1

Assignment 11

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment11

1 **Problem**

(UGC-june2017,71):

Let **V** be the vector space of polynomials of degree at most 3 in a varible x with coefficients in \mathbb{R} . Let $\mathbf{T}=d/dx$ be the linear transformation of **V** to itself given by differentiation.

Which of the following are correct?

- 1) **T** is invertible
- 2) 0 is an eigenvalue of T
- 3) There is a basis with respect to which the matrix of T is nilpotent.
- 4) The matrix of **T** with respect to the basis $(1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3)$ is diagonal.

2 Solution

Checking whether matrix T is nilpotent	Let $V = P_3(x)$ $T:V \rightarrow V$ T(P(x)) = P'(x) Standard basis of $P(x) = (1, x, x^2, x^3)$ for finding $P'(x)$, differentiating the standard basis; $T(1) = 0 = a_1 x + b_1 x + c_1 x^2 + d_1 x^3$ $T(x) = 1 = a_2 + b_2 x + c_2 x^2 + d_2 x^3$
	$T(x^{2}) = 2x = a_{3} + b_{3}x + c_{3}x^{2} + d_{3}x^{3}$ $T(x^{3}) = 3x^{2} = a_{4} + b_{4}x + c_{4}x^{2} + d_{4}x^{3}$ Representing T in matrix form; $T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ from the above matrix T we can say it is nilpotent matrix.

Checking for eigen value of T	$T = \begin{pmatrix} 0 - \lambda & 1 & 0 & 0 \\ 0 & 0 - \lambda & 2 & 0 \\ 0 & 0 & 0 - \lambda & 3 \\ 0 & 0 & 0 & 0 - \lambda \end{pmatrix}$ $\implies \lambda = 0$
Checking whether T is invertible	Since $\det T = 0$. Therefore T is not invertible
Matrix T is diagonal matrix	Let basis of P(x) be B'= $(1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3)$ Differentiating wrt x; $T(1)=0=a_1x + b_1(1+x) + c_1(1+x+x^2) + d_1(1+x+x^2+x^3)$ $T(1+x)=1=a_2 + b_2(1+x) + c_2(1+x+x^2) + d_2(1+x+x^2x^3)$ $T(1+x+x^2) = 1 + 2x = a_3 + b_3(1+x) + c_3(1+x+x^2) + d_3(1+x+x^2+x^3)$ $T(1+x+x^2+x^3) = 1 + 2x + 3x^2 = a_4 + b_4(1+x) + c_4(1+x+x^2) + d_4(1+x+x^2+x^3)$ $+d_4(1+x+x^2+x^3)$ $T=\begin{pmatrix} 0 & 1 & -1 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ above matrix is not a diagonal matrix
Conclusion	Thus we can conclude Option 2) and 3) are correct.