Министерство образования и науки Российской Федерации Федеральное государственное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчет по лабораторной работе No1 «КЛАССИФИКАЦИЯ» по дисциплине «Основы искусственного интеллекта»

Выполнил студент гр. R3236 Новиков Анатолий

Преподаватели: Михаил Каканов, Олег Евстафьев

1. Цель работы

Ознакомиться с алгоритмами машинного обучения. Познакомится с библиотекой sklearn.

2. Результаты экспериментов

Было проведено обучение 3х нейронных сетей:

- 1)SVC model
- 2)KNN model
- 3)Pipe model
- , их classification report приведены ниже

	precision	recall	f1-score	support
	2.21		0.01	
Walking	0.94	0.98	0.96	496
Walking Upstairs	0.93	0.96	0.94	471
Walking Downstairs	0.99	0.91	0.95	420
Sitting	0.94	0.89	0.91	491
Standing	0.91	0.95	0.93	532
Laying	1.00	1.00	1.00	537
accuracy			0.95	2947
macro avg	0.95	0.95	0.95	2947
weighted avg	0.95	0.95	0.95	2947

	precision	recall	f1-score	support
Walking	0.83	0.98	0.90	496
Walking Upstairs	0.90	0.89	0.89	471
Walking Downstairs	0.96	0.76	0.85	420
Sitting	0.88	0.86	0.87	491
Standing	0.87	0.89	0.88	532
Laying	1.00	0.99	1.00	537
accuracy			0.90	2947
macro avg	0.91	0.90	0.90	2947
weighted avg	0.91	0.90	0.90	2947

	recision	recall	f1-score	support
Walking	0.94	0.99	0.97	496
Walking Upstairs	0.95	0.94	0.95	471
Walking Downstairs	0.99	0.93	0.96	420
Sitting	0.97	0.88	0.92	491
Standing	0.89	0.97	0.93	532
Laying	1.00	0.99	1.00	537
accuracy macro avg weighted avg	0.96 0.96	0.95 0.95	0.95 0.95 0.95	2947 2947 2947

Данные модели были выбраны из-за их частой используемости и наличия в различных статьях по теме.

Для SVC взяты параметры kernel=rbf и gamma=auto — согласно примеру по использованию SVC на странице scikit-learn.

Для KneighborsClassifier взято число соседей 6, оно было подобрано сугубо эксперементальным путем

Разница между показателями precision и recall заключается в том, что precision представляет собой отношение числа семплов, верно классифицированных как Positive, к общему числу выборок с меткой Positive (распознанных правильно и неправильно). Precision измеряет точность модели при определении класса Positive; a recall рассчитывается как отношение числа Positive выборок, корректно классифицированных как Positive, к общему количеству Positive семплов. Recall измеряет способность модели обнаруживать выборки, относящиеся к классу Positive. Чем выше recall, тем больше Positive семплов было найдено. Показатель F1 – это средневзвешенное значение точности и отзыва, где балл F1 достигает своего лучшего значения в 1 и худшего в 0. Относительный вклад точности и отзыва в балл F1 равны. Формула для оценки F1: F1 = 2 * (precision * recall) / (precision + recall)

Весь код находится тут: https://github.com/ProudFaceOfSUiR/AI_lab1

3. Выводы

Все модели которые я обучал выводили неплохие результаты, лучше всего себя показала ріре модель.