

HBI-120 de Viken Detection

Principe général

Détection des bords

Avec l'algorithme Canny

seuils: 40, 120

Détection des traits Avec la Transformée de Hough

Classique (détecte des droites)

Probabiliste (détecte des segments)

Calcul des angles Avec de la trigonométrie

$$\theta = \arccos \frac{\text{adjacent}}{\text{hypoténuse}} = \arccos \frac{|y_1 - y_0|}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}}$$

Critère de décision

 $\text{max angles } \varepsilon \iff \text{cass\'e}$

Identification du type de fracture

Noms des différentes lignes de fracture du fémur

Détection des bords

Un problème de texture

bas: 60 haut: 40

bas: haut: 120

bas: 60 haut: 180

Détection des bords En floutant?

Détection des bords

Recherche des seuils optimaux

seuils(luminosité, contraste)?

seuils(luminosité, contraste)?

Seuils optimaux de détection de bords

Machine learning

Par réseaux neuronaux

Recherche de sets de données

Machine learning

Par réseaux neuronaux

Première couche

Nœuds d'entrée

 $\{intensité(pixel), pixel \in image\}$

Calcul de l'erreur

l'Objectif

 f_{poids} , biais

$$\frac{\partial \operatorname{coût}}{\partial \operatorname{poid}}$$

$$\frac{\partial \operatorname{coût}}{\partial \operatorname{poid}} = \frac{\partial \operatorname{coût}}{\partial \operatorname{sortie}} \cdot \frac{\partial \operatorname{sortie}}{\partial \operatorname{poid}}$$

Le problème

Le problème

$$\frac{\partial \operatorname{coût}}{\partial \operatorname{poid}} = \frac{\partial \operatorname{coût}}{\partial \operatorname{sortie}} \cdot \frac{\partial \operatorname{sortie}}{\partial \operatorname{poid}}$$

?