Modèles de Diffusion

BONHOMME Romain
PIERRE Romain
EL MAZOUGUI Khawla
LAUGT Victor

Plan

- Modèle de Diffusion Classique
- Modèle de Diffusion Latent
- Conditionnement
- Optimisation de l'inférence

Modèle de Diffusion Classique

Diffusion

$$x_t = \sqrt{1-eta_t} x_{t-1} + \sqrt{eta_t} z_t \qquad z_t \hookrightarrow \mathcal{N}(0,I)$$

Denoising

$$\hat{x_{t-1}} = ext{UNet}(x_t, t) \quad \mathop{\longrightarrow}\limits_{ ext{entraînement}} \quad x_{t-1}$$

 $ext{minimiser} \qquad ext{MSE}(\hat{x_{t-1}}, x_{t-1})$

Génération d'une image

 $x \leftarrow ext{tirage dans } \mathcal{N}(0, I)$

pour t dans $T \dots 1$, $x \leftarrow \text{UNet}(x, t)$

retourner x

Time conditional UNet

$$PE_{(p,2i)} = \sin\left(\frac{p}{10000^{2i/d}}\right)$$
 $PE_{(p,2i+1)} = \cos\left(\frac{p}{10000^{2i/d}}\right)$

Modèle de Diffusion Latent (LDM)

Motivations

- Diffusion dans un espace latent et non dans celui des pixels → dimension réduite
- Chaque point = version condensée de l'information visuelle
- **Impact** : Réduction de la complexité de la tâche à apprendre

Architecture

- un Auto Encodeur Variationnel (VAE) (en entrée et sortie (Décodeur))
- un U-Net (au milieu)

Auto Encodeur Variationnel (VAE) et Décodeur

$$egin{aligned} x & z = f_\phi(x) & \mathcal{L}_{AE} = \parallel x - \hat{x} \parallel^2 \ & q_\phi(z \mid x) \sim \mathcal{N}(\mu_\phi(x), \sigma_\phi^2(x)) \end{aligned}$$

U-Net

Entrées

- Image latente : tableau de dimensions (channels, largeur, hauteur)
- Vecteur de bruit : représente le niveau de bruit (t)
- Conditions : séquence d'embeddings supplémentaires (texte, style, etc.)

Processus

- Estimer la moyenne et la variance de la distribution Normale
- Réduction progressive du bruit dans l'image latente

Sortie

Image latente débruitée, décodée par le VAE en image finale

Conditionnement

Introduction au Conditionnement

Principe du Conditionnement

Mécanisme d'Attention Croisée

Optimisation de l'inférence

Différentes techniques existantes

• Distillation:

- Entraînement d'un deuxième modèle simplifié qui approxime l'original
- Perte de performance et entraînement supplémentaire

• Amélioration des schémas d'échantillonnage:

- Réduire le nombre d'étapes nécessaires pour générer
- Augmentation de la complexité computationnelle à chaque étape

• <u>Simulation parallèle</u>:

- Diviser le processus de diffusion en sous-tâches exécutées en parallèles
- Nécessite de meilleures ressources matérielles
- <u>Échantillonnage spéculatif</u>: Technique d'optimisation issue des LLM, portée aux modèles de diffusion

Échantillonnage spéculatif

Couplage maximale

Résultats

Dataset: CIFAR10 ((3, 32, 32) x 60 000)

Configuration	Draft (100 steps)		Target (100 steps)		Target (30 steps)		Speculative		
	FID ↓	IS ↑	FID↓	IS ↑	FID ↓	IS ↑	FID ↓	IS ↑	NFE↓
$\varepsilon = 0.25, \tau = 2.0$	81.58	7.60	2.45	10.31	7.68	11.32	2.34	10.32	35.40

• FID: Similarité entre images réelles et générées

• IS: Qualité de l'image

NFE: Nombre d'évaluation

Spéculatif: 35 appels → 2.34 FID

Classique: 100 appels → 2.45 FID

Soit -65% d'appels du modèle cible

L'échantillonnage spéculatif réduit généralement le nombre d'appel du modèle cible tout en préservant les performances