

THIS PDF NOTE WAS FOUND ON INTERNET.I DON'T BEHOLD THE COPYRIGHT OF THIS MATERIAL. IF SOMEONE THINKS THAT THIS MATERIAL SHOULDN'T BE HERE, PLEASE EMAIL AT

<u>joyoshish@gmail.com</u> AND THE MATERIAL WILL BE IMMEDIATELY REMOVED (ONLY FOR COPYRIGHT ISSUES).

Joyoshish Saha

Quick Index

Quick Index

DIBAL	Diazomethane	DMS	DMF		DCC	Cul	CuCI	CuCN	CuBr	CrO ₃	CN	Cl ₂	CCI ₄	BsCI	Br ₂	BH_3	AICI ₃	AlBr ₃	AIBN	Ag ₂ O	$AgNO_3$	Acetone
Diisobutyl aluminum hydride	CH ₂ N ₂	Dimethyl sulfide	N,N'-dimethylformamide	N=C=N	Dicyclohexane carbodiimide	Copper lodide	Copper Chloride	Copper Cyanide	Copper Bromide	Chromium Trioxide	Cyanide	Chlorine	S-CI	Benzenesulfonyl chloride	Bromine	Borane	Aluminum chloride	Aluminum bromide		Silver oxide	Silver nitrate	
Bulky reducing agent for esters, nitriles	Forms methyl esters, used in the Wolff Rearrangement	For reductive workup in ozonolysis	e Polar aprotic solvent (see "Solvents" page)		Reagent for forming amides from carobyxlic acids and amines	Forms organocuprates	Adds CI to aromatic rings; forms organocuprates	Adds CN to aromatic rings	Adds Br to aromatic rings; forms organocuprates	Oxidant for alcohols and aldehydes	Good nucleophile	Adds to alkenes, aromatic rings	Nonpolar solvent; see "Solvents" page	Converts alcohols to good leaving groups	Adds to alkenes, aromatic rings	Hydroboration	Catalyst for additions to aromatic rings	Catalyst for additions to aromatic rings	Initiator for free radical reactions	Used in the Tollens reaction	SN1 reactions	Polar aprotic solvent; see "Solvents" page

Г

L

MsCI

N Li Li LiAIH ₄ Lithium aluminum hydride Strong reducing agent for carbonyl compounds Lindlar's catalyst Reducing agent for alkynes to give cis-alkenes LiAI(Ot-Bu) ₃ Bulky reducing agent for acid chlorides to give aldehydes

Quick Index

Quick Index

NaBH₄ NaCN Na₂Cr₂O₇ Sodium Dichromate Sodium Borohydride Sodium Hydride Sodium cyanide Sodium Strong base, poor nucleophile See H₂CrO₄ Reduces aldehydes/ketones to alcohols Reducing agent for alkynes, aromatic groups Good nucleophile

NaNH₂ Sodium t-butoxide Sodium amide See KOtBu

NaIO₄

Sodium periodate

Cleaves 1,2-diols to carbonyls

N-Bromo succinimide Source of bromine, used for allylic bromination

Hydroxylamine N-chloro succinimide Source of chlorine, used in alkene addition reactions Formation of oximes

Sources of iodine, used in alkenes addition reactions

NH₂OH

N-lodo succinimide

Good nucleophile, used in the Wolff-Kishner reaction Base, occasional solvent

Reduces alkynes to cis-alkenes

Converts alkenes to cis-diols (glycols)

Ni₂B NH₂NH₂

Nickel Boride Hydrazine Ammonia

Osmium Tetraoxide

Cleaves double and triple bonds to carbonyl compounds

Organocuprates R₂CuLi Adds carbon groups to double bonds, alkyl halides

Pb(OAc)₄ Lead tetra-acetate Organolithium reagents R-Li Cleaves 1,2-diols to carbonyl compounds Adds carbon groups to carbonyl compounds

Phosphorus Tribromide Phosphorus Trichloride Converts alcohols/ acids to alkyl / acyl chlorides Converts alcohols/ acids to alkyl / acyl bromides

Phosphorus Pentoxide Converts acids to anhydrides, amides to nitriles For reduction of double / triple bonds with ${
m H_2}$

For reduction of double / triple bonds with H₂

L

⊢_{Pd/C}

Palladium on carbon

P₂O₅ PBr_3

> PCC Pyridinium chlorochromate Oxidizes alcohols to aldehydes/ketones

Pyridine

Raney Nickel

 SO_3 RO-OR "Peroxides" Sulfur Trioxide

SOBr₂ Thionyl bromide

SOCI₂ Thionyl chloride

Tetrahydrofuran

TsCl Tosyl chloride

TsOH

Zn(Cu) Zinc-copper couple Zn(Hg) Zinc amalgam

Reducing agent, for ozonolysis and nitro groups

For Clemmensen reduction, ketones to alkanes For cyclopropanation reactions with CH₂l₂

Triphenyl phosphine

Used in the Wittig reaction

Weak base

Reducing agent, replaces sulfur with H

For installation of SO₃H on an aromatic ring Free radical initiator

Converts alcohols/acids to alkyl/acyl chlorides Converts alcohols/acids to alkyl / acyl bromides

Solvent (see "Solvents" page) For reduction of nitro groups to amines

Converts alcohols to tosylates (good leaving group)

Strong acid

Chem 535 Synthetic Organic Chemistry – Common Reducing Agents for the Conversion of Alcoholic, Carboxylic and Nitrogen-Containing Related Functionality Page - 1 -

Name/composition	Typical Use and Comments	Scope & Limitations				
NaBH ₄ /ROH	ketone and aldehydes alcohols	reactivity decreases with decreasing proton availability, $k_{water} > k_{MeOH}$				
$NaBH_4/CH_3CN + Cd^{+2}$ ref^{-1}	RCOCl aldehydes	aprotic solvent moderate reactivity				
Ph ₃ PCuBH ₄ ²	same as above	very mild can be done in the presence of ketones and esters, reagent in active form as an indefinite shelf life				
NaBH ₄ /DMF-THF ³	same as above	aprotic solvent moderate reactivity				
Zn(BH ₄) ₂ ⁴	ketone and aldehydes alcohols R OEt R OH OH OH	nonbasic avoids cleavage of esters, good for enone 1,2 reduction avoids 1,4 reduction				
NR ₄ BH ₄ ⁵	Selective reduction of aldehydes over ketones					
NaBH ₃ CN ^{6,7}	RCHO + R'NH ₂ + NaBH ₃ CN RCH ₂ -NHR'	mild, will not attack ketones without H ⁺ (cat)				
BH ₃ (for refs see Scope & Limitations column)	Alkene hydroboration	will reduce an amide in the presence of an ester ⁸ and RCO ₂ H in the presence of ester or ketone!! ⁹				

Lisec-Bu ₃ BH ¹⁰ Nasec-Bu ₃ BH	α, β -enones enolates 1,4-	Nicknamed Selectride, "an SN ₂ H [!] donor, bulky reagent selects the least hindered approach.
LiEt ₃ BH	reduction ¹¹ reduces epoxides to alcohols ¹² tosylates to alkanes (alcohol defunctionalization) ¹³	similar chemical reactivity and selectivity as above
LiAlH ₄	RCN or RCONR ₂ amines halocarbons to alkanes ketones, esters, carboxylic acids, aldehydes, acetals (sometimes)	"LAH" Highly reactive, hard to control; explodes on heating, grinding, or on exposure to water
NaAlH ₂ (O(CH ₂) ₂ OCH ₃) ₂	as above ¹⁴	Nicknamed Red-Al®
above reagent + CuBr	1,4-reduction of enones ¹⁵	
<i>i</i> Bu ₂ AlH ¹⁶	ketones to alcohols nitriles to aldehydes R-C=N → R-C=N-Al water R-C=O H lactones to lactols ¹⁷ ester to aldehyde (tricky) ¹⁸ enones allylic alcohols 1,2-reduction ¹⁹	DIBAL

Chem 535 Synthetic Organic Chemistry – Common Reducing Agents for the Conversion of Alcoholic, Carboxylic and Nitrogen-Containing Related Functionality Page - 3 -

O A OEt	enantioselective reductions of ketones to optically active alcohols. Both enantiomers are available. ²⁰	
Bu ₃ SnH ²¹	R-X R-H heat + AIBN radical	
	X=Br, I,SePh, NO ₂ , SH	
Bu ₃ SnH ²²	R-O-COX RH	Barton deoxygenation
	X=OR, SR, NR ₂	
Diimide ²³	(H-N=N-H) generated by NaO ₂ C-N=N-CO ₂ Na, RCO ₂ H, or NH ₂ NH ₂ , Cu(II), O ₂ , or TosNH-NH2, organic(aq) solvent	selectively reduces electronically symmetrical double bonds, in the presence of amines thioethers, ab- unsat ketones, etc.
Et ₃ SiH ²⁴ With RhCl•P(Ph ₄) ₃	R R' R' OSiR _{3 24}	1,4-reduction of enones to silyl enol ethers

References:

- 1. Entwistle ... J. Chem. Soc Perkin Trans 1, **1980**, 27.
- 2. Sorrell, T.N. J. Org. Chem. Soc. 1980, 45, 3449.
- 3. Babler ... Tetrahedron Lett. **1981,** , 22. 11
- 4. a. Nakata ... *Tetrahedron Lett.* **1980,** , *21.* 1641 for comparison of 1,2 versus 1,4 reduction see: b. Andersen ... *Synth. Commun.* **1975**, *5*, 451.
- 5. a. Sorrell ... *Tetrahedron Lett.* **1980**, *21*. 3963 b. Raber and Guida *J. Org. Chem. Soc.* **1976**, *41*, 690. c. Hutchins . . *J. Org. Chem. Soc.* **1981**, *46*, 3571.
- 6. a. Lane . . . Synthesis, **1975**, 135. (A review) b. Borch ... J. Org. Chem. Soc. **1972**, 37, 1673.
- 7. Smith . . . J. Org. Chem. Soc. **1980**, 45, 4606.
- 8. a. Brown. . . J. Org. Chem. Soc. 1973, 38, 912. b. Russ . . . J. Org. Chem. Soc. 1976, 41, 149.
- 9. Brown. . . J. Org. Chem. Soc. 1973, 38, 2786.
- 10. Brown. . . J. Am. Chem. Soc. 1973, 95, 4100.
- 11. a. Ganem . . . J. Org. Chem. Soc. 1975, 40, 146. b. ibid. 1975, 40, 2846. c. ibid. 1976, 41, 2194.
- 12. a. Brown. . . J. Am. Chem. Soc. 1973, 95, 8486. b. Brown. . . J. Org. Chem. Soc. 1980, 45, 1.
- 13. Brown. . . J. Org. Chem. Soc. 1976, 41, 3064.
- 14. a. Tetrahedron 1973, 29, 3985. b. Coll. Czech. Cehm. Commun. 1969, 34, 118, 1025, 1033.
- 15. Semmelhack . . . J. Org. Chem. Soc. 1977, 42, 3180.
- 16. a. Gut . . . *J. Org. Chem. Soc.* **1976**, *41*, 3716. b. Miller . . . *J. Org. Chem. Soc.* **1959**, 24, 627.
- 17. Curey . . . J. Am. Chem. Soc. **1969**, 91, 5675.
- 18. Rich . . . J. Org. Chem. Soc. 1978, 43, 3624.
- 19. Brown. . . J. Org. Chem. Soc. 1975, 40, 1864.
- 20. Noyori . . . Tetrahedron Lett. 1982, 23. 4057.
- 21. Corey, E.J. . . . J. Org. Chem. Soc. 1975, 40, 2554.
- 22. a. Barton ... *J. Chem. Soc. Perkin Trans 1*, **1975**, 1574, b. *ibid.* **1977**, 1718 c. *ibid.* **1981**, 2363.
- 23. *a. Advanced Organic Chemistry*, Carey, F. A. and Sundberg, R. J. Part B. p 230-232. *b.* Pasto., D. J. "Reduction with Diimide" *Organic. Reactions*, **1991**, *40*, 91.
- 24. Ojima . . . *Organometalics*, **1982**, *1*, 1390.