# МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №3 по курсу «Программирование графических процессоров»

Классификация и кластеризация изображений на GPU.

Выполнил: М.А.Трофимов

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

#### **Условие**

**Цель работы.** Научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти. **Вариант**: 1, Метод Максимального Правдоподобия.

### Программное и аппаратное обеспечение

### Характеристики GPU "NVIDIA GeForce GTX 950"

CUDA Driver Version / Runtime Version 11.4 / 11.4

CUDA Capability Major/Minor version number: 5.2

Total amount of global memory: 1997 MBytes (2094137344 bytes)

(006) Multiprocessors, (128) CUDA Cores/MP: 768 CUDA Cores GPU Max Clock rate: 1278 MHz (1.28 GHz)

Memory Clock rate: 3305 Mhz

Memory Bus Width: 128-bit

L2 Cache Size: 1048576 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),

3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total shared memory per multiprocessor: 98304 bytes Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

#### Характеристики CPU Intel i5-4460

# of Cores 4

# of Threads 4

Processor Base Frequency 3.20 GHz

Max Turbo Frequency 3.40 GHz

Cache 6 MB Intel® Smart Cache

Bus Speed 5 GT/s

Intel® Turbo Boost Technology 2.0 Frequency 3.40 GHz

**TDP 84 W** 

### Характеристики RAM

Total 15 Gi

Swap 2 Gi

Операционная система: Ubuntu 20.04 LTE

IDE Sublime Text 3

Compiler nvcc for cuda 11.4

### Метод решения

Сущность решения в том, что мы считаем оценки мат. ожидания и ковариации, а потом, применяя ММП классифицируем пиксель по максимальным значению ММП. Параллелизация реализована с помощью константной памяти в виде массива из 32ух элементов типа ClassData. Каждый поток перебирает возможные классы и выбирает номер класса тот, что больше всего подходит.

### Описание программы

Всё писалось одним файлом main.cu, в котором функция main, read\_file - функция для считывания из входного файла данных, write\_file - записи получившихся данных в файл, calc\_metric для считывания из stdin выборок и подсчёта для каждой выборки среднее, обратную матрицу ковариации и её определитель, сохраняя в класс ClassData, который содержит необходимые метрики для определения принадлежности к текущему классу. Сотрите\_mmp - функция device (видеокарты) для подсчёта значения ММП для проверки принадлежности данного пикселя к данному классу.

### Результаты

| Конфигурация | тест картинки 320x320 | тест картинки<br>500x500 | тест картинки<br>889х906 |
|--------------|-----------------------|--------------------------|--------------------------|
| Ha CPU       | 143.62 ms             | 388.15 ms                | 1268.70 ms               |
| 1,32         | 84.63 ms              | 384.57 ms                | 1026.32 ms               |
| 32, 32       | 3.82 ms               | 20.96 ms                 | 59.77 ms                 |
| 64, 64       | 2.75 ms               | 15.00 ms                 | 43.04 ms                 |
| 512, 512     | 2.62 ms               | 14.39 ms                 | 40.29 ms                 |
| 1024, 1024   | 2.63 ms               | 15.32 ms                 | 40.34 ms                 |
| 2048, 1024   | 2.63 ms               | 13.37 ms                 | 40.36 ms                 |

## Демонстрация работы



## Выводы

Как видно, параллелизация классификации весьма сильно улучшает время работы до 300 раз, что очень сильно, но большое число блоков и тредов не всегда

нужно. Как видно, минимальное время достигается на конфигурации 64, 64, и больше не уменьшается. Скорее всего, это из-за того, что достаточно мало работы приходится на каждый тред, поэтому прирост эффективности не происходит.