Business Analytics

Linear Model: Multiple Linear Regression

Dr. Jiun-Yu Yu BA, NTU 25 Sep 2018

Outlines

- · Multiple linear regression model
- · Least squares estimators, goodness of fit
- · Assumptions about residual standard errors
- · Model building and statistical inference
 - Global usefulness test
 - Nested model test / Extra-sums-of-squares F-test
 - Individual test
- · Model diagnosis
- · Prediction

25-Sep-2018

3 - 2

Multiple Linear Regression

- *Y* is a quantitative response variable (a.k.a. dependent, outcome, or output variable).
- (X₁, X₂, ...) are quantitative explanatory variables (a.k.a. predictor, independent/input variables, or covariates).
- · Important to identify variables and define them carefully, e.g.:
 - Y is final exam score, out of 100;
 - $-\ X_{\rm l}$ is time spent partying during last week of term, in hours;
 - $-X_2$ is average time spent studying during term, in hours per week
- How much do we expect Y to change by when we change the values of X₁ and/or X₂?
- What do we expect the value of Y to be when $X_1 = 7.5$ and $X_2 = 1.3$?

5-Sen-2018

Multiple Linear Regression Model

- Model: $E(Y|X_1, X_2, ...) = b_0 + b_1X_1 + b_2X_2 + ...$
- Interpretation:
 - b_0 : expected Y-value when $X_1 = X_2 = ... = 0$;
 - b_1 : "slope in the X_1 -direction"
 - (i.e., when X_2, X_3, \dots are held constant);
 - b_2 : "slope in the X_2 -direction" (i.e., when X_1, X_3, \ldots are held constant).
- Sample: $\hat{Y} = \hat{b_0} + \hat{b_1}X_1 + \hat{b_2}X_2 + \dots$
 - How can we estimate $\hat{b}_0, \hat{b}_1, \hat{b}_2, \dots$?

25-Sep-201

3-4

Estimating the Model

- Model: $Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + ... + b_k X_{ki} + \varepsilon_i$, i = 1, ..., n.
- Estimate: $\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_{1i} + \hat{b}_2 X_{2i} + ... + \hat{b}_k X_{ki}$.
- Obtain $\hat{b}_0, \hat{b}_1, \hat{b}_2, ... \hat{b}_k$ by finding best fit "hyperplane" (using least squares).
- Mathematically, minimize sum of squared errors (SSE):

$$\begin{split} SSE &= \sum_{i=1}^{n} \hat{\varepsilon}^{2} \\ &= \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} \\ &= \sum_{i=1}^{n} (Y_{i} - \hat{b}_{0} - \hat{b}_{i} X_{1i} - \hat{b}_{2} X_{2i} - \dots - \hat{b}_{k} X_{ki})^{2} \end{split}$$

5-Sen-2018

Example: HOMES3 Data

• X_1 : floor-size, X_2 : lot size

5-Sep-2018

3 − €

Scatterplot Matrix

- · A matrix of scatterplots showing all bivariate relationships in a multivariate dataset (e.g., previous slide).
- However, patterns cannot tell us whether a multiple linear regression model can provide a useful mathematical approximation to these bivariate relationships.
- Primarily useful for identifying any strange patterns or oddlooking values that might warrant further investigation before we start modeling.
- · Home price-floor size example:
 - No odd values to worry about.

Multiple Linear Regression Model

· Propose this multiple linear regression model:

$$Y = E(Y) + \varepsilon$$

= $b_0 + b_1 X_1 + b_2 X_2 + \varepsilon$.

- Random errors, ε , represent variation in Y due to factors other than X_1 and X_2 that we haven't measured, e.g., numbers of bedrooms/bathrooms, property age, garage size, or nearby
- · Use least squares to estimate the deterministic part of the model, E(Y), as $\hat{Y} = \hat{b_0} + \hat{b_1}X_1 + \hat{b_2}X_2$
 - i.e., use statistical software to find the values of $\hat{b}_0, \hat{b}_1, \hat{b}_2$ that minimize

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{b}_0 - \hat{b}_1 X_{1i} - \hat{b}_2 X_{2i})^2$$

R Output: HOMES3 Data

	Estimate S	Std. Error	t value	Pr(> t)			
(Intercept)	122.357	14.786	8.275	0.00370	**		
X1	61.976	6.113	10.139	0.00204	**		
X2	7.091	1.281	5.535	0.01162	*		

- Fitted model: $\hat{Y} = 122.36 + 61.98X_1 + 7.09X_2$.
- Expect Y to change by $\hat{b_1}$ when X_1 increases by one and X_2 stays constant, i.e., expect sale price to increase \$6200 when floor size increases 100 sq. feet and lot size stays constant.
- Expect Y to change by $\hat{b_2}$ when X_2 increases by one and X_1 stays constant, i.e., expect sale price to increase \$7090 when lot size increases one category and floor size stays constant.

Beta Coefficients

- These explanatory variables are measured in different units, thus, to see which one has larger impact on Y, it is not sensible to compare their regression coefficients.
- Instead, we can use $\underline{\text{standardized regression model}},$ in which all the explanatory and response variables are standardized (mean = 0, standard deviation = 1).
- · It can be shown that beta coefficients, estimated from above, are:

$$S_{Y} = \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$

$$S_{Y} = \sqrt{\frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}{n-1}}$$

= sample standard deviation of Y = sample standard deviation of X

Beta Coefficients

$$\begin{split} Y_i &= \hat{b_0} + \hat{b_1} X_{1i} + \dots + \hat{b_k} X_{ki} + \hat{\varepsilon_i} \\ E(Y) &= \overline{Y} = \hat{b_0} + \hat{b_1} \overline{X}_1 + \dots + \hat{b_k} \overline{X}_k \\ &\therefore Y_i - \overline{Y} = \hat{b_1} (X_{1i} - \overline{X}_1) + \dots + \hat{b_k} (X_{ki} - \overline{X}_k) + \hat{\varepsilon_i} \\ &\therefore \frac{Y_i - \overline{Y}}{S_Y} = \hat{b_1} \frac{S_{\chi_i}}{S_Y} \left(\frac{X_{1i} - \overline{X}_1}{S_{\chi_i}} \right) + \dots + \hat{b_k} \frac{S_{\chi_k}}{S_Y} \left(\frac{X_{ki} - \overline{X}_k}{S_{\chi_k}} \right) + \frac{\hat{\varepsilon_i}}{S_Y} \\ &\therefore Y_i^* = \hat{b_1}^* X_{1i}^* + \dots + \hat{b_k}^* X_{ki}^* + \hat{\varepsilon_i}^* \\ &\stackrel{> \text{ beta., X1}}{\times} \stackrel{< \text{ hm3.} 1 \text{ m} \text{ $\text{coef}} \{\text{"X1"}\}^* \text{ $\text{sd}} (\text{X1}) / \text{sd} (\text{Y})$} \\ &\stackrel{> \text{ beta., X2}}{\times} \stackrel{< \text{ hm3.} 1 \text{ m} \text{ $\text{coef}} \{\text{"X2"}\}^* \text{ $\text{sd}} (\text{X2}) / \text{sd} (\text{Y})$} \\ &\stackrel{> \text{ beta., X2}}{\times} \stackrel{< \text{ hm3.} 1 \text{ m} \text{ $\text{coef}} \{\text{"X2"}\}^* \text{ $\text{sd}} (\text{X2}) / \text{sd} (\text{Y})$} \\ &\stackrel{> \text{ beta., X2}}{\times} \stackrel{< \text{ N2}}{\times} 0.65297 \end{split}$$

Calculating R²

- Without model, estimate Y with sample mean \overline{Y} .
- With model, estimate Y using fitted \hat{Y} -value.
- How much do we reduce our error when we do this?
- Total error without model (variation in *Y* about \overline{Y}): $SST = \sum\nolimits_{i=1}^{n} (Y_i - \overline{Y})^2$
- Remaining error with model (unexplained variation): $SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$
- Proportional reduction in error: $R^2 = \frac{SST SSE}{SST} = 1 \frac{SSE}{SST}$
- Home price–floor size example: $R^2 = 0.972$. Thus, 97.2% of the variation in sale price (about its mean) can be explained by a multiple linear regression relationship between sale price and (floor size, lot size).

Disadvantage of R² for Model Building

- · Model building: what is the best way to model the relationship between Y and (X_1, X_2, \ldots, X_k) ?
 - e.g., should we use all k predictors, or just a subset?
- Consider a sequence of *nested models*, with each model in the sequence adding explanatory variable to the previous model.
- Which model would R^2 say is the "best" model? The final model with k explanatory variables.
- Geometrical argument: start with a regression line on a 2Dscatterplot, then add a second explanatory variable to make the line a plane in a 3D-scatterplot.
- In other words, R^2 always increases (or stays the same) as you add explanatory variables to a model.

Adjusted R²

- R² has a clear interpretation since it represents the proportion of variation in Y (about its mean) explained by a multiple linear regression relationship between Y and (X_1, X_2, \dots) .
- But, R^2 is not appropriate for finding a model that captures the major, important population relationships without overfitting every slight twist and turn in the sample relationships.
- We need an alternate criterion, which penalizes models that contain too many unimportant predictor variables:

adjusted
$$R^2 = 1 - \left(\frac{n-1}{n-k-1}\right) (1 - R^2)$$

In practice, we can obtain the value for adjusted R^2 directly from statistical software.

Using Adjusted R²

- Since adjusted R^2 is 0.603 for the single-predictor model, but 0.953 for the two-predictor model, the two-predictor model is better than the single-predictor model (according to this criterion).
- In other words, there is no indication that adding $X_2 = \text{lot size}$ to the model causes overfitting
- What happens to R^2 and $\hat{\sigma}$?

Residual Standard Error, $\hat{\sigma}$

Call:
lm(formula = Y ~ X1 + X2)
Residual standard error: 2.475 on 3 degrees of freedom
Multiple R-squared: 0.9717, Adjusted R-squared: 0.9528
F-statistic: 51.43 on 2 and 3 DF, p-value: 0.00477

• Residual/Regression standard error, $\hat{\sigma}$, estimates the standard deviation of the multiple linear regression random errors:

$$\hat{\sigma} = \sqrt{\frac{SSE}{n-k-1}}$$

Unit of measurement for $\hat{\sigma}$ is the same as unit of measurement for Y.

Example 2: SHIPDEPT Data

Y (labor hours)	X_1 (weight shipped)	X_2 (truck proportion)	X_3 (average weight)	X_4 (week)
100	5.1	90	20	1
85	3.8	99	22	2
85	4.8	58	95	90

- Y = weekly labor hours
- X₁ = total weight shipped in thousands of pounds
- X_2 = proportion shipped by truck
- X_3 = average shipment weight in pounds
- $X_4 = \text{week}$
- Compare two models:

 - $E(Y) = b_0 + b_1 X_1 + b_3 X_3;$ $E(Y) = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4.$

Adjusted R² for SHIPDEPT data

lm(formula = Y ~ X1 + X3, data = SHIPDEPT) Multiple R-squared: 0.8082, Adjusted R-squared: 0.7857
F-statistic: 35.83 on 2 and 17 DF, p-value: 8.008e-07 lm(formula = Y - X1 + X2 + X3 + X4, data = SHIPDEPT)
Residual standard error: 9.103 on 15 degrees of freedom
Multiple R-squared: 0.8196, Adjusted R-squared: 0.7715
F-statistic: 17.03 on 4 and 15 DF, p-value: 1.889e-05

- Since adjusted R^2 is 0.786 for the two-predictor model, but 0.772 for the four-predictor model, the two-predictor model is better than the four-predictor model (according to this criterion).
- In other words, there is a suggestion that adding X_2 = truck proportion and X_4 = week to the model causes overfitting.
- What happens to R^2 and $\hat{\sigma}$?

Multiple Correlation Coefficient

sqrt(summary(fit3)\$r.squared)

- The multiple correlation coefficient, <u>multiple R</u>, measures the strength and direction of linear association between the observed Y-values and the fitted -values from the model.
- Multiple linear regression: multiple $R = +\sqrt{R^2}$.
- e.g., $0.986 = \sqrt{0.972}$ for the home price–floor size example above.
- Beware: intuition about correlation can be seriously misleading when it comes to multiple linear regression.

25-Sep-2018 3 – 19

Correlation between Y and X_1 X_1 on the left might still be a useful predictor of Y in a Multiple LR model.

 X₁ on the right might still be a poor predictor of Y in a Multiple LR model.

ap-2018 3 – 20

Correlation: Y and X_1 Uncorrelated

• X_1 may still be a useful predictor of Y in a MLR model.

But Y associated with (X_1, X_2) together

• Linear association between Y and X_1 for fixed X_2

Correlation: Y and X_1 Correlated

• X_1 may be a poor predictor of Y in a MLR model.

25-Sep-2018

But X_1 and X_2 Highly Correlated

• Unstable estimates when both X_1 and X_2 in model.

Statistical Inference for MLR (I)

- · Model building and statistical inference
 - Model evaluation
 - Variable transformation and interactions
 - Influential points and outliers
 - Variable selection
- Model diagnosis
- Model evaluation: How strong is the evidence of our modeled relationship between Y and (X_1, X_2, \dots) ?
 - Global usefulness test
 - Nested model test
 - Individual test

Global Usefulness Test

- Model: $E(Y) = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_k X_k$. Could all k population regression parameters be 0?
- $H_0: b_1 = b_2 = \cdots = b_k = 0$

$$H_{A}$$
: at least one of $b_1, b_2, ..., b_k$ is not equal to 0.
Global F-stat = $\frac{(SST - SSE)/k}{SSE/(n-k-1)} = \frac{R^2/k}{(1-R^2)/(n-k-1)}$

- Significance level = 5%.
- Critical value is 95th percentile of the *F*-distribution with k numerator df and n - k - 1 denominator df.
- The p-value is the area to the right of the global F-statistic for the Fdistribution with k numerator df and n - k - 1 denominator df.
- If the global F-statistic falls in the rejection region, or the p-value is less than the significance level, then we reject H_0 in favor of H_A .

Global Usefulness Test for HOMES3 Data

Sum of Squares df Mean Square Global F-stat Pr(>F) Ssion 630.259 2 315.130 51.434 0.005 b Ial 18.381 3 6.127 1 Regression 630.259 2 Residual 18.381 3 Total 648.640 5 * Response variable: Y. Predictors: (Intercept), X1, X2. $\begin{aligned} \text{Global F-stat} &= \frac{(\text{TSS-SSE})/k}{\text{SSE}/(n-k-1)} = \frac{(648.640-18.381)/2}{18.381/(6-2-1)} \\ &= \frac{R^2/k}{(1-R^2)/(n-k-1)} = \frac{(0.97166)/2}{(1-0.97166)/(6-2-1)} \end{aligned}$

- Critical value is 9.55. (qf(0.95, 2, 3))
- *p*-value is 0.005. (1-pf(51.434, 2, 3))
- Reject H_0 in favor of H_A ; at least one of the predictors, (X_1, X_2) , is linearly related to Y.

Global Usefulness Test for SHIPDEPT Data

ANOVA a Residual 1242.898 15 82.860 Response variable: Y ^b Predictors: (Intercept), X1, X2, X3, X4. Global F-stat = $\frac{(\mathsf{TSS} - \mathsf{SSE})/k}{\mathsf{SSE}/(n-k-1)}$ $= \frac{\mathsf{R}^2/k}{\mathsf{R}^2/k}$

- Critical value is 3.06. (qf(0.95, 4, 15))
- p-value is ?
- Reject H_0 in favor of H_A ; at least one of the predictors, (X_1, X_2, X_3, X_4) , is linearly related to Y.

Do some predictors overfit the data?

- Suppose a global usefulness test suggests at least one of $(X_1,$ X_2, \ldots, X_k) is linearly related to Y.
- Can a reduced model with less than k predictor variables be better than a complete k-predictor model?
 - If a subset of the X's provides no useful information about Y beyond the information provided by the other X's.
- Complete (Full) k-predictor model: SSE_C.
- Reduced r-predictor model: SSE_R.
- Which is larger?
- · Which model is favored if it is a lot larger?
- · Which model is favored if it is just a little larger?

Nested Model Test

- Reduced model: $E(Y) = b_0 + b_1 X_1 + \cdots + b_r X_r$.
- Complete (Full) model: $E(Y) = b_0 + b_1 X_1 + \cdots + b_r X_r + b_{r+1} X_{r+1} + \cdots + b_k X_k$

 $H_0: b_{r+1} = \cdots = b_k = 0$

 H_A : at least one of b_{r+1}, \ldots, b_k is not equal to 0.

• Nested F-stat =
$$\frac{(SSE_R - SSE_C)/(k-r)}{SSE_C/(n-k-1)}$$

- Significance level = 5%.
- Critical value is 95th percentile of the F-distribution with k-r numerator df and n - k - 1 denominator df.
- The p-value is the area to the right of the nested F-statistic for the Fdistribution with k-r numerator df and n-k-1 denominator df.
- If the nested F-statistic falls in the rejection region, or the p-value is less than the significance level, then we reject H_0 in favor of H_A .

Nested F-statistic for SHIPDEPT Data

ANOVA a

			Global F-stat	Pr(>F)
5646.052	4	1411.513	17.035	0.000^{b}
1242.898	15	82.860		
6888.950	19			
ble: Y.				
tercept), X	l, X	2, X3, X4.		
5567.889	2	2783.945	35.825	0.000^{b}
1321.061	17	77.709		
6000 0E0	19			
	Squares 5646.052 1242.898 6888.950 ible: Y. tercept), X: 5567.889 1321.061	Squares df 5646.052 4 1242.898 15 6888.950 19 ble: Y.	Squares df Mean Square 5646.052 4 1411.513 1242.898 15 82.860 6888.950 19 ble: Y. tercept), XI, XZ, X3, X4. 5567.899 12 1321.061 17 77.709	1242.898 15 82.860 6888.950 19 bible: Y. tercept), XI, X2, X3, X4. 5567.889 2 2783.945 35.825 1321.061 17 77.709

^b Predictors: (Intercept), X1, X3.

Nested F-stat =
$$\frac{(\text{SSE}_R - \text{SSE}_C)/(k-r)}{\text{SSE}_C/(n-k-1)}$$
$$= \frac{(1321.061 - 1242.898)/(4-2)}{1242.898/(20-4-1)}$$
$$= 0.472.$$

Nested Model Test Results

- Reduced model: $E(Y) = b_0 + b_1 X_1 + b_3 X_3$.
- Complete model: $E(Y) = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4$.
- $H_0: b_2 = b_4 = 0$

 H_A : at least one of b_2 or b_4 is not equal to 0.

- Nested F-stat = 0.472.
- Significance level = 5%.
- Critical value is 3.68. (qf(0.95,2,15))
- *p*-value is 0.633. (1-pf(0.472,2,15))
- Cannot reject H₀ in favor of H_A.
- Neither X_2 nor X_4 appears to provide useful information about Y beyond the information provided by X_1 and X_3 .
- Reduced model is favored.

Compare Reduced and Complete Models

model carminary								
		Adjusted Residual Change Statistics					istics	
Model	R Squared	R Squared	Std. Error	F-stat	df1	df2	Pr(>F)	
R	0.808^{a}	0.786	8.815					
C	0.820^{b}	0.771	9.103	0.472	2	15	0.633	
^a Predictors: (Intercept), X1, X3.								

^b Predictors: (Intercept), X1, X2, X3, X4.

- There is a suggestion that adding X_2 = truck proportion and X_4 = week to the model causes overfitting. Why?
 - Adjusted R2 is higher for the reduced model.
 - The residual standard error, $\hat{\sigma}$, is lower for the reduced model.
 - The nested F-stat is not significant (high p-value), so the reduced model is favored.
- anova(Model.R, Model.C)

Individual Regression Parameter Test

- · Which predictors to test in a nested model test?
- One possible approach is to consider the regression parameters individually.
- What do the estimated sample estimates, $\hat{b}_1, \hat{b}_2, \dots, \hat{b}_k$, tell us about likely values for the population parameters, b_1, b_2, \dots ,
- An individual t-test for b_n considers whether there is evidence that X_p provides useful information about Y beyond the information provided by the other k-1 predictors. In other words:
 - should we retain X_p in the model with the other k-1 predictors (evidence suggests $b_p \neq 0$);
 - or, should we consider removing X_p from the model and retain only the other k-1 predictors (evidence cannot rule out $b_n=0$)?

Hypothesis Test for b_p

- Recall in SLR, slope *t*-statistic = $\frac{\hat{b_i} b_i}{S_{\hat{b_i}}} \sim t_{n-2}$.
- Here in MLR, *t*-statistic for $b_p = \frac{\hat{b}_p \hat{b}_p}{c} \sim t_{n-k-1}$.
- Example: H_0 : $b_1 = 0$ versus H_A : $b_1 \neq 0$, and
- t-statistic = $\frac{\hat{b_1} b_1}{S_{\hat{b_1}}} = \frac{6.074 0}{2.662} = 2.28$. (SHIPDEPT data)
- With signif. level = 5%, critical value = 2.13, p-value = 0.038.
- Since t-statistic (2.28) > critical value (2.13) and p-value <signif. level, reject H_0 in favor of H_A .
- Sample data favor $b_1 \neq 0$ (at a 5% signif. level).
- There appears to be a linear relationship between Y and X_1 , once X_2 , X_3 , and X_4 have been accounted for (or holding X_2 , X_3 , and X_4 constant).

Individual t-test R Output: SHIPDEPT

```
Coefficients:

(Intercept) 95.41495 30.03577 3.177 0.00626 **
X1 6.07391 2.66245 2.281 0.03755 *
X2 0.08435 0.08870 0.951 0.35673
X3 -1.74600 0.76018 -2.297 0.03645 *
X4 -0.12450 0.37993 -0.328 0.74768
---
Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *.' 0.1 * 1
```

- Last two cols: individual t-stats and two tail p-values.
- Low *p*-values indicate potentially useful predictors that should be retained (i.e., X_1 and X_3 here).
- High p-values indicate possible candidates for removal from the model (i.e., X_2 and X_4 here).
- However, high p-value for X₂ means we can remove X₂, but only if we retain X₁, X₃, and X₄
- Similarly, high p-value for X₄ means we can remove X₄, but only if we retain X₁, X₂, and X₃.

25-Sep-2018 3 – 3

Individual *t*-tests and Nested *F*-tests

- Can do individual regression parameter t-tests to:
 - remove just one redundant predictor at a time:
 - or to identify which predictors to investigate with a nested model F-test
- Need to do a nested model F-test to remove more than one predictor at a time.
- Using nested model *F*-tests allows us to use fewer hypothesis tests overall to help identify redundant predictors (so that the remaining predictors appear to explain *Y* adequately).
 - This also lessens the chance of making any hypothesis test errors.

25-Sep-2018 3 – 38

Regression Parameter Confidence Intervals

- Calculate a 95% confidence interval for b_1 .
- 97.5^{th} percentile of t_{15} is 2.131.
- $\hat{b}_1 \pm 97.5^{th}$ percentile $(S_{\delta_1}) = 6.074 \pm 2.131 \times 2.662 = 6.074 \pm 5.673 = (0.40, 11.75).$
- Loosely speaking: based on this dataset, we are 95% confident that the population regression parameter, b₁, is between 0.40 and 11.75 in the model E(Y) = b₀ + b₁X₁ + b₂X₂ + b₃X₃ + b₄X₄.
- More precisely: if we were to take a large number of random samples of size 20 from our population of shipping numbers and calculate a 95% confidence interval for b₁ in each, then 95% of those confidence intervals would contain the true (unknown) population regression parameter.

-Sep-2018 3 -

Regression Model Assumptions

· Four assumptions about random errors,

$$\varepsilon = Y - E(Y) = Y - b_0 - b_1 X_1 - \dots - b_k X_k$$
:

- Probability distribution of ε at each set of values (X₁, X₂, ..., X_k) has a mean of zero;
- Probability distribution of ε at each set of values (X_1, X_2, \dots, X_k) has **constant variance**;
- Value of ε for one observation is **independent** of the value of ε for any other observation;
- Probability distribution of ε at each set of values (X_1, X_2, \dots, X_k) is **normal**

25-Sep-2018 3 – 40

Checking Model Assumptions

- Calculate residuals, $\hat{\varepsilon} = Y \hat{Y} = Y \hat{b}_0 \hat{b}_1 X_1 \dots \hat{b}_k X_k$
- Draw a residual plot with \(\hat{\varepsilon}\) along the vertical axis and a function of \((X_1, X_2, \ldots, X_k\)) along the horizontal axis (e.g., \(\hat{Y}\) or one of the \(X'\)s).
 - Assess zero mean assumption do the residuals average out to zero as we move across the plot from left to right?
 - Assess constant variance assumption is the (vertical) variation of the residuals similar as we move across the plot from left to right?
 - $-\,$ Assess independence assumption do residuals look "random" with no systematic patterns?
- Draw a histogram and QQ-plot of the residuals.
 - Assess normality assumption does histogram look approximately bell-shaped and symmetric and do QQ-plot points lie close to line?

-Sep-2018 3 – 4*

Residual Plots which Pass

2018 ^X ^X 3-42

Model Interpretation: SHIPDEPT Data

Model Summary									
Adjusted Regression Change Statistic						istics			
Model	R Squared	R Squared	Std. Error	F-stat	df1	df2	Pr(>F		
1	0.808^{a}	0.786	8.815						
2	0.820^{b}	0.771	9.103	0.472	2	15	0.63		

^a Predictors: (Intercept), X1, X3.
 ^b Predictors: (Intercept), X1, X2, X3, X4.

There is no evidence at the 5% significance level that X_2 (proportion shipped by truck) or X_4 (week) provide useful information about Y (weekly labor hours) beyond the information provided by X_1 (total weight shipped in thousands of pounds) and X_3 (average shipment weight in pounds).

25-Sep-2018 3 – 4

R Results: SHIPDEPT

95% Confidence Interval Model Lower Bound Upper Bound X1 0.231 9.770 X3 -3.420 -0.604

confint(Model)

25-Sep-2018 3 – 4

Interpreting Model Results (1): SHIPDEPT

- We found a statistically significant straight-line relationship (at a 5% significance level) between Y and X₁ (holding X₃ constant) and between Y and X₃ (holding X₁ constant).
- Estimated equation: $\hat{Y} = 110.43 + 5.00 X_1 2.01 X_3$.
- $X_1 = X_3 = 0$ makes no sense for this application, nor do we have data close to $X_1 = X_3 = 0$, so cannot meaningfully interpret $\hat{b_0} = 110.43$.
- Expect increase of 5 weekly labor hours when total weight increases 1000 pounds and average shipment weight remains constant, for total weights of 2000–10,000 pounds and average weights of 10–30 pounds (95% confident increase is 0.23– 9.77).

25-Sep-2018 3 – 48

Interpreting Model Results (2): SHIPDEPT

- Expect decrease of 2.01 weekly labor hours when average weight increases 1 pound and total weight remains constant, for total weights of 2000–10,000 pounds and average weights of 10–30 pounds (95% confident decrease is 0.60–3.42).
- Can expect a prediction of unobserved weekly labor hours from particular values of total weight shipped and average shipment weight to be accurate to within approximately ±17.6 (with 95% confidence).
- 80.8% of the variation in weekly labor hours (about its mean)
 can be explained by a multiple linear regression relationship
 between labor hours and (total weight shipped, average
 shipment weight).

5-Sep-2018 3 – 4

Confidence Interval for E(Y)

- Estimate the mean (or expected) value of Y at particular values of (X₁, X₂,..., X_k).
- Formula: $\hat{Y} \pm t$ percentile ($SE_{\hat{x}}$).
- · Interval is narrower:
 - when n is large;
 - when X's are close to their sample means:
 - when the regression standard error, σ̂, is small:
 - for lower levels of confidence.
- Example: for shipping example two-predictor model, the 95% confidence interval for E(Y) when $X_1 = 6$ and $X_3 = 20$ is (95.4, 105.0).
- Interpretation: we're 95% confident that the expected weekly labor hours is between 95.4 and 105.0 when total weight shipped is 6000 pounds and average shipment weight is 20 pounds.

25-Sep-2018

Prediction Interval for a Y-value

- Predict an individual value of Y at particular values of
- $(X_{1, new}, X_{2, new}, \dots, X_{k, new}).$ Formula: $\hat{Y}_{new} \pm t$ percentile $(SE_{\hat{Y}_{new}})$
- Interval is narrower:
 - when n is large;
 - when X's are close to their sample means;
 - when the residual standard error, $\hat{\sigma}$, is small;
 - for lower levels of confidence.
- Since $S_{\hat{y}} > S_{\hat{y}}$, prediction interval is wider than confidence interval.
- Example: for shipping example two-predictor model, the 95% prediction interval for Y when X₁ = 6 and X₃ = 20 is (81.0, 119.4).
- Interpretation: we're 95% confident that the actual labor hours in a week is between 81.0 and 119.4 when total weight shipped is 6000 pounds and average shipment weight is 20 pounds.

-Sep-2018 3 -

Summary

- · Multiple linear regression model
- · Least squares estimators, goodness of fit
- · Assumptions about residual standard errors
- · Model building and statistical inference
 - Model evaluation
 - Global usefulness test
 - Nested model test / Extra-sums-of-squares F-test
 - · Individual test
 - Variable transformations and interactions
 - Influential points and outliers
 - Variable selection
- · Model diagnosis
- Prediction

Sep-2018 3 – 52

Reading & Assignment

- Ramsey & Schafer (2002):
 - 9.1, 9.2, 9.5, 9.7
 - 10.1, 10.2, 10.3, 10.5
- Assignment 1
 - Available on course website
 - Use R
 - Due: 9:00 am, Tue 02-Oct-2018

25-Sep-2018 3 - 5