

Permutation-based AR Language Modeling

김유진, 문예진, 송경민, 이상민, 한유경 NLP 2조

Models Review

AR과 AE를 최대한 활용할 수 있는 generalized AR method

AR과 AE를 최대한 활용할 수 있는 generalized AR method

- segment recurrence mechanism & relative encoding scheme 적용
 - Target-Aware Representations

Objective: Permutation Language Modeling

Input Sequence (T)

모든 permutation 집합 (Zt)

다양한 sequence 고려

likelihood

$$\mathbb{E}_z^{Z_T}[\prod_{t=1}^T p(x_t|\mathbf{x}_{< t})]$$

AR Objective function에 대입

Objective function

$$Max_{ heta} \,\, \mathbb{E}^{Z_T}_z[\sum_{t=1}^T logp_{ heta}(x_t|\mathrm{x}_{< t})]$$

특정 토큰에 양방향 context 고려 가능

Two-Stream Self Attention = 1 Content Stream + 2 Query Stream

1 Content Stream : 현재 시점과 현재 시점 이전의 토큰 정보 활용

 $h_{z_t}^{(m)} \leftarrow \operatorname{Attention}(Q = h_{z_t}^{(m-1)}, \operatorname{KV} = \mathbf{h}_{\mathbf{z}_{\leq t}}^{(m-1)}; \theta), \quad \text{(content stream: use both } z_t \text{ and } x_{z_t}).$

Content Stream: 현재 시점과 현재 시점 이전의 토큰 정보 활용

 $h_3 \mid g_3$

 $h_3 \mid g_3$

 $h_4 g_4$

 $h_4 g_4$

 x_4 w

KoreaUniv DSBA, https://www.youtube.com/watch?v=v7diENO2mEA

Input sequence [x1, x2, x3, x4]

Index의 permutation

[2, 3, 1, 4]의 경우
$$p(x1|x2, x3) \rightarrow h\theta(x2, x3)$$

[2, 3, 4, 1]의 경우
$$p(x4|x2, x3) \rightarrow h\theta(x2, x3)$$

위치가 다른데 같은 representation

Position 정보가 필요

Query Stream : 이전의 토큰정보 + 현재의 위치 정보

$$g_{z_t}^{(m)} \leftarrow \text{Attention}(Q = g_{z_t}^{(m-1)}, \text{KV} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta), \quad (\text{query stream: use } z_t \text{ but cannot see } x_{z_t})$$

Query Stream : 이전의 토큰정보 + 현재의 위치 정보

Factorization order: 3 2 4 1

KoreaUniv DSBA, https://www.youtube.com/watch?v=v7diENO2mEA

- Content Stream으로부터 hidden representation
 - Query Stream으로부터 토큰의 위치정보

Partial Prediction

: Pretrain의 계산량을 줄이기 위한 방법 입력값의 부분 집합만을 학습

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\log p_{\theta}(\mathbf{x}_{\mathbf{z}_{>c}} \mid \mathbf{x}_{\mathbf{z}_{\leq c}}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=c+1}^{|\mathbf{z}|} \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right]$$

$$p(x_3)p(x_2 \mid x_3)p(x_4 \mid x_2, x_3)p(x_1 \mid x_3, x_2, x_4) \rightarrow p(x_4 \mid x_2, x_3)p(x_1 \mid x_3, x_2, x_4)$$

Incorporating Ideas from Transformer-XL

segment recurrence mechanism + 2 relative positional encoding scheme

Incorporating Ideas from Transformer-XL

- segment recurrence mechanism + 2 relative positional encoding scheme
 - 이전 segment를 재사용할 때, positional encoding을 정의하는 방법

segment1

segment2

[1,2,3,4] [1,2,3,4] [1,2,3,4]segment3

Standard Transformer

$$\mathbf{A}_{i,j}^{\text{abs}} = q_i^{\top} k_j = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(b)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(d)}.$$

• Transformer-XL

$$\mathbf{A}_{i,j}^{\mathrm{rel}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)} + \underbrace{\mathbf{u}^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{v}^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(d)}.$$

Experiments: Pretraining and Implementation

- Pretraining Dataset
 - Bert : BookCorpus + English Wikipedia
 - XLNet : BookCorpus + English Wikipedia + Giga5 + ClubWeb + Common Crawl
- Bert보다 10배 많은 데이터 사용
- Model size
 - XLNet-Large는 BERT-Large와 같은 구조의 하이퍼파라미터 매개 변수를 가짐 → 비슷한 모델 사이즈

Experiments: Fair Comparison with BERT

Model	SQuAD1.1	SQuAD2.0	RACE	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
BERT-Large (Best of 3)	86.7/92.8	82.8/85.5	75.1	87.3	93.0	91.4	74.0	94.0	88.7	63.7	90.2
XLNet-Large- wikibooks	88.2/94.0	85.1/87.8	77.4	88.4	93.9	91.8	81.2	94.4	90.0	65.2	91.1

BERT와 XLNet을 공정한 환경에서 비교 → 모든 데이터셋에서 BERT를 능가함!

Experiments: Comparison with RoBERTa: Scaling Up

RACE	Accuracy	Middle	High	Model	NDCG@20	ERR@20
GPT [28]	59.0	62.9	57.4	DRMM [13]	24.3	13.8
BERT [25]	72.0	76.6	70.1	KNRM [8]	26.9	14.9
BERT+DCMN* [38]	74.1	79.5	71.8	Conv [8]	28.7	18.1
RoBERTa [21]	83.2	86.5	81.8	BERT [†]	30.53	18.67
XLNet	85.4	88.6	84.0	XLNet	31.10	20.28

RACE Dataset

SQuAD2.0	EM	F1	SQuAD1.1	EM	F 1					
Dev set results (single model)										
BERT [10]	78.98	81.77	BERT† [10]	84.1	90.9					
RoBERTa [21]	86.5	89.4	RoBERTa [21]	88.9	94.6					
XLNet	87.9	90.6	XLNet	89.7	95.1					
Test set results o	Test set results on leaderboard (single model, as of Dec 14, 2019)									
BERT [10]	80.005	83.061	BERT [10]	85.083	91.835					
RoBERTa [21]	86.820	89.795	BERT* [10]	87.433	93.294					
XLNet	87.926	90.689	XLNet	89.898 ‡	95.080 ‡					

SQuAD Dataset

Model	IMDB	Yelp-2	Yelp-5	DBpedia	AG	Amazon-2	Amazon-5
CNN [15]	i n	2.90	32.39	0.84	6.57	3.79	36.24
DPCNN [15]	-	2.64	30.58	0.88	6.87	3.32	34.81
Mixed VAT [31, 23]	4.32	-	-	0.70	4.95	-	-2
ULMFiT [14]	4.6	2.16	29.98	0.80	5.01	-	===
BERT [35]	4.51	1.89	29.32	0.64	(<u>=</u>	2.63	34.17
XLNet	3.20	1.37	27.05	0.60	4.45	2.11	31.67

Text Classification

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task single	models on de	v							
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	
RoBERTa [21]	90 2/90 2	947	92.2	86.6	96.4	90.9	68.0	92.4	_
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	90.8	69.0	92.5	-
Multi-task enseml	oles on test (fr	om leader	board as	of Oct 2	28, 2019)				
MT-DNN* [20]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
RoBERTa* [21]	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0
XLNet*	90.9/90.9 [†]	99.0 [†]	90.4^{\dagger}	88.5	97.1^{\dagger}	92.9	70.2	93.0	92.5

GLUE Dataset

Experiments : Ablation Study

#	Model	RACE	SQu/	AD2.0	MNLI	SST-2
			F1	EM	m/mm	
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base $(K = 7)$	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base $(K = 6)$	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

Q

Conclusions

- XLNet은 AR pretrainig 방법을 일반화한 것
 & Permutation language modeling objective를 사용해 AR과 AE의 장점을 결합한 것
- XLNet의 구조는 AR objective을 작업하는데 적용되고 Transformer-XL와 two-stream attention mechanism을 결합하여 설계됨
- 다양한 작업에서 이전 pretraining 목표들보다 상당한 개선을 달성