Universidade Federal de São Carlos – Departamento de Computação Matemática Discreta – Profa. Helena Caseli

Lista de Exercícios – Teoria dos Números

1) Para os pares de inteiros a e b a seguir, determine q e r tais que a = qb + r e $0 \le r < b$.

a) a = 100, b = 3.

6) Resolva as equações no contexto indicado:

a) $3 \otimes x = 4 \text{ em } \mathbb{Z}_{11}$ b) $4 \otimes x = 9 \text{ em } \mathbb{Z}_{11}$ c) $3 \otimes x \oplus 8 = 1 \text{ em } \mathbb{Z}_{10}$

	b) $a = -100$, $b = 3$. c) $a = 99$, $b = 3$. d) $a = -99$, $b = 3$. e) $a = 0$, $b = 3$.
2)	Calcule usando o Algoritmo de Euclides: a) mdc(20,25). b) mdc(123, 23). c) mdc(89, 98). d) mdc(54321, 50). e) mdc(1739,29341).
3)	Para cada par de inteiros a , b do exercício anterior, determine os inteiros x e y tais que $ax + by = mdc(a, b)$.
4)	Escreva as fatorações em primos dos números a seguir: a) 201 b) 1001 c) 201000
5)	Calcule o seguinte, no contexto de \mathbb{Z}_{10} : a) $3 \oplus 3$ b) $6 \oplus 6$ c) $7 \oplus 3$ d) $9 \oplus 8$ e) $9 \oplus 1$ f) $9 \oplus 9$ g) $3 \otimes 4$ h) $9 \otimes 3$ i) $3 \otimes 3$ j) $5 \otimes 2$ k) $6 \otimes 6$ l) $5 \ominus 8$
	m) 8 ∅ 5 n) 8 ∅ 7 o) 5 ∅ 9
	$0, 3 \in \mathcal{I}$

- 7) Resolva as equações no contexto indicado (pode haver mais de uma solução, ou nenhuma):
 - a) $2 \otimes x = 4 \text{ em } \mathbb{Z}_{10}$
 - b) $2 \otimes x = 3$ em \mathbb{Z}_{10}
 - c) $9 \otimes x = 4 \text{ em } \mathbb{Z}_{12}$
- 8) Determine quem é \mathbb{Z}^* nos casos abaixo:
 - a) ℤ₄*
 - b) **Z**₇*
 - c) Z₈*