Simulace a návrh vyvíjejících se systémů

Vladimír Janoušek

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 612 66 Brno janousek@fit.vutbr.cz@fit.vutbr.cz

Co zkoumáme

- Předmětem zájmu jsou
 - Systémy s nejasnou specifikací
 - Vyvíjející se a adaptivní systémy
- Vyžadují specifické metody pro
 - návrh,
 - vývoj,
 - údržbu.
- S čím je třeba se vyrovnat:
 - Vývoj vyvíjejících se systémů
 - Nepřetržitý vývoj i v cílovém nasazení
 - Vývoj v simulovaném prostředí

Motivační příklady aplikací

- Příklady aplikací, vyžadující specifiký přístup
 - Inkrementální vývoj systémů, založený na modelech
 - Řízení a monitorování procesů (technických i jiných)
 - Optimalizace, učení, adaptace na měnící se podmínky

- K vývoji systému dochází
 - Interaktivně
 - automaticky

Inkrementální vývoj systémů

- Inkrementální vývoj systému v simulovaném prostředí
 - Simulation-Based Design & Development
- Nejasná specifikace se postupně upřesňuje na základě výsledků testů
 - Proveditelná, simulovatelná specifikace (ověř. funkčnosti)
 - Rychlé prototypování (testy v reálném prostředí)
 - Simulace vs. realita (hranice možností vs. věrnost)
- Příklad: Řídicí systém autonomního robota
 - Vývoj v simulovaném prostředí
 - Testování v reálném prostředí
- Problémy
 - Zachování modelu, HIL, RT, vyvíjející se požadavky, ...

Inkrementální vývoj v simulaci

_ _ _

M & S ve **všech** fázích vývoje

inkrementální připojování reálných komponent produktu

(Reality in-the-loop)

_ _ _

produkt obsahuje model řízení v originální podobě

| Řízení a monitorování systémů

- Příklady
 - Výrobní systém (FMS)
 - Byznys procesy, Workflow, Řízení projektů a procesů
- Plánování a rozvrhování
 - Přidělování zdrojů aktivitám
 - Optimalizace (např. GA) využívá simulaci
- Monitorování
 - Simulace se porovnává a synchronizuje s realitou
 - Odchylky se řeší on-line úpravou modelu
 - parametry
 - struktura
 - omezující podmínky
 - Opakovaná optimalizace (plánování a rozvrhování)

| Modelování - DEVS

Dynamický DEVS

- Princip:
 - Strukturní a nestrukturní přechody

Reflektivní a metaúrovňové architektury |

- Metaúrovňová architektura
 - Základní úroveň úroveň aplikace, základní systém (model)
 - Metaúroveň systém popisující vývoj systémů
- Každá úroveň je systém, který má
 - Strukturu (vstupy, výstupy, stavy a jejich souvislosti)
 - Chování (vstupní, výstupní a stavové trajektorie)
- Reflektivní systém
 - Komunikuje s vlastním metasystémem
- Příklady metasystémů
 - Goedel, Turing, Klir
 - OS
 - dynamické programovací jazyky (exploratory programming)

Simulátor jako systém

Použití otevřené architektury

 Interaktivní simulace

 Simulace reflektivních systémů

 Vnořená simulace

| Použitý přístup

- Experimentální programování (exploratory programming)
 - bezprostřední interaktivní testování v průběhu programování
 - postup zdola nahoru, staví se na otestovaných komponentách
 - velmi rychle a s odpovídajícími nástroji i přirozeně
- Beztřídní (na prototypech založená) OO (jako Self)
 - objekty jsou popsány samy sebou (nepotřebují třídy)
 - jsou klonovatelné, editovatelné, migrovatelné
 - důraz na konkrétnost je možná přímá manipulace kopírováním a vkládáním
- Zachování modelu v cílové realizaci
 - vzdálený přístup k simulacím
 - monitorování a dovyvíjení za běhu

SmallDEVS

- SmallDEVS je konkrétní implementací abstraktní architektury
- slouží k demonstraci konceptu
- je použitelný v aplikacích

Interaktivní vizuální nástroje

| Web UI

zpřístupňuje část funkčnosti vývojových nástrojů pro vzdálenou manipulaci s modely a simulacemi

Součástí simulačního jádra je http server a příslušná web aplikace

OOPN/PNtalk

Paralelní OO jazyk založený na HLPN

Vývoj agentů v PNtalk/SmallDEVS

- Jde o BDI agenta.
- Architektura vychází z existujících architektur BDI agentů.
- Jak aplikace, tj. reprezentace světa, plány atd., tak i obecná architektura agenta jsou popsány pomocí OOPN v jazyce PNtalk a interpretovány v rámci prostředí SmalDEVS.
- Je tedy možný vývoj jak agentní aplikace, tak i agentní architektury, a to za použití stejných prostředků.
- Možnost snadné adaptace agentní architektury pro usnadnění vývoje aplikace může urychlit a zkvalitnit vývoj.

- Aplikace v oblasti mobilní robotiky
- Pro srovnání je tatáž úloha alternativně řešena také reaktivním agentem (subsumpt. arch.)

| PNagent

Aplikace PN agentů v oblasti robotiky

- SmallDEVS obsahuje rozhraní na Player (middleware pro robotiku

 jednotné rozhraní na senzory a aktuátory fyzických i
 simulovaných robotů)
- Vývoj řídicího softwaru probíhá v prostředí PNtalk/SmallDEVS

ActiveMedia Pioneer P3-DX

2D and 3D simulatory

Stage a Gazebo

2D a 3D simuátory robotů ve fyzickém prostředí

DEVSML

+Vnořený PNML

Související výzkum

- McGill University, Montreal, Quebec, Canada H. Vangheluwe
- University of Arizona B.Zeigler, Saurabh Mittal
- Universidad Complutense, Madrid J.L.R. Martín
- Carleton University, G.A.Wainer
- DEVS Standardization Group
- NASA, USA DoD
- Hamburk Univ. D. Moldt

- Porovnání:
 - Tradiční přístup: DEVS, PN + běžné techniky SE
 - Náš přístup: DEVS, PN + exploratory programming
 - V každém okamžiku máme k dispozici formální model, i když vznikl evolucí (interaktivní i automatickou)

Témata výzkumu v oblasti SBD

- Standardizace
- XML reprezentace, transformace modelů
- Webové služby pro distribuovanou simulaci
- Provázání M&S a MDA, vazba na UML

Náš aktuální výzkum

- OOPN v softwarovém inženýrství
- Modelování racionálních agentů pomocí OOPN
- Modelování procesů a přidělování zdrojů pomocí OOPN
- Přímá manipulace s modely a simulacemi
- Web-based Simulation, SOA, DEVSML, PNML,...
- Simulace a návrh inteligentních systémů, aplikace v mobilní robotice
- Verifikace na úrovni vysokoúrovňových vizuálních jazyků

Děkuji za pozornost!