

Treatment of energy systematics via bracketing IRFs

Part of a two-month internship on the effect of systematics on PeVatron spectral analysis at CPPM, France

Emma Carli, University of Glasgow emma.carli@outlook.com

IRF Energy Dispersion component

 The energy dispersion component of the IRFs contains a probability density function. The latter is defined over a grid of the energy migration (ratio of reconstructed to true energy of the event), the true energy of the event, and the offset angle.

EDisp component modification

Table 3b: Energy-dependent error functions for CTA South

Modification type	Function, B	Graphics	Applicability
Constant	1	10 0.5 0.5 0.5 0.5 -1.0 10' 10' 10' 10' 10' 10' 10' 10' 10' 10'	. A_{eff} , N : flux normalization . σ_{θ} : small extension . E_{scale} : spectral cut-off . σ_{E} : search for lines
Gradient	$[ln(E/E_{min})+ln(E/E_{max})]/ln(E_{max}/E_{min})$. A_{eff} , N : spectral index, spectral cut-off . E_{scale} : spectral curvature
Dromedary	tanh[$\ln(E/E_{*})/(1.31 \sigma(E_{*})/E_{*})$] if $E<(E_{*}\times E_{*})^{\circ.5}$ tanh[$\ln(E/E_{*})/(1.31 \sigma(E_{*})/E_{*})$] if $E\ge(E_{*}\times E_{*})^{\circ.5}$	10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	. A_{eff} , N : spectral index, spectral cut-off . E_{scale} : spectral curvature

cta-irf-scaling along true energy

- To emulate the effect of systematic errors, one can modify the Instrument Response Functions, coined "bracketing"
- Following the systematics guidelines

(https://docs.google.com/document/d/1 oBOwOOgMcL8Shww6oLjiQoQVbOwl0H GuBTV1YGHTc k), I attempted to bracket the Energy Dispersion component, on the true energy axis, using the cta-irf-scaling software (https://github.com/cta-

observatory/cta-irf-scaling), but I noticed the values drawn from the PDF were left unchanged.

no change to simulations using energy-bracketed IRF

Why it may not work

- In cta-irf-scaling, the PDF in each true energy bin (vertical on the graphs) is scaled by a constant. This constant can change between bins however, in this example it increases with true energy (gradient function).
- In any case, each PDF's mean and standard deviation are unchanged by the constant scaling.
- Indeed, this does not change the position of this distribution on the ratio axis (or its width if considering energy resolution scaling).
- Any suggestions on implementation?
- Open issue at https://github.com/cta-observatory/cta-irf-scaling/issues/3