Modelagem e Simulação Semana 5 (complemento)

Analucia Morales

Método de Monte Carlo (MMC)

- Método Monte Carlo é uma alternativa para fazer inferências quando não se conhece a distribuição do parâmetro de interesse ou quando as suposições de um modelo são violadas.
- Estimar uma distribuição estatística extraindo amostras aleatórias de uma população e observar o comportamento da estatística sobre as amostras.
- Para aplicar o MMC no caso da lavação de carros é necessário acrescentar duas colunas à tabela.

MMC

Classes	Ponto Médio (x_i)	Observações	Frequência Acumulada	Intervalo de Valores
→ 0→5	2,5	35	00 (0,35)	♣ [0,01: 0,35] ←
5→10	7,5	19 _>	0,54	[<u>0,3</u> 6:0,54]
10→15	12,5	19	0,73	[0,55:0,73]
15→20	17,5	13	0,86	[0,74: 0,86]
20→25	22,5	3	0,89	[0,87:0,89]
25→30	27,5	7	0,96	[0,90:0,96]
30→35	32,5	1	0,97	[0,97]
35→40	37,5	(2	0,99	[0,98: 0,99]
40→45	42,5	1	1	[0,00]

Regra para usar a tabela de NA

- Estabelecer uma regra de consulta para deixar o processo mais aleatório possível.
- Por exemplo, para determinar os 15 valores de TEC dos clientes do posto de lavação observa-se a ordem os dois últimos dígitos de cada conjunto, iniciando-se pela primeira linha e primeira coluna, seguindo primeira linha e segunda coluna e assim por diante: 43, 25, 14 ...
- Dividindo-se por 100 estes valores tem-se:
 - -0,43, 0,25, 0,14...MM

Tabela com NAs $\begin{array}{c}
43 \\
100
\end{array}$ $\begin{array}{c}
7.5 \\
100
\end{array}$ $\begin{array}{c}
7.5 \\
100
\end{array}$

98543	59525	21114	73(09	69095	
87060	95250	50277	17486	7962	
82170	68014	7937	980 <u>03</u>	401 <u>46</u>	
48673	26100	23776	66959	84477	
<u>08</u> 560	52600	66188	63746	5849	
68708	28373	27635	52562	18148	
80511	208	61965	66983	70232	
2253	27120	53172	99800	74603	
37110	7752	38216	54843	22496	
<u></u> 1548	6209	79410	99823	17603	

tempo de At. - sontra tabela

MMC

 Voltando a tabela procura-se em que faixa de valores estão os números aleatórios.

- *−* 0*,*43*,* 0*,*25*,* 0*,*14...
- 0,43 corresponde a 7,5;
- 0,25 corresponde a 2,5;
- 0,14 corresponde a 2,5;

Tabela com NAs

81417	85771	25961	84381	88582	7
36602	77275	35226	53601	91939	
79337	250	64655	89710	19526	
60564	55609	64304	10940		
87552	78655	14220	30037	7403	
4951	65135	626	99163	34098	T
1761	1488	35218	11762	11586	
41451	57175	88050	23528	46360	
3646	98017	51286	18545	2393	٠.
2863	33742	19979	10905	34863	<u>.</u>
					نــ

Tabela MMC 0,43

Classes	Ponto Médio (x _i)	Observações	Frequência Acumulada	Intervalo de Valores
0→5	(2,5)	35	0,35	[0,01: 0,35]
5→10	7,5	19	0,54	[0,36:0,54]
10→15	12,5	19	0,73	[0,55:0,73]
15→20	17,5	13	0,86	[0,74: 0,86]
20→25	22,5	3	0,89	[0,87:0,89]
25→30	27,5	7	0,96	[0,90:0,96]
30→35	32,5	1	0,97	[0,97]
35→40	37,5	2	0,99	[0,98: 0,99]
40→45	42,5	1	1	[0,00]

MMC

- O MMC é um conceito básico para compreender os procedimentos básicos que ocorrem dentro de um programa de simulação.
- Quando se está lidando com uma linguagem de simulação, os procedimentos para traduzir este comportamento podem ser realizados de diversas formas.
- Uma delas é descrever ao modelo ou programa a distribuição de frequências das variáveis aleatórias de forma semelhante ao que foi feito.

Exercício

- Usando a tabela de Nas apresentada crie uma sequência de valores para o TEC e para o TS e recalcule as estatísticas apresentadas no exemplo da lavação de carros.
- Compare os resultados, o que é possível observar?
- Regras: Para os TEC utilizar a primeira tabela NA, os dois últimos dígitos seguindo da primeira linha até o final, depois pula para a segunda e assim por diante.
- Para o tempos de atendimento utilizar a segunda tabela de NA e seguir a mesma regra, pegar os dois últimos dígitos de cada linha e seguir até o final e depois passar para a linha seguinte...
- Comparar os resultados com o exercício anterior e colocar no fórum, as tuas observações.

