České vysoké učení technické v Praze. Fakulta elektrotechnická, OI.

Testování webové aplikace Notes

Semestrální práce Předmět: Zajištění kvality software

Autor: Arina Momot Datum: 01.02.2023

Obsah

1. Návrh testovací strategie		2
1.1. Po	opis aplikace	2
1.2. Te	estovací technologií	2
1.2.1.	Framework	2
1.2.2.	Pomocný testovací technologií	3
2. Testov	vání aplikace	3
2.1. Tř	ídy ekvivalence a mezní podmínky	3
2.1.1.	Registrační formulář	3
2.1.2.	Formulář pro vytvoření poznámky	12
2.2. Ko	ombinace vstupních dat	16
2.2.1.	Formulář pro vytvoření poznámky	16
2.2.2.	Registrační formulář	17
2.3. Te	estování procesů	19
3. Závěr		21

1. Návrh testovací strategie

1.1. Popis aplikace

Pro testování jsem si vybrala a nasadila webovou aplikaci Notes, kterou jsem vytvořila někdy v minulosti v rámci bakalářského studia. Notes je jednoduchá webová aplikace pro psaní poznámek, která umožňuje uživatelům registrovat se na webu, vytvářet a mazat poznámky, přehrávat hudbu.

Aplikace je dostupná přes odkaz: https://notes-vue-deploy-zks.vercel.app/

Základní fungování webu se provádí pomocí skriptovacího jazyka JavaScript. Aplikcace je postavena na frameworků Vue.js a Quasar.

Pro ukládání informací o poznámkách se používá LocalStorage. Také na webu používají takové technologie jako: History API (posun tlačítka zpět/vpřed prohlížeče), Media API (pro přehrávání hudby), JS API (pro zjišťování stavu připojení k internetu), JS práce se SVG (umožňuje přesunout objekt po stránce).

1.2. Testovací technologií

1.2.1. Framework

Pro provedení front-end testování webové aplikace Notes jsem zvolila open-source framework **Serenity BDD**, který poskytuje strukturovaný způsob testování webových aplikací pomocí testů stylu BDD (Behavior Driven Development), což umožňuje psaní testů v přirozenějším jazykovém formátu, který je snazší číst a pochopit.

Serenity se integruje s s dalšími testovacími nástroji, jako jsou JUnit, který jsem také použila k testování. Tento framework poskytuje vestavěnou podporu pro Selenium WebDriver, který zjednodušil proces nastavení a spouštění webových testů. Serenity taky umožnil provádění testů paralelně.

Pro strukturování a snadnější čitelnost jsem použila vzory Screenplay a PageObject.

Screenplay pattern je a high-level návrhový vzor, který se zaměřuje na chování uživatele a interakce s aplikací. V tomto vzoru jsou testy psány v přirozenějším jazykovém formátu, který je snazší číst a pochopit. Vzor scénáře je založen na třech hlavních prvcích: Actor, Task, and Ability. Actor reprezentuje uživatele, Task reprezentuje specifickou akci, kterou může uživatel provést, a Ability reprezentuje uživatelovu schopnost nebo dovednost. Screenplay pattern poskytuje modulárnější a udržitelnější přístup k testování, protože testy jsou organizovány do malých, opakovaně použitelných komponent, které lze snadno upravovat a rozšiřovat.

Page Object pattern je low-level návrhový vzor, který se zaměřuje na UI komponenty uživatelského rozhraní aplikace. V tomto vzoru jsou UI komponenty uživatelského rozhraní zapouzdřeny do objektů, které představují různé stránky nebo sekce aplikace. Objekty stránky obsahují metody a vlastnosti potřebné k interakci s komponentami uživatelského rozhraní na stránce. Tento vzor poskytuje strukturovanější přístup k testování, protože testy jsou organizovány na základě různých stránek nebo částí aplikace.

1.2.2. Pomocný testovací technologií

- ACTS (Automated Combinatorial Testing for Software) je kombinatorický testovací nástroj, který jsem použila pro efektivně vytváření testovacích případů pro zajištění kvality a spolehlivosti softwaru.
- Oxygen umožňil vytváření modelů a automatizované generování testovacích případů založených na cestě pro aplikační procesy a pracovní postupy.
- **Gitlab pipeline** pro vytváření, testování a nasazení kódu konzistentním a automatizovaným způsobem.

2. Testování aplikace

2.1. Třídy ekvivalence a mezní podmínky

Tato kapitola se zabývá analýzou tříd ekvivalence a mezních podmínek formulářů aplikace.

Aplikace obsahuje 2 vstupní formuláře: registrační formulář a formulář pro vytváření poznámky.

2.1.1. Registrační formulář

Name

Mezní podmínky podle délky:

Pokud zadané jméno splňuji následující RegEx: ^[a-zA-Z]+(?:['-][a-zA-Z]+)*\$ a je delší než 1 znak a kratší než 51, potom bude vyhodnoceno jako validní.

• IF (zadané jméno splňují RegEx) AND (je delší než 1 znak a kratší než 51) THEN je validní.

R = (A AND B)

		Možné ko	ombinace	
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typy tříd ekvivalence – podle validity dat:

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Zvláštní znaky (nesplňují RegEx) Kratší než 1 znak a delší než 50 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Jméno ve validním formátu, ale takové jméno neexistuje

Validní třída ekvivalence	Platná data, která mají být	 Existující jméno ve
	zpracovávána podle business	validním formátu
	specifikace, vyvolávají korektní	
	průběhy procesů v aplikaci	

Surname

Mezní podmínky podle délky:

Pokud zadané příjmení splňuji následující RegEx: ^[a-zA-Z]+(?:['-][a-zA-Z]+)*\$ a je delší než 1 znak a kratší než 51, potom bude vyhodnoceno jako validní.

• IF (zadané příjmení splňují RegEx) AND (je delší než 1 znak a kratší než 51) THEN je validní.

$$R = (A AND B)$$

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typy tříd ekvivalence – podle validity dat:

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro příjmení
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Zvláštní znaky (nesplňují RegEx) Kratší než 1 znak a delší než 50 znaků

Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Příjmení ve validním formátu, ale takové příjmení neexistuje
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Existující příjmení ve validním formátu

Date of birth

Mezní podmínky podle roku narození:

Pokud zadané datum narození splňuji omezení na rok narození (1900 - 2010) a není prázdné, potom bude vyhodnoceno jako validní.

• IF (zadané město splňují omezení na rok narození (1900 - 2010)) AND (je není prázdné) THEN je validní.

$$R = (A AND B)$$

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Nesplňují omezení na rok narození
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Datum narození ve validním formátu,ale informace není pravdivá
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Pravdivé datum narození ve validním formátu

City

Mezní podmínky podle délky:

Pokud zadané město splňuji následující RegEx: ^[A-Za-z]+(?:[\s-][A-Za-z]+)*\$ a je delší než 1 znak a kratší než 51, potom bude vyhodnoceno jako validní.

• IF (zadané město splňují RegEx) AND (je delší než 1 znak a kratší než 51) THEN je validní.

R = (A AND B)R = (A AND B)

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Zvláštní znaky (nesplňují RegEx) Kratší než 1 znak a delší než 50 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Město ve validním formátu,ale takové město neexistuje
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Existující město ve validním formátu

University

Mezní podmínky podle délky:

Pokud zadaná vysoká škola splňuji následující RegEx: ^[A-Za-z0-9\s.,'-]*\$ a je delší než 1 znak a kratší než 101, potom bude vyhodnoceno jako validní.

• IF (zadaná vysoká škola splňují RegEx) AND (je delší než 1 znak a kratší než 101) THEN je validní.

$$R = (A AND B)$$

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Zvláštní znaky (nesplňují RegEx) Kratší než 1 znak a delší než 100 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Vysoká škola ve validním formátu,ale taková vysoká škola neexistuje
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Existující vysoká škola ve validním formátu

Email

Pokud zadaný mail splňuji následující RegEx: $^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$$ a je delší než 1 znak a kratší než 101, potom bude vyhodnoceno jako validní.

• IF (zadaný mail splňují RegEx) AND (je delší než 1 znak a kratší než 101) THEN je validní.

R = (A AND B)

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typy tříd ekvivalence – podle validity dat:

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro e-mail
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Zvláštní znaky a není tam @ a . (nesplňují RegEx) Kratší než 1 znak a delší než 100 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Mail ve validním formátu, ale takové mail neexistuje
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Existující mail ve validním formátu

Password

Mezní podmínky podle délky:

Pokud zadané heslo splňuji následující RegEx:

 $(?=.*[a-z])(?=.*[A-z])(?=.*[!@#$%^&*()_+.'])\$ a je delší než 7 znaků a kratší než 17, potom bude vyhodnoceno jako validní.

• IF (zadané heslo splňují RegEx) AND (je delší než 7 znaků a kratší než 17) THEN je validní.

$$R = (A AND B)$$

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typy tříd ekvivalence – podle validity dat:

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro password
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Nesplňují RegEx Méně než 8 znaků a více než 16 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Password ve validním formátu, ale t toto heslo je velmi běžné
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Existující heslo ve validním formátu a zároveň déle než 7 znaků a kratší než 17 znaků + splňují RegEx

2.1.2. Formulář pro vytvoření poznámky

Title

Mezní podmínky podle délky:

Pokud zadaný název není prázdný a je delší než 0 a kratší než 101, potom bude vyhodnoceno jako validní.

• IF (zadaný název není prázdný) AND (je delší než 0 a kratší než 101) THEN je validní.

R = (A AND B)

	Možné kombinace			
	1	2	3	4
А	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Delší než 100 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Název ve validním formátu,ale takové název nemá smysl
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Smysluplný název ve validním formátu

Location

Mezní podmínky podle délky:

Pokud zadaná lokaci splňuji následující RegEx: ^[\w\s]*\$ a je kratší než 101, potom bude vyhodnoceno jako validní.

• IF (zadaná lokaci splňuji RegEx) AND (je kratší než 101) THEN je validní.

R = (A AND B)

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typy tříd ekvivalence – podle validity dat:

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	Nesplňuji RegExDelší než 100 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Lokace ve validním formátu,ale taková lokace neexistují
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Neexistující lokace ve validním formátu

Description

Mezní podmínky podle délky:

Pokud zadaný popis není prázdný a je delší než 0 a kratší než 501, potom bude vyhodnoceno jako validní.

• IF (zadaný popis není prázdný) AND (je delší než 0 a kratší než 501) THEN je validní.

R = (A AND B)

	Možné kombinace			
	1	2	3	4
Α	0	0	1	1
В	0	1	0	1
R	0	0	0	1

Typy tříd ekvivalence – podle validity dat:

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Prázdné políčko Delší než 500 znaků
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 Popis ve validním formátu,ale takové popis nemá smysl
Validní třída ekvivalence	Platná data, která mají být zpracovávána podle business specifikace, vyvolávají korektní průběhy procesů v aplikaci	 Smysluplný popis ve validním formátu

URL

Typy tříd ekvivalence – podle validity dat:

Typ třídy ekvivalence	Co znamená pro aplikaci	Příklad: políčko pro jméno
Nevalidní třída ekvivalence z technického pohledu	Data, která neodpovídají datovému typu vstupu = neplatná data, která aplikace musí ošetřit, aby nezpůsobila pád	 Není ve formatu URL
Nevalidní třída ekvivalence z business pohledu	Data, která sice odpovídají datovému typu vstupu, ale z pohledu specifikace business procesu jsou nevalidní	 URL ve validním formátu, ale takové URL neexistuji

Validní třída ekvivalence	Platná data, která mají být	 Smysluplný URL ve
	zpracovávána podle business	validním formátu
	specifikace, vyvolávají korektní	
	průběhy procesů v aplikaci	

2.2. Kombinace vstupních dat

2.2.1. Formulář pro vytvoření poznámky

V tomto testu jsem se rozhodla otestovat pouze povinná pole ve formuláři vytvoření poznámky: název a popis podle počtu znaků.

Pairwise testing.

Klasifikační strom pro vstupy pro vytvoření poznámky:

Název parametru	Třídy ekvivalence	Příklady hodnot	Vybraná hodnota
Nazev	Nevalidní	<1,>100	0
	Validní	1-100	10
Popis	Nevalidní	<1,>500	0
	Validní	1-500	250

Model SUT pomocí ACTS tool (Strength coverage 2):

2.2.2. Registrační formulář

V tomto testu jsem se rozhodla otestovat formulář proregistrace uživatele podle validnosti dat.

Pairwise testing.

Název parametru	Třídy ekvivalence	Příklady hodnot	Vybraná hodnota
Jméno	Nevalidní	Zvláštní znaky	Arina1!
	Validní	Správný formát	Arina
Příjmení	Nevalidní	Zvláštní znaky	Momot2!
	Validní	Správný formát	Momot
Datum narození	Nevalidní	Nevalidní rok: <1900, >2010	2023
	Validní	Validní rok	2000
Město	Nevalidní	Zvláštní znaky	P2_@f
	Validní	Správný formát	Prague
Vysoká škola	Nevalidní	Zvláštní znaky	C@>dwe
	Validní	Správný formát	CVUT
Email	Nevalidní	Není ve formátu mailu	arimom@com
	Validní	Ve formátu mail	arimom@fel.cz
Heslo	Nevalidní	Nesplňuje požadavky na heslo (alespoň 8 znaků, alespoň 1 velká písmena, 1 malá písmena, 1 číslici a 1 speciální znak)	Arina123
	Validní	Splňuji požadavky na heslo	Arina123!

Model SUT pomocí ACTS tool (Strength coverage 3):

2.3. Testování procesů

Pro procesní testování jsem zvolila proces vytvoření a odstranění poznámky.

Diagram průchodu:

Zjednodušení struktury:

- A Is user registered?
- B Are there any notes?
- C Create note?
- D Know the current date and time?
- E Read note?
- F Delete note?
- G Leave web?

Vygenerování průchodu (TDL=1) pomocí nástroje Oxygen:

Vygenerování průchodu (TDL=2) pomocí nástroje Oxygen:

Vygenerování průchodu (TDL=3) pomocí nástroje Oxygen:

3. Závěr

V tomto testovacím reportu jsem identifikovála třídy ekvivalence a mezní podmínky pro formuláře webu Notes. Byl proveden test procesu, který zahrnuje hlavní funkci webu.

Testování ukázalo, že web je funkční a účinný. Různé testovací metody identifikovaly některé drobné problémy, které je třeba vyřešit, ale nepředstavují významnou hrozbu pro výkon produktu. Na základě výsledků testování se doporučuje opravit web pro optimalizaci jeho výkonu a uživatelské zkušenosti a znovu nasadit.