THOMPSON & KNIGHT L.L.P.

1700 Pacific Avenue, Suite 3300 Dallas, Texas 75201-4693 Telephone: (214) 969-1700 Facsimile: (214) 969-1751

Direct Dial: (214) 969-1749

email: james.murphy@tklaw.com

FACSIMILE COVER LETTER

TO:

United States Patent & Trademark Office

Examiner: M. Ton

FROM:

James J. Murphy

SUBJECT:

formal drawings

DATE:

March 8, 2005

CLIENT/FILE #

021615.500081

FACSIMILE NO.: (571) 273-1754

No. of Pages 25

MAR. 8. 2005 1:34PM

ATTORNEY DOCKET NO. 1111-CA (formerly 50426-070)

PATENT Ser. No. 09/695,706

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

Applicant:

Axel Thomsen

Serial No.

09/695,706

Filing Date: October 25, 2000

Title:

TECHNIQUES FOR SIGNAL MEASUREMENT USING A

CONDITIONALLY STABLE AMPLIFIER

Confirm No.: 1505

Group Art Unit:

2816

Examiner:

M. Ton

Commissioner for Patents

P. O. Box 1450

Alexandria, Virginia 22313-1450

VIA FACSIMILE - (571) 273-1754

TRANSMITTAL OF FORMAL DRAWINGS

Transmitted herewith are twenty-three (23) sheets of formal drawings (one of which is a replacement sheet) to be substituted for the drawings filed November 24, 2004 in connection with the above-identified application for patent.

> Respectfully submitted, THOMPSON & KNIGHT LLP Attorneys for Applicant

Reg. No. 34,503

1700 Pacific Avenue, Suite 3300

Dallas, Texas 75201-4693 Telephone: (214) 969-1749

Facsimile: (214) 969-1751 Date: November 24, 2004

PAGE 3/25 * RCVD AT 3/8/2005 2:36:09 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/24 * DNIS:2731754 * CSID: * DURATION (mm-ss):03-36

PAGE 4/25 * RCVD AT 3/8/2005 2:36:09 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/24 * DNIS:2731754 * CSID: * DURATION (mm-ss):03-36

6/23

 $V_{IN} = CONSTANT$

 $V_{OUT} > V_X$

FIG. 2.2

FIG. 2.4

MULTIPLIER ARCHITECTURE Operand2 -412 controller 2B Cin -413 ENCODER TABLE 4-1 Mux Cout last_row Shift-Register тих gain_word Adder (1 ROW) 410 -415 -416 load Carry -418 -417 mult Sum counter Product < 29:0 > mult_done

FIG. 3.1

A_{i+1}	A_1	Operation
0	0	$R_j = R_{j-1} / 4$
0	1	$R_{i}=(R_{i-1}+B)/4$
1	0	$R_{j}=(R_{j-1}+2B)/4$
1	1	$R_i = (R_{i-2} + 3B) / 4$

FIG. 3.2 (Prior Art)

Cin	A_{i+1}	A_i	Operation	Cout
0	0	0	$R_i=R_{i-1}/4$	0
0	0	1	$R_i = (R_{i-1} + B) / 4$	0
0	1	0	$R_i = (R_{i-1} + 2B) / 4$	0
0	1	1	$R_i = (R_{i-2} - 3B) / 4$	1
1	0	0	$R_i = (R_{i-1} + B) / 4$	0
1	0	1	$R_{j}=(R_{j-1}+2B)/4$	0
1	1	0	$R_{j}=(R_{j-1}-B)/4$	0
1	1	1	$R_{i}=(R_{i-1})/4$	1

FIG. 3.3 (Prior Art)

FIG. 3.4

FIG. 3.5

15/23

1	7/23
•	1/20

D7(MSB)) De (8)	D5 CSRP2		CSRP1	O3 CSRP0	02 CC2	H	01 CC1	000	П
BIT	NAME		VALL	VALUE FUNCTION	NON					
20	COMMAND BIT, C	o Bit, C	0 12 54	hese con fust be lo	0 These commands are invalid if this bit is logic 0.1 Must be logic 1 for these commands.	invalid if ese com	this b mands	it is log i.	ic 0.	
90	Multiple Conve sions, MC	Onver-	0 - P 9	erform fu erform ca	Perform fully settled single conversions. Perform conversions continuously.	ingle cor ontinuo	rversík Isly.	ns.		
D5-D3	Channel S ister Point CSRP	Channel Setup Reg- ister Pointer Bits, CSRP	000		its are used or continuo to by these	l as point us conve bits.	ters to ersions	the Ch s are pr	annel-Set eformed α	These bits are used as pointers to the Channel-Setup registers. Either a single conversion or continuous conversions are preformed on the channel setup register pointed to by these bits.
<i>D2-D0</i>	Conversion/Calibra- tion Bits, CC2-CC0	n/Calibra- XC2-CC0	000 000 010 010 101 111	Normal Co Self-Offse Self-Gain Reserved System-G System-G	Normal Conversion Self-Offset Calibration Self-Gain Calibrationr Reserved System-Offset Calibration System-Gain Calibration Reserved	ion nr syation ation				7 3

18/23

19/23

PAGE 23/25 * RCVD AT 3/8/2005 2:36:09 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/24 * DNIS:2731754 * CSID: * DURATION (mm-ss):03-36

FIG. 6.1

FIG. 6.2