

then
$$|\chi-3| < 2$$
 AND $|\chi-3| < \frac{\varepsilon}{8}$
 $\Rightarrow |\chi-3| < \frac{\varepsilon}{8} < \frac{\varepsilon}{|\chi+3|}$
 $\Rightarrow |\chi^2-3| - 6| < \varepsilon, \text{ from work above.}$

This is the formal def. proved

So lim $\chi^2-3=6$
 $\chi-3=6$
 $\chi-3=$

So the limit is proved. Lim $\frac{1}{\pi} = 1$.

Note that $\frac{1}{\pi} = 1$.

Consider $\frac{1}{\pi} - 1 = 1$. "Look for | willin $\left| \frac{1-n}{n} \right| < \xi$ $\frac{|\mathcal{N}-1|}{|\mathcal{N}|} < \xi$ |n-1| < |n| E Let's arrune [n-1/2] (一) -1/2 イカーにこう (三) 1-1/2 くれくはた (=) 12 < |x | < 3/2

So now arryn $8 = \min(\frac{1}{2}, \frac{5}{2})$ Because now if |n-1| < 8then $|n-1| < \frac{5}{2} = \frac{1}{2} \le < |n| \le$ and so $|n-1| < \frac{5}{2} = \frac{1}{2} \le < |n| \le$ and so $|n-1| < \frac{5}{2} = \frac{1}{2} \le < |n| \le$ above.