

## EYP1016 - Introducción a la Estadística Ayudantía 11

Profesora : Anita Araneda Avudante : Pilar Tello

Fecha : 24 de Mayo del 2016

1. Si  $X_1, \ldots, X_n$  es una muestra aleatoria de una distribución  $Uniforme[0, \theta]$ :

- a) Encuentre el estimador de máxima verosimilitud de  $\theta$ .
- b) Encuentre el estimador de momentos de  $\theta$ .
- c) Calcule el error cuadrático medio del EMV y EM encontrados en a) y b). ¿Cuál de los dos estimadores prefiere? Justifique.

*Hint:* Si Y es una v.a con función de densidad  $f_Y(y) = ny^{n-1}/\theta^n$  con  $0 \le x \le \theta$  entonces  $\mathbb{E}(Y) = n\theta/(n+1)$  y  $\mathbb{E}(Y^2) = n\theta^2/(n+2)$ .

- 2. La probabilidad de que una plancha de cinc fabricada por una máquina sea declarada de segunda clase es igual a  $\theta$ , y su valor es desconocido.
  - a) Determine el estimador de máxima verosimilitud de  $\theta$ , basándose en una muestra aleatoria de n de estas planchas donde, para cada una de ellas, se registra si ella es declarada de segunda clase, o no.
  - b) Para un tamaño muestral suficientemente grande, encuentre un pivote aproximado para  $\theta$ ,  $R(X, \theta)$ , basado en el estimador máximo verosímil que encontró en a).
  - c) Utilice el pivote que encontró en b) para construir paso a paso un intervalo de confianza aproximada  $(1 \alpha)$  para  $\theta$ .
  - d) Si en una muestra aleatoria de 1.000 de estas planchas se encuentra que 30 de ellas son de segunda clase, determine una estimación puntual y una estimación intervalar para  $\theta$ , esta última utilizando un 95 % de confianza.
  - e) Determine el número de planchas requeridas para asegurar que el semi-ancho de un intervalo de 95 % de confianza sea a lo más 0,02. *Hint:* ¿Cuál es la varianza máxima en una población Bernoulli?
  - f) ¿Cómo podría argumentar que es posible lograr lo anterior utilizando un tamaño de muestra menor al encontrado?
- 3. Sea Y una variable aleatoria con densidad

$$f_Y(y) = \frac{1}{\theta y^{\frac{1}{\theta}+1}} \ y > 1, 0 < \theta < 1$$

- a) Demuestre que  $Y^{\frac{1}{\theta}}$  es una función pivote para  $\theta$ .
- b) Se ha observado una muestra de tamaño n=1. A partir de a) obtenga un intervalo de confianza al nivel  $1-\alpha$  para  $\theta$ .