1 Advection

1.1 advec1-t

- \bullet advec1-t.i
- 1D generated mesh with libmesh
- Uses DG Kernels
- InflowBC and OutflowBC
- Transient problem

Figure 1 shows the results. Advects BC. It seems like the variable has to be a CONSTANT MONOMIAL.

Figure 1: Advected density.

1.2 periodic_bc2

- moose/examples/ex04_bcs/periodic_bc2.i
- 1D generated mesh with libmesh
- Periodic BCs
- Transient problem

In *advec1-t-bc.i* I tried to add periodicBCs to the previous problem and it does not work. Here I tried to isolate the problem. Figure 2 shows the results. It does not work if the valiable is a CONSTANT MONOMIAL. It works if the variable is FIRST order (either MONOMIAL or LAGRANGE).

Figure 2: Periodic BCs.

1.3 advec2-t

- advec2-t.i
- ullet 1D generated mesh with libmesh
- Uses DG Kernels
- \bullet Temperature InflowBC and Temperature OutflowBC
- Transient problem

Very similar to *advec1-t.i.* Solves for the temperature advection equation. Advects BC. Figure 3 shows the results.

Figure 3: Advects BC.

1.4 advec3-t

• advec3-t.i

- 1D generated mesh with libmesh
- Uses DG Kernels
- TemperatureInflowBC and TemperatureOutflowBC
- Transient problem

Similar to advec2-t.i Adds a point source and solves for temperature. Figure ?? shows the results.

Figure 4: Advected temperature from point source.

1.5 advec1-ss

- \bullet advec1-ss.i
- 1D generated mesh with libmesh
- Uses DG Kernels
- Inflow and OutflowBC
- Steady problem

Same as previos problem but steady state and adds a source. Figure 5 shows the results.

Figure 5: Steady state solution.

1.6 advec4-t

- \bullet advec4-t.i
- pseudo-1D: 2D-coolant.msh
- Uses DG Kernels
- \bullet Temperature InflowBC and Temperature OutflowBC
- ullet Transient problem

Similar to advec4-t.i but has a q'' on the wall. Figure 6 shows the results.

Figure 6: Advects temperature while wall is been heated.