Test Exercise 3

Jader Martins

January 5, 2021

(a) Use general-to-specific to come to a model. Start by regressing the federal funds rate on the other 7 variables and eliminate 1 variable at a time.

```
reg.lm <- lm("INTRATE ~ INFL + PROD + UNEMPL + COMMPRI + PCE + PERSINC + HOUST", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	Pr(> t)	
(Intercept)	-0.2211609	-0.7022347	0.2599129	0.2449947	-0.9027172	0.367	
INFL	0.6960592	0.5738661	0.8182523	0.0622288	11.1854756	< 0.001	***
PROD	-0.0577431	-0.1360918	0.0206056	0.0399004	-1.4471824	0.148	
UNEMPL	0.1024814	-0.0875119	0.2924746	0.0967572	1.0591603	0.29	
COMMPRI	-0.0055211	-0.0113604	0.0003183	0.0029738	-1.8565634	0.064	
PCE	0.3443801	0.2079972	0.4807629	0.0694552	4.9583061	< 0.001	***
PERSINC	0.2469988	0.1280245	0.3659731	0.0605896	4.0765864	< 0.001	***
HOUST	-0.0194113	-0.0285844	-0.0102383	0.0046715	-4.1552303	< 0.001	***

We remove PROD as it has the higher t value.

```
reg.lm <- lm("INTRATE ~ INFL + UNEMPL + COMMPRI + PCE + PERSINC + HOUST", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	-0.2459818	-0.7262758	0.2343123	0.2445983	-1.005656	0.315	
INFL	0.7160629	0.5968229	0.8353029	0.0607251	11.791879	< 0.001	***
UNEMPL	-0.0044833	-0.1271959	0.1182293	0.0624936	-0.071740	0.943	
COMMPRI	-0.0074894	-0.0126866	-0.0022922	0.0026468	-2.829629	0.005	**
PCE	0.3431384	0.2066522	0.4796247	0.0695081	4.936671	< 0.001	***
PERSINC	0.2410714	0.1222702	0.3598727	0.0605016	3.984543	< 0.001	***
HOUST	-0.0206276	-0.0296586	-0.0115967	0.0045992	-4.485072	< 0.001	***

We remove UNEMPL as it has the higher t value.

```
reg.lm <- lm("INTRATE ~ INFL + COMMPRI + PCE + PERSINC + HOUST", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	-0.2401188	-0.6924651	0.2122275	0.2303660	-1.042336	0.298	
INFL	0.7175265	0.6053036	0.8297495	0.0571517	12.554771	< 0.001	***
COMMPRI	-0.0075007	-0.0126847	-0.0023167	0.0026401	-2.841100	0.005	**
PCE	0.3405254	0.2243669	0.4566840	0.0591560	5.756400	< 0.001	***
PERSINC	0.2402420	0.1237191	0.3567649	0.0593415	4.048463	< 0.001	***
HOUST	-0.0205297	-0.0291472	-0.0119121	0.0043887	-4.677900	< 0.001	***

We remove COMMPRI as it has the higher t value.

```
reg.lm <- lm("INTRATE ~ INFL + PCE + PERSINC + HOUST", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	-0.2135714	-0.6679775	0.2408347	0.2314157	-0.9228905	0.356	
INFL	0.7448085	0.6335857	0.8560314	0.0566425	13.1492793	< 0.001	***
PCE	0.3109752	0.1960109	0.4259395	0.0585480	5.3114612	< 0.001	***
PERSINC	0.2568855	0.1403078	0.3734631	0.0593696	4.3268857	< 0.001	***
HOUST	-0.0215219	-0.0301584	-0.0128855	0.0043983	-4.8932529	< 0.001	***

summary(reg.lm)

```
##
## Call:
## lm(formula = "INTRATE ~ INFL + PCE + PERSINC + HOUST", data = data)
##
## Residuals:
##
               1Q Median
      Min
                               ЗQ
                                      Max
## -6.8827 -1.5365 -0.1099 1.3049 7.7022
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.213571 0.231416 -0.923
                                              0.356
## INFL
               0.744809
                          0.056643 13.149 < 2e-16 ***
## PCE
               0.310975
                         0.058548
                                    5.311 1.49e-07 ***
## PERSINC
               0.256885
                          0.059370
                                   4.327 1.75e-05 ***
## HOUST
              -0.021522
                          0.004398 -4.893 1.25e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.2 on 655 degrees of freedom
## Multiple R-squared: 0.6329, Adjusted R-squared: 0.6306
## F-statistic: 282.3 on 4 and 655 DF, p-value: < 2.2e-16
```

(b) Use specific-to-general to come to a model. Start by regressing the federal funds rate on only a constant and add 1 variable at a time. Is the model the same as in (a)?

```
reg.lm <- lm("INTRATE ~ 1", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	5.347636	5.071006	5.624267	0.1408815	37.95841	< 0.001	***

```
reg.lm <- lm("INTRATE ~ INFL", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.6420865	1.330604	1.953569	0.1586301	10.35167	< 0.001	***
INFL	0.9453384	0.881163	1.009514	0.0326830	28.92451	< 0.001	***

```
reg.lm <- lm("INTRATE ~ INFL + PROD", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.2488999	0.9029389	1.5948609	0.1761888	7.088419	< 0.001	***
INFL	0.9749756	0.9106992	1.0392519	0.0327342	29.784580	< 0.001	***
PROD	0.0947197	0.0560113	0.1334281	0.0197132	4.804897	< 0.001	***

```
reg.lm <- lm("INTRATE ~ INFL + PROD + UNEMPL", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.2041389	0.8660647	1.5422131	0.1721717	6.993824	< 0.001	***
INFL	0.8912722	0.8223824	0.9601620	0.0350836	25.404215	< 0.001	***
PROD	-0.0798905	-0.1502215	-0.0095595	0.0358176	-2.230481	0.026	*
UNEMPL	0.4978332	0.3287130	0.6669535	0.0861282	5.780141	< 0.001	***

```
reg.lm <- lm("INTRATE ~ INFL + COMMPRI + UNEMPL", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.1594975	0.8287739	1.4902210	0.1684283	6.884221	< 0.001	***
ÌNFL	0.9170358	0.8550160	0.9790557	0.0315850	29.033920	< 0.001	***

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
COMMPRI	0.00,00=0	0.0==00.0	-0.0022642	0.0027179	-2.796663	0.005	**
UNEMPL	0.3545387	0.2629196	0.4461578	0.0466591	7.598498	< 0.001	***

```
reg.lm <- lm("INTRATE ~ INFL + PCE + UNEMPL", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	0.2419448	-0.2321112	0.7160008	0.2414235	1.002159	0.317	
INFL	0.7603813	0.6715227	0.8492398	0.0452532	16.802823	< 0.001	***
PCE	0.2744626	0.1670964	0.3818288	0.0546786	5.019560	< 0.001	***
UNEMPL	0.1376249	0.0192107	0.2560391	0.0603051	2.282146	0.023	*

```
reg.lm <- lm("INTRATE ~ INFL + PCE + PERSINC", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	0.0212188	-0.4310181	0.4734556	0.2303116	0.0921308	0.927	
INFL	0.8754199	0.7756201	0.9752196	0.0508252	17.2241233	< 0.001	***
PCE	0.1811769	0.0769122	0.2854417	0.0530991	3.4120506	0.001	***
PERSINC	0.3054090	0.1884766	0.4223415	0.0595504	5.1285776	< 0.001	***

```
reg.lm <- lm("INTRATE ~ INFL + PCE + PERSINC + HOUST", data)
pretty <- prettify(summary(reg.lm))
kable(pretty)</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	-0.2135714	-0.6679775	0.2408347	0.2314157	-0.9228905	0.356	
INFL	0.7448085	0.6335857	0.8560314	0.0566425	13.1492793	< 0.001	***
PCE	0.3109752	0.1960109	0.4259395	0.0585480	5.3114612	< 0.001	***
PERSINC	0.2568855	0.1403078	0.3734631	0.0593696	4.3268857	< 0.001	***
HOUST	-0.0215219	-0.0301584	-0.0128855	0.0043983	-4.8932529	< 0.001	***

summary(reg.lm)

```
##
## Call:
## lm(formula = "INTRATE ~ INFL + PCE + PERSINC + HOUST", data = data)
##
## Residuals:
## Min    1Q Median    3Q Max
## -6.8827 -1.5365 -0.1099    1.3049    7.7022
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.213571    0.231416    -0.923    0.356
```

As the final result we've got the same model as in (a).

(c) Compare your model from (a) and the Taylor rule of equation (1). Consider R^2 , AIC and BIC. Which of the models do you prefer?

```
model1 <- lm("INTRATE ~ INFL + PCE + PERSINC + HOUST", data)
taylor <- lm("INTRATE ~ INFL + PROD", data)
AIC(model1, taylor)</pre>
```

	df	AIC
model1	6	2920.519
taylor	4	3013.616

BIC(model1, taylor)

	df	BIC
model1	6	2947.473
taylor	4	3031.585

```
summary(model1)$r.squared

## [1] 0.6328852
summary(taylor)$r.squared
```

[1] 0.5747014

I prefer model1, as it explains better the variability in data.

(d) Test the Taylor rule of equation (1) using the RESET test, Chow break and forecast test (with in both tests as break date January 1980) and a Jarque-Bera test. What do you conclude?

```
resettest(data$INTRATE ~ data$INFL + data$PROD)
```

##

```
## RESET test
##
## data: data$INTRATE ~ data$INFL + data$PROD
## RESET = 2.2578, df1 = 2, df2 = 655, p-value = 0.1054
library(gap)
## gap version 1.2.2
## Attaching package: 'gap'
## The following object is masked from 'package:car':
##
##
       logit
data$Year <- substr(data$OBS, start=1,stop=4)</pre>
grp <- data[data$Year < 1980, ]</pre>
x1 <- grp[, c("INFL", "PROD")]; y1 <- data.frame( INTRATE = grp["INTRATE"])</pre>
grp <- data[data$Year >= 1980, ]
x2 <- grp[, c("INFL", "PROD")]; y2 <- data.frame( INTRATE = grp["INTRATE"])</pre>
#chow.test
chow.test(y1, x1, y2, x2)
        F value
                        d.f.1
                                     d.f.2
                                                 P value
## 2.873501e+01 3.000000e+00 6.540000e+02 1.836802e-17
```