SRI INTERNATIONAL MENLO PARK CA
MAMMALIAN TOXICOLOGICAL EVALUATIONS OF THY
APR 79 J V DILLEY, C A TYSON, G W NEWELL
DAMD17-76-C-6050
NL
NL AD-A081 590 UNCLASSIFIED 10.5 4069-90 ţ

MAMMALIAN TOXICOLOGICAL EVALUATION OF THE WASTEWATERS

Volume III Acute and Subacute Mammalian Toxicity of Condensate Water

Final Report

Ву

JAMES V. DILLEY, CHARLES A. TYSON, and GORDON W. NEWELL

April 1979

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701

Dr. Jack C. Dacre, COTR
Environmental Protection Research Division
U.S. Army Medical Bioengineering Research and Development Laboratory
Fort Detrick, Frederick, Maryland 21701

CONTRACT NO. DAMD 17-76-C-6050

SRI INTERNATIONAL MENLO PARK, CALIFORNIA 94025

Approved for public release; distribution unlimited.

80 3 10 105

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
(6)		
Iff Land Cubsisio)	V-	6. TYPE OF REPORT & PERIOD COVER
MAMMALIAN TOXICOLOGICAL EVALUATION WASTEWATERS VOLUME III. ACU		Final Report
MAMMALIAN TOXICITY OF CONDENSA	TE WATER.	
	(IV) do	TOU SACE
7. AUTHOR(s)	(4) DK	LSU-5028/
James V. Dilley Charles A. Ty	rson	() () () () () ()
Gordon W./Newell	- (15)	DAMD 17-76-C-6050
9. PERFORMING ORGANIZATION NAME AND A	DDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
SRI International		62730A 3E16272ØA835 00.011
333 Ravenswood Avenue Menlo Park, California 94025		16
11. CONTROLLING OFFICE NAME AND ADDRE	ss ()	2. REPORT DATE 13. NO. OF PA
U.S. ARMY MEDICAL RESEARCH & I	EVELOPMENT COMMAND	Apr: 398 398
Fort Detrick Frederick, Maryland 21701	_	Unclassified (17
14. MONITORING AGENCY NAME & ADDRESS	(if diff, from Controlling Office)	onclassified UP
Environmental Protection Resea	rch Division	15a. DECLASSIFICATION/DOWNGRADIN
U.S. Army Medical Bioengineeri		SCHEDULE
Fort Detrick, Frederick, Maryl		N/A
16. DISTRIBUTION STATEMENT (of this report)		12/11/
Approved for public release; of the abstract		
VR 1- A059 434	antered in block 20, ii dinterent	nom report,
VOI 2- AU80 957		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if nece	•	
Condensate wastewater; condens mammalian toxicity; acute toxi		
irritation; skin sensitization	i; in vitro microbial	mutagenesis; Ames test;
2,3-dinitrotoluene; 2,4-dinitr		
3,4-dinitrotoluene; 3,5-dinitr	rotoluene; 3,5-dinitro	paniline; 2-amino-3,6-dinitro
20. ABSTRACT (Continue on reverse side if necess	ary and identify by block number)
		(CW) mixtures was determined
in mammalian species. CW I, o		
studies only. CW II, contains subacute studies. CW III, con		
proportions, was tested in act		
for use in subsequent chronic		
	N	
ND FORM 1473	IIMCI AC	

DU 1 JAN 73 14/3 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

410281 21 M

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19. KEY WORDS (Continued)

toluene; 2-amino-4,6-dinitrotoluene; 3-amino-2,4-dinitrotoluene; 3-amino-2,6-dinitrotoluene; 4-amino-2,6-dinitrotoluene; 4-amino-3,5-dinitrotoluene; 5-amino-2,4-dinitrotoluene; 1,3-dinitrobenzene; 1,3,5-trinitrobenzene; 2,3,4-trinitro-toluene; 2,3,6-trinitrotoluene; 2,4,5-trinitrotoluene; 2,4,6-trinitrotoluene; 1,5-dimethyl-2,4-dinitrobenzene; 2-nitrotoluene; 4-nitrotoluene; 3-nitrotoluene; toluene; 3-methyl-2-nitrophenol; 5-methyl-2-nitrophenol; 2-amino-4-nitrotoluene; 2-amino-6-nitrotoluene; 3-amino-4-nitrotoluene; 4-amino-2-nitrotoluene; 3-nitrobenzonitrile; 4-nitrobenzonitrile; 2,4-dinitro-5-methylphenol; morpholine; N-morpholinoacetonitrile; N-nitrosomorpholine; subacute toxicity; dogs; rats;

20 ABSTRACT (Continued)

The acute oral LD50s, in male and female rats, respectively, were: for CW I, 264 and 251 mg/kg; for CW II, 447 and 295 mg/kg; for CW III, 401 and 290 mg/kg of body weight. All three mixtures were slightly more toxic to females than males; the difference was statistically significant in the case of the 30-component mixtures.

The acute oral LD50s for CW I were also determined in mice and were found to be 610 and 435 mg/kg of body weight in males and females, respectively. CW I produced almost negligible irritation to the eye (either washed or unwashed after instillation) and was only mildly irritating to the skin of rabbits treated with it, having a primary irritation index score of 0.18. In the maximization test for skin sensitivity, CW I produced erythema in 62.5% of the sites of guinea pigs challenged with it, which classifies it as a moderate allergen.

In vitro microbial mutagenesis assays (Ames test) were conducted to assess the mutagenic potency of CW III and its components. When added as a melt to the assay medium this mixture was mutagenic in the Salmonella typhimurium strains with or without microsomal activation. Photolysis of CW III in a uv reactor at a flow rate of 5 ml/min increased the mutagenic potential of the mixture.

Of the 34 individual components tested with Salmonella strains TA1535, 1537, 1538, 98 and 100 in the Ames test, 2,4,5-trinitrotoluene, 2,3,6-trinitrotoluene, 1,3,5-trinitrobenzene and 3,5-dinitroaniline were highly mutagenic. All six of the dinitrotoluenes, the dinitroaniline, all seven monoaminodinitrotoluenes, 1,3-dinitrobenzene, the trinitrobenzene, the four trinitrotoluenes, 1,5-dimethyl-2,4-dinitrobenzene, 5-methyl-2,4-dinitrophenol, and the two mononitrobenzonitriles tested positively in the Ames test but had much lower mutagenic potential of the three mononitrotoluenes, only the para-isomer was mutagenic. Three of four monoaminonitrotoluenes were mutagenic. Toluene, 4-amino-2-nitrotoluene, the two monomethylnitrophenols, and 2- and 4-nitrotoluene produced no detectable revertants in the tests. Calculations based on the weighted average contribution of the components suggest that 1,3-dinitrobenzene, 2,3,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene may contribute over 60% of the mutagenic activity in CW III, while comprising less than 15% by weight.

The effects of repeated oral administration of CW II were determined in dogs, rats, and mice. Dogs (5 males and 5 females/group) were dosed daily by capsule at 0, 0.05, 0.5, and 5.0 mg CW II/kg of body weight. In dogs, treatment at the 5.0 mg/kg level produced a mild, compensatory anemia (transitory; not observed at 24 weeks), hemosiderosis of the spleen accompanied in some cases by congestion and pigmentation of the Kupffer cells and sinus macrophages in the liver. One high-dose male exhibited overt signs of neuromuscular and neurological dysfunction that were confirmed in histopathological examination of brain and CNS tissues at sacrifice. Microscopically, this dog had complete loss of the entire lenticular nucleus (putamen and globus pallidus) and substantia nigra bilaterally, astroglioses adjacent to these areas, small cavitations (surrounded by a corona of hypertrophied astrocytes) in the caudate

DD1 FORM 1473 (BACK)
EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19, KEY WORDS (Continued)

mice; compensatory anemia; reticulocytosis; testicular atrophy; uterine hyperplasia; hemosiderosis; neuropathy; head trauma; cardiac arrhythmia; LDH; mutagens.

20 ABSTRACT (Continued)

nuclei and demyelination in cerebrum, pyramidal tracts in the cervical cord, and other regions. The animal might have been blind, though this could not be clearly substantiated. The lesions were infarcts attributed to cessation or severe reduction of blood flow to the damaged areas. The possibility that treatment with CW II initiated the events leading to head trauma must be considered in the light of similar (though less extensive) neurological signs and pathological lesions observed in dogs treated with 2,4-dinitrotoluene, the major component in CW II, in other studies.

In addition, one other male dog had abnormalities in its ECG pattern (some arrhythmias and missed ventricular contractions) coupled with high serum LDH activity. This animal may have suffered from myocardial ischemia or damage; however, this was not confirmed microscopically. No alterations or overt signs of toxicity were observed in dogs at lower doses. The "no observable effect level" for dogs was, therefore, the 0.5 mg/kg level.

Rats and mice (20 males and 20 females/group) were fed CW II in their diets for up to 13 weeks ± 4 weeks of recovery (an equal number of each sex were killed at each sacrifice) at 0, 0.001, 0.01 and 0.10% by weight. Numerous toxicological signs were observed in rats at the highest dose level (and to a lesser extent at the intermediate dose level) including a moderate compensatory anemia characterized by extreme reticulocytosis; moderate polychromasia; Heinz bodies and other red blood cell alterations; depressed body weights, body weight gain and food intake; rough fur; enlarged spleens and/or livers; hemosiderosis of the spleen; testicular atrophy with atrophy and aspermia of the epididymis and moderate focal interstitial cell hyperplasia; hyperplasia of the uterus and an elevation in triglyceride levels in the serum. No alterations were seen at the 0.001% level and this was designated as the "no observable effect level" in rats.

In mice, observations were similar to those in rats. Mice treated with CW II at the highest dose level, suffered from mild compensatory anemia (evident at the intermediate dose also), depressed body weight and weight gain, lower food intake and efficiency, testicular atrophy accompanied by atrophy of and cellular debris in the epididymis, enlarged spleens and livers, inflammation in the tubular reproductive tract in females, and signs of neurological dysfunction (humped backs, tilting of the head and other posture or behavioral abnormalities). In addition to signs of anemia at the 0.01% level there was also a marginal depression in body weight. Mice at the 0.001% dose level appeared to be unaffected by the treatment. Thus, 0.001% was also the "no observable effect level" in mice.

The Acceptable Daily Intake of condensate water for man is estimated to range from 0.50 to 1.16 $\mu g/kg$ based on the highest dose levels at which no effects were observed. Using this value and a bioconcentration factor for the mixture derived from octanol/water partition coefficients, an upper limit range for condensate water effluent in water bodies is 15 to 35 $\mu g/liter$.

DD1 FORM 1473 (BACK)
EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

EXECUTIVE SUMMARY

Under this contract from the U.S. Army Medical Research and Development Command, SRI International conducted studies in mammalian species to determine the toxicity of condensate wastewater mixtures generated during the production and purification of TNT at munitions plants. The wastewaters were representative mixtures of the condensate components derived as described in Volume I, Chemistry Studies, under this contract. Specifically, the mammalian research was to determine the acute toxicity of condensate water mixtures, the mutagenic potential of mixture components and of both photolyzed and nonphotolyzed samples of the mixture and the repeated exposure oral toxicity of the mixture in rodent and nonrodent species. This information is needed to assess the hazard associated with munitions plants effluents.

The principal objective of the initial (acute) toxicity studies (Phase I studies) was to define the properties and the mutagenic potency of the condensate water mixtures considered for toxicological testing. In these experiments, we determined the acute oral LD50 of three condensate water mixtures (differing in the number and relative concentration of components in the mixture) in rats and/or mice, the eye and skin irritation potential of one of these mixtures in rabbits, the skin sensitization by this mixture in guinea pigs, and the in vitro microbial mutagenicity of condensate water and its components with and without metabolic activation in the Ames test. The acute oral LD50s for the three mixtures ranged from 250 to 450 mg/kg of body weight, which range corresponds to that for moderately toxic materials. The mixtures were slightly more toxic to females than to males. One of the mixtures was also tested in mice and found to be less toxic (had a higher acute LD50) to mice than to rats. This difference between species was tentatively attributed to the 2,4-dinitrotoluene, the major component in the mixture, since it is known to have at least a two-fold higher acute oral LD50 in mice than rats.

In rabbits, condensate water was virtually innocuous to the eyes and only mildly irritating to the skin. It was classified as a moderate allergen by the criteria of Magnusson and Kligman in the skin sensitization test in guinea pigs.

In vitro mutagenicity experiments in Salmonella bacteria conducted on the nonphotolyzed mixture indicated that it was weakly mutagenic. Photolysis increased the mutagenicity of the mixture. Of the individual components, 2,4,5- and 2,3,6-trinitrotoluene, 1,3,5-trinitrobenzene, and 3,5-dinitroaniline had the highest mutagenic potency. The principal components (more than 40% by weight) in the mixture--1,3-dinitrobenzene and 2,4- and 2,6-dinitrotoluene--evoked much lower responses in the mutagenic assay.

The subacute toxicity of a 30-component condensate water mixture was evaluated in a 26-week study in dogs and in separate 90-day studies in rats and mice (Phase II studies). The mixture was administered to dogs at 0.05, 0.5, and 5.0 mg/kg/day by capsule, and rats and mice received 0.001, 0.01, and 0.10% of the mixture by weight in their feed. All three species exhibited a mild compensatory anemia at the high doses, characterized by decreases in red blood cell count, hemoglobin and/or hematocrit and increases in mean cell volume and by reticulocytosis, often accompanied by polychromasia, Heinz bodies and other alterations. Adaptation to the treatment was observed in dogs with time, as evidenced by the disappearance of signs of anemia by the end of the 26-week period.

All three species also exhibited symptoms that suggested treatmentrelated effects on the brain and central nervous system. These effects included behavioral abnormalities and changes in appearance in rodents, supported by clear pathological evidence of neurological damage to neuromuscular and sensory control centers in the brain of one of the dogs, a male, on study. The most outstanding pathological feature in microscopic examination of tissues from this dog was the complete loss of the entire lenticular nucleus, grey matter which forms the central core of the cerebral hemisphere in the brain, and of the substantia nigra bilaterally. Destruction of dysfunction of the latter is known to be responsible for loss of neuromuscular control. Extensive demyelination was observed in a number of other brain regions. The lesions in this animal's brain included infarcts that probably resulted from cessation or severe reduction of blood flow to the areas damaged by head trauma. It was hypothesized that components in the mixture may have induced pathologic changes in the nervous tissue resulting in motor dysfunction that led to trauma and in turn, more severe neural damage. 2,4-Dinitrotoluene, the major component in the mixture, has been shown in other studies to produce similar neuromuscular effects and neuropathological lesions in the dog.

All three species had alterations in the liver and in the spleen. Dogs at the high dose had hemosiderosis and congestion in the spleen. Pigmentation was observed in the Kupffer cells and sinus macrophages in the livers of several of these dogs. Rats at both the 0.01% and 0.10% dose levels had enlarged spleens and/or livers and hemosiderosis of the spleen. These effects were also seen in mice at the 0.10% dose level.

In addition, several male dogs at the high dose level had high LDH activities in their sera. Cardiac arrhythmia and missed ventricular contractions were identified in the ECG pattern of the dog with the highest LDH value, suggesting that this dog may have been experiencing myocardial ischemia or damage as a result of treatment with the condensate water mixture.

Rats and mice at the 0.10% dose level also exhibited a number of other alterations that were considered to be treatment-related. Body weights and weight gains and food intake were suppressed. The males

had testicular atrophy with atrophy, aspermia, or cellular debris in the epididymis and moderate focal interstitial cell hyperplasia. Females had hyperplasia of the uterus (rats) and inflammation in the tubular reproductive tract (mice). Clinical chemistry determinations (done only on rats for lack of sufficient sera from mice for analysis) revealed an elevation in triglyceride levels in some high dose animals that may have been related to the treatment.

Several groups of rats and mice were set aside for a 4-week recovery period following either 4 or 13 weeks of treatment with the condensate water mixture. Rats and mice at the 0.01% dose level, a level of condensate water roughly comparable to that of dogs treated at 5.0 mg/kg/day, had normal blood parameters when removed from treatment for 4 weeks. At the high dose level, this length of time was insufficient to reverse several of the effects produced by the mixture. Even after the recovery period, there were lingering signs of anemia, and hemosiderosis of the spleen and testicular atrophy were seen under the electron microscope. Repeated exposure to such high doses clearly inhibited recovery from the effects of the treatment.

On the basis of the experiments conducted here, "no-effect" levels for the condensate water mixture used in the Phase II testing were found to be 0.50 mg/kg/day for dogs and 0.001% of the mixture daily in the diet for rats and mice. An Acceptable Daily Intake range of condensate water for man is estimated from the highest dose levels in these studies at which no effects were observed to be 0.50 to 1.16 $\mu g/kg$. Using these values and a bioconcentration factor for the mixture derived from octanol/water partition coefficients, the recommended upper limit range for condensate water effluent in water bodies is 15-35 $\mu g/liter$.

FOREWORD

All animal facilities used in conducting the research described in this report have been accredited by the American Association for the Accreditation of Laboratory Animal Care. Maintenance and research practices in the use of laboratory animals were conducted according to the principles and standards enumerated in the <u>Guide for Laboratory Animal Facilities and Care</u> (1972) of the National Academy of Sciences/National Research Council, and the revised 1978 <u>Guide for the Care and Use of Laboratory Animals</u>, USHEW PHS, DHEW Publication No. (NIH) 78-23, and the Animal Welfare Act of 1966 (Public Law 89-544), as amended by the Animal Welfare Act of 1977 (Public Law 91-579). Our facilities are inspected and licensed by USDA, APIS (License Numbers 93-B-19 and 93-26).

ACKNOWLEDGMENTS

This work was conducted in the Life Sciences Division under the direction of Dr. Gordon W. Newell, Director of the Toxicology Department. The experimental work in toxicology was directed by Dr. James V. Dilley, Manager, Inhalation Toxicology Program, with the assistance of Dr. Charles A. Tyson, Senior Biochemical Toxicologist.

The analytical work was directed by Dr. Ronald J. Spanggord, Manager of the Bio-Analytical Chemistry Program. Dr. Vincent F. Simmon, Manager of the Microbial Genetics Program, was responsible for the in vitro mutagenesis assays. Dr. Ann D. Mitchell, Manager of the Biochemical Cytogenetics Program, was in charge of the cytogenetics studies. Mr. Douglas E. Robinson performed the unscheduled DNA synthesis assays.

Dr. Daniel P. Sasmore, Director of Pathology, supervised necropsies, clinical chemistry laboratory testing, and histopathological preparations and performed the microscopic examinations of tissues. Sandra J. Phillips supervised necropsies, and Barbara A. Kirkhart supervised the histology work.

Dr. Harold S. Javitz, Statistician, devised the statistical program for analyzing data and supervised the computer work. Mr. Lawrence J. Walter did the programming and data tabulation, assisted by Sandra Green. Drs. Dilley, Tyson, and Javitz were responsible for analysis of the experimental data.

Technical assistance in the toxicology and analytical chemistry areas was provided by Susan M. Winslow, Elizabeth A. Rumple, Deborah K. Palmer, Neal E. Winslow, Sandra L. Green, David Chu, Sussan Dejbakhsh, Patricia M. Bratt, Jesse M. Martin, Francisco R. Uceda, Jane C. Fowler, Randy C. Douglas, Julie Dickinson, Bradford Gibson, Rodney Keck, and Claire Ingersoll.

CONTENTS

EXECUTIVE SUMMARY	. iv
FOREWORD	. vi
ACKNOWLEDGMENTS	. viii
LIST OF TABLES	. xi
PART 1 - ACUTE STUDIES OF CONDENSATE WATER (PHASE I)	. 1
INTRODUCTION	. 1
PROCEDURES	. 1
Animals and Housing	.]
Materials	
Test Methods	. 4
Determination of Acute Oral LD50s	. 4
Determination of Eye Irritation in Rabbits	
Determination of Skin Irritation in Rabbits . Determination of Sensitization	
in Guinea Pigs	. 8
In Vitro Mutagenicity Testing	
RESULTS	. 12
Acute Oral LD50s	. 12
Eye Irritancy in Rabbits	
Skin Irritancy in Rabbits	
Guinea Pig Sensitization Study	. 13
In Vitro Mutagenicity Testing	. 13
DISCUSSION	. 22
Acute Toxicity	. 22
Skin and Eye Irritation	
Skin Sensitization	
In Vitro Mutagenicity Testing	

PART	2 - SUBACUTE ORAL TOXICITY STUDIES
OF	CONDENSATE WATER (PHASE II)
	INTRODUCTION
	GENERAL METHODS
	Hematology
	Clinical Chemistry 2
	Urinalysis
	Pathology
	Statistical Methods
	Quality Assurance
	STUDIES IN DOGS
	Procedures
	Housing and Maintenance
	Treatment Protocol
	Tests
	Results
	Observations
	Body Weights
	Food Consumption
	Organ Weights
	Hematology
	Clinical Chemistry
	Urinalysis 60
	ECG Analysis 60
	Histopathology 6
	Discussion
	STUDIES IN RATS
	Procedures
	Housing and Treatment
	Tests
	Results
	Observations
	Body Weights
	Food Consumption
	Organ Weights
	Hematology
	Clinical Chemistry 110
	Histopathology
	Discussion
	STUDIES IN MICE
	Procedures
	Results
	Observations
	Body Weights

Food Consumption	•						163
Organ Weights		•					172
Hematology							187
Histopathology	•	•	•	•			196
Discussion	•	•	•	•	•	•	208
RECOMMENDATIONS		•			•		214
REFERENCES							216
APPENDICES:							
A - ACUTE ORAL LD50 CALCULATIONS	•	•	•				221
B - DATA ON INDIVIDUAL ASSAYS - MUTAGENICITY	T	EST	CI1	I G			225
C - MEDICAL RECORDS ON DOGS	•			•			305
D - LINEAR TREND ANALYSIS							311
E - BACKGROUND DATA		•					325
F - NEUROPATHOLOGY CONSULTANT'S REPORT							337
G - RANGE-FINDING STUDIES IN RATS AND MICE .							347
H - CLINICAL CHEMISTRY CONTROL TESTS							393
I - GAS CHROMATOGRAM OF CONDENSATE							207
WATER COMPONENTS	•	•	•	•	•	•	397
DISTRIBUTION LIST		•					399

TABLES

1.	Composition of Condensate Water Mixtures for Toxicological Testing	3
2.	Acute Oral Toxicity of Condensate Water Mixtures to Male and Female Rats	12
3.	Eye Irritation of Condensate Water in Rabbits	14
4.	Skin Irritation of Condensate Water in Rabbits	15
5.	Sensitization of Guinea Pigs to Condensate Water	16
6.	Summary of Mutagenic Activity of Nitrotoluene Analogues	17
7.	In Vitro Assays with <u>Salmonella typhimurium</u> : Condensate Water Melt	19
8.	Effects of Condensate Water on Body Weights (kg) of Male Dogs During 24 Weeks of Treatment	40
9.	Effects of Condensate Water on Body Weights (kg) of Female Dogs During 24 Weeks of Treatment	41
10.	Effects of Condensate Water on Food Consumption (g/animal/day) of Male Dogs During 24 Weeks of Treatment	42
11.	Effects of Condensate Water on Food Consumption (g/animal/day) of Female Dogs During 24 Weeks of Treatment	43
12.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Male Dogs During	73
	24 Weeks of Treatment	44
13.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Female Dogs During 24 Weeks of Treatment	45
14.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (g/kg) and Organ-to-Brain Weight Ratios (g/g) of Male Dogs After	
15.	24 Weeks of Treatment	46
	Organ-to-Body Weight Ratios (g/kg) and Organ-to- Brain Weight Ratios (g/g) of Female Dogs After 24 Weeks of Treatment	47

16.	Effects of Condensate Water on Hematology of Male Dogs Before Starting Treatment	49
17.	Effects of Condensate Water on Hematology of Female Dogs Before Starting Treatment	50
18.	Effects of Condensate Water on Hematology of Male Dogs After 8 Weeks of Treatment	51
19.	Effects of Condensate Water on Hematology of Female Dogs After 8 Weeks of Treatment	52
20.	Effects of Condensate Water on Hematology of Male Dogs After 17 Weeks of Treatment	53
21.	Effects of Condensate Water on Hematology of Female Dogs After 17 Weeks of Treatment	54
22.	Effects of Condensate Water on Hematology of Male Dogs After 24 Weeks of Treatment	55
23.	Effects of Condensate Water on Hematology of Female Dogs After 24 Weeks of Treatment	56
24.	Effects of Condensate Water on Clinical Chemistry of Male Dogs Before Starting Treatment	57
25.	Effects of Condensate Water on Clinical Chemistry of Female Dogs Before Starting Treatment	58
26.	Effects of Condensate Water on Clinical Chemistry of Male Dogs After 8 Weeks of Treatment	59
27.	Effects of Condensate Water on Clinical Chemistry of Female Dogs After 8 Weeks of Treatment	60
28.	Effects of Condensate Water on Clinical Chemistry of Male Dogs After 17 Weeks of Treatment	61
29.	Effects of Condensate Water on Clinical Chemistry of Female Dogs After 17 Weeks of Treatment	62
30.	Effects of Condensate Water on Clinical Chemistry of Male Dogs After 24 Weeks of Treatment	63
31.	Effects of Condensate Water on Clinical Chemistry of Female Dogs After 24 Weeks of Treatment	64
32.	Microscopic Lesions in Male Dogs After 26 Weeks of Condensate Water Treatment	67
33.	Microscopic Lesions in Female Dogs After 26 Weeks of Condensate Water Treatment	69
34.	Effects of Condensate Water on Body Weights (g) of Male Rats During 13 Weeks of Treatment	77
35.	Effects of Condensate Water on Body Weights (g) of Female Rats During 13 Weeks of Treatment	78

36.	Effects of Condensate Water on Differences in Body Weights (g) of Male Rats During 13 Weeks of Treatment		•	80
37.	Effects of Condensate Water on Differences in Body Weights (g) of Female Rats During 13 Weeks of Treatment	•	•	81
38.	Effects of Condensate Water on Body Weights (g) of Male Rats During 4 Weeks of Treatment and 4 Weeks of Recovery		•	82
39.	Effects of Condensate Water on Body Weights (g) of Female Rats During 4 Weeks of Treatment and 4 Weeks of Recovery			83
40.	Effects of Condensate Water on Body Weights (g) of Male Rats During 13 Weeks of Treatment and 4 Weeks of Recovery		•	84
41.	Effects of Condensate Water on Body Weights (g) of Female Rats During 13 Weeks of Treatment and 4 Weeks of Recovery			85
42.	Effects of Condensate Water on Differences in Body Weights (g) of Male Rats During 4 Weeks of Treatment and 4 Weeks of Recovery	•		86
43.	Effects of Condensate Water on Differences in Body Weights (g) of Female Rats During 4 Weeks of Treatment and 4 Weeks of Recovery		•	87
44.	Effects of Condensate Water on Differences in Body Weights (g) of Male Rats During 13 Weeks of Treatment and 4 Weeks of Recovery		•	88
45.	Effects of Condensate Water on Differences in Body Weights (g) of Female Rats During 13 Weeks of Treatment and 4 Weeks of Recovery			89
46.	Effects of Condensate Water on Food Consumption (g/animal/day) of Male Rats During 13 Weeks of Treatment			91
47.	Effects of Condensate Water on Food Consumption (g/animal/day) of Female Rats During 13 Weeks of Treatment			92
48.	Effects of Condensate Water on Food Consumption (g/animal/day) of Male Rats During 4 Weeks of Treatment and 4 Weeks of Recovery			93
49.	Effects of Condensate Water on Food Consumption (g/animal/day) of Female Rats During 4 Weeks of Treatment and 4 Weeks of Recovery		•	94

50.	Effects of Condensate Water on Food Consumption (g/animal/day) of Male Rats During 13 Weeks of Treatment and 4 Weeks of Recovery
51.	Effects of Condensate Water on Food Consumption (g/animal/day) of Female Rats During 13 Weeks of Treatment and 4 Weeks of Recovery
52.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Male Rats During 13 Weeks of Treatment
53.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Female Rats During 13 Weeks of Treatment
54.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Male Rats During 4 Weeks of Treatment and 4 Weeks of Recovery 99
55.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Female Rats During 4 Weeks of Treatment and 4 Weeks of Recovery 100
56.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Male Rats During 13 Weeks of Treatment and 4 Weeks of Recovery 101
57.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Female Rats During 13 Weeks of Treatment and 4 Weeks of Recovery 102
58.	Doses of Condensate Water [mg/kg (body weight)/day] in Diets Consumed by Male Rats During 13 Weeks of Treatment
59.	Doses of Condensate Water [mg/kg (body weight)/day] in Diets Consumed by Female Rats During 13 Weeks of Treatment
60.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ- to-Brain Weight Ratios (g/g) of Male Rats After 4 Weeks of Treatment
61.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ- to-Brain Weight Ratios (g/g) of Female Rats After 4 Weeks of Treatment
62.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ- to-Brain Weight Ratios (g/g) of Male Rats After 13 Weeks of Treatment
63.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ- to-Brain Weight Ratios (g/g) of Female Rats After
	13 Weeks of Treatment

64.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ- to-Brain Weight Ratios (g/g) of Male Rats After 4 Weeks of Treatment and 4 Weeks of Recovery
65.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Female Rats After 4 Weeks of Treatment and 4 Weeks of Recovery
66.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Male Rats After 13 Weeks of Treatment and 4 Weeks of Recovery 112
67.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Female Rats After 13 Weeks of Treatment and 4 Weeks of Recovery 113
68.	Effects of Condensate Water on Hematology of Male Rats After 4 Weeks of Treatment
69.	Effects of Condensate Water on Hematology of Female Rats After 4 Weeks of Treatment
70.	Effects of Condensate Water on Hematology of Male Rats After 13 Weeks of Treatment
71.	Effects of Condensate Water on Hematology of Female Rats After 13 Weeks of Treatment
72.	Effects of Condensate Water on Hematology of Male Rats After 4 Weeks of Treatment and 4 Weeks of Recovery
73.	Effects of Condensate Water on Hematology of Female Rats After 4 Weeks of Treatment and 4 Weeks of Recovery
74.	Effects of Condensate Water on Hematology of Male Rats After 13 Weeks of Treatment and 4 Weeks of Recovery
75.	Effects of Condensate Water on Hematology of Female Rats After 13 Weeks of Treatment and 4 Weeks of Recovery
76.	Effects of Condensate Water on Clinical Chemistry of Male Rats After 4 Weeks of Treatment
77.	Effects of Condensate Water on Clinical Chemistry of Female Rats After 4 Weeks of Treatment
78.	Effects of Condensate Water on Clinical Chemistry of Male Rats After 13 Weeks of Treatment
79.	Effects of Condensate Water on Clinical Chemistry of Female Rats After 13 Weeks of Treatment

of Female Rats After 4 Weeks of Treatment and 4 Weeks of Recovery	80.	of Male Rats After 4 Weeks of Treatment and 4 Weeks of Recovery
of Male Rats After 13 Weeks of Treatment and 4 Weeks of Recovery	81.	of Female Rats After 4 Weeks of Treatment and
of Female Rats After 13 Weeks of Treatment and 4 Weeks of Recovery	82.	of Male Rats After 13 Weeks of Treatment and
4 Weeks of Condensate Water Treatment	83.	of Female Rats After 13 Weeks of Treatment and
4 Weeks of Condensate Water Treatment	84.	•
13 Weeks of Condensate Water Treatment	85.	
13 Weeks of Condensate Water Treatment	86.	
4 Weeks of Condensate Water Treatment and 4 Weeks of Recovery	87.	
4 Weeks of Condensate Water Treatment and 4 Weeks of Recovery	88.	4 Weeks of Condensate Water Treatment and
13 Weeks of Condensate Water Treatment and 4 Weeks of Recovery	89.	4 Weeks of Condensate Water Treatment and
13 Weeks of Condensate Water Treatment and 4 Weeks of Recovery	90.	13 Weeks of Condensate Water Treatment and
of Male Mice During 13 Weeks of Treatment	91.	13 Weeks of Condensate Water Treatment and
of Female Mice During 13 Weeks of Treatment 152 94. Effects of Condensate Water on Body Weights (g) of Male Mice During 4 Weeks of Treatment and 4 Weeks of Recovery	92.	
of Male Mice During 4 Weeks of Treatment and 4 Weeks of Recovery	93.	
of Female Mice During 4 Weeks of Treatment and	94.	of Male Mice During 4 Weeks of Treatment and
	95.	of Female Mice During 4 Weeks of Treatment and

90.	of Male Mice During 13 Weeks of Treatment and 4 Weeks of Recovery
97.	Effects of Condensate Water on Body Weights (g) of Female Mice During 13 Weeks of Treatment and 4 Weeks of Recovery
98.	Effects of Condensate Water on Differences in Body Weights (g) of Male Mice During 13 Weeks of Treatment
99.	Effects of Condensate Water on Differences in Body Weights (g) of Female Mice During 13 Weeks of Treatment
100.	Effects of Condensate Water on Differences in Body Weights (g) of Male Mice During 4 Weeks of Treatment and 4 Weeks of Recovery
101.	Effects of Condensate Water on Differences in Body Weights (g) of Female Mice During 4 Weeks of Treatment and 4 Weeks of Recovery
102.	Effects of Condensate Water on Differences in Body Weights (g) of Male Mice During 13 Weeks of Treatment and 4 Weeks of Recovery
103.	Effects of Condensate Water on Differences in Body Weights (g) of Female Mice During 13 Weeks of Treatment and 4 Weeks of Recovery
104.	Effects of Condensate Water on Food Consumption (g/animal/day) of Male Mice During 13 Weeks of Treatment
105.	Effects of Condensate Water on Food Consumption (g/animal/day) of Female Mice During 13 Weeks of Treatment
106.	Effects of Condensate Water on Food Consumption (g/animal/day) of Male Mice During 4 Weeks of Treatment and 4 Weeks of Recovery
107.	Effects of Condensate Water on Food Consumption (g/animal/day) of Female Mice During 4 Weeks of Treatment and 4 Weeks of Recovery
108.	Effects of Condensate Water on Food Consumption (g/animal/day) of Male Mice During 13 Weeks of Treatment and 4 Weeks of Recovery
109.	Effects of Condensate Water on Food Consumption (g/animal/day) of Female Mice During 13 Weeks of Treatment and 4 Weeks of Recovery 169

110.	[g/kg (body weight)/day] of Male Mice During 13 Weeks of Treatment
111.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Female Mice During 13 Weeks of Treatment
112.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Male Mice During 4 Weeks of Treatment and 4 Weeks of Recovery 173
113.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Female Mice During 4 Weeks of Treatment and 4 Weeks of Recovery 174
114.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Male Mice During 13 Weeks of Treatment and 4 Weeks of Recovery 175
115.	Effects of Condensate Water on Food Consumption [g/kg (body weight)/day] of Female Mice During 13 Weeks of Treatment and 4 Weeks of Recovery 176
116.	Doses of Condensate Water [mg/kg (body weight)/day] in Diets Consumed by Male Mice During 13 Weeks of Treatment
117.	Doses of Condensate Water [mg/kg (body weight)/day] in Diets Consumed by Female Mice During 13 Weeks of Treatment
118.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Male Mice After 4 Weeks of Treatment
119.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Female Mice After 4 Weeks of Treatment
120.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Male Mice After 13 Weeks of Treatment
121.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Female Mice After 13 Weeks of Treatment
122.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Male Mice
	After A Marke of Transment and A Marke of Pagarone 192

123.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios ($1000 \times g/g$) and Organ-to-Brain Weight Ratios (g/g) of Female Mice After 4 Weeks of Treatment and 4 Weeks of Recovery 184
124.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Male Mice After 13 Weeks of Treatment and 4 Weeks of Recovery 185
125.	Effects of Condensate Water on Organ Weights (g), Organ-to-Body Weight Ratios (1000 x g/g) and Organ-to-Brain Weight Ratios (g/g) of Female Mice After 13 Weeks of Treatment and 4 Weeks of Recovery 186
126.	Effects of Condensate Water on Hematology of Male Mice After 4 Weeks of Treatment
127.	Effects of Condensate Water on Hematology of Female Mice After 4 Weeks of Treatment 189
128.	Effects of Condensate Water on Hematology of Male Mice After 13 Weeks of Treatment
129.	Effects of Condensate Water on Hematology of Female Mice After 13 Weeks of Treatment 191
130.	Effects of Condensate Water on Hematology of Male Mice After 4 Weeks of Treatment and 4 Weeks of Recovery
131.	Effects of Condensate Water on Hematology of Female Mice After 4 Weeks of Treatment and 4 Weeks of Recovery
132.	Effects of Condensate Water on Hematology of Male Mice After 13 Weeks of Treatment and 4 Weeks of Recovery
133.	Effects of Condensate Water on Hematology of Female Mice After 13 Weeks of Treatment and 4 Weeks of Recovery
134.	Microscopic Lesions in Male Mice After 4 Weeks of Condensate Water Treatment
135.	Microscopic Lesions in Female Mice After 4 Weeks of Condensate Water Treatment
136.	Microscopic Lesions in Male Mice After 13 Weeks of Condensate Water Treatment 200
137.	Microscopic Lesions in Female Mice After 13 Weeks of Condensate Water Treatment
138.	Microscopic Lesions in Male Mice After 4 Weeks of Condensate Water Treatment
	and a woode of vocavery /II/a

139.	Wicroscopic Lesions in Female Mice After 4 Weeks of Condensate Water Treatment and 4 Weeks of Recovery
140.	Microscopic Lesions in Male Mice After 13 Weeks of Condensate Water Treatment and 4 Weeks of Recovery
141.	Microscopic Lesions in Female Mice After 13 Weeks of Condensate Water Treatment and 4 Weeks of Recovery

PART 1 - ACUTE STUDIES ON CONDENSATE WATER (PHASE I)

INTRODUCTION

In Phase I, we conducted experiments to determine the acute oral LD50s in rats of three condensate water mixtures—one containing 17 components and two containing 30 components in different proportions. In addition, the acute oral LD50s in mice, the skin and eye irritancy in rabbits, and the skin sensitization in guinea pigs were determined for the 17-component mixture. We determined the mutagenicity of condensate water components and mixtures in Salmonella and assessed the effect of irradiation of a representative condensate water mixture on its mutagenicity.

PROCEDURES

Animals and Housing

Male and female immature Sprague-Dawley-derived rats (130 to 180 g) and Swiss-Webster mice (15 to 20 g) were obtained from Simonsen Laboratories, Gilroy, California. Albino guinea pigs of the Hartley strain were purchased from Hilltop Laboratories, Los Angeles, California. The supplier of the New Zealand White rabbits was L.I.T. Rabbitry, Aptos, California.

All rodents were observed for a minimum of 1 week after their arrival to ensure that only healthy animals were used. They were kept in air-conditioned rooms (75 \pm 5° F) with a relative humidity of 50 \pm 10% and photoperiod of 12 hours. The rats were marked with felt pen stripes on their tails for individual identification and housed five per cage in plastic cages with wire tops and Absorb-dri hardwood bedding. The mice were housed in smaller plastic cages with wire tops and Absorb-dri bedding and were identified by tail markings. The rodents were fed ground Purina Laboratory Chow. They were given deionized tap water ad libitum through an automatic water system using lixit valves. Because these were short-term experiments, neither feed nor water was analyzed for pesticide contaminants or chlorinated hydrocarbons.

Rabbits were housed in all-wire cages with wire bottoms and alfalfa pellets in pans below and were identified by cage cards. They were fed Purina Rabbit Chow and given tap water ad libitum as described above. Their eyes were inspected carefully for clarity before the rabbits were used. Guinea pigs were housed one per cage in clear plastic cages and identified by cage cards; they were fed Purina Guinea Pig Chow and given water ad libitum in water bottles.

Materials

The components used in the condensate wastewater mixtures for toxicological testing are listed together with their percentages in the mixtures in Table 1. The commercial sources for the chemicals and the methods used to synthesize those not available commercially are described in Volume 1, Chemistry Studies. 1

The methods used are briefly as follows:

- (1) 2,3-Dinitrotoluene was prepared in a 4-step process by reacting, in turn, acetic anhydride and o-toluidine to form N-acety1-2-amino-3-nitrotoluene, nitration in the 3-carbon position with HNO₃, hydrolysis of the N-acety1 bond with strong acid and oxidation of the amino group to nitro with H₂O₂.
- (2) 3-Amino-2,6-dinitrotoluene was made from reacting hydroxylamine hydrochloride and 2,6-dinitrotoluene in an alcoholic-KOH solution.
- (3) 3-Amino-2,4-dinitrotoluene was prepared by nitration of 2,3-dinitrotoluene with HNO_3 followed by addition of aqueous NH_3 to a solution of the recrystallized product in absolute ethanol.
- (4) 2,5-Dinitrotoluene was prepared from 2-amino-5-nitrotoluene by oxidation with 30% $\rm H_2O_2$ in a solution of glacial acetic acid and sulfuric acid.
- (5) 4-Amino-3,5-dinitrotoluene was made by acetylating p-toluidine with acetic anhydride, nitrating the product in the 3- and 5-positions with NHO₃ in strong H₂SO₄ and regenerating an amino group in the 4-position by hydrolysis with strong HCl.
- (6) 3,5-Dinitrotoluene was prepared exothermically by addition of NaNO $_2$ to the 4-amino-3,5-dinitrotoluene in ethanolic- $\rm H_2SO_4$.
- (7) 1,5-Dimethy1-2,4-dinitrobenzene was produced from m-xylene by nitration with 90% HNO_3 in an exothermic reaction at 90° .
- (8) 2-Amino-3,6-dinitrotoluene was made by acetylating 2-amino-6-nitrotoluene with acetic anhydride in acetic acid followed by mononitration of the ring with $\rm HNO_3$ in $\rm H_2SO_4$ and precipitation of the desired isomer from mixture in 50% $\rm H_2SO_4$.

 $\begin{tabular}{ll} Table & 1 \\ \hline \begin{tabular}{ll} COMPOSITION OF CONDENSATE WATER MIXTURES \\ FOR TOXICOLOGICAL TESTING \\ \hline \end{tabular}$

		Relative Percent		
	Chemical	Phase I	Phase II	Phase III
Compound	Abstract Numbers	Tests	Tests	Tests
m 1	108-88-3	0,549	0.60	0.590
Toluene 2-Nitrotoluene (NT)	88-72-2	0.063	0.09	0.089
	99-99-0	0.294	0.30	0.295
4-Nitrotoluene	619-24-9		0.01	0.035
3-Nitrobenzonitrile 4-Nitrobenzonitrile	619-72-7		0.01	0.027
2-Amino-4-NT	99-55-8		0.03	0.097
	603-83-8		0.10	0.030
2-Amino-6-NT	*		0.10	0.080
3-Amino-4-NT	4920-77-8	0.032	0.03	0.035
3-Methyl-2-nitrophenol 5-Methyl-2-nitrophenol	700-38-9	0.00-	0.06	0.094
	99-65-0	13.88	12.01	11.803
1,3-Dinitrobenzene (DNB)	602-01-7	1.55	1.26	1.180
2,3-Dinitrotoluene (DNT)	121-14-2	51.85	44.14	43.377
2,4-DNT	619-15-8	1.25	1.20	1.180
2,5-DNT 2,6-DNT	606-20-2	22.50	21.92	21.541
·	610-39-9	1.55	1.50	1.475
3,4-DNT	618-85-9	1.54	1.56	1.534
3,5-DNT	618-87-1	1.5-	0.01	0.171
3,5-Dinitroaniline	616-72-8	1.53	1,29	1.151
1,5-Dimethyl-2,4-DNB 2-Amino-3,6-DNT	56207-39 - 7	1.55	0.09	0.089
2-Amino-3,0-5W		0.05	0.06	0.059
2-Amino-4,6-DNT	35572-78-2	0.05	4.50	4,426
3-Amino-2,4-DNT	*		3.60	3.541
3-Amino-2,6-DNT	*	1 07	1.80	1.770
4-Amino-2,6-DNT	1946-51-0	1.87	0.60	0.590
4-Amino-3,5-DNT	6393-42-6	0.62	0.00	0.570
5-Amino-2,4-DNT	*	2.51	2.10	2.066
5-Methyl-2,4-dinitrophenol	616-73-9		0.14	0.251
1.3.5-Trinitrobenzene (TNB)	99-35-4		0.02	0.451
	18292-97-2		0.06	0.791
2,3,6-Trinitrotoluene (TNT) 2,4,6-TNT	118-96-7	1.53	1.20	1.180
Total (a	malytical)	103.17	100.39	100.00

^{*} Not listed.

- (9) 5-Amino-2,4-dinitrotoluene was derived from reacting 3,4-dinitrotoluene with $\rm HNO_3$ in $\rm H_2SO_4$ and ammoniation of the product with concentrated $\rm NH_4OH$.
- (10) 1,3,5-Trinitrobenzene was prepared from 2,4,6-trinitrotoluene by oxidation of the methyl to a carboxyl group with sodium dichromate and cleavage of the radical with strong NaOH forming $\rm CO_2$ and the intended product.
- (11) 2,3,6-Trinitrotoluene required several steps in the reaction sequence. Starting with acetylation of 2-methyl-3-nitroaniline with acetic anhydride, a second nitro group was inserted into the ring with $\rm HNO_3$ in $\rm H_2SO_4$. The 2,3,6-derivative was formed by oxidation of the mixture with $\rm H_2O_2$, concentration by rotary evaporation, addition of $\rm CH_2Cl_2$ and washing with 5% NaHCO₃ and water to remove the more water-soluble isomers.
- (12) 3-Amino-4-nitrotoluene was made by heating 3,4-dinitrotoluene and NH_4OH in CH_3OH for 6 hours at 150°.

Test Methods

Determination of Acute Oral LD50s

The acute oral LD50s for the condensate water mixtures were determined in young-adult rats and mice. Animals were fasted overnight before they were dosed. Four or five dose levels were used (10 males and 10 females per dose).

The test material was administered in corn oil via stainless-steel oral dosing needles. The condensate mixture was weighed and then placed in graduated cylinders, to which sufficient corn oil was added to make the desired concentration. The mixture was stirred briefly and transferred to beakers. A magnetic stirring rod was placed in each beaker. Each beaker was wrapped in aluminum foil and then wrapped in parafilm to minimize evaporation. The material was stirred until dissolved or suspended uniformly in the corn oil (at least 24 hours). Suspensions were checked for lumps and then returned to the stirrer, where they remained throughout dosing. Controls received corn oil alone.

The animals were weighed before dosing, and each animal was dosed with a volume based on 1 ml/100 g of its body weight. After dosing, the animals were returned to their cages and provided with food and water.

The animals were observed for toxic signs and mortality 2 or 3 times a day for the first day, twice a day for 7 days, and then once a day until 14 days had elapsed. The time of death was recorded, as were toxic signs as soon as they were observed. (All observations were number-coded according to coded observation sheets.) Animals that died were examined for any gross pathological changes. Body weights were recorded on Days 7 and 14 for survivors.

The LD50s and 95% confidence intervals for the test mixtures were calculated by a computer program based on the maximum likelihood method of Finney 2 (see Appendix A).

Determination of Eye Irritation in Rabbits

A modification of the Draize method³ was used for determining eye irritation in rabbits. Nine albino rabbits were used. Their eyes were examined to ensure that they had no defects or signs of irritation prior to testing. The 17-component condensate water mixture (0.10 ml) was applied inside the lower lid of one eye of each animal; the eyelids were gently held together for 2 seconds, and then the animal was released. In three animals, the test substance was not washed from the eyes; in three others, the eyes were washed after 30 seconds; the eyes of the remaining three were washed after 5 minutes. The eyes were scored for irritation and other ocular lesions after 1, 24, 48, and 72 hours, or until they were clear, and again after 4 and 7 days (or longer if necessary to assess reversibility). The scoring method used was as follows.

EYE IRRITATION TEST: SCALE FOR SCORING OCULAR LESIONS³

(1) Cornea

A x B x 5

(A)	Opacity-degree of density (area most dense taken for reading)			
	No opacity			0
	Scattered or diffuse area, details of			
	iris clearly visible			1
	Easily discernible translucent areas, details			
	of iris slightly obscured			2
	Opalescent areas, no details of iris visible,			
	size of pupils barely discernible			
	Opaque, iris invisible	•	٠	4
(B)	Area of cornea involved			
(-,	One quarter (or less) but not zero			1
	Greater than one quarter, but less than half			
	Greater than half, but less than three quarters			3
	Greater than three quarters, up to whole area .			4

Total maximum = 80

(2)	1112		
	(A)	No reaction to light, hemorrhage, gross	1 2
	A x	5 Total maximum = 10	
(3)	Conj	unctivae	
	(A)	Redness (refers to palpebral and bulbar conjunctivae excluding cornea and iris) Vessels normal	1 2
	(B)	Chemosis No swelling	1 2 3
	(C)	Discharge No discharge	0
		canthus of normal animals)	
		Discharge with moistening of the lids and hairs, and considerable area around the eye	
	(A +	$B + C) \times 2$ Total maximum = 20	
	D-A-	umdurahdan af Chin Tandhaddan tu Dallida	

Determination of Skin Irritation in Rabbits

The 17-component condensate mixture was evaluated as a skin irritant by occluded patch testing on rabbits and assessed by the Draize method for identifying primary skin irritants. Five healthy rabbits were used for the test.

Twenty-four hours before exposure, a large area on each rabbit's back was shaved. The shaved area was divided into quadrants, providing four exposure sites per rabbit. Just before the test mixture was applied, the upper left and lower right quadrants were lightly abraded in a tic-tac-toe pattern with a wire abrader that barely penetrated the stratum corneum. The upper right and lower left quadrants were left intact. The condensate mixture (0.5 ml) was placed over a 2-sq-inch area in each quadrant and immediately covered with gauze sponges (Johnson and Johnson Co.). Rolled gauze was wrapped around the rabbit's trunk, covering the gauze sponges. Rubberized cloth was then wrapped around the gauze and secured in place with waterproof tape. The patches were removed after 24 hours, and the reactions were examined for edema and erythema immediately and 48 hours later-i.e., 24 and 72 hours after the application of the condensate mixture.

The sites were scored according to the following scale.

SKIN IRRITATION TEST: EVALUATION OF SKIN REACTIONS4

(1)	Erythema and Eschar Formation						
	No erythema	C					
	Very slight erythema (barely perceptible)						
	Well-defined erythema						
	Moderate to severe erythema						
	Severe erythema (beet redness) to slight	٠					
	eschar formation (injuries in depth)	4					
	Total possible erythema score	4					
(2)	Edema Formation						
	No edema	C					
	Very slight edema (barely perceptible)	1					
	Slight edema (edges of area well						
	defined by definite raising)	2					
	Moderate edema (raised approximately 1 mm)						
	Severe edema (raised more than 1 mm and	Ī					
	extending beyond area of exposure)	4					
	Total possible edema score	4					

A primary irritation index was calculated based on the combined readings from all test sites at 24 and 72 hours, divided by 4. Compounds producing combined averages (primary irritation indices) of 2 or less are considered as only mildly irritating, those with indices of from 2 to 5 are moderate irritants, and those with scores above 6 are considered severe irritants.

Determination of Sensitization in Guinea Pigs

Guinea pigs that weighed 300 to 500 g were treated with condensate mix according to the method of Magnusson and Kligman. 5 The maximization test of Magnusson and Kligman entails induction in two stages: (1) intradermal injection of the test substance in Freund's Complete Adjuvant at two sites; the Adjuvant alone at two other sites; and the rest material dissolved at the same concentration in corn oil at the two remaining sites on the backs of 10 guinea pigs; and (2) after 1 week, topical application of the test agent in petrolatum over the injection sites (2 \times 4 cm each site) under an occluded dressing for 48 hours. The animals are challenged topically with a 25% suspension or solution in petrolatum or with the highest possible concentration of the test substance in petrolatum 2 weeks after topical induction. The sites are evaluated for erythema and edema 24 hours after removal of the challenge patches and again 24 hours later. The scoring system and allergenicity ratings based on the percentage of animals sensitized are as follows:

MAXIMIZATION GRADING FOR CONTACT ALLERGENICITY⁵

Sensitization Rate (%)	Grade	Classification		
0-8	I	Weak		
9-28	II	Mild		
29-64	III	Moderate		
65-80	IV	Strong		
81-100	V	Extreme		

In Vitro Mutagenicity Testing

Thirty-four compounds identified in condensate water were screened for mutagenic activity in the Ames <u>Salmonella/microsome</u> assay. Each assay was performed in the presence and in the absence of a rat liver homogenate metabolic activation system and at least twice on separate days.

Salmonella Typhimurium Strains TA1535, TA1537, TA1538, TA98, and TA100

The <u>Salmonella typhimurium</u> strains used at SRI are all histidine auxotrophs by virtue of mutations in the histidine operon. When these histidine-dependent cells are grown on a minimal media petri plate containing a trace of histidine, only those cells that revert to histidine independent (his^+) are able to form colonies. The small

amount of histidine allows all the plated bacteria to undergo a few divisions; in many cases, this growth is essential for mutagenesis to occur. The his⁺ revertants are easily scored as colonies against the slight background growth. The spontaneous mutation frequency of each strain is relatively constant, but when a mutagen is added to the agar, the mutation frequency is increased 2- to 100-fold.

We obtained our <u>S</u>. <u>typhimurium</u> strains from Dr. Bruce Ames of the University of California at Berkeley. $^{6-11}$ In addition to having mutations in the histidine operon, all the indicator strains have a mutation (rfa) that leads to a defective lipopolysaccharide coat; they also have a deletion that covers genes involved in the synthesis of vitamin biotin (bio-) and in the repair of ultraviolet (uv)-induced DNA damage (uvr B^-). The <u>rfa</u> mutation makes the strains more permeable to many large aromatic molecules, thereby increasing the mutagenic effect of these molecules. The uvrB mutation decreases repair of some types of chemically or physically damaged DNA and thereby enhances the strains' sensitivity to some mutagenic agents. Strain TA1535 is reverted to his by many mutagens that cause base-pair substitutions. TA100 is derived from TA1535 by the introduction of the resistance transfer factor plasmid pKM101. This plasmid is believed to cause an increase in error-prone DNA repair that leads to many more mutations for a given dose of most mutagens. 10 In addition, plasmid pKM101 confers resistance to the antibiotic ampicillin, which is a convenient marker to detect the presence of the plasmid in the cells. We have shown that TA100 can detect mutagens, such as benzyl chloride and 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF2), that are not detected by TA1535. The presence of this plasmid also makes strain TA100 sensitive to some frameshift mutagens [e.g., ICR-101, benzo(a)pyrene, aflatoxin B_1 , and 7,12-dimethyl-benz(a)anthracene]. Strains TA1537 and TA1538 are reverted by many frameshift mutagens. TA1537 is more sensitive than TA1538 to mutation by some acridines and benzanthracenes, but the difference is quantitative rather than qualitative. Strain TA98 is derived from TA1538 by the addition of the plasmid pKM101, which makes it more sensitive to some mutagenic agents.

All the indicator strains are routinely checked for their genotypic characteristics (his, rfa, uvrB, bio) and for the presence of the plasmid. Cultures are then stored in 10% sterile glycerol at -80° C. For each experiment, an inoculum from the stock cultures is grown overnight at 37° C in nutrient broth (Oxoid, CM67). After stationary overnight growth, the cultures are shaken for 3 to 4 hours to ensure optimal growth.

Aroclor 1254-Stimulated Metabolic Activation System

Some carcinogenic chemicals, either of the aromatic amino type or polycyclic hydrocarbon type, are inactive unless they are metabolized to active forms. In animals and man, an enzyme system in the liver

or other organs (e.g., lung or kidney) is capable of metabolizing a large number of these chemicals to carcinogens. 9,11,13 Some of these intermediate metabolites are very potent mutagens in the S. typhimurium test. Ames has described the liver metabolic activation system that we use. 11 In brief, adult male rats (250 to 300 g) are given a single 500-mg/kg intraperitoneal injection of a polychlorinated biphenyl, Aroclor 1254. This treatment enhances the synthesis of enzymes involved in the metabolic conversion of chemicals. Four days after the injection, the animals' food is removed but drinking water is provided ad libitum. On the fifth day, the rats are killed and the liver homogenate is prepared as follows:

The livers are removed aseptically and placed in a preweighed sterile glass beaker. The organ weight is determined, and all subsequent operations are conducted in an ice bath. The livers are washed in an equal volume of cold, sterile 0.15 M KCl (1 ml/g of wet organ), minced with sterile surgical scissors in three volumes of 0.15 M KCl, and homogenized with a Potter-Elvehjem apparatus. The homogenate is centrifuged for 10 minutes at 9000 x g, and the supernatant, referred to as the S-9 fraction, is quickly frozen in dry ice and stored at $-80\,^{\circ}$ C.

The metabolic activation mixture for each supernatant consists of, for 10 ml total:

- 1.00 ml of S-9 fraction
- 0.20 ml of MgCl₂ (0.4 M) and KCl (1.65 M)
- 0.05 ml of glucose-6-phosphate (1 M)
- 0.40 ml of NADP (0.1 M)
- 5.00 ml of sodium phosphate buffer (0.2 M, pH 7.4)
- 3.35 m1 of H_2O .

Assays in Agar

To a sterile 13×100 mm test tube placed in a 43° C heating block, we add in the following order:

- (1) 2.00 ml of 0.6% agar*
- (2) 0.05 ml of indicator organisms
- (3) 0.50 ml of metabolic activation mixture (optional)
- (4) 0.05 ml of a solution of the test chemical.

For negative controls, we use steps (1), (2), and (3) (optional) and 0.05 ml of the solvent used for the test chemical. Because the majority of organic compounds are not sufficiently water-soluble, particularly at the higher concentrations, we routinely use dimethyl

^{* 0.6%} agar contains 0.05 mM histidine and 0.05 mM biotin.

sulfoxide (DMSO). Other solvents that are occasionally used are water, ethanol, and benzene. For positive controls, we test each culture by specific mutagens known to revert each strain, using steps (1), (2), (3) (optional), and (4).

This mixture is stirred gently and then poured onto minimal agar plates.* After the top agar has set, the plates are incubated at 37° C for 2 days. The number of his revertant colonies is counted and recorded.

Calculation of Mutagenic Potency Contribution to the Mixture

The contribution of each component to the mutagenic potential of the mixture was estimated as follows: The mutagenic potency (number of revertants minus control \div dose in $\mu g)$ was calculated at each concentration of test compound for each strain and the highest value was used for estimating its contribution to the mixture. (4-Nitrobenzonitrile is an exception because of its low potency and consequently the low sensitivity in measuring its effect, the largest difference between control and treated revertants was used rather than the highest calculated mutagenic potency.) The contribution of each compound to the condensate water mixture was determined by multiplying mutagenic potency by the average concentration of the component in the mixture.

^{*} Minimal agar plates consist of, per liter, 15 g of agar, 50 g of glucose, 0.2 g of MgSO₄·7H₂O, 2 g of citric acid monohydrate, 10 g of K₂HPO₄, and 3.5 g of NaHNH₄PO₄·4H₂O.

RESULTS

Acute Oral LD50s

Table 2 presents the acute oral LD50s, 95% confidence limits, and slopes of the regression lines in male and female rats for the three condensate water mixtures used in the toxicological testing.

Table 2

ACUTE ORAL TOXICITY OF CONDENSATE WATER MIXTURES TO MALE AND FEMALE RATS

Condensate Water Mixture	_Sex	LD50 (mg/kg)	95% Confidence Limits	Slope
30-Component for Phase	Male	447	418-477	7.02
II testing	Female	295	272-320	11.4
30-Component for Phase III testing	Male	401	371-428	6.62
	Female	290	230-365	12.9
17-Component	Male	264	241-290	7.53
	Female	251	228-274	7.75

The 17-component mixture was more toxic to male rats than either of the other two; this was probably true for females also, but the confidence intervals overlap in this case. The Phase II mixture was somewhat less toxic to male rats than the Phase III mixture, but not markedly so, since there was overlap in the 95% confidence intervals. For female rats, there was no discernible difference in toxicity between the two 30-component mixtures. Both 30-component mixtures were more toxic to females than to males. The LD50 values of the 17-component mixture for males and females were not significantly different.

The acute oral LD50s and 95% confidence intervals of the 17-component mixture were also determined in mice. These values were 610 (462-865) and 435 (319-538) mg/kg for males and females, respectively, or slightly higher than the corresponding values in the rat for this mixture (Table 2).

The rats and mice treated with the condensate water mixtures became inactive and appeared to be comatose from 3 to 10 hours after dosing. This condition lasted for 24 to 72 hours. The rats generally

recovered from treatment with the 17-component mixture more quickly than did the mice. During the comatose period, it was necessary to feel the animals to determine whether or not they were alive. One of the principal causes of death appeared to be pulmonary edema, as judged from the observation of rales in some animals and/or discharge from the nose. Those rats that survived the treatment generally exhibited decreased activity during the first 2 to 4 days, humped backs and rough fur.

Eye Irritancy in Rabbits

Table 3 presents the eye irritancy scores for rabbits treated with the 17-component condensate water mixture. There was only a mild redness and swelling of the conjunctiva at 1 hour after application, regardless of whether the eyes were washed 30 seconds or 5 minutes after treatment or were not washed at all. At 24 hours, no redness or swelling was observed in any of the eyes.

The mixture was essentially nonirritating to eyes.

Skin Irritancy in Rabbits

Table 4 presents the results of the skin irritancy study with the 17-component condensate mixture in rabbits. The primary skin irritation score for the test mixture was calculated to be 0.175.

Guinea Pig Sensitization Study

Table 5 gives the individual scores for the guinea pigs treated with the 17-component condensate water mixture. No severe reactions (scores greater than 2) were observed with the test mixture. What redness was observed disappeared after 48 hours in all but one animal. Two guinea pigs died during the induction period; their tissues could not be saved for pathology because they were autolyzed. Considering the mildness of the response to treatment in the surviving animals, we ascribed the death to stress (which is not uncommon among guinea pigs in this test) rather than to treatment with the mixture.

The percentage of guinea pigs responding to the treatment was 62.5%. By the criteria of Magnusson and Kligman⁵ the condensate water mixture would be classified as a moderate allergen.

In Vitro Mutagenicity Testing

Table 6 presents a summary of the mutagenic activity of condensate water components. The table gives the average concentration of each compound in the 30-component mixture proposed for Phase III testing,

Table 3

EYE IRRITATION OF CONDENSATE WATER IN RABBITS

	Total Sco	rest After:
Washing Time*	1 Hour	24 Hours‡
No wash		
Cornea	0	0
Iris	0	0
Conjunctiva	<u>12</u>	<u>0</u>
Total	12	0
Wash 30 sec after treatment		
Cornea	0	0
Iris	0	0
Conjunctiva	<u>10</u>	<u>o</u>
Total	10	0
Wash 5 min after treatment		
Cornea	0	0
Iris	0	0
Conjunctiva	<u>10</u>	<u>o</u>
Total	10	0

^{*} Three rabbits per group.

 $^{^{\}dagger}$ Maximum possible score for three eyes by Draize method 3 is 330.

^{*} Experiment terminated after 24 hours.

Table 4

SKIN IRRITATION OF CONDENSATE WATER IN RABBITS

Animal No.	24-Hour Int	Readings* act		Erythema† aded
1	1	0	0	0
2	0	0	0	1
3	1	1	0	1
4	0	0	0	0
5	0	0	_1_	1
Total mean score	0.3		0.	4
Combined score	0.7			

Primary irritation score = $0.7 \div 4 \div = 0.175$

^{*} This corresponds to 24 hours after application of the condensate mixture. The 72-hour readings were zero at each site.

[†] No edema was observed at any site.

[‡] Factor adjusts for zero scores for edema at 24 and 72 hours and zero scores for erythema at 72 hours at all sites.

Table 5
SENSITIZATION OF GUINEA PIGS TO CONDENSATE WATER*

Animal No.	Scores at 2 After Cha Erythema		Scores for Erythema at 48 Hours After Challenge
11	0	0	0
12	1	0	0
13	0	0	0
14	0	0	0
15	1	0	0
16	1	0	0
17	2	0	1
18	Died†		
19	Died†		
20	1_	0	0

Percent positive 62.5

^{*} Concentration of 17-component condensate water mixture in Freund's Complete Adjuvant and in corn oil for intradermal injection was 5%. Topical concentration of synthetic condensate mixture in petrolatum for induction and for challenge was 25%.

[†] Nos. 18 and 19 died during induction.

Table 6

į

SUMMARY OF MUTAGENIC ACTIVITY OF NITROTOLUENE ANALOGUES

putodaes	Average Concentration* (ppm)	Potency++ (Revertants pg_tested)	Micrograms Tested	Salmonella typhimurium strain	Metabolic Activation	Concentration x Mutagenic Fotency
Dinitrotolacie	00%*6	0.692	200	TA100	ı	0.277
, Hanitrotoluene	14.700	0.285	750	TA100	1	4.190
', o-simit totoluche	0.400	1.292	250	TA100	,	0.517
I, e-Disitrotoinene	7.300	0.252	200	TA100	1	1.340
s, s-piolitroteluene	0.500	0.277	300	TA100	1	0.139
5, orbinitrotolocne	0.520	1.040	700	TA100	1	0.541
3, n-winitroaniline	0.053	31.633	30	TA98		1.335
2-Amino-3,0-dimitrotoluene	0.036	3.353	300	TA100	·	0.101
:-Amino-1,6-ainitrotoluene	0.020	1.330	200	TA100	ı	0.027
3-Animo-2,4-dialtrotoluene	1.500	0.327	7.50	::A100	+	0.490
3-Amino-1,6-dinitrotoluene	1.200	1.063	300	TA100	1	1.276
Anino-2,6-dinitrotoluene	0.600	0.534	200	TA100	+	0.350
Amino-3, 5-dinitrotoluenc	0.200	0.963	20	TA93		0.152
5-Amino-2,4-dinitrotoluene	0.7.0	2.370	001	TA93	1	2.009
., 3-Dinitrobenzene	4.033	1.520	200	TA93	ı	7.280
1,3,5-Trinitrobengene	0.153	24.700	30	TA100	1	3.779
2, 3.4-Trinitrotoluene §		5.267	150	TA100	ı	
rotolaene	0.268	15.513	30	TA98	•	4.157
2,4,5-Trinitretoluene §		57.650	20	TA100	ı	
2,4,6-irinitrotoluene	00,400	6.310	001	TA100	1	2.524
1,5-Dimethy1-2,4-dinitrobenzene	0.390	9.133	1000	TA100	ı	0.071
2-Nitrotoluene	0.0.0	*				
4-Nitrotoluene	0.100	0.0575	2000	TA100	+	0.006
3-Nitrotoluene 5		*				
	0.200	4:				
5-Methyl-2-nitrophenol	0.012	- x				
o-Tethyl-2-aitrophenol	0.032	÷				
2-Amino-4-nitrotoluone	0.033	0.173	1000	TA100	+	900.0
2-Amino-6-mitrotoluene	0.010	0.091	300	TA100	+	0.001
3-Amino-4-nitrotoluene	0.027	0.761	1 500	TA98	•	0.021
5-Amino-2-uitrotoluene §		*				
3 Witrobenzonitriie	0.313	0.330	100	TAIOO	ı	0.911
Sitrobenzonitrile	0.039	0.094	1000	TA100	1	0.001
7 /_Dinitral_{_marrhlabone.]	300.0	,,,,	00.			

^{*} Not mutagenic.
+ Concentration in Phase III condensate water mixture.
+ Concentration in Phase III condensate water mixture.
+ Number of revertants minus control revertants : dose in ug tested.
+ Not found in field samples of condensate water (Reference 1).

the mutagenic potency (calculated as described under "Procedures"), the dose, <u>Salmonella</u> strain and metabolic requirements for obtaining the mutagenic potency figure, and the estimated contribution of the compound to the mutagenic potency of the overall mixture. Of the 34 compounds tested, 2,4,5-TNT, 3,5-DNA, 1,3,5-TNB, and 2,3,6-TNT had the highest mutagenic potency and therefore were considered to be the most mutagenic. All six of the dinitrotoluenes, the dinitroaniline, all seven monoaminodinitrotoluenes, 1,3-dinitrobenzene, trinitrobenzene, the four trinitrotoluenes, dimethyldinitrobenzene, monomethyldinitrophenol, and the two mononitrobenzonitriles tested positively in the Ames test but had much lower mutagenic potential. Of the three mononitrotoluenes, only the para-isomer was mutagenic. Three of four monoaminonitrotoluenes were mutagenic. Toluene and the two monomethylnitrophenols produced no detectable revertants in the tests. The data from the individual assays are in Appendix B.

The results of the Ames test on unirradiated and irradiated condensate water mixtures (30-component for Phase III tests) appear in Table 7. The undiluted condensate water melt was mutagenic in all strains with or without metabolic activation even at the lowest doses (50 λ per plate). At 100 ppm in aqueous solution the unirradiated condensate water was not mutagenic. When the condensate water was irradiated at 5 ml/min through the photolytic reactor (Reference 1, p. 14), positive results were observed with strains TA100 without metabolic activation and TA98 both with and without metabolic activation. The condensate water mixture irradiated at a rate of 50 ml/min through the reactor was negative in tests on strains TA1535 and TA100 and slightly positive in tests on TA98.

Table 7

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - CONDENSATE WATER MELT*

TA100	126 113	681	972	133	750	978	905	1087	99	212	655	805	1028	1190	934
er Plate TA98	23		612	31	1195	1297	1382	1641	614	1636	847	911	84.5	1162	1761
rertants p	11 22		675	10	1,00	1257	1561	1668	2056	738	365	1026	1117	1052	819
Histidine Revertants per Plate TA1537 TA1538 TA98	11 12	077		9	196 196	215	241	328	2011	219	138		201		
H1s TA1535	11 6	253		11	413	77	29	29	T288	51	23	18	34	23	48
Amount of Compound Added per Plate		1.0 µg 100	20	2.5	C. 2	70 22	80	100	300	500	50 µ1	70	80	т00	500
Metabolic of Activation Added	1 +	1 E	ı +	1 4	+ 1	1	ı	1	ı	1	+	+	+	+	+
Met					<u>.</u>	ر									
Compound	Negative control	Positive controls Sodium azide 9-Aminoacridine	2-Nitrofluorene AF2	2-Anthramine		Condensate water met									

*30-Component Condensate Water Mixture undiluted.

Table 7 (Continued)

IN VITRO ASSAYS WITH SALMOWELLA TYPHIMURIUM CONDENSATE WATER

Plate TA100	92 93	311	107 552	86 83	81 114 125 160 167	104 114 100 109 122
Histidine Revertants per Plate	19 24	50	12 415	28 22	124 183 255 339	59 88 131 190 174
Histidine TA1535	17	162	6 123	17 9	13 15 12 9	11 10 10
Amount of Compound Added per Plate		1.0 µg 50	2.5	0.25ml 0.25	0.05 ml 0.10 0.15 0.20 0.25	0.05 0.10 0.15 0.20 0.25
Metabolic Activation	ı +	1 1	۱ +	- + (mdd	1111	++++
Compound	Negative control	Positive controls Sodium azide 2-Nitrofluorene	2-Anthramine	Pre-irradiated Condensate water (100	Condensate water 5*	

^{*} Condensate water 5 - reactor water flow rate 5 ml/min. † Condensate water 50 - reactor water flow rate 50 ml/min.

; 1.

. 1

Table 7 (concluded)

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM CONDENSATE WATER

Plate	TA100	84	112	97	106	88	92	100	114	110	
Histidine Revertants per Plate	TA98	27	27	39	41	20	34	31	39	50	58
Histidine	TA1535	7	6	6	18		80	7	æ	က	
Amount of Compound	n Added per Plate	0.05 ml	0.10	0.15	0.20	0.25	0.05	0.10	0.15	0.20	0.25
Metabolic	Activation	1	1	1	ı	ı	+	+	+	+	+
	Compound	Condensate water 50+									

DISCUSSION

Acute Toxicity

The acute oral LD50s for the three condensate water mixtures tested ranged from 250 to 450 mg/kg in the rat (Table 2). These values are in the range reported for 2,4-dinitrotoluene (568 \pm 59 mg/kg in males and 650 \pm 49 mg/kg in females) and for 2,6-dinitrotoluene (535 \pm 58 mg/kg in males and 795 \pm 22 mg/kg in females), components that constitute 65 to 75% of the mixtures. Based on the values in the table, all three mixtures are moderately toxic.

The slightly greater toxicity of the 17-component mixture relative to the other two mixtures suggests that the more toxic components are being diluted out in the 30-component mixtures. The scarcity of acute toxicity data on condensate components in Sprague-Dawley rats tested under comparable conditions make it impossible to resolve this definitively. In aquatic toxicity studies, 2,4-DNT made the largest contribution to the overall toxicity of condensate water to Daphnia. 15 This component was also substantially diluted in changing to the 30component formulations (Table 1). 2,3,6-TNT, a significant component only in the 30-component mixture for Phase III testing, made almost the same contribution to the toxicity of that mixture as did 2,4-DNT in the aquatic tests. The increase in the 2,3,6-TNT content of the Phase III mixture then may be responsible for the slight increase in its acute toxicity relative to the 30-component mixture for Phase II tests. These observations are consistent with the concept that the differences in toxicity of the mixtures is due to differences in the toxicity of the main components and their relative content in the mixtures.

The LD50s for all three mixtures were lower in females than in males, significantly so for the two 30-component mixtures. This sex difference was not found with the two major components, 2,4-DNT and 2,6-DNT. 14 Other components in the mixture may be responsible for the difference. The fact that the mixtures had higher toxicities than expected on the basis of their 2,4- and 2,6-DNT contents may be understood in similar terms.

The 17-component condensate mixture was less toxic to mice than to rats. Others have found that the acute oral LD50 of 2,4-DNT is at least two times higher in mice than in rats, whereas the values for 2,6-DNT are almost the same. Since 2,4-DNT makes up over 50% of the mixture by weight, it seems likely that the difference in LD50s for the mixture in rats and mice is due mainly to this component.

Skin and Eye Irritation

Based on irritation tests in the rabbits, the 17-component condensate water mixture is virtually nonirritating to eyes and only mildly irritating to skin. These findings are essentially identical to those on 2,4- and 2,6-DNT, the major components in the mixture. 14

Skin Sensitization

The 17-component condensate water mixture provoked a reaction in the skin of 62.5% of the guinea pigs tested. Based on the criteria used, 5 condensate water is a moderate allergen. In the same test, 2 ,4,6-TNT has also been found to be moderately sensitizing, 2 ,6-DNT mildly sensitizing, and 2 ,4-DNT nonsensitizing. 14

In Vitro Mutagenicity Testing

The mutagenic potency of 34 nitrotoluene analogues, 30 of which have been found in samples of condensate water, was calculated from their mutagenic responses in the most active of the tests performed on them. In Table 6, which presents a summary of these results, most of the mutagenic compounds were detected by strain TA100. Four of the compounds were in quantities not always detectable in the condensate water mixtures. Two--1,3-nitrotoluene (not present in condensate water) and 4-amino-2-nitrotoluene--were not mutagenic in these assays. The other two--2,3,4- and 2,4,5-trinitrotoluene--were mutagenic. However, these have not been detected in condensate water.

In these assays, the mutagenic potency of 1,3-dinitrobenzene is not high relative to the other compounds tested. However, due to its high concentration in condensate water, it may be the greatest contributor to the mutagenicity of the condensate water melt. In these assays, 1,3-dinitrobenzene together with 2,3,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene contribute over 60% of the mutagenic activity of the condensate water, although they comprise less than 15% of the mixture by weight. The three most prevalent components in the mixture--1,3-dinitrobenzene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene--contribute over 40% of the activity.

Irradiated condensate water elicited a greater mutagenic response after irradiation at 5 ml/min than at 50 ml/min. Irradiation converts the condensate water mixture to one that is more mutagenic in the Ames test and the degree of mutagenicity is directly related to the extent of irradiation.

PART 2 - SUBACUTE ORAL TOXICITY STUDIES OF CONDENSATE WATER (PHASE II)

INTRODUCTION

This section discusses the 90-day subacute oral toxicity studies of condensate water (blend) in dogs, rats, and mice. These studies were performed (1) to define toxic symptoms arising from repeated oral doses of a representative condensate blend and to identify the target organs or systems; (2) to establish a dose-response relationship where possible; (3) to establish no-effect levels for exposure of the species to the condensate water; and (4) to provide guidelines for establishing the dose levels to use in the chronic studies. The reversibility of any adverse effects was assessed in groups of rats and mice allowed to recover for 4 weeks after discontinuation of treatment with the condensate water.

GENERAL METHODS

This section contains a description of the following general methods used for this Phase II study of dogs, rats, and mice:

Hematology Clinical Chemistry Urinalysis Pathology Statistical Methods Quality Assurance

Hematology

Erythrocyte, Leukocyte, Hematocrit, and Mean Corpuscular Volume

A Coulter electronic particle counter (Model ZBI) with a $100-\mu$ aperture 16 is used to determine hematocrit, erythrocytes, leukocytes, and mean corpuscular volume (MCV). The instrument is standardized daily in a two-step process as follows: The electronics are first checked for proper functioning by a standard procedure. Then the instrument is standardized for erythrocyte and leukocyte counts and for hemoglobin, hematocrit, and mean corpuscular volume against 4C normal and abnormal control standards (Coulter Electronics Inc.). Each blood sample was counted in duplicate.

Hemoglobin (Hgb)

Hemoglobin is determined in a Coulter hemoglobinometer as cyanomethemoglobin. 17 Cyanomethemoglobin standards were supplied by Coulter Electronics Inc. as part of the 4C control standard. Duplicate tests were run on each blood sample.

Ĺ.,

Mean Corpuscular Volume (MCV)

MCV is determined in the Coulter counter after (daily) standardization by the Wintrobe microhematocrit method. MCV on each test samplis determined in duplicate.

Hematocrit (Hct)

Hematocrit is calculated automatically in the Coulter counter from the following equation:

$$Hct = RBC (10^6/mm^3) \times MCV (\mu^3)$$
.

Mean Corpuscular Hemoglobin (MCH)

MCH was calculated as follows:

MCH (
$$\mu\mu g$$
) $\approx \frac{\text{Hgb (g \%)} \times 10}{\text{RBC (10}^6 \times \text{mm}^3)}$.

Mean Corpuscular Hemoglobin Concentration (MCHC)

MCHC is calculated as follows:

MCHC % (g %) =
$$\frac{\text{Hgb (g \%)} \times 100}{\text{Hct}}$$
.

Differential Leukocyte Counts

Leukocytes are stained with Wright's stain for examination and counting under a light microscope. Cell types identified and counted are polymorphonuclear cells, band cells, lymphocytes, atypical lymphocytes, monocytes, eosinophils, and/or basophils.

Reticulocyte Count (Retic)

Heinz bodies are stained with methyl-violet and the percentage is calculated. Heinz bodies were not reported in the text unless the test was positive.

Clinical Chemistry

The clinical chemistry tests described below were performed at SRI International on the blood samples. These tests represent a GEM 15 (GEMSAEC 15) profile as described in GEMSAEC manual (Technical Publication No. I.M. 030085, May 1976) by Electro-Nucleonics, Inc. (Fairfield, NJ).

GEMSAEC is a computerized and automated blood analyzer system made up of five component modules. GEMSAEC performs either endpoint or kinetic type analyses. The instrument centrifugally mixes reagents and clinical samples, moving the mixture through the light path of a spectrophotometer, the output of which is converted to digital data for computation in a digital minicomputer and is printed out on a teletypewriter. A small integral oscilloscope allows visual monitoring of analyses. Standardization for each test was made on every 16 samples, using Smith Kline Instruments Inc. human reference sera (normal and abnormal). 18,19

BUN (mg %)

The GEMSAEC method used for determination of BUN is a modification of the procedure described by Falke and Schubert. 20 This method of determining urea in blood involves release of ammonia from urea by the action of urease. It serves as substrate with $\alpha\text{-ketoglutarate}$ for the enzyme glutamic dehydrogenase, forming glutamate. In this reaction, reduced nicotinamide adeninedinucleotide (NADH) is oxidized, the amount being proportional to the amount of urea in the sample. The oxidation is followed quantitatively by the decrease of absorbance at 340 nm as NAD+ is formed from NADH.

Creatinine (mg %)

Creatinine is analyzed by the original method of Jaffe, ²¹ in which the creatinine is allowed to react with saturated picric acid in alkaline solution at 30° to produce a bright orange-red solution. Analysis in the colorimeter is performed at 520 nm.

Uric Acid (mg %)

For determination of uric acid in clinical specimens, uric acid is oxidized by the specific enzyme uricase to allantoin, $\rm CO_2$, and $\rm H_2O_2$. In the presence of catalase, the $\rm H_2O_2$ formed is used to oxidize methanol to formaldehyde. The formaldehyde is transformed by the Hantzch reaction, in the presence of acetylacetone and ammonia, into a yellow-colored lutidine derivative. The yellow color of this dye is directly proportional to the concentration of uric acid. The color is measured photometrically between 405 and 415 nm.

Calcium (mg %)

The GEMSAEC calcium analysis determines calcium colorimetrically, using a metal-complexing dye, cresolphthalein complex, and a diethylamine base reagent. 8-Hydroxyquinoline is present in the test to eliminate any interference due to magnesium ions. A red-purple complex forms that is proportional to the amount of calcium present. 24

Phosphorus (mg %)

Inorganic phosphorus is determined by the phosphate ions in the serum reacting with ammonium molybdate in the presence of sulfuric acid²⁵ to form phosphoromolybdic acid. This is then reduced by ferrous ammonium sulfate to form a blue-colored complex with a maximum absorbance at 675 nm. The formation of the blue complex is proportional to the concentration of phosphorus in the sample.

Glucose (mg %)

Glucose reacts with adenosine triphosphate (ATP) in the presence of hexokinase with the formation of glucose-6-phosphate and adenosine diphosphate (ADP). Glucose-6-phosphate reacts with nicotinamide adenine dinucleotide (NAD $^+$) in the presence of glucose-6-phosphate dehydrogenase with the formation of 6-phosphogluconate and NADH. The NADH produced absorbs strongly at 340 nm. 26

Total Bilirubin (mg %)

Determination of serum bilirubin in the GEMSAEC is effected in the presence of caffeine. Sodium benzoate bilirubin couples with diazotized sulfanilic acid to form azobilirubin, which is pink and has an absorbance maximum around 545 nm. This reaction is very rapid and is performed outside the analyzer by adding caffeine sodium benzoate to the serum. Addition of sodium-potassium tartrate changes the pH to highly alkaline and moves the absorbance maximum to 600 nm. The absorbance at 600 nm is proportional to the total bilirubin concentration in the serum. 27

Cholesterol (mg %)

Cholesterol is determined by the automated method of Allain et al. 28 in which cholesterol esters are hydrolyzed to free cholesterol and fatty acids by cholesterol esterase. The cholesterol released by this process and that pre-existing free in the sample are then oxidized by the enzyme cholesterol oxidase. The hydrogen perioxide released in the oxidation step reacts with 4-aminoantipyrine and phenol in the presence of horseradish perioxidase. The quinone imine product is red in color, with $\lambda_{\rm max}$ at 500 nm.

Triglycerides (mg %)

Analysis for serum triglycerides involves the enzymatic hydrolysis of the compounds to glycerol and free fatty acids. 29 A solution of glycerol kinase and pyruvate kinase converts glycerol to pyruvate, which in turn is reduced by NADH and lactic dehydrogenase to lactate (followed at 340 nm).

SGOT (IU/L)

Serum glutamic-oxaloacetic acid transaminase (SGOT) activity is measured by following the rate of change of NADH absorption at 340 nm and 30° produced by maleate dehydrogenase. The latter enzyme system is coupled with GOT-catalyzed transamination of aspartic acid and $\alpha\text{-ketoglutarate}$ in the medium. $^{30},^{31}$

SGPT (IU/L)

Serum glutamic-pyruvic acid transaminase (SGPT) activity is monitored in the same manner as SGOT except that alanine is substituted for aspartic acid and the coupling enzyme is lactate dehydrogenase. 30,31

LDH (IU/L)

Lactate dehydrogenase (LDH) activity is determined directly by monitoring the rate of change in absorption at 340 nm in the presence of added L-lactic acid and NAD $^+$. 32

Alkaline Phosphatase (IU/L)

In the GEMSAEC method for determining alkaline phosphatase, p-nitrophenyl phosphate is used as the substrate and the enzyme acts to form p-nitrophenol and inorganic phosphate or mannitol phosphate as products. The released p-nitrophenol is in the form of the dissociated phenylate ion at the reaction pH, which form has a distinctive yellow color that absorbs light maximally at a wavelength of 405 nm. 33

Total Protein (g/L)

The method for total protein is based on the biuret method, adapted for use with the GEMSAEC analyzer. 34

Albumin (g/L)

The GEMSAEC method utilizes the reactivity of albumin with bromocresol green (BCG) to form an albumin-BCG complex that can be quantitated colorimetrically at 628 nm. 35

Other

Globulin and albumin/globulin (A/G) ratios are not ordinarily a part of the SRI Clinical Chemistry Laboratory output with the GEMSAEC. Approximate values for each may be calculated using the total protein and albumin mean values in the clinical chemistry tables. These calculations were done by hand, but, since no consistent pattern was found in the results, the computer was not reprogrammed so as to include these data in the tables.

Urinalysis

Routine urine analyses as performed at SRI include color, specific gravity, pH, protein, glucose, ketone, bilirubin, urobilinogen, occult blood and microscopic examination of the sediment.

All tests except those specified below are done with colorimetric multistix (Miles Laboratories, Elkhart, Indiana). The exceptions are color, specific gravity, and microscopy. Color is estimated visually and specific gravity is determined in an AO TS meter. The urine sediment obtained by centrifugation is examined microscopially for cells, casts, bacteria, and crystals. Each, excepting crystals, is usually reported as a quantity per low or high power field.

Pathology

Euthanasia

Dogs are anesthetized by injection of "Pentothal" (sodium thiopental) (Abbott Laboratories, North Chicago, Illinois) in the cephalic vein; then they are exsanguinated. Rats and mice receive sodium pentobarbital intraperitoneally.

Postmortem (Gross) Examination

External. The physical condition of the animal is observed and recorded. Lesions are sought in skin, eyes, and other structures in which they are externally evident. The nature and quantity of discharges from any of the body openings are also noted.

Internal. The carcass is opened systematically, starting anteriorly and proceeding caudally. The brain is removed first, followed by the eyes. Neck organs and thoracic, abdominal, and pelvic viscera are observed in situ and removed. Hollow viscera are opened and examined grossly. Solid viscera are carefully sliced and examined. All abnormalities are described. Specimens ≤ 5 mm thick are placed in neutral buffered formalin for not less than 3 days.

Organ Weights. Specified organs are trimmed, each in a routine manner, and the weights are recorded. Bile is released from the cholecyst prior to measuring liver weight. In the case of large animals, the heart is opened for release of unclotted blood or removal of clots before it is weighed. The ratio of organ weight to body weight and to brain weight is determined.

Microscopic Examination

Specified fixed tissues and lesions that always include some adjacent normal tissue are processed to hematoxylin and eosin-stained slides for histopathologic evaluation. If, in the judgment of the pathologist, special stains are required, they are requested.

Reports include individual findings, group incidences, intergroup comparisons, and determination of spontaneity or relationship to experimental treatment.

Statistical Methods

A common tabular format has been developed to allow a rapid comparison of group results from toxicologic studies. For the majority of the parameters measured in such studies (body weights, weight gains, organ weights, hematology, and clinical chemistry), the tables contain the mean parameter value for each treatment group along with the standard error of the mean and the number of animals in the group. For food consumption (which is measured on a cage basis rather than on an animal basis), the tables contain the mean food consumption for each treatment group and the number of animals in the group. The tables compactly display a large portion of the quantitative data gathered in the study (aside from observations made during the study on animal appearance and behavior and during necropsy on abnormalities).

Statistical procedures have been applied to the data in the tables to aid the investigator in identifying the significant results (that is, difference in mean parameter values that would be unlikely to have resulted from natural biological variability).

In this study on condensate water, the statistical tests were applied to the data on body weights, weight gains, organ weights, hematology, and blood chemistry whenever the group size was three or larger. The statistical tests were not applied when the group size was one or two animals, since the tests depend on the approximate normality of the distribution of the mean and these sample sizes were judged too small to give reasonable assurance of this normality.

To permit easy identification of the statistically significant results and to form a visual pattern that will naturally lead the investigator's attention to clusters of significant results, the significance of these statistical tests is denoted by the use of symbols (+, *) and letters (A,B,C,D) placed on the same tables as the means, standard errors, and group sizes.

The first statistical test is Bartlett's chi-square test. 36 This test examines the variances of the treatment and control groups and flags the condition of unequal variances. If Bartlett's chi-square test is not significant at the 5% level, no symbol is printed in the B column. The symbol * denotes that the test is significant at the 5% level and the symbol + denotes that the test is significant at the 1% level. The primary use of Bartlett's chi-square test is in the selection of the proper statistical tests for examination of the means of the treatment and control groups.

Next, each treatment mean is examined to determine whether it is significantly larger or smaller than the control mean. If the Bartlett's chi-square test is not significant at the 5% level, the statistic used for this comparison is a t-statistic computed with a pooled variance estimate. This statistic is compared with a Scheffe multiple comparison cutoff value for contrasts to determine its significance. The pooled variance estimate is derived using all the groups. This test is known as Scheffe's test³⁷ and, as a simultaneous statistical procedure, guarantees a significance level of 5% or 1% over all the treatmentcontrol comparisons. If Bartlett's chi-square test is significant at the 5% (or 1%) level, the statistic used for the treatment-control comparison is a t-statistic computed with separate group variance estimates. This statistic is compared with a Student's t-cutoff value. This t-test is not a simultaneous test. On the basis of Bartlett's chi-square test, the computer automatically decides which treatmentcontrol comparison to compute. In either case, a result significant at the 5% level is denoted in the T column by a * and a result significant at the 1% level is denoted by a +.

While the t- and Scheffe tests assess whether the treatment and control means are significantly different. Finney's ratio test (Reference 2, pp. 76-80) assesses the magnitude of that difference, Finney's ratio test is a procedure for examining the ratio of each dose group mean to the control group mean, while taking into account the variability demonstrated in the data. In particular, this test is used to form a 95% confidence interval for the ratio of a dose group mean to the control mean. If the confidence interval lies entirely above 1.10 or below 0.90, the symbol A is printed. If the confidence interval lies entirely above 1.20 or below 0.80, the symbol B is printed. The symbol C corresponds to an interval above 1.35 or below 0.65 and the symbol D corresponds to values of 1.50 and 0.50. Thus, using Finney's ratio test, if the letter D were printed, we might be able to say that we are 95% confident that at the highest dose level the mean response is at least 150% of the control group mean response. The computer program automatically uses either separate or pooled variance estimates in Finney's ratio test, depending on whether Bartlett's chi-square test is significant. The ratio test is not a simultaneous test statistic in either case, however. The symbol x is printed if the ratio test cannot be computed.

Food consumption was analyzed statistically for differences using the Williams test.³⁸ Williams' test is a procedure for testing the statistical significance of a difference between the mean values for the dose-related groups and the mean value for the control group. This procedure is particularly sensitive to a monotone increasing or decreasing response relationship with increasing dose. This test, which is a simultaneous statistical procedure, is similar to Duncan's test but is more powerful for the stated alternatives. The symbol * is printed after each value that is significant at the 5% level. This significance level refers to the two-sided version of the test.

Quality Assurance

The detailed procedure for the extraction and clean-up of condensate feed extracts is presented on page 34. It consists of a dichloromethane extraction, clean-up on a silica gel column, and capillary gas chromatography (gc) analysis. Recovery studies were performed at each concentration level. The results were: >99% recovery for 16 components at the 0.10% level; >97% recovery based on 1,3-dinitrobenzene and 2,4- and 2,6-dinitrotoluene concentrations at the 0.01% level; and >95% at the 0.001% level based on recovery of the three main components, which represent 78% of the condensate blend.

If the silica gel column was not given a hexane wash prior to the dichloromethane elution step, interferences were observed in the gc analyses of condensate water. The interferences are tolerable at the 0.10% condensate blend level in feed; however, they become quite troublesome at the 0.01 and 0.001% levels.

EXTRACTION AND CLEAN-UP OF CONDENSATE COMPONENTS IN FEED

- 1. Weigh out 13-15 g of feed in tared flask.
- 2. Add 1 ml x 0.0166 mg/ml p-DNB/CH $_2$ Cl $_2$ to the 0.001% condensate water (CW) feed, 1 ml x 0.166 mg/ml p-DNB/CH $_2$ Cl $_2$ to the 0.01% CW feed, and 1 ml x 1.66 mg/ml p-DNB/CH $_2$ Cl $_2$ to the 0.10% CW feed.
- 3. Add ${\sim}80$ ml of CH_2Cl_2 to flask. Stir with magnetic stirring bar for 30 minutes.
- 4. Prepare Celite filter pad in 7-cm buchner filter (1/2").
 - (i) Slurry about 50-70 ml Celite with CH_2Cl_2 .
 - (ii) Pour slurry into filter with 7-cm #1 Whatman paper with a light vacuum.
 - (iii) Do not dry completely. Place additional paper on top.
- 5. Add feed/ CH_2Cl_2 to Celite filter with vacuum. Rinse flask 3 times with about 15 ml of CH_2Cl_2 each time. Add to filter.
- 6. Transfer filtered extraction to round bottom flask.
- 7. Rotary evaporate at 30° C down to 1-2 ml.
- 8. Prepare silica gel (Florisil) column (2.5-cm I.D. column).
 - (i) Measure out 35 ml of silica gel into an 80-ml beaker.
 - (ii) Add some hexane and slurry.
 - (iii) Place a small plug of glass wool at bottom of column.
 - (iv) Add silica gel/hexane slurry to column via wide bore funnel. Rinse beaker with additional hexane and add to column until most of silica gel slurry is transferred.
 - (v) Drain hexane level down to 1 inch above silica gel level and add 1-2 cm of Na_2SO_4 .
 - (vi) Drain hexane down to top of Na₂SO₄ level.
- 9. With pipet, add feed extract to column. Drain to Na₂SO₄ level.
- 10. Measure 100 ml of hexane in a graduated cylinder and then add ~10 ml to the round bottom flask that contained the feed extract. Swirl. Add to column. Drain to Na₂SO₄ level. Add remaining 90 ml of hexane to column and drain to Na₂SO₄ level. Discard hexane eluent.
- 11. Add 100 ml of CH_2Cl_2 to column and collect in round bottom flask (for the 0.01% CW feed, use 200 ml of CH_2Cl_2). Let column run dry.
- 12. Rotary evaporate at 30° to 1-2 ml. Transfer to 2-dram vial with teflon liner. Further concentrate with N_2 .
- 13. GC under the following conditions:

Column: 60 meter SE-30 capillary column.

Temperature: 130° (48° min hold) \rightarrow 220°(20 min hold) @ 4°/min.

Flow rate: 0.4 ml/min N_2 .

Split ratio: 100/1.

Detector: Flame ionization.

A sample gas chromatogram is shown in Appendix I.

Note: Silica gel 80/200 mesh. Prewashed with toluene and hexane stored at $150\,^{\circ}$ C.

Following the hexane wash, dichloromethane readily elutes the dinitrotoluenes and 1,3-dinitrobenzene. Further elution with dichloromethane extracts the aminodinitrotoluenes and a number of contaminants, including fats and oils.

Percentage recovery of condensate water components from the feed stocks, expressed as mean and standard deviation, was $83\pm8.7\%$ for the 0.10% condensate water level, $82\pm7.9\%$ for the 0.01% level, and $77\pm6.4\%$ for the 0.001% level. There was no significant change in the relative ratio of the individual components in the 0.10% condensate water mix recovered.

STUDIES IN DOGS

Procedures

Housing and Maintenance

Forty AKC-registered beagles from Marshall Laboratory Animals, North Rose, New York, were used in these experiments. The dogs were born September 1-24, 1977 and arrived at SRI February 15-23, 1978, identified by ear tattoos. They were inspected and numbered with metal tags on chain collars. In addition, identification cards were attached to the cages in which they were held for a 3-week quarantine period. All dogs were examined and found healthy by the DVM. They were transferred to outdoor runs and the study was initiated on March 23, 1978.

The dogs were housed two to a run or singly in covered outdoor runs that are protected from inclement weather by a roof, walls, and side curtains. Four hundred ± 5 g of dry Purina Field and Farm Kibble daily per dog was placed in the food pans immediately after the dogs were dosed. The food was picked up for reweighing 3 to 4 hours later. (The dogs had been trained on this feeding schedule while they were in quarantine.) Food consumption was determined daily for each run, 5 days per week. Food consumption/animal/day was calculated from the sum of the food consumed by dogs in each group over this 50-day period divided by the sum of the number of days each dog in the group survived (5 x number of dogs/group if none died prematurely). On weekends, the dogs received approximately the same amount of food per day but the unconsumed food was not weighed.

Treatment Protocol

The beagles were divided into three treatment groups and one control group; there were five males and five females in each group. All treated beagles were dosed daily by capsule until the day they were killed, unless otherwise indicated. Controls were given capsules containing the lactose only, daily for the same period.

The condensate blend for the subacute studies was prepared in the same manner as described in Part 1 and had the composition given in Table 1 for the mixture used in Phase II testing. It was received in the form of a sticky paste. The quantity (5 g) to be mixed with the lactose (USP) diluent was weighed out in a beaker on a Mettler P162 balance and dissolved in a minimum volume of acetone with stirring, while being protected from light with aluminum foil. This same volume of acetone was used to dissolve the medium and low dose amounts of condensate water. To prepare each stock mixture, the acetone was mixed

with 95 g of lactose powder in a large dish that was covered loosely with aluminum foil until the acetone evaporated. (The same procedure was followed for control samples, using lactose and acetone alone.) The doses to be administered were then weighed under a ventilated hood on the Mettler balance to \pm 0.01 g on the basis of the weight of the dog to receive the dose. The doses were then placed in 1/8-oz. gelatin capsules. Control dogs were given capsules containing the same amount of lactose powder, treated in the same way with acetone. Dose levels administered were 0.0, 0.05, 0.5, and 5.0 mg condensate water/kg of body weight. The compounds and capsules were stored in the dark in a refrigerator until used. The dogs were dosed between 9:30 and 11:30 AM each day.

Quality control consisted of determining whether given quantities of condensate water (usually 300 g batches) were used up in preparing the gelatin capsules in the expected period of time. This was invariably the case. Quality control on individual gelatin capsules or capsules prepared specially for that purpose was not performed.

Tests

All dogs were observed daily during capsule administration and feed weighings, and unusual signs were recorded. They were weighed once a week. Food consumption was recorded 5 days a week.

Hematology and clinical chemistry determinations were performed on blood samples from surviving animals at 0, 8, 17, and 24 weeks. Approximately 6 ml of blood was drawn from the jugular vein of each dog via a 10-ml syringe with a 20-gauge, 1.5-inch needle. Two ml of the fresh blood was immediately transferred to a 2-ml Vacutainer containing EDTA anticoagulant for hematology (CBCs, including differential counts). After clotting, the remaining 4 ml of blood was centrifuged for 10 minutes at 2000 rpm in an IEC International Universal Model UV centrifuge. The serum was transferred by syringe to an additive-free 10-ml Vacutainer and refrigerated. The whole blood and serum samples were analyzed in the SRI Clinical Chemistry Laboratory.

Dogs were killed beginning on day 176 and continuing intermittently over a 9-day period. An equal number of the same sex from each group were killed on any sacrifice day.

At sacrifice, each dog's brain, heart, liver, kidneys, spleen, gonads, thyroid, and adrenals were weighed immediately and the absolute weights were recorded. Organ-to-body weight and organ-to-brain weight ratios were calculated from these data. All the data on body and organ weights, hematology, and clinical chemistry were compiled and evaluated statistically as described in the previous section.

All tissues or representative sections were fixed in 10% neutral buffered formalin and saved for histopathological analysis. Other tissues examined grossly and microscopically were the aorta, bone, bone marrow (smears only), colon, cholecyst, duodenum, epididymis, esophagus, eye, ileum, jejunum, lung, lymph node, sciatic nerve, pancreas, parathyroid, pituitary, prostate, salivary gland, seminal vesicles, uterus, skeletal muscle, spinal cord, stomach, thymus, trachea, urocyst, and vagina. The methods used to prepare and examine slides are described in the previous section.

Results

Observations

No unusual symptoms were observed in any dog during the study with the exception of C3-33 and C3-31, both high-dose males. The latter had stiff hind legs, arched back, slight incoordination, and yellow urine on Days 132 and/or 133. These effects were transitory and did not appear again.

Dog C3-33 exhibited multiple signs of toxicity that began during Week 6 and lasted throughout the remainder of the study. On Day 42, this male began to show poor coordination, disorientation, and flaccidity of the hind legs (the left one being weaker). Within a few days, spasms were noted, with the hind legs being rigidly outstretched (the left one more so) and the back arched. The animal had difficulty standing (tending to fall backwards) and exhibited spasticity of the forelimbs and nystagmus. When carried, the dog experienced convulsions. He resisted flexion of the legs and had no gag reflex. His pupils were dilated.

By Day 50, the dog had stopped eating and resisted water. He needed support to stand and had no control over his neck extensors. He had a slow righting reflex, and rigidly flexed legs, and nystagmus. On Day 54, in addition to these symptoms, he had no menace response. He did show a slight gag reflex, however, and did eat with help. Improvement continued and within 2 days he was able to sit or "crouch stand," and eat by himself. Shortly thereafter he was able to stand on his own and take a few steps. He exhibited no hand-clap response; if he did hear sounds, he appeared to have difficulty locating the source. He had difficulty controlling his head; it constantly swung from side to side.

This brief period of improving condition was followed by one of further deterioration, beginning on Day 64. He needed assistance in eating. By Day 74, his hind legs were rigidly extended, unable to flex. He had difficulty crawling and was disoriented. These symptoms continued over the next four weeks and were followed by cycles of some signs of improvement (about 2 weeks) and then regression (another 2 weeks). By Day 132 his condition was more serious. He made no attempt

to stand and his breathing was slow and labored. Any head movement caused nystagmus. His legs were either flexed or rigid, his head was manipulated without control, and his jaws were clamped tight. He would lie curled on his chest and then be "thrown violently" onto his side, with head muscles tense and trembling. On Days 137 and 138 he was not dosed at all because of the difficulty in opening his jaws. His teeth had punctured his lips, he had no control over his head (it banged against the cage sides or floor when he tried to move), and his hind and fore legs were not coordinated. On Day 139 he was better, presumably because of discontinuation of dosing. He was able to raise his head and eat canned food, although this was done ravenously and with wild snapping. In order to sustain this animal until sacrifice, he was continued on canned food for the remainder of the study. He seemed more alert and was able to lift his hindquarters some, but in trying to do so he would paddle with hind and fore legs going at different rates of speed.

The next day dosing was resumed. Although some slight improvement in condition was noted, the animal continued to remain quadriplegic and to have spasticity of the hind limbs, dilated pupils and possible blindness, no menace or reaching reflexes, nystagmus, and weakness of the dorsal neck muscles. These or variants of these symptoms persisted until sacrifice.

Body Weights

The mean body weights of the dogs in each group over the 24-week study are given in Tables 8 and 9. The treatment with condensate blend was without significant effect on body weights of either males or females during this period. Since week-to-week changes in body weight were slight, body weight differences are not presented.

Food Consumption

Food consumption data for these dogs are presented in Tables 10 through 13. These data were also unremarkable.

Organ Weights

Organ weights and organ-to-body and organ-to-brain weight ratios appear in Tables 14 and 15. The only differences cited in the t-test are male heart-to-body weight (high) and female spleen-to-body weight (also high) ratios at the high dose. Male kidneys and kidney-to-body and kidney-to-brain weight ratios appeared to increase linearly with dose (Appendix D, Table D-1). Since these values are well within normal limits (Appendix E, Tables E-1 and E-2), no toxicological significance is attached to them.

TABLE 8

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (KG) OF MALE DOGS DURING 24 WEFKS OF TREATMENT

VARIABLE C GROUP VARIABLE C GROUP VEEK 1 VEEK 2 VEEK 3 VEEK 4 VEEK 1 VEEK 1 VEEK 1 VEEK 12 VEEK 13 VEEK 13 VEEK 13 VEEK 13 VEEK 13 VEEK 13 VEEK 14 VEEK 15 VEEK 15 VEEK 15 VEEK 16 VEEK 16 VEEK 17 VEEK 17 VEEK 18 VEEK 18 VEEK 18 VEEK 18 VEEK 18 VEEK 19 VEEK 19 VEEK 19 VEEK 20 V			
A1. 8 .24 ± .242 2 8 .66 ± .313 3 8 .96 ± .413 4 9 .04 ± .384 5 9 .42 ± .423 7 9 .42 ± .403 10 0 0 ± .403 11 10 10 0 ± .403 12 10 .44 ± .418 13 10 .44 ± .418 14 10 .44 ± .418 15 10 .44 ± .403 16 10 .46 ± .403 17 10 .56 ± .403 18 10 .46 ± .403 19 10 .56 ± .403 20 10 .70 ± .485 21 10 .56 ± .474 22 10 .70 ± .522 23 10 .70 ± .522	.05 MG/KG/DAY T R	, S HG/KG/DAY T R	5.0 HG/RG/DAY T.R.
8 6 6 6 132 8 6 6 6 132 8 6 6 6 132 8 6 6 6 6 6 6 132 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8,18 ± ,325 (5)	8.38 ± .201 (5)	7.88 ± .530 (5)
2 8 6 8 + .353 4 9 0 6 + .413 5 9 0 6 + .413 6 9 0 6 + .423 7 9 6 6 + .397 8 9 6 6 + .397 9 9 6 6 + .397 10 0 0 0 + .409 11 10 10 10 0 + .403 12 10 .36 + .433 13 10 .36 + .433 14 10 .46 + .403 15 10 .46 + .403 16 10 .56 + .403 17 10 .56 + .403 18 10 .56 + .403 22 10 .76 + .403 23 10 .76 + .403 24 10 .76 + .403 25 10 .76 + .403 26 10 .76 + .403 27 10 .76 + .403 28 10 .76 + .403 29 10 .76 + .403 20 10 .76 + .403 20 10 .76 + .403 21 10 .66 + .509	8.52 ± .233 (5)	8,74 ± .186 (5)	8.16 ± .503 (5)
8.96 + .413 6.9.04 + .384 7.9.04 + .384 7.9.66 + .397 8.9.56 + .397 9.58 + .403 10.00 + .409 11.10 10.18 + .384 12.10 10.54 + .418 13.10 10.54 + .418 14.10 10.54 + .403 15.10 .55 + .403 10.74 + .403 10.76 + .403 22.10 .70 + .509 23.10 .70 + .509	8.48 ± .360 (5)	9.12 ± .215 (5)	8.54 ± .512 (5)
9.42 ± .404 6 9.42 ± .404 7 9.42 ± .404 8 9.54 ± .423 9.66 ± .397 10 10.00 ± .403 11 10.18 ± .433 12 10.24 ± .418 13 10.44 ± .418 14 10.56 ± .403 16 10.56 ± .403 17 10.56 ± .403 20 10.74 ± .488 21 10.56 ± .456 22 10.76 ± .488	8.78 ± .396 (5)	9.32 ± .215 (5)	8.90 ± .594 (5)
9,42 ± ,404 9,54 ± ,423 9,56 ± ,397 9,56 ± ,403 10 10,00 ± ,403 11 10,18 ± ,418 12 10,24 ± ,418 13 10,34 ± ,418 14 10,54 ± ,403 16 10,56 ± ,474 18 10,74 ± ,485 20 10,70 ± ,485 21 10,56 ± ,520	8.68 ± .404 (5)	9.50 ± .268 (5)	8.84 ± .614 (5)
9 . 54 ± . 423 9 . 66 ± . 397 9 . 66 ± . 397 10	8.90 ± .466 (5)	9.64 ± .254 (5)	9.02 ± .648 (5)
9.56 ± .397 9.58 ± .403 10.00 ± .409 11.	8.96 ± .492 (5)	9.80 ± .305 (5)	8.94 ± .659 (5)
9.58 + .403 10 10.00 + .403 11 11 10.00 + .403 11 11 10.18 + .384 11 10.24 + .403 11 10.44 + .403 11 10.44 + .403 11 11 10.56 + .403 11 10.56 + .403 11 10.56 + .450 11 10.70 + .485 12 11 10.70 + .485 12 11 11 11 11 11 11 11 11 11 11 11 11	9.02 ± .445 (5)	9.90 ± .354 (5)	9.04 ± .705 (5)
9.78 ± .435 10 10.00 ± .409 11 12 10.18 ± .384 12 10.24 ± .413 14 10.34 ± .418 15 10.44 ± .403 16 10.56 ± .403 17 10.56 ± .403 19 10.74 ± .485 20 21 10.70 ± .529 22 21 22 23 24 25 26 27 28 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	9.14 ± .482 (5)	10.08 ± .450 (5)	8.74 ± .767 (5)
10 11 10.00 ÷ .409 12 13 10.18 ÷ .384 14 10.24 ÷ .433 14 10.34 ÷ .418 15 10.44 ÷ .403 16 10.46 ÷ .403 17 10.56 ÷ .403 19 10.56 ÷ .489 10 10.56 ÷ .489 10 10.56 ÷ .489 20 10.70 ÷ .489 21 10.70 ÷ .489 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20	9.18 ± .488 (5)	10,16 ± .486 (5)	8.86 ± .771 (5)
11 12 10.26 ± .433 13 10.36 ± .413 10.46 ± .418 15 10.46 ± .403 16 10.56 ± .478 17 10.56 ± .478 18 10.76 ± .485 10.76 ± .485 20 10.76 ± .485 20 10.76 ± .485 20 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20	9.36 ± .499 (5)	10.38 ± .493 (5)	8.96 ± .808 (5)
12 10.24 + .433 14 10.34 + .418 15 10.44 + .403 16 10.46 + .403 17 10.56 + .403 17 10.56 + .474 18 10.56 + .450 19 10.74 + .485 20 10.76 + .529 21 10.66 + .520	9.34 ± .465 (5)	10.42 ± .499 (5)	9.10 ± .821 (5)
13 14 15 10.44 ± .418 10.44 ± .418 10.44 ± .403 10.94 ± .403 10.95 ± .474 10.95 ± .474 10.97 ± .485 20 10.70 ± .52 21 10.56 ± .450 10.70 ± .52 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20	9.38 ± .414 (5)	10.52 ± .453 (5)	9.10 ± .799 (5)
14 10.44 ± .418 15 10.46 ± .403 16 10.36 ± .489 17 10.56 ± .474 18 10.58 ± .480 19 10.74 ± .485 20 10.70 ± .522 21 10.64 ± .509 22 10.56 + .520	9.52 ± .500 (5)	10.58 ± .518 (5)	9.28 ± .749 (5)
15 10.44 ± .403 16 10.36 ± .489 17 10.56 ± .474 18 10.58 ± .450 19 10.74 ± .485 20 10.70 ± .552 21 10.64 ± .509 22 10.56 ± .520	9.50 ± .473 (5)	10.60 ± .552 (5)	9.38 ± .737 (5)
16 10.36 + .489 17 10.56 + .474 18 10.58 + .450 19 10.74 + .485 20 10.70 + .552 21 10.64 + .509 22 10.56 + .520	9.44 ± .501 (5)	10,60 ± .594 (5)	9.46 ± .751 (5)
17 10.56 ± .474 18 10.58 ± .450 19 10.74 ± .485 20 10.70 ± .552 21 10.64 ± .509 22 10.56 ± .520	(5) 964. + 94.6	10,66 ± .598 (5)	9.56 ± .712 (5)
18 10.38 ± .450 19 10.74 ± .485 20 10.70 ± .552 21 10.64 ± .509 22 10.56 + .520	9.52 ± .479 (5)	10.74 ± .593 (5)	9.68 ± .720 (5)
19 10.74 ± .485 20 10.70 ± .552 21 10.64 ± .509 22 10.56 + .520	9.64 ± .474 (5)	10,86 ± ,610 (5)	9.84 ± .752 (5)
20 10.70 ± .552 21 10.64 ± .509 22 10.56 + .520	9.60 ± .491 (5)	10,78 ± .634 (5)	9.74 ± .678 (5)
22 10.64 ± .509	9.62 ± .500 (5)	10.96 ± .590 (5)	9.54 ± .719 (5)
10.56 + .520	9.62 ± .489 (5)	10.84 ± .699 (5)	9.56 ± .741 (5)
,	9.32 ± .458 (5)	10.64 ± .606 (5)	9.42 ± .743 (5)
WEER 23 10.54 ± .531 (5)	9.32 ± .479 (5)	10.66 ± .705 (5)	9.56 ± .722 (5)
WEEK 24 10.18 ± .474 (5)	(5) 667. ₹ 20.6	10,36 ± .571 (5)	9.50 ± .739 (5)

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP W IN PARENTHESES

• CONFIDENCE LEVEL = .95

• TREATMENT-CONTROL RATIO TEST : COMPIDENCE INTERVAL GREATER OR LOVER THAN CONTROL MEAN BY AT LEAST 10 % - A.

10 % - B. 35 % - C. 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

40

:

-

.

į

.

l.

.

TABLE 9

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (KG) OF PRMALE DOGS DURING 24 WEFKS OF TREATMENT

DEPENDENT	- U 1	CONTROL	.05 MG/KG/DAY T R	. S MG/KG/DAY T R	5.0 MG/KG/DAY T R
INITIAL		6.82 ± .368 (5)	6.88 ± .392 (5)	7.36 ± .260 (5)	6.82 ± .092 (5)
VEEK 1		6.98 ± .389 (5)	6.98 ± .407 (5)	7.38 ± .276 (5)	6.98 ± .165 (5)
WEEK 2		7.00 ± .383 (5)	7.04 ± .434 (5)	7.52 ± .312 (5)	7.12 ± .153 (5)
WEEK 3		7.18 ± .453 (5)	7.12 ± .403 (5)	7.66 ± .331 (5)	7.26 ± .186 (5)
WHER +		7.24 ± .489 (5)	7.16 ± .403 (5)	7.80 ± .339 (5)	7.34 ± .178 (5)
WEEK S		7.50 ± .504 (5)	7.34 ± .456 (5)	7.94 ± .344 (5)	7.54 ± .213 (5)
WESK 6		7.58 ± .525 (5)	7.64 ± .444 (5)	8.04 ± .344 (5)	7.56 ± .197 (5)
WEEK 7		7.72 ± .548 (5)	7.46 ± .435 (5)	8.10 ± .391 (5)	7.66 ± .244 (5)
0 HHH 0		7.76 ± .614 (5)	7.52 ± .455 (5)	8.26 ± .406 (5)	7.68 ± .235 (5)
6 131A		7.96 ± .591 (5)	7.62 ± .455 (5)	8.36 ± .406 (5)	7.88 ± .246 (5)
WEEK 10		8.06 ± .590 (5)	7.66 ± .439 (5)	8.46 ± .480 (5)	7.90 ± .263 (5)
WEEK 11		8.18 ± .606 (5)	7.68 ± .392 (5)	8.42 ± .435 (5)	7.92 ± .271 (5)
WEEK 12		8.24 ± .578 (5)	7.82 ± .404 (5)	8.56 ± .442 (5)	8.18 ± .331 (5)
WEEK 13		8.40 ± .577 (5)	7.86 ± .384 (5)	8.64 ± .457 (5)	8.10 ± .315 (5)
VEEK 14		8.38 ± .567 (5)	7.78 ± .360 (5)	8.68 + .484 (5)	8.20 ± .336 (5)
VEEK 15		8.34 ± .628 (5)	7.80 ± .332 (5)	8.66 ± .477 (5)	8.24 ± .341 (5)
MEEK 16		8.30 ± .672 (5)	7.88 ± .345 (5)	8.64 ± .465 (5)	8.20 ± .308 (5)
WEEK 17		8.24 ± .631 (5)	7.94 ± .412 (5)	8.66 ± .479 (5)	8.26 ± .336 (5)
81 X82A		8.42 ± .697 (5)	8.06 ± .370 (5)	8.98 + .487 (5)	8.36 ± ,353 (5)
WEEK 19		8.36 ± .648 (5)	8.12 ± .383 (5)	8.92 ± .485 (5)	8.44 ± .367 (5)
WEEK 20		8.36 ± .688 (5)	8.20 ± .432 (5)	8.92 ± .503 (5)	8.46 ± .328 (5)
WEEK 21		8.42 ± .687 (5)	8,30 ± ,416 (5)	9.00 ± .491 (5)	8.58 ± .344 (5)
WEEK 22		8.16 2.679 (5)	7.98 ± .404 (5)	9.02 ± .483 (5)	8.52 ± .348 (5)
WEEK 23		8.22 ± .670 (5)	8.08 ± .371 (5)	9.06 ± .437 (5)	8.50 ± .370 (5)

ENTRIES ARE MEANS AND STANDAPD BRONS WITH GROUP N IN PARENTHESES

* COMPIDENCE LEVEL * 95

* T. FREATHENT - COMPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 2 - A,

20 I - B, 35 I - C, 50 I - D, RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON FOND CONSUMPTION (G/ANIMAL/DAY)
OF MALE DOGS DURING 24 WEEKS OF TREATMENT

DEPENDENT	CONTROL	.05 HG/KG/DAY	. 50 MG/KG/DAY W	S.O NG/KG/DAY
HEEK 1	366.0 ± 48.0 (3)	332.8 ± i3.3 (3)	371.6 ± 28.0 (3)	293.6 ± 23.7 (5)
WELK 2	329.2 ± 11.1 (3)	303.2 ± 3.79 (3)	350.4 ± 6.42 (3)	336.6 ± 22.0 (5)
WEEK 3	383.0 ± 24.0 (3)	385.1 ± 7.12 (3)	359.3 ± 4.09 (3)	387.6 ± 7.62 (5)
4 2 2 4 4	394.9 ± 7.24 (3)	375.9 ± 8.53 (3)	378.0 ± 15.2 (3)	396.9 ± 3.08 (5)
WEEK 5	387.8 ± 17.3 (3)	373.9 ± 11.8 (3)	395.2 ± 6.84 (3)	399.5 ± .520 (5)
WERK 6	389.4 ± 15.0 (3)	390.5 ± 9.37 (3)	385.4 ± 20.6 (3)	395.7 ± 4.28 (5)
WEEK 7	390.6 ± 13.2 (3)	380.6 ± 13.8 (2)	384.3 ± 22.2 (3)	355.3 ± 44.7 (5)
8 1137	393.1 ± 9.73 (3)	368.0 ± 20.4 (3)	391.7 ± 11.7 (3)	347.2 ± 52.8 (5)
4世紀末 9	392.5 ± 10.6 (3)	374.1 ± 9.27 (3)	394.8 ± 7.41 (3)	372.8 ± 27.2 (5)
01 Maam	391.5 ± 12.0 (3)	375.6 ± 11.2 (3)	397.6 ± 3.32 (3)	354.7 ± 45.3 (5)
WEEK 11	391.0 ± 12.8 (3)	382.2 ± 10.8 (3)	394.2 ± 8.26 (3)	373.6 ± 26.4 (5)
WEEK 12	395.8 ± 5.88 (3)	387.9 ± 10.5 (3)	400.0 ± .000 (3)	368.3 ± 26.2 (5)
WEEK 13	389.6 ± 14.7 (3)	387.7 ± 4.65 (3)	398.4 ± 2.32 (3)	374.5 ± 15.7 (5)
WEEK 14	381.6 ± 26.0 (3)	377.8 ± 7.95 (3)	382.0 ± 17.1 (3)	381.7 ± 13.2 (5)
WEEK 15	379.1 ± 29.6 (3)	379.8 ± 7.19 (3)	380.2 ± 27.9 (3)	395.8 ± 4.20 (5)
WEEK 16	377.5 ± 31.8 (3)	382.0 ± 7.05 (3)	396.6 ± 4.75 (3)	394.1 ± 5.92 (5)
HEEK 17	387.1 ± 18.2 (3)	382.4 ± 15.3 (3)	400.0 + .000	390.5 ± 9.52 (5)
WEEK 18	379.3 ± 29.3 (3)	400.0 ± .000 (3)	400.0 + .000	380.0 ± 20.0 (5)
WEEK 19	376.7 ± 32.9 (3)	391.4 ± 7.41 (3)	381.9 ± 25.6 (3)	380.1 ± 13.7 (5)
WEEK 20	363.8 ± 51.1 (3)	378.2 ± 16.0 (3)	390.0 ± 14.1 (3)	394.5 ± 5.50 (4)
WEEK 21	383.5 ± 23.4 (3)	385.7 ± 12.4 (3)	393.7 ± 8.94 (3)	(4) 000. + 0.004
WEEK 22	193.8 ± 8.82 (3)	387.4 ± 10.9 (3)	400.0 ± .000	(4) 000. ± 0.004
WEEK 23	395.6 ± 6.28 (3)	400.0 ± .000 (3)	400.0 + .000 (3)	400.0 + .000
WEEK 24	400.0 + .000	400.0 + .000 (3)	400.0 + .000 (3)	(4) 000 + 0 007

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CACES IN PARENTHESES M = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES = CONFIDENCE LEVEL = .95

ì

{

} .

. :

TAB1.6 ::

4.

.

EPPECTS OF CONDENSATE MATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF FEMALE DOGS DURING 24 WEEKS OF TREATMENT

			TREATMENT GROUPS		:
DEPENDENT	CONTROL	.05 MG/KG/DAY	. 50 HG/KG/DAY W	5.0 HG/KG/DAY	32 1
1 1100	259.9 ± 47.3 (3)	261.0 ± 49.4 (3)	254.7 ± 44.8 (3)	248.0 ± 48.6 (3)	
WEEK 2	282.6 ± 20.1 (3)	274.4 ± 23.1 (3)	261.8 ± 16.0 (3)	266.1 ± 16.5 (3)	
NEEK 3	329.8 ± 15.8 (3)	337.1 ± 25.4 (3)	320.8 ± 20.8 (3)	292.4 ± 15.0 (3)	
WEEK 4	357.9 ± 13.8 (3)	318.9 ± 32.5 (3)	327.6 ± 18.3 (3)	330.3 ± 9.21 (3)	
VEEK 5	371.8 ± 16.5 (3)	376.4 ± 15.0 (3)	335.4 ± 22.9 (3)	305.4 ± 27.3 (3)	*
WEEK 6	373.4 ± 7.56 (3)	338.6 ± 21.7 (3)	316.4 ± 35.0 (3)	306.2 ± 21.9 (3)	
SEEK 7	377.6 ± 8.64 (3)	360.4 ± 14.6 (3)	339.5 ± 35.0 (3)	308.7 ± 33.1 (3)	
455K 8	346.8 ± 14.2 (3)	359.0 ± 19.6 (3)	328.1 ± 27.1 (3)	319.4 ± 16.6 (3)	
WEEK 9	360.8 ± 9.55 (3)	357.3 ± 19.1 (3)	346.9 ± 26.8 (3)	320.6 ± 16.0 (3)	
WEEK 10	347.1 ± 6.06 (3)	321.7 ± 27.9 (3)	271.2 ± 34.5 (3)	314.4 ± 23.8 (3)	
SER 11	357.4 ± 11.2 (3)	347.8 ± 20.3 (3)	314.1 ± 32.8 (3)	315.7 ± 14.8 (3)	
WEEK 12	356.0 ± 7.75 (3)	350.1 ± 19.9 (3)	335.0 ± 23.0 (3)	325.6 ± 30.2 (3)	
VEER 13	359.2 ± 9.57 (3)	340.0 ± 22.2 (3)	324.4 ± 27.4 (3)	290.5 ± 13.9 (3)	*
4: M11A	318.7 ± 16.1 (3)	320.5 ± 28.5 (3)	285.9 ± 45.3 (3)	301.9 ± 44.1 (3)	
WEER 15	287.0 ± 22.0 (3)	320.6 ± 28.3 (3)	283.8 ± 44.2 (3)	306.0 ± 51.2 (3)	
WEEK 16	337.1 ± 18.0 (3)	377.6 ± 9.72 (3)	325,9 ± 36.1 (3)	333.3 ± 17.2 (3)	
VEEK 17	325.2 ± 3.53 (3)	328.9 ± 25.2 (3)	299.6 ± 37.2 (3)	304.1 ± 15.8 (3)	
WEEK 18	375.2 ± 11.4 (3)	368.1 ± 11.3 (3)	323.6 ± 27.0 (3)	317.1 ± 29.4 (3)	
61 X32A	374.5 ± 61.8 (3)	363.6 ± 12.9 (3)	279.7 ± 44.0 (3)	306.2 ± 27.6 (3)	
WEEK 20	330.5 ± 17.6 (3)	373.4 ± 10.2 (3)	319.4 ± 31.4 (3)	332.3 ± 29.6 (3)	
HEEK 21	335.9 ± 33.4 (3)	346.2 ± 19.3 (3)	316.0 ± 19.6 (3)	318.4 ± 41.0 (3)	
WEEK 22	366.4 ± 20.9 (3)	363.6 ± 15.0 (3)	347.6 ± 4.64 (3)	304.4 ± 38.9 (3)	
WEEK 23	374.9 ± 12.2 (3)	386.5 ± 4.87 (3)	363.5 ± 12.1 (3)	292.9 ± 24.3 (3)	*
WEEK 24	387.1 2 11.2 (3)	382.5 ± 7.23 (3)	360.0 - 12.9 (3)	325.0 + 20.5 (3)	*

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CACES IN PARENTHESES W = WILLIAMS TEST OF SITAIFICANT CONTROL-TREATHENT DIFFERENCES * COMPIDENCE LEVEL * .95

TABLE :3

EFFECTS OF CONDENSATE WATER ON FOOD GONNUMPTION (G/KG (BODY MT)/DAY) OF MALE DOGS DURING 24 WEEKS OF TREATMENT

DEFERDENT	CONTROL	. OF MG/KG/DAY	.50 MG/KG/DAY W	5.0 MG/KG/DAY
: : : : : : : : : : : : : : : : : : :	A 5 5 6 (3)	39 1 4 104		36.8 + 4.35 (5)
VEEK 2	38.0 ± .663 (3)	35.9 ± 1.23 (3)	38.4 ± .433 (3)	39.7 ± 2.51 (5)
ueek)	42.8 ± 1.71 (3)	44.1 ± 2.50 (3)	38.6 ± .214 (3)	44.4 ± 3.55 (5)
7 222	43.9 ± 1.66 (3)	43.6 ± 3.05 (3)	39.8 ± .909 (3)	45.9 ± 3.63 (5)
*****	41.2 ± 1.09 (3)	42.4 ± 3.50 (3)	41.0 ± .287 (3)	45.3 ± 3.67 (5)
168K 6	40.9 ± 1.34 (3)	43.6 ± 2.46 (3)	39.3 ± 1.57 (3)	45.3 ± 3.67 (5)
WEEK 7	40.5 ± 1.21 (3)	41.1 ± 2.93 (2)	38.8 ± 1.41 (3)	40.0 ± 6.02 (5)
2 X X 2	41.2 ± 1.58 (3)	40.6 ± 3.93 (3)	38.9 ± .478 (3)	40.2 ± 6.73 (5)
VER 9	40.3 ± 1.58 (3)	40.9 ± 2.5; (3)	38.9 ± .993 (3)	43.1 ± 4.77 (5)
BEEK 10	39.3 ± 1.46 (3)	40.3 ± 2.66 (3)	38.4 ± 1.41 (3)	40.2 ± 5.84 (5)
WEEK II	38.5 ± 1.34 (3)	41.1 ± 2.45 (3)	37.9 ± .907 (3)	42.1 ± 4.44 (5)
WEEK 12	38.8 ± 1.75 (3)	41.4 ± 1.88 (3)	38.1 ± 1.52 (3)	41.4 ± 4.31 (5)
WEEK 13	37.8 ± 1.44 (3)	40.8 ± 1.64 (3)	37.8 ± 1.48 (3)	41.6 ± 4.28 (5)
WEEK 14	36.6 ± 1.84 (3)	39.8 ± 1.66 (3)	36.1 ± 1.50 (3)	42.2 ± 4.72 (5)
WEEK 15	36.3 ± 2.30 (3)	40.3 ± 1.68 (3)	35.9 ± 1.99 (3)	43.2 ± 4.24 (5)
WEER 16	36.4 ± 2.22 (3)	40.4 ± 1.43 (3)	37.4 ± 1.70 (3)	42.4 ± 4.01 (5)
WEEK :7	36.8 ± i.76 (3)	40.2 ± 1.92 (3)	37.5 ± 1.98 (3)	41.5 ± 4.10 (5)
WEEK 18	35.9 ± 2.18 (3)	41.5 ± .706 (3)	37.1 ± 2.13 (3)	39.9 ± 4.58 (5)
6: X12A	35.1 ± 2.62 (3)	40.8 ± 1.10 (3)	35.5 ± 1.85 (3)	40.0 ± 4.09 (5)
WEEK 20	33.8 ± 3.98 (3)	39.3 ± 1.70 (3)	35.7 ± 1.36 (3)	41.0 ± 4.17 (4)
WEEK 21	36.1 ± 1.88 (3)	40.1 ± 1.31 (3)	36.5 ± 1.70 (3)	41.3 ± 3.79 (4)
WEEK 22	37.6 ± 2.17 (3)	41.6 ± 1.15 (3)	37.8 ± 2.16 (3)	41.6 ± 3.82 (4)
WEEK 23	37.8 ± 2.32 (3)	42.9 ± .:97 (3)	37.8 ± 2.07 (3)	41.2 ± 3.74 (4)

EMTRICS ARE MEANS AND STANDARD ERRORS WITH N OF CACES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

1

}

1

; : .

}

-

.

ĺ.

1

Ţ

-

} •

į.

.

44

:

TABLE : 1

: .

EFFECTS OF CONDENSATE MATER ON FOOD CONSUMPTION (CINC (BODY MI)/DAY) OF PEMALE DOGS DURING 14 WIFRS OF TREATMENT

DEPENDENT	CONTROL	.05 MG/KG/DAY	. 50 MG/KG/DAY	S.O MC/KG/DAY
WEEK 1	37.: ± 6.20 (3)	39.2 ± 11.9 (3)	34.1 ± 4.70 (3)	35.2 ± 5.78 (3)
HERK 2	40.4 ± 2.92 (3)	40.3 ± 7.71 (3)	34.8 ± 1.03 (3)	37.3 ± 1.35 (3)
HEEK 3	45.9 ± 1.86 (3)	48.6 ± 8.32 (3)	41.9 ± 1.82 (3)	40.2 ± 1.00 (3)
* *****	49.4 ± 1.62 (3)	45.9 ± 9.21 (3)	42.1 ± 2.03 (3)	45.0 ± 1.28 (3)
HERK 5	49.6 ± 2.13 (3)	52.4 ± 6.89 (3)	42.5 ± 3.80 (3)	40.4 ± 2.35 (3)
WEEK 6	49.3 ± .757 (3)	46.7 ± 7.86 (3)	39.4 ± 4.21 (3)	40.5 ± 2.28 (3)
WEEK 7	48.9 ± .311 (3)	49.4 ± 6.92 (3)	41.9 ± 3.48 (3)	40.2 ± 3.22 (3)
WEEK 8	44.8 ± 2.18 (3)	48.9 ± 7.29 (3)	40.0 ± 4.32 (3)	41.6 ± 2.08 (3)
WEEK 9	45.5 ± 2.44 (3)	48.0 ± 7.15 (3)	41.6 ± 3.18 (3)	40.8 ± 2.64 (3)
9EER 10	43.3 ± 2.60 (3)	43.3 ± 8.28 (3)	32.4 ± 4.93 (3)	39.8 ± 2.43 (3)
WEEK 11	44.0 ± 3.48 (3)	46.2 ± 6.55 (3)	37.5 ± 4.45 (3)	39.9 ± 1.86 (3)
12 MESE 12	43.4 ± 2.89 (3)	45.6 ± 6.37 (3)	39.5 ± 4.06 (3)	39.8 ± 3.40 (3)
WEEK 13	43.0 ± 2.62 (3)	44.1 ± 6.53 (3)	38.0 2 4.82 (3)	35.8 ± .278 (3)
45 X34	38.2 ± 3.02 (3)	42.0 ± 6.96 (3)	33.1 ± 5.56 (3)	36.8 ± 4.91 (3)
SI Maan	34.8 ± 4.60 (3)	41.8 ± 6.65 (3)	33.0 ± 5.79 (3)	37.2 ± 6.11 (3)
WEEK 16	41.0 ± 4.22 (3)	48.4 ± 4.36 (3)	37.7 ± 3.57 (3)	40.7 ± 1.89 (3)
71 X22	39.6 ± 1.32 (3)	42.4 ± 7.11 (3)	34.8 ± 4.60 (3)	36.8 ± .504 (3)
WEEK 18	44.9 + 3.54 (3)	46.2 ± 4.49 (3)	36,3 ± 3,69 (3)	37.8 ± 1.86 (3)
61 HBBM	45.3 ± 9.90 (3)	45.3 ± 4.77 (3)	3:.5 + 4.97 (3)	36.2 ± 1.64 (3)
WEEK 20	39.9 ± 4.08 (3)	46.2 ± 4.79 (3)	35.8 ± 2.67 (3)	39.3 ± 3.07 (3)
WEEK 2:	40.2 ± 5.23 (3)	42.4 ± 5.59 (3)	35.1 + 1.32 (3)	37.1 ± 4.34 (3)
WEEK 22	45.2 ± 3.94 (3)	46.2 ± 5.23 (3)	38.7 ± 1.80 (3)	35.7 ± 3.53 (3)
WEEK 23	45.8 ± 2.78 (3)	48.2 ± 3.48 (3)	40.4 ± 2.82 (3)	14.7 ± 3.63 (3)
:				

**

EMTRIES ARE MEANS AND STANDARD PRRORS WITH N OF CAGES IN PARENTHESES WE WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL * ,95

TABLE :4

EFFECTS OF CONDENSATE WATSK ON ORGAN WEIGHTS (G), ORGAN-TO-BODY WEIGHT RATIOS (G/G) ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) OF MALE DOGS AFTER 24 WEEKS OF TREATHENT

									1
DEPERDENT VARIABLE	' میں	CROUP		.05 MG/KG/DAY	æ ;	. S MG/KG/DAY	≃ 1	5.0 MG/KG/DAY	od 1 (⊷ 1
IMAL WEIGHT		10.26 ± .448	3	9,38 ± 463 ((5)	10.60 ± .566 (5)		9.78 ± .718 (5)	
HAIN		83.86 ± 1.26	(3)	84.70 ± 3.31 ((5)	83.59 ± 1.51 (5)		85.48 ± 1.37 (5)	
THYROID		.75 ± .084	3	.) 861. ± 96.	(3)	.92 ± .059 (5)		1.03 ± .187 (5)	
HEART		96.71 ± 1.63	3	94.4. ± 6.36 ((5)	101.30 ± 5.71 (5)		108.61 ± 4.82 (5)	
LIVER		318.90 ± 10.4	3	294.19 ± 15.6	(3)	309.50 ± 10.2 (5)		329.73 ± 9.95 (5)	
SPLEEN		24.52 ± 2.44	3	23.67 ± 2.90 ((3)	28.57 ± 2.38 (5)		29.05 ± 3.71 (5)	
ADREWAL		1.28 ± .112	3	1.08 ± .078 ('	(3)	1.22 ± .083 (5)		1.28 ± .105 (5)	
KIDNEYS		52.11 ± 3.33	3	44.82 ± 1.16 ((3)	\$1.56 ± 2.81 (\$)		56.61 ± 3.32 (5)	
TESTES		18.53 ± 2.45	3	12.42 ± 1.13 ((S) A	14.22 ± 1.36 (5)		14.68 ± .866 (5)	
BRAIN/BODY		6.23 2 .353	3	9.16 ± .709 ((3)	7.96 ± .361 (5)		8.96 ± .771 (5)	
THYROLD/BODY		.00 ± .009	3	.10 ± .018	(S) C	(\$) \$00° 7 60°	<	.10 ± .014 (5)	U
HEART/ BODY		9.48 ± .306	3	10.07 ± .448 ((3)	9.56 ± .138 (5)		11.20 ± .350 (5)	*
LIVER/BODY		31.27 2 1.44	3	31.57 ± 1.89 ((3)	29.38 ± 1.14 (5)		34.60 ± 3.27 (5)	
SPLEEN/BODY		1.17: 61	3	2.49 - 196 (3	2.72 ± .254 (5)		2.92 ± .176 (5)	
ADREMAL/BODY		11.2 008	ŝ	.12 2 .005	(\$)	.12 ± .011 (5)		.14 ± .019 (5)	
KIDHEY/BODY		5.12 + .383	ŝ	4.82268 ((3)	4.89 ± .259 (5)		5.86 ± .389 (5)	
TESTES/BODY		• 0e-i	÷:		(3)	1.37 ± .175 (5)		1.53 ± .126 (5)	
THYROID/BRAIN		:	2	.00. 10.	(S) B	.01 ± .001 (5)	#	.01 ± .002 (5)	*
HBART/BRAIN		4:0: + 5:::	:	1.12 2 .085 ((3)	1.21 ± .069 (5)		1.27 ± .070 (5)	
LIVER/BRAIN		1.4: + 14.1	:	1, 89 2 , 284 ((3)	3.7: ± .150 (5)		3.86 ± .091 (5)	
SPLEER/BRAIN		.29 ± .028	ŝ	5) 500. 2 62.	(3)	.34 ± .027 (5)	<	.34 ± .046 (5)	<
ADREMAL / BRAIN		.00. ± 10.	3	100. ± 10.	(S) A	(5) 100. ± :0.		(5) 100. ± 10.	
KIDBEY/BRAIN		.62 € .044	3	1) 6:0. 2 :5:	(٤) ٧	.62 ± .038 (5)		.66 ± .038 (5)	
TESTFS/BRAIN		110. + 11.	ŝ	4.0 . 3.	-	17 + 016 (5)	=	137 900 4 61	•

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP M IN PARENTHESES

* COMPIDENCE LEVEL * 95

* CONFIDENCE LEVEL * 95

* * BATLETTS CHI-SQUARE ; T * TREATHENT-CONTROL CONTRAST

* * BATLETTS CHI-SQUARE ; T * TREATHENT-CONTROL MEAN BY AT LEAST 10 % A,

* * B * 35 % * C * 50 % * D * RATIO TEST CARNOT BE CAICULATED * x *

١.

}

; ;

. .

.

Li

1

Į.

٤.

• -

į.

4

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G), ORGAN-TO-BODY WEIGHT RATIOS (G/KG) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/C) OF TREATMENT

DEFENDENT B CONTROL CROUP FINAL WEIGHT 8.32 ± .674 (5) BRAIN HEART BASIN				-		
MEICHT 8.32 + .674 (5) 1D .83 + .059 (5) 18.94 + 3.37 (5) 18.94 + 3.37 (5) 18.94 + 3.37 (5) 18.94 + 3.37 (5) 18.94 + 3.37 (5) 18.94 + 15.7 (5) 18.95 + .072 (5) 19.89 + .048 (5) 19.89 + .048 (5) 10/80DY 35.33 + 1.8 (5) 10/80DY 35.33 + 3.18 (5) 10/80DY 35.33 + .044 (5) 11/80DY 35.33 + .044 (5) 18.80DY 35.33 + .044 (5) 18.80DY 35.33 + .042 (5) 18.80DY 35.89 + .042 (5)	.05 MG/KG/DAY	æ 1	. S MG/KG/DAY	ec 1	5.0 MG/KG/DAY	66 I
80.57 ± 1.76 (5) 80.57 ± 1.76 (5) 80.94 ± 3.37 (5) 80.94 ± 3.37 (5) 80.11 ± 1.25 ± 0.72 (5) 80.80 ± 1.20 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.31 (5) 80.90 ± 1.32 ± 1.30 (5) 80.90 ± 1.32 ± 1.31 (5) 80.90 ± 1.32 ± 1.31 (5) 80.90 ± 1.32 ± 1.31 (5) 80.90 ± 1.32 ± 1.31 (5) 80.90 ± 1.32 ± 1.32 (5) 80.90 ± 1.30 ± 1.30 ± 1.30 (5) 80.90 ± 1.3	8.34 ± .344 (5)		8.94 ± .406 (5)		8.50 ± .456 (5)	
10	76.39 ± .810 (5)		81.06 ± 2.09 (5)		78.67 ± 2.50 (5)	
78.94 ± 3.37 (5) 287.16 ± 15.7 (5) 11.25 ± .072 (5) 12.87 ± 2.28 (5) 11.25 ± .072 (5) 12.84 ± 131 (5) 12.85 ± .072 (5) 12.96 ± .131 (5) 13.92 ± 1.30 (5) 13.92 ± 1.30 (5) 13.92 ± 1.31 (5) 13.93 ± 1.34 (5) 14.80DY 15.33 ± 2.14 (5) 17.80DY 15.33 ± 2.14 (5) 17.80DY 17.80DY 18.80DY 19.84 ± .042 (5) 19.84 ± .042 (5) 19.88AIN 19.84 ± .042 (5) 19.88AIN 19.84 ± .042 (5) 19.88AIN 10.2 ± .011 (5) 19.84AIN 10.2 ± .011 (5) 19.84 ± .042 (5) 19.84AIN 10.2 ± .011 (5) 10.2 ± .011 (5) 10.3 ± .042 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5) 10.4 ± .041 (5)	.78 ± .039 (5)		.81 ± .112 (5)		.84 ± .101 (5)	
22.87 + 15.7 (5) 22.87 + 2.28 (5) 1.25 + .072 (5) 38.32 + 1.30 (5) 1.04 + .131 (5) 9.89 + .648 (5) 1.0 + .014 (5) 9.64 + .549 (5) 35.33 + 3.18 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 35.33 + 3.18 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .214 (5) 2.76 + .269 (5) 3.58 + .042 (5) 2.84 + .042 (5) 2.84 + .042 (5) 2.84 + .026 (5) 2.84 + .017 (5) 2.84 + .017 (5)	85.88 ± 2.93 (5)		83.32 ± 4.49 (5)		83.46 ± 5.28 (5)	
22.87 + 2.28 1.25 + .072 1.25 + .072 1.06 + .131 9.89 + .648 9.64 + .131 9.64 + .131 9.64 + .131 9.64 + .131 9.64 + .131 9.64 + .131 1.07 + .014 1.13 + .014 1.13 + .014 1.13 + .014 1.13 + .014 1.13 + .014 1.13 + .014 1.14 + .001 1.15 + .001 1.16 + .002 1.17 + .001 1.18 + .002 1.19	309.88 ± 11.6 (5)		273.94 ± 18.1 (5)		295.25 ± 10.3 (5)	
1.25 + .072 38.35 + .1.30 1.06 + .1.31 9.89 + .06 4 8 9.66 + .549 9.66 + .549 9.66 + .269 1.13 + .269 1.13 + .001 1.13 + .001 1.13 + .001 1.13 + .001 1.13 + .001 1.13 + .001 1.13 + .001 1.13 + .001 1.13 + .001 1.13 + .001	20.15 ± 2.19 (5)		23.78 ± 2.25 (5)		31.18 ± 1.60 (5)	
38.32 + 1.30 1.04 + 131 1.04 8 + 104 3.64 + 104 3.53 + 104 3.18 + 104 3.19 + 104 3.19 + 104 3.19 + 104 3.18 + 104 3.18 + 104 3.58 +	1.26 ± .136 (5)		1.30 ± .128 (5)		1.28 ± .097 (5)	
1.04 + 1.13 9.89 + 1.04 1.00 + 1.014 9.89 + 1.004 1.10 + 1.014 1.13 + 1.014 1.13 + 1.014 1.13 + 1.014 1.13 + 1.014 1.13 + 1.001 1.14 + 1.001 1.15 + 1.001 1.16 + 1.001 1.17 + 1.001 1.18 + 1.001 1.19	36.90 ± 2.90 (5)		38.08 ± 1.63 (5)		36.66 ± 1.89 (5)	
9.89 .104 .104 .104 .104 .115 .115 .117 .117 .011 .014 .014 .014 .014 .014 .014 .014 .014 .014 .014 .014 .014 .017	1.24 ± .251 (5)		1.51 ± .276 (5)		1.08 ± .118 (5)	
35.33 + 5.49 35.33 + 5.49 35.33 + 5.49 35.33 + 5.49 35.33 + 5.49 35.34 + 5.49 35.38 + 5.42 35.38	9.22 ± .395 (5)		9.17 ± .598 (5)		9.34 ± .504 (5)	
9.64 + .549 35.33 + .18 35.33 + .218 .15 + .214 .13 + .269 .13 + .014 .01 + .001 .98 + .042 3.58 + .042 .28 + .042 .28 + .026 .28 + .026 .28 + .026	(5) 900. ± 60.		.09 ± .014 (5)	<	.10 ± .007 (5)	
35.33 + 3.18 2.76 + 214 .15 + .011 4.68 + .269 .13 + .001 .98 + .001 3.58 + .242 .28 + .002 .28 + .002 .28 + .002	10.35 ± .456 (5)		9.33 ± .346 (5)		9.85 ± .550 (5)	
2.76 ÷ · · · · · · · · · · · · · · · · · ·	37.37 ± 1.89 (5)		30.69 ± 1.63 (5)		35.18 ± 2.43 (5)	
4, 68 + 269 113 + 68 + 269 113 + 101 101 + 101 101 + 101 102 + 242 103 + 1026 104 + 1042 105 + 1064 107 + 101 108 + 101 109 + 101 1	2.40 ± .193 (5)		2.63 ± .152 (5)		3.70 ± .240 (5)	
4.68 ± .269 .13 ± .014 .01 ± .001 .98 ± .042 3.58 ± .242 .28 ± .026 .28 ± .026 .28 ± .026	.15 ± .020 (5)		.15 ± .016 (5)		(5) 010. ± 51.	
.13 ÷ .014 .01 ÷ .001 .98 ÷ .042 3.58 ÷ .242 .28 ÷ .026 .29 ÷ .026	4.41 ± .228 (5)		4.27 ± .088 (5)		4.34 ± .221 (5)	
3,58 + .242 3,58 + .242 7,28 + .002 7,28 + .026 7,29 + .026	.15 ± .034 (5)	<	.17 ± .026 (5)	m	.13 ± .011 (5)	
3.58 + .042 3.58 + .242 .28 + .026 .02 + .001	(5) 100. ± 10.		.01 ± .002 (5)		(5) 100. ± 10.	
3.58 ± .242 .28 ± .026 .02 ± .001	1.12 ± .029 (5)		1.03 ± .055 (5)		1.06 ± .065 (5)	
. 28 + .026 . 02 + .001	4.05 ± .121 (5)		3.38 ± .204 (5)		3.78 ± .215 (5)	
.02 + .001	.26 ± .030 (5)		.30 ± .032 (5)		.40 ± .029 (5)	J
710 + 84	.02 ± .002 (5)		.02 ± .002 (5)		.02 ± .001 (5)	
	.48 ± .037 (5)		.47 ± .025 (5)		.47 + .028 (5)	
GOWADS/BRAIN .01 + .002 (5)	(5) 4004 700.	100	.01 ± .003 (5)	ပ	(5) 100. ± 10.	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .95

- CONFIDENCE LEVEL = .95

- CONFIDENCE LEVEL = .95

- R = TREATMENT - CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

Hematology

Hematology results before and after 8 weeks of treatment are given in Tables 16 through 19. An appreciable decrease in the RBC, hemoglobin, and hematocrit of both sexes occurred at the highest dose level after 8 weeks (Tables 18 and 19). Only in the case of hemoglobin values in males, however, was the difference significant (p < 0.05); all other values were in the normal range. Reticulocytes were significantly elevated in the males (and tended to be high in females) at the high dose level; this finding is consistent with the interpretation that these dogs were in a compensated anemic state. The treatment may also have affected males receiving the intermediate dose level (e.g., low hematocrit), but this cannot be established with certainty because of the small group size. The slightly elevated reticulocyte levels in females receiving the low dose was characteristic of this group before the study and probably has no bearing on the treatment. The relatively low atypical lymphocyte mean can be disregarded for the same reason.

Tables 20 and 21 give hematology data for dogs after 17 weeks of treatment. Dogs at the 5.0-mg/kg/day level continued to show a mild anemia, as reflected in lower RBC, Hgb, and Hct values compared with controls (significantly lower for females). Mean corpuscular volume was significantly elevated for females, but this value was only marginally high compared with the normal range of values for MCV in the dog. At the 0.05-mg/kg/day level, band cells of females were significantly high and the white blood cell count was also high (though not significantly) relative to other groups. These dogs showed no outward signs of being ill. Because no obvious dose relationship was found with this increase in leukocyte counts, its occurrence was tentatively attributed to a mild viral infection in one or more dogs and not to the treatment.

Ĺ,

After 24 weeks of treatment (Tables 22 and 23) signs of anemia in the treated dogs were almost nonexistent. Only male MCHC at the 5.0-mg/kg/day level and reticulocytes at the 0.5-mg/kg/day level were significantly altered. Reticulocytes of other treatment groups at the 0.5- and 5.0-mg/kg/day level were noticeably higher than in controls, but none of these values are excessive. The high leukocyte count for females at the 0.05-mg/kg/day level noted at 17 weeks had returned to a more normal value.

Clinical Chemistry

Tables 24 through 31 present the clinical chemistry data. After 8 weeks of treatment (Tables 26 and 27), high-dose males showed significantly low glucose and phosphorus; females also had low glucose (not statistically significant) and phosphorus (at the intermediate dose as well). Both sexes at the highest level had lower blood calcium levels and increased LDH compared with their respective control groups

1

PEFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE DOGS BEFORE STARTING TREATMENT

						TREATMENT	GROUPS	Š		
DEPENDENT VARIABLE	ရေးပ န	CONTROL	;	. 05 MG/KG/DAY	: : :	, 5 MG/KG/DAY	; ; ; ; ;	: : : : : :	5.0 MG/KG/DAY	, es ! ! - !
RBC (X 106)		5.47 ± .237 (5)	5)	5.54 ± .151 (5)			(5)		6.27 ± .477 (5)	
HGB (C Z)		13.54 ± .496 (5	(3)	13.98 ± .354 (5)		14.52 ± .449	(5)		14.00 ± .818 (5)	
HCT (%)		37.40 ± 1.54 (5	(5)	38.20 ± 1.11 (5)		41.40 ± 2.04	(5)		42.40 ± 3.22 (5)	
MCV (U)3		69.00 ± .447 (5	(5)	(5) 829. 7 09.69		69.60 ± 1.08	(5)		70.00 ± .633 (5)	
MCH (UUG)		25.20 ± .490 (5	(5)	26.20 ± .374 (5)		24.60 ± .678	(3)		22.60 ± .812 (5)	
MCHC (%)		37.00 ± .447 (5	(5)	37.40 ± .678 (5)		36.00 ± 1.30	(8)		$33.40 \pm .927$ (5)	
WBC (X 103)		10.14 ± .833 (5	(5)	$11.62 \pm .738$ (5)		12.64 ± .916	(5)		10.86 ± 1.14 (5)	
PMN (2)	*	54.60 ± .600 (3	(3)	58.00 ± 2.55 (5)		58.00 ± 2.76	(5)		56.00 ± 1.26 (5)	
BANDS (Z)		1.00 ± .316 (3	(5)	$1.40 \pm .245$ (5)		1.40 ± .400	(3)		1.20 ± .200 (5)	
LYMPH (2)	*	32.00 ± 1.30 ((5)	28.60 ± 2.89 (5)		32.00 ± 4.66	(3)		33.20 ± 1.16 (5)	
ATYP LYMPH(%)		2.20 ± .200 ((5)	$1.60 \pm .510$ (5)		.40 ± .400	(5)	U	1.20 ± .374 (5)	
MONO (2)		5.40 ± .245 ((5)	$6.40 \pm .400$ (5)		4.80 ± .374	(3)		4.40 ± .678 (5)	
EOSIN (2)		4.80 ± .583 (5	(3)	$4.00 \pm .775$ (5)		3.60 ± 1.47	(3)		4.00 ± .837 (5)	
BASO (2)		0.00 ± 00.0	(5)	0.00 ± 0.00 (5)		0.00 ± 00.0	(3)		0.00 ± 0.00 (5)	
RETICS (Z)		1.02 ± .150 (5	(3)	.90 ± .118 (5)		1.06 ± .154	(3)		(5) 811. ± 06.	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

CONFIDENCE LEVEL = .95

CONFIDENCE LEVEL = .99

CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST ; R = TREATMENT-CONTROL RATIO TEST

R = TREATMENT-CONTROL RATIO TEST : CI GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST A - 10%

B - 20%, C - 35%, AND E - 50%. X = RATIO TEST CANNOT BE CALCULATED.

TABLE 17

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE DOGS BEFORE STARTING TREATMENT

							TREATHENT	NT GROUPS	PS			
DEPENDENT VARIABLE	ဗ ပ	CONTROL	•	.05 MG/KG/DAY	, ,	. a.	.5 MG/KG/DAY	A	24 1 12 1 12	5.0 MG/KG/DAY	-	. <u>~</u>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	1	!		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!	1
RBC (X 106)	*	5.81 ± .253 (5	(3)	5.71 ± .109	(5)		5.54 ± .129	(2)		6.32 ± .452	(3)	
HGB (G %)		14.56 ± .546 (5)		14.14 ± .379	(5)		13.66 ± .160	(5)		14.40 ± .302	(5)	
HCT (%)	*	39.80 ± 1.59 (5)		39.00 ± .949	(5)		37.60 ± .690	(5)		44.20 ± 3.09	(5)	
MCV (U)3		69.00 ± 1.14 (5)		00.0 + 00.69	(5)		69.00 ± .949	(5)		70.40 ± .400	(3)	
мсн (пис)	*	27.60 ± 2.42 (5)		25.00 ± .316	(5)		24.60 ± .510	(3)		23.20 ± 1.32	(5)	
MCHC (Z)	•	35.20 ± 2.40 (5)		36.60 ± .245	(5)		36.20 ± .490	(5)		32.80 ± 1.77	(3)	
WBC (X 103)		10.16 ± .930 (5)		11.82 ± 1.25	(5)		10.35 ± 1.03	(2)		11.86 ± 1.56	(5)	
PMN (Z)		53.60 ± 2.25 (5)		64.20 ± 2.18	(3)		56.00 ± 1.92	(5)		56.60 ± 3.74	(3)	
BANDS (Z)		1.00 ± .316 (5)	<u></u>	1.60 ± .400	(5)		.40 ± .245	(5)		1.60 ± .600	(3)	
LYMPH (Z)		31.20 ± 2.03 (5)		23.60 ± 1.75	(5)		35.20 ± 1.74	(3)		32.20 ± 3.89	(3)	
ATYP LYMPH(2)		3.00 ± .894 (5)	<u>.</u>	067. + 08.	(5)	æ	.40 + .400	(3)	ပ *	.40 + .400	(3)	ن *
(%) ONOW		5.20 ± .663 (5)	2	$6.40 \pm .510$	(2)		4.40 ± .510	(5)		± .374	(5)	
E051N (2)		6.00 ± 1.22 (5)	<u></u>	3.40 ± 1.25	(3)		3.69 ± .872	(5)		4.40 + .678	(3)	
BASO (%)		0.00 ± 0.00	<u>.</u>	0.00 + 00.00	(5)		0.00 ± 00.00	(5)		0.00 + 00.00	(3)	
RETICS (2)		1.14 ± .117 (5)	3	1.38 ± .258	(5)		1.24 ± .279	(5)		1.04 ± .163	(3)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

* CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST ; R = TREATMENT-CONTROL RATIO TEST

R = TREATMENT-CONTROL RATIO TEST : CI GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST A - 10%

B - 20%, C - 35%, AND E - 50%. X = RATIO TEST CANNOT BE CALCULATED.

j

ĺ.

Ĩ.

i.

TABLE 18

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE DOGS AFTER 8 WEEKS OF TREATMENT

					TREATMENT GR	GROUPS		
DEPENDENT VARTABLE	æပ ၊	CONTROL	.05 MG/KG/DAY T	~ 1	.5 MG/KG/DAY	æ (5.0 MG/KG/DAY	1 & 1 1 + 1
RBC (X 106)		6.05 ± .294 (5)	6.17 ± .254 (5)		5.70 ± .103 (5)		5.31 ± .292 (5)	
HGB (C 2)		14.36 ± .464 (5)	14.76 ± .268 (5)		14.18 ± .435 (5)		12.42 ± .451 (5)	*
HCT (2)		41.80 ± 2.18 (5)	42.20 ± 1.83 (5)		38.80 ± .860 (5)		37.20 ± 2.18 (5)	
MCV (U)3		71.20 ± 1.32 (5)	(5) $8+5$, \pm 00.69		69.40 ± 1.21 (5)		71.00 ± 1.14 (5)	
MCH (UUG)		23.80 ± .735 (5)	24.40 ± .927 (5)		25.00 ± .548 (5)		23.80 ± .800 (5)	
мснс (%)		$34.80 \pm .970$ (5)	36.00 ± 1.30 (5)		36.80 ± .374 (5)		34.00 ± 1.38 (5)	
WBC (X 103)		$12.22 \pm .701$ (5)	14.28 ± .967 (5)		12.68 ± .388 (5)		11.86 ± 1.44 (5)	
PMN (Z)	*	58.20 ± 2.67 (5)	59.20 ± .663 (5)		59.60 ± 1.03 (5)		60.00 ± 2.74 (5)	
BANDS (%)		1.40 ± .245 (5)	$2.40 \pm .245$ (5)		2.00 ± .316 (5)		1.80 ± .663 (5)	
LYMPH (%)		24.80 ± 1.85 (5)	24.00 ± 1.14 (5)		23.80 ± 1.83 (5)		24.00 ± 1.87 (5)	
ATYP LYMPH(2)	*	$1.20 \pm .490$ (5)	2.20 ± .200 (5)	×	$1.20 \pm .374$ (5)	×	1.40 ± .927 (5)	×
(2) ONOF		6.00 ± .548 (5)	5.80 ± .800 (5)		5.80 ± .374 (5)		5.60 ± .245 (5)	
FOSIN (2)		$8.40 \pm .678$ (5)	6.40 ± .510 (5)		7.60 ± 1.29 (5)		7.20 ± 1.11 (5)	
BASO (2)		0.00 ± 0.00 (5)	0.00 ± 0.00 (5)		0.00 + 0.00 (5)		0.00 ± 0.00 (5)	
RETICS (2)	*	1.66 ± .417 (5)	1.34 ± .103 (5)		1.32 ± .186 (5)		$3.62 \pm .622$ (5)	*

ENTRIES ARF MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONDIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARILETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

K = TREATMENT-CONTROL RATIO TEST : CI GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST A - 102,

B - 20%, C - 35%, AND E - 50%, X = RATIO TEST CANNOT BE CALCULATED.

TABLE 19

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE DOGS AFTER 8 WEEKS OF TREATMENT

TREATMENT GROUPS

							1
DEPENDENT VARIABLE	ا د م	CONTROL	,05 MG/KG/DAY		. 5 MG/KG/DAY T R	5.0 MG/KG/DAY	. æ . ⊢ .
RBC (X 106)		6.11 ± .172 (5)	6.28 ± .257 (5)		5.93 ± .190 (5)	5.55 ± .144 (5)	
HG8 (G Z)		14.86 ± .370 (5)	14.68 ± .470 (5)		$14.24 \pm .236$ (5)	13.44 ± .346 (5)	
HCT (%)		$41.20 \pm .970$ (5)	42.40 ± 2.06 (5)		40.20 ± 1.07 (5)	38.60 ± .927 (5)	
MCV (U)3		68.20 ± .735 (5)	68.20 ± .374 (5)		69.20 ± 1.20 (5)	70.80 ± .374 (5)	
MCH (UUG)		24.40 ± .400 (5)	23.60 ± .678 (5)		24.40 ± .927 (5)	24.40 ± .400 (5)	
яснс (z)		36.00 ± .548 (5)	35.20 ± 1.07 (5)		36.20 ± .916 (5)	34.60 ± .510 (5)	
WBC (X 103)	*	12.60 ± .335 (5)	13.66 ± 2.04 (5)		11.34 ± .627 (5)	13.06 ± 1.62 (5)	
PAN (2)		57.00 ± 1.41 (5)	63.60 ± 2.60 (5)		58.00 ± 2.77 (5)	60.40 ± 3.89 (5)	
BANDS (2)		$2.00 \pm .316$ (5)	2.40 ± .400 (5)		1.20 ± .374 (5)	2.40 ± .510 (5)	
LYMPH (2)		24.60 ± 1.72 (5)	21.00 ± 2.57 (5)		27.60 ± 2.69 (5)	21.40 ± 2.23 (5)	
ATYP LYMPH(Z)		2.60 ± .400 (5)	.60 ± .400 (5)	x a	1.20 ± .800 (5)	$2.00 \pm .894$ (5)	
MONO (%)		6.00 ± .548 (5)	6.60 ± .400 (5)		$6.00 \pm .316$ (5)	5.40 ± .678 (5)	
EOSIN (7)		7.80 ± 1.02 (5)	5.80 ± .663 (5)		6.00 ± .548 (5)	8.40 ± 1.50 (5)	
BASU (2)		0.00 ± 0.00 (5)	0.00 ± 0.00 (5)		0.00 ± 0.00 (5)	0.00 ± 0.00 (5)	
RETICS (2)	*	$1.24 \pm .238$ (5)	1.94 ± .060 (5)	*	1.32 ± .174 (5)	2.12 ± .463 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONDIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CI GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST A - 10%,

B - 20%, C - 35%, AND E - 50%.

ŧ

TABLE 20

A CONTRACTOR OF THE PARTY OF TH

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE DOGS AFTER 17 WEEKS OF TREATMENT

					TREATMENT GROUPS	ROUPS		
DEPENDENT	Ωပေ ၊	CONTROI. GROUP	.05 MG/KG/DAY	: : :	. 5 MG/KG/DAY		5.0 MG/KG/DAY	2 64 1 1 1 1- 1
RBC (X 105)		6.08 ± .191 (5)	6.39 + .468 (4)		6.46 ± .285 (2)	_	5.39 ± .115 (5)	
HGB (C Z)		15.00 ± .487 (5)	14.38 ± .149 (4)		15.40 ± 1.50 (2)	•	13.32 ± .357 (5)	
HCT (2)		42.20 ± 1.71 (5)	43.25 ± 2.59 (4)		46.00 ± 1.00 (2)	•	38.40 ± .980 (5)	
MCV (U)3		69.40 ± .927 (5)	68.00 ± 1.68 (4)		72.50 ± 4.50 (2)	_	71.40 ± .400 (5)	
MCH (UUG)		24.58 ± .364 (5)	22.60 ± 1.60 (4)		24.00 ± 1.00 (2)	•	24.00 ± .447 (5)	
MCHC (1)		35.66 ± .829 (5)	33.30 ± 2.00 (4)		34.00 ± 4.00 (2)	_	34.80 ± .735 (5)	
, WBC (X 10 ³)		14.50 ± 1.15 (5)	15.52 ± 1.95 (4)		12.95 ± .750 (2)	_	12.72 ± 1.03 (5)	
PMN (Z)		65.20 ± 5.23 (5)	67.25 ± 3.12 (4)		60.50 ± 1.50 (2)	•	59.40 ± 2.71 (5)	
BANDS (X)		.80 ± .374 (5)	3.50 ± .866 (4)	×	3.00 ± 0.00 (2)	×	3.20 ± 1.16 (5)	×
LYMPH (2)		20.80 ± 4.43 (5)	18.00 ± 2.58 (4)		23.50 ± .500 (2)	•	24.80 ± 2.69 (5)	
ATYP LYMPH(Z)		2.60 ± .812 (5)	1.50 ± .289 (4)		.50 ± .500 (2)	•	2.80 ± .860 (5)	
MONO (2)		3.60 ± .748 (5)	4.25 ± 1.55 (4)		4.00 ± 1.00 (2)	•	1.60 ± .510 (5)	
EOSIN (Z)		6.80 ± .583 (5)	5.50 ± .289 (4)		8.50 ± .500 (2)	•	8.20 ± 1.16 (5)	
BASO (Z)		0.00 ± 0.00	(7) 00.0 + 00.0		0.00 ± 0.00 (2)	_	0.00 ± 0.00 (5)	
RETICS (Z)		.48 ± .136 (5)	.50 ± .173 (4)		.10 ± .100 (2)	_	.56 + .040 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF PEMALE DOGS AFTER 17 WEEKS OF TREATHENT

				TREATMENT GROUPS	PS		,
DEPENDENT B	CONTROL GROUP	.05 MG/KG/DAY	: 	.5 MG/KG/DAY	e4	5.0 MG/KG/DAY	pc p-
RBC (X 106)	6.48 ± .363 (4)	5.84 ± .132 (5)		6.11 ± .133 (5)		5.24 ± .082 (5)	«
HGB (G %)	15.02 ± .582 (4)	14.40 ± .473 (5)		14.94 ± .371 (5)		12.88 ± .196 (5)	*
HCT (2)	43.50 ± 2.40 (4)	39.80 ± .970 (5)		42.20 ± 1.16 (5)		37.20 ± .583 (5)	*
MCV (U)3	67.50 ± .866 (4)	68.80 ± .916 (5)		69.40 ± 1.12 (5)		71.80 ± .735 (5)	*
MCH (VUG)	23.02 ± .761 (4)	24.30 ± .467 (5)		24.40 ± .400 (5)		24.60 ± .400 (5)	
мснс (х)	34.62 ± 1.40 (4)	35.66 ± .835 (5)		35.80 ± .374 (5)		34.20 ± .583 (5)	
WBC (X 103)	14.12 ± 1.46 (4)	19.16 ± 2.58 (5)		13.54 ± 1.33 (5)		13.91 ± 1.95 (5)	
PHN (Z)	64.50 ± 4.09 (4)	66.80 ± 3.31 (5)		63.40 ± 2.79 (5)		64.60 ± 2.98 (5)	
BANDS (%)	(4) 005. ± 05.	4.00 ± .633 (5)	× +	1.80 ± .583 (5)	×	2.20 ± .374 (5)	×
LYMPH (Z)	19.50 ± 2.40 (4)	17.40 ± 2.60 (5)		25.00 ± 2.49 (5)		23.40 ± 2.11 (5)	
ATYP LYMPH(Z)	2.50 ± .289 (4)	2.40 ± .510 (5)		1.00 ± .316 (5)	<	1.60 ± .678 (5)	
HONO (2)	2.75 ± 1.75 (4)	3.80 ± .970 (5)		2.40 ± 1.03 (5)		1.40 ± .927 (5)	
EOSIN (I)	9.75 ± 2.29 (4)	5.40 ± 1.57 (5)		6.40 ± 2.16 (5)		6.40 ± 1.29 (5)	
BASO (2)	(7) 00.0 + 00.0	0.00 ± 0.00 (5)		0.00.± 0.00 (5)		0.00 ± 0.00	
RETICS (Z)	.30 ± .100 (4)	.32 ± .120 (5)		.36 ± .098 (5)		.52 ± .080 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES * CONFIDENCE LEVEL = .95 + CONFIDENCE LEVEL = .99

BC = BARTIETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST R = TREATMENT-CONTROL RATIO TEST; CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A, 20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

1

}

[

Ĩ

ţ

:

TABLE 22

Ì.

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE DOGS AFTER 24 WEEKS OF TREATMENT

						TREATMENT GROUPS	GROUP	ŝ		
DEPENDENT VARIABLE	a 0 (CONTROL	;	.05 MG/KG/DAY	 04 -	. S MG/KG/DAY		az :	5.0 MG/KG/DAY	=
RBC (X 106)		3 ± .170	(3)	6.30 ± .073 (5)	_	6.77 ± .165 ((3)		5.91 ± .159 (5)	
HGB (G Z)		16.18 + .484 ((3)	15.94 ± .191 (5)	•	16.86 ± .443 ((3)		14.88 ± .545 (5)	
HCT (2)		43.80 ± 1.16 ((3)	42.60 ± .510 (5)	•	46.60 ± 1.54 ((3)		41.80 ± 1.36 (5)	
MCV (U)3		68.80 ± .200 ((3)	68.00 ± .707 (5)	•	69.00 ± 1.05 ((3)		70.80 ± .735 (5)	
MCH (UUG)		25.00 ± .316 ((3)	26.00 ± .447 (5)	_	24.20 ± .490 ((3)		24.80 ± .374 (5)	
MCHC (2)		37.00 ± .447 ((5)	38.00 ± .447 (5)	_	35.40 ± .245 ((3)		35.00 ± .316 (5)	*
WBC (X 103)		11.28 ± .570 ((3)	13.06 ± 1.10 (5)	•	10.90 ± .640	(3)		10.98 ± 1.30 (5)	
PMN (Z)		56.80 ± 2.63 ((3)	58.80 ± 3.06 (5)	_	52.40 ± 2.71 ((3)		\$8.00 ± 4.11 (5)	
BANDS (%)		3.00 ± .707 ((3)	1.80 ± .583 (5)	_	2.80 ± .583 ((3)		1.80 ± .663 (5)	
LYMPH (Z)		30.60 ± 1.40 ((3)	30.00 ± 2.07 (5)	_	33.60 ± 2.98 ((3)		28.60 ± 3.08 (5)	
ATYP LYMPH(Z)		3.00 ± .447 ((3)	2.40 ± .245 (5)	_	1.60 ± .400 ((3)	∢	1.80 ± .374 (5)	
HONO (2)		1.60 ± .510	(3)	1.20 ± .200 (5)	~	1.60 ± .400 ((3)		2.20 ± .583 (5)	
EOSIN (Z)		5.00 ± .633 ((3)	5.80 ± 1.53 (5)	•	8.00 ± 1.30 ((3)		7.60 ± 1.72 (5)	
BASO (Z)		0.00 + 00.0	(3)	0.00 ± 0.00	_	0.00 + 00.0	(3)		0.00 ± 0.00	
RETICS (Z)	*	1.08 ± .287 ((3)	.52 ± .177 (5)	_	2.32 ± .422 ((3)	*	3.00 ± .767 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x,

TABLE

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE DOGS AFTER 24 WEEKS OF TREATMENT

							TREATMENT GROUPS	T GROU	I P S		
DEPENDENT VARIABLE	65 0 1	CONTROL GROUP							es (1
RBC (X 106)		6.44 ± .174 (5)		6.00 ± .118	(3)		6.06 ± .127	(3)		5.90 ± .201	(5)
HGB (G Z)		15.86 ± .388 (5)	15.06 ± .457	154.	(3)		14.82 ± .373	(3)		15.08 ± .191	(5)
HCT (2)		43.00 ± 1.26 (5)	39.60 ± .678	₹.678	(3)		41.00 ± .949	(3)		40.60 ± 1.17	(5)
MCV (U)3		67.40 ± .748 (5)	67.00 ± .316	.316	(3)		68.20 ± 1.16	(5)		69.20 ± .583	(5)
MCH (UUG)		25.00 ± .447 (5)	25.40 ± .400	.400	(3)		24.80 ± .490	(3)		25.20 ± .800	(5)
MCHC (X)		37.20 ± .735 (5)	38.40 ± .600	009.	(3)		35.80 ± .583	(5)		37.00 ± .775	(5)
WBC (X 103)		11.72 ± .594 (5)	14.30 ± 1.11	1.11	(5)		11.20 ± 1.28	(5)		12.96 ± 1.18	(5)
PHN (1)		59.40 ± 3.01 (5)	64.20 ± 1.32	1.32	(5)		59.40 ± 3.94	(3)		64.20 ± 4.10	(3)
BANDS (Z)		1.40 ± .510 (5)	2.00 ±	1.14	(5)	×	2.20 ± .583	(3)	×	3.00 ± .633	(5) ×
LYMPH (Z)		27.40 ± 3.16 (5)	24.20 ± 3.26	3.26	(5)		30.80 ± 3.48	(3)		25.00 ± 4.21	(3)
ATYP LYMPH(I)		1.80 ± .490 (5)	2.60	+ .510	(5)		1.20 ± .374	(5)		1.60 ± .245	(3)
MONO (Z)		1.80 ± .374 (5)		1.80 ± .490	(3)		1.60 ± .245	(3)		1.40 ± .400	(3)
EOSIN (2)		8.20 ± 1.07 (5)		5.20 ± 1.69	(5)		4.80 ± 1.53	(5)		4.80 ± 1.02	(5)
BASO (%)		0.00 ± 0.00		00.0 + 00.0	(5)		00.0 ± 00.0	(5)		00.00 + 00.0	(S)
RETICS (Z)		1.12 ± .280 (5)		.86 ± .218	(3)		2.14 ± .638	(5)		2.76 ± .564	(3)

.

٠, ٨ ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST :0 %

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 24

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE DOGS BEFORE STARTING TREATMENT

					TREATMENT GI	GROUPS		,
DEPENDENT VARIABLE	ထ ပေ ၊	CONTROL	.05 MG/KG/DAY	OC	,5 MG/KG/DAY	 	5.0 MG/KG/DAY	. a∠ ı
ALBUMIN (GMZ)		3.98 ± .146 (5)	4.02 ± .124 (5)	Ω	3.90 ± .100 (5)	_	4.04 ± .166 (5)	
ALK-P (1U/L)		93.00 ± 15.2 (5)	119.80 ± 31.8 (5)	()	104.00 ± 18.9 (5)	•	80.00 ± 9.01 (5)	
BUN (MG Z)	*	16.40 ± .980 (5)	14.80 ± 2.82 (5	(5)	11.60 ± 1.17 (5)	*	10.20 ± .583 (5)	6 23 +
CA (MG %)	*	12.60 ± .100 (5)	12.44 ± .068 (5	(5)	12.60 ± .247 (5)	•	12.68 ± .271 (5)	
CHOL (MG %)		200.40 ± 6.52 (5)	178.60 ± 11.5 (5	(5)	161.80 ± 19.3 (5)	_	186.60 ± 22.2 (5)	
CREAT (MG Z)		.84 ± .024 (5)	. 72 ± .049 (5	(5) A	.76 ± .040 (5)	_	(5) 550. ± 08.	
GLUCOSE (MGZ)		96.60 ± 5.71 (5)	103.60 ± 4.82 (5	(5)	94.00 ± 2.83 (5)	_	108.20 ± 3.50 (5)	
P (MG Z)		9.54 ± .389 (5)	10.40 ± .666 (5	(5)	11.00 ± .844 (5)	_	11.64 ± .939 (5)	
(1/n) HQT	*	93.20 ± 28.7 (5)	47.80 ± 14.6 (5	(5)	55.80 ± 7.63 (5)	_	70.80 ± 36.4 (5)	
TRIG (MG 2)	•	77.40 ± 6.96 (5)	76.00 ± 11.1 (5	(5)	56.80 ± 4.53 (5)	*	46.40 ± .600 (5)	£
URIC ACID(MGZ)		1.10 ± .084 (5)	1.36 ± .081 (5	(5)	1.32 ± .058 (5)	_	1.16 ± .093 (5)	
PROTEIN (MGZ)		5.50 ± .187 (5)	5.50 ± .158 (5	(5)	5.58 ± .150 (5)	•	5.60 ± .158 (5)	
SGPT (IU/L)		22.20 ± 1.98 (5)	22.40 ± 1.54 (5	(5)	26.00 ± 1.45 (5)	_	22.80 ± 2.35 (5)	
SGOT(1U/L)		26.40 ± 1.96 (5)	30.60 ± 2.58 (5	(5)	28.40 ± 4.21 (5)	•	23.40 ± 2.25 (5)	
BILI (MG 2)		.77 ± .052 (4)	;) 670° + 05°	(5) * A	.52 ± .059 (5)	¥ * (.59 ± .043 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARILETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST ; R = TREATMENT-CONTROL RATIO TEST

R = TREATMENT-CONTROL RATIO TEST : CI GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST A - 10%

B - 20%, C - 35%, AND E - 50%.

TABLE 25

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF FEMALE DOGS BEFORE STARTING TREATMENT

							TREATMENT	r GROUPS	P.S		
DEPENDENT VARIABLE	பைப	CONTROL	\$0.	.05 MG/KG/DAY		, , , , , ,	. 5 MG/KG/DAY	! ! ! ! ! ! !	, , , , , , , ,	5.0 MG/KG/DAY	1 64 1
ALBUMIN (GMZ)		4.18 ± .107 (5)		4.04 ± .140	(5)		3.94 ± .117	(5)		3.92 ± .136	(3)
ALK-P (1U/L)		89.00 ± 6.75 (5)		84.20 ± 3.87	(5)		91.00 ± 7.19	(3)		82.00 ± 4.97	(5)
BUN (MG %)		18.80 ± 1.02 (5)		15.60 ± 1.83	(5)		11.00 ± .894	(5)	£ \$\d	13.80 ± 1.16	(5)
CA (MG Z)		12.12 ± .208 (5)		12.10 ± .210	(2)		12.28 ± .278	(5)		12.68 ± .459	(5)
CHOL (MG Z)	*	172.80 ± 17.7 (5)		189.20 ± 18.6	(5)		162.00 ± 4.96	(5)		169.80 ± 29.1	(5)
CREAT (MG Z)		.80 ± .045 (5)	57. (+ .037	(3)		.68 + .049	(5)		.74 ± .051	(5)
GLUCOSE (MGZ)		91.40 ± 4.97 (5)		88.80 ± 6.34	(5)		104.00 ± 2.68	(5)		101.80 ± 4.59	(3)
P (MG Z)	*	9.50 ± .733 (5)		10.00 ± .702	(5)		10.52 ± .128	(5)		11.10 ± 1.08	(5)
TOH (10/F)	41	47.40 ± 6.49 (5)		76.00 ± 19.3	(3)		40.60 ± 6.86	(3)		30.40 ± 3.85	(5)
TRIG (MG Z)		53.60 ± 5.53 (5)	58.80 ±	+ 7.64	(5)		43.80 ± 3.92	(5)		46.60 ± 2.89	(3)
URIC ACID(MGZ)		1.18 ± .124 (5)		1.28 ± .097	(5)		1.28 ± .066	(3)		1.20 ± .084	(5)
PROTEIN (MGZ)		5.30 ± .084 (5)		5.40 ± .130	(5)		5.36 ± .108	(5)		5.30 ± .141	(5)
SGPT (IU/L)		22.40 ± 2.68 (5)		23.60 ± 1.17	(3)		22.00 ± 2.90	(5)		23.00 ± 1.22	(5)
SGOT(1U/L)	*	31.80 ± 4.49 (5)		35.40 ± 1.81	(5)		28.00 ± 3.56	(5)		27.40 ± .400	(5)
BIL1 (MG 2)		.73 ± .076 (5)		.44 ± .042	(5)	m	.61 ± .029	(3)		.53 ± .033	(S) A

ENTRIES ARF MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

* CONFIDENCE LEVEL = .99

TABLE 26

ĺ

**

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE DOGS AFTER 8 WEEKS OF TREATMENT

						TREATMENT G	GROUPS		
DEPENDENT VARIABLE	a υ (CONTROL	;	.05 MG/KG/DAY		. S MG/KG/DAY	. e	5.0 MC/KG/DAY	1 24 1 1 1 1 1
ALBUMIN (GMI)		2	(5)	3.48 ± .204 (5)	_	3.40 ± .230 (5)	a	3.80 ± .105 (5)	
ALK-P (IU/L)		66.00 ± 12.0 (5	(3)	85.60 ± 17.6 (5)	_	71.20 ± 12.9 (5)		75.00 ± 9.62 (5)	
BUN (MG Z)		15.00 ± 1.10 (3	(5)	$15.60 \pm .927$ (5)	_	13.80 ± 1.02 (5)	<u></u>	16.80 ± 2.60 (5)	
CA (MG %)		10.10 ± .378 (5	(5)	10.20 ± .200 (5)	_	9.78 ± .193 (5)		8.96 ± .371 (5)	
CHOL (MG Z)		159.80 ± 7.00 (5	(5)	154.20 ± 12.3 (5)	_	134.40 ± 12.4 (5)	3	161.00 ± 11.9 (5)	
CREAT (MG Z)	+	§) 850. ± 06.	(3)	1.10 ± .277 (5)	-	.84 ± .024 (5)	()	.78 ± .037 (5)	
GLUCOSE (MGZ)		109.80 ± 1.77 (9	(5)	104.20 ± 2.20 (5)	_	103.40 ± 5.49 (5)		88.40 ± 4.17 (5)	¥ +
P (MG 2)		12.80 ± 1.11 (9	(5)	9.26 ± 1.51 (5)	_	8.92 ± .982 (5)	()	7.52 ± .541 (5)	*
TDH (10/T)	+	26.00 ± 1.18 (3	(5)	28.60 ± .872 (5)	_	24.60 ± 4.33 (5)	(;	74.40 ± 18.1 (5)	
TRIG (MG 2)		43.80 ± 6.76 ((5)	36.40 ± 5.61 (5)		44.40 ± 5.30 (5)	<u>.</u>	39.40 ± 3.80 (5)	
URIC ACID(MGZ)		386 ± .075	(5)	.86 ± .040 (5)	_	.80 ± .130 (5)	<u>.</u>	.78 ± .074 (5)	
PROTEIN (MGZ)		5.54 ± .112 ((3)	5.60 ± .170 (5)	_	5.40 ± .192 (5)	9)	5.08 ± .237 (5)	
SGPT (1U/L)		24.00 ± 1.38 (3	(3)	27.20 ± 2.96 (5)		31.40 ± 1.91 (5)	?	27.20 ± 3.67 (5)	
SGOT(1U/L)		26.60 ± 2.75 (9	(5)	29.40 ± 2.87 (5)		24.00 ± 2.43 (5)		25.80 ± 1.77 (5)	
B1L1 (MG Z)		() 570. + 87.	(3)	(5) 070. + 97.	•	(5) 270. 767.	<u></u>	(5) 650. + 67.	

FNTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONDIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CI GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST A - 10%,

B - 20%, C - 35%, AND E - 50%.

TABLE 27

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF FEMALE DOGS AFTER 8 WEEKS OF TREATMENT

						TREATMENT GROUPS	GROUPS				
DEPENDENT VARIABLE	49 0 1	CONTROL	;	,05 MG/KG/DAY		.5 MG/KG/DAY			5.0 MG/RG/DAY	:	1 64 L
ALBUMIN (GMZ)	*	3.84 ± .060	(5)	3.42 ± .120 (* (5)	3.60 ± .187 ((5)		3.66 ± .286 ((5)	
ALK-P (1U/L)	*	87.40 ± 20.0	(2)	74.20 ± 5.67 ((5)	65.00 ± 4.91	(5)		71.60 ± 8.41 ((5)	
BUN (MG %)		18.40 ± 1.60	(5)	17.60 ± 1.96 ((5)	14.80 ± 1.20	(5)		14.80 ± .916	(5)	
CA (MG %)		9.84 ± .457	(3)	9.94 ± .269 ((5)	10.00 ± .241	(5)		8.48 ± .183 ((5)	
CHOL (MG Z)		162.00 ± 23.5	(3)	171.00 ± 15.2 ((\$)	138.20 ± 10.0	(5)	-	166.40 ± 20.4 ((5)	
CREAT (MG %)		.90 ± .032	(3)) 990. + 88.	(5)	.78 ± .037	(5)		.70 ± .045	(5)	
GLUCOSE (MGZ)		95.20 ± 5.56	(3)	98.80 ± 2.78 ((5)	105.00 ± 3.18	(5)		87.00 ± 3.94 ((5)	
P (MG %)		12.12 ± .671	(3)	9.32 ± .691	(5)	8.10 ± 1.05	(5) * A	¥	8.32 ± .830	. (5)	<
(1/n1) HQ7	*	24.80 ± 1.36	(3)	26.40 ± 1.86 ((5)	29.00 ± 4.87	(5)		64.20 ± 8.97 ((3)	<u>م</u>
TRIG (MG %)		37.80 ± 7.15	(5)	71.40 ± 8.38 (* (5)	39.60 ± 2.36 ((5)		45.20 ± 7.08 ((3)	
URIC ACID(MGZ)		.72 ± .049	(3)) 671. + 96.	(5)	.72 ± .107	(5)		1.00 ± .089	(3)	
PROTEIN (MGZ)		5.48 ± .186	(3)	5.52 ± .235 ((5)	5.40 ± .230	(5)		5.26 ± .231	(3)	
SGPT (IU/L)		24.60 ± 1.25	(3)	25.60 ± 1.29 ((5)	25.00 ± 2.32	(5)		25.20 ± 1.74 ((3)	
SGOT(1U/L)		27.00 ± 1.52	(3)	28.80 ± 2.03 ((5)	25.80 ± 2.56 ((5)		30.80 ± .970	(3)	
BILI (MG X)		.57 ± .034	(3)	.52 ± .025	(5)	.46 ± .042	(5) A	⋖	090. + 87.	(5)	∢

, i

į.

· gardeng-

Total Street

1.

÷

ENTRIES ARE 4EANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

^{*} CONDIDENCE LEVEL = .95 + CONFIDENCE LEVEL = .99 BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST R = TREATMENT-CONTROL RATIO TEST : CI GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST A - 10%, B - 20%, C - 15%, AND E - 50%,

TABLE 28

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE DOGS AFTER 17 WEEKS OF TREATMENT

							TREATMENT GROUPS	IT GROU	IPS		
DEPENDENT VARIABLE	ရေးပေ ၊	CONTROL	.05	.05 MG/KG/DAY		 	.5 MG/KG/DAY	<u> </u>	& I	5.0 MG/KG/DAY	2 () () ()
ALBUMIN (GMZ)		3.48 ± .037 (5)		3.38 ± .116	(5)		2.92 ± .058	(5)	V	3,34 ± .051 (5)	?
ALK-P (1U/L)		60.80 ± 15.3 (5)		92.40 ± 8.73	(3)		77.00 ± 14.4	(3)		89.60 ± 13.5 (5)	5)
BUN (MG 2)	*	12.40 ± .600 (5)		15.00 ± 1.87	(5)		12.60 ± .510	(3)		11.40 ± .748 (5)	2)
CA (MG Z)		10.98 ± .426 (5)		10.22 ± .235	(3)		9.62 ± .132	(5)	*	10.02 ± .165 (5)	?
CHOL (MG Z)		143.60 ± 8.00 (5)	134.80 ± 14.4	+ 14.4	(3)		127.60 ± 14.6	(5)		155.60 ± 10.3 (5)	2)
CREAT (MG Z)		.84 ± .093 (5)		.80 ± .032	(3)		.72 ± .037	(3)		.58 ± .037 (5	(5) * A
GLUCOSE (MGZ)		99.40 ± 2.80 (5)		99.80 ± 4.02	(5)		81.40 ± 2.86	(3)	*	89.00 ± 5.32 (5	(5)
P (MG X)	+	7.78 ± 1.29 (5)		4.52 ± .097	(3)	∢	4.62 ± .150	(3)	¥	5.06 ± .189 (5	(5)
LDH (IU/L)	+	73.00 ± 12.9 (5)		68.60 ± 13.4	(3)		66.00 ± 4.83	(3)		145.80 ± 45.3 (5	(5)
TRIG (MG Z)		44.80 ± 2.97 (5)		41.80 ± 7.55	(3)		43.80 ± 5.97	(3)		36.40 ± 3.44 (5)	5.
URIC ACID(MGZ)		1.18 ± .097 (5)	.88	+ .074	(3)	¥	.56 ± .040	(3)	v	.66 ± .040 (5	(5) + B
PROTEIN (GMZ)	*	7.02 ± .329 (5)	6.18	+ .1111	(5)		5.50 ± .141	(3)	∢	5.46 ± .068 (5	(5) * A
SGPT (1U/L)		30.20 ± 2.03 (5)		33.00 ± 5.79	(5)		36.40 ± 1.78	(3)		30.40 ± 3.04 (5	(3)
SGOT(1U/L)		29.60 ± .980 (5)		34.40 ± 2.58	(5)		34.40 ± 1.21	(3)		33.80 ± 2.78 (5	(5)
BILL (MG Z)		.10 ± .032 (5)		.10 ± .032	(5)		.08 + .020	(5)	χQ	.18 ± .020 (5)	5) D

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST; CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D, RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF FEMALE DOGS AFTER 17 WEEKS OF TREATMENT

					TREATMENT GROUPS	T GROU	IPS.		
DEPENDENT VARIABIE	63 U 1	CONTROL	;	,05 HG/KG/DAY	. S MG/KG/DAY		: : :	5.0 MG/KG/DAY	
ALBUMIN (GMZ)	*	3.44 ± .040 (5)	?	3.42 ± .237 (5)	3.00 ± .055	(5)	+	3.32 ± .107 (5)	
ALK-P (IU/L)		87.00 ± 15.0 (5	(3)	85.80 ± 3.37 (5)	69.40 ± 6.85	(3)		90.20 ± 12.6 (5)	
BUN (MG Z)		16.00 ± 1.70 (5	(3)	15.00 ± 1.79 (5)	12.20 ± .860	(5)		15.60 ± 1.44 (5)	
CA (MG Z)		10.18 ± .153 (5)	2	10.30 ± .416 (5)	9.96 + .144	(3)		10.56 ± .202 (5)	
CHOI (MG X)		164.40 ± 26.4 (5)	3	154.00 ± 10.8 (5)	138.80 + 7.82	(3)		195.00 ± 19.5 (5)	
CREAT (MG Z)		.82 ± .037 (5)	3	.86 ± .087 (5)	.68 + .049	(3)		.70 ± .032 (5)	
GLUCOSE (MGZ)		104.60 ± 9.46 (5	(5)	95.20 ± 4.97 (5)	88.60 ± 3.39	(5)		88.60 ± 3.20 (5)	
P (MG %)	*	6.06 ± 1.18 (5	(3)	4.70 ± .239 (5)	4.06 + .211	(3)		5.22 ± .364 (5)	
(1/n1) HO1		54.40 ± 9.86 (5	(3)	63.00 ± 4.60 (5)	56.40 + 8.89	(3)		75.40 ± 12.3 (5)	
TRIG (MG 2)	*	59.40 ± 15.5 (5	(5)	37.80 ± 3.09 (5)	33.80 ± 3.93	(3)		44.60 ± 12.8 (5)	
URIC ACID(HGZ)		1.04 ± .117 (5)		(5) 660. ± 98.	.58 ± .037	(3)	£	.74 ± .068 (5)	
PROTEIN (GMZ)		6.32 ± .213 (5	(5)	6.12 ± .388 (5)	5.56 ± .112	(5)		5.72 ± .139 (5)	
SGPT (10/1.)		26.80 ± 1.66 (5	(5)	27.40 ± 2.91 (5)	28.80 ± 1.39	(3)		26.40 ± 2.77 (5)	
SGOT(1U/L)		33.40 ± 1.96 (5	(5)	34,20 ± 1,93 (5)	34.20 ± 2.92	(5)		32.80 ± 2.80 (5)	
BILI (MG 2)		.14 ± .024 (5	(5)	.14 ± .024 (5)	.14 ± .024	(5)		.22 ± .020 (5)	٥

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - b, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

1

.

Policie California

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE DOGS AFTER 24 WEEKS OF TREATMENT

S
Δ,
2
0
2
G
۲
z
(A)
X
H
<
[4]
04

DEPENDENT B							TREATMENT GROUPS	GROUPS			
3.448 ± .139 (5) 3.62 ± .201 (5) 3.82 ± .193 (5) 4.00 ± .193 (5) 4.00 ± .193 (5) 35.40 ± 7.81 (5) 16.60 ± 1.47 (5) 14.40 ± 1.21 (5) 13.60 ± .980 12.80 ± .800 (5) 16.60 ± 1.47 (5) 14.40 ± 1.21 (5) 13.60 ± .980 10.82 ± .183 (5) 10.42 ± .171 (5) 10.58 ± .153 (5) 10.64 ± .199 111.00 ± 4.82 (5) 123.80 ± 16.2 (5) 109.80 ± 18.4 (5) 13.60 ± .199 111.00 ± 4.82 (5) 123.80 ± 16.2 (5) 109.80 ± 18.4 (5) 13.60 ± .199 111.00 ± 4.82 (5) 123.80 ± 16.2 (5) 109.80 ± 18.4 (5) 11.8 111.00 ± 4.97 (5) 97.00 ± 3.54 (5) 87.80 ± 4.68 (5) 97.20 ± 1.30 111.00 ± 4.97 (5) 4.08 ± .183 (5) 5.56 ± .317 (5) 5.34 ± .371 11.34 ± .194 (5) 42.60 ± 8.98 (5) 5.56 ± .317 (5) 40.00 ± 1.80 11.34 ± .194 (5) 41.8 ± .154 (5) 6.00 ± .055 (5) 5.90 ± .188 11.34 ± .144 (5) 6.14 ± .154 (5) 6.00 ± .055 (5) 5.90 ± .161 11.34 ± .144 (5) 6.14 ± .154 (5) 6.00 ± .055 (5) 5.90 ± .161 11.34 ± .144 (5) 6.14 ± .154 (5) 6.00 ± .055 (5) 5.90 ± .161	DEPENDENT VARIABLE	80 U I		!	.05 MG/KG/DAY		. 5 MG/KG/DAY	H	e .	S.O MG/KG/DAY	G5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALBUMIN (GMZ)		_	5)				(5)			<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALK-P (1U/L)			5)				(3)			2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BUN (MG Z)		_	2				(5)			•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CA (MG Z)			5)				(3)			2
37.00 ± .055 (5) .76 ± .040 (5) .66 ± .024 4.90 ± 4.97 (5) 97.00 ± 3.54 (5) 87.80 ± 4.68 (5) 91.20 ± 1.50 4.90 ± .383 (5) 4.68 ± .183 (5) 5.56 ± .317 (5) 5.34 ± .371 * 4.90 ± .383 (5) 35.40 ± 10.3 (5) 29.80 ± 2.71 (5) 70.40 ± 21.9 * 40.60 ± 4.97 (5) 42.60 ± 8.98 (5) 48.20 ± 6.28 (5) 40.00 ± 1.82 * 1.34 ± .194 (5) 1.18 ± .124 (5) 6.00 ± .155 (5) 5.90 ± .151 * 27.80 ± 2.85 (5) 50.40 ± 16.9 (5) 30.60 ± 1.36 (5) 5.90 ± .161 * 21.00 ± .775 (5) 29.20 ± 2.35 (5) * 27.20 ± 7.50 (5) 23.80 ± 2.69 * .67 ± .034 (5) .72 ± .036 (5) .80 ± .089 .87 .80 ± .089	CHOT (MG %)			5)			109.80 + 18.4	(3)			2
87.80 ± 4.97 (5) 97.00 ± 3.54 (5) 87.80 ± 4.68 (5) 91.20 ± 1.50 4.90 ± .383 (5) 4.68 ± .183 (5) 5.56 ± .317 (5) 5.34 ± .371 * 43.60 ± .383 (5) 35.40 ± 10.3 (5) 29.80 ± 2.71 (5) 70.40 ± 21.9 * 40.60 ± 4.97 (5) 42.60 ± 8.98 (5) 48.20 ± 6.28 (5) 40.00 ± 1.82 * 1.34 ± .194 (5) 1.18 ± .124 (5) .90 ± .155 (5) .80 ± .138) 6.14 ± .144 (5) 6.14 ± .154 (5) 6.00 ± .136 (5) 5.90 ± .161 + 27.80 ± 2.85 (5) 50.40 ± 16.9 (5) 30.60 ± 1.36 (5) 28.20 ± 3.22 + 21.00 ± .775 (5) 29.20 ± 2.35 (5) * 27.20 ± 7.50 (5) 23.80 ± 2.69 .67 ± .034 (5) .73 ± .102 (5) .69 ± .089 (5) .87 ± .036	CREAT (MG Z)			5)				(5)			2
4.90 ± .383 (5) 4.68 ± .183 (5) 5.56 ± .317 (5) 5.34 ± .371 * 43.60 ± 5.25 (5) 35.40 ± 10.3 (5) 29.80 ± 2.71 (5) 70.40 ± 21.9 40.60 ± 4.97 (5) 42.60 ± 8.98 (5) 48.20 ± 6.28 (5) 40.00 ± 1.82 11.34 ± .194 (5) 1.18 ± .124 (5) 6.00 ± .155 (5) 5.90 ± .161 + 27.80 ± 2.85 (5) 50.40 ± 16.9 (5) 30.60 ± 1.36 (5) 28.20 ± 3.22 + 21.00 ± .775 (5) 29.20 ± 2.35 (5) * 27.20 ± 7.50 (5) 23.80 ± 2.69 .67 ± .034 (5) .73 ± .102 (5) .69 ± .089 (5) .87 ± .036	GLUCOSE (MGZ)			5)		_		(3)			0
* 43.60 ± 5.25 (5) 35.40 ± 10.3 (5) 29.80 ± 2.71 (5) 70.40 ± 21.9 40.60 ± 4.97 (5) 42.60 ± 8.98 (5) 48.20 ± 6.28 (5) 40.00 ± 1.82 1.34 ± .194 (5) 1.18 ± .124 (5) .90 ± .155 (5) .80 ± .138 6.14 ± .144 (5) 6.14 ± .154 (5) 30.60 ± .055 (5) 5.90 ± .161 7 27.80 ± 2.85 (5) 50.40 ± 16.9 (5) 30.60 ± 1.36 (5) 28.20 ± 3.22 7 21.00 ± .775 (5) 29.20 ± 2.35 (5) * 27.20 ± 7.50 (5) 23.80 ± 2.69 .67 ± .034 (5) .73 ± .102 (5) .69 ± .089 (5) .87 ± .036	P (MG %)			5)				(3)			2
$40.60 \pm 4.97 (5) 42.60 \pm 8.98 (5) \qquad 48.20 \pm 6.28 (5) \qquad 40.00 \pm 1.82$ $1.34 \pm .194 (5) \qquad 1.118 \pm .124 (5) \qquad .90 \pm .155 (5) \qquad .80 \pm .138$ $6.14 \pm .144 (5) \qquad 6.14 \pm .154 (5) \qquad 6.00 \pm .055 (5) \qquad 5.90 \pm .161$ $+ 27.80 \pm 2.85 (5) 50.40 \pm 16.9 (5) \qquad 30.60 \pm 1.36 (5) \qquad 28.20 \pm 3.22$ $+ 21.00 \pm .775 (5) \qquad 29.20 \pm 2.35 (5) \qquad * \qquad 27.20 \pm 7.50 (5) \qquad 23.80 \pm 2.69$ $.67 \pm .034 (5) \qquad .73 \pm .102 (5) \qquad .69 \pm .089 (5) \qquad .87 \pm .036$	(1/n1) HQ1	*		5		_		(3)			2
1.34 ± .194 (5) 1.18 ± .124 (5) .90 ± .155 (5) .80 ± .138 6.14 ± .144 (5) 6.14 ± .154 (5) 6.00 ± .055 (5) 5.90 ± .161 + 27.80 ± 2.85 (5) 50.40 ± 16.9 (5) 30.60 ± 1.36 (5) 28.20 ± 3.22 + 21.00 ± .775 (5) 29.20 ± 2.35 (5) * 27.20 ± 7.50 (5) 23.80 ± 2.69 -67 ± .034 (5) .73 ± .102 (5) .69 ± .089 (5) .87 ± .036	TRIG (MG Z)			5		_		(3)			•
z) $6.14 \pm .144$ (5) $6.14 \pm .154$ (5) $6.00 \pm .055$ (5) $5.90 \pm .161$ + 27.80 ± 2.85 (5) 50.40 ± 16.9 (5) 30.60 ± 1.36 (5) 28.20 ± 3.22 + $21.00 \pm .775$ (5) 29.20 ± 2.35 (5) $*$ 27.20 ± 7.50 (5) 23.80 ± 2.69	URIC ACID(MGZ)			2)		_		(3)			A
+ 27.80 ± 2.85 (5) 50.40 ± 16.9 (5) 30.60 ± 1.36 (5) 28.20 ± 3.22 + 21.00 ± .775 (5) 29.20 ± 2.35 (5) # 27.20 ± 7.50 (5) 23.80 ± 2.69 .67 ± .034 (5) .73 ± .102 (5) .69 ± .089 (5) .87 ± .036	PROTEIN (MGZ)			5		_		(3)			2
+ $21.00 \pm .775$ (5) 29.20 ± 2.35 (5)	SGPT (IU/L)	•		5)				(3)			0
$.67 \pm .034$ (5) $.73 \pm .102$ (5) $.69 \pm .089$ (5) $.87 \pm .036$	SGOT(1U/L)	+		5		*		(3)			2
	BILI (MG Z)			5	101.	_		(3)		₹ .036	2

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D, RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF PEMALE DOGS APTER 24 WEERS OF TREATMENT

								TREATMENT GROUPS	ROUPS		
DEPENDENT B	#9 U I	CONTROL	10 10	·	. 05 MG/KG/DAY) A Y	es i	. 5 MG/KG/DAY	i ox (5.0 HG/KG/DAY	od f=
ALBUMIN (GMZ)	1	56))	· . (5)	3.46 + .081	(3)	1	3.74 + .204 (5)		3.86 + .234 (5)	1
ALK-P (1U/L) *	*	72.40 ± 27.0	.0 (5)	2)	\$9.80 ± 6.04	(3)	×	44.20 ± 3.94 (5)	*	50.40 ± 11.8 (5)	×
BUN (MG Z)		15.00 ± 1.18		(3)	15.40 ± 2.32	(3)		14.00 ± 1.05 (5)	•	13.60 ± .678 (5)	
CA (MG Z)		10.76 ± .129	29 (5)	2)	10.30 ± .155	(3)		10.64 ± .333 (5)	•	10.88 ± .193 (5)	
CHOT (NG Z)		124.60 ± 16.9		(3)	158.60 ± 9.35	(5)		127.00 ± 5.03 (5)	_	137.00 ± 18.2 (5)	
CREAT (NG Z)		.64 ± .024	24 (5)	2)	.68 ± .037	(5)		(\$) 070. 7 99.	•	.74 ± .051 (5)	<
GLUCOSE (MGZ)		86.80 ± 3.14	14 (5)	2)	92.00 ± 3.85	(3)		91.40 ± 4.13 (5)	_	90.40 ± 2.93 (5)	
P (MG Z)		4.80 ± .313	13 (5)	5)	4.04 + .435	(5)		4.48 ± .343 (5)	_	4.62 ± .581 (5)	
(1/A1) HQT		30.20 ± 4.28	28 (5)	2)	26.60 ± 1.89	(3)		27.20 ± 4.91 (5)	_	33.20 ± 5.70 (5)	
TRIG (MG Z) *	*	41.20 ± 5.43	43 (5)	2)	52.20 ± 2.71	(2)		48.00 ± 2.21 (5)	_	47.20 ± 9.93 (5)	
URIC ACID(HGZ)		1.90 ± .392	92 (5)	5.	1.44 ± .337	(3)		1.10 ± .493 (5)	_	.68 ± .132 (5)	•
PROTEIN (MGZ)		5.86 ± .103	03 (5)	2)	5.92 ± .229	(3)		5.74 ± .204 (5)	_	5.74 ± .163 (5)	
SGPT (1U/L)		26.80 ± 1.36	36 (5)	2)	23.00 ± 1.38	(3)		22.60 ± .510 (5)	_	21.20 ± 1.43 (5)	*
SCOT(IU/L)		21.40 ± 1.60	(8) 09	2	24.00 ± 2.63	(3)		22.40 ± .980 (5)	_	22.00 ± 1.82 (5)	
BILI (MG 2)		.68 ± .020		(3)	€ 4	(3)		.87 ± .092 (5)	•	(5) 090. ± 08.	

ENTRIES ARE MEANS AND STAMDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x.

ĺ

.

}

(significantly so for females, in both cases). None of these values was outside the range of control values for beagles in our experience. At the low dose, triglyceride determinations for females were significantly high, but the values were also within the normal range (Tables E-1 and E-2, Appendix E).

After 17 weeks of treatment (Tables 28 and 29) those changes that are noteworthy and that were considered to be possibly related to treatment were the trend toward hypoglycemia at the middle and high doses, the elevation in LDH and bilirubin at the high dose, and the slight elevation in cholesterol at the high dose. Although the elevation in LDH was not cited statistically at 17 weeks, presumably because of the large variance in the individual results, three of the five individual values for males were much higher than normal and the trend had been toward increasingly high LDH for this group since the start of the study. Interestingly, male C3-33, which was found to have neurological lesions, had the lowest LDH value of the 5 males at this recording (and at sacrifice). Also, SGOT levels for males and females at the high dose were normal. The elevation in LDH is then probably not due to brain damage or myocardial infarctions. Furthermore, the elevation in LDH failed to correlate with the severity of anemia in these animals.

The slight decreases in Ca²⁺ values after 8 weeks of high-dose treatment was not seen after 17 weeks. The effect on Ca²⁺ may have been transient or may simply have been due to normal variations for groups of such small size. At the 0.5-mg/kg/day level, albumin values were significantly low in both sexes and in the males, total protein was also low at both the middle and high doses. No dose relationship for this effect was obvious from the data, so its significance is obscure. Lower glucose values were evident at both the 0.5- and 5.0-mg/kg/day levels, in contrast to the trend at 8 weeks of treatment, when only the dogs at the highest level showed lower glucose. Again, these values were well within the normal range.

At 24 weeks (one week prior to sacrifice), the only statistical citations (Tables 30 and 31) are significantly high SGOT for males at the 0.05-mg/kg/day level and low SGPT for females at the 5.0-mg/kg/day level, but these values are not abnormally altered. Calcium, glucose, and phosphorus values were normal for the treatment groups. The hypoglycemic trend observed at weeks 8 and 17 was probably due to normal variations in values among groups this size. Except for one dog, C3-33 a male, dogs had returned to those values recorded before treatment began (Tables 24 and 25). The elevated LDH values may have toxicological significance (see ECG Analysis below).

Urinalysis

There were no abnormal findings from urinalysis. Dog C3-34, a high-dose female, had a slightly elevated RBC count, but since nothing was found in hematological and microscopic tests on this animal that might account for this, the finding was ascribed to contamination of the sample during urine collection from the bladder.

ECG Analysis

Electrocardiograms (ECG) were taken on all dogs prior to sacrifice. When compared to their pre-dosing ECGs, little was noted other than an occasional inverted T-wave, but this is usually seen in dogs from time to time. C3-35 did have some arrhythmias and missed ventricular contractions. This dog also had an elevated LDH activity (the highest of the 10 dogs) throughout the study (except for his pretest LDH). This suggests that it may have been experiencing continued myocardial ischemia or damage.

Histopathology

The summary of lesions found microscopically in the tissues from the dogs at the end of the study is presented in Tables 32 and 33. The most notable findings were the lesions in the brain of dog C3-33 (described in detail below), the appearance of hemosiderosis of the spleen in 6 of the 10 high-dose dogs, and pigmentation of the Kupffer cells and sinus macrophages in livers of all high-dose dogs. Because the effects on the liver and spleen were either less frequent or absent in the other treatment groups, these findings in the high-dose dogs were attributed to the treatment. A solitary focus of congestion at the end of the spleen occurred in 6 of the 10 dogs at the intermediate treatment level (0.5 mg/kg/day), and 3 of the 10 dogs at the high dose level. This observation may also relate to the treatment. No histopathological lesions were found in the heart tissues from dog C3-35.

Clinical signs of neurological damage in dog C3-33 had been detected during the 6-month subacute study on condensate water. Therefore, a detailed pathological examination of tissues from selected regions of the central nervous system was conducted on all the dogs by our neuropathologist consultant, Dr. Webb Haymaker. His report is appended in full (Appendix F).

Using standard hematoxylin and eosin staining procedures, Dr. Haymaker found no significant changes in the brains of 29 of the exposed dogs or in the 10 control dogs. In the thirtieth animal, dog C3-33, he did observe pathologic changes, and special staining techniques were used to assess the changes more specifically. The most outstanding pathological feature was the complete loss of the

Table 32

MICROSCOPIC 1.F.SIONS IN MALE DOGS AFTER 26 WEEKS OF CONDENSATE WATER TREATMENT

		Dose 1	Dose level (ma/lond)	(ne)	
	0	0.05	0.5	5.0	
Organ/Lesion		Group	up Designation	on	
	00	Cl	C2	C3	
		Α	Animal Number		
Aorta					
Focal calcification (near aorta)		15			
Brain					
Slight focal hemorrhage (medulla					
oblongatta; see Haymaker's report)		19	21	33	
Esophagus					
Intramucosal mucous cyst				31	
Kidneys					
Slight focal calcification	1,3,5,7,9	11,13,15	23,25,27	31,33,35	
		17,19	29	37,39	
Liver					
Acute focal triaditis, mild and pigmented;					
				37	
Pigmented Kupffer cells and/or macrophages				31,33,35,	
				39	
Lymph Nodes					
Medullary congestion		11		39	
Granulomas, slight focal				35	
Lungs					
Focal alveolar collapse		17	25		
Focal alveolar distension				35,37	
Peribronchi, subacute; focal distension					
collapse of alveoli	1				
Focal distension and collapse of alveoli	5,7,9	11,13,15	21,23,29	31,33,39	
		19			
Parathyroid					
Solitary focal cyst			21		

Table 32 (Concluded)

MICROSCOPIC LESIONS IN MALE DOGS AFTER 26 WEEKS OF CONDENSATE WATER TREATMENT

		l s	Level (mg/kg-day)	day)		П
	0	0.05	0.5	5.0		7
Organ/Lesion		Gro	Group Designation	on		٦
	00	C1	C2	ຍ		7
			Animal Number			_
Pituitary						
Cysts, few and small			25	35		
Spleen						7
Hemosiderosis, slight focal	3,5	17	25,27	33,39		7
Solitary focus of congestion		19	29	37		\neg
Hemosiderosis, slight focal; solitary						7
focus of congestion			21	35		7
						\neg
						Γ
						Γ
						T
			:	!		
			1			İ
1						
						1
					_	
مية فيستوهي المعين الدارات المستاد الم	[.	1.				را

Table 33

MICROSCOPIC LESIONS IN FEMALE DOGS AFTER 26 WEEKS OF CONDENSATE WATER TREATMENT

		Dose L	Level (mg/kg-day)	day)	
	0	0.05	0	5.0	
Organ/Lesion		Group	up Designation	uo	
	00	Cl	C2	c3	
		A	Animal Number		
Aorta					
Focal calicification (near aorta)		18		34	
Cecum					
Moderate solitary hemorrhage	9				
Duodenum					
Parasite in lumen				36	
Kidneys					
Slight focal calcification	2,4,6	12,14,16	22,24,26	32,34,38	
Moderate focal infarcts (in one kidney);					
(70				36	
Liver					
Acute focal triaditis, mild pigmented					
Kupffer cells and/or macrophages	10	20	26	32,34,36	
				38,40	
Lungs					
Focal alveolar collapse			22,24,28	38	
	2,4,6,10	18,20	26,30	34,36	
Granuloma, few and small; focal distension					
and collapse of alveoli	8			32	
Focal bronchopneumonia, subacute; focal					
distension and collapse of alveoli		14		40	
nston					
of alveoli		12,16			
Lymph nodes					
Granulomas, slight focal				36	
Medullary congestion		20	30		

Table 33 (Concluded)

MICROSCOPIC LESIONS IN FEMALE DOGS AFTER 26 WEEKS OF CONDENSATE WATER TREATMENT

		Dose L	Dose Level (mg/kg-day)	dav)	
	0	0.05	0.5	5.0	
Organ/Lesion		Group	up Designation	on	
	00	Cl		63	
		4	Animal Number		
Ovaries					
Cystic corpora lutea			26		
Pituitary					
Cysts, few and small	8,9		22,26,28		
Spleen					
Hemosiderosis, slight focal	4.6	16		34,36,40	
			22,24,26	32	
Hemosiderosis, slight focal; solitary		ļ			
focus of congestion		18	28		

entire lenticular nucleus (putamen and globus pallidus) and substantia nigra bilaterally. All that remained from the necrosis was a filmy connective tissue framework. Astroglioses were observed along the border of the absent gray matter. Small cavitations, surrounded by a corona of hypertrophied astrocytes, were found in the caudate nuclei.

Demyelination was observed in a number of other regions: the lower part of the cerebrum, pyramidal tracts in the cervical cord, the basis pedunculi next to the substantia nigra, the cerebellum, and pons unilaterally (near the vestibular nuclei and beyond, with an appearance of "softened" tissue and macrophage collections). A number of nerve cells in this region had disintegrated. A second, smaller lesion in the same position was noted in the other side of the pons.

The optic nerve was not demyelinated, but silver-stained sections suggested the presence of astroglial hypertrophy all through the nerves. The animal might have been blind, but this could not be clearly substantiated.

Dog C3-33 had exhibited severe neurological disturbances, which included thrashing its head and body about, an inability to stand, spasticity of the forelimbs and flaccidity of the hind limbs, constant turning of its head from side to side, and a lack of control of head extensors. Since similar histologic changes have been associated with head trauma in humans, it is hypothesized that in dog C3-33, compound-induced pathologic changes in the nervous tissue resulted in motor dysfunction that led to trauma, resulting in further neural damage. For example, damage in the ventibular nuclei could have led to inability to maintain balance and damage in the basis pedunculi could have resulted in forelimb spasticity.

Noting that the lesions in this animal's brain were infarcts, probably caused by cessation or severe reduction of blood flow to the damaged areas, Dr. Haymaker suggested that "following head impact the brain became edematous and that, being displaced medialward on the two sides, squeezed (1) the anterior choroidal arteries (originating from the circle of Willis), interrupting blood flow to the lenticular nucleus bilaterally, and (2) the posterior choroidal arteries (springing from the first part of the posterior cerebral artery), interrupting blood flow to the substantia nigra bilaterally." This mechanism has also been proposed in the past for corresponding lesions produced by carbon monoxide poisoning, barbituate poisoning, and heroin overdoses in humans.

Discussion

The only noteworthy findings occurred in the dogs at the high dose (5.0 mg/kg/day). These dogs showed alterations in hematological and clinical chemistry parameters, organ weight differences, neurological symptoms, and microscopic lesions.

Dogs treated with the high dose exhibited marginal decreases in erythrocytes, hemoglobin, and hematocrit, accompanied by reticulocytosis. These observations suggested that the animals were suffering from a mild compensatory anemic state. This state was transitory, however, and was not observed at all in the dogs examined after 24 weeks of the treatment. Although recovery groups were not included in this study, it appears likely—based on the adaptiveness of the hematopoietic system to the treatment with time—that these hematological effects are reversible.

At various stages in the study, alterations in several clinical chemistry parameters were observed in the high-dose dogs that were thought to be related to the treatment. These alterations included low glucose, phosphorus, and/or Ca²⁺ levels and high LDH relative to controls. Most of the values were not outside the normal range and we were unable to ascribe any clear-cut toxicological significance to them. They were probably due to normal variations in the values for groups this size. The only possible exception to these statements was the high LDH for males on Week 17 (Table 28). The dog with the highest LDH activity also had alterations in its ECG pattern, suggesting that it was experiencing myocardial ischemia or damage, which may have resulted from the treatment.

Histopathological examination of tissues from the dogs at sacrifice revealed hemosiderosis of the spleen in the majority and pigmentation of the Kupffer cells and sinus macrophages in livers of all high-dose dogs. The spleen was congested in several animals at this and the intermediate dose level; the relationship to treatment is obscure, however. No alterations or clinical symptoms were seen in dogs at the lowest dose level.

The pathological investigation of dog C3-33, a high-dose male, revealed frank and extensive neurological damage. The sites affected were consistent with many of the clinical symptoms seen in this animal. Head trauma was considered to be the probable cause.

The consultant neuropathologist was unable to conclude from his investigation that the test mixture itself was the factor responsible for the brain changes since none of the other high-dose dogs exhibited any neuropathologic effects. However, similar behavioral and histologic changes were observed in a past subacute study on dogs treated with 2,4-dinitrotoluene (2,4-DNT), the major constituent of the condensate mixture. 39 Dogs that received the high dose in that study exhibited

neuromuscular lesions (mild demyelination, gliosis, and edema in the central nervous system). One of two dogs had demyelination of the optic nerve and suffered from transient blindness. Although the dose of 2,4-DNT administered in that study was much higher (25 mg/kg/day) than in our study on condensate water (3 mg/kg/day, on the basis of 2,4-DNT content in the condensate water mixture), a wide variation in individual susceptibility to 2,4-DNT poisoning has been noted in the past. The neurological effects and lesions seen with 2,4-DNT were not observed with 2,6-DNT, the second largest constituent of the condensate water mixture, even at doses as high as 100 mg/kg/day. Oconsequently, the possibilities that the neurological and neuropathological effects observed in dog C3-33 were due to the treatment, directly or indirectly, and that the component in the mixture responsible for the effects was 2,4-DNT cannot be discounted.

It may be concluded, then, that the 5.0-mg/kg/day level is an effect level for the 30-component condensate water mixture in dogs. The lowest levels, 0.05 and 0.5 mg/kg/day, produced no alterations or clinical symptoms that were clearly attributable to the treatment, and the 0.5 mg/kg/day level is therefore designated as the "no observable effect" level in dogs.

STUDIES IN RATS

Procedures

Housing and Treatment

Eighty-five male and 85 female Sprague-Dawley (outbred) rats, approximately 6 weeks old, were obtained from Simonsen Laboratories, Gilroy, California, on the same day. They were quarantined for 1 week to ensure that only healthy animals were used in the study. The animals were assigned either three or two to a cage in the order they were received off the truck. The cages (plastic with wire tops) were then randomly assigned to groups in the following sequence: controls, low dose, mid dose, and high dose; each group (20 males and 20 females) was completed before the next was started. Individual animals were identified with cage cards and ear punches.

Diets were prepared as follows: A stock suspension of the condensate blend was made by dissolving 22.5 g of the blend (composition as in Table 1 for the Phase I test mixture) in 60 ml of acetone, mixing this solution with 977.5 g of powdered Purina Laboratory Chow* in a ceramic bowl, and allowing the acetone to evaporate off (24 hours) through a loose-fitting aluminum foil cover. Diets were made by diluting an appropriate amount of the stock mixture with the powdered chow (mixed first with acetone solvent in the same volume/weight proportion to the chow and evaporated off in the same way as above) in 22.5-kg batches, using a Hobart H-600-T rotary mixer. The diet levels were prepared in descending order of concentration--0.10%, 0.01%, and 0.001% condensate blend by weight--by diluting aliquots of the next highest diet level with powdered chow. The control diet was powdered Purina Laboratory Chow with 0% condensate blend but pretreated with acetone as above. The diets were placed in hanging feeders in the cages and added to or changed weekly as the supply warranted. All diets were kept refrigerated until used, and fresh diets were prepared biweekly. Analysis of the components in the diets and stability of the condensate blend were determined as described under "Quality Assurance". In stability experiments the blend concentration was unchanged after 4 weeks.

At the end of 4 weeks of treatment, five males and five females from each group were killed, and five males and five females from each group were placed on recovery (the condensate-free diet) for 4 more weeks before they were killed. The remaining rats were continued on treatment for a total of 13 weeks. At the end of that period, half the rats were killed and the other half were allowed a 4-week recovery

^{*} Rodent Laboratory Chow 5001 (formerly Laboratory Chow 5001).

period before they were killed. The rats for the 17-week necropsy were deprived of food for 24 hours before necropsy; inadvertantly those in the other necropsies were not starved prior to being killed.

Tests

Each rat was weighed weekly. Food consumption per cage was determined weekly by calculating the difference between initial and final feeder weights. These differences were summed for all cages per group and divided by the number of animal days for that group during the week. (Animal days = the number of the animals in the group times the sum of the number of days each survived during the week.) All animals were observed daily, and any unusual signs were recorded.

Blood and serum samples were collected at each sacrifice time; the samples were placed on ice and delivered promptly to SRI's Clinical Chemistry Laboratory for analysis. Immediately before sacrifice, each rat was anesthetized with 0.5 ml Pentothal intraperitoneally (ip) and blood was collected directly into a 10-ml syringe after puncture of the heart. The blood was transferred immediately to Vacutainers for determination of CBCs, hemoglobin, hematocrit, and clinical chemistry in the same manner as for dogs. Reticulocytes and Heinz bodies (high-dose and control groups) were also determined.

Immediately after sacrifice, the brain, heart, liver, kidneys, spleen, and gonads (males only) were weighed. The absolute organ weights were recorded, and weight ratios were calculated and evaluated as for dogs. Other tissues that were examined were the adrenal, aorta, bone, bone marrow, cecum, cervix, colon, duodenum, epididymis, esophagus, eye, ileum, jejunum, lung, lymph node, sciatic nerve, ovary, pancreas, pituitary, prostate, salivary gland, seminal vesicle, uterus, skeletal muscle, skin, spinal cord, stomach, thymus, thyroid, trachea, urocyst, and vagina. The mammary glands and parathyroids were also examined, but in fewer instances. Mammary glands were examined in fewer instances since they were not always present in skin segments. This is especially true of male rodents where glands are less well developed. Fewer sections of parathyroid were examined because of difficulty in including these small structures in the section of thyroid glands. Multiple sections could have been used but this is expensive and was considered unnecessary because those structures that were examined were within normal limits. Any additional tissues of unusual appearance at necropsy were also examined microscopically. All tissues were fixed for histopathological examination in the same manner as for dogs.

AD-A081 590 UNCLASSIFIED	MAMMALIA APR 79	RNATIONAL N TOXICOLO J V DILLEY 5028	GICAL E	VALUATI	ONS OF	TNT WAS	TEWATER DAMD1	RS. VOLI 17 -76- C	F/G 6/: UMEE' -6050 NL	20 TC(U)	
2 of 5 40eneo											

Results

Observations

Several rats were seen to wheeze or sneeze occasionally and/or had rales during Weeks 1 through 4, but not thereafter. These instances were about equally distributed among the groups and never exceeded three animals per group at any time. Male rats at the 0.10% dose level also had rough fur, beginning at the end of the second week of treatment and continuing, in some animals, through Week 12. Some rats in this group had slight pallor of the extremities beginning in Week 3 and lasting throughout the treatment period and part of the recovery period. During Weeks 5 and 6, five of the high-dose males had dilated pupils and one had miosis; however, these conditions were not seen again. Two of these males became ataxic and appeared depressed during Week 5. Their condition gradually worsened. Each favored one side or the other, was emaciated, had dark urine (not red), and moderately rough fur. One of the two was seen to breathe deeply and rapidly, was very thin, had very rough fur, and was observed circling the cage; it eventually became moribund and died on Week 10. This animal had had the lowest body weight gain of any male; its weight was maximal 170 g at Week 4 and decreased gradually thereafter to 126 g at Week 8 and 101 g at death. Cause of death was not determined.

Females at the 0.10% dose level also had rough fur and appeared anemic (pale extremities) beginning in Week 4. Other observations on this group included occasional humped backs, ataxia, slight depression, and, in one female, weak extremities and exophthalmos. No unscheduled deaths occurred among the females.

One of the control males began to exhibit rough fur during the tenth week of the study and a bloody discharge emanated from its left eye in the eleventh week and continued until sacrifice. This male lost weight during Weeks 10 through 13. At sacrifice, its teeth were found to be unusually long and embedded in the upper lip; microscopic examination of tissues from this rat confirmed that the immediate cause of death was starvation.

Body Weights

Mean weekly body weights of rats subjected to the condensate blend treatment are given in Tables 34 and 35. Males and females at the 0.10% treatment level showed a significant (p < 0.01) depression in body weight throughout the 13-week period relative to controls. The males at this level weighed 34% and 29% less than control males at 8 and 13 weeks, respectively, which led to a change in the ratio test from a B to an A for Week 12. This apparent improvement is artifactual, however. The body weight of the control male noted as being sickly at death rose slower than those of the others—to a peak

34 TABLE

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF MALE RATS DURING 13 WEEKS OF TREATMENT

						TREATMENT GROUPS		
DE VA	DEPENDENT VARIABLE	≈ 0 1	CONTROL	.001 X IN DIET	F 1	A Taid wi	10 X 1 DIM	64 I
INITIAL	IAL		144.70 ± 2.64 (20)	143.55 ± 2.45 (20)		150.80 ± 1.93 (20)	143.65 ± 2.24 (20)	
WEEK			188.20 ± 3.88 (20)	186.75 ± 3.46 (20)		197.50 ± 2.87 (20)	157.90 ± 2.94 (20)	4
E E	7		236.95 ± 4.18 (20)	231.40 ± 3.84 (20)		242.95 ± 3.38 (20)	180.70 ± 4.31 (20)	v
WEEK	e .		272.65 ± 4.56 (20)	270.80 ± 4.02 (20)		278.00 ± 3.67 (20)	200.05 ± 5.54 (20)	*
WEEK	4		301.95 ± 4.76 (20)	302.00 ± 4.05 (20)		312.00 ± 4.33 (20)	213.50 ± 6.27 (20)	#A
Z E E E	S		325.27 ± 5.96 (15)	323.70 ± 5.96 (10)		336.00 ± 4.86 (10)	224.40 ± 10.2 (10)	#
WEEK	9	*	348.93 ± 6.10 (15)	345.80 ± 5.67 (10)		356.70 ± 4.92 (10)	236.70 ± 12.9 (10)	+
NEEK NEEK	. 7	*	362.87 ± 7.43 (15)	362.40 ± 5.16 (10)		375.70 ± 5.78 (10)	241.30 ± 14.8 (10)	#
WEEK	80	*	381.47 ± 9.20 (15)	380.10 ± 5.52 (10)		389.70 ± 6.10 (10)	252.00 ± 16.6 (10)	*
WEEK	6	+	392.60 ± 13.8 (10)	394.10 ± 4.64 (10)		404.70 ± 6.75 (10)	257.40 ± 19,6 (10)	# +
N E E E	01 1	*	408.20 ± 12.4 (10)	407.40 ± 4.11 (10)		415.40 ± 7.27 (10)	280.44 ± 10.5 (9)	+
WEEK	, 14 end	+	413.10 ± 16.6 (10)	419.30 ± 4.03 (10)		428.70 ± 7.15 (10)	288.22 ± 10.3 (9)	+
WEEK 12	112	+	421.90 ± 20.5 (10)	436.60 ± 4.01 (10)		439.30 ± 7.32 (10)	296.44 ± 11.3 (9)	*
WEEK 13	t 13	+	426.00 ± 26.7 (10)	444.10 ± 4.49 (10)		447.60 ± 7.72 (10)	304.44 ± 11.2 (9)	«

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 35

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF PEMALE RATS DURING 13 WEEKS OF TREATMENT

					TREATMENT GROUPS	à		
DEPENDENT VARIABLE	20 U I	CONTROL	A Taid MI	 04	. 01 X IN DIET	E 1	10 % I DIET	es :
INITIAL	*	169.45 ± 2.51 (20)	163.65 ± 2.65 (20)		162.15 ± 1.56 (20)	*	156.95 ± 3.15 (20)	*
WEEK :		183.15 ± 2.97 (20)	184.05 ± 2.29 (20)		178.90 ± 1.62 (20)		162.00 ± 2.25 (20)	•
WEEK 2		200.35 ± 2.96 (20)	199.80 ± 2.53 (20)		193.85 ± 1.80 (20)		166.50 ± 2.23 (20)	4
WEEK 3		212.75 ± 3.20 (20)	211.50 ± 2.88 (20)		206.35 ± 2.26 (20)		177.45 ± 2.81 (20)	v
7 MEEK 4		222.30 ± 3.08 (20)	227.45 ± 2.54 (20)		217.85 ± 2.66 (20)		184.35 ± 2.99 (20)	4
WEEK S		232.67 ± 3.33 (15)	234.80 ± 4.20 (10)		224.20 ± 4.71 (10)		190.90 ± 2.69 (10)	V
WEEK 6		239.20 ± 3.50 (15)	245.70 ± 4.44 (10)		228.10 ± 5.70 (10)		198.10 ± 2.12 (10)	4
WEEK 7		244.40 ± 3.87 (15)	248.00 ± 4.72 (10)		235.30 ± 6.17 (10)		203.00 ± 2.43 (10)	4
WEEK 8	+	253.07 ± 4.38 (15)	252.20 ± 5.70 (10)		241.70 ± 6.10 (10)		209.20 ± 1.28 (10)	4
WEEK 9		255.10 ± 5.78 (10)	258.30 ± 5.21 (10)		247.80 ± 5.92 (10)		212.50 ± 2.58 (10)	v
WEEK 10		258.80 ± 5.66 (10)	262.40 ± 6.24 (10)		250.90 ± 6.27 (10)		214.60 + 2.44 (10)	4
WEEK II		261.50 ± 5.90 (10)	269.50 ± 7.03 (10)		256.80 ± 6.60 (10)		217.40 ± 2.97 (10)	4
WEEK 12		270.90 ± 5.96 (10)	272.70 ± 6.38 (10)		264.10 ± 6.87 (10)		216.10 ± 5.08 (10)	•
WEEK 13		271.20 ± 6.27 (10)	276.00 ± 7.99 (10)		263.20 ± 6.79 (10)		221.10 ± 5.85 (10)	4

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP IN PARENTHESES

1 :

!!

i.,

\\ \.

Į.

1

[.

ŧ

1

L

1.

!

1

÷

^{*} CONFIDENCE LEVEL = .95 + CONFIDENCE LEVEL = .99 BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A, 20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x,

of 310 g at Week 10--and decreased thereafter. At the time it was killed, this animal weighed only 194 g. Because of this animal's low body weight, the mean values for the controls during Weeks 10 through 13 are lower than normal (Appendix E, Table E-3). If the mean body weight of the high-dose males is compared with that of the nine healthy control males at Week 13 (452 g instead of 426 g), the depression in body weight at the high dose is 33%, or virtually the same as it was at Week 8. Thus, there is no evidence of adaptation to the treatment or recovery from depression in body weight among high-dose male rats with time over the 13-week treatment period.

Body weight differences for rats during the treatment period are presented in Tables 36 and 37. Body weight gain of both males and females at the high dose was significantly depressed during the first two weeks and tended to remain lower than in controls for the first 10 weeks of the study. During Weeks 11 and 13, males at the high dose actually grew faster than the controls did. When body weight gain for the males at the 0.10% level is compared with that of control males having approximately the same body weight (Week 4 controls, Table 34), however, it can be seen that those treated rats had not resumed a normal growth pattern. Similar analysis of the female weight data leads to the same conclusion: body weight gain at the high dose level is substantially less than that of controls throughout the study, notwithstanding the uncharacteristically high body weight gain during Week 13 compared with the preceding 4 weeks. Analysis of body weight gain data, then, shows depressed growth rate at the high dose, with no clear evidence of recovery in this measure during treatment.

Weekly body weight data for rats allowed 4 weeks of recovery following treatment are listed in Tables 38 through 41. After 4 weeks of treatment (Tables 38 and 39), rats at the 0.10% condensate blend level showed improvement during the recovery period to the point where by Week 8 there were no significant differences from control values. Rats allowed recovery after a longer treatment period (13 weeks, Tables 40 and 41) did not show as much improvement: body weights of the high-dose animals at Week 17 were still significantly lower (p < 0.01, r-test = B for males; p < 0.05 for females) than for controls.

Body weight differences for these rats weekly are presented in Tables 42 through 45. Body weight gain at the high dose level is severely depressed during the first two weeks of treatment relative to controls. The high-dose animals do not resume a normal growth rate and weight gain continues to lag behind that of controls, particularly for males (significantly so at several weighings), through Week 10. In Weeks 11 through 13, when control rats are nearing maturity, these differences either disappear or are reversed.

For animals allowed recovery after 4 weeks of treatment, there is a dramatic surge in weight gain in both sexes at the 0.10% condensate blend level and in females at the 0.01% level during the first week

TABLE 36

The second secon

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF MALE RATS DURING 13 WEEKS OF TREATMENT

					TREATHENT GROUPS	IPS		
DEPENDENT VARIABLE	M O I	CONTROLGROUP	.00; Z IN DIET	es i	, 01 X 10 NI	e≰ ! 	, 10 % IN DIET	64 I
NEEK 1		43.50 ± 1.96 (20)	43.20 ± 1.91 (20)		46.70 ± 1.87 (20)		14.25 ± 2.32 (20)	4
WEEK 2	•	48.75 ± 1.19 (20)	44.65 ± 2.11 (20)		45.45 ± 1.07 (20)	*	22.80 ± 3.08 (20)	5
E EE E		35.70 ± 2.89 (20)	39.40 ± 1.62 (20)		35.05 ± 1.84 (20)		19.35 ± 2.21 (20)	•
WEEK 4		29.30 ± 1.80 (20)	31.20 ± 2.40 (20)		34.00 ± 1.89 (20)		13.45 ± 1.86 (20)	3
WEEK 5		22.47 ± 2.17 (15)	26.50 ± 1.54 (10)		19.40 + 1.98 (10)		15.00 ± 3.57 (10)	
WEEK 6	+	23.67 ± 1.27 (15)	22.10 ± .567 (10)		20.70 ± 1.45 (10)		12.30 ± 3.54 (10)	*
WEEK 7		13.93 ± 1.82 (15)	16.60 ± 1.39 (10)		19.00 ± 1.57 (10)		4.60 ± 2.76 (10)	•
WEEK 8	*	18.60 ± 2.19 (15)	17.70 ± 1.08 (10)		14.00 ± 1.48 (10)		10.70 ± 3.30 (10)	
WEEK 9	+	17.00 ± 1.67 (10)	14.00 ± 1.51 (10)		15.00 ± 1.05 (10)		5.40 ± 3.70 (10)	۷.
WEEK 10		15.60 ± 1.77 (10)	13.30 ± 1.36 (10)		10.70 ± 1.08 (10)		5.67 ± 2.67 (9)	5
TI MEEK II	+	4.90 ± 4.45 (10)	11.90 ± .722 (10)	×	13.30 ± .684 (10)	×	7.78 ± .910 (9)	Ħ
WEEK 12	+	8.80 ± 4.14 (10)	17.30 ± 1.13 (10)	×	10.60 ± .945 (10)	×	8.22 ± 1.95 (9)	×
WEEK 13	•	4.:0 ± 6.66 (10)	7.50 ± 1.66 (10)	×	8.30 ± 1.76 (10)	×	8.00 ± 2.12 (9)	×

į.

1

ř

Ĺ

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP IN IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .95

CONFIDENCE LEVEL = .95

BC = BARITETE CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

BC = BARITETE CHI-SQUARE ; T = TREATMENT-CONTROL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

TABLE 37

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF PEMALE RATS DURING 13 WEEKS OF TREATMENT

					TREATMENT GROUPS	S		1
DEPENDENT	∞ ∪ I	CONTROLGROUP	. 001 X IN DIET	. e	ro. roin	es 1	. 10 % IN DIET	ez 1
HEEK !	*	13.70 ± 1.28 (20)	20.40 ± 1.96 (20)	*	16.75 ± 1.09 (20)		5.05 ± 1.88 (20)	≈ +
WEEK 2		17.20 ± .854 (20)	15.75 ± 1.27 (20)		14.95 ± 1.18 (20)		4.50 ± .988 (20)	A
WEEK 3	*	12.40 ± 1.52 (20)	11.70 ± 2.03 (20)		12.50 ± 1.18 (20)		10.95 ± 1.14 (20)	
7 X338	*	9.55 ± .749 (20)	15.95 ± 1.37 (20)	m	11.50 ± .866 (20)		$6.90 \pm 1.12 (20)$	
WEEK S	*	8.27 ± 1.17 (15)	4.00 ± 2.61 (10)		7.80 ± .964 (10)		5.10 ± 1.57 (10)	
WEEK 6	*	$6.53 \pm .872 (15)$	$10.90 \pm 2.53 (10)$		3.90 ± 1.68 (10)		7.20 ± 1.25 (10)	
WEEK 7	+	5.20 ± .725 (15)	2.30 ± 4.32 (10)		7.20 ± 1.65 (10)		4.90 ± 1.93 (10)	
WEEK 8		8.67 ± 1.68 (15)	4.20 ± 1.97 (10)		6.40 ± 1.07 (10)		6.20 ± 1.56 (10)	
WEEK 9	*	7.50 ± 1.40 (10)	6.10 ± 1.69 (10)		6.10 ± .657 (10)		3.30 ± 1.92 (10)	
O! NEEK	*	3.70 ± .844 (10)	4.10 ± 1.88 (10)		3.10 ± 1.25 (10)		2.10 ± .605 (10)	
WEEK II		$2.70 \pm .943 (10)$	7.10 ± 1.22 (10)		5.90 ± 1.09 (10)		2.80 ± 1.10 (10)	
WEEK 12		9.40 ± 1.12 (10)	$3.20 \pm 1.29 (10)$	m	7.30 ± 1.44 (10)		-1.30 ± 2.45 (10)	A
WEEK 13		.30 ± 1.30 (10)	3.30 ± 2.29 (10)	*	90 ± 1.05 (10)	×	5.00 ± 1.22 (10)	×

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 38

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF MALE RATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

Ś
<u>م</u>
Ξ
80
ਫ
_
\vdash
Z
ш
E
4
1
œ
_

					IREAIRENI GROUFS	e a			
DEPENDENT Variable	a U	CONTROL	. 001 % IN DIET	x	. 01 % IN DIET	2	. 10 % IN DIET	, f -	a
1	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	
IRITIAL		144.70 ± 2.64 (20)	144.80 ± 3.46 (5)		146.40 ± 3.67 (5)		148.80 ± 6.16 (5)	:	
WEEK 1		188.20 ± 3.88 (20)	184.20 ± 5.20 (5)		193.80 ± 5.55 (5)		162.80 ± 9.03 (5)	•	
C MEER		236.95 ± 4.18 (20)	222.80 ± 6.89 (5)		238.00 ± 7.10 (5)		183.80 ± 13.5 (5)		«
WEEK 3		272.65 ± 4.56 (20)	265.00 ± 7.36 (5)		277.00 ± 8.94 (5)		203.60 ± 16.9 (5)		«
VEEK 4		301.95 ± 4.76 (20)	306.40 ± 6.27 (5)		306.60 ± 11.6 (5)		216.00 ± 16.5 (5)		*
WEEK 5		325.27 ± 5.96 (15)	334.60 ± 7.37 (5)		326.60 ± 15.0 (5)		271.00 ± 17.6 (5)	•	
VEEK 6		348.93 ± 6.10 (15)	357.40 ± 6.85 (5)		346.80 ± 15.7 (5)		300.40 ± 18.2 (5)	*	
WEEK 7		362.87 ± 7.43 (15)	377.80 ± 8.33 (5)		364.00 ± 14.9 (5)		319.40 ± 20.3 (5)	<u>;</u>	
8 X333		381.47 + 9.20 (15)	38:.47 + 9.20 (15) 404.60 + 9.36 (5)		388,60 + 18,0 (5)		345.00 + 21.4 (5)		

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL NEAN BY AT LEAST 10 %

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

! .

T L.

Ş.

ζ. 1..

٧,

TABLE 39

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF FEMALE RATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	GROUPS		
DEPENDENT VARIABLE	m U I	CONTROL	. 001 X IN DIGHT	od I E⊣ i	. 01 X IN DIET	es.	. 10 X I	ms
INITIAL.		169.45 ± 2.51 (20)	160.20 ± 7.74 (5)		159.20 ± 2.91 (5)	·	154.40 ± 3.23 (5)	1
WEEK 1		183.15 ± 2.97 (20)	180.60 ± 3.54 (5)	•	177.20 ± 3.69 (5)	.	156.00 ± 2.45 (5)	•
WEEK 2		200.35 ± 2.96 (20)	195.80 ± 3.93 (5)	•	193.40 ± 3.67 (5)		159.60 ± 4.06 (5)	«
WEEK 3		212.75 ± 3.20 (20)	212.00 ± 5.93 (5)		208.00 ± 3.51 (5)	2	165.40 ± 6.12 (5)	4
7 XIIA		222.30 ± 3.08 (20)	228.00 ± 3.91 (5)		219.00 ± 5.16 (5)	?	173.40 ± 8.44 (5)	«
WEEK 5		232.67 ± 3.33 (15)	234.80 ± 5.14 (5)	•	233.20 ± 5.29 (5)		200.40 ± 4.01 (5)	•
WEEK 6		239.20 ± 3.50 (15)	243.40 ± 5.54 (5)		240.80 ± 4.49 (5)	<u>.</u>	213.00 ± 3.56 (5)	•
WEEK 7		244.40 ± 3.87 (15)	250.40 ± 6.05 (5)	_	248.60 ± 4.55 (5)	9	222.60 ± 3.25 (5)	•
3 3 3		253.07 ± 4.38 (15)	263.40 ± 10.4 (5)		261.60 ± 5.93 (5)		233.60 ± 3.17 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL " .95

+ CONFIDENCE LEVEL " .99

BC " BARTLETTS CHI-SQUARE ; T " TREATMENT-CONTROL CONTRAST

R " TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

TABLE 40

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF MALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

S
Δ,
\Rightarrow
0
8
G
H
Z
Ŧ
F
~
P)
24
-
-

									2		1
DEPE	DEPENDENT C	60 U I	CONTROL	i	.001 X IN DIET	1 24 1 1 (m 1	X 10 X IN		od i [⊷ i	A OI A FAID A	ad 1 }- 1
INITIAL		*	144.70 ± 2.64 (20)	6	141.20 ± 5.10 (5)	_	154.00 ± 1.30	3	*	140.20 ± 29 (5)	
MEEK :		*	188.20 ± 3.88 (20)	6	185.40 ± 7.77 (5)	•	200.40 ± 2.01	(5)	*	159.60 ± 3.80 (5)	٠
WEEK 2			236.95 ± 4.18 (20)	6	227.00 ± 9.82 (5)	•	246.40 ± 3.78	(2)		179.60 ± 6.18 (5)	•
WEEK 3			272.65 ± 4.56 (20)	6	261.40 ± 11.5 (5)	<u></u>	277.80 ± 4.24	(3)		193.00 ± 8.19 (5)	+
WEEK 4			301.95 ± 4.76 (20)	6	289.00 ± 10.5 (5)		312.60 ± 6.08	(5)		209.60 ± 12.3 (5)	*
WEEK 5			325.27 ± 5.96 (15)	2)	315.00 ± 10.7 (5)	•	334.20 ± 8.49	(8)		220.60 ± 18.1 (5)	+
WEEK 6			348.93 ± 6.10 (15)	2)	337.20 ± 10.1 (5)	•	357.00 ± 9.38	(3)		233.20 ± 23.8 (5)	+
WEEK 7			362.87 ± 7.43 (15)	5	355.40 ± 9.19 (5)	•	376.00 ± 11.5	(3)		238.40 ± 28.7 (5)	+
WEEK 8			381.47 ± 9.20 (15)	2)	374.00 ± 10.5 (5)	•	389.20 ± 12.8	(5)		244.40 ± 32.1 (5)	+
WEEK 9		*	392.60 ± 13.8 (10)	6	388.40 ± 8.04 (5)	•	404.60 ± 14.3	(3)		245.20 ± 38.5 (5)	*
WEEK 10	0		408.20 ± 12.4 (10)	6	404.60 ± 8.13 (5)	•	415.00 ± 15.2	(3)		283.25 ± 19.0 (4)	+
WEEK ::	1		413.10 ± 16.6 (10)	6	417.20 ± 7.73 (5)	•	428.60 ± 15.0	(5)		291.25 ± 19.1 (4)	•
WEEK 12	2		421.90 ± 20.5 (10)	6	435.80 ± 7.07 (5)	•	438.80 ± 15.4	(3)		302.00 ± 19.9 (4)	+
WESK	13	*	426.00 ± 26.7 (10)	6	439.40 ± 7.81 (5)	•	443.20 ± 15.7	(3)		307.25 ± 17.8 (4)	*
MEEK 14	4		453.40 ± 4.45 (5	(3)	450.40 ± 6.86 (5)	•	449.80 ± 15.7	(\$)		319.50 ± 16.7 (4)	+
VEEK	5.5		460.20 ± 3.65 (5	(3)	454.40 ± 6.74 (5)	<u>.</u>	457.80 ± 15.0	(3)		330.00 ± 14.8 (4)	+
WEEK	40		467.00 ± 5.50 (5	(2)	464.80 ± 7.28 (5)	•	464.60 ± 14.0	(3)		335.75 ± 17.8 (4)	+
WEEK 1	1.7		452.20 ± 5.30 (5	(3)	449.80 + 8.40 (5)	6	453.60 ± 14.8	(3)		319.25 ± 20.1 (4)	+

1

į

[#] CONFIDENCE LEVEL = .95
+ CONFIDENCE LEVEL = .95
+ CONFIDENCE LEVEL = .99
BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST
R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,
20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x

TABLE 41

!

-

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF FEMALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GR	GROUPS		
DEPENDENT VARIABLE	a U 1	CONTROLGROUP	.001 Z IN DIET	ez 1	.01 X IN DIET	oc∶i (⊷ i	. 10 % IN DIET	H 1
INITIAL		169.45 ± 2.51 (20)	165.80 ± 5.13	(5)	165.80 ± 4.29 (5)		163.60 ± 1.91 (5)	
WEEK 1	*	183.15 ± 2.97 (20)	186.20 ± 2.15	(5)	182.80 ± 2.08 (5)		167.40 ± 2.01 (5)	+
7 ×322	*	200.35 ± 2.96 (20)	202.40 ± 2.66	(5)	197.00 ± 3.81 (5)		171.60 ± 1.29 (5)	4
WEEK 3		212.75 ± 3.20 (20)	218.60 ± 3.87	(5)	210.00 ± 6.38 (5)		183.60 ± 1.63 (5)	•
A MESK 4		222.30 ± 3.08 (20)	234.20 ± 3.80	(5)	221.20 ± 7.66 (5)		188.40 ± 1.83 (5)	+
WEEK S	*	232.67 ± 3.33 (15)	236.60 ± 2.14	(5)	228.40 ± 8.13 (5)		191.60 ± 1.91 (5)	«
ABEK 6	*	239.20 ± 3.50 (15)	244.40 ± 3.52	(5)	231.40 ± 9.12 (5)		199.00 ± 1.79 (5)	4
WEEK 7		244.40 ± 3.87 (15)	248.80 ± 3.54	(5)	240.80 ± 10.4 (5)		202.40 ± 3.89 (5)	4
WEEK 8	*	253.07 ± 4.38 (15)	252.60 ± 4.56	(5)	246.00 ± 10.5 (5)		209.20 ± 1.74 (5)	v
WEEK 9		255.10 ± 5.78 (10)	257.80 ± 5.23	(5)	252.20 ± 10.4 (5)		210.60 ± 3.57 (5)	4
WEEK 10		258.80 ± 5.66 (10)	263.40 ± 6.15	(5)	255.20 ± 10.1 (5)		211.60 ± 2.80 (5)	4
WEEK 11		261.50 ± 5.90 (10)	272.60 ± 7.16	(5)	260.60 ± 11.0 (5)		214.40 ± 4.70 (5)	4
WEEK 12		270.90 ± 5.96 (10)	276.20 ± 6.60	(5)	269.60 ± 10.8 (5)		209.40 ± 8.77 (5)	4
El Masm		271.20 ± 6.27 (10)	276.20 ± 9.72	(5)	266.00 ± 10.7 (5)		212.40 ± 9.99 (5)	4
WEEK 14		274.80 ± 8.05 (5)	277.00 ± 8.12	(5)	267.80 ± 10.3 (5)		218.20 ± 15.4 (5)	*
WEEK 15		277.40 ± 8.08 (5)	282.00 ± 8.75	(5)	271.60 ± 11.7 (5)		228.40 ± 10.9 (5)	*
WEEK 16		281.20 ± 7.81 (5)	287.20 ± 8.75	(5)	278.60 ± 11.5 (5)		235.80 ± 6.73 (5)	*
WEEK 17		268.40 ± 8.30 (5)	275.00 ± 7.69	(5)	263.20 ± 11.1 (5)		229.40 ± 2.42 (5)	*

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 42

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF MALE RATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	GROUPS		
DEPENDENT Variable	# U	CONTROL	.001 % IN DIET	T.	.01 % IN DIET	T.	, 10 x IN DIET	est F
	•	43.50 + 1.96 (20)	39.40 + 5.49 (5)	1	47.40 + 6.64 (5)		14.00 + 6.14 (5)	
12 12 12 13 13	*	48.75 + 1.19 (20)	38.60 + 5.69 (5)		44.20 + 2.87 (5)	: ::	21:00 + 5:07 (5)	
WEEK 3		35.70 + 2.89 (20)	42.20 + 3.10 (5)		39.00 + 5.63 (5)	: 6	19.80 + 4.18 (5)	
7 WEEK 7		29.30 ± 1.80 (20)	41.40 ± 5.11 (5)		29.60 ± 4.19 (5)	.	12.40 ± 2.69 (5)	#A
WEEK 5		22.47 ± 2.17 (15)	28.20 ± 4.71 (5)		20.00 ± 3.62 (5)	3	55.00 ± 3.61 (5)	+
9 Maan		23.67 ± 1.27 (15)	22.80 ± 2.56 (5)		20.20 ± 2.40 (5)	2)	29.40 ± .678 (5)	
WEEK 7		13.93 ± 1.82 (15)	20.40 ± 2.16 (5)		17.20 ± 1.66 (5)	2)	19.00 ± 2.95 (5)	
8 X X X X X		18.60 ± 2.19 (15)	26.80 ± 2.65 (5)		24.60 ± 4.58 (5)	2	25.60 ± 2.98 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x .

,

; i.,

.

THE STATE OF THE S

TABLE 43

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF FEMALE RATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	T GROUF	S			
DEPENDENT VARIABLE	aa U I	CONTROL	2 100. 7 10 NI		X 10 , I DIET			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. E.
E MARK 1		13.70 ± 1.28 (20)	20.40 ± 5.74 (5)	(5)	18.00 ± 2.21 (5)	(3)		1.60 ± 2.82 (5)		ن *
WEEK 2		17.20 ± .854 (20)	15.20 ± 2.52 (5)	(5)	16.20 ± .860 (5)	(3)		3.60 ± 1.96 (5)		Q +
WEEK 3		12.40 ± 1.52 (20)	16.20 ± 4.50 (5)	(5)	14.60 ± 2.06 (5)	(3)		5.80 ± 2.48 (5)	5)	
VEEK 4		9.55 ± .749 (20)	16.00 ± 2.79 (5)	(5)	11.00 ± 2.74 (5)	(3)		8.00 ± 2.98 (5)	5)	
WEEK 5	*	8.27 ± 1.17 (15)	6.80 ± 1.66 (5)	(5)	14.20 ± 1.66 (5)	(3)	*	27.00 ± 4.95 (5)		«
WEEK 6		6.53 ± .872 (15)	8.60 ± 2.14 (5)	(5)	7.60 ± 2.48 (5)	(3)		12.60 ± 2.16 (5)	5)	
WEEK 7		5.20 ± .725 (15)	7.00 ± 1.52 (5)	(5)	7.80 ± 2.29 (5)	(3)		9.60 ± .678 (5)	5)	
WEEK 8		8.67 ± 1.68 (15)	13.00 ± 4.66 (5)	(5)	13.00 ± 2.00 (5)	(3)		11.00 ± 2.88 (5)	5.	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

:

TABLE 44

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF MALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					OUPS		
m U	CONTROL	.001 % IN DIET		. 01 Z IN DIET	i c	, 10 % IN DIET	!
ı	43.50 ± 1.96 (20)	44.20 ± 3.25 (5)	! ?	46.40 + 1.86 (5)	ı ı	19.40 + 4.42 (5)	
	48.75 ± 1.19 (20)	41.60 ± 2.20 (5)		46.00 ± 2.39 (5)		20.00 ± 3.83 (5)	
	35.70 ± 2.89 (20)	34.40 ± 3.36 (5)	6	31.40 ± 2.27 (5)		13.40 ± 2.94 (5)	
	29.30 ± 1.80 (20)	27.60 ± 3.06 (5)	6	34.80 ± 3.80 (5)		16.60 ± 5.13 (5)	
	22.47 ± 2.17 (15)	26.00 ± 2.30 (5)	•	21.60 ± 3.61 (5)		11.00 ± 6.36 (5)	
+	23.67 ± 1.27 (15)	22.20 ± .970 (5)	<u>.</u>	22.80 ± 2.35 (5)		12.60 ± 7.12 (5)	
		٠					

----------DEPENDENT Variable

WEEK : WEEK 2 WEEK 3

0 ပ + **m**

	1	•		1	1	1								•
	WEEK 4	4		29.30 ± 1.80	80 (20)	27.60 ± 3.06 (5)	(5)		34.80 ± 3.80 (5)	(2)		16.60 ± 5.13 (5)	(3)	*
	WEEK S	\$		22.47 ± 2.17 (15)	(15)	26.00 ± 2.30 (5)	(3)		21.60 ± 3.61	(3)		11.00 ± 6.36	(3)	<
88	WEEK 6	9	+	23.67 ± 1.27	27 (15)	22.20 ± .970	(5)		22.80 ± 2.35	(3)		12.60 ± 7.12	(3)	
3	WEEK	7		13.93 ± 1.82	.82 (15)	18.20 ± 2.03	(3)		19.00 ± 2.86	(3)		5.20 ± 5.42	(3)	<
	WEEK 8	&		18.60 ± 2.19 (15)	(15)	18.60 ± 1.81	(3)		13.20 ± 2.01	(3)		6.00 ± 5.40	(3)	×
	WEEK	6	*	17.00 ± 1.67 (10)	(10)	14.40 ± 2.80	(5)		15.40 ± 2.01	(5)		.80 ± 6.55	(3)	
	WEEK 10	10		15.60 ± 1.77 (10)	(10)	16.20 ± .970	(3)		10.40 ± 1.50	(3)		2.00 ± 2.48	(*)	+
	WEEK !!	1.1	+	4.90 ± 4.45 (10)	(10)	12.60 ± .980	(3)	×	13.60 ± .400	(3)	×	8.00 ± 1.47	(*)	×
	WEEK 12	12	*	8.80 ± 4.14 (10)	(10)	18.60 ± 1.33	(3)	× *	10.20 ± 1.36	(3)	×	10.75 ± 3.71	(*)	×
	WEEK 13	13	+	4.10 ± 6.66 (10)	(10)	3.60 ± 1.86	(3)	×	4.40 ± 1.57	3	×	5.25 ± 3.35	(4)	×
	WEEK 14	14		2.00 ± 2.14	14 (5)	11.00 ± 1.52	(3)	×	6.60 ± 2.27	(3)	×	12.25 ± 4.33	3	×
	WEEK 15	1.5	+	6.80 ± 2.11	(3)	4.00 ± .548	(3)		8.00 ± 1.95	(3)		10.50 ± 7.24	(4)	
	WEEK 16	91		6.80 ± 2.06	(3)	10.40 ± 1.03	(3)		6.80 ± 2.76	(3)		5.75 ± 4.87	(4)	
	WEEK 17	1.7		-14.80 + .663	(5)	-15.00 ± 2.35	(3)	×	-11.00 ± 2.17	(3)	×	-16.50 ± 3.07	(*)	ĸ

.

317

1

ί.

1.

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL MEAN BY AT 1EAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 45

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF FEMALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	GROUPS		
DEPENDENT VARIABLE	m U 1	CONTROL	. 00; X IN DIET	es i	% 10, Taid Ni	at l (+ l	101, THIG NI	64 †
I Maan		13.70 ± 1.28 (20)	20.40 ± 3.28 (5)		17.00 + 2.88	(3)	3.80 ± 1.43 (5)	*
WEEK 2		17.20 ± .854 (20)	16.20 ± 3.06 (5)		14.20 ± 3.48 ((5)	4.20 ± 1.56 (5)	•
WEEK 3		12.40 ± 1.52 (20)	16.20 ± 3.79 (5)		13.00 ± 3.21 ((5)	12.00 ± 1.38 (5)	
WEEK 4		9.55 ± .749 (20)	15.60 ± 2.87 (5)	«	11.20 ± 1.59	(3)	4.80 ± 1.66 (5)	<
WEEK S		8.27 ± 1.17 (15)	2.40 ± 2.20 (5)	£	7.20 ± 1.77 ((5)	3.20 ± 1.36 (5)	<
WEEK 6		6.53 ± .872 (15)	7.80 ± 1.83 (5)		3.00 ± 2.30	(5)	7.40 ± 1.78 (5)	
WEEK 7		5.20 ± .725 (15)	4.40 ± 2.11 (5)		9.40 ± 1.63	(5)	3.40 ± 2.48 (5)	
WEEK 8		8.67 ± 1.68 (15)	3.80 ± 2.44 (5)		5.20 ± 1.24 ((5)	6.80 ± 3.02 (5)	
WEEK 9		7.50 ± 1.40 (10)	5.20 ± 2.91 (5)		6.20 ± .663	(3)	1.40 ± 2.38 (5)	πů
WEEK 10	*	3.70 ± .844 (10)	5.60 ± 3.17 (5)		3.00 ± 1.22 ((3)	1.00 ± .837 (5)	*
WEEK II		2.70 ± .943 (10)	9.20 ± 1.28 (5)	*	5.40 ± 1.69 ((5)	2.80 ± 2.03 (5)	
WEEK 12		9.40 ± 1.12 (10)	3.60 ± 1.72 (5)		9.00 ± 1.87	(5)	-5.00 ± 4.42 (5)	+
WEEK 13		.30 ± 1.30 (10)	0.00 ± 3.21 (5)	×	-3.60 ± .872 ((5) x	3.00 ± 1.79 (5)	×
WEEK 14	+	2.60 ± .678 (5)	.80 ± 3.38 (5)		1.80 ± 1.07 ((5)	5.80 ± 5.83 (5)	
WEEK 15		2.60 ± 1.12 (5)	5.00 ± 2.28 (5)	×	3.80 ± 1.74 ((5) x	10.20 ± 4.53 (5)	×
WEEK 16		3.80 ± 1.24 (5)	5.20 ± 2.01 (5)	×	7.00 ± 1.95 ((5) x	7.40 ± 4.26 (5)	×
WEEK 17		-12.80 ± 1.11 (5)	$-12.20 \pm 2.7i$ (5)	×	-15.40 + 2.14 ((5) x	-6.40 ± 4.86 (5)	×

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL MEAN BY AT LEAST :0 %

20 % - 8, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

٧.

of removal from treatment (Tables 42 and 43). The growth rate of the rats at the 0.10% treatment level remains notably higher than that of controls throughout the remainder of the recovery period.

There is also an increase in weight gain during the first week of recovery (Week 14) for rats fed the high dose for 13 weeks (Tables 44 and 45). The increase is much smaller than that observed for rats treated for 4 weeks at this level and is not statistically significant. With females at this treatment level, the increase in weight gain is sustained and even surpassed at Weeks 15 and 16. It seems clear, however, that the recovery rate for either sex is not as high as that for rats subjected to the shorter treatment period.

Food Consumption

The condensate blend diet resulted in significantly depressed food intake by both sexes at the high dose level throughout the treatment period (Tables 46 and 47). Food intake by other groups was normal.

When the high dose rats were transferred to the condensate-free diet after 4 weeks, they responded by increasing their food intake to-and sometimes above—the levels of other groups (Tables 48 and 49). Those rats treated first for 13 weeks, however, continued to consume less food than the controls during the recovery period, significantly so for the males during Weeks 15 and 16 (Tables 50 and 51).

Daily food consumption for 13 weeks expressed in terms of grams per kilogram of body weight appears in Tables 52 and 53. During two of the 13 weeks, males at the high dose ate significantly less food than controls did for the same body weight. This occurred far more frequently in the females and to such an extent that a sex difference may be suggested from the data.

On discontinuation of the condensate blend treatment after 4 weeks at the high dose, there was an immediate and significant increase in food intake to levels above those of the controls during the first or second week (Tables 54 and 55). An increase in the rate of food intake during the recovery period was also evident in males and females treated for 13 weeks at the high dose level (Tables 56 and 57), but the increase relative to controls was not as great as after 4 weeks of the treatment. No other dose levels appeared to be affected.

The actual doses of condensate water received by the rats over the treatment period have been calculated. These appear in Tables 58 and 59.

TABLE 46

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY)
OF MALE RATS DURING 13 WEEKS OF TREATMENT

			TREATMENT GROUPS		
DEPENDENT VARIABLE	CONTROL	2 100 . Faid Mi	A 10. Taid Ni	10. 10 K	38 (
T Mage	18.5 ± .728 (8)	18.7 ± .608 (8)		14.3 ± .585 (8) *	*
WEEK 2	23.2 ± 1.27 (8)	22.4 ± .636 (8)	23.3 ± .637 (8)	16.4 ± 1.60 (8) *	*
WEEK 3	24.1 ± .827 (8)	25.3 ± .611 (8)	24.5 ± .429 (8)	15.7 ± .586 (8) *	*
2 X440 X	23.0 ± .914 (8)	24.8 ± .933 (8)	24.7 ± .625 (8)	16.1 ± .756 (8) *	*
WEEK 5	23.8 ± .531 (6)	24.8 ± .822 (4)	24.8 ± .312 (4)	16.8 ± 1.58 (4) *	*
WEEK 6	23.7 ± .698 (6)	24.4 ± .836 (4)	24.9 ± .586 (4)	15.6 ± 1.82 (4) *	*
WEEK 7	23.7 ± 1.10 (6)	24.5 ± .837 (4)	24.8 + .589 (4)	14.1 + 1.68 (4) *	*
80 M SEE SE	25.2 ± 1.18 (6)	26.5 ± 1.29 (4)	27.6 ± 1.34 (4)	16.7 ± 1.02 (4) *	*
6 Maam	24.7 ± 1.42 (4)	26.3 ± 1.29 (4)	28.6 ± 1.89 (4)	17.6 ± 1.18 (4) *	*
WEEK 10	$24.8 \pm .623$ (4)	25.4 ± .351 (4)	24.4 ± 1.10 (4)	16.1 ± .728 (4) *	*
TO Maam	23.2 ± .787 (4)	25.3 ± .977 (4)	24.7 ± .635 (4)	16.0 ± .745 (4) *	*
WEEK 12	22.8 ± 1.44 (4)	26.9 ± 1.45 (4)	25.0 ± .523 (4)	* (4) 808 + 8.91	*
WEEK 13	24.8 + 1.78 (4)	27.8 ± .985 (4)	25.9 ± .830 (4)	19.8 ± .533 (4) *	*

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CACES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

TABLE 47

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY)
OF FEMALE RATS DURING 13 WEEKS OF TREATMENT

					TREATHENT GROUPS	T GROUP	Ñ			
DEPENDENT VARIABLE	CONTROL		, 001 X ION IN DIET	3 8 1	2 10 . Taid ni		: : : : 38 1	. 10 % IN DIET		. .
VEEK 1	15.7 ± .555	(8)	16.1 ± .469 (8)	(8)	16.5 + .399	(8)		12.3 ± .315	(8)	*
WEEK 2	18.1 + .386	(8)	16.7 ± .471	(8)	18.1 ± .710	(8)		13.5 ± 1.07	(8)	*
WEEK 3	17.4 ± .598	(8)	16.8 + .481	(8)	17.5 ± .416	(8)		12.3 ± .488	(8)	*
7 X328	17.1 ± .399	(8)	17.0 ± .692	(8)	17.9 ± .358	(8)		12.5 ± .526	(8)	*
WEEK S	16.9 ± .413	(9)	16.6 ± .790	(7)	17.1 ± .552	(4)		12.8 ± .374	(4)	*
WEEK 6	16.8 ± .493	(9)	16.2 ± .772	(†)	16.4 ± .638	(4)		11.9 ± .197	(*)	*
WEEK 7	16.4 ± .409	(9)	17.0 ± .456	(7)	16.6 ± .628	(†)		12.3 ± .366	(4)	*
WEEK 8	17.3 ± .763	(9)	17.7 ± 1.16	(†)	21.1 ± 1.04	(4)		13.0 ± .526	(*)	*
WEEK 9	17.6 ± 1.04	(4)	17.5 ± .508	(4)	20.9 ± .872	(4)		14.3 ± .250	(4)	*
WEEK 10	16.3 ± .736	(†)	17.6 ± 1.12	(4)	16.3 ± .258	(4)		11.7 + .484	(4)	*
II Maam	15.7 ± .659	(*)	16.1 + .883	(4)	15.8 ± .559	(7)		11.6 ± 1.02	(*)	*
WEEK 12	15.9 ± .693	(4)	17.0 ± .835	(4)	16.2 ± .675	(4)		11.7 ± .990	(*)	*
WEEK 13	21.1 ± 1.28 (4)	(4)	20.2 ± 1.54 (4)	(4)	20.6 ± 1.22 (4)	(4)		13.7 ± .977	3	*

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W * WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL * .95

92

Ï.

Ĺ

,

į.

1

1

-

Į

(

ţ__

TABLE 48

一年 かんしゅう かんしゅう

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF MALE RATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

				TREATMENT GROUPS	OUPS	:		
DEPENDENT VARIABLE	CONTROL	N DIET] 	OI A I N DIET	3x i	. 10 % IN DIET		38 1
14 14 14 14 14 14 14 14 14 14 14 14 14 1	18.5 ± .728 (8)	18.0 ± 2.53 (2)		19.1 ± .315 (2)		14.3 ± 1.77 (2)	(2)	
WEEK 2	23.2 ± 1.27 (8)	20.6 ± .502 (2)		21.9 ± .933 (2)		13.5 ± 2.47 (2)	(2)	*
WEEK 3	24.1 ± .827 (8)	25.0 ± 1.54 (2)		23.6 ± .455 (2)		15.9 ± 2.79 (2)	(2)	*
1 1	23.0 ± .914 (8)	27.3 ± 2.18 (2)		24.7 ± 1.14 (2)		16.3 ± 2.05 (2)	(2)	
HEEK S	23.8 ± .531 (6)	24.7 ± .723 (2)		24.3 ± 2.24 (2)		23.3 ± 2.75 (2)	(3)	
WEEK 6	23.7 ± .698 (6)	23.9 ± .455 (2)		28.2 ± 3.88 (2)		25.9 ± 2.08 (2)	(3)	
WEEK 7	23.7 ± 1.10 (6)	25.1 ± .805 (2)		26.5 ± .548 (2)		24.0 ± 2.68 (2)	(2)	
WEEK 8	25.2 ± 1.18 (6)	28.4 ± .857 (2)		29.3 ± 3.46 (2)		25.9 ± 2.63 (2)	(3)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATHENT DIFFERENCES * CONFIDENCE LEVEL * .95

TABLE 49

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF PEMALE MATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

			TRE	TREATHENT GROUPS				
DEPENDENT	CONTROL	.001 X IN DIET W	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		X OI.	. 10 Z IN DIET		3 1
M Milan	15.7 ± .555 (8)	15.1 ± .572 (2)	17.1 ±	17.1 ± 1.26 (2)	11.2	11.2 ± .513 (2)	(2)	*
PERK 2	18.1 ± .386 (8)	16.5 ± .921 (2)	17.3 ±	17.3 ± .175 (2)	18.2	18.2 ± .618 (2)	(2)	
WEEK 3	17.4 + .598 (8)	17.3 ± 1.38 (2)	17.9 ±	17.9 ± .420 (2)	10.7	10.7 ± 1.66 (2)	(3)	*
7 X32A	17.1 + .399 (8)	17.3 ± 1.03 (2)	17.1 ±	17.1 ± .327 (2)	10.9	10.9 ± 1.70 (2)	(2)	*
S Mark S	16.9 ± .413 (6)	17.5 ± 1.20 (2)	18.5	18.5 ± 1.13 (2)	16.5	16.5 ± .420 (2)	(3)	
WEEK 6	16.8 + .493 (6)	17.5 ± .828 (2)	17.2 ±	17.2 ± .455 (2)	12.7	22.7 ± 2.26 (2)	(2)	*
WEEK 7	16.4 ± .409 (6)	18.0 ± 1.60 (2)	i7.2 ±	17.2 ± .688 (2)	15.1	15.1 ± 1.25 (2)	(2)	
WEEK 8	17.3 ± .763 (6)	20.5 ± 1.70 (2)	19.5 ±	19.5 ± 1.54 (2)	19.6	19.6 ± 1.77 (2)	(2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL * . 95

į

į.

TABLE 50

₹. ₹.

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF MALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

			TREATMENT GROUPS	JPS		
DEPENDENT VARIABLE	CONTROL	.001 Z IN DIET	 . 01 X IN DIET	 	10 % IN DIET	3 1
SEEK 1	18.5 ± .728 (8)	18.5 ± .968 (2)	19.7 ± .210 (2)		13.5 ± .735 (2)	*
WEEK 2	23.2 ± 1.27 (8)	22.2 ± 1.35 (2)	25.5 ± .863 (2)		17.0 ± 1.57 (2)	_
WEEK 3	24.1 ± .827 (8)	24.5 ± 1.67 (2)	25.2 ± 1.50 (2)		15.1 ± .408 (2)	*
PEEK 4	23.0 ± .914 (8)	24.0 ± 1.08 (2)	24.6 ± .630 (2)		16.3 ± 3.06 (2)	_
WEEK S	23.8 ± .531 (6)	25.1 ± 1.07 (2)	24.5 ± .618 (2)		16.4 ± 3.51 (2)	*
WEEK 6	23.7 ± .698 (6)	24.1 ± .222 (2)	25.8 ± .607 (2)		14.7 ± 4.20 (2)	*
WEEK 7	23.7 ± 1.10 (6)	24.7 ± .863 (2)	25.3 ± 1.11 (2)		13.7 ± 3.99 (2)	*
WEEK 8	25.2 ± 1.18 (6)	28.4 ± .980 (2)	27.3 ± .735 (2)		16.3 ± 2.24 (2)	*
6 X23A	24.7 ± 1.42 (4)	26.4 ± 1.52 (2)	30.0 ± 3.87 (2)		16.5 ± 2.24 (2)	_
WEEK 10	24.8 ± .623 (4)	$25.0 \pm .093$ (2)	24.7 ± 2.18 (2)		16.0 ± 1.81 (2)	*
II Maam	23.2 ± .787 (4)	25.6 ± 1.47 (2)	25.8 ± .338 (2)		15.7 ± 1.75 (2)	*
WEEK 12	22.8 ± 1.44 (4)	$27.7 \pm 2.03 (2)$	25.7 ± .187 (2)		16.7 ± 1.92 (2)	_
WEEK 13	24.8 ± 1.78 (4)	27.4 ± .723 (2)	26.5 ± 1.07 (2)		19.9 ± .206 (2)	_
WEEK 14	27.4 ± 2.27 (2)	30.3 ± 1.89 (2)	30.5 ± 4.15 (2)		21.3 ± .247 (2)	_
WEEK 15	25.3 ± .432 (2)	24.9 ± .513 (2)	25.0 ± .700 (2)		20.8 ± .701 (2)	*
WEEK 16	26.4 ± 3.62 (2)	24.7 ± .315 (2)	23.6 ± .117 (2)		19.0 ± 1.09 (2)	*
WEEK 17	26.2 ± 3.14 (2)	26.2 ± 2.29 (2)	26.6 ± .604 (2)		20.2 ± 1.47 (2)	_

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

TABLE 51

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF PEMALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

			TREATMENT GROUPS		
DEPENDENT	CONTROL	OOL X IN DIET W	A Tara NI	. 10 t. W DET W	
VEEK 1	15.7 ± .555 (8)	16.7 ± .677 (2)	17.2 ± .023 (2)	12.9 ± .420 (2)	
WEEK 2	18.1 ± .386 (8)	16.4 ± .758 (2)	18.7 ± .058 (2)	12.5 ± 1.25 (2) *	
WEEK 3	17.4 ± .598 (8)	17.3 ± .012 (2)	18.6 ± .210 (2)	12.6 ± .187 (2) *	
WEEK 4	17.1 ± .399 (8)	$19.0 \pm .665$ (2)	18.4 ± 1.07 (2)	12.8 ± .420 (2) *	
WEEK 5	16.9 ± .413 (6)	17.2 ± .362 (2)	17.2 ± 1.18 (2)	12.2 ± .420 (2) *	
WEEK 6	16.8 ± .493 (6)	16.4 ± .385 (2)	16.3 ± 1.54 (2)	11.7 ± .327 (2) •	
WEER 7	16.4 ± .409 (6)	16.7 ± .152 (2)	17.2 ± 1.32 (2)	11.8 ± .595 (2) *	
WEEK 8	17.3 ± .763 (6)	18.1 + .910 (2)	$21.9 \pm .956$ (2)	12.5 ± .956 (2) •	•
WEEK 9	17.6 ± 1.04 (4)	18.0 ± .233 (2)	21.7 ± .233 (2)	14.1 ± .128 (2)	
WEEK 10	16.3 ± .736 (4)	18.2 ± 1.12 (2)	$16.4 \pm .607$ (2)	11.1 + .6:8 (2) •	
WEEK II	15.7 ± .659 (4)	16.4 ± .012 (2)	16.5 ± .863 (2)	10.4 ± .886 (2) •	•
WEEK 12	15.9 ± .693 (4)	17.0 ± .117 (2)	16.4 ± 1.04 (2)	10.6 + 1.83 (2) +	
WEEK 13	21.1 ± 1.28 (4)	21.2 ± 1.21 (2)	21.6 ± 1.63 (2)	12.2 ± 1.00 (2) +	
WEEK 14	19.9 ± 3.44 (2)	$19.0 \pm .035$ (2)	22.3 ± 1.48 (2)	15.1 ± 3.71 (2)	
WEEK 15	16.5 ± .898 (2)	16.5 ± .012 (2)	17.2 ± 1.32 (2)	15.8 ± .152 (2)	
WEEK 16	15.4 ± .408 (2)	16.3 ± .991 (2)	16.4 ± 1.57 (2)	14.8 ± .828 (2)	
WEEK 17	17.8 ± .776 (2)	17.2 ± 1.12 (2)	17.5 ± 2.31 (2)	15.1 ± 1.52 (2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES ** CONFIDENCE LEVEL = .95

TABLE 52

A STATE OF THE STA

A Company of the Comp

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY)
OF MALE RATS DURING 13 WEEKS OF TREATMENT

:

				TREATMENT GROUPS	GROUPS			
DEPENDENT VARIABLE	CONTROL	.001 X IN DIET] 	, 01 X IN DIET	; ; ; ; ; ; ; ; ;	101.		9 1
WEEK 1	98.3 ± 1.47	$(8) 100.0 \pm 2.24$	(8)	98.7 ± .530 (8)	(8)	90.2 ± 2.71	(8)	*
WEEK 2	97.5 ± 3.03	(8) 96.8 ± 1.60	(8)	95.9 + 2.16	(8)	91.3 ± 9.74	(8)	
WEEK 3	88.4 + 1.89	(8) . 93.3 ± 1.41	(8)	88.0 ± 1.54	(8)	78.7 ± .806	(8)	*
E E E E	73.9 + 2.19 (1	(8) 82.0 ± 2.83	(8)	79.1 ± 1.62	(8)	75.3 2 1.94	(8)	
WEEK 5	73.3 ± 1.23 ((6) 76.8 ± 3.90	(7)	73.7 ± .712	(4)	74.2 ± 2.97	(4)	
WEEK 6	67.9 ± 2.27 ($(6) \qquad 70.8 \pm 2.70$	(4)	69.9 ± 1.70	(4)	65.1 + 3.59	(4)	
WEEK 7	65.4 ± 2.39 (($(6) \qquad 67.7 \pm 2.87$	(4)	66.0 ± 1.46	(4)	57.7 ± 2.56	3	
EREK 8	66.1 ± 2.53 (((6) 69.9 ± 4.43	(4)	70.9 ± 3.44	(4)	66.6 ± 2.48	(4)	
WEEK 9	63.0 ± 2.50 (4	(4) 66.7 ± 3.69	(4)	70.5 ± 4.18	(4)	69.4 ± 3.74	3	
WEEK 10	60.9 ± 2.32 (4	(4) 62.4 ± .760	(4)	58.8 ± 2.29	(4)	57.4 ± .747	(*)	
NEEK 11	56.2 ± .685 (.	(4) 60.3 ± 2.68	(4)	57.7 ± 1.46	(4)	55.6 ± 1.03	(*)	
WEEK 12	53.8 ± 1.21 (4)	4) 61.5 ± 3.53	(7)	56.8 ± 1.24	(†)	56.8 ± 2.10	(*)	
WEEK 13	57.8 ± 1.72 (4	$(4.) 62.7 \pm 2.31$	(4)	58.0 ± 1.73	(4)	65.2 ± 3.38	(7)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

TABLE 53

EFFECTS OF CONDENSATE WATER ON POOD CONSUMPTION (G/KG (BODY WT)/DAY)
OF FEMALE RATS DURING 13 WEEKS OF TREATMENT

_	
ŭ	٦
٥	١
=	
	2
c	3
à	
6	ď
t	9
-	
ŧ	4
÷	Ę
2	
٠	d
-	
-	Ę
E	٠
٠.	ı
•	t
	٥
=	
8	•
Ē	
٠	

					TREATM	TREATMENT GROUPS	PS			
DEPENDENT Variable	CONTROL	}	.00; z IN DIET	38)	X 10. IN DIET		3 8 (2 OI. FRIG NI		38 (
E E E E E E E E E E E E E E E E E E E	85.3 + 1.89	(8)	87.2 + 1.63 ((8)	92.3 ± 2.01 (8)	(8)		75.9 ± 1.37 (8)	(8)	*
WEEK 2	90.2 ± 1.76	(8)	83.5 ± 1.21 ((8)	93.2 ± 3.32	2 (8)		81.5 ± 7.40	(8)	
WEEK 3	81.8 ± 2.01	(8)	79.6 ± 1.29 ((8)	84.7 ± 1.59	(8) 6		68.9 ± 1.79	(8)	*
WEEK 4	77.0 ± 1.11	(8)	74.7 ± 2.11	(8)	82.2 ± 1.65	(8)		67.8 ± 2.09	(8)	*
WEEK 5	72.6 ± 1.41	(9)	70.7 ± 1.68	(4)	76.1 ± 1.35	(4)		66.9 ± 2.03	(*)	
9 HEER 9	70.3 ± 2.39	(9)	65.7 ± 1.84 ((4)	71.8 ± 1.45 (4)	(4)		60.2 ± 1.03 (4)	(4)	*
EUSEK 7	66.9 ± 1.18	(9)	68.4 + .860	(4)	70.6 ± .579	(4) 6		60.4 + 1.40	(4)	*
00 M M M	68.1 ± 2.09	(9)	69.9 ± 2.28 ((4)	87.7 ± 5.00	(4) 0		62.4 ± 2.59	(4)	
WEEK 9	68.8 ± 3.15 (4)	(4)	67.9 ± 1.11	(7)	84.6 ± 3.64	(4) 4		67.4 ± 2.09	(*)	
WEEK 10	62.7 ± 1.78	(4)	67.0 ± 2.29 ((4)	65.0 ± .738	(4)		54.5 ± 1.50	(*)	*
异医氏 11	59.8 ± 1.68 (4)	(*)	59.7 ± 1.10	(4)	61.4 ± 1.15	.5 (4)		53.0 ± 3.79	(*)	
WEEK 12	58.5 ± 1.62	(*)	62.3 ± 1.12 ((4)	61.4 ± 1.47	(4)		54.0 ± 3.42 (4)	(4)	
WEEK 13	77.8 ± 4.51 (4)	(4)	73.1 ± 4.00 ((7)	78.1 ± 3.05 (4)	(4)		62.0 ± 3.04 (4)	3	*

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

ĺ,

•

į.

Į,

TABLE 54

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY) OF MALE RATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

				TREATMENT GROUPS	JPS		i	
DEPENDENT VARIABLE	CONTROL GROUP	.001 X IN DIET	; ; ; ; ;	.01 % IN DIET	5 8 (. 10 % 10 N I B I B I		33.1
1 光温温度	98.3 ± 1.47 (8)	97.5 ± 10.6 (2)		98.6 ± .708 (2)		87.3 ± 3.03 (2)	(2)	
WEEK 2	97.5 ± 3.03 (8)	92.4 ± 1.50 (2)		91.8 ± 3.28 (2)		73.2 ± 4.40 (2)	(2)	*
 2 Magar 2 Magar	88.4 + 1.89 (8)	94.2 ± 3.75 (2)		85.3 ± 1.01 (2)		78.0 ± 2.48 (2)	(2)	
4 EEF 4	75.9 ± 2.19 (8)	88.9 ± 5.76 (2)		80.5 ± .486 (2)		75.7 ± .074 (2)	(2)	
HEEK S	73.3 ± 1.23 (6)	73.8 ± 1.45 (2)		74.3 ± 1.87 (2)		86.0 ± 1.42 (2)	(2)	*
WEEK 6	67.9 ± 2.27 (6)	67.0 ± 1.26 (2)		82.4 ± 17.3 (2)		86.3 ± 1.16 (2)	(2)	
WEEK 7	65.4 ± 2.39 (6)	66.4 ± 2.47 (2)		73.3 ± 6.36 (2)		75.0 ± 1.24 (2)	(2)	
VEEK 8	66.1 ± 2.53 (6)	70.2 ± 3.14 (2)		76.6 ± 15.7 (2)		74.9 ± 1.02 (2)	(2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL * .95

TARIE SS

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY) OF PEMALE RATS DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

				TREATMENT GROUPS	T GROUPS			
DEPENDENT VARIABLE	CONTROL	,001 X 10 N I ET	! ! 28 ! !	X TO.	38 1	. 10 % IM DIET		1 32 1
 EEK T	85.3 ± 1.89 (8)	83.5 ± 3.20 (2)	2)	96.6 ± 7.24 (2)	(2)	71.8 ± 1.80 (2)	Ξ.	
WEEK 2	90.2 ± 1.76 (8)	84.3 ± 3.56 (2)	2)	89.4 ± .566 (2)	(2)	114.1 ± 7.23 (2)	- -	
WEEK 3	81.8 ± 2.01 (8)	81.5 ± 3.61 (2)	2)	86.1 ± 1.68 (2)	(2)	64.6 ± 6.53 (2)	- -	*
7 MEER 7	77.0 ± 1.11 (8)	75.9 ± 2.30 (2)	2)	78.1 ± .328 (2)	(2)	62.7 ± 5.73 (2)		*
WEEK S	72.6 ± 1.41 (6)	74.3 ± 2.19 (2)	2)	79.6 ± 6.20 (2)	(2)	82.4 ± 4.29 (2)	Ξ.	
WEEK 6	70.3 ± 2.39 (6)	71.8 ± .956 (2)	2)	71.6 ± 2.58 (2)	(2)	106.5 ± 11.7 (2)		*
WEEK 7	66.9 ± 1.18 (6)	71.6 ± 4.09 (2)	2)	69.3 ± 2.21 (2)	(2)	67.9 ± 6.02 (2)	Ω	
WEEK 8	68.1 ± 2.09 (6)	77.7 ± 1.59 (2)	2)	74.6 ± 4.71 (2)	(2)	84.1 ± 8.97 (2)	<u> </u>	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

:

* ...

Sustain S

7.0.0

7.0

.

TABLE 56

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY) OF MALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

			,		TREATMENT	IT GROUPS	ø			
DEPENDENT VARIABLE	CONTROI.		.001 X IN DIET] 3x 	. 01 X IO I X I I I I I I I I I I I I I I I		38.1	. 10 % IN DIET		3x
. * * * * * * * * * * * * * * * * * * *	98.3 + 1.47	(8)	100.0 + 1.10	(2)	98.5 ± .004	(3)		84.8 ± 2.63	(2)	*
WEEK 2	97.5 ± 3.03	(8)	97.8 ± 2.30 (3	(2)	103.5 ± 4.21	(3)		95.5 ± 14.6	(2)	
WEEK 3	88.4 + 1.89	(8)	93.8 ± 1.31 (2)	<u> </u>	90.8 + 6.38	(3)		78.7 ± 3.13	(3)	
WEEK 4	75.9 ± 2.19	(8)	82.9 ± .481 (2)	2)	78.8 ± 2.40	(2)		77.1 ± 6.73	(2)	
WEEK S	73.3 ± 1.23	(9)	80.0 ± 6.84 (2	(2)	73.2 ± .987	(3)		73.4 ± 5.91	(2)	
9 жазж	67.9 ± 2.27	(9)	71.6 ± 3.43 (3	(2)	72.3 ± 1.53	(2)		61.8 ± 7.37	(2)	
WEEK 7	65.4 ± 2.39	(9)	69.5 ± 4.63 (2	(2)	67.2 ± 2.06	(2)		56.5 ± 5.61	(2)	
20 EE W 8	66.1 ± 2.53	(9)	76.0 ± 5.35 (3	(2)	70.2 ± .808	(2)		67.8 ± 5.18	(2)	
WEEK 9	63.0 ± 2.50	(7)	58.2 ± 5.82 (3	(2)	73.9 ± 8.11	(3)		69.2 ± 8.59	(2)	
WEEK 10	60.9 ± 2.32	(3)	61.7 ± 1.23 (3	(2)	59.4 ± 4.23	(2)		56.4 ± 1.35	(2)	
WEEK II	56.2 ± .685	(4)	61.5 ± 4.92 (3	(2)	60.2 ± .230	(2)		54.0 ± 1.31	(2)	
WEEK 12	53.8 ± 1.21	(*)	63.6 ± 5.74 (3	(2)	58.5 ± 1.09	(2)		55.4 ± .955	(3)	
WEEK 13	57.8 ± 1.72	(*)	62.4 ± 2.87 (3	(2)	59.9 ± 1.39	(2)		65.3 ± 5.11	(2)	
WEEK 14	60.5 ± 4.72	(3)	67.2 ± 5.06 (2)	~	67.7 ± 8.50	(2)		66.9 ± 5.19	(2)	
WREK 15	815. + 6.45	(3)	54.8 ± .353 (3	(2)	54.6 ± 1.02	(3)		63.1 + 4.14	(3)	*
WEEK 16	56.5 ± 6.96	(3)	53.2 ± .146 (2)		50.7 ± .242	(2)		56.5 ± 4.18	(3)	
WEEK 17	57.8 ± 6.03	(2)	58.4 ± 6.28 (3	(2)	58.6 ± 1.66	(2)		63.5 ± 5.02	(2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W * WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

101

:

TABLE 57

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY) OF FEMALE RATS DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

				TREATMENT GROUPS	GROUPS			
DEPENDENT VARIABLE	CONTROL	.001 Z IN DIET	3 8 I	.01 % IN DIET	35 I	10 % IN DIET	38 1	
WEEK :	85.3 ± 1.89 (8)	89.7 ± 4.90	(2)	94.0 ± 2.08	(2)	77.2 ± 2.66	(2)	
WEEK 2	90.2 ± 1.76 (8)	81.1 ± 2.06 ((2)	95.1 ± 2.83	(2)	73.0 ± 6.77	(2) *	
WEEK 3	81.8 ± 2.01 (8)	79.3 ± .508 ((1)	88.7 ± 2.75	(2)	68.8 ± .129	(2) *	
HEEK 4	77.0 ± 1.11 (8)	81.1 ± 3.90	(2)	83.1 ± .906	(2)	67.9 ± 2.11	(2) *	
WEEK 5	72.6 ± 1.41 (6)	72.8 ± .878 ((2)	75.2 ± 1.47	(2)	63.8 ± 1.36	(2) *	
WEEK 6	70.3 ± 2.39 (6)	67.1 ± .480 ((2)	70.1 ± 2.61	(2)	58.7 + 1.28	(3)	
WEEK 7	66.9 ± 1.18 (6)	67.1 ± .434 ((2)	71.3 ± .694	(2)	58.3 ± 1.33	(2) *	
WEEK 8	68.1 ± 2.09 (6)	71.7 ± 2.21 ((2)	89.5 ± 9.16	(2)	59.5 ± 4.53	(3)	
WEEK 9	68.8 ± 3.15 (4)) 970. + 8.69	(2)	86.4 + 5.90	(2)	66.8 ± 1.95	(3)	
WEEK 10	62.7 ± 1.78 (4)	69.2 ± 3.22 ((2)	64.3 ± 1.16	(2)	\$2.5 ± 2.20	(2)	_
WEEK 11	59.8 ± 1.68 (4)	60.1 ± 1.25 ((2)	63.4 + .042	(2)	48.3 + 3.08	(2) *	
WEEK 12	58.5 ± 1.62 (4)	61.6 ± 619	(2)	60.7 ± .367	(2)	50.3 ± 5.87	(2)	
WEEK 13	77.8 ± 4.51 (4)	77.0 ± 6.32 ((2)	81.0 ± 1.50	(2)	57.5 ± .900	(2)	
WEEK 14	71.8 ± 8.78 (2)	68.5 ± 1.30 ((2)	83.i ± 1.15	(2)	68.3 ± 11.7	(3)	
WEEK 15	59.6 ± .318 (2)	58.6 ± 1.33 ((1)	63.1 ± 1.33	(2)	69.5 ± 2.97	* (2)	
WEEK 16	54.9 ± 1.28 (2)	56.7 ± 2.23 ((2)	58.8 ± 1.91	(2)	62.7 ± 1.73	(2) *	
WEEK 17	66.4 ± .648 (2)	62.5 ± 2.32 ((2)	66.2 + 4.81	(2)	66.0 ± 6.74	(2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATHENT DIFFERENCES * CONFIDENCE LEVEL = .95

Table 58

DOSES OF CONDENSATE WATER [mg/kg (body weight)/day] IN DIETS CONSUMED BY MALE RATS DURING 13 WEEKS OF TREATMENT

	7	reatment Groups	;*
	0.001%	0.01%	0.10%
Week	in Diet	in Diet	in Diet
1	0.82	8.0	63.1
2	0.80	8.3	63.9
3	0.80	7.0	68.5
4	0.58	6.6	65.5
5	0.55	6.1	64.6
6	0.50	5.8	56.6
7	0.48	6.3	53.1
8	0.49	6.8	61.3
9	0.48	4.5	46.5
10	0.44	3.7	38.5
11	0.43	3.7	37.3
12	0.49	4.6	48.8
13	0.50	4.6	56.1
Average			
Dose	0.57	4.2	55.6

^{*} Daily food consumption x analytical concentration of condensate water in the feed.

Table 59

DOSES OF CONDENSATE WATER [mg/kg (body weight)/day] IN DIETS CONSUMED BY FEMALE RATS DURING 13 WEEKS OF TREATMENT

		reatment Groups	
	0.001%	0.01%	0.10%
<u>Week</u>	in Diet	in Diet	in Diet
1	0.71	7.9	53.1
2	0.68	8.0	57.1
3	0.69	6.7	59.9
4	0.53	6.8	60.0
5	0.50	6.3	58.2
6	0.47	6.0	52.4
7	0.48	6.8	55.6
8	0.49	8.5	57.4
9	0.48	5.4	45.2
10	0.48	4.1	36.5
11	0.43	3.8	35.5
12	0.49	4.9	46.4
13	0.73	6.2	53.3
Average			
Dose	0.54	6.3	51.6

^{*} Daily food consumption x analytical concentration of condensate water in the feed.

Organ Weights

Organ weights and organ-to-body and organ-to-brain weight ratios for rats killed after 4 weeks of treatment are given in Tables 60 and 61. The spleens of both sexes at the 0.10% treatment level were significantly enlarged (the spleen-to-body weight ratio for females at the 0.01% level was also cited statistically but the value was not abnormally high). Testes weights at the high-dose level were clearly reduced. Although liver-to-body weight ratios for both sexes at the 0.01 and 0.10% levels are indicated statistically to be high, the liver-to-brain weight ratios were unaltered relative to controls. Kidney weights and kidney-to-brain weight ratios tended to be lower at the 0.10% level than control values, but not to a point where an effect of treatment on these parameters was clearly evident.

After 13 weeks of treatment, the same alterations at the 0.10% level were observed (Tables 62 and 63). Spleen and testes weights were changed to about the same degrees as after 4 weeks of treatment. There were no statistically significant alterations at the 0.01 and 0.001% condensate blend levels.

The organ weight data for rats killed after 4 weeks of treatment and 4 weeks of recovery are contained in Tables 64 and 65. The testes weights and weight ratios at the 0.10% condensate blend level were significantly low, indicating incomplete reversal of this treatment effect. The kidney-to-body weight ratio for females at this level was significantly high but the kidney-to-brain weight ratio was normal. Since all other organ-to-body weight ratios tended to be high, this elevation probably resulted from the low body weight for this group and not from a lingering effect of treatment directly on the kidneys. No other alterations were evident.

The data for rats killed after 13 weeks of treatment and 4 weeks of recovery are in Tables 66 and 67. A number of differences are cited statistically at the 0.10% level, including severely atrophied testes. All other alterations in both male and female values at this level stemmed from the lower body weights of the animals compared with controls. The hearts of females at the 0.10% level were significantly higher than those of controls, but since the heart-to-brain weight ratio was not similarly altered and since there was no clear dose response with either parameter (Appendix D, Table D-6), the toxico-logical significance of this observation is unclear.

Hematology

The hematological determinations on the blood from rats killed after 4 weeks of treatment appear in Tables 68 and 69. Males at the high dose level had significantly low RBC and high WBC, MCV, and MCH; females had low hemoglobin and MCHC and high MCV. The erythrocyte

TABLE 60

DECAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) OF TREATMENT

						TREATHENT	T GROUPS	S .		!
DEPENDENT	a U I	CONTROL		, 00; X IN DIET	64 1 1 1 1 1	2 10 . THIU NI		od (, 10 X IN DIET	64 I
FINAL WEIGHT		299.40 + 11.4	(5)	307.20 ± 10.0 (5)	_	308.20 ± 10.8	(3)		219.20 ± 15.0 (5)	*
BRAIN		1.96 ± .028	(3)	1.97 ± .042 (5)	_	2.05 ± .037	(3)		1.92 ± .052 (5)	
HEART		1.27 ± .199	(3)	i.29 ± .056 (5)	_	1.20 ± .083	(3)		1.06 ± .108 (5)	
LIVER		13.76 ± .904	(3)	16.16 ± .805 (5)	•	17.35 ± 1.37	(3)		12.12 ± 1.05 (5)	
Z S S S S S S S S S S S S S S S S S S S		.65 ± .040	(3)	(5) £50. + 67.	_	.80 ± .057	(3)		1.42 ± .141 (5)	4
KIDNEYS		2.67 ± .194	(5)	2.89 ± .125 (5)	_	2.87 ± .129	(8)		2.07 ± .182 (5)	
TESTES		2.69 ± .093	(5)	2.75 ± .115 (5)	•	2.58 ± .036	(8)		.88 ± .042 (5)	4
BRAIN/BODY		6.58 ± .228	(3)	6.43 ± .134 (5)	•	6.67 ± .175	(3)		8.85 ± .423 (5)	+
HEART/BODY		4.26 ± .664	(3)	4.21 ± .192 (5)	_	3.89 ± .208	(3)		4.81 ± .317 (5)	
LIVER/BODY		45.81 ± 1.62	(5)	\$2.59 ± 2.07 (5)	_	55.99 ± 2.88	(3)	*	55.10 ± 1.53 (5)	*
SPLEEN/BODY		2.18 ± .119	(3)	2.57 ± .098 (5)	_	2.61 ± .165	(5)		6.44 ± .193 (5)	A
KIDNEYS/BODY		8.89 ± .338	(3)	9.39 ± .103 (5)	_	9.32 ± .217	(3)		9.41 ± .293 (5)	
TESTES/BODY		9.00 ± .215	(5)	8.95 ± .332 (5)	_	8.40 ± .242	(5)		4.07 ± .206 (5))
HEART / BRAIN		.65 ± .093	3	.65 ± .022 (5)	_	.59 ± .036	(3)		.55 ± .049 (5)	
LIVER/BRAIN		7.02 ± .466	(3)	8.21 ± .403 (5)	•	8.43 ± .576	(3)		6.31 ± .454 (5)	
SPLEEN/BRAIN		.33 ± .020	(5)	.40 ± .024 (5)	19	.39 ± .024	(3)	∢	.74 ± .061 (5)	A
KIDNEYS/BRAIN		1.36 ± .099	(3)	1.47 ± .046 (5)	_	1.40 ± .052	(3)		1.08 ± .077 (5)	
TESTES/BRAIN	*	1.37 ± .045	(3)	(5) 090° ∓ 07°!	•	1.26 ± .013	(3)		.46 ± .021 (5)	•

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST; CONPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x,

TABLE 61

EFFECTS OF CONDENSATE WALLN ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF FEMALE RATS AFTER 4 WEEKS OF TREATMENT

							TREATMENT GROUPS	T GROU	IPS		
DEPENDENT VARIABLE	50 U I	CONTROL	;	.001 Z IN DIET	F	∝ 1	.01 Z IN DIET		64 I	. 10 % IN DIET	e≤ (
PINAL WEIGHT		.00 + 5.52	3	220.20 + 4.28 (3	ı	219.60 + 2.42	(3)	ı I	192.40 + 5.26 (5)	*
BRAIN			(3)		(5)		2.01 + .031	(3)			
HEART			(3)		(3)		.94 + .038	(5)		(5) 180. ± 77.	<
LIVER		8.38 ± .447	(3)	8.75 ± .293 ((3)		9.43 ± .249	(3)		8.78 ± .248 (5)	
2 L C C C C C C C C C C C C C C C C C C		.53 ± .027	(3)	. 56 ± .016	(3)		.65 ± .029	(5)	æ	(5) 950. ± 56.	4
KIDNEYS		1.76 ± .076	(5)	1.68 ± .065	(5)		1.88 ± .027	(3)		1.46 ± .054 (5)	*
BRAIN/BODY		9.49 ± .206	(3)	8.98 ± .350	(3)		9.18 ± .180	(3)		10.25 ± .266 (5)	
HEART/BODY		3.99 ± .094	(3)	4.16 ± .188	(3)		4.29 ± .144	(3)		4.02 ± .115 (5)	
LIVER/BODY		38.72 ± 1.15	(2)	39.70 ± .858	(3)		42.94 ± .891	(3)	*	45.66 ± .406 (5)	v
SPLEEN/BODY	*	2.43 ± .080	(3)	2.53 ± .062 ((3)		2.98 ± .146	(3)	*	4.94 ± .256 (5)	4
KIDNEYS/BODY		8.15 ± .213	(3)	7.63 ± .205 ((3)		8.54 + .086	(3)		7.61 ± .223 (5)	
HEART/BRAIN		.42 ± .017	(3)	.46 ± .005	(3)		.47 + .018	(3)	∢	.39 ± .006 (5)	
LIVER/BRAIN		4.09 ± .167	(3)	4.45 ± .218 ((3)		4.68 + .119	(3)		(5) 660. 7 4.4	
SPLEEN/BRAIN		.26 ± .009	(3)	.28 ± .014 ((3)	<	.33 ± .016	(3)	•	.48 ± .031 (5)	+
KIDNEYS/BRAIN		.86 ± .025	(3)	.86 ± .042	(3)		.93 ± .024	(3)		.75 ± .031 (5)	<

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

- CONFIDENCE LEVEL - .95

- BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 62

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF MALE RATS AFTER 13 WEEKS OF TREATMENT

TREATMENT GROUPS

						TREATMENT GROUPS	GROUPS			
DEPENDENT VARIABLE	ရေးပ ၊	CONTROL	<u> </u>	OO1 K		.01 % IN DIET		o≤ (. 10 K IN DIET	
GHT	•	1.40 ± 43.2	(5)	448.80 ± 4.32 (5)	_	2.00 ± 3.32	(5)		302.20 ± 15.9 (5)	
BRAIN		2.13 ± .067 ((3)	2.23 ± .066 (5)	•	2.27 ± .062 ((3)		2.00 ± .056 (5)	
HEART	*	1.38 ± .145 ((5)	1.48 ± .069 (5)	_	1.51 ± .029 ((3)		1.19 ± .068 (5)	
LIVER	*	15.67 ± 2.76 ((3)	17.24 ± .642 (5)	•	19.93 ± .876	(2)		17.94 ± .823 (5)	
SPLECK		,71 ± .089 ((2)	.78 ± .030 (5)	_	.92 ± .066	(5)		1.52 ± .079 (5)	4
KIDNEYS	*	3.26 ± .399 ((3)	3.20 ± .124 (5)	•	3.63 ± .087	(3)		2.63 ± .093 (5)	_
TESTES	+	3.01 ± .215	(5)	2.67 ± .625 (5)	•	3.06 ± .091	(3)		1.05 ± .061 (5)	+
BRAIN/BODY	*	5.40 ± .547 ((3)	4.98 ± .171 (5)	•	5.02 ± .123	(3)		6.66 ± .317 (5)	
HEART/BODY		3.37 ± .165	(3)	3.29 ± .144 (5)	•	3,33 ± .058	(3)		3.93 ± .115 (5)	_
LIVER/BODY		36.46 ± 4.11 ((3)	38.39 ± 1.30 (5)	•	44.07 ± 1.77 ((3)		59.67 ± 2.49 (5)	+
SPLEEN/BODY		1.71 ± .094 ((3)	1.73 ± .062 (5)	_	2.04 ± .155 ((3)		5.05 ± .244 (5)	4
KIDNEYS/BODY		7.86 ± .269 ((3)	7.14 ± .251 (5)	_	8.03 ± .194	(3)		8.79 ± .524 (5)	_
TESTES/BODY	+	7.48 ± .388	(3)	5.95 ± 1.39 (5)	_	6.78 ± .238	(3)		3.51 ± .289 (5)	+
HEART/BRAIN) 950. + 49.	(3)	.66 ± .037 (5)	•	.67 ± .022	(5)		.60 ± .036 (5)	
I.IVER/BRAIN	*	7.22 ± 1.17 ((3)	7.73 ± .273 (5)	•	8.81 ± .467 ((3)		8.99 ± .366 (5)	_
SPLEEN/BRAIN		,33 ± .035	(3)	.35 ± .019 (5)	_	.41 ± .039 ((3)	æ	.76 ± .041 (5)	+
KIDNEYS/BRAIN	*	1.52 ± .153 ((3)	1.44 ± .059 (5)	•	1.60 ± .056	(3)		1.32 ± .037 (5)	
TESTES/BRAIN	•	1.41 ± .065	(3)	1.20 ± .281 (5)	•	1,35 ± .058	(8)		.52 ± .024 (5)	+

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

B = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % = B : 25 % - C : 50 % - D, RATIO TEST CANNOT BE CALCULATED - K;

TABLE 63

;

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BEAIN WEIGHT RATIOS (G/G)
OF PEMALE RATS AFTER 13 WEEKS OF TREATMENT

						TREATMENT GROUPS	GROUP	s		
DEPENDENT	& U (CONTROL	+	.001 Z IN DIET	65 65 6 6	.01 X IN DIET		E	. 10 X 10 DIET	25
	ı				, ,	ŀ	! !	ı		•
PINAL WEIGHT		270.20 ± 10.7 (5)	3	275,80 ± 13,9 (5)	∵	260.40 + 9.41	(3)		229.80 ± 4.04 (5)	
BRAIN		2.09 ± .034	(3)	2.10 ± .022 (5)	<u> </u>	2.11 ± .051	(3)		2.03 ± .038 (5)	
HEART		.96 ± .034	(3)	1.03 ± .043 (5)	•	.93 ± .044	(3)		.85 ± .032 (5)	<
LIVER		9.14 ± .312 ((3)	9.81 ± .734 (5)	•	9.51 ± .217	(3)		10.88 ± .481 (5)	
SPLEEN		.53 ± .065	(3)	.56 ± .028 (5)	÷	.57 ± .019	(3)		1.04 ± .066 (5)	+
KIDNEYS		1.94 ± .095	(3)	1.95 ± .074 (5)	•	1.94 ± .069	(3)		1.74 ± .079 (5)	
BRAIN/BODY		7.76 ± .247 ((3)	7.70 ± .397 (5)	•	8.13 ± .207	(3)		8.85 ± .177 (5)	
HEART/BODY		3.57 ± .215	(3)	3.75 ± .156 (5)	<u>.</u>	3,58 ± ,155	(3)		$3.72 \pm .119$ (5)	
LIVER/BODY		33.93 ± 1.15 ((3)	35.46 ± 1.26 (5)	6	36.66 ± 1.17	(3)		47.25 ± 1.39 (5)	+
SPLEEN/BODY		1.94 ± .157 ((3)	2.03 ± .068 (5)	<u>-</u>	2.18 ± .074	(3)		4.52 ± .220 (5)	4
KIDNEYS/BODY		7.21 ± .317 ((2)	7.10 ± .195 (5)	0	7.44 + .158	(3)		7.55 ± .242 (5)	
HEART/BRAIN		,46 ± .024	(3)	.49 ± .025 (5)	•	.44 ± .013	(3)		.42 ± .012 (5)	
LIVER/BRAIN		4.38 ± .181 ((3)	4.66 ± .340 (5)	^	4.51 ± .144	(3)		5.35 ± .193 (5)	
SPLEEN/BRAIN	*	,25 ± ,028	(3)	.27 ± .014 (5)	~	.27 ± .006	(3)		.51 ± .035 (5)	+
KIDNEYS/BRAIN		.93 ± .039	(3)	.93 ± .034 (5)	_	.92 ± .026	(3)		.86 ± .036 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = 3ARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 64

REFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF MALE RATS AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATHENT GR	GROUPS		!
DEPENDENT	ھ U I	CONTROL		. 001 Tald ni	 & -	. 01 X IN DIET	e4 i	.10 % IN DIET	∝ 1
PINAL WEIGHT		389.40 ± 8.82	3	404.60 ± 9.36 (5)	•	388.60 ± 18.0 (5)		345.00 ± 21.4 (5)	
BRAIN		2.11 ± .047	(3)	2.15 ± .044 (5)	•	2.04 ± .093 (5)	,	2.09 ± .050 (5)	
HEART		1.46 + .064	(3)	1.33 ± .048 (4)	•	$1.29 \pm .092$ (5)		1.36 ± .045 (5)	
LIVER	*	16.29 ± .264	(3)	18.05 ± .569 (5)	*	16.36 ± 1.51 (5)		15.13 ± .930 (5)	
SPLEEN		080. ± 08.	(3)	(5) 570. 75.	~	(5) 080 78		.77 ± "082 (5)	
KIDNEYS		3.11 ± .166	(3)	3.32 ± .152 (5)	_	3.23 ± .196 (5)		2.88 ± .116 (5)	
TESTES		3.00 ± .114	(3)	3.19 ± .191 (5)	_	3.20 ± .185 (5)		2.01 ± .125 (5)	•
BRAIN/BODY		5.43 ±84	(3)	5.32 ± .098 (5)	•	5.27 ± .214 (5)		6.14 ± ,287 (5)	
HEART/BODY		3.76 ± .157	(3)	3.31 ± .061 (4)	~	3,31 ± ,125 (5)		3.99 ± .216 (5)	
LIVER/BODY		41.91 ± 1.04	(3)	44.66 ± 1.45 (5)	_	41.81 ± 2.23 (5)		43.97 ± 1.45 (5)	
SPLEEN/BODY		2.07 ± .215	(3)	1,86 ± .129 (5)	•	2.00 ± .172 (5)		2.25 ± .233 (5)	
KIDNEYS/BODY		7.98 ± .293	(3)	8.21 ± .403 (5)	_	8.30 ± .258 (5)		8.40 ± .247 (5)	
TESTES/BODY	*	7.72 ± .309	(3)	7.89 ± .390 (5)	^	8.29 ± .618 (5)		5.83 ± .094 (5)	*
HEART/BRAIN		.69 ± .035	(3)	.63 ± .013 (4)	•	.63 ± .038 (5)		.65 ± .025 (5)	
LIVER/BRAIN		7.74 ± .213	(3)	8,39 ± .226 (5)	_	7.98 ± .514 (5)		7.23 ± .411 (5)	
SPLEEN/BRAIN		.38 ± .038	(3)	.35 ± .024 (5)	•	.38 ± .036 (5)		.37 ± .039 (5)	
KIDNEYS/BRAIN		1.48 ± .079	(3)	1.54 ± .069 (5)	^	1.58 ± .054 (5)		1,38 ± .039 (5)	
TESTES/BRAIN		1.42 + .045	(2)	1.48 ± .060 (5)	_	1.56 ± .052 (5)		.96 ± .045 (5)	#A

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x,

TABLE 65

1

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF PEMALE RATS AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATMENT GROUPS	T GROUP	S		
DEPENDENT	20 U I	CONTROL	10 4	.001 X IN DIET		 .01 % IN DIET		64 I	. 10 X IN DIET	≈ 1
FINAL WEIGHT		264.00 ± 6.60	(\$) 09	263.40 ± 10.4	(3)	261.60 ± 5.93	(5)		233.60 ± 3.17 (5)	
BRAIN		2.04 ± .067	(5) (5)	2.01 ± .035	(3)	1.98 ± .023	(3)		2.01 ± .059 (5)	
HEART		1.01 ± .050	50 (5)	1.01 ± .064	(3)	.89 ± .039	(3)		.86 ± .033 (5)	
LIVER		9.90 ± .413	(3)	9.97 ± .620	(3)	9.15 ± .450	(3)		9.75 ± .471 (5)	
SPLEER		.55 ± .036	36 (5)	. 57 ± .041	(3)	.57 ± .038	(3)		.58 ± .034 (5)	
KIDNEYS		1.82 ± .052	52 (5)	1.91 ± .094	(5)	1.88 ± .087	(3)		1.87 ± .046 (5)	
BRAIN/BODY		7.72 ± .200	00 (3)	7.70 ± .422	(3)	7.57 ± .238	(3)		8.61 ± .233 (5)	
HEART/BODY		3.84 ± .222	(5)	3.81 ± .113	(5)	3.41 ± .200	(3)		3.68 ± .094 (5)	
LIVER/BODY		37.44 ± .722	22 (5)	37.73 ± .888	(5)	34.93 ± 1.30	(3)		41.68 ± 1.46 (5)	
SPLEEN/BODY		2.09 ± .126	(2)	2.16 ± .123	(5)	2.18 ± .136	(3)		2.46 ± .127 (5)	
KIDNEYS/BODY		6.90 ± .133	33 (5)	7.27 ± .251	(3)	7.19 ± .206	(3)		7.99 ± .125 (5)	•
HEART/BRAIN		.50 ± .031	31 (5)	.50 ± .036	(5)	.45 ± .016	(3)	<	.43 ± .016 (5)	<
LIVER/BRAIN		4.86 ± .160	50 (5)	4.97 ± .343	(5)	4.63 ± .235	(3)		4,86 ± .224 (5)	
SPLEEN/BRAIN		.27 ± .012	(5)	.28 ± .021	(3)	.29 ± .018	(3)		.29 ± .018 (5)	
KIDNEYS/BRAIN		.90 ± .027	(5) (2)	050. ± 56.	(3)	.96 ± .052	(3)		.93 ± .034 (5)	

:

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF MALE RATS AFTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

HT + 452,20 HT + 452,20 11,45 13,82 13,82 13,83 13,83 13,83	- 1	.001 % IN DIET	2 E	7 10 ·		.10 %	٠
## # # # # # # # # # # # # # # # # # #				IN DIET	64 I	IN DIGT	٠,
* * * *	5.30 (5)	04.8 + 08.644	(5)	453.60 ± 14.8 (5)		275.60 ± 46.3 (5)	*
* * *	.021 (5)	2.18 ± .048 ((5)	2.12 ± .018 (5)		2.07 ± .069 (5)	_
* * *	.076 (5)	1.66 ± .147 ((5)	1.44 ± .083 (5)		1.37 ± .213 (5)	_
• •	.662 (5)	14.24 ± .701 (5)	2	14.46 ± .646 (5)	-	12.12 ± 2.39 (5)	_
•	.058 (5)	.) 850. ± 87.	(5)	.77 ± .025 (5)		.68 ± .149 (5)	_
	(5) 510.	3.18 ± .105	(5)	3.19 ± .153 (5)		2.49 ± .316 (5)	_
	.088 (5)	2.98 ± .228 ((5)	3.08 ± .087 (5)		1.51 ± .294 (5)	•
BRAIN/BODY + 4.74 + .048	(5) 870.	4.87 + .181	(5)	4.70 ± .175 (5)		9.15 ± 2.46 (5)	_
HEART/BODY 3.21 ± .180	.180 (5)	3.71 ± .370 (3	(5)	3.20 ± .236 (5)		5.27 ± .582 (5)	*
LIVER/BODY 30.59 ± 1	1.57 (5)	31.61 ± 1.18 ((5)	31.95 ± 1.34 (5)		42.48 ± 2.47 (5)	•
SPLEEN/BODY 1.66 ± .137	(5) (5)	1.74 ± .111 (9	(3)	1.70 ± .072 (5)		2.35 ± .205 (5)	*
KIDNEYS/BODY + 7.14 ± .161	.161 (5)	7.05 ± .125 (9	(8)	7.04 ± .254 (5)		(5) 006. ± 09.6	_
TESTES/BODY 6.67 ± .258	.258 (5)	6.64 ± .516 (9	(5)	6.81 ± .210 (5)		5.33 ± .657 (5)	_
HEART/BRAIN . 68 + .034	.034 (5)	.76 ± .068	(5)	.68 ± .036 (5)		(5) 060. + 59.	_
LIVER/BRAIN * 6.47 ± .366	.366 (5)	6.55 ± .427 ((5)	6.82 ± .368 (5)		5.79 ± 1.14 (5)	_
SPLEEN/BRAIN * .35 + .030	.030 (5)	.36 ± .031 ((5)	.36 ± .014 (5)		.33 ± .072 (5)	_
KIDNEYS/BRAIN 1.51 + .036	.036 (5)	1.46 ± .070 ((3)	1.51 ± .083 (5)		1.19 ± .141 (5)	_
TESTES/BRAIN 1.41 + .050	.050 (5)	1.37 ± .110 ((5)	1.45 ± .050 (5)		.71 ± .130 (5)	•

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP M IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 X - A;

20-2-- B. PARENT-CONTROL MEAN BY AT LEAST 10 X - A;

TABLE 67

Ě

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF FEMALE RATS AFTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					ļ		TREATMENT GROUPS	UPS		
DEPENDENT VARIABLE	m U	CONTROL		.001 Z IN DIET			. 01 A IN DIET	esi t	. 10 % IN DIET	es En
	ì					; ;	;	ı !	;)
FINAL WEIGHT		268.40 ± 8.30	(3)	275.00 ± 7.69	(3)		263,20 ± 11.1 (5)		229.40 ± 2.42 (5)	4
BRAIN		1.95 ± .032	(3)	2.04 ± .091	(3)		2.09 ± .088 (5)		2.08 ± .050 (5)	
HEART	*	.93 ± .056	(3)	1.20 ± .149	(3)		1.11 ± .071 (5)		1.16 ± .032 (5)	*
LIVER		7.11 ± .464	(3)	7.79 + .508	(3)		7,23 ± .414 (5)		7.63 ± .127 (5)	
SPLEEN	*	.57 ± .043	(3)	.61 + .148	(3)		.57 ± .042 (5)		.54 ± .026 (5)	
KIDNEYS		1.95 ± .096	(3)	2.02 ± .090	(3)		1.91 ± .044 (5)		1.91 + .114 (5)	
BRAIN/BODY		7.29 ± .250	(3)	7.42 ± .309	(3)		7.99 ± .374 (5)		9.05 ± .151 (5)	4
HEART/BODY		3.46 ± .137	(3)	4.33 + .474	(3)		4.24 ± .254 (5)		5.04 ± .163 (5)	«
LIVER/BODY		26.39 ± 1.05	(3)	28.25 ± 1.44	(3)		27.48 ± 1.05 (5)		33.29 ± .640 (5)	«
SPLEEN/BODY	+	2.12 ± .115	(3)	2.21 ± .523	(3)		$2.15 \pm .105$ (5)		2.34 ± .111 (5)	
KIDNEYS/BODY		7.26 ± .222	(3)	7,34 ± .256	(3)		7.30 ± .232 (5)		8.36 ± .581 (5)	
HEART/BRAIN		.48 ± .029	(3)	.59 ± .063	(3)	6	.53 + .020 (5)	<	.56 ± .021 (5)	<
LIVER/BRAIN		3.66 ± .269	(3)	3.83 ± .258	(3)		$3.45 \pm .115$ (5)		3.68 ± .085 (5)	
SPLEEN/BRAIN	•	.29 ± .024	(3)	.31 ± .085	(3)		.27 ± .012 (5)		.26 ± .015 (5)	
KIDNEYS/BRAIN		1.00 ± .056	(5)	670. + 66.	(3)		.92 ± .029 (5)		.93 ± .078 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

TABLE 68

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE RATS AFTER 4 WEEKS OF TREATMENT

							TREATMENT GROUPS	GROUPS				
DEPENDENT	50 U I	CONTROL	i ;	.001 X IN DIET	ez 1	, , ,	.01 Z IN DIET	+ 1	ا کھ	.10 % IN DIET		ed I
RBC (X 106)	*	6.50 ± .092 (5)	_	6.61 ± .214	(5)		9.88 + .406	(5)		5.33 ± .119	(3)	۷ +
HGB (C Z)	•	13.84 ± .147 (5)		14.24 ± .577	(5)		13.48 ± .320 ((5)		13,52 ± .139	(8)	
HCT (2)	*	36.40 ± .400 (5)		38.40 ± 1.50	(5)		40.80 ± 1.98 ((5)		35.00 ± .548	(3)	
MCV (U)3		57.20 ± .583 (5)		59.40 ± .812	(5)		58.80 ± .860 ((5)		66.00 ± 1.76	(3)	•
MCH (UUG)		21.40 ± .245 (5)		21.20 ± .374	(5)		19.86 ± .980 ((3)		26.00 ± .633	(3)	«
MCHC (I)		38.00 ± .633 (5)		37.00 ± .775	(5)		33.60 ± 1.72 ((5)		39.40 ± .600	(3)	
WBC (X 103)	•	7.80 ± .486 (5)	_	9.44 + .896	(5)		9.24 ± .874 ((5)		19.42 ± 2.77	(3)	m *
PMW (Z)		16.00 ± 1.92 (5)		14.20 ± 2.29	(5)		16.80 ± 1.83	(5)		22.40 ± 3.08	(3)	
BANDS (%)		0.00 ± 0.00	_	00.00 ± 00.00	(5)		00.0 + 00.0	(5)		00.00 ± 00.0	(3)	
(X) HAWAT	*	76.40 ± .510 (5)		78.40 ± 2.32	(5)		77.60 ± 2.32 ((5)		70.00 ± 2.88	(5)	
ATYP LYMPH(X)		3.40 ± 1.08 (5)	_	3.00 ± .548	(5)		1.20 ± .800	(5)		3.60 ± .927	(5)	
MONO (Z)		3.20 ± .583 (5)	_	3.20 ± .200	(5)		3.80 ± .374 ((3)		3.00 ± .316	(3)	
EOSIN (Z)		1.00 ± .316 (5)	_	1.20 ± .200	(3)		.60 ± .245	(3)		.60 ± .245	(3)	
BASO (2)		(5) 00.0 + 00.0	_	00.00 ± 00.0	(5)		00.0 + 00.0	(5)		00.0 + 00.0	(3)	
RETICS (%)	+	.74 ± .178 (5)	_	.68 ± .102	(5)		1.12 ± .271	(5)		24.96 ± 1.18	(3)	Q

.....

.

Police Parkery

*

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 69

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE RATS AFTER 4 WEEKS OF TREATHENT

	٠.	.'					TREATHENT GROUPS	T GROU	JPS			
DEPENDENT VARIABLE	60 U 1	CONTROL		.001 X IN DIET			. 01 % IN DIET		! & ! ! & !	. 10 X I DIET	⊢ (. « .
RBC (X 106)	*	6.60 ± .111 (5)		6.82 ± .523	(5)		6.51 ± .152	(3)		5.85 ± .290 (9	(5)	
HGB (G Z)		14.46 ± .189 (5)		14.10 ± .430	(3)	λ.	23.82 + .246	(3)		12.76 ± .370 (9	* (5)	
HCT (2)	*	34.80 ± .860 (5)		36.00 ± 2.88	(3)	,	34.40 ± .600	(5)		34.60 ± 1.21 (9	(5)	
MCV (U)3		53.60 ± .510 (5)		54.00 ± .633	(3)		54.20 ± .490	(3)		60.20 ± 1.46 (9	(5) +	
MCH (UUG)	*	21.80 ± .200 (5)		21.00 ± 1.10	(3)		20.80 ± .200	(3)	*	21.80 ± .860 ((3)	
MCHC (2)	*	41.80 ± .663 (5)	40.20 ±	± 2.03	(3)		39.80 ± .200	(3)	*	37.00 ± .949 (* (5)	
WBC (X 103)		9.02 ± 1.14 (5)	5,82	+ .877	(3)	∢	7.58 ± .765	(3)		7.48 ± .745 ((3)	
PMN (Z)		12.20 ± 1.16 (5)		12.00 ± 1.05	(3)		17.40 ± 1.54	(3)		14.00 ± 1.30 ((3)	
BANDS (Z)		(5) 00.0 + 00.0		00.0 + 00.0	(5)		0.00 + 0.00	(3)		00.00 + 00.00	(3)	
(Z) HANAT		78.20 ± 1,20 '(5)		81.60 ± 1.29	(3)		75.20 ± 1.02	(3)		78.20 ± 1.28 ((3)	
ATYP LYMPH(Z)	*	2.60 ± .245 (5)		1.20 ± 1.20	(3)		3.60 ± .400	(3)		2.60 ± .748 ((5)	
HONO (Z)		3,40 ± .245 (5)		8 7 7 00 4	(3)		3.20 ± .374	(3)		4.00 ± .316 ((3)	
EOSIN (2)	*	3.60 ± .872 (5)		1.20 ± .735	(3)		.60 ± .245	(3)	۵ *	1.20 ± .200	(5)	ပ
BASO (2)		0.00 ± 0.00		00.0 + 00.0	(3)		0.00 + 0.00	(3)		00.0 + 00.0	(3)	
RETICS (Z)	•	.58 ± .143 (5)		160. ± 89.	(5)		1.70 ± .210	(3)	*	24.80 ± 1.77 ((3) +	Ω +

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

count for these females was also on the low side, though not significantly so. Reticulocytes were extremely high at the high dose level for both sexes and were also significantly elevated for females at the 0.01% level. Red blood cells from the high-dose rats exhibited a marked polychromasia and moderate hypochromia. Occasional nucleated red blood cells and a few Heinz bodies were seen in almost all high-dose blood specimens but in almost no others. The decreased MCHC value for females at the high dose suggested a dose relationship to treatment, but this was not confirmed by linear trend analysis (Appendix D, Table D-7). The low MCH and eosinophils also cited statistically for these females are apparently isolated variations in these parameters and are not attributable to the treatment.

Hematological data on the rats killed 9 weeks later appear in Tables 70 and 71. In addition to the above findings, the males at the 0.10% level now had significantly low hemoglobin; the females continued to show the low hemoglobin. The percent atypical lymphocytes for the latter was high. MCHC for females showed the same trend as before, but the differences were no longer significant. The most notable difference in hematological data between the two sacrifice periods was the much lower percent reticulocytes in the rats at the 0.10% condensate blend level after 9 additional weeks of treatment. Slight polychromasia and Heinz bodies were seen in about half of the specimens but otherwise the blood was normal.

Values for rats allowed a 4-week recovery period are given in Tables 72 through 75. There is no evidence of anemia persisting in the recovery animals. Red blood cells were normal. Slight elevations in Hgb, Hct, and MCV were observed in rats at the high dose, significant for male Hgb and MCV after 4 weeks of treatment followed by recovery, which is probably due to the compensatory mechanism.

Clinical Chemistry

Clinical chemistry data for rats killed after 4 weeks of treatment are presented in Tables 76 and 77 and for those killed after 13 weeks in Tables 78 and 79. There were marginal effects on some parameters at the high dose, e.g., serum transaminases and glucose (statistically indicated in some instances), but values were within normal limits with one exception—the high triglyceride level in sera at the 0.10% condensate blend level of males killed after 13 weeks of treatment. This parameter was also high for females at this level relative to controls and for males at the 0.01% level, but neither value was abnormal.

Rats at the high dose at both Week 4 and Week 13 sacrifices had lower glucose than controls did, but the significance is obscured by the fact that these animals were not fasted prior to sacrifice. Transaminase levels tended to be higher in these animals, particularly

TABLE 70

i.

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE RATS AFTER 13 WEEKS OF TREATMENT

						TREAT	TREATMENT GROUPS	UPS		
DEPENDENT	a u u ا	CONTROL	;	.001 Z IN DIET	H (2 10 . Taid ni		æ 1	10 Z IN DIET	est (
•		8.04 ± .305 (4)	•	7.56 ± .109 ((5)	8.06 ± .303	3 (5)		6.26 ± .366 (5)	*
HGB (G %)		14.70 ± .356 (4	(7)	14.28 ± .222 ((5)	13.64 ± .108	38 (5)		$12.96 \pm .256$ (5)	•
HCT (2)		42.50 ± 1.04 (4	(4)	39.00 ± .837 ((5)	41.00 ± 1.67	67 (5)		37.80 ± 1.59 (5)	
MCV (U)3		54.00 ± 1.63 (4	(7)	53.20 ± .490 ((\$)	52.20 ± .490	(5) 06		61.40 ± .927 (5)	•
MCH (UUG)	*	18.25 ± .250 (4	(7)	18.60 ± .245 ((3)	17.40 ± .678	(5) 8/		20.80 ± .970 (5)	
HCHC (I)		34.50 ± .957 (4)	~	36.60 ± .872 ((3)	32.60 ± 1.75	(5) 51		34.00 ± 1.05 (5)	
WBC (X 103)		4.78 ± .756 (4)	()	7.00 ± .547 ((3)	7.80 ± .940	(5) 01		14.24 ± .941 (5)	4
PHN (Z)		20.50 ± 2.22 (4	(*)	14.40 + 4.08 ((3)	18.00 ± 3.11	(5)		14.00 ± 2.85 (5)	
BANDS (Z)		(4) 00.0 + 00.0	7) 007. + 07.	(5) x	.20 ± .200	(5) 00	×	.40 ± .245 (5)	×
LYMPH (2)		73.25 ± 3.07 (4)	•	81.20 ± 4.73 ((3)	80.20 ± 3.64	54 (5)		82.20 ± 2.91 (5)	
ATYP LYMPH(Z)	*	1.50 ± 1.19 (4	(7)	1.00 ± .316 ((5) x	.20 ± .200	00 (5)	×	.80 ± .374 (5)	×
HONO (2)		4,25 ± .629 (4	(4)	2.60 ± .510 ((5)	.80 ± .200	(5) 00	۵ *	2.20 ± .860 (5)	<
EOSIN (X)		.50 ± .289 (4	(4)	,40 ± .245	(5) x	007. + 09.	00 (\$)	×	(5) 004. + 04.	×
BASO (Z)		0.00 + 00.0	~	00.0 + 00.0	(5)	0.00 + 0.00	00 (5)		0.00 ± 0.00	
RETICS (2)	*	1.98 ± .466 (4)	(3	1.62 ± .310 ((5)	1.90 ± .377	(5) (1)		4.28 ± 1.19 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 71

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF PEMALE RATS AFTER 13 WEEKS OF TREATMENT

					TREATMENT GROUPS	GROUPS			
DEPENDENT	8 1 U I	CONTRO! GROUP	. 001 % IN DIET	€ 1	.01 Z IN DIET	<u> </u>	ac.	. 10 X IN DIET	, a
RBC (X 106)		7.32 + .216 (5)	7.47 + .131	(5)	7,30 + ,312	(2)	i ,	6.33 + .231 (5)	! !
HGB (G Z)			14.38 + .256	(5)		(3)	-		•
HCT (X)		37.60 ± .872 (5)	38.20 ± .490	(5)		(5)	F 1		_
MCV (U)3	*	52.40 ± .245 (5)	52.20 ± .583	(5)		(5)	v	61.60 ± 1.63 (5)	*
MCH (UUG)		19.20 ± .374 (5)	19.40 ± .245	(5)	19.40 ± .678	(5)		21.20 ± .800 (5)	-
жснс (%)	*	38.00 ± .316 (5)	38.60 ± .812	(5)	36.80 + 1.46	(5)	*-7	35.20 ± 1.62 (5)	_
WBC (X 103)		6.64 ± .454 (5)	6.14 ± .779	(5)	5.34 ± .727	(5)		9.92 ± 1.23 (5)	_
PMN (Z)		14.40 ± 1.86 (5)	12.40 ± 1.03	(5)	18.20 + 1.88	(5)	-	16.00 ± 1.52 (5)	_
BANDS (Z)		(5) 007. + 07.	00.0 ± 00.0	(5) x	00.0 + 00.0	(5)	×	.20 ± .200 (5)	ĸ
LYMPH (2)		81.80 ± 2.42 (5)	82.80 ± 1.69	(5)	75.80 ± 1.62	(3)	^	75.40 ± 1.60 (5)	
ATYP LYMPH(2)		(5) 007. + 07.	.40 + .245	(S) x	2.20 ± .735	x (5)	×	3.80 ± .583 (5)	+
HONO (Z)		2.40 ± .748 (5)	3.40 + .400	(5)	3.20 ± .583	(5)		3.80 ± .583 (5)	
EOSIN (X)		(5) 009. + 09.	1.00 ± .316	(5) ×	004. + 09.	(5)		.80 ± .374 (5)	×
BASO (2)		0.00 ± 0.00	00.00 + 00.0	(5)	0.00 + 00.0	(3)		0.00 ± 00.0	
RETICS (2)	*	1.64 ± .387 (5)	1.48 + .186	(5)	1.68 ± .377	(5)		4.88 ± .860 (5)	*

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 72

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE RATS AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

							TREATHENT	T GROUPS	PS		
DEPENDENT B	į	CONTROL		Z TOO.			. 01 X II N DIET	; ; ; ; ; ;	 ex 	10 % IN DIET	
RBC (X 106)	7	1.59 ± .541	(*)	6.88 + .114	(*)		7.80 ± .258	(5)		7.71 ± .358 (5	(5)
HGB (G Z)	4	14.38 ± .296	(7)	14.25 ± .275	(4)		14.02 ± .204	(5)		15.64 ± .144 (5	(5) *
HCT (X)	0 7	40.75 ± 2.25	(4)	36.75 ± 1.11	(*)		40.60 ± 1.60	(3)		44.60 ± 2.46 (5	(3)
MCV (U)3	54	54.50 ± 1.32	(7)	54.25 ± 1.38	(4)		52.80 ± .490	(3)		58.60 ± .980 (5	(5)
MCH (UUG)	19	19.25 ± 1.20	(4)	21.08 ± .210	(7)		18.00 ± .447	(5)		20.80 ± .800 (5	(5)
MCHC (I)	35.	35.87 ± 1.97	(4)	39.55 ± 1.16	(4)		34.80 ± 1.32	(3)		35.80 ± 1.77 (5	(5)
WBC (X 103)	1	7.59 ± 1.17	(*)	6.75 ± .572	(7)		6.82 ± .785	(3)		12.02 ± 1.62 (5	(3)
PMN (2)	17	17.25 ± 2.39	(*)	16.25 ± 2.10	(4)		16.80 ± 3.44	(3)		14.60 ± 1.03 (5	(5)
BANDS (2)	0	00.0 + 00.0	(4)	. 75 ± .479	(4)	×	0.00 + 0.00	(5)	×	0.00 ± 00.0	(S) x
LYMPH (2)	76.	76.25 ± 3.12	(4)	76.50 ± 2.25	(†)		78.80 ± 3.65	(3)		77.60 ± 1.17 (9	(5)
ATYP LYMPH(2)	H	1.00 ± .408	(†)	1.25 ± .629	(4)	×	1.20 ± .583	(3)	×	2.60 ± .400 (5	(S) x
MONO (Z)	4	4.75 ± 1.44	(7)	4.00 ± 1.22	(4)		2.80 ± .663	(5)		5.00 ± 0.00 (5	(5)
EOSIN (2) *		.75 ± .479	(4)	1.25 ± .947	(4)	×	.40 ± .245	(5)	×	.20 ± .200 (5	(5) x
BASO (2)	0	00.0 + 00.0	(*)	0.00 + 0.00	(4)		0.00 ± 0.00	(3)		0.00 + 00.0	(3)
RETICS (Z)	-	1.15 ± .050	(†)	1,20 ± .082	(4)		1.34 ± .075	(5)		.96 ± .133 (5	(3)

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x,

TABLE 73

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE RATS AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

								TREATMENT	T GROUPS	PS			9
DEPENDENT B		CONTROL	GROUP	;	,001 Z IN DIET	: :] 	O 1 2 IN DIET			. 10 Z IN DIET	H I	, 22 1
RBC (X 106)		6.96 ± .114		(3)	7.52 ± .272	3		7.20 ± .218	(3)		7.19 ± .277 (5	(3)	
HGB (C Z)	7	14.26 ± .225		(5)	13.78 ± .260	(5)		14.62 ± .322	(5)		14,72 ± .248 (5	(5)	
HCT (1)		36.60 ± .678		(3)	38.80 + 1.59	(5)		37.60 ± 1.03	(5)		39.80 ± 1.77 (5	(2)	
MCV (U)3	1 0	53.40 ± .600		(5)	52.40 ± .510	(3)		53.60 ± .400	(3)		56.40 ± .400 (5	(5) +	
MCH (UUG)	**	20.40 ± .200		(3)	18.86 + .824	(5)		20.00 ± .447	(3)		20.40 ± .600 (5	(5)	
MCHC (%) *		39.00 ± .316		(3)	36.60 ± 1.91	(3)		38.60 ± .678	(3)		37.60 ± 1.17 (5	(8)	
WBC (X 103)		6.54 ± .536		(5)	7.54 ± 1.20	(3)		9.37 ± 1.22	(\$)		8.99 ± 1.05 (5	(3)	
PMN (2)	P44	11.60 ± 2.20		(5)	11.20 ± 1.66	(3)		8.80 ± 1.11	(3)		13,00 ± 1,52 (9	(3)	
BANDS (1)		.40 + .245		(3)	2.20 ± .490	(3)	+	.20 ± .200	(3)	×	0.00 + 00.0	(5)	×
LYMPH (I)	wo	83.80 ± 1.74		(5)	82.00 + 1.84	(3)		87.80 + .800	(3)		80.60 ± 1.78 (5	(5)	
ATYP LYMPH(2)		1.40 + .400	400	(5)	.80 ± .200	(3)		1.40 ± .245	(3)		1.80 ± .490 ((5)	
MONO (2)		2.20 ± .374	374	(3)	3.80 ± .583	(3)		1.60 ± .245	(3)		4.20 ± .374 (9	* (5)	
EOSIN (Z)		.20 ± .200	200	(3)	00.0 + 00.0	(3)	×	.20 ± .200	(3)	×	.40 ± .245 (9	(3)	×
BASO (Z)		0.00 + 00.0	00.	(5)	00.0 + 00.0	(3)		0.00 + 0.00	(3)		00.0 + 00.0	(3)	
RETICS (2)		.92 ± .080		(5)	1.75 ± .206	(4)	# +	1.88 ± .080	(3)	3 +	.80 ± .110	(3)	

; ;

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x,

TABLE 74

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE RATS AFTER 13 WRERS OF TREATMENT AND 4 WEERS OF RECOVERY

						TREATMENT GROUPS	GROUP	S		
DEPENDENT B	CONTROI. GROUP	ļ	. 001 X IN DIET			. 01 % IN DIET		es :	. 10 X IN DIET	exit
RBC (X 106)	860.	(7)	8.17 + .100 ((5)		8.16 ± .079	(3)		8.11 ± .175 (4)	
HGB (G %) *		(4)		(3)			(3)		15.55 ± .877 (4)	
HCT (X)		(4)	40.80 + .663 ((3)		41.00 ± .548	(3)		43.50 ± .957 (4)	
MCV (U)3	52.00 ± .913 ((4)	50.80 ± .583 ((3)		51.40 ± .600	(3)		54.50 ± 1.19 (4)	
MCH (UUG) *		(4)	19.00 ± .447	(3)		19.20 ± .200	(3)		19.25 ± 1.18 (4)	
HCHC (X)	36.25 ± 1.11 ((4)	38.40 ± .748 ((3)		38.20 ± .583	(3)		35.50 ± 1.55 (4)	
WBC (X 103)	5.96 ± .309 ((7)	6.94 ± 1.24 ((3)		8.24 ± 1.57	(3)		8.54 ± 1.18 (4)	
PHN (Z)	21.00 ± 3.39 ((4)	21.00 ± 3.11 ((5)		17.40 ± 4.45	(5)		16.50 ± 1.66 (4)	
BANDS (2)	0.00 ± 00.0	(7)	,20 ± ,200	(5)	×	.20 ± .200	(\$)	×	0.00 ± 0.00 (4)	×
LYMPH (2)	73.25 ± 2.90 ((7)	74.80 ± 2.33 ((3)		77.80 ± 3.80 ((3)		79.00 ± .913 (4)	
ATYP LYMPH(Z)	1.50 ± .645 ((4)	.80 ± .374 ((3)		1.00 ± .548	(3)		1.25 ± .629 (4)	
MONO (Z)	3.50 ± .866 ((7)	2.40 ± .812 ((3)		2.00 ± .633 ((3)		2,25 ± .947 (4)	
EOSIN (Z)) 674. ± 27.	(7)	.80 ± .374 ((3)	×	1.60 ± .678	(3)	×	1.00 ± .408 (4)	×
BASO (2)	00.0 + 00.0	(4)	0.00 + 00.00	(3)		00.0 + 00.0	(3)		0.00 + 00.0	
RETICS (2)	1.20 ± .141	(*)	.93 ± .149	(4)	•	-) 00.* + 00.0-	(0-)	* +	1.06 + *.00 (8)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .95

* CONFIDENCE LEVEL = .95

* TREATMENT—CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 2 - A,

20 2 - B, 35 2 - C, 50 2 - D, RATIO TEST CANNOT BE CALCULATED - x .

TABLE 75

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF PEMALE RATS AFTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATMENT GROUPS	UPS		1
DEPENDENT	m U I	CONTROL	.001 X IN DIET		& I	.01 X IN DIET	es :	. 10 % IN DIET	and a
RBC (X 106)		7.73 ± .204 (5)	7.15 ± .201	1 (5)		7.68 ± .073 (5)		7.73 ± .130 (4)	
HGB (G Z)	*	15.44 ± .231 (5)	14.34 ± .453	3 (5)		15.20 ± .152 (5)		15.98 ± .103 (4)	
HCT (Z)		40.20 ± .916 (5)	36.80 ± 1.07	7 (5)		39.00 ± .447 (5)		42.25 ± .250 (4)	
MCV (U)3		53.00 ± .447 (5)	52.00 ± .316	(2)		52.00 ± .548 (5)		55.25 ± 1.03 (4)	
MCH (UUG)		20.00 ± .316 (5)	3 20.00 ± 0.00	0 (5)		20.00 ± .316 (5)		20.75 ± .479 (4)	
мснс (2)		38.60 ± .600 (5)	39.40 ± .245	5 (5)		39.40 ± .400 (5)		37.75 ± .250 (4)	
WBC (X 103)		6.36 ± .717 (5)	5.88 ± 1.21	1 (5)		6.50 ± .823 (5)		8.36 ± .675 (4)	
PMN (Z)		33.40 ± 6.79 (5)) 16.80 ± 4.55	(2)	∢	17.80 ± 2.44 (5)	<	14.25 ± 3.40 (4)	A
BANDS (%)		.40 ± .245 (5)	. 40 + .400	3 (5)	×	.40 ± .400 (5)	×	.25 ± .250 (4)	×
LYMPH (Z)		61.60 ± 6.35 (5)	77.00 ± 3.51	(5)		73.00 ± 2.77 (5)		76.75 ± 2.25 (4)	
ATYP LYMPH(2)		1.60 ± .510 (5)	3.40 ± 1.21	1 (5)		4.00 ± .447 (5)		2.75 ± .479 (4)	
MONO (Z)		2.20 ± .800 (5)	1.20 ± .200	(5)		3.60 ± .678 (5)		5.25 ± 1.03 (4)	
EOSIN (2)	*	1.40 ± .245 (5)	1.40 ± .748	8 (5)		1.20 ± .200 (5)		.75 ± .250 (4)	
BASO (2)		0.00 ± 00.0	0.00 ± 0.00	0 (5)		0.00 + 00.0		(*) 00·0 ÷ 00·0	
RETICS (2)		2,22 ± ,206 (5)	2.25 ± .506	(4)	•	(0-) 00* + 00.0-	*	2.23 ± *.00 (9)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES + CONFIDENCE LEVEL = .99

1.

[

BC = BARTLETTS CHI-SQUARE; T * TREATMENT-CONTROL CONTRAST
R = TREATMENT-CONTROL RATIO TEST: CONPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,
20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 76

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE RATS AFTER 4 WEEKS OF TREATMENT

							TREATMENT GROUPS	T GROU	PS			
DEPENDENT VARIABLE	an U J	CONTROL	ļ	,001 X 1N DIET	- ·	 <u> </u>	. 01 % IN DIET		 04 (+)	10 X IN DIET	, <u>p</u> , ,	
ALBUMIN (GHZ)		4.56 ± .186	(5)	5.24 ± .197 ((3)		4.94 + .221	(3)		5.34 ± .121 (5)	_	
ALK-P (1U/L)		301.60 ± 29.8	(3)	262.00 ± 18.1 ((5)		264.20 ± 17.1	(3)		218.00 ± 26.1 (5)	^	
BUN (MG Z)		23.00 ± .633 ((3)	22.20 ± .735 ((5)		24.20 ± .800	(3)		24.20 ± 1.07 (5)	~	
CA (MG Z)		9.28 ± .180	(3)	8.52 ± .524 ((3)		8.02 + .845	(3)		11.76 ± .367 (5)	*	
CHOT (MG X)		42.00 ± 4.57 ((3)	50.40 ± 1.86 ((5)		55.00 ± 2.95	(5)		64.80 ± 4.22 (5)	•	æ
CREAT (NG X)		.60 ± .032	(3)	.64 ± .024 ((5)		.62 ± .037	(3)		.62 ± .020 (5)	_	
GLUCOSE (MGZ)		192.20 ± 9.35	(3)	189.60 ± 3.47 ((5)		184.00 ± 4.45	(5)		162.60 ± 10.9 (5)	_	
P (MG I)		9.38 ± .477 ((3)	10.40 ± .803 ((5)		9.96 ± .453	(8)		11.88 ± .399 (5)	*	
(1/n1) HQT		867.80 ± 34.1	(3)	724.60 ± 36.5 ((5)		736.60 ± 74.0	(5)		914.00 ± 95.5 (5)	_	
TRIG (MG Z)	*	126.20 ± 11.2	(3)	161.20 ± 6.24 ((5) *		188.00 ± 36.9	(5)		199.80 ± 29.8 (5)	•	
URIC ACID(MGZ)	*	2.28 ± .128	(3)	1.72 ± .102 ((5) *		2.34 ± .206	(3)		3.68 ± .503 (5)	* ^	
PROTEIN (MGZ)		7.08 ± .369	3	7.96 ± .262 ((\$)		7.12 ± .396	(3)		6.88 ± .116 (5)	•	
SGPT (IU/L)		39.20 ± 3.87 ((3)	35.80 ± 1.16 ((5)		43.20 ± 6.15	(3)		48.40 ± 3.33 (5)	_	
SGOT(IU/L)		129.80 ± 12.3	(3)	110.60 ± 5.35 ((5)		135.80 ± 22.0	(5)		143.80 ± 9.84 (5)	_	
BILI (MG Z)		.71 ± .050	(3)	,63 ± .061 ((5)		.70 ± .166	(5)		.84 ± .172 (5)	•	

7...

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

TABLE 77

RFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF FEMALE RATS APTER 4 WEEKS OF TREATMENT

						TREATMENT GROUPS	T GROU	PS		1
DEPENDENT	59 U I	CONTROL	;	. 001 X IN DIET	; ; ; ; ;	, 01 X IN DIET		 & 	. 10 X IN DIET	e2
ALBUMIN (GMZ)		+1	5)	5.52 ± .139 (5)	©	5.64 ± .112	(3)		4.88 ± .159 (5)	•
ALK-P (1U/L)	*	191.00 + 30.8	(5)	207.80 ± 20.8 (5)	2	186.20 ± 5.77	(3)		196.20 ± 39.8 (5)	
BUN (MG 2)		22.80 ± 1.20 ((3)	21.40 ± .748 (5)	c	18.60 + .678	(3)	*	22.80 ± .735 (5)	
CA (MG Z)		12.42 ± .174 ((\$)	12.18 ± .248 (5)	6	11.50 ± .202	(3)		11.20 ± .351 (5)	*
CHOT (NG Z)		75.80 ± 5.36 ('	(3)	64.80 ± 4.28 (5)		68.60 ± 4.41	(3)		56.60 ± 10.6 (5)	
CREAT (MG Z)) 070. + 99.	(3)	.78 ± .037 (5)	V (1	.64 + .024	(3)		.58 ± .020 (5)	∢
CLUCOSE (MGI)		183.60 ± 4.65 ((5)	217.00 ± 10.1 (5)	*	177.40 ± 6.37	(3)		156.00 ± 4.10 (5)	
P (MG X)		8.52 + .263 ((3)	8.34 ± .319 (5)	c	8.70 ± .503	(3)		7.62 ± .462 (5)	
LDH (1V/L)		614.40 ± 64.2 ((5)	570.40 ± 108. (5)	C	817.20 ± 115.	(3)		778.00 ± 62.2 (5)	
TRIG (MG Z)		91.40 + 15.4 ((5)	92.60 ± 18.9 (5)	2	111.40 ± 22.6	(3)		112.40 ± 23.2 (5)	
URIC ACID(MGZ)		2.56 ± .163 ((5)	2.46 ± .431 (5)	<u>.</u>	2.36 ± .246	(3)		3.80 ± .230 (5)	
PROTEIN (MGZ)	*	7.46 ± .117 ((3)	7.10 ± .205 (5)	<u>.</u>	7.16 ± .024	(3)		6.72 ± .276 (5)	
SGPT (IU/L)	*	30.60 ± 2.58 ((3)	33,40 ± 6.52 (5)	<u>.</u>	27.80 ± 1.39	(3)		41.00 ± 1.52 (5)	*
SGOT(1U/L)		115.80 ± 10.1	(5)	123.80 ± 14.8 (5)	2	117.20 ± 13.4	(3)		125.80 ± 9.10 (5)	
BIL1 (MG Z)		1.09 + .062 ((3)	.76 ± .170 (5)	2	· 88 ± .059	(5)		.90 + .148 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES * CONFIDENCE LEVEL * .95 + CONFIDENCE LEVEL * .99

BC = BARTLETTS CHI-SQUARE; T = TREATHENT-CONTROL CONTRAST R = TREATHENT-CONTROL RATIO TEST: CONPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A, 20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

ĺ.

The second second

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE RATS AFTER 13 WEEKS OF TREATMENT

						TREATMENT GROUPS	ROUPS		
DEPENDENT	60 U	GROUP	!	.001 X IN DIET	1 1 1 1 1 1 1	. 01 K IN DIET	f	10 X IN DIET	64
	•			:	! !	<u> </u>	ı 1))
ALBUMIN (GMZ)		4.82 ± .125 ((4)	4.78 ± .107 (5)	_	4.48 ± .183 (5)	_	4.68 + .102 (5)	
ALK-P (1U/L)		191.75 ± 23.0 ((*)	160.60 ± 23.1 (5)	•	159.80 ± 9.31 (5)	_	182.00 ± 20.8 (5)	
BUN (MG Z)		20.00 ± .577	(4)	18.60 ± .872 (5)	_	19.00 ± .447 (5)	_	25.40 ± .872 (5)	•
CA (HG Z)	*	9.00 ± .123	(4)	8.86 ± .284 (5)	_	9.20 ± .063 (5)	^	9.58 ± .254 (5)	
CHOT (MG Z)		46.00 ± 4.92 ((4)	39.80 ± 2.78 (5)	•	33.80 ± 2.15 (5)	_	43.00 ± 1.95 (5)	
CREAT (MG X)) 00.0 + 09.	(*)	(5) 040. 7 95.	_	.56 ± .024 (5)	_	.70 ± .127 (5)	
CLUCOSE (MGZ)		193.75 ± 12.8	(*)	190.00 ± 7.18 (5)	_	173.20 ± 9.56 (5)	_	159,20 ± 8,71 (5)	
P (HG Z)		8.48 + 1.19 ((4)	4.46 ± 1.15 (5)	я (7.56 ± .380 (5)	^	9.28 ± .658 (5)	
LDH (1U/L)		670.00 ± 46.6	(4)	494.40 ± 67.4 (5)	_	729.60 ± 92.1 (5)	^	733.00 ± 81.0 (5)	
TRIG (MG Z)	*	179.25 ± 20.7 ((*)	168.20 ± 9.42 (5)	_	241.00 ± 32.0 (5)	_	383.00 ± 74.4 (5)	*
URIC ACID(MGZ)		1.42 ± .298 ((*)	1.06 ± .136 (5)	•	.88 ± .206 (5)	_	1,30 ± ,285 (5)	
PROTEIN (MGZ)		6.22 ± .180 ((4)	6.06 ± .169 (5)	•	6.34 ± .150 (5)	_	6.28 ± .097 (5)	
SGPT (IU/L)	*	29.00 ± .913	(4)	25.60 ± 1.69 (5)	_	32,20 ± 3,50 (5)	_	41.20 ± 4.79 (5)	
SCOT(IU/L)	*	90.00 ± 23.7 ((4)	57.60 ± 3.80 (5)	_	92.60 ± 6.76 (5)	_	134.60 ± 19.8 (5)	
BIL1 (MG Z)) 680. + 07.	(*	.62 ± .032 (5)	_	.57 ± .025 (5)	_	.61 ± .040 (5)	

ENTRIES ARE HEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MYAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x,

TABLE 79

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF FEMALE RATS AFTER 13 WEEKS OF TREATMENT

							TREATMENT GROUPS	IT GROU	Sel		
DEPENDENT VARIABLE	m U I	CONTROL	. • H !	.001 % IN DIET		H H I	N DIET			. 10 X IN DIET	# !
ALBUMIN (GMZ)		4.98 + .168 (5)		5.10 ± .270	(5)		5.52 ± .273	(5)		4.82 ± .312 (5)	2)
ALK-P (1U/L)		154.80 ± 11.3 (5)	144.60 ± 17.6	+ 17.6	(3)		135.20 ± 13.1	(3)		147.40 ± 20.5 (5)	2)
BUN (MG Z)		22.60 ± .678 (5)		22.80 ± 1.07	(5)		21.40 ± 2.04	(3)		24.60 ± 1.03 (5)	?
CA (MG Z)		9.84 ± .206 (5)		10.04 ± .183	(5)		10.14 ± .154	(3)		9.62 ± .244 (5)	?
CHOL (MG Z)		51.00 ± 3.42 (5)		43.40 ± 1.86	(3)		48.40 + 1.69	(3)		55.20 ± 3.93 (5)	9
CREAT (MG Z)		.60 ± .032 (5)		.60 ± .032	(3)		.58 ± .020	(3)		.48 ± .037 (5)	5) B
GLUCOSE (MGZ)		157.20 ± 6.95 (5)	181.00 ± 2.88	± 2.88	(3)		188.80 ± 8.66	(3)		149.40 ± 10.0 (5)	2)
P (HG Z)		7.50 ± .895 (5)		6.44 ± .250	(3)		5.28 ± .364	(3)	∢	6.76 ± .519 (5)	5)
LDH (1U/L)		580.00 ± 68.2 (5)		512.60 ± 75.9	(3)		452.80 ± 71.8	(3)		528.40 ± 52.2 (5)	2)
TRIG (MG Z)		117.20 ± 15.8 (5)	143.80 ± 17.1	± 17.1	(3)		140.00 ± 35.2	(3)		179.40 ± 33.5 (5)	5)
URIC ACID(MGZ)		1.46 ± .136 (5)		1.90 ± .416	(3)		1.52 ± .390	(3)		1.72 ± .252 (5)	5)
PROTEIN (MGZ)		6.90 ± .187 (5)		6.66 ± .246	(3)		6.92 ± .143	(3)		5.96 ± .163 (5)	* (2
SGPT (1U/L)		55.80 ± 8.06 (5)		71.80 ± 5.88	(3)		46.40 ± 10.2	(3)		48.00 ± 8.58 (5)	?
SGOT(IU/L)		71.40 ± 5.49 (5)		92.80 ± 13.3	(3)		86.80 ± 11.5	(3)		101.00 ± 11.1 (5)	5)
BIL1 (MG 2)	*	.43 ± .022 (5)		.51 ± .030	(3)		.65 ± .100	(5)		.73 ± .155 (5)	2)

ĺ,

į

.

i.

} '

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONPIDENCE LEVEL = .95

+ CONPIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D, RATIO TEST CANNOT BE CALCULATED - x .

in those at the high dose killed after 13 weeks of treatment; however, none of the values were abnormal, and we were unable to establish a dose-response relationship (Appendix D, Table D-8).

The combination of high serum Ca²⁺ and phosphorus in 4-week treated males at the high dose is possibly treatment-related. Uric acid was elevated in both sexes at this level (significantly so for males) after 4 weeks but not after 13 weeks. All other observations cited statistically in Tables 74 through 77 show no patterns clearly related to the treatment.

None of these tendencies persisted in rats allowed a 4-week recovery period (Tables 80 through 83) to a degree that suggested a lingering effect of treatment, except possibly for the triglyceride levels of males at the 0.01 and 0.10% condensate blend levels. Even these values were well within the normal range. All recovery groups at the 0.10% level, except males treated for 4 weeks only, did have significantly high phosphorus compared with controls. This was also true for males at this level who were killed after 4 weeks of treatment without a recovery period (Table 74). The frequency with which this difference occurred among high dose groups, particularly those allowed recovery, suggests that a high serum phosphorus may be related to the treatment. Several other parameters were statistically altered, particularly for males treated at the high dose for 13 weeks before recovery (Table 80), but none of the cited values were outside the normal range (Appendix E, Table E-3). Creatinine values for all male treatment groups at the 17-week sacrifice were significantly low but since (a) low creatinine was not seen at any other time or in female groups, (b) there was no statistically demonstrable dose response, and (c) the values were not outside normal limits, no toxicological significance was attached to this observation.

Histopathology

The microscopic lesions found in rats killed after 4 weeks of treatment are listed in Tables 84 and 85. All five males at the 0.10% condensate blend level had testicular atrophy, with atrophy of the epididymi and (for 4 of the 5 males) moderate focal interstitial cell hyperplasia. Four of these males (none of the females) had hemosiderosis of the spleen. All five females at the 0.10% level had moderate hyperplasia of the uterus. No other lesion appeared in the treated groups with a high enough frequency or in a dose-related manner to permit ascribing it to the treatment.

After 13 weeks of treatment, all 5 males at the high dose had testicular atrophy accompanied by aspermia in the epididymi (Table 86). All males and females in each group, including control groups, had hemosiderosis of the spleen (Tables 86 and 87). The severity of this lesion increased progressively with the dose, suggesting that this condition was treatment related. At the low (0.001%) dose level, no

TABLE 80

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE RATS AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATMENT	r GROUPS	ι.		
· VARIABLE	∞ (1	CONTROL	!	.00; Z IN DIET	ا نا	. 01 % IN DIET		! ! ! & !	. 10 %	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALBUMIN (GMZ)	*	4.28 + .139	(5)	4.40 ± .045	(5)	4.43 ± .025 (4)	(4)		4.56 ± .121 (5)	.
ALK-P (1U/L)		171.40 ± 19.7	(3)	166.00 ± 23.3	(5)	187.50 + 15.6	(7)		141.60 ± 8.86 (5)	2 >
BUN (MG Z)		19.60 ± 2.29	(3)	23.20 ± .735 ((5)	20.50 ± 2.22	(7)		19.60 ± 1.75 (5)	? }
CA (MG 2)		9.46 ± .513	(3)	10.16 ± .147	(3)	9.77 ± .794	(*)		9.78 ± .585 (5)	2)
CHOT (MG I)		49.40 + 3.39	(3)	46.00 ± 1.22	(5)	54.25 ± 3.73	(7)		55.60 ± 4.53 (5)	2 ?
CREAT (MG 2)		.58 + .049	(2)	. 54 ± .075	(5)	00.0 ± 09.	(4)		.62 ± .020 (5)	2)
GLUCOSE (MGZ)		220.60 ± 13.1	(3)	211.80 ± 10.1	(5)	222.25 ± 9.80	(7)		221.40 ± 7.53 (5)	5)
P (MG Z)		8.82 ± .340	(3)	8.98 ± .318	(5)	8.63 ± .193	(7)		9.04 ± .527 (5)	5)
LDH (10/L)	*	574.00 ± 59.0	(3)	461.80 + 146.	(5)	631.25 ± 53.9	(†)		228.80 ± 27.4 (5	(S) * C
TRIG (MG Z)		157.40 ± 27.9	(3)	197.80 ± 16.1	(5)	142.75 ± 26.1	(4)		149.40 ± 23.0 (5)	2)
URIC ACID(MGZ)		2.04 ± .293	(3)	1.74 ± .117	(5)	$2.10 \pm .367$	(7)		2.16 ± .364 (5)	5)
PROTEIN (MGZ)		5.28 ± .191	(3)	5.50 ± .207	(5)	6.50 ± .212	(7)	*	6.26 ± .221 (5	* (5)
SGPT (1U/L)	+	28.60 ± 1.17	(2)	28.00 + 1.48	(5)	34.50 ± 1.50	(4)	*	43.60 ± 10.7 (5)	2)
SGOT(1U/L)	*	92.60 ± 14.1	(3)	84.80 ± 18.1	(5)	80.50 ± 2.25	(4)		105.80 ± 23.8 (5)	5)
BILI (MG Z)		.77 + .042	(5)	1.01 ± .074 ((5)	.88 + .152	(4)		(5) 950. + 69.	5)

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 %

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

Parket A.

- 大学の一般ない

February pre-1

-

TABLE 81

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF FEMALE RATS AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

							TREATMENT GROUPS	GROU	P.S		ı
DEPENDENT VARIABLE	8 2) I	CONTROL. GROUP		. 00 . X IN DIET		 	.01 X IN DIET			. 10 % IN DIET	04
ALBUMIN (CMZ)	*	4.96 ± .183	(5)	4.50 ± .283	(5)		5.04 ± .172	(5)		5.16 ± .040 (5)	
ALK-P (IU/L)		152.80 ± 28.7	(3)	123.00 ± 15.4	(3)		96.20 ± 12.9	(5)		145.00 ± 21.9 (5)	
BUN (MG Z)		26.00 ± 1.41	(3)	21.00 ± 3.81	(5)		22.00 ± 2.21	(3)		18.20 ± 2.25 (5)	
CA (MG X)	*	10.82 + .201	(3)	11.26 ± .334	(5)		12.24 ± .081	(3)	+	10.64 ± .693 (5)	
CHOL (MG Z)		86.20 ± 3.38	(3)	74.40 ± 4.77	(3)		63.80 ± 2.03	(2)	¥	63.40 ± 7.16 (5)	*
CREAT (MG Z)		.70 ± .045	(3)	.70 ± .032	(3)		.72 ± .049	(3)		.64 ± .024 (5)	
GLUCOSE (MGZ)		180.80 ± 6.51	(3)	227.80 ± 7.60	(3)	&	218.80 ± 12.1	(3)	*	185.20 ± 4.77 (5)	
P (MG %)		6.94 + .163	(3)	7.18 ± .385	(5)		7.88 ± .289	(3)		8.96 ± .393 (5)	¥ +
(T/N) (TDH (TD/T)		377.40 ± 97.3	(3)	300.40 ± 21.8	(5)		508.20 ± 106.	(3)		525.00 ± 80.4 (5)	
TRIG (MG Z)	+	160.20 ± 9.38	(3)	16:.80 ± 43.2	(3)		73.20 ± 10.8	(3)	æ +	96.20 ± 5.61 (5)	*
URIC ACID(MGZ)		2.10 ± .164	(3)	2.66 + .199	(3)		2.34 ± .336	(3)		2.20 ± .348 (5)	
PROTEIN (MGZ)		7.76 ± .513	(3)	6.36 ± .291	(5)		6.80 ± .267	(\$)		7.18 ± .393 (5)	
SGPT (1U/L)	*	32.40 ± 2.96	(3)	24.20 ± 2.35	(3)		28.40 ± .510	(2)		29.40 ± 2.34 (5)	
SGOT(10/L)		68.20 + 5.96	(3)	79.20 ± 4.62	(3)		83.80 ± 10.6	(3)		78.60 ± 6.59 (5)	
BILI (MG Z)		.70 + .039	(3)	· 55 ± · 089	(5)		40° + 04°	(3)	æ. *	.64 ± .033 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 %

20 % - 8, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

٠ ٧

TABLE 82

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE RATS AFTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

							TREATMENT	GROUPS	s			
DEPENDENT VARIABLE	60 U 1	CONTROL	;	.001 Z IN DIET	; ; ;	; ; ; ~;	OLZ IN DIET		. ~ ;	10 % IN DIET		. «. . —
ALBUMIN (GMZ)		4.60 ± .158	(3)	4.78 + .116	(5)		4.94 + .103 ((5)		5.32 ± .095	(7)	*
ALK-P (IU/L)		99.00 + 10.0	(5)	90.40 + 17.4	(5)		91.40 + 16.6	(5)		120.50 ± 21.2 ((7)	
BUN (MG 2)		18.60 + 1.57	(5)	16.00 ± .633	(3)		16.60 ± .510	(5)		19.25 ± 1.89 ((4)	
CA (MG %)	*	9.30 ± .100	(5)	9.40 + .118	(5)		9.92 ± .447 ((5)		11.02 ± .243 ((4)	*
CHO1. (MG Z)		34.00 ± 2.19	(5)	33.20 ± 3.14	(5)		33.00 + 1.58 ((5)		49.75 ± 3.82 ((4)	⋖ ∗
CREAT (MG %)		.64 ± .024	(3)	.54 ± .024	* (5)	¥) 00.0 + 05.	(3)	øa +	.52 ± .025	(†)	⋖
GLUCOSE (MGZ)		126.00 ± 9.30	(3)	137.60 ± 8.06	(5)		126.80 ± 3.56 ((3)		148.75 ± 4.21 (.	(7)	
P (MG Z)		7.74 + .417	(5)	8.50 + .628	(5)		8.46 + .556 ((3)		11.70 ± .543 ((7)	2 23
(1/A1) HQT		487.40 + 74.4	(5)	688.40 + :53.	(5)		789.80 ± 178. ((3)		863.50 ± 53.0	(7)	
TRIG (MG 2)	*	\$1.60 ± 6.22	(5)	70.80 ± 21.9	(5)		116.40 + 50.1 ((3)		89.50 + 11.8	(7)	*
URIC ACID(MGZ)	*	2.92 ± .602	(5)	2.88 + .925	(5)		2.08 ± .204 ((3)		1.73 ± .160	(†)	
PROTEIN (MGZ)		6.06 + .081	(5)	6.38 + .:24	(5)		6.38 ± .231 ((3)		6.85 ± .132 ((7)	*
SGPT (IU/L)	+	40.00 ± 9.92	(5)	71.40 + 44.9	(5)		23.60 ± 1.94 ((3)		27.75 ± 2.17	(7)	
SGOT(10/L)	+	108.80 ± 25.8	(5)	114.60 ± 39.3	(3)		81.00 ± 5.11	(3)		79.75 ± 4.33 ((4)	
BILI (MG %)		.63 ± .036	(5)	.77 + .046	(5)	2 2	.63 ± .028	(5)		.66 ± .013	(7)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x ,

.

.

-

Personal s

-

ļ-·

TABLE 83

Ġ.

es.

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF FEMALE RATS AFTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

							TREATMENT GROUPS	. GROUPS			
DEPENDENT VARIABLE	a U i	CONTROL	;	NOO.		(&	.01 % IN DIET	;	ez 1	. 10 X IN DIET	1 64 1 1 (- 1
ALBUMIN (GMZ)	*	5.74 ± .242 ((3)	5.52 ± .477 ((5)		5.84 ± .051	(5)		6.06 ± .129 (5)	_
ALK-P (10/L)	*	48.20 ± 3.72 ((5)	82.00 ± 7.91 ((3)	*	92.40 ± 26.7	(3)		56.80 ± 11.7 (5)	•
BUN (MG Z)		20.00 ± 1.14 ((3)	18.80 ± 1.02	(5)		19.40 ± .510	(5)		20.00 ± 1.38 (5)	•
CA (HG Z)		11.40 ± .182 ((5)	11.50 ± .421 ((3)		12.14 + .284	(5)		11.52 ± .689 (5)	_
CHOL (HG Z)		59.80 ± 3.54 ((3)	33.00 ± 9.07 ((3)	4 0	67.20 ± 4.77	(5)		46.80 ± 2.92 (5)	_
CREAT (MG Z)		.68 ± .037	(3)) 070. 7 99.	(3)		690. + 89.	(5)		.64 ± .024 (5)	_
GLUCOSE (MGZ)	*	118.00 ± 9.04	(5)	127.80 ± 15.2 ((3)		121.20 ± 8.25	(5)		138.00 ± 2.81 (5)	_
P (MG %)		7.28 ± .685	(3)	7.58 ± .658	(3)		8.88 + .498	(5)		10.52 ± .511 (5)	¥ * (
LDH (IU/L)		774.20 ± 110.	(3)	420.60 ± 102. ((3)	∢	647.20 ± 62.3	(5)		700.40 ± 89.6 (5)	_
TRIG (MG X)		63.80 ± 11.1	(5)	50.20 ± 3.89 ((3)		48.60 ± 4.95	(5)		65.20 ± 4.85 (5)	_
URIC ACID(MGR)		1.82 ± .092	(5)	1.62 ± .318 ((3)		1.98 ± .309	(5)		2.24 ± .402 (5)	_
PROTEIN (MGZ)		6.98 + .183	(5)	6.94 ± .271	(3)		7.04 ± .068	(5)		7.14 ± .144 (5)	_
SGPT (IU/L)		24.20 ± 2.48	(5)	26.80 ± 2.91	(3)		28.60 ± 4.79	(5)		21.80 ± 1.69 (5)	_
SCOT(IU/L)		82.00 ± 6.21	(3)	78.80 ± 9.96	(3)		84.60 ± 13.2	(5)		89.60 ± 13.3 (5)	_
BILI (MG Z)		960. + 49.	(5)	, 60 ± .023	(3)		.69 + .028	(3)		.64 ± .022 (5)	_

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D, RATIO TEST CANNOT BE CALCULATED - x.

Table 84

MICROSCOPIC LESIONS IN MALE RATS AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT

		Dose L	Dose Level in Diet		
	0	.001%	.01%	.10%	
Organ/Lesion		Group	up Designation	uo	
	00	C1		C3	
		A	Animal Number		
Adrenals					
Large cysts in cortex	120				
Epididymis				176,177,178	
Atrophy				179,180	
Kidney					
Cortical tubular regeneration	118		160		
Interstitial lymphocytic foci	118	138,139	158,159,160	178	
Lung					
Chronic Respiratory Disease	116,117,118	136,137,138	156,157,158	176,177,178	
	119,120	139,140	159,160	179,180	
Focal alveolar collapse	120	138,139,140		176,180	
Focal alweeler collanse and dilation.	116.119	136 137	156,157,158	178	
			159,160		
Spleen				176,177	
Hemosiderosis				179,180	
Testes					
Atrophy				177_	
Atrophy and moderate focal interstitial				176,178	
cell hyperplasia				179,180	
		,			

Table 84 (Concluded)

MICROSCOPIC LESIONS IN MALE RATS AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT

		l asol	Doce Level in Diet		
	0	.001%	.01%	.10%	
Organ/Lesion		Group	up Designation	on	
	C0	C1	C2	C3	
		A	Animal Number		
Trachea					
Pus in lumen	118		156	178	
Submucosal lymphoid			156,160		
Hyperplasia					
Chronic tracheitis			159	178	
Subacute tracheitis	118	137			

Table 85

MICROSCOPIC LESIONS IN FEMALE RATS AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT

Г	T	П	T	\neg				T			Ī		Т	٦	٦	\neg					\neg	\neg	Ī				П	į
	10%		no.	c3			279			276,277,278	279,280	276	280	276,277,278	279,280				277	278								
Dose Level in Diet	מיני דיון חדבר		ച്	C2	Animal Number					256,257,258	259,260	259,260	258															
l asol	3600	.001%	Group	10	A					2	239,240	240	238,239					238		238								
	0	0		00						216,217,218	219,220	218,220								217,219								130,000
			Organ/Lesion				tubular regeneration			iratory disease		alveolar collapse	alveolar collapse and dilation		erplasia				ymphoid hyperplasia	heitis								P. C. Carlotte
						Kidney	Cortical tube		Lungs	Chronic respiratory		Focal alveola	Focal alveola	Uterus	Moderate hyperplasia		Trachea	Pus in lumen	Submucosal lymphoid	Chronic tracheitis								

Table 86

MICROSCOPIC LESIONS IN MALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT

		Dose L	Dose Level in Diet		
	0	0.001%	0.01%	0.10%	
Organ/Lesion		Group	up Designation	on	
	00	C1	C2	C3	
		A	Animal Number		
Adrenals					
Congestion, mild to moderate focal	108				
Vacuolated cortical cells, slight focal		127			
Aspermia		129		166,167,168	
				169,170	
Kidney				,	
Hemorrhage, slight solitary	110				
Inflammation, acute, solitary	106				
Lymphocytic foci; cortical tubular					
regeneration			146		
Pigmentation, slight focal				167	
Cortical tubular regeneration	109		150		
Liver					
Lymphocytic foci, slight			148,150		
Lung					
Alveolar collapse; chronic respiratory					
disease	106,109		146,148	166,167	
'Iveolar distension; chronic respiratory					
disease	108	130			
Alveolar collapse and distension; chronic					
respiratory disease	110	126,127,128	147,149	168,169,170	
		129			
Alveolar collapse and histiocytosis;					
chronic respiratory disease			150		
Chronic respiratory disease	107				
				,	

Table 86 (Concluded)

MICROSCOPIC LESIONS IN MALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT

		Dose L	Dose Level in Diet		
	0	0.001%	0.01%	0.10%	
Organ/Lesion		Gro	Group Designation	on	
	00	C1	C2	C3	
		A	Animal Number		
Prostate					
Lymphocytic foci, slight	106,107,108	127,130	147,150		
Hemosiderosis (severity progressive,					
$c_0 = c_1 < c_2 < c_3$	108	126,127,128	[166,167,168	
		130	149,150	169,170	
Testes					
Atrophy, moderately severe				166,167,168	
				169,170	

MICROSCOPIC LESIONS IN FEMALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT

Atrenal Congestion, mild to moderate focal Lymphocytic foci Lym			Dose Le	Dose Level in Diet		
Organ/Lesion Organ/Lesion Co C1 C2		0	0.001%	0.01%	0.10%	
CO CI Animal Number	Organ/Lesion		Grou		nc	
Animal Number		00	Cl	C2		
1906 1907 1908			Ar			
Pagestion, mild to moderate focal 208 230 247	Adrenal					
phocytic foci mentation, slight focal phocytic foci, slight reolar collapse, focal; chronic respiratory disease reolar collapse distension, histio- respiratory disease respiratory disease reolar collapse and distension, histio- respiratory disease roule roule respiratory disease roule roule roule respiratory disease roule	erate	208	230			
Publocytic foci 206 247	Kidney					
mentation, slight focal 206 230 phocytic foci, slight 206 230 reolar collapse, focal; chronic 207 249,250 respiratory disease 207 249,250 reolar distension, focal; chronic 207 246,247,248 respiratory disease 206,208,209 226,228,230 246,247,248 reolar collapse, distension, histio- 206,208,209 250 reolar collapse, distension, histo- 227,229 250 reolar collapse, distension, moderate focal 206,207,229 249 respiratory disease 227,229 249 respiratory disease 227,229 249 respiratory disease 227,229 249 respiratory disease 227,229 249 respiratory disease 206,207,208 249 respiratory disease 206,207,208 249 reas 206,207,208 226,227,228 reas 206,207,208 226,227,228 reas 209,210 229,230 respiratory disease 209,210	Lymphocytic foci	206		247		
phocytic foci, slight 206 230 recolar collapse, focal; chronic respiratory disease respiratory disease recolar distension, focal; chronic respiratory disease rollapse and distension; chronic respiratory disease rollapse and distension, histio-respiratory disease rollapse, distension, histio-respiratory disease rollapse, distension, histio-respiratory disease rollapse, distension, moderate focal 206, 208, 209, 226, 228, 230, 246, 247, 248 respiratory disease rollapse, distension, moderate focal 206 227, 229 respiratory disease rollapse, slight focal 206, 207, 208, 206, 207, 208, 201, 208, 201, 208, 201, 208, 201, 208, 201, 208, 201, 201, 202, 201, 201, 202, 201, 201	ight				270	
Page						
reolar collapse, focal; chronic respiratory disease reclar distension, focal; chronic respiratory disease reclar collapse and distension; chronic respiratory disease round respiratory respiratory disease round respiratory resp	foci,	206	230			
recolar collapse, focal; chronic 249,250 respiratory disease 207 recolar distension, focal; chronic 207 respiratory disease 206,208,209 respiratory disease 206,208,209 recolar collapse, distension, histio- 210 recolar collapse, distension, histio- 210 recolar collapse, distension, histio- 210 recolar collapse, distension, histio- 220 recolar collapse, distension, histio- 220 recolar collapse, distension, moderate focal 206 node 227,229 recolar collapse, distension, moderate focal 206 recolar collapse, distension, moderate focal 206 recolar collapse, slight focal 249 respiratory disease 249 recolar collapse, distension, moderate focal 206,207,208 recolar collapse, slight focal 249 respiratory disease 249 recolar collapse, slight focal 249 recolar collapse, slight focal 206,207,208 recolar collapse, slight focal 206,207,208 recolar collapse, sligh	Lung					
distension, focal; chronic distension, focal; chronic atory disease collapse and distension; chronic atory disease atory disease collapse, distension, histio- s; chronic respiratory disease respiratory disease ge and congestion, moderate focal itary ge, slight focal rosis (progressive severity, 206,207,208 226,227,228 246,247,248 209,210 229,230 249,250	reolar collapse, focal;					
distension, focal; chronic 207 atory disease 206,208,209 226,228,230 246,247,248 atory disease 2010 206,208,209 226,228,230 246,247,248 collapse, distension, histio- s; chronic respiratory disease 227,229 ge and congestion, moderate focal 206 227,229 litary 206,207,208 226,227,228 cosis (progressive severity, 206,207,208 226,237,238 246,247,248 losis (progressive severity, 206,207,208 229,230 249,250				249,250	270	
atory disease collapse and distension; chronic atory disease atory disease collapse, distension, histio- s; chronic respiratory disease respiratory disease ge and congestion, moderate focal litary ge, slight focal rosis (progressive severity, 206,207,208 226,227,228 246,247,248 209,210 229,230 249,250	focal;					
collapse and distension; chronic 206,208,209 226,228,230 246,247,248 atory disease 210 206,208,209 226,228,230 246,247,248 collapse, distension, histio-s; chronic respiratory disease 227,229 250 ge and congestion, moderate focal 206 250 litary 249 ge, slight focal 206,207,208 247 rosis (progressive severity, costs (progressive severity, 206,217,208 226,227,228 246,247,248 1 < C2 < C3)		207				
atory disease 206,208,209 226,228,230 246,247,248 collapse, distension, histio- 210 26 s; chronic respiratory disease 227,229 respiratory disease 227,229 ge and congestion, moderate focal 206 250 litary 249 ge, slight focal 206,207,208 247 rosis (progressive severity, 206,207,208 226,227,228 246,247,248 1 < C2 < C3)	and distension;					
collapse, distension, histio- 210 s; chronic respiratory disease 227,229 respiratory disease 227,229 ge and congestion, moderate focal 206 litary 249 ge, slight focal 206,207,208 226,227,228 rosis (progressive severity, cosis (progressive severity, 209,210 226,227,228 246,247,248 l < C2 < C3)	respiratory disease	206,208,209		246,247,248	266,269	
collapse, distension, histio- 227,229 respiratory disease 227,229 ge and congestion, moderate focal 206 250 litary 249 ge, slight focal 206,207,208 247 rosis (progressive severity, cosis (progressive severity, 206,207,208 226,227,228 246,247,248 1 < C2 < C3)		210				
s; chronic respiratory disease 227,229 ge and congestion, moderate focal 206 250 litary 249 ge, slight focal 206,207,208 226,227,228 rosis (progressive severity, 1 < C2 < C3) 206,207,208 226,227,228 246,247,248 1 < C2 < C3) 209,210 229,230 249,250	distension,					
respiratory disease 227,229 ge and congestion, moderate focal 206 250 litary 249 ge, slight focal 247 rosis (progressive severity, rosis (progressive severity, 206,207,208 226,227,228 246,247,248 209,210 229,230 249,250	respiratory				268	
ge and congestion, moderate focal 206 250 litary 249 ge, slight focal 206,207,208 226,227,228 rosis (progressive severity, 206,207,208 226,227,228 1 < C2 < C3)	Chronic respiratory disease		- 4		267	
hage and congestion, moderate focal 206 250 solitary 249 hage, slight focal 247 derosis (progressive severity, C1 < C2 < C3)	Lymph node					
solitary 249 hage, slight focal 247 derosis (progressive severity, C1 < C2 < C3)	moderate	206		250		
solitary 249 hage, slight focal 247 derosis (progressive severity, C1 < C2 < C3)	Ovary					
hage, slight focal 247 derosis (progressive severity, 206,207,208 226,227,228 246,247,248 C1 < C2 < C3)	1			249		
hage, slight focal 247 derosis (progressive severity, 206,207,208 226,227,228 246,247,248 C1 < C2 < C3)	Pancreas					
siderosis (progressive severity, 206,207,208 226,227,228 246,247,248 = C1 < C2 < C3) 249,250	hage,			247		
severity, 206,207,208 226,227,228 246,247,248 209,210 229,230 249,250						
= C1 < C2 < C3) 209,210 229,230 249,250			226,227,228	246,247,248	266,267,268	
	$c_0 = c_1 < c_2 < c_3$	209,210	229,230	249,250	269,270	

MICROSCOPIC LESIONS IN FEMALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT Table 87 (Concluded)

	0.10%	٠	c3															,		<i>I</i> .
Dose Level in Diet	0.01%		C2	Animal Number		247														1
Nose Lev	0.001%	Group	C1	An																ا
	0		00																	1.
		<u> </u>	<u></u>																	
		ssion				al														
		Organ/Lesion				, slight focal		l												E
					Thymus	Hemorrhage,														

П

1.2 i.. difference in severity was seen relative to controls. No other lesion occurred with a frequency and in a manner that implicated the treatment.

In rats allowed 4 weeks of recovery after 4 weeks of treatment (Tables 88 and 89), all 5 males at the highest dose level had slight interstitial cell hyperplasia in the testes and aspermia of the epididymis as well as hemosiderosis of the spleen. Females in all groups had hemosiderosis of the spleen, thus obscuring any dose relationship of the treatment. Chronic respiratory disease with various associated lesions was observed in the lungs of all rats in all groups at this sacrifice.

Microscopic lesions in tissues from rats allowed to recover for 4 weeks after 13 weeks of treatment are tabulated in Tables 90 and 91. Aspermia of the epididymis was seen in 3 males at the 0.10% condensate blend level, with clear indications of testicular acrophy in two of these cases, but in no other treatment groups. Hemosiderosis of the spleen was observed in all 5 males at this level; no more than one case was observed in any other group. In the females, hemosiderosis of the spleen was observed in the majority of rats in all groups, including controls; all five females at the 0.01 and 0.10% condensate blend levels were affected. None of the other lesions recorded appeared, on the basis of the frequency of incidence and distribution, to have any relationship to the treatment.

Discussion

No alterations from controls were detected in the rats fed 0.001% condensate water by weight in the diet for up to 90 days.

At the 0.01% treatment level, there is the suggestion of a suppressive effect of the treatment on body weight gain. This is based on the observed surge in weight gain for females during the first week of recovery after 4 weeks of treatment (Table 39). This increased weight gain appears to be dose-related and is accompanied by an increase (not statistically significant) in food consumption (Table 49). The livers in male and female groups treated at this 0.01% level were apparently enlarged at the 4-week sacrifice relative to controls, as reflected in the higher liver-to-body weight (statistically significant) and liver-to-brain weight ratios; this may also be an effect of the treatment. Females at this level also had enlarged spleens at 4 weeks and hemosiderosis of the spleen at 13 weeks that appeared, based on the dose response of each effect, to be treatment-related. Both sexes had very slight reticulocytosis in the early stages of the treatment and males exhibited elevated triglyceride levels after 13 weeks. All of these effects were either absent or no longer significant in recovery rats, indicating that reversal of toxic symptoms occurs in rats treated for up to 13 weeks with 0.01% condensate water in the diet.

Table 88

MICROSCOPIC LESIONS IN MALE RATS AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

		Dose L	Level in Diet		
	0	0.001%	0.01%	0.10%	
Organ/Lesion		Group	up Designation	on	
		A	Animal Number		
Adrenal					
Marked vacuolation of cortical cells		133			
Bone Marrow					
Prominently dilated sinusoids	112	133	153		
Epididymis					
Aspermia				171,172,173	
				174,175	
Kidney					
Nephrosis, slight to moderate focal;		135			
Hydronephrosis, moderate; occasional					
lymphocytic foci in cortex; solitary					
regeneration	112				
Occasional lymphocytic foci in cortex			155		
Liver					
Occasional portal lymphocytic foci			153,155		
Moderate chronic hepatitis				173	
Lungs					
Focal alveolar collapse (moderate); chronic					
respiratory disease	113,114	131,132,133	151,152,153	173,175	
		135			
Focal alveolar collapse; distension;					
	111,112,115		154,155	171,174	
Chronic respiratory disease		134		172	
Pituitary					
Occasional cysts		134	j		
Spleen					
Hemosiderosis				171,172,173	
				1/4,1/5	

Table 85 (Conciuded)

MICROSCOPIC LESIONS IN MALE RATS AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

		ol asol	Jel in Diet		
	0 0	.001%	0.001% 0.01%	0.10%	
Organ/Lesion	}	Group	n Designation	nc	
		An	Animal Number		
Stomach					
Large solitary focus of edema; hemorrhage		+		172	
Testes				171 170 173	
Slight interstitial cell hyperplasia				174,175	
		+			

Table 89

MICROSCOPIC LESIONS IN FEMALE RATS AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

Dose Level in Diet	0 0.001% 0.01% 0.10%	Group Designation	Animal Number		233 254		252	271			211,212		251,253,254	234,235 255 274,275	213,214		211,212,214 231,235 251,252,253 271,272,273	215 254,255 274,27							And the second of the second o
		Organ/Lesion		Kidney	Nephrosis, slight to moderate focal	Liver	Occasional portal lymphocytic	Slight focal necrosis	Lungs	Focal alveolar collapse; moderate and	chronic respiratory disease	Focal alveolar collapse and distension;	chronic respiratory disease		Chronic respiratory disease	Spleen	Hemosiderosis								Analysis of the second of the

rable 50

MICROSCOPIC LESIONS IN MALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

		9000	level in Diet		
		ا د	בינו דוו חדבר		
	0	0.001%	0.01%	0.10%	
Organ/Lesion		Group	up Designation	on	
	00	C1	C2	c3	
		A	Animal Number		
Adrenal					
Vacuolated cortical cells	103,104	121,123			
Hemorrhage, slight			145		
Aspermia				161,164,165	
Kidney					
Cortical tubular regeneration	103				
Lymphocytic foci	105	125		161	
Cortical tubular regeneration and					
lymphocytic foci	104	121,122	144		
Cortical tubular regeneration; slight					
cell debris in cortex tubules;					
lymphocytic foci			143		
Liver					
Lymphocytic foci, slight to moderate	102,105	122,125	141,144		
Leukocytic foci, slight				161	
Fatty change, one focus, slight				165	
Lung					
Alveolar collapse, slight focal; chronic					
respiratory disease			144		
Alveolar distension; hemorrhage; chronic					
respiratory disease	102				
Alveolar distension and collapse, slight					
to moderate focal; chronic respiratory					
disease	104,105	121,124,125	141,143	161,162	
Alveolar distension and collapse; hemor-					
rhage; chronic respiratory disease			145		

Table 90 (Concluded)

MICROSCOPIC LESIONS IN MALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

		Dose L	Level in Diet		
	0	0.001%	0.01%	0.10%	
Organ/Lesion		Gro	Group Designation	on	
	00	C1	C2	C3	
		q	Animal Number		
Lung					
Abcess and chronic respiratory disease		123			
Congestion and chronic respiratory disease	101			164	
LU1	103	122	142,144	163,165	
Pituitary					
Hemorrhage, slight focal			141		
Spinal cord					
Hemorrhage, slight to moderate focal	104	122,123	141,145	162	
Spleen					
Hemosiderosis	105		145	161,162,163	
				164,165	
Testes					
Atrophy				161,164	
Thymus					
Hemorrhage	102				
			-] ; }	 	

Taule 91

MICROSCOPIC LESIONS IN FEMALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

		se	Level in Diet		
	0	0.001%	0.01%	0.10%	
Organ/Lesion		Group	up Designation	ļ	
	00	C1	C2	C3	
		A	Animal Number		
Brain					
Gliosis, slight	204				
Kidney					
Lymphocytic foci	201				
Lymphocytic foci and cortical tubular					
regeneration				265	
Liver					
Lymphocytic foci, slight to moderate	204,205	223,225	241,242,244	264,265	
			245		
Lung					
Alveolar collapse and chronic respiratory					
disease			243		
Alveolar distension and chronic respiratory					
	202				
Alveolar histiocytosis and chronic					
respiratory disease		223		265	
Alveolar collapse and distension; chronic					
respiratory disease	201,203,205	222,225	242	261,262,263	
				264	
Alveolar collapse and histiocytosis; abcess					
chronic respiratory disease	204				
Chronic respiratory disease		221,224	241,244,245		
Spinal cord					
Granuloma, slight solitary				261	
Spleen					
Hemosiderosis, focal, usually slight,		í			
sometimes moderate	203,204,205	221,223,224	241,242,243	261,262,263	
		225	244,245	264,265	

Table 91 (Concluded)

MICROSCOPIC LESIONS IN FEMALE RATS AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

Dose Level in Diet	0 0.001% 0.01% 0.10%	Group Designation	C0 C1 C2 C3	Animal Number		242													
		Organ/Lesion			Thymus	Hemorrhage, slight focal													\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Rats treated at the 0.10% condensate water level exhibited numerous toxic symptoms: suppressed body weight, weight gain, and food intake; rough fur; a compensatory anemia; extremely pronounced reticulocytosis accompanied by polychromatic erythrocytes, moderate hypochromia, nucleated red blood cells and Heinz bodies; enlarged spleens with associated hemosiderosis; testicular atrophy with atrophy and aspermia of the epididymi and moderate focal interstitial cell hyperplasia in a number of these cases; hyperplasia of the uterus; and elevated triglyceride levels. Other differences that may be treatment-related were the elevation in serum Ca^{2+} and phosphorus and in uric acid after 4 weeks of treatment. Although extrarenal causes cannot be discounted, the lower relative kidney-to-brain weight ratios in the rats after 4 weeks of treatment at the 0.10% dose level (Tables 60 and 61) are possibly related to these differences. Microscopic examination of kidney tissues from these rats failed to disclose confirmatory evidence of renal dysfunction, however.

Food efficiency—food consumption/ Λ body weight—was lower for males and females at the high dose level throughout most of the treatment period compared with controls. Liver—to—body reight and liver—to—brain weight ratio increases noted in some of these treated groups at sacrifice might indicate increased metabolic activity in these animals (see the following section on mice), but the increases are marginal and sometimes inconsistent—e.g., the decreased liver—to—brain weight ratio for 4—week males compared with other treatment groups (Tables 60 and 64).

Recovery groups continued to exhibit some alterations, particularly those that were treated for 13 weeks with the 0.70% condensate water diet. These rats did not increase their body weights to the control level within the 4-week recovery period. Testes weights for the males remained significantly low and slight interstitial cell hyperplasia and aspermia of the epididymi, as well as hemosiderosis of the spleen, were observed at each sacrifice. Although anemia was not present, signs of the compensatory mechanism were, as suggested by the tendency toward high hemoglobin, hematocrit, and MCV and this level. It is unclear as to whether triglyceride levels had returned to normal 4 weeks after discontinuation of the treatment. It is clear that serum phosphorus remained elevated. Since Ca²⁺ was not correspondingly altered, the elevation in phosphorus is possibly associated with the accelerated growth of the rats.

The toxicity of 2,4-DNT and 2,6-DNT, the major components in condensate water mixture, has been documented in Sprague-Dawley rats exposed to these chemicals in their diets for up to 13 weeks. ^{39,40} Depression of weight gain, hemosiderosis of the spleen, mild compensatory anemia, testicular atrophy with aspermatogenesis, and at the high (0.7%) dose neuromuscular effects (widespread and stiff hind legs, with gliosis and/or demyelination in two cases) and unscheduled deaths were observed for 2,4-DNT. Depression of body weight gain and food intake, elevated SGPT, extramedullary hematopoesis (spleen and

liver), bile duct hyperplasia, aspermia and testicular atrophy, and at the high (0.25%) dose a compensatory pronounced reticulocytosis and methemoglobin-induced anemia were found in rats treated with 2,6-DNT. Thus, except for the neurological effects with 2,4-DNT and the change in SGPT (noted, however, in only two animals), extramedullary hematopoesis, and bile duct hyperplasia with 2,6-DNT-treated rats, all effects which were either marginal or not observed at the dose level (0.01%) comparable to that of the 2,6-DNT content of the mixture, these same observations were made on treated rats in the present study. The elevation in triglycerides, which were not measured in the earlier works, change in food efficiency, enlargement of the spleens, and uterine hyperplasia are additional findings in this study of the condensate water mixture.

STUDIES IN MICE

Procedures

Eighty male and 80 female Swiss-Webster mice from Simonsen Laboratories were used. The protocol and test methods for this experiment and the dose levels were the same as those for rats, with the following differences:

- (1) Mice were housed five to a cage.
- (2) Feeders in the cages were of the covered variety.
- (3) Individual mice were identified with cage cards and by ear punch (both ears).
- (4) No blood chemistry was done because of the small amount of blood available from a mouse.

The methods of drawing blood for hematology, of euthanization, and of storage and transfer of blood samples to the SRI Clinical Chemistry Laboratory were the same as for rats. Weekly body weights and food consumption were determined in the same manner as for rats. The organs and tissues examined grossly and microscopially were the same for the mouse as for the rat except for the addition of the cholecyst in the mice.

Results

Observations

Throughout the study males in all groups had rough fur. Several had scabs on their bodies and chewed backs, posteriors, tails, or penises. On several occasions males were seen to be fighting with each other. Fighting was undoubtedly responsible for the foregoing observations.

As the study progressed, several males at the high-dose level developed toxic symptoms, including ataxia, humped backs, abnormal postures (head was tilted to the right), and circling in the cage. Several males were anemic in appearance; one was very thin and inactive, and had a humped back. One recovery male was slightly cyanotic during the last week of treatment, from which condition it apparently recovered when the treatment was discontinued.

No unusual signs were seen in female mice except in the high-dose group. In that group, rough fur and humped backs were observed in two animals during Weeks 2 through 4. During Week 4, one of the two appeared anemic and ataxic; its condition worsened rapidly during the next week, and it died on Day 30. The other mouse recovered. Two other females were observed to be ataxic on separate occasions. Most of the high-dose females appeared anemic, beginning in Week 9 and lasting until the treatment ended.

Body Weights

Mean body weights of mice treated with condensate blend for 13 weeks are presented in Tables 92 and 93. Mice at the 0.10% level tended to weigh less than control mice during the treatment, significantly so at some weighings. The loss in body weights of males at the high dose during Weeks 6 through 8 is due to animals that were deteriorating and that died prematurely.

Mean body weights of treated mice allowed a 4-week recovery period are given in Tables 94 through 97. Among mice treated for 4 weeks with an additional 4 weeks of recovery (Tables 94 and 95), the only statistically significant differences were the higher weights of the 0.001% female treatment group in Weeks 6 through 8. Since no comparable increase in weight (relative to controls) was seen in the male 0.001% group, it appears that these significant differences were probably related to the decrease in the extent of weight gain in the female controls rather than to a treatment effect. The absence of a linear trend in the data (Table D-9) supports this statement. The same observations apply to males at the 0.01% treatment level set aside for recovery. Males at the high dose that underwent 4 weeks of treatment and 4 weeks of recovery had a higher initial mean body weight (though not significantly so) than did other groups. These high-dose males failed to increase their weight at the normal rate during Week $\boldsymbol{1}$ because one of them lost weight progressively during that week; this male died on Day 8 of the study.

Mice allowed 4 weeks of recovery after 13 weeks of treatment at the 0.10% level increased their weight substantially from Week 14 to Week 17 relative to control and other groups (Tables 96 and 97). The body weights of these mice still lagged behind those of controls at sacrifice.

Weekly body weight differences for the mice appear in Tables 98 through 103. Most notable is the low body weight gain during Week 1 for males at the high dose and for females at the highest two doses relative to other groups (Tables 98 and 99) and the increased weight gain of mice in these groups during the first week of recovery after 4 weeks of treatment (Tables 100 and 101). None of these changes were statistically significant. An immediate increase in body weight gain

TABLE 92

おない ことを

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF MALE MICE DURING 13 WEEKS OF TREATMENT

				TREATMENT GROUPS	UPS		
DEPENDENT	∞ ∪;	CONTROL	7 100. T T310 NI	raid NI	æ ! E :	, 10 % IN DIET	(a≤ (
INITIAL		25.15 ± .539 (20)	25.75 ± .672 (20)	25.35 ± .815 (20)		25.35 ± .779 (20)	
BEEK 1	*	28.25 ± .480 (20)	28.20 ± .506 (20)	28.10 ± .688 (20)		26.75 ± .852 (20)	
SEK 2	*	29.75 ± .502 (20)	29.95 ± .540 (20)	28.05 ± .705 (20)		28.05 ± .984 (19)	
E EEE 3	*	30.70 ± .590 (20)	31.55 ± .613 (20)	30.75 ± .900 (20)		28.11 ± 1.15 (19)	
PERK 4	*	31.25 ± .668 (20)	32,35 ± .595 (20)	30.90 ± .900 (20)		27.79 ± 1.36 (19)	*
# EE E & S		32.27 ± .933 (15)	31.10 ± 1.26 (10)	32.30 ± .790 (10)		29.00 ± 1.31 (10)	
FEER 6		32.47 ± .945 (15)	32.80 ± 1.11 (10)	34.20 ± .800 (10)		28.30 ± 1.15 (10)	*
WEEK 7		32.60 ± 1.23 (15)	32.10 ± 1.25 (10)	32.30 ± 1.12 (10)		27.10 ± 1.51 (10)	*
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		35.67 ± .910 (.5)	33.60 ± .777 (10)	35.90 ± 1.09 (10)		27.00 ± 1.91 (9)	+
6 M22R		35.20 ± 1.23 (10)	35.20 ± 1.03 (10)	35.50 ± 1.00 (10)		30.00 ± 1.86 (7)	
WEEK 10		35.30 ± 1.31 (10)	33.90 ± 1.28 (10)	36.30 ± .989 (10)		30.86 ± 1.45 (7)	
II Maan		35.10 ± 1.36 (10)	33.40 ± .884 (10)	33.20 ± 1.06 (10)		30.57 ± 1.59 (7)	
VEEK 12		37.70 ± 1.27 (10)	36.00 ± .894 (10)	33.90 ± 1.28 (10)		31.71 ± 1.86 (7)	*
WEEK 13		36.20 ± 1.30 (10)	35.50 ± .934 (10)	34.90 ± 1.06 (10)		31.86 ± 1.87 (7)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF PEMALE MICE DURING 13 WEEKS OF TREATMENT

				TREATMENT GROUPS		
DEPENDENT	အ ပေ ၊	CONTROL	. 001 X I X I X I X I X I X I X I X I X I X	N IO IN TRIES	. 10 % 1 D T D 1 C T	e
INITIAL		23.35 ± .418 (20)	22.90 ± .538 (20)	22.75 ± .542 (20)	22.55 ± .545 (20)	
WEEK 1		25.80 ± .433 (20)	25.40 ± .419 (20)	24.10 ± .589 (20)	24.30 ± .616 (20)	
WEEK 2		26.50 ± .444 (20)	26.50 ± .500 (20)	24.50 ± .639 (20)	25.05 ± .705 (20)	
WEEK 3	*	27.65 ± .443 (20)	27.50 ± .596 (20)	26.10 ± .692 (20)	25.40 ± .869 (20)	*
7 MESK 7		28.65 ± .586 (20)	29.10 ± .598 (20)	26.75 ± .672 (20)	25.65 ± .930 (20)	*
WEEK S		28.73 ± .665 (15)	28.90 ± .900 (10)	29.00 ± 1.34 (10)	26.78 ± .997 (9)	
WEEK 6		29.80 ± .509 (15)	29.60 ± .884 (10)	28.30 ± .844 (10)	25.67 ± 1.15 (9)	•
WEEK 7		29.73 ± .556 (15)	29.50 ± .703 (10)	28.70 ± .716 (10)	26.11 ± 1.20 (9)	*
WEEK 8		30.47 ± .624 (15)	31.00 ± .869 (10)	29.90 ± .823 (10)	25.89 ± 1.33 (9)	•
6 Maan		31.40 ± .636 (10)	31.20 ± .952 (10)	30.40 ± .636 (10)	26.33 ± 1.37 (9)	•
HEEK 10		30.90 ± .547 (10)	31.50 ± .563 (10)	31.40 ± .897 (10)	27.11 ± 1.18 (9)	*
WEEK 11	*	29.50 ± .601 (10)	31.10 ± .586 (10)	30.20 ± .416 (10)	27.56 ± 1.18 (9)	
WEEK 12		30.60 ± .702 (10)	32.00 ± .907 (10)	32.20 ± .490 (10)	28.67 ± 1.31 (9)	
WEEK 13		31.10 ± .547 (10)	31.90 ± .752 (10)	31.60 ± .686 (10)	28.89 ± 1.24 (9)	

**

!

1

.

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES
+ CONFIDENCE LEVEL = .95
+ CONFIDENCE LEVEL = .99
BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST
R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,
20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x,

....

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF MALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	GROUPS			
DEPENDENT Variable	m U I	CONTROL GROUP	2 100 . Taid NI	ez ⊦ [1	.01 X IN DIET	md 		10 X IN DIET	
INITIAL		25.15 ± .539 (20)	26.40 ± 1.36 (5)		26.80 ± 1.11 (5)	(5)	28.20	28.20 ± .800 (5)	(3)
E COLOR		28.25 ± .480 (20)	28.00 ± 1.18 (5)		30.00 ± .894 (5)	(5)	29.00	29.00 ± 1.82 (5)	(5)
WEEK 2		29.75 ± .502 (20)	29.40 ± 1.21 (5)		30.00 ± .837 (5)	(3)	32.25	32.25 ± 1.38 (4)	(7)
WEEK 3		30.70 ± .590 (20)	31.80 ± 1.39 (5)		34.00 ± 1.10 (5)	(5)	31.75	31.75 ± 1.89 (4)	(*)
7 Maga		31.25 ± .668 (20)	32.60 ± 1.12 (5)		34.60 ± 1.17 (5)	(5)	32.00	32.00 ± 2.42 (4)	(4)
WEEK S		32.27 ± .933 (15)	34.40 ± .980 (5)		36.80 ± 1.07 (5)	(3)	35.25	35.25 ± 1.75 (4)	(4)
WEEK 6		32.47 ± .945 (15)	33.80 ± 1.11 (5)		39.00 ± .837 (5)	(5) +	36.25	36.25 ± 1.49 (4)	(4)
WEEK 7		32.60 ± 1.23 (15)	34.80 ± .860 (5)		38.20 ± .800 (5)	(3)	37.00	37.00 ± 1.58 (4)	(4)
60 Mai Mai Mai Mai		35.67 ± .914 (15)	35.60 ± 1.08 (5)		40.00 ± .775 (5)	(5)	38.00	38.00 ± 1.47 (4)	(4)

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES * CONFIDENCE LEVEL = .95 + CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A, 20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 95

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF FEMALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	UPS		
DEPENDENT	ක U I	CONTROL	.001 X IN DIET	mi	NO. A STATE OF THE	& 1	10 X IN DIET	es (
INITIAI.		23.35 ± .418 (20)	22.80 ± 1.53 (5)	_	23.40 ± 1.44 (5)		24.00 ± .894 (5)	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		25.80 ± .433 (20)	26.60 ± 1.08 (5)	•	24.20 ± 1.16 (5)		24.80 ± .800 (5)	
HEEK 2		26.50 ± .444 (20)	27.20 ± 1.16 (5)	•	24.60 ± .927 (5)		26.00 ± .894 (5)	
WEEK 3		27.65 ± .443 (20)	29.60 ± .927 (5)	•	25.60 ± 1.40 (5)		27.00 ± .707 (5)	
PEEK 4		28.65 ± .586 (20)	31.00 ± 1.05 (5)	•	27.40 ± 1.25 (5)		27.20 ± 1.02 (5)	
WEEK 5		28.73 ± .665 (15)	32.20 ± 1.02 (5)	•	29.40 ± 1.12 (5)		29.40 ± .748 (5)	
WEEK 6		29.80 ± .509 (15)	33.60 ± 1.12 (5)	*	30.60 ± 1.36 (5)		31.20 ± .970 (5)	
WEEK 7		29.73 ± .556 (15)	34.00 ± 1.45 (5)	*	31.20 ± 1.59 (5)		30.40 ± 1.17 (5)	
WEEK 8		30.47 ± .624 (15)	34.60 ± 1.17 (5)	*	30.60 ± 1.44 (5)		32.00 ± .633 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

Water .

Ī.

1_

į

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF MALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	UPS		
DEPENDENT VARIABLE	a U I	CONTROL	.001 Z IN DIET	; ; ; ; ; ; ;	, ol x IN DIET	 	A OI .	. e. 1
INITIAL		25,15 ± .539 (20)	23.60 ± 1.17 (5)	_	23.40 ± 1.44 (5)		25.20 ± 1.80 (5)	
WEEK 1	-	28.25 ± .480 (20)	27.20 ± .735 (5)		27.60 ± 1.21 (5)		26.80 ± 1.59 (5)	
WEEK 2	·	29.75 ± .502 (20)	28.80 ± .860 (5)	•	26.60 ± 1.36 (5)		28.40 ± 1.50 (5)	
WEEK 3	•	30.70 ± .590 (20)	29.20 ± 1.32 (5)	•	29.00 ± 1.73 (5)		28.80 ± 2.18 (5)	
WEEK 4	-	31.25 ± .668 (20)	30.40 ± 1.63 (5)	_	29.00 ± 1.64 (5)		28.00 ± 2.10 (5)	
EREK S		32.27 ± .933 (15)	28.60 ± 1.72 (5)	_	31.40 ± 1.50 (5)		28.60 ± 1.63 (5)	
VEEK 6		32.47 ± .945 (15)	31.40 ± 1.86 (5)	_	33.20 ± 1.39 (5)		28.00 ± 1.18 (5)	
PEEK 7	-	32.60 ± 1.23 (15)	29.80 ± 1.77 (5)	•	31.80 ± 1.59 (5)		25.40 ± 1.86 (5)	*
WEEK 8		35.67 ± .914 (15)	33.60 ± 1.44 (5)	•	34.80 ± 2.08 (5)		25.25 ± 3.35 (4)	4

:

(3) (3) 3

(3) (3) (2)

± 2.23

36.40 38.40

3 3

+1

1.29 1.12

39.60

WEEK 16

: 3

WEEK

1.17

38.20

+1

39.60

1 2.01

+1

36.50

0.00 . 500 . 500 .500 . 500

1.93 1.96 2.08

+1 +1

35.40 34.80 40.60 08.07

+1 +1

3

38.60 40.20 39.80

1.38 i.59

40.00 40.80

7.7 ~;

WEEK VEER

+1

36.20

1.45 1.83 1.88 1.85

+1 + }

34.00

+1

(10) (01) 3 3 3 3

37.70

(2)

+1

(3) (3)(3) (3) (3)

+1 +1 + 1 +1 +1

32.00 32.00 34.00 33.00 32.50 34.50 35.50

1.00 0.00

(3)

31.00 ± 1.00

(2) (3) 3 3 3 3

35.60 + 1.94 +1 +1

35.80 33.60

3

+ 1.94 1.63

31.60 32.60 35.40

(10)

1.31 1.36 1.27 1,30

+1

35.30 35.10

WEEK 10 WEEK 11 WEEK 12 WEEK 13

WEEK 9

34.00 ± 1.67

35.20 ± 1.23 (10)

(2) 3 (3)

+ {

(10)

ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES ENTRIES ARE MEANS AND STA * CONFIDENCE LEVEL = .95 + CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST R = Treatment-control ratio Test : confidence interval greater or lower than control mean by at least 10 % - A, 20 % - B, 35 % - C, 50 % - D. Ratio Test cannot be calculated - x .

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF FEMALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

TREATHENT GROUPS

DEPENDEN	DEPENDENT Variable	≈ ∪ 1	CONTROL	, 001 X IN DIET	od ([⊷ (2 10 . THIO NI	₽ 1	∝ ,	10 % IN DIET		e≰ ! 1- 1
INITIAL	A L		23.35 ± .418 (20)	22.00 ± 1.00 (5)		22.80 ± 1.02 ((5)		21.60 ± .678 ((3)	
WEEK !	p=4		25.80 ± .433 (20)	25.40 ± .872 (5)		25.00 ± 1.10 ((3)		23.00 ± 1.14 ((3)	
VEEK	2		26.50 ± .444 (20)	27.20 ± .860 (5)		25.20 ± .916 ((2)		24.20 ± 1.11 ((3)	
VEEK	E.		27.65 ± .443 (20)	28.40 ± 1.03 (5)		27.00 ± .949 ((5)		24.20 ± 1.46 ((3)	*
WEEK	4		28.65 ± .586 (20)	28.80 ± 1.02 (5)		27.20 ± .800 ((5)		24.40 ± 1.47 ((3)	*
VEEK	~		28.73 ± .665 (15)	30.20 ± 1.07 (5)		32.00 ± 1.82 ((3)		25.80 ± 1.66 ((3)	
WEEK	9		29.80 ± .509 (15)	30.80 ± 1.16 (5)		30.40 ± .812 ((5)		25.00 ± 1.87 ((3)	*
WEEK	7		29.73 ± .556 (15)	30.40 ± .748 (5)		29.60 ± 1.17 ((3)		25.40 ± 1.83 ((3)	*
MERK	s c		30.47 ± .624 (15)	32.60 ± 1.03 (5)		31.20 ± 1.32 ((5)		25.20 ± 1.98 ((3)	*
VEEK	6		31.40 ± .636 (10)	33.20 ± 1.07 (5)		31.40 ± .927	(5)		26.00 ± 2.02 ((3)	*
WEEK 10	10		30.90 ± .547 (10)	32.60 ± .600 (5)		33.00 ± 1.38 ((5)		26.80 ± 1.71 ((3)	
VEEK	11		29.50 ± .601 (10)	31.80 ± .860 (5)		30.60 ± .678	(5)		27.40 ± 1.75 ((3)	
V CE	12		30.60 ± .702 (10)	33.60 ± 1.03 (5)		32.60 ± .927 ((3)		28.00 ± 2.07 ((3)	
VEEK	13		31.10 ± .547 (10)	33.00 ± .949 (5)		32.40 ± 1.21 ((3)		27.80 ± 1.98 ((3)	
WEEK 14	41		32.80 ± 1.07 (5)	34.60 ± 1.08 (5)		33.40 ± 1.21	(5)		29.40 ± 1.81 ((3)	
WEEK 15	1.5		34.40 ± 1.17 (5)	37.00 ± .707 (5)		34.40 ± 1.63 ((2)		31.80 ± 1.96 ((3)	
WEEK 16	16		33.60 ± 1.17 (5)	35.40 ± .927 (5)		34.00 ± 1.30 ((3)		31.40 ± 1.96 ((3)	
WEEK 17	1.7		34.40 ± 1.12 (5)	35.20 ± .800 (5)		31.40 ± .748 ((5)		32.20 ± 2.27 ((3)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

-

TABLE 98

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF MALE MICE DURING 13 WEEKS OF TREATMENT

					TREATMENT GROUPS	UPS		
DEPENDENT VARIABLE	ø U I	CONTROLGROUP	.001 X IN DIET	, , , , , ,	. 01 X IN DIET	ez 1	. 10 % IN DIET	E (
WEEK 1		3.10 ± .339 (20)	2.45 ± .426 (20)		2.75 ± .547 (20)		1.40 ± .387 (20)	6
HEEK 2		1.50 ± .267 (20)	1.75 ± .260 (20)		05 ± .438 (20)	Ω *	1.11 ± .374 (19)	
WEEK 3		.95 ± .285 (20)	1.60 ± .255 (20)		2.70 ± .378 (20)	+	.05 ± .363 (19)	æ
4 X22 X	*	.55 ± .198 (20)	.80 ± .200 (20)		.15 ± .221 (20)		32 ± .412 (19)	
HEEK S		1.40 ± .335 (15)	40 ± .562 (10)	Q	1.50 ± .401 (10)		.50 ± .601 (10)	
WEEK 6		.20 ± .355 (15)	1.70 ± .448 (10)	×	1.90 ± .482 (10)	×	70 ± .597 (10)	×
WEEK 7	*	.13 ± .867 (15)	70 ± .367 (10)	×	-1.90 ± .737 (10)	×	-1.20 ± .742 (10)	ĸ
WEEK 8		3.07 ± .679 (15)	1.50 ± .847 (10)		3.60 ± .686 (10)		(6) 091. + 87	△
WEEK 9		0.00 ± .471 (10)	1.60 ± .452 (10)	×	40 ± .476 (10)	×	.86 ± .459 (7)	×
WEEK 10		.10 ± .315 (10)	-1.30 ± .517 (10)	×	.80 ± .442 (10)	×	.86 ± .459 (7)	×
WEEK 11	*	20 ± .249 (10)	50 ± .601 (10)	×	-3.10 ± .407 (10)	•	29 ± .286 (7)	ĸ
WEEK 12	*	2.60 ± .371 (10)	2.60 ± .163 (10)		.70 ± .473 (10)	6 20 ★	1.14 ± .508 (7)	*
EZ MESK		-1.50 ± .307 (10)	50 ± .428 (10)	×	1.00 ± .596 (10)	*	.14 + .404 (7)	×

TABLE 99

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF PEMALE MICE DURING 13 WEEKS OF TREATMENT

					TREATMENT GROUPS	PS		
DEPENDENT VARIABLE	ø U I	CONTROL	.001 X IN DIET	: : : : : : :	. 01 X IN DIET		. 10 % 10 NI DIET	: a≤ :
1 X X X X X X X X X X X X X X X X X X X		2.45 ± .336 (20)	2.50 ± .426 (20)		1.35 ± .386 (20)	∢	1.75 ± .270 (20)	
WEEK 2	*	.70 ± .193 (20)	1.10 ± .332 (20)		.40 ± .343 (20)		.75 ± .422 (20)	
WEEK 3		1.15 ± 182 (20)	1.00 ± .308 (20)		1.60 ± .311 (20)		.35 ± .319 (20)	⋖
7 MBBM		1.00 ± .299 (20)	1.60 ± .319 20)		.65 ± .365 (20)		.25 ± .347 (20)	
WEEK S	•	.73 ± .530 (15)	1.10 ± .179 (10)	×	3.10 ± 1.25 (10)	×	1.44 ± .294 (9)	×
WEEK 6	+	1.07 ± .547 (15)	.70 ± .153 (10)	×	70 ± 1.16 (10)	×	-1.11 ± .351 (9)	*
WEEK 7		07 ± .284 (15)	10 ± .407 (10)	×	.40 ± .452 (10)	×	.44 + .176 (9)	×
WEEK 8		.73 ± .371 (15)	1.50 ± .453 (10)		1.20 ± .327 (10)		$22 \pm .278$ (9)	∢
WEEK 9		1.40 ± .340 (10)	.20 ± .291 (10)	ပ	.50 ± .373 (10)	⋖	.44 + .242 (9)	∢
WEEK 10		50 ± .269 (10)	.30 ± .423 (10)	×	1.00 ± .447 (10)		(6) IO4. ± 87.	
HEEK II		-1.40 ± .267 (10)	40 ± .306 (10)	×	$-1.20 \pm .573 (10)$	×	.44 ± .294 (9)	*
WEEK 12		1.10 ± .407 (10)	.90 ± .482 (10)		2.00 ± .258 (10)		1.11 ± .309 (9)	
WEEK 13	*	.50 ± .601 (10)	10 ± .277 (10)	×	60 ± .267 (10)	×	.22 ± .401 (9)	×

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N :N PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

į

ì

1

.

-

TABLE 100

-

EFFECTS OF CONDENSATE WATER ON DIPPERENCES IN BODY WEIGHTS (G) OF MALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	UPS	:	
DEPENDENT VARIABLE	& U	CONTROL	.001 % IN DIET	24 E	O 1 X IN DIET	a	. 10 % 18 DIET	: æ
11 光星星光	1	3.10 ± .339 (20)	1.60 ± .678 (5)		3.20 ± .970 (5)	l I	.80 ± 1.07 (5)	, 1
WEEK 2	*	1.50 ± .267 (20)	1.40 ± .600 (5)	•	0.00 ± 1.48 (5)		1.75 ± .250 (4)	
WEEK 3	*	.95 ± .285 (20)	2.40 ± .245 (5)	+	4.00 ± 1.14 (5)	*	50 ± .957 (4)	
4 X X X X X X X X X X X X X X X X X X X		.55 ± .198 (20)	.80 ± .374 (5)	•	(5) 004. ± 09.		.25 ± .750 (4)	
2000年 5		1.40 ± .335 (15)	1.80 ± .490 (5)	_	2.20 ± .374 (5)		3.25 ± 1.25 (4)	
SEE 6		.20 ± .355 (15)	60 ± .400 (5)	× (2.20 ± .374 (5)	*	1.00 ± .408 (4)	×
WEEK 7	•	.13 ± .867 (15)	1.00 ± .316 (5)	×	$80 \pm .374$ (5)	×	.75 ± .250 (4)	×
WEEK 8	*	3.07 ± .679 (15)	.80 ± .583 (5)	* B	$1.80 \pm .200$ (5)		1.00 ± .817 (4)	

ENTRIES ARE HEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIC TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF PEMALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATHENT GROUPS	UPS		
DEPENDENT	жu i	CONTROL	.001 X IN DIET	; 	.01 Z IN DIET	 	, 10 X IN DIET	; a⊈ ; ; ; ;-::
WEEK 1		2,45 ± .336 (20)	3.80 ± .663 (5)	6	$.80 \pm 1.02$ (5)		.80 ± .200 (5)	
WEEK 2	*	.70 ± .:93 (20)	.60 ± .400 (5)	_	.40 ± 1.03 (5)		1.20 ± .800 (5)	
WEEK 3		1.15 ± .182 (20)	2.40 ± .400 (5)	•	1.00 ± .837 (5)		$1.00 \pm .447$ (5)	
7 X22A		1.00 ± .299 (20)	1.40 ± .510 (5)	•	1.80 ± .800 (5)		.20 ± .583 (5)	
S XS3M		.73 ± .530 (15)	1.20 ± .374 (5)	×	2.00 ± .316 (5)	×	2.20 ± .800 (5)	×
VEEK 6	*	1.07 ± .547 (15)	1.40 ± .245 (5)	×	$1.20 \pm .374$ (5)	×	1.80 ± .583 (5)	×
WEEK 7		07 ± .284 (15)	(5) 005. + 05.	×	(5) 015. ± 09.	×	80 ± .663 (5)	×
WEEK 8		.73 ± .371 (15)	.60 ± .510 (5)	×	60 ± .748 (5)	×	1.60 ± .678 (5)	×

ENTRIES ARE MEANS AND STAMDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED ~ x .

Ĺ

•

TABLE 102

í

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF MALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

≃ 1

						TREATHENT CROUPS	CROUP	ęş.			
	DEPENDENT	a u i	CONTROL	. 001 X IN DIET	24 1 1 (- 1	. 01 X IN DIET		ac ,	. 10 X IN DIET		K .
	E E E E E E E E E E E E E E E E E E E		3.10 ± .339 (20)	3.60 ± 1.21	(5)	4.20 ± .583 ((3)		1.60 + .400	(3)	
	WEEK 2		1.50 \$.267 (20)	1.60 ± .678	(3)	-1.00 ± .633 ((3)	<u>ہ</u>	1.60 ± .980	(3)	
	WEEK 3		.95 ± .285 (20)		(5)	2.40 ± .678 ((3)		.40 ± .812	(3)	
	WEEK 4		.55 ± .198 (20)	1.20 +	(5)	0.00 ± .316	(3)		80 ± .916	(3)	M
	WEEK S		1.40 ± .335 (15)	-1.80 + .490	(5) + D	2.40 ± .245	(3)		819. + 09.	(3)	
16	9 жазм		.20 ± .355 (15)	2.80 ± .374 ((S).* * ×	1.80 ± .860	(3)	×	60 ± 1.21	(3)	×
. 1	WEEK 7	*	(\$1) 798. ± E1.	-1.60 ± .245	x (5)	-1.40 ± .510 ((3)	×	-2.60 ± 1.08	(3)	×
	80 M 22 M 23 M 23 M 23 M 23 M 23 M 23 M 23		3.07 ± .679 (15)	3.80 ± .663 ((5)	3.00 ± .548	(3)		-1.25 ± 1.80	(*)	*
	WEEK 9		0.00 ± .471 (10)	.40 ± .245	x . (5)	.80 ± .374	(3)	×	00.0 + 00.0	(3)	×
	WEEK 10		.10 ± .315 (10)	-2.40 ± .510	(5) + x	.20 ± .663	(3)	ĸ	1.00 ± 0.00	(2)	×
	WEEK 11		20 ± .249 (10)	1.00 ± .447	(5)	-2.20 ± .374 ((3)	•	00.0 + 00.0	(2)	×
	WEEK 12		2.60 ± .371 (10)	2.80 ± .200 ((5)	1.80 ± .583 ((3)		2.00 ± 1.00	(2)	
	WEEK 13		-1.50 ± .307 (:0)	-1.40 ± .600	(5) x	60 ± .510	(3)	×	-1.00 ± 0.00	(2)	×
	WEEK 14		2.60 ± .245 (5)	004. + 09.4	(5) + B	5.80 ± .200	(3)	Ω+	50 ± .500	(2)	+ 3
	SI MEEK IS		.80 ± .374 (5)	1.60 ± .400	(5) x	.20 ± .374 ((3)	×	2.00 ± 1.00	(2)	×
	WEEK 16		$-1.20 \pm .374$ (5)	40 + .245	(5) x	-4.40 ± .245	(3)	× +	1.00 ± 0.00	(2)	+
	WEEK 17		0.00 ± .447 (5)	-1.60 ± .510 ((S) x	2.00 ± .316 ((3)	*	1.00 ± 0.00	(2)	×

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x,

EFFECTS OF CONDENSATE WATER ON DIFFERENCES IN BODY WEIGHTS (G) OF PEMALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS	ROUPS		(
DEPENDENT	¤ O I	CONTROL	.001 X IN DIET	(.01 X IN DIET	ed 1	.10 % IN DIET	ed I (m. f
		2.45 ± .336 (20)	3.40 ± .678 (5)		2.20 ± .490 (5)	_	1.40 ± .600 (5)	
WEEK 2		.70 ± .193 (20)	1.80 ± .374 (5)		.20 ± .200 (5)	_	1.20 ± .200 (5)	
WEEK 3		1.15 ± .182 (20)	$1.20 \pm .200$ (5)		1.80 ± .490 (5)	•	0.00 ± .447 (5)	piñ.
7 X33K	*	1.00 ± .299 (20)	.40 ± .245 (5)		.20 ± .200 (5)	o * (.20 ± .860 (5)	
WEEK 5	•	.73 ± .530 (15)	1.40 ± .245 (5)	×	4.80 ± 2.31 (5)	*	1.40 ± .245 (5)	×
WEEK 6	•	1.07 ± .547 (15)	.60 ± .245 (5)	×	-1.60 ± 2.38 (5)	×	80 ± .374 (5)	*
公司 医		07 ± .284 (15)	40 ± .678 (5)	×	80 ± .374 (5)	*	.40 ± .245 (5)	×
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.73 ± .371 (15)	2.20 ± .583 (5)		1.60 ± .510 (5)	•	20 ± .200 (5)	
WEEK 9		1.40 ± .340 (10)	.60 ± .400 (5)		.20 ± .735 (5)	v	.80 ± .200 (5)	
HEEK 10		50 ± .269 (10)	60 ± .510 (5)	×	1.60 ± .812 (5)	*	.80 ± .583 (5)	
HEEK II		-1.40 ± .267 (10)	80 ± .374 (5)	×	-2.40 ± .748 (5)	×	.60 ± .245 (5)	*
WEEK 12		1.10 ± .407 (10)	1.80 ± .374 (5)		2.00 ± .447 (5)	•	(5) 004. ± 09.	
WEEK 13		.50 ± .601 (10)	60 ± .245 (5)	×	20 ± .374 (5)	×	20 ± .490 (5)	×
WEEK 14		1.40 ± .510 (5)	1.60 ± .812 (5)		1.00 ± 0.00 (5)	•	1.60 ± .600 (5)	
WEEK 15		$1.60 \pm .245$ (5)	2.40 ± .510 (5)		1.00 ± .548 (5)	•	2.40 ± .245 (5)	
WEEK 16		80 ± .200 (5)	-1.60 ± .400 (5)	×	40 ± .510 (5)	*	40 ± .400 (5)	×
WEEK 17	*	.80 ± .200 (5)	20 ± .374 (5)		-2.60 ± 1.29 (5)	_	.80 ± .490 (5)	

. .

Ĭ,

EMTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP IN IN PARENTHESES

+ COMFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: COMPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL NEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x,

upon discontinuation of the treatment was not observed in mice exposed to condensate blend for 13 weeks; in fact, the males at the high dose showed a loss (p < 0.01) on the first week of recovery. Over the full 4 weeks of recovery, however, both males and females added weight about 50% faster than controls, a clear sign of recovery from treatment. The significant increases in body weight gain for males at the 0.001 and 0.01% condensate blend levels during Week 14 (Tables 102 and 103) was not sustained over the recovery period—the sum of the body weight gains for Weeks 14 and 17 were almost the same for control and these treatment groups—and consequently increases are probably not due to discontinuation of the treatment per se.

Food Consumption

Food consumption data were computed weekly and appear in Tables 104 through 109. Food intake for males and females at the high dose is appreciably lower than for controls, beginning in Week 3 and lasting throughout treatment (Tables 104 and 105). This observation correlates well with the period during which significant depression in body weight is observed among these animals (Tables 92 and 93). However, during the first week of treatment, females at this dose level consumed more food than any other group did; yet they did not add weight as fast as the controls (Table 99). It was not ascertained as to whether this increase resulted from increased acceptance of the diet containing condensate blend or whether the food was not actually consumed but was dislocated from the feeders by the mice. However, the latter explanation seems more probable because the increased consumption was recorded for only 2 of the 4 high-dose cages (the recovery groups; see Tables 107 and 111) and because a similar effect for the high-dose (0.10% condensate blend) females was not seen in the first week of the rangefinding study on mice (Appendix G, Table G-22).

Tables 110 and 111 provide the 13-week food consumption data calculated on a body weight basis. By Week 3, food consumption at the high dose had fallen off and remained low (usually by as much as 10 or more g/kg body weight) throughout the treatment period for both sexes (significantly for females on Weeks 6, 8, and 9). Food consumption rates actually showed modest increases later in the study (Weeks 10 through 13) which may reflect adaptation to the treatment by these animals. During Weeks 5 through 9, when food intake rates for high dose mice were at their lowest, these mice actually had a net loss in body weight gain (Tables 98 and 99).

Food consumption data for recovery animals appear in Tables 106 through 109. The immediate increase in food consumption by male mice at the high dose during Week 5, the first week of recovery from the 4-week treatment, is significant (Table 106). Although the female mice at this level (Table 107) did not eat more than females in other groups during this week, they did increase their food consumption over

TABLE 104

EFFECTS OF CONDENSATE WATER ON POOD CONSUMPTION (G/ANIMAL/DAY)
OF MALE MICE DURING 13 WEEKS OF TREATMENT

			TREATHENT GROUPS		1
DEPENDENT Variable	CONTROL	.001 X IN DIET W	7 10. Tald NI	10 x raid ni	3 ≥ 1
3 2 2 3	4.1 ± .622 (4)	4.3 ± .084 (4)	4.5 ± .171 (4)	4.0 ± .115 (4)	
E Manager 1	4.8 ± .079 (4)	5.0 ± .119 (4)	4.5 ± .125 (4)	4.5 ± .320 (4)	
WEEK 3	4.8 ±58 (4)	5.0 ± .200 (4)	4.9 ± .223 (4)	4.2 ± .129 (4)	
WEEK 4	5.0 ± .062 (4)	5.2 ± .095 (4)	4.8 ± .263 (4)	4.0 ± .245 (4)	
WEEK 5	5.4 ± .010 (3)	5.1 ± .400 (2)	5.1 ± .114 (2)	4.3 ± .229 (2)	
9 722A	5.1 ± .197 (3)	5.1 ± .100 (2)	5.1 ± .129 (2)	3.5 ± .100 (2)	*
HEEK 7	5.0 ± .399 (3)	4.6 ± .443 (2)	4.8 ± .057 (2)	3.1 ± .043 (2)	
8 3333 1	5.5 ± .117 (3)	5.6 ± .286 (2)	5.8 ± .043 (2)	3.1 ± .114 (2)	*
WEEK 9	5.1 ± .129 (2)	5.5 ± .271 (2)	5.5 ± .286 (2)	3.6 ± .221 (2)	*
WEEK 10	5.4 ± .571 (2)	5.0 ± .471 (2)	5.4 ± .214 (2)	4.3 ± .878 (2)	
WEEK II	5.2 ± .071 (2)	5,2 ± ,343 (2)	4.9 ± .086 (2)	4.4 ± 1.39 (2)	
WEEK 12	5.2 ± .029 (2)	5.4 ± .114 (2)	5.1 ± .157 (2)	4.4 ± 1.26 (2)	
WEEK 13	5.4 ± .230 (2)	5.1 ± .147 (2)	5.6 ± .480 (2)	4.5 ± .994 (2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIPFERENCES * CONFIDENCE LEVEL = .95

TABLE 105

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY)
OF FEMALE HICE DURING 13 WEEKS OF TREATHENT

				TREATMENT GROUPS		
DEPENDENT VARIABLE	CONTROL	.001 X IN DIET	38	10. I DIET W	10 X III	3
VEEK 1	2.4	4.0 + 167 (4)	•		1	1
					(4) 68/. + 6.4	
7 Y338	4.5 ± .220 (4)	4.5 ± .153 (4)		4.0 + .164 (4)	4.2 ± .129 (4)	
WEEK 3	4.7 ± .058 (4)	4.7 ± .281 (4)		4.6 ± .235 (4)	3.9 ± .101 (4)	
WEEK 4	4.5 ± .146 (4)	4.8 ± .237 (4)		4.4 ± .319 (4)	3.9 ± .187 (4)	
化	4.9 ± .147 (3)	4.7 ± .257 (2)		4.4 ± .471 (2)	4.0 ± .433 (2)	
WEEK 6	4.5 ± .094 (3)	4.2 ± .300 (2)		4.2 ± .400 (2)	3.3 ± .174 (2)	
WEEK 7	$4.2 \pm .058$ (3)	4.1 + .429 (2)		4.2 ± .043 (2)	3.3 ± .273 (2)	
8 M M M M M M M M M M M M M M M M M M M	4.7 ± .190 (3)	4.7 ± .343 (2)		4.8 ± .200 (2)	3.4 ± .138 (2)	
WEEK 9	5.1 ± .100 (2)	4.9 ± .371 (2)		4.7 ± .057 (2)	3.3 ± .071 (2)	*
WEEK 10	4.7 ± .171 (2)	4.7 ± .143 (2)		5.1 ± .157 (2)	2.3 ± 1.43 (2)	+
WHEN 11	4.4 ± .043 (2)	4.4 ± .100 (2)		$4.7 \pm .614$ (2)	3.8 ± .300 (2)	
WEEK 12	3.8 ± .543 (2)	4.5 ± .486 (2)		4.7 ± .229 (2)	3.3 ± .286 (2)	
WEEK 13	5.2 ± .050 (2)	4.8 ± .197 (2)		5.1 ± .546 (2)	3.7 ± .190 (2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES WE WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES CONFIDENCE LEVEL # .95

t Technician error in weighing (see Table 109).

TABLE 106

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF MALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATHE	TREATMENT GROUPS		
DEPENDENT VARIABLE	CONTROL	;		Taloni Taloni	38 1	2 10. M Tald NI	; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	, 10 % Taid ni	3 1
WEEK 1	4.1 ± .622 (4)	(*)	4.2 (1)	(1)		4.8 (1)		4.1 (1)	
WEEK 2	4.8 ± .079 (4)	(*)	4.7 (1)	(1)		4.8 (1)		5.4 (i)	
WEEK 3	4.8 ± .158 (4)	(4)	5.5	(1)		5.4 (1)		4.5 (1)	
7 YEEK 7	5.0 ± .062 (4)	(4)	5.3	5,3 (1)		5.3 (1)		4.4 (1)	
WEEK S	5.4 ± .010	(3)	5.5	3		5.6 (1)		6.2 (1)	
9 X32A	5.1 ± .197 (3)	3	5.1	(1)		5.3 (1)		5.7 (1)	
WEEK 7	5.0 ± .399	(3)	5.1	(1)		5.5 (1)		5.2 (1)	
WEEK 8	5.5 ± .117 (3)	(3)	6.2 (1)	(1)		5.7 (1)		6.1 (1)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

TABLE 107

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF FEMALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GROUPS		
DEPENDENT	CONTROLGROUP	.001 Z IN DIET	.001 Z IN DIET W		, 01 % IN DIET W	. 10 x 10 N I	3 8 (
WEEK I	2.4 ± .198 (4)	4.5 (1)	1)	4.1	4.1 (1)	6.4 (1)	
军四四次 2	4.5 ± .220 (4)) 9.4	(1)	4.4	(1)	4.5 (1)	
WEEK 3	4.7 ± .058 (4)) 4.8	(1)	5.2	(1)	4.1 (1)	
7 X23A	4.5 ± .146 (4)	5.4 ((1)	5.4	(1)	4.3 (1)	
2 X 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4.9 ± .147 (3)	5.7 ((1)	5.5	(1)	5,3 (1)	
WEEK 6	4.5 ± .094 (3)	5.1 ((1)	5.1	(1)	4.9 (1)	
WEEK 7	4.2 ± .058 (3)	5.3 ((1)	6.4	(1)	4.5 (1)	
10 EEE	4.7 ± .190 (3)	5.4 ((3)	6.4	4.9 (1)	5.3 (1)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

TABLE 108

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/ANIMAL/DAY) OF MALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

				TREATHENT GRO	GROUPS		
DEPENDENT	CONTROL	.00; Z IN DIET	38 1	7 10 · 1 Talu NI	3 1		. 10 % IN DIET W
: Mask	4.1 ± .622 (4)	4.2 (1)		4.8 (1)		4.3	3
WEEK 2	4.8 ± .079 (4)	4.9 (1)		4.3 (1)		4.5	(1)
WEEK 3	4.8 ± .158 (4)	4.6 (1)		4.4 (1)		4.1	(1)
7 TEEK 7	5.0 ± .062 (4)	5.2 (1)		4.8 (1)		4.2	(1)
WEEK S	5.4 ± .010 (3)	4.7 (1)		5.0 (1)		4.5	(1)
9 *************************************	5.1 ± .197 (3)	5.0 (1)		5.0 (1)		3.6	(1)
WEEK 7	5.0 ± .399 (3)	4.1 (1)		4.7 (1)		3.2	(1)
E E E E E E E E E E E E E E E E E E E	5.5 ± .117 (3)	5.9 (1)		5.8 (1)		3.0	(1)
WEEK 9	5.1 ± .129 (2)	5.2 (1)		5.8 (1)		3.9	(1)
WEEK 10	5.4 ± .571 (2)	4.5 (1)		5.2 (1)		5.7	(1)
VEEK II	5.2 ± .071 (2)	5.5 (1)		5.0 (1)		9.9	(1)
WEEK 12	5.2 ± .029 (2)	5.3 (1)		5.2 (1)		4. 6	(1)
WEEK 13	5.4 ± .230 (2)	5.0 (1)		5.2 (1)		0.9	(1)
PEEK 14	6.0 (1)	6.1 (1)		(1) 6.9		5.7	(1)
WEEK 15	4.4 (1)	5.0 (1)		5.2 (1)		6.4	(1)
WEEK 16	5.3 (1)	5.0 (1)		4.4 (1)		6.9	3)
WEEK 17	5.1 (1)	5.3 (1)		5.7 (1)		6.3	(1)

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

168

TABLE 109

1-

EFFECTS OF CONDENSATE WATER ON POOD CONSUMPTION (G/ANIMAL/DAY) OF PEMALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

				TREATHENT (GROUPS		
DEPENDENT VARIABLE	CONTROL	F 100.	3s (X 10 . Taid Ni	 	x oi.	3 1
I Maan	2.4 ± .198 (4)	4.1 (1)		4.5 (1)		5.6 (1)	
WEEK 2	4.5 ± .220 (4)	4.6 (1)		4.0 (1)		3.9 (1)	
WEEK 3	4.7 ± .058 (4)	(1) (1)		4.5 (1)		3.7 (1)	
WEEK 4	4.5 ± .146 (4)	5.0 (1)		4.1 (1)		3.5 (1)	
WEEK 5	4.9 ± .147 (3)	5.0 (1)		4.8 (1)		3.6 (1)	
VEEK 6	4.5 ± .094 (3)	4.5 (1)		4.6 (1)		3.1 (1)	
WEEK 7	4.2 ± .058 (3)	4.6 (1)		4.2 (1)		3.1 (1)	
WEEK 8	4.7 ± .190 (3)	5.0 (1)		\$.0 (1)		3.3 (1)	
6 MBBM	5.1 ± .100 (2)	5.3 (1)		4.7 (1)		3.3 (1)	
WEEK 10	4.7 ± .171 (2)	4.9 (1)		5.3 (1)		+ (1) +	
WEEK 11	4.4 ± .043 (2)	4.5 (1)		4.1 (1)		4.1 (1)	
WEEK 12	3.8 ± .543 (2)	5.0 (1)		4.9 (1)		3.0 (1)	
WEEK 13	5.2 ± .050 (2)	4.6 (1)		(1) 9.7		3.5 (1)	
WEEK 14	4.9 (1)	5.2 (1)		5.0 (1)		4.5 (1)	
ST MBBR	4.3 (1)	4.8 (1)		4.4 (1)		4.5 (1)	
91 M32M	4.2 (1)	4.3 (1)		4.1 (1)		4.2 (1)	
WEEK 17	4.3 (1)	4.4 (1)		3.9 (1)		4.3 (1)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W - WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

⁺ Technician error in weighing.

TABLE 110

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY)
OF MALE MICE DURING 13 WEEKS OF TREATMENT

					TREATMENT GROUPS	
DEPENDENT Variable	CONTROL	1 1	.00; Z IN DIET	38 I	.cl x IN DIET	101. IN DICT
: ×223	145.2 ± 21.8 (4)	(4)	153.7 ± 1.59 (4)	_	160.5 ± 4.75 (4)	149.5 + 3.98 (4)
WEEK 2	162.1 ± 3.09	(*)	166.6 ± 4.11 (4)	•	158.9 ± .913 (4)	158.7 ± 3.09 (4)
WEEK 3	158.1 ± 7.03	(†)	159.0 ± 5,32 (4)	_	159.6 ± 2.95 (4)	148.5 ± 3.81 (4)
WEEK 4	159.0 + 3.01	(4)	161.0 ± 5.16 (4)	_	155.4 + 3.97 (4)	142.8 ± 2.33 (4)
WEEK S	168.2 ± 4.76	(3)	162.6 ± .211 (2)	_	158.4 ± .874 (2)	148.9 ± 9.94 (2)
WEEK 6	156.8 ± 8.67	(3)	155.6 ± 3,59 (2)	•	149.1 ± .601 (2)	123.7 ± 4.85 (2)
WEEK 7	152.3 ± 5.31 (3)	(3)	142.6 ± 3.58 (2)	•	148.6 ± .531 (2)	116.0 + 8.86 (2)
8 M 32 M	154.4 ± 5.77	(3)	166.7 ± 8.50 (2)	_	162.1 ± 3.77 (2)	$1i7.3 \pm 2.63$ (2)
6 MBBM	145.9 + 7.80	(2)	156.2 ± 2.39 (2)	•	154.5 ± 7.6; (2)	118.4 ± 4.63 (2)
WEEK 10	152.6 ± 9.70 (2)	(3)	146.0 ± 4.00 (2)	•	148.3 ± 3.86 (2)	139.6 ± 24.6 (2)
WEEK II	149.6 ± 5.21 (2)	(2)	155.2 ± 14.0 (2)	_	147.2 ± .809 (2)	141.7 ± 40.3 (2)
WEEK 12	137.2 ± 1.79 (2)	(3)	150.8 ± .662 (2)	_	149.7 ± 1.99 (2)	$136.2 \pm 32.1 (2)$
WEEK 13	149.2 ± 1.43 (2)	(2)	144.4 ± 1.93 (2)	_	160.9 ± 13.3 (2)	141.8 ± 27.3 (2)

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES WE - WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES + CONFIDENCE LEVEL - .95

*

TABLE 111

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY)
OF FEMALE MICE DURING 13 WEEKS OF TREATMENT

				TREATMENT GROUPS		
DEPENDENT VARIABLE	CONTROL	7 100. Taid ni] 	OIX IN DIET	. 10 t IN DIET	33 (
E E E E	93.9 ± 7.84 (4)	158.7 ± 3.84 (4)	7)	164.8 ± 6.74 (4)	204.5 ± 35.5 (4)	
WEEK 2	170.4 ± 7.77 (4)	169.1 ± 2.03 (4)	(7	164.6 ± 5.33 (4)	167.2 ± 4.31 (4)	
¥ 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	169.7 ± 1.57 (4)	169.6 ± 4.40 ((†)	175.3 ± 9.74 (4)	155.3 ± 2.35 (4)	
VEEK 4	158.9 ± 4.04 (4)	166.6 ± 5.19	(4)	166.0 ± 10.2 (4)	151.9 ± 3.08 (4)	
S X32M	170.1 ± 4.87 (3)	164.0 ± 1.52 (2)	2)	150.2 ± .72; (2)	149.6 ± 9.97 (2)	
WEEK 6	152.1 ± 1.61 (3)	142.2 ± 4.37 ((2)	148.2 ± 3.14 (2)	127.3 ± 3.06 (2)	*
WEEK 7	141.6 ± 2.63 (3)	140.1 ± 10.3 ((2)	145.9 ± 3.08 (2)	126.2 ± 6.58 (2)	
E E E E E E E E E E E E E E E E E E E	155.6 ± 3.94 (3)	151.0 ± 3.27 ((2)	160.5 ± .291 (2)	130.6 ± 1.45 (2)	*
WEEK 9	161.5 ± 3.18 (2)	156.5 ± 1.87 ((2)	153.3 ± 3.16 (2)	126.2 ± .914 (2)	*
WEEK 10	153.5 ± 6.04 (2)	150.6 ± .724 ((2)	162.6 ± 3.28 (1)	85.6 ± 51.5 (2)	
WEEK II	149.6 ± .069 (2)	142.9 ± .000	(2)	155.9 ± 22.4 (2)	137.4 ± 11.8 (2)	
WEEK 12	124.6 ± 12.0 (2)	140.7 ± 8.15 (2)	2)	144.6 ± 5.30 (2)	114.1 ± 6.96 (2)	
WEEK 13	168.6 ± 3.23 (2)	149.0 ± 11.3 (2)	2)	160.9 ± 21.4 (2)	126.5 ± 1.22 (2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

SRI INTERNATIONAL MENLO PARK CA
MAMMALIAN TOXICOLOGICAL EVALUATIONS OF THT WASTEWATERS. VOLUME --ETC(U)
APR 79 JV DILLEY, C A TYSON, G W NEWELL
DAMD17-76-C-6050
SRI LSU-5028 AD-A081 590 UNCLASSIFIED 3 .. 2

Week 4 substantially more than any other female group did. In this sense, the effects on males and females during the first week of withdrawal from the treatment were the same; that is, food consumption was elevated relative to control and other treatment groups.

Females treated for 13 weeks at the 0.10% level also increased their food consumption more in the first week of recovery than any other female group did, but males did not (Tables 108 and 109). In the latter case, the males in the 0.10% condensate blend actually began eating more during Weeks 10 through 13, before treatment ended.

When the intake rates are compared on a body weight basis (Tables 110 through 115), no statistically significant differences are cited at the high dose. There was a noticeable, though temporary, increase in food intake for both males and females at this level during Week 5 that may be related to removal from the treatment (Tables 112 and 113). A similar change in food efficiency for animals at this level after 13 weeks of treatment is not indicated statistically, but the sum of the intake rates for the 4-week recovery weeks is noted to be higher for males and females in the high-dose groups than in their corresponding control (and other treatment) groups. This change may have been produced by discontinuation of the treatment. At the lower dose levels there are no consistent effects of treatment on food intake.

The actual doses of condensate water consumed in the diets of the mice were calculated. The data are given in Tables 116 and 117.

Organ Weights

Organ weights and weight ratios for mice killed after treatment are summarized in Tables 118 through 121. After four weeks, males at the 0.10% condensate blend level had significantly low testicular weights and testes-to-brain and testes-to-body weight ratios. These parameters were significantly different after 13 weeks also. Females at this level had enlarged spleens (not significantly so) at 4 and at 13 weeks. The spleen-to-weight ratios and (marginally) liver-to-brain weight ratios were cited statistically after 13 weeks of treatment. These were the only organ weight differences that appeared to be treatment-related.

Among mice allowed 4 weeks of recovery after 4 weeks of treatment (Tables 122 and 123), no alterations were seen. After the longer period of treatment (Tables 124 and 125), males at the high dose had depressed testes weights and weight ratios, indicating that recovery from this effect of treatment was not complete after 4 weeks. No significant differences were seen in female groups subjected to 13 weeks of treatment followed by 4 weeks of recovery.

TABLE 112

The state of the s

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)//DAY)
OF MALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					H	TREATMENT GROUPS	.P.S		
DEPENDENT VARIABLE	CONTROLGROUP		.001 X IN DIET	3 8 1	. 01 % IN DIET	. 01 X IN DIET	De i	10 K	. 10 Z IN DIET
E E E E E E E E E E E E E E E E E E E	145.2 ± 21.8 (4)	149.0 (1)	(1)		160.0 (1)	(1)		141.9 (1)	(3)
WEEK 2	162.1 ± 3.09 (4)	160.3 (1)	(1)		159.0 (1)	(1)		167.9 (1)	(1)
WEEK 3	158.1 ± 7.03 (4)	174.3 (1)	(1)		159.7 (1)	(1)		142.9 (1)	(1)
PEEK 4	159.0 ± 3.01 (4)	163.0 (1)	(3)		151.9 (1)	(1)		138.4	(1)
WEEK 5	168.2 ± 4.76 (3)	159.5 (1)	(1)		151.4 (1)	(1)		175.3	(1)
VERK 6	156.8 ± 8.67 (3)	150.5 (1)	(1)		135.5 (1)	(1)		157.6	(1)
WEEK 7	152.3 ± 5.31 (3)	146.1 (1)	(1)		143.6 (1)	(1)		140.9	(1)
EEE 80	154.4 ± 5.77 (3)	174.2 (1)	(1)		142.9 (1)	(1)		159.8	(1)

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES + CONFIDENCE LEVEL = .95

TABLE 113

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/RG (BODY WT)/DAY)
OF PEMALE MICE DURING 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATMENT GROUPS	ري وي			
DEPENDENT VARIABLE	CONTROL	TROL	2 100.	H Taid Ni		. 01 X Taid Ni	3 1	N OI .	. 10 K IN DIET	38 1
WEEK 1	93.9 ± 7.84	7.84 (4)	168.6 (1)	(1)	171.2	171.2 (1)		256.9 (1)	3	
WEEK 2	170.4 ± 7.77	(4) (1.1	170.2 (1)	(1)	180.0	180.0 (1)		172.5 (1)	3	
WEEK 3	169.7 ± 1.57	1.57 (4)	182,4 (1)	(1)	204.2	204.2 (1)		150,3 (1)	(1)	
1200K 4	158.9 ± 4.04 (4)	(4)	175.1 (1)	(1)	196.0	(1) 0.961		156.5 (1)	3	
WEEK S	170.1 ± 4.87 (3)	(3)	175.7 (1)	(1)	187.6	187.6 (1)		179.8 (1)	(3)	
WEEK 6	152.1 ± 1.61	(3)	152.2 (1)	(1)	168.1	168.1 (1)		155.7	Ξ	
WEEK 7	141.6 ± 2.63 (3)	(3)	156.3 (1)	(1)	157.5	157.5 (1)		149.4 (1)	(1)	
WEEK 8	155.6 ± 3.94 (3)	(3)	155.2 (1)	(1)	160.6	160.6 (1)		164.3 (1)	(1)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES * CONFIDENCE LEVEL = .95

TABLE ::4

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WT)/DAY) OF MALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

			1	TREATMENT GROUPS	GROUPS		
DEPENDENT	CONTROL	. 001 X IN DIET	38 (,	.01 Z IN DIET	3	A OI.	3 (
1. 10 10 10 10 10 10 10 10 10 10 10 10 10	145.2 ± 21.8 (4)	155.5 (1)		_		158.8 (1)) !
WEEK 2	162.1 ± 3.09 (4)	170.6 (1)		161.1 (1)		160.0 (1)	
WEEK 3	158.1 ± 7.03 (4)	156.6 (1)		151.7 (1)		143.8 (1)	
VEEK 4	159.0 ± 3.01 (4)	170.1 (1)		166.5 (1)		149.0 (1)	
WEEK S	168.2 ± 4.76 (3)	162.8 (1)		159.2 (1)		158.8 (1)	
WEEK 6	156.8 ± 8.67 (3)	159.2 (1)		149.7 (1)		128.6 (1)	
WEEK 7	152.3 ± 5.31 (3)	139.0 (1)		149.1 (1)		124.9 (1)	
8 X223	154.4 ± 5.77 (3)	175.2 (1)		165.8 (1)		119.9 (1)	
6 жээм	145.9 ± 7.80 (2)	153.8 (1)		162.1 (1)		124.4 (1)	
WEEK 10	152.6 ± 9.70 (2)	142.0 (1)		144.5 (1)		178.6 (1)	
WEEK 11	149.6 ± 5.21 (2)	169.1 (1)		148.0 (1)		205.4 (1)	
WEEK 12	137.2 ± 1.79 (2)	150.1 (1)		147.7 (1)		187.0 (1)	
WEEK 13	149.2 ± 1.43 (2)	146.2 (1)		148.6 (1)		181.8 (1)	
WEEK 14	150.0 (1)	157.2 (1)		170.0 (1)		176.9 (1)	
WEEK 15	107.8 (1)	125.6 (1)		126.8 (1)		172.1 (1)	
WEEK 16	132.8 (1)	125.6 (1)		120.9 (1)		195.2 (1)	
WEEK 17	129.6 (1)	137.9 (1)		147.6 (1)		173.5 (1)	

PAC. W

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARENTHESES WE MILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES ** CONFIDENCE LEVEL **.95

:

TABLE 115

Calebra and Calebra and Calebra

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION (G/KG (BODY WI) DAY) OF PEMALE MICE DURING 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						P	TREATMENT GRO	GROUPS			
DEPENDENT VARIABLE	CONTROL	}	•	.001 Z IN DIET	3 8 (Z	.01 % IN DIET	3 8 (. X	. 10 X IN DIET	38.1
	93.9 ± 7.84 ((7)	160.9	(1)		180.6	(3)		244.7	(3)	
WEEK 2	170.4 ± 7.77	(4)	169.1	(1)		158.7	(1)		159.4	(1)	
WEEK 3	169.7 ± 1.57	(7)	167.0	(1)		167.2	(1)		152.3	(1)	
WEEK 4	158.9 ± 4.04	(*)	174.6	(1)		152.3	(1)		142.9	(1)	
WEEK 5	170.1 ± 4.87	(3)	165.6	(1)		150.9	(1)		140.6	(1)	
HEEK 6	152.1 ± 1.61	(3)	146.6	3		151.3	(1)		124.6	(1)	
WEEK 7	141.6 ± 2.63 ((3)	150.4	(3)		142.9	(1)		120.4	(1)	
WEEK 8	155.6 ± 3.94 ((3)	154.3	(1)		160.3	(1)		129.3	(1)	
6 Mark	161.5 ± 3.18	(2)	158.3	3		150.1	(:)		125.3	(1)	
OI MESK 10	153.5 ± 6.04 ((2)	149.9	(3)		159.3	(1)		34.1	(1)	
WEEK 11	149.6 ± .069	(2)	142.9	(1)		133.5	(1)		149.1	(1)	
WEEK 12	124.6 ± 12.0	(3)	148.8	(1)		149.9	(1)		107.1	(1)	
WEEK 13	168.6 ± 3.23 ((2)	138.5	(1)		141.1	(1)		125.4	(1)	
WEEK 14	150.4 (1)		151.3	3		148.7	(1)		154.2	(1)	
WEEK 15	124.3 (1)		131.1	(1)		127.9	(1)		141.5	(1)	
WEEK 16	125.9 (1)		121.9	(E)		121.0	3		133.8	(1)	
WEEK 17	125.4 (1)		125.0	(1)		124.7	:		134.9	(E)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH N OF CAGES IN PARRNTHESES W = WILLIAMS TEST OF SIGNIFICANT CONTROL-TREATMENT DIFFERENCES + CONFIDENCE LEVEL = .95

:

Table 116

DOSES OF CONDENSATE WATER [mg/kg (body weight)/day] IN DIETS CONSUMED BY MALE MICE DURING 13 WEEKS OF TREATMENT

	T	reatment Groups	; *
	0.001%	0.01%	0.10%
Week	in Diet	in Diet	in Diet
1	1.08	15.5	137.5
2	1.17	15.3	146.0
3	1.13	10.1	99.5
4	1.14	9.8	95.6
5	1.16	10.0	99.8
6	1.23	11.9	106.4
7	1.13	11.9	99.8
8	1.32	13.0	100.9
9	1.23	12.4	101.8
10	1.05	11.8	120.1
11	1.12	11.8	121.9
12	1.25	13.8	125.3
13	1.20	14.8	<u>130.5</u>
Average			
Dose	1.17	12.5	114.2

^{*} Daily food consumption x analytical concentration of condensate water in feed.

Table 117

DOSES OF CONDENSATE WATER [mg/kg (body weight)/day] IN DIETS CONSUMED BY FEMALE MICE DURING 13 WEEKS OF TREATMENT

	T1	reatment Groups	
	0.001%	0.01%	0.10%
Week	in Diet	in Diet	in Diet
1	1.11	15.8	188.1
2	1.18	15.8	153.8
3	1.21	11.0	104.1
4	1.19	10.5	101.8
5	1.16	9.5	100.2
6	1.12	11.8	109.5
7	1.11	11.7	108.5
8	1.19	12.9	112.3
9	1.23	12.2	108.5
10	1.09	13.4	73.6
11	1.03	12.5	118.2
12	1.17	13.3	105.0
13	1.24	14.8	116.4
Average			
Dose	1.16	12.7	115.4

^{*} Daily food consumption x analytical concentration of condensate water in the feed.

TABLE 118

The state of the s

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF MALE MICE AFTER 4 WEEKS OF TREATMENT

						TRE	TREATMENT GROUPS	GROUI	S)		
DEPENDENT	aq U I	CONTROL	;	A 100.		N 10 .	14 10 14	. !	e :	A OL XI	ex
FINAL WEIGHT	*		(3)	33.80 ± .663 (5)	Ω	27.40 ± 2	2.50 ((5)		23.00 ± 3.35 (5)	*
BRAIN		.51 ± .027 ((3)	(5) 710. ± 64°	<u>:</u>	+14.	.012	(3)	«	.45 ± .030 (5)	<
HEART			(3)	.17 ± .007 (5)	:	+1 61.	, 620.	(\$)	<	.13 ± .020 (5)	•
LIVER		2.17 ± .087 ((3)	2.07 ± .085 (5)	<u>:</u>	1.62 +	.151	(3)		1.45 ± .278 (5)	<
SPLEEN	•	.13 ± .006	(3)	.10 ± .006 (5)	W * ()	+1 61.	.036	(3)		.12 ± .034 (5)	
KIDNEYS) 040. + 55.	(3)	.50 ± .018 (5)	<u>.</u>	+1 65.	.052	(3)		.35 ± .063 (5)	<
TESTES) 4000 + 12.	(3)	.24 ± .013 (5	(S) A	.20 ±	.007	(3)	#A	.09 ± .013 (5)	+
BRAIN/BODY		15,26 ± *000 ((3)	14.65 ± .683 (5)		15.45 ±	. 940	(3)		20.59 ± 1.65 (5)	*
HEART/BODY		5.09 ± .268 ((3)	5.11 ± .298 (5	(5)	6.85 +	.622	(3)		5.60 ± .398 (5)	
LIVER/BODY		64.09 ± 2.13 ((3)	61.33 ± 2.37 (5)	()	59.22 ±	2.03	(3)		61.34 ± 2.91 (5)	
SPLEEN/BODY	*	3.98 ± .227 ((3)	2.97 ± .188 (5	* (\$)	7.08 ±	1.29	(3)		4.73 ± .859 (5)	
KIDNEYS/BODY		16.45 ± 1.32 ((3)	14.72 ± .731 (5	(5)	14.22 ±	, 306	(5)		15.08 ± .767 (5)	
TESTES/BODY		7.88 ± .287 ((3)	7.01 + .481 (5	(S)	7.37 ±	707.	(3)		3.93 ± .150 (5)	0
HEART/BRAIN		.34 ± .022 ((3)	.35 ± .022 (5)	<u>.</u>	+ 54.	950.	(5)	æ	.28 ± .026 (5)	∢
LIVER/BRAIN		4.25 ± .226 ((3)	4.23 ± .281 (5	(5)	3.89 +	.277	(3)		3.11 ± .411 (5)	
NIVBU/BBVIN	*	,26 ± .015 ((3)	.20 ± .015 (5	* (5)	+ 5 + .	.080	(3)		.25 ± .060 (5)	
KIDNEYS/BRAIN		1.10 ± .113 ((3)	1.01 ± .031 (5	(5)	+ 76.	.103	(3)		.76 ± .086 (5)	<
TESTES/BRAIN		. 52 ± .023 ((3)	.48 ± .034 (5	(5)	+ 84.	800.	(3)		.20 ± .017 (5)	+

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,

20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000KG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF FEMALE MICE AFTER 4 WEEKS OF TREATMENT

						TREATHENT GROUPS	GROUI	Se		
DEPENDENT	பைப	CONTROL	i i !	.001 X IN DIET		LO1 X IO I I I I I I I I I I I I I I I I I		exi:	. 10 X IN DIET	ed (
FINAL WEIGHT		30.60 ± .812 (5	3	29.80 ± .800	(5)	27.80 ± 2.11	3		27.20 ± 1.83 (5)	
BRAIN		. 53 ± .017 (5)	;	.53 ± .020	(5)	.52 ± .022	(3)		.50 ± .012 (5)	
HEART		.17 ± .011 (5)		.16 ± .009	(5)	.14 ± .012	(3)	<	$.15 \pm .015$ (5)	<
LIVER		2.05 ± .042 (5)	:	1.73 ± .075	(5)	1.61 ± .160	(3)		$1.92 \pm .172$ (5)	
SPLEEN	+	.13 ± .004 (5)	?	.13 ± .020	(5)	.14 + .015	(3)		$.21 \pm .052$ (5)	
KIDNEYS		.42 ± .014 (5)	(3	.40 ± .025	(5)	.36 ± .034	(3)	<	.36 ± .022 (5)	<
BRAIN/BODY		17.26 ± .839 (5	(3)	17.78 ± .908	(5)	18.77 ± .859	(3)		18.77 ± 1.23 (5)	
HEART/BODY		5.52 ± .418 (5)	?	5.25 ± .347	(5)	5.10 ± .147	(3)		5.48 ± .275 (5)	
LIVER/BODY		66.98 ± 1.61 (5)		57.95 ± 1.62	(5)	57.77 ± 2.69	(3)		70.22 ± 2.89 (5)	
SPLEEN/BODY	*	4.19 ± .149 (5)		4.22 ± .621	(5)	5.16 ± .514	(3)		7.41 ± 1.41 (5)	
KIDNEYS/BODY		13.63 ± .584 (5)		13.29 ± .755	(5)	12.91 ± .539	(3)		13.41 ± .275 (5)	
HEART/BRAIN		.32 ± .014 (5)		.30 ± .011	(5)	.27 ± .018	(3)	<	.30 ± .028 (5)	
LIVER/BRAIN		3.90 ± .128 (5)	2	3.28 ± .144	(5)	3.11 ± .228	(3)		3.83 ± .375 (5)	
SPLEEN/BRAIN	+	.24 ± .007 (5)	?	.24 ± .031	(5)	.28 ± .026 (5)	(3)		.42 ± .105 (5)	
KIDNEYS/BRAIN		.79 ± .034 (5)	3.	.75 ± .029	(3)	150. ± 07.	(5)	<	.72 ± .040 (5)	

:

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF MALE MICE AFTER 13 WEEKS OF TREATMENT

						TREATMENT G	GROUPS		
DEPENDENT VARIABLE	m U I	CONTROL	;	,001 X IN DIET	e4.1	.01 % IN DIET	as	. 10 X IN DIET	E 1
FINAL WEIGHT		34.60 ± 2.58	(5)	35.40 ± .678 (5)		34.00 ± 1.14 (5)	_	29.00 ± 2.21 (5)	
BRAIN		.53 ± .014	(3)	.55 ± .020 (5)		.54 ± .024 (5)	_	.52 ± .034 (5)	
HEART		.18 ± .017	(3)	.21 ± .018 (5)	ď	.21 ± .022 (5)	8	.18 ± .013 (5)	
LIVER		1.51 ± .104	(5)	1.62 ± .044 (5)		1.64 ± .115 (5)	_	1.61 ± .:58 (5)	
SPLEEN	•	.11 + .018	(3)	.11 ± .004 (5)		·io + ·006 (5)	_	(5) 970. + 61.	
KIDNEYS	*	.54 ± .011	(3)	(5) 6:0. + 75.		(5) 670. + 55.	^	(5) 050. ± 15.	
TESTES		.25 ± .022	(3)	.24 ± .005 (5)		.24 ± .013 (5)	_	·ii ± .012 (5)	Q +
BRAIN/BODY		15.51 ± 1.10	(5)	15.69 ± .756 (5)		15.91 ± .665 (5)	_	18,50 ± 2,07 (5)	
HEART/BODY		5.33 ± .984	(3)	5.97 ± .620 (5)		6.22 ± .553 (5)	_	6.10 ± .270 (5)	
LIVER/BODY		44.24 + 3.42	(2)	45.95 ± 1.99 (5)		48.08 ± 2.25 (5)	_	55.52 ± 2.99 (5)	
SPLEEN/BODY	+	3.27 ± .756	(3)	3.05 ± .079 (5)		3.06 ± .143 (5)	~	6.11 ± 1.25 (5)	
KIDNEYS/BODY		15.84 ± 1.22	(3)	16.27 ± .833 (5)		16.17 ± .915 (5)	_	17.55 ± 1.30 (5)	
TESTES/BODY		7.30 ± .413	(3)	6.86 ± .268 (5)		7.20 ± .404 (5)	•	4.01 ± .803 (5)	+
HEART/BRAIN		.34 ± .037	(3)	.38 ± .020 (5)	¥	.39 ± .027 (5)	V	.34 ± .032 (5)	
LIVER/BRAIN		2.86 ± .117	(5)	2.93 ± .051 (5)		3.03 ± .129 (5)	•	3.09 ± .222 (5)	
SPLEEN/BRAIN	٠	.20 ± .032	(3)	.20 ± .008 (5)		.19 ± .007 (5)	•	.36 ± .089 (5)	
KIDNEYS/BRAIN		1.02 ± .033	(3)	1.04 ± .017 (5)		1.03 ± .078 (5)	_	(5) $750. \pm 79$	
TESTES/BRAIN		148 + .041	(3)	.44 ± .016 (5)		.46 ± .032 (5)	_	.21 ± .019 (5)	Q +
		•							

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLEITS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x.

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF FEMALE MICE AFTER 13 WEEKS OF TREATMENT

							TREATHENT	T GROUPS	PS			
DEPENDENT VARIABLE	m U I	CONTROL	; ;	.001 Z IN DIET		E 1	OI X IN DIET		; ; ; ; ; ; ;	10 X IX DIET		es 1
FINAL WEIGHT		28.80 ± .860 (5)		29.60 ± 1.03	03 (5)	•	29.40 + .748	(3)		29.00 ± 1.22	(*)	
BRAIN		.57 ± .034 (5)	_	.55 ± .028	28 (5)	•	.53 ± .012	(3)		.54 ± .029	(4)	
HEART		.16 ± .013 (5)	_	.17 ± .010	(5) 01	•	.17 ± .017	(3)		.18 + .024	(*)	<
LIVER		1.40 ± .119 (5)		1.46 ± .128	28 (5)	•	1.42 ± .074	(3)		1.67 ± .126	(*)	
SPLEEN		.11 ± .013 (5)	_	.10 ± .020	20 (5)	•	.10 + .014	(3)		.19 ± .021	(4)	۵
KIDNEYS		.41 ± .048 (5)	_	.43 + .058	58 (5)	<u>.</u>	.43 ± .030	(3)		.44 + .043	(*)	
BRAIN/BODY		19.81 ± .668 (5)		18.68 ± .360	60 (5)	•	18.11 ± .337	(8)		18.72 ± .727	(4)	
HEART/BODY		5.46 ± .323 (5)		5.61 ± .287	87 (5)	•	5.81 + .656	(3)		6.31 ± .572	(4)	
LIVER/BODY		48.20 ± 2.64 (5)		48.93 ± 2.92	92 (5)	•	48.52 ± 2.65	(3)		57.28 ± 2.25	(4)	
SPLEEN/BODY		3.86 ± .364 (5)		3.38 ± .542	42 (5)	•	3.46 ± .447	(5)		6.45 ± .666	(*)	«
KIDNEYS/BODY		14.03 ± 1.18 (5)		14.41 ± 1.56	(•	14.75 ± .901	(3)		15.00 ± .981	(4)	
HEART/BRAIN		$.28 \pm .012$ (5)	_	.30 ± .016	(5) 91	•	.32 ± .035	(3)	∢	.34 ± .035	(*)	m
LIVER/BRAIN		2.43 ± .079 (5)		2.61 ± .113	13 (5)	•	2.68 ± .140	(3)		3.07 ± .122	(*)	«
SPLEEN/BRAIN		(5) 910. \pm 61.	_	.18 ± .025	25 (5)	•	.19 ± .026	(5)		.35 ± .034	(4)	Q +
KIDNEYS/BRAIN		.70 ± .040 (5)	_	.77 ± .071	(5) 12	2	.81 ± .045	(3)		.80 ± .043	(4)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES * CONFIDENCE LEVEL = .95 + CONFIDENCE LEVEL = .99

1

.

Printer Printer A

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A, 20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 122

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF MALE MICE AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT	GROUPS			
DEPENDENT VARIABIE	æ ၁ ၊	CONTROL	.001 X IN DIET		. 01 X IN DIET	H		. 10 x IN DIET	H 1
FINAL WEIGHT		36.60 ± 1.03 (5)	35.60 ± 1.08 (5)	2	.) \$77. ± 00.04	(5)		38.00 ± 1.47 (4)	
BRAIN		.54 ± .015 (5)	(5) 510. ± 95. (<u>.</u>	. 610. ± 09.	(3)	¥	.57 ± .016 (4)	
HEART		.21 ± .004 (5)	(5) $010 + 22 + 010$ (5)	•	.28 ± .014	(5)	æ	.23 ± .015 (4)	∢
LIVER		2.10 ± .082 (5)	2.32 ± .111 (5)	•	2.61 ± .078 (* (5)		2.36 ± .168 (4)	
SPLEEN	+	.io ± .015 (5)	(5) .13 ± .012 (5)	2	.13 ± .017	(5)		.27 ± .108 (4)	
KIDNEYS		.51 ± .036 (5)	(5) .62 ± .022 (5)	A (.67 ± .043	(3)	æ	.62 ± .067 (4)	6 Q
TESTES		.24 ± .021 (5)	$.22 \pm .034$ (5)	•	.26 ± .013 ((3)	¥	.23 ± .016 (4)	
BRAIN/BODY		14.68 ± .455 (5)	(5) 15.84 ± .618 (5)	C	15.05 ± .660	(5)		15.18 ± .561 (4)	
HEART/BODY		5.66 ± .257 (5)	6.30 ± .286 (5)	•	6.97 ± .412	(5)		6.12 ± .287 (4)	
LIVER/BODY		57.53 ± 1.81 (5)	65.17 ± 1.40 (5)	•	65.31 ± 2.02 ((5)	-	62.03 ± 2.04 (4)	
SPLEEN/BODY	+	2.73 ± .387 (5)	3.54 ± .333 (5)	6	3.26 ± .426 ((8)		7.11 ± 2.95 (4)	
KIDNEYS/BODY		(5) 60 <i>7</i> . ± 00.41	(5) 17.30 ± .328 (5)	C	16.68 ± 1.14 ((5)		16.20 ± 1.13 (4)	
TESTES/BODY		6.51 ± .533 (5)	6.24 ± .887 (5)	•	6.63 ± .419 ((5)		6.13 ± .395 (4)	
HEART/BRAIN		(5) \$10. ± 68.	(5) .40 ± .021 (5)	6	.46 ± .022	(5)	æ	.40 ± .023 (4)	
LIVER/BRAIN		3.92 ± .096 (5)	(5) 4.14 ± .190 (5)	•	4.36 ± .175 ((5)		4.11 ± .223 (4)	
SPLEEN/BRAIN	+	.19 ± .025 (5)	$.22 \pm .017$ (5)	•	.22 ± .028	(5)		.48 ± .206 (4)	
KIDNEYS/BRAIN		.96 ± .052 (5)	1.10 ± .032 (5)	^	1.11 ± .073	(\$)		1.08 ± .100 (4)	
TESTES/BRAIN		.44 ± .035 (5)	(5) .40 + .063 (5)	2	.44 + .015	(3)		.40 ± .026 (4)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 123

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF FEMALE MICE AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATMENT GROUPS	T GROU	PS			
DEPENDENT VARIABLE	m U I	CONTROL	:	.001 X IN DIET	! ! & ! ! & !	.01 x IN DIET		&	. 10 X IN DIET		. es i
FINAL WEIGHT		31.40 ± 1.17 (5	(3)	34.60 ± 1.17 (5)	_	30.60 ± 1.44	(3)		32.00 ± .633	(3)	
BRAIN		.56 ± .018 (5)	3	.55 ± .026 (5)	_	.54 ± .025	(3)		.56 ± .020	(3)	
HEART		.18 ± .004 (5)	?	(5) 010. ± 61.	_	.18 + .004	(3)		.18 ± .013	(3)	
LIVER		2.03 ± .097 (5	(3)	2.24 ± .073 (5)	_	1.93 ± .072	(3)		2.10 ± .075	(3)	
SPLEEN		113 ± .015 (5	(3)	.14 ± .006 (5)	V	.14 ± .017	(3)		.14 ± .011	(3)	<
KIDNEYS		.45 ± .041 (5	(3)	.44 ± .017 (5)	_	.41 ± .036	(3)		.44 ± .012	(3)	
BRAIN/BODY		18.02 ± .962 (5	(3)	15.91 ± 1.13 (5)	•	17.74 ± .463	(3)		17.47 ± .738	(3)	
HEART/BODY		5.84 ± .290 (5	(3)	5.55 ± .177 (5)	•	6.06 ± .286	(3)		5.65 ± .449	(3)	
LIVER/BODY		65.09 ± 3.86 (5	(3)	65.03 ± 2.75 (5)	_	63.44 ± 2.05	(3)		65.65 ± 2.17	(3)	
SPLEEN/BODY		4.03 ± .464 (5	(3)	4.06 ± .159 (5)	•	4.46 ± .368	(5)		4.36 ± .280	(3)	
KI DNEYS/BODY		14.40 ± 1.54 (5	(3)	12.75 ± .509 (5)	_	13.25 ± .675	(3)		13.73 ± .601	(3)	
HEART/BRAIN		.32 ± .009 (5	(3)	.36 ± .033 (5)	v	.34 ± .019	(3)		.32 ± .021	(3)	
LIVER/BRAIN		3.61 ± .105 (5	(3)	4.14 ± .226 (5)	_	3.59 ± .148	(3)		3.77 ± .083	(3)	
SPLEEN/BRAIN		.22 ± .020 (5	(3)	.26 ± .018 (5)	V	.25 ± .020	(3)	∢	.25 ± .021	(3)	<
KIDNEYS/BRAIN		(5) 2 + 00 + 62.	?	.81 ± .037 (5)	•	.75 ± .033	(3)		.79 ± .034	(3)	

1.

.

.

į

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARILETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST: CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x.

TABLE 124

-

1

DRCAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) OF MALE MICE AFTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

s
UP
0
8
H
E
Ē
REA
Ξ

						TREATMENT GROUPS	T GROU	S		
DEPENDENT VARIABLE	# U I	CONTROL	!	. 001 X IN DIET		. 01 X IN DIET		; ! ! & !	X OI.	05 i
FINAL WEIGHT		37.40 ± 1.29	(5)	36.40 ± 1.54 (5)		36.20 ± 1.96	(5)		16.00 ± 4.38 (4)	*
BRAIN		.54 ± .022	(3)	(5) 610. ± 55.		.55 ± .030	(3)		.50 ± .029 (4)	2
HEART		.22 ± .015	(3)	.21 ± .014 (5)		.22 ± .016	(3)		.17 ± .030 (4)	m C
LIVER		1.76 ± .085	(3)	1.64 ± .104 (5)		1.71 ± .086	(5)		1.41 ± .308 (4)	2
SPLEEN	*	.13 ± .019	(3)	.11 ± .004 (5)		.12 ± .010	(3)		.09 ± .031 (4)	2
KIDNEYS		.57 ± .053	(3)	.50 ± .033 (5)	v	.52 ± .013	(3)		.41 ± .066 (4)	8 (
TESTES		.23 ± .024	(5)	.23 ± .022 (5)		.27 ± .015	(3)	∢	.12 ± .032 (4)	0 * C
BRAIN/BODY	*	14.50 ± .750	(5)	15,20 ± ,313 (5)	_	15.18 ± .627	(3)		20.66 ± 2.45 (4)	2
HEART/BODY		6.01 ± .446	(3)	5.65 ± .274 (5)	•	6.05 + .465	(3)		6.42 ± .350 (4)	3
LIVER/BODY		47.24 + 1.96	(5)	44.93 ± 1.34 (5)	•	47.19 ± 1.01	(3)		52.50 ± 3.28 (4)	2
SPLEEN/BODY	*	3.38 ± .483	(5)	2.97 ± .080 (5)		3.42 ± .219	(5)		3.17 ± .672 (4)	2
KIDNEYS/BODY		15.19 ± 1.41	(2)	13.60 ± .547 (5)	•	14.61 ± .709	(3)		15.90 ± 1.01 (4)	2
TESTES/BODY		6.20 ± .704	(5)	6.22 ± .358 (5)	•	7.47 ± .210	(3)		4.37 ± .515 (4)	2
HEART/BRAIN		.41 ± .020	(3)	.37 ± .022 (5)	4	.40 ± .031	3		.32 ± .044 (4)	n
LIVER/BRAIN		3.31 ± .281	(5)	2.97 ± .145 (5)	•	3.13 ± .131	(3)		2.71 ± .469 (4)	2
SPLEEN/BRAIN	*	.24 ± .046	(3)	.20 ± .005 (5)	_	.23 ± .024	(3)		.17 ± .053 (4)	2
KIDNEYS/BRAIN		1.07 ± .140	(3)	.90 ± .037 (5)		990. + 16.	(3)		(4) 160. ± 08.	2
TESTES/BRAIN		.43 ± .062	(5)	.41 ± .031 (5)	_	. 50 ± .031	(3)	<	.23 ± .052 (4)	o :

:

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT RATIOS (1000XG/G) AND ORGAN-TO-BRAIN WEIGHT RATIOS (G/G)
OF PEMALE MICE AFTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

TREATMENT GROUPS

DEPENDENT VARIABLE	an ∪ i	CONTROL	:	.001 X IN DIET	82)	2 10 . I BIG NI	 95 6-	. 10 % IN DIET	e4. i
FINAL WEIGHT		32.20 ± 1.07 ((3)	32.60 ± .600 (5)	Ω	31.40 ± 1.36 (5)		29.80 ± 1.98 (5)	
BRAIN	*		(3)	.58 ± .018	(5)	.56 ± .016 (5)		(5) 800. ± 95.	
HEART		.21 + .048 ((3)	.17 ± .023 (5)	1 1 1 1	.18 ± .018 (5)	∢	(5) £10. ± 51.	e
LIVER	*	1.50 ± .045 ((3)	1.52 ± .037 (5)		1.34 ± .112 (5)		1.44 ± .148 (5)	
SPLEEN			(3)	.12 ± .011 (5)	V (5	(5) 610. 7 11.	m	.12 ± .021 (5)	∢
KIDNEYS) 45 ± .017 ((3)	.42 ± .011 (5)		.39 ± .027 (5)	∢	.39 ± .045 (5)	⋖
BRAIN/BODY	*	16.50 ± 1.78 ((3)	17.90 ± .322 (5)	<u>.</u>	17.78 ± .561 (5)		19.07 ± 1.30 (5)	
HEART/BODY		6.57 ± 1.32 ((3)	5.05 ± .600	(5)	5.61 ± .555 (5)		4.92 ± .314 (5)	
LIVER/BODY		46.49 ± .473 ((3)	46.72 ± 1.66 (5)	2)	42.45 ± 2.22 (5)		47.75 ± 2.06 (5)	
SPLEEN/BODY		4.25 ± .306 ((3)	3.75 ± .328 (5	(5)	3.37 ± .424 (5)		4.00 ± .453 (5)	
KIDNEYS/BODY		13.92 ± .294 ((3)	12.84 ± .406 (5	(5)	12.41 ± .548 (5)		12.85 ± .711 (5)	
HEART/BRAIN	*) 620. + 14.	(3)	.28 ± .032 (5	(S)	.31 ± .027 (5)		.26 ± .019 (5)	
LIVER/BRAIN	*	3.01 + .448 ((3)	2.61 ± .104 (9	(3)	2.40 ± .146 (5)		2.57 ± .265 (5)	
SPLEEN/BRAIN		.27 ± .038 ((3)	.21 ± .020 (3	(5) B	.19 ± .028 (5)		.22 ± .038 (5)	<
KIDNEYS/BRAIN	*) 671. + 16.	(3)	.72 ± .035 (9	(5)	.70 ± .029 (5)		(5) 080 . + 69.	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES * CONFIDENCE LEVEL * .95 + CONFIDENCE LEVEL * .99

BC = BARTLEITS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST R = TREATMENT-CONTROL RATIO TEST: COMPIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A, 20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

Hematology

The hematological data for the mice is presented in Tables 126 through 133. At the 4-week sacrifice, an unexpected clotting problem arose, and it was re-experienced at the 8-week sacrifice, despite the use of fresh Vacutainers and extra EDTA anticoagulant, the problem was substantially resolved by changing the technique of cardiac puncture. Instead of making the cardiac puncture from the outside of the intact thorax, the thorax was opened and the needle inserted directly into the heart.

Several parameters for the two female specimens at the 0.01% treatment level are cited statistically (Table 127). Although only the percent reticulocytes appeared to be outside the normal range, the low RBC, hemoglobin, and hematocrit combined with enlarged MCV and high reticulocytes suggests that, as in the case of rats, a mild compensatory anemia existed in mice at this level. The male sample at 0.10% was not abnormal except for the Hgb value (high), but being the only specimen this dose level cannot be analyzed statistically. At the 0.01% level similar differences in hematological values to those observed for the females are noted. At the 0.001% level, however, there was no effect cited, except for male WBC. No toxicological significance can be attached to this result, as the value is well within the normal range. Similar results were obtained in the earlier range-finding study (Appendix G, Table G-25). The combined hematological results of the two studies lead to the conclusion that there may be treatment-related effects at the 0.10% and possibly the 0.01% levels.

After 13 weeks of treatment, however, no differences in hematological parameters are observed (Tables 124 and 125). Atypical lymphocytes were low for all male treatment groups, but this derives from the high control mean at this sacrifice. All of these values were within the normal range for this parameter in our experience. Although percent band cells is statistically high for males at the 0.01% treatment level, band counts (WBC x % bands) are not excessive because of the low leukocyte count for this particular group. The only other observations of note were the higher percent PMN and reticulocytes and lower percent lymphocytes in the males at the 0.001% and 0.01% levels. None of these were sufficiently severe to suggest a relationship to treatment.

In mice allowed recovery following 4 weeks of treatment (Tables 130 and 131), the male specimen at the high dose had significantly low RBC, hemoglobin, and hematocrit and MCV tended to be high. This mouse was still suffering from anemia at the time of death. All other treatment groups, male or female, had normal hematological parameters.

Similar observations apply to the hematological values on mice treated for 13 weeks prior to recovery (Tables 132 and 133). Although no statistically significant changes were observed, RBC, hemoglobin,

TABLE 126

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE MICE AFTER 4 WEEKS OF TREATMENT

							TREATMENT GROUPS	T GROU	PS			
DEPENDENT VARIABLE	8 01	CONTROL		.00; Z IN DIET	8 1	0 . II	OI A IN DIET	t ! ! !	 64 64	. 10 % IN DIET	; t ! ! !	M (
RBC (X 106)	*	7.53 ± .066 (4)	3	7.88 ± .225 ((2)	6.58	6.58 ± .5:0	(7)		8.85 ± 0.00	(1)	«
HGB (G Z)	*	13.48 ± .160 (4)	3	13.70 ± .200 ((2)	11.82 ± .837	. 837	(4)		16.30 ± 0.00	(1)	4
HCT (2)		37.25 ± 1.03 (4)	2	39.00 + 1.00 ((2)	34.50 ± 2.40	2.40	(4)		43.00 + 0.00	(1)	
MCV (U)3		50.25 ± 1.03 (4)	2	51.00 ± 0.00	(2)	53.50 ± 1.44	1.44	(*)		20.00 ± 0.00	(1)	
MCH (UUG)		18.00 ± .408 (4)	3	17.50 ± .500 ((2)	18.25 ± .250	.250	(4)		18.00 + 0.00	(1)	
MCHC (2)		36.25 ± .250 (4)	2	36.00 ± 1.00 ((2)	34.75 ± .479	624.	(7)		37.00 ± 0.00	(1)	
WBC (X 103)	*	4.77 ± .477 (4)	2	6.58 ± .100 ((2) *	6.31 ± 1.59	1.59	(4)		4.20 ± 0.00	(1)	
PMN (Z)		25.25 ± 1.55 (4)	2	50.50 ± 3.50	(2)	41.25 ± 6.25	6.25	(4)		56.00 ± 0.00	3	
BANDS (2)		(*) 00.0 + 00.0	3	00.0 + 00.0	(2) x	.25 ±	.25 ± .250	(4)	×	1.00 ± 0.00	3	×
LYMPH (2)		67.00 ± 1.58 (4)	9	43.00 ± 3.00 ((2) A	53.75 ± 6.25	6.25	(*)		39.00 + 0.00	(1)	∢
ATYP LYMPH(Z)		1.25 ± .750 (4)	2	1.00 ± 1.00	(2) x	1.00	1.00 ± .577	(4)	×	00.0 + 00.0	3	×
MONO (Z)		4.75 ± .250 (4)	3	00.0 + 00.4	(2)	3.25 ±	3.25 ± .750	(*)		3.00 + 0.00	3	
EOSIN (Z)		1.25 ± .250 (4)	2	1.50 ± .500	(2)	.25 ±	.25 ± .250	(4)	•	1.00 ± 0.00	(1)	
BASO (2)		(4) 00.0 + 00.0	3	0.00 + 00.0	(2)	0.00 + 0.00	00.00	(*)		00.0 + 00.0	3	
RETICS (2)	*	1.20 ± .082 (4)	3	1.50 ± .500 ((2)	3.80 ± .934	. 934	(4)		1.20 + 0.00	3	

4

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES
+ CONFIDENCE LEVEL = .95
+ CONFIDENCE LEVEL = .99
BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST
R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,
20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x .

TABLE 127

i.

The second second

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE MICE AFTER 4 WEEKS OF TREATMENT

				1			TREATMENT GROUPS	ROUPS			!
DEPENDENT VARIABLE	an ()	GROUP	ļ	. 001 % IN DIET			, 01 X IN DIET	e4 I	. 10 Z IN DIET		e4 i
RBC (X 106)	88	8.11 + 0.00	(2)	8.58 + .191	(3)				6.77 ± .500	(2)	•
HGB (G Z)	14.00	14.00 ± .100	(2)	14.90 ± .265	(3)				13.80 ± 1.80	(2)	•
HCT (%)	41.00	41.00 + 1.00	(3)	42.00 + 0.00	(3)				36.50 ± 1.50	(2)	•
MCV (U)3	\$2.00	52.00 ± 1.00	(2)	50.33 ± .333	(3)				54.50 ± 1.50	(3)	•
MCH (UUG)	17.00	17.00 + 0.00	(2)	17,33 ± ,333	(3)				20.50 ± 1.50	(3)	•
MCHC (2)	34.00	34.00 ± 1.00	(2)	36.00 ± 0.00	(3)				38.00 ± 4.00	(2)	+
WBC (X 103)	3.39	3.39 ± .335	(2)	8.12 ± 1.63	(3)	×			6.09 + .685	(3)	×
PMW (2)	24.50	24.50 ± .500	(2)	22.33 ± 1.20	(3)				16.50 ± 1.50	(2)	4
BANDS (2)	00.00	0.00 + 00.00	(3)	0.00 ± 00.0	(3)				00.0 + 00.0	(3)	
LYMPH (Z)	70.00	70.00 ± 0.00	(2)	67.00 ± 1.73	(3)				75.00 ± 1.00	(2)	•
ATYP LYMPH(Z)	. 50	.50 + .500	(2)	3.67 ± .333	(3)	×			3.00 ± 1.00	(2)	×
MONO (Z)	3.50	3.50 ± .500	(2)	4.00 + 0.00	3				5.00 ± 1.00	(2)	*
EOSIN (I)	1.50	1.50 ± .500	(3)	3.00 ± .577	(3)	×			.50 ± .500	(2)	×
BASO (2)	00.0	0.00 + 00.00	(2)	0.00 ± 00.0	(3)				00.0 + 00.0	(2)	
RETICS (Z)	1.70	1.70 ± .100	(3)	2.33 ± .067	(3)				7.75 ± .750	(2)	۵

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ COMFIDENCE LEVEL = .95
+ CONFIDENCE LEVEL = .95
+ CONFIDENCE LEVEL = .95
- CONFIDENCE LEVEL CONFIDENCE LONGROUP OF LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,
- CONFIDENCE LONGROUP OF CANNOT BE CALCULATED - x .

TABLE 128

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE MICE AFTER 13 WEEKS OF TREATMENT

TREATMENT GROUPS

DEPENDENT VARIABLE	40 U 1	CONTROL	į	.001 X IN DIET	6 + 1	ex i	.01 X IN DIET		ez (. 10 K IN DIET	ed I
RBC (X 106)	*) 555. + 67.9	3	7.15 ± .083 (5	(5)		6.98 ± .122	(*)		7.04 ± .327 (5)	
HGB (G Z)		11.87 ± 1.22 ((3)	12.64 ± .248 (5	(3)		12.55 ± .260	(4)		13.48 ± .637 (5)	
HCT (X)		34.67 ± 3.53 ((3)	35.60 ± .748 (5	(5)		35.50 ± .957	(4)		37.00 ± 1.76 (5)	
MCV (U)3	*	54.00 ± 1.73 ((3)	52.00 ± 1.10 (5	(5)		52.00 ± .707	(4)		\$1.00 ± 3.13 (\$)	
MCH (UUG)		18.67 ± .333 ((3)	17.60 ± .245 (5	(3)		18.00 + .408	(4)		19.40 ± .510 (5)	
MCHC (Z)		34.67 ± .882 ((3)	35.20 ± .374 (5	(3)		35.00 ± .408	(4)		37.00 ± .447 (5)	
WBC (X 103)	+	2.14 ± .302 ((3)	2.48 ± .451 (5	(3)		1.68 ± .215	(*)		5.74 ± 3.12 (5)	
PMM (Z)		18.00 ± 5.51	(3)	47.80 ± 6.83 (5	(3)		40.50 ± 7.80	(4)		26.80 ± 4.62 (5)	
BANDS (Z)		0.00 + 00.0	(3)	5) 007. ± 09.	(5)	×	2.50 ± .645	(4)	*	1.00 ± .447 (5)	×
LYMPH (Z)		71.33 ± 7.13 ((3)	43.60 ± 5.22 (5)	5)	<	50.25 ± 7.16	(4)		65.00 ± 5.93 (5)	
ATYP LYMPH(Z)		3.00 ± .577	(3)	.80 ± .374 (5	* (5)	ပ	.75 ± .479	(4)	U	.60 ± .245 (5)	4
MONO (Z)		5.33 ± .882 ((3)	3.40 ± 1.96 (5	(3)		3.25 ± .750	(4)		5.00 ± 1.05 (5)	
EOSIN (Z)		2.33 ± 1.86 ((3)	2.60 ± 1.08 (5	(3)	×	2.25 ± 1.03	(4)	×	1.00 ± .447 (5)	×
BASO (%)		0.00 ± 00.0	(3)	5) 007. + 09.	(5)	×	.50 ± .289	(4)	×	.40 ± .245 (5)	×
RETICS (Z)		1.17 ± .441	(3)							2.76 ± .248 (5)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 129

1

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE MICE AFTER 13 WEEKS OF TREATMENT

							[TREATMENT	T GROUPS	PS			
DEPENDENT B	000	CONTROL		. 001 X IN DIET		04 		.01 % IN DIET		æ i ⊢ i	101. IN DIET		
RBC (X 106)	7.64 ± .355	.355	(3)	7.84 ± .262	52 (4)	2	7.40	7.40 ± .262	(3)		8.47 + 0.00	3	
HGB (G Z)	13.88 + .619	619.	(3)	13.73 ± .409		(*)	13.10	13.10 ± .591	(2)		15.70 ± 0.00	(1)	
HCT (2)	38.60 ± 1.75	1.75	(\$)	38.00 ± .707		(4)	36.20	36.20 ± 1.62	(3)		42.00 + 0.00	(1)	
4CV (U)3	\$1.60 ± .678	.678	(3)	49.75 ± 1.55		(4)	20.00	50.00 ± .633	(3)		\$0.00 ± 00.08	(1)	
MCH (UUG)	18.60 ± .245	.245	(5)	17.75 ± .250		(4)	17.80	17.80 ± .374	(3)		19.00 + 0.00	(1)	
MCHC (Z) +	36.20 ± .200	.200	(3)	31.25 ± 5.50		(4)	36.60	36.60 ± .748	(3)		36.00 ± 0.00	(:)	
WBC (X 103)	3.98 ± .585	.585	(3)	3.00 ± .580		(4)	3.21	+ .286	(3)		1.51 ± 0.00	(1)	
PMN (Z)	23.00 ± 2.35	2.35	(3)	27.75 ± 3.50		(4)	18.60	± 3.23	(3)		22.00 ± 0.00	(1)	
BANDS (%)	.40 + .245	. 245	(5)	1.00 ± .707		x (4)	07	+ .245	(3)	×	2.00 + 0.00	3	×
LYMPH (Z)	70.80 ± 2.08	2.08	(3)	66.75 ± 3.20		(4)	75.60	75.60 ± 3.31	(3)		70.00 ± 0.00	(1)	
ATYP LYMPH(Z)	1.60 ± .400	.400	(3)	.50 ± .289		¥ (7)	.80	+ .374	(5)		00.0 + 00.0	(1)	
Mono (2)	2.20 ± .583	.583	(3)	2.50 ± 1.85		× (†)	00.4	4.00 + 1.18	(3)	×	3.00 ± 0.00	(1)	×
EOSIN (Z)	1.60 ± .812	.812	(5)	1.00 ± .707		(4)	09.	007. ₹ 09.	(3)		1.00 ± 0.00	(1)	
BASO (Z)	007. + 07.	007.	(3)	.50 ± .500		y (4)	+1	± .374	(3)	×	2.00 ± 0.00	(1)	×
RETICS (2)	1.52206	.206	(3)								1.20 _ 0.00	(1)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

+ CONFIDENCE LEVEL = .99

BC = BARILETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST :0 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE MICE AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						TREATMENT GROUPS	OUPS		
DEPENDENT Variable	89 ()	CONTROL		, 001 X IN DIST	 	X 10. Taid ni		. 10 % IN DIGT	es (€-1
RBC (X 106)		7.32 ± .297	3	7.26 ± .243 (3)	_	7.77 ± .126 (5)		4.90 ± 0.00 (1)	«
HGB (G Z)		12.86 ± .438	(3)	13.77 ± .367 (3)	•	13.70 ± .219 (5)		9.40 ± 0.00 (1)	*
HCT (Z)		36.60 ± .980	(3)	37.67 ± .333 (3)	•	38.00 ± .447 (5)		(1). 00.0 ± 0.00 (1)	v
MCV (U)3		50.80 ± .860	(3)	53.33 ± 1.45 (3)	•	50.00 ± 0.00 (5)		55.00 ± 0.00 (1)	
MCH (UUG)		17.80 ± .200	(5)	19.00 ± .577 (3)	•	17.60 ± .245 (5)		18.00 ± 0.00 (1)	
MCHC (I)		34.80 ± .490	(2)	36.00 ± 1.53 (3)		35.80 ± .374 (5)		35.00 ± 0.00 (1)	
WBC (X 103)		4.70 ± 1.02	(3)	7.73 ± .835 (3)	_	3.98 ± .842 (5)		6.00 ± 0.00 (1)	
PMN (2)		19.40 ± 1.83	(3)	32,33 ± 6,17 (3)	_	18.20 ± .663 (5)		19.00 + 0.00 (1)	
BANDS (Z)		00.0 + 00.0	(3)	.33 ± .333 (3)	*	0.00 ± 0.00	×	0.00 ± 0.00	×
LYMPH (Z)	*	70.60 ± 1.63	(\$)	60.33 ± 6.89 (3)	_	74.40 ± .510 (5)		74.00 ± 0.00 (1)	
ATYP LYMPH(Z)		3.60 ± 1.57	(3)	2.33 ± 1.45 (3)	^	2.60 ± .400 (5)		2.00 ± 0.00 (1)	
MONU (Z)		4.40 ± .245	(3)	3.67 ± .882 (3)	•	3.60 ± .245 (5)		4.00 ± 0.00 (1)	
EOSIN (2)		3.00 ± .548	(3)	1.00 ± .577 (3)	_	1.20 ± .200 (5)		1.00 ± 0.00 (1)	
BASO (2)		00.0 + 00.0	(5)	0.00 ± 00.0	•	0.00 ± 0.00		0.00 ± 0.00	
RETICS (Z)		2.86 + .854	(5)					1.50 ± 0.00 (1)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST :0 % - A,

20 % - B, 35 % - C, 50 % - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 131

Ŀ

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE MICE AFTER 4 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

					TREATMENT GR	GROUPS		
DEPENDENT B	CONTROL	ì	.001 Z IN DIET	94 I	X 10. IN DIET	e≤ 1	10 % 18 DIET	e≤ +
RBC (X :06)	00 ± .218	(3)	7.26 ± .156 (3)	_	7.21 ± .100 (2)		7.00 ± .565 (2)	
HGB (C Z)	12.70 ± .802 ((3)	13.40 ± .100 (3)	•	13.00 ± .200 (2)		12.35 ± 1.35 (2)	
HCT (Z)	35.00 ± 1.15	(3)	36.67 ± .882 (3)	-	37.00 ± 0.00 (2)		35.00 ± 3.00 (2)	
MCV (U)3	\$1.00 ± .577 ((3)	\$1.67 ± .333 (3)	•	52.50 ± 1.50 (2)		51.50 ± .500 (2)	
MCH (UUG)	18.33 ± .333 ((3)	18.67 ± .333 (3)	•	18.00 ± 0.00 (2)		17.50 ± .500 (2)	
MCHC (I)	36.00 ± 1.15 ((3)	35.67 ± .667 (3)	•	35.00 ± 0.00 (2)		35.50 ± 1.50 (2)	
WBC (X 103)	5.13 ± .498 ((3)	5.13 ± .722 (3)	_	2.55 ± .050 (2)	¥	5.15 ± .850 (2)	
PMN (Z)	17.67 ± 1.20	(3)	17.33 ± 1.33 (3)	^	15.50 ± .500 (2)		12.50 ± .500 (2)	
BANDS (%)	0.00 + 00.0	(3)	0.00 ± 0.00	_	0.00 + 0.00		0.00 ± 0.00 (2)	
LYMPH (2)	73.67 ± 1.86	(3)	77.00 ± 1.53 (3)	_	77.50 ± 2.50 (2)		79.00 ± 1.00 (2)	
ATYP LYMPH(2)	00.0 + 00.4	(3)	.67 ± .667 (3)	8 (2.00 ± 2.00 (2)		4.50 ± .500 (2)	
HONO (Z)	00.0 + 00.4	(3)	4.00 ± 0.00 (3)	_	4.00 ± 0.00 (2)		3.50 ± .500 (2)	
EOSIN (2)) 199. + 19.	(3)	.67 ± .667 (3)	×	1.00 ± 0.00 (2)	×	.50 ± .500 (2)	×
BASO (I)	0.00 + 00.0	(3)	.33 ± .333 (3)	×	0.00 ± 0.00 (2)	×	0.00 ± 0.00 (2)	×
RETICS (2)	1.83219 ((3)					1.00 _ 0.00 (2)	

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PAREMTHESES
+ CONFIDENCE LEVEL = .95
+ CONFIDENCE LEVEL = .99
+ CONFIDENCE LEVEL = .99
BC = BARTLETTS CHI-SQUARE ; T = TREATMENT-CONTROL CONTRAST
R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 Z - A,
20 Z - B, 35 Z - C, 50 Z - D. RATIO TEST CANNOT BE CALCULATED - x .

TABLE 132

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE MICE APTER 13 WEEKS OF TREATMENT AND 4 WEEKS OF RECOVERY

						7.82	TREATHENT GROUPS	GROUP	S			
DEPENDENT Variable	က ပေ ၊	CONTROL	i i	.001 X IN DIET	es i	2 10. Z IO.	2 1ET		es 1	. 10 Z 18 DIET		os i
RBC (X 106)		7.58 ± .284 (5)	_	7.50 ± .137	(4)	7.18 ± .569		3		5.44 ± 1.20	(2)	
HGB (G Z)	*	13.50 ± .414 (5)		13.25 ± .189	(4)	12.87 ±	11.11	(3)		10.10 ± 2.50	(2)	
HCT (Z)		38.80 ± 1.39 (5)		37.50 ± .866	(4)	36.00 ± 2.65	2.65	(3)		28.50 ± 7.50	(2)	
MCV (U)3		\$2.00 ± .894 (5)		50.25 ± .854	(4)	50.67 ± .333	.333	(3)		53.00 ± 2.00	(2)	
MCH (UUG)		18.00 ± .447 (5)		18.00 + .408	(†)	18.00 ± .577	.577	(3)		19.50 ± .500	(2)	
MCHC (2)		34.60 ± 1.08 (5)		36.00 ± .707	(4)	36.33 ± .882		(3)		37.00 ± 1.00	(3)	
WBC (X 103)		5.50 ± .612 (5)	_	4.67 + .740	(4)	5.55 ± 1.20	1.20	(3)		3.28 ± .380	(2)	
PHN (2)		18.60 ± 4.01 (5)		32.50 ± 4.73	(4)	37.00 ± 9.45	6.45	(3)		15.50 ± 7.50	(2)	
BANDS (X)	*	0.00 ± 0.00	_	.25 ± .250	× (7)	.33 ±	.333	(3)	×	3.00 ± 3.00	(2)	×
LYMPH (Z)		75.40 ± 4.00 (5)		59.75 ± 4.07	(4)	58.00 +	+ 9.29	(3)		77.00 ± 13.0	(2)	
ATYP LYMPH(Z)		2.80 ± .735 (5)	_	2.75 ± .479	(4)	2.67 ±	+ .333	(3)		1.00 ± 1.00	(2)	
HONO (1)		1.20 ± .583 (5)	_	1.50 ± .645	(*)	.33 +	± .333	(3)		1.00 ± 1.00	(3)	
EOSIN (1)		2.20 ± .860 (5)	_	3.25 + .854	(4)	1.67 ±	± .333	(3)		2.50 ± 2.50	(3)	
BASO (2)		0.00 + 0.00	_	0.00 + 00.0	(4)	0.00 ± 0.00		(3)		00.0 + 00.0	(3)	
RETICS (2)	*	1.40 ± .945 (5)	_							3.00 ± 0.00	(1)	×

į.

.

1 į

1.

Ì.

; ;

A STATE OF THE PARTY OF THE PAR

And hand hands

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

+ CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

R = TREATMENT-CONTROL RATIO TEST : CONFIDENCE INTERVAL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

20 % - B, 35 % - C, 50 % - D, RATIO TEST CANNOT BE CALCULATED - x,

TABLE :33

1

1-

1

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE MICE APTER 13 WEEKS OF TREATHENT AND 4 WEEKS OF RECOVERY

	,	2
ċ	١	
:		١
¢)
c	i	ć
ç	•	
E		
	i	2
E		3
2		
Ē		
	d	ć
8		i
Š		ė
Ē		
•		

								TREATMENT GROUPS	T GROU	PS		1
	DEPENDENT VARIABLE	∞ ∪ i	CONTROL	į	2 100. Tald NI	62 	 	. 01 Z IN DIET		ez :	10 % 1 N DIET	~ ·
	RBC (X 10º)		7.83 + .447	(*)	8.19 ± .366	(3)		6.81 ± .664	(4)		7.95 ± .242 (5)	_
	HGB (G Z)		14.07 ± .879	(4)	14.72 ± .676	(5)		12.45 ± 1.23	(4)		14.48 ± .360 (5)	_
	HCT (2)	*	40.25 ± 2.50	(7)	41.80 ± 1.32	(\$)		34.25 ± 4.09	(*)		39.80 ± .735 (5)	_
	MCV (U)3		51.75 ± .750	(7)	\$1.60 ± .927	(5)		50.50 ± 1.19	(7)		51.20 ± .970 (5)	_
	MCH (UUG)		17.50 ± .289	(7)	18.00 ± .316	(5)		18.00 ± 0.00	(7)		18.40 ± .400 (5)	_
	MCHC (2)		34.75 ± .479	(7)	35.20 ± .860	(5)		36.00 ± 1.08	(7)		37.00 ± 0.00 (5)	_
	WBC (X 103)		5.23 ± .952	(7)	3.34 ± .477	(3)		3.69 ± 1.80	(4)		6.88 ± .903 (5)	_
101	PHN (2)		14.50 ± 4.84	(4)	31.00 ± 5.61	(4)		25.00 ± 3.03	(7)		16.50 ± 4.25 (4)	_
	BANDS (%)		.50 ± .289	(4)	.25 ± .250	(4)		0.00 + 00.0	(4)	4	0.00 ± 00.0	v
	LYMPH (2)		76.75 ± 5.02	(4)	62.75 ± 7.00	(7)		71.00 ± 4.32	(4)		78.25 ± 4.87 (4)	_
	ATYP LYMPH(Z)		3.50 ± .957	(4)	2.75 ± .479	(4)		1.25 ± .479	(4)	Ø	4.50 ± .500 (4)	_
	MONO (2)		.50 ± .289	(7)	00.0 + 00.0	(†)	×	.50 + .500	(4)	×	0.00 ± 0.00	×
	E0SIN (2)		4.25 ± 1.03	(4)	3.25 ± 1.93	(4)		2.00 ± 1.35	(4)		1.00 ± .707 (4)	_
	BASO (2)		00.0 + 00.0	(4)	00.0 + 00.0	(4)		0.00 + 00.0	(4)		(7) 00.0 \pm 00.0	_
	RETICS (Z)	*	2.45 ± 1.21	(7)							1.16 ± .204 (5)	×

:

ENTRIES ARE MEANS AND STANDARD ERRORS WITH GROUP N IN PARENTHESES

* CONFIDENCE LEVEL = .95

+ CONFIDENCE LEVEL = .99

+ CONFIDENCE LEVEL = .99

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTRAST

BC = BARTLETTS CHI-SQUARE; T = TREATMENT-CONTROL CONTROL GREATER OR LOWER THAN CONTROL MEAN BY AT LEAST 10 % - A,

R = TREATMENT-CONTROL RATIO TEST CANNOT BE CALCULATED - x .

and hematocrit were lower and MCV was slightly higher in the two males at the 0.10% treatment level than in controls. Reticulocytes were also higher in these animals. Hematological parameters for the females and for the other male treatment groups were unremarkable.

On the whole, the data suggest that a compensatory anemia occurs in mice at the 0.10% condensate blend level similar to that observed in rats. Although the failure of males at this level to recover completely from the anemia, in contrast to females, might indicate that the former are more strongly affected by treatment, the small sample size at this dose level precludes such a conclusion. There does appear to be evidence of individual susceptibility to the treatment—e.g., the anemic trend in the recovery males (Tables 130 and 132) in contrast to those killed directly following treatment (Tables 126 and 128). Although it is difficult to say with certainty that anemia is absent at the 0.01% level, it is clearly so at the 0.001% level in both males and females at every sacrifice.

Histopathology

Microscopic lesions found in mice treated for 4 weeks with condensate blend are presented in Tables 134 and 135. All five males at the highest dose level had testicular atrophy with slight-to-moderate cellular debris and aspermia of the epididymis and hemosiderosis of the spleen. Females at this level also had hemosiderosis of the spleen. The absence of these effects at lower dose levels and in controls indicates that they are probably treatment-related. Three of the five females at the 0.10% level also had acute endometritis, accompanied in one case by endometrial hyperplasia and in the other two by acute vaginitis and cervicitis. The lesions occurred more frequently in the high-dose females than in any other female group and may, therefore, be treatment-related.

Male mice treated for 13 weeks at the 0.10% level (Table 136) also had testicular atrophy accompanied by atrophy of or cellular debris in the epididymi of four of these mice; four of them also exhibited hemosiderosis of the spleen. Four of five females at the highest two doses, three at the 0.001% level, and two control females had hemosiderosis of the spleen (Table 137). No lesions were found in tissues from the uteri of treated females. The alterations observed in the testes and spleen are probably treatment-related. Other lesions were noted occasionally, but with no apparent dose relationship discernible in the data.

Mice treated for 4 weeks with an additional 4 weeks for recovery had an increase in the incidence of hemosiderosis of the spleen at the 0.01 and 0.10% condensate blend levels compared with controls (Tables 138 and 139). There were also several cases of lymphocytic foci in the kidneys and liver among treated mice, but these were not

Table 134

MICROSCOPIC LESIONS IN MALE MICE AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT

Delignation Organ/Lesion Organ			Dose L	Dose Level in Diet		
Organ/Lesion Croup Designation Coup Designation		0	0.001%	0.01%	0.10%	
CO C1 C2	Organ/Lesion		Gro	up Designati		
Au imal Number ldymis letaric focal alveolar distension; focal sterate focal alveolar distension; focal sterate focal alveolar distension; focal sterate focal alveolar dilations; collapse ght focal alveolar dilations; collapse and chronic respiratory disease and chronic respiratory and chronic respi		00		C2		
state focal alveolar distension; focal conclusions of the pronch opneumonia; chronic respiratory is ease. Signate focal alveolar distension; focal alveolar distension; collapse and chronic respiratory disease and chronic respiratory disease; solitaty coult respiratory disease; solitaty coult respiratory disease; solitaty coult respiratory disease; solitaty coult respiratory disease and chronic respiratory disease is solitaty coult respiratory disease is solitaty includent trunor and chronic respiratory disease is solitaty includent trunor and formatitis and bronchopneumonia and stary glands are acute focal dermatitis and side acute focal dermatitis and soliderosis and soliderosis and soliderosis are soliderosis as soliderosis and soliderosis are soliderosis and soliderosis and soliderosis are soliderosis and soliderosis and soliderosis are soliderosis and soliderosis are soliderosis and soliderosis and soliderosis and soliderosis are soliderosis and soliderosis and soliderosis and soliderosis are soliderosis and solideros			A			
sermia sermia serate focal alveolar distension; focal itsease ight focal alveolar dilations; collapse and chronic respiratory disease fonic respiratory disease foric respiratory foric respiratory disease foric respiratory foric	Epididymis					
lerate focal alveolar distension; focal ronchopneumonia; chronic respiratory Ilsease Ight focal alveolar dilations; collapse and chronic respiratory disease; solitary focal hemorrhage; focal bronchopneumonia ronic respiratory disease ronic ronic respiratory disease ronic ronic respiratory disease ronic ronic respiratory disease ronic	Aspermia				376,377,378	
strate focal alwolar distension; focal bronchopneumonia; chronic respiratory Ilsease Ight focal alwolar dilations; collapse and chronic respiratory disease; solitary focal hemorrhage; focal bronchopneumonia focal hemorrhage; focal dermatitis for any glands focal dermatitis fo					379,380	
terate focal alveolar distension; focal ronchopneumonia; chronic respiratory Ilsease ght focal alveolar dilations; collapse and chronic respiratory disease and chronic respiratory disease; solitary focal hemorrhage; focal bronchopneumonia conic respiratory disease ronic respiratory disease conic respiratory disease rolic respiratory disease conic respiratory disease rolic respiratory disease roll dematities roll	Lungs					
renchopneumonia; chronic respiratory Ilsease (ght focal alveolar dilations; collapse and chronic respiratory disease and chronic respiratory disease; solitary focal hemorrhage; focal bronchopneumonia 339 conic respiratory disease 336 conic respiratory disease 339 conic respiratory disease 340 colored focal dermatitis 350 error hypertrophy of ducts 320 error hypertrophy of ducts 350 cophy with cell debris slight or anderate acute focal debris slight or anderate	Moderate focal alveolar distension; focal					
lisease light focal alveolar dilations; collapse and chronic respiratory disease conic respiratory disease; solitary focal hemorrhage; focal bronchopneumonia conic respiratory disease conic respiratory disease cologenic tumor lear bronchopneumonia vary glands stic hypertrophy of ducts stic hypertrophy of ducts cophy with cell debris slight or nociderate noderate	bronchopneumonia; chronic respiratory					
light focal alveolar dilations; collapse and chronic respiratory disease fronic respiratory disease; solitary focal hemorrhage; focal bronchopneumonia conic respiratory disease colic respiratory disease cal bronchopneumonia recologenic tumor rary glands stic hypertrophy of ducts stic hypertrophy of ducts cophy with cell debris slight or nociderosis cophy with cell debris slight or noderate conic respiratory disease 330 348 348 348 340 340 340 340 340 340 340 340 340 340	disease				380	
and chronic respiratory disease 316 ronic respiratory disease; solitary focal hemorrhage; focal bronchopneumonia 339 ronic respiratory disease 339 ronic respiratory disease 348 roni	dilations;					
focal hemorrhage; focal bronchopneumonia focal hemorrhage; focal bronchopneumonia fornic respiratory disease fonic respiratory disease fonic respiratory disease fornic respiratory fornic respiratory disease fornic respiratory fornic respirator	and chronic respiratory disease	316				
focal hemorrhage; focal bronchopneumonia conic respiratory disease cal bronchopneumonia cary glands cary gland						
conic respiratory disease 339 348 cal bronchopneumonia 340 348 reclogenic tumor 340 340 rary glands 320 350 stic hypertrophy of ducts 350 en 350 en 6 nosiderosis 85 cophy with cell debris slight or noderate 6	focal hemorrhage; focal bronchopneumonia				377,378	
cal bronchopneumonia 348 reologenic tumor 340 fary glands 320 stic hypertrophy of ducts 350 lerate acute focal dermatitis 350 an scoph with cell debris slight or moderate	Chronic respiratory disease		339			
reologenic tumor 340 Party glands 320 stic hypertrophy of ducts 320 lerate acute focal dermatitis 350 and 350 and 350 so 350 cophy with cell debris slight or noderate 360	Focal bronchopneumonia			348		
vary glands 320 stic hypertrophy of ducts 320 lerate acute focal dermatitis 350 en 100 nosiderosis 100 es 100 cophy with cell debris slight or noderate 100 noderate 100	Alveologenic tumor		340			
stic hypertrophy of ducts lerate acute focal dermatitis lerate acute focal dermatitis losiderosis losiderosis ss cophy with cell debris slight or noderate	Salivary glands					
lerate acute focal dermatitis sin nosiderosis ss cophy with cell debris slight or noderate	of	320				
siderosis phy with cell debris slight or derate						
siderosis phy with cell debris slight or derate	acute focal d			350		
phy with cell debris slight or derate	Spleen					
phy with cell debris slight or derate	Hemosiderosis				376,377,378	
phy with cell debris slight or derate	A				379,380	
cell debris slight or	Testes					
	cell debris					
379,380					376,377,378	
					379,380	
			,			

Table 135

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT

		Dose Level	evel in Diet		
•	0	0.001%	1 .	0.10%	
Organ/Lesion		Gro	Group Designation		
	00	C1	C2	c3	
		A	Animal Number		
Eye					
Absence of rods and cones		7.38			
Kidneys					
Lymphocytic foci	417				
Liver					
Triaditis, solitary focus moderate			457		
Lymphocytic foci, paravascular				476	
Lungs					
Slight focal alveolar dilation and collane	416				
G					
	417			627,974	
Chronic respiratory disease; focal					
bronchopneumonia and slight focal					
alveolar dilation and collapse			457,460		
Chronic respiratory disease		437,439	456	480	
Focal bronchopneumonia				477	
Bronchopneumonia, focal; chronic					
respiratory disease	418				
Spleen					
Hemosiderosis				476,477,478	
				479,480	
Uterus					
Endometrial hyperplasia			7460		
Endometrial hyperplasia and acute					
endometritis				479	
Acute endometritis				477,478	
Subacute endometritis	419				
The second secon					

Table 135 (Concluded)

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT

	0.10%	on	C3			477,478													
Dose Level in Diet	0.01%	up Designati	C2	Animal Number		458													
Dose Le	0.001%	Gro	C1	Ar															
	0		Co			419													
		Organ/Lesion			Vagina/Cervix	Acute vaginitus/cervicitus													

Table 136

MICROSCOPIC LESIONS IN MALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT

O			ایه ا	Level in Diet		
Organ/Lesion		0	.001%	.01%	.10%	
C0	Organ/Lesion		Gro		on	
Phrosis of cortex		00		ll	c3	
Fibrosis of cortex			A			
tic foci tic foci tic foci of cortex mphocytic foci dilation, focal respiratory disease and alveolar on, focal; edema, slight focal respiratory disease and lveolar on, focal; edema, slight focal respiratory disease and respiratory disease and respiratory disease and alveolar respiratory disease respira	- Fibrosis of				369	
tic foci tic foci tic foci of cortex mphocytic foci dilation and collapse, focal on, focal respiratory disease and alveolar on, focal on, focal; edema, slight focal respiratory disease and alveolar on, focal; congestion, focal; hemorthage, slight focal on, slight focal, focal; hemorthage, slight focal on, slight focal, focal; hemorthage						
1966 1966	Epididymis					
197 197	Cell Debris				366,368,369	
1	Atrophy				370	
1						
19mphocytic foci 308,310 326,327 359 35 35 35 35 35 35 3	Kidney					
1 1 1 1 1 1 1 1 1 1	Lymphocytic foci	308,310	326,327	359	367	
iymphocytic foci iymphocytic foci it respiratory disease lar dilation and collapse, focal lar dilation and collapse, focal ition, focal it respiratory disease and alveolar it respiratory di	Fibrosis of cortex		329			
crespiratory disease 326,327 336 326,327 336 336 336 326,327 336						
onic respiratory disease colar dilation, focal colar dilation and collapse, focal lation, focal onic respiratory disease and alveolar ilation and collapse, focal onic respiratory disease and alveolar ilation focal; edema, slight focal onic respiratory disease and conic respiratory disease and ilation, focal; edema, slight focal onic respiratory disease and colar dilation, focal; congestion, light focal; hemorrhage, slight focal light focal; hemorrhage sestion, slight focal, hemorrhage ilation, slight focal, hemorrhage	lymphocytic	306			368	
onic respiratory disease eolar dilation, focal colar dilation and collapse, focal ilation, focal onic respiratory disease and alveolar ilation and collapse, focal onic respiratory disease and alveolar ilation and collapse, focal onic respiratory disease and alveolar ilation, focal; edema, slight focal onic respiratory disease and onic respiratory disease and onic respiratory disease and ilation, focal; congestion, light focal; hemorrhage, slight focal ilght focal; hemorrhage						
onic respiratory disease colar dilation, focal colar dilation and collapse, focal onic respiratory disease and alveolar ilation and collapse, focal onic respiratory disease and alveolar ilation and collapse, focal onic respiratory disease and alveolar ilation and collapse, focal onic respiratory disease and alveolar ilation, focal; edema, slight focal onic respiratory disease and emorrhage, slight focal emorrhage, slight focal light focal; hemorrhage light focal; hemorrhage emorrhage ilght focal; hemorrhage emorrhage ilght focal; hemorrhage	Lungs					
Alveolar dilation, focal Alveolar dilation, focal Chronic respiratory disease and alveolar dilation, focal Chronic respiratory disease and alveolar dilation and collapse, focal dilation and collapse, focal Chronic respiratory disease and alveolar dilation, focal; edema, slight focal Chronic respiratory disease and hemorrhage, slight focal hemorrhage, slight focal slight focal; hemorrhage slight focal; hemorrhage congestion, slight focal, hemorrhage slight focal; hemorrhage congestion, slight focal, hemorrhage	onic respiratory		326,327		369	
Chronic respiratory disease and alveolar dilation, focal Chronic respiratory disease and alveolar dilation and collapse, focal Chronic respiratory disease and alveolar dilation and collapse, focal Chronic respiratory disease and alveolar dilation, focal; edema, slight focal Chronic respiratory disease and hemorrhage, slight focal Alveolar dilation, focal; congestion, slight focal; hemorrhage Congestion, slight focal, hemorrhage Congestion, slight focal, hemorrhage	Alveolar dilation, focal	309				
Chronic respiratory disease and alveolar dilation, focal Chronic respiratory disease and alveolar dilation and collapse, focal Chronic respiratory disease and alveolar dilation, focal; edema, slight focal Chronic respiratory disease and hemorrhage, slight focal Alveolar dilation, focal; congestion, slight focal; hemorrhage Congestion, slight focal, hemorrhage Congestion, slight focal, hemorrhage	collapse,	307				
Chronic respiratory disease and alveolar dilation and collapse, focal Chronic respiratory disease and alveolar dilation, focal; edema, slight focal hemorrhage, slight focal slight focal; hemorrhage, slight focal congestion, slight focal, hemorrhage Congestion, slight focal, hemorrhage	and					
Chronic respiratory disease and alveolar dilation and collapse, focal Chronic respiratory disease and alveolar dilation, focal; edema, slight focal Chronic respiratory disease and hemorrhage, slight focal Alveolar dilation, focal; congestion, slight focal; hemorrhage Congestion, slight focal, hemorrhage Congestion, slight focal, hemorrhage		310				
dilation and collapse, focal Chronic respiratory disease and alveolar dilation, focal; edema, slight focal Chronic respiratory disease and hemorrhage, slight focal Alveolar dilation, focal; congestion, slight focal; hemorrhage, slight focal Congestion, slight focal, hemorrhage,ht	and					
Chronic respiratory disease and alveolar dilation, focal; edema, slight focal Chronic respiratory disease and hemorrhage, slight focal; congestion, slight focal; hemorrhage, slight focal; hemorrhage Congestion, slight focal, hemorrhage Congestion, slight focal, hemorrhage	al	308				
Chronic respiratory disease and Chronic respiratory disease and hemorrhage, slight focal Alveolar dilation, focal; congestion, slight focal; hemorrhage, slight focal Congestion, slight focal, hemorrhage						
Chronic respiratory disease and hemorrhage, slight focal; congestion, slight focal; hemorrhage slight focal hemorrhage Congestion, slight focal, hemorrhage	dilation, focal; edema, slight focal		328			
Alveolar dilation, focal; congestion, slight focal; hemorrhage, slight focal Congestion, slight focal, hemorrhage	Chronic respiratory disease and		-			
Alveolar dilation, focal; congestion, slight focal; hemorrhage, slight focal Congestion, slight focal, hemorrhage	hemorrhage, slight focal			359	368	
Slight focal; hemorrhage, slight focal Congestion, slight focal, hemorrhage						
Congestion, slight focal, hemorrhage	e, slight			360		
The Table of the Control of the Cont						
	ht1				36	

MICROSCOPIC LESIONS IN MALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT -- Table ("mclugae)

		1 asol	level in Diet		
	0	.001%		.10%	
Organ/Lesion		Group	၂ ချ	on	
	00	C1	C2	C3	
		A	Animal Number		
Lungs (continued)					
				370	
Muscle					
Chronic myositis, solitary focus				366	
Skin					
Subacute dermatitis, focal and					
moderately severe			356,359		
Spleen					
Hemosiderosis (pigmentation)			357	366,367,	
				369,370	
Toctoc					
Atrophy				366,368	
				369,370	
Atrophy with cell debris				367	
					ļ

Table 137

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT

		Dose L	Level in Diet		
	0	.001%	. 01%	.10%	
Organ/Lesion		Group	up Designatio		
	00	CI		C3	
		d	Animal Number		
Adrenal - Fibrosis of cortex			877		
Cervix - Acute inflammation	607				
Kidney - Lymphocytic foci	407,410	428,429,430	446,448	467	
Liver					
Lymphocytic foci	406,408	426	644 844 744	466,467,469	
Lymphocytic foci and necrosis, slight					
focal	410			468	
Necrosis, slight focal		427			
Lungs					
Chronic respiratory disease	409	429	447,449,450	895	
Chronic respiratory disease and alveolar					
	410				
Chronic respiratory disease and alveolar					
histiocytosis, slight focal	408				
Chronic respiratory disease and slight					
		į	944		
Chronic respiratory disease and slight					
focal consestion			778		
Alveolar dilation and collapse, focal;					
slight focal congestion and eliabt					
focal hemorrhage		428			
Alveolar dilation, focal; and slight					
focal congestion				469	
Alveolar dilation and collapse, focal				997	

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT Table 137 (Concluded)

Dose Level in Diet	201. 210. 2100.	Group Designation	c0 c1 c2 c3	Animal Number		429			on) 407,410 426,427,428 446,447 466,467 on)	406											
		00.391/46070			Downthirmid	rafacily to the second	Lymphocytic loci, Silghi	Spleen	Hemosiderosis (pigmentation)	Hynern Jacia											

Table 138

MICROSCOPIC LESIONS IN MALE MICE AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

	0	0.001%	Level in Diet	.10%	
Organ/Lesion		Group		1 1	
	00	C1	C2	C3	
		A	Animal Number		
Epididymis					
Aspermia		335			
debris present				373	
Calcification (myocardium), slight focal				275	
Lymphocytes, slight focal	312,313,314	332,333,334	352,354	373	
	CIT				
Necrosis, solitary slight		333	351		
Lymphocytes, focal			354	375	
Necrosis, slight solitary; lymphocytes,					
			355		
Chronic respiratory disease	315	333	351		
Alveolar collapse, focal	313				
Alveolar collapse and distension, focal	312			373	
collapse and					
			352		
4					
respiratory disease	314				
Alveolar histiocytosis; chronic					
respiratory disease	311				
Congestion, slight				371	
Hemorrhage, slight focal			331,335	354	
Hemorrhage, slight focal; chronic					
respiratory disease			334		

Table 138 (Concluded)

MICROSCOPIC LESIONS IN MALE MICE AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

			1000		
		0.001%	DOSE LEVEL ALL DIEL	10%	
		0.001	Group Designation		
0.9917	00	13	C2	C3	
			Animal Number		
Lymph node					
Hyperplasia, slight	314				
Spleen			1		
Hemosiderosis, usually mild			353,355	371,372,373	
				3/5	
Testes					
Atrophy		335			

Table 139

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

	•	Dose L	Level in Diet		
	0	0.001%	0.01%	.10%	
Organ/Lesion		Group	up Designation		
	00	C1	C2	C3	
		A	Animal Number		
Cervix/Vagina					
Cervicitis and vaginitis, acute	411,414,415	432	451,452	471,473	
Eye					
Absence of cones and rods	411				
Kidney					
Lymphocytes, slight focal	411	432	451,452,455	473,474	
Lymphocytes, focal		431,433,434	452	474,475	
Lung					
Chronic respiratory disease	413	432,434	451	475	
				471	
Alveolar collapse, focal; hemorrhage			454		
respiratory disease				472	
Alveolar collapse and distension; chronic					
respiratory disease: hemorrhage, slight					
	415		557		
Alveolar collapse and distension; chronic					
respiratory disease; congestion, slight				474	
Alveolar collapse and distension; chronic					
respiratory disease; bronchopneumonia,					
solitary focal			452		
Alveolar collapse and distension;					
congestion, slight				473	
Bronchopneumonia, solitary; chronic					
respiratory disease		433			

Table 139 (Concluded)

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 4 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

		Dose L	Level in Diet		
	0	0.001%	0.01%	.10%	
Organ/Lesion		Gro	Group Designation	on	
	00	C1		C3	
		A	Animal Number		
Lung					
Congestion, slight; hemorrhage, slight					
focal		435			
Hemorrhage, slight focal	412		453		
Lymph node					
Hyperplasia, slight	415		453,455		
Subaceous gland hyperplasia			455		
Spleen					
Hemosiderosis, usually mild	412,415	432	452,453,455	471,472,473	
				474,475	
Thymus					
Hemorrhage, slight solitary		433			

distributed among the groups in such a way as to suggest an obvious dose relationship to the treatment.

Microscopic lesions in mice treated for 13 weeks before recovery are listed in Tables 140 and 141. In mice at the 0.10% treatment level there were two cases of testicular atrophy with accompanying aspermia of the epididymis. Hemosiderosis of the spleen was found in tissues from four of the five males and from all five females. Since these effects were either absent or much less frequent in other groups (with the exception of females at the 0.01% treatment level), they are probably related to the treatment.

Discussion

Twenty male and 20 female mice per group were fed 0, 0.001, 0.01, and 0.10% condensate water in their diets for up to 13 weeks. Five of each sex were killed after 4 and 13 weeks of treatment and after 4 weeks of recovery following these treatment regimens.

At the 0.001% condensate water level, no treatment-related alterations were observed in appearance or behavior or in any test parameter that might suggest an effect of the treatment. At the 0.01% level there were marginal effects on body weights (lower) and blood (slight anemia) that may be due to the treatment. This is supported by data on body weights and some hematological parameters, which exhibit dose responses in the linear trend tests (Appendix D).

At the 0.10% condensate water level, several changes were noted in the treated mice. Compared with controls, body weights and food intake were depressed and many of the animals had testicular atrophy with aspermia or cellular debris in the epididymis, hemosiderosis of the spleen, enlarged spleens and—after the longer treatment period—possibly livers. Three of five females treated for 4 weeks had inflammation in the tubular reproductive tract that might also be treatment—related (although these effects were not observed in the females treated for 13 weeks). Rough fur, ataxia, humped backs, tilting of the head, circling, anemia, and cyanosis in males and rough fur in females were also observed at this level and appear to be toxic symptoms of condensate water poisoning.

As in the rats, mice at the high dose level had lower food efficiency (lower body weight gain per g of food consumed) throughout most of the treatment period. Both males and females were affected. The decrease in food efficiency stems either from poorer absorption or treatment-induced changes in metabolic activity. Further experiments are needed to resolve these possibilities.

lable 140

MICROSCOPIC LESIONS IN MALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

		Dose L	Level in Diet		
.	0	.001%	.01%	.10%	
Organ/Lesion		Group	up Designation	Jn.	
	00	Cl		C3	
		A	Animal Number		
Epididymis					
Abcess			344		
Aspermia				361,364	
Kidneys					
Lymphocytic foci in cortex	301, 302, 303	321,322,324	342,343,344	365	
	304,305	324,325	345		
Liver					
Lymphocytic foci	302				
Necrosis, focal	303				
Lungs					
Alveolar collapse and distension				364	
collapse					
respiratory disease		323			
Alveolar collapse and distension, chronic					
respiratory disease, hemorrhage			341		
Alveolar collapse, distension, and histio-					
l		324		362	
Alveolar distension, hemorrhage, chronic					
			343		
Alveolar distension, hemorrhage		325		361	
chronic respiratory disease		322			
Alveolar distension, chronic respiratory					
disease			34.5		

Table 140 (Concluded)

MICROSCOPIC LESIONS IN MALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

Organ/Lesion Lungs (continued) Hemorrhage, chronic respiratory disease Chronic respiratory disease 302,30 Salivary gland Lymphocytic focus, small Spleen Hemosiderosis, slight to moderate 301 Testes	0 C0 302,304,305 301,302 301,303	Ool% Group C1 Anim 321	Level in Diet .01% roup Designation C2 Animal Number 344 344 345 3	.10% on 365 365 361,362,364 365	
				361,364	
slight focal 3	305				

Table 141

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY

CO CI CO CI ation in 402,404,405 421,422, 401,403,405 421,422, 404 404 405 405 405 chronic cronic		,
Organ/Lesion		.10%
enals ibrosis of cortex, focal ibrosis of cortex, focal; vacuolation in z. fasciculata, focal seence of pods and cones neys raphocytic foci in cortex retramedullary hematopoiesis retrosis, focal secrosis, focal serosis, focal	Group Designation	tion
ibrosis of cortex, focal ibrosis of cortex, focal ibrosis of cortex, focal; vacuolation in z. fasciculata, focal bsence of pods and cones wphocytic foci in cortex tramedullary hematopoiesis wphocytic foci errosis, focal lveolar distension, hemorrhage lveolar distension, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse and distension, respiratory disease lveolar collapse and distension,		C3
ibrosis of cortex, focal ibrosis of cortex, focal; vacuolation in z. fasciculata, focal bsence of pods and cones neys rephocytic foci in cortex rephocytic foci retramedullary hematopoiesis reprosis, focal secrosis, focal lveolar distension, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse and distension, respiratory disease lveolar collapse and distension,	Animal Number	er
ibrosis of cortex, focal ibrosis of cortex, focal; vacuolation in z. fasciculata, focal bsence of pods and cones neys wiphocytic foci in cortex tramedullary hematopoiesis writamedullary hematopoiesis tramedullary hematopoiesis sercosis, focal lyeolar distension, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse and distension, respiratory disease lveolar collapse and distension,		
ibrosis of cortex, focal; vacuolation in z. fasciculata, focal sence of pods and cones bsence of pods and cones neys wphocytic foci in cortex tramedullary hematopoiesis who cytic foci er tramedullary hematopoiesis tramedullary hemorrhage transferencion, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse and distension,	421,424 441,	43 463
ibrosis of cortex, focal; vacuolation in z. fasciculata, focal bsence of pods and cones neys wphocytic foci in cortex ktramedullary hematopoiesis ktramedullary hematopoiesis crosis, focal secrosis, focal lveolar distension, hemorrhage lveolar distension, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse, and distension,	577	
z. fasciculata, focal bsence of pods and cones neys ymphocytic foci in cortex ktramedullary hematopoiesis wphocytic foci errosis, focal ymphocytic foci ktramedullary hematopoiesis ktramedullary hematopoiesis tramedullary hematopoiesis ktramedullary hematopoiesis tramphocytic foci serosis, focal transfordinge lveolar distension, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse and distension,		
bsence of pods and cones neys ymphocytic foci in cortex tramedullary hematopoiesis wphocytic foci ecrosis, focal serosis, focal lveolar distension, hemorrhage lveolar distension, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse and distension,	777	
bsence of pods and cones neys ymphocytic foci in cortex err ktramedullary hematopoiesis ymphocytic foci ecrosis, focal secrosis, focal lveolar distension, hemorrhage lveolar distension, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse, hemorrhage, chronic respiratory disease lveolar collapse and distension,		
ce of pods and cones coytic foci in cortex 401,403,405 coytic foci in cortex 404, bedullary hematopoiesis 405 sis, focal lar distension, hemorrhage lar distension, hemorrhage, chronic piratory disease lar collapse, hemorrhage, chronic piratory disease lar collapse, hemorrhage, chronic piratory disease lar collapse and distension,		
pocytic foci in cortex 401,403,405 medullary hematopoiesis 404 cottic foci sis, focal lar distension, hemorrhage lar distension, hemorrhage, chronic piratory disease lar collapse, hemorrhage, chronic piratory disease lar collapse and distension,		461
pocytic foci in cortex 401,403,405 medullary hematopoiesis 404 ocytic foci sis, focal lar distension, hemorrhage lar distension, hemorrhage, chronic piratory disease lar collapse, hemorrhage, chronic piratory disease lar collapse and distension,		
phocytic foci in cortex 401,403,405 ramedullary hematopoiesis 404 phocytic foci 405 rosis, focal 403 eolar distension, hemorrhage 601 eolar distension, hemorrhage, chronic 625 eolar collapse, hemorrhage, chronic 625 eolar collapse, hemorrhage, chronic 625 eolar collapse and distension, 625 eolar collapse and distension, 635 eolar		
ramedullary hematopoiesis 404 phocytic foci rosis, focal 405 eolar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease eolar collapse, hemorrhage, chronic espiratory disease espiratory disease eolar collapse and distension,	421,422,423 44	43 461,462,463
ramedullary hematopoiesis phocytic foci rosis, focal eolar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease espiratory disease espiratory disease eolar collapse, hemorrhage, chronic espiratory disease eolar collapse and distension,	424 444,445	797
ramedullary hematopoiesis 404 phocytic foci rosis, focal eolar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease eolar collapse, hemorrhage, chronic espiratory disease eolar collapse and distension,		
ramedullary hematopoiesis 404 phocytic foci rosis, focal eolar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease eolar collapse, hemorrhage, chronic espiratory disease eolar collapse and distension,		
phocytic foci rosis, focal dollar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease eolar collapse, hemorrhage, chronic espiratory disease eolar collapse and distension,	04	
rosis, focal colar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease eolar collapse, hemorrhage, chronic espiratory disease eolar collapse and distension,		463
eolar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease eolar collapse, hemorrhage, chronic espiratory disease eolar collapse and distension,		465
eolar distension, hemorrhage eolar distension, hemorrhage, chronic espiratory disease eolar collapse, hemorrhage, chronic espiratory disease eolar collapse and distension,		
hemorrhage, chronic morrhage, chronic distension,	277	
morrhage, chronic distension,		
morrhage, chronic distension,	445	
distension,		
distension,		463
hemorrhage, chronic respiratory disease 405	05	
Alveolar collapse and distension,		
hemorrhage		797

MICROSCOPIC LESIONS IN FEMALE MICE AFTER 13 WEEKS OF CONDENSATE WATER TREATMENT AND 4 WEEKS OF RECOVERY Table 141 (Concluded)

	.10%	nc	C3			465	797					462							461,462,463	464,465						462	
Level in Diet	.01%	up Designation	C2	Animal Number					441		442			777					441,442,443	444,445			441	444		777	
Dose L	.001%	Group	C1	A							423,424		425	422		421			421,423,424			423		424,425		424.425	
	0		00								402	404			107	403		405	405					403		401,403,404	
		Organ/Lesion			Alveolar collapse and distension, chronic	respiratory disease	Alveolar collapse and distension	Alveologenic tumor, chronic respiratory	disease	Bronchopneumonia, focal, chronic	respiratory disease	Congestion, chronic respiratory disease		Hemorrhage	Hemorrhage, chronic respiratory disease	Chronic respiratory disease	 Lymph nade	necrosis, slight solitary focus	Spleen	Hemosiderosis, slight to moderate	Uterus	Endometrial hyperplasia	Endometrial hyperplasia, dilated lumen	Endometritis, acute	Vagina	Vaginitis, acute	

A slight hepatomegaly appeared to be present in the mice sacrificed after 13 weeks of treatment at the high dose. Possible factors responsible for this were considered. Congestion, extramedullary hematopoesis, or other signs of hepatotoxicity were absent in the livers, suggesting that the enlargement was an adaptative response to the treatment. One possibility is that the components induce microsomal enzyme activity; in this respect, 2,4-dinitrotoluene has not been identified as an enzyme inducer in past work, whereas 2,6-dinitrotoluene has. ^{39,40} Another possibility is that the enlargement derives from increased synthesizing capability for protein, carbohydrate, and fatty acid necessitated by the lower food intake by these animals. The explanations are speculative but are testable experimentally.

Mice withdrawn from treatment and allowed 4 weeks of recovery had lingering signs of anemia and hemosiderosis of the spleen at sacrifice. Mice treated for 13 weeks with condensate water before recovery had, in addition to these symptoms, low body weights and testicular atrophy with aspermatogenesis, indicating that recovery from the toxic effects was more difficult after the longer treatment period.

The toxic effects produced by condensate water are similar in rats and mice. Both species exhibited depressed body weights, weight gain, and food intake; a mild compensatory anemia with reticulocytosis evident; testicular atrophy; enlarged spleens and/or livers, with hemosiderotic deposits in the former; clinical symptoms of neurological or neuromuscular dysfunction; signs of adaptation to the treatment, but incomplete reversal of toxic signs upon withdrawal from treatment, especially after long exposure to the condensate water. Deaths at the high dose level were more frequent in mice, especially males, than in rats; only one rat died. A second difference is that in mice the decrease in food consumption is not noted until Week 3, whereas in rats it is observed in Week 1.

The subacute oral toxicities of 2,4-DNT and 2,6-DNT were previously evaluated in mice. 39,40 2,4-DNT produced weight loss, a mild anemia, and mild aspermia (at 4 but not at 13 weeks); treated mice recovered. No behavioral anomalies were noted. 2,6-DNT produced weight loss, mild duct hyperplasia, testicular atrophy with aspermia, and extramedullary hematopoesis. Because of a clotting problem in the samples from the 2,6-DNT mice, it was not established whether hematological parameters were altered. 2,4-DNT is less toxic to mice than rats, whereas the opposite is true with 2,6-DNT, based on acute oral LD50 determinations. These differences presumably stem from differences in absorption and/or metabolism. As noted above, 2,6-DNT induces microsomal enzymes, but 2,4-DNT apparently does not.

The effects on weight, blood parameters, and testes observed with the dinitrotoluenes were also observed with the condensate water mixture. There were, however, some differences. Clinical signs of toxicity were observed in the behavior and posture of the mice treated with condensate water at the high dose (0.10%), a dose which is substantially lower than those at which no effects were observed with the individual components. Two possible explanations may be offered for this difference: (1) the components act synergistically in the mixture; (2) these particular toxic manifestations are caused by other components. Other differences in the present study were: the enlarged spleens and hemosiderosis in the spleen in females after 13 weeks; endometritis in several females; testicular atrophy in both 4- and 13-week treated males; and the incomplete reversal of toxic symptoms in recovering mice. Bile duct hyperplasia and extramedullary hematopoesis were found in the studies on the dinitrotoluene components; since these two effects were mild and the dose levels used were higher than any used in the condensate mixture study, the absence of these lesions from the tissues of mice treated with the mixture is not surprising. With the possible exception of the clinical signs, which may signify a high potency of other components and deserve attention for this reason, the other differences are considered minor.

Water Quality Criteria

An objective of the present mammalian toxicology studies is to generate data which could be used to derive water quality criteria for the condensate water mixture in ambient waters. In the absence of either sufficient data from human exposure or long-term tests on the individual components from which water quality criteria for the mixture could be devised, the alternate approach of using data from toxicity studies with a mixture containing all the components in rough proportion to their presence in effluents may serve for purposes of establishing water quality criteria. This alternative is adopted here in order to calculate maximum concentrations for ambient waters which could be considered to minimize risks of adverse effects to the human populations.

For purposes of making the calculation, the approach proposed by the Environmental Protection Agency for nonstochastic effects is used. 44 The highest "no observable effects levels" for the condensate mixture in the three subacute studies that did not exceed levels producing effects were 0.50, 0.55,* and 1.16† mg/kg/day for the dog, rat, and mouse, respectively. These mean daily doses are converted into Acceptable Daily Intake (ADI) values for man by dividing by the uncertainty factor of 1000 used for situations in which human data or data

^{*} From Tables 58 and 59.

⁺ From Tables 116 and 117.

from long-term feeding studies is unavailable. To calculate a maximum recommended concentration of condensate water in water bodies, the equation

$$C \approx ADI \times 70/(2 + 0.0187R)$$
 (1)

is used, where C is the water concentration, 70 is an average human body weight, R is the bioconcentration factor for condensate water, 0.0187 is the (assumed) average weight of fish consumed daily (in kg), and 2 is the (assumed) daily water consumption (in liters) for an average adult (70 kg weight).

C can be calculated if R is known. Bioconcentration factors (BCFs) for 2,4-DNT, the major component in the condensate water, but not condensate water mixture itself, have been determined at 24- and 96-hour exposures in the bluegill muscle and viscera. ⁴² In muscle, the edible portion of the fish, the BCF did not exceed 5. Depuration was rapid, all absorbed 2,4-DNT being excreted within 24 hours. Octanol/water partition coefficients for the condensate water components were taken from available literature data and a computer program designed from known structure-activity relationships was used to calculate the remaining coefficients. ⁴³ Log P can be used alternatively for the calculation of R, using appropriate assumptions and an equation proposed by Veith et al. ⁴⁴

$$\log R = 0.76 \log P - 0.23$$
 (2)

Log P for most of the condensate components varies from 0.385 for 3,5dinitroaniline to 2.95 for 1,5-dimethyl-2,4-dinitrobenzene. Most values cluster around that for 2,4-DNT and 2,6-DNT, the major components, which have a log P value of 1.98, or are lower than this value. The value taken for log P in (2) is 1.93, a weighted average of all the components to the partition coefficients. Log R = 1.24 and R = 17.4. The maximum concentrations, C, from Equation (1), are then 15.1, 16.6, and 34.9 µg/liter (ppb) from the dog, rat, and mouse data, respectively. Thus, there is about a slightly more than two-fold range among the calculated water concentrations for condensate water, depending on the species used as a reference. It should be noted that this range is substantially above water quality criteria levels (0.45 to 1.2 µg/liter) recently estimated for 2,4-DNT, which comprises 44% by weight of the mixture. 45 The latter were derived from data on carcinogenicity studies in rodents, which data take precedence over that derived from nononcogenic studies for establishing water quality criteria. 44 These much lower values for 2,4-DNT suggest that the water quality criterion ultimately established for this component may be a determining factor in establishing similar criteria for the mixture.

REFERENCES

- 1. R. J. Spanggord, B. W. Gibson, R. G. Keck, and G. W. Newell.
 Mammalian Toxicological Evaluation of TNT Wastewater. Final
 Report, Volume 1: Chemistry Studies. USAMRDC Contract No.
 DAMD 17-76-C-6050, SRI International (March 1978), AD-A059434.
- D. J. Finney. Probit Analysis. Cambridge University Press, 1971.
- 3. Food and Drug Administration. Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics. Division of Pharmacology, Food, and Drug Administration, U.S. Dept. of Health, Education, and Welfare, Washington, D.C., 1959, pp. 49-51.
- 4. Food and Drug Administration. Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics. Division of Pharmacology, Food and Drug Administration, U.S. Dept. of Health, Education, and Welfare, Washington, D.C., 1959, pp. 47-48.
- 5. J. B. Magnusson and A. M. Kligman. The identification of contact allergens by animal assay. The guinea pig maximization test. J. Invest. Dermatol. <u>52</u>, 268-276 (1969).
- 6. J. McCann, E. Choi, E. Yamasaki, and B. N. Ames. Detection of carcinogens as mutagens in the <u>Salmonella</u> microsome test: Assay of 300 chemicals. Proc. Nat. Acad. Sci. USA 72, 5135-5139 (1975).
- 7. B. N. Ames, E. G. Gurney, J. A. Miller, and H. Bartsch. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc. Nat. Acad. Sci. USA 69, 3128-3132 (1972).
- 8. B. N. Ames, F. D. Lee, and W. E. Durston. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Nat. Acad. Sci. USA 70, 782-786 (1973).
- 9. B. N. Ames, W. E. Durston, E. Yamasaki, and F. D. Lee. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Nat. Acad. Sci. USA 70, 2281-2285 (1973).

- 10. J. McCann, N. E. Spingarn, J. Kobori, and B. N. Ames. Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72, 979-983 (1975).
- 11. B. N. Ames, J. McCann, and E. Yamasaki. Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Res. 31, 347-364 (1975).
- 12. L. D. Kier, E. Yamasaki, and B. N. Ames. Detection of mutagenic activity in cigarette smoke condensates. Proc. Nat. Acad. Sci. USA 71, 4159-4163 (1974).
- 13. L. A. Poirier and V. F. Simmon. Mutagenic carcinogenic relationships and the role of mutagenic screening tests for carcinogenicity. Clin. Toxicol. 9, 761-771 (1976).
- 14. C. C. Lee, J. V. Dilley, J. R. Hodgson, D. N. Roberts, D. O. Helton, and W. J. Wiegand. Mammalian Toxicity of Munition Compounds: Phase I, Acute Oral Toxicity, Primary Skin and Eye Irritation, Dermal Sensitization and Disposition and Metabolism. Report No. 1, 1-100. USAMRDC Contract No. DAMD 17-74-C-4073, Midwest Research Institute (22 July 1975), AD-B011150L.
- 15. D.H.W. Liu and H. C. Bailey. Toxicity of TNT Wastewater to Aquatic Organisms. Monthly Progress Report No. 33, Contract No. DAMD 17-75-C-5056, SRI International (1 November 1977)
- 16. G. Brecher, M. Schneiderman, and G. Z. Williams. Evaluation of the electronic red blood cell counter. Am. J. Clin. Pathol. 26, 1439-1449 (1956).
- 17. D. Selegson. Standard Method of Clinical Chemistry, Vol. 2. Academic Press, Inc., New York, 1958, p. 52.
- 18. M. R. Klugerman and J. H. Boutwell, Jr. Commercial control sera in the clinical chemistry laboratory. Clin. Chem. 7, 185-191 (1961).
- 19. N. Radin. What is a standard. Clin. Chem. 13, 55-76 (1967).
- 20. H. Talke and G. E. Schubert. Enzymatische harnstoffbestimmung in blut and serum im optischen test nach Warburg. Klin. Wochenscher 43, 174-175 (1965).
- M. Z. Jaffe. Über den Niederschlag, Welchen Pik-insauer in Normalen Harn erzeugt and über eine neue reaction des Kreatinins. Z. Physiol. Chem. 10, 391-400 (1886).

- 22. N. Kageyama. A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin. Chim. Acta 31, 421-426 (1971).
- 23. T. Nach. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. <u>55</u>, 416-421 (1953).
- 24. H. V. Connerty and A. R. Briggs. Determination of serum calcium by means of sodium alizarinsulfonate. Clin. Chem. 11, 716-728 (1965).
- 25. H. Goldberg and A. Fernandez. Simplified method for the estimation of inorganic phosphorus in body fluids. Clin. Chem. 12, 871-882 (1966).
- D. S. Young, D. W. Thomas, R. B. Friedman, and L. C. Pestaner. Effects of drugs on clinical laboratory tests. Clin. Chem. <u>18</u>, 1041-1303 (1972).
- 27. L. Jendrassik and P. Grof. Vereinfachte photometrische me hoden zur bestimmung des blut bilirubins. Biochem. Z. 297, 81-89 (1938).

1.

- 28. C.C.Allain, L. S. Poon, C.S.G. Chan, W. Richmond, and P. C. Fu. Enzymatic determination of total serum cholestrol. Clin. Chem. 20, 470-475 (1974).
- 29. G. Bucolo and H. David. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19, 476-482 (1973).
- 30. R. L. Searcy. Diagnostic Biochemistry. McGraw Hill, New York, 1969.
- 31. D. W. Bradley, J. E. Maynard, G. Emery, and H. Webster. Transaminase activities in serum of long-term hemodialysis patients. Clin. Chem. 18, 1442 (1972).
- 32. S. Morgenstern, R. Rush, and D. Lehman. SMAC: Chemical methods for increased specificity. <u>In</u> Advance in Automated Analysis, Vol. 1. International Congress, 1972. Mediad, Inc., Tarrytown, New York, 1973, pp. 27-31.
- 33. O. A. Bessey, O. H. Lowry, and M. J. Brock. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164, 321-329 (1946).

- 34. T. E. Weichselbaum. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Path. 16 (Tech. Suppl.), 40-49 (1946).
- 35. B. T. Doumas, W. A. Watson, and H. G. Biggs. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chem. Acta. 31, 87-96 (1971).
- 36. K. A. Brownlee. Statistical Theory and Methodology in Science and Engineering. John Wiley and Sons, New York, 1960, pp. 255-226.
- 37. A. Scheffe. The Analysis of Variance. John Wiley and Sons, New York, 1959, pp. 20-21.
- 38. D. A. Williams. The comparison of several dose levels with zero dose control. Biometrics 28, 519-531 (1972).
- 39. C.-C. Lee, H. V. Ellis, J. J. Kowalski, J. R. Hodgson, S. W. Hwang, R. D. Short, J. C. Bhandari, J. L. Sawyer, T. W. Reddig, and J. L. Minor. Mammalian Toxicity of Munition Compounds. Phase II: Effects of Multiple Doses. Part II: 2,4-Dinitrotoluene. Final Report, USAMRDC Contract No. DAMD-17-74-C-4073, Midwest Research Institute (30 June 1976), AD-A047,067.
- 40. C.-C. Lee, H. V. Ellis, J. J. Kowalski, J. R. Hodgson, R. D. Short, J. C. Bhandari, T. W. Reddig, and J. L. Minor. Ref. 39. Part III: 2,6-Dinitrotoluene. Final Report, USAMRDC Contract No. DAMD-17-74-C-4073, Midwest Research Institute (20 July 1976), AD-A061,715.
- 41. Environmental Protection Agency. Water Quality Criteria. Request for Comments. Fed. Register 44, 15926-15981 (1979).
- 42. D.H.W. Liu and H. C. Bailey. Toxicity of TNT Wastewater to Aquatic Organisms. Monthly Progress Report No. 31, Contract No. DAMD 17-75-C-5056, SRI International (1 March 1978).
- 43. H. C. Johnson, SRI International, data transmitted in letter from D.H.W. Liu to J. G. Pearson, USAMBRDL, dated 3/15/78.
- 44. G. D. Veith, K. Macek, S. R. Petrocelli, and J. Carroll. An evaluation of using partition coefficients and water solubility to estimate bioconcentration factors for organic chemicals in fish. Proc. A.S.T.M. Mtg., Oct. 1978, in press.
- 45. H. V. Ellis III, J. H. Hagensen, J. R. Hodgson, J. L. Minor, C.-B. Hong, E. R. Ellis, J. D. Girvin, D. O. Helton, B. L. Herndon, and C.-C. Lee. Mammalian Toxicity of Munitions Compounds. Phase III: Effects of Life-Time Exposure. Part I: 2,4-Dinitrotoluene. Progress Report No. 7, USAMRDC Contract No. DAMD-17-74-C-4073, Midwest Research Institute (September 1978).

Appendix A

ACUTE ORAL LD50 CALCULATIONS

PRECEDING PAGE NOT FILMED

ACUTE ORAL LD50 CALCULATIONS

Introduction

A computer program has been designed to determine the mid-lethal or mid-effective dose (LD50 or ED50) from a series of doses and quantal responses using the maximum likelihood method as described by Finney.* It calculates the response as a function (linear, natural log, or some specified power) of the dose, estimates the best straight line through these points, and then adjusts this straight line in an iterative process until the likelihood that this line is the correct regression line is at a maximum. Once this is done, the LD50 or ED50 and its percent and standard errors are calculated; the slope of the regression line and its percent and standard errors are calculated; the chi-square statistic, the degrees of freedom, and the probability that the data points fit the regression line poorly are determined; and finally, Finney's G factor and the upper and lower 95% confidence limits for the LD50 or ED50 are found.

Methods and Formulas Used

The maximum likelihood method of Finney,* which may be used for quantal dose-response relationships, involves an iterative process for solving the equation $\frac{\partial L}{\partial \phi} = 0$, where $L = \Sigma \ r_i \log P_i + \Sigma \ (n_i - r_i) \log (1 - P_i)$, n_i = sample at a particular dose, r_i = number that respond to that dose, P_i = probability that r_i respond at that dose, and ϕ = any argument of P such that P is differentiable everywhere. This method is general whatever the form of the probability distribution P, but, in particular, we are interested in the form

$$P = \frac{1}{\sigma\sqrt{2\tau}} \sum_{-\infty}^{x} \int_{e} \left(\frac{-(x-\mu)^{2}}{2\sigma^{2}}\right)_{dx},$$

where x is a linear, logarithmic, or other suitable function of the dose. We can measure this probability on a transformed scale (the Normal Equivalent Deviate or Y scale) by defining

^{*} D. J. Finney. Probit Analysis. Cambridge University Press, England, 1971.

$$P = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{Y} e(\frac{-\mu^2}{2}) du$$

This is equivalent to a linear dependence of Y on x: Y = α + βx , where μ = $\frac{-\alpha}{\beta}$ and σ = $\frac{1}{\beta}$. Now define

$$Z = \frac{\partial P}{\partial Y} = \frac{1}{2\sqrt{\pi}} e(\frac{-Y^2}{2}) .$$

Then define

$$\frac{\partial P}{\partial \alpha} = Z$$
 and $\frac{\partial P}{\partial \beta} = Zx$.

If we guess a solution of $\frac{\partial L}{\partial \phi} = 0$ in terms of the parameters $Y_1 = a_1 + b_1 x$ (using the formula giving the <u>line of best fit</u> through a set of n points) (x_1, Y_1) , (x_2, y_2) ,... (x_n, y_n) : $y = mx + (\bar{y} - m\bar{x})$,

$$\bar{x} = \frac{x_i}{n}$$
; $\bar{y} = \frac{y_i}{n}$; $m = (\frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2})^2$,*

then introduce a weighting coefficient $w = \frac{Z^2}{P(1-P)}$ and a working probit

$$y = Y_1 + \frac{P-P}{Z}$$
 (p being the empirical probability, i.e., $p = \frac{r_i}{n_i}$), we

can solve for the correction factors δa and δb using

$$(a_1 + \delta a) \sum n_i w_i + (b_1 + \delta b) \sum n_i w_i x_i = \sum n_i w_i y_i$$
 and $(a_1 + \delta a) \sum n_i w_i x_i + (b_1 + \delta b) \sum n_i w_i x_i^2$

=
$$\sum_{i} w_i x_i y_i$$
. By letting $\bar{x} = \frac{\sum_{i} w_i x_i}{\sum_{i} w_i}$ and $\bar{y} = \frac{\sum_{i} w_i y_i}{\sum_{i} w_i}$,

we can calculate

^{*} S. M. Selby. Standard Mathematical Tables. The Chemical Rubber Company, Cleveland, Ohio, 1967.

$$b_2 = b_1 + \delta b = \frac{\sum n_i w_i (x_i - \bar{x}) (y_i - \bar{y})}{\sum n_i w_i (x_i - \bar{x})^2}$$

and $a_2 = a_1 + \delta a = \overline{y} - b_2 \overline{x}$. We can iterate this procedure for any desired accuracy; we choose to iterate until $\delta b < .001(b_1)$. Then we determine:

the LD50: the dose such that $0 = Y - \alpha + \beta x$, i.e., LD50 = $\frac{-\alpha}{\beta}$;

the Standard Error of the LD50: SE(LD50) = $\frac{1}{b^2} \left(\frac{1}{\sum n_i w_i} + \frac{LD50 - \bar{x})^2}{\sum n_i w_i (x_i - \bar{x})^2} \right)$;

the slope of the regression line: slope = β ;

the Standard Error of this slope: $SE(slope) = \frac{1}{\sum n_i w_i (x_i - \bar{x})^2}$;

the number of degrees of freedom: k = number of doses - 2; the Chi-Square statistic: $x^2 = \sum_i w_i (y_i - Y_i)^2$;

The probability of poor fit: found by integrating

$$F(x^2) = \int_0^x \frac{x^2}{2^{\frac{1}{2}} \Gamma(\frac{k}{2})} \times \frac{(\frac{n-2}{2})}{e} e^{(\frac{-x}{2})} dx \text{ according to Simpson's rule;}$$

Finney's "G" factor:
$$G = \frac{t(.95)}{\beta^2(\Sigma n_1 w_1 x_1^2 - (\Sigma n_1 w_1) \bar{x}^2)}$$
;

and the upper and lower 95% confidence limits:

C. L. = LD50 +
$$\frac{G}{1-G}$$
 (LD50 - \bar{x}) $\pm \frac{t(.95)}{\beta(1-G)}$ $\frac{1-G}{\Sigma n_i w_i} + \frac{(LD50-\bar{x})^2}{\Sigma n_i w_i x_i^2 - (\Sigma n_i w_i) \bar{x}^2}$.

Appendix B

DATA ON INDIVIDUAL ASSAYS - MUTAGENICITY TESTING

Table B-1

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,3-DINITROTOLUENE

	Metabolic	Micrograms of Compound	Hist	ridine Re	Histidine Revertants per Plate	per Pla	ר נפ
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı +		23 15	14	17	24 24	122 109
Positive controls Sodium azide	ı	1.0	412				654
9-Aminoacridine	•	100		2068			
2-Nitrofluorene	1	10			1463	1132	
2-Anthramine	+	2.5	482	208	957	2806	2539
2,3-Dinitrotoluene	ı	100	16	11	13	39	126
	•	200	15	12	12	35	150
	ı	300	19	12	29	65	165
	ı	400	1.5	13	16	59	177
	•	200	6	4	31	9	215
	ı	009	6	6	31	04	283
	+	200	7	6	15	26	139
	+	009	15	9	12	23	149
	+	700	6	'n	13	29	201
	+	800	14	7	14	22	202
	+	006	12	13	5	25	200
	+	1000	9	œ	19	33	223

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,3-DINITROTOLUENE Table B-2

Der Plate TA98 TA100	29 113 27 100	322 957 26 135 716 976	61 176 78 216 112 302 172 459 128 157 21 0	39 128 49 159 46 260 35 252 5 8
Histidine Revertants pe: Plate	14 13	953 13 993	42 44 89 101 37 6	30 20 23 0 0
tidine Re TA1537	94	1077 11 77	10 11 7 7 8 9 20 20	4 10 10 11
His TA1535	6 4	167	13 13 13 13 0	44 12 6 0
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5 2.5	100 200 300 500 750	250 500 750 1000 1500
Metabolic Activation	۱ +	11111+		+++++
Compound	Negative control	Positive controls \(\beta\)-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2 2-Anthramine	2,3-Dinitrotoluene	

Table B-3

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,4-DINITROTOLUENE

	Metabolic	Micrograms of Compound	H18	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		29	12	10	30	127
	+		15	12	77	87	138
Positive controls							
β-Propiolactone	1	10	149				
9-Aminoacridine	1	100		812			
2-Nitrofluorene	1	10			1345		
AF2	t	0.1				259	938
2-Anthramine	ı	2.5	34	14	œ	77	139
	+	2.5	100	94	350	375	742
2,4-Dinitrotoluene	ı	10	20	10	9	07	145
	ı	50	26	16	21	43	206
	ı	100	24	11	12	45	146
	1	200	17	10	22	38	236
	ı	1000	œ	6	5 7	28	360
	ı	2000	0	0	0	0	0
	+	10	20	∞	24	45	102
	+	50	16	6	24	37	147
	+	100	13	11	17	33	192
	+	200	14	17	16	43	258
	+	1000	16	S	27	42	390
	+	2000	0	0	16	12	0

i.

Table B-4
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,4-DINITROTOLUENE

re TA100	113	957 135 976	220 327 361 227 49 0	156 264 265 333 34
per Pla	29 27	322 26 716	42 20 17 16 6	23 11 20 3 0
Histidine Revertants per Plate	14	953 13 993	6 17 11 7 2 0	20 9 6 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
idine Re TA1537	9 4	1077 11 77	12 0 0 0	0157155
Hist TA1535	6 4	167 26 31	10 10 4 4 0	2 8 8 22 6
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5 2.5	500 750 1000 1500 2500	500 750 1000 1500 2000 2500
Metabolic Activation	1 +	1 / 1 / 1 / +		+++++
Compound	Negative control	Positive controls &-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2 2-Anthramine	2,4-Dinitrotoluene	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,5-DINITROTOLUENE

Histidine Revertants per Plate	10 30 127 24 48 138	1345 259 938 8 44 139 350 375 742	13 51 142 28 38 168 57 68 202 0 1 1 1 0 0 0	25 25 166 23 40 188 36 47 170 407 116 392 0 16 0
stidine R TA1537	12	812 14 46	6 11 10 0 0	6 8 8 12 0
H1. TA1535	29 15	149 34 100	21 42 25 0 0 0	20 15 20 24 24 0
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5 2.5	10 50 100 500 1000 5000	10 50 100 1000 500
Metabolic Activation	1 +	,,,,,+	11111	+++++
Compound	Negative control	Positive controls \(\theta\)-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2 2-Anthramine	2,5-Dinitrotoluene	

Table B-6
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,5-DINITROTOLUENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control			ο.	9.	14	29	113
	+		4	4	ET .	/7	001
Positive controls							
8-Propiolactone	ľ	10	167				
9-Aminoacridine	ı	100		1077			
2-Nitrofluorene	1	10			953		
AF2	t	0,1				322	957
2-Anthramine	ı	2.5		11	13	5 6	135
	+	2.5		77	993	716	916
2.5-Dinitrotoluene	1	20	12	9	35	39	151
	ı	100	20	7	53	2	230
	1	150	24	5	73	98	297
	ı	200	16	∞	79	130	335
	ı	250	11	6	103	5 6	436
	ı	300	0	9	က	0	234
	+	200	15	7	78	87	184
	+	300	10	7	37	69	287
	+	400	12	δ	122	47	378
	+	200	10	4	87	23	797
	+	009	0	٣	0	က	0
	+	750	0	0	0	0	0

Table B-7

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,6-DINITROTOLUENE

te TA100	127 138		938	139 742	156	152 203	288 34	120 122 141 175	69
per Pla	87 02		259	375	55	39 37	42 5	36 46 48	40
Histidine Revertants per Plate	10 24		1345	350	ωμ	J e 7J	26 3	24 17 18 22	10
idine Re	12	812	7.	74 74	12	272	∞ ⊣	10 7 8 8 7	ט יט
Hist TA1535	29 15	149	2	100	37	36 28	35 2	20 20 8	7,0
Micrograms of Compound Added per Plate		10 100	10 0.1 2.5	2.5	10	100 500	1000 5000	10 50 500 500 500	2000
Metabolic Activation	1 +	1 1		+	1 1	1 1	1 1	++++	. +
Compound	Negative control	Positive controls 8-Propiolactone 9-Aminoacridine	Z-Nitrofluorene AF2 Z-Anthramine		2,6-Dinitrotoluene				

į.

; (,

Table B-8

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,6-DINITROTOLUENE

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	Hist TA1535	TA1537	Histidine Revertants per Plate	per Pla TA98	te TA100
Negative control	ı +		64	9 4	14	29 27	113
Positive controls 8-Propiolactone 9-Aminoacridine	1 1	10 100 100	167	1077	0		
2-Nitroiluorene AF2 2-Anthramine	+	0.1 2.5 2.5	26 31	111	13 13 993	322 26 716	957 135 976
2,6-Dinitrotoluene	1 1 1 1 1 1	500 750 1000 1500 2000	14 6 3 3 0	7 6 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 16 10 10 8 8	27 31 24 28 20 3	239 275 265 125 24 15
	+++++	500 750 1000 1500 2000 2500	5 1 1 1	7 2 2 2 3 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9	13 13 2 2 5	27 22 22 21 9	198 261 285 242 188 84

Table B-9
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3,4-DINITROTOLUENE

te TA100	127 138	938 139 742	108 118 114 180 0	122 134 131 122 178 0
per Pla	30	259 44 375	30 27 19 0	36 C# 21 22 0
Histidine Revertants per Plate	10 24	1345 8 350	11 10 6 8 0	24 21 29 7 0
Idine Re	12	812 14 46	15 12 2 1	10 12 6 7 7
Hist TA1535	29 15	149 34 100	26 23 20 11 11 0	7 12 10 14 14 0
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5	10 50 100 500 1000 5000	10 50 100 500 1000
Metabolic Activation	1 +	1111+		+++++

^{*} C, contaminated.

9-Aminoacridine 2-Nitrofluorene

AF2 2-Anthramine

Positive controls \$-Propiolactone

Negative control

Compound

3,4-Dinitrotoluene

Table B-10
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3,4-DINITROTOLUENE

•

re TA100	113	957	135 976	113 C* 136 117 61 15	101 22 46 0 0
per Pla	29	322	26 716	17 20 14 20 20 21 14	16 9 8 0 0
Histidine Revertants per Plate	14 13	953	13 993	10 10 4 8 4 0	498000
idine Rev TA1537	9 7	1077	11	12 7 3 3 3	000000
H1st TA1535	6 4	167	26 31	17 20 9 9 4 4	447000
Micrograms of Compound Added per Plate		10 100 10 0.1	2.5	200 300 400 500 600 750	800 900 1000 1500 2000 2500
Metabolic Activation	I + ′	1 1 1 1	۱+	1 1 1 1 1 1	+++++

Positive controls β-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2

Negative control

Compound

3,4-Dinitrotoluene

^{*} C, contaminated.

Table B-11
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3,4-DINITROTOLUENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1+		12	12	11	18 23	124 132
Positive controls Sodium azide	ı	1.0	142	0			767
2-Anthramine 2-Nitrofluorene 2-Anthramine	ı ı +	100 20.5	17	1632	1223	1043	454
			i	l			
3,4-Dinitrotoluene	1	100	13	11	22	35	136
	ı	200	19	17	14	25	119
	ľ	300	16	(0)	18	27	171
	1	400	9	2	•	24	199
	ı	200	9	7	7	18	214
	+	200	9	œ	∞	14	143
	+	750	'n	7	က	6	277
	+	1000	7	'n	ო	21	122
	+	1250	0	-	4	4	0
	+	1500	0	0	0	0	0

Table B-12
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3,5-DINITROTOLUENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	۱+		10	915	7	14 23	83 86
Positive controls Sodium azide	1 1	1.0	754	1321			736
2-Nitrofluorene 2-Anthramine	1 1 +	50 2.5 2.5	11 265	6 224	1923 20 1417	2186 19 2249	107 2775
3,5-Dinitrotoluene	1 1	300	12 9	9 16 24	119 247 333	82 189 244	121 294 544
	1111	700 900 1100	13 11 8	28 27 18	372 214 75	289 280 323	881 1019 376
	+ -	300	ıΩα	& <u>-</u>	124	168	207
	+ +	700	12	121	205	342	550
	+ +	900	18	20	221 328	450	734
	⊦ +	1300	01	33	536	263	1056

Table B-13
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3,5-DINITROTOLUENE

	Metabolic	Micrograms of Compound	His	ridine Re	Histidine Revertants per Plate	per Pla	ا ا
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		27	7	12	25	88
	+		œ	22	18	27	96
Positive controls							,
Sodium azide	ı	1.0	185				290
9-Aminoacridine	1	100		12			
2-Nitrofluorene	1	10			867	96/	
2-Anthramine	1	2.5	17	17	16	31	100
	+	2.5	10	18	23	18	115
3,5-Dinitrotoluene	ı	100	17	173	182	341	148
	1	300	16	341	436	501	249
	ı	200	28	383	498	349	487
	ı	700	19	476	391	326	909
	•	006	9	351	283	310	795
	ı	1200	2	323	202	350	195
	+	100	7	42	43	77	131
	+	200	14	130	141	145	240
	+	1000	15	278	171	186	468
	+	1500	7	265	168	180	828
	+	2000	7	288	273	81	0
	+	2500	0	8	74	53	0

Table B-14
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3,5-DINITROANILINE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	e e
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		37	∞	12	34	110
	+		14	16	27	97	97
Positive controls			,				
Sodium azide	•	1.0	631	,			
9-Aminoacridine	1	100		1650			
2-Nitrofluorene	•	10			1096		
AF2	ı	0.1				366	978
2-Anthramine	ı	2.5	47	7	17	31	123
	+	2.5	91	53	296	643	892
3 5-Dinftroaniline	ı	0.5	41	'n	11	34	111
	ı	1.0	28	9	26	29	97
	•	5.0	43	17	18	67	107
	t	10.0	30	12	54	8	167
	ı	15.0	47	24	85	223	797
	ı	20.0	09	29	117	249	269
	+	20.0	30	σ	26	20	115
	+	30.0	28	24	29	ಜ	122
	+	60.0	20	17	27	45	114
	+	50.0	27	7	33	77	136
	+	0.09	29	7	37	42	121
	+	70.0	37	∞	30	37	124

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3,5-DINITROANILINE Table B-15

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	I -		43	10	15	34	144
	-		}	i	}		
Positive controls							
Sodium azide	ı	1.0	480				
9-Aminoacridine	1	100		1646			
2-Nitrofluorene	ı	10			1110		,
AF2	ı	0.1				369	629
2-Anthramine	ı	2.5	87	17	22	40	172
	+	2.5	272	157	1390	1356	1786
3.5-Dinitroaniline	t	5	36	ť	0	34	178
	1	10	45	20	107	311	197
	ı	15	53	27	81	391	514
	1	20	59	19	167	263	767
	ı	30	71	15	298	983	40 7
	ı	07	63	က	287	489	429
	+	20	30	ပ	14	52	125
	+	30	35	22	77	38	157
	+	07	39	∞	ပ	40	165
	+	50	42	17	50	37	146
	+ +	60 70	68 72	13 8	30 5 30	5 7 7	163

; 1.

į

Pringing and

; 1.

1

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-AMINO-3,6-DINITROTOLUENE Table B-16

TA100	112 95	097	176	077	783	1127	1446	1527	1291	20	572	654	377	288	203	74
per Pla	21 36		1260 37 2131	261	490	557	889	767	509	0	332	575	557	763	891	522
Histidine Revertants per Plate	17 8		1390 14 145	529	656	726	595	613	127	0	87	160	294	0	0	0
idine Re TA1537	99	803	8 35	14	∞	13	19	70	17	13	5	9	9	7	7	6
Hist TA1535	17 9	403	14 293	28	23	31	30	11	0	0	15	7	12	7	13	0
Micrograms of Compound Added per Plate		1.0 100	10 2.5 2.5	100	200	300	700	200	200	800	300	400	500	009	700	800
Metabolic Activation	: +	1 1	11+	ı	ı	ı	ı	1	ı	I	+	+	+	+	+	+
Compound	Negative control	Positive controls Sodium azide 9-Aminoacridine	2-Nitrofluorene 2-Anthramine	2-Amino-3,6-dinitrotoluene												

- 2-AMINO-3,6-DINITROTOLUENE IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM Table B-17

rte TA100	120	95	0	9		122	1932	341	513	760	870	1205	526	0	156	521	91	224	42	76
per Pla	19	56			1652	35	2117	286	465	577	789	763	0	359	1025	0	811	1042	413	330
Histidine Revertants per Plate	28	22			1736	32	1673	454	576	642	465	247	0	0	63	73	152	141	80	208
ddine Re	4	7		1003		7	273	11	14	19	6	20	က	2	∞	2	7	0	4	0
H1st TA1535	52	32	,	7 4		09	371	37	62	67	52	62	22	14	53	42	36	59	12	2
Micrograms of Compound Added per Plate			•	100	10	2.5	2.5	100	200	300	400	200	700	800	300	400	500	009	700	800
Metabolic Activation	t	+		, ,	1	ı	+	1	ı	ı		ı		ı	+	+	+	+	+	+
Compound	Negative control		Positive controls	Sodium azide Q_Aminoscridine	2-Nitrofluorene	2-Anthramine		2-Amino-3.6-dinitrotoluene												

; 1.

ì

To the second

Palagore.

.

ĺ.

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-AMINO-4,6-DINITROTOLUENE Table 3-18

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1		29	12	10	30	127
	+		15	12	24	48	138
Positive controls							
2-Propiolactone	ı	10	149				
9-Aminoacridine	1	100		812			
2-Nitrofluorene		10			1345		
AF2	ı	0.1				259	938
2-Anthramine	ı	2.5	34	14	∞	77	139
	+	2.5	100	97	350	375	742
2-Amino-4.6-dinitrotoluene	ı	10	24	21	21	37	122
	ı	50	19	∞	11	36	143
	ı	100	39	16	16	9	160
	•	200	16	33	61	223	469
	•	1000	77	39	172	201	650
	1	2030	12	7	24	က	41
	+	10	16	S	25	51	115
	+	50	22	6	25	20	140
	+	100	12	11	23	47	152
	+	200	29	4	29	9	280
	+	1000	21	14	5.5	84	284
	+	2000	20	7	6	200	300

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-AMINO-4,6-DINITROTOLUENE Table B-19

	Metabolic	Micrograms of Compound	Hist	cidine Re	Histidine Revertants per Plate	per Pla	t e
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		6	9	14	29	113
1	+		4	4	13	27	100
Positive controls							
8-Propiolactone	•	10	167				
9-Aminoacridine	•	100		1077			
2-Nitrofluorene	ı	10			953		
AF2	•	0.1				322	957
2-Anthramine	ı	2.5	26	11	13	5 6	135
	+	2.5	31	77	993	716	926
2-Amino-4.6-dinitrotoluene	1	250	24	35	104	137	428
	1	200	27	28	159	492	778
	ı	750	20	39	254	780	884
	1	1000	16	36	274	533	478
	1	1500	7	48	69	628	279
	1	2000	10	20	9	'n	167
	+	200	17	26	99	98	273
	+	750	6	12	63	94	293
	+	1000	12	24	87	176	430
	+	2000	7	m	8	100	575
	+	3000	7	0	0	0	100
	+	4000	0	0	0	0	20

1

Į.

[

Ĭ

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-AMINO-2,4-DINITROTOLUENE Table B-20

. 1.

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	H1st TA1535	idine Re TA1537	Histidine Revertants per Plate	per Pla TA98	te TA100
Negative control	1 +		37	8 16	12 27	34	110 97
Positive controls Sodium azide 9-Aminoacridine	1 1	1.0	631	1650	, , , , , , , , , , , , , , , , , , ,		
z-Nitrofluorene AF2 2-Anthramine	+	10 0.1 2.5 2.5	47	7 53	1096 17 596	366 31 643	978 123 892
3-Amino-2,4-dinitrotoluene	11111	100 250 500 750 1000 2000	48 52 60 50 54 18	11 5 13 12 21 18	22 31 50 35 49 63	29 46 56 68 71	148 97 107 146 133 62
	+++++	100 250 500 750 1000 2000	27 35 41 33 50 36	10 15 12 21 14	28 31 69 100 1111	48 68 94 119 103	123 150 202 342 379 246

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-AMINO-2,4-DINITROTOLUENE Table B-21

	Metabolic	Micrograms of Compound	Hist	ridine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1		43	10	15	34	144
	+		28	14	15	54	112
Positive controls							
Sodium azide	ı	1.0	780				
9-Aminoacridine	ı	100		1646			
2-Nitrofluorene	ı	10			1110		
AF2	ı	0.1				369	629
2-Anthramine	•	2.5	48	17	22	9	172
	+	2.5	272	157	1390	1356	1786
3-Amino-2.4-dinitrotoluene	ı	100	ť	13	31	35	105
	•	250	58	64	27	53	181
	1	200	75	œ	37	62	215
	ı	750	82	24	48	53	260
	ı	1000	ပ	34	70	72	242
	1	2000	45	15	80	93	300
	+	100	ပ	15	35	35	188
	+	250	61	14	39	99	204
	+ ·	500	6,	22	52	84	222
	+ +	06/ 000 t	ر د	77	è &	. 6	360
	+ +	2000	17	τ ω	52	130	120

* C, contaminated.

{ .

{.

[

Ì.

[,

Table B-22

IN VITRO ASCAYS WITH SALMOMELLA TYPHINURIUM - 3-AMINO-2, 6-DINITROTOLUENE

	Metabolic	Micrograms of Compound	, c n l 4 tr	Histidine	Histidine Revertants per Plate	per Plate	TA100
Compound	Activation	Added per Plate	CS CIVI	IALS 5/	101338	1490	IALOO
Negative control	ı		16	٠	27	33	105
	+		12	7	15	26	132
Positive controls							
<i>B-Propiolactone</i>	ı		137				
9-Aminoacridine	1			1166			
2-Nitrofluorene	ı				1600		
AF2	ı	0.1				170	858
2-Anthramine	ı	2.5	10	11	25	77	135
	+	2.5	91	106	927	643	1429
3-Amino-2,6-dinitro-	1	200	7	19	70	79	218
toluene	ı	007	18	14	123	127	303
	1	009	11	17	163	146	977
	•	800	10	18	285	144	955
	ı	1000	10	17	278	141	1012
	1	2000	T *	2T	24T	78T	29T
	+	10	∞	11	24	24	115
	+	20	10	6	27	32	126
	+	100	10	14	25	28	101
	+	250	12	12	87	77	138
	+	200	10	19	91	81	168
	+	750	∞	20	205	147	325

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-AMINO-2,6-DINITROTOLUENE Table B-23

	Metabolic	Micrograms of Compound	H18	tidine R	Histidine Revertants per Plate	per Pla	ite
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1+		6 7	9 4	14	29 27	113
Positive controls	ı	Ç	£ 7 £				
9-Anthoacridine	ı ı	100	707	1077			
2-Nitrofluorene		10			953		
AF2	1	0.1				322	957
2-Anthramine	ı	2.5	26	11	13	76	135
	+	2.5	31	77	993	716	926
3-Amino-2,6-dinitrotoluene	ı	10	16	S	15	24	107
	ı	50	17	∞	20	5 6	107
		100	14	10	39	33	120
	1	500	15	19	119	70	207
	1	1000	œ	0	28	35	419
	ı	2000	0	0	0	0	0
	+	10	13	-	15	9	91
	+	50	20	7	19	24	101
	+	100	9	4	5 6	17	114
	+	200	21	9	68	99	104
	+	1000	0	S	71	77	88
	+	2000	0	0	0	0	0

1

E

Ĭ.

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-AMINO-2,6-DINITROTOLUENE Table B-24

re TA100	127 138	938 139 742	140 155 184 230 190	92 180 228 430 475
TA98	30 48	259 44 375	33 44 31 42 71 18	58 53 47 66 75
Histidine Revertants per Plate	10	1345 8 350	20 15 7 25 27 4	23 29 40 29
idine Re TA1537	12	812 14 46	14 4 7 3 3	9 14 16 7 10
Hist TA1535	27 15	149 34 100	18 21 26 37 28 4	22 22 20 20 23 8
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5	10 50 100 500 1000 5000	10 50 100 500 1000 5000
Metabolic Activation	1 +	1111+	11111	+++++
Compound	Negative control	Positive controls \$-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2 2-Anthramine	4-Amino-2,6-dinitrotoluene	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-AMINO-2,6-DINITROTOLUENE Table B-25

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	His TA1535	tidine Re TA1537	Histidine Revertants per Plate	per Pla	TA100
Negative control	ı +		04	9 4	14	29 27	113
Positive controls 8-Pronfolactone	ı	10	167				
9-Aminoacridine	ı	100	i 	1077			
2-Nitrofluorene	ı	10			953		
	1	0.1				322	957
	ı	2.5	26	11	13	5 6	135
	+	2.5	31	77	993	716	916
4-Amino-2,6-dinitrotoluene	ı	100	17	14	15	38	127
	ı	200	12	7	17	28	168
	ı	300	14	01	21	32	164
	•	200	10	∞	16	36	214
	•	750	4	က	19	35	197
	1	1000	2	7	16	32	154
	+	250	ო	7	15	26	211
	+	200	7	7	13	35	232
	+	750	5	œ	12	33	242
	+	1000	7	7	∞	31	355
	+	1500	5	4	'n	21	336
	+	2000	4	m	0	23	275

į.

ĺ.

Ĩ

£

E

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-AMINO-3,5-DINITROTOLUENE Table B-26

	Metabolic	Micrograms of Compound	His	cidine R	Histidine Revertants per Plate	per Pla	t e
Compound	Activation	Added per Plate	TA1535	TA1537	<u>TA1538</u>	TA98	TA100
Negative control	ı		6	9	14	29	113
	+		4	4	13	27	100
Positive controls							
8-Propiolactone	ı	10	167				
9-Aminoacridine	ı	100		1077			
2-Nitrofluorene	ı	10			953		
AF2	•	0.1				322	957
2-Anthramine	1	2.5	26	Ħ	13	56	135
	+	2,5	31	11	993	716	916
4-Amino-3,5-dinitrotoluene	ı	10	16	9	18	22	82
	ı	50	10	æ	19	38	108
	ı	100	10	80	26	33	124
	1	200	7	28	70	101	113
	1	1000	2	15	79	97	58
	ı	2000	0	0	0	0	0
	+	10	12	4	18	25	94
	+	50	15	6	31	38	91
	+	100	9	9	22	84	107
	+	500	9	14	61	99	116
	+	1000	Т	7	78	99	83
	+	2000	0	0	0	0	0

Table B-27

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-AMINO-3,5-DINITROTOLUENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te e
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		16	7	27	33	105
	+		12	7	15	5 6	132
Positive controls							
β-Propiolactone	1	10	137				
9-Aminoacridine	ı	100		1166			
2-Nitrofluorene	•	10			1600		
AF2	1	0.1				170	858
2-Anthramine	•	2.5	10	11	25	7 7	135
	+	2.5	91	106	927	643	1429
4-Amino-3.5-dinitrotoluene	ı	H	20	9/	21	27	95
	1	S	19	11	29	29	113
	1	10	64	64	30	35	114
	1	20	15	16	29	81	148
	ŀ	100	10	24	102	76	161
	ı	200	6	23	197	157	114
	+	H	σ	'n	27	19	76
	+	Ŋ	6	7	20	41	103
	+	10	11	12	26	42	125
	+	50	11	11	45	65	156
	+	100	4	16	79	9	148
	+	200	18	14	O	95	0

1,

-

.

1

Ī

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 5-AMINO-2,4-DINITROTOLUENE Table B-28

Ĭ.

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	H18 TA1535	tidine Re TA1537	Histidine Revertants 35 TA1537 TA1538	per Plate TA98 TA	te TA100
Nowahara and and the same	1		σ	¥	14	20	113
NEGALIVE COULIOI	+		4	0 4	13	27	100
Positive controls							
8-Propiolactone	ı	10	167				
9-Aminoacridine	1	100		1077			
2-Nitrofluorene	ı	10			953		
AF2	•	0.1				322	957
2-Anthramine		2.5	26	11	13	56	135
	+	2.5	31	77	993	716	926
		Ç	5	r	٢	i.	o
J-Amino-2,4-dinicrocoluene	t 1	2 5	7	~ α	, የ	7 <i>7</i>	103
	. 1	001	. 7]	62	62	123
	1	200	· •	20	31	26	8
	1	1000	7	9	0	40	13
	ı	2000	0	0	0	0	0
	+	10	∞	4	17	19	85
	+	20	12	7	25	45	112
	+	100	7	11	27	42	126
	+	200	7	01	27	51	133
	+	1000	80	4	10	0	22
	+	2000	0	0	0	0	0

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 5-AMINO-2,4-DINITROTOLUENE Table D-29

	N. C. L. C.	Micrograms	, in the second	+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Udotiding Description to now Disto	. D.	6
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		16	5	27	33	105
	+		12	7	15	26	132
Positive controls							
β-Propiolactone	1	10	137				
9-Aminoacridine	1	100		1166			
2-Nitrofluorene	ı	10			1600		
AF2	1	0.1				170	828
2-Anthramine	1	2.5	10	11	25	77	135
	+	2.5	91	106	927	643	1429
5-Amino-2, 6-dinitrotoluene	ı	_	17	14	15	32	130
	ı	'n	6	12	23	28	108
	t	10	16	13	26	34	109
	ı	50	17	16	34	57	138
	t	100	25	23	20	11	187
	1	200	11	77	111	140	362
	+	H	11	15	29	38	97
	+	5	10	10	24	34	100
	+	10	14	11	31	9	124
	+	50	က	က	33	35	146
	+	100	9	15	53	52	191
	+	200	12	37	7.7	107	229

,

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 5-AMINO-2,4-DINITROTOLUENE Table B-30

Metabolic Activation
ı +
ı
ı
t
+
ı
ı
1
ı
•
i
+
+
+
+
+
+

Table B-31
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 1,3-DINITROBENZENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	e e
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		23	14	17	24	122
	+		15	9	17	24	109
Positive controls							
Sodium azide	ı	1.0	412				654
9-Aminoacridine	ı	100		2068			
2-Nitrofluorene	ı	10			1463	1132	
2-Anthramine	+	2.5	482	208	957	2806	2539
1 3-Dinitrohonzone	ι	100	23	11	155	97	263
	ı	200	26	13	262	374	397
	ι	300	16	28	379	418	550
	ı	400	17	25	520	658	723
	t	500	24	19	663	934	1012
	1	009	54	55	1078	866	695
	+	100	15	Ŋ	24	21	144
	+	200	16	2	20	95	182
	+	300	14	7	169	271	278
	+	700	28	12	323	452	250
	+	200	15	17	240	738	300
	+	009	26	17	814	925	401

ĺ.

Ţ.

1

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 1,3-DINITROBENZENE Table B-32

Metabolic Activation	Micrograms of Compound Added per Plate	H181 TA1535	Histidine Revertants per Plate	yertants TA1538	per Pla	TA100
ı +		64	9 4	14	29	113
1 1 1	10 100 10	167	1077	953		
11+	0.1 2.5 2.5	26 31	11 77	13 993	322 26 716	957 135 976
11111	100 200 300 500 750 1000	12 10 10 0	10 27 9 0	41 129 113 98 0	63 115 128 184 0	197 265 232 65 0
+++++	250 500 750 1000 1500 2000	12 0 0 0	9 48000	24 4 20 15 0	45 0 0 0	130 84 0 0

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 1,3-DINITROBENZENE Table B-33

	Metabolic	Micrograms of Compound	Hist	dine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	<u>TA1535</u>	TA1537	TA1538	TA98	<u>TA100</u>
Negative control	ı +		29 15	12	10 24	30	127 138
Positive controls g-Propiolactone	1	10	149	Č			
y-Aminoacridine 2-Nitrofluorene	1 1	100 10		812	1345	Ċ	ć
Arz 2-Anthramine	1 +	2.5 2.5	34 100	14 46	8 350	259 44 375	938 139 742
1,3-Dinitrobenzene	1 1 1 1 1 1	10 50 100 500 1000 5000	25 26 27 0 0	6 16 11 4	18 60 81 509 225 0	44 50 71 406 67	145 160 229 455 105 0
	+++++	10 50 100 1000 5000	11 13 16 19 15	18 19 17 78 14	28 20 34 333 1161 0	38 48 39 430 725 0	106 147 150 202 520 0

Table B-34

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 1,3,5-TRINITROBENZENE

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	His TA1535	tidine Re TA1537	Histidine Revertants per Plate	per Pla	TA100
	1 +		0.4	9 4	14 13	29 27	113
Positive controls \(\beta\)-Propiolactone 9-Aminoacriline	1 1	10 100	167	1077			
2-Nitrofluorene AF2	1 1	10 0.1			953	322	957
	1 +	2.5	26 31	11 77	13 993	26 716	135 976
1.3.5-Trinitrobenzene	1	10	18	17	260	210	361
	ı	50	22	0 0	271	473	843
	1 1	100	o o	o o	0	5 0	0
	•	1000	0	0	0	0	0
	1	2000	0	0	0	0	0
	+	10	16	∞	122	99	191
	+	50	6	7	191	112	353
	+	100	15	20	0	15	183
	+	200	0	0	0	0	0
	+	1000	0	0	0	0	0
	+	2000	0	0	0	0	0

Table B-35
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM 1,3,5-TRINITROBENZENE

TA100	105	858 135 1429	360 539 0 0 0	194 190 204 164 255 0
TA98	33	170 44 643	167 282 404 544 0	55 72 70 91 200 0
Histidine Revertants per Plate	27 15	1600 25 927	184 245 525 272 0	38 45 60 65 71 71
idine Re TA1537	2 7	1166 11 106	18 45 74 15 0	8 8 7 7 10 13 23
Hist 1	16 12	137 10 91	18 7 0 0 0	V 6 4 V 4 O
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5	10 20 30 50 60	20 40 50 60 70
Metabolic Activation	1 +	+		+++++
Compound	Megative control	Positive controls \(\beta - \text{Propiolactone} \) \(\beta - \text{Aminoacridine} \) 2-Nitrofluorene AF2 2-Anthramine	1,3,5-Trinitrobenzene	

Table B-36

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 1,3,5-TRINITROBENZENE

Histidine Revertants per Plate	81 56	145 62 366	337 566 822 842 464 25	167 232 270 276 284 194
Micrograms of Compound Added per Plate		0.1 2.5 2.5	10 20 30 40 50 60	20 30 40 50 60 70
Metabolic Activation	1 +	I I +	111111	+++++
Compound	Negative control	Positive controls AF2 2-Anthramine	1,3,5-Trinitrobenzene	

Table B-37
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,3,4-TRINITROTOLUENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1 +		24 11	9	13	31 43	125 97
Positive controls Sodium azide	r	1.0	412	i L			571
9-Aminoacridine 2-Nitrofluorene 2-Anthramine	+	100 50 2.5 2.5	24 599	1559	1463 21 2161	1175 37 2109	175 2567
2,3,4-Trinitrotoluene		30 40 50 60 70 80	30 24 11 24 14 16	10 9 15 13	12 17 17 19 19	41 21 45 38 36 33	175 187 204 166 192 228
	+++++	50 75 100 200 300 400	18 24 16 9 0	19 10 15 1	18 29 26 20 0 0	34 43 32 0 0	192 215 263 454 6

Table B-38

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,3,4-TRINITROTOLUENE

	Metabolic	Micrograms of Compound	Hist	idine Re	Histidine Revertants per Plate	per Pla	t t
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	۱ +		67 18	37 50	27 49	43	179 165
Positive controls Sodium azide 9-Aminoacridine	1 1	1.0 100	480	1165			760
2-Nitrofluorene 2-Anthramine	! ı +	10 2.5 2.5	88 161		1815 18 360	1414 46 388	183 612
2,3,4-Trinitrotoluene	11111	50 60 70 80 90 100	57 61 71 59 68 67	27 31 27 25 27 29	33 20 20 35 44 44	57 61 68 68 106 73	328 463 381 330 497 320
	+++++	50 100 150 200 250	53 74 82 72 119	44 46 40 29 31 35	62 54 58 48 62 72	81 80 98 87 88 75	307 483 955 650 682 553

Table B-39
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,3,6-TRINITROTOLUENE

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	H18	ridine R	Histidine Revertants per Plate	per Pla	te TA100
			, ,		5	-	100
Negative control	1		77	,	3	7	C7T
	+		11	15	14	43	97
Positive controls							
Sodium azide	1	1.0	412				571
9-Aminoacridine	1	100		1559			
2-Nitrofluorene	1	50			1463	1175	
2-Anthramine	1	2.5	24	7	21	37	175
	+	2.5	299	471	2161	2109	2567
2,3,6-Trinitrotoluene	ı	10	31	7	297	145	382
	1	20	25	11	524	209	554
	•	40	16	17	1139	363	830
	ı	09	19	20	1730	785	1104
	1	80	11	20	533	1272	796
	ı	100	7	31	11	1385	602
	+	50	20	14	29	72	433
	+	75	22	12	53	110	503
	+	100	13	17	55	225	654
	+	200	22	14	162	143	969
	+	300	∞	12	344	797	708
	+	005	9	23	209	461	976

Table B-40
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,3,6-TRINITROTOLUENE

	Metabolic	Micrograms	H	ridine De	Wetiding Devostants nor Disto	7 P P P P P P P P P P P P P P P P P P P	9
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		67	37	27	43	179
	+		19	20	67	71	165
Positive controls							
Sodium azide	ı	1.0	780				760
9-Aminoacridine	1	100		1165			
2-Nitrofluorene	1	10			1815	1414	
2-Anthramine	•	2.5	88		18	97	183
	+	2.5	161		360	388	612
2,3,6-Trinitrotoluene	ı	10	54	34	145	66	312
	1	20	52	28	353	236	777
	ı	07	47	28	630	501	9
	•	09	62	25	830	941	813
	•	80	62	77	1093	1011	920
	1	100	58	57	834	1178	1062
	+	100	33	89	82	119	314
	+	200	31	33	159	150	697
	+	300	26	20	409	312	479
	+	400	28	31	929	909	440
	+	200	15	97	1395	749	572
	+	009	19	0	0	0	0

Table B-41

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,4,5-TRINITROTOLUENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1		24	6	10	31	125
	+		11	15	14	43	97
Positive controls							
Sodium azide	ı	1.0	412				571
9-Aminoacridine	•	100		1559			
2-Nitrofluorene	•	50			1463	1175	
2-Anthramine	í	2.5	24	7	21	37	175
	+	2.5	299	471	2161	2109	2567
2,4,5-Trinitrotoluene	i	H	13	10	17	32	185
	1	S	25	19	67	108	579
	ı	10	32	22	85	251	1000
	1	20	42	43	172	384	1278
	1	30	97	99	459	226	1334
	1	07	40	117	628	856	1339
	+	50	25	33	98	244	1243
	+	75	32	26	100	787	1261
	+	100	39	99	173	287	1275
	+	200	0	197	683	581	636
	+	300	0	0	0	16	0
	+	400	0	0	0	0	0

Table B-42
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,4,5-TRINITROTOLUENE

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	H481	ridine Re TA1537	Histidine Revertants per Plate TA1535 TA1537 TA1538 TA98 TA100	per Pla TA98	re TA100
Negative control	1 +		67	37 50	27	43 71	179 165
Positive controls Sodium azide 9-Aminoacridine 2-Nitrofluorene	1 1 1	1.0 100 10	480	1165	1815	1414	097
2-Anthramine	1 +	2.5	88 161		360	388	183 612
2,4,5-Trinitrotoluene	1 1 1 1 1 1	20 30 40 50 70	881 963 830 672 678 706	482 493 650 513 497	527 575 581 1060 836 103	61 71 159 89 95 0	51 60 59 84 92 101
	+++++	50 100 150 200 250 300	493 437 T* 160 27	164 207 105 161 192 152	274 264 512 822 824 0	28 54 284 478 790 0	17 20 395 593 687 0

Table B-43
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,4,6-TRINITROTOLUENE

	Metabolic	Micrograms of Compound	H1s	tidine R		s per Plate	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		29	12	10	ଞ୍ଚ	127
	+		15	12	24	48	138
Positive controls							
8-Propiolactone	1	10	149				
ridine	•	100		812			
2-Nitrofluorene	•	10			1345		
	i	0.1				259	938
2-Anthramine	·	2.5	34	14	∞	77	139
	+	2.5	100	94	350	375	742
2,4,6-Trinitrotoluene	1	10	21	∞	18	41	130
	ı	50	19	11	37	51	164
	1	100	21	9	63	93	509
	ı	200	15	07	127	255	678
	•	1000	0	0	0	'n	0
	1	2000	0	0	0	0	0
	+	10	80	13	9	20	160
	+	50	7	15	28	42	184
	+	100	13	7	23	8	216
	+	500	10	9	25	99	410
	+	1000	15	48	83	200	1115
	+	2000	0	0	0	0	0

SRI INTERNATIONAL MENLO PARK CA
MAMMALIAN TOXICOLOGICAL EVALUATIONS OF THT WASTEWATERS. VOLUME --ETC(U)
APR 79 J V DILLEY, C A TYSON, G W NEWELL
DAMO17-76-C-0050
SRI LSU-5028 AD-A081 590 UNCLASSIFIED 4 - 5 40/1/90

Table B-44
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,4,6-TRINITROTOLUENE

E

Histidine Revertants per Plate TA1535 TA1537 TA1538 TA98 TA100	12 12 11 18 124 9 7 14 23 132		1223 1043 290 315 454	22 28 159 190 755 34 42 203 305 1137 12 69 221 262 778 0 74 35 88 12 0 14 1 0 0	8 9 11 24 219 15 22 67 82 569 6 74 138 163 1110 0 41 101 61 13
Micrograms of Compound Added per Plate		1.0	10 2.5	100 200 300 400 500	100 250 500 750
Metabolic Activation	1 +	1 1	ı +	1111	+ + + + +
Compound	Negative control	Positive controls Sodium azide 9-Aminoacridine	2-Nitrofluorene 2-Anthramine	2,4,6-Trinitrotoluene	

Table B-45

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2,4,6-TRINITROTOLUENE

ate TA100	113	957	976 610 642 243 36 0 0 0 0
per P1 TA98	29 27	322	716 260 302 212 96 0 0 197 63
Histidine Revertants per Plate	14	953	993 128 128 51 6 0 0 0 0 0 0
TA1537	94	1077	28 28 16 0 0 0 0 0 0 0 0 0 0
H18t TA1535	04	167	31 18 18 18 0 0 0 0
Micrograms of Compound Added per Plate		10 100 10 0.1	2.5 100 200 300 400 500 750 1000 1500 2500
Metabolic Activation	1 +	1 1 1 1 1	+ 11111 +++++
Compound	Negative control	Positive controls \(\beta\)-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2 2-Anthramine	2,4,6-Trinitrotoluene

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM 1,5-DIMETHYL-2,4-DINITROBENZENE

1:

~	Metabolic	Micrograms of Compound	His	tidine R	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1 4		29	12	10	93	127
	ŀ		CT	77	†	ţ 0	170
Positive controls							
ctone	ı	10	149				
9-Aminoacridine	ı	100		812			
2-Nitrofluorene	ı	10			1345		
	ı	0.1				259	938
2-Anthramine	ı	2.5	34	14	∞	77	139
	+	2.5	100	97	350	375	742
1.5-Dimethyl-2.4-dinitrobenzene	1	10	20	10	17	32	115
	1	20	20	7	13	64	130
	ı	100	15	9	11	32	114
	1	200	20	4	23	33	148
	ı	1000	6	m	∞	12	143
	ı	2000	σ	-	10	7	'n
	+	10	6	10	26	54	127
	+	50	20	9	28	43	142
	+	100	14	14	27	77	155
	+	200	œ	C1	10	33	192
	+	1000	9	2	11	34	256
	+	2000	9	7	3	70	01

Table B-47

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

1,5-DIMETHYL-2,4-DINITROBENZENE

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	ite
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	<u>TA100</u>
Negative control	۱ +		23 15	14	17	24 24	122
Positive controls Sodium azide	γl	1.0	412	2068			654
2-Nitrofluorene 2-Anthramine	ı +	10 2.5	482	208	1463 957	1132 2806	2539
1,5-Dimethyl-2,4-dinitrobenzene	115515	100 250 500 750 1000 2500	15 14 13 9 7	29 8 8 12 15 5	14 7 8 8 13 18	16 23 35 17 2	144 187 186 203 305
	+++++	100 250 500 750 1000 2500	11 6 9 8 7 7	17 19 7 7 5	12 18 13 23	22 23 14 17 17	126 165 188 172 260 60

Table B-48

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-NITROTOLUENE

er Plate	33 105 26 132	170 858 44 135 643 1429	30 123 31 138 17 125 26 105 13 87 9 33	14 106 29 105 26 135 35 112 24 131
Histidine Revertants per Plate	27 15	1600 25 927	12 8 11 20 11 5	17 10 11 12 11 11 11 11 11 11 11 11 11 11 11
tidine Re TA1537	'n∞	1166 11 106	12 9 11 10 3	11 12 12 6
His TA1535	16	137 10 91	119 14 9 2 9 4	12 7 8 8 10 11
Micrograms of Compound Added per Plate		10 100 10 1.0 2.5 2.5	10 50 100 500 1000 2500	10 50 100 500 1000
Metabolic Activation	۱+	1111+		+++++
Compound	Negative control	Positive controls \(\beta\)-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2 2-Anthramine	3-Nitrotoluene	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-NITROTOLUENE Table B-49

ints per Plate	14 29 113 13 27 100	953 322 957 13 26 135 993 716 976	14 22 108 14 25 110 16 27 82 22 26 102 18 22 107 9 11 45	20 26 97 14 27 100 25 30 118 17 26 105
Histidine Revertants per Plate	9 4	167 1077 9 26 11 9	27 12 21 7 26 8 20 6 32 7 37 7	18 10 14 15 19 9 20 9
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5 2.5	10 50 100 500 1000 5000	10 50 100 500
Metabolic Activation	۱+	11111+		++++
Compound	Negative control	Positive controls &-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2 2-Anthramine	3-Mitrotoluene	

Table B-50
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-NITROTOLUENE

	Metabolic	Micrograms of Compound	Histi	dine Rev	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535 I	TA1537	TA1538	TA98	TA100
Negative control	I +		6 7	9 4	14	29 27	166 136
Positive controls \$-Propiolactone 9-Aminoacridine	(1 (10 100 10	167	1077	953		
2-Nitroiluorene AF2 2-Anthramine	11+	2.5 2.5	26 31	111	13 993	322 26 716	957 135 976
2-Nitrotoluene	, , , , ,	1000 2000 3000 4000 5000	20 12 6 7	0352	7 5 7 0 0	19 21 5 4 7	124 135 81 82 82
	++++	1000 2000 3000 4000 5000	N 00 80 H	10015	23 12 6 0	33 14 10 4	106 122 81 67 67

Table B-51

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-NITROTOLUENE

	Metabolic	Micrograms of Compound	His	tidine R	Histidine Revertants per Plate	per Pla	ite
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ſ		29	12	10	8	127
	+		15	12	24	48	138
Positive controls							
ropiolactone	t	10	149				
uninoacridine	ſ	100		812			
2-Nitrofluorene	ť	10			1345		
AF2	ť	0.1				259	938
2-Anthramine	ı	2.5	34	14	∞	77	139
	+	2.5	100	97	350	375	742
2-Nitrotoluene	t	10	34	13	11	23	132
	ŧ	50	27	13	4	42	135
	ı	100	37	15	'n	27	115
	•	200	25	7	6	23	117
	ı	1000	29	9	'n	15	124
	ı	2000	7	7	0	7	35
	+	10	12	∞	24	42	111
	+	50	13	13	18	8	127
	+	100	20	5	25	31	120
	+	200	20	9	17	32	128
	+	1000	20	7	15	77	111
	+	2000	5	7	7	10	99

Table B-52

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-NITROTOLUBME

		Micrograms					
7	Metabolic	of Compound	Hist	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	IA1535	IA153/	TA1538	1498	IAIOO
Negative control	ı		53	12	10	8	127
	+		15	12	24	48	138
Positive controls							
<pre>b-Propiolactone</pre>	•	10	149				
9-Aminoacridine	•	100		812			
2-Nitrofluorene	•	10			1345		
AF2	1	0.1				259	938
2-Anthramine	1	2.5	34	14	œ	44	139
	+	2.5	100	46	320	375	742
4-Nitrotoluene	ı	10	93	12	14	42	140
		20	25	œ	14	4	124
	•	100	27	16	18	38	120
	•	200	14	7	11	31	152
	ı	1000	23	9	6	42	186
	•	2000	18	വ	9	20	267
	+	10	19	7	17	43	125
	+	20	13	7	19	45	118
	+	100	22	14	21	44	111
	+	200	22	9	24	22	139
	+	1000	16	64	29	35	149
	+	2000	17	ຜ	24	43	215

Table B-53
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-NITROTOLUENE

	Metabolic	Micrograms of Compound	H1s	tidine Re	Histidine Revertants ner Plate	ner Pla	q
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1		တ	9	14	29	113
	+		4	4	13	27	100
Positive controls							
<pre>p-Propiolactone</pre>	ı	10	167				
9-Aminoacridine	1	100		1077			
2-Nitrofluorene	1	10			953		
AF2	•	0.1				322	957
2-Anthramine	ı	2.5		11	13	56	135
	+	2.5		11	993	216	916
4-Nitrotoluene	ı	1000	22	9	10	13	166
	ı	2000	13	က	4	18	175
	1	3000	7	ત	9	4	105
	ı	4000	12	œ	7	17	181
	•	2000	0	4	-	ຜ	0
	+	1000	11	7	11	20	167
	+	2000	ო	10	15	14	215
	+	3000	-	9	15	11	213
	+	4000	7	7	2	16	162
	+	2000	1	1	3	-	0

1.

Table B-54
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - TOLUENE

		Micrograms	7	\$ 3 3	•	i	
Compound	Metabolic Activation	of Compound Added per Plate	H181 TA1535	TA1537	Histidien Kevertants per Plate	TA98	TA100
Negative control	ı		6	9	14	53	113
	+		4	4	13	27	100
Positive controls							
\$-Propiolactone	ı	10	167				
9-Aminoacridine	•	100		1077			
2-Nitrofluorene	ı	10			953		
AF2	ι	0.1				322	957
2-Anthramine	ı	2.5	26	11	13	26	135
	+	2.5	31	77	993	216	926
Toluene	1	1000	13	14	9	20	96
	ı	2000	10	7	4	6	29
	ı	3000	က	ო	4	လ	65
	ı	4000	က	4	4	0	57
	ı	2000	0	83	0	ß	89
	+	1000	7	က	4	16	78
	+	2000	14	61	9	11	78
	+	3000	7	က	3	10	29
	+	4000	7	4	5	S	78
	+	5000	œ	7	9	4	66

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - TOLUENE Table B-55

	;	Micrograms	***	£			;
Compound	Metabolic Activation	of Compound Added per Plate	TA1535	TA1537	A TAIS TAIS TAIS TAIS TAIS	TA98	TA100
Negative control	ı		29	12	10	8	127
	+		15	12	24	48	138
Positive controls							
5-Propiolactone	ı	10	149				
9-Aminoacridine	ı	100		812			
2-Nitrofluorene	ı	10			1345		
AF2	•	0.1				259	938
2-Anthramine	1	2.5	34	14	∞	44	139
	+	2.5	100	46	320	375	742
Toluene	1	10	20	11	19	34	120
	1	50	16	10	∞	53	116
	1	100	15	7	13	35	125
	•	500	23	7	11	24	108
	•	1000	22	9	œ	32	106
	ı	2000	19	က	12	26	106
	+	10	13	7	19	25	81
	+	50	13	œ	22	33	120
	+	100	10	6	25	16	102
	+	500	16	13	22	16	84
	+	1000	13	က	27	48	125
	+	2000	7	4	22	26	117

•

Table B-56
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-METHYL-2-NITROPHENOL

		Micrograms					
Compound	Metabolic Activation	of Compound Added per Plate	H181 TA1535	tidine Re TA1537	Histidin Revertants per Plate	per Pla	te TA100
Negative control	•		6	9	14	53	113
	+		4	4	13	27	100
Positive controls							
5-Propiolactone	•	10	167				
9-Aminoacridine	1	100		1077			
2-Nitrofluorene	ı	10			953		
AF2	1	0.1				322	957
2-Anthramine	ı	2.5	26	11	13	26	135
	+	2.5	31	7.7	993	716	926
3-Methyl-2-nitrophenol	1	10	12	7	11	27	102
	•	20	7	œ	12	20	110
	ı	100	11	9	10	8	93
	•	200	9	5	12	20	105
		1000	œ	9	10	19	104
	1	2000	0	0	0	0	0
	+	10	13	7	16	23	93
	+	50	14	∞	18	27	88
	+	100	S	œ	12	27	96
	+	200	O	S	10	19	78
	+	1000	4	0	တ	23	74
	+	2000	0	0	0	0	0

Table B-57
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-METHYL-2-NITROPHENOL

te TA100	105		858 135	95 136 125 104 84	129 109 110 102 70
per Pla	33 56		170 44 643	47 29 20 17 16 0	16 28 36 19 15
Histidien Revertants per Plate	27 15		1600 25 927	11 18 11 23 13	23 14 23 23 2
idien Re TA1537	5	1166	11	8 01 9 4	r 9 9 7 r 0
H1 st TA1535	16 12	137	10 91	14 14 16 8 8 10	
Micrograms of Compound Added per Plate		100	10 0.1 2.5 2.5	10 50 100 500 1000 2500	10 50 100 500 1000 2500
Metabolic Activation	f +	1 1	111+	11111	+ + + + + + + + + + + + + + + + + + +
Compound	Negative control	Positive controls \$-Propiolactone 9-Aminoacridine 2-Nitrofluorene	AF2 2-Anthramine	3-Methyl-2-nitrophenol	

Table B-58
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 5-METHYL-2-NITROPHENOL

	Metabolic	of Compound	H1s	tidine Re	Histidine Revertants per Plate	per Pla	te
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		16	S	27	33	105
	+		12	7	15	26	132
Positive controls							
\$-Propiolactone	•	10	137				
9-Aminoacridine	•	100		1166			
2-Nitrofluorene	•	10			1600		
AF2	•	0.1				170	828
2-Anthramine	1	2.5	10	11	25	44	135
	+	2.5	91	106	927	643	1429
5-Methyl-2-nitrophenol	ı	1	14	œ	20	35	116
	•	လ	2	7	œ	22	117
	•	10	18	10	17	23	116
	•	25	15	12	17	22	115
	•	50	14	81	œ	8	8
	ı	100	œ	9	ຜ	25	113
	+	1	10	ດ	11	35	113
	+	S	13	11	25	32	137
	+	10	11	4	53	31	136
	+	25	2	6	18	27	105
	+	50	9	12	18	18	108
	+	100	9	7	17	43	113

Table B-59

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 5-METHYL-2-NITROPHENOL

		Micrograms					
Compound	Metabolic Activation	of Compound Added per Plate	H18	TA1537	Histidine Revertants per Plate	per Pla	te TA100
Negative control	ı		တ	9	14	53	113
	+		4	4	13	27	100
Positive controls							
<pre>β-Propiolactone</pre>	ı	10	167				
9-Aminoacridine	1	100		1077			
2-Nitrofluorene	ı	10			953		
AF2	1	0.1				322	957
2-Anthramine	ı	2.5	56	11	13	3 6	135
	+	2.5	31	7.2	993	912	916
5-Methyl-2-nitrophenol	ı	10	22	6	œ	18	111
	,	20	37	6	23	22	111
	•	100	28	9	13	8	86
	•	200	10	7	လ	17	81
	•	1000	ß	က	9	ĸ	9
	•	2000	0	0	0	0	0
	+	10	18	œ	27	22	107
	+	20	ä	10	16	36	06
	+	100	ო	œ	18	8	97
	+	200	Ø	ស	19	14	84
	+	1000	0	Н	S	2	0
	+	2000	0	0	0	0	0
	•					,)

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-METHYL-4,6-DINITROPHENOL Table B-60

	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	t e
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		17	9	17	21	112
	+		6	9	∞	36	95
Positive controls							
Sodium azide	1	1.0	403				760
9-Aminoacridine	1	100		803			
2-Nitrofluorene	ı	10			1390	1260	
2-Anthramine	ı	2.5	14	8	14	37	176
	+	2.5	293	35	145	2131	2285
3-Methvl-4.6-dinitrophenol	1	10	σ	∞	6	18	160
	•	50	15	Y	17	27	83
		100	24	16	15	31	107
	1	500	14	47	15	57	47
	1	750	ω	47	19	51	137
	t	000	12	47	σ,	57	95
	+	10	6	9	29	41	102
	+	50	6	14	26	36	122
	+	100	7	12	16	37	122
	+	200	7	14	13	47	06
	+	750	က	20	6	47	88
	+	1000	2	29	9	77	22

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-METHYL-4,6-DINITROPHENOL Table B-61

Compound Negative control	Metabolic Activation -	Micrograms of Compound Added per Plate	H18t TA1535 52 32	TA1537 4	Histidine Revertants per Plate 35 TA1537 TA1538 TA98 T 52 4 28 19 32 4 22 26	Per Pla TA98 19 26	TA100 120 95
Positive controls Sodium azide 9-Aminoacridine 2-Nitrofluorene 2-Anthramine	1 1 1 1 +	1.0 100 10 2.5 2.5	477 60 371	1003	1736 32 1673	1652 35 2117	585 122 1932
3-Methyl-4,6-dinitrophenol	111311	200 400 600 800 1000	28 37 12 4 4	28 30 36 27 30	28 14 11 15 7	33 44 44 57 48	88 108 106 128 41 0
	+++++	200 400 600 800 1000	24 21 7 5 6	19 26 30 12 0	16 9 2 4 4 0	34 25 25 1	91 91 29 4 4

i.

Table B-62

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-AMINO-4-NITROTOLUENE

	M C + c + c + c + c + c + c + c + c + c +	Micrograms	† •	10 D		200	
Compound	Activation	Added per Plate	TA1535	TA1537	535 TAI537 TAI538 TA98 T	TA98	TA100
Negative control	•		6	9	14	58	113
	+		4	4	13	27	100
Positive controls							
f-Propiolactone	•	10	167				
9-Aminoacridine	ı	100		1077			
2-Nitrofluorene	ı	10			953		
AF2	1	0.1				322	957
2-Anthramine	1	2.5	26	11	13	56	135
	+	2.5	31	77	993	716	946
2-Amino-4-nitrotoluene	t	10	20	æ	17	31	132
	•	50	25	~	21	8	113
	•	100	28	16	23	36	159
	•	200	<u>8</u>	18	92	92	182
	t	1000	46	18	147	150	243
	•	2000	16	15	443	107	275
	+	10	15	18	24	34	115
	+	50	12	6	8	24	117
	+	100	18	18	4	55	144
	+	500	17	۲	104	88	197
	+	1000	26	23	137	117	251
	+	2000	œ	42	393	162	143

Table B-63
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-AMINO-4 NITROTOLUENE

		Micrograms					
Compound	Metabolic Activation	of Compound Added per Plate	His TA1535	tidine Re TA1537	Histidine Revertants per Plate	per Pla	<u>TA100</u>
Negative control	1		16	ß	27	33	105
	+		12	7	15	36	132
Positive controls							
<pre>β-Propiolactone</pre>	1	10	137				
9-Aminoacridine	ı	100		1166			
2-Nitrofluorene	ı	10			1600		
AF2	1	0.1				170	858
2-Anthramine	,	2.5	10	11	25	44	135
	+	2.5	91	106	927	643	1429
2-Amino-4-uitrotoluene	ı	750	16	20	152	69	268
	1	1000	10	0	135	101	262
	•	2000	12	59	209	168	376
	•	3000	9	0	224	150	223
	1	4000	0	45	0	0	0
	ı	2000	0	ო	0	0	0
	+	200	œ	16	83	72	218
	+	750	o	7	178	91	249
	+	1000	11	0	199	107	305
	+	2000	o	26	395	119	372
	+	3000	10	0	559	0	214
	+	4000	6	27	0	0	0

Table B-64
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-AMINO-6-NITROTOLUENE

	Metabolic	Micrograms of Compound	Hist	tidine Re	Histidine Revertants per Plate	per Pla	9
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1		36	œ	12	34	110
	+		14	16	27	46	26
Positive controls							
Sodium azide	•	-4	631				
9-Aminoacridine	ı	100		1650			
2-Nitrofluorene	,	10			1096		
AF2	ı	0.1				366	978
2-Anthramine	•	2.5	47	7	17	31	123
	+	2.5	91	53	296	643	892
2-Amino-6-nitrotoluene	1	200	56	11	17	53	118
	•	400	9	œ	32	48	94
	ı	009	38	ო	25	31	145
	•	800	70	ო	24	38	146
	•	1000	7.1	သ	18	æ	148
	ı	2000	77	ß	25	46	157
	+	200	6	6	34	47	123
	+	400	17	œ	38	55	113
	+	009	16	11	37	54	118
	+	800	16	ស	33	26	123
	+	1000	10	9	38	99	149
	+	2000	25	6	20	63	147

Table B-65
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 2-AMINO-6-NITROTOLUENE

		Micrograms					
Compound	Metabolic Activation	of Compound Added per Plate	Histi TA1535	dine Rev	Histidine Revertants per Plate	TA98	e TA100
Negative control	1		43	10	15	34	143
	+		78	14	15	53	112
Positive controls							
AF2	ì	0.1				369	629
9-Aminoacridine	ı	100		1646			
Sodium azide	ı	1	480				
2-Nitrofluorene	•	10			1110		
2-Anthramine		2.5	48	17	22	4	172
	+	2.5	272	157	1390	1356	1786
2-Amino-6-nitrotoluene	1	200	51	11	14	34	146
	1	400	53	13	15	24	133
	•	009	70	14	19	41	153
	ı	800	49	9	17	ဓ	153
	1	1000	99	9	15	23	188
	1	2000	57	11	20	27	160
	+	200	35	œ	22	8	· *
	+	400	27	11	35	40	ပ
	+	009	28	13	25	36	150
	+	800	19	14	33	45	185
	+	1000	25	15	49	57	155
	+	2000	24	15	52	99	159

* Contaminated.

Table B-66
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-AMINO-4-NITROTOLUENE

re TA100	112 95	760	176 2285	158 171 249 405 622 243	165 247 267 426 1011 912
per Plate	21 36	1260	2131	179 263 363 580 803 341	168 304 372 787 1004 782
Histidine Revertants 135 TA1538	17 8	1390	145	427 510 671 878 986 872	287 423 629 996 986 1316
idine Re TA1537	99	803	35	11 13 15 25 50 27	13 15 22 22 38 62
Hist: TA1535	17	403	14 293	27 27 25 35 12 18	13 14 12 11 10
Micrograms of Compound Added per Plate		1.0	10 2,5 2,5	500 750 1000 1500 2000 2500	500 750 1000 1500 2000 2500
Metabolic Activation	1 +	i i	ı I +		+++++
Compound	Negative control	Positive controls Sodium azide 9-Aminoacridine	2-Nitrofluorene 2-Anthramine	3-Amino-4-nitrotoluene	

Table B-67
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-AMINO-4-NITROTOLUENE

,	Metabolic	Micrograms of Compound	His	tidine Re	Histidine Revertants per Plate	per Pla	ite Ite
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	ı		52	4	28	19	120
	+		32	7	22	56	95
Positive controls							
Sodium azide	•	1.0	477				585
9-Aminoacridine	1	100		1003			
2-Nitrofluorene	1	10			1736	1652	
2-Anthramine	ı	2.5	9	7	32	35	122
	+	2,5	371	273	1673	2117	1932
3-Amino-4-nitrotoluene	ı	200	45	18	429	266	149
	•	750	58	16	758	493	182
	1	1000	45	24	872	538	160
	•	1500	28	65	1117	1160	403
	•	2000	25	63	1335	770	160
	1	2500	10	96	304	1555	168
	+	200	33	12	427	197	108
	+	750	42	18	536	337	202
	+	1000	31	22	628	429	337
	+	1500	23	34	1099	773	727
	+	2000	15	8	1405	1535	701
	+	2500	13	100	1020	958	341

Table B-68
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-AMINO-2-NITROTOLUENE

	Metabolic	Micrograms of Compound	Hist	idine Re	Histidine Revertants per Plate	per Pla	te TA 100
Compound	ACCIVACION	Added per riare	141737	/CCTW1	000191	1430	TATOO
Negative control	ı		16	5	27	33	105
)	+		12	7	15	56	132
Positive controls							
μ-Propiolactone	1	10	137				
9-Aminoacridine	•	100	,	1166			
2-Nitrofluorene	f	10	•		1600		
AF2	,	0.1				170	858
2-Anthramine	ı	2.5	10	11	25	44	135
	+	2.5	91	106	927	643	1429
4-Amino-2-nitrotoluene	ı	လ	9	9	13	13	110
	ì	10	9	က	6	18	139
	•	50	11	ຜ	12	23	113
	,	100	11	10	12	56	124
	•	200	20	4	25	16	116
	,	1000	15	œ	14	14	109
	+	က	15	9	10	13	95
	+	10	14	2	19	14	84
	+	20	10	4	16	14	105
	+	100	11	4	16	88	144
	+	200	14	1	21	31	134
	+	1000	13	9	34	24	127

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-AMINO-2-NITROTOLUENE Table B-69

	Metabolic	Micrograms of Compound	His	Histidine Revertants per <u>Plate</u>	vertants	per Pla	9
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	TA100
Negative control	1		6	9	14	29	113
	+		4	4	13	27	100
Positive controls							
\$-Propiolactone	ı	10	167				
9-Aminoacridine	ı	100		1077			
2-Nitrofluorene	•	10			953		
AFC	•	0.1				322	957
2-Anthramine	1	2.5	26	11	13	3 6	135
	+	2.5	31	7.7	993	716	926
4-Amino-2-nitrotoluene	1	10	26	19	12	15	113
	ı	50	20	14	13	15	116
	1	100	28	12	12	22	104
	•	500	23	7	5	22	103
	•	1000	8	87	12	17	116
	1	2000	-	0	က	7	0
	+	10	16	00	22	30	132
	+	50	20	11	15	24	119
	+	100	17	က	12	5 5	104
	+	200	6	4	19	24	119
	+	1000	15	12	31	80	120
	+	2000	0	0	64	0	15

-

-

.

Table B-70
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - MORPHOLINE

1
111+
11111
+++++

Table B-71
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - MORPHOLINE

re TA100	134	452	119	131 119 99 90 101 96	91 103 126 120 96
per Pla	27 37	1445	25 805	25 118 20 20 22	45 45 45 30 37
Histidine Revertants per Plate	11 34	2166	12 502	5 16 19 12 6	34 35 45 27 23 0
ridine Re	4	1264	5	0 L L 4 L 2	6 8 8 12 0
Hist TA1535	32 11	420	9 274	28 22 22 35 15 29	9 15 18 14 16 13
Micrograms of Compound Added per Plate		1.0	2,5 2,5	1000 2000 3000 4000 5000 6000	1000 2000 3000 4000 5000 6000
Metabolic Activation	۱ +		ı ı +	1 1 1 1 1 1	+++++
Compound	Negative control	Positive controls Sodium azide 9-Aminoacridine	2-Nitrofluorene 2-Anthramine	Morpholine	

Table B-72
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - N-MORPHOLINOACETONITRILE

TA100	78 78	98 1900	62 112 63 65 0 0	80 76 68 66 0 0
per Pla	43 16	33 2800	75 75 76 76 76 76 76 76 76 76 76 76 76 76 76	37 22 26 26 0 0
Histidine Revertants per Plate	18	1965	21 13 19 25 4 0	21 23 27 26 3 0
idine Re TA1537	6 28	600	13 7 11 13 0 0	20 15 16 17 0 0
Hist TA1535	60 16	309	48 62 59 0	13 21 15 12 3 0
Micrograms of Compound Added per Plate		10 100 10 0.1 2.5	1 10 50 100 500 1000 5000	1 10 50 100 500 1000
Metabolic Activation	۱+	+		++++++
Compound	Negative control	Positive controls 8-Propiolactone 9-Aminoacridine 2-Nitrofluorene AF2	N-Morpholinoacetonitrile	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - N-MORPHOLINOACETONITRILE Table B-73

Metabolic Activation -
1111+
1 1 1 1 1 1
++++++

* C, contaminated.

Ì.

.

Ĭ.

1

1

-

Table B-74
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - N-NITROSOMORPHOLINE

TA100	132 133	559	145 176 153 149 134	291 323 461 460 381 330
per Plat	င်ံ ပ		000000	000000
Histidine Revertants per Plate	18	2008 11 412	16 14 19 9 16 13	20 20 25 23 32
idine Re TA1537	10	1165 5 93	N4N400	V 8 6 4 5 4
Hist TA1535	21	324 16 261	19 24 15 20 23 26	58 210 198 238 273 207
Micrograms of Compound Added per Plate		1.0 100 50 2.5 2.5	1000 2000 3000 4000 5000 6000	1000 2000 3000 4000 5000 6000
Metabolic Activation	: +	1111+		+++++
Compound	Negative control	Positive controls Sodium azide 9-Aminoacridine 2-Nitrofluorene 2-Anthramine	N-Nitrosomorpholine	

* C, contaminated.

IN VITRO ASSAYS WITH SALMONFILA TYPHIMURIUM - N-NITROSOMORPHOLINE Table B-75

	Metabolic	Micrograms of Compound	His	Histidine Revertants per Plate	vertants	per Pla	e F
Compound	Activation	Added per Plate	TA1535	TA1537	TA1538	TA98	<u>TA100</u>
Negative control	ı		09	9	18	43	78
•	+		16	28	41	16	78
Positive controls							
8-Propiolactone	1	10	309				
9-Aminoacridine	1	100		900			
2-Nitrofluorene	ı	10			1965		
AF2	1	0.1				33	86
2-Anthramine	+	2.5	380	145	1775	2800	1900
N-Nitrosomorpholine	ı	1	34	ო	17	17	107
	ı	01	25	7	19	27	84
	1	20	27	7	19	28	95
	ı	100	37	6	15	23	79
	ı	200	54	ന	15	32	107
		1000	95	œ	23	23	105
	ı	2000	284	14	56	34	287
	+	1	11	12	31	ı	87
	+	10	15	12	27	87	75
	+	50	18	13	31	41	2
	+	100	21	15	40	42	112
	+	200	45	17	31	48	95
	+	1000	103	11	5 6	%	135
	+	2000	397	10	34	77	305

į.

Į

Table B-76
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-NITROBENZONITRILE

Micrograms Metabolic of Compound Activation Added per Plate - +
1111+
+++++

Table B-77

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 4-NITROBENZONITRILE

	Water	Micrograms	Titotal Contraction	D10+0
Compound	Activation	or compound Added per Plate	TA98 TA	TA100
Negative control	۱ +		25 27	96 96
Positive controls 2-Nitrofluorene Sodium azide 2-Anthramine	111+	10 1.0 2.5 2.5	962	290 100 115
4-Nitrobenzonitrile	1 1 1 1 1 1	10 50 100 500 1000 5000	23 24 30 25 17 0	103 99 114 155 183
	+++++	10 50 100 500 1000	26 35 22 15 9	116 98 119 97 132 0

Table B-78
IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-NITROBENZONITRILE

Compound	Metabolic Activation	Micrograms of Compound Added per Plate	H18 TA1535	Histidine Revertants		per Plate TA98 T	te TA100
Negative control					[19	114
	+		6	ω (18	5 6	91
Positive controls		1	,				
Sodium azide	ı 1	1.0	158	1737			183
2-Nitrofluorene	1	20		5	1820	1073	
2-Anthramine	ſ	2.5	17			16	122
	+	2.5	271			2220	2149
3-Nitrobenzonitrile	ı	100	17	4	22	31	176
	ı	250	13	5	36	43	253
	ı	200	13	9	53	61	352
	ŧ	750	6	7	78	65	435
	•	1000	14	7	96	9/	203
	ı	2000	0	9	32	23	273
	+	100	S	9	19	14	165
	+	250	7	9	21	33	223
	+	200	6	7	32	20	399
	+	750	18	9	42	41	518
	+	1000	15	7	53	45	577
	+	2000	10	6	89	20	1153

Table B-79

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM - 3-NITROBENZONITRILE

er Plate				
vertants p	96	290 100 115	101 121 172 323 413 0	109 127 139 305 441 0
Histidine Revertants per Plate TA98 TA100	25	962	21 32 34 81 118 0	33 34 36 53 0
Micrograms of Compound Added per Plate		10 1.0 2.5 2.5	10 50 100 500 1000 5000	10 50 100 500 1000 5000
Metabolic Activation	' +	111+	1 1 1 1 1 1	+++++

3-Nitrobenzonitrile

Positive controls 2-Nitrofluorene Sodium azide 2-Anthramine

Negative control

Compound

Appendix C

MEDICAL RECORDS ON DOGS

Medical records are kept on all dogs used in toxicity studies. A copy of the vaccination program followed at Marshall Research Animals, Inc., the supplier, appears on pages 307 and 308. The actual dates when thioabendazole, piperazine, and dichlorvos were administered to the dogs prior to shipment to SRI are given on page 309.

When the dogs were received at SRI, they were given an immediate general physical examination. They were then treated with 1 cc (in some cases the dose was repeated) of either Bi-cillin, Gentocin or Combiotic antiobiotic and immunized with one dose of Pitman-Moore's Tissue Vax #5. No other treatment or medication was given to the dogs during the study except as follows:

- CO-06 8/9/78, right hind foot (3rd digit) painful on palpation and swollen; no bone condition. Treated by massaging foot with Unisel.
- C1-11 3/24/78, acute conjunctivitis, no irritating object within the eye--possible allergy.

Treated with: .25 mg dexamethasone i.m.
.2 ml Gentocin i.m.
Chlorasone infused into conjunctival sac
Weekend crew treated next 2 days with
.5 cc Gentocin i.m. one day, Chlorasone
each day

3/28/78, Chlorasone infused into conjunctival sac

3/30-4/14/78, Chlorasone infused

C3-37 3/28/78, put in cage indoors, left foreleg swollen 3/31/78, put in outdoor run by himself; foot much better;

given 1 cc of Flocillin and 0.2 cc of Azium i.m.

PRODUCTS USED IN BEAGLE PRODUCTION COLONY

VACCINES

DISTEMPER-HEPATITIS-LEPTOSPIROSIS

DELCINE HL produced by Dellen Labs., Inc., Omaha, Nebr 68134

The Distemper and Hepatitis fractions are a modified live virus with a canine tissue culture origin.

The Leptospirosis fraction contains physically inactivated Leptospira Canicola and Icterohemorrhagiae Bacterin.

DISTEMPER Modified Live Virus-Chick Tissue Culture Origin Produced by American Scientific Lab., Madison, Wisc.

<u>RABIES</u> Modified Live Virus-Chick Embryo Origin
Produced by Fromm Laboratories Inc., Grafton, Wisc.

Rabies vaccine is given when requested, but is not routinely given in the colony.

An autogenous vaccine for Oral Papilloma. Produced exclusively by and for Marshall Research Animals, Inc.

NINE PARAINFLUENZA - Modified Virus

Produced by Norden Laboratories, Lincoln, Nebr.

ORDETELLA BRONCHISEPTICA BACTERIN

Produced by Chromalloy Pharmaceutical Inc., Omaha, Nebr.

ANTHELMINICS

Piperazine Citrate Thiabendazole

(Thibenzole) Merck & Co., Inc.

FENNELWIDE TREATMENT (see attached detailed record)

<u>Piperazine</u> is given routinely to all dogs every two to four weeks

<u>Thiabendazole</u> is substituted for routine piperazine treatment at varying intervals.

I Dichloryos Shell Chemical Co.

INDIVIDUAL PUPPY TREATMENT-All pups are treated individually with piperazine at approximately 3 and 4% weeks of age.

(Code used on histories) This refers to the surgical removal of a hypertrophied Harder's Gland (Third Eyelid)

*OTHROMBIN TIME The prothrombin time listed on the history is determined the hyland clotek system, using Rabbit Brain Tissue.

PCV These values are arrived at by the microhematocrit method.

PRODUCTS USED IN BEAGLE PRODUCTION COLONY

VACCINES

DISTEMPER-HEPATITIS-LEPTOSPIROSIS

DELCINE HL produced by Dellen Labs., inc., Omaha, Nebraska 68134

The Distemper and Hepatitis fractions are a modified live virus with a canine tissue culture origin.

The Leptospirosis fraction contains physically inactivated Leptospira canicola and icterohaemorrhagiae organisms.

DISTEMPER

Modified Live Virus-Chick Tissue Culture Origin

(given aloge)

produced by American Scientific Laboratories

Madison, Wisconsin

RABIES

Modified Live Virus-Chick Embryo Origin

produced by Fromm Laboratories, Inc. Grafton, Wisconsin 53024

Rabies vaccine is given when requested but is not routinely given in the colony.

WART VACCINE

An autogenous vaccine for Oral Papilloma. Produced exclusively by and for Marshall Research Animals, Inc.

ANTHELMINICS

Piperazine

-Various brands used .

Thiabendazole

-(Omnizole) Merck and Co., Inc.

HG - (Code used on histories) This refers to the surgical removal of a hypertrophied Harder's Gland (Third Eyelid)

KENNELWIDE TREATMENT

<u>Piperazine</u> is given routinely to all dogs every two to four weeks.

<u>Thiabendazole</u> is substituted for routine piperazine treatment at varying intervals.

INDIVIDUAL PUPPY TREATMENT All pups are treated individually with piperazine at approximately 3 and 4½ weeks of age.

PROTHROMBIN TIME *The prothrombin time listed on the history is determined by the Hyland Clotek System, using Rabbit Brain Tissue **Those dogs showing no Prothrombin time have not been tested, but are believed to be normal:

ALL DOGS, ALSO DICHLORVOS

	THI ABENDAZOLE	PIPERAZINE	DICHLORVOS	-
771	1/25 26,27	2/9410 2/234 3/94	12/29/77	
	6/14, 15, 16	3/23+24 4/6+7 4/20+21		
2	7/26 27 28	5/425 5/18 219 6/12		
_	9/21, 22, 23	6/29+30 7/13+14 8/10+11		
11	1/2, 3 -4	8/24+26 9/7+8		
1978- 1	1/15,16,17	9/21+22		
_		10/5 + 6 - 10/19-20	·	
<u> </u>		11/16 + 17	·	
); -		12/12		
_		12/14, 12/15		
_		1/12 1/12/78		
-				
				
_				
_				

Appendix D

LINEAR TREND ANALYSIS

PRECEDING PAGE NOT FILMED BLANK

The data obtained from the subacute studies with condensate wastewater (Part 2) were analyzed statistically for linear trends. The linear trend test is a procedure for establishing the existence of a linear trend in the mean response among the dose-treated groups. More precisely, this test seeks to uncover linear trends as a function of the logarithm of the dose. To compute this test a linear regression of response versus log dose is first computed (excluding the control group). This linear regression takes the form

$$Y_{ij} = a + b \cdot \log d_i$$

where

Y_{ij} = response of j-th animals in the i-th dose group (e.g., weight, hematology, or clinical chemistry measurement).

 d_i = dose administered to the i-th group.

An F test is used to test the hypothesis that b = 0. If the hypothesis can be rejected (e.g., a linear trend exists) at the 5% significance level (e.g., with 95% confidence), then a "*" is printed in the appropriate position on the summary table. If the hypothesis can be rejected at the 1% significance level (e.g., with 99% confidence), then a "+" is printed in the appropriate position on the summary table.

The results are summarized in Tables D-1 through D-12. The parameters analyzed were body weights and weight differences, organ weights and weight ratios, and hematological and clinical chemistry values.

TABLE D-1

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON DOG ORGAN WEIGHTS AND WEIGHT RATIOS

DEPENDENT TABLE NUMBER

VARIABI.E 12 13

FINAL WT (KG)

BRAIN

processing the second residence of the second residenc

THYROID

HEART

LIVER

SPLEEN

ADRENAL

KIDNEYS

GONADS

BRAIN/BODY

THYROID/BODY

HEART/BODY

I.IVER/BODY

SPI.EEN/BODY

ADRENAL/BODY

KIDNEY/BODY

GONAD/BODY

THYROLD/BRAIN

HEART/BRAIN

LIVER/BRAIN

SPLEFN/BRAIN

ADRENAL/BRAIN

KIDNEY/BRAIN

GONAD/BRAIN

- + CONFIDENCE LEVEL = .99 * CONFIDENCE LEVEL = .95
- VARIABLE NOT INCLUDED IN TABLE

TABLE D-2

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON HEMATOLOGY OF DOGS

DEPENDENT				TABLE	NUMB	ER		
VARIABLE	16	17	18	19	20	21	22	23
D.D.O.			*	*	*	*		
RBC			T	*	*	#		
HGB			+	*		*		
нст								
MCV				*		*	*	
мсн	+							
мснс	*	*					+	
WBC								
PMN								
BANDS								
LYMPH								
ATYP I.YMP								
MONO	*							
EOSIN								
BASO								
RETIC			+				+	*

- + CONFIDENCE LEVEL = .99
- * CONFIDENCE LEVEL = .95
- VARIABLE NOT INCLUDED IN TABLE

TABLE D-3

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON CLINICAL CHEMISTRY OF DOGS

DEPENDENT				TABI.E	NUMB	FR		
VARIABLE	24	25	26	2 7	28	29	30	31
ALBUMIN								
AI.K-P								
BUN					*			
CA			+	+				
CHOL								
CREAT				*	+			
GLUC			*					
P					*			
LDH		*	*	+				
TRIG	+			*				
URIC ACID					*			
PROTEIN					+			
SGPT								
SGOT		*						
BII.I						*		

- + CONFIDENCE LEVEL = .99
- * CONFIDENCE LEVEL = .95
- VARIABLE NOT INCLUDED IN TABLE

TABLE D-4

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON RAT BODY WEIGHTS

DEPENDENT		TABI	E NU	IBER		
VARIABLE	34	35	38	39	40	41
INITIAL						
WEEK 1	+	+		+	*	+
WEEK 2	+	+	*	+	*	+
WEEK 3	+	+	*	+	+	+
WEEK 4	+	+	+	+	+	+
WEEK 5	+	+	+	+	+	+
WEEK 6	+	+	*	+	+	+
WEEK 7	+	+	*	+	+	+
WEEK 8	+	+	*	*	+	+
WEEK 9	+	+	-	-	+	+
WEEK 10	+	+	-	-	+	+
WEEK 11	+	+	-	-	+	+
WEEK 12	+	+	-	-	+	+
WEEK 13	+	+	-	-	+	+
WEEK 14	~	-	-	_	+	+
WEEK 15	-	-	-	-	+	+
WEEK 16	-	-	-	-	+	+
WEEK 17	-	-	-	-	+	+

⁺ CONFIDENCE LEVEL = .99

^{*} CONFIDENCE LEVEL = .95

⁻ VARIABLE NOT INCLUDED IN TABLE

TABLE D-5

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON DIFFERENCES IN RAT BODY WEIGHTS

DEPENDENT		TABI	LE NUI	MBER		
VARIABLE	36	37	42	43	44	45
WEEK 1	+	+	*	+	+	+
WEEK 2	+	+	*	+	+	*
WEEK 3	+		+	*	+	
WEEK 4	+	+	+			+
WEEK 5	+		+	+	*	
WEEK 6	+					
WEEK 7	+				*	
WEEK 8	*				*	
WEEK 9	*		-	_		
WEEK 10	+		_	<u> </u>	+	
WEEK 11	+	*	-	-	*	*
WEEK 12	+		_	-	*	
WEEK 13			-	-		
WEEK 14	-	-	-	-		
WEEK 15	-	-	-	-		
WEEK 16	-	-	-	-		
WEEK 17	-	_	-	-		

⁺ CONFIDENCE LEVEL = .99

* CONFIDENCE LEVEL = .95

- VARIABLE NOT INCLUDED IN TABLE

TABLE D-6

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON ORGAN WEIGHTS AND WEIGHT RATIOS OF RATS

DEPENDENT				TAB	LE NU	MBER		
VARIABLE	60	64	62	66	61	65	63	67
FINAL WT	•	*	+	+	+	*	+	+
BRAIN			*					
HEART			+		*	*	+	
I. I VE R	*							
SPLEEN	+		+		+		+	
KIDNEYS	+			*				
TESTES	+	+	*	+				
BRAIN/BODY	+	*	+		+		+	+
HEART/BODY		*	+	*				
I. I VER/BODY			+	+	•		+	*
SPI.EEN/BODY	+		+	*	+		+	
KIDNEY/BODY			+	+		*		
TESTES/BODY	+	*						
HEART/BRAIN					+	*	*	
LIVER/BRAIN	*		*					
SPLEEN/BRAIN	+		+					
KIDNEY/BRAIN	+							
TESTES/BRAIN	+	+	*	+				

LINEAR TREND TESTS OF LOG DOSES

⁺ CONFIDENCE LEVEL = .99

^{*} CONFIDENCE LEVEL = .95

⁻ VARIABLE NOT INCLUDED IN TABLE

TABLE D-7

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON HEMATOLOGY OF RATS

DEPENDENT				TABI	E NUN	IBER		į
VARIABLE	68	69	72	73	70	71	74	
RBC	*				*	+		*
нсв		*	+	*	+	+		+
нст			*				*	+
MCV	+	+	*	+	+	+	+	*
мсн	+							
мснс								+
WBC	+		*		+	*		
PMN	*							
BANDS				+				
LYMPH	*					+		
ATYP LYMP				*		+		
MONO								+
EOSI.								
BASO								
RETIC	+	+		+	*	+		

- + CONFIDENCE LEVEL = .99 * CONFIDENCE LEVEL = .95
- VARIABLE NOT INCLUDED IN TABLE

TABLE D-8

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON CLINICAL CHEMISTRY OF RATS

DEPENDENT				TAB	LE NU	MBER		
VARIABLE	76	77	80	81	78	79	82	83
ALBUMIN		*		*			+	
ALK-P								
BUN					+			
CA	+	*			*		+	
CHOL	+					+	+	
CREAT		+				*		
GLUC	*	+		+	*	*		
P				+	+		+	+
LDH								*
TRIG					+			*
URIC ACID	+	*						
PROTEIN	*		*			*		
SGPT	*				+			
SGOT					+			
BILI			*					

⁺ CONFIDENCE LEVEL = .99 * CONFIDENCE LEVEL = .95

⁻ VARIABLE NOT INCLUDED IN TABLE

TABLE D-9

I.INEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON MICE BODY WEIGHTS

DEPENDENT		TAB	LE NU	MBER		
VARIABI.E	92	93	94	95	96	97
INITIAL						
WEEK 1						
WEEK 2						*
WEEK 3	+	*				*
WEEK 4	+	+		*		*
WEEK 5						
WEEK 6	+	+				*
WEEK 7	*	*				*
WEEK 8	+	+			*	+
WEEK 9	*	+	-	-		+
WEEK 10		+	-	-		*
WEEK 11		+	-	-		*
WEEK 12	*	*	_	-		*
WEEK 13		*	-	-		*
WEEK 14	-	-	-	-		*
WEEK 15	-	-	-	_		*
WEEK 16	-	-	-	-		
WEEK 17	-	-	_	-		

⁺ CONFIDENCE LEVEL = .99 * CONFIDENCE LEVEL = .95

⁻ VARIABLE NOT INCLUDED IN TABLE

TABLE D-10

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON DIFFERENCES IN MICE BODY WEIGHTS

DEPENDENT		TAB	LE NU	MBER		
VARIABLE	98	99	100	101	102	_103_
WEEK 1				*		*
WEEK 2						
WEEK 3	+		í			
WEEK 4	+	+			*	
WEEK 5						
WEEK 6	+				*	
WEEK 7						
WEEK 8		+			+	+
WEEK 9			-	-		
WEEK 10	+		-	-	+	
WEEK 11			-	-		
WEEK 12	*		-	-		
WEEK 13			-	-		
WEEK 14	-	-	-	-		
WEEK 15	-	-	, · -	-		
WEEK 16	-	-	~	-		
WEEK 17	-	_	-	-	*	

- + CONFIDENCE LEVEL = .99 * CONFIDENCE LEVEL = .95
- VARIABLE NOT INCLUDED IN TABLE

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON ORGAN WEIGHTS AND WEIGHT RATIOS OF MICE

DEPENDENT				TABI	E NUI	1BER		
VARIABLE	118	122	120	124	119	123	121	125
FINAL WT	+		+	*				
BRAIN								
HEART								
LIVER	*							
SPLEEN								*
KIDNEYS	*							
TESTES	+		+	*				
BRAIN/BODY	+			*				
HEART/BODY								
LIVER/BODY			*	*	+			
SPLEEN/BODY			*		*		+	
KIDNEY/BODY				*				
TESTES/BODY	+		+					
HEART/BRAIN								
LIVER/BRAIN	*							*
SPLEEN/BRAIN								+
KIDNEY/BRAIN	*							
TESTES/BRAIN	+		+					

- + CONFIDENCE LEVEL = .99
 * CONFIDENCE LEVEL = .95
- VARIABLE NOT INCLUDED IN TABLE

TABLE D-12

LINEAR TREND ANALYSIS OF CONDENSATE WATER EFFECTS ON HEMATOLOGY OF MICE

DEPENDENT				TABL	E NUM	BER		
VARIABLE	126	127	130	131	128	129	132	133
RBC		*					*	
нсв			*					
нст		*						
MCV		*						
мсн				*	+			
мснс					*			
WBC								*
PMN			*	*	*			*
BANDS								
LYMPH		*			*			
ATYP LYMP				*				
MONO								
EOSIN								
BASO								
RETIC		+						

- + CONFIDENCE LEVEL = .99 * CONFIDENCE LEVEL = .95
- VARIABLE NOT INCLUDED IN TABLE

Appendix E

BACKGROUND DATA

Tables E-1 through E-6 are a compilation of measurements on control animals in studies conducted at SRI over the period spanned by the mammalian toxicological studies on TNT and TNT wastewaters. The number of determinations, mean and standard error, and normal range are provided for each measured parameters. The normal range is calculated on the assumption that the data fit a normal distribution and comprise plus and minus two standard deviations from the mean.

Tables E-7 and E-8 summarize hematology and clinical chemistry determinations on the beagles supplied to us by Marshall Laboratory Animals. These determinations were made by the Laboratory's customers.

TABLE E-1

POOLED STATISTICS FOR SUBACUTE DOG STUDIES AT SRI*

MALES

VARIABLE	M	HEAN	SE	NORMAL RANGE (+ 2 S.D.)
INITIAL	60	9.63	.20	6.54 - 12.73
WEEK 1	15	9.58	.41	6.40 - 12.76
WEEK 2	15	9.73	.41	6.52 - 12.93
WEEK 3 Week 4	15 15	9.79 9.97	. 36 . 38	6.98 - 12.60 6.99 - 12.94
WEEK 5	ií	9.94	.41	7.01 - 12.87
WEEK 6	13	9.98	.41	7.06 - 12.91
WEEK 7	13	10.11	.43	7.02 - 13.19
WEEK 8	13	10.11	.41	7.19 - 13.03
WEEK 9 Week 10	11	10.47 10.54	.42 .39	7.71 - 13.23 7.93 - 13.14
WEEK 11	ii	10.64	. 38	8.14 - 13.13
WEEK 12	11	10.66	.37	8.18 - 13.14
WEEK 13	11	10.78	.38	8.26 - 13.30
WEEK 14 WEEK 15	6	10.33	. 36	8.58 - 12.08 8.59 - 12.04
WEEK 16	6 6	10.32 10.27	.35	8.59 - 12.04 8.26 - 12.27
WEEK 17	6	10.43	.41	8.44 - 12.43
WEEK 18	5	10.58	.45	8.57 - 12.59
WEEK 19	5	10.74	.49	8.57 - 12.91
WEEK 20 WEEK 21	5	10.70	.55 .51	8.23 - 13.17 8.37 - 12.91
WEEK 22	5	10.64 10.56	.52	8.37 - 12.91 8.23 - 12.89
WEEK 23	ś	10.54	. 53	8.17 - 12.91
WEEK 24	5	10.18	.47	8.06 - 12.30
FINAL	13	10.80	.32	8.49 - 13.11
BRAIN	13	82.82	1.16	74.45 - 91.19
THYROID HEART	13 13	107.63 59.36	4.18	77.50 -137.75 37.95 - 80.77
LIVER	13	395.13	21.95	236,84 -553,43
SPLEEN	13	31.70	2.71	12.14 - 51.27
ADRENAL	13	18.16	1.20	9.54 - 26.78
KIDNEYS Testes	13	1.50	.12	.65 - 2.36 .38 - 1.53
RBC	13 60	.96 6.04	.07	5.01 - 7.07
HGB	60	14.45	.13	12.44 - 16.46
HCT	60	41.45	.43	34.77 - 48.13
MCV	60	68.52	.25	64.67 - 72.36
MCHC MCHC	60 60	24.03 34.75	.16 .33	21.61 - 26.45 29.66 - 39.84
WBC	60	12.08	.27	7.86 - 16.29
PMN	41	56.17	1.13	41.64 - 70.70
BANDS	41	1.31	. 21	0.00 - 4.09
I.YMPH Mono	4 l	27.80 5.43	.93 .37	15.17 - 39.90 .68 - 10.17
EOSIN	41	8.03	.71	.68 - 10.17 0.00 - 17.18
BASO	41	0.00	0.00	0.00 - 0.00
ATYP LYMPH	20	1.27	.22	0.00 - 3.21
RETIC	40	.74	.07	0.00 - 1.60
GI.UCOSE Bun	60 60	105.51 14.62	1.47	82.80 -128.22 6.36 - 22.89
CREAT	60	.75	.01	.5594
URIC ACID	60	.68	.06	0.00 - 1.58
NA .	40	145.34	. 35	140.88 -149.80
K	40	4.90	.05	4.32 - 5.48 18.50 - 24.88
CO2 CL	40 40	21.69 109.81	.25 2.32	80.43 -139.19
CA	60	11.11	.14	8.89 - 13.34
P	60	6.78	. 38	.97 - 12.59
NA- (C1 + CO ₂)	40	11.59	.35	7.20 - 15.98
CHOL TRIG	60 60	154.58 41.2i	4.40 2.52	86.45 -222.70 2.16 - 80.26
BILI	59	.24	.03	0.0068
SCOT	60	35.05	1.18	16.76 - 53.33
SGPT	60	35.13	1.41	13.25 - 57.01
LDH ALK-P	60 60	62.54 116.10	4.20 6.28	0.00 -127.65 18.75 -213.44
IRON	40	197.89	7.54	102.47 -293.30
PROTEIN	60	5.72	.06	4.79 - 6.65
ALBUMIN	60	3.60	.08	2.31 - 4.88
GLOBULIN A/C BATIO	40	2.20	.12	.67 - 3.73 0.00 - 3.91
A/G RATIO	40	1.90		0.00 - 3.91

Over the period September 1976 through September 1978.

POOLED STATISTICS FOR SUBACUTE DOG STUDIES AT SRIA

FEMALES

VARIABLE	N	MEAN	SE	HORMAL RANGE (± 2 S.D.)
INITIAL	60	8.65	.20	5.60 - 11.69
WEEK 1	15	8.48	. 37	5.63 - 11.33
WEEK 2	15	8.44	. 34	5.79 - 11.09
WEEK 3	15	8.46	.33	5.89 - 11.03
WEEK 4 Week 5	15 13	8.65 8.53	.35	5.96 - 11.33 6.00 - 11.06
WEEK 6	13	8.55	.35	6.04 - 11.06
WEEK 7	13	8.67	.35	6.18 - 11.16
MEEK 8	13	8.65	. 35	6.12 - 11.19
WEEK 9	11 11	8.71 8.73	.38	6.19 - 11.23 6.14 - 11.31
WEEK 11	ii	8.76	.39	6.19 - 11.34
WEEK 12	ii	8.73	, 37	6.25 - 11.20
WEEK 13	11	8.85	.38	6.33 - 11.38
WEEK 14	6	8.43	.47	6.15 - 10.72
WEEK 15	6	8.38	.51	5.86 - 10.90
WEEK 16 Week 17	6 6	8.40 8.32	.56 .52	5.67 - 11.13 5.76 - 10.87
WEEK 18	5	8.42	.70	5.30 - 11.54
WEEK 19	5	8.36	.65	5.46 - 11.26
WEEK 20	5	8.36	.69	5.29 - 11.43
WEEK 21 WEEK 22	5 5	8.42	.69	5.35 - 11.49
WEEK 23	5	8.16 8.22	.68 .67	5.12 - 11.20 5.23 - 11.21
WEEK 24	ś	8.08	.68	5.03 - 11.13
FINAL	13	8.88	. 35	6.35 - 11.41
BRAIN	13	80.38	1.29	71.08 - 89.67
THYROID	13	87.01	2.76 1.40	67.08 -106.93
HEART Liver	13 13	43.46 325.00	14.82	33.36 - 53.56 218.14 -431.86
SPLEEN	13	33.82	4.75	0.00 - 68.06
ADRENAL	13	1.49	.20	.05 - 2.92
KIDNEYS	13	1.39	.07	.92 - 1.86
TESTES	13	1.03	.07	.55 - 1.50
R&C HGB	60 60	6.33 15.32	.08 .16	5.07 - 7.59 12.77 - 17.87
HCT	60	43.69	.54	35.28 - 52.09
HCV	60	68.76	.21	65.57 - 71.95
MCH	60	24.19	. 16	21.72 - 26.66
MCHC	60	35.05	.20	31.96 - 38.14
WBC Pmn	60 41	12.03 58.49	1.18	7.39 - 16.67 43.42 - 73.55
BANDS	41	1.59	.56	0.00 - 8.64
LYMPH	41	26.70	1.14	12.13 - 41.29
MONO	41	9.80	1.48	0.00 - 28.75
EOSIN Baso	41	8.25 0.00	1.00	0.00 - 20.88 0.00 - 0.00
ATYP LYMPH	20	.94	.24	0.00 - 3.12
RETIC	40	.72	.10	0.00 - 1.93
GLUCOSE	60	106.31	1.35	85.38 -127.25
BUN CREAT	60	15.26	.55	6.71 - 23.81
URIC ACID	60 60	.75 .67	.0i .06	.5694 0.00 - 1.58
NA NA	40	146.39	.27	143.02 -149.75
K	40	4.74	.04	4.26 - 5.21
C O 2	40	22.04	. 26	18.78 - 25.30
CL	40	111.77	.25	108.58 -114.97
CA P	60	11.24 6.59	.12	9.43 - 13.06 1.24 - 11.94
NA-(C1 + CO ₂)	40	12.57	.31	8.71 - 16.44
CHOL	60	153.94	4.26	87.89 -219.99
TRIG	60	40.80	2.42	3.31 - 78.29
BILI SGOT	60 60	.25 33.48	.03 .91	0.0067 19.41 - 47.55
SGPT	60	30.43	1.24	11.21 - 47.55
LDH	60	53.51	3.79	0.00 -112.16
ALK-P	60	98.36	4.34	31.15 -165.57
IRON	40	188.95	7.81 .05	90.14 -287.77
PROTEIN Albumin	60 60	5.69 3.73	.03	4.87 - 6.50 2.47 - 4.98
GLOBULIN	40	2.11	.12	.60 - 3.61
A/G RATIO	40	2.11	.18	0.00 - 4.36

1.

Over the period September 1976 through September 1978.

TABLE E-3
POOLED STATISTICS FOR SURACUTE RAT STUDIES AT SRI

MALES

		n=: 3		
VARIABLE	N	MEAN	SF	NORMAL RANGE (± 2 S.B.)
INITIAL	70	151.41	1.93	119.19 - 183.44
WEEK 1	70	200.41	2.67	155.68 - 345.15
WEEK 2	69	252.96	2.47	211.89 - 294.03
WEEK 3	69	291.77	2.69	247.15 - 336.39
WEEK 4	69	324.23	3.12	272.32 - 376.15
WEEK 5	50	348.58	4.01	291.85 - 405.31
WEEK 6	50	369.46	4.06	312.01 - 426.91
WEEK 7	50	390.32	4.77	322.79 - 457.85
WEEK 8	50	410.44	5.33	335.02 - 485.86
WEEK 9	40	425.95	6.49	343.86 - 508.04
WEEK 10	40	443.02	6.41	361.93 - 524.12
WEEK 11	40	453.20	7.20	362.17 - 544.23 360.56 - 565.39
WEEK 12 Week 13	40 40	462.97 465.47	8.10 9.51	345.24 - 585.71
WEEK 14	10	487.40	13.51	401.96 - 572.84
WEEK 15	10	498.80	15.21	402.58 - 595.02
WEEK 16	10	502.90	14.30	412.46 - 593.34
WEEK 17	10	486.20	13.58	400.32 - 572.08
BRAIN	69	2.17	.02	1.79 - 2.55
HEART	69	1.52	-04	.87 - 2.17
KIDNEYS Liver	69 69	3.31 14.17	.0/ .38	2.07 - 4.54 7.94 - 20.40
SPLEEN	69	.75	.02	.47 - 1.02
TESTES	69	3.35	.08	2.03 - 4.68
RBC	62	7.72	.09	6.33 - 9.12
HGB	62	14.97	.11	13.20 - 16.74
HCT	62	40.67	.37	34.81 - 46.53
MCV	62	53.27	.43	46.53 - 60.02
MCH	62	19.50	.22	16.09 - 22.92
MCHC	6.2	36.89	.38	30.92 - 42.87
WBC	62	8.30	. 34	2.89 - 13.70
PMN	62	15.84	.70	4.82 - 26.86
BANDS	6.2	.37	.09	0.00 - 1.83
LYMPH	62	79.16	.77	67.04 - 91.28
MONO	52	3.48	. 25	0.00 - 7.08
EOSIN	34	1.35	.10	.16 - 2.55
BASO	63	0.00	0.00	0.00 - 0.00
ATYP LYMPH Retic	25 25	2.04 .94	.33	0.00 - 5.38 0.00 - 2.44
RSIIC	2,	• 74		0.00 - 2.44
GLUCOSE	66	152.94	4.35	82.24 - 223.64
BUN	66	18.18	.53	9.64 - 26.72
CREAT	64	. 59	.02	.3187
URIC ACID	61	1.85	. 14	0.00 - 4.01
N A K	36	143.92 6.34	. 42	138.85 - 148.98
CO2	64 36	24.50	.23 .58	2.65 - 10.03 17.56 - 31.44
CL.	36	102.33	.47	96.74 - 107.93
CA	55	9.38	.10	7.97 - 10.79
P	36	6.24	.16	4.27 - 8.20
$NA = (C1 + C0_2)$	36	17.08	.74	8.19 - 25.98
CHOL	64	45.77	3.06	0.00 - 94.69
TRIG	64	95.91	8.87	0.00 - 237.67
BILI	59	.32	.04	0.0088
SGOT	66	107.38	4.45	35.04 - 179.71
SGPT	66	37.67	1.48	13.54 - 51.79
1. DH	61	785.82	65.57	0.00 -18.0.00
ALK-P	57	204.19	12.53	14.98 - 393.41
IRON	36	194.25	7.34	106.14 - 282.36
PROTEIN	64	6.24	.08	5.0? - 7.47 2.5? - 6.40
ALBUMIN GLOBULIN	64 3h	4.46 1.81	.13	
A/G RATIO	36	5.91	1.06	0.00 - 4.35 0.00 - 18.55
areas and IV	,,,	7.75	• • • • •	V . FO 15

TABLE E-4
POOLED STATISTICS FOR SUBACUTE RAT STUDIES AT SRI

FEMALES

		FEMALES		
VARIABLE	N	MEAN	SE	NORMAL RANGE (+ 2 S.D.)
INITIAL	70	151.91	2.13	116.27 - 187.56
WEEK 1	70	175.39	1.32	153.30 - 197.47
WEEK 2	70	196.63	1.30	174.95 - 218.31
WEEK 3	70	210.70	1.46	186.30 - 235.10
WEEK 4	70	222.91	1.60	196.22 - 249.61
WEEK 5	50	233.62	2.06	204.49 - 262.75 210.64 - 278.36
WEEK 6	50	244.50	2.39	213.35 - 288.45
WEEK 7 WEEK 8	50 50	250.90 258.92	2.74	220.14 - 297.70
WEEK 9	40	266.02	3.43	222.65 - 309.40
WEEK 10	40	273.85	3.85	225.10 - 322.60
WEEK 11	40	277.95	4.04	226.81 - 329.09
WEEK 12	40	282.30	3.60	236.71 - 327.89
WEEK 13	40	281.90	3.66	235.57 - 328.23
WEEK 14	10	274.40	4.39	246.62 - 302.18 250.87 - 305.33
WEEK 15	10	278.10	4.31	251.33 - 307.07
WEEK 16	10	279.20 270.00	4.41 4.40	242.18 - 297.82
WEEK 17	10			
BRAIN	70	2.02	.02	1.74 - 2.31
HEART	70	1.02	.02	.61 - 1.43 1.42 - 2.44
KIDNEYS	70 70	1.93 8.00	.03 .16	5.26 - 10.73
LIVER Spleen	70 70	.56	.01	.3676
3 F D S S N				
RBC	67	7.35	.07	6.20 - 8.50 12.91 - 16.68
HGB	67	14.80 39.42	.12	32.61 - 46.23
HCT	67 67	54.24	.22	50.60 - 57.88
MCV MCH	68	19.84	.35	13.99 - 25.68
мснс	67	37.64	.38	31.42 - 43.87
WBC	67	6.77	.28	2.27 - 11.28
PMN	67	15.75	1.07	0.00 - 33.28
BANDS	66	. 39	.10	0.00 - 2.07
LYMPH	67	79.84	1.08	62.10 - 97.57 0.00 - 6.68
MONO	50	3.22 2.00	.24	0.00 - 4.92
EOSIN Baso	31 70	0.00	0.00	0.00 - 0.00
ATYP LYMPH	30	1.60	.21	0.00 - 3.87
RETIC	30	1.04	.15	0.00 - 2.66
GLUCOSE	65	147.15	3.35	93.08 - 201.23
BUN	65	18.38	.61	8.60 - 28.17
CREAT	63	.60	.01	.3782
URIC ACID	59	1.86	. 12	0.00 - 3.78
N A	33	142.03	.51	136.17 - 147.89 2.72 - 9.48
K	63	6.10	.21	2.72 - 9.48 14.31 - 29.38
co2	33 33	21.85 103.70	.66 .53	97.60 - 109.79
CL CA	53	10.19	.15	8.06 - 12.33
P	33	5.40	.23	2.80 - 8.00
NA- (C1 + CO ₂)	33	16.48	.65	8.97 - 24.00
CHOL	63	64.19	1.93	33.49 - 94.89
TRIG	63	57.51	5.82	0.00 - 149.90
BILI	63	.34	.04	0.0094
SGOT	65	101.15	6.35	0.00 - 203.52 0.00 - 75.24
SGPT	65 64	34.88	2.50	0.00 - 75.24 0.00 -1355.14
I.DH	64 55	608.80 131.16	46.65 9.38	0.00 - 270.35
ALK-P IRON	33	339.42	11.94	202.29 - 476.56
PROTEIN	63	6.60	.09	5.13 - 8.06
ALBUMIN	63	4.75	.14	2.50 - 6.99
GLOBULIN	31)	1.96	.23	0.00 - 4.53
A/G RATIO	30	5.51	1.17	0.00 - 18.30

TABLE E-5
POOLED STATISTICS FOR SUBACUTE MOUSE STUDIES AT SRI

MALES

VARIABLE	N	MEAN	SE	NORMAL RANGE (+ 2 S.D.)
INITIAL	60	23.17	.37	17.45 - 28.89
WEEK 1	60	24.83	.49	17.29 - 32.38
WEEK 2	59	25.75	.55	17.29 - 32.36
WEEK 3	58	26.24	.64	16.56 - 35.93
WEEK 4	57	29.07	.52	
WEEK 5	47	30.79	.58	
WEEK 6	47	31.70	• 5 6 • 5 5	22.89 - 38.69
WEEK 7	47	31.70		24.19 - 39.22
WEEK 8	47	34.55	.63	23.36 - 40.60
WEEK 9	37	33.97	.66	25.52 - 43.58
WEEK 10	37		.68	25.68 - 42.27
WEEK 11	3 <i>1</i> 3 <i>7</i>	34.43	.69	26.05 - 42.82
WEEK 12		35.41	.67	27.25 - 43.56
WEEK 12 WEEK 13	37	36.00	.66	27.93 - 44.07
	37	36.05	.69	27.66 - 44.45
WEEK 14	10	38.20	.99	31.96 - 44.44
WEEK 15	10	39.60	1.02	33.12 - 46.08
WEEK 16	10	38.90	.91	33.13 - 44.67
WEEK 17	10	38.10	.86	32.65 - 43.55
BRAIN	57	.53	.01	.4462
HEART	5.7	.19	.01	.1127
KIDNEYS	5 7	.55	.01	.3378
LIVER	5 7	1.87	.06	1.00 - 2.74
SPLEEN	5 7	.12	.01	.0420
TESTES	5 7	.26	.0i	.1538
RBC	47	7.77	.18	5.37 - 10.18
HGB	47	13.96	.23	10.80 - 17.11
HCT	47	39.40	.86	27.66 - 51.14
MCV	47	50.96	.45	44.74 - 57.17
MCH	47	18.28	.29	14.37 - 22.19
MCHC	47	36.09	.62	27.57 - 44.60
WBC	47	6.59	.50	0.00 - 13.49
PMN	45	21.27	1.43	2.06 - 40.48
BANDS	46	.15	.07	0.00 - 1.09
LYMPH	46	73.39	1.66	50.84 - 95.95
MONO	46	2.35	.32	0.00 - 6.71
EOSIN	46	1.67	. 26	0.00 - 5.25
BASO	46	0.00	0.00	0.00 - 0.00
ATYP LYMPH	29	1.97	.37	0.00 - 5.98
RETIC	30	1.40	. 24	0.00 - 4.01

FEMALES

VARIABLE	N	MEAN	SE	NORMAL RANGE (+ 2 S.D.)
INITIAL	60	22.05	.35	16.66 - 27.44
WEEK 1	60	22.95	.44	16.20 - 29.70
WEEK 2	60	23.38	.47	16.04 - 30.73
WEEK 3	60	23.70	.56	15.01 - 32.39
WEEK 4	59	25.41	.53	17.24 - 33.58
WEEK 5	49	25.90	. 5.6	18.01 - 33.79
WEEK 6	49	26.73	.63	17.94 - 35.53
WEEK 7	49	27.92	.55	20.28 - 35.55
WEEK 8	48	28.19	.55	20.52 - 35.86
WEEK 9	38	28.97	.64	21.12 - 36.83
MEEK 10	38	28.66	.62	20.97 - 36.34
WEEK 11	38	29.29	.57	22.25 - 36.32
WEEK 12	38	29.11	.77	19.65 - 38.56
WEEK 13	38	30.05	.68	21.62 - 38.49
WEEK 14	9	30.56	1.59	21.01 - 40.10
WEEK 15	9	32.00	1.61	22.36 - 41.64
WEEK 16	9	31.67	1.53	22.50 - 40.83
WEEK 17	9	31.67	1.70	21.47 - 41.86
BRAIN	58	.53	.01	.4165
HEART	58	.16	.01	.0725
KIDNEYS	58	.41	.01	.2657
LIVER	58	1.64	.05	.88 - 2.39
SPLEEN	58	.12	.00	.0519
RBC	45	8.24	.20	5.52 - 10.97
HGB	4.5	14.69	. 23	11.59 - 17.79
HCT	45	41.30	1.03	27.53 - 55.07
MCV	45	49.89	.41	44.44 - 55.34
MCH	45	18.08	.28	14.27 - 21.89
мснс	45	36.27	.61	28.07 - 44.47
MRC	45	6.41	. 43	.70 - 12.11
PMN	45	18.87	1.27	1.89 - 35.84
BANDS	44	.59	. 23	0.00 - 3.62
LYMPH	45	76.09	1.39	57.42 - 94.76
MONO	45	1.67	. 26	0.00 - 5.13
EOSIN	45	1.89	. 36	0.00 - 6.77
BASO	45	.04	.04	0.0064
ATYP LYMPH	28	1.75	. 28	0.00 - 4.71
RETIC	28	1.36	.20	0.00 - 3.43

Table E-7
HEMATOLOGY OF BEAGLES FROM MARSHALL LABORATORY ANIMALS*

	Val	ues†
Parameter	Males	Females
Hgb (g %)	15.6 ± 1.9	16.3 ± 2.2
Hct (%)	45.4 ± 5.6	47.9 ± 4.4
WBC (x 10 ³)	15.0 ± 3.7	13.7 ± 3.4
PMN (%)	60.6 ± 12.8	61.8 ± 8.8
Lymphocytes (%)	33.7 ± 7.6	34.8 ± 8.4
Monocytes (%)	1.3 ± 1.2	1.1 ± 1.2
Eosinophils (%)	2.5 ± 2.7	2.1 ± 3.0
Basophils (%)	0.08 ± 0.35	0.045 ± 0.3
Retic (% x 1000 RBC)	0.37 ± 0.36	0.42 ± 0.40

^{*} Values are derived from averages for 100 male or 100 female dogs (age, 9 to 12 months) supplied to Marshall Research on its beagles by customers.

[†] Means ± standard error.

Parameter	Males	Females
Glucose (mg %)	80 ± 7.6	76.5 ± 10.4
BUN (mg %)	15.9 ± 4.0	17.8 ± 4.3
Serum Na+ (meq/liter)	149.8 ± 12.4	149.1 ± 16.7
Serum K+ (meq/liter)	4.9 ± 0.48	4.8 ± 0.49
SGOT (Wrobl. units)	16.4 ± 13.1	16.7 ± 13.4
SGPT (Wrobl. units)	10.4 ± 9.1	11.5 ± 7.5
Alk-P (Bessy-Lowry units)	2.8 ± 1.0	2.4 ± 1.2
Serum protein (mg %)	6.0 ± 0.62	6.1 ± 0.70

 $^{^{}m a}$ Values are derived from averages for 100 male or 100 female dogs (age, 9 to 12 mo) supplied to Marshall Research on its beagles by customer.

bMeans ± standard error.

Appendix F

NEUROPATHOLOGY CONSULTANT'S REPORT

REPORT TO SRI ON THE NERVOUS SYSTEM OF DOGS EXPERIMENTALLY EXPOSED TO A POTENTIALLY TOXIC SUBSTANCE

Summary

A study was made of selected levels of the central nervous system (CNS) in 29 experimental dogs and 10 control dogs. Detailed study was made of the nervous system in an additional experimental dog (the 30th) that displayed severe neurological disturbances.

In the 29 experimental dogs no significant changes were observed in the brain. Reactive cells and punctate hemorrhages were found in the subarachnoid space both in the experimental dogs and the controls. No substantial difference was observed in the two groups, nor was there a significant difference in the incidence of reactive cells and punctate hemorrhages at the different dose levels employed. Incipient granulomatous nodules were found in the arachnoid both in the experimental and the control dogs and frank granuloma in one experimental dog. Their significance was undetermined.

In the 30th animal, which had received the maximum dose (5.0 mg/kg), profound changes were observed in the brain. Their nature and distribution was such that head trauma might have been the cause.

MATERIALS

A total of 40 dogs was used in the experiment, 30 experimentals and 10 controls. Ten animals received (by stomach tube?) 0.05 mg/kg water condensate, another ten animals, 0.5 mg/kg, and the third ten animals, 5.0 mg/kg. All the dogs were sacrificed in approximately 6 months after start of the experiment. Sections from 29 animals were received from SRI for study. The sections had been obtained from (1) the frontal lobe, (2) the level of the hypothalamus, (3) the cerebellum, and (4) the pons. All these sections were stained by hematoxylin and eosin (H&E). In the 30th animal numerous sections were obtained from the nervous system. They were stained by H&E, luxol fast blue-PAS-hematoxylin and/or by silver methods.

FINDINGS IN THE 29 DOGS

0.05 mg/kg dose (Dogs C1-11 - C1-20)

Dog	Findings
C1-11	Leptomeninx: Slight activation of arachnoidal reticuloendothelial (RE) cells; striking meningeal fibrosis. Brain Okay.
C1-12	Leptomeninx: Slight RE-cell activiation, rare punctate hemorrhages. Choroid plexus Okay. Brain Okay.
C1-13	Leptomeninx: Moderate RE-cell activation, no hemorrhage. Choroid plexus Okay. Brain Okay.
C1-14	Leptomeninx: No RE-cell activation, rare hemorrhage. Brain Okay.
C1-15	Leptomeninx Okay. Choroid plexus Okay. Brain Okay.
C1-16	Leptomeninx Okay. Brain: Sizable perivenous punctate hemorrhages in floor of 4th ventricle; brain otherwise Okay.
C1-17	Leptomeninx delicate throughout, minimal hemorrhage. Brain Okay.
C1-18	Leptomeninx: Slight fibrotic changes, otherwise Okay. Brain Okay.
C1-19	Leptomeninx: Same as for C1-18 except for a few scattered punctate hemorrhages in subarachnoid space. Meningeal fibrosis. Brain: Several sizable punctate hemorrhages in cerebellar white matter and pontine tegmentum.
C1-20	Leptomeninx: Obvious granulomas in cerebral meninges composed of epithelioid cells, some lymphoid cells, some large fibroblasts. No caseation. Similar changes elsewhere, but minor. Cerebrum, cerebellum, pons Okay.

0.5 mg/kg dose (Dogs C2-21 - C2-30)

Dog	Findings
C2-21	Small granulomatous mass in region of cerebral arachnoid membrane with proliferative changes in adjacent arachnoid membrane. Leptomeninx elsewhere Okay except for fibrosis. Brain Okay.
C2-22	Leptomeninx: Slight RE-cell activation; focal meningeal fibrosis. Choroid plexus Okay. Small perivascular collection of lymphoid cells in meninges of cerebellar sulcus. Brain Okay.
C2-23	Leptomeninx: Slight activation of RE cells, no hemorrhage. Brain Oka
C2-24	Leptomeninx: Delicate. No hemorrhages. Brain Okay.
C2-25	Leptomeninx: Focally hyperplastic arachnoid membrane (cerebral). Brain Okay.
C2-26	All Okay.
C2-27	Leptomeninx: Moderate activation of RE cells. Brain Okay.
C2-28	Leptomeninx: Occasional subarachnoid hemorrhages, RE cells Okay. Strikingly hyperplastic arachnoid membrane (granulomatous process?) focally in cerebellar meninges. No change in brain.
C2-29	Leptomeninx: Moderate RE-cell activation. Copious epiarachnoid and subarachnoid hemorrhages. Brain: Small punctate hemorrhage in hypothalamus; brain otherwise Okay.
C2-30	Several punctate hemorrhages in hypothalamus. Brain otherwise Okay.

5.0 mg/kg dose (Dogs C3-31 ~ C3-40)

Dog	Findings
C3-31	Slightly activated arachnoidal RE cells; sparse punctate hemorrhages in cerebellar subarachnoid space. Choroid plexus Okay. Cerebral cortex, white matter, thalamus, striatum, pallidum, cerebellum, pons Okay. Blood vessels Okay.
C3-32	Occasional punctate subarachnoid hemorrhage, cerebellum. Brain Okay.
C3-33	See separate report.
C3-34	Leptomeninx: Numerous activated RE cells in arachnoid meshes; many punctate hemorrhages in subarachnoid space, especially in sulci; no leucocytes seen. Striking multifocal collagenous thickening of arachnoid trabecular connective tissue. Hypothalamus, cerebellum, pons Okay.
C3-35	Leptomeninx: Much the same as in C3-34. Small collection of lymphocytes around one meningeal vein. Mesothelial-cell aggregate (so-called epithelial granulation) in cerebral arachnoid membrane (normal in man and animals). Brain Okay.
C3-36	Leptomeninx: Much the same as in C3-31. Multifocal collagenous thickening of some choroid plexus fronds. Cerebral cortex, striatum, pallidum, thalamus, hypothalamus, pons Okay.
C3-37	Leptomeninx: Punctate hemorrhages and activated RE cells found here and there. Choroid plexus Okay. Striatum and thalamus: Nerve cell nuclei enormously ballooned and pale (artefact); no hypertrophied astrocytes seen.
C3-38	Leptomeninx: Prominent fibrous thickening of arachnoidal connective tissue at base of hypothalamus; otherwise Okay. Brain and pons Okay.
C3-39	Leptomeninx: Rare activation of RE cells. Much collageneous thickening of trabecular connective tissue. Choroid plexus Okay. Brain, pons, cerebellum Okay.
C3-40	Leptomeninx: Striking meningeal fibrosis. No activation of RE cells. No hemorrhage seen. Vessels Okay. Brain (including hippocampal formation) Okay. Cerebellum and pons Okay. Saw one sizable punctate hemorrhage in cerebrum but on reexamination could not locate it.

Controls (Dogs CO-01 - CO-10)

Brain: No change was observed in any animal.

Leptomeninx: Activated RE cells were found in 4 animals (CO-05, 06, 07, 08) but they were rather sparse. Scattered punctate hemorrhages were noted in 8 of the 10 animals. Frank hemorrhage was found in the 4th ventricle in CO-07, and in the choroid plexus of the 3rd ventricle in CO-10. Engorgement of vessels with blood (in CO-02 and CO-06) was noted but was not impressive. Meningeal fibrosis was observed in 4 animals (CO-01, 02, 04, 07). Focal hyperplasia (granulomatous process?) was noted in the arachnoid membrane of the cerebellum and cerebrum (in CO-04), also in the arachnoid membrane along surface of the fornix (in CO-10).

Comment

The cerebrum, cerebellum and pons in all the dogs appeared normal. No glial reaction was observed in any of the brains. Rare punctate hemorrhages were found in CNS tissue in 5 experimental dogs (C1-16, C1-19, C2-29, C2-30, C3-40) and in no controls. These hemorrhages were too few to be regarded as significant. There was frank hemorrhage in the 4th ventricle in one control dog (C0-07) and in the choroid plexus of the 3rd ventricle of another control dog (C0-10). These hemorrhages could have resulted from manipulation of the brain in the course of autopsy.

As to the leptomeninges, an effort was made to see if activated arachnoidal reticuloendothelial (RE) cells (histiocytes) were more frequent in the experimental dogs than in the controls. These cells, and also monocytic macrophages (from the bone marrow) which were also seen in the subarachnoid space, were difficult to quantitate. Both these cell types normally remove materials from the cerebrospinal fluid, and exhibit a slow turnover rate. Both are seen in increased number, for example, in certain local infections. The impression was gained that these cells were in greater number in the experimental animals as a group than in the controls as a group, but this is no more than an impression. Whether the toxic material given the animals was responsible for the difference, if it existed, is unknown. This is because of the possible operation of other factors such as visceral infection.

Punctate hemorrhages in the subarachnoid space were seen both in the experimental dogs and the controls (in 8 of 10 controls). Some of them could well be laid to the autopsy procedure. Thus there is no substantial evidence that the toxic material so adversely affected leptomeningeal blood vessels that hemorrhage occurred.

The meningeal fibrosis in the two groups of animals is regarded as an age-related change.

Of particular interest were the granulomatous nodules seen in the arachnoid in 3 experimental dogs (C1-20, C2-21, C2-28[?]) and in 2 control dogs (C0-04[?] and C0-10[?]). They originated from the arachnoid membrane. Only in one dog (experimental dog C1-20) were there frank arachnoid granulomas. Being present in the control dogs suggests a process (infectious?) inherent in this animal colony. All these so-called granulomas were very small. What they might signify is left open.

FINDINGS IN DOG C3-33

This dog obviously had severe neurological disturbances. Outstanding were thrashing movements of head and body, inability to stand, spasticity of the forelimbs and flaccidity of the hindlimbs, constant turning of the head from side to side (apparently involuntary), lack of control of head extensors, and apparent blindness of both eyes although the pupils reacted to light. Impression at that time: extrapyrmaidal syndrome, cerebellar component (?), dystonia musculorum, pyramidal tract involvement, blindness.

Sections were obtained from levels of the cerebrum, cerebellum, brainstem and spinal cord, also from the optic nerve, brachial plexus, oculomotor nerve, sciatic nerve, and sympathetic ganglionated chain. Sections were stained by hematoxylin-eosin and luxol fast blue-PAS-hematoxylin. Selected sections were stained by silver techniques.

The most outstanding change was a complete loss of the entire lenticular nucleus (putamen and globus pallidus) (a part of the wall is shown in Fig. 1) and substantia nigra (Fig. 2) bilaterally. These structures had earlier undergone total necrosis. All that remained in their stead was a filmy connective tissue framework. Silver-stained sections revealed striking astroglioses along the border of the now absent gray matter.

Small cavitations were found in the caudate nuclei. They were surrounded by a corona of much hypertrophied astrocytes (Figs. 3, 4 and 5).

The red nucleus appeared intact bilaterally.

The cerebral cortex was intact, but many of its pyramidal cells were atrophic. Myelin pallor was noted in the lower part of the cerebrum. The internal capsule, however, appeared normally myelinated, and the same was true for the medullary pyramids. However, the pyramidal tracts in the cervical cord were slightly demyelinated, but myelin loss was not detected at lower spinal cord levels. No changes were seen in nerve cells of the spinal cord. The part of the basis pedunculi next to devastated substantia nigra was somewhat coinvolved. This may be the explanation of the spasticity of the dog's forelimbs.

Aside from some myelin loss, the cerebellum showed no change.

In the pons unilaterally there was a large area in the region of the vestibular nuclei (and beyond) in which the tissue was "softened" and demyelinated. Collections of macrophages were found here and there in the lesion. A fair number of nerve cells in this region had disintegrated. A smaller lesion in the same position was noted on the other side of the pons. Possibly the damage incurred by the vestibular nuclei was responsible for the inability of the dog to maintain its balance in attempting to stand up from a prone position.

The optic nerve showed no evident demyelination. Silver preparations revealed suggestive astroglial hypertrophy all through the nerves. No change that could be considered significant was found in the lateral geniculate body or in visual cortex. Thus, whether the animal was actually blind was not substantiated, nor can blindness be refuted.

No change was observed in the brachial plexus, oculomotor nerve, sciatic nerve, or sympathetic ganglionated chain.

Comment

Considering the lack of brain changes in the other 9 dogs receiving the same dose, the odds are overwhelming that some factor other than the supposedly toxic substance given this animal was responsible. What that factor may be is conjectural. It is known that in humans much the same change occurs in the lenticular nucleus from an overdose of barbital or heroin or as a consequence of carbon monoxide poisoning. Practically the same neuropathological picture as observed in this dog has been reported in humans receiving severe head trauma. (Reference: Malamud and Haymaker: Cerebral trauma and extrapyramidal involvement, etc. J Neuropath Exp Neurol, 6:217-266, 1947.) It is therefore suggested that this dog thrashed about for some time after being given the substance, repeatedly striking its head on a hard surface. (No signs of old hemorrhage were, however, observed in the scalp at autopsy.)

The lesions in the brain in this animal were infarcts (e.g., see Fig. 3) considered to have been caused by cessation or severe reduction of blood flow to the now damaged structures. It is suggested that following head impact the brain became swollen (edematous) and that, being displaced medialward on the two sides, squeezed (1) the anterior choroidal arteries (originating from the circle of Willis), interrupting blood flow to the lenticular nucleus bilaterally, and (2) the posterior choroidal arteries (springing from the first part of the posterior cerebral artery), interrupting blood flow to the substantia nigra bilaterally. The same mechanism has been proposed as responsible for the corresponding lesions occurring in carbon monoxide poisoning, barbiturate poisoning, and from overdose of heroin.

Incl: Photographs

Well Haganiler

Webb Haymaker, M.D. Consulting Neuropathologist

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

Appendix G

RANGE-FINDING STUDIES ON CONDENSATE WATER MIXTURES

Four-week range-finding studies were conducted on the 17-component condensate water mixture (Table 1, Phase I tests) in dogs, rats, and mice and on the 30-component condensate water mixture (Table 1, Phase II tests) in rats and mice. Each group comprised one dog (male or female) and ten rats, and ten mice (5 of each sex). Dose levels and parameters measured are given in the headings to the tables. All animals were dosed in the manner described under Experimental Methods, Part 2, and all survivors were killed after 4 weeks of treatment.

Table G-1

EFFECTS OF COMDEMSATE WATER ON BODY WEIGHTS (RC) OF MALE DOGS AFTER & WERKS OF TREATMENT

				TREATHERT GROUPS		
PEPERBERT VARIABLE	COSTROL	0.2 HG/KG/DAY	HG/KG/DAT HG/KG/DAY HG/KG/DAY HG/KG/DAY HG/KG/DAY	5.0 HG/KG/DAY	25.0 HG/KG/DAY	125.0 MG/KG/DAT
INITIAL	12.2	11.6	11.7	13.1	11.2	12.2
WEEK 1	11.8	11.11	11.3	12.8	10.0	
WEEK 2	11.9	11.1	11.2	12.6		
WEER 3	11.0	11.2	11.0	12.6		
7 1330	11.6	11.7	11.5	13.1		

I DOG IN EACH GROUP

Table G-2

EFFECTS OF COMBERGATE WATER ON FOOD CONSUMPTION OF MALE DOCS AFTER 4 WEEKS OF TREATMENT

				TREATHERY GROUPS		
DEPENDENT	CONTROL	0.2 MG/KG/DAY	NC/KG/DAY MG/KG/DAY MG/KG/DAY MG/KG/DAY MG/KG/DAY	S.O MG/KG/DAT	25.0 MG/KG/DAT	125.0 MG/KG/DAT
WEEK 1	254.4	177.8	204.2	136.8	22.0	116.5
WEEK 2	261.2	256.4	245.2	217.0		
WEEK 3	400.0	383.6	367.2	367.8		
VELK 4	400.0	400.0	356.8	0.004		

Table G-3

BEMATOLOGY OF MALE DOGS BEFORE TREATMENT WITH CONDENSATE WATER

				TREATMENT GROUPS	1	
DEPENDENT	CONTROL	NG/KG/DAY	1.0 MG/KG/DAY	S.0 MG/KG/DAY	25.0 MG/KG/DAT	125.0 NG/KG/DAY
RBC (X 10 ⁶)	7.52	5.56	9 . 4	6.57	6.31	5.67
WBC (X 10 ³)	13.0	17.1	21.5	20.6	17.2	16.8
HCB (6 X)	16.2	14.9	17.4	18.2	17.0	15.7
BCT (1)	50.3	38.4	46.1	47.4	43.6	39.0
MCV (U) ³	9	9	70	11	89	49
MCB (UUG)	21.3	26.8	26.2	27.3	27.0	28.1
PMM (X)	62	3	6.1	\$\$	24	53
DANDS (X)	~	•	7	•	~	
LYMPH (\$)	11	13	19	26	25	23
ATT. LYHPH (X)	~	-	0	-	~	•
HOBO (I)	•	•		,	•	•
E051H (I)	10	•	11	80	12	•
BASO (1)	6	0	٥	0	•	•
RETICS (I)	0.0	0.5	1.0	9.0	8.0	1.0

Table G-4

RFFECTS OF COMBENSATE WATER ON MEMATOLOGY OF MALE DOGS AFTER 2 WERKS OF TREATMENT

				TREATHENT GROUPS		
DEPENDENT VARIABLES	CONTROL	0.2 HG/KG/DAY	1.0 MG/KG/DAT	5.0 MG/KG/DAY	25.0 MG/KG/DAT	125.0 MC/KC/DAY
RDC (X 106)	4.	• .s	7.1	5.5	4.87	6.0
WGC (K 103)	15.0	11.6	12.8	15.5	29.0	26.4
IGS (C X)	15.4	16.9	18.5	14.7	13.1	16.6
ICT (X)	£\$	9	20	7	38	7
ICA (B) 3	3	70	11	91	11	•
HCR (BBC)	23.5	26	26	26	26.5	82
PMR (1)	67	26	62	52	7.	"
BANDS (X)	•	~	7	-	•	•
LYMPH (X)	11	30	20	24	13	•
ATY. LYMPH (X)	0	0	2	7		
NOBO (1)	•	•	•	٠	•	•
E051# (I)	•		•	15	8	~
5450 (I)	•	•	•	•	•	•
RETICS (2)	0.5	6.8	1.0	1.0	9.8	9.0

Ĺ

ĺ.

1

ţ

.

Table G-5

j . i .

i.

RFFECTS OF COMDENSATE WATER ON HEMATOLOGY OF MALE DOGS AFTER 4 MERKS OF TREATMENT

7 1 6 6 6 6 6 6				
CONTROL 0.2 GROUP MC/KG/DAY	1.0 HG/KG/DAY	5.0 HG/KG/DAY	25.0 HG/KG/DAY	125.0 MC/KG/DAY
6.78 5.77	7.18	5.72		
10.2	12.4	13.3		
14.1	17.6	14.4		
40.3	30.6	43.7		
69	70	7.5		
24.4	24.4	25.1		
61	19	64		
0	0	-		
20	26	30		
10	•	•		
•	80	15		
0	0	0		
0.3	4.0	1.6		
:		5.77 10.2 14.1 40.3 69 24.4 61 00 10	5.77 10.2 10.2 14.1 14.1 17.6 40.3 50.6 69 70 24.4 61 0 0 20 20 20 20 20 20 20 20	5.77 10.2 10.2 12.4 40.3 50.6 40.3 50.6 40.3 24.4 24.4 25.1 61 61 61 61 61 75 20 20 20 20 20 20 20 20 20 2

Table G-6

CLIMICAL CHEMISTRY OF MALE DOGS BEFORE TREATMENT WITH COMDENSATE WATER

				TREATMENT GROUPS		
96768887 VARIABLES	CONTROL	0.2 MG/KG/DAY	1.0 KG/KG/DAY	S.0 MG/KG/DAY	25.0 MG/KG/DAY	125.0 MG/KG/DAY
SLUCOSE (NG Z)	108	115	113	100	122	129
388 (NG 2)	*1	12	10	12	10	11
CREAT (NG X)	6.0	0.7	6.0	1.0	1.0	6.0
P (NG I)	6.6	8.9	6.1	6.9	7.0	6.2
TRIC (NC X)						
B1L1 (NG X)	3.0	8.0	6.0	1.0	0.7	4.0
SCOT (NU/NL)	7.7	18	19	25	1.8	22
SCPT (NU/NL)	26	35	33	30	2.1	27
IBE (NU/NL)	24	0	38	34	29	27
ALK-P (MU/HL)	98	3	53	67	61	80
CHOL (NG Z)	170	139	137	136	188	152
CA (NG Z)	12.0	12.1	11.2	12.3	11.3	11.2
URIC ACID (HG I)	9.0	0.7	9.0	0.5	0.3	0.1
PROTEIN (CH I)	5.8	5.8	5.9	0.9	5.7	8.9
ALBUNIN (CH Z)	0.4	0.4	3.9	4.5	6.0	4.1
CLOBULIN (CH I)	1.8	1.8	2.0	1.5	1.1	1.8
A/G BAT10	2.2	2.2	6.1	3.0	2.3	2.2
HA (HEQ/L)						
K (HEQ/L)						
CO ₂ (NEQ/L)						
CT (HEG/T)						
MA-(CL+CO2)						•
IRON (MCG Z)						

g Pate nat ...

Table G-7

EFFECTS OF CONDENSATE WATER ON CLINICAL CHRHISTRY OF MALE DOGS AFTER 2 WEEKS OF TREATMENT

				TREATHERT GROUPS		
DEPENDENT	CONTROL	0.2 MG/KG/DAY	1.0 MG/KG/DAT	S.0 MG/KG/DAY	25.0 MG/KG/DAY	125.0 MG/KG/DAY
GLUCOSE (NG I)	93	125	107	112	152	
BUR (NG 2)	13	01	•	10	91	
CREAT (NG Z)	1.1	1.1	3.0	1.2	6.0	
P (MC X)	5.4	5.2	9.6	5.3	4.7	
TRIG (MC X)	20	12	14	22	29	
BILI (NG Z)	0.1	0.1	0.2	4.0	1.1	
SCOT (NU/NL)	4.3	34	35	\$\$	62	
SCPT (NU/NL)	39	59	64	43	88	
LDE (NU/NL)	106	11	104	102	167	
ALK-P (NU/HL)	9.7	95	93	92	131	
CHOL (NG X)	155	125	141	135	245	
CA (NG 1)	11.2	10.4	10.7	10.8	11.11	
URIC ACID (NG I)	0.2	0.2	0.2	0.3	0.5	
PROTRIM (GM I)	5.9	5.8	6.0	6.0	6.1	
ALBUNIN (CH I)	2.7	2.9	2.9	3.0	3.2	
CLOBULIR (CN X)	3.2	2.9	3.1	3.0	2.9	
A/G RATIO	0.84	1.0	96.0	1.0	1.1	
NA (HEQ/L)	147	144	145	145	148	
K (HEQ/L)	4:4	5.1	4.1	6.4	4.4	
CO ₂ (NEQ/L)	2.5	22	2.2	•	25	
(1/ban) 10	108	011	110	112	105	
MA-(CL+CO ₂)	14.0	12.0	13.0	15.0	18	
IRON (NCC Z)	126	213	182	121	388	

Table G-8

EPPECTS OF COMDENSATE WATER ON CLINICAL CHEMISTRY OF MALE DOGS AFTER 4 WEEKS OF TREATMENT

			,	TREATHENT CROUPS		
PEPERBERT	CONTROL	0.2 MG/KG/DAT	1.0 MG/KG/DAT	S.0 MG/KG/DAY	25.0 MG/KG/DAT	123.0 MC/RC/DAY
CLUCOSE (NG I)	117	129	109	109		
BUN (NG X)	±	Ξ	12	13		
CREAT (MG I)	9 .0	8.0	6.0	6.0		
P (NG X)	5.4	6.4	5.9	5.3		
TRIG (NG I)	42	20	26	39		
BILI (MG I)	0.3	0.1	0.1	0.2		
SCOT (NU/NL)	\$\$	30	3.5	87		
SCPT (NU/NL)	62	272	19	55		
LDE (NU/NL)	•	54	5	63		
ALR-P (NU/NL)	:	102	88	95		
CEOL (NG I)	141	124	148	161		
CA (NG I)	11.7	10.7	11.0	11.0		
URIC ACID (NG I)	0.3	0.3	0.2	0.2		
PROTEIN (CM I)	0.9	5.4	8.8	6.1		
ALBURIR (CH I)	2.9	1.1	2.9	2.9		
CLOBBLIR (CH X)	3.1	2.7	3.0	3.2		
A/C RATIO	0.94	1.0	0.97	0.91		
HA (HEQ/L)	146	145	146	145		
(1/ban) a	4.7	4.6	8.4	6.4		
CO2 (MEQ/L)	26	26	22	2.1		
(1/ban) 10	109	110		1111		
MA-(CL+CO ₂)	11.0	0.6	13.0	13.0		
IRON (NCC X)	237	276	284	88		

Table G-9

EFFECTS OF COMDENSATE WATER ON BODY WEIGHTS (C) OF MALE RATS AFTER 4 WEEKS OF TREATMENT

				TREATHENT GROUPS	GROUPS		
DEPENDENT	CONTROL	. 001 X IN DIET		O1 X	. 05 X IN DIET	. 1 Z I. III III III III III III III III II	S A IN DIRT
INITIAL	184.40± 16.3	182.00± 20.6	143.80± 15.6	179.20± 16.3	205.404 5.56	194.404 6.87	174.20± 17.8
VESK 1	231.60± 10.2	247.201 19.6	216.201 11.6	235.80± 12.9	251.80± 8.77	233.60± 9.00	131.25± 3.68 *
VEEK 2	270.60£ 8.41	298.804 15.5	275.20± 7.61	283.40± 11.9	293.40± 11.9	251.00± 10.6	100.004 3.00**
VEEK 3	296.40: 8.01	335.40± 10.7	319.20± 9.62	314.60± 12.2	316.40± 13.2	263.60± 15.1	
VEEK 4	305.60± 8.47	343.40± 8.59	330.204 12.5	321.00± 13.2	320.201 14.2	263.404 12.7	

ENTRIES ARE MEANS AND STANDARD ERRORS

S ANIMALS PER GROUP

* 1 ANIMAL DIED

** 4 ANIMALS DIED

Table G-10

12

EFFECTS OF COMBENSATE WATER ON BODY WEIGHTS (G) OF PERALE RAIS AFTER 4 MEERS OF TREATMENT

				TREATHENT CROUPS	GROUPS		
DEPENDENT	CONTROL	7 100. Tale al	. 005 X IN DIET	OIX IN DIET	1 S S S S S S S S S S S S S S S S S S S	. 1 X I I M I I I I I I I I I I I I I I I I	. 5 X
INITIAL	192.202 3.46	195.002 4.66	181.801 1.24	189.602 2.06	183.20\$ 4.40	168.40± 5.61	186.202 4.79
VEEK 1	211.304 4.68	216.402 4.78	193.402 8.41	199.60± 3.71	192.204 7.36	172.00± 6.69	153.40± 4.07
WEEK 2	225.402 6.45	229.804 4.25	203.20± 8.00	211.004 3.58	202.204 7.23	176.20± 8.00	115.004 5.28**
WEEK 3	234.60± 7.97	244.602 4.01	211.004 6.28	216.204 4.72	205.80± 6.98	174.201 7.66	102.00# 0.00 +
VEER 4	232,20± 9.33	238.602 4.84	202.002 5.59	212.00± 4.67	198.004 7.52	164.80± 8.24	

ENTRIES ARE HEARS AND STANDAND ERRORS

S ANTHALS PER GROUP

** 3 ABINALS DIED

+ 2 AFINALS DIED

į.

Table G-11

EFFECTS OF CONDENSATE WATER ON POOD CONSUNPTION OF MALE RATS AFTER 4 MEERS OF TREATMENT

				TREATHENT CROUPS	CROUPS		1
DEPENDENT	CONTROL	. 001 X IN DIET	.005 X 	. 01 Z IN DIET		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. S Z IN DIET
UEEK 1	20.4	23.1	22.3	23.8	20.5	18.0	1.6
VERK 2	29.7	24.7	24.5	24.2	22.7	16.1	•
WERK 3	22.9	26.1	26.1	24.8	23.9	18.4	
WERK 4	24.4	23.5	23.9	23.8	21.9	21.9	

UNITS ARE: CRAMS/AWINAL/DAY

Table G-12

RPPECTS OF CONDENSATE WATER ON FOOD CONSUMPTION OF PEMALE RATS AFTER 4 WEEKS OF TREATMENT

				TREATHENT GROUPS	CROUPS		
DEPENDENT	CONTROL	. 001 X IN DIET	. 005 X IN BIET	. 10. E DIET	.001 % .005 % .01 % .05 % .1 % .5 % .5 % .1 m bigg in	. 1 M	x 5. Taid Wi
WEEK 1	18.9	17.5	15.0	16.3	13.9	10.1	2.2
WEEK 2	17.7	16.7	14.7	15.5	14.5	9.3	2.1
VEEK 3	19.3	0.61	16.0	16.3	15.4	16.5	1.2
4 EER 4	19.1	15.5	14.1	14.7	14.2	8.2	

UNITS ARE: GRANS/ANIMAL/DAT

Table G-13

. .

REFECTS OF COMPRESATE WATER ON ORGAN MEIGHTS (G), ORGAN-TO-BODY MEIGHT RATIOS (G/G) ORGAN-TO-BRAIM WEIGHT RATIOS (G/G) OF TREATHENT

							186	THENT	TREATMENT GROUPS				
PRPERBERT VARIABLES	CONTROL	4	1 00. 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.005 X IN DIET		10. 10 ml		1 0 TELL		. 1 X IN DIET		.5 % IN DIET
BRAIN	2.162	.07	2.10± .04	5	2.141.07	.07	1.922 .08	80.	2.08* .04	40.	1.96± .02	.02	2.102 0.00
HEART	1.342	* 0.	1.242 .06	90.	1.381.06	90.	1.301 .08	80.	1.284 .05	.03	1.06± .05	.05	00.0 ±06.
LIVER	10.204	;	11.32± .29	. 29	11.222 . 69	\$.	11.46± .78	87.	13.004 .55	.55	11.281 .83	.83	3.104 0.00
87122H	.624	.02	.841 .10	<u>e</u>	.824 .13	.13	.761 .05	.05	1.704 .21	.21	1.742 .09	60.	.30x 0.00
KIDERTS	2.742	.23	2.842 .09	60.	2.96± .13	.13	3.142 .31	.31	2.92± .18	8	2.601 .13	.13	1.102 0.00
115118	2.98±	.15	2,98± .12	.12	3.181 .04	.	2.942 .13	.13	1.14± .06	90.	1.081 .04	7 0.	1.202 0.00
BRAIN/BODY WT.	7.094	.32	6.12± .14	:	6.504 .25	.25	6.01£ .30	.30	6.34± .26	.26	7.514 .37	.37	
HEART/BODY UT.	4.404	61.	3.601 .11	Ξ.	4.192 .14	41.	4.091 .36	.36	4.00±	.07	4.034 .08	80.	
LIVER/BODY WT.	33.354	8 .	32.99± .65	.65	33.97₺ .60	9.	35.544 1.03	1.03	40.74± 1.65	1.65	42.65± 1.53	1.53	
SPLEEN/BODT WT.	2.042	60.	2.444.2	. 28	2.461.34	.34	2.36t .11	. 11	5.34± .70	07.	6.621 .22	.22	
KIDNEYS/BODY WT.	8.922	.53	8.27±	.13	8.97± .26	. 26	9.704 .60	09.	9.13± .47	.47	9.891 .35	.35	
TESTES/BODT WT.	9.732	.25	8.674	. 20	9.70± .44	;	9.181 .30	.30	3.58± .22	.22	4.174 .36	.36	
BEART/BRAIN	.621	.01	₹65.	.03	.65± .03	.03	.681 .03	.03	.624 .02	.02	.541 .03	.03	.43£ 0.00
LIVER/SRAIR	4.732	. 20	5.39± .11	11.	5.264 .25	. 25	6.00± .46	94.	6.241 .20	.20	5.764 .43	.43	1.484 0.00
SPLESH/BRAIR	. 292	. 02	.404.	.05	90' ₹8€'	90.	.404 .03	.03	.821 .11	.11	\$0. ₹68.	.05	.141 0.00
KIDHRYS/BRAIN	1.27±	60.	1.35± .04	70.	1.394 .06	90.	1.634	. .	1.404 .07	.07	1.334	.00	.52± 0.00
TESTES/BRAIN	1.38±	.07	1.42±	90.	1.49± .07	.07	1.54± .08	80.	.55±	.03	.554	.02	.57± 0.00

Table G-14

RFFECTS OF COMPENSATE WATER ON ORGAN WEIGHTS (G), ORGAN-TO-BODY WEIGHT RATIOS (G/G) ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) OF PENALE RATS AFTER 4 WEERS OF TREATHENT

							TRE	ATHENT	TREATHENT CROUPS					
DEPENDENT	CONTROL		.001 X IN DIET		.005 X .005 X IN DIRT		. 01 X IN DIET		.05 % IN DIET	l lu	1 X IN DIET		. 5 % IN DIET	
BRAIW	2.06±	.02	2.104 .05	.	2.002 .03	.03	1.66± .08	80.	1.94± .02	.02	1.881.02	.02	2.054 .15	.15
HART	1.08±	.07	1.004	5	\$0. \$46.	.03	.82± .02	.02	.90± .03	.03	.704 .03	.03	.404 0.00	0.00
LIVER	6.962	. 30	6.864 .40	9	5.80± .27	.27	6.421 .21	.23	6.46± .34	.34	6.00± .48	84.	3.00± .20	.20
871188	.624	.0	.624 .02	.02	.48± .02	.02	\$6. 248.	.05	88.	.10	.824 .10	01.	.454.05	.05
KIDHEYS	1.784	60.	1.884	.0.	1.644 .05	.05	1.724 .07	.07	1.624 .07	.07	1.504 .13	.13	1.50	.10
BEAIM/BODY UT.	1.922	.34	8.822 .29	. 29	9.95± .43	.	8.80± .46	94.	9.84± .29	. 29	11.514 .51	.51		
BEART/BODY WT.	4.632	. 20	4.182 .12	.12	4.682 .34	45.	3.88± .13	.13	4.56± .20	.20	4.264 .14	14.		
LIVER/BODY WT.	29.992	3.	28.67± 1.18	1.18	28.72± 1.12	1.12	30.31± .98	86.	32.584 .72	.72	36.224 1.25	1.25		
SPLEEN/BODY WT.	2.642	. 20	2.60+ .09	6.	2.394 .14	* :	2.56± .27	.17	4.44£ .48	9	4.934 .45	.45		
KIDHEYS/SODY WT.	7.672	. 23	7.881 .22	.22	8.164 .42	.42	8.114 .27	.27	8.18± .14	* :	9.104 .62	.62		
BEART/BRAIN	. 522	.03	.484 .02	2	.474	9.	.454 .03	.03	.464 .01	٠٥.	.37± .01	1	.204 .01	50.
LIVER/BRAIR	3.384	.15	3.284 .21	.21	2.914 .18	. 18	3.494 .23	. 23	3.334 .15	.15	3.194 .24	.24	1.484 .21	.21
SPLEEN/BRAIN	. 301	.03	. 304 . 01	ē.	.242 .01	5.	40. ±0E.	40.	\$0. 454.	.03	\$0. 444.	.03	. 224 .01	1
KIDHEYS/BRAIH	. 864	5	706 .	5	.82	.03	.932	90.	₹8.	.03	₹08.	90.	.734	00.

ENTRIES ARE MEANS AND STANDARD ERRORS

Ĭ.

Table G-15

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE RATS AFTER 4 WEEKS OF TREATMENT

				TREATMENT GROUPS	GROUPS		
PRPENDENT VARIABLES	CONTROL	OOS Z IN DIET	, 005 X IN DIET	. 01 X 10 . IN DIET	K 60.	12 0181	, 5 A 14 DIET
nbc (x 106)	7.671 .09	7.702 .13	7.204 .21	90. ∓89.1	6.70± .30	\$1. T60.9	
ECB (C I)	14.704 .20	15.22± .33	14.12± .30	14.50± .18	14.381 .20	13.704 .34	
BCT (1)	41.924 .51	43.242 .91	40.74± .81	41.724 .53	42.40± .57	39.42± .94	
MCW (U)	54.60± .87	55.80± 1.11	\$6.204 .58	54.004 .71	63.00± 2.35	64.00± 1.38	
HCB (BBC)	19.104 .33	19.66± .40	19.54± .15	18.80± .25	21.45± .88	22.381 .37	
NCBC (X)	35.164 .07	35.241 .13	34.74± .18	34.844 .09	33.951 .30	34.82± .35	
WBC (X 10 ³)	9.96± 1.37	12.22± 1.26	13.46± 1.12	15.984 1.43	25.90± 0.00	27.35± 4.39	
PMM (1)	13.80± 4.21	17.60± 2.64	15.80± 2.52	12.204 .58	8.25± 1.70	8.60± 1.33	
DARDS (I)	0.001 0.00	.20± .20	00.0 \$00.0	0.00 \$000	0.00 \$00.0	0.00± 0.00	
LTRPS (I)	83.60± 3.68	80.40± 2.62	80.80± 2.40	86.60± .60	90.50± 1.66	90.80± 1.43	
HONO (2)	1.60± .51	1.804 .49	1.204 .58	.804 .37	.504 .29	.204 .20	٠.,
EOSIN (1)	09. 709.	0.001	. 604. 40	.404.	84. ±87.	04. ±04.	
BASO (2)	0.00± 0.00	0.00± 0.00	0.004 0.00	0.00* 0.00	0.00± 0.00	0.00+ 0.00	
RETICS (2)	.52± .17	.78± .15	.72+ .72	.984 .26	3.754 .94	7.02± 1.67	

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-16

EFFECTS OF CONDENSATE WATER ON MEMATOLOGY OF PEMALE RATS AFTER 4 WEEKS OF TREATMENT

						;	TRE	TREATHENT CROUPS	CROUPS	- '			
DEPENDENT VARIABLES	CONTROL		.001 % IN DIET	\$ -	.005 % IN DIET	t-	. 01 % 10 HI	, , ,	.05 % IN DIET		A A A A A A A A A A A A A A A A A A A		. S Z . I I I I I I I I I I I I I I I I I I
RBC (X 106)	7.845	80.	7.86± .19	6 7	8.134 .12	.12	7.74± .16	.16	6.74± .21	12.	6.432 .24	7.	
HCB (G Z)	14.50±	=	14.961 .28	. 28	14.841 .24	.24	14.84± .22	.22	13.64± .28	.28	13.86± .32	.32	
BCT (1)	42.081	4	43.004 .83	.83	43.761 .69	5	43.98± .71	.,1	41.70± .66	99.	40.424 .71	.71	
ист (в) ³	53.40±	215	54.404.48	89.	55.00± .32	.32	\$6.404 .75	27.	86. +04.19	96.	62,401,63	.63	
NCH (BBC)	18.402	.14	18.94± .28	. 28	18.164 .10	• 7	19.12± .38	.38	20.221 .45	.45	21.54£ .54	.54	
NCBC (I)	34.582	. 20	34.822 .14	*:	34.341 .11	Ξ.	33.82± .18	. 18	32.824 .28	.28	34.344 .42	.42	
WBC (X 10 ³)	9.361	:	15.86± .90	6 .	10.422 1.59	1.59	13.28± .78	.78	21.024 1.91	1.9.1	22.00± 0.00	.00	
PRB (X)	17.601	21.	10.201 1.56	1.56	10.80± 1.62	1.62	10.20± 1.28	1.28	8.40± 1.63	1.63	9.80± 1.77	.,,	
SANDS (I)	.201	. 20	. 804 . 37	.37	0.00 + 00.00	0.00	0.001 0.00	0.00	0.004 0.00	0.00	0.00 \$00.0	00.	
LIMPE (I)	11.80	;	87.60± 1.96	1.96	86.402 2.25	2.25	87.002 1.87	1.87	88.60± 2.56	2.56	87.201 1.88	88.	
HOBO (2)	.201	. 20	804 . 58	.58	2.004 1.05	1.05	2.404 .93	.93	2.601 1.21	1.21	1.604 .51	.51	
E0513 (1)	.204	.20	.60± .24	.24	.804 .37	.33	.404.	.24	404. 24	.24	1.404.1	04.	
BASO (2)	0.00	0.00	0.004 0.00	00.0	0.004 0.00	0.00	0.004 0.00	0.00	0.00± 0.00	00.0	0.00\$ 0.00	8.	
BETICS (I)	.641	04.	.284 .08	80.	.344 .18	€.	.34± .22	.22	2.084 .21	12.	1.804 .48	84.	

ENTRIES ARE MEANS AND STANDARD ERRORS

-

Table G-17

Į

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF MALE RATS AFTER 4 WEERS OF TREATMENT

				TREATMENT GROUPS	GROUPS		
DEPENDENT	CONTROL	. 001 Z IN DIET	.005 Z IN DIET	.01 X IN DIET	.05 % IN DIET	, 1 % I M D	S X S. Taid MI
CIRCORE (NC I)	110.80± 6.37	106.00± 7.05	107.40± 7.65	113.203 8.84	138.40± 4.98	122.60± 8.09	
BUR (NG I)	16.80± 1.07	19.40± 1.91	17.00± 1.22	17.20± 1.36	17.801 .80	15.80± .97	
CREAT (MG I)	. 66± .02	. 50± 0.00	00.0 ×09.	.56± .02	\$0° ∓8€°	.464 .02	
WRIC ACID (NG X)	1.924 .12	2.06± .16	1.76± .12	2.104 .11	2.604 .13	1.804 .19	
NA (NEQ/L)	140.204 .58	139.604 .93	141.00± .32	140.00± .32	141.804 .58	140.602 .81	
K (MEQ/L)	4.30± .29	4.56± .09	4.70± .09	5.16± .07	5.24± .16	5.32£ .32	
CO2 (MEQ/L)	26.20± .80	26.80± .97	29.204 .58	26.60± 1.40	25.40± .51	26.604 .60	
CT (NEG/L)	97.60± .68	99.204 .58	99.204 .37	97.80± 1.53	98.401 .51	98.80± .66	
CA (NG I)	10.08± .07	10.30± .15	10.424 .19	10.08± .09	10.46± .19	9.96± .14	
P (NG X)	8.061 .26	8.281 .15	8.72± .31	7.944 .14	8.404 .27	7.744 .25	
MA-(CL+CO2)	16.40± .81	13.60± .40	12.604 .51	15.60± .24	18.004 .32	12.03 3.02	
CHOL (NG I)	\$2.20± 2.85	43.40± 1.03	51.00± 2.45	46.00± .55	57.60± 2.99	45.60± 1.72	
TRIG (NC I)	26.80± 4.89	38.00± 8.27	33.604 9.69	\$6.00± 9.87	59.80± 8.83	46.00± 4.83	
BILI (NG X)	.141 .02	.181.02	.204 .00	.204 .00	.204 .03	.204 .00	
SCOT (NU/NL)	171.20± 13.4	184.802 5.54	157.40± 14.1	153.20± 4.42	176.60± 16.7	135.204 8.14	
SGPT (NU/NL)	\$5.20± 2.08	49.60± 3.46	44.80± 2.78	35.80± 4.02	72.004 16.0	40.80± 5.51	
LDM (NU/ML)	2589.00± 209.	2747.00± 244.	2383.40± 134.	2510.20± 96.4	2130.80± 228.	1688.20± 166.	
ALK-P (NU/NL)	303.00± 41.0	291.60± 13.8	327.60± 32.4	253.40± 10.7	215.004 21.2	217.00± 19.2	
IRON (NCC I)	134.80± 10.8	176.204 13.6	162.004 27.6	179.60± 39.9	236.40# 43.4	164.80± 9.00	
PROTEIN (CH I)	6.144 .09	6.124 .18	90. 400.9	5.86* .08	5.80± .11	5.70± .10	
ALBUMIN (CH I)	3.164 .07	3.141 .07	2.98± .09	2.94± .05	2.86± .04	2.704 .09	
CLOSULIN (CH 2)	2.98± .04	2.984 .14	3.024 .07	2.924 .09	2.944 .09	3.004 .13	
A/G RATIO	1.06± .02	1.064 .05	\$0. ₹66.	1.011 .04	.981.03	90. 116.	

Table G-18
EPECTS OF COMPENSATE WATER ON CLIMICAL CHEMISTRY
OF PENALE RAIS AFIER 4 MEEKS OF TREATMENT

		,		TREATHERT CROUPS	GROUPS		
DEPENDENT	CONTROL	.001 X X BINT	.005 X IN DIET	. 01 K IN DIET	. 05 X IN DIET	. 1 X III III III III III III III III III	. 5 I IN DIET
(1 5M) 180319	93.00+ 3.99	96.40± 5.71	107.204 12.5	105.002 4.66	117.804 12.1	123.50± 12.5	•
BUR (MC X)	18.40± 1.29	18.40± .87	17.604 .81	18.60± 1.03	18.80± 1.53	15.50± 3.50	
CREAT (MG X)	.464 .02	.60± .03	.66± .02	00.0 ₹09.	.484 .02	.50± 0.00	
URIC ACID (NG Z)	2.224 .45	2.02± .16	2.304 .38	2.324 .26	2.524 .22	1.652 .25	
MA (MEQ/L)	140.204 .73	138.60± .24	139.804 .97	139.80± .37	140.604 .40	139.50± 3.50	
K (MEQ/L)	4.824 .43	4.88± .23	4.984 .16	4.824 .12	4.984 .14	5.202 .20	
CO (NEG/L)	23.60± .98	23.201 1.83	22.804 .97	23.60± .68	22.804 .73	24.00± 3.00	
CT (NEG/L)	98.404 .81	100.60± 1.40	102.60± .81	99.20± .58	100.204 .73	101.50± 1.50	
CA (NG 3)	10.32± .11	10.144 .16	10.08± .23	10.54± .11	10.34± .11	9.65± .55	
P (MG I)	7.46± .17	7.84± .17	7.204 .23	7.444 .07	6.824 .14	7.15± .05	
BA-(CL+60 ₁)	18.20± 1.16	14.80± .80	14.40x .93	17.00± 1.38	17.604 .40	14.002 2.00	
CBOL (MG 1)	68.80± 4.35	70.402 7.15	57.60± 4.20	74.80± 3.06	64.602 4.08	72.004 7.00	
TRIC (NC X)	17.20± 1.98	20.002 7.60	14.00 4.49	26.40± 8.54	28.404 6.15	34.00± 15.0	
BILI (MG I)	.184 .02	.201 .00	.204 .00	.16± .02	.244 .02	.20± 0.00	
SCOT (NB/HL)	166.60± 21.3	181.80± 16.4	181.40± 17.2	142.00± 5.54	136.204 7.40	120.50± 7.50	
SCPT (NU/NL)	49.80± 5.80	49.202 8.05	30.002 2.10	33.80± 2.82	33.002 4.89	31.50± 3.50	
TOR (NA/NE)	2444.00- 97.1	2210.00± 193.	2662.804 173.	1998.504 427.	1629.602 230.	1270.504 209.	
ALE-P (NU/NL)	141.60± 23.8	148.204 7.98	96.001 20.7	108.402 10.8	104.204 24.5	97.504 14.5	
IRON (NCC I)	296.20± 38.3	341.00± 22.3	271.004 23.3	293.404 25.4	294.40± 20.8	196.004 3.00	
PROTEIN (GM 1)	6.842 .07	6.42± .06	6.184 .16	6.684 .12	6.224 .12	\$.504 .30	
ALBUMIN (GH X)	3.32± .09	3.224 .07	3.244 .11	3.562 .07	3.124 .09	21.754 .15	
CLOBBLIN (CN I)	3.522 .06	3.204 .12	2.941 .06	3.124 .11	3.104 .09	2.754 .15	
A/G RATIO	₹0. ₹66.	1.02± .06	1.10± .03	1.154 .04	1.014 .04	1.004 0.00	

RUTRIES ARE HEARS AND STANDARD ERRORS

1. santage . B

BEIGHAN)

properity 1

1.

Table G-19

EFFECTS OF COMBENSATE WATER ON BODY WEIGHTS (G)
OF MALE MICE AFTER 4 WEEKS OF TREATMENT

				TREATMENT GROUPS	CHOUPS		
DEPRIDENT	CONTROL	. 001 Z IN DIET	, 005 % M DIRT	. 01 K	.01 % .05 % IN DIET	. 1 Z I Z I Z I Z I Z I Z I Z I Z I Z I Z	. s
IBITIAL	26.20± 1.28	21.60± 2.29	24.60± 1.83	27.20± 1.07	20.20± .49	26.40± 1.[7	25.60± .87
VEEK 1	28.80± 1.07	26.40+ .98	28.80± 1.11	30.20± 1.11	25.60± 1.21	28.40± .93	19.001 0.00 +
VESK 2	30.20± .97	26.20∓ .92	32.20± .86	32.20± 1.59	29.80± 1.62	29.40± .81	17.00± 0.00 +
UEEE 3	32.00+ .63	27.00+ .84	33.40± .93	33.00± 1.79	31.80± 1.62	29.20± 1.16	14.00+ 0.00 +
4 111A	34.80± .58	28.60± .98	36.60± 1.03	37.80± .58	34.80± 1.32	31.40± 1.36	

ENTRIES ARE MEANS AND STANDARD ERRORS

S ANIMALS PER GROUP

. 1 ANIMAL DIED

+ 2 AWINALS DIED

Table G-20

RPPECTS OF COMBENSATE WATER ON BODY WEIGHTS (G) OF PERALE MICE AFTER 4 WEEKS OF TREATMENT

				TREATMENT GROUPS			
DEPENDENT	CONTROL	.001 Z IN DIET	.005 £	. 01 K 18 DIET	. 05 K IN DIET	=	. 5 % I Bloom
INITIAL	21.204 .80	23.80± 1.07	24.80± .37	22.80± .92	23.00± .84	21.804 .86	24.40± 1.17
WEEK 1	23.004 .89	25.00± .89	25.80± .37	24.80± 1.36	24.20± 1.16	22.00± 1.34	18.754 .95 *
VESK 2	23.80± 1.07	25.00.	26.60± .60	25.20± 1.24	24.204 1.53	21.204 1.39	15.00± 0.00**
UEEK 3	24.20± 1.11	24.60± 1.99	27.60± .68	27.00± 1.22	26.20± 1.69	21.404 1.54	14.00- 0.60 +
7 191A	25.80± 1.20	26.80± 1.28	29.40± .51	29.00± 1.38	27.80± 1.32	23.00± 2.19	

ENTRIES ARE MEANS AND STANDARD ERRORS

S ANIMALS PER GROUP

* 1 ANIMAL DIED

** 3 ANIMALS DIED

Table G-21

EFFECTS OF COMBERSATE WATER ON POOD CONSUMPTION OF MALE NICE APTER 4 WEERS OF TREATMENT

				TERNAL CROUTS	GROUPS		
DEPENDENT	CONTROL	.001 X 1H DIET	.005 X IN DIET	.01 Z IM DIET	.05 % IN DIET	IN DIET	.5 % IN DIRT
VESK 1	4.1	4.5	5.1	4.4	4.5	4.1	1.8
WEEK 2	••	4.3	5.2	4.9	4.9	4.2	1.0
VEEK 3	3.0	9.4	5.3	5.0	5.1	3.8	1.5
VEER 4	5.3	ø. 4	5.6	5.0	5.4	4.3	

UBITS ARE: GRAMS/AHIMAL/DAT

Table G-22

EFFECTS OF COMDENSATE WATER ON FOOD CONSUMPTION OF PEMALE MICE AFTER 4 WEEKS OF TREATMENT

				TREATHENT CROUPS	GROUPS		
DEPENDENT	CONTROL	.001 X IM DIET	.005 Z IN DIET	. 01 % IN DIET	.001 X .005 X .01 X .05 X .1 X .5 X IN DIET IN DIET IN DIET IN DIET IN DIET	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S X 2 X X X X X X X X X X X X X X X X X
/BBK 1	3.5	3.7	0.4	3.9	3.6	2.6	1.1
ISEK 2	3.7	1.4	4.3	4.1	3.7	2.7	1.5
VERK 3	3.9	3.6	4.3	4.4	3.9	2.7	1.0
VEEK 4	0.4	4.5	9.4	4.5	4.1	3.1	

UBITS ARE: CRAHS/ANIHAL/DAY

Table G-23

REFECTS OF COMDESSATE WATER ON ORGAN WEIGHTS (C), ORGAN-TO-BODY WEIGHT RATIOS (G/G) ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) OF TREATMENT

						1	TRE	ATHENT	TREATMENT CROUPS				1
DEPENDENT VARIABLES	CONTROL		100. 13 DIGT	,	Taid ai		.01 %		7 50. Taid Mi		i t in diet		. S Z . III DIET
BRAIN	.52±	.02	.68.	٥.	.514	10:	.514	.01	164.	.01	.461 .03	.03	
BLART	.27±	.02	.20±	.02	.26± .02	. 02	.2204	*0.	217 .02	.02	10. 181.	10.	
LIVER	2.36±	80.	1.71±	6.	2.46± .12	.12	2.37±	.18	2.48± .11	=:	2.13	.12	
******	.154	.02	.08±	00.	10. ±41.	70.	.124	.02	. 194 . 02	.02	.204 .03	.03	
KIDHKIS	.62±	2	. 53± .01	٥.	40. ±89.	7 0.	. 594 . 03	.03	.704 .03	.03	. 494 . 02	.02	
TESTES	. 26±	10.	.214 .02	.02	.25± .01	.03	.23± .01	.01	.114	00.	10. +60.	٠٥.	
BRAIM/BODY WT.	14.90+	.79	16.98± .50	. 50	13.98± .51	.51	13.55± .18	. 18	14.08± .52	.52	15.192 .70	02.	
BEART/BODY WT.	7.67±	9.	7.204 .78	. 78	7.08± .36	.36	5.73± 1.04	1.04	6.07± .63	.63	3.684 .35	.35	
LIVER/BODY WT.	67.97±	2.78	59.81± 1.88	1.88	67.08± 1.69	1.69	62.55± 4.60	4.60	71.38± 1.85	1.85	67.76± 1.61	19.	
SPEREN/BODY WT.	4.42±	79.	2.81± .13	.13	3.714 .20	.20	3.274 .42	.42	5.334 .45	.45	6.224 .67	.67	
KIBHETS/BODY WT.	17.90+	14.	18.65± .38	.38	18.61± .90	96.	15.62± .84	48.	20.104 .67	.67	15.744 .51	.51	
TESTES/BODY WT.	7.38±	\$	7.412	.51	6.954 .24	72.	€.02±	.31	3.274	91.	2.934 .21	.21	
BEART/BRAIN	.52±	•	.42± .04	* 0.	.514	40.	.434 .08	80.	434 .04	%	98 04	8.	
LIVER/BRAIN	4.58±	.15	3.532 .14	* 1.	4.84± .28	. 28	4.61± .33	.33	5.104 .24	.24	4.514 .28	. 28	
SPLESH/BRAIN	.30±	.02	.174 .01	10.	.274 .01	.01	. 24± .03	.03	.38±	*	90° 729°	•	
KIDHEYS/BRAIN	1.214	.03	1.10± .02	20.	1.34± .07	.07	1.15± .06	90.	1.43±	8.	1.054 .06	90.	
TESTES/BRAIN	. 504	.03	. 444.	.03	.501.01	.0	.444	.02	.231 .00	90.	10. 161.	10 .	

Table G-24

REPECTS OF COMDESSATE WATER ON ORGAN WEIGHTS (C), ORGAN-TO-BODY WEIGHT RATIOS (G/G) ORGAN-TO-BRAIN WEIGHT RATIOS (G/G) OF PRMALE MICE AFTER 4 WERRS OF TREATMENT

							TRE	ATHENT	TREATHENT GROUPS				
DEPENDENT	CONTROL	ا د	.001 % IN DIET	_	.005 % IN DIRT	H	X 10.		.05 % IN DIET		. 1 X IN DIET		. S X III BIET
BLAIN	.524	10.	10. 184.	9	. 534 .02	.02	20. +64.	.02	.474	9.	10. 474.	70.	
HEART	.16±	.02	10. 131.	٥.	.16± .01	10.	10. ±\$1.	10.	.154 .01	.	.154 .02	.02	٠
LIVER	1.48	.07	1.642 .13	.13	1.864 .10	91.	1.704 .12	.12	1.714	90.	1.664 .19	.15	
SPLEED	.124	10.	.124 .02	.02	.134 .01	٥.	.154 .01	10.	19. 19.	.01	. 184 . 03	9.	•
KIDURTS	.34±	.03	.374 .03	.03	.43± .03	.03	.404	.0	.344 .01	.01	.31± .02	.02	
BRAIN/BODY WT.	20.41±	1.07	18.24± 1.02	1.02	17.91± .73	.73	17.24± 1.19	1.19	16.88± .74	.74	21.32± 1.90	9	
HEART/BODY WT.	6.08	.35	6.202 .51	.51	5.374 .14	* 1.	5.314 .47	.47	5.47± .16	.16	6.474 .23	.23	
LIVER/BODY WT.	57.24±	1.48	60.92± 2.68	3.68	63.14± 3.04	3.04	59.50± 5.39	3.39	61.724 1.33	1.33	72.544 2.55	2.55	
SPLEES/BODY WT.	4.56±	.38	4.272 .65	.65	4.494 .31	.31	14. ±21.2	7	6.884 .36	.36	7.554 .69	÷.	
EIDBETS/BODT WT.	13.20±	=	13.734 .78	.78	14.47± 1.03	1.03	14.004	11.	12.264 .25	.25	13.914 .90	\$	
BEART/BRAIN	.304	.03	.34± .02	.02	. 304 . 01	.01	.31±	.02	.334 .02	.02	.324 .04	•	
LIVER/BRAIN	2.84±	.17	3.404.	. 28	3.524 .07	.07	3.44± .20	.20	3.674 .09	6	3.50£ .28	.28	
SPLEEH/BRAIN	.232	.03	. 24404	•	.25± .02	.02	.304 .01	.0	.414.02	.02	.374 .05	.03	
KIDUKTS/BRAIN	•••	70 .	.764 .05	.03	.814 .05	.03	.82±	.0	.734 .02	.02	.66± .03	e.	

ESTRIES ARE HEARS AND STANDARD SERORS

Table G-25
EFFECTS OF CONDENSATE WATER ON HENATOLOGY
OF MALE MICE AFTER 4 WEEKS OF TREATHENT

6 CONTROL 6 CONTROL 14.95± .25 15.40± .32 43.13± .72 45.06± .83 41.92± .88 50.75± 1.89 50.40± .46 18.20± .14 18.20± .15 9.40± 1.19 8.88± .91 8.02± .93 25.00± 4.49 27.40± 4.52 25.00± 4.49 27.40± 4.52 25.00± 0.09 1.75± .48 1.20± 1.53 25.00± 0.09 1.75± .25 25.00± 0.00 1.75± .25 25.00± 0.00 1.75± .25 25.00± 0.00 1.75± .25 25.00± 0.00 1.75± .25 25.00± 0.00 1.75± .25 25.00± 0.00 1.75± .25 25.00± 0.00 25.00± 0.00 25.00± 0.00 25.00± 0.00 25.00± 0.00 25.00± 0.00 25.00± 0.00 25.00± 0.00 25.00± 0.00 25.00± 0.00					TREATHENT GROUPS	GROUPS		
8.20± .10 8.53± .17 8.20± .14 14.95± .25 15.48± .32 14.77± .33 11 43.13± .72 45.06± .83 41.92± .88 4 50.75± 1.89 50.40± .40 48.50± .29 5 18.27± .46 18.20± .14 18.00± .16 1 35.47± .38 35.18± .34 36.10± .25 9.40± 1.19 8.88± .91 8.02± .93 1 25.00± 4.49 27.40± 4.52 20.50± 1.85 25.02± 4.49 27.40± 4.52 20.50± 1.85 72.25± 4.89 68.80± 4.39 78.25± 1.60 1.75± 1.03 .20± .20 .50± .50 1.75± .25 .40± .24 .50± .50 0.00± 0.00 0.00± 0.00 0.00± 0.00	DEPRIDENT VARIABLES	CONTROL	. 001 X IN DIET	. 005 Å 18 DIET	O. N.	X 50.	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1310 HI
14.95± .25 15.48± .32 14.77± .33 14.95± .88 43.13± .72 45.06± .83 41.92± .88 43.13± .32 14.72± .88 43.13± .38 18.20± .29 50.40± .40 48.50± .29 518.20± .14 18.00± .18 13.47± .38 35.18± .34 36.10± .25 39.40± 1.19 8.88± .91 8.02± .93 125.00± 4.49 27.40± 4.52 20.50± 1.85 27.40± 4.39 78.25± 1.60 772.25± 4.89 68.80± 4.39 78.25± 1.60 772.25± 4.89 68.80± 4.39 78.25± 1.60 772.25± .25 39.40± .20 3	RSC (X 10 ⁶)		8.53± .17	8.202 .14	7.67± .19	11. ±\$1.7	7.084 .21	
43.13± .72 45.06± .83 41.92± .88 4 50.75± 1.89 50.40± .40 48.50± .29 .5 18.27± .46 18.20± .14 18.00± .29 .18 .1 35.47± .38 35.18± .34 36.10± .25 .35 .3 .3 35 9.40± 1.19 8.88± .91 8.02± .93 1 25.00± 4.49 27.40± 4.52 20.50± 1.85 .2 72.25± 4.89 68.80± 4.39 78.25± 1.50 .7 1.75± 1.03 .20± .20 .50± .50 .50 1.75± .25 .25 .40± .24 .50± .50 1.53+ .73 .74 .47 .14+ .73 .23	MCB (C I)		15.48± .32	14.774 .33	14.15± .36	14.274 .38	13.12± .36	
\$0.75± 1.89	ECT (I)		45.06± .83	41.92± .88	41.20± 1.26	38.87± 1.16	39.204 .49	
35.47± .46 18.20± .14 18.00± .18 1 35.47± .38 35.18± .34 36.10± .25 3 9.40±1.19 8.88± .91 8.02± .93 1 25.00± 4.49 27.40± 4.52 20.50± 1.85 2 .75± .48 3.20± 1.53 .25± .25 72.25± 4.89 68.80± 4.39 78.25± 1.60 .7 1.75± 1.03 .20± .20 .50± .50 0.00± 0.00 0.00± 0.00 0.00± 0.00	HCV (U) ³		50.40± .40	48.50± .29	51.25± .95	52.33± .67	51.40± 1.12	
35.47± .38 35.18± .34 36.10± .25 3 1 25.00± 4.49 27.40± 4.52 20.50± 1.85 2 .75 20.50± 1.85 2 .75 20.50± 1.85 2 .75 20.50± 1.85 2 .75 20.50± 1.85 2 .75 20.50± 1.85 2 .75 20.50± 1.85 2 .75 20± 0.00 0.00± 0.00±	NCB (BBC)		18.204 .14	18.004 .18	18.45± .37	19.97± .53	18.72± .47	
25.00± 4.49 27.40± 4.52 20.50± 1.85 2 2 25.00± 4.49 27.40± 4.52 20.50± 1.85 2 2 25.00± 1.85 2 2 25.00± 1.85 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NCBC (I)		35.184 .34	36.10± .25	35.05± .45	37.43± .19	34.82± .84	
25.00± 4.49 27.40± 4.52 20.50± 1.85 2 .75± .48 3.20± 1.53 .25± .25 .72.25± 4.89 68.80± 4.39 78.25± 1.60 .7 1.75± 1.03 .20± .20 .50± .50 .25± .25 .40± .24 .50± .50 0.00± 0.00 0.00± 0.00 0.00± 0.00	WSC (X 10 ³)		8.88± .91	8.02± .93	10.63± .54	9.03± 1.40	12.324 1.77	
72.25± 4.89 68.80± 4.39 78.25± 1.60 7 1.75± 1.03 .20± .20 .50± .50 .25± .25 .40± .24 .50± .50 0.00± 0.00 0.00± 0.00 0.00± 0.00	PHH (X)	25.00± 4.49	27.40± 4.52	20.50± 1.85	21.50± 2.02	20.67± 2.40	19.00= 4.81	
72.25± 4.89 68.80± 4.39 78.25± 1.60 .7 1.75± 1.03 .20± .20 .50± .50 .25± .25 .40± .24 .50± .50 0.00± 0.00 0.00± 0.00 0.00± 0.00	BANDS (I)		3.204 1.53	.25± .25	0.00 +00.0	0.00 + 0.00	0.00 700.0	
1.75± 1.03 .20± .20 .50± .50 25± .25 .40± .24 .50± .50 0.00± 0.00 0.00± 0.00 0.00± 0.00	LTHPH (I)		68.80± 4.39	78.25± 1.60	77.25± 2.02	78.67± 2.19	80.004 4.69	
0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00	HONO (%)	1.75± 1.03	.204 .20	08. ±08.	.754 .25	.674 .33	. 604 . 40	
0.00± 0.00 0.00± 0.00 0.00± 0.00 (2)	E081H (I)		.404 .24	.504 .50	.50± .29	0.00 +00.0	.404.	
1,534 .71 2,144 47 1 154 93	BASO (E)	0.00 +00.0	0.00± 0.00	0.00 +00.0	0.00± 0.00	0.00 +00.0	0.00 400.0	
The state of the s	RETICS (X)	1.534 .73	2.14± .47	1.154 .23	2.884 .54	4.77± 1.25	6.444.69	

ENTRIES ARE HEADS AND STANDARD ERRORS

Table G-26

EPPECTS OF COMBERSATE WATER OF REMATOLOGY OF FEMALE MICE AFTER 4 WEEKS OF TREATMENT

				E = 1	GROUPS	
DEPENDENT VARIABLES	CONTROL	. 001 Z IN DIET	2 00 . 2 00 . 131 0 E1	. 01 X 18 DIET	. 05 K	S. S. Hald El
RBC (X 10 ⁶)	8.46± .29	8.34± .22	71. 266.7	8.314 .26	7.96± .16	7.95± .26
NGB (G I)	15.324 .61	15.02± .26	15.07± .28	15.58± .43	15.46± .22	14.48± .33
NCT (1)	45.524 1.05	44.22± 1.74	43.42± .74	45.87± 1.55	45.30± .93	43.15± 2.11
MCV (W) ³	49.404 .40	49.40± .68	\$1.50± .29	\$1.504 .65	53.40± .81	\$6.504 .50
HCE (REC)	18.16± .21	18.104 .24	18.87± .10	18.72± .22	19.46± .35	18.202 .45
NCBC (I)	34.82± .61	35.204 .68	35.47± .29	34.90± .51	35.08£ .93	34.65± 1.25
VBC (X 10 ³)	4.78± 1.02	9.14± .54	9.60± .56	9.95± .58	11.384 1.17	13.13± 2.86
PMM (3)	19.204 .37	15.60± 3.33	14.50± 3.88	16.25± 2.39	14.004 2.66	19.75± 3.04
8A888 (I)	0.00 +00.0	0.00+ 0.00	.504 .50	0.00* 0.00	0.00+ 0.00	0.00± 0.00
LYMPH (1)	79.40± .68	83.00± 3.24	84.00± 3.67	83.004 2.35	84.00± 2.83	78.25± 3.82
HONO (1)	1.404.1	1.00± .32	1754 .48	. 50± . 29	1.604 .60	1.734 .85
ROSIN (X)	0.00 0.00	.404 .24	.25± .25	.25± .25	.404.	25. 255.
BASO (I)	0.004 0.00	0.001	0.00 \$00.0	0.001	0.00± 0.00	0.00\$ 0.00
RETICS (X)	1.36± .35	2.741 .62	2.42± .31	1.834 .23	3.76± 1.06	3.25± 1.06

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-27

EFFECTS OF COMDENSATE WATER ON BODY WEIGHTS (G)
OF MALES RATS DURING 4 WEEKS OF TREATHENT

			TREATMENT GROUPS	
DEPENDENT VARIABLE	CONTROL	, 001 x 13 10 MI		H I I I I I I I I I I I I I I I I I I I
IMITIAL	223.60 ± 4.27	215.00 ± 8.31	216.80 ± 4.36	211.20 ± 6.82
WEEK 1	273.60 ± 6.62	269.20 ± 9.90	264.40 ± 5.66	230.20 ± 7.92
WEEK 2	315.40 ± 5.64	315.40 ± 12.8	307.60 ± 7.24	250.40 ± 7.35
VERK 3	354.20 ± 5.78	355.00 ± 15.7	342.80 ± 9.91	266.80 ± 9.37
SKR 4	375.40 ± 6.31	371.60 ± 17.0	364.00 ± 11.6	272.00 ± 10.4

ENTRIES ARE HEARS AND STANDARD EXECUS

Table G-28 gPrects of condensate water on body weights (G) of preathent

			TREATHENT CROUPS	
DEPENDENT	CONTROL	. 001 X IN DIET	7 100. 2 100. 2 100. 2 100. 110 MI T310 MI	. 1 % 13 DIET
IMITIAL	178.80 ± 4.41	178.00 ± 1.38	177.60 ± 3.49	183.60 ± 1.91
- H	197.40 ± 5.80	193.00 ± 2.88	184.00 ± 5.21	178.20 ± 2.42
VEEK 2	209.40 ± 6.63	207.80 ± 3.61	194.40 ± 5.71	183.40 ± 3.93
HERE 3	218.00 ± 6.26	220.20 ± 3.35	204.20 ± 4.36	190.40 ± 4.55
VEEK 4	230.40 ± 7.72	233.80 ± 4.09	219.20 ± 6.18	200.00 ± 6.48

ENTRIES ARE MEANS AND STANDARD ERRORS

Ĭ.

Table G-29

EFFECTS OF CONDENSATE WATER ON FOOD CONSUMPTION OF MALE RATS DURING 4 WEEKS OF TREATMENT

			TREATMENT CROUPS	
DEPENDENT VARIABLE	CONTROL	. 001 X IM DIET	. 001 X . 01 X . 1M DIET	. A Z IN DIET
VEEK 1	23.63	23.51	22.89	18.32
WEEK 2	26.66	26.26	26.08	18.06
WEEK 3	27.66	28.43	26.14	18.72
VEEK 4	27.51	27.11	27.72	19.12

UNITS ARE: GRANS/ANIMAL/DAY

Table G-30

EFFECTS OF CONDENSATE WATER ON FOOD CONSUNPTION OF PEMALE RATS DURING 4 WEEKS OF TREATMENT

			TREATHENT CROUPS	
DEPENDENT VARIABLE	CONTROL	. 001 X 1M DIET	OO1 X O1 X O1 X IN DIET IN DIET	. J X I I I I I I I I I I I I I I I I I I
1 227 1 227	16.60	17.57	12.83	12.14
WEEK 2	17.26	19.26	17.68	10.57
WEEK 3	17.26	26.49	17.26	11.88
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.60	17.65	16.60	11.63

UNITS ARE: GRAMS/ANIMAL/DAY

EPFECTS OF CONDEMSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-TO-BODY WEIGHT NATIOS (1900XG/G) AND ORGAN-TO-BHAIN WEIGHT RATIOS (G/G)
OF MALE RATS AFTER 4 WEEKS OF TREATMENT

iduie Giai

			TREATHENT CROUPS	
DEPENDENT	CONTROL	7 100 . Tald MI	1 10.	1
BRAIN	2.05 ± .04	2.03 ± .04	2.10 ± .03	2.06 ± .05
HEART	1.45 ± .10 .	1.55 ± .14	1.39 ± .03	1.18 ± .06
LIVER	16.75 ± .79	15.41 ± 1.15	17.68 ± .63	16.37 ± .96
SPLEE	10. ± 67.	.76 ± .04	.92 ± .07	3.67 ± 2.18
KIDHLYS	3.10 ± .13	2.96 ± .09	3.42 ± .11	2.57 ± .13
TESTES	3.21 ± .09	2.97 ± .12	3.13 ± .04	.94 ± .03
BRAIN/BODY	5.46 ± .12	5.54 ± .36	5.80 ± .14	7,61 ± .22
HEART/BODY	3.86 ± .30	4.18 ± .33	3.83 ± .13	4.34 ± .12
LIVER/BODY	44.57 ± 1.63	41.41 ± 2.05	48.61 ± 1.30	60.04 ± 1.67
SPLEEN/BODY	1.95 ± .03	2.06 ± .10	2.52 ± .16	14.21 ± 8.85
KIDMEYS/BODY	8.28 ± .40	8.01 ± .26	9.43 ± .34	9.46 ± .27
TESTES/BODY	8.56 ± .32	8.10 ± .60	8.66 ± .36	3.47 ± .12
HEART/BRAIN	. 70 ± .04	. 77 + .08	. 66 ± .02	.57 ± .03
LIVER/BRAIM	8.20 ± .47	7.58 ± .55	8.39 ± .20	7.92 ± .36
SPLEEN/ BRAIN	.36 ± .01	.38 ± .02	.44 ± .03	1.82 ± 1.10
KIDNEYS/BRAIN	1.51 ± .04	1.46 ± .05	1.63 ± .04	1.25 ± .06
TESTES/BRAIN	1.57 ± .04	1.46 ± .05	1.49 ± .03	.46 ± .02

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-32

CREAN-TU-BODY WEIGHTS RATIOS (1000XG/G) AND ORGAN-TO BRAIN WEIGHT RATIUS (G/G)
ORGAN-TU-BODY WEIGHTS RATIOS (1000XG/G) AND ORGAN-TO BRAIN WEIGHT RATIUS (G/G)

			TREATHENT CROUPS		
DEPENDENT	CONTROL	, 001 % IN DIET	, 10 . IN DIET	7	!!
BRAIR	1.90 ± 00.1	2.01 ± .03	1.93 ± .07	1.93 ±	9.
HEART	.87 ± .06	.93 ± .05	.78 ± .02	+1 08.	9
Luver	8.82 + .48	9.46 ± .38	8.50 ± .23	9.43 ±	.42
SPLEEN	90. ₹ 15.	.51 ± .02	.56 ± .04	1.06 ±	60.
KIONEYS	1.75 ± .09	1.70 ± .08	1.71 ± .05	1.41 ±	.04
BRAIN/30DY	8.28 ± .29	8.60 + .14	8.78 ± .12	9.66 +	.21
HEART/BODY	3.80 ± .23	3.98 + .18	3.59 ± .10	3.98 ±	.37
LIVER/BODY	38.23 ± 1.27	40.40 ± 1.19	38.83 ± .79	47.09 ±	.,
SPLEEN/BODY	2.20 ± .18	2.16 ± .09	2.56 ± .16	5.26 ±	.33
Kidneys/Body	7.59 ± .25	7.27 ± .36	7.79 ± .12	7.08 ±	. 32
HEART/BRAIN	.46 ± .03	.46 ± .02	10. ± 14.	÷ 14.	.04
LIVER/BRAIN	4.65 ± .26	4.71 ± .20	4.43 ± .10	+ 88 +	.15
SPLEEN/BRAIN	.27 ± .03	.25 ± .01	.29 ± .02	.54 +	.03
KIDNEYS/BRAIN	.92 ± .05	40. + 48.	89 + 02	.73 + .03	.03

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-33

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE RATS APTER 4 WEEKS OF TREATHENT

			TREATHENT CROUPS	
DEPENDENT	CONTROL	. 001 X IN DIET	X 10 .	A C E
RBC (X 106)	7.34 ± .28	7.15 ± .04	7.02 ± .24	5.44 ± .25
NGB (G Z)	15.12 ± .31	14.62 ± .09	14.28 ± .33	13.55 ± .49
HCT (X)	40.40 ± 1.21	39.25 ± .85	39.60 ± 2.11	34.25 ± 1.38
MCV (U)3	56.20 ± .73	55.75 ± .95	56.40 ± 1.47	63.50 ± 1.71
HCH (UUG)	20.80 ± .49	20.00 + 0.00	20.40 ± .40	24.50 ± .50
NCHC (I)	37.20 ± .37	37.75 ± .48	36.00 ± 1.58	39.25 ± .25
WBC (X 103)	10.80 ± .86	9.82 ± 1.01	9.46 ± .87	16.02 ± 2.04
PHH (X)	15.60 ± 1.21	20.75 ± 5.56	16.00 ± 1.41	17.00 ± 1.29
BANDS (2)	0.00 + 0.00	.25 ± .25	0.00 + 0.00	0.00 + 0.00
LYMPH (1)	76.40 ± 2.11	73.50 ± 5.85	76.60 ± 1.89	15.75 ± 2.17
ATYP LYMPH(I)	4.00 ± 1.14	1.25 ± .75	4.00 ± .55	3.25 ± 1.25
HONO (I)	3.40 ± .51	3.50 ± .29	2.80 ± .20	3.25 ± .25
EOSIN (I)	.60 ± .24	.75 + .48	.60 ± .24	.75 ± .25
BASO (X)	0.00 + 0.00	0.00 + 00.00	00.00 + 00.00	0.00 + 0.00
RETICS (X)	.62 ± .17	71. ± 27.	1.30 ± .44	17.50 ± 1.04

Table G-34

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE RATS AFTER 4 WEEKS OF TREATMENT

			TREATHENT GROUPS	
DEPENDENT VARIABLE	CONTROL	.001 X IM DIET	. 01 X IN 01CT	7 1 . T310 M1
RBC (X 106)	7.05 ± .08	7.16 ± .12	6.39 ± .18	5.37 ± .13
HGB (C I)	14.78 ± .14	15.00 ± .05	13.78 ± .28	12.94 ± .27
MCT (1)	37.80 ± .58	38.40 ± .60	34.20 ± .80	32.20 ± .37
HCV (U)3	54.20 ± .49	53.60 ± .51	09. ± 05.45	60.40 ± .40
HCB (UUG)	20.80 ± .37	20.60 ± .40	21.00 ± .45	24.40 ± .24
MCMC (I)	38.00 ± .32	38.20 ± .49	38.80 ± .20	40.20 ± .80
WSC (X 103)	10.40 ± .98	10.56 ± .80	11.14 ± 1.29	15.04 ± 1.45
PHH (2)	14.80 ± .86	13.60 ± .98	15.00 ± 1.00	20.00 ± 2.26
BANDS (I)	0.00 + 00.0	00.0 + 00.0	0.00 + 0.00	.40 ± .24
TANLE (1)	74.60 ± 1.60	19.20 ± 1.02	80.80 ± 1.16	72.60 ± 3.20
ATYP LYMPH(I)	5.20 ± .86	3.20 ± .49	1.20 ± .58	2.80 + .86
HONO (X)	4.20 ± .20	3.60 ± .24	2.60 ± .24	3.60 ± .24
EOSIN (I)	1.20 ± .20	¥2. ± 0¥.	40.+ .24	.60 ± .24
(X) OSVE	0.00 + 00.0	00.0 + 00.0	0.00 + 0.00	0.00 + 0.00
RETICS (2)	01. ₹ 98.	*11. 108.	1.04 + .14	17.60 ± 1.77

ENTRIES ARE MEANS AND STANDARD ERRORS

E

Table G-35

Ī.

EPPECTS OF COMBENSATE MATER ON CLINICAL CHEMISTRY OF MALE RATS AFTER 4 WEEKS OF TREATMENT

			TREATHENT GROUPS	
DEPENDENT	CONTROL	. 001 X 18 DIET	7 10. Taid NI	4
ALBUMIN (GMZ)	5.58 ± .10	80. ± 00.9	5.20 ± .08	5.20 ± .06
ALK-P (IU/L)	291.00 ± 30.2	282.20 ± 37.2	263.00 ± 39.2	220.60 ± 28.5
BUN (NG I)	24.00 ± .55	24.80 ± 1.36	22.60 ± 1.03	25.00 ± 1.30
CA (NG I)	10.04 ± .09	10.06 ± .19	9.46 ± .13	9.26 ± .15
CHOL (NG X)	32.00 ± .84	35.80 ± 3.20	38.60 ± 4.81	45.80 ± 3.41
CREAT (NG I)	.68 ± .02	.70 ± 0.00	40. ± 89.	.58 ± .04
GLUCOSE (NGI)	172.00 ± 7:25	159.80 ± 5.99	160.60 ± 5.69	148.20 ± 7.10
P (HG X)	9.12 ± .29	9.58 ± .54	10.68 ÷ .18	11.84 ± .31
(1/n1) HOT	880.20 ± 31.9	727.40 ± 149.	760.80 ± 158.	887.00 ± 216.
TRIG (NG Z)	24.20 ± 1.02	25.80 ± 1.46	24.80 ± 3.12	20.40 ± 1.57
URIC ACID(MGZ)	1.34 ± .12	1.16 ± .18	1.60 ± 19	1.58 ± .09
PROTEIN (MGI)	6.92 ± .07	7.34 ± .13	61. + 86.9	7.14 ± .14
SCPT (10/L)	34.80 ± 1.43	49.20 ± 9.42	36.60 ± 2.87	46.60 + 14.1
SCOT (1U/L)	116.80 ± 3.48	145.40 ± 21.9	120.20 ± 6.93	128.80 ± 34.7
BILI (NG Z)	.32 ± .09	.42 ± .10	.32 + .04	. 66 ± .13

Table G-36

EFFECTS OF CONDENSATE WATER ON CLINICAL CHEMISTRY OF PENALE RATS AFTER 4 WEEKS OF TREATMENT

			TREATHENT CROUPS	,
DEPENDENT VARIABLE	CONTROL	. 001 X IN DIET	A 10.	
ALBUMIN (GMZ)	5.66 ± .16	5.46 ± .18	5.52 ± .09	5.20 ± .26
ALK-P (1U/L)	150.40 ± 19.9	209.00 ± 29.8	186.60 ± 12.2	151.60 ± 26.6
BUN (NG X)	25.00 ± 1.45	25.20 ± 2.20	25.20 ± 1.28	25.60 ± 1.40
CA (NG I)	10.28 ± .22	10.76 ± .30	10.46 ± .24	10.14 ± .25
CHOL (NG X)	52.20 ± 3.84	56.80 ± 6.59	77.40 ± 18.2	54.60 ± 11.5
CREAT (NG I)	.74 ± .02	.70 ± .05	.64 ± .05	. 66 ± .02
CLUCOSE (MGI)	179.60 ± 8.13	101.20 ± 15.5	158.00 ± 7.15	148.20 ± 6.97
P (NG I)	8.86 + .36	8.84 + .49	8.92 ± .23	9.40 + .41
(1/A1) Mg1	869.60 ± 93.9	487.00 ± 141.	945.40 ± 63.6	497.40 ± 148.
TRIG (NG X)	23.60 ± 2.01	26.40 ± 1.50	24.00 ± 1.05	21.40 ± .81
URIC ACID(MGI)	1.62 ± .22	1.44 ± .10	1.74 ± .09	2.40 ± .35
PROTEIN (NGZ)	7.40 ± .22	7.34 ± .15	7.70 ± .21	7.26 ± .34
SCPT (10/L)	54.20 ± 11.8	31.80 ± 3.40	32.20 ± 2.85	29.80 ± 1.77
\$COT (18/L)	182.20 ± 20.3	121.00 ± 7.48	130.20 ± 8.51	87.80 ± 9.75
BILI (NG Z)	90. ₹ 14.	80. + 44.	.33 ± .08	₹0. → 94.

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-37

.

EFFECTS OF CONDENSATE WATER ON HODY WEIGHTS (G) OF MALE MICE AFFER 4 WEEKS OF TREATMENT

			TREATMENT GROUPS	PS
DEPENDENT	CONTROL	. 061x IN DIET	. 01% IN DIEF	12 IN DIET
INITIAL	20.80+ .37	18.60± .60	19.00-	76. ±05.05
user i	21.60+ 1.72	22.00+ 1.10	21.20± 2.08	19.80± 1.83
MEEK 2	24.80+ 1.74	23.40+ .93	22.40± 1.94	22.00± 1.73
WEEK 3	27.40± 1.83	26.00± .71	27.80± 2.27	25.00± 1.73
VEEK 4	29.20+ 1.96	25.40+ 1.29	27.80± 2.15	26.00+ 1.35

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-38

EFFECTS OF CONDENSATE WATER ON BODY WEIGHTS (G) OF FEMALE MICE AFTER 4 WEEKS OF FREATMENT

			TREATMENT GROUPS	JPS
DE PENDEN I Vartable	CONTROL	.001% IN DIET	. 012 IN DIET	.17 IN DIET
INIFIAL	16.40+. +09	18.60± .98	15.00± .55	16.20± 1.02
WEEK 1	19.00+ .89	22.00± .89	18.60± 1.03	18.40± .93
WEEK 2	20.20+ 1.16	25.20± 1.02	20.40+ .60	18. 404.87
WEFK 3	23.00+ 1.48	27.60+ .87	24.20+.49	20.40+ .93
WEEK 4	23.00± 1.10	26.60+ .87	55.00₹ .45	20.80+ 1.20

ENTRIES ARE MEANS AND STANDARD ERRORS

ĺ.

Table G-39

L

EFFCTS OF CONDENSATE WATER ON FOOD CONSUMPTION OF MALE MICE AFTER 4 WEEKS OF TREATMENT

			TREATMENT GROUPS	JPS
DEPENDENT VANTABLE	CONFROLGROUP	. 001% IN DIET	OIX .12 IN DIET	.12 IN DIET
WEEK 1	3.57	3.83	3.86	3.03
WEEK 2	4.11	3.71	3.63	3.24
WEEK 3	94.4	3.49	4.34	3.64
n HEEK 4	5.03	3.97	4.71	94.4

UNITS ARE: GRAMS/ANIMAL/DAY

Table G-40

EFFECTS OF CORDENSATE WATER ON FOOD CONSUMPTION OF FEMALE MICE AFTER 4 WEEKS OF TREATMENT

			TREATMENT GROUPS	JPS
DEPENDENT VARIABLE	CONTROL	. 001% 1N DIEF	.001% .1% .1% .1% .1% .1% .1% .1% .1% .1% .	.1% IN DIET
WEEK 1	3.51	3.89	3.17	3.00
VEEK 2	3.54	4.60	3.69	3.49
WEEK 3	3.69	64.4	4.43	2.89
WEEK 4	4. 4	4.54	4.69	3.54

UNITS ARE: GRAHS/ANIHAL/DAY

Table G-41

L

EFFECTS OF CONDENSATE WATER ON ORGAN WEIGHTS (G)
ORGAN-FO-BODY WEIGHT RATIOS (G/G) AND ORGAN-FO-BRAIN WEIGHT RATIOS (G/G)
OF MALE MICE AFTER 4 WEEKS OF IREATMENT

						TREATME	TREATMENT GROUPS		
	DEPENDENT	CONTROL	. !	.001Z IN DEEF		O1 X IN DIET	-	. 12 IN DIET	
	BRAIN	20. ₹05.	.02	. 48+ .03	.03	.504	.50. ±02.	+64.	.49+
	HEART	.≥15.	.02	.16± .01	.01	. 18+	. 18± .02	.15±	10. ±21.
	LIVER	1.91± 16.1	91.	1.51+ .12	71.	2.19± .13	.13	1.93± .10	9.
	SPLEEN	10. ±11.	6.	.14+ .01	٠٥.	.17±	.17± .03	.15±	15+ .01
	KIDNEYS	£0. ₹2ª.	.05	.39± .04	70.	+9#.	.46+ .03	· #3+	.43± .01
	TESTES	. 23± . 01	.01	10. ±15.	.01	.16± .04	†0	10. ±11.	.0
38	BRAIN/BODY	17.22± .82	.82	19.05± 1.14	1.14	18.20± 1.19	1.19	18.88± .83	.83
	HEART/BODY	7.02± .73	.73	6.17± .17	. 17	6.61± .31	.31	5.914 .41	=
	LIVER/BODY	65.37± 2.45	2.45	59.30± 2.31	2.31	79.39± 1.90	1.90	74.71± 3.95	3.95
	SPLEEN/BODY	3.79± .26	.26	19. ₹15.5	.64	6.204 .71	12.	5.824 .28	.28
	KIDNETS/BODY	15.85± .68	89.	15.34± 1.10	1.10	16.54+ . 44	7	16.64± .68	99.
	TESFES/BODY	7.97± .26	97.	8.26± .56	.56	5.84± 1.16	1.16	4.194.65	.65
	HEART/BRAIN	.424 .03	.03	.334 .02	70.	.37± .02	70.	.314 .02	.02
	LIVER/BRAIN	3.834 .21	.21	3.15± .17	.17	4.42+ .24	.24	3.974 .21	.2
	SPLEEN/BRAIN	.224	.02	. 294 . 02	.02	.354	.3506	.314	.314 .03
	KIDNEYS/BRAIN	₹46.	80.	₹18.	ħ0.	.92	.92. ±26.	.88.	.01
	TESTES/BRAIN	.474.02	.02	40. +44.	* 0.	.324	3206	₹??·	. 22 03

ENTRIES ARE MEANS AND STANDARD ENRORS

Table G-42

EFFECTS OF CONDENSATE WAFER ON ORGAN-WEIGHTS (G)
ONGAN-FO-BODY WEIGHTS RATIOS (1000XG/G) AND ORGAN-TO BRAIN WEIGHT RATIOS (G/G)
OF FEMALE MICE AFTER 4 WEEKS OF IREATMENT

					TREA THE	FREA FMENT GROUPS	S	
DEPENDENT	CONFROL	:	.001z IN DIET		.01% IN DIET	or the state of th	. 1% IN DIET	_
BRAIN	+2	-05	.53± .01	5	. 494	.0	+6#.	.49± .02
HEARI	. 16± .02	-02	. 16±	10.	10. ±21.	٥.	. 13±	.13± .00
LIVER	1.55± .14	=	1.67.	60.	1.80± .07	.07	1.57± .16	. 16
SPLEEN	. 124 .01	.01	. 12+ .01	10	. 124 . 01	٠٥.	.15±	.15± .03
KIDNETS	.314 .02	-02	. 35.	.02	.35± .02	.02	. 294 . 03	.03
BRAIN/BODY	20.85± 1.02	70.	20.05	147	19.76± .27	.27	23.70± 1.13	1.13
HEART/BODY	6.734 .38	.38	5.89± .32	32	6.00+ .39	.39	6.25± .43	£4.
LIVER/BODY	67.21± 3.74	.74	62.77± 1.54	54	72.11± 3.85	3.85	74.54+ 4.04	40.4
SPLEEN/BODY	5.28± .25	52:	4.434 .38	38	4.66± .30	.30	6.96± 1.15	1.15
KIDNEYS/BODY	13.43± .91	.91	13.24± .62	29	13.98± .97	.97	13.81± .83	.83
HEAK I / BRA I W	.33₹	.03	50. ₹62.	~ 0	.314 .02	-05	. 26± . 02	.02
LIVER/BRAIN	3.25± .22	.22	3.144 . 14	#	3.65± .21	١2.	3.20+	.29
SPLEEN/BRAIN	.26± .02	-05	₹0. ∓22.	02	. 24± . 02	.02	•30∓	.30± .06
KIDNEYS/BHAIN	.64+ .03	.03	• ∓99•	.03	₹11.	.05	.59±	.05

388

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-43

Ī.

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF MALE MICE AFTER 4 WEEKS OF TREATMENT

				TREATMENT GROUPS	
;	DEPENDENT	CONTROL	, 001% IN DIET	.01% IN DIET	. 12 IN DIET
	KBC (X 106)	7.7362	7.85± .23	7.22± .16	7.07± .26
	HGB (G Z)	13.80± .72	13.90± .58	12.63± .38	14.20± .51
	HCT (2)	38.00+ 2.65	37.25± 1.03	35.33± 1.76	35.25± 1.11
	McV (11)3	50.00+ 1.00	48.75± .25	48.67± .33	50.00+ 1.08
	MCH (UUG)	18.00+ .71	17.75± .48	17.67± .33	20.25± .25
	MCHC (Z)	36.75± 1.31	37.50± 1.04	36.00± 1.15	40.00+
	WBC (X 103)	12.25± .67	6.20 . 74	7.49+ 1.06	8.84+ 1.86
389	PMN (Z)	31.75± 3.73	23.00+ 3.00	22.67± 3.28	25.00+ 2.27
	BANDS (2)	0.00 + 0.00	0.00+ 0.00	.334 .33	0.00+0.00
	LYHPII (Z)	60.00+ 2.94	67.75± 2.66	69.33+ 4.81	67.75± 1.93
	AFYP LYMPH (X)	2.75± .25	4.50€ .96	2.33± .33	2.25± .63
	HONO (2)	4.00+	4.00+ 41	4.00→ .58	3.50± .29
	EOSIN (2)	1.50± .50	.75± .25	1.334 .33	1.50± .50
	BASO (1)	0.00 + 00.0	0.00+ 0.00	0.00+ 0.00	0.00+0.00
	REIICS (2)	.18± .05	.43+ .11	60. ₹44.	1.50± .43

ENTRIES ARE MEANS AND STANDARD ERRORS

Table G-44

EFFECTS OF CONDENSATE WATER ON HEMATOLOGY OF FEMALE MICE AFTER 4 MEEKS OF TREATMENT

				TREATMENT GROUPS	Sa
;	DEPENDENT VARIABLE	CONTROL	. 001Z IN DIET	. 01 % IN DIET	IN DIET
	RBC (X 105)	7.50± .20	7.94+ .18	7.80± .07	6.93± .40
	HGB (G 2)	13.80± .20	14.22± .25	14.13± .38	13.60± .55
	HCT (z)	36.50± .50	39.80 80	38.33± .33	34.50+ 1.19
	MCV (U)3	50.00+ 1.00	50.80± .37	50.00± 0.00	50.25± .85
	MCH (UNG)	18.50± .50	18.00+ .32	18.33± .33	19.75± .25
	MCHC (1)	38.50+ .50	35.80± .58	37.33± .33	38.75± .25
	WBC (X 103)	7.30± .70	6.42+ .66	7.50± .06	11.64+ 1.41
39	PMN (Z)	27.00+ 2.00	20.80± 1.36	16.67± .88	18.75± 2.29
n	BANDS (2)	0.00 + 00.0	0.00+ 0.00	0.00+00.0	. 25± . 25
	LYMPH	67.00 = 3.00	71.60± 1.83	72.67± 1.33	73.25± 1.97
	ATYP LYMPII (2)	1.50± .50	2.80± .37	4.67± 1.76	3.00€ .91
	HONO (Z)	4.50± .50	3.60± .24	3.33± .33	2.75± .25
	EOSIN (Z)	0.00 +00.0	1.20+ . 49	2.67± .67	2.00+ .41
	BASO (%)	0.00+ 0.00	0.00+00.0	0.00+ 0.00	0.00+00.0
	RETICS (2)	.15± .05	.14± .02	11. ±05.	3.02+ .44

ENTRIES ARE MEANS AND STANDARD ERRORS

Appendix H

CLINICAL CHEMISTRY CONTROL TESTS

Normal and abnormal control standards for hematology and clinical chemistry determinations, supplied by Coulter Electronics and Smith Kline Instruments, Co. for the GEMSAEC apparatus, were conducted each day that animal sera were analyzed in the SRI Clinical Chemistry Laboratory. The test results during 1978 covering the period when the present mammalian studies were run are compiled in the following tables.

Table H-1

PRECISION OF HEMATOLOGY DETERMINATIONS*

			No	Normal Control	ntrol		₹.	puq	Abnormal Control	itrol	
Dependent Variable	lent ole	Standard ⁺	ndar	+ p	SRI	SRI Test Results	Standard	id a	rd †	SRI Resu	SRI Test Results
RBC (x10 ⁶)	(10°)	5.10 ± 0.17	+1	.17	5.02	5.02- 5.26	3.18 ± 0.13	+1	0.13	2.85	2.85- 3.29
$WBC (x10^3)$	(103)	8.9 ± 0.6	+	9.6	8.0	8.0 - 9.06	19.0 ± 0.8	+1	8.0	17.9	17.9 -20.0
Hgb (gm%)	3m%)	14.9 ± 0.4	+1	.4	15.1	15.1 -16.0	8.1 ± 0.3	+1	0.3	7.3	7.3 - 8.8
Hct (%)	(3	42.8 ± 2.0	+1	0.1	42 -50	-50	22.6 ± 2.0	+1	2.0	20	-25
$MCV (\mu^3)$	(₆ r	84.0 ± 3.0	+1	0.1	83 -88	-88	71 ± 3.0	+1	3.0	11	-79

*
SRI Clinical Chemistry Laboratory, 4/78-12/78.

[†]Mean plus standard error.

Table H-2

PRECISION OF CLINICAL CHEMISTRY DETERMINATIONS*

	Normal Control	Control	Abnormal Control	Control
Dependent Variable	Standard	SRI Test Results	Standard	SRI Test Results
Glucose	100 -120	100 -110	232 -276	254 -268
BUN	14 - 18	17 - 19	38 - 47	39 - 45
Creatinine	0.7- 1.1	0.8-1.1	6.3- 7.2	6.4- 7.2
Phosphorus	3.2- 4.0	3.8- 4.0	8.8-10.2	9.3-10.2
Triglycerides	80 -120	87 -110	222 -262	250 -265
Bilirubin	0.8- 1.2	0.8- 1.0	4.6- 6.1	4.9- 6.0
SGOT	12 - 20	12 - 20	120 -152	120 -155
SGPT	11 - 19	12 - 16	102 -132	103 -119
НСТ	42 - 60	53 - 60	217 -287	239 -280
Alk P	41 - 65	79 - 07	125 -165	145 -165
Cholesterol	129 -159	125 -159	250 -311	240 -275
Ca ²⁺	8.7- 9.5	8.8- 9.6	11.0- 12.0	10.4-11.8
Uric Acid	4.6- 5.4	4.8- 5.9	9.6- 11.0	9.5- 11.7
Protein Total	5.7- 6.3	6.0- 6.4	4.9- 5.5	4.0- 5.3
Albumin	3.6- 4.2	3.9- 4.3	2.8- 3.6	3.1- 4.0

*SRI Clinical Chemistry Laboratory, 4/78-12/78.

†Acceptable range.

Appendix I

GAS CHROMATOGRAM OF CONDENSATE WATER COMPONENTS

DISTRIBUTION LIST

Organization	No. of Copies
Commander	
U.S. Army Medical Bioengineering Research and Development Laboratory	
ATTN: SGRD-UBG	
Fort Detrick, Frederick, Maryland 21701	25
HQDA (SGRD-SI)	
Fort Detrick, Frederick, Maryland 21701	4
Defense Documentation Center (DDC) ATTN: DDC-DCA	
Cameron Station	
Alexandria, Virginia 22314	12
Dean	
School of Medicine	
Uniformed Services University of the	
Health Sciences	
4301 Jones Bridge Road	
Bethesda, Maryland 20014	1
Superintendent	
Academy of Health Sciences, U.S. Army ATTN: AHS-COM	
Fort Sam Houston Toyac 78234	1