

Mode of Exam **OFFLINE**

SET - A

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-24 (ODD)

Test: CLAT-3

Course Code & Title: 18AIE332T – Image and Video Processing

Vear & Sem: III Year & V Semester

Date: 01-11-2023

Duration: 1 Hour

Max. Marks: 50 Marks

Course	Articu	lation N	Matrix:														
	Learn	ing Ou	tcomes	At t	ho ond	of this	ourse	learne	rs will	be able	to:						
(CO):	1					•		iearne	is wiii	DE UDIE	ιο.						
CO-1			ic concepts														
CO-2	Examir	Examine the principle of Immune computing techniques															
CO-3	Skills f	Skills for planning, estimating, and resourcing for Natural design considerations															
CO-4	Manag	Manage the scope changes of nature inspired techniques which influence computing															
CO-5	Ability	to identif	y optimiza	tion Tech	niques as	a means	to provide	e function	ality and	value to ap	ply conte	ext in specific o	case studies				
CO-6	Ability	to unders	tand the n	eeds and	familiariz	e the DNA	Comput	ing									
1	2	Ability to understand the needs and familiarize the DNA Computing 2 3 4 5 6 7 8 9 10 11 12 PSO															
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 1 PSO - 2 PSO - 3				
2	3	2	2	1	•	-	-	-	-	-	-	-	-	1			
3	3	1	2	2	1	-	-	-	-	-	-	-	-	2			
3	3	2	2	1	-	-	-	-	-	-	-	-	-	2			
3	3	2	2	1	-	-	-	-	-	-	-	-	-	2			
3	3	2	2	2	-	-	-	-	-	-	-	-	-	3			
2	3	2	2	2		-	-	-	-	-	-	-	-	3			

	Part – A					
Inat	$(5 \times 1 = 5 \text{ Marks})$					
	uctions: Answer all	Marks	BL	СО	PO	PI
Q. No	Question	Marks	DL.		PO	Code
1	In a video editing software, what is the typical first step in	1	2	1	1	1.2.1
	video processing for creating a movie?					
	riado processing for erousing a movier					
	A. Applying color correction to the entire video					
	B. Adding special effects and transitions					
	C. Importing raw video footage					
	D. Exporting the final movie					
2	What is the significance of applying rigid motion in	1	1	1	1	1.2.1
	Cartesian for character animation?					
	A. It adds dynamic lighting effects to the character.					
	B. It deforms the character during movement for realism.					
	C. It maintains the character's shape and size during					
	translation and rotation.					
	D. It changes the character's appearance as it moves.					
3	What is the primary focus of 2D motion estimation in	1	1	1	1	1.2.1
	image processing?					
	A. Estimating the depth of objects in a scene.					
	B. Determining the motion of objects in a single plane.					

	C. Extracting the color information from an image.					
	D. Analyzing the texture of an image.					
4	In the context of video processing, what does the	1	2	1	1	1.2.1
	"occlusion problem" refer to?					
	A. The issue of high-resolution video encoding.					
	B. The challenge of detecting moving objects.					
	C. The difficulty of estimating motion when					
	objects partially or completely hide each other.					
	D. The problem of color correction in video frames.					
5	Which numerical optimization method is commonly used in	1	1	1	1	1.2.1
	2D and 3D motion estimation problems to refine motion					
	parameters?					
			1			
	A. Gradient Descent					
	B. Particle Swarm Optimization					
	C. Newton-Raphson Method					
	D. Principal Component Analysis Part – B					
	$(3 \times 5 = 15 \text{ Marks})$					
Instri	ictions: Answer all					
6	Describe the 3D motion models to improve the drones'	5	1	1	1	1.2.1
	navigation and decision-making in complex 3D environments.		_	_	_	1,2,1
7	Explain how you would apply LMMSE filtering to improve the	5	2	1	1	1.2.1
	audio quality of the live audio stream for the virtual music					
	concert. Provide a step-by-step plan for implementing LMMSE					
	filtering, and describe the key principles and benefits of using					
	this filtering technique in the context of the concert.					
8	Discuss mesh-based motion estimation to enhance the AUV's	5	2	1	1	1.2.1
	navigation and data collection for underwater environment.					
	Part – C					
	$(3 \times 10 = 30 \text{ Marks})$					
-	actions: Answer all	10				101
9	Describe in detail how you would utilize geometric image	10	3	1	1	1.2.1
	formation principles to create precise 3D reconstructions of		1		1	
10	ancient artifacts and archaeological sites. Using Newton-Raphson method, find the roots of complex	10	3	1	1	1.2.1
10	equations for image analysis.	10	3	1	1	1.2.1
11	Illustrate how you would utilize waveform-based coding to	10	3	1	1	1.2.1
11	achieve higher compression rates while maintaining video	10	3	1	1	1,4,1
	quality.		1		1	
	quanty.		1	1		1

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy. Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

SET - B

Academic Year: 2023-24 (ODD)

Test: CLAT-3

Course Code & Title: 18AIE332T - Image and Video Processing

Vear & Sem: III Year & V Semester

Date: 01-11-2023

Duration: 2 Hour

Max. Marks: 50 Marks

Course	Articu	lation I	Matrix:											
	e Learn	ing Ou	tcomes	At t	he end	of this	course.	learne	ers will	be abl	e to:			
(CO):						- 3								
CO-1		Apply the fundamental concepts of a digital image processing system												
CO-2	Com	Compute the techniques for image enhancement and restoration												
CO-3	Inter	Interpret the various image compression and segmentation methods on digital images												
CO-4	Anal	Analyze various motion techniques used in video coding												
CO-5	Impl	Implement the concepts of digital image, video processing and their application												
1	2	3	4	5	6	7	8	9	10	11	12		PSO	
Engin eerin g Know ledge	em Analy	Desig n & Devel opme nt	Analy sis, Desig n, Resea rch	rn Tool	ty & Cultu	Envir onme nt & Sustai nabili ty	Ethic s	Indivi dual &Tea m Work	Com muni cation	&	Life Long Learn ing	PSO - 1	PSO - 2	PSO –
3	2	2	2	-	-	-	-	-	-	-	3	-	-	=
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-

	Part – A					
Instr	(5 x 1 = 5 Marks) uctions: Answer all					
Q. No	Question	Marks	BL	СО	PO	PI Code
1	Which of the two filtering techniques, motion-weighted median filtering or motion-based detection filtering, is more suitable for detecting and tracking moving objects in video sequences? A) Motion-weighted median filtering B) Motion-based detection filtering C) Both techniques are equally suitable D) Neither technique is suitable for this purpose	1	2	4	2	2.1.2
2	What is the standard frame rate for analog NTSC video signals commonly used in North America and Japan? A) 24 frames per second B) 30 frames per second C) 25 frames per second D) 60 frames per second	1	1	4	2	3.1.1
3	Find the waveform-based audio coding method is known for its lossless compression, preserving audio quality perfectly?	1	2	4	2	2.1.2

	A) MP3					
	B) FLAC					
	C) AAC					
	D) WMA					
4	Industries mentioned below commonly uses video	1	1	5	3	3.1.1
	processing for special effects in movies?					
	A) Agriculture					
	B) Healthcare					
	C) Entertainment					
	D) Transportation					
5	Which technique is commonly used for motion	1	2	5	3	3.2.3
	estimation in video processing?					
	A) Block matching					
	B) Spectral analysis					
	C) Facial recognition					
	D) Text-to-speech conversion					
	Part – B					
Instru	(3 x 5 = 15 Marks) actions: Answer All					
6	Explain the concept of photometric image formation in	5	3	4	2	2.8.1
	video processing. Discuss the key factors that influence					
	the photometric properties of an image in the context of					
	the imaging process. Provide examples to illustrate how					
	changes in lighting conditions, reflectance, and camera					
	settings can impact the photometric characteristics of an					
	image.					
7	Compare and contrast Photometric effects on 3D	5	3	5	4	4.5.1
	motion Provide specific examples to illustrate the its					
	effects and discuss their significance in computer					
0	vision.	-	2	-	4	4.6.1
8	Enumerate the Steepest Descent method in the context	5	3	5	4	4.6.1
	of video processing. Discuss the fundamental principles and its role in optimizing various video processing					
	tasks. Provide examples of how the Steepest Descent					
	method can be applied to improve video quality, reduce					
	artifacts, or enhance specific features.					
	Part – B					
	$(3 \times 10 = 30 \text{ Marks})$					
	actions: Answer All	10	2	4		2.62
9	Explain the concept of time-varying image formation	10	3	4	2	2.6.2
	models and 3D motion models in the context of video processing. Discuss how these models are utilized to					
	represent and analyze motion in video sequences.					
	Provide examples of real-world applications where					
	time-varying models and 3D motion models play a					
	crucial role in video processing.					
10	Elucidate the concept of motion estimation in video	10	3	4	2	2.8.4
	processing. Discuss the significance of motion					
	estimation in various video processing applications.					
	Describe common techniques and algorithms used for					
	motion estimation, including block matching and					
	optical flow methods.		-		_	
11	Explain the concept of geometric image formation in	10	3	5	4	4.5.1
	video processing. Discuss the fundamental principles					
	underlying geometric image formation and the role it					
	plays in understanding the geometry and perspective of					
	objects in video sequences. Describe common					

techniques and algorithms used in model geometric			
transformations.			

 ${\rm *Performance\ Indicators\ are\ available\ separately\ for\ Computer\ Science\ and\ Engineering\ in\ AICTE\ examination\ reforms\ policy.\ Course\ Outcome\ (CO)\ and\ Bloom's\ level\ (BL)\ Coverage\ in\ Questions}$

Approved by the Audit Professor/Course Coordinator

Mode of Exam **OFFLINE**

SET - C

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2023-24 (ODD)

Test: CLAT-3

Course Code & Title: 18AIE332T - Image and Video Processing

Vear & Sem: III Year & V Semester

Date: 01-11-2023

Duration: 2 Hour

Max. Marks: 50 Marks

Course	Articu	lation N	Aatrix:													
Course	Learn	ing Out	comes	At t	ho ond	of this	course	learne	rs will	he ahle	to:					
(CO):																
CO-1					_	of a dig		- ·		•	n					
CO-2		Compute the techniques for image enhancement and restoration														
CO-3										nethods	on dig	ital image:	S			
CO-4		Analyze various motion techniques used in video coding														
CO-5	Imple	plement the concepts of digital image, video processing and their application														
1	2	3	4	5	6	7	8	9	10	11	12		PSO			
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 1 PSO - 2 PSO - 2 PSO - 3			
3	2	2	2	-	-	-	1	-	-	-	3	-	-	-		
3	2	2	3		-	-	-	-		-	3		-	-		
3	2	2	3	-	-	-	-	-		-	3			-		
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-		
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-		

	Part – A					
Inctri	$(5 \times 1 = 5 \text{ Marks})$ actions: Answer all					
Q. No	Question	Marks	BL	СО	PO	PI Code
1	How does the sampling structure differ between analog and digital video? A) Analog video uses continuous sampling while digital video uses discrete sampling. B) Digital video has a higher sampling rate compared to analog video. C) Both analog and digital video use the same sampling structure. D) Analog video uses a lower resolution for sampling	1	2	4	2	2.1.2
2	compared to digital video. In computer vision, what kind of motion involves	1	1	4	2	3.1.1
	objects or scenes undergoing transformations that can be described using translation and rotation? A) Rigid motion in Cartesian B) Homogeneous coordinates C) Deformable motion D) Digital video processing					
3	Select the type of filtering that employed to diminish noise in video frames by taking into account the correlation between neighboring pixels. A) Median filtering B) Intra frame filtering C) Motion detection filtering D) Photometric filtering	1	2	4	2	2.1.2

			1	1		
4	In video coding, which method involves	1	1	5	3	3.1.1
	representing images as a set of waveforms?					
	A) Waveform based coding					
	B) Block based transform coding					
	C) Predictive coding					
	D) Gradient based optimization					
5	Which motion estimation method involves dividing the	1	2	5	3	3.2.3
	video frame into blocks and finding the best match					
	between corresponding blocks in consecutive frames?					
	A) Generalized block motion					
	B) Deformable block motion					
	C) Translational block motion					
	D) Mesh based Motion Estimation					
	Part – B					
T .	$(3 \times 5 = 15 \text{ Marks})$					
Instru 6	octions: Answer All	5	3	4	2	2.8.1
0	Describe comprehensively how noise and imperfection	5	3	4	2	2.0.1
	can be eliminated from an artwork without affecting the original details by using median and weighted median					
	filtering.					
7	Compare and contrast 2D motion with apparent motion.	5	3	5	4	4.5.1
,	Provide specific examples to illustrate the difference	3	3	3		7.5.1
	between these two types of motions and discuss their					
	significance in computer vision.					
8	Discuss the applications and advantages of hierarchical	5	3	5	4	4.6.1
	motion estimation, mesh-based motion estimation,	·			_	1.0.1
	region-based motion estimation, and multi-resolution					
	motion estimation in computer vision.					
	Part - B					
	$(3 \times 10 = 30 \text{ Marks})$					
Instru	actions: Answer All					
9	Explain the significance of using digital video	10	3	4	2	2.6.2
	processing techniques in video surveillance security					
	system. Provide specific examples of how techniques					
	like motion detection-based filtering and intra-frame					
	filtering (LMMSE) can enhance the effectiveness of the					
	surveillance system.					
10	Illustrate the importance of transform coding in video	10	3	4	2	2.8.4
	compression. Provide specific examples of how block-					
	based transform coding contributes to efficient data					
	transmission.					
11	Explain the occlusion problem and the aperture problem	10	3	5	4	4.5.1
	in motion estimation. Provide specific examples of					
	situations where each of these problems can occur, and					
	discuss potential solutions to mitigate their effects.					

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy. Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

SET - D

Academic Year: 2023-24 (ODD)

Test: CLAT-3

Course Code & Title: 18AIE332T - Image and Video Processing

Vear & Sem: III Year & V Semester

Date: 01-11-2023

Duration: 2 Hour

Max. Marks: 50 Marks

Course	Articu	lation N	Aatrix:												
Course	Learn	ing Out	tcomes	1++	ha and	of this	001111100	Lagrana	na will	be able					
(CO):				At t	пе епа	oj inis (course,	iearne	rs wiii	ve avie	: 10.				
CO-1	Appl	y the fu	ndamei	ntal co	ncepts	of a dig	ital im	age pro	cessin	g syster	n				
CO-2	Com	Compute the techniques for image enhancement and restoration													
CO-3	Inter	pret the	e varioi	ıs imag	ge comp	oressioi	ı and s	egment	ation n	nethods	on dig	ital images	5		
CO-4	Anal	yze var	ious mo	otion te	chniqu	es used	in vide	eo codii	ng						
CO-5	Impl	ement t	he cond	cepts of	^f digita	l image	, video	proces	sing ar	ıd their	applic	ation			
1	2	3	4	5	6	7	8	9	10	11	12		PSO		
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO – 3	
3	2	2	2	-	-	-	-	-	-	-	3	-	-	-	
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-	
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-	
3	2	2	3	-	-	-	-	-	-	-	3				
3	2	2	3	-	-	-	-	-	-	-	3	-	-	-	

	Part – A					
Inctri	(5 x 1 = 5 Marks) actions: Answer all					
Q. No	Question	Marks	BL	СО	PO	PI Code
1	In computer vision, what kind of motion involves objects or scenes undergoing transformations that can be described using translation and rotation? A) Rigid motion in Cartesian B) Homogeneous coordinates C) Deformable motion D) Digital video processing	1	2	4	2	2.1.2
2	In a video editing software, what is the typical first step in video processing for creating a movie? A. Applying color correction to the entire video B. Adding special effects and transitions C. Importing raw video footage D. Exporting the final movie	1	1	4	2	3.1.1
3	Select the type of filtering that employed to diminish noise in video frames by taking into account the correlation between neighboring pixels. A) Median filtering B) Intra frame filtering C) Motion detection filtering D) Photometric filtering	1	2	4	2	2.1.2

			1 .			
4	Which of the two filtering techniques, motion-	1	1	5	3	3.1.1
	weighted median filtering or motion-based detection					
	filtering, is more suitable for detecting and tracking					
	moving objects in video sequences?					
	A) Motion-weighted median filtering					
	B) Motion-based detection filtering					
	C) Both techniques are equally suitable					
	D) Neither technique is suitable for this purpose					
			-			222
5	Which numerical optimization method is commonly used in	1	2	5	3	3.2.3
	2D and 3D motion estimation problems to refine motion					
	parameters?					
	A. Gradient Descent					
	B. Particle Swarm Optimization					
	C. Newton-Raphson Method					
	D. Principal Component Analysis Part – B			<u> </u>	<u> </u>	
	$(3 \times 5 = 15 \text{ Marks})$					
Instr	$(S \times S = 15 \text{ Wial RS})$ uctions: Answer All					
6	Discuss mesh-based motion estimation to enhance the AUV's	5	3	4	2	2.8.1
	navigation and data collection for underwater environment.	3	3	7		2.0.1
7	Discuss the applications and advantages of hierarchical	5	3	5	4	4.5.1
'		J		3	.	7.5.1
	motion estimation, mesh-based motion estimation,					
	region-based motion estimation, and multi-resolution					
	motion estimation in computer vision.					
8	Compare and contrast Photometric effects on 3D	5	3	5	4	4.6.1
	motion Provide specific examples to illustrate the its					
	effects and discuss their significance in computer					
	vision.					
	Part – B					
	$(3 \times 10 = 30 \text{ Marks})$					
Instru	actions: Answer All					
9	Explain the concept of geometric image formation in	10	3	4	2	2.6.2
	video processing. Discuss the fundamental principles					
	underlying geometric image formation and the role it					
	plays in understanding the geometry and perspective of					
	objects in video sequences. Describe common					
1			1	1	1	1
	1					
	techniques and algorithms used in model geometric					
10	techniques and algorithms used in model geometric transformations.	10	2	4	2	294
10	techniques and algorithms used in model geometric transformations. Explain the occlusion problem and the aperture problem	10	3	4	2	2.8.4
10	techniques and algorithms used in model geometric transformations. Explain the occlusion problem and the aperture problem in motion estimation. Provide specific examples of	10	3	4	2	2.8.4
10	techniques and algorithms used in model geometric transformations. Explain the occlusion problem and the aperture problem in motion estimation. Provide specific examples of situations where each of these problems can occur, and	10	3	4	2	2.8.4
	techniques and algorithms used in model geometric transformations. Explain the occlusion problem and the aperture problem in motion estimation. Provide specific examples of situations where each of these problems can occur, and discuss potential solutions to mitigate their effects.					
10	techniques and algorithms used in model geometric transformations. Explain the occlusion problem and the aperture problem in motion estimation. Provide specific examples of situations where each of these problems can occur, and	10	3	4	2	2.8.4

 ${\rm *Performance\ Indicators\ are\ available\ separately\ for\ Computer\ Science\ and\ Engineering\ in\ AICTE\ examination\ reforms\ policy.\ Course\ Outcome\ (CO)\ and\ Bloom's\ level\ (BL)\ Coverage\ in\ Questions}$

Approved by the Audit Professor/Course Coordinator