

A Discrete Cell Cycle Model: From Phase Characterization toward Observable Properties Verification

Déborah Boyenval, Gilles Bernot, Jean-Paul Comet and Franck Delaunay

Neuromod PhD Seminar December 12th 2019

Scientific Context

René Thomas' Formalism A Mammals Cell Cycle Discrete Model Phase Observability and Model Verification

What is the Scientific Context? Modeling of coupled biological systems

Genetic basic concepts:

[Openstax : Anatomy and Physiology]

Genetic regulatory network modeling:

- Prior knowledge gather in an interaction graph and in dynamical parameters
 - Prediction of biological behaviors
 - Causality analysis

Proteins
Catalytic functions
(e.g. metabolic reactions, cell division)

Scientific Context

René Thomas' Formalism A Mammals Cell Cycle Discrete Model Phase Observability and Model Verification

What is the Scientific Context? Modeling of coupled biological systems

KEGG metabolism pathways

Cell cycle

- Coupling of the metabolism and cell cycle in healthy proliferative cells
- Metabolism dynamic according to cell cycle phases and various environmental conditions
- Model consistency is verified by phase-dependent phenotypes

Phase Observability and Model Verification

What is the Scientific Context? Complex system biology

KEGG metabolism pathways, mus musculus

[Activation | Inhibition] threshold:

Resources:

Presence of activator(s)
Absence of inhibitor(s)

Parameters:

Discrete value attractors

State space:

Discretized concentration space

René Thomas' Formalism An abstract discrete modeling framework

Interaction Graph

Parameters of Y:

 $K_{_{Y,\{\}}}$

 $K_{_{Y\!,\{X\}}}$

 $\boldsymbol{K}_{\boldsymbol{Y},\{\boldsymbol{Z}\}}$

 $\boldsymbol{K}_{\boldsymbol{Y},\{\boldsymbol{X}\boldsymbol{Z}\}}$

René Thomas' Formalism An abstract discrete modeling framework

Interaction Graph

Parameters of Y:

X

 $\begin{aligned} K_{\text{Y},\{\}} \\ K_{\text{Y},\{X\}} \\ K_{\text{Y},\{Z\}} \\ K_{\text{Y},\{XZ\}} \end{aligned}$

• Biological example of state:

 $X \ge 1$: Glycolysis ON

 $Y \ge 1$: Krebs ON

 $Z \ge 1$: Mitosis ON

- Is a state reachable? Stable?
- Does a variable oscillate ?

2

A Mammals Cell Cycle Discrete Model The Cell Cycle and its Regulatory Network

Nature Education

Cell cycle:

- DNA duplication [1]
- Equal DNA distribution [2] [3]
- Cell division [4]

A Mammals Cell Cycle Discrete Model The Cell Cycle and its Regulatory Network

Cell cycle progression is driven by a **regulatory networks** of:

- Cyclins
- Phosphatases

A Mammals Cell Cycle Discrete Model Interaction Graph

5 systemic variables :

• **SK**: CycE/Cdk2

• **A**: CycA/Cdk2-1

• B: CycB/Cdk1

• **En**: p21, p27, APC-cdh1, Wee1, PP1A, PP2A.

• EP: APC-cdc20

2 environmental variables:

GF: Growth Factors

• p53

A Mammals Cell Cycle Discrete Model Parameterization challenge

Number of parameterization:

7.6 x 10⁹ x 10⁹

Goal:

Identify parameterizations satisfying biological behaviors using formal methods

A Mammals Cell Cycle Discrete Model Parameterization challenge

Biological behaviors verification:

The cell cycle itself by definition

• Blocking phenotypes (*e.g.* growth factors deprivation)

 $AG(GF = 0) AND (G0) \Rightarrow AG(G0)$

Phase Observability and Model VerificationBiological trace and logical description of phases

Cell cycle verification by Hoare Logic

Conclusion

Another cell cycle model

- Cell cycle **coupling** and verification of **phase dependent** phenotypes
- <u>Exploration</u> of reciprocal **links** between cell cycle regulatory network and energetic **metabolism** in the context of **healthy** proliferative **cells**
- <u>Test</u> of **various** "environmental" **conditions** (*e.g.* nutrients of medium culture, genetic variations, pharmacological inhibition)
- Study of anticancer drug **toxicity** on healthy proliferative cells

Phase Observability and Model VerificationBiological trace and Cyclins Dynamics

It exists a path that satisfies these sustained oscillations:

Phase Observability and Model VerificationBiological trace and Cyclins Dynamics

It exists a path that satisfies these sustained oscillations:

Phase Observability and Model VerificationBiological trace and Cyclins Dynamics

It exists a path that satisfies these sustained oscillations:

