SMDM Business Report

Contents:-

Problem:- 1 Austo Motor Company problem

- A. What is the important technical information about the dataset that a database administrator would be interested in? (Hint: Information about the size of the dataset and the nature of the variables)
- B. B. Take a critical look at the data and do a preliminary analysis of the variables. Do a quality check of the data so that the variables are consistent. Are there any discrepancies present in the data? If yes, perform preliminary treatment of data.
- C. C. Explore all the features of the data separately by using appropriate visualizations and draw insights that can be utilized by the business.
- D. Understanding the relationships among the variables in the dataset is crucial for every analytical project. Perform analysis on the data fields to gain deeper insights. Comment on your understanding of the data.
- E. E. Employees working on the existing marketing campaign have made the following remarks. Based on the data and your analysis state whether you agree or disagree with their observations. Justify your answer Based on the data available.
 - E1) Steve Roger says "Men prefer SUV by a large margin, compared to the women"
 - E2) Ned Stark believes that a salaried person is more likely to buy a Sedan.
 - E3) Sheldon Cooper does not believe any of them; he claims that a salaried male is an easier target for a SUV sale over a Sedan SaleF. From the given data, comment on the amount spent on purchasing automobiles

across the following categories. Comment on how a Business can utilize the results from this exercise. Give justification along with presenting metrics/charts used for arriving at the conclusions.

- F) Give justification along with presenting metrics/charts used for arriving at the conclusions.
 - F1) Gender
 - F2) Personal_loan
- H) The main objective of this analysis is to devise an improved marketing strategy to send targeted information to different groups of potential buyers present in the data. For the current analysis use the Gender and Marital_status fields to arrive at groups with similar purchase history.

From the current data set comment if having a working partner leads to the purchase of a higher-priced car

Problem:- 2 Framing An Analytics Problem

Analyse the dataset and list down the top 5 important variables, along with the business justifications

List Of Figures

Figure:-1 Boxplot of Price

Figure:-2 Boxplot of Total Salary

Figure:-3 Boxplot of Partner Salary

Figure:-4 Boxplot of Salary

Figure:-5 Boxplot of Age

Figure:-6 Comparison of the Outliers with Histplot and Boxplot

Figure:-7 Comparison of the Age & Salary with Histplot and Boxplot

Figure:-7 Comparison of the Total Slary & Partner Salary with Histplot and Boxplot

Figure:-8 Count plot of Gender

Figure:-9 Count plot of Education

Figure:-10 Count plot of Profession

Figure:-11 Count plot of Marital Status

Figure:-12 Count plot of Personal loan

Figure:-13 Count plot of House Loan

Figure:-14 Count plot of No of Dependants

Figure:-15 Count plot of Partner Working

Figure:-16 Count plot of Make

Figure:- 17.2 Pair Plot of Numerical Values

Figure:- 17.1 Heat Map of Numerical Values

Figure 18- Count Plot of Make vs gender

- Figure 19- Count Plot of Make vs Marital Status
- Figure 20- Count Plot of Gender vs Profession
- Figure 21- Count Plot of Gender vs Make
- Figure 22 :- Count plot of Gender vs Make
- Figure 23:- Count plot of Profession vs Make
- Figure-24 Profession vs make for Male & Profession vs Make for Female
- Figure-25 Marital Status vs Make for Male & Marital Status vs Make for Male

List of Tables

Table:- 1 Top 5 rows of the data set are as follows

Table:-2 Basic Information of the dataset

Table:- 3 Checking the Null values

Table: - 4 Numerical summarization of the data

Table:- 5 Skewness and kurtosis of the dataset

Table :- 6 Checking for anomalous values in categorical values

Table :- 7 Gender-Mean and Median

Table :-8 Personal Loan -Mean and Median

Table :- 9 Partner Working Mean and Median

Table:- 10 Analysis Gender and Marital_status

Problem 1

Analysts are required to explore data and reflect on the insights. Clear writing skill is an integral part of a good report. Note that the explanations must be such that readers with minimum knowledge of analytics is able to grasp the insight.

Austo Motor Company is a leading car manufacturer specializing in SUV, Sedan, and Hatchback models. In its recent board meeting, concerns were raised by the members on the efficiency of the marketing campaign currently being used. The board decides to rope in an analytics professional to improve the existing campaign.

1. You as an analyst have been tasked with performing a thorough analysis of the data and coming up with insights to improve the marketing campaign.

The instructions below are given to help you complete the project

Table 1 Top 5 rows of the data set are as follows

Age	Gen	Profes	Marit	Educat	No_of_Depe	Personal_loa	House_	Partner_w	Salar	Partner_	Total_s	Price	Mak	
	der	sion	al	ion	ndents	n	loan	orking	У	salary	alary		е	
			_status											

5	3 Ma	Busine	Married	Post	4	No	No	Yes	993	70700	170000	610	SUV
	е	SS		Gradu					00			00	
				ate									
5	3 Fen	Salarie	Married	Post	4	Yes	No	Yes	955	70300	165800	610	SUV
	al	d		Gradu					00			00	
				ate									
5	3 Fen	Salarie	Married	Post	3	No	No	Yes	973	60700	158000	570	SUV
	ale	d		Gradu					00			00	
				ate									
5	3 Fen	Salarie	Married	Gradu	2	Yes	No	Yes	725	70300	142800	610	SUV
	ale	d		ate					00			00	
5	3 Ma	Salarie	Married	Post	3	No	No	Yes	797	60200	139900	570	SUV
	е	d		Gradu					00			00	
				ate									

no. of rows: 1581 no. of columns: 14

Table-2 Basic Information of the dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1581 entries, 0 to 1580
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Age	1581 non-null	int64
1	Gender	1528 non-null	object
2	Profession	1581 non-null	object
3	Marital_status	1581 non-null	object

4	Education	1581 non-null	object
5	No_of_Dependents	1581 non-null	int64
6	Personal_loan	1581 non-null	object
7	House_loan	1581 non-null	object
8	Partner_working	1581 non-null	object
9	Salary	1581 non-null	int64
10	Partner_salary	1475 non-null	float64
11	Total_salary	1581 non-null	int64
12	? Price	1581 non-null	int64
13	Make	1581 non-null	object
	dtypes: float64(1),	, int64(5), obje	ct(8)
	memory usad	ge: 173.0+ KB	

Observations

- -Data has been loaded into the pandas dataframe
- -There are 1581 rows and 14 columns
- -There are 6 numerical and 8 categorical variables present

B. Take a critical look at the data and do a preliminary analysis of the variables. Do a quality check of the data so that the variables are consistent? Are there any discrepancies present in the data? If yes, perform preliminary treatment of data

Table:- 3 Checking the Null values

Age	0
Gender	53

Profession	0
Marital status	0
Education	0
No_of_Dependents	0
Personal_loan	0
House_loan	0
Partner_working	0
Salary	0
Partner salary	106
Total salary	0
Price	0
Make	0
dtype: int64	

Total Null Values in Gender= 53,

-Total Null values in Partner_salary=106

Handling the Null Values

1. Deleting Rows

This method commonly used to handle the null values. Here, we either delete a particular row if it has a null value for a particular feature and a particular column if it has more than 70-75% of missing values. This method is advised only when there are enough samples in the data set.

2. Replacing With Mean/Median/Mode

This strategy can be applied on a feature which has numeric data like the age of a person or the ticket fare. We can calculate the mean, median or mode of the feature and replace it with the missing values

3. Assigning An Unique Category

A categorical feature will have a definite number of possibilities, such as gender, for example. Since they have a definite number of classes, we can assign another class for the missing values

4. Predicting The Missing Values

Using the features which do not have missing values, we can predict the nulls with the help of a machine learning algorithm. This method may result in better accuracy, unless a missing value is expected to have a very high variance.

5. Using Algorithms Which Support Missing Values

KNN is a machine learning algorithm which works on the principle of distance measure. This algorithm can be used when there are nulls present in the dataset. While the algorithm is applied, KNN considers the missing values by taking the majority of the K nearest values.

For categorical values we have use imputing the Null values with majority class and for continuous values we have use KNN imputer to treat the null values

Inspecting the duplicates

No of duplicate rows= 0

Table :- 4 Numerical summarization of the data

Age	No_of_Dependents	Salary	Partner_salary	Total_salary	Price

count	1581.000000	1581.000000	1581.000000	1581.000000	1581.000000	1581.000000
mean	31.922201	2.457938	60392.220114	20225.559322	79625.996205	35597.722960
std	8.425978	0.943483	14674.825044	18905.183912	25545.857768	13633.636545
min	22.000000	0.00000	30000.000000	0.000000	30000.000000	18000.000000
25%	25.000000	2.000000	51900.000000	0.000000	60500.000000	25000.000000
50%	29.000000	2.000000	59500.000000	24900.000000	78000.000000	31000.000000
75%	38.000000	3.000000	71800.000000	38000.000000	95900.000000	47000.000000
max	54.000000	4.000000	99300.000000	80500.000000	171000.000000	70000.000000

Table- 5 Skewness and kurtosis of the dataset

Variable	Skewness	kurtosis	
Age	0.89	-0.24	
No_of_Dependents	-0.12	-0.54	
Salary	-0.11	-0.51	

Partner_salary	0.35	-0.74
Total_salary	0.60	0.64
Price	0.74	-0.57

Observations:-

- 1) We have observed from the above dataset that the minimum age is 22 years whereas the maximum age is 54 years and the average age is 29 years with the positively skewness 0.89 and kurtosis -0.24
- 2) We have observed from the above dataset that the minimum No_of_dependents is 0 whereas the maximum No_of_dependents is 4 and the average No_of_dependents is 2 with the negatively skewness -0.12 and kurtosis -0.54
- 3)We have observed from the above dataset that the minimum Salary is 30k whereas the maximum Salaryts is 99k and the average Salary is 51k with the skewness very cloase to 0
- 4)We have observed from the above dataset that the minimum Total_salary is 30k whereas the maximum Total_salary is 171k and the average Total_salary is 60k with the skewness are kurtosis is almost equal

We have observed from the above dataset that the minimum price of automobile is 18k whereas the maximum price of automobile is 70k and the average price of automobile is 25k with the moderate skewness of 0.74

Table :- 6 Checking for anomalous values in categorical values

```
Male 1252
Female 329
Name: Gender, dtype: int64

Salaried 896
Business 685
Name: Profession, dtype: int64

Married 1443
```

```
138
Single
Name: Marital status, dtype: int64
Post Graduate
                 985
                 596
Graduate
Name: Education, dtype: int64
       792
Yes
No
       789
Name: Personal loan, dtype: int64
No
       1054
        527
Yes
Name: House loan, dtype: int64
       868
Yes
       713
No
Name: Partner_working, dtype: int64
Sedan
             702
Hatchback
             582
SUV
             297
Name: Make, dtype: int64
```

From the value counts it is observed that the categorical fields are free from anomalies

Now inspecting the anomalies as follows:

Figure:-1 Boxplot of Price

Figure:-2 Boxplot of Total Salary

Figure:-3 Boxplot of Partner Salary

Figure:-4 Boxplot of Salary

Figure:-5 Boxplot of Age

Observations:-

- 1)From the above boxplots it is observed that there are no negative values present in the numerical fields
- 2)Outliers are present in the Total_salary

Now Outliers are treated by using the IQR method

```
percentile25= 60500.0
percentile75= 95900.0

iqr=percentile75-percentile25= 35400.0

upper_limit=percentile75+1.5*iqr= 149000.0

lower limit=percentile25-1.5*iqr= 7400.
```

Figure:-6 Comparison of the Outliers with Histplot and Boxplot

From the above graph it is clearn that outliers of the Total_salary has been treated

C. Explore all the features of the data separately by using appropriate visualizations and draw insights that can be utilized by the business.¶

Univariate analysis of numerical Values

Figure:-7 Comparison of the Age & Salary with Histplot and Boxplot

Figure:-7 Comparison of the Total Slary & Partner Salary with Histplot and Boxplot

Insights

From the univariate analysis of the numerical fields we have observed following things:-

- 1) Age of customer seems to be multimodal distribution generally lies betwen 25 years to 40 years
- 2) Salary seems to be in the range 50k to 70k with multimodal distribution
- 3)The skewness of the Total_salary seems to be reduced and it ranges 60k to 100k
- 4) Partner-salary lies between 0k to 40k

Univariate analysis of Categorical Values

Figure:-8 Count plot of Gender

Figure:-9 Count Plot of Education

Figure:-10 Count Plot of Profession

Figure:-11 Count Plot of Marital Status

Figure:-12 Count Plot of Personal Ioan

Figure:-13 Count Plot of House Loan

Figure:-14 Count Plot of No of Dependants

Figure:-15 Count Plot of Partner Working

Figure:-16 Count plot of Make

Insights

- 1) Male customers are higher than female customers
- 2) Salaried customers are slightly higher than business cutomers
- 3) Married customers are higher than single customers
- 4)Post graduate customers are having higher majority

- 5) majority of customers preferred Sedan than Hatchback than SUV
- 6)From the graph we have observed than there is a slight difference between customers working and non working
- D) Understanding the relationships among the variables in the dataset is crucial for every analytical project. Perform analysis on the data fields to gain deeper insights. Comment on your understanding of the data.

Bivariate analysis of Numerical vs Numerical value

Figure: - 17 Pair Plot of Numerical Values

Insights

- 1) High correlation exists between Price & Age, Tota_salary & Age and Salary & Age
- 2)There is no linear relationship exits among variables

Bivariate analysis of Categorical vs Categorical value

Figure 18- Count Plot of Make vs gender

Figure 19- Count Plot of Make vs Marital Status

Figure 20- Count Plot of Gender vs Profession

Figure 21- Count Plot of Gender vs Make

Insights

- 1) It is observed from the graph that male customers prefer sedan where as female customers prefer SUV
- 2)Married customers purchase more cars than single customers where as married customers purchase sedan slightly higher than singles where as single customers prefer hatchback
- 3) salaried customers purchase more car than business customers
- 4) Males purchase more car than females and they generally prefer sedan and hatchback
- E) Employees working on the existing marketing campaign have made the following remarks. Based on the data and your analysis state whether you agree or disagree with their observations. Justify your answer Based on the data available.
- E1) Steve Roger says "Men prefer SUV by a large margin, compared to the women"

```
Male 1252
Female 329
Name: Gender, dtype: int64
```

Proportion of female buying SUV=(No of females brought SUV/Total no of females)=(173/329)=0.52

Proportion of male buying SUV=(No of males brought SUV/Total no of males)=(124/1252)=0.09

Figure 22 :- Count plot of Gender vs Make

It is observed from the above graph than females prefer more SUV than male. Thus statement made by Steve Roger is false **E2) Ned Stark believes that a salaried person is more likely to buy a Sedan.**

Salaried 896 Business 685

Name: Profession, dtype: int64

Proportion of Hatchbacks purchased=0.32

Proportion of SUV purchased=0.23

Proportion of Sedan purchased=0.44

Figure 23:- Count plot of Profession vs Make

From the above graph visualization we have observed that salaried person is more likely to buy a sedan. Hence statement made by Ned Stark is correct.

E3) Sheldon Cooper does not believe any of them; he claims that a salaried male is an easier target for a SUV sale over a Sedan Sale.

Analysing the Total cars purchased by salaried male customer are as follows:

Proportion of Hatchbacks purchased=0.41

Proportion of SUV purchased=0.13

Proportion of Sedan purchased=0.45

Figure-24 Profession vs Make for Male & Profession vs Make for Female

It is observed that salaried male prefers Sedan. Hence statement made by Sheldon Cooper is false

F. From the given data, comment on the amount spent on purchasing automobiles across the following categories. Comment on how a Business can utilize the results from this exercise. Give justification along with presenting metrics/charts used for arriving at the conclusions.

F1) Gender

Table: 7 Gender-Mean and Median

Gender	Mean	Median
Male	32416	29000.0
Female	47705.1	49000

From the above calculation it is clear that females are more likely to buy than males

F2) Personal_loan

Table :8 Personal Loan -Mean and Median

Personal_loan	Mean	Median
No	36742.712294	32000

Yes	34457	31000

It is observed from the above table that the purchase made by customers who have personal loan is slightly higher

G. From the current data set comment if having a working partner leads to the purchase of a higher-priced car.

Table: 9 Partner Working Mean and Median

Partner_working	Mean	Median
No	36000	31000
Yes	35267	31000

From the above calculation we have observed that mean and median value for partner working is same thus we can say that partner working has no impact on purchasing car

H.) The main objective of this analysis is to devise an improved marketing strategy to send targeted information to different groups of potential buyers present in the data. For the current analysis use the Gender and Marital_status - fields to arrive at groups with similar purchase history.

Table:- 10 Analysis Gender and Marital_status

Marital_status Gender Make
Married Male Sedan 537
Hatchback 484
Female SUV 166
Sedan 127
Male SUV 115

Single		Male	Hatchbacl	k 83
	Sed	an	24	
Married		Female	Hatchbacl	k 14
Single		Female	Sedan	14
	Male	SUV	9	
	Female	SUV	7	
	Hat	chback	1	
	d.	type: in	t64	

Figure-25 Marital Status vs Make for Male & Marital Status vs Make for Male

From the above visualization we have observed:

Married: Female- SUV

Married: Male - sedan

Single: Female - sedan

Single: Male- hatchback

Problem 2

Framing An Analytics Problem Analyse the dataset and list down the top 5 important variables, along with the business justifications.

A bank can generate revenue in a variety of ways, such as charging interest, transaction fees and financial advice. Interest charged on the capital that the bank lends out to customers has historically been the most significant method of revenue generation. The bank earns profits from the difference between the interest rates it pays on deposits and other sources of funds, and the interest rates it charges on the loans it gives out.

GODIGT Bank is a mid-sized private bank that deals in all kinds of banking products, such as savings accounts, current accounts, investment products, etc. among other offerings. The bank also cross-sells asset products to its existing customers through personal loans, auto loans, business loans, etc., and to do so they use various communication methods including cold calling, e-mails, recommendations on the net banking, mobile banking, etc.

GODIGT Bank also has a set of customers who were given credit cards based on risk policy and customer category class but due to huge competition in the credit card market, the bank is observing high attrition in credit card spending. The bank makes money only if customers spend more on credit cards. Given the attrition, the Bank wants to revisit its credit card policy and make sure that the card given to the customer is the right credit card. The bank will make a profit only through the customers that show higher intent towards a recommended credit card. (Higher intent means consumers would want to use the card and hence not be attrite.)

Question: (Analyze the dataset and list down the top 5 important variables, along with the business justifications.

Data dictionary:

userid	Unique bank customer id
card_no	Masked credit card number
card_bin_no	Credit card IIN number
Issuer	Card network issuer
card_type	Credit card type
card_source_date	Credit card sourcing date
high_networth	Customer category basis their networth value (A: High to E: Low)
active_30	Savings/Current/Salary etc account activity in last 30 days
active_60	Savings/Current/Salary etc account activity in last 60 days
active_90	Savings/Current/Salary etc account activity in last 90 days
cc_active30	CC activity in last 30 days
cc_active60	CC activity in last 60 days
cc_active90	CC activity in last 90 days
hotlist_flag	Whether card is hotlisted
widget_products	Number of convenient product customer holds (dc, cc, netbanking active, mobile banking active, wallet active etc)
engagement_products	Number of investment/loan product customer holds (FD, RD, Personal loan, auto loan etc)
annual_income_at_source	Annual income recoreded in credit card application
other_bank_cc_holding	Hold other bank credit card
bank_vintage	Vintage with the bank (in months) as on Tth month
T+1_month_activity	Customer spends next (T) month using credit card
T+2_month_activity	Customer spends in T+2 month using credit card
T+3_month_activity	Customer spends next month using credit card
T+6_month_activity	Customer spends next month using credit card
T+12_month_activity	Customer spends next month using credit card
	Revolver: Customer who carries balances over from one month to the next.
Transactor_revolver	Transactor: Customer who pays off their balances in full every month.
avg_spends_I3m	Average credit card spends in last 3 months
Occupation_at_source	Occupation recorded at the time of credit card application
cc limit	Current credit card limit

All above data has been recorded as on T th month excluding T+1_month_activity, T+2_month_activity, T+3_month_activity, T+6_month_activity, T+12_month_activity

Top 5 important variables, along with the business justifications are as follows:-

Credit card limit is basically a Risk Management practice used by the banks to reduce the number of bad loans. This is calculated based on the customer's income, their CIBIL score etc.

2) avg_spends_I3m

It helps in identify how frequently customer use the credit card and also identify if the customer faces any issue

3) cc_active30

CC_Active30 provides the information regarding customer's credit card usage frequency. If the credit card is not used frequently, bank can reach out to the customer with new deals and offers. Also if customer is facing issues in using the credit card then they can help the customer with their concerns

4) annual_income_at_source

Annual income provides an insight into the purchasing capacity of the customer and is a very crucial information. When making decisions related to risks involved, offers to send to a customer, loan limit for the customer etc. correct information related to the Annual income can make a big difference

5) T+12_month_activity

It play very crucial role for bank. It helps bank to identify the areas where customer is more interested to use credit cards and the areas where customer uses less credit card. With this information bank can focus on areas where credit card is less use and can attract customers by giving various offers etc to increase its profitability