Experiment6: 具有间断系数的线性 扩散方程

杨乐园 PB18010496

问题描述

1. 针对下述具有间断系数的线性扩散方程:

$$u_t = (a(x,t)u_x)_x, \qquad a(x,t) = egin{cases} 4.0 & x < 0 \ 1.0 & x > 0 \end{cases}$$

考虑Dirichlet零边值问题,并设真解为:

$$u(x,t) = egin{cases} rac{1}{2}e^{-4t}\sin x & x \in [-\pi,0] \ e^{-4t}\sin(2x) & x \in [0,\pi] \end{cases}$$

取网格剖分J=21,41,81,161,321,网格比为 $\mu=\frac{\Delta t}{\Delta x^2}=0.1$ 。并计算终止时刻为T=1.0时算数平均格式、调和平均格式两种格式的 L^2 误差、 L^∞ 误差以及对应的精度阶,并进行分析。

数值方法

数值格式:

$$v_j^{n+1} = v_j^n + \mu[a_{j+\frac{1}{2}}^n(v_{j+1}^n - v_j^n) - a_{j-\frac{1}{2}}^n(v_j^n - v_{j-1}^n)]$$

可以数值保持热量内部的局部守恒性质。针对 $a_{j+\frac{1}{2}}^n$ 有如下i两种计算方式:

•算术平均方式:

$$a^n_{j+rac{1}{2}}=rac{1}{2}(a^n_j+a^n_{j+1})$$

●调和平均方式:

$$a_{j+\frac{1}{2}}^n = [\frac{\theta_{j+\frac{1}{2}}^n}{a_j^n} + \frac{1-\theta_{j+\frac{1}{2}}^n}{a_{j+1}^n}]^{-1}, \qquad where \ \ \theta_{j+\frac{1}{2}}^n = \begin{cases} \frac{(x_*-x_j)}{\Delta x}, & x_* \in [x_j,x_{j+1}] \\ \frac{1}{2}, & otherelse \end{cases}$$

数值结果

我们有如下数值求解结果:

•算术平均:

N	L² 误差	收敛阶	<i>L</i> ∞ 误差	收敛阶	
21	0.00910807		0.006348770		

N	L ² 误差	收敛阶	<i>L</i> ∞ 误差	收敛阶
41	0.00464686	1.00586	0.003450060	0.911544
81	0.00237368	0.986595	0.001813090	0.944901
161	0.00120462	0.987363	0.000934317	0.965085
321	0.000607519	0.992033	0.000474821	0.980929

●调和平均:

N	L ² 误差	收敛阶	<i>L</i> ∞ 误差	收敛阶
21	0.00297699		0.00182199	
41	0.000774868	2.01177	0.000484301	1.98039
81	0.000199385	1.99369	0.00012709	1.96484
161	5.02216e-05	2.00711	3.17082e-05	2.02097
321	1.24393e-05	2.02248	7.52981e-06	2.08352

我们可以明显的看到,算术平均格式收敛阶为1,而调和平均格式收敛阶为2,可见,调和平均格式给出的数值效果更佳。具体表现为:

$$2(rac{1}{a_{j}^{n}}+rac{1}{a_{j+1}^{n}})^{-1}-rac{1}{2}(a_{j}^{n}+a_{j+1}^{n})=O((\Delta x)^{2})$$

代码

其中数值求解代码与绘图代码参见附件!