

Исследование схем ускорения сходимости алгоритмов глобальной оптимизации

Владислав Соврасов

ННГУ им. Н.И. Лобачевского

13 сентября 2017 г. Нижний Новгород

Постановка задачи

 $D=\{y\in {\bf R}^N: a_i\leqslant x_i\leqslant b_i, 1\leqslant i\leqslant N\}$ — некоторый гиперинтервал, на котором определены функции задачи.

$$Q = \{y \in D: g_j(y) \leqslant 0, 1 \leqslant j \leqslant m\}$$

$$\varphi(y^*) = \min\{\varphi(y): y \in Q\}$$

Предполагается, что целевая функция $\varphi(y)$ и ограничения $g_j(y)$ удовлетворяет условию Липшица в области D:

$$|\varphi(y_1)-\varphi(y_2)|\leqslant L\|y_1-y_2\|, y_1,y_2\in D, 0< L<\infty$$

Численное решение задачи означает построение оценки \tilde{y} , близкой по какой-либо норме к точке y^* на основе конечного числа значений целевой функции задачи, вычисленных в точках области D.

Редукция размерности

Использование развёрток:

$$\begin{cases} y \in \mathbf{R}^N : -2^{-1} \leqslant y_i \leqslant 2^{-1}, 1 \leqslant i \leqslant N \rbrace = \{y(x) : 0 \leqslant x \leqslant 1 \}, \\ \varphi(y(x^*)) = \min\{\varphi(y(x)) : x \in [0;1] \} \end{cases}$$

Многошаговая схема:

$$\min_{(x_1,..,x_n) \in D} f(x_1,..,x_n) = \min_{a_1 \leqslant x_1 \leqslant b_1} \min_{a_2 \leqslant x_2 \leqslant b_2} \dots \min_{a_n \leqslant x_n \leqslant b_n} f(x_1,...,x_n)$$

Метод глобальной оптимизации

Общая схема характеристического метода: пусть имеется k результатов испытаний, далее:

- Шаг 1. Упорядочить поисковую информацию по возрастанию координат точек испытаний
- Шаг 2. Вычислить для каждого интервала величину R(i), называемую характеристикой.
- Шаг 3. Выбрать интервал номер t с наибольшей характеристикой и провести в нем испытание:

$$x^{k+1} = d(t) \in (x_{t-1}, x_t)$$

Критерий остановки:

$$x_t - x_{t-1} < \varepsilon$$

Класс тестовых задач

Генератор GKLS:

$$f(x) = \begin{cases} C_i(x), x \in S_i, i \in 2, \dots, m \\ \|x - T\|^2 + t, x \notin S_2, \dots, S_m \end{cases}$$

- варьируемое число локальных минимумов;
- варьируемый размер области притяжения глобального минимума;
- размерность функции также задаётся.

Использование методов локальной оптимизации

Способы использования локального поиска (метод Хука-Дживса):

- 1. Запуск из лучшей найденной точки после окончания работы АГП;
- 2. Запуски из текущих лучших точек в процессе работы АГП.

Стратегии сохранения информации (для п. 2):

- добавлять только лучшие точки;
- добавлять в поисковую информацию все точки.

Использование методов локальной оптимизации

Результаты применения различных стратегий сохранения информации:

GKLS 4d Simple

GKLS 5d Simple

Смешанный алгоритм

Метод является модификацией АГП. Каждый интервал имеет две характеристики R(i) и $R^{st}(i)$.

$$R^*(i) = \frac{R(i)}{\sqrt{(z_i - z^*)(z_{i-1} - z^*)}/\mu + 1.5^{-\alpha}}$$

Для эффективной реализации АГП используется приоритетная очередь интрервалов. Ключ – R(i). Для смешанного АГП – две связанные очереди. Операции с очередями:

- Синхронная вставка
- Синхронное удаление
- ▶ Обновление перекрестных ссылок при восстановлении кучеобразности

Смешанный алгоритм

Операционные характеристики обычного и смешанного АГП на классе GKLS 4d Simple

Пример прикладной задачи

Рассматривется система из n материальных точек, связанных упруго-диссипативными элементами. Например, при n=2:

$$\begin{cases} \ddot{\xi}_1 = -\beta(\dot{\xi}_1 - \dot{\xi}_2) - \xi_1 + \xi_2 + u + v \\ \ddot{\xi}_2 = -\beta(\dot{\xi}_2 - \dot{\xi}_1) - \xi_2 + \xi_1 + v \\ \xi_1(0) = \xi_2(0), \, \dot{\xi}_1(0) = \dot{\xi}_2(0) = 0 \end{cases}$$

В реальной задаче n=10, состояние не полностью наблюдаемо.

Пример прикладной задачи (результаты)

Постановка задачи в методе главного критерия:

$$\begin{split} J_2(\Theta^*) &= \min\{J_2(\Theta): J_1(\Theta) < \varepsilon, \\ g_0(\Theta) &\leqslant 0\} \end{split}$$

Решается серия задач трёхмерных при различных значениях ε . Глобально-оптимальное решение

при каждом ε — Слейтерова точка в исходной задаче.

Спасибо за внимание!

Владислав Соврасов sovrasov.vlad@gmail.com