南副大學

《计算机网络》课程实验报告

实验 3

学	院	网络空间安全学院
专	业	信息安全
学	号	2112060
姓	名	孙蕗

一、实验要求:

基于给定的实验测试环境,通过改变延时和丢包率,完成下面3组性能对比实验:

- (1) 停等机制与滑动窗口机制性能对比;
- (2) 滑动窗口机制中不同窗口大小对性能的影响(累计确认和选择确认两种情形);
- (3) 滑动窗口机制中相同窗口大小情况下,累计确认和选择确认的性能比较。 对比时要控制单一变量(算法、窗口大小、延时、丢包率);延时、丢包率 对比设置:要有梯度(例如 30ms,50ms, …; 5%,10%,…)

二、实验过程

1. jpg 作为传输文件

Max Size=2048

MAX TIME=1000

- (一) 停等机制与滑动窗口机制性能对比
 - A. 延时为 0ms, 以丢包率作为变量

Total Time

	0%	5%	10%	15%	20%
Rdt3.0	3. 777s	12. 124s	20. 749s	29. 144s	33. 839s
GBN (N=4)	0.898s	62. 914s	163. 773s	472. 219s	943. 3s
SR (N=4)	0.894s	43. 959s	71. 357s	113. 948s	138. 892s

	0%	5%	10%	15%	20%
Rdt3.0	3.75178Mbps	1.1688Mbps	0.682948Mbps	0.486223Mbps	0.418762Mbps
GBN (N=4)	15.78Mbps	0.225236Mbps	0.0865251Mbps	0.0300083Mbps	0.0150222Mbps
SR (N=4)	15.8506Mbps	0.322357Mbps	0.198586Mbps	0.124359Mbps	0.102025Mbps

B. 丢包率为 0%,以延时作为变量

Total Time

	0ms	10ms	20ms	30ms	40ms
Rdt3.0	3. 777s	28. 759s	41. 956s	43. 194s	57. 424s
GBN (N=4)	0.898s	28. 732s	35. 085s	43. 205s	57. 432s
SR (N=4)	0.894s	42. 14s	43. 972s	68. 237s	75. 939s

	0ms	10ms	20ms	30ms	40ms
Rdt3.0	3.75178Mbps	0.492732Mbps	0.337746Mbps	0.3280666Mbps	0.246769Mbps
GBN (N=4)	15.78Mbps	0.493195Mbps	0.40389Mbps	0.327982Mbps	0.246735Mbps
SR (N=4)	15.8506Mbps	0.336271Mbps	0.322261Mbps	0.20766Mbps	0.186603Mbps

分析:

1. 停等机制发送方发送一帧后必须等待确认才能发送下一帧; GBN 允许发送方一次发送多个帧,但一旦发生丢包,要求重新传输从丢失帧

开始之后的所有帧, SR 允许发送方一次发送多个帧, 如果发生丢包, 发送方只需要重新传输丢失的帧。

- 2. 不论采用哪种机制,以丢包率为变量时,随着丢包率的增加,总 传输时间呈现上升趋势,吞吐率呈现下降趋势;以延时为变量时,随着 延时的增加,总传输时间呈现上升趋势,吞吐率呈现下降趋势。
- 3. 以丢包率作为变量时,两种机制的性能都随着丢包率的增加呈现下降趋势。其中滑动窗口机制对丢包率更为敏感,其一旦丢包会导致整个窗口内的包重传,消耗较大。Rdt3.0一次只发送一个帧,收到确认后才发送下一个帧,丢包重传的数据量实际上小于GBN。SR相对GBN表现更稳定,SR只需重传丢失的帧,更有效率。
- 4. 以延时作为变量时,两种机制的性能都随着延时的增加呈现下降 趋势。其中停等机制对延时更为敏感,延时的增大会导致等待时间的增 大,进而导致总传输时间增加。
- 5. 窗口 (N=4) 窗口较小,网络利用率较低,可能不能很好的利用 网络带宽。滑动窗口机制还有额外的开销,如维护缓存、处理帧的乱序 等,也需要额外的时间。此外,由于 SR 与 GBN、Rdt3. 0 数据的测量在不同时空条件进行的,网络条件可能不一致,导致 SR 的传输时间比 Rdt3. 0 和 GBN 都长。
- 6. 在丢包率过大、延时过大的情况下,路由器可能会出现无故的丢包现象。
- (二) 滑动窗口机制中不同窗口大小对性能的影响(累计确认和选择确认两种情形)

A. 累计确认

a. 延时为0,以丢包率作为变量

Total Time

	0%	5%	10%	15%	20%
GBN (N=4)	0.898s	62. 914s	163.773s	472. 219s	943.3s
GBN (N=8)	0.806s	88. 648s	480.716s	251. 532s	499. 107s
GBN (N=10)	0. 814s	103.818s	/	515. 305s	/

GBN (N=16)	0.809s	274. 114s	280. 199s	563. 464s	288. 055s
GBN (N=20)	0. 794s	/	/	302.647s	/

Throughput

	0%	5%	10%	15%	20%
GBN (N=4)	15.78Mbps	0.225236Mbps	0.0865251Mbps	0.0300083Mbps	0.0150222Mbps
GBN (N=8)	17.5812Mbps	0.159851Mbps	0.0294779Mbps	0.0563367Mbps	0.0283917Mbps
GBN (N=10)	17.4085Mbps	0.136493Mbps	/	0.0274992Mbps	/
GBN (N=16)	17.516Mbps	0.0516956Mbps	0.0505729Mbps	0.0251489Mbps	0.0491937Mbps
GBN (N=20)	17.847Mbps	/	/	0.0468218Mbps	/

b. 丢包率为 0,以延时作为变量

Total Time

	0ms	10ms	20ms	30ms	40ms
GBN (N=4)	0.898s	28. 732s	35. 085s	43. 205s	57. 432s
GBN (N=8)	0.806s	31.601s	43. 197s	57. 035s	58. 236s
GBN (N=10)	0.814s	32. 412s	43. 157s	57. 338s	60.787s
GBN (N=16)	0.809s	32. 174s	43. 199s	58. 452s	66.062s
GBN (N=20)	0.794s	33. 126s	43. 252s	93. 861s	92. 272s

	0ms	10ms	20ms	30ms	40ms
GBN (N=4)	15.78Mbps	0.493195Mbps	0.40389Mbps	0.327982Mbps	0.246735Mbps
GBN (N=8)	17.5812Mbps	0.448419Mbps	0.328043Mbps	0.248452Mbps	0.243329Mbps
GBN (N=10)	17.4085Mbps	0.437199Mbps	0.328347Mbps	0.247139Mbps	0.233117Mbps
GBN (N=16)	17.516Mbps	0.440433Mbps	0.328028Mbps	0.242429Mbps	0.214503Mbps
GBN (N=20)	17.847Mbps	0.427775Mbps	0.327626Mbps	0.150973Mbps	0.153573Mbps

分析:

- 1. 使用 GBN 时,不论窗口多大,以丢包率为变量时,随着丢包率的增加,总传输时间呈现上升趋势,吞吐率呈现下降趋势;以延时为变量时,随着延时的增加,总传输时间呈现上升趋势,吞吐率呈现下降趋势。
- 2. 窗口越大,在网络条件较好时,网络利用率更高,但重传时需要重传的报文也越多,高丢包率的情况下重传的开销增加,高延

时的情况下等待确认的时间增加,总传输时间更长,吞吐率更低。 丢包率和延时都对较大窗口的影响更大。

- 3. 较小的窗口虽然丢包率和延时的影响较小,但能发送的数据 也更少,网络利用率也更低。
 - 4. 在一定范围内,无论窗口大小如何,性能是相近的。
- 5. 在丢包率过大、延时过大的情况下,路由器可能会出现无故的丢包现象。

B. 选择确认

a. 延时为0,以丢包率作为变量

Total Time

	0%	5%	10%	15%	20%
SR (N=4)	0.894s	43. 959s	71. 357s	113. 948s	138. 892s
SR (N=8)	0.85s	43. 285s	72. 114s	114. 083s	138.092s
SR (N=10)	0.842s	44. 014s	70. 755s	113. 592s	139. 155s
SR (N=16)	0.833s	43. 471s	72. 213s	112. 249s	136. 72s
SR (N=20)	0. 845s	42. 791s	72. 449s	112. 729s	136. 499s

	0%	5%	10%	15%	20%
SR (N=4)	15.8506Mbps	0.322357Mbps	0.198586Mbps	0.124359Mbps	0.102025Mbps
SR (N=8)	16.6712Mbps	0.327376Mbps	0.196501Mbps	0.124212Mbps	0.102616Mbps
SR (N=10)	16.8295Mbps	0.321954Mbps	0.200275Mbps	0.124749Mbps	0.101832Mbps
SR (N=16)	17.0114Mbps	0.325975Mbps	0.196232Mbps	0.126241Mbps	0.103646Mbps
SR (N=20)	16.7698Mbps	0.331156Mbps	0.195592Mbps	0.125704Mbps	0.103814Mbps

b. 丢包率为 0, 以延时作为变量

Total Time

	0ms	10ms	20ms	30ms	40ms
SR (N=4)	0.894s	42. 14s	43. 972s	68. 237s	75. 939s
SR (N=8)	0.85s	42. 232s	43. 559s	68. 876s	75. 42s
SR (N=10)	0.842s	42. 392s	44s	68. 749s	78. 103s
SR (N=16)	0.833s	42. 504s	44. 533s	69. 02s	80. 615s

SR (N=20) 0.845s 4	3. 031s 45. 101s	70. 495s	80. 014s
--------------------	------------------	----------	----------

	0ms	10ms	20ms	30ms	40ms
SR (N=4)	15.8506Mbps	0.336271Mbps	0.322261Mbps	0.20766Mbps	0.186603Mbps
SR (N=8)	16.6712Mbps	0.335539Mbps	0.325317Mbps	0.205739Mbps	0.187888Mbps
SR (N=10)	16.8295Mbps	0.334272Mbps	0.322056Mbps	0.206119Mbps	0.181433Mbps
SR (N=16)	17.0114Mbps	0.333392Mbps	0.318202Mbps	0.20531Mbps	0.17578Mbps
SR (N=20)	16.7698Mbps	0.3299309Mbps	0.314194Mbps	0.201014Mbps	0.1771Mbps

分析:

- 1. 使用 SR 时,不论窗口多大,以丢包率为变量时,随着丢包率的增加,总传输时间呈现上升趋势,吞吐率呈现下降趋势;以延时为变量时,随着延时的增加,总传输时间呈现上升趋势,吞吐率呈现下降趋势。
 - 2. 在一定范围内,无论窗口大小如何,性能是相近的。
- 3. 窗口越大,在网络条件较好时,网络利用率更高,允许发送方在等待确认前发送更多的数据包,重传时也只需要重传未如期收到的数据包,传输时间相对更短,吞吐率相对也会提高。较小的窗口虽然丢包率和延时的影响较小,但能发送的数据也更少,网络利用率也更低。
- 4. 变量为吞吐率时,随着窗口的增加,总传输时间呈现略有下降的趋势,吞吐率呈现略有上升的趋势。当窗口增大时,网络利用率更大,导致传输时间变短。变量为延时时,随着窗口的增加,总传输时间呈现略有上升趋势,吞吐率呈现略有下降趋势。当窗口增大时,可能导致网络拥塞,导致更多的重传和等待确认的开销,导致传输时间增加。
- 5. 在丢包率过大、延时过大的情况下,路由器可能会出现无故的丢包现象。

(三) 滑动窗口机制中相同窗口大小情况下,累计确认和选择确认的性 能比较

A. 延时为0,以丢包率作为变量

a.

Total Time

	0%	5%	10%	15%	20%
GBN (N=4)	0.898s	62. 914s	163. 773s	472. 219s	943. 3s
SR (N=4)	0.894s	43. 959s	71. 357s	113. 948s	138. 892s

	0%	5%	10%	15%	20%
GBN (N=4)	15.78Mbps	0.225236Mbps	0.0865251Mbps	0.0300083Mbps	0.0150222Mbps
SR (N=4)	15.8506Mbps	0.322357Mbps	0.198586Mbps	0.124359Mbps	0.102025Mbps

b.

Total Time

	0%	5%	10%	15%	20%
GBN (N=8)	0.806s	88. 648s	495.467s	251. 532s	499.107s
SR (N=8)	0.85s	43. 285s	72. 114s	114. 083s	138.092s

	0%	5%	10%	15%	20%
GBN (N=8)	17.5812Mbps	0.159851Mbps	0.0286002Mbps	0.0563367Mbps	0.0283917Mbps
SR (N=8)	16.6712Mbps	0.327376Mbps	0.196501Mbps	0.124212Mbps	0.102616Mbps

c.

Total Time

	0%	5%	10%	15%	20%
GBN (N=10)	0.814s	103. 818s	/	515. 305s	/
SR (N=10)	0. 842s	44. 014s	70. 755s	113. 592s	139. 155s

0%	5%	10%	15%	20%
----	----	-----	-----	-----

GBN (N=10)	17.4085Mbps	0.136493Mbps	/	0.0274992Mbps	/
SR (N=10)	16.8295Mbps	0.321954Mbps	0.200275Mbps	0.124749Mbps	0.101832Mbps

d.

Total Time

	0%	5%	10%	15%	20%
GBN (N=16)	0.809s	274. 114s	280. 199s	563. 464s	288.055s
SR (N=16)	0.833s	43. 471s	72. 213s	112. 249s	136. 72s

Throughput

	0%	5%	10%	15%	20%
GBN (N=16)	17.516Mbps	0.0516956Mbps	0.0505729Mbps	0.0251489Mbps	0.0491937Mbps
SR (N=16)	17.0114Mbps	0.325975Mbps	0.196232Mbps	0.126241Mbps	0.103646Mbps

e.

Total Time

	0%	5%	10%	15%	20%
GBN (N=20)	0. 794s	/	/	302.647s	/
SR (N=20)	0. 845s	42. 791s	72. 449s	112. 729s	136.499s

	0%	5%	10%	15%	20%
GBN (N=20)	17.847Mbps	/	/	0.0468218Mbps	/
SR (N=20)	16.7698Mbps	0.331156Mbps	0.195592Mbps	0.125704Mbps	0.103814Mbps

B. 丢包率为 0, 以延时作为变量

a.

Total Time

	0ms	10ms	20ms	30ms	40ms
GBN (N=4)	0.898s	28. 732s	35. 085s	43. 205s	57. 432s
SR (N=4)	0.894s	42. 14s	43. 972s	68. 237s	75. 939s

	0ms	10ms	20ms	30ms	40ms
GBN (N=4)	15.78Mbps	0.493195Mbps	0.40389Mbps	0.327982Mbps	0.246735Mbps
SR (N=4)	15.8506Mbps	0.336271Mbps	0.322261Mbps	0.20766Mbps	0.186603Mbps

b.

Total Time

	0ms	10ms	20ms	30ms	40ms
GBN (N=8)	0.806s	31. 601s	43. 197s	57. 035s	58. 236s
SR (N=8)	0.85s	42. 232s	43. 559s	68. 876s	75. 42s

	0ms	10ms	20ms	30ms	40ms
--	-----	------	------	------	------

GBN (N=8)	17.5812Mbps	0.448419Mbps	0.328043Mbps	0.248452Mbps	0.243329Mbps
SR (N=8)	16.6712Mbps	0.335539Mbps	0.325317Mbps	0.205739Mbps	0.187888Mbps

c.

Total Time

	0ms	10ms	20ms	30ms	40ms
GBN (N=10)	0.814s	32. 412s	43. 157s	57. 338s	60. 787s

	0ms	10ms	20ms	30ms	40ms
GBN (N=10)	17.4085Mbps	0.437199Mbps	0.328347Mbps	0.247139Mbps	0.233117Mbps
SR (N=10)	16.8295Mbps	0.334272Mbps	0.322056Mbps	0.206119Mbps	0.181433Mbps

d.

Total Time

	0ms	10ms	20ms	30ms	40ms
GBN (N=16)	0.809s	32. 174s	43. 199s	58. 452s	66.062s
SR (N=16)	0.833s	42. 504s	44. 533s	69. 02s	80. 615s

	0ms	10ms	20ms	30ms	40ms
GBN (N=16)	17.516Mbps	0.440433Mbps	0.328028Mbps	0.242429Mbps	0.214503Mbps
SR (N=16)	17.0114Mbps	0.333392Mbps	0.318202Mbps	0.20531Mbps	0.17578Mbps

e.

Total Time

	0ms	10ms	20ms	30ms	40ms
GBN (N=20)	0.794s	33. 126s	43. 252s	93. 861s	92. 272s
SR (N=20)	0.845s	43. 031s	45. 101s	70. 495s	80. 014s

Throughput

	0ms	10ms	20ms	30ms	40ms
GBN (N=20)	17.847Mbps	0.427775Mbps	0.327626Mbps	0.150973Mbps	0.153573Mbps
SR (N=20)	16.7698Mbps	0.3299309Mbps	0.314194Mbps	0.201014Mbps	0.1771Mbps

分析:

- 1. SR 与 GBN 数据的测量在不同时空条件进行的, 网络条件可能不一致。且在丢包率过大、延时过大的情况下, 路由器可能会出现无故的丢包现象。
- 2. 不管采用哪种机制,在窗口大小相同时,以丢包率为变量时,随着丢包率的增加,总传输时间呈现上升趋势,吞吐率呈现下降趋势;以

延时为变量时,随着延时的增加,总传输时间呈现上升趋势,吞吐率呈现下降趋势。

- 3. 总的来说,选择确认优于累积确认,提高了网络的性能。
- 4. 在窗口大小相同时,如果一个数据包出现丢失,累积确认发送方需要把整个窗口的数据包重传,导致网络中不必要的重传;选择确认可以接收乱序的数据包,发送方只需重传未正确接收的包,减少了不必要的重传,但由于 SR 需要更多的确认信息,需要占用更多的带宽。
- 5. 以丢包率作为变量时, GBN 和 SR 的总时间都随着延时的增加呈现上升趋势, 吞吐率都呈现下降趋势, 但 GBN 变化的更明显。这可能是因为在 GBN 协议中, 一旦发生丢包, 就需要重传丢包及其后面的所有数据包, 而在 SR 协议中, 只需要重传丢失的数据包。以延时作为变量时, GBN和 SR 的总时间都随着延时的增加呈现上升趋势, 吞吐率都呈现下降趋势, 但 SR 的趋势变化的更明显。这可能是因为 SR 协议需要更多的确认信息,也会占用带宽,这些确认信息的传输也会受到延迟的影响。