

OPEN SOURCE SUMMIT

China 2023

Cross-Cluster Traffic Orchestration with eBPF

Xiaohui Zhang Senior Architect, Evangelist, Flomesh Zhen Chang Software Engineer, Huawei Cloud

Speaker Introduction

Xiaohui Zhang

Senior Programmer, LFAPAC Open Source Evangelist,

CNCF Ambassador, Microsoft MVP

Senior Architect/Evangelist at Flomesh.

Zhen Chang

Approver of the Karmada Community

Software Engineer at Huawei Cloud.

Introduction

Status and Challenges of Cloud-Native Application

Single Cluster Limit

- The number of nodes does not exceed 5000
- Pod does not exceed 150,000
- No more than 300,000 containers
- No more than 110 Pods per node

HA Requirement

- Avoid single points of failure
- Requirements for three centers in two places
- Service elastic traffic

Multi-cloud Architecture

- Localized deployment
- IDC+Public Cloud Elasticity
- Avoid vendor binding
- Reduce costs and increase efficiency

Business Isolation

- Business isolation
- Team quarantine
- Development process isolation

Rise of Multi-Cloud and Multi-Cluster

Organizations embrace multi-cloud

More than 87% of enterprise respondents use the services of multiple cloud service providers at the same time.

Cloud native technology and the cloud market continue to mature, and the future will be an era of programmatic multi-cloud management services.

eBPF Introduction

Berkeley Packet Filter

Originating from the 1992 paper titled "The BSD Packet Filter: A Novel Architecture for User-level Packet Capture"

Initially conceived as a network packet filter utilized in applications such as topdump.

eBPF

eBPF = extended Berkeley Packet Filter

Dynamically program the kernel for efficient networking, observability, tracing, and security.

- Stability (DAG, reachability)
- Efficient (JIT native machine code)
- Security (verifier, limited helper function)
- Hot loading/unloading (no reboot required)

Programmable Kernel

Agenda

Trends and Requirements for Cloud-Native Multi-Cluster

eBPF in Cloud Native Traffic Management

Practice of Application and Traffic Scheduling

in Multi-Cluster Conclusion and Q&A

Trends and requirements for cloud-native multi-cluster environments

Trends and Requirements for Cloud-Native **Multi-Cluster**

Group of isolated islands

- Consistent cluster operations
- Consistent application delivery
- Businesses are separated and do not know each other.
- Data island, resource island, traffic island

Venice City

- Unified application delivery (deployment and operation)
- Unified application access (traffic distribution)
- (orchestration and scheduling)
- A small amount of cross-cluster business access with low

We are here

Age of Discovery

Instances, data, traffic:

- Automatic scheduling
- Free expansion and contraction
- free movement

Cloud-native Multi-Cloud is Challenging

Challenges of managing multi-cloud container clusters

Too Many clusters

Cumbersome and repetitive
setup
Incompatible cluster lifecycle
APIs
Fragmented API endpoints

Business fragmentation

Differentiated cluster
configurations

Multi-cluster service discovery
required
Sync apps between clusters

Cluster boundary restrictions

Resource scheduling
Application availability
Horizontal auto-scaling

Vendor locking

Deployment gravity

Lack of migration automation

Lack of independent, neutral,

open source multi-cluster

management projects

Karmada: OpenSource Multi-Cloud Container Orchestration

Build infinitely scalable container resource pools with Karmada

Let developers use multi-cloud like a K8s cluster

K8s native API compatible

Upgrade from single cluster to multiple clusters with zero modification Seamlessly integrate K8s single cluster tool chain ecology

Ready out of the box

Built-in policy set for multiple scenarios: three centers in two places, active-active in the same city, remote disaster recovery

Open and neutral

From the Internet, finance, manufacturing,
Jointly initiated by operators, cloud vendors, etc.

Rich multi-cluster scheduling

Cluster affinity scheduling, multi-granule multicluster high-availability deployment: multi-Region, multi-AZ, multi-cluster, multi-vendor

No Locking

Multi-cloud platform support, automatic allocation, free migration Not tied to commercial products from manufacturers

Centralized management

No need to worry about cluster location
Supports public cloud, private cloud, and edge clusters

Karmada Architecture

Karmada Adopters

Multi-Cluster Service Discovery

Cross-Cluster Communication

- 1. What if the cross-cluster container network is not connected?
- 2. In addition to mcs-api, is there any other way to achieve cross-cluster service discovery?
- 3. ...

Island Network Model

Island Network Model vs Flat Network Model

eBPF in Cloud Native Traffic Management

eBPF Loader and Verifier

eBPF Event-Drivent

Event -> Action

Event:

- Kprobe/Kretprobe (Kernel function entry and exit)
- Uprobe/Uretprobe (User function entry and exit)
- XDP (eXpress Data Path)
- Tracepoint (triggered on specific events)
- Perf (performance events such as CPU cycle coun

Network communication between Pods

Practice of Application and Traffic Scheduling in Multi-Cluster

Traffic Dispatching with eBPF

Traffic Scheduling with eBPF

Traffic Dispatching with Service Mesh

Resources and Traffic Scheduling

Resource Scheduling: Deployment, Service, HPA, ServiceExport

Service Discovery in MC: ServiceExport, ServiceImport

Solution Highlights

Kubernetes Multicluster SIG MCS API

Automation

Automated service registration and discovery to achieve cross-cluster communication

Global traffic management

Provide flexible global traffic management strategies

SII

Simple and Lightweight

Simple operation, low learning cost, low resource usage

Unified computing management

Centralized configuration management and delivery

Easy to integrate and expand Compatible with k8s periph

Compatible with k8s peripheral ecology, convenient for integration and expansion

Join Karmada Community

Follow us

https://karmada.io

https://github.com/karmada-io/karmada

https://slack.cncf.io (#karmada)

Join Flomesh community

Follow us

flomesh.io

github.com/flomesh-io

flomesh-io.slack.com