Metodi funzionali per valutare la conservazione evolutiva delle sequenze regolatrici

Relatore: Prof. Paolo Provero Candidato: Stefano Gilotto

Università degli Studi di Torino

Dipartimento di Biotecnologie Molecolari e Scienze per la Salute

Miglioramento delle tecniche di analisi:

• grande mole di dati di carattere biologico

Miglioramento delle tecniche di analisi:

- grande mole di dati di carattere biologico
- funzionalità delle regioni non-coding e del 'junk-DNA'

Miglioramento delle tecniche di analisi:

- grande mole di dati di carattere biologico
- funzionalità delle regioni non-coding e del 'junk-DNA'
- necessità di prevedere quali regioni siano funzionali

modelli basati sulla conservazione delle sequenze

```
ATG---ACTARCATTCGARAGTCCCACCCACTARTARAAATTGTARAC
COV
sheep
          ATG---ATCAACATCCGAAAAACCCACCCACTAATAAAAATTGTAAAC
quat
          ATG---ACCRACATCCGRARGACCCACCCATTRATARRARTTGTRARC
horse
          ATG---ACARACATCCGGARATCTCACCCACTAATTAAAATCATCAAT
donkey
          ATG---ACARACATCCBAARATCCCACCGCTAATTAAAATCATCAAT
          ATGGCCCCCAACATTCGAAAATCGCACCCCCTGCTCAAAATTATCAAC
ostrich
emu
          ATGGCCCCTAACATCCGAAAATCCCACCCTCTACTCAAAATCATCAAC
          ATGGCACCCAATATCCGAAAATCACACCCCCTATTAAAAACAATCAAC
turkey
```

modelli basati sulla conservazione delle sequenze

• non si basano su caratteristiche funzionali

```
ATG---ACTARCATTCGARAGTCCCACCCACTARTARAAATTGTARAC
COV
sheep
          ATG---ATCAACATCCGAAAAACCCACCCACTAATAAAAATTGTAAAC
quat
          ATG---ACCARCATCCGRARGACCCACCCRTTRATARRARTTGTRARC
horse
          ATG---ACARACATCCGGRAATCTCACCCACTAATTAAAATCATCAAT
donkey
          ATG---ACARACATCCBAARATCCCACCGCTAATTAAAATCATCAAT
estrich
          ATGGCCCCCAACATTCGAAAATCGCACCCCCTGCTCAAAATTATCAAC
emu
          ATGGCCCCTARCATCCGAAAATCCCACCCTCTACTCAAAATCATCAAC
          ATGGCACCCARTATCCGAAAATCACACCCCCTATTAAAAACAATCAAC
turkey
```

• numerose evidenze a favore dell'utilizzo di modelli basati sulla conservazione

- numerose evidenze a favore dell'utilizzo di modelli basati sulla conservazione
- esistono sequenze la cui funzione è conservata, ma non la loro sequenza

- numerose evidenze a favore dell'utilizzo di modelli basati sulla conservazione
- esistono sequenze la cui funzione è conservata, ma non la loro sequenza

Sono presentate delle tecniche per poter prevedere e testare queste sequenze attraverso analisi di carattere funzionale.

Conservation of RET Regulatory Function from Human to Zebrafish Without Sequence Similarity

Shannon Fisher 1.2.*.†, Elizabeth A. Grice 1.*, Ryan M. Vinton 1, Seneca L. Bessling 1, Andrew S. McCallion 1.3.†

Ipotesi: la funzione regolatrice di regioni non-coding può essere conservata, in assenza di conservazione di sequenza.

Oggetto di studio: il *locus* del gene *Ret*, i cui esoni sono ben conservati, al contrario delle regioni limitrofe.

Metodo: Si confronta l'espressione delle regioni regolatrici tra i teleosti (Zebrafish) e i mammiferi (Uomo).

Le regione regolatrici sono definite attraverso il confronto di sequenze tra specie evolutivamente vicine.

- ZCS-Zebrafish Conserved Sequences:
 10 regioni conservate tra zebrafish e pesce palla
- HCS-Human Conserved Sequences:
 13 regioni conservate tra uomo e alcuni mammiferi

Le regioni regolatrici sono espresse in embrioni di zebrafish, attraverso costrutti transgenici con geni reporter.

- 9 su 10 ZCS hanno un espressione simile al gene Ret
- 11 su 13 HCS hanno un espressione simile al gene Ret, anche in tessuti non presenti nei mammiferi o anatomicamente diversi.

Le regioni regolatrici umane sono quindi funzionalmente analoghe a quelle di zebrafish.

Cis-regulatory architecture of a brain signaling center predates the origin of chordates

Yao Yao, Paul J Minor, Ying-Tao Zhao, Yongsu Jeong, Ariel M Pani, Anna N King, Orsolya Symmons, Lin Gan, Wellington V Cardoso, François Spitz, Christopher J Lowe & Douglas J Epstein

Ipotesi: il controllo dello sviluppo della zli-zona limitans intrathalamica precede la comparsa dei vertebrati.

Oggetto di studio: il sistema di controllo della zli e in particolare il gene *Ssh* e il relativo enhancer SBE1.

Metodo: ricerca di nuovi enhancers attraverso caratteristiche funzionali

Si cercano enhancers espressi in tessuti e fasi dello sviluppo embrionale simili a SBE1.

• vengono individuati 52 enhancers

Si cercano enhancers espressi in tessuti e fasi dello sviluppo embrionale simili a SBE1.

- vengono individuati 52 enhancers
- si cercano motifs e TFBS su questi

Vengono individuati 6 motifs, che presentano sequenze capaci di potersi legare a TF noti.

b		Shared motifs in zli enhancers	Enrichment (P value)	Number of enhancers with motif (phastCons mean ≥0.5)	Candidate transcription factors
	1	AGA(A/T)GATTAAAA	0.02	7 (6)	Otx1,2; Dobox5; Pitx1, Pitx2, Pitx3; Gsc
	2	TGCATT	0.09	7 (5)	Sox1; Pou3f3; Pou2f2, Pou2f3; Tead2; Oct-1
	3	(TA)TTGGCAGATA(AA)	0.02	7 (6)	Oct-1; Tgif2; Foxa2
	4	ACGAAT	0.04	7 (6)	
	5	G(A/G)AGAT	0.02	6 (5)	
	6	CAATTA(A/G/T)	0.07	4 (3)	Barhi2; Hmx1, Hmx2, Hmx3; Msx3
Opc Ch X. trop Coela	picalis acanth	toopppagsacataattgaggatgppgcggagctoca-gatgacaataattcaggcttggaggactoca-actgacaataattggaggagactoct-gpgagsactoca-gatgacaataattcaggccttgggagaactoca-gatgacaataattcaggccttgggagaac	tettettigesticestettettigesticestettettigesticestettettigesticestettettigestices	Modif 5 Motif 3 action-papers of the policy	pastett totget-ggsattangan-gget thatett konlegt tilcoopgestgaag ig tig pastettetget-ggsattanggg-gtiltzattt totloogittetet givetspak tige pastettetgegeen til-ligggtilaittik totloogstytetej estganing ge pecceleogoocaageet gepaagtigtete tiltatte totloogstytetege stigen tiggi pastettet ggettiggaagtieteegtilaittik took pasteteerogiestgaan tiggig pastettet ggettiggaagtieteegtilaittik took pasteteerogiestgaan tiggi

I motifs sono soggetti ad analisi per confermare la loro funzione di TFBS, tutti con esito postivo

- saggio in vitro con reporter luciferasi per enhancers con motifs deleti
- ChipSeq sui motifs e i TF
- saggio in vivo con reporter LacZ per motifs mutati

La delezione di SBE1 non elimina l'espressione di Ssh nella zli.

 utilizzando le modificazioni istoniche arricchite in SBE1 è individuato SBE5

La delezione di SBE1 non elimina l'espressione di Ssh nella zli.

- utilizzando le modificazioni istoniche arricchite in SBE1 è individuato SBE5
- presenta gli stessi motifs di SBE1, ma non ci sono altre sequenze in comune

La delezione di SBE1 non elimina l'espressione di Ssh nella zli.

- utilizzando le modificazioni istoniche arricchite in SBE1 è individuato SBE5
- presenta gli stessi motifs di SBE1, ma non ci sono altre sequenze in comune
- le analisi dei TFBS operate su SBE5 danno esito positivo

Vengono usati i motifs individuati come base per una ricerca in *S.kowalevskii*:

 skSBE1: omologia di sequenza presente solo a livello dei 6 motifs

Vengono usati i motifs individuati come base per una ricerca in *S.kowalevskii*:

- skSBE1: omologia di sequenza presente solo a livello dei 6 motifs
- skSBE1 in embrioni di topo presenta il pattern di espressione di mmSBE1

Vengono usati i motifs individuati come base per una ricerca in *S.kowalevskii*:

- skSBE1: omologia di sequenza presente solo a livello dei 6 motifs
- skSBE1 in embrioni di topo presenta il pattern di espressione di mmSBE1
- mmSBE1/5 in embrioni di S.kowalevskii presentano il pattern di espressione di skSBE1

ChIP-Seq identification of weakly conserved heart enhancers

Matthew J Blow, David J McCulley, Zirong Li, Tao Zhang, Jennifer A Akiyama, Amy Holt, Ingrid Plajzer-Frick, Malak Shoukry, Crystal Wright, Feng Chen, Veena Afzal, James Bristow, Bing Ren, Brian L Black, Edward M Rubin, Axel Visel & Len A Pennacchio

Ipotesi: l'utilizzo della conservazione ha individuato pochi enhancers legati allo sviluppo cardiaco. Quindi questi potrebbero non essere conservati.

Oggetto di studio: sviluppo del cuore nell'embrione di topo. Metodo: ChipSeq con p300, coattivatore trascrizionale.

- 3597 regioni nel cuore
- 2759, 2786 e 3839 regioni nel prosencefalo, mesencefalo e negli arti

Conservazione delle sequenze:

 84% delle regione predette nel tessuto cardiaco non sovrappongo quelle degli altri tessuti

Conservazione delle sequenze:

- 84% delle regione predette nel tessuto cardiaco non sovrappongo quelle degli altri tessuti
- 6% delle regioni predette nel tessuto cardiaco si sovrappongono a regioni 'ultra-conserved' in PhastCons.
 In prosencefalo, mesencefalo e negli arti si ha il 44%, 39% e 30% rispettivamente.

Conservazione delle sequenze:

- 84% delle regione predette nel tessuto cardiaco non sovrappongo quelle degli altri tessuti
- 6% delle regioni predette nel tessuto cardiaco si sovrappongono a regioni 'ultra-conserved' in PhastCons.
 In prosencefalo, mesencefalo e negli arti si ha il 44%, 39% e 30% rispettivamente.
- le regioni del prosencefalo sono 7 volte più presenti tra quelle conservate tra mammiferi e pesci

Test in vivo di 130 possibili enhancers predetti in cuore, usando un saggio transgenico in embrioni di topo:

 81 su 130 sono enhancers attivi solo nel cuore durante lo sviluppo

Test in vivo di 130 possibili enhancers predetti in cuore, usando un saggio transgenico in embrioni di topo:

- 81 su 130 sono enhancers attivi solo nel cuore durante lo sviluppo
- arricchiti 13 volte nelle regioni di 10kb a monte dei geni definiti 'heart-development' in Gene Ontology.

Test in vivo di 130 possibili enhancers predetti in cuore, usando un saggio transgenico in embrioni di topo:

- 81 su 130 sono enhancers attivi solo nel cuore durante lo sviluppo
- arricchiti 13 volte nelle regioni di 10kb a monte dei geni definiti 'heart-development' in Gene Ontology.
- arricchiti 14 volte delle regioni di 10kb a monte di 1000 geni espressi durante lo sviluppo embrionale del cuore.

Conclusione

La conservazione evolutiva delle sequenze rimane una grande risorsa per la predizione della funzionalità delle sequenze.

E' necessario ridefinire l'uso della conservazione delle sequenze per le regioni non-coding, basandosi maggiormente sulla funzionalità

Sottostimiamo il numero di regioni funzionali non conservate a livello di sequenza.

Ringraziamenti

- Prof. Paolo Provero
- Elena Grassi e il team dell'Unità Computazionale di Bioinformatica