進捗報告

表 1: 実験の設定

base model	VGG19				
Optim(w)	SGD(lr=0.0090131, momentum=0.9)				
Scheduler(w)	Step(γ =0.2344, stepsize=100)				
Loss	Cross Entropy Loss				
dataset	cifar10				
batch size	64				
epoch	150				

1 今週やったこと

• 評価実験をたくさん

2 実験

10 回行った探索に対し各々評価を 1 回, VGG19 に対し異なるシード値で 10 回. それぞれ 10 回ずつ実験した.

表 1 に評価時の実験設定を示した. optuna によって 得られた設定を利用した.

2.1 結果

評価時のグラフは./graph を参照. 表 2, 3 にはテスト精度の結果を示した.

3 考察

optuna で $\ln \gamma$, stepsize を最適化したが, 期待していた $\ln \gamma$ 0.01, stepsize が 100 という値に近いパラメータで γ が得られた. train size を 20 分の 1 にしていても割とうまくいくのかもしれない.

google colab だと 3 時間かかっていたのが, usagi サーバーだと 1 時間早くなった. GPU の性能かクラウドの同期に時間がかかるのかは不明だが, google colab で開発して, サーバーで実験を回すのが捗るかもしれない.

ベースラインに対して有意な差があることが分かったが、DART による探索の効果とショートカットの存

在による効果が区別できないので,何本か適当な位置に ショートカット設けたランダムアーキテクチャとの比 較も行いたい.

4 今後の予定

- ランダムアーキテクチャとの比較
- DART の unrolling 実験

5 ソースコード

github の notebook リポジトリ参照.

表 2: 結果のテスト精度 (%)

	1	2	3	4	5	6	7	8	9	10
評価	93.95	94.09	93.32	93.58	93.66	93.65	93.66	93.52	93.80	93.76
ベースライン	92.97	92.95	93.25	92.90	93.06	92.93	93.07	93.07	93.03	93.06

表 3: 精度の比較

	test accracy mean \pm std	delta
評価	93.6990 ± 0.2173	+ 0.6700
ベースライン	93.0290 ± 0.1002	