

By: Tim Remmert and Anam Ejaz

## About the Project

- Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide.
- Four out of 5 CVD deaths are due to heart attacks and strokes, and one-third of these deaths occur prematurely in people under 70 years of age.
- Heart failure is a common event caused by CVDs and the dataset used for this
  project contains 11 features that can be used to predict possible heart disease.
- People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management that a accurate machine learning model can provide.

### About the Features in the Dataset

- 1. **Age:** age of the patient [years]
- 2. **Sex:** sex of the patient [M: Male, F: Female]
- 3. **ChestPainType:** chest pain type [TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic]
- 4. **RestingBP:** resting blood pressure [mm Hg]
- 5. **Cholesterol:** serum cholesterol [mm/dl]
- 6. **FastingBS:** fasting blood sugar [1: if FastingBS > 120 mg/dl, 0: otherwise]
- 7. **RestingECG:** resting electrocardiogram results [Normal: Normal, ST: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), LVH: showing probable or definite left ventricular hypertrophy by Estes' criteria]
- 8. **MaxHR:** maximum heart rate achieved [Numeric value between 60 and 202]
- 9. **ExerciseAngina:** exercise-induced angina [Y: Yes, N: No]
- 10. **Oldpeak:** oldpeak = ST [Numeric value measured in depression]
- 11. **ST\_Slope:** the slope of the peak exercise ST segment [Up: upsloping, Flat: flat, Down: downsloping]
- 12. **HeartDisease:** output class [1: heart disease, 0: Normal]

<sup>\*</sup>Angina is chest pain or discomfort caused when your heart muscle doesn't get enough oxygen-rich blood

## Data Preprocessing and Exploration

- The dataset set has 918 rows and 12 columns in total
- There is no missing values present and no duplicate rows

|       | Age   | RestingBP | Cholesterol | FastingBS | MaxHR  | Oldpeak | HeartDisease |
|-------|-------|-----------|-------------|-----------|--------|---------|--------------|
| Count | 918   | 918       | 918         | 918       | 918    | 918     | 918          |
| Mean  | 53.51 | 132.40    | 198.80      | 0.23      | 136.80 | 0.89    | 0.55         |
| Std   | 9.43  | 18.514    | 109.38      | 0.42      | 25.46  | 1.07    | 0.50         |
| Min   | 28    | 0         | 0           | 0         | 60     | -2.6    | 0            |
| 25%   | 47    | 120       | 173.25      | 0         | 120    | 0       | 0            |
| 50%   | 54    | 130       | 223         | 0         | 138    | 0.6     | 1            |
| 75%   | 60    | 140       | 267         | 0         | 156    | 1.5     | 1            |
| Max   | 77    | 200       | 603         | 1         | 202    | 6.2     | 1            |

## Distribution of Target Variable Heart Disease



## Quantitative Value Correlation Heatmap



## Conversion of Categorical Variables

- We can convert our categorical variables Sex, ChestPainType, RestingECG, ExerciseAngina, ST\_Slope into numerical ones by using Python pandas get\_dummies function to create dummy variables for each
- The function will create a new column for each categorical variable possible value and fill each row with 0 or 1 with 1 meaning it has the variable value and 0 meaning it does not
- For example for Sex variable it will create two new variables M and F for male and female and fill all male rows with 1 and 0 otherwise
- We can use the drop\_first = True option to omit the unnecessary extra column for binary categorical variables such as sex since the value of one can completely determine the other and prevent introducing colinearity to our dataset which may impact the model

## Splitting the Data for training and testing

- We split the data by using 30% to use for testing and 70% to use for training
- Our training data set is now 642 rows and the test data set is 276 rows

### About the ROC and AUC

The Receiver Operator Curve (ROC) is a plot that shows the effect on the true positive rate and false positive rate as the threshold for classification decreases.

- True Positive Rate (TPR) = TP/(TP +FN)
- False Positive Rate (FPR) = FP/(FP + TN)

The Area under the curve (AUC) is the area under the constructed ROC curve (a value between 0 and 1) and can be used to compare two different ROC curves. If the AUC for one classifier is greater than the other we can then consider that classifier more accurate under all possible thresholds.

## Classification with Logistic Regression

Accuracy: 87%

|                                   | Will Develop Heart Disease | Will Not Develop Heart<br>Disease |
|-----------------------------------|----------------------------|-----------------------------------|
| Will Develop Heart Disease        | 103                        | 21                                |
| Will Not develop Heart<br>Disease | 12                         | 140                               |

# How will changing the threshold value effect the TPR and FPR?



## Classification Using LDA

• Accuracy: 87%

|                                   | Will Develop Heart Disease | Will Not Develop Heart<br>Disease |
|-----------------------------------|----------------------------|-----------------------------------|
| Will Develop Heart Disease        | 105                        | 20                                |
| Will Not Develop Heart<br>Disease | 16                         | 135                               |

# There is no significant difference between LDA and Logistic Regression Performance



### **QDA Classification Results**

• Accuracy: 76%

|                                   | Will Develop Heart Disease | Will Not Develop Heart<br>Disease |
|-----------------------------------|----------------------------|-----------------------------------|
| Will Develop Heart Disease        | 88                         | 37                                |
| Will Not Develop Heart<br>Disease | 28                         | 123                               |

# QDA is the Worse Classification performance so far suggesting the model is too flexible for the data



## Using Random Forest As Classifier

- How can we set the hyperparameter n\_estimator (the number of decision trees to create) before training and testing the model?
- We can use grid search in sklearn package to use cross validation on the training set for each possible combination of parameters we need to set and determine which combination has the highest accuracy
- For possible values of 50, 100, 500 total decision trees our grid search determined 500 decision trees had the best accuracy of 0.87 on the training data

### Random Forest Classification Results

• Accuracy: 84%

|                                   | Will Develop Heart Disease | Will Not Develop Heart<br>Disease |
|-----------------------------------|----------------------------|-----------------------------------|
| Will Develop Heart Disease        | 98                         | 27                                |
| Will not Develop Heart<br>Disease | 17                         | 134                               |

# Random Forest performs worse than LDA and Logistic Regression probably due to overfitting



## Will Bagging Improve the Test Results?

- Using Grid search again for the number of estimators returns 100
- Accuracy: 84%

|                                   | Will Develop Heart Disease | Will Not Develop Heart<br>Disease |
|-----------------------------------|----------------------------|-----------------------------------|
| Will Develop Heart Disease        | 96                         | 29                                |
| Will Not Develop Heart<br>Disease | 16                         | 135                               |

# Bagging Did not Result in a Significant improvement over Random Forest



1.0

## What about Boosting?

- Using Python AdaBoost implementation we use grid search to find the best combination of parameters number of estimators (50, 100, 500) and the learning rate (000.1, 00.1,0.1,1) to find the best combination as number of estimators = 50 and learning rate = 0.1
- Accuracy: 88%

|                                   | Will Develop Heart Disease | Will Not Develop Heart<br>Disease |
|-----------------------------------|----------------------------|-----------------------------------|
| Will Develop Heart Disease        | 106                        | 19                                |
| Will Not Develop Heart<br>Disease | 15                         | 136                               |

# We Can See Boosting Significantly improved Random forest performance to the best classifier so far



## **Summary of Results**

| Rank | Classifier          | Accuracy |
|------|---------------------|----------|
| 1    | AdaBoost            | 88%      |
| 2    | LDA                 | 87%      |
| 2    | Logistic Regression | 87%      |
| 3    | Random Forest       | 84%      |
| 3    | Bagging             | 84%      |
| 4    | QDA                 | 76%      |

### Remarks

- Due to potential medical applications of this model we may want to decrease the threshold for classification to increase the amount of true positives we get so as few as possible at risk patients are classified as not at risk
- QDA worse performance than LDA may signify that flexible models will not be as effective for this data set
- We would Recommend AdaBoost (Adaptive boosting) on this classification task due to it superior accuracy to the other tested methods.