Dinamikus átmérő (diameter)

Day 1

Language Hungarian
Time limit: 5 seconds
Memory limit: 1024 megabytes

Adott egy n pontot tartalmazó súlyozott irányítatlan fa és q darab módosítás. Mindegyik módosítás egy él súlyát változtatja meg. Az a feladatod, hogy minden módosítás után add meg a fa átmérőjét.

(Két pont távolsága alatt az őket összekötő útvonalon lévő élek összegét értjük. Az átmérő a legnagyobb távolság.)

Bemenet

A bemenet első sorában három, szóközzel elválasztott egész szám van: n, a fa pontjainak száma, q a módosítások száma, és w az élek súlykorlátja ($2 \le n \le 100\,000, 1 \le q \le 100\,000, 1 \le w \le 20\,000\,000\,000\,000$).

A következő n-1 sor a fa kezdeti állapotát adja meg. Ezen sorok *i*-edike három, szóközzel elválasztott egész számot tartalmaz, a_i -t, b_i -t, c_i -t $(1 \le a_i, b_i \le n, \ 0 \le c_i < w)$, ami azt jelenti, hogy az a_i és a b_i pont között c_i súlyú él van. Ez az n-1 él biztosan fát alkot.

Az utolsó q sor mindegyike egy-egy módosítást tartalmaz. Ezen sorok j-edike két, szóközzel elválasztott egész számot tartalmaz, d_j -t és e_j -t ($0 \le d_j < n-1, 0 \le e_j < w$), amelyeket a következő képletekben használunk fel:

- $d'_i = (d_i + last) \mod (n-1)$
- $e'_{i} = (e_{j} + last) \mod w$

ahol last az előző módosítás után kapott átmérő értéke (kezdetben last=0). A (d'_j,e'_j) kettős egy olyan módosítást ad meg, amely a bemenetbeli d'_j+1 . él súlyát e'_j -re változtatja.

Kimenet

A kimenet q sort tartalmazzon! Az i. sorban a fa átmérőjének értéke legyen az i. módosítás után!

Pontozás

- 1. tesztcsoport (11 pont): $n, q \le 100$ és $w \le 10000$
- 2. tesztcsoport (13 pont): $n, q \leq 5\,000$ és $w \leq 10\,000$
- 3. tesztcsoport (7 pont): $w \le 10\,000$, és fa mindegyik éle pontosan $\{1,i\}$ formájú, tehát a fa egy 1-központú csillag.
- 4. tesztcsoport (18 pont): $w \le 10\,000$, és a fa mindegyik éle pontosan $\{i, 2i\}$ és $\{i, 2i+1\}$ alakú, tehát ha az 1-es pontot tekintjük a fa gyökerének, akkor egy kiegyensúlyozott bináris fa.
- 5. tesztcsoport (24 pont): garantálható, hogy minden módosítás után az átmérő átmegy az 1-es ponton.
- 6. tesztcsoport (27 pont): nincs egyéb korlátozás.

Példák

standard bemenet	standard kimenet
4 3 2000	2030
1 2 100	2080
2 3 1000	2050
2 4 1000	
2 1030	
1 1020	
1 890	
10 10 10000	6164
1 9 1241	7812
5 6 1630	8385
10 5 1630	6737
2 6 853	6738
10 1 511	7205
5 3 760	6641
8 3 1076	7062
4 10 1483	6581
7 10 40	5155
8 2051	
5 6294	
5 4168	
7 1861	
0 5244	
6 5156	
3 3001	
8 5267	
5 3102	
8 3623	

Megjegyzés

Az első példát az alábbi ábra szemlélteti. A legbaloldalibb kép a fa kezdeti állapotát mutatja. Az ezt követő képek az egyes módosítások utáni helyzetet mutatják. A módosított él zölddel, az átmérő pirossal van jelölve.

Az első módosítás a 3. él, vagyis a $\{2,4\}$ él súlyát változtatja 1030-ra. A leghosszabb út a 3 és 4 pont között vezet, hossza 2030.

Mivel a válasz 2030, a második módosítás az alábbiak szerint történik:

$$d_2' = (1 + 2030) \mod 3 = 0$$

$$e_2' = (1020 + 2030) \mod 2000 = 1050$$

Így az $\{1,2\}$ él súlya 1050-re változik. Ezzel az $\{1,4\}$ pontpár közötti út lesz a leghosszabb, értéke 2080. A harmadik módosítás az alábbiak szerint történik:

$$d_3' = (1 + 2080) \bmod 3 = 2$$

$$e_3' = (890 + 2080) \bmod 2000 = 970$$

Mivel a $\{2,4\}$ él súlya 970-re csökken, a legtávolabbi pontpár a $\{1,3\}$ lesz 2050 értékkel.