LCD1602 中文资料一

一:液晶显示器各种图形的显示原理 线段的显示:点阵图形式液晶由 M×N 个显示单元组成,假设 LCD 显示屏有 64 行,每行有 128 列,每 8 列对应 1 字节的 8 位,即每行由 16 字节,共 16×8=128 个点组成,屏上 64×16 个显示单元与显示 RAM 区 1024 字节相对应,每一字节的内容和显示屏上相应位置的亮暗对应。例如屏的第一行的亮暗由 RAM 区的 000H——00FH 的 16 字节的内容决定,当(000H)=FFH 时,则屏幕的左上角显示一条短亮线,长度为 8 个点;当(3FFH)=FFH 时,则屏幕的右下角显示一条短亮线;当(000H)=FFH,(001H)=00H,(002H)=00H,……(00EH)=00H,(00FH)=00H 时,则在屏幕的顶部显示一条由 8 段亮线和 8 条暗线组成的虚线。这就是 LCD 显示的基本原理。

字符的显示

用 LCD 显示一个字符时比较复杂,因为一个字符由 6×8 或 8×8 点阵组成,既要找到和显示屏幕上某几个位置对应的显示 RAM 区的 8 字节,还要使每字节的不同位为"1",其它的为"0",为"1"的点亮,为"0"的不亮。这样一来就组成某个字符。但由于内带字符发生器的控制器来说,显示字符就比较简单了,可以让控制器工作在文本方式,根据在 LCD 上开始显示的行列号及每行的列数找出显示 RAM 对应的地址,设立光标,在此送上该字符对应的代码即可。

汉字的显示

汉字的显示一般采用图形的方式,事先从微机中提取要显示的汉字的点阵码(一般用字模提取软件),每个汉字占32B,分左右两半,各占16B,左边为1、3、5······右边为2、4、6······根据在LCD上开始显示的行列号及每行的列数可找出显示 RAM 对应的地址,设立光标,送上要显示的汉字的第一字节,光标位置加1,送第二个字节,换行按列对齐,送第三个字节······直到32B显示完就可以LCD上得到一个完整汉字

二: 1602 字符型 LCD 简介

1 • 字符型液晶显示模块是一种专门用于显示字母、数字、符号等点阵式 LCD,目前常用 16*1, 16*2, 20*2 和 40*2 行等的模块。下面以长沙太阳人电子有限公司的 1602 字符型液晶显示器为例,介绍其用法。一般 1602 字符型液晶显示器实物如图

图一

2 • 1602LCD 的基本参数及引脚功能

1602LCD 分为带背光和不带背光两种,基控制器大部分为 HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别,两者尺寸差别如下图

图二

3 LCD1602 主要技术参数:

显示容量:16×2 个字符

芯片工作电压:4.5-5.5V

工作电流:2.0mA(5.0V)

模块最佳工作电压:5.0V

字符尺寸:2.95×4.35(W×H)mm

4`引脚功能说明

1602LCD 采用标准的 14 脚(无背光)或 16 脚(带背光)接口,各引脚接口说明如表

编号	符号	引脚说明	编号	符号	引脚说明
1	VSS	电源地	9	D2	数据
2	VDD	电源正极	10	D3	数据
3	VL	液晶显示偏压	11	D4	数据
4	RS	数据/命令选择	12	D5	数据
5	R/W	读/写选择	13	D6	数据
6	E	使能信号	14	D7	数据
7	DO	数据	15	BLA	背光源正极
8	D1	数据	16	BLK	背光源负极

表1 引脚接口说明表

第1脚: VSS 为地电源。

第2脚: VDD接5V正电源。

第 3 脚: VL 为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生"鬼影",使用时可以通过一个 10K 的电位器调整对比度。

第 4 脚: RS 为寄存器选择, 高电平时选择数据寄存器、低电平时选择指令寄存器。

第 5 脚: R/W 为读写信号线,高电平时进行读操作,低电平时进行写操作。当 RS 和 R/W 共同为低电平时可以写入指令或者显示地址,当 RS 为低电平 R/W 为高电平时可以读忙信号,当 RS 为高电平 R/W 为低电平时可以写入数据。

第6脚: E端为使能端, 当E端由高电平跳变成低电平时, 液晶模块执行命令。

第7~14 脚: D0~D7 为8位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

LCD1602 中文资料二(续一)

由于篇幅限制,此是LCD中文资料的续写,如访问上篇内容请点击: LCD1602 中文资料

6 1602 液晶模块内部的控制器共有 11 条控制指令,如下表所示

序号	指令	RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
1	清显示	0	0	0	0	0	0	0	0	0	1		
2	光标返回	0	0	0	0	0	0	0	0	1	*		
3	置输入模式	0	0	0	0	0	0	0	1	I/D	S		
4	显示开/关控制	0	0	0	0	0	0	1	D	С	В		
5	光标或字符移位	0	0	0	0	0	1	S/C	R/L	*	*		
6	置功能	0	0	0	0	1	DL	N	F	*	*		
7	置字符发生存贮器地址	0	0	0	1	字符发生存贮器地址							
8	置数据存贮器地址	0	0	1	显示	数据存贮器地址							
9	读忙标志或地址	0	1	BF	计数	数器地址							
10	写数到 CGRAM 或 DDRAM)	1	0	要写的数据内容									
11	从 CGRAM 或 DDRAM 读数	1	1	读出的数据内容									

1602 液晶模块的读写操作,屏幕和光标的操作都是通过指令编程来实现的。(说明 1 为高电平, 0 为低电平)

指令 1: 清显示,指令码 01H,光标复位到地址 00H 位置

指令 2: 光标复位, 光标返回到地址 00H

指令 3: 光标和显示位置设置 I/D, 光标移动方向, 高电平右移, 低电平左移, S: 屏幕上所有文字是否左移或右移, 高电平表示有效, 低电平表示无效。

指令 4:显示开关控制。D:控制整体的显示开与关,高电平表示开显示,低电平表示关显示。C:控制光标的开与关,高电平表示有光标,低电平表示无光标 B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。

指令 5: 光标或显示移位 S/C: 高电平时显示移动的文字, 低电平时移动光标

指令 6: 功能设置命令 DL: 高电平时为 4 位总线,低电平时为 8 位总线 N: 低电平时为单行显示,高电平时为双行显示,F: 低电平时显示 5X7 的点阵字符,高电平时显示 5X10 的显示字符。

指令 7: 字符发生器 RAM 地址设置。

指令8: DDRAM 地址设置。

指令 9: 读忙信号和光标地址 BF: 忙标志位, 高电平表示忙, 此时模块不能接收命令或数据, 如果为低电平表示不忙。

与 HD44780 相兼容的芯片时序表如下:

读状态	输入	RS=L,	R/W=H,	E=H	输出	D0-D7=状态字
写指令	输入	RS=L, 脉冲	R/W=L,	DO—D7=指令码,E=高	输出	无
读数据	输入	RS=H,	R/W=H,	E=H	输出	D0D7=数据
写数据	输入	RS=H, 冲	R/W=L,	DO—D7=数据,E=高脉	输出	无

读写操作时序如图所示

图三: 读操作时序

图四: 写操作时序

7:1602LCD 的 RAM 地址映射及标准字库表

液晶显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块的忙标志为低电平,表示不忙,否则此指令失效。要显示字符时要先输入显示字符地址,也就是告诉模块在,哪里显示字符,图是 1602 的内部显示地址。

图五: LCD1602 内部显示地址

例如第二行第一个字符的地址是 40H, 那么是否直接写入 40H 就可以将光标定位在第二行第一个字符的位置呢?这样不行,因为写入显示地址时要求最高位 D7 恒定为高电平 1 所以实际写入的数据应该是 01000000B (40H) +10000000B (80H) =11000000B (C0H)。

在对液晶模块的初始化中要先设置其显示模式,在液晶模块显示字符时光标是自动右移的,无需人工干预。每次输入指令前都要判断液晶模块是否处于忙的状态。

1602 液晶模块内部的字符发生存储器(CGROM)已经存储了 160 个不同的点阵字符图形,如图 10-58 所示,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字母 "A"的代码是 01000001B(41H),显示时模块把地址 41H 中的点阵字符图形显示出来,我们就能看到字母 "A"。

				BI . A	77 7	5	0 3						
概 位	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
××××0000	CGRAM (1)	qE.	0	9	P	1	P		-	9	Ξ	.50	P
××××0001	(2)	. 1	1	A	Q		q	П	7	+	L		9
××××0010	(3)		2	В	R	ь	r	г	1]1[1	β	0
×××××0011	(4)	11	3	C	S	c		1	ウ	7	*		00
××××0100	(5)	\$	4	D	T	d	t	1	I	h	t	μ.	Ω
××××0101	(6)	%	5	E	U	e	u	D	才	ナ	2	В	0
××××0110	(7)	8.	6	F	v	f	٧	テ	カ	=	3	P	Σ
××××0111	(8)	>	7	G	w	8	w	T	+	ヌ	7	g	*
××××1000	(1)	(8	Н	X	h.	×	1	2	*	1)	0 J	X
××××1001	(2))	9	1	Y	i	У	ゥ	7	Ja	N	-1	y
××××1010	(3)			J	2	j	2	I	2	1)	L	1 -	千
××××1011	(4)	+	1	K	1	k	1	才	+	E	0	x	万
××××1100	(5)	7	<	L	¥	1	1	七	2	フ	7	C	A
××××1101	(6)	-	-	M	3	m)	2	ス	0	2	G*€	+
××××1110	(7)		>	N	-	n		3	七	水	1	n	1
××××1111	(8)	1	7	0	-	0	-	"	7	4	D	ö	153

表 13-4 CGROM 和 CGRAM 中字符代码与字符图形对应关系