SI LV2 Linjär Algebra

Niklas Gustafsson | Gustav Örtenberg niklgus@student.chalmers.se | gusort@student.chalmers.se

2017 - 01 - 27

Repetion

1 Skriv vektorerna $\vec{u},\,\vec{v},\,\vec{w}$ på koordinatform.

- Beräkna följande uppgifter:
- a) $\vec{u} \cdot \vec{v}$
- b) $\vec{v} \cdot \vec{w}$
- c) $||\vec{u}||$
- d) $||\vec{v}||$
- e) Beräkna vinkeln θ mellan \vec{u} och \vec{v}
- 2 a) Beräkna determinanten.

$$\begin{vmatrix} 7 & 4 \\ 1 & 2 \end{vmatrix}$$

b) Vad kan sägas om vinkeln mellan vektorerna $u=\begin{pmatrix} 7\\1 \end{pmatrix}, v=\begin{pmatrix} 4\\2 \end{pmatrix}$ utifrån determinanten?

1

Låt $\vec{u} = (3,1)$ vara riktningsvektorn för linjen L och $\vec{v} = (3,2)$.

- a) Hitta den ortogonala projektionen, $\vec{v_L}$ av \vec{v} på L.
- b) Hitta speglingen, $\vec{v_S}$ av \vec{v} på L.

$\mathbf{2}$

- a) Skriv ekvationen för linjen vilken passerar genom punkterna A=(1,2) och B=(2,5) på normal form, parameterform och "y=kx+m-form".
- b) Skriv ekvationen för linjen r vilken passerar genom punkten A=(1,5) och är parallell med den räta linjen s mellan punkterna (4,1) och (-2,2).
- c) Ett plan går genom punkterna $A=(1,1,-2),\ B=(-1,5,2)$ och C=(3,0,2). Bestäm planets ekvation.

3

- a) Beräkna avståndet mellan punkterna A = (9, 2, 7) & B = (4, 8, 10).
- b) Beräkna avståndet mellan linjen -2x+3y+4=0 och punkten P=(5,6).
- c) Beräkna avståndet mellan planet 2x + y z = -1 och punkten P = (3, 1, -2).

4

Låt
$$f(\vec{x}) = f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$$
.

- a) Bevisa att $f(\vec{x})$ är en linjär avbildning.
- b) Låt $\vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Beräkna $f(\vec{v})$.

- c) Beräkna standardmatrisen A för $f(\vec{x})$.
- d) Beräkna nu $\vec{v} \cdot A$ och verifiera att det stämmer med ert svar i b).

5

Låt

$$D = \begin{bmatrix} 5 & 2 & -1 \\ 6 & 3 & 7 \\ -3 & 2 & 3 \end{bmatrix}, \ \vec{u} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}$$

och låt f_D vara matrisavbildningen m
 a p ${\bf D}.$ Beräkna

- a) $f_D(\vec{u})$
- b) $f_D(\vec{v})$
- c) $f_D(\vec{u} + \vec{v})$
- d) $f_D(\vec{2u})$

6

Bestäm standardmatrisen för den linjära avbildning i R^2 som först roterar $\frac{\pi}{3}$ och sedan projicerar ortogonalt på y-axeln.