1 Задача 1

Имеем: $f_{1,c}(x,y)=y^3-x^2y+cx^3+1,\ f_2(x,y)=y^3-x^3+2.$ Сделаем замену $p=\frac{y}{x},\ q=x^3.$ Тогда для вычисления c получаем систему $p^3q-pq+cq+1=0, p^3q-q+2=0.$ Отсюда $q=\frac{2}{1-p^3},\ c=\frac{-p^3+2p-1}{2}.$ Исследуем полученный многочлен. Бифуркационное множество есть образы корней производной: $\frac{d}{dx}\frac{-p^3+2p-1}{2}=0\Rightarrow p=\pm\sqrt{\frac{2}{3}}\Rightarrow c=\pm\frac{2}{3}\sqrt{\frac{2}{3}}-\frac{1}{2}.$ Очень удачно, что два образы корней производной не совпадают, это значит, что фундаментальная группа базы накрытия есть F_2 .

Образующие группы монодромии можно получить поднятиями двух петель, соответвующих образующим F_2 . Эти образующие получаются двумя транспозициями, так как над точками бифуркации склеиваются ровно два листа. Однако любые две транспозиции порождают всё S_3 , поэтому группа монодромии равна S_3 .

2 Задача 2

В системе 1 и 2 первое уравнение имеет носитель: $\{(6,0),(4,1),(0,3)\}$. Три точки лежат на одной прямой, значит система приводима. В общем положении $x \neq 0, y \neq 0$, поэтому разделим на y^3 и сделаем замену $p = \frac{x^2}{y}$. Получим уравнение вида $a_3p^3 + a_2p^2 + a_0 = 0$, которое разрешимо по известной формуле. Итак, p выражается через коэффициенты в радикалах, значит можно выразить y как x^2p и подставить во второе уравнение.

В первой системе после подстановки получится носитель $\{6,5,4,2\}$, то есть уравнение после сокращения на x^2 получается четвертой степени и решается по известной формуле.

Во второй системе после подстановки получится носитель $\{6, 5, 4, 2, 1\}$, который после сокращения на x превратится в $\{5,4,3,1,0\}$. Уравнения такого вида неразрешимы в радикалах (неприводимо, невырождено, ожидаемое число решений 5, есть две точки, отрезок между которыми не лежит в границе выпуклой оболочки).

Третья система имеет носители $A_1 = \{(0,2), (1,2), (1,1), (2,0), (1,0), (0,0)\}$ и $A_2 = \{(2,1),(2,0),(0,0)\}$. Система с такими носителями неприводима, невырожденна, также в первом носителе есть две точки, отрезок между которыми не лежит в границе выпуклой оболочки. Осталось найти смешанный объём Минковского, который в этом случае получается 6. Значит система в радикалах неразрешима.