ЛЕКЦИЯ 4

ПРЯМОЕ ПРОИЗВЕДЕНИЕ ГРУПП

АВТОМОРФИЗМЫ ГРУПП

ВНУТРЕННИЕ АВТОМОРФИЗМЫ

АБЕЛЕВЫ ГРУППЫ

ТОЧНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

ПРЯМЫЕ ПРОИЗВЕДЕНИЯ ГРУПП

Сначала рассмотрим внутреннее прямое произведение нормальных подгрупп: будем говорить, что группа G является внутренним произведением своих нормальных подгрупп H и K, $H \triangleleft G$, $K \triangleleft G$, если G = HK и $H \cap K = \{e\}$ (обозначение: $G = H \times K$).

Выведем основные свойства конструкции $G = H \times K$.

ЛЕММА 1. Если H и K — нормальные подгруппы группы G, $H \triangleleft G$, $K \triangleleft G$, и $H \cap K = \{e\}$, то hk = kh для любых $h \in H$, $k \in K$.

Доказательство. Так как $H \lhd G$ и $K \lhd G$, то

$$[k,h] = (k^{-1}h^{-1}k)h = k^{-1}(h^{-1}kh) \in H \cap K = \{e\},\$$

поэтому hk = kh.

Так как G=HK, то любой элемент $g\in G$ представим в виде g=hk, $h\in H,\ k\in K$. Покажем единственность этого представления. Если $g=hk=h'k',\ h'\in H,\ k'\in K$, то

$$(h')^{-1}h = k'k^{-1} \in H \cap K = \{e\},\$$

и поэтому h' = h, k' = k.

Если $h_1, h_2 \in H$, $k_1, k_2 \in K$, то по лемме 1 $k_1h_2 = h_2k_1$, и поэтому

$$(h_1k_1)(h_2k_2) = h_1(k_1h_2)k_2 = h_1(h_2k_1)k_2 = (h_1h_2)(k_1k_2).$$

ПРИМЕР 1. Пусть

$$G = \mathbf{V}_4 = \{e, (12)(34), (13)(24), (14)(23)\} \subseteq \mathbf{S}_4,$$

 $H = \{e, (12)(34)\}, \quad K = \{e, (13)(24)\}, \quad L = \{e, (14)(23)\}.$

Так как четверная группа Клейна V_4 абелева, то все подгруппы в ней нормальны. Ясно, что

$$H \cap K = K \cap L = H \cap L = \{e\};$$

 $HK = KL = HL = \mathbf{V}_4.$

Таким образом,

$$\mathbf{V}_4 = H \times K = K \times L = H \times L.$$

Замечание 1. Определение внутреннего прямого произведения можно распространить на любое конечное множество нормальных подгрупп $H_i \lhd G, \ 1 \leq i \leq m, \$ где

$$G = H_1 H_2 \dots H_m$$

И

$$H_i \cap \left\langle \bigcup_j H_j, \ j = 1, 2, \dots, m, \ j \neq i \right\rangle = \{e\}$$

(обозначение: $G = H_1 \times H_2 \times \ldots \times H_m$).

В этом случае: $h_i h_j = h_j h_i$ для $h_i \in H_i, h_j \in H_j, i \neq j$; каждый элемент $g \in G$ единственным образом представляется в виде $g = h_1 h_2 \dots h_m, h_i \in H_i$; при этом

$$(h_1h_2...h_m)(h'_1h'_2...h'_m) = (h_1h'_1)(h_2h'_2)...(h_mh'_m).$$

Перейдем к рассмотрению конструкции внешнего прямого произведения. Пусть нам дано конечное множество групп G_1, G_2, \ldots, G_m (в отличие от внутренней конструкции, они не предполагаются подгруппами одной группы). Рассмотрим множество

$$G = G_1 \times G_2 \times \ldots \times G_m = \{(g_1, g_2, \ldots, g_m) \mid g_i \in G\}$$

с бинарной операцией

$$(g_1, g_2, \dots, g_m)(g'_1, g'_2, \dots, g'_m) = (g_1 g'_1, g_2 g'_2, \dots, g_m g'_m), \quad g_i, g'_i \in G_i.$$

Ясно, что эта операция ассоциативна, $e=(e_{G_1},e_{G_2},\ldots,e_{G_m})$ — нейтральный элемент, $(g_1,g_2,\ldots,g_m)^{-1}=(g_1^{-1},g_2^{-1},\ldots,g_m^{-1}).$

Итак, G — группа, называемая внешним прямым произведением групп G_1, G_2, \ldots, G_m (обозначение: $G = G_1 \times G_2 \times \ldots \times G_m$).

Группа G_i не является подгруппой внешнего прямого произведения $G = G_1 \times G_2 \times \ldots \times G_m$, но в G имеется подгруппа G_i' , изоморфная группе G_i , а именно

$$G'_i = \{(e_{G_1}, e_{G_2}, \dots, a_i, \dots, e_{G_m}) \mid a \in G_i\}.$$

Так как для $g_i, h_i \in G_i$ имеем

$$(g_1, g_2, \dots, g_m)^{-1}(h_1, h_2, \dots, h_m)(g_1, g_2, \dots, g_m) =$$

= $(g_1^{-1}h_1g_1, g_2^{-1}h_2g_2, \dots, g_m^{-1}h_mg_m),$

то G_i' — нормальная подгруппа в $G, G_i' \lhd G$. Кроме того,

$$G = G'_1 G'_2 \dots G'_m,$$

$$G'_i \cap \left\langle \bigcup G'_j \mid j = 1, \dots, m, \ j \neq i \right\rangle = \{e\}.$$

Итак, внешнее прямое произведение групп G_1, G_2, \ldots, G_m является внутренним прямым произведением своих подгрупп $G'_i, G'_i \cong G_i$:

$$G = G_1 \times G_2 \times \ldots \times G_m = G'_1 \times G'_2 \times \ldots \times G'_m.$$

Кроме того, из анализа строения внутреннего прямого произведения $G=H_1\times H_2\times\ldots\times H_m$ нормальных подгрупп $H_i\lhd G,\ 1\leq i\leq m$, мы видим, что группа G изоморфна внешнему прямому произведению групп $H_i,\ 1\leq i\leq m$, при соответствии

$$g = h_1 h_2 \dots h_m \mapsto (h_1, h_2, \dots, h_m).$$

В дальнейшем мы будем использовать термин "прямое произведение групп" без упоминания прилагательных "внутреннее" и "внешнее", понимая, что это разные описания одной и той же конструкции.

Замечание 2. 1) Ясно, что прямое произведение групп $G = H_1 \times H_2 \times \ldots \times H_m$ является коммутативной группой тогда и только тогда, когда все группы H_1, \ldots, H_m коммутативны.

- 2) Пусть A, B, A', B' группы, $A \cong A', B \cong B', G = A \times B, G' = A' \times B'$. Тогда $G \cong G'$.
- 3) Для прямых разложений возможно, что $G=H_1\times H_2=K_1\times K_2$, но $H_i\ncong K_j,\, i,j\in\{1,2\}$. Действительно,

$$\mathbb{Z}_{30} = \mathbb{Z}_2 \oplus \mathbb{Z}_{15} = \mathbb{Z}_5 \oplus \mathbb{Z}_6.$$

ТЕОРЕМА 1. Пусть $G_i = (a_i)$, $O(a_i) = n_i$, $i = 1, \ldots, m$, — циклические группы порядка n_i . Тогда прямое произведение $G = G_1 \times G_2 \times \ldots \times G_m$ является циклической группой тогда и только тогда, когда порядки n_1, n_2, \ldots, n_m попарно взаимно просты.

Доказательство. 1) Пусть числа n_1, n_2, \ldots, n_m попарно взаимно просты и $(a_1, a_2, \ldots, a_m)^k = (e_1, e_2, \ldots, e_m), k > 0$. Тогда $a_i^k = e_i$ для всех $1 \le i \le m$. Поэтому $k = n_i q_i$ и k делится на число $|G| = n = n_1 n_2 \ldots n_m$. Итак, $O((a_1, a_2, \ldots, a_m)) = n = |G|$, и следовательно, $G = ((a_1, a_2, \ldots, a_m)) -$ циклическая группа с циклическим образующим (a_1, a_2, \ldots, a_m) .

2) Если $(n_i, n_i) = d > 1$, то

$$l = HOK(n_1, n_2, \dots, n_m) < n = n_1 n_2 \dots n_m,$$

и поэтому

$$(g_1, g_2, \dots, g_m)^l = (g_1^l, g_2^l, \dots, g_m^l) = (e_1, e_2, \dots, e_m).$$

Таким образом, в группе $G = G_1 \times G_2 \times \ldots \times G_m$ нет элемента порядка n = |G|, и следовательно, группа G не является циклической.

Следствие 1. Если $n = p_1^{l_1} \dots p_m^{l_m}$, где p_1, \dots, p_m — различные простые числа, $l_i > 0, 1 \le i \le m$, то

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{l_1}} \times \mathbb{Z}_{p_2^{l_2}} \times \ldots \times \mathbb{Z}_{p_m^{l_m}},$$

при этом примарные циклические сомножители $\mathbb{Z}_{p_i^{l_i}}$ далее в прямое произведение неразложимы.

АВТОМОРФИЗМЫ ГРУПП

Напомним, что автоморфизмом группы G называется биекция $f: G \to G$, являющаяся гомоморфизмом. Через $\mathrm{Aut}\,(G)$ обозначим множество всех автоморфизмов группы G.

ЛЕММА 2. Если G — группа, то $\operatorname{Aut}(G)$ — группа, являющаяся подгруппой группы подстановок $\mathbf{S}(G)$, $\operatorname{Aut}(G) \subseteq \mathbf{S}(G)$.

Доказательство. Так как произведение автоморфизмов — автоморфизм (из свойств гомоморфизмов и изоморфизмов), то операция произведения в группе подстановок S(G) на множестве G не выводит нас из Aut(G).

Ассоциативность этой операции на $\operatorname{Aut}(G)$ является следствием ассоциативности операции умножения в $\mathbf{S}(G)$. Ясно, что тождественное отображение 1_G является автоморфизмом и нейтральным элементом в $\operatorname{Aut}(G)$. Если $f \in \operatorname{Aut}(G)$, то f^{-1} также автоморфизм (из свойств гомоморфизмов и изоморфизмов). Итак, $\operatorname{Aut}(G)$ —группа, являющаяся подгруппой группы подстановок $\mathbf{S}(G)$ на множестве G.

ПРИМЕР 2 (АВТОМОРФИЗМОВ ГРУПП). 1) Как мы уже отметили, тождественное отображение 1_G является автоморфизмом любой группы G.

2) Если (A,+) — абелева группа, то отображение $\alpha\colon A\to A$, где $\alpha(a)=-a$ для $a\in A$, является автоморфизмом. Действительно, α — биекция, при этом

$$\alpha(x+y) = -(x+y) = -x - y = \alpha(x) + \alpha(y),$$

т. е. α — гомоморфизм. Итак, α — автоморфизм.

ЛЕММА 3. $\alpha \in \text{Aut}(G) \implies O(\alpha(g)) = O(g) \ \forall g \in G.$

ТЕОРЕМА 2. Пусть G = G(a) - циклическая группа с образующим элементом a. Тогда:

- 1) если $|G| = O(a) = \infty$ (т. е. если G бесконечная циклическая группа, $G \cong (\mathbb{Z}, +)$), то $\mathrm{Aut} ((\mathbb{Z}, +)) \cong \mathbb{Z}_2$, $|\mathrm{Aut} (G)| = 2$;
- 2) если $|G| = O(a) = n < \infty$, $G \cong \mathbb{Z}_n$, то $\operatorname{Aut}((\mathbb{Z}_n, +)) \cong \operatorname{U}(\mathbb{Z}_n)$, $|\operatorname{Aut}((\mathbb{Z}_m, +))| = \varphi(m)$, где $\varphi(m) \varphi$ ункция Эйлера.

Доказательство. Пусть G = (a) — циклическая группа.

Случай 1: G = (a), $O(a) = \infty$, $G \cong (\mathbb{Z}, +)$, — бесконечная циклическая группа. Если $f: \mathbb{Z} \to \mathbb{Z}$ — автоморфизм группы $(\mathbb{Z}, +)$, то f полностью определяется целым числом $n = f(1) \in \mathbb{Z}$, поскольку

$$f(m) = f(m \cdot 1) = mf(1) = mn$$

для всех $m \in \mathbb{Z}$. Так как f — сюръекция, то 1 = f(t) для некоторого $t \in \mathbb{Z}$, поэтому

$$1 = f(t) = f(t \cdot 1) = tf(1) = tn.$$

Таким образом, $n=\pm 1$. Итак, либо $f=1_{\mathbb{Z}}$ (f(1)=1), либо f(m)=-m для всех $m\in\mathbb{Z}$ (f(1)=-1). Следовательно, $|\operatorname{Aut}(\mathbb{Z})|=2$, т. е. $\operatorname{Aut}(\mathbb{Z})\cong\mathbb{Z}_2$.

Случай 2: пусть $G=(a), \ n=|G|=O(a)<\infty, \ f\colon G\to G$ — автоморфизм.

- а) Ясно, что f полностью определяется элементом $f(a) \in G$, поскольку $f(a^k) = f(a)^k$ для всех $k \in \mathbb{Z}$. Так как f изоморфизм, то $O\big(f(a)\big) = O(a) = n$, т. е. f(a) образующий циклической группы G = (a), и поэтому $f(a) = a^i$, где $1 \le i < m$, (i,m) = 1.
- б) Если же $i \in \mathbb{Z}$, $1 \le i < n$, (i,n) = 1, то отображение $f : G \to G$, $f(g) = g^i$ для всех $g \in G$, является гомоморфизмом, поскольку G = (a) абелева группа:

$$f(g_1g_2) = (g_1g_2)^i = g_1^i g_2^i = f(g_1)f(g_2)$$

для всех $g_1, g_2 \in G$.

Так как $f(a) = a^i$ и (i, n) = 1, то

$$O(f(a)) = O(a^i) = \frac{n}{(i,n)} = n,$$

поэтому f(a) является образующим группы G=(a), и следовательно, $\mathrm{Im}\, f=G$, т. е. $f\colon G\to G$ — сюръективное отображение. Но G— конечное множество, поэтому f— биекция, т. е. $f\in\mathrm{Aut}\,(G)$.

в) Итак, мы описали строение всех автоморфизмов $f \in \operatorname{Aut}(G)$, где $G = (a), |G| = O(a) = n < \infty, G \cong \mathbb{Z}_n$, доказав, что $\operatorname{Aut}(\mathbb{Z}_n) \cong \operatorname{U}(\mathbb{Z}_n, \cdot)$. Из этого описания следует, что $|\operatorname{Aut}(G)| = \varphi(n)$ для $G = (a), |G| = O(a) = n < \infty$, где $\varphi(n)$ — функция Эйлера.

Упражнение 1. Найдите все такие группы G, что $\operatorname{Aut}(G)$ — тривиальная группа.

ВНУТРЕННИЕ АВТОМОРФИЗМЫ

Определение 1. Пусть G — группа, $g, x \in G$. Элемент $gxg^{-1} \in G$ называется элементом, conpяженным c элементом x c nomowью элемента g (иногда используется обозначение $gxg^{-1} = x^g$).

ЛЕММА 4. Пусть G — группа. Для каждого элемента $g \in G$ отображение

$$au(g)\colon G o G, \quad au(g)(x)=gxg^{-1}$$
 для $x\in G,$

является автоморфизмом группы G (называемым внутренним автоморфизмом группы G, индуцированным элементом $g \in G$).

Доказательство. 1) Если $x, y \in G$, то

$$\tau(g)(xy) = g(xy)g^{-1} = (gxg^{-1})(gyg^{-1}) = (\tau(g)x)(\tau(g)(y)),$$

т. е. $\tau(g) \colon G \to G$ — гомоморфизм групп.

2) Так как $\tau(g^{-1}) = \tau(g)^{-1}$, то $\tau(g)$ — биекция, и поэтому $\tau(g)$ — автоморфизм группы G.

Соберем вместе свойства отображения $\tau: G \to \operatorname{Aut}(G)$.

ТЕОРЕМА 3 (СВОЙСТВА ВНУТРЕННИХ АВТОМОРФИЗМОВ). Пусть G-группа. Тогда:

- 1) отображение $\tau: G \to \operatorname{Aut}(G), \ \tau(g)(x) = gxg^{-1}, \ g \in G, \ x \in G,$ является гомоморфизмом групп (называемым гомоморфизмом сопряжения):
- 2) образ гомоморфизма $\tau: G \to \operatorname{Aut}(G)$, т. е. совокупность $\operatorname{Inn}(G) = \{\tau(g) \in \operatorname{Aut}(G) \mid g \in G\} = \operatorname{Im} \tau$ всех внутренних автоморфизмов $\tau(g), g \in G$, является нормальной подгруппой группы автоморфизмов $\operatorname{Aut}(G)$ (группа $\operatorname{Inn}(G)$ называется группой внутренних автоморфизмов группы G);
- 3) $\ker(\tau) = \mathbf{Z}(G)$, т. е. ядро $\ker(\tau)$ гомоморфизма τ совпадает с центром $\mathbf{Z}(G)$ группы G;
- 4) $\operatorname{Inn}(G) \cong G/\mathbf{Z}(G)$, группа $\operatorname{Inn}(G)$ внутренних автоморфизмов изоморфна фактор-группе группы G по ее центру $\mathbf{Z}(G)$;

Доказательство. 1) Если $q, h \in G$, то

$$\tau(gh)(x) = (gh)x(gh)^{-1} = g(hxh^{-1})g^{-1} = \tau(g)\big(\tau(h)(x)\big)$$

для всех $x \in G$. Итак, $\tau(gh) = \tau(g)\tau(h)$ для всех $g,h \in G$, т. е. $\tau \colon G \to \operatorname{Aut}(G)$ — гомоморфизм групп.

2) Совокупность $\text{Inn}(G) = \{\tau(g) \in \text{Aut}(G) \mid g \in G\}$ всех внутренних автоморфизмов $\tau(g), g \in G$, в группе Aut(G) как образ гомоморфизма τ является подгруппой группы Aut(G).

Если $\alpha \in \text{Aut}(G)$ и $g \in G$, $x \in G$, то

$$\tau(\alpha(g))(x) = \alpha(g)x\alpha(g)^{-1} = \alpha(g)x\alpha(g^{-1}) =$$
$$= \alpha(g\alpha^{-1}(x)g^{-1}) = \alpha(\tau(g)(\alpha^{-1}(x))) = (\alpha\tau(g)\alpha^{-1})(x),$$

поэтому

$$\alpha \tau(g) \alpha^{-1} = \tau(\alpha(g)) \in \text{Inn}(G),$$

следовательно,

$$\operatorname{Inn}(G) \lhd \operatorname{Aut}(G)$$
.

- 3) Элемент $g \in G$ принадлежит ядру $\ker \tau$ гомоморфизма τ тогда и только тогда, когда $\tau(g)(x) = x$ для всех $x \in G$, т. е. $gxg^{-1} = x$, или gx = xg, но это означает, что $g \in \mathbf{Z}(G)$. Итак, $\ker \tau = \mathbf{Z}(G)$.
- 4) В силу теоремы о гомоморфизме для сюръективного гомоморфизма $\tau\colon G\to {\rm Inn}\,(G)$ имеем

$$\operatorname{Inn}(G) = \operatorname{Im} \tau \cong G / \ker \tau = G / \mathbf{Z}(G).$$

ПРИМЕРЫ АБЕЛЕВЫХ ГРУПП

- 1) Циклические группы $G=\langle a \rangle$, поскольку $a^m a^n=a^{m+n}=a^n a^m$ для всех $m,n\in\mathbb{Z}.$
- 2) Прямые суммы $\bigoplus_{i \in I} A_i$ и прямые произведения $\prod_{i \in I} A_i$ абелевых групп A_i , $i \in I$, являются абелевыми группами.
- 3) $A\partial \partial umu$ вная группа рациональных чисел $\mathbb{Q} = (\mathbb{Q}, +)$ (эта группа без кручения, она является делимой (для любого $a \in \mathbb{Q}$ и любого $n \in \mathbb{Z}$ уравнение nx = a разрешимо в \mathbb{Z}) и по этой причине не является прямой суммой циклических групп).
- 4) Квазициклическая группа $\mathbb{Z}(p^{\infty})$ группа по умножению всех корней степени p^n , где p фиксированное простое число, $n \in \mathbb{N} \cup \{0\}$.

ТОЧНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Последовательность абелевых групп и гомоморфизмов

$$\dots \xrightarrow{f_{i-1}} A_i \xrightarrow{f_i} A_{i+1} \xrightarrow{f_{i+1}} A_{i+2} \to \dots$$

называется точной последовательностью, если

$$\operatorname{Im} f_i = \ker f_{i+1} \ \forall i \in \mathbb{N},$$

и называется комплексом абелевых групп, если

$$f_{i+1}f_i = 0 \ \forall i \in \mathbb{N}$$

(это равносильно тому, что $\operatorname{Im} f_i \subseteq \ker f_{i+1}$, и поэтому в этом случае можно рассмотреть фактор-группу $D_{i+1} = \ker f_{i+1} / \operatorname{Im} f_i$, называемую (i+1)-й группой гомологий комплекса).

Следующие примеры точных последовательностей наиболее употребительны в нашем курсе:

1) точность последовательности

$$0 \to A \stackrel{i}{\to} B$$

означает, что $\ker i = 0$, т. е. i-инъективный гомоморфизм (мономорфизм);

2) точность последовательности

$$B \stackrel{\pi}{\to} C \to 0$$

означает, что $\operatorname{Im} \pi = C$, т. е. π — сюръективный гомоморфизм;

3) точность последовательности

$$0 \to A \xrightarrow{i} B \xrightarrow{\pi} C \to 0$$

означает, что $\ker i=0$, $\operatorname{Im} i=\ker \pi$, $\operatorname{Im} \pi=C$, т. е. что $A\cong \operatorname{Im} i$, $B/\operatorname{Im} i=B/\ker \pi\cong C$ (в частности, для сюръективного гомоморфизма $f\colon A\to B$ имеем короткую точную последовательность

$$0 \to \ker f \subseteq A \xrightarrow{f} \operatorname{Im} f = B \to 0$$
.

ЛЕММА 5 (О РЕТРАКТЕ АБЕЛЕВЫХ ГРУПП). Пусть $G\ u\ G'-a$ белевы группы.

- 1) Если $f: G \to G'$, $h: G' \to G$ гомоморфизмы $u \ fh = 1_{G'}$ (пара f, h ретракт), то:
 - a) $\ker h = 0$;
 - б) $\operatorname{Im} f = G'$;
 - $\mathrm{B)} \ \mathrm{Im} \, h \oplus \ker f = G.$
 - 2) Если $f: G \to G'$ гомоморфизм,

$$\operatorname{Im} f = G' \ u \ A \oplus \ker f = G$$

для некоторой подгруппы $A\subseteq G$, то существует гомоморфизм $h\colon G'\to G$, для которого $fh=1_{G'}$.

3) Если $h: G' \to G$ — гомоморфизм,

$$\ker h = 0 \ u \ \operatorname{Im} h \oplus B = G$$

для некоторой подгруппы $B\subseteq G$, то существует гомоморфизм $f\colon G\to G'$, для которого $fh=1_{G'}$.

Доказательство.

1а) Если $y \in \ker h \subseteq G'$, то h(y) = 0, и поэтому

$$y = 1_{G'}(y) = (fh)(y) = f(h(y)) = f(0) = 0.$$

Итак, $\ker h = 0$.

1б) Если $y \in G'$, то

$$y = 1_{G'}(y) = (fh)(y) = f(h(y)) \in \text{Im } f.$$

Итак, $\operatorname{Im} f = G'$.

1в) Если $x \in G$, то x = h(f(x)) + (x - (hf)(x)), при этом, поскольку $fh = 1_{G'}$,

$$f(x - (hf)(x)) = f(x) - (fhf)(x) = f(x) - f(x) = 0,$$

поэтому $x - (hf)(x) \in \ker f$, $h(f(x)) \in \operatorname{Im} h$. Таким образом, $G = \operatorname{Im} h + \ker f$.

Если $z \in \operatorname{Im} h \cap \ker f$, то z = h(y) для $y \in G'$ и f(z) = 0, поэтому

$$y = 1_{G'}(y) = (fh)(y) = f(h(y)) = f(z) = 0.$$

Таким образом, $\operatorname{Im} h \cap \ker f = 0$.

Итак, $G = \operatorname{Im} h \oplus \ker f$.

2) Так как для $f|_A \colon A \to G'$ имеем

$$f|_{A}(A) = f(A \oplus \ker f) = f(G) = G',$$

$$\ker(f|_{A}) = \ker f \cap A = 0,$$

то $f|_A \colon A \to G'$ — изоморфизм.

Положим

$$h = (f|_A)^{-1} \colon G' \to A \subseteq G.$$

Тогда

$$fh = f(f|_A)^{-1} = 1_{G'}.$$

3) Гомоморфизм $h\colon G'\to \operatorname{Im} h$ является изоморфизмом, поскольку $\ker h=0$. Рассмотрим изоморфизм $h^{-1}\colon \operatorname{Im} h\to G'$. Пусть $\pi\colon G=\operatorname{Im} h\oplus B\to \operatorname{Im} h$ —проекция на первое прямое слагаемое. Рассмотрим гомоморфизм

$$f = h^{-1}\pi \colon G = \operatorname{Im} h \oplus B \xrightarrow{\pi} \operatorname{Im} h \xrightarrow{h} G'.$$

Тогда для $g' \in G'$ имеем

$$(fh)(g') = f(h(g')) = h^{-1}(\pi(h(g'))) = h^{-1}(h(g')) = g'.$$

Таким образом, $fh = 1_{G'}$.