最优化导论第三次作业题

1. 设 f(x) 为凸函数。证明: f(x) 为凸函数的充要条件是对任意的 $x,y\in\mathbb{R}^n$, 一元函数

$$\varphi(\alpha) = f(x + \alpha y)$$

是关于 α 的凸函数。

证明: (必要性)

设 $\lambda_1 \geq 0, \lambda_2 \geq 0$, 且 $\lambda_1 + \lambda_2 = 1$ 。

由 $\varphi(\alpha)$ 的定义和 f(x) 的凸性,有:

$$egin{aligned} arphi(\lambda_1lpha_1+\lambda_2lpha_2)&=f(x+(\lambda_1lpha_1+\lambda_2lpha_2)y)\ &=f(\lambda_1(x+lpha_1y)+\lambda_2(x+lpha_2y))\ &\leq\lambda_1f(x+lpha_1y)+\lambda_2f(x+lpha_2y)\ &=\lambda_1arphi(lpha_1)+\lambda_2arphi(lpha_2) \end{aligned}$$

由定义知 $\varphi(\alpha)$ 是凸函数。

(充分性)

任取 $x, y \in \mathbb{R}^n$, 记

$$\varphi(\alpha) = f(x + \alpha(y - x))$$

则

$$egin{aligned} f(\lambda_1 x + \lambda_2 y) &= f(x + \lambda_2 (y - x)) \ &= arphi(\lambda_2) \ &\leq \lambda_1 arphi(0) + \lambda_2 arphi(1) \ &= \lambda_1 f(x) + \lambda_2 f(y) \end{aligned}$$

故知 f(x) 为凸函数。

2. 设 $f:\mathbb{R}^n \to \mathbb{R}$ 为连续函数。 证明: f 是凸函数当且仅当对于任意的 $x,y \in \mathbb{R}^n$, 其在连线上取值的平均值不超过两端点函数值的平均值,即:

$$\int_0^1 f(x+\lambda(y-x))\,d\lambda \leq rac{f(x)+f(y)}{2}.$$

证明

(充分性)

若 f 为凸函数,则根据 Jensen 不等式,对于任意 $0 \le \lambda \le 1$,有:

$$f(x + \lambda(y - x)) \le f(x) + \lambda(f(y) - f(x)).$$

对两边在 [0,1] 上积分:

$$\int_0^1 f(x+\lambda(y-x))\,d\lambda \leq \int_0^1 (f(x)+\lambda(f(y)-f(x)))\,d\lambda = rac{f(x)+f(y)}{2}.$$

因此,若f为凸函数,则该不等式成立。

(必要性)

现在证明反向,即若上述积分不等式成立,则 f 为凸函数。

假设 f 不是凸函数,则存在 $x,y \in \mathbb{R}^n$ 及某个 $\theta_0 \in (0,1)$,使得:

$$f(\theta_0 x + (1 - \theta_0)y) > \theta_0 f(x) + (1 - \theta_0)f(y).$$

定义函数:

$$F(\theta) = f(\theta x + (1 - \theta)y) - [\theta f(x) + (1 - \theta)f(y)],$$

由于 f 连续, F 也是连续函数。

显然 F(0) = F(1) = 0,且在 θ_0 处有 $F(\theta_0) > 0$ 。

令 α 为 F 在 θ_0 左侧的最大零点, β 为 F 在 θ_0 右侧的最小零点。

定义
$$u = \alpha x + (1 - \alpha)y$$
, $v = \beta x + (1 - \beta)y$.

在区间 (α, β) 上, $F(\theta) > 0$, 即:

$$f(\theta x + (1 - \theta)y) > \theta f(x) + (1 - \theta)f(y).$$

由此可得:

$$f(\theta u + (1-\theta)v) > \theta f(u) + (1-\theta)f(v), \quad \forall \theta \in (0,1).$$

对 θ 从0到1积分:

$$\int_0^1 f(u+ heta(v-u))\,d heta > \int_0^1 ig(f(u)+ heta(f(v)-f(u))ig)\,d heta = rac{f(u)+f(v)}{2}.$$

这意味着: 在区间 [u,v] 上, f 的平均值大于两端点处的平均值, 与题设假设矛盾。

因此, 命题得证。

3. 设 $f:\mathbb{R}\to\mathbb{R}$ 为凸函数,且 $\mathbb{R}_+\subseteq\mathrm{dom}\,f$ 。定义其"滑动平均"函数

$$F(x)=rac{1}{x}\int_0^x f(t)\,dt, \qquad \mathrm{dom}\, F=\mathbb{R}_{++}.$$

证明 F 为凸函数。(可假设 f 可微。)

证明:

由积分求导法则,

$$F'(x) = -rac{1}{x^2} \int_0^x f(t) \, dt + rac{1}{x} f(x).$$

再求一次导数得

$$F''(x) = rac{2}{x^3} \int_0^x f(t) dt - rac{2}{x^2} f(x) + rac{1}{x} f'(x) \ = rac{2}{x^3} \int_0^x \left(f(t) - f(x)
ight) dt + rac{1}{x} f'(x) \ = rac{2}{x^3} \int_0^x \left(f(t) - f(x) - f'(x)(t-x)
ight) dt.$$

由于 f 凸且可微, 对任意 $x, t \in \text{dom } f$ 有不等式

$$f(t) \geq f(x) + f'(x)(t-x).$$

故被积函数

$$f(t) - f(x) - f'(x)(t-x) \geq 0,$$

从而

$$F''(x) = \frac{2}{x^3} \int_0^x \underbrace{\left(f(t) - f(x) - f'(x)(t-x)\right)}_{>0} dt \ge 0.$$

因此 F 在 \mathbb{R}_{++} 上二阶导非负, 故 F 为凸函数。证毕。

4. 判断下列函数在给定定义域上是否为凸函数:

(a)
$$f(x) = e^x - 1$$
 , 定义域 \mathbb{R} .

(b)
$$f(x_1,x_2)=x_1x_2$$
,定义域 $\mathbb{R}^2_{++}.$

(c)
$$f(x_1, x_2) = 1/(x_1 x_2)$$
 , 定义域 \mathbb{R}^2_{++} .

(d)
$$f(x_1,x_2)=x_1/x_2$$
, 定义域 \mathbb{R}^2_{++} .

(e)
$$f(x_1,x_2)=x_1^2/x_2$$
,定义域 $\mathbb{R} imes\mathbb{R}_{++}$.

(f)
$$f(x_1,x_2)=x_1^{lpha}x_2^{1-lpha}$$
 ,其中 $0\leq lpha \leq 1$,定义域 \mathbb{R}^2_{++} .

解:

(a)
$$\Delta$$
 。因为 $f''(x)=e^x>0$ (处处严格正),故严格凸。

(b) 非凸。Hessian 为

$$abla^2 f = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$
,既非正半定也非负半定,故非凸。

(c) 凸。

$$abla^2 f = rac{1}{x_1 x_2} egin{bmatrix} 2/x_1^2 & 1/(x_1 x_2) \ 1/(x_1 x_2) & 2/x_2^2 \end{bmatrix} \succeq 0$$
,故凸。

(d) 非凸。

$$abla^2 f = egin{bmatrix} 0 & -1/x_2^2 \ -1/x_2^2 & 2x_1/x_2^3 \end{bmatrix}$$
不为正半定(亦非负半定),故非凸。

(e) 凸。

$$abla^2 f = rac{2}{x_2} egin{bmatrix} 1 & -x_1/x_2 \ -x_1/x_2 & x_1^2/x_2^2 \end{bmatrix} \succeq 0$$
,故凸。

(f) 非凸(为凹)。

Hessian $abla^2 f \preceq 0$ (当 $0 \leq lpha \leq 1$) ,因此函数是凹函数而非凸函数。

5. 证明以下函数在其定义域上是凸函数,可以使用复合规则:

(a)

$$f(x) = -\log \Big(-\log \Big(\sum_{i=1}^m e^{a_i^ op x + b_i} \Big) \Big), \quad \mathrm{dom} f = \Big\{ x \mid \sum_{i=1}^m e^{a_i^ op x + b_i} < 1 \Big\}.$$

证明:

令 $g(x)=\log\sum_i e^{a_i^\top x+b_i}$ 。 由 \log -sum-exp 的性质,g 为凸函数。 取 $h(y)=-\log y$,其在 \mathbb{R}_{++} 上凸且单调 递减。 因此

$$f(x) = h(-g(x))$$

是"凸旦递减函数"与"凹函数"的复合, 仍为凸函数。

(b)

$$f(x,u,v) = -\sqrt{uv-x^{ op}x}, \quad \mathrm{dom} f = \{(x,u,v) \mid u>0, v>0, uv>x^{ op}x\}.$$

证明: 我们可将 f 写成

$$f(x,u,v) = -\sqrt{uig(v-x^Tx/uig)}\,.$$

令

$$h(x_1,x_2)=-\sqrt{x_1x_2},$$

则 h 在 \mathbb{R}^2_{++} 上是凸函数,且对每个自变量单调不增。 再令

$$g_1(u,v,x)=u, \qquad g_2(u,v,x)=v-rac{x^Tx}{u}.$$

其中 g_1 为仿射函数(既凸又凹),而由于 x^Tx/u 是凸的,故 g_2 为凹函数。于是

$$f(u,v,x)=hig(g_1(u,v,x),\,g_2(u,v,x)ig)$$

为凸函数(凸且分别非增的外层函数与凹的内层函数的复合仍为凸)。

(c)

$$f(x,u,v) = -\log(uv - x^{ op}x), \quad \operatorname{dom} f = \{(x,u,v) \mid u > 0, v > 0, uv > x^{ op}x\}.$$

证明:

分解:

$$f(x,u,v) = -\log u - \log\Bigl(v - rac{x^ op x}{u}\Bigr).$$

 $-\log u$ 为凸函数; $v-\frac{x^\top x}{u}$ 为凹函数(因为 $\frac{x^\top x}{u}$ 凸且取负变凹); $-\log(\cdot)$ 是凸且递减函数; 因此第二项也是凸函数。 两项相加 $\Rightarrow f$ 凸。

(d)

$$f(x,t) = -ig(t^p - \|x\|_p^pig)^{1/p}, \quad p > 1, \quad \mathrm{dom} f = \{(x,t) \mid t \geq \|x\|_p\}.$$

证明:

改写为:

$$f(x,t)=-igg(t-rac{\|x\|_p^p}{t^{p-1}}igg)^{1/p}.$$

设

$$g_1(t)=t^{1-1/p},\quad g_2(x,t)=t-rac{\|x\|_p^p}{t^{p-1}},$$

两者均为凹函数。

定义 $h(y_1,y_2)=-y_1y_2$,其对每个自变量都是凸且递减。 由复合规则, $f=h(g_1,g_2)$ 是凸函数。

(e)

$$f(x,t) = -\log ig(t^p - \|x\|_p^pig), \quad p > 1, \quad \mathrm{dom} f = \{(x,t) \mid t > \|x\|_p\}.$$

证明:

展开:

$$f(x,t) = -\log t^{p-1} - \log\Bigl(t - rac{\|x\|_p^p}{t^{p-1}}\Bigr) = -(p-1)\log t - \log\Bigl(t - rac{\|x\|_p^p}{t^{p-1}}\Bigr).$$

第一项凸。 第二项是"递减凸函数 $-\log(\cdot)$ " 与"凹函数 $t-\|x\|_p^p/t^{p-1}$ "的复合,仍为凸函数。 两项相加 $\Rightarrow f$ 凸。

注: 常用结论:

- log-sum-exp 函数 $\log \sum_i e^{z_i}$ 是凸的;
- $-\log(y)$ 在 \mathbb{R}_{++} 上凸且严格递减;
- \sqrt{xy} 在 \mathbb{R}^2_{++} 上凹;
- $\frac{x^{\top}x}{u}$ 在 $\{u>0\}$ 上对 (x,u) 凸;
- $||x||_n^p/u^{p-1}$ 在 $\{u>0\}$ 上对 (x,u) 凸;
- 若 h 凸旦非增,而 g 凹,则 h q 凸。

6. 设 $f:\mathbb{R}^n \to \mathbb{R}$ 是定义在整个 \mathbb{R}^n 上的凸函数。若存在一个有限划分

$$\mathbb{R}^n = X_1 \cup X_2 \cup \cdots \cup X_L$$

其中每个 X_i 的内部非空,且 $\operatorname{int} X_i \cap \operatorname{int} X_j = \emptyset$ (当 $i \neq j$ 时),并且在每个子集 X_i 上, f 都是仿射函数: $f(x) = a_i^\top x + b_i, \quad x \in X_i.$

证明: $f(x) = \max_{i=1,\ldots,L} (a_i^\top x + b_i).$

证明:

由 Jensen 不等式,对任意 $x,y\in\mathrm{dom}\,f$ 及 $t\in[0,1]$,有:

$$f(y + t(x - y)) \le f(y) + t(f(x) - f(y)).$$

移项可得:

$$f(x) \geq f(y) + \frac{f(y+t(x-y)) - f(y)}{t}.$$

设 $x\in X_i$,取任意 $y\in \operatorname{int} X_j$,并取足够小的 t>0,使得 $y+t(x-y)\in X_j$ 。

由于在 $X_i, X_j \perp f$ 均为仿射函数:

$$f(x) = a_i^ op x + b_i, \quad f(y+t(x-y)) = a_i^ op (y+t(x-y)) + b_j.$$

代入不等式得:

$$a_i^ op x + b_i \geq a_j^ op y + b_j + rac{a_j^ op (y + t(x-y)) + b_j - a_j^ op y - b_j}{t} = a_j^ op x + b_j.$$

上式对任意 $j=1,\ldots,L$ 都成立,因此: $a_i^{ op}x+b_i\geq \max_{j=1,\ldots,L}(a_j^{ op}x+b_j)$.

故而:

$$f(x) = a_i^ op x + b_i = \max_{j=1,\ldots,L} (a_j^ op x + b_j).$$

7. 设 $f:\mathbb{R}^n \to \mathbb{R}$ 为凸函数,定义其透视函数(perspective function)为

$$g(x,t) = t f(x/t)$$
, 定义域 $\text{dom } g = \{(x,t) \mid x/t \in \text{dom } f, \ t > 0\}$.

证明:

- (a) dom g 是凸集;
- (b) 对任意 $(x, t), (y, s) \in \text{dom } q$, 以及 $0 < \theta < 1$, 成立:

$$q(\theta x + (1 - \theta)y, \ \theta t + (1 - \theta)s) < \theta q(x, t) + (1 - \theta)q(y, s).$$

证明: (a) 取任意 $(x,t),(y,s)\in \mathrm{dom}\,g$ 与 $\theta\in [0,1]$ 。则 t>0,s>0 且 $x/t,\ y/s\in \mathrm{dom}\,f$ 。记

$$\lambda := rac{ heta t}{ heta t + (1 - heta) s} \in [0, 1],$$

则有

$$\frac{\theta x + (1 - \theta)y}{\theta t + (1 - \theta)s} = \lambda \frac{x}{t} + (1 - \lambda) \frac{y}{s}.$$

由于 $\mathrm{dom}\, f$ 为凸集, $\lambda(x/t)+(1-\lambda)(y/s)\in\mathrm{dom}\, f$ 。又 $\theta t+(1-\theta)s>0$,故

$$(\theta x + (1-\theta)y, \ \theta t + (1-\theta)s) \in \operatorname{dom} g.$$

于是 dom g 对任意凸组合封闭,因而为凸集。

(b) 假设 s,t>0,且 $x/t,y/s\in \mathrm{dom}\, f$,令 $0\leq \theta\leq 1$ 。需证:

$$g(\theta x + (1 - \theta)y, \ \theta t + (1 - \theta)s) \le \theta g(x, t) + (1 - \theta)g(y, s).$$

由定义:

$$g(heta x + (1- heta)y, \; heta t + (1- heta)s) = (heta t + (1- heta)s) \, figg(rac{ heta x + (1- heta)y}{ heta t + (1- heta)s}igg).$$

注意到:

$$\frac{\theta x + (1-\theta)y}{\theta t + (1-\theta)s} = \frac{\theta t}{\theta t + (1-\theta)s} \cdot \frac{x}{t} + \frac{(1-\theta)s}{\theta t + (1-\theta)s} \cdot \frac{y}{s}.$$

令权重

$$\lambda = \frac{\theta t}{\theta t + (1 - \theta)s}, \quad 1 - \lambda = \frac{(1 - \theta)s}{\theta t + (1 - \theta)s}.$$

显然 $0 \le \lambda \le 1$, 且 $\lambda + (1 - \lambda) = 1$ 。

由于 f 为凸函数,利用 Jensen 不等式:

$$f\bigg(\frac{\theta x + (1-\theta)y}{\theta t + (1-\theta)s}\bigg) \leq \frac{\theta t}{\theta t + (1-\theta)s}f(x/t) + \frac{(1-\theta)s}{\theta t + (1-\theta)s}f(y/s).$$

两边同乘以 $(\theta t + (1 - \theta)s)$, 得:

$$g(\theta x + (1 - \theta)y, \ \theta t + (1 - \theta)s) \le \theta t f(x/t) + (1 - \theta)s f(y/s)$$

= $\theta g(x, t) + (1 - \theta)g(y, s).$