MA 502 - Análise I - Turma Z

Prova No 1

05/09/2011

RA.....Nome....

Ao resolver cada questão justifique suas afirmações, explicando os resultados utilizados.

- 1. Dada uma aplicação $f:X\to Y,$ prove que as seguintes condições são equivalentes:
 - (a) f é injetiva.
 - (b) $f^{-1}(f(A)) = A$ para todo $A \subset X$.
 - (c) $f(A \cap B) = f(A) \cap f(B)$ para todo $A, B \subset X$.
 - 2. (a) Prove que $n^3 + 3n$ é múltiplo de 3 para cada $n \in \mathbb{N}$.
 - (b) Seja A um subconjunto não vazio de $\mathbb N$ tal que

$$m, n \in A \Leftrightarrow mn \in A$$
.

Prove que existe $m \in \mathbb{N}$ tal que $A = \{m^k : k \in \mathbb{N}\}.$

3. Seja $P_n(\mathbb{Z})$ o conjunto das funções da forma

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

com $a_k \in \mathbb{Z}$, ou seja $\mathbb{P}_n(\mathbb{Z})$ é o conjunto dos polinômios de grau menor ou igual a n, com coeficientes inteiros. Seja $P(\mathbb{Z}) = \bigcup_{n=0}^{\infty} P_n(\mathbb{Z})$.

- (a) Prove que $P_n(\mathbb{Z})$ é enumerável para cada $n \geq 0$.
- (b) Prove que $P(\mathbb{Z})$ é enumerável.
- 4. Sejam

$$A = \{x \in \mathbb{R} : x + 2 < |3x + 1|\}, \qquad B = \{1/x : x \in A\}.$$

- (a) Expresse A e B em notação de intervalos.
- (b) Determine $\sup A$, $\inf A$, $\sup B$ e $\inf B$ caso existam.
- 5. Seja $(x_n)_{n=1}^{\infty}$ definida por

$$x_1 = \sqrt{2}, \qquad x_n = \sqrt{2x_{n-1}} \text{ se } n \ge 2.$$

- (a) Prove que $x_n \leq x_{n+1}$ para cada $n \in \mathbb{N}$.
- (b) Prove que $x_n \leq 2$ para cada $n \in \mathbb{N}$.
- (c) Encontre o supremo do conjunto $\{x_n : n \in \mathbb{N}\}$. Justifique sua resposta.