

QUANTUMDARTS: DIFFERENTIABLE QUANTUM ARCHITECTURE SEARCH FOR VARIATIONAL QUANTUM ALGORITHMS

WENJIE WU, GE YAN, XUDONG LU, KAISEN PAN, JUNCHI YAN

PROBLEM FORMULATION

in this paper can be formulated as follows. Given a candidate quantum gate set \mathcal{G} , we find the best sponding unitary $\hat{\mathbf{U}}(\mathcal{A}, \theta)$, which minimizes the oss of the original VQA problem. Here A is the optimal circuit, θ is the best rotation parameters. The problem of quantum architecture search (QAS) for variational quantum algorithms (VQA) composition in the form of PQC and its corre-U denotes the unitary transformation for the circuit and can be calculated by Eq. 1.

$$\hat{\mathbf{U}} = \prod_{j=1}^{m} \prod_{i=1}^{n} \hat{\mathbf{U}}_{ij} = \prod_{j=1}^{m} \prod_{i=1}^{n} \sigma(\mathbf{M}_{ij})$$
(1)

GROUND STATE ENERGY ESTIMATION

Model	H_2	LiH-4	LiH-6	H_2O-8
UCCSD	5.5×10^{-11}	4.0×10^{-5}	4.0×10^{-5}	4.0×10^{-6}
Ours	4.3×10^{-6}	1.7×10^{-4}	2.9×10^{-4}	3.1×10^{-4}
OCAS	2.2×10^{-2}	8.6×10^{-2}	7.3×10^{-2}	7.0×10^{-1}
DQAS	3.1×10^{-4}	5.3×10^{-4}	1.5×10^{-3}	5.2×10^{-1}
RS	1.9×10^{-2}	1.3×10^{-2}	6.2×10^{-3}	4.0×10^{-1}

Table 1: Comparison of energy errors in Hartree among different models.

- All the energy errors are lower than chemi-
- Energy errors are two orders of magnitude lower than other QAS methods in average.
- Circuit depth is about one order of magnitude lower than that of UCCSD.

- Macro search: using the sampling results to construct the circuit directly.
- Micro search: sampling a sub-circuit and then constitute the circuit with sub-circuits according to some predefined rules.

- Macro search can easily find the optimal solutions of 10-node Max-Cut problems with different density.
- Micro search can generate a sub-circuit similar to that in QAOA. Besides, it can find multiple optimal solutions simultaneously.

Our macro model and micro model outperform QCNN, CNN and other QAS methods using comparable parameters.