Linear Algebra

WEDNESDAY, AUGUST, 9, 2017

Agenda

- Recall
- Last Week's Exercise
- Linear Transformations, Null Spaces, and Ranges

Recall

Basis

A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.

Dimension

A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors. The unique number of vector in each basis for V is called the dimension of V and is denoted by dim(V). A vector space that is not finite-dimensional is called infinite-dimensional.

Last Week's Exercise

Section 1.6: 1, 9, 11, 14, 23, 29(a)

Linear Transformations, Null Spaces, and Ranges

Definition

Let V and W be vector spaces (over F). We call a function $T:V\to W$ a linear transformation from V to W if, for all $x,y\in V$ and $c\in F$, we have

1.
$$T(x+y)=T(x)+T(y)$$
 and

$$2. T(cx) = cT(x)$$

Remark

We often simply call T linear.

If T is linear, and for all $x,y\in V$, for all $c\in F$, then

1.
$$T(0) = 0$$

2.
$$T(cx + y) = cT(x) + T(y)$$

3.
$$T(x - y) = T(x) - T(y)$$
.

Last, if T is linear if and only if, $x_1, \cdots, x_n \in V$ and $a_1, \cdots, a_n \in F$, we have

$$T\left(\sum_{i=1}^n a_i x_i
ight) = \sum_{i=1}^n a_i T(x_i).$$

Example 1

T(x)=3x is a linear transformation from $\mathbb R$ to $\mathbb R$.

Example 2

 $T(x)=x^2$ is not a linear transformation from $\mathbb R$ to $\mathbb R$.

Theorem (1/2)

Let V and W be vector spaces. If $\{v_1,\cdots,v_n\}$ is a basis for V, then given any w_1,\cdots,w_n in W, there exists a linear transformation $T:V\to W$ which sends v_i to w_i , where $i=1,2,\cdots,n$.

Theorem (2/2)

Proof

For all v in V can be written as an linear combination

 $v=a_1v_1+\cdots+a_nv_n$ in a unique way.

If T:V o W is a linear transformation, then

$$T(v) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n),$$

so the image of every v in V is uniquely determined once the images of v_1, \cdots, v_n are chosen.

Definitions

Let V and W be vector spaces, and let $T:V\to W$ be linear. We define the null space (or kernel) N(T) of T to be the set of all vectors x in V such that T(x)=0; that is, $N(T)=\{x\in V: T(x)=0\}.$

We define the range (or image) R(T) of T to be the subset of W consisting of all images (under T) of vectors in V; that is, $R(T)=\{T(x):x\in V\}.$

Example 3 (1/2)

Let $T: \mathbb{R}^3 {
ightarrow} \mathbb{R}^2$ be the linear transformation defined by

$$T(a_1,a_2,a_3)=(a_1-a_2,2a_3).$$

Verify that

$$N(T)=\{(a,a,0):a\in\mathbb{R}\}$$

and

$$R(T) = \mathbb{R}^2$$
.

Example 3 (2/2)

SOLUTION

It is obvious that $N(T)=\{(a,a,0):a\in\mathbb{R}\}$, then it remains to verify that $R(T)=\mathbb{R}^2$.

Since $\{e_1=(1,0),e_2=(0,1)\}$ is the standard basis for \mathbb{R}^2 , we are able to verify it if we can find $x,y\in\mathbb{R}^3$, such that $T(x)=e_1$ and $T(y)=e_2$, .

By elementary algebra,

$$x = (b, b + 1, 0), y = (c, c, 0.5)$$

where $b,c\in\mathbb{R}$.

Theorem 2.1 (1/3)

Let V and W be vector spaces and $T:V\to W$ be linear. Then N(T) and R(T) are subspaces of V and W, respectively.

Theorem 2.1 (2/3)

PROOF

To clarity the notation, we use the symbols 0_V and 0_W to denote the zero vectors of V and W, respectively.

Since $T(0_V)=0_W$, we have that $0_V\in N(T)$. Let $x,y\in N(T)$ and $c\in F$. Then $T(x+y)=T(x)+T(y)=0_W+0_W=0_W$, and $T(cx)=cT(x)=c0_W=0_W$. Hence $x+y\in N(T)$ and $cx\in N(T)$, so that N(T) is a subspace of V.

Theorem 2.1 (3/3)

Because $T(0_V)=0_W$, we have that $0_W\in R(T)$. Now let $x,y\in R(T)$ and $c\in F$. Then there exists v and w in V such that T(v)=x and T(w)=y. So T(v+w)=T(v)+T(w)=x+y, and T(cv)=cT(v)=cx. Thus $x+y\in R(T)$ and $cx\in R(T)$, so R(T) is a subspace of W.

Definitions

Let V and W be vector spaces, and let $T:V\to W$ be linear. If N(T) and R(T) are finite-dimensional, then we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be the dimensions of N(T) and R(T), respectively.

Theorem 2.3 (Dimension Theorem) (1/4)

Let V and W be vector spaces, and let $T:V \to W$ be linear, If V is finite-dimensional, then

$$nullity(T) + rank(T) = dim(V).$$

Theorem 2.3 (Dimension Theorem) (2/4)

PROOF

Suppose that dim(V)=n, dim(N(T))=k, and $\{v_1,\cdots,v_k\}$ is a basis for N(T). We may extend $\{v_1,\cdots,v_k\}$ to a basis $\beta=\{v_1,\cdots,v_n\}$ for V. We claim that $S=\{T(v_{k+1}),\cdots,T(v_n)\}$ is a basis for R(T).

First we prove that S generates R(T), we have

$$R(T) = span(\{T(v_1), \cdots, T(v_n)\}) \ = span(\{T(v_{k+1}), \cdots, T(v_n)\}) = span(S)$$

Theorem 2.3 (Dimension Theorem) (3/4)

Now we prove that S is linearly independent. Suppose that

$$\sum_{i=k+1}^n b_i T(v_i) = 0 \quad orall \ b_i \in F.$$

Using the fact that T is linear, we have

$$T\left(\sum_{i=k+1}^n b_i v_i
ight)=0.$$

Theorem 2.3 (Dimension Theorem) (4/4)

So

$$\sum_{i=k+1}^n b_i v_i \in N(T).$$

Hence that exist $c_1, \cdots, c_k \in F$ such that

$$\sum_{i=k+1}^n b_i v_i = \sum_{i=1}^k c_i v_i.$$

Since β is a basis for V, we have $b_i=0$ for all i. Hence S is linearly independent. Notice that this argument also shows that $T(v_{k+1}), \cdots, T(v_n)$ are distinct; therefore rank(T)=n-k.

Example 4

$$egin{aligned} T: &\mathbb{R}^3
ightarrow &\mathbb{R}^2 \ (x,y,z)
ightarrow (x,y) \ dim(N(T)) = 1, dim(R(T)) = 2 \ S: &\mathbb{R}^3
ightarrow &\mathbb{R}^2 \ (x,y,z)
ightarrow (x,0) \ dim(N(S)) = 2, dim(R(S)) = 1 \end{aligned}$$

Example 5

$$egin{aligned} T: P_n(\mathbb{R}) & o P_n(\mathbb{R}) \ f(x) & o rac{d}{dx} f(x) \end{aligned} \ N(T) &= \{a_0 | a_0 \in \mathbb{R}\} \ R(T) &= \{a_0 + a_1 x + \dots + a_{n-1} x^{n-1} | a_i \in \mathbb{R}\} \end{aligned} \ dim(N(T)) &= 1, dim(R(T)) = n \ dim(N(T)) + dim(R(T)) = 1 + n = dim(P_n(\mathbb{R}))$$

Theorem 2.4 (1/2)

Let V and W be vector spaces, and let $T:V\to W$ be linear. Then T is one-to-one if and only if $N(T)=\{0\}.$

Theorem 2.4 (2/2)

 $PROOF (\Longrightarrow)$

Suppose that T is one-to-one and $x\in N(T)$. Then T(x)=0=T(0). Since T is one-to-one, we have x=0. Hence $N(T)=\{0\}.$

PROOF (⇐═)

Now assume that $N(T)=\{0\}$, and suppose that T(x)=T(y). Then 0=T(x)-T(y)=T(x-y). Therefore $x-y\in N(T)=\{0\}$. So x-y=0, or x=y. This means that T is one-to-one.

Theorem 2.5 (1/2)

Let V and W be vector spaces of equal (finite) dimension, and let $T:V\to W$ be linear. Then the following are equivalent.

- 1. T is one-to-one.
- 2. T is onto.
- 3. rank(T) = dim(V).

Theorem 2.5 (2/2)

PROOF

From the dimension theorem, we have

$$nullity(T) + rank(T) = dim(V).$$

Now, we have that T is one-to-one if and only if $N(T)=\{0\}$, if and only if nullity(T)=0, if and only if rank(T)=dim(V), if and only if rank(T)=dim(W), and if and only if dim(R(T))=dim(W). This equality is equivalent to R(T)=W (Theorem 1.11), the definition of T being onto.

Exercise

Section 2.1: 1, 5, 6, 7, 9(bd), 10, 11, 12, 13, 14, 15, 16, 20