

Nombre y Apellidos:	

1.- [5 puntos] Gestión de memoria- Particiones fijas

El gestor de memoria RAM de un sistema operativo UBUNTU, asigna particiones fijas de memoria tal como se muestra en la tabla 1. Para una cola de 4 procesos, el planificador usando el método SJF en modo NO apropiativo distribuye el tiempo de CPU, de acuerdo con la tabla 2.

Tabla 1. Tamaño de memoria RAM

а	1.	Talliano de incinoria KAWI
		S. O
		2KB
		3KB
		4KB

Tabla 2 Distribución del tiempo de CPU

Procesos	Tiempo de llegada	Tiempo de CPU	Tamaño de memoria
Α	0	4	2KB
В	1	4	2KB
С	2	2	3KB
D	3	2	4KB

- a) (2 puntos) Grafique usted, la secuencia de la asignación temporal en memoria RAM.
- b) (1 punto) ¿Cuánta fragmentación interna se generó en la ejecución de los procesos?
- c) (2 puntos) ¿Calcular los tiempos WT y TCT de cada proceso y los promedios AWT y ACT?
- a) La secuencia de asignación temporal en la memoria RAM se muestra de la siguiente manera:

Tiempo	0	1	2	3	4	5	6
Proceso	A	В	С	С	D	D	

b) No se generó fragmentación interna en la ejecución de los procesos.

about:blank 1/14

c) Calculando los tiempos WT y TCT de cada proceso:

Proceso A:

$$WT(A) = 0$$

$$TCT(A) = 0 + 4 = 4$$

Proceso B:

$$WT(B) = 4 - 1 = 3$$

$$TCT(B) = 4 + 4 = 8$$

Proceso C:

$$WT(C) = 8 - 2 = 6$$

$$TCT(C) = 8 + 2 = 10$$

1

Proceso D:

$$WT(D) = 10 - 3 = 7$$

$$TCT(D) = 10 + 2 = 12$$

Calculando los promedios AWT y ACT:

$$AWT = (0 + 3 + 6 + 7) / 4 = 4$$

$$ACT = (4 + 8 + 10 + 12) / 4 = 8.5$$

Por lo tanto, el promedio AWT es 4 y el promedio ACT es 8.5.

2.- [5 puntos] Sistema Operativo-Planificación de procesos

Un alumno del curso de Arquitectura de Computadoras y Sistemas Operativos despliega en su computadora cuatro aplicaciones en forma de archivos de texto como p1.txt, p2.txt, p3.txt y p4.txt. El planificador usando el algoritmo de prioridades en modo apropiativo ejecuta la cola de acuerdo con la tabla 3.

Tabla 3.

Procesos	Tiempo	Tiempo	Número de
	de	de	prioridad
	CPU	llegada	
p1.txt	4	0	3
P2.txt	4	1	2
P3.txt	6	3	1
P4.txt	2	5	1

- a) (1 punto) Calcular los tiempos de espera (WT) de cada proceso con un diagrama de tiempos.
- b) (1 punto) Calcular los tiempos de espera (TCT) de cada proceso
- c) (1 punto) Calcular el tiempo AWT
- d) (1 punto) Calcular el tiempo ACT
- e) (1 punto) Realizar el diagrama de tiempos de los 4 procesos.

a) Tiempos de espera (WT):

Proceso:	0	1	2	3	4	5	6	7	8 9) 1	0 1	1 12	2
p1.txt	P	P	P	P									
_		_											
p2.txt		P	P	P	P								
2					_	_	-	Ĺ,					
p3.txt				P	P	P	P	P .					
p4.txt						P	P						
p1.txt: 0													

p2.txt: 4

p3.txt: 7

p4.txt: 8

2

f) (1 punto) Calcular (ACT) de la planificación de Round Robin (q=2).

a) Diagrama de tiempos FCFS:

Proceso	Tiempo	Tiempo	Tiempo de finalización	Tiempo
	de Ilegada	de CPU		de espera
Α	0	4	4	0
В	0	5	9	4
С	0	6	15	9
D	0	4	19	15
b) Diagran	na de tiem	oos Round	Robin (q=2):	
Proceso			Tiempo de	

	Tiempo	Tiempo	finalización	Tiempo
	de Ilegada	de CPU		de espera
Α	0	4	6	2

about:blank 7/14

В	0	5	10	5
С	0	6	16	10
D	0	4	19	15
c) TCT de	cada proc	eso con F0	CFS:	

Proceso TCT

Α	4
В	9
С	15
D	19

d) TCT de cada proceso con Round Robin (q=2):

4

Proceso	тст
А	6

В	10
С	16
D	19

e) ACT de la planificación FCFS:

ACT = (TCT de todos los procesos) / (Número de procesos) = (4 + 9 + 15 + 19) / 4 = 47 / 4 = 11.75

f) ACT de la planificación de Round Robin (q=2):

ACT = (TCT de todos los procesos) / (Número de procesos) = (6 + 10 + 16 + 19) / 4 = 51 / 4 = 12.75

4.- [5 puntos] Planificación y Scripts de Shell de GNU/LINUX

El procesador del SoC Broadcom de cuatro núcleos basados en ARM planifica una cola de 4 procesos usando el algoritmo FCFS en modo **NO** apropiativo, de acuerdo con la tabla 5.

	Tabla 5.	
Procesos	T_cpu	T_llegada
P1	⁻ 7	_ 0
P2	4	5
Р3	1	8
P4	2	9

a) (3.5 puntos) Con un diagrama de tiempos, calcular los WT y TCT de cada proceso y además los AWT y ACT, de acuerdo con la tabla 5.

- b) **(1.5 puntos)** Si se cambian los valores de **Tcpu y T_llegada** de los procesos asignados en la tabla 5. Programar un "Menú" a través de un script en Shell de Linux denominado *fcfs.sh* que permita calcular de forma automática los tiempos de espera (WT) y (TCT) de cada proceso y además, los tiempos AWT y ACT.
- a) Diagrama de tiempos FCFS:

Proceso	Tiempo de Ilegada	Tiempo de CPU	Tiempo de finalización	Tiempo de espera
P1	0	7	7	0
P2	5	4	11	2
P3	8	1	12	4

5

about:blank 10/14


```
# Calcular AWT y ACT
awt=$(awk '{total+=$4} END {print total/NR}' <<< "${tabla_actualizada[@]}")
act=$(awk '{total+=$5} END {print total/NR}' <<< "${tabla_actualizada[@]}")
# Imprimir los resultados
echo "Tabla actualizada:"
echo "Proceso | T cpu T llegada WT TCT"
echo "-----"
printf "%s\n" "${tabla_actualizada[@]}"
echo "-----"
echo "AWT: $awt"
echo "ACT: $act"
```

about:blank 13/14