Contents

1	测度	和积分														1
	1.1	可测空间	 	 												1
	1.2	可测函数	 	 												5

测度和积分

1.1 可测空间

令 E 是集合, \mathcal{E} 是 E 的一个子集族. 若对于任意 $A, B \in \mathcal{E}$ 有 $A \cap B \in \mathcal{E}$, 那么我们说 \mathcal{E} **对交封闭**. 如果 \mathcal{E} 中任意可数个集合的交还在 \mathcal{E} 中, 那么我们说 \mathcal{E} 对可数交封闭. 类似地, 我们可以定义对补封闭、对并封闭和对可数并封闭的概念.

σ-代数

如果 E 的非空子集族 E 对补和有限并封闭, 那么我们说 E 是 E 上的**代数**. 如果 其对补和可数并封闭, 那么我们说 E 是 E 上的 G-**代数**, 即:

- a) $A \in \mathcal{E} \Rightarrow E \setminus A \in \mathcal{E}$,
- b) $A_1, A_2, \ldots \in \mathcal{E} \Rightarrow \bigcup_n A_n \in \mathcal{E}$.

由于 $(\bigcup_n A_n)^c = \bigcap_n A_n^c \in \mathcal{E}$,所以对补和可数并封闭可以自然导出对可数交封闭,即 σ -代数对可数交也封闭.

任取 $A \in \mathcal{E}$, 那么 $E = A \cup (E \setminus A) \in \mathcal{E}$, 所以 E 上任意 σ -代数都至少包含 E 和 \emptyset . 事实上, $\mathcal{E} = \{E,\emptyset\}$ 是 E 上的最简单的 σ -代数, 被称为**平凡** σ -代数. E 上最大的 σ -代数当然是 $\mathcal{E} = 2^E$, 即 \mathcal{E} 就是 E 的幂集, 被称为**离散** σ -代数.

不难看出, E 上一族 σ -代数的任意交 (不一定可数) 还是 E 上的 σ -代数. 给定 E 的一个子集族 C, 我们可以考虑所有包含 C 的 σ -代数 (总是存在至少一个这样的 σ -代数, 即 2^E), 将这些 σ -代数取交集, 我们便得到了包含 C 的最小的 σ -代数, 被称为由 C 生成的 σ -代数, 记为 σC .

如果 E 是拓扑空间,由 E 的所有开集族生成的 σ -代数被称为 E 上的 **Borel** σ -**代 数**, 记为 $\mathcal{B}(E)$ 或者 \mathcal{B}_E , 其元素被称为 **Borel 集**.

p-系和 d-系

对于 E 的子集族 C, 如果其对交封闭, 那么我们说 C 是一个 p-系, 这里 p 代表 product, 是 "交" 的另一种说法. E 的子集族 D 被称为 d-系, 如果其满足:

a) $E \in \mathcal{D}$,

- b) $A, B \in \mathcal{D}$ and $A \supset B \Rightarrow A \setminus B \in \mathcal{D}$,
- c) $(A_n) \subseteq \mathcal{D}$ and $A_n \nearrow A \Rightarrow A \in \mathcal{D}$.

其中 $(A_n) \subseteq D$ 表明 (A_n) 是 D 中的集合序列, $A_n \nearrow A$ 表明这个序列递增于极限 A:

$$A_1 \subseteq A_2 \subseteq \cdots, \quad \bigcup_{n=1}^{\infty} A_n = A.$$

显然一个 σ -代数既是 p-系又是 d-系, 其反面也是成立的. 所以 p-系和 d-系是产生 σ -代数的原始结构.

命题 1.1. E 的子集族是 σ -代数当且仅当其既是 p-系又是 d-系.

Proof. (⇒) 若 \mathcal{E} 是 σ -代数,其显然是 p-系并且满足 d-系的条件 (a) 和 (c). 下面我们验证其满足 d-系的条件 (b). 任取 $A, B \in \mathcal{E}$ 且 $A \supseteq B$,那么 $A \setminus B = A \cap (E \setminus B) \in \mathcal{E}$,所以 \mathcal{E} 是 d-系.

(⇐) 若 \mathcal{E} 既是 p-系又是 d-系. 任取 $A \in \mathcal{E}$, 根据 d-系的 (a) 和 (b), 我们有 $E \setminus A \in \mathcal{E}$. 所以 \mathcal{E} 对补封闭. 然后我们说明对并封闭. 任取 $A, B \in \mathcal{E}$, 由于

$$A \cup B = E \setminus (A \cup B)^c = E \setminus (A^c \cap B^c),$$

结合 p-系对交封闭, 所以 $A \cup B \in \mathcal{E}$. 最后我们说明对可数并封闭. 如果 $(A_n) \subseteq \mathcal{E}$, 令 $B_n = A_1 \cup \cdots \cup A_n$, 那么 $(B_n) \subseteq \mathcal{E} \perp B_n \nearrow A$, 根据 d-系的 (c), 所以 $A \in \mathcal{E}$, 故 \mathcal{E} 对可数并封闭.

下面的引理为本节的主要定理做准备.

引理 1.2. 令 \mathcal{D} 是 E 上的 d-系, 固定 $D \in \mathcal{D}$, 令

$$\hat{\mathcal{D}} = \{ A \in \mathcal{D} : A \cap D \in \mathcal{D} \},\$$

那么 \hat{D} 仍然是 d-系.

单调类定理

这是一个非常有用的工具来证明某些集族是 σ -代数.

定理 1.3. 如果一个 d-系包含一个 p-系, 那么其包含这个 p-系生成的 σ -代数.

Proof. 设 C 是一个 p-系. 令 D 是包含 C 的最小的 d-系,即包含 C 的所有 d-系的交 (不难看出 d-系的任意交是 d-系). 我们证明 D 实际上是一个 σ -代数,这样包含 C 的任意 d-系都包含 D,而 D 作为包含 C 的 σ -代数,其包含 σ C. 根据 θ 题 1.1,只需要说明 D 既是 p-系又是 d-系,而 D 已经是 d-系,所以只需要说明 D 是 p-系.

我们首先说明对于任意的 $D \in \mathcal{D}$ 和 $C \in \mathcal{C}$, 有 $D \cap C \in \mathcal{D}$. 令

$$\mathcal{D}_1 = \{ A \in \mathcal{D} : A \cap C \in \mathcal{D} \},\$$

根据 引理 1.2, \mathcal{D}_1 是 d-系. 由于 \mathcal{C} 是 p-系, 所以 $\mathcal{C} \subseteq \mathcal{D}_1$, 即 \mathcal{D}_1 是包含 \mathcal{C} 的 d-系, 所以 $\mathcal{D} \subseteq \mathcal{D}_1$. 这就表明 $\mathcal{D} \in \mathcal{D}_1$, 即 $\mathcal{D} \cap \mathcal{C} \in \mathcal{D}$.

下面说明对于任意的 $D, B \in \mathcal{D}$, 有 $D \cap B \in \mathcal{D}$. 令

 $\mathcal{D}_2 = \{ A \in \mathcal{D} : A \cap D \in \mathcal{D} \}.$

同样根据 引理 1.2, \mathcal{D}_2 是 d-系. 根据上面的叙述,有 $\mathcal{C} \subseteq \mathcal{D}_2$,即 \mathcal{D}_2 是包含 \mathcal{C} 的 d-系,所以 $\mathcal{D} \subseteq \mathcal{D}_2$,这就表明 $\mathcal{B} \in \mathcal{D}_2$,即 $\mathcal{D} \cap \mathcal{B} \in \mathcal{D}$. 这就证明了 \mathcal{D} 是 p-系.

可测空间

一个**可测空间**指的是二元组 (E,\mathcal{E}) , 其中 E 是集合, \mathcal{E} 是 E 上的 σ -代数. 此时, \mathcal{E} 的元素被称为**可测集**. 当 E 是拓扑空间, $\mathcal{E} = \mathcal{B}_E$ 的时候, 可测集也被称为 **Borel 集**.

可测空间的积

令 (E, \mathcal{E}) 和 (F, \mathcal{F}) 是可测空间. 如果 $A \in \mathcal{E}$ 和 $B \in \mathcal{F}$, 那么 $A \times B$ 被称为**可测矩形**. 我们用 $\mathcal{E} \otimes \mathcal{F}$ 表示 $E \times F$ 上的由可测矩形集族生成的 σ -代数, 被称为**乘积** σ -代数. 可测空间 $(E \times F, \mathcal{E} \otimes \mathcal{F})$ 被称为 (E, \mathcal{E}) 和 (F, \mathcal{F}) 的积,我们通常使用 $(E, \mathcal{E}) \times (F, \mathcal{F})$ 来表示.

Exercises

1.1. (划分生成 σ-代数)

- a) 令 $\mathcal{C} = \{A, B, C\}$ 是 E 的一个划分,列出 $\sigma \mathcal{C}$ 的元素.
- b) 令 \mathcal{C} 是 E 的 (可数) 划分. 证明 $\sigma \mathcal{C}$ 的每个元素都是 \mathcal{C} 中元素的可数并.
- c) $\Diamond E = \mathbb{R}$, $\mathcal{C} \neq \mathbb{R}$ 的所有单点子集构成的子集族.证明 $\sigma \mathcal{C}$ 的元素要么是可数集要么是可数集的补集.这表明从直观上来看, $\sigma \mathcal{C}$ 要比 $\mathcal{B}(\mathbb{R})$ 小得多,例如开区间 (0,1) 属于后者但是不属于前者.

Solution. (a) 令

$$\mathcal{E} = \{A, B, C, A \cup B, A \cup C, B \cup C, E\},\$$

显然 \mathcal{E} 是一个 σ -代数. 对于任意包含 \mathcal{C} 的 σ -代数, 由于其对并封闭, 所以其必须包含 \mathcal{E} , 所以 $\mathcal{E} = \sigma \mathcal{C}$.

- (b) 令 \mathcal{E} 为 \mathcal{C} 中元素的所有可数并构成的集族. 根据 σ -代数对可数并的封闭性, 所以 $\sigma\mathcal{C} \supseteq \mathcal{E}$. 设 (A_n) 构成 \mathcal{E} 的可数划分,即 (A_n) 两两不相交且 $\mathcal{E} = \bigcup_n A_n$. 任取 $\bigcup_k A_{n_k} \in \mathcal{E}$,那么 $\mathcal{E} \setminus (\bigcup_k A_{n_k})$ 依然是某些 (A_n) 的可数并,所以 $\mathcal{E} \setminus (\bigcup_k A_{n_k}) \in \mathcal{E}$,即 \mathcal{E} 对补封闭,所以 \mathcal{E} 是 σ -代数,所以 $\mathcal{E} = \sigma\mathcal{C}$.
- (c) 令 \mathcal{E} 为 \mathbb{R} 的可数子集和补集可数的子集构成的子集族. 显然 $\mathcal{E} \subseteq \sigma \mathcal{C}$ 且不难验证 \mathcal{E} 是一个 σ -代数 (可数个可数集的并是可数集), 所以 $\mathcal{E} = \sigma \mathcal{C}$.

1.2. ($\mathbb R$ 上的 Borel σ -代数) $\mathbb R=(-\infty,+\infty)$ 的任意开子集都是开区间的可数并,使用这一事实证明 $\mathcal B(\mathbb R)$ 由所有开区间构成的子集族生成.

Proof. 设 \mathcal{C} 为所有开区间构成的子集族, \mathcal{T} 为所有开集构成的子集族 (即 \mathbb{R} 上的拓扑). 显然 $\mathcal{C} \subseteq \mathcal{T}$, 所以 $\sigma \mathcal{C} \subseteq \sigma \mathcal{T} = \mathcal{B}(\mathbb{R})$. 由于 \mathcal{T} 中集合都是 \mathcal{C} 中集合的可数并, 所以 $\mathcal{T} \subseteq \sigma \mathcal{C}$, 这表明 $\mathcal{B}(\mathbb{R}) = \sigma \mathcal{T} \subseteq \sigma \mathcal{C}$. 所以 $\mathcal{B}(\mathbb{R}) = \sigma \mathcal{C}$ 由所有开区间构成的子集族生成.

1.3. (\mathbb{R} 上的 Borel σ -代数) 证明: \mathbb{R} 中的任意区间都是 Borel 集. 特别的, $(-\infty, x)$, $(-\infty, x]$,(x, y],[x, y] 都是 Borel 集. 对于每个x,单点集 $\{x\}$ 也是 Borel 集.

Proof. 只需注意到

$$(-\infty, x) = \bigcup_{n=1}^{\infty} (-n + x, x), (-\infty, x] = \bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n} \right),$$
$$(x, y] = \bigcap_{n=1}^{\infty} \left(x, y + \frac{1}{n} \right), [x, y] = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, y \right], \{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x \right].$$

所以上述集合都是 Borel 集, 对于其他的区间同理.

- 1.4. (\mathbb{R} 上的 Borel σ -代数) 证明 $\mathcal{B}(\mathbb{R})$ 可以由以下任意一种集族生成 (实际上还有很多可能):
 - a) 所有形如 $(-\infty, x]$ 的区间构成的子集族.
 - b) 所有形如 (x, y] 的区间构成的子集族.
 - c) 所有形如 [x, y] 的区间构成的子集族.
 - d) 所有形如 $(x, +\infty)$ 的区间构成的子集族.

此外,在每种情况中x,y可以被限制为有理数.

Proof. (a) 记该集族为 \mathcal{C} , 由上题, 这样的区间已经是 Borel 集, 所以 $\sigma \mathcal{C} \subseteq \mathcal{B}(\mathbb{R})$. 任取 \mathbb{R} 的开区间 (x, y), 有

$$(x,y) = (-\infty,x]^c \cap (-\infty,y) = (-\infty,x]^c \cap \bigcup_{n=1}^{\infty} \left(-\infty,y-\frac{1}{n}\right] \in \sigma \mathcal{C},$$

而 $\mathcal{B}(\mathbb{R})$ 由所有开区间生成, 所以 $\mathcal{B}(\mathbb{R}) \subset \sigma \mathcal{C}$. 所以 $\mathcal{B}(\mathbb{R}) = \sigma \mathcal{C}$.

1.2 可测函数

可测函数

 $\Rightarrow (E, \mathcal{E})$ 和 (F, \mathcal{F}) 是可测空间,映射 $f: E \to F$ 如果使得任取 $B \in \mathcal{F}$,有 $f^{-1}B \in \mathcal{E}$,那么我们说 f 相对于 \mathcal{E} 和 \mathcal{F} 可测.

命题 1.4. 映射 $f: E \to F$ 相对于 \mathcal{E} 和 \mathcal{F} 可测当且仅当对于任意生成 \mathcal{F} 的子集族 \mathcal{F}_0 ,任取 $B \in \mathcal{F}_0$,有 $f^{-1}B \in \mathcal{E}$.

Proof. 必要性显然. 下证充分性. 设 \mathcal{F}_0 使得 $\mathcal{F} = \sigma \mathcal{F}_0$, 且对于任意的 $\mathcal{B} \in \mathcal{F}_0$ 有 $f^{-1}\mathcal{B} \in \mathcal{E}$. 记

$$\mathcal{F}_1 = \{ A \in \mathcal{F} : f^{-1}A \in \mathcal{E} \},\$$

显然 $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}$. 由于

$$f^{-1}(F \setminus A) = E \setminus (f^{-1}A), \quad f^{-1}\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} f^{-1}A_i,$$

所以 \mathcal{F}_1 是 σ -代数, 所以 $\mathcal{F} = \mathcal{F}_1$, 即 f 相对于 \mathcal{E} 和 \mathcal{F} 可测.

命题 1.5. 给定可测空间 $(E, \mathcal{E}), (F, \mathcal{F}), (G, \mathcal{G}),$ 如果 f 相对于 \mathcal{E} 和 \mathcal{F} 可测,g 相对于 \mathcal{F} 和 \mathcal{G} 可测,那么复合 $g \circ f$ 相对于 \mathcal{E} 和 \mathcal{G} 可测.

Proof. 任取 $C \in \mathcal{G}$, 有

$$(g\circ f)^{-1}(C)=f^{-1}\left(g^{-1}(C)\right),$$

g 可测表明 $g^{-1}(C) \in \mathcal{F}$, f 可测表明 $f^{-1}(g^{-1}(C)) \in \mathcal{E}$, 所以 $g \circ f$ 相对于 \mathcal{E} 和 \mathcal{G} 可测.

数值函数

令 (E,\mathcal{E}) 是可测空间. 回顾实数及扩充实数 $\mathbb{R}=(-\infty,+\infty)$, $\mathbb{R}=[-\infty,+\infty]$, $\mathbb{R}_+=[0,+\infty)$, $\mathbb{R}_+=[0,+\infty]$. E 上的**数值函数**指的是从 E 到 \mathbb{R} 或者 \mathbb{R} 的子集的映射. 如果这个映射的值在 \mathbb{R} 中,那么我们一般称其为**实值函数**.

E 上的数值函数如果相对于 \mathcal{E} 和 $\mathcal{B}(\mathbb{R})$ 可测,那么我们说其是 \mathcal{E} -可测的. 如果 E 是拓扑空间且 $\mathcal{E} = \mathcal{B}(E)$,那么 \mathcal{E} -可测函数被称为 **Borel 函数**. 下面的命题是 <mark>命题</mark> 1.4 的直接结果.

命题 1.6. 映射 $f:E\to \bar{\mathbb{R}}$ 是 \mathcal{E} -可测的当且仅当对于每个 $r\in\mathbb{R}$, $f^{-1}[-\infty,r]\in\mathcal{E}$.

上述命题中的 $[-\infty, r]$ 可以改为 $[-\infty, r)$, $[r, \infty]$, $(r, \infty]$ 中的任意一种.

函数的正部分和负部分

对于 $a,b \in \mathbb{R}$, 我们记 $a \lor b$ 为 a 和 b 中的最大者, $a \land b$ 为 a 和 b 中的最小者. 对于函数 f,g, 用 $f \lor g$ 表示函数 $x \mapsto f(x) \lor g(x)$. 令 (E,\mathcal{E}) 是可测空间, $f \not\in E$ 上的数值函数. 那么

$$f^{+} = f \vee 0, \quad f^{-} = -(f \wedge 0)$$

都是正值函数并且 $f = f^+ - f^-$. 函数 f^+ 被称为 f 的**正部分**, f^- 被称为 f 的**负部分**.

命题 1.7. 函数 $f \in \mathcal{E}$ -可测的当且仅当 f^+ 和 f^- 都是 \mathcal{E} -可测的.

Proof. 若 f 是 \mathcal{E} -可测的. 任取 $r \in \mathbb{R}$, 若 r < 0, 则 $\left(f^{+}\right)^{-1}\left[-\infty, r\right] = \emptyset \in \mathcal{E}$. 若 $r \geq 0$, 则

$$(f^+)^{-1}[-\infty, r] = E \setminus (f^+)^{-1}(r, \infty] = E \setminus f^{-1}(r, \infty],$$

由于 $(r, \infty]$ 是 Borel 集, 所以 $(f^+)^{-1} [-\infty, r] \in \mathcal{E}$. 综合起来, f^+ 是 \mathcal{E} -可测的. 同理可证 f^- 是 \mathcal{E} -可测的.

若 f^+ 和 f^- 都是 \mathcal{E} -可测的. 任取 $r \in \mathbb{R}$, 若 r < 0, 那么

$$f^{-1}[-\infty, r] = (f^{-})^{-1}[-r, \infty] \in \mathcal{E}.$$

若 $r \ge 0$, 那么

$$f^{-1}[-\infty, r] = E \setminus f^{-1}(r, \infty) = E \setminus (f^+)^{-1}(r, \infty) \in \mathcal{E}.$$

所以 f 是 \mathcal{E} -可测的.

指示函数和简单函数

令 $A \subseteq E$, 定义 A 的指示函数为 1_A :

$$1_A(x) = \begin{cases} 1 & x \in A, \\ 0 & x \notin A. \end{cases}$$

对于 1_E , 我们简记为 1. 显然, 1_A 是 \mathcal{E} -可测的当且仅当 $A \in \mathcal{E}$.

E 上的函数 f 如果形如

$$f = \sum_{i=1}^n a_i 1_{A_i},$$

其中 $n \ge 1$, $a_1, \ldots, a_n \in \mathbb{R}$, A_1, \ldots, A_n 是可测集, 那么我们说 f 是**简单函数**. 在这个定义中, 若 $A_i \cap A_i \ne \emptyset$, 那么我们可以将 $a_i 1_{A_i} + a_j 1_{A_j}$ 拆为

$$a_i 1_{A_i \sim (A_i \cap A_j)} + (a_i + a_j) 1_{A_i \cap A_j} + a_j 1_{A_j \sim (A_i \cap A_j)},$$

所以我们可以假设 A_i 两两不相交. 此外, 如果 $\bigcup_i A_i \neq E$, 记 $B = E \setminus \bigcup_i A_i \in \mathcal{E}$, 那 么

$$f = \sum_{i=1}^{n} a_i 1_{A_i} + 0 \cdot 1_B,$$

所以我们还可以假设 $\bigcup_i A_i = E$. 这意味着对于一个简单函数 f, 总存在整数 m, 不同的实数 b_1, \ldots, b_m 和 E 的可测划分 $\{B_1, \ldots, B_m\}$ 使得 $f = \sum_{i=1}^m b_i 1_{B_i}$, 这种表示被称为简单函数 f 的**标准型**.

利用简单函数的标准型, 很容易验证简单函数都是 \mathcal{E} -可测的. 反之, 若 f 是 \mathcal{E} -可测的, 只有有限个取值且值为实数, 那么 f 为简单函数. 特别地, 任意常值函数是简单函数. 最后, 如果 f, g 是简单函数, 那么

$$f + g$$
, $f - g$, fg , f/g , $f \lor g$, $f \land g$

都是简单函数, 其中 f/g 要求 g 的值始终非零.

函数列的极限

令 (f_n) 是 E 上的一列数值函数, 我们可以逐点定义

$$\inf f_n$$
, $\sup f_n$, $\lim \inf f_n$, $\lim \sup f_n$, (1.1)

例如, inf f_n 将 $x \in E$ 送到实数列 $(f_n(x))$ 的下确界. 如果

$$\liminf f_n = \limsup f_n = f,$$

那么我们说 (f_n) 有逐点极限 f, 记为 $f = \lim f_n$ 或者 $f_n \to f$.

如果 (f_n) 单调递增,即 $f_1 \leq f_2 \leq \cdots$,那么根据单调有界定理, $\lim f_n$ 存在且等于 $\sup f_n$. 此时我们用 $f_n \nearrow f$ 来表示 (f_n) 单调递增且有极限 f. 类似地,用 $f_n \searrow f$ 来表示 (f_n) 单调递减且有极限 f.

下面的定理表明可测函数类对极限操作是封闭的.

定理 1.8. 令 (f_n) 是一列 \mathcal{E} -可测函数,那么 (1.1) 中的四个函数都是 \mathcal{E} -可测的. 此外,如果 $\lim f_n$ 存在,那么 $\lim f_n$ 也是 \mathcal{E} -可测的.

Proof. 记 $g = \sup f_n$. 任取 $r \in \mathbb{R}$, 注意到 $g(x) \le r$ 当且仅当对于所有 n 有 $f_n(x) \le r$. 所以

$$g^{-1}[-\infty, r] = \bigcap_{n=1}^{\infty} f_n^{-1}[-\infty, r],$$

 f_n 可测表明 $f_n^{-1}[-\infty, r] \in \mathcal{E}$, 所以 $g^{-1}[-\infty, r] \in \mathcal{E}$, 即 g 可测.

对于 $\inf f_n$, 我们有 $\inf f_n = -\sup(-f_n)$, 所以 $\inf f_n$ 也可测. 最后, 注意到

$$\liminf f_n = \sup_{m} \inf_{n \ge m} f_n, \quad \limsup f_n = \inf_{m} \sup_{n \ge m} f_n,$$

所以 $\lim \inf f_n$ 和 $\lim \sup f_n$ 可测. 若二者相等, 那么 $\lim f_n$ 也可测.

可测函数的逼近

引理 1.9. 对于 $n \in \mathbb{N}^*$,令

$$d_n(r) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} 1_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right)}(r) + n 1_{[n,\infty]}(r), \quad r \in \bar{\mathbb{R}}_+.$$

那么, $d_n(r)$ 是 \mathbb{R}_+ 上单调递增的简单函数,并且对于每个 $r \in \mathbb{R}_+$, $d_n(r)$ 随着 n 的增大是的单调递增的.

Proof. 显然 $d_n(r)$ 是单调递增的简单函数,我们证明任取 $r \in \mathbb{R}_+$, $d_n(r)$ 是单调递增的.若 $r = \infty$,那么 $d_n(r) = n$ 是单调递增的.现在假设 $r \in \mathbb{R}_+$,那么存在正整数 m 使得 $m \le r < m+1$,所以当 $n \le m$ 的时候, $d_n(r) = n$ 单调递增.当 n > m 的时候,直观来看, d_n 将区间 [0,n] 等分为 $n2^n$ 份, $r \in [0,n]$ 表明一定存在唯一的 k_n 使得 $(k_n-1)/2^n \le r < k_n/2^n$,可以发现 k_n 满足递推关系 $k_{n+1} = 2k_n - 1$ 或者 $k_{n+1} = 2k_n$,这表明

$$d_{n+1}(r) = \frac{k_{n+1} - 1}{2^{n+1}} \ge \frac{2k_n - 2}{2^{n+1}} = \frac{k_n - 1}{2^n} = d_n(r).$$

综上, $d_n(r)$ 随着 n 的增大是的单调递增的.

定理 1.10. E 上的正值函数是 E-可测的当且仅当其是一列单调递增的正值简单函数序列的极限.

Proof. 充分性来源于 定理 1.8. 对于必要性,设 $f: E \to \mathbb{R}_+$ 是 \mathcal{E} -可测的正值函数. 记 d_n 为上述引理中的函数,令 $f_n = d_n \circ f$. 那么 f_n 是正值的 \mathcal{E} -可测函数,并且其取值只有有限个,所以是简单函数. 由于 (d_n) 单调递增,所以 (f_n) 单调递增. 对于任意 $x \in E$,由于 $f_n(x) = d_n(f(x))$,所以 $n \to \infty$ 的时候 $f_n(x) \to f(x)$,故 $f = \lim f_n$. \square

函数的单调类

令 M 为 E 上数值函数的一个集合,记 M_+ 为 M 中正值函数组成的子集, M_b 为 M 中有界函数组成的子集.

如果 M 包含常值函数 1, M_b 构成 \mathbb{R} 上的向量空间以及 M_+ 在递增极限下封闭,那么我们说 M 是一个**单调类**. 更准确地说, M 是单调类当且仅当:

- a) $1 \in \mathcal{M}$,
- b) 若 $f, g \in \mathcal{M}_b$ 且 $a, b \in \mathbb{R}$, 则 $af + bg \in \mathcal{M}$,
- c) 若 $(f_n) \subseteq \mathcal{M}_+ \coprod f_n \nearrow f$, 那么 $f \in \mathcal{M}$.