

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/828,550	04/06/2001	Michael W. Halpin	ASMEX.271A	4978
20995	7590	05/09/2005		
KNOBBE MARTENS OLSON & BEAR LLP 2040 MAIN STREET FOURTEENTH FLOOR IRVINE, CA 92614				EXAMINER ZERVIGON, RUDY
				ART UNIT 1763 PAPER NUMBER

DATE MAILED: 05/09/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	09/828,550	HALPIN, MICHAEL W.
	Examiner	Art Unit
	Rudy Zervigon	1763

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 07 March 2005.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-10, 13, 14, 46-48 and 58-68 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-10, 13, 14, 46-48 and 58-68 is/are rejected.
 7) Claim(s) 59, 60 and 62-68 is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| Paper No(s)/Mail Date _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

1. In view of the Appeal Brief filed on March 7, 2005, PROSECUTION IS HEREBY REOPENED. A new ground of rejection is set forth below.

To avoid abandonment of the application, appellant must exercise one of the following two options:

- (1) file a reply under 37 CFR 1.111 (if this Office action is non-final) or a reply under 37 CFR 1.113 (if this Office action is final); or,
- (2) request reinstatement of the appeal.

If reinstatement of the appeal is requested, such request must be accompanied by a supplemental appeal brief, but no new amendments, affidavits (37 CFR 1.130, 1.131 or 1.132) or other evidence are permitted. See 37 CFR 1.193(b)(2).

Claim Objections

2. Claims 59, 60, 62-68 are objected to under 37 CFR 1.75(c), as being of improper dependent form for failing to further limit the subject matter of a previous claim. Applicant is required to cancel the claims, or amend the claims to place the claims in proper dependent form, or rewrite the claims in independent form. Claim 55, from which claims 59, 60, 64-68 depend, is cancelled by Applicant.

Claim Rejections - 35 USC § 103

3. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.

Art Unit: 1763

4. Claims 1-4, 6-9, 13, 14, 46, 47, 58-65, and 67 are rejected under 35 U.S.C. 103(a) as being unpatentable over Johnsgard et al (USPat. 6,342,691) in view of Shih et al (USPat. 6,120,640) and Atsushi Koike (USPat. 5,065,698).

Johnsgard teaches a semiconductor (106; Figure 1; column 14, lines 20-35) processing apparatus (Figure 1; column 14, lines 20-35) comprising:

- i. a reaction chamber (100; Figure 1; column 14, lines 20-35) and plural vitreous quartz components (130C, 130G; column 16, lines 54-60) that have a support surface (130C/130A and 130G/130B interface) for supporting other components (130A, 130B) in the reaction chamber, the support surface being covered at least in part by a devitrification barrier coating made of silicon nitride (column 17, lines 23-30) that is bonded (inherent) to the support surface and directly contacts the supported other components (see Figure 1)
- ii. the devitrification barrier coating covers at least a portion of a quartz sheath (130D, E, H; Figure 6; column 16, lines 52-65) of a thermocouple (610; Figure 6; column 16, lines 8-25) Johnsgard further teaches the apparatus further comprises an upwardly extending projection (110; Figure 1; column 14, lines 35-40) positioned on a support device (116), the projection and support device configured to support a substrate (106) within the apparatus (100).

Johnsgard does not teach the manner in which the devitrification barrier is coated by CVD. Johnsgard teaches that the thickness of his deposited devitrification barrier as being 180 μm (column 9, line 65), as a result, Johnsgard does not teach the thickness of the deposited devitrification barrier as being between 1 \AA and 10,000 \AA or, equivalently, within the range of 10-

Art Unit: 1763

$^4\mu\text{m}$ to $1\mu\text{m}$. Johnsgard does not teach that the devitrification barrier covers only a portion of the vitreous components. Johnsgard does not teach that the projection being covered at least in part by the devitrification barrier coating.

Shih teaches protective barrier films for plasma facing components of reactor parts (column 5, lines 14-43). Specifically, Shih teaches the manner in which a silicon nitride (column 10, lines 50-55) devitrification barrier is coated by CVD. Shih teaches that the projection being covered at least in part by the devitrification barrier coating (column 5; lines 14-22).

Atsushi Koike teaches a film forming apparatus (301; Figure 3) for sputter depositing silicon nitride (column 8, lines 10-20) to a thickness of 800\AA (column 10, lines 20-26).

It would have been obvious to one of ordinary skill in the art at the time the invention was made for Johnsgard to deposit his silicon nitride devitrification barrier coating by CVD over portions of his quartz vitrification parts as taught by Shih to with a range below $10,000\text{\AA}$ as taught by Atsushi Koike.

Motivation for Johnsgard to deposit his silicon nitride devitrification barrier coating by CVD over portions of his quartz vitrification parts as taught by Shih to with an optimized range below $10,000\text{\AA}$ as taught by Atsushi Koike is drawn to an alternate and equivalent means for coating Johnsgard's silicon nitride devitrification barrier. (In re Boesch, 617 F.2d 272, 205 USPQ 215 (CCPA 1980); In re Hoeschele , 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); Merck & Co. Inc . v. Biocraft Laboratories Inc. , 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied , 493 U.S. 975 (1989); In re Kulling , 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990), MPEP 2144.05).

Art Unit: 1763

3. Claims 48, 66, and 68 are rejected under 35 U.S.C. 103(a) as being unpatentable over Johnsgard et al (USPat. 6,342,691) and Shih et al (USPat. 6,120,640) in view of Atsushi Koike (USPat. 5,065,698). Johnsgard and Shih are discussed above. Johnsgard and Shih do not teach that the devitrification barrier is deposited by sputtering. Atsushi Koike teaches a film forming apparatus (301; Figure 3) for sputter depositing silicon nitride (column 8, lines 10-20) to a thickness of 800 angstrom (column 10, lines 20-26).

It would have been obvious to one of ordinary skill in the art at the time the invention was made for Johnsgard and Shih to deposit his silicon nitride devitrification barrier coating to a desired thickness by sputter coating his quartz vitrification parts as taught by Atsushi Koike.

Motivation for Johnsgard and Shih to deposit his silicon nitride devitrification barrier coating to a desired thickness by sputter coating his quartz vitrification parts as taught by Atsushi Koike is drawn to an alternate and equivalent means for coating Johnsgard's silicon nitride devitrification barrier.

5. Claims 1-4, 6-9, 10, 13, 14, and 47 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wengert (USPat. 6,325,858) in view of Shih et al (USPat. 6,120,640) and Atsushi Koike (USPat. 5,065,698).

The applied reference to Wengert (USPat. 6,325,858) has a common assignee with the instant application. Based upon the earlier effective U.S. filing date of the reference, it constitutes prior art only under 35 U.S.C. 102(e). This rejection under 35 U.S.C. 103(a) might be overcome by:

(1) a showing under 37 CFR 1.132 that any invention disclosed but not claimed in the reference was derived from the inventor of this application and is thus not an invention "by another"; (2) a showing of a date of invention for the claimed subject matter of the application which

Art Unit: 1763

corresponds to subject matter disclosed but not claimed in the reference, prior to the effective U.S. filing date of the reference under 37 CFR 1.131; or (3) an oath or declaration under 37 CFR 1.130 stating that the application and reference are currently owned by the same party and that the inventor named in the application is the prior inventor under 35 U.S.C. 104, together with a terminal disclaimer in accordance with 37 CFR 1.321(c). For applications filed on or after November 29, 1999, this rejection might also be overcome by showing that the subject matter of the reference and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person. See MT EP § 706.02(1)(1) and § 706.02(1)(2).

Wengert teaches identical component parts (Figure 1) including vitreous quartz components (column 7, lines 19-22) coated over with silicon nitride devitreous "shields" (column 7, lines 19-30). Inclusive, Wengert teaches a reaction chamber (10; Figure 1) and plural vitreous quartz components (23, 24, 38; column 7, lines 19-30) that have a support surface (upper surface of 24) for supporting other components (20, 22; Figure 1) in the reaction chamber, the support surface being covered at least in part by a devitrification barrier coating made of silicon nitride (column 7, lines 22-33) that is bonded (inherent) to the support surface and directly contacts the supported other components (see Figure 1). Wengert further teaches the manner in which the devitrification barrier is coated by CVD (column 7, lines 23-33).

Wengert does not teach the thickness of the devitrification barrier or that the devitrification barrier covers only a portion of the vitreous components. Wengert does not teach that the projection-being-covered-at-least-in-part-by-the-devitrification-barrier-coating.

Art Unit: 1763

Shih teaches protective barrier films for plasma facing components of reactor parts (column 5, lines 14-43). Specifically, Shih teaches the manner in which a silicon nitride (column 10, lines 50-55) devitrification barrier is coated by CVD. Shih teaches that the projection being covered at least in part by the devitrification barrier coating (column 5, lines 14-22).

Atsushi Koike teaches a film forming apparatus (301; Figure 3) for sputter depositing silicon nitride (column 8, lines 10-20) to a thickness of 800Å (column 10, lines 20-26).

It would have been obvious to one of ordinary skill in the art at the time the invention was made for Wengert to deposit his silicon nitride devitrification barrier coating at an optimized thickness of below 10,000Å as taught by Atsushi Koike over portions of his quartz vitrification parts as taught by Shih.

Motivation Wengert to deposit his silicon nitride devitrification barrier coating at an optimized thickness of below 10,000Å as taught by Atsushi Koike over portions of his quartz vitrification parts as taught by Shih is drawn to an alternate and equivalent means for coating Wengert's silicon nitride devitrification barrier. Further, it would be obvious to those of ordinary skill in the art to optimize the thickness of the silicon nitride devitrification barrier. (In re Boesch, 617 F.2d 272, 205 USPQ 215 (CCPA 1980); In re Hoeschele , 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); Merck & Co. Inc . v. Biocraft Laboratories Inc. , 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied , 493 U.S. 975 (1989); In re Kulling , 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990), MPEP 2144.05).

6. Claims 46 and 48 are rejected under 35 U.S.C. 103(a) as being obvious over Wengert et al (USPat. 6,325,858) and Shih et al (USPat. 6,120,640) in view of Atsushi Koike (USPat. 5,065,698).

Art Unit: 1763

The applied reference has a common inventor and assignee with the instant application. Based upon the earlier effective U.S. filing date of the reference, it constitutes prior art only under 35 U.S.C. 102(e). This rejection under 35 U.S.C. 103(a) might be overcome by: (1) a showing under 37 CFR 1.132 that any invention disclosed but not claimed in the reference was derived from the inventor of this application and is thus not an invention "by another"; (2) a showing of a date of invention for the claimed subject matter of the application which corresponds to subject matter disclosed but not claimed in the reference, prior to the effective U.S. filing date of the reference under 37 CFR 1.131; or (3) an oath or declaration under 37 CFR 1.130 stating that the application and reference are currently owned by the same party and that the inventor named in the application is the prior inventor under 35 U.S.C. 104, together with a terminal disclaimer in accordance with 37 CFR 1.321(c). For applications filed on or after November 29, 1999, this rejection might also be overcome by showing that the subject matter of the reference and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person. See MPEP § 706.02(1)(1) and § 706.02(1)(2).

Wengert and Shih are discussed above. Wengert and Shih do not teach that the devitrification barrier is deposited by sputtering. Atsushi Koike teaches a film forming apparatus (301; Figure 3) for sputter depositing silicon nitride (column 8, lines 10-20) to a thickness of 800 angstrom (column 10, lines 20-26).

It would have been obvious to one of ordinary skill in the art at the time the invention was made for Wengert and Shih to deposit his silicon nitride devitrification barrier coating by sputter coating his quartz vitrification parts as taught by Atsushi Koike.

Motivation for Wengert and Shih to deposit his silicon nitride devitrification barrier coating by sputter coating his quartz vitrification parts as taught by Atsushi Koike is drawn to an alternate and equivalent means for coating Wengert's silicon nitride devitrification barrier.

Response to Arguments

7. Applicant has not address rejections under Wengert (USPat. 6,325,858). Applicant is required to reply to all grounds of rejection or Applicant's correspondance will be considered to be nonresponsive. See MPEP 706.07(g).

Conclusion

8. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Examiner Rudy Zervigon whose telephone number is (571) 272.1442. The examiner can normally be reached on a Monday through Thursday schedule from 8am through 7pm. The official fax phone number for the 1763 art unit is (703) 872-9306. Any Inquiry of a general nature or relating to the status of this application or proceeding should be directed to the Chemical and Materials Engineering art unit receptionist at (571) 272-1700. If the examiner can not be reached please contact the examiner's supervisor, Parviz Hassanzadeh, at (571) 272-1435.

5/5/5