## **PROJECT**

#### **REPORT ON**

## **YOUSCHOLAR**

#### $\mathbf{BY}$

| DEVEN MULANI       | (186330307011) |
|--------------------|----------------|
| HARSH JOSHI        | (186330307027) |
| MADHAV PARIKH      | (186330307054) |
| SHUBHAM RAJPUROHIT | (186330307085) |



## DEPARTMENT OF COMPUTER ENGINEERING

L.J.POLYTECHNIC,

AHMEDABAD 2020-2021

# **DEPARTMENT OF COMPUTER ENGINEERING** L.J.POLYTECHNIC, AHMEDABAD 2020-2021

#### **CERTIFICATE**

| This is to certify that Mr. DEVEN MULANI, Mr. HARSH JOSHI, M        | r.     |
|---------------------------------------------------------------------|--------|
| MADHAV PARIKH and Mr. SHUBHAM RAJPUROHIT from                       | om LJ  |
| POLYTECHNIC having Enrollment No. 186330307011, 18633030            | 7027,  |
| 186330307054, 186330307085 have completed project documentation     | on the |
| problem definition of semester V during the academic year 2020-2021 | having |
| Title <b>YOUSCHOLAR</b> in group of 4 members.                      |        |
|                                                                     |        |

**Institute Guide** 

Date:\_\_\_/\_\_/\_\_\_

**Head of the Department** 

#### **ACKNOWLEDGEMENT**

This website is because of the dedication and encouragement of many individuals. We would like to thank our guide, the books which were very informative and the websites from where we got useful help in accomplishing the task of making this website. We are obligated to our Faculties and those people who helped us, inspired us, given moral support to us and encouraged us and helped us in various ways to accomplish the task.

DEVEN MULANI (186330307011)
HARSH JOSHI (186330307027)
MADHAV PARIKH (186330307054)
SHUBHAM RAJPUROHIT (186330307085)

## **Table of Contents**

| ABS   | STRACT                                   | VI |
|-------|------------------------------------------|----|
| Cha   | pter 1 Introduction                      | 1  |
| 1.1 N | Need for the New system                  | 1  |
| 1.2 D | Detailed Problem Definition              | 1  |
| 1.3 V | Viability of the System                  | 1  |
| 1.4 P | Presently Available Systems for the same | 2  |
| 1.5 F | Future Prospects                         | 2  |
| Cha   | pter 2 Analysis                          | 3  |
| 2.1 R | Requirement Analysis                     | 3  |
| 2.2 P | Project Model                            | 3  |
| 2.3 S | Schedule Representation                  | 5  |
| 2.4 F | Feasibility Study                        | 6  |
| Cha   | pter 3 Design                            | 8  |
| 3.1 D | Pata Flow Diagram                        | 8  |
| 3.2 E | E-R -Diagram                             | 13 |
|       | pter 4 System Modeling                   |    |
| 4.1   | Data Dictionary                          | 15 |
| 4.2   | DataBase Designing                       | 16 |
| Cha   | pter 5 Technical Specification           | 22 |
| 5.1   | Hardware Specification                   | 22 |
|       | 5.1.1 RAM                                | 22 |
|       | 5.1.2 Hard Drive Storage needed          | 22 |
|       | 5.1.3 Other Hardware requirement         | 22 |
| 5.2   | Platform                                 | 22 |
|       | 5.2.1 Supported Operating System         | 22 |
|       | 5.2.2 Programming Server                 | 22 |
| 5.3   | Framework                                | 22 |
|       | 5.3.1 Markup Language                    | 22 |
|       | 5.3.2 Programming Language               | 22 |
|       | 5.3.3 Scripting Language (If any)        | 22 |
| 5.4   | Technical Specification                  | 22 |
|       | 5.4.1 Front-End                          | 22 |
|       | 5.4.2 Back-End                           | 22 |

| Biblic | ography                 | 26 |
|--------|-------------------------|----|
| Conc   | lusion                  | 25 |
|        | 5.5.3 Registration page | 24 |
|        | 5.5.2 Login page        | 23 |
|        | 5.5.1 Home page         | 22 |
| 5.5    | Design view             | 22 |
|        | 5.4.5 SRS Tool          | 22 |
|        | 5.4.4 UML Tools         | 22 |
|        | 5.4.3 IDE               | 22 |

## **Table Index**

| 1.  | Schedule Representation     | 6    |
|-----|-----------------------------|------|
| 2.  | Data Flow Diagram Symbols   | 8    |
| 3.  | ER-Diagram Symbols          | . 13 |
| 4.  | Admin_master                | . 16 |
| 5.  | User_master                 | . 16 |
| 6.  | Edu_details_master          | . 17 |
| 7.  | State_details_master        | . 17 |
| 8.  | Caste_details_master        | . 18 |
| 9.  | Expert_master               | . 18 |
| 10. | Scholarship_master          | . 18 |
| 11. | Scholarship_category_master | . 19 |
| 12. | Help_master                 | . 20 |
| 13. | Review_master               | . 21 |
| 14. | News_updates_master         | . 21 |

## Figure Index

| 1. | Iterative Waterfall Model | 4  |
|----|---------------------------|----|
| 2. | DFD Level 0               | 9  |
| 3. | DFD Admin Level 1         | 10 |
| 4. | DFD Expert Level 1        | 11 |
| 5. | DFD Student Level 1       | 12 |
| 6. | ER Diagram                | 14 |
| 7. | Design Layout             | 23 |

#### **ABSTRACT**

'YouScholar' is an elegantly crafted website to help the students find their appropriate scholarship easily and efficiently. We aim to create this website in order to tackle the problems students face these days regarding finding and applying for the right scholarship of their choice. As of now, there is no such website available in the Indian market, which gives the complete and clear information about the available scholarships, the documents required to successfully apply for it, the time duration for them etc. And thus, applying for scholarships and keeping updated with it is usually a rigorous and time-consuming task. Our main goal with this website is to help make the student's search for the right scholarship simple and easy, minimizing efforts from their part so they no longer have to spend long duration of time for finding and applying for the right scholarship.

# CHAPTER 1 INTRODUCTION

#### 1.1 NEED OF THE SYSTEM

- As of now, there is no available system in the Indian market that provides clear and complete information about all the scholarships and the procedure of applying for them in one place.
- Due to this, there are a lot of complications regarding finding and applying for the right scholarship, making it a very strenuous and time consuming process.

#### 1.2 DETAILED PROBLEM DEFINATION

- Applying for scholarships these days is usually a very time consuming
  process, requiring a lot of efforts from the student's size. However despite
  their efforts, many times they are not able to find or successfully apply for
  the right scholarship for them.
- Hence, by creating this website, we aim to substantially lessen the time
  and effort required by the user's side by providing every single
  information about the available scholarships in one place. Additional
  functionalities like Expert help, Advanced Filters, etc. help to further
  simplify the process for students.

#### 1.3 VIABILITY OF THE SYSTEM

• This website not only provides all the required information about the available scholarships and the requirements to apply for it, but it also regularly provides students the updates and news, ability to read and write reviews about the scholarships, provides special help from experts

etc. making it a complete website which provides the users a delightful experience.

• This will eliminate the excess time required to apply and follow up with their procedure of successfully acquiring the scholarship. By this way, students are also more likely to not miss out on the deadlines due to the clear information available in the website.

#### 1.4 CURRENTLY AVAILABLE SYSTEM

(All the systems listed below provide the information of scholarships available in USA, as of now there is no available system that provides the necessary complete information about all the scholarships in one place.)

- FastWeb
- ScholarshipMonkey
- ASU Scholarships
- FederalStudentAid

#### 1.5. FUTURE PROSPECTS

- We aim to include a blog section where people can write in depths about their experiences regarding courses, colleges, education etc.
- We also aim to provide a forum where open discussion can be held amongst the students.
- We can also provide brief quizzes of different courses for the students.

#### 2.1 Requirement analysis

- This website encapsulates all the available scholarship details in different places in one place, making it very simple for the students to find their appropriate scholarship and apply for it.
- With the help of Expert help, users are able to specially ask questions to our experts regarding any doubts or issues they face regarding any scholarships and get a quick answer.
- News and updates provided in the website will keep the users updated with any changes taken place or inform them about the introduction of any new scholarships.
- Reviews, Effective Search, Advanced Filters, etc. further help the students find their appropriate scholarships.

#### 2.2 Project model

- In the Iterative model, iterative process starts with a simple implementation of a small set of the software requirements and iteratively enhances the evolving versions until the complete system is implemented and ready to be deployed.
- An iterative life cycle model does not attempt to start with a full specification of requirements.



- Instead, development begins by specifying and implementing just part of the software, which is then reviewed to identify further requirements.
- This process is then repeated, producing a new version of the software at the end of each iteration of the model.



[Figure 1: Iterative Waterfall Model]

## Advantages:

• It is more cost effective to change the scope or requirements in Iterative model.

- Parallel development can be planned.
- Testing and debugging during smaller iteration is easy.
- Risks are identified and resolved during iteration; and each iteration is an easily managed.

#### Disadvantages:

- More resources may be required.
- Highly skilled resources are required for skill analysis.
- Project progress is highly dependent upon the risk analysis phase.

#### 2.3 Schedule Representation

Generalized project scheduling tools and technique can be applied with little modification to software projects.

Program evolution and review techniques (PERT) and critical path method (CPM) are two project scheduling method that can be applied to software development. Both techniques are driven by information already developed in earlier project planning activities:

- Estimate of effort.
- A decomposition of the product function.
- The selection of appropriate task set.
- Decomposition of tasks.

[Table 1: Schedule Representation]

| ACTIVITY                | START DATE | FINISH DATE |
|-------------------------|------------|-------------|
| Requirement Analysis    |            |             |
| System Analysis         |            |             |
| System Design           |            |             |
| System Coding           |            |             |
| Testing and Integration |            |             |

#### 2.4 Feasibility study

#### 2.4.1 Technical Feasibility:

This assessment is based on an outline design of system requirements, to determine whether the company has the technical expertise to handle completion of the project. When writing a feasibility report, the following should be taken to consideration:

- A brief description of the business to assess more possible factors which could affect the study.
- The part of the business being examined.
- The human and economic factor.
- The possible solutions to the problem.
- This system include firebase to store the information of user in the database easily.

#### 2.4.2 Economic Feasibility:

In economic feasibility, cost benefit analysis is done in which expected costs and benefits are evaluated. Economic analysis is used for evaluating the effectiveness of the proposed system.

This system is made on low budget and it will allow user the opportunity to the for the free which is beneficial for all the ends.

Economically, the application provide various features in no cost.

#### 2.4.3 Operational Feasibility:

A feasibility study is an assessment of the practicality of a proposed project or system. A feasibility study aims to objectively and rationally uncover the strengths and weaknesses of an existing business. In its simplest terms, the two criteria to judge feasibility are cost required and value to be attained.

This system is very time efficient as the user can easily answer the question daily, which would not take more than few minutes to track the progress of their entire day.

It provides daily inspiration and tips for students so that they can stay motivated on their journey.

In addition to their daily progress, they can check their weekly and monthly progress when necessary to stay on track with their long term goals.

#### CHAPTER-3

#### **DESIGN**

#### 3.1 Data Flow Diagram

DFD (data flow diagram) is also known as bubble chart or data flow graph. DFD's are very useful in understanding the system and can be effectively used during analysis. It shows flow of data through a system visually. The DFD is a hierarchical graphical model of a system the different processing activities or functions that the system performs and the data interchange among these functions. It views a system as a function that transforms the inputs into desired output. Each function is considered as a process that consumes some input data and produces some output data. Function model can be represented using DFD.

[Table 2: Data Flow Diagram Symbols]

| Symbols | Description                                                                        |  |
|---------|------------------------------------------------------------------------------------|--|
|         | Entity: Entities are external to the system which interacts by inputting the data. |  |
|         | System: It shows the system name.                                                  |  |
|         | <b>Process:</b> It shows the part of the system that transforms into outputs.      |  |
| -       | <b>Data Flow:</b> It passes the data from one part to another.                     |  |



#### 1. DFD Level 0:



[Figure 2 : DFD Level 0]

#### 2. Admin Level 1:



[Figure 3: Admin Level 1]

## 3. Expert Level 1:



[Figure 4: Expert Level 1]

#### 4. Student Level 1:



[Figure 5: Student Level 1]

#### 3.2 ER-Diagram

An Entity Relationship (ER) Diagram is a type of flowchart that illustrates how "entities" such as people, objects or concepts relate to each other within a system. ER Diagrams are most often used to design or debug relational databases in the fields of software engineering, business information systems, education and research. Also known as ERDs or ER Models, they use a defined set of symbols such as rectangles, diamonds, ovals and connecting lines to depict the interconnectedness of entities, relationships and their attributes. They mirror grammatical structure, with entities as nouns and relationships as verbs.

[Table 3: ER-Diagram Symbols]

| Symbols | Description                                                                                                                                                      |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Entity: Data object is real world entity or thing.                                                                                                               |
|         | <b>Attributes:</b> An attribute is property of Characteristic of an entity.                                                                                      |
|         | <b>Relationship:</b> Entity are connected each other via relations. Generally, relationships in binary because there are two entities are related to each other. |
| •       | Cardinality (One to One): An instance of entity A can relate to one only instance of B and vice versa.                                                           |
| •       | Cardinality (One to Many): An instance of entity A can relate to one or many instances of B but be can only relate one instance of A.                            |

| Cardinality (Many to One): Many instances        |
|--------------------------------------------------|
| <br>of entity A can relate to one instances of   |
| entity B and vice versa                          |
| Cardinality (Many to Many): One or more          |
| <br>instances of entity A can relate to one more |
| instances of entity B and vice versa.            |



[Figure 6 : ER Diagram]

#### **CHAPTER-4**

#### SYSTEM MODELING

#### 4.1 Data Dictionary

A data dictionary is a collection of descriptions of the data objects or items in a data model for the benefit of programmers and others who need to refer to them. A first step in analyzing a system of objects with which users interact is to identify each object and its relationship to other objects. This process is called data modeling and results in a picture of object relationships. After each data object or item is given a descriptive name, its relationship is described (or it becomes part of some structure that implicitly describes relationship), the type of data (such as text or image or binary value) is described, possible predefined values are listed, and a brief textual description is provided. This collection can be organized for reference into a book called a data dictionary.

When developing programs that use the data model, a data dictionary can be consulted to understand where a data item fits in the structure, what values it may contain, and basically what the data item means in real-world terms. For example, a bank or group of banks could model the data objects involved in consumer banking. They could then provide a data dictionary for a bank's programmers. The data dictionary would describe each of the data items in its data model for consumer banking (for example, "Account holder" and "Available credit").

### **4.2 Database Designing**

**Data Dictionary:** 

Table Name:-admin\_master

Primary key:-admin\_id

Foreign key:-N/A

[Table 4: admin\_master]

| Field_name     | Data_type   | Constraints       | Description           |
|----------------|-------------|-------------------|-----------------------|
| admin_id       | Int(5)      | Primary key, Auto | Stores Admin id       |
|                |             | Increment         |                       |
| admin_name     | Varchar(35) | Not Null          | Stores Admin name     |
| admin_email    | Varchar(50) | Not Null          | Stores Admin email    |
| admin_password | Varchar(20) | Not Null          | Stores Admin password |

Table Name: user\_master

Primary key:-user\_id

Foreign key:-user\_id references edu\_master, state\_master, caste\_master

[Table 5: user\_master]

| Field_name    | Data_type   | Constraints       | Description                   |
|---------------|-------------|-------------------|-------------------------------|
| user_id       | Int(5)      | Primary key, Auto | Stores id of user             |
|               |             | Increment         |                               |
| user_name     | Varchar(35) | Not null          | Stores user Name              |
| user_email    | Varchar(50) | Not null, Check   | Stores user email             |
| user_password | Varchar(20) | Not null          | Stores the password of user   |
|               |             |                   |                               |
| user_mobile   | Int(10)     | Not null          | Stores the contact of User    |
|               |             |                   |                               |
| user_dob      | Varchar(6)  | Not null          | Stores date of birth of user  |
| usci_uoo      | varchar(0)  | NOT HUII          | Stores date of offill of user |

| course_id | Varchar(15) | Foreign Key | Stores course id |
|-----------|-------------|-------------|------------------|
| caste_id  | Varchar(15) | Foreign Key | Stores caste id  |
| state_id  | Varchar(15) | Foreign Key | Stores state id  |

Table Name: edu\_details\_master

Primary key:- edu\_id

Foreign key:- N/A

[Table 6: edu\_details\_master]

| Field_name | Data_type   | Constraints | Description                    |
|------------|-------------|-------------|--------------------------------|
| course_id  | Int(15)     | Not null    | Stores course id               |
| edu_course | Varchar(40) | Not null    | Stores the names of the course |

Table Name: state\_details\_master

Primary key:- state\_id

Foreign key:- N/A

[Table 7: state\_details\_master]

| Field_name | Data_type   | Constraints | Description                   |
|------------|-------------|-------------|-------------------------------|
| state_id   | Int(15)     | Not null    | Stores state id               |
| state_name | Varchar(25) | Not null    | Stores the names of the state |

Table Name: caste\_details\_master

Primary key:- caste\_id

Foreign key:- N/A

[Table 8: caste\_details\_master]

| Field_name | Data_type   | Constraints | Description                   |
|------------|-------------|-------------|-------------------------------|
| caste_id   | Int(15)     | Not null    | Stores caste id               |
| caste_name | Varchar(15) | Not null    | Stores the names of the caste |

**Table Name:-**expert\_master

Primary key:-expert\_id

Foreign key:-N/A

[Table 9: expert\_master]

| Field_name      | Data_type   | Constraints                 | Description                   |
|-----------------|-------------|-----------------------------|-------------------------------|
| expert_id       | Int(5)      | Primary key, Auto Increment | Stores expert id              |
| expert_Name     | Varchar(35) | Not null                    | Stores name of expert         |
| expert_password | Varchar(20) | Not null                    | Stores password of expert     |
| expert_mail     | Varchar(30) | Not null                    | Stores E-mail of expert       |
| expert_area     | Varchar(30) | Not null                    | Stores locality of expert     |
| expert_org      | Varchar(30) | Not null                    | Stores organization of expert |
| expert_contact  | Varchar(10) | Not null                    | Stores contact of expert      |

Table Name:-scholarship\_master

Primary key:- scholarship\_id

Foreign key:- scholarship\_id references scholarship\_category\_master

[Table 10: scholarship\_master]

| Field_name         | Data_type     | Constraints                       | Description                                       |
|--------------------|---------------|-----------------------------------|---------------------------------------------------|
| scholarship_id     | Int(4)        | Primary key,<br>Auto<br>Increment | Stores scholarship id                             |
| scholarship_title  | Varchar(40)   | Not Null                          | Stores scholarship title                          |
| scholarship_desc   | Text          | Not Null                          | Stores the scholarship  Description               |
| scholarship_url    | Varchar(10)   | Not Null                          | Stores the URL of<br>Scholarship                  |
| scholarship_count  | Int(8)        | Not Null                          | Stores view count of the Scholarship              |
| Is_countryLevel    | Boolean(true) | Not Null                          | Checks weather applicable to whole country or not |
| scholarship_cat_id | Int(4)        | Foreign Key                       | Stores scholarship category id                    |

Table name:-Scholarship\_category\_master

Primary key:-category\_id references state\_id, caste\_id

Foreign key:-N/A

[Table 11: scholarship\_category\_master]

| Field_name         | Data_type   | Constraints | Description                    |
|--------------------|-------------|-------------|--------------------------------|
| scholarship_cat_id | Int(4)      | Not Null    | Stores scholarship category id |
| scholarship_id     | Int(4)      | Not Null    | Stores scholarship id          |
| category_marks     | Varchar(15) | Not Null    | Stores marks required          |
| state_id           | Int(15)     | Not Null    | Stores state id                |
| caste_id           | Int(15)     | Not Null    | Stores caste id                |

Table Name:-help\_master

Primary key:- help\_id

Foreign key:- user\_id references

user\_master,

expert\_id references expert\_master

#### [Table 12: help\_master]

| Field_name    | Data_type | Constraints                 | Description                            |
|---------------|-----------|-----------------------------|----------------------------------------|
| help_id       | Int(4)    | Primary key, Auto Increment | Stores the help id                     |
| help_desc     | Text      | Not Null                    | Stores the description of query        |
| help_ans      | Text      | Not Null                    | Stores the answer from the expert      |
| help_date_rq  | DateTime  | Not Null                    | Stores date and time of help requested |
| help_date_ans | DateTime  | Not Null                    | Stores date and time of help provided  |
| user_id       | Int(5)    | Foreign key                 | Stores user id                         |
| expert_id     | Int(5)    | Foreign key                 | Stores expert id                       |

Table Name:-review\_master

Primary key:-review\_id

Foreign key:- review\_id

References user\_id, scholarship\_id

[Table 13: review\_master]

| Field_name     | Data_type | Constraints                   | Description                         |
|----------------|-----------|-------------------------------|-------------------------------------|
| review_id      | Int(4)    | Primary key, Auto Incremented | Stores review id                    |
| review_desc    | Text      | Not null                      | Stores reviews                      |
| user_id        | Int(5)    | Foreign key                   | Stores id of user                   |
| review_date    | DateTime  | Not Null                      | Stores Date and Time of review post |
| Scholarship_id | Int(4)    | Foreign key                   | Stores scholarship id               |

**Table Name:** news\_updates\_master

Primary key: news\_id

Foreign key: expert\_id, admin\_id

References expert\_master, admin\_master

[Table 14: news\_updates\_master]

| Field_name | Data_type   | Constraints                 | Description             |
|------------|-------------|-----------------------------|-------------------------|
| news_id    | Int(4)      | Primary key, Auto Increment | Stores news Id          |
| news_title | Varchar(50) | Not null                    | Show news tiles         |
| news_desc  | Text        | Not null                    | Stores news Description |
| news_time  | DateTime    | Not null                    | Stores news post time   |
| news_link  | Varchar(15) | Not null                    | Stores page link        |
| expert_id  | Int(5)      | Foreign key                 | Stores expert id        |
| admin_id   | Int(5)      | Foreign key                 | Stores Admin id         |

#### **CHAPTER-5**

#### TECHNICAL SPECIFICATION

#### 5.1 Hardware Specification

- **5.1.1 RAM:** 1GB
- **5.1.2 Hard Drive Storage needed:** 500MB
- **5.1.3 Other Hardware requirements:** N\A

#### 5.2 Platform

- **5.2.1 Supported Operating System:** Windows XP and above, MacOS, Linux
- **5.2.2 Programming Server:** APACHE Server 2.4.46
- **5.2.3 Framework:** N\A

#### 5.3 Programming Languages used

- **5.3.1 Markup Language:** HTML 5
- **5.3.2 Programming Language:** PHP 7.2
- **5.3.3 Scripting Language:** JavaScript

#### 5.4 Technical Specification

- **5.4.1 Front-End:** HTML 5, CSS 4
- **5.4.2 Back-End:** MySQL 5.7.23
- **5.4.3 IDE:** Sublime Text 3
- **5.4.4 UML Tools:** Microsoft Visio 2016
- **5.4.5 SRS Tools:** Microsoft Word 2016

#### 5.5 Design Layout

5.5.1 Home Page



[Figure 7: Design Layout : Home Page]

#### 5.5.2 Login/Registration Page



[Figure: Design Layout : Login/Register Page]

## 5.5.3 Home Page



[Figure: Design Layout: Advanced Search]

#### CONCLUSION

It was a wonderful experience to work on this project. In this process, we have learnt a lot. This project has taken us to many phases of project development and gave us a real insight into the problem while finding an appropriate scholarship in a short span of time. This project will result in students being able to find the desired scholarship for them very quickly with no compromise in the details available for those scholarships.

## **Bibliography**

#### Book References:

- [1] Rajib Mall, "Fundamentals of Software Engineering", *Prentice Hall Learning India Private Limited*. [Edition 4]
- [2] Jon Duckett, "HTML and CSS: Design and Build Websites", *Wiley*. [Edition 2]
- [3] W. Jason Gilmore, "Beginning PHP and MySQL From Novice to Professional", *Apress*. [Edition 4]
- [4] David Sklar,"Learning PHP 5", Oreilly. [Edition 5]

#### • Website References:

- [1] "W3Schools", <a href="https://www.w3schools.com/php/default.asp">https://www.w3schools.com/php/default.asp</a>
- [2] "php", <a href="http://php.net/manual/en/function.session-id.php">http://php.net/manual/en/function.session-id.php</a>
- [3] "Bootstrap", <a href="https://getbootstrap.com/">https://getbootstrap.com/</a>
- [4] "Geek for Geeks", <a href="https://www.geeksforgeeks.org/php/">https://www.geeksforgeeks.org/php/</a>
- [5] "Tizag", <a href="http://www.tizag.com/phpT/">http://www.tizag.com/phpT/</a>
- [6] "Zend Developer

  Zone", https://devzone.zend.com/6/php-101-php-for-theabsolute-beginner/
- [7] "PHP Buddy", <a href="http://www.phpbuddy.com/">http://www.phpbuddy.com/</a>