Atmospheric Optics

Lecture 1 – The Atmosphere

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Properties of Light
 - Polarization
 - Coherence
 - Turbulence
 - Source
 - Parameters
 - Effect

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- Properties of the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Light
 - Polarization
 - Coherence
- Turbulence
 - Source
 - Parameters
 - Effect

Atmospheric Layers

- Troposphere
 - Surface to 5-9 miles
 - Most dense
 - Almost all weather
- Stratosphere
 - Extends to 31 miles
 - Includes ozone layer
 - Absorbs UV
 - 99 % air below top of this layer

Atmospheric Layers (Cont.)

- Mesosphere
 - Extends to 53 miles
 - Chemicals in excited state
- Thermosphere
 - Extends to 372 miles
 - Chemical reactions occur quickly
- Pauses
 - Separate each layer

Atmospheric Layers (Cont.)

- Lower Atmosphere
 - Troposphere
 - Tropopause
- Middle Atmosphere
 - Stratosphere
 - Mesosphere
- Upper Atmosphere
 - Thermosphere

Gas Composition

- · Uniformly mixed gases
 - Concentrations stable over time
 - N₂, O₂, Ar, Ne, He, Kr, Xe, H₂, CH₄, N₂)
- Gases present in variable amounts
 O₃, H₂O, CO₂, CO, HNO₃, NH₃, H₂S, SO₂, NO₂, NO
- N₂ and O₂ most abundant
 - Abundance does not necessarily equate to importance

Particle Composition

- Vary in size and shape
- Size-distribution functions
 - Concentration as a function of particle radius
- Height-distribution functions
 - Concentration as a function of altitude
- Two classes of particles
 - Aerosol (radius < 1μm)
 - Suspended in the atmosphere (Most near surface of earth)
 - · Increases scattering over molecular scattering
 - Hydrometers (radius > 1μm)
 - Water-dominated particles
 - · Shorter lifespan

Aerosols

- Dust
 - Terrestrial
 - Volcanoes (Stratosphere)
 - Soil-based dusts
 - · Industry and construction
 - Extraterrestrial (predominate in outer atmosphere)
 - Planetary accretion
 - Meteoroids
- Hygroscopic (depend on relative humidity)
 - Vegetation
 - Give off hydrocarbons which oxidize or nucleate into complex tars and resins
 - Sea

 - Sea salt (injected by bursting bubbles)Concentration highly dependent on local wind velocity
 - Combustion by-products
 - Undergo photochemical reactions to produce hygroscopic particles

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Properties of Light
 - Polarization
 - Coherence
 - Turbulence
 - Source
 - Parameters
 - Effect

Sun approximates a blackbody

- Blackbody
 - Absorbs all incident flux
 - Re-radiates as described by the Planck equation

M = spectral radiant exitance

- Stefan-Boltzmann
 - Over all λ

$$M_{Total} = \sigma T^4$$

- Wien Displacement Law
 - Maximum exitance

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar

 - Active

- Properties of the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Light
 - Polarization
 - Coherence
- Turbulence
 - Source
 - Parameters
 - Effect

Scattering

- Non-selective
 - Particles much longer than the wavelength
 - All wavelengths scattered equally
 - Why fog and clouds appear white

Multiple Scattering Highly scattering medium Original radiance Scattering medium distribution Multipath time undergoes spreading Angular spreading Spatial spreading Angular spreading Multipath temporal spreading Spatial spreading Reduced total transmission

Dielectric

- Dielectric contains few or no free charges
 - In an EM field
 - Centers of the nonpolar molecules are displaced
 - Polar molecules become oriented close to the field
 - Charges appear at the boundaries of the dielectric
 - Frictional work done in orientation absorbs energy
 - A good dielectric is one in which the absorption is a minimum
 - Vacuum is the only perfect dielectric
 - Dielectric substance undergo refraction

Complex Index of Refraction

• Index of refraction (governs normal dispersion)

- Function of wavelength, temperature, and pressure
- If nonabsorbing and nonmagnetic at any wavelength, then n² = dielectric constant
- Complex index of refraction

$$n^* = n(1 - ik)$$

- k = absorptive index (governs absorption)

Absorption

• Light wave propagating through a medium

$$E = E_0 e^{i\left(\omega r - \frac{\omega nz}{c}\right)} e^{-\frac{\omega kz}{c}}$$
propagation term decay term

• We measure intensity

$$I \propto |E_0|^2$$

$$I = I_0 e^{-\alpha z} = I_0 e^{-\frac{4\pi kz}{\lambda}}$$

 $-\alpha$ = absorption or attenuation coefficient

Types of transitions

- Electronic
 - Visible (weak bands) and ultraviolet (strong bands)
- Vibrational

$$E_{El} > E_{Vib} > E_{Rot}$$

- Mid-infrared and near-infrared
- Many narrow vibration-rotation absorption lines in the 5 μm to 12 μm region
- Rotational
 - Typically in the far-infrared

Types of Broadening

- · Lorentz broadening (Lorentzian line profile)
 - Natural broadening
 - Due to finite lifetime of the energy states involved in the transition
 - Collision broadening
 - Due to elastic or inelastic encounters between the absorbing species and neighboring atoms
 - · Holtsmark broadening between like atoms or molecules
 - Van der Waals between unlike species
- Doppler broadening (Gaussian line profile)
 - Due to thermal motion of the molecule
- Both types exist simultaneously (Voigt line function)
 - Resulting line profile is a convolution between the Lorentzian and Gaussian probabilities

Continuum Absorption/Emission

- Manifests itself in the infrared and millimeter wave window regions
 - Most notable for water-vapor
- Smooth frequency dependence
- Two main theories (not well understood)
 - Residual effects of the far wings of strong lines which are not accurately modeled
 - Molecular polymers, which are large floppy molecules, might be expected to have broad transitions and hence broad spectral features

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- Properties of the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Light
 - Polarization
 - Coherence
- Turbulence
 - Source
 - Parameters
 - Effect

Atmospheric Windows

- Atmospheric constituents absorb differently as a function of wavelength
- The actual atmospheric transmission is a multiplication of all the individual transmissions

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- Properties of the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Light
 - Polarization
 - Coherence
- Turbulence
 - Source
 - Parameters
 - Effect

AFRL Models

- HITRAN (high-resolution transmission molecular absorption)
 - Started development in the late 1960s
 - Line-by-line compilation of over 1,080,000 spectral line parameters for 36 different molecules
 - Parameters: line position, strength, half-width, lower energy level, etc.
 - Incorporated into LOWTRAN, MODTRAN, and FASCODE
 - Allow complex atmospheric transmittance and radiance calculations
 - Based on absorption and scattering phenomena for a variety of path geometries

AFRL Models

- LOWTRAN (low resolution transmittance code)
 - Single-parameter band model
 - Band model compute transmittance averaged over a spectral band (band model parameters every 5 cm⁻¹)
 - 20 cm⁻¹ resolution from 0 to 50,000 cm⁻¹
 - Does not fully represent the correct T dependence
 - Three classes of atmospheric gases
 - Water vapor, ozone, and uniformly mixed gases
 - Atmosphere is divided into 32 layers
 - 0 to 100,000 km altitude
 - Layer thickness varies from 1 km to 30 km
 - Characteristics of each layer determined by inputs and standard models of various regions and seasons

AFRL Models

- LOWTRAN (low resolution transmittance code)
 - Calculations based on
 - LOWTRAN band model
 - Molecular continuum absorption
 - · Molecular scattering
 - · Aerosol absorption and scattering models
 - Includes
 - Atmospheric self-emission
 - Solar and/or lunar radiance single scattered into the path
 - · Direct solar irradiance through a slant path to space
 - Multiple scattered solar and/or self-emission radiance into the path

AFRL Models

- MODTRAN (moderate resolution transmittance code)
 - Same as LOWTRAN except
 - Includes the two-parameter MODTRAN band model
 - Calculates atmospheric transmittance and radiance from 0 to 50,000 cm⁻¹ at 2 cm⁻¹ resolution
 - More realistic temperature-dependent model
 - Includes high-altitude transmittance/radiance calculations up to 60 km
 - Includes water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, oxygen, nitric oxide, sulfur dioxide, ammonia, and nitric acid

AFRL Models

- FASCODE (fast atmospheric signature code)
 - High-resolution code
 - Uses the HITRAN database directly
 - Required for modeling very narrow optical bandwidth radiation such as a laser
 - Characterization of the aerosol and molecular medium is similar to LOWTRAN

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- Properties of the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Light
 - Polarization
 - Coherence
- Turbulence
 - Source
 - Parameters
 - Effect

Coherence

- Coherent light has the same wavelength and a constant phase relationship
- Laser light is coherent (active systems)
- Propagation through the atmosphere reduces the spatial coherence
 - Two points on a wave front separated by a distance greater than the coherence length are uncorrelated

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Properties of Light
 - Polarization
 - Coherence
 - Turbulence
 - Source
 - Parameters
 - Effect

Optical Turbulence Parameters

- Several Models
 - Nonparametric
 - Submarine Laser Communication (SLC) Day and Night
 - Median values above Mt. Haleakala, Maui, Hawaii
 - All site specific
 - Parametric
 - Hufnagel (3-24 km)
 - Mid-latitude model, assumes a low tropopause
 - Since does not include the boundary layer can be used both day and night
 - Parameter = rms wind speed between 5-20 km in m/s
 - Hufnagel-Valley Model
 - Extension of Hufnagel model into the boundary layer
 - Parameters
 - » RMS wind speed between 5-20 km in m/s
 - » Value of C_n² one meter above the ground

Optical Turbulence Parameters

- Tatarski

$$C_n^2 = 2.8L_0^{4/3}M^2$$

M = gradient of the refractive index

 L_0 = outer scale of turbulence

- NOAA (VanZandt) model
 - Excellent agreement with measurement
 - Most complex model and requires an expert to use
- Other simpler Tatariski-based models exist

Effect of Optical Turbulence

- Scintillation
 - Spatial intensity fluctuations
 - Temporal intensity fluctuations
 - Speckle-like pattern
 - Responsible for twinkling of stars
 - Statistics of intensity are determined by those of log amplitude

Effect of Optical Turbulence – Phase Effects

- Beam Spread
 - Scales small wrt beam size broaden the beam
- Beam Wander
 - Scales large wrt beam size cause tilt and deflect the beam

$$\langle \rho_L^2 \rangle = \langle \rho_s^2 \rangle + \langle \rho_c^2 \rangle$$

Effect of Optical Turbulence – Phase Effects

- Image Blurring
 - Counterpart to beam spread
- Image Dancing
 - Counterpart to beam wander

$$MTF(v) = \exp\left[-3.44 \left(\frac{\lambda f v}{r_0}\right)^{5/3}\right]$$

Effect of Optical Turbulence – Time Scale

- Assumes long-time averages
 - Average over eddies of all sizes
 - Phase spectra dominated by largest eddies
 - Eddies the size of the aperture move across at a rate of D/V
 - V = wind speed transverse to the propagation
 - D = aperture diameter
 - Exposures less than 0.01s usually considered short
- For a series of short exposures
 - Blur caused by small-scale eddies
 - Dancing caused by changes in the tilt from the large eddies

Effect of Optical Turbulence -Time Scale

- For a long exposure
 - Blur caused by superposition of the dancing and short-term blur
 - Includes effects from all scale sizes

- Atmosphere
 - Layers
 - Composition
 - Gas
 - Particle
- Illumination
 - Passive
 - Solar
 - Active

- the Medium
 - Scattering
 - Dielectric
 - Index-ofrefraction
 - Absorption
- Atmospheric Transmission
- Atmospheric Models

- Properties of Properties of Light
 - Polarization
 - Coherence
 - Turbulence
 - Source
 - Parameters
 - Effect

