Civen that Lis a loner-trangular matrix with diagonal is a vi is an upper-trangular matrix with nonzero diagonals:

say a 3x3 dimension:

also called "Doolistle algorithm

me can compute the entries of L& U =10 banssan elimination by doing matrix multiplication (row . when n) and computing each result with proor information.

i.e. for the 3+3 matrix above:

Un = and note: no multiplication / division

Un = and

leading have

we already, have

Win so we do

I division to get les

Las Un= az 1

Las Un= az 1

L₂₁ U₁₂ + (1. U₂₂) = a₂₂

1 multipliention to compade U₂₂

l₂₁ U₁₃ + (1. U₂₃) = a₂₃

l₂₂ U₁₃ + (1. U₂₃) = a₂₃

l₂₃ U₁₃ + (1. U₂₃) = a₂₃

l₂₄ U₁₃ + (1. U₂₃) = a₂₃

l₃₅ U₃₅ + (1. U₂₃) = a₂₃

l₃₅

ls, U2 + lsz U2z = 03z

Prote: 2 multipliculton/dissolon

Ls, U3 + lsz U2z + (1. U3z) = 03z

www. same process
above

These 9 equations (steps of matter nuntriplication)
can be used to compute the entries of L
& U who Garristan elemenation,
where both Ld U are 3x3 matrices

For the # of multiplication/dusson,
we can see a pattern: (grove to $\begin{bmatrix} \times \times \times \\ 1 \times \times \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \times & 1 & 1 \\ 0 & \times & 2 \end{bmatrix} = A_{3u}$

If we now do a YxY:

\[\langle \text{\langle \text{\tex}\tangle \text{\text{\langle \text{\langle \text{\text{\langle \t

the # OF multiplication / dursion needed to compate the sold entry of L&U.

For 5x5:

[X | X | 2 X | 2 3 X | 2 3 YX | X X Z Z Z | X X X 3 } | X X X X 4] = A 5.5

and so on following this transplan shaped pattern ...

Comparing the answer with question 3,

A '	3x3 metra	4x4 matrix	5x5 matrix
(russ	- 11	26	50
Imese A	54	128	250
LU wo	.8	lo .	40

of multiplication/division needed

The above computational method gives us a much foster computer time.