8. Polynomial rings and unique factorization

One variable polynomials over a field

Lemma: If $f(x) \in F[x]$, and $r \in F$, then f(r) = 0 if and only if (x - r) divides f.

Proposition: A polynomial of degree n over a field F has at most n roots in F.

Finite subgroups of fields

Proposition: Let $U \in F^{\times}$ be a finite subgroup of a field F. Then U is cyclic.

Corollary: $\mathbb{Z}/p\mathbb{Z}^{\times}$ is cyclic. Note: the number theorists call a generator of $\mathbb{Z}/p\mathbb{Z}^{\times}$ a primitive root modulo p. There are $\phi(p-1)$ primitive roots modulo p.

More discussions of quadratic rings

Proposition: (Fermat) A prime number is the sum of two squares if and only if it is 2 or is congruent to 1 mod 4.

Lemma: The congruence $x^2 \equiv -1 \pmod{p}$ has a solution modulo a prime p if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Proof: If p = 2, 1 is a solution. If p is odd, and $x^2 = -1$ has a solution, then $(\mathbb{Z}/p\mathbb{Z})^*$ has an element of order 4, so 4|(p-1). Notice that $(\mathbb{Z}/p\mathbb{Z})^*$ has only two elements of order dividing 2, because of $x^2 \equiv 1 \pmod{p}$ then $p|(x^2-1)$, so p|(x+1)(x-1), so either $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$. If 4|(p-1) then let H be the Sylow 2-subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. If H were not cyclic, then there would be too many elements of order 2 in H. So H must be cyclic and therefore there is an element of order 4.

Now suppose that $p \equiv 1 \pmod 4$. Let u be a solution to $x^2 + 1 \equiv 0 \pmod p$. Consider the ideal $I = (p, u + i) \subset \mathbb{Z}[i]$. This is a maximal ideal. If $\pi = a + bi$ is a generator of this ideal, then $p = x\pi$. If x were a unit, then u + i would have to be a multiple of p, which it visibly isn't. Therefore $N(\pi)$ must be p. But $N(\pi) = a^2 + b^2$, so we've found our representation.

Proposition: The ring $\mathbb{Z}[\sqrt{-5}]$ is not a Euclidean ring. In fact, the ideal $(3, 1+\sqrt{-5})$ is not principal. It is a proper ideal, because the quotient of $\mathbb{Z}[\sqrt{-5}]$ by this ideal is $\mathbb{Z}/3\mathbb{Z}$. If π were a generator of this ideal, then $3 = x\pi$ means

that either $N(\pi) = 3$ or $N(\pi) = 9$. Also $(1+5i) = y\pi$ means that $N(\pi)$ divides 6. Since π is not a unit, $N(\pi) = 3$. But the equation $x^2 + 5y^2 = 3$ has no integer solutions, so there is no element of norm 3 in this ring.

Proposition: $\mathbb{Z}[\sqrt{2}]$ is Euclidean with respect to the norm. It has an infinite unit group.

Proposition: Let $\rho = e^{2\pi/3}$. Then $\mathbb{Z}[\rho]$ is Euclidean (and it has six units).

Back to the Gaussian integers

The irreducibles in $\mathbb{Z}[i]$ are: - (1+i) - $p \in \mathbb{Z}$ with $p \equiv 3 \pmod{4}$ - $a \pm bi$ where $a^2 + b^2 = p$ for $p \in \mathbb{Z}$ and $p \equiv 1 \pmod{4}$.

A positive integer is a sum of two squares if and only if it factors

$$n = 2^k p_1^{e_1} \cdots p_k^{e_k} q_1^{f_1} \cdots q_r^{f_r}$$

where the $p_i \equiv 1 \pmod 4$ and the $q_i \equiv 3 \pmod 4$ and all the f_i are even.

The proof follows from the question of when is n = N(x) for some $x \in \mathbb{Z}[i]$.