主管 领导 核 签字

1. [10 points] Design a DFA for $L = \{w \in \{0,1\}^* \mid w \text{ has exactly three 0s.} \}$

2. [10 points] Design an NFA for the language:

$$L = \{w \in \{a, b, c\}^* \mid w \text{ starts with } ac \text{ and ends with } cb.\}$$

- 3. [10 points] Design regular expressions for languages over $\Sigma = \{a, b\}$.
 - (1) All strings that do not end with aba.
 - (2) $L = \{w \mid w \text{ has no more than 5 } a$'s. $\}$
- 4. [10 points] Prove that the language $L = \{w \in \{a,b\}^* \mid w = w^R\}$ is not regular with pumping lemma.
- 5. [10 points] Consider the following ε -NFA.

$$\begin{array}{c|ccccc} & \varepsilon & a & b & c \\ \hline \rightarrow p & \{q,r\} & \emptyset & \{q\} & \{r\} \\ q & \emptyset & \{p\} & \{r\} & \{p,q\} \\ *r & \emptyset & \emptyset & \emptyset & \emptyset \end{array}$$

- (1) Compute the ε -closure of each state.
- (2) Give all the strings of length three or less accepted by the automaton.
- (3) Convert the automaton to a DFA by subset construction. (diagram of transition function)
- : [10 points] Give a CFG for $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = j + k\}$.
 - 7. [10 points] Find a grammar equivalent to

$$S \to AB \mid CA$$

$$A \to a$$

$$B \to BC \mid AB$$

$$C \to aB \mid b$$

with no useless symbols.

- 8. [10 points] Design a PDA for $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ contains the same number of 0's and 1's }\}.$
- 9. [10 points] Prove or disprove: if L_1 is CFL and $L_1 \cup L_2$ is also CFL, then L_2 must be CFL.
- 10. [10 points] Design Turing machine for the language $\{0^{2n}1^n \mid n \geq 0\}$.

姓名

密

小小小

胜台

主领 审签

1. [10 points] Design a DFA for $L = \{w \in \{0,1\}^* \mid w \text{ has exactly three 0s.}\}$

2. [10 points] Design an NFA for the language:

$$L = \{w \in \{a, b, c\}^* \mid w \text{ starts with } ac \text{ and ends with } cb.\}$$

- 3. [10 points] Design regular expressions for languages over $\Sigma = \{a, b\}$.
 - (1) All strings that do not end with aba.
 - (2) $L = \{w \mid w \text{ has no more than 5 } a\text{'s.} \}$
- 4. [10 points] Prove that the language $L=\{w\in\{a,b\}^*\mid w=w^R\}$ is not regular with pumping lemma.
- 5. [10 points] Consider the following ε -NFA.

	ε	a	b	c
$\rightarrow p$	$\{q,r\}$	Ø	$\{q\}$	{r}
q	Ø	{ <i>p</i> }	$\{r\}$	$\{p,q\}$
*r	Ø	Ø	Ø	Ø

- (1) Compute the ε -closure of each state.
- (2) Give all the strings of length three or less accepted by the automaton.
- (3) Convert the automaton to a DFA by subset construction. (diagram of transition function)
- i_{st} 6. [10 points] Give a CFG for $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = j + k\}$.
 - 7. [10 points] Find a grammar equivalent to

$$S \to AB \mid CA$$

$$A \to a$$

$$B \to BC \mid AB$$

$$C \to aB \mid b$$

with no useless symbols.

- 8. [10 points] Design a PDA for $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ contains the same number of 0's and 1's }\}.$
- 9. [10 points] Prove or disprove: if L_1 is CFL and $L_1 \cup L_2$ is also CFL, then L_2 must be CFL.
- 10. [10 points] Design Turing machine for the language $\{0^{2n}1^n \mid n \geq 0\}$.

姓名

密

水中

計台

主领 审签

1. [10 points] Design a DFA for $L = \{w \in \{0,1\}^* \mid w \text{ has exactly three 0s.}\}$

2. [10 points] Design an NFA for the language:

$$L = \{w \in \{a, b, c\}^* \mid w \text{ starts with } ac \text{ and ends with } cb.\}$$

- 3. [10 points] Design regular expressions for languages over $\Sigma = \{a, b\}$.
 - (1) All strings that do not end with aba.
 - (2) $L = \{w \mid w \text{ has no more than 5 } a\text{'s.} \}$
- 4. [10 points] Prove that the language $L=\{w\in\{a,b\}^*\mid w=w^R\}$ is not regular with pumping lemma.
- 5. [10 points] Consider the following ε -NFA.

	ε	a	b	c
$\rightarrow p$	$\{q,r\}$	Ø	$\{q\}$	{r}
q	Ø	{ <i>p</i> }	$\{r\}$	$\{p,q\}$
*r	Ø	Ø	Ø	Ø

- (1) Compute the ε -closure of each state.
- (2) Give all the strings of length three or less accepted by the automaton.
- (3) Convert the automaton to a DFA by subset construction. (diagram of transition function)
- i_{st} 6. [10 points] Give a CFG for $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = j + k\}$.
 - 7. [10 points] Find a grammar equivalent to

$$S \to AB \mid CA$$

$$A \to a$$

$$B \to BC \mid AB$$

$$C \to aB \mid b$$

with no useless symbols.

- 8. [10 points] Design a PDA for $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ contains the same number of 0's and 1's }\}.$
- 9. [10 points] Prove or disprove: if L_1 is CFL and $L_1 \cup L_2$ is also CFL, then L_2 must be CFL.
- 10. [10 points] Design Turing machine for the language $\{0^{2n}1^n \mid n \geq 0\}$.

姓名

密

水中

計台

≈ 89% ■

Design a DFA for the language $L = \{w \in \{0,1\}^* \mid w \text{ contains both 01 and 10 as substrings}\}$.

Design a NFA within four states for the language {a}*∪{ab}*.

Design regular expressions for language over $\Sigma = \{0,1\}$. (1). All strings contain the substring 001.

(2). All strings expect the string 001.

Prove that $L = \{0^m 1^n \mid m/n \text{ is an integer}\}\)$ is not regular with pumping lemma.

Convert the following NFA into DFA with subset construction.

Give a context-free grammar for $L = \{ a^i b^j c^{i+j} | i,j > = 0 \}$

Let L be the language generated by the grammar G below S->ABIBBB

A->Bb|ε

B->aB|A

(1).消除空产生式 (2).消除单元产生式

(3).转换到CNF

Design a PDA for $L = \{w \in \{a,b\}^* | w \text{ has more a's than b's} \}$

Prove : for every context free language L, the language $L' = \{0^{|w|} | w \in L\}$ is also context free.

Design a Turing Machine that computes the following function f:0ⁿ->Binary(n) Where integer n>=1 and binary(n) is the binary representation of n.

For example: $f(0^3) = 11 f(0^5) = 101$.

Prove : for every context free language L, the language $L' = \{0^{|W|} | w \in L\}$ is also context free.

超速映射
$$h: Z \to Z^*$$
 $Z = \{0,1\}$ $(0) = 0$ $h(1) = 0$ h

