Practise 1 - Ej1

October 15, 2018

```
In [1]: import numpy as np
import math
import matplotlib.pyplot as plt
%matplotlib inline
```

1.- Escribe un programa en matlab que dibuje una gaussiana, para valores $\xi=2$ y = 1, en el intervalo [-5, 5] y con incrementos de 0.1. Implementa para ello tu propia f(x).

2.- Implementa una función llamada evaluate_gaussian que tome como parámetros la media y la desviación de una distribución normal y el valores de x en la que se evalúa. Desde la consola, plotea f(x) para con incrementos de 0.1, usando la media y desviaciones típicas del apartado anterior.

3.- Muestrear consiste en obtener un valor aleatorio obedeciendo una distribución de probabilidad. Empleando la función randn, obtiene y dibuja muestras sobre el eje x de una distribución normal de parámetros $\xi=2$ y =2.

Razona las siguientes cuestiones:

£En torno a qué valores se concentran?£Por qué?

Se concentran entorno a la media, ya que es más probable que aparezcan allí.

£Por qué hay cada vez menos muestras cuanto más nos alejamos del origen de coordenadas? Porque es menos probable que tomen estos valores

4.- Dibuja el histograma para distintos valores de muestras (100,500,1000), empleando la media y la desviación típica del apartado anterior.

In [181]: plot_randn(500, 2, 2)

In [177]: plot_randn(1000, 2, 2)

