

Sales Forecasting and Optimization

DEPI Graduation Project

Meet our team

- Mariam Hassan
- Rawan Sotohy
- Sara Abdelrahman
- Toka Khaled

Under supervision: Eng. Mahmoud Khorshid

View The Full Code Notebooks From Here

View The Project Web Application From Here

Table of contents

01 02

Introduction Dashboard

03 04

Prediction Deployment

Data Description

The dataset contains 9,800 rows and 18 columns describing customer details, order information, product categories, and financial transactions. Key variables include:

- Customer demographics (Segment, City, State, Region)
- Product details (Category, Sub-Category, Product Name)
- Order information (Order Date, Ship Date, Ship Mode)
- Target variable: Sales amount (in USD)

Sample Data

Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City
	1 CA-2017-15215	8/11/2017	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson
	CA-2017-15215	8/11/2017	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson
] ;	CA-2017-13868	12/6/2017	16/06/2017	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles
	4 US-2016-10896	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale
	US-2016-10896	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale
(CA-2015-115812	9/6/2015	14/06/2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles
	7 CA-2015-115812	9/6/2015	14/06/2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles
	CA-2015-11581	9/6/2015	14/06/2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles
	CA-2015-11581	9/6/2015	14/06/2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles
10	CA-2015-11581	9/6/2015	14/06/2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Anaeles

State	Postal Cod	Region	Product ID	Category	Sub-Category	Product Name	Sales
Kentucky	42420	South	FUR-BO-10001798	Furniture	Bookcases	Bush Somerset Collection Bookcase	261.96
Kentucky	42420	South	FUR-CH-10000454	Furniture	Chairs	Hon Deluxe Fabric Upholstered Stacki	731.94
California	90036	West	OFF-LA-10000240	Office Supplies	Labels	Self-Adhesive Address Labels for Type	14.62
Florida	33311	South	FUR-TA-10000577	Furniture	Tables	Bretford CR4500 Series Slim Rectange	957.5775
Florida	33311	South	OFF-ST-10000760	Office Supplies	Storage	Eldon Fold 'N Roll Cart System	22.368
California	90032	West	FUR-FU-10001487	Furniture	Furnishings	Eldon Expressions Wood and Plastic	48.86
California	90032	West	OFF-AR-10002833	Office Supplies	Art	Newell 322	7.28
California	90032	West	TEC-PH-10002275	Technology	Phones	Mitel 5320 IP Phone VoIP phone	907.152
California	90032	West	OFF-BI-10003910	Office Supplies	Binders	DXL Angle-View Binders with Locking	18.504
California	90032	West	OFF-AP-10002892	Office Supplies	Appliances	Belkin F5C206VTEL 6 Outlet Surge	114.9

Data Dictionary

Column Name	Description	Datatype
Row ID	Unique numeric identifier for each row in the dataset	int64
Order ID	Unique identifier for each order.	object
Order Date	The date when the order was placed.	object
Ship Date	The date when the order was shipped.	object
Ship Mode	Shipping method used (e.g., Second Class, Standard Class).	object
Customer ID	Unique identifier for each customer.	object
Customer Name	Name of the customer who placed the order.	object
Segment	Customer segment (e.g., Consumer, Corporate, Home Office).	object
Country	Country of the customer.	object

Data Dictionary

Column Name	Description	Datatype
City	City of the customer.	object
State	State of the customer.	object
Postal Code	Postal/ZIP code (may contain missing values).	float64
Region	Geographic region of the customer (e.g., West, South).	object
Product ID	Unique identifier for each product.	object
Category	Unique identifier for each customer.	object
Sub-Category	Sub-category of the product (e.g., Chairs, Labels).	object
Product Name	Name of the product.	object
Sales	Target — Sale amount (in USD) for the product line.	float64
8 0		

Data Exploration

We began by examining the dataset structure:

- Checked basic statistics (mean, min, max values)
- Identified data types and missing values
- Analyzed unique values in categorical columns
- Visualized distributions of key variables

Key findings:

- The dataset had minimal missing values (only in Postal Code column)
- Significant outliers were present in the Sales variable
- High cardinality in Product Name and City columns

Handling Missing Values

Dropped rows with missing Postal Codes (only 11 rows affected)

Outlier Treatment

Used IQR method to cap outliers in the Sales variable

Encoding Categorical Variables

- Applied Label Encoding to all categorical columns including:
 - Ship Mode (4 categories)
 - Segment (3 categories)
 - Region (4 categories)
 - Product Category/Sub-category
 - Geographic locations (City, State)

Feature Engineering

- Date Features:
 - Extracted Year, Month, Day, and Weekday from Order Date
 - Calculated Shipping Duration (days between order and shipment)
- Text Processing:
 - Standardized Product Names by converting to lowercase and removing punctuation

Feature Selection

We dropped unnecessary columns that wouldn't contribute to modeling:

- Row ID, Customer ID, Product ID (unique identifiers)
- Customer Name (personal information)
- Order ID (transaction identifier)
- Ship Date (redundant since we have shipping duration)

Correlation

 We calculated the correlation matrix to understand the linear relationships between numerical features and the target variable (Sales).

02

View the Dashboard from here

\$2.26M

Total Sales

Year
2015 2016 2017 2018

Customer_Name	City	Region Sur
Aaron Bergman	Arlington	Central
Aaron Bergman	Oklahoma City	Central
Aaron Bergman	Seattle	West
Aaron Hawkins	Gulfport	South
Aaron Hawkins	Los Angeles	West
Aaron Hawkins	New York City	East
Aaron Hawkins	Philadelphia	East
Aaron Hawkins	San Francisco	West
Aaron Hawkins	Troy	East
Aaron Smayling	Arlington	South

4922

Total Orders

Region

Central East South West

459.48

Avg_Order_Value

\$35.66K

Total_Sales

Customer_Name	City	Region	Sum
Aaron Hawkins	New York City	East	
Aaron Hawkins	Troy	East	
Aaron Smayling	New York City	East	
Adam Shillingsburg	New York City	East	
Aimee Bixby	Yonkers	East	
Alan Dominguez	Philadelphia	East	
Alex Avila	New York City	East	
Allen Goldenen	New York City	East	
Andrew Roberts	Columbus	East	
Andrew Roberts	Philadelphia	Fast	

179.18

Avg_Order_Value

\$44.52K

Total_Sales

Customer_Name	City	Region Sur
Aaron Smayling	Jacksonville	South
Adrian Hane	Louisville	South
Anna Gayman	Jacksonville	South
Anne McFarland	Salem	South
Barry Franzݶsisch	Jacksonville	South
Barry Gonzalez	Monroe	South
Bart Watters	Greensboro	South
Beth Fritzler	Miami	South
Bradley Drucker	Columbus	South
Brian Dahlen	Miami	South

Avg_Order_Value

Sales by Category & Sub-Category

03

Prediction

View the Prediction form from here

Objective:

 Predict future sales using three different models: ARIMA, SARIMA and Prophet.

Steps:

- Data Preparation:
 - Group sales by date (Order Date).
 - Handle missing values with interpolation.
- Models Used:
 - ARIMA (5,1,2): Captures trends and basic patterns.
 - \circ SARIMA (1,1,1)(1,1,1,7): Adds weekly seasonality.
 - Prophet: Automatically detects trends and seasonality.
- Forecast Horizon: 30 days ahead.

Ensemble Boosting Models

d CPU B

Objective:

 Predict sales using ensemble boosting models (XGBoost, LightGBM, CatBoost) and optimize performance via hyperparameter tuning.

Steps:

- Data Preparation:
 - Split into features (X) and target (y = Sales).
 - Train-test split (80-20) with scaling (StandardScaler).
- Models Used:
 - XGBoost: High flexibility, handles complex patterns.
 - LightGBM: Faster training, good for large datasets.
 - CatBoost: Robust to categorical features, minimal preprocessing.
- Evaluation Metrics:
 - MSE (Mean Squared Error): Lower = Better.
 - R² Score: Closer to 1 = Better fit.

Model Performance & Tuning

- Initial Results (R² Scores):
 - XGBoost = 0.56.
 - LightGBM = 0.57.
 - CatBoost = 0.54.
- Hyperparameter Tuning:
 - Used RandomizedSearchCV to optimize:
 - n_estimators, learning_rate, max_depth (XGBoost).
 - num_leaves (LightGBM).
 - depth (CatBoost).
- Tuning Impact (R² Scores):
 - XGBoost = 0.571.
 - LightGBM = 0.570.
 - CatBoost = 0.528.

Objective:

 Predict future sales using ensemble (Random Forest) and single-tree (Decision Tree) approaches.

Models Used:

- Decision Tree:
 - Simple splits (max_depth=5, random_state=42).
 - Prone to overfitting but interpretable.
- Random Forest:
 - Ensemble of 100 trees (n_estimators=100).
 - Robust to overfitting, handles non-linearity.

Performance (R² Scores):

- Decision Tree = 0.31.
- Random Forest = 0.62.

Best Model:

Random Forest was chosen as the final model based on performance.

View The Project Web Application From Here

Chosen Model:

- After evaluation, Random Forest was selected for deployment due to its:
 - ✓ Lowest MSE (best R² score)
 - √ Fast prediction speed
 - √ Handling of complex patterns

Deployment Steps:

- 1. Save Model: Used joblib to serialize and save the trained model.
- 2. Build Web App: Created an interactive Streamlit application.

User-Friendly Interface:

- Input Order Details: Users can enter features (e.g., category, order date, region).
- Real-Time Prediction: Instantly displays predicted Sales value.

Business Impact

• **Better Decision-Making:** Improves planning across inventory, marketing, and operations using accurate sales forecasts.

- Revenue Growth: Increases sales by aligning stock and promotions with customer demand.
- Reduced Operational Costs: Lowers costs by avoiding overstocking, stockouts, and inefficient logistics.
- Improved Customer Satisfaction: Ensures product availability, leading to a better customer experience and higher loyalty.

Thanks!

Do you have any questions?

View The Project Web Application From Here

Scan Me

