## Mathematics/Statistics Bootcamp Part IV: Basics of Statistical Inference

Fan Bu<sup>1</sup> Kyle Burris<sup>1</sup>

<sup>1</sup>Department of Statistical Science Duke University

Graduate Orientation, August 2018

#### Overview

Limiting Theorems

Data Reduction

Point Estimation

Hypothesis Testing

Interval Estimation

Introduction to Bayesian Analysis

## Limiting Theorems

## The Law of Large Numbers (LLN)

Suppose  $\{X_1, X_2, \ldots\}$  is a sequence of independently and identically distributed (i.i.d.) random variables with  $E[X_i] = \mu$ . Let  $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$  be the sample average. Then:

▶ The **Weak Law**:  $\bar{X}_n \xrightarrow{p} \mu$  when  $n \to \infty$ , that is, for any  $\epsilon > 0$ ,

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| > \epsilon) = 0.$$

▶ The **Strong Law**:  $\bar{X}_n \xrightarrow{a.s.} \mu$  when  $n \to \infty$ , that is,

$$P\left(\lim_{n\to\infty}\bar{X}_n=\mu\right)=1.$$



## The Central Limit Theorem (CLT)

Suppose  $\{X_1,X_2,\ldots\}$  is a sequence of independently and identically distributed (i.i.d.) random variables with  $E[X_i]=\mu$  and  $Var[X_i]=\sigma^2<\infty$ . Let  $\bar{X}_n=\frac{\sum_{i=1}^n X_i}{n}$  be the sample average, then as  $n\to\infty$ , the random variable  $\sqrt{n}(\bar{X}_n-\mu)$  converges in distribution to  $N(0,\sigma^2)$ :

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2).$$

#### Mini-exercises

1. Rewrite the CLT in terms of the sample sum,  $S_n = \sum_{i=1}^n X_i$ .

2. Let  $\{X_1, X_2, \dots, X_n\}$  be a sequence of n independent results from tossing the same fair coin where  $X_i = 1$  when the head faces up and  $X_i = 0$  otherwise. Let  $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$ . If n = 100, estimate the value of

$$P(0.4 < \bar{X}_n < 0.6).$$

## **Data Reduction**

## Sufficiency

- ▶ **Definition**: A statistic T(X) is a **sufficient statistic for**  $\theta$  if the conditional distribution of the sample X given the value of T(X) does not depend on  $\theta$ .
- **Sufficiency Principle**: If T(X) is a sufficient statistic for  $\theta$ , then any inference about  $\theta$  should depend on the sample X only through the value T(X). That is, if x and y are two sample points such that T(X) = T(Y), then the inference about  $\theta$  should be the same whether X = x or Y = y is observed.
- ▶ **Factorization Theorem**: Let  $f(x|\theta)$  denote the pdf or pmf of a sample X. A statistic T(X) is a sufficient statistic for  $\theta$  if and only if there exist functions  $g(t|\theta)$  and h(x) such that, for all sample points x and all parameter points  $\theta$ ,

$$f(x|\theta) = g(T(x)|\theta)h(x).$$

## Sufficiency: An Exercise

Let  $X_1, X_2, \ldots, X_n$  be i.i.d.  $N(\mu, \sigma^2)$  where  $\sigma^2$  is known. Show that the sample mean,  $T(X) = \bar{X} = (X_1 + X_2 + \cdots + X_n)/n$ , is a sufficient statistic for  $\mu$ .

Note: the joint pdf of the sample X is

$$f(\mathbf{x}|\mu) = \prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp(-(x_{i} - \mu)^{2}/(2\sigma^{2}))$$
$$= (2\pi\sigma^{2})^{-1/2} \exp(-\sum_{i=1}^{n} (x_{i} - \mu)^{2}/(2\sigma^{2})).$$

- What if  $\sigma^2$  is also unknown?

#### Completeness

- ▶ Ancillary Statistic: A statistic S(X) whose distribution does not depend on the parameter  $\theta$  is called an ancillary statistic.
- ▶ Complete Statistic: Let  $f(t|\theta)$  be a family of pdfs or pmfs for a statistic T(X). The family of distributions is called complete (equivalently, T(X) is called a complete statistic) if for any function g,

$$E_{\theta}g(T)=0 \text{ for all } \theta \quad \Rightarrow \quad P_{\theta}(g(T)=0)=1 \text{ for all } \theta.$$

# Complete and Sufficient Statistics for the Exponential Family

Let  $X_1, X_2, \dots, X_n$  be i.i.d observations from an exponential family with pdf or pmf of the form

$$f(x|\theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^k w(\theta_j)t_j(x)\right),$$

where  $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ . Then the statistic

$$T(X) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is a complete and sufficient statistic (c.s.s.) as long as the parameter space  $\Theta$  contains an open set in  $\mathbb{R}^k$ .

## Completeness and Sufficiency: Exercises

1. Suppose that  $X_1, X_2, \dots, X_n$  are i.i.d observations from a Poisson distribution with parameter  $\lambda$ . Find a c.s.s. for  $\lambda$ .

2. Suppose that  $X_1, X_2, \ldots, X_n$  are i.i.d observations from a Gamma distribution with parameters  $\theta = (\alpha, \beta)$  (use the shape-rate parametrization). Find a c.s.s. for  $\theta$ .

#### Point Estimation

#### Point Estimation

- ▶ A **point estimator** is any function of the sample.
- ▶ **Estimator** vs. **Estimate**: The former is a function, while the latter is the realized value of the function (a number) that is obtained when a sample is actually taken.

#### Maximum Likelihood Estimators

▶ If  $X_1, ..., X_n$  are an i.i.d. sample from a population with pdf or pmf  $f(\mathbf{x}|\theta_1, ..., \theta_k)$ , the **likelihood function** is

$$L(\theta|\mathbf{x}) = L(\theta_1,\ldots,\theta_k|x_1,\ldots,x_n) = \prod_{i=1}^n f(x_i|\theta_1,\ldots,\theta_k).$$

- For each sample point  $\mathbf{x}$ , let  $\hat{\theta}(\mathbf{x})$  be a parameter value at which  $L(\theta|\mathbf{x})$  attains its maximum as a function of  $\theta$ , with  $\mathbf{x}$  held fixed. A **maximum likelihood estimator (MLE)** of the parameter  $\theta$  based on a sample  $\mathbf{X}$  is  $\hat{\theta}(\mathbf{X})$ .
- If the likelihood function is differentiable (in  $\theta_i$ ), **possible** candidates for the MLE are the values of  $(\theta_1, \dots, \theta_k)$  that satisfy

$$\frac{\partial}{\partial \theta_i} L(\theta|\mathbf{x}) = 0, \quad i = 1, \dots, k.$$

#### MLE: Normal Example

Let  $X_1, \ldots, X_n$  be i.i.d.  $N(\theta, 1)$ , and let  $L(\theta|\mathbf{x})$  denote the likelihood function. Since

$$L(\theta|\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} e^{(-1/2)\sum_{i=1}^{n} (x_i - \theta)^2},$$

the equation  $\frac{d}{d\theta}L(\theta|\mathbf{x})=0$  reduces to

$$\sum_{i=1}^{n}(x_{i}-\theta)=0,$$

which has the solution  $\hat{\theta} = \bar{x} = (\sum_{i=1}^{n} x_i)/n$ . Moreover, we can verify that

$$\frac{d^2}{d\theta^2}L(\theta|\mathbf{x})|_{\theta=\bar{x}}<0,$$

so  $\hat{\theta}$  is a local maximum of  $L(\theta|\mathbf{x})$ . However,  $L(\theta|\mathbf{x})$  is a strictly convex function, so  $\hat{\theta}$  is the global maximum, and thus the MLE.

#### MLE: Exercises

1. Let  $X_1, \ldots, X_n$  be i.i.d. samples from the uniform distribution  $U(0,\theta), \ \theta>0$ . Find the MLE of  $\theta$ .

2. Let  $X_1, \ldots, X_n$  be i.i.d. Bernoulli(p). Find the MLE of p.

## The Invariance Property of MLEs

#### **Theorem**

If  $\hat{\theta}$  is the MLE of  $\theta$ , then for any function  $\tau(\theta)$  of  $\theta$ , the MLE of  $\tau(\theta)$  is  $\tau(\hat{\theta})$ .

A mini-exercise: following ex.2 from above, what is the MLE of  $\sqrt{p(1-p)}$ ?

## Mean Squared Error (MSE) and Bias

- ► The **mean squared error (MSE)** of an estimator W of a parameter  $\theta$  is defined by  $E_{\theta}(W \theta)^2$ .
- ▶ The **bias** of a point estimator W of a parameter  $\theta$  is  $\operatorname{Bias}_{\theta}W = E_{\theta}W \theta$ , and an estimator is called **unbiased** if  $E_{\theta}W = \theta$  for all  $\theta$ .
- Relationship between MSE and bias:

$$E_{\theta}(W - \theta)^2 = \operatorname{Var}_{\theta}W + (\operatorname{Bias}_{\theta}W)^2.$$

▶ If W is an unbiased estimator of  $\theta$ ,

$$E_{\theta}(W-\theta)^2 = \operatorname{Var}_{\theta}W.$$



#### MSE and Bias: An Exercise

Let  $X_1,\ldots,X_n$  be i.i.d.  $N(\mu,\sigma^2)$ ,  $\bar{X}=(\sum_{i=1}^n X_i)/n$  be the sample mean, and  $S^2=\sum_{i=1}^n (X_i-\bar{X})^2/(n-1)$  be the sample variance. Verify that  $\bar{X}$  and  $S^2$  are unbiased estimators for  $\mu$  and  $\sigma^2$ , respectively, and compute their MSEs.

If we adopt the MLE estimator  $\hat{\sigma}^2$  for  $\sigma^2$  instead, where  $\hat{\sigma}^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / n$ . What is the MSE of  $\hat{\sigma}^2$  ?

#### Uniform Minimum Variance Unbiased Estimators

- If an estimator  $W^*$  of  $\tau(\theta)$  satisfies  $E_{\theta}W^* = \tau(\theta)$  for all  $\theta$  and, for any other estimator W with  $E_{\theta}W = \tau(\theta)$ , we have  $\mathrm{Var}_{\theta}W^* \leq \mathrm{Var}_{\theta}W$  for all  $\theta$ , then  $W^*$  is called a **uniform** minimum variance unbiased estimator (UMVUE) of  $\tau(\theta)$ .
- Let T be a complete and sufficient statistic for a parameter  $\theta$ , and let  $\phi(T)$  be an estimator based only on T and unbiased for  $\tau(\theta)$ . Then  $\phi(T)$  is the UMVUE of  $\tau(\theta)$ .

## Review Exercises: Morning Session

## Hypothesis Testing

## Intro to Hypothesis Testing

Video tutorial, by mathtutordvd

## Challenge Exercises: Morning Session

## Hypothesis Testing: Likelihood Ratio Tests

The **likelihood ratio test statistic** for testing  $H_0: \theta \in \Theta_0$  versus  $H_1: \theta \in \Theta_0^c$  is

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta|\mathbf{x})}{\sup_{\Theta} L(\theta|\mathbf{x})}.$$

A **likelihood ratio test (LRT)** is any test that has a rejection region of the form  $\{\mathbf{x}: \lambda(\mathbf{x}) \leq c\}$ , where c is a number satisfying  $0 \leq c \leq 1$ .

Suppose  $\hat{\theta}$  is an MLE of  $\theta$  (obtained by the unrestricted maximization of  $L(\theta|\mathbf{x})$ ), and  $\hat{\theta}_0$  is the MLE of  $\theta$  assuming the parameter space is  $\Theta_0$  ((obtained by maximizing  $L(\theta|\mathbf{x})$ ) on  $\Theta_0$ ). Then the LRT statistic is

$$\lambda(\mathbf{x}) = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}.$$

## LRT and Sufficiency

#### **Theorem**

If  $T(\mathbf{X})$  is a sufficient statistic for  $\theta$  and  $\lambda^*(t)$  and  $\lambda(\mathbf{x})$  are the LRT statistics based on T and  $\mathbf{X}$ , respectively, then  $\lambda^*(T(\mathbf{x})) = \lambda(\mathbf{x})$  for every  $\mathbf{x}$  in the sample space.

#### An Exercise: Normal LRT

Let  $X_1, \ldots, N_n$  be i.i.d.  $N(\theta, 1)$ . Consider the test  $H_0: \theta = \theta_0$  versus  $H_1: \theta \neq \theta_0$ . Find the LRT statistic and derive the form of the rejection region.

#### Test Errors and Power Function

► Type I Error and Type II Error:

|       |       | Decision         |                  |
|-------|-------|------------------|------------------|
|       |       | Accept $H_0$     | Reject $H_0$     |
| Truth | $H_0$ | Correct decision | Type I Error     |
|       | $H_1$ | Type II Error    | Correct decision |

- Suppose R denotes the rejection region for a test, then the probability of a Type I Error is  $P_{\theta}(\mathbf{X} \in R|H_0)$ , and the probability of a Type II Error is  $P_{\theta}(\mathbf{X} \in R^c|H_1) = 1 P_{\theta}(\mathbf{X} \in R|H_1)$ .
- ► The **power function** of a hypothesis test with rejection region R is the function of  $\theta$  defined by  $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$ .
- ▶ For  $0 \le \alpha \le 1$ , a test with power function  $\beta(\theta)$  is a **level**  $\alpha$  **test** if  $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$ .

#### An Exercise: Binomial

Let  $X \sim \text{Binomial}(5,\theta)$ . Consider the test  $H_0: \theta \leq 1/2$  versus  $H_1: \theta > 1/2$ . If we adopt the test that rejects  $H_0$  only if X=5 is observed. What is the power function of this test? How small is the probability of Type I Error? For what values of  $\theta$  is the probability of Type II Error less than  $\frac{1}{2}$ ?

#### p-values

#### **Definition 1:**

A **p-value**  $p(\mathbf{X})$  is a test statistic satisfying  $0 \le p(\mathbf{x}) \le 1$  for every sample point  $\mathbf{x}$ . A p-value is **valid** if, for every  $\theta \in \Theta_0$  and every  $0 \le \alpha \le 1$ ,

$$P_{\theta}(p(\mathbf{X}) \leq \alpha) \leq \alpha.$$

- ▶ If we observe  $\mathbf{X} = \mathbf{x}$ , then for any  $\alpha \ge p(\mathbf{x})$ , a level  $\alpha$  test rejects  $H_0$ ;
- ▶ p-value is essentially a summary statistic of the data. Small values of  $p(\mathbf{X})$  give evidence that  $H_1$  is true.

## p-values (Cont'd)

#### **Definition 2:**

Let  $W(\mathbf{X})$  be a test statistic such that large values of W give evidence that  $H_1$  is true. For each sample point  $\mathbf{x}$ , define

$$p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P_{\theta}(W(\mathbf{X}) \geq W(\mathbf{x})).$$

Then p(X) is a valid p-value.

▶ "p-value": the probability of obtaining a sample "more extreme" than the ones observed in the data, assuming H<sub>0</sub> is true.

#### p-values: An Exercise

A neurologist is testing the effect of a drug on response time by injecting 100 rats with a unit dose of the drug, subjecting each to neurological stimulus, and recording its response time. The neurologist knows that the response time for a rat not injected with the drug follows a normal distribution with a mean response time of 1.2 seconds. The mean of the 100 injected rats' response times is 1.05 seconds with a sample standard deviation of 0.5 seconds.

Do you suggest that the neurologist conclude that the drug has an effect on response time?

#### Solution to the Exercise

Suppose the mean response time for rats injected with the drug is  $\mu$ , then we want to test

$$H_0$$
:  $\mu=1.2s$  (the drug has no effect)

against

$$H_1: \mu \neq 1.2s$$
 (the drug has effect) .

Construct the test statistic (here  $\bar{X}$  is the sample mean, and S is the sample standard deviation)

$$Z=\frac{\bar{X}-1.2}{S/\sqrt{100}}.$$

 $Z \sim t_{99}$ , which is approximately N(0,1). Plug in the observed data,  $\bar{x}=1.05, s=0.5$ , and z=-3, so the p-value is approximately  $P(|W|\geq |z|)=P(|W|\geq 3)\approx 0.003$  (let  $W\sim N(0,1)$ ), suggesting strong evidence that  $H_1$  is true.



#### Interval Estimation

#### Interval Estimation

- An **interval estimate** of a parameter  $\theta$  is any pair of functions,  $L(x_1, \ldots, x_n)$  and  $U(x_1, \ldots, x_n)$ , of a sample that satisfy  $L(\mathbf{x}) \leq U(\mathbf{x})$  for all  $\mathbf{x} \in \mathcal{X}$ . The inference  $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$  is made once  $\mathbf{X} = \mathbf{x}$  is observed. The **random interval**  $[L(\mathbf{X}), U(\mathbf{X})]$  is called an **interval** estimator.
- The coverage probability of an interval estimator  $[L(\mathbf{X}), U(\mathbf{X})]$  of a parameter  $\theta$  is the probability that the random interval  $[L(\mathbf{X}), U(\mathbf{X})]$  covers the true parameter,  $\theta$ . It is denoted by  $P(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$ , or  $P(\theta \in [L(\mathbf{X}), U(\mathbf{X})]|\theta)$ .
- ▶ The **confidence coefficient** of an interval estimator  $[L(\mathbf{X}), U(\mathbf{X})]$  of a parameter  $\theta$  is the infimum of the coverage probabilities for all values of  $\theta$ , inf $_{\theta} P(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$ .

## Interval Estimation: Key Points

- 1. The interval is the random quantity, not the parameter;
- "Confidence intervals/sets": interval estimators with a measure of confidence (a confidence coefficient); eg. a confidence interval/set with confidence coefficient equal to C, is called a "C confidence interval/set".
- 3. The **coverage probability** is a function of  $\theta$ , whose true value is unknown, so we can only guarantee the infimum of the coverage probability, the confidence coefficient.

#### A mini-exercise

Suppose that X is a random sample from a distribution with parameter  $\theta$ , and [L(X), U(X)] is a 95% confidence interval of  $\theta$ . If we observe X = x, which of the following statements is correct?

- A The probability that  $\theta \in [L(x), U(x)]$  is 0.95;
- B The probability that  $\theta \in [L(x), U(x)]$  is either 1 or 0.

## Find Interval Estimators Through Pivot Quantities

- ▶ A random variable  $Q(\mathbf{X}, \theta)$  is a **pivot quantity** if the distribution of  $Q(\mathbf{X}, \theta)$  is independent of all parameters.
- ▶ Usually,  $Q(\mathbf{X}, \theta)$  contains both parameters and statistics, but for any set A,  $P_{\theta}(Q(\mathbf{X}, \theta) \in A)$  does not depend on  $\theta$ .
- ▶ The goal is to find a pivot quantity  $Q(\mathbf{x}, \theta)$  and a set  $\mathcal{A}$  such that the set  $\{\theta : Q(\mathbf{x}, \theta) \in \mathcal{A}\}$  is a set estimate of  $\theta$ .

#### Example: Normal Pivotal Interval

If  $X_1,\ldots,X_n$  are i.i.d.  $N(\mu,\sigma^2)$  with  $\sigma^2$  known, then  $Z=(\bar{X}-\mu)/(\sigma/\sqrt{n})$  is a pivot quantity  $(Z\sim N(0,1))$ . Then a confidence interval of  $\theta$  can be

$$\{\mu: \bar{x} - a\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + a\frac{\sigma}{\sqrt{n}}\},$$

where a is a constant.

If  $\sigma^2$  is unknown, then  $T_{n-1}=(\bar{X}-\mu)/(S/\sqrt{n})$  is a pivot quantity  $(T_{n-1}\sim t_{n-1})$ . Thus, for any given  $\alpha\in(0,1)$ , a  $1-\alpha$  confidence interval of  $\mu$  is given by

$$\{\mu: \bar{x} - t_{n-1,(1-\alpha)/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,(1-\alpha)/2} \frac{s}{\sqrt{n}}\},$$

where  $t_{df,p}$  is the  $p \times 100\%$ th quantile of a student-t distribution with df degrees of freedom.

## Hypothesis Testing & Confidence Sets

#### **Theorem**

For each  $\theta_0 \in \Theta_0$ , let  $A(\theta_0)$  be the acceptance region of a level  $\alpha$  test of  $H_0: \theta = \theta_0$ . For each  $\mathbf{x} \in \mathcal{X}$ , define a set  $C(\mathbf{x})$  in the parameter space by

$$C(\mathbf{x}) = \{\theta_0 : \mathbf{x} \in A(\theta_0)\}.$$

Then the random set  $C(\mathbf{x})$  is a  $1-\alpha$  confidence set. Conversely, let  $C(\mathbf{x})$  be a C confidence set, then for any  $\theta_0 \in \Theta$ ,

$$A(\theta_0) = \{ \mathbf{x} : \theta_0 \in C(\mathbf{x}) \}$$

is the acceptance region of a level 1-C test of  $H_0: \theta=\theta_0$ .



#### Review Exercises: Afternoon Session

## Introduction to Bayesian Analysis

#### Video Tutorial

Introduction to Bayesian Data Analysis, by asmusab

## Challenge Exercises: Afternoon Session

## The End