Chem QA & Reactions Appendix

Chang Si Yuan July 31, 2017

(ver 0.3.1)

A catalog of reactions to be understood and recalled for the GCE "A"-level Chemistry Paper, including Organic and Inorganic Qualitative Analysis for both the theory and practical papers.

These notes are meant for free, public use, but at the reader's own risk.

Good luck with your exams.

1 Common Inorganic Reactions

1.1 Precipitate Solubility

1.1.1 Table of Solubilities

	Group 1, NH ₄ ⁺	Hg ⁺ ,	Pb ²⁺	Ba ²⁺ , Ca ²⁺	Else
NO ₃	1. All nitrates are soluble				
X-	2. All Group 1 3. Halides of Hg, Ag and Pb are insoluble				
SO ₄ ²⁻	and ammoniums	4. Sulfates of Pb, Ba and Ca are insoluble			
OH ⁻ , CO ₃ ²⁻ , PO ₄ ²⁻ , S ₂ ⁻	are soluble	5. Most other salts are insoluble			

1.1.2 K_{sp} Comparison

1.2 Acid/Base Reactions

1.2.1 Acid/Base Titration Indicators

1.3 Redox Reactions and Reagents

 $\mathsf{KMnO_4}$ is a strong oxidizing agent which will turn from purple to colorless Mn^{2+} . Brown ppt of $\mathsf{MnO_2}$ forms when insufficient acid is present.

 $\mathbf{K_2Cr_2O_7}$ is a strong oxidizing agent which will turn from orange to green Cr^{3+} .

KI is a reducing agent which may turn from colorless to brown I_2 , possibly reducing Fe^{3+} to form brown solution and reducing Cu^{2+} to form cream ppt of CuI. Use starch solution to tell if I_2 is present in small concentrations, alternatively use (starchy) waste paper.

 $\mathbf{0}_2$ in air can oxidize:

- green Fe²⁺ solution to brown Fe³⁺ solution
- green Fe(OH)₂ ppt to brown Fe(OH)₃ ppt
- off-white Mn(OH)₂ ppt to brown MnO₂ ppt; and
- white BaSO₃ ppt soluble in acid to white BaSO₄ ppt insoluble in acid.

 H_2O_2 can either act as a reducing agent to form H_2O , oxidizing agent (vs Fe^{2+}) to form O_2 or spontaneously decompose to form both, especially in presence of a transition metal catalyst.

2 Tests for Inorganic Compounds

2.1 Tests for Gases

 O_2 relights a glowing splint.

 $\mathbf{H_2}$ extinguishes a lit splint with a 'pop' sound.

 $\mathbf{CO_2}$ forms white ppt of $Ca(OH)_2$ when bubbled into limewater $Ca(CO_3)(aq)$.

SO₂ decolorizes acidified purple KMnO₄ filter paper.

NO₂ is a brown, pungent gas which (oxidizes?) FeSO₄ solution, turning green solution brown.

NH₃ is a pungent gas which turns moist red litmus paper blue.

2.2 Tests and Reactions for Inorganic Compounds, by Identity

2.2.1 Anions

 NO_3^- produces NH_3 when heated in NaOH with Al(s).

 NO_2^- produces NH_3 when heated in NaOH with Al(s) and produces NO_2 when reacted with HCl.

 CO_3^{2-} shows effervescence when reacted with acid to give CO_2 .

 SO_4^{2-} produces a white ppt of BaSO₄, insoluble in acid.

 SO_3^{2-} produces a white ppt of BaSO₃, which dissolves in acid to produce SO_2 .

2.2.2 Halide Anions

 I^- produces yellow ppt with AgNO₃, insoluble in NH₃(aq).

 Br^- produces cream ppt with AgNO₃, insoluble in NH₃(aq).

 CI^- produces white ppt with AgNO₃, soluble in NH₃(aq) due to the formation of the diamminesilver complex.

2.2.3 Cations

	Soln	NaOH	NH ₃ (aq)			
White ppts						
Ba ²⁺	-	-	-			
Ca ²⁺	-	White	-			
Zn ²⁺	-	White, soluble	White, soluble			
Al ³⁺	-	White, soluble	White			
Mg^{2+}	-	White	White			
Colored ppts						
Cu ²⁺	Blue	Blue	Blue, soluble to deep blue			
Cr ³⁺	Green	Green, soluble to green	Green			
Fe ²⁺	Pale Green	Dirty Green	Dirty Green			
Fe ³⁺	Brown	Brown	Brown			
Mn ²⁺	-	Off-white	Off-white			

CuCO₃ can be green or blue depending on its concentration.

 ${\sf Fe}^{2+}$ and ${\sf Fe}^{3+}$ react with ${\sf Fe}({\sf CN}_6)^{3-}$ to form a deep blue ppt of ${\sf Fe}_4[{\sf Fe}({\sf CN}_6)]_3$ (turnbull's ppt).

2.3 Tests for Inorganic Compounds, by Reactants and Conditions

3 Common Organic Reactions

- 3.1 Organic Reactions, by Reacting Species
- 3.2 Organic Reactions, by Reactants and Conditions
- 3.3 Organic Reactions, by Type of Reaction

4 Tests for Organic Compounds

- 4.1 Tests to Identify Species
- 4.2 Tests to Differentiate between Species

Fe³⁺ reacts with SCN⁻ to form a blood red coloration.