1. Probabilities for events

For events A, B, and C
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

More generally
$$P(\bigcup A_i) = \sum P(A_i) - \sum P(A_i \cap A_j) + \sum P(A_i \cap A_i \cap A_k) - \cdots$$

The odds in favour of
$$A$$

$$P(A) / P(\overline{A})$$

Conditional probability
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 provided that $P(B) > 0$

Chain rule
$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid A \cap B)$$

Bayes' rule
$$P(A \mid B) = \frac{P(A) P(B \mid A)}{P(A) P(B \mid A) + P(\overline{A}) P(B \mid \overline{A})}$$

$$A$$
 and B are independent if
$$P(B \mid A) = P(B)$$

$$A$$
, B , and C are independent if $P(A\cap B\cap C)=P(A)P(B)P(C)$, and

$$P(A \cap B) = P(A)P(B)$$
, $P(B \cap C) = P(B)P(C)$, $P(C \cap A) = P(C)P(A)$

2. Probability distribution, expectation and variance

The probability distribution for a discrete random variable X is the complete set of

probabilities
$$\{p_x\} = \{P(X = x)\}$$

$$\underline{ \text{Expectation} } \quad E(X) \ = \ \mu \ = \ \sum_x x p_x$$

Sample mean
$$\overline{x} = \frac{1}{n} \sum_k x_k$$
 estimates μ from random sample x_1, x_2, \dots, x_n

$$\label{eq:sample variance} \underline{\mathsf{Sample variance}} \quad s^2 \ = \ \frac{1}{n-1} \left\{ \sum_k \, x_k^2 \ - \ \frac{1}{n} \left(\sum_j x_j \right)^2 \right\} \quad \text{estimates } \sigma^2$$

Standard deviation
$$\operatorname{sd}(X) = \sigma$$

If value \boldsymbol{y} is observed with frequency $\boldsymbol{n}_{\boldsymbol{y}}$

$$n = \sum_{y} n_{y}, \ \sum_{k} x_{k} = \sum_{y} y n_{y}, \ \sum_{k} x_{k}^{2} = \sum_{y} y^{2} n_{y}$$

For function g(x) of x, $E\{g(X)\} = \sum_{x} g(x)p_x$

$$\underline{\mathsf{Skewness}} \quad \beta_1 \ = \ E \left(\frac{X - \mu}{\sigma} \right)^3 \qquad \text{ is estimated by } \ \frac{1}{n-1} \ \sum \left(\frac{x_i - \overline{x}}{s} \right)^3$$

 $\alpha\text{-quantile }\ Q(\alpha)$ is such that $\ P(X \leq Q(\alpha)) \ = \ \alpha$

Sample α -quantile $\widehat{Q}(\alpha)$ is the sample value for which the proportion of values $\leq \widehat{Q}(\alpha)$ is α (using linear interpolation between values on either side)

The sample median \tilde{x} estimates the population median Q(0.5).

3. Probability distribution for a continuous random variable

The <u>cumulative distribution function</u> (cdf) $F(x) = P(X \le x) = \int_{x_0 = -\infty}^x f(x_0) \mathrm{d}x_0$ The <u>probability density function</u> (pdf) $f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$ $E(X) = \mu = \int_{-\infty}^\infty x \, f(x) \mathrm{d}x, \quad \mathrm{var}(X) = \sigma^2 = E(X^2) - \mu^2,$ where $E(X^2) = \int_{-\infty}^\infty x^2 \, f(x) \mathrm{d}x$

4. Discrete probability distributions

Discrete Uniform Uniform(n)

$$p_x = \frac{1}{n}$$
 $(x = 1, 2, \dots, n)$

$$\mu=\frac{1}{2}\left(n+1\right)$$
 , $\ \sigma^{2}=\frac{1}{12}\left(n^{2}-1\right)$

Binomial distribution $Binomial(n, \theta)$

$$p_x = \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad (x=0,1,2,\ldots,n)$$
 $\mu = n\theta$, $\sigma^2 = n\theta(1-\theta)$

Poisson distribution $Poisson(\lambda)$

$$p_x = rac{\lambda^x e^{-\lambda}}{x!}$$
 $(x=0,1,2,\ldots)$ (with $\lambda>0$) $\mu=\lambda$, $\sigma^2=\lambda$

Geometric distribution $Geometric (\theta)$

$$p_x = (1 - \theta)^{x-1}\theta \quad (x = 1, 2, 3, ...)$$
 $\mu = \frac{1}{\theta}, \quad \sigma^2 = \frac{1 - \theta}{\theta^2}$

5. Continuous probability distributions

Uniform distribution $Uniform (\alpha, \beta)$

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & (\alpha < x < \beta), & \mu = \frac{1}{2} (\alpha + \beta), \quad \sigma^2 = \frac{1}{12} (\beta - \alpha)^2 \\ 0 & \text{(otherwise)}. \end{cases}$$

Exponential distribution $Exponential(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (0 < x < \infty), & \mu = 1/\lambda, \\ 0 & (-\infty < x \le 0). & \sigma^2 = 1/\lambda^2. \end{cases}$$

Normal distribution $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty)$$
$$E(X) = \mu, \quad \text{var}(X) = \sigma^2$$

Standard normal distribution N(0,1)

If
$$X$$
 is $N(\mu, \sigma^2)$, then $Y = \frac{X - \mu}{\sigma}$ is $N(0, 1)$

6. Reliability

For a device in continuous operation with failure time random variable T having pdf $f(t) \ \ (t>0)$

The reliability function at time t R(t) = P(T > t)

The failure rate or hazard function h(t) = f(t)/R(t)

The <u>cumulative hazard</u> $H(t) = \int_0^t h(t_0) \, \mathrm{d}t_0 = -\ln\{R(t)\}$

The Weibull (α, β) distribution has $H(t) = \beta t^{\alpha}$

7. System reliability

For a system of k devices, which operate independently, let

$$R_i = P(D_i) = P(\text{"device } i \text{ operates"})$$

The system reliability, R, is the probability of a path of operating devices

A system of devices in $\underline{\text{series}}$ operates only if $\underline{\text{every}}$ device operates

$$R = P(D_1 \cap D_2 \cap \dots \cap D_k) = R_1 R_2 \dots R_k$$

A system of devices in parallel operates if any device operates

$$R = P(D_1 \cup D_2 \cup \cdots \cup D_k) = 1 - (1 - R_1)(1 - R_2) \cdots (1 - R_k)$$

8. Covariance and correlation

The covariance of X and Y $\cos{(X,Y)} = E(XY) - \{E(X)\}\{E(Y)\}$

From pairs of observations
$$(x_1, y_1), \dots, (x_n, y_n)$$
 $S_{xy} = \sum_k x_k y_k - \frac{1}{n} (\sum_i x_i) (\sum_j y_j)$

$$S_{xx} = \sum_{k} x_k^2 - \frac{1}{n} (\sum_{i} x_i)^2, \qquad S_{yy} = \sum_{k} y_k^2 - \frac{1}{n} (\sum_{j} y_j)^2$$

Sample covariance
$$s_{xy} = \frac{1}{n-1} S_{xy}$$
 estimates $cov(X,Y)$

$$\frac{\text{Sample correlation coefficient}}{r} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \quad \text{estimates } \rho$$

9. Sums of random variables

$$\begin{split} E(X+Y) &= E(X) + E(Y) \\ \text{var}\,(X+Y) &= \text{var}\,(X) + \text{var}\,(Y) + 2 \operatorname{cov}\,(X,Y) \\ \text{cov}\,(aX+bY), \ cX+dY) &= (ac)\operatorname{var}(X) + (bd)\operatorname{var}(Y) + (ad+bc)\operatorname{cov}(X,Y) \\ \text{If} \ X \ \text{is} \ N(\mu_1,\sigma_1^2), \ Y \ \text{is} \ N(\mu_2,\sigma_2^2), \ \text{and} \ \operatorname{cov}\,(X,Y) = c, \\ \text{then} \ \ X+Y \ \text{is} \ N(\mu_1+\mu_2, \ \sigma_1^2+\sigma_2^2+2c) \end{split}$$

10. Bias, standard error, mean square error

If t estimates θ (with random variable T giving t)

Bias of
$$t$$
 bias $(t) = E(T) - \theta$

 $\mathsf{Standard} \; \mathsf{error} \; \mathsf{of} \; t \qquad \; \mathsf{se} \, (t) \qquad = \; \mathsf{sd} \, (T)$

Mean square error of
$$t$$
 MSE $(t) = E\{(T-\theta)^2\} = \{\operatorname{se}(t)\}^2 + \{\operatorname{bias}(t)\}^2$

If \overline{x} estimates μ , then $\mathrm{bias}(\overline{x})=0$, $\mathrm{se}\left(\overline{x}\right)=\sigma/\sqrt{n}$, $\mathrm{MSE}(\overline{x})=\sigma^2/n$, $\widehat{\mathrm{se}}\left(\overline{x}\right)=s/\sqrt{n}$

Central limit property if n is fairly large, \overline{x} is from $N(\mu, \sigma^2/n)$ approximately

11. Likelihood

The $\underline{\text{likelihood}}$ is the joint probability as a function of the unknown parameter $\theta.$

For a random sample x_1, x_2, \ldots, x_n

$$\ell(\theta; x_1, x_2, \dots, x_n) = P(X_1 = x_1 \mid \theta) \cdots P(X_n = x_n \mid \theta)$$
 (discrete distribution)

$$\ell(\theta; x_1, x_2, \dots, x_n) = f(x_1 \mid \theta) f(x_2 \mid \theta) \cdots f(x_n \mid \theta)$$
 (continuous distribution)

The maximum likelihood estimator (MLE) is $\widehat{\theta}$ for which the likelihood is a maximum.

12. Confidence intervals

If x_1,x_2,\ldots,x_n are a random sample from $N(\mu,\sigma^2)$ and σ^2 is known, then the 95% confidence interval for μ is $(\overline{x}-1.96\frac{\sigma}{\sqrt{n}},\ \overline{x}+1.96\frac{\sigma}{\sqrt{n}})$ If σ^2 is estimated, then from the Student t table for t_{n-1} we find $t_0=t_{n-1,0.05}$ The 95% confidence interval for μ is $(\overline{x}-t_0\frac{s}{\sqrt{n}},\ \overline{x}+t_0\frac{s}{\sqrt{n}})$

13. Standard normal table Values of pdf $\phi(y) = f(y)$ and cdf $\Phi(y) = F(y)$

y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\Phi(y)$
0	.399	.5	.9	.266	.816	1.8	.079	.964	2.8	.997
.1	.397	.540	1.0	.242	.841	1.9	.066	.971	3.0	.998
.2	.391	.579	1.1	.218	.864	2.0	.054	.977	0.841	.8
.3	.381	.618	1.2	.194	.885	2.1	.044	.982	1.282	.9
.4	.368	.655	1.3	.171	.903	2.2	.035	.986	1.645	.95
.5	.352	.691	1.4	.150	.919	2.3	.028	.989	1.96	.975
.6	.333	.726	1.5	.130	.933	2.4	.022	.992	2.326	.99
.7	.312	.758	1.6	.111	.945	2.5	.018	.994	2.576	.995
.8	.290	.788	1.7	.094	.955	2.6	.014	.995	3.09	.999

14. Student t table Values $t_{m,p}$ of x for which P(|X|>x)=p , when X is t_m

	p	.10	.05	.02	0.01		p	.10	.05	.02	0.01
m	1	6.31	12.71	31.82	63.66	m	9	1.83	2.26	2.82	3.25
	2	2.92	4.30	6.96	9.92		10	1.81	2.23	2.76	3.17
	3	2.35	3.18	4.54	5.84		12	1.78	2.18	2.68	3.05
	4	2.13	2.78	3.75	4.60		15	1.75	2.13	2.60	2.95
	5	2.02	2.57	3.36	4.03		20	1.72	2.09	2.53	2.85
	6	1.94	2.45	3.14	3.71		25	1.71	2.06	2.48	2.78
	7	1.89	2.36	3.00	3.50		40	1.68	2.02	2.42	2.70
	8	1.86	2.31	2.90	3.36		∞	1.645	1.96	2.326	2.576

15. Chi-squared table

Values $\chi^2_{k,p}$ of x for which P(X>x)=p , when X is χ^2_k and p=.995,~.975,~etc

k	.995	.975	.05	.025	.01	.005	k	.995	.975	.05	.025	.01	.005
1	.000	.001	3.84	5.02	6.63	7.88	18	6.26	8.23	28.87	31.53	34.81	37.16
2	.010	.051	5.99	7.38	9.21	10.60	20	7.43	9.59	31.42	34.17	37.57	40.00
3	.072	.216	7.81	9.35	11.34	12.84	22	8.64	10.98	33.92	36.78	40.29	42.80
4	.207	.484	9.49	11.14	13.28	14.86	24	9.89	12.40	36.42	39.36	42.98	45.56
5	.412	.831	11.07	12.83	15.09	16.75	26	11.16	13.84	38.89	41.92	45.64	48.29
6	.676	1.24	12.59	14.45	16.81	18.55	28	12.46	15.31	41.34	44.46	48.28	50.99
7	.990	1.69	14.07	16.01	18.48	20.28	30	13.79	16.79	43.77	46.98	50.89	53.67
8	1.34	2.18	15.51	17.53	20.09	21.95	40	20.71	24.43	55.76	59.34	63.69	66.77
9	1.73	2.70	16.92	19.02	21.67	23.59	50	27.99	32.36	67.50	71.41	76.15	79.49
10	2.16	3.25	13.31	20.48	23.21	25.19	60	35.53	40.48	79.08	83.30	88.38	91.95
12	3.07	4.40	21.03	23.34	26.22	28.30	70	43.28	48.76	90.53	95.02	100.4	104.2
14	4.07	5.63	23.68	26.12	29.14	31.32	80	51.17	57.15	101.9	106.6	112.3	116.3
16	5.14	6.91	26.30	28.85	32.00	34.27	100	67.33	74.22	124.3	129.6	135.8	140.2

16. The chi-squared goodness-of-fit test

The frequencies n_y are grouped so that the fitted frequency \hat{n}_y for every group exceeds about 5.

$$X^2 = \sum_y rac{(n_y - \widehat{n}_y)^2}{\widehat{n}_y}$$
 is referred to the table of χ^2_k with significance point p ,

where k is the number of terms summed, less one for each constraint, eg matching total frequency, and matching \overline{x} with μ .

17. Joint probability distributions

$$\begin{array}{lll} \underline{\text{Discrete distribution}} & \{p_{xy}\}, & \text{where} & p_{xy} = P(\{X=x\} \cap \{Y=y\}) \,. \\ \\ \underline{\text{Let}} & p_{x\bullet} = P(X=x), & \text{and} & p_{\bullet y} = P(Y=y), & \text{then} \\ \\ p_{x\bullet} & = & \sum_{y} p_{xy}, & \text{and} & P(X=x \, \big| \, Y=y) \, = \, \frac{p_{xy}}{p_{\bullet y}} \end{array}$$

Continuous distribution

$$\begin{array}{lll} \underline{\text{Joint cdf}} & F(x,y) &=& P(\{X \leq x\} \cap \{Y \leq y\}) &=& \int_{x_0 = -\infty}^x \int_{y_0 = -\infty}^y f(x_0\,,y_0) \,\mathrm{d}x_0 \,\mathrm{d}y_0 \\ \\ \underline{\text{Joint pdf}} & f(x,y) &=& \frac{\mathrm{d}^2 F(x,y)}{\mathrm{d}x \,\mathrm{d}y} \\ \\ \underline{\text{Marginal pdf of } X} & f_X(x) &=& \int_{-\infty}^\infty f(x,y_0) \,\mathrm{d}y_0 \\ \\ \underline{\text{Conditional pdf of } X \text{ given } Y = y} & f_{X|Y}(x|y) &=& \frac{f(x,y)}{f_Y(y)} \text{ (provided } f_Y(y) > 0 \text{)} \end{array}$$

18. Linear regression

To fit the <u>linear regression</u> model $y=\alpha+\beta x$ by $\hat{y}_x=\hat{\alpha}+\hat{\beta} x$ from observations $(x_1,y_1),\ldots,(x_n,y_n)$, the least squares fit is

$$\hat{\alpha} = \overline{y} - \overline{x}\hat{\beta}, \quad \hat{\beta} = S_{xy}/S_{xx}$$

The residual sum of squares RSS = $S_{yy} - \frac{S_{xy}^2}{S_{xx}}$

$$\widehat{\sigma^2} = rac{{\sf RSS}}{n-2}$$
 , $rac{n-2}{\sigma^2} \; \widehat{\sigma^2} \;$ is from $\; \chi^2_{n-2}$

$$E(\widehat{\alpha}) = \alpha$$
, $E(\widehat{\beta}) = \beta$, $\operatorname{var}(\widehat{\alpha}) = \frac{\sum x_i^2}{n \, S_{xx}} \sigma^2$, $\operatorname{var}(\widehat{\beta}) = \frac{\sigma^2}{S_{xx}}$, $\operatorname{cov}(\widehat{\alpha}, \widehat{\beta}) = -\frac{\overline{x}}{S_{xx}} \sigma^2$

$$\hat{y}_x = \hat{\alpha} + \hat{\beta}x$$
, $E(\hat{y}_x) = \alpha + \beta x$, $\operatorname{var}(\hat{y}_x) = \left\{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}\right\} \sigma^2$

$$rac{\widehat{lpha}-lpha}{\widehat{\mathrm{se}}\;(\widehat{lpha})}\;, \qquad rac{\widehat{eta}-eta}{\widehat{\mathrm{se}}\;(\widehat{eta})}\;, \qquad rac{\widehat{y}_x-lpha-eta\,x}{\widehat{\mathrm{se}}\;(\widehat{y}_x)} \quad ext{are each from} \;\; t_{n-2}$$

19. Design matrix for factorial experiments With 3 factors each at 2 levels