Constraint Propagation:

The Heart of Constraint Programming

Zeynep KIZILTAN

Department of Computer Science
University of Bologna

Email: <u>zeynep@cs.unibo.it</u>

URL: http://zeynep.web.cs.unibo.it/

What is it about?

- 4-6 hour lectures about constraint programming in general and constraint propagation in specific.
 - Part I: Overview of constraint programming
 - Part II: Constraint propagation
 - Part III: Some useful pointers
- Aim:
 - Teach the basics of constraint programming.
 - Emphasize the importance of constraint propagation.
 - Point out the advanced topics.
 - Inform about the literature.

Warning

- We will see how constraint programming works.
- No programming examples.

PART I: Overview of Constraint Programming

Outline

- Constraint Satisfaction Problems (CSPs)
- Constraint Programming (CP)
 - Modelling
 - Backtracking Tree Search
 - Local Consistency and Constraint Propagation

Constraints are everywhere!

- No meetings before 9am.
- No registration of marks before April 2.
- The lecture rooms have a capacity.
- Two lectures of a student cannot overlap.
- No two trains on the same track at the same time.
- Salary > 45k Euros ☺

. . .

Constraint Satisfaction Problems

- A constraint is a restriction.
- There are many real-life problems that require to give a decision in the presence of constraints:
 - flight / train scheduling;
 - scheduling of events in an operating system;
 - staff rostering at a company;
 - course time tabling at a university ...
- Such problems are called Constraint Satisfaction Problems (CSPs).

Sudoku: An everyday-life example

	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6	9		
	4		5	8		7	

CSPs: More formally

- A CSP is a triple <X,D,C> where:
 - X is a set of decision variables $\{X_1, ..., X_n\}$.
 - D is a set of domains {D₁,...,D_n} for X:
 - D_i is a set of possible values for X_i.
 - usually assume finite domain.
 - C is a set of constraints {C₁,...,C_m}:
 - C_i is a relation over X_j,...,X_k, giving the set of combination of allowed values.
 - $C_i \subseteq D(X_i) \times ... \times D(X_k)$
- A solution to a CSP is an assignment of values to the variables which satisfies all the constraints simultaneously.

CSPs: A simple example

Variables

$$X = \{X_1, X_2, X_3\}$$

Domains

$$D(X_1) = \{1,2\}, D(X_2) = \{0,1,2,3\}, D(X_3) = \{2,3\}$$

Constraints

$$X_1 > X_2$$
 and $X_1 + X_2 = X_3$ and $X_1 \neq X_2 \neq X_3 \neq X_1$

Solution

$$X_1 = 2$$
, $X_2 = 1$, $X_3 = 3$

all different (
$$[X_1, X_2, X_3]$$
)

Sudoku: An everyday-life example

- A simple CSP
 - 9x9 variables (X_{ii}) with domains {1,...,9}
 - Not-equals constraints on the rows, columns, and 3x3 boxes. E.g., all different ([X₁₁, X₂₁, X₃₁, ..., X₉₁]) all different ([X₁₁, X₁₂, X₁₃, ..., X₁₉]) all different ([X₁₁, X₂₁, X₃₁, X₁₂, X₂₂, X₃₂, X₁₃, X₂₃, X₃₃])

Job-Shop Scheduling: A real-life example

- Schedule jobs, each using a resource for a period, in time D by obeying the precedence and capacity constraints
- A very common industrial problem.
- CSP:
 - variables represent the operations;
 - domains represent the start times;
 - constraints specify precedence and exclusivity.

CSPs

- Search space: D(X₁) x D(X₂)x ... x D(X_n)
 - very large!
- Constraint satisfaction is NP-complete:
 - no polynomial time algorithm is known to exist!
 - I can get no satisfaction ☺
- We need general and efficient methods to solve CSPs:
 - Integer and Linear Programming (satisfying linear constraints on 0/1 variables and optimising a criterion)
 - SAT (satisfying CNF formulas on 0/1 variables)
 - ...
 - Constraint Programming
 How does it exactly work?

Core of CP

 CP is composed of two parts that are strongly interconnected:

Core of CP-Modelling

The CP user models the problem as a CSP:

- define the variables and their domains;
- specify solutions by posting constraints on the variables:
 - off-the-shelf constraints or user-defined constraints.
- a constraint can be thought of a reusable component with a propagation algorithm.

WAIT TO UNDERSTAND WHAT I MEAN ©

Modelling

- Modelling is a critical aspect.
- Given the human understanding of a problem, we need to answer questions like:
 - which variables shall I choose?
 - which constraints shall I enforce?
 - shall I use off-the-self constraints or define and integrate my own?
 - are some constraints redundant, therefore can be avoided?
 - are there any implied constraints?
 - among alternative models, which one shall I prefer?

A problem with a simple model

- A simple CSP
 - 9x9 variables (X_{ii}) with domains {1,...,9}
 - Not-equals constraints on the rows, columns, and 3x3 boxes, eg., alldifferent([X₁₁, X₂₁, X₃₁, ..., X₉₁]) alldifferent([X₁₁, X₁₂, X₁₃, ..., X₁₉]) alldifferent([X₁₁, X₂₁, X₃₁, X₁₂, X₂₂, X₃₂, X₁₃, X₂₃, X₃₃])

A problem with a complex model

- Consider a permutation problem:
 - find a permutation of the numbers {1,...,n} s.t. some constraints are satisfied.
- One model:
 - variables (X_i) for positions, domains for numbers {1,...,n}.
- Dual model:
 - variables (Y_i) for numbers {1,...,n}, domains for positions.
- Often different views allow different expression of the constraints and different implied constraints:
 - can be hard to decide which is better!
- We can use multiple models and combine them via channelling constraints to keep consistency between the variables:

$$-X_i = j \leftrightarrow Y_j = i$$

Core of CP-Solving

The user lets the CP technology solve the CSP:

- choose a search algorithm:
 - usually backtracking tree search.
- integrate local consistency and propagation.
- choose heuristics for branching:
 - which variable to branch on?
 - which value to branch on?

Backtracking Tree Search

- A possible efficient and simple method.
- Variables are instantiated sequentially.
- Whenever all the variables of a constraint is instantiated, the validity of the constraint is checked.
- If a partial instantiation violates a constraint, backtracking is performed to the most recently instantiated variable that still has alternative values.
- Backtracking eliminates a subspace from the cartesian product of all variable domains.
- Essentially performs a depth-first search.

Backtracking Tree Search

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃])
 Backtracking tree search

Backtracking Tree Search

- Backtracking suffers from thrashing ② :
 - performs checks only with the current and past variables;
 - search keeps failing for the same reasons.

- Integrates local consistency and constraint propagation into the backtracking search.
 Consequently:
 - we can reason about the properties of constraints and their effect on their variables;
 - some values can be filtered from some domains, reducing the backtracking search space significantly!

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃])
 Backtracking tree search + local consistency/propagation

- $X_1 \in \{1, 2\}$ $X_2 \in \{0, 1\}$ $X_3 \in \{2, 3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃])
 Backtracking tree search + local consistency/propagation

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃])
 Backtracking tree search + local consistency/propagation

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1\}$ $X_3 \in \{2,3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃])
 Backtracking tree search + local consistency/propagation

Local consistency & Propagation & Heuristics

 Central to the process of solving CSPs which are inherently intractable.

- Programming, in the sense of mathematical programming:
 - the user states declaratively the constraints on a set of decision variables.
 - an underlying solver solves the constraints and returns a solution.
- Programming, in the sense of computer programming:
 - the user needs to program a strategy to search for a solution.
 - otherwise, solving process can be inefficient.

- Solve SUDOKU using CP!
 http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html
 - very easy, not worth spending minutes ©
 - you can decide which newspaper provides the toughest Sudoku instances ©

- Constraints can be embedded into:
 - logic programming (constraint logic programming)
 - Prolog III, CLP(R), SICStus Prolog, ECLiPSe, CHIP, ...
 - functional programming
 - Oz
 - imperative programming
 - often via a separate library
 - ILOG Solver, Gecode, Choco, Minion, ...

NOTE: We will not commit to any CP language/library, rather use a mathematical and/or natural notation.

PART II: Constraint Propagation

Local Consistency & Constraint Propagation

PART I: The user lets the CP technology solve the CSP:

- choose a search algorithm (usually backtracking tree search);
- design heuristics for branching;
- integrate local consistency and propagation.

What exactly are they? How do they work?

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Propagation Algorithms
- Specialised Propagation Algorithms
 - Global Constraints
 - Alldifferent Constraint
 - Other Examples of Global Constraints
- Generalised Algorithms
 - GAC Schema

Local Consistency

- Backtrack tree search aims to extend a partial instantiation of variables to a complete and consistent one.
 - The search space is too large!
- Some inconsistent partial assignments obviously cannot be completed.
- Local consistency is a form of inference which detects inconsistent partial assignments.
 - Consequently, the backtrack search commits into less inconsistent instantiations.
- Local, because we examine individual constraints.
 - Remember that global consistency is NP-complete!

Local Consistency: An example

- D(X₁) = {1,2}, D(X₂) = {3,4}, C₁: X₁ = X₂, C₂: X₁ + X₂ \ge 1 • X₁ = 1 • X₁ = 2 • X₂ = 3 • X₄ = 4
 - no need to check the individual assignments.
 - no need to check the other constraint.
 - unsatisfiability of the CSP can be inferred without having to search!

Several Local Consistencies

- Most popular local consistencies:
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
- They detect inconsistent partial assignments of the form X_i = j, hence:
 - j can be removed from D(X_i) via propagation;
 - propagation can be implemented easily.

Arc Consistency (AC)

- Defined for binary constraints.
- A binary constraint C is a relation on two variables X_i and X_j, giving the set of allowed combinations of values (i.e. tuples):
 - $C \subseteq D(X_i) \times D(X_i)$
- C is AC iff:
 - forall $v ∈ D(X_i)$, exists $w ∈ D(X_i)$ s.t. (v,w) ∈ C.
 - $v \in D(X_i)$ is said to have a support wrt the constraint C.
 - forall $w \in D(X_i)$, exists $v \in D(X_i)$ s.t. $(v,w) \in C$.
 - $w \in D(X_i)$ is said to have a support wrt the constraint C.
- A CSP is AC iff all its binary constraints are AC.

AC: An example

- $D(X_1) = \{1,2,3\}, D(X_2) = \{2,3,4\}, C: X_1 = X_2$
- AC(C)?
 - 1 ∈ D(X₁) does not have a support.
 - $-2 \in D(X_1)$ has $2 \in D(X_2)$ as support.
 - 3 ∈ D(X₁) has 3 ∈ D(X₂) as support.
 - 2 ∈ D(X₂) has 2 ∈ D(X₁) as support.
 - $-3 \in D(X_2)$ has $3 \in D(X_1)$ as support.
 - 4 ∈ D(X_2) does not have a support.
- $X_1 = 1$ and $X_2 = 4$ are inconsistent partial assignments.
- $1 \in D(X_1)$ and $4 \in D(X_2)$ must be removed to achieve AC.
- $D(X_1) = \{2,3\}, D(X_2) = \{2,3\}, C: X_1 = X_2.$
 - AC(C)

Propagation!

Generalised Arc Consistency

- Generalisation of AC to n-ary constraints.
- A constraint C is a relation on k variables $X_1, ..., X_k$:
 - $C \subseteq D(X_1) \times ... \times D(X_k)$
- A support is a tuple $\{d_1, ..., d_k\} \in C$ where $d_i \in D(X_i)$.
- C is GAC iff:
 - forall X_i in $\{X_1, ..., X_k\}$, forall $v \in D(X_i)$, v belongs to a support.
- AC is a special case of GAC.
- A CSP is GAC iff all its constraints are GAC.

GAC: An example

- D(X₁) = {1,2,3}, D(X₂) = {1,2}, D(X₃) = {1,2}
 C: alldifferent([X₁, X₂, X₃])
- GAC(C)?
 - $-X_1 = 1$ and $X_1 = 2$ are not supported!
- D(X₁) = {3}, D(X₂) = {1,2}, D(X₃) = {1,2}
 C: X₁ ≠ X₂ ≠ X₃
 GAC(C)

Bounds Consistency (BC)

- Defined for totally ordered (e.g. integer) domains.
- Relaxes the domain of X_i from D(X_i) to [min(X_i)..max(X_i)].
- Advantage:
 - it might be easier to look for a support in a range than in a domain;
 - achieving BC is often cheaper than achieving GAC;
 - achieving BC is enough to achieve GAC for monotonic constraints.
- Disadvantage:
 - BC might not detect all GAC inconsistencies in general.

Bounds Consistency (BC)

- A constraint C is a relation on k variables X₁,..., X_k:
 - $C \subseteq D(X_1) \times ... \times D(X_k)$
- A bound support is a tuple <d₁,...,d_k> ∈ C where d_i ∈ [min(X_i)..max(Xi)].
- C is BC iff:
 - forall X_i in {X₁,..., X_k}, min(X_i) and max(X_i) belong to a bound support.

GAC > BC: An example

• $D(X_1) = D(X_2) = \{1,2\}, D(X_3) = D(X_4) = \{2,3,5,6\}, D(X_5) = \{5\}, D(X_6) = \{3,4,5,6,7\}$

C: alldifferent([X₁, X₂, X₃, X₄, X₅, X₆])

• BC(C): $2 \in D(X_3)$ and $2 \in D(X_4)$ have no support.

GAC > BC: An example

• $D(X_1) = D(X_2) = \{1,2\}, D(X_3) = D(X_4) = \{2,3,5,6\}, D(X_5) = \{5\}, D(X_6) = \{3,4,5,6,7\}$

C: alldifferent([X₁, X₂, X₃, X₄, X₅, X₆])

• GAC(C): $\{2,5\} \in D(X_3)$, $\{2,5\} \in D(X_4)$, $\{3,5,6\} \in D(X_6)$ have no support.

GAC = BC: An example

- $D(X_1) = \{1,2,3\}, D(X_2) = \{1,2,3\}, C: X_1 < X_2$
- BC(C):
 - $D(X_1) = \{1,2\}, D(X_2) = \{2,3\}$
- BC(C) = GAC(C):
 - a support for $min(X_2)$ supports all the values in $D(X_2)$.
 - a support for max(X1) supports all the values in D(X1).

Higher Levels of Consistencies

- Path consistency, k-consistencies, (i,j) consistencies, ...
- Not much used in practice:
 - detect inconsistent partial assignments with more than one
 <variable, value > pair.
 - cannot be enforced by removing single values from domains.
- Domain based consistencies stronger than (G)AC.
 - Singleton consistencies, triangle-based consistencies, ...
 - Becoming popular:
 - shaving in scheduling.

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Constraint Propagation Algorithms
- Specialised Propagation Algorithms
 - Global Constraints
 - Alldifferent Constraint
 - Other Examples of Global Constraints
- Generalised Algorithms
 - GAC Schema, AC Algorithms

Constraint Propagation

- Can appear under different names:
 - constraint relaxation
 - filtering algorithm
 - local consistency enforcing, ...
- Similar concepts in other fields:
 - unit propagation in SAT.
- Local consistencies define properties that a CSP must satisfy after constraint propagation:
 - the operational behaviour is completely left open;
 - the only requirement is to achieve the required property on the CSP.

Constraint Propagation: A simple example

Input CSP:D(X_1) = {1,2}, D(X_2) = {1,2}, $C: X_1 < X_2$

A constraint propagation algorithm for enforcing AC

We can write
different
algorithms with
different
complexities to
achieve the
same effect.

Output CSP:D(X_1) = {1}, D(X_2) = {2}, C: $X_1 < X_2$

Constraint Propagation Algorithms

- A constraint propagation algorithm propagates a constraint C.
 - It removes the inconsistent values from the domains of the variables of C.
 - It makes C locally consistent.
 - The level of consistency depends on C:
 - GAC might be NP-complete, BC might not be possible, ...

Constraint Propagation Algorithms

- When solving a CSP with multiple constraints:
 - propagation algorithms interact;
 - a propagation algorithm can wake up an already propagated constraint to be propagated again!
 - in the end, propagation reaches a fixed-point and all constraints reach a level of consistency;
 - the whole process is referred as constraint propagation.

Constraint Propagation: An example

- $D(X_1) = D(X_2) = D(X_3) = \{1,2,3\}$ C_1 : all different ($[X_1, X_2, X_3]$) C_2 : $X_2 < 3$ C_3 : $X_3 < 3$
- Let's assume:
 - the order of propagation is C₁, C₂, C₃;
 - each algorithm maintains (G)AC.
- Propagation of C₁:
 - nothing happens, C₁ is GAC.
- Propagation of C₂:
 - 3 is removed from D(X₂), C₂ is now AC.
- Propagation of C₃:
 - 3 is removed from D(X₃), C₃ is now AC.
- C_1 is not GAC anymore, because the supports of $\{1,2\} \in D(X_1)$ in $D(X_2)$ and $D(X_3)$ are removed by the propagation of C_2 and C_3 .
- Re-propagation of C₁:
 - 1 and 2 are removed from D(X₁), C₁ is now AC.

Properties of Constraint Propagation Algorithms

- It is not enough to remove inconsistent values from domains.
- A constraint propagation algorithm must wake up when necessary, otherwise may not achieve the desired local consistency property.
- Events that trigger a constraint propagation:
 - when the domain of a variable changes;
 - when one variable is assigned a value;
 - when the minimum or the maximum values of a domain changes.

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Propagation Algorithms
- Specialised Propagation Algorithms
 - Global Constraints
 - Alldifferent Constraint
 - Other Examples of Global Constraints
- Generalised Propagation Algorithms
 - GAC Schema, AC Algorithms

Specialised Propagation Algorithms

- A constraint propagation algorithm can be general or specialised:
 - general, if it is applicable to any constraint;
 - specialised, if it is specific to a constraint, exploiting the constraint semantics.
- Many real-life constraints are complex and non-binary.
- A global constraint is a complex and non-binary constraint which encapsulates a specialised propagation algorithm.

Benefits of Global Constraints

Modelling benefits

- Reduce the gap between the problem statement and the model.
- Capture recurring modelling patterns.
- May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).

Solving benefits

- More inference in propagation (operational).
- More efficient propagation (algorithmic).

- Alldifferent constraint
 - useful in a variety of assignment problems
 - e.g. permutation, timetabling, production problems, ...
 - all different ([X₁, X₂, ..., X_n]) holds iff $X_i \neq X_i \text{ for all } i < j \in \{1,...,n\}$

- Modelling Benefits
 - One constraint instead of X_i ≠ X_j forall i < j ∈ {1,...,n}
- Solving Benefits
 - Efficient algorithms to maintain GAC, BC, ...
 (algorithmic)

- Solving Benefits (operational)
 - GAC > AC on the decomposition

- GAC algorithm based on matching theory.
 - Establishes a relation between the solutions of the constraint and the properties of a graph.
 - Runs in time O(dn^{1.5}).
- Value graph: bipartite graph between variables and their possible values.
- Matching: set of edges with no two edges having a node in common.
- Maximal matching: largest possible matching.

- An assignment of values to the variables X₁,
 X₂, ..., X_n is a solution iff it corresponds to a maximal matching.
 - Edges that do not belong to a maximal matching can be deleted.
- The challenge is to compute such edges efficiently.
 - Exploit concepts like strongly connected components, alternating paths, ...

• $D(X_1) = \{1,3\}$, $D(X_2) = \{1,3\}$, $D(X_3) = \{1,2\}$

Variable-value graph

• $D(X_1) = \{1,3\}$, $D(X_2) = \{1,3\}$, $D(X_3) = \{1,2\}$

A maximal matching

• $D(X_1) = \{1,3\}$, $D(X_2) = \{1,3\}$, $D(X_3) = \{1,2\}$

Another maximal matching

Does not belong to any maximal matching

Other Examples of Global Constraints

- NValue constraint:
 - useful in counting problems
 - NValue ($[X_1, X_2, ..., X_n]$, N) holds iff N = $|\{X_i | 1 \le i \le n \}|$
 - NValue ([1, 2, 2, 1, 3], 3)
- Element constraint:
 - useful in variable subscripts
 - Element (V, N, $[X_1, X_2, ..., X_n]$) holds iff $X_N = V$
 - Element (3, 2, [1, 3, 4])
- Global cardinality constraint:
 - useful in occurrence problems
 - GCC ($[X_1, X_2, ..., X_n]$, $[v_1, ..., v_m]$, $[O_1, ..., O_m]$) iff for all $j \in \{1,...,m\}$ $O_i = |\{X_i \mid X_i = v_i, 1 \le i \le n\}|$
 - GCC ([1, 1, 2], [1, 2], [2, 1])

Other Examples of Global Constraints

```
Lex ([X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>], [Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n</sub>])
useful in symmetry breaking
Lex ([X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>], [Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n</sub>]) holds iff: X<sub>1</sub> < Y<sub>1</sub> OR (X<sub>1</sub> = Y<sub>1</sub> AND X<sub>2</sub> < Y<sub>2</sub>) OR ...
(X<sub>1</sub> = Y<sub>1</sub> AND X<sub>2</sub> = Y<sub>2</sub> AND .... AND X<sub>n</sub> < Y<sub>n</sub>) OR (X<sub>1</sub> = Y<sub>1</sub> AND X<sub>2</sub> = Y<sub>2</sub> AND .... AND X<sub>n</sub> = Y<sub>n</sub>
Lex ([1, 2, 3],[1, 3, 4])
```

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Propagation Algorithms
- Specialised Propagation Algorithms
 - Global Constraints
 - Alldifferent Constraint
 - Other Examples of Global Constraints
- Generalised Propagation Algorithms
 - GAC Schema, AC Algorithms

Generalised Propagation Algorithms

- Not all constraints have nice semantics we can exploit to devise an efficient specialised propagation algorithm.
- Consider a product configuration problem:
 - compatibility constraints on hardware components:
 - only certain combinations of components work together.
 - compatibility may not be a simple pairwise relationship:
 - video cards supported function of motherboard, CPU, clock speed, O/S, ...

Production Configuration Problem

- Compatible (motherboard346, intelCPU, 3GHz, 2GBRam, 100GBdrive).
- Compatible (motherboard346, amdCPU, 2GHz, 2GBRam, 100GBdrive).
- ...

Crossword Puzzle

- Constraints with different arity:
 - Word₁ $([X_1, X_2, X_3])$
 - $Word_2([X_1, X_{13}, X_{16}])$
 - ...
- No simple way to decide acceptable words other than to put them in a table.

GAC Schema

- A generic propagation algorithm.
 - Enforces GAC on an n-ary constraint given by:
 - a set of allowed tuples;
 - a set of disallowed tuples;
 - a predicate answering if a constraint is satisfied or not.
 - Sometimes called the "table" constraint:
 - user supplies table of acceptable values.
- Complexity: O(d^k) time
- Hence, k cannot be too large!
 - ILOG Solver limits it to 3 or so.

Arc Consistency Algorithms

- Generic AC algorithms with different complexities and advantages:
 - AC3
 - AC4
 - AC6
 - AC2001
 - ...

PART III: Some Useful Pointers about CP

(Incomplete) List of Advanced Topics

- Modelling
- Global constraints, propagation algorithms
- Search algorithms
- Heuristics
- Symmetry breaking
- Optimisation
- Local search
- Soft constraints, preferences
- Temporal constraints
- Quantified constraints
- Continuous constraints

- Planning and scheduling
- SAT
- Complexity and tractability
- Uncertainty
- Robustness
- Structured domains
- Randomisation
- Hybrid systems
- Applications
- Constraint systems
- No good learning
- Explanations
- Visualisation

Books

- My PhD dissertation ©
- Handbook of Constraint Programming

F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006.

Some online chapters:

Chapter 1 - Introduction

Chapter 3 - Constraint Propagation

Chapter 6 - Global Constraints

Chapter 10 - Symmetry in CP

Chapter 11 - Modelling

Books

- Constraint Logic Programming Using Eclipse
 K. Apt and M. Wallace, Cambridge University Press, 2006.
- Principles of Constraint Programming
 K. Apt, Cambridge University Press, 2003.
- Constraint Processing
 Rina Dechter, Morgan Kaufmann, 2003.
- Constraint-based Local Search
 Pascal van Hentenryck and Laurent Michel, MIT Presss, 2005.
- The OPL Optimization Programming Languages
 Pascal Van Hentenryck, MIT Press, 1999.

People

- Barbara Smith
 - Modelling, symmetry breaking, search heuristics
 - Tutorials and book chapter
- Christian Bessiere
 - Constraint propagation
 - Global constraints
 - Nvalue constraint
 - Book chapter
- Jean-Charles Regin
 - Global constraints
 - Alldifferent, global cardinality, cardinality matrix
- Toby Walsh
 - Modelling, symmetry breaking, global constraints
 - Various tutorials

Journals

- Constraints
- Artificial Intelligence
- Journal of Artificial Intelligence Research
- Journal of Heuristics
- Intelligenza Artificiale (AI*IA)
- Informs Journal on Computing
- Annals of Mathematics and Artificial Intelligence

Conferences

- Principles and Practice of Constraint Programming http://www.cs.ualberta.ca/~ai/cp/
- Integration of AI and OR Techniques in CP http://www.cs.cornell.edu/~vanhoeve/cpaior/
- National Conference on AI (AAAI)
 http://www.aaai.org
- International Joint Conference on Artificial Intelligence (IJCAI)
 http://www.ijcai.org
- European Conference on Artificial Intelligence (ECAI)
 http://www.eccai.org
- International Symposium on Practical Aspects of Declarative Languages (PADL)

http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html

Schools and Tutorials

– ACP summer schools:

2005: http://www.math.unipd.it/~frossi/cp-school/

2006: http://www.cse.unsw.edu.au/~tw/school.html

2007: http://www.iiia.csic.es/summerschools/sscp2007/

2008: http://www-circa.mcs.st-and.ac.uk/cpss2008/

- Al conference tutorials (IJCAl'07, IJCAl'05, ECAl'04 ...).
- CP conference tutorials.
- CP-AI-OR master classes.

Solvers & Languages

- Choco (http://choco.sourceforge.net/)
- Comet (http://www.comet-online.org/)
- Eclipse (http://eclipse.crosscoreop.com/)
- FaCiLe (http://www.recherche.enac.fr/opti/facile/)
- Gecode (http://www.gecode.org/)
- ILOG Solver (http://www.ilog.com)
- Koalog Constraint Solver (http://www.gecode.org/)
- Minion (http://minion.sourceforge.net/)
- OPL (http://www.ilog.com/products/oplstudio/)
- Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/index.html)