Estimation of proportions

under Open set Label Shift using Mahalanobis Projection

Dussap Bastien

Laboratoire de mathématiques d'Orsay Université Paris-Saclay. Inria

Tuesday 28th May, 2024

Introduction

Model

- \bullet \mathcal{X} : the data space, in our case \mathbb{R}^d .
- \mathcal{Y} : the label space, $\{1, \dots, c\}$.
- c: the number of classes.
- $\mathbb{P}_1, \dots, \mathbb{P}_c$: A list of *c* distributions, one for each class (sources).
- \mathcal{N} : the *noise*.

Open Set Label Shift

Training sets.

$$(x_1^i, \cdots x_{n_i}^i) \sim \mathbb{P}_i$$

$$\hat{\mathbb{P}}_i := \frac{1}{n_i} \sum_{j \in [n]: y_j = i} \delta_{x_j}(\cdot)$$

$$n = \sum_{i} n_i$$
.

A "target" distribution.

$$\mathbb{Q} = \sum_{i=1}^{c} \frac{\alpha_{i}^{*} \mathbb{P}_{i}}{\alpha_{0}^{*} \mathcal{N}}$$

Testing set.

$$(x_{n+1},\cdots,x_{n+m})\sim\mathbb{Q}$$

$$\hat{\mathbb{Q}} := rac{1}{m} \sum_{j=1}^{m} \delta_{\mathsf{x}_{n+j}}(\cdot)$$

Estimation of proportions

Goal: Quantification

Using the training sets : $\hat{\mathbb{P}}_1 \cdots , \hat{\mathbb{P}}_c$ estimate the proportions α^* in the testing set.

- González, Castaño, Chawla, and Coz "A review on quantification learning". In ACM Computing Surveys. 2017.
- Esuli, Fabris, Moreo and Sebastiani "Learning to Quantify". In Springer Nature, 2023
- Dussap, Bastien and Blanchard, Gilles and Chérief-Abdellatif, Badr-Eddine "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching". In ECML/PKDD, 2023

Vectorisation

Let $\phi: \mathcal{X} \to \mathcal{F}$ be a fixed feature mapping from \mathcal{X} into a Hilbert space \mathcal{F} (possibly $\mathcal{F} = \mathbb{R}^D$).

Embedding

$$\Phi(\mathbb{P}) := \mathbb{E}_{X \sim \mathbb{P}}[\phi(X)] \in \mathcal{F}$$

Kernel

Classical kernel

- $k(x,y) = x^T y$, linear.
- $k(x,y) = (\gamma x^T y + c_0)^d$, polynomial.
- $k(x, y) = \tanh(\gamma x^T y + c_0)$, sigmoid.
- $k(x,y) = \exp(-\gamma ||x-y||_2^2)$, gaussian.
- $k(x, y) = \exp(-\gamma ||x y||_1)$, laplacian.
- k(x,y) = ||x|| + ||y|| ||x y||, energy.
- $k(x,y) = \left(1 + \frac{\|x-y\|^2}{\sigma^2}\right)^{-1}$, cauchy.

Kernel Mean Embedding

Kernel Methods

For a positive-definite kernel k there exists a functional Hilbert space \mathcal{H}_k and an embedding $\phi_k \colon \mathcal{X} \mapsto \mathcal{H}_k$ such that:

$$k(x, y) = \langle \phi_k(x), \phi_k(y) \rangle_{\mathcal{H}_k}$$

Embedding

$$\phi_k(x) := k(x, \cdot) = (y \mapsto k(x, y)) \in \mathcal{H}_k$$

Kernel Mean Embedding

Kernel Mean Embedding

$$\Phi_k \colon \mathcal{M}_1^+(\mathcal{X}) \to \mathcal{H}_k$$

$$\mathbb{P} \mapsto \mathbb{E}_{X \sim \mathbb{P}}[\phi_k(X)] = \Phi_k(\mathbb{P})$$

 \longrightarrow If Φ_k is injective we say that the kernel k is characteristic.

Random Fourier Features

Random Fourier Features

$$z: \mathcal{X} \to \mathbb{R}^D$$

 $x \mapsto z(x),$

such that :

$$k(x, y) \approx z(x)^T z(y)$$

Random Fourier Features

Using a sample $(\omega_i)_{i=1}^{D/2}$ i.i.d. from Λ_k :

$$z_{\omega}(x) = \sqrt{\frac{2}{D}} \left[\cos(\omega_i^T x), \sin(\omega_i^T x) \right]_{i=1}^{D/2}$$

Random Fourier Feature Matching

Complexity

Relying on RFF with D Fourier features induces a complexity of O(D(n+m)) instead of $O((n+m)^2)$.

Computing $z_{\omega}(\hat{\mathbb{P}})$ reduces to a matrix multiplication, for which GPU are well suited.

Methods

Method if $\alpha_0^* = 0$

$$\hat{lpha} = \operatorname*{arg\,min}_{lpha \in \Delta^c} \left\| \sum_{i=1}^c lpha_i \Phi(\hat{\mathbb{P}}_i) - \Phi(\hat{\mathbb{Q}}) \right\|_{\mathcal{H}},$$

where $\Delta^c = \{x \in \mathbb{R}^c_+ : \sum_{i=1}^c x_i = 1\}.$

Method if $\alpha_0^* > 0$

$$\hat{lpha} = \mathop{\mathsf{arg\,min}}_{lpha \in \mathrm{int}(\Delta^c)} \left\| \sum_{i=1}^c lpha_i \Phi(\hat{\mathbb{P}}_i) - \Phi(\hat{\mathbb{Q}})
ight\|_{\mathcal{H}},$$

where $\operatorname{int}(\Delta^c) = \{x \in \mathbb{R}^c_+ : \sum_{i=1}^c x_i \leq 1\}.$

Maximum Mean Discrepancy

Maximum Mean Discrepancy

$$\begin{aligned} \mathrm{MMD}^2(\mathbb{P},\mathbb{Q}) &= \|\Phi_k(\mathbb{P}) - \Phi_k(\mathbb{Q})\|_{\mathcal{H}_k}^2 \\ &= \mathbb{E}_{\mathbb{P},\mathbb{P}}[k(X,X)] + \mathbb{E}_{\mathbb{Q},\mathbb{Q}}[k(Y,Y)] - 2\mathbb{E}_{\mathbb{P},\mathbb{Q}}[k(X,Y)] \end{aligned}$$

Gretton, Arthur and Borgwardt, Karsten and Rasch, Malte and Schölkopf, Bernhard and Smola, Alex "A kernel method for the two-sample problem". In Advances in neural information processing systems, 2006.

Goal

Theorem

For any δ , with probability greater than $1 - \delta$:

$$\|\hat{\alpha} - \alpha^*\| \leq B_{\delta}(n, m) \to 0,$$

where α^* are the proportions in the target.

Theoretical guarantees

Theorem

Under mild condition, if $\alpha_0^* = 0$, then with high probability:

$$\|\hat{\alpha} - \alpha^*\|_2 \lesssim \Delta_{\min}^{-1/2} \left(\frac{1}{\sqrt{\min_i n_i}} + \frac{1}{\sqrt{m}} \right),$$

where n_i is the number of points in the *i*-th training set, m is the number of points in the testing set, and Δ_{\min} is the second smallest eigenvalue of the centred gram matrix of the training sets embedding $(\Phi_k(\hat{\mathbb{P}}_i))$.

Theoretical guarantees

Theorem

Under mild condition, if $\alpha_0^* \geq 0$, then with high probability:

$$\|\hat{\alpha} - \alpha^*\|_2 \lesssim \Delta_{\min}^{-1/2} \left(\|\Phi(\mathcal{N})\| \min_{i} \frac{n_i^{-1/4}}{n_i} + \|\Pi_{\mathcal{N}}(\Phi(\mathcal{N}))\| \right)$$

where n_i is the number of points in the i-th training set and Π is the orthogonal projector on $V = \operatorname{Span} \left\{ \Phi(\hat{\mathbb{P}}_i) \right\}$.

Variance-aware methods

Variance-aware methods

$$\hat{lpha} = rg\min_{lpha \in \mathrm{int}(\Delta^c)} \left\| M \left(\sum_{i=1}^c lpha_i \Phi(\hat{\mathbb{P}}_i) - \Phi(\hat{\mathbb{Q}}) \right) \right\|_{\mathcal{H}}$$

Where M is a linear operator, or matrix, on $\mathcal{H} \mapsto \mathcal{H}$:

$$M := M(\Sigma_1, \cdots, \Sigma_c),$$

with $\Sigma_i := \Sigma_{\Phi(\mathbb{P}_i)}$.

Main Theorem

Theorem

Under mild condition, if $\alpha_0^* = 0$, then with high probability:

$$\|\hat{\alpha} - \alpha^*\| \lesssim \mathcal{O}\left(\min_i \frac{1}{n_i} + \frac{1}{m}\right) \tag{1}$$

$$+\sqrt{\frac{Tr(M\Sigma_{\alpha^*}M^{\top})}{\lambda_{\min}(\hat{\mathbf{G}}^M)}}\left(\min_{i}\frac{1}{\sqrt{n_i}}+\frac{1}{\sqrt{m}}\right),\tag{2}$$

with $\Sigma_{\alpha^*} = \sum_{i=1}^c \alpha^* \Sigma_i$ and Σ_i is the covariance matrix of $\Phi(\mathbb{P}_i)$.

Theoretical guarantees

Theorem

For any given feature map Φ that verify mild conditions, the matrix that minimise the criterion

$$\frac{\operatorname{Tr}(M\Sigma_{\alpha^*}M^{\top})}{\lambda_{min}(\hat{\boldsymbol{G}}^M)},\tag{3}$$

is:

$$M^{\top}M = \Sigma_{\alpha^*}^{-1/2} \left(\Sigma_{\alpha^*}^{-1/2} \hat{V} \hat{V}^{\top} \Sigma_{\alpha^*}^{-1/2} \right)^{+} \Sigma_{\alpha^*}^{-1/2},$$
 (\mathcal{M})

and the value of the criterion is then equals to

$$\mathsf{Tr}\Big(\big(\Sigma_{\alpha^*}^{-1/2}\hat{V}\hat{V}^{\top}\Sigma_{\alpha^*}^{-1/2}\big)^+\Big). \tag{4}$$

Data

Results

Percentage of	Embedding	Num	ber of classes	= 5
noise ϵ		dim = 2	dim = 5	dim = 10
0.0	Classifier	4.11 ; 3.0	1.23 ; 3.0	0.97; 3.0
0.0	KME	1.75 ; 2.0	0.82; 2.0	0.84; 2.0
0.0	VA-KME	1.55; 1.0	0.71; 1.0	0.71; 1.0
0.2	Classifier	32.88 ; 3.0	23.96 ; 3.0	21.67 ; 3.0
0.2	KME	3.17; 1.5	1.85; 1.0	1.87; 1.0
0.2	VA-KME	3.27 ; 1.5	1.92; 2.0	2.03 ; 2.0
0.5	Classifier	66.21 ; 3.0	60.31 ; 3.0	55.56 ; 3.0
0.5	KME	6.00;1.0	4.42; 1.0	4.78; 1.0
0.5	VA-KME	6.56 ; 2.0	4.50 ; 2.0	4.89; 2.0
0.7	Classifier	82.88 ; 3.0	77.70 ; 3.0	75.12 ; 3.0
0.7	KME	6.74 ; 1.0	5.64; 1.0	6.88; 1.0
0.7	VA-KME	7.03 ; 2.0	5.94 ; 2.0	6.94 ; 2.0

Results

Percentage of	Quantifier	Number of classes $= 5$		
noise ϵ		dim = 2	dim = 5	dim = 10
0.0	Classifier	4.11 ; 3.0	1.23 ; 3.0	0.97; 3.0
0.0	KME	1.75 ; 2.0	0.82; 2.0	0.84 ; 2.0
0.0	VA-KME	1.55; 1.0	0.71; 1.0	0.71; 1.0
0.2	Classifier	26.90 ; 3.0	15.43 ; 3.0	12.42 ; 2.5
0.2	KME	16.20; 2.0	12.76 ; 2.0	12.22 ; 2.5
0.2	VA-KME	17.38 ; 2.0	11.69 ; 1.0	10.94 ; 1.0
0.5	Classifier	52.43 ; 3.0	39.42; 3.0	31.95 ; 3.0
0.5	KME	30.70 ; 1.0	31.65 ; 2.0	30.51 ; 2.0
0.5	VA-KME	33.98 ; 2.0	29.88 ; 1.0	27.88 ; 1.0
0.7	Classifier	67.25 ; 3.0	52.79 ; 3.0	44.55 ; 3.0
0.7	KME	45.76 ; 1.0	44.09 ; 2.0	41.21 ; 2.0
0.7	VA-KME	52.71 ; 2.0	42.76 ; 1.0	39.50 ; 1.0

Experiments

Embedding	Optimal	$\Sigma_{lpha^*}^{-1/2}$	Identity
Classifier	0.17; 2.0	0.17; 2.5	0.17; 1.5
KME	0.15; 1.5	0.15; 1.5	0.20 ; 3.0
Classifier + KME	0.14; 1.5	0.14; 1.5	0.16; 3.0
Mean	0.33 ; 1.5	0.33; 1.75	0.36 ; 3.0

Thank you for your attention.