MA2102: LINEAR ALGEBRA

Lecture 10: Linear Maps

8th September 2020

We want to study *appropriate* notion of maps (or transformation) between vector spaces.

Definition [Linear Map] A map $T: V \to W$ between vector spaces (over a field F) is called a linear transformation if

(i)
$$T(v_1 + v_2) = T(v_1) + T(v_2)$$
 for any $v_1, v_2 \in V$;

(ii)
$$T(\lambda v) = \lambda T(v)$$
 for any $\lambda \in F$ and $v \in V$

Properties of linear maps A few observations are in order.

$$\bullet$$
 $T(0_V) = 0_W$

Note that

$$T(\mathbf{0}_V) = T(\mathbf{0}_V + \mathbf{0}_V) = T(\mathbf{0}_V) + T(\mathbf{0}_V)$$

implies that $T(O_V) = O_W$.

We may also conclude the same by putting $\lambda = 0, v = 0_V$ in (ii).

•
$$T(c_1v_1 + \dots + c_kv_k) = c_1T(v_1) + \dots + c_kT(v_k)$$

Note that the equation is true for k = 1 by (ii). For k = 2

$$T(c_1v_1 + c_2v_2) = T(c_1v_1) + T(c_2v_2) = c_1T(v_1) + c_2T(v_2).$$

More generally,

$$T(c_1v_1 + \dots + c_kv_k) = T(c_1v_1) + T(c_2v_2 + \dots + c_kv_k)$$

= $c_1T(v_1) + T(c_2v_2 + \dots + c_kv_k)$.

We iterate this to obtain our identity.

Remark This property implies (i) (set k=2 and $c_1=c_2=1$) and (ii) (set k=1). We may define a linear map as a map $T:V\to W$ satisfying this property.

Example We shall discuss several instances of linear maps.

(1) Scaling: Let $T : \mathbb{R} \to \mathbb{R}$, $x \mapsto 3x$. Since

$$T(x+y) = 3(x+y) = 3x + 3y = T(x) + T(y)$$

and T(cx) = 3cx = cT(x), T is a linear map. Show that any linear map $T : \mathbb{R} \to \mathbb{R}$ is of the form T(x) = cx.

- (2) Dilation: Let $T: V \to V$ be T(v) = 2v. This is a linear map *but* may be zero if 2 = 1 + 1 is zero in F. If 2 is invertible in the field F, then T is injective. If T(v) = T(w), then 2(v w) = 0, which implies that v = w.
- (3) Identity: Let $I: V \to V$, $v \mapsto v$ be the identity map.
- (4) Trivial: Let $\mathbb{O}: V \to W$, $v \mapsto \mathsf{O}_W$. If W = V then the trivial map is dilation by zero.

(5) Matrices: Any
$$A \in M_{m \times n}(\mathbb{R})$$
 defines a map $L_A : \mathbb{R}^n \to \mathbb{R}^m$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \mapsto A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

(6) Reflections: Consider the reflection T of \mathbb{R}^2 across the x-axis.

$$T(p)$$

$$T(x,y) = (x,-y)$$

$$T(q)$$

Compute the reflection *S* across the line y = x and show that *S*, *T* are linear maps.

Remark Reflection across lines that do not pass through the origin, are not linear maps as (0,0) is not mapped to (0,0).

(7) Rotations: Consider the linear map

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (-y,x)$.

Note that $(x,y) \cdot T(x,y) = 0$ and ||(x,y)|| = ||T(x,y)||. This implies that T is a rotation counter-clockwise by $\pi/2$. More generally, consider the counter-clockwise rotation by angle θ

$$T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Show that T_{θ} is a linear map. Moreover, show that $T_{\theta_1+\theta_2}=T_{\theta_1}\circ T_{\theta_2}$.

In complex co-ordinates, $T_{\theta}: \mathbb{C} \to \mathbb{C}$ is multiplication by $e^{i\theta}$.

(8) Projections: Consider the linear maps given below:

Show that P and Q are linear maps which satisfy $A^2 = A$.

Other standard example include

$$P: \mathbb{R}^3 \to \mathbb{R}^3$$
, $P(x, y, z) = (x, y, 0)$.

(9) Inclusions: Consider the linear maps below:

$$T_1: \mathbb{R} \to \mathbb{R}^2, \quad x \mapsto (x, 0)$$

 $T_2: \mathbb{R} \to \mathbb{R}^2, \quad x \mapsto (x, x)$
 $T_3: \mathbb{R} \to \mathbb{R}^2, \quad x \mapsto (x, mx).$

We are identifying \mathbb{R} with a line in \mathbb{R}^2 . We may also consider

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(x, y) = (x, y, ax + by)$.

It is an injective linear map whose image is the plane z = ax + by.