Differential Geometry Notes of 01/28/2013

Pramook Khungurn

December 11, 2019

1 Continuity

• A ball in \mathbb{R}^n with center $p_0 = (x_1^0, x_2^0, \dots, x_n^0)$ and radius $\epsilon > 0$ is the set

$$B_{\epsilon}(p_0) = \{(x_1, \dots, x_n) \in \mathbb{R}^n : (x_1 - x_1^0)^2 + \dots + (x_n - x_n^0)^2 < \epsilon^2 \}.$$

- The set $U \subseteq \mathbb{R}^n$ is an **open set** if for each $p \in U$ there exists a ball $B_{\epsilon}(p) \subseteq U$.
- An open set \mathbb{R}^n containing a point $p \in \mathbb{R}^n$ is a **neighborhood** of p.
- Let U be an open set. A map $F:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$ is **continuous** at $p\in U$ if given $\epsilon>0$, there exists $\delta>0$ such that

$$F(B_{\delta}(p)) \subseteq B_{\epsilon}(F(p)).$$

We say that F is continuous in U is it is continuous at any point p in U.

- Proposition 1.1. Let U be an open set. $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if each component function $f_i: U \subseteq \mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., m is continuous.
- Proposition 1.2. A map $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $p \in U$ if and only if, given a neighborhood V of F(p) in \mathbb{R}^m , there exists a neighborhood W of p in \mathbb{R}^n such that $F(W) \subseteq V$.
- Proposition 1.3. Let $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $G: V \subseteq \mathbb{R}^m \to \mathbb{R}^k$ be continuous maps, where U and V are open sets such that $F(U) \subseteq V$. Then $G \circ F: U \subseteq \mathbb{R}^n \to \mathbb{R}^k$ is a continuous map.
- Let $F: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, where A is an arbitrary set in \mathbb{R}^n (not an open set like U). We say that F is **continuous** in A if there exists an open set $U \subseteq \mathbb{R}^n$ and $A \subseteq U$ and a continuous $\bar{F}: U \to \mathbb{R}^n$ such that the restriction of \bar{F} to A is F.
- We say that a continuous map $F: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a **homeomorphism** onto F(A) if F is one-to-one and the inverse $F^{-1}: F(A) \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is continuous.

We say that A and F(A) are homeomorphic sets.

- **Proposition 1.4.** Let $f:[a,b] \to \mathbb{R}$ be a continuous function defined on the closed interval [a,b]. Assume that f(a) and f(b) have opposite signs. Then, there exists a point $c \in (a,b)$ such that f(c) = 0.
- **Proposition 1.5.** Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then, f reaches its maximum and minimum in [a,b]; that is, there exists $x_1, x_2 \in [a,b]$ such that $f(x_1) \leq f(x_2)$ for all $x \in [a,b]$.
- Proposition 1.6 (Heine–Borel Theorem). Let [a,b] be a closed interval and let $I_{\alpha}, \alpha \in A$, be a collection of open interval in [a,b] such that $\bigcup_{\alpha} I_{\alpha} = [a,b]$. Then, it is possible to choose a finite number $I_{k_1}, I_{k_2}, \ldots, I_{k_n}$ of I_{α} such that $\bigcup I_{k_i} = I$ for $i = 1, 2, \ldots, n$.

2 Differentiability in \mathbb{R}^n

• Let $f: U \subseteq \mathbb{R} \to \mathbb{R}$. The **derivative** $f'(x_0)$ of f at $x_0 \in U$ is the limit (when it exists)

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

- If f has derivatives at all points of neighborhood V of x_0 , we can consider the derivative of $f': V \to \mathbb{R}$ at x_0 , which is called the **second derivative** $f''(x_0)$ of f at x_0 . We can define the derivative of higher order in a similar manner.
- We say that f is **differentiable** at x_0 if it has continuous derivatives of all orders at x_0 . We say that f is **differentiable** in U if it is differentiable at all points in U.
- Let $F: U \subseteq \mathbb{R}^2 \to \mathbb{R}$. The **partial derivative** of f with respect to x at $(x_0, y_0) \in U$, denoted by $(\partial f/\partial x)(x_0, y_0)$ is the derivative at x_0 for the function of one variable $x \mapsto f(x, y_0)$. The partial derivative with respect y is defined similarly.
- The second partial derivatives at (x_0, y_0) are:

$$\begin{split} \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) &= \frac{\partial^2 f}{\partial x^2} & \qquad \qquad \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) &= \frac{\partial^2 f}{\partial x \, \partial y} \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) &= \frac{\partial^2 f}{\partial y \, \partial x} & \qquad \qquad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) &= \frac{\partial^2 f}{\partial y^2}. \end{split}$$

Partial derivatives of higher order are defined similarly.

- We say that f is **differentiable** at (x_0, y_0) if it has continuous partial derivatives of all orders at (x_0, y_0) . We say that f is differentiable in U if it is differentiable at all points in U.
- When f is differentiable, the partial derivatives of f are independent of the order in which they are performed; that is,

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial y \, \partial x}, \qquad \qquad \frac{\partial^3 f}{\partial x^2 \, \partial y} = \frac{\partial^3 f}{\partial x \, \partial y \, \partial x}, \qquad \text{etc.}$$

• We sometimes denote the partial derivatives with the following notations:

$$f_x = \frac{\partial f}{\partial x}$$
 $f_{xx} = \frac{\partial^2 f}{\partial x^2}$ $f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$ $f_{yy} = \frac{\partial^2 f}{\partial y^2}$

- The definitions of partial derivatives for $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ can be similarly defined as the 2D case.
- Partial derivatives obey the **chain rule**.

For example, if x = x(u, v), y = y(u, v), and z = z(u, v) are real differentiable functions in $U \subseteq \mathbb{R}^2$, and f(x, y, z) is a real differential function in \mathbb{R}^3 , then the partial derivative of f with respect to u is given by:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u}.$$

• We say that the function $F:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$ where

$$f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$$

is **differentiable** at (x_1, \ldots, x_n) if all of its component functions are differentiable at (x_1, \ldots, x_n) . We say that F is differentiable in U if it is differentiable at all points in U.

- When n = 1, we have that F define a **differentiable curve** in \mathbb{R}^n .
- A tangent vector to a differentiable curve $\alpha: U \subseteq \mathbb{R} \to \mathbb{R}^m$ at $t_0 \in U$ is the vector

$$\alpha'(t_0) = (\alpha'_1(t_0), \dots, \alpha'_m(t_0)).$$

- Given a vector $w \in \mathbb{R}^m$ and a point $p \in U \subseteq \mathbb{R}^n$, we can always find a differentiable curve $alpha : (-\epsilon, \epsilon) \to U$ with $\alpha(0) = p$ and $\alpha'(0) = w$. This is done simply by taking $\alpha(t) = p + wt$.
- Definition 2.1. Let $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable map. To each $p \in U$, we associate a linear map $dF_p: \mathbb{R}^n \to \mathbb{R}^m$ (that is, an $m \times n$ matrix) which is called the differential of F at p, which is defined as follows.

Let $w \in \mathbb{R}^n$ and let $\alpha : (-\epsilon, \epsilon) : \mathbb{R} \to \mathbb{R}^n$ be a differentiable curve such that $\alpha(0) = p$ and $\alpha'(0) = w$. By the chain rule, the function $\beta = F \circ \alpha : \mathbb{R} \to \mathbb{R}^m$ is also differentiable. We define

$$\mathrm{d}F_p(w) = \beta'(0).$$

• Proposition 2.2. dF_p is well-defined. That is, the value of $dF_p(w)$ does not depend on the particular choice of the curve α .

Proof. Let

$$F(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)),$$

and

$$\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t)).$$

As a result,

$$\beta(t) = (F \circ \alpha)(t) = \begin{bmatrix} f_1(\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t)) \\ f_2(\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t)) \\ \vdots \\ f_M(\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t)) \end{bmatrix}.$$

So,

• The matrix $[\partial f_i/\partial x_j]$ where $i=1,2,\ldots,m$ and $j=1,2,\ldots,n$ is called the **Jacobian matrix** of F at p. When n=m, this is a square matrix and its determinant is called the **Jacobian determinant**, which is usually denoted by:

$$\det\left(\frac{\partial f_i}{\partial x_j}\right) = \frac{\partial (f_1, \dots, f_n)}{\partial (x_1, \dots, x_n)}.$$

• Proposition 2.3 (Chain rule for maps). Let $F:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$ and $G:V\subseteq\mathbb{R}^m\to\mathbb{R}^k$ be differentiable maps, where U and V are open sets and $F(U)\subseteq V$. Then, $G\circ F=U\to\mathbb{R}^k$ is a differentiable map, and

$$d(G \circ F)_p = dG_{F(p)} \circ dF_p.$$

- We say that an open set $U \subseteq \mathbb{R}^n$ is **connected** if given two points $p, q \in U$, there exists a continuous map $\alpha : [a,b] \to U$ such that $\alpha(a) = p$ and $\alpha(b) = q$.
- Proposition 2.4. Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ be a differentiable map defined on a connected open subset U of \mathbb{R}^n . Assume that $\mathrm{d} f_p: \mathbb{R}^n \to \mathbb{R}$ is zero at every point $p \in U$. Then f is constant on U.

Proof. Let $p \in U$, and let $B_{\delta}(p) \subseteq U$ be an open ball around p inside U. Any point $q \in B_{\delta}(p)$ can be joined to p by the straight line $\beta : [0,1] \to B_{\delta}(p)$ where $\beta(t) = (1-t)p + tq$. Since U is open, we expand β 's domain to $(0-\epsilon, 1+\epsilon)$. Now, we consider $f \circ \beta : (0-\epsilon, 1+\epsilon) \to \mathbb{R}$ is a function defined on open interval. We have that

$$d(f \circ \beta)_t = (df \circ d\beta)_t = 0$$

because df_p is zero at every point p. Because $d(f \circ \beta)_t$ is a 1×1 matrix whose entry is simply $d(f \circ \beta)/dt$, we have that the derivative is 0. This means that $f \circ \beta$ is constant. So, $f(p) = f(\beta(0)) = f(\beta(1)) = f(q)$. Thus, because p and q are arbitrary, f is constant in $B_{\delta}(U)$.

Next, we need to show that f(p) = f(q) for any two points p, q in U. Since U is connected, there is a connected curve $\alpha : [a, b] \to U$ that joints p and q. By the first part of the proof, for reach $t \in [a, b]$, there exists an open interval I_t such that $f \circ \alpha$ is constant. Note also that $\bigcap_t I_t = [a, b]$. By the Heine–Borel theorem, we can choose a finite number of open intervals I_1, I_2, \ldots, I_k that covers [a, b]. By renumbering the intervals, we can assume that consecutive intervals overlap. This implies that f is constant over the union of all intervals. Therefore, f(p) = f(q), and we are done.

- Proposition 2.5 (Inverse Function Theorem). Let $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable mapp and suppose that at $p \in U$ the differential $dF_p: \mathbb{R}^a \to \mathbb{R}^n$ is invertible. Then, there exists a neighborhood V of p in U and a neighborhood W of F(p) in \mathbb{R}^n such that $F: V\mathbb{R}W$ has a differentiable inverse $F^{-1}: W \to V$.
- A differentiable map $F: V \subseteq \mathbb{R}^n \to W \subseteq \mathbb{R}^n$, where V and W are open sets, is called a **diffeomorphism** of V with W if F has a differentiable inverse.