Зміст

1	Пра	актика	2
	1.1	PDP	 2
		1.1.1 Алгоритм	 2
		1.1.2 Програмний код	 2
	1.2	Intel 8080	 2
	1.3	MIPS	 Ş
		1.3.1 Функціонування	 3
		1.3.2 Практчні задачі	 4

Розділ 1

Практика

1.1 PDP

17.02.2014

Регістр R_4 . Його вміст має бути зменшений на 2. Отриманий результат є адрес, який потрібно отримати і занулити молодший розряд. І цей код записати у комірку пам'яті, що зсунута відносно номеру 155776 на -40 комірок.

1.1.1 Алгоритм

- 1. Зменшити значення регістру R_4 на 2;
- 2. Прочитати значення за адресою (R_4) і помістити його в R_3 ;
- 3. Накласти на значення, що міститься в R_3 маску, інвертовану відносно 111116;
- 4. Записати її у відповідну адресу.

1.1.2 Програмний код

```
SUB # 000002, R_4;
MOV (R_4), R_3;
BIC # 000001, R_3;
MOV # 155776, R_2;
MOV R_3, -40(R_2);
```

1.2 Intel 8080

05.03.2014

Типи завдань:

- Призначення команди (інфіксна нотація, кількість циклів та інше);
- Функціонування та коментарі до нього;
- Швидкодія;

• Вміст регістрів та комірок пам'яті.

M - це завжди регістрова пара HL. addr - це пряма адресація, адреса лежить в регістровій парі WZ.

Приклад 1. CC addr C - це cerry flag, в цей pericmp byde nomiщено ccyв, skuŭ bys ompumahuŭ y sunadky apu\$pmemu+hux ma ihuux onepauju.

1.3 MIPS

1.3.1 Функціонування

Що буде на контрольній роботі з MIPS:

- описание команды, обрамление, машинный код;
- описание алгоритма, комментарии к коду, (10 б);
- описать функционирование.

 МІРS-lite інструкції, які можуть трапитися:
- ADD або SUB
- OR I
- LOAD a

 o STORE Word
- BRANCH

Завдання 1.

$$lw\$t1, offset(\$t2); \tag{1.1}$$

12.05.2014

72		σ_{IA}	. ,	. 1	0.0	cr ,
Команда завантажує	บทองเกทา ร	หา <i>เ</i> กกา	1 3 na M' 9	าทาวกก	INECOW SITZ 3	CHROM Offset
	y pecientip y	voi oun	u o rucciore se	mu sa ao	$\varphi \cup \varphi \cup$	Cyddwr difacr.

$\overline{}$	миной завинтижує ў регістр ві1 бині з нам яті за йоресою віг з сувом в					
$\mathcal{N}_{\underline{o}}$	Микрооперация	Управляющий сигнал				
1	PCout	IorD = 0;				
2	Цикл пам'яті;	$MemRead{=}1$				
3	$ALU_a := (PC)$	$AluSrcA\!=\!0$				
4	ALU_b :=(4)	$AluSrcB{=}01$				
5	$ALU := ALU_a + ALU_b$	$ALU_{op}{=}00$ -> $ALU_{control}$ = $0010($ = $2)$				
6	ALUout := (ALU)	PCSource = 00;				
7	PC = (ALU)	$PCWrite{=}1;$				
8	$IR := ((PC_{old}))$	$IR_{wr} = 1;$				
9	CU[5-0] := IR[31-26]					
10	DC					
11	$A\!:=\!\!IR[25\text{-}21]$					
		9,10,11 пункт				
	D. ID[00.16]	виконуються майже одночасно.				
	B := IR[20-16]	Цими мікроопераціями мікропроцесор				
		готу ϵ майбутню операцію R типу				
12	$ALU_a := (PC_{new})$	$ALU_{srcA}=0$				
13	$ALU_b := (SE(IR[15:0])? *2$	$ALU_{srcB}=11$				
14	$ALU:=(ALU_a)+(ALU_B)$					
15	$ALU_{out} = (ALU)$	$ALU_{op} = heta heta$ -> $ALU_{control} = heta heta 10$				
16	$ALU_a := A$	$ALU_{srcA}=0$				
17	ALU_b := $SE(IR[15:0])$	$ALU_{scrB}=10$				
18	$ALU:=(ALU_a)+(ALU_b)$	$ALU_{op}=00$				
19	$ALU_{out} := (ALU)$	$ALU_{control} = 0010$				
20	$M_{adress} := (ALU_{out})$	IorD = 1				
21	ЦП	MemRead=1				
22	$MDR := ((ALU_{out}))$	MemToReg = 1				
23	((IR[20-16])):=(MDR)	RegWrite = 1				

1.3.2 Практчні задачі

Завдання 2. Поміняти місцем дві змінні t1 та t2 так, щоб не використовувалась додаткова пам'ять. Математичний алгоритм:

$$t1 = t1 + t2 (1.2)$$

$$t2 = t1 - t2 (1.3)$$

$$t1 = t1 - t2 (1.4)$$

(1.5)

add \$t1,\$t1,\$t2 sub \$t2,\$t1,\$t2 sub \$t1,\$t1,\$t2

Завдання 3. Знайти кількість ненульових бітів у числі п.

addi \$t1,\$t1,0x49249249 # 0100 1001 0010 0100 1001 0010 0100 1001 addi \$t2,\$t2,0x381c0e07 # 0011 1000 0001 1100 0000 1110 0000 0111 addi \$t3,\$v0,0

and \$t4,\$t3,\$t1

sra \$t5,\$t3,1
and \$t5,\$t5,\$t1

sra \$t6,\$t3,2
and \$t6,\$t6,\$t1

add \$t3,\$t4,\$t5 add \$t3,\$t3,\$t6

sra \$t5,\$t3,3
add \$t4,\$t3,\$t5

and \$t4,\$t4,\$t2

sra \$t6,\$t3,6
and \$t6,\$t6,\$t2

add \$t3,\$t4,\$t6

sra \$t4,\$t3,9
sra \$t5,\$t3,18
sra \$t6,\$t3,27

add \$t4,\$t3,\$t4 add \$t4,\$t4,\$t5 add \$t4,\$t4,\$t6

and \$t4,\$t4,0x3f