and similarly q is augmented with zeros as the vector

$$q_a = 0_{2(p+q)}$$
.

The Matlab programs implementing the above method are given in Appendix B, Section B.3. We ran our program on the same input data points used in Section 54.8, namely

```
u16 = 10.1*randn(2,30)+7;
v16 = -10.1*randn(2,30)-7;
[~,~,~,~,~,~,w3] = runSVMs3b(0.365,rho,u16,v16,1/60)
```

We picked K = 1/60 and various values of ν starting with $\nu = 0.365$, which appears to be the smallest value for which the method converges; see Figure 54.16.

Figure 54.16: Running (SVM_{s3}) on two sets of 30 points; $\nu = 0.365$.

We have $p_f = 10, q_f = 10, p_m = 12$ and $q_m = 11$, as opposed to $p_f = 10, q_f = 11, p_m = 12, q_m = 12$, which was obtained by running (SVM_{s2'}); see Figure 54.11. A slightly narrower margin is achieved.

Next we ran our program with $\nu=0.5$, see Figure 54.17. We have $p_f=13, q_f=16, p_m=14$ and $q_m=17$.

We also ran our program with $\nu = 0.71$, see Figure 54.18. We have $p_f = 21, q_f = 21, p_m = 22$ and $q_m = 22$. The value $\nu = 0.7$ is a singular value for which there are no support vectors and $\nu = (p_f + q_f)/(p + q)$.