Temporal Probabilistic Models

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)

Department of Electrical Engineering

National Taiwan University

tianliyu@ntu.edu.tw

Outline

- Review of Bayesian Inference
- 2 Temporal Inference
 - filtering
 - Smoothing
 - Most Likely Sequence
- 3 Hidden Markov Models
 - Markov Models
 - Inference
- Malman Filters
- Dynamic Bayesian Networks
 - Bayesian Networks
 - Approximate Inference
 - Particle Filtering
- **6** Learning Parameters

Bayesian Inference

• Bayesian learning calculates the probability of each hypothesis h_i , given data D, and makes prediction on that basis:

$$P(h_i|D) = P(D|h_i)\frac{P(h_i)}{P(D)}$$

In our discussion, P(D) is fixed. Therefore,

$$P(h_i|D) \propto P(D|h_i)P(h_i)$$

- $P(h_i|D)$: posterior probability
- $P(D|h_i)$: likelihood
- $P(h_i)$: prior probability (of the hypothesis)

Bayesian Inference

- Assuming observations are i.i.d., $P(D|h_i) = \prod_{d \in D} P(d|h_i)$.
- To predict an unknown instance x:

$$P(x|D) = \sum_{i} P(x|D, h_i)P(h_i|D) = \sum_{i} P(x|h_i)P(h_i|D),$$

where we assume hypothesis solely determine the probability of x.

- The above equation is computationally expensive.
- Common approximation: maximum a posteriori (MAP):

$$P(x|D) \simeq P(x|h_{MAP})$$
, where $h_{MAP} = \operatorname{argmax}_{h_i} P(h_i|D)$

Maximum A Posteriori and Maximum Likelihood

- In both Bayesian learning and MAP learning, the prior $P(h_i)$ plays an important role.
- A simple assumption is a uniform prior where all $P(h_i)$ are equal.
 - MAP learning reduces to finding an h_i that maximizes $P(D|h_i)$.
 - This is called a maximum-likelihood (ML) hypothesis:

$$h_{ML} = \underset{h_i}{\operatorname{argmax}} P(D|h_i)$$

Bayesian Inference Example

- Toss a 2-sides coin, where the probability of head is θ .
- The hypothesis space $H = \{ h_{\theta} \mid 0 \le \theta \le 1 \}$.
- In experiments (D), n out of N times are head.

$$P(D|h_{\theta}) = \prod_{j=1}^{N} P(d_j|h_{\theta}) = \theta^n \cdot (1-\theta)^{N-n}$$

The log likelihood:

$$L(D|h_{\theta}) = \log P(D|h_{\theta}) = n \log \theta + (N-n) \log(1-\theta)$$

Find the maximum:

$$\frac{d L(D|h_{\theta})}{d \theta} = \frac{n}{\theta} - \frac{N-n}{1-\theta} = 0 \quad \Rightarrow \quad \theta = \frac{n}{N}$$

Maximum Likelihood in Regression = Mean Square Error

- Data $D = \{d_i = (x_i, y_i)\}$. We believe the measure error is of normal distribution: $y_i = c(x_i) + N(0, \sigma^2)$.
- For any hypothesis h, the likelihood

$$P(D|h) = \prod_{i} P(d_i|h) \propto \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(y_i - h(x_i))^2}$$

Assuming all hypotheses are equally probable:

$$h_{MAP} = h_{ML} = \underset{h}{\operatorname{argmax}} P(D|h)$$

$$\operatorname{argmax} P(D|h) = \underset{h}{\operatorname{argmax}} \log P(D|h)$$

$$= \underset{h}{\operatorname{argmax}} \sum_{i} \left(\log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^{2}} (y_{i} - h(x_{i}))^{2} \right)$$

$$= \underset{h}{\operatorname{argmin}} \sum_{i} (y_{i} - h(x_{i}))^{2} \qquad (MSE)$$

Time and Uncertainty

- The world changes; we need to track and predict it.
- X_t : Set of hidden state variables at time t.
 - x_t : hidden state at time t
- O_t : Set of observable state variables at time t.
 - o_t: observation at time t
- Notation: $X_{a:b} = X_a, X_{a+1}, \dots, X_{b-1}, X_b$

Markov Processes

Assumption: X_t depends on bounded subset of $X_{0:t-1}$.

• First-order: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

• Second-order: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2}, X_{t-1})$

Sensor Markov assumption: $P(O_t|X_{0:t}, O_{0,t-1}) = P(O_t|X_t)$ Stationary process: transition model $P(X_t|X_{t-1})$ and sensor model $P(O_t|X_t)$ are independent of t.

First-order Example

- First-order Markov assumption may not be accurate.
- Possible fixes:
 - Increasing order: $Rain_{t-2}$
 - Increasing state: Humidity_t

Temporal Inference Tasks

- Filtering: $P(X_t|o_{0:t})$ The posterior distribution over the current state given all evidence to date.
- Prediction: $P(X_k|o_{0:t})$ for k > t Similar to filter, but with less evidence.
- Smoothing: $P(X_k|o_{0:t})$ for k < t Better estimation given more evidence.
- Most likely explanation: $\underset{x_{0:t}}{\operatorname{argmax}}_{x_{0:t}} P(x_{0:t}|o_{0:t})$ The sequence of states that most likely generate these observations.

• Learning: Learn the transition model from observations (EM or statistical learning).

Filtering

Goal: Devise a recursive state estimation algorithm.

$$P(X_{t+1}|o_{0:t+1}) = P(X_{t+1}|o_{0:t},o_{t+1})$$

$$= \alpha P(o_{t+1}|X_{t+1},o_{0:t})P(X_{t+1}|o_{0:t})$$

$$= \alpha P(o_{t+1}|X_{t+1})P(X_{t+1}|o_{0:t})$$

Summing out over x_t :

$$= \alpha P(o_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t, o_{0:t}) P(x_t|o_{0:t})$$
$$= \alpha P(o_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) P(x_t|o_{0:t})$$

• $f_{0:t+1} = \text{FORWARD}(f_{0:t}, o_{t+1})$ where $f_{0:t} = P(X_t | o_{0:t})$.

Bayesian Derivations

$$P(A|B) = \sum_{c \in C} P(A, C|B) = \sum_{c} P(A, c|B)$$

$$= \sum_{c} \frac{P(A, B, c)}{P(B)}$$

$$= \sum_{c} \frac{P(A, B, c)}{P(B, c)} \cdot \frac{P(B, c)}{P(B)}$$

$$= \sum_{c} P(A|B, c) \cdot P(c|B)$$

- Temporal Inference
- Day 0: $P(R_0) = \langle 0.5, 0.5 \rangle$ Day 1, umbrella appears:

$$P(R_1) = \sum_{r_0} P(R_1|r_0)P(r_0) = \langle 0.7, 0.3 \rangle \times 0.5 + \langle 0.3, 0.7 \rangle \times 0.5 = \langle 0.5, 0.5 \rangle$$

 $P(R_1|u_1) = \alpha P(u_1|R_1)P(R_1) = \alpha \langle 0.9, 0.2 \rangle \cdot \langle 0.5, 0.5 \rangle = \alpha \langle 0.45, 0.1 \rangle \simeq \langle 0.818, 0.182 \rangle$

Day 2: Umbrella appears:

$$P(R_2|u_1) = \sum_{r_1} P(R_2|r_1) P(r_1|u_1) = \langle 0.7, 0.3 \rangle \times 0.818 + \langle 0.3, 0.7 \rangle \times 0.182 \simeq \langle 0.627, 0.373 \rangle$$

 $P(R_2|u_1, u_2) = \alpha P(u_2|R_2) P(R_2|u_1) = \alpha \langle 0.9, 0.2 \rangle \cdot \langle 0.627, 0.373 \rangle =$

 $\alpha \langle 0.565, 0.075 \rangle \simeq \langle 0.883, 0.117 \rangle$

Smoothing

$$P(X_{k}| o_{0:t}) = P(X_{k}| o_{0:k}, o_{k+1:t})$$

$$= \alpha P(X_{k}| o_{0:k}) P(o_{k+1:t}| X_{k}, o_{0:k})$$

$$= \alpha P(X_{k}| o_{0:k}) P(o_{k+1:t}| X_{k})$$

$$= \alpha f_{0:k} \times b_{k+1:t}$$

Backward message is computed recursively:

$$P(o_{k+1:t}|X_k) = \sum_{x_{k+1}} P(o_{k+1:t}|X_k, x_{k+1}) P(x_{k+1}|X_k)$$

$$= \sum_{x_{k+1}} P(o_{k+1:t}|x_{k+1}) P(x_{k+1}|X_k)$$

$$= \sum_{x_{k+1}} P(o_{k+1}|x_{k+1}) P(o_{k+2:t}|x_{k+1}) P(x_{k+1}|X_k)$$

• $b_{k+1:t} = \text{Backward}(b_{k+2:t}, o_{k+1})$ where $b_{k+1:t} = P(o_{k+1:t} | X_k)$.

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 9<€</p>

Smoothing Example (1)

• $P(R_1|u_1, u_2) = \alpha P(R_1|u_1) P(u_2|R_1)$

$$P(u_2|R_1) = \sum_{r_2} P(u_2|r_2)P(|r_2)P(r_2|R_1)$$

$$= (0.9 \times 1 \times \langle 0.7, 0.3 \rangle) + (0.2 \times 1 \times \langle 0.3, 0.7 \rangle)$$

$$= \langle 0.69, 0.41 \rangle$$

• $P(R_1|u_1, u_2) = \alpha \langle 0.818, 0.182 \rangle \times \langle 0.69, 0.41 \rangle \simeq \langle 0.883, 0.117 \rangle$

Smoothing Example (2)

Smoothing Complexity

- Both forward and backward recursion takes a constant time per step.
- Smoothing at a particular time k given $o_{0:t}$ takes O(t) in time.
- Smoothing the whole sequence takes $O(t^2)$ in time.
- Down to O(t) with dynamic programming (by reusing the result from previous forward).

FORWARD-BACKWARD

```
1 f[0] \leftarrow \text{prior}

2 for i = 1 to t do

3 f[i] \leftarrow \text{FORWARD}(f[i-1], o_i)

4 b \leftarrow 1

5 for i = t to 1 do

6 \text{sv}[i] \leftarrow \text{NORMALIZE}(f[i] \times b)

7 b \leftarrow \text{BACKWARD}(b, o_i)
```

Most Likely Sequence

- Most likely sequence ≠ sequence of most likely states!!!
- Most likely path to $x_{t+1} = \text{most likely path to } x_t + \text{one more step.}$

$$= \alpha P(o_{t+1}|X_{t+1}) \max_{x_t} \left(P(X_{t+1}|x_t) \max_{x_{0:t-1}} P(x_{0:t-1}, x_t|o_{0:t}) \right)$$
Define $m_{0:t} = \max_{x_{0:t-1}} P(x_{0:t-1}, x_t|o_{0:t}),$

This is the Viterbi algorithm.

 $\max P(x_{0:t}, X_{t+1} | o_{0:t+1})$

 $m_{0:t+1} = P(o_{t+1}|X_{t+1}) \max_{x} (P(X_{t+1}|x_t)m_{0:t})$

Hidden Markov Models (HMM)

5-tuple: (X, O, Π, A, B)

- Set of hidden states: $X = \{x_i\}$
- Set of observable states: $O = \{o_i\}$
- Initial probabilities: $\Pi = [\pi_i] = [P(x_i)]$
- Transition probabilities: $A = [a_{ij}] = [P(x_i | x_j)]$
- Observation probabilities: $B = [b_{ij}] = [P(o_i | x_i)]$

Markov Models

3-tuple:
$$(S,\Pi,A)$$

- Set of states: $S = \{s_1, s_2, \dots, s_N\}$
 - Sequence of states during the process: $s_{i_1}, s_{i_2}, \ldots, s_{i_k}, \ldots$
 - Markov chain property (first-order): probability of each subsequent state depends only on the previous state:

$$P(s_{i_k}|s_{i_1},s_{i_2},\ldots)=P(s_{i_k}|s_{i_{k-1}})$$

- Initial probabilities: $\Pi = [\pi_i] = [P(s_i)]$
- Transition probabilities: $A = [a_{ij}] = [P(s_i | s_j)]$

Example of 2-State Markov Model

$$\Pi = \begin{bmatrix} P(Rain) \\ P(Dry) \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} \qquad A = \begin{bmatrix} P(R|R) & P(R|D) \\ P(D|R) & P(D|D) \end{bmatrix} = \begin{bmatrix} 0.3 & 0.2 \\ 0.7 & 0.8 \end{bmatrix}$$

- $Q_0 = \Pi$; $Q_1 = A \Pi = \begin{bmatrix} 0.3 & 0.2 \\ 0.7 & 0.8 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 0.24 \\ 0.76 \end{bmatrix}$; $Q_2 = A^2 \Pi$
- $P(D, D, R, R) = P(R|R)P(R|D)P(D|D)P(D) = 0.3 \cdot 0.2 \cdot 0.8 \cdot 0.6$

Model Inference Tasks

- Evaluation problem: $P(o_{0:t}|X, O, \Pi, A, B)$ Calculate the probability that model M has generated sequence $o_{0:t}$.
- Decoding problem (most likely explanation): $\operatorname{argmax}_{x_{0:t}} P(x_{0:t}|o_{0:t})$ The sequence of states that most likely generate these observations.
- Learning problem: $\operatorname{argmax}_{\Pi,A,B} P(o_{0:t}|X,O,\Pi,A,B)$ Given some training observation sequences $o_{0:t}$, X and O, determine HMM parameters Π,A,B that best fit the training data.

Word Recognition Example (1)

Typed word recognition, assume all characters are separated.

 Character recognizer outputs probability of the image being particular character, P(image | character). This can be handled by deep learning or HMM that we will talk later.

Word Recognition Example (2)

• If lexicon is given, we can construct separate HMM for each word.

 Recognition of words is equivalent to the problem of evaluating HMM models — the evaluation problem.

Word Recognition Example (3)

- Without lexicon info, we can construct one single HMM for all words.
- Observation probabilities are as before.
- Transition probabilities and initial probabilities are calculated from the language model (or dictionary),

 Recognition of words is equivalent to determining the best sequence of hidden states — the decoding problem.

Character Recognition with HMM Example (1)

- Observation: number of islands in the vertical slice (assuming $1\sim3$).
 - •HMM for character 'A':

Transition probabilities:
$$\{a_{ij}\}=\left(egin{array}{ccc} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{array} \right)$$

Observation probabilities: $\{b_{jk}\}=$ $\begin{bmatrix}
.9 & .1 & 0 \\
.1 & .8 & .1 \\
.9 & .1 & 0
\end{bmatrix}$

•HMM for character 'B':

Transition probabilities:
$$\{a_{ij}\}=\left(\begin{array}{ccc}.8&.2&0\\0&.8&.2\\0&0&1\end{array}\right)$$

Observation probabilities: $\{b_{jk}\}=\begin{bmatrix} .9 & .1 & 0 \\ 0 & .2 & .8 \\ 6 & 4 & 0 \end{bmatrix}$

Character Recognition with HMM Example (2)

• 4 slices from left to right with the number of islands: (1,3,2,1).

For 'A'

```
Hidden state sequence
                                         Transition prob.
                                                                             Observation probab.
                                          0.8 \times 0.2 \times 0.2
                                                                         \times 0.9 \times 0.0 \times 0.8 \times 0.9
                                                                                                                   = 0
 s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3:
                                                                         \times 0.9 \times 0.1 \times 0.8 \times 0.9
                                          0.2 \times 0.8 \times 0.2
                                                                                                                   \simeq 0.00207
 s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3:
                                                                        \times 0.9 \times 0.1 \times 0.1 \times 0.9
 s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3:
                                          0.2 \times 0.2 \times 1.0
                                                                                                                   \simeq 0.00032
                                                                                                     Total:
                                                                                                                   \sim 0.00239
```

For 'B'

```
Hidden state sequence
                                          Transition prob.
                                                                             Observation probab.
                                           0.8 \times 0.2 \times 0.2
                                                                         \times 0.9 \times 0.0 \times 0.2 \times 0.6
                                                                                                                    = 0
 s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3:
                                           0.2 \times 0.8 \times 0.2
                                                                         \times 0.9 \times 0.8 \times 0.2 \times 0.6
                                                                                                                    \simeq 0.00276
 s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3 :
                                           0.2 \times 0.2 \times 1.0
                                                                         \times 0.9 \times 0.8 \times 0.4 \times 0.6
                                                                                                                    \simeq 0.00691
 s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3:
                                                                                                      Total:
                                                                                                                    \simeq 0.00967
```

Evaluation Problem

$$P(o_{0:t}|X,O,\Pi,A,B)$$

- $P(o_{0:t}|X, O, \Pi, A, B) = \sum_{x_{0:t} \in X_{0:t}} P(o_{0:t}|x_{0:t}, O, \Pi, A, B)$ Exponential computational time!
- Use Forward-Backward Algorithm for again efficient computation.
 - Recall that $f_{0:t} = P(X_t | o_{0:t})$ can be calculated by forward recursion.
 - $P(o_{0:t}) = \sum_{x_t \in X_t} P(o_{0:t}|X_t) P(X_t = x_t)$

Kalman Filters

- Modeling systems by a set of continuous variables.
- Gaussian prior, linear Gaussian transition model and observation model.
- Prediction step: if $P(X_t|o_{0:t})$ is Gaussian, then the prediction $P(X_{t+1}|o_{0:t}) = \int_{x_t} P(X_{t+1}|x_t) P(x_t|o_{0:t}) dx_t$ is Gaussian.
- Also, the updated distribution $P(X_{t+1}|o_{0:t+1}) = \alpha P(o_{t+1}|X_{t+1})P(X_{t+1}|o_{0:t})$ is Gaussian.
- Does not apply if the transition model is nonlinear. Consider the extended Kalman filter.

Kalman Filter Example

• Gaussian random walk on 1D with stdev σ_x ; sensor stdev σ_z .

$$\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1} + \sigma_z^2\mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$

$$0.45 \\ 0.4 \\ 0.35 \\ 0.3 \\ 0.25 \\ 0.20 \\ 0.15 \\ 0.10 \\ 0.05 \\ 0.8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2^{10} \\ 4 \\ 6 \\ 8$$

$$X \text{ position}$$

Dynamic Bayesian Networks (DBNs)

• X_t , O_t contain arbitrarily many variables in a replicated Bayesian net.

- Every HMM is a signle-variable DBN; every discrete DBN is an HMM.
 Key: Sparsity.
- Every Kalman filter is a DBN; but few DBNs are KFs.

Dynamic Bayesian Networks (DBNs)

• Naive inference: unroll to be a Bayesian net.

Bayesian Networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed acyclic graph (DAG) (link ≈ directly influences)
 - a conditional distribution for each node given its parents: $P(X_i|Parents(X_i))$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Alarm Example

- Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects causal knowledge:
 - A burglar may set the alarm off.
 - An earthquake may set the alarm off.
 - The alarm may cause Mary to call.
 - The alarm may cause John to call.

Alarm Example

• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values.
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers.
- O(n), vs. $O(2^n)$ for the full joint distribution.
- For the alarm net, 1+1+4+2+2=10 numbers (vs. $2^5-1=31$)

Conditional Independence

- Each node is conditionally independent of its nondescendants given its parents.
- Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents.

Joint Distribution

 Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

• e.g., $P(j \land m \land a \land \neg b \land \neg e)$ = $P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$ = $0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998$ ≈ 0.00628

Inference by Stochastic Simulation

- Basic ideas:
 - 1 Draw samples from a sampling distribution 5.
 - 2 Compute an approximation posterior probability \hat{P} .
 - 3 Show this converges to the true probability P.
- Outline
 - Direct sampling
 - Reject sampling
 - Likelihood weighting
 - Markov chain Monte Carlo (MCMC)

Direct and Reject Sampling

- Direct sampling:
 - Simply sample from root(s) to generate samples of the joint distribution.
 - Works for acyclic networks; use Gibbs sampling for cyclic ones.
- Reject sampling
 - Use direct sampling to generate samples, but only record those consistent with the evidence.
 - $\hat{P}(X|o) \simeq P(X,o)/P(o)$
 - Problem: expensive if P(o) is small (drops exponentially with |e|).

REJECT-SAMPLING(bn, o)

```
1 for i = 1 to N
```

$$x = \text{Direct-Sample}(bn)$$

3 **if**
$$x$$
 is consistent with e

4
$$W[v] = W[v] + 1$$
, where v is the value of X in x .

5 **return** NORMALIZE(W)

Likelihood Weighting

 Fix evidence, sample only non-evidence variables and weight each sample by the likelihood.

LIKELIHOOD-WEIGHTING(bn, o)

Weighted-Sample(bn, o)

```
1 x = \text{an event with } n \text{ elements; } w = 1

2 for i = 1 \text{ to } n

3 if X_i has a value x_i in o then w = w \times P(X_i = x_i | parents(X_i))

4 else x_i = \text{a random sample from } P(X_i | parents(X_i))

5 return x, w
```

Likelihood Weighting Example

- Query: P(R|C = T, W = T).
- 1 Topological order: C, S, R, W
- **2** w = 1.
- **3** $w = w \times P(C = T) = 0.5$.
- 4 $P(S|C = T) = \langle 0.1, 0.9 \rangle$. Sample S = F.
- **6** $P(R|C = T) = \langle 0.8, 0.2 \rangle$. Sample R = T.
- **6** $w = w \times P(W = T | S = F, R = T) = 0.45.$
- **?** Return $\langle T, F, T, T \rangle$ with weight 0.45.

Markov Chain Monte Carlo (MCMC)

- Fix evidence variables.
- Sample non-evidence variables given Markov blanket.

Sampling Given Markov Blanket (Gibbs)

• Gibbs sampling: $P(x_i|\bar{x}_i, \mathbf{e}) = P(x_i|mb(X_i))$

Given Markov blanket:

$$P(x_i|mb(X_i)) = P(x_i|parents(X_i)) \cdot \prod_{Z_j \in children(X_i)} P(z_j|Parents(Z_j)))$$

- Markov blanket of C is S and R.
- Markov blanket of R is C, S, and W.

Particle Filtering

- Ensure that the population of particles tracks the high-likelihood regions of the state-space.
- Replicate particles proportional to likelihood for the current evidence.

Particle Filtering

- Assume particle consistent at t: $\frac{N(x_t|o_{0:t})}{N} = P(x_t|o_{0:t})$
- Propagate:

$$N(x_{t+1}|o_{0:t}) = \sum_{x_t} P(x_{t+1}|x_t)N(x_t|o_{0:t})$$

• Weight by likelihood for o_{t+1} :

$$W(x_{t+1}|o_{0:t+1}) = P(o_{t+1}|x_{t+1})N(x_{t+1}|o_{0:t})$$

• Resample: $\frac{N(x_{t+1}|o_{0:t+1})}{N}$ $= \alpha W(x_{t+1}|o_{0:t+1}) = \alpha P(o_{t+1}|x_{t+1})N(x_{t+1}|o_{0:t})$ $= \alpha P(o_{t+1}|x_{t+1}) \sum_{x_t} P(x_{t+1}|x_t)N(x_t|o_{0:t})$ $= \alpha' P(o_{t+1}|x_{t+1}) \sum_{x_t} P(x_{t+1}|x_t) \sum_{x_t} P(x_{t+1}|x_t) = P(x_{t+1}|o_{0:t+1})$

Expectation-Maximization Algorithm Example (1)

- Consider 1D two-Gaussian problem.
- If labels are given, no problem!
- What if labels are hidden?

EM Algorithm Example (2)

- Randomly initialize hidden parameters (or according to prior).
- **E-step:** Computer the expectation (the belongness of data).
- M-step: Update hidden parameters by maximizing likelihood.
- 4 Repeat steps $2\sim3$ until termination.

Convex Optimization for EM

- For real values, f(x) is **convex** iff $f''(x) \ge 0, \forall x \in \mathbb{R}$.
- For real vectors, $f(\vec{x})$ is **convex** iff $det(H) \ge 0, \forall \vec{x} \in \mathbb{R}^d$, where $H = \left[\frac{\partial^2 f}{\partial x_i \partial x_i}\right]$.
- Jensen's inequality: If f is convex, $E[f(X)] \ge f(E[X])$.

EM derivations (1)

- Consider ind indent samples o_i with model parameters θ to learn, Likelihood: $\prod_i P(o_i | \theta)$ Log likelihood: $L(\theta) = \sum_i \ln P(o_i | \theta)$
- Introduce hidden states and sum out:

$$L(\theta) = \sum_{i} \ln \left(\sum_{x_{j}} P(o_{i}, x_{j} | \theta) \right)$$

• Consider probability density function of the hidden state $P_X(x_i)$:

$$L(\theta) = \sum_{i} \ln \left(\sum_{x_j} P_X(x_j) \frac{P(o_i, x_j | \theta)}{P_X(x_j)} \right)$$

• Let $Z_i = \frac{P(o_i, X \mid \theta)}{P_X(X)}$,

$$L(\theta) = \sum_{i} \ln E_{z \sim P_X}[Z_i]$$

EM derivations (2)

Since In is concave,

$$L(\theta) = \sum_{i} \ln E_{z \sim P_{X}}[Z_{i}] \ge \sum_{i} E_{z \sim P_{X}}[\ln Z_{i}]$$

$$= \sum_{i} \sum_{x_{j}} P_{x}(x_{j}) \ln \left(\frac{P(o_{i}, x_{j} \mid \theta)}{P_{x}(x_{j})}\right)$$

$$\equiv LB(X; \theta)$$

- Maximizing the lower bound
 - Equality holds in Jensen's i rality when the random variable is actually a constant.

$$\frac{P(o_i, x_j | \theta)}{P_x(x_j)} = c \quad \Rightarrow \quad P_x(x_j) = \frac{P(o_i, x_j | \theta)}{c}$$

$$P_{x}(x_{j}) = \frac{P(o_{i}, x_{j} | \theta)}{\sum_{x_{i}} P(o_{i}, x_{j} | \theta)} = \frac{P(o_{i}, x_{j} | \theta)}{P(o_{i} | \theta)} = P(o_{i} | x_{j}, \theta)$$

EM Algorithm

E-Step:

For given
$$\theta$$
, $P_x(x_i) = P(o_i | x_i, \theta)$

M-Step:

Update parameters:
$$\theta \leftarrow \operatorname{argmax}_{\theta} LB(X; \theta)$$

 Actual calculation depends on models. Some commonly used models include linear and Gaussian mixture model.

