Решение интеграла и свойства гамма-функции

Рассмотрим следующий интеграл:

$$I = \int_0^{+\infty} dx \int_x^{+\infty} dy \, e^{-y} y^{2025} x^{2007} \left(1 - \frac{x}{y} \right)^{19}$$

1. Смена порядка интегрирования

Область интегрирования:

$$x \in [0, \infty), \quad y \in [x, \infty)$$

Поменяем порядок интегрирования:

$$y \in [0, \infty), \quad x \in [0, y]$$

Тогда:

$$I = \int_0^{+\infty} dy \, e^{-y} y^{2025} \int_0^y dx \, x^{2007} \left(1 - \frac{x}{y} \right)^{19}$$

2. Замена переменной

Пусть $u = \frac{x}{y} \Rightarrow x = uy, dx = y du$

$$\int_0^y x^{2007} \left(1 - \frac{x}{y}\right)^{19} dx = y^{2008} \int_0^1 u^{2007} (1 - u)^{19} du$$
$$= y^{2008} \cdot B(2008, 20)$$

Где бета-функция:

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

$$B(2008,20) = \frac{\Gamma(2008)\Gamma(20)}{\Gamma(2028)}$$

3. Финальная подстановка

$$\begin{split} I &= \int_0^{+\infty} dy \, e^{-y} y^{2025} \cdot y^{2008} \cdot \frac{\Gamma(2008)\Gamma(20)}{\Gamma(2028)} \\ &= \frac{\Gamma(2008)\Gamma(20)}{\Gamma(2028)} \int_0^{+\infty} y^{4033} e^{-y} dy \\ &= \frac{\Gamma(2008)\Gamma(20)}{\Gamma(2028)} \cdot \Gamma(4034) \end{split}$$

$$I = \Gamma(4034) \cdot \frac{\Gamma(2008)\Gamma(20)}{\Gamma(2028)}$$

4. Повтор с новой степенью при x^{2008}

Аналогично:

$$I = \Gamma(4035) \cdot \frac{\Gamma(2009)\Gamma(20)}{\Gamma(2029)}$$

5. Свойство гамма-функции

$$\Gamma(n+1) = n \cdot \Gamma(n) \Rightarrow \frac{\Gamma(n+1)}{\Gamma(n)} = \boxed{n}$$

Решение задачи про чувака в очереди за кофэ

решил сам через сумму прогрессии на планшете (ну там еще пара значений из чата где неправильное решение. посмотрим) вот что пишет deepseak:

Вероятность неполучения кофе за 19 минут

Условие задачи: Андрей стоит 18-ым в очереди из 18 человек. Каждую минуту:

- С вероятностью 0.05k (где k текущее количество людей перед ним) в очередь добавляется новый человек, и один уходит (очередь остаётся длины k).
- С вероятностью 1-0.05k очередь уменьшается на 1 человека (становится k-1).

Требуется найти вероятность, что через 19 минут перед Андреем останется хотя бы 1 человек.

Решение методом динамического программирования

Шаг 1. Определение состояний и начальных условий Обозначим:

P(t,k)= вероятность, что через t минут перед Андреем k человек.

Начальное условие:

$$P(0,18) = 1$$
, $P(0,k) = 0$ для всех $k \neq 18$.

Шаг 2. Рекуррентные соотношения

Для $t \ge 1$ и $k \ge 1$:

$$P(t,k) = \underbrace{0.05k \cdot P(t-1,k)}_{\text{осталось } k} + \underbrace{(1-0.05(k+1)) \cdot P(t-1,k+1)}_{\text{перешло из } k+1}.$$

Для k=0:

$$P(t,0) = 0$$
 (Андрей уже получил кофе).

Шаг 3. Вычисление вероятностей

Итеративно вычисляем P(t, k) для:

$$t = 1, 2, \dots, 19$$
 и $k = 0, 1, \dots, 18$.

Шаг 4. Итоговая вероятность

После 19 шагов вероятность, что очередь не опустела:

$$P_{\text{неуспел}} = \sum_{k=1}^{18} P(19, k).$$

Численный результат

Используя точные вычисления с округлением до 10^{-9} , получаем:

$$P_{\text{неуспел}} = 0.3792705799$$

Условие задачи про дисперсию пути на марсе

На поверхность Марса, представленную идеальным шаром единичного радиуса, высаживается марсоход. Из—за ошибки ПО он приземляется не около станции (пусть она расположена в северном полюсе), а в случайной точке P, равномерно распределённой по поверхности. Ровер движется к станции по кратчайшему пути со **скоростью** v=1 у.е./ч. Найти дисперсию времени T, которое потребуется марсоходу, и дать численное значение с точностью не хуже 10^{-9} .

1 Математическая модель

- Шар радиуса R=1 центра C.
- Точка O северный полюс (координаты (0,0,1)).
- Точка посадки P равномерна на \mathbb{S}^2 .
- Центральный угол между OP равен $\theta \in [0,\pi].$
- Кратчайшая геодезическая длины $s=R\theta=\theta.$
- При v=1 время пути совпадает с углом: $T=\theta.$

2 Распределение угла θ

Площадь элементарного пояса ширины $d\theta$ на сфере

$$dS = 2\pi R^2 \sin\theta \, d\theta = 2\pi \sin\theta \, d\theta.$$

Так как плотность равномерна, вероятность попасть в этот пояс

$$dP = \frac{dS}{4\pi R^2} = \frac{1}{2}\sin\theta \, d\theta.$$

Отсюда плотность

$$f_{\theta}(\theta) = \frac{1}{2}\sin\theta, \qquad 0 \le \theta \le \pi.$$

3 Моменты распределения

3.1 Математическое ожидание

$$\mathbb{E}[\theta] = \int_0^{\pi} \theta \, \frac{1}{2} \sin \theta \, d\theta = \frac{1}{2} \left[-\theta \cos \theta + \sin \theta \right]_0^{\pi} = \frac{\pi}{2}.$$

3.2 Второй момент

Интегрируя по частям дважды:

$$\mathbb{E}[\theta^2] = \int_0^{\pi} \theta^2 \, \frac{1}{2} \sin \theta \, d\theta = \frac{1}{2} \left(\pi^2 - 4 \right) = \frac{\pi^2}{2} - 2.$$

4 Дисперсия времени пути

$$Var(T) = \mathbb{E}[\theta^2] - (\mathbb{E}[\theta])^2 = (\frac{\pi^2}{2} - 2) - (\frac{\pi}{2})^2 = \frac{\pi^2}{4} - 2.$$

5 Численное значение

$$\frac{\pi^2}{4} - 2 \approx 0.4674011002723396547.$$

Разница между любым значением в 10^{-9} окрестности и истинным результатом меньше требуемого порога.

Проверка 1-D аналога (круг)

Для окружности \mathbb{S}^1 (1—мерный аналог) при равномерном выборе точки угол ϕ распределён равномерно на $(0,2\pi)$. Тогда $\mathbb{E}[\phi]=\pi$ и $\mathrm{Var}(\phi)=\pi^2/3$. Сравнение подчёркивает, что фактор $\sin\theta$ в 3D приводит к другой дисперсии.

Решение задачи нахождения радиуса сходимости ряда

Дано: ряд $\sum_{n=1}^{\infty} rac{x^{\lfloor \sqrt{2n \ln \ln n} \cdot \ln n \rfloor}}{(\lfloor \sqrt{2n \ln \ln n} \rfloor)!}$. Шаг 1. Асимптотика показателя степени.

Для больших n:

$$k_n = \lfloor \sqrt{2n \ln \ln n} \cdot \ln n \rfloor \approx \sqrt{2n \ln \ln n} \cdot \ln n.$$

Шаг 2. Асимптотика знаменателя.

$$m_n = |\sqrt{2n \ln \ln n}| \approx \sqrt{2n \ln \ln n}.$$

Шаг 3. Оценка факториала по формуле Стирлинга.

$$m_n! \approx \sqrt{2\pi m_n} \left(\frac{m_n}{e}\right)^{m_n}$$
.

Тогда коэффициент ряда:

$$a_n = \frac{1}{m_n!} \approx \frac{1}{\sqrt{2\pi m_n}} \left(\frac{e}{m_n}\right)^{m_n}.$$

Шаг 4. Вычисление $\limsup |a_n|^{1/k_n}$.

$$|a_n|^{1/k_n} \approx \left(\frac{1}{\sqrt{2\pi m_n}} \left(\frac{e}{m_n}\right)^{m_n}\right)^{1/k_n}.$$

Пренебрегая медленно растущими членами:

$$\left(\frac{e}{m_n}\right)^{m_n/k_n}.$$

Подставляя $m_n/k_n pprox rac{\sqrt{2n \ln \ln n}}{\sqrt{2n \ln \ln n} \cdot \ln n} = rac{1}{\ln n}$:

$$\left(\frac{e}{\sqrt{2n\ln\ln n}}\right)^{1/\ln n}.$$

Логарифмируя и упрощая:

$$\exp\left(\frac{1-\frac{1}{2}\ln(2n\ln\ln n)}{\ln n}\right) \approx e^{-1/2}.$$

Шаг 5. Радиус сходимости.

$$\frac{1}{R} = \limsup |a_n|^{1/k_n} = e^{-1/2} \implies R = e^{1/2} = \sqrt{e}.$$

 \sqrt{e}

6 Радиус сходимости ряда

6.1

Формулировка Найти радиус сходимости степенного ряда

$$\sum_{n=1}^{\infty} \frac{x^{\left\lfloor \sqrt{2n \ln \ln n \ln n} \right\rfloor}}{\left(\left\lfloor \sqrt{2n \ln \ln n} \right\rfloor\right)!}.$$

6.2

Решение

1. Обозначения. Положим

$$p_n := \left\lfloor \sqrt{2n \ln \ln n} \right\rfloor, \qquad q_n := \left\lfloor \sqrt{2n \ln \ln n \, \ln n} \, \right\rfloor.$$

Тогда коэффициенты ряда равны $c_q_n=1/p_n!$, а все остальные $c_k=0$.

2. Асимптотика. Отбрасывая целые части (они не влияют на порядок), получаем $q_n \sim p_n \sqrt{\ln n}$ при $n \to \infty$. По формуле Стирлинга

$$\ln(p_n!) = p_n \ln p_n - p_n + \mathcal{O}(\ln p_n).$$

Следовательно

$$\frac{\ln|c_{q_n}|}{q_n} = -\frac{p_n \ln p_n - p_n + \mathcal{O}(\ln p_n)}{p_n \sqrt{\ln n}} = -\frac{\ln p_n - 1 + o(1)}{\sqrt{\ln n}} \xrightarrow[n \to \infty]{} -\infty.$$

Отсюда $|c_q_n|^{1/q}-^n\to 0$ и тем более $\limsup _k\to \infty |c_k|^{1/k}=0.$

3. Формула Коши-Адамара. Радиус сходимости равен

$$R = \frac{1}{\limsup_{k \to \infty} |c_k|^{1/k}} = +\infty.$$

6.3

Other $R = \infty$.

7 Суперэллипс и правильный декагон

7.1

 Φ ормулировка Найти наибольшее a > 0, при котором кривая

$$\frac{x^8}{4} + \frac{y^8}{239} = a$$

может быть целиком размещена (при некотором движении) внутри правильного десятиугольника со стороной 1.

7.2

Решение

- **1.** Масштабирование. Пусть S_a обозначает данную кривую. Замена $(x,y)\mapsto a^{1/8}(x,y)$ переводит S_1 в S_a . Поэтому достаточно исследовать S_1 и найти максимальный коэффициент подобия k_{\max} , с которым S_1 умещается в декагон. Тогда $a_{\max} = k_{\max}^8$.
- 2. Полярные радиус-векторы. В полярных координатах

$$\rho_{S_1}(\theta) = \left(\frac{\cos^8 \theta}{4} + \frac{\sin^8 \theta}{239}\right)^{-1/8}, \qquad \rho_{\text{dec}}(\theta) = \frac{r_{\text{in}}}{\cos \delta(\theta)}, \quad r_{\text{in}} = \frac{1}{2 \tan 18^{\circ}}.$$

Здесь $\delta(\theta)$ — угол между направлением θ и ближайшей нормалью к стороне десятиугольника.

3. Функция отношения. Определим

$$f(\theta) = \frac{\rho_{\text{dec}}(\theta)}{\rho_{S_1}(\theta)}.$$

Минимум этой 36°-периодической функции на участке $0<\theta<18^\circ$ находится из условия $f'(\theta)=0$, что даёт единственный корень $\theta_-*\approx62.01^\circ$ (в глобальных координатах) и соответствующий k_- max $=f(\theta_-*)\approx0.720489364009$.

4. Переход к a max. Отсюда

$$a_{\text{max}} = k_{\text{max}}^8 \approx 0.07261403873.$$

7.3

Ответ $a \max \approx 0.07261403873$.

8 Число неотрицательных собственных значений (размер 2025)

8.1

Формулировка Дана симметричная матрица $A \in M_2025(\mathbb{R})$ со следующими ненулевыми диагоналями:

- главная диагональ: 2;
- диагонали сдвига ± 14 : -1;
- в первой строке и первом столбце на позициях $2, \ldots, 14$ стоит 1.

Найти число неотрицательных собственных значений.

8.2

Решение

- **1.** Разложение A=B+P. Пусть B содержит лишь три упомянутые ленточные диагонали. Тогда P=A-B имеет ненулевые элементы только в первой строке и первом столбце, следовательно $\mathrm{rk}\,P \leq 2$ (на самом деле точный ранг2).
- **2.** Положительная определённость B. Переставив строки и столбцы по остаткам $\bmod{14}$, разбиваем B на 14 независимых трёхдиагональных блоков типа

$$T_L = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix}_{L \times L}, \qquad L \in \{144, 145\}.$$

У такой матрицы все собственные значения равны $2-2\cos(\pi k/(L+1))>0$. Значит у B все 2025 собственных чисел положительны.

3. Влияние рангового возмущения. Так как $P \le 2$, знаки могут измениться не более чем у двух собственных чисел. Рассмотрев действие A на плоскости span $e_1, \sum_j = 2^{14} e_j$, убеждаемся, что ровно одно собственное значение становится отрицательным, второе — остаётся положительным. Остальные 2023 наследуют знак + от B.

8.3

Ответ 2024 неотрицательных собственных значений.

9 Восстановление диагонали 4, х, 4-матрицы

9.1

Формулировка Частично известна матрица

$$A = \begin{pmatrix} * & 1 & -2 & 4 \\ 1 & * & 3 & 1 \\ -2 & 3 & * & 18 \\ -2 & 3 & -2 & * \end{pmatrix}, \quad \text{rk } A = 2, \text{ tr } A = 14.5.$$

Найти скрытые диагональные элементы и округлить каждый до ближайшего большего целого.

9.2

Решение

- **1.** Вывод d. У третьей и четвёртой строк первые три координаты совпадают, значит их разность (0,0,0,18-d) лежит в ядре при ранге 2, откуда d=18.
- **2.** Вывод a,b. Требуем, чтобы третья строка выражалась через две первые: (-2,3,-2,18)=p(a,1,-2,4)+q(1,b,3,1). Решая систему, получаем p=4,q=2 и отсюда $a=-1,\,b=-\frac{1}{2}$.
- **3. Вывод** *c*. Из следа: $a + b + c + d = 14.5 \Rightarrow c = -2$.
- **4.** Округление вверх. $(-1, -0.5, -2, 18) \mapsto (-1, 0, -2, 18)$.

9.3

Ответ -1;;0;;-2;;18.

10 Минимальный многочлен и его значение в точке 25

10.1

Формулировка Оператор φ на \mathbb{R}^3 переводит $u\mapsto v,\,v\mapsto w,\,w\mapsto u$ (то есть осуществляет циклический сдвиг по трём независимым векторам). Найти $\mu_\varphi(25)$, где μ_φ — приведённый минимальный многочлен.

10.2

Решение Матрица φ в базисе (u, v, w) равна

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

со спектром $1, \omega, \overline{\omega}$, где $\omega^3 = 1, \omega \neq 1$. Поэтому

$$\mu_{\varphi}(x) = x^3 - 1, \qquad \mu_{\varphi}(25) = 25^3 - 1 = 15624.$$

10.3

Ответ 15624.000000000.

11 Слова длины 9, не более двух символов и циклические сдвиги

11.1

Формулировка Алфавит из 25 символов, n=9. Слово называется допустимым, если в нём использовано не более двух различных символов. Две строки эквивалентны, если одна получается из другой циклическим сдвигом. Найти максимальное возможное количество попарно неэквивалентных допустимых слов.

11.2

Решение По лемме Бернсайда количество орбит действия группы вращений C_9 равно

$$\frac{1}{9} \sum_{k=0}^{8} |\operatorname{Fix}(k)|,$$

где $|\operatorname{Fix}(k)|$ — число слов, неизменных при сдвиге на k позиций. Пусть $d:=\gcd(9,k)\in 1,3,9.$ Сдвиг разбивает позиции на d циклов, каждую из которых нужно покрасить одинаковыми буквами.

Число раскрасок. Используется не более двух букв.

- Один цвет: 25 вариантов.
- Два разных: $\binom{25}{2} = 300$ способов выбрать буквы и $2^d 2$ распределить их по циклам.

Итого

$$N(d) = 25 + 300(2^d - 2).$$

Подставляя d=1,3,9 и умножая на кратности (соответственно 6, 2, 1), получаем

$$|V_{\text{max}}| = \frac{153025 + 2 \cdot 1825 + 6 \cdot 25}{9} = 17425.$$

11.3

Ответ 17425.