IRIS PEREIRA ESCOBAR

INJUNÇÕES RELATIVAS EM AJUSTAMENTO GRAVIMÉTRICO

Dissertação apresentada ao Curso de Pós-Graduação em Ciências Geodésicas para obtenção do Grau de Mestre em Ciências pela Universidade Federal do Paraná.

INJUNÇÕES RELATIVAS EM AJUSTAMENTO GRAVIMETRICO

DISSERTAÇÃO

Apresentada ao Curso de Pós-Graduação em Ciências Geodésicas para obtenção do Grau de Mestre em Ciências pela Universidade Federal do Paraná

por

UNIVERSIDADE FEDERAL DO PARANÁ

1985

BANCA EXAMINADORA;

Dr. CAMIL GEMAEL - ORIENTADOR

Ph.D. JOSÉ BITTENÇOURT DE ANDRADE

M.Sc. FRANÇOIS ALBERT ROSIER

Aos meus pais ULYSSES e DIONÉSIA, à minha esposa SONIA e meu filho FABIO.

AGRADECIMENTOS

Sou particularmente grato aos professores Dr. Camil Gemael e Dr. José Bittentourt de Andrade, orientador e co-orientador deste trabalho. Do mesmo modo, manifesto os meus agradimentos às pessoas e instituições abaixo relacionadas que contribuiram efetivamente para sua realização:

CNPq - Observatório Nacional

UERJ

UFPr

Curso de Pos-Graduação em Ciências Geodésicas

Carlos Roberto Germano

Elias Gomes do Couto

Ester Ferreira Baptista

João Gualda

Dr. Augusto Cesar Bittencourt Pires

José Justino Dantas

Prof. José Teotônio Ferreira

Dr. Luiz Muniz Barreto

Newton Pereira dos Santos

Prof. Rogério Carvalho de Godoy

RESUMO

O método dos mínimos quadrados é aplicado ao ajustamento de uma rede gravimétrica à IGSN-71. No ajustamento, os valores IGSN-71 não são considerados constantes, sendo inseridos na forma de injunções relativas, com pesos iguais aos inversos de suas variâncias. Para obtenção dos pesos das observações, ou seja, dos intervalos de gravidade observados, é executado um ajustamento preliminar utilizando o modelo matemático das equações de condição, aplicadas aos erros de fechamento dos circuitos da rede. O ajustamento final é conduzido com base no modelo combinado, envolvendo parâmetros incógnitas e observações. Adicionalmente é feita uma estimativa dos coeficientes de escala de dez gravimetros La Coste & Romberg.

ABSTRACT

Least squares method is applied to the adjustment of a gravity net to the IGSN-71. In this adjustment, IGSN-71 values are not fixed but these values are introduced by means of relative constraints, weighted according to the inverses of their variances. To obtain the observations' weights, that is to say, the weights of the observed gravity intervals, a preliminary adjustment is performed by means of the condition equations mathematic model, applied to circuit misclosures of the net. The final adjustment is performed throught a combined model, including unknown parameters and observations. Further more an estimation to the scale coefficients for ten La Coste & Romberg gravity meters is performed.

SUMÁRIO

		Página		
Título .		ii		
Dedicatór	ia	iii		
Agradecimentos iv				
Resumo				
Abstract				
Sumário		vi		
	CAPÍTULO 1			
INTRODUÇÃO				
1.1.	Objetivos	01		
1.2.	Justificativas	01		
1.3.	Metodologia	02		
	CAPÍTULO 2			
CAPITOLO Z				
OS GRAVÍMETROS MECÂNICOS				
2.1.	Introdução	03		
2.2.	O Sistema Elástico Usado nos Gravímetros	04		
2.2.1.	Gravimetros Estáveis	05		
2.2.2.	Gravimetros Astáticos	07		
2.3.	Principais Influências Sistemáticas Inerentes aos			
	Gravimetros Mecânicos	13		
2.3.1.	Sensibilidade do Gravimetro	16		
2.3.2.	Influência da Temperatura	17		
2.3.3.	Influência da Pressão Atmosférica	19		
2.3.4.	Influência do Campo Magnético	21		
2.3.5.	Influência da Inclinação	22		
2.3.6.	Deriva Instrumental	24		
2.3.7.	Função de Calibração ou de Escala	26		

2.3.7.1.	Calibração Entre Estações com Diferença de Gravid <u>a</u>	
	de Conhecida	27
2.3.7.2.	Calibração pelo Método de Inclinação	29
2.3.7.3.	Calibração por Suspensão de Carga Adicional	30
	CAPÍTULO 3	
	O MÉTODO DOS MÍNIMOS QUADRADOS	
3.1.	Princípio do Método	32
3.2.	Modelos Matemáticos	33
3.3.	Solução de Modelos Superabundantes	34
3.4.	Injunção	38
	CAPÍTULO 4	
	SOLUÇÃO DE MODELOS SUPERABUNDANTES	
	COM INJUNÇÕES RELATIVAS	
4.1.	Injunções Relativas ou Ponderadas	40
4.2.	Solução do Problema	41
4.3.	Matriz Variância-Covariância dos Parâmetros Ajusta-	
	dos	42
	CAPÍTULO 5	
	MODELOS MATEMÁTICOS	
	EM AJUSTAMENTOS GRAVIMÉTRICOS	
5.1.	Considerações Físicas	46
5.2.	Modelos Matemáticos	47
5.2.1.	Modelo dos Correlatos ou das Equações de Condição .	47
5.2.2.	Modelo Combinado	52

CAPÍTULO 6

AJUSTAMENTO DE UMA REDE GRAVIMÉTRICA

6.1.	Descrição da Rede 60
6.2.	Coeficientes Relativos de Escala 62
6.3.	Ajustamento da Rede 66
6.3.1.	Ajustamento Preliminar 66
6.3.2.	Ajustamento Final 67
6.4.	Coeficientes Absolutos de Escala 73
	CONCLUSÕES
	APÊNDICE A
	ESTAÇÕES DA REDE
	APÊNDICE B
	INTERVALOS DE GRAVIDADE OBSERVADOS
	APÊNDICE C
	INTERVALOS INTERNODAIS OBSERVADOS 95
	APÊNDICE D
	CIRCUITOS DA REDE E SEUS FECHAMENTOS 99
	APÊNDICE E
	INTERVALOS INTERNODAIS AJUSTADOS (PRELIMINARES) 102
	APÊNDICE F
	INTERVALOS INTERNODAIS AJUSTADOS (FINAIS) 106
	APÊNDICE G
	VALORES DE GRAVIDADE AJUSTADOS À IGSN-71 110
	NOTAS DE REFERÊNCIAS
	REFERÊNCIAS BIBLIOGRÁFICAS 121

CAPÍTULO 1

INTRODUÇÃO

1.1. Objetivos

A presente dissertação tem como objetivo principal analisar a aplicação do método dos mínimos quadrados, com injunções relativas, ao ajustamento de uma rede gravimétrica. Paralelamente procura-se apresentar uma metodologia de tratamento de observação, de modo a permitir a consideração dos efeitos sistemáticos nelas envolvidos de forma eficiente. Desta forma procura-se contribuir para a definição de uma metodologia a ser adotada no ajustamento da rede gravimétrica fundamental brasileira.

1.2. Justificativas

O crescente interesse na obtenção de informações gravimétricas, com fins diversos, principalmente de prospecção qeofisica, tem contribuído para uma rápida expansão nos levantamentos tricos. Entretanto, esta diversificação de finalidade tem dado origem a alguns conjuntos de medidas, referidas a diferentes sistemas, com origens e escalas diferentes. A homogeneização desses dados passa obrigatoriamente pela implantação de uma rede fundamental, que pos sa reunir toda a informação gravimétrica em um mesmo sistema, possibi litando a sua ampla utilização. Não obstante o esforço já desenvolvi do neste sentido, ainda não se definiu a metodologia de ajustamento de tal rede ao "datum" mundial, a IGSN-71. A Associação Internacional de Geodésia, através de sua publicação especial nº 4, "The Inter national Gravity Standardization Net-1971 (IGSN-71)", sugere o ajusta mento sem fixação dos valores de gravidade nas estações da IGSN-71.

Além disso, o Prof. Rosier, em sua dissertação de mestra do, apresenta algumas sugestões relativas à escolha do modelo matemático e ao tratamento dos efeitos sistemáticos, que são objeto de anático nesta dissertação.

1.3. Metodologia

Para o ajustamento final foi adotado o modelo combinado, in serindo-se as informações do referencial como injunções relativas, pon deradas de acordo com seus desvios padrão. A atribuição de pesos às observações é realizada com base num ajustamento preliminar, onde se adota o modelo das equações de condição. Para testar a eficiência do método é utilizada a rede gravimétrica do Observatório Nacional, que se estende por todo o território brasileiro, com uma amplitude de 1700 mGal (mGal = 10^{-5} m/s 2).

Para conclusão do objetivo proposto foi elaborado um programa em linguagem FORTRAN IV, utilizando para execução o computador IBM 370/158 do Laboratório Nacional de Computação Científica-LNCC, a través dos terminais instalados no Observatório Nacional.

CAPÍTULO 2

OS GRAVÍMETROS MECÂNICOS

2.1. Introdução

A determinação relativa da gravidade, ou seja, a determina ção da variação na aceleração da gravidade, Δg, de ponto para ponto, encontra nos gravímetros mecânicos os seus principais instrumentos na atualidade. Notáveis, pela alta sensibilidade e precisão, portabilidade, facilidade e rapidez no manejo, tais instrumentos são largamente empregados na busca de soluções de alguns problemas geodésicos e geofísicos.

Não obstante suas qualidades estes instrumentos apresentam características que, em contrapartida, impõem certos cuidados construção, no uso prático e às vezes, limitam seu campo de ção. A mais notável destas características é a chamada deriva instru mental, que traduz-se numa variação contínua das leituras, decorren te de deformações irreversíveis no material que constitui o sistema elástico do gravímetro. Além disso, as observações são, na realidade, leituras das graduações da escala do gravimetro. Essa escala varia de aparelho para aparelho e sua conversão em miligals é feita através de coeficientes denominados fatores de escala. A operação de terminação deste fator é uma das questões mais complexas e importan tes na gravimetria e denomina-se calibração. Outra característica dos gravimetros mecânicos é a sua limitação na amplitude de medida, depende da sua construção e precisão. Os gravimetros denominados geo désicos possuem grande amplitude de medida (de 3 a 7 gals) que possi

bilita o levantamento de grandes intervalos de gravidade. Já os gravimetros utilizados nos trabalhos de prospecção possuem uma amplitude de medida de 100-200 mGal.

2.2. O Sistema Elastico Usado nos Gravimetros

Os gravimetros, de modo geral, são construidos segundo o princípio de contrapor à gravidade uma força que lhe é sensivelmente igual, registrando-se a posição de equilibrio.

Nos gravimetros mecânicos a força da gravidade é contraba lançada pela força elástica de molas especiais (metálicas ou de quar tzo), segundo o princípio do dinamômetro, com base na lei de Hooke. As pequenas variações na gravidade acarretarão pequenas variações no peso de uma massa, que se traduzirão em alongamentos ou encurtamentos da mola de suspensão |01|.

De acordo com o sistema de medida das variações do comprimento da mola, os gravímetros mecânicos classificam-se fundamentalmente em duas categorias $|^{02}|$: os estáveis e os instáveis ou astáticos. Nos gravímetros estáveis, variações extremamente pequenas (da ordem de 10^{-10} m) no comprimento da mola são medidas diretamente, por meio de um dispositivo adequado seja ótico, mecânico ou elétrico os gravímetros astáticos são projetados de modo a trabalharem em estado de equilíbrio aproximadamente instável, tal que quando o sistema é deslocado devido à variação na gravidade, outras forças suplementares são introduzidas, tendendo a aumentar o deslocamento $|^{03}|$. A variação da gravidade pode ser medida pela força necessária para retornar o sistema à sua posição de equilíbrio original. A vantagem do sistema astático é a sua grande sensibilidade; a desvantagem é a não linearidade da deformação do sistema em relação à ação da gravi

dade. Atualmente os gravimetros astáticos são os mais usados.

A título de ilustração são dadas, a seguir, as descrições sucintas dos princípios de funcionamento de alguns gravímetros:

2.2.1. Gravimetros Estáveis

a) Askania

Este instrumento (fig. 2.2.1.1) consiste essencialmente de um sistema elástico constituído por uma alavanca, contendo uma mas sa (6) em uma extremidade, sendo sustentada na outra por uma mo la helicoidal (5). As variações da gravidade acarretarão peque nos deslocamentos na massa, que podem ser medidos pela restaura ção da posição de equilíbrio original, por intermédio de um dis positivo de compensação constituído pela mola auxiliar (4) e um micrômetro (3). A compensação é feita pela variação da na mola auxiliar, por meio do parafuso micrométrico que duz a massa à mesma posição (posição de leitura). Um espelho(2) solidário à alavanca reflete um sinal luminoso em uma célula fo toelétrica dupla. O movimento da alavanca, devido à variação na gravidade, é indicado pela deflexão de um galvanômetro, provocada pela variação do potencial relativo nas duas células. Girando-se o parafuso micrométrico, a alavanca é reconduzida à posição de leitura e o galvanômetro indicará zero. A diferença entre leituras na escala do micrômetro serve como indicador da varia ção da gravidade.

O aparelho possui uma escala de medida com alcance de 800 mGal. Cada volta no parafuso de medida altera a capacidade do aparelho de 200 mGal |04|. Em condições de operação no campo o instrumento permite uma exatidão real de 0,02 mGal. Entretanto, seu

peso excessivo (20,5 kg sem pedestal e 43 kg na embalagem de transporte) o torna mais indicado para medidas estacionárias(es tações de maré), para o que possui um dispositivo especial de registro automático que permite uma exatidão de leitura de alguns microgals.

b) Gulf

O gravimetro Gulf é constituido por uma fita helicoidal (fig. 2.2.1.2). A mola, assim formada, possui uma das extremidades fixa, enquanto que da outra extremidade pende uma massa com um espelho. Uma variação na gravidade causa uma variação no comprimento da fita helicoidal, acompanhada de uma rotação da extremidade livre. No gravimetro Gulf a rotação (da ordem de segundos) é muito maior do que o deslocamento, podendo ser medida mais precisamente, mediante um conveniente jogo de prismas que refletem um raio de luz sobre o espelho. O alcance do instrumento é cerca de 30 mGal e a precisão de medida é da ordem de 0,02 mGal |05|.

F16.2.2.1.2

2.2.2 Gravimetros Astáticos

a) Thyssen

O gravimetro de Thyssen demonstra convenientemente o principio da astatização. É essencialmente uma balança de braço AB 2.2.2.1) apoiado sobre o fulcro C. Uma carga de massa m é pensa na extremidade A e a extremidade B é presa a uma mola que equilibra o sistema e mantém o braço na posição horizontal. Uma carga adicional m', solidária ao braço da balança através de uma haste, é colocada acima do fulcro. Na posição de equilibrio o peso da massa m' atua somente sobre o ponto C. Variando a gra vidade a haste Cm' inclina-se com o braço da balança de modo tal que a linha de ação da força m'g deixa de passar por C. volve-se, desse modo, um momento suplementar em relação a C, que tenderá a aumentar a inclinação do braço, proporcionalmente ao valor da massa m', à distância Cm' e ao ângulo de inclinação. O sistema retornará ao equilíbrio pela variação da tensão na mola. O deslocamento do braço será proporcional à variação da gra vidade.

b) Worden

O gravimetro Worden, construído pelo "Houston Technical Labora tory" (Texas, E.U.A.), é um dos gravimetros mais utilizados atualidade. Trata-se de um instrumento astático, cujo elástico é construído de quartzo fundido, em virtude propriedades favoráveis | 06 |; é fácil de ser trabalhado, podendo ser transformado em hastes ou fibras de espessura de alguns mi cra que podem ser enroladas de modo a se obter uma mola. O ins trumento funciona segundo o principio do braço de balança (fig. 2.2.2.2). Uma carga é colocada na extremidade do braço OC, que pode girar sobre um eixo O perpendicular ao plano do desenho. O braço OC é mantido em equilibrio por uma mola AB conectada a ele através de um braço OB (as linhas pontilhadas mostram sua posi ção quando deslocado por um aumento na gravidade Ag). Quando o sistema está em equilíbrio os momentos da gravidade e da força elástica da mola são iguais. O braço d, da força elástica nesse sistema é menor do que o braço da gravidade d₁, consequentemente variações pequenas da gravidade causam esforços proprocional mente maiores na mola e rotações correspondentes, sistema astatizado.

F16.2.2.2.2

Um diagrama da disposição do sistema elástico do gravimetro é apresentado na fig. 2.2.2.3. A parte do sistema à esquerda do diagrama (consistindo de uma armação, fibra de torção (1), braço da gravidade (7), e mola de compensação principal (8) forma a unidade básica para medidas da gravidade. À direita apresentase o dispositivo de leitura, com as molas de medida e reajuste

FIG. 2.2.2.3

ou geodésica (11) e um braço (9), ligado à mola de trabalho(8), que serve como um compensador de temperatura. O momento do braço da gravidade (7) é equilibrado pelo momento elástico da mola (8) e pelo torque da dobradiça (6). Uma variação da gravidade provoca um giro no braço de pesagem, fazendo girar juntamente

uma haste em forma de L (3), que lhe é solidária e que serve como ponteiro do instrumento. O deslocamento do ponteiro pode ser observado por intermédio de um microscópio (5), iluminado por uma lâmpada (4), através de um prisma (2). O microscópio possui uma escala no campo ocular e o ponteiro é posicionado em uma de suas divisões. As leituras são obtidas pelo método zero (i.e.retornando o braço (7) à mesma posição). A mola de reajuste ou geodésica pode ter sua tensão variada, o que acarretará uma rotação na armação (14), que por sua vez girará o compensador de temperatura (9), variando a tensão na mola principal (8).

O braço de pesagem também pode girar em função da variação de temperatura. Uma elevação da temperatura, por exemplo, o erguerá ligeiramente, em função da variação no torque da dobradiça(6); ao mesmo tempo o fio metálico (10) do compensador de temperatura (9) alonga-se e gira este último sobre a dobradiça (13) (da direita para a esquerda na figura), reduzindo deste modo a tensão na mola principal (8). Assim, os deslocamentos do braço da gravidade em função da variação de temperatura são compensa dos por deslocamentos no sentido oposto por intermédio do com pensador de temperatura.

O fio metálico (10) é uma mola curva que permite a compensação de variações não-lineares com a temperatura. A compensação do efeito da variação de temperatura é feita de modo que o coeficiente de temperatura não exceda 0,3 mGal por 1° C na faixa de temperatura de $\pm 20^{\circ}$ C $| ^{07} |$.

A exatidão do gravimetro Worden varia entre ± 0,1 e ± 0,2 mGal, dependendo do modelo considerado e do modo operacional. A mola de compensação (11) permite a medida de um intervalo gravimétrico de cerca de 100 mGal. Entretanto, no modelo geodésico, podem

ser medidos intervalos maiores, de até 5000 mGal, utilizando-se o dispositivo de reajuste de faixa de leitura.

O sistema elástico do gravimetro é acondicionado em uma câmara hermeticamente fechada da qual o ar é extraído para uma pressão definida; esta câmara é acomodada em um frasco Dewar protegido por um envoltório à prova de calor. O aparelho não possui con trole termostático, mas sua isolação térmica assegura-lhe uma variação de temperatura interna lenta e suave, mesmo quando su jeito a variações abruptas da temperatura externa.

c) La Coste & Romberg

O gravimetro La Coste & Romberg baseia-se no sismógrafo vertical de longo período idealizado por La Coste. Trata-se de um dos gravimetros mais precisos e largamente utilizados na atualidade.

Esquematicamente (fig.2.2.2.4) o sistema consiste de uma massa m colocada na extremidade de um braço rígido b, aproximadamente horizontal, suspenso por uma mola dita de comprimento zero. Tal mola é construída condicionando as espiras a uma tensão prévia, de modo que seu comprimento equivalente seja zero quando livre de carga |08|, |09|.

A intensidade da tensão que atua numa mola espiral é F=k $(\ell-\ell_0)$, onde k é a constante da mola, ℓ o seu comprimento sob a ação da carga e ℓ_0 o comprimento sem carga. Em uma mola de comprimento zero, $\ell_0=0$ e $F=k\ell$.

O torque, L_g, produzido pela gravidade em torno do eixo pivô é dado por:

$$L_q = mgb \cos \alpha$$
.

A reação da mola produz o torque:

$$L_s = - kld$$

Como pela lei dos senos,

$$\ell = b \frac{\text{sen}\gamma}{\text{sen}\theta}$$
,

tem-se que:

$$L_s = -kbd \frac{sen\gamma}{sen\theta} = -kby sen\gamma = -kby cos\alpha$$
.

O braço b estará em equilíbrio se:

$$L = L_g + L_s = 0,$$

ou seja,

$$(mbg - kby) cos\alpha = 0$$
,

e:

$$mg = ky$$
.

Quando g varia o equilibrio já não se verifica, provocando o deslocamento do braço b. Atuando-se, então, sobre o parafuso mi crométrico, variando o comprimento de y, o equilíbrio é restabe lecido e o incremento Δy será proporcional a Δg . Na prática, o ân gulo α é pequeno (1° a 4°), assegurando uma grande sensibilidade e facilidade de leitura $| ^{10} |$.

O instrumento possui controle termostático alimentado por uma bateria de 12V, que deve ser recarregada com freqüência. O equi pamento, envolvendo o gravimetro, a caixa de transporte e a bateria, pesa 8,6 kg. O carregador de bateria e o prato de nivela mento pesam 3,6 kg adicionais.

O gravimetro La Coste & Romberg modelo geodésico (modelo G) tem um alcance de 7000 miligals com um único parafuso micrométrico, ou seja, o instrumento é capaz de medir a diferença de gravida de entre quaisquer pontos da superfície terrestre, sem necessidade de reposicionamento do sistema de medida. Sua precisão de leitura alcança 0,01 mGal, feita pelo método de zero, através de um dispositivo auxiliar (mola de medida) que permite levar o braço à posição de observação. Para eliminar o efeito da pressão atmosférica o instrumento é vedado, possuindo ainda como se gurança adicional um dispositivo interno de compensação de pressão. O sensor é completamente desmagnetizado e acondicionado no interior de uma blindagem magnética [11].

2.3. <u>Principais Influências Sistemáticas Inerentes aos</u> Gravímetros Mecânicos

O sistema elástico é a parte principal de qualquer gravíme tro. Deve, tanto quanto possível, possuir propriedades elásticas estáveis em relação ao tempo, constantes sob variações de temperatura e uma dependência linear da deformação em relação à variação da carga. Os materiais utilizados nos gravímetros são escolhidos, ou especialmente fabricados, de modo a atender estes requisitos.

A lei de Hooke, na qual estão baseados os gravimetros mec<u>â</u> nicos, é somente uma aproximação na expressão da deformação real do corpo. Na realidade a deformação de um corpo elástico não é rigoros<u>a</u>

mente proporcional à tensão. O fenômeno da elasticidade não pode ser considerado um movimento puramente mecânico, já que depende também duma combinação complexa de fenômenos relacionados com a estrutura molecular do corpo, a natureza física dos corpos elásticos, a influên cia térmica, etc. |12|. Todos estes fenômenos, que fogem aos limites da lei de Hooke, denominam-se elasticidade imperfeita, que se acentua notavelmente com a variação da temperatura.

Os materiais escolhidos para a fabricação dos elementos elásticos dos gravímetros de metal são as ligas de ferro-níquel(elin var, isoelástic, nevarox). Não obstante serem ligas pouco sujeitas ao efeito elástico residual, são magnetizáveis e, portanto, sujeitas à influência de campos magnéticos. Por esta razão alguns sistemas elás ticos são construídos de quartzo fundido. As desvantagens do quartzo são um alto coeficiente termoelástico, fragilidade, e perda da vitrificação com o tempo, modificando as propriedades elásticas.

Teoricamente considera-se que ao variar a gravidade ocorra uma translação ou rotação (dependendo do tipo de sensor) da massa do sistema de medida. Na realidade podem ocorrer outros tipos de deslo camentos que, entretanto, devem ser evitados tanto quanto possível. Considera-se, portanto, que os sistemas elásticos dos gravímetros tento nham apenas um grau de liberdade, possibilitando movimento de translação ou de rotação. Sabe-se que, quando o sistema se encontra em equilíbrio estático a soma das forças externas e internas (elásticas), ou de seus momentos, deve ser igual a zero.

Considerando uma deformação no sistema elástico, x, regis trada por um indicador especial conectado à massa em um sistema rota cional, o momento das forças externas, gM(x,t,B,β), devido fundamen talmente à ação da gravidade sobre todas as massas móveis do sistema em relação ao eixo de rotação, dependerá da temperatura t, da pres-

são atmosférica B e do ângulo β de inclinação do sistema. O momento elástico $\overline{M}(x,t)$, resultante de todas as forças internas em relação ao eixo de rotação, varia com a temperatura t. Então, a equação de equilíbrio é:

$$gM(x,t,B,\beta) + \bar{M}(x,t) = 0$$
. (2.3.1)

No caso de um sistema translacional, as próprias forças atuantes entram na equação de equilíbrio em lugar de seus momentos. Nesse caso,

$$mg + Fx = 0$$
, (2.3.2)

onde m é a massa deslocada; x é a deformação total do sistema elástico; F é a rigidez mecânica do sistema elástico, que depende do módulo de elasticidade e das dimensões dos elementos do sistema.

Omitindo as variáveis entre parêntesis, por simples abreviação, e diferenciando a equação (2.3.1) em relação a todas as variáveis, obtem-se a forma geral da equação de equilibrio do sistema elástico do gravimetro:

$$(g \frac{\partial M}{\partial x} + \frac{\partial \overline{M}}{\partial x}) \frac{dx}{\partial g} + (g \frac{\partial M}{\partial t} + \frac{\partial \overline{M}}{\partial t}) \frac{dt}{\partial g} + g \frac{\partial M}{\partial B} \cdot \frac{dB}{\partial g} + g \frac{\partial M}{\partial g} \cdot \frac{d\beta}{\partial g} + M = 0 .$$
 (2.3.3)

A grandeza dx/dg representa a variação da deformação do sistema elástico em função da variação da gravidade e denomina-se sensibilidade do gravímetro; dg/dt caracteriza a influência da tempe ratura nas leituras do gravímetro e denomina-se coeficiente de temperatura; dg/dB expressa o efeito barométrico e denomina-se coeficiente barométrico; dg/dβ indica a dependência das leituras do gravíme tro em relação ao ângulo de inclinação do sistema elástico.

2.3.1. Sensibilidade do Gravimetro

Considerando o tipo de gravimetro translacional mais simples, ou seja, uma mola helicoidal sujeita à ação de uma carga que a traciona dentro dos limites de proporcionalidade, a sensibilidade dx/dg é dada pela diferenciação da equação (2.3.2):

$$\frac{\mathrm{dx}}{\mathrm{dq}} = -\frac{\mathrm{m}}{\mathrm{F}} = \frac{\mathrm{x}}{\mathrm{g}} . \tag{2.3.1.1}$$

É, portanto, porporcional à deformação total x. Um aumento da sensibilidade pode ser alcançado tanto pelo aumento da massa m como pela redução da rigidez da mola, o que proporcionará uma grande deformação inicial. Entretanto, a portabilidade do instrumento limita a am plitude de deformação a cerca de 20 cm, o que dificulta a obtenção de grande sensibilidade com tais sistemas, nos quais baseiam-se, fundamentalmente, os gravimetros estáveis ou não-astáticos.

Os gravimetros astáticos utilizam sistemas elásticos rotacionais cuja equação de sensibilidade é obtida a partir da equação (2.3.3), supondo t, B e ß constantes. Assim,

$$\frac{dx}{dg} = -\frac{M}{g \frac{\partial M}{\partial x} + \frac{\partial \overline{M}}{\partial x}}$$
 (2.3.1.2)

Observa-se, então, que a sensibilidade cresce na proporção direta do momento total M(x) das massas móveis do sistema, ou na proporção in versa da expressão $\phi(x) = g(\partial M/\partial x) + \partial \overline{M}/\partial x$. De acordo com a equação de equilíbrio (2.3.1), os momentos gM e \overline{M} e suas derivadas devem ser de sinais contrários. Portanto, construindo-se um sistema de modo tal que em certo intervalo de variação da gravidade $\phi(x)$ seja pequena, obtém-se um sistema de alta sensibilidade. Assim sendo, os sistemas astáticos devem se caracterizar pela não-linearidade de pelo menos

um dos momentos gM e \overline{M} em função da variação da deformação x, com propósito de permitir a eleição de um pequeno valor para $\phi(x)$.

2.3.2. Influência da Temperatura

As propriedades elásticas do sistema, bem como sua geometria, estão sujeitas a alterações em decorrência da variação de temperatura. Como consequência disso, as indicações do gravimetro variam com a temperatura.

A expressão do coeficiente de temperatura é obtida a partir da equação (2.3.3), considerando constantes a deformação do sistema elástico, a pressão atmosférica e a inclinação do instrumento; assim,

$$\frac{dg}{dt} = -\frac{g \frac{\partial M}{\partial t} + \frac{\partial M}{\partial t}}{M} \qquad (2.3.2.1)$$

As relações entre os momentos das forças externas e internas e pequenas variações de temperatura podem ser dadas pelas expressões | 13 |:

$$M = M_o(1+\lambda_1\Delta t + \lambda_2\Delta t^2); \overline{M} = \overline{M}_o(1+\mu_1\Delta t + \mu_2\Delta t^2),$$
 (2.3.2.2)

onde M_{O} e \overline{M}_{O} são, respectivamente, as somas dos momentos das massas e das forças elásticas para uma determinada temperatura inicial, t_{O} ; $\Delta t = t - t_{O}$ é a variação da temperatura em relação ao seu valor inicial; λ_{1} e λ_{2} e μ_{1} e μ_{2} são, respectivamente, os coeficientes efetivos de temperatura lineares e quadráticos para a totalidade do sistema elástico, os quais dependem dos coeficientes de expansão térmica e dos coeficientes termoelásticos dos materiais que constituem os diferentes elementos componentes do sistema elástico.

A expressão do coeficiente de temperatura é, então, obtida

pela diferenciação das equações (2.3.2.2), posterior substituição na (2.3.2.1) e algumas simplificações, resultando |14|:

$$\frac{dg}{dt} = -g \left[(\lambda_1 - \mu_1) + 2(\lambda_2 - \mu_2) \Delta t \right]. \qquad (2.3.2.3)$$

Infere-se daí que é possível obter-se um pequeno coeficiente de temperatura, pela escolha adequada dos elementos do sistema elástico, tal que $\lambda-\mu$ se aproxime de zero. Além disso, são construí dos dispositivos termocompensadores especiais, tais como os compensa dores bimetálicos, constituídos por duas hastes metálicas de coefici entes de dilatação linear diferentes, fixas por ambas as extremidades, que se flexionam ao variar a temperatura. Se uma das extremidades estiver ligada ao elemento elástico do gravimetro, pode-se gerar um momento elástico compensador da ação da temperatura. Entretanto, já que os coeficientes termomecânicos dos corpos dependem da tempera tura, é possível uma compensação total apenas para determinados valo res desta. Além disso, fatores tais como a velocidade de variação da temperatura, o fluxo térmico no interior do volume ocupado pelo sistema elástico, a diferença de difusividade entre as partes do instru mento, impedem o estabelecimento de uma temperatura homogênea entre os distintos elementos. Para minimizar essa heterogeneidade térmica, utilizam-se dispositivos de isolamento térmico do sistema elástico, tal como os vasos Dewar, empregados nos gravimetros Worden, ou assegura-se uma temperatura interna constante, dentro de centésimo até milésimo de grau, através de um termostato elétrico, como é o ca so do gravimetro La Coste & Romberg.

O funcionamento normal do termostato exige que a temperatura ra interna seja pelo menos 5 a 6 graus mais alta do que a maior temperatura externa possível $|^{15}|$, $|^{16}|$. Somente após o estabelecimento desse regime térmico, que necessita de pelo menos dois ou três dias $|^{17}|$,

podem ser iniciadas as observações. Portanto, é importante que o ter mostato esteja permanentemente conectado à fonte de energia durante o período de observações.

As leituras dos gravimetros controlados termostaticamente, normalmente não sofrem correções de temperatura, já que o aparelho é mantido à temperatura constante $|^{18}|$. Experiências práticas demonstraram que, geralmente, tais correções pioram os resultados, por se rem de natureza complexa $|^{15}|$, $|^{19}|$.

A correlação de temperatura para os gravimetros sem contro le termostático pode ser determinada tanto em câmara térmica como em condições de operação normal, usando as variações de temperatura diá ria. Confrontando-se as temperaturas com as leituras, abstraídas de outros efeitos sistemáticos, pode-se determinar a curva que correlaciona as duas grandezas. Havendo superabundância de observações, a curva pode ser estimada por ajustamento.

2.3.3. Influência da Pressão Atmosférica

As massas móveis do sistema elástico do gravimetro, visto que se encontram mergulhadas em um fluido (geralmente o ar), estão su jeitas a um empuxo arquimediano. Este é função da massa específica do fluido, que por sua vez, depende da pressão atmosférica B.

Denomina-se efeito barométrico as variações de leitura dos gravimetros em função das variações da pressão atmosférica. O coeficiente barométrico pode ser obtido da equação (2.3.3), considerando constantes a deformação x, a temperatura t e a inclinação β :

$$Q_{B} = \frac{dg}{dB} = -\frac{g \frac{\partial M}{\partial B}}{M}. \qquad (2.3.3.1)$$

Em $|^{20}|$, $|^{21}|$ e $|^{22}|$ apresenta-se a seguinte fórmula para $Q_{\rm p}$:

$$Q_{\rm B} = -g \frac{\rho_{\rm O}}{\bar{\sigma}} \frac{1}{760(1 + \frac{t}{273})}$$
 (2.3.3.2)

onde $\rho_0 = 12,93 \times 10^{-4} \text{ g/cm}^3$ é a massa específica do ar à temperatura de 0° C e pressão de 760 Torr, $\bar{\sigma}$ é a massa específica efetiva do sistema elástico e t é a temperatura em $^{\circ}$ C.

Assim, para um sistema elástico totalmente constituído de quartzo fundido ($\bar{\sigma}=2.2 {\rm g/cm}^3$), a uma temperatura de $20^{\rm O}{\rm C}$, considerando g = 0.98 x $10^{\rm 6}$ mGal, tem-se:

$$Q_{\rm B} = -0,71$$
 mGal/Torr.

Para um sistema construído totalmente de platina $(\bar{\sigma}=21.4~\text{g/cm}^3)$, nas mesmas condições anteriores, o coeficiente barométrico será:

$$Q_{\rm B} = -0.07 \text{ mGal/Torr.}$$

Todos os gravimetros modernos ou são impermeáveis ao ar (e.g. Worden), ou dispõem de compensação barométrica (e.g. La Coste & Romberg), de modo que não é necessário introduzir-se uma correção para a variação da pressão atmosférica. Pode-se verificar em labora tório, com o auxílio de uma câmara de pressão, a existência de corre lação entre as leituras do gravimetro e a pressão atmosférica, resultante de falha na impermeabilidade ou compensação barométrica. Variando-se a pressão, ao mesmo tempo em que se faz leituras do gravime tro, constata-se a existência, ou não, da correlação barométrica. A evidência de tal correlação indicará que o aparelho não está em con dição de operação devendo ser reparado | 23 |.

2.3.4. Influência do Campo Magnético

As indicações dos gravímetros cujos sistemas elásticos são construídos de ligas metálicas estão sujeitas à influência dos campos magnéticos.

A principal fonte de influência magnética nos gravímetros é o campo magnético da Terra, que varia de um ponto de observação para outro. Alguns tipos de equipamentos (v.g. linhas de transmissão de alta voltagem, motores elétricos, etc.) podem induzir campos magnéticos de intensidade alta. A própria corrente que circula através dos condutores e do elemento de aquecimento do circuito termostático gera um campo magnético. Por este motivo os condutores do termostato são bifilares, de modo que a corrente que flui neles em sentidos opostos, provoca o cancelamento mútuo dos campos magnéticos.

A variação, δg_{M} , no valor da gravidade causada pela influência magnética pode ser expressa pela equação (2.3.4.1) $|^{24}|$, $|^{25}|$ e $|^{26}|$:

$$\delta g_{M} = Q_{Z} \cdot Z + Q_{H} \cdot H \cdot \cos A$$
 (2.3.4.1)

onde Q_Z e Q_H são, respectivamente, os coeficientes magnéticos vertical e horizontal do gravimetro, determinados empiricamente e expressos em mGal/oersted; Z e H são, respectivamente, as componentes vertical e horizontal da intensidade do campo magnético no ponto de observação, expressas em oersteds; e A é o ângulo entre a alavanca do gravimetro e a direção do campo magnético.

Os valores dos coeficientes $\mathbf{Q}_{\mathbf{Z}}$ e $\mathbf{Q}_{\mathbf{H}}$ podem ser obtidos a partir de medidas efetuadas com o gravimetro no interior de uma bob<u>i</u> na de Helmholtz.

A equação (2.3.4.1) mostra que a influência da componente horizontal do campo magnético depende da orientação do instrumento; portanto, considerando o campo geomagnético, tal influência pode ser eliminada, se o instrumento for orientado de modo que o azimute magnético, A, da sua alavanca, seja igual a 90° ou 270°. Pode-se, tam bém, compensar esta influência, fazendo-se leituras com o instrumento orientado segundo dois azimutes opostos. Entretanto, a redução da influência da componente horizontal, H, não implica que o mesmo ocor ra com a influência da componente vertical, Z.

Na prática, procura-se reduzir a influência magnética a um valor negligenciável, de modo a se evitar a introdução da correção correspondente. Com este objetivo, todas as partes metálicas do gravímetro são submetidas à desmagnetização durante a sua montagem. Adicionalmente, os sistemas elásticos metálicos são providos de uma blindagem magnética, feita de material de fácil magnetização (v.g. permalloy), que reduz a influência dos campos externos. Entretanto, por não constituirem proteção totalmente segura e permanente, tais dispositivos devem ser complementados com testes periódicos, que com provem e, caso necessário, restabeleçam a desmagnetização das partes ferromagnéticas | 24 | .

2.3.5. Influência da Inclinação

Da equação (2.3.3), considerando x, t e B constantes, resulta:

$$\frac{dg}{d\theta} = -\frac{g \frac{\partial M}{\partial \beta}}{M}$$
(2.3.5.1)

que é a expressão da dependência das leituras do gravimetro em relação à inclinação β. O ângulo β pode ser de duas naturezas:

- 1 Referente à inclinação do eixo de rotação do sistema de medida em relação ao plano horizontal;
- 2 Referente à inclinação do gravimetro em um plano vertical perpendicular ao eixo de rotação.

Seja M_{\odot} o momento das forças externas que atuam sobre o sistema elástico, quando $\beta=0$. Sujeitando-se, agora, o sistema a uma inclinação β , independentemente de sua natureza, o momento resultante será dado por:

$$M = M_{O} \cos \beta$$
 (2.3.5.2)

Derivando-se a (2.3.5.2) em relação a β, tem-se:

$$\frac{\partial M}{\partial \beta} = -M_{O} \operatorname{sen} \beta . \qquad (2.3.5.3)$$

Substituindo as (2.3.5.2) e (2.3.5.3) na (2.3.5.1) e efetuando-se as simplificações cabíveis, resulta:

$$\frac{dg}{d\beta} = g tg \beta.$$

Como, na prática, β < 1^{O} , a tg β pode ser substituída por β , conduzindo a:

$$dg = g \cdot \beta \cdot d\beta$$

que integrando fornece:

$$\begin{cases}
 g_1 & o \\
 dg &= g \\
 \beta & d\beta
\end{cases}$$

ou

$$g_1 - g_0 = \delta g = -g - \frac{\beta^2}{2}$$
 (2.3.5.4)

que é a equação de uma parábola cujo ápice corresponde ao ponto $\beta=0$. O sinal negativo indica que qualquer inclinação se traduzirá numa diminuição aparente da gravidade.

Como o erro de inclinação aumenta proporcionalmente ao qua drado do ângulo β, procura-se manter o gravimetro tanto quanto possível na posição horizontal. Com este objetivo, os instrumentos são equipados com dois níveis mutuamente perpendiculares, um transversal e outro longitudinal, conectados rigidamente à estrutura na qual o sistema elástico é montado. O nível transversal é situado paralelamente ao eixo de rotação do sistema elástico, podendo ser nivelado por intermédio de dois parafusos calantes dispostos nesta direção. O nível longitudinal, paralelo ao plano que contem a alavanca do sistema de medida, pode ser nivelado por um terceiro parafuso calante.

A eliminação da inclinação do instrumento é feita de tal modo que as bolhas estejam nos centros dos níveis quando $\beta=0$. Para assegurar esta coincidência, é necessário proceder-se ao ajuste periódico dos níveis $|2^7|$. O fabricante do instrumento fornece as instruções necessárias para se atingir este objetivo.

Assegurando-se o nivelamento do instrumento com erro inferior a 0,5', o erro nas leituras do gravímetro será de apenas 0,01 mGal.

2.3.6. Deriva Instrumental

Dá-se o nome de deriva instrumental , ou simplesmente deriva, à variação lenta e continua da posição do indicador do gravimetro com o tempo, sem que a gravidade tenha variado. Consequentemente, as leituras tomadas em um mesmo ponto em épocas diferentes serão discordantes. A variação deve-se ao fato de que os elementos elásticos

do gravimetro, submetidos a um estado de tensão permanente, estão su jeitos à fadiga, sofrendo alterações gradativas nas suas propriedades elásticas. A deriva depende, também, das condições externas às quais o instrumento é submetido, tais como: variações de temperatura, vibrações, impactos e muitos outros fatores.

O fabricante procura tornar a deriva o mais linear possível, dentro de certo intervalo de tempo, a fim de facilitar a sua correção. A taxa ou razão de deriva varia com o sistema e o material empregado no gravímetro, podendo ir de centésimos de miligal (v.g. gravímetro La Coste & Romberg) até alguns miligals por dia. Esta característica determina as condições, o método e o tipo de trabalho mais adequado a cada tipo de gravímetro. Um gravímetro com uma taxa de deriva grande é inadequado para o levantamento de uma rede de referência, embora possa ser suficientemente preciso para levantamentos de pequenas áreas.

É usual distinguir-se duas espécies de derivas:

a) Deriva estática

Ocorre quando o instrumento está em repouso. Para sua determinação deve-se instalar o instrumento em local adequado e fazer leituras do micrômetro três a quatro vezes por dia em intervalos definidos, durante dois ou três dias, se o instrumento dispuser de controle termostático; caso contrário, o tempo de observação deve ser maior, a fim de se compensar a influência da variação de temperatura, considerada periódica em um dia | 28 | .

b) Deriva dinâmica

Ocorre durante o transporte do instrumento. Nesta circunstância o gravimetro está sujeito a diversas acelerações que podem afetar o comportamento e a taxa da deriva. Portanto, deve-se evitar tanto quanto possível os movimentos bruscos, impactos e vibrações. O uso de embalagens especiais, providas de absorve dores de choques e isoladores de vibrações é essencial para o transporte do instrumento |29|. Além disso, na estação de observação o aparelho deve ser mantido à sombra e protegido do vento.

A deriva instrumental determina em grande parte os procedimentos a serem seguidos nos levantamentos gravimétricos. organizações de renome internacional propuseram normas para execução destes levantamentos $\begin{vmatrix} 30 \\ 1 \end{vmatrix}$, $\begin{vmatrix} 31 \\ 1 \end{vmatrix}$, onde esses aspectos são considerados. As linhas gravimétricas, normalmente, iniciam e terminam na mesma es tação ou em estações cujos valores de gravidade são conhecidos. Quan do o levantamento deve serinterrompido, sem que a linha tenha sido fe chada, faz-se uma série de leituras no início do período de imobili dade do instrumento e outra no final desse período; a diferença entre os valores obtidos, corrigidos dos demais efeitos sistemáticos, é atribuída à deriva estática, devendo ser subtraída de todas as lei turas posteriores da mesma linha. O erro de fechamento da linha é atribuído à deriva dinâmica, que é considerada linear com o tempo, e, desse modo, corrigida nas leituras das estações intermediárias. A diferença no tratamento das duas derivas, estática e dinâmica, justi fica-se em função da mudança no estado do gravimetro. O comprimento da linha é definido em função do intervalo de tempo no qual a deriva pode ser considerada linear; isso depende do tipo de gravimetro usa do e da acurácia desejada.

2.3.7. Função de Calibração ou de Escala

Nas medidas gravimétricas, a uma determinada variação da gravidade corresponde uma variação de leitura do gravímetro, expressa em uma escala convencional, própria do instrumento (nº de voltas

de um parafuso micrométrico). A determinação da correta relação entre aquela variação, em miligals, e a variação de leitura, em gradua ções da escala do instrumento, é conhecida como calibração. Esta relação, dependendo do tipo de gravímetro, pode ser linear (v.g. gravímetro Worden), ou não-linear (v.g. gravímetro La Coste & Romberg). No primeiro caso, representa-se por um único fator, que se aplica a toda a extensão da escala do instrumento; no segundo caso, representa-se por uma função do segundo ou maior grau, ou ainda uma função trigonométrica, sendo, então, determinadas constantes diferentes para intervalos definidos da escala.

Como um erro no fator ou função de calibração ou escala dá origem a um erro sistemático proporcional à variação da gravidade me dida, é importante que a calibração seja bem acurada. Para tal, é utilizado um dos seguintes métodos |32|, |33|, |34| e |35|:

- 1 Observações entre estações com diferença de gravidade conhecida;
- 2 Observações das variações de leitura com a inclinação do gravime tro; e
- 3 Suspensão de carga adicional.

2.3.7.1. <u>Calibração Entre Estações com Diferença</u> de Gravidade Conhecida

Neste método o fator de escala c do gravimetro é determina do divindo-se a diferença de gravidade conhecida, Ag pela diferença de leituras correspondente, Al.

Assim,

$$c = \frac{\Delta g}{\Delta l} . \qquad (2.3.7.1.1)$$

A precisão da determinação de c com este método depende dos erros em Δg e Δl. Assim, considerando que não existe correlação entre Δg e Δl, é válida a seguinte equação:

$$\frac{\sigma_{\mathbf{c}}^{2}}{\mathbf{c}^{2}} = \frac{\sigma_{\Delta g}^{2}}{(\Delta g)^{2}} + \frac{\sigma_{\Delta \ell}^{2}}{(\Delta \ell)^{2}}$$
 (2.3.7.1.2)

onde $\sigma_{\mathbf{C}}^2$ é a variância do fator de escala; $\sigma_{\Delta g}^2$ é a variância do intervalo de gravidade padrão; e $\sigma_{\Delta k}^2$ é a variância da diferença de leitura. Conclui-se, portanto, que a determinação do fator de escala com um erro relativo da ordem de 1×10^{-4} , implica na medida do intervalo de gravidade Δg com um erro relativo pelo menos igual, considerando negligenciável o erro em Δk . Assim, se o intervalo de gravidade é conhecido com um desvio padrão de 0,05 mGal, sua magnitude deve ser no mínimo de 500 mGal.

Quando a escala do gravimetro não é linear, são necessários vários intervalos de gravidade conhecidos, a fim de se atingir toda a amplitude de leitura do instrumento. Para cada intervalo determina-se, então, um fator de escala, que se aplica ao intervalo de leituras correspondente. A função de calibração do gravimetro La Coste & Romberg é representada por uma tabela, cuja amplitude de leituras vai de 0 a 7000 unidades, dividida em intervalos de 100 unidades, para os quais o fabricante fornece os respectivos fatores de escala.

São notórias as dificuldades práticas deste método de calibração: viagens longas, a fim de serem obtidos intervalos de gravida de suficientemente grandes; gasto de tempo e recursos financeiros relativamente altos; e nem sempre são obtidos resultados compatíveis com a acurácia desejada. Devido a estas dificuldades, o método é utilizado principalmente para o controle da calibração efetuada

por outros métodos, ou na impossibilidade da aplicação destes. Em 36 encontra-se publicada uma avaliação das funções de calibração de seis gravimetros La Coste & Romberg, utilizando o método das estações com diferença de gravidade conhecida.

2.3.7.2. Calibração pelo Método de Inclinação

O método de calibração por inclinação se aplica aos gravímetros cujos sistemas elásticos são do tipo rotacional. Baseia-se na influência da inclinação sobre as leituras gravimétricas, ou seja, in clinando-se o gravímetro de um pequeno ângulo β a partir de sua posição normal, a leitura diminuirá como se a gravidade fosse diminuída de acordo com a equação (2.3.5.4). Portanto, ao inclinar o gravímetro, suas leituras serão expressas mediante a equação:

c
$$\Delta l = c (l_1 - l_0) = -g \frac{\beta^2}{2}$$
 (2.3.7.2.1)

onde ℓ_1 e ℓ_0 são as leituras com o gravímetro inclinado e com o gravímetro perfeitamente nivelado, respectivamente; assim,

$$c = -\frac{g}{\Delta l} \times \frac{\beta^2}{2}.$$
 (2.3.7.2.2)

Considerando a inexistência de correlação entre as variáveis do segundo membro, pode-se escrever:

$$\frac{\sigma_{c}^{2}}{c^{2}} = \frac{\sigma_{g}^{2}}{\sigma_{c}^{2}} + \frac{4\sigma_{\beta}^{2}}{\beta^{2}} + \frac{\sigma_{\Delta \ell}^{2}}{(\Delta \ell)^{2}}.$$
 (2.3.7.2.3)

Decorre daí que, se o erro relativo na calibração deve ser da ordem de 1×10^4 , o valor de g deve ser conhecido com um erro máximo de 100 mGal, o que é sempre possível. O erro relativo máximo tolerável na medida do ângulo β deve ser duas vezes menor do que o erro de calibração, ou seja:

$$\frac{\sigma_{\beta}}{\beta} = \frac{1}{2} \frac{\sigma_{c}}{c} .$$

Para uma inclinação de 1° , o erro máximo de β deve ser $\sigma_{B}^{}=0.18",p_{\underline{a}}^{}$ ra assegurar uma calibração com erro relativo da ordem de 1×10^{-4} . Neste caso, a redução aparente na gravidade, dada pela equação (2.3.7.2.1), considerando g=979 Gal, será de 149 mGal.

Para uma variação de leitura da ordem de 100 mGal, o erro máximo de leitura deve ser de 0,01 mGal, para assegurar a acurácia preconizada. O gravimetro La Coste & Romberg, segundo o fabricante | 11 |, possui esta exatidão de leitura.

Para a execução deste método de calibração são usadas pranchas reclináveis, ou os próprios parafusos calantes do instrumento, sendo o ângulo β medido diretamente no limbo vertical de um teodolito, ou deduzido em função do passo do parafuso e do número de voltas efetuadas durante a inclinação |37|, |38| e |39|.

Com este método um gravimetro pode ser calibrado em toda a extensão de sua escala, sem a necessidade de ser transportado de uma estação para outra. Entretanto, a medição do ângulo de inclinação de ve ser feita com muito cuidado, a fim de que se possa obter a exatidão necessária.

2.3.7.3 Calibração por Suspensão de Carga Adicional

Este método baseia-se no efeito produzido pelo aumento da massa móvel do sistema elástico sobre as leituras do gravímetro. Co-nhecendo-se o valor do incremento de massa é fácil calcular o peso adicional e a correspondente variação aparente da gravidade. Assim , se Δm é o incremento de massa, o peso adicional será:

$$\delta p = g \Delta m$$
.

Considerando, agora, a massa m constante, a mesma variação no peso seria observada em presença de uma variação da gravidade equivalente, Ag. Deste modo,

$$\delta p = g\Delta m = \Delta gm$$
,

e a variação aparente da gravidade em função da adição de massa é dada por:

$$\Delta g = g - \frac{\Delta m}{m}$$

Como $\Delta g = c (l_1 - l_0)$, resulta:

$$c = \frac{g}{\ell_1 - \ell_0} \times \frac{\Delta m}{m} = \frac{g}{\Delta \ell} \times \frac{\Delta m}{m}.$$

Este método é aplicável somente aos gravímetros que possuem dispositivos especiais que permitem a suspensão das massas adicionais, além disso requer muita exatidão no conhecimento de tais massas e da distância do seu ponto de suspensão ao eixo de rotação do sistema |40|.

CAPÍTULO 3

O MÉTODO DOS MÍNIMOS QUADRADOS

3.1. Princípio do Método

Nas observações de qualquer grandeza estão presentes erros de diversas fontes (instrumentos, condições exteriores e observador). Embora não seja possível evitá-los totalmente, procura-se eliminar algumas de suas causas, atenuar as que restam e,visto que não se pode obter o valor verdadeiro da grandeza, calcular o seu melhor estimador.

A expressão da probabilidade de se cometer um.erro v, deduzida por Gauss, é dada pela função densidade de probabilidade da distribuição normal:

$$y = \frac{1}{\sigma\sqrt{2\pi}} \quad e \quad -\frac{1}{2\sigma^2} \quad v^2,$$

em que σ^2 é a variancia da grandeza observada.

A função de verossimilhança ("likelihood") para a distribuição normal é:

$$L(v) = (\frac{1}{\sigma\sqrt{2\pi}})^{n} e^{-\frac{1}{2\sigma^{2}}(v_{1}^{2}+v_{2}^{2}+...+v_{n}^{2})}$$

O estimador de máxima verossimilhança corresponde ao valor máximo de L(v) que ocorrerá quando a soma dos quadrados dos erros, $\mathbf{rv_i^2}$, for mínima. Na hipótese de se tratarem de observações de diferentes precisões, a expressão a tornar mínima será a soma $\mathbf{rp_i^2}$, on de $\mathbf{p_i}$ são os pesos que definem a precisão relativa das observações,

dados pelas relações σ_0^2/σ_1^2 entre a variância da observação tomada como referência (peso unitário), σ_0^2 , e a variância da observação considerada, σ_1^2 .

Designando por V = (v_i) , i = 1, 2, ..., n, o vetor dos resíduos e por P uma matriz diagonal, onde os elementos da diagonal principal são os pesos das observações, a função a ser minimizada serádada pelo produto v^T PV, onde v^T é o vetor transposto de V, ou seja:

$$v^{T}PV = minimo$$
 (3.1.1)

3.2. Modelos Matemáticos

Algumas vezes as grandezas observáveis encontram-se subordinadas a determinadas leis que as vinculam com parâmetros incógnitas e/ou constantes, através de uma relação matemática denominada modelo matemático $|^{41}|$. Constantes são grandezas admitidas como perfeitamente conhecidas, sem erros, consideradas como integrantes do próprio modelo. Parâmetros incógnitas são grandezas a respeito das quais se dispõe de pouca ou nenhuma informação, são usualmente denotadas pelo vetor $X = (x_1)$, $i=1,2,\ldots,u$. Grandezas observáveis são grandezas físicas ou geométricas capazes de serem observadas, usualmente são denotadas pelo vetor $L = (1, 1, 1, 1, 2, \ldots, n)$.

Um modelo matemático pode ser expresso na seguinte forma:

$$F(X,L) = 0,$$
 (3.2.1)

onde F = (f_i), i = 1,2,...,m, denota o vetor das funções que associam X e L, bem como as constantes envolvidas, podendo ser linear ou não-linear. No segundo caso o modelo deve ser linearizado a fim de que se possa obter a solução do sistema. Com este objetivo o modelo é aproximado por série de Taylor multidimensional, ou seja:

onde $X_O = (x_i^O)$, i = 1, 2, ..., u, é um vetor suficientemente próximo de X; $L_O = F(X_O) = (l_i^O)$, i = 1, 2, ..., n, é um vetor suficientemente próximo de L.

3.3. Solução de Modelos Superabundantes

Um modelo superabundante ocorre sempre que o número de equações é maior do que o número de incógnitas, ou seja, m > u. Em um sistema superabundante os erros de observação tornam o sistema matematicamente inconsistente, fornecendo soluções diferentes para cada conjunto distinto de u equações. A solução é reformular o modelo expresso pela equação (3.2.1), introduzindo um vetor correção R=(r_i),i=1,2,...n, substituindo X e L por seus estimadores, resultando:

$$F(X,L) = F(X,L+R) = 0$$
 (3.3.1)

O problema, agora, consiste na determinação dos estimadores \hat{X} e \hat{L} . Um dos métodos para se determinar \hat{X} e \hat{L} é o de mínimos quadrados que, como já foi visto, conduz à obtenção do estimador de máxima verossimilhança. Neste caso, o vetor correção será denotado por $V = (v_i)$, $i = 1, 2, \ldots, n$, e será denominado vetor dos resíduos; o vetor estimador dos parâmetros incógnitas será denotado por $X_a = (x_i^a)$, $i = 1, 2, \ldots, u$, e denominar-se-á vetor dos parâmetros ajus tados; o vetor estimador das grandezas observáveis denotar-se-á por $L_a = (l_i^a)$, $i = 1, 2, \ldots, n$, e será chamado de vetor das observações ajustadas.

Assim, a equação (3.2.2) assume a forma:

$$F(X_a, L_a) = F(X_o + X, L_b + V)$$
 ou

$$F(X_{a}, L_{a}) = F(X_{o}, L_{b}) + \frac{\partial F}{\partial X_{a}} \left| (X_{a} - X_{o}) + \frac{\partial F}{\partial L_{a}} \right| (L_{a} - L_{b}) = 0$$

$$X_{a} = X_{o} \qquad X_{a} = X_{o}$$

$$L_{a} = L_{b} \qquad L_{a} = L_{b}$$

$$(3.3.2)$$

onde $X_0 = (x_i)$ é o vetor dos parâmetros aproximados; $L_b = (l_i^b)$ é o vetor dos valores observados e $X = (x_i)$ é o vetor das correções que devem ser adicionadas aos valores aproximados, X_0 , para se obter X_a .

A equação (3.3.2) pode ser escrita da seguinte forma:

$$AX + BV + W = 0,$$
 (3.3.3)

onde A = {(a_{ij}), i = 1,2,...,m; j = 1,2,...,u} =
$$\frac{\partial F}{\partial X_a}$$
 ; (3.3.4)
 $X_a = X_o$
 $L_a = L_b$

B = {(b_{ij}), i = 1,2,...,m; j = 1,2,...,n} =
$$\frac{\partial \mathbf{F}}{\partial L_a}$$
 e (3.3.5)
 $X_a = X_o$
 $L_a = L_b$

$$W = \{(w_i), i = 1, 2, ..., m\} = F(X_0, L_b)$$
 (3.3.6)

Deseja-se, então, resolver o sistema dado pela equação (3.3.3.) pelo método dos mínimos quadrados. Com este objetivo Lagrange definiu a função:

$$\phi = V^{T}PV - 2K^{T}(AX + BV + W),$$
 (3.3.7)

onde $K = (k_i)$, i=1,2,...,m, é o vetor dos coeficientes lagrangianos ou correlatos.

Uma análise da função ϕ permite observar que, para os valores de X e V que satisfazem a equação (3.3.3), ϕ é igual a V^TPV, ou seja, para estes valores o mínimo de ϕ será o mesmo de V^TPV.

Igualando a zero as derivadas parciais de ϕ em relação a X, V e K, tem-se:

$$\frac{\partial \phi}{\partial X} = -2A^{T}K = 0 \quad \text{ou} \quad A^{T}K = 0, \tag{3.3.8}$$

$$\frac{\partial \phi}{\partial V} = 2 \text{ PV} - 2B^{\text{T}}K \quad \text{ou} \quad \text{PV} - B^{\text{T}}K = 0,$$
 (3.3.9)

$$\frac{\partial \phi}{\partial K} = -2(AX + BV + W)$$
 ou $AX + BV + W = 0$ (3.3.10)

Resolvendo a equação (3.3.9) em relação a V e substituindo esse valor em (3.3.10), tem-se:

$$V = P^{-1}B^{T}K (3.3.11)$$

e
$$AX + BP^{-1}B^{T}K + W = 0;$$

ou, fazendo
$$M = BP^{-1}B^{T}$$
, (3.3.12)

$$AX + MK + W = 0,$$

que, resolvida em relação a K, conduz a:

$$K = -M^{-1}(AX + W). (3.3.13)$$

Substituindo este valor na equação (3.3.8), resulta:

$$A^{T}M^{-1}(AX + W) = 0,$$

ou
$$A^{T}M^{-1}AX + A^{T}M^{-1}W = 0,$$

que resolvida em relação a X fornece:

$$X = -(A^{T}M^{-1}A)^{-1} A^{T}M^{-1}W. (3.3.14)$$

Obtida a matriz M pela equação (3.3.12) pode-se obter X da equação (3.3.14) e, em função deste, obter-se

$$X_a = X_0 + X$$
 (3.3.15)

Sequencialmente calcula-se K, V e, finalmente,

$$L_a = L_b + V$$
 (3.3.16)

Se o modelo matemático foi submetido à aproximação linear por série de Taylor, o processo deverá ser repetido até que se esta beleça a convergência das grandezas ajustadas. Neste caso, para а i-ésima iteração, $W^{i} = F(L_{o}^{i}, X_{o}^{i}) + B^{i}(L_{b} - L_{o}^{i})$, sendo $X_{o}^{i} = X_{o}^{i-1}$ е $L_0^i = L_a^{i-1}$ os novos vetores das grandezas aproximadas.

A partir da inversa da matriz M pode-se obter a matriz va riância-covariância dos parâmetros ajustados, ou seja |42|,

$$\Sigma_{x} = \sigma_{0}^{2} (A^{T} M^{-1} A)^{-1} ,$$
 (3.3.17)

onde
$$\sigma_{O}^{2} = \frac{v^{T}PV}{m-u}$$
 (3.3.18)

é a variância da observação de peso unitário "a posteriori".

A matriz variância-covariância das observações ajustadas será dada por |43|:

$$\Sigma_{L_{a}} = \sigma_{o}^{2} \left[P^{-1} + P^{-1}B^{T}M^{-1}A(A^{T}M^{-1}A)^{-1}A^{T}M^{-1}BP^{-1} - P^{1}B^{T}M^{-1}BP^{-1} \right]$$
(3.3.19)

Em alguns casos o modelo matemático permite que as observa ções ajustadas sejam expressas de forma explícita em função dos pa râmetros ajustados, ou seja:

$$L_a = F(X_a)$$
; (3.3.20)

neste caso, o modelo matemático será dito paramétrico ou das de observação e a matriz B será igual a -I. Em outros casos o modelo matemático poderá envolver apenas observações, exprimindo condições entre elas, sem o envolvimento de parâmetros, ou seja:

$$F(L_a) = 0;$$
 (3.3.21)

neste caso, o modelo será dito dos correlatos ou das equações de condição e a matriz A será nula.

O caso abordado é o caso mais geral, envolvendo implicita e simultaneamente parâmetros e observações, sendo o modelo, por isso, denominado combinado.

3.4 Injunção

As soluções práticas de alguns problemas às vezes são condicionadas à introdução de informações adicionais, além do próprio modelo matemático principal. Estas informações são comumente denominadas injunções. As injunções podem estar vinculadas a uma ou mais variáveis do problema, podendo, em alguns casos, serem essenciais a sua solução, eliminando possíveis singularidades na matriz M.

Costuma-se distinguir os seguintes tipos de injunções | 44 |:

- a) Injunção funcional: quando as variáveis estão subordinadas a um modelo matemático que correlacione parâmetros. Podem apresentarse de forma explícita, quando não envolvem observações, ou implícitas, quando envolvem simultaneamente parâmetros e observações.
- b) Injunção absoluta: quando o modelo matemático expressa uma lei física ou matemática em que os parâmetros envolvidos são conside rados fixos, ou seja, constantes sem erro.

c) Injunção relativa ou ponderada: quando o modelo matemático baseia-se em observações, em vez de relações teóricas entre os parâmetros, devendo, portanto, estarem associadas a pesos que expressem suas precisões relativas.

A solução do problema com injunções funcionais é abordada em $|^{45}|$ e $|^{46}|$. As injunções absolutas podem ser consideradas como um caso particular das injunções relativas, tomando-se os parâmetros ∞ mo observações com pesos infinitos. Portanto, apenas o último caso se rá tratado neste trabalho.

CAPÍTULO 4

SOLUÇÃO DE MODELOS SUPERABUNDANTES COM INJUNÇÕES RELATIVAS

4.1. Injunções Relativas ou Ponderadas

O modelo matemático para as injunções relativas é |47|:

$$G(X_a, L_a) = 0$$
 (4.1.1)

onde G = (g_i) , i = 1, 2, ..., r, \acute{e} o vetor das funções de injunções relativas e $\overset{C}{L}_a = (\overset{C}{l}_i)$, i = 1, 2, ..., s, \acute{e} o vetor das observações ajustadas, vinculadas às injunções. A forma linearizada \acute{e} :

$$CX + DV + W = 0$$
 (4.1.2)

onde

$$C = \{(C_{ij}), i = 1, 2, ..., r; j = 1, 2, ..., u\} = \frac{\partial G}{\partial X_a} ; (4.1.3)$$

$$x_a = x_o$$

$$\overset{c}{L}_{a}=\overset{c}{L}_{b}$$

$$D = \{(d_{ij}), i = 1, 2, ..., r; j = 1, 2, ..., s\} = \frac{\partial G}{c} |; (4.1.4)$$

$$X_{a} = X_{0}$$

$$C \quad C \quad C$$

$$L_{a} = L_{b}$$

$$W = \{(w_i), i = 1, 2, ..., r\} = G(X_o, L_b);$$
 (4.1.5)

$$L_b^c = L_i^c$$
, $L_i^c = 1, 2, ..., s$, \tilde{e} o vetor das observações e

 $\begin{array}{c} c & c \\ v = (v_i) \,, \, 1, 2, \ldots, s, \, \, \acute{e} \, \, o \, \, vetor \, \, dos \, \, residuos \, \, relativos \quad \, \grave{a}s \\ \\ observações \, \stackrel{c}{L}_b \,. \end{array}$

4.2. Solução do Problema

A solução de modelos superabundantes pelo método dos mínimos quadrados com injunções relativas pode ser obtida achando-se o
mínimo da função:

Igualando a zero as derivadas parciais de ϕ em relação a c c x, V, V, K e K, tem-se:

$$\frac{\partial \dot{C}}{\partial X} = - (2A^{T}K + 2C^{T}\dot{C}) = 0 \quad \text{ou } A^{T}K + C^{T}\dot{C} = 0 ; \qquad (4.2.2)$$

$$\frac{\partial c}{\partial V} = 2(PV - B^{T}K) = 0$$
 ou $PV - B^{T}K = 0$; (4.2.3)

$$\frac{\partial \phi}{\partial C} = 2(\overrightarrow{PV} - \overrightarrow{D}^{TC}) = 0 \quad \text{ou } \overrightarrow{PV} - \overrightarrow{D}^{TC} = 0 ; \qquad (4.2.4)$$

$$\frac{\partial \dot{\phi}}{\partial K} = -2(AX + BV + W) = 0 \text{ ou } AX + BV + W = 0$$
 (4.2.5)

$$\frac{\partial \dot{\phi}}{\partial c} = -2 (CX + DV + W) = 0 \text{ ou } CX + DV + W = 0 ; (4.2.6)$$

Resolvendo a equação (4.2.3) em relação a V e substituindo o resultado na equação (4.2.5), vem:

$$V = P^{-1}B^{T}K$$
 (4.2.7)

$$e AX + BP^{-1}B^{T}K + W = 0,$$

ou, fazendo
$$M = BP^{-1}B^{T}$$
, (4.2.8)

$$AX + MK + W = 0,$$

que, resolvida em relação a K, conduz a

$$K = -M^{-1}(AX + W)$$
. (4.2.9)

Procedendo de forma análoga com as equações (4.2.4) e (4.2.6), resulta:

$$V = P^{-1}D^{T}K,$$
 (4.2.10)

$$\stackrel{C}{M} = \stackrel{C}{DP}^{-1} \stackrel{T}{D}^{T}$$
 (4.2.11)

e
$$K = -M (CX + W)$$
 (4.2.12)

Substituindo (4.2.9) e (4.2.12) na (4.2.2), resulta:

$$-A^{T}\left[M^{-1}(AX + W)\right] -C^{T}\left[M^{-1}(CX + W)\right] = 0,$$

ou

$$(A^{T}M^{-1}A + C^{TC-1}C)X + A^{T}M^{-1}W + C^{TC-1}C = 0$$

ou ainda,

$$X = -(A^{T}M^{-1}A + C^{T}M^{-1}C)^{-1} \cdot (A^{T}M^{-1}W + C^{T}M^{-1}W) \cdot (4.2.13)$$

Fazendo
$$R = A^{T}M^{-1}A + C^{TC-1}C$$
 (4.2.14)

e
$$S = A^{T}M^{-1}W + C^{TC-1C}MW,$$
 (4.2.15)

vem:
$$X = -R^{-1}S$$
 (4.2.16)

e
$$X_a = X_0 + X$$
. (4.2.17)

4.3. Matriz Variância-Covariância dos Parâmetros Ajustados

A matriz variância-covariância, Γ_{y} , de uma variâvel n-dimensional, Y, pode ser expressa da seguinte forma $|^{48}|$:

$$\Sigma_{y} = E\{(Y - U_{y}) (Y - U_{y})^{T}\},$$
 (4.3.1)

onde $U_{Y} = E \{Y\}$ denota a esperança da variável Y.

Considerando as variáveis n-dimensionais X, Y e Z correla cionadas linearmente segundo o modelo matemático:

$$Y = GX + HZ + C,$$
 (4.3.2)

a esperança de Y será:

$$U_{Y} = E\{Y\} = E\{GX + HZ + C\} = GE\{X\} + HE\{Z\} + C$$
 (4.3.3)

Da equação (4.3.1), decorre:

ou
$$\Sigma_{\mathbf{y}} = \mathbb{E}\left\{\left[\mathbf{G}(\mathbf{X}-\mathbf{U}_{\mathbf{x}}) + \mathbf{H}(\mathbf{Z}-\mathbf{U}_{\mathbf{Z}})\right]\left[\mathbf{G}(\mathbf{X}-\mathbf{U}_{\mathbf{X}}) + \mathbf{H}(\mathbf{Z}-\mathbf{U}_{\mathbf{Z}})\right]^{\mathbf{T}}\right\},\,$$

ou
$$\Sigma_{\mathbf{y}} = \mathbb{E} \left\{ \left[\mathbf{G} (\mathbf{X} - \mathbf{U}_{\mathbf{X}}) + \mathbf{H} (\mathbf{Z} - \mathbf{U}_{\mathbf{Z}}) \right] \left[(\mathbf{X} - \mathbf{U}_{\mathbf{X}})^{\mathbf{T}} \mathbf{G}^{\mathbf{T}} + (\mathbf{Z} - \mathbf{U}_{\mathbf{Z}})^{\mathbf{T}} \mathbf{H}^{\mathbf{T}} \right] \right\} ,$$

$$\begin{split} \text{resultando, } & \Sigma_{\mathbf{y}} = \text{GE}\{\,(\mathbf{X} - \mathbf{U}_{\mathbf{X}})\,\,(\mathbf{X} - \mathbf{U}_{\mathbf{X}})^{\,\mathrm{T}}\} \mathbf{G}^{\mathrm{T}} + \mathbf{HE}\{\,(\mathbf{Z} - \mathbf{U}_{\mathbf{Z}})\,\,(\mathbf{Z} - \mathbf{U}_{\mathbf{Z}})^{\,\mathrm{T}}\} \mathbf{H}^{\mathrm{T}} + \mathbf{HE}\{\,(\mathbf{Z} - \mathbf{U}_{\mathbf{Z}})\,\,(\mathbf{X} - \mathbf{U}_{\mathbf{X}})^{\,\mathrm{T}}\} \mathbf{G}^{\mathrm{T}} \,\, + \\ & \quad \quad + \mathbf{GE}\{\,(\mathbf{X} - \mathbf{U}_{\mathbf{X}})\,\,(\mathbf{Z} - \mathbf{U}_{\mathbf{Z}})^{\,\mathrm{T}}\} \mathbf{H}^{\mathrm{T}} \,\,, \end{split}$$

que, considerando a equação (4.3.1), pode ser escrita da seguinte forma:

$$\Sigma_{\mathbf{v}} = G\Sigma_{\mathbf{X}}G^{\mathbf{T}} + H\Sigma_{\mathbf{Z}}H^{\mathbf{T}} + H\Sigma_{\mathbf{Z}\mathbf{X}}G^{\mathbf{T}} + G\Sigma_{\mathbf{X}\mathbf{Z}}H^{\mathbf{T}}. \tag{4.3.4}$$

Se X e Z forem variáveis independentes Σ e Σ serão nulas. Então: ZX e XZ

$$\Sigma_{\mathbf{y}} = \mathbf{G} \Sigma_{\mathbf{X}} \mathbf{G}^{\mathbf{T}} + \mathbf{H} \Sigma_{\mathbf{Z}} \mathbf{H}^{\mathbf{T}}. \tag{4.3.5}$$

Caso a correlação entre as variáveis não seja linear, a equação (4.3.5) continua sendo válida. Neste caso $|^{48}|$,

$$G = \frac{\partial Y}{\partial X} \left| e \quad H = \frac{\partial Y}{\partial Z} \right|$$

$$X = X_0$$

$$Z = Z_0$$

Considerando a equação (4.2.17),

$$\Sigma_{X_a} = \Sigma_{X}$$
,

visto que X_{o} é constante.

Tendo em vistas as equações (4.2.13) e (4.2.14)e, consid \underline{e} rando que

$$W = F(X_O, L_b) \quad e \quad \overset{\mathbf{C}}{W} = G(X_O, L_b),$$

tem-se

$$X = -R^{-1} \left[A^{T} M^{-1} F(X_{o}, L_{b}) + C^{T} M^{-1} G(X_{o}, L_{b}) \right].$$

Como L_b e $\overset{c}{L}_b$ são independentes

$$\Sigma_{\mathbf{X}_{\mathbf{a}}} = G\Sigma_{\mathbf{L}_{\mathbf{b}}}G^{\mathbf{T}} + H\Sigma_{\mathbf{C}_{\mathbf{b}}}H^{\mathbf{T}_{\mathbf{a}}}, \qquad (4.3.6)$$

onde, $G = \frac{\partial X}{\partial L_b} = -R^{-1}A^TM^{-1} - \frac{\partial F(X_O, L_b)}{\partial L_b} = -R^{-1}A^TM^{-1}B$ (4.3.7)

e
$$H = \frac{\partial X}{c} = -R^{-1}C^{TC-1} \frac{\partial G(X_0, L_b)}{\partial L_b} = -R^{-1}C^{TC-1}D.$$
 (4.3.8)

As matrizes de covariâncias dos valores observados $\Sigma_{\mathbf{L}}$ e Σ são da das por $|^{49}|$:

$$\Sigma_{L_b} = \sigma_0^2 p^{-1}$$
 (4.3.9)

$$\Sigma_{c} = \sigma_{o}^{2} P^{C-1}$$
 (4.3.10)

onde
$$\sigma_{0}^{2} = \frac{V^{T}PV + V^{T}PV}{m + r - u}$$
 (4.3.11)

Substituindo as equações (4.3.7), (4.3.8), (4.3.9) e (4.3.10) na equação (4.3.6), vem:

$$\Sigma_{A} = \sigma_{O}^{2} R^{-1} A^{T} M^{-1} B P^{-1} B^{T} M^{-1} A R^{-1} + \sigma_{O}^{2} R^{-1} C^{T} M^{-1} D P^{-1} D^{T} M^{-1} C R^{-1}.$$

Considerando que

$$BP^{-1}B^{T} = M$$

$$e DP^{C-1}D^{T} = {}^{C}M,$$

tem-se
$$\Sigma_{X_a} = \sigma_o^2 R^{-1} (A^T M^{-1} A + C^T M^{-1} C) R^{-1}$$
.

Considerando, ainda, que $A^{T}M^{-1}A + C^{T}M^{-1}C = R$, resulta:

$$\Sigma_{X_{3}} = \sigma_{O}^{2} R^{-1}$$
 (4.3.12)

CAPITULO 5

MODELOS MATEMÁTICOS

EM AJUSTAMENTOS GRAVIMÉTRICOS

5.1. Considerações Físicas

Como já foi visto anteriormente, no item 2.3.7, as observa ções gravimétricas fornecem diretamente as leituras das da escala do gravimetro. Tais leituras estão sujeitas a alguns efeitos sistemáticos que devem ser considerados no modelo corrigidos antes do ajustamento das observações, ou evitados nos pro cessos de construção e operação do instrumento. No primeiro caso, os parâmetros que definem o efeito sistemático serão determinados na so lução do modelo, uma vez definida a função que os correlaciona. segundo caso, os efeitos sistemáticos estão vinculados a condições particulares de cada observação, não sendo possível definir uma ção que generalize sua correção, sendo preferível efetuar-se as correções antes do ajustamento, definindo-se o modelo em função dos lores observados corrigidos. Neste caso situam-se a função de calibração, definida previamente pelo fabricante do instrumento, e a riva instrumental, que é subordinada às condições externas às quais o aparelho é submetido (meio de transporte, tipos de estradas, condi ções climáticas, etc). No terceiro caso, os efeitos sistemáticos são evitados através de dispositivos compensadores ou eliminadores inseridos no próprio aparelho pelo fabricante, acompanhado de operacionais específicos. Neste caso, situam-se os efeitos da tempe ratura, da pressão atmosférica, do campo magnético e da inclinação do aparelho.

Além dos efeitos sistemáticos inerentes ao instrumento, de vem ser considerados aqueles de natureza externa que estão presentes nas observações. Dentre estes costuma-se considerar o efeito da atração gravitacional luni-solar e o efeito da diferença de escala entre o instrumento e o sistema de referência ao qual as observações serão ajustadas. O efeito da atração luni-solar é corrigido antes do ajustamento, em função das coordenadas do ponto de observação e do instante em que esta foi efetuada | 50 | , |51 | . A diferença de escala em relação ao sistema de referência é considerada, inserindo-se no mode lo matemático termos de correção de escala de diferentes graus, envolvendo os respectivos fatores como parâmetros incógnitas a serem de terminados no ajustamento. Experiências com gravimetros La Coste & Romberg demonstraram que a correção de escala não apresenta falta de linearidade significativa até uma amplitude de escala de 2000 mGal | 36 | .

5.2. Modelos Matemáticos

Os levantamentos gravimétricos, geralmente, são realizados de modo a constituirem malhas de pontos (estações), cuja gravida de se deseja determinar, conectados entre si, formando circuitos fechados. O ajustamento da rede, assim formada, pode ser conduzido pelo método dos mínimos quadrados com base nos modelos: combinado, para métrico ou dos correlatos. O ajustamento pelo modelo paramétrico é analisado em |52| e, por se tratar de um caso particular do modelo combinado, não será analisado neste trabalho

5.2.1. Modelo dos Correlatos ou das Equações de Condição

O problema consiste em obter-se os melhores estimadores das grandezas observadas, com a condição de que a soma dos intervalos de gravidade que constituem um circuito fechado seja igual a zero. Neste caso o modelo matemático envolverá apenas as grandezas observáveis,

La, sem vinculação com parâmetros incógnitas, Xa. Embora os intervalos de gravidade não sejam observados diretamente com os gravímetros mecânicos, na realidade eles são as grandezas que se deseja observar, podendo ser obtidos a partir das leituras instrumentais corrigidas da função de calibração, da atração luni-solar e da deriva instrumental. Portanto, neste trabalho serão considerados como grandezas observáveis os intervalos de gravidade.

O modelo matemático das equações de condição ou dos correlatos é dado pela equação (3.3.2.1):

$$F(L_a) = 0$$
 , (5.2.1.1)

que na forma linearizada é escrito do seguinte modo:

$$BV + W = 0$$
, (5.2.1.2)

onde

$$B = \frac{\partial \mathbf{F}}{\partial \mathbf{L}_{\mathbf{a}}}$$
 (5.2.1.3)

$$L_a = L_b$$

$$W = F(L_b) = (5.2.1.4)$$

V é o vetor dos resíduos que adicionado ao vetor dos valores observados, L_{b} , fornece o vetor das observações ajustadas, L_{a} . Assim,

$$L_a = L_b + V$$
, (5.2.1.5)

com

$$V = P^{-1}B^{T}K$$
, (5.2.1.6)

$$K = -M^{-1}W e (5.2.1.7)$$

$$M = BP^{-1}B^{T} (5.2.1.8)$$

A matriz variância-covariância, $\Sigma_{\rm L}$, das observações ajustadas é dada por $|^{5\,3}|$:

$$\Sigma_{L_a} = \sigma_o^2 P^{-1} (I - B^T M^{-1} B P^{-1})$$
 (5.2.1.9)

$$\sigma_{\rm O}^2 = \frac{{\rm v}^{\rm T}{\rm PV}}{{\rm m}} = \frac{-{\rm K}^{\rm T}{\rm W}}{{\rm m}}$$
, (5.2.1.10)

sendo m o número de equações de condição.

Supondo uma rede gravimétrica conforme a representada na figura 3.2.1.1, onde os intervalos de gravidade foram medidos no sentido da seta, o modelo matemático dado pela equação (5.2.1.1) será expresso pelo sistema de m = 5 equações, correspondentes aos 5 (cinco) circuitos fechados, cujos números estão contornados por circunferências:

circuito 1:
$$f_1(L_a) = \Delta g^a + \Delta g^a + \Delta g^a = 0$$
, circuito 2: $f_2(L_a) = -\Delta g^a + \Delta g^a + \Delta g^a = 0$, circuito 3: $f_3(L_a) = \Delta g^a + \Delta g^a + \Delta g^a = 0$, circuito 4: $f_4(L_a) = \Delta g^a + \Delta g^a + \Delta g^a = 0$, circuito 5: $f_5(L_a) = -\Delta g^a + \Delta g^a + \Delta g^a = 0$, circuito 5: $f_5(L_a) = -\Delta g^a + \Delta g^a + \Delta g^a = 0$,

F16.3.2.1.1

onde Δg_{ij}^a representa o genérico intervalo de gravidade ajustado en tre as estações i e j.

O vetor dos valores observados, $L_{\mbox{\scriptsize b}}$, e o vetor dos residuos V, são:

$$\begin{bmatrix}
\Delta g_{12}^{b} \\
\Delta g_{23}^{b} \\
\Delta g_{31}^{b} \\
\Delta g_{34}^{b} \\
\Delta g_{34}^{b}
\end{bmatrix}$$

$$\Delta g_{34}^{b} \\
\Delta g_{26}^{b} \\
\Delta g_{26}^{b} \\
\Delta g_{65}^{b} \\
\Delta g_{52}^{b} \\
\Delta g_{35}^{b} \\
\Delta g_{54}^{b}
\end{bmatrix}$$

$$e \qquad v = v_{41}$$

$$v_{26}$$

$$v_{65}$$

$$v_{52}$$

$$v_{35}$$

$$v_{54}$$

A matriz B é dada por:

O vetor $W = F(L_b)$, neste caso \hat{e} :

$$W = \begin{bmatrix} w_1 = \Delta g_{12}^b + \Delta g_{23}^b + \Delta g_{31}^b \\ w_2 = -\Delta g_{31}^b + \Delta g_{34}^b + \Delta g_{41}^b \\ w_3 = \Delta g_2^b + \Delta g_3^b + \Delta g_4^b \\ 26 & 65 & 52 \end{bmatrix}$$

$$w_4 = \Delta g_2^b + \Delta g_3^b + \Delta g_3^b \\ w_5 = -\Delta g_3^b + \Delta g_3^b + \Delta g_3^b \\ 34 & 35 & 54 \end{bmatrix}$$

De posse de L_b e respectiva matriz de pesos, P, aplicando as equações (5.2.1.5-10) na ordem conveniente, obtem-se o vetor das observações ajustadas, L_a , e sua matriz variância-covariância, Σ_a .

O ajustamento pelo modelo dos correlatos fornece os inter valos de gravidade ajustados entre as estações da rede. Isso significa que, após o ajustamento, qualquer que seja o percurso utilizado para se calcular o intervalo de gravidade entre duas estações quais quer o resultado será o mesmo. Para se obter o valor da gravidade nas estações da rede é necessário o conhecimento do valor da gravida de em pelo menos um de seus pontos, fazendo-se o transporte a partir deste para os demais. Entretanto, se o número de estações com gravidade conhecida for maior do que um, poderá existir diferença de esca la entre a rede que se deseja ajustar e a rede de referência. Além disso, os valores de gravidade conhecidos podem não ter a mesma precisão e necessitarem da aplicação de pesos. Como o modelo dos correlatos, neste caso, não se vincula a nenhum referencial, a solução des te problema é conduzida através do modelo matemático combinado.

5.2.2. Modelo Combinado

O problema consiste em determinar-se os melhores estimado res para os parâmetros incógnitas e grandezas observadas, suas precisões e correlações. Com esse objetivo define-se um modelo matemático que correlacione parâmetros e grandezas observáveis, conforme a equação (3.3.2). No caso de observações gravimétricas, para cada intervalo de gravidade, o modelo matemático poderá ser expresso na forma:

$$g_{i} - g_{j} + k \Delta g_{ij} = 0$$
, (5.2.2.1)

onde

g, é o valor incógnita da gravidade na i-ésima estação;

g_i é o valor incógnita da gravidade na j-ésima estação;

k é o fator incógnita de correção linear de escala para o instrumento utilizado;

 $\Delta g_{ij} = r_j - r_i$ é o intervalo de gravidade entre as estações i e j, igual a diferença das leituras r_j e r_i , nas duas estações, na escala do aparelho, corrigidas dos efeitos sistemáticos conhecidos.

Neste caso, o modelo matemático será composto de mequações, correspondentes aos mintervalos de gravidade observados, envolvendo u parâmetros incógnitas, relativos aos u-1 valores de gravidade, gi, nas estações da rede e o fator linear de escala, k. Caso a diferença de escala do gravimetro em relação ao sistema de referência seja considerada não-linear, deverão ser inseridos no modelo fatores de escala de maior grau. Assim o modelo matemático poderá ser expresso na forma:

$$g_i - g_j + k(r_j - r_i) + l(r_j^2 - r_i^2) + m(r_j^3 - r_i^3) = 0$$
 (5.2.2.2)

onde l é o coeficiente quadrático de escala e

m é o coeficiente cúbico de escala.

Aqui as grandezas observáveis são as leituras, r_i, e o número de parâmetros, u, corresponderá a u-3 valores de gravidade, g_i, e 3 (três) fatores de escala, k, 1, e m. Os fatores de escala 1 e m podem não ser estatisticamente significativos ou mesmo não se justificarem fisicamente, considerando que a função de calibração do gravímetro já leva em conta a eventual falta de linearidade de sua escala. Desse modo, a não ser que a amplitude de escala utilizada seja muito grande (acima de 2000 mGal), medida com gravímetro geodésico, o modelo utilizado poderá ser o expresso pela equação (5.2.2.1), que oferece van tagens computacionais notórias, além de estar formulado em função dos intervalos de gravidade, cujos valores ajustados geralmente são de maior interesse do que as leituras instrumentais.

A rede gravimétrica representada na figura 3.2.1.1, conside rando o modelo matemático dado pela equação (5.2.2.1), apresenta como vetores dos parâmetros ajustados, X_a , e das observações ajustadas, L_a , os seguintes:

O modelo matemático será expresso pelo sistema de m = 10 equações, correspondentes aos 10(dez) intervalos de gravidade observados:

$$f_{1}(X_{a}, L_{a}) = g_{1} - g_{2} + k\Delta g_{12} ,$$

$$f_{2}(X_{a}, L_{a}) = g_{2} - g_{3} + k\Delta g_{23} ,$$

$$f_{3}(X_{a}, L_{a}) = g_{3} - g_{1} + k\Delta g_{31} ,$$

$$f_{4}(X, L_{a}) = g_{3} - g_{4} + k\Delta g_{34} ,$$

$$f_{5}(X, L_{a}) = g_{4} - g_{1} + k\Delta g_{41} ,$$

$$f_{6}(X, L_{a}) = g_{2} - g_{6} + k\Delta g_{26} ,$$

$$f_{7}(X, L_{a}) = g_{6} - g_{5} + k\Delta g_{65} ,$$

$$f_{8}(X, L_{a}) = g_{5} - g_{2} + k\Delta g_{52} ,$$

$$f_{9}(X, L_{a}) = g_{3} - g_{5} + k\Delta g_{35} ,$$

$$f_{10}(X, L_{a}) = g_{5} - g_{4} + k\Delta g_{54} .$$

Embora o modelo seja linear, é preferível trabalhar com valores de gravidade aproximados, X_o, objetivando evitar operações com números grandes e consequentes erros de arredondamento. Portanto o modelo pode ser expresso pela equação (3.3.3):

$$AX + BV + W = 0,$$
 (5.2.2.5)

onde o vetor das correções aos valores aproximados, X, o vetor dos residuos, V, e o vetor dos erros de fechamento, W (equação (3.3.6)), são dados por:

$$x = \begin{bmatrix} \delta g_1 \\ \delta g_2 \\ \delta g_3 \\ \delta g_4 \\ \delta g_5 \\ \delta g_6 \\ \delta k \end{bmatrix}, \quad v = \begin{bmatrix} v_{12} \\ v_{23} \\ v_{31} \\ v_{34} \\ v_{26} \\ v_{52} \\ v_{35} \\ v_{54} \end{bmatrix} \quad e \quad w = \begin{bmatrix} w_1 = g_1^o - g_2^o + k^o \Delta g_{12}^b \\ w_2 = g_2^o - g_3^o + k^o \Delta g_{23}^b \\ w_3 = g_3^o - g_1^o + k^o \Delta g_{31}^b \\ w_4 = g_3^o - g_4^o + k^o \Delta g_{31}^b \\ w_5 = g_4^o - g_1^o + k^o \Delta g_{31}^b \\ w_6 = g_2^o - g_6^o + k^o \Delta g_{31}^b \\ w_6 = g_2^o - g_6^o + k^o \Delta g_{26}^b \\ w_7 = g_6^o - g_5^o + k^o \Delta g_{52}^b \\ w_8 = g_5^o - g_2^o + k^o \Delta g_{52}^b \\ w_9 = g_3^o - g_5^o + k^o \Delta g_{53}^b \\ w_{10} = g_5^o - g_4^o + k^o \Delta g_{54}^b \end{bmatrix}$$

As matrizes A, dada pela equação (3.3.4), e B, dada pela equação (3.3.5), são:

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & \Delta g_{12}^{b} \\ 0 & 1 & -1 & 0 & 0 & 0 & \Delta g_{23}^{b} \\ -1 & 0 & 1 & 0 & 0 & 0 & \Delta g_{31}^{b} \\ 0 & 0 & 1 & -1 & 0 & 0 & \Delta g_{34}^{b} \\ -1 & 0 & 0 & 1 & 0 & 0 & \Delta g_{41}^{b} \\ 0 & 1 & 0 & 0 & 0 & -1 & \Delta g_{26}^{b} \\ 0 & 0 & 0 & 0 & -1 & 1 & \Delta g_{65}^{b} \\ 0 & -1 & 0 & 0 & 1 & 0 & \Delta g_{52}^{b} \\ 0 & 0 & 1 & 0 & -1 & 0 & \Delta g_{54}^{b} \\ 0 & 0 & 0 & -1 & 1 & 0 & \Delta g_{54}^{b} \end{bmatrix}$$

A solução do sistema (5.2.2.5) não pode ser obtida sem a introdução de informações adicionais relacionadas ao sistema de referência, ou seja, pelo menos duas estações devem ter os valores de gravidade conhecidos. Tais informações são introduzidas no problema como injunções relativas ou ponderadas, segundo o modelo da equação (4.1.1). Na rede da figura 3.2.1.1 são estações de referência aquelas indicadas com um triângulo, ou seja, 1,4 e 6. Neste caso, para cada estação de referência o modelo matemático poderá ser expresso na forma:

$$g_i - \bar{g}_i = 0,$$
 (5.2.2.8)

onde \bar{g}_i é o valor da gravidade no ponto de ordem i, tomado como referência. Os parâmetros ajustados aqui são os mesmos da equação(5.2.2.3) e as observações ajustadas, L_a , são:

$$\overset{\mathbf{c}}{\mathbf{L}}_{\mathbf{a}} = \begin{bmatrix} \overline{\mathbf{g}}_{1} \\ \overline{\mathbf{g}}_{4} \\ \overline{\mathbf{g}}_{6} \end{bmatrix} \tag{5.2.2.9}$$

O modelo matemático será composto por s=3 equações, corres pondentes às 3 (três) estações de referência:

$$f_{1}(X_{a}, L_{a}) = g_{1} - \bar{g}_{1} = 0$$

$$f_{2}(X_{a}, L_{a}) = g_{4} - \bar{g}_{4} = 0$$

$$f_{3}(X_{a}, L_{a}) = g_{6} - \bar{g}_{6} = 0$$
(5.2.2.10)

O vetor dos valores aproximados, X_0 , deverá ser o mesmo utilizado na solução do modelo principal. O modelo matemático das injunções pode, então, ser expresso pela equação (4.1.2).

$$CX + DV + W = 0,$$
 (5.2.2.11)

onde X ja foi definido previamente, e os vetores V e W (equação (4.1.5)) são dados por:

As matrizes C e D, dadas pelas equações (4.1.3) e (4.1.4), respectivamente, são:

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad \text{e D} = -3^{1}_{3}$$
 (5.2.2.13)

Se forem tomados para valores aproximados da gravidade nas estações de referência os próprios valores conhecidos, então, $\overset{\text{C}}{\text{W}}=0$. Se,-adicionalmente, tomar-se para valor aproximado de k a unidade, a solução do problema pode ser obtida de modo simples. Aplicando as equações (4.2.7-17) e (4.3.11 e 12), uma vez conhecidas as matrizes de peso P e $\overset{\text{C}}{\text{P}}$, segue-se a ordem:

a) Considerando as equações (4.2.8), (4.2.11) e as segundas das (5.2.2.7) e (5.2.2.13), tem-se:

$$M = BP^{-1}B^{T} = k^{2}P^{-1} = P^{-1}$$
 (5.2.2.14)

e
$$M = DP^{C-1}D^{T} = P^{C-1}$$
 (5.2.2.15)

b) Aplicando as primeiras equações das (5.2.2.7) e (5.2.2.13) e as (5.2.2.14) e (5.2.2.15) na (4.2.14), vem:

$$R = A^{T}M^{-1}A + C^{TC-1}C = A^{T}PA + P$$
 (5.2.2.16)

c) Analogamente em relação à equação (4.2.15), resulta:

$$S = A^{T}M^{-1}W + C^{TC-1}C = A^{T}PW . (5.2.2.17)$$

d) Utilizando a equação (4.2.16) obtém-se o valor de X que adiciona do a X_0 fornece o vetor dos parâmetros ajustados, X_a :

$$X = -R^{-1}S (5.2.2.18)$$

e
$$X_a = X_o + X$$
. (5.2.2.19)

e) Os vetores dos correlatos, K e K, e dos residuos, V e V são:

$$K = -M^{-1}(AX+W) = -P(AX+W)$$
 (5.2.2.20)

$$v = v^{-1}b^{T}K = -v^{-1}b^{T}v(AX+W)$$
.

Como $B = B^{T} = kI$ (equação (5.2.2.7)) e k = 1, tem-se:

$$V = -(AX+W)$$
 (5.2.2.21)

Analogamente,

$$C = -M^{C-1}(CX + W) = -PCX$$
 (5.2.2.22)

e, como pela segunda de (5.2.2.13), $D = D^{T} = -I$,

$$\overset{\mathbf{C}}{\mathbf{V}} = \overset{\mathbf{C}}{\mathbf{P}} \mathbf{1}_{\mathbf{D}} \mathbf{T}_{\mathbf{K}}^{\mathbf{C}} = \mathbf{C} \mathbf{X} .$$
(5.2.2.23)

f) A variância da observação de peso unitário pode ser obtida da equação (4.3.11):

$$\sigma_{O}^{2} = \frac{V^{T}PV + V^{T}PV}{m+r-u} . \qquad (5.2.2.24)$$

No caso da rede tomada como exemplo, m = 10, r = 3, e u=7.

g) A matriz variância-covariância dos parâmetros ajustados (valores de gravidade nas estações da rede) é dada pela equação (4.3.12):

$$\Sigma_{\rm X_a} = \sigma_{\rm o}^2 \, {\rm R}^{-1} \, .$$
 (5.2.2.25)

CAPÍTULO 6

AJUSTAMENTO DE UMA REDE GRAVIMÉTRICA

6.1. Descrição da Rede

Neste capítulo, deseja-se aplicar os conceitos emitidos nos capítulos precedentes, ao ajustamento da rede gravimétrica implantada pelo Observatório Nacional, que se estende por todo o território bra sileiro, esquematicamente representada pela figura 6.1. Esta rede, cobrindo uma amplitude de gravidade da ordem de 1700 mGal, é constituída atualmente de 327 estações, das quais 15 integram o atual "datum" gravimétrico mundial, a IGSN-71 ("International Gravity Standardization Net-1971"). As estações da rede são interligadas por 380 intervalos de gravidade, observados com gravimetros La Coste & de modo a constituirem uma malha composta de 38 circuitos fechados. Foram utilizados nos levantamentos os gravimetros cujos números série são os seguintes: G-041, G-061, G-257, G-372, G-454, G-602, G-613, G-622, G-628 e G-674. Além do Observatório Nacional, outras ções participaram do empreendimento, emprestando seus instrumentos; são elas: IAGS ("Inter American Geodetic Survey"), UFPr (Universidade Federal do Paraná), USP (Universidade de São Paulo), UFPa (Univer sidade Federal do Pará) e UnB (Universidade de Brasília). Os levantamentos foram efetuados com pelo menos 2 (dois) gravimetros simulta neamente. Neste caso, foram feitas leituras nas estações, percorrendo-se duas vezes o itinerário de ida e volta. Alternativamente, em alguns casos, foram empregados simultaneamente 4 (quatro) gravimetros, percorrendo-se o itinerário de ida e volta apenas uma vez. Em qualquer caso cada intervalo de gravidade entre as estações ocupadas foi medido 8(oito) vezes. O critério adotado para a análise das observações é o descrito em |54|.

No apêndice A são apresentadas as estações da rede com código, nome e, para as estações comuns com a IGSN-71, os valores de gravidade e desvios padrão, extraídos de |55|e expurgados da correção de Honkasalo |56|. A letra ã frente do código designa um tipo especial de estação: conhecida (C), estação da IGSN-71; nodal (N), estação que constitui um nó da rede; excêntrica (E), estação que não se insere nos circuitos fechados, constituindo-se em ramificação aberta da rede, servindo como informação adicional de precisão equivalente às demais. As estações que não possuem letra intercalam-se entre as conhecidas e nodais.

Os intervalos de gravidade observados são apresentados no apêndice B. Os valores ali registrados foram previamente corrigidos dos efeitos sistemáticos da atração gravitacional luni-solar e deriva instrumental. Para compensação da deriva instrumental adotou-se para cada intervalo a média ponderada de suas 4 (quatro) observações, tomando-se para pesos os inversos dos respectivos intervalos de tempo, decorridos entre as leituras nas estações que materializam seus extremos. As diferenças residuais de calibração entre aparelhos foram determinadas, conforme o item 6.2, sendo os intervalos reduzidos à escala do gravimetro número de série G-257.

6.2. Coeficientes Relativos de Escala

Como já foi dito anteriormente os intervalos de gravidade foram medidos independentemente, sempre com dois ou mais gravimetros simultaneamente. Neste caso, as diferenças residuais de escala entre os instrumentos devem ser consideradas. Como a maior parte dos instrumentos participou do levantamento de poucas e distintas linhas, tornar-se-ia pouco recomendável a inserção de seus coeficientes de escala como parâmetros a serem determinados no ajustamento, já que tais coeficientes não teriam significado estatístico, face ao núme-

ro reduzido de observações efetuadas. Sendo assim, optou-se pela redução de todas as observações à escala do gravimetro número de série G-257, através da determinação dos coeficientes de escala de os instrumentos em relação a este. O gravimetro G-257 foi escolhido como referência de escala em virtude de sua utilização em quase todos os levantamentos. Os coeficientes relativos de escala foram determinados pela ocupação simultânea, com todos os instrumentos, da linha de calibração Observatório Nacional-Agulhas Negras, que possui uma variação de gravidade de 628 mGal, percorrendo-se duas vezes itinerário de ida e volta. Considerando que as diferenças de escala, após a aplicação da função de calibração fornecida pelo fabricante, não apresentam evidências de falta de linearidade, optou-se pela re dução linear, através de um único fator relativo de escala cada gravimetro. Deste modo, o fator relativo de escala, c_i , para o i-ésimo instrumento será dado por:

$$c_i = \frac{\Delta g_{257}}{\Delta g_i} , \qquad (6.2.1)$$

onde Δg_{257} e Δg_i representam a observação do mesmo intervalo de gravidade com o gravimetro G-257 e o i-ésimo gravimetro, respectivamente.

Como Δg_{257} e Δg_i são grandezas îndependentes, o erro relativo em c_i pode ser expresso por:

$$\frac{\sigma_{c_{i}}^{2}}{c_{i}^{2}} = \frac{\sigma_{\Delta g_{257}}^{2}}{2} + \frac{\sigma_{\Delta g_{i}}^{2}}{2}, \qquad (6.2.2)$$

onde $\sigma_{c_i}^2$ é a variância do valor de c_i calculado, $\sigma_{\Delta g_{257}}$ é a variância da observação Δg_{257} e $\sigma_{\Delta g_i}^2$ é a variância da observação Δg_i . Con siderando que Δg_{257} e Δg_i foram observados simultaneamente, utilizan do o mesmo método e o mesmo observador, conclui-se, sem grande proba

bilidade de erro, que ambos têm a mesma precisão, portanto:

$$\sigma_{\Delta g_{257}}^2 = \sigma_{\Delta g_i}^2 = \sigma_{\Delta g}^2$$
 (6.2.3)

Mais adiante comprovar-se-ã que $\sigma_{\Delta g}=0.02$ mGal, quando do ajustamento da rede, já que os critérios de observação e cálculos adotados são os mesmos tanto para a rede como para a linha de calibração. Assim, considerando também que Δg_1 e Δg_{257} são aproximadamente iguais e c_1 é um valor próximo da unidade, a partir da equação (6.2.2), temse:

$$\sigma_{\dot{c}_{\dot{1}}} = \frac{0.02 \sqrt{2}}{\Delta q}$$
, (6.2.4)

ou seja, o desvio padrão, na determinação do fator relativo de escala, ci, do i-ésimo gravímetro é inversamente proporcional à amplitude do intervalo de gravidade utilizado para tal.

Se em lugar de um forem observados n intervalos de gravida de de diferentes amplitudes, o fator de escala, c', será dado pela média ponderada dos fatores parciais, tomando-se para pesos as amplitudes dos respectivos intervalos. Deste modo,

$$\mathbf{c_i'} = \frac{\sum_{1}^{n} \mathbf{c_i} \quad \Delta g}{\sum_{1}^{n} \Delta g}$$
(6.2.5)

e o desvio padrão de c; será dado por:

$$\sigma_{\mathbf{c_i'}} = \frac{\sqrt{\sum_{1}^{n} (\Delta g \quad \sigma_{\mathbf{c_i}})^2}}{\sum_{1}^{n} \Delta g}$$
(6.2.6)

Considerando a equação (6.2.4), tem-se:

$$\sigma_{\mathbf{c_i'}} = \frac{0.02 \sqrt{2n}}{\frac{n}{\Sigma} \Delta g}$$
(6.2.7)

Para determinação dos fatores relativos de escala a linha ON-Agulhas Negras foi subdividida em quatro intervalos de gravidade, inserindo-se três estações intermediárias. Do ON até a primeira estação intermediária mediu-se 162 mGal, até a segunda 256 mGal, até a terceira 437 mGal e até Agulhas Negras 628 mGal. Neste caso,

$$\sum_{i=1}^{n} \Delta g = 162 + 256 + 437 + 628 = 1483$$

$$\sigma_{c_{i}} = \frac{0.02 \sqrt{2 \times 4}}{1483} \quad \text{ou} \quad \sigma_{c_{i}} = 0.0000381$$

que é o desvio padrão estimado dos fatores relativos de escala, igual para todos os instrumentos envolvidos.

Aplicando-se a equação 6.2.5 às observações efetuadas com os nove aparelhos utilizados, obteve-se os seguintes valores para os fatores de escala em relação ao gravimetro G-257:

$$c_{41} = 0,9992876,$$
 $c_{61} = 0,9997381,$
 $c_{372} = 1,0001241,$
 $c_{454} = 1,0000424,$
 $c_{602} = 1,0001544,$
 $c_{613} = 0,9995857,$
 $c_{622} = 1,0001311,$
 $c_{628} = 1,0001307$
 $c_{674} = 1,0001459.$

е

6.3. Ajustamento da Rede

Antes do ajustamento definitivo da rede, é necessário efetuar-se uma avaliação preliminar de sua coerência, eliminando-se, en tão, eventuais enganos e obtendo-se uma estimativa da precisão das observações, com vistas à atribuição de pesos. Tal objetivo pode ser alcançado através de um ajustamento preliminar.

6.3.1. Ajustamento Preliminar

O ajustamento preliminar da rede foi executado pelo método dos mínimos quadrados com base no modelo matemático das equações de condição, aplicadas aos fechamentos dos circuitos, conforme des crito no item 5.2.1. Este modelo foi escolhido por envolver apenas observações, não dependendo de outras grandezas, não sendo por isso afetado por eventuais erros externos à rede. Deste modo possibilitase a obtenção de uma estimativa da precisão das observações, sem a propagação de erros de outras fontes. Além disso, a matriz dos coeficientes normalizados, M, terá a dimensão do número de circuitos fechados, que é menor do que o número de estações incógnitas da rede, o que reduz significativamente o trabalho de computação em relação ao modelo combinado ou ao paramétrico.

Como medida adicional, a fim de reduzir o tempo de processa mento e o espaço de armazenamento na memória do computador, foram ajustados inicialmente apenas os intervalos internodais, que interligam estações nodais ou estações conhecidas (IGSN-71), ou, ainda, uma estação nodal com uma conhecida. Desta forma, no ajustamento definitivo, a ser conduzido como base no modelo combinado, as dimensões da matriz normal, que deve ser invertida, são reduzidas ao número de estações nodais e conhecidas mais uma unidade correspondente ao fator de escala. Este assunto será analisado em seus pormenores no item 6.3.2.

O apêndice C apresenta os 111 intervalos internodais que compõem a rede, calculados a partir dos intervalos apresentados no apêndice B. O apêndice D destaca os circuitos fechados da rede com seus respectivos erros de fechamento. Observe-se que, embora os circuitos estejam caracterizados pela sequência de estações nodais, o número de intervalos de gravidade, n, de que são formados, geralmente é maior, já que um circuito na maioria das vezes não se compõe apenas de intervalos internodais. Todos os circuitos da rede fecharam com erro inferior a $0.02\sqrt{n}$ mGal.

Os resultados do ajustamento preliminar são apresentados no apêndice E. Como a todos os intervalos foram atribuídos pesos unitários, a variância da observação de peso unitário, $\sigma_{\rm O}^2=0.00016945$, obtida após o ajustamento, é uma estimativa de suas variâncias. A columa VARIÂNCIA refere-se às variâncias dos intervalos ajustados, que correspondem à diagonal principal da matriz variância-covariância. O desvio padrão da observação de peso unitário, $\sigma_{\rm O}=0.013$ mGal, é apresentado ao final da relação e serve para auxiliar na análise dos residuos, dentro de determinado intervalo de confiança. O maior resíduo verificou-se no intervalo de ordem 8 (oito), 0.027mGal, situando-se dentro do intervalo de confiança de 97%, ou seja, $2.17\sigma_{\rm O}$. Tal resultado foi obtido após uma criteriosa análise das observações, eliminando-se alguns enganos e remedindo-se o intervalo quando necessário.

6.3.2. Ajustamento Final

Finalmente, deseja-se ajustar a rede gravimétrica ao "datum" gravimétrico mundial, a IGSN-71. Com este objetivo adotou-se o mode lo combinado, descrito no item 5.2.2., inserindo-se os valores de gravidade nas estações do "datum" como injunções relativas, com pesos iguais aos inversos dos quadrados dos respectivos desvios padrão, constantes do apêndice A. Os intervalos observados foram considerados igualmente precisos e receberam para peso o valor inverso da variân-

cia obtida no ajustamento preliminar, ou seja, $(0,00016945)^{-1}$. Neste sistema a variância da observação de peso unitário, σ_0^2 , ao final do ajustamento, deverá ser próxima da unidade, atestando a validade dos pesos atribuídos. O valor obtido no ajustamento foi $\sigma_0^2 = 1,0083785$.

O apêndice F apresenta os intervalos de gravidade internodais ajustados à IGSN-71, que são sensivelmente iguais aos do ajusta mento preliminar apresentados no apêndice E.

Os valores de gravidade nas estações da rede foram obtidos em duas etapas. A primeira envolveu apenas as estações nodais e as conhecidas; a segunda envolveu as estações intercaladas e as excêntricas.

Os valores de gravidade nas estações intercaladas e nas excêntricas foram obtidos adotando-se a injunção absoluta, considerando constantes os valores de gravidade nas estações nodais e conhecidas, bem como o valor do fator de escala, k, obtidos na primeira eta pa. Assim, para o intervalo de gravidade entre as estações nodais A e B, figura 6.3.2.1, com n sub-intervalos e n-l estações intercaladas, numeradas de 2 a n, tem-se o seguinte sistema de equações.

FIGURA 6.3.2.1

Os elementos do vetor dos parâmetros incógnitas, X_a , são : $g_2, g_3, g_4, \ldots, g_n$ e os elementos de vetor das grandezas observáveis, L_a , são: Δg_{A2} , Δg_{23} , Δg_{34} , ..., Δg_{nB} . Portanto, a matriz A, dada pela equação (2.3.4), será:

$$A = \begin{bmatrix} -1 & 0 & 0 & - & - & - & 0 & 0 \\ 1 & -1 & 0 & - & - & - & 0 & 0 \\ 0 & 1 & -1 & - & - & - & 0 & 0 \\ - & - & - & - & - & - & - & - \\ 0 & 0 & 0 & - & - & - & 1 & -1 \\ 0 & 0 & 0 & - & - & - & 0 & 1 \end{bmatrix}$$

$$(6.3.2.2)$$

A matriz normal,R, será dada pela equação (5.2.2.16),fazen c do P = 0, já que adotou-se a injunção absoluta e não relativa. Assim,

$$R = A^{T}PA. (6.3.2.3)$$

O vetor S, dado pela equação (5.2.2.17), será:

$$S = A^{T}PW,$$

$$w_{1} = g_{A}^{-}g_{2}^{O} + k\Delta g_{A2}^{b}$$

$$w_{2} = g_{2}^{O} - g_{3}^{O} + k\Delta g_{23}^{b}$$

$$w_{3} = g_{3}^{O} - g_{4}^{O} + k\Delta g_{34}^{b}$$

$$w_{n-1} = g_{n-1}^{O} - g_{n}^{O} + k\Delta g_{n-1,n}^{b}$$

$$w_{n} = g_{n}^{O} - g_{n}^{O} + k\Delta g_{nB}^{b}$$

$$(6.3.2.4)$$

$$(6.3.2.4)$$

$$(6.3.2.4)$$

Tomando-se P = I, ou seja, fazendo-se os pesos iguais à unidade, a matriz R será do tipo:

e o vetor S será do tipo:

$$S = \begin{bmatrix} w_2 - w_1 \\ w_3 - w_2 \\ w_4 - w_3 \\ ----- \\ w_{n-1} - w_{n-2} \\ w_n - w_{n-1} \end{bmatrix}$$
(6.3.2.7)

A solução do problema é dada pelas equações (5.2.2.18) e (5.2.2.19). A matriz variância-covariância dos parâmetros ajustados, X_a , é dada pela equação (5.2.2.25), fazendo

$$\sigma_{0}^{2} = V^{T} PV.$$
 (6.3.2.8)

Entretanto, como os valores de gravidade nas estações A e B, bem como k, foram considerados isentos de erros, a matriz variância-covariancia será função apenas dos erros cometidos nas observações dos sub-intervalos, sem influência das variâncias daquelas grandezas, que, como se sabe, também estão sujeitas a erros. O problema pode ser resolvido considerando que os valores de gravidade nas estações intercaladas, obtidos pelo método descrito, correspondem simplesmente aqueles que seriam obtidos pela média ponderada dos valores transportados a partir das estações nodais, extremos do intervalo internodal. Desta forma,

$$g_{i} = \frac{(n-i+1)g_{i}^{A} + (i-1)g_{i}^{B}}{n}$$
; $i = 2,...,n$,

sendo $\mathbf{g_i^A}$ e $\mathbf{g_i^B}$ os valores transportados a partir dos extremos A e B .

Fazendo
$$A_i = \frac{n-i+1}{n}$$

$$B_{i} = \frac{i-1}{n} ,$$

vem
$$g_i = A_i g_i^A + B_i g_i^B$$
.

Como
$$g_{i}^{A} = g_{A} + k\Delta g_{Ai}$$

$$e g_{i}^{B} = g_{B} + k \Delta g_{Bi},$$

resulta
$$g_i = k(A_i \Delta g_{Ai} + B_i \Delta g_{Bi}) + A_i g_A + B_i g_B$$
.

Definindo
$$X_i = A_i \Delta g_{Ai} + B_i \Delta g_{Bi}$$

$$e Y_i = A_i g_A + B_i g_B'$$

tem-se
$$g_i = kX_i + Y_i$$
.

Considerando que k e $X_{\dot{1}}$ são variáveis independentes entre si, bem como também o são $X_{\dot{1}}$ e $Y_{\dot{1}}$:

$$\sigma_{g_i}^2 = k^2 \sigma_{x_i}^2 + \sigma_{y_i}^2 + x_i^2 \sigma_k^2$$

e, como
$$\sigma_{\mathbf{y}_{\mathbf{i}}}^{2} = A_{\mathbf{i}}^{2} \sigma_{\mathbf{g}_{\mathbf{A}}}^{2} + B_{\mathbf{i}}^{2} \sigma_{\mathbf{g}_{\mathbf{B}}}^{2} + 2A_{\mathbf{i}}B_{\mathbf{i}}\sigma_{\mathbf{g}_{\mathbf{A}}}^{\mathbf{g}_{\mathbf{B}}}$$
,

conclui-se que

$$\sigma_{g_{i}}^{2} = k^{2} \sigma_{x_{i}}^{2} + X_{i}^{2} \sigma_{k}^{2} + A_{i}^{2} \sigma_{g_{A}}^{2} + B_{i}^{2} \sigma_{g_{B}}^{2} + 2 A_{i} B_{i} \sigma_{g_{A}} g_{B}.$$
 (6.3.2.7)

O primeiro termo do segundo membro da equação (6.3.2.7) representa a influência dos erros cometidos nas observações dos sub-intervalos, que é dado pela diagonal principal da matriz variância-co variância dos valores de gravidade intercalados ajustados. Os demais termos representam as influências dos erros cometidos na determina-

ção de k, g_A e g_B e da correlação entre g_A e g_B , que podem ser calculados em função dos elementos da matriz variância-covariância do ajustamento das estações nodais e adicionados ao primeiro.

Os valores de gravidade nas estações excêntricas, g_e , e suas variâncias, σ_g^2 , são obtidos de modo simples:

$$g_{e} = g_{A} + k \Delta g_{Ae}$$

$$\sigma_{g_{e}}^{2} = k^{2} \sigma_{\Delta g_{Ae}}^{2} + (\Delta g_{Ae})^{2} \cdot \sigma_{k}^{2} + \sigma_{g_{A}}^{2}.$$

Como $\sigma_{\Delta g_{Ae}}^2$ é igual a σ_o^2 do ajustamento preliminar e $\sigma_{g_A}^2$ e σ_k^2 são conhecidas, é possível obter-se tanto σ_e^2 com $\sigma_{g_e}^2$.

O apêndice G apresenta os valores de gravidade nas estações da rede e os respectivos desvios padrão. Ao final da lista encontrase o fator absoluto de escala para o gravimetro G-257 (k=1,0003086) e seu desvio padrão ($\sigma_{\rm k}$ = 0,0000228). O maior desvio padrão, 0,028mGal, foi encontrado nas estações de ordens 104 e 112.

Comparando os valores de gravidade nas estações da IGSN-71 registrados no apêndice A, com os do apêndice G, percebe-se as seguintes diferenças (G-A), em miligals:

010176	Rio de Janeiro	"A"	-0,025
011176	São Paulo	"J"	-0,007
013576	Belo Horizonte	"J"	0,054
032276	Manaus	"J"	-0,013
041378	Caravelas	"J"	0,009
041878	Vitória	"B"	-0,003
042178	Campos	"J"	0,003
080679	Carolina	"J"	-0,018
081179	Belem	"A"	-0,003
081375	Belem	"K"	0,017

090280	Salyador	"B"	0,030
100881	Recife	"J."	-0,029
130382	Florianópolis	"A"	0,055
131182	Porto Alegre	"B"	-0,009
141583	Pelotas	"B"	-0,012

6.4. Coeficientes Absolutos de Escala

No item 6.2 foram determinados os coeficientes de escala, c_i , de todos os gravimetros envolvidos nos levantamentos, em relação ao gravimetro G-257. Agora os coeficientes absolutos de escala, k_i , ou seja, coeficientes de escala dos gravimetros em relação à IGSN-71, podem ser obtidos em função do coeficiente absoluto de escala, k_{257} , do gravimetro G-257 e dos coeficientes apresentados no item 6.2. O valor de k_{257} e seu desvio padrão $\sigma_{k_{257}}$ foram estimados no ajustamen to final:

$$k_{257} = 1,0003086$$
 e $\sigma_{k_{257}} = 0,0000228$.

O valor de k pode ser expresso por:

$$k_{i} = \frac{\Delta g_{IGSN}}{\Delta g_{i}}$$
 (6.4.1)

Da equação (6.2.1) tem-se:

$$\Delta g_{i} = \frac{\Delta g_{257}}{c_{i}} ,$$

que, substituindo na equação (6.4.1), conduz a:

$$k_{i} = \frac{\Delta g_{IGSN}}{\Delta g_{257}} \times c_{i}.$$

Considerando que

$$\frac{\Delta g_{IGSN}}{\Delta g_{257}} = k_{257}$$

resulta finalmente:

$$k_i = k_{257} \times c_i$$
 (6.4.2)

Como k_{257} e os coeficientes c_{i} foram obtidos de modo independente, o desvio padrão na determinação de k_{i} pode ser estimado pela seguinte equação:

$$\sigma_{\dot{k}_{i}} = k_{i} \sqrt{\frac{\sigma_{c_{i}}^{2} + \frac{\sigma_{k_{257}}^{2}}{\sigma_{k_{257}}^{2}}}{\sigma_{i}^{2} + \frac{\kappa_{257}^{2}}{\kappa_{257}^{2}}}}$$
 (6.4.3)

Tendo em vistas que $\sigma_{c_i}^2$ e $\sigma_{k_{257}}^2$ são grandezas pequenas e c_i^2 , k_{257}^2 e k_i são aproximadamente iguais à unidade, a equação (6.4.3) pode ser escrita, sem erro significativo, na seguinte forma:

$$\sigma_{k_i} = \sqrt{\sigma_{c_i}^2 + \sigma_{k_{257}}^2} .$$

A estimativa para σ_{c_i} é conhecida do item 6.2, σ_{c_i} = 0,0000381, e σ_{k_i} também já foi estimado. Assim, os coeficientes absolutos de escala, σ_{k_i} têm um desvio padrão estimado, σ_{k_i} , igual a:

$$\sigma_{\mathbf{k_i}} = 0,00005$$

e os seus valores para cada gravimetro são:

 $k_{41} = 0,99960,$

 $k_{61} = 1,00005,$

 $k_{257} = 1,00031,$

 $k_{372} = 1,00043,$

 $k_{454} = 1,00035,$

 $k_{602} = 1,00046,$

 $k_{613} = 0,99989,$

k₆₂₂ = 1,00044,

k₆₂₈ = 1,00044

 $k_{674} = 1,00045.$

e

CONCLUSÕES

O refinamento prévio dos dados gravimétricos, efetuando as correções dos efeitos sistemáticos passo a passo, mostrou-se bastante eficiente no ajustamento da rede. Os desvios padrão e os constatados no ajustamento preliminar, bem como no ajustamento final, indicam que, se tais efeitos não foram totalmente eliminados, pelo me nos foram reduzidos à ordem de grandeza da precisão nominal de leitu ra dos gravimetros empregados. Tal procedimento, além de conduzir a um modelo matemático mais simples, parece ser física e estatisticamente mais justificavel, já que em alguns casos, a natureza do efei to sistemático envolvido não favorece a sua inclusão como tro a ser determinado no ajustamento. A inclusão de todos os coefici entes absolutos de escala no modelo matemático pode se tornar viável à medida que forem aumentando as participações dos gravimetros levantamentos da rede. Entretanto, como o controle das escalas dos gravimetros deve ser feito periodicamente, é possível que seja mais conveniente a homogeneização prévia das escalas, através do controle anual dos coeficientes relativos de escala.

A não fixação dos valores de gravidade da IGSN-71, conduziu a pequenas diferenças entre estes valores e aqueles oriundos do ajus tamento, sendo a maior diferença, 0,055 mGal, verificada na estação FLORIANÓPOLIS "A". A inconveniência dessa discordância torna-se apenas aparente face a sua magnitude. Com efeito, embora não tenha sentido pensar-se em corrigir os valores do "datum", é perfeitamente viável a adoção dos valores ajustados para uso local, conforme sugere a IAG |57|.

Os coeficientes relativos de escala dos gravimetros foram confirmados em duas ocupações da linha ON-Agulhas Negras, num intervalo de dois anos. Portanto, os coeficientes absolutos de escala dos gravimetros, para conversão à escala da IGSN-71, podem ser aplicados, desde que se assegure a sua invariabilidade no período de utilização, através da ocupação periódica da linha de calibração.

APÊNDICE A

ESTAÇÕES DA REDE

NO. DRD.	CODIGO ESTACAO	NOME ESTACAO		VALOR G (MGAL)	DESVIO PADRAD (MGAL)
ı	C 010176	RIO DE JANEIRO	" A "	978789.920	0.019
2	010276	VASSOURAS	11B11	0.0	0.0
3	010376	BARRA MANSA	#8#	0.0	0.0
4	N 010476	QUELUZ	11811	0.0	0•0
5	010576	GUARATINGUETA	"B"	0.0	0.0
6	E 010576	GUARATINGUETA	" ("	0.0	0.0
7	010776	TAUBATE	11.211	0.0	0.0
8	010876	SAD JOSE CAMPOS	ngn	0.0	0.0
9	N 010976	SAO PAULO	#8#	0.0	0.0
10	E 011076	SAO PAULO	пNи	0.0	0.0
11	C 011176	SAO PAULO	"]"	978627.310	0.026
12	011276	JUNDIAI	ивн	0.0	0.0
13	011376	CAMPINAS	ப பு ப	0.0	0.0
14	011476	CAMPINAS	11 2 11	0.0	0.0
15	011576	LIMEIRA.	ngn	0.0	0.0
16	011676	LEME	#B#	0.0	0.0
17	011776	PORTO FERREIRA	aga.	0.0	0.0
13	011876	CRAVINHOS	"B"	0.0	0.0
19	N 011976	RIBEIRAO PRETO	. #18 #	0.0	0.0
20	£ 012076	RIBEIRAO PRETG	"C"	0.0	0.0
21	012176	ITUVERAVA	មេទិក	0.0	0.0
22	012276	IGARAPAVA	пВн	0.0	0.0
23	N 012376	UBERABA	"B"	0.0	0.0
24	E 012476	UBERABA	"」"	0.0	0.0
25	E 012576	UBERABA	uK u	0.0	0.0
26	012676	ARAXA	иди	0.0	0.0
27	012776	ARAXA	C	0.0	0.0
28	01,2876	IBIA	11 B 11	0.0	0.0
29	N 012976	CAMPOS ALTOS	uBu.	0.0	0.0
30	013076	LUZ	#9#	0.0	0.0
31	013176	BOM DESPACHO	"3"	0.0	0.0
32	013276	PARA DE MINAS	ugu	0.0	0.0
33	013376	BETIM	ngn	0.0	0.0
34	N 013476	BELO HORIZONTE	n B n	0.0	0.0
35	C 013576	BELO HORIZONTE	"]"	978385•520	0.031
36	E 013676	BELO HORIZONTE	., C .,	0.0	0.0
37	013776	CONGONHAS	"3"	0.0	0.0
38	01387.6	LAFAIETE	11 g ii	0.0	0.0
39	E 013976	LAFAIETE	"C"	0.0	0.0
40	N U14076	BARBACENA	ngn	0.0	0.0
41	014176	SANTOS DUMONT	ивн	0.0	0.0
42	014276	JUIZ DE FORA	uğu	0.0	0.0
43	014376	JUIZ DE FORA	" C"	0.0	0.0
44	014476	TRES RIOS	"B"	0.0	0.0
45	N 014578	VARGINHA	"B"	.0 • 0	0.0
46	E 014678	VARGINHA	"C"	0.0	0.0
47	014778	CAXAMBU	"B"	0.0	0.0
48	E 014878	CAXAMBU	"C"	0.0	0.0
49	N 014978	LAVRAS	"B"	0.0	0.0
50	£ 015078	LAVRAS	C	0.0	0.0
51	015178	S.JOAO DEL REI	"B"	0.0	0.0

NO. ORD.	CODIGO ESTACAO	NOME ESTACAD		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
52	E 015278	S.JOAO DEL REI	" C"	0.0	0.0
53	015378	MOC OC A	ugu	0.0	0.0
54	E 015478	MDC DC A	" C "	0.0	0.0
55	015578	POCOS DE CALDAS	"B"	0.0	0.0
56	£ 015678	POCOS DE CALDAS	"C"	0.0	0.0
57	015778	EORMIGA	484	0.0	0.0
58	E 015878	FORMIGA	"C"	0.0	0.0
59	016080	RIO DE JANEIRO	" C"	0.0	0.0
60	016383	RIO DE JANEIRO	"E"	0.0	0.0
61	N 020177	UBERLANDIA	") "	0.0	0.0
62	6 020277	UBERLANDIA	uKu	0.0	0.0
63	E 020377	UBERLANDIA	"B"	0.0	0.0
64	E 020477	MONTE ALEGRE	11 C 11	0.0	0.0
65 66	E 020577 020677	MONTE ALEGRE MORRINHOS	иВи и Du	0.0	0.0
67	ë 020777	MORRINHOS	11 Cit	0.0	0.0
68	E 020877	MORRINHOS	"D"	0 • 0 0 • 0	0.0 0.0
69	E 020977	GOIANIA	-uKıı	0.0	0.0
70	E 021077	GOTANIA	"C"	0.0	0.0
71	N 021177	GUIANIA	ngn	0.0	0.0
72	N 021277	ANAPOLIS	при	0.0	0.0
73	E 021377	ANAPOLIS	иDu г	.0.0	0.0
74	N 021477	BRASILIA	"D"	0.0	0.0
75	N 021577	BRASILIA	it M tt	0.0	0.0
76	E 021677	BRASILIA	"C"	0.0	0.0
77	N 021777	CRISTALINA	ngn	0.0	0.0
78	021877	CATALAD	ıı gıı	0.0	0.0
79	E 021977	CATALAD	"C"	0.0	0.0
80	E 022077	CATALAO	"D"	0.0	0.0.
81	E 022177	CRISTALINA	"C"	0.0.	0.0
82	E 022277	CRISTALINA	"D"	0.0	0.0
83	022377	PARAC ATU	uBu.	0.0	0.0
84	E 022477	PARACATU	"C"	0.0	0.0
85	E 022577	PARACATU	"D"	0.0	0.0
86	022677	JOAO PINHEIRO	"B"	0.0	0.0
87	E 022777	JOAO PINHEIRO	"C"	0.0	0.0
88	E 022877	JOAO PINHEIRO	"D"	0.0	0.0
89	N 022977	TREVO BR-040-365	այո	0.0	0.0
90 91	N 023077 E 023177	PATOS DE MINAS PATOS DE MINAS	иви	0 • 0 0 • 0	0•0 0•0
'			C.i.		
92 93	E 023277 0 2 33 7 7	PATUS DE MINAS FELIXLANDIA	иви	0•0 0•0	0•0 0•0
94	E 023477	FELIXLANDIA	"C"	0.0	0.0
95	E 023577	FELIXLANDIA	u Du	0.0	0.0
96	E 023677	SETE LAGOAS	"C"	0.0	0.0
97	E 023777	SETE LAGOAS	"0"	0.0	0.0
98	023877	SETE LAGUAS	"B"	0.0	0.0
99	02397.7	MONTE ALEGRE	"B"	0.0	0.0
100	E 024077	ANAPOLIS	u Cu	0.0	0.0
101	E 024179	BRASILIA	nE u	0.0	0.0
102	E 030178	PURTO VELHO	","	0.0	0.0

NO. ORD.	CODIGO ESTACAD	NOME ESTACAD		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
103	E 030278	PORTO VELHO	ngn	0.0	0.0
104	E 030378	PORTO VELHO	"C"	0.0	0.0
105	N 030478	PORTO VELHO	nKu	0.0	0.0
106	N 030578	PORTO VELHO	111	0.0	0.0
107	N 030678	CANUTAMA	ngn	0.0	0.0
103	N 030778	PAUINI	ngu	0.0	0.0
109	N 030878	SENA MADUREIRA	"B"	0.0	0.0
110	N 030978	RIO BRANCO	" J"	0.0	0.0
111	E 031078	RIO BRANCO	н₿н	0.0	0.0
112	E 031178	RIO BRANCO	"C"	0.0	0.0
113	N 031278	BRASILEIA	"B"	0.0	0.0
114	N 031378	CRUZEIRO DO SUL	"յ"	0.0	0.0
115	N 031478	PALMEIRAS JAVARI	" յո	0.0	0.0
116	N 031578	EIRUNEPE	"] "	0.0	0.0
117	E 03:678	CRUZEIRO DO SUL	"B"	0.0	0.0
113	E U31778	EIRUNEPE	#B#	0.0	0.0
119	N 031878	MANAUS	пKп	0.0	0.0
120	031978	MANAUS	n8n	0.0	0.0
121	E 032078	MANAUS	., C.,	0.0	0.0
122	N 032178	MOURA	"]"	0.0	0.0
123	C 032278	MANAUS	"] "	978006.200	0.037
124	N 032378	BOA VISTA	"]"	0.0	0.0
125	E 032478	BOA VISTA	"B"	0.0	0.0
126 127	E 032578	BOA VISTA	ngn nCn	0.0	0.0
	E 032678	MOURA	-	0.0	0.0
128	N 032778	TAPURUQUARA	" " "	0.0	0.0
129 130	N 032878 N 032978	S.G. CACHDEIRA	แปแ	0 • 0 0 • 0	0.0
131	E 033078	S.G. CACHDEIRA	#B#	0.0	0•0 0• 0
132	N 033178	PARI CACHDEIRA	#] #	0.0	0.0
133	N 033378	SANTAREM	11 311	0.0	0.0
134	N 033478	ITAITUBA	"]"	0.0	0.0
135	N 033578	JACAREACANGA	11] 11	0.0	0.0
136	N G33678	PRAINHA	n j n	0.0	0.0
137	N 033778	TIRIOS	ாரா	0.0	0.0
138	E 033878	SANTAREM	uK u	0.0	0.0
139	≝.033978	SANTAREM	"B"	0.0	0.0
140	N 034082	CACHIMBO	", "	0.0	0.0
141	N 034184	TEFE	11) 11	0.0	0.0
142	E 034284	TEFE	"B"	0.0	0.0
143	034384	CARAUARI	нВи	0.0	0.0
144	N 034484	TABATINGA	"]"	0.0	0.0
145	040178	PIRAPORA	uB u	0.0	0.0
146	E 040278	PIRAPORA	" J"	0.0	0.0
147	040378	MONTES CLAPOS	u B u	0.0	0.0
143	E 040478	MONTES CLAROS	C	0.0	0.0
149	040578	PORTEIRINHA	uBu	0.0	0.0
150	040678	ESPINOSA	"B"	0.0	0.0
151	040778	CACULE	u B u	0.0	0.0
152	040878	BRUMADO	"8"	0.0	0.0
153	N 040978	VITORIA CONQUIST	A"B"	0.0	0 • 0

NO. ORD.	CODIGO ESTACAO	NOME ESTACAO		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
154	041078	MEDINA	нви	0.0	0.0
155	N 041178	TEOFILO OTONI	"8"	0.0	0.0
156	N 041278	NANUQUE	ngu	0.0	0.0
157	C 041378	CARAVELAS	ா ர் ஈ	978511.490	0.027
158	041478	SAD MATEUS	"B"	0.0	0.0
159	041578	GOV. VALADARES	"C"	0.0	0.0
160	041678	NOVA ERA	11811	0.0	0.0
161	041778	LINHARES	11B11	0.0	0.0
162	C 041878	VITORIA	"B"	978641.850	0.030
163	E 041978	VITORIA	"L"	0.0	0.0
164	042078	CACH. ITAPEMIRIM	"B"	0.0	0.0
165	C 042178	CAMPOS	"J"	978717.510	0.025
166	042278	MACAE	n B n	0 • 0	0.0
167	042378	NITEROI	"B"	0.0	0.0
163	E 042478	NITEROI	пСн	0.0	0.0
169	050179	JEQUIE	"B"	0.0	0.0
170	N 050279	ITABERABA	"B"	0.0	0.0
171	050379	SEABRA	11B11	0.0	0.0
172	050479	ISOTIRAMA	11 B 11	0.0	0.0
173	050579	BARREIRAS	" B"	0.0	0.0
174	060179	CERES	иВи.	0.0	0.0
175	060279	URUACU	ng n	0.0	0.0
176	060379	PORANGATU	nBu	0.0	0 • 0
177	060479	GURUP I	uBu	0.0	0.0
178	N 060579	FATIMA	"5"	0.0	0.0
179	060679	PORTO NACIONAL	"B"	0.0	0.0
180	060779	NATIVIDADE	"B"	0.0	0.0
181	060879	DIANOPOLIS	"B"	0.0	0.0
182	N 060979	RN-903-X		0.0	0.0
183	061079	RODA VELHA	484	0.0	0.0
184	061179	ALVORADA DO NORTI		0.0	0.0
185	061279	FORMOSA	"8"	0.0	0.0
186	E 061379	ALVORADA DO NORTI		0.0	0.0
187	E 061480	PORTO NACIONAL	"C"	0.0	0.0
183	070179	CUIABA	ngu	0.0	0.0
189	£ 070279	CUIABA	n Gu	0.0	0.0
190	N 070379	RONDONOPOLIS	B	0.0	0.0
191	070479	ALTO GARCAS	иВи В.,	0.0	0.0
192	070579	MINEIROS	ngn njn	0.0	0.0
193	070679	JATA I	•	0.0	0.0
194	070779	RIO VERDE	பதா ப	0.0	0.0
195	070881	CUIABA	_	0.0	0.0
196 197	080179 080279	PARAISO DO NORTE	ugu	0.0	0.0
197	080279	GUARAI	"B"	0.0	0.0
199	N 080479	COLINAS DE GOIAS ARAGUAINA	"B"	0 • 0 0 • 0	0•0 0•0
200	080579	ESTREITO	# 8#	0.0	0.0
201	C 080679	CAROLINA	"j"	97803I•150	0.038
202	080779	IMPERATRIZ	484	0.0	0.056
203	080879	ITINGA	41 B 44	0.0	0.0
204	080979	PARAGOMINAS	ng.	0.0	0.0
	000		•	0.0	

NO. ORD.	CODIGO ESTACAD	NOME ESTACAD		VALOR G (MGAL)	DESVIO PADRAO
		• 44.0.4. • 0 0 0 0 0			
205	N 081 079	S.MARIA DO PARA	ngn	0.0	0.0
206	C 081179	BELEM	МДН	978022.280	0.028
207	081279	BELEM	484	0.0	0.0
208	C 081375	BELEM	uKu	978019.010	0.030
209	081481	BELEM	# Mit	0.0	0.0
210	N 090180	FEIRA DE SANTANA	н В н	0.0	0.0
211	C 090280	SALVADOR	uBu.	978311.340	0.030
212	E 090380	SALVADOR	11 [11	0.0	0.0
213	090480	GAVIAD	HBH HBH	0.0	0.0
214	090580	SENHOR DO BONFIM	11811	0.0	0.0
215	090680	PETROLINA	uBu	0.0	0.0
216	090780	PAULISTANA	uBu	0.0	0.0
217	N 090880	PICOS	пВн	0.0	0.0
218	090980	VALENCA DO PIAUI	"B"	0.0	0.0
219	091080	BARRO DURO	n B n	0.0	0.0
220	091180	TERESINA	"B"	0.0	0.0
221	€ 091280	TERESINA	", "	0.0	0.0
222	091381	CAXIAS	"B"	0.0	0.0
223	091481	ENTRONC . CODO	"8"	0.0	0.0
224	091581	BACABAL	11 B 11	0.0	0.0
225	091681	PINDARE MIRIM	иВи	0.0	0.0
226	091781	NOVA OLINDA	មទិធ	0.0	0 • 0
227	091831	BOA VISTA GURUPI	u B u	0.0	0 • 0
228	091981	CAPANEMA	"B"	0.0	0.0
229	100181	CAMPOS SALES	uBu -	0.0	0.0
230	100281	CRATO	uBu	0.0	0.0
231	100381	CAJAZEIRAS	11B11	0.0	0.0
232	100431	POMBAL	nBu	0.0	0.0
233	100581	PATOS	աՑո	0.0	0.0
234	100681	PATOS	u.C.u	0.0	0.0
235	100731	CAMPINA GRANDE	u.B.u	0.0	0.0
236	C 100881	RECIFE	11 J II	978151.280	0.024
237	110181	BEBEDOURO	11 <i>B</i> 11	0.0	0.0
238	110281	S.J.DO RIO PRETO	uBu	0.0	0.0
239	110381	PENAPOLIS	uBu	0.0	0.0
240	110431	RINOPOLIS	ng n	0.0	0.0
241	110581	PRES. PRUDENTE	44 E 14	0.0	0.0
242	110681	PRES. EPITACIO	"B"	0.0	0.0
243	110781	BR-267/KM 130	uBu.	0.0	0.0
2 44	N 110881	NOVA ALVORADA	"B"	0.0	0.0
245	110981	CAMPO GRANDE	11B11	0.0	0.0
246	111081	S.GABRIEL D'OESTE		0.0	0.0
247	111181	COXIM	11 B 11	0.0	0.0
248	111281	ITIQUIRA	11 P. 11	0.0	0.0
249	120181	DOURADOS	4B#	0.0	0.0
250	120281	PONTA PORA	uğu	0.0	0.0
251	120382	AMAMBAI	ивн	0.0	0.0
252	120482	IGUATEMI	иви	0.0	0.0
253	120582	GUAIRA	ngn	0.0	0.0
254	120682	PALOTINA	uBu	0.0	0.0
255	120782	CASCAVEL	"B"	0.0	0.0

NO. ORI	D• COD	IGO ESTACAO	NOME ESTACAD		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
256	N	120882	LARANJEIRA DO SUI	11 P 11	0.0	0.0
257		120982	GUARAPUAVA		0.0	0.0
258		121082	PONTA GROSSA	ngn	0.0	0.0
259	F.	121182	CURITIBA	" C"	0.0	0.0
260		121282	CURITIBA	#B#	0.0	0.0
261	.•	121382	RIBEIRA	eB e	0.0	0.0
262		121482	CAPAO BONITO	#B#	0.0	0.0
263		121582	SUR OC ABA	#B#	0.0	0.0
264		121682	MEDIANEIRA	#B#	0.0	0.0
265		121782	FOZ DO IGUACU	up u	0.0	0.0
266		130182	JOINVILE	11211	0.0	0.0
267		130282	ITAJAI	#8#	0.0	0.0
268	r	130382	FLORIANOPULIS	11 A 11	979112.400	0.030
269		130482	FLORIANOPOLIS	ugu	0.0	0.030
270	-	130582	IMPITUBA	ngn	0.0	0.0
271		130682	CRICIUMA	ugu	0.0	0.0
272	Ę.	130782	CRICIUMA	n Ç n	0.0	0.0
273	-	130882	TORRES	ngn	0.0	0.0
274	£.	130982	TORRES	"C"	0.0	0.0
275		131082	OSORIO	ngn	0.0	0.0
276	c.	131182	PURTO ALEGRE	ng n	97 9305 • 010	0.029
277		131282	PURTO ALEGRE	11 C 11	0.0	0.0
278	-	131382	ESTRELA	ugu	0.0	0.0
279		131482	SOLEDADE	11811	0.0	0.0
280	N	131582	CARAZINHO	ugu	0.0	0.0
281		131682	CARAZINHO	ıı Cıı	0.0	0.0
282		131782	SARANDI	ngn	0.0	0.0
283		13189?	IRAI	11311	0.0	0.0
284		131982	'S.MIGUEL D'OESTE	11 B 11	0.0	0.0
285	£	132082	S.MIGUEL D'OESTE	" C"	0.0	0.0
286		132182	DION. CERQUEIRA	ugu	0.0	0.0
287		132282	STO.ANT.SUDGESTE	и В и	0.0	0.0
288		132382	SOHMISIV SICC	"B"	0.0	0.0
289		140183	IJUI	ugu	0.0	0.0
530		140283	SAO LUIZ GOVZAGA	"B"	0.0	0.0
291		140383	SAO BORJA	B.ii	0.0	0.0
292		140483	ITAQUI	u b u	0.0	0.0
293	V	140583	URUGUATANA	ugu	0.0	0.0
294	E	140583	URUGUAIANA	" C "	0.0	0.0
295		140783	ALEGRETE	ugu .	0.0	0.0
296		140883	RUSARIO DO SUL	11 Q 11	0.0	0.0
297	Ē	140983	ROSARIO DO SUL	"C"	0.0	0•0
298		141083	SANT.LIVRAMENTO	иви	0.0	0.0
299	Ē	141183	SANT.LIVRAMENTO	" C "	0.0	0.0
300		141 283	DOM PEDRITO	"8"	0.0	0.0
301		141383	BAGE	ngn	0.0	0.0
302		141483	PINHEIRO MACHADO	"B"	0.0	0.0
303	С	141583	PELOTAS	#B#	979466.640	0.028
304		141683	PELOTAS	" C "	0.0	0.0
305		141783	MIAT	uBu	0.0	0.0
306		141883	CHUI	ngu	0.0	0.0
					-	-

NO. ORD.	CODIGO ESTACAD	NOME ESTACAD		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
307	N 141983	BARRA DO CHUI	11 B 11	0.0	0.0
308	142083	CAMAQUA	n B n	0.0	0.0
309	150184	POJUCA	mBn.	0.0	0.0
310	150284	ENTRE RIOS	11811	0.0	0.0
311	150384	ESPLANADA	u B u	0.0	0.0
312	150484	ESTANCIA	u g u	0.0	0.0
313	150584	ITAPORANGA AJUDA	нрн	0.0	0 • 0
314	150684	ARACAJU	11311	0.0	0.0
315	150784	MARUIM	11 B 11	0.0	0.0
316	150884	PROPRIA	11 B 11	0.0	0.0
317	E 150984	ARACAJU	"J"	0.0	0.0
318	151 084	JUNGUEIRO	ıı gıı	0.0	0.0
319	151184	S.MIGUEL CAMPOS	11 B 11	0.0	0.0
320	151284	ATALAIA	# B #	3.0	0.0
321	151384	MACEIO	այո	0.0	0.0
322	E 151484	MACEIO	Hg H	0.0	0.0
323	151584	JOAQUIM GOMES	u B u	0.0	0.0
324	151684	PALMARES	11 B 11	0.0	0.0
325	151784	RIBLIRAD	ngn	0.0	0.0
326	151884	CABO	n g n	0.0	0.0
327	151984	RECIFE	uK u	0.0	0.0

APÊNDICE B

INTERVALOS DE GRAVIDADE OBSERVADOS

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)
1	010176	016080	1.815
2	010176	010276	151.921
3	010276	010376	9.570
4	010376	010476	-41.888
5	010476	010576	14.142
6	010576	010776	-2.306
7	010776	010876	22.311
8	010876	010976	-3.205
9	010576	010676	0.909
10	010776	011076	-1.190
11	011076	011176	-8.086
12	011176	010976	9.278
13	010976	011276	-23.027
14	011276	011376	13.073
15	011376	011476	-37.457
16	011476	011576	-1.573
17	011576	011676	-34.458
1.8	011676	011776	-6.570
19	011776	011876	-70.608
20	011876	011976	33.490
21	011976	012076	-2.261
22	012376	012276	70.688
23	012276	012176	40.198
24	012176	011976	42 • 232
25	012376	012476	-10.566
26 27	012476 012576	012576 012376	-0.025
28	012376	012676	10•591 -44•852
29	012676	012776	0.533
30	012776	012876	20.060
31	012876	012976	-17.165
32	012976	013076	64.778
33	013076	013176	-7.657
34	013176	013276	14.892
35	013276	013376	-4.925
36	013376	013476	-13.348
37	013476	0,13576	16.977
38	013576	013676	-7.187
39	013676	013476	-9.803
40	013476	013776	47.292
41	013776	013876	-15.762
42	013876	013976	-0.495
43	013876	014076	-5.432
44	014076	014176	90.395
45	014176	014276	65.013
46	314276 314376	014376	-1.038
47	014376	014476	106.436
48 49	014476	010176	134.252
50	014578 014778	014778 014878	12•850 -1•635
51	014778	010476	119.289
52	014578	014678	3.275
53	014578	014978	-40.471
54	014978	015078	1.900
- ,	<u> </u>		

NO.	OR D.	ORIGEM	DESTINO	INTERVALO(MGAL)
5	5	014978	015178	12.556
5	6	015178	015278	-0.197
5	7	015178	014076	-50.765
5	8	011976	015378	16.834
5	9	015378	015478	1.401
చ		015378	015578	-134.865
6		015578	014578	82.036
6		015578	015678	2.759
6		014978	015778	-31.579
6		015778	012976	-86.462
6	5	015778	015878	0.321
6	6	012376	020177	-76.283
- 6		020177	020277	-0.271
5		020277	020377	14.055
5		020377	020177	-13.778
7		020177	023977	18.510
7		020177	023077	-3.067
7		023977	020477	-0.923
7	3	020477	020577	-0.003
7	4	020577	023977	0.920
.7	5	023977	020677	-47.721
7	6	020677	020777	-3.467
7	7	020777	020877	3.358
7	8	020877	020677	0.123
7	9	020677	021177	-31.941
8	0	021177	020977	6.892
8	I	020977	021077	-10.508
ક	2	021077	021177	3.618
8		021177	021277	-79. 386
8		021277	024077	16.691
8		024077	021377	0.017
8		021377	021277	-16.706
. 8		021277	021477	-49.023
8		021477	021577	-5.816
8		021577	021677	3.825
9		021677	021477	1.992
9		021477	021777	9•465
9.		020177	021877	-17.850
9		021877	021977	-0.188
9		021977	022077	1.371
9		022077	021877	-1.191
9		021877	021777	-162.243
9		021777	022177	9•956
9		022177	022277	-9.894
9		022277	021777	-0.068
10		021777	0 22 377	150.899
10		022377	022477	2.743
10		022477	022577	0.277
10		022577	022377	-3.012
10		022377	022677	9.103
10		022677	022777	2.155
10		022777	022877	-1.589
10		022877	022677	~ 0.569
10	0	022677	022977	4.946

NO. ORD.	ORIGEM	DESTINO	1NTERVALO(MGAL)
109	022977	023077	12.070
110	023077	012976	37.903
111	023077	023177	2.599
112	023177	023277	-0.204
113	023277	023077	-2.394
114	022977	023377	78.641
115	023377	023877	19.552
116	023377	023477	6.031
117	023477	023577	-3.741
118	023577	023377	-2.301
119	023877	023677	1.579
120	023677	023777	-1.808
121	023777	023877	0.229
122	023877	013576	22.478
123	021477	024179	-25.079
124	030178	030278	-0.721
125	030278	030378	-0.372
126	030478	030578	-2.870
127	030578	030678	-52.221
128	030678	030778	27.783
129	030578	030778	-24.425
130	030778	030.878	38.341
131	030578	030978	10.176
132	030978	031078	-4.468
133	031078	031178	0.379
134	030978	031278	16.134
135 136	031278	030878	-12.360
137	030978	030878	3.749
138	030878 031378	031378 031478	-54.008
139	031478	031578	-22.779 -11.757
140	031378	031578	14.434
141	031378	031578	-11.013
142	031578	031778	-0.458
143	031578	030879	65.032
144	030478	030178	-0.129
145	030478	031878	-131.462
146	031878	031978	5.942
147	031978	032078	9.938
148	031878	032178	21.672
149	031978	032278	-0.002
150	031878	032378	26.394
151	032378	032178	-4.718
152	032178	032678	-0.106
153	032 37 8	032478	-7.659
154	032478	032578	0.100
155	032178	032778	5.257
156	032778	032378	-0.541
157	032778	032878	-14.892
158	032778	032978	-11.809
159	032978	032878	-3.074
160	032878	033078	1.730
161	032878	033178	-23.021
162	033178	032978	26.112

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)
163	031878	033378	27.699
164	031878	033478	3.099
165	033478	033378	24.602
166	031878	033578	65.216
167	033578	033478	-62 • 114
168	031878	033678	89.722
169	031878	033778	-62.301
170	033578	033678	24.513
171	033378	033878	0.347
172	033878	033978	11.365
173	033378	033778	-90.003
174	010176	042378	-4.553
175	042378	042479	-2.092
176	022977	040178	36.020
177	040178	040278	-4.783
178	040178	040378	-69.303
179	040378	040478	4.663
180	040378	040578	-39.842
181	040578	049678	-16.888
182 183	040678	040778 040878	-33 • 021 23 • 397
184	040778 040878	040978	-54.225
185	040378	0410,78	138.851
186	040778	041178	142.596
187	041178	041175	69.855
188	041278	041378	49.116
189	041278	041478	91.063
190	041178	041578	65.681
191	041578	041678	-58.795
192	041678	013576	-13.788
193	041478	041778	34.980
194	041778	041878	53 • 367
195	041878	041978	-3.465
196	041878	042078	-1.599
197	042078	042178	77.231
198	042178	042278	41.397
199	042278	042378	26 • 397
200	040978	050179	142.137
201	050179	050279	-92 • 334
202	050279	050379	-144.511
203	050379	050479	79.502
204	050479	050579	9.630
205 206	050579	060979 060179	-8 8•387 53•24 7
207	021277 060179	060279	-4.525
208	060279	060379	8.830
209	060379	060479	-44.382
210	060479	060579	-60.632
211	060579	060679	55.874
212	060679	061480	0.249
213	060679	060779	-10.891
214	060779	060879	-100.618
215	060879	060979	-19.404
216	060979	061079	44.925
-	•		•

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)
217	061079	061179	92 • 0 80
218	061179	061379	0.869
219	061179	061279	-49.126
220	021477	061279	14.426
221	070179	070379	5.938
222	070179	070279	-6.617
223	070379	070479	-113.123
224	070479	070579	12.254
225	070579	070679	25.703
226	070679	070779	4.705
227	070779	021177	-70.569
228	070179	070.881	-2.932
229	070881	030478	-219.196
230	060579	080179	-15.019
231	080179	080279	-9.573
232	080279	080379	-18.179
233	080379	080479	-34.610
234	080479	080579	7.440
235	080479	080679	16.558
236	060579	080779	-18.019
237	081179	081279	-2.833
238	081279	081079	7.776
239	081079	080979	-35.475
240	080979	080879	33.415
241	080879	080779	-21.168
242	081179	081481	-3.357
243	081375	081179	3 • 245
244	081481	033378	9.018
245	050279	090180	37.192
246	090180	090280	113.375
247	085060	090380	18.031
248	090180	090480	-47.785
249	090480	0.90580	-118.308
250	090580	090680	9.199
251	090680	090780	4.528
252	090780	090880	-26.740
253	090830	090980	-43.616
254	090980	091080	5.588
255	091060	091180	36.630
256	091180	091280	0.146
257	091381	091180	2•997
258	091481	091381	7.578
259	091581	091481	-5.569
260	091681	091581	24.331
261	091731	091681	-23.082
262 263	091881	091781	-19.307
263 244	091984	091881	10.469
264 265	081079	091981	-7.202
265 266	090880	100181	-50 • 089 -4 • 530
267	100181 100281	100281 100381	-4.529 55.021
268	100281	100381	55.021 13.815
269	100381	100481	0.912
270	100581	100681	-0.050
E, C	100701	100001	-0.000

NO.	ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)
27	1	100681	100781	-49.647
27		100781	100881	166.946
27		011976	110181	3.091
27		110181	110231	6.386
27		110281	110381	40.724
27		110381	110481	20.350
27		110481	110581	16.780
27		110581	110681	30.445
27		110681	113781	-31.864
28		110781	110881	-17.170
28		110881	110981	-83.092
28		110981	111081	-87.810
28		111761	111181	78.726
28		111181	111281	-119.141
28		111281	070379	-6.959
28		110881	120181	48.996
28		120181	120281	-8.571
28		010976	121582	16.122
28		121582	121482	17.767
29		121482	121382	165.265
29		121382	121282	-72.248
29		121282	121182	-9.932
29	13	121282	121082	-50.162
29	4	121082	120982	-43.276
29	5	120982	120882	38.330
29	16	120882	120782	24.474
29	7	120782	121682	99•324
29	18	121682	121782	74.262
29		120782	120682	58.609
30		120682	120582	3.883
30		120582	120482	-55.988
30		120452	120382	-5 8•585
30		120382	120281	-62.094
30		121282	130182	251.623
30		130182	130282	34.595
30		130282	130382	62.623
30		130382	130482	-7. 004
30		130382	130582	51.364
30	•	130582	130682	-17.716
31		130682	130782	-0.186
31		130682 130882	130882 130982	74•861 -0•045
31 31		130882	131082	55.186
31		131082	131182	28.791
31		131182	131282	0.001
31		131182	131382	~58·059
31		131382	131482	-197.540
31		131482	131582	-7. 267
31		131582	131682	-0.573
32		131582	131762	-29.504
3.2		131782	131882	-11.002
32		131882	131982	-136.735
32	23	131982	132082	-0.159
32	24	131982	132182	-61-160

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)
325	132182	132282	46.124
326	132282	132382	-39.989
327	132382	120882	-101.285
328	131582	140183	66 • 20 2
329	140183	140283	10.319
330	140283	140383	64.975
331	140383	140483	59.344
332	140483	140583	49.709
333	140583	140683	-2.493
334	140583	140783	-13.863
335	140763	140883	36.908
336	140883	141083	34.085
337	140883	140983	-2.143
338	141083	141183	-5.269
339	141083	141283	34.606
340	141283	141383	4.011
341	141383	141483	-25.779
342	141483	141583	103.929
343	141583	141683	1.405
344	141583	141783	70.319
345	141783	141883	118.778
346	141883	141983	-10.230
347 348	141583	142083	-76.838
348 349	142083 021577	131182	-84•737
350	034982	034082 032278	-73•586 -4•782
351	016080	016383	-8.747
352	016383	021577	-698.147
353	090280	150184	-71.804
354	150184	150284	-28.804
355	150284	150384	30.318
356	150384	150484	-2.330
357	150484	1-50584	-30.632
358	150584	150684	-8.904
3 5 9	150684	150784	0.635
360	150784	1'50 884	-21.872
361	150584	150984	1.643
362	150864	151084	-22.150
363	151084	151184	-3 • 658
364	151184	151284	8.075
365	151264	151 3 84	-32.926
366	151384	151484	14.393
367	151384	151584	17.029
368	151584	151684	-17.651
369	151684	151784	2.254
370	151784	151884	29.221
371	151884	151984	-6.812
372	151984	100881	-0.057
373	031878	034184	30 • 556
374	034184	030678	45. 850
375	034184	034284	0.008
376	034184	034384	28.791
377	034384	031578	18.168
3.78	031578	034484	-27.065

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)
379	034184	032878	-18.532
380	034184	034484	19.898

APÊNDICE C

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)	I NDICE*
ì	010176	021577	-705.079	0
2	010176	010476	-184.239	0
3	010176	014076	-395.058	0
4	010176	042178	-72.347	1
5	010476	010976	30.942	0
6	010476	014578	-132.139	Ö
. 1	010976	011176	-9.278	ŏ
8	010976	011976	-127.130	ŏ
9	010976	121282	126.906	ő
10	011976	012376	-153.118	ŏ
11	011976	014578	-35.995	ő
12	011976	110881	68.742	ŏ
13	012376	012976	-41.424	0
14	012376	020177	-76.283	0
15	012976	013476	53.740	o
15	012976	014978	118.041	0
17	012976	023077	-37.90 3	
18	013476	013576	16.977	0
19	013476	014076	26.098	0 0
20	013576	022977	-120.671	0
21	013576	041179	6.902	
22	013376	014978	38.209	0 0
23	014578	014978	-40.471	0
24	020177	021177	-61.152	0
25	020177	023077	-3.067	0
26	020177	021777	-180.093	0
27	021177	021277	-79.386	ŏ
28	021177	070379	141.030	ő
29	021277	021477	-49.023	· o
30	021277	060579	-47.462	Õ
31	021477	021577	-5.816	ō
32	021477	021777	9.466	ō
33	021477	060979	-73.453	ō
34	021577	034082	-73.586	0
35	021777	022977	164.948	0
36	022977	023077	12.070	Ō
37	022977	040979	-153.863	0
3'8	030478	030579	-2.870	0
39	030478	031878	-131.462	0
40	030478	070379	228.066	0
41	030578	030673	-52.221	0
42	030578	030778	-24.425	0
43	030578	030978	10.176	0
44	030678	030778	27.783	0
45	030678	034134	-45.850	0
46	035778	030879	38.341	0
47	030878	031278	12.360	0
48	030878	030978	-3.749	0
49	030878	031379	-54.008	O
50	030878	031578	-65.032	0
51	0 30978	031278	16.134	0
5 2	031378	031478	-22.779	0
53	031378	031578	-11-013	0
54	031478	031579	11.757	0

^{*} SE IGUAL A 1, INDICA INTERVALO DE GRAVIDADE ENTRE DUAS ESTAÇÕES DA IGSN-71.

NO. URD.	ORIGEM	DESTINO	INTERVALO(MGAL)	INDICE
55	031578	034184	-46.959	0
56	031578	034484	-27.065	0
57	031878	032278	5.940	Ö
58	031878	032178	21.672	Ö
59	031878	032378	26 • 394	Ö
60	031878	033378	27.699	Ö
61	031878	033478	3.099	ŏ
62	031878	033578	65.216	ő
63	031878	033678	89.722	ő
64	031878	033779	-62.301	ŏ
65	031878	034184	30.556	Ö
6 5	032178	032378	4.718	Ö
67	032178	032779	5.257	Ö
68	032278	034082	4.782	ő
69	032378	032778	0.541	Ö
70	032778	032878	-14.892	Ö
71	032778	032978	-11.809	0
72	032878	032978	3.074	0
73	032878	033179	-23.021	Ö
74	032878	034184	18.532	Ö
75	032978	033179	-26.112	Ö
75	033378	033479	-24.602	0
77	033378	033779	-90.003	0
78	033378	081179	-5.66l	o
7·9	033478	033578	62.114	Ö
80	033578	033678	24.513	0
81	0331184	034484	19.898	ő
82	040978	041178	281.447	0
83	040978	050279	49.803	Ö
84	041178	041279	69.855	Ö
85	041278	041379	49.116	o
85	041278	041878	179.410	0
87	041878	042179	75.632	1
88	050279	060979	-143.766	0
69	050279	090180	37.192	
90	050579	060979	- -	0
			-75. 039	0
91	060579	080479	-77.391	o o
92	070379	110881	218 - 276	0
93	080479	081079	12.549	0
94	080479	080679	16.558	0
95	081079	081179	-4.943	0
95 	081079	090830	-8.387	0
97	081179	081375	-3.245	1
98	090160	090280	113.375	0
99	090180	090830	-179.106	0
100	090280	1 00 88 1	-160.068	1
101	090880	100881	132.379	0
102	110881	120882	130 • 1 26	0
103	120862	121282	55.108	0
104	120882	131582	333.551	0
105	121282	130382	348 • 841	0
105	130382	131182	192.486	1
107	131182	131582	-262.866	0
108	131182	141583	161.575	1

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)	INDICE
109	131582	140583	250.549	0
110	140583	141583	173.897	0
111	141583	141983	178.867	0

APÊNDICE D

CIRCUITOS DA REDE E SEUS FECHAMENTOS

CIRCUITO		SΕ	QUEI	N C I A	D E	E S T	A C O I	ES N	ODAI	s	ERRO DE FECHAMENTO (MGAL)
1	010176	014076	013476	013576	041178	041278	041878	042178	010176		-0.033
2	010176	010476	014578	014978	014076	010176					0.000
3	310476	010976	011976	014578	010476						-0.044
4	014076	014978	012976	013476	014076						0.006
5	014578	011976	012376	012976	014978	014578					-0.035
6	013576	022977	040978	041178	013576						0.011
7	013576	013476	012976	0,23077	022977	013576					-0.019
8	012976	012376	020177	023077	012976						-0.023
9	022977	021777	021477	060979	050279	040978	022977				-0.041
10	020177	021777	022977	023077	020177						-0.008
11	0/20177	021177	021277	021477	021777	020177					-0.002
12	021277	060579	060979	021477	021277						-0.025
13	060579	080479	081079	090880	090180	050279	060979	060579			0.068
14	021177	070379	030478	031878	033378	081179	081079	030479	060579	021277 021177	0.063
15	031878	033678	033578	031878							-0.007
16	J31878	033578	0.33478	031873							0.003
17	031878	033478	033378	031878							0.002
13	031878	033378	033778	031878							-0.003
19	031878	032178	032378	031878							-0.004
20	032178	032778	032378	032178							-0.002
21	032778	032878	032978	032778							-0.009
22	032878	033178	032978	032878							0.017
23	030578	030778	030678	030578							0.013
24	030578	030978	030878	030778	030578						0.009

CIRCUITO	SEQUENCIA DE ESTACOES NODAIS	ERRO DE FECHAMENTO (MGAL)
25	030978 031278 030878 030978	0.025
26	U30878 031378 031578 030878	0.011
27	031378 031478 031578 031378	-0.009
28	011976 110881 070379 021177 020177 012376 011976	-0.011
29	010976 121282 120892 110881 011976 010976	0.060
30	121232 130382 131182 131582 120882 121282	0.018
31	131182 141583 140583 131582 131182	-0.005
32	021477 021277 021177 070379 030478 031878 032278 034082 021577 021477	0.035
33	010176 021577 021477 021777 022977 013576 013476 014076 010176	0.001
34	090880 100831 090280 090180 090880	-0.034
35	031878 030478 030578 030678 034184 031878	÷0.035
36	034184 030678 030778 030878 031578 034184	-0.017
37	034184 031578 034484 034184	-0.004
38	034184 032878 032778 032178 031878 034184	-0.013

APÊNDICE E

INTERVALOS INTERNODAIS AJUSTADOS (PRELIMINARES)

INTERVALOS INTERNODAIS AJUSTADOS

NO. ORD.	ORIGEM	DESTINO	INTERVALO(MGAL)	RESIDUO(MGAL)	VARIANCI A	PESO
1	010176	021577	-705.088	-0.009	0.00011814	1.0
-2	010176	010476	-184.222	0.017	0.00011194	1.0
3	010176	014076	-395.057	0.001	0.00010683	1.0
4	010176	042178	-72.356	-0.009	0.00013930	1.0
5	010476	010976	30.962	0.020	0.00011074	1.0
6	010476	014573	-132-142	-0.003	0.00010133	1.0
7	010976	011176	-9.278	0.0	0.00016945	1.0
8	010976	011976	-127.103	0.027	0.00009942	1.0
9	010976	121282	126.899	-0.007	0.00012847	1.0
10	011976	012376	-153.103	0.015	0.00010647	1.0
11	011976	014573	-36.001	-0.006	0.00009893	1.0
12	011976	110881	68.760	0.018	0.00010737	1.0
13	012376	012976	-41.425	-0.001	0.00009643	1.0
14	012376	020177	-76.267	0.016	0.00009923	1.0
15	012976	013476	53.735	-0.005	0.00009743	1.0
16	012976	014978	118.047	0.006	0.00009743	1.0
17	012976	023077	-37.906	-0.003	0.00009792	1.0
18	-013476	01'3576	16.971	-0.003 -0.006	0.00004742	1.0
19	013476	014076	26.100	0.002		-
20	013576				0.00010464	1.0
21	013576	02297 7 041178	-120.680 6.905	-0.009 0.003	0.00009836	1.0
22	014076	-			0.00011085	1.0
		014978	38.212	0.003	0.00010177	1.0
23	014578	014978	-40-480	-0.009	0.00010866	1.0
24	020177	021177	-61.150	0.002	0.00010600	1.0
25	020177	023077	-3.063	0.004	0.00009354	1.0
26	020177	021777	-180.083	0.010	0.00009583	1.0
27 28	021177	021277	-79.371	0.015	0.00011224	1.0
	021177	070379	141-017	-0.013	0.00011680	1.0
29 30	021277	021477	-49.022	0.001	0.00009748	1.0
	021277	060579	-47.448	0.014	0.00011121	1.0
31	021477	021577	-5.811	0.005	0.00011356	1.0
32	021477	021777	9.459	-0.007	0.00010357	1.0
33	021477	060979	-73.450	0.003	0.00010244	1.0
34	021577	034082	-73.590	-0.004	0.00013765	1.0
35	021777	022977	164.951	0.003	0.00009860	1.0
36	022977	023077	12.069	-0.001	0.00009806	1.0
37 38	022977	040978	-153.868	-0.005	0.00010198	1.0
	030478	030578	-2.861	0.009	0.00012141	1.0
39	030478	031873	-131.472	-0.010	0.00010464	1.0
40	030478	070379	228.068	0.002	0.00013329	1.0
41	030578	030678	-52.211	0.010	0.00008752	1.0
42	030578	030778	-24.422	0.003	0.00008597	1.0
43	030578	030973	10.172	-0.004	0.00010716	1.0
44 45	030678	030778	27.769	0.006	0.00009233	1.0
	030678	034184	-45.846	0.004	0.00010427	1.0
46 47	030778 030878	030873	38.349	0.008 0.010	0.00009962	1.0
49	030878	031278 030978	12.370		0.00010605	1.0
48 49	030878	030978	-3.755 -54.009	-0.006 -0.001	0.00008528 0.00009771	1.0
50	030878	031378	-54.009 -65.026	0.001	0.00008314	1.0
50 51	030575	031278	16.124	-0.010	0.00008314	1.0 1.0
52	031378	031478	-22,776	0.003	0.00010500	1.0
52 53	031378	031578	-11.017	-0.004	0.00010300	1.0
<i>J J</i>	1,54540	0.51510	LIOULI	0.004	040000100	

NO. ORD.	ORIGEM	DESTINO	INTERVALO (MGAL)	RESIDUO(MGAL)	VARIANCIA	PESO
54	031478	031578	11.760	0.003	0.00010500	1.0
55	031578	034184	-46.957	0.002	0.00008706	1.0
56	031578	034484	-27.062	0.003	0.00010649	1.0
57	031878	032278	5.944	0.004	0.00013765	1.0
58	031873	032178	21.670	-0.002	0.00009331	1.0
59	031878	032378	26.389	-0.005	0.00009331	1.0
60	031878	033378	27.698	-0.001	0.00007347	1.0
61	031878	033478	3.098	-0.001	0.00007604	1.0
62	031978	033578	65.213	-0.003	0.00007995	1.0
63	031878	033578	39.724	0.002	0.00010471	1.0
64	031878	033778	-62.303 .	-0.002	0.00010309	1.0
65	031878	034184	30.554	-0.002	0.00009752	1.0
66	032178	032378	4.718	0.000	0.00008472	1.0
67	032178	032778	5.255	-0.002	0.00009331	1.0
68	032278	034082	4.786	0.004	0.00013765	1.0
69	032378	032779	0.536	-0.005	0.00009331	1.0
70	032778	032873	-14.895	-0.003	0.00008622	1.0
71	032778	032978	-11.913	-0.004	0.00009832	1.0
72	032878	032978	3.082	0.008	0.00008157	1.0
73	032878	033178	-23.025	-0.004	0.00010512	1.0
74	032878	034184	18.525	-0.007	0.00011905	1.0
75	032978	033178	-26.108	0.004	0.00010512	1.0
76	033378	033478	-24.600	0.002	0.00009300	1.0
77.	033378	033778	-90.001	0.002	0.00010309	1.0
78	033378	081179	-5.667	-0.006	0.00013978	1.0
79	033478	033578	62.115	0.001	0.00009515	1.0
80	033578	033678	24.511	-0.002	0.00010471	1.0
81 82	034184	034494	19.895	-0.003	0.00010649	1.0
82 83	040973 040978	041178	281 • 453	0.005	0.00011299	1.0
84	041178	050279 041278	49.792	-0.011	0.00012352	1.0
85	041278	041373	59.864	0.009	0.00013930	1.0
86	041278	041378	49.116 170.419	೧∙೦ ೧•0∪9	0.00016945	1.0
87	041278	041573	75.641		0.00013930	1.0
88	050279	060979	-143.785	0.009 -0.019	0.00013930	1.0
89	050279	090180	37.200		0.00011529	1.0
90	060579	060979	-75.023	0.008	0.00013604	1.0
91	060579			0.016	0.00010777	1.0
92	070379	080479	-77.383	-0.002	0.00013183	1.0
92 93	080479	110881 081079	218.264	-0.012	0.00012439	1.0
94	030479		12.647	-0.002	0.00013183	1.0
95	081079	080679	16.558	0.0	0.00016945	1.0
96 [°]	081079	081179	-4.937	0.006	0.00013978	1.0
97		090880	-8 • 39 5	-0.008	0.00013604	1.0
	081179	031375	-3.245	0.0	0.00016945	1.0
98	090180	090280	113.368	-0.007	0.00012500	1.0
99	090180	090880	-179.092	0.014	0.00010829	1.0
100	090280	100881	-160.075	-0.007	0.00012500	1.0
101	090880	100891	132.386	0.007	0.00012500	1.0
102	110881	120882	130.133	0.007	0.00012847	1.0
103	120882	121282	55.110	0.002	0.00010824	1.0
104	120882	131582	333.556	0.005	0.00013195	1.0
105	121282	130382	348.836	-0.005	0.00013196	1.0
106	130382	131182	192.431	0.005	0.00013196	1.0

INTERVALOS INTERNODAIS AJUSTADOS

NO. ORD.	ORIGEM	DESTINO	INTERVALO (MGAL)	RESIDUDIMGALI	VARIANCIA	PE SO
107	131182	131582	-262.871	-0.005	0.00010600	1.0
108	131182	141583	161.575	0.000	0.00012474	1.0
109	131582	140583	250.549	-0.000	0.00012474	1.0
110	140583	141583	173.897	-0.000	0.00012474	1.0
111	141583	141983	178.867	0.0	0.00016945	1.0

DESVIO PADRAO DA OBSERVAÇÃO DE PESO UNITARIO= 0.013 MGAL

APÊNDICE F

INTERVALOS INTERNODAIS AJUSTADOS (FINAIS)

INTERVALOS INTERNODAIS AJUSTADOS A IGSN-71

NO. URD.	ORIGEM	DESTINO	INTERVALO(MGAL)	RESIDUO(MGAL)
1	010176	021577	-705.090	-0.011
2	010176	010476	-184-225	0.014
3	010176	014076	-395.060	-0.002
4	010176	042179	- 72•359	-0.012
5	019476	010976	30.960	0.018
5	010476	014578	-132 • 143	-0.004
7	010976	011176	-9.276	0.002
8	010976	011976	-127.103	0.027
9	010976	121282	126 • 895	-0.011
10	011976	012376	-153.104	0.014
11	011976	014578	-36 • 000	-0.005
12	011976	110881	68.759	0.017
13	012376	012976	-41.425	-0.001
14	012376	020177	-76 • 267	0.015
15	012976	013476	53.734	-0.005
15	012976	014978	119.048	0.007
17	012976	023077	-37.906	-0.003
18	013476	013576	16.967	-0.010
19	013476	014076	26 • 1 03	0.005
20	013576	022977	-120.677	-0.006
21	013576	041178	6.907	0.005
2 2	014076	014978	38.211	0.002
23	014578	014978	-40.480	-0.009
24	020177	021177	-61.149	0.003
25 20	020177	023077	-3.064	0.003
26	020177	021777	-180.083	0.310
27	021177	021277	-79.370	0.016
28	021177	070379	141.017	-0.013
29 3.)	021277	021477	-49.021	0.002
30 31	021277	060579	-47.448	0.014
32	021477 021477	021577	-5.809	0.007
33		021777	9•458	-0.008
34	021477 021577	060979	-73 • 450	0.003
35	021777	034082 022977	-73.590 164.950	-0.004
35	022977	022917	12.070	0.002
37	022977	040978	-153.867	-0.000
38	030478	030578	-2.861	-0.004 0.009
39	030478	031878	-131.472	
40	030478	070379	228.067	-0.010 0.001
41	030578	030678		
42	030578	030778	-52 • 211 -24 • 422	0.010
43	030578	030778	10.172	0.003
44	030578	030778		-0-004
45	030678		27.789	0.006
46		034184	-45.846	0.004
47	030778 030878	030878	38.349	0.008
48	030878	031278	12.370	0.010
49	030878 030878	030978	+3.755 -54.000	-0.006
50	030878	031378 031578	-54.009 -45.034	-0.001
51	030978	031278	-65.026 16.124	0.006
52	031378		. = -	-0.010
53	031378	.031478 031578	-22.77 6	0.003
	031313	031310	-11.017	-0.004

INTERVALOS INTERNODAIS AJUSTADOS A IGSN-71

NO. URD.	ORIGEM	DESTINO	INTERVALO(MGAL)	RESIDUD(MGAL)
54	031478	031578	11.760	0.003
55	031578	034184	-46.957	0.002
56	031578	034484	-27.062	0.003
57	031878	032279	5.946	0.006
53	031878	032179	21.670	-0.002
59	031878	032378	26. 389	-0.005
60	031878	033378	27.697	-0.002
61	031878	033478	3.098	-0.001
62	031878	033578	65.213	-0.003
63	031878	033678	89.724	0.002
64	031878	033778	-62.303	-0.002
65	C31878	034184	30.554	-0.002
65	032178	032378	4.719	0.001
67	032178	032778	5.255	-0.002
5.8 5.8	032278	034082	4.786	0.004
69	032378	032778	0.536	-0.005
70	032778	032879	-14 • 8.95	-0.003
71	032778	032978	-11.813	-0.004
.72	032878	032978	3.082	
73	032878	032778	-23 • 025	0.003
74	032878	033176	18.525	-0.004 -0.007
75	032978	033178		-0.007
76			-26 •108	0.004
75 77	033378	033478	-24-600	0.002
	033378	033778	-90.001	0.002
78	033378	081179	-5.667	-0.006
79	033478	033578	62 • 115	0.001
80	033578	033678	24.511	-0.002
81	034184	034484	19.895	-0.003
82	040978	041178	281.452	0.005
83	040978	050279	49.794	-0.009
84	041178	041278	69.865	0.010
9.5	041278	041379	49.114	-0.002
85	041278	041878	179.422	0.012
87	041878	042178	75•643	0.011
98	050279	060979	-143.784	-0.018
8.9	050279	090180	37.201	0.009
90	060579	060979	-75.024	0.015
91	060579	080479	-77 • 3 82	-0.001
92	070379	110881	218 • 263	-0.013
93	080479	081079	12 • 646	-0.003
94	080479	080679	16.560	0.002
95	081079	081179	-4.939	0.004
95	081079	090830	-8.393	-0.006
97	081179	081375	-3.248	-0.003
98	090180	090280	113.368	-0.007
99	090180	090830	-179.090	0.016
100	090280	100881	-160.069	-0.001
101	090830	100881	132.389	0.010
102	110881	120882	130 • 131	0.005
103	1 20 88 2	121282	55-108	0.000
104	120982	131502	333 • 555	0.004
105	121282	130382	348.831	-0.010
106	130382	131182	192 • 486	0.000
			•	-

INTERVALOS INTERNODAIS AJUSTADOS A IGSN-71

NO. URD.	ORIGEM	DESTINO	INTERVALO(MGAL)	RESIDUO(MGAL)
107	131182	131582	-262 •870	-0.004
108	131182	141583	161.577	0.002
109	131582	140583	250.550	0.001
110	140583	141583	173.898	0.001
111	141583	141983	178.867	-0.000

APÊNDICE G

VALORES DE GRAVIDADE AJUSTADOS À IGSN-71

* AJUSTAMENTO PELO METODO DOS MINIMOS QUADRADOS *

NO. ORD.	CODIGO ESTACAD	NOME ESTACAO		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
1	C 010176	RIO DE JANEIRO	11 A 11	978789.895	0.011
2	010276	VASSOURAS	#B#	978637.931	0.012
3	010376	BARRA MANSA	#Д#	978647.509	0.012
4	N 010476	QUELUZ	"2"	978605.612	0.013
5	010576	GUARATINGUETA	11811	978619.763	0.014
5	= 010676	GUARATINGUETA	"Č"	97.8620.673	0.019
7	010776	TAUBATE	ng n	978617.461	0.014
8	010375	SAO JOSE CAMPOS	uBu	978639.783	0.014
9	V 010976	SAD PAULD	11811	978636.582	0.012
1 ū	€ 011076	SAO PAULO	11 N 11	978635.392	0.018
11	C 011176	SAO PAULO	11 3 11	978627.303	0.015
12	011276	JUNDIAI	អន្តអ	978613.551	0.015
13	011376	CAMPINAS	n y n	978626.632	0.016
14	011476	CAMPINAS	"3"	978589.166	0.017
15	O11576	LIMEIRA	#B#	978587.596	0.018
16	011676	LEME	"B"	978553.131	0.017
17	011776	PORTO FERREIRA	mg m	978546.562	0.017
13	011876	CRAVINHOS	ıı B ıı	978475.936	0.015
19	N 011976	RIBEIRAO PRETO	nBu	978509•439	0.013
20	E 012076	RIBEIRAD PRETO	" C "	978507.178	0.018
21	012176	ITUVERAVA	иБи	978467.199	0.014
22	012276	IGARAPAVA	434	978426.994	0.015
23	N 012376	UBERABA	H 17 H	978356 • 289	0.014
2.4	E 012476	UBERABA	"J"	978345.719	0.019
25	9 012576	UBERABA	"K"	978345.694	0.023
26	012676	ARAXA	"Bu	978311.422	0.014
27	012775	ARAXA	"C"	978311.955	0.013
2 ະ	012876	1314	4134	978332.021	0.014
29	N 012976	CAMPOS ALTOS	"8"	978314.851	0.014
30	013076	LUZ	118.11	978379.647	0.014
31	013176	BUM DESPACHO	нви	978371.987	0.014
32	013276	PARA DE MINAS	пĠп	978386.382	0.014
33	013375	BETIM	"B"	978381.955	0.014
34	N 013476	BELO HORIZONTE	"B"	978368.602	0.014
35	C 013576	BELO HORIZONTE	","	978385.574	0.013
36	E.013676	BELO HORIZONTE	" C"	978378.384	0.019
37	013776	CONGONHAS	"9"	978415.910	0.013
38	013876	LAFAIETE	HB H	978400.144	0.013
39	E 013976	LAFAIETE	41 12 14 14 C 14	97.8399.649	0.019
40	N 014076	BARBACENA		978394.712	0.014
41	014176	SANTOS DUMONT	"B"	978485.136	0.012
42	014276	JUIZ DE FORA		978550.169	0.011
43	014376	JUIZ DE FORA	"C"	978549.131	0.010
44 45	014476 N 014578	TRES RIOS VARGINHA	"B"	978655•601 978473•428	0.010 0.014
46	N 014578	VARGINHA	"C"	978476.704	0.014
40 47	014778	C AXAMBU	ugu	978496.284	0.017
43	€ 014878	CAXAMBU	4.Cu	978484.649	0.018
49	N 014978	LAVRAS	нви	978432.935	0.013

AJJSTAMENTO PELO METODO DOS MINIMOS QUADRADOS

NO. ORD.	CODIGO ESTACAO	NOME ESTACAO		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
50	E 015078	LAVRAS	нсн	978434.836	0.019
51	015178	S.JOAO DEL REI	"8"	978445.494	0.013
52	E 015278	S.JOAO DEL REI	"C"	978445 • 297	0.018
53	015378	MOCOCA	ngn	97.8526.277	0.012
54	£ 015478	MOCOCA	ייכיי	978527.678	0.018
55	015578	POCOS DE CALDAS	11 g 11	97.8391 • 369	0.013
56	E 015678	PUCOS DE CALDAS	11 C 11	978394 • 129	0.018
57	015778	FURMIGA	"B"	978401.343	0.014
58	£ 015878	FURMIGA	"C"	978401.664	0.019
59	. 015080	RIO DE JANEIRO	11 C 11	978791.707	0.011
60	016383	RIO DE JANEIRO	HEH.	978782.953	0.013
61	N 020177	UBERLANDIA	กรูก	978279.998	0.014
62	E 020277	UBERLANDIA	uK u	978279.727	0.019
63	E 020377	UBERL AND I A	11811	978293.786	0.023
64	E 020477	MONTE ALEGRE	"C"	978297.591	0.019
6 5	E 020577	MONTE ALEGRE	"D"	978297.588	0.023
66	520677	MORRINHOS	ngn -	978250.779	0.014
67	≟ 020777	MORR I NHOS	"C"	978247.311	0.019
68	E 020817	MORRINHOS	"D"	978250.670	0.023
69	€ 020977	GUIANIA	nK n	978225.724	0.020
70	E 021077	GOIANIA	44 C 24	978215.212	0.024
71	N 021177	GJIANIA	иви	978218.829	0.015
72	N 021277	ANAPOLIS	11811	978139.435	0.016
73	9 021377	ANAPOLIS	"D"	978156 • 148	0.024
74	N 021477	BRASILIA	"D"	978090.398	0.015
75	N 021577	BRASILIA	" M"	978084.587	0.016
76	E 021677	BRASILIA	"C"	978088.414	0.021
7 7	N 021777	CRISTALINA	"B"	978099.859	0.017
78	021877	CAJATAO	uBu	978262 • 147	0.015
7 9	E 021977	CATALAD	"C"	978261-959	0.020
80	E 022077	CATALAD	"0"	978263.330	0.024
81	E 022177	CRISTALINA	C.i.	978109.818	0.021
8.2	E 022277	CRISTALINA	"D"	978099.921	0.025
83	022377	PARACATU	иви	978250.805	0.015
84	E 022477	PARACATU	11 C 11	978253.549	0.020
85 87	E 022577	PARACATU	"D"	978253.826	0.024
86	022677	JOAO PINHEIRO	"3"	978259.911	0.014
87	E 022777	JOAO PINHEIRO	" C"	978262.067	0.019
88 80	E 022877	USAG PINHEIRO	a Da	978260 • 478	0.023
89 90	N 022977	TREVO BR-040-365	11.11	978264.859	0.014
91	N 023077	PATOS DE MINAS	11 B 11	978276.933	0.015
92	£ 023177	PATOS DE MINAS PATOS DE MINAS	"C"	978279.533 978279.329	0.020
93	€ 023277 923377	FELIXLANDIA	484 464	978343.527	0.024
73 74	023317 E	FELIXLANDIA	" C"	978349.560	0.013 0.019
95	E 023577	FELIXLANDIA	"D"	978345.817	0.017
96	£ 023677	SETE LAGOAS	н Си	97 8364 • 666	0.018
97	E 023777	SETE LAGOAS	"0"	978362.858	0.013
98	023877	SETE LAGOAS	11B10	978363.087	0.013
· -			••		

* AJUSTAMENTO PELO METODO DOS MINIMOS QUADRADOS *

NO. ORD.	CODIGO ESTACAO	NOME, ESTACAO		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
99	023977	MONTE ALEGRE	11811	978298.514	0.014
100	E 024077	ANAPOLIS	"C"	978156 • 131	0.021
101	E 024179	BRASTLIA	uëu O	978065.312	0.021
102	E 030178	PORTO VELHO	யிர	978131.623	0.021
103	ë 030278	PORTO VELHO	ugu	978130.902	0.025
104	E 030378	PURTO VELHO	u Çu	978130.530	0.028
105	N 030478	PORTO VELHO	"K"	978131.752	0.017
106	N 030578	PURTO VELHO	ոլո	978128.890	0.019
107	N 030678	CANUTAMA	uğu	97.8076.663	0.020
108	N 030778	PAUINI	ng.	978104.461	0.020
109	N 030878	SENA MADUREIRA	иди	97.8142.822	0.020
110	N 030978	RIO BRANCO	այա	97 81 39 • 065	0.021
111	E 031078	RIO BRANCO	#B#	978134.596	0.024
112	€ 031178	RIO BRANCO	" C"	978134.975	0.028
113	N 031278	BRASILEIA	нди	978155.195	0.022
114	N 031378	CRUZEIRO DO SUL	ஈர்ஈ	978088.796	0.021
115	N 031478	PALMEIRAS JAVARI	ர்ப்ப	978056.012	0.022
116	N 031578	EIRUNEPE	n j n	978077.775	0.020
117	E 031678	CRUZEIRO DO SUL	ugu -	978103.234	0.025
118	E 031778	EIRUNEPE	nBn,	978077.317	0.024
119	N 031878	MANAUS	"K"	978000.240	0.017
120	031978	MANAUS	при	978006 • 187	0.017
121	£ 03207.8	MANAUS	" C "	978016 • 128	0.021
122	N 032179	MOURA	n j n	978021.917	0.019
123	C 032278	MANAUS	11 111	978006.187	0.018
124	N 032378	BOA VISTA	"J"	978026.637	0.019
125	E 032478	BOA VISTA	484	978018.975	0.023
126	E 032578	BOA VISTA	"C"	978019.075	0.027
127	€ 032678	MOURA	u8n	978021.811	0.023
123	N C32778	TAPURUQUARA	"յ"	978027.173	0.020
129	N-032878	S.G. CACHDEIRA	" ງຫ	978012.273	0.021
130	N 032978	CUCUI	484	978015.356	0.022
131	E 033078	S.G. CACHOEIRA	48 H	978014.004	0.024
132	N 033178	ARIBCHOAD IRA	","	977989.241	0.023
133	-N- 0 33378	SANTAREM	","	978027.946	0.017
134	N 033478	ITALTUBA	"] "	978003.339	0.019
135	N 033578	JACAREAC ANGA	"J"	978065.473	0.018
136	N 033678	PRAINHA	"J"	978089•492	0.019
137	N U33778	TIRIOS	" J "	977937.917	0.020
136	E 033878	SANTAREM	uKu	978028•293	0.021
139	E 033978	SANTAREM	u B u	978039.661	0.025
140	N 034082	CACHIMBO	"] "	978010.975	0.019
141	N 034184	TEFE	471	978030.804	0.019
142	E 034284	TEFE	"9"	978030.812	0.023
1,43	034384	CARAUARI	uBu	978059.603	0.019
144	N 034484	TABATINGA	"]"	97,8050 • 705	0.021
145	040178	PIRAPORA	#9#	978300.390	0.014
146	E 040278	PIRAPORA	"J"	978296.105	0.019
147	040378	MONTES CLAROS	n B n	978231.565	0.014

★ AJJSTAMENTO PELO METODO DOS MINIMOS QUADRADOS ★

NO. ORD.	CODIGO ESTACAD	NOME ESTACAO		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
148	E 040478	MONTES CLAROS	11 C 11	978236 • 229	0.019
149	040578	PURTEIRINHA	HBH	978191.710	0.014
150	040678		11 B II	978174.816	0.015
151	040778	CACULE	иġи	978141.784	0.015
152	040878	BRUMADO	ugu	978165.188	0.015
153	N 040978	VITORIA CONQUISTA	"3"	978110.945	0.016
154	041078	MEDINA	#B#	978249.841	0.014
155	N 041178	TEOFILO OTONI	uBu -	978392 • 483	0.014
156	N 041278	NANUQUE	11 12 11	978462.369	0.014
157	C 041378	CARAVELAS	" J"	978511.499	0.016
158	041478	SAD MATEUS	u B u	978553.465	0.014
159	041578		4 C 11	978458 • 183	0.013
160	0.41.678	NOVA ERA	11 B 11	978399•368	0.013
161	041778	LINHARES	"B"	97,8588 • 459	0.014
162	C 041878	VITORIA	11 B 11	978641.847	0.013
163	E 041978	VITORIA	ոլ ո	978638•381	0.019
164	042078		ս В ս	978640 • 253	0.013
165	C 042178	CAMPOS	","	978717.513	0.013
166	042278	MACAE	нВи	97 8 758 • 9 27	0.012
167	042378		11 D 11	97 8785 • 336	0.012
168	E 042478		u Cu	978783.244	0.018
169	050179		#B#	978253.121	0.015
170	N 050279		11 B 11	978160.754	0.015
171	050379		"B"	97 8016 • 194	0.017
172 173	050479		 	978095.716	0.018
	050579	· -	#8# #8#	97 91 05 • 344	0.018
174 175	060179	-	иви изи	978192.701	0.016
176	060279 060379	URUACU PORANGATU	иви	978198 • 178	0.017
177	060479		нВи о	978197•013 978152•621	0.017
178	N 060579		и Ви.	978091.973	0.017
179	060679		# B #	978147.868	0.016 0.017
180	060779		11811	978136.977	0.017
181	050879		11 B 41	97.8036 • 332	0.018
182	N 060979	RN-903-X	1,5	97.8016.926	0.018
183	061079	•	нап	978061.864	0.016
184	061179	ALVORADA DO NORTE	-	978153.971	0.016
185	061279		ngn	978104.830	0.016
186	€ 061379	ALVORADA DO NORTE	H ČH	978154.841	0.020
187	E 061480	PORTO NACIONAL	" C"	978148 • 117	0.021
188	070179		4B#	978353.949	0.014
189	5 070279	CUIABA ·	" C"	978347.330	0.019
190	N 070379		n B n	978359.889	0.014
191	070479	-	11 B 11	978246.734	0.015
192	070579		"B"	978258-995	0.015
193	070679	JATAI	"J"	978284.708	0.015
194	070779	RIO VERDE	uBu	978289.417	0.015
195	070881		" J"	978351.016	0.015
196	080179	PARAISO DO NORTE	"B"	978076•949	0.016

* AJUSTAMENTO PELO METODO DOS MINIMOS QUADRADOS *

NO. ORD.	CODI	IGO ESTACAD	NOME ESTACAD		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
197		080279	GUARAI	#B#	978067.373	0.015
198		080379	COLINAS DE GOIAS	11B14	978049-188	0.016
199	N	080479	ARAGUAINA	ugu	978014.567	0.017
200		080579	ESTREITO	uga	97 8022 • 009	0.016
201	C	080679	CAROLINA	njn	978031.132	0.019
202	•	080779	IMPERATRIZ	ngu	978003.984	0.015
203		080979	ITINGA	иви	978025.158	0.015
204		080979	PARAGOMINAS	иди	977991.732	0.015
205	N	081 079	S. MARIA DO PARA	нан	978027.218	0.015
206		081179	BELEM	иди	97 80 22 • 277	0.015
207	•	081279	BELEM	пвн	978019.441	0.014
208	C.	081375	BELEM	пKп	97 801 9 • 027	0.017
209	•	081481	BELEM	# M#	978018.922	0.015
210	Ai	090180	FEIRA DE SANTANA	нви	978197.967	0.014
211		090230	SALVADOR	ugu	978311.370	0.014
212	-	090380	SALVADOR	ากับ	978329.406	0.019
213	C.	090480	GAVIAO	484	978150.170	0.015
214		090580	SENHOR DO BONFIM	aBu .	978031.829	0.016
215		090680	PETROLINA	11 g 11	97 8041 • 034	0.016
216		090780	PAULISTANA	aga.	978045.567	0.016
217	ы	090880	PICOS	u B u	978018 - 822	0.016
218	. •	090980	VALENCA DO PIAUI	11 D II	977975 • 193	0.016
219		091080	BARRO DURO	иви	977990.783	0.015
220		091180	TERESINA	11 g ii	978017.425	0.015
221	F	091280	TERESINA	กฏก	978017.571	0.020
222	_	091381	CAXIAS	иви	978014.428	0.015
223		091481	ENTRONC. CODO	#B#	978006.848	0.015
224		091581	BACABAL	ugu	978012 • 419	0.015
225		091631	PINDARE MIRIM	អន្តអ	97 7988 • 081	0.015
226		091781	NOVA OLINDA	#B#	978011-171	0.015
227		091881	BÜA VISTA GURUPI	11B11	978030.484	0.015
228		091981	CAPANEMA	uBu .	978020.013	0.015
229		100181	CAMPOS SALES	ивн	977968.718	0.016
230		100281	CRATO	11 B 11	977964.189	0.015
231		100381	CAJAZEIRAS	រាទីររ	978019-228	0.015
232		100481	PUMBAL	អមិត	978033.049	0.015
233		100581	PATOS	a B a	97 8033 • 962	0.015
234		100681	PATOS	"Cu	978033.914	0.015
235		167001	CAMPINA GRANDE	11311	977984.252	0.015
236	C	100881	RECIFE	"J"	978151.251	0.015
237		110181	BEBEDOURO	"B"	978512.534	0.014
238		110231	S.J.DO RIO PRETO	484	978518.924	0.014
239		110331	PENAPOLIS	11811	97 85 59 • 663	0.015
240		110481	RINOPOLIS	пВ и	978580.021	0.015
241		110561	PRES. PRUDENTE	11 B 11	97 85 96 • 808	0.015
2.42		110681	PRES. EPITACIO	иВи	978627.265	0.015
243		110781	9R-267/KM 130	"B"	978595.393	0.014
244	N	110831	NOVA ALVORADA	uBu	978578.220	0.013
245		110981	CAMPO GRANDE	иВи	978495 • 105	0.014

AJUSTAMENTO PELO METODO DOS MINIMOS QUADRADOS

NO. URD.	CODIGO ESTAC	AO NOME ESTACAO		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
246	111081	S.GABRIEL D. DESTE	ngn	978407.270	0.014
247	111181		n.B.n	978486 • 023	0.014
248	111281		#g#	978366 • 848	0.014
249	120181		#B#	978627 • 232	0.014
250	120281		u B u	978618.659	0.013
251	120382		មក្ក	978680 • 773	0.013
252	120482		1181 1	978739.376	0.013
253	120582	• • • • •	прн	978795.382	0.013
254	120682		"B"	978791.499	0.013
255	120782	-	uBu D	978732.872	
256	N 120882	LARANJEIRA DO SUL		978708 • 391	0.013
257	120982		# 2 #	978670 • 049	0.014 0.013
258	121082		"B"	978713.339	0.013
259	E 121182		4 C 11		
250	N 121282		"B"	978753.581	0.019
261	121382		B	978763.517 978835.789	0.013
			"5"		0.013
252	121482		"B"	978670 • 476	0.013
263	121582			978652.706	0.013
264	121682		uBu uBu	978832 • 227	0.019
265	121782			978906.512	0.023
266	130182		uBn uBn	979015 • 214	0.014
267 268	130282		11 A 11	979049.816	0.014
	C 130382	- -	*B*	979112.455	0.015
269 2 7 0	± 130482		B	97 91 05 • 44 9	0.020
	130582		"B" "B"	979163.835	0.015
271	130682		"С" В.,	979146.113	0.014
272 273	E 130782		454	979145.927	0.019
	130882	= · · · · · =	-	979220.998	0.015
274	5 130982		ngu ngu	979220 • 953	0.020
275	131082			979276 • 201	0.015
276	C 131182		и <u>Б</u> и	979305.001	0.016
277	E 131282		C	97 9305 • 002	0.021
278	131382		"8"	979246 • 922	0.015
279	131482		"B"	979049.320	0.015
280	N 131582		"B"	979042 • 050	0.015
281	E 131682		" C"	979041 • 476	0.020
282	131782		"B"	979012.536	0.014
-283	131882		нŸн	979001.530	0.014
284	131982		11 B 11	978864.752	0.013
285	E 132082		"C"	978864.593	0.019
286	132182		"8"	978803.572	0.013
287	132282		u Bu	978849.710	0.013
288	132382		ubn	978809.708	0.013
289	140183		"B"	979108-272	0.015
290	140 28 3		ngn -	979118.594	0.015
291	140383		սՑո	979183.590	0.016
292	140483	ITAQUI	"B"	979242.952	0.017
293	N 140583	URUGUATANA	"B"	979292.676	0.018
294	E 140683	URUGUAIANA	"C"	979290 • 183	0.022

* AJUSTAMENTO PELO METODO DOS MINIMOS QUADRADOS *

NO. ORD.	CODIGO ESTACAD	NDME ESTACAO		VALOR G (MGAL)	DESVIO PADRAO (MGAL)
295	140783	ALEGRETE	"3"	979278.809	0.018
296	140883	ROSARIO DO SUL	11811	979315.729	0.018
297	E 140983	ROSARIO DO SUL	" C"	979313.585	0.022
298	141083	SANT.LIVRAMENTO	иВи	979349.824	0.018
299	€ 141183	SANT.LIVRAMENTO	" C "	979344.554	0.022
300	141283	DOM PEDRITO	"B"	979384.441	0.018
301	141383	BAGE	0.50	979388 • 453	0.018
302	141483	PINHEIRO MACHADO	ugu	979362.666	0.018
303	C 141583	PELOTAS	ngn	979465.628	0.019
304	£ 141683	PELOTAS	" C"	979468.033	0.023
305	141783	TAIH	"8"	979536.968	0.020
306	141883	CHUI	អន្តអ	979655.783	0.022
307	N 141983	BARRA DO CHUI	#B#	979645.550	0.025
308	142083	CAMAQUA	աგա	979389.765	0.017
309	150184	POJUCA	"B"	978239.544	0.014
310	150284	ENTRE RIOS	11 B 11	978210.731	0.014
311	150384	ESPLANADA	пĒп	978241.058	0.014
312	150484	ESTANCIA	"3"	978238.727	0.014
313	150584	ITAPORANGA AJUDA	нри	978208 • 086	0.014
314	150684	ARACAJU	11 B 11	978199.179	0.014
315	150784	MARJIM	11B11	978199.814	0.013
316	150834	PROPRIA	អន្តអ	978177.935	0.013
317	E 150984	ARACAJU	"J"	978200.822	0.019
318	151.084	JUNQUEIRO	"B"	978155.778	0.013
319	151184	S.MIGUEL CAMPOS	"B"	978152.119	0.013
320	151284	ATALAIA	ngu	978160 • 196	0.014
321	151384	MACEIC	"J"	978127.260	0.014
322	E 151484	MACEIO	អមិត	978141.658	0.019
323	151584	JOAQUIM GOMES	អង្គអ	97 8144 • 294	0.014
324	151684	PALMARES	"B"	978126-638	0.014
325	151784	RIBEIRAO	"B"	978128.393	0.014
326	151884	CABO	"8"	978158 • 122	0.014
327	151984	RECIFE	11 K 11	978151.308	0.014

FATOR RESIDUAL DE CORRECAD DE ESCALA= 1.0003086
DESVIO PADRAD DO FATOR RESIDUAL DE CORR. DE ESCALA= 0.0000228

NOTAS DE REFERÊNCIAS

- $|^{01}|$ SHOKIN,P.F. Gravimetry (apparatus and methods for measuring gravity). Jerusalem, Israel Program for Scientific Translations,1963, p. 143-144.
- $|^{02}|$ PARASNIS, D.S. Principles of Applied Geophysics, London , Champman and Hall Ltd., 1972, p. 39.
- | 03 | MELCHIOR, P. Physique et dynamique planétaires. Louvain, Vander, 1971, v.2 p.83-89.
- | 04 | SAZHINA. N. & GRUSHINSKY, N. Gravity Prospecting. Moscow, Mir Publishers, 1971, p. 229.
 - $|^{0.5}|$ MELCHIOR, P., p.77.
 - $|^{06}|$ SAZHINA, N. & GRUSHINSKY, N., p. 183.
 - $|^{07}|$ Ibid., p. 207.
 - |08| SHOKIN, P.F., p. 241.
- | 09 | DEHLINGER, P. Marine Gravity, Amsterdam, Elsevier Scientific Publishing Company, 1978, p. 107.
- | 10 | ROSIER, F.A. Medidas Diferenciais da Gravidade: Ajustamento de uma Sub-Rede de Estações Gravimétricas e Determinação de Coeficientes de Escala para os Gravimetros La Coste & Romberg Modelo GNOS 41, 372 e 454, Curitiba, Universidade Federal do Parana, 1979, p. 15-16.
- | I | LA COSTE & ROMBERG, INC. Instruction Manual for La Coste Romberg, Inc. model G land gravity meter no 674. Austin, s.d. Não paginado.
- | 12 | MIRONOV, V.S. <u>Curso de Prospección Gravimétrica</u>. Barcelo na, Reverté, 1977. p. 118.
 - $|^{13}|$ Ibid., p. 130.
 - $|^{14}|$ Ibid., p. 131.
 - $|^{15}|$ Ibid., p. 134
 - | 16 | SHOKIN, P.F., p. 161.
 - 17 SAZHINA, N. & GRUSHINSKY, N., p. 252.
 - | 18 | Ibid., p. 238.
 - |19| SHOKIN, P.F., p. 162.
 - |20 | Ibid., p. 166.

- $|^{21}$ MIRONOV, V.S., p. 137.
- | 22 | PICK, M. et alii. Theory of the earth's gravity field. Amsterdam, Elsevier, 1973. p. 144.
 - |23| SAZHINA, N. & GRUSHINSKY, N. p. 245.
 - $|^{24}|$ SHOKIN, P.F. p. 172.
 - $|^{25}|$ PICK, M. et alii, p. 145.
 - $|^{26}|$ MORONOV, V.S., p. 142.
 - |27| SAZHINA, N. & GRUSHINSKY, N., p. 250-252.
 - $|^{28}|$ Ibid., p. 249
- |29| HAMILTON, A.C. & BRULÉ, B.G. Vibration-induced drift in La Coste and Romberg geodetic gravimeters. <u>Journal of Geophysical Research</u>, 72(8): 2187-2197, 1967.
- $|^{30}|$ ESTADOS UNIDOS. Defense Mapping Agency Topografic Center. General land gravity survey instructions. s.l., 1974.
- | 31 | KOZLOSKY, J.A. & ZIEGLER, R.E., Standards of precision and operating methods for modern gravity surveys, U.S.Army Topographic Command, 1969.
 - $|^{32}|$ SHOKIN, P.F., p. 187.
 - $|^{33}|$ MIRONOV, V.S., p. 148.
 - $|^{34}|$ PICK, M. et alii, p. 147.
 - $|^{35}|$ SAZHINA, N. & GRUSHINSKY, N., p. 342.
- | 36 | McCONNELL, R.K. et alii. An evaluation of six La Coste and Romberg gravimeters for use on the Latin American Primary Gravity Net, Earth Physics Branch, Ottawa, Servicio de Hidrografia Naval, Bue nos Aires, Hawaii Institute of Geophysics, Honolulu, 1972.
 - $|^{37}|$ MIRONOV, V.S., p. 150-152.
 - $|^{38}|$ SHOKIN, P.F., p. 189-198.
 - $|^{39}|$ SAZHINA, N. & GRUSHINSKY, N., p. 344-348.
 - |40| SHOKIN, P.F., p. 187-188.
- | 41 | VANICECK, P. & KRAKIWSKY, E.J. Geodesy: the concepts. Amsterdam, North-Holland Publishing Company, 1982. p.177.
- | 42 | GEMAEL, C. Aplicação do Cálculo Matricial em Geodésia; 2a. parte: ajustamento de observações. Curitiba, UFPr, Curso de Pos-Graduação em Ciências Geodésicas, 1974. p.67-68.

- |43| Ibid, p.69-71.
- |44| VANICECK, p. 269-270.
- $|^{45}|$ GEMAEL, p. 76-83.
- | 46 | UOTILA, U.A. Introduction to adjustment computations with matrices. s.l., The Ohio State University, 1976. p. 60-68.
- $|^{47}|$ DE ANDRADE, J.B. <u>Photogrammetric Refraction</u>, The Ohio State University, 1977. p. 93-94.
 - |48| GEMAEL, p. 7-8.
 - |49| Ibid., p. 13-14.
 - |50| ROSIER, p. 44-55.
- $|^{51}|$ LONGMAN, I.M. Formulas for computing the tidal accelerations due to the moon and the sun. <u>Journal of Geophysical Research</u>, Richmond, <u>64</u>(12):2351-2355, 1959.
 - |52| ROSIER, p.111-141.
 - |53| GEMAEL, p. 56-57.
- |54| ESCOBAR, I.P. Contribuição do Observatório Nacional no estabelecimento da rede gravimétrica fundamental brasileira. Anais do 109 Congresso Brasileiro de Cartografia, Sociedade Brasileira de Cartografia, Brasília, 2(1):435-448,1981.
- | 55 | MORELLI, C. The Internacional Gravity Standardization net 1971 (I.G.S.N. tl). Paris, Bureau Central de l'Association Internationale de Géodésie, s.d. 194 p. (Publication spéciale no 4). p. 33-83.
- | 56 | ASSOCIATION INTERNATIONALE DE GÉODÉSIE, Bureau Gravimetrique International. Note to the users of international gravity standardization net 1971. Bulletin d'Information 47, 1980. p.15-16.
 - |57| MORELLI, p.23.

REFERÊNCIAS BIBLIOGRÁFICAS

- 01. ASSOCIATION INTERNATIONALE DE GÉODÉSIE, Bureau Gravimétric International. Note to the users of the international gravity standardization net 1971. Bulletin d'information, Toulouse, 47:15-16, 1980.
- 02. DE ANDRADE, J.B. <u>Photogrammetric Refraction</u>.s.l.The Ohio State University, 1977. 117p.
- 03. DEHLINGER, P. Marine Gravity. Amsterdam, Elsevier Scientific Publishing Company, 1978. 322p.
- 04. ESCOBAR, I.P. Contribuição do Observatório Nacional no estabele cimento da rede gravimétrica fundamental brasileira. Anais do 10º Congresso Brasileiro de Cartografia, Sociedade Brasileira de Cartografia, Brasilia, 2(1):435-448,1981.
- 05. ESTADOS UNIDOS. Defense Mapping Agency Topographyc Center. General land gravity survey instructions. s.l., 1974. 50p.
- 06. GAMA, L.I. & GUALDA, J. <u>Base Gravimétrica do Corcovado</u>. Rio de Janeiro, Observatório Nacional, 1968. 15p.
- 07. GAMA, L.I. <u>Valores da gravidade no nordeste e região centro-leste</u> do Brasil. Rio de Janeiro, Observatório Nacional, 1971.45p.
- 08. GEMAEL, C. Aplicações do cálculo matricial em geodésia; 2a.parte: ajustamento de observações. Curitiba, UFPr, Curso de Pós-Graduação em Ciências Geodésicas, 1974. 103p.
- 09. HAMILTON, A.C. World Standards for Gravity Measurements. Journal of the Royal Astronomical Society of Canada, Ottawa, 57(5): 199-209, 1963.
- 10. HAMILTON, A.C. & BRULÉ, B.G. Vibration-induced drift in La Coste & Romberg geodetic gravimeters. <u>Journal of Geophysical Research</u>, Richmond, 72(8):2187-2197, 1967.
- 11. HIRVONEN, R.A. Adjustment by least squares in geodesy and photogrammetry. New York, Frederick Ungar Publishing Co., 1971.261p.
- 12. KOSLOSKY, J.A. & ZIEGLER, R.E. Standards of precision and operating methods for modern gravity surveys. Washington, U.S. Army Topographyc Command, 1969. 10p.
- 13. LACOSTE & ROMBERG, INC. Instruction manual for LaCoste & Romberg, Inc. model G land gravity meter. Austin, s.d. 14p.
- 14. LEJAY, P. <u>Développements modernes de la gravimétrie</u>. Paris, Gauthier-Villars, 1947. 243p.
- 15. LONGMAN, I.M. Formulas for computing the tidal accelerations due to the moon and the sun. <u>Journal of Geophysical Research</u>, Richmond, 64(12):2351-2355, 1959.

- 16. McCONNEL, R.K. Provisional Adjustment of LAPGN. Ottawa, Earth Physics Branch, 1973. 43p.
- 17. McCONNEL, R.K. et alii An evaluation of six LaCoste and Romberg gravimeters for use on the Latin American Primary Gravity Net. Ottawa, Earth Physics Branch, Buenos Aires, Servicio de Hidrografia Naval, Honolulu, Hawaii Institute of Geophysics, 1973. 27p.
- 18. McCONNEL, R.K. et alii Latin American Gravity Standardization Network 1977 (LAGSN 77). Ottawa, SILAG, 1979. 30p.
- 19. MELCHIOR, P. Physique et dynamique planétaires. Louvain, Vander, 1971. V. 1,2.
- 20. MIRONÓV, V.S. <u>Curso de prospección gravimétrica</u>. Barcelona, Reverté, 1977. 525p.
- 21. MORELLI, C. The international gravity standardization net 1971 (I.G.S.N. 71). Paris, Bureau Central de l'Association Internationale de Géodésic, s.d. 194p. (Publication spéciale, 4).
- 22. PICK, M. et alii. Theory of the earth's gravity field. Amsterdam, Elsevier, 1973. 538p.
- 23. PARASNIS, D.S. Principles of Applied Geophysics. London, Champman and Hall Ltd., 1972. 214p.
- 24. ROSIER, F.A. Medidas diferenciais da gravidade: ajustamentos de uma sub-rede de estações gravimétricas e determinação de coeficientes de escala para os gravimetros LaCoste & Romberg modelo G nº 41, 372, 454. Curitiba, UFPr, Curso de Pós-Graduação em Ciências Geodésicas, 1979. 190p.
- 25. SAZHINA, N. & GRUSHINSKY, N. Gravity prospecting. Moscow, Mir Publishers, 1971. 491p.
- 26. SHOKIN, P.F. Gravimetry (apparatus and methods for measuring gravity). Jerusalem, Israel Program for Scientific Translations, 1963. 323p.
- 27. UOTILA, U.A. Introduction to adjustment computattions with matrices. s.l., The Ohio State University, 1976. 84p.
- 28. VANICECK, P. & KRAKIWSKY, E.J. Geodesy: the concepts. Amsterdam, North-Holland Publishing Company, 1982. 691p.