NYU - Tandon School of Engineering

Tandon Bridge - LATEX Reference Guide

1 Basic

1.1 Creating Document

```
\documentclass{article}
\usepackage{amsmath}
\begin{document}

    :
\end{document}
```

1.2 Sectioning

Use * for showing *title* only without the section number.

```
\Section{Section Title}
\Section*{Section Title}
\Subsection{Sub-Section Title}
\Subsubsection {Sub-Sub-Section Title}
```

1.3 Breaking

```
\begin{tabular}{ll} $| line\ break \\ $| line\ break \\ $| start\ a\ new\ page \\ \end{tabular}
```

1.4 Font Styles

```
\begin{tabular}{ll} $\operatorname{boldface}$ & Boldface \\ \operatorname{textit} {\operatorname{Italics}}$ & Italics \\ \operatorname{textit} {\operatorname{Typewriter}}$ & Typewriter \\ \end{tabular}
```

1.5 Colour

```
\usepackage{color}
\textcolor{red}{Text colour in Red}
\colorbox{cyan}{Box background colour in Cyan}

Text colour in Red
Box background colour in Cyan
```

1.6 Enumerate & Itemize

```
\begin{enumerate}
                          1. Item A
                                                \begin{itemize}
                                                                            • Item A
  \item{Item A}
                                                  \item{Item A}
                          2. Item B
                                                                            • Item B
  \item{Item B}
                                                  \item{Item B}
  \begin{enumerate}
                                                  \begin{itemize}
                              (a) Item c
                                                                                - Item c
   \item{Item c}
                                                   \item{Item c}
                               d) Item d
                                                                                * Item d
   \item[d)]{Item d}
                                                   \item[*]{Item d}
  \end{enumerate}
                                                  \end{itemize}
\end{enumerate}
                                                \end{itemize}
```

1.7 Tabular

Use | inside the $\{cols\}$ for vertical line. Use hline for horizontal line. 1 - left-aligned. r - right-aligned. c - centered.

```
\begin{tabular}{|1|cc|r|} \hline
Number & Bit 1 & Bit 2 & Bit String \\ \hline
1 & 0 & 0 & 00 \\
2 & 0 & 1 & 01 \\
3 & 1 & 0 & 10 \\
4 & 1 & 1 & 11 \\ \hline
\end{tabular}
```

Number	Bit 1	Bit 2	Bit String
1	0	0	00
2	0	1	01
3	1	0	10
4	1	1	11

1.8 Reserved Characters

2 Mathematical Typesetting

Mathematical typesetting can be done in math mode or display math mode. Most of the symbols are available in the amsmath package by $\mathcal{A}_{M}\mathcal{S}$. \usepackage{amsmath}

2.1 Math Mode & Display Math Mode

Math mode for inline mathematical formula.

p or q can be denoted as \((p \ vee q \) \\ p and q can be denoted as
$$p \lor q$$
 \\ p and q can be denoted as $p \land q$

Display math mode generates the mathematical typeset outside of the text.

\begin{displaymath}
$$(x + y)^2 = x^2 + 2xy + y^2 \\ \text{end}\{\text{displaymath}\}$$

$$(x + y)^2 = x^2 + 2xy + y^2 \\$$

amsmath package equation structures. Use * to omit the number.

2.2 Subscripts & Superscripts

$${\tt x^6x^4 = x^\{6 + 4\}} \qquad \quad x^6x^4 = x^{6+4}$$

$$x^6x^4 = x^{6+4}$$

$${\rm TEXT^{Superscript}}$$

$$A_{16} = 1010_{2}$$
 $A_{16} = 1010_{2}$

$$A_{16} = 1010_2$$

$$\rm TEXT_{Subscripts}$$

Mathematics Constructions in LaTeX

$$\label{eq:frac} $$ \frac{x-y}{x+\frac{1}{y}}$$$

$$\frac{x-y}{x+\frac{1}{y}} \qquad \texttt{\cfrac}\{\texttt{x-y}\}\{\texttt{x+\cfrac}\{\texttt{1}\}\{\texttt{y}\}\}$$

$$\frac{x-y}{x+\frac{1}{y}}$$

$$\sqrt{x - y}$$

$$\sqrt{x-y}$$

$$\sqrt{x-y}$$
 \sqrt[89]{x - y}

$$\sqrt[89]{x-y}$$

Symbols 2.4

Some of the symbols are from amssymb package. Include \usepackage{amssymb} to use those symbols.

\wedge	\wedge	\vee	\vee	$\setminus \mathtt{neg}$	\neg	\oplus	\oplus
\rightarrow	\rightarrow	leftrightarrow	\leftrightarrow	\equiv	=	\forall	\forall
\exists	3	\therefore	<i>:</i> .	\not\equiv	\neq	\leq	\leq
geq	\geq	\neq	\neq	\times	×	\div	÷
\subset	\subset	subseteq	\subseteq	\in	\in	$\setminus \mathtt{notin}$	∉
\cap	\cap	\cup	\cup	\blacksquare		because	• • •
varnothing	Ø	\emptyset	Ø	nexists	∄	\infty	∞
nsubseteq	⊈	\not\subset	⊄	approxeq	\approxeq	\approx	\approx
\spadesuit	•	ackslashheartsuit	\Diamond	\clubsuit	*	\diamondsuit	\Diamond
nmid	ł						

2.5Blackboard Bold Symbol

$$\label{eq:linear_problem} $$ \mathbb{N} $ \mathbb{Z} $ \mathbb{Z}^+ \mathbb{Q} $ \mathbb{Q} $ \mathbb{R} $ \mathbb{R}^+ $$$

2.6 **Delimiters**

$$|-\mathbf{x}| \quad |-x| \quad \text{lfloor 3.14159 rfloor} \quad [3.14159] \quad \text{lceil 2.71828 rceil} \quad [2.171828] \quad \text{left/lfloor } \\ | \frac{x}{y} \quad | \frac{x}{y} \quad$$

Variable-Sized Symbols

The size of the symbols will be different in math mode and display math mode.

2.8 Overline

 $| (A \setminus A \setminus B) | = (A) \setminus B$

2.9 Greek Letters

2.9.1 Lower Case

ackslashalpha	α	ackslashbeta	β	$\setminus \mathtt{gamma}$	γ	$ackslash exttt{delta}$	δ
ackslashepsilon	ϵ	\zeta	ζ	\eta	η	ackslashtheta	θ
ackslashiota	ι	\setminus kappa	κ	$\backslash \mathtt{lambda}$	λ	\mu	μ
\nu	ν	\xi	ξ	o (omicron)	0	\pi	π
ρ	ho	$\setminus \mathtt{sigma}$	σ	\tau	au	$\setminus \mathtt{upsilon}$	v
\phi	ϕ	ackslashchi	χ	\psi	ψ	$\backslash \mathtt{omega}$	ω

2.9.2 Upper Case

A (Alpha)	A	B (Beta)	В	$\backslash \mathtt{Gamma}$	Γ	$ackslash exttt{Delta}$	Δ
E (Epsilon)	\mathbf{E}	Z (Zeta)	\mathbf{Z}	H (Eta)	Η	\Theta	Θ
I (Iota)	I	K (Kappa)	K	\setminus Lambda	Λ	M (Mu)	\mathbf{M}
N (Nu)	N	\Xi	Ξ	O (Omicron)	O	\Pi	Π
P (Rho)	Р	\Sigma	Σ	T (Tau)	${ m T}$	\Upsilon	Υ
\Phi	Φ	X (Chi)	X	\Psi	Ψ	Omega	Ω

2.10 Function Name

\	$^{\setminus}$ ln	ln \	lim	lim \	$\backslash log$	log	$\label{log_2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	\log_2
\	max	max \	min	min \	exp	exp	\Pr	\Pr

2.11 Dots

2.12 Matrices

```
\label{lem:posterior} $$ \begin{array}{ll} \begin{array}{l} \operatorname{begin}\{\operatorname{equation*}\} \\ \operatorname{holomorphism} \\ \operatorname{n} & \\ \\ \operatorname{r} \\ \operatorname{end}\{\operatorname{pmatrix}\} \\ = \operatorname{frac}\{\operatorname{n!}\}\{\operatorname{r!}(\operatorname{n-r})!\} \\ \\ \operatorname{end}\{\operatorname{equation*}\} \end{array}
```

2.13 Cases

```
 \begin{array}{lll} \left| \text{begin} \{ \text{equation*} \} \right| & & & \\ |x| & = \left| \text{begin} \{ \text{cases} \} \right| & & & \\ x & & & \\ -x & & & \\ \text{end} \{ \text{cases} \} & & \\ & & & \\ \text{end} \{ \text{equation*} \} & & & \\ \end{array} \right| |x| = \begin{cases} x & : x \geq 0 \\ -x & : x < 0 \end{cases}
```

2.14 Xy-pic

It uses the xy package. Include \space [all] $\{xy\}$ to use xymatrix. \space R - Row space. \space C - Column space. \space - down. 1 - left. \space - right.

```
\xymatrix@R=18pt@C=48pt{
    x \ar[dr] & a \\
    y \ar[dr] & b \\
    z \ar[uur] & c
}
```