Automated Reasoning

Peter Baumgartner
NICTA, Canberra
and
RSISE, ANU

Contact

Office: NICTA Bldg, Tower A, 7 London Circuit

Email: Peter.Baumgartner@nicta.com.au

Web: http://users.rsise.anu.edu.au/~baumgart/

Many slides based on material from Scott Sanner

Schedule

- Introduction to Logic (John Slaney)
 - Starting week of March 3
- Automated Reasoning (Peter Baumgartner)
 - Starting week of March 17
- SAT solving (Anbulagan)
 - Starting week of March 31
- Knowledge Compilation (Jinbo Huang)
 - Starting week of April 28
- Temporal Logic (Michael Norrish)
 - Starting week of May 12
- Higher-Order Logic (Jeremy Dawson)
 - Starting week of May 26

Automated Reasoning

... vs. calculation:

- Problem: $2^2 = ?$ $3^2 = ?$ $4^2 = ?$
- "Easy", often polynomial

• ... vs. constraint solving:

- Problem spec: $x^2 = a$ where x ∈ [1 .. b]
- Problem instance: fix parameter values a and b: a = 16, b = 10
- Find satisfying values then for variable x (from finite domain)
- "Difficult", often exponential (NP-complete problems)
- ... is, among others, about (first-order logic) **theorem proving**:
 - Problem: $\exists x (x^2 = a \land x \in [1 .. b])$
 - Is is satisfiable? valid?
 - "Very difficult" (often undecidable)

Logical Analysis of Systems

Peter Baumgartner Automated Reasoning 3

Logical Analysis Example: Three-Coloring Problem

Problem: Given a map

Can it be colored with only three colors?

Three-Coloring Problem - Graph Theory Abstraction

Problem Instance

Problem Specification

Peter Baumgartner Automated Reasoning 5

Three-Coloring Problem - Formalization

Every node has at least one color

$$\forall N \; (\text{red}(N) \lor \text{green}(N) \lor \text{blue}(N))$$

Every node has at most one color

$$\forall N \ ((\operatorname{red}(N) \to \neg \operatorname{green}(N)) \land \\ (\operatorname{red}(N) \to \neg \operatorname{blue}(N)) \land \\ (\operatorname{blue}(N) \to \neg \operatorname{green}(N)))$$

Adjacent nodes have different color

$$\forall M, N \; (\mathsf{edge}(M, N) \to (\neg(\mathsf{red}(M) \land \mathsf{red}(N)) \land \\ \neg(\mathsf{green}(M) \land \mathsf{green}(N)) \land \\ \neg(\mathsf{blue}(M) \land \mathsf{blue}(N))))$$

Three-Coloring Problem - Solving Problem Instances ...

- ... with a constraint solver
 - Let constraint solver find values for variables such that spec is satisfied.
 - Variables: colors of nodes in the graph
 - Values: red, green or blue
- ... with a first-order logic theorem prover
 - Let the theorm prover prove that the three-colouring formula (see previous slide) + specific graph (as a formula) is satisfiable
- To solve problem instances, a constraint solver is usually much more efficient than a first-order theorem prover (e.g. use a propositional SAT solver)
 - Theorem provers are not even guaranteed to terminate on such problems!

What is the role of theorem proving then?

Peter Baumgartner Automated Reasoning

Three-Coloring Problem: The Role of Theorem Proving

- Functional Dependencies
 - The blue coloring functionally depends on the red and green coloring

The blue coloring does not functionally depend on the red coloring

- Theorem proving tasks: are the following valid (expressed as formulas)?
 - The blue coloring functionally depends on the red and green coloring
 - The blue coloring functionally depends on the red coloring
- (Learning about functional dep. might be instructive for modeller and solver)
- These are "proper" theorem proving tasks: analysis wrt **all** instances
- Demo now, files can be downloaded from my web page

Abstracting from the Example

AR systems functionality

- Input: a set of formulas in a specific logical language
- Run: analyze these formulas by logical inference for a specific task
- Output: the result of the analysis (proof, counterexample, solution...)
- Rationale deduction: the "ultimate declarative paradigm"
 - Formulas describe possible worlds
 - Draw conclusions by (sound) logical inference
 - Learn something about the "real world"

Logical language and semantics

- Propositional, first-order, higher-order, modal, description logic, ...
- monotonic/non-monotonic, probabilistic, ressource-bounded, ...

Logical Inference and task

- Calculus (Resolution, ...) -> Proof procedure -> Implementation
- Prove theorem, disprove conjecture, plausible explanation, find a model,...

Peter Baumgartner Automated Reasoning 9

History

Pre-computer era

- Early: Aristotle, Leibniz
- 19th century: Boole, DeMorgan, Peano, Cantor and others
- 20th century: Hilbert, Skolem, Herbrand, Gödel, Gentzen, Church
- Computer era (among many others)
 - 1960s Calculi
 - Davis-Putnam-Logemann-Loveland (DPLL), Resolution, Model Elimination
 - 1970s Logic programming
 - Prolog
 - 1980s Knowledge representation
 - Description Logics
 - 1990s Modern theory of resolution
 - 2000s (Serious) applications

Applications

Proofs of Mathematical Conjectures

- Graph theory: Four color theorem
- Boolean algebra: Robbins conjecture

Verification

- Hardware: arithmetic units correctness
- Software: functional correctness, safety properties, static checking

Query Answering

 Build domain-specific knowledge bases, use theorem proving to answer queries

Key to Success

- Chose your logic and calculus carefully (e.g. avoid undecidable logic if possible)
- Need domain-specific optimizations (e.g. avoid successor-arithmetic)
- Domain-independent optimization (e.g. "subsumption", good data structures)
- Next: preview of some logics and calculi

Peter Baumgartner Automated Reasoning 11

Example of Propositional Logic Sequent Proof

Given:

– Axioms:

None

- Conjecture:

 $A \vee \neg A$?

Inference:

GentzenSequentCalculus

• Direct Proof:	
(1)	A - A
(¬R)	- ¬A, A
(∨R2)	- A∨¬A, A
(PR)	- A, A∨¬A
(VR1)	- A∨¬A, A∨¬A
(CR)	- A∨¬A

Problem:

- the Sequent Calculus is deduction-complete it can derive every tautology
- Calculi for ATP used nowadays are only refutation-complete (they can only derive a contradiction for a given theorem)

Example of First-order Logic Resolution Proof

- Given:
 - Axioms:

 $\forall x \text{ Man}(x) \Rightarrow \text{Mortal}(x)$ Man(Socrates)

• **Conjecture**: ∃y Mortal(y)?

• Inference:

Resolution calculus

CNF:

 \neg Man(x) \vee Mortal(x)

Man(Socrates)

¬Mortal(y) (Neg. conj.)

Proof:

1. ¬Mortal(y) (Neg. conj.)

2. $\neg Man(x) \lor Mortal(x)$ (Given)

3. Man(Socrates) (Given)

4. Mortal(Socrates) (Res. 2,3)

5. ⊥ (*Res. 1,4*)

Contradiction ⇒ Conj. is true

Peter Baumgartner Automated Reasoning 13

Example of Description Logic Tableaux Proof

- Given:
 - Axioms:

None

• Conjecture:

∃ Child.¬Male ⇒

¬∀ Child.Male?

Inference:

Tableaux

Proof:

Check unsatisfiability of

∃Child.¬Male □ ∀ Child.Male

x: \exists Child. \neg Male $\sqcap \forall$ Child.Male

x: \forall Child.Male $(\neg$ -rule)

x: ∃Child.¬Male (□-rule)

x: Child y (∃-rule)

y: ¬Male (∃-rule)

y: Male (∀-rule)

<CLASH>

Contradiction ⇒ Conj. is true

Calculi and Properties

For each calculus one has to specify:

- Syntax and semantics of its logic
- Foundational axioms (if any)
- Inference rules
- How to combine inference rules applications into derivations

Derivability and Entailment

- Let KB be the conjunction of axioms
- Let F be a formula (possibly a conjecture)
- We say $KB \vdash F$ (read: KB derives F) if F can be derived from KB through rules of inference
- We say $KB \models F$ (read: KB entails F, or KB models F) if (model-theoretic) semantics hold that F is true whenever KB is true

Peter Baumgartner Automated Reasoning 15

Model-Theoretic Semantics

Model-theoretic semantics for (propositional) logics

- An interpretation is a truth assignment to atomic elements of a KB:

$$I \langle C,D \rangle \in \{ \langle F,F \rangle, \langle F,T \rangle, \langle T,F \rangle, \langle T,T \rangle \}$$

A model of a formula is an interpretation where it is true:

$$I \langle C,D \rangle = \langle F,T \rangle$$
 models $C \lor D$, $C \Rightarrow D$, but not $C \land D$

- Two important properties of a formula C w.r.t. axioms of KB:
 - Entailment, written as KB ⊨ C: C is true in all models of KB
 - Consistency: C is true in ≥1 model of KB

Think of truth in a set-theoretic manner

Models of KB $KB \models C$ C **KB** ⊆ Models of C

Calculi and Properties

- Important properties of calculi:
 - Soundness: If KB ⊢ C then KB ⊨ C
 - Completeness: If KB ⊨ C then KB ⊢ C
 - Refutational completeness: KB ∪ {¬C} ⊢ ⊥)
 - Termination: halts on any KB and C after finite time
- These properties may be incompatible, depending on the logic
 - Decidable logics: all three
 - Example: propositional logic
 - Semi-decidable logics: can have sound and (refutationally) complete calculus
 - Thus terminates if KB ⊨ C . Example: first-order logic
 - Non-r.e. logics: can't have sound and (refutationally) complete calculus
 - Example: second-order logic

Peter Baumgartner Automated Reasoning 17

Propositional Logic Syntax

- Propositional variables: p, rain, sunny
- Connectives: ⇒ ⇔ ¬ ∧ ∨
- Inductive definition of well-formed formula (wff):
 - Base: All propositional vars are wffs
 - Inductive 1: If A is a wff then ¬A is a wff
 - Inductive 2: If A and B are wffs then $A \wedge B$, $A \vee B$, $A \Rightarrow B$, $A \Leftrightarrow B$ are wffs
- Examples:
 - rain, rain \Rightarrow ¬ sunny
 - (rain $\Rightarrow \neg$ sunny) \Leftrightarrow (sunny $\Rightarrow \neg$ rain)

Prop. Logic Semantics

- For a formula F, the truth I(F) under interpretation I is recursively defined:
 - Base:
 - F is prop var A then I(F)=true iff I(A)=true
 - Recursive:
 - F is ¬C then I(F)=true iff I(C)=false
 - F is C ∧ D then I(F)=true iff I(C)=true and I(D)=true
 - F is C ∨ D then I(F)=true iff I(C)=true or I(D)=true
 - F is C \Rightarrow D then I(F)=true iff I(\neg C \lor D)=true
 - F is C \Leftrightarrow D then I(F)=true iff I(C \Rightarrow D)=true and I(D \Rightarrow C)=true
- Truth defined recursively from ground up
 - Modal logics don't have this property!

Peter Baumgartner Automated Reasoning 19

CNF Normalization

- Many theorem proving techniques req. KB to be in clausal normal form (CNF):
 - Rewrite all C \Leftrightarrow D as C \Rightarrow D \land D \Rightarrow C
 - Rewrite all C \Rightarrow D as ¬C ∨ D
 - Push negation through connectives:
 - Rewrite ¬(C ∧ D) as ¬C ∨ ¬D
 - Rewrite $\neg(C \lor D)$ as $\neg C \land \neg D$
 - Rewrite double negation ¬ ¬ C as C
 - Now NNF, to get CNF, distribute ∨ over ∧:
 - Rewrite (C ∧ D) ∨ E as (C ∨ E) ∧ (D ∨ E)
- A clause is a disjunction of literals (pos/neg propositional variables)
- Can express KB, a set of clauses, as the conjunction of its clauses

CNF Normalization Example

- Given KB with single formula:
 - ¬ (rain \Rightarrow wet) \Rightarrow (inside \land warm)
- Rewrite all C ⇒ D as ¬C ∨ D
 - ¬¬ (¬ rain ∨ wet) ∨ (inside ∧ warm)
- Push negation through connectives:
 - $(\neg \neg \neg rain \lor \neg \neg wet) \lor (inside \land warm)$
- Rewrite double negation ¬ ¬ C as C
 - (¬ rain ∨ wet) ∨ (inside ∧ warm)
- Distribute ∨ over ∧:
 - (¬rain ∨ wet ∨ inside) ∧ (¬rain ∨ wet ∨ warm)
- CNF KB: {¬rain ∨ wet ∨ inside, ¬rain ∨ wet ∨ warm}

Peter Baumgartner Automated Reasoning 21

Prop. Theorem Proving

- A ⇒ B iff A ∧ ¬B is unsatisfiable
- Propositional logic is decidable, but NP-complete (reduction to 3-SAT)
- State-of-the-art prop. unsatisfiability methods are DPLL-based
- Many optimizations, more in lecture on SAT solving by Anbulagan

Instantiate prop vars until all clauses falsified, backtrack and do for all instantiations ⇒ unsat!

Prop. Tableaux Methods

- Given negated query F (in NNF), use rules to recursively break down:
 - α-Rule: Given A∧B add A and B
 - β-Rule: Given A∨B branch on A and B
 - Clash: If A and ¬A occur on same branch
- Clash on all branches indicates unsat!

Peter Baumgartner Automated Reasoning 23

Propositional Resolution

One (!) inference rule

Resolution: **Example application:** $A \lor B \neg B \lor C$ ¬precip ∨ ¬freezing ∨ snow ¬snow ∨ slippery $A \lor C$ ¬precip ∨ ¬freezing ∨ slippery

- The resolution calculus is sound and (refutationally) complete: $KB \models C$ if and only if $KB \cup \{\neg C\} \vdash \bot$
 - Simple strategy for completeness is to close clause set under Resolution
- NB: "One inference rule" calculus treats clauses as sets, otherwise need factoring:

Soundness and completeness proof: see blackboard

Resolution Strategies

Need strategies to restrict search:

Unit resolution

- Only resolve with unit clauses
- Complete for Horn KB (gives a "bottom-up flavour")
- Intuition: Decrease clause size
- Set of support (see also next two slides)
 - SOS starts with query clauses
 - Only resolve SOS clauses with non-SOS clauses and put resolvents in SOS
 - Intuition: KB should be satisfiable so refutation should derive from query

Linear resolution

- Only resolve query clause with KB clauses, resolvent is new query clause
- Complete for Horn KB (gives a "top-down flavour"), basis for Prolog
- Together with ancestor resolution ⇒ complete for non-Horn, too
- Ordered resolution resolve on maximal literals in clause only

Peter Baumgartner Automated Reasoning 25

The "Given Clause Loop"

- In Otter theorem prover http://en.wikipedia.org/wiki/Otter_(theorem_prover)
- Lists of clauses maintained by the algorithm: USABLE and SOS.
- Initialize SOS with the input clauses, USABLE empty.
- Algorithm

While (SOS is not empty and no refutation has been found)

- Let given_clause be the `lightest' clause in SOS;
- 2. Move given_clause from SOS to usable;
- 3. Infer and process new clauses using the inference rules in effect; each new clause must have the given_clause as one of its parents and members of usable as its other parents; new clauses that pass the retention tests are appended to SOS;

End of while loop.

- Fairness here: define clause weight e.g. as "depth + length" of clause
 - Important property: no clause is delayed infinitely long in (1)

The Given Clause Loop - Graphically

Peter Baumgartner Automated Reasoning 27

First-order logic

- Refer to objects and relations between them
- · Propositional logic requires all relations to be propositionalized
 - Peter-at-home, Peter-at-work,
 Jim-at-subway, etc...
- Really want a compact relational form:
 - at(Peter, home), at(Peter, work), at(Jim, subway), etc...
- Then can use variables and quantify over all objects:
 - \forall x (person(x) \Rightarrow \exists y at(x,y) \land place(y))

From Propositional Logic to First-Order Logic

- Generalize Syntax
- Generalize Semantics
 - Work with Herbrand interpretations
- Clause normal form generation
 - Involves Skolemization now
- Calculi for first-order clause logic
 - Involve substitutions and unification now

Peter Baumgartner Automated Reasoning 29

First-order Logic Syntax

- Terms (technical definition is inductive because of function symbols)
 - Variables: w, x, y, z
 - Constants: a, b, c, d
 - Functions over terms: f(a), f(x,y), f(x,c,f(f(z)))
- Atoms: P(x), Q(f(x,y)), R(x, f(x,f(c,z),c))
- Connectives: ⇒ ⇔ ¬ ∧ ∨
- Quantifiers: ∀ ∃
- Inductive definition of wff:
 - Same as propositional logic but with following modifications
 - Base: All atoms over terms are wffs
 - Inductive: If A is a wff and x is a variable term
 then ∀x A and ∃x A are wffs

First-order Logic Semantics

- Interpretation I = (ΔI,•I)
 - ΔI is a non-empty domain
 - •I maps each function symbol f of arity n to a total function $(\Delta I)^n \mapsto \Delta I$
 - I maps each predicate symbol P of arity n into a set of n-tuples over ΔI
- **Herbrand** interpretations (Th: KB is satisfiable iff it has a Herbrand model)
 - ΔI is set of ground terms { Peter, Jim, loc(Peter), loc(Jim), loc(loc(Peter)), ... }
 - I maps each f to the identity function. Thus, I(loc(Peter)) = loc(Peter)
 - I maps each predicate symbol P of arity n into a set of n-tuples over ΔI
 - Logical connectives interpreted as in propositional logic; new: $I \models \forall x \land iff I \models A[x/t]$, for all ground terms $t \in ΔI$
- Example
 - •I may map at(•,•) into { ⟨Peter, loc(Peter)⟩ , ⟨Jim, loc(Jim)⟩ }
 - All other ground predicates are false in I, e.g. at(Jim, Jim)

Peter Baumgartner Automated Reasoning 31

Skolemization

- Skolemization is the process of getting rid of all ∃ quantifiers from a formula while preserving (un)satisfiability:
 - If $\exists x$ quantifier is the outermost quantifier, remove the \exists quantifier and substitute a new constant for x
 - If ∃x quantifier occurs inside of ∀ quantifiers, remove the ∃ quantifier and substitute a new function of all ∀ quantified variables for x
- Examples:
 - Skolemize($\exists w \; \exists x \; \forall y \; \forall z \; P(w,x,y,z)$) = $\forall y \; \forall z \; P(c,d,y,z)$
 - Skolemize($\forall w \exists x \forall y \exists z P(w,x,y,z)$) = $\forall w \forall y P(w,f(w),y,g(w,y))$

CNF Conversion

- CNF conversion is the same as the propositional case up to NNF, then do:
 - Standardize apart variables (all quantified variables get different names)
 - e.g. $(\forall x \ A(x)) \land (\exists x \ \neg A(x))$ becomes $(\forall x \ A(x)) \land (\exists y \ \neg A(y))$
 - Shift all quantifiers in front of formula (obtain, ultimately, prenex normal form)
 - $(\forall x \ A(x)) \land (\exists y \ \neg A(y))$ becomes $\exists y \ \forall x \ (A(x) \land \neg A(y))$
 - Skolemize formula
 - e.g. $\exists y \ \forall x \ (A(x) \land \neg A(y)) \ becomes \ \forall x \ (A(x) \land \neg A(c))$
 - Drop universals
 - e.g. $\forall x (A(x) \land \neg A(c))$ becomes $A(x) \land \neg A(c)$
 - Distribute ∨ over ∧
 - Write result as a clause set (trivial)
 - e.g. $A(x) \land \neg A(c)$ becomes { A(x), $\neg A(c)$ }

Peter Baumgartner Automated Reasoning 33

Herbrand's Theorem

- · Refutational theorem proving calculi are based on the following chain of reasoning
 - Any FO-formula is unsatisfiable iff its clause form is unsatisfiable (Non-trivial part is Skolemization)
 - A clause set is unsatisfiable iff it has no satisfying Herbrand interpretation (i.e. no Herbrand model)
 - A clause set has no Herbrand model iff some finite set of ground instances of its clauses is unsatisfiable (Herbrand's theorem)
- A naive application of the chain leads to Gilmore's method
 - It searches for this unsatisfiable set of ground instances in a direct way

Gilmore's Method

Preprocessing:

Given Formula

$$\forall x \exists y \ P(y, x) \\
\land \forall z \neg P(z, a)$$
Clause Form
$$P(f(x), x) \\
\neg P(z, a)$$

Outer loop: Grounding

Inner loop:Propositional Method

Peter Baumgartner Automated Reasoning 35

Gilmore's Method

Inner loop: Propositional Method

Gilmore's Method

Peter Baumgartner Automated Reasoning 37

Gilmore's Method

Gilmore's Method

Peter Baumgartner Automated Reasoning 39

Problems with Gilmore's Method

- Gilmore's method reduces proof search in first-order logic to propositional logic unsatisfiability problems
- Main problem is the unguided generation of (very many) ground clauses
- All modern calculi address this problem in one way or another. e.g.
 - Guidance

Instance-Based Methods are similar to Gilmore's method but generate ground instances in a guided way

Avoidance

Resolution calculi need not generate the ground instances at all, they work directly on first-order clauses, not on their ground instances. This way, infinitely many ground resolution steps can be represented compactly with one first-order resolution step (sometimes)

They use the unification operation to enable this

Better Methods for First-order Theorem Proving

Tableaux methods

- Highly successful for description and modal logics,
 which conform to certain (syntactically restricted) fragments of FOL
- Not treated here

Resolution Methods

- Most successful technique for a variety of KBs
- But... search space grows very quickly
- Need a variety of optimizations in practice
 - · strategies, ordering, redundancy elimination

Instance Based Methods

- Reduce proof search in FOL to proof search in propositional logic
- Comparably new and interesting paradigm
- All methods are based on Herbrand interpretations
 - which justifies the use of unification

Peter Baumgartner Automated Reasoning 41

Substitution and Unification

Substitution

- A substitution list θ is a list of variable-term pairs
 - e.g., $\theta = \{x/3, y/f(z)\}$
- When θ is applied to an FOL formula, every free occurrence of a variable in the list is replaced with the given term
 - e.g. $(P(x,y) \land \exists x P(x,y))\theta = P(3,f(z)) \land \exists x P(x,f(z))$

Unification / Most General Unifier

- The unifier UNIF(x,y) of two atoms/terms is a substitution that makes both arguments identical
 - e.g. UNIF($P(x,f(x)), P(y, f(f(z)))) = \{x/f(1), y/f(1), z/1\}$
- The most general unifier MGU(x,y) is just that...
 all other unifiers can be obtained from the MGU
 by additional substitution (MGU exists for unifiable args)
 - e.g. MGU($P(x,f(x)), P(y, f(f(z)))) = \{x/f(z), y/f(z)\}$

An Instance-Based Method ("InstGen")

Current clauses

$$\begin{array}{c} P(\mathsf{f}(x),x) \vee \mathsf{Q}(x) \\ \neg \mathsf{P}(z,\mathsf{a}) \vee \neg \mathsf{Q}(z) \end{array} \begin{array}{c} \text{ground} \\ \hline x_{\mathsf{,}z} \to \$ \end{array} \left(\begin{array}{c} \underline{\mathsf{P}(\mathsf{f}(\$),\$)} \vee \mathsf{Q}(\$) \\ \hline \underline{\neg \mathsf{P}(\$,\mathsf{a})} \vee \neg \mathsf{Q}(\$) \end{array} \right)$$

Model:
$$\{P(f(\$),\$), \neg P(\$,a)\}$$

Model determines literals selection in current clauses for InstGen inference:

InstGen
$$\frac{\mathsf{P}(\mathsf{f}(x),x) \vee \mathsf{Q}(x)}{\mathsf{P}(\mathsf{f}(\mathsf{a}),\mathsf{a}) \vee \mathsf{Q}(\mathsf{a})} \frac{\neg \mathsf{P}(z,\mathsf{a}) \vee \neg \mathsf{Q}(z)}{\neg \mathsf{P}(\mathsf{f}(\mathsf{a}),\mathsf{a}) \vee \neg \mathsf{Q}(\mathsf{f}(\mathsf{a}))}$$

Conclusions are obtained by unifying selected literals Add conclusions to "current clauses" and start over

Peter Baumgartner Automated Reasoning 43

Lifting Propositional Resolution to First-Order Resolution

Propositional Resolution

Clauses	Ground instances
P(f(x), y)	$P(f(a),a),\ldots,P(f(f(a)),f(f(a))),\ldots\}$
$\neg P(z,z)$	$\{\neg P(a), \ldots, \neg P(f(f(a)), f(f(a))), \ldots\}$

Only common instances of P(f(x), y) and P(z, z) give rise to inference:

$$\frac{P(f(f(a)), f(f(a)))}{|} \neg P(f(f(a)), f(f(a)))$$

Observation (leading to "lifting lemma of resolution inferences")

All common instances of P(f(x), y) and P(z, z) are instances of P(f(x), f(x))P(f(x), f(x)) is computed deterministically by *unification*

First-Order Resolution

$$\frac{P(f(x),y) \qquad \neg P(z,z)}{|}$$

Justified by existence of P(f(x), f(x)) via unification; observation above tells us that these are the only inferences neccessary

Resolution for First-Order Clauses

Inference rules

$$\frac{C \vee A \qquad D \vee B}{(C \vee D)\sigma} \quad \text{if } \sigma = \mathsf{MGU}(A,B) \qquad [\mathsf{resolution}]$$

$$\frac{C \vee A \vee B}{(C \vee A)\sigma} \qquad \text{if } \sigma = \mathsf{MGU}(A,B) \quad [\mathsf{factorization}]$$

In both cases, A and B have to be renamed apart (made variable disjoint).

Example

$$\frac{Q(z) \vee P(z, z) \quad \neg P(x, y)}{Q(x)} \quad \text{where } \sigma = [z/x, y/x] \qquad [\text{resolution}]$$

$$\frac{Q(z) \vee P(z, a) \vee P(a, y)}{Q(a) \vee P(a, a)} \quad \text{where } \sigma = [z/a, y/a] \quad [\text{factorization}]$$

Peter Baumgartner Automated Reasoning 45

Example of First-Order Resolution Proof

Given: CNF:

Axioms: $\neg Man(x) \lor Mortal(x)$

 $\forall x \, \mathsf{Man}(x) \Rightarrow \mathsf{Mortal}(x)$ Man(Socrates)

Man(Socrates) ¬Mortal(y) [Neg. conj.]

Conjecture: Proof:

∃y Mortal(y) ? 1. ¬Mortal(y) [Neg. conj.]

2. \neg Man(x) \vee Mortal(x) [Given]

Inference: 3. Man(Socrates) [Given]

Refutation 4. Mortal(Socrates) [Res. 2,3]

Resolution 5. \perp [Res. 1,4]

Contradiction ⇒ Conj. is true

Importance of Factoring

- · Without the factoring rule, resolution is incomplete
- For example, take the following refutable clause set:
 - $\{ A(w) \lor A(z), \sim A(y) \lor \sim A(z) \}$
- All binary resolutions yield clauses of the same form
- Clause set is only refutable if one of the clauses is first factored

Peter Baumgartner Automated Reasoning 47

Search Control

- Goal-directed / bottom-up search, as in propositional logic
 - SLD Resolution
 - KB of definite clauses (i.e. Horn rules), e.g.
 Uncle(x,y) :- Father(x,z) ∧ Brother(z,y)
 - Resolution backward chains from goal of rules
 - With negation-as-failure semantics, SLD- resolution is logic programming,
 i.e. Prolog
 - Negative and Positive Hyperresolution
 - All negative (positive) literals in nucleus clause are simultaneously resolved with completely positive (negative) satellite clauses
 - Positive Hyperresolution yields backward chaining
 - Negative Hyperresolution yields forward chaining
- Such search strategies prevent the generation of resolvents,
 they don't explain when clauses can be deleted (redundancy control)

Redundancy Control

- Redundancy of clauses is a huge problem in FOL resolution
 - For clauses C & D, C is redundant if $\exists \theta$ s.t. Cθ ⊆ D as a multiset, a.k.a. θ-subsumption
 - If true, D is redundant and can be removed
 - Intuition: If D used in a refutation, Cθ could be substituted leading to even shorter refutation
- Two types of subsumption where N is a new resolvent and A is a current clause:
 - Forward subsumption: A θ -subsumes N, delete N
 - Backward subsumption: N θ -subsumes A, delete A
- Forward / backward subsumption expensive but saves many redundant inferences
- Leads to saturation-based theorem proving (with orderings, in general)

Peter Baumgartner Automated Reasoning 49

Saturation Theorem Proving

- Given a set of clauses S:
 - S is saturated if all possible inferences from clauses in S generate forward subsumed clauses
 - All new inferences are "redundant" then and need not be carried out, without sacrificing completeness
 - If S does not contain the empty clause then S is satisfiable
- Saturation without deriving the empty clause implies no proof possible!
 And the clause set is satisfiable then.
- Usually need ordering restrictions to reach finite saturation.

Term Indexing

- Term indexing is an implementation technique for fast retrieval of sets of terms / clauses matching criteria
- Common uses in modern theorem provers:
 - Term q (query) is unifiable with term t (in index), i.e., $\exists \theta$ s.t. $q\theta = t\theta$
 - Term t is an instance of q, i.e., $\exists \theta$ s.t. $q\theta = t$
 - Term t is a generalization of q, i.e., $\exists \theta$ s.t. $q = t\theta$
 - Clause q subsumes clause t, i.e., $\exists \theta$ s.t. $q\theta$ ⊆ t
 - Clause q is subsumed by clause t, i.e., $\exists \theta$ s.t. t θ ⊆ q
- Techniques: (Google for "term indexing")
 - Path indexing
 - Substitution tree indexing, discrimination trees

Peter Baumgartner Automated Reasoning 51

Discrimination Tree Indexing

Stores P(a,a), P(a,b), P(b,a), ... -P(c,c)

- Tree structure to look up terms or literals from a (large) database
 - Branches store terms as written down (from left to right)
- Doesn't distinguish different variables P(x,y) becomes P(?,?)
 (Can overretrieve)
- More efficient for common uses than linear search.
- Can be combined with hashing of symbols, if branching is high

Equality

- A predicate w/ special interpretation
- · Could axiomatize:
 - x=x (reflexive)
 - $x=y \Rightarrow y=x$ (symmetric)
 - $= x=y \land y=z \Rightarrow x=z$ (transitive)
 - For each function symbol f:

$$x_1 = y_1 \land ... \land x_n = y_n \Rightarrow f(x_1,...,x_n) = f(y_1,...,y_n)$$
 (congruence)

For each predicate symbol P:

$$x_1=y_1 \land ... \land x_n=y_n \land P(x_1,...,x_n) \Rightarrow P(y_1,...,y_n)$$
 (congruence)

- · Lead to bad search space
- Better to use dedicated inference rules (Paramodulation)

Peter Baumgartner Automated Reasoning

Inference Rules for Equality

Demodulation (incomplete, based on matching)

Literal containing t Example application: $\frac{|x|}{|x|} = \frac{|x|}{|x|} =$

Paramodulation (complete, based on unification)

Equality Reasoning: Conclusions

 The inference rule of paramodulation together with the resolution and factoring inference rules constitute a sound a complete calculus for first-order logic with equality, i.e. can semi-decide the question whether

$$E \models \phi$$

holds, where E is the theory of equality (Ref, Sym, Trans, Congruence) and ϕ is an (arbitrary) formula.

- Caution: some search strategies no longer work (are incomplete), e.g. SOS
 - Unless "paramodulation into and below variables is permitted" (inpractical)
 - The practically most successful theorem provers are saturation-based, heavily use term orderings ("Replace bigger terms by smaller ones"), and the main inference rule is called "superposition"
- Natural question: can one "build-in" other/richer theories than E?
 - Answer: yes, the keyword is "Theory Reasoning"

Peter Baumgartner Automated Reasoning 55

Theory Reasoning

Let T be a first-order theory of signature Σ

Let L be a class of Σ -formulas

The T-validity Problem

Given ϕ in L, is it the case that $T \models \phi$?

More accurately:

Given ϕ in L, is it the case that $T \models \forall \phi$?

Examples

- "0/0, s/1, +/2, =/2, ≤/2" $\vDash \exists y. y > x$
- "The theory of equality $E'' \models \phi$ (ϕ arbitrary formula, as above)
- "An equational theory" $\models \exists s_1 = t_1 \land ... \land s_n = t_n$ (E-Unification problem)
- "Some group theory" \models s = t (Word problem)

The T-validity problem is decidably only for restricted L and T

Theory Reasoning

The T-validity Problem

Is it the case that $T \models \phi$?

More accurately:

Is it the case that $T \models \forall \phi$?

I.e., Free vars are constants

The Dual Problem: T-satisfiability

Is it the case that ϕ is T-satisfiable?

More accurately:

Is it the case that $\exists \phi$ is T-satisfiable?

I.e., Free vars are constants

Prop: $T \models \Phi$ iff $\neg \Phi$ is T-unsatisfiable

Peter Baumgartner Automated Reasoning 5

Approaches to Theory Reasoning

- Theory-Reasoning in Automated First-Order Theorem Proving:
 - Semi-decide the T-validity problem, $T \models \phi$?
 - φ arbitrary first-order formula, T universal theory
 - Generality is strength and weakness at the same time
 - Really successful only for specific instance:
 - T = equality and equality inference rules like paramodulation

Approaches to Hybrid Reasoning

Satisfiability Modulo Theories (SMT)

- Decide the T-validity problem, $T \models \phi$?
- Usual restrictions:
 - φ quantifier-free, i.e. all variables implicitly universally quantified
 - The T-satisfiability of conjunctions of literals must be decidable
- SMT is the perhaps most advanced approach among those mentioned
- Applications in particular to Formal verification

Peter Baumgartner Automated Reasoning 59

Checking Satisfiability Modulo Theories

Usual Formulation

Given:

A decision procedure for T-satisfiability of sets of literals

A quantifier-free formula φ (implicitly existentially quantified)

Task: Decide whether ϕ is T-satisfiable?

Approaches:

Eager translation into SAT

- Encode problem and theory into an equisatisfiable propositional formula
- Feed formula to a SAT-solver

Lazy translation into SAT

- Couple a SAT solver with a decision procedure for T-satisfiability of ground literals
- For instance if T is "equality" then the Nelson-Oppen congruence closure method can be used

Lazy Translation Into SAT

$$g(a) = c \land f(g(a)) \neq f(c) \lor g(a) = d \land c \neq d$$

Theory: Equality

Peter Baumgartner Automated Reasoning 61

Lazy Translation Into SAT

$$\underbrace{g(a) = c}_{1} \quad \land \quad \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) = d}_{3} \quad \land \quad \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver.
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$. Theory solver finds $\{1, \overline{2}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2\}$ to SAT solver.
- SAT solver returns model $\{1, 2, 3, \overline{4}\}$. Theory solver finds $\{1, 3, \overline{4}\}$ *E*-unsatisfiable.
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver. SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4\}$ unsatisfiable.

Lazy Translation Into SAT: Summary

- Mapping atoms to propositions is abstraction
- SAT solver computes a solution,
 i.e. boolean assignment for atoms in literal set
- Solution from SAT solver may not be true solution, i.e. the literal set is T-unsatisfiable
- Refine (strengthen) propositional formula by incorporating reason for false solution
- Reason provided by theory decision procedure, typically in form of subset of given literal set

Peter Baumgartner Automated Reasoning 63

More Optimizations

Theory Consequences

The theory solver may return consequences (typically literals) to guide the SAT solver

Online SAT solving

 The SAT solver continues its search after accepting additional clauses (rather than restring from scratch)

Backjumping

- Instead of chronological backtracking

Preprocessing atoms

Atoms are rewritten into normal form, using theory-specific atoms (e.g. associativity, commutativity)

Several layers of decision procedures

- "Cheaper" ones are applied first

Some SMT Systems

• Argo-lib, University of Belgrade

DPLL(T), Technical University of Catalonia, U Iowa

• CVC Lite, Stanford

• haRVey, Loria

• ICS, SRI

• Math-SAT, ITC

• Tsat++, University of Genova

• UCLID, CMU

Peter Baumgartner Automated Reasoning 65

Combining Theories

Theories:

R: theory of rationals

$$\Sigma_{\mathcal{R}} = \{ \leq, +, -, 0, 1 \}$$

£: theory of lists

$$\Sigma_{\mathcal{L}} = \{=, \text{hd}, \text{tl}, \text{nil}, \text{cons}\}$$

- \bullet \mathcal{E} : theory of equality
 - Σ : free function and predicate symbols

Problem: Is

$$x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0, \operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(0)$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

G. Nelson and D.C. Oppen: Simplification by cooperating decision procedures, ACM Trans. on Programming Languages and Systems, 1(2):245-257, 1979.

Given:

- \mathcal{T}_1 , \mathcal{T}_2 first-order theories with signatures Σ_1 , Σ_2
- ϕ quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

Obtain a decision procedure for satisfiability in $\mathcal{T}_1 \cup \mathcal{T}_2$ from decision procedures for satisfiability in \mathcal{T}_1 and \mathcal{T}_2 .

Satisfied lity Modulo Theories p.7/107

Nelson-Oppen Combination Method

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \operatorname{hd}(\operatorname{cons}(0, \operatorname{nil})) \land P(h(x) - h(y)) \land \neg P(0)$$

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

Sat aliceflity Mocale Theories _p.2/109

Nelson-Oppen Combination Method

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

$\mathcal R$	$\mathcal L$	${\cal E}$
$x \le y$		$P(v_2)$
$y \le x + v_1$		$\neg P(v_5)$

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

$\mathcal R$	${\cal L}$	${\cal E}$
$x \le y$		$P(v_2)$
$y \leq x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4=h(y)$

Satisficality Modulo Treories _p.8/10[

Nelson-Oppen Combination Method

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

$$\mathcal{R}$$
 \mathcal{L} \mathcal{E} $P(v_2)$ $y \le x + v_1$ $\neg P(v_5)$ $v_2 = v_3 - v_4$ $v_1 = \operatorname{hd}(\cos(v_5, \operatorname{nil}))$ $v_3 = h(x)$ $v_4 = h(y)$ $v_1 = v_5$

Satisfiedlity Modulo Theories _p.9/102

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

$\mathcal R$	$\mathcal L$	${\cal E}$
$x \le y$		$P(v_2)$
$y \le x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4=h(y)$
x = y	$v_1 = v_5$	

Sat alicability Mocolo Theories _p.8/103

Nelson-Oppen Combination Method

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

\mathcal{R}	$\mathcal L$	\mathcal{E}
$x \leq y$		$P(v_2)$
$y \le x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4 = h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$

Satisfiedlity Modulo Theories _p.9/104

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

\mathcal{R}	$\mathcal L$	\mathcal{E}
$x \le y$		$P(v_2)$
$y \le x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4=h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$
$v_2 = v_5$		

Satisficiality Modulo Toporius ... p.2/105

Nelson-Oppen Combination Method

Variable abstraction + equality propagation:

$$x \le y \land y \le x + \underbrace{\operatorname{hd}(\operatorname{cons}(0,\operatorname{nil}))}_{v_1} \land P(\underbrace{h(x)}_{v_3} - \underbrace{h(y)}_{v_4}) \land \neg P(\underbrace{0}_{v_5})$$

$\mathcal R$	$\mathcal L$	$\mathcal E$
$x \le y$		$P(v_2)$
$y \leq x + v_1$		$\neg P(v_5)$
$v_2 = v_3 - v_4$	$v_1 = \operatorname{hd}(\operatorname{cons}(v_5, \operatorname{nil}))$	$v_3 = h(x)$
$v_5 = 0$		$v_4 = h(y)$
x = y	$v_1 = v_5$	$v_3 = v_4$
$v_2 = v_5$		Τ