Chapitre 27: Dénombrement

1 Rappels sur les cardinaux et principes de dénombrement

1.1 Principe de bijection

Théorème 1.1. Deux ensembles finis en bijection ont le même cardinal.

Principe de bijection :

On peut compter des objets en les mettant en bijection avec d'autres objets.

1.2 Principe d'addition

Proposition 1.2. Soit Ω un ensemble.

* Si E et F sont des parties disjointes et finies de Ω , alors $E \cup F$ est finie et

$$|E \cup F| = |E| + |F|$$

* Si E_1, \dots, E_p sont des parties finie deux à deux disjointes, alors $\bigcup_{k=1}^p E_k$ est finie et

$$\left| \bigcup_{k=1}^{p} E_k \right| = \sum_{k=1}^{p} |E_k|$$

* De manière générale, si E et F sont des parties finies de Ω , alors $E \cup F$ est finie et

$$|E \cup F| = |E| + |F| - |E \cap F|$$

Principe d'addition:

Des objets que l'on souhaite compter se regroupent en un certain nombre de catégories <u>mutuellement</u> exclusives. Alors le nombre total d'objets est la somme du nombre d'objets de chaque catégorie.

1.3 Principe de soustraction

Corollaire 1.3. Soit *E* un ensemble fini et $F \subseteq E$ une partie. Alors

$$|E \setminus F| = |E| - |F|$$

Principe de soustraction:

Si des objets peuvent ou non avoir une certaine propriété, le nombre d'objets ayant la propriété est égal à la différence entre le nombre total d'objets et le nombre d'objets n'ayant pas la propriété.

1.4 Principe de multiplication

Proposition 1.4. Soit *E* et *F* deux ensemble finis. Alors $E \times F$ est fini et a pour cardinal $|E \times F| = |E| \times |F|$

Principe de multiplication :

S'il y a n_1 manières de faire une première opération, n_2 manières de faire une deuxième opération, et ainsi de suite jusqu'à n_p manières de faire une dernière opération, il y a $n_1n_2...n_p$ manières de faire ces p opérations à la suite.

C'est le genre de choses que l'on peut faire avec un arbre.

1.5 Principe de division - lemme des bergers

Corollaire 1.5 (Lemme des bergers).

Si un ensemble de cardinal n est partitionné en k classes de cardinal d > 0, alors $k = \frac{n}{d}$

2 Dénombrements basiques

2.1 Listes (ou *n*-uplets, ou applications)

Proposition 2.1 (Applications). Soit E et F deux ensembles finis. Alors F^E est fini et

$$\left|F^{E}\right| = |F|^{|E|}$$

2.2 Listes sans répétition (ou arrangements, ou applications injectives)

Proposition 2.2 (Applications injectives). Soit *E* et *F* deux ensembles finis, de cardinaux respectifs *n* et *m* Le nombre d'applications injectives $E \to F$ est

$$\begin{cases}
m(m-1)...(m-n+1) = \frac{m!}{(m-n)!} \text{ si } n \leq m \\
0 \text{ sinon}
\end{cases}$$

2.3 Permutations

Proposition 2.3. Soit *E* un ensemble fini de cardinal *n*. Alors $|\mathfrak{S}(n)| = n!$

2.4 Parties (ou combinaisons)

Proposition 2.4. Soit *E* un ensemble fini. On a $|\mathcal{P}(E)| = 2^{|E|}$

Proposition 2.5. Pour tout $n \in \mathbb{N}$ et tout $k \in \mathbb{Z}$, tous les ensembles de cardinal n possèdent le même nombre de parties de cardinal k, à savoir

$$\binom{n}{k} = |\mathcal{P}_k(\llbracket 1, n \rrbracket)| = \begin{cases} \frac{n!}{k!(n-k)!} & \text{si } 0 \le k \le n \\ 0 & \text{sinon} \end{cases}$$

2.5 Anagrammes

Remarque: On dit une anagramme.

Proposition 2.6.

* Le mot $\underbrace{aa...a}_{k} \underbrace{bb...b}_{n-k}$ possède $\binom{n}{k}$ anagrammes.

Autrement dit, il y a $\binom{n}{k}$ mots de longueur n sur l'alphabet $\{a,b\}$ avec k occurrences de la lettre a

* Plus généralement, si $n = k_1 + ... + k_r$, le mot $\underbrace{a_1a_1...a_1}_{k_1} \underbrace{a_2a_2...a_2}_{k_2} ... \underbrace{a_ra_r...a_r}_{k_r}$ possède

$$\binom{n}{k_1, k_2, \dots, k_r} = \frac{n!}{k_1! k_2! \dots k_r!}$$

2

anagrammes. (coefficient multinomial)

2.6 Compositions (ou multiensembles, ou bars and stars)

Proposition 2.7. Soit $r, n \in \mathbb{N}$. Il y a $\binom{n+r-1}{r-1} = \binom{n+r-1}{n}$ listes $(w_1, \dots, w_r) \in \mathbb{N}^r$ telles que $\sum_{i=1}^r w_i = n$

Corollaire 2.8. Soit $r, n \in \mathbb{N}$. Il y a $\binom{n-1}{r-1} = \binom{n-1}{n-r}$ listes $(w_1, \dots, w_r) \in (\mathbb{N}^*)^r$ telles que $\sum\limits_{i=1}^r w_i = n$

3 Compléments sur les coefficients binomiaux

3.1 Formule d'absorption

Proposition 3.1. Soit $0 \le k \le n$ deux entiers. On a

$$\binom{n+1}{k+1} = \frac{n+1}{k+1} \binom{n}{k}$$

3.2 Formule de convolution de Vandermonde

Proposition 3.2. Soit k, p et q trois nombres entiers tels que $0 \le k \le p + q$. On a

$$\binom{p+q}{k} = \sum_{i=0}^{k} \binom{p}{i} \binom{q}{k-i} = \sum_{i+j=k} \binom{p}{i} \binom{q}{j}$$

3.3 Formule de sommation de l'indice du haut

Proposition 3.3. Soit $0 \le k \le n$ deux entiers. On a

$$\sum_{p=k}^{n} \binom{p}{k} = \binom{n+1}{k+1}$$