MSME IDEA HACKATHON 4.0

1. Title of proposed idea/innovation:

ELECTRIC VEHICLE WITH SELF CHARGING CAPABILITIES USING KINETIC ENERGY HARVESTING

2. Briefly explain newness/uniqueness of the innovation

☐ Continuous Energy Generation: Unlike traditional EVs that depend solely on external charging, this technology allows vehicles to generate energy while				
in motion. This capability significantly extends driving range and reduces				
reliance on charging infrastructure.				
☐ Kinetic Energy Utilization : By capturing energy from vehicle movements—such as acceleration, braking, and cornering—this system converts mechanical energy into electrical energy, creating a self-sustaining energy cycle.				
□ Enhanced Efficiency : Integrating kinetic energy harvesting into EVs improves overall energy efficiency. This means better optimization of battery usage, which minimizes energy waste and enhances the vehicle's performance.				
□ Reduced Environmental Impact : By decreasing the frequency of required charging, this technology supports a more sustainable transportation model. It lessens the demand on power grids and reduces carbon emissions associated with electricity generation.				
☐ Innovative Materials and Design : The development may involve advanced materials and design strategies that maximize energy capture, resulting in a lighter and more efficient vehicle without sacrificing performance.				

3. Concept & Objective

_		_	
Con	20	nt	•
LUII	LE	IJι	
			-

Kinetic Energy Recovery

Energy Storage

Dynamic Energy Generation

Integrated Control Systems

Benefits

Innovation Impact

Objectives:

- Enhance Energy Efficiency: Maximize energy use from harvested kinetic sources.
- Extend Driving Range: Increase operational range through continuous energy generation.
- **Reduce Charging Dependency:** Minimize reliance on external charging infrastructure.
- **Promote Sustainability:** Lower environmental impact by utilizing renewable energy from motion.
- Innovate Energy Capture Technologies: Develop advanced systems for effective kinetic energy harvesting.
- Improve Vehicle Performance: Optimize performance through smart energy management.
- Increase Consumer Adoption: Address range anxiety and charging convenience to attract more users.

4. Specify the potential areas of application in industry/market in brief.

1. Urban Transportation

Ideal for city buses and taxis, reducing operational costs and emissions while enhancing efficiency in urban mobility.

2. Logistics and Delivery Services

Applications in delivery vans and trucks can lead to lower fuel costs and increased range, improving the sustainability of supply chains.

3. Public Transit Systems

Integration into public transport systems can minimize downtime at charging stations and improve service reliability.

4. Personal Vehicles

Electric cars equipped with this technology can attract consumers seeking longer ranges and reduced charging needs.

5. Commercial Fleets

Businesses can utilize self-charging vehicles for company fleets, optimizing costs and sustainability.

6. Recreational Vehicles

Application in electric bikes, scooters, and RVs can enhance mobility and reduce charging frequency for leisure users.

7. Heavy Machinery

Construction and agricultural machinery can benefit from kinetic energy harvesting to extend operational time without frequent refueling.

5. Briefly provide the market potential of idea/innovation.

- Growing Demand for EVs: With global electric vehicle sales projected to reach over 30 million units by 2030, innovations that enhance efficiency and range will attract consumer interest.
- **Sustainability Initiatives**: Increasing regulatory pressures and consumer preferences for sustainable transportation solutions create a favorable environment for self-charging technologies.

- **Cost Savings**: By reducing dependence on charging infrastructure, businesses and consumers can significantly lower operational costs, making the technology attractive in sectors like logistics, public transit, and personal mobility.
- **Technological Advancements**: Continuous improvements in battery and energy harvesting technologies enhance the viability of this innovation, appealing to manufacturers looking to differentiate their products.

6. Block diagram / Flow chart

