v-FORTH 1.7

ZX Spectrum Next version

1990-2023 Matteo Vitturi

...000...

Introduction &
Technical Information

...000...

Build 20230626

1 Foreword

This document introduces a Forth implementation suitable to run on **Sinclair ZX Spectrum Next.** This is more a technical reference and not an introductory book to Forth.

One of the best book available on Forth is "Starting Forth" by Leo Brodie, and – since this Forth implementation uses old days' 16-bits Arithmetics – the older the version the better it will fit.

In essence, this is a *partly standardised* FIG-Forth ported to the new **Sinclair ZX Spectrum Next** based on my previous work **v-Forth 1.413** available somewhere in The Internet at https://sites.google.com/view/vforth/vforth1413 and at https://github.com/mattsteeldue/vforth. The main difference from further previous version is that now vForth uses a single dedicated file on SD (instead of on ZX Microdrive cartridges or DISCiPLE disks) to provide a Block/Screen facility.

Though this is a working and functional piece of software, the porting is still "work-in-progress", as there are many things to do to cope with all the new Sinclair ZX Spectrum Next's functionalities.

The latest **version 1.7** – available on the GitHub repository at https://github.com/mattsteeldue/vforth-next – splits the dictionary structure in two parts, a name-space and a code-space, by exploiting some 8K RAM pages available providing a more efficient usage of memory so that there is much more memory available for actual code. This also means there is nomore fear in create long-name definitions, since the definition's name uses *heap memory* and don't uses *standard memory*. The very same facility provides some *heap-memory* capability described in § 6.3.

From **versions 1.6**, v-Forth runtime is way faster than any previous version thanks to the idea of dedicating more registers to keep track of the internal status of Forth virtual machine.

Starting from **version 1.52**, the behavior of VARIABLE is "standard" and doesn't need an initial value: this means that some older syntax à *la* White Lightning may not work properly, since it leave some spurious initialisation data on the stack that isn't used by VARIABLE anymore.

Starting from version **v-Forth 1.51**, this Forth comes with two flavors: Direct-Threaded or Indirect-Threaded code. Direct-Threaded offers some 25% of more speed at the cost of more memory allocation for each colon-definition. See § 3.7.1 for some technical detail.

1.1 MIT License

Copyright (c) 1990-2023 Matteo Vitturi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.2 Typos and suggestions

I, the author am not a native English speaker and you, very likely, will find grammatical errors. In this case, it would be kindly appreciated if you could drop me a line with any suggestion and/or correction at *matteo* -underscore-vitturi@yahoo.com.

1.3 Acknowledgment

Special thanks goes to Roland Herrera that helped to edit this whole documentation.

1.4 Document structure

Chapter 2 describes how to install, activate and get acquainted with the Forth environment, briefly exposing various basic options and utilities, such as chosing case-sensitive, editing screens & blocks and feeding your source code to build new definitions.

Chapter 3 lists some important utilities and libraries you can use while in Forth, most of them can be imported in your session using **NEEDS**.

Chapter 3.1: Since the old fashion Screen/Block facility is a very quick way of coding in Forth, a **Full Screen Editor EDIT** is available. To edit *larger text files* (**Chapter 3.3**), I've coded the **Large file EDitor** aka LED that is able to handle files as large as 17.568 rows, 85 characters per row; it's a "work-in-progress" though.

Chapter 3.2 introduces **GRAPHICS** library to manage **Modes** and **Layers** Library along with **Color** and **Attributes** definitions;

Chapter 3.4 introduces the **MOUSE** facility relying upon the **Interrupt Service Routine** library (**Chapter 3.5**): see the demo/color-picker.f demo a a nice example of interrupt-driven mouse cursor movement.

Chapter 3.6 provides the old fashion BLOCK oriented Search and Locate Utility;

Chapter 3.7 explains the inner parts of Forth introducing the SEE Debugger Utility.

Chapter 3.8 shows how to call the Standard-ROM **FLOATING point** calculator.

Chapter 3.9 keeps the obsolete Line Oriented Editor that's the foundation for the aforementioned Full Screen Editor.

Chapter 3.10 introduces the **ASSEMBLER** vocabulary.

Chapter 4 gives some deeper insight and technical information about the Inner-interpreter

Chapter 5 is a straight list of error messages.

Chapter 6 provides detailed information of Forth Dictionary where each definition is explained in a formal way

Chapter 6.1 is the "core" dictionary list, where almost all definitions are available at COLD start, then

Chapter 6.2 introduces the optional set of definitions that provides the Case-Of structure.

Chapter 6.3 describes the **Heap Memory Facility** to access the huge quantity of memory available: from this **Version 1.7** Forth's dictionary itself relies upon this Heap Memory Facility allowing the the most main memory to the actual code.

Chapter 6.4 introduces the Testing Suite, to show that vForth wants to comply to modern Standard.

Chapter 6.5 for other utilities.

Chapter 7 briefly shows the memory map.

1.5 Legend

Much effort was put to keep the document to the following convenctions:

Courier New is used whenever a Forth definition is referenced or to indicate some typed-in source code.

Calibri is used elsewhere

All definitions explained in the dictionary pages are introduced in the form:

where "n1 n2 ..." represents the Stack status before A-WORD is executed, and "n3 n4 ..." represents the Stack status after A-WORD is executed. Special behavior, such as IMMEDIATE definitions are explained properly.

a	memory address	16 bits
b	byte, small unsigned integer	8 bits
С	character	8 bits, but often only lower 7 are significant.
d	signed double integer	32 bits
fh	file-handle (NextZXOS)	8 bits
fp	floating point number (see §3.8)	32 bits
ha	heap-pointer address (see §6.3 and >FAR)	16 bits.
n	signed integer	16 bits
u	unsigned integer	16 bits
ud	unsigned double integer	32 bits
f	flag: a number evaluated as a boolean	16 bits
_	-	16 bits
ff	false flag: zero	
tf	true flag: non-zero	16 bits
nfa	name field address	16 bits
lfa	link field address	16 bits
cfa	code field address	16 bits
pfa	parameters field address	16 bits
хt	execution token	16 bits

ccc character string or definition-name available in the vocabulary

a list of definitionstop of calculator stack

.

2 Getting started

2.1 Installation

The most recent version of this software can be downloaded from GitHub repository as .zip file at

https://github.com/mattsteeldue/vforth-next/tree/master/download

The same executable programs are available in the same repository:

https://github.com/mattsteeldue/vforth-next/tree/master/SD/tools/vforth

Unzip or copy the software to "C:/tools/vForth" directory inside your Next's SD card so it appears in the following directory hierarchy:

doc/ where I keep some help text files and this very same document.
inc/ contains source files of single definitions available via NEEDS ccc.
lib/ same as inc/ but these source files are a collection of several definitions that forms a "library utility".
src/ among others, the source file of this Forth System.
test/ contains an adaptation of John Hayes' Test Suite that tries to make this Forth more standard.
util/ with some Perl script to manage with !Blocks-64.bin file I collect over the time.
demo/ some useful demos.

Forth17_loader.bas loads Forth17d.bin code that is the latest version.

If you wish to use a different directory instead of C:/tools/vforth, you need to modify the paths in the above Basic programs.

2.2 Activation

The Forth System is activated running a Basic program **C:/tools/vforth/forth17_loader.bas**.

This can be done using the Browser and selecting it, then hitting ENTER.

The Basic loader **forth17_loader.bas** frees upper memory setting RAMTOP to a very low address 25345 and usually loads **ram7.bin** to BANK 16, then **forth17d.bin** to few bytes above RAMTOP and then it loads a smaller Basic launcher **forth17.bas** that you can customize for your purposes.

```
now LOADing code...
"forth17d.bin" CODE 25446
sleep 2
LOADing wrapper...
"Forth17.bas"
```

A Splash screen displays "Version number" and "Build date" followed by some technical system information that are produced by "autoexec" of Screen # 11. In fact, within a few seconds the system will ask if you would like to "Run Scr # 11 autoexec": the only way to refuse is by using the [N] key. However, it's a good idea to allow Forth to continue to LOAD Screen # 11 which in turn loads a few useful utilities making available, among the other definitions, two particular definitions: EDIT the "Screen Editor" and SEE the "Debugger Inspector". This phase is executed only at *first* startup, but you can run it again using AUTOEXEC.

In general, in any source-file available in these directories to be imported, I always put some "print" statement just to show the user what is going on or what is being loaded, this is because often, whenever nothing moving nor blinking on the screen, a person is induced to think the machine just crashed.

```
v-Forth 1.7 NextZXOS version
Heap Vocabulary - build 20230321
1990-2023 Matteo Vitturi
28.0 MHz Z80n CPU Speed.
20357 bytes free in Dictionary.
62344 bytes free in Heap.
Autoexec asks: Do you wish to load scr# 11 ? (Y/n) ■
```

The Basic launcher **forth17.bas** usually auto-starts the first time at line 20, so you usually won't notice, but just in case you STOP it or the Forth system encounters a ROM Error that forces it to suddenly return to Basic, you have two main choices:

- a. type RUN at Basic prompt: This does a **WARM** Forth-start, preserving your previous work and buffers status.
- b. type RUN 20 at Basic prompt: This does a **COLD** start, that should reset all as if you had just loaded from SD card.

2.3 Case-insensitive and Case-sensitive option

By default, the Forth interpreter is *case-insensitive*, so you can type your commands using lower-case or upper-case or a mix of them with no difference. To enable or disable the case-sensitive interpretation you can use **CASEON** and **CASEOFF** definitions.

The case-insensitive option applies to the Interpreter's dictionary search only. A new definition you code retains the exact case you coded it.

2.4 Block / Screen system and Text editor

This Forth System comes with a 16 MBytes file named !Blocks-64.bin that provides a BLOCK-like mass-storage system to keep 32,767 BLOCKs (or 16,383 Screens) that can be edited using the "Full Screen Editor" (see §3.1) utility available after you type:

NEEDS EDIT

Each **BLOCK** has 512 bytes and each Screen is 1 KByte long so it can store text in **16 lines x 64 columns way**. A **BLOCK** can be used as a *virtual-memory* area where you can persistently store anything you like. For instance, you can think a **BLOCK** as an 256-element long *integer array* with persistance.

A **BLOCK** *number* is always twice the corresponding *Screen number*, for example **Screen # 11** uses **BLOCK**s 22 and 23. You may argue that this way **BLOCK** number 1 is never accessible, in fact it is reserved for internal purposes (see **NEEDS**).

Accessing of the first blocks is faster than the others, so that reading the last BLOCKs available using, for example

DECIMAL 16383 LIST

it takes a noticeable amount of time. This may depend on how F SEEK primitive is implemented.

2.5 Character size

In this Forth implementation I preferred **LAYER 1,2** display mode to allows 64 character per line: this is quite necessary to be able to display a whole 1024 characters in a single screen.

If you prefer LAYER 1,1 you can add a line 61 in forth17.bas wrapper as follow

```
61 LAYER 1,1: PRINT CHR$ 30; CHR$ 4;
```

to switch to LAYER 1,1 and condensed character set. The result is quite poor in my opinion.

You can also change LAYER mode using some Layer-related definitions available after **NEEDS GRAPHICS** or NEEDS LAYERS.

2.6 Source feeding and output spooling

Before entering Forth, the Basic launcher may open text files via OPEN#, for instance

```
OPEN# 13, "o>output.txt"
```

that can be later selected for output from Forth via 13 SELECT to collect any output you send to this output-channel. To restore sending output to video there is an easy VIDEO definition that simply does 2 SELECT.

Two specific definitions allow you to include source from any file: INCLUDE and NEEDS. For example,

INCLUDE demo/chomp-chomp.f

or

NEEDS GRAPHICS

Moreover, you may edit almost any souce text-file using LED, the built-in editor available after you type

NEEDS LED

See chapter 3.3 "LED - The Large EDitor" for more details.

2.7 Number literals interpretation

Numbers interpretation, at prompt or during compilation, depends on current BASE. The two definitions DECIMAL and HEX change the current BASE to decimal and hexadecimal respectively. The interpreter (NUMBER) accepts an optional number-prefix "\$" or "%" to modify BASE accordingly for the current number interpretation only: "\$" for hexadecimal (base 16), "%" for binary (base 2). The side effect is that \$ and \$ alone are somhow equivalent to 0.

2.8 Definitions grouped by category

Here is my own personal classification of most definitions available in this system.

2.8.1 Comments

Block oriented	Line oriented	No-operation
()	\	NOOP

2.8.2 Stack manipulation

Broadly speaking, a **Calculator-Stack** entry is a 16-bits number (§ 4.2) i.e. a **CELL**, while a Double-Integer value is a 32-bits number (§ 4.3) which needs two CELLS in the Calculator-Stack, the higher significant part on top of stack. **Return-Stack** is used on entering-exiting phase of a definition *and also* to keep track of DO-LOOP index and limit. **Floating-Point-Stack** is the standard ZX Spectrum floating-point Calculator Stack that is accessible after loading the Floating-Point-Option (§ 3.8). See "Technical specifications" (§ 4) for more details.

Single Cell	Double cells	Return Stack	Stack Inspection	Floating point Stack
DUP OVER DROP SWAP NIP TUCK ROT -ROT PICK ROLL ?DUP -DUP	2DUP 2OVER 2DROP 2SWAP 2ROT	>R R> R@ I' DUP>R R>DROP	DEPTH .S	>F F> FOP

2.8.3 Comparison

Comparison involves the top element or the two top elements available on the Calculator Stack. Double precision integers (§ 4.3), formed by two elements each, involves twice the elements, obviously.

Against zero	Signed	Unsigned	Double-precision
0=	=	U<	D0=
0<	<		D<
0>	>		D=
NOT	<> MIN MAX		DU<

2.8.4 Output

Any output is sent to video by default, but the actual device depends on which Stream is chosen via **SELECT**.

Single-integer definition Stack Value	Double-integer definition stack value and Floating point Stack	String	Other
. R ? U.	D. D.R F.	." .(.C SPACE SPACES EMIT EMITC INVV TRUV MARK MESSAGE TYPE	SPLASH CLS CR DEVICE SELECT

2.9 Integer Arithmetics

Normally all definitions act upon 16-bits (signed or unsigned) integers (§ 4.2). Definitions that act upon 32-bits integers (§ 4.3) have names that begin with **D** for *double*. Mixed definitions, that involve both 16-bits and 32-bits integers begin with **M** for *mixed*.

Arithmetics	Signed / Unsigned	Double	Constants
+ - * /MOD MOD 2/ 2*	+- ABS NEGATE UM/MOD UM*	D+ D- DNEGATE DABS D+-	0 1 2 3 -1 PI

Mixed	Bitwise	Increment/Decrement	Floored / Simmetric Division
M+ M* M/ M/MOD */ */MOD	AND OR XOR NOT RSHIFT LSHIFT FLIP INVERT SPLIT	1+ 2+ CELL+ 1- 2- CELL-	FM/MOD SM/MOD
	INVERT		

2.10 Memory

Normally all definitions act upon 16-bits (signed or unsigned) integers (§ 4.2). Definitions that act upon 32-bits integers (§ 4.3) have names that begin with **2** for *two-cells*.

Store & Fetch	Memory chunks	Pointers & Variables	8K RAM Paging
!	FILL	RP@	S"
@	ERASE	RP!	HEAP
2!	BLANK	SP@	FAR
20	CMOVE	SP!	POINTER
C!	CMOVE>	S0	Н"
C@	PAD	R0	+"
+!	BUFFER	USE	+C
TOGGLE	BLOCK	PREV	>FAR
TO (used with	CELL		<far< td=""></far<>
VALUE)	CELLS		HEAP-INIT
+TO	ALIGNED		HEAP-DONE
	DUMP		SKIP-PAGE

2.10.1 Flow control

Counted Loop	Unconted Loop	Conditionals	System related
DO	BEGIN	IF	BYE
?DO	WHILE	THEN	AUTOEXEC
LOOP	REPEAT	ENDIF	COLD
+LOOP	UNTIL or END	ELSE	WARM
LEAVE	AGAIN	CASE	ABORT
I		ENDCASE	ERROR
I'	BACK	OF	CALL#
J		ENDOF	INTERPRET
K		EXEC:	EXECUTE
			QUIT
			BASIC

2.10.2 Definition related

Creators	Status & Variables	Compilation / Interpretation	Dictionary Allocation
:	?COMP ?CSP	COMPILE [COMPILE]	ALLOT
:NONAME	?ERROR	[CHAR]	C,
CREATE VARIABLE	?EXEC ?LOADING		. (
CONSTANT	?PAIRS ?STACK	J	COMPILE, LITERAL

EXIT	STATE	DLITERAL	
!CSP	CSP		
DOES>			
<builds< td=""><td></td><td></td><td></td></builds<>			
VALUE			
USER			

2.10.3 I/O and Hardware

I/O Ports	HW Registers	Keyboard	
P! P@	REG! REG@ MMU7! MMU7@	?TERMINAL KEY CURS	

2.10.4 BLOCK / Screen related

Block & Buffer	Input	Block-file primitives	Variables & Constants
.LINE BLOCK EMPTY-BUFFERS FLUSH INDEX LIST UPDATE OPEN<	LOAD> QUERY ACCEPT ENCLOSE CHAR EXPECT WHERE LOCATE GREP BSEARCH	BLK-INIT BLK-READ BLK-SEEK BLK-WRITE	TIB FIRST LIMIT SOURCE-ID BLK >IN OUT SCR OFFSET BLK-FH BLK-FNAME #SEC #BUFF SPAN B/BUF B/SCR C/L

2.10.5 Numbers & strings

Number to string	Base	Interpretation	Variables
<#	BASE	NUMBER	NMODE
#	HEX	(NUMBER)	HLD
#S	DECIMAL	(SGN)	DPL
#>	BINARY		FLD
SIGN	OCTAL		PLACE
HOLD			EXP

2.10.6 Dictionary related

Input Stream	Vocabulary manipulation	Definition data	Variables & Constants		
1	FORTH	CFA	WIDTH		
-FIND	DEFINITIONS	PFA	WARNING		
INCLUDE	ASSEMBLER	NFA	FENCE		
MARKER	SMUDGE	LFA	DP		
NEEDS	RENAME	<name< td=""><td>VOC-LINK</td></name<>	VOC-LINK		
CASEOFF	FORGET	>BODY	CONTEXT		
CASEON	ALIGN	TRAVERSE	CURRENT		
	ID.	.WORD	BL		

2.10.7 Editor

Screen oriented	Line oriented		File oriented
EDIT B N L SAVE	H D RE INS S	.PAD P -MOVE TEXT LINE	LED LED-EDIT LED-SAVE LED-FILE

2.10.8 NextZXOS

File hook	Directory hook	+3DOS hook	Other
F_SEEK F_CLOSE F_SYNC F_FGETPOS F_READ F_WRITE F_OPEN	F_OPENDIR F_READDIR	M_P3DOS	R# LP HANDLER

2.11 Known bugs, workarounds, and improvement needed

INTERPRET Interpretation of long structure via **LOAD** cannot cope with **BLOCK**s boundaries within the same Screen.

This means, for example, that you cannot start an **ENUMERATED** structure in the first BLOCK of a Screen

and continue it in the next one.

INCLUDE The INCLUDEd source text file *must end with an empty line*, otherwise the system crashes usually

showing some vertical grid. **NEEDS** suffers the same bug since it uses **INCLUDE**.

NEEDS In case of interpretation/compilation error, the file/handle remains open and you have to manually

close it using something like **2 F_CLOSE DROP** and you cannot use **REMOUNT** until then.

OPEN< At the moment, this definition is experimental and can be used only in interpretation mode.

CAT" At the moment, the drive **C**: must always be specified, even for current directory.

BCOPY When used repeatedly, it seem to miss half Screen every three, expecially when you work backard in

block number . Maybe this depends from the number of BUFFERS available. A simple workaround is

to **FLUSH** often.

3 Utilities

WARNING: many of these definitions are still under development and specifications may change in the future. Much effort is put to keep backward compatibility.

3.1 The Full Screen Editor Utility – Screen oriented

The **EDIT** definition is available after you type: **NEEDS EDIT** (or in the old way **190 LOAD** if the source it is still there and you didn't reused these Screens).

On this Forth system, as in many others, a Screen has 1.024 bytes of data spread in 16 lines, 64 bytes each.

This "Full Screen Editor Utility" is invoked using the **EDIT** definition that enters a simple page-editor that allows modifying the current Screen, i.e. the one contained in **SCR** variable. During **EDIT**, you are allowed move to the next Screen or to the previous one using the commands explained below.

Remember: to quit EDIT phase, you have to use [Edit] key followed by [Q] key, in a way that mimics Unix vi editor.

This editor works only if the display-mode allows 64 character per line at least.

EDIT ---

For example, to select, show and edit **Screen # 197** you can type:

```
DECIMAL 197 LIST (to set 197 the "current screen")

EDIT (to enter the editor on "current screen")
```

```
Screen # 197
                                                             edit
  Full Screen Editor
                        8/8 )
  RTH DEFINITIONS
  EDITOR CLS HOMEC PUTPAGE EDIT-FRAME
    EDIT-STAT
    EDIT-STAT INITC
CURC@ NROW @ NCOL @ TO-SCR 2DUP AT-XY
    KEYB ?TERMINAL IF DROP Ø INSC
DUP BL < IF
                                        REFRESH THEN
      >R AT-XY EMIT R> CTRLC
    ELSE
      CURC! AT-XY DROP CURC@ EMIT RIGHTC
  AGAIN \ quit using EDIT-key + 0
FORTH DEFINITIONS
                     hex: 28
                                dec:
                                       40
pad:MARKEREC5 C, D5 C, C5 C,
                                  \ push ix
                                                          push bc
                                               push de
 cmd:
U-ndo
         B-ack
                   D-et
                             I-nsert
                                       H-old
                   S-hift
                             R-eplace P-ut hex byte
0-∪it
         N-ext
```

The previous picture shows a header reporting the Screen number and a line-ruler followed by 16 lines that make up the Screen itself.

A flashing cursor is visible at home position: The cursor has two flashing mode to distinguish **CAPS-LOCK** enabled () or disabled ().

The cursor keys, [Shift] key + 5 / 6 / 7 / 8 keys, allow the flashing cursor to be moved across the screen to point the current position inside the Screen, so text can be typed at any position in the Screen.

Current cursor positions (**row** number and **col**umn number) are shown at the bottom status bar along with current character, **dec**imal ASCII code and **hex**adecimal code of it.

pad line shows the current PAD content. Line oriented commands handle and work with PAD. See the "Line Editor" chapter. If PAD contains garbage, the whole screen may become corrupted: in this case you can type [Edit] + H to copy the current line to PAD that should fix that issue.

After the [Edit] key (Shift + 1 using standard PC keyboard) the Editor recognizes the following single or double key-stroke commands:

[Edit] + Q : Quit EDIT Utility

[Edit] + U: Undo, that is re-read current screen from disk ignoring any modification done since last **FLUSH**. This feature is quite important, since it does for a single Screen what **EMPTY-BUFFERS** does for all of them.

[Edit] + H: take (or Hold) current line content and keep it in PAD

[Edit] + R: Replace current line with the current PAD content.

[Edit] + S: make Space at current cursor position shifting lower lines down; last line will be lost.

[Edit] + D: Delete current line shifting up lower line, but a copy is copied to PAD before deletion, like H

[Edit] + I: Insert at current cursor line position the content of PAD: it does commands S and R.

[Edit] + N : go to Next screen

[Edit] + B: go Back to previous screen

[Edit] + P: accepts **two hexadecimal digits** representing a byte and **P**ut it at cursor position. This way, non-printable characters, i.e. ASCII code between 0 and 31 (\$00 - \$1F), can be stored inside a Screen, but care must be paid to avoid corrupting the display because most of them are **control characters**. Characters with ASCII code between \$80 and \$FF can be stored in a Screen, but they are emitted to video translated to the corresponding codes between \$00 and \$7F.

any other key has no meaning and returns the flashing cursor back to its position.

[Delete] (that is Caps-Shift + ZERO) removes a character at current cursor position, shifting left the rest of the line.

[Break] (that is Caps-Shift + SPACE) inserts a space at current cursor position, shifting right the rest of the line.

[Caps-Lock] (that is Caps-Shift + 2) accounts for a keystroke, but it is interpreted by the system to change the Caps-Lock state switching between enabled (☐) and disabled (☐).

Beware, any modification you do immediately affects the underlying Buffers, so if you mess things too much so that **[Edit]** + **U** is not enough, there is only a way to recover it, to quit and type **EMPTY-BUFFER**S to erase all buffers without flushing them to disk, before it's too late.

This "Full Screen Editor" is a work-in-progress and can be improved if needed either acting on Screens between 190 and 197 or editing ./lib/edit.f source file.

3.2 Graphics mode and Layer facility

The following definitions are available after you type **NEEDS GRAPHICS**.

To forget this library from dictionary you can type NO-GRAPHICS.

This library is still work-in-progress because I'm improving it every so often.

The ZX Spectrum Next's machine can handle several Graphic-Modes and vForth is able to use them.

In all the following definitions, the x-coordinate is the vertical distance from the top-left corner of the grid, the y-coordinate is the horizontal distance from the top-left corner of the grid

LAYER! n ---

This definition changes Graphic-Mode. The parameter n can be one of the following values:

- **00** to switch to **Layer 0** Standard Spectrum (ULA) mode, 256 w x 192 h pixels, 8 colors total (2 intensities), 32 x 24 cells, 2 colors per cell. Equivalent to Basic's LAYER 0.
- 10 to switch to Layer 1,0 LoRes (Enhanced ULA) mode, 128 w x 96 h pixels, 256 colors total, 1 color per pixel. Equivalent to Basic's LAYER 1,0.
- 11 to switch to Layer 1,1 Standard Res (Enhanced ULA) mode, 256 w x 192 h pixels, 256 colors total, 32 x 24 cells, 2 colors per cell. Equivalent to Basic's LAYER 1,1.
- 12 to switch to Layer 1,2 Timex HiRes (Enhanced ULA) mode, 512 w x 192 h pixels, 256 colors total, only 2 colors on whole screen. Equivalent to Basic's LAYER 1,2.
- **13** to switch to **Layer 1,3** Timex HiColour (Enhanced ULA) mode, 256 w x 192 h pixels, 256 colors total, 32 x 192 cells, 2 colors per cell. Equivalent to Basic's LAYER 1,3.
- 20 to switch to Layer 2 256 w x 192 h pixels, 256 colors total, one color per pixel. Equivalent to Basic's LAYER 2.1.

To ease of use, this definition accepts n which can be expressed both in **DECIMAL** or in **HEX**, without confusion, and since there is no ambiguity, the following two lines gives the same result

```
HEX 12 LAYER!
DECIMAL 12 LAYER!
```

This primitive definition *just* changes Graphics-Mode without any other side effect. Instead, the hereby definitions LAYER0, LAYER10, LAYER11, LAYER12, LAYER13 and LAYER20 also modify the overall behavior of some other graphics definitions.

LAYERO ---

Set screen mode to Standard ULA, legacy ZX Spectrum mode, also set the characters to 4 pixel wide, and modify the overall behavior of all graphics definitions to work with this specific pixel resolution.

LAYER10 --

Set screen mode to LoRes mode, set the characters to 4 pixel wide, and modify the overall behavior of all graphics definitions to work with this specific pixel resolution.

LAYER11 ---

Set screen mode to Standard Res (Enhanced ULA) mode, set the characters to 4 pixel wide, and modify the overall behavior of all graphics definitions to work with this specific pixel resolution.

LAYER12 ---

Set screen mode to Timex HiRes (Enhanced ULA) mode, set the characters to 8 pixel wide, and modify the overall behavior of all graphics definitions to work with this specific pixel resolution, for example, the correct aspect-ratio for CIRCLE is enforced.

LAYER13 ---

Set screen mode to Timex HiColour (Enhanced ULA) mode, set the characters to 4 pixel wide, and modify the overall behavior of all graphics definitions to work with this specific pixel resolution.

LAYER2 ---

Set screen mode to Layer 2, set the characters to 4 pixel wide, and modify the overall behavior of all graphics definitions to work with this specific pixel resolution.

IDE MODE! n ---

This is a primitive definition to switch Graphic-Mode via NextZXOS using M_P3DOS call \$01D5 It's called by LAYER! that prepares n in a suitable way. This definition is also available via NEEDS IDE MODE!

LAYER0 : \$0000 LAYER10 : \$0100 LAYER11 : \$0101 LAYER12 : \$0102 LAYER13 : \$0103 LAYER2 : \$0200

IDE MODE@ --- hl de bc a

This is a primitive definition to query current Graphic-Mode via NextZXOS using M_P3DOS call \$01D5. Usual result are:

LAYER	LAYER :		de	bc	a	(a :	in l	oina	ary)
LAYER0	:	\$1620	\$000F	\$0800	\$00	(00	00	00	00)
LAYER10	:	\$0C20	\$FF00	\$0400	\$01	(00	00	00	01)
LAYER11	:	\$1840	\$000F	\$0400	\$05	(00	00	01	01)
LAYER12	:	\$1840	\$0000	\$0800	\$09	(00	00	10	01)
LAYER13	:	\$1840	\$0038	\$0400	\$0D	(00	00	11	01)
LAYER2	:	\$1840	\$0038	\$0400	\$02	(00	00	00	10)

3.2.1 Low-level definitions

ATTRIB --- n

Value that specifies the byte used as color-attribute in all subsequent graphics command. To modify it you have to use the "TO" semantics

DECIMAL 216 TO ATTRIB

The value of ATTRIB is saved across a LAYERxx switches so that each graphic-mode can keep its value.

PIXELADD x y --- n

Depenging on current Graphic-Mode, determine address of a pixel and fit MMU7 8K page if needed.

PLOT x y ---

Depenging on current Graphic-Mode, plot a pixel using current ATTRIB.

POINT x y --- c

Depenging on current Graphic-Mode, it returns the attribute value of a pixel.

For Layer 1,0 and Layer 2 modes this is simply the sequence PIXELADD C@.

For Layer 0 Layer 1,1 Layer 1,2 and Layer 1,3 modes, this definition returns a true-flag if the pixel is set or a false-flag if the pixel is unset.

3.2.2 High-level definitions

CIRCLE x y r ---

Draw a circle with center at x y and radius r using the current ATTRIB color and Graphic-Mode. As stated above, x-coordinate is the vertical and y-coordinate is horizontal.

DRAW-LINE x0 y0 x1 y1 ---

Draw a line from $x1\ y1$ to $x0\ y0$ using the current ATTRIB color and Graphic-Mode. As stated above, x-coordinate is the vertical and y-coordinate is horizontal.

PLOT x y ---

Draw a pixel at x y using the current ATTRIB color and Graphic-Mode. As stated above, x-coordinate is the vertical and y-coordinate is horizontal.

PAINT x y ---

Experimental: Try to paint a well-shaped convex area, provided that x y is some "center" to start. As stated above, x-coordinate is the vertical and y-coordinate is horizontal.

3.2.3 Colors & Attributes

Here is a set of definition that invoke the Standard-ROM routines to change the screen colors. All these definitions end with a dot (.) to spacify that it works via EMIT and to avoid confusion with other definitions.

.BORDER b Immediately set the current BORDER color. It uses ROM routine \$2297 via ${\tt CALL\#}$. .BRIGHT b Depending on on current Graphics Mode, set the current BRIGHT attribute for any subsequent output operations. .FLASH b Depending on on current Graphics Mode, set the current BRIGHT attribute for any subsequent output operations. .INK b Depending on on current Graphics Mode, set the current INK color for any subsequent output operations. . INVERSE b Depending on on current Graphics Mode, set the current INVERSE attribute for any subsequent output operations. .OVER b Depending on on current Graphics Mode, set the current OVER attribute for any subsequent output operations. . PAPER b Depending on on current Graphics Mode, set the current PAPER color for any subsequent output operations.

3.3 LED – the Large file EDitor

Source text-files can be edited directly within vForth environment using **LED** – the Large file EDitor – that handles text files up to 17.568 rows, 85 characters each. The **LED** definition is available after you type: **NEEDS LED**.

Along with LED you often need CAT".

After you type **LED** you enter a simple full-screen editor that can modify current file one screen at a time. While within **LED**, you are allowed move to next page or to previous page using the command explained below.

Remember: to quit LED editor, you have to use [Edit] key followed by [Q] key.

Remember: to *save* the file, you have to use [Edit] key followed by [W] key.

This editor works only while the display-mode is LAYER 1,2.

CAT"

Available after NEEDS CAT. Used in the form

CAT" c:xxx"

it displays the content of directory xxx for example: CAT" c:lib"

```
      Ok
      0
      2021-10-31
      17:38:08

      ..
      0
      2021-10-31
      17:38:08

      ..
      0
      2021-10-31
      17:38:08

      ..
      0
      2021-11-31
      17:38:08

      ..
      2903
      2021-11-13
      21:36:10

      BSEARCH.F
      1155
      2021-11-13
      21:38:06

      chomp-chomp.f
      16073
      2021-11-13
      21:45:46

      DUMMY.F
      42
      2021-11-13
      21:45:46

      DUMMY.F
      42
      2021-11-13
      21:44:24

      EDIT.F
      4128
      2021-11-13
      21:38:18

      EDITOR.F
      1215
      2021-11-13
      21:44:24

      EDITOR.F
      114
      2021-11-13
      21:44:24

      EDITOR.F
      114
      2021-11-13
      21:40:00

      interrupt.f
      3321
      2021-11-13
      21:41:58

      NEEDS.F
      1089
      2021-11-13
      21:41:58

      NEEDS.F
      1689
      2021-11-13
      21:41:46

      SEE.F
      1689
      2021-11-13
      21:41:40

      TESTING.F
      8805
      2021-11-21
      17:29:38

      OK
      2021-11-2
```

LED --- cccc

Available after NEEDS LED. Used in the form

LED cccc

opens specified file cccc and enters LED editor. For example LED lib/cat.f

This editor inherits most of its commands and behavior from the previously described **EDIT** editor except that is has 85 characters per line instead of 64. See previous paragraph for details..

Along with LED command, some more sub-commands are available to better handle a text-file.

LED-EDIT --

Used in the form

LED-EDIT

re-enters the LED editor after you quit it to continue editing the same file you previously opened that should still be in upper 8k RAM pages, provided you haven't corrupted its content in some way.

LED-SAVE ---

Used in the form

LED-SAVE

saves back the file you previously open in LED editor, using the current filename you already specified using **LED or LED-FILE**.

LED-FILE --- cccc

Used in the form

LED-FILE cccc

modify the filename that $\mathtt{LED-SAVE}$ will write to. This allow to save to a different filename.

3.4 Mouse

An interrupt-driven mouse facility is made available via NEEDS MOUSE which requires INTERRUPTS (described in Chapter 3.5).

```
v-Forth 1.7 NextZXO5 version
Heap Vocabulary - build 20230416
1990-2023 Matteo Vitturi
ok
ok
NEEDS MOUSE ok
```

Sprite #0 image is made a white arrow shape with black shadow; its definition is given directly in Forth code, as follows (this, by the way, shows how easily Forth language can perform such a task):

```
HEX 14 REG@ CONSTANT E3 \ Global Transparency Colour
                    00 C, ; \ Black
                                                          \ Dark-Grey
                     6D C, ;
: v B6 C, ; \ Light-Gray
: M FF C, ; \ White
                    E3 C,
                                              ; \ Transparency
\ Semi-graphical mouse-face definition 10x8-pixels arrow
CREATE MOUSE-FACE
\ 0 1 2 3 4 5 6 7 8 9 A B C D E F \
\ ----- \
      3
      \begin{smallmatrix} & & & -- & \cdot \\ M & M & M & M & M & | & " & " & ------ & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & 
      M M M M M M | " " -----
      ММММММИ! " "
                                                                                                                                6
      7
      ммммммм | " "
                                                                                                                                8
      M M M M M M | " " " " " " - - -
      M | " v M M v | " " - - - - -
                                                                                                                                Α
      | " _ _ v M M | " " _ _ _ _ _
                                                                                                                                В
      ____ v M M v | " "
      _ _ _ _ _ v v | " " "
```

The mouse hardware is polled every 20ms (i.e. during interrupt) and data is processed as follows:

1. Three bytes of polled raw-data are collected and kept in x-status, y-status and buttons-status. Buttons status are

- provided by the two LSB of collected byte, where zero means "pressed".
- 2. Current raw-data is compared against the previous raw-data to determine some delta and, depending on the events, **delta-x**, **delta-y** and **delta-buttons** can be positive or negative
- 3. If **delta-x** or **delta-y** is non-zero, then compute new position, clipping within screen range.
- 4. If **delta-buttons** is non-zero, determines the following values:
 - 0 : no event
 - 1 : right button click-down
 - 2: left button click-down
 - 4 : right button click-up
 - 8: left button click-up

The mouse position and status can be read using the following definitions:

MOUSE-XY --- n1 n2

Returns the current mouse position in pixel

- n1: vertical distance from top-left corner in pixel. Range is 0 319.
- n2: horizontal distance from top-left corner in pixel. . Range is 0-255.

?MOUSE --- f

Returns a true-flag if there is a mouse-click event.

MOUSE --- n

Collects the current click-event status and reset it to zero. The event is reported as follows:

- 0 : no event
- 1 : right button click-down
- 2: left button click-down
- 4: right button click-up
- 8 : left button click-up

multiple events are added together.

3.5 Interrupt Service Routine

After you type NEEDS INTERRUPTS a new Vocabulary will be loaded in memory along with some low-level definitions that allow setting-up an Interrupt-Driven definition: The ISR must be a single definition suitably defined. This is a standard IM 2 interrupt routine implementation. In the future, I hope to be able to exploit the new Next's IM 2 interrupt vector mode. Programming an Interrupt Service Routine using Forth itself is tricky and if not correctly coded, it can impair the system or cause a system-crash. As said, this library still does not exploit the new ZX Spectrum Next interrupt vector, this will be soon implemented: this means that the all these definitions listed here below will go under a deep overhaul when I'll code it.

A Z80's maskable interrupt occurs every 20 ms (50 times per second), and when it occurs, a CALL to a specific routine is performed. In vForth we use IM 2 interrupt mode by preparing a 257 bytes vector-table at \$6200, filled with \$63, so that the interrupt service routine is located at \$6363 to jump to the suitable code – i.e. the definition ISR-SUB – that makes possible to a Forth definition to be executed as interrupt.

First, ISR-SUB performs a RST \$38 to fulfill the legacy ISR, then it must save the whole Forth machine status by pushing to stack the value of CPU registers and then saving Forth's Return-Stack-Pointer and Calculator-Stack-Pointer. Second, it prepares Forth virtual registers (Calculator-Stack Pointer, Return-Stack-Pointer and Instruction-Pointer) to execute the xt contained in ISR-W variable, then a jump to the Inner-interpreter via JP (IX) is performed. Interrupts stay disabled during the execution of such a xt.

After the xt contained in ISR-W is executed, the ISR-RET definition is executed restoring back the machine status by retrieving Calculator-Stack Pointer, Return-Stack-Pointer and Instruction-Pointer and then popping all CPU registers before returning from the interrupt routine and re-enabling interrupts.

It's worth to be noticed that, since an interrupt may occur in the middle of the execution of any part of Forth system, not everything can be performed within an interrupt service routine, and care must be put to avoid critical interference with the main program, such as trying to write the same VARIABLE or invoking peculiar definitions that are known to modify the code they're going to execute, such as CASEON, CASEOFF, or memory areas such as most Floating-point operations.

INTERRUPTS

This is an IMMEDIATE definition that selects the INTERRUPTS vocabulary to make "available" the definitions described in this section.

ISR-OFF ---

Disable Interrupt Utility by restoring IM 1 and I register to its default \$3F value.

ISR-XT xt ---

Variable that contains the xt of the definition that will be executed in background at each Interrupt. It is always followed by the execution of ISR-RET so that ISR-XT can be viewed as the pointer to an anonymous definition that contains two definitions: the *interrupt-service-routine* definition and the *return-from-interrupt* definition.

ISR-ON ---

Enable Interrupt Service Utility: This definition prepares "IM 2 Vector Table" at address \$6200-\$6300 filling it with all \$63 and set Interrupt Mode 2, so that when an Interrupt is issued a CALL to address \$6363 is performed.

At address \$6363 is a jump to address of ISR-SUB body i.e. [' ISR-SUB >BODY] and it's used in the form

```
ISR-OFF
' ISR-WORD ISR-XT !
ISR-ON
```

Then, ISR-WORD is executed in background at each Interrupt.

During an Interrupt, Forth uses a separate Calculator Stack (4 bytes below current SP) and a separate Return Stack located at \$6330. Care must be paid to avoid any critical interference with the normal *foreground* Forth execution.

Typical usage is to control some Sprite movement or poll mouse and joystick, some demos are available.

The following example keeps the display filled with evenly spaced dots in Layer 1,1 or Layer 1,2 modes.

```
: ISR-WORD

[ HEX ] 80 57FF C!
5701 5700 FF CMOVE>
5700 4700 100 CMOVE
4700 4F00 100 CMOVE
;
ISR-OFF
' ISR-WORD ISR-XT !
ISR-ON
```

ISR-EI

Low-level "enable interrupt". It actually executes an El opcode.

ISR-DI --

Low-level "disable interrupt". It actually executes a DI opcode.

ISR-IM1 --

Low-level "interrupt mode 1". It actually executes an IM 1 opcode. This is the default mode for any ZX Spectrum.

INT-IM2 ---

Low-level "interrupt mode 2". It actually executes an IM 2 opcode. It relies on a "vector table" located

ISR-SYNC ---

Low-level "sync to video". It actually executes an HALT opcode to force the machine to wait until the next interrupt.

SETIREG b ---

Low level Z80 register I setting. It actually executes an LD I, A opcode.

ISR-RET ---

Low-level "return from interrupt" definition. It restores all registers and returns control to Forth foreground execution.

ISR-SUB ---

Low-level "interrupt service routine" definition. It saves all registers and gives control to INT-XT background definition execution. Interrupt SP is initialized at 4 bytes below current SP. Interrupt RP is initialized at \$6330 and allows room for 14 cells.

3.6 Block Search and Locate Utility

This group of definitions allow you to look for text within the Screens / Blocks and are available after you type alternatively:

NEEDS LOCATE or
NEEDS GREP or
NEEDS BSEARCH or
NEEDS COMPARE

LOCATE ---

Used in the form

LOCATE cccc

this definition examines all Screens between 1 and 2000 looking for the definition of ccc showing the Screen where the first occurrence is found, then it makes it the "current screen", just like LIST for example:

LOCATE EDIT

takes a few seconds to search in which Screen COMPARE is defined, and if found it shows the Screen using LIST.

```
Scr# 196
    0 ( Full Screen Editor 7/7 )
    1 : EDIT ( -- )
    2 CLS HOMEC PUTPAGE EDIT-FRAME
    3 BEGIN
    4 EDIT-STAT INITC
    5 CURC@ NROW @ NCOL @ TO-SCR 2DUP AT-XY
    6 KEY ?TERMINAL IF DROP @ INSC REFRESH THEN
    7 DUP BL < IF
    8 NR AT-XY EMIT R > CTRLC
    9 ELSE
    10 CURC! AT-XY DROP CURC@ EMIT RIGHTC
    11 THEN
    12 AGAIN \ quit using EDIT-key + @
    13 ;
    14
    15
```

GREP ---

Used in the form

GREP cccc

this definition examines all Screens between 1 and 2000 looking for any occurrence of string ccc showing them in a table form, for example

GREP EDIT

will take some more time to complete and gives something like the following

BSEARCH n1 n2 ---

Used in the form

n1 n2 BSEARCH cccc

this definition examines all Screens between n1 and n2 looking for any occurrence of definition cccc showing them in a table form. This definition is used by GREP that in fact is defined as 1 2000 BSEARCH .

COMPARE al bl a2 b2 ---

Given two string descriptors, that is address and length, (a1, b1) and (a2, b2), this definition compares the two strings and returns:

- 0 if they're equal
- 1 if String1 > String2
- -1 if String1 < String2

For example:

```
CREATE S1 ," Hello world!"
CREATE S2 ," Hello world?"
S1 COUNT S2 COUNT COMPARE .
```

will print -1 since the two strings differs only for the last character and the ASCII code of ! comes before the code of ? , so the string comparison S1 < S2 is true. Compare the result of the following two rows:

```
S2 COUNT S1 COUNT COMPARE . S1 COUNT S1 COUNT COMPARE .
```

3.7 Debugger Utility

The following definitions are available after you type NEEDS SEE or usually after a regular AUTOEXEC.

Also, this section exposes in detail how definitions are stored in dictionary memory.

In the **Indirect-Threaded** version, low-level definitions CFA contains the address of PFA that in turn contains the machine code of the definition; in a colon definition CFA points to the address of the routine that handles that kind of definition.

In **Direct-Threaded** version, a Low-Level definition takes two bytes less, since CFA contains the actual machine code of the definition; a Colon-definition needs one additional byte in CFA to allow room for a "CALL" op-code to the address that handles that kind of definition. This allows some 25% of more speed at the cost of using a little more memory.

SEE ---

Used in the form

SEE cccc

it will print how definition ccc is defined along with its NFA, LFA, CFA, PFA information.

If cccc is a regular colon-definition, the result will show something very close to the original source code the definition was coded from.

For example, the definition **TYPE** is a colon-definition that emits to video an **n** bytes long string stored at address **a**, and it's defined as follow:

```
: TYPE (an--)
BOUNDS ?DO
I C@ EMIT
LOOP;
```

If you type

SEE TYPE

the system will emit something like this:

Nfa: E74A 84

Lfa: E74F 740 LEAVE

Cfa: 6F72 6A2C

BOUNDS (?DO) 12 I C@ EMIT (LOOP) -8 EXIT ok

The first line shows **TYPE** Name Field Address (**\$E74A**) followed by **\$84** that is the counter byte of a 4-bytes length name. The counter byte always has the most significant bit set, that is **\$80** added to **\$04** giving **\$84**.

The second line is the Link Field Address (\$E74F) which holds a heap-pointer \$0740 to LEAVE's NFA that in this case happens to be the previous definition in the dictionary.

You will notice these two fields (NFA and LFA) are stored above address \$E000 (i.e. MMU7) and they are effectively stored in one of the extended 8K-RAM pages.

The third line is the Code Field Address (\$6F72) that contains the actual machine code to be run which in this case is a "CALL" to the ENTER routine of every colon-definition, located at \$6A2C.

The fourth line represents the Parameter Field Address and, in this case, is in some way a definition "decompilation" but literals and offsets are shown in "inverse video". For example the number —8 after (LOOP) is the "offset" to where the Instruction Pointer has to jump to go back to next iteration, that is 4 cells backward. In this example (?DO) and (LOOP) are the *compiled counterpart* of ?DO and LOOP that in fact normally won't be *compiled*, instead they control the compilation of some other definitions.

Another example, the definition **NIP** that removes the second element from Stack, isn't a colon-definition, but a low-level definition coded directly in machine-code as follow:

```
CODE NIP ( n1 n2 -- n2 )

POP HL| \ pop hl

EX(SP)HL \ ex (sp), hl

Next \ jp (ix)

C;
```

and if you type

SEE NIP

you'll see

```
Nfa: E2F7 83
Lfa: E283 276 DROP
Cfa: 6915 DDE3
```

6915 E1 E3 DD E9 8E 02 E1 F1 ac]i aq

In this case, since **NIP** is a low-level definition, the PFA part is shown as a hexadecimal **DUMP** that is it has no PFA part, but it's the real machine-code routine.

Again, the first line shows **NIP**'s NFA (**\$E2F7** in this case) and **\$83**, the counter byte, that indicates a 3-bytes length definition name.

The second line is **NIP**'s LFA (**\$E283**) that contains a heap-pointer **0276** to DROP's NFA, that is the previous definition in dictionary.

The third line is NIP's CFA (\$6915) which content contains the machine-code routine itself.

Examining the subsequent DUMP you should be able to locate **E1** for POP HL, **E3** for EX (SP), HL and **DD E9** for JP (IX) to the inner interpreter address that is compiled by **Next** Assembler definition.

The bytes that follows $-8E\ 02\ E1\ F1$ - are the beginning of the subsequent definition compiled in dictionary (**TUCK** in this case).

This utility is not perfect, but is a good way to debug and understand a Forth definition.

Another example is the definition IF a colon-definition that compiles a conditional branching in the program flow, defined as follows:

```
: IF ( -- a 2 ) \ compile-time COMPILE OBRANCH HERE 0 , 2 ; IMMEDIATE
```

with the following output:

Nfa: EBF5 C2 Lfa: EBF8 BEC BACK Cfa: 7FEE 6A2C

COMPILE OBRANCH HERE 0 , 2 EXIT ok

In this case, since IF is an IMMEDIATE definition, the NFA length-byte is \$C2 instead \$82.

3.7.1 The Inner-interpreter

At the very core level of any Forth system lies the Inner Interpreter, that needs a few information to keep the system itself alive, namely the *Instruction Pointer*, the *Calculator Stack Pointer* and the *Return Stack Pointer*.

The latest version of v-Forth keeps such fundamental status information in some permanently dedicated Z80 registers:

- BC The Instruction Pointer that points to the current "xt" being executed
- SP the **Data Stack Pointer** that points to the "top-of-stack"
- DE the **Return Stack Pointer** used to keep some value of IP and used to track sub-routines calls
- IX the address of the Inner Interpreter routine, aka "NEXT".

Any other register, such as A, F, H, L and all alternate registers A', F', B', C', D', E', H', L', are free to be used by the low-level definitions.

```
NEXT:
   ld
            a, (bc); fetch the xt pointed by Instruction Pointer (bc).
    inc
           bc
    ld
            1, a
            a, (bc)
   ld
                    ; IP is incremented to point the following xt.
   inc
           bc
   ld
           h, a
            (hl)
                    ; jump to xt address also known as "CFA"
    jр
CFA:
                    ; "CFA" contains the actual machine-code to be executed
    call
           ENTER
                    ; and it can be simply a CALL to the piece of code peculiar
                    ; to that kind of definition.
                    ; For example a "colon-definition" has a CALL to ENTER
PFA: ...
ENTER:
            de, hl ; bring Return Stack Pointer (de) to hl register
    ex
    ld
            (hl), b; and save the current value of Instruction Pointer (bc)
            hl
    inc
   ld
            (hl), c
    inc
           hl
    ex
            de, hl ;
            bc ; Instruction Pointer now contains PFA
   pop
                    ; jump back to NEXT
    jр
            (ix)
```

DUMP a u ---

Performs a "dump" of a memory area from address $\, a \,$ for $\, u \,$ bytes or until [Break] is pressed. The value of $\, u \,$ is always rounded to the nearest greater multiple of 8.

Visualization is always in hexadecimal, current base is maintained. For example:

```
DECIMAL 448 60 DUMP
```

will print the Standard ROM content starting from address 448 (\$01C0) for 64 bytes, i.e. the nearest greater multiple of 8 and keeps <code>DECIMAL</code> as the current <code>BASE</code>.

01C0	4C	49	53	D4	4C	45	D4	50	LISTLETP
01C8	41	55	53	C5	4E	45	58	D4	AUSENEXT
01D0	50	4F	4B	C5	50	52	49	4E	POKEPRIN
01D8	D4	50	4C	4F	D4	52	55	CE	TPLOTRUN
01E0	53	41	56	C5	52	41	4E	44	SAVERAND
01E8	4F	4D	49	5A	C5	49	С6	43	OMIZEIFC
01F0	4C	D3	44	52	41	D7	43	4C	LSDRAWCL
01F8	45	41	D2	52	45	54	55	52	EARRETUR

.WORD a ---

Given a CFA, this definition prints the ID. It is used by SEE to perform some "decompilation".

.S ---

Prints the current content of Calculator Stack without destroying its content. For example, supposing to start with an empty stack,

0 1 2 3 .s

will print

0 1 2 3 ok

DEPTH --- n

It leaves the depth of the Calculator Stack before it was executed. For example, supposing to start with an empty stack,

0 1 2 DEPTH .

will print

3 ok

3.8 Floating-Point Option

This is an simple Floating-Point Option Library that exploits the native standard ZX Spectrum Floating-Point capabilities, with some differences.

To load this Floating-point Option Library you have to use $\tt NEEDS FLOATING$.

To perform any floating-point operations you first need to push one or two numbers onto **Spectrum's calculator stack** using >W definition. then you need to call the floating-point calculator using FOP definition (that calls RST \$28 service routine). Finally, you have to pop the result from Spectrum's calculator stack using W> definition.

For example, to define a definition that returns the value of **pi** you can code something like this:

```
: PI
[ 1.0 >W 36 FOP \ atan(1)
      4.0 >W 04 FOP \ *4
      W> ] DLITERAL
;
```

A floating point in Spectrum's calculator stack takes 5 bytes, instead in Forth Calculator Stack it takes 4 bytes only i.e. the same as a "double-integer". This means there is some **precision loss**: Maybe in the future I'll be able to fix this fact.

Thinking the floating-double-number stored in CPU registers HLDE, the sign is the msb of H, so you can check for sign in the integer-way. The exponent+128 is stored in the following 8 bits of HL and the significand/mantissa is stored the remaining bits of HL and 16 bits of DE. The fifth byte of a standard floating-point number is then defaulted to a fixed value.

If the floating-number is an integer between 0 and 65535, then it is kept on stack the same as a double-integer. To verify this fact you can type.

```
FLOATING DECIMAL 65535.0 65537.0 .S
```

that displays

```
65535 0 128 18560
```

where the two single precision integer 65535 and 0 are the representation of **65535.0** while the two integers **128** and **18560** are the internal bit-representation of **65537.0**

The integer on TOS always keeps the sign information of the floating-double-number.

Most of the definitions described below are created using <BUILDS and DOES> method.

3.8.1 Floating-point option activation and number conversion

To import the floating point library option you must type <code>NEEDS FLOATING</code> and then, you can use <code>FLOATING</code> to enable the floating-number interpretation and <code>INTEGER</code> to disable it and remain within the integers.

```
INTEGER ---
```

Deactivate floating-point numbers mode. NMODE user variable is set to 0.

FLOATING ---

Activate floating-point numbers mode. NMODE user variable is set to 1.

D>F d --- fp

Convert a double-integer into a floating-double-number. See $\mathbb{F} > \mathbb{D}$.

F>D fp --- d

Convert a floating-double-number into a double-integer truncating to the lower integer. It's the opposite of D>F.

FLOAT n --- fp

Convert a single-precision-integer into a floating-double-number. See FIX.

FIX fp --- n

Convert a floating-double-number a into single-precision-integer. It's the opposite of ${\tt FLOAT}$.

3.8.2 Representation and constants

F>PAD fp --- u

The representation of floating-double-number fp is stored in PAD. The number u is the length of the string.

F.R fp u ---

Prints fp on a field of u characters to video or current SELECTed stream.

F. fp ---

Prints fp to video or current ${\tt SELECTed}$ stream.

1/2 --- fp

Put on TOS the value 0.5.

PI --- fp

Put on TOS the value of pi.

3.8.3 Arithmetics

F- fp1 fp2 --- fp3

Floating point difference: fp3 := fp1 - fp2

F+ fp1 fp2 --- fp3

Floating point addition: fp3 := fp1 + fp2

F* fp1 fp2 --- fp3

Floating point product: fp3 := fp1 * fp2

F/ fp1 fp2 --- fp3

Floating point division: fp3 := fp1 / fp2

FNEGATE fp1 --- fp2

Floating point negate, i.e.: fp1 := - fp2

FSGN fp1 --- fp2

Floating point sign. Fp2 is the sign of fp1.

FABS fp1 --- fp2

Floating point absolute value

F/MOD fp1 fp2 --- fp3 fp4

Floating point division and reminder: fp4 is the quotient of fp1 / fp2 and fp3 is the reminder.

F** fp1 fp2 --- fp3

Floating point power: fp3 := fp1 ^ fp2

FMOD fp1 fp2 --- fp3

Floating point module: fp3 := fp1 mod fp2

F*/ fp1 fp2 fp3 --- fp4

Floating point scale operation: fp4 := fp1 * fp2 / fp3 using an intermediate precision of native 5 bytes instead of 4.

F< fp1 fp2 --- f

Floating point comparison: f is TRUE if fp1 < fp2, FALSE otherwise.

F> fp1 fp2 --- fp3

Floating point comparison: f is TRUE if fp1 > fp2, FALSE otherwise.

F0< fp1 --- f

Floating point comparison: f is TRUE if fp1 < 0, FALSE otherwise.

F0> fp1 --- f

Floating point comparison: f is TRUE if fp1 > 0, FALSE otherwise.

3.8.4 Log, Exp, Trig

FLN fp1 --fp2 Floating point Natural Logarithm. fp2 := ln(fp1) **FEXP** fp1 fp2 Floating point Exponentation: fp2 := exp(fp1) FINT fp1 --fp2 Integer truncation. If the floating-double-number is an integer between 0 and 65535, then it is kept on stack the same as a double-integer. 1.4 FINT gives 1.0 but -1.4 FINT gives -2.0 **FSQRT** fp1 --fp2 Square root. **FSIN** fp1 --fp2 Sine in radians. **FCOS** fp1 fp2 Cosine in radians. **FTAN** fp2 fp1 ---Tangent in radians **FASIN** fp1 fp2 Arc-sine in radians **FACOS** fp1 --fp2 Arc-cosine in radians **FATAN** fp1 fp2 Arc-tangent in radians. RAD>DEG fp1 --- fp2

DEG>RAD fp1 --- fp2

Convert degrees to radians.

Convert radians to degrees.

3.8.5 Low-level definitions.

FOP n --Low-level definition that invokes Floating-Point-Operation n .

>W fp --Takes a floating-point number d from Calculator Stack and put to Floating-Pointer Stack.

W> fp --Takes a floating-point number d from Calculator Stack and put to Floating-Pointer Stack.

3.9 Line Editor

The following definitions are available after 90 LOAD or after you include the EDITOR vocabulary via NEEDS EDITOR. Most of the logic shown in this section is used by LED "The Large file Editor".

The Line Editor has a dozen definitions that can operate on a single line of a given Screen and helps inspect things around.

An edit session normally starts with a LIST on the desired Screen, this sets SCR user variable to the passed Screen number. LIST is a definition already available in the "core" dictionary. To clear a Screen I foreseen a BCLEAR definition, but I left it commented somewhere for now, deeming it too dangerous for my tastes; instead I usually use BCOPY from an actually empty Screen. You may type NEEDS BCOPY.

The definition FLUSH flushes to disk any modification you've done on any Screen. Beware, a Screen is re-written to disk as soon as the BUFFERS containing it are modified. To save space, this implementation has only 7 BUFFERS.

EMPTY-BUFFERS is another vital definition: it empties all buffers. It is very useful if you mistakenly overwrite or spoil a Screen during an edit operation, with it, you have the chance to "rollback" the things before anything is written to disk.

To write a line from scratch or to overwrite line, you can use P to "put" the following text to the given line on current screen. For example:

```
1000 LIST
0 P \ One thousand screens
L
```

To move or copy a line around, you can use <code>H</code> to "hold in <code>PAD</code>" a given line on current screen, you can change Screen if you wish, then you can complete this **copy-and-paste** operation with <code>INS</code> to "insert" or <code>RE</code> to "replace" the line you copied in advance with <code>H</code>. None of above definitions, but <code>H</code>, modify PAD content, so you can repeat the operation. There is also a way to **cut-and-paste** a line using <code>D</code> to "delete and copy to <code>PAD</code>" instead of <code>H</code>.

See also BLOCK, BUFFER, INDEX, L/SCR, LIST, LOAD, MESSAGE, PAD, SCR, STRM., TIB.

This is a guick reference of involved memory areas and definitions that work on them.

Text Input Buffer	Parsing		Edit	One	Blanking
(keyboard)	Operation		Operations		Operations
				BLOCK	
TIB		PAD		BUFFER	
	TEXT →		← H RE →		← E
			← D INS →		← s
			₽ →		

-MOVE "Line move". It moves a li Current Screen is the one		ngth, from address a to the line n of current screen, then it does an UPDATE.
. PAD "Show PAD". It prints the	current PAD cont	 ent assuming it contains a counted-string.
B "Back" one Screen. This d	lefinition set to pr	evious Screen by decreasing SCR and prints it using LIST.
D	n	
		Screen (the one indicated by ${\tt SCR}$), the following lines are moved up and the lat it can be followed by an ${\tt INS}$ to perform a line move.
BCOPY "Block-Copy" utility that of	n1 n2 copies Screen n1 t	to Screen n2. SCR will contain n2.
E "Erase" a row. This defini	$oldsymbol{n}$ tion fills line $oldsymbol{n}$ wit	th spaces. It does UPDATE.
H "Hold" a row in PAD. This is the one kept in SCR.	n s definition put line	e n of current Screen to PAD without altering the block on disk. Current Screen
INS "Insert" from PAD. This d down and the last is lost.	n lefinition inserts li	$$ ne ${\tt n}$ using text in PAD. The original line ${\tt n}$ and the following ones are moved
L "List" current Screen. This	s definition does	 SCR @ LIST.
LINE Leaves the address a of	n line n of current	a screen, the one kept in SCR. Such a screen is currently held in a buffer.

"Next" Screen. This definition sets to next Screen by increasing ${\tt SCR}$ and prints it using ${\tt LIST}.$

P n ---

N

"Put" a line. This definition accepts the following text (delimited by a tilde character \sim) as the text of line n of current Screen. Text is taken from TIB and sent to the current Screen

RE		
KE	n	

"Replace". This definition takes text currently in ${\tt PAD}\,$ and put it to line n.

S n ---

"Space" one row. This definition frees line n moving the following lines down by one. The last line is lost

SAVE ---

Does UPDATE and FLUSH saving this Screen and all previously modified Screens back to disk.

ROOM ---

This definition shows the room available in the dictionary, that is the difference between SP@ and PAD addresses.

TEXT c ---

This definition accepts the following text and stores it to PAD. c is a text delimiter. TEXT does not go beyond a 0x00 [null] ASCII.

UNUSED --- n

It returns the number of byte available in dictionary.

WHERE n1 n2 ---

Usually executed after an error has been reported during a LOAD session. Maybe, this definition should be included in "core" dictionary. n1 is the value of IN and n2 the value of BLK as were left by ERROR.

WHERE shows on screen the block number, the line number, the very same line highlighting in "inverse video" the definition that caused the error.

If it is invoked after an error during the loading via <code>NEEDS</code> or <code>INCLUDE</code>, then the result is a bit poor, because it always reports the row #8 of block #1 due to the way these two definitions are coded.

3.10 ASSEMBLER vocabulary

The following definitions are available after you type 100 LOAD or after you include the ASSEMBLER vocabulary via **NEEDS ASSEMBLER.** Then, you can list this vocabulary using ASSEMBLER WORDS.

This is a Zilog Z80 adaptation of an 8080 assembler written by Albert van der Horst available at https://github.com/albert-vanderhorst/ciasdis.

To create a new definition using this Assembler you have to use CODE. Compilation STATE is never modified, so usually you assemble things while in interpret STATE. Usually, a CODE definition should end with NEXT that compiles a jp (ix) op-code. Finally C; makes the new definition available for subsequent search.

Between the starting CODE and the ending C; instructions are given using their specific op-codes followed by as many parameters as needed.

The following table describes all type of arguments used by the op-code list below:

rr	:	BC	DE	HL	SP	and whe	en the case	IXI	IY	and	AF
r	:	Bl	Cl	DI	E	H	L	Αl	and	(HL)	{ source registers }
r'	:	B '	C'	D '	E'	H'	L'	A'	and	(HL) '	{ destination registers }
f	:	NZ	Z	NC	CY	PO	PE	PΙ	M ·	{ flags used	d by JP, CALL and RET }
f'	:	NZ'	Z'	NC'	CY'	{ same	as f abo	ve but us	ed by JR	}	
bl	:	0	1	2	3	4	5	6	7	{ bit r	number operand }
a	:	001	08	10	18	20	28	30	38		
d	:	byte (byte displacement { used by JR }								
n	:	byte value (8 bits)									
nn	:	integ	integer value (16 bits)								
aa	:	addre	address								
r	:	Next	hardwai	re-registe	er numbe	r					

Other peculiarity are

```
CY | and CY' | to specify "carry-flag" to be different from C | or C' | "register".

(IX+ and (IY+ to begin a "index-register" argument and ) | to close it.

(IX'+ and (IY'+ same as above, but for destination argument.
```

You can use (IY+ operand wherever you can use (IX+ operand.

Here's the correspondence between Forth and original Z80 mnemonic, Z80N in red font.

ADCA (HL) ADC A, (HL) ADCA (IY+ d) ADC A, (IY+d) ADCN	FORTH ASS	SEMBLER		Z80 MNEMONIC
ADCA (IY+ d) ADC A, (IY+d) ADC A, n ADC A, n ADC A, r ADD A, (IY+d) ADD A, (IY+d) ADD A, n ADD A, r ADD A, r ADD A, r ADD AL, BC/DE/HL/SP ADDHL, A ADD HL, A				
ADCN n N, ADC A, n ADCA r ADC A, r ADCHL rr ADC HL, BC/DE/HL/SP ADDA (HL) ADD A, (HL) ADDA (IY+ d) ADD A, (IY+d) ADDN n N, ADD A, n ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A	ADCA	(HL)		ADC A, (HL)
ADCA r ADC A, r ADCHL rr ADC HL, BC/DE/HL/SP ADDA (HL) ADD A, (HL) ADDA (IY+ d) ADD A, (IY+d) ADDN n N, ADD A, n ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A	ADCA (IY+	-d)		ADC A, (IY+d)
ADCHL rr ADC HL, BC/DE/HL/SP ADDA (HL) ADD A, (HL) ADDA (IY+ d) ADD A, (IY+d) ADDN n N, ADD A, n ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A	ADCN	n	N,	ADC A, n
ADDA (HL) ADD A, (HL) ADDA (IY+ d) ADD A, (IY+d) ADDN n N, ADD A, n ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A	ADCA	r		ADC A, r
ADDA (IY+ d) ADD A, (IY+d) ADDN n N, ADD A, n ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A	ADCHL	rr		ADC HL, BC/DE/HL/SP
ADDN n N, ADD A, n ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A ADD HL, A	ADDA	(HL)		ADD A, (HL)
ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A ADD HL, A	ADDA (IY+	- d)		ADD A, (IY+d)
ADDA r ADD A, r ADDHL rr ADD HL, BC/DE/HL/SP ADDHL, A ADD HL, A	ADDN	n	N,	ADD A, n
ADDHL, A ADD HL, A	ADDA			ADD A, r
	ADDHL	rr		ADD HL, BC/DE/HL/SP
ADDDE, A	ADDHL,A			ADD HL, A
· · · · · · · · · · · · · · · · · · ·	ADDDE,A			ADD DE, A
ADDBC, A ADD BC, A	ADDBC,A			ADD BC, A
ADDHL, nn NN, ADD HL, nn	ADDHL,	nn	NN,	ADD HL, nn
ADDDE, nn NN, ADD DE, nn	ADDDE,	nn	NN,	ADD DE, nn

ADDBC, nn NN,	ADD BC, nn
ADDIY rr	ADD IY, BC/DE/IY/SP
ANDA (HL)	AND (HL)
ANDA (IY+ d)	AND (IY+d)
ANDN n N,	AND n
ANDA r	AND r
BIT b (HL)	BIT b, (HL)
BIT b (IY+ d)	BIT b, (IY+d)
	BIT b, r
	BRLC DE, B
BRLCDE, B	
BSLADE, B	BSLA DE, B
BSRADE, B	BSRA DE, B
BSRFDE, B	BSRF DE, B
BSRLDE, B	BSRL DE, B
CALLF f aa AA,	CALL Z/NZ/C/NC/PO/PE/P/M, aa
CALL aa AA,	CALL aa
CCF	CCF
CPA (HL)	CP (HL)
CPA (IY+ d)	CP (IY+d)
CPN n N,	CP n
CPA r	CP r
CPD	CPD
CPDR	CPDR
CPI	CPI
CPIR	CPIR
CPL	CPL
DAA	DAA
DEC (HL)'	DEC (HL)
DEC (IY'+ d)	DEC (IY+d)
DECX rr	DEC BC/DE/HL/SP
DECX IX	DEC IX
DECX IY	DEC IY
DEC r'	DEC r
DI	DI
DJNZ d D,	DJNZ d
EI	EI
EX(SP)HL	EX (SP), HL
EX(SP)IY	EX (SP), IY
EXAFAF	EX AF, A'F'
EXDEHL	EX DE, HL
EXX	EXX
HALT	HALT
IMO	IM 0
IM1	IM 1
IM2	IM 2
IN(C) (HL)'	IN (c)
INA n P,	IN A, (n)
IN(C) r'	IN r, (c)
INC (HL)'	INC (HL)
<pre>INC (IY'+ d) </pre>	INC (IY+d)
INCX rr	INC BC/DE/HL/SP
INCX IX	INC IX
INCX IY	INC IY
INC r'	INC r
IND	IND
INDR	INDR
INI	INI
INIR	INIR
JP(C)	JP (C)
JPHL	JP (HL)
JPIX	JP (IX)

```
JPIY
                                            JP (IY)
                                            JP Z/NZ/NC/C/PO/PE/P/M, aa
JPF
             f|
                 aa
                       AA,
                                            JP aa
JΡ
                       AA,
                  aa
            f'|
JRF
                  d
                        D,
                                            JR C/NC/Z/NZ, d
JR
                        D,
                                            JR d
                                            LD (BC/DE), A
LD(X)A
            rr|
         (HL) '|
                                            LD (HL), n
LD
                         r|
         (HL) '|
                         Ν,
                                            LD (HL), r
LDN
                                            LD (IY+d), n
LDN (IY'+ d ) |
                         Ν,
LD(IY+ d)|
                                            LD (IY+d), r
                         r|
                                            LD (nn), A
LD()A
                   aa
                        AA,
LD()X
            rr|
                        AA,
                                            LD (nn), BC/DE/SP
                   nn
                                            LD (nn), IY
LD()IY
                        AA,
                   aa
                                            LD (nn), HL
                        AA,
LD()HL
                   aa
                                            LD A, (BC/DE)
LDA(X)
            rr|
                        AA,
                                            LD A, (aa)
LDA()
                   aa
                                            LD A, I
LDAI
LDAR
                                            LD A, R
                        NN,
                                            LD BC/DE/HL/SP, nn
LDX
            rr|
                   nn
LDX()
            rr|
                        AA,
                                            LD BC/DE/SP/IY, (aa)
                   nn
                        AA,
                                            LD HL, (aa)
LDHL()
                   aa
LDIA
                                            LD I, A
                        NN,
                                            LD IY, nn
            IY|
LDX
                   nn
                                            LD R, A
LDRA
LDSPHL
                                            LD SP, HL
LDSPIX
                                            LD SP, IX
                                            LD SP, IY
LDSPIY
            r'|
                                            LD r, (HL)
LD
                      (HL) |
                  (IY+ d ) |
LD
            r'|
                                            LD r, (IY+d)
LD
            r'l
                                            LD r, r
                         r|
LDN
            r'|
                                            LD r, n
                         Ν,
LDD
                                            LDD
                                            LDDR
LDDR
LDDRX
                                            LDDRX
LDDX
                                            LDDX
LDI
                                            LDI
LDIR
                                            LDIR
LDIRX
                                            LDIRX
LDIX
                                            LDIX
                                            LDPIRX
LDPIRX
                                            LDWS
LDWS
MIRRORA
                                            MIRROR A
MUL
                                            MUL
                                            NEG
NEG
NEXTREGA
            r P,
                                            NEXTREG r, A
NEXTREG
            r P, n N,
                                            NEXTREG r, n
NOP
                                            NOP
           (HL) |
                                            OR (HL)
ORA
       (IY+ d ) |
                                            OR (IY+d)
ORA
                                            OR n
ORN
                   Ν,
              n
ORA
                                            OR r
              r|
OTDR
                                            OTDR
OTIR
                                            OTIR
          (HL) '|
OUT(C)
                                            OUT (c), 0
                                            OUT (c), r
OUT(C)
             r'|
OUTA
                    P,
                                            OUT (n), A
              n
OUTD
                                            OUTD
OUTI
                                            OUTI
OUTINB
                                            OUTINB
PIXELAD
                                            PIXELAD
PIXELDN
                                            PIXELDN
```

```
POP
            AF|
                                          POP AF
                                          POP BC/DE/HL
POP
             rr|
POP
            IXI
                                          POP IX
POP
             IY|
                                          POP IY
PUSH
            rr
                                          PUSH BC/DE/HL/AF
                                          PUSH IX
PUSH
             IXI
             ΙΥΙ
                                          PUSH IY
PUSH
                  LH,
                                          PUSH nn
PUSHN
             nn
                     (HL) |
                                          RES b, (HL)
RES
             bΙ
RES
             b|
                 (IY+ d )|
                                          RES b, (IY+d)
RES
                                          RES b, r
             b|
                       r
RES
             b|
                        r|
                            (IY+d)|
                                          RES r, b, (IY+d)
RET
                                          RET
                                          RET Z/NZ/C/NC/PO/PE/P/M
RETF
             f|
                                          RETI
RETI
RETN
                                          RETN
                                          RL (HL)
RL
         (HL) |
      (IY+d)|
                                          RL (IY+d)
RL
RL
        r|
                                          RL r
                                          RL r, (IY+d)
RL
             r| (IY+ d )|
RLA
                                          RLA
         (HL) |
                                          RLC (HL)
RLC
      (IY+ d )|
                                          RLC (IY+d)
RLC
                                          RLC r
RLC
             r|
RLC
      r| (IY+ d )|
                                          RLC r, (IY+d)
RLCA
                                          RLCA
                                          RLD
RLD
                                          RR (HL)
         (HL) |
RR
RR
    (IY+ d ) |
                                          RR (IY+d)
             rl
RR
                                          RR r
RR
         r| (IY+ d )|
                                          RR r, (IY+d)
RRA
                                          RRA
                                          RRC (HL)
        (HL) |
RRC
RRC
      (IY+ d ) |
                                          RRC (IY+d)
RRC
      r|
                                          RRC r
RRC
             r| (IY+ d )|
                                          RRC r, (IY+d)
RRCA
                                          RRCA
RRD
                                          RRD
RST
                                          RST n
             a|
           (HL) |
                                          SBC A, (HL)
SBCA
      (IY+ d )|
                                          SBC A, (IY+d)
SBCA
                                          SBC A, n
SBCN
                 Ν,
             n
                                          SBC A, r
SBCA
             r|
                                          SBC HL, BC/DE/HL/SP
SBCHL
            rr|
                                          SCF
SCF
             bΙ
                    (HL) |
                                          SET b, (HL)
SET
                                          SET b, (IY+d)
             b| (IY+ d )|
SET
                                          SET b, r
             bΙ
SET
                        r|
SET
             bΙ
                 r|
                            (IY+ d ) |
                                          SET r, b, (IX+d)
SETAE
                                          SETAE
SL1
          (HL) |
                                          SL1 (HL)
SL1
      (IY+d)|
                                          SL1 (IY+d)
SL1
       r|
                                          SL1 r
                                          SL1 r, (IY+d)
                 (IY+ d )|
SL1
             r|
SLA
         (HL) |
                                          SLA (HL)
      (IY+ d ) |
SLA
                                          SLA (IY+d)
SLA
      r|
                                          SLA r
             r| (IY+ d )|
                                          SLA r, (IY+d)
SLA
SRA
       (HL) |
                                          SRA (HL)
                                          SRA (IY+d)
SRA
      (IY+ d ) |
SRA
                                          SRA r
             r|
```

SRA r	(IY+ d)	SRA r, (IY+d)
SRL (HL)		SRL (HL)
SRL (IY+ d)		SRL (IY+d)
SRL r		SRL r
SRL r	(IY+ d)	SRL r, (IY+d)
SUBA (HL)		SUB (HL)
SUBA (IY+ d)		SUB (IY+d)
SUBN n	N,	SUB n
SUBA r		SUB r
SWAPNIB		SWAPNIB
TESTN n	Ν,	TEST n
XORA (HL)		XOR (HL)
XORA (IY+ d)		XOR (IY+d)
XORN n	Ν,	XOR n
XORA r		XOR r

The COMMAER's are definitions that enforce some syntax-error checking while assembling op-codes parameters.

```
N, immediate single byte value.
```

NN, immediate 16 bits value.

AA, memory address value.

P, port address value (16 bits) and, in NEXTREG op-code, Next's hardware-register number.

D, displacement in relative jump JR.

LH, used by Next's PUSHN to compile big-endian 16-bits argument.

Some single byte op-code was renamed to have a better near-Z80 notation. To avoid some Forth-Assembler name clash, it is preferred using some peculiar notation, for example EXAFAF EX (SP) HL EXDEHL instead of EX AF, AF' or EX (SP),HL or EX DE,HL. Also, we explicitly say A for all arithmetic/logic opcodes, e.g. ANDA r| instead of AND r and so on. IX and IY index-register cause most trouble because they add both a prefix and a displacement and because they can be used in conjunction with CB prefix. In this case we use some custom late-compilation definitions to fix things but relaxing some of the syntax check that the Albert's core provided. Z80N extensions are all ED-prefixed, so the follow the same way introducing a new LH, COMMAER to enforce a better syntax check.

Here are a few examples:

?BREAK definition checks the keyboard and returns a true-flag if [BREAK] is pressed, false otherwise:

```
HEX
CODE ?BREAK ( -- f )
                              \ needs this to preserve BC and DE
    exx
    ldx
           bc| 7FFE NN,
    in(c) d'|
           b'|
                 C
                              \ bc is now FEFE
    in(c) a'|
                              \ check both zeroes
    ora
            d|
    rra
    ccf
                              \ complement to affect sbc
    sbchl hl|
    push
           hll
                              \ restore register BC and DE
    exx
    NEXT
C;
                              \ this performs SMUDGE
```

Another example waits for $\, u \,$ milliseconds, maximum delay should be u < 8192, indentation helps to glimpse the various structures. The outer-loop lasts exactly 3.500 T-states so that it can be used to produce milliseconds delays on standard 3.5 MHz CPU speed.

```
HEX
CODE ms ( u -- )
                             \ needs this to preserve BC and DE
   exx
   pop
           hl|
           a'|
    ld
                 1|
   ora
            h|
           z'| HOLDPLACE
                            \ skip to end when zero
   jrf
       ldx
               bc| HEX 243B NN,
                                     \ get current CPU speed
       ldn
               a'|
                         07 N,
                                     \ to calculate the correct
               a'|
                                     \ delay
       out(c)
               b'|
       inc
       in(c)
               a'|
       andn
               3 N,
   HERE
                                     \ here is (♦)
               z'| HOLDPLACE
                                     \ forward to (♣) when zero
           addhl
                  hl|
                   a'|
           dec
           jr SWAP BACK,
                                     \ loop back to (♦)
                                     \ resolve jrf to (♣)
    HERE DISP,
   HERE
                                     \ outer loop (♣)
                                         4 T
       nop
                                          7 T
       ldn
             b' | DECIMAL 204 N,
   HERE
                                     \ inner loop (♥)
                                     nop
            djnz BACK,
                                     \ back to inner loop (♥)
       decx hl|
                                          6 T
                                          4 Т
       ld
            a'|
                                     \
                   1 |
                                          4 T
       ora
             h|
                                         12 T (-5 T on final loop)
       jrf nz'| BACK,
                                     \ 3500 T total
                                     \ back to outer loop (♣)
   HERE DISP,
                            \ resolve skip to end when zero
   exx
   NEXT
C;
```

Some syntax-help definitions suitable for relative-jump instructions are:

HOLDPLACE --- a1

ALLOT the next byte as placeholder of a relative-jump displacement. The address a1 points to this placeholder and should be resolved by a subsequent DISP, or a derived definition.

DISP, a1 a2 ---

Compute the displacement from a2 to a1 and compile it to address a2 as displacement of a relative-jump op-code. The following snippet implements an IF-THEN phrase in Assembler:

```
CPN HEX 60 N,

JRF CY'| HOLDPLACE \ if lowercase

SUBN HEX 20 N, \ quick'n'dirty uppercase

HERE DISP, \ aka THEN,
```

The following example implements a complete IF-THEN-ELSE phrase that check "carry-flag":

BACK, al ---

Compute the displacement from HERE to all and compile it to address HERE as displacement of a relative-jump opcode. The following example implements a BEGIN-UNTIL loop in Assembler:

4 Technical specifications

4.1 Z80 CPU Registers

CPU Registers are used in the in the following way:

- AF Available for normal operations.
- BC Forth Instruction Pointer: should be preserved on Enter-and-Exit a definition and during ROM/OS calls.
- DE Forth Return Stack Pointer: should be preserved on Enter-and-Exit a definition and during ROM/OS calls.
- HL Available as Work Register
- SP Forth Data Stack Pointer
- AF'- Available, sometime used for backup purpose
- BC'- Available, used in I/O operations or tricky definitions
- DE'- Available, often the Low part when used for 32-bit manipulations
- HL'- Available, often the High part when used for 32-bit manipulations
- IX Used to point to the Forth "inner-interpreter": it should be preserved during ROM/OS calls.
- IY **Used by ZX System**, must be preserved to let the standard keyboard to be served during Interrupts.

4.2 Single Cell 16 bits Integer Number Encoding

A 16 bits *integer* represents an integer number between –32768 and +32767 inclusive. The sign is kept in the most significant bit using the usual two-complement notation. Alternatively, the it represents an *unsigned integer* between 0 and +65535.

In the CPU registers, an *integer* is kept in H and L where H is the most significant part.

In memory, an *integer* is stored in two contiguous bytes in the "little-endian" way, that is the lower address has the least significant part, in the L register. The byte at higher address has the most significant part, in the H register, as usual for the Zilog Z80 processor.

4.3 Two cells 32 bits Integer Number Encoding

The second integer format requires two *integers* to form a 32 bits number, referred to as *double* or *long*, that allows integers between –2,147,483,648 and +2,147,483,647 where the sign is kept on the most significant bit of the first *integer*.

Imagine a double integer stored in CPU register in this way:

using register H', L', D' and E', with the most significant part in H', and the least in E'.

Then, on the Calculator Stack the double integer requires four contiguous bytes split into two integers with the most significant integer (HL') on top of Calculator Stack (i.e. in the lower addresses), and the least significant integer (DE') the second element from top, in the higher address, that is the second element from the top. So, it appears as L' H' E' D',

CPU	Calculator Stack
D'	SP + 3
E'	SP + 2
H'	SP + 1
<u>L'</u>	SP + 0 (Top Of Stack)

To adhere to the Standard, in RAM it is kept as L' H' E' D'. See how 2@ and 2! are defined to understand this fact.

CPU	2VARIABLE
D'	Address + 3
E'	Address + 2
H'	Address + 1
L'	Address + 0

4.4 Double Cell Floating-Point Number Encoding

There is another optional format that use 32 bits as a *double integer*, but all bits are used in a different way to allows representation a *floating point number* approximately between ±0.3E-38 and ±1.7E+38 with 6-7 precision digits. The sign is kept in the most significant bit, the same way as a *double integer*; then eight bits follow as the exponential part, then 23 bits of mantissa or significand. The sign in this position allows you reusing most of the semantics of *double integers* to deal with the sign.

See Floating-Point Option section for more details.

4.5 Single Cell 16 bits Heap Pointer Address Encoding

This is Spectrum Next's peculiar 16 bits **Heap Pointer** Address Encoding that leverages on MMU7 i.e. Z80 memory space addresses between \$E000 and \$FFFF. The three most significant bits represent an 8kibyte-page between 32 and 39 (\$20 and \$27), lower bits are taken as offset from \$E000. A specific definition >FAR takes care of converting an heap-pointer address to an \$E000 offset and paging to MMU7 the correct 8kibyte of physical RAM. Any NextZXOS call and most of I/O operations restore page 1 at MMU7, so in most cases data stored in Heap has to be moved to PAD before being used elsewhere.

4.6 Dictionary memory structure

From version 1.7, a dictionary definition storage is splitted into two parts, the name-space in HEAP (see §6.3), and the code-space in main memory. The name-space of a new definition begins at *heap-pointer address* (§4.5) given by HP (the current Heap Pointer), and the code-space part of it begins at HERE as usual, but all data previously contained in NFA, LFA and CFA are replaced by a single "backward" heap-pointer to point back to name-space location, as a "mirror". The linked-list formed by each LFA uses *heap-pointers* to be decoded to actual RAM pointer via >FAR.

For example the two contiguos definitions **SWAP** and **DUP** appears in memory as follow:

You can verify yourself all of that by typing

```
SEE SWAP
Nfa: E290 84
Lfa: E295 287 TUCK
Cfa: 6924 E5E3
6924 E1 E3 E5 DD
                    E9 9F 02 E1
                                  aceli
$E290 2 DUMP
E290 84 53 57 41
                    D0 87 02 24
                                   SWAP
                                          $
$6922 2 DUMP
6922 <mark>97</mark> 02 E1 E3
                    E5 DD
                           E9 9F
                                    ace]i
SEE DUP
Nfa: E299 83
Lfa: E29D 290 SWAP
Cfa: 692B E5E5
                    E9 A7 02 D9
692B E1 E5 E5 DD
                                   aee]i' Y
$E299 2 DUMP
E299 83 44 55 D0
                    90 02 2B 69
                                   DUP
                                        +i
$6929 2 DUMP
6929 9F 02 E1 E3
                    E5 DD
                          E9 9F
                                    ace]i
```

5 Error messages

Error messages strings are stored at Screens from # 4 to # 7 that are therefore reserved.

Code	Message	Meaning	
#0	is undefined.	Definition not fo	ound or number conversion invalid with this BASE
#1	Stack is empty.	Returning to "ok	" prompt, the interpreter detects this situation
#2	Dictionary full.	J	
#3	No such a line.	Number shoulg	be between 0 and 15
#4	has already been defined.	Creating a defini	ition whose name already exists.
#5	Invalid stream.		
#6	No such a block.	Number should	be between 1 and #SEC
#7	Stack full.	The interpreter	detects more this situation
#8	Old dictionary is full.		
#9	Tape error.		
#10	Wrong array index.		
#11	Invalid floating point.	Issued during flo	pating-double invalid operation
#12	Heap full.		
#13	Division by zero.	Issued during flo	pating-double invalid operation
#14	Patching the wrong word.		
#17	Can't be executed.		
#18	Can't be compiled.		
#19	Syntax error.		
#20	Bad definition end.		
#21	is a protected word.	Trying to forget	to an address below FENCE
#22	Aren't loading now.		
#23	Forget across vocabularies.	You have to use	DEFINITIONS beforehand
#24	RS loading error.		
#25	Cannot open stream.		
#26	Error at postit time.	•	1BLER dictionary operation
#27	Inconsistent fixup.	=	1BLER dictionary operation
#28	Unexpected fixup/commaer.	=	1BLER dictionary operation
#29	Commaer data error.	=	1BLER dictionary operation
#30	Commaer wrong order.	=	1BLER dictionary operation
#31	Programming error.		1BLER dictionary operation
#33	Programming error.	-	1BLER dictionary operation
#34	Checksum error.	Issued by ASSEM	1BLER dictionary operation
#38	Not a BMP file.		
#39	NextZXOS Opendir error.		
#40	NextZXOS Out of memory.	leaved to signal	C ODEN fails to onen a file
#41 #42	NextZXOS Open error. NextZXOS Close error.	_	F_OPEN fails to open a file
	File not found.		F_CLOSE fails to close a file
#43	NexZXOS doscall error.	Issued by INCLU	
#44			a generic NextZXOS doscall error
#45 #46	NextZXOS pos error. NextZXOS read error.	_	F_SEEK fails to change current file position F READ fails to read from file
	NextZXOS write error.	_	_
#47 #50			F_WRITE fails to write to file
#50 #51	Incorrect result.	Used by TESTI	
#51 #52	Wrong number of result.	Used by TESTI	
#52 #52	Cell number before '->' does not match}	•	Used by TESTING suite
#53	Cell number before and after '->' does not		Used by TESTING suite
#54	Cell number after '->' below}T does not r	natch.	Used by TESTING suite

6 The Dictionary

6.1 The "core" dictionary

'null' --- (immediate)

This is a "ghost" definition executed by INTERPRET to go back to the caller once the text to be interpreted ends. This definition allows you to use a **0x00** (NUL ASCII) as the end-of-text indicator in the input text stream.

! n a ---

stores an integer n in the memory cell at address a and a + 1. Pronounced "store".

Zilog Z80 microprocessor is a little-endian CPU that holds lower byte at lower address and higher byte in the higher address.

!CSP ---

saves the value of SP register in CSP user variable. It is used by : and ; for syntax checking. Also, CASE use it for the same purpose.

d1 --- d2

From a double number $\mathtt{d}1$ it produces the next ASCII character to be put in an output string using \mathtt{HOLD} . The number $\mathtt{d}2$ is $\mathtt{d}1$ divided by the current \mathtt{BASE} and is kept for subsequent elaborations. This definition is used between <# and #>. See also #S.

#> d --- a u

terminates a numeric conversion started by <# . This definition removes **d** and leaves the values suitable for TYPE. See also # and #S.

#BUFF --- n

Constant, the number of available buffers. This build has 7 buffers located at address between FIRST @ and LIMIT @.

#S d1 --- d2

This definition is equivalent of a series of # that is repeated until d2 becomes zero. It is used between <# and #>.

#SEC --- n

This is a constant that gives the number maximum number of a BLOCK, so that half #SEC is the maximum number of a Screen. This system comes with a file "!Blocks-64.bin" that keeps persistency of all BLOCKs. Try #SEC LIST.

' --- cfa

Pronounced "tick". Used in the form

' cccc

this definition leaves the **cfa** of definition <code>cccc</code>, that is its **xt** or the value to be compiled or passed to <code>EXECUTE</code>. If the definition <code>cccc</code> is not found after the <code>CURRENT</code> and <code>CONTEXT</code> search phases, then an error **#0** is raised, that is the message "cccc is undefined". In a previous version of this Forth, this definition returned **pfa**: we changed this previous

standard to return cfa.

(immediate)

Enclose a comment. Used in the form

(cccc)

ignores what is between brackets. The space after (is not considered in cccc. The comment must be delimited in the same row with a closing) followed by a space or the end of line.

(+LOOP) n ---

This is the primitive low-level definition compiled by +LOOP.

(.")

This is the primitive definition compiled by ." and . (. It executes TYPE.

(;CODE) ---

This is the primitive definition compiled by ; CODE. It over-writes the **cfa** of LATEST definition to make it point to the machine code starting from the following address.

(?DO) ---

This is the primitive definition compiled by ?DO.

At compile-time it compiles the **cfa** of (?DO) followed by an offset as for BRANCH used to jump after the whole ?DO ... LOOP structure in case the limit equals the initial index, otherwise it is equivalent to (DO).

(?EMIT) c1 --- c2

Decodes the character c1 using the following table. It is used internally by EMIT.

HEX 06 → print-comma

HEX 07 → bell rings

HEX 08 → back-space

HEX 09 → tabulator

HEX 0D → carriage return

HEX $OA \rightarrow$ new line (emitted as a OD on the fly)

For not listed character, c2 is equal to c1.

(ABORT) ---

Definition executed in case of error issued by ERROR when WARNING contains a negative number. This definition usually executes ABORT but can be patched with some user defined one at the **pfa** of (ABORT).

(COMPARE) a1 a2 n -- b

This definition performs a lexicographic compare of $\,n\,$ bytes of text at address all with $\,n\,$ bytes of text address all with $\,n\,$ bytes of text address all the compare is case-sensitive or case-insensitive based on the last execution of CASEON and CASEOFF.

When executed, this definition returns a numeric value

0: if strings are equal

+1: if string at a1 greater than string at a2

-1: if string at al less than string at a2

See also CASEON and CASEOFF.

(DO) ---

This is the primitive compiled by DO.

Searches in the dictionary starting from address a2 a definition which text name is kept at address a1; returns a cfa, the first byte b of nfa and a tf on a successful search; elsewhere a ff only.

The search is case-sensitive or case-insensitive based on the last execution of CASEON and CASEOFF.

Address a 2 must be the nfa of the first definition involved in the search in the vocabulary.

In previous versions of this Forth, it returned a pfa, we changed our mind, better a cfa.

Byte b keeps the length of the found definition in the least significant 5 bits, bit 6 is the IMMEDIATE flag. Bit 5 is the SMUDGE bit. Bit 7 is always set to mark the beginning or end of the nfa.

See also CASEON and CASEOFF.

(LEAVE) ---

Direct procedure compiled by LEAVE that discards the current DO-LOOP frame and executes an unconditional jump. The memory cell following (LEAVE) contains the offset to be relatively added to the Instruction Pointer to jump after the corresponding (LOOP) or (+LOOP).

(LINE) n1 n2 --- a b

Retrieves Line n1 of Screen n2 and send it to buffer. It returns the address a within the buffer and a counter b that is C/L (=64) meaning a whole line.

(LOOP) ---

This is the primitive compiled by LOOP. See also DO and +LOOP.

(MAP) a2 a1 n c1 --- c2

Translate character c1 using mapping string a2 and a2. If c1 is present within string a1 then the corresponding position within string a2 is taken as translation. If c1 is not present within string a1, then it is not translated, and c2 remanis equal to c1. n is the length of strings a1 and a2.

For example, the following definitions are used to fix the illegal characters in a filename string:

```
( : ? / * | \ < > "
create ndom hex
 char: c, char? c, char / c, char * c,
                                             char " c,
 char | c, char \setminus c, char < c, char > c,
                 ( % ^ % & $ { } ~ )
create ncdm hex
 char c, char c, char c, char c,
 char \stackrel{-}{\$} c,
           char c, char { c, char } c,
                                             char ~ c,
: needs-ch ( a -- ) \ Replace illegal characters in filename string a
 count bounds
     ncdm ndom 9 i c@ (map) i c!
 Loop
;
```

(NEXT) --- a

Constant. It is the address of "next" entry point for the **Inner Interpreter**. When creating a new definition using machine code, the last op-code should be an unconditional jump to this address. If the newly created definition wants to return an *integer* value on TOS, it has to do it beforehand it should jump to the previous address; and if it wants to return a *double integer* value, it should jump to the next previous one.

This Forth implementation *always* keeps (NEXT) value in **IX register.** For example, to create two definitions that disables and enables interrupts, without an ASSEMBLER, you could use the following snippet:

```
CODE
       ISR-DI
                HEX
  F3 C,
                 ١
                    di
  DD C, E9 C,
                    jp (ix)
  SMUDGE
                    now a dictionary search will find this definition
CODE
       ISR-EI
                HEX
  FB C,
                    еi
                  \
                    jp (ix)
  DD C, E9 C,
  SMUDGE
                   now a dictionary search will find this definition
```

(NUMBER) d a --- d2 a2

Converts the ASCII text at address a+1 in a double integer using the current BASE. Number d2 is left on top of stack for any subsequent elaborations, a2 is the address of the first non-converted character. Used by NUMBER and (EXP) in the Floating-Point Option.

(PREFIX) a --- a2

During a NUMBER interpretation, if the character at address a+1 is a "\$" or a "%" modifies BASE accordingly and increments a: "\$" for hexadecimal (base 16), "%" for binary (base 2).

(SGN) a --- a2 f

Determines if the character at address a+1 is a sign (+ o -) and if found increments a. The flag f indicates the sign: ff for a positive sign + or no sign at all, tf for a negative sign - . If a is incremented then variable DPL is incremented as well. Used by da NUMBER and (EXP) in the Floating-Point Option.

* n1 n2 --- n3

Computes the product of two integers.

*/ n1 n2 n3 --- n4

Compute $(n1 \cdot n2) / n3$ using a double integer for the intermediate value to avoid precision loss.

Leaves the quotient n5 and the reminder n4 of the operation ($n1 \cdot n2$) / n3 using a double integer for the intermediate to avoid precision loss.

+ n1 n2 --- n3

Leaves the sum of two integer.

+! n a ---

Adds to the cell at address a the number n. It is the same as the sequence a @ n + a!

+- n1 n2 --- n3

Computes n3 as n1 with the sign of n2. If n2 is zero, it means positive.

+BUF a1 --- a2 f

Advances the address of the buffer from a1 to a2, that is the next buffer. The flag f is false if a2 is the buffer pointed by PREV.

+LOOP n1 --- (run time) a n2 --- (compile time)

Used in colon definition in the form

DO ... n1 +LOOP

At run-time + LOOP checks the return to the corresponding DO, n1 is added to the index and if the index did not cross the boundary between the loop limit minus one and the loop limit, the execution jumps back to the beginning of the loop. Otherwise the execution leaves the loop. On leaving the loop, the parameters are discarded and the execution continues with the following definition.

At compile-time + LOOP compiles (+LOOP) and a jump is calculated from HERE to a which is the address left on the stack by DO. The value n2 is used internally for syntax checking.

+ORIGIN n --- a

Returns the address n bytes after the "origin". In this build the origin is 6400h. Used rarely to modify the boot-up parameters in the origin area.

+TO n --- cccc

Used in the form

n +TO cccc

If not compiling, add the value <code>n</code> to <code>cccc</code>. At compile-time it compiles a literal pointer to <code>cccc</code>'s PFA followed by a plusstore-command (+!) so that later, at run-time the literal is used by the ! definition to alter <code>cccc</code> value.

 $\begin{tabular}{ll} \textbf{Definition cccc was created via VALUE. See also TO. This definition is available after NEEDS + TO. \\ \end{tabular}$

, n ---

It puts n in the following cell of the dictionary and increments DP (dictionary pointer) of two locations.

Compile a "Counted-ZString". It calls WORD to read characters from the current input stream up to a delimiter " and stores such a string at HERE. In a "Counted-ZString" the length of the string is stored as the first byte and the string itself ends with a NUL character (0x00). For example

," Hello"

compiles: 05 48 65 6C 6C 6F 00

where 05 is the length of "Hello" string which is followed by a 00 'nul' character.

- n1 n2 --- n3

Computes n3 = n1 - n2 as the difference from the penultimate and the last number on the stack.

-->

Continues the interpretation in the next Screen during a ${\tt LOAD}$.

-1 --- n

This is the constant value -1 that in this implementation is 0FFFFh. Compiling a constant result in a faster execution than a literal.

-DUP n --- n n (non zero)
n --- n (zero)

Duplicates n if it is non zero. This definition is available only for backward compatibility. See also ?DUP.

-FIND --- cfa b tf (ok)
--- ff (ko)

Used in the form -FIND cccc.

It accepts a word (a non-space character sequence delimited by spaces) from the current input stream, storing it at address HERE +1 and its length at HERE. Then, it run a search for it in the CONTEXT vocabulary first, then in the CURRENT vocabulary. If such a definition is found, it leaves the cfa of the definition, its length-byte b and a tf. Otherwise only a ff.

-TRAILING al nl --- a2 n2

This definition assumes that a string n1 characters long is already stored at address a1 containing a space right-delimited word (a non-space character sequence delimited by spaces). It determines n2 as the position of the first delimiter after the word.

. n ---

Emits the integer $\, n \,$ followed by a space.

." --- (immediate)

Used in the form

." cccc"

At compile-time, within a colon-definition, it accepts text from the input sources until a quote character (") is encountered, then it compiles the primitive to output the text followed by the string ccc. The text ccc is prepended by a length-counter that TYPE will use at run-time.

When interpreted, i.e. outside a colon-definition, immediately emits the text to output.

. ((immediate) Used in the form . (cccc) acting as . " cccc " but the string is delimited by a closed-parenthesis. .C (immediate) C Used in the form c .C xxxx C acting as ." xxxx" but the string is delimited by character c. It is a more generic form of . (and ." that, in fact, use this definition as their primitive. .LINE n1 n2 Sends line n1 of **BLOCK** n2 to the current peripheral ignoring the trailing spaces. .R n2 n1 Prints a number n1 right aligned in a field n2 character long, with no following spaces. If the number needs more than n2 characters, the excess protrudes to the right. / n1 n2 --n3 Computes n3 = n1/n2, the quotient of the integer division. This system uses floored division via M/MOD and implements UM/MOD in machine-code, FM/REM and SM/MOD as derived definitions. See M/MOD for details. /MOD n1 n2 ___ n3 n4Computes the quotient n4 and the reminder n3 of the integer division n1/n2. The reminder has the sign of n1. This system uses floored division via M/MOD and implements UM/MOD in machine-code, FM/REM and SM/MOD as derived definitions. See M/MOD for details. 0 n This is a constant value zero. Compiling a constant results in a faster execution than a literal. >0 f Leaves a tf if n is less than zero, ff otherwise. 0= f n Leaves a tf if n is not zero, ff otherwise. It is like a NOT n.

0>

Leaves a $\t tf \ if \ n$ is greater than zero, $\t tf$ otherwise.

Direct procedure that executes a conditional jump. If f is zero the offset in the cell following <code>OBRANCH</code> is added to the Instruction Pointer to jump forward of backward.

It is compiled by IF, UNTIL and WHILE.

1 --- n

Constant value 1. Compiling a constant results in a faster execution than a literal.

1+ n1 --- n2

Increments by one the number on TOS.

1- n1 --- n2

Decrements by one the number on TOS.

2 --- n

Constant value 2. Compiling a constant results in a faster execution than a literal.

2! d a --n-lo n-hi a ---

Stores the double integer held on TOS to address a.

2* n1 --- n2

Doubles the number on TOS.

2+ n1 --- n2

Increments by two the number on TOS.

2- n1 --- n2

Decrements by two the number on TOS.

2/ n1 --- n2

Halves the number on TOS.

20 a --- d a --- n-lo n-hi

Fetches the double integer at address a. to TOS.

2CONSTANT d --- (immediate) (compile time)
--- d (run time)

This is a defining definition that creates a double constant. Used in the form

d 2CONSTANT cccc

it creates the new definition cocc which pfa holds the number d. When cocc is later executed it put d on TOS. This definition is not available at startup, it has to be loaded via NEEDS 2CONSTANT.

2DROP d --n1 n2 ---

Discards a double integer from the TOS, i.e. discards the top two integer.

2DUP d --- d d

n1 n2 --- n1 n2 n1 n2

Duplicates the double integer on TOS, i.e. duplicates in order the two top integer.

20VER d1 d2 --- d1 d2 d1

n1 n2 n3 n4 --- n1 n2 n3 n4 n1 n2

Copies to TOS the second double integer from top.

This definition isn't available at startup and must be included via NEEDS 20VER.

2ROT d1 d2 d3 --- d2 d3 d1

n1 n2 n3 n4 n5 n6 --- n3 n4 n5 n6 n1 n2

Rotates the three top double integers, taking the third and putting it on top. The other two double integers are pushed down from top by one place. This definition isn't available at startup and must be included via NEEDS 2ROT.

2SWAP d1 d2 --- d2 d1

Swaps the two double integers on TOS.

2VARIABLE --- (immediate) (compile time)

--- a (run time)

This is a defining definition used in the form:

2VARIABLE cccc

creates the new definition cocc with the pfa capable to hold a double-integer. When cocc is executed, it puts on TOS the pfa of cocc that is the address that holds the double-integere value.

When used in the form

cccc 2@

the content of the double-variable cccc is left on TOS.

When used in the form

d cccc 2!

the double-value on TOS is stored to the double-variable ccc.

This definition is not available at startup, it must be loaded via NEEDS 2CONSTANT.

3 --- 1

Constant value 3. Compiling a constant results in a faster execution than a literal.

Duplicates the three top integer on Stack. This definition is not available at startup, it must be loaded via NEEDS 3DUP.

: ---

This is a defining definition that creates and begins a colon-definition. Used in the form

: cccc ... ;

creates in the dictionary a new definition <code>cccc</code> so that, when later invoked, it executes the sequence of already existing definitions '...'. The <code>CONTEXT</code> vocabulary is set to be the <code>CURRENT</code> and compilation continues while the value of <code>STATE</code> is non-zero. Definitions having the bit 6 of its length-byte set are immediately executed instead of being compiled.

:NONAME --- xt

This is a defining definition that creates and begins a name-less colon-definition. It returns the xt of the word being defined. Such xt should be kept in some way, for example as a CONSTANT. Used in the form, for example

:NONAME ... ;
CONSTANT ccc

This definition is not available at startup, it must be loaded via <code>NEEDS</code>: <code>NONAME</code> but the source-file that contains this definition is named %noname.f

; --- (immediate)

Ends a colon-definition and stops compilation.. It compiles EXIT and executes SMUDGE to make the definition accessible to subsequent search.

;CODE --- (immediate)

Used in the form

: cccc ... ; CODE

terminates a colon definition stopping compilation of definition cccc and compiling (; CODE).

Usually ; CODE is followed by a suitable machine-code sequence. It is used to define a creator of new kinds of definitions.

;S ---

This definition is obsolete and kept for backward compatibility reasons only. It is usually the last xt compiled in a colon definition by; and it does the action of returning to the calling definition. It is used to force the immediate end of a loading session started by LOAD.

Obsolete, prefer EXIT. This definition isn't available at startup and must be included via NEEDS ;S sequence.

< n1 n2 --- f

Leaves a tf if n1 is less than n2, ff otherwise.

<# --

Sets <code>HLD</code> to the value of <code>PAD</code>. It is used to format numbers using <code>#, #S, SIGN</code> and <code>#></code>. The conversion is performed using a double integer, and the formatted text is kept in <code>PAD</code>.

<> n1 n2 --- f

Leaves a tf if n1 isn't equal to n2, ff otherwise. This definition isn't available at startup and must be included via $NEEDS \iff$ sequence and the file loaded is {}.f

<BUILDS ---

Used in a colon definition in the form

: cccc ... <BUILDS ... DOES> ... ;

Subsequent execution of cccc in the form

cccc nnnn

creates a new definition nnnn with an high-level procedure that at run-time calls the <code>DOES></code> part of <code>ccc</code>. When nnnn is executed, the pfa of <code>nnnn</code> is put on TOS and the executed the following <code>DOES></code>.

 $< \texttt{BUILD} \ \ \textbf{and} \ \ \texttt{DOES} > \textbf{allow writing high-level procedures instead of using machine code as} \ ; \texttt{CODE} \ \ \textbf{would require}.$

The "Floating Point Option Library" available via NEEDS FLOATING provides a good example of use of this structure.

<BUILD differs from CREATE because it allocate the pointer to the DOES> part of the defining word.

<NAME cfa --- nfa

Converts a cfa in its nfa. It is the same as >BODY NFA sequence.

See also: CFA, LFA, NFA, PFA, >BODY.

= n1 n2 --- f

Leaves a tf if n1 equals to n2, ff otherwise.

> n1 n2 --- f

Leaves a $\mbox{tf if } \mbox{n1} \mbox{is greater than } \mbox{n2, ff otherwise.}$

>BODY cfa --- pfa

Converts a cfa in its pfa.

See also: CFA, LFA, NFA, PFA, <NAME.

>IN --- a

User variable that keeps track of text position within an input buffer. \mathtt{WORD} uses and modifies the value of $\mathtt{>IN}$ that is incremented when consuming input buffer.

>NUMBER dau --- d2 a2 u2

This is the standard numeric conversion routine available for completeness only after NEEDS >NUMBER. This definition

converts digits from the string a, u accumulating digits in number d. Conversion stops when any character that is not a legal digit is encountered returning the result d2 and the string parameters a2 and n2 for the remaining characters in the string. For historical reasons, this system doesn't use >NUMBER, instead it uses a non-standard version definition (NUMBER).

>R n ---

Takes an integer from TOS and puts it on top of the Return Stack. It should be used only within a colon-definition *and* the use of $>\mathbb{R}$ should be balanced with a corresponding $\mathbb{R}>$ within the same colon-definition.

? a ---

Prints the content of cell at address a. It is the same as the sequence: a @.

?COMP ---

Raises an error message #17 if the current STATE is not compiling state.

?CSP ---

Raises an error message #20 if the value of CSP is different from the current value of SP register. It is used to check the compilation in a colon definition.

?DO n1 n2 --- (immediate) (run time) --- a n (compile time)

Used in a colon definition in the form

?DO ... LOOP ?DO ... n3 +LOOP

It is used as DO to put in place a loop structure, but at run-time it first checks if n1 = n2 and in that case the loop is skipped. At run-time ?DO starts a sequence of definitions that will be repeated under control of an initial-index n2 and a limit n1. ?DO consumes these two value from stack and the corresponding LOOP increments the index. If the index did not cross the boundary between the loop limit minus one and the loop limit, then the executions returns to the corresponding ?DO, otherwise the two parameters are discarded and the execution continues after the LOOP. The limit n1 and the initial value n2 are determined during the execution and can be the result of other previous operations. Inside a loop the definition 1 copies to TOS the current value of the index.

Se also: I, DO, LOOP, +LOOP, LEAVE. In particular LEAVE allows leaving the loop immediately.

At compile-time ?DO compiles (?DO) followed by an offset like BRANCH and leaves the address of the following location and the number $\, n \,$ to syntax-check

?DO- [a1 n1] a n ---

This is a peculiar definition equivalent to BACK but fitted for ?DO. It computes and compiles a relative offset from a to HERE and, in the case, it completes the BRANCH part previously compiled by ?DO that left all and nl. It is used by LOOP, +LOOP. If the loop begins with DO then all and nl won't be there and no BRANCH will be compiled.

Duplicates the value on TOS if it is not qual to zero. This is the same as -DUP.

?ERROR f n ---

Raises an error message #n if f is true.

?EXEC ---

Raises an error message #18 if we aren't compiling.

?LOADING ---

Raises an error message #22 if we aren't loading. It show the illegal use of -->.

?PAIRS n1 n2 ---

Raises an error message #19 if n1 is different from n2. It is used for syntax checking by the definitions that completes the construction of structures DO, BEGIN, IF, CASE.

?STACK ---

Raises an error message #1 if the stack is empty and we tried to consume an element from the calculator stack. On the other hand, an error message #7 if the stack is full.

?TERMINAL --- f

Tests the keyboard for a [BREAK] key-press. Leaves a tf if the [BREAK] key is pressed, ff otherwise. Useful to stop an indefinite loop, for example:

BEGIN ... ?TERMINAL UNTIL

@ a --- n

Reads cell at address a and put an integer on TOS.

ABORT ---

Clears the stack and pass to prompt command, prints the copyright message and returns the control to the human operator executing QUIT.

ABS n --- u

Leaves the absolute value of n.

ACCEPT a n1 --- n2

Transfers characters from the input terminal to the address a for n1 location or until receiving a 0x13 "CR" character. A 0x00 "null" character is added. It leaves on TOS n2 as the actual length of the received string. More, n2 is also copied in SPAN user variable. See also QUERY.

AGAIN --- (immediate) (run time)

a n --- (compile time)

Used in colon definition in the form

BEGIN ... AGAIN

At run-time AGAIN forces the jump to the corresponding BEGIN and has no effect on the calculator stack. The execution cannot leave the loop (at least until a R> is executed at a lower level).

At compile-time AGAIN compiles BRANCH with an offset from HERE to a. The number n is used for syntax-check.

ALLOT n

This definition is used to reserve some space in the dictionary or to free memory. It adds the signed integer n to DP (Dictionary Pointer) user variable.

ALIGN

force HERE to an even address. This definition is available after NEEDS ALIGN.

ALIGNED a1 a2

force al to an even address. This definition is available after NEEDS ALIGNED.

AND n1 n2 --- n3

It executes an bitwise AND operation between the two integers. The operation is performed bit by bit.

AUTOEXEC

This definition is executed the first time the Forth system boots and loads Screen# 11. Once called, it patches ABORT definition to prevent any further executions at startup. Anyway, you can still invoke it directly.

This allows you to perform some automatic action at startup.

B/BUF

Constant. Number of bytes per buffer. In this implementation is 512.

B/SCR n

Constant that indicates the number of Blocks per Screen. In Next version is 2, that means a Screen is 1024 byte long. In Microdrive version it was 1...

BACK a

Computes and compiles a relative offset from a to HERE. Used by AGAIN, UNTIL, LOOP, +LOOP.

BASE а

User variable that indicates the current numbering base used in input/output conversions. It is changed by DECIMAL that put ten, HEX that put sixteen, and with some extensions BINARY that put two and OCTAL that put eight.

BASIC

Quits Forth and returns to Basic returning to the caller USR the unsigned integer on TOS.

BEGIN (immediate) (run time) а

(compile time) n

Used in colon definition in one of the following forms

BEGIN ... F UNTIL OR
BEGIN ... F WHILE ... REPEAT OR
BEGIN ... F END

At compile-time, it starts one of these structures.

At run-time BEGIN marks the beginning of a definitions sequence to be repeatedly executed and indicates the jump point for the corresponding AGAIN, REPEAT, UNTIL or END.

With UNTIL, the jump to the corresponding BEGIN happens if on TOS there is a ff, otherwise it quits the loop.

With AGAIN and REPEAT, the jump to the corresponding BEGIN always happens.

The WHILE part is executed if and only if on TOS there is a tf, otherwise it quits the loop.

BINARY ---

Sets BASE to 2, that is the binary base. This definition is available after NEEDS BINARY.

BL --- c

Constant for "Blank". This implementation uses ASCII and ${\tt BL}$ is 32.

BLANK a n ---

Fills with "Blank" n location starting from address a.

BLK --- a

User variable that indicates the current **BLOCK** to be interpreted. If zero then the input is taken from the terminal buffer TIB.

BLK-FH --- a

Variable containing file-handle to block's file !Blocks-64.bin.

BLK-FNAME --- a

Variable containing the counted-zstring "!Block-64.bin". as produced by ," definition.

See also , " definition.

BLK-INIT ---

Initialize BLOCK system. It opens for update (read/write) file "!Block-64.bin" .

BLK-READ a n ---

Read block n to address a. See also F_READ.

BLK-SEEK n ---

Seek block n within blocks!.bin file. See also ${\tt F_SEEK}$.

BLK-WRITE a n ---

Take text content at address a to disk block n. See also F WRITE.

BLOCK n --- a

Leaves the address of the buffer that contains the block n. If the block isn't already there, it is fetched from disk. If in the buffer there was another buffer and it was modified, then it is re-written to disk before reading the block n. See also BUFFER, R/W, UPDATE, FLUSH.

BOUNDS a n --- a+n a

Given an address and a length (a n) calculate the bound addresses suitable for $DO \dots LOOP$. It is used by TYPE.

BRANCH ---

Direct procedure that executes an unconditional jump. The memory cell following BRANCH has the offset to be relatively added to the Instruction Pointer to jump forward or backward. It is compiled by AGAIN, ELSE, REPEAT.

BUFFER n --- a

Makes the next buffer available assigning it the block number n. If the buffer was marked as modified (by UPDATE), such buffer is re-written to disk. The block is not read from disk. The address point to the first character of the buffer.

BYE ---

Executes FLUSH and EMPTY-BUFFERS, then quits Forth and returns to Basic returning to the caller USR the value of 0 +ORIGIN. See also BASIC.

C! b a ---

Stores a byte b to address a.

C, b ---

Puts a byte b in the next location available in the dictionary and increments DP (dictionary pointer) by 1.

C/L --- c

Constant that indicate the number of characters per screen line. In this implementation it is 32.

C@ a --- b

Puts on TOS the byte at address a.

CALL# n1 a --- n2

Performs a CALL to the routine at address a. First argument n1 is passed via bc register and a register. The routine can return bc register which is pushed on TOS. This definition is useful to call normal ZX Spectrum ROM routines. This definition is available after NEEDS CALL#.

CASEOFF

Sets case-sensitive search OFF. changes the system behavior so that (FIND) can search the dictionary ignoring case, and (COMPARE) compares two strings ignoring case.

CASEON --

Sets case-sensitive search ON. It changes the system behavior so that (FIND) will search the dictionary case sensitive, and (COMPARE) will compare the two strings case sensitive.

CELL --- 2

In this implementation a cell is two bytes. This definition is available after <code>NEEDS CELL</code>.

CELL+ n1 --- n2

Increments n1 by 1 "cell", that is two units. In this implementation a cell is two bytes.

CELL- n1 --- n2

Decrements n1 by 1 "cell", that is two units. In this implementation a cell is two bytes.

CELLS n1 --- n2

Doubles the number n1 on TOS giving the number of bytes equialent to n1 "cells". In this implementation a cell is two bytes.

CFA pfa --- cfa

Converts a pfa in its cfa. See also LFA, NFA, PFA, >BODY, <NAME.

CHAR --- c

Used in the form

CHAR c

determines the first character of the next definition in the input stream.

CLS ---

Clears the screen using the ZX Spectrum ROM routine 0DAFh.

CMOVE a1 a2 n ---

Copies the content of memory starting at address al for n bytes, storing them from address al. The content of address al is moved first. See also CMOVE>.

CMOVE> a1 a2 n ---

The same as CMOVE but the copy process starts from location a1 + n - 1 proceding backward to the location a1.

CODE ---

Defining definition used in the form

CODE cccc

it creates a new dictionary entry for the definition <code>cccc</code> with the cfa of such a definition pointing to its pfa that is empty for the moment, <code>HERE</code> points that location; then some machine-code instruction should be added using <code>C</code>, that will be compiled from <code>HERE</code> onwards. The new definition is created in the <code>CURRENT</code> vocabulary but won't be found by (<code>FIND</code>) because it has the <code>SMUDGE</code> bit set. Once the definition construction is complete, it is programmer's responsibility to execute <code>SMUDGE</code> to make visible.

This definition is redefined / overridden by ASSEMBLER vocabulary available after LOADing Screens 100-165, this allows the programmer to use a pseudo-standard Z80 notation to create a new low-level definition using assembler directly.

Here is an example that creates a definition SYNC-FRAME to wait for the next maskable interrupt:

```
CODE SYNC-FRAME HEX

76 C, \ halt ; wait for interrupt or reset

DD C, E9 C, \ jp (ix) ; jump to the inner interpreter

SMUDGE
```

COLD ---

This definition executes the Cold Start procedure that restore the system at its startup state. It sets DP to the minimum standard and executes ABORT.

COMPILE ---

Used in the form

COMPILE cccc

At compile-time, it determines the xt of the definition that follows COMPILE and compile it in the next dictionary cell.

COMPILE, xt ---

Used within a colon-definition, it puts xt in the following cell of the dictionary and increments DP (dictionary pointer) of two locations.

CONSTANT n --- (immediate) (compile time)
--- n (run time)

Defining definition that creates a constant. Used in the form

n CONSTANT cccc

it creates the definition cocc and pfa holds the number n. When cocc is later executed it put n on TOS.

CONTEXT --- a

User variable that points to the vocabulary address where a definition search begins.

COUNT a1 --- a2 b

Leaves the address of text a2 and a length b. It expects that the byte at address a1 to be the length-counter and the text begins to the next location.

CR

Transmits a 0x0D to the current output peripheral.

CREATE

а

(compile time)

(run time)

Defining definition used in the form

CREATE cccc

it creates a new dictionary entry for the definition cccc with the **pfa** still empty.

When cccc is executed, it puts on TOS the pfa of cccc

Often used with ALLOT to reserve space in the dictionary to be later used, for instance as an array.

See also VARIABLE.

CSP

User variable that temporarily holds the value of SP register during a compilation syntax error check.

CURRENT

User variable that points to the address in the Forth vocabulary where a search continues after a failing search executed in the CONTEXT vocabulary. See also LATEST.

CURS

Shows a (flashing) cursor on current video position and wait for a keypress.

Depending on CAPS-LOCK state, the faces of flashing cursor are different depending on the content of a few bytes in ORIGIN area:

HEX

026 +ORIGIN C@ . → 8F 027 +ORIGIN C@ . \rightarrow 8C Full square graphic character

Lower-half square graphic character

028 +ORIGIN C@ \rightarrow 5F Underscore character

When CAPS-LOCK is On the cursor switches between **■** (8F) and **_** (5F)

When CAPS-LOCK is Off the cursor switches between \blacksquare (8F) and \blacksquare (8C)

You can modify this behavior putting some suitable values on these three bytes. For example you can make disappear the flashing cursor using the following patch:

HEX

BL 026 +ORIGIN C!

BL 027 +ORIGIN C!

BL 028 +ORIGIN C!

D+

d2 d1

d3

Computes d3 as the sum of d1 and d2. This is a 32 bits sum.

D+-

d1 n d2

Forces the double integer d1 to have the the sign of n.

It is used by DABS.

D- d1 d2 --- d3

Subtract d2 from d1. This is a 32 bits subtraction. Available after NEEDS D-.

D. d --n-lo n-hi ---

Emits a double integer followed by a space. The double integer is kept on stack in the format n-lo n-hi and the integer on TOS is the most significant.

D.R d n ---

Emits a double integer rigth aligned in a field n character wide. No space follows. If the field is not large enough, then the excess protrudes to the right.

D0= d --- f

True if d1 = 0. This is a 32 bits comaprison. Available after NEEDS D0=.

D< d1 d2 --- f

True if d1 < d2. This is a 32 bits comaprison. Available after NEEDS D<.

D= d1 d2 --- f

True if d1 equals d2. This is a 32 bits comaprison. Available after NEEDS D=.

DABS d --- ud

Leaves the absolute value of a double integer.

DECIMAL ---

Sets BASE to 10, that is the decimal base.

DEFINITIONS ---

To be used in the form

ccc DEFINITIONS

it sets the CURRENT vocabulary to be the CONTEXT vocabulary and this allows adding new definitions to cccc vocabulary.

For example: FORTH DEFINITIONS or ASSEMBLER DEFINITIONS.

In this implementation a Forth oriented ASSEMBLER vocabulary is available as an extra-option that can be LOADed from Screens 100 -160.

DEVICE --- a

Variable that holds the number of current channel: 2 for video, 3 for printer, and any number between 4 and 15 to refer to a Basic OPEN# channel.

DIGIT	C	n	 u	tf	(ok)
	C	n	 ff		(ko)

Converts the ASCII character c in the equivalent number using the base n, followed by a a tf. If the conversion fails it leaves a ff only.

DLITERAL d --- d (immediate) (run time)
d --- (compile time)

Same as LITERAL but a 32 bits number is compiled. DLITERAL is an immediate definition that is executed and not compiled.

DMAX d1 d2 --- d3

Leaves the maximum between d1 and d2. Available after NEEDS DMAX.

DMIN d1 d2 --- d3

Leaves the minimum between d1 and d2. Available after NEEDS DMIN.

DNEGATE d1 --- d2

Computes the opposite double number.

DO n1 n2 --- (immediate) (run time)
--- a n (compile time)

Used in colon definition in the form

DO ... LOOP or DO ... n +LOOP

It is used to put in place a loop structure: The execution of DO starts a sequence of definitions that will be repeated, under control of an initial-index n2 and a limit n1. DO drops these two value from stack and the corresponding DO increments the index. If the index did not cross the boundary between the loop limit minus one and the loop limit, then the executions returns to the corresponding DO, otherwise the two parameters are discarded and the execution continues after the DOOP.

The limit n1 and the initial value n2 are determined during the execution and can be the result of other previous operations. Inside a loop the definition I copies to TOS the current value of the index.

See also: I, DO, LOOP, +LOOP, LEAVE. In particular LEAVE allows leaving the loop immediately.

At compile-time DO compiles (DO) and leaves the address of the following location and the number $\,n\,$ to syntax-check.

DOES> ---

Definition that defines the execution action of a high-level creative definition. DOES> changes the **pfa** of the definition being defined to point the definitions sequence compiled after DOES>. It is used in conjunction with <BUILDS. When the machine-code part of DOES> is executed, it leaves on TOS the **pfa** of the new definition, and this allows the interpreter to use this area. Obvious uses are new vocabularies (Assembler), multidimensional array, closures, and other compiling operations.

The "Floating Point Option Library" available via NEEDS FLOATING provides a good example of use of this structure.

User variable (Dictionary Pointer) that holds the address of next available memory location in the dictionary. It is read by HERE and modified by ALLOT.

DPL --- a

User variable that holds the number of digits after the decimal point during the interpretation of double integer. It can be used to keep track of the column of the decimal point during a number format output. For 16 bit integer it defaults to -1. It takes into account the exponential part and its sign for floating point numbers.

DROP n ---

Drops the value on TOS. See also OVER, NIP, TUCK, SWAP, DUP, ROT.

DUP n --- n n

Duplicates the value on TOS. See also OVER, DROP, NIP, TUCK, SWAP, ROT.

DUP>R n --- n

Copy TOS to the Return Stack. See also DUP, >R, R@.

DU< ud1 ud2 --- f

True if ud1 < ud2. This is a 32 bits comaprison. Available after NEEDS D<.

ELSE al n1 --- a2 n2 (immediate) (compile time)
--- (run time)

Used in colon definition in the form

IF ... ELSE ... ENDIF
IF ... ELSE ... THEN

At run-time ELSE forces the execution of the false part of an IF-ELSE-ENDIF structure. It has no effects on the stack. At compile-time ELSE compiles BRANCH and prepares the following cell for the relative offset, stores at a1 the previous offset from HERE; then it leaves a2 and n2 for syntax checking.

EMIT c ---

Sends a printable ASCII character to the current output peripheal. OUT is incremented. 7 EMIT activates an acoustic signal. The 'null' 0x00 ASCII character is not transmitted.

EMITC b ---

Sends a byte b character to the current output peripheal selected with <code>SELECT</code>. See also <code>DEVICE</code>.

EMPTY-BUFFERS ---

Erases all buffers. Any data stored to buffers after the previous ${\tt FLUSH}$ is lost.

ENCLOSE a c --- a n1 n2 n3

Starting from address a, and using a delimiter character c, it determines the offset n1 of the first non-delimiter character, n2 of the first delimiter after the text, n3 of first character non enclosed.

This definition doesn't go beyond a 'null' ASCII that represent a unconditional delimiter. For example:

```
\rightarrow
                                                                          5
1:
                                                                    2
                                                                               6
                                       'null'
                                                         \rightarrow
                                                                    2
                                                                          5
                                                                               5
2:
           С
                С
                                 X
                      X
                            X
                                                         \rightarrow
                                                                    2
                      'null'
                                                                          3
                                                                               2
```

Synonym of UNTIL.

```
ENDIF a n --- (immediate) (compile time)
```

At run-time, ENDIF indicates the destination of the forward jump from IF or ELSE. It marks the end of a conditional structure. THEN is a synonym of ENDIF.

At compile-time \mathtt{ENDIF} calculates the forward jump offset from a to \mathtt{HERE} and store it at a. The number n is used for syntax checking.

```
ERASE a n ---
```

Erases n memory location starting from a, filling them with 'null' characters (0x00).

Notifies an error b and resets the system to command prompt. First of all, the user variable WARNING is examined.

If WARNING is 0 then the offending definition is printed followed by a "?" character and a short message "MSG#n".

If WARNING is 1, instead of the short message, the text available on line b of **BLOCK** 4 is displayed. Such a number can be positive or negative and lay beyond block 4.

If WARNING is -1 then ABORT is executed, which resets the system to command prompt. The user can (with care) modify this behavior of that by altering (ABORT).

If BLK is non zero, then ERROR leaves on the stack n1 that is the value of IN and n2 that is the value of BLK at the error moment. These numbers can then be used by WHERE to determine and show the exact error position.

If BLK is zero, then only a ff is left on TOS.

In all cases, the final action is QUIT.

```
EXEC: n ---
```

Vectorised fast case structure. Used in colon-definition in the form

```
: MY_ACTION_LIST ( n -- )
    EXEC:
    word0 \ executed when n = 0
    word1 \ executed when n = 1
    word2 \ executed when n = 2
    ...
;
```

to execute the definition indexed by \boldsymbol{n} .

Warning: there is no run-time checking on n and if n is out of range, then a crash is likely to happen. This definition is not available at startup, it must be loaded via NEEDS EXEC: . The source file is EXEC_.f

EXECUTE cfa ---

Executes the definition which cfa is held on TOS.

EXIT ---

This is (usually) the last definition compiled in a colon definition by ; doing the action of returning to the calling definition. It is used to force the immediate end of a loading session started by LOAD.

EXP --- a

User variable that holds the exponent in a floating-point conversion. It is not used until the **Floating Point Option** is **enabled via** NEEDS FLOATING.

EXPECT a n ---

Transfers characters from the input terminal to the address a for n location or until receiving a 0x13 "CR" character. A 0x00 "null" character is added in the following location. The actual length of the received string is kept in SPAN user variable. See also ACCEPT. This definition isn't available at startup, it must be loaded using NEEDS EXPECT.

FENCE --- a

User variable that holds the (minimum) address to where FORGET can act.

FILL a n b ---

Fills n memory location starting from address a with the value of b.

FIRST --- a

User variable that holds the address of the first buffer. See also LIMIT.

FLD --- a

User variable that holds the width of output field.

FLIP n1 --- n2

Exchange high and lower byte of n1. Available after NEEDS FLIP.

FLUSH ---

Executes SAVE-BUFFERS. It saves to disk the buffers marked "modified" by UPDATE.

FM/MOD d n1 --- n2 n3

Floored Division. Leaves the quotient n3 and the reminder n2 of the integer division of d/n1. This system has only LIM/MOD coded in machine code.

This system has only UM/MOD coded in machine-code.

Dividend	Divisor	Remainder	Quotient
10	7	3	1
-10	7	4	-2

FORGET ---

Used in the form

FORGET cccc

removes from the dictionary the definition <code>cccc</code> and all the preceding definitions. Care must be put when more than one <code>VOCABULARY</code> is involved. Use <code>MARKER</code> instead.

See also <code>DP</code>.

FORTH --- (immediate)

This is the name of the first vocabulary. Executing FORTH sets this to be the CONTEXT vocabulary. As soon as no new vocabulary is defined, all new colon definitions became part of FORTH vocabulary. FORTH is immediate, so it is executed during the creation of a colon definition to select the needed vocabulary. See also ASSEMBLER (optional vocabulary).

F CLOSE n --- f

NextZXOS primitive: it closes a file handle $\,n\,$ previously opened with $\,F_{OPEN}$. Flag $\,f\,$ is 0 for OK. It uses an RST 8 call followed by \$9B service number.

F FGETPOS n --- d f

NextZXOS primitive: given an open file handle $\, n \,$ returns the position $\, d \,$. Flag $\, f \,$ is 0 for OK.

F GETLINE a n1 fh --- n2

Given a filehandle read at most n1 characters as the next line (terminated with \$0D or \$0A) and stores it at address a and returns n2 as the number of bytes read, i.e. the length of line just read.

F INCLUDE n ---

Given an open file-handle n, this definition includes the source from file. This definition is used by INCLUDE and NEEDS.

F OPEN a1 a2 n1 --- n2 f

NextZXOS primitive: it opens a file using filespec given at address al and returns filehandle number n, nl is "mode" as specified in "NextZXOS and esxDOS APIs" standard documentation. Filespec is a NUL-termianted string. Flag f is 0 for OK. It uses an RST 8 call followed by \$9A service number. See F CLOSE.

F READ a n1 n2 --- n3 f

NextZXOS primitive: it reads at most n1 bytes from file handle n2 and stores them at address a. Returns n3 as the actual bytes read. Flag $\, f \,$ is 0 for OK. It uses RST 8 call followed by \$9D service number.

F SEEK d n ---

NextZXOS primitive: it seeks position $\,d\,$ at open file given by filehandle $\,n.$ It uses an RST 8 call followed by \$9F service number. Flag $\,f\,$ is 0 for OK.

F SYNC n --- f

NextZXOS primitive: it syncs to disk open file given by filehandle n. It uses an RST 8 call followed by \$9C service number. Flag $\, f \,$ is 0 for OK.

F WRITE a n1 n2 --- n3 f

NextZXOS primitive: it takes n1 bytes at address a and writes them to filehandle n2. It uses an RST 8 call followed by \$9F service number. Returns n3 as the actual bytes written. Flag f is 0 for OK.

HANDLER --- a

User variable that holds the current error-handler. See CATCH and THROW.

HERE --- a

Leaves the address of next location available on the dictionary.

HEX ---

Changes the base to hexadecimal, setting BASE to 16.

HLD --- a

User variable that holds the address of last character used in a numeric conversion output.

HOLD c ---

Used between <# and #> to put a ASCII character during a numeric format.

HP --- a

User variable that holds the heap-address of the first free byte on Heap. See ${\tt HEAP}$ section.

I --- n

Used between DO and LOOP (or DO and +LOOP, ?DO and LOOP, ?DO and +LOOP) to put on TOS the current value of the loop index.

I' --- n

Used between DO and LOOP (or DO and +LOOP, ?DO and LOOP, ?DO and +LOOP). It puts on TOS the *limit* of the loop. This definition isn't available at startup and must be included via NEEDS I'.

ID. nfa ---

It prints the definition name whose nfa is on TOS.

Used in colon definition in the form

IF ... ENDIF

IF ... ELSE ... ENDIF

At run-time IF selects which definitions sequence to execute based on the flag on TOS:

If f is true, the execution continues with the instruction that follows IF ("true" part).

If f is false, the execution continues after the ELSE ("false" part).

At the end of the two parts, the executions always continues after ENDIF.

ELSE and its "false" part are optional and if omitted no "false part" will be executed and execution continues after ENDIF. At compile time IF compiles <code>OBRANCH</code> reserving a cell for an offset to the point after the corresponding ELSE or ENDIF.

The integer n is used for syntax checking.

IMMEDIATE

Marks the latest definition such that at compile-time it is always executed instead of being compiled. The bit 6 of the length byte of the definition is set. This allows such a definition to handle complex compilation situation instead of burdening the main compiler.

The user can force the compilation of an immediate definition prepending a [COMPILE] to it.

INCLUDE

It is used in in the form:

INCLUDE ccc

starts interpretation of text read from file cccc.

This definition has a known bug, the INCLUDEd source text file must end with an empty line.

See also NEEDS and LOAD

INDEX

n1 n2

Prints the first line of all screens between n1 and n2. Useful to quick check the content of a series of screens.

INKEY

--- b

Reads the next character available from current stream and previously selected with SELECT leving it on TOS. It is the opposite of EMITC.

INTERPRET

This is the text interpreter. It executes or compiles, depending on the value of STATE, text from input buffer a word at a time. It first searches on CONTEXT and CURRENT vocabularies; if they fail, the text is interpreted as a numeric value, converted using the current BASE, and put on TOS. If that numeric conversion fails too, an error is notified with the symbol "?" followed by the word that caused the error. INTERPRET executes NUMBER and the presence of a decimal point "." indicates that the number is assumed as double integer instead of a simple integer.

After execution of the found definition, the control is given back to the caller procedure.

INVERT

n1

-- n2

Inverts all bits. This definition is available after NEEDS INVERT.

INVV

"Inverse video". It enables Inverse-Video attribute mode. See also TRUV.

This definition isn't available at startup and must be included via NEEDS INVV.

J --- n

Used inside a DO-LOOP gives the index of the *first* outer loop. See also I.

This definition isn't available at startup and must be included via NEEDS J.

E.g.

In this case J is used to get the index of the outer DO-LOOP while I gives the index of the inner DO-LOOP.

K --- n

Used inside a DO-LOOP gives the index of the second outer loop. See also I.

This definition isn't available at startup and must be included via NEEDS K.

E.g.

Anyway, in Forth, it isn't a good programming technique nesting loop, better split the definition.

KEY --- b

Waits for a key-press, without showing a flashing cursor. It leaves the ASCII code b of the character read from keyboard without printing it to video. In this implementation some SYMBOL-SHIFT key combinations are decoded as follow:

E2	STOP	\rightarrow	7E	~
С3	NOT	\rightarrow	7C	
CD	STEP	\rightarrow	5C	\
CC	TO	\rightarrow	7в	{
СВ	THEN	\rightarrow	7D	}
С6	AND	\rightarrow	5B	[
C5	OR	\rightarrow	5D]
AC	AT	\rightarrow	7F	©
C7	<=	\rightarrow	20	same as SHIFT-1 [EDIT]
С9	<>	\rightarrow	06	same as CAPS-SHIFT + 2 and toggles CAPS-LOCK On and Off
С8	>=	\rightarrow	20	same as SHIFT-0 [BACKSPACE]

L/SCR --- n

Constant that indicates the number of lines per Screen. In this implementation is 16.

LATEST --- nfa

Leaves the nfa of the latest definition in CURRENT vocabulary.

LEAVE ---

Forces the conclusion of a DO ... LOOP by compiling (LEAVE) followed by an offset to the first instruction after the corresponding LOOP or +LOOP.

LFA pfa --- lfa

Converts a pfa in its Ifa. See also CFA, NFA, PFA, >BODY, <NAME.

LIMIT --- a

User variable that points to the first location above the last buffer. Normally it is the top of RAM, but not always. In this implementation, it set at \$E000 to allow MMU7 as a general purpose 8K RAM bank. See also: FIRST.

LIST n ---

Prints screen number n and sets SCR to n.

LIT --- n

Puts on TOS the value hold in the following location. It is automatically compiled a before each literal number.

LITERAL n --- n (immediate) (run time)
n --- (compile time)

Compile-time, LITERAL compiles LIT followed by the value n in the following cell. This is an immediate definition and, even within a colon definition, it will be executed.

It is used in the form

: cccc ... [calculations] LITERAL ... ;

the compilation is suspended during the calculations and, when compilation resumes, LITERAL compiles the value put on TOS during the previous calculations.

LOAD n ---

Start interpretation of Screen $\, n. \,$ The loading phase ends at the end of the screen or at the first occurrence of EXIT. If $\, n \,$ is negative, instead of loading from Screen# $\, n \,$, it loads text directly from stream $\, n \,$ as previously OPEN# from Basic. See also $\, --> \,$

LOOP a n --- (immediate) (run time)
n --- (compile time)

Used in colon definition in the form

DO ... LOOP ?DO ... LOOP

At run-time LOOP checks the jump to the corresponding DO. The index is incremented and the total compared with the limit; the jump back happens if the index did not cross the boundary between the loop limit minus one and the loop limit. Otherwise the execution leaves the loop. On loop leaving, the parameters are discarded and the execution continues with the following definition.

At compile-time LOOP compiles (LOOP) and the jump is calculated from HERE to a which is the address left by DO on the stack. The value n2 is used internally for syntax checking.

LP --- a

User variable for printer purposed. In this Forth implementation it is used during compilation phase by CASE.

LSHIFT n1 u --- n2

Shifts left an integer n1 by u bit.

M* n1 n2 --- d

Mixed operation. It leaves the product of n1 and n2 ad a double integer.

M*/ d1 n1 n2 --- d2

Mixed operation. Compute $(d \cdot n1) / n2$ using a "triple precision integer" as the intermediate value to avoid precision loss. This definition isn't available at startup and must be included via NEEDS M*/. The source file is M&%.f

M+ d u --- d2

Mixed operation. It leaves the sum of $\,d\,$ and unsigned $\,u\,$ as a double integer $\,d\,2.$

This definition is available after NEEDS M+

M/ d n1 --- n2

Mixed operation. It leaves the quotient n2 of the integer division of a double integer d by the divisor n1.

M/MOD d1 n1 --- n2 n3

Mixed operation. It leaves the remainder n2 and the quotient n3 of the integer division of a double integer d by the divisor n1. The sign of the reminder is the same as d. This system uses floored division via M/MOD and implements UM/MOD in machine-code, FM/REM and SM/MOD as derived definitions.

MARK a n ---

TYPE in inverse video. This definition is not available at startup, it has to be loaded via NEEDS MARK.

MARKER --- (immediate) (run time)

Used outside a colon defintion in the form

MARKER ccc

this creates a new definition cocc that once executed restores the dictionary to the status before cocc was created. This removes cocc and all subsequent definitions. This definition allows forgetting across vocabularies since it keeps track of VOC-LINK, CURRENT, CONTEXT values.

Leaves the maximum between n1 and n2.

MESSAGE n ---

Prints to the current device the error message identified by n. If WARNING is zero, a short MSG#n is printed. If WARNING is non zero 1, line n of screen 4 (of drive 0) is displayed. Such a number can be positive or negative—and lay beyond block 4. See also ERROR.

MIN n1 n2 --- n3

Leaves the minimum between n1 and n2.

MMU7! n ---

This definition accepts n between 0 and 223 and map the corresponding 8K-page at E000-FFFh addresses. It is coded in Assembler and uses NEXTREG A,n Next's peculiar op-code (ED 92). See MMU7@.

MMU7@ --- r

This definition returns a number n between 0 and 223 by asking the hardware which 8K-page is currently fitted in MMU7. See MMU7!

MOD n1 n2 --- n3

Divides n1 by n2 and leaves the remainder n3. The sign is the same as n1.

MS u ---

Waits of u milliseconds.

At 28 MHz, u must be < 8192.

At 14 MHz, u must be < 16384.

At 7 MHz, u must be < 32768.

At 3.5 MHz, u must be < 65536.

This definition isn't available at startup and must be included via NEEDS MS.

N.B. Interrupts aren't disabled during execution.

M P3DOS n1 n2 n3 n4 a --- n4 n5 n6 n7 f

This is the NEXTZXOS call wrapper. Parameters passed on stack are used as follow:

- n1 = input parameter value for **hl** registers pair
- n2 = input parameter value for **de** registers pair
- n3 = input parameter value for **bc** registers pair
- n4 = a register input parameter value
- a = service routine address
- n5 = hI returned value
- n6 = de returned value
- n7 = **bc** returned value
- n8 = a register
- f = 0 for OK, non zero for KO.

This definition calls uses RST 08 followed by \$94 to call the specified routine.

Value returned on register IX is also stored at HEX 2A +ORIGIN before IX is restored to its fixed value.

Some NEXTZXOS primitives are coded by their own as a specific definition (e.g F_OPEN, F_OPENDIR, etc), but most of them are not. For example all LAYER definitions use IDE MODE! which in turn uses M P3DOS.

NEEDS ---

Used in in the form:

NEEDS cccc

if the definition cccc is not present in dictionary, then it starts interpretation of text read from file **inc/ccc.f** and, if this is not found, gives a second chance from file **lib/ccc.f**

Some characters are illegal for filename: noticeably the "double-quote" character (") is among them. In such case, these characters are converted into "tilde" (~) and *that* file is then searched for. For example:

NEEDS S" searches the file $S\sim .f$ instead of an illegal filename S".f

Here is the complete map:

: ? / * | \ < > "

^ % & \$ { } ~

At the moment we are writing, this NEEDS definition has a flaw: in case of interpretation/compilation error, the file/handle remains open and you have to close it manually using something like 2 F CLOSE.

This definition differs from INCLUDE because NEEDS cccc refers to a dictionary entry whilst INCLUDE cccc refers to a full-path filename with explicit extension.

This definition is defined as follow: Since any given Screen # n occupies **BLOCK**s n and n+1, NEEDS exploits **BLOCK** number 1 – which normally isn't reachable – and uses it as a temporary buffer for each line read from file, for this reason a text source line cannot exceed 511 bytes, but for ZX Spectrum's standards is a lot more than anybody would need.

NEGATE n --- -n

Changes the sing of n1

NFA pfa --- nfa

Converts a definition's **pfa** into its **nfa**. See also CFA, LFA, PFA, >BODY, <NAME.

NIP n1 n2 --- n2

Removes the second element from TOS. See also: OVER, DROP, TUCK, SWAP, DUP, ROT.

NMODE --- a

User variable that indicates how double numbers are interpreted. During the input, numbers can be read as double integer numbers or floating-point numbers. This variable is modified by the optional definition INTEGER that sets it to 0 and FLOATING that sets it to 1.

NOOP ---

This token does nothing. Useful as a placeholder or to prevent crashes in INTERPRET.

NOT ---

Equivalent to 0=

NUMBER a --- d

a --- fp (floating-point)

Converts a counted string at address a with a in a double number. If \mathtt{NMODE} is 0, the string is converted to double integer. Position of the last decimal point encountered is kept in \mathtt{DPL} .

If NMODE is 1, a floating-point number conversion is tried instead of an simple double integer conversion.

If no conversion can be done, and error #0 is raised.

OCTAL ---

Changes the base to octal, setting BASE to 8. To use this definition you have to type NEEDS OCTAL.

OFFSET --- a

User variable that states the beginning of "blocks area". The content of \mathtt{OFFSET} is added by \mathtt{BLOCK} to the number on

TOS to determine the right offset to read from file open to "!Blocks.bin". Messages issued by MESSAGE are independent from OFFSET. This variable is an heritage of previous version I really could dismiss.

OPEN< --- fh

Used in the form

OPEN< ccc

this definition invokes F_OPEN NextZXOS and opens a file cccc. It returns file-handle number fh. This definition is used by INCLUDE. At the moment, this definition cannot be compiled and should be used only in interpretation phase.

OR n1 n2 --- n3

Executes a bitwise OR operation between the two integers. The operation is performed bit by bit.

OUT --- a

User variable incremented by EMIT. The user can examine and alter OUT to control the video formatting.

Copies the second number from TOS and put it on the top. See also DROP, NIP, TUCK, SWAP, DUP, ROT.

P! b u ---

Sends to port u a byte b. Note: u is a 16 bit port address and an OUT (C) op-code is internally executed.

P@ u --- b

Accepts the byte b from port u. Note: u is a 16 bit port address and an IN(C) op-code is internally executed.

PAD ---

Leaves on TOS the address of text output buffer. It is at a fixed distance of 68 byte over HERE.

PFA nfa --- pfa

Converts a definition's nfa to its pfa. See also CFA, LFA, NFA, >BODY, <NAME.

PICK n --- pfa

Picks the **n-th** element from TOS. This means:

O PICK is the same as DUP

1 PICK is the same as OVER

PLACE --- a

User variable that holds the number of places after the decimal point to be shown during a numeric output conversion. See also PLACES.

PREV --- a

User variable that points to the last referred buffer. UPDATE marks that buffer so that it is later written to disk.

QUERY ---

Awaits from terminal up to 80 characters or until a CR is received. The text is stored in TIB. User variable IN is set to zero.

QUIT ---

Clears the Return-Stack, stops any compilations and return the control to the operator terminal. No message is issued.

R@ --- n

Copies to TOS the value on top of Return Stack without alter it.

R# --- a

User variable that holds the position of the editing cursor or other function relative to files.

R/W anf ---

Standard FIG-FORTH read-write facility. Address a specifies the buffer used as source or destination; n is the sequential number of the block; f is a flag, 0 to Write, 1 to Read. \mathbb{R}/\mathbb{W} determines the location on mass storage, performs the transfer and error checking.

R0 --- a

User variable that holds the initial value of the Return Stack Pointer. See also RP! and RP@.

R> --- n

Removes the top value from Return Stack and put it on TOS. See also >R, R@ and RP!.

R>DROP ---

Removes the top value from Return Stack. See also >R, R@ and DROP.

RECURSE ---

Used only at compile-time inside a colon-definition, it compiles the definition being created to put in place a recursion call. This definition is available after a <code>NEEDS</code> <code>RECURSE</code>.

REG! b n ---

Writes value b to Next REGister n.

REG@ n --- b

Reads Next REGister n giving byte b.

REMOUNT ---

This definition is available only after NEEDS REMOUNT.

Enter the unmount/mount routine. Interactively the user is asked for a Y key-stroke, and the system waits for that key-stroke allowing the manipulation of the SD.

RENAME ---

Used in the form:

RENAME cccc xxxx

it searches the definition cccc in the CONTEXT vocabulary and changes its name to xxxx. The two definition names cccc and xxxx must have the same length. This definition is available after NEEDS RENAME.

REPEAT a1 n1 a2 n2 --- (immediate) (compile time)
--- (run time)

Used in colon defintion in the form:

BEGIN ... WHILE ... REPEAT

At run-time REPEAT does an inconditional jumt to the corresponding BEGIN.

At compile-time REPEAT compiles BRANCH and the offset from HERE to all and resolves the offset from all to the location after the loop; n1 and n1 are used for sysntax check.

Rotates the three top elements, taking the third and putting it on top. The other two elements are pushed down from top by one place. See also OVER, DROP, NIP, TUCK, SWAP, DUP.

ROLL n1 ... k --- n2 ... n1

Rotates the k top elements, taking the k-th and putting it on top. The other k-1 elements are pushed down from top by one place. The index k is zero based, so that 0 ROLL does nothing, 1 ROLL is SWAP and 2 ROLL is ROT. See also ROT. This definition isn't available at startup, it needs to be imported via NEEDS ROLL.

RP! a ---

System procedure to initialize the Return Stack Pointer to the value passed on TOS that should be the address held in \mathbb{R}^0 user variable.

RP@ --- a

Leaves the current value of Return Stack Pointer.

RSHIFT n1 u --- n2

Shifts right an integer n1 by u bit.

so --- a

User variable that holds the initial value of che SP register. See also: SP! and SP@.

S>D n --- d

Converts a 16 bit integer into a 32 bit double integer, sign is preserved. An obsolete version S->D is still available via NEEDS.

SCR --- a

User variable that hold the number of the last screen retrieved with ${\tt LIST}$.

SELECT n ---

Selects the current channel. As usual for ZX Spectrum, n is 0 and 1 for lower part of screen, 2 for the upper part, 3 for printer, 4 for "!Blocks.bin" stream. Note: KEY always select chanle 2 to display the (flashing) cursor.

SIGN n ---

If n is negative, it puts an ASCII "-" at the beginning of the numeric string converted in the text buffer. Then, n is discarded while d is kept unchanged. Used between <# and #>.

SM/REM d n1 --- n2 n3

Symmetric Division. Leaves the quotient n3 and the reminder n2 of the integer division of d/n1.

This system has only UM/MOD coded in machine-code.

Dividend	Divisor	Remainder	Quotient
10	7	3	1
-10	7	-3	-1
10	-7	3	-1
-10	-7	-3	1

SMUDGE ---

Used by the creation definition: during the definition of a new definition; it toggles the smudge-bit of the first byte in the nfa of the LATEST definition. When a definition's smudge-bit is set, it prevents the compiler to find it. This is typical for uncomplete or a not correctly ended definition.

It is also used to remove a malformed incomplete definition via

SMUDGE FORGET ccc

SOURCE-ID --- a

User variable that keeps the file-handle used during INCLUDE or NEEDS.

SP! a ---

System procedure to initialize the SP register to the address a that should be the address hold in S0 user variable.

SP@ --- a

Returns the content of SP register before SP@ was executed.

SPACE ---

Emits a space to the current output peripheal, usually the video. See also SELECT.

SPACES n ---

 $\textbf{Emits} \ n \ \textbf{spaces}.$

SPAN --- a

User variable that holds the number of characters got from the last EXPECT.

SPLASH ---

Shows splash screen build date-number.

SPLIT n1 --- n2 n3

Split the two bytes of n1 into two separate numbers, n2 low byte, n3 high byte. Available after NEEDS SPLIT.

STATE --- a

User variable that holds the compilator status. A non-zero value indicates a compilation in progress.

SWAP n1 n2 --- n2 n1

Swaps the two top element at the TOS. See also OVER, DROP, NIP, TUCK, DUP, ROT.

THEN a n --- (immediate)
--- (compile time)

Synonym of ENDIF.

TIB --- a

User variable that holds the address of the Terminal Input Buffer.

TO n ---

Used in the form:

TO cccc

It assigns the value $\,n\,$ to the variable $\,ccc\,$ previously defined via VALUE. This definition available after NEEDS TO.

TOGGLE a b ---

The byte at location address a is XOR-ed with the model b.

TRAVERSE a1 n --- a2

Spans through the name-field of a definition depending on the value of $\ \ n.$

If n = 1, then all must be the beginning of the name-field, i.e. nfa itself; all is the address of the last byte of the name field

If n = -1, then a1 must be the last byte of name-field and a2 will be the nfa.

Used by da NFA and PFA.

TRUV ---

"True video". It disables Inverse-Video attribute mode. See also INVV.

This definition isn't available at startup and must be included via NEEDS INVV.

TUCK n1 n2 --- n2 n1 n2

Takes the top element of calculator stack and copies after the second. See also OVER, DROP, NIP, SWAP, DUP, ROT.

TYPE a n ---

Sends to the current output peripheal n characters starting from address a.

U. u ---

Emits an unsigned integer followed by a space.

U< u1 u2 --- f

Leaves a tf if u1 is less than u2, a ff otherwise.

UM* u1 u2 --- ud

Unsigned product of the two integers u1 and u2. The result is a double integer.

UM/MOD ud u1 --- u2 u3

Leaves the quotient u3 and the reminder u2 of the integer division of ud/u1.

UNTIL a n --- (immediate) (compile time)
f --- (run time)

Used in colon definition in the forms

BEGIN ... UNTIL

At run-time UNTIL controls a conditional jump to the corresponding BEGIN when f is false; the exit from the loop happens if f is true.

At compile-time UNTIL compiles <code>OBRANCH</code> and an offset from <code>HERE</code> to a; n is used for syntax checking.

UPDATE ---

Marks as modified the most recent used buffer, the one pointed by PREV. The block contained in the buffer will be transferred to disk when that buffer is requested for another block.

UPPER c1 --- c2

This definition converts a character to upper-case. If c1 is not between "a" and "z", then c1 is left unchanged.

USE --- a

User variable that holds the buffer address of the block to be read from disk or that has just been written to.

USER n ---

Defining definition used in the form

n USER cccc

creates an user variable 'ccc'. The first byte of pfa of ccc is a fixed offset for the User Pointer, that is the pointer for the user area. In this implementation there is only one User Area and a fixed User Pointer.

When ccc is later executed, it put on TOS the sum of offset and User Pointer, sum to be used ad the address for that specific user variable. The user variable are: TIB, WIDTH, WARNING, FENCE, DP, VOC-LINK, FIRST, LIMIT, EXP, NMODE, BLK, >IN, OUT, SCR, OFFSET, CONTEXT, CURRENT, STATE, BASE, DPL, FLD, CSP, R#, HLD, USE, PREV, LP, PLACE, SOURCE-ID, SPAN, HANDLER, HP.

VALUE n ---

Defining definition used in the form:

n VALUE cccc

Creates the definition <code>cccc</code> that acts as a variable. To store a value in such a variable you have to use <code>TO</code>. When <code>cccc</code> is later executed it directly returns the value of the variable without the need to access its address using <code>@. This definition</code> is available after <code>NEEDS VALUE</code>.

VARIABLE ---

Defining definition used in the form:

VARIABLE cccc

creates the definition cocc with the pfa containing the initial value 0. When cocc is executed, it puts on TOS the pfa of cocc that is the address that holds the value.

When used in the form

cccc @

the content of the variable $\verb"ccc"$ is left on TOS.

When used in the form

n cccc !

the value on TOS is stored to the variable ccc.

VIDEO ---

Sets <code>DEVICE 2 to select the video as current output peripheral</code>. See <code>SELECT</code> and <code>DEVICE</code>.

VOC-LINK --- a

User variable that holds the address of a field in the definition of the last vocabulary. Each vocabulary is part of a linked-list that uses that field, in each vocabulary definition, as pointer-chain.

VOCABULARY ---

Defining definition used in the form

VOCABULARY ccc

creates the definition ccc that gives the name of a new vocabulary. Later execution of

cccc

makes such vocabulary the CONTEXT vocabulary, so that it is possible to search for definitions in this vocabulary first and execute them.

Used in the form

cccc DEFINITIONS

makes such vocabulary the CURRENT vocabulary, so that it is possible to insert new definitions in it.

WARM ---

Executes a warm system restart. It closes and reopens Block/Screen file then does ABORT.

It does not EMPTY-BUFFERS and you should be able to recover any transient work.

WARNING --- a

User variable that determines the way an error message is reported. If zero, only a short "MSG#n" is reported. If non zero, a long message is reported. See also ERROR.

WHILE f --- (immediate) (run time)
a n --- al nl a2 n2 (compile time)

Used in colon defintion in the form:

BEGIN ... WHILE ... REPEAT

At run-time WHILE does a conditional execution based on f. If f is true, the execution continues to a REPEAT which will jump to the corresponding BEGIN. If f is false, the execution continues after the REPEAT quitting the loop. At compile-time WHILE compiles OBRANCH leaving a2 for the offset; a2 will be comsumed by a REPEAT. The address a1 and the number n1 was left by a BEGIN.

WIDTH --- a

User variable that indicates the maximum number of significant characters of a definition during compilation. It must be between 1 and 31.

WITHIN n1 n2 n3 --- f

Return a true-flag if n2 <= n1 <= n3, a false-flag otherwise. This definition is available only after NEEDS WITHIN.

WORD c --- a

Reads one or more characters from the current input stream up to a delimiter c and stores such string at HERE that is left on TOS. WORD leaves at HERE the length of the string as the first byte and ends everything with at least two spaces. Further occurrences of c will be ignored.

If BLK is zero, the text is taken from the terminal input buffer TIB. Otherwise the text is taken from the disk block held in BLK. User variable >IN is added with the number of character read, the number ENCLOSE returns.

WORDS ---

Shows a list of definitions of CONTEXT vocabulary. [Break] stops.

Executes a bitwise XOR operation between the two integers. The operation is performed bit by bit.

[--- (immediate)

Used in colon defintion in the form:

: cccc [...] ... ;

it suspends compilation. The definitions that follow [will be executed instead of being compiled. This allows to perform some calculations or start other compilers before resuming the original compilation with]. See also LITERAL.

[CHAR] --- (immediate) (compile time)

It is the same as the sequence $\mbox{[}$ CHAR \mbox{c} $\mbox{]}$ LITERAL.

It is used in colon defintion in the form:

: cccc ... [CHAR] c ...;

At compile time, <code>[CHAR]</code> compiles <code>LIT</code> and the numeric value of ASCII character <code>c</code> in the following cell.

[COMPILE] --- (immediate)

Used in colon defintion in the form:

: cccc ... [COMPILE] wwww ... ;

[COMPILE] forces the compilation of a definition wwww that is immediate. Normally an immediate definition isn't compiled but executed and to compile an immediate definition it isn't possible to use the sequence COMPILE wwww but it is necessary using the sequence [COMPILE] wwww.

For example, to create an alias ENDIF for THEN you can type:

: ENDIF [COMPILE] THEN ;

\ ---

Used in the from:

\ ...

Any character that follows \ until the end of line are treated as a comment.

] ---

Resumes the compilation suspended by $\,[\,$ so it is possible to continue the definition.

6.2 Case -Of structure

The following definitions aren't available at startup, it must be loaded via NEEDS CASE

n1 OF ... ENDOF
... oF ... ENDOF
... (else)
ENDCASE

The CASE definition marks the beginning of Case-Of structure i.e. a set of branches where only one is performed based on the value of n0. If none of the "OF clause" values matches, the ELSE part is performed, if any. At compile time CASE leaves the previous CSP address a and a number n for syntax checking.

CASE has to be balanced by a corresponding ENDCASE.

OF n0 nk --- (immediate) (run time)
n1 --- a n2 (compile time)

This definition is used in colon-definition as parto of a Case-Of structure.

At run-time it compares the matching value nk with the matching value n0 that was on TOS before the beginning of the Case-Of structure.

At compile-time, it compiles (OF) that does a OBRANCH. The numbers n1 and n2 are used for syntax checking and an address a is left and used by ENDCASE to resolve the branch. See also CASE.

ENDOF --- (immediate) (run time)
al nl --- a n2 (compile time)

This definition ends an "Of-EndOf" clause started with OF.

At compile-time it acts like a THEN, first compiling a BRANCH to be later resolved by ENDCASE to skip any subsequent "Of-End-Of" clauses and resolving here the <code>OBRANCH</code> compiled by the corresponding previous <code>OF</code> to continue the Case-Of structure.

See also CASE.

ENDCASE --- (immediate) (run time)

a al ... az --- (compile time)

This definition ends a Case-Of structure started with ${\tt CASE}.$

At compile-time it compiles a DROP to discard the value n0 put on TOS before CASE and resolves all OF-ENDOF clauses to jump after the ENDCASE. Finally, it restores previous content of CSP. See also CASE.

(OF) n0 nk --- (run time)

This definition is the run-time semantic compiled by OF definition. At run-time, it compares the value now on TOS nk with the value n0 that was on TOS just before the beginning of the Case-Of structure and leave a flag to be used by the following OBRANCH (that was compiled by OF). When n0 equals nk, the definitions between OF and ENDOF will be executed, otherwise a jump to the def after ENDOF is performed.

6.3 Heap Memory Facility

The definitions that handle the Heap are available after loading via NEEDS HEAP.

Among ZX Spectrum Next new features is the huge amount of RAM. Strings are dictionary expensive, so it would be useful storing them in heap as constant-strings and fetch them at need. The question is how to leverage all that memory in Forth. More, 8K of room is a good place to store an array of strings, or even numeric array and implement some matrices algebra.

Considering how Forth's system areas are sorted out comparing previous and current versions, the first challenge is to move them down to free the top 8K CPU's addressable memory between 0E000h and 0FFFFh allowing MMU7 to map to any physical 8K RAM page.

There are some peculiar addresses that identify the following Forth system areas:

OF840h: Calculator Stack (SP) grows downward, Text Input Buffer (TIB) upward.,

OF8E0h: Return Stack (RP) grows downward, User Variables Area upward.

0F94Ch: the FIRST disk buffer starts here and buffers area ends just before LIMIT 0FF58h.

I coded this "move" in a few definitions (available in Screens #220-#223) summarized in the definition DOWN that moves these pointers "down" as follow:

0FF58h → 0E000h : LIMIT 0F9C4h → 0D9F4h : FIRST

0E8E0h → 0D9A0h : Return Stack and User Variables Area

0F840h → 0D900h : Stack Pointer and TIB

6.3.1 Heap-Pointer encoding and decoding

The Heap Memory Facility introduces a new kind of pointer, the Heap-Pointer that represents the offset inside a virtual memory area called "heap". A Heap-Pointer (hp) is not an usual address pointer and we need a way to encode both page number and address offset in a usual Z80 16-bits entity.

Two definitions are made available to perform these coding and decoding operations: >FAR and <FAR called "to-far" and "from-far" respectively.

Given a page number n and an address a (to be intended as an offset of addresses between E000h and FFFFh, i.e. only the part of the bits are useful) the definition >FAR encodes the page number in the most significant bits of ha and an offset in the remaining less significant bits. The inverse function is performed by <FAR splitting a 16-bit Heap-Pointer into two numbers again, the page part and the offset part.

In the following paragraphs a couple of possible implementations are described in detail.

6.3.2 Heap structure

The Heap can be seen as a "double linked-list" starting at 8K page \$20 offset \$0002. The User variable HP keeps the "heap-pointer" to the next available location on Heap. So, at startup, HP is \$0002 that correspond to page \$20 offset \$0002. Heap space is shared with name-space dictionary.

A Heap memory allocation reserves the requested number of bytes and advances HP to point to the next available location on Heap. The previous value of HP is also stored at the location that was available before the memory allocation was requested to put in place a "linked-list".

In other words:

- 1. HP is advanced of one cell (2 bytes) to make room for the forward linked-list pointer.
- 2. Current HP value returned by the memory allocation (memory is not initialized and its content is undefined)
- 3. HP is advanced to the number of bytes requested (plus 2 to ensure room for 2 trailing 0x00 character).

4. HP is advanced of one cell (2 bytes) to make room for the backward linked-list pointer.

Here is a real case example:

Let HP contains 0F80 and the Heap memory looks as follows (Location is expressed in the form "\$page.\$offset")

```
Location Content

20.0F80 .... free memory pointed by HP so that HEX HP ? gives F80
```

Then, we want to reserve a 7 bytes chunk of memory and we can type **7 HEAP** that returns 0F82 as "Heap-Pointer" to that new area of memory and HP will be advanced to 0F8D. After the execution the memory will look like this:

```
Location
             Content
 20.0F80
              0F8D
                     ( forward pointer )
20:0F82
              00 00 00 00 00 00 00
                                      ( 7 bytes just allocated )
20:0F89
              00 00
                                      (trailing 0x00)
 20:0F8B
             0F80
                   ( backward pointer )
 20:0F8D
              .... free memory pointed by HP
```

Then we can create a new string with Heap-Storage typing **S" 123"** which returns on stack the actual address EF90 and the length 0003 that can directly used with TYPE. The Heap-Pointer is somehow lost, and if needed, it should be kept beforehand via **HP@ CELL+**. This allocation requires ten bytes on Heap, the forward pointer, the byte of length, the string itself 3 byte long, a two trailing 0x00, the backward pointer.

After the execution, the memory will look like this:

```
Location
             Content
 20.0F80
             0F8D
                  ( forward pointer )
             00 00 00 00 00 00 00 (7 bytes just allocated)
20:0F82
20:0F89
             00 00
                                     ( plus trailing 0x00 )
             0F80
                    ( backward pointer )
20:0F8B
 20:0F8D
             0019
                   ( forward pointer )
                   ( length byte )
 20:0F8F
             03
20:0F90
             31 32 33 (the string content)
20:0F93
                       ( plus trailing 0x00 )
             00 00
20:0F95
             OF8D (backward pointer)
             .... free memory pointed by HP
 20:0F97
```

Then, we want to reserve another 5 bytes chunk and we can type 5 HEAP that returnS 0F99 as "Heap-Pointer" to that

new area of memory and HP will be advanced to \$0FA2. After the execution the memory will look like this:

Now, you should be able to see the Linked-List starting at **0F80** that points to **0F8D** that points to **0F97** and then **0FA2** is the current value of HP.

You can follow all these Forward-Pointers using the following procedure:

```
    OF80 .S \ Stack is OF80 as Heap-Pointer, that is 20:0F80, the beginning of Heap Memory.
    FAR .S \ Stack is EF80 as real Address (and page $20 is fitted in MMU7)
    .S \ Stack is OF8D as Heap-Pointer
    FAR .S \ Stack is EF8D as real Address (and page $20 is fitted in MMU7)
    .S \ Stack is OF97 as Heap Pointer
    FAR .S \ Stack is EF97 as real Address (and page $20 is fitted in MMU7)
    .S \ Stack is OFA2 as Heap Pointer
```

Likewise, the Backward-Pointers sequence would be:

```
HP@ .S \ Stack is 0FA2 as Heap-Pointer

CELL- \ Stack is 0FA0 as Heap-Pointer

FAR .S \ Stack is EFA0 as real Address (and page $20 is fitted in MMU7)

@ .S \ Stack is 0F97 as Heap-Pointer

CELL- \ Stack is 0F95 as Heap-Pointer

FAR .S \ Stack is EF95as real Address (and page $20 is fitted in MMU7)

@ .S \ Stack is 0F8D as Heap Pointer

CELL- \ Stack is 0F8B as Heap-Pointer

FAR .S \ Stack is EF8B as real Address (and page $20 is fitted in MMU7)

@ .S \ Stack is 0F80 as Heap Pointer
```

Some low-level definitions are available to allow store and retrieve "to and from" Heap memory and how to avoid that a string isn't "paged away" in the middle of processing i.e. how to guarantee a page to stay in place across Standard-ROM calls or I/O disk operations that use page-bank C000-FFFF for their purposes:

```
MMU7! is used to fit a given 8K page number at E000h (i.e. MMU7). >FAR is used to decode a "16 bit pointer" splitting it into "page & offset" as shown above.
```

The User Variable HP has been introduced to keep track of room in Heap: it's "the pointer" to the next available space on

Heap.

The following definitions are available after loading via NEEDS HEAP

+" ha --- ha

Assuming ha is a Heap-Address Pointer to a "counted string" and this is the last chunk of memory of Heap, this definition accepts some text from the current input-source, parse it looking for a quote " that is the common "string terminator", and appends to the previous string on Heap. It returns the same Heap-Address Pointer to a "counted string" but the "count-byte" is incremented correctly. No page boundary check is performed.

+C ha c --- ha

Consume a character \circ from the current input source and append the string being created in Heap at ha. The heap pointer ha is returned unchanged.

>FAR ha --- a p

Given a heap-encoded pointer ha this definition decodes the top bits as one of the 8K-page available page p and the lower bits as the offset from E000h a. It does not modify what MMU7 page is.

This definition is available after NEEDS > FAR (that loads the file "./inc/}far.f" source file).

You are allowed to modify (with care!) the source file to obtain the desired range of pages.

See <FAR, MMU7!

<FAR a p --- ha

Given an offset-address $\, a \,$ (to be intended as a physical address between E000h and FFFFh) and a page number $\, p \,$ for an 8K-page this definition encodes the page number in the most significant bits of $\, ha \,$ and an offset in the remaining bits. It does not modify MMU7 page.

This definition is available after NEEDS <FAR (that references the file "./inc/{far.f").

You are allowed to modify (with care!) the source file to obtain the desired range of pages.

See >FAR, MMU7!

FAR ha --- a

This definition converts a heap-pointer ha into an offset a (at E000h) and perform the correct 8K paging on MMU7. It simply calls >FAR and MMU7!

H" --- ha

Accepts a text from the current input-source and stores it to Heap. It returns a "heap-address-pointer" to a counted string.

HEAP n --- ha

This definition reserves $\ n$ bytes on Heap and returns the "heap-address-pointer". This $\ ha$ can be turned into a constant name using POINTER.

POINTER ha --- a

It works like CONSTANT but it returns a "FAR-resolved" offset-pointer from E000h .

A possible use is: S" ccc" POINTER P1

SKIP-PAGE n ---

Check if n bytes are available at the top of Heap on current 8K-page, otherwise advance HP to skip to the beginning of next 8K-page. It raises an "Heap Full" error if there is no more room in Heap.

S" --- a n

Accept text from the current input-source and store it to Heap as a "Counted-ZString".

At compile time it compiles (H") followed by an Heap-pointer just after it, which at run-time returns a real-address (at MMU7) and a counter representing the "counted-string" that can be used

If STATE is 0, i.e. we aren't compiling, the c

(H") --- a n

This is the run-time counterpart of S" that uses the Heap-Pointer in the following cell to fit the right 8K-Page in MMU7 using FAR definition and leave the real-address a and the length of the string n.

HEAP-INIT ---

Ask NEXTZXOS to use pages \$20-\$27 for Heap. From this point Heap command can be used safely.

HEAP-DONE ---

Release to NEXTZXOS pages \$20-\$27. Heap commands should not be used after that.

6.3.3 Heap Pointer description for 64 kiBytes space

The following solution allows 64K of physical RAM Heap: Since an 8K offset requires 13 bits, the remaining 3 bits can be used to encode, say, from page 32 (\$20) to page 39 (\$27). For example:

The encoding/decoding definitions would be something like the following:

```
\ >far routine
\ input: hl : heap-pointer
\ output: a : page
      : hl : address starting from $E000
      ld
             a,h
      ex
             af, af' ; save high part
     ld
            a,h
      or
             $E0
                    ; hl = offset at $E000
     ld
            h,a
             af,af'
      ex
      rlca
      rlca
     rlca
             $07 ; so there are eight pages
      and
      add
             $20
                   ; this is peculiar to this example
      ret
```

```
\ <far routine
\ input : a : page number between 32 and 39
      : hl : address starting from $E000
\ output: hl : heap-pointer
      and
             $07 ; ? questionable: it could be SUB $20
      rrca
      rrca
      rrca
             af, af' ; keep bits 765 in alternate A
      ex
             a,h
      ld
             $1F
      and
             h,a
      ld
             af, af'; retrieve bits 765
      ex
             h
      or
      ld
             h,a
      ret
```

6.4 Testing Suite

This is an adaptation of the ANS test harness based on the work originally developed by John Hayes, see https://forth-standard.org/standard/testsuite for details.

The suite is loaded using <code>NEEDS TESTING</code> and "Core test-set" can be execute by typing

```
INCLUDE ./test/core-tests.f
```

In general, a test is given in the form

$$T\{ \dots -> \dots \}T$$

for example:

TESTING

This definition is much like a comment, it displays the whole source line where it is.

T{ ---

Begin a test phrase that ends with \rightarrow T. It records pre-test stack depth to be compared later.

}T ---

End a test phrase begun with $\mathbb{T}\{.\}$ It compares two stack images. Any discrepancies is shown by repeating the current test SOURCE line involved followed by one of the error

6.5 Other Utilities

SHOW-PROGRESS n ---

Useful within long-lasting definitions to display a "rolling-bar" that show that your ZX Spectrum hasn't hanged or crashed. This definition isn't available at startup and must be included via NEEDS SHOW-PROGRESS.

?VOCAB ---

Useful to see which VOCABULARY is CURRENT, CONTEXT and the linked-list described by VOC-LINK.

7 The Memory Map

Address	Name	Description
0000-3FF 4000-47FF 4800-4FF 5000-57FF 5800-5AFF 5800-5CEF 61FF 6200-6300 6301-6330	*CHANS *PROG *VARS *E_LINE *WORKSP *STKBOT *STKEND *SP *RAMTOP	ROM of Spectrum Display file (top) Display file (middle) Display file (bottom) Attribute file. System variables 128K RAM (former Printer buffer) System variables Stream map Basic program Basic variables Line in editing Workspace Floating point Stack Bottom Floating point end Z80 Stack Pointer register in Basic Logical RAM top (RAMTOP var is 23730) IM2 ISR vector table Return Stack during ISR (20 entries)
6331-6362 6363		Stack area during OS operations ISR entry point (JP address)
6366	ORIGIN	Forth Origin FENCE @
D0E8 D0E8 D188 D188-D1D8 D1E4 E000 E000-FFFF	LATEST HERE PAD SP@ TIB RP@ FIRST LIMIT MMU7 P_RAMT	CURRENT @ @ DP @ HERE 68 + (44h) Dictionary grows upward Free memory Calculator Stack grows downward SO @ TIB @ Return Stack grows downward: it can hold 80 entries RO @ User variables area (about 50 entries) First buffer: There are 7 buffers (516 * 7 = 3612 bytes) First byte outside Forth. 8K Page that can page any of the 224 banks of RAM Phisical ram-top

Contents

1 Foreword	2
1.1 MIT License	3
1.2 Typos and suggestions	3
1.3 Acknowledgment	3
1.4 Document structure	4
1.5 Legend	5
2 Getting started	6
2.1 Installation	6
2.2 Activation	7
2.3 Case-insensitive and Case-sensitive option	8
2.4 Block / Screen system and Text editor	8
2.5 Character size	9
2.6 Source feeding and output spooling	9
2.7 Number literals interpretation	9
2.8 Definitions grouped by category	10
2.8.1 Comments	10
2.8.2 Stack manipulation	10
2.8.3 Comparison	10
2.8.4 Output	11
2.9 Integer Arithmetics	11
2.10 Memory	12
2.10.1 Flow control	12
2.10.2 Definition related	12
2.10.3 I/O and Hardware	13
2.10.4 BLOCK / Screen related	13
2.10.5 Numbers & strings	13
2.10.6 Dictionary related	14
2.10.7 Editor	14
2.10.8 NextZXOS	14
2.11 Known bugs, workarounds, and improvement needed	15

3 Utilities	16
3.1 The Full Screen Editor Utility – Screen oriented	16
EDIT	16
3.2 Graphics mode and Layer facility	18
LAYER! n	18
LAYERO	18
LAYER10	18
LAYER11	18
LAYER12	19
LAYER13	19
LAYER2	19
IDE_MODE! n	19
IDE_MODE@ hl de bc a	19
3.2.1 Low-level definitions	20
ATTRIB n	20
PIXELADD x y n	20
PLOT x y	20
POINT x y c	20
3.2.2 High-level definitions	21
CIRCLE xyr	21
DRAW-LINE x0 y0 x1 y1	21
PLOT x y	21
PAINT x y	21
3.2.3 Colors & Attributes	22
.BORDER b	22
.BRIGHT b	22
.FLASH b	22
.INK b	22
.INVERSE b	22
.OVER b	22
.PAPER b	22
3.3 LED – the Large file EDitor	23

CAT"	23
LED cccc	23
LED-EDIT	24
LED-SAVE	24
LED-FILE cccc	24
3.4 Mouse	25
MOUSE-XY n1 n2	26
?MOUSE f	26
MOUSE n	26
3.5 Interrupt Service Routine	27
INTERRUPTS	27
ISR-OFF	27
ISR-XT xt	27
ISR-ON	27
ISR-EI	28
ISR-DI	28
ISR-IM1	28
INT-IM2	28
ISR-SYNC	28
SETIREG b	28
ISR-RET	28
ISR-SUB	28
3.6 Block Search and Locate Utility	29
LOCATE	29
GREP	29
BSEARCH n1 n2	30
COMPARE a1 b1 a2 b2	30
3.7 Debugger Utility	31
SEE	31
3.7.1 The Inner-interpreter	33
DUMP a u	34
.WORD a	34

.S	34
DEPTH n	34
3.8 Floating-Point Option	35
3.8.1 Floating-point option activation and number conversion	35
INTEGER	35
FLOATING	36
D>F d fp	36
F>D fp d	36
FLOAT n fp	36
FIX fp n	36
3.8.2 Representation and constants	36
F>PAD fp u	36
F.R fp u	36
F. fp	36
1/2 fp	36
PI fp	36
3.8.3 Arithmetics	36
F- fp1 fp2 fp3	36
F+ fp1 fp2 fp3	36
F* fp1 fp2 fp3	37
F/ fp1 fp2 fp3	37
FNEGATE fp1 fp2	37
FSGN fp1 fp2	37
FABS fp1 fp2	37
F/MOD fp1 fp2 fp3 fp4	37
F** fp1 fp2 fp3	37
FMOD fp1 fp2 fp3	37
F*/ fp1 fp2 fp3 fp4	37
F< fp1 fp2 f	37
F> fp1 fp2 fp3	37
F0< fp1 f	
F0> fp1 f	

3.8.4 Log, Exp, Trig	38
FLN fp1 fp2	38
FEXP fp1 fp2	38
FINT fp1 fp2	38
FSQRT fp1 fp2	38
FSIN fp1 fp2	38
FCOS fp1 fp2	38
FTAN fp1 fp2	38
FASIN fp1 fp2	38
FACOS fp1 fp2	38
FATAN fp1 fp2	38
RAD>DEG fp1 fp2	38
DEG>RAD fp1 fp2	38
3.8.5 Low-level definitions	39
FOP n	39
>W fp	39
W> fp	39
3.9 Line Editor	40
-MOVE a n	41
.PAD	41
В	41
D n	41
BCOPY n1 n2	41
E n	41
H n	41
INS n	41
L	41
LINE n a	41
N	41
P n	41
RE n	42
S n	42

SAVE	42
ROOM	42
TEXT c	42
UNUSED n	42
WHERE n1 n2	42
3.10 ASSEMBLER vocabulary	43
HOLDPLACE a1	49
DISP, a1 a2	49
BACK, a1	49
4 Technical specifications	50
4.1 Z80 CPU Registers	50
4.2 Single Cell 16 bits Integer Number Encoding	50
4.3 Two cells 32 bits Integer Number Encoding	50
4.4 Double Cell Floating-Point Number Encoding	51
4.5 Single Cell 16 bits Heap Pointer Address Encoding	51
4.6 Dictionary memory structure	52
5 Error messages	53
6 The Dictionary	54
6.1 The "core" dictionary	54
'null' (immediate)	54
! n a	54
!CSP	54
# d1 d2	54
#> d a u	54
#BUFF n	54
#S d1 d2	54
#SEC n	54
' cfa	54
((immediate)	55
(+LOOP) n	55
(.")	55
(;CODE)	55

(?DO)	55
(?EMIT) c1 c2	55
(ABORT)	55
(COMPARE) a1 a2 n b	55
(DO)	56
(FIND) a1 a2 cfa b tf	56
(LEAVE)	56
(LINE) n1 n2 a b	56
(LOOP)	56
(MAP) a2 a1 n c1 c2	56
(NEXT) a	57
(NUMBER) d a d2 a2	57
(PREFIX) a a2	57
(SGN) a a2 f	57
* n1 n2 n3	57
*/ n1 n2 n3 n4	57
*/MOD n1 n2 n3 n4 n5	57
+ n1 n2 n3	58
+! n a	58
+- n1 n2 n3	58
+BUF a1 a2 f	58
+LOOP n1 (run time)	58
+ORIGIN n a	58
+TO n cccc	58
, n	58
,"	58
- n1 n2 n3	59
>	59
-1 n	59
-DUP n n n (non zero)	59
-FIND cfa b tf (ok)	59
-TRAILING a1 n1 a2 n2	

. n	59
." (immediate)	59
.((immediate)	60
.C c (immediate)	60
.LINE n1 n2	60
.R n1 n2	60
/ n1 n2 n3	60
/MOD n1 n2 n3 n4	60
0 n	60
0< n f	60
0= n f	60
0> n f	60
OBRANCH f	61
1 n	61
1+ n1 n2	61
1- n1 n2	61
2 n	61
2! d a	61
2* n1 n2	61
2+ n1 n2	61
2- n1 n2	61
2/ n1 n2	61
2@ a d	61
2CONSTANT d (immediate) (compile time)	61
2DROP d	62
2DUP d d d	62
20VER d1 d2 d1 d2 d1	62
2ROT d1 d2 d3 d2 d3 d1	62
2SWAP d1 d2 d2 d1	62
2VARIABLE (immediate) (compile time)	62
3 n	63
3DUP n1 n2 n3 n1 n2 n3 n1 n2 n3	63

·	63
:NONAME xt	63
; (immediate)	63
;CODE (immediate)	63
;S	63
< n1 n2 f	63
<#	64
<> n1 n2 f	64
<builds< td=""><td>64</td></builds<>	64
<name cfa="" nfa<="" td=""><td>64</td></name>	64
= n1 n2 f	64
> n1 n2 f	64
>BODY cfa pfa	64
>IN a	64
>NUMBER d a u d2 a2 u2	64
>R n	65
? a	65
?COMP	65
?CSP	65
?DO n1 n2 (immediate) (run time)	65
?DO- [a1 n1] a n	65
?DUP n n n (non zero)	65
?ERROR f n	66
?EXEC	66
?LOADING	66
?PAIRS n1 n2	66
?STACK	66
?TERMINAL f	66
@ a n	66
ABORT	66
ABS n u	66
ACCEPT a n1 n2	66

AGAIN (immediate) (run time)	66
ALLOT n	67
ALIGN	67
ALIGNED a1 a2	67
AND n1 n2 n3	67
AUTOEXEC	67
B/BUF n	67
B/SCR n	67
BACK a	67
BASE a	67
BASIC u	67
BEGIN (immediate) (run time)	67
BINARY	68
BL c	68
BLANK a n	68
BLK a	68
BLK-FH a	68
BLK-FNAME a	68
BLK-INIT	68
BLK-READ an	68
BLK-SEEK n	68
BLK-WRITE a n	69
BLOCK n a	69
BOUNDS a n a+n a	69
BRANCH	69
BUFFER n a	69
BYE	69
C! b a	69
C, b	69
C/L c	69
C@ a b	69
CALL# n1 a n2	69

CASEOFF	70
CASEON	70
CELL 2	70
CELL+ n1 n2	70
CELL- n1 n2	70
CELLS n1 n2	70
CFA pfa cfa	70
CHAR c	70
CLS	70
CMOVE a1 a2 n	70
CMOVE> a1 a2 n	70
CODE	70
COLD	71
COMPILE	71
COMPILE, xt	71
CONSTANT n (immediate) (compile time)	71
CONTEXT a	71
COUNT a1 a2 b	71
CR	72
CREATE (compile time)	72
CSP a	72
CURRENT a	72
CURS	72
D+ d1 d2 d3	72
D+- d1 n d2	72
D- d1 d2 d3	73
D. d	73
D.R d n	73
D0= d f	73
D< d1 d2 f	73
D= d1 d2 f	73
DABS d ud	73

DECIMAL	73
DEFINITIONS	73
DEVICE a	73
DIGIT c n u tf (ok)	74
DLITERAL d d (immediate) (run time)	74
DMAX d1 d2 d3	74
DMIN d1 d2 d3	74
DNEGATE d1 d2	74
DO n1 n2 (immediate) (run time)	74
DOES>	74
DP a	75
DPL a	75
DROP n	75
DUP n n n	75
DUP>R n n	75
DU< ud1 ud2 f	75
ELSE a1 n1 a2 n2 (immediate) (compile time)	75
EMIT c	75
EMITC b	75
EMPTY-BUFFERS	75
ENCLOSE a c a n1 n2 n3	76
END a n (immediate) (compile time)	76
ENDIF a n (immediate) (compile time)	76
ERASE a n	76
ERROR b n1 n2	76
EXEC: n	76
EXECUTE cfa	77
EXIT	77
EXP a	77
EXPECT a n	77
FENCE a	77
FILL a n b	77

FIRST a	77
FLD a	77
FLIP n1 n2	77
FLUSH	77
FM/MOD d n1 n2 n3	77
FORGET	78
FORTH (immediate)	78
F_CLOSE n f	78
F_FGETPOS n d f	78
F_GETLINE a n1 fh n2	78
F_INCLUDE n	78
F_OPEN a1 a2 n1 n2 f	78
F_READ a n1 n2 n3 f	78
F_SEEK d n	78
F_SYNC n f	79
F_WRITE a n1 n2 n3 f	79
HANDLER a	79
HERE a	79
HEX	79
HLD a	79
HOLD c	79
HP a	79
l n	79
l' n	79
ID. nfa	79
IF f (immediate) (run time)	79
IMMEDIATE	80
INCLUDE	80
INDEX n1 n2	80
INKEY b	80
INTERPRET	80
INVERT n1 n2	80

INVV	80
J n	81
K n	81
KEY b	81
L/SCR n	81
LATEST nfa	81
LEAVE	81
LFA pfa Ifa	81
LIMIT a	81
LIST n	82
LIT n	82
LITERAL n n (immediate) (run time)	82
LOAD n	82
LOOP a n (immediate) (run time)	82
LP a	82
LSHIFT n1 u n2	82
M* n1 n2 d	82
M*/ d1 n1 n2 d2	83
M+ d u d2	83
M/ d n1 n2	83
M/MOD d1 n1 n2 n3	83
MARK a n	83
MARKER (immediate) (run time)	83
MAX n1 n2 n3	83
MESSAGE n	83
MIN n1 n2 n3	83
MMU7! n	83
MMU7@ n	84
MOD n1 n2 n3	84
MS u	84
M_P3DOS n1 n2 n3 n4 a n4 n5 n6 n7 f	84
NEEDS	84

NEGATE nn	85
NFA pfa nfa	85
NIP n1 n2 n2	85
NMODE a	85
NOOP	85
NOT	85
NUMBER a d	85
OCTAL	85
OFFSET a	85
OPEN< fh	86
OR n1 n2 n3	86
OUT a	86
OVER n1 n2 n1 n2 n1	86
P! b u	86
P@ u b	86
PAD	86
PFA nfa pfa	86
PICK n pfa	86
PLACE a	86
PREV a	87
QUERY	87
QUIT	87
R@ n	87
R# a	87
R/W anf	87
RO a	87
R> n	87
R>DROP	87
RECURSE	87
REG! b n	87
REG@ n b	87
REMOUNT	88

RENAME	88
REPEAT a1 n1 a2 n2 (immediate) (compile time)	88
ROT n1 n2 n3 n2 n3 n1	88
ROLL n1 k n2 n1	88
RP! a	88
RP@ a	88
RSHIFT n1 u n2	88
SO a	88
S>D n d	89
SCR a	89
SELECT n	89
SIGN n	89
SM/REM d n1 n2 n3	89
SMUDGE	89
SOURCE-ID a	89
SP! a	89
SP@ a	89
SPACE	89
SPACES n	90
SPAN a	90
SPLASH	90
SPLIT n1 n2 n3	90
STATE a	90
SWAP n1 n2 n2 n1	90
THEN a n (immediate)	90
TIB a	90
TO n	90
TOGGLE a b	90
TRAVERSE a1 n a2	90
TRUV	91
TUCK n1 n2 n2 n1 n2	91
TYPE a n	91

U. u	91
U< u1 u2 f	91
UM* u1 u2 ud	91
UM/MOD ud u1 u2 u3	91
UNTIL a n (immediate) (compile time)	91
UPDATE	91
UPPER c1 c2	91
USE a	91
USER n	92
VALUE n	92
VARIABLE	92
VIDEO	92
VOC-LINK a	92
VOCABULARY	92
WARM	93
WARNING a	93
WHILE f (immediate) (run time)	93
WIDTH a	93
WITHIN n1 n2 n3 f	93
WORD c a	93
WORDS	94
XOR n1 n2 n3	94
[(immediate)	94
[CHAR] (immediate) (compile time)	94
[COMPILE] (immediate)	94
\	94
]	94
.2 Case -Of structure	95
CASE n0 (immediate) (run time)	95
OF n0 nk (immediate) (run time)	95
ENDOF (immediate) (run time)	95
ENDCASE (immediate) (run time)	95

	(OF) n0 nk (run time)	95
	6.3 Heap Memory Facility	96
	6.3.1 Heap-Pointer encoding and decoding	96
	6.3.2 Heap structure	96
	+" ha ha	99
	+C ha c ha	99
	>FAR ha a p	99
	<far a="" ha<="" p="" td=""><td>99</td></far>	99
	FAR ha a	99
	H" ha	99
	HEAP n ha	99
	POINTER ha a	99
	SKIP-PAGE n	100
	S" a n	100
	(H") a n	100
	HEAP-INIT	100
	HEAP-DONE	100
	6.3.3 Heap Pointer description for 64 kiBytes space	101
	6.4 Testing Suite	102
	TESTING	102
	T{	102
	->	102
	}T	102
	6.5 Other Utilities	103
	SHOW-PROGRESS n	103
	?VOCAB	103
	7 The Memory Map	104
Со	ontents	105