MAR	Holds address of memory unit
PC	Program Counter
IR	Instruction Register
R ₁	Processor Register

Figure 1.1: Block diagram of register

Figure 1.2: Transfer from R1 to R2 when P = 1

Figure 1.3: Timing diagram

Symbol	Description	Examples	
Letters	Denotes a register	MAR, R2	
(and numerals)	Deflotes a register	IVIAN, NZ	
Parentheses ()	Denotes a part of a register	R 2(0-7), R2(L)	
Arrow ←	Denotes transfer of information	R2←R1	
Comma,	Separates two micro operations	R2←R1, R1←R2	

Table 1.1: Basic Symbols for Register Transfers

Figure 1.4: Bus system for four registers

S ₁	S ₀	-
		selected
0	0	Α
0	1	В
1	0	С
1	1	D
ble:	1.2: Fu	nction Table for Bus

Figure 1.5: Graphic symbols for three-state buffer

Figure 1.6: Bus line with three state-buffers

B3 A3 B2 A2 B1 A1 B0 A0 M
FA C3 FA C2 FA C1 FA C0
C4 S3 S2 S1 S0

Figure 1.8: 4-bit Adder-Subtractor

Figure 1.9: 4-bit binary incrementer

Figure 1.10: 4-bit arithmetic circuit

	<u>Select</u>		Inpu	Output	Microoperation
S ₁	S_0		<u>t</u>	D = A + Y + Cin	
Cin			Y		
0	0	0	В	D = A + B	Add
0	0	1	В	D = A + B + 1	Add with Carry
0	1	0	B'	D = A + B'	Subtract with Borrow
0	1	1	B'	D = A + B' + 1	Subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D = A + 1	Increment A
1	1	0	1	D = A - 1	Decrement A
1	1	1	1	D = A	Transfer A

TABLE 1.3: 4-4 Arithmetic Circuit Function Table

x	Y	F ₀	F ₁	F ₂	F ₃	F ₄	Fs	F ₆	F ₇	F ₈	F ₉	F ₁					
												0	1	2	3	4	5
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

TABLE 1.4: Truth Tables for 16 Functions of Two Variables

Boolean	Microoperation	Name
function		
$F_0 = 0$	F←0	Clear
F ₁ = xy	F←A ∧ B	AND
F ₂ = xy'	F←A ∧ B	
F ₃ = x	F←A	Transfer A
F ₄ = x'y	F←Ā∧B	
F ₅ = y	F←B	Transfer B
F ₆ = x⊕y	F←A⊕B	Exclusive-OR
F ₇ = x + y	F←AVB	OR
F ₈ = (x+ y)'	F←AVB	NOR
f ₉ = (x⊕y)'	$F \leftarrow \overline{A \oplus B}$	Exclusive-NOR
F ₁₀ = y'	F←B	Complement B
F ₁₁ =x + y'	F←A V B	
F ₁₂ = x'	F←Ā	Complement A
F ₁₃ = x' + y	F←Ā V B	
F ₁₄ = (xy)'	F←A ∧ B	NAND

Figure 1.11: One stage of logic circuit

S ₁	S ₀	Output	Operation
0	0	E = A \(\Lambda\) B	AND
0	1	E = A V B	OR
1	0	E = A ⊕ B	XOR
1	1	$E = \bar{A}$	Compliment

Table 1.6: Function table

Figure 1.12: 4-bit combinational circuit shifter

Figure 2.1: Stored Program Organization

Figure 2.4: Basic Computer Register and Memory

Register Symbol	Bits	Register Name	Function
DR	16	Data register	Holds memory operand
AR	12	Address register	Holds address for memory
AC	16	Accumulator	Processor register
IR	16	Instruction register	Holds instruction code
PC	12	Program counter	Holds address of instruction
TR	16	Temporary register	Holds temporary data
INPR	8	Input register	Holds input character
OUTR	8	Output register	Holds output character

Table 2.1: List of Registers for Basic Computer

Figure 2.5: Basic computer registers connected to a common bus

Figure 2.6: Basic computer instruction format

Figure 2.7: Control unit of basic computer

Figure 2.8: Example of control timing signals

Figure 2.9: Flowchart for instruction cycle (initial configuration)

	15			12	2 11	0
ı	0	1	1	1	Register Operation	\neg

· There are 12 register-reference instructions listed below:

	r:	SC←0	Clear SC
CLA	rB ₁₁ :	AC ← 0	Clear AC
CLE	rB ₁₀ :	E ← 0	Clear E
CMA	rB ₉ :	AC ← AC'	Complement AC
CME	rB ₈ :	E ← E'	Complement E
CIR	rB ₇ :	$AC \leftarrow shr AC, AC(15) \leftarrow E, E \leftarrow AC(0)$	Circular Right
CIL	rB ₆ :	$AC \leftarrow shl AC, AC(0) \leftarrow E, E \leftarrow AC(15)$	Circular Left
INC	rB ₅ :	AC ← AC + 1	Increment AC
SPA	rB ₄ :	if (AC(15) = 0) then (PC ← PC+1)	Skip if positive
SNA	rB ₃ :	if (AC(15) = 1) then (PC ← PC+1	Skip if negative
SZA	rB ₂ :	if (AC = 0) then (PC ← PC+1)	Skip if AC is zero
SZE	rB ₁ :	if (E = 0) then (PC ← PC+1)	Skip if E is zero
HLT	rBo:	S ← 0 (S is a start-stop flip-flop)	Halt computer

15 14	1	2 1	11	0
1	000~110	Т	Address	\Box

· The following table lists seven memory-reference instructions.

Symbol	Operation	Symbolic Description
	Decoder	
AND	D ₀	$AC \leftarrow AC \land M[AR]$
ADD	D ₁	$AC \leftarrow AC + M[AR], E \leftarrow C_{out}$
LDA	D ₂	$AC \leftarrow M[AR]$
STA	D ₃	M[AR] ← AC
BUN	D ₄	PC ← AR
BSA	D ₅	M[AR] ← PC, PC ← AR + 1
ISZ	D ₆	$M[AR] \leftarrow M[AR] + 1$, if $M[AR] + 1 = 0$ then $PC \leftarrow PC+1$

$$M[AR] \leftarrow PC, PC \leftarrow AR + 1$$

 $M[135] \leftarrow 21, PC \leftarrow 135 + 1 = 136$

Figure 2.10: Example of BSA instruction execution

D₆T₄: DR \leftarrow M[AR] D₆T₅: DR \leftarrow DR + 1

D₆T₄: $M[AR] \leftarrow DR$, if (DR = 0) then (PC \leftarrow PC + 1), SC \leftarrow 0

Control Flowchart

Memory-reference instruction

Figure 2.11: Flowchart for memory-reference instructions

Figure 2.12: Input-output configuration

INP	$AC(0-7) \leftarrow INPR, FGI \leftarrow 0$	Input char. to AC
OUT	OUTR \leftarrow AC(0-7), FGO \leftarrow 0	Output char. from AC
SKI	if(FGI = 1) then (PC \leftarrow PC + 1)	Skip on input flag
SKO	if(FGO = 1) then (PC \leftarrow PC + 1)	Skip on output flag
ION	IEN ← 1	Interrupt enable on
IOF	IEN ← 0	Interrupt enable off

Table 2.2: Input Output Instructions

Figure 2.13: Flowchart for interrupt cycle

Memory

Figure 2.14: Demonstration of the interrupt cycle

Figure 2.15: Flowchart for computer operation

16 Adderand 16 16 16 AC From DR logic To bus circuit From INPR _8 INR CLR Clock Control gates

Figure 2.16: Circuits associated with AC

Figure 2.17: Gate structure for controlling the LD, INR, and CLR of AC

Figure 3.1: Flowchart for first pass of assembler

External Next-address Control Control Control Control data input generator address memory unit register register (ROM) Next address Information

figure 4.1: Micro-programmed control organization

Figure 4.2: Selection of address for control memory

Figure 4.6: Microprogram Sequencer for a control memory

Input Logic: Truth Table

BR		Input		MU	X 1	Load SBR
	l ₁	I ₀	T	S ₁	So	L
00	0	0	0	0	0	0
0 0	0	0	1	0	1	0
01	0	1	0	0	0	0
01	0	1	1	0	1	1
10	1	0	X	1	0	0
11	1	1	X	1	1	0

Table 4.4: Input Logic Truth Table for Microprogram Sequencer

Figure 5.1: Block diagram of a 64-word stack

Figure 5.2: Computer memory with program, data, and stack segments

Figure 5.4: Overlapped Register Windows

Figure 8.1: Connection of I/O bus to input-output device.

CS	RS1	RS0	Register Selected						
0	X	X	None: data bus in high impedance						
1	0	0	Port A register						
1	0	1	Port B register						
1	1	0	Control register						
1	1	1	Status register						

Figure 8.2: Example of I/O interface unit

Data bus

Figure 8.3: Source-initiated strobe for data transfer

Figure 8.4: Destination-initiated strobe for data transfer

Figure 8.5: Source-initiated transfer using handshaking

Figure 8.6: Destination-initiated transfer using handshaking

Figure 8.7: Data transfer from I/O device to CPU

Figure 8.8: Flowchart for CPU program to input data

Figure 8.9: Daisy-chain priority interrupt

Figure 8.10: CPU bus signals for DMA transfer

Figure 8.11: Block diagram of DMA controller

Figure 8.12: Block diagram of a computer with I/O processor

Figure 8.13: CPU-IOP communication

Figure 9.2: Typical ROM chip

Component	Hexa	Address bus									
	address	10	9	8	7	6	5	4	3	2	1
RAM 1	0000 - 007F	0	0	0	x	×	х	х	х	х	х
RAM 2	0080 - 00FF	0	0	1	×	х	х	X	×	х	Х
RAM 3	0100 - 017F	0	1	0	×	х	х	X	×	х	Х
RAM 4	0180 - 01FF	0	1	1	×	х	×	×	×	×	×
ROM	0200 - 03FF	1	×	×	×	×	×	x	x	X	X

Table 9.1: Memory Address Map for Micro-procomputer

Figure 9.3: Block diagram of associative memory

Figure 9.5: Associative mapping cache (all numbers in octal)

Figure 9.6: Addressing relationships between main and cache memories

Figure 9.9: Relation between address and memory space in a virtual memory system

Figure 9.10 Address and Memory space split into group of 1K words

Figure 9.11: Memory table in paged system

Figure 9.12: Logical to physical address mapping