n-GONAL NUMBERS THAT ARE SQUARES OF n-GONAL NUMBERS

TRAVIS WILLSE

The *n*th s-gonal number, for integers $s \geq 3, n \geq 1$, is

$$P(s,n) := \frac{1}{2}[(s-2)n^2 - (s-4)n].$$

We wish to find all s-gonal numbers that are squares of other s-gonal numbers, that is, all triples (s, m, n) such that

$$P(s,n) = P(s,m)^2,$$

which defines a quartic curve in m, n. Since $P(4, n) = n^2$, the solutions for s = 4 are precisely $n = m^2$, $m \ge 1$. For convenience we use the parameter t := s - 2.

Denoting U = m and substituting

$$V = 2nt - (t - 2)$$

and rearranging gives

$$V^{2} = \underbrace{2t^{3}U^{4} - 4(t-2)t^{2}U^{3} + 2(t-2)^{2}tU^{2} + (t-2)^{2}}_{Q_{t+2}(U)}$$

The discriminant of $Q_{t+2}(U)$ is $\operatorname{disc}_s = [2^4(t-2)^3t^4(t+2)]^2$, so for $t \neq -2, 0, 2, V^2 = Q_{t+2}(U)$ defines an elliptic curve $E_s = E_{t+2}$. The transformation

$$U = \frac{2(t-2)[3x+4(t-2)^2t]}{3d(x)},$$

$$V = \frac{(t-2)[54(x^3+2(t-2)^2tx^2)-27(y^2+8(t-2)^2t^2y)-16(t-2)^4t^3(4t^2+11t+16)]}{27d(x,y)^2}.$$

where $d(x,y) := y + 4(t-2)^2 t^2$, places it in Weierstrass short form,

$$y^{2} = \underbrace{x^{3} - \frac{4}{3}(t-2)^{2}t^{2}(t^{2} + 2t + 4)x + \frac{16}{27}(t-2)^{4}t^{3}(t+1)(s+2)}_{q_{t+2}(x)},$$

or as

$$y^{2} = \left(x - \left(-\frac{4}{3}(t-2)t(t+1)\right)\right)\left(x - \frac{2}{3}(t-2)^{2}t\right)\left(x - \frac{2}{3}(t-2)t(t+4)\right).$$

The *j*-invariant of this curve is $j_s = 64(t^2 + 2t + 4)^3/t^2(t+2)^2$, and its discriminant is $\Delta := 2^4 \operatorname{disc}_t = [2^6(t-2)^3t^4(t+2)]^2$.

For $t \geq 3$, we denote the roots of $q_{t+2}(x)$ by

$$e_1 = \frac{2}{3}(t-2)t(t+2), \qquad e_2 = \frac{2}{3}(t-2)^2t, \qquad e_3 = -\frac{4}{3}(t-2)t(t+1),$$

and for t = 1 we denote them by

$$e_1 = \frac{8}{3}, \qquad e_2 = \frac{2}{3}, \qquad e_3 = -\frac{10}{3}.$$

In all cases, $e_1 > e_2 > e_3$, the elements $t_i := (e_i, 0)$, i = 1, 2, 3 are torsion elements of order 2, and $\text{Tor}(E_s(\mathbb{Q})) \ge \{\mathcal{O}, t_1, t_2, t_3\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Note that if $s \not\equiv 0 \pmod{3}$ then q_1, q_2, q_3 are integral with respect to short form $y^2 = q(x)$.

Remark 1 (Galois group of Q_s). For s=3 and s>5, $\operatorname{Gal}(Q_s)\cong \mathbb{Z}_2\times \mathbb{Z}_2$, and $\operatorname{Gal}(Q_s)$ acts transitively: For any numbering of the roots, $\operatorname{Gal}(Q_s)=\langle \operatorname{id},(12)(34),(13)(24),(14)(23)\rangle$.

The first claim is equivalent to the irreducibility of Q_t : If $(t+2)^2$ is not a power of 2, then $Q_{t+2}(U-1)$ is Eisenstein at any odd prime factor of t+2. If $(t+2)^2$ is a power of 2, then for $t \neq 6$, $(t-2)^2$ is not a power of 2 and $Q_{t+2}(U)$ is Eisenstein at any odd prime factor of t-2. Finally, $Q_8(U-1) = 16(27U^4 + 72U^3 + 66U^2 + 24U + 4)$, and the quantity in parentheses is Eisenstein at 2.

Since Δ_t is a square, $Gal(Q_{t+2}) \leq A_4$. Finally, for any t, the resolvent cubic of Q_{t+2} is

$$R_{t+2}(z) = t^2 z(t^2 z + 2t - 4)(tz - t + 2)$$

In particular, R_{t+2} is reducible.

Table 1. Elliptic curves E_s for admissible $s \leq 2^4$

s	minimal model	isomorphism	rank	discriminant	conductor	Cremona	free generators	torsion generators
3	$Y^2 = X^3 - X^2 - 9X + 9$	$(1,\frac{1}{3})$	1	$2^{12} \cdot 3^2$	$2^6 \cdot 3$	192a2	(5,8)	(3,0),(1,0)
5	$Y^2 = X^3 - 228X + 448$	(1,0)	1	$2^{12} \cdot 3^8 \cdot 5^2$	$2^6 \cdot 3^2 \cdot 5$	2880z2	(29, 135)	(14,0),(2,0)
6	$Y^2 = X^3 - X^2 - 9X + 9$	$(\frac{1}{4}, \frac{1}{3})$	1	$2^{12} \cdot 3^2$	$2^{6} \cdot 3$	192a2	(5,8)	(3,0),(1,0)
7	$Y^2 = X^3 - 11300X + 32400$	(1,0)	1	$2^{12} \cdot 3^6 \cdot 5^8 \cdot 7^2$	$2^6 \cdot 3^2 \cdot 5^2 \cdot 7$	100800 fo 2	(130, 1000)	(90,0),(30,0)
	$Y^2 = X^3 - 156X + 560$	$(\frac{1}{4},0)$	1	$2^{14} \cdot 3^8$	$2^6 \cdot 3^2$	576i2	(13, 27)	(10,0),(4,0)
9	$Y^2 = X^3 - X^2 - 109433X + 11215737$		1	$2^{12} \cdot 3^4 \cdot 5^6 \cdot 7^8$	$2^6 \cdot 3 \cdot 5^2 \cdot 7^2$	235200 gr2	(313, 2744)	(257,0),(117,0)
	$Y^2 = X^3 - 63X + 162$	$ \begin{array}{l} (1,\frac{1}{3}) \\ (\frac{1}{8},0) \end{array} $	1	$2^8 \cdot 3^6 \cdot 5^2$	$2^3 \cdot 3^2 \cdot 5$	360e2	(9, 18)	(6,0),(3,0)
11	$Y^2 = X^3 - X^2 - 6729X + 187209$	$\left(\frac{1}{3},\frac{1}{3}\right)$	2	$2^{12} \cdot 3^4 \cdot 7^6 \cdot 11^2$	$2^6 \cdot 3 \cdot 7^2 \cdot 11$	103488bf2	(69, 216), (83, 440)	(61,0),(33,0)
12	$Y^2 = X^3 - X^2 - 258X + 1512$	$(\frac{1}{8},\frac{1}{3})$	1	$2^6 \cdot 3^2 \cdot 5^8$	$2^5 \cdot 3 \cdot 5^2$	2400a1	(132, 1500)	(12,0),(7,0)
13	$Y^2 = X^3 - 23716X + 1277760$	$(\frac{1}{3},0)$	1	$2^{12} \cdot 11^8 \cdot 13^2$	$2^6 \cdot 11^2 \cdot 13$	$100672\mathrm{ck}2$	(1397, 51909)	(110,0),(66,0)
14	$Y^2 = X^3 - 12900X + 520000$	$(\frac{1}{4}, 0)$	2	$2^{12} \cdot 3^8 \cdot 5^6 \cdot 7^2$	$2^6 \cdot 3^2 \cdot 5^2 \cdot 7$	1008000a2	(86, 216), (150, 1400)	(80,0),(50,0)
15	$Y^2 = X^3 - X^2 - 5425801X + 4538445001$	$(1,\frac{1}{3})$	2	$2^{12} \cdot 3^2 \cdot 5^2 \cdot 11^6 \cdot 13^8$	$2^6 \cdot 3 \cdot 5 \cdot 11^2 \cdot 13^2$	-	(1725, 17576), (2831, 108900)	(1621,0), (1049,0)
16	$Y^2 = X^3 - 33516X + 2222640$	$(\frac{1}{4}, 0)$	1	$2^{16} \cdot 3^6 \cdot 7^8$	$2^6 \cdot 3^2 \cdot 7^2$	$28224\mathrm{ck}2$	(133, 343)	(126,0),(84,0)

(The smallest s for which rank $E_s=3$ is s=37, and the smallest for which rank $E_s=4$ is s=101.) A pair (u,r) specifies an isomorphism $(X,Y)\mapsto (x,y)=(u^2X+r,u^3Y)$ from the minimal model of E_s to E_s itself.

Table 2. Elliptic curves E_s for select inadmissible s

s minimal model	isomorphism	rank	discriminant	conductor	Cremona	free generators	torsion generators
	$(\frac{1}{4}, 0)$ (1, 0) (1, 0)	1 2 1	$2^{12} \cdot 3^6$ $2^{12} \cdot 3^8 \cdot 5^6$ $2^{12} \cdot 3^6$	$ 2^{6} \cdot 3^{2} 2^{6} \cdot 3^{2} \cdot 5^{2} 2^{6} \cdot 3^{2} $	576h2 14400bt2 576h2	(12, 36) (46, 144), (50, 200) (12, 36)	(6,0), (0,0) (40,0), (10,0) (6,0), (0,0)

$n\text{-}\mathrm{GONAL}$ NUMBERS THAT ARE SQUARES OF $n\text{-}\mathrm{GONAL}$ NUMBERS

 $T.W.: \ FAKULTÄT FÜR \ MATHEMATIK, \ UNIVERSITÄT \ WIEN, \ OSKAR-MORGENSTERN-PLATZ 1, 1090 \ WIEN, \ AUSTRIA \ Email \ address: \ travis.willse@univie.ac.at$