In this sheet we give an equivalent definition of integrability to that which you learned in the lectures. In the lectures you learned the definition of *Darboux integrals* and integrability.

Definition 1.

- (a) A tagged partition (P, τ) of an interval [a, b] is a partition P together with a finite sequence of numbers $\tau = (t_0, \ldots, t_{n-1})$ subject to the conditions that for each i: $t_i \in [x_i, x_{i+1}]$. In other words, it is a partition together with a distinguished point of every sub-interval.
- (b) Given a function $f:[a,b] \to \mathbb{R}$ and a tagged partition (P,τ) as above, we define the Riemann sum of f with respect to (P,τ) to be $R(f,P,\tau) := \sum_{i=0}^{n-1} f(t_i) \cdot \Delta x_i$.

Definition 2.

- (a) A function $f:[a,b] \to \mathbb{R}$ is $Riemann^*$ integrable with integral L if for every $\epsilon > 0$, there is some partition P such that for every tagged partition (S,σ) such that S is a refinement of $P: |R(f,S,\sigma) L| < \epsilon$.
- (b) A function $f:[a,b] \to \mathbb{R}$ is Riemann integrable with integral L if for every $\epsilon > 0$, there is some δ such that for every tagged partition (P,τ) with $mesh(P) < \delta$: $|R(f,P,\tau)-L| < \epsilon$.
- 1. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Prove that if f is Riemann integrable on [a,b] with integral L, then it is Riemann* integrable on [a,b] with integral L.
- 2. Let (P,τ) be a tagged partition of [a,b]. Prove that $L(f,P) \leq R(f,P,\tau) \leq U(f,P)$.
- 3. Let P be a partition of [a, b] and let $\epsilon > 0$. Prove that there are tags τ_1, τ_2 of P such that $R(f, P, \tau_1) < L(f, P) + \epsilon$ and $U(f, P) \epsilon < R(f, P, \tau_2)$.
- 4. Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Prove that the following are equivalent:
 - (i) f is integrable on [a, b] and $\int_a^b f(x) dx = L$.
 - (ii) f is Riemann* integrable on [a, b] with integral L.

Next week, we'll have a guided exercise proving that Darboux integrability implies Riemann integrability, thus concluding that Darboux, Riemann* and Riemann integrals are all equivalent and equal.