Complexes Generalites MPSI 2

1 Plan Affixe A_2

On note A_2 l'ensemble des points du plan.

1.1 Angles

Définition 1.1.1

Soit \vec{u} et \vec{v} deux vecteurs unitaires du plan.

On appelle mesure de l'angle oriente (\vec{u}, \vec{v}) tout reel θ tel que : $\vec{v} = \cos(\theta) \vec{u} + \sin(\theta) \vec{u'}$ avec $\vec{u'}$ est le vecteur unitaire directement orthogonal a \vec{u} .

On note mesure de \vec{u} , \vec{v} : mes $(\vec{u}, \vec{v}) \equiv \theta$ [2 π]

Définition 1.1.2

Soit \vec{u} et \vec{v} deux vecteurs non nuls.

On appelle mesure de l'angle oriente (\vec{u}, \vec{v}) toute mesure de l'angle oriente des vecteurs unitaires associes.

On a donc: $mes(\vec{u}, \vec{v}) \equiv mes\left(\frac{\vec{u}}{\|\vec{u}\|}, \frac{\vec{v}}{\|\vec{v}\|}\right) [2\pi]$

1.2 Definition sur les nombres complexes

Définition 1.2.1

Soit A_2 l'ensemble des points du plan muni d'un repere orthonorme $(\mathcal{O}, \vec{i}, \vec{j})$. On note \mathcal{E}_2 l'ensemble des vecteurs du plan.

L'ensemble des complexes peut etre mis en bijection avec \mathcal{E}_2 ou avec \mathcal{A}_2 .

$$\mathbb{C} \longrightarrow \mathcal{A}_2$$

 $x + iy \longmapsto M$, de coordonnees (x, y) dans le repere $(\mathcal{O}, \vec{i}, \vec{j})$
 $\mathbb{C} \longrightarrow \mathcal{E}_2$
 $x + iy \longmapsto O\vec{M}$, de coordonnees (x, y) dans la base $(\mathcal{O}, \vec{i}, \vec{j})$

Sont deux applications bijectives.

Définition 1.2.2

- On dit que M de coordonnees (x,y) est l'image affixe du complexe z=x+iy.
- On dit que z = x + iy est l'affixe du point M / du vecteur OM.

Définition 1.2.3

Soit z = x + iy.

- Le module de $z : |z| = ||\vec{OM}|| = \sqrt{x^2 + y^2}$.
- Un argument de z pour z non nul : $\arg(z) = mes(\vec{i}, \vec{OM})$.

Propriété 1.2.1

Soit z un complexe non nul.

• $z \ est \ reel \iff \arg(z) \equiv 0 \ [2\pi]$

$$\iff \exists k \in \mathbb{Z}, \arg(z) = k\pi$$

• z est imaginaire $\iff \arg(z) \equiv \frac{\pi}{2} \ [\pi]$

$$\iff \exists k \in \mathbb{Z}, \arg(z) = \frac{\pi}{2} + k\pi$$

Propriété 1.2.2

- $|z \times z'| = |z| \times |z'|$ $\begin{cases} \arg(zz') \equiv \arg(z) + \arg(z') \ [2\pi] \\ z \ et \ z' \ non \ nuls \end{cases}$

Définition 1.2.4

Conjuge de z = x + iy: $\bar{z} = x - iy$

Propriété 1.2.3

- z est reel $\iff z = \bar{z}$
- z est imaginaire $\iff z = -\bar{z}$

$$\bullet \ \overline{(\bar{z})} = z$$

Notation:

Si z = x + iy, on note:

 $\Re(z) = x$ la partie reelle de z.

 $\mathcal{I}m(z) = y$ la partie imaginaire de z.

On a:

$$\mathcal{R}e\left(z\right) = \frac{z + \bar{z}}{2}$$

$$\mathcal{I}m\left(z\right) = \frac{z - \bar{z}}{2\imath}$$

Exponentielle complexe 2

Soit $\psi \colon \mathbb{R} \longrightarrow \mathbb{C}$

$$x \longmapsto \cos x + i \sin x$$

C'est une fonction d'une variable reelle et a valeurs complexes dont les applications composantes sont cos et sin.

Ces applications composantes sont derivables sur \mathbb{R} , donc ψ est derivable sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, \psi'(x) = -\sin x + i\cos x$$

Notation: $\psi(x) = e^{ix}$

Remarque:

$$\forall x \in \mathbb{R}, \psi'(x) = i(\cos x + i\sin x)$$
$$= i\psi(x)$$
$$\forall x \in \mathbb{R}, \psi'(x) = ie^{ix}$$

On a pour α et β reels :

$$\psi(\alpha + \beta) = \cos(\alpha + \beta) + i \sin(\alpha + \beta)$$

$$= \cos\alpha \cos\beta - \sin\alpha \sin\beta + i (\sin\alpha \cos\beta + \sin\beta \cos\alpha)$$

$$= \cos\beta (\cos\alpha + i \sin\alpha) + \sin\beta (i\cos\alpha - \sin\alpha)$$

$$= (\cos\alpha + i \sin\alpha) (\cos\beta + i \sin\beta)$$

$$= \psi(\alpha) \psi(\beta)$$

On a demontre:

Propriété 2.0.4

$$\forall (\alpha, \beta) \in \mathbb{R}, \psi (\alpha + \beta) = \psi (\alpha) \psi (\beta)$$
$$e^{i(\alpha+\beta)} = e^{i\alpha} e^{i\beta}$$

Corollaire 2.0.1

- $(\alpha = \beta)$ $e^{i(\alpha+\beta)} = (e^{i\alpha})^2$
- Par recurrence, on obtient:

$$\forall n \in \mathbb{N}, \forall \alpha \in \mathbb{R}, \ e^{\imath n\alpha} = (e^{\imath \alpha})^n$$
$$\cos(n\alpha) + \imath \sin(n\alpha) = (\cos\alpha + \imath \sin\alpha)^n$$

Formule de MOIVRE

- $(\beta = -\alpha)$ $e^{i(\alpha+\beta)} = e^{i\alpha}e^{-i\alpha} \iff e^{-i\alpha} = \frac{1}{e^{i\alpha}}$ En utilisant $\frac{1}{z^n} = z^{-n}$ on obtient:

$$\forall n \in \mathbb{Z}, \forall \alpha \in \mathbb{R}, e^{-in\alpha} = \frac{1}{e^{in\alpha}}$$

$$e^{in\alpha} = (e^{i\alpha})^n$$

Formules et calculs a connaitre

- $\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$ et $\sin \alpha = \frac{e^{i\alpha} e^{-i\alpha}}{2i}$ Pour $n \in \mathbb{N}^*$: $\cos^n \alpha = \left(\frac{e^{i\alpha} + e^{-i\alpha}}{2}\right)^n$ $= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{\imath k\alpha} e^{-\imath (n-k)\alpha}$

En regroupant les termes d'indice k et n-k, on obtient une expression du type :

$$\cos^n \alpha = \sum_{k=0}^n a_k \cos(k\alpha)$$

Avec a_k des coefficients calculables.

Définition 2.0.5

On note $\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}$

- \mathbb{U} est represente dans le plan affine par le cercle unite (de centre \mathcal{O} et de rayon 1).
- $1 \in \mathbb{U}$
- U est stable par multiplication.
- U est stable par passage a l'inverse.

On dit que (\mathbb{U}, \times) est un groupe.

Propriété 2.0.5

Inegalite triangulaire: $\forall (z, z') \in \mathbb{C}^2, |z + z'| \leq |z| + |z'|$

Corollaire 2.0.2

 $\forall \left(z,z'\right) \in \mathbb{C}^2, \left|\left|z\right| - \left|z'\right|\right| \leq \left|z-z'\right|$

Montrer que $\forall (z, z') \in \mathbb{C}^2, |z + z'| \le |z| + |z'|$

Cas 1 : z' = 0

Alors $\forall z \in \mathbb{C}, |z + z'| = |z|$

$$|z| + |z'| = |z|$$

Cas 2: $z' \neq 0$

$$|z+z'| \le |z| + |z'| \iff \left|1 + \frac{z}{z'}\right| \le 1 + \left|\frac{z}{z'}\right|$$

On est amene a demontrer:

$$\forall u \in \mathbb{C}, |1+u| \leq 1+|u|$$

Soit u un complexe fixe :

$$|1 + u| \le 1 + |u| \iff |1 + u|^2 \le (1 + |u|)^2$$

 $\iff (1 + u) (1 + \bar{u}) \le 1 + 2 |u| + |u|^2$
 $\iff 1 + u + \bar{u} + u\bar{u} \le 1 + 2 |u| + |u|^2$
 $\iff 1 + 2\Re e(u) + |u| \le 1 + 2 |u| + |u|^2$
 $\iff \Re e(u) \le |u|$

Or cette derniere propriete est vraie pour tout complexe u.

Conclusion: $\forall u \in \mathbb{C}, |1+u| \leq 1+|u|$

Conclusion Generale: $\forall (z, z') \in \mathbb{C}^2, |z + z'| \leq |z| + |z'|$