CHENNAI MATHEMATICAL INSTITUTE

MSc Applications of Mathematics Entrance Examination $18~{ m May}~2015$

T							
I٢	${f st}$	rı	C	t. 17	വ	ทร	•

• Enter your Registration Number here CMI PG-						
• Enter the name of the city where you write this test:						

- The allowed time is 3 hours.
- This examination has two parts. Part A has multiple-choice questions, while questions in Part B require detailed answers.
- The score in Part A will be used for screening purposes. Your answers to the questions in Part B will be marked only if your score in Part A places you over the cut-off. However, the scores in both the sections will be taken into account to decide whether you qualify for the interview.
- Answers to questions in Part A must be recorded on the sheet provided for the purpose.
- You may use the blank pages at the end for your rough-work.

For office use only

Part B

Qno	1	2	3	4	5	6	7	8	9	10	11	12
Marks												

	Part A	Part B	Total
Score			

CHENNAI MATHEMATICAL INSTITUTE

MSc Applications of Mathematics Entrance Examination $18~{
m May}~2015$

• Registration Number: CMI PG-							
You must record your answers to Part A here by filling in the appropriate circles: For example, if your answer to question number 7 is (A) and (D), record it as follows:							
7.	■ B C						
	Part A						
1.	(A) (B) (C) (D)						
2.	(A) (B) (C) (D)						
3.	(A) (B) (C) (D)						
4.	(A) (B) (C) (D)						
5.	(A) (B) (C) (D)						
6.	(A) (B) (C) (D)						
7.	(A) (B) (C) (D)						
8.	(A) (B) (C) (D)						
9.	(A) (B) (C) (D)						
10.	(A) (B) (C) (D)						

Important

The score in Part A will be used for screening purposes. Your answers to the questions in Part B will be marked only if your score in Part A places you over the cut-off. However, the scores in both the sections will be taken into account to decide whether you qualify for the interview.

Part A

This section consists of <u>Ten</u> (10) multiple-choice questions, each with one or more correct answers. Record your answers on the attached sheet by filling in the appropriate circles.

Each question carries 5 marks. A solution receives credit if and only if <u>all the correct answers</u> are chosen, and no incorrect answer is chosen.

- 1. Let $p(x) = x^n + \sum_{k=0}^{n-1} a_k x^k$ and $q(x) = x^n + \sum_{k=0}^{n-1} b_k x^k$ be two polynomials with real coefficients such that x = 3 is a common root of the equations p(x) = 0 and q(x) = 0. Suppose r(x) is the remainder when p(x) is divided by the polynomial q(x). Then we can conclude that
 - (A) r(3) = 0.
 - (B) $a_0 = b_0$.
 - (C) $3a_1 + a_0 = 3b_1 + b_0$.
 - (D) r(x) = p(x) q(x).
- 2. Let $p(x) = x^n + \sum_{k=0}^{n-1} a_k x^k$ and $q(x) = x^n + \sum_{k=0}^{n-1} b_k x^k$ be two polynomials with real coefficients such that $n \ge 4$ is even and $a_{n-1} < b_{n-1}$. Let f(x) be a function such that $p(x) \le f(x) \le q(x)$ for all $x \in \mathbb{R}$. Then we can conclude that
 - (A) f(x) is a bounded function on R.
 - (B) f(x) is a continuous function on R.
 - (C) There exists $x_0 \in \mathbb{R}$ such that $f(x_0) = 0$.
 - (D) f(x) is continuous at least at one point $x_0 \in \mathbb{R}$.
- 3. Let $f(x) = x^2 + \frac{1}{x^2}$ for $x \in (0, \infty)$. Then
 - (A) f is a continuous function on $(0, \infty)$.
 - (B) f is a uniformly continuous function on $(0, \infty)$.
 - (C) f attains its infimum on $(0, \infty)$.
 - (D) f attains its supremum on $(0, \infty)$.
- 4. Which of the following functions are continuous on R?
 - (A) $f(x) = x \cos(x)$ for x > 0, $f(x) = -x \cos(x)$ for x < 0 and f(0) = 0.
 - (B) $g(x) = \frac{\sin(x)}{x}$ for x > 0, $g(x) = \frac{-\sin(x)}{x}$ for x < 0 and g(0) = 1.
 - (C) h(x) = x for x > 0, h(x) = -x for x < 0 and h(0) = 0.
 - (D) $u(x) = e^x 1$ for x > 0, $u(x) = 1 e^{-x}$ for x < 0 and u(0) = 0.

- 5. In which of the following cases is the series $\sum_n a_n$ absolutely convergent?
 - (A) $a_n = (-1)^n \frac{1}{n}$.
 - (B) $a_n = (-1)^n \frac{(1-n^2)}{(1+n^4)}$.
 - (C) $a_n = (1 + (-1)^n 3)^{-n} n^2$.
 - (D) $a_n = (1 + (-1)^n 2)^{-n} n^2$.
- 6. Let a_n be a sequence of strictly positive numbers such that $\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=2$. Then
 - (A) the radius of convergence of the series $\sum_n a_n x^n$ is $\frac{1}{2}$.
 - (B) the radius of convergence of the series $\sum_{n} \frac{1}{a_n} x^n$ is $\frac{1}{2}$.
 - (C) the radius of convergence of the series $\sum_{n} (a_n)^2 x^n$ is 4.
 - (D) the radius of convergence of the series $\sum_{n} (a_n)^n x^n$ is ∞ .
- 7. Which of the following functions is differentiable at x = 0? (Here |a| denotes the absolute value of a real number a).
 - (A) $f(x) = |x|(e^{-|x|} 1)$.
 - (B) $g(x) = x(e^{-|x|} 1)$.
 - (C) $h(x) = (e^{-|x|} 1)$.
 - (D) $u(x) = x|e^{-|x|} 1|$.
- 8. Let p(x) be an odd degree polynomial and let $q(x) = (p(x))^2 + 2p(x) 2$.
 - (A) The equation q(x) = p(x) admits at least two distinct real solutions.
 - (B) The equation q(x) = 0 admits at least two distinct real solutions.
 - (C) The equation p(x)q(x) = 4 admits at least two distinct real solutions.
 - (D) The equation p(x) = 0 admits at least two distinct real solutions.
- 9. Let $A = ((a_{ij}))$ be an $n \times n$ non-singular symmetric matrix such that each a_{ij} is a positive integer. Then we can conclude that
 - (A) the determinant of A is a positive integer.
 - (B) the trace of A is a positive integer.
 - (C) the matrix A^{-1} has positive entries.
 - (D) the matrix A^2 has positive entries.
- 10. Let $A = ((a_{ij}))$ be an $n \times n$ non-singular matrix such that each a_{ij} is a real number. Then we can conclude that (here I_n denotes the $n \times n$ identity matrix and A^t denotes the transpose of A)
 - (A) The matrix $I_n + A^2$ is a positive definite matrix.
 - (B) The matrix $I_n + AA^t$ is a positive definite matrix.
 - (C) The matrix $I_n + A$ is a positive definite matrix.
 - (D) The matrix $I_n + \frac{1}{2}(A + A^t)$ is a positive definite matrix.

Part B

Answer any five questions. Each question carries 10 marks. To get full credit, you must justify your answers.

- 1. Let Γ be a set with n elements and Λ be a set with m elements with $1 \leq n < m$. Find
 - (a) the number of all mappings (functions) from Γ to Λ .
 - (b) the number of all one-to-one mappings (injective functions) from Γ to Λ .
 - (c) the number of all onto mappings (surjective functions) from Γ to Λ .
 - (d) the number of all one-to-one and onto mappings (bijective functions) from Γ to Λ .
- 2. Show that

$$1 + x \le e^x \ \forall x \in \mathsf{R}.$$

- 3. Let a < b be real numbers. Show that the interval (a, b) contains a rational number as well as an irrational number.
- 4. Show that for all integers $k, r \geq 1$

$$\sum_{m=0}^{r} {m+k-1 \choose k-1} = {r+k \choose k}.$$

5. Let $f: \mathsf{R} \mapsto \mathsf{R}$ be defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ x^4 & \text{if } x \text{ is irrational.} \end{cases}$$

Is f differentiable at x = 0?

- 6. Let $f_n:[0,1] \mapsto \mathsf{R}$ be a sequence of continuous functions. Suppose that f_n converges uniformly to f. Show that f is continuous.
- 7. Let A, B be $n \times n$ matrices. Show that

$$rank(AB) \le min(rank(A), rank(B)).$$

8. Let A, B be $n \times n$ matrices and c, d be $n \times 1$ vectors such that the matrix equations

$$A\mathbf{x} = \mathbf{c}$$

$$B\mathbf{x} = \mathbf{d}$$

are consistent, i.e., each equation admits a solution. Can we conclude that

$$(A+B)\mathbf{x} = (\mathbf{c} + \mathbf{d})$$

is also consistent? Prove if true or give a counter example if not true.