Artificial Intelligence

Lecture 4: Informed Search & Local Search

Credit: Ansaf Salleb-Aouissi, and "Artificial Intelligence: A Modern Approach", Stuart Russell and Peter Norvig, and "The Elements of Statistical Learning", Trevor Hastie, Robert Tibshirani, and Jerome Friedman, and "Machine Learning", Tom Mitchell.

Informed search

Use domain knowledge!

- Are we getting close to the goal?
- Use a heuristic function that estimates how close a state is to the goal
- A heuristic does NOT have to be perfect!
- Example of strategies:
 - 1. Greedy best-first search
 - 2. A* search
 - 3. IDA*

Informed search

The distance is the straight-line distance. The goal is to get to Sault Ste Marie, so all the distances are from each city to Sault Ste Marie.

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

Greedy search

- Evaluation function h(n) (heuristic)
- *h*(*n*) estimates the cost from *n* to the goal
- Example: $h_{SLD}(n)$ = straight-line distance from n to Sault Ste Marie
- Greedy search expands the node that **appears** to be closest to goal

Greedy search: Pseudo-code

```
function Greedy-Best-First-Search(initialState, goalTest)
     returns Success or Failure: /* Cost f(n) = h(n) */
     frontier = Heap.new(initialState)
     explored = Set.new()
     while not frontier.isEmpty():
          state = frontier.deleteMin()
          explored.add(state)
          if goalTest(state):
               return Success(state)
          for neighbor in state.neighbors():
               if neighbor not in frontier \cup explored:
                    frontier.insert(neighbor)
               else if neighbor in frontier:
                    frontier.decreaseKey(neighbor)
```

The initial state:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

After expanding St Louis:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156
1077 (177)	

After expanding Chicago:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

After expanding Duluth:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

Examples using the map (Greedy search)

Start: Saint Louis

Goal: Sault Ste Marie

Examples using the map (Greedy search)

Start: Las Vegas

Goal: Calgary

A* search

- Minimize the total estimated solution cost
- Combines:
 - -g(n): cost to reach node n
 - -h(n): cost to get from n to the goal
 - -f(n) = g(n) + h(n)

f(n) is the estimated cost of the cheapest solution through n

A* search: Pseudo-code

```
function A-STAR-SEARCH(initialState, goalTest)
     returns Success or Failure: /* Cost f(n) = g(n) + h(n) */
     frontier = Heap.new(initialState)
     explored = Set.new()
     while not frontier.isEmpty():
          state = frontier.deleteMin()
          explored.add(state)
          if goalTest(state):
               return Success(state)
          for neighbor in state.neighbors():
               if neighbor not in frontier \cup explored:
                     frontier.insert(neighbor)
               else if neighbor in frontier:
                     frontier.decreaseKey(neighbor)
```

The initial state:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

After expanding St Louis:

g(n)=104 h(n)=107f(n)=211

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

After expanding Chicago:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156
. ,	

After expanding Kansas City:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156
williped	130

After expanding Little Rock:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

After expanding Nashville:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
Saint Louis	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

After expanding Pittsburgh:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
Portland	452
Raleigh	251
	180
Salt Lake City	344
San Francisco	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

After expanding Toronto:

Atlanta	272
Boston	240
Calgary	334
Charleston	322
Chicago	107
Dallas	303
Denver	270
Duluth	110
El Paso	370
Helena	254
Houston	332
Kansas City	176
Las Vegas	418
Little Rock	240
Los Angeles	484
Miami	389
Montreal	193
Nashville	221
New Orleans	322
New York	195
Oklahoma City	237
Omaha	150
Phoenix	396
Pittsburgh	152
	452
Raleigh	251
	180
4	344
	499
Santa Fe	318
Sault Ste Marie	0
Seattle	434
Toronto	90
Vancouver	432
Washington	238
Winnipeg	156

Examples using the map (A* search)

Start: Saint Louis

Goal: Sault Ste Marie

Examples using the map (A* search)

Start: Las Vegas

Goal: Calgary

Admissible heuristics

A good heuristic can be powerful.

Only if it is of a "good quality"

A good heuristic must be admissible.

Admissible heuristics

- An admissible heuristic never overestimates the cost to reach the goal, that is it is optimistic
- A heuristic h is admissible if

 $\forall node \ n, \ h(n) \leq h^*(n)$

where h* is true cost to reach the goal from n.

• h_{SLD} (used as a heuristic in the map example) is admissible because it is by definition the shortest distance (straight line) between two points.

A* Optimality

If h(n) is admissible, A* using tree search is optimal.

Rationale:

- Suppose G_o is the optimal goal. Suppose G_s is some suboptimal goal. Suppose *n* is on the shortest path to *Go*.
- $f(G_s) = g(G_s)$ since $h(G_s) = 0$ $f(G_0) = g(G_0)$ since $h(G_0) = 0$ $g(G_s) > g(G_o)$ since G_s is suboptimal Then $f(G_s) > f(G_0)$...(1)
- $h(n) \le h^*(n)$ since h is admissible $g(n) + h(n) \le g(n) + h^*(n) = g(G_0) = f(G_0)$ Then, $f(n) \leq f(G_0) \dots (2)$

From (1) and (2) $f(G_s) > f(n)$, so A* will never select G_s during the search and hence A* is optimal.

A*: PF Metrics

- Complete: Yes.
- Time: exponential
- Space: keeps every node in memory, the biggest problem
- Optimal: Yes!

Heuristics

- The solution is 26 steps long.
- $h_1(n)$ = number of misplaced tiles
- $h_1(n) = 8$
- $h_2(n)$ =total Manhattan distance (sum of the horizontal and vertical distances).

• Tiles 1 to 8 in the start state gives: $h_2 = 3+1+2+2+3+3+2 = 18$ which does not overestimate the true solution.

 7
 2
 4

 5
 6

 8
 3
 1

6 7 8

Start State

Goal State

Recap: Search Methods

- Uniformed search: Use no domain knowledge.
 - BFS, DFS, DLS, IDS, UCS
- Informed search: Use a heuristic function that estimates how close a state is to the goal.
 - Greedy search, A*, IDA*.

Recap: Search Methods

We can organize the algorithms into pairs where the first proceeds by layers, and the other proceeds by subtrees.

(1) Iterate on Node Depth:

- BFS searches layers of increasing node depth.
- IDS searches subtrees of increasing node depth.

(2) Iterate on Path Cost + Heuristic Function:

- A* searches layers of increasing path cost + heuristic function.
- IDA* searches subtrees of increasing path cost + heuristic function.

Recap: Search Methods

Which cost function?

- UCS searches layers of increasing path cost.
- Greedy best first search searches layers of increasing heuristic function.
- A* search searches layers of increasing path cost + heuristic function.

主要以爬山,模拟退火和遗传算法来启发局部 搜索的思想,但不限于这些方法,关于其中的 概率函数也并不是一定,我们需要理解思路, 并提出创新和优化的解答

- Search algorithms seen so far are designed to explore search spaces systematically.
- Problems: observable, deterministic, known environments
- where the solution is a sequence of actions.
- Real-World problems are more complex.
- When a goal is found, the path to that goal constitutes a solution to the problem. But, depending on the applications, the path may or may not matter.
- If the path does not matter/systematic search is not possible, then consider another class of algorithms.

- In such cases, we can use iterative improvement algorithms, Local search.
- Also useful in pure **optimization problems** where the goal is to find the best state according to an **optimization function**.

• Examples:

- Integrated circuit design, telecommunications network optimization, etc.
- 8-queen: what matters is the final configuration of the puzzle, not the intermediary steps to reach it.

- Idea: keep a single "current" state, and try to improve it.
- Move only to neighbors of that node.
- Advantages:
 - 1. No need to maintain a search tree.
 - 2. Use very little memory.
 - 3. Can often find good enough solutions in continuous or large state spaces.

Local Search Algorithms:

- Hill climbing (steepest ascent/descent).
- Simulated Annealing: inspired by statistical physics.
- Local beam search.
- Genetic algorithms: inspired by evolutionary biology.

State space landscape

Hill climbing

- Also called greedy local search.
- Looks only to immediate good neighbors and not beyond.
- Search moves uphill: moves in the direction of increasing elevation/value to find the top of the mountain.
- Terminates when it reaches a peak.
- Can terminate with a local maximum, global maximum or can get stuck and no progress is possible. 不确定找到哪个maximum
- A node is a state and a value.

Hill climbing: Pseudo-code

```
function HILL-CLIMBING(initialState)
    returns State that is a local maximum
    initialize current with initialState
    loop do
         neighbor = a highest-valued successor of current
         if neighbor.value \leq current.value:
             return current.state
         current = neighbor
```

Hill climbing

Other variants of hill climbing include

- **Sideways moves** escape from a plateau where best successor has same value as the current state. 有一定概率从shoulder走到更优解
- Random-restart hill climbing overcomes local maxima: keep trying! (either find a goal or get several possible solution and pick the max). ^{随机从多个地方开始爬山}
- **Stochastic** hill climbing chooses at random among the uphill moves. 以一定的随即规则在所有大于 current的节点里选择邻居

Hill climbing

- **Hill climbing** effective in general but depends on shape of the landscape. Successful in many real-problems after a reasonable number of restarts.
- **Local beam search** maintains *k* states instead of one state. Select the *k* best successor, and useful information is passed among the states.
- **Stochastic beam search** choose *k* successors are random. Helps alleviate the problem of the states agglomerating around the same part of the state space.

- Genetic algorithm (GA) is a variant of stochastic beam search.
- Successor states are generated by combining two parents rather by modifying a single state.
- The process is inspired by natural selection.
- Starts with *k* randomly generated states, called population. Each state is an individual.
- An individual is usually represented by a string of 0's and 1's, or digits, a finite set.
- The objective function is called **fitness function**: better states have high values of fitness function.

• In the 8-queen problem, an individual can be represented by a **string** digits 1 to 8, that represents the position of the 8 queens in

the 8 columns.

- The objective function is called **fitness function**: better states have high values of fitness function.
- Possible fitness function is the number of non-attacking pairs of queens.
- Fitness function of the solution: 28.

- Pairs of individuals are selected at random for reproduction w.r.t. some probabilities.
- A crossover point is chosen randomly in the string.
- Offspring are created by crossing the parents at the crossover point.
- Each element in the string is also subject to some **mutation** with a small probability.

以某种概率select parents to crossover

Generate successors from pairs of states.

Genetic algorithms: Pseudo-code

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
          FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      for i = 1 to Size(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          child \leftarrow REPRODUCE(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
```

```
function REPRODUCE(x, y) returns an individual inputs: x, y, parent individuals n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

To be continued

Simulated Annealing

Hill Climbing → Simulated Annealing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum current \leftarrow problem.INITIAL while true do neighbor \leftarrow a highest-valued successor state of current if VALUE(neighbor) \leq VALUE(current) then return current current \leftarrow neighbor
```

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) **returns** a solution state

```
current \leftarrow problem.INITIAL

for t = 1 to \infty do

T \leftarrow schedule(t)

if T = 0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow \text{VALUE}(current) - \text{VALUE}(next)
```

if $\Delta E < 0$ then $current \leftarrow next$ //for maximization

else $current \leftarrow next$ only with probability $e^{-\Delta E/T}$

即随机选取一个邻居, 比当前好则替换他,否 则以e^(E/T)的概率替 换他,由函数分析, E 较小的时候概率函数大 ,被选择可能性较大, E较大的时候概率函数 小,被选择可能性较小