SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

NEIZRAZITO, EVOLUCIJSKO I NEURO RAČUNARSTVO

7. Domaća zadaća -Neuro-evolucijski sustavi

0036506587 Darijo Brčina

SADRŽAJ

1.	Zadatak 1	1
2.	Zadatak 2	2
3.	Zadatak 3	3
4.	Zadatak 4	4
5.	Zadatak 5	-
6.	Zadatak 6	9
7.	Literatura	10

$$y = \frac{1}{1 + \frac{|x - w|}{|s|}}\tag{1.1}$$

Slika 1.1: Ovisnost izlaza y o s

Sa slike 1.1 se jasno uočava da što je manji s, to je manji izlaz y, odnosno primjeri koji su udaljeniji od centroida w će biti kažnjeni više za manje vrijednosti parametra s. U slučaju kada neuron ima dva ulaza, tada će izlaz biti još striktniji, tj. primjeri će se općenito više kažnjavati što su dalje od centroida. Parametri s_1 i s_2 služe za skaliranje koordinata i ovisno radi li se o izduženosti na x ili y osi, parametri će imati manje, odnosno veće vrijednosti.

Slika 2.1: Prikaz 2D podataka iz dataseta¹

Slika 2.1 jasno prikazuje kako su primjeri grupirani u 8 elipsa od kojih 3 crvene pripadaju razredu A, 3 zelene razredu B i 2 plave razredu C. Primjeri su linearno neodvojivi.

¹Izrađeno pomoću programskog jezika *Python* i biblioteke *Matplotlib*.

Slika 3.1: 2x8x3 mreža

Na slici 3.1 prikazana je arhitektura 2x8x3 neuronske mreže gdje su, radi preglednosti, prikazani parametri samo za 3 nasumično odabrana neurona skrivenog sloja, koji su nazvani po željenim razredima, i za neurone izlaznog sloja. Težine skrivenog sloja sam odredio (odokativno pomoću slike 2.1) na temelju centroida, pa tako vrijednosti težina neurona A iznose 0.1 i 0.25, što predstavlja središte lijeve donje crvene elipse, vrijednosti težina neurona B iznose 0.1 i 0.75, što predstavlja središte lijeve gornje zelene elipse te vrijednosti težina neurona C iznose 0.38 i 0.75, što predstavlja središte

prve gornje plave elipse. Parametre s_I i s_2 sam postavio na 0.2, odnosno 0.4 jer po slici 2.1 zaključujem da su skaliranja podjednaka s obzirom na to da pravilan izgled svake elipse. Također, parametar s_2 je nešto veći jer su elipse malo izdužene po osi y. Težine izlaznog sloja sam postavio na 1, odnosno -1 zbog toga što one najbolje pokazuju koji neuron skrivenog sloja predstavlja koji razred. Valja napomenuti da neuroni skrivenog sloja generiraju brojeve koji su u intervalu [0,1], stoga će se net vrijednost izlaznog neurona povećavati za pozitivne težine, dok će se za negativne smanjivati. Neuron s najvećom net vrijednosti ćemo uzeti kao klasifikaciju uzorka.

Slika 4.1: Prikaz 2D podataka iz dataseta i centroida¹

n	\mathbf{w}_1	W_2	s_1	s_2
1	0.87056693	0.25968479	0.11341864	-0.19099131
2	0.1314665	0.2639499	-0.12664145	-0.20936459
3	0.1301023	0.73605907	-0.16223074	0.27078076
4	0.8663112	0.7311553	0.15539173	0.2879704
5	0.62806508	0.25909509	0.0926306	0.19161737
6	0.62241627	0.73905119	0.09878658	-0.25807171
7	0.37528285	0.26203972	-0.10859568	0.22590302
8	0.36919078	0.74043638	-0.08410955	0.22291554

Tablica 4.1: Rezultati neurona tipa 1

¹Izrađeno pomoću programskog jezika *Python* i biblioteke *Matplotlib*.

Wi	n_1	n_2	n_3
\mathbf{w}_1	40.45028853	-38.82630971	-17.90848041
\mathbf{w}_2	-21.70054252	34.0055676	-14.49969529
\mathbf{w}_3	-38.64338231	39.66207396	-22.73612466
\mathbf{w}_4	-40.6041046	74.55624848	-30.00203565
\mathbf{w}_5	-7.65317838	-58.3419473	69.27153891
\mathbf{w}_6	-53.73290204	-32.61985817	63.67829537
\mathbf{w}_7	40.69039549	-21.70882187	-13.97546124
\mathbf{w}_8	76.24550913	-32.76116995	-30.57446468

Tablica 4.2: Rezultati neurona tipa 2

U navedenim tablicama se nalaze eksperimentalni rezultati za neuronsku mreže arhitekture 2x8x3 koju smo u trećem zadatku teorijski obradili. Tablica 4.1 predstavlja parametre neurona tipa 1 i možemo vidjeti da težine predstavljaju centroid dotične elipse, što je i označeno prikladnom bojom u istoj, dok parametri s predstavljaju koliko je centroid udaljen od elipse po x osi, odnosno po y osi i također uočavamo da je parametar s_2 nešto veće apsolutne vrijednosti zbog izduženosti elipse u smjeru osi y.

Tablica 4.2 predstavlja težine (bez pomaknuća) neurona tipa 2 i također možemo vidjeti da je teorija trećeg zadatka potvrđena. U prvom retku možemo vidjeti da postoji jedna pozitivna težina i dvije negativne pa se da zaključiti da neuron iz kojeg izlaze dotične težine, dakle neurona tipa 1, predstavlja razred označen crvenom bojom, tj. razred A. Analogno se pokazuje i za ostale rezultate.

Slika 5.1: Prikaz 2D podataka iz dataseta i centroida¹

n	\mathbf{w}_1	W_2	s_1	s_2
1	0.9195599	0.27235955	0.12174026	0.03232097
2	0.36798174	0.78226241	0.10437182	-0.44402148
3	0.3751542	0.26965979	0.14072831	-0.20409056
4	0.63004829	0.23219823	0.10609551	-0.22998608
5	0.16582354	0.24307991	-0.03865407	-0.14058263
6	0.11751811	0.29809988	0.09172907	1.03435842
7	0.10930424	0.68436357	-0.11396174	0.12717252
8	0.07466577	0.28177913	-0.0645295	-1.77172434

Tablica 5.1: Rezultati neurona tipa 1

¹Izrađeno pomoću programskog jezika *Python* i biblioteke *Matplotlib*.

Naučena neuronska mreža sa 2x8x4x3 arhitekturom također točno klasificira sve primjere iz dataseta kao i prijašnja mreža arhitekture 2x8x3, no uz cijenu brzine izvođenja i grafičke interpretacije neurona tipa 1. Za učenje mreže arhitekture 2x8x4x3 je potrebno manje generacija nego li učenje mreže arhitekture 2x8x3 jer ista brže konvergira s obzirom na to da ima veći kapacitet, no sama iteracija algoritma učenja traje duže jer je evaluacija mreže složenija.

Slika 6.1: Prikaz 2D podataka iz dataseta i centroida¹

n	\mathbf{w}_1	\mathbf{w}_2	s_1	s_2
1	0.61583717	0.25675516	0.10189873	-0.14831607
2	0.14760045	0.72062042	0.17817954	0.7916723
3	0.84346026	0.7114165	0.32701894	0.37441321
4	0.36746019	0.75021939	-0.08642462	0.45354458
5	0.66560164	0.27987725	-0.05899077	0.50943645
6	0.37451733	0.26587057	0.19097825	-0.25518653

Tablica 6.1: Rezultati neurona tipa 1

¹Izrađeno pomoću programskog jezika *Python* i biblioteke *Matplotlib*.

7. Literatura

M. Čupić, B. Dalbelo Bašić, i M. Golub. *Neizrazito, evolucijsko i neuroračunarstvo*, kolovoz 2013. URL http://java.zemris.fer.hr/nastava/nenr/knjiga-0.1.2013-08-12.pdf. [Pristupljeno 9-Siječanj-2021.].