Übungen zu Lineare Algebra II

Jendrik Stelzner

14. Juli 2016

Inhaltsverzeichnis

1	Skalarprodukträume	1	
2	Jordannormalform, Haupträume und Trigonalisierbarkeit	15	
3	Bilinearformen	18	
4	Quotientenvektorräume	24	
5	Verschiedenes 5.1 Allgemeines Zeugs 5.2 Diagonalisierbarkeit und Eigenzeugs 5.3 Multilinearität 5.4 Wegzusammenhang und Geometrisches	29 31 34 35	
6	Komplexifizierung	37	
7	Direkte Summen	42	
8	Lösungen	47	
1	Skalarprodukträume		
Übung 1. Definitionen Definieren Sie die Begriffe eines reellen, bzw. komplexen Skalarprodukts, sowie eines reellen, bzw. komplexen Hilbertraums.			(Pr. 1)
	bung 2. Cauchy-Schwarz ormulieren und Beweisen Sie die Cauchy-Schwarz-Ungleichung.		(Pr. 1)
	bung 3. Existenz von Orthonormalbasen		(Pr. 1)

Übung 4. Definition und Eindeutigkeit der adjungierten Abbildung

(Pr. 1)

Es seien V und W zwei Skalarprodukträume über \mathbb{K} und $f:V\to W$ eine lineare Abbildung.

- 1. Definieren Sie die zu f adjungierte Abbildung.
- 2. Zeigen Sie, dass die adjungierte Abbildung eindeutig ist.

Übung 5. Darstellende Matrix der adjungiertes Abbildung

(Pr. 1)

Es seien V und W zwei \mathbb{K} -Skalarprodukträume und $f\colon V\to W$ eine lineare Abbildung. Es sei $\mathcal{B}=(b_1,\ldots,b_n)$ eine Orthonormalbasis von V und $\mathcal{C}=(c_1,\ldots,c_m)$ eine Orthonormalbasis von W. Zeigen Sie die Gleichheit

$$M_{\mathcal{C},\mathcal{B}}(f^*) = M_{\mathcal{B},\mathcal{C}}(f)^*.$$

Übung 6. Orthogonalität der Eigenräume normaler Endomorphismen

(Pr. 1)

Es sei V ein Skalarproduktraum und $f\colon V\to V$ ein normaler Endomorphismus. Zeigen Sie, dass die Eigenräume $V_\lambda(f)$ und $V_\mu(f)$ für alle $\lambda\neq\mu$ orthogonal sind.

Übung 7. Haupt- und Eigenräume normaler Endomorphismen

(Pr. 1)

Es sei V ein endlichdimensionaler Skalarproduktraum und $f\colon V\to V$ ein normaler Endomorphismus.

- 1. Zeigen Sie, dass $||f(v)|| = ||f^*(v)||$ für alle $v \in V$.
- 2. Zeigen Sie, dass $V_{\lambda}(f)=V_{\overline{\lambda}}(f^*)$ und $V_{\lambda}^{\sim}(f)=V_{\overline{\lambda}}^{\sim}(f^*).$

Übung 8. Eigenwerte (anti)selbstadjungierter Endomorphismen

(Pr. 1)

Es sei $S \colon V \to V$ ein Endomorphismus eines Skalarproduktraums. Zeigen Sie:

- 1. Ist S selbstadjungiert, so sind alle Eigenwerte von S rein reell.
- 2. Ist S antiselbstadjungiert, so sind alle Eigenwerte von S rein imaginär.

Übung 9. Komposition selbstadjungierter Endomorphismen

(Pr. 1)

Es seien F und G zwei selbstadjungierte Endomorphismen eines Skalarproduktraums V. Zeigen Sie, dass $F\circ G$ genau dann selbstadjungiert ist, wenn F und G kommutieren.

Übung 10. Rechenregeln für das Matrixexponential

(Pr. 1)

Es sei V ein endlichdimensionaler Skalarproduktraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie:

- 1. Es gilt $\exp(f)^* = \exp(f^*)$.
- 2. Ist f normal, so ist auch exp(f) normal.
- 3. Ist f selbstadjungiert, so ist auch exp(f) selbstadjungiert.
- 4. Ist f antiselbstadjungiert, so ist $\exp(f)$ orthogonal ($\mathbb{K} = \mathbb{R}$), bzw. unitär ($\mathbb{K} = \mathbb{C}$).
- 5. Es gilt $\det \exp(f) = \exp(\operatorname{tr} f)$.

Übung 11. Orthogonalität und lineare Unabhängigkeit von Vektoren

Es sei V ein Skalarproduktraum und es seien $v_1, \ldots, v_n \in V$

- 1. Zeigen Sie: Sind die Vektoren v_1, \ldots, v_n paarweise orthogonal und ist $v_1, \ldots, v_n \neq 0$, so ist die Familie (v_1, \ldots, v_n) linear unabhängig.
- 2. Zeigen Sie: Ist die Familie (v_1, \ldots, v_n) linear unabhängig, so sind die Vektoren v_1, \ldots, v_n nicht notwendigerweise orthogonal.

Übung 12. Ein Gegenbeispiel

(Pr. 2)

(Pr. 2)

Es sei V ein \mathbb{K} -Vektorraum mit abzählbarer Orthonormalbasis $(e_i)_{i\in\mathbb{N}}$. Es sei $T\colon V\to V$ die eindeutige lineare Abbildung mit $T(e_i)=e_1$ für alle $i\in\mathbb{N}$. Zeigen Sie, dass T kein Adjungiertes besitzt.

Übung 13. Eine Kürzungsregel

(Pr. 2)

Es sei V ein Skalarproduktraum. Zeigen Sie für Endomorphismen $f, g_1, g_2 \colon V \to V$ Endomorphismen die folgende Kürzungsregel: Falls f^* existiert und $f^*fg_1 = f^*fg_2$, dann ist bereits $fg_1 = fg_2$.

Übung 14. Bestimmung von Abbildungen

(Pr. 2)

- 1. Es sei V ein Skalarproduktraum und $f\colon V\to V$ ein selbstadjungierter, nilpotenter Endomorphismus. Zeigen Sie, dass f=0.
- 2. Es sei V ein endlichdimensionaler euklidischer Vektorraum und $f\colon V\to V$ ein selbstadjungierter, orthogonaler Endomorphismus mit nur positiven Eigenwerten. Zeigen Sie, dass bereits $f=\operatorname{id}_V$ gilt.
- 3. Es sei V ein euklidischer Vektorraum, und die Abbildung $P\colon V\to V$ sei orthogonal und eine Orthogonalprojektion. Bestimmen Sie P.

Übung 15. Orthogonalprojektion auf eine Gerade

(Pr. 2)

Es sei $x \in \mathbb{R}^n$ ein normierter Spaltenvektor und

$$A := xx^T \in M(n \times n, \mathbb{R}).$$

Zeigen Sie, dass die Abbildung

$$P \colon \mathbb{R}^n \to \mathbb{R}^n, \quad y \mapsto Ay$$

die orthogonale Projektion auf die Gerade $\mathbb{R}x$ ist.

Übung 16. Eine Formel für die Orthogonalprojektion

(Pr. 2)

Es sei V ein endlichdimensionaler Skalarproduktraum und $U \subseteq V$ ein Untervektorraum mit Orthonormalbasis (u_1, \ldots, u_n) . Zeigen Sie, dass die lineare Abbildung

$$P: V \to V, \quad v \mapsto \sum_{i=1}^{n} \langle v, u_i \rangle u_i$$

die orthogonale Projektion auf U ist.

Übung 17. Eine Bedingung für Orthonormalbasen

(Pr. 2)

Es sei V ein endlichdimensionaler Skalarproduktraum und $v_1, \ldots, v_n \in V$ seien Einheitsvektoren. Zeigen Sie, dass die folgenden beiden Aussage äquivalent sind:

- 1. (v_1, \ldots, v_n) ist eine Orthonormalbasis von V.
- 2. Für alle $v \in V$ ist $||v||^2 = \sum_{i=1}^n |\langle v, v_i \rangle|^2$.

Übung 18. Normale Endomorphismen und ihre Eigenwerte

(Pr. 2)

Es sei V ein endlichdimensionaler unitärer Vektorraum und $f\colon V\to V$ ein normaler Endomorphismus. Zeigen Sie:

- 1. f ist genau dann unitär, wenn alle Eigenwerte von f Betrag 1 haben.
- 2. f ist genau dann selbstadjungiert, wenn alle Eigenwerte von f reell sind.
- 3. f ist genau dann antiselbstadjungiert, wenn alle Eigenwerte von f rein imaginär sind.
- 4. f ist genau dann eine Orthogonalprojektion, wenn 0 und 1 die einzigen Eigenwerte von f sind.

Übung 19. Vielfache von Skalarprodukten

(Pr. 2)

Es sei $V \neq 0$ ein \mathbb{K} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Für alle $\lambda \in \mathbb{K}$ sei

$$\left\langle x,y\right\rangle _{\lambda}\coloneqq\lambda\left\langle x,y\right\rangle \quad\text{für alle }x,y\in V.$$

Bestimmen Sie alle $\lambda \in \mathbb{K}$, für die $\langle \cdot, \cdot \rangle_{\lambda}$ ein Skalarprodukt auf V ist.

Übung 20. Skalarprodukte durch Vorgabe von Orthonormalbasen

(Pr. 2)

Es sei V ein endlichdimensionaler \mathbb{K} -Vektorraum mit $n \coloneqq \dim V$.

- 1. Zeigen Sie, dass es für jede Basis $\mathcal{B} = \{b_1, \dots, b_n\}$ von V genau ein Skalarprodukt $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ auf V gibt, so dass \mathcal{B} eine Orthonormalbasis von V bezüglich $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ ist.
- 2. Untersuchen Sie die Abbildung

$$\{\mathcal{B}\subseteq V\mid \mathcal{B} \text{ ist eine Basis von }V\} \longrightarrow \{\langle\cdot,\cdot\rangle: V\times V\to V\mid \langle\cdot,\cdot\rangle \text{ ist ein Skalarprodukt auf }V\},\\ \mathcal{B}\longmapsto \langle\cdot,\cdot\rangle_{\mathcal{B}}$$

auf Injektivität und Surjektivität.

Übung 21. Die Spur einer unitären Matrix

(Pr. 2)

Es sei $A \in U(n)$. Zeigen Sie, dass $|\operatorname{tr} A| \leq n$. Wann gilt Gleichheit?

Übung 22. Ein selbstadjungierter Endomorphismus im Unendlichdimensionalen

(Pr. 2)

Es sei V der reelle Vektorraum der Polynomfunktionen $\mathbb{R} \to \mathbb{R}$, und für alle $n \in \mathbb{N}$ sei $V_n \subseteq V$ der Untervektorraum der Polynomfunktionen von Grad $\leq n$.

1. Zeigen Sie, dass

$$\langle f,g\rangle \coloneqq \int_{-1}^1 f(t)g(t)\,\mathrm{d}t \quad \text{für alle } f,g\in V$$

ein Skalarprodukt auf V definiert.

2. Zeigen Sie, dass die lineare Abbildung $\psi \colon V \to V$ mit

$$\psi(f)(t) \coloneqq (t^2 - 1)f''(t) + 2tf'(t)$$
 für alle $f \in V$ und $t \in \mathbb{R}$

selbstadjungiert bezüglich $\langle \cdot, \cdot \rangle$ ist.

Es sei $\mathcal{G} := (p_n)_{n \geq 0}$ die Orthonormalbasis von V, die durch Anwenden des Gram-Schmidt-Verfahrens auf die Standardbasis $\mathcal{B} := (x^n)_{n \geq 0}$ von V entsteht.

- 3. Zeigen Sie für alle $n \geq 0$, dass V_n invariant unter ψ ist.
- 4. Zeigen Sie für alle $n \geq 0$, dass $\mathcal{G}_n := (p_0, \dots, p_n)$ eine Basis von V_n ist.
- 5. Zeigen Sie für alle $n \geq 0$, dass $\mathrm{M}_{\mathcal{G}_n}(\psi|_{V_n})$ eine obere Dreiecksmatrix ist. Betrachten Sie hierfür die Filtration

$$0 \subseteq V_0 \subseteq V_1 \subseteq V_2 \subseteq V_3 \subseteq \cdots \subseteq V_n$$
,

und nutzen Sie, dass $V_i = \mathcal{L}(\mathcal{G}_i)$ für alle $1 \leq i \leq n$ invariant unter ψ ist.

- 6. Folgen Sie mithilfe der Selbstadjungiertheit von ψ , dass $\mathrm{M}_{\mathcal{G}_n}(\psi|_{V_n})$ für alle $n\geq 0$ bereits eine Diagonalmatrix ist. Folgern Sie, dass \mathcal{G} eine Basis aus Eigenvektoren von ψ ist.
- 7. Bestimmen Sie für alle $n \geq 0$ die Eigenwerte der Einschränkung $\psi|_{V_n}$, indem Sie die darstellende Matrix bezüglich der Basis $\mathcal{B}_n = (1, x, \dots, x^n)$ von V_n bestimmen.
- 8. Geben Sie den zu p_n gehörigen Eigenwert von ψ an.
- 9. Berechnen Sie \mathcal{G}_4 .

Übung 23. Ein L^2 -Skalarprodukt und ein Gegenbeispiel im Unendlichdimensionalen (Pr. 2) Es sei $V := \mathcal{C}([0,1],\mathbb{R})$ der Raum der stetigen Funktionen $[0,1] \to \mathbb{R}$, und es sei

$$U := \{ f \in V \mid f(0) = 0 \}.$$

- 1. Zeigen Sie, dass U ein Untervektorraum von V ist.
- 2. Zeigen Sie, dass

$$\langle f,g \rangle \coloneqq \int_0^1 f(t)g(t)\,\mathrm{d}t \quad \text{für alle } f,g \in V$$

ein Skalarprodukt auf V definiert.

- 3. Zeigen Sie, dass $U^{\perp}=0$. Folgern Sie, dass $V\neq U\oplus U^{\perp}$. (*Hinweis*: Betrachten Sie für $g\in U^{\perp}$ die Funktion $h\colon [0,1]\to \mathbb{R}$ mit $h(t)=t^2g(t)$.)
- 4. Zeigen Sie ferner, dass V/U eindimensional ist.

Übung 24. Beispiele und Gegenbeispiele auf $\ell^2(\mathbb{Z})$

(Pr. 2)

Es sei

$$\mathbb{R}^{\mathbb{Z}} = \{ (a_n)_{n \in \mathbb{Z}} \mid a_n \in \mathbb{R} \text{ für alle } n \in \mathbb{Z} \}$$

der Vektorraum der beidseitigen reellwertigen Folgen. Wir betrachten die Teilmenge der quadratsummierbaren Folgen

$$\ell^2(\mathbb{Z}) := \left\{ (a_n)_{n \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}} \left| \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \right. \right\}.$$

1. Zeigen Sie für alle $(a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$, dass

$$\sum_{n\in\mathbb{Z}}a_nb_n<\infty.$$

(*Hinweis*: Zeigen sie zunächst, dass $ab \leq (a^2 + b^2)/2$ für alle $a,b \in \mathbb{R}$.)

- 2. Folgern Sie, dass $\ell^2(\mathbb{Z})$ ein Untervektorraum von $\mathbb{R}^\mathbb{Z}$ ist.
- 3. Zeigen Sie, dass

$$\langle (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\rangle \coloneqq \sum_{n\in\mathbb{Z}} a_n b_n \quad \text{für alle } (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}} \in V$$

ein Skalarprodukt auf $\ell^2(\mathbb{Z})$ definiert.

4. Es sei

$$R: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z}), \quad (a_n)_{n \in \mathbb{Z}} \mapsto (a_{n-1})_{n \in \mathbb{Z}}$$

der Rechtsshift-Operator. Zeigen Sie, dass R ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, orthogonal, bzw. normal ist.

- 5. Zeigen Sie, dass R keine Eigenwerte besitzt.
- 6. Es sei

$$S: V \to V, \quad (a_n)_{n \in \mathbb{N}} \mapsto (a_{-n})_{n \in \mathbb{N}}.$$

Zeigen Sie, dass S ein Adjungiertes besitzt, und entscheiden Sie, ob S selbstadjungiert, orthogonal, bzw. normal ist.

- 7. Zeigen Sie, dass ${\cal S}$ diagonalisierbar ist.
- 8. Es sei

$$U := \{(a_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \mid a_n = 0 \text{ für fast alle } n \in \mathbb{Z}\}.$$

Bestimmen Sie U^{\perp} und entscheiden Sie, ob $V=U\oplus U^{\perp}$

9. Bestimmen Sie eine Orthonormalbasis von U.

Übung 25. Ein Skalarprodukt auf den reellen Matrizen

1. Zeigen Sie, dass durch

$$\sigma(A, B) := \operatorname{tr}(A^T B)$$
 für alle $A, B \in M_n(\mathbb{R})$

ein Skalarprodukt auf $M_n(\mathbb{R})$ definiert wird.

2. Zeigen Sie, dass die Standardbasis $(E_{ij})_{i,j=1,\dots,n}$ von $\mathrm{M}_n(\mathbb{R})$ mit

$$(E_{ij})_{kl} := \delta_{ik}\delta_{il}$$
 für alle $1 \le i, j, k, l \le n$

eine Orthonormalbasis von $\mathrm{M}_n(\mathbb{R})$ bezüglich σ bilden. (Der (i,j)-te Eintrag von E_{ij} ist also 1, und alle anderen Einträge sind 0.)

(*Hinweis*: Überlegen sie sich zunächst, dass $E_{ij}E_{kl}=\delta_{jk}E_{il}$ für alle $1\leq i,j,k,l\leq n$.)

3. Es sei

$$S_+ \coloneqq \{A \in \mathrm{M}_n(\mathbb{R}) \mid A^T = A\}$$

der Untervektorraum der symmetrischen Matrizen, und

$$S_{-} := \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^T = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie, dass

$$M_n(\mathbb{R}) = S_+ \oplus S_-,$$

und dass die Summe orthogonal ist.

Übung 26. Diagonalisierbarkeit und Selbstadjungiertheit

(Pr. 2)

(Pr. 2)

Es sei V ein endlichdimensionale \mathbb{K} -Vektorraum und $f\colon V\to V$ ein Endomorphismus.

- 1. Zeigen Sie für denn Fall $\mathbb{K} = \mathbb{R}$, dass f genau dann diagonalisierbar ist, wenn es ein Skalarprodukt auf V gibt, bezüglich dessen f selbstadjungiert ist.
- 2. Zeigen oder widerlegen Sie die analoge Aussage für $\mathbb{K}=\mathbb{C}.$

Übung 27. Die Isometriegruppe

(Pr. 2)

Es sei V ein Skalarproduktraum und

$$\mathrm{O}(V) \coloneqq \{f \in \mathrm{GL}(V) \mid ff^* = \mathrm{id}\}.$$

- 1. Zeigen Sie, dass O(V) eine Untergruppe von GL(V) bildet.
- 2. Zeigen Sie für $f \in \text{End}(V)$, dass genau dann $f \in O(V)$, wenn f ein Isomorphismus ist, so dass $\langle f(v), f(w) \rangle = \langle v, w \rangle$ für alle $v, w \in V$.

Übung 28. Charakterisierung von Matrixexponentialen normaler Endomorphismen über Eigenwerte (Pr. 2) Es sei V ein endlichdimensionaler Skalarproduktraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie die folgenden Äquivalenzen für den Fall $\mathbb{K}=\mathbb{C}$:

- 1. Es gibt genau dann einen normalen Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f normal und invertierbar ist.
- 2. Es gibt genau dann einen antiselbstadjungierten Endomorphismus $g\colon V\to V$ mit $f=\exp(g)$, wenn f unitär ist.
- 3. Es gibt genau dann einen selbstadjungierten Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f selbstadjungiert mit positiven Eigenwerten ist.

Zeigen Sie die folgenden Aussagen für den Fall $\mathbb{K} = \mathbb{R}$:

- 4. Es gibt genau dann einen normalen Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f normal und invertierbar ist, und alle negativen reellen Eigenwerte von g gerade Vielfachheit haben.
- 5. Es gibt genau dann einen antiselbstadjungierten Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f orthogonal ist und alle negativen reellen Eigenwerte von f gerade Vielfachheit haben.
- 6. Es gibt genau dann einen selbstadjungierten Endomorphismus $g \colon V \to V$ mit $f = \exp(g)$, wenn f selbstadjungiert mit positiven reellen Eigenwerten ist.

Übung 29. Die Definitionen unitärer Matrizen

(Pr. 3)

Zeigen sie, dass für eine Matrix $A \in M_n(\mathbb{K})$ die folgenden Bedingungen äquivalent sind:

- 1. A ist invertierbar mit $A^{-1} = A^*$.
- 2. $AA^* = I$.
- 3. $A^*A = I$.
- 4. Die Spalten von A bilden eine Orthonormalbasis des \mathbb{K}^n .
- 5. Die Zeilen von A bilden eine Orthonormalbasis des \mathbb{K}^n .

Übung 30. Die Determinanten einiger Matrixgruppen

(Pr. 3)

Es sei det: $M_n(\mathbb{C}) \to \mathbb{C}^{\times}$ die Determinantenabbildung, wobei \mathbb{C}^{\times} die multiplikative Gruppe des Körpers \mathbb{C} bezeichnet.

- 1. Zeigen Sie, dass det ein surjektiver Gruppenhomomorphismus ist.
- 2. Geben Sie den Kern von det an.
- 3. Bestimmen Sie das Bild der Einschränkung det $|_{\mathrm{GL}_n(\mathbb{R})}$, und geben Sie den Kern an.
- 4. Bestimmen Sie das Bild der Einschränkung det $|_{\mathrm{U}(n)}$, und geben Sie den Kern an.
- 5. Bestimmen Sie das Bild der Einschränkung det $|_{\mathcal{O}(n)}$, und geben Sie den Kern an.

Übung 31. Darstellende Matrizen von Gram-Schmidt

(Pr. 3)

Es sei V ein endlichdimensionaler Skalarproduktraum und $\mathcal{B}=(b_1,\ldots,b_n)$ und $\mathcal{C}=(c_1,\ldots,c_n)$ seien zwei geordnete Basen von V.

- 1. Die Basis \mathcal{C} entstehen aus \mathcal{B} durch Anwendung des Gram-Schmidt-Verfahrens. Zeigen Sie, dass die Basiswechselmatrix $T_{\mathcal{C} \to \mathcal{B}}$ (von \mathcal{C} nach \mathcal{B}) eine obere Dreiecksmatrix mit positiven reellen Diagonaleinträgen ist.
- 2. Zeigen oder widerlegen Sie die umgekehrte Aussage: Ist die Basiswechselmatrix $T_{\mathcal{C} \to \mathcal{B}}$ eine obere Dreiecksmatrix mit positiven reellen Diagonaleinträgen, so ist \mathcal{C} notwendigerweise die Orthonormalbasis von V, die durch Anwendung des Gram-Schmidt-Verfahrens aus \mathcal{B} entsteht.
- 3. Entsteht \mathcal{C} durch Anwendung des Gram-Schmidt-Verfahrens aus \mathcal{B} , so ist die Basiswechselmatrix $T_{\mathcal{C} \to \mathcal{B}}$ unitär.
- 4. Sind \mathcal{B} und \mathcal{C} orthonormal, so ist die Basiswechselmatrix $T_{\mathcal{C} \to \mathcal{B}}$ unitär.

Übung 32. Zerlegungen und Normalität komplexer Matrizen Es sei $A \in M_n(\mathbb{C})$.

(Pr. 3)

- 1. Zeigen Sie, dass es eindeutige hermitsche Matrizen $B,C\in \mathrm{M}_n(\mathbb{C})$ mit A=B+iC gibt.
- 2. Zeigen Sie, dass A genau dann normal ist, wenn B und C kommutieren.
- 3. Zeigen Sie, dass es eine eindeutige hermitsche Matrix $D \in \mathrm{M}_n(\mathbb{C})$ und schiefhermitsche Matrix $E \in \mathrm{M}_n(\mathbb{C})$ gibt, so dass A = D + E.
- 4. Zeigen Sie, dass A genau dann normal ist, wenn D und E kommutieren.
- 5. Wie hängen die Zerlegungen A = B + iC und A = D + E zusammen?

Übung 33. Ein Skalarprodukt konstruieren

(Pr. 3)

Es seien $v_1, v_2 \in \mathbb{R}^3$ definiert als

$$v_1 \coloneqq \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{und} \quad v_2 \coloneqq \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

- 1. Zeigen Sie, dass es ein Skalarprodukt auf \mathbb{R}^3 gibt, bezüglich dessen (v_1, v_2) orthonormal ist.
- 2. Geben Sie eine Matrix $B\in \mathrm{M}_3(\mathbb{R})$ an, so dass die Bilinearform $\langle\cdot,\cdot\rangle_B:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ mit

$$\langle x, y \rangle_B := x^T B y$$
 für alle $x, y \in \mathbb{R}^3$

ein solches Skalarprodukt ist.

Übung 34. Bilder und Kerne adjungierter und normaler Endomorphismen

(Pr. 3)

Es sei V ein endlichdimensionaler Skalarproduktraum und $f:V\to V$ ein Endomorphismus.

- 1. Zeigen Sie, dass ker $f^* \subseteq (\operatorname{im} f)^{\perp}$.
- 2. Folgern Sie daraus, dass im $f^* \subseteq (\ker f)^{\perp}$.
- 3. Folgern Sie aus den beiden Inklusionen ker $f^* \subseteq (\operatorname{im} f)^{\perp}$ und im $f^* \subseteq (\ker f)^{\perp}$ mithilfe der Endlichdimensionalität von V, dass bereits Gleichheiten gelten, dass also

$$\ker f^* = (\operatorname{im} f)^{\perp}$$
 und $\operatorname{im} f^* = (\ker f)^{\perp}$.

Von nun an sei f normal.

- 4. Zeigen Sie, dass $||f(x)|| = ||f^*(x)||$ für alle $x \in V$.
- 5. Folgern Sie, dass ker $f = \ker f^*$.
- 6. Folgern Sie damit aus den obigen Gleichheiten, dass $V=\operatorname{im} f\oplus\ker f$ gilt, und dass die Summe orthogonal ist.

($\it Hinweis$: Zeigen Sie zuerst, dass im $\it f$ und ker $\it f$ orthogonal sind, und nutzen Sie dann die Endlichdimensionalität von $\it V$.)

Übung 35. Spiegelungen

(Pr. 3)

Es sei V ein euklidischer Vektorraum. Für jedes $\alpha \in V$ mit $\alpha \neq 0$ sei

$$s_{\alpha} \colon V \to V$$
, mit $s_{\alpha}(x) \coloneqq x - 2 \frac{\langle x, \alpha \rangle}{\|\alpha\|^2} \alpha$.

Ferner seien $L_{\alpha} := \mathbb{R}\alpha$ und $H_{\alpha} := L_{\alpha}^{\perp}$.

- 1. Zeigen Sie, dass $L_{\alpha}=V_{-1}(s_{\alpha})$ und $H_{\alpha}=V_{1}(s_{\alpha})$. Folgern Sie, dass s_{α} diagonalisierbar ist.
- 2. Interpretieren Sie V geometrisch anschaulich.
- 3. Zeigen Sie, dass $s_{\alpha}^2 = \mathrm{id}_V$, und dass $s_{\lambda\alpha} = s_{\alpha}$, $L_{\lambda\alpha} = L_{\alpha}$ und $H_{\lambda\alpha} = H_{\alpha}$ für alle $\lambda \in \mathbb{R}^{\times}$.
- 4. Es sei $s'\colon V\to V$ ein Endomorphismus mit $s'(\alpha)=-\alpha$ und s'(x)=x für alle $x\in H_\alpha$. Zeigen Sie, dass bereits $s'=s_\alpha$ gilt.
- 5. Es sei $t: V \to V$ ein orthogonaler Isomorphismus. Zeigen Sie, dass $ts_{\alpha}t^{-1} = s_{t(\alpha)}$.

Übung 36. Konstruktion der adjungierten Abbildung

(Pr. 3)

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Ferner sei $f\colon V\to W$ eine \mathbb{R} -lineare Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein \mathbb{R} -linearer Isomorphismus ist.

2. Geben Sie die Definition der dualen Abbildung $f^*: W^* \to V^*$ an. Zeigen Sie, dass f^* \mathbb{R} -linear ist.

3. Zeigen Sie, dass die Abbildung $g \coloneqq \Phi_V^{-1} \circ f^* \circ \Phi_W$ \mathbb{R} -linear ist, und dass

$$\langle f(v), w \rangle = \langle v, g(w) \rangle$$
 für alle $v \in V, w \in W$.

- 4. Zeigen Sie: Eine Basis $\mathcal{B}=(v_1,\ldots,v_n)$ von V ist genau dann eine Orthonormalbasis, wenn die Basis $\Phi_V(\mathcal{B})=(\Phi_V(v_1),\ldots,\Phi_V(v_n))$ von V^* die duale Basis \mathcal{B}^* ist.
- 5. Inwiefern ändern sich die obigen Resultate für denn Fall $\mathbb{K} = \mathbb{C}$, wenn also V und W endlichdimensionale unitäre Vektorräume sind?

Übung 37. Zusammenhang zwischen Skalarproduktraum und Dualraum

(Pr. 3)

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Für jeden Untervektorraum $U\subseteq V$ sei

$$U^{\perp} \coloneqq \{ v \in V \mid \langle u, v \rangle = 0 \text{ für alle } u \in U \}$$

das orthogonale Komplement von U, und

$$U^{\circ} \coloneqq \{ \varphi \in V^* \mid \varphi(u) = 0 \text{ für alle } u \in U \}$$

der Annihilator von U. Es sei $f\colon V\to W$ eine lineare Abbildung. Es sei $f^*\colon W\to V$ die zu f adjungierte Abbildung, und

$$f^T \colon W^* \to V^*, \quad \varphi \mapsto \varphi \circ f$$

die zu f duale Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein Isomorphismus ist.

- 2. Zeigen Sie, dass für jeden Untervektorraum $U\subseteq V$ die Gleichheit $\Phi_V(U^\perp)=U^\circ$ gilt.
- 3. Zeigen Sie, dass $f^T \circ \Phi_W = \Phi_V \circ f^*$, dass also das folgende Diagramm kommutiert:

$$V \longleftarrow f^* \qquad W$$

$$\Phi_V \downarrow \qquad \qquad \downarrow \Phi_W$$

$$V^* \longleftarrow f^T \qquad W^*$$

Folgern Sie, dass $f^* = \Phi_V^{-1} \circ f^T \circ \Phi_W$.

In Lineare Algebra I wurde gezeigt, dass

$$\ker f^T = (\operatorname{im} f)^{\circ}$$
 und $\operatorname{im} f^T = (\ker f)^{\circ}$,

und dass für je zwei Untervektorräume $U_1, U_2 \subseteq V$ die Gleichheiten

$$(U_1 + U_2)^{\circ} = U_1^{\circ} \cap U_2^{\circ}$$
 und $(U_1 \cap U_2)^{\circ} = U_1^{\circ} + U_2^{\circ}$

gelten.

4. Folgern Sie aus den vorherigen Aufgabenteilen und den Aussagen aus Lineare Algebra I für alle Untervektorräume $U_1, U_2 \subseteq V$ die Gleichheiten

$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp} \quad \text{und} \quad (U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}.$$

(*Hinweis*: Nutzen Sie, dass Φ_V ein Isomorphismus ist.)

5. Folgern Sie aus den vorherigen Aufgabenteilen und den Aussagen aus Lineare Algebra I, dass

$$\ker f^* = (\operatorname{im} f)^{\perp}$$
 und $\operatorname{im} f^* = (\ker f)^{\perp}$.

(Pr. 3)

(*Hinweis*: Nutzen Sie, dass Φ_V und Φ_W Isomorphismen sind.)

Übung 38. Eine Anwendung des Rieszschen Darstellungssatzes Es sei V ein endlichdimensionaler euklidischer Vektorraum.

1. Zeigen Sie, dass die Abbildung

$$\Phi \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein Isomorphismus ist.

2. Zeigen Sie: Eine Basis $\mathcal{B}=(v_1,\ldots,v_n)$ von V ist genau dann orthonormal, wenn

$$\varphi = \sum_{i=1}^{n} \varphi(v_i) \left< -, v_i \right> \quad \text{für alle } \varphi \in V^*.$$

Es sei nun V der unendlichdimensionale Vektorraum der Polynomfunktionen $\mathbb{R} \to \mathbb{R}$, und für alle $n \in \mathbb{N}$ sei $V_n \subseteq V$ der endlichdimensionale Untervektorraum der Polynomfunktionen vom Grad $\leq n$. Für $a \in \mathbb{R}$ sei

$$\varphi_a \colon V \to \mathbb{R} \quad \text{mit} \quad \varphi_a(f) = f(a) \quad \text{für alle } a \in \mathbb{R}$$

die Auswertung an a.

3. Zeigen Sie, dass

$$\langle f,g\rangle := \int_{-1}^1 f(t)g(t)\,\mathrm{d}t\quad \text{für alle } f,g\in V$$

ein Skalarprodukt auf ${\cal V}$ definiert.

4. Zeigen Sie, dass es für alle $n \in \mathbb{N}$ und $a \in \mathbb{R}$ und eine eindeutige Funktion $g_{n,a} \in V$ gibt, so dass

$$f(a) = \int_{-1}^{1} f(t)g_{n,a}(t) dt$$
 für alle $f \in V_n$.

- 5. Bestimmen Sie eine Orthonormalbasis von V_2 .
- 6. Bestimmen Sie $g_{2,a}$ in Abhängigkeit von a.

Übung 39. Invariante Skalarprodukte

(Pr. 3)

Es sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$, und $G \subseteq \mathrm{GL}(V)$ sei eine endliche Untergruppe.

1. Zeigen Sie, dass

$$\langle x,y\rangle_G\coloneqq \frac{1}{|G|}\sum_{\phi\in G}\langle \phi(x),\phi(y)\rangle\quad \text{ für alle } x,y\in V$$

ein Skalarprodukt auf V definiert.

2. Zeigen Sie, dass $\langle \cdot, \cdot \rangle_G$ in dem Sinne G-invariant ist, dass

$$\langle \psi(x), \psi(y) \rangle_G = \langle x, y \rangle_G \quad \text{ für alle } x, y \in V \text{ und } \psi \in G.$$

(*Hinweis*: Beachten Sie, dass die Multiplikation $G \to G$, $h \mapsto hg$ für alle $g \in G$ bijektiv ist.)

- 3. Zeigen Sie auch, dass $\langle \cdot, \cdot \rangle_G = \langle \cdot, \cdot \rangle$, wenn $\langle \cdot, \cdot \rangle$ bereits G-invariant ist.
- 4. Folgern Sie, dass es eine Basis \mathcal{B} von V gibt, so dass $M_{\mathcal{B}}(\psi)$ für alle $\psi \in G$ eine orthogonale Matrix ist.
- 5. Folgern Sie damit, dass es für $n=\dim V$ einen injektiven Gruppenhomomorphismus $\Phi\colon G\to \mathrm{O}(n)$ gibt, G also isomorph zu der Untergruppe im Φ von $\mathrm{O}(n)$ ist.

Übung 40. Implikationen zwischen verschiedene Aussagen

(Pr. 3)

Es sei V ein endlichdimensionaler euklidischer Vektorraum und $f\colon V\to V$ ein Endomorphismus. Entscheiden Sie, welche der folgenden Aussagen sich implizieren.

- 1. Der Endomorphismus f ist selbstadjungiert mit positiven Eigenwerten.
- 2. Der Endomorphismus f ist orthogonal, und alle Eigenwerte von f sind positiv.
- 3. Der Endomorphismus f ist normal mit det f > 0.
- 4. Es gibt einen selbstadjungierten Endomorphismus $g: V \to V$ mit $f = \exp(g)$.
- 5. Der Endomorphismus f ist selbstadjungiert und orthogonal.

Übung 41. Rotationsgruppen

(Pr. 3)

Zeigen Sie, dass die drei Gruppen SO(2), S^1 und U(1) isomorph sind. (Dabei ist $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ eine Untergruppe von \mathbb{C}^{\times} .)

Übung 42. Permutationsmatrizen sind orthogonal

(Pr. 3)

Es sei $\pi \in S_n$ eine Permutation und $P_\pi \colon \mathbb{R}^n \to \mathbb{R}^n$ die eindeutige lineare Abbildung mit

$$P_{\pi}(e_i) = e_{\pi(i)}$$
 für alle $i = 1, \dots, n$,

wobei (e_1, \ldots, e_n) die Standardbasis von \mathbb{R}^n ist.

- 1. Zeigen Sie, dass P_{π} orthogonal ist.
- 2. Bestimmen Sie die möglichen Eigenwerte von P_{π} .
- 3. Geben Sie ein Beispiel an, bei dem alle möglichen Eigenwerte auftreten.

Übung 43. Linearität orthogonaler Abbildungen

(Pr. 3)

Es seien V und W euklidische Vektorräume, und $f \colon V \to W$ sei eine surjektive Funktion mit

$$\langle f(v_1), f(v_2) \rangle = \langle v_1, v_2 \rangle$$
 für alle $v_1, v_2 \in V$.

- 1. Zeigen Sie, dass f linear ist.
- 2. Zeigen Sie, dass f bereits ein Isomorphismus ist.

Übung 44. Die Adjungierte Abbildung als Polynom

(Pr. 3)

- 1. Es seien $z_1, \ldots, z_n \in \mathbb{C}$ paarweise verschieden Punkte. Zeigen Sie, dass es für beliebige Werte $w_1, \ldots, w_n \in \mathbb{C}$ ein Polynom $P \in \mathbb{C}[T]$ mit $P(z_j) = w_j$ für alle $j = 1, \ldots, n$ gibt.
- 2. Es sei $f\colon V\to V$ ein normaler Endomorphismus eines endlichdimensionalen unitären Vektorraums V. Zeigen Sie, dass es ein Polynom $P\in\mathbb{C}[T]$ mit $f^*=P(f)$ gibt.

(Hinweis: Nutzen Sie, dass f diagonalisierbar ist.)

Übung 45. Ein Skalarprodukt auf dem Endomorphismenraum

(Pr. 4)

Es sei V ein endlichdimensionaler Skalarproduktraum über \mathbb{K} . Für den \mathbb{K} -Vektorraum End $\mathbb{K}(V)$ sei

$$S := \{ f \in \operatorname{End}_{\mathbb{K}}(V) \mid f^* = f \}$$

der Untervektorraum der selbstadjungierten Endomorphismen und

$$A := \{ f \in \operatorname{End}_{\mathbb{K}}(V) \mid f^* = -f \}$$

der Untervektorraum der antiselbstadjungierten Endomorphismen.

- 1. Zeigen Sie, dass $\langle f, g \rangle := \operatorname{tr}(f \circ g^*)$ ein Skalarprodukt auf $\operatorname{End}_{\mathbb{K}}(V)$ definiert.
- 2. Folgern Sie, dass $|\operatorname{tr}(f \circ g^*)| \leq \sqrt{|\operatorname{tr}(f \circ f^*)\operatorname{tr}(g \circ g^*)|}$ für alle $f, g \in \operatorname{End}_{\mathbb{K}}(V)$.
- 3. Zeigen Sie, dass $\operatorname{End}_{\mathbb{K}}(V) = S \oplus A$, und dass die Summe orthogonal ist.

Übung 46. Charakterisierungen normaler Endomorphismen für unitäre Vektorräume

(Pr. 4)

Es sei V ein endlichdimensionaler unitärer Vektorraum. Zeigen Sie, dass für eine lineare Abbildung $S\colon V\to V$ die folgenden Bedingungen äquivalent sind:

- 1. Der Endomorphismus S ist normal.
- 2. Der Vektorraum V hat eine Orthonormalbasis aus Eigenvektoren von S.
- 3. Für jeden S-invarianten Untervektorraum $U\subseteq V$ ist auch das orthogonale Komplement U^\perp invariant unter S.

Übung 47. Eine Charakterisierung von SU(2)

(Pr. 4)

Es sei

$$\Phi \colon \operatorname{SU}(2) \to S^3, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a \\ c \end{pmatrix}$$

die Abbildung auf die erste Spalte, wobei

$$S^3 := \left\{ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2 \,\middle|\, |z_1|^2 + |z_2|^2 = 1 \right\} = \left\{ x \in \mathbb{C}^2 \,\middle|\, \|x\| = 1 \right\}$$

- 1. Zeigen Sie, dass Φ wohldefiniert ist.
- 2. Zeigen Sie, dass Φ bijektiv ist.

2 Jordannormalform, Haupträume und Trigonalisierbarkeit

Übung 48. Spur und Determinante durch Eigenwerte

(Pr. 1)

- 1. Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen $\mathbb C$ -Vektorraums V. Drücken Sie tr f und det f durch die (nicht notwendigerweise verschiedenen) Eigenwerte $\lambda_1,\ldots,\lambda_n\in\mathbb C$ von f aus.
- 2. Drücken Sie für den Fall n=2 die Determinante det f durch trf und tr f^2 aus.

Übung 49. Berechnung von Jordannormalformen

(Pr. 1)

Bestimmen Sie für die folgenden komplexen Matrizen jeweils eine Jordannormalform, inklusive entsprechender Basiswechselmatrizen:

$$\begin{pmatrix} 2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix},$$

$$\begin{pmatrix} 3 & 3 & 1 & 5 \\ 0 & -2 & 2 & -8 \\ -1 & -2 & 0 & -3 \\ 0 & 2 & -1 & 6 \end{pmatrix}, \quad \begin{pmatrix} 7 & 1 & 2 & 2 \\ 1 & 4 & -1 & -1 \\ -2 & 1 & 5 & -1 \\ 1 & 1 & 2 & 8 \end{pmatrix}, \quad \begin{pmatrix} 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{pmatrix}$$

Übung 50. (Pr. 1)

- 1. Bestimmen Sie alle möglichen Jordannormalformen einer nicht-diagonalisierbare Matrix $A\in \mathrm{M}_2(\mathbb{C})$ mit tr = 0.
- 2. Bestimmen Sie alle möglichen Jordannormalformen für $A \in M_3(\mathbb{C})$ mit det A = 0 und tr A = 0.

Übung 51. Lösen linearer homogener Differentialgleichungen

(Pr. 1)

Bestimmen Sie die Lösungsräume der folgenden homogenen linearen Differentialgleichungen. Dabei seien $f,g,h\in C^\infty(\mathbb{R})$.

$$\begin{cases} f' = -f - 6g, \\ g' = 2f + 6g; \end{cases} \begin{cases} f' = -f - g, \\ g' = 2f + g; \end{cases} \begin{cases} f' = 2f + 2g + 3h, \\ g' = f + 3g + 3h, \\ h' = -f - 2f - 2h. \end{cases}$$

Es sei $A\in \mathrm{M}_2(\mathbb{C})$ mit trA=0 und tr $A^2=-2$. Bestimmen Sie det A.

Übung 53. Zu Haupträumen (Pr. 2)

Es sei V ein endlichdimensionaler K-Vektorraum und $f:V\to V$ ein Endomorphismus.

- 1. Es sei $n\colon V\to V$ ein nilpotenter Endomorphismus. Zeigen Sie, dass id_V-n invertierbar ist. (*Hinweis*: Es ist $\mathrm{id}_V=\mathrm{id}_V-n^{p+1}$ für $p\in\mathbb{N}$ groß genug.)
- 2. Zeigen, bzw. folgern Sie allgemeiner, dass $\lambda \mathrm{id}_V + n$ für alle $\lambda \in K^{\times}$ invertierbar ist.
- 3. Es sei $f\colon V\to V$ ein beliebiger Endomorphismus. Zeigen Sie für alle $\lambda,\mu\in K$ mit $\lambda\neq\mu$, dass $V_\lambda^\sim(f)$ invariant unter $f-\mu\mathrm{id}_V$ ist, und dass die Einschränkung $(f-\mu\mathrm{id}_V)|_{V_\lambda^\sim(f)}$ invertierbar ist.

- 4. Folgern Sie: Ist $(f \lambda_1)^{n_1} \cdots (f \lambda_k)^{n_k} = 0$ mit $\lambda_1, \dots, \lambda_k \in K$ paarweise verschieden, so sind $\lambda_1, \dots, \lambda_k$ die möglichen Eigenwerte von f, und für alle $1 \leq i \leq k$ ist der Nilpotenzindex von $(f \lambda_i)|_{V_{\infty}^{\infty}(f)}$ durch $\leq n_k$ abschätzbar.
- 5. Folgern Sie: Ist K algebraisch abgeschlossen und $(f \lambda_1) \cdots (f \lambda_n) = 0$, so ist f diagonalisierbar mit möglichen Eigenwerten $\lambda_1, \ldots, \lambda_n \in K$.

Übung 54. Ein Gegenbeispiel

(Pr. 2)

Es sei $f\colon V\to V$ ein Endomorphismus eines \mathbb{C} -Vektorraums V und $\lambda\in\mathbb{C}$. Zeigen Sie, dass die Einschränkung $(f-\lambda\mathrm{id}_V)|_{V_{\lambda}^{\infty}(f)}$ nicht notwendigerweise nilpotent ist.

Übung 55. Bestimmung möglicher Jordannormalformen

(Pr. 2)

Bestimmen Sie in den Folgenden alle Möglichkeiten der Jordannormalform von $A \in M_n(\mathbb{C})$.

- 1. Es ist $\chi_A(T) = (T-3)^4(T-5)^4$ und $(A-3I)^2(A-5I)^2 = 0$.
- 2. Es ist $A^3 = 0$ und alle nicht-trivialen Eigenräume von A sind eindimensional.
- 3. Es ist $\chi_A(T) = (T-2)(T+2)^3$ und (A-2I)(A+2I) = 0.
- 4. Es ist $\chi_A(T) = T^3 T$.
- 5. Es ist $\chi_A(T) = (T^2 5T + 6)^2$ und alle Eigenräume von A sind entweder null- oder eindimensional.
- 6. Es ist $A^2 = A$ und alle nicht-trivialen Eigenräume von A sind zweidimensional.
- 7. Es ist $\chi_A(T) = T^5$ und alle Eigenräume von A sind entweder null- oder eindimensional.
- 8. Es ist $\chi_A(T) = (T+3)^3 T^2$ und A hat keine zweidimensionalen Eigenräume.
- 9. Es ist $\chi_A(T) = T^5 2T^4$.

Übung 56. (Pr. 2)

Bestimmen Sie die Potenz A^{10} der Matrix

$$A \coloneqq \begin{pmatrix} 3 & 4 & 3 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

Übung 57. Shiften von Haupträumen

(Pr. 3)

Es sei V ein endlichdimensionaler \mathbb{C} -Vektorraum, und es seien $K,E\colon V\to V$ zwei Endomorphismen mit

K ist invertier bar und KE = 2EK.

1. Zeigen Sie, dass

$$(K - 2\lambda \operatorname{id}_{V})^{n} E = 2^{n} E(K - \lambda \operatorname{id}_{V})^{n}$$

für alle $n \in \mathbb{N}$.

- 2. Folgern Sie, dass $E(V_{\lambda}^{\sim}(K)) \subseteq V_{2\lambda}^{\sim}(K)$ für alle $\lambda \in \mathbb{C}$.
- 3. Folgern Sie, dass ${\cal E}$ nilpotent ist.

Übung 58. Determinante durch Tracepowers ausdrücken

(Pr. 3)

Es sei K ein algebraisch abgeschlossener Körper mit char $K \notin \{2,3\}$. Zeigen Sie, dass

$$\det A = \frac{1}{6}(\operatorname{tr} A)^3 - \frac{1}{2}(\operatorname{tr} A^2)(\operatorname{tr} A) + \frac{1}{3}(\operatorname{tr} A^3) \quad \text{für jedes } A \in \operatorname{M}_3(K).$$

(Hinweis: Wenn die Rechnungen zu kompliziert werden, dann macht man es falsch.)

Übung 59. Die multiplikative Jordanzerlegung

(Pr. 4)

Es sei V ein \mathbb{C} -Vektorraum.

1. Es sei $n\colon V\to V$ ein nilpotenter Endomorphismus. Zeigen Sie, dass der Endomorphismus id $_V+n$ invertierbar ist.

(Hinweis: Es ist $\mathrm{id}_V=\mathrm{id}_V\pm n^{p+1}$ für $p\in\mathbb{N}$ groß genug.)

Ein Endomorphismus $u\colon V\to V$ heißt $\mathit{unipotent},$ falls $u-\mathrm{id}_V$ nilpotent ist.

2. Folgern Sie, dass jeder unipotente Endomorphismus von V invertierbar ist.

Von nun an sei V endlichdimensional. Auf dem fünften Übungszettel wurde gezeigt, dass es für jeden Endomorphismus $f:V\to V$ eindeutige Endomorphismen $d,n\colon V\to V$ gibt, so dass

- f = d + n,
- d ist diagonalisierbar und n ist nilpotent, und
- d und n kommutieren.

Dies ist die additive Jordanzerlegung auf End(V).

3. Zeigen Sie, dass f genau dann invertierbar ist, wenn der diagonalisierbare Anteil d der additiven Jordanzerlegung von f invertierbar ist.

Folgern Sie damit aus der obigen additiven Jordanzerlegung von $\mathrm{End}(V)$ die folgende *multiplikative* Jordanzerlegung von $\mathrm{GL}(V)$:

- 4. Zeigen Sie, dass es für jedes $s \in \mathrm{GL}(V)$ eindeutige $d, u \in \mathrm{GL}(V)$ gibt, so dass
 - $s = d \cdot u$,
 - d ist diagonalisierbar und u ist unipotent, und
 - d und u kommutieren.

Übung 60. Dichtheit der diagonalisierbaren Matrizen

(Pr. 4)

Es sei $\|\cdot\|$ eine Norm auf $M_n(\mathbb{C})$. Für alle $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ sei

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\coloneqq \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in \operatorname{M}_n(\mathbb{C}).$$

Es sei

$$\mathbf{D}_n(\mathbb{C}) \coloneqq \left\{ S \operatorname{diag}(\lambda_1, \dots, \lambda_n) S^{-1} \, \big| \, S \in \operatorname{GL}_n(\mathbb{C}), \lambda_1, \dots, \lambda \in \mathbb{C} \right\} \subseteq \mathbf{M}_n(\mathbb{C})$$

die Menge der diagonalisierbaren komplexen $n \times n$ -Matrizen. Wir zeigen, dass $D_n(\mathbb{C}) \subseteq \mathrm{M}_n(\mathbb{C})$ dicht ist, d.h. dass es für jede Matrix $A \in \mathrm{M}_n(\mathbb{C})$ und jedes $\varepsilon > 0$ eine diagonalisierbare Matrix $D \in \mathrm{D}_n(\mathbb{C})$ mit $\|A - D\| < \varepsilon$ gibt.

Es sei $S \in \mathrm{GL}_n(\mathbb{C})$, so dass SAS^{-1} eine obere Dreiecksmatrix

$$SAS^{-1} = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix}$$

ist. Es seien $z_1,\dots,z_n\in\mathbb{C}$ paarweise verschieden und

$$B(t) := A + tS \operatorname{diag}(z_1, \dots, z_n) S^{-1}$$
 für alle $t \in \mathbb{R}$.

1. Zeigen Sie, dass zum Zeitpunkt $t \in \mathbb{R}$ die Zahlen $\mu_1(t), \dots, \mu_n(t) \in \mathbb{C}$ mit

$$\mu_i(t) \coloneqq \lambda_i + tz_i$$
 für jedes $i = 1, \dots, n$

die Eigenwerte von B(t) ist.

- 2. Zeigen Sie, dass die Zahlen $\mu_1(t), \ldots, \mu_n(t)$ für fast alle $t \in \mathbb{R}$ paarweise verschieden sind.
- 3. Folgern Sie, dass B(t) für fast alle $t \in \mathbb{R}$ diagonalisierbar ist.
- 4. Folgern Sie, dass es für alle $\varepsilon > 0$ ein $D \in D_n(\mathbb{C})$ mit $||A D|| < \varepsilon$ gibt.

Wir wollen die Dichtheit von $\mathrm{D}_n(\mathbb{C})\subseteq\mathrm{M}_n(\mathbb{C})$ nutzen, um den Satz von Cayley-Hamilton für komplexe Matrizen zu zeigen:

5. Zeigen Sie, dass die Abbildung

$$F: M_n(\mathbb{C}) \to M_n(\mathbb{C}), A \mapsto \chi_A(A)$$

stetig ist, wobe
i $\chi_A(T)\in\mathbb{C}[T]$ das charakteristische Polynom von Aist.

(*Hinweis*: Die Matrixpotenzen $A\mapsto A^k$ sind stetig, und die Koeffizienten des charakteristischen Polynoms χ_A sind Polynome in den Einträgen von A.)

- 6. Zeigen Sie, dass F(D) = 0 für jede Diagonalmatrix $D \in M_n(\mathbb{C})$.
- 7. Zeigen Sie, dass $P(SAS^{-1}) = SP(A)S^{-1}$ für alle $P \in \mathbb{C}[T]$, $A \in M_n(\mathbb{C})$ und $S \in GL_n(\mathbb{C})$. Folgern Sie, dass F(D) = 0 für jede Matrix $D \in D_n(\mathbb{C})$.
- 8. Folgern Sie, dass F(A) = 0 für alle $A \in M_n(\mathbb{C})$.

3 Bilinearformen

Übung 61. Berechnung der Signatur quadratischer Formen (Pr. 1) Bestimmen Sie die Signatur (n_0, n_+, n_-) der folgenden quadratischen Formen auf \mathbb{R}^n :

1.
$$q(x_1, x_2) = 2x_1^2 - 3x_2^2 + 2x_1x_2$$

2.
$$q(x_1, x_2) = -x_1^2 + x_2^2 + ax_1x_2$$
 mit $a \in \mathbb{R}$

3.
$$q(x_1, x_2) = x_1^2 + 15x_2^2 + 6x_1x_2$$

4. $q(x_1, x_2) = 2x_1x_2$

5.
$$q(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 - 2x_1x_3 + x_2^2 - 2x_2x_3 - x_3^2$$

6.
$$q(x_1, x_2, x_3, x_4) = x_1^2 - 7x_2^2 - x_3^2 - x_4^2 + 2x_1x_2 - 6x_2x_3 + 6x_2x_4 + 2x_3x_4$$

Übung 62. You should be able to solve this

1. Bestimmen Sie für die Matrix

$$A \coloneqq \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in \mathrm{M}_n(\mathbb{R})$$

eine orthogonale Matrix $S \in O(3)$, so dass S^TAS eine Diagonalmatrix ist.

2. Bestimmen Sie für die symmetrische Bilinearform $\beta \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ mit

$$\beta\left(\begin{pmatrix}x_1\\x_2\end{pmatrix},\begin{pmatrix}y_1\\y_2\end{pmatrix}\right)\coloneqq x_1y_2+x_2y_1\quad\text{für alle }\begin{pmatrix}x_1\\x_2\end{pmatrix},\begin{pmatrix}y_1\\y_2\end{pmatrix}\in\mathbb{R}^2$$

eine Basis \mathcal{B} von \mathbb{R}^2 , so dass β bezüglich \mathcal{B} durch eine Diagonalmatrix mit möglichen Diagonaleinträgen 0, 1, -1 dargestellt wird.

Übung 63. Eine Beschreibung vom Typ (1,1)

(Pr. 2)

(Pr. 1)

Es sei V ein zweidimensionaler \mathbb{R} -Vektorraum und $\beta\colon V\times V\to \mathbb{R}$ eine symmetrische Bilinearform. Zeigen Sie, dass β genau dann vom Typ (1,1) ist, wenn es $v_+,v_-\in V$ mit $\beta(v_+,v_+)>0$ und $\beta(v_-,v_-)<0$ gibt.

Übung 64. Einschränkung nicht-entarteter Bilinearformen

(Pr. 2)

Es sei V ein K-Vektorraum und $\beta\colon V\times V\to K$ eine nicht-entartete Bilinearform, d.h. für jedes $v\in V$ mit $v\neq 0$ gibt es $w\in V$ mit $\beta(v,w)\neq 0$. Entscheiden Sie, ob für jeden Untervektorraum $U\subseteq V$ die Einschränkung $\beta|_{U\times U}$ notwendigerweise ebenfalls nicht-entartet ist; geben Sie gegebenenfalls ein Gegenbeispiel an.

Übung 65. Die Polarisationsformel(n)

(Pr. 2)

Es sei V ein K-Vektorraum, $\beta\colon V\times V\to K$ eine symmetrische Bilinearform und $q\colon V\to K,\,v\mapsto \beta(v,v)$ die zugehörige quadratische Form.

- 1. Zeigen Sie für den Fall char $K \neq 2$ mithilfe einer Polarisationsformel, dass β durch q bereits eindeutig bestimmt ist.
- 2. Folgern Sie: Ist char $K \neq 2$, $V \neq 0$ und β nicht-entartet, d.h. für jedes $v \in V$ mit $v \neq 0$ gibt es ein $w \in V$ mit $\beta(v, w) \neq 0$, so gibt es ein $v \in V$ mit $\beta(v, v) \neq 0$.
- 3. Zeigen Sie für den Fall char K=2, dass es unterschiedliche symmetrische Bilinearformen mit gleicher quadratischer Form geben kann, indem Sie ein explizites Beispiel angeben.

Übung 66. Multiple Choice zu reellen symmetrischen Bilinearformen

(Pr. 2)

Entscheiden Sie, welche der folgenden Aussagen für jeden reellen Vektorraum V und jede symmetrische Bilinearform $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ mit $\beta \neq 0$ gilt. Geben Sie gegebenenfalls ein Gegenbeispiel.

- 1. Ist $\langle v, v \rangle \geq 0$ für alle $v \in V$, so ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt.
- 2. Ist \mathcal{B} eine Basis von V mit $\langle b_1, b_2 \rangle > 0$ für alle $b_1, b_2 \in \mathcal{B}$, so ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt.
- 3. Die Teilmenge rad $\beta := \{v \in V \mid \langle v, w \rangle = 0 \text{ für alle } w \in V \}$ ist ein Untervektorraum von V.
- 4. Die Teilmengen

$$U_{+} := \{ v \in V \mid \langle v, v \rangle \ge 0 \} \quad \text{und} \quad U_{-} := \{ v \in V \mid \langle v, v \rangle \le 0 \}$$

sind Untervektorräume von V.

- 5. Die Teilmenge $U_0 := \{v \in V \mid \langle v, v \rangle = 0\}$ ist ein Untervektorraum von V.
- 6. Ist V endlichdimensional, so gilt für jeden Untervektorraum $U\subseteq V$ die Gleichung dim $V=\dim U+\dim U^\perp$
- 7. Ist $\beta \neq 0$ und $U \subseteq V$ ein Untervektorraum mit $(U^{\perp})^{\perp} = V$, so ist U = V.
- 8. Für alle Untervektorräume $U_1, U_2 \subseteq V$ gilt $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- 9. Für rad $\beta = \{v \in V \mid \langle v, w \rangle = 0 \text{ für alle } w \in V \}$ und jeden Untervektorraum $U \subseteq V$ gilt

$$(U^{\perp})^{\perp} = U + \operatorname{rad} \beta.$$

Übung 67. Matrizen als Bilinearformen und lineare Abbildungen

(Pr. 2)

Es sei V ein endlichdimensionaler K-Vektorraum, $b \colon V \times V \to K$ eine Bilinearform, $\mathcal{B} = (b_1, \dots, b_n)$ eine Basis von V, und $\mathcal{B}^* = (b_1^*, \dots, b_n^*)$ die entsprechende duale Basis von V^* .

- 1. Zeigen Sie, dass die Abbildung $B\colon V\to V^*,\,v\mapsto b(-,v)$ linear ist.
- 2. Zeigen Sie die Gleichheit $M_{\mathcal{B}}(b) = M_{\mathcal{B},\mathcal{B}^*}(B)$. (Beachten Sie, dass auf der linken Seite die darstellende Matrix einer Bilinearform steht, und auf der rechten Seite die darstellende Matrix einer linearen Abbildung.)

Übung 68. Die duale Abbildung als Adjungiertes

(Pr. 3)

Es seien V und W zwei K-Vektorräume und $f: V \to W$ sei eine lineare Abbildung.

- 1. Geben Sie die Definition der dualen Abbildung $f^*: W^* \to V^*$ an, und zeigen Sie ihre Linearität.
- 2. Zeigen Sie für jeden K-Vektorraum U, dass die Abbildung

$$\langle \cdot, \cdot \rangle : U \times U^* \to K \quad \text{mit} \quad \langle v, \varphi \rangle = \varphi(v) \quad \text{für alle } v \in V, \varphi \in V^*$$

eine Bilinearform ist.

3. Zeigen Sie, dass $\langle f(v), \psi \rangle = \langle v, f^*(\psi) \rangle$ für alle $v \in V$ und $\psi \in W^*$.

Übung 69. Existenz raumartiger Vektoren

(Pr. 3)

Es sei V ein K-Vektorraum und $\beta \colon V \times V \to K$ eine symmetrische Bilinearform.

1. Zeigen Sie, dass

$$rad(\beta) := \{ v \in V \mid \beta(v, w) = 0 \text{ für alle } w \in V \}$$

ein Untervektorraum von V ist. (Man bezeichnet $\operatorname{rad}(\beta)$ als das $\operatorname{\it Radikal}$ von β .)

2. Zeigen Sie: β induziert eine symmetrische Bilinearform

$$\bar{\beta} \colon (V/\operatorname{rad}(\beta)) \times (V/\operatorname{rad}(\beta)) \to K \quad \text{mit} \quad \bar{\beta}(\overline{v}, \overline{w}) \coloneqq \beta(v, w) \quad \text{für alle } v, w \in V.$$

3. Zeigen Sie, dass $\bar{\beta}$ nicht-entartet ist, d.h. dass für das Radikal

$$\operatorname{rad}(\bar{\beta}) := \{ x \in V / \operatorname{rad}(\beta) \mid \bar{\beta}(x, y) = 0 \text{ für alle } y \in V / \operatorname{rad}(\beta) \}$$

bereits $rad(\bar{\beta}) = 0$ gilt.

4. Inwiefern gelten die obigen Aussagen, wenn man $\operatorname{rad}(\beta)$ durch $W := \{v \in V \mid \beta(v, v) = 0\}$ ersetzt?

Übung 70. Induzierte nicht-entartete Bilinearformen auf Quotienten

(Pr. 3)

Es sei V ein K-Vektorraum und $b \colon V \times V \to K$ eine Bilinearform.

- 1. Zeigen Sie für char $K \neq 2$, dass es eindeutige Bilinearformen $b_s, b_a \colon V \times V \to K$ gibt, so dass
 - $b = b_s + b_a$ und
 - b_s ist symmetrisch und b_a ist alternierend.
- 2. Zeigen Sie durch Angabe eines Gegenbeispiels, dass die Aussage für char K=2 nicht notwendigerweise gilt.

Es sei nun V der reelle Vektorraum der Polynomfunktionen $\mathbb{R} \to \mathbb{R}$.

- 3. Zeigen Sie, dass die Abbildung $b: V \times V \to \mathbb{R}$ mit $b(p,q) \coloneqq \int_{-1}^{1} p(t)q'(t) dt$ eine Bilinearform ist.
- 4. Geben Sie den symmetrischen Anteil b_s in einer Form an, in der kein Integral vorkommt.

Übung 71. Zerlegung einer Bilinearform in symmetrischen und alternierenden Teil

(Pr. 3)

- 1. Zeigen Sie, dass die Abbildung $\sigma \colon \mathrm{M}_n(K) \times \mathrm{M}_n(K) \to K$ mit $\sigma(A,B) \coloneqq \mathrm{tr}(AB)$ eine symmetrische Bilinearform ist. Man bezeichnet diese als die *Traceform*.
- 2. Zeigen Sie, dass σ in dem Sinne assoziativ ist, dass $\sigma(AB,C) = \sigma(A,BC)$ für alle $A,B,C \in M_n(K)$.
- 3. Zeigen Sie, dass σ auch in dem Sinne assoziativ ist, dass $\sigma([A,B],C)=\sigma(A,[B,C])$ für alle $A,B,C\in \mathrm{M}_n(K)$.
- 4. Zeigen sie, dass σ nicht-entartet ist, d.h. dass es für jedes $A \in M_n(K)$ mit $A \neq 0$ ein $B \in M_n(K)$ mit $\sigma(A, B) \neq 0$ gibt.

(*Hinweis*: Betrachten Sie die Matrizen $E_{ij} \in M_n(K)$.)

Es sei nun

$$S_+ \coloneqq \{A \in \mathsf{M}_n(K) \mid A^T = A\}$$

der Untervektorraum der symmetrischen Matrizen und

$$S_{-} := \{A \in M_n(K) \mid A^T = -A\}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie:

- 5. Ist char $K \neq 2$, so sind S_+ und S_- bezüglich σ orthogonal zueinander. (*Hinweis*: Überlegen Sie sich, dass $\sigma(A^T, B^T) = \sigma(A, B)$ für alle $A, B \in M_n(K)$.)
- 6. Ist $K = \mathbb{R}$, so ist die Einschränkung von σ auf S_+ positiv definit, und die Einschränkung auf S_- negativ definit.

Übung 72. Die Traceform

(Pr. 3)

Ist $\beta: V \times W \to K$ eine Bilinearform, so heißen eine Basis $\mathcal{B} = (v_i)_{i \in I}$ von V und eine Basis $\mathcal{C} = (w_i)_{i \in I}$ von W dual bezüglich β , falls

$$\beta(v_i, w_j) = \delta_{ij}$$
 für alle $i, j \in I$.

Es sei zunächst V ein K-Vektorraum.

- 1. Zeigen Sie, dass die Evaluation $e: V \times V^* \to K$ mit $e(v, \varphi) = \varphi(e)$ eine K-bilineare Abbildung ist.
- 2. Zeigen Sie: Ist V endlichdimensional, so gibt es zu jeder Basis $\mathcal{B}=(b_1,\ldots,b_n)$ von V genau eine Basis \mathcal{C} von V^* , die bezüglich e dual zu \mathcal{B} ist. Woher kennen Sie diese Basis?

Von nun an sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$.

- 3. Zeigen Sie, dass die Abbildung $\Phi \colon V \to V^*, v \mapsto \langle -, v \rangle$ ein Isomorphismus ist.
- 4. Folgern Sie, dass es für jede Basis $\mathcal{B}=(b_1,\ldots,b_n)$ von V genau eine Basis $\mathcal{B}^\circ=(b_1^\circ,\ldots,b_n^\circ)$ von V gibt, die bezüglich $\langle\cdot,\cdot\rangle$ dual zu \mathcal{B} ist.

(*Hinweis*: Formulieren Sie die Aussage, dass \mathcal{B}° dual zu \mathcal{B} ist, mithilfe von Φ um.)

5. Zeigen Sie, dass die Abbildung

$$\{\text{geordnete Basen von }V\} \to \{\text{geordnete Basen von }V\}, \quad \mathcal{B} \mapsto \mathcal{B}^{\circ}$$

eine Involution ist.

6. Unter welchen Namen kennen Sie Basen von V, die bezüglich $(-)^{\circ}$ selbstdual sind, die also $\mathcal{B}^{\circ} = \mathcal{B}$ erfüllen?

Übung 73. Dualität von Basen

(Pr. 3)

Es sei $n \ge 1$ und V ein (n+1)-dimensionaler reeller Vektorraum und $\beta \colon V \times V \to \mathbb{R}$ eine symmetrische Bilinearform vom Typ (n,1).

- 1. Es seien $u,v\in V$ zwei linear unabhängige Vektoren mit $\beta(u,u),\beta(v,v)\leq 0$. Zeigen Sie, dass es $w\in \mathcal{L}(u,v)$ mit $\beta(w,w)>0$ gibt.
- 2. Folgern Sie, dass es für jeden zweidimensionalen Untervektorraum $U\subseteq V$ einen Vektor $w\in U$ mit $\beta(w,w)>0$ gibt.

Übung 74. Isometriegruppe und Lie-Algebra einer Bilinearform in Koordinaten Es sei $B \in M_n(\mathbb{K})$. Es seien

(Pr. 4)

(Pr. 4)

$$\mathcal{O}(B) := \{ S \in \mathrm{GL}_n(\mathbb{K}) \mid S^T B S = B \}$$

und

$$\mathfrak{g}(B) \coloneqq \{A \in \mathsf{M}_n(\mathbb{K}) \mid A^T B = -BA\}$$

- 1. Zeigen Sie, dass O(B) eine Untergruppe von $GL_n(\mathbb{K})$ ist.
- 2. Zeigen Sie, dass $\mathfrak{g}(B)$ eine Lie-Unteralgebra von $\mathfrak{gl}_n(\mathbb{K})$ ist, dass also $[A_1,A_2]\in\mathfrak{g}(B)$ für alle $A_1,A_2\in\mathfrak{g}(B)$.
- 3. Zeigen Sie, dass $\exp(A) \in O(B)$ für alle $A \in \mathfrak{g}(B)$. (*Hinweis*: Zeigen Sie zunächst, dass $\exp(A)^T B = B \exp(-A)$.)
- 4. Geben Sie für $\mathbb{K} = \mathbb{R}$ eine Matrix $B \in M_n(\mathbb{R})$ an, so dass O(B) = O(n). Was sind dann die Elemente von $\mathfrak{g}(B)$?

Übung 75. Isometriegruppe und Lie-Algebra einer Bilinearform ohne Koordinaten (Pr. 4) Dies ist eine koordinatenfreie Version von Übung 74. Für einen endlichdimensionalen \mathbb{K} -Vektorraum V und eine Bilinearform $\beta\colon V\times V\to \mathbb{K}$ sei

$$O(\beta) := \{ \phi \in GL(V) \mid \beta(\phi(x), \phi(y)) = \beta(x, y) \text{ für alle } x, y \in V \}$$

die Isometriegruppe von β , und

$$g(\beta) := \{ f \in End(V) \mid \beta(f(x), y) = -\beta(x, f(y)) \text{ für alle } x, y \in V \}$$

die assoziierte Lie-Algebra.

- 1. Zeigen Sie, dass $O(\beta)$ eine Untergruppen von GL(V) ist.
- 2. Zeigen Sie, dass $\mathfrak{g}(\beta)$ eine Lie-Unteralgebra von $\mathfrak{gl}(V)$ ist, d.h. dass $[f,g] \in \mathfrak{g}(\beta)$ für alle $f,g \in \mathfrak{g}(\beta)$.
- 3. Zeigen Sie, dass $\exp(f) \in \mathrm{O}(\beta)$ für alle $f \in \mathfrak{g}(\beta)$. (*Hinweis*: Zeigen Sie zunächst, dass $\beta(\exp(f)(x), y) = \beta(x, \exp(-f)(y))$ für alle $x, y \in V$. Nutzen Sie hierfür, dass die Bilinearform β in beiden Argumenten stetig ist.)
- 4. Es sei $\mathbb{K}=\mathbb{R}$ und $\langle\cdot,\cdot\rangle$ ein Skalarprodukt auf V. Unter welchen Begriffen sind die Elemente aus $G(\langle\cdot,\cdot\rangle)$ und $\mathfrak{g}(\langle\cdot,\cdot\rangle)$ bekannt?

Übung 76. Symbolmanipulation und kanonische Abbildungen Für je zwei K-Vektorräume V und W sei

 $Bil(V, W) := \{b \colon V \times W \to K \mid b \text{ ist bilinear}\}$

der K-Vektorraum der Bilinearformen $V \times W \to K$.

1. Zeigen Sie, dass die Flipabbildung $F_{V,W}$: Bil $(V,W) \to \text{Bil}(W,V)$ mit

$$F_{V,W}(b)(w,v) = b(v,w)$$
 für alle $v \in V$, $w \in W$

ein Isomorphismus von K-Vektorräumen ist.

2. Es sei $b \in \text{Bil}(V, W)$ eine Bilinearform. Zeigen Sie, dass b ein lineare Abbildung

$$\Phi_{V,W}(b) \colon V \to W^*, \quad v \mapsto b(v,-)$$

induziert. Dabei ist $b(v, -): W \to K, w \mapsto b(v, w)$.

3. Zeigen Sie, dass die Abbildung

$$\Phi_{V,W} \colon \text{Bil}(V,W) \to \text{Hom}(V,W^*), \quad b \mapsto \Phi_{V,W}(b)$$

ein Isomorphismus von K-Vektorräumen ist.

4. Konstruieren Sie mithilfe der vorherigen Aufgabenteile einen Isomorphismus von K-Vektorräumen $T_{V,W}$: $\operatorname{Hom}(V,W^*) \to \operatorname{Hom}(W,V^*)$, so dass das folgende Diagramm kommutiert:

$$\begin{array}{c|c} \operatorname{Bil}(V,W) & \xrightarrow{F_{V,W}} & \operatorname{Bil}(W,V) \\ & & \downarrow^{\Phi_{V,W}} & & \downarrow^{\Phi_{W,V}} \\ \operatorname{Hom}(V,W^*) & \xrightarrow{T_{V,W}} & \operatorname{Hom}(W,V^*) \end{array}$$

Wir betrachten nun den Fall $W = V^*$.

- 5. Zeigen Sie, dass die Evaluation $e: V \times V^* \to K$, $(v, \varphi) \mapsto \varphi(v)$ eine Bilinearform ist.
- 6. Nach den vorherigen Aufgabenteilen entspricht die Bilinearform $e \in \text{Bil}(V, V^*)$ einer linearen Abbildung $V \to V^{**}$, sowie einer linearen Abbildung $V^* \to V^*$. Bestimmen Sie diese Abbildungen.
- 7. Woher kennen Sie diese Abbildung?

4 Quotientenvektorräume

Übung 77. Die universelle Eigenschaft des Quotienten

(Pr. 1)

Es seien V und W zwei K-Vektorräume und $f:V\to W$ sei eine lineare Abbildung.

1. Es sei $U \subseteq V$ ein Untervektorraum mit $f|_U = 0$. Zeigen Sie, dass f eine lineare Abbildung

$$\bar{f} \colon V/U \to W, \quad \bar{v} \mapsto f(v)$$

induziert.

- 2. Zeigen Sie, dass im $\bar{f}=\operatorname{im} f$. Folgern Sie, dass \bar{f} genau dann surjektiv ist, wenn f surjektiv ist.
- 3. Zeigen Sie, dass $U\subseteq\ker f$, und dass $\ker \bar f=(\ker f)/U$. Folgern Sie, dass $\bar f$ genau dann injektiv ist, wenn bereits die Gleichheit $U=\ker f$ gilt.
- 4. Folgern Sie, dass f einen Isomorphismus $V/(\ker f) \to \operatorname{im} f, \overline{v} \mapsto f(v)$ induziert.

Übung 78. Charakterisierung von Untervektorräumen

(Pr. 1)

Zeigen Sie, dass eine Teilmenge $U\subseteq V$ eines K-Vektorraums V genau dann ein Untervektorraum ist, wenn es einen K-Vektorraum W und eine lineare Abbildung $f\colon V\to W$ gibt, so dass $U=\ker f$.

Übung 79. Isomorphiesätze

(Pr. 1)

Es sei V ein K-Vektorraum mit zwei Untervektorräumen $U_1, U_2 \subseteq V$. Zeigen Sie die folgenden beiden Isomorphiesätze:

1. Die Inklusion $U_1 \to U_1 + U_2$, $x \mapsto x$ induziert einen Isomorphismus

$$U_1/(U_1 \cap U_2) \to (U_1 + U_2)/U_2$$
, $\overline{x} \mapsto \overline{x}$ für alle $x \in V$.

2. Ist $U_1 \subseteq U_2$, so ist U_2/U_1 ein Untervektorraum von V/U_1 , und die Abbildung

$$(V/U_1)/(U_2/U_1) \to V/U_2$$
, $\overline{\overline{x}} \mapsto \overline{x}$ für alle $x \in V$

ist ein wohldefinierter Isomorphismus.

Übung 80. Vektorräume als Quotienten freier Vektorräume

(Pr. 2)

Es sei V ein K-Vektorraum mit Erzeugendensystem $E\subseteq V$. Es sei W ein K-Vektorraum mit Basis $(b_e)_{e\in E}$. Konstruieren Sie einen Isomorphismus $W/U\to V$ für einen passenden Untervektorraum $U\subseteq W$.

Übung 81. Annihilatoren als Dualräume von Quotienten

(Pr. 2)

Es sei V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Konstruieren Sie für den Annihilator

$$U^{\circ} = \{ \varphi \in V^* \mid \varphi(u) = 0 \text{ für alle } u \in U \}$$

einen Isomorphismus $F: U^{\circ} \to (V/U)^*$.

Übung 82. Induzierte Endomorphismen auf Quotienten

(Pr. 2)

Es sei V ein K-Vektorraum und $f,g\colon V\to V$ seien Endomorphismus. Es sei $U\subseteq V$ ein Untervektorraum, der invariant unter f und g ist.

1. Zeigen Sie: Der Endomorphismus f induziert einen Endomorphismus

$$\bar{f} \colon V/U \to V/U, \quad [v] \mapsto [f(v)].$$

Analog induziert dann auch g einen Endomorphismus $\bar{g} \colon V \to V$, $[v] \mapsto [g(v)]$.

2. Es seien $f|_U=g|_U$ und $\bar{f}=\bar{g}$. Beweisen oder widerlegen Sie, dass bereits f=g gelten muss.

Übung 83. Herausteilen von direkten Summanden

(Pr. 3)

Es sei V ein K-Vektorraum und $U,W\subseteq V$ seien zwei Untervektorräume mit $V=U\oplus W$. Konstruieren Sie einen Isomorphismus $V/U\to W$.

Übung 84. Quotienten von Vektorräumen sind Quotientenvektorräume

Es sei V ein K-Vektorraum und \sim eine Äquivalenzrelation auf V, so dass auf V/\sim die Addition

$$\overline{v} + \overline{w} = \overline{v + w}$$
 für alle $v, w \in V$

und die Skalarmultiplikation

$$\lambda \cdot \overline{v} = \overline{\lambda \cdot v}$$
 für alle $\lambda \in K, v \in V$

wohldefiniert sind.

- 1. Zeigen Sie, dass V/\sim mit den obigen Operationen ein K-Vektorraum ist, und dass die Äquivalenzklasse $\overline{0}$ das Nullelement von V/\sim ist.
- 2. Zeigen Sie, dass die kanonische Abbildung $\rho \colon V \to V/\sim$ mit $v \mapsto \overline{v}$ ein Epimorphismus ist.
- 3. Zeigen Sie für $U := \ker \rho$, dass

$$v \sim w \iff v - w \in U \quad \text{für alle } v, w \in V.$$

4. Folgern Sie, dass $V/\sim = V/U$, und dass ρ die kanonische Projektion des Quotientenvektorraums ist.

Übung 85. Seminormen induzieren Normen auf dem Quotienten

(Pr. 3)

(Pr. 3)

Es sei V ein \mathbb{K} -Vektorraum. Eine Abbildung $[\cdot]:V\to V$ heißt Seminorm, falls

- $[\lambda x] = |\lambda|[x]$ für alle $\lambda \in \mathbb{K}$ und $x \in V$ (Homogenität), und
- $[x+y] \le [x] + [y]$ für alle $x, y \in V$ (Dreiecksungleichung).

Zeigen Sie:

- 1. Die Teilmenge $N := \{x \in V \mid [x] = 0\}$ ist ein Untervektorraum von V.
- 2. Die Seminorm $[\cdot]$ induziert auf V/U eine Norm $\|\cdot\|$ durch

$$\|\overline{x}\| \coloneqq [x] \quad \text{für alle } x \in V.$$

3. Es sei $V:=\mathcal{C}(\mathbb{R},\mathbb{R})$ der Vektorraum der \mathbb{R} -Vektorraum der reellwertigen stetigen Funktionen auf der reellen Geraden. Es sei

$$[f] \coloneqq \sup_{x \in [0,1]} |f(x)| \quad \text{für alle } f \in V.$$

Zeigen Sie, dass $[\cdot]$ eine Seminorm auf V definiert, die aber keine Norm ist. Durch die obige Konstruktion erhalten wir einen normierten \mathbb{R} -Vektorraum $(V/N, \|\cdot\|)$, wobei $N \coloneqq \{f \in V \mid [f] = 0\}$ und $\|\overline{f}\| = [f]$ für alle $f \in V$.

Konstruieren Sie einen Isomorphismus $\varphi\colon V/N\to \mathcal{C}([0,1],\mathbb{R})$, der eine Isometrie bezüglich der Norm $\|\cdot\|$ von V/N und der Supremumsnorm $\|\cdot\|_\infty$ von $\mathcal{C}([0,1],\mathbb{R})$ ist, d.h. für alle $f\in V/U$ ist $\|\varphi(f)\|_\infty=\|f\|$. (Wer können den Quotienten V/U, dessen Elemente Äquivalenzklassen von Funktionen sind, also als die stetigen Funktionen auf dem Einheitsintervall betrachten, und diese Identifikation ist mit den jeweiligen Normen verträglich.)

Übung 86. Basen von Quotientenvektorräumen

(Pr. 3)

Es sei V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Es sei $\pi\colon V\to V/U,\,v\mapsto [v]$ die kanonische Projektion.

- 1. Es sei $(b_i)_{i\in I}$ eine Basis von V, so dass es eine Teilmenge $J\subseteq I$ gibt, so dass $(b_j)_{j\in J}$ eine Basis von U ist. Zeigen Sie, dass $(\overline{b_i})_{i\in I\smallsetminus J}$ eine Basis von V/U ist.
- 2. Folgern Sie die folgenden Dimensionsformeln für einen endlich
dimensionalen K-Vektorraum V: Ist $U\subseteq V$ ein Untervektorraum, so
ist

$$\dim V/U = \dim V - \dim U.$$

Ist $f: V \to W$ eine lineare Abbildung in einen weiteren K-Vektorraum W, so ist

$$\dim V = \dim \ker f + \dim \operatorname{im} f.$$

3. Es sei $(b_i)_{i\in I}$ eine Basis von U und $(c_j)_{j\in J}$ eine Basis von V/U, wobei $I\cap J=\emptyset$. Für jedes $j\in J$ sei $b_j\in V$ eine Element mit $\pi(b_j)=c_j$. Zeigen Sie, dass $(b_\ell)_{\ell\in L}$ für $L\coloneqq I\cup J$ ist eine Basis von V ist.

Übung 87. Definition von Vektorräumen über Erzeuger und Relationen

(Pr. 3)

Es sei K ein Körper. Konstruieren Sie ein Paar (V,E), bestehend aus einem K-Vektorraum V und einer Familie $E=(v_1,\ldots,v_5)$ von Vektoren $v_1,\ldots,v_n\in V$ mit den folgenden Eigenschaften:

- 1. Die Familie E ist ein Erzeugendensystem von V.
- 2. Zwischen den Erzeugern aus E gelten die folgenden Beziehungen:
 - $3v_3 = 2v_1 v_4$,
 - $2v_2 = 3v_1 v_5$, und
 - $4v_5 2v_1 = v_3 + 3v_4$.
- 3. Das Paar (V, E) ist im folgenden Sinne *universell*:

Es sei (W,F) ein weiteres Paar, bestehend aus einem K-Vektorraum W und einer Familie $F=(w_1,\ldots,w_5)$ von Vektoren $w_1,\ldots,w_5\in W$, so dass W und F die obigen Bedingungen erfüllen (wobei V durch W, E durch F und v_i durch w_i ersetzt wird).

Dann gibt es eine eindeutige lineare Abbildung $f: V \to W$ mit $f(v_i) = w_i$ für alle $i = 1, \ldots, 5$.

Übung 88. Die Universelle Eigenschaft des Kerns und des Kokerns

(Pr. 3)

Es seien V und W zwei K-Vektorräume und $f:V\to W$ eine lineare Abbildung. Es sei

$$i \colon \ker f \to V, \quad v \mapsto v$$

die kanonische Inklusion und

$$p \colon W \to \operatorname{coker} f, \quad w \mapsto \overline{w}$$

die kanonische Projektion.

1. Zeigen Sie, dass $f \circ i = 0$ und $p \circ f = 0$.

2. Zeigen Sie, dass es für jeden K-Vektorraum U und jede lineare Abbildung $h: U \to V$ mit $f \circ h = 0$ eine eindeutige lineare Abbildung $\bar{h}: U \to \ker f$ gibt, so dass das folgende Diagramm kommutiert:

3. Zeigen Sie, dass es für jeden K-Vektorraum U und jede lineare Abbildung $g\colon W\to U$ mit $g\circ f=0$ eine eindeutige lineare Abbildung $\bar g\colon \operatorname{coker} f\to U$ gibt, so dass das folgende Diagramm kommutiert:

Übung 89. Alternative Beschreibung der Spur

(Pr. 4)

Es sei K ein Körper und

$$\mathfrak{sl}_n(K) := \{ A \in \mathcal{M}_n(K) \mid \operatorname{tr} A = 0 \}.$$

- 1. Zeigen Sie, dass $\mathfrak{sl}_n(K)$ ein Untervektorraum von $\mathrm{M}_n(K)$ mit dim $\mathfrak{sl}_n(K)=n^2-1$ ist.
- 2. Zeigen Sie, dass

$$\mathcal{B} := \{ E_{ij} \mid 1 \le i \ne j \le n \} \cup \{ E_{11} - E_{ii} \mid 2 \le i \le n \}$$

eine Basis von $\mathfrak{sl}_n(K)$ ist, wobei $E_{ij} \in \mathcal{M}_n(K)$ die Matrix ist, deren (i,j)-ter Eintrag 1 ist, und für die alle anderen Einträge 0 sind.

Es sei nun $C := \mathcal{L}([A, B] \mid A, B \in \mathcal{M}_n(K)).$

- 3. Zeigen Sie, dass $\operatorname{tr}([A,B])=0$ für alle $A,B\in\operatorname{M}_n(K)$. Folgern Sie, dass $C\subseteq\operatorname{\mathfrak{sl}}_n(K)$.
- 4. Zeigen Sie, dass $\mathfrak{sl}_n(K) \subseteq C$, indem Sie jedes der Basiselemente aus \mathcal{B} also Kommutator schreiben. (*Hinweis*: Überlegen Sie sich zunächst, dass $E_{ij}E_{kl}=\delta_{jk}E_{il}$ für alle $1\leq i,j,k,l\leq n$.)

Es ist also $\mathfrak{sl}_n(K)=\mathcal{L}([A,B]\mid A,B\in \mathrm{M}_n(K))$ ein (n^2-1) -dimensionaler Untervektorraum. Es sei nun $f\colon \mathrm{M}_n(K)\to K$ eine lineare Abbildung mit f(AB)=f(BA) für alle $A,B\in \mathrm{M}_n(K)$.

5. Zeigen Sie, dass f eine eindeutige lineare Abbildung

$$\overline{f} \colon \mathrm{M}_n(K)/\mathfrak{sl}_n(K) \to K, \quad \overline{A} \mapsto f(A)$$

induziert. Zeigen Sie, dass $\overline{\text{tr}} \neq 0$.

- 6. Zeigen Sie, dass $\mathrm{M}_n(K)/\mathfrak{sl}(K)$ eindimensional ist. Folgern Sie, dass es ein eindeutiges $\lambda \in K$ mit $\overline{f} = \lambda \overline{\operatorname{tr}}$ gibt.
- 7. Folgern Sie, dass bereits $f = \lambda$ tr gilt.

Die Spur ist also durch die Eigenschaft, dass tr(AB) = tr(BA) für alle $A, B \in M_n(K)$, bis auf skalares Vielfaches eindeutig bestimmt.

5 Verschiedenes

5.1 Allgemeines Zeugs

Übung 90. Invertierbarkeit im Endlichdimensionalen

(Pr. 1)

Es sei V ein K-Vektorraum und $f, g: V \to V$ seien zwei Endomorphismen.

- 1. Es sei $f \circ g = \mathrm{id}_V$ und V sei endlichdimensional. Zeigen Sie, dass auch $g \circ f = \mathrm{id}_V$.
- 2. Zeigen Sie, dass die Aussage nicht mehr notwendigerweise gilt, wenn V unendlichdimensional ist.

Übung 91. Dimensionsformel

(Pr. 1)

Es seien V und W zwei K-Vektorräume, so dass V endlichdimensional ist, und $f\colon V\to W$ sei eine lineare Abbildung. Zeigen Sie die Dimensionsformel

 $\dim V = \dim \ker f + \dim \operatorname{im} f$.

Übung 92. Operationen mit invarianten Unterräumen

(Pr. 1)

Es sei V ein Vektorraum und $f\colon V\to V$ ein Endomorphismus. Es sei $(U_i)_{i\in I}$ eine Familie von f-invarianten Untervektorräumen, und $U\subseteq V$ ein f-invarianter Untervektorraum. Zeigen Sie:

- 1. Auch der Schnitt $\bigcap_{i \in I} U_i$ ist f-invariant.
- 2. Auch die Summe $\sum_{i \in i} U_i$ ist f-invariant.

Übung 93. Konjugationsinvarianz der Spur

(Pr. 2)

Es sei K ein Körper.

- 1. Zeigen Sie, dass für alle $A, B \in M_n(K)$ die Gleichheit tr(AB) = tr(BA) gilt.
- 2. Folgern Sie, dass die Spur invariant unter Konjugation ist, d.h. dass

$$\operatorname{tr}(SAS^{-1})=\operatorname{tr}(A)\quad \text{für alle }A\in\operatorname{M}_n(K)\text{ und }S\in\operatorname{GL}_n(K).$$

Übung 94. Der Satz von Cayley-Hamilton

(Pr. 2)

- 1. Formulieren Sie den Satz von Cayley-Hamilton.
- 2. Zeigen Sie den Satz für (2×2) -Matrizen durch explizites Nachrechnen.
- 3. Zeigen Sie den Satz für Diagonalmatrizen.
- 4. Folgern Sie den Satz für diagonalisierbare Matrizen.

Übung 95. Invertieren durch das charakteristische Polynom

(Pr. 2)

Es sei $A \in GL_n(K)$ und $\chi_A(T)$ das charakteristische Polynom von A.

- 1. Zeigen Sie, dass der konstante Term von $\chi_A(T)$ nicht verschwindet.
- 2. Zeigen Sie, dass es ein Polynom $P \in K[T]$ gibt, so dass $A^{-1} = P(A)$.

Übung 96. Unterscheidung zwischen nilpotenten und lokal nilpotenten Endomorphismen (Pr. 3) Ein Endomorphismus $f\colon V\to V$ eines K-Vektorraums V heißt lokal nilpotent, falls es für jedes $v\in V$ ein $n\in\mathbb{N}$ mit $f^n(v)=0$ gibt.

- 1. Zeigen Sie, dass jeder nilpotente Endomorphismus auch lokal nilpotent ist.
- 2. Zeige Sie, dass 0 der einzige mögliche Eigenwert eines lokal nilpotenten Endomorphismus ist.
- 3. Geben Sie ein Beispiel für einen Vektorraum V und einen Endomorphismus $f\colon V\to V$ an, so dass f zwar lokal nilpotent, nicht aber nilpotent ist.
- 4. Zeigen Sie, dass jeder lokal nilpotente Endomorphismus eines endlichdimensionalen Vektorraums bereits nilpotent ist.

Übung 97.Zur Unterscheidung von Polynomen und Polynomfunktionen(Pr. 3)Es sei K ein endlicher Körper.

- 1. Geben Sie ein Polynom $p \in K[X]$ an, so dass zwar $p \neq 0$ aber $p(\lambda) = 0$ für alle $\lambda \in K$.
- 2. Geben Sie ein Polynom $p \in K[X]$ an, so dass zwar deg $p \geq 1$, aber $p(\lambda) = 1$ für alle $\lambda \in K$.
- 3. Folgern Sie, dass es keine algebraisch abgeschlossenen endlichen Körper gibt.

Übung 98. Auf- und absteigende Ketten von Bild und Kern (Pr. 3) Es sei V ein K-Vektorraum und $f:V\to V$ ein Endomorphismus. Für alle $k\in\mathbb{N}$ sei

$$R_k \coloneqq \operatorname{im} f^k \quad \text{und} \quad N_k \coloneqq \ker f^k.$$

1. Zeigen Sie, dass $R_0 = V$, und dass $R_i \supseteq R_{i+1}$ für alle $i \in \mathbb{N}$. Es gibt also eine absteigende Kette

$$V = R_0 \supseteq R_1 \supseteq R_2 \supseteq R_3 \supseteq R_4 \supseteq \cdots$$

von Untervektorräumen.

- 2. Zeigen Sie, dass für $i \in \mathbb{N}$ mit $R_i = R_{i+1}$ auch $R_{i+1} = R_{i+2}$ gilt.
- 3. Folgern Sie: Gilt in der obigen absteigenden Kette einmal Gleichheit, also $R_i = R_{i+1}$ für ein $i \in \mathbb{N}$, so stabilisiert die Kette bereits, d.h. es gilt $R_j = R_i$ für alle $j \ge i$.
- 4. Zeigen Sie, dass $N_0=0$, und dass $N_i\subseteq N_{i+1}$ für alle $i\in\mathbb{N}$. Es gibt also eine aufsteigende Kette

$$0 = N_0 \subset N_1 \subset N_2 \subset N_3 \subset N_4 \subset \cdots$$

von Untervektorräumen.

- 5. Zeigen Sie, dass für $i \in \mathbb{N}$ mit $N_i = N_{i+1}$ auch $N_{i+1} = N_{i+2}$ gilt.
- 6. Folgern Sie: Gilt in der obigen aufsteigende Kette einmal Gleichheit, also $N_i = N_{i+1}$ für ein $i \in \mathbb{N}$, so stabilisiert die Kette bereits, d.h. es gilt $N_j = N_i$ für alle $j \geq i$.
- 7. Folgern Sie: Ist V endlichdimensional, so stabilisieren beide Ketten.

Übung 99. Algebraische Endomorphismen

(Pr. 3)

Ein Endomorphismus $f: V \to V$ eines K-Vektorraums V heißt algebraisch (über K), falls es ein Polynom $P \in K[T]$ mit $P \neq 0$ gibt, so dass P(f) = 0 gilt.

- 1. Zeigen Sie, dass jeder Endomorphismus eines endlichdimensionalen Vektorraums algebraisch ist.
- 2. Geben Sie ein Beispiel für einen K-Vektorraum V und einen Endomorphismus $f:V\to V$, der nicht algebraisch ist.
- 3. Entscheiden Sie, ob die lineare Abbildung $K[X] \to K[X]$, $p \mapsto X \cdot p$ algebraisch ist.
- 4. Zeigen Sie, dass ein diagonalisierbarer Endomorphismus genau dann algebraisch ist, wenn er nur endlich viele Eigenwerte hat.

Übung 100. Einschränkung des Inversen

(Pr. 3)

Es sei V ein K-Vektorraum, $f \colon V \to V$ ein Automorphismus und $U \subseteq V$ ein f-invarianter Untervektorraum.

- 1. Zeigen Sie: Ist U endlichdimensional, so ist U auch invariant unter f^{-1} .
- 2. Zeigen Sie, dass die Aussage nicht gelten muss, falls U unendlichdimensional ist.

Übung 101. Das Zentrum des Matrizenrings

(Pr. 4)

Das Zentrum eines Rings R ist

$$Z(R) := \{ r \in R \mid rs = sr \text{ für alle } s \in R \}.$$

Man bemerke, dass R genau dann kommutativ ist, wenn Z(R)=R. Im Folgenden wird das Zentrum des Matrizenrings $\mathrm{M}_n(K)$ bestimmt. Hierfür sei

$$D_n(K) := KI = \{\lambda I \mid \lambda \in K\}$$

der Untervektorraum der Skalarmatrizen.

- 1. Zeigen Sie, dass $D_n(K) \subseteq Z(M_n(K))$.
- 2. Zeigen Sie für $A\in Z(\mathrm{M}_n(K))$, dass A eine Diagonalmatrix ist. (*Hinweis*: Betrachten Sie die Matrizen E_{ii} für $1\leq i\leq n$.)
- 3. Zeigen Sie ferner, dass alle Diagonaleinträge von A bereits gleich sind. (*Hinweis*: Betrachten Sie die Matrizen E_{ij} mit $1 \le i, j \le n$.)
- 4. Folgern Sie, dass $Z(M_n(K)) = D_n(K)$.

5.2 Diagonalisierbarkeit und Eigenzeugs

Übung 102. Multiple Choice zur Kombination diagonalisierbarer Endomorphismen

(Pr. 2)

Es seien $f,g\colon V\to V$ zwei Endomorphismen eines K-Vektorraums V. Entscheiden sie für die folgenden Aussagen jeweils, ob diese allgemein gültig sind. Geben Sie, sofern möglich, auch ein Gegenbeispiel an.

- 1. Sind f und g diagonalisierbar, so ist auch $f \circ g$ diagonalisierbar.
- 2. Kommutieren f und g und ist $f \circ g$ diagonalisierbar, so ist f oder g diagonalisierbar.
- 3. Sind f und g diagonalisierbar, so ist auch f + g diagonalisierbar.
- 4. Falls f und g kommutieren und diagonalisierbar sind, so ist auch f + g diagonalisierbar.
- 5. Ist f diagonalisierbar, so ist für jedes $p \in K[X]$ auch p(f) diagonalisierbar.
- 6. Falls f und g kommutieren und diagonalisierbar sind, so folgt, wenn g invertierbar ist, dass $f \circ g^{-1}$ diagonalisierbar ist.

Übung 103. Einschränkung diagonalisierbarer Endomorphismen

(Pr. 2)

Es sei V ein K-Vektorraum und $f\colon V\to V$ ein diagonalisierbarer Endomorphismus von V (d.h. es gilt $V=\bigoplus_{\lambda\in K}V_\lambda(f)$). Zeigen Sie, dass für jeden f-invarianten Untervektorraum $U\subseteq V$ die Einschränkung $f|_U\colon U\to U$ diagonalisierbar ist, und dass $U_\lambda(f|_U)=U\cap V_\lambda(f)$ für alle $\lambda\in K$.

Übung 104. Zur Existenz gemeinsamer Eigenvektoren

(Pr. 3)

Es sei $V \neq 0$ ein K-Vektorraum, wobei K algebraisch abgeschlossen ist. Es seien $f_1, \ldots, f_n \colon V \to V$ paarweise kommutierende Endomorphismen.

1. Zeigen Sie, dass für alle $I \subseteq \{1, \dots, n\}$ und Skalare $\lambda_i \in K$ mit $i \in I$ der gemeinsame Eigenraum

$$V((f_i, \lambda_i)_{i \in I}) := \{ v \in V \mid f_i(v) = \lambda_i v \text{ für alle } i \in I \}.$$

invariant unter f_1, \ldots, f_n ist.

2. Folgern Sie, dass die Endomorphismen f_1, \ldots, f_n einen gemeinsamen Eigenvektor besitzen, d.h. dass es einen Vektor $v \in V$ gibt, so dass v für jedes f_i eine Eigenvektor ist.

(*Hinweis*: Konstruieren sie induktiv $\lambda_1, \ldots, \lambda_n \in K$, so dass $V((f_1, \lambda_1), \ldots, (f_i, \lambda_i)) \neq 0$ für alle $i = 1, \ldots, n$.)

Übung 105. Simultane Diagonalisierbarkeit

(Pr. 2)

Es sei V ein K-Vektorraum. Für alle Endomorphismen $f_1,\ldots,f_n\colon V\to V$ und Skalare (Eigenwerte) $\lambda_1,\ldots,\lambda_n\in K$ sei

$$V(f_1, \lambda_1; \dots; f_n, \lambda_n) := \{v \in V \mid f_i(v) = \lambda_i v \text{ für alle } i = 1, \dots, n\}$$

der gemeinsame Eigenraum der Endomorphismen f_1,\ldots,f_n zu den Eigenwerten $\lambda_1,\ldots,\lambda_n$.

1. Zeigen Sie, dass

$$V(f_1, \lambda_1; \dots; f_n, \lambda_n) = \bigcap_{i=1}^n V(f_i, \lambda_i)$$

für alle Endomorphismen $f_1, \ldots, f_n \in \text{End}(V)$ und Eigenwerte $\lambda_1, \ldots, \lambda_n \in K$.

- 2. Es seien $f_1, \ldots, f_n, g \in \operatorname{End}(V)$ Endomorphismen, so dass g mit jedem f_i kommutiert. Zeigen sie, dass der gemeinsame Eigenraum $V(f_1, \lambda_1; \ldots; f_n, \lambda_n)$ für alle $\lambda_1, \ldots, \lambda_n \in K$ invariant unter g ist.
- 3. Zeigen Sie: Sind die Endomorphismen $f_1, \ldots, f_n \colon V \to V$ diagonalisierbar (d.h. für alle $i = 1, \ldots, n$ ist $V = \bigoplus_{\lambda \in K} V(f_i, \lambda)$) und paarweise kommutierend, so sind die Endomorphismen simultan diagonalisierbar, d.h. es ist

$$V = \bigoplus_{\lambda_1, \dots, \lambda_n \in K} V(f_1, \lambda_1; \dots; f_n, \lambda_n).$$

4. Zeigen Sie, dass auch die Umkehrung gilt: Sind Endomorphismen $f_1, \ldots, f_n \colon V \to V$ simultan diagonalisierbar, so sind f_1, \ldots, f_n diagonalisierbar und kommutieren.

Von nun an sei V endlichdimensional.

- 5. Zeigen Sie, dass Endomorphismen $f_1, \ldots, f_n \colon V \to V$ genau dann simultan diagonalisierbar sind, wenn es eine geordnete Basis \mathcal{B} von V gibt, so dass $\mathcal{M}_{\mathcal{B}}(f_i)$ für jedes $i=1,\ldots,n$ in Diagonalgestalt ist.
- 6. Es sei nun $H\subseteq \operatorname{End}(V)$ ein Untervektorraum aus diagonalisierbaren und paarweise kommutierenden Endomorphismen. Zeigen Sie, dass es eine Basis $\mathcal B$ von V gibt, so dass $\operatorname{M}_{\mathcal B}(f)$ für jedes $f\in H$ eine Diagonalmatrix ist.

(Hinweis: Nutzen Sie, dass H endlichdimensional ist.)

Übung 106. Eine Knobelaufgabe

(Pr. 3)

Es sei $f:V\to V$ ein Endomorphismus eines n-dimensionalen K-Vektorraums V und $\{v_1,\ldots,v_{n+1}\}\subseteq V$ eine Teilmenge aus Eigenvektoren von f, so dass jede n-elementige Teilmenge linear unabhängig ist. Zeigen Sie, dass f bereits ein skalares Vielfaches der Identität ist.

Übung 107. Diagonalisierbarkeit und Nilpotenz von ad_X Für jede Matrix $X \in \operatorname{M}_n(K)$ sei (Pr. 3)

$$\lambda_X \colon M_n(K) \to M_n(K), \quad A \mapsto XA$$

die Linksmultiplikation mit X,

$$\rho_X \colon M_n(K) \to M_n(K), \quad A \mapsto AX$$

die Rechtsmultiplikation mit X, und

$$\operatorname{ad}_X = [X, -] \colon \operatorname{M}_n(K) \to \operatorname{M}_n(K), \quad A \mapsto [X, A] = XA - AX$$

der Kommutator mit X.

- 1. Zeigen Sie: Ist X nilpotent, so sind auch λ_X und ρ_X nilpotent.
- 2. Folgern Sie: Ist X nilpotent, so ist auch ad_X nilpotent. (*Hinweis*: Nutzen Sie, dass $\mathrm{ad}_X = \lambda_X \rho_X$.)
- 3. Zeigen Sie: Ist X eine Diagonalmatrix, so sind λ_X und ρ_X diagonalisierbar.
- 4. Folgern Sie: Ist X diagonalisierbar, so sind auch λ_X und ρ_X diagonalisierbar.

5. Folgern Sie: Ist X diagonalisierbar, so ist auch ad $_X$ diagonalisierbar.

(*Hinweis*: Nutzen Sie, dass $\operatorname{ad}_X = \lambda_X - \rho_X$.)

Übung 108. Shiften von Eigenräumen

(Pr. 3)

Es seien E und H zwei Endomorphismen eines \mathbb{C} -Vektorraums V, so dass [H, E] = 2E.

- 1. Zeigen Sie, dass $E(V_{\lambda}(H)) \subseteq V_{\lambda+2}(H)$ für alle $\lambda \in K$.
- 2. Folgern Sie: Ist V endlichdimensional und H diagonalisierbar, so ist E nilpotent.

5.3 Multilinearität

Übung 109. Das Verschwinden von alternierenden Formen für große Dimensionen

(Pr. 2)

Es sei V ein endlichdimensionaler K-Vektorraum und $n \coloneqq \dim V$. Es sei $\omega \colon V^m \to V$ eine alternierende Multilinearform. Zeigen Sie, dass $\omega = 0$.

Übung 110. Charakterisierungen der Jacobi-Identität

(Pr. 3)

Es sei V ein K-Vektorraum und $[-,-]:V\times V\to V$ eine alternierend bilineare Abbildung. Für jedes $x\in V$ sei

$$\operatorname{ad}_x := [x, -] \colon V \to V, \quad y \mapsto [x, y].$$

Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

1. Die alternierende Bilinearform [-,-] erfüllt die Jacobi-Identität, d.h. es ist

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 für alle $x, y, z \in V$.

2. Es gilt $\mathrm{ad}_x([y,z]) = [\mathrm{ad}_x(y),z] + [y,\mathrm{ad}_x(z)]$ für alle $x,y,z \in V$. (Man sagt, dass ad_x eine Derivation bezüglich [-,-] ist.)

Übung 111. Charakterisierungen nicht verschwindender alternierender Formen

(Pr. 3)

Es sei V ein endlichdimensionaler K-Vektorraum mit $n := \dim V$ und $\omega \colon V^n \to K$ eine alternierende Multilinearform. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:

- 1. Es ist $\omega \neq 0$.
- 2. Es gibt eine Basis (b_1, \ldots, b_n) von V, so dass $\omega(b_1, \ldots, b_n) \neq 0$.
- 3. Für jede Basis (b_1, \ldots, b_n) von V gilt $\omega(b_1, \ldots, b_n) \neq 0$.

Übung 112. Multilineare Formen und die Determinante

(Pr. 4)

Es sei V ein endlichdimensionaler K-Vektorraum und $n \coloneqq \dim V$. Es sei $\omega \colon V^n \to K$ eine alternierende Multilinearform. Es sei $f \colon V \to V$ ein Endomorphismus und

$$\omega_f := \omega \circ f^{\times n} \colon V^n \to K$$
,

- 1. Zeigen Sie, dass ω_f ebenfalls alternierende Multilinearform ist.
- 2. Zeigen Sie, dass $\omega_f = \det(f)\omega$.

5.4 Wegzusammenhang und Geometrisches

Übung 113. Multiple Choice zu Wegzusammenhangskomponenten (Pr. 1) Entscheiden Sie, welche der folgenden Aussagen gelten für alle $n \ge 1$ gelten.

1. Die Wegzusammenhangskomponenten von $\mathrm{GL}_n(\mathbb{R})$ sind die beiden Untergruppen

$$\operatorname{GL}_n(\mathbb{R})_+ = \{S \in \operatorname{GL}_n(\mathbb{R}) \mid \det S > 0\} \quad \text{und} \quad \operatorname{GL}_n(\mathbb{R})_- = \{S \in \operatorname{GL}_n(\mathbb{R}) \mid \det S < 0\}.$$

- 2. Von den beiden Wegzusammenhangskomponente von $\mathrm{GL}_n(\mathbb{R})$ ist $\mathrm{O}(n)$ diejenige, die die Einheitsmatrix enthält.
- 3. Die schiefsymmetrischen Matrizen $\mathfrak{o}_n(\mathbb{R})=\{A\in \mathrm{M}_n(\mathbb{R})\mid A^T=-A\}$ sind eine wegzusammenhängende Teilmenge von $\mathrm{M}_n(\mathbb{R})$.
- 4. Ist $n \geq 2$, so hat die Gruppe $\mathrm{U}(n) \cap \mathrm{GL}_n(\mathbb{R})_+$ unendlich viele Zusammenhangskomponenten.
- 5. Es ist $G=\{S\in \mathrm{GL}_n(\mathbb{R})\mid S^{-1}=-S\}$ eine zusammenhängende, aber nicht wegzusammenhängende Untergruppe von $\mathrm{GL}_n(\mathbb{R})$.
- 6. Jede Untergruppe von $\mathrm{GL}_n(\mathbb{C})$ ist wegzusammenhängend.
- 7. Die Gruppe $SU(n) \cap GL_n(\mathbb{R})$ ist wegzusammenhängend.
- 8. Die Menge der Drehmatrizen

$$D \coloneqq \left\{ \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \middle| \varphi \in \mathbb{R} \right\}$$

ist eine wegzusammenhängende Untergruppe von $GL_2(\mathbb{R})$.

Übung 114. Zerschneidung von \mathbb{R}^n

(Pr. 2)

Es sei $f \colon \mathbb{R}^n \to \mathbb{R}$ eine lineare Abbildung mit $f \neq 0$. Zeigen Sie, dass $\mathbb{R}^n \setminus \ker f$ nicht wegzusammenhängend ist.

Übung 115. Definition und Sinus des unorientierten Winkels

(Pr. 2)

Es sei V ein euklidischer Vektorraum und es seien $v,w\in V$ mit $v,w\neq 0$.

1. Zeigen Sie, dass es genau einen Winkel $\alpha \in [0, \pi]$ gibt, so dass

$$\cos \alpha = \frac{\langle v, w \rangle}{\|v\| \|w\|}.$$

- 2. Zeigen Sie, dass genau dann sin $\alpha \neq 0$, wenn v und w linear unabhängig sind.
- 3. Bestimmen Sie, wann $\sin \alpha = 1$.

Übung 116. Zur Existenz und Eindeutigkeit normierter Vektoren auf der Gerade (Pr. 2) Es sei V ein eindimensionaler euklidischer Vektorraum.

- 1. Zeigen Sie, dass es genau zwei verschiedene Vektoren $v_1, v_2 \in V$ gibt, so dass $||v_1|| = 1$ und $||v_2|| = 1$, und dass $v_2 = \pm v_1$.
- 2. Entscheiden Sie, ob die Aussage auch für einen eindimensionalen unitären Vektorraum gilt.

Übung 117. Zur Existenz von Tangentialvektoren

(Pr. 2)

Es sei V ein euklidischer Vektorraum, und $A, B \in V$ seien zwei linear unabhängige Punkte. Zeigen Sie, dass es genau ein Element $\mathfrak{t}_{AB} \in \mathcal{L}(A,B)$ gibt, so dass $\mathfrak{t}_{AB} \perp A$, $\|\mathfrak{t}_{AB}\| = 1$ und $\langle \mathfrak{t}_{AB}, B \rangle > 0$.

Übung 118. Einschränkung der Orientierung auf das orthogonale Komplement

(Pr. 3)

Es sei V ein euklidischer n-dimensionaler Vektorraum und d eine normierte, alternierende n-Form auf d. Es sei $u \in V$ mit ||u|| = 1. Zeigen Sie für das orthogonale Komplement $U \coloneqq u^{\perp} = \mathcal{L}(u)^{\perp}$, dass die Einschränkung $d(-, \ldots, -, u)|_{U^{n-1}}$ eine normierte, alternierende (n-1)-Form ist.

Übung 119. Konstruktion und Eigenschaften des Kreuzprodukts

(Pr. 3)

Es sei V ein dreidimensionaler orientierter euklidischer Vektorraum mit normierter alternierender Trilinearform d.

- 1. Zeigen Sie, dass es für alle $u,v\in V$ genau ein Element $u\times v\in V$ gibt, so dass $d(u,v,w)=\langle u\times v,w\rangle$ für alle $w\in V$.
- 2. Zeigen Sie, dass die Abbildung $V \times V \to V$, $(u, v) \mapsto u \times v$ bilinear und alternierend ist.
- 3. Zeigen Sie für alle $u, v \in V$, dass $u \times v$ orthogonal zu u und v ist.
- 4. Zeigen Sie für alle $u, v \in V$, dass $u \times v = 0$ genau dann, wenn u und v linear abhängig sind. (*Hinweis*: Nutzen Sie, dass $d \neq 0$, und deshalb $d(b_1, b_2, b_3) \neq 0$ für jede Basis $\{b_1, b_2, b_3\}$ von V.)
- 5. Zeigen Sie für alle $u,v\in V$, dass $\|u\times v\|=\|u\|\|v\|$ sin α , wobei α der unorientierte Winkel zwischen u und v ist.
- 6. Zeigen Sie: Ist (e_1, e_2, e_3) eine positiv orientierte Orthonormalbasis von V, so gilt für $u, v \in V$ mit $u = u_1e_1 + u_2e_2 + u_2e_3$ und $v = v_1e_1 + v_2e_2 + v_3e_3$, dass

$$u \times v = (u_2v_3 - u_3v_2)e_1 + (u_3v_1 - u_1v_3)e_2 + (u_1v_2 - u_2v_1)e_3.$$

Übung 120. Die Wegzusammenhangskomponenten der oberen Dreiecksmatrizen (Pr. 4) Für einen Körper K und $n \in \mathbb{N}$ mit $n \geq 1$ sei

$$\mathbf{B}_n(K) \coloneqq \left\{ \begin{pmatrix} a_{11} & * & \cdots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & a_{nn} \end{pmatrix} \in \mathbf{M}_n(K) \; \middle| \; a_{ii} \neq 0 \text{ für alle } i = 1, \dots, n \right\}$$

die Menge der invertierbaren oberen Dreiecksmatrizen.

1. Zeigen Sie, dass $B_n(K)$ eine Untergruppe von $GL_n(K)$ ist.

Wir bestimmen nun die Wegzusammenhangskomponenten von $B_n(\mathbb{R})$.

- 2. Es seien $A, B \in \mathcal{B}_n(\mathbb{R})$ mit $A = (a_{ij})_{ij}$ und $B = (b_{ij})_{ij}$. Zeigen Sie: Gibt es einen stetigen Weg $\Gamma \colon [0,1] \to \mathcal{B}_n(\mathbb{R})$ von A nach B, so ist $\operatorname{sgn} a_{ii} = \operatorname{sgn} b_{ii}$ für alle $i=1,\ldots,n$. (Hinweis: Überlegen Sie sich zunächst, dass $\Gamma(t)_{ii} \neq 0$ für alle $t \in [0,1]$ und $i=1,\ldots,n$.)
- 3. Konstruieren Sie in $\mathrm{B}_n(\mathbb{R})$ einen stetigen Weg von der Matrix A zu der Diagonalmatrix mit Diagonaleinträgen a_{11},\ldots,a_{nn} .
- 4. Geben Sie in $B_n(\mathbb{R})$ einen stetigen Weg von der Diagonalmatrix mit Diagonaleinträgen a_{11}, \ldots, a_{nn} zu der Diagonalmatrix mit Diagonaleinträgen $\operatorname{sgn} a_{11}, \ldots, \operatorname{sgn} a_{nn}$ an.
- 5. Folgern Sie aus den obigen Aussagen, dass $\mathrm{B}_n(\mathbb{R})$ aus 2^n Wegzusammenhangskomponenten besteht, und dass

$$\left\{ \begin{pmatrix} \varepsilon_1 & & \\ & \ddots & \\ & & \varepsilon_n \end{pmatrix} \middle| \varepsilon_1, \dots, \varepsilon_n \in \{1, -1\} \right\} \subseteq \mathbf{B}_n(\mathbb{R})$$

ein Repräsentantensystem der Wegzusammenhangskomponenten ist. Dabei wird die Wegzusammenhangskomponente von A durch die Diagonalmatrix mit Diagonaleinträgen $\operatorname{sgn} a_{11}, \ldots, \operatorname{sgn} a_{nn}$ repräsentiert.

Im Komplexen vereinfacht sich dieses Resultat:

- 6. Zeigen Sie, dass es für $A=(a_{ij})_{i,j}\in \mathrm{B}_n(\mathbb{C})$ in $\mathrm{B}_n(\mathbb{C})$ einen stetigen Weg zu der Diagonalmatrix mit Diagonaleinträgen a_{11},\ldots,a_{nn} gibt.
- 7. Zeigen Sie, dass es für je zwei Diagonalmatrizen $D_1, D_2 \in \mathcal{B}_n(\mathbb{C})$ einen stetigen Weg in $\mathcal{B}_n(\mathbb{C})$ von D_1 nach D_2 gibt.

(*Hinweis*: Nutzen Sie, dass \mathbb{C}^{\times} wegzusammenhängend ist.)

8. Folgern Sie, dass $B_n(\mathbb{C})$ wegzusammenhängend ist.

6 Komplexifizierung

Übung 121. Universelle Eigenschaft der Komplexifizierung

(Pr. 1)

Es sei V ein \mathbb{R} -Vektorraum und W ein \mathbb{C} -Vektorraum. Es sei $\iota\colon V\to V,\,v\mapsto v+i\cdot 0$ die kanonische Inklusion. Zeigen Sie:

1. Für jede \mathbb{R} -lineare Abbildung $f\colon V\to W$ gibt genau eine \mathbb{C} -lineare Abbildung $f^{\mathbb{C}}\colon V_{\mathbb{C}}\to W$, die das folgende Diagramm zum Kommutieren bringt:

2. Für je zwei $\mathbb C$ -lineare Abbildungen $g_1,g_2\colon V_{\mathbb C}\to W$ gilt genau dann $g_1=g_2$, wenn $g_1\circ\iota=g_2\circ\iota$.

3. Für jeden \mathbb{C} -Vektorraum W' gilt für jede \mathbb{R} -lineare Abbildung $f:V\to W$ und jede \mathbb{C} -lineare Abbildung $g:W\to W'$ gilt $(g\circ f)^{\mathbb{C}}=g\circ f^{\mathbb{C}}$.

Übung 122. Kern und Bild unter Komplexifizierung

(Pr. 1)

(Pr. 2)

Es seien V und W zwei reelle Vektorräume, und $f\colon V\to W$ sei eine \mathbb{R} -lineare Abbildung.

- 1. Zeigen Sie, dass $\ker(f_{\mathbb{C}}) = (\ker f)_{\mathbb{C}}$.
- 2. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann injektiv ist, wenn f injektiv ist.
- 3. Folgern Sie ferner, dass $(V_{\mathbb{C}})_{\lambda}(f_{\mathbb{C}}) = V_{\lambda}(f)_{\mathbb{C}}$ für jedes $\lambda \in \mathbb{R}$.
- 4. Zeigen Sie, dass $\operatorname{im}(f_{\mathbb{C}}) = (\operatorname{im} f)_{\mathbb{C}}$.
- 5. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann surjektiv ist, wenn f surjektiv ist.

Übung 123. Komplexifizierung von Abbildungen und Natürlichkeit der Komplexifizierung

Für jeden \mathbb{R} -Vektorraum V sei $\iota_V\colon V\to V,\,v\mapsto v+i\cdot 0$ die kanonische Inklusion und für jeden \mathbb{C} -Vektorraum W und jede \mathbb{R} -lineare Abbildung $f\colon V\to W$ sei $f^\mathbb{C}\colon V_\mathbb{C}\to W$ die eindeutige \mathbb{C} -lineare Abbildung mit $f^\mathbb{C}\circ\iota_V=f$.

1. Zeigen Sie, dass für jeden \mathbb{R} -Vektorraum V und jeden \mathbb{C} -Vektorraum W die Abbildung

$$\Phi_{V,W} \colon \operatorname{Hom}_{\mathbb{R}}(V,W) \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W), \quad f \mapsto f^{\mathbb{C}}$$

ein Isomorphismus von \mathbb{R} -Vektorräumen ist. Geben Sie auch Φ_{VW}^{-1} an.

2. Es seien V, V', W, W' vier K-Vektorräume und $g_1 \colon V' \to V$ und $g_2 \colon W \to W'$ zwei K-lineare Abbildungen. Zeigen Sie, dass die beidseitige Komposition

$$g_2 \circ - \circ g_1 \colon \operatorname{Hom}_K(V, W) \to \operatorname{Hom}_K(V', W'), \quad h \mapsto g_2 \circ f \circ g_1$$

eine K-lineare Abbildung ist.

3. Zeigen Sie, dass die Isomorphismen $\Phi_{V,W}$ in dem folgenden Sinne *natürlich* sind: Es seien V und V' zwei \mathbb{R} -Vektorräume und es sei $h\colon V'\to V$ eine \mathbb{R} -lineare Abbildung. Es seien W und W' zwei \mathbb{C} -Vektorräume und es sei $g\colon W\to W'$ eine \mathbb{C} -lineare Abbildung. Dann kommutiert das folgende Diagramm von \mathbb{R} -Vektorräumen und \mathbb{R} -linearen Abbildungen:

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbb{R}}(V,W) & \xrightarrow{& \Phi_{V,W} & } \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W) \\ & & & \downarrow \\ g \circ - \circ h & & \downarrow \\ \operatorname{Hom}_{\mathbb{R}}(V',W') & \xrightarrow{& \Phi_{V',W'} & } \operatorname{Hom}_{\mathbb{C}}(V'_{\mathbb{C}},W') \end{array}$$

Übung 124. Komplexifizierung von Basen

(Pr. 2)

Es sei V ein \mathbb{R} -Vektorraum mit \mathbb{R} -Basis $\mathcal{B}=(v_j)_{j\in J}$. Zeigen Sie, dass dann $\mathcal{B}_{\mathbb{C}}=(v_j+i\cdot 0)_{j\in J}$ eine \mathbb{C} -Basis von $V_{\mathbb{C}}$ ist.

Übung 125. Komplexifizierung von Summen Schnitten und direkten Summen

(Pr. 2)

Es sei V ein reeller Vektorraum und $(U_i)_{i\in I}$ eine Familie von Untervektorräumen $U_i\subseteq V$. Zeigen Sie:

1. Es gilt

$$\left(\bigcap_{i\in I} U_i\right)_{\mathbb{C}} = \bigcap_{i\in I} (U_i)_{\mathbb{C}}$$

2. Es gilt

$$\left(\sum_{i\in I} U_i\right)_{\mathbb{C}} = \sum_{i\in I} (U_i)_{\mathbb{C}}.$$

3. Folgern Sie, dass genau dann $V=\bigoplus_{i\in I}U_i$, wenn $V_{\mathbb{C}}=\bigoplus_{i\in I}(U_i)_{\mathbb{C}}$.

Übung 126. Induzierte Untervektorräume

(Pr. 2)

Es sei V ein \mathbb{R} -Vektorraum.

1. Zeigen Sie, dass die folgende Abbildung wohldefiniert ist:

$$\Phi \colon \{U \subseteq V \mid U \text{ ist ein } \mathbb{R}\text{-UVR}\} \to \{W \subseteq V_{\mathbb{C}} \mid W \text{ ist ein } \mathbb{C}\text{-UVR}\}, \quad U \mapsto U_{\mathbb{C}}$$

- 2. Zeigen Sie, dass Φ injektiv ist, und geben Sie ein Linksinverses von Φ an.
- 3. Zeigen Sie, dass Φ genau dann surjektiv ist, wenn V=0 oder V eindimensional ist.
- 4. Zeigen Sie, dass für einen $\mathbb C$ -Untervektorraum $W\subseteq V_{\mathbb C}$ die folgenden beiden Bedingungen äquivalent sind:
 - a) Es ist $W \in \operatorname{im} \Phi$.
 - b) Der Unterraum W ist induziert.
 - c) Für alle $v_1, v_2 \in V$ mit $v_1 + iv_2 \in W$ sind auch $v_1 + i \cdot 0, v_2 + i \cdot 0 \in W$.
 - d) Es gilt $W = \overline{W}$.
- 5. Zeigen Sie für jeden Endomorphismus $f\colon V\to V$ und jeden Skalar $\lambda\in\mathbb{C}$, dass der Eigenraum $(V_{\mathbb{C}})_{\lambda}(f_{\mathbb{C}})$ genau dann induziert ist, wenn $\lambda\in\mathbb{R}$. Bestimmen Sie unter dieser Bedingung den Untervektorraum von V, durch denn $(V_{\mathbb{C}})_{\lambda}(f)$ induziert wird.

Übung 127. Diagonalisierbarkeit der komplexifizierten Abbildung

(Pr. 2)

Es sei V ein reeller Vektorraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie, dass f genau dann diagonalisierbar ist, wenn $f_{\mathbb C}$ diagonalisierbar mit reellen Eigenwerten ist.

(Hinweis: Man kann etwa Übung 125 nutzen. Beachten Sie aber auf jeden Fall, dass V nicht notwendigerweise endlichdimensional ist.)

Übung 128. Komplexifizierung der reellen Zahlen

(Pr. 3)

Zeigen Sie, dass die \mathbb{R} -lineare Inklusion $\mathbb{R} \to \mathbb{C}$, $x \mapsto x$ einen Isomorphismus $\mathbb{R}_{\mathbb{C}} \to \mathbb{C}$ von \mathbb{C} -Vektorräumen induziert.

Übung 129. Komplexifizierung der Matrizen

(Pr. 3)

Zeigen Sie, dass die \mathbb{R} -lineare kanonische Inklusion $\iota \colon M(m \times n, \mathbb{R}) \to M(m \times n, \mathbb{R}), A \mapsto A$ einen Isomorphismus von \mathbb{C} -Vektorräumen $\Phi \colon M(m \times n, \mathbb{R})_{\mathbb{C}} \to M(m \times n, \mathbb{C})$ induziert.

Übung 130. Komplexifizierung des Polynomrings

(Pr. 3)

Zeigen Sie, dass die kanonische Inklusion $\iota \colon \mathbb{R}[X] \to \mathbb{C}[X]$, $x \mapsto x$ \mathbb{R} -linear ist, und einen Isomorphismus $\mathbb{R}[X]_{\mathbb{C}} \to \mathbb{C}[X]$ von \mathbb{C} -Vektorräumen induziert.

Übung 131. Komplexifizierung von Dualräumen

(Pr. 3)

Es sei V ein \mathbb{R} -Vektorraum. Konstruieren Sie einen Isomorphismus $(V^*)_{\mathbb{C}} \to (V_{\mathbb{C}})^*$. (*Hinweis*: Beachten Sie, dass V ist nicht notwendigerweise endlichdimensional ist.)

Übung 132. Komplexifizierung von Hom-Räumen

(Pr. 3)

Es seien V und W zwei \mathbb{R} -Vektorräume. Zeigen Sie, dass die \mathbb{R} -lineare Abbildung

$$\varphi \colon \operatorname{Hom}_{\mathbb{R}}(V, W) \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}}, W_{\mathbb{C}}), \quad f \mapsto f_{\mathbb{C}}$$

einen Isomorphismus von \mathbb{C} -Vektorräumen

$$\Phi \colon \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}} \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}})$$

induziert.

(Hinweis: Beachten Sie, dass V und W nicht notwendigerweise endlichdimensional sind.)

Übung 133. Komplexifizierung von Abbildungen und Matrizen in einem kommutierenden Prisma (Pr. 4) Es sei $\mathcal{B}=(b_1,\ldots,b_n)$ eine Basis eines \mathbb{R} -Vektorraums V und $\mathcal{C}=(c_1,\ldots,c_m)$ eine Basis eines \mathbb{R} -Vektorraums W. Es seien

$$\mathcal{B}_{\mathbb{C}} \coloneqq (b_1 + i \cdot 0, \dots, b_n + i \cdot 0)$$
 und $\mathcal{C}_{\mathbb{C}} \coloneqq (c_1 + i \cdot 0, \dots, c_m + i \cdot 0)$

die entsprechenden $\mathbb C$ -Basen der Komplexifizierungen $V_{\mathbb C}$ und $W_{\mathbb C}$. Es seien

$$\Phi^{\mathbb{R}} \colon \operatorname{Hom}_{\mathbb{R}}(V, W) \to \operatorname{M}(m \times n, \mathbb{R}), \quad f \mapsto \operatorname{M}_{\mathcal{B}, \mathcal{C}}(f)$$

und

$$\Phi^{\mathbb{C}} \colon \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}}, W_{\mathbb{C}}) \to \operatorname{M}(m \times n, \mathbb{C}), \quad g \mapsto \operatorname{M}_{\mathcal{B}_{\mathbb{C}}, \mathcal{C}_{\mathbb{C}}}(g).$$

Es seien

$$\begin{array}{ll} \iota_1 \colon \operatorname{Hom}_{\mathbb{R}}(V,W) \to \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}}, & f \mapsto f+i \cdot 0, \\ \iota_2 \colon \operatorname{Hom}_{\mathbb{R}}(V,W) \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}}), & f \mapsto f_{\mathbb{C}} \\ \iota_3 \colon \operatorname{M}(m \times n,\mathbb{R}) \to \operatorname{M}(m \times n,\mathbb{R})_{\mathbb{C}}, & A \mapsto A+i \cdot 0, \\ \iota_4 \colon \operatorname{M}(m \times n,\mathbb{R}) \to \operatorname{M}(m \times n,\mathbb{C}), & A \mapsto A, \end{array}$$

die jeweiligen kanonischen Inklusionen.

1. Zeigen Sie, dass das folgende Diagramm kommutiert:

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbb{R}}(V,W) & \stackrel{\iota_2}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}}) \\ & & & & & & \downarrow_{\Phi^{\mathbb{C}}} \\ \operatorname{M}(m\times n,\mathbb{R}) & \stackrel{\iota_4}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \operatorname{M}(m\times n,\mathbb{C}) \end{array}$$

Folgern Sie, dass ι₄ tatsächlich injektiv ist, wie der oben verwendete Begriff *Inklusion* vermuten lässt.

2. Zeigen Sie, dass das folgende Diagramm kommutiert:

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbb{R}}(V,W) & \stackrel{\iota_1}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}} \\ & & & & & & & & & \\ \Phi^{\mathbb{R}} & & & & & & & & \\ & & & & & & & & \\ \Phi^{\mathbb{R}} & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ &$$

3. Zeigen Sie, dass die Inklusion ι_2 eine eindeutige \mathbb{C} -lineare Abbildung

$$\Psi_1 \colon \operatorname{Hom}_{\mathbb{R}}(V, W)_{\mathbb{C}} \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}}, W_{\mathbb{C}})$$

induziert, die das folgende Diagramm zum Kommutieren bringt:

4. Zeigen Sie auf analoge Weise, dass die Inklusion ι_4 eine eindeutige $\mathbb C$ -lineare Abbildung

$$\Psi_2 \colon \operatorname{M}(m \times n, \mathbb{R})_{\mathbb{C}} \to \operatorname{M}(m \times n, \mathbb{C})$$

induziert, die das folgende Diagramm zum Kommutieren bringt:

5. Wir haben nun das folgende Diagramm:

Von diesem Diagramm wissen wir bereits, dass Deckel, Boden und beide Rückseiten kommutieren. Folgern Sie daraus, dass auch die Vorderseite kommutiert.

(*Hinweis*: Nutzen Sie, dass zwei \mathbb{C} -lineare Abbildung $f,g\colon \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}}\to \operatorname{M}(m\times n,\mathbb{C})$ genau dann übereinstimmen, wenn die Kompositionen $f\circ\iota_1$ und $g\circ\iota_1$ übereinstimmen.)

- 6. Zeigen Sie, dass Ψ_2 ein Isomorphismus von \mathbb{C} -Vektorräumen ist.
- 7. Folgen Sie, dass auch Ψ_1 ein Isomorphismus von \mathbb{C} -Vektorräumen ist.

7 Direkte Summen

Übung 134. Definition der direkten Summe

(Pr. 1)

Es sei V ein Vektorraum und $(U_i)_{i\in I}$ eine Familie von Untervektorräumen $U_i\subseteq V$. Definieren Sie, wann $V=\bigoplus_{i\in I}U_i$.

Übung 135. Multiple Choice für Direkte Summen

(Pr. 2)

Es sei V ein K-Vektorraum. Entscheiden Sie, welche der folgenden Aussagen allgemein gültig sind. Geben Sie gegebenenfalls ein Gegenbeispiel an.

- 1. Ist $V = U \oplus W_1 = U \oplus W_2$ für Untervektorräume $U, W_1, W_2 \subseteq V$, so ist $W_1 = W_2$.
- 2. Ist $V=V_1\oplus V_2$ für Untervektorräume $V_1,V_2\subseteq V$, so gilt für jeden Untervektorraum $U\subseteq V$ die Zerlegung

$$U = (U \cap V_1) \oplus (U \cap V_2).$$

- 3. Ist $f:V\to V$ ein Endomorphismus und $U\subseteq V$ ein f-invarianter Untervektorraum, so gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.
- 4. Für alle Untervektorräume $W, U_1, U_2 \subseteq V$ mit $U_1 \subseteq U_2$ gilt

$$(U_1 + W) \cap U_2 = U_1 + (W \cap U_2).$$

5. Sind $U_1, U_2, W \subseteq V$ Untervektorräume mit $U_1 \subseteq U_2$ und $V = U_1 \oplus W$, so ist

$$U_2 = U_1 \oplus (W \cap U_2).$$

- 6. Ist $\mathcal{E} \subseteq V$ ein Erzeugendensystem von V und $U \subseteq V$ ein Untervektorraum, so ist der Schnitt $\mathcal{E} \cap U$ ein Erzeugendensystem von U.
- 7. Ist $(U_i)_{i\in I}$ eine Familie von Untervektorräumen $U_i\subseteq V$ mit $V=\sum_{i\in I}U_i$ und $U_i\cap U_j=0$ für alle $1\leq i\neq j\leq n$, so ist $V=\bigoplus_{i\in I}U_i$.

Übung 136. Äquivalenz von idempotenten Endomorphismen und direkten Summen (Pr. 3) Es seien V ein K-Vektorraum.

1. Zeigen Sie, dass sich durch jeden idempotenten Endomorphismus $e\colon V\to V$ (d.h. $e^2=e$) eine Zerlegung

$$V = \operatorname{im} e \oplus \ker e$$

ergibt, und dass

$$e(v+w)=v$$
 für alle $v\in \operatorname{im} e$ und $w\in \ker e$.

- 2. Zeigen, Sie, dass für jeden idempotenten Endomorphismus $e\colon V\to V$ auch id $_V-e$ idempotent ist, und dass $\operatorname{im}(\operatorname{id}_V-e)=\ker e$ und $\ker(\operatorname{id}_V-e)=\operatorname{im} e$.
- 3. Es sei (U_1, U_2) ein Paar von Untervektorräumen $U_1, U_2 \subseteq V$ mit $V = U_1 \oplus U_2$. Zeigen Sie, dass es einen eindeutigen Endomorphismus $p_{U_1,U_2} \colon V \to V$ gibt, so dass

$$p_{U_1,U_2}(u_1+u_2)=u_1$$
 für alle $u_1\in U_1$ und $u_2\in U_2$.

4. Zeigen Sie, dass die obigen Konstruktionen wie folgt eine Bijektion ergeben.

$$\begin{cases} (U_1,U_2) \middle| & U_1,U_2 \subseteq V \text{ sind} \\ & \text{Untervektorräume} \\ & \text{mit } V = U_1 \oplus U_2 \end{cases} \longleftrightarrow \{e \in \operatorname{End}(V) \mid e \text{ ist idempotent}\}, \\ & (U_1,U_2) \longmapsto p_{U_1,U_2}, \\ & (\operatorname{im} e, \ker e) \longleftrightarrow e. \end{cases}$$

5. Auf der linken Seite der obigen Bijektion gibt es eine Involution $(U_1, U_2) \mapsto (U_2, U_1)$. Zeigen Sie, dass dies unter der gegebenen Bijektion der Involution $e \mapsto \mathrm{id}_V - e$ auf der rechten Seite entspricht.

Übung 137. Direkte Summen durch Splits

(Pr. 3)

Es seien V und W zwei K-Vektorräume, und $f\colon V\to W$ sei eine lineare Abbildung, die ein lineares Rechtsinverses $g\colon W\to V$ besitzt. Zeigen Sie auf die folgenden beiden Weisen, dass

$$V = \ker f \oplus \operatorname{im} q$$
.

- 1. Durch explizites Nachrechnen, dass $V = \ker f + \operatorname{im} g$ und $\ker f \cap \operatorname{im} g = 0$.
- 2. Durch geschickte Betrachtung des Endomorphismus $gf \colon V \to V$.

Übung 138. Diagonalisierbarkeit involutiver Endomorphismen

(Pr. 3)

Es sei V ein K-Vektorraum und $f: V \to V$ ein Endomorphismus mit $f^2 = 1$.

- 1. Zeigen Sie für char $K \neq 2$, dass $V = V_1(f) \oplus V_{-1}(f)$, dass also f diagonalisierbar mit möglichen Eigenwerten 1 und -1 ist.
- 2. Zeigen Sie, dass die Aussage für char K=2 nicht mehr gelten muss.

Übung 139. Konstruktion idempotenter Endomorphismen

(Pr. 3)

Zeigen Sie im Folgenden jeweils, dass der Vektorraum V die direkte Summe der Untervektorräume U_1 und U_2 ist, indem Sie einen idempotenten Endomorphismus $e\colon V\to V$ mit $U_1=\operatorname{im} e$ und $U_2=\ker e$ angeben.

1. Es sei char $K \neq 2$, $V := M_n(K)$ der K-Vektorraum der $(n \times n)$ -Matrizen über K,

$$U_1 := \{ A \in \mathcal{M}_n(K) \mid A^T = A \}$$

der Untervektorraum der symmetrischen Matrizen, und

$$U_2 := \{ A \in \mathcal{M}_n(K) \mid A^T = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen.

2. Es sei $V := \{ f \mid f \colon \mathbb{R} \to \mathbb{R} \}$ der \mathbb{R} -Vektorraum der reellwertigen Funktionen auf \mathbb{R} , sowie

$$U_1 \coloneqq \{ f \in V \mid f(-x) = f(x) \text{ für alle } x \in \mathbb{R} \}$$

der Untervektorraum der geraden Funktionen und

$$U_2 := \{ f \in V \mid f(-x) = -f(x) \text{ für alle } x \in \mathbb{R} \}$$

der Untervektorraum der ungeraden Funktionen.

3. Als \mathbb{R} -Vektorraum die Ebene $V=\mathbb{R}^2$ und als Untervektorräume die beiden Geraden

$$U_1 \coloneqq \mathbb{R} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad ext{und} \quad U_2 \coloneqq \mathbb{R} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

4. Der \mathbb{R} -Vektorraum $V \coloneqq \mathcal{C}(I,\mathbb{R})$ der stetigen reellwertigen Funktionen auf dem Einheitsintervall I = [0,1] mit den Untervektorräumen

$$U_1 := \{ f \in V \mid f(0) = 0 \}$$
 und $U_2 := \{ f \in V \mid f \text{ ist konstant} \}.$

5. Für einen Körper K mit char $K \nmid n$ der K-Vektorraum $V := M_n(K)$ der $(n \times n)$ -Matrizen über K, und die Untervektorräume der spurlosen Matrizen und der Skalarmatrizen, d.h.

$$U_1 \coloneqq \mathfrak{sl}_n(K) = \{A \in \mathrm{M}_n(K) \mid \operatorname{tr} A = 0\} \quad \text{und} \quad U_2 \coloneqq KI = \{\lambda I \mid \lambda \in K\}$$

6. Es sei V ein K-Vektorraum und $f\colon V\to V$ ein Endomorphismus, so dass es $\lambda,\mu\in K$ mit $\lambda\neq\mu$ und $(f-\lambda)(f-\mu)=0$ gibt. Es seien $U_1=V_\lambda(f)$ und $U_2=V_\mu(f)$.

(*Hinweis*: Die Behauptung ist also, dass f diagonalisierbar mit Eigenwerten λ und μ ist.)

Übung 140. Äquivalenz von complete sets of orthogonal idempotents und endlichen direkten Summen (Pr. 3) Es sei V ein K-Vektorraum. Eine Kollektion $e_1, \ldots, e_n \in \operatorname{End}(V)$ von Endomorphismen heißt complete set of orthogonal idempotents falls die folgenden Bedingungen erfüllt sind:

- Für alle $i=1,\ldots,n$ ist e_i idempotent, also $e_i^2=e_i$ (idempotents).
- Für alle $1 \le i \ne j \le n$ ist $e_i e_j = 0$ (orthogonal).
- Es gilt $id_V = e_1 + \cdots + e_n$ (complete).
- 1. Es sei $e_1, \ldots, e_n \colon V \to V$ ein complete set of orthogonal idempotents. Zeigen Sie, dass

$$V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$$
.

2. Es seien $U_1,\dots,U_n\subseteq V$ Untervektorräume mit $V=U_1\oplus\dots\oplus U_n$. Zeigen Sie, dass es für alle $i=1,\dots,n$ einen eindeutigen Endomorphismus $p_{U_1,\dots,U_n}^{(i)}\colon V\to V$ mit

$$p_{U_1,\dots,U_n}^{(i)}(u_1+\dots+u_n)=u_i\quad\text{für alle }u_1\in U_1,\dots,u_n\in U_n,$$

gibt. Zeigen Sie ferner, dass $p_{U_1,\dots,U_n}^{(1)},\dots,p_{U_1,\dots,U_n}^{(n)}$ ein complete set of orthogonal idempotents ist.

3. Zeigen Sie, dass die obigen Konstruktionen wie folgt eine Bijektion ergeben:

$$\begin{cases} (U_1, \dots, U_n) & U_1, \dots, U_n \subseteq V \\ & \text{sind Untervek-} \\ & \text{torräume mit} \\ U = U_1 \oplus \dots \oplus U_n \end{cases} \longleftrightarrow \begin{cases} (e_1, \dots, e_n) & \text{ist ein complete set} \\ & \text{of orthogonal} \\ & \text{idempotents} \end{cases}$$
$$(U_1, \dots, U_n) \longmapsto \left(p_{U_1, \dots, U_n}^{(1)}, \dots, p_{U_1, \dots, U_n}^{(n)} \right)$$
$$(\text{im } e_1, \dots, \text{im } e_n) \longleftrightarrow (e_1, \dots, e_n)$$

4. Es sei $f\colon V\to V$ ein diagonalisierbarer Endomorphismus mit Eigenwerten $\lambda_1,\ldots,\lambda_n\in K$. Es sei $e_1,\ldots,e_n\in K$ das complete set of orthogonal idempotents, dass der Zerlegung

$$V = V_{\lambda_1}(f) \oplus \cdots \oplus V_{\lambda_n}(f)$$

entspricht, d.h. für alle $i=1,\ldots,n$ sei $e_i=p_{V_{\lambda_1}(f),\ldots,V_{\lambda_n}(f)}^{(i)}$. Geben Sie eine Formel an, durch die sich e_i aus f ergibt.

Übung 141. Complete sets of orthogonal idempotents

(Pr. 3)

Es sei V ein K-Vektorraum und $e_1, \dots, e_n \in \operatorname{End}(V)$ sei eine Kollektion von Endomorphismen mit den folgenden Eigenschaften:

- Für alle $i=1,\ldots,n$ ist e_i idempotent, also $e_i^2=e_i$.
- Die idempotenten Endomorphismen e_1, \ldots, e_n sind paarweise orthogonal, d.h. es ist $e_i e_j = 0$ für alle $1 \le i \ne j \le n$.
- Es gilt $id_V = e_1 + \cdots + e_n$.

Man sagt, dass e_1, \ldots, e_n ein complete set of orthogonal idempotents ist.

- 1. Zeigen Sie, dass $V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$ gilt.
- 2. Zeigen Sie für alle $i=1,\ldots,n$, dass im $e_i=V_1(e_i)$ und $\bigoplus_{j\neq i}$ im $e_j=\ker e_i$ gelten.
- 3. Folgern Sie, dass es für jeden idempotenten Endomorphismus $e\colon V\to V$ eine Zerlegung

$$V=\operatorname{im} e \oplus \ker e$$

mit im $e = V_1(e)$ gibt.

(Hinweis: Erweitern Sie e zu einem complete set of orthogonal idempotents, dass die Zerlegung liefert.)

4. Für alle $i=1,\ldots,n$ sei $E_{ii}\in \mathrm{M}_n(K)$ die Matrix mit 1 als i-ten Diagonaleintrag, und alle anderen Einträge sind 0. Zeigen Sie, dass die Endomorphismen e_1,\ldots,e_n mit

$$e_i: M_n(K) \to M_n(K), A \mapsto AE_{ii}$$

ein complete set of orthogonal idempotents bildet, und bestimmen Sie die Zerlegung

$$M_n(K) = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n.$$

Übung 142. Eine Charakterisierung von Diagonalisierbarkeit über direkte Komplemente (Pr. 4) Es sei K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

- 1. f ist diagonalisierbar.
- 2. Für jeden f-invarianten Untervektorraum $U\subseteq V$ gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.

Übung 143. Ein Kriterium für Diagonalisierbarkeit mithilfe von complete sets of orthogonal idempotents (Pr. 4) Es sei V ein K-Vektorraum.

- 1. Es seien $e_1, \ldots, e_n \in \operatorname{End}(V)$ Endomorphismen mit den folgenden Eigenschaften:
 - Für alle $i=1,\ldots,n$ ist e_i idempotent, also $e_i^2=e_i$.
 - Die idempotenten Endomorphismen e_1, \ldots, e_n sind paarweise orthogonal, d.h. es ist $e_i e_j = 0$ für alle $1 \le i \ne j \le n$.
 - Es gilt $id_V = e_1 + \cdots + e_n$.

Man nennt e_1, \ldots, e_n ein complete set of orthogonal idempotents. Zeigen Sie, dass

$$V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$$
.

Es sei nun $f\colon V\to V$ ein Endomorphismus. Wir nehmen zunächst an, dass f diagonalisierbar mit paarweise verschiedenen Eigenwerten $\lambda_1,\ldots,\lambda_n\in K$ ist.

- 2. Zeigen Sie, dass $(f \lambda_1) \cdots (f \lambda_n) = 0$.
- 3. Folgern Sie aus der Eigenraumzerlegung $V = V_{\lambda_1}(f) \oplus \cdots \oplus V_{\lambda_n}(f)$, dass es für alle $i = 1, \ldots, n$ eine eindeutige lineare Abbildung $e_i \colon V \to V$ gibt, so dass

$$e_i(v_1 + \dots + v_n) = v_i$$
 für alle $v_1 \in V_{\lambda_1}(f), \dots, v_n \in V_{\lambda_n}(f)$.

(Die Abbildungen e_1, \ldots, e_n sind also die Projektionen auf die einzelnen Eigenräume bezüglich der Eigenraumzerlegung.)

- 4. Zeigen Sie, dass die Endomorphismen e_1, \ldots, e_n ein complete set of orthogonal idempotents bilden.
- 5. Zeigen Sie, dass im $e_i = V_{\lambda_i}(f)$ für alle i = 1, ..., n. Die Zerlegung $V = \operatorname{im} e_1 \oplus \cdots \oplus e_n$ stimmt also mit der Eigenraumzerlegung von V bezüglich f überein.
- 6. Zeigen Sie, dass

$$e_i = \prod_{j \neq i} rac{f - \lambda_j}{\lambda_i - \lambda_j} = rac{\prod_{j \neq i} (f - \lambda_j)}{\prod_{j \neq i} (\lambda_i - \lambda_j)} \quad ext{für alle } i = 1 \dots, n.$$

($\mathit{Hinweis}$: Wenden Sie den rechten Ausdruck auf die Eigenräume von f an.)

Wir nehmen nun umgekehrt an, dass $(f - \lambda_1) \cdots (f - \lambda_n) = 0$ für paarweise verschiedene Skalare $\lambda_1, \dots, \lambda_n \in K$. Für alle $i = 1, \dots, n$ sei

$$e_i := \prod_{j \neq i} \frac{f - \lambda_j}{\lambda_i - \lambda_j} = \frac{\prod_{j \neq i} (f - \lambda_j)}{\prod_{j \neq i} (\lambda_i - \lambda_j)}.$$

7. Zeigen Sie, dass die Endomorphismen e_1, \ldots, e_n idempotent sind, indem Sie zeigen, dass

$$e_i^2 - e_i = 0$$
 für alle $i = 1, \dots, n$.

8. Zeigen Sie, dass die idempotenten Endomorphismen e_1, \ldots, e_n orthogonal sind.

9. Zeigen Sie, dass i
d $_V=e_1+\cdots+e_n$. Gehen Sie hierfür wie folgt vor: Für alle $i=1,\ldots,n$ sei

$$P_i(T) := \prod_{j \neq i} \frac{T - \lambda_j}{\lambda_i - \lambda_j} = \frac{\prod_{j \neq i} (T - \lambda_j)}{\prod_{j \neq i} (\lambda_i - \lambda_j)} \in K[T].$$

Zeigen Sie für alle $i=1,\ldots,n$, dass P_i ein Polynom vom Grad n-1 ist, so dass $e_i=P_i(f)$. Zeigen Sie auch, dass $P_i(\lambda_i)=1$ und $P_i(\lambda_j)=0$ für alle $1\leq i\neq j\leq n$.

Folgern Sie für das Polynom $P(T)\coloneqq 1-\sum_{i=1}^n P_i(T)$, dass deg $P\le n-1$, und dass $P(\lambda_i)=0$ für alle $i=1,\ldots,n$. Folgern Sie, dass P=0, und somit $1=\sum_{i=1}^n P_i(T)$.

Folgern Sie durch Einsetzen von f, dass id $_V = \sum_{i=1}^n e_i$.

Also ist e_1,\ldots,e_n ein complete set of orthogonal idempotents, und somit $V=\operatorname{im} e_1\oplus\cdots\oplus\operatorname{im} e_n$.

- 10. Zeigen Sie, dass im $e_i \subseteq V_{\lambda_i}(f)$ für alle $i=1,\ldots,n$. (*Hinweis*: Überlegen sie sich, dass $(f-\lambda_i)e_i=0$.)
- 11. Folgern Sie mithilfe der Zerlegung $V = \operatorname{im} e_1 \oplus \cdots \oplus \operatorname{im} e_n$, dass V diagonalisierbar ist, und dass $\operatorname{im} e_i = V_{\lambda_i}(f)$ für alle $i = 1, \ldots, n$.

Insgesamt zeigt dies, dass genau dann $(f - \lambda_1) \cdots (f - \lambda_n) = 0$ für paarweise verschieden $\lambda_1, \dots, \lambda_n \in K$, wenn f diagonalisierbar ist und $\lambda_1, \dots, \lambda_n \in K$ die einzigen möglichen Eigenwerte von f sind.

- 12. Es sei nun $K=\mathbb{C}$. Folgern Sie, dass f in den folgenden Fällen diagonalisierbar ist, und bestimmen Sie jeweils die möglichen Eigenwerte:
 - Es gilt $f^2 = f$,
 - es gilt $f^3 = f$,
 - es gilt $f^3 = -f$,
 - es gilt $f^n = \mathrm{id}_V$ für ein $n \ge 1$.

8 Lösungen

Lösung 49.

- 1. Eine mögliche Jordannormalform ist $\begin{pmatrix} 1 & & \\ & 1 & \\ & & 3 \end{pmatrix}$, mit Basiswechselmatrix $\begin{pmatrix} 5 & -2 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & 1 \end{pmatrix}$.
- 2. Die Jordannormalform ist $\begin{pmatrix} 1 & 1 \\ & 1 & 1 \\ & & 1 \end{pmatrix}$, mit Basiswechselmatrix $\begin{pmatrix} 1 & -1 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.
- 3. Eine mögliche Jordannormalform ist $\begin{pmatrix} 1 & 1 & 1 \\ & 1 & 1 \\ & & 1 \end{pmatrix}$, mit Basiswechselmatrix $\begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & & 0 & 0 \\ 0 & 0 & & 1 & 0 \\ 0 & 0 & & 0 & 1 \end{pmatrix}$.
- 4. Eine mögliche Jordannormalform ist $\begin{pmatrix} -1 & 1 \\ & 1 & 1 \\ & & 1 \end{pmatrix}$, mit Basiswechselmatrix $\begin{pmatrix} 1 & \frac{1}{4} & 1 & \frac{1}{2} \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{pmatrix}$.

- 5. Eine mögliche Jordannormalform ist $\begin{pmatrix} 1 & 2 & 1 \\ & 2 & 1 \\ & & 2 \end{pmatrix}$, mit Basiswechselmatrix $\begin{pmatrix} -0 & -1 & 2 & -7 \\ -2 & -2 & 0 & -1 \\ 1 & 0 & -1 & -2 \\ 1 & 1 & 0 & 0 \end{pmatrix}$.
- 6. Eine mögliche Jordannormalform ist $\binom{6}{6} \frac{1}{6} \frac{1}{6}$, mit Basiswechselmatrix $\begin{pmatrix} \frac{2}{3} & 3 & 2 & 0 \\ \frac{2}{3} & 3 & -1 & 0 \\ -\frac{1}{3} & -6 & -1 & 0 \\ -\frac{1}{3} & 3 & 2 & 0 \end{pmatrix}$.
- 7. Eine mögliche Jordannormalform ist $\begin{pmatrix} 1 & & \\ & 2 & \\ & & 4 \end{pmatrix}$, mit Basiswechselmatrix $\begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$.

Lösung 61.

- 1. Die Signatur ist (0, 1, -1).
- 2. Die Signatur ist (0, 1, -1).
- 3. Die Signatur ist (0, 2, 0).
- 4. Die Signatur ist (0, 1, -1)
- 5. Die Signatur ist (1, 1, 1).
- 6. Die Signatur ist (1, 2, 1).

Lösung 66.

- 1. Falsch, siehe $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ und die Standardbasis.
- 2. Falsch, siehe $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ und die Standardbasis.
- 3. Wahr.
- 4. Falsch, für $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ sind e_1 und e_2 in U_+ , aber e_1-e_2 nicht.
- 5. Nein, für $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. ist $e_1,e_2 \in U_0$, aber $e_1+e_2 \notin U_0$.
- 6. Nein, für $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ und $U = \mathcal{L}(e_1)$ ist $U^{\perp} = \mathbb{R}^2$.
- 7. Falsch: Für $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ und $U \coloneqq \mathcal{L}(e_1)$ ist $U^{\perp} = \mathcal{L}(e_2)$ und $(U^{\perp})^{\perp} = \mathbb{R}^2$.
- 8. Die Aussage gilt.
- 9. Falsch: Nehme ein Skalarprodukt auf einem unendlichdimensionalen Raum, und einen dichten, echten Unterraum. Man siehe etwa Übung 23 und Übung 24.

Lösung 102.

- 1. Nein, braucht etwa simultan diagonalisierbar. Siehe etwa $\begin{pmatrix} 1 & -1 \\ & -1 \end{pmatrix}$ und $\begin{pmatrix} -1 & 1 \\ & -1 \end{pmatrix}$.
- $\text{2. Nein, siehe etwa} \begin{pmatrix} 1 & 1 & & \\ 0 & 1 & & \\ & & 0 & 0 \\ & & 0 & 0 \end{pmatrix} \text{ und } \begin{pmatrix} 0 & 0 & & \\ 0 & 0 & & \\ & & 1 & 1 \\ & & 0 & 1 \end{pmatrix}.$
- 3. Nein, braucht etwa simultan diagonalisierbar. Siehe etwa $\begin{pmatrix} 1 & 1 \\ & -1 \end{pmatrix}$ und $\begin{pmatrix} -1 & 1 \\ & 1 \end{pmatrix}$.
- 4. Ja, da simultan diagonalisierbar.
- 5. Ja, denn ist $v \in V$ ein Eigenvektor von f zum Eigenwert $\lambda \in K$, so ist v ein Eigenvektor von p(f) zum Eigenwert $p(\lambda)$.
- 6. Ja.