Лабораторная работа 5.2 Эффект Комптона.

Жарков Андрей 495

22 апреля 2017 г.

Цель работы: с помощью стинциляционного спектрометра исследовать энергетический спектр γ -квантов, рассеянных на графите. Определить энергию рассеянных γ -квантов в зависимости от угла рассеяния, а также энергию покоя частиц, на которых происходит комптоновское рассеяние.

Рис. 1: Схема установки по изучению рассеяния γ -квантов

Теоретические сведения

Изменение длины волны рассеянного излучения:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_K (1 - \cos \theta), \tag{1}$$

где λ_0 и λ_1 — длины волн γ -кванта до и после рассеяния, θ — угол рассеяния γ -кванта, $\Lambda_K=\frac{h}{mc}=2.42\cdot 10^{-10}$ см — комптоновская длина волны электрона.

Преобразуем формулу (1) от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos(\theta),\tag{2}$$

где $\varepsilon_0 = \frac{E_0}{mc^2}$ — выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ — выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m — масса электрона.

Заменим энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при угле θ . Пусть A — неизвестный коэффициент пропрорциональности между $\varepsilon(\theta)$ и $N(\theta)$, тогда

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta) \tag{3}$$

Ход работы.

1. Будем устанавливать сцинтилляционный счетчик под разными углами θ к первоначальному направлению полета γ -квантов. Снимем амплитудные спектры и определим положения фотопиков для каждого значения угла θ . Результаты измерений приведены в таблице:

