DiD-Estimation

- dayToDaySkills_{it} wird als Zielvariable verwendet, welche die Alltagskompetenzen der Kinder in einer Einrichtung i im Jahr t misst (wird noch standardisiert)
- $TreatEF_{it}$ stellt die Treatment-Variable dar (= variable of interest)
- \rightarrow $TreatEF_{it} = 1$, wenn Einrichtung i im Jahr t am Entdeckerfonds teilnimmt und sich somit in der Treatment-Gruppe befindet
- → $TreatEF_{it} = 0$, wenn Einrichtung i im Jahr t <u>nicht</u> am Entdeckerfonds teilnimmt und sich somit im in der Kontrollgruppe befindet

Beispielhafter Datensatz:

ID	Jahr	Treat
103	2011	0
103	2012	1
103	2013	1
200	2014	0
200	2015	0
200	2016	1
200	2017	1

- Die Einrichtung mit der ID = 103 nimmt im Jahr 2011 nicht am Entdeckerfonds teil und befindet sich somit im Jahr 2011 in der Kontrollgruppe ($TreatEF_{it} = 0$)
- In den darauffolgenden beiden Jahren 2012 und 2013 nimmt die Einrichtung mit der ID = 103 am Entdeckerfonds teil und ist somit für beide Jahre in der Treatmentgruppe ($TreatEF_{it} = 1$)
- Die Einrichtung mit der ID = 200 nimmt in den ersten beiden Jahren 2014 und 2015 nicht am Entdeckerfonds teil und befindet sich somit für diesen beiden Jahre in der Kontrollgruppe $(TreatEF_{it}=0)$
- Ab dem Jahr 2016 nimmt die Einrichtung mit der ID = 200 am Entdeckerfonds teil und ist ab diesem Jahr in der Treatmentgruppe ($TreatEF_{it} = 1$)

1. Variante: DiD-Estimation

$$dayToDaySkills_{it} = \alpha + \beta * TreatEF_{it} + \gamma_i + \delta_t + \varepsilon_{it}$$

- $dayToDaySkills_{it}$ wird als Zielvariable verwendet, welche die Alltagskompetenzen der Kinder in einer Einrichtung i im Jahr t misst
- Treat_{it} stellt die Treatment-Variable dar (= variable of interest)
- Organization fixed effects / ID fixed effects γ_i kontrollieren für unbeobachtbare und beobachtbare Eigenschaften, die über die Zeit konstant sind und sich zwischen den Organisationen unterscheiden
- Year fixed effects δ_t kontrollieren für Variablen, die sich über die Zeit verändern und für alle Organisationen gleich sind
- Diese Regressionsgleichung implementiert den allgemeinen Differences-in-Differences
 Estimator
- → Vergleiche: Mostly harmless econometrics, Seite 169 174

$$\mathbf{Y}_{ist} = \gamma_s + \lambda_t + \beta \mathbf{D}_{st} + \varepsilon_{ist}$$

- Der Regressionskoeffizient β stellt den Differences-in-Differences-Estimator dar und misst den average treatment effect
- Im Vergleich zu einer Standard DiD-Estimation werden bei unserem DiD-Ansatz nicht nur zwei Perioden betrachtet, sondern mehrere Jahre (von t = 2011 bis t = 2018)

	Dependent variable:
	dayToDaySkills
treatEF1	0.178 (0.170)
Constant	2.293*** (0.218)
ID fixed effects Year fixed effects Observations R2 Adjusted R2 Residual Std. Error F Statistic	Yes Yes 428 0.476 0.368 0.572 (df = 354) 4.408*** (df = 73; 354)
Note:	*p<0.1; **p<0.05; ***p<0.01

2. Variante: DiD-Estimation with year-specific treatment effects

$$dayToDaySkills_{it} = \alpha + \sum_{k=2012}^{k=2018} \boldsymbol{\beta_k} * TreatEF_{it} * Year_k + \gamma_i + \delta_t + \varepsilon_{it}$$

- In dieser Regression wird die Treatment-Variable $TreatEF_{it}$ mit den Indikator-Variablen für die verschiedenen Jahre interagiert
- ightharpoonup Indikator-Variable $Year_k$ für Jahr k
- Somit wird für jedes Jahr ein Regressionskoeffizient β_k geschätzt
- → Year specific treatment effects

	Dependent variable:
	dayToDaySkills
treatEF	0.124
	(0.306)
treat_2012	-0.038
	(0.393)
treat_2013	0.130
	(0.362)
treat_2014	0.118
	(0.374)
treat_2015	0.009
	(0.384)
treat_2016	0.040
	(0.346)
treat_2017	0.031
	(0.317)
treat_2018	
Constant	2.169*** (0.387)
	(0.307)
ID fixed effects	Yes
Year fixed effects	Yes
Observations	428
R2	0.477
Adjusted R2 Residual Std. Error	0.358 0.576 (df = 348)
F Statistic	4.012*** (df = 79; 348)
Note:	*p<0.1; **p<0.05; ***p<0.01

Fragen:

- 1. Welche Variante bzw. Regressionsgleichung sollen wir für den Abschlussbericht verwenden?
- 2. Sind die oben getroffenen Aussagen richtig?
- 3. Wie werden die Regressionskoeffizienten richtig und vollständig interpretiert, wenn die Einrichtungen in verschiedenen Jahren in die Treatment-Gruppe kommen?