PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-288264

(43)Date of publication of application: 16.10.2001

(51)Int.CI.

C08G 73/00 C08K 3/16 C08K 3/24 C08K 3/30 C08K 3/32 C08K 5/42 C08L 79/00 H01B 1/20

(21)Application number : 2000-099509

(71)Applicant: KANPOLY TECHNOLOGY CO LTD

(22)Date of filing:

31.03.2000

(72)Inventor: KA KOKUKEN

SHA TATSUKA

(54) METHOD FOR PRODUCING POLYANILINE-CONTAINING SOLUTION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an improved method for producing a solution containing a conductive polyaniline.

SOLUTION: This method comprises the steps of: forming an emulsion by mixing an aniline monomer, a water-inmiscible organic solvent, at least one protonic acid dopant, and water together; stopping the agitation to separate the emulsion into an aqueous phase and a nonaqueous phase; separating the nonaqueous phase from the aqueous phase; and polymerizing the aniline monomer after adding an oxidizing agent to the nonaqueous phase.

LEGAL STATUS

[[)ate of request for examination]

31.03.2000

[Date of sending the examiner's decision of

19.03.2002

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-288264

(P2001-288264A)

(43)公開日 平成13年10月16日(2001.10.16)

(51) Int.Cl. ⁷	微別記号	FΙ	テーマコード(参考)
C08G 73/00		C 0 8 G 73/00	4 J 0 0 2
CO8K 3/16		C08K 3/16	4J043
3/24		3/24	5 G 3 O 1
3/30		3/30	
3/32		3/32	
0,02	永蘭 在審	有 請求項の数12 OL	(全 5 頁) 最終頁に続く
(21)出顯番号	特觀2000-99509(P2000-99509)	(71)出願人 599079816 カンボーリー	テクノロジー カンパニー
(22)出顧日	平成12年3月31日(2000.3.31)	リミティッド 台湾高雄市楠梓區慶昌街20巷49号	
		(72)発明者 何 國賢	民区昭良街105号3楼
		(72)発明者 謝 達華 台湾高雄市梯	i梓區慶昌街20巷49号
		(74)代理人 100072660	
•		弁理士 大和	田 和美

最終頁に続く

(54) 【発明の名称】 ポリアニリン含有溶液の製造方法

(57)【要約】

【課題】 導電性のポリアニリン含有溶液の製造方法を改良する。

【構成】 アニリンモノマー、水と非混和性の有機溶媒、少なくとも一つのプロトン酸ドーピング剤、及び水を一緒に撹拌することによりエマルジョンを形成する工程;撹拌を停止してエマルジョンを水相と非水相に分離させる工程;非水相を水相から分離する工程;及び酸化剤を非水相に加えてアニリンモノマーの重合を行う工程からなる。

【特許請求の範囲】

【請求項1】 アニリンモノマー、水と非混和性の有機溶媒、少なくとも一つのプロトン酸ドーピング剤、及び水を一緒に撹拌することによりエマルジョンを形成する工程;撹拌を停止して前記エマルジョンを水相と非水相に分離させる工程;前記非水相を前記水相から分離する工程;及び酸化剤を前記非水相に加えてアニリンモノマーの重合を行い、前記酸化剤添加後にもう一つのエマルジョンを形成させて、インシトゥで形成された透明な非水性ポリアニリン溶液を得る工程を含むことを特徴とする導電性を有するポリアニリン含有溶液の製造方法。

【請求項2】 重合前に前記非水相のpHをコントロールするために、前記非水相に追加量のドーピング剤を加えることを特徴とする請求項1に記載のポリアニリン含有溶液の製造方法。

【請求項3】 前記有機溶媒がベンゼン、トルエン、pーキシレン、mーキシレン、oーキシレン、ナフタレン、エチルベンゼン、スチレン、酢酸エチル、酢酸nープロピル、酢酸イソプロピル、酢酸nープチル、酢酸イソプチル、酢酸nーペンチル、環状へキサン、メチルシクロヘキサン、アミノシクロヘキサン、ヘキサノン、ブタノン、ペンタノン、テトラヒドロフラン、ヘキサヒドロピリジン、フェノール、mークレゾール、pークレゾール、pーイソブチルフェノール、pーtertーブチルフェノール、pースルホニルフェノール、クロロベンゼン、oージクロロベンゼン、mージクロロベンゼン、pージクロロベンゼン及びその混合物からなる群から選択されることを特徴とする請求項1に記載のポリアニリン含有溶液の製造方法。

【請求項4】 前記有機溶媒がトルエンであることを特 徴とする請求項1に記載のポリアニリン含有溶液の製造 方法。

【請求項5】 前記ドーピング剤がHC1、H2SO 4、ホウ酸、リン酸、セレン酸、硫酸、過硫酸、ドデシ ルベンゼンスルホン酸(DBSA)、トルエンスルホン 酸、ベンゼンスルホン酸及びキシレンスルホン酸(XS A)からなる群から選択されることを特徴とする請求項 1に記載のポリアニリン含有溶液の製造方法。

【請求項6】 さらに、前記ドーピング剤がHC1及び DBSAを含むことを特徴とする請求項5に記載のポリ アニリン含有溶液の製造方法。

【請求項7】 さらに、前記ドーピング剤がさらにXSAを含むことを特徴とする請求項6に記載のポリアニリン含有溶液の製造方法。

【請求項8】 前記酸化剤がペルオキシ硫酸アンモニウム (APS)、過硫酸アンモニウム、過硫酸カリウム、過塩素酸カリウム、塩化カリウム、沃化カリウム、塩化鉄(II)、発煙硫酸及びオゾンからなる群から選択されることを特徴とする請求項1に記載のポリアニリン含有溶液の製造方法。

【請求項9】 さらに、前記酸化剤がAPSであることを特徴とする請求項8に記載のポリアニリン含有溶液の 製造方法。

【請求項10】 さらに、前記非水相のpHが1以下であることを特徴とする請求項9に記載のポリアニリン含有溶液の製造方法。

【請求項11】 アニリンモノマーとドーピング剤との 重量比が1:1~100:1の範囲であることを特徴と する請求項1に記載のポリアニリン含有溶液の製造方 法

【請求項12】 さらに、前記酸化剤を前記水相に加えて重合を行うことを特徴とする請求項1に記載のポリアニリン含有溶液の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリアニリン含有 溶液の製造方法に関し、特に、アニリンモノマーの重合 に際してインシトゥで形成される、所望により透明なポ リアニリン含有溶液の製造方法に関する。

[0002]

【従来の技術】導電性塗料は、帯電防止性の静電気放電器、電磁干渉 (EMI) シールド、絶縁プラスチック材料に広範に使用されている。

【0003】1つのタイプの導電性塗料(conductive p aint) は、Zn、Ni又はAgのような粉末金属と樹脂 を混合することで製造される。しかしながら、このタイ プの導電性塗料には幾つかの不利な点がある。第1に、 導電性塗料中に金属粉末が高密度で存在するために、塗 料の撹拌が不十分であったり完全に停止するたびに金属 粉末が導電性塗料の底に沈みやすい。塗料濃度を一様に 保つために、塗装の間中、導電性塗料を撹拌する必要が ある。第2に、導電性塗料の被膜層が外気中で乾燥する と、導電性塗料中の金属粉末粒子が徐々に析出し、一緒 になって合着し、徐々に質の低下をきたす。第3に、釜 料が空気に曝されると粉末状金属は酸化されやすく、そ の結果、長期にわたり電気ー絶縁されてしまう。最後 に、導電性塗料における粉末状金属はコストが高く、し かも、それらを混合した又はそれと一緒にコーティング したプラスチック中で残留屑となり環境に有害となりう

【0004】ポリアニリンはペイント、絶縁性保護、電磁保護、液晶装置 (LCD) 及び光電池のような電気光学装置、変換器、回路板等の様々な応用分野で使用し得る有望な導電性ポリマーの一つであることが明らかになってきた。しかしながら、ポリアニリンは一般的な溶媒には不溶性であるために、上記の有用な生成物への加工(プロセッシング) に問題が多かった。

【0005】一般にポリアニリンは、塩酸やH2SO4 のようなプロトン酸の存在下化学的に酸化的重合させる ことでエメラルジン(暗緑色染料)の塩として生成され る。固形のエメラルジンの塩は通常、重合の間に反応混合物中に沈殿する。従って、上記の各応用に用いるための固形ポリアニリンを得るためには、前記固形塩を反応混合物から回収し、ろ過し、水及び溶媒で洗浄し、乾燥する必要がある。そのようにして得られたポリアニリンが通常は不溶性であることが、ポリアニリンの適用を妨げている。

【0006】PCT US 92 Patent No. 04167には、有機溶媒中で導電性ポリアニリンの処理可能性及び溶解性を増大させるために、導電性ポリアニリンの製造における機能的にしたプロトン酸の使用が開示されている。

【0007】Harlevら (USP No. 5,618,469) は、導電性であり、場合によっては透過性の被膜の製造に用いるため、そして液晶装置及び他の電気光学装置に向けた、エメラルジン塩の処理可能な溶液を製造する方法が開示されている。そのような方法は、ピルビン酸のようなプロトン酸の存在下でアニリンモノマーを酸化的に重合させて固形エメラルジン塩を得、固形エメラルジン塩をアンモニア水溶液と反応させて固形エメラルジン塩基を得、エメラルジン塩基をさらに追加量のピルビン酸に溶解してポリアニリン溶液を形成することからなる。

【0008】上記の方法における不利益として、酸化的 重合の間に反応混合物中で形成されたエメラルジンの塩 が不溶性で析出するので、析出した塩を固形のエメラル ジン塩基に変換し、次いでそれをピルビン酸に溶解しポ リアニリンの処理可能な溶液を形成するための複雑な工 程が必要となることがある。

【0009】Smith ら(U. S. Patent No. 5,470,505) は、アニリンモノマーをプロトン酸の存在下で酸化的重合する標準的な方法で製造したエメラルジンの塩は酸、特に濃厚なH2SO4、CH3SO3H、CISO3H、CF3SO3H及びHNO3(70%発煙濃硝酸)のような強酸に溶解できることを開示している。これらの酸溶液の一つに溶解したエメラルジンの塩(ポリアニリン)を、次いで応用のための適当な物品に加工している。

【0010】Abeら(U. S. Patent No. 5,728,321)は、アニリンモノマーの酸化的重合におけるドーパント(dopant)として、特殊なプロトン酸、例えばヒドロフルオロホウ酸(hydrofluoroboricacid)、過塩素酸、又は酸解離定数pKaが4.8以下である他の任意の有機酸などを用いる方法で、ドープされた状態のポリアニリン溶液(Nーメチルー2ーピロリドンのような非プロトン性極性溶媒に溶解した)が得られることを開示している。また、上記の方法で得られた有機溶媒に不溶性のポリアニリンは非プロトン性の溶媒に、混在物を含まない(アンドープ)状態で溶解し得る。ドープされたポリアニリンを有機溶媒に可溶性にするためのアンドーピングは面倒で製造コストの上昇を招く問題がある。

[0011]

【発明が解決しようとする課題】上記の方法を含む、ポリアニリンを処理可能な形で製造するための伝統的な方法は、反応混合物中で生成したポリアニリンが不溶性であることから、固形ポリアニリンを得るためには反応生成物の回収、ろ過、洗浄及び乾燥の工程が必要であり、さらに所望のポリアニリン溶液を得るためにエメラルジンの塩をエメラルジンの塩基に変換し、固形のポリアニリン又はエメラルジンの塩基を溶媒に溶解するという追加の工程が必要である問題点を有する。

[0012]

【課題を解決するための手段】従って、本発明は、上記の従来技術の課題を解決するために、ポリアニリンの処理可能な溶液であって、アニリンモノマーの酸化的重合で製造された酸でドープされた(酸含有)ポリアニリンが重合反応の混合物中の非水相に充分に溶解している溶液を製造する方法を提供している。

【0013】上記方法によれば、ポリアニリンを溶解するさらなる溶媒の使用及び/又は固形の重合生成物のアンドーピング (undope) 又はリドーピング (redope)を不要にしている。該方法は微粒子が懸濁されたポリアニリン含有水溶液を含む副生成物を与える。

【0014】ポリアニリンの非水性溶液及び水性溶液はいずれもインシトゥで形成され、フィルム、繊維などのキャスト製品を製造するための、又は他のポリマー及びペイント組成物と混合するための組成物としてそのまま使用できる。

【0015】また、本発明は、アニリンモノマーからポリアニリンを製造する方法であって、該方法では酸化的重合後に不溶性固形物質が生成せず、ろ過、洗浄、乾燥及び場合により固形物質を磨り潰す必要がない方法を提供している。

【0016】さらに、本発明は、インシトゥで形成される所望の透明なポリアニリン溶液を製造するための方法を提供している。

【0017】本発明の一つの側面において、導電性ポリアニリンの製造方法は次の工程を含む:アニリンモノマー、水と非混和性の有機溶媒、少なくとも一つのプロトン酸ドーピング剤、及び水を一緒に混合し撹拌することによりエマルジョンを形成する工程;撹拌を停止してエマルジョンを水相と非水相に分離させる工程;非水相を水相から分離する工程;及び酸化剤を非水相に加えてアニリンモノマーの重合を行う工程。

【0018】本発明の他の側面において、非水性のインシトゥで形成された透明なポリアニリン溶液は、下記の工程により製造されたプロトン性酸でドープされたポリアニリンを含有する。アニリンモノマー、水と非混和性の有機溶媒、少なくとも一つのプロトン酸ドーピング剤、及び水を一緒に混合し撹拌することによりエマルジョンを形成する工程;撹拌を停止してエマルジョンを水相と非水相に分離させる工程;非水相を水相から分離す

る工程:及び酸化剤を非水相に加えてアニリンモノマー の重合を行う工程。

[0019]

【発明の実施の形態】以下、本発明を実施例に基づいてさらに詳細に説明する。既述のごとく、本発明は第1に、重合に際して固形物質が生成しないように、酸化的重合で製造されたプロトン酸でドープされたポリアニリンが反応混合物の非水性相又は油相に溶解する方法を提供している。ポリアニリンは非水相に高度に可溶性である。高いポリアニリンの溶解性は、酸ドーパントの割合を調節すること及び有機溶媒を注意深く選択することで達成される。

【0020】本発明方法によって製造されるポリアニリンは下記式:

【化1】

(式中、R1及びR2はアルキル、アルコキシ、アルキルスルホニル、アリールスルホニル、ハロゲン、アルコキシカルボニル、アルキルチオ、アルキルスルフリル、シクロアルキル、pーアミノフェニル硫酸及びpーアミノフェニルカルボン酸のようなスルホニル又はカルボキシ置換アルキル、又はアリール置換基を含む任意の置換基を表し、nは0~5の整数を表す)で示される非置換又は置換アニリンモノマーの重合によって製造することができる。

【0021】本発明方法に用いられる有機溶媒は、ベン ゼン、トルエン、pーキシレン、mーキシレン、ナフタ レン、エチルベンゼン、スチレン等の置換及び非置換芳 香族化合物、酢酸エチル、酢酸nープロピル、酢酸イソ プロピル、酢酸nーブチル、酢酸イソブチル、酢酸nー ペンチル等の液体エステル、環状ヘキサン、メチルシク ロヘキサン、アミノシクロヘキサン等の環状化合物、ヘ キサノン、ブタノン、ペンタノン等の高級ケトン、テト ラヒドロフラン、ヘキサヒドロピリジンのようなヘテロ 環状化合物、フェノール、m-クレゾール、p-クレゾ ール、クロロフェノール、pーイソプチルフェノール、 p-tertープチルフェノール、p-スルホニルフェノー ル等の置換及び非置換フェノール性化合物、クロロベン ゼン、oージクロロベンゼン、mージクロロベンゼン、 p-ジクロロベンゼン等のハロゲン化芳香族化合物:及 びその混合物からなる群から選択されることが好まし く、トルエン、キシレン、ベンゼン、酢酸nーブチル、 メチルシクロヘキサン及びジメチルシクロヘキサンがよ り好ましく、トルエンが特に好ましい。

【0022】本発明の方法に用いるドーピング剤として

は通常のプロトン酸が適当である。ドーピング剤はHC 1、H2SO4、ホウ酸、リン酸、セレン酸、硫酸、過硫酸、トルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸(XSA)、及びドデシルベンゼンスルホン酸(DBSA)からなる群から選択されることが好ましく、HC1、トルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸(XSA)、及びドデシルベンゼンスルホン酸(DBSA)からなる群から選択されることがより好ましく、HC1、DBSA、及びキシレンスルホン酸(XSA)が特に好ましい。

【0023】本発明の方法に用いる酸化剤は、アンモニウムペルオキシスルフェート(ペルオキシ硫酸アンモニウム、APS)、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、過塩素酸カリウム等の過塩素酸塩;塩化カリウム等の塩素化塩、沃化カリウム等の沃素化塩、塩化鉄(II)、発煙硫酸、及びオゾンからなる群から選択することができ、特にAPSを用いることができる。

【0024】本発明方法における重合の温度は25~60℃の間で変化し得る。しかしながら好ましい温度は約40℃であることが分かった。重合はpH1以下で行うことが好ましい。以下の実施例は本発明の好ましい態様を示す。

【0025】 (実施例1) 濃塩酸10g、DBSA5g 及び水40gをフラスコ内に入れて水溶液を調製した。 ビーカー内でAPS5gを水50gに溶解して酸化剤水 溶液を調製した。トルエン40gとアニリン2gから調 製したアニリン溶液をフラスコに加えた。フラスコ内の 混合物を激しく撹拌しエマルジョンを形成した。次い で、撹拌停止後、エマルジョンを静置し水相と非水相又 は油相に分離した。非水相を水相から分離した。重合の ために、非水相に撹拌下、APS水溶液を滴下した。反 応混合物を撹拌しさらにエマルジョンを形成した。室温 で1~2時間反応させた。エマルジョンのpHを1以下 に制御した。重合後、撹拌を停止し静置すると、エマル ジョンは下相と上相に分離した。可溶性ポリアニリンを 含有する上相は透明性を示した。肉眼で、上相に固形沈 殿は観察されなかった。上記の重合で得られたポリアニ リン溶液は導電性塗料の製造等の応用に直接使用でき

【0026】(実施例2) DBSA12g、HC1 200g及び水200gをフラスコ内での調製に用いたこと、アニリン36gをトルエン120gに溶解したこと、及びAPS12gを水120gに溶解したことを除いて実施例1と同様にしてポリアニリンを製造した。重合後、上相に透明な溶液が観察された。溶液中に固形沈殿は観察されなかった。

【0027】 (実施例3) DBSA72g、HCl 2 40g及び水1200gをフラスコ内での調製に用いた こと、アニリン216gをトルエン720gに溶解した こと、及びAPS72gを水720gに溶解したことを 除いて実施例1と同様にしてポリアニリンを製造した。 重合後、上相に透明な溶液を得た。溶液中に固形沈殿は 観察されなかった。

【0028】(実施例4)キシレンスルホン酸1g及び DBSA3.5gをフラスコ中のアニリン溶液に加えた ことを除いて実施例1と同様にしてポリアニリンを製造 した。

【0029】なお、本発明は上記実施例に限定されず、 本発明の要旨を逸脱しない範囲で様々な修飾及び変更を 加えることができる。

[0030]

【発明の効果】以上の説明より明らかなように、本発明

によれば、ポリアニリンが混合物中で充分に溶解してい る溶液を製造する方法を提供することができる。また、 本発明方法では、ポリアニリンを溶解するさらなる溶媒 の使用及び/又は固形の重合生成物のアンドーピング (undope) 又はリドーピング(redope)を不要にすること ができる。

【0031】かつ、アニリンモノマーからポリアニリン 含有溶液をを製造する方法において、酸化的重合後に不 溶性固形物質が生成せず、ろ過、洗浄、乾燥及び場合に より固形物質を磨り潰す必要がなく、工程を簡単するこ とができる。

フロントページの続き

(51) Int. Cl. 7

職別記号

C08K 5/42 CO8L 79/00

H01B 1/20

C08K 5/42 COSL 79/00

1/20

FΙ

H01B

テーマコード(参考)

Α

Fターム(参考) 4J002 CM051 DD016 DG036 DG066 DH026 DK006 EV236 FD206 GH01 GP00 GQ00 4,T043 PA02 QB02 RA01 SA05 SB01 UA121 XA12 XA13 XA14 XA17 XA19 XA28 XA34 XB13 XB15 YB05 YB13 ZA44 ZB03 **ZB49**

5G301 DA28 DA42 DD02 DE01