

EN ALGEBRA ABSTRACTA

FUNDAMENTOS MATEMATICOS

Grupos: Un grupo es un conjunto con una operación binaria que cumple con cerradura, existencia de un elemento neutro, existencia de inversos y asociatividad. Los grupos abelianos, donde la operación es conmutativa, son especialmente relevantes en criptografía.

Anillos: Un anillo es un conjunto con dos operaciones binarias (adición y multiplicación) que cumplen asociatividad, con existencia de un elemento neutro para la adición y distribución de la multiplicación sobre la adición. En criptografía, utilizan se frecuentemente anillos conmutativos, donde la multiplicación es conmutativa.

ALGORITMO RSA

EJEMPLO RSA

1.Seleccionar dos números primos grandes p y q: p=61 y q=53

- 2. **Calcular:** $n = p \times q = 61 \times 53 = 3233$ n será parte de la clave pública y privada
- 3. Calcular la función totiente:

$$\phi(n) = (p-1)\times(q-1) = (61-1)\times(53-1) = 60\times52 = 3120$$

 $\phi(n)$ es importante para encontrar e y d

4. Elegir un número e tal que 1 < e < $\phi(n)$ y e sea coprimo con $\phi(n)$: vamos a elegir e=17

5. Calcular d, el inverso multiplicativo de e módulo $\phi(n)$:

Necesitamos encontrar d tal que:

$$d \times e \equiv 1 \mod \phi(n)$$

• Esto se hace usando el algoritmo extendido de Euclides. Para nuestros valores:

$$d \times 17 \equiv 1 \mod 3120$$
$$d=2753$$

6. Resumen de las Claves

- Clave pública: (e,n)=(17,3233)
- Clave privada: (d,n)=(2753,3233)

ALGORITMO ELGAMAL

EJEMPLO ELGAMAL

Alicia desea enviar el numero N=2.001 a Bernardo

U = 10

Clave publica de Bernardo P_B = 99.991 Generador α_B = 6 Clave publica de Bernardo β_B = 77.362 b = 35

$$N_1 = \alpha_B^U \mod p_B$$

$$N_1 = 6^{10} \text{mod } 99.991$$

$$N_1 = 71.612$$

$$N_2 = N \beta_B^U \mod p_B$$

$$N_2 = 2.001 * 77.362 \mod 99.991$$

$$N_1 = 71.612$$

$$N_2 = 33.813$$

EJEMPLO ELGAMAL

$$N_3 = N_1^b \mod p_B$$

$$N_3 = 71.612 \mod 99.991 = 50.687$$

$$N_4 = inv (N_3, p_B)$$

$$N_4 = (50.687, 99.991)$$

$$N_4 = 98.545$$

$$N = N_2 * N_4 \mod p_B$$

$$N = 2.001$$

COMPARACION

Eficiencia

ElGamal puede ser mas eficiente que RSA en terminos de tamaño de clave, pero ambos requieren operaciones de exponenciacion modular.

Seguridad

RSA se basa en la factorizacion de numeros grandes, mientras que ElGamal se basa en el logaritmo discreto. Ambos son seguros si se eligen correctamente los parametros y se mantienen las claves privadas seguras

Aplicacion

RSA es muy utilizado en aplicaciones de cifrado y firmas digitales, mientras que ElGamal es popular en protocolos de intercambio de claves y firmas digitales.

CONCLUSIONES

RSA es un algoritmo criptográfico robusto y confiable, ampliamente compatible con protocolos de seguridad como SSL/TLS y PGP. Ofrece una seguridad sólida con longitudes de clave adecuadas y es fácil de implementar.

ElGamal, aunque más eficiente en términos de tiempo de cifrado, enfrenta desafíos de adopción y soporte, lo que dificulta su integración en sistemas existentes.

Comparación de tiempos de cifrado:

- RSA: 0.049701 segundos
- ElGamal: 0.0075128 segundos

Finalmente, se elige RSA como el algoritmo principal debido a su seguridad, facilidad de implementación y amplio soporte, a pesar de la mayor eficiencia de ElGamal.

#