DS1007 PPC Processor Board

RTI Reference

Release 2021-A - May 2021

How to Contact dSPACE

Mail: dSPACE GmbH

Rathenaustraße 26 33102 Paderborn

Germany

Tel.: +49 5251 1638-0
Fax: +49 5251 16198-0
E-mail: info@dspace.de
Web: http://www.dspace.com

How to Contact dSPACE Support

If you encounter a problem when using dSPACE products, contact your local dSPACE representative:

- Local dSPACE companies and distributors: http://www.dspace.com/go/locations
- For countries not listed, contact dSPACE GmbH in Paderborn, Germany.
 Tel.: +49 5251 1638-941 or e-mail: support@dspace.de

You can also use the support request form: http://www.dspace.com/go/supportrequest. If you are logged on to mydSPACE, you are automatically identified and do not need to add your contact details manually.

If possible, always provide the relevant dSPACE License ID or the serial number of the CmContainer in your support request.

Software Updates and Patches

dSPACE strongly recommends that you download and install the most recent patches for your current dSPACE installation. Visit http://www.dspace.com/go/patches for software updates and patches.

Important Notice

This publication contains proprietary information that is protected by copyright. All rights are reserved. The publication may be printed for personal or internal use provided all the proprietary markings are retained on all printed copies. In all other cases, the publication must not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of dSPACE GmbH.

© 2014 - 2021 by: dSPACE GmbH Rathenaustraße 26 33102 Paderborn Germany

This publication and the contents hereof are subject to change without notice.

AUTERA, ConfigurationDesk, ControlDesk, MicroAutoBox, MicroLabBox, SCALEXIO, SIMPHERA, SYNECT, SystemDesk, TargetLink and VEOS are registered trademarks of dSPACE GmbH in the United States or other countries, or both. Other brand names or product names are trademarks or registered trademarks of their respective companies or organizations.

Contents

About This Reference	5
General Information on the RTI Blockset of the DS1007	9
Overview of RTI1007 Overview of Optional Blocksets	
Nonvolatile Data Handling (NVDATA)	13
General Information on the NVDATA Blockset Overview of the NVDATA Blockset	
NVDATA_READ_BLx Block Description (NVDATA_READ_BLx) Parameters Page (NVDATA_READ_BLx)	15
NVDATA_WRITE_BLx Block Description (NVDATA_WRITE_BLx) Parameters Page (NVDATA_WRITE_BLx)	18
Serial Interface	21
General Information on the Serial Interface	
Basic Principles of Serial Communication with RTI Blocks Basics on the Buffer Used for Serial Communication	
DS1007SER_SETUP Block Description (DS1007SER_SETUP) UART Page (DS1007SER_SETUP) FIFO Page (DS1007SER_SETUP) Advanced Page (DS1007SER_SETUP)	25 26 27
DS1007SER_STAT Block Description (DS1007SER_STAT) Status Page (DS1007SER_STAT)	29
DS1007SER_TX Block Description (DS1007SER_TX)	33

DS1007SER_RX	37
Block Description (DS1007SER_RX)	37
RX Parameters Page (DS1007SER_RX)	39
Advanced Page (DS1007SER_RX)	40
DS1007SER_INT_Ix	41
Block Description (DS1007SER_INT_Ix)	41
Interrupt Page (DS1007SER_INT_lx)	42
DS1007SER_INT_REC_LEV	43
Block Description (DS1007SER_INT_REC_LEV)	43
Unit Page (DS1007SER_INT_REC_LEV)	44
Index	45

About This Reference

Content

This document provides you with detailed information about the Real-Time Interface (RTI) of your DS1007 PPC Processor Board.

Symbols

dSPACE user documentation uses the following symbols:

Symbol	Description
▲ DANGER	Indicates a hazardous situation that, if not avoided, will result in death or serious injury.
▲ WARNING	Indicates a hazardous situation that, if not avoided, could result in death or serious injury.
▲ CAUTION	Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.
NOTICE	Indicates a hazard that, if not avoided, could result in property damage.
Note	Indicates important information that you should take into account to avoid malfunctions.
Tip	Indicates tips that can make your work easier.
?	Indicates a link that refers to a definition in the glossary, which you can find at the end of the document unless stated otherwise.
	Precedes the document title in a link that refers to another document.

Naming conventions

dSPACE user documentation uses the following naming conventions:

%name% Names enclosed in percent signs refer to environment variables for file and path names.

< > Angle brackets contain wildcard characters or placeholders for variable file and path names, etc.

Examples:

- Where you find terms such as rti<XXXX> replace them by the RTI platform support you are using, for example, rti1007.
- Where you find terms such as <model> or <submodel> in this document, replace them by the actual name of your model or submodel. For example, if the name of your Simulink model is smd_1007_sl.slx and you are asked to edit the <model>_usr.c file, you actually have to edit the smd_1007_sl_usr.c file.

RTI block name conventions All I/O blocks have default names based on dSPACE's board naming conventions:

- Most RTI block names start with the board name.
- A short description of functionality is added.
- Most RTI block names also have a suffix.

Suffix	Meaning
В	Board number (for PHS-bus-based systems)
М	Module number (for MicroAutoBox II)
С	Channel number
G	Group number
CON	Converter number
BL	Block number
P	Port number
1	Interrupt number

A suffix is followed by the appropriate number. For example, DS2201IN_B2_C14 represents a digital input block located on a DS2201 board. The suffix indicates board number 2 and channel number 14 of the block. For more general block naming, the numbers are replaced by variables (for example, DS2201IN_Bx_Cy).

Special folders

Some software products use the following special folders:

A standard folder for application-specific **Common Program Data folder** configuration data that is used by all users.

%PROGRAMDATA%\dSPACE\<InstallationGUID>\<ProductName>

%PROGRAMDATA%\dSPACE\<ProductName>\<VersionNumber>

A standard folder for user-specific documents. Documents folder %USERPROFILE%\Documents\dSPACE\<ProductName>\ <VersionNumber>

Local Program Data folder A standard folder for application-specific configuration data that is used by the current, non-roaming user.

%USERPROFILE%\AppData\Local\dSPACE\<InstallationGUID>\ <ProductName>

Accessing dSPACE Help and PDF Files

After you install and decrypt dSPACE software, the documentation for the installed products is available in dSPACE Help and as PDF files.

dSPACE Help (local) You can open your local installation of dSPACE Help:

- On its home page via Windows Start Menu
- On specific content using context-sensitive help via F1

dSPACE Help (Web) You can access the Web version of dSPACE Help at www.dspace.com.

To access the Web version, you must have a *mydSPACE* account.

PDF files You can access PDF files via the 🖸 icon in dSPACE Help. The PDF opens on the first page.

General Information on the RTI Blockset of the DS1007

Introduction	Here you get basic information on the RTI Blockset of the DS1007 (RTI1007).	
Where to go from here	Information in this section	
	Overview of RTI1007	

Overview of RTI1007

About the board

The DS1007 PPC Processor Board is the core of a DS1007 modular system (PHS-bus-based system with a DS1007 PPC Processor Board). It provides an on-board 32-bit PHS-bus interface and can handle up to 16 I/O boards simultaneously.

rtilibm

After you enter **rti** in the MATLAB Command Window, the Real-Time Interface (RTI) board library for the DS1007 is displayed.

Note

If you have several RTIs installed and another board library appears, enter rti1007 in the MATLAB Command Window to switch to the DS1007 board library.

The following components are available in the rtilibm window:

- Simulink calls the Simulink Library Browser from which all Simulink blocks can be accessed. For more information, refer to the Simulink user documentation by MathWorks[®].
- Blocksets includes optional RTI blocks for the DS1007.
- Help displays this DS1007 RTI Reference.
- TaskLib offers RTI blocks for modeling interrupts in Simulink.

 For details, see TaskLib Block Reference (RTI and RTI-MP Implementation Reference □).
- EXTRAS offers RTI blocks for special purposes for example, the service code for the dSPACE experiment software.

For details, see Extras Block Reference (RTI and RTI-MP Implementation Reference (Q)).

- DEMOS shows example models.
- DS1007 is a library comprising the RTI blocks for the I/O units directly provided by the DS1007. See below for details.
- DS2001 ... DS5101 represent the libraries comprising the RTI blocks for all I/O boards that can be connected to the DS1007. These libraries implement the I/O capabilities of the various dSPACE I/O boards in Simulink models. For details, refer to the corresponding RTI References.

Method

To open one of the rtilibm components

1 Double-click the corresponding button in the rtilibm window.

DS1007 Blockset

The DS1007 Blockset provides the RTI blocks that implement the I/O capabilities of the DS1007 board in Simulink models.

After you double-click the DS1007 button in the rtilibm window, the DS1007 Blockset is displayed:

The following I/O units can be accessed by this RTI blockset:

- Serial Interface on page 21
- Nonvolatile Data Handling (NVDATA) on page 13

Related topics

References

Overview of Optional Blocksets

Objective

The DS1007 blockset provides access to some optional RTI blocksets. The blockset buttons are only enabled if the blocksets were installed according to the required licenses.

Blocksets

Click the Blocksets button in the RTI board library window to display the library with the optional blocksets as follows:

An optional blockset is only enabled if it supports the active platform and, where required, an appropriate license is installed. For example, DS1007 supports the following optional blocksets:

- RTI Multiprocessor Systems Blockset (RTI-MP Blockset)
 For further information, refer to RTI-MP Blockset Reference (RTI and RTI-MP Implementation Reference 🚇).
- RTI Gigalink Blockset (RTIGLBS Blockset)
 For further information, refer to RTI Gigalink Blockset Reference (RTI and RTI-MP Implementation Reference (ATI).
- RTI USB Flight Recorder Blockset

 For further information, refer to RTI USB Flight Recorder Blockset

 Reference

 ...
- RTI Ethernet Blockset
 For further information, refer to RTI Ethernet Blockset Reference 🕮 .
- RTI FPGA Programming Blockset

 For further information, refer to RTI FPGA Programming Blockset FPGA

 Interface Reference □ and RTI FPGA Programming Blockset Processor

 Interface Reference □ .
- RTI RapidPro Control Unit Blockset (RTI RPCU Blockset)
 For further information on the combination of a PHS-bus-based system and RapidPro, refer to Prototyping Systems with RapidPro Hardware (RapidPro

System – I/O Subsystem MPC565 Implementation Features \square). For further information on the blockset, refer to RapidPro System – I/O Subsystem MPC565 RTI Reference 🕮 .

References **Related topics** General Information on the RTI Blockset of the DS1007.....

Nonvolatile Data Handling (NVDATA)

Introduction

Providing information on the RTI blocks used for implementing nonvolatile data handling.

Where to go from here

Information in this section

General Information on the NVDATA Blockset	14
NVDATA_READ_BLx To read a data set from the board's nonvolatile memory.	15
NVDATA_WRITE_BLx To write a data set to the board's nonvolatile memory.	18

Information in other sections

Nonvolatile Data Handling (NVDATA) (DS1007 Features (LL)

The DS1007 provides access to the board's nonvolatile memory by implementing the access in a real-time application or by using the board's web interface.

Using the Web Interface for Nonvolatile Data Handling (DS1007 Features (LL))

The web interface of your DS1007 provides a configuration page which lets you manage the data sets stored in the board's nonvolatile memory.

General Information on the NVDATA Blockset

Introduction

To give you basic information on the RTI NVDATA Blockset.

Overview of the NVDATA Blockset

Access

Double-click the Nonvolatile Data button in the DS1007 Blockset to display the NVDATA Blockset.

You can use the NVDATA blocks to implement access to the board's nonvolatile memory.

To access the nonvolatile memory, you always have to use a block pair consisting of an NVDATA_WRITE_BLx block and an NVDATA_READ_BLx block.

NVDATA_READ_BLx

Purpose	To read a data set from the board's nonvolatile memory.	
Where to go from here	Information in this section	
	Block Description (NVDATA_READ_BLx)	
	Information in other sections	
	NVDATA_WRITE_BLx	

Block Description (NVDATA_READ_BLx)

I/O characteristics

The following table describes the ports of the block:

Port	Description
Output	t
Data	Outputs the specified data set. The name of the port corresponds to the name that you specified in the Data tag setting. Data type: Depends on the Data type setting Width: Depends on the Number of elements setting
Status	Indicates whether the data set that you want to read is valid. There must be one initial write access to the data set before a read access will be valid. Data type: UInt32 Range: 0, 1
	0: Data set has not been previously written, i.e., it is still uninitialized.
	1: Data set has been written at least once. The Status port allows you to specify initial default values of a data set.

Dialog pages

You can specify the dialog settings on the Parameters page (refer to Parameters

Page (NVDATA_READ_BLx) on page 16).

Related RTLib functions

This RTI block is implemented using the following RTLib functions. The *DS1007 RTLib Reference* contains descriptions of these functions.

This RTI block is implemented using the following RTLib functions:

NvData_read

Parameters Page (NVDATA_READ_BLx)

Purpose

To specify the data set to be read from the board's nonvolatile memory.

Dialog settings

Data tag Lets you specify a unique name for the data set. The name is used for the Data port and can consist of up to 63 characters.

Note

A valid data set name is a character string of letters, digits, and underscores. There are the following naming restrictions for the data set name:

- The first character must be a letter.
- The name must not be a keyword, such as while or if.

Number of elements Lets you specify the number of elements in the data set in the range 1 ... 64.

Data type Lets you specify the data type of the elements contained in the data set. You can specify only one data type for the entire data set.

Data Type	Meaning
Int8	8-bit integer values Allocates 1 byte
UInt8	8-bit integer values (unsigned) Allocates 1 byte
Int16	16-bit integer values Allocates 2 bytes
UInt16	16-bit integer values (unsigned) Allocates 2 bytes
Int32	32-bit integer values Allocates 4 bytes
UInt32	32-bit integer values (unsigned) Allocates 4 bytes
Single (Float32)	32-bit float values Allocates 4 bytes
Double (Float64)	64-bit float values Allocates 8 bytes

Related topics

References

NVDATA_WRITE_BLx

Purpose	To write a data set to the board's nonvolatile memory.	
Where to go from here	Information in this section	
	Block Description (NVDATA_WRITE_BLx)	
	Parameters Page (NVDATA_WRITE_BLx)	
	Information in other sections	
	NVDATA_READ_BLx	

Block Description (NVDATA_WRITE_BLx)

I/O characteristics

The following table describes the ports of the block:

Port	Description
Input	
Data	Reads the specified data set. The name of the port corresponds to the name that you specified in the Data tag setting.
	Data type: Depends on the Data type setting
	Width: Depends on the Number of elements setting

Dialog pages

The dialog settings can be specified on the Parameters page (refer to Parameters Page (NVDATA_WRITE_BLx) on page 19).

Related RTLib functions

This RTI block is implemented using the following RTLib functions. The *DS1007 RTLib Reference* contains descriptions of these functions.

- NvData_create
- NvData_createDataSet
- NvData_setName
- NvData_setType
- NvData_setDimension
- NvData_apply
- NvData_write

Parameters Page (NVDATA_WRITE_BLx)

Purpose

To specify the data set to be written to the board's nonvolatile memory.

Dialog settings

Data tag Lets you specify a unique name for the data set. The name is used for the Data port and can consist of up to 63 characters.

Note

A valid data set name is a character string of letters, digits, and underscores. There are the following naming restrictions for the data set name:

- The first character must be a letter.
- The name must not be a keyword, such as while or if.

Number of elements Lets you specify the number of elements in the data set in the range 1 ... 64.

Data type Lets you specify the data type of the elements contained in the data set. You can specify only one data type for the entire data set.

Data Type	Meaning
Int8	8-bit integer values Allocates 1 byte
UInt8	8-bit integer values (unsigned) Allocates 1 byte
Int16	16-bit integer values Allocates 2 bytes
UInt16	16-bit integer values (unsigned) Allocates 2 bytes
Int32	32-bit integer values Allocates 4 bytes
UInt32	32-bit integer values (unsigned) Allocates 4 bytes
Single (Float32)	32-bit float values Allocates 4 bytes
Double (Float64)	64-bit float values Allocates 8 bytes

Related topics

References

Serial Interface

Where to go from here

Information in this section

General Information on the Serial Interface	22
Basic Principles of Serial Communication with RTI Blocks	23
DS1007SER_SETUP	25
DS1007SER_STAT	29
DS1007SER_TX	33
DS1007SER_RX	37
DS1007SER_INT_Ix	41
DS1007SER_INT_REC_LEV	43

General Information on the Serial Interface

Overview of the Serial Interface

Introduction

After you double-click the Serial button in the DS1007 Blockset window, the DS1007 Serial Blockset is displayed.

The Serial Interface blocks can be used to implement serial communication.

Basic principles

Refer to Basic Principles of Serial Communication with RTI Blocks on page 23.

Note

Although the serial blocks of different boards are almost the same, you must always use the board-specific serial blocks.

Library components

The library contains the following RTI blocks:

- DS1007SER_SETUP on page 25
- DS1007SER_STAT on page 29
- DS1007SER_TX on page 33
- DS1007SER_RX on page 37
- DS1007SER_INT_Ix on page 41
- DS1007SER_INT_REC_LEV on page 43

Basic Principles of Serial Communication with RTI Blocks

Purpose	This section explains the basic principles of serial communication with RTI blocks.
Where to go from here	Information in this section
	Basics on the Buffer Used for Serial Communication23
	Information in other sections
	Serial Interface of the DS1007 (DS1007 Features ♠)

Basics on the Buffer Used for Serial Communication

Software FIFO buffer

A software FIFO buffer is installed between your model and the UART. The buffer is a memory that provides the UART with additional space for data storage and ensures that the generic blocks are hardware-independent.

The software FIFO buffer stores data that will be written to the UART (transmit buffer) or that was read by it (receive buffer).

Transmit buffer

To transmit data, you only have to write it to the transmit buffer (TX SW FIFO) with the DS1007SER_TX block. The data is then transmitted via the UART.

Receive buffer

Data that is received via the serial interface is first copied to the UART buffer. When the number of received bytes exceeds the UART threshold or when the UART timeout is triggered, the bytes are copied to the receive buffer.

UART threshold The UART threshold is defined in the DS1007SER_SETUP block.

UART timeout The UART timeout is triggered when no signal is received during an interval of 4 signals after the last signal. The time value depends on

the number of bits per signal and the baud rate. The worst case is a signal with 12 bits (1 start bit, 8 data bits, 1 parity bit, and 2 stop bits) and a baud rate of 300 baud. In this case the timeout is 160 ms after the last signal is received. To get the data into your model, use the DS1007SER_RX block. It reads the data from the receive buffer and copies it to an outport. To get a trigger signal when the receive buffer contains data, use the DS1007SER_INT_Ix block.

DS1007SER_SETUP

Where to go from here

Information in this section

Block Description (DS1007SER_SETUP)	
UART Page (DS1007SER_SETUP)	
FIFO Page (DS1007SER_SETUP)	
Advanced Page (DS1007SER_SETUP)	

Block Description (DS1007SER_SETUP)

Block

Serial Setup

DS1007SER_SETUP

Purpose

To set the global parameters for the serial interface.

Note

- This block has to be placed in the model if any of the other serial blocks is used for the corresponding board.
- This block must not be used more than once per channel.
- For the moment, RTI-MP allows you to use only one DS1007_SER_SETUP block in a multiprocessor system. If you need more than one DS1007_SER_SETUP block, contact dSPACE support.

I/O mapping

For information on the I/O mapping, refer to Serial Interface of the DS1007 (DS1007 Features \square).

Dialog pages

The dialog settings can be specified on the following pages:

- UART Page (refer to UART Page (DS1007SER_SETUP) on page 26)
- FIFO Page (refer to FIFO Page (DS1007SER_SETUP) on page 27)
- Advanced Page (refer to Advanced Page (DS1007SER_SETUP) on page 28)

Related RTLib functions

This RTI block is implemented using the following RTLib functions:

- dsser_init
- dsser_config
- dsser_set

Related topics

References

UART Page (DS1007SER_SETUP)

Purpose

To specify the UART parameters.

Dialog settings

Transceiver Lets you select the transceiver mode:

Transceiver Mode	Meaning
RS232	RS232 mode

Baud rate Lets you specify the baud rate in bits per second.

Mode	Baud Rate Range
RS232	5 230,400 baud

For further information, refer to Serial Interface of the DS1007 (DS1007 Features \square).

Data bits Lets you choose the number of data bits. The valid values are: 5, 6, 7, 8.

Stop bits Lets you choose the number of stop bits. The valid values are: 1, 1.5 or 2. If you select 1.5 or 2, the number of stop bits depends on the number of specified data bits: For 5 data bits there are 1.5 stop bits; for 6, 7 and 8 data bits there are 2 stop bits.

Parity Lets you choose the parity mode:

Parity Mode	Meaning
No	No parity bits
Odd Parity bit is set so that there is an odd number of "1" bits the byte, including the parity bit	

Parity Mode	Meaning
Even	Parity bit is set so that there is an even number of "1" bits in the byte, including the parity bit
Forced parity one	Parity bit is forced to a logical 1

Copy data to RX SW FIFO after reception of <value> byte(s) at

latest Lets you choose the UART threshold at which data is copied from the UART to the receive buffer. Values are: 1, 4, 8, 14.

Note

Use the highest UART threshold possible to generate fewer interrupts, i.e., to decrease the UART's workload.

Enable RTS/CTS mode Lets you enable a hardware handshake (RTS/CTS).

Related topics

References

Advanced Page (DS1007SER_SETUP)	28
Block Description (DS1007SER_SETUP)	25
FIFO Page (DS1007SER_SETUP)	27

FIFO Page (DS1007SER_SETUP)

Purpose

To specify the software FIFO buffer.

Dialog settings

SW FIFO size Lets you specify the size of the software buffer. The size must be a power of two (2^n) and at least 64 bytes great. The maximum size depends on the available memory.

Overwrite mode Lets you choose the behavior of the receive buffer when an overrun occurs:

Overwrite Mode	Meaning
Discard new data	If the receive buffer is full, the new data is discarded.
Replace old data with FIFO method	If the receive buffer is full, the new data replaces the oldest data in the buffer. The number of bytes that are replaced is defined by Block size.

Block size Lets you specify the number of bytes that are deleted in RX SW FIFO overrun (see table above). Use this parameter to set up the appropriate data consistency for your model. Value range: 1 ... (SW FIFO size-1)

Related topics References Advanced Page (DS1007SER_SETUP).....

Advanced Page (DS1007SER_SETUP)

Purpose	To specify the behavior on model termination.	
Dialog settings	Disable UART on termination Lets you choose the UART behavior on model termination. If the UART is disabled, data is neither transmitted nor received. No interrupts are generated in this case.	
Related topics	References	
	Block Description (DS1007SER_SETUP)	

DS1007SER_STAT

Where to go from here

Information in this section

Block Description (DS1007SER_STAT))
Status Page (DS1007SER_STAT)	

Block Description (DS1007SER_STAT)

Block

Purpose

To read the contents of the UART status register.

Note

This block can only be used in interrupt-driven subsystems (see DS1007SER_INT_Ix on page 41).

- The Line status delivers correct results only if the block resides in a subsystem driven by the Line status interrupt.
- The Modem status delivers correct results only if the block resides in a subsystem driven by the Modem status interrupt.
- The Interrupt status is non-functional at the moment.

Description

The block reads the line, modem and interrupt statuses and writes the values to the outports. If you do not want to evaluate a status register, you can disable its outport with the block dialog.

I/O mapping

For information on the I/O mapping, refer to Serial Interface of the DS1007 (DS1007 Features (12)).

I/O characteristics

The outports show the values of the UART's register.

• The Line port outputs the 8 bits of the line status register. The following table shows the meanings of the individual bits:

Index	Meaning
1	Data ready (DR) indicator
2	Overrun error (OE) indicator
3	Parity error (PE) indicator
4	Framing error (FE) indicator
5	Break interrupt (BI) indicator
6	Transmitter holding register empty (THRE) indicator
7	Transmitter empty (TEMT) indicator
8	Error in receiver FIFO

• The Modem port outputs the 8 bits of the modem status register. The following table shows the meanings of the individual bits:

Index	Meaning
1	Clear-to-send (CTS) changed state
2	Data-set-ready (DSR) changed state
3	Ring-indicator (RI) changed state
4	Data-carrier-detect (DCD) changed state
5	Complement of CTS
6	Complement of DSR
7	Complement of RI
8	Complement of DCD

• The Interrupt port outputs the 8 bits of the interrupt status register. The following table shows the meanings of the individual bits:

Index	Meaning
1	Interrupt status: 0 if interrupt pending
2	Interrupt ID bit 1
3	Interrupt ID bit 2
4	Interrupt ID bit 3
5	Not relevant
6	Not relevant
7	FIFOs enabled (bit 0)
8	FIFOs enabled (bit 1)

• The following table shows the characteristics of the block outputs:

Port	Characteristics	Value
Line	Datatype	Boolean
	Range	0, 1
	Size	8
Modem	Datatype	Boolean
	Range	0, 1
	Size	8
Interrupt	Datatype	Boolean
	Range	0, 1
	Size	8

Dialog pages

The dialog settings can be specified on the following pages:

Status Page (refer to Status Page (DS1007SER_STAT) on page 32)

Related RTLib functions

This RTI block is implemented using the following RTLib function:

dsser_status_read

Related topics

References

dsser_status_read (DS1007 RTLib Reference ♠)
Status Page (DS1007SER_STAT).....

...32

Status Page (DS1007SER_STAT)

Purpose	To enable the status registers to be read.	
Dialog settings	Enable Line status port Lets you enable the line status output of the UART.	
	Enable Modem status port Lets you enable the modem status output of the UART.	
	Enable Interrupt status port Lets you enable the interrupt status output of the UART.	
Related topics	References	
	Block Description (DS1007SER_STAT)	

DS1007SER_TX

Where to go from here

Information in this section

Block Description (DS1007SER_TX)	
TX Parameters Page (DS1007SER_TX)	
Advanced Page (DS1007SER_TX)	

Block Description (DS1007SER_TX)

Block TXBytes NumTXBytes Serial Transmit Status DS1007SER TX To send data via the serial interface. **Purpose** The block sends the bytes of the TXBytes input via the serial interface during one Description sample step. The number of bytes to be sent can be either fixed or variable. If the number of bytes to be sent is fixed, you have to specify it with a block parameter. If the number of bytes to be sent is variable, you can specify it with either a block parameter or an inport. The status and the number of bytes that were sent are returned via outports. You can disable the NumBytes input, NumTXBytes output and Status output with the block dialog. For information on the I/O mapping, refer to Serial Interface of the DS1007 I/O mapping (DS1007 Features). I/O characteristics • The TXBytes input must be the stream of bytes to be written to the software buffer within one sample step.

- The NumBytes input must be the number of bytes to be sent within one sample step. The value must be less than or equal to the Maximum number of bytes block parameter. If it is less, only the specified number of bytes is sent
- The NumTXBytes port outputs the number of bytes that could be written to the software buffer within the current sample step. You can use this output value and the NumTXBytes input to verify whether all the data could be sent.
- The Status port outputs the status of writing data to the software buffer within the current sample step. One of the following values is returned:

Return Value	Meaning
0	No error
202	The FIFO is filled or not all data could be copied to the FIFO

• The following table shows the characteristics of the block inputs and outputs:

Port	Characteristics	Value
TXBytes	Datatype	UInt8
	Range	0 255
	Size	1 (SW FIFO size - 1)
NumBytes	Datatype	UInt32
	Range	1 (SW FIFO size - 1)
NumTXBytes	Datatype	UInt32
	Range	1 (SW FIFO size - 1)
Status	Datatype	Int32
	Range	int32

SW FIFO size is a block parameter. For further information, refer to DS1007SER_SETUP on page 25.

Dialog pages

The dialog settings can be specified on the following pages:

- Tx Parameters Page (refer to TX Parameters Page (DS1007SER_TX) on page 35)
- Advanced Page (refer to Advanced Page (DS1007SER_TX) on page 35)

Related RTLib functions

This RTI block is implemented using the following RTLib function:

dsser_transmit

Related topics

References

Advanced Page (DS1007SER_TX)	35
DS1007SER_SETUP	25
dsser_transmit (DS1007 RTLib Reference 🕮)	
TX Parameters Page (DS1007SER_TX)	35

TX Parameters Page (DS1007SER_TX)

Purpose

To specify the transmitting parameters.

Dialog settings

Transmission SW FIFO mode Lets you specify how to react if there is not enough free space in the transmit buffer:

Data Handling	Meaning
Discard all new data	All data in the sample step is discarded. Data consistency is ensured but you have to repeat the complete data from this sample step.
Write as much data as possible	The transmit buffer is filled until it is full. You only have to repeat bytes which did not fit into the transmit buffer.

Parameter flexibility Lets you specify whether the number of bytes to be sent is fixed (non-tunable) or variable (tunable).

Number of bytes Lets you specify the number of bytes to be sent within one sample step.

Maximum number of bytes Lets you specify the maximum number of bytes that can be sent within one sample step. The valid value range is:

1 ... (SW FIFO size-1) (SW FIFO size is a block parameter, see DS1007SER_SETUP on page 25).

Specify the number of bytes Lets you specify whether to set the number of bytes to be sent within one sample step via the NumBytes inport or the block parameter.

Related topics

References

Advanced Page (DS1007SER_TX)	35
Block Description (DS1007SER_TX)	33

Advanced Page (DS1007SER_TX)

Purpose	To specify the output.	
Dialog settings	Enable TXBytes port bytes that could be sent	Lets you specify whether to output the number of or not.

Enable Status port	Lets you specify whether to output the transmission
status or not	

Related topics	References	
	Block Description (DS1007SER_TX)	

DS1007SER_RX

Where to go from here

Information in this section

Block Description (DS1007SER_RX)	
RX Parameters Page (DS1007SER_RX)	
Advanced Page (DS1007SER_RX)	

Block Description (DS1007SER_RX)

Block

Purpose

To read bytes from the serial interface.

Description

The block receives bytes via a serial interface and writes them to the RXBytes output. The number of bytes to be received can be either fixed or variable. If the number of bytes to be received is fixed, you have to specify it with a block parameter. If the number of bytes to be received is variable, you can specify it with either a block parameter or an inport. The status and the number of received bytes are returned via outports.

You can disable the NumBytes input, NumRXBytes output and Status output with the block dialog.

Note

The run-time code of the block is not generated in MdlOutputs() but in rti_mdl_sample_input(). If this block is placed in an enabled subsystem, received data is therefore read from the RX SW FIFO even if the Enable input signal of the subsystem is 0.

I/O mapping

For information on the I/O mapping, refer to Serial Interface of the DS1007 (DS1007 Features (12)).

I/O characteristics

- The NumBytes input must be the number of bytes to be read from the software buffer within one sample step.
- The RXBytes port outputs the stream of data that could be read from the software buffer within one sample step. If fewer than the expected number of bytes could be received, the last bytes of the output still contain the data from the previous sample step.
- The NumRXBytes port outputs the number of bytes that could be read from the software buffer within one sample step.
- The Status port outputs the reception status. One of the following values is returned:

Return Value	Meaning
0	No error
4	The operation failed with no effect on the input or output data. No data is written to or read from the FIFO.
5	No new data is read from the FIFO.
202	The FIFO is filled or not all data could be copied to the FIFO.

• The following table shows the characteristics of the block input and outputs:

Port	Characteristics	Value
NumBytes	Datatype	Ulnt32
	Range	1 (SW FIFO size - 1)
RXBytes	Datatype	UInt8
	Range	0 255
	Size	1 (SW FIFO size - 1)
NumRXBytes	Datatype	Ulnt32
	Range	1 (SW FIFO size - 1)
Status	Datatype	Int32
	Range	Int32

SW FIFO size is a block parameter. For further information, refer to DS1007SER_SETUP on page 25.

Dialog pages

The dialog settings can be specified on the following pages:

- RX Parameters Page (refer to RX Parameters Page (DS1007SER_RX) on page 39)
- Advanced Page (refer to Advanced Page (DS1007SER_RX) on page 40)

Related RTLib functions

This RTI block is implemented using the following RTLib functions:

- dsser_receive
- dsser_receive_term

Related topics

References

Advanced Page (DC1007CEP, DV)	40
Advanced Page (DS1007SER_RX)	40
DS1007SER_SETUP	25
dsser_receive (DS1007 RTLib Reference 🚇)	
dsser_receive_term (DS1007 RTLib Reference 🕮)	
RX Parameters Page (DS1007SER_RX)	39
-	

RX Parameters Page (DS1007SER_RX)

Purpose

To specify the receiving parameters.

Dialog settings

Reception mode Lets you specify how to react if there are fewer than the expected number of bytes in the receive buffer:

Data Handling	Meaning
Skip read operation	The new data is left in the receive buffer. The received data is collected in the receive buffer until the specified number of bytes is reached. Then it is copied to the RXBytes output.
Read available data anyway	All the available data is copied from the receive buffer to the RXBytes output.

Parameter flexibility Lets you specify whether the number of bytes to be received is fixed (non-tunable) or variable (tunable).

Number of bytes Lets you specify the number of bytes to be received within one sample step.

Maximum number of bytes Lets you specify the maximum number of bytes that can be received within one sample step. Value range: 1 ... (SW FIFO size-1) (SW FIFO size is a block parameter, see DS1007SER_SETUP on page 25).

Specify the number of bytes Lets you specify whether to set the number of bytes to be received within one sample step via the NumBytes input or the block parameter.

Related topics References

Advanced Page (DS1007SER_RX)

Purpose	To specify the output.	
Dialog settings	Enable NumRXBytes port Lets you specify whether to output the number of bytes that could be received or not.	
	Enable Status port Lets you specify whether to output the transmission status or not.	
Related topics	References	
	Block Description (DS1007SER_RX)	

DS1007SER_INT_Ix

Where to go from here

Information in this section

Block Description (DS1007SER_INT_Ix)

Block	DS1007 SER Interrupt Receive Interrupt DS1007SER_INT_I1
Purpose	To make the interrupts of the serial interface available as trigger sources in the model.
I/O mapping	For information on the I/O mapping, refer to Serial Interface of the DS1007 (DS1007 Features (LLL)).
I/O characteristics	The output triggers a function call to a subsystem if it is connected.
Dialog pages	The dialog settings can be specified on the following pages: • Interrupt Page (refer to Interrupt Page (DS1007SER_INT_Ix) on page 42)
Related RTLib functions	This RTI block is implemented using the following RTLib functions: dsser_subint_handler_inst dsser_subint_enable dsser_subint_disable

Related topics

References

dsser_subint_disable (DS1007 RTLib Reference 🕮) dsser_subint_enable (DS1007 RTLib Reference 1111) dsser_subint_handler_inst (DS1007 RTLib Reference (LL) Interrupt Page (DS1007SER_INT_Ix).....

Interrupt Page (DS1007SER_INT_Ix)

Purpose

To specify the interrupt source.

Dialog settings

Interrupt source Lets you choose the interrupt type. The following table shows the available interrupt types:

Interrupt Type	Meaning
RX SW FIFO	Interrupt triggered when the number of bytes in the receive buffer reaches the specified threshold (see Initial RX SW FIFO threshold)
TX SW FIFO	Interrupt triggered when the transmit buffer is empty
Line status	Line status interrupt of the UART
Modem status	Modem status interrupt of the UART

Initial RX SW FIFO threshold Lets you specify the RX SW FIFO threshold for the receive interrupt in the range 1 ... (SW FIFO size -1) . The value should be a multiple of the UART threshold (see DS1007SER_SETUP on page 25).

The RX SW FIFO threshold can be changed during run time by using the block DS1007SER_INT_REC_LEV on page 43.

Related topics

References

Block Description (DS1007SER_INT_Ix).....

DS1007SER_INT_REC_LEV

Where to go from here

Information in this section

Block Description (DS1007SER_INT_REC_LEV)	
Unit Page (DS1007SER_INT_REC_LEV)	

Block Description (DS1007SER_INT_REC_LEV)

Purpose	To change the RX SW FIFO threshold during run time.
i di posc	To change the fix 500 file short during fair time.

DescriptionThe block changes the RX SW FIFO threshold that is initially specified by the DS1007SER_INT_Ix block (see DS1007SER_INT_Ix on page 41).

I/O mapping For information on the I/O mapping, refer to Serial Interface of the DS1007 (DS1007 Features (LLL)).

I/O characteristics

- The Receive SW FIFO Threshold input sets a new RX SW FIFO threshold.
- The following table shows the characteristics of the block input:

Port	Characteristics	Value
Receive SW FIFO Threshold	Datatype	UInt32
	Range	1 (SW FIFO size - 1)

SW FIFO size is a block parameter. For further information, refer to DS1007SER_SETUP on page 25.

Dialog pages

This block provides the Unit page (refer to Unit Page (DS1007SER_INT_REC_LEV) on page 44), but there are no settings to be specified.

Related RTLib functions

This RTI block is implemented using the following RTLib functions:

- dsser_config
- dsser_fifo_reset
- dsser_transmit_fifo_level
- dsser_receive_fifo_level

Related topics

References

Unit Page (DS1007SER_INT_REC_LEV)

Dialog settings	There are no dialog settings on the Unit page to be specified.
Related topics	References
	Block Description (DS1007SER_INT_REC_LEV)

Common Program Data folder 6 D Documents folder 6 DS1007 board library 9 DS1007SER_INT_IX 41 DS1007SER_INT_REC_LEV 43 DS1007SER_RX 37 DS1007SER_SETUP 25 DS1007SER_STAT 29 DS1007SER_TX 33 L library RTI1007 9 RTI2001 ... RTI5101 9 Local Program Data folder 6 Ν nonvolatile data handling 13 NVDATA 13 NVDATA_READ_BLx block description 15 Parameters page 16 NVDATA_WRITE_BLx block description 18 Parameters page 19 R receive buffer 23 RX SW FIFO 23 S serial interface 21 transmit buffer 23 TX SW FIFO 23 U UART 21 parameter settings 26

C