Projet - Wave

Un procédé de signature à base de codes correcteurs

Suzanne LANSADE, Eva PALANDJIAN

Encadrant: Gilles ZEMOR

Master CSI, Université de Bordeaux, France

25 Février 2020

- Introduction
- 2 Schéma de signature Wave
- 3 Uniformisation des sorties
- Sécurité EUF-CMA
- Implémentation

Introduction

- Éventualité de l'arrivée de l'ordinateur quantique:
 - → On cherche des alternatives à RSA et DH
 - \rightarrow Le NIST lance en 2017 un appel pour la standardisation des systèmes à clef publique
- Les codes correcteurs
 - → Peuvent être quantiquement sûrs
 - ightarrow Peuvent déjà être utilisés dans des systèmes de chiffrement
 - → Sont difficilement utilisables pour les signatures

	Proportion	Échange de clefs	Signature
Réseaux	46%	9	3
Codes	28%	7	0
Fonctions de hachage	4%	0	1
Multi-varié	15%	0	4
Isogénies	4%	1	0
Preuves ZK	4%	0	1

Figure: Comparaison des soumissions au NIST du second tour.

Introduction

- Difficile de faire un système de signature à base de codes
 - → Difficile de se placer dans l'ensemble des syndromes facilement et uniquement décodables
 - ightarrow Tous les systèmes existant sont cassés ou inutilisables dans la pratique
- Le système Wave
 - → Enlève la restriction au mot le plus proche
 - → Décode en grande distance

- Introduction
- 2 Schéma de signature Wave
- Uniformisation des sorties
- 4 Sécurité EUF-CMA
- 5 Implémentation

Le système de signature Wave utilise une famille de codes correcteurs appelés codes (U, U+V)-généralisés.

Soient n un entier pair, U et V deux codes aléatoires de dimension respectives k_U et k_V et de longueur n/2. Le code (U, U+V)-généralisé correspond à l'ensemble des mots :

$$\{(a.u+b.v,c.u+d.v) \text{ tel que } u \in U \text{ et } v \in V\}$$

où x.y est le produit coordonnée par coordonnée des x_i et y_i et a,b,c,d sont quatre vecteurs de $\mathbb{F}_q^{n/2}$.

• Le système Wave utilise la fonction qui a un vecteur ${\bf e}$ de poids ω associe son syndrome par ${\bf H}$:

$$f_{\omega,\mathbf{H}}: \mathbf{e} \longrightarrow \mathbf{e}H^T = s$$

comme fonction à sens unique

- Il utilise un algorithme InvertAlg permettant d'inverser la fonction syndrome à l'aide de la trappe *T*
- La trappe T correspond à la structure du code (U,U+V)-généralisé

Le schéma de signature Wave est donc composé de deux algorithmes :

```
Sign<sup>sk</sup>(s):

\mathbf{e} \leftarrow \text{InvertAlg}(s, T)

renvoie \mathbf{e}
```

```
Verify<sup>pk</sup>(s,e'):
Si \mathbf{e}'H^T = s et |\mathbf{e}'| = \omega
renvoie 1
renvoie 0
```

- L'algorithme de signature utilise la trappe et un algorithme de décodage pour renvoyer une erreur de poids ω
- L'algorithme de vérification accepte la signature si le syndrome et le poids sont corrects

Soit

$$\begin{array}{ccccc} \varphi_{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}} & : & \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2} & \to & \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2} \\ & & (\mathbf{x},\mathbf{y}) & \mapsto & (a.\mathbf{x}+b.\mathbf{y},c.\mathbf{x}+d.\mathbf{y}) \end{array}$$

Proposition

Inverser $f_{\omega,\mathbf{H}}$ pour un certain $\mathbf{s} \in F_q^{n-k}$ est équivalent à trouver $\mathbf{e} \in \mathbb{F}_q^n$ tel que:

$$\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$$
 et $\mathbf{e}_V \mathbf{H}_V^T = \mathbf{s}^V$

où $\mathbf{s} = (\mathbf{s}^U, \mathbf{s}^V)$ avec $\mathbf{s}^U \in \mathbb{F}_q^{n/2-k_U}$, $\mathbf{s}^V \in \mathbb{F}_q^{n/2-k_V}$ et où \mathbf{e}_U et \mathbf{e}_V de $\mathbb{F}_q^{n/2}$ sont tels que $(\mathbf{e}_U, \mathbf{e}_V) = \varphi_{a,b,c,d}^{-1}(\mathbf{e})$.

- On veut se placer dans un intervalle qui permet de décoder, mais uniquement en connaissant la trappe
- On prend $\omega \in [\![\omega_{\mathit{easy}}^+, \omega_{\mathit{UV}}^+]\!]$
- \bullet Afin d'obtenir une erreur de poids ω on pose des contraintes sur le vecteur \mathbf{e}_U

Pour tout
$$\mathbf{e} = \varphi_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(\mathbf{e}_{\mathbf{U}}, \mathbf{e}_{\mathbf{V}})$$
, on a pour tout $i \in [1, n/2]$:
$$\begin{cases} a_i \mathbf{e}_U(i) + b_i \mathbf{e}_V(i) &= \mathbf{e}(i) \\ c_i \mathbf{e}_U(i) + d_i \mathbf{e}_V(i) &= \mathbf{e}(i+n/2) \end{cases}$$

- On choisi k_U coordonnées de \mathbf{e}_U telles que les lignes du système soient non nulles à ces positions
- Ainsi on aura
 - $\rightarrow 2k_U$ coordonnées de **e** non nulles
 - \rightarrow Les $n-2k_U$ autres seront uniformément distribuées dans leur ensemble

Figure: Comparaison des distances w/n avec et sans trappe en fonction du rendement.

- Introduction
- 2 Schéma de signature Wave
- 3 Uniformisation des sorties
- 4 Sécurité EUF-CMA
- Implémentation

- Des corrélations vont apparaître entre les coordonnées ${f e}_i$ et ${f e}_{i+n/2}$
 - ightarrow Si un attaquant ${\cal A}$ récupère suffisamment de signatures, il pourra calculer :

$$\mathbb{P}(\mathbf{e}_i \neq \mathbf{e}_{i+n/2})$$
 et $\mathbb{P}(\mathbf{e}_i \neq \mathbf{e}_i)$

- Normalement les coordonnées de e sont permutées pour cacher la structure du code
 - ightarrow ${\cal A}$ peut donc retrouver la permutation

Algorithme 1 DecodeUV(φ , s, \mathbf{H}_V , \mathbf{H}_U)

Entrées:
$$\varphi$$
, $\mathbf{s} \in \mathbb{F}_q^{n-k}$ un syndrome, $\mathbf{H}_V \in \mathbb{F}_q^{(\frac{n}{2}-k_V) \times \frac{n}{2}}$, $\mathbf{H}_U \in \mathbb{F}_q^{(\frac{n}{2}-k_U) \times \frac{n}{2}}$
Sortie: $\mathbf{e} = \varphi(e_U, e_V)$ avec $\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$ et $\mathbf{e}_V \mathbf{H}_V^T = \mathbf{s}^V$

- 1: $\mathbf{e}_V \leftarrow \text{DecodeV}(\mathbf{s}^V, \mathbf{H}_V)$
- 2: Faire
- 3: $\mathbf{e}_U \leftarrow \text{DecodeU}(\varphi, \mathbf{e}_V, \mathbf{s}^U, \mathbf{H}_U)$
- 4: $\mathbf{e} \leftarrow \varphi(\mathbf{e}_U, \mathbf{e}_V)$
- 5: **Tant que** rand([0,1]) > $r(m_1(\mathbf{e}), |\mathbf{e}_V|)$
- 6: Retourne e

Où
$$m_1(x) := \# \{1 \le i \le n/2 \; ; \; |(x_i, x_{i+n/2})| = 1\}$$

La méthode du rejet

Algorithme 2 DecodeV(\mathbf{s}^V)

- 1: c mot aléatoire du code V
- 2: $\mathbf{s} \leftarrow$ le syndrome \mathbf{s}^V paddé avec des zéros
- 3: $\mathbf{e}_V \leftarrow \mathbf{s} + c$
- 4: Retourne e_V

Algorithme 3 DecodeU $(\varphi, \mathbf{e}_V, \mathbf{s}^U, \mathbf{H}_U)$

- 1: $t \leftarrow |\mathbf{e}_V|$
- $2: k_0 \longleftrightarrow \mathcal{D}_U^t$
- 3: Faire
- 4: $\mathcal{I} \leftarrow \text{ensemble d'information de } \langle \mathbf{H}_U \rangle^{\perp}$
- 5: $\mathcal{J} \subset \mathcal{I}$ de taille k d tel que $|\mathbf{e}_V|_{\mathcal{J}} = k_0$
- 6: $x_U \leftarrow \{x \in \mathbb{F}_3^{n/2} | \forall j \in \mathcal{J}, x_j \notin \{-\frac{b_i}{a_i} \mathbf{e}_{V_i}, -\frac{d_i}{c_i} \mathbf{e}_{V_i}\}\}$
- 7: $\mathbf{e}_U \leftarrow \text{PRANGE} (\mathbf{H}_U, \mathbf{s}^U, \mathcal{I}, x_U)$
- 8: Tant que $|\varphi(\mathbf{e}_U, \mathbf{e}_V)| \neq \omega$
- 9: Retourne \mathbf{e}_U

La méthode du rejet

Soient X et X^{unif} deux variables aléatoires à valeur dans un même ensemble $\mathcal X$ Pour tout $x \in \mathcal X$ on pose :

$$r(x) := \left(\inf_{y \in \mathcal{X}} \frac{\mathbb{P}(X = y)}{\mathbb{P}(X^{unif} = y)}\right) \frac{\mathbb{P}(X^{unif} = x)}{\mathbb{P}(X = x)}$$

Soit la variable aléatoire Y définie telle que:

- **1.** On tire $x \in \mathcal{X}$ selon la distribution X
- 2. On tire θ uniformément dans l'intervalle $[\![0,1]\!]$
- **3.** Si $\theta \le r(x)$, alors Y prend la valeur x
- **4.** Sinon, on recommence

Alors Y suit une loi uniforme.

Algorithme 1 DecodeUV(φ , s, \mathbf{H}_V , \mathbf{H}_U)

Entrées:
$$\varphi$$
, $\mathbf{s} \in \mathbb{F}_q^{n-k}$ un syndrome, $\mathbf{H}_V \in \mathbb{F}_q^{(\frac{n}{2}-k_U) \times \frac{n}{2}}$, $\mathbf{H}_U \in \mathbb{F}_q^{(\frac{n}{2}-k_U) \times \frac{n}{2}}$
Sortie: $\mathbf{e} = \varphi(e_U, e_V)$ avec $\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$ et $\mathbf{e}_V \mathbf{H}_V^T = \mathbf{s}^V$

- 1: $\mathbf{e}_V \leftarrow \mathrm{DecodeV}(\mathbf{s}^V, \mathbf{H}_V)$
- 2: Faire
- 3: $\mathbf{e}_U \leftarrow \text{DecodeU}(\varphi, \mathbf{e}_V, \mathbf{s}^U, \mathbf{H}_U)$
- 4: $\mathbf{e} \leftarrow \varphi(\mathbf{e}_U, \mathbf{e}_V)$
- 5: **Tant que** rand([0,1]) > $r(m_1(\mathbf{e}), |\mathbf{e}_V|)$
- 6: Retourne e

Où
$$m_1(x) := \# \{1 \le i \le n/2 \; ; \; |(x_i, x_{i+n/2})| = 1\}$$

- Introduction
- Schéma de signature Wave
- Uniformisation des sorties
- Sécurité EUF-CMA
- Implémentation

Algorithme 4 $Init(\lambda)$

- 1: $(pk, sk) \leftarrow \text{Gen}(1^{\lambda})$
- 2: $\mathbf{H}_{pk} \leftarrow pk$
- 3: $(\varphi, \mathbf{H}_U, \mathbf{H}_V) \leftarrow sk$
- 4: Retourne H_{pk}

L'attaquant $\mathcal A$ appelle la fonction init et récupère la matrice de parité du code (U,U+V)-généralisé $\mathbf H_{pk}$.

Jeu EUF-CMA

Algorithme 5 Sign(s)

- 1: $\mathbf{e} \leftarrow \mathcal{D}_{\varphi, \mathbf{H}_U, \mathbf{H}_V}(\mathbf{s})$
- 2: Retourne e
- L'attaquant $\mathcal A$ peut faire N_{sign} appels à la fonction sign et récupérer N_{sign} couples $(s,\mathbf e)$
- Il doit alors renvoyer un nouveau couple (s, \mathbf{e}) où s n'a jamais été demandé à la fonction sign

Jeu EUF-CMA

Algorithme 6 Fin((s,e))

1: Retourne
$$(\mathbf{e}\mathbf{H}_{pk}^T = s) \wedge (|\mathbf{e}| = \omega)$$

- La fonction Fin vérifie la validité de la signature
- ullet L'attaquant ${\cal A}$ a réussi le jeu EUF-CMA si la fonction Fin renvoie 1

Sécurité EUF-CMA

On définit alors le succès EUF-CMA comme :

$$Succ_{Wave}^{EUF-CMA}(N_{sign}) := \max_{\mathcal{A}} (\mathbb{P}(\mathcal{A} \text{ réussit le jeu EUF-CMA de Wave})).$$

Le protocole est alors sûr au sens EUF-CMA si ce succès est négligeable.

Pour montrer que le schéma Wave est sûr au sens EUF-CMA, nous pouvons le réduire au problème DOOM.

Réduction au problème DOOM

Le problème DOOM. Soient des paramètres (n, q, k, ω, N) , où N est un entier.

I : **H** une matrice uniforme de $\mathbb{F}_q^{(n-k)\times n}$ et $(\mathbf{s}_1,...,\mathbf{s}_N)$ une liste de N syndromes.

 ${f Q}$: Décoder l'un des syndromes à la distance ω .

$$Succ^{DOOM} := \max_{\mathcal{A}} \left[\mathbb{P} \left(\mathcal{A}(\mathbf{H}, \mathbf{s}_1, ..., \mathbf{s}_n) = \mathbf{e} \ \middle| \ \exists j \in \{1, ..., N\} \ \mathsf{tq} \ \mathbf{eH}^T = \mathbf{s}_j
ight) \right].$$

- Introduction
- 2 Schéma de signature Wave
- Uniformisation des sorties
- 4 Sécurité EUF-CMA
- Implémentation

nombre d'itérations	d	nombre de rejets	ratio
100	0	6	6%
100	1	3	3%
100	2	6	6%
100	3	3	3%
100	4	6	6%
100	5	4	4%

nombre d'itérations	d	nombres de rejets	ratio
400	3	19	\sim 5%
400	5	17	\sim 4%

Ratio moyen de l'article : ${\sim}10\%$

- [1] Thomas Debris-Alazard. Cryptographie fondée sur les codes : nouvelles approches pour constructions et preuves ; contribution en cryptanalyse. 2019.
- [2] Jean-Pierre Tillich, Thomas Debris-Alazard, Nicolas Sendrier. Wave: A new family of trapdoor one-way preimage sampleable functions based on codes. 2018.