Primeira Lista de Matemática Discreta - 2022

- 1. Sejam $A = \{x \in \mathbb{N} : x^2 + 1 \le 2\}$ e $B = \{x \in \mathbb{Z} : -1 < x < 2\}$. Determine $A \cap B$, $A \cup B$, $A \times B$, A B, A_B^c e B_A^c .
- 2. Determine $\mathcal{P}(A)$, onde $A = \emptyset$, $A = \{\emptyset\}$ e $A = \{1, 2, 3, 4, 5\}$.
- 3. Determine todas as relações binárias sobre o conjunto $E = \{a, b, c\}$.
- 4. Sejam $A=\{x\in\mathbb{Z}-\{0\}:\frac{30}{x}=n, \text{ onde } n\in\mathbb{N}\}$ e $B=\{x\in\mathbb{R}:x=3n, \text{ onde } n\in\mathbb{N}\}$. Determine $A\cap B,\ A\cup B,\ A\times B,\ A-B,\ A_B^c \in B_A^c$.
- 5. Seja R uma relação. Se R é de equivalência (ordem), mostre que R^{-1} é uma relação de equivalência (ordem).
- 6. Se R é uma relação, mostre que $R \cup R^{-1}$ é simétrica.
- 7. Sejam $E = \mathbb{C}$ e R definida por $(x+yi)R(s+ti) \Leftrightarrow x^2+y^2=s^2+t^2$.
 - (a) Mostre que R é uma relação de equivalência.
 - (b) Determine a classe $\overline{1+i}$.
- 8. Seja a relação R sobre $\mathbb Q$ definida por $xRy \Leftrightarrow x-y \in \mathbb Z.$
 - (a) Mostre que R é uma relação de equivalência.
 - (b) Determine a classe $\overline{100}$.
- 9. Seja a relação R sobre $\mathbb{N} \times \mathbb{N}$ definida por $(a,b)R(c,d) \Leftrightarrow a+b=c+d$.
 - (a) Mostre que R é uma relação de equivalência.
 - (b) Determine a classe de equivalência de (1,2) e (0,5).
- 10. Sejam $E = \{x \in \mathbb{Z} : |x| \leq 3\}$ e a relação R sobre E definida por $xRy \Leftrightarrow x+|x|=y+|y|$.
 - (a) Mostre que R é uma relação de equivalência.
 - (b) Descreva o conjunto quociente E/R.
- 11. Seja a relação R sobre $\mathbb{N} \times \mathbb{N}$ definida por $(a,b)R(c,d) \Leftrightarrow a \mid c \in b \mid d$.
 - (a) Mostre que R é uma relação de ordem parcial. É ordem total?
 - (b) Determine os limites inferiores, limites superiores, supremo, infímo, máximo e mínimo de $A = \{(3,4), (4,5)\}$.
- 12. Seja a relação R sobre $\mathbb{N} \times \mathbb{N}$ definida por $(a,b)R(c,d) \Leftrightarrow a \mid c \in b \leq d$.
 - (a) Mostre que R é uma relação de ordem parcial.
 - (b) Determine os limites inferiores, limites superiores, supremo, infímo, máximo e mínimo de $A = \{(1,2),(2,1)\}$.
- 13. Em relação a ordem de divisibilidade sobre \mathbb{N} , quais dos seguintes conjuntos são totalmente ordenados $A = \{24, 2, 6\}, B = \{3, 15, 5\}, C = \{15, 5, 30\}$ e $D = \mathbb{N}$.
- 14. Sejam $E = \mathbb{C}$ e R uma relação binária sobre E definida por $(a+bi)R(c+di) \Leftrightarrow a \mid c$.
 - (a) Mostre que R é uma relação de equivalência.
 - (b) Determine a classe de equivalência do elemento 2 + 3i.
- 15. Sejam $E = \mathbb{C}$ e R uma relação binária sobre E definida por $(a+bi)R(c+di) \Leftrightarrow a=c$.
 - (a) Mostre que R é uma relação de equivalência.
 - (b) Determine a classe de equivalência do elemento 3 + 4i.
- 16. Sejam $E = \mathbb{N}$ e R uma relação binária sobre E definida por $(a,b)R(c,b) \Leftrightarrow a \leq c$ and $b \mid d$.
 - (a) Mostre que R é uma relação de ordem parcial.
 - (b) Ache os limites superiores, limites inferiores, supremo, ínfimo, máximo e mínimo do conjunto $A = \{(3,4), (4,3)\}$.
- 17. Seja R uma relação sobre $E = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$ definida por $ARB \iff A \subseteq B$, para todo $A, B \in E$.
 - (a) Mostre que R é uma relação de ordem parcial sobre E.
 - (b) Determine os limites inferiores, limites superiores, ínfimo, supremo, mínimo e máximo do conjunto $S = \{\{a\}, \{b,c\}\}.$