No. 1.

Use the Divergence Theorem to show that

$$|\partial B(0,1) = n\alpha(n)|.$$

No. 2.

Let $u \in C^4(\bar{B_1})$, where $B_1 := \{x \in \mathbb{R}^n, |x| < 1\}$. Suppose that

$$\Delta^2 u := \Delta(\Delta u)$$
 in B_1 , $u = |Du| = 0$ on ∂B_1

Show that u = 0 in B_1 .

No. 3.

Suppose that $u \in C^{\infty}(\bar{B}_2)$

$$\Delta u = 0$$
 in B_2 , $u > 0$

Show that $|D(\ln u)| \leq N$ in B_1 , with a constant N depending only on n.

No. 4.

Let Φ be the fundamental solution of Laplace equation and $u = \Phi * f$. Show that

$$-\Delta u = \int in \mathcal{R}^n$$

No. 5.

Suppose that $u \in C^2(\Omega)$ and $\Delta u = 0$ in Ω . Show that $u(z) = \frac{1}{|\theta E(x,r)|} \int_{\partial B(x,r)} u d\sigma$ for each ball $B(x,r) \subset \Omega$

No. 6.

Give a direct proof that if Ω is bounded and $u \in C_1^2(\Omega_T) \cap C(\Omega_T)$ solves the heat equation, then

No. 7. Let $\Gamma(x,t)$ be the fundamental solution of $u_4 - \Delta u = 0$ in $\mathbb{R}^n \times (0,\infty)$, show that

$$\int_{\mathbb{R}^n} \Gamma(x,t) dx = 1$$

No. 8

- 1) Show the general solution of the PDE $u_{xy} = 0$ is u(x, y) = F(x) + G(y) for arbitrary functions F, G.
- 2) Using the change of variables $\xi = x + L_{\eta} = x t$, show $u_{\xi \eta} u_{\eta \eta} = 0$ if and only if $u_{\xi \eta} = 0$.
- 3) Use 1) and 2) to derive d'Alembert's formula.

No. 9.

Let u solve the initial-value problem for the wave equation in one dimension: $u_{tt} - u_{xx} = 0$ in $\mathcal{R} \times (0, \infty)$ and $u = g, u_t = h$ on $\mathcal{R} \times (t = 0)$. Suppose g, h have compact support. The kinetic energy is $k(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx$ and the potential energy is $p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx$. Prove

- 1) k(t) + p(t) is constant in t
- 2) k(t) = p(t) for all large enough times t.