```
import numpy as np
import pandas as pd
```

import os

for dirname, \_, filenames in os.walk('/kaggle/input'):
 for filename in filenames:
 print(os.path.join(dirname, filename))

df=pd.read\_csv('/content/Heart\_Disease\_Prediction.csv')

df

D

|     | Age | Sex | Chest<br>pain<br>type | ВР  | Cholesterol | FBS<br>over<br>120 | EKG<br>results | Max<br>HR | Exercise<br>angina | ST<br>depression | Slc<br>of |
|-----|-----|-----|-----------------------|-----|-------------|--------------------|----------------|-----------|--------------------|------------------|-----------|
| 0   | 70  | 1   | 4                     | 130 | 322         | 0                  | 2              | 109       | 0                  | 2.4              |           |
| 1   | 67  | 0   | 3                     | 115 | 564         | 0                  | 2              | 160       | 0                  | 1.6              |           |
| 2   | 57  | 1   | 2                     | 124 | 261         | 0                  | 0              | 141       | 0                  | 0.3              |           |
| 3   | 64  | 1   | 4                     | 128 | 263         | 0                  | 0              | 105       | 1                  | 0.2              |           |
| 4   | 74  | 0   | 2                     | 120 | 269         | 0                  | 2              | 121       | 1                  | 0.2              |           |
|     |     |     |                       |     |             |                    |                |           |                    |                  |           |
| 265 | 52  | 1   | 3                     | 172 | 199         | 1                  | 0              | 162       | 0                  | 0.5              |           |
| 266 | 44  | 1   | 2                     | 120 | 263         | 0                  | 0              | 173       | 0                  | 0.0              |           |
| 267 | 56  | 0   | 2                     | 140 | 294         | 0                  | 2              | 153       | 0                  | 1.3              |           |
| 268 | 57  | 1   | 4                     | 140 | 192         | 0                  | 0              | 148       | 0                  | 0.4              |           |
| 269 | 67  | 1   | 4                     | 160 | 286         | 0                  | 2              | 108       | 1                  | 1.5              |           |
|     |     |     |                       |     |             |                    |                |           |                    |                  |           |

270 rows × 14 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 270 entries, 0 to 269
Data columns (total 14 columns):

| _ 0. 0 0. | 00-0000 (00-000 - 1 00-0000) | - / •   |         |       |
|-----------|------------------------------|---------|---------|-------|
| #         | Column                       | Non-Nul | l Count | Dtype |
|           |                              |         |         |       |
| 0         | Age                          | 270 non | -null   | int64 |
| 1         | Sex                          | 270 non | -null   | int64 |
| 2         | Chest pain type              | 270 non | -null   | int64 |
| 3         | BP                           | 270 non | -null   | int64 |
| 4         | Cholesterol                  | 270 non | -null   | int64 |
| 5         | FBS over 120                 | 270 non | -null   | int64 |
|           |                              |         |         |       |

| 6   | EKG results             | 270 | non-null  | int64   |
|-----|-------------------------|-----|-----------|---------|
| 7   | Max HR                  | 270 | non-null  | int64   |
| 8   | Exercise angina         | 270 | non-null  | int64   |
| 9   | ST depression           | 270 | non-null  | float64 |
| 10  | Slope of ST             | 270 | non-null  | int64   |
| 11  | Number of vessels fluro | 270 | non-null  | int64   |
| 12  | Thallium                | 270 | non-null  | int64   |
| 13  | Heart Disease           | 270 | non-null  | object  |
| ك ا | C1+C4/4) :-+C4/42)      | - 1 | · + / 1 \ |         |

dtypes: float64(1), int64(12), object(1)

memory usage: 29.7+ KB

## df.isnull().sum()

| Age                     | 0 |
|-------------------------|---|
| Sex                     | 0 |
| Chest pain type         | 0 |
| BP                      | 0 |
| Cholesterol             | 0 |
| FBS over 120            | 0 |
| EKG results             | 0 |
| Max HR                  | 0 |
| Exercise angina         | 0 |
| ST depression           | 0 |
| Slope of ST             | 0 |
| Number of vessels fluro | 0 |
| Thallium                | 0 |
| Heart Disease           | 0 |
| dtype: int64            |   |

import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x=df['Heart Disease'],hue='Sex',data=df)





sns.countplot(x=df['Heart Disease'],hue='Chest pain type',data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d6c6f690>



sns.countplot(x=df['Sex'],hue='Chest pain type',data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d67c4690>



sns.barplot(x=df['Sex'],y=df['BP'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d67b2190>



sns.barplot(x=df['Sex'],y=df['Cholesterol'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d669cb50>



sns.barplot(x=df['Heart Disease'],y=df['Cholesterol'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d66150d0>



sns.lineplot(x=df['Age'],y=df['BP'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d65ec910>



sns.lineplot(x=df['Age'],y=df['Cholesterol'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d6510e90>



sns.barplot(x=df['Sex'],y=df['ST depression'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d6503e90>



sns.barplot(x=df['Sex'],y=df['Exercise angina'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d6455b50>



sns.barplot(x=df['Heart Disease'],y=df['Number of vessels fluro'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d64374d0>



sns.barplot(x=df['Heart Disease'],y=df['Thallium'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d63a6690>



sns.barplot(x=df['Sex'],y=df['FBS over 120'],data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f84d6371450>



sns.heatmap(df.corr())





from sklearn.preprocessing import LabelEncoder,StandardScaler
le=LabelEncoder()
df['Heart Disease']=le.fit\_transform(df['Heart Disease'])

y=df['Heart Disease']
x=df.drop(['Heart Disease'],axis=1)

from sklearn.model\_selection import train\_test\_split
x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,random\_state=0,test\_size=0.2)

from sklearn.linear\_model import LogisticRegression
from sklearn.metrics import accuracy\_score
lr=LogisticRegression(max\_iter=10000)
lr.fit(x\_train,y\_train)
pred\_1=lr.predict(x\_test)
score\_1=accuracy\_score(y\_test,pred\_1)
score\_1

## 0.7777777777778

from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x\_train,y\_train)
pred\_2=rfc.predict(x\_test)
score\_2=accuracy\_score(y\_test,pred\_2)
score\_2

## 0.7592592592592593

from xgboost import XGBClassifier
xgb=XGBClassifier()
xgb.fit(x\_train,y\_train)
pred\_3=xgb.predict(x\_test)
score\_3=accuracy\_score(y\_test,pred\_3)
score\_3

0.77777777777778

```
from sklearn.neighbors import KNeighborsClassifier
list_1=[]
for i in range(1,21):
    knn=KNeighborsClassifier(n_neighbors=i)
    knn.fit(x_train,y_train)
    preds=knn.predict(x_test)
    scores=accuracy_score(y_test,preds)
    list_1.append(scores)
max(list_1)
    0.7037037037037037
```

## Colab paid products - Cancel contracts here

✓ 0s completed at 8:28 AM