B.TECH/IT/3RD SEM/ECEN 2002/2020

DIGITAL SYSTEMS DESIGN

(ECEN 2002)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following: $10 \times 1 = 10$					
	(i)	The binary n (a) 19	umber 10101 is e (b) 12	equivalent to deci	mal number (d) 21.	
	(ii)	The inputs of circuit is (a) OR Gate (c) NOT Gate		are connected to (b) AND Gat (d) None of		
	(iii)	(a) Stop sign	ction of NOT Gate al Iniversal Gate	(b) Invert input signal		
	(iv)	A device white (a) Encoder (c) Multiplex				
	(v)	In the expression A + BC, the total number of Minterms will be (a) 2 (b) 3 (c) 4 (d) 5.				
 (vi) A Full Adder can be made out of						

B.TECH / IT/3RD SEM/ECEN 2002/2020

((iiv	The basic storage element i	n a digital system is
l	رىدى	The basic storage cicinent i	ii a digitai systeiii is

(a) Flip Flop

(b) Counter

(c) Multiplexer

(d) Encoder.

(viii) Don't care conditions can be used for simplifying Boolean expressions

in____ (a) Registers

(b) Terms

(c) K-maps

(d) Latches

- (ix) The speed of conversion is maximum in
 - (a) Successive-Approximation A/D Converter
 - (b) Parallel-Comparative A/D Converter
 - (c) Counter Ramp A/D Converter
 - (d) Dual-Slope A/D Converter.
- (x) Which of the following is the fastest logic?
 (a)TTL (b)ECL (c)CMOS (d)LSI

Group - B

- 2. (a) (i) State the distributive property of Boolean algebra.
 - (ii) Prove that ABC + ABC' + AB'C + A'BC = AB + AC + BC
 - (b) (i) Design XNOR Gate using NAND Gates only.
 - (ii) Design a full subtractor circuit using logic gates.

5 + 7 = 12

- 3. (a) Draw the logic diagram of full adder and explain its operation.
 - (b) Using 8 to 1 multiplexer, realize the Boolean function $T = f(w, x, y, z) = \Sigma(0,1,2,4,5,7,8,9,12,13)$

6 + 6 = 12

Group - C

- 4. (a) Implement a 2-Bit Comparator Circuit.
 - (b) Explain the BCD number and Implement a BCD Adder Circuit.

5 + 7 = 12

- 5. (a) Implement a 9-Bit Odd/Even Parity Generator-cum-Checker Circuit.
 - (b) Briefly describe the design of SRAM and DRAM.

4 + 8 = 12

Group - D

- 6. (a) (i) Distinguish between a combinational logic circuit and a sequential logic circuit.
 - (ii) Define Flip flop.
 - (b) Realize a JK flip flop using SR flip flop.

4 + 8 = 12

- 7. (a) Design a 4-Bit Synchronous Up and Down Counter.
 - (b) Design a Four-bit register using D Flip Flop.

6 + 6 = 12

Group - E

- 8. (a) Design a 4-Bit R-2R Ladder Type Digital-to-Analog Converter.
 - (b) Design a 4-Bit Flash Type Analog-to-Digital Converter.

6 + 6 = 12

- 9. (a) Explain the point/points of Superiority of CMOS Logic over other Logic Families.
 - (b) Design a PMOS NOR and a NAND gate.

4 + 8 = 12

Department & Section	Submission Link	
IT	https://classroom.google.com/c/MTg0NTYwNzA0ODUy/a/Mjc0MDY4MTk1MzAy/details	

Department & Section	Submission Link (Backlog)
IT	https://classroom.google.com/c/Mjg2Mjg3Njl1MDg2?cjc=ueqyxmy