

Transformer Model

Word Presentation

> Next Word Prediction

A bird is \rightarrow flying

Training Data

A bird is flying in the sky

 $(A \rightarrow bird)$

(A bird \rightarrow is)

(A bird is \rightarrow flying)

(A bird is flying \rightarrow in)

•••

Word Presentation

> Translator with Next Word Prediction

A bird is flying → 새가 날고 있다

Training Data

(A bird is flying → 새가)
(A bird is flying 새가 → 날고)
(A bird is flying 새가 날고 → 있다)
...

Word Presentation

> How to Handle Texts

Word Representation

> How to Handle Texts

Word Representation

> How to Handle Texts

Word Representation

> Representation, Embedding

Values in non-Euclidean space

Values in Euclidean space

> Overview

 \triangleright How it works: $A(x_i, X, X)$

$$A(x_i, X, X) = s_{i1}x_1 + s_{i2}x_2 + \dots + s_{in}x_n = x_i'$$

> General Form

$$z = A(q, K, V)$$

$$V = \begin{pmatrix} \boxed{v_1} \\ \hline v_2 \\ \hline v_n \end{pmatrix}$$

$$K = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$

> Multiple Queries

$$z_{1} = A(q_{1}, K, V) z_{2} = A(q_{2}, K, V) ... Z_{m} = A(q_{m}, K, V)$$

$$Z = A(Q, K, V)$$

$$Z = \begin{pmatrix} \boxed{z_1} \\ \boxed{z_2} \\ \cdots \\ \boxed{z_m} \end{pmatrix} \quad Q = \begin{pmatrix} \boxed{q_1} \\ \boxed{q_2} \\ \cdots \\ \boxed{q_m} \end{pmatrix}$$

$$K = \begin{pmatrix} \boxed{k_1} \\ \boxed{k_2} \\ \cdots \\ \boxed{k_n} \end{pmatrix} \quad V = \begin{pmatrix} \boxed{v_1} \\ \boxed{v_2} \\ \cdots \\ \boxed{v_n} \end{pmatrix}$$

$$> Z = A(Q, K, V)$$

$$Z = \begin{pmatrix} \boxed{Z_1} \\ \boxed{Z_2} \\ \cdots \\ \boxed{Z_m} \end{pmatrix}$$

> It would take a sentence in source language, and output its translation in another.

- > Encoder-Decoder approach
- > Task: machine translation with parallel corpus
- > Predict each translated word.

Output

Probabilities

Softmax

Encoder

Encoder Internals

> After embedding the words in the input sentence, each of them flows through the two layers of the encoder.

Encoder Internals

> Self-Attention Layer in Transformer

- > Refine the self-attention layer by adding a mechanism called "multi-headed" attention.
 - It expands the model's ability to focus on different positions.
 - It gives the attention layer multiple representation subspaces.

> Attention

$$A(Q,K,V) = softmax(QK^T)V$$

$$Q: |Q| \times k$$
, $K: |K| \times k$, $V: |V| \times k$

$$K: |K| \times k$$

$$V: |V| \times k$$

> What is 'headed'?

• Linear Transformed: $W^Q, W^K, W^V (= k \times m)$

$$A(QW^Q, KW^K, VW^V)$$

 $A(QW^Q, KW^K, VW^V)$

> Let's use multiple heads to capture various similiarities

> Let's use multiple heads to capture various similiarities

Transform matrix

> Let's use multiple heads to capture various similiarities

Feed Forward

> Point-wise Feed Forward

Feed Forward

> Point-wise Feed Forward

Positional Encoding

> Need to consider the order of the words in the input sentence.

Positional Encoding

- Assume that embedding has a dimensionality of 4.
- > The positional embedding would look like this:
 - Use cosine and sine curves.

Complete Transformer Block

- > Each block has two sublayers.
 - Multi-head attention
 - 2 layer feed-forward net (with relu)
- > Each of these two steps also has:
 - Residual (short-circuit) connection and LayerNorm:

LayerNorm(X + Sublayer(X))

- Layer normalization
 - https://arxiv.org/pdf/1607.06450.pdf

Residual Connection

> Each sublayer in each encoder has a residual connection.

Simplified Transformer

Output

Probabilities

Simplified Transformer 갑니다 **Linear & Softmax** Output Probabilities Softmax I go to school 나는 학교에 Linear Add & Norm Feed Forward Cross-**Attention** Add & Norm go to school Add & Norm Multi-Head I QO to school Feed Attention Forward N× I go to school I go to school Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention 나는 학교이 Self-Positional Positional **Attention** Encoding Encoding Self-Output Input Embedding Embedding **Attention** Inputs Outputs (shifted right) to 학교에 school

Simplified Transformer

> It consists of 2 stacked encoders and decoders.

Decoder: Encoder-Decoder Attention

- > 2 sublayer changes in decoder.
- Masked decoder
 - Self-attention on previously generated outputs is only used.

- > Encoder-decoder attention
 - Queries come from previous decoder layer and keys and values come from output of encoder.

Final Linear and Softmax Layer

- > The Linear layer is a simple fully connected neural network that projects the vector produced by the stack of decoders, into a much, much larger vector called a logits vector.
- > The softmax layer then turns those scores into probabilities (all positive, all add up to 1.0).

Experimental Results

English French Translation Quality

Experimental Results

> The Transformer achieves better BLEU scores than the previous model, and training cost is much smaller.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	