Econometrics 710 Final Exam, Spring 2015

1. Consider the model

$$y_i = \alpha + \beta x_i + e_i$$

$$E(e_i) = 0$$

$$E(x_i e_i) = 0$$

with both y_i and x_i scalar. Assuming $\alpha > 0$ and $\beta < 0$, suppose the parameter of interest is the area under the regression curve (e.g. consumer surplus), which is $A = -\alpha^2/2\beta$.

Let $\hat{\theta} = (\hat{\alpha}, \hat{\beta})'$ be the least-squares estimates of $\theta = (\alpha, \beta)'$ so that $\sqrt{n} \left(\hat{\theta} - \theta \right) \to_d N(0, V_{\theta})$ and let \hat{V}_{θ} be a standard consistent estimate for V_{θ} . You do not need to write out these estimators.

- (a) Given the above, describe an estimator of A
- (b) Construct an asymptotic (1η) confidence interval for A
- (c) Describe how to construct a bootstrap (1η) percentile interval for A

2. Consider the structural equation

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + e_i \tag{1}$$

with x_i treated as endogenous so that $E(x_ie_i) \neq 0$. Assume y_i and x_i are scalar. Suppose we also have a scalar instructment z_i which satisfies

$$E\left(e_i|z_i\right) = 0$$

so in particular $E(e_i) = 0$, $E(z_i e_i) = 0$ and $E(z_i^2 e_i) = 0$.

- (a) Should x_i^2 be treated as endogenous or exogenous?
- (b) Suppose we have a scalar instrument z_i which satisfies

$$x_i = \gamma_0 + \gamma_1 z_i + u_i \tag{2}$$

with u_i independent of z_i and mean zero.

Consider using $(1, z_i, z_i^2)$ as instruments. Is this a sufficient number of instruments? (Would this be just-identified, over-identified, or under-identified)?

(c) Write out the reduced form equation for x_i^2 . Under what condition on the reduced form parameters (2) are the parameters in (1) identified?

3. Consider the structural equation and reduced form

$$y_i = \beta x_i^2 + e_i$$
$$x_i = \gamma z_i + u_i$$

with x_i^2 treated as endogenous so that $E\left(x_i^2e_i\right)\neq 0$. For simplicity we assume no intercepts. Assume y_i , z_i , and x_i are scalar, and assume $\gamma\neq 0$. Consider the following estimator. First, estimate γ by OLS of x_i on z_i and construct the fitted values $\hat{x}_i=\hat{\gamma}z_i$. Second, estimate β by OLS of y_i on \hat{x}_i^2 . [Added after the exam: Assume that $E\left(z_ie_i\right)=0$ and $E\left(z_iu_i\right)=0$ and consider adding extra conditions if helpful to answer the questions.]

- (a) Write out this estimator $\hat{\beta}$ explicitly as a function of the sample
- (b) Find its probability limit as $n \to \infty$
- (c) In general, is $\hat{\beta}$ consistent for β ? Is there a reasonable condition under which $\hat{\beta}$ is consistent?

4. Consider the structural equation

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i$$
$$E(z_ie_i) = 0$$

where x_{2i} is $k_2 \times 1$ and treated as endogenous. The variables $z_i = (x_{1i}, z_{2i})$ are treated as exogenous, where z_{2i} is $\ell_2 \times 1$ and $\ell_2 \geq k_2$. You are interested in testing the hypothesis

$$H_0: \beta_2 = 0.$$

Consider the reduced form equation for y_i

$$y_i = x'_{1i}\lambda_1 + z'_{2i}\lambda_2 + v_i (3)$$

Show how to test H_0 using only the OLS estimates of (3).

Hint: This will require an analysis of the reduced form equations and their relation to the structural equation.