Zestaw IV

- **Zad.1** Ładunek q rozłożony jest równomiernie na powierzchni kuli. Jaką prędkość należ nadać ładunkowi punktowemu, którego ładunek właściwy $q_w = -0.25 \times 10^{-3} \frac{C}{kg}$, w kierunku prostopadłym do prostej łączącej środek kuli z ładunkiem punktowym, aby zaczął się on poruszać po okręgu o promieniu r. Ładunki znajdują się w próżni. Promień kuli jest mniejszy od r. Sporządzić wykresy dla $r = 10 \div 20 \ cm$ w trzech przypadkach: a) $q = 0.2 \times 10^{-7} \ C$, b) $q = 0.5 \times 10^{-7} \ C$ c) $q = 1.0 \times 10^{-7} \ C$.
- **Zad.2** Obliczyć siłę odpychania elektrostatycznego między jądrem o liczbie atomowej Z i bombardującym go protonem zakładając, że proton zbliżył się na odległość r. Sporządzić wykresy dla a) wodoru (Z=1), b) węgla (Z=6), c) tlenu (Z=8), przyjmując $r=0.2\times 10^{-13}\div 1\times 10^{-13}~m$.
- **Zad.3** Sporządzić wykres zmiany potencjału pulsującej kulki przewodzącej, naładowanej ładunkiem $q=10^{-9}~C$ w przedziale czasu $t=0.1\div0.4~s$, jeżeli promień kulki zmienia się według prawa: $R=R_o\sin{(\omega t)}$, gdzie $\omega=2\pi~s^{-1}$. Rozpatrzyć dwa przypadki: a) $R_o=0.02~m$, b) $R_o=0.04~m$.
- **Zad.4** Znaleźć odcinek o jaki odchyli się na ekranie oscyloskopu plamka, jeżeli napięcie anodowe (przyśpieszjące elektrony) równa się U_a , a napięcie na płytkach odchylających równa się U. Odległość między płytkami $d=2\ cm$, ich długość $b=4\ cm$. Odległość od płytek do ekranu $l=10\ cm$. Sporządzić wykresy dla $U=100\div 200\ V$ w dwóch przypadkach: a) $U_a=1000\ V$, b) $U_a=1500\ V$.