

Introduction to Data Mining

Lecture #10: Link Analysis-2

U Kang Seoul National University

Outline

- PageRank: Google Formulation
 - ☐ Computing PageRank
 - ☐ Topic-Specific PageRank
 - Measuring Proximity in Graphs

2

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d_i}}$$
 or equivalently $r = Mr$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

U Kang

3

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Does it converge to what we want?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

5

Example:

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

(2) Spider traps:

- (all out-links are within the group)
- Random walked gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

- \Box Set $r_j = 1$
- $\square r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

m is a spider trap

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2 + \mathbf{r}_{m}$$

Example:

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - \square With prob. β , follow a link at random
 - \square With prob. **1-** β , jump to some random page
 - \Box Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

- \Box Set $r_j = 1$
- $\square r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	у	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

Example:

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not column stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

U Kang

10

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps
 PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

Google's solution that does it all:

At each step, random surfer has two options:

- \square With probability β , follow a link at random
- \Box With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

■ PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

In matrix form:

$$r = \beta M r + (1 - \beta) \left[\frac{1}{N}\right]_{N \times N} r$$
$$= \{\beta M + (1 - \beta) \left[\frac{1}{N}\right]_{N \times N} \} r$$

This is called the "Google Matrix"

 $[1/N]_{NxN}...N$ by N matrix where all entries are 1/N

1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

E.g., for N=3

The Google Matrix

■ PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

■ The Google Matrix *A*:

 $[1/N]_{NxN}...N$ by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β ?
 - □ In practice $\beta = 0.8, 0.9$ (make ~5 steps on avg., jump)

Random Teleports (β = 0.8)

1/3 0.33 0.24 0.26 7/33 y 0.18 0.20 0.20 5/33 a 1/3 1/3 0.46 0.56 0.5221/33 \mathbf{m}

Outline

- PageRank: Google Formulation
- **→** □ Computing PageRank
 - □ Topic-Specific PageRank
 - Measuring Proximity in Graphs

Computing Page Rank

Key step is matrix-vector multiplication

$$\neg r^{\text{new}} = A \cdot r^{\text{old}}$$

- Easy if we have enough main memory to hold A
 , r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - Total 2 billion entries for 2 vectors(rold, rnew): ~ 8GB
 - Matrix A has N² entries
 - $N^2 = 10^{18}$ (1000 Peta) is a large number!
 - We need to exploit sparsity of M

$$A = \beta \cdot M + (1-\beta) [1/N]_{N \times N}$$

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Sparse Matrix Formulation

$$\mathbf{r} = \mathbf{A} \cdot \mathbf{r}$$
, where $A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$

Main idea: do not construct A explicitly

Specifically:

Note: Here we assumed **M** has no dead-ends

 $[x]_N$... a vector of length N with all entries x

Sparse Matrix Formulation

The PageRank equation

$$r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_N$$

- where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - □ Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - **Add** a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

U Kang

19

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - \Box Directed graph G (can have spider traps and dead ends)
 - □ Parameter **β**
- Output: PageRank vector r^{new}
 - ightharpoonup Set: $r_j^{old} = \frac{1}{N}$
 - □ repeat until convergence: $\sum_{j} |r_{j}^{new} r_{j}^{old}| > \varepsilon$
 - $\forall j: \; \boldsymbol{r}'^{new}_{j} = \sum_{i \to j} \boldsymbol{\beta} \; \frac{r^{old}_{i}}{d_{i}}$
 - Now re-insert the leaked PageRank:

$$\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N}$$
 where: $S = \sum_j r_j^{new}$

 $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is **1-β**. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**.

U Kang

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Assuming N = 1 billion,
 10N edges would require 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

U Kang

21

Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - \Box Store r^{old} and matrix **M** on disk
- 1 step of power-iteration is:

```
Initialize all entries of \mathbf{r}^{\text{new}} = (1-\beta) / \mathbf{N}

For each page i (of out-degree d_i):

Read into memory: i, d_i, dest_1, ..., dest_{d_i}, r^{old}(i)

For j = 1...d_i

r^{\text{new}}(dest_j) += \beta r^{\text{old}}(i) / d_i
```


Basic Algorithm: Update Step

Analysis

- Assume enough RAM to fit *r*^{new} into memory
 - \Box Store r^{old} and matrix M on disk
- In each iteration, we have to:
 - \square Read r^{old} and M
 - □ Write *r*^{new} back to disk
 - □ Cost (disk I/O) per iteration of Power method:

$$= 2|r| + |M|$$

- Question:
 - \Box What if we could not even fit r^{new} in memory?

Block-based Update Algorithm

2	
3	

src	degree	destination
0	4	0, 1, 3, 5
1	2	0, 5
2	2	3, 4
	M	

- Break r^{new} into k blocks that fit in memory
- \Box Scan **M** and r^{old} once for each block

Block-based Update Algorithm

Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - \Box Scan **M** and r^{old} once for each block
- Total cost:
 - \square **k** scans of **M** and r^{old}
 - □ Cost per iteration of Power method: k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- Can we do better?
 - **Hint:** *M* is much bigger than *r* (approx 10-20x), so we must avoid reading it *k* times per iteration

Block-Stripe Update Algorithm

Block-Stripe Update Algorithm

src	degree	destination
0	4	0, 1
1	3	0
2	2	1

0	4	3
2	2	3

_	1
0	
1	
2	
3	
4	
5	
1	

rold

4	
5	

0	4	5
1	3	5
2	2	4

Break *M* into stripes! Each stripe contains only destination nodes in the corresponding block of *r*^{new}

Block-Stripe Analysis

- Break M into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration of Power method:

 $= |M|(1+\varepsilon) + (k+1)|r|$

Limitations in Page Rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank (next)
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank

Outline

- PageRank: Google Formulation
- Computing PageRank
- **→** □ Topic-Specific PageRank
 - ☐ Measuring Proximity in Graphs

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - Example: Query "Jaguar" wants different pages depending on whether you are interested in animal, car, or operating system

33

Topic-Specific PageRank

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she picks a page from a set S
 - S contains only pages that are relevant to the topic
 - E.g., Yahoo or DMOZ pages for a given topic/query
 - \Box For each teleport set S, we get a different vector r_S

U Kang

34

Matrix Formulation

■ To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = \begin{cases} eta \, M_{ij} + (\mathbf{1} - oldsymbol{eta})/|S| & ext{if } i \in S \\ oldsymbol{eta} \, M_{ij} + 0 & ext{otherwise} \end{cases}$$

- A is stochastic!
- We weighted all pages in the teleport set 5 equally
 - Could also assign different weights to pages!
- Compute as for regular PageRank:
 - Multiply by M, then add a vector
 - Maintains sparseness

U Kang

35

Example: Topic-Specific PageRank

Suppose $S = \{1\}, \beta = 0.8$

Node	Iteration			
	0	1	2	stable
1	0.25	0.4	0.28	0.294
2	0.25	0.1	0.16	0.118
3	0.25	0.3	0.32	0.327
4	0.25	0.2	0.24	0.261

S={1}, β =0.90: r=[0.17, 0.07, 0.40, 0.36] S={1}, β =0.8: r=[0.29, 0.11, 0.32, 0.26] S={1}, β =0.70: r=[0.39, 0.14, 0.27, 0.19] $S=\{1,2,3,4\}$, $\beta=0.8$: r=[0.13, 0.10, 0.39, 0.36] $S=\{1,2,3\}$, $\beta=0.8$: r=[0.17, 0.13, 0.38, 0.30] $S=\{1,2\}$, $\beta=0.8$: r=[0.26, 0.20, 0.29, 0.23] $S=\{1\}$, $\beta=0.8$: r=[0.29, 0.11, 0.32, 0.26]

Discovering the Topic Vector S

- Create different PageRanks for different topics
 - The 16 DMOZ top-level categories:
 - arts, business, sports,...
- Which topic ranking to use?
 - User can pick from a menu
 - Classify query into a topic
 - Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "Jordan"
 - □ User context, e.g., user's bookmarks, ...

U Kang

37

Outline

- PageRank: Google Formulation
- Computing PageRank
- ☑ Topic-Specific PageRank

Proximity on Graphs

a.k.a.: Relevance, Closeness, 'Similarity'...

Good proximity measure?

Shortest path is not good:

- No effect of degree-1 nodes (E, F, G)!
- Multi-faceted relationships

Good proximity measure?

Network flow is not good:

Does not punish long paths

What is good notion of proximity?

- Multiple connections
- Quality of connection
 - Length, Degree,Weight...

Random Walk with Restart: Idea

- RWR: Random walks from a fixed node
- E.g., k-partite graph with k types of nodes
 - E.g.: Authors, Conferences, Tags
- Topic Specific PageRank from node *u*: teleport set *S* = {*u*}

- Resulting scores measures similarity to node u
- **■** Problem:
 - Must be done once for each node u
 - Suitable for sub-Web-scale applications

RWR: Example

Q: What is the most related conference to ICDM?

A: Topic-Specific

PageRank with

teleport set S={ICDM}

RWR: Example

45

PageRank: Summary

"Normal" PageRank:

- Teleports uniformly at random to any node
- Topic-Specific PageRank also known as Personalized PageRank:
 - Teleports to a topic specific set of pages
 - Nodes can have different probabilities of surfer landing there: S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]

Random Walk with Restarts:

□ Topic-Specific PageRank where teleport is always to the same node. S=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Questions?