

Matlab / Python Logit-Related Functions and References

Matlab Functions: <fitglm, predict> <mnrfit, mnrval>

Overall

- http://www.mathworks.com/help/stats/generalized-linear-regression.html
- http://www.mathworks.com/help/stats/generalized-linear-regression-2.html

Generalized LinearModel class

- http://www.mathworks.com/help/stats/generalizedlinearmodel-class.html
- http://www.mathworks.com/help/stats/examples/fitting-data-with-generalized-linear-models.html
- Multinomial logistic regression https://www.mathworks.com/help/stats/mnrfit.html#namevaluepairarguments

Python scikit-learn, logistic regression

- $\bullet \qquad http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html\\$
- http://scikit-learn.org/0.15/modules/generated/sklearn.linear_model.LogisticRegression.html
- L1 Penalty & Sparsity http://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html
- LogisticRegressionCV http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
- Multiclass and multilabel algorithms http://scikit-learn.org/stable/modules/multiclass.html

Outline

- How it works? Matlab / Python functions.
- Diagnoses / Visualization.
- Prediction and Quality.
- Outliers.
- Multiclasses Prediction.
- Nonlinearity / High Dimensionality / Visualization.
- Regularization.
- Cost Function.

Why Not Just Linear Regression?

Linear Regression

$$h_{\theta}(x) = \theta^{\mathrm{T}} X \in [-\infty .. + \infty]$$
 (i.e. ANY range in R).

- Gender, Rank, City...
- Buy or no buy...

Logistic Regression...Why Not Just Linear Regression?

- Linear Regression $h_{\theta}(x) = z = \theta^{T}X \in [-\infty .. +\infty]$ (i.e. ANY range in R).
 - But, outcome may be categorical... Gender, Diseases, Rank, ...

- Logistic (or logit) regression is a model where the dependent var is **categorical**.
 - Predict classes by *linking* $\theta^T X$ to probabilities [0..1].

Link Categorical Response to Continuous Probability

- Logistic (or logit) regression is a model where the dependent var is categorical.
 - Predict classes by *linking* $\theta^T X$ to *likelihood* [0..1] via *logistic function*.
 - https://en.wikipedia.org/wiki/Logistic_regression
 - Also refer to as generalized linear model (GLM).
- Why $P = \frac{1}{1 + e^{-z}}$? \rightarrow guarantee $0 \le P \le 1$
 - $e^z \ge 0$ for $z \in [-\infty, \infty]$, no matter what is z.
 - $\frac{P}{1-P} = e^{\theta^{T}X} = e^{Z}$ $P = \frac{1}{1+e^{-Z}}$
 - $\frac{P}{1-P}$ is *odds* = prob. of "true" over prob. of "not true".

syms z y ezplot('exp(-z)', [-4 4 -2 100]) hold on ezplot('exp(z)', [-4 4 -2 100]) hold off grid on

Logistic Regression and Interpretation

- Logistic regression \rightarrow $0 \le h(\theta^T x) = h(z) = \frac{1}{1+e^{-z}} \le 1$, asymptotes at 1 or 0.
 - $\frac{1}{1+e^{-z}}$ is referred to as **Sigmoid function** or logistic function.

• If
$$\theta \uparrow \rightarrow \theta^T X \uparrow \rightarrow z \uparrow \rightarrow h_{\theta}(x) = \frac{1}{1 + e^{-z}} \approx 1$$
. predict $\hat{y} = 1$.

• If
$$\theta \downarrow \rightarrow \theta^T X \downarrow \rightarrow z \downarrow \rightarrow h_{\theta}(x) = \frac{1}{1+e^{-z}} \approx 0$$
. predict $\hat{y} = 0$.

• If
$$z = 0 \rightarrow h_{\theta}(x) = \frac{1}{1 + e^{-z}} \approx ??$$

• θ s tell us which attributes have **positive** or **negative impact** on **P**, or classification.


```
syms z
figure,
ezplot(1 / (1 + exp(-z)), [-10 10])

red = [-1 1; 1 1; 4 1; 9 1];
blue = [2 0; -2 0; -4 0; -8 0; -9 0];
data = [red; blue];
Y = [zeros(size(red, 1), 1); ...
ones(size(blue, 1), 1)];
hold on
gscatter(data(:, 1), data(:, 2), Y, 'rb')
hold off
ylim([-0.05 1.05])
grid on
```

Logistic Function– Changing θ_1

- Logistic (sigmoid) function σ takes LR output (\hat{y}) as input & convert to P[0..1].
 - For smaller θ_1 , x must be very large to reach P = 1.

See Appendix for changing both $\theta_0 \& \theta_1$

```
syms x
t0 = 0:
                                      \theta_0
t1_arr = [0.01, 0.3, 0.6, 1, 2, 3, 4]; % \theta_1 slope
fstr = \frac{1}{1+exp(-(t0 + t1*x))};
                           % line colors
c = ['rymcgbk'];
figure, hold on
loops = 0; legendStr = [];
for t1 = t1 arr
  fstrX = strrep(fstr, 't0', num2str(t0));
  fstrX = strrep(fstrX, 't1', num2str(t1));
  h = ezplot(fstrX, [-10 10]);
  loops = loops + 1;
  set(h, 'color', c(loops));
  legendStr\{loops\} = ['t1 = 'num2str(t1)];
end
legend(legendStr), title("), grid on,
ylim([-0.05 \ 1.05]), hold off
```

Matlab fitglm() Functions

- Matlab fitglm() functions.
 - GLM– Generalized Linear Model.
- fitglm().
 - mdl = **fitglm**(X, Y, 'distr', '**binomial**', 'link', '**logit'**)

See **Appendix** for

- 1. Different distributions,
- 2. Different link functions.

Link Function Name	Link Function	Mean (Inverse) Function	
'log'	$f(\mu) = \log(\mu)$	$\mu = \exp(Xb)$	
'logit'	$f(\mu) = \log(\mu/(1-\mu))$	$ \mu = \exp(Xb) / (1 + \exp(Xb)) \qquad \frac{e^z}{1 + e^z} = $	$= \frac{1}{1+e^{-2}}$
'probit'	$f(\mu) = \Phi^{-1}(\mu)$	$\mu = \Phi(Xb)$	
'comploglog'	$f(\mu) = \log(-\log(1 - \mu))$	$\mu = 1 - \exp(-\exp(Xb))$	
'reciprocal'	$f(\mu) = 1/\mu$	$\mu = 1/(Xb)$	

Main Output from fitglm()

Estimated Coefficients:				
	Estimate	SE	tStat	pValue
	$\underline{\hspace{1cm}}$			
(Intercept) θ_0	-0.0146	0.9583	-0.015235	0.98784
\mathbf{x}_1 θ_1	0.51551	0.35954	1.4338	0.15162

- How do we decide best θ ?
- Class probability of each instance?

sklearn Logistic Regression

- 0.5 0.5 0.6 4 -2 0 2 4 6 8 10 X
- sklearn logistic regression requires <u>at least</u> 2-D data.
 - So we copy 1st-D data into 2nd-D.

```
import numpy as np
from sklearn import linear_model

X = [[-1, -1], [1, 1], [4, 4], [9, 9], [-9, -9], [-8, -8], [-4, -4], [-2, -2], [2, 2]]
Y = [1, 1, 1, 1, 0, 0, 0, 0]

# Inverse of regularization strength; ↓C ==> ↑regularization
# LOSS = C * E + theta, default C = 1
logreg = linear_model.LogisticRegression(C = 90)

logreg.fit(X, Y)  # fit the data
print(logreg.intercept_, logreg.coef_)
```

%%%% Matlab logistic regression, 2-D X = [-1, -1; 1, 1; 4, 4; 9, 9; -9, -9; -8, -8; ... -4, -4; -2, -2; 2, 2]; Y = [1, 1, 1, 1, 0, 0, 0, 0, 0]; mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'logit')

[-0.01457369] [[0.25773197, 0.25773197]]

Detailed Information Returned from Matlab Logistic Regression

- Model info returned from fitglm()
 - Use workspace to exam info in the model.

http://www.mathworks.com/help/stats/generalizedlinearmodel-class.html

- Coefficients .Estimate (θ)
- Fitted
 - .Response (P) = .Probability (P)
 - .LinearPredictor $(z = \theta^T X)$
- Residuals, .Raw
- SSE, SST, SSR
- Diagnostics, .Leverage .CooksDistance
- Rsquared
- LogLikelihood

Predicted Response (Probability)

■ mdl.**Fitted.Response** = mdl.**Fitted.Probability** = probability = $\frac{1}{1+e^{-z}}$ = 1 ./ (1+exp(-Z))

 $\boldsymbol{\theta}$

 $\mathbf{Z} = \text{mdl.}$ Fitted.LinearPredictor = $\theta^{T}X$.

(Intercept) θ_0 -0.0146 x1 θ_1 0.51551

mdl.Fitted.Response

= probability

 $= 1 . / (1 + \exp(-Z))$

X		Re	1 sponse		Y	\widehat{Y}
-9	1	111	0.0094		0	
-8	2		0.0157		0	
-4	3		0.1114		0	
-2	4		0.2601		0	
2	5		0.7343		0	1
-1	6		0.3705	П	1	0
1	7		0.6227		1	
4	8		0.8857		1	
9	9		0.9903		1	

Residual = $(Y - \widehat{Y})$

mdl = **fitglm**(X, Y, 'distr', 'binomial', 'link', 'logit')

B = mdl.Coefficients.Estimate; $\% \theta = -0.0146 \quad 0.5155$

XX = [ones(length(X), 1) X];

Z = XX * B; % $\theta^T X$

[Z mdl.Fitted.LinearPredictor] $\% \theta^{T}x = z$

[1 ./ (1+exp(-Z)) **predict**(mdl, X) ... % **probability**

mdl.Fitted.Probability, mdl.Fitted.Response]

Plotting Probability = $\frac{1}{1+e^{-z}}$ Against X or Z

```
red = [-11; 1 1; 4 1; 9 1];

blue =[-90; -80; -40; -20; 20];

X = [blue(:, 1); red(:, 1);];

Y = [blue(:, 2); red(:, 2)];

mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'logit')

%% Plot Z wrt P

p = mdl.Fitted.Response; % probability

Z = mdl.Fitted.LinearPredictor; % Z = \theta^T X

figure, gscatter(Z, p, Y, 'br'); grid on

plotSlice(mdl)
```


Accuracy & Confusion Matrix

• Class prediction = $P \ge 0.5$

```
red = [-1 1; 1 1; 4 1; 9 1];
blue = [-9 0; -8 0; -4 0; -2 0; 2 0];
X = [blue(:, 1); red(:, 1);];
Y = [blue(:, 2); red(:, 2)];
mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'logit')
scores = predict(mdl, X)
P_Labels = double(scores >= 0.5); ◀
CFM = confusionmat(Y, P_Labels)
[xpos, ypos, T, AUC] = perfcurve(Y, scores, 1);
figure,
          plot(xpos, ypos) % plot ROC
xlim([-0.05 1.05]), ylim([-0.05 1.05])
xlabel('\bf FP rate'), ylabel('\bf TP rate')
title('\bf ROC for Classification by Logit')
```


Fuzzy Probability Boundary

■ Predicting Car's Cylinder from **MPG** + **Weight**

MPG + Weight

Predicting Car's Cylinder from **MPG** + **Displacement**

Displacement is a sensitive predictor in predicting cylinder.

- Class 0
 - Cylinder 4 or 6.
- Class 1
 - Cylinder 8.

Visualizing High Dimension Data

load fisheriris

X = meas(51:end,:); % 100×4, 4-dimension $\leftarrow \leftarrow$

% Next, create 100×1 BINARY class

Y = strcmp('versicolor', species(51:end)); mdl = **fitglm**(X, Y, 'distr', 'binomial', 'link', 'logit') plotSlice(mdl)

p = mdl.Fitted.Response;

Z = mdl.Fitted.LinearPredictor;

figure, gscatter(Z, p, Y); grid on

```
zmin = min(Z);
                   zmax = max(Z);
ylim([-0.05 \ 1.05]), xlabel('\bf Z'),
ylabel('\bf P'),
title(num2str(mdl.Coefficients.Estimate'));
```


Python Logistic Regression

```
import numpy as np
from sklearn import linear_model, datasets
# import data, and use some
iris = datasets.load iris()
#X = iris.data[:, :2] # use all records from first two features.
X = iris.data[50:, :2] # use records 51 to end from first two features.
#X = iris.data # use all 4 features.
Y = iris.target;
Y = Y[50:] # use only records 51 to end, so only 2 classes
# Inverse of regularization strength; smaller C ==> stronger regularization.
\# LOSS = C * E + theta, default C = 1
logreg = linear model.LogisticRegression()
                                                      print(logreg.intercept , logreg.coef , '\n')
                                                      print(logreg.predict(X), '\n')
# fit the data.
logreg.fit(X, Y)
                                                      print(logreg.predict_proba(X), '\n')
logreg.predict(X) # predicted classes
                                                      print(logreg.predict_log_proba(X))
```

- In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and ...
 - It uses the cross- entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.)

Visualizing Outlier Impacts

Outline

- How it works? Matlab / Python functions.
- Diagnoses / Visualization.
- Prediction and Quality.
- Outliers.
- Multiclasses Prediction.
- Nonlinearity / High Dimensionality / Visualization.
- Regularization.
- Cost Function.

Outline

- How it works? Matlab / Python functions.
- Diagnoses / Visualization.
- Prediction and Quality.
- Outliers.
- Multiclasses Prediction.
- Nonlinearity / High Dimensionality / Visualization.
- Regularization.
- Cost Function.

One-vs-All (Rest) Prediction

- Train multiple binary models.
 - One for each class *i* against rest of records of other classes.
 - Feed a test data X to **EVERY** classifier, predict X as class i that has maximum P.
- There can be a region that cannot be classified.

One vs. Reference

- Multinomial logistic regression, 3 classes.
 - Compute θ for red & green classes
 - vs the 3rd class (**blue**)

heta for	heta for		
red vs blue	green vs blue		
θ_0 56.5740	37.2130		
$\theta_1^{-2.4661}$	-3.1063		
θ_{2}^{-1} -1.6311	-0.0493		

- Matlab functions for <u>multinomial</u> logistic regression → mnrfit(), mnrval().
 - https://www.mathworks.com/help/stats/mnrfit.html#namevaluepairarguments
 - http://www.mathworks.com/help/stats/mnrval.html
 - $http://scikit-learn.org/stable/modules/generated/sklearn.linear_model. Logistic Regression. html \#sklearn.linear_model. Logistic Regression. predict_probation and the probation of the probati$
 - http://scikit-learn.org/stable/modules/multiclass.html

30 25 20 15 10 5 12 20 22 2 8 10 14 16 18

MNLR, Red vs Blue, Green vs Blue

Multinomial Logistic Regression, Compare to One-vs-All

• Not sure how the probability being normalized in the One-vs-Reference method.

Case Study–Predicting Car Prices

- From many predictors in training cases, want to build a model to predict car \$\$.
- Is this problem always a regression problem?
- OK, how many classes do we have?

Predicting Car Prices, MDL-01 2018 spring

Saleh Alkadayar , Rathana Sorn Jose Rodriguez, Julie Flater, Gassan Zaid

Deciding # of Classes

- How many classes?
 - Do some kind of clustering (i.e. k-means).
 - How do we do classification on more than 2 classes?

Predicting Car Prices, MDL-01 2018 spring

Saleh Alkadayar , Rathana Sorn Jose Rodriguez, Julie Flater, Gassan Zaid

Data Leaking Problem??

Predicting Car Prices, MDL-01 2018 spring

Saleh Alkadayar , Rathana Sorn Jose Rodriguez, Julie Flater, Gassan Zaid

Outline

- How it works? Matlab / Python functions.
- Diagnoses / Visualization.
- Prediction and Quality.
- Outliers.
- Multiclasses Prediction.
- Nonlinearity / High Dimensionality / Visualization.
- Regularization.
- Cost Function, Other Issues / Examples / Demos.

Regularize Logistic Regression

- Regularization.
 - Reduce the number of predictors and identify important ones.
 - Shrink θ s, potentially avoid *overfitting* problem.
- **Assume** the cost function for logistic regression:
 - $J(\theta) \approx E + \lambda \text{Complexity} \approx E + \lambda \sum_{i=1}^{n} |\theta_i| \approx P_{\text{joined}} + \lambda \text{Complexity}$
 - $\lambda \uparrow \rightarrow$ simpler model \rightarrow smoother decision boundary.

Regularizing Logistic Regression—lassoglm()

- Graduate school admission prediction from 400 applications.
 - 3 predictors: GRE, GPA, Institute rank
 - Response: admit or not.
 - Do we need any preprocessing?

θ
-3.4495
0.0023
0.7770
-0.5600

- CFM = (71%)
 - 254 19
 - 97 30

[LB, FitInfo] = lassoglm(X, Y, 'binomial', 'NumLambda', 25, 'CV', 10); lassoPlot(LB, FitInfo, 'PlotType', 'CV'); lassoPlot(LB, FitInfo, 'PlotType', 'Lambda', 'XScale', 'log');

Impact of Dummy Variable

Bank's Marketing Strategy

MDL-01 2018S, Bank Marketing

Terrence White Ronald E Twite Leela Sowjanya Chippada Ahmad K Lubnani Mowlid Abdillahi Nathan Adams

Predictor	Description (likely to open an account)		
Month - August	Month of campaign		
Duration	Contact durations (seconds) (longer better)		

Predictor	Description (unlikely to open an account)		
Employment Rate	Quarterly employment index		
Month - September	Month of campaign		

Regularization = Identifying Important Predictors

- Application or implication of "important" predictors?
- Couple previous student projects on Chicago or SF crime data...
 - If race is an important predictors in predicting arrest after a traffic stop, does it imply "bias"?

Regularization in the Logistic Regression Model

Any comment?

 $J(\theta) \approx E + \lambda \theta$

Predicting Liver Disease, MDL-01 2018 S

Abdulaziz Alreshedi, Beau Birkholz, Matt Conroy, Adam Grams, Dorothy Lesher, Don Stryker

Significant reduction between the minimum MSE and 1 standard deviation from the minimum MSE

Models built with theta values at the minimum MSE and at 1 standard deviation.

$J(\theta) \approx MSE + \lambda \theta$

Interpreting This Result??

91 records of 53 predictors to predict software readability.

Regularization "MAY" Improve Minority Class Prediction

Lasso Regularization Applied to

- Minimum MSE
- \triangle MSE + 1 SD

Lasso Regularization Effects

- Not Diseased Class
 - Improved: Recall & F1
 - ♣ Reduced: Precision
- A Diseased Class
 - + Improved: Precision
 - + Reduced: Recall & F1

Predicting Liver Disease, MDL-01 2018 S

Abdulaziz Alreshedi, Beau Birkholz, Matt Conroy, Adam Grams.

Dorothy Lesher, Don Stryker

Visualizing Quality

- CFM tells us if our dataset has class-balancing issue.
- So, please always include CFM.

Training Dataset		Test Dataset					
CFM	Precision Recall F	Target Class	Precision Recall F	CFM			
104015 0 366 84 0 81030 83 5 280 52 71675 10 61 58 9 142272	0.9967 0.9957 0.9962	1 (1234)	0.9955 0.9947 0.9951	26051 0 104 14	0 20206 22 13	116 20 17818 3	22 5 2 35604
81030 0 83 5 0 104015 366 84 52 280 71675 10 58 61 9 142272	0.9986 0.9989 0.9988	2 (2134)	0.9983 0.9988 0.9985	20206 0 22 13	0 26051 104 14	20 116 17818 3	5 22 2 35604
71675 280 52 10 366 104015 0 84 83 0 81030 5 9 61 58 142272	0.9937 0.9953 0.9945	3 (3124)	0.9923 0.9929 0.9926	17818 116 20 3	104 26051 0 14	22 0 20206 13	2 22 5 35604
142272 61 58 9 84 104015 0 366 5 0 81030 83 10 280 52 71675	0.9993 0.9991 0.9992	4 (4123)	0.9992 0.9992 0.9992	35604 22 5 2	14 26051 0 104	13 0 20206 22	3 116 20 17818

Predicting Liver Disease, MDL-01 2018 S

Abdulaziz Alreshedi, Beau Birkholz, Matt Conroy, Adam Grams, Dorothy Lesher, Don Stryker

Satillite Image Classification

MDL-01, 2018 S

Erin Jacot, Jared Gilbert Khaled Mahmud Laura Nicla, Lydia Xu

Regularize Wide Data in Parallel

Ovarian cancer data.

- load ovariancancer
- 216 observations and 4,000 predictors.
- Wide data # predictors >> records.
- Use <u>lasso</u> to screen & select a smaller set of important predictors from wide data.
- Use parallel computing to speed up cross validation & λ testing.
- Parallel processing using Matlab
 - opt = statset('UseParallel',true); % Set options to use parallel computing.
 - parpool()

% Prepare to compute in parallel using parpool

- Fewer cross-validation folds.
- Fewer λ testing.
- $\alpha \uparrow \rightarrow$ more lasso than ridge.
 - Remove more predictors. $(1-\alpha) \times \mathbf{R} + \alpha \times \mathbf{L}$

Waltinger

Python Logistic Regression + Regularization

- Logistic regression + regularization
 - Classify 8x8 images of digits into two classes: 0-4 against 5-9.
 - Figures show coefficients of the models for varying *C*.
 - C = Inverse of regularization strength.
 - http://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html

```
J(\theta) \approx E + \lambda \times \thetaJ(\theta) \approx C \times E + \theta
```

```
C\uparrow \rightarrow MSE\downarrow \rightarrow \theta\uparrow
C\downarrow \rightarrow MSE\uparrow \rightarrow \theta\downarrow
```

```
for i, Cx in enumerate((100, 1, 0.01)):
    # turn down tolerance for short training time
    clf_11_LR = LogisticRegression(C= Cx, penalty = '11', tolerance=0.01)
    clf_12_LR = LogisticRegression(C= Cx, penalty = '12', tolerance=0.01)
    clf_11_LR.fit(X, y)
    clf_12_LR.fit(X, y)

    coef_12_LR = clf_11_LR.coef_  # .ravel()
    coef_12_LR = clf_12_LR.coef_  # .ravel()
# ...
```


Outline

- How it works? Matlab / Python functions.
- Diagnoses / Visualization.
- Prediction and Quality.
- Outliers.
- Multiclasses Prediction.
- Nonlinearity / High Dimensionality / Visualization.
- Regularization.
- Cost Function.

Cost Function? Why Not Just Residual?

- Residual = (Y Response) = (Y Probability)
- For <u>VERY</u> wrong prediction → Penalty ↑↑

Logistic Regression Cost Function $P = h_{\theta}(x) = \frac{1}{1+e^{-z}}$

$$P = h_{\theta}(x) = \frac{1}{1 + e^{-z}}$$

• If y = 1 and $P \approx 1$, then $-\log(P) \approx 0$.

Correct prediction wo/ penalty.

• If y = 1 and $P \approx 0$, then $-\log(P) \approx \infty$.

Error prediction w/ huge penalty.

If y = 0 and $P \approx 0$, then $-\log(1 - P) \approx 0$.

Correct prediction wo/penalty.

• If $\mathbf{v} = 0$ and $\mathbf{P} \approx 1$, then $-\log(1 - \mathbf{P}) \approx \infty$.

Error prediction w/ huge penalty.

- Logistic regression cost function $\Rightarrow J(\theta) = \begin{cases} -\log(P) & \text{if } Y_i = 1\\ -\log(1-P) & \text{if } Y_i = 0 \end{cases}$
 - It is **convex**!!!

Logistic Regression Cost Function, Cross-Entropy

■ Logistic regression cost function
$$\Rightarrow$$
 $J(\theta) = \begin{cases} -\log(P) & \text{if } Y_i = 1 \\ -\log(1-P) & \text{if } Y_i = 0 \end{cases}$

• Put together for $y \in \{0, 1\}$,

•
$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} [Y_i log(P_i) + (1 - Y_i) log(1 - P_i)]$$

"cross-entropy" cost function

$$y \log \frac{1}{1 + e^{-\theta^T x}} + (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

NOTE: $0 \le P \le 1 \rightarrow -\infty \le \log(P) \le 0$.

Entropy(p_1, p_2) = $-p_1 \log_2 p_1 - p_2 \log_2 p_2$

■ Why this cost function? *maximum likelihood*.

Why That Cost Function? → Maximum Likelihood

- How do we decide best θ ? The answer is...
- Select θ to maximize the *joined probability* of each prediction.
 - Maximize multiplications of all predicted probabilities.
 - That is, for Y = 1, maximize P_i^{Yi} . for Y = 0, maximize $(1 P_i)^{(1 Yi)}$.
 - Put together, maximize $L = \prod_{i=1}^{m} P_i^{Yi} \times (1 P_i)^{(1 Yi)}$. Solve it by set $\frac{\partial L}{\partial P} = 0$.
 - Difficult to solve (chain rule), but we know $log(a \times b) = log(a) + log(b)$.
 - = $\underset{i=1}{\text{maximize}} \log liklihood \log(L) = \log(\prod_{i=1}^{m} P_i^{Y_i} \times (1 P_i)^{(1 Y_i)}) = \sum_{i=1}^{m} \log(P_i^{Y_i} \times (1 P_i)^{(1 Y_i)})$ = $\sum_{i=1}^{m} [Y_i \log P_i + (1 - Y_i) \log(1 - P_i)]$

$$y \log \frac{1}{1 + e^{-\theta^T x}} + (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

NOTE:
$$0 \le P \le 1 \implies -\infty \le \log(P) \le 0$$
.

• Same as to minimize negative log likelihood

$$\frac{-1}{m} \sum_{i=1}^{m} [Y_i log(P_i) + (1 - Y_i) log(1 - P_i)]$$

Maximize Likelihood = Minimize Negative Log-Likelihood

- Maximize joined probability → Maximize Log Likelihood → Minimize Negative Log Likelihood.
 - Access it from the model returned in Matlab:
 - mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'logit')
 - mdl.LogLikelihood % this is a log likelihood, NOT negative log likelihood
 - To **compare performance** between different logistic models.

See Appendix for detail matlab code

$$y \log \frac{1}{1 + e^{-\theta^T x}} + (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

NOTE:
$$0 \le P \le 1 \implies -\infty \le \log(P) \le 0$$
.

$$\frac{d}{dt} \left(\log \left(\frac{1}{1 + e^{-t}} \right) \right) = \frac{1}{e^t + 1}$$

$$\frac{\partial}{\partial t} \left(\log \left(\frac{1}{1 + e^{-tx}} \right) \right) = \frac{x}{e^{tx} + 1}$$

$$\frac{\partial}{\partial t} \left(\log \left(\frac{1}{1 + e^{-tx}} \right) \right) = \frac{x}{e^{tx} + 1}$$

$$\frac{d}{dt} \left(\log \left(1 - \frac{1}{1 + e^{-t}} \right) \right) = -\frac{e^t}{e^t + 1} \qquad x \left(\frac{1}{e^{tx} + 1} - 1 \right)$$

$$\frac{\partial}{\partial t} \left(\log \left(1 - \frac{1}{1 + e^{-tx}} \right) \right) = -\frac{x e^{tx}}{e^{tx} + 1} \qquad \frac{x}{e^{tx} + 1} - x$$

Appendix

Shifting in Logistic Function – Changing θ_0

- Logistic Regression $h_{\theta}(x) = h(\theta^{T}x) = h(z) = \frac{1}{1+e^{-z}}$
 - $z = \theta^{\mathrm{T}} x = \theta_0 \times x_0 + \theta_1 \times x_1 + \dots + \theta_n \times x_n$.

 $z = \theta^{\mathrm{T}} x = \theta_0 \times x_0 + \theta_1 \times x_1.$

• What will be the curve if we set $\theta_1 \approx \infty$?


```
syms x
fstr1 = \frac{1}{1+exp(-(0+1*x))};
fstr2 = \frac{1}{1+exp(-(3+1*x))};
fstr3 = \frac{1}{1 + exp(-(3 + inf * x))};
ezplot(fstr1, [-10 10]);
hold on
ezplot(fstr2, [-10 10]);
h3 = ezplot(fstr3, [-10 10]);
set(h3, 'color', 'g')
hold off
grid on
legend({fstr1, fstr2, fstr3})
title(")
```

Logistic Function– Changing Both θ_0 and θ_1

■ Logistic (sigmoid) function σ takes LR output (\hat{y}) as input & convert to P[0..1].


```
syms x
b0 arr = [0 -3 3]; b1 arr = [1 3];
fstr = \frac{1}{1+exp(-(b0 + b1*x))};
c = ['ymcgbk'];
figure, hold on
loops = 0; legendStr = [];
for b0 = b0_arr
  for b1 = b1 arr
     fstrX = strrep(fstr, 'b0', num2str(b0));
     fstrX = strrep(fstrX, 'b1', num2str(b1));
     h = ezplot(fstrX, [-10 10]);
     loops = loops + 1;
     set(h, 'color', c(loops));
     legendStr{loops} = \lceil b0 = ' num2str(b0) ', b1 = ' num2str(b1) \rceil;
  end
end
legend(legendStr), title("), grid on, ylim([-0.05 1.05])
red = [-1 \ 1; 1 \ 1; 4 \ 1; 9 \ 1];
blue = [2 0; -2 0; -4 0; -8 0; -9 0];
data = [red; blue];
Y = [zeros(size(red, 1), 1); ones(size(blue, 1), 1)];
gscatter(data(:, 1), data(:, 2), Y, 'rb', '..', 25, 'off')
hold off
```

Binomial Distribution

- A **binomial experiment** has the following properties:
 - The experiment consists of *n* repeated trials of two outcomes: a success & a failure.
 - The probability of success, denoted by *P*, is the same on every trial.
 - The trials are independent: one trial does not affect the outcome on other trials.
 - http://stattrek.com/probability-distributions/binomial.aspx
- Binomial experiment Example: flip a coin *N* times and count the # of heads.
 - Repeated trials of flipping a coin *N* times with outcomes heads or tails: 0.5.
 - The trials are independent; getting heads on one trial does not affect results of others.

Different Distributions

http://www.mathworks.com/help/stats/generalizedlinearmodel-class.html

$$h_{\theta}(x) = P = \frac{e^z}{1+e^z} = \frac{1}{1+e^{-z}}$$

$$\frac{P}{1-P} = e^z.$$

Distribution	Link Function Name	Link Function	Mean (Inverse) Function
'normal'	'identity'	$f(\mu) = \mu$	$\mu = Xb$
'binomial'	'logit'	$f(\mu) = \log(\mu/(1-\mu))$	$\mu = \exp(Xb) / (1 + \exp(Xb))$
'poisson'	'log'	$f(\mu) = \log(\mu)$	$\mu = \exp(Xb)$
'gamma'	-1	$f(\mu) = 1/\mu$	$\mu = 1/(Xb)$
'inverse gaussian'	-2	$f(\mu) = 1/\mu^2$	$\mu = (Xb)^{-1/2}$

Plotting *X* against Response (Probability = $\frac{1}{1+e^{-z}}$)

```
red = [-1 \ 1; 1 \ 1; 4 \ 1; 9 \ 1];
blue = [-9 0; -8 0; -4 0; -2 0; 2 0];
X = [blue(:, 1); red(:, 1);];
Y = [blue(:, 2); red(:, 2)];
mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'logit')
B = mdl.Coefficients.Estimate;
                                          %% θ
Bstr = num2str(B);
Zstr = [Bstr(1,:) '+x*' Bstr(2,:)]; \frac{\%}{\%} = \theta^{T}x
syms x,
figure, ezplot(['1/(1+exp(-(' Zstr ')))'], [-10 10])
hold on.
           gscatter(X(:, 1), Y, Y, 'br', '..', 25, 'off')
hold off, grid on
xlabel('X'), ylabel('P')
mdl.LogLikelihood
```


%% Plot Z wrt P (much easier)

p = **mdl.Fitted.Response**;

Z = mdl.Fitted.LinearPredictor;

figure, gscatter(Z, p, Y); grid on

Some Matlab Link Functions

mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'logit')

Link Function Name	Link Function	Mean (Inverse) Function		
'log'	$f(\mu) = \log(\mu)$	$\mu = \exp(Xb)$		
'logit'	$f(\mu) = \log(\mu/(1-\mu))$	$ \mu = \exp(Xb) / (1 + \exp(Xb)) \qquad \frac{e^z}{1 + e^z} $		
'probit'	$f(\mu) = \Phi^{-1}(\mu)$	$\mu = \Phi(Xb)$		
'comploglog'	$f(\mu) = \log(-\log(1 - \mu))$	$\mu = 1 - \exp(-\exp(Xb))$		
'reciprocal' $f(\mu) = 1/\mu$		$\mu = 1/(Xb)$		

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt$$

normal distribution function

- Logit function $\log(\frac{P}{1-P}) = z = \theta^{T}x$.
 - <u>Inverse</u> of the sigmoidal "<u>logistic</u>" function.
 - It gives the log-odds (log of odds).
 - $\frac{P}{1-P}$ is refer to as *odds*.
 - $\frac{P}{1-P} = e^z \rightarrow P = e^z e^z P \rightarrow P = \frac{e^z}{1+e^z} = \frac{1}{1+e^{-z}} = h_{\theta}(x)$.

Logit Function (Visualize in Mathematica)

$$f[x_{-}] := 1 / (1 + Exp[-x]) \frac{1}{1 + e^{-z}}$$

Plot[f[x], {x, -6, 6}]

f[x_]:=1/(1+Exp[-x]) Plot[f[x], {x, -6, 6}]

InverseFunction[f][x]

 $fi[x_]:=Log[x/(1-x)]$ Plot[fi[x], {x, 0, 1}]

InverseFunction[fi][x]

InverseFunction[fi][x]

Logit and Probit

- The probit function is the inverse of the standard cumulative normal distribution.
- Logit and Probit generate very similar curves.
 - Logit has slightly fatter tails than probit, making it slightly more 'robust'.
 - For 2 classes, undifferentiated between logit & probit.
 - For 3+ classes, harder to apply probit.
 - Use **likelihood** value to decide logit or probit.

Logit and Probit Comparison, Likelihood

- Logit has slightly longer tails than probit → logit is slightly more robust.
- In binary response, probit & logit are largely the same.
- Use **log likelihood** (larger → better) value to decide logit or probit.


```
red = [-11; 1 1; 4 1; 9 1];
blue = [-9 0; -8 0; -4 0; -2 0; 20];
X = [blue(:, 1); red(:, 1);];
Y = [blue(:, 2); red(:, 2)];

mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'logit')
plotSlice(mdl)
mdl.LogLikelihood
% -3.3677 equal to following
sum(Y.*log(mdl.Fitted.Response) + (1-Y).*log(1 - mdl.Fitted.Response))
© Copyright 2018 by Dr. Chih Lai
```

```
red = [ -1 1; 1 1; 4 1; 9 1];
blue = [-9 0; -8 0; -4 0; -2 0; 2 0];
X = [blue(:, 1); red(:, 1);];
Y = [blue(:, 2); red(:, 2)];
mdl = fitglm(X, Y, 'distr', 'binomial', 'link', 'probit')
plotSlice(mdl)
mdl.LogLikelihood
% -3.3153
```

Total Cost = $-1 \times \text{Log Likelihood}$

$$y \log \frac{1}{1 + e^{-\theta^T x}} + (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

- $Cost(h(\theta^{T}x), y) = \frac{-1}{m} \sum_{i=1}^{m} [Y_{i}log(P_{i}) + (1 Y_{i})log(1 P_{i})]$
 - Total cost = -1 * mdl.LogLikelihood (negative log likelihood)

H LogLikelihood 🛑 -3.3677

C0 = log(1 - mdl.Fitted.Response(1:5))

 $C1 = \log(\text{mdl.Fitted.Response}(6:9))$

-1 * sum([C0;C1]) **% Total Cost = 3.367**

= <u>r</u>	pro	ba	bi	lity
	_			

V - mdl Fitted Response

- probability				1 - 1	IIuI.I	ritteu.Kesponse	
	1 Response		X	Y		1 Raw	Cost
1	0.0094		-9	0	1	-0.0094	0.0095
2	0.0157		-8	0	2	-0.0157	0.0158
3	0.1114	-	-4	0	3	-0.1114	0.1181
4	0.2601	1	-2	0	4	-0.2601	0.3012
5	0.7343		2	0	5	-0.7343	1.3253
6	0.3705		-1	1	6	0.6295	0.9929
7	0.6227		1	1	7	0.3773	0.4737
8	0.8857	1	4	1	8	0.1143	0.1214
9	0.9903	1	9	1	9	0.0097	0.0098

mdl.Fitted.Response

mdl.Residuals.Raw

