Numerical Methods for Computational Science and Engineering Summary HS 2009

Pascal Spörri pascal@moeeeep.com

February 2, 2010

Contents

I.	Theory	5
1.	Vector norms and matrix norms	5
2.	Givens Rotations	7
3.	Eigenvalues	8
II.	Computing with Matrices and Vectors	9
4.	Vectors	9
5.	Matrices	9
6.	Elementary operations 6.1. Matrix multiplication rules	9 10
7.	Complexity 7.1. Reading the complexity from a plot	10 10
8.	Numerical stability	10
Ш	. Direct Methods for Linear Systems of Equations	11
9.	Gaussian Elimination 9.1. Stability	11 11
10	. Sparse Matrices	11
11	.QR-Factorization / QR-Decomposition	11
12	Modification Techniques 12.1. Rank-1 modifications	12 12
IV	. Iterative Methods for Non-Linear Systems of Equations	13
13	13.1. Speed of convergence	13 13 13
14	. Fixed Point Iterations	14
	.Zero Finding 15.1. Bisection 15.2. Model Function Methods 15.2.1. Newton Method 15.2.2. Multi Point Methods 15.3. Efficiency	15 15 16 16 16 16
16	. Newton's Method 16.1. The Newton Iteration	17 17

	16.2. Damped Newton Method	17 18
V.	Krylov Methods for Linear Systems of Equations	19
17	Descent Methods 17.1. Abstract steepest descent	19 19 19 20
18	Conjugate gradient method 18.1. Krylov Spaces	20 20 20
19	. Preconditioning	20
20	Survey of Krylov Subspace Methods 20.1. Minimal residual function	21 21
VI	. Eigenvalues	22
21	."Direct" Eigensolvers	22
22	Power Methods 22.1. Direct Power Method 22.1.1. Normalized Cut 22.2. Inverse Iteration 22.3. Preconditioned Inverse Iteration 22.4. Subspace Iterations	22 22 22 23 23 23
VI	I. Least Squares	24
23	Normal Equations	24
VI	IIFiltering Algorithms	25
24	. Discrete Convolutions	25
25	. Discrete Fourier Transform (DFT) 25.1. Two-Dimensional DFT	25 26
26	.Fast Fourier Transform (FFT)	26
ΙX	. Polynomial Interpolation	27
27	. Polynomials	27
28	Polynomial Interpolation: Theory 28.1. Lagrange Polynomials	27 27
29	.Chebychev Interpolation 29.1. Computational Aspects	27 27

Χ.	Piecewise Polynomials	29
30.	Piecewise Lagrange Interpolation 30.1. Piecewise Linear Interpolation	29 29 29
31.	Cubic Hermite Interpolation 31.1. Shape Preserving Hermite Interpolation	29 30
32.	Splines 32.1. Cubic Spline Interpolation	30 30 31
ΧI	. Numerical Quadrature	32
33.	Quadrature Formulas	32
34.	Polynomial Quadrature Formulas	32
35.	Composite Quadrature	33
36.	Gauss Quadrature	33
ΧI	I.Integration of Ordinary Differential Equations: Single Step Methods	35
37.	Initial Value Problems (IVP) for ODEs	35
38.	Euler Methods	35
39.	Convergence of Single Step Methods	36
40.	Runge-Kutta Methods	36
ΧI	IIApplications	37
41.	Electrical circuits	37

Part I.

Theory

1. Vector norms and matrix norms

Definition: Norm

X= vector space over field \mathbb{K} , $\mathbb{K}=\mathbb{R}$, \mathbb{C} . A map $||\cdot||:X\mapsto\mathbb{R}_0^+$ is a norm on X, if it satisfies

- 1. $\forall x \in X : x \neq 0 \iff ||x|| > 0$
- 2. $||\lambda x|| = |\lambda| ||x|| \quad \forall x \in X, \ \lambda \in \mathbb{K}$
- 3. $||x+y|| \le ||x|| + ||y|| \ \forall x, y \in X$

Name	Definition	Matlab function
Euclidean norm	$ \vec{x} _2 = \sqrt{ x_1 ^2 + \dots x_n ^2}$	norm(x)
1-Norm	$ \vec{x} _1 = x_1 + \dots x_n $	norm(x,1)
∞ -norm, max-norm	$ \vec{x} _{\infty} = \max\{ x_1 , \dots, x_n \}$	norm(x,inf)

Definition: Matrix norm

Given a vector norm $||\cdot||$ on \mathbb{R}^n , the associated matrix norm is defined by

$$\mathbf{M} \in \mathbb{R}^{m,n} : \quad ||\mathbf{M}|| := \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\mathbf{M}x}{||x||}$$

Definition: Condition (number) of a matrix

Condition of a matrix $\mathbf{A} \in \mathbb{R}^{n,n}$:

$$cond(\mathbf{A}) := ||\mathbf{A}^{-1}|| \ ||\mathbf{A}||$$

$$cond(\mathbf{A}) \gg 1 \qquad \Longleftrightarrow \qquad \text{columns/rows of } \mathbf{A} \text{ "almost linearly dependent"}$$

Definition: Symmetric positive definite (s.p.d.) matrices

 $\mathbf{M} \in \mathbb{K}^{n,n}$ is symmetric (Hermitian) positive definite if

$$\mathbf{M} = \mathbf{M}^H \wedge x^H \mathbf{M} x > 0 \iff x \neq 0$$

If $x^H \mathbf{M} x \geq 0$ for all $x \in \mathbb{K}^n \Longrightarrow \mathbf{M}$ positiv semi-definite.

Lemma: Necessary conditions for s.p.d. matrices

For a symmetric/hermitian positiv definite matrix $\mathbf{M} = \mathbf{M}^H$ holds true:

- 1. $m_{ii} > 0, i = 1, \ldots, n$
- 2. $m_{ii}m_{jj} |m_{ij}|^2 > 0$; steht so im skript ist wahrscheinlich aber falsch
- 3. All eigenvalues of \mathbf{M} are positive.

Definition: Diagonally dominant matrix

 $\mathbf{A} \in \mathbb{K}^{n,n}$ is diagonally dominant, if

$$\forall k \in \{1, \dots, n\}: \quad \sum_{j \neq k} |a_{kj}| \le |a_{kk}|$$

The matrix **A** is called *strictly diagonally dominant* id

$$\forall k \in \{1, \dots, n\}: \quad \sum_{j \neq k} |a_{kj}| < |a_{kk}|$$

Lemma: Lemma

A diagonally dominant Hermitian/symmetric matrix with non-negative diagonal entries is positive semi-definit.

Definition: Positiv Semidefinite

A diagonally dominant Hermitian/symmetric matrix with non-negative diagonal entries is positive semi-definite.

Theorem: Gaussian elimination for s.p.d. matrices

Every symmetric/Hermitian positive definite matrix possesses an LU-decomposition.

Lemma: Cholesky decomposition for s.p.d. matrices

For any s.p.d $\mathbf{A} \in \mathbb{K}^{n,n}$ there is a unique upper triangular Matrix $\mathbf{R} \in \mathbb{K}^{n,n}$ with $r_{ii} > 0$ $i = 1, \dots n$ such that $\mathbf{A} = \mathbf{R}^H \mathbf{R}$

Definition: Unitary und orthogonal matrices

 $\mathbf{Q} \in \mathbb{K}^{n,n}$ is unitary, if $\mathbf{Q}^{-1} = \mathbf{Q}^H$

 $\mathbf{Q} \in \mathbb{R}^{n,n}$ is orthogonal, if $\mathbf{Q}^{-1} = \mathbf{Q}^T$

Theorem: Criteria for Unitarity

$$\mathbf{Q} \in \mathbb{C}^{n,n}$$
 unitary \iff $||\mathbf{Q}x||_2 = ||x||_2 \ \forall x \in \mathbb{K}^n$

Properties of an unitary/orthogonal matrix

If $\mathbf{Q} \in K^{n,n}$ is unitary, then

$$\bullet \ \mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}$$

•
$$cond(\mathbf{Q}) = 1$$

- all rows/columns (regardes as vectors $\in \mathbb{K}^n$ have Euclidean norm= 1
- all rows are pairwise orthogonal
- $|det \mathbf{Q}| = 1$ and all eigenvalues $\in \{z \in \mathbb{K} : |z| = 1\}$
- $||\mathbf{Q}\mathbf{A}||_2 = ||\mathbf{A}||_2$ for any matrix $\mathbf{A} \in \mathbb{K}^{n,m}$

2. Givens Rotations

Let **A** be a matrix in $\mathbb{R}^{n,n}$ (im not sure if \mathbb{K} is allowed here). The idea is to rotate the columns of **A**, in such a way that they stand orthogonal to each other.

Idea Given $(a, b)^T \in \mathbb{R}^2 \setminus \{0\}$. Find $c, s \in \mathbb{R}$ with

$$\underbrace{\begin{pmatrix} c & s \\ -s & c \end{pmatrix}}_{\mathbf{C}} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} r \\ 0 \end{pmatrix}$$

and $c^2 + s^2 = 1$. Apparently **C** is orthogonal.

Because of the condition $c^2 + s^2 = 1$ it is apparent to represent

$$c = \cos \varphi$$
 $s = \sin \varphi$

Since a rotation doesn't change the length of a vector follows:

$$|r| = ||(r,0)^T||_2 = ||(a,b)^T||_2 = \sqrt{(a^2 + b^2)}$$

It's now easy to get the solution for the problem above:

$$r = \pm \sqrt{(a^2 + b^2)}$$

$$c = \frac{a}{r}$$

$$s = \frac{b}{r}$$

The givens rotation matrix can now be represented through

$$\mathbf{G}_{i,k} \begin{pmatrix} x_1 \\ \vdots \\ x_{2} \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_{i-1} \\ r \\ x_{i+1} \\ \vdots \\ x_{k-1} \\ 0 \\ x_{k+1} \\ \vdots \\ x_m \end{pmatrix}$$

3. Eigenvalues

Definition: Eigenvalues und Eigenvectors

 $\mbox{\bf Eigenvalue} \ \ \lambda \in \mathbb{C} \ \mbox{of} \ \ {\bf A} \in \mathbb{K}^{n,n} \quad :\Leftrightarrow \quad \det(\lambda {\bf I} - {\bf A}) = 0$

 $\textbf{Spectrum} \ \ \text{of} \ \ \mathbf{A} \in \mathbb{K}^{n,n} : \sigma(\mathbf{A}) := \{\lambda \in \mathbb{C} : \text{eigenvalue of } \mathbf{A}\} \ (= \text{Menge aller Eigenwerte})$

Eigenspace associated with eigenvalue $\lambda \in \sigma(\mathbf{A})$

$$Eig_{\mathbf{A}}(\lambda) := Ker(\lambda \mathbf{I} - \mathbf{A})$$

Eigenvetor $x \in Eig_{\mathbf{A}}(\lambda)$ $\{0\}$

Lemma: Gershgorin circle theorem

For any $\mathbf{A}\mathbb{K}^{n,n}$

$$\sigma(\mathbf{A}) \subset \bigcup_{j=1}^{n} \left\{ z \in \mathbb{C} : |z - a_{jj}| \le \sum_{i \ne j} |a_{ji}| \right\}$$

Lemma: Similarity and spectrum

The spectrum of a matrix is invariant with respect to similarity transformations

$$\forall \mathbf{A} \in \mathbb{K}^{n,n} : \sigma(\mathbf{S}^{-1}\mathbf{A}\mathbf{S}) = \sigma(\mathbf{A}) \forall \text{ regular } \mathbf{S} \in \mathbb{K}^{n,n}$$

Theorem: Schur normal form

 $\forall \mathbf{A} : \exists \mathbf{U} \in \mathbb{C}^{n,n} \text{ unitary } : \quad \mathbf{U}^H \mathbf{A} \mathbf{A} = T \qquad \text{with} \mathbf{T} \in \mathbb{C}^{n,n} \text{ upper triangular}$

A matrix $\mathbf{A} \in \mathbb{K}^{n,n}$ with $\mathbf{A}\mathbf{A}^H = \mathbf{A}^H\mathbf{A}$ is called *normal*.

Part II.

Computing with Matrices and Vectors

4. Vectors

Column vector =
$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{K}^n$$

Row Vector = $(x_1 \dots x_n)$

Initialization of vectors in matlab

column_vector = [1;2;3];
row_vector = [1,2,3];

5. Matrices

A $n \times m$ Matrix:

$$\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \dots & & \dots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} \in \mathbb{K}^{n,m}$$

Accessing matrix and sub-matrices

Single entry $(\mathbf{A})_{i,j} = a_{i,j}$,

i: Row (Zeile)

j: Column (Spalte)

i-th row $(\mathbf{A})_{i,:}$

 ${f j}$ -th column $({f A})_{:,j}$

Types There are two different matrix storage formats used in matlab normal data is placed in a one-dimensional array using the row major format.

sparse Compressed row-storage (CRS) format. Space: O(n+m), Access time: O(n)

6. Elementary operations

dot product $x \cdot y = x^H y = \sum_{i=1}^n \overline{x}_i y_i \in K$

tensor product $xy^H = (x_i \overline{y}_j)_{i=1,\dots,m} \ j=1,\dots,n} \in \mathbb{K}^{m,n}$

row scaling multiplication with a diagonal matrix from left

$$\begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & & d_n \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & & a_{2m} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} = \begin{pmatrix} d_1 a_{11} & d_1 a_{12} & \dots & d_1 a_{1m} \\ d_2 a_{21} & d_2 a_{22} & & d_2 a_{2m} \\ \vdots & & & \vdots \\ d_n a_{n1} & d_n a_{n2} & \dots & d_n a_{nm} \end{pmatrix}$$

column scaling multiplication with diagonal matrix from right

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & & a_{2m} \\ \vdots & & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & & d_m \end{pmatrix} = \begin{pmatrix} d_1 a_{11} & d_2 a_{12} & \dots & d_m a_{1m} \\ d_1 a_{21} & d_2 a_{22} & & d_m a_{2m} \\ \vdots & & & \vdots \\ d_1 a_{n1} & d_2 a_{n2} & \dots & d_m a_{nm} \end{pmatrix}$$

6.1. Matrix multiplication rules

The matrix product is

associative (AB)C = A(BC)

bi-linear $(\alpha A + \beta B)C = \alpha(AC) + \beta(BC), C(\alpha A + \beta B) = \alpha(CA) + \beta(CB)$

non-commutative $AB \neq BA$

7. Complexity

operation	description	# mult/div	# add/sub	complexity
dot product	$(x, y \in \mathbb{K}^n) \mapsto x^H y$	n	n-1	O(n)
tensor product	$(x \in \mathbb{K}^m, y \in K^n) \mapsto xy^H$	nm	0	O(nm)
matrix product	$(A \in \mathbb{K}^{n,m}, B \in \mathbb{K}^{n,k}) \mapsto AB$	nmk	mk(n-1)	O(nmk)

7.1. Reading the complexity from a plot

Plot the time measurements for different $t_i = time(f(n_i))$ for different $n_1, n_2, \dots, n_k, n_i \in \mathbb{N}$

plot	function	complexity
loglog	straight line	$O(n^{\alpha})$ for some α
semilog	straight line	$O(\alpha^n)$ form some α

8. Numerical stability

Definition: Stable algorithm

An Algorithm G for solving a problem $F: X \mapsto Y$ is numerically stable, if for all $x \in X$ its result G(x) is the exact result for "slightly perturbed" data:

$$\exists C \approx 1: \ \forall x \in X: \ \exists \hat{x} \in X: \ ||x - \hat{x}|| \le Ceps||x|| \land G(x) = F(\hat{x})$$

Part III.

Direct Methods for Linear Systems of Equations

Given matrix $A \in K^{n,n}$, vector $b \in K^n$

Sought solution vector $x \in \mathbb{K}^n$

9. Gaussian Elimination

Asymptotic complexity: $O(n^3)$. (Backsubstitution: $O(n^2)$)

$$\mathbf{A} = \begin{pmatrix} \alpha & \mathbf{c}^T \\ d & \mathbf{C} \end{pmatrix} \rightarrow \mathbf{A}' = \begin{pmatrix} \alpha & \mathbf{c}^T \\ 0 & \mathbf{C}' = \mathbf{C} - \frac{\mathbf{d}\mathbf{c}^T}{\alpha} \end{pmatrix}$$

9.1. Stability

Lemma: Equivalence of gaussian elimination and LU-factorization

The following algorithms for solving the LSE $\mathbf{A}x = b$ are numerically equivalent

- 1. Gauss elimination without pivoting
- 2. LU-factorization followed by forward and backward substitution

10. Sparse Matrices

Initialization:

```
A = sparse(m,n);
A = spalloc(m,n,nnz)
A = sparse(i,j,s,m,n);
A = spdiags(B,d,m,n);
A = speye(n);
A = spones(S);
```

Theorem: LU-Decomposition Fill-in on sparse matrices

If $\mathbf{A} \in \mathbb{K}^{n.n}$ is regular with LU-decomposition $\mathbf{A} = \mathbf{L}\mathbf{U}$, then the fill-in is confined to the envelope of \mathbf{A}

Solving Sparse Band Matrices

Alter the LSE with Gauss and try to remove the fill-in (see: set 3, problem 3)

11. QR-Factorization / QR-Decomposition

A QR decomposition (also called a QR factorization) of a matrix is a decomposition of the matrix into an orthogonal and a right triangular matrix.

QR-Decomposition with Householder reflections advantageous for fully populated target columns (dense matrices).

QR-Decomposition with Givens Rotations more efficient, if target column sparsely populated

Lemma: Uniqueness of QR-factorization

The "econimcal QR-factorization of $\mathbf{A} \in \mathbb{K}^{m,n}$, $m \geq n$ with $rank(\mathbf{A}) = n$ is unique, if we demand $r_{ii} > 0$

Stability of the QR-Decomposiztion

- Computing the generalized QR-decomposition $\mathbf{A} = \mathbf{Q}\mathbf{R}$ by means of Householder reflections or Givens rotations is (numerically) stable for any $\mathbf{A} \in \mathbb{C}^{m,n}$
- For any regular systems matrix ans LSE can be solved by means of

QR-Decomposition + orthogonal transformation + backward substitution

12. Modification Techniques

Lemma: Sherman Morrison Woodbury formula

For regular $\mathbf{A} \in \mathbb{K}^{n,n}$, and $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{n,k}$, $l \leq n$, holds

$$(\mathbf{A} + \mathbf{U}\mathbf{V}^H)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{I} + \mathbf{V}^H\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}^H\mathbf{A}^{-1}$$

If $\mathbf{I} + \mathbf{V}^H \mathbf{A}^{-1} \mathbf{U}$ regular.

12.1. Rank-1 modifications

with LU-Decomposition Let $\tilde{\mathbf{A}} := \mathbf{A} + uv^H$, $u, v \in \mathbb{K}^n$. uv^H is a general rank 1 matrix. For solving $\tilde{\mathbf{A}}x = b$ when $\mathbf{A} = \mathbf{L}\mathbf{U}$ is already known. Apply the Sherman Morrison Woodbury formula:

$$x = \left(\mathbf{I} - \frac{\mathbf{A}^{-1}uv^H}{1 + v^H \mathbf{A}^{-1}u}\right) \mathbf{A}^{-1}b$$

with QR-Decomposition Matlab Command

[Q1,R1] = qrupdate(Q,R,u,v)

with Cholesky factorization Matlab Command

R = cholupdate(R,v)

Part IV.

Iterative Methods for Non-Linear Systems of Equations

13. Iterative Methods

An iterative method for (approximately solving) the non-linear equation $F(\vec{x}) = 0$ is an algorithm generating a sequence $(x^{(k)})_{k \in \mathbb{N}}$ of approximate solutions.

Definition: Convergence of iterative methods

An iterative methods converges

$$x^{(k)} \to x^* \text{ and } F(x^*) = 0$$

Definition: Consistency of iterative methods

An iterative method is *consistent* with F(x) = 0

$$:\iff \quad \Phi_F(x^*, x^*, \dots, x^*) = x^* \iff F(x^*) = 0$$

13.1. Speed of convergence

Definition: Linear convergence

A sequence $x^{(k)}$, k = 0, 1, 2, ... in \mathbb{R}^n converges linearly to $x^* \in \mathbb{R}^n$ if

$$\exists L < 1 \quad \left| \left| x^{(k+1)} - x^* \right| \right| \le C \left| \left| x^{(k)} - x^* \right| \right| \quad \forall k \in \mathbb{N}_0$$

 \implies straight line in *lin-log plot*.

Definition: Order of convergence

A convergent sequence $x^{(k)}$, k = 0, 1, 2, ... in \mathbb{R}^n converges with order **p** to $x^* \in \mathbb{R}^n$ if

$$\exists C > 0: \quad \left| \left| x^{(k+1)} - x^* \right| \right| \le C \left| \left| x^{(k)} - x^* \right| \right|^p \qquad \forall k \in \mathbb{N}_0$$

with C < 1. (For p = 1: linear convergence)

Guessing the order of convergence

Abbreviate $\varepsilon_k := \left| \left| x^{(k)} - x^* \right| \right|$

$$\varepsilon_{k+1} \approx C \varepsilon_k^p \quad \Rightarrow \ \log \varepsilon_{k+1} \approx \log C + p \log \varepsilon_k \quad \to \quad p \approx \frac{\log \varepsilon_{k+1} - \log \varepsilon_k}{\log \varepsilon_k - \log \varepsilon_{k-1}}$$

13.2. Termination criteria

Usually the iteration will never arrice at an/the exact solution x^* after finitely many steps. Thus we can only hope to compute an approximate solution by accepting an $x^{(k)}$ as a result.

A priori termination stop iteration after a fixed number of steps.

Problem: Hardly ever possible

A posteriori termination criteria use already computed iterates to decide when to stop. Reliable termination: stop iteration

$$\left| \left| x^{(k)} - x^* \right| \right| \le \tau$$
 $\tau \equiv \text{ prescribed } tolerance$

Problem: x^* not known

Stationary iteration use that the finite numbers are finite: Wait until (convergent) iteration becomes stationary.

$$wait\ until: x^{(k)} = x^{(k+1)}$$

Problem: Very inefficent

Residual based termination Stop convergent iteration when

$$\left| \left| F\left((x^{(k)}) \right) \right| \right| \le \tau$$
 $\tau \equiv \text{ prescribed } tolerance$

Problem: No guaranteed accuracy since $||F((x^{(k)})|| \text{ small } \Rightarrow |x^{(k)} - x^*| \text{ small.}$

14. Fixed Point Iterations

F is a non-linear system of equations with $F:D\subset\mathbb{R}^n\mapsto\mathbb{R}^n$

A fixed point iteration is defined by an iteration function $\Phi: U \subset \mathbb{R}^n \to \mathbb{R}^n$ and an initial guess $x^{(0)} \in U$.

$$x^{(k+1)} := \Phi\left(x^{(k)}\right)$$

Definition: Consistency of fixed point iterations

A fixed point iteration $x^{(k+1)} := \Phi(x^{(k)})$ is consistent with F(x) = 0 if

$$F(x) = 0$$
 and $x \in U \cap D$ \iff $\Phi(x) = x$

If Φ continous and the fixed point iteratin is (locally) convergent to x^* then x^* ist the fixed point of the iteration function Φ .

Definition: Contractive mapping

 $\Phi: U \subset \mathbb{R}^n \mapsto \mathbb{R}^n$ is contractive, if

$$\exists L < 1: \quad ||\Phi(x) - \Phi(y)|| \le ||x - y|| \quad \forall x, y \in U$$

Theorem: Banach's fixed point theorem

If $D \subset \mathbb{K}^n$ ($\mathbb{K} = \mathbb{R}, \mathbb{C}$) closed and $\Phi : D \mapsto D$ satisfies

$$\exists L < 1: \quad ||\Phi(x) - \Phi(y)|| \le ||x - y|| \quad \forall x, y \in U$$

then there is a unique fixed point $x^* \in D$, $\Phi(x^*) = x^*$, which is the limit of the sequence of iterates $x^{(k+1)} := \Phi(x^{(k)})$ for any $x^{(0)} \in D$

$$-1 < \Phi'(x^*) < 1$$
 convergence
 $\Phi'(x^*) < -1$ divergence
 $\Phi'(x^*) > 1$ divergence

Lemma: Sufficient condition for local linear convergence of fixed point iterations

If $\Phi: U \subset \mathbb{R}^n \to \mathbb{R}^n$, $\Phi(x^*) = x^*$, Φ differentiable in x^* and $||D\Phi(x^*)|| < 1$, then the fixed point iteration converges locally and at least *linearly*.

If $0 < ||D\Phi(x)|| < 1$, then the asymptotic rate of linear convergence is $L = ||D\Phi(x)||$ (where as L: lipschitz constant).

Lemma: Higher order local convergence of fixed point iterations

If $\Phi: U \subset \mathbb{R} \to \mathbb{R}$ is m+1 times continuously differentiable, $\Phi(x^*) = x^*$ for some x^* in the interrior of U and $\Phi^{(l)}(x^*) = 0$ for $l = 1, \ldots, m, m \ge 1$, then the fixed point iteration converges locally to x^* with

$$order \geq m+1$$

15. Zero Finding

 $F: I \subset \mathbb{R} \mapsto \mathbb{R}$ continous, I interval. Sought: $x^* \in I: F(x^*) = 0$.

15.1. Bisection

Use of ordering of real numbers and itermediate value theorem. Input: $a, b \in I$ such that F(a)F(b) < 0 (different signs).

```
function x = bisect(F,a,b,tol)
    fa = F(a);
    fb = F(b);
    if (fa*fb > 0)
        error('f(a) and f(b) have the same sign');
    v = 1;
    if (fa > 0)
    x = 0.5 * (a+b);
    while ((b-a > tol) & (a < x) & (x < b))
        if (v*F(x) > 0)
            b = x;
            a = x;
        end
        x = 0.5*(a+b)
    end
end
```

Advantages foolproof, requires only F evaluations

Drawbacks Merely linear convergence $|x^{(k)} - x^*| \le 2^{-k}|b-a|$

 \Longrightarrow fzero uses this approach.

15.2. Model Function Methods

Model function Methods is a class of iterative methods for finding zeroes of F:

Idea Given: approximate zeroes $x^{(k)}, x^{(k-1)}, \dots, x^{(k-m)}$

- 1. replace F with a model function \tilde{F} (using function values/derivative values in $x^{(k)}, x^{(k-1)}, \dots, x^{(k-m)}$)
- 2. $x^{(k+1)} := \text{zero of } \tilde{F}$

Distinguish between one-point methods and multipoint methods.

15.2.1. Newton Method

Assume: $F: I \to \mathbb{R}$ continuously differentiable. Model function := tangent af F in $x^{(k)}$.

$$\tilde{F}(x) := F\left(x^{(k)}\right) + F'\left(x^{(k)}\right)\left(x - x^{(k)}\right)$$

with $x^{(k+1)} := \text{zero of the tangent.}$

We obtain the Newton Iteration

$$x^{(k+1)} := x^{(k)} - \frac{F(x^{(k)})}{F'(x^{(k)})}$$
 with $F'(x^{(k)}) \neq 0$

15.2.2. Multi Point Methods

Replace F with an *interpolation polynomial* producing interpolatory model function methods.

Secant Method

$$x^{(k+1)} = \text{ zero of secant}$$

$$s(x) = x^{(k)} - \frac{F(x^{(k)}) - F(x^{(k-1)})}{F(x^{(k)}) - F(x^{(k-1)})} \cdot (x - x^{(k)})$$

$$\Rightarrow x^{(k+1)} = x^{(k)} - \frac{F(x^{(k)}) \cdot (x^{(k)} - x^{(k-1)})}{F(x^{(k)}) - F(x^{(k-1)})}$$

- Only one function evaluation per step
- no derivatives required

15.3. Efficiency

Efficiency of an iterative method \leftrightarrow computational effort to reach prescribed number of significant digits in result.

Computational effort/step

$$W \approx \frac{\#\{\text{evaluations of } F\}}{\text{step}} + n \cdot \frac{\#\{\text{evaluations of } F'\}}{\text{step}} \dots$$

Definition: Efficiency

Efficiency =
$$\frac{\text{\# of digits gained}}{\text{total work required}} = \frac{|\log p|}{k(p) \cdot W}$$

k(p) = number of steps to achieve relative reduction of error

 $|\log p|$ = number of significant digits of $x^{(k)}$

16. Newton's Method

16.1. The Newton Iteration

Definition: Newton Iteration

$$x^{(k+1)} := x^{(k)} - DF(x^{(k)})^{-1}F(x^{(k)})$$

```
function x = newton(x,F,DF,tol)
    for i = 1:MAXIT
        s = DF(x) \ F(x);
        x = x - s;
        if (norm(s) < tol*norm(x))
            return;
    end
end</pre>
```

If DF(x) is not available use

$$\frac{\delta F_i}{\delta x_j}(x) \approx \frac{F_i(x + h\vec{e_j}) - F_i(x)}{h}$$

to approximate DF(x). Warning: Impact of roundoff errors for small h.

The Newton Method has Local quadratic convergence if $DF(x^*)$ is regular.

A posteriori termination criterion

Quit as soon as

$$\left\| DF\left(x^{(k)}\right)^{-1} F(x^{(k)}) \right\| < \tau \left\| x^{(k)} \right\|$$

Since we expect that $DF(x^{(k-1)}) \approx DF(x^{(k)})$, when the Newton Iteration has converged

The Newton Method

- converges asymptotically very fast: doubling of number of significant digits in each step
- often a very small region of convergence, which requires an initial guess rather close to the solution

16.2. Damped Newton Method

We observe an "overshooting" of the Newton correction.

Idea: Use a damping factor for the Newton correction:

$$x^{(k+1)} := x^{(k)} - \lambda^{(k)} DF(x^{(k)})^{-1} F(x^{(k)})$$
 with: $\lambda^{(k)} > 0$

Choice of damping factor: Use maximal $\lambda^{(k)} > 0: \left|\left|\Delta \overline{x}\left(\lambda^{(k)}\right)\right|\right| \leq \left(1 - \frac{\lambda^{(k)}}{2}\right) \left|\left|\Delta x^{(k)}\right|\right|$ where

$$\Delta x^{(k)} = DF\left(x^{(k)}\right)^{-1} F\left(x^{(k)}\right)$$
$$\Delta \overline{x}\left(\lambda^{(k)}\right) = DF\left(x^{(k)}\right)^{-1} F\left(x^{(k)} + \lambda^{(k)} \Delta x^{(k)}\right)$$

Policy

Reduce damping factor by a factor $q \in]0,1[$ (usually $q=\frac{1}{2}$) until the affine invariant natural monotonicity test passed.

16.3. Quasi-Newton Method (Broyden Method)

Use when DF(x) is not available and numerical differentiation is too expensive. Worthwhile for dimensions $n\gg 1$ and low accuracy requirements.

Part V.

Krylov Methods for Linear Systems of Equations

A class of *iterative methods* for approximate solutions of large linear systems of equations.

17. Descent Methods

Definition: Energy norm

A s.p.d matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ induces a energy norm

$$||x||_{\mathbf{A}} := (x^T \mathbf{A} x)^{1/2} \quad x \in \mathbb{R}^n$$

Lemma: S.p.d LSE and quadratic minimization problem

An LSE with $\mathbf{A} \in \mathbb{R}^{n,n}$ s.p.d is equivalent to a minimization problem:

$$\mathbf{A}x = b \iff x = \arg\min_{y \in \mathbb{R}^n} J(y), \quad J(y) = \frac{1}{2}y^T \mathbf{A}y - b^T y$$

17.1. Abstract steepest descent

Given continuously differentiable $F:D\subset\mathbb{R}^n\mapsto\mathbb{R}$

Find minimizer $x^* \in D : x^* = \arg\min_{x \in D} F(x)$

$$\begin{array}{l} x^{(0)} \in D \\ k = 0 \\ \textbf{while} \ \big| \big| x^{(k)} - x^{(k-1)} \big| \big| \leq \tau \, \big| \big| x^{(k)} \big| \big| \ \textbf{do} \\ d_k = -\mathbf{grad} F(x^{(k)}) \\ t^* = \arg \min_{t \in \mathbb{R}} F(x^{(k)} + t d_k) \\ x^{(k+1)} = x^{(k)} + t^* d_k \\ k = k+1 \\ \textbf{end while} \end{array}$$

17.2. Gradient Method for s.p.d linear systems of equations

Adapt the steepest descent algorithm for the quadratic minimization problem.

$$F(x) = J(x) = \frac{1}{2}x^T \mathbf{A} x - b^T x \quad \Rightarrow \quad \mathbf{grad} J(x) = \mathbf{A} x - b$$

$$\begin{array}{l} x^{(0)} \in \mathbb{R}^n \\ k = 0 \\ r_0 = b - \mathbf{A} x^{(0)} \\ \mathbf{while} \ \big| \big| x^{(k)} - x^{(k-1)} \big| \big| \leq \tau \, \big| \big| x^{(k)} \big| \big| \ \mathbf{do} \\ t^* = \frac{r_k^T r_k}{r_k^T \mathbf{A} r_k} \\ x^{(k+1)} = x^{(k)} + t^* r_k \\ r_{k+1} = r_k - t^* \mathbf{A} r_k \\ k = k+1 \\ \mathbf{end \ while} \end{array}$$

17.3. Convergence

The steepest descent and the gradient method posess at least linear convergence

Theorem: Convergence of gradient/steepest descent method

The iterates of the gradient method satisfy

$$\left| \left| x^{(k+1)} - x^* \right| \right|_A \le L \left| \left| x^{(k)} - x^* \right| \right|_A \qquad L = \frac{\operatorname{cond}_2(\mathbf{A}) - 1}{\operatorname{cond}_2(\mathbf{A}) + 1}$$

that is, the iteration converges at least linearly

18. Conjugate gradient method

Again, we consider a linear system of equations $\mathbf{A}x = b$ with s.p.d system matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ and given $b \in \mathbb{R}^n$

Idea Replace linear search with subspace correction

Given Initial gues $x^{(0)}$ and nested subspaces $U_1 \subset U_2 \subset \ldots \subset U_n = \mathbb{R}^n$, dim $U_k = k$

$$U_{k+1} = Span\{U_k, r_k\}$$

18.1. Krylov Spaces

Definition: Krylov Space

For $\mathbf{A} \in \mathbb{R}^{n,n}$, $z \in \mathbb{R}^n$, $z \neq 0$, the *l*-th Krylov space is defined as

$$\mathcal{K}(\mathbf{A}, z) = Span\{z, \mathbf{A}z, \dots, A^{l-1}z\}$$

Lemma:

The subspaces $U_k \subset \mathbb{R}^n$, $k \geq 1$ defined above satisfy

$$U_k = Span\{r_0, \mathbf{A}r_0, \dots, A^{l-1}r_0\} = \mathcal{K}(\mathbf{A}, z)$$

where $r_0 = b - \mathbf{A}x^{(0)}$ is the initial residual.

18.2. Implementation of CG

Left out

CG is used for lager n as iterative solver $x^{(k)}$ for some $k \ll n$ is expected to provide good approximation for x^*

19. Preconditioning

CG has a slow convergence rate in case $K(\mathbf{A}) \gg 1$

Idea Apply CG Method to transformed linear systems

$$\tilde{\mathbf{A}}\tilde{x} = \tilde{b}$$

$$\tilde{\mathbf{A}} = \mathbf{B}^{-1/2}\mathbf{A}\mathbf{B}^{-1/2}$$

$$\tilde{x} = \mathbf{B}^{1/2}x$$

$$\tilde{b} = \mathbf{B}^{-1/2}b$$

where as $\mathbf{B}^{1/2} = \mathbf{Q}^T \mathbf{D}^{1/2} \mathbf{Q}$ and $\mathbf{Q} = \mathbf{Q}^T$.

Preconditioner

A s.p.d matrix $\mathbf{B} \in \mathbb{R}^{n,n}$ is called a *preconditioner* for the s.p.d matrix $\mathbf{A} \in \mathbb{R}^{n,n}$ if

- 1. $\mathcal{K}(\mathbf{A}^{-1/2}\mathbf{A}\mathbf{B}^{-1/2})$ is "small"
- 2. the evaluation of $\mathbf{B}^{-1}x$ is about as expensive as the matrix vector multiplication $\mathbf{A}x$, $x \in \mathbb{R}^n$

20. Survey of Krylov Subspace Methods

20.1. Minimal residual function

Replace inner Euclidean product in CG with A-inner product.

$$\left| \left| x^{(l)} - x \right| \right|_A$$
 replaced with $\left| \left| \mathbf{A}(x^{(l)} - x) \right| \right|_2$

 $minres \Longrightarrow Iterative solver for symmetric Matrices A$

gmres \Longrightarrow Iterative solver for general Matrices A

Part VI.

Eigenvalues

21. "Direct" Eigensolvers

All "direct" eigensolvers are iterative methods

```
function d= eigqr(A,tol)
    n = size(A,1);
    while (norm(tril(A,-1))> tol*norm(A))
        shift = A(n,n);
        [Q,R] = qr(A-shift*eye(n));
        A = Q'*A*Q;
        tril(A,-1)
    end
    d = diag(A);
end
```

22. Power Methods

22.1. Direct Power Method

Initial Guess $z^{(0)}$ "arbitrary"

Next Iterate $w = Az^{(k-1)}, z^{(k)} = \frac{w}{||w||_2}$

Computes the eigenvector for λ_{max} . Get eigenvalue through raleigh quotient.

Definition: Raleigh Quotient

$$p_{\mathbf{A}}(u) = \frac{u^H \mathbf{A} u}{u^H u}$$

If $\lambda \in \sigma(\mathbf{A})$ and $z \in Eig_{\lambda}(\mathbf{A})$ then $p_{\mathbf{A}}(z) = \lambda$.

22.1.1. Normalized Cut

Pixel set $V: \{1, \ldots, nm\}$

Indexing (since all pixels are saved in a row)

$$k = index(pixel_{i,j}) = (i-1)n + j$$

Notation

$$p_k = (\mathbf{P})_{ij}$$
 $k = 1, \dots, nm$

Local similarity matrix $\mathbf{W} \in \mathbb{R}^{N,N}$ where as N = nm.

$$(\mathbf{W})_{i,j} = \begin{cases} 0 & \text{if pixels } i, j \text{ not adjacent} \\ 0 & \text{if } i = j \\ \sigma(p_i, p_j) & \text{if pixels } i \text{ and } j \text{ adjacent} \end{cases}$$

 σ is a similarity function

$$\sigma(x,y) = e^{-\alpha(x-y)^2}$$
 $\alpha > 0$

Definition: Normalized Cut

For $\mathcal{X} \subset \mathcal{V}$ we define the normalized cut as

$$Ncut(\mathcal{X}) = \frac{cut(\mathcal{X})}{weight(\mathcal{X})} + \frac{cut(\mathcal{X})}{weight(\mathcal{V} \setminus \mathcal{X})}$$

with

$$cut(\mathcal{X}) = \sum_{i \in \mathcal{X}, \ j \notin \mathcal{X}} w_{ij}, \qquad weight(\mathcal{X}) = \sum_{i \in \mathcal{X}, \ j \in \mathcal{V}} w_{ij}$$

Segmentation problem find

$$\mathcal{X}^* \subset \mathcal{V}: \mathcal{X}^* = \arg\min_{\mathcal{X} \subset \mathcal{V}} Ncut(\mathcal{X})$$

Reformulate the problem

Indicator function:
$$z: \{1, \dots N\} \mapsto \{-1, 1\}, \ z_i := z(i) = \left\{ \begin{array}{ll} 1 & \text{if } i \in \mathcal{X} \\ -1 & \text{if } i \notin \mathcal{X} \end{array} \right.$$

Lemma: Ncut and Rayleigh quotient

With $z \in \{-1, 1\}^N$ (indicator function) there holds

$$Ncut(\mathcal{X}) = \frac{y^T \mathbf{A} y}{y^T \mathbf{D} y}, \qquad y = (1+z) - \beta(1-z), \quad \beta = \frac{\sum_{z_i > 0} d_i}{\sum_{z_i < 0} d_i}$$

22.2. Inverse Iteration

If $\mathbf{A} \in \mathbb{K}^{n,n}$ regular:

Smallest (in modulus) EV of
$$\mathbf{A} = \frac{1}{\text{(Largest (in modulus) EV of } \mathbf{A}^{-1})}$$

22.3. Preconditioned Inverse Iteration

Given $\mathbf{A} \in \mathbb{K}^{n,n}$ find smallest Eigenvalue of regular \mathbf{A} . Instead of solving $\mathbf{A}w = z^{(k-1)}$ compute $w = \mathbf{B}^{-1}z^{(k-1)}$ with "inexpensive s.p.d. approximate inverse $\mathbf{B}^{-1} \approx \mathbf{A}^{-1}$ (\mathbf{B} : preconditioner).

Initial Guess $z^{(0)}$

Next Iterate

$$w = z^{(k-1)} - \mathbf{B}^{-1}(\mathbf{A}z^{(k-1)}) - p_{\mathbf{A}}(z^{(k-1)})z^{(k-1)}$$
$$z^{k} = \frac{w}{||w||_{2}}$$

- Linear convergence
- fast convergence if spectral condition number $\mathcal{K}(\mathbf{B}^{-1}\mathbf{A})$ small.

22.4. Subspace Iterations

Task Compute $m, m \ll n$ of the largest/smallest eigenvalues of $\mathbf{A} = \mathbf{A}^H$ and associated eigenvectors.

Use orthogonality of the Eigenvectors.

Part VII. Least Squares

Given $\mathbf{A} \in \mathbb{K}^{m,n}, \ m, \ n \in \mathbb{N}, \ b \in \mathbb{K}^m$

Find $x \in \mathbb{K}^n$ such that

- 1. $||\mathbf{A}x b|| = \inf\{||\mathbf{A}y b||_2 : y \in \mathbb{K}\}$
- 2. ||x|| is minimal

Lemma: Existence & Uniqueness of Solutions of the Least squares problem

The least squares problem for $\mathbf{A} \in \mathbb{K}^{m,n}$, $\mathbf{A} \neq 0$ has a unique solution for every $b \in \mathbb{K}^m$

23. Normal Equations

$$\mathbf{A}^H \mathbf{A} x = \mathbf{A}^H b$$

Numerically unstable

$$cond_2(\mathbf{A}^H\mathbf{A}) = cond_2(\mathbf{A})^2$$

Part VIII.

Filtering Algorithms

24. Discrete Convolutions

Definition: Discrete Convolution

Given $x = (x_0, \dots, x_{n-1})^T \in \mathbb{K}^n$, $h = (h_0, \dots, h_{n-1})^T \in \mathbb{K}^n$ their discrete convolution is the vector $y \in \mathbb{K}^{2n-1}$ with components

$$y_k = \sum_{j=0}^{n-1} h_{k-j} x_j, \qquad k = 0, \dots, 2n-2$$

Definition: Discrete Periodic Convolution

The discrete periodic convolution of two n-periodic sequences $(x_k)_{k\in\mathbb{Z}}$, $(y_k)_{k\in\mathbb{Z}}$ yields the n-periodic sequence

$$(z_k) = (x_k) *_n (y_k)$$

$$z_k = \sum_{j=0}^{n-1} x_{k-j} y_j = \sum_{j=0}^{n-1} \qquad k \in \mathbb{Z}$$

Definition: Circulant Matrix

A matrix $\mathbf{C} = (c_{ij})_{i,j=1}^n \in \mathbb{K}^{n,n}$ is *circulant*

: $\Leftrightarrow \exists (u_k)_{k \in \mathbb{Z}} \ n - \text{periodic sequence:} \ c_{ij} = u_{i-j}, \ 1 \leq i, j \leq n$

25. Discrete Fourier Transform (DFT)

Fourier-Matrix

$$F_n = \begin{pmatrix} w_n^0 & w_n^0 & \dots & w_n^0 \\ w_n^0 & w_n^1 & \dots & w_n^{n-1} \\ w_n^0 & w_n^2 & \dots & w_n^{2n-2} \\ \vdots & \vdots & & \vdots \\ w_n^0 & w_n^{n-1} & \dots & w_n^{(n-1)^2} \end{pmatrix}$$

$$w_n^k = e^{2\pi i k/n}$$

Lemma: Properties of Fourier Matrix

The scaled Fourier Matrix $\frac{1}{\sqrt{n}}\mathbf{F}_n$ is unitary:

$$\mathbf{F}_n^{-1} = \frac{1}{n} \mathbf{F}_n^H = \frac{1}{n} \overline{\mathbf{F}}_n$$

Lemma: Diagonalization of Circulant Matrices

For any circulant matrix $\mathbf{C} \in \mathbb{K}^{n,n}$, $c_{ij} = u_{i-j}$, $(u_k)_{k \in \mathbb{Z}}$ n-periodic sequence, holds true

$$\mathbf{C}\overline{\mathbf{F}}_n = \overline{\mathbf{F}}_n diag(d_1, \dots, d_n)$$

$$d = \mathbf{F}_n(u_0, \dots, u_{n-1})^T$$

Conclusion:

$$\mathbf{C} = \mathbf{F}_n^{-1} diag(d_1, \dots, d_n) \mathbf{F}_n$$

Definition: Discrete Fourier Transform (DFT)

The linear map $\mathcal{F}_n: \mathbb{C}^n \mapsto \mathbb{C}^n$, $\mathcal{F}_n(y) := \mathbf{F}_n y$, $y \in \mathbb{C}^n$ is called discrete Fourier transform

```
%% DFT
c = fft(y)
%% Inverse DFT
y = ifft(c);
```

25.1. Two-Dimensional DFT

26. Fast Fourier Transform (FFT)

Complexity of FFT algorithm: $n = 2^L$

$$O(L2^L) = O(n \log_2 n)$$

Part IX.

Polynomial Interpolation

27. Polynomials

$$\mathcal{P}_k := \{ t \mapsto a_k t^k + a_{k-1} t^{k-1} + \dots + a_0, \ a_i \in \mathbb{K} \}$$

Theorem: Dimension of Space of Polynomials

$$\dim \mathcal{P}_j = k+1$$
 and $\mathcal{P}_k \subset C^{\infty}(\mathbb{R})$

Matlab:

$$a_k t^k + a_{k-1} t^{k-1} + \dots + a_0$$
 (use horner schema to calculate)

polyval(p,x);

28. Polynomial Interpolation: Theory

Given: Simple nodes $t_0, \ldots, t_n, n \in \mathbb{N}, -\infty < t_0 < t_1 < \cdots < t_n < \infty$ and the values $y_0, \ldots, y_n \in \mathbb{K}$ compute $p \in \mathcal{P}_n$ such that

$$p(t_j) = y_j$$
 for $j = 0, \dots n$

28.1. Lagrange Polynomials

For nodes $t_0 < t_1 < \cdots < t_n$ consider

Lagrange Polynomials:
$$L_i(t) = \prod_{j=0 \ \land \ j \neq i}^n \frac{t-t_j}{t_i-t_j}$$

29. Chebychev Interpolation

Definition: Chebychev Polynomial

The n^{th} Chebychev Polynomial is

$$T_n(t) = \cos(n \arccos(t))$$
 $-1 \le t \le 1$
Zeros of T_n : $t_k = \cos\left(\frac{2k-1}{2n}\pi\right)$, $k = 1, \dots, n$

Scaling argument

$$[-1,1] \xrightarrow{\hat{t} \mapsto t := a + \frac{1}{2}(\hat{t}+1)(b-a)} [a,b] \qquad \hat{f}(\hat{t}) := f(t)$$

29.1. Computational Aspects

Theorem: Orthogonality of Chebychef polynomials

The Chebychef polynomials are orthogonal with respect to the scalar product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \frac{1}{\sqrt{1 - x^2}} dx$$

Theorem: Representation formula

The interpolation polynomial p of f in the Chebychev nodes x_0, \ldots, x_n (the zeros of T_{n+1} is given by:

$$p(x) = \frac{1}{2}c_0 + c_1T_1(x) + \dots + c_nT_n(x)$$

with

$$c_k = \frac{2}{n+1} \sum_{t=0}^{n} f\left(\cos\left(\frac{2l+1}{n+1} \cdot \frac{\pi}{2}\right)\right) \cdot \cos\left(k\frac{2l+1}{n+1} \cdot \frac{\pi}{2}\right)$$

Theorem: Clenshah algorithm

Let $p \in \mathcal{P}_n$ be an arbitrary polynomial

$$p(x) = \frac{1}{2}c_0 + c_1T_1(x) + \ldots + c_nT_n(x)$$

Set

$$d_{n+2} = d_{n+1} = 0$$

 $d_k = c_k + (2x) \cdot d_{k+1} - d_{k+2}$ for $k = n, n - 1, \dots, 0$

Then

$$p(x) = \frac{1}{2}(d_0 - d_2)$$

The Clenshaw algorithm is numerically stable

Part X.

Piecewise Polynomials

Perspective Data Interpolation

Problem Model a functional relation: $f: I \subset \mathbb{R} \to \mathbb{R}$ from the (exact) measurements $(t_i, y_i), i = 0, ..., n$.

Interpolation constraint $f(t_i) = y_i \ \forall i$

Goal Shape preserving interpolation

 $\begin{array}{cccc} \text{positive data} & \to & \text{positive interpolant } f \\ \text{monotonic data} & \to & \text{monotonic interpolant } f \\ \text{convex data} & \to & \text{convex interpolant } f \end{array}$

30. Piecewise Lagrange Interpolation

30.1. Piecewise Linear Interpolation

Data $(t_i, y_i) \in \mathbb{R}^2, \ i = 0, \dots, n, \ n \in \mathbb{N}, \ t_0 < t_1 < \dots < t_n$

Piecewise linear interpolant connect the dots with direct lines.

$$s(x) = \frac{(t_{i+1} - t)y_i + (t - t_i)y_{i+1}}{t_{i+1} - t_i} \qquad t \in [t_i, t_{i+1}]$$

30.2. Piecewise Polynomial Interpolation

Use a polynom instead of a direct line.

31. Cubic Hermite Interpolation

Given Mesh points $(t_i, y_i) \in \mathbb{R}^2$, i = 0, ..., n, $t_0 < t_1 < ... < t_n$

Goal Function $f \in \mathbb{C}^1([t_0, t_n]), f(t_i) = y_i, i = 0, \dots, n$

$$s(t) = y_{i-1}H_1(t) + y_iH_2(t) + c_{i-1}H_3(t) + c_iH_4(t), \qquad t \in [t_{i-1}, t_i]$$

$$H_1(t) = \phi\left(\frac{t_i - t}{h_i}\right)$$

$$H_2(t) = \phi\left(\frac{t - t_{i-1}}{h_i}\right)$$

$$H_3(t) = -h_i\theta\left(\frac{t_i - t}{h_i}\right)$$

$$H_4(t) = h_i\theta\left(\frac{t - t_{i-1}}{h_i}\right)$$

$$h_i = t_i - t_{i-1}$$

$$\phi(\tau) = 3\tau^2 - 2\tau^3$$

$$\theta(\tau) = \tau^3 - \tau^2$$

Choose slopes c_i according to specification. For example:

$$c_i = \begin{cases} \Delta_1 & \text{for } i = 0\\ \Delta_n & \text{for } i = n\\ \frac{t_{i+1} - t_i}{t_{i+1} - t_{i-1}} \Delta_i + \frac{t_i - t_{i-1}}{t_{i+1} - t_{i-1}} \Delta_{i+1} & \text{if } i \leq i < n \end{cases}$$

$$\Delta_j = \frac{y_j - y_{j-1}}{t_j - t_{j-1}}$$

31.1. Shape Preserving Hermite Interpolation

Hermite interpolation does not preserve monotonicity. Choose a different formula for the slopes:

$$c_{i} = \begin{cases} 0 & \text{if } sgn(\Delta_{i}) \neq sgn(\Delta_{i+1}) \\ \frac{1}{w_{a}} + \frac{w_{b}}{\Delta_{i+1}} & \text{(weighted average)} & \text{otherwise} & (w_{a} + w_{b} = 1) \end{cases}$$

Concrete choice of weights:

$$w_a = \frac{2h_{i+1} + h_i}{3(h_{i+1} + h_i)}$$
 $w_b = \frac{h_{i+1} + 2h_i}{3(h_{i+1} + h_i)}$ Matlab Function: pchip

32. Splines

Definition: Spline Space

Given an interval $I = [a, b] \subset \mathbb{R}$ and a mesh $\mathcal{M} := \{a = t_0 < t_1 < \ldots < t_{n-1} < t_n = b\}$, the vector space $\mathcal{S}_{d,\mathcal{M}}$ of the spline functions of degree d (or order d+1 is defined by

$$S_{d, \uparrow} := \left\{ s \in C^{d-1}(I) : \ s_j = s_{|[t_{j-1}, t_j]} \in \mathcal{P}_d \ \forall j = 1, \dots, n \right\}$$

d = 0: \mathcal{M} -piecewise constant discontinuous functions

 $d=1:\mathcal{M}$ -piecewise linear continuous functions

d=2: continuously differentiable \mathcal{M} -piecewise quadratic functions

Dimension of Spline Space

Dimension of spline space by counting argument

$$dim \mathcal{S}_{d,\mathcal{M}} = n \cdot dim \mathcal{P}_d - \#\{C^{d-1}\text{continuity constraints}\} = n \cdot (d+1) - (n-1) \cdot d = n+d$$

32.1. Cubic Spline Interpolation

Special case of Spline interpolation. Since C^2 -functions are perceived as smooth. Choose d=3.

Reuse representation through cubic Hermite basis polynomials:

$$s_{[t_{j-1},t_j]}(t) = s(t_{j-1}) \cdot (1 - 3\tau^2 + 2\tau^3) + s(t_j) \cdot (3\tau^2 - 2\tau^3) + h_j s'(t_{j-1}) \cdot (\tau - 2\tau^2 + \tau^3) + h_j s'(t_j) \cdot (-\tau^2 + \tau^3)$$
 with $h_j = t_j - t_{j-1}$ and $\tau = (t - t_{j-1})/h_j$

Produces Linear n-1 linear equations for n slopes

$$\frac{1}{h_{j}}c_{j-1} + \left(\frac{2}{h_{j}} + \frac{2}{h_{j+1}}\right)c_{j} + \frac{1}{h_{j+1}}c_{j+1} = 3\left(\frac{y_{j} - y_{j-1}}{h_{j}^{2}} + \frac{y_{j+1} - y_{j}}{h_{j+1}^{2}}\right) \qquad c_{j} = s'(t_{j})$$

$$\begin{pmatrix} b_{0} & a_{1} & b_{1} & 0 & \cdots & \cdots & 0\\ 0 & b_{1} & a_{2} & b_{2} & 0 & & \vdots\\ \vdots & 0 & \ddots & \ddots & \ddots & \ddots & \vdots\\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots\\ \vdots & & & 0 & b_{n-3} & a_{n-1} & b_{n-2} & 0\\ 0 & \cdots & \cdots & 0 & b_{n-2} & a_{0} & b_{n-1} \end{pmatrix} \begin{pmatrix} c_{0} \\ \vdots \\ \vdots \\ c_{n} \end{pmatrix} = \begin{pmatrix} 3\left(\frac{y_{1} - y_{0}}{h_{1}^{2}} + \frac{y_{2} - y_{1}}{h_{2}^{2}}\right) \\ \vdots \\ \vdots \\ \vdots \\ 3\left(\frac{y_{n-1} - y_{n-2}}{h_{n-1}^{2}} + \frac{y_{n} - y_{n-1}}{h_{n}^{2}}\right) \end{pmatrix} \Rightarrow \begin{cases} a_{j} = \frac{1}{h_{j}} \\ b_{j} = \frac{2}{h_{j}} + \frac{2}{h_{j+1}} \\ \vdots \\ 3\left(\frac{y_{n-1} - y_{n-2}}{h_{n-1}^{2}} + \frac{y_{n} - y_{n-1}}{h_{n}^{2}}\right) \end{pmatrix}$$

Two additional constraints are required, three different choices are possible (put them into the LSE above):

Complete cubic spline interpolation

$$s'(t_0) = c_0$$
$$s'(t_n) = c_n$$

Natural cubic spline interpolation

$$s''(t_0) = s''(t_n) = c_n \qquad \Rightarrow \begin{cases} \frac{2}{h_1}c_0 + \frac{1}{h_1}c_1 = 3\frac{y_1 - y_0}{h_1^2} \\ \frac{1}{h_n}c_{n-1} + \frac{2}{h_n}c_n = 3\frac{y_n - y_{n-1}}{h_n^2} \end{cases}$$

Periodic cubic spline interpolation

$$s'(t_0) = s'(t_n)$$

$$s''(t_0) = s''(t_n)$$

produces an $n \times n$ -linear system with s.p.d. coefficient matrix: TODO: REDO MATRIX

$$\begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 & b_0 \\ b_1 & a_2 & b_2 & \ddots & & 0 \\ 0 & b_2 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & b_{n-2} & 0 \\ 0 & & \ddots & b_{n-2} & a_{n-1} & b_{n-1} \\ b_0 & 0 & \cdots & 0 & b_{n-1} & a_0 \end{pmatrix}$$

Matlab function: v = spline(t,y,x)

32.2. Shape Preserving Spline Interpolation

Since the cubic spline interpolant is not monotonicty or curvature-preserving. We fix the slopes c_i in the nodes using the harmonic mean of data slopes Δ_j , the final interpolant will be tangents of these segments in the points (t_i, y_i) is a local maximum or minimum of the data, c_j is set to zero.

$$c_i = \begin{cases} \frac{2}{\Delta_i^{-1} + \Delta_{i+1}^{-1}} & \text{if } sign(\Delta_i) = sign(\Delta_{i+1}) \\ 0 & \text{otherwise} \end{cases}$$

$$c_0 = 2\Delta_1 - c_1$$

$$c_n = 2\Delta_n - c_{n-1}$$

$$\Delta_j = \frac{y_j - y_{j-1}}{t_j - t_{j-1}}$$

Part XI.

Numerical Quadrature

Approximate evaluation of $\int_{\Omega} f(x)dx$, integration domain $\Omega \subset \mathbb{R}^d$. Continuous function $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}$ only available as function y=f(x) (point evaluation).

33. Quadrature Formulas

n-point quadrature formula on

$$[a,b]:$$

$$\int_a^b f(t)dt \approx Q_n(f) = \sum_{j=1}^n w_j^n f(\xi_j^n)$$

 w_j^n : Quadrature weights $\in \mathbb{R}$

 ξ_j^n : Quadrature nodes $\in [a, b]$

Given Quadrature formula $(\hat{\xi}_j, \hat{w}_j)_{j=1}^n$ on reference interval [-1, 1]

Idea Transformation formula for integrals

$$\int_a^b f(t)dt = \frac{1}{2}(b-a)\int_{-1}^1 \hat{f}(\tau)d\tau = \frac{1}{2}(b-a)\int_{-1}^1 \hat{f}\left(\frac{1}{2}(1-\tau)a + \frac{1}{2}(\tau+1)b\right)d\tau$$

34. Polynomial Quadrature Formulas

Idea replace integrand f with $p_{n-1} \in \mathcal{P}_{n-1} = \text{polynomial interpolant of } f$ for given interpolation nodes $\{t_0, \ldots, t_{n-1}\} \subset [a, b]$.

$$\int_{a}^{b} f(t)dt \approx Q_{n}(f) := \int_{a}^{b} p_{n-1}(t)dt$$

Newton Cotes Formulas

n=1: Trapezoidal rule (order 2)

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{2}(f(a) + f(b))$$

n=2: Simpson rule (order 4)

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

 $n \ge 8$: Quadrature formulas with negative weights

$$\begin{split} \int_{a}^{b} f(t)dt &\approx \frac{b-a}{28350} \Bigg(989f(a) + 5888f\left(\frac{b-a}{8}\right) - 928f\left(\frac{b-a}{4}\right) + 10496f\left(3\frac{b-a}{8}\right) - \\ &4540f\left(\frac{b-a}{2}\right) + 10496f\left(5\frac{b-a}{8}\right) - 928f\left(3\frac{b-a}{4}\right) + 5888f\left(7\frac{b-a}{8}\right) + 989f\left(b\right) \Bigg) \end{split}$$

Warning: Negative weights compromise numerical stability.

Quadrature Error

Quadrature error estimates directly from L^{∞} -interpolation error for Lagrangian interpolation with polynomial degree n-1

$$f \in C^{n}([a,b]) \Rightarrow \left| \int_{a}^{b} f(t)dt - Q_{n}(f) \right| \leq \frac{1}{n!} (b-a)^{n+1} \left| \left| f^{(n)} \right| \right|_{L^{\infty}([a,b])}$$

35. Composite Quadrature

With $a = x_0 < x_1 < \ldots < x_{m-1} < x_m = b$

$$\int_{a}^{b} f(t)dt = \sum_{j=1}^{m} \int_{x_{j-1}}^{x_{j}} f(t)dt$$

- Partition integration domain [a, b] by mesh
- Apply the quadrature formulas from above on the sub-intervals

Theorem: Convergence of composite quadrature formulas

For a composite quadrature formula Q based on a local quadrature formula of order $p \in \mathbb{N}$ holds:

$$\exists C > 0: \left| \int_{I} f(t)dt - Q(f) \right| \leq Ch^{p} \left| \left| f^{(p)} \right| \right|_{L^{\infty}(I)} \qquad h: \text{max Mesh width}$$

Lemma: Bound for order of quadrature formula

There is no *n*-point quadrature of order 2n + 1

36. Gauss Quadrature

Necessary & Sufficient conditions of order 4

$$Q_n(p) = \int_a^b p(t)dt \ \forall p \in \mathcal{P}_3 \quad \Leftrightarrow \quad Q_n(t^q) = \frac{1}{q+1}(b^{q+1} - a^{q+1}), \qquad q = 0, 1, 2, 3$$

This gives us 4 equations:

$$\int_{-1}^{1} 1 dt = 2 = 1w_1 + 1w_2$$

$$\int_{-1}^{1} t dt = 0 = \xi_1 w_1 + \xi_2 w_2$$

$$\int_{-1}^{1} t^2 dt = \frac{2}{3} = \xi_1^2 w_1 + \xi_2^2 w_2$$

$$\int_{-1}^{1} t^3 dt = 0 = x_1^3 w_1 + \xi_2^3 w_2$$

$$\implies w_1 = 1$$

$$w_2 = 1$$

$$\xi_1 = \frac{1}{2}$$

33

 $\xi_2 = \frac{-1}{2}$

Theorem: Existence of n-point quadrature formulas of order 2n

Let $\{\overline{P}_n\}_{n\in\mathbb{N}_0}$ be a family of non-zero polynomials that satisfies

- $\overline{P}_n \in \mathcal{P}_n$
- $\int_{-1}^{1} q(t) \overline{P}_n(t) dt = 0$ for all $q \in \mathcal{P}_{n-1}$
- The set $\{\xi_j^n\}_{j=1}^m w_j^n f(\xi_j^n)$ of real zeros of $\overline{\P}_n$ is contained in [-1,1]

then
$$Q_n(f) = \sum_{j=1}^m w_j^n f(\xi_j^n)$$

Lemma: Zeros of Legendre Polynomials

 P_n has n distinct zeros in]-1,1[.

Part XII.

Integration of Ordinary Differential Equations: Single Step Methods

37. Initial Value Problems (IVP) for ODEs

Initial value problem (IVP) for first-order ordinary differential equation (ODE)

$$\dot{y} = f(t, y)$$
$$y(t_0) = y_0$$

- $f: I \times D \mapsto \mathbb{R}^d$ (= right hand side) given in procedural form: function v = f(t,y)
- $I \subset \mathbb{R}$ (= time interval)
- $D \subset \mathbb{R}^d$ (= state space / phase space)
- $\Omega = I \times D$ (= extended state space)
- t_0 (= initial time)
- y_0 (= initial value)

For d > 1: $\dot{y} = f(t, y)$ can be viewed as a system of ordinary differential equations.

$$\dot{y} = f(y) \iff \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} f_1(t, y_1, \dots, y_n) \\ \dots \\ f_n(t, y_1, \dots, y_n) \end{pmatrix}$$

Autonomous IVP
$$H:$$

$$\begin{cases} \dot{y} &= f(y) \\ y(0) &= y_0 \end{cases}$$

Assumption: Global Solutions

All solutions of H are global. $J(y_0) = \mathbb{R}$ for all $y_0 \in D$

Definition: Evolution Operator

Under the Assumption above the mapping:

$$\Phi: \left\{ \begin{array}{ll} \mathbb{R} \times D & \mapsto D \\ (t, y_0) & \mapsto \Phi'(y_0) = y(t) \end{array} \right.$$

where $t \mapsto y(t) \in C^1(\mathbb{R}, \mathbb{R}^d)$ is the unique (global) solution of the IVP $\dot{y} = f(y)$. $y(0) = y_0$ is the evolution operator for the autonomous ODE $\dot{y} = f(y)$

38. Euler Methods

Idea timestepping: successive approximation of evolution on small intervals $[t_{k-1}, t_k]$ Approximation of solution on $[t_{k-1}, t_k]$ by tangent curve to current global condition.

Explicit Euler Method

Explicit euler method generates a sequence by the recursion:

$$y_{k+1} = y_k + h_k f(t_k, y_k)$$
 $k = 0, \dots, N-1$

with local timestep $h_k = t_{k+1} - t_k$

Implicit Euler Method

$$y_{k+1} = y_k + h_k f(t_{k+1}, y_{k+1})$$

39. Convergence of Single Step Methods

$$e_{k+1} = \Psi^{h_k} y_k - \Psi^{h_k} y(t_k) = \underbrace{\Psi^{h_k} y_k - \Psi^{h_k} y(t_k)}_{\text{propagated error}} + \underbrace{\Psi^{h_k} y(t_k) - \Psi^{h_k} y(t_k)}_{\text{one-step erro}}$$

40. Runge-Kutta Methods

$$\begin{array}{ll} \dot{y}(t) & = f(t,y(t)) \\ y(t_0) & = y_0 \end{array} \right\} \quad \Rightarrow \quad y(t_1) = y_0 + \int_{t_0}^{t_1} f(\tau,y(\tau)) d\tau$$

Idea Approximate integral by means of s-point quadratur formula defined on reference interval [0,1] with nodes c_1, \ldots, c_s and weights b_1, \ldots, b_s

$$y(t_1) \approx y_1 = y_0 + h \sum_{i=1}^{s} b_i f(t_0 + c_i h, y(t_0 + c_i h))$$
 $h = t_1 - t_0$

Get $y(t_0 + c_i h)$ by bootstrapping.

Part XIII.

Applications

41. Electrical circuits

Consider the following linear circuit ($U_{input} = U, R_1, R_2$ given). Since the circuit is grounded: $U_{ground} = 0$

To derive the linear system of equations. One has to look at the specific nodes and create an LSE:

Node 1

$$\frac{1}{R_1} \cdot (U_1 - U) + \frac{1}{R_1} \cdot (U_1 - 0) + \frac{1}{R_2} \cdot (U_1 - U_2) = 0$$

$$\implies \left(2\frac{1}{R_1} + \frac{1}{R_2}\right) \cdot U_1 - \frac{1}{R_2} \cdot U_2 = \frac{1}{R_1} \cdot U$$

Node 2

$$-\frac{1}{R_2} \cdot U_1 + 4\frac{1}{R_2} \cdot U_2 - \frac{1}{R_2} \cdot U_3 = \frac{1}{R_2} \cdot U$$

Node 3

$$-\frac{1}{R_2} \cdot U_2 + \left(2\frac{1}{R_1} + \frac{1}{R_2}\right) \cdot U_3 = \frac{1}{R_1} \cdot U$$

Now we are able to create the LSE:

$$\begin{pmatrix} 2\frac{1}{R_1} + \frac{1}{R_2} & -\frac{1}{R_2} & 0\\ -\frac{1}{R_2} & 4\frac{1}{R_2} & -\frac{1}{R_2}\\ 0 & -\frac{1}{R_2} & 2\frac{1}{R_1} + \frac{1}{R_2} \end{pmatrix} \begin{pmatrix} U_1\\ U_2\\ U_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{R_1}U\\ \frac{1}{R_2}U\\ \frac{1}{R_1}U \end{pmatrix}$$