CAB420: Network Depth

AND IT'S ADVANTAGES AND PITFALLS

Convolutional Neural Networks

- Neural networks using convolutional filters
- Convolutional filters learn local spatial relationships
- We typically stack convolutional layers, allowing us to learn more complex patterns
- Deeper networks can learn more complex patterns
 - But get increasingly slow to train

Convolution Layers and Filters

- Convolutional layers learn filters that are applied to the input signal
- Filters are of a fixed size
 - Set during network design
 - Usually, odd numbered square size
- Size controls
 - How much of an input a filter operates over
 - Bigger filters see more of an input at a time
 - How many parameters are in the filter
 - Bigger filters mean more parameters

AlexNet

- AlexNet is where DCNNs really got started
 - 8 computational layers (really not that deep)
 - 5 convolutional layers
 - 3 fully connected layers
 - Large filters in early convolution layers
 - 11x11 filters in first layer (96 filters)
 - 5x5 filters in second layer (256 filters)

VGG Style Networks

- So far, we've played (mostly) with VGG-style networks
 - Two (or more) small (3x3) convolutions, followed by a max-pool
 - Rinse and repeat
 - End with FC layers

Why Small Convolutions?

- Why do we use 3x3 convolutions rather than bigger filter sizes?
- Intuitively
 - Smaller filters see smaller patches of the image
 - They extract more localised features
 - They can't extract or "see" large patches of the image, and thus should miss large features
- But
 - If we stack them deep enough, we overcome this
- And
 - Because they're smaller, they have fewer parameters, and are easier to learn

- How much of an image a filter can effectively see
- Consider the following
 - Input image, followed by
 - 3x3 Conv2D layer

- How much of an image a filter can effectively see
- Consider the following
 - Input image, followed by
 - 3x3 Conv2D layer

- How much of an image a filter can effectively see
- Consider the following
 - Input image, followed by
 - 3x3 Conv2D layer

- Now consider
 - Input image, followed by
 - 3x3 Conv2D layer, followed by
 - 3x3 Conv2D layer

- Now consider
 - Input image, followed by
 - 3x3 Conv2D layer, followed by
 - 3x3 Conv2D layer

- Now consider
 - Input image, followed by
 - 3x3 Conv2D layer, followed by
 - 3x3 Conv2D layer

Stacking Convolutions

- As we stack convolutions, we get bigger receptive fields
- But, why use two 3x3 layers over one 5x5 layer?
 - With multiple filters we learn more complex representations
 - Filters "build" on each other
 - Below (left to right)
 - conv1, conv3 and conv5 from a simple VGG trained on Fashion MNIST

Convolutions with Max-Pooling

- Now consider
 - 3x3 Convolution Layer
 - 2x2 Max-Pooling
 - 3x3 Convolution Layer

Input Features Max-Pooling Result

Final Output

Convolutions with Max-Pooling

- Now consider
 - 3x3 Convolution Layer
 - 2x2 Max-Pooling
 - 3x3 Convolution Layer

3x3 Convolutions For Life?

- Mostly...
 - In, general, multiple layers of smaller filters is better
- But, sometimes...
 - You don't have data to train that many layers
 - Few layers of larger filters may be better given the constraints
 - Your data may have no fine/small details
 - Initial filters at least should be bigger to capture relevant details
 - You may have particular considerations around filter stride, padding, output size, etc.
 - Filter parameters become a function of other constraints

Problems with VGG-Style Nets

- We want more depth to learn higher level representations
 - Extract more complex concepts as we go deeper
- But as we go deeper, it's harder to train
 - Data has to go through a lot of layers
 - Changes in early layers impact later layers
 - Training can collapse
 - BatchNorm can help, but won't totally solve the problem
 - Performance tends to max out (and go backwards) somewhere between 20-50 layers
 - Exact point depends on data, etc.

Breaking VGG

- See CAB420_DCNNs_Additional_Example_6_Breaking_VGG
- Data
 - Fashion MNIST, of course
- Task
 - Standard classification, though with increasingly deep networks

A Simple Network

- 3 Convolutions
 - Max pooling after each
- Model trains and works as expected

VGG Style Network

- 3 pairs of convolutions
 - Max pooling after each pair
- Model trains and works as expected
 - Better than our simple network

Getting Silly

- 3 sets of 6 stacked convolution layers
 - Max pooling after each set
- Still works
 - Training takes a while though
 - Not really any better

Getting Very Silly

- 3 sets of 10 convolution layers
 - Max pooling after each set
- Training fails
 - Classifier never gets better than chance

Stop that, it's silly

- Networks train via back-propagation
 - The error at the output is propagated back towards the input
 - If our network gets too deep, the gradients we use to adapt the network vanish
 - i.e. there is not enough information to update any parameters, and thus the network stops learning
- We can increase the viable depth slightly though batch normalisation, but this won't get us too much deeper
 - We need a way to get a more direct connection between the network output and input

CAB420: ResNet

LESS SILLY, MORE DEEP

ResNet

Residual Networks

- Introduces the idea of skip connections
- Makes it easier to push data though the network, in particular for deep networks earlier in training
 - Skip connection may need to adjust the dimensionality in the identity block for the addition to be valid

Figure 2. Residual learning: a building block.

ResNet vs VGG

- ResNet has many more convolution layers
- Skip connections give a "direct" path back to the input
 - Gradients propagate on two paths, the "main" path and the "skip" connections
- Even early in training, early layers can receive meaningful feedback
 - Leads to faster and more stable training

Bottleneck Blocks

- ResNet lets us get some very deep networks
 - But having huge numbers of 3x3 convolutions becomes expensive in terms of memory
- Bottleneck blocks help overcome this by
 - Down sampling via a 1x1 convolution
 - Computing a 3x3 convolution
 - Up sampling with a 1x1 convolution

1x1 Convolutions

- We normally think of convolutions as spatial filters
 - Look for patterns in a local region
- Remember, filters operate across channels
 - For example, we have a [14 x 14 x 8] representation and a [3 x 3] convolution layer
 - Each filter will have 3 x 3 x 8 parameters
 - Each filter will operate over the whole 8 channel volume
 - i.e. patterns across the channels are considered

1x1 Convolution

- Considers patterns across the channels only
 - No consideration of spatial information
- Allows us to
 - Increase the number of channels
 - Decrease the number of channels
- Effectively learns a set of channels that are weighted combinations of existing channels
- Programmatically
 - The same as our regular 2D convolution
 - Just with a kernel of size [1, 1]

1x1 Convolution Visualisation

- See CAB420_DCNNs_Additional_Exa mple_8_1x1_Convolutions.ipynb
- We have the network to the right trained on Fashion MNIST
- 1x1 Convolutions:
 - To decrease channels from 16 to 4 (before1 -> after1)
 - To increase channels from 16 to 32 (before2 -> after2)

Note: This example is just to illustrate 1x1 convolutions. This is not a great network design

Layer (type)	Output Shape	Param #
img (InputLayer)	[(None, 28, 28, 1)]	0
conv2d_15 (Conv2D)	(None, 28, 28, 8)	80
max_pooling2d_8 (MaxPooling2	(None, 14, 14, 8)	0
before1 (Conv2D)	(None, 14, 14, 16)	1168
after1 (Conv2D)	(None, 14, 14, 4)	68
max_pooling2d_9 (MaxPooling2	(None, 7, 7, 4)	0
before2 (Conv2D)	(None, 7, 7, 16)	592
after2 (Conv2D)	(None, 7, 7, 32)	544
flatten_4 (Flatten)	(None, 1568)	0
dense_8 (Dense)	(None, 64)	100416
dense_9 (Dense)	(None, 10)	650

Total params: 103,518 Trainable params: 103,518 Non-trainable params: 0

1x1 Convolution Visualisation

- Each column is the unrolled activations from all channels for a single image
 - Left: before 1x1
 - Right: after 1x1
- Right images are compressed versions of the left
 - Same patterns are present, just more compact
- Can use the same approach to upsample
 - See
 CAB420_DCNNs_Additional_Example_8
 _1x1_Convolutions.ipynb for an example

ResNets in Action

- See CAB420_DCNNs_Example_3_ResNet.ipynb
 - Example uses function to build ResNets of varying sizes
- Simple ResNet
 - No bottleneck layers
 - ~20,000 params
 - Average pooling greatly reduces size of dense layer

Simple ResNet Performance

- It's not suddenly magically better
 - ~85% test accuracy on FashionMNIST
 - Could perhaps train a little longer though
- The residual structure helps most with network depth
 - · Allows us to go much deeper
 - For complex problems, this is important
 - FashionMNIST is not that complex

ResNet with Bottleneck

- This time with bottleneck layers
 - Slightly deeper than our previous network
 - ~24,000 params
 - Performance very similar
 - ~85% test accuracy

Residual Component (pt 1)

- V1 (no bottleneck)
 - Two convolutions in "main" branch
 - Nothing in the skip branch

- V2 (with bottleneck)
 - Three convolutions in "main" branch
 - Last one is 1x1, to upsample channels
 - One 1x1 convolution in "skip" branch

Residual Component (pt 2)

- V1 (no bottleneck)
 - Two convolutions in "main" branch
 - One convolution in "skip" branch
 - Same number of filters (32) in all

- V2 (with bottleneck)
 - Different number of filters in both branches
 - Larger numbers in filters in places than the V1 network
 - 1x1 convolutions at the start and end of the main branch

ResNet V1 vs V2

- V2 networks use bottleneck layers to keep internal representations small
 - Allows deeper networks while keeping memory use manageable
 - Need to have much larger networks to see the full benefit
- Both work well
 - Both improve over VGG and address the issue of vanishing gradients
 - Either one is a good choice
 - Parameters of the network (number of filters, number of residual blocks, depth, etc) more important for performance than which of V1 or V2 you choose

Beyond ResNet

- Several other architectures have been proposed since ResNet
 - ResNeXt
 - DenseNet
 - 0
- All of these retain the idea of skip connections
 - And often use a lot more of them
- I encourage you to explore these in your own time
 - See https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035 as a starting point

CAB420: DCNNs with Less Data

BECAUSE SOMETIMES YOU DON'T HAVE THE TIME TO COLLECT MILLIONS OF SAMPLES

DCNNs and Data

- So far, DCNNs have worked well. But
 - We've had large datasets (50,000 samples)
 - We've had small images (28x28)
- What if we have samples with more dimensions (i.e. bigger images), and fewer samples?
 - Overfitting
 - Training instability
- We need a way to work with smaller datasets. We'll look at two (which can be used together):
 - Fine tuning
 - Data augmentation

Fine Tuning

RECYCLING MODELS

Why?

- So far, we've always trained from scratch
 - i.e. start from random weights, learn everything
- Ideally, we'd always do this, but
 - It requires a lot of data
 - For large models, it requires a lot of time
 - ImageNet models can take weeks to train
- For many tasks, networks learn similar things
- Consider an image recognition task
 - Edges and primitive shapes will always be of interest
 - This is what the early layers learn
 - Why not re-use this?

How?

- Usually when we train a network, we
 - Start from a set of random weights and biases
 - Progressively update those over time
- Instead we can
 - Start from a set of weights learnt on a related task
 - Progressively update those over time
 - We may change some layers
 - Different output type
 - We may set some layers to be fixed and never change
 - i.e. leave early convolution layers as they are

Fine Tuning

- See CAB420_DCNNs_Example_4_Fine_Tuning_and_Data_Augmentation.ipynb
- Basic approach is
 - Load a model from a related domain
 - Change output and other layers if needed. We may do this if:
 - If we're changing from a 10-class classification problem to a 40-class classification problem
 - We're changing from a classification problem to a regression problem
 - Change the input size if needed
 - This may require the removal and re-creation of all dense layers
 - Generally, if you can avoid doing this, it's best to
 - Decide if some layers should have their weights frozen
 - Most likely early convolutional layers
 - Compile and train the network as you normally would

Advantages of Fine-Tuning

- Can train with much less data
 - Does require some commonality between the tasks
 - Usually, "image based" is enough commonality
- Can train much quicker
 - Given we already have a good initialisation, convergence is much faster
- Can use much more complex than otherwise possible
 - It's very hard to train ResNet-152 yourself
 - But you can fine-tune it

Data Augmentation

MAKING THINGS UP, SORT OF

Data and DCNNs

- DCNNs need lots of data. Sometimes this is hard
 - Data capture can be expensive
 - Annotation is also expensive
 - Or very boring
- Data variety is key to avoiding overfitting
- Yet often
 - Different data samples can appear very similar

Data Augmentation

- Creates a "new" dataset by applying simple transforms to what data you have
- Simple transforms may include:
 - Scale changes
 - Rotations
 - Horizontal and/or vertical flips
 - Adding noise or small colour shifts
 - Translations

Using Data Augmentation

- Consider your data and what changes make sense
- On the right, we have augmented Fashion MNIST with
 - Vertical and Horizontal flips
 - Large rotations
 - Large scale changes
- This has gone too far

Using Data Augmentation

- Fashion MNIST, take 2:
 - Horizontal flips
 - Small rotations
 - Small translations
- Data looks subtly different from the original
 - Still recognisable as being from the same domain

Using Data Augmentation

- Less can be more
 - Augmentation should not change the meaning of an image
 - Characters for example may change meaning if flipped
 - Consider n vs u
- Inspect the augmentation results before proceeding
 - If they make sense to you, that's a good start
 - If they've been changed so much that you can't tell things apart, you've gone to far

An Example

From CAB420_DCNNs_Example_4_Fine_Tuning_and_Data_Augmentation.ipynb

Our task

- Fine tune a simple VGG network, trained on MNIST, on FashionMNIST
- All layers trained, no layers removed/changed
 - Datasets are the same size images, same number of classes, etc.

The catch

- We're going to remove 95% of the data
- 3000 samples, total

Compare

- Fine-tuned network with no data augmentation
- Fine-tuned network with augmentation

No Augmentation

Overfit central

- Very quickly we see validation performance flatline and the model begins to overfit
- Trained for 500 epochs
 - In part because we have such a small dataset
 - In part to watch it overfit

With Augmentation

- Augmentation using
 - Rotations
 - Zoom
 - Translation
 - Horizontal Flip
- All samples still recognisable as their true class

With Augmentation

- Solid performance
- Validation data is not augmented
 - Thus, we see validation data working better for a long time
- Could keep training for longer still at this point
 - Model not fully converged, though close

Things to Tune

SOME MODELS

Models for Fine-Tuning

- Two scripts are on canvas for python
 - CAB420_DCNN_Models_Additional_Script_Lots_of_ResNet_Models.ipynb
 - CAB420_DCNN_Models_Additional_Script_Lots_of_VGG_Like_Models.ipynb
 - These train a bunch of models of different sizes on
 - MNIST
 - FashionMNIST
 - CIFAR-10
 - Exported models are on canvas too
 - So you don't have to train them yourselves
- You can use these models as a basis for fine-tuning
 - Select a model based on size, source data, etc
 - Play with different models as a base, see what happens

Models for Fine-Tuning

- Keras Applications
 - https://keras.io/api/applications/
 - Lots of networks of various shapes and sizes for you to play with
- But what if I want something else to fine-tune?
 - Send an email to <u>cab420query@qut.edu.au</u>
 - If I can, (and I think the request is reasonable) I'll train it and post it

CAB420: DCNNs vs Everything Else

FIGHT!

DCNNs vs Other Classifiers

WHO WINS?

Comparing Classifiers

- DCNNs work best with specific data types
 - Images, Audio, other signals
 - Not well suited to tabular data
- DCNNs also need large amounts of data
 - Though this can be reduced through fine-tuning and augmentation
- We'll compare SVMs, CKNNs, Random Forests and DCNNs using Fashion MNIST
 - Vectorise data for SVMs, CKNNs and Random Forest
 - Compare performance, training time, and evaluation time using different sized datasets
 - We're using non-optimal feature extraction for non-DL methods
 - Our DCNN is very simple, and also not optimal
 - Evaluation will still show broad trends with respect to classifiers however
 - See CAB420_DCNNs_Additional_Example_9_Runtimes.ipynb

Training Runtime

- DCNN and Random
 Forest increase linearly with training dataset
 size
 - DCNN training for a fixed number of epochs
- SVM increase exponentially
 - Does not scale well to large dataset sizes
- CKNN very efficient
 - No real learning performed

Testing Runtime

- Time to evaluate 10,000 test samples
- DCNN and Random Forest don't change
 - Evaluation time dependant on network complexity (DCNN); number and depth of trees (Random Forest)
- CKNN and SVM get more expensive as training set size increases
 - More points to search/compare to

Accuracy

- Once datasets size reaches 10,000 samples, DCNN wins
- For all classifiers, performance gains slow with increasing dataset size

DCNNs vs the Human Brain

BRAAAAINS!

Biological Motivations

- Neural networks as a whole are directly inspired by the brain, and various components also take inspiration from nature
 - Convolutional networks are inspired by the visual cortex
 - Mechanisms have been developed to model attention and memory
- While these are inspired by nature, they are not mimicking nature
 - We don't know enough about the brain (human or otherwise) to simulate one
 - Often we seek to mimic the output of a process (as we understand it), rather than the underlying mechanism itself

Neural Network Properties

- Neural networks have become increasingly large in recent years
 - Recent networks for image processing can have 100's of millions of parameters
 - GPT-3 (a natural language model) has about 175 billion parameters
 - GPT-4 is estimated at 2 Trillion parameters
- Neural networks generally have simple topologies (particularly within a family of models)
 - Networks may have simple branches, skip connections, etc.
 - Networks can use recurrent structures to simulate loops, feedback processes, etc.
- Networks propagate data through a known path
 - Data arrives at the input, propagates through the network, arrives at the output
- Limited fault tolerance, or ability to extrapolate beyond training bounds
- Networks learnt through gradient descent and back propagation
 - Typically trained once, and then used for inference with no on-going updates
 - Though there is work in this area to allow continuous learning

Properties of the Brain

- The human brain is estimated to have about 86 billion neurons
 - But over 100 trillion synapse (connections)
 - High level of interconnectedness, complex topologies
 - Neurons can fire asynchronously
- Biological networks are (to a point) fault tolerant
 - Both through redundancy, and an ability to heal
- Learning is not well understood
 - Learning is continuous
 - Neural plasticity allows connections to change over time
 - Learning is robust to rare or unseen examples

Summary

BECAUSE I TEND TO RAMBLE

Neural Networks

- Now state of the art for most machine learning tasks, but
 - Require lots of data
 - Or lots of tricks to work with limited data
 - Can be very resource intensive to train
- In general
 - Deep networks lead to greater representitive power
 - But at very high depth training becomes difficult and architectural tweaks are needed

Learning with Neural Networks

Classification

- Achieved via a "softmax" output
- Attempts to create a "one-hot vector", i.e. a vector where one element is 1 and the rest are 0

• Regression

- Very much like classification
- Just change the output and the loss function

Network architectures are flexible

- Almost identical networks were used for
 - Classification of pieces of clothing
 - Estimation of how much a digit had been rotated by
- But the networks will have learned very different thing

Making Networks Better

- Can use various layers to improve model fitting
 - Dropout
 - Though be careful when applying to convolutional layers
 - BatchNorm
 - Makes training easier by ensuring that values in the middle of the network are in a known range
 - Weight Regularisation
 - Implementation varies according to platform
 - Explore demo example
 - CAB420_DCNNs_Additional_Example_5_Layer_Order_and_Overfitting.ipynb

ResNet

- Simple feed forward models can only get us so far
 - More depth makes things harder to train
 - Ultimately, adding layers makes things worse
- ResNet uses skip connections to overcome this
 - Allows multiple paths through a network
 - Helps gradients propagate to the early layers
 - Improves training speed
- Skip connections are a standard features of many current architectures
 - DenseNet
 - U-Net
 - And many, many, more

Making do with Less Data

- Fine Tuning
 - Take an existing network, and adapt it
 - Can be seen as a type of transfer learning
- Data Augmentation
 - Create additional data by applying simple transforms to what you have
 - Don't go overboard
 - Look at what your augmentations do to the data
- Both techniques can make use of DCNNs with small datasets possible