DESAFIOS - LINGUAGEM JAVA

1. Uma rainha requisitou os serviços de um monge e lhe disse que pagaria qualquer preço. O monge, necessitando de alimentos, indagou à rainha sobre o pagamento, se poderia ser feito com grãos de trigo dispostos em um tabuleiro de xadrez (que possui 64 casas), de tal forma que o primeiro quadro deveria conter apenas um grão e os quadros subsequentes, o dobro do quadro anterior. Crie um programa para calcular o total de grãos que o monge recebeu.

Entrada

Não há entradas.

Saída

Utilize variáveis de dupla precisão (double) para calcular a quantidade de grãos que serão armazenados na casa 64, exiba a casa e a quantidade de grão da respectiva casa e a soma calculada.

Exemplos de Entrada	Exemplos de Saída
	Casa: 1 - Qtd: 1 - soma: 14 Casa: 2 - Qtd: 2 - Soma: 34 Casa: 3 - Qtd: 4 - soma: 74 Casa: 4 - Qtd: 8 - Soma: 15 Casa: 5 - Qtd: 16 - Soma: 31
	Casa: 56 - Qtd: 36.028.797.018.964.000 - Soma: 72.057.594.037.927.900 Casa: 57 - Qtd: 72.057.594.037.927.900 - Soma: 144.115.188.075.856.000 Casa: 58 - Qtd: 144,115.188.075.856.000 - Soma: 288.230.376.151.712.000 Casa: 59 - Qtd: 288.230.376.151.712.000 - Soma: 576.460.752.303.423.000 Casa: 60 - Qtd: 576.460.752.303.423.000 - Soma: 1.152.921.504.606.850.000 Casa: 61 - Qtd: 1.152.921.504.606.850.000 - Soma: 2.305.843.009.213.690.000 Casa: 62 - Qtd: 2.305.843.009.213.690.000 - Soma: 4.611.686.018.427.390.000 Casa: 63 - Qtd: 4.611.686.018.427.390.000 - Soma: 9.223.372.036.854.780.000 Casa: 64 - Qtd: 9.223.372.036.854.780.000 - Soma: 18.446.744.073.709.600.000

2. Faça um programa que calcule o valor de A, dado pela fórmula abaixo, a partir de um valor de dupla precisão **N** informado:

$$A = N + (N - 1)/2 + (N - 2)/3 + ... + 1/N$$

Entrada

Será recebido um valor na variável N.

Saída

O valor do somatório final é armazenado na variável de dupla precisão A.

Exemplos de Entrada	Exemplos de Saída
3	A = 4.33333333333333
5	A = 8.7
10	A = 22.2186507936508

3. Faça um programa que receba uma frase qualquer informada via teclado e imprima a quantidade de LETRAS "A" existente na frase.

Entrada

O arquivo de entrada contém uma frase qualquer informada.

Saída

Imprima o total de letras "A" existentes nesta frase.

Exemplos de Entrada	Exemplos de Saída
HOJE FAREMOS NOSSO DESAFIO	TOTAL DE A = 2
ESTE QUESITO NÃO É TRIVIAL	TOTAL DE A = 1
A ARARA FUGIU DA GAIOLA	TOTAL DE A = 7

4. Faça um programa que receba uma frase qualquer informada via teclado e imprima a quantidade de PALAVRAS existentes na frase.

Entrada

O arquivo de entrada contém uma frase qualquer informada.

Saída

Imprima o total de PALAVRAS existentes nesta frase, suponha que pode existir mais de um espaço em branco entre as palavras.

Exemplos de Entrada			Exemplos de Saída	
HOJE	FAREMOS	NOSSO	DESAFIO	TOTAL DE PALAVRAS = 4
HOJE V	OU ME DAR MU	IITO BEM		TOTAL DE PALAVRAS = 6
A ARARA FUGIU				TOTAL DE PALAVRAS = 3

5. Elabore um programa que obtenha a série de Fibonacci com **N** termos, o valor de **N** será informado como entrada em uma variável inteira. A Série de Fibonacci é assim definida: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Entrada

O valor da variável **N** representará a quantidade de termos que deverão ser gerados.

Saída

Imprima a sequência de Fibonacci até o termo.

Exemplos de Entrada	Exemplos de Saída
5	11235
10	1 1 2 3 5 8 13 21 34 55
4	1123

6. Faça um programa que receba uma frase qualquer informada via teclado e imprima a maior palavra desta frase, caso exista mais de uma palavra com a mesma quantidade de letras da maior exibir a primeira encontrada.

Entrada

O arquivo de entrada contém uma frase qualquer informada.

Saída

Imprima a maior palavra encontrada.

Exemplos de Entrada	Exemplos de Saída
Hoje é o desafio vai ser legal	Maior Palavra = desafio
Amanhã é quarta e eu vou à praia	Maior Palavra = Amanhã

7. Faça um programa que calcule o fatorial do número resultado da subtração da soma dos números pares pela soma dos números ímpares existentes no intervalo entre [1; 50].

Entrada

Não recebe nada.

Saída

Imprima o valor do fatorial.

Exemplos de Entrada	Exemplos de Saída
[1 6]	6
[1 10]	120
[1 50]	15.511.210.043.330.985.984.000.000

8. Elabore um programa que permita achar as raízes de uma equação do segundo grau da forma: $ax^2 + bx + c = 0$. Serão informados os coeficientes da equação, ou seja, os valores de **a**, **b** e **c**.

Entrada

Recebe os coeficientes da equação.

Saída

Imprima o valor das raízes da equação.

Exemplos de Entrada	Exemplos de Saída
[1 -5 4]	X1 = 1 X2 = 4
[1 2 1]	X1 = X2 = -1
[7 6 2]	RAÍZES INDETERMINADAS