Design Project #1

Thermal Fluids Design – MAE 3524

William Van Dyke

This paper will explore the process of selecting and validating a compressor to replace an existing compressor in a vapor compression cycle. The purpose of replacing the compressor is to reduce power consumption while cooling the specified space more efficiently.

This paper references software, Engineering Equation Solver (EES), which is used to find thermodynamic properties and solve systems of equations presented by the problem.

In this paper the size that needs to be cooled is 830 ft² and the original vapor compression cycle is defined in Table 1.1.

Using the given information it is possible to use common assumptions and the first law of thermodynamics to fully define the system. The EES code below in Fig 1 is used to evaluate the original system. After the needed thermodynamic properties are found it is possible to find the systems isentropic efficiency, coefficient of performance (COP), energy cost per hour, energy cost per month, and capacity. Table 1.1. also displays the size of the space that the system is being optimized for and the capacity required to cool that space.

Overall isentropic efficiency	0.6722 or 67.22%
COP	4.11
Energy cost (\$/hour)	0.2576
Energy cost (\$/month)	61.82
Capacity of the existing AC system (W)	9876
Your house size (ft ²)	830
Capacity required for your house (W)	6081

Table 1 - Evaluation of Original System

```
{Given for Current System}
mdot_ref=62.99[g/s]
P=2403[W] {Power at typical operating conditions}
P 2=2420[kPa] {high-side operating temp}
T 4=5[C] {Evaporator temperature}
{Assumtions}
x 1=1
T 1=T 4
s 2s=s 1
P 3=P 2
P 2s=P 2
h 4=h 3
x 3=0 {Subcooled not saturated}
{Design Variables}
electricityPrice=0.1072[$/kWh]
opperatingHours=240[hr]
houseSize=830[ft^2]
{Solving}
h 1=enthalpy(R410A,T=T 1,x=x 1)
P=mdot ref*(h 2-h 1)
s_1=entropy(R410A,T=T_1,x=x_1)
h 2s=enthalpy(R410A,s=s 2s,P=P 2s)
efficiency_isentropic=(h_2s-h_1)/(h_2-h_1)*100
h 3=enthalpy(R410A,P=P_3,x=x_3)
COP=(h 1-h 4)/(h 2-h 1)
cost hour=P*convert(W,kW)*electricityPrice
cost month=cost hour*opperatingHours
capacity=mdot ref*(h 1-h 4)*convert(kJ,J)/convert(kg,g)
capacity required=houseSize*25*convert(Btu/hr,W)
```

Table 2 - Section 1 Calculations

SOLUTION

```
Unit Settings: SI C kPa kJ mass deg
capacity = 9876 [W]
                                                                     capacityrequired = 6081 [W]
COP = 4.11
                                                                     cost_{hour} = 0.2576 [\$/hr]
costmonth = 61.82 [$/month]
                                                                     efficiencyisentropic = 67.22 [%]
electricityPrice = 0.1072 [$/kWh]
                                                                     houseSize = 830 [ft<sup>2</sup>]
h_1 = 422.8 [kJ/kg]
                                                                     h_2 = 461 [kJ/kg]
h_{2s} = 448.5 [kJ/kg]
                                                                    h_3 = 266 [kJ/kg]
h_4 = 266 [kJ/kg]
                                                                    mdot_{ref} = 62.99 [g/s]
opperatingHours = 240 [hr]
                                                                    P = 2403 [W]
P_2 = 2420 [kPa]
                                                                    P_{2s} = 2420 [kPa]
P_3 = 2420 [kPa]
                                                                     s_1 = 1.801 [kJ/kg-K]
s_{2s} = 1.801 [kJ/kg-K]
                                                                     T_1 = 5 [C]
T_4 = 5 [C]
                                                                     x_1 = 1
x_3 = 0
```

This project chose to focus the scope on Copeland compressors. It was possible to find two suitable compressors that met all the design requirements. The two selections fit within the physical bounds, use R410A refrigerant, and use single phase 60Hz 208/230 V power input. The compressors that have been selected are the CP22K8ME-PFV and the ZP21K6E-PFV. More information about each compressor can be seen from Table 4.

As stated previously, the goal of this paper is to explore possible replacements for a compressor to decrease the economic cost and increase efficiency of the current system.

	1 st alternative	2 nd alternative	Units
Manufacturer	Copeland	Copeland	
Model number	ZP21kE-PFV	CP22K8ME	
Refrigerant	R410A	R410A	
Motor frequency	60	60	Hz
Motor phase (1 or 3)	1	1	
Motor voltage	208-230	208-230	V
Perfo	ormance @7°C/54°C ra	ting conditions	
Capacity	6213	6213	W
Power	2100	2100	W
EER	17.24	17.18	Btu/h-W
	Other specificati	ons	
Overall length	9.56	9.30	In
Overall width	9.56	9.09	in
Overall height	14.94	14.12	In
RPM	3500	3500	RPM

Table 4 - Alternative Compressors

To aid the evaluation of the compressors mathematical model were created in EES using the compressor coefficients provided by the Copeland. These coefficients can be seen on Table 5 and Table XXX. The models were validated against the manufacture data so that they could be used to predict how to compressor will function under the operating conditions.

Compressor 1

	Copeland Compr	essor Model CP22K8ME-PF	V:
Coefficient #	Capacity Coefficients (W)	Power Coefficients (W)	Mass Flowrate Coefficient
			(g/s)
0	-3957.961381	2318.802413	104.5511514
1	1213.724604	-34.26340731	13.07182007
2	256.6592867	-25.18508254	-2.001541182
3	5.913531234	-0.4511599559	0.03815445222
4	-13.25473112	0.8331550691	-0.15083255
5	-1.168179404	0.1648776491	0.04198394854
6	0.01720849503	-0.003695735428	0.000200298596
7	-0.03324154833	0.006614888271	-0.000111599993
8	0.04853011721	-0.004215340349	0.0006744688395
9	-0.00329759596	-0.0001600304257	-0.0002345065605

Table 5 - CP22K8ME-PFV Coefficients

	At 7°C/54°C			At 7°C/38°C		
CP22K8ME-	Manufacturer's Calculated % Error			Manufacturer's	Calculated	% Error
PFV	value	Value		value	Value	
Capacity (W)	6213	6219	0.1031%	8909	8776	1.489%
Power (W)	2100	2081	0.8957	1690	1693	0.207%
Mass flowrate	40.82	40.57	0.6106%	47.38	46.83	1.162%
(g/s)						

Table 6 - CP22K8ME-PFV Validation Data

{Section 3b - CP22K8ME-PFV}

$$\label{eq:convertemp} \begin{split} &T_evap1{=}converttemp(C,F,7)\\ &T_cond1{=}converttemp(C,F,54) \end{split}$$

 $capacity1=(C[0]+(C[1]^T_evap1)+(C[2]^T_cond1)+(C[3]^T_evap1^2)+(C[4]^T_evap1^2)+(C[6]^T_cond1)^2)+(C[6]^T_cond1^2)+(C[6]^T_evap1^2)+(C[6]^T_$

capacityError1=**abs**(6213-capacity1)/6213*100 powerError1=**abs**(2100-power1)/2100*100 mdotError1=**abs**(40.82-mdot1)/40.82*100

T_evap2=converttemp(C,F,7) T_cond2=converttemp(C,F,38)

 $capacity 2 = (C[0] + (C[1]^*T_evap2) + (C[2]^*T_cond2) + (C[3]^*T_evap2^*2) + (C[4]^*T_evap2^*T_cond2) + (C[5]^*T_cond2^*2) + (C[6]^*T_evap2^*3) + (C[7]^*T_evap2^*2) + (C[8]^*T_evap2^*2) + (C[8]^$

 $mdot2 = (M[0] + (M[1]^*T_evap2) + (M[2]^*T_evap2) + (M[3]^*T_evap2) + (M[3]^*T_evap2) + (M[4]^*T_evap2) + (M[6]^*T_evap2) + (M[6]^*T_eva$

capacityError2=abs(8909-capacity2)/8909*100 powerError2=abs(1690-power2)/1690*100 mdotError2=abs(47.38-mdot2)/47.38*100

Table 7 - CP22K8ME-PFV Code

 $T_{evap2} = 44.6 [F]$

Table 8 - CP22K8ME-PFV Solutions

CP22K8ME-PFV	Pressure (kPa)	Temperature (°C)	
Evaporator operating conditions	933.2 5		
Condenser operating conditions	2420 39.9		
Performance parameter	s at operating condition	ns	
Actual capacity (W)	1789		
COP	1.1	.73	
Power (W)	15	25	
Mass flowrate (g/s)	11	.16	
Overall isentropic efficiency (%)	.2088 or 20.88%		
Energy cost (\$/month)	\$39	0.23	

Table 9 - CP22K8ME-PFV at Predicted Operation Conditions

	Copeland Com	pressor Model ZP21kE-PFV	:	
Coefficient#	Capacity Coefficients (W)	Power Coefficients (W)	Mass Flowrate Coefficient	
			(g/s)	
0	9293.460431	-11.64166785	165.7200568	
1	206.9141431	-14.20991885	2.653310094	
2	163.3466375	24.22068232	-0.8551055247	
3	3.672799287	-0.1159905293	0.03212726118	
4	1.957443702	0.3229410557	0.002873563208	
5	-2.358658254	-0.2410616324	0.008444636298	
6	0.008241227732	-0.0001343056965	7.57E-05	
7	-0.01308792094	0.001119644695	-6.65E-05	
8	-0.01510579503	-0.002063122392	1.41E-05	
9	0.007534949734	0.001503874012	-4.06E-05	

Table 10 - ZP21KE-PFV Coefficients

	At 7°C/54°C			At 7°C/38°C		
ZP21K6E-PFV	Manufacturer's Calculated		% Error	Manufacturer's	Calculated	% Error
	value	Value		value	Value	
Capacity (W)	6213	6216	0.05425%	8528	8508	0.2388%
Power (W)	2100	2073	0.4624%	1350	1357	0.5387%
Mass flowrate	38.93	38.75	1.268%	44.23	44.25	0.04285%
(g/s)						

Table 11 - ZP21KE-PFV Validation Data

[Section 3b - ZP21K6E-PFV]

T_evap1=converttemp(C,F,7) T_cond1=converttemp(C,F,54)

capacity1 = (C[0] + (C[1] - evap1) + (C[2] - evap1) + (C[3] - evap1) + (C[3] - evap1) + (C[4] - evap1) + (C[4] - evap1) + (C[6] - evap1) +

capacityError1=abs(6213-capacity1)/6213*100 powerError1=abs(2100-power1)/2100*100 mdotError1=abs(38.93-mdot1)/38.93*100

T_evap2=converttemp(C,F,10) T_cond2=converttemp(C,F,38)

 $capacity2 = (C[0] + (C[1]^*T_evap2) + (C[2]^*T_cond2) + (C[3]^*T_evap2^*2) + (C[4]^*T_evap2^*1 + (C[4]^*T_evap2^*2) + (C[6]^*T_evap2^*3) + (C[6]^*T_evap2^*3) + (C[7]^*T_cond2^*1 + (C[8]^*T_evap2^*2) + (C[8]^*T_evap2^$

 $mdot2 = (M[0] + (M[1])^*T_evap2) + (M[2])^*T_cond2) + (M[3])^*T_evap2^*2) + (M[4])^*T_evap2^*2) + (M[6])^*T_cond2^*2) + (M[6])^*T_evap2^*3) + (M[7])^*T_cond2^*2) + (M[8])^*T_evap2^*2) + (M[8])^*T_$

capacityError2=abs(8528-capacity2)/8528*100 powerError2=abs(1350-power2)/1350*100 mdotError2=abs(44.23-mdot2)/44.23*100

```
capacity1 = 6216 [W]
                                           capacity2 = 8508 [W]
capacityError1 = 0.05425 [%]
                                           capacityError2 = 0.2388 [%]
mdot1 = 38.75 [g/s]
                                           mdot2 = 44.25 [g/s]
mdotError1 = 0.4552 [%]
                                           mdotError2 = 0.04285 [%]
power1 = 2073 [W]
                                           power2 = 1357 [W]
powerError1 = 1.268 [%]
                                           powerError2 = 0.5387 [%]
T_{cond1} = 129.2 [F]
                                           T_{cond2} = 100.4 [F]
T_{evap1} = 44.6 [F]
                                           T_{evap2} = 50 [F]
```

Table 13 - ZP21KE-PFV Solutions

ZP21K6E-PFV	Pressure (kPa)	Temperature (°C)	
Evaporator operating conditions	933.2	5	
Condenser operating conditions	2420	39.9	
Performance parameter	s at operating condition	ns	
Actual capacity (W)	3060		
COP	4.9	052	
Power (W)	61	7.8	
Mass flowrate (g/s)	14	.85	
Overall isentropic efficiency (%)	.6857 oı	68.57%	
Energy cost (\$/month)	\$1	5.9	

Table 14 - ZP21KE-PFV at Predicted Operation Conditions

The compressor that was chosen for the improved design is the ZP21K6E-PFV. This compressor was chosen for its improved efficiency and lower operating cost. This compressor will adequately cool the space while using much less power to do so compared to the other option. Below is the summary of the compressor working at the predicted operation condition and a TS and PH diagram of the VCC.

Table 15 - VCC P-h Diagram

Table 16 - VCC T-s Diagram

Manufacturer	Copeland	
Model number	ZP21K6E-PFV	
Refrigerant	R410A	
Motor frequency	60	Hz
Motor phases (1 or 3)	1	
Motor voltage	208-230	V
Overall length, width &	9.56 x 9.56 x 14.94	In
height		
Performance @typical operating	g conditions (P _{cond} =2420 kPa and	T _{evap} =5°C)
Capacity	3060	W
Power	617.8	W
Isentropic efficiency	68.57%	%
Mass flowrate	14.85	g/s
COP	4.952	
Expected energy cost	\$15.90	\$/month

Appendix

ZP21K6E-PFV HFC, R-410A, 60 Hz, 1 - Phase, 208/230 V Air Conditioning

Performa	nce				Mec	hanical		
Evaporator Temp. (°F)	45.00	50	Displaceme	ent (in^3/Re	v):			1.24
Condensing Temp. (°F)	130.00	100	Displaceme	ent (ft^3/Hr)	:			
Return Gas Temp. (°F)	65.00	70	Overall Ler	ngth (in):				9.56
Liquid Temp. (°F)	115.00	85	Overall Wid	dth (in):				9.56
Capacity (BTU/hr)	21200	29100	Overall Hei	ght (in):				14.94
Power (W):	2100	1350	Mounting L	ength (in):				7.50
Current (Amps):	9.2	5.9	Mounting V	Vidth (in):				7.50
EER(BTU/Wh):	10.15	21.55	Mounting H	leight (in):				15.96
Mass Flow (lbs/hr):	309	351	Suction Siz	ze (in),Type				3 / 4 Stub
Sound Data @ 50 / 115			Discharge	Size (in),Ty	pe:			1 / 2 Stub
Sound Power (dBA):	66 Avg	71 Max	Initial Oil C	harge (oz):				21
Vibration mils(peak-peak):	2.0 Avg	3.0 Max	Oil Rechar	ge (oz):				17
Record Date:	2017-04-25		Oil Type:					3MA
			Net Weight	(lbs):				44.4
			Internal Fre	ee Volume (in^3):			139.1
			Horse Pow	er:	-	opeland Br	and Pro	139.1
Electric	al		Horse Pow	er:	ght on Co	opeland Br	and Pro	139.1
	al	61.6	Horse Pow	er:	ght on Co			139.1 oduct's specifi
RA High* (Amps):	al	61.6	Horse Pow *Overall con mounting gre	er: npressor hei ommets.	ght on Co Cap Low MFD	acitors High	Volt	139.1 oduct's specifi
LRA High* (Amps): LRA Low*(Amps):	al	61.6	Horse Pow "Overall con mounting gr	er: npressor hei ommets.	ght on Co Cap Low MFD	acitors High MFD	Volt s	139.1 oduct's specifi
LRA High* (Amps): LRA Low*(Amps): LRA Half Winding (Amps):	al	61.6	Horse Pow "Overall con mounting gra Type Run Capacitor Start	er: npressor hei ommets. Part No 014-0064- 08 014-0061-	Cap Low MFD	acitors High MFD	Volt s	139.1 oduct's specifi
LRA High* (Amps): LRA Low*(Amps): LRA Half Winding (Amps): MCC (Amps):	ai		Horse Pow "Overall commounting gra Type Run Capacitor	er: hpressor heigommets. Part No 014-0064- 08	Cap Low MFD	High MFD	Volt s	139.1 oduct's specifi
Electric LRA High* (Amps): LRA Low*(Amps): LRA Half Winding (Amps): MCC (Amps): MAX Operating Current (Amps): RLA, MCC/1.4(use for contactor se		17	Horse Pow "Overall con mounting gra Type Run Capacitor Start	er: npressor hei ommets. Part No 014-0064- 08 014-0061-	Cap Low MFD	High MFD	Volt s	139.1 oduct's specifi
LRA High* (Amps): LRA Low*(Amps): LRA Half Winding (Amps): MCC (Amps): Max Operating Current (Amps):	lection)(Amps):	17	Horse Pow "Overall con mounting gra Type Run Capacitor Start	er: npressor hei ommets. Part No 014-0064- 08 014-0061-	Cap Low MFD	High MFD	Volt s	139.1 oduct's specifi
LRA High* (Amps): LRA Low*(Amps): LRA Half Winding (Amps): MCC (Amps): Max Operating Current (Amps): RLA, MCC/1.4(use for contactor se RLA, MCC/1.56(use for breaker &aselection)(Amps):	lection)(Amps):	17 13.0 12.1	Horse Pow "Overall con mounting gra Type Run Capacitor Start	er: npressor hei ommets. Part No 014-0064- 08 014-0061-	Cap Low MFD	High MFD	Volt s	139.1 oduct's specifi
LRA High* (Amps): LRA Low*(Amps): LRA Half Winding (Amps): MCC (Amps): Max Operating Current (Amps): RLA, MCC/1.4(use for contactor se	lection)(Amps):	17 13.0 12.1 10.9	Horse Pow "Overall con mounting gra Type Run Capacitor Start	er: npressor hei ommets. Part No 014-0064- 08 014-0061-	Cap Low MFD	High MFD	Volt s	139.1 oduct's specifi
LRA High* (Amps): LRA Low*(Amps): LRA Half Winding (Amps): MCC (Amps): Max Operating Current (Amps): RLA, MCC/1.4(use for contactor se RLA, MCC/1.56(use for breaker & alselection)(Amps): RPM:	lection)(Amps):	17 13.0 12.1 10.9 3500	Horse Pow "Overall con mounting gra Type Run Capacitor Start	er: npressor hei ommets. Part No 014-0064- 08 014-0061-	Cap Low MFD	High MFD	Volt s	139.1 oduct's specifi

*Low and High refer to the low which the motor is approved.

Coeff#	Capacity (Btu/hr)	Power (W)	Current (Amps)	Mass Flow (lbs/hr)
0	9293.46043129146	-11.6416678525828	0.725821110590602	165.720056779625
1	206.914143086471	-14.2099188537421	-0.043939195129269	2.65331009444507
2	163.346637548538	24.2206823170219	0.0831853874029448	-0.855105524710698
3	3.67279928664645	-0.115990529345884	-0.000387786308462684	0.0321272611835106
4	1.95744370159013	0.322941055681285	0.000986809471155782	0.00287356320829701
5	-2.35865825432531	-0.241061632363828	-0.000809615070936676	0.00844463629811663
6	0.00824122773173085	-0.000134305696511328	1.10873133675929E-08	7.57498308205721E-05
7	-0.0130879209361424	0.00111964469510363	3.09339628769553E-06	-6.64898974569988E-05
8	-0.015105795030411	-0.00206312239195681	-6.52933080454101E-06	1.41195041829625E-05
9	0.00753494973425965	0.00150387401196607	5.67528050189867E-06	-4.06172005097752E-05

CP22K8ME-PFV
HFC, R-410A, 80 Hz, 1 - Phase, 208/230 V
High Temp
Production Status: Available for sale to all U.S. customers. Please check with your local Emerson Climate Technologies Representative for international availability.

Performan	ce		Mechanical	
Evaporator Temp. (°F)	45.00	45	Displacement (in^3/Rev):	1.76
Condensing Temp. (°F)	130.00	100	Displacement (ft^3/Hr):	
Return Gas Temp. (°F)	65.00	65	Overall Length (in):	9.30
Liquid Temp. (°F)	115.00	85	Overall Width (in):	9.09
Capacity (BTU/hr)	21200	30400	Overall Height (in):	14.12
Power (W):	2100	1690	Mounting Length (in):	7.50
Current (Amps):	9.75	8.05	Mounting Width (in):	7.50
EER(BTU/Wh):	10.11	17.97	Mounting Height (in):	14.98
Mass Flow (lbs/hr):	324	376	Suction Size (in),Type:	1 / 2 Stub
Sound Data @ 45 / 130			Discharge Size (in), Type:	3 / 8 Stub
Sound Power (dBA):	Avg	78 Max	Initial Oil Charge (oz):	35
Vibration mils(peak-peak):		100.0 Max	Oil Recharge (oz):	35
Record Date:	2021-07-12		Oil Type:	POE
			Net Weight (lbs):	69.5
			Internal Free Volume (in^3):	
			Horse Power:	
			*Overall compressor height on Copeland Brand Pro mounting grommets.	duct's specified
Electrica	ı		Capacitors	
LRA High* (Amps):		74	Type Part No Low MFD High MFD Volts Us	er Description
LRA Low*(Amps):			No data available in table	
LRA Half Winding (Amps):				
MCC (Amps):		19		
Max Operating Current (Amps):				
RLA, MCC/1.4(use for contactor sele	ection)(Amps)	13.6		
RLA, MCC/1.56(use for breaker &am selection)(Amps):	p; wire size	12.2		
RPM:		3500		
Box IP :				
UL File No:				
UL File Date: *Low and High refer to the low and high which the motor is approved.	n nominal volta	ge ranges for		

Coeff#	Capacity (Btu/hr)	Power (W)	Current (Amps)	Mass Flow (lbs/hr)
0	-3957.96138105264	2318.80241339298	6.06508051885872	104.551151373699
1	1213.7246042632	-34.2634073100331	0.17358818056787	13.0718200660992
2	256.659286719385	-25.1850825375482	-0.104170485222072	-2.0015411821846
3	5.91353123430517	-0.451159955924902	-0.00450355013813934	0.0381544522226493
4	-13.2547311164309	0.833155069062735	-0.000428542098219626	-0.150832549985571
5	-1.16817940373403	0.164877649116071	0.00145505745671617	0.041983948543955
6	0.0172084950267387	-0.00369573542824681	-8.60029417718881E-06	0.000200298596044666
7	-0.033241548326054	0.00661488827086934	4.58958099440057E-05	-0.000111599993040369
8	0.0485301172132427	-0.00421534034894921	-6.63574572819163E-06	0.0006744688394973
9	-0.003297595959582	-0.000160030425729842	-4.4605735546754E-06	-0.000234506560524888