Introduction to Large Language Models(LLM)

Outline

- 1. Overview from 30,000 feet above
- 2. Transformer in nutshell
- 3. Pretraining Parallel paradigm
- 4. Finetuning Parameter efficient finetuning
- 5. Steering the decoding of LLM Prompting
- 6. Augmentation and Plugins

Overview from 30000 feet above

- Paradigm transition in Al
 - From: training(specific) -> prediction(specific)
 - To: pretraining(general) -> finetuning(general/specific) -> in-context
 prompt(specific)
- Primary steps of new paradigm
 - Pretraining with self-supervised learning
 - Finetuning on instruction from mutiple domains
 - Application by steering/prompt the decoding process of LLM
- Where are we to AGI?
 - From explanation to prediction
 - From correlation to causality

A LLMs Evolution Tree

- Decoder Only
- Encoder Only
- Encoder-Decoder

Img Source: Jingfeng Yang et al. 2023

Transformer in nutshell

- Transformer modules
- Aspects of alternative
- Parameter concentration
- Computation concentration

Transformer modules

Token & positional embedding :

$$\circ$$
 $E \in R^{V imes d}$, $P \in R^{T imes d}$

- Multi-head attention
 - Self-attention & Cross-attention
 - Weight matrix:

$$W_Q^h, W_K^h, W_V^h \in R^{d imes d_h}$$

Head projection:

$$W_O \in R^{d imes d}$$

- ResNet & LayerNorm
- Feedfoward Network

$$\phi W_1 \in R^{d imes 4d}, W_2 \in R^{4d imes d}$$

Output head: task related

Aspects of alternative

- Efficient Transformer (for long sequence)
 - Coarse sequence resolution:
 - Block/Stride/Clustering/Neural Memory
 - TransformerXL
 - Attention matrix approximation:
 - Linear Transformer
- LLMs specific
 - Encoder vs Decoder vs Encoder-Decoder
 - Pretraining objective
 - Positional encoding
 - Input or output LayerNorm
 - Activation

Parameter concentration

Decoder only Transformer(GPT)

- Parameter size:
 - \circ Embedding: (V+T) imes d
 - \circ Attention: $L imes (3 imes d imes d_h imes H+(d_h imes H) imes d)=4Ld^2$
 - \circ FFN: $L imes ((d imes 4d + 4d) + (4d imes d + d)) pprox 8Ld^2$
- On GPT3-175B:

Total	PE	TE	Attn	FFN
174,597M	25M(0.01%)	617M(0.35%)	57,982M(33.21%)	115,970M(66.42%)

Computation concentration

Decoder only Transformer

Per-token calculation:

- ullet QKV+project: $2 imes L imes (3 imes H imes h_d imes d+(H imes h_d) imes d)=2 imes 4Ld^2$
- Attention: $2 \times L \times T \times d$
- ullet FFN: $2 imes L imes ((d imes 4d+4d)+(4d imes d+d))pprox 2 imes 8Ld^2$

Model training flops utilization(MFU):

- ullet Forward and backward: (1+2) imes (2N+2LTd)pprox 6N , where $Npprox 12Ld^2$
- Theoretical peak throughput: $\frac{P}{6N+6LTd}$
- $MFU = \frac{Observed throughput}{Theoretical peak throughtput}$

Pretraining

- Training objectives
- Text Corpus
- Parallel strategies
- Results & Evaluation

Training architecture & objectives

- Architecture
 - Encoder: BERT series
 - Encoder-Decoder: T5(11B)
 - (Causal-)Decoder: GPTs/Ernie3.0 Titan
 - Prefix-Decoder: GLM
- Objectives
 - Masked LM: BERT/GLM/T5
 - Auto-regressive LM: T5/GPTs/Ernie3.0
 Titan
 - Multi-task pretraining: GLM/Ernie3.0
 Titan

Text Corpus

- Unsupervised text
 - BookCorpus: 11,000; Gutenberg: 70,000
 - OpenWebText: 8M outlinks of Reddit.com
 - Common Crawl; C4
 - Code: BigQuery Github
- Weak supervised text
 - Reddit TL;DR; PushShift.io Reddit: Posts
 - StackExchange: Question & Answer w/ score
- Supervised text: task related
 - ~16 NLP tasks related datasets (Sentiment/QA/Reasoning, etc.)
 - Human answer to prompt: InstructGPT

Unsupervised/Self-supervised Weak supervised/Implicit Feedback Supervised/Explicit Feedback

Baidu Ernie 3.0 Titan: 260B

- 2 Types of transformer modules
 - Universal module
 - Task specific module
- 3 Levels of pretraining tasks
 - Word aware: Knowledge integrated LM
 - Structure aware: sentence reordering task
 - Knowledge aware: controllable LM task
- 4D hybrid parallelism for training
 - Shared data parallel with ZeRO(2D)
 - Intra-layer tensor parallel(D)
 - Inter-layer pipeline parallel(D)

Parallel strategies

- Why bother?
- Three parallel paradigms
 - Data parallel: ZeRO
 - Model parallel
 - Tensor parallel: Megatron-LM
 - Pipeline parallel: GPipe
- Combined implementations: DeepSpeed/ColossalAl

Why bother?

- Too big to fit in single GPU memory
 - \circ 175B: $\sim (2+2+3 imes4) imes175 = 2800$ GB for mixed-precision training
 - Parameter & gradient(FP16): parameter(W), gradient(g, $\frac{\partial L}{\partial W}$)
 - Optimizer State(FP32): parameter, momentum(m), variance(v)
 - lacktriangle Activation(FP16): 2 imes (1+4+1) imes d imes B imes T imes L
 - A100 Spec:
 - GPU memory: 80GB
 - GPU memory bandwidth: 2039GB/s; NVLink: 600GB/s; PCle 4.0: 64GB/s
 - TF32: 156TFlops
- Speedup
 - Scales linearly with # of GPU cores?

Basics on Forward & Backward and Parallel Ops

Forward:

$$egin{aligned} h_0 &= \sigma(z_0) \ z_1 &= W^T h_0 + b \ h_1 &= \sigma(z_1) \end{aligned}$$

Backward:

$$egin{aligned} &(rac{\partial L}{\partial h_1},W)
ightarrow rac{\partial L}{\partial h_0} \ &(rac{\partial L}{\partial h_1},h_0)
ightarrow \Delta rac{\partial L}{\partial W} \ &m \leftarrow eta_1 m + (1-eta_1) rac{\partial L}{\partial W} \ &v \leftarrow eta_2 v + (1-eta_2) ig(rac{\partial L}{\partial W}ig)^2 \ &W \leftarrow W - rac{lpha}{\sqrt{\hat{v}} + \epsilon} \hat{m} \end{aligned}$$

Data parallel: from DDP to FSDP(ZeRO)

Pesudo code for DDP and FSDP

```
# forward pass :
  for layer_i in layers:
    forward pass for layer_i
# backward pass :
  for layer_i in layers:
    backward pass for layer_i
    full: all-reduce gradients for layer_i
    full: update momentum & variance
    full: update weights
```

```
# forward pass :
for layer_i in layers:
   all-gather full weights for layer_i
   forward pass for layer_i
   discard full weights for layer_i
# backward pass:
for layer_i in layers:
   all-gather full weights for layer_i
   backward pass for layer_i
   discard full weights for layer_i
   part: reduce-scatter gradients for layer_i
   part: update momentum & variance
   part: update weights
```

- Advantages of ZeRO
 - \circ Parameter & gradient and optimizer states evenly shard to N nodes
 - Computation and communication overlaps

Tensor parallel: Megatron-LM

- W_Q, W_K, W_V partition by head(col)
- ullet W_O partition by row
- ullet W_1 partition by col, W_2 by row
- Backward Allreduce for gradient

Performance comparison of ZeRO and Megatron-LM

- Experiment hardware:
 - Megatron-LM: 32 DGX-2H servers: 512 V100, 32GB GPUs
 - ZeRO: 25 DGX-2 servers: 400 V100, 32GB GPUs
- TFlops Results:
 - Megatron-LM: 15.1 PFlops
 - 76% scaling efficiency for single GPU 39TFlops(30% of peak Flops)
 - ZeRO: 15 PFlops, with fewer GPU cores

Pipeline parallel: GPipe

- Layer-wise model partition
- Re-materialization: output activation stored and communicated
- Pipeline reduce bubble ratio from $\frac{K-1}{K}$ to $\frac{K-1}{M+K-1}$

Combined implementations: Megatron-DeepSpeed/ColossalAl

Megatron-DeepSpeed

- Data/Model parallel supported(3D)
- ZeRO-Offload
- Sparse attention
- 1-bit Adam and 0/1 Adam
- MoE specific parallelism
- RLHF Demo: deepspeed-chat

ColossalAl

- Data/Model parallel supported(3D)
- 3D Tensor parallelism
- ZeRO-Offload: model data supported
- MoE specific parallelism
- RLHF Demo: ColossalChat

End of Parallel strategies

Result & Evaluations

- NLU
 - SuperCLUE
- NLG
- NLI

Finetuning

- Target and issues
- Instruct finetuning
- Finetuning for specific task
- Parameter efficient finetuning

Target and issues

- Target
 - From pattern completion to real world tasks
- Issues
 - Instruction following
 - Hallucination
 - Toxicity and ethics
 - Securities

Instruct Finetuning

Key to success

- Number of finetuning datasets:
 - scaling from 62 text datasets to 18K
- Model scale: 137B LaMDA-PT
- Natural language instructions

Finetuning for specific task

HHHA(Anthropic):2112.00861

InstructGPT(OpenAI):2203.02155

HHA(Anthropic):2204.05862

Sparrow(Deepmind):2209.14375

Problems from Supervised Finetuning(SFT)

- Learning only the task format and the way to response for the format
- Knowledge labeled but not in the LLM leads to more hallucination
- Knowledge in the LLM but labeled as don't know leads to withhold information

What we want from finetuning:

outputs its(LLM's) state of knowledge with the correct amount of hedging and expressing its uncertainty

Advance of RL to SFT for truthfullness

- LLMs know what they know
 - Calibrated probability, uncertainty
- RLHF can leverage the self-awareness
 - Design reward function: correct answer=1, don't know=0 and wrong answer=-4
 - RL learn optimal threshold of probability to maximize the reward
- No oracle for the correctness, delegate to Reward Model
 - Reward model: relative criteria trained by pairwise loss from human feedback
 - Open problem: true probabilites of everything?
 - Open problem: go beyond things that labelers can easily do
 - Verification is easier than generation

More on Reinforcement Learning

- Catalog of algorithms (PPO belongs)
 - World model or model free
 - Value-based or policy-based(actor-critic)
 - MC or TD bootstrapping
 - Off-policy or on-policy
 - Deterministic or stochastic policy
- Design consideration
 - Sample efficiency: Off-policy > On-policy
 - Stability & Convergence: Deadly Triad issue
 - Explore & Exploit: Random at episode beginning
 - Bias & Variance: Advantage Function

30

Parameter Efficient Finetuning

- Design aspects
- Primary implementations
 - Adapter
 - Prefix-tuning
 - LoRA

Methods and performance on Summerization task

PEFT illustration and performance comparison (Source: Junxian He, et.al)

Design aspects

- Finetuned Modules:
 - Attention-key/value matrix: LoRA(Q/V)
 - Attention-head: Prefix-Tuning(K/V)
 - Attention: Adapter
 - After FFN: Adapter
- Other aspects:
 - Multi-task consideration
 - Task related head

Adapter

Implementation & training notes

$$h \leftarrow h + f(hW_{ ext{down}})W_{ ext{up}}$$

Parameter scale:

$$2 imes L imes (r imes d+r+d), r\ll d$$

- Adapt after FFN sub-layer works too
- Results
 - Finetune BERT for 26 classification Tasks
 - 3.6% parameters for 0.4% GLUE performance gap
 - Ablation: fewer layers adapted -> worser performance

Prefix-Tuning

- Implementation
 - $\circ \text{ head} = \operatorname{Attn}(XW_Q, [P_K; XW_K], [P_V; XW_V])$
 - Reparameterization for finetuning stability:
 - $\bullet \ [P_K, P_V] = \mathrm{MLP}_{\theta}(P^E)$
 - P^E : prefix embedding
- Parameter scale:
 - \circ Vanilla: |P| imes d imes 2 imes L
 - \circ Reparameteration: |P| imes d + d imes H + H imes d imes 2 imes L

More on Prefix-Tuning: Training and scaling

- Training
 - Initialization:
 - Real/high frequency words activation
 - Task relevant words | Classification labels
 - LM Head: Next Token/Class Label
- Results & discussion
 - \circ Finetuning $0.1\% \sim 3\%$ parameters, comparable or better performance
 - Optimal prefix length varies: longer for more complex tasks
 - Reparameterization works task-dependently

PrefixTuning: Optimizing Continuous Prompts for Generation, Stanford, 2021

PromptTuning: The Power of Scale for Parameter-Efficient Prompt Tuning, Google, 2021

LoRA

- Implementation & training notes
 - \circ Transformer: $W = W_0 + (BA)^T, A \in R^{r imes d}, B \in R^{d_h imes r}, r \ll \min\{d_h, d\}$
 - $\circ~W_Q$ and W_V considered, parameter scale: 2 imes2 imesdef 2 imes d imes r imes L
 - Modularized: Embedding , Linear , MergedLinear , Conv2D
 - \circ Initialization: A kaiming-random, B zeros
 - Weight merged for inference efficiency
- Results
 - For 175B GPT-3 finetuning: 0.01% parameters, on par or better results
 - No additional inference computation and latency
 - Additivity for finetuning merge and incremental update

More on LoRA: which part to update & rank settings

	# of Trainable Parameters = 18M								
Weight Type Rank r	$\left egin{array}{c} W_q \ 8 \end{array} \right $	$\frac{W_k}{8}$	$W_v 8$	W_o 8	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o		
WikiSQL (±0.5%) MultiNLI (±0.1%)					71.4 91.3	73.7 91.3	73.7 91.7		

	Weight Type	r=1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$\begin{array}{ c c }\hline W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{array}$	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$\begin{array}{c c} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{array}$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

End of Parameter Efficient Finetuning

Steering the decoding process of LLM

- Decoding strategies
- Prompt enginneering

Decoding strategies

- ullet Temperature in decoding: $p(w_i|w_{< i}) = rac{\exp(o_i/T)}{\sum_j \exp(o_j/T)}$, o_i logits from LLM
- Maximal Likelihood Search
 - \circ Greedy search: $w_i = rg \max p(w_i|w_{< i})$, eq. to T = 0
 - \circ Beam search: $w_i \in \operatorname{TopN} p(w_i|w_{i-1},w_{< i-1})p(w_{i-1}|w_{< i-1})$
- Sampling
 - \circ top-K sampling: $w_i = ext{sample TopK } p(w_i|w_{< i})$
 - \circ top-p(Nucleus) sampling: $w_i = ext{sample TopK}_i \ \sum_{w_i < K_i} p(w_i | w_{< i}) \geq p$
 - Repetition penalized sampling
- Guided decoding
 - o $score(x_{t+1},b_t) = score(b_t) + \log p(x_{t+1}) + \sum_i lpha_i f_i(x_{t+1})$

Prompt engineering

- One-shot interaction
 - Instruction/Zero-shot Prompt
 - Few-shot Promp
 - In-context Learning(Prompt)
 - Chain-of-Thought
- Recursive interaction
 - MRKL: [Thought/Action/Action Input/Observation]+, zero-shot, access tools
 - Self-ask: Followup question? [Question/Answer]+ Final Answer, few-shot
 - ReACT: [Thought/Action/Observation]+, few-shot, access tools

More on In-context Learning

What matters?

- Examples template(instruct/CoT) & order: yes
- Label space & Input distribution(diversity): yes
- Exact {Question, Answer} pair: no/yes

Why it works?

- Interpretation from Topic Model: $P(o|p) = \int_z P(o|z,p) P(z|p) dz$
- Induction head: [a][b] ... [a] -> [b]

A Mathematical Framework for Transformer Circuits, 2021, Anthropic
How does in-context learning work?, 2022, Stanford
Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?, 2022, Meta Larger language models do in-context learning differently, 2023, Google

Augmentation and Plugins

- Augmented Language Models
- Automatic prompting
- Plugins

Augmented Language Models

- Problems in vanilla LLMs
- Augment aspects
 - Reasoning/Planning
 - Tool usage

Problems in vanilla LLMs

- Compression of world knowledge
- Context limitation
- No up-to-date knowledge
- Hallucinations

Augmented Language Model Overview

- 2 Steps
 - What: Planning/Reasoning
 - How: Tool usage

- 3 Teaching Methods
 - In-context prompt:
 - One-shot/Recursive
 - Finetuning
 - Reinforcement Learning:
 - Hardcode/Human Feedback

Planning by self-talk: Self-ask

- Multi-hop question and compositionality gap
- Self-ask prompt:
 - Few-shot prompt scaffold:

```
Question: {{Question}}
Are follow up questions needed here: Yes
Follow up: {{Follow-up-question}}
Intermediate answer: {{Itermediate-answer}}
So the final answer is: {{Final-answer}}
Question: {{Question}}
Are follow up questions needed here: {{LLM-gen}}
```

- Few-shot prompt with search engine:
 - The same prompt as before
 - Generated by query search engine:

```
Intermediate answer: {{Itermediate-answer}}
```

Accuracy on *Compositional*Celebrities 2-hop questions

Planning by self-talk: Self-ask prompt

Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins?

Are follow up questions needed here: Yes.

Follow up: How old was Theodor Haecker when he died?

Intermediate answer: Theodor Haecker was 65 years old when he died.

Follow up: How old was Harry Vaughan Watkins when he died?

Intermediate answer: Harry Vaughan Watkins was 69 years old when he died.

So the final answer is: Harry Vaughan Watkins

Question: Who was president of the U.S. when superconductivity was discovered?

Are follow up questions needed here: Yes.

Follow up: When was superconductivity discovered?

Intermediate answer: Superconductivity was discovered in 1911.

Follow up: Who was president of the U.S. in 1911?

Intermediate answer: William Howard Taft.

So the final answer is: William Howard Taft.

Planning by self-talk: Self-ask prompt with search engine

Question: Who lived longer, Theodor Haecker or Harry Vaughan Watkins?

Are follow up questions needed here: Yes.

Follow up: How old was Theodor Haecker when he died?

Intermediate answer: Theodor Haecker was 65 years old when he died.

Follow up: How old was Harry Vaughan Watkins when he died?

Intermediate answer: Harry Vaughan Watkins was 69 years old when he died.

So the final answer is: Harry Vaughan Watkins

Question: Who was president of the U.S. when superconductivity was discovered?

Are follow up questions needed here: Yes.

Follow up: When was superconductivity discovered?

Intermediate answer: Superconductivity was discovered in 1911.

Follow up: Who was president of the U.S. in 1911?

Intermediate answer: William Howard Taft.

So the final answer is: William Howard Taft.

Conditional LM on retrieved documents: REALM

Bootstrapping with self-supervision for reasoning: StAR

Learning to code: Codex

Teach LM to use search engine: WebGPT

End of Augmented Language Models

Plugins

- Plugins ecosystem
- Primary implementations
 - Langchain Agent/Tool
 - ChatGPT Plugins
 - Fixie
 - Other paradigm proposal

Plugins ecosystem

- Tool as a service
- From SEO to LMO
- Orchestration by LLM

Langchain Agent/Tool

ChatGPT Plugins

Fixie

Other paradigm proposal

End of Plugins

Thanks & QA?