Инфокоммуникационные - Компьютерные сети

Компьютерная сеть- совокупность оконечного оборудования, систем передачи данных, линий, каналов связи, узлов коммутации и сетевого программного обеспечения, предназначенная для обмена информацией между всеми абонентами сети.

Узел коммутации; Трафик; Мейнфрейм; Хост; Рабочая станция; Подсеть; Шлюз; Маршрутизатор; Звено данных.

Обобщенная структурная схема компьютерной сети

Структура объединенной компьютерной сети Интернет

Компьютерные сети. Эталонная модель взаимодействия открытых систем.

ISO – International Standard Organization; Уровни эталонной модели; Протокол; Межуровневой интерфейс.

Структура эталонной модели ВОС

Совокупность процедур и правил взаимодействия объектов одноименных уровней называется протоколом. Правила взаимодействия смежных уровней одной и той же системы определяют межуровневой интерфейс.

Эталонная модель взаимодействия открытых систем (ВОС)

Уровни и функции эталонной модели.

№ уровня	Наименование	Основные функции			
7	Прикладной	Определение семантики, т.е. смысловое со держание информации, которой обмениваются открытые системы. Выполнение всех информационно-вычислительных процессов, представляемых пользователем. В заимодействие прикладных программ.			
6	Представительный	Определение синтаксиса передаваемой информации, т.е. набор знаков и способов их представления. Организация интерфейсов между различными формами представления информации. Шифровка данных, сжатие.			
5	Сеансовый (сессий)	Введение имени и пароля пользователя, соглашение о скорости ПД и контроле ошибок, способе передачи (симплексный, полудуплексный, дуплексный), обработка запросов на изменение параметров передачи и контроля ошибок. Организация взаимодействия между прикладными процессами.			
4	Транспортный	Обеспечивает пересылку пакетов сообщений. Генеририрование номеров пакетов данных, фрагментирование данных, поступающих с сеансового уровня, на пакеты меньшего размера, с тем чтобы передать их на сетевой уровень. Мультиплексирование и демультиплексирование потоков с целью увеличения пропускной способности, управление транспортируемым потоком на уровне «процесспроцесс», а не «компьютер-компьютер», как это осуществляется на сетевом уровне.			
3	Сетевой	Маршрутизация сообщений и их доставка (адресация пользователей). Управление нагрузкой, ограничение количества сообщений в потоке.			
2	Канальный	Управление каналом передачи данных (установление соединением, контроль и исправление ошибок).			
1	Физический	Передача сигналов по физической среде.			

Компьютерные сети. Стеки протоколов.

Уровни	Стеки протоколов				
Модель OSI	OSI	TCP/IP	Novell	IBM/ Microsoft	
Прикладной	X.400 X.500 FTAM	Telnet FTP SNMP	NCP SAP	SMB	
Представительный	Представительный OSI	WWW			
Сеансовый	Сеансовый OSI	TCP UDP		NetBEUI NetBIOS	
Транспортный	Транспортный OSI		SPX		
Сетевой	ES-ES IS-IS	IP ICMP; IGMP RIP; OSPF	IPX RIP NLSP		
Канальный	Ethernet, Token Ring, FDDI, Fast Ethernet, X.25, ATM, SLIP, PPP и др.				
Физический	Витые пары, коаксиальный кабель, волоконно-оптические линии, инфракрасное и радиочастотное излучение				

СТЕК ПРОТОКОЛОВ ТСР/ІР. СХЕМА ИНКАПСУЛЯЦИИ ДАННЫХ.

Коммутация в инфокоммуникационных системах. Способы коммутации.

Коммутация каналов; коммутация сообщений; коммутация пакетов

Схема городской телефонной сети с коммутацией каналов

Схема узла коммутации каналов

Матрица пространственного коммутатора

КОММУТАЦИЯ СООБЩЕНИЙ И ПАКЕТОВ В ИНФОКОММУНИКАЦИОННЫХ СИСТЕМАХ.

АДРЕСАЦИЯ И МАРШРУТИЗАЦИЯ В ИНФОКОММУНИКАЦИОННЫХ СИСТЕМАХ

```
Адреса:
одно- и многоступенчатые;
Локальные (MAC-адрес) аппаратный или физический (3E AD 4F 37 62 C5);
Межсетевые (IP-адреса) – имя сети; имя хоста (192.171.153.60) ;
Символьные (petrenko@sevsu.ru);
групповые (Multicast-Address);
Широковещательные (Broadcast-Address).
Маршрутизация - процесс выбора маршрута прохождения сообщения.
По степени централизации: распределенная, централизованная; смешанная.
Виды маршрутизации:
1) волновая (лавинная) маршрутизация (flooding);
2) маршрутизация с фиксированными путями;
3) маршрутизация с альтернативными путями;
4) адаптивная.
```

АДРЕСАЦИЯ И МАРШРУТИЗАЦИЯ В ИНФОКОММУНИКАЦИОННЫХ СИСТЕМАХ

Метрика (стоимость, расстояние); алгоритм Беллмана-Форда

Алгоритм: дистанционно-векторный (distant vector) - Беллмана-Форда.

Особенность – максимальное число участков (хопов) ограничено (15)

В начале устанавливаются стоимости путей между узлами:

w(i,i)=0; $w(i,j)=\infty$ - для несмежных узлов. $w(i,j) \ge 0$ – для смежных узлов.

Вычисляются:

Стоимости путей от узла s до узла k

 $L_0(k) = \infty$ для всех $k \neq s$; $L_h(s)=0$ для всех h=0;

Поле каждого хопа находят оптимальный путь

Алгоритм Беллмана-Форда

RIP (Routing Information Protocol) и его усовершенствованная версия RIP 2

АДРЕСАЦИЯ И МАРШРУТИЗАЦИЯ В ИНФОКОММУНИКАЦИОННЫХ СИСТЕМАХ

Учет состояния линий; алгоритм Дийкстры (Dijkstra's algorithm)

Алгоритм оценки состояния линий (link state) – Дийкстры.

Особенность: Узлы располагают сведениями о топологии всей сети и стоимостями связей

$$L(k) = \min [L(k), L(x) + w(x,k)]$$
 для всех $k \notin Ty$

Шаг	Множество	Метрика связи узла А со следующими узлами				
	T	В	C	D	E	F
0	{A}	1	2	5	-	-
1	{A,B}	1	(2),3	5,(5)	-	-
2	{A,B,C}	(1),4	(2),3	5,5,(4)	3	-
3	{A,B,C,E}	(1),4	(2),3	5,(4),5	3	-
4	{A,B,C,D,E}	(1),4,8,9	(2),3,7,8	5,5,(4),5	(3),7,6	(4),8,8,7
5	{A,B,C,D,E,}	1	2	4	3	4

АДРЕСАЦИЯ В СЕТИ ИНТЕРНЕТ

- Локальный адрес узла MAC-адрес 11-A0-17-3D-BC-01 (канальный уровень).
- **IP-адрес** = **номер сети** и **номер узла** (хоста). Префикс и суффикс.
- Символьный адрес (SERV1.IBM.COM)

Десятичное написание IP-адресов 192.171.153.60 = 11000000 10101011 10011001 00111100.

```
Классы адресов:
A (0) 7 бит – NetID; 24 – HostID;
B (10) 14 бит – NetID; 16 – HostID;
C (110) 21 бит – NetID; 8 – HostID;
D (1110) 224.0.0.0. – 239.255.255.255 ( 224.0.0.1 – все узлы данной сети; 224.0.0.2 – все маршрутизаторы в данной сети; 224.0.0.5 – все ОSPF-маршрутизаторы; 224.0.0.9 – маршрутизаторы RIP-2 и т.д.);
E (11110) Зарезервирован.
Широковещательные – FFFFFFF h.
Тестовый - (01111111 | хххх...х) 127.Х.Х.Х (127.0.0.1 – передача самому себе)
```

АДРЕСАЦИЯ В СЕТИ ИНТЕРНЕТ ОСОБЫЕ АДРЕСА

- ❖ Ноль в части адреса означает локальный компьютер или локальную сеть.
- ❖ Адрес 127.0.0.0 (часто также 127.0.0.1) адресует самому себе "local loopback"

Все нули Ноst ID Компьютер в локальной сети

Все единицы Ограниченный широковещательный (для локальной сети)

Net ID Все единицы

Локальный Loopback

АДРЕСАЦИЯ В СЕТИ ИНТЕРНЕТ ЧАСТНЫЕ АДРЕСА

Класс	Начальный адрес	Конечный адрес	Число сетей
A	10.0.0.1	10.255.255.255	1
В	172.16.0.0.	172.31.255.255	16
C	192.168.0.0.	192.168.255.255	255