CS 383: Machine Learning

Prof Adam Poliak Fall 2024 11/14/2024

Lecture 24

Announcements – Remaining Assignments

HW06: extending deadline to Friday 11/15

HW07: due Friday 11/22

HW08: due Friday 12/06

Project Proposal due Thursday 11/14

Logistic Regression as NN

A single layer neural network

Input layer: features

Output layer: prediction x_1 x_2 β_1 β_2 We can pass the output x_3 β_3 of the neuron to another x_4 β_4 β_4

Updating weights

We want to minimize $\mathcal{L}(\hat{y}, y)$

For every weight we ask, how does changing the

weight affect $\mathcal{L}(\hat{y}, y)$

Use partial derivatives to answer the question:

Updating weights

We want to minimize $\mathcal{L}(\hat{y}, y)$

For every weight we ask, how does changing the weight affect $\mathcal{L}(\hat{y}, y)$

Use partial derivatives to answer the question:

$$\mathcal{L}(\hat{y}, y) = \begin{bmatrix} \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \beta_{2}} \\ \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \beta_{3}} \\ \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \beta_{4}} \\ \frac{\partial \mathcal{L}(\hat{y}, y)}{\partial \beta_{4}} \end{bmatrix}$$

New loss function:

$$L(a, b, c) = b(a + 2b + ac^2)$$

We want to minimize this L

For every parameter we ask, how does changing the parameter affect this loss

Use partial derivatives to answer the question:

$$\nabla \mathcal{L} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial a} \\ \frac{\partial \mathcal{L}}{\partial b} \\ \frac{\partial \mathcal{L}}{\partial c} \end{bmatrix}$$

New loss function:

$$L(a,b,c) = b(a + 2b + ac^2)$$

What is
$$\frac{\partial \mathcal{L}}{\partial a}$$
? $(a + 2b + ac^2) (1 + 2c)$

What is
$$\frac{\partial \mathcal{L}}{\partial b}$$
? $(a + 2b + ac^2)(2)$

What is
$$\frac{\partial \mathcal{L}}{\partial c}$$
? $(a + 2b + ac^2)(2c)$

$$\nabla \mathcal{L} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial a} \\ \frac{\partial \mathcal{L}}{\partial b} \\ \frac{\partial \mathcal{L}}{\partial c} \end{bmatrix}$$

New loss function:

$$L(a, b, c) = b(a + 2b + ac^2)$$

What is
$$\frac{\partial \mathcal{L}}{\partial a}$$
?
$$(a + 2b + ac^2) (1 + 2c)$$

What is
$$\frac{\partial \mathcal{L}}{\partial b}$$
? $(a + 2b + ac^2)(2)$

What is
$$\frac{\partial \mathcal{L}}{\partial c}$$
? $(a + 2b + ac^2)(2c)$

$$\nabla \mathcal{L} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial a} \\ \frac{\partial \mathcal{L}}{\partial b} \\ \frac{\partial \mathcal{L}}{\partial c} \end{bmatrix}$$

$$= \begin{bmatrix} (a+2b+ac^2)(1+2c) \\ (a+2b+ac^2)(2) \\ (a+2b+ac^2)(2c) \end{bmatrix}$$

Feed forward NN

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

$$L(\hat{y}, y) =$$

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b))+b)),y)$$

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

$$L(\hat{y}, y) =$$

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b))+b)),y)$$

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

$$L(\hat{y}, y) =$$

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b))+b)),y)$$

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

$$L(\hat{y}, y) =$$

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b))+b)),y)$$

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

$$L(\hat{y}, y) =$$

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b))+b)),y)$$

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

$$L(\hat{y}, y) =$$

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b))+b)),y)$$

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

$$L(\hat{y}, y) =$$

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b))+b)),y)$$

$$\boldsymbol{h}_0 = \sigma(xW_1)$$

Loss function:

$$L(\sigma(W_3\sigma(W_2\sigma(xW_1+b)+b)+b)),y)$$

How many parameters do we have?

$$W_1$$
 is 4×3
 W_2 is 3×3
 W_3 is 3×1
 3 bias terms

$$12 + 9 + 3 + 3 = 27$$
 parameters

$$abla \mathcal{L} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \theta_1} \\ \frac{\partial \mathcal{L}}{\partial \theta_2} \\ \dots \\ \frac{\partial \mathcal{L}}{\partial \theta_{27}} \\ \frac{\partial \mathcal{L}}{\partial b_1} \end{bmatrix}$$

Outline

Updating weights in LR

Computation Graph

Backpropagation

2 layered Feed-Forward Neural Network

Issues when training NNs

Pytorch

Deep Averaging Neural Network.

$$L(a,b,c) = b(a + 2b + ac^2)$$

Computations:

$$d = c^{2}$$

 $e = a * d$
 $f = 2 * b$
 $g = a + f$
 $h = g + e$
 $i = b * h$

$$L(a,b,c) = b(a + 2b + ac^2)$$

Computations:

$$d = c^{2}$$

 $e = a * d$
 $f = 2 * b$
 $g = a + f$
 $h = g + e$
 $i = b * h$

$$L(a,b,c) = b(a+2b+ac^2)$$

Computations:

$$d = c^{2}$$

 $e = a * d$
 $f = 2 * b$
 $g = a + f$
 $h = g + e$
 $i = b * h$

i = h * b

$$L(a, b, c) = b(a + 2b + ac^2)$$

$$g = a + f$$

f = 2b

$$d = c^2$$

$$e = a * d$$

h = g + e

Computations:

$$d = c^{2}$$

 $e = a * d$
 $f = 2 * b$
 $g = a + f$
 $h = g + e$
 $i = b * h$

$$i = h * b$$

$$L(a,b,c) = b(a + 2b + ac^2)$$

Computations:

$$d = c^{2}$$

 $e = a * d$
 $f = 2 * b$
 $g = a + f$
 $h = g + e$
 $i = b * h$

23

Computations:

Computation graph

$$L(a,b,c) = b(a + 2b + ac^2)$$

$$L(3, 1, -2) = b(a + 2b + ac^2)$$

$$d = c^{2}$$

 $e = a * d$
 $f = 2 * b$
 $g = a + f$
 $h = g + e$
 $i = b * h$

Forward pass

$$L(a,b,c) = b(a+2b+ac^2)$$

$$L(3,1,-2) = b(a + 2b + ac^2)$$

$$L(a,b,c) = b(a+2b+ac^2)$$

$$L(3,1,-2) = b(a + 2b + ac^2)$$

Computation graph $L(a, b, c) = b(a + 2b + ac^2)$

Forward pass

$$L(3, 1, -2) = b(a + 2b + ac^2)$$

Computation graph $L(a, b, c) = b(a + 2b + ac^2)$

Forward pass

$$L(3,1,-2) = b(a + 2b + ac^2)$$

$$L(3,1,-2) = 1(3 + 2(1) + 3(-2)^2)$$

Computation graph $L(a, b, c) = b(a + 2b + ac^2)$

Forward pass

$$L(3,1,-2) = b(a + 2b + ac^2)$$

$$L(3,1,-2) = 1(3 + 2(1) + 3(-2)^2)$$

$$L(3,1,-2) = 1(3 + 2 + 12) = 17$$

Local gradient

Local gradient

Upstream gradient

Local gradient

Upstream gradient

Figure from Andrej Karpathy

11/13/2024 CS383 - Lecture 24 - ML 37

One node view

Computation graph

backward pass

$$L(a,b,c) = b(a+2b+ac^2)$$

$$L(3, 1, -2) = b(a + 2b + ac^2)$$

11/13/2024 CS383 - Lecture 24 - ML

backward pass $\frac{\partial h}{\partial g} = 1$ 5 g = a + fh = g + ef=2bL = h * b $\frac{\partial L}{\partial b} = 17$ $d = c^2$ С e = a * d

S383 - Lecture 24 - ML

11/13/2024

backward pass $\partial L \partial h$ $\overline{\partial h} \, \overline{\partial g}$ 5 g = a + fh = g + ef=2bL = h * b $\frac{\partial L}{\partial b} = 17$ $d = c^2$ С e = a * d

383 - Lecture 24 - ML

11/13/2024

Backwards differentiation in computation graphs

- The importance of the computation graph comes from the backward pass
- This is used to compute the derivatives that we'll need for the weight update.
- For training, we need the derivative of the loss with respect to weights in early layers of the network
- But loss is computed only at the very end of the network!
- Solution: backward differentiation
- Given a computation graph and the derivatives of all the functions in it we can automatically compute the derivative of the loss with respect to these early weights.

backward pass

Exploding gradient

The gradient can accumulate, becoming very big

Issues:

might move our weights too much result in Nan

Solution:

Clipping

Maximum value for gradients
Can be dynamic

backward pass

Vanishing gradient

The gradient become 0

Issues:

wont be able to update weights (because 0 gets passed all the way back)

stuck in a local optima

Solution:

ReLU activation function

z = max(0, z)

ReLU

11/13/2024 CS383 - Lecture 24 - ML 78

One node view

Figure from Andrej Karpathy

Dead neuron

In forward pass, output of a node w/ ReLU activation often will be 0

Issues:

wont pass information from one node to the next

lots of useless nodes

Solution:

Leaky ReLU activation function

Outline

Updating weights in LR

Computation Graph

Backpropagation

Issues when training NNs

Pytorch

Deep Averaging Neural Network

Pytorch

Torch: Facebook's deep learning framework

Originally written in Lua (C backend)

Optimized to run computations on GPU

Mature, industry-supported framework

Defining a model

```
import torch
from torch import nn

class LogisticRegression(nn.Module):
    def __init__(self, input_size, num_classes):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)

def forward(self, x):
    out = self.linear(x)
    return out
```

nn.Module

Base class for all neural network modules.

Creates a computation graph

Define the model in __init__

Specify how to make predictions in forward

If only use built-in modules, no need to implement backprop

Defining a model

```
import torch
from torch import nn
class FNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(FNN, self).__init__()
        self.input_size = input_size
        self.l1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.12 = nn.Linear(hidden_size, num_classes)
    def forward(self, x):
        out = self.l1(x)
        out = self.relu(out)
        out = self.12(out)
        # no activation and no softmax at the end
        return out
```

Train a model

Define:

- Loss function
- Learning algorithm (e.g. SGD)
- Learning rate
- Number of epochs

```
num_epochs = 100
learning_rate = 0.003
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
loss_fn = nn.CrossEntropyLoss()
```

Train a model

In each iteration:

- Make a prediction
- Compute the loss
- Autograd (Automatic differentiation), backprop
- Update the weights

```
optimizer.zero_grad()
prediction = model(X[i])
loss_val = loss_fn(prediction, labels[0][i])
loss_val.backward()
optimizer.step()
```

Train a model

```
# Training the Model
for epoch in range(num_epochs):
   num_correct = 0
   for i in range(100):
      optimizer.zero_grad()
      prediction = model(X[i])
      loss_val = loss_fn(prediction, labels[0][i])
      loss_val.backward()
      optimizer.step()

print(f"loss at epoch {epoch}: {loss_val}")
   print(f"accuracy at epoch {epoch}: {num_correct / 100}")
```

FFN's issues

Fixed input size

Solutions:

- 1. Create a fixed length representation
- 2. Recurrent Neural Networks