Section 6.4 The Gram-Schmidt Process

Goal: Form an orthogonal basis for a subspace W.

EXAMPLE: Suppose $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$ where $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and

$$\mathbf{x}_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
. Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for W .

Let

$$\mathbf{v}_1 = \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

$$\hat{\mathbf{y}} = \mathsf{proj}_{\mathbf{v}_1} \mathbf{x}_2 = \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$$

and

$$\mathbf{v}_2 = \mathbf{x}_2 - \hat{\mathbf{y}} = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} - \frac{4}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

(component of \mathbf{x}_2 orthogonal to \mathbf{x}_1)

EXAMPLE: Suppose $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is a basis for a subspace W of \mathbf{R}^4 . Describe an orthogonal basis for W.

Solution: Let

$$\mathbf{v}_1 = \mathbf{x}_1 \text{ and } \mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1.$$
 $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for Span $\{\mathbf{x}_1, \mathbf{x}_2\}$.

Let

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$
(component of \mathbf{x}_3 orthogonal to Span $\{\mathbf{x}_1, \mathbf{x}_2\}$)

Note that \mathbf{v}_3 is in W. Why?

 $\Rightarrow \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for W.

THEOREM 11 THE GRAM-SCHMIDT PROCESS

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a subspace W of \mathbf{R}^n , define

$$\mathbf{V}_{1} = \mathbf{X}_{1}$$

$$\mathbf{V}_{2} = \mathbf{X}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{V}_{1}$$

$$\mathbf{V}_{3} = \mathbf{X}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{V}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{V}_{2}$$

$$\vdots$$

$$\mathbf{V}_{p} = \mathbf{X}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{V}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{V}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{V}_{p-1}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W and

$$\mathsf{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_p\} = \mathsf{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$$

EXAMPLE Suppose $\{x_1, x_2, x_3\}$, where

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
, is a basis for a

subspace W of \mathbb{R}^4 . Describe an orthogonal basis for W.

Solution:
$$\mathbf{v}_1 = \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$
 and

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} - \frac{5}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{9}{14} \\ \frac{9}{7} \\ -\frac{15}{14} \\ 0 \end{bmatrix}$$

Replace
$$\mathbf{v}_2$$
 with $14\mathbf{v}_2: \mathbf{v}_2 = 14$ $\begin{bmatrix} \frac{9}{14} \\ \frac{9}{7} \\ -\frac{15}{14} \\ 0 \end{bmatrix} = \begin{bmatrix} 9 \\ 18 \\ -15 \\ 0 \end{bmatrix}$

(optional step - to make \mathbf{v}_2 easier to work with in the next step)

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$

$$\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} - \frac{9}{630} \begin{bmatrix} 9 \\ 18 \\ -15 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} - \frac{1}{70} \begin{bmatrix} 9 \\ 18 \\ -15 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ -\frac{2}{5} \\ 0 \\ 1 \end{bmatrix}$$

Rescale (optional):
$$\mathbf{v}_3 = \begin{bmatrix} 4 \\ -2 \\ 0 \\ 5 \end{bmatrix}$$

Orthogonal Basis for W:

$$\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\} = \left\{ \begin{bmatrix} 1\\2\\3\\0 \end{bmatrix}, \begin{bmatrix} 9\\18\\-15\\0 \end{bmatrix}, \begin{bmatrix} 4\\-2\\0\\5 \end{bmatrix} \right\}$$

Orthonomal Basis

Suppose the following is an orthogonal basis for subspace

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \right\} :$$

$$\{\mathbf{v}_1,\mathbf{v}_2\} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3 \end{bmatrix} \right\}$$

Rescale to form unit vectors:

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$$

$$\mathbf{u}_2 = \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2 = \frac{1}{3} \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Orthonormal basis for $W : \{\mathbf{u}_1, \mathbf{u}_2\}$

QR Factorization

THEOREM 12 (The QR Factorization)

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthogonal basis for Col A and R is an $n \times n$ upper triangular invertible matrix with positive entries on its main diagonal.

EXAMPLE Find the QR factorization of $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 3 \end{bmatrix}$.

Solution: Use the Gram Schmidt process to find

$$\left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 which is an orthonomal basis for

$$\operatorname{col} A = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \right\}. \quad \operatorname{So} Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix}.$$

Since U has orthonormal columns, $Q^TQ = I$. So if A = QR, then

$$\underline{\hspace{1cm}}A = \underline{\hspace{1cm}}QR$$

$$R = Q^{T}A = \begin{bmatrix} \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & 2\sqrt{2} \\ 0 & 3 \end{bmatrix}.$$