Regression Analysis with Linear Models

Dr. Lan Du

Faculty of Information Technology, Monash University, Australia

FIT5149 week 3

Outline

- Simple Linear regression
- Multiple Linear Regression
- Linear Regression with Qualitative Predicators
- Extension of Linear models
- Summary

Outline

- Simple Linear regression
- Multiple Linear Regression
- Linear Regression with Qualitative Predicators
- Extension of Linear models
- Summary

Consider the advertising data used in "Introduction to Statistical Learning".

Questions we might ask:

 Is there a relationship between advertising budget and sales?

Consider the advertising data used in "Introduction to Statistical Learning".

Questions we might ask:

 How strong is the relationship between advertising budget and sales?

Consider the advertising data used in "Introduction to Statistical Learning".

Questions we might ask:

Which media contribute to sales?

Consider the advertising data used in "Introduction to Statistical Learning".

Questions we might ask:

 How accurately can we predict future sales?

Consider the advertising data used in "Introduction to Statistical Learning".

Questions we might ask:

• Is the relationship linear?

Consider the advertising data used in "Introduction to Statistical Learning".

Questions we might ask:

• Is there synergy among the advertising media?

Simple Linear Regression

• Simple linear regression is a statistical method that allows us to predict a quantitative response Y on the basis of a single predicator Variable X. It assumes the relationship between Y and X can be model by a straight line:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

where

- \triangleright β_0 : the expected value of Y when X=0.
- \triangleright β_1 : the average change in Y for a 1-unit change in X.
- \triangleright ϵ : error term describes the random component of the linear relationship.
- Assumptions:
 - Linearity: The response variable Y has a linear relationship to the predictor variable X.
 - Nearly normal residuals: The errors must be independent and normally distributed.

$$\epsilon \sim \mathcal{N}(0, \sigma^2 \cdot I_{n \times n})$$

Constant variability: The Variance of the residuals is constant.

Example: Advertising data

Sales
$$pprox \hat{eta}_0 + \hat{eta}_1 imes \mathsf{TV}$$

- Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients,
 - Inference: describe the linear dependency between sales and budgets for TV advertisement.
 - ▶ Prediction: predict future sales given a budget plan for TV advertisement,

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

where \hat{y} indicates the prediction of Y on the basis of X = x.

The "Ordinary Least Squares" Regression.

• Let $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ be the prediction for Y based on the ith value of X. The ith residual (i.e., error) is defined as

$$e_i = y_i - \hat{y}_i$$

We define the residual sum of squares (RSS) as

RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2 = \sum_{i=1}^n e_i^2$$

or equivalent as

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$

ullet The least square approaches chooses \hat{eta}_0 and \hat{eta}_1 to minimise the RSS.

How to Fit a Regression model with RSS in R

 The lm() function performs a least squares regression and creates a linear model object:

```
advData = read.csv("./Advertising.csv")
advData <- advData[c("TV", "Radio", "Newspaper", "Sales")]
attach(advData)
lmfit = lm(Sales-TV)
lmfit

Call:
lm(formula = Sales ~ TV)

Coefficients:
(Intercept) TV
    7.03259    0.04754</pre>
```

where:

- ▶ Models for Im() are specified symbolically: response ~ predictor
- ► The intercept $\hat{\beta}_0 = 7.026$ and the slope $\hat{\beta}_1 = 0.0475$
- The linear model object contains much more information that just the coefficients!

Interpret Simple Linear Regression Model


```
summary(lmfit)
Call:
lm(formula = Sales ~ TV)
Residuals:
   Min
         10 Median
                      30
                             Max
-8.3860 -1.9545 -0.1913 2.0671 7.2124
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.032594 0.457843 15.36 <2e-16 ***
          TV
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
```


Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.032594  0.457843  15.36  <2e-16 ***

TV     0.047537  0.002691  17.67  <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Coefficient Std. Error: measures how precisely the model estimates the coefficient's unknown value.
 - > $SE(\hat{\beta}_0) = 0.457843$: in the absence of any advertising, the average sales can vary by 457.843 units.
 - ► $SE(\hat{\beta}_1) = 0.002691$: for each \$1,000 increase in television advertising, the average increase in sales can vary by 2.691 units.

Coefficients:

- Coefficient Std. Error: measures how precisely the model estimates the coefficient's unknown value.
 - ▶ These standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

That is, there is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \mathsf{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \mathsf{SE}(\hat{\beta}_1)\right]$$

will contain the true value of β_1 .

Coefficients:

- Coefficient Std. Error: measures how precisely the model estimates the coefficient's unknown value.
 - In the case of the advertising data
 - The 95% confidence interval for β_0 is [6.130, 7.935]
 - The 95% confidence interval for β_1 is [0.042, 0.053]
 - Use the confidence interval to assess the reliability of the estimate of the coefficient
 - Standard errors can also be used to perform hypothesis tests on the coefficient.
 - H_0 : There is no relationship between X and Y, i.e., $\beta_1 = 0$
 - H_a : There is some relationship between X and Y, i.e., $\beta_1 \neq 0$

Coefficients:

Coefficient - t statistics

$$t = \frac{\hat{\beta}_1 - 0}{\mathsf{SE}(\hat{\beta}_1)}$$

which measures the number of standard deviations that $\hat{\beta}_1$ is away from 0.

- Large t value indicates the null hypothesis could be rejected.
- ▶ Small t value indicates rejecting the null hypothesis could cause a type-I error.

Question: How large is large?

Coefficients:

- Coefficient Pr(>|t|) (i.e., p-value): test for the predicative power of predictor variable, i.e., TV
 - Small p-value $(Pr(>|t|) < \alpha = 0.001)$: reject the null hypothesis

 Changes in the predictor's value are related to changes in the response variable.
 - ▶ Use the coefficient p-values to determine which terms to keep in the regression model.

Assessing the Accuracy of the Model

Residual standard error: 3.259 on 198 degrees of freedom Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099 F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16

• Residual standard error (RSE): an estimate of the standard deviation of residuals, i.e., ϵ .

RSE =
$$\sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

- ► A measure of the quality of a linear regression fit, or a measure of the lack of fit of the model
- ▶ The advertising data: RSE = 3.259.
 - Actual sales in each market deviate from the true regression line by approximately 3,259 units, on average.
 - The percentage error:

$$3.259/14.000 = 23\%$$

where 14.000 is the mean value of sales.

Assessing the Accuracy of the Model

Residual standard error: 3.259 on 198 degrees of freedom Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099 F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16

• The Coefficient of Determination (i.e., the R^2 statistic): measures the proportion of variability in Y that can be explained using X.

$$R^2 = 1 - \frac{RSS}{TSS}$$

where the total sum of squares (TSS) is $\sum_{i=1}^{n} (y_i - \bar{y})^2$, and RSS is $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

- $0 \le R^2 \le 1$: the larger R^2 is the better the model is fitting the actual data.
- The advertising data: $R^2 = 0.6119$.

Residuals:

Min 1Q Median 3Q Max -8.3860 -1.9545 -0.1913 2.0671 7.2124

Residuals are essentially the difference between the observed response values and the response values predicted by the model.

 Ideally, residuals should be normally distributed.

$$\mathbb{E}(\epsilon) = 0$$

 When assessing how well the model fit the data, you should look for a symmetrical distribution across these points on the mean value 0.

Residuals:

Min 1Q Median 3Q Max -8.3860 -1.9545 -0.1913 2.0671 7.2124

Distribution of Studentized Residuals

Residuals:

Min 1Q Median 3Q Max -8.3860 -1.9545 -0.1913 2.0671 7.2124

Linearity: is the relationship between predictor and response variables linear?

- If residuals are equally spread around a horizontal line without distinct patterns, that is a good indication you don't have non-linear relationships.
- what is the difference in the plots between linear models trained on datasets
 - the relationship between predictors and the response variable is linear.
 - the relationship between predictors and the response variable is not linear.

Figure: Plots of residuals versus predicted (or fitted) values for the Advertising

(Monash) FIT5149 13 / 35

aty

Constant variance (homoscedasticity)

Are residuals spread equally along the ranges of predictors

Constant variance (homoscedasticity)

Are residuals spread equally along the ranges of predictors

Residuals v.s. Leverage: what are the influential data sample in the fitting

Residuals v.s. Leverage: what are the influential data sample in the fitting

Watch out for outlying values at the upper right corner or at the lower right corner.

Outline

- Simple Linear regression
- Multiple Linear Regression
- Linear Regression with Qualitative Predicators
- Extension of Linear models
- Summary

Example: the Advertising Data

• How we can extend our analysis of the advertising data in order to accommodate these two additional predictors?

Example: the Advertising Data

Problems

- Predict sales given the three advertising media budgets.
- ▶ Ignore the correlation between the predictors, TV, Radio and Newspaper.

Multiple Linear Regression

• The multiple linear regression model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \sigma^2 I_{n \times n})$

- β_j : the average effect on Y of a one unit increase in X_j , holding all other predictors fixed.
- In the advertising example, the model becomes

$$Sales = \beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper + \epsilon$$

Estimating the Regression Coefficients

ullet Given estimates $\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_p$, we can make prediction using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

• We estimate $\beta_0, \beta_1, \dots, \beta_p$ as the values that minimise the sum of squared residuals

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 - \hat{\beta}_2 x_2 - \dots - \hat{\beta}_p x_p)^2$

This can be done using standard statistical software.

Results for Advertising Data

Results:

```
mllg = lm(Sales~., data = advData)
summary(mllg)
Call:
lm(formula = Sales ~ ., data = advData)
Residuals:
   Min
            10 Median
                                  Max
-8.8277 -0.8908 0.2418 1.1893 2.8292
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.938889 0.311908 9.422 <2e-16 ***
            0.045765 0.001395 32.809 <2e-16 ***
TV
Radio
          0.188530 0.008611 21.893 <2e-16 ***
Newspaper -0.001037 0.005871 -0.177 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```

Results for Advertising Data

Compare simple linear regression with multiple linear regression:

	Coefficients	Std. error	t value	p-value
Intercept	7.032594	0.457843	15.36	<2e-16
TV	0.047537	0.002691	17.67	<2e-16
Intercept	9.31164	0.56290	16.542	<2e-16
Radio	0.20250	0.02041	9.921	<2e-16
Intercept	12.35141	0.62142	19.88	< 2e-16
Newspaper	0.05469	0.01658	3.30	0.00115
Intercept	2.938889	0.311908	9.422	<2e-16
TV	0.045765	0.001395	32.809	<2e-16
Radio	0.188530	0.008611	21.893	<2e-16
Newspaper	-0.001037	0.005871	-0.177	0.86

The multiple linear regression suggests that there is no relationship between sales and newspaper while the simple linear regression implies the opposite.

Results for Advertising Data

Correlation matrix for TV, Radio, Newspaper, and sales.

cor(advData)						
	TV	Radio	Newspaper	Sales		
TV	1	0.0548086644658301	0.056647874965057	0.782224424861606		
Radio	0.0548086644658301	1	0.354103750761175	0.576222574571055		
Newspaper	0.056647874965057	0.354103750761175	1	0.228299026376165		
Sales	0.782224424861606	0.576222574571055	0.228299026376165	1		

- The correlation between radio and newspaper is 0.354.
 - ► A tendency to spend more on newspaper advertising in markets where more is spent on radio advertising.

Some Important Questions

- Is at least one of the predictors $X_1, X_2, ..., X_p$ useful in predicting the response?
- Do all the predictors help to explain *Y*, or is only a subset of the predictors useful?
- How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

F-Statistics

- Is there a relationship between the response and predictors?
 - Hypothesis testing
 - Null hypothesis: There is no relationship between Y and X_1, X_2, \ldots, X_p .

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

- The alternative: There is at least one X_j related to Y.

$$H_a: \beta_j \neq 0, \exists j \in [1, p]$$

 F-statistics: a good indicator of whether there is a relationship between our predictor and the response variables.

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$$

- F-value close to 1: no relationship between Y and X_1, X_2, \ldots, X_p .
- F-value greater than 1: a relationship between our predictor and the response variables

F-Statistics

- Is there a relationship between the response and predictors?
 - For the F-value, how large is large?
 - n is large: small F-value provides strong evidence against H_0 .
 - *n* is small: large F-value is needed.
 - Example: multiple linear regression on the advertising dataset

Residual standard error: 1.686 on 196 degrees of freedom Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956 F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

Model Fit

• How well does the model fit the data?

```
mllg = lm(Sales~., data = advData)
anova(mllg)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
τv	1	3314.61816686865	3314.61816686865	1166.73075736576	1.80933660946536e-84
Radio	1	1545.61660306373	1545.61660306373	544.050125566422	1.88272164339468e-58
Newspaper	1	0.0887171654310898	0.0887171654310898	0.0312280451031693	0.859915050080576
Residuals	196	556.825262902188	2.84094521888871	NA	NA

Model Fit

• How well does the model fit the data?

```
lm1 = lm(Sales ~ TV)
lm2 = lm(Sales ~ TV + Radio)
lm3 = lm(Sales ~ TV + Radio + Newspaper)
anova(lm1,lm2, lm3, test="Chisq")
```

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	198	2102.53058313135	NA	NA	NA
2	197	556.913980067619	1	1545.61660306373	2.47937530553987e-120
3	196	556.825262902188	1	0.088717165431035	0.859732582779944

Confidence interval v.s. Prediction interval

- Given a set of predictor values, what response value should be predict, and how accurate is our prediction?
 - ▶ Prediction: given the estimated coefficients, $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$,

$$\hat{Y} = \hat{\beta}_0 + \sum_{i=1}^p \hat{\beta}_i X_i$$

	τv	Radio
1	265.853362080292	3.0645990151912
2	79.210911691119	10.2163389150053
3	110.737037122599	8.75721492543817
4	170.092739543156	34.076333194226
5	269.257043501455	19.0515444234014
6	60.3373470077757	38.1841344319284
7	266.353829844948	24.6858824074268
8	280.040476926602	35.5938780099154
9	196.09790723836	49.198542303592

10 186.729022780899 18.8497448999435

lm = lm(Sales ~ TV + Radio, data = advData)
set.seed(0)
newTV <- runif(10, min(TV), max(TV))
newRadio <- runif(10, min(Radio), max(Radio))
nData = data.frame(TV = newTV, Radio = newRadio)
predict(lm, newdata=nData)</pre>

- 15.6612982601506
- 2 8.46599326403736
- **3** 9.63415841804624
 - 4 17.1098156651422
- 5 18.8224865122765
- 12.8602208901317
- 7 19.7488735200483
- 8 22.4257437238907
- 9 21.1425653110146
- 10 15.0084950382048

Confidence interval v.s. Prediction interval

- Given a set of predictor values, what response value should be predict, and how accurate is our prediction?
 - ▶ To determine how close \hat{Y} will be close to f(X).
 - Confidence interval: use to quantify the uncertainty around the expected value of predictions (average of a group of predictions) — the uncertainty of predicting the average sales over a number of markets.

predict(lm, newdata=nData, interval = "confidence") fit lwr upr 15.6612982601506 15.1367929201415 16.1858036001596 8.46599326403736 8.10802220969713 8.82396431837759 9.63415841804624 | 9.29463411638258 | 9.9736827197099 17.1098156651422 | 16.8145727479215 | 17.405058582363 18.8224865122765 18.4051406295901 19.2398323949628 12.8602208901317 12.4435453179055 13.2768964623579 19.7488735200483 19.3467647872336 20.1509822528631 22.4257437238907 21.9584567202787 22.8930307275026 21.1425653110146 20.6566749977346 21.6284556242947 10 15.0084950382048 14.739150864574 15.2778392118356

Confidence interval v.s. Prediction interval

- Given a set of predictor values, what response value should be predict, and how accurate is our prediction?
 - ▶ To determine how close \hat{Y} will be close to f(X).
 - Prediction interval: use to quantify the uncertainty around a single prediction
 e.g. the uncertainty of predicting sales given the budgets of TV and Radio adverting for a particular market.

predict(lm, newdata=nData, interval = "prediction")

	fit	lwr	upr
1	15.6612982601506	12.3042935926206	19.0183029276805
2	8.46599326403736	5.13094937199256	11.8010371560822
3	9.63415841804624	6.30104407294193	12.9672727631505
4	17.1098156651422	13.7809205231636	20.4387108071209
5	18.8224865122765	15.4805481418221	22.1644248827308
6	12.8602208901317	9.51836616279689	16.2020756174665
7	19.7488735200483	16.4088037724045	23.0889432676922
8	22.4257437238907	19.077202006984	25.7742854407974
9	21.1425653110146	17.7913768826121	24.4937537394172
10	15.0084950382048	11.681796859832	18.3351932165776

Outline

- Simple Linear regression
- Multiple Linear Regression
- Linear Regression with Qualitative Predicators
- Extension of Linear models
- Summary

Linear Regression with Qualitative Predicators

- Some predictors are not quantitative but are qualitative, taking a discrete set of values.
- These are also called categorical predictors or factor variables.

_1	A	В	С	D	E	F	G	H	1	J	K	L
1		Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
2	1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
3	2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
4	3	104.593	7075	514	4	71	11	Male	No	No	Asian	580
5	4	148.924	9504	681	3	36	11	Female	No	No	Asian	964
6	5	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331
7	6	80.18	8047	569	4	77	10	Male	No	No	Caucasian	1151
8	7	20.996	3388	259	2	37	12	Female	No	No	African Ame	203
9	8	71.408	7114	512	2	87	9	Male	No	No	Asian	872
10	9	15.125	3300	266	5	66	13	Female	No	No	Caucasian	279
11	10	71.061	6819	491	3	41	19	Female	Yes	Yes	African Ame	1350
12	11	63.095	8117	589	4	30	14	Male	No	Yes	Caucasian	1407
13	12	15.045	1311	138	3	64	16	Male	No	No	Caucasian	0
14	13	80.616	5308	394	1	57	7	Female	No	Yes	Asian	204
15	14	43.682	6922	511	1	49	9	Male	No	Yes	Caucasian	1081
16	15	19.144	3291	269	2	75	13	Female	No	No	African Ame	148
17	16	20.089	2525	200	3	57	15	Female	No	Yes	African Ame	0
18	17	53.598	3714	286	3	73	17	Female	No	Yes	African Ame	0
19	18	36.496	4378	339	3	69	15	Female	No	Yes	Asian	368
20	19	49.57	6384	448	1	28	9	Female	No	Yes	Asian	891

Figure: The credit card dataset that contain both quantitative variables (e.g., income, limit, rating, and age), and qualitative variables (e.g., gender, student, married, and ethnicity).

Linear Regression with Qualitative Predicators — **continued**

- Dummy coding making many variables out of one
 - A categorical variable with k levels will be transformed into k-1 variables each with two levels.
 - For example, for the ethnicity variable we create two dummy variables. The first could be

$$x_{i,1} = \begin{cases} 1 & \text{if } i \text{th person is Asian} \\ 0 & \text{if } i \text{th persion is not Asian} \end{cases}$$

and the second could be

$$x_{i,2} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian} \\ 0 & \text{if } i \text{th persion is not Caucasian} \end{cases}$$

Then both of these variables can be used in the regression equation, in order to obtain the model

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is African American} \end{cases}$$

Linear Regression with Qualitative Predicators — continued

- Dummy coding making many variables out of one
 - Example: the Credit dataset.

```
summary(lm(Balance ~ Ethnicity, data = credit data))
Call:
lm(formula = Balance ~ Ethnicity, data = credit data)
Residuals:
   Min
          10 Median 30
                                 Max
-531.00 -457.08 -63.25 339.25 1480.50
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                 531.00 46.32 11.464 <2e-16 ***
(Intercept)
EthnicityAsian -18.69 65.02 -0.287 0.774
EthnicityCaucasian -12.50 56.68 -0.221 0.826
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 460.9 on 397 degrees of freedom
```

Multiple R-squared: 0.0002188, Adjusted R-squared: -0.004818 F-statistic: 0.04344 on 2 and 397 DF, p-value: 0.9575

Outline

- Simple Linear regression
- Multiple Linear Regression
- Linear Regression with Qualitative Predicators
- Extension of Linear models
- Summary

Addictive and Linear assumptions

 Two of the most important assumptions on the relationship between predictors and response:

$$\widehat{Sales} = \beta_0 + \beta_1 \times TV + \beta_2 \times Radio$$

- Additive the effect of changes in X_i on Y is independent of X_i for $i \neq j$.
- Linear the change in Y due to one-unit change in X_j is constant, regardless of the value of X_j.
- Can we remove the additive assumption?

Interaction between variables

Figure: Over-estimate v.s. under-estimate without considering interaction between predictors

- Synergy effect (or interaction affect):
 - For example, given a fixed budget of \$100, 000, spending half on radio and half on TV may increase sales more than allocating the entire amount to either TV or to radio.
 - ➤ Spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.

Model with interaction terms takes the form

Sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times (TV \times Radio) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times Radio) \times TV + \beta_3 \times Radio + \epsilon$

 \triangleright β_3 : the increase in the effectiveness of TV advertising for a one unit increase in radio advertising (or vice-versa)

results

▶ Strong evidence that $Ha: \beta_3 \neq = 0$: the true relationship is not additive

results

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.750e+00 2.479e-01 27.233 <2e-16 ***
TV 1.910e-02 1.504e-03 12.699 <2e-16 ***
Radio 2.886e-02 8.905e-03 3.241 0.0014 **
TV:Radio 1.086e-03 5.242e-05 20.727 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9435 on 196 degrees of freedom
```

Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673 F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16

ightharpoonup the R^2 and F-statistics:

	$Sales \sim TV + Radio$	$Sales \sim TV + Radio + TV * Radio$
R^2	0.8972	0.9678
	(0.9678 - 0.8972)/($1 - 0.8972$) $\approx 69\%$
F — statistic	859.6	1963

results

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 6.750e+00 2.479e-01 27.233 <2e-16 ***

TV 1.910e-02 1.504e-03 12.699 <2e-16 ***

Radio 2.886e-02 8.905e-03 3.241 0.0014 **

TV:Radio 1.086e-03 5.242e-05 20.727 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9435 on 196 degrees of freedom
```

Residual Standard error: 0.9435 on 196 degrees of freedom Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673 F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16

Interpret coefficients:

- An increase in TV advertising of \$1,000 is associated with increased sales of

$$(\hat{\beta}_1 + \hat{\beta}_3 \times Radio) \times 1000 = 19 + 1.1 \times Radio$$

 An increase in radio advertising of \$1, 000 will be associated with an increase in sales of

$$(\hat{\beta}_2 + \hat{\beta}_3 \times TV) \times 1000 = 29 + 1.1 \times TV$$

results

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.750e+00 2.479e-01 27.233 <2e-16 ***

TV 1.910e-02 1.504e-03 12.699 <2e-16 ***

Radio 2.886e-02 8.905e-03 3.241 0.0014 **

TV:Radio 1.086e-03 5.242e-05 20.727 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9435 on 196 degrees of freedom Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673 F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16
```

► The hierarchy principle: if we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficient are not significant.

Summary

- What we have covered:
 - Simple linear regression with ordinary least squares
 - Various regression diagnostics
 - Assess the accuracy of the estimated coefficients
 - Assess the accuracy of the model
 - Residual analysis
 - ► Multiple linear regression
 - Categorial variables in regression
 - Extension of linear regression: interaction between variables
- What we haven't covered:
 - Outliers
 - ► High leverage points
 - Collinearity
 - Linear regression with K-Nearest Neighbors

See sections 3.3.3, 3.4 and 3.5 of "Introduction to Statistical learning"

Reference

- Reading materials:
 - "Linear Regression", Chapter 3 of "Introduction to Statistical Learning", 6th edition
 - ► "Linear Regression and ANOVA", Chapter 11 of "R Cookbook" by Paul Teetor, available online from Monash Library.
- Some figures in this presentation were taken from
 - "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
 - https://data.library.virginia.edu/diagnostic-plots/
- Some of the slides are reproduced based on the slides from T. Hastie and R. Tibshirani