Discovering Statistics Using JASP

2025 Workshop

Outline

- JASP Intro
- Correlation
- Regression
- PROCESS
- T-test
- ANOVA's
- Free-for-all

Goals of this Workshop

- Get you familiar with JASP
- Show JASP workflow

- Know how to get in touch
- Have ran your favorite analysis in JASP

What is JASP?

Developed at UvA over the past 10 years, funded by research grants (NWO/EU)

Graphical user interface for conducting frequentist and Bayesian statistics

https://jasp-stats.org/

What is JASP?

Linear Regression ▼

jaspRegression::RegressionLinear(
 version = "0.17.1",
 formula = sales ~ attract + airplay + adverts,
 isNuisance = ~ adverts,
 covariates = list("adverts", "airplay", "attract"),
 coefficientCi = TRUE,
 collinearityDiagnostic = TRUE,
 descriptives = TRUE,
 rSquaredChange = TRUE,
 residualCasewiseDiagnostic = TRUE,
 residualCasewiseDiagnostic = TRUE,
 residualCasewiseDiagnosticZThreshold = 0,
 residualCasewiseDiagnosticZThreshold = 2,
 residualQqPlot = TRUE,
 residualQqPlot = TRUE,
 residualQqPlot = TRUE,
 residualQqPlot = TRUE,

And now to the multiple linear regression!

Previously, we already computed the regression using only advertisement budget to predict the sales. Now, we will include two more variables: airplay and attract. Because we already know that adverts predict the sales, it is certain than a new model will explain at least the same amount of variance of sales. Because of this, we can test whether including the two new predictors explains the album sales better than including just adverts. After we included the three variables as covariates, we can add the adverts to the null model in the "Model" panel. Now, we will test the new model against the one we fitted moments before (predicting sales by adverts).

Model Summary - sales ▼

Model	R	R ²	Adjusted R ²	RMSE	R² Change	F Change	df1	df2	р
H ₀	0.578	0.335	0.331	65.991	0.335	99.587	1	198	< .001
H ₁	0.815	0.665	0.660	47.087	0.330	96.447	2	196	< .001

Note. Null model includes adverts

The first line of the model summary shows the 'null model'. See that the statistics correspond to the ones we computed earlier (predicting sales by adverts). The second line is about the new model with three predictors. Based on the R² Change and F-Test of the change, we can see that the new model does significantly better than the previous one. The adjusted R² of the model also drops only a little, showing robust model (probably not very high overfitting).

ANOVA

Model		Sum of Squares	df	Mean Square	F	р
Но	Regression	433687.833	1	433687.833	99.587	< .001
	Residual	862264.167	198	4354.870		
	Total	1.296×10+6	199			
H ₁	Regression	861377.418	3	287125.806	129.498	< .001
	Residual	434574.582	196	2217.217		
	Total	1.296×10 ⁺⁶	199			

Note. Null model includes adverts

The test of the fit of the model. Both models are highly significant, indicating that either of them significantly improves our estimate of sales to the true 'null model' (which is just the mean of sales).

What is JASP?

Used at 271 universities across 64 countries 80,000 monthly downloads

https://jasp-stats.org/teaching-with-jasp/#worldmap

Features

- Website overview
- JASP vs. SPSS feature comparison
- Data formats: .sav, .xls, .txt, .csv, .ods, .tsv, .dta, .por, .sas7bdat, .sas7bcat, and the .jasp format
- APA tables
- OSF integration
- R console
- Compute columns
- Filtering

Feature Roadmap

- Full syntax mode (<u>blog about the first implementation</u>)
- More data manipulation
- Select filters

Other Handy Resources

- How to Use JASP Inventory of blogs/videos/gifs for frequentist and Bayesian analyses
- JASP YouTube page
- The JASP Video Library
- <u>Step By Step Guide: 1. Bayesian One-Way ANOVA</u> and the <u>full playlist</u>
- JASP on Bluesky https://bsky.app/profile/jaspstats.bsky.social
- JASP forum https://forum.cogsci.nl/index.php?p=/categories/jasp-bayesfactor
- Found a bug? Please report on Github: https://github.com/jasp-stats/jasp-issues/issues
- JASP Verification Project
- More JASP workshops: https://jasp-stats.org/workshop/

JASP Literature

- The JASP Data Library
- <u>Discovering Statistics Using JASP</u>
- <u>Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners by Danielle J. Navarro, David R. Foxcroft, and Thomas J. Faulkenberry</u>
- Statistics of Doom by Erin Buchanan
- Statistical Analysis in JASP. A Guide for Students by Mark Goss-Sampson
- Quantitative Analysis with JASP open-source software by Chris Halter (amazon)

Some Examples/Demos

From my own course (Research Methods & Statistics)

• https://johnnydoorn.github.io/IntroductionBayesianInference/06-exercises.html

OSF integration

https://osf.io/u2e9d/files/osfstorage

Discover JASP

https://discoverjasp.com/

Data Management

The JASP data editor for the Metallica data

	Analyses	Synchronisation	n Resize Data	Insert Remove
•	- Name	Instrument	Current member	Headbanging intensity
1	Lars Ulrich	Drums	Yes 1	Light 1
2	James Hetfield	Guitar	Yes 1	Heavy 3
3	Kirk Hammett	Guitar	Yes 1	Light 1
4	Rob Trujillo	Bass	Yes 1	Moderate 2
5	Jason Newsted	Bass	No 0	Heavy 3

The Variable View

Figure 4.6 The variable settings for 'Name'

Name:		Name	Long name: Full name of Metallica band member					
Column type:		Nominal	▼ Description:					
Computed type:		Not computed						
Label 6	editor	dissing values						
1 L	Filter	Value	Label					
1 <u>0</u> N	✓	Lars Ulrich	Lars Ulrich					
1	✓	James Hetfield	James Hetfield					
	✓	Kirk Hammett	Kirk Hammett					
	✓	Rob Trujillo	Rob Trujillo					
	✓	Jason Newsted	Jason Newsted					

Variable Types

Scale

• Numbers (e.g., 7, 0, 120, 8.5)

Nominal

• Categories (e.g., 'Control group', 'Experimental group')

Ordinal III

Ordered values (e.g., 'Dislike', 'Neutral', 'Like')

Variable Settings

Figure 4.7 Specifying the values for an ordinal variable

Computing a New Variable

Figure 4.8 The drag and drop interface for computing a new variable

Filtering Data

- **Using Variable Settings**
- Using the Filter functionality

Drag and drop

R-mode

Descriptives

Figure 4.10 Input window for the Descriptives module

Output Window in JASP

Figure 4.11 Example of annotated output

Distribution Plots

Basic Flow of Data Analysis in JASP

- Describe/visualize data
- Specify the analysis in JASP
- Assess the assumptions (tip: see the help-files)
- Interpret the main analysis table
- Consider follow-up analyses

Regression

Regression with One Predictor

A record company boss was interested in predicting album sales from advertising.

Data

200 different album releases

Outcome variable:

• Album sales in the week after release (x1000)

Predictor variables

- Advertisement budget (in £1000)
- Number of plays on the radio
- Image of the band.

The Model as an Equation

• The model contains two regression weights:

$$Y_i = (b_0 + b_1 X_{1i}) + \varepsilon_i$$

- *b*₀ is the intercept
 - The intercept is the value of the Y variable when all Xs = 0
 - E.g., how many albums are sold for 0£ advertisement budget
- b_1 is the coefficient for Adverts.

Regression with One Predictor

Figure 8.10 Main menu for regression

Model Summary

Output 8.2

Model Summary - Sales

Model	R	R ²	Adjusted R ²	RMSE
M_0 M_1	0.000	0.000	0.000	80.699
	0.578	0.335	0.331	65.991

Note. M₁ includes Adverts

Multiple Regression

 With several predictors the model now contains multiple regression weights:

$$Y_i = (b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots b_n X_{ni}) + \varepsilon_i$$

- *b*₀ is the intercept.
 - The intercept is the value of the Y variable when all Xs = 0
- b_1 is the coefficient for Adverts
- *b*₂ is the coefficient for Airplay
- b_n is the coefficient for n^{th} variable.

A model with Several Predictors

Figure 8.11 Matrix scatterplot of the relationships between advertising budget, airplay, image rating and album sales

Multiple Regression

Figure 8.12 Main menu for block 2 of the multiple regression

Normality of Residuals: Histograms and Q-Q Plots

Figure 8.17 Histogram and Q-Q plot for the residuals from our model

Model Parameters

Output 8.7

Coefficients

							95% CI		Collinearity Statistics	
Model		Unstandardized	Standard Error	Standardized	t	р	Lower	Upper	Tolerance	VIF
M_{o}	(Intercept)	134.140	7.537		17.799	< .001	119.278	149.002		
	Adverts	0.096	0.010	0.578	9.979	< .001	0.077	0.115	1.000	1.000
M_1	(Intercept)	-26.613	17.350		-1.534	0.127	-60.830	7.604		
	Adverts	0.085	0.007	0.511	12.261	< .001	0.071	0.099	0.986	1.015
	Image	11.086	2.438	0.192	4.548	< .001	6.279	15.894	0.963	1.038
	Airplay	3.367	0.278	0.512	12.123	< .001	2.820	3.915	0.959	1.043

Interpreting Model Parameters

b-values:

- The change in the outcome associated with a unit change in the predictor.
- E.g., Advertising budget: b = 0.085
 - As advertising budget increases by one unit, album sales increase by 0.085 units. Both variables were measured in thousands; therefore, for every £1000 more spent on advertising, an extra 0.085 thousand albums (85 albums) are sold. This interpretation is true only if the effects of band image and airplay are held constant.

Regression Exercises

Alex Examples
Leni Examples

Moderation

Figure 10.2 Diagram of the conceptual moderation model

Example

- Do violent video games make people antisocial?
- Participants
 - 442 youths
- Variables
 - Aggression
 - Callous unemotional traits (CaUnTs)
 - Number of hours spent playing video games per week
- Is 'CaUnTs' a moderator?
- Warning
 - That's a Lot to Process! Pitfalls of Popular Path Models

Moderation

Figure 10.4 Callousness as a moderator

Moderation Analysis in JASP

Figure 10.6 The main menu for running moderation analysis in the Process module

Moderation Analysis in JASP

Figure 10.7 Menu for the model builder for a moderation analysis

Figure 10.9 Plotting the interaction effect using Flexplot, where Callous traits is binned

Mediation

Figure 11.9 Diagram of a mediation model

Mediation Example

Figure 10.12 Diagram of a mediation model from Lambert et al. (2012)

Mediation Analysis in JASP

Figure 10.14 The menu for specifying a mediation path

Mediation Model with Two Mediators

Figure 10.16 A mediation model with two mediators (Bronstein, 2019)

Figure 10.17 The dialogue boxes for running mediation analysis with two mediators

Model 1			
nput type O Paths	 Hayes configuration 		
From	То	Process Type	Process Variable
Delusion thinking ▼	Note: New Specifies ■	Mediator	▼
Delusion thinking ▼	♦ Fake news belief ▼	Mediator	▼ Analytic thinking ▼
	♦ Analytic thinking ▼	Direct	▼ <no choice=""> ▼</no>

Moderation & Mediation

Alex Examples
Leni Examples

Comparing Means

ANOVA: Puppy Example

- A puppy therapy RCT in which we randomized people into three groups:
 - 1. A control group
 - 2. 15 minutes of puppy therapy
 - 3. 30 minutes of puppy contact
- The DV is happiness (0 = unhappy) to 10 (happy)
- Predictions:
 - 1. Any form of puppy therapy should be better than the control (i.e. higher happiness scores).
 - 2. A dose-response hypothesis that as exposure time increases (from 15 to 30 minutes), happiness will increase too

ANOVA

Contrasts

Contrasts in JASP

ors						
Dos	e				custom	•
	or Dose d Contrast	Delete	Contrast	Reset		
		Delete Contrast 1	Contrast Contrast 2	Reset		
	d Contrast	Contrast 1		Reset		
Add	d Contrast Dose	Contrast 1	Contrast 2	Reset		

Post Hoc Tests

- Compare each mean against all others.
- In general terms, they use a stricter criterion to accept an effect as significant.
 - Hence, control the family-wise error rate.
 - Simplest example is the Bonferroni method:

$$P_{Crit} = \frac{\alpha}{K}$$

Post Hoc Tests

- Assumptions met:
 - Tukey HSD
- Safe Option:
 - Bonferroni
- Unequal variances:
 - Games-Howell

ANCOVA

Reduces error variance

 By explaining some of the unexplained variance (SSR) the error variance in the model can be reduced

Greater insight

• By including more variables, we gain deeper insight into their interplay (e.g., interactions, shared variance)

Warning

Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies

ANCOVA

Figure 12.2 The role of the covariate in ANCOVA

Homogeneity of Slopes

Figure 12.3 Scatterplot and linear models of happiness against love of puppies for each therapy condition

Assessing Homogeneity of Slopes

Figure 12.8 *Model* tab for ANCOVA

ANCOVA

Alex Examples
Leni Examples

RM ANOVA

Advantages

- Unsystematic variance is reduced
- More sensitive to experimental effects

Figure 9.7 Same data, between-subjects (left) and within-subjects (right)

RM ANOVA Example

- Training sniffer dogs to detect aliens
- After rigorous training, eight dogs sniffed each of four entities for 1 minute:
 - Alien space lizard in its natural form
 - Alien space lizard who had shapeshifted into humanoid form
 - Human
 - Human mannequin
- DV: Number of vocalizations made during each 1-minute sniffing session

Data for Sniffer Dog Example

Table 14.1 Data for the sniffer-dog example

Dog	Alien	Human	Mannequin	Shapeshifter	Mean	s^2
Milton	8	7	1	6	5.50	9.67
Woofy	9	5	2	5	5.25	8.25
Ramsey	6	2	3	8	4.75	7.58
Mr. Snifficus III	5	3	1	9	4.50	11.67
Willock	8	4	5	8	6.25	4.25
The Venerable Dr. Waggy	7	5	6	7	6.25	0.92
Lord Scenticle	10	2	7	2	5.25	15.58
Professor Nose	12	6	8	1	6.75	20.92
Mean	8.13	4.25	4.13	5.75		

The Assumption of Sphericity

- Assumes that the variances of differences between conditions are equal
- Estimated and adjusted df using:
 - Greenhouse-Geisser estimate
 - Huynh-Feldt estimate
- Tested using Mauchly's test (not recommended)
 - *P* < .05, sphericity is violated
 - *P* > .05, sphericity is met
- Rule of thumb: G-G is conservative and H-F liberal

Defining the Repeated Factors

Figure 14.6 The Repeated Measures Factors menu for repeated-measures ANOVA

Factorial: Post hoc comparisons

Output 14.15

Post Hoc Comparisons - Entity * Scent - Conditional on Entity

				95% CI for Mean Difference					95% CI for Cohen's d			
Entity			Mean Difference	Lower	Upper	SE	t	Cohen's d	Lower	Upper	p _{holm}	
Human	None	Human	-1.180	-1.669	-0.691	0.197	-5.980	-0.504	-0.837	-0.170	< .001	
		Fox	-4.340	-4.939	-3.741	0.242	-17.950	-1.852	-2.577	-1.128	< .001	
	Human	Fox	-3.160	-3.877	-2.443	0.289	-10.932	-1.349	-1.972	-0.726	< .001	
Shapeshifter	None	Human	1.640	0.690	2.590	0.383	4.281	0.700	0.096	1.304	< .001	
	Human	Fox Fox	1.580 -0.060	0.611 -0.937	2.549 0.817	0.391 0.354	4.043 -0.170	0.674 -0.026	0.064 -0.538	1.285 0.486	< .001 0.866	
Alien	None	Human	2.080	1.143	3.017	0.378	5.506	0.888	0.262	1.513	< .001	
		Fox	2.880	1.835	3.925	0.422	6.833	1.229	0.488	1.970	< .001	
	Human	Fox	0.800	-0.099	1.699	0.363	2.207	0.341	-0.196	0.879	0.032	

RM ANOVA

Alex Examples
Leni Examples

