Logistic Regression - Loss Function - Maximum Likelihood | Binary Cross Entropy

1. Introduction

At this point, the focus is on why we need a loss function in Logistic Regression.

- In **Linear Regression**, we typically use **Mean Squared Error (MSE)** to measure how far predictions are from actual values.
- But Logistic Regression deals with **classification problems** (e.g., "yes" or "no", "spam" or "not spam"), so predictions are probabilities between **0** and **1**.
- This means we need a loss function that measures how well our probability predictions match the actual labels in a classification setting.

2. The Problem

The issue with using something like MSE here is:

- Probabilities are non-linear with respect to the model parameters when using the sigmoid function.
- MSE doesn't handle probability predictions effectively in classification, and it can lead to **slow learning** or getting stuck in local minima during optimization.

We need:

- A method to find the *best set of parameters* (weights) that maximize how well the model explains the observed data.
- A way to quantify "how likely" the observed labels are, given the predicted probabilities from the model.

This is where Maximum Likelihood Estimation (MLE) comes into play.

3. Maximum Likelihood

What is Maximum Likelihood?

- It's a statistical method used to estimate model parameters (weights) by maximizing the probability of observing the actual training data.
- In Logistic Regression, it means choosing weights such that the predicted probabilities are as close as possible to the actual binary labels.

Step-by-step reasoning:

1. Predicted probability for a single example:

For label y = 1, probability is:

$$P(y = 1|x) = \sigma(w \cdot x)$$

where σ is the sigmoid function.

For label y = 0, probability is:

$$P(y = 0|x) = 1 - \sigma(w \cdot x)$$

2. Combine into one formula:

We can write both cases together:

$$P(y|x) = [\sigma(w\cdot x)]^y \cdot [1-\sigma(w\cdot x)]^{(1-y)}$$

- If y = 1, the second term becomes 1.
- If y = 0, the first term becomes 1.

3. Likelihood for the whole dataset:

Assuming data points are independent:

$$L(w) = \prod_{i=1}^n [\sigma(w\cdot x_i)]^{y_i} \cdot [1-\sigma(w\cdot x_i)]^{(1-y_i)}$$

This is called the likelihood function.

4. Log-Likelihood:

 Multiplying many probabilities can lead to very small numbers, so we take the log (logarithm) to avoid numerical underflow and make calculations easier:

$$\ell(w) = \sum_{i=1}^n \left[y_i \log(\sigma(w \cdot x_i)) + (1-y_i) \log(1-\sigma(w \cdot x_i))
ight]$$

This is called the log-likelihood function.

5. Goal:

- Maximize this log-likelihood to find the best weights.
- Maximizing log-likelihood = finding weights that make our predicted probabilities match the actual outcomes as closely as possible.

Binary Cross Entropy Connection

When we **maximize** the log-likelihood, mathematically, it is equivalent to **minimizing** something called **Binary Cross Entropy Loss**:

$$ext{Loss} = -rac{1}{n}\sum_{i=1}^n \left[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)
ight]$$

- Here, $\hat{y}_i = \sigma(w \cdot x_i)$ is the predicted probability.
- If $y_i=1$, the first term dominates (we penalize low predicted probability for class 1).
- If $y_i = 0$, the second term dominates (we penalize high predicted probability for class 0).

Why it works well:

- It naturally fits classification where outputs are probabilities.
- It heavily penalizes confident but wrong predictions.
- It's smooth and convex for logistic regression, so gradient descent can find the optimal weights effectively.

Summary:

We want our model to output probabilities close to the true labels.

- **Maximum Likelihood** says: choose weights that make the actual observed labels most probable.
- This leads to the **Binary Cross Entropy Loss**, which punishes wrong predictions more if the model is overconfident.
- Instead of guessing weights randomly, we use math to pick the ones that make our data look as likely as possible under the model.