いい

13

55

12

c

2

44

9

9

0

· Bloom's Taxonomy, L* Level

 $0 \sum \left(\frac{n+1}{3n}\right)^n$

(ii)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n} + \sqrt{n+1}} \right)$$

State Cauchy's integral test and use it to show that $\sum_{n^{\rho}}^{1}$ converges for and diverges for $p \le 1$.

15

13

Obtain the Taylor's series of Sinx in powers of $\left(x-\frac{\pi}{2}\right)$ upto terms containing

$$\left(x-\frac{\pi}{2}\right)$$
.

Unit – III
$$\frac{1\partial u}{\partial x} + \frac{1\partial u}{\partial x} + \frac{1}{4}\frac{\partial u}{\partial x} = 0.$$

If
$$u = f(7x-3y,3y-4z,4z-7x)$$
, show that $\frac{1}{7}\frac{\partial u}{\partial x} + \frac{1}{3}\frac{\partial u}{\partial y} + \frac{1}{4}\frac{\partial u}{\partial z} = 0$.

L3

L4

b) The temperature T at any point
$$(x, y, z)$$
 in space is $T = 400xyz^2$. Find the

If u is a homogeneous function of degree n in x and y, then prove that **nighest temperature** on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.

$$(1) x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$

$$0^{\frac{1}{2}} \frac{\partial x}{\partial x} + y^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x^{2}}$$

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial y^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} = n(n-1)u$$

The diameter and altitude of a can in the shape of a can be 4 cms and 6 cms respectively. The

13

- measured to be 4 cms and 6 cms respectively. The error in each measurement is 0.1 cm. Find the errors in the values computed for volume and lateral surface The diameter and altitude of a can in the shape of a right circular cylinder are
- If $x = r\cos\theta$, $y = r\sin\theta$, un
- Expand the function $f(x, y) = e^x \log_b x$

third degree terms.

14

13

6

4

$$r = \frac{a}{1+\theta^2}$$
. If $y = f(x)$ is any cartesian curve, then prove that its radius of curve.

$$\rho = \frac{|1+y_1^2|^{3/2}}{2} \text{ where } y_1 = y', \ y_2 = y''. \text{ Hence find } \rho \text{ for the curve } x^2 + y^2 = 4x.$$
 State Cauchy's mean Value Theorem. Verify Cauchy's mean value theorem for the functions $f(x) = x^2 + 3$, $g(x) = x^3 + 1$ in [1, 3].

12 14

