Reply to Office Action of September 29, 2005

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Amend claims 1, 20, and 21, as follows.

Listing of Claims:

1	 (Currently amended) A work-management method comprising:
2	for a future point in time and each one of a plurality of resources,
3	determining a probability of availability of the one resource at asaid future point in
4	time of each of a plurality of resources;
5	combining the probabilities to obtain a number; and
6	using the number to schedule new tasks for the resources for the
7	future point in time.
1	2. (Original) The method of claim 1 wherein:
2	using comprises
3	scheduling for the future point in time no more than the number of the
4	new tasks to become available for servicing by the plurality of the resources.
1	3. (Original) The method of claim 1 wherein:
2	combining comprises
3	summing the probabilities to obtain the number.
1	4. (Previously presented) The method of claim 1 wherein:
2	determining comprises
3	for each of the resources, determining an amount of time t that the
4	resource has been servicing a task by now;
5	for each of the resources, determining a probability $F(t+h)$ of the
6	resource servicing its task to completion within a total amount of time $t+h$, where
7	h is an amount of time;
8	for each of the resources, determining a probability $F(t)$ of the
9	resource completing servicing its task by now; and

10	for each of the resources, determining a probability P that the
11	resource will complete servicing its task at the future point in time the amount of
12	time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$.
1	5. (Original) The method of claim 1 in a call center wherein:
2	tasks comprise calls; and
3	scheduling comprises
4	in response to P, determining whether or not to initiate or cancel an
5	outbound call.
1	6. (Previously presented) A work-management method
2	comprising:
3	determining an amount of time t that a resource has been servicing a
4	task by now;
5	determining a probability $F(t+h)$ of the resource servicing the task to
6	completion within a total amount of time $t+h$, where h is an amount of time;
7	determining a probability $F(t)$ of the resource completing servicing the
8	task by now;
9	determining a probability P that the resource will complete servicing
10	the task within the amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$; and
11	in response to P , scheduling another task for servicing.
1	7. (Original) The method of claim 6 wherein:
2	scheduling comprises
3	in response to P, determining whether or not to initiate said another
4	task.
1	8. (Original) The method of claim 6 in a call center wherein:
2	tasks comprise calls; and
3	scheduling comprises

Serial No. **09/872,188** Amdt. Dated 15 November 2005

RESPONSE UNDER 37 C.F.R. 1.116 – EXPEDITED PROCEDURE – EXAMINING GROUP No.: 2195

4	in response to P , determining whether or not to initiate an outbound
5	call.
1	9. (Original) The method of claim 6 further comprising:
2	performing the determining steps for a plurality of resources, and
3	determining a number of the resources that will likely have completed
4	servicing their respective tasks within the amount of time h from now as a sum of
5	the probabilities P determined for individual ones of the plurality of resources;
6	wherein
7	scheduling comprises
8	in response to determining the number of the resources, scheduling
9	new tasks for servicing.
1	10. (Original) The method of claim 9 wherein:
2	scheduling tasks for servicing comprises scheduling no more than
3	the number of the tasks for servicing.
1	11. (Original) The method of claim 6 wherein:
2	determining a probability $F(t+h)$ comprises
3	obtaining historical task-completion statistics, and
4	from the obtained statistics determining the probability $F(t+h)$; and
	determining a probability $F(t)$ comprises
5 6	from the obtained statistics determining the probability $F(t)$.
U	from the obtained statistics determining the probability $I(i)$.
1	12. (Original) The method of claim 11 wherein:
2	obtaining historical task-completion statistics comprises
3	obtaining a mean and a variance of time historically spent by
4	resources on servicing tasks to completion.
1	13. (Original) The method of claim 6 wherein:
2	determining a probability $F(t+h)$ comprises
3	obtaining historical task-completion statistics,

4	fitting the task-completion statistics into a lifetime closed-form
5	cumulative-probability distribution to determine parameters of the distribution,
6	and
7	evaluating the distribution with the determined parameters and the
8	total amount of time $t+h$ to obtain $F(t+h)$; and
9	determining a probability $F(t)$ comprises
10	evaluating the distribution with the determined parameters and the
11	amount of time t to obtain $F(t)$.
1	14. (Original) The method of claim 13 wherein:
2	obtaining historical task-completion statistics comprises
3	obtaining a mean and a variance of time historically spent by
4	resources on servicing tasks to completion;
5	the cumulative-probability distribution F comprises a Weibull
6	distribution; and
7	the parameters comprise a dispersion parameter and a parameter of
8	central tendency.
1	15. (Original) The method of claim 6 wherein:
2	determining an amount of time t comprises
3	determining the amount of time t that the resource has been servicing
4	a task of one of a plurality of different types of tasks; and
5	determining historical task-completion statistics comprises
6	determining the historical task-completion statistics for the one type
7	of tasks.
1	16. (Original) The method of claim 6 wherein:
2	scheduling another task comprises
3	in response to P initiating preparation of a task that may require
4	servicing by an agent at a later time.
1	17. (Original) The method of claim 6 wherein:
2	determining a probability F(t+h) comprises

3	obtaining a historical histogram for task completion, and
4	evaluating a cumulative said probability with the obtained histogram
5	for the total amount of time $t+h$ to obtain $F(t+h)$; and
6	determining a probability $F(t)$ comprises
7	evaluating the cumulative probability with the obtained histogram for
8	the amount of time t to obtain $F(t)$.
1	18. (Original) The method of claim 6 wherein:
2	scheduling comprises
3	in response to P , canceling preparation of a task that could require
4	servicing by a resource.
1	19. (Previously canceled)
1	20. (Currently amended) A computer-readable medium containing
2	instructions which, when executed in a computer, cause the computer to perform
3	the steps of:
4	for a future point in time and each one of a plurality of resources,
5	determining a probability of availability of the one resource at asaid future point i
6	time-of-each of a plurality of resources;
7	combining the probabilities to obtain a number; and
8	using the number to schedule new tasks for the resources for the
9	future point in time.
1	21. (Currently amended) A work-management apparatus
2	comprising:
3	means for determining, for a future point in time and each one of a
4	plurality of resources, a probability of availability of the one resource at asaid
5	future point in time-of-each of a plurality of resources;
6	means cooperative with the determining means for combining the
7	probabilities to obtain a number; and

5

6

7

where h is an amount of time;

Reply to Office Action of September 29, 2005

means cooperative with the combining means for scheduling for the 8 future point in time no more than the number of new tasks for servicing by the 9 plurality of the resources. 10 22. (Previously presented) A work-management apparatus 1 comprising: 2 means for determining an amount of time t that a resource has been 3 servicing a task by now; 4 means cooperative with the time-determining means for determining 5 6 a probability F(t+h) of the resource servicing the task to completion within a total amount of time t+h, where h is an amount of time; 7 means cooperative with the time-determining means for determining 8 a probability F(t) of the resource completing servicing the task by now; 9 means cooperative with both of the probability-determining means for 10 determining a probability P that the resource will complete servicing the task 11 within the amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$; and 12 means cooperative with the P-determining means and responsive to P for scheduling another task for servicing. 23. (Previously presented) The apparatus of claim 21 wherein: 1 the means for combining comprise 2 means for summing the probabilities to obtain the number. 3 24. (Previously presented) The apparatus of claim 21 wherein: 1 the means for determining comprise 2 means for determining, for each of the resources, an amount of time t 3 4 that the resource has been servicing a task by now;

of the resource servicing its task to completion within a total amount of time t+h,

means for determining, for each of the resources, a probability F(t+h)

Reply to Office Action of September 29, 2005

means for determining, for each of the resources, a probability F(t) of the resource completing servicing its task by now; and means for determining, for each of the resources, a probability P that the resource will complete servicing its task at the future point in time the amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}.$

25. (Previously presented) The apparatus of claim 21 in a call 1 2 center wherein: tasks comprise calls; and 3 the means for scheduling comprise 4 means responsive to P, for determining whether or not to initiate or 5 cancel an outbound call. 6 26. (Previously presented) The apparatus of claim 22 wherein: 1 the means for scheduling comprise 2 means responsive to P, for determining whether or not to initiate said 3 another task. 4 27. (Previously presented) The apparatus of claim 22 in a call 1 2 center wherein: 3 tasks comprise calls; and the means for scheduling comprise 4 means responsive to P, for determining whether or not to initiate an 5 outbound call. 6 28. (Previously presented) The apparatus of claim 22 wherein: 1 the means for determining an amount of time t comprise 2 3 means for determining the amount of time t for each of a plurality of 4 resources; the means for determining a probability F(t+h) comprise 5 means for determining the probability F(t+h) for each of the plurality 6 7 of resources; the means for determining a probability F(t) comprise 8

9	means for determining the probability $F(t)$ for each of the plurality of
10	resources, and
11	means for determining a number of the plurality of resources that will
12	likely have completed servicing their respective tasks within the amount of time h
13	from now as a sum of the probabilities P determined for individual ones of the
14	plurality of resources; and
15	the means for scheduling comprise
16	means responsive to determining the number of the resources, for
17	scheduling new tasks for servicing.
1	29. (Previously presented) The apparatus of claim 28 wherein:
2	the means for scheduling comprise
3	means for scheduling no more than the number of the tasks for
4	servicing.
1	30. (Previously presented) The apparatus of claim 22 wherein:
2	the means for determining a probability $F(t+h)$ comprise
3	means for obtaining historical task-completion statistics, and
4	means for determining the probability $F(t+h)$ from the obtained
5	statistics; and
6	the means for determining a probability $F(t)$ comprise
7	means for determining the probability $F(t)$ from the obtained statistics
1	31. (Previously presented) The apparatus of claim 30 wherein:
2	the means for obtaining historical task-completion statistics comprise
3	means for obtaining a mean and a variance of time historically spent
4	by resources on servicing tasks to completion.
1	32. (Previously presented) The apparatus of claim 22 wherein:
2	the means for determining a probability $F(t+h)$ comprise
3	means for obtaining historical task-completion statistics,

4	means for fitting the task-completion statistics into a lifetime closed-
5	form cumulative-probability distribution to determine parameters of the
6	distribution, and
7	means for evaluating the distribution with the determined parameters
8	and the total amount of time $t+h$ to obtain $F(t+h)$; and
9	the means for determining a probability $F(t)$ comprise
10	means for evaluating the distribution with the determined parameters
11	and the amount of time t to obtain $F(t)$.
1	33. (Previously presented) The apparatus of claim 32 wherein:
2	the means for obtaining historical task-completion statistics comprise
3	means for obtaining a mean and a variance of time historically spent
4	by resources on servicing tasks to completion;
5	the cumulative-probability distribution F comprises a Weibull
6	distribution; and
7	the parameters comprise a dispersion parameter and a parameter of
8	central tendency.
1	34. (Previously presented) The apparatus of claim 22 wherein:
2	the means for determining an amount of time t comprise
3	means for determining the amount of time t that the resource has
4	been servicing a task of one of a plurality of different types of tasks; and
5	the means for determining historical task-completion statistics
6	comprise
7	means for determining the historical task-completion statistics for the
8	one type of tasks.
1	35. (Previously presented) The apparatus of claim 22 wherein:
2	the means for scheduling another task comprise
3	means responsive to <i>P</i> for initiating preparation of a task that may
4	require servicing by an agent at a later time.
7	roquire estricting by an agent at a later time.
1	36. (Previously presented) The apparatus of claim 22 wherein:

Serial No. 09/872,188

Amdt. Dated 15 November 2005

PROCEDURE – EXAMINING GROUP No.: 2195

2	the means for determining a probability $F(t+h)$ comprise
3	means for obtaining a historical histogram for task completion, and
4	means for evaluating a cumulative said probability with the obtained
5	histogram for the total amount of time $t+h$ to obtain $F(t+h)$; and
6	the means for determining a probability $F(t)$ comprise
7	means for evaluating the cumulative probability with the obtained
8	histogram for the amount of time t to obtain $F(t)$.
1	37. (Previously presented) The apparatus of claim 22 wherein:
2	the means for scheduling comprise
3	means responsive to P , for canceling preparation of a task that could
4	require servicing by a resource.
4	38. (Previously presented) The medium of claim 20 wherein:
1	using comprises
3	scheduling for the future point in time no more than the number of the
4	new tasks to become available for servicing by the plurality of the resources.
7	Thew tasks to become available for servicing by the planaity or the resources.
1	39. (Previously presented) The medium of claim 20 wherein:
2	combining comprises
3	summing the probabilities to obtain the number.
1	40. (Previously presented) The medium of claim 20 wherein:
2	determining comprises
3	for each of the resources, determining an amount of time t that the
4	resource has been servicing a task by now;
5	for each of the resources, determining a probability $F(t+h)$ of the
6	resource servicing its task to completion within a total amount of time $t+h$, where
7	h is an amount of time;
8	for each of the resources, determining a probability $F(t)$ of the
9	resource completing servicing its task by now; and

Reply to Office Action of September 29, 2005

for each of the resources, determining a probability P that the 10 11 resource will complete servicing its task at the future point in time the amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$. 12 1 41. (Previously presented) The method of claim 20 for a call 2 center wherein: 3 tasks comprise calls; and scheduling comprises 4 in response to P, determining whether or not to initiate or cancel an 5 outbound call. 6 42. (Previously presented) A computer-readable medium 1 containing instructions which, when executed in a computer, cause the computer 2 to perform the steps of: 3 determining an amount of time t that a resource has been servicing a 4 task by now; 5 determining a probability F(t+h) of the resource servicing the task to 6 completion within a total amount of time t+h, where h is an amount of time; 7 determining a probability F(t) of the resource completing servicing the 8 9 task by now; determining a probability P that the resource will complete servicing 10 the task within the amount of time h from now as $\frac{F(t+h)-F(t)}{1-F(t)}$; and 11 12 in response to P, scheduling another task for servicing. 1 43. (Previously presented) The method of claim 42 wherein: 2 scheduling comprises in response to P, determining whether or not to initiate said another 3 4 task.

1	44. (Previously presented) The medium of claim 42 for a call
2	center wherein:
3	tasks comprise calls; and
4	scheduling comprises
5	in response to P , determining whether or not to initiate an outbound
6	call.
1	45. (Previously presented) The medium of claim 42 further
2	comprising instructions which, when executed in the computer, cause the
3	computer to perform the steps of:
4	performing the determining steps for a plurality of resources, and
5	determining a number of the resources that will likely have completed
6	servicing their respective tasks within the amount of time h from now as a sum of
7	the probabilities P determined for individual ones of the plurality of resources;
8	wherein
9	scheduling comprises
10	in response to determining the number of the resources, scheduling
11	new tasks for servicing.
	40. (Durania walka mwa a antadi). Tha was aliwus af alaima 45 wikawaina
1	46. (Previously presented) The medium of claim 45 wherein:
2	scheduling tasks for servicing comprises scheduling no more than
3	the number of the tasks for servicing.
1	47. (Previously presented) The medium of claim 42 wherein:
2	determining a probability $F(t+h)$ comprises
3	obtaining historical task-completion statistics, and
4	from the obtained statistics determining the probability $F(t+h)$; and
5	determining a probability $F(t)$ comprises
6	from the obtained statistics determining the probability $F(t)$.
-	
1	48. (Previously presented) The medium of claim 47 wherein:
2	obtaining historical task-completion statistics comprises

3	obtaining a mean and a variance of time historically spent by
4	resources on servicing tasks to completion.
1	49. (Previously presented) The medium of claim 42 wherein:
2	determining a probability $F(t+h)$ comprises
3	obtaining historical task-completion statistics,
4	fitting the task-completion statistics into a lifetime closed-form
5	cumulative-probability distribution to determine parameters of the distribution,
6	and
7	evaluating the distribution with the determined parameters and the
8	total amount of time $t+h$ to obtain $F(t+h)$; and
9	determining a probability $F(t)$ comprises
10	evaluating the distribution with the determined parameters and the
11	amount of time t to obtain $F(t)$.
1	50. (Previously presented) The medium of claim 49 wherein:
2	obtaining historical task-completion statistics comprises
3	obtaining a mean and a variance of time historically spent by
4	resources on servicing tasks to completion;
5	the cumulative-probability distribution F comprises a Weibull
6	distribution; and
7	the parameters comprise a dispersion parameter and a parameter of
8	central tendency.
1	51. (Previously presented) The method of claim 42 wherein:
2	determining an amount of time t comprises
3	determining the amount of time t that the resource has been servicing
4	a task of one of a plurality of different types of tasks; and
5	determining historical task-completion statistics comprises
6	determining the historical task-completion statistics for the one type
7	of tasks.

1	52. (Previously presented) The medium of claim 42 wherein:
2	scheduling another task comprises
3	in response to P initiating preparation of a task that may require
4	servicing by an agent at a later time.
1	53. (Previously presented) The medium of claim 42 wherein:
2	determining a probability F(t+h) comprises
3	obtaining a historical histogram for task completion, and
4	evaluating a cumulative said probability with the obtained histogram
5	for the total amount of time $t+h$ to obtain $F(t+h)$; and
6	determining a probability F(t) comprises
7	evaluating the cumulative probability with the obtained histogram for
8	the amount of time t to obtain $F(t)$.
1	54. (Previously presented) The medium of claim 42 wherein:
2	scheduling comprises
3	in response to P, canceling preparation of a task that could require servicing by a
1	racource