章宇

y.zhang@swufe.edu.cn

Problem

 Given a set of cities and distances between every pair of cities, finding the shortest possible route that visits every city exactly once and returns to the starting city

History

- Mentioned in 1832; formulated in 1930s
- Branch & cut (Dantzig et al.,1950s, 49 cities)
- Concorde (Cook et al., 1990s, 85900 cities)

- Industrial applications
 - School bus routing
 - Courier delivery
 - Waste collection.....
- Academic researches
 - Operations Research, Theoretical Computer Science, Combinatorics
 - Logistics, Transportation, Manufacture......

Parameters

- $-\mathcal{N} = \{0,1,...,n-1\}$: set of nodes to visit
 - For ease of coding
- $-\mathcal{A} = \{(i,j)|i,j \in \mathcal{N}, i \neq j\}$: set of arcs
- c_{ij} : distance across arc $(i,j) \in \mathcal{A}$

Decision Variables

 $-x_{ij} \in \{0,1\}$: =1 iff arc $(i,j) \in \mathcal{A}$ is traversed

Model

$$\min \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij}$$

s.t.
$$\sum_{i:(i,i)\in\mathcal{A}} x_{ji} = 1, \quad \forall i \in \mathcal{N},$$

$$\sum_{j:(i,j)\in\mathcal{A}} x_{ij} = 1, \qquad \forall i \in \mathcal{N},$$

$$x_{ij} \in \{0,1\}, \quad \forall (i,j) \in \mathcal{A},$$

 Minimize total distance

 Each city visited exactly once

Does it work?

Coding...

Model

- Add a decision variable
 - $u_i \in [1, n-1]$: the order in which node $i \in \{1, 2, ..., n-1\}$ is visited
- Add a <u>subtour elimination constraint</u>

- If $x_{ij} = 1$, then $u_j = u_i + 1$
- If $x_{ij} = 1$, then $u_i \ge u_i + 1$
- $u_j \ge u_i + 1 M(1 x_{ij}), \ \forall i, j \in \{1, 2, ..., n 1\}$
- We can let M = n

Model

- Add a subtour elimination constraint
 - $u_i \ge u_i + 1 n(1 x_{ij}), \ \forall i, j \in \{1, 2, ..., n 1\}$
- Introduced by Miller, Tucker & Zemlin (MTZ)
 - Easy to implement ©
 - Computationally inefficient ⊗
- Other forms of constraints available

Oncan, T., Altınel, I. K., & Laporte, G. (2009). A comparative analysis of several asymmetric traveling salesman problem formulations. *Computers & Operations Research*, 36(3), 637-654.

Final model

$$\begin{aligned} & \min \quad \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} \\ & \text{s.t.} \quad \sum_{j:(j,i) \in \mathcal{A}} x_{ji} = 1, \qquad \forall i \in \mathcal{N}, \\ & \sum_{j:(i,j) \in \mathcal{A}} x_{ij} = 1, \qquad \forall i \in \mathcal{N}, \\ & u_j \geq u_i + 1 - n \big(1 - x_{ij} \big), \qquad \forall i,j \in \{1,2,\dots,n-1\} \\ & x_{ij} \in \{0,1\}, \qquad \forall (i,j) \in \mathcal{A}, \end{aligned}$$

 $1 \le u_i \le n-1$, $\forall i \in \mathcal{N}$.

- Minimize total distance
- Each city
 visited exactly
 once
- Subtour elimination

• Coding...

- Many variants/extensions
 - Capacitated vehicle routing problem (CVRP)
 - a.k.a. VRP
 - VRP with time window (VRPTW)
 - Multi-trip VRP
 - Pickup and delivery problem
 - Orienteering problem
 - VRP under uncertainty

-

Vehicle Routing Problem

Demands

Time windows

Capacity

Problem

– What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers with least cost?

Parameters (node)

- n: number of customers
- $-\mathcal{N}_{\mathcal{C}} = \{1,2,\ldots,n\}$: set of customers
- $-\mathcal{N} = \mathcal{N}_C \cup \{0\}$: set of all nodes
 - $0 \in \mathcal{N}$: Depot
- q_i : Demand from customer $i \in \mathcal{N}_C$

- Parameters (arcs)
 - $-\mathcal{A} = \{(i,j)|i,j \in \mathcal{N}, i \neq j\}$: set of arcs
 - c_{ij} : cost across arc $(i,j) \in \mathcal{A}$
 - e.g., money, time, distance...
- Parameters (vehicles)
 - m: number of available vehicles
 - Q: vehicle capacity (assumed homogenous)

Decision variables

- x_{ij} ∈ {0,1}: =1 iff arc (i,j) ∈ \mathcal{A} is traversed by some route
- $u_i \in [q_i, Q]$: vehicle load after serving customer $i \in \mathcal{N}_C$

Model

$$\min \ \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$
s. t.
$$\sum_{j \in \mathcal{N}: (i,j) \in \mathcal{A}} x_{ij} = \sum_{j \in \mathcal{N}: (j,i) \in \mathcal{A}} x_{ji} = 1, \quad \forall i \in \mathcal{N}_C,$$

$$\sum_{j \in \mathcal{N}: (0,j) \in \mathcal{A}} x_{0j} \leq m,$$

$$u_j - u_i + Q(1 - x_{ij}) \geq q_j, \quad \forall i,j \in \mathcal{N}_C, i \neq j,$$

$$q_i \leq u_i \leq Q, \quad \forall i \in \mathcal{N}_C,$$

$$x_{ij} \in \{0,1\}, \quad \forall (i,j) \in \mathcal{A}.$$

- Solve the TSP and replicate the figure
 - Using 'cn.csv'

- Orienteering Problem
 - A variant of TSP
 - Parameters given in 'op_random_instance.py'
 - Arc travel times (c)
 - Score to visit each node (s)
 - Time budget (T)
 - Determine a subset of nodes to visit, and in which order, so that the total collected score is maximized and a given time budget is not exceeded
 - Start from & return to node 0

- Submission
 - Model & results (.pdf)
 - Decision variable, objective, and constraints
 - The figure of optimal tour
 - The optimal value of collected scores
 - Source code (.py)
 - Submit to a link to be given in the QQ group
- Deadline: before next class
 - Tardiness: -5 points per day