I have read and agree to the collaboration policy. Lynne Diep.

Lynne Diep Homework Heavy Grading Collaborators: None

> CMPS 102: HW 1-4 Due: April 21, 2017

Problem 4:

They want to find out who owns the median book of the joint book collection, which has 2n books. In this joint book collection, the median would be the n-th book among the union of the 2n alphabetically sorted books

They manage to find out who owns the median in $\Theta(\log n)$.

What algorithm did they use? Prove that this algorithm is correct. Find the recurrence relation and show that it resolves to $\Theta(\log n)$.

Answer -

The median can be obtained recursively.

Let the joint book collection be a sorted array A.

Pick the median of the sorted array A. This is just Θ (1) time as the median is the n/2th element in the sorted array.

Compare median of A, call it a*, with median of B, call it b*. Now we have 2 cases.

Case 1:

 $a^* < b^*$ - in this case, elements in $B[\frac{n}{2} \dots n]$ are also greater than a^* . That means the median cannot lie in either $A[1 \dots \frac{n}{2}]$ or $B[\frac{n}{2} \dots n]$. So we can eliminate these away and recursively solve a subproblem with $A[\frac{n}{2} \dots n]$ and $B[1 \dots \frac{n}{2}]$.

Case 2:

 $a^* > b^*$ - in this case, we can still eliminate $A[\frac{n}{2} ... n]$ and $B[1 ... \frac{n}{2}]$ and solve a smaller subproblem recursively.

In both of these cases, our subproblem sizes are reduced in half, and we spend constant time to compare the medians of A and B (Jack's and Anthony's book collection).

So the recurrence relation would be $T(n) = T(n/2) + \Theta(1)$, which has a solution of $T(n) = \Theta(\log n)$ as claimed.