

$$A = \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}.$$

- a) [1 Punkt] Zeigen Sie, dass die Spaltenvektoren von A orthogonal sind.
- **b)** [1.5 Punkte] Zeigen Sie, dass die Spaltenvektoren von A linear unabhängig sind.
- c) [3.5 Punkte] Geben Sie eine QR-Zerlegung von A an.
- **2.** [6 Punkte] Gegeben sei das Differentialgleichungssystem erster Ordnung $\dot{y} = Ay$, wobei

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

- a) [2.5 Punkte] Bestimmen Sie eine Transformationsmatrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$.
- **b)** [2 Punkte] Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems $\dot{y} = A y$, indem Sie die neuen Variablen $x(t) = T^{-1}y(t)$ einführen.

Hinweis: Für $a \in \mathbb{R}$ ist die allgemeine Lösung der Differentialgleichung $\dot{z} = az$ gegeben durch $z(t) = c\,e^{at}$ mit einer Konstanten $c \in \mathbb{R}$. Zum Beispiel gilt für a = -2: Die Differentialgleichung $\dot{z} = -2z$ hat die Lösung $z(t) = c\,e^{-2t}$, wobei die Konstante c aus der Anfangsbedingung z(0) = c bestimmt werden kann.

c) [1.5 Punkte] Bestimmen Sie die spezielle Lösung des Differentialgleichungssystems $\dot{y} = Ay$ zu den Anfangsbedingungen

$$y(0) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

3. [6 Punkte] Gegeben sei das folgende Ausgleichsproblem: Finde $x \in \mathbb{R}^2$, so dass

$$||Ax - b||_2 = \min_{v \in \mathbb{R}^2} ||Av - b||_2, \tag{1}$$

wobei

$$A = \frac{1}{2} \begin{bmatrix} 2\sqrt{2} & 2\sqrt{2} \\ 3 & -3 \\ -3 & 3 \end{bmatrix}, \qquad b = \begin{bmatrix} \sqrt{2} \\ 1 \\ 1 \end{bmatrix}.$$

- a) [5 Punkte] Lösen Sie (1) mithilfe einer Singulärwertzerlegung.
- **b)** [1 Punkt] Schreiben Sie die Normalengleichungen für (1) in kompakter Form und lösen Sie sie.

Seien $\mathcal{G}_3 = \operatorname{span}\{1, t^2, t^4\}$ und $\mathcal{U}_2 = \operatorname{span}\{t, t^3\}$ zwei Vektorräume von Polynomen. Betrachten Sie die folgende Abbildung \mathcal{A} von \mathcal{G}_3 nach \mathcal{U}_2 :

$$A: \quad \mathcal{G}_3 \quad \longrightarrow \quad \mathcal{U}_2$$
$$x(t) \quad \longmapsto \quad t \, x''(t),$$

das heisst, für $x \in \mathcal{G}_3$ ist $Ax \in \mathcal{U}_2$ gegeben durch (Ax)(t) = t x''(t).

- a) [1 Punkt] Zeigen Sie, dass A eine lineare Abbildung ist.
- **b)** [1 Punkt] Durch welche Matrix A wird A beschrieben, wenn wir die Monome als Basen in beiden Räumen verwenden?
- c) [2 Punkte] Zeigen Sie, dass $\{p_1, p_2, p_3\}$ und $\{q_1, q_2\}$ Basen von \mathcal{G}_3 beziehungsweise \mathcal{U}_2 sind, wobei

$$p_1(t) = 1 + t^2$$
, $p_2(t) = 1 - t^2$, $p_3(t) = 1 + t^2 + t^4$

und

$$q_1(t) = t,$$
 $q_2(t) = 3t + 2t^3.$

- d) [2 Punkte] Welches ist die neue Matrix B, durch die A nach dem Basiswechsel in die neuen Basen $\{p_1, p_2, p_3\}$ und $\{q_1, q_2\}$ aus Teilaufgabe c) beschrieben wird?
- **5.** [6 Punkte] Sei $n \in \mathbb{N}$ und sei $v \in \mathbb{R}^n$ mit $v \neq 0$. In dieser Aufgabe betrachten wir die Matrix

$$H = I - \frac{2}{v^T v} v v^T \in \mathbb{R}^{n \times n},$$

wobei I die n-dimensionale Einheitsmatrix ist.

- a) [4 Punkte] Beweisen Sie, dass H eine Orthogonalmatrix ist.
- **b)** [2 Punkte] Beweisen Sie, dass $H^2 = I$ gilt.

6 Punkte] Multiple-Choice: Auf dem Extrablatt "Richtig" oder "Falsch" ankreuzen.

- a) [1 Punkt] Ein lineares Gleichungssystem mit m Zeilen, n Spalten und Rang r ist *nicht* für beliebige rechte Seiten lösbar, wenn m > n.
- **b)** [1 Punkt] Sei A eine $m \times n$ -Matrix mit m > n, so dass $A^T A$ die Einheitsmatrix ist, und sei B eine $n \times m$ -Matrix, so dass BA orthogonal ist. Dann ist auch AB orthogonal.
- c) [1 Punkt] In jedem Vektorraum mit Skalarprodukt können wir eine beliebig grosse Familie von Einheitsvektoren finden, die paarweise orthogonal sind.
- **d)** [1 Punkt] Eine LR-Zerlegung der Matrix A liefert die Rechtsdreiecksmatrix

$$R = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & \frac{5}{2} \end{bmatrix} .$$

Daraus folgt $\det A = 25$.

e) [1 Punkt] Wir betrachten die Matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & -3 \end{bmatrix}$$

und die Menge $L=\{Ax\ |\ x\in\mathbb{R}^2\}$. Dann ist L ein Unterraum des Vektorraums \mathbb{R}^3 und die Vektoren $a^{(1)}=\begin{bmatrix}1,&0,&2\end{bmatrix}^T$ und $a^{(2)}=\begin{bmatrix}0,&1,&-3\end{bmatrix}^T$ bilden ein Erzeugendensystem von L.

f) [1 Punkt] Sei $\{a^{(1)}, \dots, a^{(k)}\}\subseteq \mathbb{R}^n$ eine Basis von \mathbb{R}^n . Dann muss gelten $k\leq n$.

Namen ein.

Name:

D-ITET, D-MATL, RW Lineare Algebra

Extrablatt: Aufgabe 6

Tragen Sie auf dieses Extrablatt die Lösungen zu den "Richtig oder Falsch"-Fragen aus Aufgabe 6 ein,
indem Sie das Kästchen ankreuzen, welches der korrekten Antwort entspricht. Tragen Sie oben Ihren

Bewertungsschema: Jede *korrekte* Antwort gibt einen Punkt, jedes *nicht korrekt gesetzte* Kreuz gibt einen Punkt Abzug. Für jede Teilaufgabe, für die *kein Kreuz* gemacht wurde, gibt es 0 Punkte. Die Summe der Punktzahlen für die ganze Aufgabe 6 wird, falls negativ, auf 0 aufgerundet.

Teilaufgabe	Richtig	Falsch
a)		
b)		
c)		
d)		
e)		
f)		