INGENIERÍA MECÁNICA

Datos Referenciales:

Dirección :Calle Millares Nro. 81,

Calle Chuquisaca Nro. 626

Teléfono :62-27331

Email :ing mecanica@uatf.edu.bo

Página web :www.acad.uaff.edu.bo/carreras

Datos Académicos:

Grado Académico :Licenciatura

Título en Provisión Nacional :Ingeniero Mecánico

Diploma Académico :Licenciado en Ingeniería Mecánica

Modalidades de Graduación:

Excelencia académica

Tesis de Grado

Proyecto de Grado

Trabajo Dirigido

Tiempo de Estudio :9 semestres curriculares y 1 semestre

de elaboración de proyecto de

arado

Sistema Académico :Semestral

Tecnico Superior:

Grado Académico :Técnico Superior

Título en Provisión Nacional :Técnico Superior en Mecánica

General

Diploma Académico :Técnico superior en Mecánica

general

INGENIERÍA MECÁNICA

Modalidad de Graduación:

Excelencia Académico Proyecto de Grado Pasantía

Tiempo de Estudio :5 semestres 1 semestre de

Elaboración pasantía

Sistema Académico :Semestral

Técnico Medio:

Grado Académico :Técnico Medio

Título en Provisión Nacional : Técnico Medio en Mecánica

general

Diploma académico :Técnico Medio en Mecánica

general

Modalidad de Graduación:

Graduación Directa

Tiempo de estudio :3 Módulos semestrales

Sistema académica :Semestral

Áreas de Ejercicio Profesional:

Los ingenieros mecánicos pueden desenvolverse en los siguientes campos:

- Industria textil
- Industria petroquímica
- Industria aeronáutica
- Industria minera
- Industria metalúrgica
- Industria alimenticia
- Industria energética
- Industria automotor

INGENIEDÍA MECÁNICA

- Industria manufacturera
- Servicios de mantenimiento

Aptitudes:

- Capacidad de trabajar de manera efectiva en grupo
- Capacidad de tomar decisiones
- Capacidad de crear una disciplina de estudios personales, que induzca un proceso permanente de investigación y de actualización
- Capacidad de entender el impacto de la tecnología en el medio.
- Capacidad de escuchar, concebida como la habilidad para colocarse en la situación del otro

Objetivo Formativo:

Formar profesionales idóneos con mentalidad analítica y crítica, que sean agentes creativos para la transformación de los recursos naturales en productos de valor agregado, a través de la adaptación, generación y gestión de tecnologías nuevas.

Orientar a la formación científica, humanística y tecnológica del profesional ingeniero mecánico y del técnico superior en mecánica general en las ciencias de la ingeniería mecánica, permitiéndole optimizar la utilización de los recursos naturales, tecnológicos y humanos, de la región y nacionales.

Desarrollar en el estudiante la capacidad de apropiación de conocimientos teóricos, metodológicos y prácticos de las ciencias de la ingeniería mecánica para que el futuro profesional abstraiga la problemática tecnológica de las organizaciones, brindando soluciones con eficiencia y eficacia. Formar en el profesional ingeniero mecánico y en el técnico superior en mecánica general el espíritu democrático y de libertad, altos valores éticos, morales y sociales, sentido de justicia, respeto por la dignidad humana, habilidad para relacionarse con sus semejantes,

INGENIEDÍA MECÁNICA

comprender el alto valor de la tecnología en el desarrollo de los pueblos y a través de la aplicación de ellos, lid erizar la transformación económica de la nación.

Tender a la formación integral de profesionales comprometidos con la realidad nacional, para que contribuyan al proceso de liberación nacional y social del pueblo boliviano.

Competencias profesionales establecidas para el ingeniero mecánico competencias generales

- Asumir la dirección y el liderazgo en el trabajo.
- Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas.
- Capacidad de análisis e interpretación de datos.
- Trabajar en diferentes ambientes con flexibilidad y bajo presión.
- Tomar decisiones.
- Capacidad de comunicarse.
- Interés en la formación contínua.
- Trabajar en equipo.
- Gestionar recursos.
- Desarrollar proyectos.
- Aplicar normas y reglamentos de seguridad industrial.
- Participar en programas de control de calidad.
- Habilidades en organizar empresas.
- Capacidad de trabajar en ámbito internacional.
- Capacidad de participar en la sociedad.

Competencias Técnico - Específicas:

- Capacidad de análisis lógico deductiva.
- Resolución de problemas de ingeniería.
- Abordar todos los aspectos de las instalaciones y equipos mecánicos, térmicos, hidráulicos y neumáticos.

INGENIERÍA MECÁNICA

- Diseñar, seleccionar, instalar y supervisar sistemas electro-neumáticos hidráulicos.
- Calcular, diseñar, seleccionar, instalar, operar y supervisar sistemas mecánicos.
- Diseñar, seleccionar material, controlar, supervisar, implantar e innovar los procesos de fabricación de máquinas.
- Analizar e interpretar normas y especificaciones, códigos, manuales, planos de equipos mecánicos.
- Participar en la generación y desarrollo de proyectos de investigación.
- Participar en la administración de recursos humanos y materiales en forma óptima.
- Seleccionar, instalar y operar instrumentos de medición de parámetros mecánicos.
- Seleccionar, instalar, controlar y operar motores, transmisiones mecánicas, máquinas térmicas y eléctricas.
- Experiencia en la realización de proyectos y diseño de componentes, sistemas y procedimientos.
- Establecer, organizar sistemas y técnicas de mantenimiento.
- Planificar y supervisar tareas de montaje de equipos, sistemas y componentes industriales.

Contenidos mínimos de las modalidades de ingreso:

Algebra

Bibliografía:

Guzmán/ Cólera/Salvador, "Matemáticas": ed. grupo Anaya s.a. Baldor, Aurelio "Algebra".

INGENIEDÍA MECÁNICA

Geometría y Trigonometría.

Bibliografía:

Galarza, juan goñi; geometría y trigonometría plena. Editorial ingeniería 1995

Serie Shaum. trigonometría Aurelio Baldor. geometría

Física

Bibliografía:

Galarza juan Goñi, f<mark>ísica general, editorial in</mark>geniería, 1995

Beer f.p. y Johston. e.r. mecánica vectorial para ingenieros, mc. Graw Hill

Madrid 1990

DLAN DE ESTUDIOS - INGENIERÍA MECÁNICA

UNIVERSIDAD AUTÓNOMA TOMAS FRÍAS

Dirección de Servicios Académicos

Potosí – Bolivia

CARRERA DE INGENIERÍA MECÁNICA

PRIMER SEMESTRE

ш	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MAT 100	ALGEBRA I	4	2	0	6	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
SEMESTRE	2	MAT 101	CALCULO I	4	2	0	6	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
1ER. SEI	3	FIS 100	FÍSICA I	4	0	3	7	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
1	4	QMC 100	QUÍMICA G <mark>EN</mark> ERAL	4	0	3	7	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
	5	MEC 101	DIBUJO TÉCNICO	0	4	0	4	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL

TOTAL HORAS 30

SEGUNDO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MAT 103	ALGEBRA LINEAL Y TEORÍA MATRICIAL	4	2	0	6	MAT 100
ų,	2	MAT 102	CALCULO II	4	2	0	6	MAT 101
SEMESTRE	3	FIS 102	FÍSICA II	4	0	3	7	FIS 100
2DO. SEI	4	MAT 233	ESTADÍSTICA	3	1	0	4	MAT 101
21	5	MAT 104	GEOMETRÍA DESCRIPTIVA	4	2	0	6	MEC 101
	6	MEC 102	DIBUJO MECÁNICO Y COMPUTARIZADO	0	3	2	5	MEC 101
	7	MEC 242	TECNOLOGÍA MECÁNICA I	4	0	0	4	FIS 100

TOTAL HORAS 38

DLAN DE ESTUDIOS - INGENIERÍA MECÁNICA

TERCER SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MAT 207	ECUACIONES DIFERENCIALES	4	2	0	6	MAT 102
щ	2	MAT 218	VARIABLE COMPLEJA	4	2	0	6	MAT 102
SEMESTRE	3	FIS 200	FÍSICA III	4	2	3	9	FIS 102
ĒΜ	4	MEC 240	ESTÁTICA	4	1	0	5	FIS 102
3ER. 9	5	MEC 243	TECNOLOGÍA MECÁNICA II	4	0	0	4	MEC 242
	6	MEC 200	TALLER DE MAQUINAS HERRAMIENTAS	0	6	0	6	MEC 242
	7	MAT 204	INFORMÁTICA I	4	0	0	4	MAT 100

TOTAL HORAS 40

CUARTO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MAT 315	TRANSFORMADAS INTEGRALES	4	2	0	6	MAT 207
H.	2	MEC 244	TERMODINÁMICA TÉCNICA I	4	1	0	5	FIS 102
SEMESTRE	3	MEC 260	MECÁNICA DE MATERIALES I	4	1	0	5	MEC 240
	4	MEC 245	MECÁ <mark>NICA DE FLUID</mark> OS I	4	1	0	5	FIS 102
410.	5	MEC 241	DINÁMICA	4	1	0	5	MEC 240
	6	ELT 410	CIRCUITOS ELÉCTRICOS I	4	0	2	6	FIS 200
	7	MEC 199	TALLER DE SOLDADURA	1	5	0	6	MEC 242

TOTAL HORAS 38

QUINTO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 250	TERMODINÁMICA TÉCNICA II	4	1	0	5	MEC 244
STRE	2	MEC 249	MECÁNICA DE FLUIDOS II	4	1	0	5	MEC 245
SEMESTRE	3	MEC 261	MECÁNICA DE MATERIALES II	4	1	0	5	MEC 260
510.	4	ELT 620	INSTALACIONES ELÉCTRICAS II	4	0	2	6	ELT 410
	5	MEC 255	ELEMENTOS DE MAQUINAS I	4	2	0	6	MEC 260
	6	MEC 201	TALLER DE FUNDICIÓN	0	5	0	5	MEC 243

TOTAL HORAS 32

PLAN DE ESTUDIOS - INGENIERÍA MECÁNICA

SEXTO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 246	MECANISMOS	3	2	0	5	MEC 255
TRE	2	MEC 248	TEORÍA Y ENSAYO DE MATERIALES	3	2	0	5	MEC 261
SEMESTRE	3	MEC 263	ELEMENTOS DE MAQUINAS II	4	2	0	6	MEC 255
610.	4	IND 206	ORGANIZACIÓN INDUSTRIAL Y PRESUPUESTOS	4	0	0	4	MAT 204
	5	MEC 251	TRANSMISIÓN DE CALOR	4	2	0	6	MEC 250
	6	MEC 252	MAQUINA <mark>S</mark> HIDRÁULICAS	4	1	0	5	MEC 249

TOTAL HORAS

31

SÉPTIMO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MET 217	METALURGIA FÍSICA	3	1	0	4	MEC 248
STRE	2	MEC 332	MAQUINAS N <mark>EU</mark> MÁTICAS	4	1	0	5	MEC 252
SEMESTRE	3	MEC 331	MAQUINAS TÉRMICAS I	4	1	0	5	MEC 251
7M0.	4	MEC 334	VIBRACIONES MECÁNICAS	3	2	0	5	MAT 315
	5	MEC 333	COMBUSTIBLES Y LUBRICANTES	4	0	0	4	MEC 249
	6	MEC 264	ESTRUCTURAS METÁLICAS	4	2	0	6	MEC 261

TOTAL HORAS

29

OCTAVO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 337	MAQUINAS TÉRMICAS II	4	1	0	5	MEC 331
TRE	2	MEC 338	REFRIGERACIÓN Y AIRE ACONDICIONADO	3	2	0	5	MEC 332
SEMESTRE	3	MEC 330	DISEÑO DE MAQUINAS I	3	2	0	5	MEC 263
80.0	4	MEC 335	CONTROLES AUTOMÁTICOS	3	2	0	5	MEC 334
	5	MEC 310	METODOLOGÍA DE LA INVESTIGACIÓN	4	0	0	4	MEC 332
		IND 226	GESTIÓN DE CALIDAD Y MEDIO AMBIENTE	4	0	0	4	MEC 333

TOTAL HORAS

28

DLAN DE ESTUDIOS - INGENIERÍA MECÁNICA

NOVENO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 350	MANTENIMIENTO INDUSTRIAL	3	2	0	5	MEC 330
	2	MEC 336	DISEÑO DE MAQUINAS II	3	2	0	5	MEC 330
SEMESTRE	3	IND 216	PREPARACIÓN Y EVALUACIÓN DE PROYECTOS	4	1	0	5	MEC 310
9NO. SEI	4	MEC 343	MAQUINAS TÉRMICAS III	4	1	0	5	MEC 337
N6	5	MEC 341	AUTOMOTORES	3	0	2	5	MEC 337
	6	MEC 340	MAQUINAS DE ELEVACIÓN Y TRANSPORTE	3	2	0	5	MEC 330
	7	MEC 399	TALLER DE GRADUACIÓN I	2	0	0	2	IND 226

TOTAL HORAS 32

DECIMO SEMESTRE

10MO. SEMESTRE	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 339	PRACTICAS EN LA INDUSTRIA	0	2	0	2	Vencidas todas las asignaturas hasta el 9no. Semestre
		MEC 400	TALLER DE GRADUACIÓN II	3	0	0	3	Vencidas todas las asignaturas hasta el 9no. Semestre

TOTAL HORAS 5

TOTAL GENERAL HORAS / SEMANA 303
TOTAL HORAS PLAN 6.060

DLAN DE ESTUDIOS - INGENIERÍA MECÁNICA

TÉCNICO SUPERIOR

PRIMER SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
ш	1	MAT 100	ALGEBRA I	4	2	0	6	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
SEMESTRE	2	MAT 101	CALCULO I	4	2	0	6	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
1ER. SEI	3	FIS 100	FÍSICA I	4	0	3	7	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
=	4	QMC 100	QUÍMICA GE <mark>NE</mark> RAL	4	0	3	7	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
	5	MEC 101	DIBUJO TÉCNICO	0	4	0	4	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL

TOTAL HORAS 30

SEGUNDO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	FIS 102	FÍSICA II	4	0	3	7	FIS 100
SEMESTRE	2	MEC 199	TALLER DE SOLDADURA	1	5	0	6	MAT 101
2DO. SE	3	MEC 150	CALDERERÍA	2	2	0	4	MEC 101
71	4	MEC 102	DIBUJO MECÁNICO Y COMPUTARIZADO	0	3	2	5	MEC 101
	5	MEC 242	TECNOLOGÍA MECÁNICA I	4	0	0	4	FIS 100

TOTAL HORAS 26

TERCER SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 240	ESTÁTICA	4	1	0	5	FIS 102
<u> ۳</u>	2	MAT 204	INFORMÁTICA I	4	0	0	4	MAT 100
SEMESTRE	3	MEC 200	TALLER DE MAQUINAS HERRAMIENTA	0	0	6	6	MEC 242
3ER. 9	4	MEC 160	SOLDADURA II E INSTALACIONES DE GAS DOMICILIARIO	5	0	0	5	MEC 199
	5	MEC 170	METALURGIA Y TRATAMIENTOS TÉRMICOS	5	0	0	5	MEC 242
	6	MEC 180	TALLER DE CALDERERÍA	0	5	0	5	MEC 150

TOTAL HORAS 30

PLAN DE ESTUDIOS - INGENIERÍA MECÁNICA

CUARTO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 244	TERMODINÁMICA TÉCNICA I	4	1	0	5	FIS 102
STRE	2	MEC 260	MECÁNICA DE MATERIALES I	4	1	0	5	MEC 240
SEMESTRE	3	MEC 245	MECÁNICA DE FLUIDOS	4	1	0	5	FIS 102
410.	4	ELT 410	CIRCUITOS ELÉ <mark>CT</mark> RICOS I	4	2	0	6	MEC 240
	5	MEC 201	TALLER DE FUNDICIÓN	0	5	0	5	MEC 200
	6	MEC 301	TECNOLOGÍA DE AUTOMOTOR	4	0	0	4	MEC 200

TOTAL HORAS

30

QUINTO SEMESTRE

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	MEC 246	MECANISMOS	3	2	0	5	MEC 260
TRE	2	MEC 190	COMBUSTIBLES LUBRICANTES Y MANTENIMIENTO	4	0	0	4	MEC 245
SEMESTRE	3	MEC 255	ELEMENTOS DE MAQUINAS I	4	2	0	6	MEC 260
510.8	4	ELT 620	II INSTALACIONES ELÉCTRICA II	4	0	2	6	ELT 410
	5	IND 206	ORGANIZACIÓN INDUSTRIAL Y PRESUPUESTOS	4	0	0	4	MEC 201
	6	MEC 351	TALLER DE TÉCNICO DEL AUTOMOTOR	0	6	0	6	MEC 301

TOTAL HORAS

31

SEXTO SEMESTRE

STRE	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
6TO. SEMESTRI	1	MEC 600	TALLER DE GRADUACIÓN	3	0	0	3	Vencidas todas las asignaturas hasta el 5to. Semestre

TOTAL HORAS

3

TOTAL GENERAL HORAS / SEMANA
TOTAL HORAS PLAN

150

3.000

PLAN DE ESTUDIOS - INGENIERÍA MECÁNICA

TÉCNICO MEDIO

PRIMER MODULO: INSTALACIONES DOMICILIARIAS

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
o,	1	MAT097	MATEMÁTICAS I	2	0	0	2	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
МОРИГО	2	MTM097	DIBUJO TÉCNIC <mark>O E</mark> INTERPRETAC <mark>IÓ</mark> N DE PL <mark>ANOS</mark>	3	0	0	3	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
1er.	3	MTM098	TECNOLOGÍA I	4	0	0	4	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL
	4	MTM099	TALLER MECÁNICO DE BANCO	0	8	0	8	P.S.A. O PREUNIVERSITARIO Y AD. ESPECIAL

TOTAL HORAS 17

SEGUNDO MODULO: MAQUINAS ELÉCTRICAS ROTATIVAS

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.	Total	Pre Requisitos
	1	FIS098	FÍSICA BÁSICA	3	0	0	3	
МОРИГО	2	MTM101	TECNOLOGÍA II	4	0	0	4	
2do. MO	3	MTM102	TALLER DE MAQUINAS HERRAMIENTAS	0	8	0	8	
2	4	MTM105	ORGANIZACIÓN Y SEGURIDAD INDUSTRIAL	3	0	0	3	
	5	MTM106	CALDERERÍA Y TALLER	2	4	0	6	

TOTAL HORAS 24

TERCER MODULO: INSTALACIONES INDUSTRIALES Y AUTOMATIZACIÓN

	N°	Sigla	Nombre de la Asignatura	Horas. Teóricas	Horas Practicas	Horas Lab.		Pre Requisitos
일	1	MTM201	TECNOLOGÍA III	4	0	0	4	
МОБИГО	2	MTM203	TALLER DE SOLDADURA I	0	8	0	8	
3er	3	MTM204	FUNDICIÓN Y TALLER	0	8	0	8	
	4	MTM206	TALLER DE SOLDADURA II	0	5	0	5	

TOTAL HORAS 25

TOTAL GENERAL HORAS / SEMANA TOTAL HORAS PLAN

66

1.320

CARRERA DE INGENIERIA MECÁNICA

EXAMEN PSA 2/2017

AREAS Y CONTENIDOS DE LA PRUEBA

- Matemáticas
- Geometría
- Trigonometría
- Física

CONTENIDOS MINIMOS DE LAS ASIGNATURAS A EVALUARSE

ÁLGEBRA

1.- ÁLGEBRA ELEMENTAL, SUMA, RESTA, SIGNOS DE AGRUPACIÓN, MULTIPLICACIÓN Y DIVISIÓN

Suma de monomios y polinomios Resta de monomios y de polinomios. Signos de agrupación. Supresión de signos de agrupación. Introducción de signos de agrupación. Multiplicación de monomios y de polinomios por monomios. Multiplicación de polinomios por polinomios. Producto continuado. División de monomios y de polinomios por monomios. División de dos polinomios.

Operaciones combinadas. Ejercicios de aplicación.

2.- PRODUCTOS Y COCIENTES NOTABLES

Cuadrado de un binomio. Cuadrado de un polinomio Cubo de un binomio. Binomio de Newton. Producto de la suma por la diferencia de dos cantidades. Producto de dos binomios. Cocientes notables. Casos.

3.- TEOREMA DEL RESIDUO

Polinomio entero y racional. Residuo de la división de un polinomio entero y racional en X por un binomio de la forma x-a. Teorema del residuo. División sintética (Regla de Ruffini). Divisibilidad de an + bn y an - bn por a + b y a - b

4.- DESCOMPOSICIÓN FACTORIAL

Casos de factorización. Combinación de los casos de factorización. Descomposición de un polinomio en factores por el método de evaluación.

5.- MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO

Máximo común divisor (M.C.D.) de polinomios por descomposición en factores. Mínimo común múltiplo (m.c.m.) de monomios y polinomios.

6.- FRACCIONES ALGEBRAICAS: REDUCCIÓN DE FRACCIONES

Fracción algebraica. Cambio de signos. Simplificación de fracciones cuyos terminos sean polinomios. Reducción de fracciones al común denominador (C.D.). Operaciones con fracciones. Adición, sustracción, multiplicación y división. Operaciones combinadas con fracciones. Fracciones complejas. Evaluación de fracciones.

7.- ECUACIONES ENTERAS DE PRIMER GRADO CON UNA INCÓGNITA

Ecuaciones. Clases de ecuaciones. Transposición de terminos.

Resolución de ecuaciones enteras de primer grado con una incógnita.

Resolución de ecuaciones de primer grado con productos indicados. Problemas sobre ecuaciones enteras de primer grado con una incógnita.

8.- ECUACIONES NUMÉRICAS FRACCIONARIAS DE PRIMER GRADO CON UNA INCÓGNITA

Resolución de ecuaciones fraccionarias con denominadores monomios. Resolución de ecuaciones de primer grado con denominadores compuestos. Problemas.

9.- ECUACIONES SIMULTANEAS DE PRIMER GRADO CON DOS INCÓGNITAS Y ECUACIONES SIMULTANEAS DE PRIMER GRADO CON TRES INCÓGNITAS

Ecuaciones simultaneas y equivalentes. Sistema de dos ecuaciones simultaneas de primer grado con dos incógnitas Métodos de resolución. Resolución de sistemas numéricos de dos ecuaciones enteras y fraccionarias con dos variables. Determinantes.

Desarrollo de un determinante de segundo orden. Resolución por determinantes de un sistema de dos ecuaciones con dos incógnitas. Resolución de tres ecuaciones con tres variables. Regia de Krammer. Problemas de aplicación.

10.- TEORÍA DE LOS EXPONENTES

Exponente cero. Exponente fraccionario. Ejercicios sobre expresiones con exponente cero. Negativo o fraccionario. Multiplicación de monomios con exponentes negativos y fraccionarios, potencias de monomios y polinomios con exponentes negativos y fraccionarios. Raíces con exponentes negativos Y fraccionarios.

11.- RADICALES

Radical. Radicales semejantes. Reducción de radicales. Simplificación de radicales. Introducción de cantidades bajo el signo radical. Reducción de radicales al mínimo común índice. Reducción de radicales semejantes. Operaciones con radicales. potenciación de radicales. Racionalización. Expresiones conjugadas Ecuaciones con radicales.

12.- ECUACIONES DE SEGUNDO GRADO CON UNA INCÓGNITA

Ecuación de segundo grado. Ecuaciones completas. Resolución de ecuaciones completas de segundo grado. Ecuaciones incompletas. Propiedades de las raíces. Ecuaciones con radicales. Problemas.

13.- PROGRESIONES Y LOGARITMOS

Progresiones. Progresiones aritméticas. Progresiones geométricas. Problemas. Logaritmos. Propiedades generales de los logaritmos. Logaritmo de un producto, de un cociente, de una potencia y de una raíz. Ecuaciones exponenciales y/o logarítmicas. Ejercicios y problemas de aplicación.

BIBLIOGRAFIA

- BALDOR, Aurelio "Álgebra elemental"
- SERIE SCHAUM "Álgebra Superior"

GEOMETRÍA PLANA

Definición de punto, recta y ángulos. Clasificación de ángulos. Identificación de los ángulos a través de dos paralelas cortadas por una secante. Clasificación de triangulos. Teoremas relativos a los ángulos en un triángulo. Calculo de áreas y perímetros en un Triángulo. Polígonos regulares, su identificación. Circunferencia y circulo. Posiciones de una recta respecto a una circunferencia. Área y perímetro.

BIBLIOGRAFIA

- "Geometría plana y del espacio, Trigonometría" Editorial Mediterráneo.
- SERIE SCHAUM "Geometría Plana"

TRIGONOMETRÍA

1.- SISTEMAS DE MEDIDA DE ÁNGULOS

Ángulo y su generación. Sistema sexagesimal, centesimal y circular. Equivalencia de estos sistemas. Conversiones. Longitud de arco.

2. FUNCIONES TRIGONOMÉTRICAS

Definiciones de las funciones trigonométricas en el triángulo rectángulo y en el circulo trigonométrico. Calculo de las funciones trigonométricas de ángulos notables.

3. RELACIONES ANGULARES DE LAS FUNCIONES TRIGONOMÉTRICAS

Reducción de arcos al primer cuadrante.

4.. RELACIONES FUNDAMENTALES DE LA TRIGONOMETRÍA.

Identidades trigonométricas.

5.- FUNCIONES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOS

Funciones trigonométricas de la suma y diferencia de dos ángulos. Funciones trigonométricas del doble de un ángulo. Funciones trigonométricas de ángulos medios. Transformación de sumas y restas de funciones trigonométricas en productos. Casos que se presentan. Ejercicios de aplicación.

6.- ECUACIONES TRIGONOMÉTRICAS

Solución de las ecuaciones trigonométricas. Aplicaciones.

7.- RESOLUCIÓN DE TRIANGULOS

Casos que se presentan en la resolución de triangulos rectángulos. Triangulos oblicuángulos. Teoremas básicos: Ley de senos y cosenos. Casos que se presentan. Problemas.

BIBLIOGRAFÍA

AYRES, Frank "Trigonometría" - Serie Colección Schaum

FÍSICA

1. NOTACIÓN CIENTÍFICA

Operaciones con potencias de 10. Notación científica. Cifras significativas. Redondeo de cifras. Operaciones con numeros expresados en notación científica.

2. SISTEMAS DE UNIDADES Y CONVERSIONES

Concepto división de la física. Magnitudes fundamentales, y derivadas. Magnitudes físicas: patrones y unidades de L.M.T para los sistemas C.G.S.; S.1. Técnico e ingles técnico. Conversión de unidades.

3. VECTORES

Magnitudes escalares y vectoriales. Componentes rectangulares de un vector en el plano. Operaciones con vectores: suma y resta.

4. CINEMÁTICA TRASLACIONAL

Trayectoria y desplazamiento. Velocidad. Rapidez. Aceleración. Movimiento Uniforme. Movimiento uniformemente acelerado. Caída libre.

5. EQUILIBRIO

Primera y Tercera Ley de Newton. Primera condición del equilibrio. Rozamiento. Momento de una fuerza. Segunda condición de equilibrio. Composición de fuerzas paralelas y concurrentes.

6.- DINÁMICA

Segunda Ley de Newton. Fuerza gravitacional Masa y Peso. Aplicaciones de la Segunda Ley de Newton.

7.- TRABAJO, ENERGÍA Y POTENCIA

Trabajo al mover un cuerpo en dirección horizontal, vertical y oblicuo. Ley de la conservación de la energía. Energías

cinética y potencial. Potencia.

8.- CINEMÁTICA ROTACIONAL

Desplazamiento angular. Velocidad angular. Aceleración angular. Movimiento uniformemente acelerado. Relaciones entre el movimiento lineal y angular.

9. HIDROSTÁTICA

Densidad y peso especifico. Presión y fuerza. Presión hidrostática. Paradoja hidrostática. Principio de Pascal. Principio de Arquímedes.

10.- TEMPERATURA Y DILATACIÓN

Temperatura. Termómetros. Escalas. Conversiones. Dilatación de sólidos y liquidos.

BIBLIOGRAFÍA

COLECCIÓN SCHAUM Fisica General

GALARZA, Goni Fisica General

ING. GUTIERREZ, Edwin Física 1°, 2°, 3° Y 4° secundaria

ING. GUTIERREZ, Edwin Física Preuniversitaria

REQUISITOS PARA PRESENTAR LA P.S.A.

- Formulario de preinscripción llenado <u>www. uatf.bo</u>, con la verificación de la oficina de inscripciones.
- Cedula de Identidad (Fotocopia simple

MATERIAL DE ESCRITORIO NECESARIO PARA PRESENTAR LA PRUEBA

- Lápiz
- Borrador
- Tajador y/o estilete
- Dos hojas blancas
- Calculadora Casio 3600 o similar

Es deseable que el postulante se presente en traje formal.

LUGAR DONDE SE DESARROLLARA LA PRUEBA

<u>Dirección</u>: Calle Millares N° 81

Ambiente: N° 11

Hora: 08:00 a.m.

Fecha: 10 de Julio de 2017

EJEMPLO DE EXAMENES PSA DE ANTERIORES GESTIONES

UNIVERSIDAD AUTÓNOMA "TOMÁS FRÍAS" **FACULTAD DE INGENIERÍA TECNOLÓGICA**

CARRERA: INGENIERÍA MECÁNICA

NOMBRE:

d) Tiempo.

d) 25

	C.I Lugar de Expedición:
1.	¿Pueden los vectores velocidad y aceleración tener la misma dirección y sentidos contrarios?
a.	Si, por ejemplo en un movimiento de frenado.
b.	No, ya que en un movimiento de frenado la aceleración es negativa.
c.	No.
d.	No, ya que los vectores velocidad y aceleración nunca pueden tener sentidos contrarios.
2.	La definición de aceleración más correcta es:
a.	La relación entre la distancia recorrida y el tiempo empleado en recorrerla.
b.	La relación entre la variación de velocidad y el tiempo empleado en conseguirla.
c.	La relación entre la velocidad y la distancia.
d.	La relación entre la distancia recorrida y el cuadrado del tiempo empleado en recorrerla
	elevado al cuadrado.
3.	Si la figura es un cuadrado de 10 x 10 cm de lados, hallar el módulo o magnitud de la
	resultante, si M y N interceptan con los puntos medios de los lados.
	a. $\sqrt{125}$
	b. √75
	c. √5
	d. $\sqrt[3]{10}$ 10 cm.
4.	El ciclista A marcha a 24 Km/h, y el ciclista B a 6,8 m/s. ¿Cuál tiene mayor velocidad?
a.	El ciclista A b) El ciclista B c) Ambos tienen la misma velocidad

b) 10 s 7. Expresar en el sistema circular un ángulo de 36º

b) Longitud.

internacional?

a) 5 s

a) 0,897654 radian b)0,564378 radian d) Ninguno c) 0,622832 radian **RESPUESTA.-**

aceleración de 1 m/s². ¿Cuánto tiempo tardarán en encontrarse?

5. ¿Cuál de las siguientes magnitudes físicas NO es una de las fundamentales del sistema

6. Dos móviles separados 100 m salen simultáneamente y en sentidos contrarios con una

c) Fuerza

c) 12,5 s

36 ° =
$$(\frac{\pi}{180}$$
 X 36) angulos de un radian

O sea:

Escriba aquí la ecuación.

36
$$^{0} = (\frac{3,1416}{180} \times 36)$$
 ángulos de un radian

Y en consecuencia:

 $36^{\circ} = 0,622832$ ángulos de un radian

8. Reducir en grados centesimales un ángulo de 12 radianes:

- a) 873⁰ 93' 18"
- b) 763° 94′ 19" c) 564° 90′ 15"
- d) Ninguno

RESPUESTA.-

12 radianes =
$$\left(\frac{100G \times 2}{\pi}\right) \times 12$$

O sea:

12 radianes =
$$\left(\frac{100G \times 2 \times 12}{3,1416}\right)$$
 = 763° 94′ 19″

Entonces 12 radianes hacen = 763° 94′ 19"

9. En el siguiente triangulo rectángulo definir las funciones trigonométricas:

- b) Sen $\alpha = \frac{p}{y}$ $\cos \alpha = \frac{p}{x}$ $\tan \alpha = \frac{x}{y}$ Cosec $\alpha = \frac{p}{y}$ $\sec \alpha = \frac{p}{x}$ $\cot \alpha = \frac{x}{y}$ c) Sen $\alpha = \frac{x}{p}$ $\cos \alpha = \frac{p}{p}$ $\cot \alpha = \frac{y}{y}$ a)

 Cosec $\alpha = \frac{p}{y}$ $\sec \alpha = \frac{p}{x}$ $\cot \alpha = \frac{x}{y}$

10. Resolver un triángulo rectángulo dados: la hipotenusa a = 20 cm y el ángulo

B = 28° 35′ 12"

Datos:

Incógnitas:

a = 20 cm

C = ?

a)
$$C = 61^{\circ} 24' 48''$$
 b) $C = 62^{\circ} 25' 49''$

c) $C = 60^{\circ} 20' 47''$

d) Ninguno

c = 17.56188697

b = 9.569750581

b = 10.568975 cm c = 19.457893 cm

c = 18.45782356 cm

b =8.45897656 cm

RESPUESTA.-

Calculo de C

Como: $C = 90^{0} - B$

 $C = 90^{\circ} - 28^{\circ} 35' 12''$

 $C = 61^{\circ} 24' 48''$

Calculo de b:

Como: b = a sen B

 $b = 20 \text{ cm x sen } 28^{\circ} 35' 12''$

 $b = 20 \text{ cm } \times 0.4778487529$

b = 9.569750581 cm

calculo de c:

como c = a cos B

 $c = 20 \text{ cm } x \cos 28^{\circ} 35' 12''$

 $c = 20 \text{ cm } \times 0.878994348$

c = 17.56188697 cm

11. Simplificar:

$$Z = \frac{\tan x + \sec x}{\sec x - \cos x + \tan x}$$

a) *senx*

b) $\sec x$

c) CSCX

d) $-\cos x$

Respuesta.-

$$Z = \frac{\frac{senx}{\cos x} + \frac{1}{\cos x}}{\frac{1}{\cos x} - \cos x + \frac{senx}{\cos x}} = \frac{\frac{senx + 1}{\cos x}}{\frac{(1 - \cos^2 x) + senx}{\cos x}} = \frac{senx + 1}{sen^2 x + senx}$$

$$Z = \frac{senx + 1}{senx(senx + 1)} = \frac{1}{senx} = \frac{\csc x}{\sec x}$$

12. Sabiendo que las columnas y filas se numeran en el sentido de las flechas, conteste a las 4 preguntas siguientes, según la imagen.

- 1a. En el cruce de la columna 9 y la fila 12 aparece:
- a) 20
- b)6F
- c) 6E
- d) 64
- 1b. Señale la fila en la que aparece el 20 tres veces:
- a) 14
- c) 12
- d) 4
- 1c. ¿Cuántas veces aparece el 65 en el cuadro?:
- a) 11
- b)8

b) 15

- c) 10
- d) 13
- 1d. ¿Cuántas veces aparece el 42 en el cuadro?:
- a) 3
- b)4
- c) Ninguna d) 5
- 1e. ¿En qué columna no aparece ninguna letra?:
- a) 5
- b) 13
- c) 3
- d) 16
- 13. Hallar el punto de intersección de las rectas: L1: 7x + 4y = 13 y L2: 5x 2y = 19
- a) X = 3 : Y = -2
- b) X = 3; Y = 2 c) X = 2; Y = -2
 - d) Ninguno

RESPUESTA.-

$$\begin{cases}
\frac{7x + 4y = 13}{10x - 4y = 38} \\
\frac{17x + 0y = 51}{38}
\end{cases}$$
 Multiplicando por 2 la segunda para el método de suma y resta

 $x = \frac{51}{17} = 3$ reemplazando en la primera ecuación

$$7 * 3 + 4y = 13$$

$$4y = 13 - 21$$

$$4y = -8$$

$$Y = -2$$

14. Indicar a qué tipo de sección cónica corresponde la siguiente ecuación:

$$x^2 + y^2 - 8x - 4y - 5 = 0$$

- a) Elipse
- b) Circunferencia
- c) Parábola
- d) Ninguno

15. El lugar geométrico de puntos que satisfacen a una ecuación lineal con dos variables de la forma Ax + By + C = 0; es la definición de la:

- a) Circunferencia
- b) Hipérbola
- <mark>c) Recta</mark>
- d) Ninguno

16. La distancia entre los puntos A(1,2) y B(4,3) es:

- a) $\sqrt{10}$
- b) 10
- c) -10
- d) Ninguno

RESPUESTA.-

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(4-1)^2 + (3-2)^2}$$

$$d = \sqrt{3^2 + 1^2}$$

$$d = \sqrt{10}$$

17. En el sistema de coordenadas cartesianas en el plano, al eje de las X se la conoce como:

- a) Eje de las Ordenadas
- b) Eje de las Abscisas
- c) Eje de simetría
- d) Ninguno

18. El triple de un número disminuido en 18 es igual al mismo número aumentado en ocho. Encontrar el número

- a) x = 8
- b) x = 18
- c) x = 13
- d) Ninguno

Respuesta:

$$3x - 18 = x + 8$$

$$2x = 26 \implies x = \frac{26}{2} \implies x = 13$$

19. De un grupo de ingenieros 6 no son electrónicos ni mecánicos, 40 no son mecánicos y 50 no son electrónicos ¿Cuántos mecánicos más que electrónicos hay?

Respuesta.-

Sea: Mecánicos x

Electrónicos y

Otros z = 6

$$y+z=40 \implies y=40-z=40-6=34$$
 electrónicos

$$x+z=50 \implies x=50-z=50-6=44$$
 mecánicos

 \Rightarrow hay 44-34 = 10 mecánicos más que electrónicos

20. Factorar o descomponer en dos factores: $\frac{a^2}{4} - ab + b^2$

a.
$$\left(\frac{a}{2}-b\right)$$

b)
$$\left(\frac{a}{2} + b\right)^2$$
 c) $\left(\frac{a}{4} - b\right)^2$

c)
$$\left(\frac{a}{4} - b\right)^2$$

d)
$$\left(\frac{a}{2}-b\right)^2$$

RESPUESTA.-

La ecuación corresponde al caso de factorización de trinomio cuadrado perfecto y responde a la fórmula: $x^2 - 2xy + y^2 = (x - y)^2$

Entonces
$$\frac{a^2}{4} - ab + b^2 = \left(\frac{a}{2} - b\right)^2$$

21. Factorar o descomponer en dos factores: $4a^3 - 1 - a^2 + 4a$

a.
$$(a^2+1)(4a-1)$$
 b) $(a^2-1)(4a-1)$ c) $(a^2+1)(4a+1)$ d) $(a+1)(4a-1)$

b)
$$(a^2 - 1)(4a - 1)$$

c)
$$(a^2 + 1)(4a + 1)$$

RESPUESTA.-

$$4a^3 - 1 - a^2 + 4a$$

$$4a^3 + 4a - a^2 - 1$$

$$4a(a^2+1)-(a^2+1)$$

$$(a^2 + 1)(4a - 1)$$

22. Resolver la siguiente ecuación: 3x - 5 = x + 3

a.
$$x = 2$$

b)
$$x = 4$$

c)
$$x = 6$$

d)
$$x = 8$$

RESPUESTA.-

$$3x - 5 = x + 3$$

$$3x - x = 3 + 5$$

$$2x = 8$$

$$x = 8/2$$

$$x = 4$$

23. Resolver la siguiente ecuación: $3x^2 - 7x + 2 = 0$

a.
$$x_1 = 1$$
: $x_2 = 2$

b)
$$x_1 = 1/2$$
: $x_2 = 1$

a.
$$x_1 = 1$$
; $x_2 = 2$ b) $x_1 = 1/2$; $x_2 = 1$ c) $x_1 = 1/3$; $x_2 = 2$ d) $x_1 = 1/4$; $x_2 = 3$

d)
$$x_1 = 1/4$$
: $x_2 = 3$

RESPUESTA.-

$$3x^2 - 7x + 2 = 0$$

Sea:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 entonces:

$$x_{1,2} = \frac{-(-7)\pm\sqrt{(-7)^2-4*3*2}}{2*3} = \frac{7\pm\sqrt{49-24}}{6} = \frac{7\pm5}{6}$$

$$x1 = \frac{7-5}{6} = \frac{1}{3}$$

$$x2 = \frac{7+5}{6} = 2$$

24. Extraer la siguiente raíz $\sqrt[3]{-\frac{125x^9}{216m^{12}}}$ =

a)
$$-\frac{25x^2}{36m^4}$$
 b) $-\frac{5x^3}{6m^4}$ c) $\frac{5x^3}{6m^4}$

b)
$$-\frac{5x^3}{6m^4}$$

c)
$$\frac{5x^3}{6m^4}$$

d)
$$\frac{5x^3}{36m^3}$$

RESPUESTA.-

$$\sqrt[3]{-\frac{5^3 x^3 x^3 x^3}{6^3 m^3 m^3 m^3 m^3}} = -\frac{5x^3}{6m^4}$$

25. Expresar con signo radical: $8mn^{\frac{8}{3}}$ =

a)
$$8mn^2 \sqrt[3]{n^2}$$

a)
$$8mn^2 \sqrt[3]{n^2}$$
 b) $4m^2 n^3 \sqrt[8]{n^3}$ c) $\sqrt[3]{2mn^8}$ d) $\sqrt[3]{8m^3 n^8}$

c)
$$\sqrt[3]{2mn^8}$$

d)
$$\sqrt[3]{8m^3n^8}$$

Respuesta.-

$$8m\sqrt[3]{n^8} = 8m\sqrt[3]{n^3n^3n^2} = 8mn^2\sqrt[3]{n^2}$$

UNIVERSIDAD AUTÓNOMA "TOMÁS FRÍAS"

FACULTAD DE INGENIERÍA TECNOLÓGICA

CARRERA: INGENIERÍA MECÁNICA

NOMBRE:		
NOWIDINE.		
C.I	Lugar de Expedición:	

- 1. Dos móviles separados 100 m, parten desde el reposo simultáneamente y en sentidos contrarios con una aceleración de 1 m/s². ¿Cuánto tiempo tardarán en encontrarse?
- a) 5 s
- b) 10 s
- c) 12,5 s
- d) 25

RESPUESTA.-

Como parten desde el reposo su velocidad inicial es cero, su aceleración es la misma y el tiempo que tardaran en encontrarse en igual el mismo. Entonces:

$$x_1 = v_o t + \frac{1}{2}at^2$$
 y $x_2 = v_o t + \frac{1}{2}at^2$ $x_1 = \frac{1}{2}at^2$ y $x_2 = \frac{1}{2}at^2$

Pero también se sabe que:

$$x_1 + x_2 = 100$$

Reemplazando

$$\frac{1}{2}at^2 + \frac{1}{2}at^2 = 100$$

$$at^2 = 100$$

$$t = \sqrt{\frac{100}{a}} = \sqrt{\frac{100}{1}} = 10 \text{ seg}$$

- 2. ¿Cuál de la siguiente magnitud es vectorial?
- a) masa
- b) tiempo
- c) desplazamiento
- d) Ninguno
- 3. Cuál es el valor de la fuerza F necesaria, para que el bloque de 600 N de peso suba con velocidad constante. (Se desprecia el rozamiento)

- b) 600 N
- c) 100 N
- d) Ninguno

Considerando la inclinación para los ejes de coordenadas y teniendo en cuenta que la fuerza F tiene una inclinación de 37 con el nuevo eje X. haciendo una sumatoria de fuerza en el eje X se tiene

$$\sum F_Y=0$$

$$F\cos 37 - W \sin 37 = 0$$

$$F = \frac{W \ sen \ 37}{\cos 37} = \frac{(600N)sen \ 37}{\cos 37} = \frac{452 \ N}{}$$

4. Determinar el vector resultante en términos del vector A.

a) **A**

b) 2A

c) **0**

d) ninguno

RESPUESTA.- Como el triángulo de vectores se cierra desde donde parte entonces las respuesta es cero.

5. Un ciclista que se mueve a razón de 5 m/s, en un cuarto de hora recorre una distancia de:

- a) 90 s.
- b) 90 m.
- c) 75 m.
- d) Ninguno.

RESPUESTA.- En 15 min existen 900 seg. Y de las ecuaciones de la física

De
$$v = \frac{x}{t}$$

$$x = vt = 5 \frac{m}{s} * 900s = 4500m$$

6. La primera ley de Newton nos indica:

a) Que la cantidad de movimiento de un objeto aislado es constante.

b) La fuerza de acción y reacción son iguales.

c) Que la cantidad de movimiento de un objeto aislado no es constante, cambia con respecto al tiempo.

d) Ninguno.

7. La segunda ley de Newton nos indica:

a) La aceleración que adquiere una partícula sometida a una fuerza, es directamente proporcional a dicha fuerza e inversamente proporcional a la masa de dicha partícula.

b) Es una propiedad de la materia por medio de la cual el cuerpo trata que su aceleración total sea nula a=0; dicho en otras palabras: trata de mantener su estado de reposo

c) Todo cuerpo genera alrededor de él un campo gravitacional.

d) Ninguno.

8. Completa las series siguientes: a 4 b 6 c 8 d 10

a) e – 12

b) f - 11

c) 11 – h

d) g - h

RESPUESTA.- Las letras van secuenciales por lo que el siguiente seria la "e", mientras que los números suben de 2 en 2, asi que el siguiente es "2", asi que la combinación "e – 12" es la respuesta.

9. Cuantos triángulos existen en la figura?

- a) 13
- b) 16
- c) 14
- d) 12

RESPUESTA.-

Colocamos letras para contar más fácilmente la combinación que forman triángulos.

- 1.- a, b, d, e, f son 5
- 2.- ab, bc, ce, ef, bd, ed son 6
- 3.- abd, def son 2
- 4.- bced es 1

Sumando todo es 14

10. Cuantos cubos hay en la figura.

- a) 22
- b) 30
- c) 39
- d) Ninguno

RESPUESTA.-

Contando desde la base para arriba.

En la 1º fila son 11

En la 2º fila son 11

En la 3º fila son 10

En la 4º fila son 7

Haciendo la suma son 39 cubos

11. Que numero corresponde en la siguiente serie: 1 20 2 22 3 24 ?

a) 4

b) 5

c) 25

d) Ninguno

RESPUESTA.- Según la secuencia el siguiente número es el 4.

12. Resolver
$$2a - (-4a + b) - \{-[-4a + (b - a) - (-b + a)]\}$$

a) 7a

b) *b*

- c) a+b+c
- d) ninguno

RESPUESTA.-

$$2a - (-4a + b) - \{-[-4a + (b - a) - (-b + a)]\}$$

$$2a + 4a - b - \{-[-4a + b - a + b - a]\}$$

$$2a + 4a - b - \{4a - b + a - b + a\}$$

$$2a + 4a - b - 4a + b - a + b - a$$

$$2a + 4a - b - 4a + b - a + b - a$$
La respuesta es "b"

13. Dos rectas son perpendiculares cuando:

a) Forman un ángulo recto

b) Forman un ángulo llano

c) Forman un ángulo agudo

d) Ninguno

- **14.** Un ángulo es obtuso si:
- a) Es menor a 270º

c) Es menor a 90º

b) Es mayor a 90º

d) Ninguno

15. El Teorema de Pitágoras soluciona:

- a) Triángulos con ángulo suplementario
- b) Triángulos con ángulo recto
- c) Triángulos con ángulo llano
- d) Ninguno

16. El área de un cuadrado es igual a 625 cm2, y su perímetro es:

- a) 50 cm
- b) 100 cm
- c) 120 cm
- d) Ninguno

RESPUESTA.- Si el área de un cuadrado es 625 cm2, quiere decir que su lado es:

$$l = \sqrt{A} = \sqrt{625cm^2} = 25cm$$

Entonces: P = 4 * 25 cm = 100 cm

17. Resolver el sistema de ecuaciones:

- b) X = 3; Y = -2 b) X = 3; Y = 2 c) X = 2; Y = -2 d) Ninguno

RESPUESTA.-

$$\left\{ \frac{7x + 4y = 13}{10x - 4y = 38} \right\}$$
Multiplicando por 2 la segunda para el método de suma y resta

$$x = \frac{51}{17} = 3$$
 reemplazando en la primera ecuación

$$7*3+4y=13$$

$$4y = 13 - 21$$

$$4y = -8$$

$$Y = -2$$

18. Factorar o descomponer en dos factores: $\frac{a^2}{4} - ab + b^2$

b.
$$\left(\frac{a}{2}-b\right)$$
 b) $\left(\frac{a}{2}+b\right)^2$ c) $\left(\frac{a}{4}-b\right)^2$ d) $\left(\frac{a}{2}-b\right)^2$

b)
$$\left(\frac{a}{2} + b\right)^2$$

c)
$$\left(\frac{a}{4} - b\right)^2$$

d)
$$\left(\frac{a}{2} - b\right)^2$$

RESPUESTA.-

La ecuación corresponde al caso de factorización de trinomio cuadrado perfecto y responde a la fórmula: $x^2 - 2xy + y^2 = (x - y)^2$

Entonces
$$\frac{a^2}{4} - ab + b^2 = \left(\frac{a}{2} - b\right)^2$$

19. La ecuación geométrica de una circunferencia con centro en el origen es:

a)
$$x + y = R$$

b)
$$x^2 + y = R$$

c)
$$x^2 + y^2 = R$$

20. Se considera que dos rectas son paralelas, si:

- a) Se cortan en un solo punto
- b) No se cortan en ningún punto
- c) Se cruzan en diferentes puntos
- d) Ninguno