Game Theory: In-class Quiz 4 Fall 2023

1. Consider the following trust game:

- (a) Suppose this game is played once. Represent the game in a normal form, and find all pure-strategy Nash equilibria. [Hint: There are two.]
- ⇒ ((Out,Share),(Not)) and ((Out,Keep),(Not)) are two pure-strategy Nash equilibria.

P1\P2	Trust	Not
Play,Share	30,30	0,20
Play,Keep	60,0	$0,\!20$
Out,Share	10, 10	10, 10
Out, Keep	10, 10	10, 10

- (b) Suppose the game is repeated indefinitely. Both players discount future payoffs by $\delta \in [0,1]$. Under what range of δ , {(Play, Share), Trust} is sustainable as a subgame perfect equilibrium by a grim-trigger strategy? Here the grim-trigger strategy is P1 playing (Out, Keep) and P2 playing (Not) forever after observing a deviation from {(Play, Share), Trust}.
- \Rightarrow P1's payoff when staying {(Play, Share), Trust}: $\frac{30}{1-\beta}.$

P1's payoff when deviating to (Play, Keep): $60+\frac{10\beta}{1-\beta}$

Repeatedly playing {(Play, Share), Trust} is a SPE if $\frac{30}{1-\beta} > 60 + \frac{10\beta}{1-\beta}$, or $\beta > 3/5$.

- 2. Consider the Battle of Sexes with incomplete information: Player 2(P2) has one of the two possible types ("Meet" (M) and "Avoid" (A)).
 - M-type P2 wishes to meet P1 at the concert playing Bach.
 - A-type P2 wishes to avoid meeting at the concert playing Bach.
 - P2 is type M with probability p and type A with probability 1-p.
 - P2 knows her type. P1 only knows the prior probability distribution of P2's type.

They simultaneously choose Bach(B) or Stravinsky(S). Payoffs are shown in the matrices below.

P1 \ M-type P2	В	S	P1 \ A-type P2 B	S
В	2,1	0,0	B 2,0	0,2
\mathbf{S}	0,1	1,0	S 0,1	2,2

Find a range of p such that (B; B, S) is a pure strategy Bayesian equilibrium. (The strategy is described in the form of (P1's strategy; M-type P2's strategy, A-type P2's strategy).)

Sol: p > 1/3

- M-type P2 won't deviate from B because S is strictly dominated.
- A-type P2 won't deviate from S given P1 plays B. (or, A-type P2 won't deviate from S because B is strictly dominated.)
- So we only need to check P1's behavior. The expected payoff of P1 playing B is 2p + 0(1-p) = 2p, and the expected payoff of P1 playing S is 0P + 2(1-p) = 2 2p. Thus, if 2p > 2 2p, or p > 1/2, playing B is P1's best response.
- 3. Consider the Cournot competition with incomplete information. Market demand is $P=12-q_1-q_2$. It is commonly known that firm 1's production cost is zero. Firm 2's marginal production cost is either 2 (type L) or 4 (type H) with equal probability of 1/2. Denote type-L firm 2's production quantity by q_2^L , and type-H firm 2's quantity by q_2^H .
 - (a) Find firm 2's type-dependent best responses to q_1 .
 - \Rightarrow H-type maximizes $(12-q_1-q_2^H)q_2^H-2q_2^H$, thus $q_2^H=\frac{10-q_1}{2}$. L-type maximizes $(12-q_1-q_2^L)q_2^L-4q_2^L$, thus $q_2^L=\frac{8-q_1}{2}$.
 - (b) Find firm 1's best response to maximize the expected profit.
 - \Rightarrow Firm 1 maximizes $\frac{1}{2}\{(12-q_1-q_2^H)q_1\}+\frac{1}{2}\{(12-q_1-q_2^L)q_1\}$. Thus, $q_1=\frac{12-(q_2^H+q_2^L)/2}{2}$
 - (c) Find the Bayesian Nash equilibrium of this game.
 - $\Rightarrow q_1^* = 6 \frac{1}{4}(q_2^{H*} + q_2^{L*}) = 6 \frac{1}{4}(5 q_1^*/2 + 4 q_1^*/2) = 15/4 + q_1^*/4. \text{ Thus, } 3q_1^*/4 = 15/4,$ or $q_1^* = 5$. Plug in q_1^* to $q_2^H =$ and q_2^L . The Bayesian equilibrium is (5, (2.5, 1.5)).