Cross-Validation & Regularized Regression

Overview

- Subset Selection of Predictors
- Cross-Validation
- K-fold Cross-Validation

- Bias-Variance Tradeoff
- Regularized Regression
 - Lasso
 - Ridge

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Subset selection - choose subset of p predictors

I want to pare down my model!

Regularization – keep p predictors, shrink coefficient estimates towards 0 (some variable selection for Lasso)

Dimension Reduction – Project p predictors into M-dim space where M < p

Subset Selection

- Best subset: Try every model. Every possible combination of *p* predictors
 - Computationally intensive, especially for p large
 - Also, huge search space. Higher chance of finding models that look good on training data but have little predictive power on future data
- Stepwise
 - In practice, commonly done
 - Forward, Backward, Forward + Backward

Subset Selection - Forward Stepwise

Now we have p candidate models Are RSS and R^2 good ways to decide amongst the p candidates?

Subset selection

Choosing among *p* candidate models...

- Cross-validation always a great standby
- Mallow's C_p
- AIC
- BIC
- Adjusted R^2

OLS Regression Results

=======================================			==========				
Dep. Variable:	У	R-squared:	0.933				
Model:	OLS	Adj. R-squared:	0.928				
Method:	Least Squares	F-statistic:	211.8				
Date:	Mon, 03 Nov 2014	Prob (F-statistic):	6.30e-27				
Time:	14:45:06	Log-Likelihood:	-34.438				
No. Observations:	50	AIC:	76.88				
Df Residuals:	46	BIC:	84.52				
Df Model:	3						
Covariance Type:	nonrobust						

	coef	std err	t 	P> t	[95.0% Con	f. Int.]
x1 x2 x3 const	0.4687 0.4836 -0.0174 5.2058	0.026 0.104 0.002 0.171	17.751 4.659 -7.507 30.405	0.000 0.000 0.000 0.000	0.416 0.275 -0.022 4.861	0.522 0.693 -0.013 5.550
Omnibus: Prob(Omnibus) Skew: Kurtosis:	======== us):	0.7		,		2.896 0.360 0.835 221.

Subset selection

Mallow's C_p :

$$C_p = \frac{1}{n} \left(\text{RSS} + 2 \underline{d} \hat{\sigma}^2 \right),$$

where d is the total # of parameters used and $\hat{\sigma}^2$ is an estimate of the variance of the error ϵ associated with each response measurement.

The AIC criterion is defined for a large class of models fit by maximum likelihood:

$$AIC = -2\log L + 2 \cdot \underline{d}$$

where L is the maximized value of the likelihood function for the estimated model.

Can show AIC and Mallow's Cp are equivalent for linear case

Subset selection

$$BIC = \frac{1}{n} \left(RSS + \log(n) \underline{d} \hat{\sigma}^2 \right)$$

Notice that BIC replaces the $2d\hat{\sigma}^2$ used by C_p with a $\log(n)d\hat{\sigma}^2$ term, where n is the number of observations. Since $\log n > 2$ for any n > 7, the BIC statistic generally places a heavier penalty on models with many variables

Adjusted
$$R^2 = 1 - \frac{RSS/(n - \underline{d} - 1)}{TSS/(n - 1)}$$

Unlike the R^2 statistic, the adjusted R^2 statistic pays a price for the inclusion of unnecessary variables in the model.

Cross-Validation

Randomly divide data into training set and validation set

- 50/50, 60/40, 70/30, 80/20, no rule...
- 1. Fit model on training set
- 2. Use fitted model in 1. to predict responses for validation set
- 3. Compute validation-set error
 - Quantitative Response: Typically MSE
 - Qualitative Response: Typically Misclassification Rate

➤ Why might validation-set error rate underestimate test-set error rate?

Cross-Validation

- Fitting MPG (Y) from Horsepower (X)
- Try different polynomial fits
 - Y~X+X^2
 - Y~X+X^2+X^3
 - Y~X+X^2+X^3+X^4

 Validation test-error can be highly variable depending on random split

K-Fold Cross-Validation

Randomly divide data into K=5 folds. Typically choose K=5 or 10.

Run K times

- 1. Fit model on training set, using (K-1) folds
- 2. Use fitted model in 1. to predict responses for validation set, 1 of the folds
- 3. Compute validation-set error
 - Quantitative Response: Typically MSE
 - Qualitative Response: Typically Misclassification Rate

$$\rightarrow \text{CV}_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \text{MSE}_i$$

K-Fold Cross-Validation

Test Set

Don't touch until end for final evaluation. Gives best estimate of future error.

Bias-Variance Tradeoff

Suppose we have fit a model $\hat{f}(x)$ to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population. If the true model is $Y = f(X) + \epsilon$ (with f(x) = E(Y|X = x)), then

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

Ok....what is going on here?

- Applies to modeling in general, beyond Linear Regression
- Want your model to minimize the expected test MSE on LHS.
 But how?
 - Var(ε), or "Irreducible Error". Can't do anything about that!
 - Can reduce Variance
 - Can reduce Bias

Bias-Variance Tradeoff

$$\operatorname{Var}(\hat{f}(x_0))$$

Amount by which \hat{f} would change if estimated it using a different training dataset

Bias
$$(\hat{f}(x_0))$$
] = $E[\hat{f}(x_0)] - f(x_0)$

Difference between expected prediction of our model and correct value we are trying to predict

$$Var(\epsilon)$$

Simply because $Y = f(X) + \epsilon$

Generally speaking, the more flexible the model, the greater the variance.

Model Framework - Evaluation

Model Framework - Evaluation

 Can break this complexity tradeoff into what we call "bias" and "variance"

Managing the Bias-Variance Tradeoff with Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Subset selection - choose subset of p predictors

I want to pare down my model, reducing the variance!

Regularization – keep p predictors, shrink coefficient estimates towards 0 (some variable selection for Lasso)

Dimension Reduction – Project p predictors into M-dim space where M < p

Regularization – Ridge regression

• Recall that the least squares fitting procedure estimates $\beta_0, \beta_1, \ldots, \beta_p$ using the values that minimize

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

• In contrast, the ridge regression coefficient estimates $\hat{\beta}^R$ are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \left(\lambda \sum_{j=1}^{p} \beta_j^2, \frac{1}{p} \right)^2$$

where $\lambda \geq 0$ is a tuning parameter, to be determined separately.

Regularization – Lasso regression

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \left[\lambda \sum_{j=1}^{p} |\beta_j| \right]$$

- When $\lambda = 0$, we simply have linear models.
- As λ increases, both models become less flexible, reducing variance, but increasing bias.
- Lasso has the advantage of variable selection as well (especially nice when p is large)
- Neither universally dominate, but in general one might expect Lasso to do better when response is function of relatively few predictors.
 - Of course you never actually know this, so use your friend, cross-validation!

Choosing \(\lambda\)

• Just increment λ along, fit a large number of models (1 per increment), and choose λ which minimizes cross-validated error, and voila! You have your corresponding optimized model for Ridge Regression.

Don't forget....

- The standard least squares coefficient estimates are *scale* equivariant: multiplying X_j by a constant c simply leads to a scaling of the least squares coefficient estimates by a factor of 1/c. In other words, regardless of how the jth predictor is scaled, $X_j\hat{\beta}_j$ will remain the same.
- In contrast, the ridge regression coefficient estimates can change *substantially* when multiplying a given predictor by a constant, due to the sum of squared coefficients term in the penalty part of the ridge regression objective function.
- Therefore, it is best to apply ridge regression after standardizing the predictors, using the formula

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}}$$

Questions

- What is training error? validation error? test error?
- What are the steps to cross-validation?
 - How would you use it to compare say p different models?
- Same question as above, except with K-fold cross-validation
- What is the Bias-Variance tradeoff?
 - What happens with Bias and Variance at low levels of complexity?
 - What happens with Bias and Variance at high levels of complexity?
- How do Ridge and Lasso attempt to win at the Bias-Variance tradeoff?
 - What's being penalized exactly?