Algorithm to find minimal media for a metabolic model

Joshua Goldford

Introduction

This is a document to describe a mixed-integer algorithm to find the minimal media for metabolic model.

Defs

Let S be an $m \in \mathcal{M}$ by $n \in \mathcal{N}$ stoichiometric matrix, where \mathcal{M} and \mathcal{N} are the sets of metabolites and reactions respectievely. Let v represent the vector of fluxes with some lower bound and upper bound vectors lb and ub, respectively For a subset of reactions $\mathcal{U} \in \mathcal{N}$, let \mathcal{U} represent the set of uptake (or exchange reactions), and z_k represent the binary variable, where when $z_k = 1$, uptake reaction k is required for growth and $z_k = 0$, it is not. For each k, we can inforce this by imposing the following constraint:

$$l_k z_k < v_k < u_k \tag{1}$$

When $z_k = 1$, $v_k \ge lb$, otherwise $v_k \ge 0$, which means no there is no uptake flux through reaction k. If we ssume that we constrain the biomass growth rate to some min. value μ_{\min} , then the full program is:

$$\begin{split} & \underset{v,z}{\text{minimize}} & & \sum_{k} z_{k} \\ & \text{subject to} & & \sum_{i} s_{ij} v_{i} = 0, \forall j \in \mathcal{M} \\ & & l_{k} z_{k} - v_{k} \leq 0 \forall k \in \mathcal{U} \\ & & lb_{i} < v_{i} < ub_{i}, \forall i \in \mathcal{N} \\ & & v_{\text{biomass}} > \mu_{\min} \end{split}$$