Sample Questions and Mark Schemes

1 The diagram shows the first three patterns in a series of dots.

(a) Complete the table below.

pattern number	1	2	3	4	5
number of dots	5	8	11		

[2]

[1]

(b) How many dots will be needed for pattern number 8?	
--	--

(c)	Which	pattern	needs	62	dots?	
(6)	VVIIICII	pattern	Heeus	UΖ	uotsi	

1	1	1

(d)	Write	down	a rule	connecting	the	number	of	dots	and	the	pattern	numbe	∍r.

[1]

Mark Scheme for Question 1

- Recognise, continue and generalise number patterns including finding expressions for the *n*th term
- · Use and interpret positive, negative and zero indices

Part	CF ¹	Mark	Answer	Further Information
(a)	Ag5	2	14 and 17	
(b)	Ag5	1	26	
(c)	Ag5	1	20	
(d)	Ag5	1	S = 3n + 2	Accept other letters
			or	
			Number of dots = 3 times pattern number then add 2	
	Total	5		•

¹ CF stands for Curriculum Framework. This column shows which part of the Curriculum Framework is being assessed in the question. The first letter, N, A or S, shows the main area of Mathematics: Number, Algebra or Space. The next letter shows the subtopic – e.g. Number is divided into Properties (p), Problem Solving (s) and Data Handling (d). The number shows which bullet point from that section of the Curriculum Framework is being assessed.

2	(a)	In 1998 an Australian bought a coin collection for \$17550. Before taking the collection home he had to pay a tax of 22% Calculate how much tax he paid.	, ,	
			\$	[1]
	(b)	The collection was originally owned by an American. He made a profit of 30% when he sold it to the Australian. Calculate the amount paid by the American.		
			\$	[1]
	(c)	The American was charged \$877.50 for selling the collection. Give the percentage of the sale price of \$17550.		
			%	[1]
	(d)	The collection was a mixture of bronze and silver coins in the The total number of coins in the collection was 4557.	e ratio 5 : 2.	

Mark Scheme for Question 2

Calculate how many coins were silver.

Question No. 2

• Calculate the percentage of a quantity; express one quantity as a percentage of another; recognise the notation of ratio, use ratio and direct proportion in context

_____ silver coins

[2]

Part	CF	Mark	Answer	Further Information
(a)	Ns1	1	3861	
(b)	Ns1	1	5	
(c)	Ns3	1	2 × 4557	1 mark for $\frac{2}{5}$ x 4557 seen
		1	1302	3
	Total	4		

3 The diagram shows a cylindrical can closed at both ends. The height of the can is 15 cm and its radius is 3.5 cm. The volume of the can is 500 ml.

Circumference of a circle = $2\pi r$ Area of a circle = πr^2 Volume of a cylinder = $\pi r^2 h$

(a) (i) Calculate the circumference of the circular end of the can. Give your answer to the nearest whole cm.

_____ cm [1]

(ii) Calculate the area of the circular end of the can. Give your answer to 1 decimal place.

_____ cm² [2]

(b) The height of another can is 12 cm. The area of its circular end is 24.6 cm². Calculate the volume of this can.

_____ cm³ [1]

Mark Scheme for Question 3

- Calculate the perimeter and area of triangles, quadrilaterals and circles, and the volumes derived from these shapes
- Understand approximation to specified numbers of significant figures and decimal places; give appropriate upper and lower bounds for data given to specified accuracy

Part	CF	Mark	Answer	Further Information
(a)(i)	Sm5	1	22	
(ii)	Sm5	1	38.4851	
	Ns4	1	38.5	
(b)	Sm5	1	295.2	
	Total	4		

4 Remove the brackets and simplify.

(a)
$$2(x+3)+3x$$

(b)
$$3(x + 2) - 2(x + 1)$$

(c)
$$(x+2)(x-3)$$

Mark Scheme for Question 4

Question No. 4

• Manipulate directed numbers; use brackets and extract common factors

Part	CF	Mark	Answer	Further Information
(a)	An4	1	2 <i>x</i> + 6	Mark is for correct removal of brackets
	An4	1	5 <i>x</i> + 6	Mark is for correct collection of terms Award both marks for correct answer even if working is not shown
(b)	An4	1	3x + 6 or -2x - 2	Mark is for correct removal of either brackets
	An4	1	x + 4	Mark is for correct collection of terms Award both marks for correct answer even if working is not shown Note : award 1 mark for <i>x</i> + 8
(c)	An4	1	$x^2 - 3x + 2x - 6$	Mark is for correct removal of brackets items in any order, e.g. $-3x + 2x + x^2 - x - 6$)
	An4	1	<i>x</i> ² – <i>x</i> – 6	Mark is for correct collection of terms Award both marks for correct answer even if working is not shown
	Total	6		

5

Each section on a circular board has a number between 1 and 20, as shown on the diagram. Starting each time at 18, and working **clockwise**, give the **first number** that satisfies the following conditions:

(a) is a prime number

_____[1]

(b) is a multiple of 2, 3, 4 and 6

_____[1]

(c) is a an odd square number

_____[1]

(d) is the square root of an even number on the board

_____[1]

Mark Scheme for Question 5

Question No. 5

• Use prime numbers, common factors and common multiples, squares, square roots and cubes of numbers

Part	CF	Mark	Answer	Further Information
(a)	Np4	1	13	
(b)	Np4	1	12	
(c)	Np4	1	9	
(d)	Np4	1	4	Accept 2
	Total	4		

6

NOT TO SCALE

A spinner, made in the shape of a **regular** pentagon, is shown.

O is the centre of the pentagon.

- (a) Calculate the size of:
 - (ii) angle x

 $X = _{0}[1]$

y = ____º [1]

5 1 2

The spinner is shaded and numbered as shown in this picture.

- (b) Calculate the probability that the spinner will:
 - (i) land on a black odd number. Give your answer as a fraction.

_____[1]

(ii) land on a white even number. Give your answer as a decimal.

_____[1]

(iii) not land on a grey number. Give your answer as a percentage.

_____ % [1]

Mark Scheme for Question 6

- Calculate unknown angles using the properties of: angles at a point, angles formed within parallel lines and angle properties of triangles and quadrilaterals
- · Calculate the probability of a single event

Part	CF	Mark	Answer	Further Information
(a) (i)	Sg2	1	72	
(ii)	Sg2	1	108	
(b) (i)	Nd3	1	$\left \begin{array}{c} 2 \\ \overline{5} \end{array} \right $	If probability is given
(ii)	Nd3	1	0.2 or .2	in wrong format,
(iii)	Nd3	1	80	penalise only once in this question
	Total	5		

7 (a) Complete the table below for the graph y = 2x - 3

X	-2	-1	0	1	2	3
У	-7			-1		3

_____[2]

(b) On the grid below draw the graphy of y = 2x - 3

(c) Write down the gradient of the graph y = 2x - 3

Gradient = _____ [1]

(d) The graph of y = x - 1 is also drawn on the grid above. Use your graph to solve the simultaneous equations: y = 2x - 3 and y = x - 1

X = _____

y = _____[2]

Mark Scheme for Question 7

- Draw and interpret the graphs of simple functions, use tables of values and find the gradient of straight line graphs
- Find the solution of linear and simple simultaneous equations using graphs

Part	CF	Mark	Answer	Further Information
(a) (b)	Ag1	1	-5, -3, 1 (missing values in this order) y y=2x-3 y y=2x-3 y 1 1 2 1 1 2 1 2 1 1 2 2 1 1 2 3 4 5 6 7 7 7 8 7 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8	Award 1 mark for one or two correct entries
(c)	Ag1	1	2	
(d)	Ag4	1	<i>x</i> = 2	
	Ag4	1	<i>y</i> = 1	
	Total	6		

8

In the diagram PQ is parallel to RS.

Find angles a, b, c and d.

$$b =$$
 [1]

$$c = \underline{\hspace{1cm}}^{\circ}$$
 [1]

Mark Scheme for Question 8

Question No. 8

 Calculate unknown angles using the properties of: angles at a point, angles formed within parallel lines and angle properties of triangles and quadrilaterals

Part	CF	Mark	Answer	Further Information
(a)	Sg2	1	50	
(b)	Sg2	1	90	
(c)	Sg2	1	40	
(d)	Sg2	1	40	
	Total	1		·