Example: Confusion Matrix

Satishkumar L. Varma

Dataset, N = 20		Actual Class (Condition Given)			Y+N	Performance Measures	
{4Class, 5Item	}	Υ			N		remormance Measures
		TP			FP		P: PPV = TP/(TP+FP)
	Р	Correct Decision	2	1	Type I Errors	3	= 2 / (2+1)
Predicted Class		Prob = $1 - \alpha$			Prob = α		0.667
(Outcome)		FN			TN		NPV = TN/(TN+FN)
	N	Type II Errors	3	14	Correct Decision	17	= 3 / (3+14)
		Prob = β			Prob = 1- β		0.176
Total in Dataset	N+P	5	5 15		15	20	
		R: Sensitivity = TP/(TP+FN)		Specificity = TN/(TN+FP)			A=(TP+TN)/(TP+FP+TN+FN)
Performance Meas	sures	= 2 / (2+3)			= 14 / (14+1)		= (2+14) / (2+1+3+14)
		0.400		0.933			0.8

Evaluation Metric	Formula	Value	Meaning
Precision P (PPV)	TP / (TP+FP)	0.667	Proportion of the retrieved documents that are correct
Recal R (Sensitivity)	TP / (TP+FN)	0.400	Proportion of the positives that the model retrieved
Accuracy (Recognition Rate)	(TP+TN) / Total	0.800	Proportion of total number of predictions that were correct
Error Rate	1 - Accuracy	0.200	Error with respect to recognition rate
Fall-out	FP / (FP+TN)	0.067	Proportion of non-relevant retrieved of all non-relevant.
F-Measure (F1 or F-Score)	2*(P*R)/(P+R)	0.500	Weighted harmonic mean of precision and recall.
Specificity (TN Recognition Rate)	TN / (TN+FP)	0.933	Proportion of actual -ve cases which are correctly identified.
NPV	TN / (TN+FN)	0.176	Proportion of -ve cases that were correctly identified.

Inference	Example	Meaning
Type I Error (α) or Level of Statistical Significance	For eg: α = 0.05; then the researcher has set 5% as the maximum chance of incorrectly rejecting the Ho.	Prob. of rejecting the Ho when it is actually true. (Falsely rejecting a Ho)
Type II Error (β)	For eg: β is set at 0.10, then the investigator has decided willing to accept a 10% chance of missing an association of a given effect size.	Prob. of failing to reject the Ho when it is actually false. (Falsely accepting a Ho)
Power(1 - β)	If β is set at 0.10, then it represents a power of 0.90, i.e., a 90% chance of finding an association of that size.	Prob. of observing an effect in the sample (if any), of a specified effect size or greater exists in the population.
P Value	Ho is rejected in favor of the Ha if P value $< \alpha$, the predetermined level of statistical significance.	Prob. of obtaining the study results by chance if the Ho is true.

Confusion Matrix: Example 2

ID Countries	Retrieved (Ret)	Not Retrieved (nRet)	Tatalia Datasat	
IR System	POSITIVE (P)	NEGATIVE (N)	Total in Dataset	
Delevent (Del)	Rel_Ret (TP)	Rel_nRet (FN)	Total_Rel	
Relevant (Rel)	12	8	20	
Non-Relevent	Rel_nRet (FP)	nRel_nRet (TN)	Total_nRel	
(nRel)	3	77	80	
Total in Dataset	Total_Ret	Total_nRet	Total	
iotai iii Dataset	15	85	100	

Metric	Formula	Value	Meaning
Precision P (Positive Predictive Value)	TP / (TP+FP)	0.80	Proportion of the retrieved documents that are correct
Recal R (Sensitivity)	TP / (TP+FN)	0.60	Proportion of the positives that the model retrieved
Accuracy (Recognition Rate)	(TP+TN) / Total	0.89	Proportion of total number of predictions that were correct
Error Rate	1 - Accuracy	0.11	Error with respect to recognition rate
Fall-out	FP / (FP+TN)	0.04	Proportion of non-relevant retrieved of all non-relevant.
F-Measure (F1 or F-Score)	2*(P*R)/(P+R)	0.69	Weighted harmonic mean of precision and recall.
Specificity (TN Recognition Rate)	TN / (FN+TN)	0.91	Proportion of actual -ve cases which are correctly identified.
Negative Predictive Value	TN / (FP+TN)	0.96	Proportion of -ve cases that were correctly identified.

Target Performance				
Confusion Matrix	Positive Negative (Retrieved)		Performance Metrics	
System Relevant	12 TP	FN 8	Sensitivity (Recall)	TP/(TP+FN)= 0.60
N=100 Irrelevant	3 FP	TN 77	Negative Predictive Value	TN/(TN+FP)= 0.96
Performance Metrics	Positive Predictive Value (Precision)	Specificity (True Negative Rate)	Accuracy, Recognition Rate	(TP+TN)/N= 0.89
	TP/(TP+FP)= 0.80	TN/(FN+TN) = 0.91		

	Target Performance				
N = 2	20	Positive (Retrieved)	Negative (Not Retrieved)	Performa	nce Metrics
System	Relevant	3 TP	FN 2	Sensitivity (Recall)	TP/(TP+FN)= 0.60
Model]	irrelevant	1 FP	TN 14	Negative Predictive Value	TN/(TN+FP)= 0.93
	mance crics	Positive Predictive Value (Precision)	Specificity (True Negative Rate)	Accuracy, Recognition Rate	(TP+TN)/N= 0.85
		TP/(TP+FP)= 0.75	TN/(FN+TN)=0.88		

ID Combany	Retrieved (Ret)	Not Retrieved (nRet)	Tatal in Dataset	
IR System	POSITIVE (P)	NEGATIVE (N)	Total in Dataset	
Delevent (Del)	Rel_Ret (TP)	Rel_nRet (FN)	Total_Rel	
Relevant (Rel)	3	2	5	
Non Dolovont (nDol)	Rel_nRet (FP)	nRel_nRet (TN)	Total_nRel	
Non-Relevent (nRel)	1	14	15	
Total in Dataset	Total_Ret	Total_nRet	Total (All)	
iotai iii Dataset	4	16	20	

Metric	Formula	Value	Meaning
Precision P (Positive Predictive Value)	TP / (TP+FP)	0.75	Proportion of the retrieved documents that are correct
Recal R (Sensitivity)	TP / (TP+FN)	0.60	Proportion of the positives that the model retrieved
Accuracy (Recognition Rate)	(TP+TN) / All	0.85	Proportion of total number of predictions that were correct
Error Rate	1 - Accuracy	0.15	Error with respect to recognition rate
Fall-out	FP / (FP+TN)	0.07	Proportion of non-relevant retrieved of all non-relevant.
F-Measure (F1 or F-Score)	2*(P*R)/(P+R)	0.67	Weighted harmonic mean of precision and recall.
Specificity (TN Recognition Rate)	TN / (FN+TN)	0.88	Proportion of actual -ve cases which are correctly identified.
Negative Predictive Value	TN / (FP+TN)	0.93	Proportion of -ve cases that were correctly identified.

Example: Multiclass Confusion Matrix

Irris Dataset		Actual Class (Condition Given)				
		SETOSA	VERSICOLR	VIRGINICA		
	SETOSA	16	0	0		
Predicted Class (Outcome)	VERSICOLR	0	17	0		
	VIRGINICA	0	1	11		

- To apply a classifier model to Iris dataset to classify the given instance as Versicolor or Virginia, or Setosa flower.
- With the help of petal length, petal width, sepal length, and sepal width, the model has to classify the given instance as Versicolor or Virginia, or Setosa flower.
- The dataset has 3 classes; hence we get a 3 X 3 confusion matrix.

• Let us calculate the TP, TN, FP, and FN values for the class Setosa using the Above tricks:

TP: The actual value and predicted value should be the same. So concerning Setosa class, the value of cell 1 is the TP value.

FN: The sum of values of corresponding rows except for the TP value.

FN = (cell 2 + cell 3) = (0 + 0) = 0

FP: The sum of values of the corresponding column except for the TP value.

FP = (cell 4 + cell 7) = (0 + 0) = 0

TN: The sum of values of all columns and rows except the values of that class.

TN = (cell 5 + cell 6 + cell 8 + cell 9)= 17 +0 + 1 + 11= 29

• Similarly, for the Versicolor class, the values/metrics are calculated as below:

TP: 17 (cell 5)

FN : O + 1 = 1 (cell 4 + cell 8)

FP: O + O = O (cell 2 + cell 6)

TN: 16+0+0+11=27 (cell 1+cell 3+cell 7+cell 9).

Satishkumar L. Varma, PCE, New Panvel

Dataset, N = 20 {4Class, 5Item}		Actual Class (Condition Given)				P+N	Performance Measures
Truth in the popu	ulation	P			N		
	_	TP			FP		PPV = TP/(TP+FP)
	P Reject Ho	Correct Decision	2	1	Type I Errors	3	= 2 / (2+1)
Predicted Class	Rejectifio	Prob = 1 – α			Prob = α		0.667
(Outcome)	N Fail to reject Ho	FN			TN		NPV = TN/(TN+FN)
		Type II Errors	3	14	Correct Decision	17	= 3 / (3+14)
		Prob = β			Prob = 1- β		0.176
Total in Dataset	N+P	5			15	20	
Performance Measures		Sensitivity = TP/(TP+FN)		Specificity = TN/(TN+FP)			A=(TP+TN)/(TP+FP+TN+FN)
		= 2 / (2+3)		= 14 / (14+1)			= (2+14) / (2+1+3+14)
		0.400			0.933		0.8

Evaluation Metric	Example	Meaning
Type I Error (α) or Level of Statistical Significance	For eg: α = 0.05; then the researcher has set 5% as the maximum chance of incorrectly rejecting the Ho.	Prob. of rejecting the Ho when it is actually true. (Falsely rejecting a Ho)
Type II Error (β)	For eg: β is set at 0.10, then the investigator has decided willing to accept a 10% chance of missing an association of a given effect size.	Prob. of failing to reject the Ho when it is actually false. (Falsely accepting a Ho)
Power(1 - β)	If β is set at 0.10, then it represents a power of 0.90, i.e., a 90% chance of finding an association of that size.	Prob. of observing an effect in the sample (if any), of a specified effect size or greater exists in the population.
P Value	Ho is rejected in favor of the Ha if P value $< \alpha$, the predetermined level of statistical significance.	Prob. of obtaining the study results by chance if the Ho is true.

Ī	0 7 7 0	0 6 7 0	0 7 7 0	1 7 7 0	0 7 7 0		Image	Ima	ge (I)) Fea	ture V	/ecto	r Di	st(I, Q	nerv	<u>,) =</u>	(I - (0)^2	Euclidean
•	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 6	Class	ID	0 1	2	_	4 5		7 3	$\begin{array}{c c} 1 & 0 \end{array}$		-	-		sqrt(Dist)
	7 7 7 7	7 7 7 7	7 7 7 7	6 7 7 7	7 7 7 7		ID: 1	4 (0 0	0	0 0	0 1	12 1	1 0	0	0	0	4 4	3.162
Plus '+'	0 7 7 0	0 7 7 0	0 7 6 0	0 7 7 0	0 7 7 1		ID: 2	4 (0 0	0	0 0	1 1	11 1	1 0	0	0	0	1 1	2.000
(a)	Image ID: 1	Image ID: 2	Image ID: 3	Image ID: 4	Image ID: 5	Plus '+'	ID: 3	4 (0 0	0	0 0	1 1	11 1	1 0	0	0	0	1 1	2.000
_							ID: 4	3	1 0	0	0 0	1 1	11 0	0 0	0	0	0	1 1	1.414
	0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0		ID: 5	3 3	1 0	0	0 0	1 1	11 0	0 0	0	0	0	1 1	1.414
	7 7 7 7	6 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7		ID: 6	8 (0 0	0	0 0	0	8 25	1 0	0	0	0	4 4	5.831
	7 7 7 7	7 7 7 7	7 7 7 6	7 7 7 7	7 7 7 7		ID: 7	8 (0 0	0	0 0	1	7 25	1 0	0	0	0	1 9	6.000
Minus '-'	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 0	Minus '-'	ID: 8	8 (0 0	0	0 0	1	7 25	1 0	0	0	0	1 9	6.000
(b)	Image ID: 6	Image ID: 7	Image ID: 8	Image ID: 9	Image ID: 10		ID: 9	7 :	1 0	0	0 0	0	8 16	0 0	0	0	0	4 4	4.899
							ID: 10	7	1 0	0	0 0	0	8 16	0 0	0	0	0	4 4	4.899
	7 0 0 0	6 0 0 0	7 0 0 0	6 1 0 0	7 0 0 0		ID: 11	12 (0 0	0	0 0	0	4 81	1 0	0	0	0	4 36	11.045
-	0 7 0 0	0 7 0 0	0 7 0 0	0 7 0 0	0 7 0 0		ID: 12	12 (0	0	0 0	1	3 81	1 0	0	0	0	1 49	11.489
	0 0 7 0	0 0 7 0	0 0 7 0	0 0 7 0	0 0 7 0	Slace '\'	ID: 13	12 () ()	0	0 0	1	3 81	1 0	0	0	0	1 49	11.489
Slace '\'	0 0 0 7	0 0 0 7	0 0 0 6	0 0 0 7	0 0 1 6		10.11	11 :	1 0	0	0 0	1	3 64	0 0	0	0	0	1 49	10.677
(c)	Image ID: 11	Image ID: 12	Image ID: 13	Image ID: 14	Image ID: 15		ID: 15		1 0	0	0 0	1	3 64	0 0	0	0	0	1 49	10.677
г							ID: 16) (0	0 0	0	6 49	1 0	0	0	0	4 16	8.367
	0 7 7 0	0 6 7 0	0 7 7 0	1 6 7 0	0 7 6 1	E 1: III		10 () (0	0 0	1	5 49	1 0	0	0	0	1 25	8.718
-	0 / / 0	0 / / 0	0 7 7 0	0 7 7 0	0 / / 0	Exclaim '!'	ID: 18	10 (, ,	0	0 0	1	5 49	1 0	0	0	0	1 25	8.718
Paralaina III	0 0 0 0	0 0 0 0	0 0 0 0				ID: 19	9 .	1 0	0	0 0	1	5 36	0 0	0	0	0	1 25	7.874
Exclaim '!'	0 7 7 0	0 7 7 0	0 7 0 0	0 7 7 7 0	0 / / / 0		ID: 20	9 :	1 0	0	0 0	1	5 36	0 0	0	0	0	1 25	7.874
(d)	Image ID: 16	Image ID: 17	Image ID: 18	Image ID: 19	Image ID: 20														

0	7	6	0						
7	7	7	7						
7	7	7	7						
1	6	7	0						
Ouemr Image									

Gray Levels in Query Image:	0	1	2	3	4	5	6	7
Gray Level Count:	3	1	0	0	0	0	2	10
Elements in Feature Vector:								

Query Image

0	7	7	0
7	7	7	7
7	7	7	7
0	7	7	0

Image ID: 1

Parameter	Elements of Image ID: 1								# Elements in Vector
Gray Levels	0	1	2	3	4	5	6	7	8
Count	4	0	0	0	0	0	0	12	8
Feature Vector 1	4	0	0	0	0	0	0	12	8
Feature Vector 2	4 0)	0 12				4
Feature Vector 3	4 12							2	
Feature Vector 4	16								1

0	7	6	0
7	7	7	7
7	7	7	7
1	6	7	0

Query Image

Parameter	Elements of Query Image								# Elements in Vector
Gray Levels	0	1	2	3	4	5	6	7	8
Count	3	1	0	0	0	0	2	10	8
Feature Vector 1	3	1	0	0	0	0	2	10	8
Feature Vector 2	4	1	0		0		12		4
Feature Vector 3	4 12							2	
Feature Vector 4	16								1

