In [1]:

import pandas as pd

In [2]:

import numpy as np

In [3]:

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Car%20Price.csv')

In [4]:

df.head()

Out[4]:

	Brand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission	Owner
0	Maruti	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda	Honda Amaze VX i- DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner
<									>

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4340 entries, 0 to 4339
Data columns (total 9 columns):
    Column
                   Non-Null Count Dtype
                    -----
                                   ----
0
    Brand
                   4340 non-null
                                   object
 1
    Model
                   4340 non-null
                                   object
 2
    Year
                   4340 non-null
                                   int64
 3
    Selling_Price 4340 non-null
                                   int64
 4
    KM_Driven
                   4340 non-null
                                   int64
 5
                   4340 non-null
    Fuel
                                   object
 6
    Seller_Type
                   4340 non-null
                                   object
 7
    Transmission
                   4340 non-null
                                   object
                   4340 non-null
                                   object
    Owner
dtypes: int64(3), object(6)
memory usage: 305.3+ KB
```

In [6]:

```
df.describe()
```

Out[6]:

	Year	Selling_Price	KM_Driven
count	4340.000000	4.340000e+03	4340.000000
mean	2013.090783	5.041273e+05	66215.777419
std	4.215344	5.785487e+05	46644.102194
min	1992.000000	2.000000e+04	1.000000
25%	2011.000000	2.087498e+05	35000.000000
50%	2014.000000	3.500000e+05	60000.000000
75%	2016.000000	6.000000e+05	90000.000000
max	2020.000000	8.900000e+06	806599.000000

In [7]:

df.columns

Out[7]:

In [8]:

```
df[['Brand']].value_counts()
```

Out[8]:

Brand Maruti 1280 Hyundai 821 Mahindra 365 Tata 361 252 Honda Ford 238 Toyota 206 Chevrolet 188 Renault 146 107 Volkswagen Skoda 68 64 Nissan Audi 60 BMW39 Fiat 37 Datsun 37 Mercedes-Benz 35 Mitsubishi 6 Jaguar 6 5 Land Ambassador 4 4 Volvo Jeep 3 OpelCorsa 2 2 MG 1 Isuzu Force 1 Daewoo 1 1 Kia

In [9]:

dtype: int64

df[['Model']].value_counts()

Out[9]:

Model							
Maruti Swift Dzire VDI							
Maruti Alto 800 LXI							
Maruti Alto LXi							
Hyundai EON Era Plus							
Maruti Alto LX							
Mahindra KUV 100 G80 K4 Plus	1						
Mahindra KUV 100 mFALCON D75 K8	1						
Mahindra KUV 100 mFALCON D75 K8 AW	1						
Mahindra KUV 100 mFALCON G80 K2 Plus	1						
Volvo XC60 D5 Inscription							
Length: 1491, dtype: int64							

```
In [10]:
df[['Fuel']].value_counts()
Out[10]:
Fuel
Diesel
            2153
Petrol
            2123
              40
CNG
LPG
               23
Electric
dtype: int64
In [11]:
df[['Seller_Type']].value_counts()
Out[11]:
Seller_Type
Individual
                     3244
                      994
Dealer
Trustmark Dealer
                      102
dtype: int64
In [12]:
df[['Transmission']].value_counts()
Out[12]:
Transmission
Manual
                 3892
Automatic
                  448
dtype: int64
In [13]:
df[['Owner']].value_counts()
Out[13]:
Owner
First Owner
                         2832
Second Owner
                         1106
                          304
Third Owner
Fourth & Above Owner
                           81
Test Drive Car
                           17
dtype: int64
In [14]:
df.columns
Out[14]:
Index(['Brand', 'Model', 'Year', 'Selling_Price', 'KM_Driven', 'Fuel',
       'Seller_Type', 'Transmission', 'Owner'],
      dtype='object')
```

```
In [15]:
df.shape
Out[15]:
(4340, 9)
In [16]:
df.replace({'Fuel':{'Petrol':0, 'Diesel':1, 'CNG':2, 'LPG':3 , 'Electric':4}},inplace=True)
In [17]:
df.replace({'Seller_Type':{'Individual':0, 'Dealer':1, 'Trustmark Dealer':2}},inplace=True)
In [18]:
df.replace({'Transmission':{'Manual':0, 'Automatic':1}},inplace=True)
In [19]:
df.replace({'Owner':{'First Owner':0, 'Second Owner':1, 'Third Owner':2, 'Fourth & Above Ow
In [20]:
y = df['Selling_Price']
In [21]:
y.shape
Out[21]:
(4340,)
In [22]:
У
Out[22]:
         60000
        135000
1
2
        600000
3
        250000
        450000
4335
        409999
4336
        409999
4337
        110000
4338
        865000
4339
        225000
Name: Selling_Price, Length: 4340, dtype: int64
```

```
In [23]:
```

```
x = df[['Year', 'KM_Driven', 'Fuel', 'Seller_Type', 'Transmission', 'Owner']]
```

In [24]:

x.shape

Out[24]:

(4340, 6)

In [25]:

х

Out[25]:

	Year	KM_Driven	Fuel	Seller_Type	Transmission	Owner
0	2007	70000	0	0	0	0
1	2007	50000	0	0	0	0
2	2012	100000	1	0	0	0
3	2017	46000	0	0	0	0
4	2014	141000	1	0	0	1
4335	2014	80000	1	0	0	1
4336	2014	80000	1	0	0	1
4337	2009	83000	0	0	0	1
4338	2016	90000	1	0	0	0
4339	2016	40000	0	0	0	0

4340 rows × 6 columns

In [26]:

```
from sklearn.model_selection import train_test_split
```

In [27]:

```
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.3, random_state =252
```

In [28]:

```
x_train.shape, x_test.shape, y_train.shape,y_test.shape
```

Out[28]:

```
((3038, 6), (1302, 6), (3038,), (1302,))
```

```
In [29]:
from sklearn.linear_model import LinearRegression
In [30]:
lr = LinearRegression()
In [31]:
lr.fit(x_train, y_train)
Out[31]:
LinearRegression()
In [32]:
y_pred = lr.predict(x_test)
In [33]:
y_pred
Out[33]:
array([502458.82786411, 646333.17428702, 521962.74075834, ...,
       620183.32683779, 315403.82788567, 731862.54196036])
In [34]:
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
In [35]:
mean_squared_error(y_test,y_pred)
Out[35]:
193242972302.19577
In [36]:
mean_absolute_error(y_test,y_pred)
Out[36]:
228808.9552297783
In [37]:
r2_score(y_test,y_pred)
Out[37]:
0.40755633943708325
```

In [38]:

```
import matplotlib.pyplot as plt
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Prices")
plt.xlabel("Predicted Prices")
plt.title("Actual Prices vs Predicted Prices")
plt.show()
```


In [39]:

```
df_new = df.sample(1)
```

In [40]:

df_new

Out[40]:

_		Brand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission	Owner
	542	Hyundai	Hyundai Verna 1.6 VTVT SX	2015	760000	55340	0	2	0	0
4	5									>

In [41]:

```
df_new.shape
```

Out[41]:

(1, 9)

In [42]:

```
x_new = df.drop(['Brand', 'Model', 'Selling_Price'],axis=1)
```

```
In [43]:
```

```
y_pred_new = lr.predict(x_new)
```

In [44]:

```
y_pred_new
```

Out[44]:

```
array([ 35370.27293819, 48662.14204815, 429186.78782618, ..., 91547.56411821, 593599.58861789, 410283.52563578])
```