QUALIFYING EXAMINATION IN DIFFERENTIAL EQUATIONS, FALL '96

Department of Mathematics, Kansas State University

(Try to get as many points as you can.)

1. 1) Find all the solutions of the equations:

- $\begin{array}{ll} \text{(a) (1 point)} & x\frac{\partial u}{\partial y} + y\frac{\partial u}{\partial x} = 0\,;\\ \text{(b) (2 points)} & x\frac{\partial u}{\partial y} + y\frac{\partial u}{\partial x} = 1\,;\\ \text{(c) (2 points)} & x\frac{\partial u}{\partial y} + y\frac{\partial u}{\partial x} = u\,; \end{array}$
- 2) (2 points) Solve the Cauchy problem:

$$x \frac{\partial u}{\partial y} + y \frac{\partial u}{\partial x} = u, \qquad u(x,y) = \sin(x-y)$$
 on the line $y = 1 - x$.

- # 2. (4 points) What is a well-posed problem? Give an example.
- # 3. (4 points) State a maximum principle for the solutions of the heat equation.
- # 4. (a) (2 points) Give an example of a function which is not differentiable in the classical sense but has a distributional (generalized) derivative in L_{loc}^2 .
- (b) (3 points) Give a definition of the Sobolev space $W^{m,p}(\Omega)$ (the same as $W_p^m(\Omega)$), where $1 \leq p \leq p$ $+\infty$, m is a positive integer, Ω is a bounded domain in \mathbb{R}^n with smooth boundary.
 - # 5. (5 points) Find the solution of the initial boundary value problem:

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} = 0, \qquad t > 0, \quad 0 < x < 1,$$

$$u(t,0) = u(t,1) = 0,$$

$$u(0,x) = e^{-x} \sin(11\pi x).$$

6. (5 points) Solve the following boundary value problem in the square $\Omega = \{(x,y): 0 < x, y < 1\}$:

$$-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - 2\pi^2 u = \sin(\pi x)\sin(\pi y), \ (x,y) \in \Omega, \qquad u\big|_{(x,y) \in \partial \Omega} = 0.$$

7. (5 points) Let u(x) be the solution of the following boundary value problem in the disk $\Omega =$ $\{(x,y) \in \mathbb{R}^2 : |x|^2 + |y|^2 < 1\}$:

$$-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + u \, = \, 0 \, , \quad (x,y) \in \Omega; \qquad u(x,y) \big|_{(x,y) \in \partial \Omega} \, = \, \frac{y}{\sqrt{|x|^2 + |y|^2}} \, .$$

Typeset by A_MS -T_EX

Without solving the problem, show that $-1 \le u(x,y) \le 1$ for all $(x,y) \in \Omega$.

8. (5 points) For a solution $\phi(t,x)$ of the Cauchy problem

$$\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} = 0, \quad \phi(0, x) = f(x), \quad \frac{\partial \phi}{\partial t}(0, x) = 0,$$

show that if $f \in L^p(\mathbb{R}^1)$, for some $p, 1 \leq p \leq +\infty$, then, $\phi(t,\cdot) \in L^p(\mathbb{R}^1)$, as well, and estimate $\sup_t \|\phi(t,\cdot)\|_{L^p}$ in terms of the L^p -norm of f.

9. (10 points) Consider the following hyperbolic equation on \mathbb{R}^1 :

$$\frac{\partial^2 \phi}{\partial t^2} - (1 - \frac{1}{2} \cos^2 x) \frac{\partial^2 \phi}{\partial x^2} = 0.$$

Let u and v be the solutions of this equation corresponding to the initial conditions

$$u(0,x) = u_0(x), \quad \frac{\partial u}{\partial t}(0,x) = u_1(x),$$

and

$$v(0,x) = v_0(x), \quad \frac{\partial v}{\partial t}(0,x) = v_1(x).$$

Show that if

$$u_0(x) = v_0(x),$$
 $u_1(x) = v_1(x),$ for all x in the interval $[-1, 1],$

then u(t,x) = v(t,x) for all (t,x) in the triangle $\{0 \le t \le 1, |x| \le 1-t\}$. (You may assume that the solutions u and v, and all the initial data, are as smooth as you wish.)

10. (10 points) Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the following initial boundary value problem:

$$u_t = a^2 \Delta u \quad t > 0, \ x \in \Omega$$
$$u(0, x) = f(x), \quad x \in \Omega$$
$$\tau \frac{\partial u}{\partial \nu} + \sigma u = 0, \quad (t, x) \in [0, T] \times \partial \Omega,$$

where a, τ and σ are positive constants. Show that

$$\int_{\Omega} |u(t,x)|^2 \, dx$$

does not increase with t. Use this fact to prove the uniqueness of the (appropriately smooth) solutions.

Show that the energy,

$$E(t) = \int_{\Omega} |\nabla u|^2 dx + \int_{\partial \Omega} \frac{\sigma}{\tau} |u|^2 ds,$$

does not increase with t.