Recall that the field axioms for \mathbb{R} are as follows:

(1) (Associativity) For all $x, y, z \in \mathbb{R}$,

$$x + (y + z) = (x + y) + z$$
 and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

(2) (Commutativity) For all $x, y \in \mathbb{R}$,

$$x + y = y + x$$
 and $x \cdot y = y \cdot x$.

(3) (Identity elements) There exists a unique element of \mathbb{R} called **zero**, denoted by 0, such that for all $x \in \mathbb{R}$ we have x + 0 = x.

There exists a unique element of \mathbb{R} called **one**, different from 0, denoted by 1, such that for all $x \in \mathbb{R}$, $x \cdot 1 = x$.

(4) (Inverses) For each element $x \in \mathbb{R}$, there exists a unique element y (called the **negative** of x and usually denoted by -x) such that x + y = 0.

Similarly, for each element $x \in \mathbb{R} - \{0\}$, there exists a unique element y (called the **reciprocal** of x and usually denoted by 1/x or x^{-1}) such that $x \cdot y = 1$.

(5) (Distributivity) For all $x, y, z \in \mathbb{R}$,

$$x \cdot (y + z) = x \cdot y + x \cdot z$$
 and $(x + y) \cdot z = x \cdot z + y \cdot z$.

We take x - y to be an abbreviation for x + (-y) and x/y to be an abbreviation for $x \cdot (1/y)$. We have shown in class that

- (P1) If x + y = x, then y = 0
- (P2) $0 \cdot x = 0$
- (P3) -0 = 0
- (P4) (-x) = x
 - (1) Using only the axioms (1)–(5) and properties proven in class, prove the following statements for all $x, y, z \in \mathbb{R}$:
 - (a) (-1)x = -x

(b)
$$x(-y) = -(xy) = (-x)y$$

(c)
$$x(y-z) = xy - xz$$

(d) If
$$x \neq 0$$
 and $x \cdot y = x$, then $y = 1$

(e) If $x \neq 0$, then x/x = 1

Recall that \mathbb{R} also satisfies the following axioms related to ordering:

- (6) For all $x, y, z \in \mathbb{R}$, if x > y, then x + z > y + z. For all $x, y, z \in \mathbb{R}$, if x > y and z > 0, then $x \cdot z > y \cdot z$.
- (7) The order relation < has the least upper bound property.
- (8) If x < y, there exists an element z such that x < z and z < y.

We have shown in class that

- (P5) x > y and w > z implies x + w > y + z;
- (P6) x > 0 and y > 0 implies x + y > 0 and $x \cdot y > 0$;
- $(P7) x > 0 \iff -x < 0$
- (2) Prove the following "Laws of inequalities"
 - (a) $x > y \iff -x < -y$

(b) x > y and z < 0 implies xz < yz

(c) $x \neq 0$ implies $x^2 > 0$, where $x^2 = x \cdot x$

- (3) Prove that every positive number has a square root as follows.
 - (a) Show that if x > 0 and 0 < h < 1, then

$$(x+h)^2 < x^2 + h(2x+1)$$

$$(x-h)^2 > x^2 - 2xh$$
.

(b) Let x > 0. Show that if $x^2 < a$, then $(x + h)^2 < a$ for some h > 0. Similarly, show that if $a < x^2$, then $a < (x - h)^2$ for some h > 0.

(c) Given a > 0, let B be the set of all real numbers x such that $x^2 < a$. Show that B is bounded above and contains at least one positive number. (Hint: it may help to consider the case that $a \ge 1$ separately from that case that 0 < a < 1.)

(d) Let $b = \sup B$. Show that $b^2 = a$. (Hint: Suppose $b^2 < a$, then derive a contradiction. Then do the same when $b^2 > a$.)

(e) Show that if b and c are positive and $b^2 = c^2$, then b = c.