Causal Effect Estimation and Transportation Using Modified Bootstrap

Tao Liu, PhD

Joint work with: Whitney Su & Zeyuan Pei

Updated Nov 4, 2021

Outline

Background

Observational Studies Causal Estimation Transportation to new population

Modified Bootstrap Method

Assumptions Bootstrap procedure Asymptotic properties

Simulation study

Extension

Double robustness Unmeasured confounding Unknown weights w_2

Discussion

Observational Data

Observational studies offer an important alternative to RCTs for studying the effect of a treatment on study subjects.

Observational data, such as electronic health records (EHR) and insurance claim data, represent one of the richest data sources for clinical research.

Analysis challenges:

- ▶ Non-randomized treatments -> confounding/selection bias.
- ➤ Source data population not representative of research (target) population -> covariate shift.

Confounding

Causal diagram

Structural model

$$A = \alpha_0 + \alpha_1 X + \epsilon_1$$

$$Y = \theta_0 + \theta_1 A + \theta_2 X + \epsilon_2$$

- ▶ Observational DB often includes a rich set of covariates hoping to capture most confounders.
- ▶ Commonly used methods: Regressions, inverse probability of treatment weighting (IPTW), stratification, matching, etc.

Transportation to new population

- ▶ Data (source) population and target study population are often different.
- Estimate from one population cannot be directly used on the other when treatment effects are heterogeneous.
- Setting inclusion/exclusion criteria are generally inadequate.
- ► Issues to consider:
 - ightharpoonup There may exist many X's that differentiate the two populations.
 - ▶ How to make inference if estimation and transportation are accomplished in separate steps.

Goal: Look for a flexible and efficient method that can jointly solve these problems (Causal estimation, transportation, and inference).

Notations

Let \mathcal{P}_O and \mathcal{P}_T denote the observed (source) data population and study (target) population, respectively.

For the observed data population \mathcal{P}_O :

- ➤ X: p-vector of pre-treatment characteristics.
- \triangleright A: Observed treatments taking values from discrete set $\{a\}$.
- \triangleright Y: Observed outcome.
- ightharpoonup D_n: Observed dataset of n subjects,

$$\mathbf{D}_n = \{ D_i = (X_i, A_i, Y_i) \}_{i=1}^n.$$
 (1)

For both populations:

ightharpoonup Y(a): denote the potential outcome of a subject if treatment set to a.

Notations (cont')

Let $\mathbb{E}_{\mathcal{P}_z}(\cdot)$ denote the expectation of a random variable from population $z \in \{O, T\}$.

Denote estimand of interest by Δ .

► Average causal effect:

$$ACE(a, a') = \mathbb{E}_{\mathcal{P}_T} Y(a) - \mathbb{E}_{\mathcal{P}_T} Y(a').$$

Causal risk ratio:

$$CRR(a, a') = \frac{\mathbb{E}_{\mathcal{P}_T} Y(a)}{\mathbb{E}_{\mathcal{P}_T} Y(a')}.$$

Causal odds ratio:

$$COR(a, a') = \frac{\mathbb{E}_{\mathcal{P}_T} Y(a) / \{1 - \mathbb{E}_{\mathcal{P}_T} Y(a)\}}{\mathbb{E}_{\mathcal{P}_T} Y(a') / \{1 - \mathbb{E}_{\mathcal{P}_T} Y(a')\}}.$$

Covariate shift

Suppose that the difference between \mathcal{P}_O and \mathcal{P}_T that is related to Δ is captured by X.

Denote the distribution functions of X in the two populations by

$$G_O(x)$$
, $G_T(x)$

and their corresponding density (mass) functions by

$$g_O(x), \quad g_T(x).$$

Exponential Tilting (ET):

$$g_T(x) \propto \exp\{h(x;\alpha)\}g_O(x).$$

Assumptions

A1: Stable unit treatment value assumption (SUTVA).

A2: Strong ignorability:

$$\{Y(a)\} \perp A \mid X.$$

A3: Positivity of treatments: For all $a \in \mathcal{A}$,

$$\Pr(A = a \mid X) > 0.$$

A4: Absolute continuity: G_T is absolutely continuous on G_O , so that dG_T/dG_O is well defined.

A5: Conditional exchangeability: For $z \in \{O, T\}$,

$$\mathbb{E}_{\mathcal{P}_z}\{Y(a) - Y(a') \mid X\} =: \Delta_{\mathcal{P}_z}(X; a, a') = \Delta(X; a, a').$$

Bootstrap

Standard bootstrap method (Efron 1982):

- ▶ Approximate distributional properties of a *given* estimator.
- \triangleright Re-sample data with equal probabilities of 1/n.
- ▶ Popular method for estimating variances and constructing confidence intervals.

Modified bootstrap method

We propose to bootstrap \mathbf{D}_n with re-sampling weights

$$w_i := w(X_i) \propto w_1(X_i)w_2(X_i)$$

where

- $w_1(X) = \sum_a \frac{\mathbf{1}(A=a)}{\Pr(A=a|X)}$: weight used in the IPTW method;
- ▶ $w_2(X) = dG_T/dG_O$: a version of the Radon–Nikodym derivative that captures the difference between the source and target study populations.
- ► If the ET assumption holds,

$$w_2(X) = \exp\{h(X; \alpha)\}.$$

Estimation:

▶ M-bootstrap m data points from \mathbf{D}_n , $m \gg n$.

$$\mathbf{D}_{m(n)}^* = \{D_i^* = (X_i^*, A_i^*, Y_i^*)\}_{i=1}^m.$$
 (2)

▶ Estimate $\mathbb{E}_{\mathcal{P}_T}\{Y(a)\}$ by

$$\mu_n(Y(a)) = \frac{\sum_{\mathbf{D}_{m(n)}^*} \mathbf{1}(A_i^* = a) Y_i^*}{\sum_{\mathbf{D}_{m(n)}^*} \mathbf{1}(A_i^* = a)},$$

and plugin in the estimands, e.g. we estimate ACE by

$$\Delta_n := \Delta_n(a, a'; \mathbf{D}_{m(n)}^*) = \mu_n\{Y(a)\} - \mu_n\{Y(a')\}.$$

Inference:

▶ M-bootstrap n data points from \mathbf{D}_n ; repeat for B times.

$$\mathbf{D}_{n(n),1}^*, \dots, \mathbf{D}_{n(n),B}^*. \tag{3}$$

► From each bootstrapped dataset, calculate

$$\Delta_j^* = \Delta_n(a, a'; \mathbf{D}_{n(n), j}^*), \quad j = 1, \dots, B.$$

• We can approximate the standard error of Δ_n by the bootstrapped sample standard deviation

$$S_n^* = \frac{1}{B} \sum_{j=1}^{B} (\Delta_j^* - \Delta_n)^2.$$

Can use the empirical distribution of $\{\Delta_j^*\}$ to construct (e.g. percentile) CI of Δ_n as usual.

Large-sample properties

Theorem 1. (Consistency) As m and n tend to infinity,

$$\Delta_n(\cdot; \mathbf{D}_{m(n)}^*) \longrightarrow_{a.s.} \Delta.$$

Theorem 2. Let F_n^* and F_n denote the distributions functions of the following pivotal quantities,

$$\sqrt{n}(\Delta_j^* - \Delta_n) \mid \mathbf{D}_n \sim F_n^*,$$

 $\sqrt{n}(\Delta_n - \Delta) \sim F_n.$

Then, F_n^* is "close" to F_n , in the sense that their distance in d_2 (the "Mallows") metric

$$d_2(F_n, F_n^*) \longrightarrow 0$$

as n tend to infinity.

Simulation study

Target population \mathcal{P}_T :

Suppose that

Covariates

$$X = \begin{bmatrix} X_1 \\ \cdots \\ X_5 \end{bmatrix} \sim N \begin{pmatrix} \mathbf{0}, \begin{bmatrix} 1 & -.2 & .3 & 0 & 0 \\ & 1 & .1 & 0 & 0 \\ & & 1 & 0 & 0 \\ & & & 1 & 0 \\ & & & 0 & 1 \end{bmatrix} \end{pmatrix}.$$

ightharpoonup Potential outcomes under two treatments: Conditional on X,

$$\begin{bmatrix} Y(0) \\ Y(1) \end{bmatrix} \sim N \left(\begin{bmatrix} .1X_1 - .2X_2 - .1X_4 - .2(X_5^2 - 1) \\ 1 + .1X_1 + .1X_3 + .1X_4 + .2X_5 \end{bmatrix}, \begin{bmatrix} 1 & .2 \\ & 1 \end{bmatrix} \right).$$

Estimand: ACE = $\mathbb{E}_{\mathcal{P}_{\mathcal{T}}}\{Y(1) - Y(0)\} = 1$.

Observed data of \mathcal{P}_O :

We simulate

 \triangleright Covariates X with a density

$$g_O(x) \propto \exp(\gamma x) g_T(x),$$

where $\gamma = \mathbf{0}$ for Scenario 1; $\gamma = (.1, .1, -.1, .3, -.2)$ for Scenario 2.

► Treatment received

$$A \mid X \sim Bernoulli(\pi_X),$$

where
$$logit(\pi_X) = .1X_1 - .1X_2 + .3X_3 - .2X_4 + .1X_5$$
.

- ▶ Potential outcomes $[Y(0), Y(1)]^{\top} \mid X$: same model as \mathcal{P}_T .
- ightharpoonup Observed outcome: Y = Y(A).

- ▶ Sample size: n = 500
- ▶ Bootstrap: B = 1000, m = 500K
- Experiments: 1000.

Simulation results

Scenario 1: No covariate shift

	ATE_estimate	Bias	Coverage_Prob	CI_ave_length
	<named list=""></named>	<named list=""></named>	<named list=""></named>	<named list=""></named>
As Treated	1.079	0.079	0.9	0.432
IPTW	1.003	0.003	0.966	0.453
M-bootstrap	1.002	0.002	0.944	0.432
M-bootstrap DR	0.993	-0.007	0.95	0.418

- ➤ CIs for IPTW are obtained using the "Huber-White" robust standard error. Overestimated; Reifeis & Hudgens (2020).
- ► CIs for M-Bootstrap obtained using the percentile method.

Scenario 2: When target and source populations differ

	ATE_estimate	Bias	Coverage_Prob	CI_ave_length
	<named list=""></named>	<named list=""></named>	<named list=""></named>	<named list=""></named>
As Treated	1.162	0.162	0.688	0.433
IPTW	1.083	0.083	0.902	0.451
M-bootstrap	1.006	0.006	0.94	0.431
M-bootstrap DR	1	0	0.946	0.417

Double robustness

▶ IPTW "removes" the causal pathway of the selection process: $X \longrightarrow A$ by imposing a propensity score model

$$e(a; x) = \Pr(A = a \mid X).$$

We can also try to block the confounding pathway of $X \longrightarrow Y$ by imposing a model of the scientific process:

$$Y = \theta_0 + \theta_1 A + Q(A, X; \theta_2) + \epsilon.$$

with
$$\mathbb{E} Q(\cdot) = 0$$
, $\mathbb{E} \epsilon = 0$.

► The resulting estimator has a property of double robustness (DR).

Scenario 3: Double robustness

- ▶ DR (A): The PS model is incorrect.
- ▶ DR (B): The outcome model is incorrect.
- ▶ DR: Both models are correct.

	ATE_estimate	Bias	Coverage_Prob	CI_ave_length
	<named list=""></named>	<named list=""></named>	<named list=""></named>	<named list=""></named>
M-bootstrap	0.992	-0.008	0.942	0.431
M-bootstrap DR	0.985	-0.015	0.945	0.419
M-bootstrap DR (A)	0.984	-0.016	0.946	0.426
M-bootstrap DR (B)	0.992	-0.008	0.942	0.426

Unmeasured confounding

- ► The strong ignorability can be plausible in certain cases but more likely violated more or less.
- Let U denote the confounding effect of other factors beyond X.
- ► Assume a structural model:

$$h\{\Pr(A=a)\} = \alpha_0 + \alpha_1 X + \alpha_2 U$$
$$Y = \theta_0 + \theta_1 A + \theta_2 X + \theta_3 U + \epsilon$$

- ► Some thoughts (not verified):
 - ► Calculate residuals $R = Y (\widehat{\theta}_0 + \widehat{\theta}_1 A + \widehat{\theta}_2 X)$.
 - ightharpoonup Include R in the PS model to conduct a sensitivity analysis (by varying its coefficient).

When data of \mathcal{P}_T are available...

- ▶ So far, we assume that $w_2(X) = dG_T/dG_O$ is given.
- ▶ When w_2 is unknown but a data set of X of \mathcal{P}_T is available:
 - ▶ Merge the data of X from \mathcal{P}_O and \mathcal{P}_T with proper labels.
 - ▶ Fit a logistic model or generalized additive model (GAM) with a logit link to predict the target population labels (source population as reference).
 - ightharpoonup Calculate the "linear" predictor and use its exponentiated value as w_2 .

Discussion

- ▶ Unlike standard BT which treats sampling variation as the sole source of uncertainty for inference, M-BT views uncertainty from both sampling as well as stochastic nature of treatment selection.
- ▶ M-bootstrap is computationally straightforward and simple.