Horner' Algorithm, Precision and Errors

CS3010

Numerical Methods

Dr. Amar Raheja

Section 1.1

Lecture 2

Nested Multiplication

- Compute the following polynomial
 - $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$
- assume existence of array a containing n+1 values indexed from 0 to n, the value x, and the integer n
- Suppose existence of subroutine pow(x,i) that computes x^i , how would one compute the sum of all terms?

```
sum = a[0];
for (i=1; i<=n; i++)
sum=sum + a[i]*pow(x,i);
```

• What's the complexity? O(n)=?

Iteration vs. Recursion for power function

 Power can be implemented as iterative or recursive algorithm. How many arithmetic ops in both cases?

```
term = 1.0;
iterative
                              for (j=1; j<=i; j++)
term = term*x;
                                 return term;
                        if (i==0)
                                return 1.0;
                        else if (i%2 == 1) // i is odd
                                 return x*pow(x, i-1);
recursive
                        else {
                                term = pow(x, i/2);
                                return term*term;
```

Horner's Nested Multiplication Algorithm

- Optimal complexity for general polynomials using nested multiplication
- Factor using nested multiplication Horner's algorithm or synthetic division

$$p(x) = 4x^{4} + 3x^{3} - 2x^{2} + 6x - 9$$

$$= (((((4)x+3)x-2)x+6)x-9)$$

$$p(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + ... + a_{2}x^{2} + a_{1}x + a_{0}$$

$$p(x) = a_{0} + x(a_{1} + x(a_{2} + ... + x(a_{n-1} + x(a_{n}))...))$$

$$p(x) = \sum_{i=0}^{n} a_i x^i = \sum_{i=0}^{n} \left(a_i \prod_{j=1}^{l} x \right)$$
 remember $\sum_{k=n}^{m} x_k = x_n + x_{n+1} + \dots + x_m$ and $\sum_{k=n}^{m} x_k = x_n x_{n+1} \dots x_m$ sum = a[n]; for (i=n-1; i>=0; i--) sum=sum*x + a[i];

Horner's Nested Multiplication Example

• Show how $p(x) = 5 + 3x - 7x^2 + 2x^3$ should be computed (write it in Horner's Nested Form)

$$p(x) = 5 + x (3 + x((-7) + x(2)))$$

What happens in a function like this?

$$p(x) = -6 + 3x - 9x^3 + 4x^5$$

 Some terms are missing, so the coefficients will be 0 for this and don't have to be written

$$p(x) = -6 + 3x + 0x^{2} - 9x^{3} + 0x^{4} + 4x^{5}$$
$$p(x) = -6 + x \left(3 + x^{2} \left((-9) + x^{2} (4)\right)\right)$$

 Notice that the highest x powers are removed from terms as we progress to the right

Deflation of a Polynomial

For any given polynomial, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0$

• In the deflation process, if r is a zero of the polynomial p, then x-r is a factor of p

$$\Rightarrow p(x) = (x - r)Q(x) + R$$

Q(x) is quotient polynomial of degree n-1 and R is a remainder term

$$\Rightarrow Q(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x^1 + b_0$$

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 = (x - r)(b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_1 x^1 + b_0) + b_{-1}$$

- Note that if r is an exact root, $b_{-1} = p(r) = 0$
- Equating like coefficients from both sides, one gets

$$a_n = b_{n-1}$$
; $a_{n-1} + rb_{n-1} = b_{n-2}$; $a_{n-2} + rb_{n-2} = b_{n-3}$
 $a_1 + rb_1 = b_0$; $a_0 + rb_0 = b_{-1}$

Deflation process of a polynomial: Example

Following arrangement is often used to carry out Horner's Algorithm

• Use Horner's algorithm to evaluate $p(x) = x^4 - 4x^3 + 7x^2 - 5x - 2$

• Thus, we obtain p(3) = 19, and we can write $p(x) = (x-3)(x^3 - x^2 + 4x + 7) + 19$

Pseudocode for Horner's Algorithm

```
integer i, n; real p, r; real array (a_i)_{0:n}, (b_i)_{0:n-1}

b_{n-1} \leftarrow a_n

for i = n - 1 to 0 do

b_{i-1} \leftarrow a_i + rb_i

end for
```

- Notice that $b_{-1} = p(r)$ in this pseudocode. If f is an exact root, then $b_{-1} = p(r) = 0$.
- The array *a*[] stores all the polynomial coefficients

Deflating Polynomial multiple times

With one step of deflation

$$\Rightarrow p(x) = (x - r)q(x) + p(r)$$

Differentiate both sides to get

$$p'(x) = q(x) + (x - r)q'(x)$$

- At x = r, we get p'(r) = q(r)
- Above implies that deflate q(x) at x = r to get p'(r)

Example

• Use Horner's algorithm to evaluate p'(3) for

$$p(x) = x^{4} - 4x^{3} + 7x^{2} - 5x - 2$$

$$1 - 4 7 - 5 - 2$$

$$3) 3 - 3 12 21$$

$$1 - 1 4 7 \boxed{19} = p(3)$$

$$3 6 30$$

$$1 2 10 \boxed{37} = p'(3)$$

$$p(x) = (x-3)(x^3 - x^2 + 4x + 7) + 19$$

$$p(x) = (x-3)q(x) + 19 \text{ and } p'(x) = q(x) + (x-3)q'(x)$$

$$q(x) = x^3 - x^2 + 4x + 7$$
Hence, we have $p(3) = 19$, and $p'(3) = q(3) = 37$

Pseudocode for Horner's Algorithm for calculating differential

```
integer i, n; real p, r

real array (a_i)_{0:n}, (b_i)_{0:n-1}

\alpha \leftarrow a_n; \beta \leftarrow 0

for i = n - 1 to 0

\beta \leftarrow \alpha + r\beta

\alpha \leftarrow a_i + r\alpha

end for
```

- Notice that $\alpha = p(r)$ and $\beta = p'(r)$ in this pseudocode
- The array a[] stores all the polynomial coefficients

Concept of Error

- Numerical methods yield approximate results, results that are close to the exact analytical solution. We cannot exactly compute the exact errors associated with numerical methods.
 - Only rarely given data are exact, since they originate from measurements. Therefore there is probably error in the input information.
 - Algorithm itself usually introduces errors as well, e.g., unavoidable round-off errors
 - The output information will then contain error from both these sources.
- How confident are we in our approximate result?
- The question is "how much error is present in our calculation and is it tolerable?"

Absolute and Relative Error

- Suppose that α and β are two numbers, of which one is regarded as an approximation to the other.
- The **error** of β as an approximation to α is $\alpha \beta$; that is, the error equals the exact value minus the approximate value.
- The absolute error of β as an approximation to α is $|\alpha \beta|$. The relative error of β as an approximation to α is $|\alpha \beta|/|\alpha|$
- Notice that in computing the absolute error, the roles of α and β are the same, whereas in computing the relative error, it is essential to distinguish one of the two numbers as *correct*.
- Observe that the relative error is undefined in the case $\alpha = 0$
- For practical reasons, the relative error is usually more meaningful than the absolute error.

Example of absolute and relative errors

- For example, if α_1 = 1.333, β_1 = 1.334, and α_2 = 0.001, β_2 = 0.002, then the absolute error of β_i as an approximation to α_i is the same in both cases—namely, 10^{-3} .
- However, the relative errors are $3/4 \times 10^{-3}$ and 1, respectively.
- The relative error clearly indicates that β_1 is a good approximation to α_1 but that β_2 is a poor approximation to α_2 .
- absolute error = |exact value approximate value|
- $relative\ error = \frac{|exact\ value\ approximate\ value|}{|exact\ value|}$
- Consider x = 0.00347 rounded to $\tilde{x} = 0.0035$ and y = 30.158 rounded to $\tilde{y} = 30.16$. Find absolute and relative errors
- For x, absolute error is 0.3×10^{-4} , and relative error is 0.865×10^{-2}
- For y, absolute error is 0.2×10^{-2} , and relative error is 0.66×10^{-4}

Accuracy vs. Precision

- Accuracy: How close is a computed or measured value to the true value
 - Absolute error deals with accuracy
- Precision (or reproducibility): How close is a computed or measured value to previously computed or measured values.
 - Relative error deals with precision
 - Relates to significance
- Inaccuracy (or bias): A systematic deviation from the actual value.
- Imprecision (or uncertainty): Magnitude of scatter.

Accuracy and Precision

Precision and Significance

Precision: Number of digits carried by the computer

floating point data type: 6-7 decimal digits

double data type: about 15 decimal digits

- Significance: Number of digits where the computer answer and true answer agree
 - Leading zeros are never significant.
 - Embedded zeros are always significant.
 - Trailing zeros are significant only if the decimal point is specified.
 - Hint: Change the number to scientific notation. It is easier to see.

Significant Digits

• Significant digits are digits beginning with the leftmost nonzero digit and ending with the rightmost correct digit, including final zeros that

are exact.

Number	# of significant digits	Normalized Scientific Notation	Comment
0.00682	3	0.682 x 10 ⁻²	Leading zeros are not significant
1.072	4	0.1072 (x 10 ¹)	Embedded zeros are always significant
300	1	0.3 x 10 ³	Trailing zeros are significant only if the decimal point is specified
300.0	4	0.3000×10^3	
300.00	5	0.30000 x 10 ³	

Rounding and Chopping numbers

- A number x is **chopped to n digits** or figures when all digits that follow the nth digit are discarded and none of the remaining n digits are changed.
- Conversely, x is **rounded to** n **digits** or figures when x is replaced by an n-digit number that approximates x with minimum error. The question of whether to round up or down an (n + 1)-digit decimal number that ends with a 5 is best handled by always selecting the rounded n-digit number with an *even* nth digit.
 - If digits beyond nth digit are > 5000..., then round up, i.e. drop all digits beyond n and increase the nth digit by 1
 - If digits beyond nth digit are < 5000..., then round down, i.e. discard all digits beyond n
 - If equal to 5000..., then round the nth digit so that it is even (causes round up or down equally often)

Chop and Round these numbers

 What are following truncated(chopped) and rounded to 2 decimal digits?

0.217, 0.256, 0.25, 0.2499, 0.259, 0.475, 0.365

Rounding and Chopping Error

- What is the maximum error in rounding and chopping to *n* significant digits?
- Rounding:

$$|x - \tilde{x}| \le \frac{1}{2} \times 10^{-n}$$

• Chopping:

$$|x - \tilde{x}| \le 10^{-n}$$

• Why/How?

Example: Chop 0.256 or round 0.256

Significant digits of precision class exercise

$$0.1036 \times + 0.2122 y = 0.7381$$

$$0.2081 \times + 0.4247 y = 0.9327$$

- Solve the following simple set of linear equations
 - with 4 digits rounding (means round after each calculation to 4 significant digits)
 - with 3 digits rounding
- Value of y will change from -547 to 343.9
- If done with 10 significant digits in computer, it will be 356.2907199
- The lesson learned in this example is that data thought to be accurate should be carried with full precision and not be rounded off prior to each of the calculations.