Algebra II

Chi Zhang

E-mail: zhangchi2018@itp.ac.cn

Abstract: These are live- T_E Xed notes for $Algebra\ II$ in Spring 2021. The main reference for this course was [Wei]. The notes are incomplete and unedited. All errors introduced are mine.

Contents

1	Complexes	1
2	Derived Functors	10
	2.1 Delta Functors and Derived Functors	10
	2.2 Tor	13
3	Group Homology and Cohomology	16
4	Spectral Sequences	20
	4.1 Basic Definitions	20
	4.2 Constructions and Examples	21
5	Derived Categories	23
	5.1 Triangulated Categories and Derived Categories	23

1 Complexes

Proposition 1.1. Small filtered colimits in **Set** are exact. In other words, for all small filtered category **I** and finite category **J**, and functor $F : \mathbf{I} \times \mathbf{J} \to \mathbf{Set}$, the natural map

$$\operatorname{colim}_{i \in \mathbf{I}} \lim_{j \in \mathbf{J}} F(i, j) \to \lim \operatorname{colim} F(i, j)$$

is a bijection.

Proof. Conf. Weizhe Zheng's Notes.

Theorem 1.2 (Freyd-Mitchell). Let **A** be a small abelian category, then there exists a ring R, and a fully faithful exact functor $F : \mathbf{A} \to R - \mathbf{Mod}$.

Proof. See Weibel. □

Lemma 1.3. Let A be an abelian category, and $S \subseteq \text{ob} \mathbf{A}$ be a non-empty set of objects. There is a full small abelian subcategory \mathbf{B} of \mathbf{A} containing S.

Proof. Define inductively a sequence $(A_n)_{n\geq 0}$ of subcategory of \mathbf{A} as follows. Let $\mathbf{A_0}$ be the full subcategory whose objects are these in S. Given $\mathbf{A_n}$, let $\mathbf{A_{n+1}}$ be the full subcategory of \mathbf{A} consisting of the objects in $\mathbf{A_n}$ together with

- a single representation for the kernel and cokernel in ${\bf A}$ for every morphism in ${\bf A_n}$
- A single representation of every finite product in ${\bf A}$ of objects in ${\bf A_n}$

Then A_n are small full subcategory of A, let $B = \bigcup_{n \geq 0} A_n$, then B is a small and full abelian subcategory.

Proposition 1.4. Let ${\bf A}$ be an abelian category. Consider a commutative diagram

$$X' \longrightarrow X \longrightarrow X \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow Y' \longrightarrow Y \longrightarrow Y''$$

Then there exists an exact sequence

$$\ker u' \to \ker u \to \ker u'' \to \operatorname{coker} u' \to \operatorname{coker} u \to \operatorname{coker} u''.$$

If moreover f is a monomorphism then so is $\ker u' \to \ker u$, if g' is an epimorphism, then so is $\operatorname{coker} u \to \operatorname{coker} u''$.

Proof. By the Freyd-Mitchell Embedding Theorem and the previous Lemma, we may replace \mathbf{A} by $R-\mathbf{Mod}$. Then one can prove the proposition by diagram chasing (left as an exercise).

Corollary 1.5. Let $0 \to X' \to X \to X'' \to 0$ be a short exact sequence, in **A**, TFAE

- 1. f admits are traction, i.e. there exists $r: X \to X'$ such that $r \circ f = \mathrm{id}_{X'}$
- 2. g admits a section $s: X'' \to X$ such that $g \circ s = \mathrm{id}_{X''}$
- 3. The sequence splits naturally.

Definition 1.1. A short exact sequence satisfying the above conditions is said to be **split**.

Corollary 1.6. Let A be an abelian category. Consider a commutative diagram in A

with exact rows. If u^0 is an epi and u^4 is anono, and u^1, u^3 are isomorphisms, then u^2 is an isomorphism.

Definition 1.2. A add cat A (cochain) complex in A consists of $X=(X^n,d^n)_{n\in\mathbb{Z}}$, where $X^n\in\mathbf{A}$ and $d^n:X^n\to X^{n+1}$ is a morphism in A called **differential**, such that $d^{n+1}\circ d^n=0$. A morphism of cochain complexes $X\to Y$ is a collection of morphism where $(f^n)_{n\in\mathbb{Z}}$ where $f^n:X^n\to Y^n$ in A and $d^n_Y\circ f=f^{n+1}\circ d^n_X$.

Let $C(\mathbf{A})$ be the category of \mathbf{A} , if \mathbf{A} is additive, $C(\mathbf{A})$ is also additive. If \mathbf{A} is an abelian category, then so is $C(\mathbf{A})$. If $f: X \to Y$ is in $C(\mathbf{A})$, then $(\ker f)^n = \ker f^n$ and $(\operatorname{coker} f)^n = \operatorname{coker} f^n$.

Definition 1.3. Let **A** be an abelian category, and $X \in C(\mathbf{A})$ we define $Z^n(X) = \ker d^n, B^n(X) = \operatorname{im} d^{n-1}$ and $H^n(X) = \operatorname{coker} B^n(X) \hookrightarrow Z^n(X)$, and call them the **cocycle, coboundary, cohomology objects** of $\deg n$.

The functors Z^n , B^n , H^n : $C(\mathbf{A}) \to \mathbf{A}$ are additive.

Example (de Rham cohomology).

Definition 1.4. A complex X is said to be **cyclic** if $H^n(X) = 0, \forall n \in \mathbb{Z}$. A morphism of complexes $X \to Y$ is called a **quasi-isomorphism** if $H^n(f) : H^n(X) \to H^n(Y)$ is an isomorphism for all $n \in \mathbb{Z}$.

We have the following operations on complexes.

- 1. $\forall X \in C(\mathbf{A}), \forall m \in \mathbb{Z}$, let $X[m] \in C(\mathbf{A})$ be the complex with $X[m]^n = X^{m+n}$ and $d^n[m]: X[m]^n \to X[m]^{n+1}$ is given by $(-1)d^{m+n}$. $H^n(X[m]) = H^{n+m}(X)$
- 2. $\forall n \in \mathbb{Z}, X \in C(\mathbf{A})$, we define $\tau^{\leq n}X = \cdots \to X^{n-1} \to \ker d^n \to 0 \to \cdots$. And $\tilde{\tau}^{\leq n}X = (\cdots \to X^{n-1} \to X^n \to \operatorname{im} d^n \to 0 \to \cdots, \tau^{\geq n}X = (\cdots \to 0 \to \operatorname{coker} d^{n-1} \to X^{n+1} \to X^{n+2} \to \cdots \text{ and } \tilde{\tau}^{\geq n} = (\cdots \to 0 \to \operatorname{im} d^{n-1} \to X^n \to X^{n+1} \to \cdots).$
- 3. direct sum
- 4. tensor product $X, Y \in C(\mathbf{A}), (X \otimes Y)^n = \bigoplus_{i+j=n} (X^i \otimes Y_j), d^n(a \otimes b) = d_X a \otimes b + (-1)^{\deg a} d_Y b$

We have $\tau^{\leq n}X \to \tilde{\tau}^{\leq n}X \to X \to \tilde{\tau}^{\geq n}X \to \tau^{\geq n}X$ in $C(\mathbf{A})$, and exact sequences

$$0 \to \tilde{\tau}^{\leq n-1} \to \tau^{\leq n} X \to H^n(X[-n] \to 0 \tag{1.1}$$

Theorem 1.7. If $0 \to X \to Y \to Z \to 0$ is a short exact sequence in $C(\mathbf{A})$, then there are

natural maps $\partial: H^n(Z) \to H^{n+1}(X)$ and a cohomology long exact sequence

$$\cdots \to H^{n-1}(Z) \to H^n(X) \to H^n(Y) \to H^n(Z) \to H^{n+1}(Z) \to \cdots$$

Similar results hold for chain complexes.

Proof. We only show the statement for cohomology. Consider

Remark. If we have a commutative diagram of short exact sequences, we then get a commutative diagram of long exact sequences.

П

Corollary 1.8. Let be commutative diagram of complexes with exact rows. If two of u, v, w are quasi-isomorphisms, then so is the third one.

Definition 1.5. Let $f: X \to Y$ be a morphism in $C(\mathbf{A})$. The **mapping cone** $\operatorname{Cone}(f)$ of f is the complex $\operatorname{Cone}(f)^n = X^{n+1} \oplus Y^n$ with the differential

$$d^n = \begin{pmatrix} -d_X^{n+1} & 0\\ f^{n+1} & d_Y^n \end{pmatrix}$$

And we can verify that $\operatorname{Cone}(f)$ is indeed a cochain complex. By construction, we have a short exact sequence in $C(\mathbf{A})$

$$0 \to Y \xrightarrow{i} \operatorname{Cone}(f) \xrightarrow{p} X[1] \to 0,$$

which induces a cohomology long exact sequence

$$\cdots \to H^{n-1}(X[1]) \xrightarrow{\delta} H^n(Y) \to H^n(\operatorname{Cone}(f)) \to H^n(X[1]) \to \cdots$$

Proposition 1.9. Via the isomorphism $H^{n-1}(X[1]) \simeq H^n(X)$, the connecting morphism δ can be identified with $H^n(f): H^n(X) \to H^n(Y)$.

Proof. By the snake lemma, left as exercise.

Corollary 1.10. A morphism $f:X\to Y$ is a quasi-isomorphism in $C(\mathbf{A})$ iff $\mathrm{Cone}(f)$ is acyclic.

Proposition 1.11. Consider a short exact sequence $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ in $C(\mathbf{A})$, then the map $\phi = (0,g) : \mathrm{Cone}(f) \to Z$ is a quasi-isomorphism.

Proof. We have a short exact sequence

$$0 \to \operatorname{Cone}(\operatorname{id}_X) \xrightarrow{\psi} \operatorname{Cone}(f) \xrightarrow{\phi} Z \to 0$$

where ψ is associated to the commutative diagram

$$X \xrightarrow{\operatorname{id}_X} X$$

$$\downarrow_{\operatorname{id}_X} \qquad \downarrow_f$$

$$X \xrightarrow{f} Y$$

Since $\operatorname{Cone}(\operatorname{id}_X)$ is acyclic, the long exact sequence implies that ϕ is a quasi-isomorphism.

Definition 1.6. A morphism $f: X \to Y$ in $C(\mathbf{A})$ is homotopic to zero, if for all $n \in \mathbb{Z}$, there is a morphism $s^n: X^n \to Y^{n-1}$ such that $f^n = s^{n+1}d_V^n + d_V^{n-1}s^n$.

Two morphisms $f, g: X \to Y$ are homotopic if f - g is homotopic to zero.

An object $X \in C(\mathbf{A})$ is homotopic zero if id_X is homotopic to zero.

We say $f: X \to Y$ is a **homotopy equivalence**, if there exists $g: Y \to X$, such that $f \circ g$ is homotopic to id_Y and $g \circ f$ is homotopic to id_X .

Proposition 1.12. If $f: X \to Y$ is a homotopic to zero, then $H^n(f): H^n(X) \to H^n(Y)$ is 0. If f, g are homotopic, then $H^n(f) = H^n(g)$.

Proof. It suffices to show the first assertion. If $f = d_Y s + s d_X$, the restriction of f to $Z^n(X)$ is equal to $d_Y s$, composited with $Z^n(Y) \to H^n(Y)$ is zero, implying $H^n(f) = 0$.

A homotopy equivalence is a quasi-isomorphism.

Definition 1.7. The **homotopy category** $K(\mathbf{A})$ of an abelian category \mathbf{A} is defined as $obK(\mathbf{A}) = obC(\mathbf{A})$, as well as

$$\operatorname{Hom}_{K(\mathbf{A})}(X,Y) = \operatorname{Hom}_{C(\mathbf{A})}(X,Y)/Ht(X < Y)$$

where $Ht(X,Y) = \{ f : X \to Y \mid f \text{homotopic to } 0 \}.$

Definition 1.8. A an abelian category. A **double complex** in **A** consists of objects $(X^{i,j})_{i,j\in\mathbb{Z}}$ of **A**, and differentials $d_I^{i,j}:X^{i,j}\to X^{i+1,j},d_{II}^{i,j}:X^{i,j}\to X^{i,j+1}$ satisfying

$$d_I^2 = 0, d_{II}^2 = 0, d_I d_{II} = d_{II} d_I.$$

We denote $C^2(\mathbf{A})$ as the category of double complexes of \mathbf{A} .

 $F_I, F_{II}: C^2(\mathbf{A}) \to C(\mathbf{C}(A))$, which are isomorphic functors. $X \in C^2(\mathbf{A})$, set $H_I(X)^{i,j} = \ker d_I^{i,j}/\operatorname{im} d_I^{i-1,j}$ and $H_{II}(X)^{i,j}$ similarly.

Definition 1.9. $X \in C^2(\mathbf{A})$ we define two complexes in \mathbf{A}

$$(\operatorname{tot}_{\oplus} X)^n = \bigoplus_{i+j=n} X^{i,j}$$

if coproducts exist, and

$$(\operatorname{tot}_{\times} X)^n = \prod_{i+j=n} X^{i,j}$$

if products exist, with differentials for i+j=n the composition $X^{i,j} \to (\operatorname{tot}_{\oplus} X)^n \stackrel{d^n}{\to} (\operatorname{tot}_{\oplus} X)^{n+1}$ is given by $d_I^{i,j} + (-1)^i d_{II}^{i,j}$; the composition $(\operatorname{tot}_{\times} X)^{n-1} \stackrel{d^{n-1}}{\to} (\operatorname{tot}_{\times} X)^n \to X^{i,j}$ is given by $d_I^{i-1,j} + (-1)^i d_{II}^{i,j-1}$.

A double complex X is is **biregular** if for all $n \in \mathbb{Z}$, $X^{i,j} = 0$ for all but finitely many pairs (i,j) with i+j=n. Let $C_r^2(\mathbf{A})$ be the full subcategory of biregular complexes.

For $X \in C_r^2(\mathbf{A})$, we have $\operatorname{tot}_{\oplus} \stackrel{\simeq}{\to} \operatorname{tot}_{\times}$, simply denoted by $\operatorname{tot} X$.

Example. $f^*: X^* \to Y^*$ a morphism in $C(\mathbf{A})$. Consider the double complex $Z^{*,*}$ with $Z^{-1,*} = X^*, Z^{0,*} = Y^*, Z^{i,*} = 0$ $i \neq -1, 0$, with differentials $f^j: Z^{-1,j} \to Z^{0,j}$, then we have an isomorphism in $C(\mathbf{A})$

$$tot(Z^{*,*}) \simeq Cone(f^*).$$

Let $\mathbf{A}, \mathbf{A}', \mathbf{A}''$ be abelian categories, and $F: \mathbf{A} \times \mathbf{A}' \to \mathbf{A}''$ be additive in each variable, then F extends to a functor $F: C(\mathbf{A}) \otimes C(\mathbf{A}') \to C^2(\mathbf{A}'')$ additive in each variable.

$$X \in C(\mathbf{A}), Y \in C(\mathbf{A}'), C^2(F)(X, Y)$$
 is defined by

$$C^{2}(F)(X,Y) = F(X^{i},Y^{j})$$

with $d_I^{i,j} = F(d_X^i, id_{Y^j}), d_{II}^{i,j} = F(id_{X^i}, d_Y^j).$

Example. R a ring. $-\otimes_R - : \mathbf{Mod} - \mathbf{R} \otimes \mathbf{R} - \mathbf{Mod} \to \mathbf{Ab}$ additive in each variable, thus extends to $-\otimes_R - :$ (

Exercise. Prove Thm 1.5.12.

Exercise. Prove the snake lemma for A = R - Mod.

Exercise. A Abelian category, consider a commutative diagram

Assume that all columns are exact. If the second and third rows are exact, show that the first row is also exact.

Exercise. Prove Proposition 1.6.8.

Definition 1.10. Let ${\bf C}$ be a category. An objective P of ${\bf C}$ is called **projective** if given a morphism $f:P\to Y$ and an epimorphism $u:X\to Y$ in ${\bf C}$, there exists $g:P\to X$ such that f=ug

$$X \xrightarrow{g} P \downarrow f$$

$$X \xrightarrow{u} Y.$$

An **injective** object $I \in \mathbf{C}$ is defined dually.

Proposition 1.13. A abelian category. $P \in \mathbf{A}$, TFAE

- 1. P projective
- 2. $\operatorname{Hom}_{\mathbf{A}}(-,P): \mathbf{A} \to \mathbf{Ab}$ is exact
- 3. every short exact sequence $0 \to A \to B \to P \to 0$ splits.

Proposition 1.14. $P \in \mathbf{R} - \mathbf{Mod}$, TFAE

- 1. P projective
- 2. P is a direct summand of some free R-module.

Proof. Let F(A) be the free R-module over the set underlying an R-module A, so there is a surjection $\pi: F(A) \to A$. If A is projective, then there is a morphism $i: A \to F(A)$ making the diagram

$$\begin{array}{c}
A \\
\downarrow^{id_A} \\
F(A) \xrightarrow{\pi} A \xrightarrow{} 0
\end{array}$$

commute, *id est*, $\pi \circ i = id_A$, showing that A is a direct summand of F(A).

Conversely, if A is a direct summand of some free R-module F, then there exists $i:A\to F$ and $\pi:F\to A$ such that $\pi\circ i=\mathrm{id}_A$. Given any test diagram

$$\begin{array}{c}
A \\
\downarrow f \\
X \longrightarrow Y \longrightarrow 0
\end{array}$$

we hope to find some $g:A\to X$ lifting $f:A\to Y$. This can be done by consider the composition $f\circ\pi:F\to Y$, which can be lifted by some $h:F\to X$, since F is free. Then we let $g=h\circ i$, and g indeed lifts f.

Example. Over \mathbb{Z} , the notions of projectivity and freedom are equivalent. In fact, any submodule of a free \mathbb{Z} -module is again free. Furthermore, in $\mathbb{Z} - \mathbf{Z}$, the notion of projectivity and freedom and torsion-freedom are all equivalent.

Theorem 1.15 (Baer's criterion). R a ring. $I \in R - \mathbf{Mod}$, then I is injective iff for any left ideal $\mathfrak{a} \subseteq I$, every morphism $\mathfrak{a} \to I$ can be extended to $R \to I$.

Proof. \Longrightarrow clear.

Conversely, let $f:A\to I$ and $u:A\hookrightarrow B$ be an injection. We view $A\subseteq B$ and u as the inclusion. Consider

$$S = \{ f' : A' \rightarrow I, A \subset A' \subset B, f \mid_A = f \}$$

ordered by inclusion. By Zorn's lemma, there is a maximal element of S given by $f':A'\to I$ extending f.

Claim 1.16.
$$A' = B$$
.

If not take $b \in B \setminus A'$ and consider A' + Rb. Then set

$$\mathfrak{a} = \{ r \in R \mid rb \in A' \},\$$

which is a left ideal of R and $f_0:\mathfrak{a}\to I, r\mapsto f'(rb)$ is an R-module homomorphism, implying f_0 extends to $\tilde{f}_0:R\to I$, let $u=\tilde{f}_0(1)$ then for all $r\in R$, $\tilde{f}_0(r)=r\tilde{f}_0(1)=ru$. We can define

$$A' + Rb \rightarrow I, a + rb \mapsto f'(a) + ra$$

is well defined, since if $rb \in A' \cap Rb$, then $r \in \mathfrak{a}$ and $f'(rb) = f_0(r) = ru$. This gives a contradiction to the choice of f'.

Recall that if M is an R-module, it is **divisible** if for all $m \in M, r \in R \setminus \{0\}$, then there exits $x \in M$ such that m = rx, iff $\forall r \in R \setminus \{0\}, rM = M$.

Proposition 1.17. Let R be an integral domain (possibly non-commutative), then any injective R-module is divisible. If R is a PID (left ideal) or a Dedekind domain, the converse also holds.

Proof. Omitted. See Zheng's notes.

Example. \mathbb{Q}/\mathbb{Z} , \mathbb{Q} are injective \mathbb{Z} -modules. If $R = \mathbb{Z}[x] \subset K$, where K is the fraction field of R, then K/R is divisible, but not injective. (exercise).

Definition 1.11. $M \in R - \mathbf{Mod}$ is **flat** if $- \otimes_R M : \mathbf{Mod} - R \to \mathbf{Ab}$ is exact. Similarly, $N \in \mathbf{Mod} - R$ is flat if $N \otimes_R - : R - \mathbf{Mod} \to \mathbf{Ab}$ is exact.

Projective modules are flat. The converse is not true in general. $\mathbb Q$ is flat over $\mathbb Z$, but not projective.

 $M \in R-\mathbf{Mod}, M^* = \mathrm{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \text{ is a right R-module, } r \in R, (fr)(a) = f(ra), \forall a \in M.$

Proposition 1.18. 1. $M \in R - \mathbf{Mod}$ is flat iff $M^* \in \mathbf{Mod} - R$ is injective

2. $M \in R$ – **Mod** is flat iff $\forall \mathfrak{a} \subseteq R$, the natural map $\mathfrak{a} \otimes_R M \to \mathfrak{a} M$ is an isomorphism of abelian groups.

Proof. Exercise.

Remark. We have $M \hookrightarrow M^{**}$, which may not be an isomorphism.

Theorem 1.19 (Lazard). Every flat R-module is a filtered colimit of free R-modules.

Lemma 1.20. A \mathbb{Z} -module is flat iff it is torsion-free.

Proof. Apply the previous proposition.

Over \mathbb{Z} ,

projective modules = free modules \subseteq flat modules = torsion free

injective modules = divisible modules

 \mathbb{Q} , \mathbb{Q}/\mathbb{Z} are injective, but not projective. \mathbb{Q} is flat, \mathbb{Q}/\mathbb{Z} are not flat. Recall that $M \in R = \mathbf{Mod}$ is called finitely presented if there exists an exact sequence

$$R^m \to R^n \to M \to 0, m, n \in \mathbb{N}$$

Proposition 1.21. Any finitely presented flat module M is projective.

Proof. Let $A \to B \to 0$ be an exact sequence in $R - \mathbf{Mod}$, we need to show $\mathrm{Hom}_R(M,A) \to \mathrm{Hom}_R(M,M) \to 0$ is exact. It is enough to show that $0 \to \mathrm{Hom}_R(M,B)^* \to \mathrm{Hom}_R(M,A)^*$ is exact. Since M is finitely presented, $A^* \otimes_R M \overset{\sim}{\to}$

 $\operatorname{Hom}_R(M,A)^*, f\otimes m\mapsto (g\mapsto f(g(m)))$ is an isomorphism. Since $0\to B^*\to A^*$ is exact and M is flat, $0\to B^*\otimes M\to A^*\otimes M$ is exact, and $B^*\otimes \simeq \operatorname{Hom}_R(M,B)^*, A^*\otimes_R M\simeq \operatorname{Hom}_R(M,A)^*.$

We come back to a general abelian category A.

Definition 1.12. $M \in \mathbf{A}$. A left resolution of M is a chain complex P_* with $P_i = 0$ for i < 0, together with a map $P_* \stackrel{\epsilon}{\to} M$ such that the complex $\cdots \to P_2 \to P_1 \to P_0 \stackrel{\epsilon}{\to} M \to 0$ is exact.

It is a **projective resolution** if each P_i is projective.

 P_* a complex of projectives with $P_i=0, i<0$, then a map $\epsilon:P_0\to M$ gives a resolution of M iff $\epsilon:P_*\to M$ is a quasi-isomorphism of chain complexes.

Proposition 1.22. Every R-module M has a projective resolution.

Proof. Take a projective P_0 and a surjection $\epsilon: P_0 \to M$ and set $M_0 \ker \epsilon$. Inductively, given M_{n-1} , take a projective P_n and say $P_n \xrightarrow{\epsilon_n} M_{n-1}$. Set $M_n = \ker \epsilon_n$ and let d_n be the composition $P_n \to M_{n-1} \to P_{n-1}$. Then (P_*, d_*) is a projective resolution of M.

A abelian category. We say **A** has enough projectives if $\forall A \in \mathbf{A}$, there is an epimorphism $P \to A$ with P a projective object in **A**.

Theorem 1.23. Let $P_* \stackrel{\epsilon}{\to} M$ be a chain complex with P_i projective, and $f': M \to N$ a map in $\bf A$. Then for every resolution $Q_* \to N$ of N, there is a chain map $f: P_* \to Q_*$ lifting f' in the sense $\eta f = f' \epsilon$. Then chain map f is unique up to chain homotopy.

Proof. abcdefg.

Corollary 1.24. Projective resolutions are unique up chain homotopy.

Lemma 1.25 (horseshoe). Suppose given a commutative diagram

$$\cdots \longrightarrow P'_{2} \longrightarrow P'_{1} \longrightarrow P'_{0} \stackrel{\epsilon}{\longrightarrow} A \longrightarrow 0$$

$$\downarrow^{i_{A}} A$$

$$\downarrow^{\pi_{A}}$$

$$\cdots \longrightarrow P''_{2} \longrightarrow P''_{1} \longrightarrow P''_{0} \stackrel{\epsilon''}{\longrightarrow} A'' \longrightarrow 0$$

$$\downarrow^{0}$$

where the column is exact and the rows are projective resolutions. Set $P_n = P'_n \oplus P''_n$. Then the P_n resemble to form a projective resolution of A, and the right hand column lifts to an exact sequence of complexes

$$0 \to P' \to P \to P'' \to 0$$

Proof. exercise.

Proposition 1.26. $F: \mathbf{A} \to \mathbf{B}$ functor between two abelian categories. If $F \dashv G$ and G is right exact, then F carries projective objects to projective objects.

If $G \dashv F$ and G is left exact, then F carries injective objects to injective objects.

Proof. We only prove the second assertion. Let $I \in \mathbf{A}$ be an injective object, we must show that $\mathrm{Hom}_B(-,FI)$ is exact. Given a monomorphism $f:B\to B'$ in \mathbf{B} . Since $G\dashv F$, the diagram

$$\operatorname{Hom}_{\mathbf{B}}(B', FI) \xrightarrow{f^*} \operatorname{Hom}_{\mathbf{B}}(B, FI)$$

$$\downarrow \simeq \qquad \qquad \downarrow \simeq$$

$$\operatorname{Hom}_{\mathbf{A}}(GB', I) \xrightarrow{(Gf)^*} \operatorname{Hom}_{\mathbf{A}}(GB, I)$$

Since G is left exact, and I is injective, $(Gg)^*$ is epimorphic, so f^* is epimorphism, $\operatorname{Hom}_B(-,FI)$ is exact.

Proposition 1.27. Every *R*-module is a submodule of an injective module.

Proof. Step 1, Assume that $R=\mathbb{Z}$, let M be a \mathbb{Z} -module, choose a free \mathbb{Z} -module F and a surjection $F\to M$ with kernel K, write $F=\mathbb{Z}^{(I)}$ and $D=\mathbb{Q}^{(I)}$ then $M=F/K\subseteq D/K$ and D/K is divisible thus is injective.

Step 2, For general R, the functor $\mathrm{Hom}_{\mathbb{Z}}(R,-)$ admits a left adjoint, the restriction of scalars, which is exact. So $\mathrm{Hom}_{\mathbb{Z}}(R,-)$ carries injectives to injectives. Let M be an R-module, by step 1, $M \hookrightarrow I$ is an injection of abelian groups with I injective. Then $\mathrm{Hom}_{\mathbb{Z}}(R,I)$ is an injective R-module, and we have

$$M \simeq \operatorname{Hom}_R(R, M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, I).$$

Definition 1.13. Let **A** be an abelian category and $A \in \mathbf{A}$, a right resolution of A is a cochain complex I^* with $I^i = 0, i < 0$ and a map $A \to I^0$ such that the complex

$$0 \to A \to I^0 \stackrel{d}{\to} I^1 \to \cdots$$

is exact. It is an injective resolution if each I^i is injective.

An abelian category **A** has enough injectives if for all $A \in \mathbf{A}$ there are I^* and a monomorphism $A \to I^*$. In particular, $R - \mathbf{Mod}$ has enough injectives.

Theorem 1.28. Let $A \to I^*$ be a cochain complex with I^* injective, and $f': A' \to A$ a map in $\mathbf A$. Then for any resolution $A' \to J^*$, there is a cochain map $f: J^* \to I^*$ lifting f'. The map f is unique up to cochain homotopy equivalence. In particular, injective resolutions are unique up to homotopy.

Theorem 1.29. X a topological space. The category $\mathbf{Shv}(X)$ has enough injectives.

Proof. Firstly, for all $x \in X$, consider the stalk functor $(-)_x : \mathbf{Shv}(X) \to \mathbf{Ab}, \mathcal{F} \mapsto \mathcal{F}_x$. This is an exact functor. Moreover, $\mathcal{F} = 0$ iff $\mathcal{F}_x, \forall x \in X$.

Then for all $x \in X$ and for all $A \in \mathbf{Ab}$, consider the skyscraper sheaf $x_*A \in \mathbf{Shv}(X)$. Then $x_* : \mathbf{Ab} \to \mathbf{Shv}(X)$ is a functor, and $(-)_x \dashv x_*$. So x_* carries injective abelian groups to injective sheaves in $\mathbf{Shv}(X)$.

Finally $\forall \mathcal{F} \in \mathbf{Shv}(X)$ for each $x \in X$, take an injective $\mathcal{F}_x \hookrightarrow I_x$ with I_x some injective abelian group. Then we get $\mathcal{F} \to x_*\mathcal{F}_x \to x_*\mathcal{I}_x$, and let $\mathcal{I} = \prod_{x \in X} x_*I_x$, which in turn

induces $\mathcal{F} \to \mathcal{I}$. The map $\mathcal{F} \to \mathcal{I}$ is an injection since it is so at each stalk.

Exercise. A an abelian category. $X \in C(\mathbf{A})$ is called split if there exist $s^n : X^{n+1} \to X^n$ such that $d^n s^n d^n = d^n, \forall n \in \mathbb{Z}$. Prove that X is split iff id_X is homotopic to zero.

Exercise. A an abelian category.

- 1. Show that a cochain complex P^* is a projective object in $C(\mathbf{A})$ iff it is split exact complex of projectives in \mathbf{A} .
- 2. Show that if **A** has enough projectives so does $C(\mathbf{A})$.

Exercise. Let $m \geq 2$ be an integer and $R = \mathbb{Z}/m\mathbb{Z}$. Show that R is an injective R-module while $\mathbb{Z}/d\mathbb{Z}$ is not an injective R-module when d|m and $p|\gcd(d,\frac{m}{d})$ for some prime p.

2 Derived Functors

2.1 Delta Functors and Derived Functors

Definition 2.1. A covariant cohomological δ-functor from **A** to **B** is a collection of additive functors $T^n: \mathbf{A} \to \mathbf{B}, n \geq 0$, together with morphisms $\delta^n: T^n(C) \to T^{n+1}(A)$ defined for each short exact sequence

$$0 \to A \to B \to C \to 0$$

in A. The following two conditions are imposed:

(i) For each short exact sequence as above, there exists a long exact sequence

$$0 \to T^0(A) \to T^0(B) \to T^0(C) \xrightarrow{\delta^1} T^1(A) \to T^1(B) \to T^1(C) \to \cdots \to T^n(C) \xrightarrow{\delta^n} T^{n+1}(A) \to \cdots$$

(ii) For every morphism of short exact sequences from $0 \to A' \to B' \to C' \to 0$ to $0 \to A \to B \to C \to 0$, there is a commutative diagram

$$\cdots \longrightarrow T^{n}(C') \xrightarrow{\delta^{n}} T^{n+1}(A') \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow T^{n}(C) \xrightarrow{\delta^{n}} T^{n+1}(A) \longrightarrow \cdots$$

between the induced long exact sequences.

A morphism $S \to T$ of δ -functors is a system of natural transformations $S^n \to T^n$ that commute with δ .

Similarly we may define a covariant homological δ -functor from \mathbf{A} to \mathbf{B} . Which is a collection of additive functor $T_n: \mathbf{A} \to \mathbf{B}, n \geq 0$, together with $\delta_n: T_n(C) \to T_{n-1}$ defined for every short exact sequence $0 \to A \to B \to C \to 0$ with similar imposed conditions as above.

We immediately know that T^0 is left exact and T_0 is right exact by definition.

Example. Cohomology gives a cohomological δ -functor $H^*: C^{\geq 0}(\mathbf{A}) \to \mathbf{A}$. $n \in \mathbb{N}, T_0: \mathbf{Ab} \to \mathbf{Ab}, A \mapsto A/nA, T_1: \mathbf{Ab} \to \mathbf{Ab}, A \mapsto A[n]$. Consider the short exact

sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow^{\times n} \qquad \downarrow^{\times n} \qquad \downarrow^{\times n}$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

and apply the snake lemma, we have

$$0 \to A/nA \to B/nB \to C/nC \to A[n] \to B[n] \to C[n] \to 0.$$

Definition 2.2. A cohomology δ -functor T is universal if given any other δ -functor S and $\alpha_0: T^0 \to S^0$, there exists a unique morphism $\alpha^n: T^n \to S^n$ of δ -functors extending α^0 . Similarly we can define universal homological δ -functor. A universal δ -functor T with given $T^0 = F$ is exists is unique.

Definition 2.3. An additive functor $F: \mathbf{A} \to \mathbf{B}$ is effaceable if for all $A \in \mathbf{A}$ there exists a monomorphism $u: A \to I$ such that F(u) = 0. It is coeffaceable if $\forall A \in \mathbf{A}$, there exists an epimorphism $u: P \to A$ such that F(u) = 0.

Theorem 2.1. Let $T=(T^i)$ be a cohomological δ -functor from $\bf A$ to $\bf B$. If T^i is effaceable for each i>0 then T is universal. If $T=(T_i)$ is a homological δ -functor such that T_i is coeffaceable for each i>0, then T is universal.

Proof. We only prove the first assertion. Let S be a δ -functor from $\mathbf A$ to $\mathbf B$ and $\alpha^0:T^0\to S^0$ a morphism of functors, we have to show that there exists a morphism of δ -functors $(\alpha^n):T\to S$. We construct α^n by induction. Suppose we have $\alpha^i,i\leq n$ compatible with δ in degree $\leq n$. $\forall A\in \mathbf A$ by assumption there is a monomorphism $u:A\to I$ such that $T^{n+1}(u)=0$. Let $M=\operatorname{coker} u$ then $0\to A\to I\to M\to 0$ is exact.

$$T^{n}(I) \longrightarrow T^{n}(M) \longrightarrow T^{n+1}(A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^{n}(I) \longrightarrow S^{n}(M) \longrightarrow S^{n+1}(A)$$

with top row exact. We define $\alpha_A^{n+1}:T^{n+1}(A)\to S^{n+1}(A)$ to be the unique morphism making the above right square commute.

We check α_n^{n+1} does not depend on u. Indeed, if $u':A\to I^1$ with $T^{n+1}(u')=0$. Let $M'=\operatorname{coker} u^1$ and $\alpha_A^{n+1}:T^{n+1}(A)\to S^{n+1}(A)$, we have to show that $\alpha_{A,u}^{n+1}=\alpha_{A,u'}^{n+1}$. Let $I''=I\coprod_A I'$ be he pushout of u and u'. Then the induced $u'':A\to I''$ is also monomorphic and $T^{n+1}(u'')=0$. Let $M''=\operatorname{coker} u''$ and $\alpha_{A,u''}^{n+1}$. It suffices to check that $\alpha_{A,n}^{n+1}=\alpha_{A,u'}^{n+1}=\alpha_{A,u''}^{n+1}$. Consider the commutative diagram.

We have also to check that $\alpha^{n+1}: T^{n+1} \to S^{n+1}$ is a natural transformation. If $A \to A'$ a morphism in A, then there is a commutative diagram

$$T^{n+1}(A) \longrightarrow S^{n+1}(A)$$

$$\downarrow \qquad \qquad \downarrow \qquad ,$$

$$T^{n+1}(A') \longrightarrow S^{n+1}(A')$$

we left this as an exercise.

A, B abelian categories, and $F: A \to B$ right exact functor. Assume that A has enough

injectives.

Definition 2.4. The left derived functors $L_iF: \mathbf{A} \to \mathbf{B}$ of F are defined as follows: $\forall A \in \mathbf{A}$, choose a projective resolution $P_* \to A$ and set

$$LiF(A) = H_i(F(P_*)).$$

F is right exact implies that $L_0F(A) \simeq F(A)$.

Lemma 2.2. The objects $L_iF(A)$ of **B** are well defined.

Proof. To do.

Corollary 2.3. If A is projective then A is F-acyclic, that is, $L_iF(A) = 0, i > 1$.

Lemma 2.4. If $A \stackrel{f}{\rightarrow} A'$ is a morphism in **A**, then there exists natural maps

$$L_iF(f):L_iF(A)\to L_iF(A').$$

Lemma 2.5. Each L_iF is an additive functor from **A** to **B**.

Theorem 2.6. The left derived functors $(L_i F)_{i>0}$ form a universal δ -functor.

Proof

It suffices to show $(L_iF)_{i\geq 0}$ form a homological δ -functor. Then since **A** has enough projectives. By some corollary, L_iF is coeffaceable, by thm 2.1.6 L_iF is universal.

Given a short exact sequence $0 \to A' \to A \to A'' \to 0$, choose a projective resolution $P' \to A'$ and $P'' \to A''$. By the Horseshoe Lemma, there is a projective resolution $P \to A$ fitting into a short exact sequence $0 \to P' \to P \to P'' \to 0$ in $C(\mathbf{A})$. The fact that P''_n is projective implies that each short exact sequence $0 \to P'_n \to P_n \to P''_n \to 0$ split. Since F is additive , $0 \to F(P'_n) \to F(P_n) \to F(P''_n) \to 0$ is split exact in \mathbf{B} , so $0 \to F(P') \to F(P) \to F(P'') \to 0$ is short exact, from which we have a long exact sequence

$$\cdots \to L_i F(A') \to L_i F(A) \to L_i F(A'') \stackrel{\delta_i}{\to} L_{i-1} F(A') \to \cdots$$

Given a commutative diagram in $\bf A$ and projective resolutions $\epsilon':P'\to A',\epsilon'':P''\to A'',\eta'':Q'\to B',\eta'':Q''\to B''$. By the Horseshoe Lemma, we get projective resolutions $\epsilon:P\to A,\eta:Q\to B$ with $P=P'\oplus P'',Q=Q'\oplus Q''$. By thm 1.7.15, there are liftings $\tilde{f}':P'\to Q',\tilde{f}'':P''\to Q''$ respectively. It suffices to show that there exists a lifting $\tilde{f}:P\to Q$ of f which makes the diagram

commutes. We construct $\gamma_n:P''\to Q'$ and $\tilde{f}:P\to Q$ of the form

$$\tilde{f}_n = \begin{pmatrix} \tilde{f}'_n & \gamma_n \\ 0 & \tilde{f}''_n \end{pmatrix}$$

inductively. For n=0, we need $f\epsilon=\eta \tilde{f}_0$

On P_0' , this becomes $f'\epsilon' = \eta'\tilde{f}_0'$, which indeed holds. On P_0'' , this requires $f\epsilon|_{P_0''} = \eta(\gamma_0 + \tilde{f}_0'') = \eta'\gamma_0 + \eta|_{Q_0''}\tilde{f}_0''$. Let $\beta = f(\epsilon|_{P_0''}) - (\eta|_{Q_0''})\tilde{f}'': P_0'' \to B$.

If β factors through B', the projectivity of P''_0 tells us the existence of γ_0 such that $\eta'\gamma_0=\beta$. So we only need to check $\pi_B\beta=0$, which is true.

$$\pi_B f(\epsilon|_{P_0''}) - \pi_B(\eta|_{Q_0''}) \tilde{f}_0'' = f'' \pi_A(\epsilon|_{P_0''}) - \pi_B(\eta|_{Q_0''}) \tilde{f}_0'' = 0$$

The general case is left as an exercise (see Weibel p.47)

Conversely, if $T = (T_i)_{i>0}$ is a universal homological δ -functor, then $T_i \simeq L_i T_0, \forall i \geq 0$.

Remark. If $0 \to M \to P \to A \to 0$ exact with P projective or F-acyclic, Then $L_iF(A) \simeq L_{i-1}F(M), i \geq 2$ and $L_1F(A) = \ker(F(M) \to F(P))$. More generally, if

$$0 \to M_m \to P_m \to \cdots \to P_0 \to A \to 0$$

is exact, then $L_i F(A) \simeq L_{i-m-1} F(M_m), i \geq m+2$. $L_{m+1} F(A) = \ker(F(M_m) \to F(p))$.

If $P \to A$ is an F-acyclic resolution of A, then $L_iF(A) \simeq H_i(F(P))$.

A, B abelian categories, $F : A \to B$ left exact functor. Assume A has enough injectives.

Definition 2.5. The right derived functor $(R_iF)_{i\geq 0}$ of F are defined as follows. For all $A\in \mathbf{A}$, choose any injective resolution $A\to I^*$ and set $R^iF(A)=H^i(F(I^*))$.

Theorem 2.7. The objects $R^F(A)$ are independent of the choice of injective resolutions. $(R^iF)_{i\geq 0}$ form a universal cohomological δ -functor and $R^iF(I)=0$ for $i\geq 1$ and I^* injective.

Proof. We may view F as (covariant) right exact functor

$$F^{\mathrm{op}}: \mathbf{A}^{\mathrm{op}} \to \mathbf{B}^{\mathrm{op}}$$

and \mathbf{A}^{op} has enough projectives. I^* becomes a projective resolution of A in \mathbf{A}^{op} , so $R^iF(A)=(L_iF^{\mathrm{op}})^{\mathrm{op}}(A)$. Then all results about right exact functors apply to left exact functor.

Example. X topological space. $F = \Gamma(X, -) : \mathbf{Shv}(X) \to \mathbf{Ab}$ left exact, $\mathcal{F} \in \mathbf{Shv}(X)$, $H^i(X, \mathcal{F}) := R^i\Gamma(\mathcal{F})$.

 $F: \mathbf{A} \to \mathbf{B}$ contravariant left exact functor, which can be viewed as a covariant left exact functor $F: \mathbf{A}^{\mathrm{op}} \to \mathbf{B}$. If \mathbf{A} has enough projectives, we can define the right derived functor $R^i F(A) = H^i(F(P_*))$, where $P_* \to A$ is a projective resolution.

2.2 Tor

 $A \in \mathbf{Mod} - R, B \in R - \mathbf{Mod}$, we have two ways to define $\mathrm{Tor}^R(A, B) \in \mathbf{Ab}$. The first is defined as the left derived functor $L_i(-\otimes_R B)(A)$ and the second is defined as $L_i(A\otimes_R -)(A)$.

Theorem 2.8. We have a natural isomorphism

$$\operatorname{Tor}_{i}^{R}(A,B) \simeq \overline{\operatorname{Tor}_{i}^{R}(A,B)}.$$

Proof. Tensoring P_* and $Q_* \to B \to 0$ gives a map of double complexes $P_* \otimes Q_* \to P_* \otimes B$. Applying the totalization functor tot_{\oplus} , we get

$$f: \operatorname{tot}_{\oplus}(P_* \otimes Q_*) \to \operatorname{tot}(P_* \otimes B) = P_* \otimes B.$$

Claim 2.9. f is a quasi-isomorphism.

Proof. It suffices to show that cone(f) is acyclic. Now $Cone(f) \simeq tot_{\oplus}(P_* \otimes Q'_*)$, where Q'_* is $Q_* \to B \to 0$. The double complex $P_* \otimes Q'_*$ is visually looks like

since P_i is projective so is flat, we have each column exact in the above diagram. By Lemma 2.2.2 ${\rm tot}_{\oplus}(P_*\otimes Q'_*)$ is acyclic, thus we proved the claim. \Box

Similarly, the morphism ${\rm tot}_{\oplus}(P_*\otimes Q_*)\to A\otimes Q_*$ is a quasi-isomorphism.

$$H_*(\mathrm{tot}_{\oplus}(P_*\otimes Q_*)\simeq H_*(A\otimes Q_*)=\overline{\mathrm{Tor}_*^R(A,B)}$$

Lemma 2.10. Let C be a double complex, then $tot_{\otimes}(C)$ is an acyclic chain complex assuming one of the following conditions

- i C is an upper half-plane with exact columns.
- ii C is a right half-plane with exact rows.

 $tot_{\oplus}(C)$ is an acyclic complex, assuming either of the following

- i C is an upper half-plane chain complex with exact rows.
- ii C is a right half-plane with exact columns

Proof. See Weibel p.60.

Corollary 2.11. If R is commutative, then $\operatorname{Tor}_i^R(A,B) \simeq \operatorname{Tor}_i^R(B,A)$.

Proof. Choose a projective resolution $P_* \to A$, then $\operatorname{Tor}_i^R(A,B) = H_i(P_* \otimes B)$, since R is commutative, there is a natural morphism $P_* \otimes B \simeq B \otimes P_*$. By Thm 2.2.1, we have $\operatorname{Tor}_i^R(B,A) = \overline{\operatorname{Tor}_i^R(B,A)} = H_i(B \otimes P_*) \simeq H_i(P_* \otimes B)$.

Proposition 2.12. If **A** has enough projectives and arbitrary direct sum exists in **A**. Let $F: \mathbf{A} \to \mathbf{B}$ be an additive functor which admits a right adjoint. Then for many set $\{A_i\}_{i \in I}$

of objects in **A**, we have

$$L_*F(\bigoplus_{i\in I}A_i)\simeq \bigoplus_{i\in I}L_*F(A_i).$$

Proof. If $P_i \to A_i$ are projective resolutions then so is $\oplus P_i \to \oplus A_i$. Hence

$$L_*F(\oplus A_i) = H_*(F(\oplus P_i)) = H_*(\oplus F(P_i)) \simeq H_*(F(P_I)) = \oplus L_*F(A_i)$$

Corollary 2.13.

$$\operatorname{Tor}_{i}^{R}(\oplus A_{i}, B) \simeq \oplus \operatorname{Tor}_{i}^{R}(A_{i}, B).$$

Lemma 2.14. Let $\{A_i\}_{i\in I}$ be a direct system of left R-modules, $A=\operatorname{colim} A_i$. Then there exist projective resolutions P_i of A_i forming a direct system such that $P=\operatorname{colim} P_i$ is a projective resolution of A.

¹ Tue. Apr. 20

П

$$R^n \lim = 0, n \ge 2 \text{ for } I = (N, \le)$$

Proof. Let $B_i \subseteq Z_i \subset C_i$ be the cocycles and coboundaries, and similarly $B^* \subseteq Z^* \subseteq C^*$. Then we have a short exact sequence

$$0 \to Z_i^{q-1} \to C_i^{q-1} \to B_i^q \to 0, \forall q > 0,$$

which implies $Z^q = \lim Z_i^q$, $\lim^1 B_i^q = 0$, and

$$0 \to B_i^q \to \lim B_i^q \to \lim^1 Z_i^{q-1} \to 0$$

exact.

On the other hand, the exact sequence

$$0 \to B_i^q \to Z_i^q \to H^q(C_i^*) \to 0$$

induces an isomorphism $\lim^1 Z_i^q \simeq \lim^i H^q(C_i^*)$ and

$$0 \to \lim B_i^q \to \lim Z_i^q = Q^q \to \lim H^q(C_i^*) \to 0$$

are exact. Consider the filtration

$$0 \subseteq B^q \subseteq \lim B_i^q \subseteq Z^q \subseteq C^q$$
,

we have an exact sequence

$$0 \rightarrow \lim^1 H^{q-1}(C_i^*) \rightarrow H^q(C^*) \rightarrow \lim H^q(C_i^*) \rightarrow 0$$

Corollary 2.15. Let $A \in R - \mathbf{Mod}$ which is the union of submodules

$$A_0 \subset A_1 \subset \cdots \subset A_i \subset \cdots$$
.

Then for any $B \in R - \mathbf{Mod}$, and $q \ge 1$, we have an exact sequence

$$0 \to \lim_{R \to q} \operatorname{Ext}_{R}^{q-1}(A_{i-1}, B) \to \operatorname{Ext}_{R}^{q}(A_{i}, B) \to \lim_{R \to q} \operatorname{Ext}_{R}^{q}(A_{i}, B) \to 0.$$

Corollary 2.16. Take an injective resolution $B \to E^*$ then we get an inverse system

$$\cdots \to \operatorname{Hom}_R(A_{i+1}, E^*) \to \operatorname{Hom}_R(A_i, E^*) \to \cdots \to \operatorname{Hom}_R(A_0, E^*),$$

since each E^q is injective, $\operatorname{Hom}_R(A_{i+1}, E^q) \to \operatorname{Hom}_R(A_i, E^q)$ is surjective, the above system satisfies the ML condition. The result. follows from Thm 2.4.7.

Example. $\mathbb{Z}_{p^{\infty}} = \bigcup_{i} p^{-i} \mathbb{Z} / \mathbb{Z} \simeq \operatorname{colim} p^{-1} \mathbb{Z} / \mathbb{Z}$. The short exact sequence

$$0 \to \lim^1 \operatorname{Hom}(\mathbb{Z}/p^i\mathbb{Z}, B) \to \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}_{p^{\infty}}, B) \to \lim_i B/p^iB \to 0.$$

- 1. If B is torsion free, then $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}_{p\infty},B) \simeq \lim_i B/p^i B$ since the first term vanishes.
- 2. If B is finitely generated \mathbb{Z} -module, each $\mathrm{Hom}(\mathbb{Z}/q^i\mathbb{Z},B)$ is finitely generated $\mathbb{Z}/p^i\mathbb{Z}$ -module, thus is also finitely generated. $\mathrm{Hom}(\mathbb{Z}/p^i\mathbb{Z},B)$ satisfies the ML condition. $\mathrm{Ext}^1_\mathbb{Z}(\mathbb{Z}/p^\infty,B)\simeq B/p^iB$.

Exercise. Compute $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}[1p],\mathbb{Z}), \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}).$

Exercise. Check that in Def 2.3.10 $\theta([\xi]) = \partial(\mathrm{id}_B)$ is well defined, where $\partial: \mathrm{Hom}(A,A) \to \mathrm{Ext}^1_B(A,B)$

Exercise. Weibel Ex 3.3.2, 3.6.1.

3 Group Homology and Cohomology

Let G be a group, and $G-\mathbf{Mod}$ be the category of left G-modules. Consider the covariant functor $(-)^G: G-\mathbf{Mod} \to \mathbf{Ab}, (-)_G: G-\mathbf{Mod} \to \mathbf{Ab}$, we can verify that $(-)^G$ is left exact and $(-)_G$ is right exact.

Definition 3.1. For all $A \in G - \mathbf{Mod}$,

$$H^n(G, A) := R^n(-)^G(A)$$

 $H_n(G, A) := L_n(-)_G(A).$

We define the augmentation map $\epsilon: \mathbb{Z}G \to \mathbb{Z}$ by

$$\epsilon: \mathbb{Z}G \to \mathbb{Z},$$

$$g \mapsto 1$$

for any $g \in G$. The **augmentation ideal** $\mathfrak{J} = \ker \epsilon$ is a free \mathbb{Z} -module with basis $\{g-1\}$, so we have and exact sequence

$$0 \to \mathfrak{J} \to \mathbb{Z}G \stackrel{\epsilon}{\to} \mathbb{Z} \to 0.$$

where \mathbb{Z} is equipped with the trivial G-action. We can verify that $A^G = \operatorname{Hom}_{\mathbb{Z}G}(\mathbb{Z}, A)$ and $A_G \simeq \mathbb{Z} \otimes_{\mathbb{Z}G} A$ and thus $H^*(G; A) \simeq \operatorname{Ext}_{\mathbb{Z}G}^*(\mathbb{Z}, A)$ and $H_*(G; A) \simeq \operatorname{Tor}_*^{\mathbb{Z}G}(G, A)$.

Proposition 3.1. (i) If G is infinite, then $H^*(G; \mathbb{Z}G) = 0$.

(ii) If G is finite, then $H_n(G; \mathbb{Z}G) = \mathbb{Z}N$ when n = 0 and 0 when $n \geq 1$, where $N = \sum_{g \in G} g \in \mathbb{Z}G$ is the norm element.

Proof. Let $x = \sum_g c_g g \in (\mathbb{Z}G)^G$, then $hx = x, \forall h \in G$. the function $c: G \to \mathbb{Z}, g \mapsto c_g$ is constant and thus $c_g = 0$, since x is a finite sum and G is infinite.

In G is finite, the above arguments also make sense. $x \in \mathbb{Z}N$ if $x \in (\mathbb{Z}G)^G$ thus $H^n(G;\mathbb{Z}G) = \mathbb{Z}N$. To show that $H^n(G;\mathbb{Z}G) = 0, \forall n \geq 1$, we apply the following lemmas. Then $\mathbb{Z}G = \operatorname{Ind}_H^G\mathbb{Z} \simeq \operatorname{coInd}_H^G\mathbb{Z}, H = \{1\}$, so

$$H^n(G; \mathbb{Z}G) = H^n(H; \mathbb{Z}) = 0, \forall n \ge 1.$$

Lemma 3.2 (Shapiro's Lemma).

$$H_*(G; \operatorname{Ind}_H^G(A)) \simeq H_*(H; A),$$

 $H^*(G; \operatorname{Coind}_H^G(A)) \simeq H^*(H; A).$

Proof. We prove the case of cohomology only. Let $P_* \to \mathbb{Z}$ be a free resolution in $G - \mathbf{Mod}$, then $H^n(G, \mathrm{coInd}_H^G A) = H^n(\mathrm{Hom}_{\mathbb{Z}G}(P_*, \mathrm{Hom}_{\mathbb{Z}H}(\mathbb{Z}G, A))$. Since $\mathrm{Hom}_{\mathbb{Z}}(P_*, \mathrm{Hom}_{\mathbb{Z}H}(\mathbb{Z}G, A)) \simeq \mathrm{Hom}_{\mathbb{Z}H}(P_* \otimes_{\mathbb{Z}H} \mathbb{Z}G, A) \simeq \mathrm{Hom}_{\mathbb{Z}H}(P_*, A)$ and $P_* \to \mathbb{Z}$ is a projective resolution $H - \mathbf{Mod}(\mathrm{Exercise})$. So $H^n(\mathrm{Hom}_{\mathbb{Z}H}(P_*, A)) = H^n(H; A)$.

Lemma 3.3. Let $H\subseteq G$ be a subgroup. If the index [G:H] is finite, then there is an isomorphism

$$\operatorname{Ind}_H^G(A) \simeq \operatorname{Coind}_H^G(A).$$

Proof. See Weibel Lemma 6.3.4.

Lemma 3.4. Let G be any group (finite or infinite), then

$$H^1(G; \mathbb{Z}) \simeq \mathfrak{J}/\mathfrak{J}^2 \simeq G/[G, G].$$
 (3.1)

Proof. From the short exact sequence $0 \to \mathfrak{J} \to \mathbb{Z}G \to \mathbb{Z} \to 0$, we get

$$0 = H_1(G; \mathbb{Z}G) \to \operatorname{Hom}_1(G, \mathbb{Z}) \to \mathfrak{J}_G \to (\mathbb{Z}G)_G \to \mathbb{Z} \to 0,$$

Since $(\mathbb{Z}G)_G \to \mathbb{Z}$ is an isomorphism, so

$$H_1(G; \mathbb{Z}) \simeq \mathfrak{J}_G = \mathbb{Z} \otimes_{\mathbb{Z}G} \mathfrak{J} \simeq (\mathbb{Z}G/\mathfrak{J}) \otimes_{\mathbb{Z}G} \mathfrak{J} \simeq \mathfrak{J}/\mathfrak{J}^2.$$

We are left to show that $J/J^2\simeq G/[G,G]$. Consider $\phi:J\to G/[G,G]$, then this is a group homomorphism. As a $\mathbb{Z} G$ -module, $\sum_{g\in G}c_g(g-1)\to\prod_g\overline{g}^G\ J^2$ is generated by $(g-1)(g'-1),g,g'\in G$

Proposition 3.5. Let A be a trivial G-module.

- (i) $H_0(G;A) = A, H_1(G;A) \simeq G/[G,G] \otimes_{\mathbb{Z}} A$. For $n \geq 2$, there are split exact sequence $0 \to H_n(G;\mathbb{Z}) \otimes A \to H_n(G;A) \to \operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(G;\mathbb{Z}),A) \to 0$
- (ii) $H^0(G;A) = A, H^1(G;A) \simeq \operatorname{Hom}_{\mathbf{Grp}}(G,A)$, for $n \geq 2$ there are split exact sequence $0 \to \operatorname{Ext}^1_{\mathbb{Z}}(H_{n-1}(G;\mathbb{Z}),A) \to H^n(G;A) \to \operatorname{Hom}_{\mathbb{Z}}(H_n(G;\mathbb{Z}),A) \to 0$.

Proof. A trivial G-module, $A \simeq \mathbb{Z} \otimes_{\mathbb{Z}} A \simeq \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, A)$ as left G-module, Take a projective resolution $P_* \to \mathbb{Z}$ in $\operatorname{\mathbf{Mod}} - \mathbb{Z}G$, then $H_*(G; A) \simeq H_*(P_* \otimes_{\mathbb{Z}G} A)$ and $P_* \otimes_{\mathbb{Z}G} A \simeq (P_* \otimes_{\mathbb{Z}G} \mathbb{Z} \otimes_{\mathbb{Z}} A)$ then the proposition follows from Thm 2.4.2, 2.4.3.

Example. $G = C_m$ finite cyclic group of order $m, N = 1 + \sigma + \cdots + \sigma^{m-1}$

$$\cdots \to \mathbb{Z}G \stackrel{N}{\to} \mathbb{Z}G \stackrel{\sigma-1}{\to} \mathbb{Z}G \stackrel{N}{\to} \mathbb{Z}G \stackrel{\sigma-1}{\to} \mathbb{Z}G \stackrel{\epsilon}{\to} \mathbb{Z} \to 0$$

G infinite cyclic group. $\mathbb{Z}G=\mathbb{Z}[t,t^{-1}]$ and $0\to\mathbb{Z}G\overset{t-1}{\to}\mathbb{Z}G\to\mathbb{Z}\to 0$ a free resolution of \mathbb{Z}

$$H_n(G;A) = \operatorname{Hom}_n(G,A) = 0, \forall n \ge 2$$

$$H_0(G;A) \simeq H^1(G;A) \simeq A_G, H^0(G;A) \simeq \operatorname{Hom}_1(G,A) \simeq A^G$$

G free group, J is a free $\mathbb{Z}G$ -module with the basis $\{x-1, x\in X\}$, see Weibel Prop.6.2.6. $G=\mathrm{Gal}(L/K)$ finite Galois group.

G a group, $n \geq 0$, $G^{n+1} = G \times G \times \cdots \times G$ (n+1 copies) viewed as a G-set, by the action $g(g_0,\ldots,g_n) = (gg_0,\ldots,gg_n)$. Consider $d_i:G^{n+1} \to G^n, (g_0,\ldots,g_n) \mapsto (g_0,\ldots,\hat{g}_i,\ldots g_n)$. Its easy to verify that $d_id_j = d_{j-1}d_i, i < j$. Let $B_n(G) = \mathbb{Z}[G^{n+1}], d_i$ induce $d_i:B_n(G) \to B_{n-1}(G)$ for $n \geq 1$. Let $d = \sum_{i=0}^n (-1)^i d_i:B_n(G) \to B_{n-1}(G)$, hence $(B_*(G),d)$ is a complex and $\epsilon d = 0$.

Theorem 3.6. $\cdots \to B_2(G) \to B_1(G) \to B_0(G) \to \mathbb{Z} \to 0$ is a free resolution of \mathbb{Z} , called the **bar resolution** of G.

 $\phi \in \operatorname{Hom}_G(B_n(G), A), d\phi$ is given by

$$d\phi(g_1,\ldots,g_{n+1}) = g_1\phi(g_2,\ldots,g_{n+1}) + \sum_{i=1}^n (-1)^i\phi(\ldots,g_ig_{i+1},\ldots) + (-1)^{n+1}\phi(g_1,\ldots,g_n)$$

Example. When n=1, $Z(G,A)=\{$ $\phi:G\to A\ |\ \phi(gg')=g\phi(g')+\phi(g), \forall g;,g\in G\ \}$, and $B(G,A)=\{$ $\phi:G\to A\ |\ \exists a\in A, \phi(g)=ga-a, \forall g\in G\ \}$. When n=2, a 2-cocycle is a function $\phi:G\times G\to A$ such that $g\phi(g',g'')-\phi(gg',g'')+\phi(g,g'g'')-\phi(g',g'')=0$, and ϕ is a 2-coboundary if there exists some $\beta:G\to A$ such that $\phi(g,g')=g\beta(g')-\beta(gg')+\beta(g), \forall g,g'\in G$.

If A is an abelian group, recall that a group extension of G by A is a short exact sequence $0 \to A \to E \xrightarrow{\pi} G \to 1$. This induces an action of G on A: $\forall g \in G, a \in A, g$ $a := \tilde{g}a\tilde{g}^{-1}$ where $\tilde{g} \in E$ such that $\pi(\tilde{g}) = g$.

Example. E := A semi-direct product G gives an extension of G by A: $(a,g)(b,h) = (a+gb,gh), \forall a,b \in A,g,h \in G$. The split extension of G by A. $A=C_3,G=C_2,G$ acts on A by $\gamma a=-a$, the extension of G by A exists uniquely, $0 \to C_3 \to D_3 \to C_2 \to 1$.

Theorem 3.7. There is a bijection $H^2(G;A) \simeq \{$ extensions of G by $A \} / \sim$, two extensions E, E' of G by A satisfy $E \sim E'$ in the natural way.

Proof. See Weibel 6.6.

Example. $H^{2}(C_{2}; C_{3}) = 0$. $\mathbb{Z}C_{2} = \mathbb{Z}[\sigma]/\sigma^{2} - 1$

Example. $H \subseteq G$ a subgroup, $\rho: H \to G$ inclusion, which induces a restriction of cohomologies $H^n(G;A) \to H^n(H;A)$. If $H \subseteq G$ a normal subgroup, $A \in G - \mathbf{Mod}$, A^H is a G/H-module, $G \to G/H$ $A^H \to A$, Inf $: H^n(G/H;A^H) \to H^n(G;A)$. Similarly, we have $H_n(G';\rho^*A) \to H_n(G;A)$ and $H_n(G';A') \to H_n(G;A)$. corestriction and coinvariant.

Proposition 3.8. If $A = \mathbb{Z}$, H = G, the conjugation by g^i induces the identity on $H^n(G; \mathbb{Z})$ and $H_n(G; \mathbb{Z})$.

Proof. Exercise. □

If $H \subseteq G$ is normal, the conjugation induces an action of G/H on $H^n(H; \mathbb{Z})$ and $H_n(H; \mathbb{Z})$.

Proposition 3.9. Let $H \subset G$ be a normal subgroup and $A \in G - \mathbf{Mod}$, the sequence

$$0 \to H^1(G/H; A^H) \stackrel{\text{Inf}}{\to} H^1(G; A) \stackrel{\text{Res}}{\to} H^1(H; A)$$

is exact.

Proof. Let $\phi: G/H \to A^H$ be a 1-cocycle, such that $\mathrm{Inf}([\phi]) = 0$, thus there is some $a \in A$ such that $\tilde{\phi}(g) = ga - a, \forall g \in G, \tilde{\phi}: G \to G/H \to A^H \hookrightarrow A$. Since $\tilde{\phi}(g) = \tilde{\phi}(gh), \forall h \in H, ga - a = gha - a \implies a = ha, \forall h \in H, \implies a \in A^H, \implies [\phi] = 0 \in H^1(G/H; A^H)$.

Let $\phi: G \to A$ be a 1-cocycle, such that $\operatorname{Res}([\phi]) = 0$, $\Longrightarrow \phi(h) = ha - a, \forall h \in H$ for some $a \in A$.

Assume that $H \subseteq G$ is a normal subgroup of finite index $m. A \in G - \mathbf{Mod}$

$$N_{G/H}:A^H\to A^G$$

$$a\mapsto \sum_{g\in G/H}ga$$

$$N_{G/H}: A_G \to A_H$$

$$[a] \mapsto [\sum_{G/H} ga]$$

 $N_{G/H}: H^n(H;A) \to H^n(G;A), H^n(G;A) \to H_n(H;A)$, transfer map.

Lemma 3.10. $N_{G/H} \circ \text{Res} = m$, $\text{CoRes} \circ N_{G/H} = m$.

Proof. Exercise. □

Theorem 3.11. Let G be a finite group with m elements. Then for all $n \geq 1$, and $A \in G - \mathbf{Mod}$, $H^n(G; A)$ and $H_n(G; A)$ are $\mathbb{Z}/m\mathbb{Z}$ -modules.

Proof. Take $H = \{1\}$. $H^n(G;A) \stackrel{\mathrm{Res}}{\to} H^n(1;A) \to \stackrel{N_{G/H}}{\to} H^n(G;A)$ is equal to multiplication by m. For $n \geq 1$, $H^n(1;A) = 0$, $H^n(G;A)$ annihilated by m, similarly for $H_n(G;A)$.

Corollary 3.12. If G is a finite group and A a finite $\mathbb{Z}G$ -module, then $H_n(G;A)$ and $\operatorname{Hom}_n(G,A)$ are finite abelian groups.

Exercise. G finite group, $H^1(G; \mathbb{Z}) = 0$ and $H^2(G; \mathbb{Z}) \simeq \operatorname{Hom}_{\mathbf{Grp}}(G, \mathbb{C}^*)$

Exercise. Weibel Exercises 6.1.8, 6.2.4, 6.7.1, 6.7.7

4 Spectral Sequences

4.1 Basic Definitions

A abelian category satisfying AB4 and AB4*, $a \in \mathbb{N}$.

Definition 4.1. A cohomology spectral sequence $E=(E_r^{p,q} \text{ in } \mathbf{A} \text{ starting on page } a \text{ consisting of }$

- 1. an object $E_r^{p,q}, p, q, r \in \mathbb{Z}, r \geq a$
- 2. a morphism $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}, \forall p,q,r \in \mathbb{Z}$ such that $d_r^{p+r,q-r+1} \circ d_r^{p,q} = 0$.
- 3. an isomorphism $\alpha_r^{p,q}: E_r^{p,q} \simeq \ker d_r^{p,q}/\mathrm{im}\, d_r^{p-r,q+r-1}, \forall p,q,r \in \mathbb{Z}, r \geq a.$

A morphism $f: E \to E'$ between two spectral sequences is a family of maps $f_r^{p,q}: E_r^{p,q} \to E_r'^{p,q}$ with $d_r' f_r = f_r d_r$.

Lemma 4.1. Let $f:E\to E'$ be a morphism of spectral sequences such that there is some r making $f_r^{p,q}:E_r^{p,q}\to E_r'^{p,q}$ is an isomorphism for all $p,q\in\mathbb{Z}$. Then $f_\infty^{p,q}:E_\infty^{p,q}\to E_\infty'^{p,q}$ is an isomorphism.

Proof. Exercise. □

Definition 4.2. A spectral sequence is **regular** is for all p,q, the differentials $d_r^{p,q}=0$ for all r iff $Z_{\infty}^{p,q}=Z_r^{p,q}$ for large r. It is **coregular** if the differentials $d_r^{p-r,q+r-1}=0$ for large r. It is **biregular** if it is both regular and coregular.

 $A \in \mathbf{A}$, recall that a filtration on A is a sequence of subobjects of A

$$\cdots \supset F^0 A \supset F^1 A \supset \cdots F^p A \supset \cdots$$

It is **separated** if $\bigcap_p F^p A = 0$ and exhaustive if $\bigcup_p F^p A = A$.

Definition 4.3. We say the spectral sequence $(E_r^{p,q})$ weakly converges to given objects $H^n \in \mathbf{A}$ if each H^n has a filtration

$$H^n \supset \cdots \supset F^p H^n \supset \cdots$$

with isomorphisms

$$E^{p,q}_{\infty} \simeq \frac{F^p H^{p+q}}{F^{p+1} H^{p+q}}, \forall p,q \in \mathbb{Z}.$$

We say that the spectral sequence $(E_r^{p,q})$ abuts to (H^n) if is weakly converges to H^n and the filtration on H^n is separated and exhausted.

We say that the spectral sequence $(E_r^{p,q})$ converges to (H^n) if it is regular, abuts to H^n and $\varinjlim_n H^n/F^pH^n$, $\forall n$, denoted as $E_r^{p,q} \implies H^n$.

Definition 4.4. The spectral sequence $(E_r^{p,q})$ **degenerates** at page r if for all $s \geq r, d_s = 0$ $(E_r^{p,q})$ is bounded below if $\forall n, \exists s = s(n)$ such that $E_a^{p,q} = 0$ for all p+q=n and p>s (\Longrightarrow regular). It is **bounded** if $\forall n$ there exist only finitely many $E_a^{p,q} \neq 0$ with p+q=n (\Longrightarrow biregular).

If $E_r^{p,q}$ is bounded, then we have

$$\forall p, q \in \mathbb{Z}, \exists r_0 \text{such that } E_r^{p,q} \simeq E_{r_0}^{p,q} \forall r \geq r_0 \implies E_{\infty}^{p,q} \simeq E_{r_0}^{p,q}.$$

If $E_r^{p,q}$ weakly converges to H^n , then the filtration on H^n is finite, that is, F^pH^n stabilizes when $p \to \pm \infty$.

If $E_r^{p,q}$ bounded below, it converges to H^n whenever it abuts to H^n .

Example. A first quadrant spectral sequence is bounded. If it converges to H^n , then each H^n has a finite filtration of length n+1: $H^n=F^0H^n\supseteq F^1H^n\supseteq \cdots F^pH^n\supseteq \cdots F^{n+1}H^n=0$.

Each $E^{0,n}_{r+1}$ is a subobject of $E^{0,n}_r$, implying $E^{0,n}_a$. $H^n \to E^{0,n}_\infty \hookrightarrow E^{0,n}_a$.

Similarly, we have $E^{n,0} \to E^{n,0}_{\infty} \hookrightarrow H^n$, the compositions are called **edge morphisms**.

Example. $(E_r^{p,q})$ such that $E_2^{p,q}=0$ except p=0,1. If it abuts to H^* , we have an exact sequence

$$0 \to E_2^{1,n-1} \to H^n \to E_2^{0,n} \to 0.$$

4.2 Constructions and Examples

 $C^* \in C(\mathbf{A})$ with a decreasing filtration $(F^pC^*)_{p \in \mathbb{Z}}$

$$\partial: C^n \to C^{n+1}$$

satisfies $\partial(F^pC^n)\subseteq F^pC^{n+1}, \forall p\in\mathbb{Z}$, so ∂ induces $F^pC^n/F^{p+1}C^n\to F^pC^{n+1}/F^{p+1}C^{n+1}$. We want to construct $(E_r^{p,q}$ with $E_0^{p,q}=F^pC^{p+q}/F^{p+1}C^{p+1}$ and $E_\infty^{p,q}$ approximate $H^{p+q}(C^*)$.

Proof. Exercise.

Theorem 4.3. Suppose that the filtration (F^pC^*) is bounded below and exhausted, then the spectral sequence $(E_r^{p,q})$ is bounded below and converges to $H^*(C^*)$.

Definition 4.5. A spectral sequence collapses at $E_r, r \geq 2$, if there is exactly one non-zero row or column in $E_r^{p,q}$. (\Longrightarrow If $E_r^{p,q} \Longrightarrow H^n$, then $H^n \simeq E_r^{p,q}$, p,q are unique such that n=p+q.

Theorem 4.4. Let P_* be a bounded below chain complex of projective R-module, then for all $M \in R$ -Mod, there is a convergent spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(H_q(P), M) \Rightarrow H^{p+q}(\operatorname{Hom}_R(P_*, M))$$

Theorem 4.5. Corollary 3.2.5

Definition 4.6. A homological spectral sequence starting on page E^a in **A** consists of

- 1. objects $E_{p,q}^r, \forall p,q,r \in \mathbb{Z}, r \geq a$
- 2. differentials $d^r_{p,q}:E^r_{p,q}\to E^r_{p-r,q+r-1}$ such that $d^r_{p,q}d^r_{p+r,q-r+1}=0$
- 3. $E_{p,q}^{r+1} \ker d_{p,q}^r / \operatorname{im} d^r p + r, q r + 1$

Theorem 4.6. Let P_* be a bounded below complex of flat R-modules, and $M \in R$ -Mod, then there is a boundly convergent spectral sequence

$$E_{p,q}^2 \operatorname{Tor}_1^R(H_1(P_*), M) \Rightarrow H_{p+q}(P_* \otimes_R M).$$

Lemma 4.7 (Cartan-Eilenberg Resolution). Assume that **A** has enough injective resolution. Then any cochain complex has a fully injective resolution. If C is acyclic, then we may choose. a full injective resolution $I^{*,*}$ with each row acyclic.

Theorem 4.8 (The Grothendieck Spectral Sequence). Let $F: \mathbf{A} \to \mathbf{B}$ and $G: \mathbf{B} \to \mathbf{C}$ be additive left exact functors between abelian categories, where \mathbf{A}, \mathbf{B} have enough injectives and \mathbf{C} is cocomplete. Suppose that F sends injectives to G- acyclics. Then, for all $A \in \mathbf{A}$, there is a convergent first quadrant spectral sequence E starting on page 0, such that $E_2^{p,q} = R^p G(R^q F(A)) \implies R^{p+q}(GF)(A)$. The exact sequence of low terms is

$$0 \to R^1G(FA) \to R^1(GF)(A) \to G(R^1F(A)) \to (R^2G)(FA) \to R^2(GF)(A) \to 0.$$

Example. $R \to S$ ring homomorphism. Then for all $A \in S$ -Mod. There exists a first quadrant spectral sequence $E_2^{p,q} = \operatorname{Ext}_S^p(A,\operatorname{Ext}_R^q(S,B)) \Longrightarrow \operatorname{Ext}_R^{p+q}(A,B)$. In particular, if S is projective as an R-module, then $\operatorname{Ext}_S^n(A,\operatorname{Hom}_R(S,B)) \simeq \operatorname{Ext}_R^n(A,B)$. In this case, we take $\mathbf{A} = R - \operatorname{Mod}, \mathbf{B} = S - \operatorname{Mod}, \mathbf{C} = \operatorname{\mathbf{Ab}}, F = \operatorname{Hom}_R(S,-), G = \operatorname{Hom}_S(A,-), G \circ F = \operatorname{Hom}_S(A,\operatorname{Hom}_R(S,-)) \simeq \operatorname{Hom}_R(A \otimes_S S,-) \simeq \operatorname{Hom}_R(A,-)$. F admits a left adjoint which is exact, so F sends injectives to injectives.

 $R \to S$ ring homomorphism, $A \in S$ -Mod, $B \in (R,S)$ -Mod such that $\operatorname{Ext}^i_R(A,\operatorname{Hom}_S(B,E))=0$. Then for all $C \in R$ -Mod, there is a first quadrant spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_S^p(A, \operatorname{Ext}_R^q(B, C)) \implies \operatorname{Ext}_R^{p+q}(B \otimes_S A, C).$$

If B is projective as an R-mod, then $\operatorname{Ext}_S^n(A, \operatorname{Hom}_R(B, C)) \simeq \operatorname{Ext}_R^n(B \otimes_S A, C)$

Exercise. Prove Lemma 3.1.4.

Exercise. Let $\{E_r^{p,q}\}$ is a bounded spectral sequence of R-modules, and $E_r^{p,q} \implies H^n$. Assume $\forall p,q \in \mathbb{Z}, E_r^{p,q}$ is a finitely generated R-module, prove that each H^n is also finitely generated.

Exercise. Suppose $E_2^{p,q}=0$ unless q=0 or n for some $n\geq 2$. Prove that there is a long exact

sequence

$$\cdots \rightarrow H^{p+n} \rightarrow E_2^{p,n} \rightarrow E_2^{p+n+1,0} \rightarrow H^{p+n+1} \rightarrow E_2^{p+1,n} \rightarrow E^{p+n+2,0} \rightarrow \cdots$$

Exercise. Weibel exercises. 5.6.1, 5.6.4.

Theorem 4.9. $B \in R$ -Mod, $B \to C^*$ a resolution (not necessarily inject). Then for all $A \in R$ -Mod, there is a spectral sequence $E_1^{p,q} = \operatorname{Ext}_R^q(A,C^p) \Rightarrow \operatorname{Ext}_R^{p+q}(A,B)$.

Remark. Another important construction of spectral sequence comes from the theory of exact couples. See Weibel 5.9 for some details.

5 Derived Categories

5.1 Triangulated Categories and Derived Categories

A an abelian category, $C(\mathbf{A})$ is also abelian. The homotopy category $K(\mathbf{A})$, we want to construct the derived category $D(\mathbf{A})$. There are two approaches to the derived category $D(\mathbf{A})$

- 1. localization in $K(\mathbf{A})$
- 2. stable ∞ -categories.

We sketch the classical localization construction. For more details, see Zheng's notes. Or Gelfand-Manin. Or Kashiwara-Shapira.

 $X, Y \in C(\mathbf{A})$ and $f: X \to Y$, recall that we have an exact sequence

$$0 \to Y \to \operatorname{cone} f \to X[1] \to 0,$$

and for all exact sequence $0 \to X \to Y \to Z \to 0$ in $C(\mathbf{A})$, cone $f \to Z$ is quasi-isomorphic. A **triangle** in $K(\mathbf{A})$ is a sequence $X \to Y \to Z \to X[1]$ and a morphism of triangles is a commutative diagram

$$\begin{array}{ccccc} X & \longrightarrow & Y & \longrightarrow & X[1] \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ X' & \longrightarrow & Y' & \longrightarrow & Z' & \longrightarrow & X'[1] \end{array}$$

A triangle is called **distinguished** if it is isomorphic to $X \xrightarrow{f} Y \to \operatorname{cone} f \to X[1]$ for some $f: X \to Y$.

Let C be an additive category and $T: \mathbf{C} \to \mathbf{C}$ an automorphism of C. A triangle in C is a sequence of morphism

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} TX = X[1],$$

and morphisms of triangles are defined in the natural way.

Example. The triangle $X \to Y \to Z \to TX$ is isomorphism to (*). but $X \stackrel{-f}{\to} Y \stackrel{-g}{\to} Z \stackrel{-h}{\to} TX$ is not isomorphic to (*) in general.

Definition 5.1. A triangle category is an additive category \mathbf{C} endowed with an automorphism T and a family of a triangle called distinguished triangle, satisfying

- 1. A triangle isomorphic to a distinguished triangle is a distinguished triangle
- 2. $X \stackrel{\text{id}}{\to} X \to 0 \to TX$ is a distinguished triangle

- 3. for all $f: X \to Y$, there is a distinguished triangle $X \xrightarrow{f} Y \to Z \to TX$
- 4. $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} TX$ is distinguished iff $Y \xrightarrow{g} Z \xrightarrow{h} TX \xrightarrow{-Tf} TY$ is distinguished.
- 5. Given two distinguished triangles, there is an extension $Z \to Z'$
- 6. octahedron axiom.

Remark. TR4 can be deduced from TR0, 1, 2, 5. See Zheng Prop 2.2.18. The extension in TR4 is not unique in general.

Theorem 5.1. A an abelian category, $K(\mathbf{A})$ with the distinguished triangle is a triangulated category.

Proof. See Gelfand-Manin p.246-250.

Definition 5.2. A triangulated functor $F:(\mathbf{C},T)\to (\mathbf{C}',T')$ of triangulated categories is an additive functor that satisfies $F\circ T=T'\circ F'$ and sends distinguished triangles to distinguished triangles.

A triangulated subcategory $C' \subseteq C$ is a subcategory C' of C which is triangulated and the inclusion $i : C' \to C$ is a triangulated functor.

 (\mathbf{C},T) a triangulated category and \mathbf{A} is an abelian category. $F:\mathbf{C}\to\mathbf{A}$ is a cohomology functor if for all distinguished triangle $X\to Y\to Z\to TX$ in \mathbf{C} , the sequence $FX\to FY\to FZ$ is exact in \mathbf{A} .

Proposition 5.2. If $X \stackrel{f}{\to} Y \stackrel{g}{\to} Z \to TX$ is a distinguished triangle, then gf = 0. $\forall W \in \mathbf{C}$, the functor $\mathrm{Hom}_{\mathbf{C}}(W,-)$ and $\mathrm{Hom}_{\mathbf{C}}(-,W)$ are cohomological.

Proposition 5.3. Consider a morphism of distinguished triangles $X \to Y \to Z \to TX$ and $X' \to Y' \to Z' \to TX'$. If the leftmost and the middle vertical morphisms are isomorphisms, then so is the right most one.

Proof. Apply $\operatorname{Hom}(W,-)$ to the diagram in the above proposition and use Yoneda lemma.

Corollary 5.4. $\mathbf{C}' \subset \mathbf{C}$ full triangulated subcategory.

A triangle $X \to Y \to Z \to TX$ in \mathbf{C}' and assume that it is distinguished in \mathbf{C} , then it is distinguished in \mathbf{C}' .

 $X \to Y \to Z \to TX$ distinguished triangle in ${\bf C}$ with X,Y in ${\bf C}'$, then there exists $Z' \in {\bf C}'$ and an isomorphism $Z \simeq Z'$.

 \mathbf{C} a category, S a family of morphisms in \mathbf{C} .

Proposition 5.5. There is a category C_S together with a functor $Q: C \to C_S$ such that

- 1. $\forall s \in S, Q(s)$ is an isomorphism
- 2. for all functor $F: \mathbf{C} \to \mathbf{D}$, such that F(s) is an isomorphism for all $s \in S$, there exists functor $F_S: \mathbf{C}_S \to \mathbf{D}$ and an isomorphism $F \simeq F_S Q$.

Example. A abelian category, $K(\mathbf{A}) = C(\mathbf{A})_S$, $S = \{ \text{ homotopy equivalences } \}$.

Definition 5.3. S is called a right multiplicative system if it satisfies

- 1. $\forall x \in \mathbf{C}, \mathrm{id}_x \in S$
- 2. $\forall f, g \in S$, if gf exists, then $gf \in S$.
- 3. $\forall f: X \to Y \text{ and } s: X \to X' \text{ with } s \in S \text{, there exists } t: Y \to Y' \text{ with } t \in S \text{ and } gs = tf$
- 4. $\forall f,g:X\to Y$, if there exists $s\in S$ and $s:W\to X$ such that fs=gs, then there exists $t\in S$ and $t:Y\to Z$ such that tf=tg.

Assume that S is a right multiplicative system. Then (C_S, Q) admits a simpler description

- 1. $ob\mathbf{C}_s = \mathbf{C}$
- 2. $X, Y \in \mathbf{C}_S, \operatorname{Hom}_{\mathbf{C}_S}(X, Y) = \operatorname{colim}_{(Y \to Y') \in S^Y} \operatorname{Hom}_{\mathbf{C}}(X, Y')$

where S^Y is a filtered category.

C category. $N \subset ob$ **C**.

Definition 5.4. N is called a null system if

- 1. $0 \in N$
- $2. \ X \in N \iff TX \in N$
- 3. If $X \to Y \to Z \to TX$ is a distinguished triangle and $X, Y \in N$, then $Z \in N$.

 $\mathsf{Set}\, S(N) = \{\, f: X \to Y \mid fembed dedinto a distinguished triangle X \to Y \to Z \to TX with Z \in N \,\}.$

Proposition 5.6. S(N) is a multiplicative system in \mathbb{C} .

Write $\mathbf{C}/N = \mathbf{C}_{S(N)}$.

Proposition 5.7. (\mathbf{C},T) triangulated category, N null system. T induces an automorphism $T: \mathbf{C}/N \to \mathbf{C}/N$. \mathbf{C}/N is a triangulated category by taking distinguished triangles as those isomorphic to the images a distinguished triangle in \mathbf{C} under $Q: \mathbf{C} \to \mathbf{C}/N$, then Q is a triangulated functor. If $X \in N$, then Q(X) = 0. $\forall F: \mathbf{C} \to \mathbf{D}$ of triangulated category such that FX = 0 for all $X \in N$, then F factors through Q.

Definition 5.5. The derived category $D(\mathbf{A}) := K(\mathbf{A})/N$.

References

[Wei] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge University Press, 1 edition.