 21s- 21s- 21s- 25s- 20.8m		OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MOSES(CaDA)	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.654 16.667 6.899 6.927 7.112 7.098 7.083 7.075 7.083 7.075 7.040 7.042 7.036	0.499% 2.818% 2.751% 2.383% 2.547% - 2.460% - 2.038% - 1.864% * * 0.386% 3.056% 2.850% 2.695% 2.615% 2.014% - 2.014% - 2.045% - 1.964%	10.4m 2s 3s 2s 3s - 2s - 6s - 2s - 8s 10.4m 10.4m 2s 3s 2s - 3s - 5s - 7s	26.259 26.891 26.866 26.784 26.775 26.691 26.592 26.493 10.335 10.582 10.883 10.887 10.807 10.7796 10.723	1.899% 4.364% 4.271% 4.271% 3.951% 3.918% 3.587% 3.320% - 2.824% * 5.272% 4.928% 4.540% 4.268% 3.862% 3.743%	20.8m 9s 12s 9s 12s 9s 12s 15s 21s 21s 25s 20.8m 20.8m 8s 11s 8s 11s 20s 10s 24s
_	OR-Tools MTPOMO MYMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MoSES(RF) CaDA	18.292 18.366 18.639 18.601 18.601 18.607 18.600 18.499 18.534 18.495 6.898 7.108 7.090 7.080 7.071 7.040 7.040 7.034	0.383% 1.876% 1.884% 1.669% 1.760% - 1.7575% 1.121% - 1.302% - 1.095% * 3.004% 2.743% 2.683% - 2.477% - 1.979% - 2.0334% - 1.942% *	10.4m 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 3s 2s	29.945 30.435 30.438 30.339 30.2340 30.138 30.050 10.335 10.577 10.878 10.840 10.836 10.806 10.772 10.724 10.726	1.597% 3.278% 3.287% 2.967% 2.947% - 2.618% - 2.242% - 1.969% * 2.315% 5.224% 4.829% 4.823% - 4.526% - 4.526% - 3.785% *	20.8m 9s 12s 9s - 12s - 9s - 21s 21s 25s 20.8m 20.8m 8s 11s 8s - 11s 20s - 21s 20s 20s 20s 20s 20s 20s 20s 20		OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) ČaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-POMO RF-MoE RF-TE MoSES(RF) ČaDA HGS-PyVRP OR-Tools MTPOMO MVMOE RF-MOE RF-TE MOSES(RF) ČaDA HGS-PyVRP	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.654 16.667 6.899 6.927 7.112 7.098 7.083 7.075 7.083 7.075	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% 1.811% 2.038% 4.0386% 3.036% 2.850% 2.635% 2.635% 2.635% 2.014% 2.045% 4.1964%	10.4m 2s 3s 2s -3s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s -3s -2s -6s -2s	26.259 26.891 26.866 26.784 26.775 26.691 26.692 26.592 26.493 10.382 10.883 10.887 10.807 10.779 10.779 10.779 10.724	1.899% 4.364% 4.271% 4.271% 3.951% 3.918% 3.587% 3.320% 2.824% * 4.268% 4.540% 4.540% 4.540% 4.540% 3.743% *	20.8m 9s 12s 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 8s 11s 8s 11s 8s 20s 24s 20.8m
OVRPB	OR-Tools MTPOMO MYMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MOSES(CaDA) HGS-PyVRP OR-TOOLS MOSES(CaDA) HGS-PyVRP OR-TOOLS MOSES(CaDA) HGS-PyVRP OR-TOOLS MTPOMO	18.292 18.366 18.639 18.640 18.601 18.617 18.760 18.534 18.495 6.898 7.108 7.080 7.071 7.034 11.668 11.681 11.817	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.121% - T.302% 1.095% ** 0.412% 3.004% 2.743% 2.688% - 2.477% - 1.979% - 2.033% 1.942% ** 0.106% 1.259%	10.4m 2s 3s 2s 3s 2s 3s 2s 3s 10.4m 10.4m 2s 3s 2s 3s 2s 10.4m 10.4m 10.4m 3s	29,945 30.435 30.438 30.343 30.339 30.148 30.131 30.050 10.335 10.577 10.878 10.840 10.806 10.772 10.724 10.726 19.156 19.305	1.597% 3.278% 3.278% 2.967% 2.947% - 2.618% - 2.2303% - 2.22% 1.969% 4.823% 4.823% 4.823% 4.526% - 4.212% 3.3829% - 3.738% 3.765% ** 0.767% 2.494%	20.8m 9s 12s 9s -12s -11s -25s 20.8m 8s 11s -8s -20s -20s -24s 24s 20.8m 20.8	OVRPBL	OR-Tools MTPOMO MYMOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO HVMOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-Tools MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.694 16.667 6.899 7.012 7.083 7.075 7.042 7.036 11.669 11.669 11.689	0.499% 2.818% 2.751% 2.383% 2.547% 1.811% 2.0388% 1.864% 4 0.386% 2.850% 2.695% 2.635% 2.635% 1.964% * 0.109%	10.4m 2s 3s 2s 3s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 10.4m 10.4m 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s	26.259 26.891 26.866 26.784 26.775 26.620 26.592 26.493 10.335 10.883 10.847 10.807 10.779 10.723 10.724 19.156 19.303	1.899% 4.364% 4.271% 3.951% 3.918% 3.587% 3.320% 3.204% 2.824% 4.928% 4.835% 4.540% 4.540% 3.762% 3.743% * 0.757% 2.4844%	20.8m 9s 12s 9s 12s 9s 12s 11s 25s 20.8m 8s 11s 8s 11s 20s 10s 24s 20.8m 20.8m 20s 24s
OVRPB	OR-Tools MTPOMO MYMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO HGS-PyVRP OR-Tools HGS-PyVRP OR-Tools HGS-PyVRP OR-Tools MOSES(CaDA)	18.292 18.366 18.639 18.640 18.601 18.601 18.617 18.500 18.499 18.534 18.495 6.898 6.928 7.108 7.086 7.086 7.087 7.071 7.037 7.044 11.668 11.611 11.8123	0.383% 1.876% 1.884% 1.669% 1.760% - 1.675% - 1.095% * 0.412% 3.004% 2.689% 2.647% - 2.033% - 2.013% - 1.942% 0.106% 1.259%	10.4m 2s 3s 2s 3s 2s 6s 2s 6s 10.4m 10.4m 2s 3s 2s 6s 2s 10.4m 10.4m 3s 4s 4s	29,945 30,435 30,343 30,343 30,339 - 30,148 - 30,131 30,050 10,335 10,577 10,878 10,840 10,836 - 10,772 10,772 10,772 10,772 10,726 19,156 19,305 19,637 19,641	1.597% 3.278% 3.287% 2.967% 2.947% 2.947% -2.242% 1.969% * 2.315% 5.224% 4.859% -4.212% 3.829% -3.738% 3.765% 2.494% 2.494%	20.8m 9s 12s 9s 12s – 9s - 21s - 21s 20.8m 20.8m 20.8m 11s - 28s 20.8m 20	OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-POMO RF-MOE RF-TE MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-MOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMOE MTPOMO MVMOE MTPOMO MVMOE	16.441 16.823 16.811 16.750 16.763 16.657 16.694 16.667 7.0198 7.098 7.098 7.087 7.040 7.042 7.042 11.682 11.814	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% * 0.386% 4 0.386% 2.695% 2.695% 2.615% 2.014% 2.045% 1.964% * 0.109% 1.221%	10.4m 2s 3s 2s 3s -2s -6s -2s 8 10.4m 10.4m 2s 3s 2s -3s -7s -6s -7s 10.4m 10.4m 3s 4s	26.259 26.891 26.866 26.784 26.675 26.620 26.592 26.493 10.335 10.582 10.883 10.847 10.779 10.736 10.724 19.156 19.303 19.635	1.899% 4.364% 4.271% 3.951% 3.918% 3.587% 3.204% 2.824% * 2.363% 5.272% 4.928% 4.928% 3.326% 3.743% 0.757% 2.484%	20.8m 9s 12s 9s 12s 9s 21s 16s 25s 20.8m 20.8m 8s 20s 11s 8s 20s 20s 20s 10s 20s 11s 20s 11s 20s 11s 20s 21s 21s 21s 21s 22s 23s 20s 20s 20s 20s 20s 20s 20s 20
OVRPB	OR-Tools MTPOMO MYMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MOSES(CaDA) HGS-PyVRP OR-TOOLS MOSES(CaDA) HGS-PyVRP OR-TOOLS MOSES(CaDA) HGS-PyVRP OR-TOOLS MTPOMO	18.292 18.366 18.639 18.640 18.601 18.617 18.760 18.534 18.495 6.898 7.108 7.080 7.071 7.034 11.668 11.681 11.817	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.121% - T.302% 1.095% ** 0.412% 3.004% 2.743% 2.688% - 2.477% - 1.979% - 2.033% 1.942% ** 0.106% 1.259%	10.4m 2s 3s 2s 3s 2s 3s 2s 3s 10.4m 10.4m 2s 3s 2s 3s 2s 10.4m 10.4m 10.4m 3s	29,945 30.435 30.438 30.343 30.339 30.148 30.131 30.050 10.335 10.577 10.878 10.840 10.806 10.772 10.724 10.726 19.156 19.305	1.597% 3.278% 3.278% 2.967% 2.947% - 2.618% - 2.2303% - 2.22% 1.969% 4.823% 4.823% 4.823% 4.526% - 4.212% 3.3829% - 3.738% 3.765% ** 0.767% 2.494%	20.8m 9s 12s 9s -12s -11s -25s 20.8m 8s 11s -8s -20s -20s -24s 24s 20.8m 20.8	OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE CaDA MoSES(CaDA) HGS-PyVRP OR-Tools MOSES(CaDA) HGS-PYVRP OR-Tools MOSES(CaDA) HGS-PYVRP OR-Tools MTPOMO MVMOE RF-POMO RF-POMO RF-MOSES(RF) CaDA	16.441 16.823 16.811 16.750 16.763 16.657 16.653 16.657 16.693 16.667 7.112 7.098 7.098 7.098 7.098 7.098 7.094 7.042 7.042 7.042 7.042 11.669 11.669 11.682 11.814 11.814 11.819	0.499% 2.818% 2.751% 2.383% 2.2547% 2.460% 1.811% 2.038% 8 8 0.386% 2.850% 2.635% 2.635% 2.635% 2.635% 1.964% * 1.019% 1.231% 1.231%	10.4m 2s 3s 2s 3s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 10.4m 10.4m 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s 3s	26.259 26.891 26.866 26.784 26.775 26.620 26.592 26.493 10.335 10.883 10.847 10.807 10.779 10.723 10.724 19.156 19.303	1.899% 4.364% 4.271% 3.951% 3.918% 3.587% 3.320% 3.204% 2.824% 4.928% 4.835% 4.540% 4.540% 3.762% 3.743% * 0.757% 2.4844%	20.8m 9s 12s 9s 12s 9s 12s 11s 25s 20.8m 8s 11s 8s 11s 20s 10s 24s 20.8m 20.8m 20s 24s
_	OR-Tools MTPOMO MYMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.07 7.040 7.037 7.040 7.031 11.817 11.823 11.805 11.823 11.805	0.383% 1.876% 1.884% 1.669% 1.760% - 1.675% * 0.412% 3.004% 2.689% 2.689% 2.613% - 2.033% 1.942% * 0.106% 1.259% 1.303% 1.155% 1.303% - 1.1247%	10.4m 2s 3s 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 10.4m 10.4m 3s 4s 3s 4s 4s 2s	29,945 30.435 30.435 30.343 30.339 30.2340 30.148 30.131 30.050 10.335 10.577 10.878 10.840 10.836 10.772 10.772 10.733 10.724 10.726 19.156 19.305 19.637 19.641 19.608 19.607 19.551	1.597% 3.278% 3.287% 2.967% 2.947% 2.947% -2.242% 1.969% * 2.315% 5.224% 4.853% 4.823% 4.823% 4.823% 4.823% 4.823% 4.821% 5.765% 2.494% 2.494% 2.4944% 2.344% 2.344% 2.344% 2.344% 2.344%	20.8m 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 20s 12s 12s 20s 11s 8s 11s 8s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 20s 11s 20s 20s 20s 20s 20s 20s 20s 20		OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE	16.441 16.823 16.811 16.750 16.763 16.657 16.654 16.667 6.927 7.112 7.098 7.083 7.075 7.040 7.042 7.042 11.669 11.682 11.814 11.819 11.804 11.823 11.804	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% * 0.386% 3.0366% 2.695% 2.695% 2.695% 2.014% 2.045% 1.964% * 0.109% 1.231% 4.231% 1.272% 1.148% 1.300% 1.315%	10.4m 2s 3s 2s 3s 2s 6s -2s 6s 10.4m 10.4m 2s 3s 2s -3s -7s 10.4m 10.4m 3s 4s -2s -3s -3s -3s -3s -3s -3s -3s -3s -3s -3	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493 10.385 10.582 10.883 10.807 10.779 10.779 10.724 19.303 19.635 19.635 19.635 19.635 19.635 19.635 19.635	1.899% 4.364% 4.271% 3.951% 3.918% 3.587% 3.204% * 2.8624% * 2.363% 5.272% 4.928% 4.835% 4.928% 3.743% 3.743% 2.4844% 2.484% 2.484% 4.265% 2.4844% 4.265% 2.4844% 4.265% 2.484% 4.265% 2.484% 4.265% 2.484%	20.8m 9s 12s 9s 12s 9s 12s 9s 12s 9s 21s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 24s 20.8m 20.8m 10s 20s 10s 20s 20s 20s 20s 20s 20s 20s 2
OVRPB	OR-Tools MTPOMO MYMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MYMoE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE RF	18.292 18.366 18.639 18.640 18.601 18.601 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.071 7.034 11.668 11.817 11.823 11.805 11.823 11.804	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.675% * 0.412% 3.004% 2.743% 2.643% -2.477% -2.633% 1.942% * 0.106% 1.259% 1.303% 1.303% 1.155% 1.307%	10.4m 2s 3s 2s 3s 2s 6s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 7s 10.4m 10.4m 3s 4s 4s 3s 6s	29,945 30,435 30,438 30,343 30,339 30,240 30,148 30,135 10,577 10,878 10,840 10,836 10,773 10,724 10,726 19,156 19,305 19,637 19,641 19,608 19,607 19,551	1.597% 3.278% 3.287% 2.967% 2.947% 2.5618% 2.303% - 2.242% 1.969% 4.823% 4.823% 4.823% 4.823% 4.526% 3.765% * * * * * * * * * * * * * * * * * *	20.8m 9s 12s 9s 12s 9s 11s 25s 20.8m 20.8m 8s 11s 8s 11s 20s 20s 20s 20s 10s 21s 22s 22s 22s 22s 23s 24s 25s 25s 25s 25s 25s 25s 25s 25	OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE CaDA MOSES(CADA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-MOE RF-TE RF-TE RF-TE RF-TE RF-TE RF-TE RF-TE RF-TE MOSES(CADA) MOSES(CADA) MOSES(CADA) MOSES(CADA) MOSES(CADA) MOSES(CADA)	16.441 16.823 16.811 16.750 16.763 16.657 16.667 16.667 16.699 6.927 7.012 7.098 7.083 7.075 7.042 7.042 11.669 11.814 11.819 11.823 11.805 11.805	0.499% 2.818% 2.751% 2.383% 2.547% 2.547% 1.811% 2.038% * 0.386% 2.850% 2.635% 2.635% 2.635% 1.964% * 0.109% 1.231% 1.272% 1.148% 1.300% 1.151% 0.783%	10.4m 2s 3s 2s 3s 2s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s 3s -2s -10.4m 10.4m 3s 4s -2s -6s -6s -6s -6s -6s -6s -6s -6s -6s -6	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493 10.335 10.582 10.883 10.847 10.877 10.779 10.779 10.724 19.156 19.303 19.635 19.639 19.606 19.551 19.509	1.899% 4.364% 4.271% 3.951% 3.918% -3.587% -3.520% -3.520% -4.268% -4.268% -4.268% -3.743%	20.8m 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 11s 20s 10s 24s 20.8m 20.8m 11s 8s 11s 11s 25s 20s 11s 22s 22s 22s 22s 22s 23s 25s 25s 25s 25s 25s 25s 25s 25
OVRPB	OR-Tools MTPOMO MYMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.07 7.040 7.037 7.040 7.031 11.817 11.823 11.805 11.823 11.805	0.383% 1.876% 1.884% 1.669% 1.760% - 1.675% * 0.412% 3.004% 2.689% 2.689% 2.613% - 2.033% 1.942% * 0.106% 1.259% 1.303% 1.155% 1.303% - 1.1247%	10.4m 2s 3s 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 10.4m 10.4m 3s 4s 3s 4s 4s 2s	29,945 30.435 30.435 30.343 30.339 30.2340 30.148 30.131 30.050 10.335 10.577 10.878 10.840 10.836 10.772 10.772 10.733 10.724 10.726 19.156 19.305 19.637 19.641 19.608 19.607 19.551	1.597% 3.278% 3.287% 2.967% 2.947% 2.947% -2.242% 1.969% * 2.315% 5.224% 4.853% 4.823% 4.823% 4.823% 4.823% 4.823% 4.821% 5.765% 2.494% 2.494% 2.4944% 2.344% 2.344% 2.344% 2.344% 2.344%	20.8m 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 20s 12s 12s 20s 11s 8s 11s 8s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 20s 11s 20s 20s 20s 20s 20s 20s 20s 20	OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE	16.441 16.823 16.811 16.750 16.763 16.657 16.654 16.667 6.927 7.112 7.098 7.083 7.075 7.040 7.042 7.042 11.669 11.682 11.814 11.819 11.804 11.823 11.804	0.499% 2.818% 2.751% 2.383% 2.547% 2.460% * 0.386% 3.0366% 2.695% 2.695% 2.695% 2.014% 2.045% 1.964% * 0.109% 1.231% 4.231% 1.272% 1.148% 1.300% 1.315%	10.4m 2s 3s 2s 3s 2s 6s -2s 6s 10.4m 10.4m 2s 3s 2s -3s -7s 10.4m 10.4m 3s 4s -2s -3s -3s -3s -3s -3s -3s -3s -3s -3s -3	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493 10.385 10.582 10.883 10.807 10.779 10.779 10.724 19.303 19.635 19.635 19.635 19.635 19.635 19.635 19.635	1.899% 4.364% 4.271% 3.951% 3.918% 3.587% 3.204% * 2.8624% * 2.363% 5.272% 4.928% 4.835% 4.928% 3.743% 3.743% 2.4844% 2.484% 2.484% 4.265% 2.4844% 4.265% 2.4844% 4.265% 2.484% 4.265% 2.484% 4.265% 2.484%	20.8m 9s 12s 9s 12s 9s 12s 9s 12s 9s 21s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 24s 20.8m 20.8m 10s 20s 10s 20s 20s 20s 20s 20s 20s 20s 2
OVRPB	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-TOMO MVMOE RF-TOMO MSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-TE RF-TE MTPOMO MVMOE RF-POMO MVMOE RF-POMO MVMOE RF-POMO MVMOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA	18.292 18.366 18.639 18.640 18.601 18.601 18.499 18.535 6.898 6.928 7.090 7.086 7.071 7.037 7.040 7.034 11.668 11.681 11.823 11.803 11.823 11.364 11.762	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.121% 1.095% * 0.412% 3.004% 2.743% 2.689% 2.613% 2.613% 2.634% 1.942% * 0.106% 1.303% 1.155% 1.303% 1.155% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.305% 1.307% 1.307% 1.305% 1.307% 1.305% 1.305% 1.307% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305% 1.305%	10.4m 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 6s 10.4m 10.4m 2s 3s 2s 6s 2s 6s 2s 6s 2s 7s	29,945 30,435 30,435 30,343 30,339 30,239 30,138 30,136 10,577 10,878 10,878 10,878 10,876 10,772 10,773 10,724 10,726 19,156 19,305 19,637 19,641 19,607 19,551 19,607 19,555 19,507 19,508	1.597% 3.278% 3.287% 2.967% 2.947% - 2.618% 2.303% - 2.242% 1.969% 4.823% 4.823% 4.823% 4.823% - 4.212% 3.829% - 3.765% * 0.767% 2.494% 2.516% 2.344% 2.344% 2.343% - 1.626%	20.8m 9s 12s 9s 12s 9s 21s 21s 21s 22s 20.8m 8s 11s 8s 20s 20.8m 20.8m 8s 11s 8s 20s 21s 21s 21s 21s 21s 21s 21s 21	OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO MF-MoE RF-TE MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-TOOLS MOSES(CADA) HGS-PYVRP OR-Tools MOSES(CADA) HGS-PYVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE RF-TE RF-TE RF-TE RF-TE ROSES(RF) CaDA	16.441 16.823 16.813 16.750 16.776 16.763 16.657 16.694 16.667 7.012 7.098 7.083 7.075 7.042 7.036 11.669 11.681 11.819 11.805 11.761 11.770	0.499% 2.818% 2.751% 2.383% 2.547% 1.811% 2.0388% 1.864% * 0.386% 3.056% 2.850% 2.635% 2.635% 2.635% 1.964% * 0.1093% 1.272% 1.148% 1.272% 1.140% 1.310% 0.783% 0.783% 0.783%	10.4m 2s 3s 2s 3s 2s -3s -6s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s -3s -2s -7s 10.4m 10.4m 3s 4s 3s -5s -5s -5s -5s -5s -5s -5s -5s -5s -5	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.493 10.335 10.582 10.883 10.847 10.837 10.779 10.779 10.779 10.724 19.156 19.303 19.639 19.639 19.639 19.639 19.551 19.551 19.579	1.899% 4.364% 4.271% 3.951% 3.918% - 3.367% - 3.20% - 3.20% - 3.587% 4.2824% 4.928% 4.835% 4.540% - 3.762% - 3.743%	20.8m 9s 12s 9s 21s 11s 25s 20.8m 8s 11s 8s 20s 10s 24s 20.8m 20.8m 20.8m 11s 8s 11s 8s 11s 20s 10s 24s 20.8m 20.8m
OVRPB	OR-Tools MTPOMO MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-RF-RF MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-MOE RF-TE MOSES(RF) CaDA MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools	18.292 18.366 18.639 18.640 18.601 18.601 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.071 7.034 11.668 11.817 11.823 11.804 11.761 6.507	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.21% 1.095% * 0.412% 3.004% 2.743% 2.688% 2.477% 2.613% 2.633% 1.942% * 0.106% 1.259% 1.303% 1.155% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.308% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.308% 1.307% 1.307% 1.307% 1.308% 1.307% 1.308% 1.308% 1.308% 1.308%	10.4m 2s 3s 2s 3s 2s 3s 2s 6s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 7s 10.4m 10.4m 3s 4s 2s 50 6s 2s 7s 10.4m 10.4m 3s 4s 10.4m 10.4m 10.4m	29,945 30,435 30,438 30,343 30,339 30,240 30,148 30,135 10,577 10,878 10,878 10,840 10,836 10,772 10,724 10,726 19,156 19,305 19,641 19,608 19,607 19,551 19,608 19,607 19,551 19,607 19,551 19,400 19,744 19,744 19,724 10,001	1.597% 3.278% 3.287% 2.967% 2.947% 2.947% 2.5618% * 2.315% 5.224% 4.859% 4.823% 4.823% 4.526% 3.765% * * 0.767% 2.494% 2.314% 2.314% 2.344% 2.334% 1.821% 1.821% 1.821% 1.821% 1.821% 1.821% 1.821% 2.791%	20.8m 9s 12s 9s 21s 21s 21s 25s 20.8m 20.8m 8s 11s 8s 21s 24s 20.8m 20.8m 8s 11s 8s 24s 20s 10s 20s 11s 24s 20s 20s 11s 20s 20s 20s 20s 20s 20s 20s 20	OVRPBL	OR-Tools MTPOMO MYMOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MYMOE RF-POMO MYMOE RF-POMO RF-MOE RF-POMO MSES(CaDA) HGS-PyVRP OR-TOOLS MTPOMO MYMOE RF-POMO RF-MOE RF-TE RF-POMO RF-MOE RF-TE AOSES(CaDA) HGS-PyVRP OR-ToolS MTPOMO MYMOE RF-POMO MYMOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-ToolS	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.663 16.667 16.693 17.075 17.036 11.669 11.682 11.814 11.819 11.823 11.805 11.776 10.510 10.510 10.497	0.499% 2.818% 2.1751% 2.383% 2.547% 1.811% 2.0386% 1.864% * 0.386% 2.850% 2.635% 2.635% 2.635% 1.964% * 0.109% 1.231% 1.272% 1.148% 0.0783% 0.783% 0.783% 0.783%	10.4m 2s 3s 2s 3s 2s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s 3s -2s -7s 10.4m 10.4m 3s 4s -2s -6s -2s -6s -7s 10.4m 10.4m 3s 4s 10.4m 10.4m 3s 4s 10.4m 10.4m 3s 4s 10.4m 10.4m	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493 10.335 10.582 10.883 10.847 10.837 10.779 10.779 10.723 10.724 19.156 19.303 19.635 19.639 19.606 19.551 19.509 19.472 19.441 16.923	1.899% 4.364% 4.271% 3.918% 3.918% 3.587% 3.320% * 2.824% 4.268% 4.540% 4.540% 4.540% 5.725% 2.343% 2.343% 2.327% 2.484% 2.305% 2.145% 1.829% 1.829% 1.830% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829%	20.8m 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 24s 20.8m 20.8m 11s 8s 11s 20s 11s 21s 21s 21s 21s 21s 21s 21
OVRPBLTW OVRPB	OR-Tools MTPOMO MYMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO HGS-PyVRP OR-Tools MTPOMO HGS-PyVRP OR-Tools MTPOMO	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.07 7.040 7.037 7.040 7.031 11.817 11.823 11.805 11.823 11.805 11.771 11.761 6.507 6.507	0.383% 1.876% 1.884% 1.8669% 1.760% 1.760% 1.635% * 0.412% 3.004% 2.6489% 2.643% 2.613% * 0.106% 1.942% * 0.106% 1.303% 1.155% 1.303% 1.155% 1.303% 1.155% 1.303% 1.155% 1.303% 1.155% 1.303% 1.155% 1.303% 1.155% 1.303% 1.155% 1.303% 1.305% 0.781% *	10.4m 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 6s 2s 6s 3s 10.4m 10.4m 3s 4s 3s 4s 2s 6s 2s 10.4m 10.4m 2s 3s 4s 2s 6s 2s 8s 10.4m 10.4m 2s	29,945 30,435 30,438 30,343 30,339 \$0,240 30,148 \$0,131 30,050 10,335 10,577 10,878 10,840 10,806 10,772 10,724 10,726 19,305 19,637 19,641 19,608 19,607 19,551 19,508 19,607 19,551 19,508 19,607 19,551 19,508 19,477 19,440	1.597% 3.278% 3.287% 2.967% 2.947% 2.947% 2.5618% 2.303% 2.242% 1.969% * 2.315% 5.224% 4.859% 4.212% 3.765% * 0.767% 2.344% 2.516% 2.344% 2.516% 2.344% 1.821% 1.8	20.8m 9s 12s 9s 12s 9s 12s 9s 11s 25s 20.8m 20.8m 20.8m 20s 11s 20s 20s 20s 10s 20.8m 20.8m 20s 11s 20s 11s 20s 20s 20s 20s 20s 20s 20s 20	OVRPBTW OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-TE MOSES(CaDA) HGS-PYVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MSSES(CaDA) HGS-PyVRP OR-Tools MOSES(CaDA) HGS-PyVRP OR-Tools MOSES(CaDA)	16.441 16.823 16.811 16.750 16.763 16.657 16.654 16.667 6.899 6.927 7.112 7.098 7.083 7.075 7.040 7.042 7.042 7.036 11.669 11.682 11.814 11.819 11.804 11.819 11.804 11.825 11.7761 11.7761 11.7760 10.510 10.510	0.499% 2.818% 2.1751% 2.383% 2.547% 1.811% 2.038% 1.864% * 0.3856% 2.635% 2.615% 2.045% 2.635% 1.964% * 0.109% 1.231% 1.272% 1.148% 1.272% 1.148% 1.272% 1.148% 0.783% 0.783% 0.773% *	10.4m 2s 3s 2s 3s 2s - 6s - 2s 8s 10.4m 10.4m 2s 3s 2s - 6s - 2s - 7s 10.4m 10.4m 3s 4s 3s - 2s - 5s - 10.4m 10.4m 3s 4s 3s - 2s - 10.4m 10.4m 2s 3s 4s - 2s - 2s - 10.4m 10.4m 3s 4s 3s - 2s	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493 10.385 10.883 10.847 10.807 10.779 10.779 10.724 19.303 19.635 19.635 19.635 19.582 19.582 19.582 10.784 11.582 10.783 10.794 11.583 10.794 11.583 10.794 11.583 11	1.899% 4.364% 4.271% 3.951% 3.918% - 3.587% - 3.20% - 3.20% - 3.263% - 2.824% 4.928% 4.928% - 4.540% - 4.268% - 3.743% - 2.484% 2.505% 2.4484% 2.505% - 2.146% - 1.630% 1.475% * 0.728%	20.8m 9s 12s 9s 12s 9s 12s 9s 21s 25s 20.8m 20.8m 20s 11s 8s 11s 8s 20s 10s 24s 20.8m 20.8m 20.8m 20.8m 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 11s 20s 20s 11s 20s 20s 20s 20s 20s 20s 20s 20
OVRPBLTW OVRPB	OR-Tools MTPOMO MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-RF-RF MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-MOE RF-TE MOSES(RF) CaDA MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools	18.292 18.366 18.639 18.640 18.601 18.601 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.071 7.034 11.668 11.817 11.823 11.804 11.761 6.507	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.21% 1.095% * 0.412% 3.004% 2.743% 2.688% 2.477% 2.613% 2.633% 1.942% * 0.106% 1.259% 1.303% 1.155% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.308% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.307% 1.308% 1.307% 1.307% 1.307% 1.308% 1.307% 1.308% 1.308% 1.308% 1.308%	10.4m 2s 3s 2s 3s 2s 3s 2s 6s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 7s 10.4m 10.4m 3s 4s 2s 50 6s 2s 7s 10.4m 10.4m 3s 4s 10.4m 10.4m 10.4m	29,945 30,435 30,438 30,343 30,339 30,240 30,148 30,135 10,577 10,878 10,878 10,840 10,836 10,772 10,724 10,726 19,156 19,305 19,641 19,608 19,607 19,551 19,608 19,607 19,551 19,607 19,551 19,400 19,744 19,744 19,724 10,001	1.597% 3.278% 3.287% 2.967% 2.947% 2.947% 2.5618% * 2.315% 5.224% 4.859% 4.823% 4.823% 4.526% 3.765% * * 0.767% 2.494% 2.314% 2.314% 2.344% 2.334% 1.821% 1.821% 1.821% 1.821% 1.821% 1.821% 1.821% 2.791%	20.8m 9s 12s 9s 21s 21s 21s 25s 20.8m 20.8m 8s 11s 8s 21s 24s 20.8m 20.8m 8s 11s 8s 24s 20s 10s 20s 11s 24s 20s 20s 11s 20s 20s 20s 20s 20s 20s 20s 20	OVRPBTW OVRPBL	OR-Tools MTPOMO MYMOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MYMOE RF-POMO MYMOE RF-POMO RF-MOE RF-POMO MSES(CaDA) HGS-PyVRP OR-TOOLS MTPOMO MYMOE RF-POMO RF-MOE RF-TE RF-POMO RF-MOE RF-TE AOSES(CaDA) HGS-PyVRP OR-ToolS MTPOMO MYMOE RF-POMO MYMOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-ToolS	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.663 16.667 16.693 17.075 17.036 11.669 11.682 11.814 11.819 11.823 11.805 11.776 10.510 10.510 10.497	0.499% 2.818% 2.1751% 2.383% 2.547% 1.811% 2.0386% 1.864% * 0.386% 2.850% 2.635% 2.635% 2.635% 1.964% * 0.109% 1.231% 1.272% 1.148% 0.0783% 0.783% 0.783% 0.783%	10.4m 2s 3s 2s 3s 2s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s 3s -2s -7s 10.4m 10.4m 3s 4s -2s -6s -2s -6s -7s 10.4m 10.4m 3s 4s 10.4m 10.4m 3s 4s 10.4m 10.4m 3s 4s 10.4m 10.4m	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493 10.335 10.582 10.883 10.847 10.837 10.779 10.779 10.723 10.724 19.156 19.303 19.635 19.639 19.606 19.551 19.509 19.472 19.441 16.923	1.899% 4.364% 4.271% 3.918% 3.918% 3.587% 3.320% * 2.824% 4.268% 4.540% 4.540% 4.540% 5.725% 2.343% 2.343% 2.327% 2.484% 2.305% 2.145% 1.829% 1.829% 1.830% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829% 1.829%	20.8m 9s 12s 9s 12s 9s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 24s 20.8m 20.8m 11s 8s 11s 20s 11s 21s 21s 21s 21s 21s 21s 21
OVRPBLTW OVRPB	OR-Tools MTPOMO MYMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MOSES(CaDA) HGS-PyVRP OR-Tools MYMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MYMOE RF-POMO RF-MOE RF-TOOLS MYMOE RF-POMO RF-MOE RF-TOOLS MOSES(CADA) HGS-PYRP OR-ToolS MYMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.071 7.040 7.034 11.681 11.817 11.823 11.805 11.823 11.805 11.823 11.805 11.762 11.761 6.507 6.552 6.719 6.707 6.707 6.707 6.696	0.383% 1.876% 1.884% 1.669% 1.760% 1.121% 1.760% 1.1095% * 0.412% 2.743% 2.689% 2.613% 2.477% 1.992% 0.106% 1.259% 1.303% 1.155% 1.307% 0.781% 0.785% * 0.668% 3.029% 3.029% 3.029% 3.029%	10.4m 2s 3s 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 6s 2s 7s 10.4m 3s 4s	29,945 30,435 30,438 30,343 30,339 30,2340 30,148 30,135 10,577 10,878 10,840 10,836 10,806 10,772 10,724 10,726 19,156 19,637 19,641 19,608 19,797 19,657 19,657 19,557 19,568 19,470 19,440 9,724 10,001 10,214 10,184 10,184 10,184	1.597% 3.278% 3.278% 2.967% 2.967% 2.947% 2.315% * 2.315% 4.823% 4.823% 4.526% 4.212% 3.765% * 0.767% 2.494% 2.334% 6.2516% 2.344% 2.334% 1.821% 1.821% 1.470% * 2.791% 5.000% 4.697% 4.662% 4.4253%	20.8m 9s 12s 9s 12s 9s 12s 9s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 20s 20.8m 2	OVRPBTW OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO RF-MOE RF-TOOLS MOSES(CaDA) HGS-PYVRP OR-ToolS MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.654 16.667 17.112 17.098 17.042 17.042 17.042 11.682 11.814 11.819 11.804 11.819 11.804 11.819 11.776 11.776 10.671 10.671	0.499% 2.818% 2.818% 2.751% 2.383% 2.2547% 2.460% 1.811% 2.038% 2.038% 2.850% 2.655% 2.655% 2.655% 2.615% 2.014% 2.045% 1.151% 0.783% 0.854% 0.713% 8 0.1148% 1.300% 1.311% 1.511% 1.511% 1.512%	10.4m 2s 3s 2s 3s 2s -2s -2s 6s -2s 8s 10.4m 10.4m 2s 3s 2s 2s 3s -2s -6s -2s -7s 10.4m 3s 4s 4s -2s -6s -2s 8s 10.4m 10.4m 3s 4s 3s 4s -2s -3s -3s -3s -3s -3s -3s -3s -3s -3s -3	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.493 10.335 10.583 10.887 10.807 10.775 10.733 10.724 19.156 19.303 19.635 19.639 19.608 19.608 19.501 19.411 16.926 17.420 17.418 17.392	1.899% 4.364% 4.271% 3.951% 3.3918% -3.320% -3.262% -3.262% 4.228% 4.835% 4.540% -4.268% 3.743% ** 0.757% 2.484% 2.353% -1.630% 1.475% -1.475% 0.728% 2.892% 2.881% 2.727%	20.8m 9s 12s 9s 12s 9s 12s 9s 21s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 20.8m 9s 12s 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 9s 12s 12s 20.8m 20.8m 9s 12s 12s 20.8m 9s 12s 12s 20.8m 9s 12s 12s 12s 12s 12s 12s 12s 12
OVRPB	OR-Tools MTPOMO MYMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-MOE RF-TE MOSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-TE MOSES(CaDA) HGS-PYVRP OR-Tools MTPOMO RF-MOE RF-TE	18.292 18.366 18.639 18.640 18.601 18.601 18.617 18.500 18.499 18.534 18.495 6.898 6.928 7.090 7.086 7.071 7.034 11.668 11.817 11.823 11.823 11.805 11.823 11.762 11.761 6.507 6.552 6.707 6.701 6.696 6.688	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.675% * 0.412% 3.004% 2.743% 2.683% 2.743% 2.633% 1.912% * 0.106% 1.259% 1.303% 1.155% 1.307% - Γ.147% - 0.865% - 0.791% * 0.668% 3.229% 3.029% 2.951% 2.870% - 2.773%	10.4m 2s 3s 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 6s 2s 7s 10.4m 10.4m 10.4m 2s 3s 4s 2s 10.4m 10.4m 2s 3s 4s 2s 3s 2s 3s 2s 3s	29,945 30,435 30,438 30,343 30,339 30,240 30,148 30,135 10,577 10,878 10,840 10,836 10,733 10,724 10,726 19,156 19,305 19,637 19,641 19,607 19,555 19,637 19,641 19,508 19,607 19,555 19,637 19,641 19,508 19,607 19,558 19,637 19,641 10,1214 10,1214 10,184 10,180 10,141	1.597% 3.278% 3.287% 2.967% 2.967% 2.947% 2.315% 5.224% 4.859% 4.823% 4.823% 4.526% 3.765% * * 0.767% 2.494% 2.316% 2.344% 2.334% -1.626% 1.821% * 2.791% 5.000% 4.697% 4.692% 4.4536% 4.653% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253% -4.253%	20.8m 9s 12s 9s 12s 9s 12s 9s 11s 25s 20.8m 20.8m 8s 11s 8s 24s 20.8m 20.8m 8s 11s 24s 20.8m 20.8m 20.8m 8s 11s 24s 20.8m	OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE AOSES(CaDA) HGS-PyVRP OR-Tools MSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-MOE RF-POMO RF-MOE RF-POMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) MOSES(CaDA) HGS-PYNP OR-Tools MTPOMO MVMOE RF-POMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO	16.441 16.823 16.811 16.750 16.763 16.657 16.654 16.667 16.763 16.667 16.691 17.036 11.669 11.669 11.814 11.819 11.803 11.805 11.770 11.770 11.670 10.670 10.671 10.657 10.653	0.499% 2.818% 2.818% 2.751% 2.383% 2.2547% 2.460% 1.811% 2.0386% 2.850% 2.850% 2.635% 2.635% 1.964% * 0.109% 1.231% 1.231% 1.218% 1.300% 1.148% 1.300% 1.515% 0.783% * 0.114% 1.503% 1.511% 1.513% 1.513% 1.513% 1.31%	10.4m 2s 3s 2s 3s 2s -2s -6s -2s 8s 10.4m 10.4m 2s 3s 2s -3s -2s -6s -2s -5s -10.4m 10.4m 3s 4s -2s -2s -5s -10.4m 10.4m 2s 3s -2s -2s -2s -2s -2s -2s -2s -2s -2s -2	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.592 26.493 10.335 10.582 10.8847 10.837 10.724 19.156 19.303 19.635 19.639 19.698 19.606 19.551 19.559 19.441 16.926 17.023 17.420 17.418 17.382 17.382	1.899% 4.364% 4.271% 3.951% 3.918% - 3.587% - 3.587% - 2.824% * 2.363% 4.928% 4.928% 4.948% - 3.732% 3.743% * 0.757% 2.484% 2.505% - 1.630% - 1.829% - 1.630% - 1.475% - 2.892% - 2.992% - 2.992% - 2.992% - 2.992% - 2.992% - 3.348%	20.8m 9s 12s 9s 21s 12s 9s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 24s 20.8m 20
OVRPBLTW OVRPB	OR-Tools MTPOMO MYMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MOSES(CaDA) HGS-PyVRP OR-Tools MYMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MYMOE RF-POMO RF-MOE RF-TOOLS MYMOE RF-POMO RF-MOE RF-TOOLS MOSES(CADA) HGS-PYRP OR-ToolS MYMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.071 7.040 7.034 11.681 11.817 11.823 11.805 11.823 11.805 11.823 11.805 11.762 11.761 6.507 6.552 6.719 6.707 6.707 6.707 6.696	0.383% 1.876% 1.884% 1.669% 1.760% 1.121% 1.760% 1.1095% * 0.412% 2.743% 2.689% 2.613% 2.477% 1.992% 0.106% 1.259% 1.303% 1.155% 1.307% 0.781% 0.785% * 0.668% 3.029% 3.029% 3.029% 3.029%	10.4m 2s 3s 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 6s 2s 7s 10.4m 3s 4s	29,945 30,435 30,438 30,343 30,339 30,2340 30,148 30,135 10,577 10,878 10,840 10,836 10,806 10,772 10,724 10,726 19,156 19,637 19,641 19,608 19,797 19,657 19,657 19,557 19,568 19,470 19,440 9,724 10,001 10,214 10,184 10,184 10,184	1.597% 3.278% 3.287% 2.967% 2.967% 2.937% 2.315% 4.823% 4.823% 4.823% 4.823% 4.823% 4.826% 4.763% 3.765% 0.767% 2.494% 2.516% 2.516% 1.470% * 2.791% 5.000% 4.697% 4.662% 4.633% 4.334% 4.334% 4.334% 3.463% 3.463%	20.8m 9s 12s 9s 12s 9s 12s 9s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 20s 20.8m 2	OVRPBTW OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA MoSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO RF-MOE RF-TOOLS MOSES(CaDA) HGS-PYVRP OR-ToolS MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO RF-POMO	16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.654 16.667 17.112 17.098 17.042 17.042 17.042 11.682 11.814 11.819 11.804 11.819 11.804 11.819 11.776 11.776 10.671 10.671	0.499% 2.818% 2.818% 2.751% 2.383% 2.2547% 2.460% 1.811% 2.038% 2.038% 2.850% 2.655% 2.655% 2.655% 2.615% 2.014% 2.045% 1.151% 0.783% 0.854% 0.713% 8 0.1148% 1.300% 1.311% 1.511% 1.511% 1.512%	10.4m 2s 3s 2s 3s 2s -2s -2s 6s -2s 8s 10.4m 10.4m 2s 3s 2s 2s 3s -2s -6s -2s -7s 10.4m 3s 4s 4s -2s -6s -2s 8s 10.4m 10.4m 3s 4s 3s 4s -2s -3s -3s -3s -3s -3s -3s -3s -3s -3s -3	26.259 26.891 26.866 26.784 26.775 26.691 26.620 26.493 10.335 10.583 10.887 10.807 10.775 10.733 10.724 19.156 19.303 19.635 19.639 19.608 19.608 19.501 19.411 16.926 17.420 17.418 17.392	1.899% 4.364% 4.271% 3.951% 3.3918% -3.320% -3.262% -3.262% 4.228% 4.835% 4.540% -4.268% 3.743% ** 0.757% 2.484% 2.353% -1.630% 1.475% -1.475% 0.728% 2.892% 2.881% 2.727%	20.8m 9s 12s 9s 12s 9s 12s 9s 21s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 20.8m 9s 12s 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 20.8m 9s 12s 12s 20.8m 20.8m 9s 12s 12s 20.8m 9s 12s 12s 20.8m 9s 12s 12s 12s 12s 12s 12s 12s 12
OVRPBLTW	OR-Tools MTPOMO MVMoE RF-POMO RF-MoE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE MOSES(RF) CaDA MOSES(CADA) HGS-PYVRP OR-Tools MTPOMO MVMOE RF-MOE RF-TE RF-TE RF-TE MOSES(RF) CADA MOSES(CADA) HGS-PYONO MVMOE RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE MOSES(RF)	18.292 18.366 18.639 18.640 18.601 18.617 18.600 18.499 18.534 18.495 6.898 6.928 7.090 7.080 7.071 7.034 11.668 11.817 11.823 11.804 11.761 6.507 6.552 6.719 6.701 6.696 6.683	0.383% 1.876% 1.884% 1.669% 1.760% 1.760% 1.095% * 0.412% 3.004% 2.743% 2.688% 2.477% 1.917% * 0.1068% 1.303% 1.155% 1.303% 1.155% 0.781% * 0.668% 3.229% 3.029% 2.951% 2.870% 2.870%	10.4m 2s 3s 2s 3s 2s 6s 3s 8s 10.4m 10.4m 2s 3s 2s 3s 2s 7s 10.4m 10.4m 3s 4s 3s 2s 5s 10.4m 10.4m 2s 3s 4s 3s 5s 2s 6s 2s 7s 10.4m 10.4m 2s 3s 4s 3s 5s 6s 2s 6s 6s 2s 8s 10.4m 10.4m 2s 3s 6s 6s 2s 8s 6s	29,945 30,435 30,438 30,343 30,339 30,2340 30,148 30,135 10,577 10,878 10,878 10,840 10,836 10,772 10,724 10,726 19,156 19,305 19,637 19,641 19,608 19,607 19,551 19,440 9,724 10,001 10,214 10,184 10,180 10,1141 10,121 10,101	1.597% 3.278% 3.287% 2.9467% 2.9467% 2.9467% 1.969% * 2.315% 5.224% 4.859% 4.823% 4.823% 4.526% -4.212% 3.829% -3.765% * 0.767% 2.494% 2.516% 2.343% -1.626% 1.470% * 2.791% 5.000% 4.6672% 4.253% 4.652% 4.353% 3.463%	20.8m 9s 12s 9s 12s 9s 21s 25s 20.8m 20.8m 8s 11s 8s 24s 20.8m 20.8m 20.8m 8s 11s 24s 20.8m 9s 12s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 24s 20.8m 8s 11s 26s 26s 26s 26s 26s 26s 26s 26	OVRPBTW OVRPBL	OR-Tools MTPOMO MVMoE RF-POMO RF-MOE RF-TE MoSES(RF) CaDA HGS-PyVRP OR-Tools MTPOMO MVMoE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MSES(CaDA) HGS-PyVRP OR-Tools MTPOMO RF-MOE RF-TE MOSES(CaDA) HGS-PyVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TE RF-TE RF-TE RF-TE RF-TE RF-TE RF-TE RS-PYRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-TOOLS MTPOMO MSES(CaDA) HGS-PYVRP OR-Tools MTPOMO MVMOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-POMO RF-MOE RF-TE RF-MOE RF-TE 16.441 16.823 16.811 16.750 16.776 16.763 16.657 16.693 16.667 16.989 6.927 7.012 7.098 7.083 7.075 7.042 7.036 11.669 11.814 11.819 11.819 11.805 11.770 10.670 10.671 10.673 10.6673 10.6673 10.6673 10.6673	0.499% 2.818% 2.1751% 2.383% 2.547% 1.811% 2.0388% 1.864% 8 0.386% 2.850% 2.635% 2.635% 2.014% 1.7964% 8 0.109% 1.151% 0.773% 8 0.773% 8 1.510% 1.503% 1.511% 1.303% 1.512% 1.303% 1.312% 1.330% 1.332%	10.4m 2s 3s 2s 3s 2s -3s -6s -2s -6s 10.4m 10.4m 2s 3s 2s -3s -2s -7s 10.4m 10.4m 3s 4s -2s -5s -7s 10.4m 10.4m 2s 3s 3s -5s -6s -7s -7s -7s -7s -7s -7s -7s -7s -7s -7	26.259 26.891 26.896 26.784 26.775 26.691 26.620 26.493 10.335 10.582 10.883 10.847 10.837 10.779 10.736 10.724 19.156 19.303 19.635 19.639 19.647 19.156 19.509 19.472 19.441 16.926 17.420 17.418 17.323 17.420 17.385 17.327 17.281	1.899% 4.364% 4.271% 3.918% 3.918% 3.320% 3.320% 4.2824% 4.928% 4.928% 4.540% 4.540% 4.568% 3.743% * * 0.7577% 2.484% 2.505% 2.484% 6.1.475% * * 1.630% 1.475% * 2.881% 6.728% 2.881% 2.881% 2.881% 2.881%	20.8m 9s 12s 9s 21s 11s 25s 20.8m 20.8m 8s 11s 8s 20s 10s 24s 20.8m 20.8m 8s 11s 8s 21s 25s 20.8m 20.8m 8s 11s 20s 24s 20s 24s 20.8m 9s 12s 24s 20.8m 9s 12s 24s 20.8m 9s 12s 24s 20.8m 9s 12s 24s 20.8m 9s 12s 24s 20.8m 9s 12s 20.8m 9s 12s 20.8m 20.8m 20.8m 9s 12s 20.8m 20.8m 20.8m 20.8m 9s 12s 20.8m 20.8m 20.8m 20.8m 9s 12s 20.8m 20.	

each containing 100,000 VRP instances generated on the fly. Adam Optimizer is used with a learning rate of 3×10^{-4} , weight decay of 1×10^{-6} , and batch size of 256. We decay the learning rate by a factor of 10 at epochs 270 and 295. During evaluation, each neural solver employs greedy multi-start

Figure 2: 2(a) 2(b) compare Gated-LoRA against standard LoRA with varying $\beta \in (0, 1]$. 2(c) 2(d) investigate the effect of LoRA ranks on the model performance.

rollouts with $8 \times$ augmentations, selecting the best one from the generated solutions per instance. We report average costs and optimality gaps over 1K test instances, and the total time taken for testing. Gaps are calculated w.r.t. the results of the best heuristic solver (i.e., * in Table 1).

5.1 Empirical Results

We conduct comprehensive benchmarking across all 16 VRP variants, with complete results presented in Table 1. MoSES(RF) consistently outperforms over its baseline RF-TE across all 16 VRP variants, achieving both lower solution costs and reduced optimality gaps for problem scales of N=50and N=100. In terms of average optimality gap over 16 VRP variants, RF-TE achieves 2.063% and 3.125% for N=50 and N=100, respectively, while MoSES(RF) demonstrates superior performance with gaps of 1.535% and 2.782%, indicating relative improvements of 25.6% and 11.0%. MoSES(CaDA) demonstrates consistent improvements over its baseline CaDA across all VRP variants at N = 50. For N = 100, it shows superiority on 13 out of 16 tasks while maintaining comparable performance on CVRP, OVRPB, and OVRPBL tasks, with marginal decreases of ≤ 0.002 in costs and ≤ 0.027% in optimality gaps. MoSES(CaDA) reduces average optimality gaps over 16 VRP tasks from 1.715% to 1.515% (11.7% relative improvement) at N = 50 and from 2.766% to 2.631% (4.9%) relative improvement) at N=100, compared to its baseline CaDA. From the perspective of average optimality gap, MoSES(CaDA) is more preferred than MoSES(RF). In terms of the average total time overhead over 16 tasks, MoSES(RF) requires 5.8s and 20.8s for N = 50 and N = 100, respectively, compared to 2.0s and 8.4s consumed by RF-TE. MoSES(CaDA) requires 7.4s compared to CaDA's 2.3s for N=50, and 24.8s compared to CaDA's 10.5s for N=100. Since this time overhead represents the total time for 1K instances averaged over 16 tasks, the amortized time per instance remains at the microsecond level for both MoSES(RF) and MoSES(CaDA). Thus, the slightly more computational time of our method, resulting from the layer-wise token-wise routing mechanisms and dynamic aggregation operations, is acceptable given the favorable empirical improvements over prior methods, and may not be a major concern in practical applications.

5.2 Hyperparameter Studies

We also evaluate the impact of LoRA ranks on model performance, using MoSES(CaDA) as a case study across both N=50 and N=100 problem scales. We allow the ranks for frozen modules $\{B_iA_i\}_{i=1}^4$ and trainable module $\hat{B}\hat{A}$ to differ, denoted as $r_{\rm frozen}$ and $r_{\rm free}$ respectively. Figures 2(c) 2(d) present the impact of LoRA ranks on the average optimality gap over 16 VRPs, where blue curves fix $r_{\rm frozen}=32$ while varying $r_{\rm frozen}$ from 4 to 32, and green curves fix $r_{\rm free}=32$ while varying $r_{\rm frozen}$ from 4 to 32. Figure 2(c) reveals that reducing the LoRA rank of trainable module $\hat{B}\hat{A}$ with fixed $r_{\rm frozen}=32$ incurs smaller performance degradation than reducing the LoRA rank of frozen modules $\{B_iA_i\}_{i=1}^4$ with fixed $r_{\rm free}=32$. It suggests that the frozen LoRA experts contribute more significantly to MoSES(CaDA) than the trainable LoRA expert at

Figure 3: Activations.

N = 50. Figure 2(d) demonstrates an inverse relationship at the scale of N = 100 that the trainable LoRA expert contributes more significantly to MoSES(CaDA) than the frozen LoRA experts.

Before delving into the in-depth analysis of Figure 2(c) 2(d), we first clarify the respective roles of the gating function and the trainable LoRA expert in MoSES. The gating function is primarily designed to extract individual insights from basis VRP solvers by identifying which solvers offer the most relevant experience for a given problem instance. In contrast, the trainable LoRA expert is intended to capture a holistic understanding of the given VRP variant, which naturally includes correlations among the basis VRP variants. From Figure 2(c), we observe that for smaller problem instances (N=50), reducing the LoRA rank of the frozen LoRA experts leads to a more significant performance drop than reducing the LoRA rank of the trainable LoRA expert. This suggests that for simpler problems, the basis solvers already contain sufficient useful insights, and the unified solver relies less on the holistic understanding provided by the trainable LoRA expert. Conversely, Figure 2(d) shows that for larger problem instances (N=100), reducing the LoRA rank of the trainable LoRA expert results in a greater performance drop than reducing that of the frozen experts. This indicates that for more complex problems, the unified solver requires a deeper and more holistic understanding of the VRP variant, which the trainable LoRA expert is better suited to provide.

5.3 Ablation Studies

We evaluate our proposed Gated-LoRA against standard LoRA that varies β from 0.1 to 1.0, both used in the phase of fine-tuning specialized experts. Figures 2(a) 2(b) demonstrate Gated-LoRA's consistent superiority by showing lower average optimality gaps over four basis variants (OVRP, VRPB, VRPL, VRPTW) at N=50 for both RF-based and CaDA-based backbones. Figure 3 uncovers that MoSES(RF) prefers norm_softplus(·) as the activation function in the gating mechanism, while MoSES(CaDA) prefers sigmoid(·). CaDA-based basis solvers may exhibit stronger generalization capability than RF-based ones, owing to the two parallel Transformer blocks in each layer. Consequently, MoSES(CaDA), which uses sigmoid(·) as its activation function, tends to prioritize relevant solvers while assigning moderately higher scores to less relevant

Figure 4: Routing Methods.

ones. This behavior suggests that MoSES(CaDA) recognizes that even task-irrelevant solvers can contribute useful insights for solving the current VRP variant. Figure 4 shows that dense routing method achieves best in both MoSES(RF) and MoSES(CaDA), and significant performance degradation occurs when the trainable LoRA module $\hat{B}\hat{A}$ is ablated. The dense routing strategy in the gating mechanism does not hinder interpretability, as evidenced by Figure 13 of the Appendix B. Figure 13 presents a behavioral analysis of the gating functions used in our models across 16 VRP variants. In this figure, we plot the scores assigned by the gating function to each basis solver. It is clear that for a given VRP variant, the gating mechanism tends to assign higher scores to basis solvers associated with the corresponding underlying basis VRPs. The reason the gating function does not completely zero out the remaining tasks is that many VRP variants are inherently correlated and solving instances of one task may benefit from insights learned from others. Since our method reuses only the basis VRP solvers, the number of solvers increases linearly, which is more manageable compared to the exponential growth in neural solver.

6 Conclusions and Limitations

In this paper, our objective is to design a unified neural solver which is capable of handling multiple VRP variants simultaneously. To achieve this, we propose the State-Decomposable MDP (SDMDP) to reformulate multi-task VRPs, grounded in observation that each VRP variant derives from a shared set of basis VRP variants. Then, the LS-SDMDP extension is developed to reuse basis neural solvers, each specialized for a basis VRP, in the latent space. We finally implement mixture-of-LoRA-experts as the unified solver. While our method demonstrates empirical superiority over prior approaches, it incurs mild computational overhead compared to other neural solvers due to its finer-grained layer-wise and token-wise aggregation and adaptive routing mechanisms. This limitation suggests designing more efficient aggregation techniques which preserve decent performance as future research directions. In addition, extending this framework to broader and general decision-making settings is also appealing.

Acknowledgments and Disclosure of Funding

This research is supported by a generous research grant from Xiaoi Robot Technology Limited, and the Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant. We appreciate the anonymous reviewers, (S)ACs, and PCs of NeurIPS 2025 for their insightful comments to further improve our paper and their service to the community.

References

- [1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo permutation symmetries. In *The Eleventh International Conference on Learning Representations*, 2023.
- [2] Ahmad Bdeir, Jonas K Falkner, and Lars Schmidt-Thieme. Attention, filling in the gaps for generalization in routing problems. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 505–520. Springer, 2022.
- [3] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems. In *ICML 2024 Workshop on Foundation Models in the Wild*, 2024.
- [4] Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee. Learning generalizable models for vehicle routing problems via knowledge distillation. *Advances in Neural Information Processing Systems*, 35:31226–31238, 2022.
- [5] Lucas Caccia, Edoardo Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessandro Sordoni. Multi-head adapter routing for cross-task generalization. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [6] Diego Cattaruzza, Nabil Absi, Dominique Feillet, and Jesús González-Feliu. Vehicle routing problems for city logistics. *EURO Journal on Transportation and Logistics*, 6(1):51–79, 2017.
- [7] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. *Advances in neural information processing systems*, 32, 2019.
- [8] Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learning to solve large-scale tsp instances. In *International Conference on Artificial Intelligence and Statistics*, pages 1219–1231. PMLR, 2023.
- [9] Alexandra Chronopoulou, Matthew E. Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup: Weight averaging to improve generalization of pretrained language models, 2023.
- [10] Alexandra Chronopoulou, Jonas Pfeiffer, Joshua Maynez, Xinyi Wang, Sebastian Ruder, and Priyanka Agrawal. Language and task arithmetic with parameter-efficient layers for zero-shot summarization. In Jonne Sälevä and Abraham Owodunni, editors, *Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)*, pages 114–126, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
- [11] Arthur Corrêa, Cristóvão Silva, Liming Xu, Alexandra Brintrup, and Samuel Moniz. Tunensearch: a hybrid transfer learning and local search approach for solving vehicle routing problems. *arXiv preprint arXiv:2503.12662*, 2025.
- [12] Nico Daheim, Thomas Möllenhoff, Edoardo Ponti, Iryna Gurevych, and Mohammad Emtiyaz Khan. Model merging by uncertainty-based gradient matching. In *The Twelfth International Conference on Learning Representations*, 2024.
- [13] Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhiheng Xi, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang. LoRAMoE: Alleviating world knowledge forgetting in large language models via MoE-style plugin. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1932–1945, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

- [14] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimization agent learner. In *The Thirteenth International Conference on Learning Representations*, 2024.
- [15] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimulation quotienting for efficient neural combinatorial optimization. *Advances in Neural Information Processing Systems*, 36, 2024.
- [16] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily large tsp instances. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pages 7474–7482, 2021.
- [17] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for vehicle routing problems via ensemble with transferrable local policy. In *The 33rd International Joint Conference on Artificial Intelligence (IJCAI-24)*, 2024.
- [18] Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen Sun, Ruibo Liu, Daiyi Peng, Yawen Zhang, Xiaoyuan Guo, Jie Yang, and VS Subrahmanian. Higher layers need more lora experts, 2024.
- [19] Thierry Garaix, Christian Artigues, Dominique Feillet, and Didier Josselin. Vehicle routing problems with alternative paths: An application to on-demand transportation. *European Journal of Operational Research*, 204(1):62–75, 2010.
- [20] Yong Liang Goh, Yining Ma, Jianan Zhou, Zhiguang Cao, Mohammed Haroon Dupty, and Wee Sun Lee. SHIELD: Multi-task multi-distribution vehicle routing solver with sparsity and hierarchy. In *Forty-second International Conference on Machine Learning*, 2025.
- [21] Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T Kwok, and Yu Zhang. Mixture of cluster-conditional lora experts for vision-language instruction tuning. *arXiv preprint arXiv:2312.12379*, 2023.
- [22] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Winner takes it all: Training performant rl populations for combinatorial optimization. *Advances in Neural Information Processing Systems*, 36:48485–48509, 2023.
- [23] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12:966–980, 2017.
- [24] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing problem. In *ECAI 2020*, pages 443–450. IOS Press, 2020.
- [25] Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned heuristics to solve large-scale vehicle routing problems in real-time. In *The Eleventh International Conference on Learning Representations*, 2023.
- [26] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on Learning Representations, 2022.
- [27] Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Efficient cross-task generalization via dynamic loRA composition. In *First Conference on Language Modeling*, 2024.
- [28] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference on Learning Representations*, 2023.
- [29] Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combinatorial optimization through large language model. arXiv preprint arXiv:2408.12214, 2024.
- [30] Yuan Jiang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jie Zhang. Ensemble-based deep reinforcement learning for vehicle routing problems under distribution shift. *Advances in Neural Information Processing Systems*, 36, 2024.

- [31] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by merging weights of language models. In *The Eleventh International Conference on Learning Representations*, 2023.
- [32] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems. *Advances in Neural Information Processing Systems*, 34:10418–10430, 2021.
- [33] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936– 1949, 2022.
- [34] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In *International Conference on Learning Representations*, 2019.
- [35] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo: Policy optimization with multiple optima for reinforcement learning. *Advances in Neural Information Processing Systems*, 33:21188–21198, 2020.
- [36] Gilbert Laporte and Yves Nobert. A branch and bound algorithm for the capacitated vehicle routing problem. *Operations-Research-Spektrum*, 5:77–85, 1983.
- [37] Haoyu Lei, Kaiwen Zhou, Yinchuan Li, Zhitang Chen, and Farzan Farnia. Boosting generalization in diffusion-based neural combinatorial solver via energy-guided sampling. *arXiv preprint arXiv:2502.12188*, 2025.
- [38] Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. Cada: Cross-problem routing solver with constraint-aware dual-attention. *arXiv preprint arXiv:2412.00346*, 2024.
- [39] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. *Advances in Neural Information Processing Systems*, 34:26198–26211, 2021.
- [40] Yang Li, Jiaxi Liu, Qitian Wu, Xiaohan Qin, and Junchi Yan. Toward learning generalized cross-problem solving strategies for combinatorial optimization, 2025.
- [41] Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Senthilnath Jayavelu. Cross-problem learning for solving vehicle routing problems. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pages 6958–6966, 2024.
- [42] Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task learning for routing problem with cross-problem zero-shot generalization. In *Proceedings of the* 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1898–1908, 2024.
- [43] Suyu Liu, Zhiguang Cao, Shanshan Feng, and Yew-Soon Ong. A mixed-curvature based pre-training paradigm for multi-task vehicle routing solver. In *Forty-second International Conference on Machine Learning*, 2025.
- [44] Zefang Liu and Jiahua Luo. AdamoLE: Fine-tuning large language models with adaptive mixture of low-rank adaptation experts. In *First Conference on Language Modeling*, 2024.
- [45] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing problems. In *International conference on learning representations*, 2019.
- [46] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy decoder: Toward large scale generalization. *Advances in Neural Information Processing Systems*, 36, 2024.
- [47] Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Boosting neural combinatorial optimization for large-scale vehicle routing problems. In *The Thirteenth International Conference on Learning Representations*, 2025.

- [48] Xingtai Lv, Ning Ding, Yujia Qin, Zhiyuan Liu, and Maosong Sun. Parameter-efficient weight ensembling facilitates task-level knowledge transfer. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 270–282, Toronto, Canada, July 2023. Association for Computational Linguistics.
- [49] Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions of routing problems with flexible neural k-opt. In *Advances in Neural Information Processing Systems*, volume 36, 2023.
- [50] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In *Advances in Neural Information Processing Systems*, volume 34, pages 11096–11107, 2021.
- [51] Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization of neural combinatorial optimization heuristics. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 426–442. Springer, 2022.
- [52] Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc.
- [53] Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among specialized experts for zero-shot generalization. In *International Conference on Machine Learning*, pages 36829–36846. PMLR, 2024.
- [54] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning for solving the vehicle routing problem. *Advances in neural information processing systems*, 31, 2018.
- [55] Oleksiy Ostapenko, Zhan Su, Edoardo Ponti, Laurent Charlin, Nicolas Le Roux, Lucas Caccia, and Alessandro Sordoni. Towards modular llms by building and reusing a library of loras. In *International Conference on Machine Learning*, pages 38885–38904. PMLR, 2024.
- [56] Yuxin Pan, Ruohong Liu, Yize Chen, Cao Zhiguang, and Fangzhen Lin. Hierarchical learning-based graph partition for large-scale vehicle routing problems. In *The 24th International Conference on Autonomous Agents and Multi-Agent Systems*, 2025.
- [57] Laurent Perron and Vincent Furnon. OR-Tools. Google, 2023.
- [58] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. AdapterFusion: Non-destructive task composition for transfer learning. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty, editors, *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pages 487–503, Online, April 2021. Association for Computational Linguistics.
- [59] Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining parameter-efficient modules for task-level generalisation. In Andreas Vlachos and Isabelle Augenstein, editors, *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics*, pages 687–702, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics.
- [60] Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial optimization problems. In Advances in Neural Information Processing Systems, volume 35, 2022.
- [61] Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz. Model ratatouille: recycling diverse models for out-of-distribution generalization. In Proceedings of the 40th International Conference on Machine Learning, ICML'23. JMLR.org, 2023.

- [62] Stefan Ropke and David Pisinger. A unified heuristic for a large class of vehicle routing problems with backhauls. *European Journal of Operational Research*, 171(3):750–775, 2006. Feature Cluster: Heuristic and Stochastic Methods in Optimization Feature Cluster: New Opportunities for Operations Research.
- [63] George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman. Zipit! merging models from different tasks without training. In *The Twelfth International Conference on Learning Representations*, 2024.
- [64] Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter subspaces. *Transactions on Machine Learning Research*, 2024.
- [65] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood. Computers & Operations Research, 140:105643, 2022.
- [66] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. *Operations Research*, 60(3):611–624, 2012.
- [67] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. *Advances in neural information processing systems*, 28, 2015.
- [68] Chenguang Wang, Zhang-Hua Fu, Pinyan Lu, and Tianshu Yu. Efficient training of multi-task neural solver for combinatorial optimization. *Transactions on Machine Learning Research*, 2025.
- [69] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8:229–256, 1992.
- [70] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 23965–23998. PMLR, 17–23 Jul 2022.
- [71] Niels A. Wouda, Leon Lan, and Wouter Kool. PyVRP: a high-performance VRP solver package. INFORMS Journal on Computing, 36(4):943–955, 2024.
- [72] Chengyue Wu, Teng Wang, Yixiao Ge, Zeyu Lu, Ruisong Zhou, Ying Shan, and Ping Luo. π-tuning: Transferring multimodal foundation models with optimal multi-task interpolation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 37713–37727. PMLR, 23–29 Jul 2023.
- [73] Xun Wu, Shaohan Huang, and Furu Wei. Mixture of loRA experts. In *The Twelfth International Conference on Learning Representations*, 2024.
- [74] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. In *Advances in Neural Information Processing Systems*, volume 34, 2021.
- [75] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging: Resolving interference when merging models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [76] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao. Adamerging: Adaptive model merging for multi-task learning. *The Twelfth International Conference on Learning Representations*, 2024.

- [77] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning global partition and local construction for solving large-scale routing problems in real-time. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 20284–20292, 2024.
- [78] Qinyuan Ye, Juan Zha, and Xiang Ren. Eliciting and understanding cross-task skills with task-level mixture-of-experts. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, *Findings of the Association for Computational Linguistics: EMNLP 2022*, pages 2567–2592, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
- [79] Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker. Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning. In *The Twelfth International Conference on Learning Representations*, 2024.
- [80] Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, and Jie Zhang. A review on learning to solve combinatorial optimisation problems in manufacturing. *IET Collaborative Intelligent Manufacturing*, 5(1):e12072, 2023.
- [81] Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He. Composing parameter-efficient modules with arithmetic operations. In Advances in Neural Information Processing Systems, 2023.
- [82] Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. UDC: A unified neural divide-and-conquer framework for large-scale combinatorial optimization problems. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [83] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe: multi-task vehicle routing solver with mixture-of-experts. In *Proceedings of the 41st International Conference on Machine Learning*, pages 61804–61824, 2024.
- [84] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural methods for vehicle routing problems. In *International Conference on Machine Learning*, pages 42769–42789. PMLR, 2023.
- [85] Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving large-scale routing problems in logistic systems via reinforcement learning. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 4648–4658, 2022.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We present our key contributions and scope in the abstract and introduction. Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of this work are discussed in Section 6.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions are stated in the main text, with full proofs of theorems provided in the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present adequate information in both the main text and Appendix for the reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The implementation code is included in the supplementary materials.

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Experimental details are presented in both the main text and Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars derived from multiple experimental runs do not represent the primary evaluation metric in neural solver research.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We report computational resources in the main text.

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: By focusing on practical VRP applications, our work delivers more positive real-world impact.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We properly cite the original paper that produced the code package or dataset. Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We include the implementation code in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Environment Details

A.1 VRP Variants

We adopt the same environment configurations for Vehicle Routing Problems (VRPs) as those described in RouteFinder [3]. In this setting, all VRP variants extend the Capacitated VRP (CVRP) by incorporating arbitrary combinations of the following four constraints: 1) *Open Route (O)*: A binary variable o indicates whether the vehicle needs to return to depot (o=0) or not (o=1); 2) *Backhaul (B)*: Customers $\{v_j\}_{j=1}^N$ are categorized into linehauls with $q_j^{\rm LH}>0$ or backhauls with $q_j^{\rm LH}<0$, where linehauls require deliveries and backhauls require pickups. These are mutually exclusive: $q_j^{\rm LH}q_j^{\rm BH}=0$ for all $j\in\{1,\ldots,N\}$. VRPs with backhaul allow traversing both types in a mixed manner, but linehauls must precede backhauls in each subtour [62]. In VRPs without backhaul, only linehaul customers are present; 3) *Duration Limit (L)*: The cost of each subtour within a solution cannot exceed a threshold $l^{\rm dur}$; 4) *Time Window (TW)*: Each node v_i ($i\in\{0,\ldots,N\}$) is associated with a time window $[w_i^{\rm beg},w_i^{\rm end}]$ and a service duration $w_i^{\rm dur}$, requiring that service must begin within the specified window. The vehicle arriving prior to $w_i^{\rm beg}$ must wait until the window opens, after which the node is occupied for exactly $w_i^{\rm dur}$ time units. Furthermore, all vehicles are constrained to return to the depot no later than $w_0^{\rm end}$. CVRP serves as a basis VRP variant, from which the remaining four basis VRP variants emerge by individually incorporating one additional constraint: CVRP with open routes (OVRP), CVRP with Backhauls (VRPB), CVRP with Duration Limits (VRPL), and CVRP with Time Windows (VRPTW). The complete combinatorial space of these four constraints results in 16 VRP variants (2⁴ possible combinations): CVRP, OVRP, VRPB, VRPL, VRPBL, OVRPTW, OVRPBL, OVRPLTW, OVRPBLTW, OVRPBLTW, OVRPBLTW, OVRPBLTW, OVRPBLTW, OVRPBLTW, OVRPBLTW, OVRPBLTW,

A.2 Problem Instance Generation

In this section, we present the procedures for creating the problem instances of various VRP variants for both the training and testing phases. As each VRP variant stems from a common set of attributes, we proceed to outline the generation process for each attribute directly.

Locations. In each problem instance, N+1 coordinates are uniformly sampled from a unit square, denoted as $\{(x_0,y_0),(x_1,y_1),\ldots,(x_N,y_N)\}$, where $x_i,y_i\sim U(0,1)$ for $i=0,\ldots,N$. (x_0,y_0) represent the depot coordinates, while $\{(x_i,y_i)\}_{i=1}^N$ denote the coordinates of the customers.

Vehicle Capacity. The vehicle capacity Q remains constant for all vehicles within each problem instance and is calculated as follows:

$$Q = \begin{cases} 30 + \lfloor \frac{1000}{5} + \frac{N - 1000}{33.3} \rfloor & \text{if } N > 1000 \\ 30 + \lfloor \frac{N}{5} \rfloor & \text{if } 20 < N \le 1000 \\ 30 & \text{otherwise} \end{cases}$$
 (5)

Linehaul and Backhaul Demands. For the depot node v_0 , both linehaul and backhaul demands are set to zero. For each customer v_j $(j \geq 1)$, the linehaul demand q_j^{LH} is drawn uniformly at random from the integer set $\{1,2,\ldots,9\}$, while the backhaul demand q_j^{BH} is sampled uniformly from $\{-1,-2,\ldots,-9\}$. A binary decision variable $\hat{q}_j \in \{0,1\}$ is then introduced, with probabilities $\mathbb{P}(\hat{q}_j=0)=0.8$ and $\mathbb{P}(\hat{q}_j=1)=0.2$. If $\hat{q}_j=0$, the customer is designated as a linehaul, retaining the sampled value of q_j^{LH} while setting $q_j^{\mathrm{BH}}=0$. Conversely, if $\hat{q}_j=1$, the customer is treated as a backhaul, preserving q_j^{BH} and setting $q_j^{\mathrm{LH}}=0$. It is important to note that both linehaul and backhaul demands are present only in VRP variants that incorporate backhauls. In all other VRP variants, only linehaul demands are considered.

Open Routes. A binary variable $o \in \{0, 1\}$ is introduced to indicate whether the vehicle is required to return to the depot. The proportion of VRP instances with open routes is governed by the probability $\mathbb{P}(o=1)$, where o=1 signifies that the open route constraint is active.

Time Windows. For the depot node v_0 , the time window is defined as $[w_0^{\text{beg}}, w_0^{\text{end}}]$, where $w_0^{\text{beg}} = 0$ and w_0^{end} represents the system's end time. The service duration at the depot, denoted by w_0^{dur} , is set

to zero. For each customer v_i ($i \in \{1, \dots, N\}$), a time window $[w_i^{\text{beg}}, w_i^{\text{end}}]$ and a service duration w_i^{dur} require to be generated. The service duration w_i^{dur} is sampled uniformly from the interval $[I_1, I_2]$. The length of the time window, defined as $w_i^{\text{len}} = w_i^{\text{end}} - w_i^{\text{beg}}$, is drawn uniformly from the interval $[I_2, I_3]$. Let $\text{Dist}(v_0, v_i)$ denote the distance between the depot v_0 and customer v_i . The upper bound w_i^{UB} for the start time of the time window is computed as:

$$w_i^{\text{UB}} = \frac{w_0^{\text{end}} - w_i^{\text{dur}} - w_i^{\text{len}}}{\text{Dist}(v_0, v_i)} - 1.$$
 (6)

The start time of the time window is then determined by:

$$w_i^{\text{beg}} = (1 + (w_i^{\text{UB}} - 1) \cdot u_i) \cdot \text{Dist}(v_0, v_i);$$
 (7)

where $u_i \sim U(0,1)$ is a uniformly distributed random variable. Finally, the end time of the time window is given by:

$$w_i^{\text{end}} = w_i^{\text{beg}} + w_i^{\text{len}}.$$
 (8)

Additionally, if the time window constraint is not active in a given problem instance, for all nodes v_i ($i \geq 0$), the start time w_i^{beg} is set to zero, the end time w_i^{end} is set to ∞ , and the service duration w_i^{dur} is set to zero.

Distance Limit. The distance limit l^{dur} is sampled from the uniform distribution $U(2 \cdot \max_i(\mathrm{Dist}(v_0,v_i)), l^{\mathrm{dur}}_{\mathrm{max}})$, where $l^{\mathrm{dur}}_{\mathrm{max}}$ is a predefined upper bound. This sampling strategy ensures that every customer node is reachable from the depot. If the distance limit constraint is not enforced, the distance limit l^{dur} is set to ∞ .

A.3 Feasible Action Space

To derive the feasible action space in the environment, we need a action mask based on the combined constraints of basis VRP variants. In each time step, we use the following feasibility testing procedures to mask out infeasible actions from the action space. Please note that the vehicle speed is fixed at 1.0, and the time windows are normalized accordingly. As a result, the travel time between any two nodes is numerically equivalent to the Euclidean distance between them.

- 1) Each customer needs to be visited exactly once. If the vehicle is currently located at the depot and there are still unserved customers, selecting the depot as the next action is not permitted.
- 2) The vehicle must arrive at node v_j from node v_i before the end of the service time window: $w_t^{\text{cur}} + \text{Dist}(v_i, v_j) \leq w_i^{\text{end}}$, where w_t^{cur} is the current time.
- 3) The cost of a subtour, when traveling from node v_i to node v_j , must not exceed the predefined distance limit: $l_t^{\text{cur}} + \text{Dist}(v_i, v_j) \leq l^{\text{dur}}$, where l_t^{cur} denotes the cumulative distance traveled along the current subtour.
- 4) If the vehicle is required to return to the depot and intends to visit node v_j from its current location v_i , it must satisfy both time and distance feasibility conditions: the vehicle must be able to complete the visit and return to the depot before the system's end time: $\max(w_t^{\text{cur}} + \text{Dist}(v_i, v_j), w_j^{\text{beg}}) + w_j^{\text{dur}} + \text{Dist}(v_0, v_j) < w_0^{\text{end}}$, and the total length of the resulting subtour, including travel from v_i to v_j and from v_j back to the depot, must not exceed the distance limit: $l_t^{\text{cur}} + \text{Dist}(v_i, v_j) + \text{Dist}(v_0, v_j) < l^{\text{dur}}$.
- 5) If the vehicle intends to visit a linehaul customer v_j , the corresponding linehaul demand $q_j^{\rm LH}$ must not exceed the remaining linehaul capacity $Q_t^{\rm LH}$. Similarly, if the vehicle intends to visit a backhaul customer v_j , the backhaul demand $q_j^{\rm BH}$ must not exceed the remaining backhaul capacity $Q_t^{\rm BH}$. Additionally, all linehaul customers must be visited before any backhaul customers within each subtour.

A.4 VRP Formulation

To illustrate the VRP formulation within the SDMDP framework, we provide an example for clarification. Under the SDMDP framework, there are five types of basis state spaces: $\mathcal{S}^{(0)}, \dots, \mathcal{S}^{(4)}$. Specifically, $\mathcal{S}^{(0)}$ encodes node coordinates, linehaul demands, and remaining linehaul capacity, $\mathcal{S}^{(1)}$

Table 2: Performance comparison of multi-task VRP solvers on OOD CVRP instances.

Vehicle Capacity	30)	50(1	(D)	70)	90)	11	0	13	0	15	0	20	00
	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time
MTPOMO	23.415	9s	15.933	8s	13.144	8s	11.684	8s	10.835	8s	10.359	8s	10.027	8s	9.566	8s
MVMoE	23.162	12s	15.888	11s	13.068	11s	11.534	11s	10.616	11s	10.089	11s	9.727	11s	9.203	11s
RF-MoE	23.251	12s	15.877	11s	13.080	11s	11.580	11s	10.685	11s	10.170	11s	9.802	11s	9.294	11s
RF-POMO	23.229	9s	15.908	8s	13.104	8s	11.607	8s	10.715	8s	10.200	8s	9.846	8s	9.362	8s
RF-TE	23.085	9s -	15.857	8s	13.023	8s	11.466	- 8s	10.521	- 8s	9.956	- 8s	9.582	8s	9.003	8s
$MoSES(RF)_{Sftm}$	23.058	22s	15.826	21s	12.999	21s	11.443	20s	10.485	20s	9.922	20s	9.550	20s	8.968	20s
MoSES(RF)Sftp	23.035	22s	15.808	21s	12.978	20s	11.431	20s	10.504	20s	10.107	20s	10.188	20s	10.271	20s
$MoSES(RF)_{Sigm}$	23.049	21s	15.839	20s	13.009	19s	11.447	19s	10.494	19s	9.922	19s	9.550	19s	8.968	19s
CaDA	23.083	10s	15.831	10s	12.999	10s	11.438	- 9 _s	10.479	- 9 _s	9.906	- 9 _s	9.532	9s	8.942	9s
MoSES(CaDA) _{Sftm}	23.066	28s	15.840	26s	13.015	26s	11.457	25s	10.513	25s	9.950	25s	9.589	25s	9.025	25s
MoSES(CaDA)Sftp	23.031	27s	15.836	26s	13.005	26s	11.441	25s	10.482	25s	9.906	25s	9.537	25s	8.960	25s
$MoSES(CaDA)_{Sigm}$	23.047	25s	15.833	24s	12.999	24s	11.437	24s	10.473	24s	9.897	23s	9.526	23s	8.937	23s

represents a binary variable indicating whether the vehicle needs to return to the depot; $\mathcal{S}^{(2)}$ captures backhaul demands and remaining backhaul capacity; $\mathcal{S}^{(3)}$ includes the duration limit and the current traveled length of the subtour; and $\mathcal{S}^{(4)}$ contains time windows, service times, and the current time. Before each episode begins, the initial state space is constructed by selecting $\mathcal{S}^{(0)}$ and any subset of the remaining basis states. In this example, we choose $\mathcal{S}^{(0)}$, $\mathcal{S}^{(3)}$ and $\mathcal{S}^{(4)}$, which correspond to the VRP with limited duration and time windows (VRPLTW). At each time step, the policy observes the basis states $s^{(0)}$, $s^{(3)}$, and $s^{(4)}$, and a masking mechanism is applied to filter out infeasible nodes from the set of unvisited nodes, specifically, those whose demands exceed the remaining linehaul capacity, those that would violate the duration limit, and those whose arrival time would exceed the end of their time window, from unvisited nodes. This results in a list of feasible nodes from which the next node is selected. Upon selection, the linehaul capacity, traveled length, and current time are updated accordingly, and the selected node is masked out for subsequent steps. Once a subtour is completed, the linehaul capacity is reset to its default value, the traveled length is reset to zero, and the current time is also reset to zero. This reset reflects the assumption in VRP that multiple vehicles can begin their routes concurrently.

B Experiments

B.1 Out-of-distribution Attribute Generalization

In this section, we evaluate the out-of-distribution (OOD) generalization capabilities of our proposed methods, MoSES(RF) and MoSES(CaDA), in comparison with existing unified multi-task neural solvers. The evaluation specifically targets generalization to unseen attribute values pertaining to vehicle capacities, time windows, and distance limits. For each evaluation setting, we construct a testing dataset consisting of 1,000 problem instances, each with N=100 nodes. Performance is measured using two metrics: the average cost across the 1,000 problem instances, and the total computational time required to solve all instances, with lower values indicating better performance. Notably, all neural solvers evaluated were trained on problem instances with the same number of nodes (i.e., N=100).

In CVRP, each neural solver is trained on problem instances with a fixed vehicle capacity of Q=50. To investigate OOD generalization to unseen vehicle capacities, we generate a separate testing dataset for each capacity value in the set $\{30,50,70,90,110,130,150,200\}$. The corresponding results are presented in Table 2. Please note that Q=50 corresponds to the in-distribution (ID) evaluation setting. Both MoSES(RF) and MoSES(CaDA) adopt the dense routing strategy. We use Sftm, Sftp and Sigm to denote the activation functions $\operatorname{softmax}(\cdot)$, $\operatorname{norm_softplus}(\cdot)$ and $\operatorname{sigmoid}(\cdot)$, respectively. For MoSES(RF), we observe MoSES(RF)_{Sftm} consistently outperforms its baseline, RF-TE, in terms of generalization performance on OOD vehicle capacities. However, MoSES(RF)_{Sftp} demonstrates superior performance on small-scale problem instances ($N \leq 90$), compared to MoSES(RF)_{Sftm}. MoSES(CaDA)_{Sigm} demonstrates stronger OOD generalization than its baseline, CaDA, across all evaluation settings, with the exception of a marginal performance drop observed in the ID case at Q=50. Furthermore, MoSES(CaDA)_{Sigm} outperforms MoSES(RF)_{Sftm} across the majority of evaluation scenarios.

In VRPL, the predefined upper bound on the distance limit, denoted as $l_{\rm max}^{\rm dur}$, is set to 2.8 (approximately $2\sqrt{2}$) during training, which serves as the ID evaluation setting. To examine OOD

Table 3: Performance comparison of multi-task VRP solvers on OOD VRPL instances.

Distance Limit	2.	7	2.80	ID)	2.9	9	3.	0	3.	1	3.2	2	3.	3	3.	4
	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time
МТРОМО	16.193	9s	16.151	9s	16.121	9s	16.105	9s	16.090	9s	16.078	9s	16.069	9s	16.060	9s
MVMoE	16.142	12s	16.099	12s	16.073	12s	16.054	12s	16.040	12s	16.030	12s	16.017	12s	16.010	12s
RF-MoE	16.109	12s	16.070	12s	16.046	12s	16.032	12s	16.017	12s	16.005	12s	15.997	12s	15.991	12s
RF-POMO	16.152	9s	16.106	9s	16.079	9s	16.063	9s	16.049	9s	16.041	9s	16.029	9s	16.019	9s
RF-TE	16.091	9s	16.051	9s	16.029	9s	16.012	9s	15.997	9s	15.987	9s	15.975	9s	15.969	9s
CaDA	16.067	10s	16.026	10s	16.002	10s	15.983	10s	15.971	10s	15.960	10s	15.952	10s	15.946	10s
MoSES(RF)	16.045	21s	16.005	21s	15.982	21s	15.966	21s	15.952	21s	15.940	21s	15.928	21s	15.923	21s
MoSES(CaDA)	16.070	25s	16.024	25s	16.002	25s	15.984	25s	15.971	25s	15.961	25s	15.947	25s	15.942	25s

Table 4: Performance comparison of multi-task VRP solvers on OOD VRPTW instances.

Time Window	[0.05, 0.08, 0.10]		[0.15, 0.1	8, 0.20](ID)	[0.25, 0.2	28, 0.30]	[0.35, 0.3	38, 0.40]	[0.45, 0.48, 0.50]		
	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	
MTPOMO	25.549	9s	26.410	9s	28.294	9s	31.339	10s	35.217	10s	
MVMoE	25.490	12s	26.391	12s	28.258	12s	31.237	13s	35.041	13s	
RF-MoE	25.459	12s	26.319	12s	28.227	12s	31.338	13s	35.251	13s	
RF-POMO	25.492	9s	26.335	9s	28.242	9s	31.408	10s	35.315	10s	
RF-TE	25.377	9s	26.234	9s	28.156	9s	31.268	9s	35.135	10s	
CaDA	25.309	11s	26.128	10s	28.095	11s	31.334	11s	35.329	11s	
MoSES(RF)	25.271	22s	26.143	22s	28.027	23s	30.943	24s	34.500	24s	
MoSES(CaDA)	25.255	26s	26.032	26s	28.054	26s	31.354	27s	35.223	28s	
Time Window	[0.55, 0.5]	58, 0.60]	[0.65, 0]	0.68, 0.70]	[0.75, 0.7]	78, 0.80]	[0.85, 0.8	88, 0.90]	[0.95, 0.9]	98, 1.00]	
	Cost	Time	Cost	Time	Cost	Time	Cost	Time	Cost	Time	
MTPOMO	39.549	10s	44.035	11s	48.215	11s	52.295	11s	55.933	11s	
MVMoE	39.349	14s	43.781	14s	47.995	15s	52.160	16s	55.903	16s	
RF-MoE	39.606	14s	44.026	14s	48.082	15s	52.029	15s	55.465	15s	
RF-POMO	39.668	10s	44.102	11s	48.144	11s	52.090	11s	55.539	11s	
RF-TE	39.402	10s	43.783	10s	47.812	11s	51.869	11s	55.424	11s	
CaDA	39.697	12s	44.152	12s	48.231	12s	52.122	13s	55.650	13s	
MoSES(RF)	38.490	25s	42.600	26s	46.770	27s	51.475	28s	55.973	29s	
MoSES(CaDA)	39.488	29s	43.864	29s	47.854	30s	51.784	30s	55.172	31s	

generalization to unseen distance limits, we evaluate performance across a range of values for $l_{\rm max}^{\rm dur}$ from the set $\{2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4\}$, where $l_{\rm max}^{\rm dur} = 2.8$ corresponds to the ID case. The results of this evaluation are summarized in Table 3. MoSES(RF) employs the dense routing strategy with the norm_softplus(·) activation function, while MoSES(CaDA) utilizes the same routing strategy with sigmid(·) as the activation function. Experimental results indicate that MoSES(RF) consistently outperforms all other methods, including MoSES(CaDA), across all evaluation settings. This demonstrates its superior OOD generalization capability when faced with unseen distance limits.

In VRPTW, each problem instance is primarily defined by both the time window and the service duration. These are generated based on two intervals $[I_1,I_2]$ and I_2,I_3 as described in Section A.2. Let the triplet $[I_1,I_2,I_3]$ represent the full configurations. The setting [0.15,0.18,0.20] serves as the in-distribution ID evaluation. To assess OOD generalization to unseen time window configurations, we consider a range of settings from the set $\{[0.05,0.08,0.10],[0.15,0.18,0.20],[0.25,0.28,0.30],\ldots,[0.95,0.98,1.00]\}$, as reported in Table 4. Both MoSES(RF) and MoSES(CaDA) adopt the dense routing strategy. MoSES(RF) uses norm_softplus(·) as the activation function, while MoSES(CaDA) employs sigmoid(·). Experimental results show that MoSES(RF) generally outperforms its baseline, RF-TE, across most evaluation settings, with the exception of a performance drop observed at [0.95,0.98,1.00]. Similarly, MoSES(CaDA) surpasses its baseline, CaDA, except for a marginal decline in performance at [0.35,0.38,0.40]. Overall, MoSES(RF) demonstrates superior performance compared to MoSES(CaDA) in the majority of task settings.

B.2 CVRPLIB Evaluation

We report the performance comparison of our proposed methods, MoSES(RF) and MoSES(CaDA), against baseline approaches on CVRPLIB instances from the X set, which includes problem sizes ranging from 101 to at most 1,001 nodes, as done in [83, 3]. Both MoSES(RF) and MoSES(CaDA) use the Variant-Aware Routing-I strategy. MoSES(RF) uses $norm_softplus(\cdot)$ as the activation function, while MoSES(CaDA) employs $sigmoid(\cdot)$. The detailed results are presented in Table 5.

Table 5: Performance comparison of multi-task VRP solvers on CVRPLIB instances from the X set.

Sat V		мтромо			MVMoE			RF-MoE			RF-POMO			RF-TE			CaDA			doSES(RF)			SES(CaDA	
Set-X Instance Opt.	Cost	Gap	Time	Cost	MVMoE Gap	Time	Cost	RF-MoE Gap	Time	Cost	Gap	Time	Cost	RF-TE Gap	Time	Cost	Gap	Time	Cost	Gap	Time	Cost	SES(CaDA Gap	Time
X-n101-k25 27591	29470	6.810%	0.4s	29076	5.382%	0.5s	28934	4.868%	0.5s	29090	5.433%	0.3s	29048	5.281%	0.4s	28944	4.904%	0.5s	28895	4.726%	0.8s	29110	5.505%	0.8s
X-n106-k14 26362 X-n110-k13 14971	28029 15100	6.323%	0.3s 0.3s	27443 15327	4.101% 2.378%	0.5s	27292 15260	3.528% 1.930%	0.6s 0.5s	27378 15519	3.854%	0.3s 0.3s	27159 15314	3.023%	0.4s 0.4s	27042 15229	2.579%	0.3s 0.3s	27205 15242	3.198%	0.7s 0.8s	27051 15332	2.614%	0.8s 0.8s
X-n115-k10 12747	13433	5.382%	0.4s	13475	5.711%	0.6s	13638	6.990%	0.5s	13263	4.048%	0.3s	13338	4.636%	0.4s	13060	2.455%	0.4s	13313	4.440%	0.8s	13085	2.652%	0.8s
X-n120-k6 13332 X-n125-k30 55539	14051	5.393%	0.3s 0.4s	13782	3.375% 4.791%	0.6s 0.7s	13908	4.320% 5.488%	0.6s 0.6s	14061 58770	5.468% 5.818%	0.4s 0.4s	13765 58570	3.248% 5.457%	0.4s 0.4s	13678 57748	2.595%	0.3s 0.4s	13781	3.368% 4.827%	0.8s	13619 57620	2.153% 3.747%	0.8s 1.0s
X-n129-k18 28940	30176	4.271%	0.4s	29334	1.361%	0.6s	30039	3.798%	0.6s	29645	2.436%	0.4s	29457	1.786%	0.5s	29500	1.935%	0.4s	29558	2.135%	0.9s	29620	2.350%	0.9s
X-n134-k13 10916 X-n139-k10 13590	11707	7.246%	0.4s 0.4s	11462	5.002% 3.745%	0.6s	11439	4.791% 2.406%	0.6s 0.6s	11463	5.011%	0.4s 0.4s	11624	6.486%	0.4s 0.4s	11652	6.742%	0.4s 0.4s	11584	6.119%	0.8s 0.8s	11573	6.019%	1.0s 0.9s
X-n143-k7 15700	16626	5.898%	0.4s	16349	4.134%	0.6s	16655	6.083%	0.6s	16603	5.752%	0.5s	16257	3.548%	0.4s	16189	3.115%	0.4s	16024	2.064%	0.9s	15980	1.783%	0.9s
X-n148-k46 43448 X-n153-k22 21220	46648 23514	7.365%	0.5s	45893 23661	5.627%	0.8s 0.7s	46542 23906	7.121%	0.8s 0.7s	46082 22991	6.062% 8.346%	0.5s 0.5s	45026 23478	3.632%	0.6s 0.6s	45606 23142	4.967% 9.057%	0.6s 0.5s	45408 23347	4.511%	1.0s 1.0s	45600 23310	4.953% 9.849%	1.0s 1.0s
X-n157-k13 16876	17922	6.198%	0.5s	17439	3.336%	0.7s	17801	5.481%	0.7s 0.8s	17536	3.911%	0.5s	17315	2.601%	0.5s	17295	2.483%	0.5s	17227	2.080%	1.0s	17317	2.613%	1.0s
X-n162-k11 14138 X-n167-k10 20557	14616 21662	3.381% 5.375%	0.5s 0.5s	14705 21504	4.010% 4.607%	0.7s 0.7s	14524 21481	2.730% 4.495%	0.7s 0.7s	14663 21410	3.713% 4.149%	0.5s 0.5s	14664 21425	3.720% 4.222%	0.5s 0.5s	14704 21078	4.003% 2.534%	0.5s 0.5s	14683 21368	3.855% 3.945%	1.0s 1.0s	14677 21384	3.812% 4.023%	1.0s 1.0s
X-n172-k51 45607	48960	7.352%	0.6s	47883	4.990%	0.9s	49726	9.032%	1.0s	48412	6.150%	0.5s	48162	5.602%	0.7s	48198	5.681%	0.6s	48136	5.545%	1.0s	48145	5.565%	1.0s
X-n176-k26 47812 X-n181-k23 25569	51989 26572	8.736% 3.923%	0.5s 0.6s	52117 26456	9.004% 3.469%	0.8s 0.8s	53626 29154	12.160% 14.021%	0.9s 0.9s	52347 26544	9.485% 3.813%	0.6s 0.6s	51501 26097	7.716% 2.065%	0.6s 0.6s	51120 26262	6.919% 2.710%	0.6s 0.6s	52001 26181	8.761% 2.394%	1.0s 1.0s	51612 26143	7.948% 2.245%	1.0s 1.0s
X-n186-k15 24145	25236	4.519%	0.5s	25151	4.166%	0.8s	25140	4.121%	0.9s	25238	4.527%	0.6s	25153	4.175%	0.6s	25345	4.970%	0.6s	25115	4.017%	1.0s	25246	4.560%	1.0s
X-n190-k8 16980 X-n195-k51 44225	18369 48310	8.180% 9.237%	0.5s 0.7s	19078 46974	12.356% 6.216%	0.9s 1.0s	18217 48965	7.285% 10.718%	0.9s 1.0s	18696 47479	10.106% 7.358%	0.6s 0.7s	17871 47396	5.247% 7.170%	0.6s 0.7s	17882 46723	5.312% 5.648%	0.6s 0.7s	17929 46541	5.589% 5.237%	1.0s 1.0s	17569 47479	3.469% 7.358%	1.0s 1.0s
X-n200-k36 58578	62041	5.912%	0.6s	61627	5.205%	0.9s	61696	5.323%	0.9s	61662	5.265%	0.6s	61139	4.372%	0.7s	61010	4.152%	0.8s	61088	4.285%	1.0s	61089	4.287%	2.0s
X-n204-k19 19565	20652	5.556%	0.6s	20584 32358	5.208% 5.552%	0.9s	20466	4.605% 4.857%	1.0s	20730 32585	5.955%	0.6s	20531	4.937%	0.6s	20735	5.980%	0.6s	20620	5.392%	1.0s	20420	4.370% 4.557%	1.0s
X-n209-k16 30656 X-n214-k11 10856	32333 11699	5.470% 7.765%	0.6s 0.6s	32358 11597	6.826%	0.9s 0.9s	32145 11534	6.245%	0.9s 0.9s	11638	6.292% 7.203%	0.6s 0.6s	31876 11668	3.980% 7.480%	0.6s 0.6s	32184 11748	4.984% 8.217%	0.6s 0.6s	31775 11635	3.650% 7.176%	1.0s 1.0s	32053 11716	7.922%	1.0s 1.0s
X-n219-k73 117595	121980	3.729% 7.280%	0.8s	124434 42694	5.816% 5.582%	1.0s	121627 43097	3.429% 6.578%	1.0s	123500	5.021% 5.352%	0.8s	120344 42251	2.338% 4.486%	0.8s	120011 42273	2.055% 4.540%	0.8s	119497	1.617% 4.637%	2.0s	119710 42128	1.799% 4.182%	2.0s
X-n223-k34 40437 X-n228-k23 25742	43381 28523	10.803%	0.7s 0.7s	28033	8.900%	1.0s 1.0s	29590	14.948%	1.0s 1.0s	42601 28212	9.595%	0.7s 0.8s	28699	4.486% 11.487%	0.7s 0.8s	27821	4.540% 8.076%	0.7s 0.7s	42312 27701	7.610%	1.0s 1.0s	27724	7.699%	2.0s 1.0s
X-n233-k16 19230	20644 30047	7.353%	0.7s	20656	7.415%	1.0s	20507	6.641% 9.141%	1.0s	20427 30084	6.225%	0.7s	20761	7.962%	0.7s	20285	5.486%	0.9s	20552	6.875%	1.0s	20623	7.244% 9.156%	1.0s
X-n237-k14 27042 X-n242-k48 82751	30047 88179	11.112% 6.559%	0.7s 0.8s	29772 87497	10.095% 5.735%	1.0s 1.0s	29514 87832	9.141% 6.140%	1.0s 1.0s	30084 87029	11.249% 5.170%	0.7s 0.8s	29595 85704	9.441% 3.569%	0.7s 0.9s	30282 85813	11.981% 3.700%	0.7s 0.8s	29720 85420	9.903% 3.225%	1.0s 2.0s	29518 85643	9.156% 3.495%	1.0s 2.0s
X-n247-k50 37274	41610	11.633%	0.8s	40973	9.924%	1.0s	43153	15.772%	1.0s	41120	10.318%	0.8s	40642	9.036%	0.9s	39918	7.093%	0.8s	40131	7.665%	2.0s	40736	9.288%	2.0s
Avg. Gap $(N < 251)$		6.566%			5.829%			6.754%			5.905%			5.061%			4.772%			4.789%			4.724%	
X-n251-k28 38684 X-n256-k16 18839	41211 20400	6.532% 8.286%	0.7s 0.7s	41330 20559	6.840% 9.130%	1.0s 1.0s	40691 20015	5.188% 6.242%	1.0s 1.0s	40811 20238	5.498% 7.426%	0.8s 0.7s	40127 19994	3.730% 6.131%	0.8s 0.8s	40359 20372	4.330% 8.137%	0.8s 0.7s	40630 20034	5.031% 6.343%	2.0s 1.0s	40290 20068	4.152% 6.524%	2.0s 2.0s
X-n261-k13 26558	28741	8.220%	0.7s	28524	7.403%	1.0s	28203	6.194%	1.0s	28525	7.406%	0.7s 0.8s	28510	7.350%	0.8s	28833	8.566%	1.0s	28447	7.113%	2.0s	28577	7.602%	2.0s 2.0s
X-n266-k58 75478 X-n270-k35 35291	84617 38146	12.108% 8.090%	0.9s 0.9s	82048 38333	8.705% 8.620%	1.0s 1.0s	81135 37401	7.495% 5.979%	1.0s 1.0s	81053 38051	7.386% 7.821%	0.9s 0.8s	79832 37382	5.769% 5.925%	0.9s 0.9s	80115 37674	6.144% 6.752%	0.9s 0.8s	79820 37420	5.753% 6.033%	2.0s 2.0s	80036 36923	6.039% 4.624%	2.0s 2.0s
X-n275-k28 21245	24688	16.206%	0.8s	25021	17.774%	1.0s	25241	18.809%	1.0s	24321	14.479%	0.8s	24187	13.848%	0.9s	24482	15.237%	0.8s	24292	14.342%	2.0s	24312	14.436%	2.0s
X-n280-k17 33503 X-n284-k15 20226	36677	9.474% 11.114%	0.8s 0.8s	36636	9.351%	1.0s 1.0s	36538	9.059% 8.064%	1.0s 1.0s	35558 21976	6.134% 8.652%	0.9s 0.8s	36653	9.402%	0.9s 0.8s	36081	7.695%	0.8s 0.8s	35988 22035	7.417% 8.944%	2.0s 2.0s	35494	5.943%	2.0s 2.0s
X-n289-k60 95151	104159	9.467%	0.8s 0.9s	102202	7.410%	2.0s	102267	7.479%	1.0s 2.0s	101494	6.666%	0.8s 1.0s	100418	5.535%	0.8s 1.0s	99739	4.822%	0.8s 1.0s	100733	5.866%	2.0s	100080	5.180%	2.0s
X-n294-k50 47161 X-n298-k31 34231	52769 37652	11.891%	0.9s 0.9s	50886 37344	7.898%	2.0s 1.0s	51924 36808	10.099% 7.528%	1.0s 1.0s	51033 36785	8.210% 7.461%	0.9s 0.9s	50637 37163	7.370% 8.565%	1.0s 0.9s	49929 36993	5.869% 8.069%	1.0s 1.0s	50538 36876	7.161% 7.727%	2.0s 2.0s	49877 37068	5.759% 8.288%	2.0s 2.0s
X-n298-k31 34231 X-n303-k21 21736	23556	9.994% 8.373%	0.9s 0.9s	23263	7.025%	1.0s 1.0s	23027	7.528% 5.939%	1.0s 1.0s	23097	6.262%	0.9s 0.9s	23442	7.849%	0.9s 0.9s	23748	9.257%	0.9s	23453	7.727%	2.0s 2.0s	23548	8.288%	2.0s 2.0s
X-n308-k13 25859	28736	11.126%	0.9s	28518	10.283%	1.0s	29079	12.452%	1.0s	28030	8.396%	0.9s	28326	9.540%	0.9s	28913	11.810%	1.0s	28138	8.813%	2.0s	28440	9.981%	2.0s
X-n313-k71 94043 X-n317-k53 78355	102253 82587	8.730% 5.401%	1.0s 1.0s	100620 83632	6.994% 6.735%	2.0s 2.0s	100714 87360	7.094% 11.493%	2.0s 2.0s	100083 81981	6.423% 4.628%	1.0s 1.0s	99564 80690	5.871% 2.980%	1.0s 1.0s	98899 80542	5.164% 2.791%	1.0s 1.0s	98738 80709	4.992% 3.004%	2.0s 2.0s	98931 80472	5.198% 2.702%	2.0s 2.0s
X-n322-k28 29834	32593	9.248%	1.0s	33497	12.278%	1.0s	32143	7.739%	1.0s	32403	8.611%	0.9s	32658	9.466%	1.0s	33206	11.303%	1.0s	32648	9.432%	2.0s	32541	9.074%	2.0s
X-n327-k20 27532 X-n331-k15 31102	30646 34734	11.310% 11.678%	1.0s 0.9s	30603 33636	11.154% 8.147%	1.0s 1.0s	29649 34431	7.689% 10.703%	1.0s 2.0s	29638 33597	7.649% 8.022%	0.9s 1.0s	29784 34048	8.180% 9.472%	1.0s 1.0s	30953 34578	12.426%	1.0s 1.0s	29793 33526	8.212% 7.794%	2.0s 2.0s	30089 34014	9.287% 9.363%	2.0s 2.0s
X-n336-k84 139111	152846	9.873%	1.0s	149229	7.273%	2.0s	150468	8.164%	2.0s	147371	5.938%	1.0s	146620	5.398%	1.0s	146707	5.460%	1.0s	147177	5.798%	3.0s	146465	5.286%	2.0s
X-n344-k43 42050 X-n351-k40 25896	46619 29243	10.866% 12.925%	1.0s 1.0s	46947 28373	11.646% 9.565%	2.0s 2.0s	45143 28728	7.356% 10.936%	2.0s 2.0s	46098 28628	9.627% 10.550%	1.0s 1.0s	44914 28236	6.811% 9.036%	1.0s 1.0s	45571 28059	8.373% 8.353%	1.0s 1.0s	45232 28124	7.567% 8.604%	2.0s 2.0s	44746 28130	6.411% 8.627%	2.0s 2.0s
X-n359-k29 51505	55778	8.296%	1.0s	56165	9.048%	2.0s	54690	6.184%	2.0s	55013	6.811%	1.0s	55122	7.023%	1.0s	55183	7.141%	1.0s	55231	7.234%	2.0s	55158	7.093%	2.0s
X-n367-k17 22814 X-n376-k94 147713	26132 156857	14.544% 6.190%	1.0s 1.0s	25588 156546	12.159% 5.980%	2.0s 2.0s	26470 156077	16.025% 5.662%	2.0s 2.0s	25150 158456	10.239% 7.273%	1.0s 1.0s	25522 151975	11.870% 2.885%	1.0s 1.0s	25534 151390	11.923% 2.489%	1.0s 1.0s	24728 151521	8.390% 2.578%	2.0s 3.0s	25489 151614	11.725% 2.641%	2.0s 3.0s
X-n384-k52 65940	73705	11.776%	1.0s	73570	11.571%	2.0s	70853	7.451%	2.0s	71089	7.809%	1.0s	70471	6.871%	1.0s	70611	7.084%	1.0s	70775	7.332%	2.0s	70479	6.884% 10.277%	2.0s
X-n393-k38 38260 X-n401-k29 66154	43533 71565	13.782% 8.179%	1.0s 1.0s	44638 71787	16.670% 8.515%	2.0s 2.0s	41843 69492	9.365% 5.046%	2.0s 2.0s	42161 70480	10.196% 6.539%	1.0s 1.0s	41552 69430	8.604% 4.952%	1.0s 1.0s	42934 69875	12.216% 5.625%	1.0s 1.0s	41924 69241	9.577% 4.666%	2.0s 3.0s	42192 69991	10.277% 5.800%	3.0s 2.0s
X-n411-k19 19712	23869	21.089%	1.0s	23139	17.385%	2.0s	24162	22.575%	2.0s	22203	12.637%	1.0s	22849	15.914%	1.0s	23521	19.323%	1.0s	22489	14.088%	2.0s	22768	15.503%	2.0s
X-n420-k130 107798 X-n429-k61 65449	122761 74261	13.881%	2.0s 1.0s	116362 74158	7.944% 13.307%	2.0s 2.0s	120841 71017	12.099% 8.507%	2.0s 2.0s	118046 71070	9.507% 8.588%	2.0s 1.0s	117418 70164	8.924% 7.204%	2.0s 2.0s	115012 70969	6.692% 8.434%	2.0s 1.0s	115838 70639	7.458% 7.930%	3.0s 3.0s	116853 70617	8.400% 7.896%	3.0s 3.0s
X-n439-k37 36391	41165	13.119%	1.0s	42161	15.856%	2.0s	38998	7.164%	2.0s	39947	9.772%	1.0s	39752	9.236%	1.0s	41149	13.075%	1.0s	39799	9.365%	3.0s	39697	9.085%	3.0s
X-n449-k29 55233 X-n459-k26 24139	60162 29543	8.924% 22.387%	1.0s 1.0s	60015 29100	8.658% 20.552%	2.0s 2.0s	59919 26995	8.484% 11.831%	2.0s 2.0s	59925 27224	8.495% 12.780%	1.0s 1.0s	60634 27347	9.779% 13.290%	1.0s 2.0s	61144 28267	10.702% 17.101%	1.0s 1.0s	60340 27107	9.246% 12.295%	3.0s 3.0s	60723 27510	9.940% 13.965%	3.0s 3.0s
X-n469-k138 221824	252031	13.618%	2.0s	245581	10.710%	3.0s	242533	9.336%	3.0s	242197	9.184%	2.0s	238904	7.700%	2.0s	237548	7.089%	2.0s	236859	6.778%	4.0s	237001	6.842%	3.0s
X-n480-k70 89449 X-n491-k59 66483	101314 77536	13.265% 16.625%	2.0s 2.0s	100121 75226	11.931% 13.151%	2.0s 2.0s	96042 72443	7.371% 8.965%	3.0s 3.0s	96484 72142	7.865% 8.512%	2.0s 2.0s	95032 72618	6.242% 9.228%	2.0s 2.0s	95466 71702	6.727% 7.850%	2.0s 2.0s	95101 72383	6.319% 8.874%	4.0s 3.0s	95211 71730	6.442% 7.892%	3.0s 3.0s
Avg. Gap $(251 \le N < 501)$		11.529%			10.616%		.=	9.217%			8.399%			8.107%			8.889%			7.741%	,,,,,,,		7.948%	
X-n502-k39 69226	75711	9.368%	2.0s	77033	11.278%	3.0s	73557	6.256%	3.0s	74317	7 354%	2.0s	71908	3.874%	2.0s	72655	4 953%	2.0s	72023	4.040%	3.0s	71682	3.548%	3.0s
X-n513-k21 24201	34910 176491	44.250% 14.165%	2.0s 2.0s	32858 171734	35.771% 11.088%	2.0s 3.0s	27867 178794	15.148% 15.655%	2.0s	27871	15.165% 11.377%	2.0s 2.0s	28542 174150	17.937%	2.0s 2.0s	29422	21.573% 8.790%	2.0s 2.0s	27907 171777	15.313% 11.116%	3.0s 4.0s	29139	20.404%	3.0s
X-n524-k153 154593 X-n536-k96 94846	176491	14.165% 15.869%	2.0s 2.0s	171734	11.088%	3.0s 3.0s	178794 103862	15.655% 9.506%	3.0s 3.0s	172181 103854	9.498%	2.0s 2.0s	174150 103242	12.651% 8.852%	2.0s 2.0s	168181 102355	8.790% 7.917%	2.0s 2.0s	171777	7.998%	4.0s 4.0s	172580 101712	11.635% 7.239%	4.0s 4.0s
X-n548-k50 86700	110984	28.009%	2.0s	104240	20.231%	3.0s	101294	16.833%	3.0s	101549	17.127%	2.0s	100850	16.321%	2.0s	102318	18.014%	2.0s	100550	15.975%	4.0s	101918	17.552%	4.0s
X-n561-k42 42717 X-n573-k30 50673	55936 60884	30.946% 20.151%	2.0s 2.0s	53110 62033	24.330% 22.418%	3.0s 3.0s	47544 59670	11.300% 17.755%	3.0s 3.0s	47835 57388	11.981% 13.252%	2.0s 2.0s	49133 56048	15.020% 10.607%	2.0s 2.0s	50287 55353	17.721% 9.236%	2.0s 2.0s	48805 54322	14.252% 7.201%	4.0s 4.0s	49363 55058	15.558% 8.654%	4.0s 4.0s
X-n586-k159 190316	226245	18.879%	3.0s	212545	11.680%	4.0s	209373	10.013%	4.0s	210049	10.369%	3.0s	205654	8.059%	3.0s	204649	7.531%	3.0s	204194	7.292%	5.0s	204848	7.636%	5.0s
X-n599-k92 108451 X-n613-k62 59535	131035 77555	20.824% 30.268%	3.0s 3.0s	126654 73633	16.785% 23.680%	4.0s 3.0s	118761 67477	9.507% 13.340%	3.0s 3.0s	120022 66818	10.669% 12.233%	3.0s 2.0s	116840 67545	7.735% 13.454%	3.0s 3.0s	117784 69069	8.606% 16.014%	3.0s 3.0s	117681 67832	8.511% 13.936%	4.0s 4.0s	116938 67730	7.826% 13.765%	4.0s 4.0s
X-n627-k43 62164	76776 83138	23.506% 30.548%	3.0s 3.0s	70744 71986	13.802%	3.0s 4.0s	68747 70691	10.590%	4.0s 4.0s	69716 71120	12.149%	3.0s 3.0s	67523 70631	8.621% 10.909%	3.0s 3.0s	69361 73624	11.577%	3.0s 3.0s	68036 70687	9.446%	4.0s 4.0s	67896 71974	9.221%	4.0s 4.0s
X-n655-k131 106780	83138 120771	13.103%	3.0s	71986 118758	11.217%	4.0s	119665	12.067%	4.0s	117339	11.676% 9.889%	3.0s	112289	5.159%	3.0s	110657	3.631%	4.0s	111563	4.479%	5.0s	110267	3.266%	5.0s
X-n670-k130 146332	183183 92701	25.183% 35.915%	3.0s	168210 82607	14.951%	4.0s	180539 78039	23.376%	4.0s	166596 77265	13.848%	3.0s	168829 77890	15.374% 14.200%	3.0s	161571 78473	10.414%	3.0s	167248 77618	14.294%	5.0s 5.0s	163051	11.425%	5.0s
X-n701-k44 81923	92723	13.183%	3.0s 3.0s	89704	9.498%	4.0s 4.0s	89743	9.546%	4.0s 4.0s	90006	13.283% 9.867%	3.0s 3.0s	90580	10.567%	3.0s 3.0s	92198	12.542%	4.0s 3.0s	90359	13.801% 10.297%	5.0s	77132 90703	10.717%	5.0s 5.0s
X-n716-k35 43373	59383	36.912%	3.0s	52170	20.282%	4.0s	49166	13.356%	4.0s	49524	14.182%	3.0s	49480	14.080%	3.0s	50605	16.674%	3.0s	49005	12.985%	5.0s	49405	13.907%	5.0s
X-n733-k159 136187 X-n749-k98 77269	175848 102208	29.122% 32.276%	4.0s 4.0s	156268 92403	14.745% 19.586%	5.0s 5.0s	158156 88483	16.131% 14.513%	5.0s 5.0s	154339 87621	13.329% 13.397%	4.0s 4.0s	148581 85046	9.101% 10.065%	4.0s 4.0s	146080 85325	7.264% 10.426%	4.0s 4.0s	149852 85594	10.034% 10.774%	6.0s 6.0s	147334 84712	8.185% 9.633%	6.0s 6.0s
X-n766-k71 114417	132968	16.213%	4.0s	130101	13.708%	5.0s	133549	16.721%	6.0s	126445	10.512%	4.0s	129866	13.502%	4.0s	127752	11.655%	4.0s	126865	10.880%	6.0s	126387	10.462%	7.0s
X-n783-k48 72386 X-n801-k40 73311	108577 92125	49.997% 25.663%	4.0s 4.0s	96432 87187	33.219% 18.928%	5.0s 6.0s	82299 89100	13.695% 21.537%	5.0s 6.0s	82041 88259	13.338% 20.390%	4.0s 5.0s	82839 86121	14.441% 17.474%	4.0s 4.0s	87562 94076	20.965% 28.325%	5.0s 4.0s	82324 85696	13.729% 16.894%	6.0s 6.0s	83864 89478	15.857% 22.053%	6.0s 6.0s
X-n819-k171 158121	192102	21.491%	5.0s	178856	13.113%	7.0s	175286	10.856%	6.0s	177119	12.015%	5.0s	174446	10.324%	5.0s	172387	9.022%	5.0s	171520	8.474%	8.0s	171676	8.573%	7.0s
X-n837-k142 193737 X-n856-k95 88965	231002 117243	19.235% 31.786%	5.0s 5.0s	230226 105763	18.834% 18.882%	7.0s 6.0s	213765 109164	10.338% 22.704%	7.0s 7.0s	215009 99273	10.980% 11.587%	5.0s 5.0s	208669 98164	7.707% 10.340%	5.0s 5.0s	209540 102312	8.157% 15.003%	5.0s 5.0s	208667 99233	7.706% 11.542%	8.0s 7.0s	209031 98914	7.894% 11.183%	7.0s 7.0s
X-n876-k59 99299	114212	15.018%	5.0s	114175	14.981%	7.0s	110476	11.256%	7.0s	112919	13.716%	5.0s	107477	8.236%	5.0s	109693	10.467%	5.0s	107589	8.349%	7.0s	110843	11.625%	7.0s
X-n895-k37 53860 X-n916-k207 329179	106062 387367	96.922% 17.677%	6.0s 7.0s	70363 374899	30.641% 13.889%	6.0s 8.0s	64648 361709	20.030% 9.882%	6.0s 9.0s	64343 360505	19.463% 9.516%	5.0s 7.0s	64225 353039	19.244% 7.248%	5.0s 7.0s	73280 351887	36.056% 6.898%	6.0s 7.0s	62460 353222	15.967% 7.304%	7.0s 9.0s	67830 352488	25.938% 7.081%	8.0s 10.0s
X-n936-k151 132715	200816	51.314%	7.0s	161700	21.840%	8.0s	182393	37.432%	8.0s	158680	19.564%	7.0s	162903	22.746%	7.0s	154847	16.676%	7.0s	157310	18.532%	9.0s	155618	17.257%	9.0s
X-n957-k87 85465	126220 138987	47.686%	7.0s	124190	45.311%	8.0s	106292	24.369%	8.0s	104024	21.715%	7.0s	103089	20.621%	7.0s	108664	27.144% 11.956%	7.0s	103134	20.674%	9.0s	106903	25.084% 11.559%	9.0s
X-n979-k58 118976 X-n1001-k43 72355	138987 132976	16.819% 83.783%	7.0s 7.0s	132651 89175	11.494% 23.246%	9.0s 9.0s	133186 85919	11.944% 18.746%	8.0s 8.0s	133188 84377	11.945% 16.615%	8.0s 7.0s	129633 85852	8.957% 18.654%	7.0s 7.0s	133201 92974	11.956% 28.497%	7.0s 7.0s	129535 84390	8.875% 16.633%	9.0s 9.0s	132728 93476	11.559% 29.191%	9.0s 10.0s
Avg. Gap (501 < $N \le 1001$)	1	30.190%			18.918%			14.994%			13.188%			12.253%			14.199%			11.509%			12.814%	
Avg. Gap	I	15.863%			11.693%			10.253%			9.108%			8.428%			9.230%			7.973%			8.441%	

To facilitate analysis, we partition the evaluation set based on problem instance size into three subsets: instances with $N < 251, 251 \le N < 501$ and $501 < N \le 1001$. Across all three subsets, both MoSES(RF) and MoSES(CaDA) consistently outperform their respective baselines, RF-TE and CaDA. On the larger instance sets $(251 \le N < 501$ and $501 < N \le 1001$), MoSES(RF) demonstrates superior performance compared to MoSES(CaDA). Conversely, on the smaller instance set (N < 251), MoSES(CaDA) achieves better results than MoSES(RF). Overall, MoSES(RF) exhibits the best performance among all evaluated methods.

B.3 Hyperparameter Studies

Figure 5 presents an analysis of how varying LoRA ranks influence the performance of MoSES(RF) and MoSES(CaDA) under the settings of N=50 and N=100. We allow the ranks for the frozen modules $\{B_iA_i\}_{i=1}^4$ and the trainable module $\hat{B}\hat{A}$ to differ, denoted as $r_{\rm frozen}$ and $r_{\rm free}$ respectively. In Figure 5, the blue curves represent experiments where $r_{\rm frozen}=32$ is fixed while $r_{\rm free}$ varies from 4 to 32. Conversely, the green curves fix $r_{\rm free}=32$ while varying $r_{\rm frozen}$ over the same range. The y-axis indicates the average optimality gap across 16 VRP variants. For MoSES(RF)

Figure 5: This figure investigates the effect of LoRA ranks on MoSES(RF) and MoSES(CaDA) under both N=50 and N=100 settings.

under the setting of N=50, it is observed that reducing the LoRA rank of the trainable module BA while keeping $r_{\rm frozen}=32$ incurs less performance degradation compared to reducing the LoRA rank of the frozen modules $\{B_iA_i\}_{i=1}^4$ with $r_{\text{free}}=32$, as shown in Figure 5(a). However, under the setting of N=100, the performance decline caused by reducing r_{frozen} with $r_{\text{free}}=32$ is generally smaller than that caused by reducing r_{free} with $r_{\text{frozen}} = 32$ (see Figure 5(b)). This suggests that for smaller-scale problem instances (N = 50), MoSES(RF) relies more heavily on the frozen modules $\{B_iA_i\}_{i=1}^4$ inherited from the basis solvers. In contrast, for larger-scale problem instances (N=100), the trainable module $\hat{B}\hat{A}$ becomes at least as critical as the frozen modules in contributing to overall performance. Likewise, similar trends are observed for MoSES(CaDA) under the setting of N=50,, as illustrated in Figure 5(c). Under the setting of N=100, the performance gap between reducing the LoRA rank $r_{\rm frozen}$ of the frozen modules (with fixed trainable module rank $r_{\rm free}$) and reducing the LoRA rank $r_{\rm free}$ of the trainable module (with fixed frozen module rank $r_{\rm frozen}$) becomes more pronounced (see Figure 5(d)). This suggests that at the smaller scale (N=50), the frozen LoRA experts contribute more significantly to the performance of MoSES(CaDA) than the trainable LoRA expert. In contrast, at the larger scale (N = 100), the trainable LoRA expert plays a more critical role in driving performance than the frozen LoRA experts. We observe similar performance trends across each individual VRP variant, as shown in Figures 9 and 10.

B.4 Ablation studies

We evaluate our proposed Gated-LoRA against standard LoRA that varies β from 0.1 to 1.0, as shown in Figure 6. Since both methods are applied during the fine-tuning phase to produce specialized basis solvers for the basis VRP variants (OVRP, VRPB, VRPL, VRPTW), Figure 6 reports the average optimality gap and average cost across these four variants. When built on the RF-based backbone, the standard LoRA expert achieves its best performance at $\beta = 0.8$ in terms of both optimality gap and cost (blue curves in Figures 6(a) and 6(b)). However, the noticeable gap between the lowest

Figure 6: This figure compares the performance of Gated-LoRA with standard LoRA across varying values of $\beta \in (0,1]$, under both RF-based and CaDA-based backbones.

point of the blue curves and the green dashed line indicates that our proposed Gated-LoRA module outperforms standard LoRA. Similarly, when built on the CaDA-based backbone, the standard LoRA expert performs best at $\beta=0.9$, yet the Gated-LoRA module still achieves superior performance. These experimental results support our hypothesis that problem instances from any basis VRP variant (excluding CVRP) are OOD inputs to the frozen backbone model, resulting in task-misaligned features in the embeddings generated by the backbone.

Figure 7 presents a performance comparison of different activation functions used in the adaptive gating mechanism of the mixture of specialized experts, including $\operatorname{softmax}(\cdot)$, $\operatorname{norm_softplus}(\cdot)$, and sigmoid(·). In both the N=50 and N=100 settings, MoSES(RF) demonstrates superior performance when employing the norm of tplus (\cdot) function, while performance degrades when using sigmoid(·). This suggests that MoSES(RF) benefits from a convex combination of the pretrained, frozen LoRA experts. In contrast, MoSES(CaDA) achieves its best performance with the sigmoid(\cdot) function, indicating a preference for selectively reusing or suppressing specific LoRA experts without being constrained by a unit-sum requirement. Figure 11 presents a performance comparison of different activation functions across each VRP variant. As shown in Figure 8, the dense routing method yields the best performance for both MoSES(RF) and MoSES(CaDA), while a significant performance degradation is observed when the trainable LoRA module BA is ablated. This suggests that, to achieve better in-distribution performance, the unified neural solver should leverage the knowledge encoded in the pretrained specialized LoRA experts, which capture the ability to solve basis VRP variants. At the same time, the new knowledge learned through the trainable LoRA expert is also crucial for enhancing performance. Figure 12 presents a comparative result of different routing strategies across each VRP variant.

To investigate the impact of incorporating explicit task descriptors into the gating mechanism on performance, we modified the input of the gating mechanism to explicitly include constraint flags. This modification is implemented on MoSES(RF) under the N=50 setting. As shown in Table 6,

Table 6: Impact of incorporating task descriptors into the gating mechanism on performance.

Task	w/o Task Descriptors	w/ Task Descriptors
CVRP	0.900%	0.880%
VRPTW	1.445%	1.452%
OVRP	1.892%	1.940%
VRPL	1.089%	1.058%
VRPB	2.342%	2.339%
OVRPTW	0.959%	0.950%
VRPBL	3.185%	3.187%
VRPBLTW	1.370%	1.382%
VRPBTW	1.121%	1.109%
VRPLTW	1.811%	1.820%
OVRPB	1.979%	1.995%
OVRPBL	2.014%	2.013%
OVRPBLTW	0.791%	0.786%
OVRPBTW	0.783%	0.789%
OVRPL	1.917%	1.941%
OVRPLTW	0.962%	0.952%
Average	1.535%	1.537%

Table 7: Performance Comparison of LoRA Expert vs. Linear Expert.

Task	LoRA Expert	Linear Expert
CVRP	0.900%	0.878%
VRPTW	1.445%	1.427%
OVRP	1.892%	1.808%
VRPL	1.089%	1.061%
VRPB	2.342%	2.217%
OVRPTW	0.959%	0.938%
VRPBL	3.185%	2.960%
VRPBLTW	1.370%	1.431%
VRPBTW	1.121%	1.145%
VRPLTW	1.811%	1.845%
OVRPB	1.979%	1.764%
OVRPBL	2.014%	1.775%
OVRPBLTW	0.791%	0.783%
OVRPBTW	0.783%	0.778%
OVRPL	1.917%	1.819%
OVRPLTW	0.962%	0.943%
Average	1.535%	1.473%

we observe that including task descriptors in the gating mechanism reduces the optimality gap for some tasks, while increasing it for others. Overall, the performance impact is minimal. We speculate that the gating mechanism is capable of implicitly identifying different VRP variants based solely on the problem instance. As a result, the additional task descriptors do not provide a performance gain.

To investigate linear task-specific experts as an alternative, we designed an experiment where the basis VRP solvers for OVRP, VRPB, VRPL, and VRPTW are trained using linear adapters. These linear adapters are then integrated into the unified solver to enable reuse. We implemented this experiment on the MoSES(RF) model under the setting of N=50. The experimental results are presented in Table 7. We observe that the proposed linear expert contributes to performance improvement.

Since our method introduces additional time overhead due to the dynamic gating mechanism compared to its direct baseline, we apply the $32\times$ data augmentation technique proposed in [2] to the baseline method to examine whether increasing the inference time of the baseline method to match the runtime of our method can also yield a performance improvement. We conduct this experiment based on

Table 8: Impact of data augmentation on performance.

Method	Avg. Gap	Avg. Time
RF w/ 8× dihedral	2.063%	2.0s
RF w/ $32 \times$ symmetric	3.261%	6.1s
MoSES(RF) w/ 8x dihedral	1.535%	5.8s

Table 9: Impact of poorly trained basis VRP solver on performance.

	Tasks w/ OVRP	Tasks w/o OVRP
Fully Trained OVRP Solver	1.412%	1.658%
Poorly Trained OVRP Solver	1.524%	1.654%
	Tasks w/ VRPL	Tasks w/o VRPL
Fully Trained VRPL Solver	1.642%	1.428%
Poorly Trained VRPL Solver	1.660%	1.453%
	Tasks w/ VRPB	Tasks w/o VRPB
Fully Trained VRPB Solver	1.698%	1.372%
Poorly Trained VRPB Solver	1.722%	1.393%
	Tasks w/ VRPTW	Tasks w/o VRPTW
Fully Trained VRPTW Solver	1.155%	1.915%
Poorly Trained VRPTW Solver	1.378%	1.969%

the RF model in the N=50 setting. As shown in Table 8, we observe that RF with $32\times$ data augmentation does not result in a performance improvement, despite the increased inference time. Therefore, we conclude that the additional inference time introduced by our method is justified by the performance gains it delivers.

To evaluate the robustness of our method against poorly trained basis solvers, we conducted experiments using MoSES(RF) under the N=50 setting. In our method, each basis solver typically employs a LoRA rank of 32. We observed that reducing the LoRA rank to 4 significantly degrades performance, so we used basis solvers with a LoRA rank of 4 to simulate poorly trained solvers. Specifically, we trained four such poorly trained solvers, each corresponding to one of the basis VRP variants. We then replaced one of the original high-performing solvers in MoSES(RF) with a corresponding poor solver and retrained the gating mechanism accordingly. In Table 9, 'Fully Trained OVRP Solver' and 'Poorly Trained OVRP Solver' refer to cases where MoSES(RF) uses a fully trained basis solver and a poorly trained basis solver for OVRP, respectively, while the remaining basis VRP solvers remain unchanged. We compare their performance separately on VRP variants with and without the open route constraint. Thus, 'Tasks w/ OVRP' and 'Tasks w/o OVRP' represent the average optimality gap across 8 VRP variants with and without the open route constraint, respectively. The same notation is also applied to the remaining constraints in Table 9. From the results, we observe that the optimality gap is more significantly affected for tasks that include the corresponding constraints when the related basis solver is poorly trained.

B.5 Visualizing Adaptive Gating Mechanisms

In Figure 13, we present a visualization of the weights assigned to five basis solvers, each corresponding to a specific constraint: Capacity (C), Open Route (O), Distance Limit (L), Backhaul (B), and Time Window (TW), for both MoSES(RF) and MoSES(CaDA) under the setting N=100. Each weight is calculated by averaging across layers, time steps, and problem instances, based on evaluations on 1,000 problem instances per model.

We observe that, since each VRP variant is derived from CVRP, the CVRP solver consistently receives a dominant weight allocation in both MoSES(RF) and MoSES(CaDA). Furthermore, when a VRP variant incorporates the Time Window constraint, the corresponding VRPTW solver receives

significantly higher weights compared to other solvers, with the exception of the CVRP solver. Overall, basis solvers associated with the constraints present in the current VRP variant tend to be preferred. Additionally, solvers corresponding to irrelevant basis variants may still receive nonnegligible weights, likely due to partial similarities among the basis VRP variants. Due to the use of the $\operatorname{sigmoid}(\cdot)$ activation function in MoSES(CaDA), the model tends to assign weights with greater magnitudes, thereby capturing more informative signals from the basis solvers.

Figure 7: This figure compares the performance of activation functions used in the adaptive gating mechanism of the mixture of specialized experts for both MoSES(RF) and MoSES(CaDA) under the settings of N=50 and N=100.

Figure 8: This figure compares the performance of routing strategies used in the adaptive gating mechanism of the mixture of specialized experts for both MoSES(RF) and MoSES(CaDA) under the settings of N=50 and N=100.

Figure 9: This figure illustrates the performance trends of MoSES(RF) across each VRP variant under both N=50 and N=100 settings, as either $r_{\rm frozen}$ or $r_{\rm free}$ is varied while keeping the other fixed.

Figure 10: This figure illustrates the performance trends of MoSES(CaDA) across each VRP variant under both N=50 and N=100 settings, as either $r_{\rm frozen}$ or $r_{\rm free}$ is varied while the other is held constant.

Figure 11: This figure illustrates the performance comparisons among different activation functions used in the adaptive gating mechanism of both MoSES(RF) and MoSES(CaDA) across various VRP variants under the N=50 and N=100 settings.

Figure 12: This figure illustrates the performance comparisons among different routing strategies used in the adaptive gating mechanism of both MoSES(RF) and MoSES(CaDA) across various VRP variants under the N=50 and N=100 settings.

Figure 13: This figure illustrates the behavior of the adaptive gating mechanisms in both MoSES(RF) and MoSES(CaDA) under the setting N=100.

C Proofs

Theorem 3. The optimal unified policy π^* and the *i*-th optimal basis policy $\pi^{(i)*}$ coincide in their value functions for each state s_t associated with the *i*-th basis task: $V^{\pi^*,\mathcal{P}}(s_t) = V^{\pi^{(i)*},\mathcal{P}}(s_t)$. Furthermore, if both the optimal unified policy and the optimal basis policy are unique, then for each state-action pair (s_t, a_t) corresponding to the *i*-th basis task, it holds that $\pi^*(a_t|s_t) = \pi^{(i)*}(a_t|s_t)$.

Proof. By definition, the value function $V^{\pi^*,\mathcal{P}}$ induced by the optimal policy π^* is greater than or equal to the value function $V^{\pi,\mathcal{P}}$ of any unified policy π for all feasible states s_t at each time step t. Formally, $\forall \pi, s_t \in \mathcal{S}_t, t \in \{0, \dots, T\}$, it holds that $V^{\pi^*,\mathcal{P}}(s_t) \geq V^{\pi,\mathcal{P}}(s_t)$. Likewise, the i-the optimal basis policy $\pi^{(i)*}$ ($i \geq 0$) maximizes the value function $V^{\pi^{(i)},\mathcal{P}}$, evaluated on states induced by the initial state distribution defined over $\mathcal{S}_0^{(0)}$ for i = 0, or over $\mathcal{S}_0^{(0)} \times \mathcal{S}_0^{(i)}$ for $i \geq 1$, corresponding to the i-th basis task at each time step. That is, for all $\pi^{(0)}, s_t^{(0)} \in \mathcal{S}_t^{(0)}$, and $t \in \{0, \dots, T\}$, we have $V^{\pi^{(0)*},\mathcal{P}}(s_t^{(0)}) \geq V^{\pi^{(0)},\mathcal{P}}(s_t^{(0)})$. Similarly, for all $\pi^{(i)}, (s_t^{(0)}, s_t^{(i)}) \in \mathcal{S}_t^{(0)} \times \mathcal{S}_t^{(i)}$, $t \in \{0, \dots, T\}$, and $i \geq 1$, it holds that $V^{\pi^{(i)*},\mathcal{P}}((s_t^{(0)}, s_t^{(i)})) \geq V^{\pi^{(i)},\mathcal{P}}((s_t^{(0)}, s_t^{(i)}))$.

According to the definitions of the SDMDP framework and the basis task, it is evident that, at each time step, the state space associated with a basis task is a subset of the state space defined for the unified policy. Specifically, at each time step t, for all $s_t^{(0)} \in \mathcal{S}_t^{(0)}$, it holds that $s_t^{(0)} \in \mathcal{S}_t$. Likewise, for all $(s_t^{(0)}, s_t^{(i)}) \in \mathcal{S}_t^{(0)} \times \mathcal{S}_t^{(i)}$, and $i \geq 1$ we have $(s_t^{(0)}, s_t^{(i)}) \in \mathcal{S}_t$. As a result, at each time step t, for all $s_t^{(0)} \in \mathcal{S}_t^{(0)}$, it follows that $V^{\pi^*, \mathcal{P}}(s_t^{(0)}) = V^{\pi^{(0)^*, \mathcal{P}}}(s_t^{(0)})$. Similarly, for all $(s_t^{(0)}, s_t^{(i)}) \in \mathcal{S}_t^{(0)} \times \mathcal{S}_t^{(i)}$, and $i \geq 1$, we have $V^{\pi^*, \mathcal{P}}((s_t^{(0)}, s_t^{(i)})) = V^{\pi^{(i)^*, \mathcal{P}}}((s_t^{(0)}, s_t^{(i)}))$. Moreover, if the i-the basis task (i > 0) admits a unique optimal policy $\pi^{(i)^*}$, and the optimal unified policy π^* is also unique, then for each state s_t associated with the i-th basis task, it holds that $\pi^*(a_t|s_t) = \pi^{(i)^*}(a_t|s_t)$, where $a_t \in \mathcal{A}(s_t)$.

Assumption 3. In the SDMDP framework, any state s is composed of m+1 conditionally independent basis states, denoted as $s = \{s^{(b_i)}\}_{i=0}^m$. Accordingly, we assume that any policy π is capable of extracting the basis state embedding $z^{(b_i)} \in \mathbb{R}^d$ for each $s^{(b_i)}$, where $i = 0, \ldots, m$. Under this assumption, we further posit that there exists a deterministic bijective mixture function $f_{\phi}: \mathcal{S} \times \prod_{i=0}^m \mathbb{R}^d \to \mathbb{R}^d$, parameterized by ϕ , which maps the basis state embeddings $\{z^{(b_i)}\}_{i=0}^m$ to the state embedding $z \in \mathbb{R}^d$ for the given state s, represented as $z = f_{\phi}(z^{(b_0)}, \ldots, z^{(b_m)}; s)$. Thus, the policy defined over the action space can be rewritten as

$$\pi(a|s) = \sum_{z} \pi(a|z)\pi(z|s) = \sum_{z^{(b_0)},\dots,z^{(b_m)}} \pi(a|f_{\phi}(z^{(b_0)},\dots,z^{(b_m)};s)) \prod_{i=0}^{m} \pi(z^{(b_i)}|s^{(b_i)})$$
(9)

where $\prod_{i=0}^m \pi(z^{(b_i)}|s^{(b_i)}) = \pi(z^{(b_0)},\ldots,z^{(b_m)}|s)$. The second equivalence in Equation 9 holds because f_ϕ is assumed to be deterministic.

Assumption 4. For any state s, and for any two policies π and π' , we assume that if $\forall a \in \mathcal{A}(s), \pi(a|s) = \pi'(a|s)$, then $\forall z \in \mathbb{R}^d, \pi(z|s) = \pi'(z|s)$, and conversely.

Theorem 4. Let $J(\pi, \mathcal{P}, \mu)$ and $J(\pi_{f_{\phi}}, \mathcal{P}_{z}, \mu_{z})$ denote the objective functions (expected returns) in SDMDP and LS-SDMDP, respectively. By Theorem 3 and Assumptions 3 4, it follows that the values of the objective functions are equal at their respective optimal policies, formally written as $J(\pi^*, \mathcal{P}, \mu) = J(\pi_{f_{\phi}}^*, \mathcal{P}_{z}, \mu_{z})$. Moreover, the value functions of SDMDP and LS-SDMDP at their respective optimal policies satisfy the following relationship $V^{\pi^*, \mathcal{P}}(s) = \mathbb{E}_{z^{(b_0)} \sim \pi^{(b_0)*}} \cdots \mathbb{E}_{z^{(b_m)} \sim \pi^{(b_m)*}} V^{\pi_{f_{\phi}}^*, \mathcal{P}_{z}}(z^{(b_0)}, \dots, z^{(b_m)}; s)$.

Proof. By definition, for any given policy π , the objective function $J(\pi, \mathcal{P}, \mu)$ within the SDMDP framework can be reformulated as shown in Equation 10. In this reformulation, Equation ① is derived by incorporating Equation 9. Subsequently, Equation ① is rearranged to yield Equation ②.

$$J(\pi, \mathcal{P}, \mu) = \mathbb{E}_{s \sim \mu} \mathbb{E}_{\tau \sim (\pi, \mathcal{P})} [\sum_{t=0}^{T-1} \gamma^{t} r_{t} | s_{0} = s]$$

$$= \sum_{s_{0}, a_{0}, \dots, s_{T}} \mu(s_{0}) \prod_{t=0}^{T-1} \pi(a_{t} | s_{t}) \mathcal{P}(s_{t+1} | s_{t}, a_{t}) \sum_{t=0}^{T-1} \gamma^{t} r_{t}$$

$$\stackrel{\oplus}{=} \sum_{s_{0}, a_{0}, \dots, s_{T}} \mu(s_{0}) \prod_{t=0}^{T-1} \sum_{z_{0}^{(b_{0})}, \dots, z_{0}^{(b_{m})}} \pi(a_{t} | f_{\phi}(z_{0}^{(b_{0})}, \dots, z_{t}^{(b_{m})}; s_{t}))$$

$$\pi(z_{t}^{(b_{0})}, \dots, z_{t}^{(b_{m})} | s_{t}) \mathcal{P}(s_{t+1} | s_{t}, a_{t}) \sum_{t=0}^{T-1} \gamma^{t} r_{t}$$

$$\stackrel{\oplus}{=} \sum_{s_{0}, a_{0}, \dots, s_{T}} \sum_{z_{0}^{(b_{0})}, \dots, z_{0}^{(b_{m})}} \dots \sum_{z_{T}^{(b_{0})}, \dots, z_{T}^{(b_{m})}} \mu(s_{0}) \prod_{t=0}^{T-1} \pi(a_{t} | f_{\phi}(z_{0}^{(b_{0})}, \dots, z_{t}^{(b_{m})}; s_{t}))$$

$$\pi(z_{t}^{(b_{0})}, \dots, z_{t}^{(b_{m})} | s_{t}) \mathcal{P}(s_{t+1} | s_{t}, a_{t}) \sum_{t=0}^{T-1} \gamma^{t} r_{t}$$

$$(10)$$

$$J(\pi^{*}, \mathcal{P}, \mu) \stackrel{\oplus}{=} \sum_{s_{0}, a_{0}, \dots, s_{T}} \sum_{z_{0}^{(b_{0})}, \dots, z_{0}^{(b_{m})}} \dots \sum_{z_{T}^{(b_{m})}, \dots, z_{T}^{(b_{m})}} \mu(s_{0}) \pi^{*}(z_{0}^{(b_{0})}, \dots, z_{0}^{(b_{m})} | s_{0})$$

$$\prod_{t=0}^{T-1} \pi^{*}(a_{t} | f_{\phi}(z_{t}^{(b_{0})}, \dots, z_{t}^{(b_{m})}; s_{t})) \pi^{*}(z_{t+1}^{(b_{1})}, \dots, z_{t+1}^{(b_{1})} | s_{t+1}) \mathcal{P}(s_{t+1} | s_{t}, a_{t}) \sum_{t=0}^{T-1} \gamma^{t} r_{t}$$

$$\stackrel{\oplus}{=} \sum_{s_{0}, a_{0}, \dots, s_{T}} \sum_{z_{0}^{(b_{0})}, \dots, z_{0}^{(b_{m})}} \dots \sum_{z_{T}^{(b_{m})}, \dots, z_{0}^{(b_{m})}} \mu(s_{0}) \prod_{t=0}^{m} \pi^{*}(z_{0}^{(b_{1})} | s_{0}^{(b_{1})})$$

$$\stackrel{\oplus}{=} \prod_{t=0}^{T-1} \pi^{*}(a_{t} | f_{\phi}(z_{t}^{(b_{0})}, \dots, z_{0}^{(b_{m})}; s_{t})) \prod_{t=0}^{m} \pi^{*}(z_{0}^{(b_{1})} | s_{0}^{(b_{1})} | \mathcal{P}(s_{t+1} | s_{t}, a_{t}) \sum_{t=0}^{T-1} \gamma^{t} r_{t}$$

$$\stackrel{\oplus}{=} \sum_{s_{0}, a_{0}, \dots, s_{T}} \sum_{z_{0}^{(b_{0})}, \dots, z_{0}^{(b_{m})}} \dots \sum_{z_{T}^{(b_{m})}, \dots, z_{0}^{(b_{m})}} \mu(s_{0}) \prod_{t=0}^{m} \pi^{(b_{1})^{*}}(z_{0}^{(b_{1})} | s_{0}^{(b_{1})}) \mathcal{P}(s_{t+1} | s_{t}, a_{t}) \sum_{t=0}^{T-1} \gamma^{t} r_{t}$$

$$\stackrel{\oplus}{=} \sum_{s_{0}, a_{0}, \dots, s_{T}} \sum_{z_{0}^{(b_{0})}, \dots, z_{0}^{(b_{m})}} \dots \sum_{z_{T}^{(b_{m})}, \dots, z_{0}^{(b_{m})}} \mu(s_{0}) \prod_{t=0}^{m} \pi^{(b_{1})^{*}}(z_{0}^{(b_{1})} | s_{0}^{(b_{1})} | s_{0}^{(b_{1})})$$

$$\stackrel{\oplus}{=} \sum_{s_{0}, a_{0}$$

As shown in Equation 11, the optimal policy π^* is substituted into the expression. Equation ① holds because the action taken at the terminal state s_T , denoted as $\pi(z_T^{(b_0)},\ldots,z_T^{(b_m)}|s_T)$, does not influence the value of the objective function $J(\pi,\mathcal{P},\mu)$. Equation ② is derived based on the conditional independence of the basis states $(s_t^{(b_0)},\ldots,s_t^{(b_m)})$. Based on the conclusion of Theorem 3, we derive the following results: 1) In the b_0 -th basis task, for all $s_t^{(b_0)} \in \mathcal{S}_t^{(b_0)}$ and $a_t \in \mathcal{A}(s_t^{(b_0)})$, where $0 \leq t \leq T$, it holds that $\pi^*(a_t|s_t^{(b_0)}) = \pi^{(b_0)*}(a_t|s_t^{(b_0)})$. Please note that b_0 is fixed to 0 within the SDMDP

(11)

 $\prod_{t=1}^{T-1} \pi^*(a_t | f_{\phi}(z_t^{(b_0)}, \dots, z_t^{(b_m)}; s_t)) \mathcal{P}_z(z_{t+1} | s_t, a_t) \sum_{t=1}^{T-1} \gamma^t r_t$

framework. 2) Similarly, in the b_i -th basis task $(i \geq 1)$, for all $(s_t^{(b_0)}, s_t^{(b_i)}) \in \mathcal{S}_t^{(b_0)} \times \mathcal{S}_t^{(b_i)}$ and $a_t \in \mathcal{A}((s_t^{(b_0)}, s_t^{(b_i)}))$, where $0 \leq t \leq T$, it holds that $\pi^*(a_t|(s_t^{(b_0)}, s_t^{(b_i)})) = \pi^{(b_i)*}(a_t|(s_t^{(b_0)}, s_t^{(b_i)}))$. Furthermore, in accordance with Assumption 4, we have $\pi^*(z_t|s_t^{(b_0)}) = \pi^{(b_0)*}(z_t|s_t^{(b_0)})$ and $\pi^*(z_t|(s_t^{(b_0)}, s_t^{(b_i)})) = \pi^{(b_i)*}(z_t|(s_t^{(b_0)}, s_t^{(b_i)}))$ for all $i \geq 1$. According to Assumption 3, for each policy, including the basis policy, there exists a mixture function f_ϕ that provides a bijective and deterministic mapping from the basis state embeddings to the corresponding state embedding. Thus, the state embedding z_t is given by $z_t = f_\phi(z_t^{(b_0)}, z_t^{(b_i)}; (s_t^{(b_0)}, s_t^{(b_i)}))$ under both π^* and $\pi^{(b_i)*}$. Consequently, we conclude that $\pi^*(z_t^{(b_0)}|s_t^{(b_0)})\pi^*(z_t^{(b_i)}|s_t^{(b_i)}) = \pi^{(b_i)*}(z_t^{(b_0)}|s_t^{(b_0)})\pi^{(b_i)*}(z_t^{(b_i)}|s_t^{(b_i)})$. Given the preceding results, we additionally assume that $\pi^*(z_t^{(b_i)}|s_t^{(b_i)}) = \pi^{(b_i)*}(z_t^{(b_i)}|s_t^{(b_i)})$, which directly supports the Equation ③. Equation ④ is obtained by incorporating the definitions of the initial state distribution and the transition probability function within the LS-SDMDP framework.

It is evident that the policy $\pi^*(a_t|f_\phi(z_t^{(b_0)},\ldots,z_t^{(b_m)};s_t))$ is the optimal policy for the objective function $J(\pi_{f_\phi},\mathcal{P}_z,\mu_z)$. This is because, if this were not the case, π^* would not qualify as the optimal policy for the objective function $J(\pi,\mathcal{P},\mu)$. Thus, we conclude that $\pi^*(a_t|f_\phi(z_t^{(b_0)},\ldots,z_t^{(b_m)};s_t))=\pi_{f_\phi}^*(a_t|z_t^{(b_0)},\ldots,z_t^{(b_m)};s_t)$ and $J(\pi^*,\mathcal{P},\mu)=J(\pi_{f_\phi}^*,\mathcal{P}_z,\mu_z)$.

By the Bellman equation and the policy decomposition in Equation 9, the value function of SDMDP at the optimal policy, for each time step $0 \le t \le T-1$, can be expressed as follows:

$$V^{\pi^*,\mathcal{P}}(s_t) = \mathbb{E}_{a_t \sim \pi^*(a_t|s_t)}[r_t + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{P}(s_{t+1}|s_t, a_t)} V^{\pi^*,\mathcal{P}}(s_{t+1})]$$

$$= \mathbb{E}_{a_t \sim \pi^*(a_t|f_{\phi}(z_t^{(b_0)}, \dots, z_t^{(b_m)}; s_t))} \mathbb{E}_{z_t^{(b_0)}, \dots, z_t^{(b_m)} \sim \pi^*(z_t^{(b_0)}, \dots, z_t^{(b_m)}|s_t)}$$

$$[r_t + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{P}(s_{t+1}|s_t, a_t)} V^{\pi^*,\mathcal{P}}(s_{t+1})]$$

$$= \mathbb{E}_{z_t^{(b_0)} \sim \pi^*(z_t^{(b_0)}|s_t)} \cdots \mathbb{E}_{z_t^{(b_m)} \sim \pi^*(z_t^{(b_m)}|s_t)} \mathbb{E}_{a_t \sim \pi^*(a_t|f_{\phi}(z_t^{(b_0)}, \dots, z_t^{(b_m)}; s_t))}$$

$$[r_t + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{P}(s_{t+1}|s_t, a_t)} V^{\pi^*,\mathcal{P}}(s_{t+1})]$$

$$(12)$$

Likewise, the value function of LS-SDMDP at its optimal policy can be written as:

$$V^{\pi_{f_{\phi}}^{*}, \mathcal{P}_{z}}(z_{t}^{(b_{0})}, \dots, z_{t}^{(b_{m})}; s_{t}) = \mathbb{E}_{a_{t} \sim \pi_{f_{\phi}}^{*}(a_{t}|z_{t}^{(b_{0})}, \dots, z_{t}^{(b_{m})}; s_{t})}[r_{t} + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{P}(s_{t+1}|s_{t}, a_{t})}$$

$$\mathbb{E}_{z_{t+1}^{(b_{0})} \sim \pi^{(b_{0})*}} \cdots \mathbb{E}_{z_{t+1}^{(b_{m})} \sim \pi^{(b_{m})*}} V^{\pi_{f_{\phi}}^{*}, \mathcal{P}_{z}}(z_{t+1}^{(b_{0})}, \dots, z_{t+1}^{(b_{m})}; s_{t+1})]$$

$$(13)$$

We use the inductive method to prove the relationship between the value functions at their respective optimal policies. At the time step T-1, since the value function at time step T is equal to 0, the value functions defined in Equation 12 and Equation 13 can be expressed as follows:

$$V^{\pi^*,\mathcal{P}}(s_{T-1}) = \mathbb{E}_{z_{T-1}^{(b_0)} \sim \pi^*(z_{T-1}^{(b_0)}|s_{T-1})} \cdots \mathbb{E}_{z_{T-1}^{(b_m)} \sim \pi^*(z_{T-1}^{(b_m)}|s_{T-1})}$$

$$\mathbb{E}_{a_{T-1} \sim \pi^*(a_{T-1}|f_{\phi}(z_{T-1}^{(b_0)}, \dots, z_{T-1}^{(b_m)};s_{T-1}))}[r_{T-1}]$$

$$V^{\pi^*_{f_{\phi}}, \mathcal{P}_z}(z_{T-1}^{(b_0)}, \dots, z_{T-1}^{(b_m)};s_{T-1}) = \mathbb{E}_{a_{T-1} \sim \pi^*_{f_{\phi}}(a_{T-1}|z_{T-1}^{(b_0)}, \dots, z_{T-1}^{(b_m)};s_{T-1})}[r_{T-1}]$$

$$(14)$$

It is evident that the two value functions satisfy the relationship at time step T-1. We now assume that at any time step t+1, the relationship between these value functions holds. Substituting this assumption into the value function of SDMDP defined in Equation 12, yields the following:

$$V^{\pi^*,\mathcal{P}}(s_t) = \mathbb{E}_{z_t^{(b_0)} \sim \pi^*(z_t^{(b_0)}|s_t)} \cdots \mathbb{E}_{z_t^{(b_m)} \sim \pi^*(z_t^{(b_m)}|s_t)} \mathbb{E}_{a_t \sim \pi^*(a_t|f_\phi(z_t^{(b_0)}, \dots, z_t^{(b_m)};s_t))}$$

$$[r_t + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{P}(s_{t+1}|s_t, a_t)} \mathbb{E}_{z_{t+1}^{(b_0)} \sim \pi^{(b_0)_*}} \cdots \mathbb{E}_{z_{t+1}^{(b_m)} \sim \pi^{(b_m)_*}}$$

$$V^{\pi^*_{f_\phi}, \mathcal{P}_z}(z_{t+1}^{(b_0)}, \dots, z_{t+1}^{(b_m)}; s_{t+1})]$$

$$(15)$$

We thus conclude that the relationship between the value functions at their optimal policies is given by $V^{\pi^*,\mathcal{P}}(s) = \mathbb{E}_{z(b_0)_{\sim \pi}(b_0)^*} \cdots \mathbb{E}_{z(b_m)_{\sim \pi}(b_m)^*} V^{\pi^*_{f_{\phi}},\mathcal{P}_z}(z^{(b_0)},\ldots,z^{(b_m)};s).$

D Related Works

In this section, we first survey advances in task-specific neural solvers, which form the foundation for multi-task approaches. Next, we review multi-task learning techniques for VRPs. Finally, we examine recent progress in mixture-of-specialized-experts (MoSE) methods, which inspire key implementation aspects of our method.

Task-Specific Neural VRP Solvers. Learning-based neural solvers, individually developed for each specific VRP, fall into three main categories: constructive methods, iterative methods, and divide-and-conquer methods. Constructive methods craft end-to-end neural solvers to progressively infer solutions through autoregressive mechanisms. Pointer Network [67] pioneers this paradigm by effectively solving the small-scale traveling salesman problem (TSP), while Attention Model (AM) [34] emerges as the dominant architecture for subsequent task-specific neural solvers trained via reinforcement learning (RL). Some approaches consider properties inherent in TSP and capacitated VRP (CVRP), including the multiple optima [35] and the symmetry [33], to improve the solution quality. To further improve the cross-scale or cross-distribution generalization, advanced techniques, such as meta-learning [51, 60, 84], knowledge distillation [4], or ensemble learning [17, 22, 30], have been successfully transferred from other domains. Additionally, neural solvers trained via supervised learning (SL) also exhibit strong generalization capabilities [15, 46, 47]. Iterative methods leverage local search operators to consistently refine solutions until convergence. Specifically, L2I [45] and NeuRewriter [7] train RL policies to select among handcrafted operators for solution improvement. NLNS [24] alternates between heuristic destroy operators and learned repair policies to generate a new solution. DACT [50] advances beyond prior works by learning expressive representations for RL policies, while Neural-LKH [74] and Neural k-opt [49] specialize in k-opt algorithms by using RL policies to guide edge exchanges. However, these methods universally trade inference efficiency for solution quality with the aid of manually-designed operators. Divide-and-Conquer methods decompose problem instances into smaller sub-instances that are solved independently. Prior works have attempted to solve larger instances using pretrained neural solvers on heuristically sampled sub-instances [16, 32, 8]. By comparison, L2D [39] and RGB [85] learn RL policies to select subgraphs from heuristic-generated candidates. Unlike these heuristic-based methods, TAM [25], GLOP [77], UDC [82], and HLGP [56] opt to learnable RL policies to globally partition entire instances into subproblems, which are then solved by pretrained local construction policies. However, these methods critically depend on the partition policy, where even minor performance degradation may significantly impair the overall VRP solution quality.

Multi-Task Learning for VRPs. To cope with practical scenarios involving multiple VRP variants, the efficient transfer learning has been leveraged to obtain specialized neural solvers by considering inherent similarities among these variants. Lin et al. [41] propose a modular architecture consisting of a backbone pretrained on a canonical VRP and lightweight adapters inserted into the frozen backbone for the problem-specific fine-tuning. Likewise, GOAL [14] extend this paradigm to general COPs, along with fewer adapters. Corrêa et al. [11] adopt full-parameter fine-tuning strategy for each downstream VRP variant, yielding multiple problem-specific but parameter-inefficient neural solvers. However, these methods struggle with the combinatorial explosion of VRP variants. Notably, although the LoRA adapter is used for problem-specific adaptations in [41], its potential as part of a unified solver to handle the exponential growth of variants remains unexplored.

As an alternative, unified solvers are designed to handle multiple VRP variants simultaneously while eliminating the need for adapters or backbone duplications. Liu et al. [42] pioneer a single-solver framework that unifies variants via attribute compositions. MVMoE [83] enhances capacity with mixture-of-expert (MoE) layers that implicitly specialize for different variants. RouteFinder [3] employs modified Transformer model with mixed batch training for stable convergence. UNCO [29] resorts to the large language model (LLM) for the expressive instance and task embeddings. CaDA [38] utilizes a dual attention mechanism for superior cross-problem capabilities. Goh et al. [20] considers the more practical multi-task, multi-distribution setting by using mixture-of-depths (MoD) and context-based clustering. Liu et al. [43] leverage mixed-curvature spaces in the feature fusion stage such that the model's encoder can capture the geometric structures inherent in VRP instances. Lei et al. [37] strengthen cross-scale and cross-problem generalization capabilities of diffusion-based solvers during inference, which is orthogonal to our work. In contrast, Wang & Yu [68] decompose the model into a shared encoder, and problem-specific headers and decoders, applying multi-armed bandits for dynamic task sampling during training. Li et al. [40] adopt the same architecture with aligned

optimization directions across tasks. However, these methods fail to fully leverage the compositional structure inherent in VRP variants, each derived from a common set of basis VRP variants. Thus, the potential benefits of incorporating explicitly specialized basis solvers remain unexplored. Notably, while MoE layers are employed in [83], these learn implicit and less interpretable specialization rather than incorporating off-the-shelf basis solvers as experts.

Mixture of Specialized Experts. Prevailing methods focusing on mixture of specialized experts (MoSE) can be broadly categorized into two paradigms: merging entire models and module composition. Approaches based on merging entire models seek to combine independently trained models to efficiently achieve the performance comparable to model ensembling or multi-task learning. Most approaches are developed based on the shared model architecture. Wortsman et al. [70] exhibit averaging the parameters of models trained with different hyperparameter configurations improves accuracy. Matena & Raffel [52] develop a model aggregation framework guided by Fisher information. Yadav et al. [75] address interference effects in model merging to preserve critical knowledge. Tam et al. [64] formulate model fusion as a linear equation system solved through conjugate gradient optimization. Daheim et al. [12] introduce a uncertainty-based merging scheme to reduce the gradient mismatch. In contrast, several approaches enable merging across architecturally distinct models. Ainsworth et al. [1] align weights of different models to enable the model merging. Stoica et al. [63] introduce cross-task model fusion through feature-space integration. Additionally, weighted merging strategies have also been extensively explored. Ramé et al. [61] implement weighted model fusion to enhance out-of-distribution generalization, while Jin et al. [31] develop parameter-space merging optimized for multi-task performance through learned weighting schemes. Yang et al. [76] further advance this paradigm by deriving merging coefficients via unsupervised entropy minimization. However, these approaches struggle with achieving precise layer-wise and token-wise aggregation within expert models, limiting their multi-task OOD generalization.

Our implementation aligns more closely with the module composition paradigm which supports the finer-grained aggregation. The most straightforward approach involves parameter averaging of task adapters. Chronopoulou et al. [9] demonstrate test-time averaging of relevant adapters for task adaptation, while Ponti et al. [59] propose averaging adapter parameters selected by a routing function for new tasks. Beyond simple averaging, arithmetic operations have proven effective for the adapter composition. Chronopoulou et al. [10] demonstrate that basic arithmetic combinations enhance zero-shot cross-lingual transfer, while Zhang et al. [81] develop specialized arithmetic operations for lightweight adapters to boost generalization. Similarly, Ilharco et al. [28] employ arithmetic combinations of task vectors to precisely steer model behavior for novel tasks. Task similarity further facilitates the effective module composition. Lv et al. [48] develop weighted aggregation of parameterefficient adapters based on inter-task similarity measures for novel tasks. The MoCLE [21] framework addresses task conflicts and improves generalization by activating task-customized LoRA adapters based on clustered instructions and using a trainable universal adapter. Similarly, Wu et al. [72] propose modality-agnostic task similarity measures to combine lightweight adapters for enhanced performance on multimodal downstream tasks. Adaptive gating mechanisms have emerged as the predominant approach for dynamic model composition. LoRAHub [27] employs few-shot examples to compute weighting coefficients for pre-trained LoRA modules, enabling competitive performance on novel tasks. Building on this, Ye et al. [78] develop a hierarchical routing mechanism that selects optimal Transformer layers for enhanced task generalization. The MoLE [73] framework advances this paradigm through layer-wise gating functions that learn to optimally combine LoRA experts, with these operations being implemented via dedicated Transformer blocks. AdaMoLE [44] further incorporates dynamic threshold adaptation to handle varying task complexities. Caccia et al. [5] introduce multi-head adapter routing, enabling fine-grained routing for the cross-task generalization. Module composition approaches also effectively address catastrophic forgetting. LoRAMoE [13] mitigates world knowledge degradation in frozen backbone LLMs through strategic integration of multiple LoRA modules. Similarly, AdapterFusion [58] combats catastrophic forgetting in multi-task learning scenarios by dynamically combining pretrained adapter modules. Furthermore, module composition techniques have also demonstrated significant potential for zero-shot generalization. PHATGOOSE [53] achieves this through inference-time aggregation of LoRA adapters via their pretrained gating functions. Similarly, Ostapenko et al. [55] develop a zero-shot routing mechanism that dynamically selects the most task-relevant adapters based on task similarity, eliminating the need for retraining. In addition, Zadouri et al. [79] advance efficient adaptation through fine-tuning of mixture of lightweight LoRA experts for limited computational cost scenarios. Gao et al. [18]

uncover important architectural insights: different layers benefit from varying numbers of LoRA modules, and higher network layers particularly require more experts to maintain performance.