

Swiggy Dataset SQL Project Report

Project Overview

This project involves analyzing a dataset from Swiggy, an online food ordering and delivery platform. The dataset includes information about restaurants, customers, orders, and deliveries.

Dataset

This dataset is provided by Kaggle . It contains information about restaurants, including their unique ID, area, city, name, average price of meals, average rating on Swiggy platform, total number of ratings, food served, and average delivery time.

Columns	Data type	Description
ID	int	Unique identifier for the restaurant

Area	text	Area of restaurant
City	text	City in which restaurant located
Restaurant	text	Name of the restaurant
Price	int	Average price of a meal at the restaurant
Avg_rating	double	Average rating of the restaurant on Swiggy platform on a scale of 1 to 5
Total_ratings	int	Total number of ratings received by the restaurant
Food_type	text	Type of food served by the restaurant
Delivery_time	int	Average time taken for food delivery

Objectives

The primary objectives of this project are to analyze and derive insights from the Swiggy dataset. The specific findings include:

- 1. Identify the top-rated restaurant.
- 2. Determine the total number of restaurants in each city.
- 3. Compare the delivery time of individual restaurants with the average delivery time of all restaurants.

Findings

1. Top-Rated Restaurant in Each City

To identify the top-rated restaurant, we examined the ratings provided by customers. The SQL guery used to find the top-rated restaurant is as follows:

```
-- Top restaurant of every city

select DISTINCT city,

FIRST_VALUE(area) over(partition by city order by Total_ratings desc,avg_rating desc) as Area,

FIRST_VALUE(restaurant) over(partition by city order by Total_ratings desc,avg_rating desc) as Top_Restaurent,

FIRST_VALUE(avg_Rating) over(partition by city order by Total_ratings desc,avg_rating desc) as Ratings

from swiggy;
```

Result:

	city	Area	Top_Restaurent	Ratings
•	Ahmedabad	Navrangpura	Gwalia Sweets & Fast Food	4.3
	Bangalore	Ashok Nagar	Corner House Ice Cream	4.7
	Chennai	Gopalapuram	The Bowl Company	4.2
	Delhi	Pitam Pura	Gulab Wala	4.3
	Hyderabad	Kavadiguda	4M Biryani House	4.1
	Kolkata	Kalighat	Bachan'S Dhaba	4.3
	Mumbai	Sion	Guru Kripa (Sion West)	4.5
	Pune	Camp	Marzorin	4.4
	Surat	Adajan	Jakaas Chinese Food	4.3

2. Total Number of Restaurants in Each City

To determine the total number of restaurants in each city, we aggregated the data based on the city column. The SQL query used for this analysis is as follows:

```
-- Total number of restaurant in each city

SELECT DISTINCT
    city,
    COUNT(DISTINCT area) AS Total_area,
    COUNT(DISTINCT restaurant) AS Total_Restaurant

FROM
    swiggy

GROUP BY city;
```

**Result: **

	city	Total_area	Total_Restaurant
•	Ahmedabad	81	709
	Bangalore	77	938
	Chennai	79	1096
	Delhi	81	611
	Hyderabad	151	1030
	Kolkata	136	1325
	Mumbai	68	1253
	Pune	91	1080
	Surat	79	505

3. Comparing Delivery Time

To compare the delivery time of individual restaurants with the average delivery time of all restaurants, we used the following SQL query:

```
CREATE VIEW delivery_Time AS
    SELECT city,area,ROUND(AVG(delivery_time)) AS Average_Delivery_Time
    FROM swiggy
    GROUP BY city , area
    ORDER BY average_Delivery_Time;

SELECT city, area,
    CASE
    WHEN average_delivery_time > (SELECT AVG(Delivery_Time) FROM swiggy) THEN 'Slow'
    WHEN average_delivery_time <= (SELECT AVG(Delivery_Time) FROM swiggy) THEN 'Fast'
    END AS Food_Delivery
FROM delivery_time;</pre>
```

**Result: **

city	area	Food_Delivery
Bangalore	Koramangala	Slow
Bangalore	Jogupalya	Fast
Bangalore	Indiranagar	Slow
Bangalore	Domlur	Slow
Bangalore	Cooke Town	Slow
Bangalore	Pulikeshi Nagar	Fast
Bangalore	Sivanchetti Gardens	Fast
Bangalore	Kodihalli	Slow
Bangalore	Jayanagar	Fast
Hyderabad	Film Nagar	Slow
Bangalore	Banashankari	Slow

Conclusion

In conclusion, the analysis of the Swiggy dataset has provided valuable insights into the top-rated restaurant, the distribution of restaurants across different cities, and a comparison of individual restaurant delivery times with the overall average.