1

SEQUENCE LISTING

	<110>	Korea Advanced Institute of Science and Technology
5	<120>	E coli Secreting Human
		Granulocyte Colony Stimulating Factor(hG-CSF)
	<130>	P0132/KAIST/PCT
10	<150>	KR 2000-0017052
	<151>	2000-03-31
	<160>	27
15	<170>	KopatentIn 1.71
	<210>	1
	<211>	
	<211>	
20		
20	<213>	Artificial Sequence
	<220>	
	<223>	oligopeptide
25		
	<400>	1
	Ala Gly	Pro His His His His His Ile Glu Gly Arg
	1	5 10
30		
	<210>	2
	<211>	29
	<212>	DNA
	<213>	Artificial Sequence
35		
	<220>	

2

<223> primer

<400> 2

5 gegaatteat ggetggaeet geeacceag

29

<210> 3

<211> 32

10 <212> DNA

<213> Artificial Sequence

<220>

<223> primer

15

<400> 3

geggateett attagggetg ggeaaggtgg cg 32

20

<210>

<211> 50

<212> DNA

<213> Artificial Sequence

25

<220>

<223> primer

30 <400> 4

teeteggggt ggeacagett gtaggtggea caeagettet eetggagege 50

<210> 5

35 <211> 50

<212> DNA

48

```
<213>
            Artificial Sequence
      <220>
      <223>
            primer
  5
     <400>
     getgtgecae ecegaggage tggtgetget eggacaetet etgggeatee
                                                                        50
 10
     <210>
             6
     <211>
             50
     <212>
             DNA
     <213>
             Artificial Sequence
15
     <220>
     <223>
             primer
20
    <400>
    ctggctgggg cagctgctca ggggagccca ggggatgccc agagagtgtc
                                                                       50
    <210>
            7
25
    <211>
             48
    <212>
            DNA
    <213>
            Artificial Sequence
    <220>
30
    <223>
            primer
    <400>
```

ageagetgee ecageeagge cetgeagetg geaggetget tgageeaa

PCT/KR01/00549

4

<210> 8
 <211> 32
 <212> DNA
 <213> Artificial Sequence
5
 <220>
 <223> primer

10 <400> 8
gaattcatat gaccccctg ggccctgcca gc

20 <223> primer

<400> 9
gaattcatat gactccgtta ggtccagcca gc

25

<210> 10 <211> 33 <212> DNA

30 <213> Artificial Sequence

<220>

<223> primer

35 <400> 10

32

5

33 ggaattcaca tgtttaagtt taaaaagaaa ttc <210> 11 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer 10 <400> 11 29 ggctggacct aacggagttg cagaggcgg 15 <210> 12 33 <211> <212> DNA 20 <213> Artificial Sequence <220> primer <223> 25 <400> 12 33 gcaacegeet etgcaactee gttaggteea gee <210> 13 30 <211> 33 <212> DNA <213> Artificial Sequence <220> 35 <223> primer

<400> 13 33 gcgaattctt taaagccacg ttgtgtcctc aaa 5 <210> 14 36 <211> <212> DNA 10 <213> Artificial Sequence <220> <223> primer 15 <400> 14 36 gcgaattctt taaattagaa aaactcatcg agcatc 20 <210> 15 39 <211> <212> DNA Artificial Sequence <213> 25 <220> <223> primer <400> 15 39 caccatcacc atatcgaagg cegtactceg ttaggtcca 30 <210> 16 <211> 41 35 <212> DNA Artificial Sequence <213>

7

<220>

<223> primer

5

20

25

30

35

<400> 16

gatatggtga tggtgatggt gcgggccagc tgcagaggcg g

41

10 <210> 17

<211> 507

<212> DNA

<213> Homo sapiens

15 <400> 17

agtgcactct ggacagtgca ggaagccacc cccctgggcc ctgccagct cctgccccag 120
agcttcctgc tcalgtgct agagcaagtg aggaagatcc agggcgatgg cgcagcgctc 180
caggagaagc tggcaggctg cttgagccaa ctccatagcg gccttttcct ctaccagggg 240
ctcctgcagg ccctggaagg gatctccccc gagttgggtc ccaccttgga cacactgcag 300
ctggacgtcg ccgactttgc caccaccatc tggcagcaga tggaagaact gggaatggcc 360
cctgccctgc agcccaccca gggtgccatg ccggccttcg cctctgctt ccagcgcgg 420

gcaggagggg tectagttge eteccatetg cagagettee tggaggtgte gtacegegtt

507

480

18

ctacgccacc ttgcccagcc ctaataa

<211> 615

<210>

PCT/KR01/00549

<213> Homo sapiens

5

<400> 19

35 1

	<212>	DNA	£.					
	<213>	Hor	mo sapiens					
	<400>	18						
5	atggctgg	gac	ctgccaccca	gagececatg	aagctgatgg	ccctgcagct	gctgctgtgg	60
	actocact	tct	ggacagtgca	ggaagccacc	cccctgggcc	ctgccagctc	cctgccccag	120
				, , , , , , , , , , , , , , , , , , ,	333	-	-	
	agottooi	-ae	tcaagtgctt	agaggaagtg	aggaagatic	aggggatgg	cacaacactc	180
10	agettee	cyc	ccaagegeee	agageaageg	aggaagaass	-999-9-059	- 5 5 - 5	
10					+	aggagetagt	actactaga	240
	caggaga	agc	tgtgtgccac	ctacaagetg	Lyccaceccy	aggagerggr	geegeeegga	210
								200
	cactctc	tgg	gcatcccctg	ggctcccctg	agcagctgcc	ccagccaggc	cctgcagctg	300
15	gcaggct	gct	tgagccaact	ccatagcggc	cttttcctct	accaggggct	cctgcaggcc	360
	ctggaag	gga	tctcccccga	gttgggtccc	accttggaca	cactgcagct	ggacgtcgcc	420
	gactttg	cca	ccaccatctg	gcagcagatg	gaagaactgg	gaatggcccc	tgccctgcag	480
20								
	cccaccc	agg	gtgccatgcc	ggccttcgcc	tetgetttee	agcgccgggc	aggaggggtc	540
	ctagttg	cct	cccatctgca	gagcttcctg	gaggtgtcgt	accgcgttct	acgccacctt	600
25	gcccagc	act	aataa			615		
	9							
	<210>	19						
20		174						
30	<212>	PRT						

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys

10

	Cys	Leu	Glu	Gln 20	Val	Arg	Lys	Ile	Gln 25	Gly	Asp	Gly	Ala	Ala 30	Leu	Gln
5	Glu	Lys	Leu 35	Cys	Ala	Thr	Tyr	Lys 40	Leu	Cys	His	Pro	Glu 45	Glu	Leu	Val
	Leu	Leu 50	Gly	His	Ser	Leu	Gly 55	Ile	Pro	Trp	Ala	Pro 60	Leu	Ser	Ser	Cys
10	Pro 65	Ser	Gln	Ala	Leu	Gln 70	Leu	Ala	Gly	Cys	Leu 75	Ser	Gln	Leu	His	Ser 80
	Gly	Leu	Phe	Leu	Tyr 85	Gln	Gly	Leu	Leu	Gln 90	Ala	Leu	Glu	Gly	Ile 95	Ser
15	Pro	Glu	Leu	Gly 100	Pro	Thr	Leu	Asp	Thr 105		Gln	Leu	Asp	Val 110	Ala	Asp
20	Phe	Ala	Thr		lle	Trp	Gln	Gln 120		Glu	Glu	Leu	Gly	Met	Ala	. Pro
	Ala	Leu 130		n Pro	Thr	Gln	Gly 135		Met	Pro	Ala	Phe		. Ser	Ala	. Phe
25	Gln 145		g Arg	g Ala	a Gly	, Gly 150		L Leu	ı Val	Ala	a Ser 155		s Lev	ı Glr	Sei	r Phe 160
	Leu	ı Glu	ı Val	l Se:	r Tyr 165		y Val	l Leu	ı Arç	g His		ı Ala	a Gli	n Pro)	
30																
	<2:	10>	20													
	<2	11>	53	11												
	<2	12>	DN	IA												
35	<2	13>	НС	omo s	sapie	ns										

	<400> 20	
	atgacccccc tgggccctgc cagctccctg ccccagaget tectgetcaa gtgcttagag	60
5	caagtgagga agatccaggg cgatggcgca gcgctccagg agaagctgtg tgccacctac	120
	aagetgtgee acceegagga getggtgetg eteggaeaet etetgggeat eeeetggget	180
	cccctgagca gctgccccag ccaggccctg cagctggcag gctgcttgag ccaactccat	240
10	ageggeettt teetetacea ggggeteetg caggeeetgg aagggatete eecegagttg	300
	ggtcccacct tggacacact gcagctggac gtcgccgact ttgccaccac catctggcag	360
15	cagatggaag aactgggaat ggcccctgcc ctgcagccca cccagggtgc catgccggcc	420
	ttegeetetg etttecageg eegggeagga ggggteetag ttgeeteeca tetgeagage	480
	ttcctggagg tgtcgtaccg cgttctacgc cacettgccc agccctaata a	531
20		
20	<210> 21	
	<211> 175	
	<212> PRT	
	<213> Homo sapiens	
25		
	<400> 21	
	Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu	
	1 5 10 15	
30	Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu	
	20 25 30	
	Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu	
	35 40 45	

Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser

11

50 55 60

Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His
65 70 75 80

Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile 85 90 95

Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala
10 100 105 110

Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala

Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala 130 135 140

Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser 145

Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170 175

25 <210> 22 <211> 45 <212> DNA

5

20

<213> Homo sapiens

30 <400> 22 atg act ccg tta ggt cca gcc agc tcc ctg ccc cag agc ttc ctg 45

<210> 23

35 <211> 15 <212> PRT

PCT/KR01/00549 WO 01/73081

12

<213> Homo sapiens

<400> 23

Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu

5

5

10

15

24 <210>

<211> 135

<212> DNA 10

<213> Homo sapiens

<400> 24

atgtttaagt ttaaaaagaa attcttagtg ggattaacgg cagctttcat gagtatcagc 60

15

atgttttctg caaccgcctc tgcaactccg ttaggtccag ccagctccct gccccagagc

ttcctgctca agtgc

135

20

<210> 25

<211> 45

<212> PRT

<213> Homo sapiens

25

<400> 25

Met Phe Lys Phe Lys Lys Phe Leu Val Gly Leu Thr Ala Ala Phe 10

1

5

15

Met Ser Ile Ser Met Phe Ser Ala Thr Ala Ser Ala Thr Pro Leu Gly

20

25

Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys

35

40

45

13 <210> 26 <211> 180 <212> DNA <213> Homo sapiens 5 <400> 26 atgtttaagt ttaaaaagaa attettagtg ggattaaegg eagettteat gagtateage atgttttctg caaccgcctc tgcagctggc ccgcaccatc accatcacca tatcgaggga 120 10 aggactocgt taggtccagc cagetccctg ccccagaget teetgetcaa gtgettagag 180 <210> 27 15 <211> 60 <212> PRT <213> Homo sapiens <400> 27 20 Met Phe Lys Phe Lys Lys Phe Leu Val Gly Leu Thr Ala Ala Phe 5 10 Met Ser Ile Ser Met Phe Ser Ala Thr Ala Ser Ala Ala Gly Pro His 30 20 25 25 His His His His Ile Glu Gly Arg Thr Pro Leu Gly Pro Ala Ser

35 40

Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu 30 55