Final Exam

Graded

Student

PO-YUN) 鄭博允 (CHENG

Total Points

62 / 100 pts

- → + 28 pts Correct
 - 2 pts A mistake in Q1.1
 - 2 pts A mistake in Q1.2
 - 2 pts A mistake in Q1.3
 - 2 pts A mistake in Q1.4
 - 2 pts A mistake in Q1.5
 - 2 pts A mistake in Q1.6
 - 2 pts A mistake in Q1.7
- ✓ 4 pts Multiple mistakes in Q1.1
 - -4 pts Wrong in Q1.6
 - 4 pts Wrong in Q1.7

- + 6 pts Correct
- **+ 4 pts** Correct when L = 1 and H = 1 (Cycles 1, 2, 3, 5)
- **+ 4 pts** Correct when L = 1 and (L, H) = (0, 0) (Cycles 1, 4, 5)
- + 2 pts Correct when L = 1 (Cycles 1, 5)
- **+ 2 pts** Correct when H = 1 (Cycles 2, 3)
- **+ 2 pts** Correct when (L, H) = (0, 0) (Cycle 4)

- ✓ +8 pts Correct (C, 0, C'+DE, C'D'+CE)
 - + 6 pts 1 minor mistake (not minimum or wrong for (A, B) = (1, 1))
 - + 6 pts 1 minor mistake (floating or wrong for (A, B) = (0, 1))
 - + **4 pts** 2 minor mistakes or 1 major mistake
 - + 2 pts Reasonable effort
 - + 0 pts Totally wrong or empty

- **→ +8 pts** 4.1. Correct
 - **+ 6 pts** 4.1. One mistake (one of A+, B+. or Z)
 - **+ 4 pts** 4.1. Two mistakes (two of A+, B+. or Z)
 - + 2 pts 4.1. Reasonable effort
- - + 2 pts 4.2. One mistake or no output
 - + 0 pts Totally wrong or empty

- +8 pts Correct
- → + 8 pts Correct (with equivalent states)
 - + 6 pts 1 minor mistake
 - + **4 pts** 1 major mistake or 2 minor mistakes
 - + 2 pts Reasonable effort
 - + 0 pts Totally wrong or empty

- +8 pts Two solutions
- + **6 pts** Two solutions and one without sufficient explanation
- **+ 4 pts** Two solutions and both without sufficient explanation
- + 4 pts Two equivalent or similar solutions
- + 4 pts One solution
- + 2 pts Some reasonable effort (e.g., increase the propagation delay of the combinational circuit)

Question 7

Questions 7.1-7.3

4 / 6 pts

- + 6 pts Correct
- - + 2 pts Two mistakes
 - + 0 pts Totally wrong or empty

Question 8

Question 7.4

0 / 6 pts

- + 6 pts True with correct explanation
- + **4 pts** True with almost-correct explanation
- + 2 pts True only
- + 2 pts False with reasonable effort

- + 8 pts Yes with correct explanation
- + 6 pts Yes with almost-correct explanation
- + **6 pts** Yes with almost-correct explanation (gate/propagation delay)
- + 4 pts Yes with reasonable explanation
- + 4 pts Yes with reasonable explanation (useless if changing during the first half)
- + 4 pts Yes with reasonable explanation (similar to S-R FF)
- + 2 pts Yes only
- → + 2 pts No with reasonable explanation
 - + 0 pts No only or empty

Question 10

4 / 10 pts

- + 10 pts "T flip-flops last" with correct explanation
- + 8 pts "T flip-flops last" with almostcorrect explanation
- + 6 pts "T flip-flops last" with reasonable effort
- + 4 pts "T flip-flops last" without explanation
- + 6 pts "T flip-flops middle" with good explanation
- → + 4 pts "T flip-flops middle" with
 reasonable effort
 - + 2 pts "T flip-flops middle" with wrong explanation
 - + 2 pts "T flip-flops first" with reasonable effort
 - + **0 pts** "T flip-flops first" without explanation

+ 0 pts Empty

CSIE 2344, Spring 2023: Final Exam

Name:	鄭博允	SID:	B11902038	Email:	bi1902038@csie.ntu.edu.tu

1 Counter Design (28pts)

Design a 3-bit counter which counts CBA in the sequence: 001, 010, 110, $\frac{1}{1}$ 11, 100, 011, and repeats. If the counter is initialized as 101, it should count to 001 and then follow the sequence.

- 1. (4pts) Complete the following truth table.
- (4pts) Complete the following Karnaugh map for B⁺.
- 3. (4pts) Complete the following Karnaugh map for A^+ .
- 4. (4pts) Use an S-R flip-flop and complete the following Karnaugh map for R_B.
- (4pts) Use a J-K flip-flop and complete the following Karnaugh map for K_A.
- 6. (4pts) Derive a minimum sum-of-products expression for R_B . $R_B = BC$
- 7. (4pts) Derive a minimum sum-of-products expression for K_A . $K_A = \beta' C'$

No explanation is needed.

C	В	A	C*	₿*	, A*
0	0	0	×	×	. X
0	0	1	0	1	Ð
0	1 .	0	1	1	0
0	1	1	1	- 1	
1.	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	- 0	1
1	1	. 4	X	×	×
XC 0 1	NC (1	C0	1 8	C 0 1
00 X 0	BA >	(0	00 X	X B	XX
01 / /	01 (1 1	01 0	0 91	10
11 / X	13	I X	11 0	X	o X
10 / 0	10 (1	10 0	1 10	XX
≱ β*		A^*	36	K.	N.
В*			R	8	KA

2 Parallel-In Parallel-Out (PIPO) Right Shift Register (6pts)

Given the following PIPO right shift register, complete the following table. No explanation is needed.

Clo Cyc		H SI	D_3 D_2 D_1 D_0	Q_3 Q_2 Q_1	$Q_0 = SO$
1	1	0 0	1 0 0 0	100:	D
2	0	1 1	0 1 0 1	010	0
3	0	1 0	1 0 1 0	101	0
. 4	0	0 1	1 1 1 1	0 1.0	1
5	1	0 0	0 0 0 0	101	0

3 Multiplexer (8pts)

Draw a circuit for F(A,B,C,D,E)=A'B'C'+AB'C'+AB'DE+ABC'D'+ABD'E+ABCE with the following requirements. No explanation is needed.

- There is exactly one multiplexer, and the multiplexer has 2 control inputs and 4 data inputs.
- The control inputs are A and B.
- ullet Each data input is a minimum sum-of-products (AND-OR) circuit of $C,\,D,$ and E.

4 Circuit Analysis (12pts)

Given the circuit including one D flop-flop and one T flop-flop.

- 1. (8pts) Complete the following transition table.
- (4pts) Draw the corresponding state graph where a state S_{ij} represents the state (A, B) = (i, j).

No explanation is needed.

5 State Graph Derivation (8pts)

Draw the state graph of a Mealy machine with one input and one output. If the input is 0 following a sequence of "exactly" one 0 input (not two or more 0's) and one 1 input (not two or more 1's), the output is 1; otherwise, the output is 0. Example:

6 Setup Time (8pts)

Setup time is the amount of time that a flip-flop must be stable before the active edge. Considering the following sequential circuit, if the setup time of the second flip-flop (FF2) is violated, how to fix it without changing the flip-flops?

- 1. (4pts) List two solutions.
- 2. (4pts) Explain the reasons.

7 State Equivalence and Circuit Equivalence (12pts)

Answer if the statements are True or False by circling the correct choices. No explanation is needed.

- T F) 2. (2pts) For a 1-bit input X, if the next states of two states are not equal ("equal" means "the same"), then the two states are not equivalent.
- T) F 3. (2pts) Two equivalent sequential circuits always have the same number of states.

Answer if the statement is True or False and explain the reason.

4. (6pts) Two states p and q are equivalent if and only if for each 2-bit input X and Y,

 $\lambda(p,X) = \lambda(q,X) \text{ and } \lambda(\delta(p,X),Y) = \lambda(\delta(q,X),Y) \text{ and } \delta(\delta(p,X),Y) \equiv \delta(\delta(q,X),Y),$ where $\lambda()$ is the output and $\delta()$ is the next state.

8 J-K Flip-Flop (8pts)

In the slides of Unit 11, it is mentioned that we should only allow the S and R inputs of a S-R flip-flop to change during the first half of a clock cycle.

- 1. (2pts) Given the following implementation of a J-K flip-flop, do we have the same constraint?
- 2. (6pts) Explain the reason.

I. No

2. This implementation forced two S-R flip-flop working at different partial of clock cycle. That is, in the first holf of a clock cycle, only the Maiter S-R flip-flop work, and the Slave S-R flip-flop stay anchanged because both it's inputs are 0. In the second half of a clock cycle, the situation reverse.

Therefore, me durt have to ristrict the period of change inputs since It doesn't affect the circuit.

9 State Assignment (10pts)

In the slides of Unit 15, it is mentioned that the guidelines for state assignment (for example: placing 1's together on an input map) only works for specific flip-flops.

- 1. (4pts) Sort D, T, and J-K flip-flops by their fitness for the guidelines (for example: answering "D > T > J-K" means that D flip-flops best fit the guidelines, better than T flip-flops, and J-K flip-flops least fit the guidelines).
- (6pts) Explain the reason. Note that we are not expecting an answer which discusses a specific example.

J-K flip-flup is best fit the guidelines since it has
more input-output situations, that is, we can identify different
state more easily.

For Γ flip-flop and D flip-flop, the possible situations are less than J-K flip-flop. Moreover, $\Gamma > D$

