The gaussian function is defined by

$$f(x) = e^{-x^2}.$$

(A) Write the barycentric form of the interpolating polynomial $p_3(x)$ for the gaussian function on the interval [-1,1] using four evenly spaced fitting points.

$$p_3(x) = \frac{\frac{2.718}{x+1}}{\frac{1}{x+1}} + \frac{\frac{-3.353}{x+0.\overline{3}}}{\frac{-3}{x+0.\overline{3}}} + \frac{\frac{3.353}{x-0.\overline{3}}}{\frac{3}{x-0.\overline{3}}} + \frac{\frac{-2.718}{x-1}}{\frac{-1}{x-1}}$$

. .

(B) Use MATLAB to plot the gaussian function and the $p_3(x)$ you obtained in (A) on the same axes. Also plot the error on a separate graph.

Lagrange Barycentric Approximation of the Gaussian Function

Error of Lagrange Barycentric Approximation

(C) Use MATLAB to plot a tenth-order interpolating polynomial $p_{10}(x)$ using the barycentric form of the polynomial and eleven evenly spaced fitting points on the same axis as the gaussian. Also plot the error on a separate graph.

(D) Compare and contrast the two interpolating polynomials.

Clearly the tenth-order interpolating polynomial has much less error than the third-order polynomial. The error for the first polynomial is on the magnitude of E^{-1} while the tenth-order error is on a scale of E^{-5} . Plotting both the gaussian function and tenth-order barycentric approximation together makes them virtually indistinguishable.