Exam 2 Notes

polar \rightarrow component: $a_x = a \cos \theta$ and $a_y = a \sin \theta$ component \rightarrow polar: $a = \sqrt{a_x^2 + a_y^2}$ and $\tan \theta = \frac{a_y}{a_x}$

Friction

Static friction is equal to the opposing force, up to a maximum given by;

$$F_{s,\max} = \mu_s F_n$$

after the force exceeds the maximum force of static friction the object slips where kinetic friction acts on the object such that

$$F_k = \mu_k F_n$$

Uniform circular motion

$$a = \frac{v^2}{r}$$

$$F_c = \frac{mv^2}{r}$$

Work and energy

Kinetic energy;

$$K = \frac{1}{2}mv^2$$

Work;

$$W = Fd\cos\phi$$
 Or $W = \Delta K$

work is defined as the dot product of Force and Distance. Work done by gravity;

$$W_g = mgd\cos\phi$$

Work done by a spring;

$$W_s = -\frac{1}{2}kx^2$$

Hooke's law;

$$F_s = -kx$$

Potential energy;

$$\Delta U = -W$$

gravitational potential energy;

$$U = mgy$$

spring potential energy;

$$U = \frac{1}{2}kx^2$$

For non-linear forces;

$$W = \int_{x_1}^{x_2} F(x) \, dx$$

Power

$$P = \frac{dW}{dt}$$
 or $P = \vec{F} \cdot \vec{v} = Fv \cos \phi$

Mechanical Energy

$$E_{\text{mech}} = K + U$$

Unless energy enters the system energy is conserved;

$$\Delta E_{\text{mech}} = \Delta K + \Delta U = 0$$

kinetic energy can become potential energy or the other way around. Kinetic energy is never negative.

Therma energy is

$$E_{\text{th}} = F_k \cdot d$$

Work from external forces

Work can be done by external forces influencing the system;

$$W = \Delta K + \Delta U$$
 Or $W = \Delta E$

Center of Mass

For many particle system;

$$x_{CM} = \frac{1}{M} \sum_{i=1}^{n} m_i x_i$$

where M is the total mass of all the particles. (Average location x weighted by mass m, i.e. expected value). For solid bodies;

$$x_c m = \frac{1}{V} \int x w(x) \ dx$$

where w is width as a function of x and V is volume. Just add an integral for each dimension.

Momentum

Linear momentum;

$$p = m\vec{v}$$

for a system of object total momentum is just the sum of p_i . Impulse;

$$\vec{J} = \Lambda \vec{n}$$

$$\frac{d\vec{p}}{dt} = \vec{F}$$

Momentum is conserved (one of the fundamental conservation laws.

Collisions

Perfectly elastic \implies kinetic energy is conserved Inelastic \implies kinetic energy is not conserved Perfectly inelastic \implies kinetic energy is not conserved Conservation of momentum;

One-dimensional inelastic collisions;

$$V = \frac{m_1}{m_1 + m_2} v_{1,i}$$

 $m_1 v_{1,i} + m_2 v_{2,i} = m_1 v_{1,f} + m_2 v_{2,f}$

where *V* is the final velocity of the total system. One-dimensional elastic collisions;

$$\frac{1}{2}m_1v_{1,i} = \frac{1}{2}m_1v_{1,f} + \frac{1}{2}m_2v_{2,f}$$

Then we can solve for various quantities using;

$$v_{1,f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1,i}$$

$$v_{2,f} = \frac{2m_1}{m_1 + m_2} v_{1,i}$$

Angular kinematics

It works the same as linear motion but with different variables. Position is defined by θ in radians;

$$\theta = \frac{S}{r}$$

angular velocity is

$$\omega = \frac{d\theta}{dt}$$

angular acceleration is

$$\alpha = \frac{d^2\theta^2}{dt^2}$$

kinematic equations

1	
Variable	Equation
Velocity	$v = at + v_0$
Position	$\Delta x = v_0 t + \frac{1}{2} a t^2$
Missing t	$v^2 = 2a\Delta x + v_0^2$
Missing a	$\Delta x = \frac{v + v_0}{2}t$
Missing v_0	$\Delta x = vt - \frac{1}{2}at^2$

other useful stuff;

$$v_t = \omega r$$
$$a_t = \alpha r$$

for tangential acceleration and velocity. Centripetal acceleration;

$$a_c = \omega^2 r$$

Period of revolution;

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$

Variable	Equation
Horizontal displacement	$\Delta x = v_0 \cos \theta t$
Vertical displacement	$\Delta y = v_0 \sin \theta t - \frac{1}{2}gt^2$
Vertical velocity	$v_y = v_0 \sin \theta - gt$
Trajectory	$\Delta y = \tan \theta \Delta x - \frac{g \Delta x^2}{2(v_0 \cos \theta)^2}$
Range	$R = \frac{v_0^2 \sin 2\theta}{g}$
Rolling ball incline	$a = -\frac{g \sin \theta}{1 + I_{\text{com}}/MR^2}$

Oscillations

$$x = x_m \cos(\omega t + \phi)$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$T = 2\pi \sqrt{\frac{m}{k}} \quad \text{and} \quad T = \frac{1}{f}$$

Harmonic motion

$$\tau = -\kappa\theta \implies I\alpha = -\kappa\theta$$

for a simple pendulum

$$\omega = \sqrt{\frac{g}{L}}$$

physical pendulum

$$\omega = \sqrt{\frac{mgL}{I}}$$

and

$$I = I_{com} + mR^2$$

dampening force

$$F_d = -bv$$
 and $x(t) = e^{\frac{-bt}{2m}}\cos(\omega')t + \phi$

where

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

Useful units

Work: $J \rightarrow kg \text{ m}^2/s^2$ Impulse: $N \cdot s \rightarrow kg \text{ m/s}$ Force: $N \rightarrow kg \text{ m/s}^2$

Check your algebra you fucking idiot

Potential tricks

- Gravitational work require change in height i.e. satelite orbiting earth has no gravitational work.
- The location of a pendulum matters for tension because of gravity. $\frac{mv^2}{r} = F_t + mg \cos \phi$
- Double check angles for work, may need to add or subtract 1800 depending on orientation
- When in doubt use calculus and see if the result makes physical sense.
- if Velocity is constant