ALGEBRA Chapter 5

Remainder Theorem

HELICO MOTIVATING

HELICO THEORY CHAPTHER 05

¿QUÉ ES EL TEOREMA DEL RESTO?

Es el proceso de calcular el residuo de manera directa sin necesidad de efectuar la división.

Teorema del resto.

El residuo de dividir $\frac{P(x)}{ax+b}$, se calcula al evaluar dicho polinomio P(x), cuando su variable "x" asume el valor de $\frac{-b}{a}$.

Ejemplo:

Calcular el resto en:

$$\frac{5x^4 - 3x^2 + 9x^3 - 10x - 15}{x - 1}$$

$$x-1=0$$
 $R(x)=5.1^4-3.1^2+9.1^3-10.1-15$
 $x=1$ $R(x)=-14$

CHAPTHER 05

1. Obtenga el residuo de:

$$\frac{x^5 - 7x^3 + 3x^4 - 5x^2 + 9x - 11}{x + 3}$$

Resolución

$$x + 3 = 0 \qquad \qquad x = -3$$

Reemplazando en el Dividendo

$$(-3)^5 - 7(-3)^3 + 3(-3)^4 - 5(-3)^2 + 9(-3) - 11$$
 $-243 - 7(-27) + 3(81) - 5(9) - 27 - 11$
 $-243 + 189 + 243 - 45 - 27 - 11$

$$189 - 83 = 106$$

$$R(x) = 106$$

2. Obtenga el residuo de:

$$\frac{x^{40} - (2x)^{20} - x^{13} + 8x^{10} + 9}{x - 2}$$

$$x - 2 = 0$$

$$x = 2$$

$$(2)^{40} - (2 \cdot 2)^{20} - (2)^{13} + 8(2)^{10} + 9$$

$$(2)^{40} - (2^{2})^{20} - (2)^{13} + 2^{3}(2)^{10} + 9$$

$$(2)^{40} - (2)^{40} - (2)^{13} + (2)^{13} + 9$$

$$R(x) = 9$$

3. Obtenga el residuo de:

$$\frac{(x+3)(x+4)(x+2)(x+5)+1}{x^2+7x-8}$$

$$\frac{(x^2 + 7x + 12)(x^2 + 7x + 10) + 1}{x^2 + 7x - 8}$$

$$x^2 + 7x - 8 = 0$$

$$R(x) = (8 + 12)(8 + 10) + 1$$

$$R(x) = (20)(18) + 1$$

$$R(x) = 360 + 1$$

4. Obtenga el residuo de:

$$\frac{x^5 + 2x^4 + 3x^3 + x^2 + 1}{x^3 - 3}$$

$$x^{3} - 3 = 0 \qquad \qquad x^{3} = 3$$

$$x^{3} \cdot x^{2} + 2x^{3} \cdot x + 3x^{3} + x^{2} + 1$$

$$x^{3} - 3$$

$$R(x) = 3.x^2 + 2.3.x + 3.3 + x^2 + 1$$

$$R(x) = 4x^2 + 6x + 10$$

$$R(x) = 4x^2 + 6x + 10$$

5. Calcule el residuo de:

$$\frac{x^{100} + 2}{x^2 + x + 1}$$

Resolución

Por Restos Especiales

Multiplicamos (x-1)

$$\frac{(x^{100}+2)(x-1)}{(x^2+x+1)(x-1)} = \frac{x^{101}-x^{100}+2x-2}{x^3-1}$$

Por Teorema del Resto

1.
$$x^3 - 1 = 0 \rightarrow x^3 = 1$$

II.
$$D(x) = (x^3)^{33}x^2 - (x^3)^{33}x + 2x - 2$$

Reemplazando el valor de x^3

$$R = (1)^{33}x^2 - (1)^{33}x + 2x - 2$$

$$R = x^2 - x + 2x - 2 = x^2 + x - 2$$

Al final se divide por (x-1)

$$R = \frac{x^2 + x - 2}{(x - 1)} = \frac{(x + 2)(x - 1)}{(x - 1)}$$

$$\therefore R = x + 2$$

Rpta

6. Si la dividir

$$\frac{(x^2+x)^2+x^2+2x+1}{x^2+x-2}$$

Se obtiene un residuo R(x) . Si el valor de R(3) representa el precio de 3 pares de medias. ¿Cuánto costará media docena de medias?

Resolución

Por teorema del Resto

1.
$$x^2 + x - 2 = 0$$
 $\rightarrow x^2 + x = 2$

II.
$$R(x) = (x^2 + x)^2 + (x^2 + x) + x + 1$$

$$R(x) = (2)^2 + (2) + x + 1$$

$$R(x) = 4 + 2 + x + 1$$

$$R(x) = x + 7$$

Evaluando para R(3)

$$R(3) = 3 + 7$$

$$R(3) = 10$$

Analizando el dato

- → 3 pares cuesta 10 soles
- → 6 pares costará 20 soles

Rpta

Media docena de medias costará 20 soles

7. En la siguiente división:

$$\frac{(2k-1)x^{21} + 8kx^{18} + (k+5)x^5 + 7x^2 + 3k}{x+1}$$

el valor de *k* representa el número de hermanos de Lucero . Si la división tiene residuo 27. ¿Cuántos hermanos tiene Lucero?

Resolución

Por teorema del Resto

$$1. x + 1 = 0 \quad \rightarrow \boxed{x = -1}$$

Reemplazando el valor de x

$$R = (2k-1)(-1)^{21} + 8k(-1)^{18} + (k+5)(-1)^{5} + 7(-1)^{2} + 3k$$

$$R = -(2k-1) + 8k - (k+5) + 7 + 3k$$

$$R = -2k + 1 + 8k - k - 5 + 7 + 3k$$

$$R=8k+3$$

Del dato

Residuo = 27
$$\rightarrow 8k + 3 = 27$$

$$k = 3$$

Rpta

Lucero tiene 3 hermanos