

Trigonometry

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **10+** years Teaching experience
- Taught 1 Million+ Students
- 100+ Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt Solving**
- LIVE Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

4 India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the BEST

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Homework Question

Find the value of: $\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$

$$\mathcal{H} = Sm 2\pi + Sin 4\pi + Sin 8\pi$$

$$\mathcal{H}^{2} = \left(Sin 2\pi + Sin 4\pi + Sin 8\pi\right)^{2}$$

$$\mathcal{H}^{2} = \left(Sin^{2} 2\pi + Sin^{2} 4\pi + Sin^{2} 8\pi\right)$$

$$+ 2 \left(Sin 2\pi + Sin 4\pi + Sin 4\pi + Sin 8\pi + Sin 8\pi + Sin 8\pi\right)$$

$$B = \left[C_{3}(-2\frac{\pi}{2}) - C_{3}(6\frac{\pi}{2})\right] + \left[C_{3}(-2\frac{\pi}{2}) - C_{3}(12\frac{\pi}{2})\right] + \left[C_{3}(6\frac{\pi}{2}) - C_{3}(10\frac{\pi}{2})\right]$$

$$B = GS(\frac{2\pi}{7}) + GS(\frac{4\pi}{7}) - GS(\frac{2\pi}{7} - \frac{4\pi}{7})$$

$$-GS(\frac{2\pi}{7} - \frac{4\pi}{7})$$

$$B = Gos(\frac{2\pi}{7}) + Gos(\frac{4\pi}{7}) - Gos(\frac{4\pi}{7})$$

Now.

$$A = Sin^2 = + Sin^2 = + Sin^2 = 7$$

$$\begin{cases}
6520 = 1 - 25in^20 \\
5in^20 = 1(1-6520)
\end{cases}$$

$$A = \frac{1}{2}(1 - 65 4\pi) + \frac{1}{2}(1 - 6516\pi)$$

Z jee

$$A = \frac{3}{2} - \frac{1}{2} \left(\frac{65}{7} + \frac{7}{4} + \frac{16\pi}{7} + \frac{16\pi}{7} \right)$$

$$A = \frac{3}{2} - \frac{1}{2} \left(\frac{65}{7} + \frac{2\pi}{7} + \frac{65}{7} + \frac{8\pi}{7} + \frac{2\pi}{7} \right)$$

$$= \left(\frac{1}{2} \right) \begin{cases} \frac{2\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \begin{cases} \frac{16\pi}{7} + \frac{2\pi}{7} \\ \frac{16\pi}{7} + \frac{2\pi}{7} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{7}{12} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

$$A = \frac{3}{2} - \frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \end{cases}$$

Find the value of
$$\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{7\pi}{14} \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}$$

$$13\pi = \pi - \pi \frac{\pi}{14}$$

Sin $13\pi = \sin(\pi - \pi)$

jee

$$= \left(\frac{\cos \frac{\pi}{2}}{\cos \frac{\pi}{2}} \right) = \left(\frac{\sin \left(\frac{\pi}{2} \right)}{\cos \frac{\pi}{2}} \right)$$

$$= \left(\frac{\sin \left(\frac{\pi}{2} \right)}{\cos \frac{\pi}{2}} \right)$$

$$\sin\frac{\pi}{18}\sin\frac{5\pi}{18}\sin\frac{7\pi}{18}$$
 is equal to

$$\cos\left(\frac{\pi}{2} - \frac{5\pi}{18}\right)$$

A 1/8

B. 1/2

C. 1/4

D. 1/1

A
$$\sqrt{\frac{\pi}{2}} - \frac{\pi}{18}$$
 $\sqrt{\frac{\pi}{2}} - \frac{5\pi}{18}$
 $\sqrt{\frac{\pi}{2}} - \frac{7\pi}{18}$

$$= \mathcal{L}_{S}\left(\frac{8\pi}{18}\right)$$

$$= GS\left(\frac{8\pi}{18}\right) \cdot GS\left(\frac{4\pi}{18}\right) \cdot GS\left(\frac{2\pi}{18}\right)$$

$$= \left(\cos \left(\frac{d}{L} \right) \cos \left(\frac{d}{2L} \right) \cos \left(\frac{d}{2L} \right) \right)$$

$$= \frac{5\ln 2}{\sqrt{9}} = \frac{5\ln 2}{\sqrt{9}} = \frac{5\ln 8\pi}{9}$$

$$= \frac{85\ln 119}{9}$$

-1/32

1/1024

 2π

-GS 8TT

 3π

1/512

-1/2028

(61911) 6581 (65711)

-685<u>II</u>

 11π

65 10T = -65T

$$=\left(-\frac{\cos^2\pi}{11}\right)\left(-\frac{\cos^2\pi}{11}\right)\left(-\frac{\cos^2\pi}{11}\right)\left(-\frac{\cos^2\pi}{11}\right)\left(-\frac{\cos^2\pi}{11}\right)$$

$$= \left(\frac{1}{-6} \right) \left(\frac{1}{-6} \right) \left(\frac{1}{-6} \right) \left(\frac{1}{-1} \right) \left($$

$$= \left(\frac{\cos(\pi)}{1}, \cos(\pi), \cos(\pi) \right)$$

$$= \left(\frac{\sin(\pi)}{1}, \cos(\pi), \cos(\pi) \right)$$

$$= \left(\frac{\sin(\pi)}{1}, \cos(\pi), \cos(\pi), \cos(\pi) \right)$$

T jee

$$= \frac{\left(\frac{\sin\left(\pi + \frac{\pi\pi}{11}\right)}{16 \sin \frac{\pi\pi}{11}}\right)^{2}}{\left(\frac{35\pi}{11}\right)^{2}}$$

$$= \frac{\left(\frac{\sin\left(\pi + \frac{\pi\pi}{11}\right)}{16 \sin \frac{\pi\pi}{11}}\right)^{2}}{\left(\frac{35\pi}{11}\right)^{2}}$$

$$= \frac{\left(-\frac{1}{32}\right)^{2} \sin \frac{\pi\pi}{11}}{\left(\frac{35\pi}{11}\right)^{2}}$$

$$= \frac{1}{32 \cos \frac{\pi\pi}{11}}$$

Prove that: $(1 + \sec 2\theta)(1 + \sec 2^2\theta)$ $(1 + \sec 2^n\theta) = \tan 2^n\theta . \cot \theta$.

$$LNS = (1 + \frac{1}{6520})(1 + \frac{1}{6520}) - - - (1 + \frac{1}{6520})$$

$$= (6520+1)(652^{2}0+1) - - - (652^{0}0+1)$$

$$= (2650)(26520) - - - (2652^{0}0)$$

$$= (2650)(26520) - - - (2652^{0}0)$$

(6520- -- - - 6820)

 $= 2^{n} \left(650.6520 - - - 652^{n-1}0 \right)^{n} \left(650 \right)$ (650 6520 6520 -- - - - 652¹0) 652¹0 $= (2^{n} Gs\theta)(Gs\theta \cdot Gsu \cdot - - - Gsu^{-1}\theta)$

Property of Summation (Σ)

$$\int_{0}^{100} (n) = 1 + 2 + 3 + - - - - + 100$$

$$(2) \sum_{n=1}^{100} (n)^{2} - 1^{2} + 2^{2} + 3^{2} + - - - + (100)^{2}$$

$$(3) \sum_{100}^{100} (u_5 + u) = (15+1) + (5+5) + --- (100+100)$$

$$\frac{10^{\circ}}{5}(n^2+n) = 5n^2 + 5n$$

$$\frac{1000}{5} = 2 + 4 + 6 + - - - + 200$$

$$= 2(1 + 2 + 3 + - - + 100)$$

$$= 2(\frac{100}{5})$$

Find the value of : $\sum_{n=0}^{\infty} \cos^3 \frac{\pi r}{3}$,

$$\begin{array}{l}
G830 = 4650 - 3650 \\
G5^{3}0 = G530 + 3650 \\
4
\end{array}$$

$$\begin{array}{l}
S=0
\end{array}$$

y jee

$$= \frac{10}{8 \pm 0} \left(\frac{\cos \pi \Re}{4} \right) + \frac{5}{8 \pm 0} \left(\frac{3\cos \pi \Re}{3} \right)$$

$$= \frac{1}{4} \left(\frac{10}{8 \pm 0} \cos \pi \Re \right) + \frac{3}{4} \left(\frac{10}{8 \pm 0} \cos \frac{\pi \Re}{3} \right)$$

$$= \frac{1}{4} \left(\frac{10}{8 \pm 0} \cos \pi \Re \right) + \frac{3}{4} \left(\frac{10}{8 \pm 0} \cos \frac{\pi \Re}{3} \right)$$

y jee

$$= 650 + 6517 + 65277 + --- + 651017$$

$$S_1 = 1$$

$$= \sum_{i=0}^{10} cos \frac{\pi \lambda}{2}$$

$$S_2 = 1 + 1$$

$$X = \frac{\pi}{3}, \quad \beta = \frac{\pi}{3}$$

$$= \frac{1}{5}, \quad + \frac{3}{5}, \quad = \frac{1}{5}, \quad$$

jee

$$S_{1} = \frac{\pi}{5}, \quad N = 10$$

$$S_{2} = \frac{\pi}{5}, \quad N = 10$$

$$S_{3} = \frac{\pi}{5} + \sin\left(\frac{\pi}{5}\right)$$

$$S_{4} = \frac{\pi}{5} + \sin\left(\frac{\pi}{5}\right)$$

$$S_{5} = \frac{\pi}{5} + \sin\left(\frac{\pi}{5}\right)$$

$S = 1 + Sin \left(\times \pi \right)$	5 8
$S_{2} = 1 + Sin\left(\frac{\sqrt{\pi}}{3}\right) \cdot Cos\left(\frac{\pi}{3} + 9\frac{\pi}{2}\right)$	= 2-3
Sin (I)	8
	=(-)

$$\frac{1}{Sin(\frac{\pi}{6})} \cdot Sin(\frac{\pi}{6}) = \frac{2-3}{8}$$

$$S_{2} = 1 + (-53/x)(5/2) = 1 - \frac{3}{2} = (-1)$$

$$S_{2} = 1 + (-1)$$

#JEELiveDailySchedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt Solving**
- LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

4 India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the BEST

Top Results T

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

99.28

Yash Bhaskar 99.10

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Starting on 12th May

Every Sunday |
11 am Onwards
Win Scholarships
worth 4 Cr+

IIT JEE T-20 Test Series May 15 | 6:30 PM Onwards **Win Daily Amazon vouchers** and Scholarship worth Rs 3 CR*

Enroll Now for FREE

Use Code - SAMEERLIVE

IIT JEE MEGA SUBSCRIPTION OFFER

For 2022 Aspirants

Buy 1 Year Unacademy Subscription and get additional

2 MONTHS FREE

For 2023 Aspirants

Buy 2 Year Unacademy Subscription and get additional

3 MONTHS FREE

Thank you

SUBSCRIBE

#JEE Live Daily

unacademy

Download Now!