

An Open Mathematical Knowledge Sharing Community Brought to you by Zaiku Group and Homomorphic Labs.

Lecture 2 — Friday, June 7.

Bambordé Baldé

Recap of the basic notions covered in lecture 1:

- (a) Naive definition of a set
- (b) Empty set
- (c) Subset including proper subset
- (d) Unions and intersection of sets
- (e) Relative and absolute complements

Questions:

- (a) Did anyone find it hard to grasp these basic concepts?
- (b) Did anyone find it hard to solve the assignments?

If the answer to the above is yes, then you should not proceed with the content on lecture 2 until you feel comfortable with the basics of lecture 1!

Maps Between Sets

Definition 1.0

Let X and Y be sets. A map (or function) from X to Y written $f:X\longrightarrow Y$ is a prescription that associates an element of X with an element of Y.

▶ Remark 1:

- (a) If f is a map from X to Y, then we write $f: X \to Y$, or $X \xrightarrow{f} Y$. The element Y of Y assigned by f to an element X of X is denoted by f(X) and called the *image* of X under f.
- (b) The set of all the elements of X that are covered under the map f is called the domain of f, and we normally denote it as Dom(f).
- (c) The image of f is defined as $Im(f) = \{f(x) \mid x \in Dom(f)\}.$
- (d) Very often we write Im_f instead of Im(f).
- ▶ Abstract toy example: Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3\}$. We can construct a map $f : X \longrightarrow Y$ using the prescription; $f(x_1) = y_3$ and $f(x_3) = y_2$. This means that $Dom(f) = \{x_1, x_3\}$ and $Im(f) = \{y_3, y_2\}$ right?

Special Types of Maps(i)

Definition 1.1

Let X and Y be sets. A map $f: X \longrightarrow Y$ is called:

- (a) **Surjective** (or onto) if Im(f) = Y i.e. $\forall y \in Y$ there exists a $x \in X$ such that y = f(x).
- (b) Injective if $\forall x_1, x_2 \in Dom(f)$, $f(x_1) = f(x_2)$ if only if $x_1 = x_2$.
- (c) Bijective if it's both surjective and injective.

Definition 1.2

We say X is (set)-isomomorphic to Y and write $X \simeq Y$ if there is a map $f: X \longrightarrow Y$ such that Dom(f) = X and f is a bijection i.e. f is both surjective and injective.

► Remark 2:

- (a) Two (set)-isomorphic sets are considered to be the same. A very common alternative term used is equinumerous or equipotent instead of set-isomorphic.
- (b) During the bootcamp we will encounter more interesting extensions of (set)-isomomorphims as we add structures to the underlying e.g, homeomorphisms of topological spaces and group isomomorphisms.

Proposition 1.0

Let X, Y, and Z be sets. If $X \simeq Y$ and $Y \simeq Z$, then $X \simeq Z$.

Special Types of Maps (ii)

Definition 1.3

The **identity map** on a set X is the map written $id_X: X \to X: x \mapsto x$ i.e. $id_X(x) = x$ $\forall x \in X$.

- (1) When the set X is understood from the context, we just write id instead of id_X .
- (2) Obviously if we consider another set Y, then it's identity is writen id_Y to distinguish it from id_X . The same applies if we consider a third set Z, where we would then write id_Z .
- (3) It's clear that the identity map id_X is unique right?

Composition of Maps

Definition 1.4

Let X, Y and Z be sets. The *composition* of maps $f: X \to Y$ and $g: Y \to Z$ is the map written $g \circ f: X \to Z$ and defined as $(g \circ f)(x) = g(f(x))$.

Proposition 1.1

Given any maps $f:X\longrightarrow Y,\ g:Y\longrightarrow Z$ and $h:Z\longrightarrow U.$ The following identities hold:

- (1) $f \circ id_X = f$ and $id_Y \circ f = f$.
- (2) $h \circ (g \circ f) = (h \circ g) \circ f$ (associativity).

Invertible Maps

Definition 1.5

Given a map $f: X \longrightarrow Y$, the inverse of f (if it exists) is a map $g: Y \longrightarrow X$ satisfying the following two conditions:

- (1) $g \circ f = id_X$.
- (2) $f \circ g = id_Y$.
- ▶ **Remark 3**: By convention we write f^{-1} to denote the inverse of f.

Proposition 1.2

= 990°

Exercise 1.0

Consider the maps $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$. Prove or disprove the following:

- (1) If f and g are injective, then $g \circ f$ is injective.
- (2) If $g \circ f$ is injective, then g is injective.
- (3) If $g \circ f$ is injective, then f is injective.
- (4) If f and g are surjective, then $g \circ f$ is surjective.
- (5) If $g \circ f$ is surjective, then g is surjective.
- (6) If $g \circ f$ is surjective, then f is surjective.
- (7) If f and g are bijective, then $g \circ f$ is bijective.
- (8) If $g \circ f$ is bijective, then g is bijective.
- (9) If $g \circ f$ is bijective, then f is bijective.

Exercise 1.1

Let $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9\}$. Construct the following examples of maps:

- (1) A map $f: X \longrightarrow Y$ that is injective but not surjective.
- (2) A map $f: X \longrightarrow Y$ that is surjective but not injective.
- (3) A map $f: X \longrightarrow Y$ that is bijective i.e that is both surjective and injective.
- (4) A map $f: X \longrightarrow Y$ that is neither injective nor surjective. Abstract Mathematics Bootcamp 2024 (quantumformalism.com)

Special homework exercise

Exercise 1.2

Let $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$ be the set of all integers and $\mathbb{N}=\{0,1,2,3,4,5,\ldots\}$ be the set of all natural numbers.

- (1) Even though $\mathbb N$ is a proper subset of $\mathbb Z$, is it true that $\mathbb N \simeq \mathbb Z$? Meaning that there is a bijection $f:\mathbb N \longrightarrow \mathbb Z$! If true, can you construct such a bijection?
- (2) Construct a map $f: \mathbb{N} \longrightarrow \mathbb{Z}$ that is injective but not surjective.

Thank you for listening!