HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Applied Algorithm Lab

Count #solutions to an integer linear equation

ONE LOVE. ONE FUTURE.

Count #solutions to an integer linear equation

- Compute the number of solution to an integer linear solution
- Input: 2 positive integers n, Mn positive integers a_1, a_2, \dots, a_n .
- Output: Number of positive integer solution to the equation

$$a_1X_1 + a_2X_2 + \ldots + a_nX_n = M$$

Count #solutions to an integer linear equation

Example

stdin	stdout
3 5	6
1 1 1	Explain: (1,1,3), (1,2,2), (1,3,1),
	(2,1,2), (2,2,1), (3,1,1)

Count #solutions to an integer linear equation

- Idea to solve: Apply backtracking search to explore solutions that satisfy the given constraints.
 - Consider the variables in the order: $X_1, X_2, \dots, X_{k-1}, X_k, X_{k+1}, \dots, X_n$.
 - Suppose values have been assigned to X_1, X_2, \dots, X_{k-1} , consider X_k .
 - Branch and bound: X_k takes values within range

1,2,...,
$$\frac{M - (a_1X_1 + a_2X_2 + \dots + a_{k-1}X_{k-1}) - (a_{k+1} + a_{k+2} + \dots + a_n)}{a_k}$$

• programming ...

THANK YOU!