Feuille de TD 7: Diagonalisation.

Exercice 1. Diagonalisation pratique

On considère les matrices :

$$A = \begin{pmatrix} 2 & 2 \\ 16 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}, \quad E = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix},$$

$$F = \begin{pmatrix} -1 & 1 & -1 \\ -1 & 1 & 1 \\ -2 & 2 & 0 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 0 & 4 \\ 9 & 1 & 4 \\ 1 & 0 & 1 \end{pmatrix}.$$

- 1. Calculer les polynômes caractéristiques de chacune de ces matrices.
- 2. En déduire les valeurs propres de chacune de ces matrices dans \mathbb{R} . Dans le cas où le polynôme n'est pas scindé sur \mathbb{R} trouver les valeurs propres dans \mathbb{C} .
- 3. Calculer le sous-espace propre associé à chaque valeur propre. Quels sont les matrices diagonalisables dans \mathbb{R} ? dans \mathbb{C} ?
- 4. Diagonaliser les matrices diagonalisables.

Exercice 2. Diagonalisation pratique encore...

Même question que l'exercice précédent avec les matrices,

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 5 & -6 \\ 3 & -6 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 6 & 2 \\ -1 & 3 \end{pmatrix},$$

$$E = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}, F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 3 \end{pmatrix}.$$

Les matrices C et F ont des valeurs propres multiples, on évitera ces cas dans un premier temps. Quelques spectres : $sp(A) = \{-1 \pm i\}$, $sp(B) = \{-4, 3\}$, $sp(D) = \{4, 5\}$, $sp(G) = \{0, 1, 2\}$, $sp(H) = \{1, 2 \pm \sqrt{2}\}$.

Exercice 3. Puissances d'une matrice

On considère les matrices :

$$A = \begin{pmatrix} 2 & 2 \\ 16 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$

- 1. Calculer de façon générale A^n , B^n et C^n pour $n \in \mathbb{N}$.
- 2. Quelles matrices sont inversibles? Quelles sont les valeurs propres de leurs inverses? Comment se diagonalisent leurs inverses?
- 3. En déduire une formule pour A^k , B^k et C^k pour $k \in \mathbb{Z}$. (Pour $n \in \mathbb{N}$, on note $A^{-n} = (A^{-1})^n$).

Exercice 4. CNS de digonalisabilité

Hors programme contrôle continu 2.

Soit a réel. Posons

$$M_a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ a^2 - a & -a - 1 & a^2 + 1 \end{pmatrix}$$

Quelles sont les valeurs de a pour lesquelles M_a est diagonalisable?

Exercice 5. Une matrice 2x2 stochastique.

Soit $(a, b) \in [0, 1]^2$ tel que $(a, b) \neq (0, 0)$. Définissons la matrice

$$A = \left(\begin{array}{cc} 1 - a & a \\ b & 1 - b \end{array}\right).$$

- 1. Déterminer le polynôme caractéristique de A, puis les valeurs propres de A. A est-elle diagonalisable?
- 2. En déduire A^n pour tout entier $n \in \mathbb{N}$.
- 3. Montrer que $\frac{1}{a+b}\begin{pmatrix} b & a \\ b & a \end{pmatrix}$ est le produit de $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ par tX où X est un vecteur propre de tA .