

Química **Nivel medio** Prueba 1

Jueves 11 de mayo de 2017 (tarde)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

2217-6128

								Та	bla po	Tabla periódica	g							
	-	7	ო	4	ις	9	7	œ	6	10	7	12	5	4	15	16	17	18
_	1,01			Z Z	Número atómico		-											2 He 4,00
7	3 Li 6,94	4 Be 9,01		Masa	Masa atómica relativa	elativa							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
က	11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	17 CI 35,45	18 Ar 39,95
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,90
£.	37 Rb 85,47	38 Sr 87,62	39 ≺ 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,90	54 Xe 131,29
9	55 Cs 132,91	56 Ba 137,33	57† La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 0s 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
~	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	
			#	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

1. ¿Cuál es la suma de los coeficientes cuando la ecuación se ajusta con números enteros?

$$_C_8H_{18}(g) + _O_2(g) \rightarrow _CO(g) + _H_2O(l)$$

- A. 26,5
- B. 30
- C. 53
- D. 61
- 2. ¿Cuántos moles de átomos de oxígeno hay en 0,500 moles de sulfato de hierro(II) y amonio hidratado, $(NH_4)_2$ Fe $(SO_4)_2$ •6 H_2 O (s)?
 - A. 4,00
 - B. 7,00
 - C. 8,00
 - D. 14,00
- 3. ¿Cuál es el volumen máximo de $CO_2(g)$ producido, en dm³, cuando 1,00 g de $CaCO_3(s)$ reacciona con 20,0 cm³ de HCl(aq) 2,00 mol dm⁻³?

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

Volumen molar del gas = $22.7 \,\mathrm{dm^3 \,mol^{-1}}$; $M_r(CaCO_3) = 100,00$

A.
$$\frac{1}{2} \times \frac{20,0 \times 2,00}{1000} \times 22,7$$

B.
$$\frac{20,0 \times 2,00}{1000} \times 22,7$$

C.
$$\frac{1,00}{100,00} \times 22,7$$

D.
$$\frac{1,00}{100,00} \times 2 \times 22,7$$

- 4. ¿Qué factores afectan al volumen molar de un gas ideal?
 - I. Presión
 - II. Temperatura
 - III. Fórmula empírica
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 5. ¿Qué representa $^{24}_{12}$ Mg²⁺?
 - A. Un ion con 12 protones y 24 neutrones
 - B. Un ion con 14 protones y 24 neutrones
 - C. Un ion con 12 protones y 12 neutrones
 - D. Un ion con 12 protones y 22 neutrones
- **6.** ¿Qué transición electrónica emite radiación de mayor longitud de onda?

- 7. ¿Qué propiedad aumenta hacia abajo en el grupo 1, metales alcalinos?
 - A. Radio atómico
 - B. Electronegatividad
 - C. Energía de primera ionización
 - D. Punto de fusión

- 8. ¿Qué elemento es un lantánido?
 - A. Hf
 - B. Tb
 - C. U
 - D. Y
- 9. ¿Cuántos electrones enlazantes hay en la molécula de urea?

- A. 8
- B. 16
- C. 20
- D. 24
- **10.** ¿Qué enlaces son la causa de que el punto de ebullición del agua sea significativamente más elevado que el del sulfuro de hidrógeno?
 - A. London (dispersión)
 - B. Covalente
 - C. Iónico
 - D. De hidrógeno
- 11. ¿Cuáles son aproximadamente los ángulos de enlace y la estructura del SiO₂ cristalino?

	O-Si-O	Estructura
A.	90°	molécula gigante
B.	109°	molécula gigante
C.	180°	molécula pequeña
D.	180°	molécula gigante

- **12.** ¿Qué metal presenta enlace metálico más potente?
 - A. Li
 - B. Na
 - C. K
 - D. Rb
- **13.** ¿Qué se puede deducir de este perfil de reacción?

- A. Los reactivos son menos estables que los productos y la reacción es exotérmica.
- B. Los reactivos son menos estables que los productos y la reacción es endotérmica.
- C. Los reactivos son más estables que los productos y la reacción es exotérmica.
- D. Los reactivos son más estables que los productos y la reacción es endotérmica.
- **14.** ¿Por qué el valor de la variación de entalpía de esta reacción calculada a partir de datos de entalpías de enlace es menos exacto que la calculada a partir de las entalpías estándar de formación?

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$$

- A. Todos los productos y reactivos son gases.
- B. Para muchos compuestos, los datos de entalpía de enlace son valores medios.
- C. Los elementos no tienen entalpía estándar de formación.
- D. Las entalpías estándar de formación se refieren a un mol.

- **15.** ¿Qué se puede deducir del hecho de que el ozono absorbe radiación UV en la región de 340 nm y el oxígeno molecular en la región de 242 nm?
 - A. El enlace entre los átomos en el oxígeno molecular es un enlace doble.
 - B. En el ozono, los enlaces están deslocalizados.
 - C. Los enlaces entre los átomos en el ozono son más fuertes que los del oxígeno molecular.
 - D. Los enlaces entre los átomos en el oxígeno molecular necesitan más energía para romperse.

Las preguntas 16 y 17 se refieren a la siguiente reacción:

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

- **16.** ¿Qué cambio **no** aumenta la velocidad de reacción inicial cuando se añade CaCO₃(s) a un exceso de HCl (aq)?
 - A. Disminución del tamaño de las partículas de CaCO₃(s)
 - B. Aumento de la temperatura de la mezcla de reacción
 - C. Aumento de la concentración de HCl (aq), manteniendo el mismo volumen
 - D. Aumento de volumen de HCl (aq), manteniendo la misma concentración
- 17. ¿Qué métodos se pueden utilizar para monitorizar el progreso de esta reacción?
 - I. Cambio de color de esta mezcla de reacción
 - II. Cambio de masa de esta mezcla de reacción
 - III. Cambio de volumen del gas que se desprende
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

$$2NH_3(g) + 2O_2(g) \rightleftharpoons N_2O(g) + 3H_2O(g)$$

-8-

- $\text{A.} \quad \frac{3 \big[\text{H}_2 \text{O} \big] \big[\text{N}_2 \text{O} \big]}{2 \big[\text{NH}_3 \big] 2 \big[\text{O}_2 \big]}$
- B. $\frac{[NH_3]^2[O_2]^2}{[N_2O][H_2O]^3}$
- $C. \quad \frac{2[NH_{_{3}}]2[O_{_{2}}]}{3[H_{_{2}}O][N_{_{2}}O]}$
- $D. \quad \frac{\left[N_{2}O\right]\!\left[H_{2}O\right]^{3}}{\left[NH_{3}\right]^{2}\left[O_{2}\right]^{2}}$
- 19. ¿Cuál de los siguientes no reacciona con HCl (aq) diluido?

Extracto de la serie de actividades

- A. Na₂CO₃
- B. Cu
- C. Zn
- D. CuO
- 20. ¿Cuál de las siguientes afirmaciones es correcta?
 - A. Un ácido débil es un donante de protones y su solución acuosa presenta buena conductividad.
 - B. Un ácido débil es un donante de protones y su solución acuosa presenta baja conductividad.
 - C. Un ácido débil es un receptor de protones y su solución acuosa presenta buena conductividad.
 - D. Un ácido débil es un receptor de protones y su solución acuosa presenta baja conductividad.

21. ¿Qué elemento se reduce en la siguiente descomposición?

$$(NH_4)_2Cr_2O_7(s) \rightarrow N_2(g) + Cr_2O_3(s) + 4H_2O(g)$$

- A. N
- B. H
- C. Cr
- D. O

22. ¿Cuál de las siguientes no es una reacción rédox?

A.
$$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$$

- B. $C(s) + O_2(g) \rightarrow CO_2(g)$
- C. $2CO(g) \rightarrow CO_2(g) + C(s)$
- D. $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$

23. ¿Qué sucede en el ánodo (electrodo positivo) durante la electrólisis de bromuro de estroncio fundido?

- A. Formación de bromo y oxidación
- B. Formación de bromo y reducción
- C. Formación de estroncio y oxidación
- D. Formación de estroncio y reducción

24. ¿Qué grupo funcional está presente en el paracetamol?

- A. Carboxilo
- B. Amino
- C. Nitrilo
- D. Hidroxilo

25. ¿Qué opción describe la reacción entre un halógeno y etano?

	Mecanismo	Rotura del enlace del halógeno
A.	radicales libres	homolítica
B.	radicales libres	heterolítica
C.	adición	homolítica
D.	adición	heterolítica

- **26.** ¿Qué condiciones se utilizan para convertir etanol en etanal?
 - A. Exceso de agente oxidante y reflujo
 - B. Exceso de agente oxidante y destilación
 - C. Exceso de etanol y reflujo
 - D. Exceso de etanol y destilación

- 27. ¿Qué compuesto contiene un átomo de carbono secundario?
 - A. CH₃CH(Cl)CH(CH₃)₂
 - B. (CH₃)₂CHCH₂Cl
 - C. $(CH_3)_3CCl$
 - D. CH₃CH₂Cl
- 28. ¿Qué información se puede obtener a partir de un espectro infrarrojo (IR)?
 - A. La energía de ionización del elemento más abundante
 - B. El número de elementos diferentes en el compuesto
 - C. Los enlaces presentes en una molécula
 - D. La fórmula molecular del compuesto
- **29.** ¿Qué se puede deducir del siguiente espectro de RMN de ¹H?

- A. En la molécula hay un solo átomo de hidrógeno.
- B. En la molécula hay solo un ambiente de hidrógeno.
- C. La molécula es un hidrocarburo.
- D. En el elemento hay un solo isótopo.

30. ¿Cuál es la relación gráfica entre n y T en la ecuación de un gas ideal, pV = nRT, si todas las demás variables se mantienen constantes?

A.

В.

C.

D.

