WC 模拟赛

华师大二附中

Jan 18, 2021

题目名称	小 G 的布料	超大超可爱的一棵树	Low Complexity Tree
题目类型	传统型	传统型	传统型
目录	fabric	bglyte	lct
可执行文件名	fabric	bglyte	lct
输入文件名	fabric.in	bglyte.in	lct.in
输出文件名	fabric.out	bglyte.out	lct.out
每个测试点时限	1 秒	5 秒	1 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	捆绑测试	捆绑测试	捆绑测试

编译选项: -std=c++11 -02 -lm

评测时, 栈空间大小无特殊限制

如需离线评测,请使用文件输入输出,不开子文件夹。

离线评测机配置: Intel Core i7-8565U CPU Linux @1.80GHz x 8

WC 模拟赛 1 小 G 的布料

1 小 G 的布料

1.1 题目描述

小 G 有一块 $N \times M$ 的布料,每个位置可能是完好的(用 0 表示),也可能有洞(用 1 表示)。她需要一块每个位置均完好的完整的长方形布料,面积 $\geq K$,请问她有多少种不同的选择?选择不同当且仅当取自布料的位置不同。

一句话题意:给定一个 01 矩阵,求面积 $\geq K$ 的全 0 子矩形个数。

1.2 输入格式

第一行,三个正整数 N, M, K 接下来 N 行,每行 M 个数,描述这块布料

1.3 输出格式

一行,表示答案

1.4 样例 1 输入

2 4 3

1 0 0 0

0 0 0 1

1.5 样例 1 输出

3

WC 模拟赛 1 小 G 的布料

1.6 数据范围

本题采用捆绑测试。

子任务编号	分值	$1\leq N,M\leq$	特殊限制
1	7	2000	K=1,所有格子均为 0
2	9	2000	K=1,仅有一格为 1
3	12	50	无
4	14	500	无
5	23	2000	K = 1
6	35	2000	无

2 超大超可爱的一棵树

2.1 题目描述

Lunch 有一棵大小为 n,以节点 1 为根的有根树。每个点有一个**大小值** a_i ,还有一个随机的**可爱值** b_i : 它有 p_i 的概率是 1,有 $1-p_i$ 的概率是 0。

称一个连通块为**超可爱**的,当且仅当它当中的所有点的**可爱值** b_i 都为 1 且它是极大的。

称一个超可爱的连通块的权值为它当中所有点的大小值 a_i 的和的 k 次方。

Lunch想要知道所有超可爱的连通块的权值的总和的期望值。

由于Lunch很可爱, 你只需要输出答案对 998244353 取模的值。

2.2 输入格式

第一行,两个正整数 n,k

第二行, n 个整数, 表示每个点的大小值 a_i

第三行,n个整数,表示 p_i 在模 998244353 意义下的值

之后 n-1 行, 每行两个数 u_i, v_i , 表示树上的一条边

2.3 输出格式

一行,一个整数,表示所有**超可爱**的连通块的**权值**的总和的期望值对 998244353 取模的结果

2.4 样例 1 输入

3 3

1 1 1

499122177 499122177 499122177

1 2

1 3

2.5 样例 1 输出

6

2.6 样例 1 解释

如图所示,每个点**可爱值**为 1 的概率均为 $\frac{1}{2}$ 。

若一号点**可爱值**为 1,则期望为 $\frac{1}{2} * \frac{1}{4} * 1^3 + \frac{2}{4} * 2^3 + \frac{1}{4} * 3^3 = \frac{11}{2}$

若一号点**可爱值**为 0,则期望为 $\frac{1}{2}*(\frac{1}{2}*1^3+\frac{1}{2}*1^3)=\frac{1}{2}$

总期望为6。

注意,当 1, 2, 3点的**可爱值**都为 1时, $\{1\ 2\}$ 这一连通块虽然**可爱值**均为 1, 但不是极大的,所以不是**超可爱**的连通块。

2.7 样例 2

见下发文件 bglyte2.in,bglyte2.ans,该样例满足 $n \le 20, k \le 100$

2.8 样例 3

见下发文件 bglyte3.in,bglyte3.ans,该样例满足树是一条以 1 为一个端点的链

2.9 数据范围

本题采用捆绑测试。

子任务编号	分值	特殊限制
1	15	$n \leq 20, k \leq 100$
2	25	$k \leq 100$
3	15	树是一条以1为端点的链
4	15	$\sum_{i=1}^n a_i \leq 5000$
5	30	无

对所有数据, $1 \leq n \leq 1000, 1 \leq k \leq 5000, 1 \leq a_i < 998244353, 0 \leq p_i < 998244353$

3 Low Complexity Tree

3.1 题目描述

机房中有一棵高度为 h 的满二叉树(包含 2^h 个叶结点),传说是某 i 姓同学被吊打过的地方。在这棵树上,我们将所有叶子结点从左往右依次编号为 $1, \ldots, 2^h$ 。其中有 m 个叶子结点称为 **关键结点**,它们的编号依次为 t_1, \ldots, t_m 。这棵树上的每个 **非叶结点**上有一个开关,开关有左右两种状态。接下来执行如下的投球过程:一个球从根结点出发,每次走到当前结点开关指向的那个儿子处,直到走到叶结点,此时该球将会计入该叶结点的 **球数**中,然后,这个球经过的所有结点的开关状态将 **取反**(左变右,右变左)。你可以设置每个开关最初的位置,然后连续投下 n 个球,你需要使得最终所有关键结点的 **球数之和**最大,只需要输出这个最大值。

3.2 输入格式

第一行: 三个整数 h, m, n, 分别表示二叉树的深度, 关键结点的数量以及投球数。第二行: m 个整数 $t_{1...m}$, 表示关键结点的编号。

3.3 输出格式

输出一行一个整数,表示所有关键结点的球数之和的最大值。

3.4 样例 1 输入

2 3 3

1 2 3

3.5 样例 1 输出

3

3.6 样例 1 解释

如图,按最左图安排初始时非叶结点的开关方向(红实线为开关方向),前三个球分别落到 1,3,2 这三个点。

3.7 数据范围

本题采用捆绑测试。

对于 100% 的数据: $1 \le h \le 60$, $1 \le m \le \min(2^h, 10^5)$, $1 \le n \le 10^{18}$, $1 \le t_i \le 2^h$ 且 t_i 两两不等。

子任务编号	分值	特殊限制
1	10	$h \leq 4, \;\; n \leq 100$
2	20	$h \leq 10, ~n \leq 10^5$
3	10	$h \leq 20$
4	10	$h \leq 60, \;\; m=1$
5	20	$h \leq 60, \;\; m \leq 20$
6	30	$h \leq 60$