The Set Properties Generating Geometry and Physics

George. M. Van Treeck

ABSTRACT. Volume and the Minkowski distances/Lp norms (e.g., Euclidean distance) are derived from a set and limit-based foundation without referencing the primitives of geometry. Sequencing a set of n number of distance intervals/dimensions in all non-zero Levi-Civita permutations via a strict linear order of successor/predecessor relations is a cyclic set limiting n to at most 3. Therefore, all other interval lengths have different types that can only be related to a distance interval length via conversion ratios. The ratios and geometry proofs provide simpler derivations of the spacetime, Newton's gravity, Coulomb's charge force, and Einstein-Planck equations and exposes the ratios composing their corresponding constants. All proofs are verified in Coq.

Contents

1.	Introduction	1
2.	Ruler measure and convergence	2
3.	Volume	3
4.	Distance	4
5.	Applications to physics	6
6.	Insights and implications	9
References		12

1. Introduction

Mathematical (real) analysis can construct differential calculus from a set and limit-based foundation without the need to reference the primitives of Euclidean geometry, like straight line, angle, slope, etc. But the Riemann and Lebesgue integrals and measure theory (for example, Hilbert spaces and the Lebesgue measure) define Euclidean volume as the product of interval lengths. And the inner product, vector norm, and metric space use Euclidean distance and its properties as definitions [Gol76] [Rud76]. Here, volume and distance are derived from a very simple set and limit-based foundation without the hand-waving references to side, angle, triangle, rectangle, etc. for justification.

²⁰¹⁰ Mathematics Subject Classification. Primary 28A75, 28E15. Secondary 03E75, 51M99. Copyright © 2022 George M. Van Treeck. Creative Commons Attribution License.

One possible set-based definition of volume is the cardinal, v_c , of the set of all possible n-tuples from the countable disjoint sets, $x_i \in \{x_1, \cdots, x_n\}$: $v_c = \prod_{i=1}^n |x_i|$, where the cardinal of x_i , $|x_i|$, is a countable distance. But, the equality constraint requires the same operations to be applied to both sides of the equation, which only allows Euclidean volume to be derived. For example, it will proved that: $v = \lim_{\kappa \to 0} v_c \cdot \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa = \cdots = \prod_{i=1}^n d_i$, where $|x_i|$ is the number of approximate partitions of $[a_i, b_i] \subset \mathbb{R}$ and κ is size of each partition in every interval. One possible generalization is: $v_c = f(\prod_{i=1}^n |x_i|) \Rightarrow \exists g : v = g(\prod_{i=1}^n d_i)$.

An intuitive notion of a "geometric" distance is the length of a continuous monotonic path between two points in an n-volume, where each point of the path has a bijective (isomorphic) map to an n-tuple of n-volume points. Therefore, "geometric" distance is the length of continuous interval, where each real value in the distance interval is a bijective (isomorphic) function of an n-tuple of real values in an n-volume.

Every Euclidean and non-Euclidean volume, v, has a corresponding cuboid volume: $\forall \ v = g(\prod_{i=1}^n d_i) \exists \ d \in \mathbb{R} : v = g(\prod_{i=1}^n d_i) = d^n$. And an n-volume can only be the sum of disjoint n-volumes. Therefore: $d^n = v = \sum_{i=1}^m v_i = \sum_{i=1}^m \lim_{\kappa \to 0} (v_{c_i} \cdot \kappa) = \sum_{i=1}^m \lim_{\kappa \to 0} ((\prod_{j=1}^n |x_i|) \cdot \kappa) = \cdots = \sum_{i=1}^m d_i^n \Rightarrow d = (\sum_{i=1}^m d_i^n)^{1/n}$, which are the L_p norms (Minkowski distances) that have the properties of a metric space. That is, every "geometric" distance measure is an bijective (isomorphic) function of the sum of disjoint n-volumes, which is a more strict criteria for a distance measure than the definition of a complete metric space.

The permutation values of the Levi-Civita pseudo-tensor are: $\epsilon_{ijk}=1$, where 3 dimensions of space are sequenced in the cyclic-successor order, $(i,j,k) \in \{(1,2,3),(2,3,1),(3,1,2)\}$; $\epsilon_{ijk}=-1$, where sequenced in cyclic-predecessor order, $(i,j,k) \in \{(3,2,1),(2,1,3),(1,3,2)\}$; and otherwise $\epsilon_{ijk}=0$. Proving that a strict linearly ordered set that can be sequenced in all n-at-a-time permutations via the successor/predecessor relations is a cyclic set limited to $n \leq 3$ implies that an interval length that is not in a cyclic set of 3 "distance" interval lengths has a different type (member of a different set) that can only be related to a 3-dimensional distance via unit-factoring, conversion ratios. The ratios combined with the geometry proofs provide simpler derivations of the spacetime, Newton's gravity, Coulomb's charge force, and Einstein-Planck equations and exposes the ratios that compose the gravity, charge, and Planck constants.

All the proofs in this article are trivial. But to ensure confidence, all the proofs have been verified using using the Coq proof verification system [Coq15]. The formal proofs are in the Cod files, "euclidrelations.v" and "threed.v," at: https://github.com/treeck/RASRGeometry.

2. Ruler measure and convergence

Derivatives and integrals use a 1-1 correspondence between the infinitesimals of each interval, where the size of the infinitesimals in each interval are proportionate to the size of the interval, which precludes using derivatives and integrals to directly express many-to-one, one-to-many, and many-to-many (Cartesian product) mappings between same-sized, size κ , infinitesimals in different-sized intervals. Further, using tools that define Euclidean volume and distance precludes using those tools to derive Euclidean volume and distance.

Therefore, a different tool is used here. A ruler (measuring stick) measures the size of each interval approximately as the sum of the nearest integer number, p, of whole subintervals (infinitesimals), where each infinitesimal has the same size, κ . The ruler is both an inner and outer measure of an interval.

Definition 2.1. Ruler measure,
$$M \colon \forall [a,b] \subset \mathbb{R}, \ s=b-a \land \kappa > 0 \land (p=floor(s/\kappa) \lor p=ceiling(s/\kappa)) \land M=\sum_{i=1}^p \kappa=p\kappa.$$

Theorem 2.2. Ruler convergence: $M = \lim_{\kappa \to 0} p\kappa = s$.

The formal proof, "limit_c_0_M_eq_exact_size," is in the file, euclidrelations.v.

Proof. (epsilon-delta proof)

By definition of the floor function, $floor(x) = max(\{y: y \le x, y \in \mathbb{Z}, x \in \mathbb{R}\})$:

$$(2.1) \quad \forall \; \kappa > 0, \; p = floor(s/\kappa) \; \; \wedge \; \; 0 \leq |floor(s/\kappa) - s/\kappa| < 1 \; \; \Rightarrow \; \; |p - s/\kappa| < 1.$$

Multiply both sides of inequality 2.1 by κ :

$$(2.2) \forall \kappa > 0, |p - s/\kappa| < 1 \Rightarrow |p\kappa - s| < |\kappa| = |\kappa - 0|.$$

$$(2.3) \quad \forall \ \epsilon = \delta \quad \land \quad |p\kappa - s| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |p\kappa - s| < \delta = \epsilon \quad := \quad M = \lim_{\kappa \to 0} p\kappa = s. \quad \Box$$

The following is an example of ruler convergence for the interval, $[0,\pi]$: $s = \pi - 0$, and $p = floor(s/\kappa) \Rightarrow p \cdot \kappa = 3.1_{\kappa = 10^{-1}}, \ 3.14_{\kappa = 10^{-2}}, \ 3.141_{\kappa = 10^{-3}}, ..., \pi_{\lim_{\kappa \to 0}}$.

Lemma 2.3.
$$\forall n \geq 1, \quad 0 < \kappa < 1 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa.$$

PROOF. The formal proof , "lim_c_to_n_eq_lim_c," is in the Coq file, euclid relations.v.

$$(2.4) \quad n \ge 1 \quad \land \quad 0 < \kappa < 1 \quad \Rightarrow \quad 0 < \kappa^n < \kappa \quad \Rightarrow \quad |\kappa - \kappa^n| < |\kappa| = |\kappa - 0|.$$

$$(2.5) \quad \forall \ \epsilon = \delta \quad \land \quad |\kappa - \kappa^n| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |\kappa - \kappa^n| < \delta = \epsilon \quad := \quad \lim_{\kappa \to 0} \kappa^n = 0.$$

$$(2.6) \quad \lim_{\kappa \to 0} \kappa^n = 0 \quad \wedge \quad \lim_{\kappa \to 0} \kappa = 0 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa. \quad \Box$$

3. Volume

DEFINITION 3.1. Countable volume, v_c , is the number of Cartesian product mappings (n-tuples) between the members of n number of disjoint, countable domain sets, x_i , where the cardinal, $|x_i|$, is a countable distance:

$$(3.1) \ \exists \ n \in \mathbb{N}, \ v_c, \in \{0, \ \mathbb{N}\}, \ x_i \in \{x_1, \cdots, x_n\}, \ \bigcap_{i=1}^n x_i = \emptyset: \quad v_c = f(\prod_{i=1}^n |x_i|).$$

THEOREM 3.2. Euclidean volume, $v = \prod_{i=1}^{n} s_i$, is the equality case of countable volume, where each countable set, x_i , is a set of same-sized, size κ , partitions of an interval, $[a_i, b_i] \subset \mathbb{R}$.

(3.2)
$$\forall [a_i, b_i], [v_a, v_b] \subset \mathbb{R}, \ s_i = b_i - a_i, \ v = v_a - v_b, \ v_c = \prod_{i=1}^n |x_i| \Rightarrow v = \prod_{i=1}^n s_i.$$

The formal proof, "Euclidean_volume," is in the Coq file, euclidrelations.v.

PROOF.

Use the ruler (2.1) to partition each of the domain intervals, $[a_i, b_i]$, into a set, x_i , containing $|x_i|$ number of size κ partitions and apply ruler convergence (2.2):

$$(3.3) \ \forall i \ n \in \mathbb{N}, \ i \in [1, n], \ \kappa > 0 \ \land \ floor(s_i/\kappa) = |x_i| \ \Rightarrow \ s_i = \lim_{\kappa \to 0} (|x_i| \cdot \kappa).$$

$$(3.4) s_i = \lim_{\kappa \to 0} (|x_i| \cdot \kappa) \quad \Leftrightarrow \quad \prod_{i=1}^n s_i = \prod_{i=1}^n \lim_{\kappa \to 0} (|x_i| \cdot \kappa).$$

$$(3.5) \quad \prod_{i=1}^{n} s_i = \prod_{i=1}^{n} \lim_{\kappa \to 0} (|x_i| \cdot \kappa) \quad \Leftrightarrow \quad \prod_{i=1}^{n} s_i = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i|) \cdot \kappa^n.$$

Apply lemma 2.3 to equation 3.5:

$$(3.6) \quad \prod_{i=1}^{n} s_{i} = \lim_{\kappa \to 0} \left(\prod_{i=1}^{n} |x_{i}| \right) \cdot \kappa^{n} \quad \wedge \quad \lim_{\kappa \to 0} \kappa^{n} = \lim_{\kappa \to 0} \kappa$$

$$\Rightarrow \quad \prod_{i=1}^{n} s_{i} = \lim_{\kappa \to 0} \left(\prod_{i=1}^{n} |x_{i}| \right) \cdot \kappa.$$

Apply the ruler (2.1) and ruler convergence (2.2) to v:

$$(3.7) \exists v \in \mathbb{R} : v_c = floor(v/\kappa) \Leftrightarrow v = \lim_{\kappa \to 0} v_c \cdot \kappa.$$

Multiply both sides of the countable volume equation 3.1 by κ :

$$(3.8) v_c = \prod_{i=1}^n |x_i| \Leftrightarrow v_c \cdot \kappa = (\prod_{i=1}^n |x_i|) \cdot \kappa$$

$$(3.9) v_c \cdot \kappa = (\prod_{i=1}^n |x_i|) \cdot \kappa \quad \Leftrightarrow \quad \lim_{\kappa \to 0} v_c \cdot \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa.$$

Combine equations 3.7, 3.9, and 3.6:

(3.10)
$$v = \lim_{\kappa \to 0} v_c \cdot \kappa \quad \wedge \quad \lim_{\kappa \to 0} v_c \cdot \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa \quad \wedge \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa = \prod_{i=1}^n s_i \quad \Leftrightarrow \quad v = \prod_{i=1}^n s_i. \quad \Box$$

4. Distance

4.1. Countable cuboid n-volume.

DEFINITION 4.1. The countable cuboid volume, d_c^n , is the sum of m number of sets of countable cuboid volumes.

$$\forall n \in \mathbb{N}, \quad d_c \in \{0, \mathbb{N}\} \quad \exists m \in \mathbb{N}, \quad x_1, \cdots, x_m \in X, \quad \bigcap_{i=1}^m x_i = \emptyset :$$
$$d_c^n = \sum_{i=1}^m |x_i|^n.$$

4.2. Minkowski distance $(L_p \text{ norm})$.

The formal proof, "Minkowski_distance," is in the Coq file, euclidrelations.v.

Theorem 4.2. The Minkowski distances (L_p norms) are derived from the sum of countable cuboid n-volumes (4.1).

$$d_c^n = \sum_{i=1}^m |x_i|^n \quad \Rightarrow \quad \exists \ d, s_1, \cdots, s_m \in \mathbb{R} : \quad d = (\sum_{i=1}^m s_i^n)^{1/n}.$$

PROOF. Apply the ruler (2.1):

$$(4.1) \exists d, s_1, \cdots, s_m \in \mathbb{R} : d_c = floor(d/\kappa) \land |x_i| = floor(s_i/\kappa).$$

Apply the ruler convergence (2.2):

$$(4.2) |x_i| = floor(s_i/\kappa) \Rightarrow s_i = \lim_{\kappa \to 0} |x_i| \cdot \kappa.$$

$$(4.3) d_c^n = \sum_{i=1}^m |x_i|^n \quad \Rightarrow \quad d^n = \lim_{\kappa \to 0} (d_c \cdot \kappa)^n = \lim_{\kappa \to 0} (\sum_{i=1}^m (|x_i|^n) \cdot \kappa.$$

Apply lemma 2.3 to equation 4.3 and substitute equation 4.2:

$$(4.4) \quad d^n = \lim_{\kappa \to 0} \left(\sum_{i=1}^m (|x_i|^n) \cdot \kappa \right) \wedge \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa$$

$$\Rightarrow \quad d^n = \lim_{\kappa \to 0} \sum_{i=1}^m (|x_i|^n) \cdot \kappa^n = \lim_{\kappa \to 0} \sum_{i=1}^m (|x_i| \cdot \kappa)^n.$$

Apply equation 4.2 to equation 4.4:

$$(4.5) \ d^n = \lim_{\kappa \to 0} \sum_{i=1}^m (|x_i| \cdot \kappa)^n \quad \land \quad s_i = \lim_{\kappa \to 0} |x_i| \cdot \kappa \quad \Rightarrow \quad d^n = \sum_{i=1}^m s_i^n.$$

(4.6)
$$d^n = \sum_{i=1}^m s_i^n \quad \Leftrightarrow \quad d = (\sum_{i=1}^m s_i^n)^{1/n}.$$

4.3. Distance inequality. Proving that all Minkowski distances (L_p norms) satisfy the metric space triangle inequality requires another inequality. The formal proof, distance_inequality, is in the Coq file, euclidrelations.v.

Theorem 4.3. Distance inequality

$$\forall n \in \mathbb{N}, \ v_a, v_b \ge 0: \ (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}.$$

PROOF. Expand the n-volume, $(v_a^{1/n} + v_b^{1/n})^n$, using the binomial expansion:

$$(4.7) \quad \forall v_a, v_b \ge 0: \quad v_a + v_b \le v_a + v_b + \\ \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^{n-k} (v_b^{1/n})^k + \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^k (v_b^{1/n})^{n-k} = (v_a^{1/n} + v_b^{1/n})^n.$$

Take the n^{th} root of both sides of the inequality:

$$(4.8) \ \forall \ v_a, v_b \ge 0, n \in \mathbb{N} : v_a + v_b \le (v_a^{1/n} + v_b^{1/n})^n \Rightarrow (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}. \quad \Box$$

4.4. Distance sum inequality. The formal proof, distance_sum_inequality, is in the Coq file, euclidrelations.v.

Theorem 4.4. Distance sum inequality

$$\forall m, n \in \mathbb{N}, \ a_i, b_i \ge 0: \ (\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}.$$

PROOF. Apply the distance inequality (4.3):

$$(4.9) \quad \forall m, n \in \mathbb{N}, \quad v_a, v_b \ge 0: \quad v_a = \sum_{i=1}^m a_i^n \quad \land \quad v_b = \sum_{i=1}^m b_i^n \quad \land$$

$$(v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n} \quad \Rightarrow \quad ((\sum_{i=1}^m a_i^n) + (\sum_{i=1}^m b_i^n))^{1/n} =$$

$$(\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}. \quad \Box$$

4.5. Metric Space. All Minkowski distances (L_p norms) have the properties of metric space.

The formal proofs: triangle_inequality, symmetry, non_negativity, and identity_of_indiscernibles are in the Coq file, euclidrelations.v.

THEOREM 4.5. Triangle Inequality: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \le d(u, v) + d(v, w).$

PROOF.
$$\forall p \geq 1, \quad k > 1, \quad u = s_1, \quad w = s_2, \quad v = w/k$$
:

$$(4.10) (u^p + w^p)^{1/p} \le ((u^p + w^p) + 2v^p)^{1/p} = ((u^p + v^p) + (v^p + w^p))^{1/p}.$$

Apply the distance inequality (4.3) to the inequality 4.10:

$$(4.11) \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \wedge (v_{a} + v_{b})^{1/n} \leq v_{a}^{1/n} + v_{b}^{1/n}$$

$$\wedge \quad v_{a} = u^{p} + v^{p} \wedge v_{b} = v^{p} + w^{p}$$

$$\Rightarrow \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p}$$

$$\Rightarrow \quad d(u, w) = (u^{p} + w^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p} = d(u, v) + d(v, w). \quad \Box$$

Theorem 4.6. Symmetry: $d(s_1, s_2) = (\sum_{i=1}^{2} s_i^p)^{1/p} \implies d(u, v) = d(v, u)$.

PROOF. By the commutative law of addition:

(4.12)
$$\forall p : p \ge 1$$
, $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} = (s_1^p + s_2^p)^{1/p}$
 $\Rightarrow d(u, v) = (u^p + v^p)^{1/p} = (v^p + u^p)^{1/p} = d(v, u)$. \square

Theorem 4.7. Non-negativity: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \ge 0$.

PROOF. By definition, the length of an interval is always ≥ 0 :

$$(4.13) \forall [a_1, b_1], [a_2, b_2], u = b_1 - a_1, v = b_2 - a_2, \Rightarrow u \ge 0, v \ge 0.$$

(4.14)
$$p \ge 1, \ u, v \ge 0 \quad \Rightarrow \quad d(u, v) = (u^p + v^p)^{1/p} \ge 0.$$

Theorem 4.8. Identity of Indiscernibles: d(u, u) = 0.

PROOF. From the non-negativity property (4.7):

$$(4.15) \quad d(u,w) \ge 0 \quad \land \quad d(u,v) \ge 0 \quad \land \quad d(v,w) \ge 0$$

$$\Rightarrow \quad \exists d(u,w) = d(u,v) = d(v,w) = 0.$$

$$(4.16) d(u,w) = d(v,w) = 0 \Rightarrow u = v.$$

$$(4.17) d(u,v) = 0 \wedge u = v \Rightarrow d(u,u) = 0.$$

5. Applications to physics

5.1. At most 3 dimensions of physical space. The following two proofs are in the physics section because limiting the distance intervals/dimensions to a strict linearly ordered set that can be sequenced in all n-at-a-time permutations, is an additional restriction on volume and distance used to explain why physical space is limited to a cyclic set of 3 dimensions.

Definition 5.1. Strict linearly ordered set:

$$\forall i \ n \in \mathbb{N}, \ i \in [1, n-1], \ \forall x_i \in \{x_1, \dots, x_n\},\$$

 $successor x_i = x_{i+1} \land predecessor x_{i+1} = x_i.$

DEFINITION 5.2. Symmetry (every set member is sequentially adjacent to every other member):

$$\forall i \ j \ n \in \mathbb{N}, \ \forall x_i \ x_j \in \{x_1, \dots, x_n\}, \ successor \ x_i = x_j \ \Leftrightarrow \ predecessor \ x_j = x_i.$$

Theorem 5.3. A strict linearly ordered and symmetric set is a cyclic set.

$$i=n \ \land \ j=1 \ \Rightarrow \ successor \ x_n=x_1 \ \land \ predecessor \ x_1=x_n.$$

The formal proof, "ordered_symmetric_is_cyclic," is in the Coq file, threed.v.

PROOF. A total order (5.1) defines unique successors and predecessors for all set members except for the successor of x_n and the predecessor of x_1 . Therefore, the only member that can be a successor of x_n , without creating a contradiction, is x_1 . And the only member that can be a predecessor of x_1 , without creating a contradiction, is x_n . Applying the symmetry property (5.2):

$$(5.1) i = n \land j = 1 \land successor x_i = x_j \Rightarrow successor x_n = x_1.$$

Applying the definition of the symmetry property (5.2) to conclusion 5.1:

(5.2) successor
$$x_i = x_i \Rightarrow predecessor x_i = x_i \Rightarrow predecessor x_1 = x_n$$
.

Theorem 5.4. An ordered and symmetric set is limited to at most 3 members.

The formal proofs in the Coq file threed.v are:

Lemmas: adj111, adj122, adj212, adj123, adj133, adj233, adj213, adj313, adj323, and not_all_mutually_adjacent_gt_3.

The following proof uses Horn clauses (a subset of first order logic), which makes it clear which facts satisfy a proof goal.

Proof.

It was proved that an ordered and symmetric set is a cyclic set (5.3).

Definition 5.5. Successor of m is n:

$$(5.3) \ Successor(m,n,setsize) \leftarrow (m=setsize \land n=1) \lor (n=m+1 \le setsize).$$

Definition 5.6. Predecessor of m is n:

$$(5.4) \quad Predecessor(m, n, setsize) \leftarrow (m = 1 \land n = setsize) \lor (n = m - 1 \ge 1).$$

DEFINITION 5.7. Adjacent: member m is sequentially adjacent to member n if the successor of m is n or the predecessor of m is n. Notionally: (5.5)

 $Adjacent(m, n, setsize) \leftarrow Successor(m, n, setsize) \lor Predecessor(m, n, setsize).$

Prove that every member is adjacent to every other member, where $setsize \in \{1, 2, 3\}$:

$$(5.6) Adjacent(1,1,1) \leftarrow Successor(1,1,1) \leftarrow (m = setsize \land n = 1).$$

$$(5.7) \qquad Adjacent(1,2,2) \leftarrow Successor(1,2,2) \leftarrow (n=m+1 \leq setsize).$$

$$(5.8) Adjacent(2,1,2) \leftarrow Successor(2,1,2) \leftarrow (n = setsize \land m = 1).$$

$$(5.9) Adjacent(1,2,3) \leftarrow Successor(1,2,3) \leftarrow (n=m+1 \leq setsize).$$

$$(5.10) Adjacent(2,1,3) \leftarrow Predecessor(2,1,3) \leftarrow (n=m-1 \ge 1).$$

$$(5.11) \qquad Adjacent(3,1,3) \leftarrow Successor(3,1,3) \leftarrow (n = setsize \land m = 1).$$

$$(5.12) Adjacent(1,3,3) \leftarrow Predecessor(1,3,3) \leftarrow (m=1 \land n=setsize).$$

$$(5.13) \qquad Adjacent(2,3,3) \leftarrow Successor(2,3,3) \leftarrow (n=m+1 \leq setsize).$$

 $(5.14) \qquad Adjacent(3,2,3) \leftarrow Predecessor(3,2,3) \leftarrow (n=m-1 \geq 1).$

Member 2 is the only successor of member 1 for all setsize > 3, which implies member 3 is not (\neg) a successor of member 1 for all setsize > 3:

(5.15)
$$\forall set size > 3: \neg Successor(1, 3, set size > 3) \\ \leftarrow Successor(1, 2, set size > 3) \leftarrow (n = m + 1 \le set size).$$

Member n = setsize > 3 is the only predecessor of member 1, which implies member 3 is not a predecessor of member 1 for all setsize > 3:

(5.16)
$$\forall setsize > 3: \neg Predecessor(1, 3, setsize > 3)$$

 $\leftarrow Predecessor(1, setsize, setsize > 3) \leftarrow (m = 1 \land n = setsize > 3).$

For all setsize > 3, some elements are not sequentially adjacent to every other element (not symmetric):

(5.17)
$$\forall setsize > 3: \neg Adjacent(1, 3, setsize > 3)$$

 $\leftarrow \neg Successor(1, 3, setsize > 3) \land \neg Predecessor(1, 3, setsize > 3). \square$

5.2. Spacetime geometry. From the Euclidean volume proof (3.2), two independent (disjoint) intervals, $[0, r_1]$ and $[0, r_2]$, defines an Euclidean 2-space. From the Minkowski distance proof (4.2), the disjoint intervals each have corresponding disjoint cuboid 2-volumes that sum to a cuboid 2-volume: $r^2 = r_1^2 + r_2^2$. And from the 3D proof (5.4), where r, r_1 , and r_2 are 3-dimensional distances, any other interval length, t, must have a different type that is related to the distances via unit-factoring, conversion ratios:

$$(5.18) \ r^2 = r_1^2 + r_2^2 \quad \wedge \quad \exists \ r_c, t_c, c \in \mathbb{R} : (r_c/t_c) = c = r/t \quad \Rightarrow \quad (ct)^2 = r_1^2 + r_2^2.$$

(5.19)
$$(ct)^2 = r_1^2 + r_2^2 \quad \land \quad \exists r_v, t_v, v \in \mathbb{R} : (r_v/t_v) = v = r_2/t$$

$$\Rightarrow \quad r_1 = \sqrt{(ct)^2 - (vt)^2} = ct\sqrt{1 - (v/c)^2}.$$

Local (proper) distance, r_1 , contracts relative to coordinate distance, r, as $v \to c$:

(5.20)
$$r_1 = ct\sqrt{1 - (v/c)^2} \quad \land \quad ct = r \quad \Rightarrow \quad r_1 = r\sqrt{1 - (v/c)^2}.$$

Local (proper) time, t_1 , dilation relative to coordinate time, t, as $v \to c$:

(5.21)
$$r_1 = ct\sqrt{1 - (v/c)^2} \quad \land \quad t_1 = r_1/c \quad \Rightarrow \quad t_1 = t\sqrt{1 - (v/c)^2}.$$

The "+ - - -" form of Minkowski's flat spacetime [**Bru17**], the size of the event separation interval, r_1 , is:

(5.22)
$$r^2 = r_1^2 + r_2^2 \quad \land \quad ct = r \quad \land \quad r_2^2 = x^2 + y^2 + z^2$$

$$\Rightarrow \quad r_1^2 = (ct)^2 - x^2 - y^2 - z^2.$$

5.3. Newton's gravity force equation. From the 3D proof (5.4), where r is a 3-dimensional distance, a mass interval length, m, must have a different type that is related to the distance via a unit-factoring, conversion ratio, $r = (r_G/m_G)m$:

(5.23)
$$F := m_0 a := m_0 r/t^2 \quad \land \quad \exists \ m_G, r_c, m_1 \in \mathbb{R} : \ r = (r_G/m_G)m_1$$

$$\Rightarrow F := m_0 r/t^2 = (r_c/m_G)m_0 m_1/t^2,$$

where a constant mass, m_0 , and force implies a constant acceleration, $a := r/t^2$.

From equation 5.20, the proper distance, $r = ct\sqrt{1 - (v/c)^2}$, and where v = 0:

(5.24)
$$r = ct \wedge F = (r_c/m_G)m_0m_1/t^2 \Rightarrow$$

 $F = ((r_c/m_G)c^2)m_0m_1/r^2 = Gm_0m_1/r^2,$

where the constant, $G = (r_c/m_G)c^2$, has the SI units: $m^3 \cdot kg^{-1} \cdot s^{-2}$. And where |v| > 0, $F = (r_c/m_G)(c^2 - v^2)m_0m_1/r^2$.

5.4. Coulomb's charge force. From the 3D proof (5.4), where r is a 3-dimensional distance, a charge interval length, q, must have a different type that is related to the distance via a unit-factoring, conversion ratio, $r = (r_C/q_C)q$:

(5.25)
$$F := m_0 a := m_0 r/t^2 \wedge m_0 = (m_C/q_C)q_1 \wedge r = (r_c/q_C)q_2$$

$$\Rightarrow F := m_0 r/t^2 = (m_C/q_C)(r_c/q_C)q_1q_2/t^2,$$

where a constant rest mass, m_0 , and force implies a constant acceleration, $a := r/t^2$.

From equation 5.20, the proper distance, $r = ct\sqrt{1 - (v/c)^2}$, and where v = 0:

(5.26)
$$r = ct = (r_c/t_c)t$$
 \wedge $F = (m_C/q_C)(r_c/q_C)q_1q_2/t^2$
 \Rightarrow $F = (m_C/q_C)(r_c/q_C)(r_c/t_c)^2q_1q_2/r^2$.

(5.27)
$$a_G = r_c/t_c^2 \quad \land \quad F = (m_C/q_C)(r_c/q_C)(r_c/t_c)^2 q_1 q_2/r^2$$

$$\Rightarrow \quad F = (m_C a_G)(r_c/q_C)^2 q_1 q_2/r^2 = k_e q_1 q_2/r^2,$$

where the predicted charge constant, $k_e = (m_C a_G)(r_c/q_C)^2$, has the SI units: $N \cdot m^2 \cdot C^{-2}$. And where |v| > 0, $F = (m_C/q_C)(r_c/q_C)(c^2 - v^2)q_1q_2/r^2$.

5.5. Einstein-Planck and energy-charge equations: $m=(m_p/r_p)r$ and $r/t=r_c/t_c=c\Rightarrow m(ct)^2=((m_p/r_p)r)r^2$. Dividing both sides by t^2 yields Einstein's energy: $E=mc^2=((m_p/r_p)r)(r/t)^2=((m_p/r_p)r)(r_c/t_c)^2=((m_pr_c/r_pt_c)c)r=(m_pr_cc)(r/(r_pt_c))=hf$, which is the Einstein-Planck equation, where the Planck constant is, $h=m_pr_cc$, and $f=r/(r_pt_c)$ is the frequency in cycles per second. $h=(m_pr_c)c=k_Wc$, such that $m_0r=k_W\approx 2.2102190943\cdot 10^{-42}~kg~m$, where r is the work displacement (Compton wavelength) on the rest mass, m_0 .

Likewise, for charge, $r = (r_C/q_C)q = (r_p/m_p)m \Rightarrow m = (m_p/r_p)(r_C/q_C)q \Rightarrow E = mc^2 = (m_p/r_p)(r_C/q_C)qc^2 = (m_pr_c) \cdot (r_Cq/r_pq_Ct_c) = hf_q.$

6. Insights and implications

(1) Euclid's proof that Euclidean distance is the smallest distance between two distinct points equate Euclidean distance to a straight line, where it is assumed that the straight line length is the smallest distance [Joy98]. And proofs that a straight line is the smallest distance equate the straight line to the Euclidean distance.

The calculus of variations cannot be used to prove that the smallest distance is the Euclidean distance in Euclidean space because the integrals make Euclidean assumptions, which would result in circular logic.

However, it was shown every "geometric" distance measure is an bijective function of the sum of disjoint n-volumes with a corresponding Minkowski distance (4.2), $d = (\sum_{i=1}^m s_i^n)^{1/n}$. If m represents the sum of two 2-volumes, then $1 \le n \le m = 2$, which constrains the Minkowski

distances to a range from Manhattan distance (the largest distance, $d = \sum_{i=1}^{m} s_i$) to Euclidean distance (the smallest distance, $d = (\sum_{i=1}^{m} s_i^2)^{1/2}$) in Euclidean (flat) 2-space.

(2) Hilbert spaces allow fractional dimensions (fractals), which is the case of intersecting distance sets and requires generalizing the countable volume definition (3.1) from $v_c = f(\prod_{i=1}^n |x_i|)$ to:

$$v_c = f(\prod_{i=1}^{n} (|x_i| - |x_i|) (\bigcup_{j=1, i \neq j}^{n} x_j))).$$

Intersecting distance sets might have applications in search algorithms and artificial intelligence that is computationally more efficient than the inclusion-exclusion principle, Bayesian logic, etc. That is, intersecting domain sets reduces the relevancy (search) volume. And intersecting domain sets allows a neural network to generalize a response across domains.

(3) Compare the distance sum inequality (4.4),

$$(\sum_{i=1}^{m} (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^{m} a_i^n)^{1/n} + (\sum_{i=1}^{m} b_i^n)^{1/n},$$

used to prove that all Minkowski distances satisfy the metric space triangle inequality property (4.5), to Minkowski's sum inequality:

$$(\sum_{i=1}^m (a_i^n + b_i^n)^n)^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}.$$

Note the exponent difference in the left side of the two inequalities:

$$(\sum_{i=1}^{m} (a_i^n + b_i^n))^{1/n}$$
 vs. $(\sum_{i=1}^{m} (a_i^n + b_i^n)^n)^{1/n}$.

Minkowski's sum inequality proof assumes: convexity and the L_p space inequalities (for example, H´older's inequality or Mahler's inequality) or the triangle inequality. In contrast, the distance (sum) inequality is a more fundamental inequality that does not require the assumptions of the Minkowski sum inequality.

- (4) From the 3D proof (5.4), more intervals than the 3 dimensions of distance intervals must have different types with lengths that are related to a 3-dimensional distance interval length, r, via constant, unit-factoring, conversion ratios (both direct and inverse proportion ratios). The direct proportion ratios for time, mass, and charge are: $r = (r_c/t_c)t = ct = (r_c/m_G)m = (r_c/q_C)q$. An inverse proportion ratio is the mass-displacement ratio: $m_0r = (m_pr_c) = k_W$. The speed of light, c, the gravity constant, G, the charge constant, k_e , and the Planck constant, h, were all derived from these constant ratios.
- (5) The derivations in this article show that the spacetime, gravity force, charge force, and Einstein-Planck equations all depend on time being proportionate to distance: $r = (r_c/t_c)t = ct$. For example, from the derivation of Newton's gravity equation (5.24), where v = 0: $G = (r_c/m_G)c^2$. Likewise, from the derivation of Coulomb's charge force equation (5.27) the constant, where v = 0: $k_e = (m_G/q_C)(r_c/q_C)c^2$. And from the derivation of the Planck constant (5.5): $h = (m_p r_c)c = k_W c$. The gravity, charge, and Planck constants are not fundamental constants because the constants are derived from other (conversion ratio) constants.
- (6) The derivations of the spacetime equations, here, differ from all other derivations and provide insights that the other derivations cannot provide.
 - (a) The derivations, here, do not rely on the Lorentz transformations or Einsteins' postulates [1) The laws of physics are the same in every

frame of reference; 2) The speed of light is a constant in every frame of reference.

- (b) The derivations, here, rely only on the set-based proofs of the Minkowski distances (4.2) and the 3D proof (5.4) to show the notion of velocity comes from the unit-factoring conversion ratios of an interval length, t, to the 3-dimensional distance interval lengths: r_1 , r_2 , and r.
- (c) From equation 5.18: $r^2 = r_1^2 + r_2^2 \Rightarrow r_1, r_2 \leq r \Rightarrow r_1/t, r_2/t \leq r/t$. That is, any ratios (velocities) in the local frames of reference, $v_1 = r_1/t$ and $v_2 = r_2/t$, will always be less than or equal to the ratio (velocity) in the coordinate frame of reference, where c = r/t.
- (d) The "+--" form of the spacetime interval equation, $s^2=(ct)^2-x^2-y^2-z^2$, (5.22) was derived from the same assumptions used to derive the distance contraction (5.20) and time dilation (5.21) equations. But, the "-+++" form, $s^2=-(ct)^2+x^2+y^2+z^2$, of the spacetime interval cannot be derived from those same assumptions, which implies that it is logically incorrect to use the "-+++" form in Einstein's general relativity (field) equations.
- (7) Applying the ratios to derive Newton's gravity force (5.3) and Coulomb's charge force (5.4) equations provide some firsts and some new insights into physics:
 - (a) These are the first derivations to not assume the inverse square law or Gauss's flux divergence theorem.
 - (b) These are the first derivations to show that the definition of force, $F := m_0 a$, containing acceleration, $a = r/t^2$, where r is a distance that is proportionate to time, t, generates the inverse square law.
 - (c) Using Occam's razor, those versions of constants like: charge, vacuum magnetic permeability, etc. that contain the value 4π might be incorrect because those constants are based on the less parsimonious assumption that the inverse square law is due to Gauss's flux divergence on a sphere having the surface area, $4\pi r^2$.
 - (d) These are the first derivations to predict that G and k_e are constants, in the local frame of reference, only where the local (world line) velocity is zero. The derived relativistic gravity and charge force equations are: $F = (r_c/m_G)(c^2 v^2)m_0m_1/r^2$ (5.24) and $F = (m_C/q_C)(r_c/q_C)(c^2 v^2)q_1q_2/r^2$ (5.27). Einstein's gravity constant, $k = 8\pi G/c^4$, used in his general relativity (field) equations, contains Newton's constant, G. But, the derivation of G is only valid when the local velocity is 0. Otherwise,
 - $k=8\pi(r_G/m_G)(c^2-v^2)/c^4$. $v\to c\Rightarrow F\to 0$, which predicts that a universe expanding at relativistic velocities would expand faster than that predicted by Einstein's gravity constant due to a weaker gravitational force at relativistic velocities.
- (8) There is no unit-factoring ratio converting a state, a single value, to varying distance, time, mass, and charge interval lengths. For example, the spin states of two quantum entangled particles and the polarization states of two quantum entangled photons change independent of the amount of distance between the particles and independent of time (instantaneous).

- (9) It was proved that sequencing through a set, having a strict linear order via the successor/predecessor relations in all n-at-a-time permutations, is a cyclic set with $n \leq 3$ (5.4), which is the most parsimonious explanation for observing only 3 dimensions of physical distance and volume.
 - (a) If there are higher dimensions of ordered and symmetric geometric space, then there is a set of at most three members (5.4), each member being an ordered and symmetric set of 3 dimensions (three balls).
 - (b) Each of 3 ordered and symmetric dimensions of space can have only 3 sequentially ordered and symmetric state values. For example, the ordered and symmetric set of the 3 vector orientations, $\{-1,0,1\}$, per dimension, which makes physical space chiral (allows mirror images and mirror rotations).
 - (c) Each of the 3 ordered and symmetric dimensions of space could correspond to an unordered collection (bag) of discrete state values. The lack of order makes bags non-deterministic. For example, every time a binary state is "pulled" from a bag, there is a 50 percent chance of getting one of the binary values.

References

[Bru17] P. Bruskiewich, A very simple introduction to special relativity: Part two - four vectors, the lorentz transformation and group velocity (the new mathematics for the millions book 38), Pythagoras Publishing, 2017. ↑8

[Coq15] Coq, Coq proof assistant, 2015. https://coq.inria.fr/documentation. \dagger2

[Gol76] R. R. Goldberg, Methods of real analysis, John Wiley and Sons, 1976. \1

[Joy98] D. E. Joyce, Euclid's elements, 1998. http://aleph0.clarku.edu/~djoyce/java/elements/elements.html. ↑9

[Rud76] W. Rudin, Principles of mathematical analysis, McGraw Hill Education, 1976. †1

George Van Treeck, 668 Westline Dr., Alameda, CA 94501