Assigned: 17 September

Homework #3

EE 503: Fall 2024

Instructions: Write your solutions to these homework problems. Submit your work to Brightspace by the due date. Show all work and box answers where appropriate. Do not guess.

Due: Tuesday, 24 September at 12:00.

- 1. A function $f: X \to Y$ is onto (or surjective) iff for each "image" element $y \in Y$ there is a "preimage" element $x \in X$ such that y = f(x). A function f is one-to-one (or injective) iff distinct pre-images have distinct images: $f(x_1) \neq f(x_2)$ if $x_1 \neq x_2$ for all $x_1 \in X$ and all $x_2 \in X$. Note that the contrapositive of the last statement states that $f(x_1) = f(x_2)$ only if $x_1 = x_2$ for all $x_1 \in X$ and all $x_2 \in X$. A function is *bijective* iff it is both injective and surjective (precisely when the inverse point function f^{-1} exists). Suppose $A \subset X$ and $B \subset Y$ for $f: X \to Y$. Then prove or disprove:
 - (a) $f(f^{-1}\{B\}) \subset B$.
 - (b) $f(f^{-1}\{B\}) = B$ if f is surjective.
 - (c) $A \subset f^{-1} \{ f(A) \}.$
 - (d) $A = f^{-1} \{ f(A) \}$ if f is injective.
 - (e) $f: X \to Y$ is bijective implies $f: 2^X \to 2^Y$ is bijective.
- 2. Use the ratio test to determine whether the following infinite series diverge or converge:

(a)
$$\sum_{n=1}^{\infty} \frac{n\pi^n}{(-3)^{n-1}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+1}$$

(a)
$$\sum_{n=1}^{\infty} \frac{n\pi^n}{(-3)^{n-1}}$$
. (b) $\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$. (c) $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+1}$. (d) $\sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}$.

3. Find the interval of convergence for these power series (check both endpoints):

(a)
$$\sum_{n=1}^{\infty} \frac{n+1}{8^n} (x-3)^n$$
. (b) $\sum_{n=1}^{\infty} n! \left(\frac{x}{2}\right)^n$. (c) $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$.

(b)
$$\sum_{n=1}^{\infty} n! \left(\frac{x}{2}\right)^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$$

4. Use the ϵ -definition (i.e., garden hose) to evaluate the limit of these sequences. Given $\epsilon=10^{-6}$ what is the smallest index n_0 such that $|a_n - L| < \epsilon$ for all $n \ge n_0$?

(a)
$$\sqrt{n+1} - \sqrt{n}$$
.

(b)
$$2^{-n}\cos(n\pi)$$
.

(c)
$$(1+\frac{2}{n})^n$$
.

- 5. Let $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$. Suppose $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2\}$. Then what is the Cartesian product $A \times B$? How many elements in $2^{A \times B}$? Produce four sub-collections $\mathcal{A} \subset 2^{A \times B}$ that are sigma-algebras.
- 6. Prove or disprove:
 - (a) If $A \subset X$ and $B \subset Y$ then $A \times B \subset X \times Y$.
 - (b) $(A \cup B) \times C = (A \cup C) \times (B \cup C)$.