AER210: Vector Calc and Fluid Mechanics

QiLin Xue

Fall 2021

Contents

1	Double Integrals	2
2	Formal Definition of Double Integrals	7
3	Double Integrals in Polar Coordinates	9
4	Surface Area and Triple Integrals	11
5	Cylindrical, Spherical Coordinates, Taylor Series, Jacobian	13

1 Double Integrals

• Integrals Involving a Parameter

Example 1: Let $\int_0^1 Cx^3 dx$ where C is a constant. Then it gives

$$\int_0^1 Cx^3 \, \mathrm{d}x = \frac{1}{4}C \tag{1}$$

The result contains C.

• Suppose we have something like

$$\int_{a}^{b} f(x,y) \, \mathrm{d}x = g(y) \tag{2}$$

and therefore y is a parameter

Definition: A variable which is kept constant during an integration is called a parameter.

ullet Partial integration wrt x

Example 2: An example of partial integration wrt \boldsymbol{x} is

$$\int_0^1 x^3 y \, \mathrm{d}x = y \int_0^1 x^3 \, \mathrm{d}x = \frac{1}{4} y \tag{3}$$

- Notice the similarity between partial differentiation wrt x, $f_x(x,y)$ and the partial integration wrt x, $\int_a^b f(x,y) \, \mathrm{d}x$.
- Iterated Integrals (Integral of an Integral)
- Consider x = f(x, y) where $x \in [a, b], y \in [c, d]$. This defines a rectangular region.
- Assume that $f(x,y) \ge 0$. This can be represented as a surface, as shown below:

If we take the integral $\int_{y=c}^d f(x,y)\,\mathrm{d}y = A(x)$, we see that the area of the slice depends on x.

If we suppose that the surface has a tiny thickness Δx , then the volume is

$$\Delta V(x) = A(x) \cdot \Delta x = \left(\int_{y=c}^{d} f(x, y) \, \mathrm{d}y \right) \Delta x \tag{4}$$

If we break up the interval [a, b] into N segments

$$x_0 = a \le x_1 \le x_2 \le \dots x_{i-1} \le x_i \le \dots \le x_{N-1} \le x_N = b$$
 (5)

with $\Delta x_i = x_i - x_{i-1}$. We can then approximate the volume as

$$V \approx \sum_{i=1}^{N} \Delta V_i = \sum_{i=1}^{N} A(x_i) \Delta x_i$$
 (6)

which is known as a Riemann sum.

Idea: As we take the limit as $N \to \infty$ which implies $\Delta x_i \to 0$, we get the double integral:

$$V = \int_{a}^{b} \int_{c}^{d} f(x, y) \, \mathrm{d}y \, \mathrm{d}x \tag{7}$$

which can be determined by calculating two integrals.

ullet Similarly, we can find the volume by taking slices parallel to the xz plane.

The area of each slice is a function of y:

$$A(y) = \int_{a}^{b} f(x, y) \, \mathrm{d}x \tag{8}$$

so we have $\Delta V(y) = A(y) \cdot \Delta y$. Again, summing up all slices and taking the limit, we get

$$V = \int_{c}^{d} A(y) \, \mathrm{d}y = \int_{c}^{d} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

$$\tag{9}$$

Theorem: Fubini's Theorem tells us that

$$\int_{0}^{b} \int_{0}^{d} f(x, y) \, \mathrm{d}y \, \mathrm{d}x = \int_{0}^{d} \int_{0}^{b} f(x, y) \, \mathrm{d}x \, \mathrm{d}y \tag{10}$$

The analog for equality of mixed partial derivatives is known as Clairut's Theorem.

Example 3: Find the volume under the surface $z = x^2y$ where $x \in [1,3]$ and $y \in [0,1]$. We first form the integral by integrating wrt y. We have

$$V = \int_{1}^{3} \int_{0}^{1} x^{2} y \, \mathrm{d}y \, \mathrm{d}x \tag{11}$$

$$= \int_{1}^{3} x^{2} (1^{2}/2 - 0^{2}/2) \, \mathrm{d}x \tag{12}$$

$$= \int_{1}^{3} \frac{x^{2}}{2} \, \mathrm{d}x \tag{13}$$

$$=\frac{13}{3}\tag{14}$$

We can also form the integral by integrate it wrt x:

$$V = \int_0^1 \int_1^3 x^2 y \, \mathrm{d}x \, \mathrm{d}y \tag{15}$$

$$= \int_0^1 \frac{26}{3} y \, \mathrm{d}y \tag{16}$$

$$=\frac{13}{3}\tag{17}$$

so we can confirm they give the same answer.

Example 4: Evaluate the double integral of $f(x,y) = x - 3y^2$ over region R where

$$R = \{(x,y)|0 \le x \le 2, 1 \le y \le 2\}$$
(18)

To do this, we have

$$\int_0^2 \int_1^2 (x - 3y^2) \, \mathrm{d}y \, \mathrm{d}x = \int_0^2 (xy - y^3) \Big|_{y=1}^{y=2} \, \mathrm{d}x$$
 (19)

$$= \int_0^2 (x - 7) \, \mathrm{d}x \tag{20}$$

$$= -12 \tag{21}$$

• Note that in the special case where the function f(x,y) is $f(x,y)=g(x)\cdot h(y)$, then

$$\int_{c}^{d} \int_{a}^{b} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{c}^{d} \left[h(y) \int_{a}^{b} g(x) \, \mathrm{d}x \right] \, \mathrm{d}y = \int_{a}^{b} g(x) \, \mathrm{d}x \cdot \int_{c}^{d} h(y) \, \mathrm{d}y \tag{22}$$

This gives us a shortcut of evaluating double integrals in this form.

- Double integrals over general regions (What if region is non-rectangular?)
- Type 1 Region is in the form of

$$R = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x) \}$$
(23)

Here are some examples

ullet Let's think about the case where $f(x,y)\geq 0$ on a type-1 region. Suppose we have the following illustration

We find the area of slices, so

$$A(x) = \int_{g_1(x)}^{g_2(x)} f(x, y) \, \mathrm{d}y$$
 (24)

and the volume is thus

$$V = \int_{a}^{b} A(x) \, dX = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(X)} f(x, y) \, dy \, dx$$
 (25)

• Type-2 regions have the form

$$R = \{(x,y)|c \le y \le d \text{ and } h_1(y) \le x \le h_2(y)\}$$
 (26)

In a similar way, the volume bounded by this region is

$$V = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$
 (27)

• Type-3 regions are neither type-1 nor type-2. It is possible to break up the region into parts that can be classified as either type-1 or type-2:

Idea: While these formulas are derived by assuming a positive volume (and thus cannot work if f < 0), they still work in general.

Example 5: Find the volume of the solid that lies under the surface

$$z = f(x, y) = x^2 + y^2 (28)$$

and above the region R in the xy-plane. The region R is bounded by the straight line y=2x and the parabola $y = x^2$.

1. First we draw a diagram of the planar region R over which the surface is defined.

- 2. We then draw a line parallel to the axis of first integration (i.e. vertical lines for integrating in the y-direction first)
- 3. This gives us

$$V = \int_{x=0}^{x=2} \int_{y=x^2}^{y=2x} f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$
 (29)

$$= \int_0^2 \int_{x^2}^{2x} (x^2 + y^2) \, \mathrm{d}y \, \mathrm{d}x \tag{30}$$

$$=\frac{216}{35} \tag{31}$$

Alternatively, we can find the volume by integrating in the x direction first. In this case, we need to obtain boundary curves in the x = x(y) form:

$$y = x^2 \implies x = \sqrt{y} \tag{32}$$

$$y = 2x \implies x = y/2 \tag{33}$$

This then gives us

$$V = \int_{y=0}^{y=4} \int_{x=y/2}^{x=\sqrt{y}} f(x,y) \, dx \, dy$$

$$= \frac{216}{35}$$
(34)

$$=\frac{216}{35} \tag{35}$$

Warning: Do not just pick the minimum and maximum points. For example, the following is incorrect

$$\int_{y=0}^{y=4} \int_{x=0}^{x=2} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \tag{36}$$

as that corresponds with a rectangular region.

Example 6: Integrate the surface given by $z=e^{x^2}$ over the following region:

We can first integrate wrt x

$$V = \in_{y=0}^{y=1} \int_{x=y}^{x=1} e^{x^2} dx dy$$
 (37)

This is a hard problem since we don't know the anti-derivative of e^{x^2} . To solve this, we can first integrate wrt y, which gives us

$$V = \int_{x=0}^{x=1} \int_{y=0}^{y=x} e^{x^2} dy dx \qquad = \int_{x=0}^{1} e^{x^2} y \Big|_{y=0}^{y=x} dx$$
 (38)

$$= \int_0^1 e^{x^2} x \, \mathrm{d}x \tag{39}$$

This integral can be more easily solved using the u-sub $u=x^2$, $du=2x\,dx$ to get

$$V = \frac{1}{2}(e-1) \tag{40}$$

2 Formal Definition of Double Integrals

- We will see two ways of defining double integrals.
- First, let us review the formal definition of definite integrals for functions of a single variable.

To determine the area under a curve in the region $x \in [a,b]$, we can break the region up into intervals Δx_i , so the Riemann sum is

$$A \approx \sum_{i=1}^{n} f(x_i^*) \Delta x_i \tag{41}$$

Let $m_i \leq f(x_i^*) \leq M_i$ for $x_i^* \in \Delta x_i$. Then:

$$\sum_{i=1}^{n} m_i \Delta x_i \leq \sum_{i=1}^{n} f(x_i^*) \Delta x_i \leq \sum_{i=1}^{n} M_i \Delta x_i$$
 (42)

Estimate of the entire area calculated by Riemann Sum

If the Δx_i are of equal length and we take the limit, we can define:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x_i = \int_a^b f(x) \, \mathrm{d}x$$

$$\tag{43}$$

If they are not of equal length, we need to define the norm of the partition $||P|| = (\Delta x_i)_{\text{max}}$ for i = 1, 2, ..., n. This way, the integral can be alternatively defined as

$$A = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x_i = \int_a^b f(x) \, \mathrm{d}x$$
 (44)

- Consider a double integral over rectangular region. Let z=f(x,y) be defined on $R=\{(x,y)|a\leq x\leq b,c\leq y\leq d\}.$ Assume $f(x,y)\geq 0$ over R.
- Formal Definition 1: We can approximate the volume as

$$\Delta v_i \approx f(x_i^*, y_i^*) \Delta A_i \tag{45}$$

where $\Delta A_i = \Delta x_i \cdot \Delta y_i$. The Riemann sum is then

$$V \approx \sum_{i=1}^{N} f(x_i^*, y_i^*) \Delta A_i \tag{46}$$

We can pick x_i^*, y_i^* such that $f(x_i^*, y_i^*)$ is the smallest and largest value in the region, we can bound the Riemann sum by:

$$\sum_{i=1}^{N} m_i \Delta x_i \Delta y_i \le \sum_{i=1}^{N} f(x_i^*, y_i^*) \Delta x_i \Delta y_i \le \sum_{i=1}^{N} M_i \Delta x_i \Delta y_i$$
(47)

Warning: Taking the limit where $N \to \infty$ is not sufficient, as it does not necessarily mean the size of all partitions approach zero.

We define the norm of the partition to be

$$||P|| = \max(\Delta d_i) \tag{48}$$

for $i = 1, 2, \dots, N$. Therefore:

$$V = \lim_{\|P\| \to 0} \sum_{i=1}^{N} f(x_i^*, y_i^*) \Delta A_i = \iint_R f(x, y) \, \mathrm{d}A = \iint_R f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$
 (49)

Idea: Functions that are continuous are integrable over that region

• Formal Definition 2: We are free to divide the region R into any tiling, we can use uniform divisions.

As a result, the area of each tile is

$$\Delta A_{ij} = \Delta x_i \Delta y_j \tag{50}$$

where the (i, j) represent the coordinate of the tile. The double Riemann sum is then:

$$V \approx \sum_{j=1}^{m} \sum_{i=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta x_i \Delta y_j$$

$$(51)$$

Again, we can define m_{ij} and M_{ij} such that

$$\sum_{j=1}^{m} \sum_{i=1}^{n} m_{ij} \Delta x_i \Delta y_j \le \sum_{j=1}^{m} \sum_{i=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta x_i \Delta y_j \le \sum_{j=1}^{m} \sum_{i=1}^{n} M_{ij} \Delta x_i \Delta y_j$$
 (52)

Since these intervals are equally partitioned, we can define

$$V = \lim_{m,n \to \infty} \sum_{j=1}^{m} \sum_{i=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A_{ij} = \iint_{R} f(x, y) \, dA.$$
 (53)

If they were not, we would have to define the norm again.

Example 7: Estimate the volume of the solid that lies above the square $R = [0,2] \times [0,2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares & choose the sample point to be the upper corner of each square.

We would then have:

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$
 (54)

$$\approx f(1,1)\Delta A + f(1,2)\Delta A + f(2,1)\Delta A + f(2,2)\Delta A \tag{55}$$

$$\approx 34$$
 (56)

Note that the actual answer is 48. The approximation will improve as the number of regions increase.

- We can also define double integrals over non-rectangular regions.
- **Definition 1:** We can again tile a region using rectangular regions in two ways:
 - Each tile is contained within R and there are some space.

- Some tiles extend past the boundary of R, which is completely covered.

When we take the limit as $||P|| \to 0$, both of these tiling methods will approach the actual area, so using any of these tilings will cause the double integral to approach the actual volume.

If f(x,y) is a continuous function over R, then

$$V = \lim_{\|P\|} \sum f(x_i^*, y_i^*) \Delta A_i = \lim_{\|P\| \to 0} \sum_{j=1}^N f(x_j^*, y_j^*) \Delta A_j = \iint_R f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$
 (57)

• **Definition 2:** Similarly, we can use uniform partitions that either leave gaps or extend past the region. We can again define m_{ij} and M_{ij} for each tile R_{ij} such that

$$V = \iint_{P} f(x, y) dx dy = \lim_{\|P\| \to 0} \sum_{j=1}^{M} \sum_{i=1}^{N} f(x_{ij}^*, y_{ij}^*) \Delta x_i \Delta y_j$$
 (58)

3 Double Integrals in Polar Coordinates

- Using polar coordinates is helpful when integrating over circular regions.
- Recall that we can convert between rectangular and polar coordinates via

$$x = r\cos\theta, \qquad y = r\sin\theta \tag{59}$$

and that the area of a sector is

$$A = \frac{1}{2}r^2\theta \tag{60}$$

• Suppose we have some function f(x,y) defined on $R = \{(r,\theta) | a \le r \le b, \alpha \le \theta \le \beta\}$. We can then define:

$$f(x,y) = f(r\cos\theta, r\sin\theta) = g(r,\theta). \tag{61}$$

Assume $f(x,y) = g(r,\theta) \ge 0$ on R. Then we can approximate the volume as

$$\Delta V_i \approx g(r_i^*, \theta_i^*) \cdot \Delta A_i = f(r_i^* \cos \theta_i^*, r_i^* \sin \theta_i^*) \cdot r_i \Delta r_i \Delta \theta_i \left(1 + \frac{\Delta r_i}{2r_i} \right). \tag{62}$$

Taking the limit, we have

$$V = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(r_i^* \cos \theta_i^*, r_i^* \sin \theta_i^*) r_i \Delta r_i \Delta \theta_i$$
 (63)

$$* = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r \,dr \,d\theta.$$
 (64)

We can generalize this finding regardless of whether the function is positive or negative over R.

Idea: In a region bounded by $\alpha \leq \theta \leq \beta$, $a \leq r \leq b$, we have

$$\iint\limits_R f(x,y) \, \mathrm{d}A = \int_\alpha^\beta \int_a^b f(r\cos\theta, r\sin\theta) r \, \mathrm{d}r \, \mathrm{d}\theta \,. \tag{65}$$

• We can extend this to more complicated regions. Suppose R is bounded by $\alpha \leq \theta \leq \beta$ and $g(\theta) \leq r \leq g_2(\theta)$. Then the volume would be

$$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$
 (66)

• Similarly, if R is bounded by $a \le r \le b$ and $h_1(r) \le \theta \le h_2(r)$, we have

$$\iint\limits_{R} f(x,y) \, \mathrm{d}A = \int_{a}^{b} \int_{h_{1}(r)}^{h_{2}(r)} f(r\cos\theta, r\sin\theta) r \, \mathrm{d}r \, \mathrm{d}\theta \,. \tag{67}$$

Example 8: Evaluate $\iint_R (3x + 4y^2) \, dA$ where R is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

This leads to the region $R = \{(r, \theta) | 1 \le r \le 2, 0 \le \theta \le \pi\}$. Then:

$$I = \iint\limits_{R} (3x + 4y^2) \,\mathrm{d}A \tag{68}$$

$$= \int_0^\pi \int_1^2 (3r\cos\theta + 4r^2\sin^2\theta)r\,\mathrm{d}r\,\mathrm{d}\theta \tag{69}$$

Solving this integral gives $\frac{15}{2}\pi$.

Example 9: Find the volume of the solid bounded by the z=0 plane and the parabaloid $z=1-x^2-y^2$.

Note that at z=0, we get $0=1-x^2-y^2 \implies x^2+y^2=1$. We can write our region as $R=\{(r,\theta)|0\leq r\leq 1, 0\leq \theta\leq 2\pi\}$. Our double integral is then

$$V = \iint_{\mathcal{B}} (1 - x^2 - y^2) \, dA = \int_0^{2\pi} \int_0^1 (1 - r^2) r \, dr \, d\theta$$
 (70)

Solving this gives $V = \pi/2$.

Example 10: Find the area enclosed by one petal of the rose given by $r = \cos 3\theta$.

The area is

$$A = \int_{-\pi/6}^{\pi/6} \int_0^{\cos 3\theta} 1 \cdot r \, \mathrm{d}r \, \mathrm{d}\theta \tag{71}$$

which evaluates to $\frac{1}{12}$.

Example 11: Find the volume trapped between the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 1$.

First, let us find the intersection using cartesian coordinates. We have

$$\sqrt{x^2 + y^2} = \sqrt{1 - x^2 - y^2} \implies x^2 + y^2 = \frac{1}{2}.$$
 (72)

This can be written as $r=\frac{1}{\sqrt{2}}$ in polar coordinates. The volume is thus

$$\int_0^{2\pi} \int_0^{1/\sqrt{2}} f(x, y) r \, \mathrm{d}r \, \mathrm{d}\theta \tag{73}$$

where
$$f(x,y)=\sqrt{1-x^2-y^2}-\sqrt{x^2+y^2}.$$
 This gives $\frac{2\pi}{3}\left(1-\frac{1}{\sqrt{2}}\right).$

• Applications of Double Integrals

• We can determine the mass of a plate with nonuniform density $\rho = \rho(x,y)$. The mass is then

$$\iint\limits_{R} \rho(x,y) \, \mathrm{d}A \,. \tag{74}$$

ullet We can find the center of mass of a particle. Imagine we break a plate into small pieces. Each small piece has a moment about the x axis:

$$(M_x)_i = m_i y_i^* \approx \rho(x_i^*, y_i^*) \Delta A_i \cdot y_i^* \tag{75}$$

The total x and y moments are thus

$$M_x = \iint_R y \rho(x, y) \, \mathrm{d}A \tag{76}$$

$$M_y = \iint_R x \rho(x, y) \, \mathrm{d}A \tag{77}$$

These are equal to the moment $\bar{y}m$ and $\bar{x}m$, respectively, where m is the mass of the object. Thus:

$$\bar{x} = \frac{\iint\limits_{R} x \rho(x, y) \, dA}{\iint\limits_{R} \rho(x, y) \, dA}$$
 (78)

and similarly for \bar{y} .

• Consider a rotating object. A point mass has a kinetic energy $K=\frac{1}{2}mr^2\omega^2$. However, mr^2 would be different for different points on a solid object.

We can consider:

$$K = \frac{1}{2} \left(\sum_{i=1}^{n} m_i r_i^2 \right) \omega^2.$$
 (79)

The quantity inside the parentheses is known as the moment of inertia I. While this may be true for a series of point masses, for a continuous distribution we need to take the limit:

$$I = \iint_{R} \rho(x, y) [r(x, y)]^2 dx dy.$$
(80)

4 Surface Area and Triple Integrals

- Suppose we wish to find the surface area.
- Method 1: Given z = f(x, y) we can estimate the area as

$$S \iint_{S} dT \tag{81}$$

where dT gives the area of the tangent plane and S is the region of the curve. The projection of dT is given by

$$\Delta A = \Delta T |\cos \alpha| \implies \frac{\Delta A}{|\cos \alpha|}$$
 (82)

where α is the angle between \vec{n} (normal to plane) and \vec{k} (normal to xy plane), such that

$$S = \iint\limits_{R} \frac{\mathrm{d}A}{|\cos\alpha|} \tag{83}$$

where R is the projection of S. To determine $\cos \alpha$, we can write z = f(x,y) in explicit form as

$$F(x, y, z) = z - f(x, y) = 0, (84)$$

which is the 0^{th} level surface. Since $\vec{\nabla}$ is perpendicular to it, we have

$$\vec{n} = \frac{\vec{\nabla}F}{\|\vec{\nabla}F\|}.\tag{85}$$

Recall that

$$\vec{\nabla}F \cdot \vec{k} = \left(\frac{\partial F}{\partial x}\hat{i} + \frac{\partial F}{\partial y}\hat{j} + \frac{\partial F}{\partial z}\hat{k}\right) \cdot \vec{k} \tag{86}$$

so

$$|\cos \alpha| = |\vec{n} \cdot \vec{k}| = \frac{|\vec{\nabla} F \cdot \vec{k}|}{\|\vec{\nabla} F\|} = \frac{\left|\frac{\partial F}{\partial z}\right|}{\|\vec{\nabla} F\|}.$$
(87)

Therefore, we have

$$S = \iint_{R} \frac{\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2} + \left(\frac{\partial F}{\partial y}\right)^{2} + \left(\frac{\partial F}{\partial z}\right)^{2}}}{\left|\frac{\partial F}{\partial z}\right|} \, \mathrm{d}A$$
 (88)

which can be simplified to

$$S = \iint_{R} \sqrt{\left(\frac{\partial F}{\partial x}\right)^{2} + \left(\frac{\partial F}{\partial y}\right)^{2} + 1} \, \mathrm{d}A$$
 (89)

• Method 2: Consider a rectangular subregion R_i with area $\Delta A_i = \Delta y_i \times \Delta x_i$. Projecting this onto z = f(x,y) gives a parallelogram. This parallelogram has sides

$$\vec{a}_i = \Delta x_i \cdot \hat{i} + 0\hat{j} + f_x(x_i, y_i) \Delta x_i \hat{k}$$
(90)

$$\vec{b}_i = 0\hat{i} + \Delta y_i \cdot \hat{j} + f_y(x_i, y_i) \Delta x_i \hat{k}. \tag{91}$$

The area of the parallelogram is $\Delta T_i = \|\vec{a}_i \times \vec{b}_i\|$. Taking the cross product, we get

$$S = \iint\limits_{R} \sqrt{f_x^2(x,y) + f_y^2(x,y) + 1}$$
 (92)

• All the ideas for double integrals carry over for **triple Integrals**. Formally, we can break it up into sub-volumes, gain an estimate by finding the largest and smallest value in each ΔV_i , which bound the triple integral and approach to it after taking the limit.

Example 12: Suppose f(x,y,z) is a continuous function defined on the box region Q, given by

$$Q = \{(x, y, z) | a \le x \le b, c \le y \le d, r \le z \le s\}.$$
(93)

We then have

$$\iiint\limits_{Q} f(x,y,z) \, \mathrm{d}V = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z. \tag{94}$$

• Suppose we have something more complicated like $Q = \{(x,y,z) | (x,y) \in R \text{ and } g_1(x,y) \leq z \leq (x,y).$ We will then have

$$\iint\limits_{R} \int_{g_1(x,y)}^{g_2(x,y)} f(x,y,z) \, \mathrm{d}z \, \mathrm{d}A \tag{95}$$

Example 13: Evaluate $\iiint\limits_Q 6xy\,\mathrm{d}V$ where Q is the tetrahedron bounded by the planes x=0, y=0, z=0 and

2x + y + z = 4. We then have

$$\int_{x=0}^{x=2} \int_{y=0}^{y=4-2x} \int_{z=0}^{z=4-2x-y} 6xy \, dz \, dy \, dx.$$
 (96)

If we want to first integrate with respect to x, we have

$$\int_{y=0}^{y=4} \int_{z=0}^{z=4-y} \int_{x=0}^{x=1/2(4-y-z)}$$
(97)

5 Cylindrical, Spherical Coordinates, Taylor Series, Jacobian

ullet In **cylindrical coordinates**, we can represent a point in \mathbb{R}^3 as

$$P(x, y, z) = P(r, \theta, z). \tag{98}$$

We can describe a region as

$$Q = \{(x, y, z) | (x, y) \in R, u_1(x, y) \le z \le u_2(x, y)\}$$
(99)

where

$$R = \{(r, \theta) | \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)\}$$
(100)

and the integral can be written as

$$\iiint\limits_{Q} f(x,y,z) \, \mathrm{d}V = \iint\limits_{R} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} \mathrm{d}A \right] \, \mathrm{d}A \tag{101}$$

$$= \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta, r\sin\theta)}^{u_2(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z) r \, dz \, dr \, d\theta.$$
 (102)

• In spherical coordinates, a point can be represented by

$$P(x, y, z) = P(\rho, \theta, \phi) \tag{103}$$

where θ is the same as the one in cylindrical coordinates¹. We have

$$x = \rho \sin \phi \cos \theta \tag{104}$$

$$y = \rho \sin \phi \sin \theta \tag{105}$$

$$z = \rho \cos \phi \tag{106}$$

and

$$\rho^2 = x^2 + y^2 + z^2. \tag{107}$$

• The volume in spherical coordinates is given by

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \tag{108}$$

Idea: We can create a change of basis from $\hat{i}, \hat{j}, \hat{k}$ to e_{ρ} , e_{θ} , and e_{ϕ} as follows:

$$e_{\rho} = \sin \phi \cos \theta \hat{i} + \sin \phi \cos \theta \hat{j} + \cos \phi \hat{k} \tag{109}$$

$$e_{\theta} = -\sin\theta \hat{i} + \cos\theta \hat{j} + 0\hat{k} \tag{110}$$

$$e_{\phi} = \cos\phi\cos\theta \hat{i} + \cos\phi\sin\theta \hat{j} - \sin\theta \hat{k} \tag{111}$$

 $^{^1{\}rm This}$ is the common convention in physics. However, many mathematics texts mix up θ and ϕ

which can be represented in the following transformation:

$$[v]_{\mathsf{cartesian}} = \begin{bmatrix} \cos\theta\sin\phi & -\sin\theta & \cos\theta\cos\phi\\ \sin\theta\sin\phi & \cos\theta & \sin\theta\cos\phi\\ \cos\phi & 0 & -\sin\phi \end{bmatrix} [v]_{\mathsf{spherical}}$$
(112)

That is, if you coordinates in the spherical basis, then you can use this transformation to get the coordinates in the cartesian basis. This means that at a particular θ and ϕ , the unit vector $e_{\rho}=(1,0,0)$ maps to $(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi)$, which is what we expect. Let this transformation matrix be M. Since M is composed of only unit vectors, the inverse is the transpose:

$$[v]_{\text{spherical}} = \begin{bmatrix} \cos\theta \sin\phi & \sin\theta \sin\phi & \cos\phi \\ -\sin\theta & \cos\theta & 0 \\ \cos\theta \cos\phi & \sin\theta \cos\phi & -\sin\phi \end{bmatrix} [v]_{\text{cartesian}}$$
(113)

So any vector written in the cartesian basis can be written in terms of the spherical basis vectors via this transformation.

• Taylor Series for Two-Variable Functions: Suppose we are given $f(x_0, y_0)$ and want to approximate $f(x_0 + \Delta x, y_0 + \Delta y)$. Suppose there projections on the xy plane is P and Q. We can parametrize the line segment PQ as

$$x(t) = x_0 + t\Delta x \tag{114}$$

$$y(t) = y_0 + t\Delta y \tag{115}$$

where $0 \le t \le 1$. We can then define

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y) \tag{116}$$

which is a one-variable function, which we can approximate using the one dimensional Taylor Series:

$$F'(t) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \tag{117}$$

The second derivative is

$$F''(t) = \frac{\partial^2 f}{\partial x^2} \Delta x^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} \Delta y^2$$
(118)

The third derivative is

$$F'''(t) = \frac{\partial^3 f}{\partial x^3} \Delta x^3 + 3 \frac{\partial^3 f}{\partial x^2 \partial y} \Delta x^2 \Delta y + 3 \frac{\partial^3 f}{\partial x \partial y^2} \Delta x \Delta y^2 + \frac{\partial^3 f}{\partial y^3} \Delta y^3.$$
 (119)

Therefore:

$$F(t_0 + \Delta t) \approx F(t_0) + F'(t_0)\Delta t + \frac{1}{2!}F''(t_0)\Delta t^2 + \dots + \frac{F^{(n)}(t_0)\Delta t}{n!}$$
(120)

• Change of Variables in Multiple Integrals: Consider a bijective mapping between a region S in the uv plane to a region R in the xy plane. We can partition both regions into N regions.

Specifically, let us partition S into square regions. Consider an arbitrary region with vertices $\bar{A}(u_0,v_0)$, $\bar{B}(u_0+\Delta u,v_0)$, $\bar{C}(u_0,v_0+\Delta v)$, and \bar{D} . Let the subregion be denoted as S_i with area ΔA_S .

Suppose we have the mapping

$$x = g(u, v) \tag{121}$$

$$y = h(u, v) \tag{122}$$

such that $\bar{X} \mapsto X$. If Δu and Δv are sufficiently small, then $R_i = ABCD$ is a parallelogram. Therefore:

$$\Delta A_R \approx \text{area of the parallelogram} = \|\vec{AB} \times \vec{AC}\|.$$
 (123)

Note that $\vec{AB} = \Delta x_1 \hat{i} + \Delta y_1 \hat{j}$ and $\vec{AC} = \Delta x_2 \hat{i} + \Delta y_2 \hat{j}$, so their cross product is

$$\|\vec{AB} \times \vec{AC}\| = |\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1| \tag{124}$$

From our linear approximation, we can write

$$\Delta x_1 \approx g_u(u_0, v_0) \Delta u \tag{125}$$

$$\Delta x_2 \approx g_v(u_0, v_0) \Delta v \tag{126}$$

$$\Delta y_1 \approx h_u(u_0, v_0) \Delta u \tag{127}$$

$$\Delta y_2 \approx h_v(u_0, v_0) \Delta v \tag{128}$$

To sum it up, we have

$$\Delta A_R = \left| \det \begin{bmatrix} g_u(u_0, v_0) & g_v(u_0, v_0) \\ h_u(u_0, v_0) & h_v(u_0, v_0) \end{bmatrix} \right| \Delta u \Delta v$$
(129)

Definition: The determinant of the derivative matrix is called the Jacobian (J) of the transformation.

$$J = \det \begin{bmatrix} g_u & g_v \\ h_u & h_v \end{bmatrix} = \det \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} \equiv \frac{\partial(x, y)}{\partial(u, v)}$$
(130)

given

$$x = g(u, v) \tag{131}$$

$$y = h(u, v) \tag{132}$$

Therefore,

$$\Delta A_R \approx |J| \Delta A_S \tag{133}$$

Theorem: Assuming that

- f is continuous
- $-\ g$ and h are functions that have continuous first derivatives
- The transformation is 1-1.
- The Jacobian J is nonzero

we can write

$$\iint_{\mathcal{B}} f(x,y) \, \mathrm{d}A = \iint_{S} f(g(u,v), h(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, \mathrm{d}u \, \mathrm{d}v \,. \tag{134}$$

Note the similarity between this and the single variable case

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(x(u)) \frac{dx}{du} du$$
(135)

Example 14: Suppose we wish to evaluate the integral $\iint_R (x^2 + 2xy) dA$ where R is the region bounded by the

lines

$$y = 2x + 3 \tag{136}$$

$$y = 2x + 1 \tag{137}$$

$$y = 5 - x \tag{138}$$

$$y = 2 - x \tag{139}$$

Notice that this is a rotated rectangle, so let's try to switch this into a non-rotated rectangle with the bounds:

$$u = 3 \tag{140}$$

$$u = 1 \tag{141}$$

$$v = 5 \tag{142}$$

$$v = 2 \tag{143}$$

by the transformation

$$x = \frac{1}{3}(v - u) \tag{144}$$

$$y = \frac{1}{3}(2v + u). \tag{145}$$

The Jacobian is

$$J = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \det \begin{bmatrix} -1/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix} = -\frac{1}{3}$$
 (146)

which gives

$$\iint_{\mathcal{B}} (x^2 + 2xy) \, dA = \iint_{S} \left[\frac{1}{3} (v - u)^2 + \frac{2}{3} (v - u)(2v + u) \right] |J| \, du \, dv \tag{147}$$

where $S = \{(u, v) | 1 \le u \le 3, 2 \le v \le 5\}$

• For triple integrals, the Jacobian is

$$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{bmatrix}$$
(148)

ullet Successive Transformations: Suppose we have x=x(u,v),y=y(u,v) and u=u(s,t) and v=v(s,t). Then

$$\frac{\partial(x,y)}{\partial(s,t)} = \frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(s,t)} \tag{149}$$

 \bullet Back Transformations: Recall that when we transform a region R to a region S with some transformation T, then

$$dA_R = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| dA_S \tag{150}$$

and

$$dA_S = \left| \frac{\partial(u, v)}{\partial(x, y)} \right| dA_R \tag{151}$$

Theorem: Jacobians satisfy the property:

$$\frac{\partial(x,y)}{\partial(u,v)} = \left(\frac{\partial(u,v)}{\partial(x,y)}\right)^{-1} \tag{152}$$

or

$$J_{S \to R} = \frac{1}{J_{R \to S}} \tag{153}$$

Idea: This is important since if we know u = f(x, y) and v = g(x, y), then we can calculate the Jacobian without finding the inverse.