Prédiction de la demande en électricité

MAXIMEBCH - DATA ANALYST

ENERCOOP

- Enercoop est un fournisseur d'électricité spécialisé dans les énergies renouvelables.
- Ces sources d'énergies sont généralement intermittentes, leur disponibilité varie fortement sans possibilité de contrôle.
- De même, la consommation d'électricité n'est pas la même tout au long d'un année car la météo change.
- Mission : Prédire la demande d'éléctricité
- Méthode :
 - Corriger la consommation de l'effet des températures
 - Corriger la consommation de l'effet des saisonnalités
 - Prédiction de la consommation

- 1 EXPLORATION DES DONNÉES
- 2 ANALYSE DES DONNÉES
- 3 MODÈLE DE PRÉDICTION
- 4 CONCLUSION

1 - DESCRIPTION DES DONNÉES

FICHIERS SOURCE

- 1) Données de la consommation d'électricité (source : RTE)
- Contient de nombreuses données sur les différentes types de production, de consommation et d'exportation de l'électricité.
- Seule la variable de consommation d'électricité totale est conservée, et l'Île-de-France comme territoire.
- Les données couvrent tous les mois de 2014 à 2019.

1 - DESCRIPTION DES DONNÉES

FICHIERS SOURCE

- 2) Degré jour unifié (source : Cegibat)
- Le DJU est la différence entre la température extérieure et une température de référence (18°C) qui permet de réaliser des estimations de consommations d'énergie thermique pour maintenir un bâtiment confortable en fonction de la météo.
- Données de la station météo Paris-Montsouris.

1 - DESCRIPTION DES DONNÉES

DATAFRAME PRINCIPAL

3) Fusion des deux bases de données

2 - ANALYSE DES DONNÉES

RÉGRESSION LINÉAIRE

Régression linéaire entre consommation et DJU :

- Les deux variables ont des distributions normales (test de Shapiro).
- R-Carré de 0,94 %: forte corrélation entre consommation électrique et DJU.

2 - ANALYSE DES DONNÉES CORRECTION DE L'EFFET DES TEMPÉRATURES

Consommation d'électricité corrigée de l'effet des températures :

 Création d'une variable « consommation corrigée » à l'aide d'une régression linéaire.

Désaisonnalisation grâce aux moyennes mobiles :

- A partir de la consommation corrigée, on peut calculer la saisonnalité et, donc, la consommation désaisonnalisée.
- Calcul des moyennes mobiles de la consommation désaisonnalisée, ce modèle permet de prédire la demande en électricité.

Prédiction de la consommation 2020 avec la méthode Holt-Winters :

MÉTHODE DE HOLT-WINTERS (LISSAGE EXPONENTIEL)

Analyse a posteriori de la méthode Holt-Winters:

- On prédit la consommation sur une période dont on connait déjà les données, puis on les compare.
- La prédiction de la consommation est très proche du réel (marge d'erreur de 2,2 %.

MÉTHODE SARIMA

Recherche du meilleur modèle ARIMA :

- Celui avec un score AIC (Akaike) le plus bas.
- Le modèle retenu offre la meilleure prédiction.

```
# Recherche des meilleurs paramètres
stepwise model=auto arima(df["consommation corrigée"], m=12, D=1, season
                         suppress warnings=True, stepwise=True, informa
print(stepwise_model.aic())
Performing stepwise search to minimize aic
 ARIMA(2,0,2)(1,1,1)[12] intercept
                                   : AIC=inf, Time=2.22 sec
 ARIMA(0,0,0)(0,1,0)[12] intercept : AIC=804.687, Time=0.02 sec
 ARIMA(1,0,0)(1,1,0)[12] intercept : AIC=790.755, Time=0.50 sec
 ARIMA(0,0,1)(0,1,1)[12] intercept
                                    : AIC=inf, Time=0.41 sec
                                    : AIC=804.526, Time=0.01 sec
 ARIMA(0,0,0)(0,1,0)[12]
 ARIMA(1,0,0)(0,1,0)[12] intercept : AIC=805.686, Time=0.06 sec
 ARIMA(1,0,0)(2,1,0)[12] intercept
                                    : AIC=787.057, Time=1.38 sec
 ARIMA(1,0,0)(2,1,1)[12] intercept : AIC=inf, Time=1.45 sec
 ARIMA(1,0,0)(1,1,1)[12] intercept : AIC=inf, Time=0.39 sec
 ARIMA(0,0,0)(2,1,0)[12] intercept : AIC=785.089, Time=0.50 sec
 ARIMA(0,0,0)(1,1,0)[12] intercept : AIC=788.778, Time=0.16 sec
 ARIMA(0,0,0)(2,1,1)[12] intercept
                                   : AIC=inf, Time=1.11 sec
 ARIMA(0,0,0)(1,1,1)[12] intercept
                                    : AIC=inf, Time=0.59 sec
 ARIMA(0,0,1)(2,1,0)[12] intercept
                                    : AIC=787.049, Time=1.09 sec
                                    : AIC=789.087, Time=0.94 sec
 ARIMA(1,0,1)(2,1,0)[12] intercept
                                    : AIC=790.179, Time=0.35 sec
 ARIMA(0,0,0)(2,1,0)[12]
```

Best model: ARIMA(0,0,0)(2,1,0)[12] intercept Total fit time: 11.165 seconds

785.0885439601391

MÉTHODE SARIMA

Evaluation du modèle ARIMA:

- Ljung-Box de 0,12 avec pvalue de 0,73 : on ne peut rejeter l'hypothèse que les erreurs sont du bruit blanc.
- Homogénéité.

SARIMAX Results

Dep. Varia	ble:			y No.	Observations:		72
Model: SARIMAX(0, 0, 1			1)x(0, 1, 1,	•	Likelihood	-389.712	
Date:			Wed, 30 Mar	2022 AIC			785.424
Time:			14:	33:57 BIC			791.707
Sample:				0 HQIC	3		787.882
				- 72			
Covariance Type:				opg			
=======	coef	std err	z		[0.025	0.975]	
ma.L1	0.2012	0.127	1.589	0.112	-0.047	0.449	
ma.S.L12	-0.9940	13.120	-0.076	0.940	-26.708	24.720	
					-4.22e+05		
Ljung-Box (L1) (Q):				Jarque-Bera	======== a (JB):		==== 1.12
Prob(Q):			0.73	Prob(JB):	` ,	0.57	
Heteroskedasticity (H):			0.56	Skew:		-0.07	
Prob(H) (two-sided):			0.20	Kurtosis:		2.35	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

3 - PRÉDICTION DE LA CONSOMMATION MÉTHODE SARIMA

3 - PRÉDICTION DE LA CONSOMMATION MÉTHODE SARIMA

3 - PRÉDICTION DE LA CONSOMMATION MÉTHODE SARIMA VS HW

4 - CONCLUSIONS

PRÉDICTION DE LA CONSOMMATION D'ÉLECTRICITÉ

4 modèles de prédiction :

- Régression linéaires
- Moyennes mobiles (lissage exponentiel)
- Méthode Holt-Winters (lissage exponentiel)
- Méthode SARIMA

La prédiction SARIMA a un taux d'erreur légèrement supérieur, il convient donc de retenir la méthode Holt Winters.