ARTIFICIAL INTELLIGENCE

DECISION TREES

CS-632

Dr. Muhammad Aqib

University Institute of Information Technology PMAS-Arid Agriculture University Rawalpindi

DECISION TREES

- Falls in the category of supervised learning.
- Can be used for both, regression and classification problems.
- Uses the tree representation to solve the problem.
- Each leaf node corresponds to a class label.
- Attributes are represented on the internal node of the tree.
- Boolean function on discrete attributes can be represented using the decision tree.

DECISION TREE

- Used for decisions
- Understand by example
 - A loan company want to know the persons who will be interested in loans
 - Categories on basis of Age

DECISION TREE

 Lets suppose you have been given a problem to find whether your company will be in profit or loss?

Age	Competition	Туре	Profit
Old	Yes	Software	Down
Old	No	Software	Down
Old	No	Hardware	Down
Mid	Yes	Software	Down
Mid	Yes	Hardware	Down
Mid	No	Hardware	Up
Mid	No	Software	Up
New	Yes	Software	Up
New	No	Hardware	Up
New	No	Software	Up

- First of all, find root node
 - Some formulas to identify
 - Last attribute is class attribute and will be leaf of tree
 - Calculate Entropy of class attribute

ENTROPY CALCULATION

- Lets have P and N
 - P is positive signs
 - N for Negative signs

Entrophy (class)
$$= \frac{-P}{P+N} \log_2 \left(\frac{P}{P+N}\right) - \frac{N}{P+N} \log_2 \left(\frac{N}{P+N}\right)$$

$$P = 5 \qquad N = 5$$

$$= \frac{-5}{5+5} \log_2 \left(\frac{5}{10}\right) - \frac{5}{5+5} \log_2 \left(\frac{5}{5+5}\right)$$

$$= \frac{-5}{10} \log_2 \left(\frac{5}{10}\right) - \frac{5}{10} \log_2 \left(\frac{5}{10}\right)$$

$$= \frac{-5}{10} \log_2 \left(\frac{5}{10}\right) - \frac{5}{10} \log_2 \left(\frac{5}{10}\right)$$

- Now we calculate 3 things
- First of all Information gain

For each attribute $I(P_1,N_1) = \frac{P}{P+N} \log_2 \left(\frac{P}{P+N}\right) - \frac{N}{P+N} \log_2 \left(\frac{N}{P+N}\right)$ partition the training instances into

 When we use a node in a decision tree to partition the training instances into smaller subsets the entropy changes. Information gain is a measure of this change in entropy.

- Second Calculate Entropy
 - Entropy is the measure of uncertainty of a random variable, it characterizes
 the impurity of an arbitrary collection of examples. The higher the entropy
 more the information content.
- Third

= ZPi+Ni (I(Pi,Ni))

- Now will compare gain
 - Maximum gain attribute will be root

Age	Pi	Ni	I(Pi , Ni)
Old	0	3 \	0
Mid	2	2	1
New	3	0	0
	How many Up in Class attribute	How many Down in attribute	Class

 $\hfill\square$ If one of the number is zero then information gain is zero

☐ If Both are same then Information gain is 1

ENTROPY OF COMPLETE AGE ATTRIBUTE

Now will calculate Entropy of Age attribute

$$= \frac{0+3}{5+5}(0) + \frac{2+2}{5+5}(1) + \frac{3+0}{5+5}(0)$$

NOW GAIN

```
Gain = Entrophy - Entrophy (attribute)
Class
```

```
• Gain = Entropy of Class - Entropy (Age)
= 1 - 0.4
= 0.6
```

Now will calculate for rest of the attributes (Competition)

$$T(P_{i},N_{i}) = \frac{-1}{1+3} \log_{2}(\frac{1}{1+3}) - \frac{3}{4} \log_{2}(\frac{3}{1+3})$$

$$= \frac{1}{4} \log_{2}(\frac{1}{4}) - \frac{3}{4} \log_{2}(\frac{3}{1+3})$$

$$= 0.81127$$

$$T(P_{i},N_{i}) = \frac{-4}{6} \log_{2}(\frac{4}{6}) - \frac{2}{6} \log_{2}(\frac{3}{6})$$

$$= 0.91629S$$

TYPE

```
Type
                                 I (PI, NI)
                  Pi
                          Ni
                          3
  Soft wore
                           2
   Hazd ware
Entrophy = 1
Entrophy = 1
Entrophy (Type)
   =\frac{3+3}{5+5} (1) + (2+2) (1)
   =\frac{6}{10}+\frac{4}{10}=\frac{10}{10}=1
 Grain = class entrophy - Entrophy (Type)
```


?
It can be either Type or Competition

Now create table of Mid part only

Age	Competition	Type	Profit
mīd	Yes	software	Down
mīd	Yes	Hard ware	Down
mid	No	Hardware	UP
mid	No	Software	VP

- Now find information gain of Competition and type
 - Greater value (attribute) will be below Mid

```
Competition

Yes

Pi Ni I(Pi,Ni)

No

2

I(Pi,Ni) = 0

I(Pi,Ni) = 0

Entrophy (competition)

= \frac{2}{4}(0) + \frac{2}{4}(0) = 0

Class

Class

= 1 - 0

= 1
```

GAIN OF TYPE

```
Software

Hordwore

Entrophy (Type)

Entrophy (Type)

The software

Entrophy (Type)

The software

Entrophy (Type)

The software

Entrophy (Type)

The software

The softw
```


Thank You