Name: _	MAP 2302 – Ordinary Differential Equations 1						
October Week 6 V	2, 2015 Vorksheet						
1. Find	the solution of the initial value problem $3y'' + 5y' - 2y = 0$, $y(0) = 5$, $y'(0) = -3$.						
(a)	Find the characteristic equation.						
(b)	Find the roots of the characteristic equation.						
(c)	Write the general solution as a linear combination of two exponentials.						
(d) Find the derivative of the general solution.							
(e)	Plug in the initial conditions to solve for the constants.						
()							
2. Dete	rmine the values of β , if any, for which all solutions of the differential equation						
	$y'' - (2\beta - 10)y' + (\beta^2 - 10\beta + 16)y = 0$						
(i) te	and to zero as $t \to \infty$ and (ii) are unbounded as $t \to \infty$ when not identically zero.						
(a)	Solve the characteristic equation in terms of α .						
(b)	Find the interval when both solutions are negative to answer part (i).						
(c)	Find the interval when both solutions are positive to answer part (ii).						

3.	Find the	simplified	Wronskian	of the	functions	f(t) =	$= -2e^t \sinh$	t and $g(t)$	$t) = 3e^t$	$\cosh t$.

4. If the Wronskian of $t^2 - 1$ and g is $2t^2 - 2$, for t > 0, then find g(t).

$$(t^2 + t - 6)y'' + (t - 2)y' - (t + 3)y = t - 2, \quad y(3) = 0, \quad y'(3) = 1$$

to have a unique, twice differentiable solution:

6. Without solving the equation, for $t \neq 0$, find the Wronskian of two independent solutions of $t^2y'' - t(t-2)y' + (t-7)y = 0$

