Knapsack Problem

(背包问题)

○ 黄芝琪 林越

The Knapsack Problem (背包问题)

- ◆ Def: 所谓背包问题,是指有N个物品和一个背包,其中:
 - 物品具有重量 (w₁, w₂, ..., w_n) 和利润 (p₁, p₂, ..., p_n)
 - 背包的最大重量承受限制为W

问如何取物可得最高价值?

• 此问题可以表示如下:

$$\sum_{item_i \in A} p_i \quad \text{is maximized subject to} \quad \sum_{item_i \in A} w_i \leq W$$

背包问题形态

- ◆ 背包问题可分成两种问题形态:
 - 可切割背包问题:
 - 。 物品可被切割, 亦即取物时可取部分
 - 。 采用贪心策略(Greedy Approach)
 - 0/1 背包问题: (取或不取)
 - 。 物品不可被切割, 亦即取物时得取全部
 - 。 采用动态规划(Dynamic Programming)

Greedy Approach v.s. Dynamic Programming

Greedy Approach

- 是一种阶段性 (Stage) 的方法
- 不考虑后续,只考虑每次取最优

Dynamic Programming

先把所有的情況都看一遍,才去挑出最佳的結果

范例

- 可切割的背包问题
 - 背包可承担的最大重量: 30g
 - 三个物品之重量及其利润:
 - Item 1: 5 g, \$50
 - Item 2: 10 g, \$60
 - Item 3: 20 g, \$140

- ◆ 物品可被切割, 亦即取物时可取部分
- ◆ 采用贪心策略
 - 。1.利润
 - 。2.重量:
 - 。3.利润与重量比:

最大利润优先

• 根据題目定义,我們可以得到下列表格:

Item	重量 (g)	利润	利润/重量比
1	5	\$50	10
2	10	\$60	6
3	20	\$140	7

- 選擇程序採"最大利潤優先":
 - Step 1: 取 20 g的Item 1,可得利润為 \$140,背包剩余重量: 10 g
 - Step 2: 取10 bl的Item 2, 連同Step 1所取之20 g的Item 1, 可得总利润为
 \$200, 背包剩余重量: 0 g
 - Step 3: 因为背包满了,故完全无法取得Item 3
 - 所得总利润 = \$200

最小重量優先

• 根据題目定义,可以得到下列表格:

Item	重量 (g)	利润	利润/重量比
1	5	\$50	10
2	10	\$60	6
3	20	\$140	7

- 选择程序採"最小重量优先":
 - Step 1: 取 5 g的Item 1,可得利润为 \$50,背包剩余重量: 25 g
 - Step 2: 取10 g的Item 2, 連同Step 1所取之5 g的Item 1, 可得总利润为
 \$110, 背包剩余重量: 15 g
 - Step 3: 由于背包剩余重量为15 g, 而Item 3的重量有20 g, 因此只能取 ¾ 的Item 3, 连同之前的操作,可得总利润 \$215, 背包剩剩余重量: 0 g
 - 所得总利润 = \$215

最大利潤與重量比

• 根據題目定義,我們可以得到下列表格:

Item	重量 (bl)	利潤	利潤/重量比
1	5	\$50	10
2	10	\$60	6
3	20	\$140	7

- 選擇程序採"最大利潤與重量比":
 - Step 1: 取 5 bl的Item 1,可得利潤為 \$50,背包剩餘重量: 25 bl
 - Step 2: 取20 bl的Item 3, 連同Step 1的結果,可得總利潤為 \$190,背包剩餘重量: 5 bl
 - Step 3: 由於背包剩餘重量為5 bl,而Item 2的重量有10 bl,因此僅能取 ½ 的 ltem 2,連同前兩步的結果,可得總利潤為 \$220,背包剩餘重量: 0 bl
 - 所得總利潤 = \$220

0/1 Knapsack Problem

- ◆ 物品不可被切割, 亦即取物时得取全部
- ◆ 若仍采用贪心算法,使得程序為"最大利润与重量比":
 - Step 1: 取 5 g的Item 1,可得利润为 \$50,背包剩余重量: 25 g
 - Step 2: 取20 g的Item 3,連同Step 1的結果,可得总利润 \$190,背包剩余重量: 5 g
 - Step 3: 不可分割,所以取不了了
 - 所得总利润 = \$190, 但是真正的最佳解是 200
 - :: 0/1 背包不可用贪心算法求解!!

◆ [状态转移方程]:

◆ 范例: 假设有一背包W = 5, 考虑以下的Items, 求0/1 背包 最佳解:

Item	重量	利潤
O ₁	1	\$6
O ₂	2	\$10
O ₃	3	\$12

Sol:

Р	0	1	2	3	4	5
0						
1						
2						
3						

■ Step 1: 当 i = 0,表示沒有任何物品可以拿 (即: 狀況 ①)。
:: P[0, k] = 0

Р	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						

- Step 2: 当 i = 1,表示有 1 个物品可以拿 (即: O₁)。
 - 。 ::k = 0 , 表示無法負重 (狀況 ②); ::P[1, 0] = 0
 - 。 k=1,表示能負重1;此時:

$$P[1,1] = \max \begin{cases} P[0,1] \\ p_1 + P[0,0] \end{cases} = \max \begin{cases} 0 \\ 6 + 0 \end{cases} = 6$$

。 K = 2~5,表示能负重2~5;但由于只有1个物品(即:O₁)可拿,因此P[1, k]。

Р	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2						
3						

Step 3: 当 i = 2,表示有 2 个物品可以拿 (即: O₁和O₂)。

。 ··k = 2 ,表示负重2; 此時:

$$P[2, 2] = \max \begin{cases} P[1, 2] \\ p_2 + P[1, 0] \end{cases} = \max \begin{cases} 6 \\ 10 + 0 \end{cases} = 10$$

。 ::k = 3 , 表示负重3; 此時:

$$P[2,3] = \max \begin{cases} P[1,3] \\ p_2 + P[1,1] \end{cases} = \max \begin{cases} 6 \\ 10 + 6 \end{cases} = 16$$

Р	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3						

- Step 4: 当 i = 3,表示有 3 个物品可以拿 (即: O₁、 O₂ 與O₃)。
 - 。 :·k = 3 , 表示负重3; 此時:

$$P[3,3] = \max \begin{cases} P[2,3] \\ p_3 + P[2,0] \end{cases} = \max \begin{cases} 16 \\ 12 + 0 \end{cases} = 16$$

Р	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3	0	6	10	16	-	

。::k = 4 , 表示负重4; 此时:

$$P[3,4] = \max \begin{cases} P[2,4] \\ p_3 + P[2,1] \end{cases} = \max \begin{cases} 16 \\ 12 + 6 \end{cases} = 18$$

。 :·k = 5 ,表示负重5; 此時:

$$P[3,5] = \max \begin{cases} P[2,5] \\ p_3 + P[2,2] \end{cases} = \max \begin{cases} 16 \\ 12 + 10 \end{cases} = 22$$

Р	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3	0	6	10	16	18	22

Thanks.

