

Application of HPX to Tiled GEMM and QR: A Benchmark

October 1, 2019 | Thomas Miethlinger | Johannes Kepler University Linz

Part I: Introduction

About me

(Thomas Miethlinger)

- Study: Master Physics
- Johannes Kepler University Linz
- Institute for Theoretical Physics
 Department: Many Particle
 Systems
 Research:
 - Quantum fluids
 - Complex fluids
 - Non-equilibrium statistical mechanics

About the Supervisors

Supervisor: Dr. Edoardo Di Napoli

Co-Supervisor: Dr. Xinzhe Wu

SimLab Quantum Materials

Research:

- Development and maintenance of numerical libraries
- Design and implementation of high-performance algorithms
- Development of new mathematical and computational models within a methodological framework

in the scope of computational materials science and quantum materials.

Part II: Introduction to HPX

About HPX

- High Performance ParalleX (HPX) is the first runtime system implementation of the ParalleX execution model.
- Development: STE||AR group
 Louisiana State University
 LSU Center for Computation and Technology
- Released as open source under the Boost Software License
- Current version: HPX V1.3.0, released on 23.05.2019
- Aims to be a C++ standards conforming implementation of the Parallelism and Concurrency proposals for C++ 17/20/23/...
- This means: HPX is a C++ library that supports dynamic adaptive resource management and lightweight task programming and scheduling within the context of a global address space.

HPX: Tasks and Threads

- HPX: Task-based parallelism
- Split up big problem into smaller tasks
- Tasks are worked off as HPX (lightweight) Threads by the OS Threads
- Task size is crucial: not too small and not too big
- Number of tasks can even be as high as $\mathcal{O}(10^8)$

T ₂	T_4		
<i>T</i> ₁	T ₃	T ₅	

Tasks too large

Right task size

<i>T</i> ₂	T ₄	T ₅	<i>T</i> ₉	
<i>T</i> ₁	<i>T</i> ₃	T_6	T ₇	T ₈

Comparison of HPX and OpenMP

HPX	OpenMP
C++ library	Compiler extension to C and Fortran
Core language: hpx::C++	#pragma omp directives
Task-based parallelism	Parallel regions (fork-join model)

Comparison of HPX and MPI

HPX	MPI
C++ library	Interface specification for C and Fortran
Core language: hpx::C++	Core language: MPI_C, MPI_F08
Task-based parallelism	Single program, multiple data (SPMD)
Message driven	Message passing

The HPX API

Selection: Classes

Class	Description
hpx::thread	Low level thread of control
hpx::mutex	Low level synchronization facility
hpx::lcos::local::condition_variable	Signal a condition
hpx::future, hpx::shared_future	Asynchronous result transport (receiving end)
hpx::promise, hpx::lcos::local::promise	Asynchronous result transport (producing end)
hpx::lcos::packaged_task	Asynchronous result transport (producing end)
hpx::function	Type erased function object
hpx::tuple	Tuple

The HPX API

Selection: Functions

Functions	Description
hpx::async	Spawning tasks (returns a future)
hpx::make_ready_future	Spawning tasks (returns a ready future)
hpx::bind	Binding Parameters to callables
hpx::apply	Signal a condition
<pre>future::{is_ready, valid, has_exception}</pre>	Query state of future
future::get	Return computed result of future
future::then	Continuations of futures
hpx::when_all, hpx::when_any, hpx::when_n	Waiting on one or more futures (non blocking)
hpx::wait_all, hpx::wait_any, hpx::wait_n	Waiting on one or more futures (blocking)
hpx::dataflow	Shortcut to hpx::when_all().then()

Part III: Introduction to Numerical Linear Algebra, GEMM and QR

Introduction: Numerical Linear Algebra

Numerical linear algebra is a subfield of numerical analysis and linear algebra, and it plays an integral role in computational problem solving. There exist many several algorithms for common problems, a few well-known are:

- Solving systems of linear equations
- Eigenvalue problem
- Matrix inversion problem
- Least-squares problem

which may be using one of the following matrix operations/decompositions:

- Matrix multiplications
- LU decomposition
- QR decomposition
- Spectral decomposition
- Singular value decomposition

GEMM

Applications of Numerical Linear Algebra

GEMM - GEneral Matrix Multiply

- Basic binary operation in Linear Algebra, which has numerous applications in mathematics, science and engineering.
- More fundamental applications of matrix multiplications include
 - Systems of Linear Algebraic Equations (SLAE) can be expressed as a single matrix equation, e.g. Ax = y.
 - Linear map between two vector spaces U and V over the same field F.
- Motivation: A large amount (>70%) of runtime in ChASE ((E.D. Napoli, 2019)) routine is used for GEMM.
- Let the field F be \mathbb{R} or \mathbb{C} , $A=(a_{ij})\in F^{m\times n}$, $B=(b_{jk})\in F^{n\times p}$. Then,

$$C = (c_{ik}) = AB \in F^{m \times p}, \tag{1}$$

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} \tag{2}$$

GEMM

GEMM and GEMM of Blocked Matrices

→ most simple implementation consists of 3 nested for-loops:

for
$$0 \le i \le m$$
, $0 \le j \le n$, $0 \le k \le p$, do: $C[i][k] += A[i][j] * B[j][k]$

Better approach: Discretize matrices into blocks, perform GEMM block-wise

Let the field F again be \mathbb{R} or \mathbb{C} , $A = (A_{ij}) \in F^{M \times N \times m \times n}$, $B = (B_{ik}) \in F^{N \times P \times n \times p}$.

Then:

$$C = (C_{ik}) = AB \in F^{M \times P \times m \times p}, \tag{3}$$

$$C_{ik} = (c_{ik,i'k'}) = \sum_{j=1}^{n} A_{ij}B_{jk},$$
 (4)

$$c_{ik,i'k'} = \sum_{j=1}^{N} \sum_{j'=1}^{n} a_{ij,i'j'} b_{jk,j'k'}$$
(5)

A Small Example

Let m = n = p = M = N = P = 2:

A

В

=

C

 A_{00} A_{10} A_{01} A_{11}

 B_{00} B_{10} B_{01} B_{11}

_

Slide 12

 C_{00} C_{10} C_{01} C_{11}

A Small Example

Let
$$m = n = p = M = N = P = 2$$
:

A_{ij}

 B_{jk}

=

 $A_{ij}B_{jk}$

$$a_{ij,00}$$
 $a_{ij,10}$ $a_{ij,01}$ $a_{ij,11}$

$$b_{jk,00} b_{jk,10} b_{jk,10}$$

$$b_{jk,01} b_{jk,11}$$

=

OpenMP and HPX foreach Row

Let M = N = 4, number of threads $\mathcal{T} = 4$:

OMP Row Tiled & HPX foreach Row

 OMP Cell Tiled

C ₀₀	C ₀₁	C ₀₂	C ₀₃
C ₁₀	C ₁₁	C ₁₂	C ₁₃
C ₂₀	C ₂₁	C ₂₂	C ₂₃
C ₃₀	C ₃₁	C ₃₂	C ₃₃

HPX future C_{ik} and HPX future $A_{ij}B_{jk}$

$$C_{ik} = f_{ik}.get()$$

HPX future
$$f_{ijk} \rightarrow A_{ij}B_{jk}$$

$$C_{ik} = \sum_{j} f_{ijk}.get()$$

Distributed Memory

Let M = N = 2, number of nodes $\mathcal{N} = 4$:

MPI V1 & HPX dist V1

$ \mathcal{N}_{0} $ $ A_{00}, B $ $ A_{00}B_{00} $ $ C_{00} $	\mathcal{N}_{1} A_{01}, B $A_{01}B_{10}$
N_2 A_{10}, B $A_{10}B_{00}$ C_{10}	N_3 A_{11}, B $A_{11}B_{10}$

MPI V2 & HPX dist V2

$ \begin{array}{c} N_0 \\ A_{00}, B_{0k} \\ A_{00} B_{0k} \\ C_{00} \end{array} $	$ \begin{array}{c} \mathcal{N}_1 \\ A_{01}, B_{1k} \\ A_{01}B_{1k} \end{array} $ $ \xrightarrow{C_{01}}$
$ \begin{array}{c} \mathcal{N}_2 \\ A_{10}, B_{0k} \\ A_{10} B_{0k} \\ C_{10} \end{array} $	$ \begin{array}{c} \mathcal{N}_3 \\ A_{11}, B_{1k} \\ A_{11}B_{1k} \\ \xrightarrow{C_{11}} \end{array} $

QR Decomposition

Applications of Numerical Linear Algebra

- Matrix decomposition of square or rectangular matrices (we only consider square matrices).
- Let the field F be $\mathbb R$ or $\mathbb C$, $A=(a_{ij})\in F^{m\times m}$. Then,

$$A = QR, (6)$$

where Q is a orthogonal($F = \mathbb{R}$) / unitary($F = \mathbb{C}$) matrix, and R is an upper triangular matrix.

- Motivation: A large amount (>20%) of runtime in ChASE ((E.D. Napoli, 2019)) routine is used for QR.
- Computing the QR decomposition:
 - Gram-Schmidt process
 - Householder reflection
 - Givens rotations

Applications of QR Decomposition

Examples

- Computing Eigenvalues (QR algorithm)
- Computing orthogonal base
- Solving least-squares problem
- Solution to linear inverse problems

A selection of papers within the scope of my research interest which use QR decomposition:

- An evaluation of noise reduction algorithms for particle-based fluid simulations in multi-scale applications (M.J. Zimon et al., 2016)
- Dynamic mode decomposition of numerical and experimental data (P.J. Schmid, 2010)
- Krylov Methods for the Incompressible Navier-Stokes Equations (W.S. Edwards, 1994)
- Computing Lyapunov exponents of continuous dynamical systems: method of Lyapunov vectors (J. Lu, 2005)

Block QR Decomposition

Example: 3 × 3 block matrix

Block QR Decomposition

Example: 3 × 3 block matrix

Part IV: Benchmark: Results for GEMM

Let m = n = p = 4000, M = N = P = 40, vary number of threads \mathcal{T} :

Let m = n = p = 4000, M = N = P = 40, vary number of threads T:

 \implies HPX can be faster than OpenMP, even for embarrassingly parallel problems, in particular

hpx::futures.

Member of the Helmholtz Association October 2, 2019 Slide 22

Vary number of threads T, and let $m=n=p=400\sqrt{T}$, $M=N=P=\sqrt{T}$.

→ Task-size crucial for HPX. Here the block size was too big.

GEMM Distributed Memory

Vary number of Nodes \mathcal{N} , and let $m=n=p=400\sqrt{\mathcal{N}}$, $M=N=P=\sqrt{\mathcal{N}}$:

HPX distributed is slower than MPI, their implementations are presumably analogous.

Member of the Helmholtz Association October 2, 2019 Slide 24

Let m = n = p = 4000, $\mathcal{T} = 4$, vary number of blocks $\mathcal{B} := M = N = P$:

→ Again, HPX is around the same speed as OpenMP.

Part V: Benchmark: Results for Tiled QR

QR Shared Memory

Let m = 4000, M = 40, vary number of threads T:

QR Shared Memory

Vary number of threads \mathcal{T} , and let $m=n=p=400\sqrt{\mathcal{T}}$, $M=N=P=\sqrt{\mathcal{T}}$:

QR Shared Memory

Let m = n = p = 4000, $\mathcal{T} = 4$, vary number of blocks $\mathcal{B} := M = N = P$:

⇒ Discretizing problem into blocks has a high impact on runtime!

Part VI: Conclusion and Resume

Conclusion

On HPX

- HPX has the potential to speed-up and simplify parallelization for certain types of problems
- On par with OpenMP
- Comparison with MPI unfortunately not possible at this moment (supplemented for report)
- Learning HPX takes some time, in particular HPX for distributed programs
- Debugging, profiling, runtime errors, documentation, ... could be improved
- Execution policies: might give additional speed-up
- Altogether: Very strong library and concept with some negative points

Application of HPX to Tiled GEMM and QR: A Benchmark

October 1, 2019 | Thomas Miethlinger | Johannes Kepler University Linz

HPX: Example Program

```
double calc area(hpx::future<double> future r, hpx::future<double> future pi)
   double r = future r.get(): // r is returned immediately (make ready future)
    double pi = future pi.qet(); // pi is returned once the async computation finishes
    return r * r * pi: // return area = r^2 * pi
int hpx_main(variables_map& vm) // In hpx_main the HPX environment is loaded
   // boost::program_options::variables_map: retrieve commandline arguments
    hpx::future<double> future_r = hpx::make_ready_future(vm["r"].as<double>());
    hpx::future<double> future_pi = hpx::async([](){ return 4.0 * atan(1.0); });
    hpx::future<double> future area = hpx::dataflow(&calc area, future r, future pi);
    return hpx::finalize(); // Area can be obtained by: future_area.get()
int main(int argc, char * argv[]) // Start program by: ./area --r=...
   // boost::program options::options description: handle commandline arguments
   options description.add options()("r", value<double>()->default value(1.0), "Radius: r");
    return hpx::init(options_description, argc, argv); // hpx::init calls hpx_main
```