Cálculo Vetorial

Exercícios - Folha 5

- 1. A temperatura da atmosfera num ponto (x, y, z) é dada por $T(x, y, z) = x^3 xy + yz^2$. Um mosquito encontra-se no ponto a = (1, 2, 3). Em que direção e sentido o mosquito tem de voar para aquecer mais rapidamente?
- 2. Determine a equação do plano tangente em $a=(0,\sqrt{2},1)$ às superfícies dadas pelas seguintes equações:

(a)
$$\frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{2} = 1$$

(b)
$$z = x^2 + \frac{y^2}{2}$$

- 3. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = 2y^3 3y^2 x^2 + 1$.
 - (a) Determine os pontos críticos de f e a natureza destes pontos (ponto de extremo local de f ou ponto de sela).
 - (b) Represente graficamente (no mesmo desenho) as curvas dadas pelas equações seguintes:

$$\begin{cases} z = f(x,y) \\ y = 0 \end{cases} \begin{cases} z = f(x,y) \\ y = 1 \end{cases} \begin{cases} z = f(x,y) \\ x = 0 \end{cases}$$

4. Estude com relação a máximos e mínimos locais as funções dadas nas alíneas seguintes:

(a)
$$f(x,y) = x^3 + y^3 - 3x - 3y + 4$$

(b)
$$f(x,y) = e^{-x^2 - y^2}$$

5. Sabendo que as seguintes funções admitem extremos globais relativos à condição dada, determine estes extremos utilizando o método dos multiplicadores de Lagrange.

(a)
$$f(x,y) = x + 2y$$
, $x^2 + 4y^2 = 2$

(b)
$$f(x, y, z) = x + 2y + z$$
, $x^2 + 2y^2 + z^2 = 4$

- 6. Encontre os pontos da elipse $x^2 + xy + y^2 = 3$ (de centro na origem) mais próximos e os mais afastados da origem. Esboce a elipse.
- 7. Mostre que o paralelepípedo com área de superfície fixa e volume máximo é o cubo.