What does a graph fraction look like?

Richard Hammack Virginia Commonwealth University

Based on the paper "Fractional Graphs" to appear in

 $Australasian\ Journal\ of\ Combinatorics$

Graphs are *multiplied* with the Cartesian Product

To encode information about numerator and denominator, graph edges are 2-colored:

Colored graph:

Trivially colored graph:

Colored graphs are *equal* if there's a color-preserving isomorphism between them

Definition: G^{-1} is G with colors interchanged.

How colored graphs are multiplied:

$$\times \times - - =$$

Lemma: If G, H and K are colored graphs, then

1.
$$G \times (H \times K) = (G \times H) \times K$$

$$2. \qquad G \times H = H \times G$$

3.
$$(G \times H)^{-1} = G^{-1} \times H^{-1}$$

4.
$$(G^{-1})^{-1} = G$$

Definition:
$$\frac{G}{H} = G \times H^{-1}$$

Properties:

1.
$$\frac{F}{G} \times \frac{H}{K} = \frac{F \times H}{G \times K}$$

$$2. \qquad \frac{F/G}{H/K} = \frac{F \times K}{G \times H}$$

$$3. \qquad \left(\frac{G}{H}\right)^{-1} = \frac{H}{G}$$

$$4. \quad \frac{I}{G} = G^{-1} \tag{I = \bullet)}$$

5.
$$\frac{G}{I} = G$$

Proof of 1:

$$\frac{F}{G} \times \frac{H}{K} = (F \times G^{-1}) \times (H \times K^{-1})$$

$$= (F \times H) \times (G^{-1} \times K^{-1})$$

$$= (F \times H) \times (G \times K)^{-1}$$

$$= \frac{F \times H}{G \times K}$$

(Proofs of 2–5 are similar.)

A group of graphs

$$\mathbb{G} = \left\{ \begin{array}{cc} \frac{G}{H} & | & G, H \text{ are connected and trivially colored} \end{array} \right\}$$

Equivalence relation on G:

$$\frac{F}{G} \sim \frac{H}{K} \iff F \times K = G \times H$$

$$\mathbb{G}^* = \left\{ \left[\frac{G}{H} \right] \mid \frac{G}{H} \in \mathbb{G} \right\} \quad \text{(set of equivalence classes)}$$

$$\mathbb{G}^* = \left\{ \begin{bmatrix} \frac{G}{H} \end{bmatrix} \mid \frac{G}{H} \in \mathbb{G} \right\} \quad \text{(set of equivalence classes)}$$

 \mathbb{G}^* is a group:

$$\left[\frac{F}{G}\right] \times \left[\frac{H}{K}\right] = \left[\frac{F}{G} \times \frac{H}{K}\right] \qquad \text{(well-defined and associative)}$$

$$[\bullet] \times \left[\frac{G}{H}\right] = \left[\frac{G}{H}\right]$$
 (• is the identity)

$$\left[\frac{G}{H}\right] \times \left[\frac{H}{G}\right] = [\bullet] \qquad \text{(everything has an inverse)}$$

Theorem: $\mathbb{G}^* \cong \mathbb{Q}^*$

Idea behind proof:

 \mathbb{Q}^* = free abelian group generated on the prime numbers.

 \mathbb{G}^* = free abelian group generated on the prime graphs.