CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 February 2002 (28.02.2002)

PCT

(10) International Publication Number WO 02/016623 A1

- (51) International Patent Classification⁷: C12N 15/82, C07K 14/195, A61K 38/16
- (21) International Application Number: PCT/SG00/00123
- (22) International Filing Date: 23 August 2000 (23.08.2000)
- (25) Filing Language:

Englis

(26) Publication Language:

English

- (71) Applicant (for all designated States except US): INSTITUTE OF MOLECULAR AGROBIOLOGY [SG/SG]; 1 Research Link, National University of Singapore, Singapore 117604 (SG).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ZHANG, Lianhui [AU/SG]; 360 Pasir Panjang, #03-11, Goldcoast Condominium (SG). DONG, Yihu [CN/SG]; 12 Westcoast Crescent, #06-06, 2B Westcove Condominium, Singapore 120313 (SG). XU, Jinling [AU/SG]; 360 Pasir Panjang Road #03-11, Goldcoast Condominium, Singapore 118699 (SG). ZHANG, Haibao [CN/SG]; Blk 313, #08-197, Clementi, Ave. 4, Singapore 120313 (SG).
- (74) Agent: MIRANDAH, Gladys; Ella Cheong & G. Mirandah, 111 North Bridge Road, #22-01/02/03 Peninsula Plaza, Singapore 179098 (SG).

- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (48) Date of publication of this corrected version:

12 June 2003

(15) Information about Correction:

see PCT Gazette No. 24/2003 of 12 June 2003, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BACTERIAL STRAINS, GENES AND ENZYMES FOR CONTROL OF BACTERIAL DISEASES BY QUENCHING QUORUM-SENSING SIGNALS

(57) Abstract: The present invention relates to isolated nucleic acid molecules encoding an autoinducer inactivation protein, wherein the encoded protein comprises an amino acid sequence selected from the group consisting of ¹⁰⁴HXHXDH¹⁰⁹~60aa~H¹⁶⁹~21aa~D¹⁹¹ and ¹⁰³HXHXDH¹⁰⁸~72aa~H¹⁸⁰~21aa~D²⁰², and to expression vectors and transformed plant and animal cells comprising the same. The proteins encoded by these nucleic acid molecules provide to a susceptible plant or animal increased resistance to a disease the virulence of which is regulated by autoinducers. Also provided are methods of increasing disease resistance in susceptible plants and animals.

VO 02/016623 ⊅

BACTERIAL STRAINS, GENES AND ENZYMES FOR CONTROL OF BACTERIAL DISEASES BY QUENCHING QUORUM-SENSING SIGNALS

FIELD OF THE INVENTION

The present invention relates to genes encoding regulators of bacterial metabolism, more particularly to genes encoding enzymes that quench quorum-sensing signals. The present invention further relates to methods of control of bacterial diseases comprising expression of genes encoding autoinducer inhibitors.

BACKGROUND OF THE INVENTION

N-acyl-homoserine lactones, known as autoinducers (AIs), are widely conserved signal molecules present in quorum-sensing systems of many Gram-negative bacteria. It has been found that AIs are involved in the regulation of a range of biological functions, including bioluminescence in Vibrio species (Eberhard et al., 1981; Cao and Meighen, 1989), Ti plasmid conjugal transfer in Agrobacterium tumefaciens (Zhang et al., 1993), induction of virulence genes in Erwinia carotovora, Erw. chrysanthemi, Erw. stewartii, Pseudomonas aeruginosa, P. solanacerum, and Xenorhabdus nematophilus (Jones et al., 1993; Passador et al., 1993; Pirhonen et al., 1993; Pearson et al., 1994; Beck von Bodman and Farrand, 1995; Flavier et al., 1998; Costa and Loper, 1997; Nasser et al., 1998;),

2

regulation of antibiotic production in *P. aureofaciens* and *Erw. carotovora* (Costa and Loper, 1997; Pierson et al., 1994), regulation of swarming motility in *Serratia liquifaciens* (Eberl et al., 1996), and biofilm formation in *P. fluorescens* and *P. aeruginosa* (Allison et al., 1998; Davies et al., 1998). Many more bacterial species are known to produce AIs, but the relevant biological functions have not yet been established (Bassler et al., 1997; Dumenyo et al., 1998; Cha et al., 1998). Biofilm formation is of particular significance to bacterial pathogenicity, as it makes bacteria more resistant to antibiotics and host defense responses, and causes microbial contamination in medical devices and in drinking water pipelines.

5

10

15

20

25

30

Different bacterial species may produce different AIs. All AI derivatives share identical homoserine lactone moieties, but differ in the length and structure of their acyl groups. Although the target genes regulated by AIs are extremely varied, the basic mechanism of AIs biosynthesis and gene regulation seems to be conserved in different bacteria. The general feature of gene regulation by AIs is cell density dependence, also known as quorum sensing. densities the AIs are at low concentrations, and at high cell densities the AIs can accumulate to a concentration sufficient for activation of related regulatory genes (Fuqua and Winans, 1996). biological functions regulated by AIs are of considerable scientific, economic, and medical importance. New approaches for up or down regulation of bacterial quorum sensing systems would be of

3

significant value, not only in science, but also in practical applications.

5

10

15

20

25

30

It has been reported recently that a novel gene encoding autoinducer inactivation (aiiA) has been cloned from the Gram-positive bacterium Bacillus sp. strain 240B1 (Dong et al., 2000). Expression of the aiiA in transformed Erw. carotovora strain SCG1, a pathogen that causes soft rot disease in many plants, significantly reduces the release of AI, decreases extracellular pectrolytic enzyme activities, and attenuates pathogenicity on potato, eggplant, Chinese cabbage, carrot, celery, cauliflower, and tobacco. The results indicate the promising potential of using the AI-inactivation approach for prevention of diseases in which virulence is regulated by quorum sensing signals.

SUMMARY OF THE INVENTION

Bacterial strains and enzymes capable of efficient inactivation of N-acyl homoserine lactone autoinducers (AIs) are of considerable interest for biotechnology With the present invention it is applications. disclosed that all Bacillus thuringiensis strains and their closely related species tested were capable of enzymatic inactivation of AIs. One AI synthesis minus mutant of Agrobacterium tumefaciens strain A6, caused by Tn5 insertion mutagenesis, was also found capable of producing AI inactivation enzyme. The genes encoding for AI inactivation enzymes were cloned either by a functional cloning approach or by a PCR approach from the selected bacterial strains. A peptide sequence comparison indicates that all of these enzymes belong to the metallohydrolase family, with amino acid identity ranging from 35.4% - 94.0 % to the previously

4

reported AiiA enzyme. The *B. thuringiensis* strains effectively quench AI activity when co-cultured with AI producing pathogenic bacteria, and provide effective biocontrol of potato soft rot disease caused by *Erwinia carotovora*. The data suggest that quenching biosignals which regulate virulence is an useful strategy for disease control, and that *B. thuringiensis* strains which are known for insecticidal activity are also promising biocontrol agents for prevention of diseases in which virulence is regulated by AIs.

5

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the time course of AI (OOHL) inactivation by the protein extract of A. tumefaciens strain M103. The total protein of M103 was extracted by sonication disruption of bacterial cells in 1/15 M phosphate buffer (pH 8.0). Equal volumes of M103 protein extract (1.46 mg/ml) and 5000 nM OOHL were mixed and incubated in a 1.5 ml Eppendorf centrifuge tube at 28°C. Same protein extract was denatured by boiling for 5 min and used as a control. The samples were taken after 1, 3, 6 hr after reaction and the reaction was stopped by boiling for 3 min. The samples were analyzed for AI activity.

Figure 2 shows the cloning of the AI inactivation region from the cosmid clones of mutant M103. Two cosmid clones were contained in cosmid vector pLAFR3 while the four sub-clones in plasmid vector pBluescript II SK(+). Symbols: +, positive in AI inactivation; -, negative in AI inactivation; E: EcoRI; P: PstI.

Figure 3 shows (A) The potential ORFs in the 1.5 kb AI inactivation region predicted with a sequence analysis program; and (B) Deletion analysis to define

5

the ORF encoding AI inactivation enzyme (AiiB). PCR amplified fragments were cloned into vector pBluescript II SK(+) (pBM clones) or in vector pKK223-3 (pKM clones). The numbers under each clone indicate the start and stop positions of the PCR fragments corresponding to the nucleotide sequences of the 1.5 kb region. All constructs were confirmed by sequencing analysis. The start codon (GTG) and stop codon (TAA) of the aiiB ORF are shown under the clone pKM103-315. Solid arrows indicate the location and direction of lac and tac promoter in these clones, the ORFs were indicated with open arrows. Symbols: +, positive AI inactivation activity: -, negative AI inactivation activity.

5

10

15

20

25

30

Figure 4 shows (A) the nucleotide sequence (SEQ ID NO 1) and (B) predicted peptide sequence (SEQ ID NO 11) of the *aiiB* gene cloned from A. tumefaciens M103. The putative ribosome binding (SD) region and two PstI restriction enzyme sites are underlined, and the putative transcription termination codon is indicated.

Figure 5 shows the protein sequence comparison of AiiB (SEQ ID NO 11) and AttM (SEQ ID NO 21), a putative protein encoded by the attM gene in the att region of A. tumefaciens, but its biological function has not been demonstrated experimentally (GenBank accession No. U59485). These two proteins exhibit a high degree of similarity (the center sequence represents the consensus sequence, four fragments identical to amino acids 8-43, 45-158, 160-186 and 188-263 of SEQ ID NO 11), but functional AiiB protein has an additional 7 amino acids in the N-terminus.

Figure 6 shows a protein sequence comparison of

6

AiiB (SEQ ID NO 11) and AiiA (SEQ ID NO 22), a putative metallohydrolase which inactivates AI cloned from Bacillus sp. 240B1. The two conserved zinc binding regions are underlined.

5

10

15

20

25

30

Figure 7 shows the functional cloning of the aiiC (A) Enzymatic inactivation of AI by the suspension culture of Bt strain Cot1. Equal volume of cell suspension culture (OD $_{600}$ = 1.1) and 40 μM OOHL were mixed and incubated at 28° C (\triangle). The boiled culture and OOHL at same concentrations were used as control (■). The samples were taken at times as indicated for AI activity assay. (B) Direct subcloning of AI-inactivation regions from the cosmid clones pLAFR3-aiiC of B. thuringiensis Cot1. The cosmid clone was digested by EcoRI and subcloned into the pGEM-7Z The AI inactivation positive clone pGEM7-aiiC . was identified by enzyme activity assay. The pGEM7aiiC was further subcloned in the pBluescript II SK(+) vector after BamHI digestion. The AI inactivation region of about 1.4 kb in size contained in clone pBSaiiC was completely sequenced. Restriction enzymes: E: EcoRI; B: BamHI.

Figure 8 shows (A) the nucleotide sequence (SEQ ID NO 2) and (B) predicted peptide sequence (SEQ ID NO 12) of the *aiiC* gene cloned from the Bt strain Cot1. The nucleotide sequence of the *aiiC* ORF is indicated by the uppercase letters and the untranslated regions are indicated by the lower case letters.

Figure 9 shows the nucleotide sequences and predicted protein sequences of the genes aiiD (SEQ ID NOS 3 & 13), aiiE (SEQ ID NOS 4 & 14), aiiF (SEQ ID NOS 5 & 15), aiiG (SEQ ID NOS 6 & 16), aiiH (SEQ ID NOS 7 &

7

17), aiiI (SEQ ID NOS 8 & 18), aiiJ (SEQ ID NOS 9 & 19) and aiiK (SEQ ID NOS 10 & 20) from Bt strains B1, B2, B17, B18, B20, B21, B22 and B25, respectively.

Figure 10 shows a phylogenetic tree analysis and amino acid identity of 11 cloned AI inactivation genes. The phylogenetic tree was produced by DNASTAR sequence analysis software (DNASTAR Inc.). The distance is shown below the tree. The amino acid identity of each sample to AiiA is shown at the right hand of the graph.

5

10

15

20

25

30

Figure 11 shows the effect of Bt strains on AI production by *Erwinia carotovora*. *Erw. carotovora* SCG1 was inoculated alone in 15 ml LB medium (\spadesuit) or coinoculated respectively in 1:1 ratio with Bt strains Cot1 (Δ) and B1 (\spadesuit), *E. coli* DH5 α (\triangle) and *B*.

fusiformis (\blacksquare) in the same medium. The inoculum concentration (T_0) was 1 x 10^7 CFU/ml (colony forming unit per milliliter) for SCG1 and 1 x 10^6 CFU/ml for others. After incubation of 1, 2, 3, 4, 6 and 24 hours at 30°C, the bacterial suspensions were taken and the supernatants were used to bioassay the AI produced. The data were means of four repeats.

Figure 12 shows the effect of Bt strain Cot1 on control of potato soft rot disease caused by Erw. carotovora SCG1. Dip: Potato slices were dipped into suspensions of Bt strain Cot1 (C), $E.\ coil\ DH5\alpha$ (D) or $B.\ fusiformis$ (Bf) at a level of about $5\times 10^8\ CFU/ml$ or water (W) for about 20 sec and then dried in a sterile air flow for about 20 min. The slices which showed no moisture on the surface were inoculated with $2.5\ \mu l$ of bacterial suspension containing SCG1 cells equivalent to 5×10^5 or 5×10^4 CFU. Mixture: the cell culture of SCG1 (2×10^8 or 2×10^7 CFU/ml) was mixed respectively

8

with equal volumes of Cot1 (C), *E. coil* DH5 α (D), *B. fusiformis* (Bf) (5 x 10 8 CFU/ml) or water (W). Two point five microlitres of the mixture was inoculated onto the top of slices. The final cell numbers of SCG1 inoculated are 2.5 x 10 5 or 2.5 x 10 4 CFU, as marked in the second line below the graph. After 20 hours incubation at 28 $^\circ$ C the maceration area was measured. The data were the means of 4 or 12 (12 for Cot1) repeats.

5

10

1.5

20

25

30

Figure 13 shows the influence of Bt strains Cot1 and B1 on the growth of Erwinia carotovora SCG1. Erw. carotovora SCG1 (■) was inoculated alone or coinoculated with Bt strain Cot1 (♦) and B1 (▲) respectively in a 1:1 ratio in 15-ml LB medium. Each strain was inoculated to a final concentration of about 1×10^7 CFU/ml for SCG1 and 1×10^6 CFU/ml for the others in the T_0 medium. After 2, 4, 6 and 24 hours culture at 30°C, the bacterial suspensions were taken and diluted accordingly for spreading on plates for colony counting. The experiment was repeated four times and mean data were presented. Top: SCG1, Cot1, and B1 were incubated and grown separately; Middle: SCG1 was co-incubated with Cot1; Bottom: SCG1 was coincubated with B1.

Figure 14 shows changes in bacterial cell numbers (A) and development of soft rot symptom (B) on inoculated potato slices. Potato slices were dipped into Cot1 suspensions (5 x 10⁸ CFU/ml) (▲) or water (◆) for about 20 sec and then dried in a Laminar Flow for about 20 min. The slices were then inoculated with 5 µl of Erw. carotovora SCG1 (2 x 10⁹ CFU/ml). After incubation of 1, 2, 3 and 4 days at 28°C, the

9

inoculated slices were cut into small pieces and 10 ml of 0.1 M NaCl solution was added for resuspension of bacterial cells. The mixture was shaken for 30 min and the suspension was diluted accordingly and spread on to plates for colony counting. The colony numbers of SCG1 were shown as log10 CFU/slice (▲ SCG1 only; ■ dipped in Cot1) and the numbers of Cot1 (◆) as log10 CFU/mm². The experiment was repeated four times and mean data were presented.

5

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

Ten genes encoding AI inactivation enzymes have been cloned from 9 Gram positive bacterial isolates and one Gram negative bacterium (A. tumefaciens). The genes showed different levels of homologies to the aiiA gene, which encodes a putative metallohydrolase with strong AI inactivation activity (Dong et al., 2000). Similar to AiiA, the zinc binding motif regions are highly conserved in the enzyme proteins encoded by these newly cloned AI inactivation genes. It is very likely that these ten enzymes are also members of the metallohydrolase family, and use the same molecular mechanism as the AiiA for inactivation of N-acyl homoserine lactone autoinducers. The present invention further enriches the gene pool of AI inactivation enzymes.

In A. tumefaciens, N-acyl homoserine lactone autoinducers, mainly OOHL, are involved in regulation of Ti plasmid conjugal transfer (Zhang et al., 1993). The production of OOHL in A. tumefaciens is induced by the conjugal opines secreted by crown gall tumours (Zhang and Kerr, 1991). The OOHL in turn induces the expression of tra genes. Tra proteins are responsible

for completing the process of Ti plasmid conjugal transfer. Only a few hours are required from opine induction to completion of Ti plasmid conjugal transfer, so the Ti plasmid conjugal transfer can therefore be regarded as only a transient event. One embodiment of the present invention, the aiiB gene for N-acyl homoserine lactone degradation, identified in A. tumefaciens, highlights the possibility that the bacterium has a sophisticated mechanism for control of AI signal turn over. It is plausible that AI is degraded in Agrobacterium after completion of the Ti plasmid conjugal transfer.

It has been noted that a majority of bacterial isolates capable of AI inactivation are Gram positive, belonging to *B. thuringenesis* and closely related species. So far, most of the characterised quorumsensing signals in Gram-negative bacteria are N-acyl homoserine lactones (Fuqua et al., 1996), while Grampositive bacteria produce oligopeptides as quorumsensing signals (Dunny and Leonard, 1997).

Bacillus thuringiensis (Bt) has been used extensively as a microbial insecticide during the last 30 years. The microorganism is a gram-positive, spore-forming soil bacterium, and produces a crystalline parasporal body consisting of one or more crystal (Cry) proteins during sporulation, which shows biocidal activity against insect families such as lepidopteran, dipteran, and colepteran insects at larval stages (Lambert and Peferoen, 1992). Some Bt strains have also been reported to be active against other insect families, as well as mites, nematodes, flatworms, and protozoa (Feitelson et al., 1992). Different Bt

11

strains produce more than 28 different but related groups of insecticidal crystal proteins (http://www.biols.susx.ac.uk/ Home/Neil_ Crickmore/Bt/). Different groups of crystal proteins are usually active against a specific spectrum of insects, but do not affect other beneficial insects in agriculture. Currently, Bt-based formulations are the most widely used and most effective microbial insecticides in agriculture.

5

10

15

20

25

30

As a valuable biocontrol agent, Bt has several advantages including its specificity for target insects, its low development cost, and its environmental compatibility (Lambert and Peferoen, Bt is commonly found in natural soil, and normally multiplies by cell division, but forms spores when nutrients are depleted or when the environment These spores are highly resistant to becomes adverse. stress conditions such as heat and drought, enabling the bacterium to survive periods of stress. sporulating Gram-positive micro-organism can be formulated readily into stable products, such as a dry powder, for insect or disease biocontrol. Bt also has been subjected to many safety tests, with no harmful effects for animals or human beings.

Bt has not been exploited for disease control because it usually does not produce effective antibiotics against bacteria and fungi. In the present invention, it has been found that all tested Bt strains are capable of inactivating AI, and that Bt strains provide effective biocontrol against *Erw. carotovora* infection, whereas *B. fusiformis* and *E. coli* strains which do not have AI inactivation genes were unable to

12

provide biocontrol against *Erw. carotovora*. Bt strains did not produce any antibiotics and were not inhibitory to the growth of pathogen. The data strongly suggest the important role of AI inactivation genes in disease biocontrol. Because the AI diffuses easily into bacterial cells, Bt, capable of eliminating AI constantly from its surroundings, is a promising biocontrol agent, not only for control of plant soft rot disease caused by *Erw. carotovora*, but also for control of other diseases in which the virulence genes are regulated by AIs.

5

10

15

20

25

30

Accordingly, an object of the present invention is to provide a method for increasing resistance in a plant or animal to a disease in which virulence is regulated by AIs [such as the diseases caused by Pseudomonas aeruginosa, Erwinia stewartii, Erwinia chrysanthemi, Pseudomonas solanacerum, and Xanthomonas campestris (Passador, et al., 1993; Pirhonen, et al., 1993; Pearson, et al., 1994; Beck von Bodman and Farrand, 1995; Barber, et al., 1997; Clough, et al., 1997; Costa and Loper, 1997; Nasser, et al., 1998), and especially plant soft rot disease caused by Erw. carotovora] comprising administering to the plant or animal an effective amount of a bacterium that is capable of producing an autoinducer inhibitor. preferred embodiment of this aspect of the invention, the bacterium administered is a Bacillus sp., more preferably a variety of Bacillus thuringiensis, most preferably a variety of B. thuringiensis selected from the group consisting of B1, B2, B17, B18, B20, B21, B22 and B25. In another preferred embodiment of this aspect of the invention, the animal to be treated is a

•

human.

WO 02/16623

5

10

15

20

25

30

It is another object of the present invention to provide isolated nucleic acid molecules encoding autoinducer inactivation proteins. These nucleic acid molecules encode autoinducer inactivation proteins that share the conserved amino acid motif \$\$^{104}\text{HXHXDH}^{109}\$\$~60aa~\$H^{169}\$\$~21aa~\$D^{191}\$, or the similar motif \$\$^{103}\text{HXHXDH}^{108}\$\$~72aa~\$H^{180}\$\$~21aa~\$D^{202}\$. Preferred embodiments of these nucleic acid molecules encode the proteins of SEQ ID NOS 11-20, and most preferred embodiments of these nucleic acid molecules have the sequences of SEQ ID NOS 1-10.

13

PCT/SG00/00123

Another object of the present invention is to provide an expression vector that comprises at least one nucleic acid sequence encoding an autoinducer inactivation protein, wherein the encoded protein comprises the conserved amino acid motif 104HXHXDH109~60aa~H169~21aa~D191, or the similar motif 103HXHXDH108~72aa~H180~21aa~D202, wherein the expression vector propagates in a procaryotic or eucaryotic cell. Preferred embodiments of these expression vectors comprise at least one nucleic acid sequence encoding a protein having a sequence selected from the group consisting of SEQ ID NOS 11-20, and most preferred embodiments have the nucleic acid sequences of SEQ ID NOS 1-10.

Yet another object of the present invention is to provide a cell of a procaryote or eucaryote transformed or transfected with an expression vector of the present invention.

Yet another object of the present invention is to provide an isolated protein which has autoinducer

5

10

15

20

25

30

14

inactivation activity, where the protein comprises the conserved amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191}$, or the similar motif $^{103}\rm HXHXDH^{108}{\sim}72aa{\sim}H^{180}{\sim}21aa{\sim}D^{202}$. Preferred embodiments of the invention comprise proteins having the amino acid sequences of SEQ ID NOS 11-20.

Yet another object of the present invention is to provide a method for increasing disease resistance in a plant or animal, which method comprises introducing into a cell of such plant or animal at least one nucleic acid molecule that encodes an autoinducer inactivation protein in a manner that allows said cell to express said nucleic acid sequence, wherein said autoinducer inactivation protein comprises the conserved amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191},$ or the similar motif ¹⁰³HXHXDH¹⁰⁸~72aa~H¹⁸⁰~21aa~D²⁰². Preferred embodiments of this aspect of the invention comprise introducing at least one nucleic acid molecule encoding a protein having a sequence selected from the group consisting of SEQ ID NOS 11-20, and most preferred embodiments comprising introducing at least one nucleic acid sequence selected from the group consisting of SEQ ID NOS 1-10.

Yet another object of the present invention relates to a method of preventing or reducing bacterial damage to a plant or animal, which method comprises administering to a plant or animal in need of such prevention or reduction an effective amount of at least one autoinducer inactivation protein, wherein said protein comprises the conserved amino acid sequence 104 HXHXDH 109 ~ 60 aa~ 169 ~ 21 aa~ 0191 , or the similar motif

WO 02/16623

5

10

15

20

25

30

15

PCT/SG00/00123

 $^{103}\rm HXHXDH^{108}{\sim}72aa{\sim}H^{180}{\sim}21aa{\sim}D^{202}.$ Preferred embodiments of this aspect of the invention comprise providing at least protein having the amino acid sequences of SEQ ID NOS 11-20.

Yet another object of the present invention relates to a method of preventing or reducing the formation of bacterial biofilms, which method comprises exposing biofilm-forming bacteria to at least one autoinducer inhibitor protein, wherein said protein comprises the conserved amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191}$, or the similar motif $^{103}\rm HXHXDH^{108}{\sim}72aa{\sim}H^{180}{\sim}21aa{\sim}D^{202}$. Preferred embodiments of this aspect of the invention comprise exposing the biofilm-forming bacteria to at least protein having the amino acid sequences of SEQ ID NOS 11-20.

It is possible to further enhance the efficiency of Aii-producing bacterial strains by using a genetic approach to modify such strains, for example by introducing genes encoding for additional, or more active, autoinducer inhibitors. It also is possible to optimise the enzyme activity of aii genes by an in vitro DNA evolution approach. Increasing the expression of Aii enzymes by coupling the aii gene to a strong promoter or increasing the copy number of the aii gene in Bt cells would be another useful way to improve the capacity of Bt strains to quenching AI It is likely that genetically modified Bt strains which secrete AI inactivation enzyme or contain the enzyme in the outer membrane of the cell could have better efficiencies in quenching AI signals than their wild type parent strain. This is achievable by fusing an aii gene to a sequence encoding a secretion or a

16

membrane attachment signal peptide.

5

10

15

20

25

30

The sequence may be introduced into plant or animal cells by well-known methods. Methods for the transformation or transfection of eukaryotic cells with exogenous nucleic acid sequences include transfection, projectile bombardment, electroporation or infection by Agrobacterium tumefaciens. These methods are likewise familiar to the person skilled in the area of molecular biology and biotechnology and need not be explained here in detail.

As pathogenic bacteria cells are confined to the intercellular area of plant tissues, it is desirable to target the Aii protein into the intercellular spaces. Such may be accomplished by fusing a secretion signal peptide to the Aii protein (Sato, et al., 1995; Firek, et al., 1993; Conrad and Fiedler, 1998; Borisjuk, et al., 1999). Alternatively, a plant membrane attachment motif can be incorporated into the peptide sequence of Aii for anchoring the Aii enzyme in the outer surface of plant cell membrane.

The present invention also contemplates usage of a bacterial autoinducer inactivation protein directly to treat or prevent bacterial damage. For example, the protein may be applied directly to plants in need of such treatment or prevention. In a preferred embodiment, the protein is applied in the form of a composition which comprises an effective amount of the protein and a suitable carrier. The composition may have a wide variety of forms, including solutions, powders, emulsions, dispersions, pastes, aerosols, etc.

The bacterial autoinducer inactivation protein may also be used to treat bacterial infections in animals,

WO 02/16623

5

10

15

20

25

30

17

PCT/SG00/00123

including humans. In that application, an effective amount of the active ingredient is administered to an animal in need of such treatment.

For therapeutic treatment, the active ingredient may be formulated into a pharmaceutical composition, which may include, in addition to an effective amount of the active ingredient, pharmaceutically acceptable carriers, diluents, buffers, preservatives, surface active agents, and the like. Compositions may also include one or more other active ingredients if necessary or desirable.

The pharmaceutical compositions of the present invention may be administered in a number of ways as will be apparent to one of ordinary skill in the art. Administration may be done topically, orally, by inhalation, or parenterally, for example. formulations may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Oral formulations include powders, granules, suspensions or solution in water or non-aqueous media, capsules or tablets, for example. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders may be used as needed. Parenteral formulations may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives. The dose regimen will depend on a number of factors which may readily be determined, such as severity and responsiveness of the condition to be treated.

Traditionally, microbial biocontrol has depended on production of antibiotics or antimicrobial compounds (Cronin et al., 1997; Liao and Sapers, 1999; Emmert and Handelsman, 1999). The present invention offers an

18

alternative strategy for biocontrol, based on quenching biosignals that are essential for virulence.

Example 1: Bacterial strains capable of inactivating
autoinducers

5 To identify the genes responsible for inactivation of autoinducer signals, more than 400 field and plant bacterial isolates and about 100 stains of the laboratory bacterial culture collection were screened. The bacterial strains used to test the ability of 10 inactivating autoinducer signals were isolated from soil and plant suspensions as described previously (Dong et al., 2000), or obtained from Bacillus Genetic Stock Centre (BGSC) and the American Type Culture Collection (ATCC). Erwinia carotovora SCG1 was isolated from Chinese cabbage leaves showing soft rot 15 symptoms. It was confirmed by 16S DNA sequence and its characteristic production of autoinducer and induction of soft rot disease in potato and Chinese cabbage. These strains were grown at 28°C in Luria-Bertani (LB) 20 medium with shaking when necessary. Agrobacterium tumefaciens strains were grown at 28°C in YEB, in BM minimal medium (basic minimal nutrient added with mannitol as sole carbon source), or on nutrient agar plates (Difco Laboratories). Mannitol at a final concentration of 0.2% was used as the sole carbon 25 source in the minimal medium. Escherichia coli strains were grown at 37°C in LB or on LB agar plates. Antibiotics were added at the following concentrations, when required: rifampin at 50 μg/ml, streptomycin at 30 100 μg/ml, ampicilin at 100 μg/ml, kanamycin at 50 μg/ml, and tetracycline at 10μg/ml. X-gal (5-bromo-4-

5

10

15

20

25

30

19

chloro-3-indolyl-B-D-galactopyranoside) (Promega) was included in media at 50 $\mu\text{g/ml}$ for detection of $\beta\text{-}$ galactosidase enzyme activity.

More than 30 strains showed different levels of AI inactivation activity. To characterise the unknown isolates, the 16S rRNA sequences of these isolates were analysed by PCR amplification and subsequent sequencing. The sequence search showed the 16S rRNA sequences of those strains capable of inactivating AI are highly homologous to that of Bacillus thuringiensis (Bt).

To test whether other *Bacillus* strains also have the AI-inactivation ability, known strains of *B. thuringenesis*, *B. cereus*, *B. mycoides*, and *B. sphaericus* were selected for bioassay. For determination of the AI inactivation ability of bacterial strains and isolates, the autoinducer, N- β -oxo-hexanoyl-L-homoserine lactone (OHHL), or N- β -oxo-octanoyl-L-homoserine lactone (OOHL) was added to the over-night bacterial cultures which were diluted to OD₆₀₀ = 1.1, or to the protein extracts, at a final concentration of 20 μ M, and incubated at 28 °C for 30 min. The AI remaining in the supernatant was then determined as previously described (Zhang, 1993; Dong et al., 2000).

Table 1 shows the AI inactivation activities of the selected strains and some newly identified isolates. All the tested bacterial strains, except B. sphaericus and B. fusiformis, eliminated AI (at a concentration of 20 µM OHHL) with different levels of enzyme activities. These strains include 13 known Bacillus species (strains starting with a "B" in Table

20

1), 1 known Agrobacterium and 9 Bacillus species identified by 16S rDNA sequence analysis. Among them, 12 bacterial strains showed a high level of AI-inactivation activity (> 30 μ M/h/OD₆₀₀); 8 showed a medium level of activity (25-30 μ M/h/OD₆₀₀); and the A. tumefaciens strain M103 showed a low level of activity (4.5 μ M/h/OD₆₀₀). Except for A. tumefaciens, all these AI-inactivation strains are Gram-positive and belong to B. thuringenesis or its close related species.

5

Table 1. Bacterial strains and their AI-inactivation activity

5		<u>Strains</u>	Source _	Enzyme activity (<u>µM/h/OD₆₀₀)</u>
	28-32	Bacillus thuringiensis	This work	32.4 ± 1.1
	258-3	Bacillus thuringiensis	This work	32.5 ± 1.2
	69	Bacillus thuringiensis	This work	30.9 ± 2.3
	60-1	Bacillus thuringiensis	This work	28.2 ± 5.1
10	250	Bacillus thuringiensis	This work	23.4 ± 3.9
	262	Bacillus thuringiensis	This work	23.1 ± 1.5
	B18	Bacillus thuringiensis	This work	27.4 ± 3.0
	B20	Bacillus thuringiensis	This work	32.7 ± 2.4
	B21	Bacillus thuringiensis	This work	33.1 ± 0.8
15	B22	B. thuringiensis ssp. kurstaki*	This work	32.8 ± 1.3
	B23	B. thuringiensis ssp. Israelensis*	BGSC (4Q7)	26.7 ± 3.5
	B1	B. thuringiensis ssp. thuringiensis	BGSC (4A3)	32.5 ± 0.3
	B2	B. thuringiensis ssp. kurstaki	BGSC (4D1)	33.0 ± 0.6
	B12	B. thuringiensis ssp. Aizawai	BGSC (4J4)	33.5 ± 0.9
20	B17	B. thuringiensis ssp. Wuhanensis Mycog	gen (PSS2A1)	28.8 ± 4.1
	B25	Bacillus cereus	This work	33.7 ± 0.8
	B14579	Bacillus cereus	ATCC (14579)	31.7 ± 0.6
	B6462	Bacillus mycoides	ATCC (6462)	29.8 ± 2.2
	240B	Bacillus sp.	This work	33.0 ± 1.0
25	Cot	Bacillus thuringiensis	This work	25.1 ± 2.4
	M103	Agrobacterium tumefaciens	This work	4.5
	269	Bacillus fusiformis	This work	0
	B29	Bacillus sphaericus	BGSC (12A4)	0

^{30 *} Plasmid minus

35

^{**} Equal volume bacterial suspension (diluted to $OD_{600} = 1.1$ from overnight cultures) and OHHL (40 μ M) were incubated at 28°C for 30 min and then OHHL remaining in the supernatant was determined as previously described (Zhang, 1993). The enzyme activity is shown as digested μ M of OOHL per hour per OD_{600} of bacterial culture. Values represent mean \pm standard deviation of 4 replicates. Strains starting with a "B" prefix are the known Bacillus species. Other Bacillus strains were identified by 16S rDNA sequence analysis.

22

The evidence suggests that the AI-inactivation gene is located in chromosomal DNA but not in a plasmid, because Bt ssp. kurstaki strain B2 and its plasmid minus derivative strain B22, both showed a similar level of enzyme activity. The second plasmid minus strain B23, belonging to B. thuringenesis ssp. Israelensids, was also capable of enzymatic inactivation of AI.

5

10

15

20

25

30

To investigate the genetic diversity of genes for AI-inactivation, the representative bacterial strains showing high, medium or low levels of AI-inactivation activity were chosen for further cloning experiments.

Example 2: Functional cloning of the aiiB gene from Agrobacterium tumefaciens strain M103

The suicide plasmid pSUP10 (Simon et al, 1983) in E. coli SM10 was used to introduce transposon Tn5 insertions into the genome of A. tumefaciens octopine strain A6 by the protocol described by Garfinkel and Nester (1980), except that the bacterial suspensions were spread onto BM minimal plates containing kanamycin (100 µg/ml). Total DNA of A. tumefaciens mutant strain M103 was partially digested with EcoRI, the 20-30 kb fragments were recovered from lower melting point agarose gel and purified. The purified fragments were ligated to the dephosphorized EcoRI site of the cosmid vector pLAFR3 (Staskawicz et al., 1987). The ligation mixture was packaged with GigapackTMIII XL Packaging Extract (Stratagene) and then transfected into E. coli About 2000 individual colonies grown on the selective medium containing tetracycline were maintained as the genomic library of A. tumefaciens

WO 02/16623

5

10

15

20

25

30

23

PCT/SG00/00123

mutant strain M103. The cosmid clones containing Tn5 were selected on the medium containing kanamycin and were further assayed for AI inactivation activity by using the bioassay method described above. Subcloning into the sequencing vector pGEM-7Zf(+) was carried out by routine techniques (Sambrook et al., 1989). Sequencing was performed on both strands by using the ABI Prism dRhodamine Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer Applied Biosystems).

Agrobacterium tumefaciens strain A6 produces N-acyl homoserine lactone autoinducers (AI) which are involved in regulation of Ti plasmid conjugal transfer (Zhang and Kerr, 1991). But its derivative M103 caused by Tn5 insertional mutagenesis is capable of inactivation of AI. (Table 1 and Fig. 1). It is likely that the gene encoding for AI degradation in strain A6 is regulated by a negative regulator, and the Tn5 insertion resulted in constitutive expression of the gene for AI inactivation.

Based on the assumption that the AI inactivation gene may be located downstream of the Tn5 insertion site, the cosmid clones containing Tn5 transposon were selected by the kanamycin resistance phenotype. Two cosmid clones resistant to kanamycin and showing AI inactivation activity were obtained from the cosmid library of M103. Restriction analysis and bioassay showed that a 5.2 kb EcoRI fragment conferred the AI inactivation activity. Further subcloning narrowed down the region to a 1.5 kb PstI fragment (Fig. 2). Sequence analysis showed that several putative open reading frames (ORFs) starting with ATG or UTG were in the fragment. One of the ORFs showed 96.8% identity in

24

nucleotide sequence and 98% in amino acid sequence to the attM gene (U59485) of A. tumefaciens identified previously. However, AI inactivation activity was not detected when expressing the attM in E. coli via an expression vector pKK223-3. Deletion analysis of the 1.5 kb fragment showed that a 792bp ORF, its start codon a GTG rather than the normal ATG, encoding for AI inactivation (Fig. 3). The gene was named as aiiB (Fig. 4). In comparison with the AttM whose biological function has not been identified experimentally, the AiiB has 7 extra amino acids at the N terminus (Fig. 5). AiiB showed 35.4% identity at the amino acid level compared to the previously reported AiiA (Fig. 6).

5

10

15

20

25

30

Example 3: Functional cloning of the aiiC gene from B.
thuringinesis strain Cot1

The suspension culture of strain Cot1 eliminated AI (20 µM) completely after 2 hr incubation, but bacterial cells killed by boiling for 5 min failed to inactivate AI (Fig. 7A), indicating an enzymatic inactivation mechanism. To identify the gene encoding for AI inactivation from Cot1, a cosmid library was constructed by EcoRI partial digestion of the genomic DNA of the bacterial isolate Cot1. Genomic DNA was extracted from bacterial isolate Cot1 and digested partially with EcoRI. The DNA fragments were ligated to the dephosphorylized EcoRI site of cosmid vector pLAFR3. Ligated DNA was packaged and transfected into E. coli DH5 α . Cosmid clones with AI inactivation activity were identified by using the bioassay method described above. Subcloning into the sequencing vector pGEM-7Zf(+) or pBlueScript SK were carried out by

25

routine techniques.

5

10

15

20

25

30

One clone showing AI inactivating function was identified from the one thousand cosmid clones screened. Restriction analysis showed that this clone contains an insert of 24 kb. All five fragments generated by EcoRI complete digestion were subcloned into pGEM7 vector. The bioassay of these subclones showed that one clone, pGEM7-aiiC with an insert of 5 kb, conferred the AI inactivation activity. Further subcloning identified a 1.4 kb BamHI fragment contained in the clone pBS-AiiC which was responsible for the AI inactivation function (Fig. 7B). The complete sequence of the clone pBS-AiiC showed that there is an ORF of 750 bp nucleotides (from 166 to 918) which encodes a protein of 250 amino acids (Fig. 8). Cloning of this ORF in the E. coli expression vector confirmed that it encoded a functional AI inactivation enzyme, designated as AiiC. At the peptide sequence level, the AiiC gene showed 91% and 33% identity, to the AiiA and the AiiB respectively. The aiiC gene has no significant similarity to other known sequences in the databases by FASTA and BLAST analysis at either nucleotide or peptide levels.

Example 4: The autoinducer inactivation genes in Bt belong to the same gene family

Among the tested bacterial isolates with AI inactivation activity, all except the A. tumefaciens strain M103, are Gram positive, and belong to B. thuringiensis (Bt) or closely related bacterial species. The aiiA and aiiC genes from the two Bacillus strains showed a high level of similarity. It is very

26

likely that the aiiA and aiiC genes are highly conserved among B. thuringiensis strains. hybridisation (Southern blot) analysis was performed using an aiiC fragment as a probe. The genomic DNA was 5 isolated from 18 selected bacterial strains, B1 (Bt ssp. thuringiensis), B2, B3 and B4 (Bt ssp. kurstaki), B22 (Bt ssp. kurstaki plasmid minus), B12 (Bt ssp. Aizawai), B16 and B17 (Bt ssp. Wuhanensis), B23 (Bt ssp. Israelensis), and other Bt strains B18, B20, B21, 240B1, 471W, and Cot1 as well as B25 and B26 (B. 10 cereus), and B29 (B. sphaericus). Genomic DNA (20 µg) digested with EcoRI was separated by electrophoresis in 0.8% agarose gel and then the DNA was transferred onto Hybond-N+ membrane (Amersham Pharmacia, Biotech.) 15 according to manufacture's instructions. BamHI fragment containing the aiiC codon region was labelled with DIG for use as a probe for hybridisation. After hybridisation at 65°C, the membrane was washed twice in 2x SSC, 0.1% SDS at room temperature for 5 min, followed by washing twice in 0.1x SSC, 0.1x SDS at 20 65°C for 15 minutes. After washing, the membrane was detected with anti-DIG-AP conjugate, the NBT/BCIP solution was used as colour substrate according to manufacture's protocol (Boehringer Mannheim).

The result showed that one hybridising band was clearly detected from all tested strains, except for B29 (B. sphaericus). These results indicated that there is a single gene, with sequence similar to aiiC, present in all tested B. thuringiensis strains and its closely related species B. cereus. This is in agreement with the bioassay data (Table 1).

25

30

27

Example 5: Cloning of other AI inactivation genes from
more bacterial isolates

5

10

15

20

25

30

Since the genes for AI inactivation are highly conserved, a PCR approach was used for the cloning of other AI inactivation genes from the selected B. thuringiensis isolates. Genomic DNA isolated from the bacterial isolates B1, B2, B17, B18, B20, B21, B22 and B25 was used as template. Primers were designed based on the conserved sequences of the 5' and 3' ends of the aiiA and aiiC gene. Standard PCR conditions were used to amplify AI-inactivation genes from the selected The primer sequences were: C5f: bacterial isolates. 5'- ATG GGA TCC ATG ACA GTA AAG AAG CTT TAT - 3'; C3r: 5'-GTC GAA TTC CTC AAC AAG ATA CTC CTA ATG -3'. PCR reactions were performed for 35 cycles of 30 sec at 94°C, 30 sec at 55°C and 1 min at 72°C using a Perkin Elmer GenAmp PCR System 2400. Two separate PCR reactions were performed to make sure there was no error in the amplified sequences. The PCR products were purified by using QIAquick PCR Purfication Kit (QIAGEN) and the purified PCR fragment was ligated to pGEM-T vector (Promega). Clones having inactivating autoinducer activity were chosen for further study. Two such clones from each strain were sequenced. Nucleic acid sequence data and deduced amino acid sequences were analysed with the DNASTARTM sequence analysis software package (DNASTAR Inc.) and GCG sequence analysis software (Genetics Computer Group, Wisconsin). Database searches were performed using the BLASTA search algorithm.

Fig. 9 shows the nucleotide and deduced peptide sequences of 8 AI inactivation genes (named aiiD to

WO 02/16623

10

15

20

25

30

28

PCT/SG00/00123

aiiK) cloned from Bt strains B1, B2, B17, B18, B20, B21, B22 and B25 respectively. These sequences all contain an ORF of 750 bp, which encodes a protein of 250 amino acids.

5 <u>Example 6</u>: The autoinducer inactivation genes are highly conserved among members of Bt and closely related *Bacillus* spp.

Except for the aiiB gene, all other genes were cloned from the Gram positive bacterial isolates. Sequence analysis indicates that the aii genes cloned from the Gram positive bacterial isolates are highly conserved, with high amino acid identities ranging from 90.4% to 94.0%, in comparison to that of AiiA (Fig. 10). The aiiB gene cloned from the Gram negative A. tumefaciens showed less similarity to other aii genes and clustered as a single group in the phytogenetic tree (Fig. 10). These results indicate that the autoinducer inactivation genes are highly conserved among members of Bt and closely related Bacillus.

In these Aii protein sequences, all except AiiB contain several invariant histidines with glutamate residues showing a pattern of 104HXHXDH109~60aa~H169~21aa ~D191; the AiiB of A. tumefaciens contains the similar, but distinct motif 103HXHXDH108~72aa~H180~21aa ~D202. This pattern agrees with the metallohydrolase criterion (Vallee and Galdes, 1984). The motif HXHXDH in the Arabidopsis glyoxalase II was suggested to be involved in binding to zinc ion (Crowder et al., 1997). Sitedirected mutagenesis has shown that all these residues except the first histidine (104H in AiiA) in this motif are necessary for AiiA activity. These invariant

WO 02/16623

5

10

15

20

25

30

29

PCT/SG00/00123

histidines and glutamate residues are also present in AiiB to AiiK, indicating they belong to the same group of autoinducer metallohydrolases.

Example 7: Effect of Bt strains on AI production by Erwinia carotovora

To test the effect of Bt strains on quenching AI production by pathogenic bacteria, Erw. carotovora SCG1 was co-cultured with Bt strains Cot1, B1, E. coil DH5 α , and B. fusiformis respectively. AI was assayed as in Example 1. The AI produced by strain SCG1 was detected after 2 hours incubation, and a rapid increase was observed from 2 to 6 hours incubation (for cell numbers, see Fig. 14), whereas no AI was detected in the culture supernatant of SCG1 co-cultured with either Cot1 or B1 strain, which produce AI inactivation enzymes. In the co-culture supernatants of SCG1 with either E. coil DH5\alpha or B. fusiformis, which do not contain aii genes, AI production levels were detected that were similar to those observed with SCG1 culture alone (Fig. 11). These results indicate that Bt strains effectively quench AI signals produced by the pathogen Erw. carotovora SCG1 when the two are cultured together.

Example 8: Effect of Bt strains on the pathogenesis of
Erwinia carotovora

It is known that AI play a key role in regulation of the virulence determinates of several pathogenic bacterial species. Since Bt strains effectively quenched AI signals produced by the pathogen, it is likely this new function of Bt strains can be exploited

5

10

15

20

25

30

30

for disease control. To test this possibility, the effect of Bt strains for biocontrol against plant soft rot disease was investigated. Potato (Solanum tuberosum L. cv. Bintje) tubers were obtained from local stores. After rinsing in tap water and drying on paper towel, potato tubers were surface-sterilized with 70% ethanol, and then were sliced evenly to a 3mm thickness. For the dip treatment, the potato slices were dipped into the bacterial suspension of Cot1, or other bacterial strains, diluted to a concentration of 5×10^8 colony forming unit (CFU) per ml, for about 20 seconds. Sterilised water was used as a control. slices were dried in a laminar flow cabinet for about 20 min to remove surface moisture before inoculation with 2.5 ul of Erw. carotovora SCG1 bacterial suspension containing approximately 2 x 108 or 2 x 107, CFU/ml onto the top of each slice. For the mixture treatment, equal volumes of each testing organism (5 x 108 CFU/ml), or sterile water were mixed with Erw. carotovora SCG1 bacterial suspension (2 x 10^8 or 2 x 10^7 CFU/ml). The mixture (2.5 µl) was inoculated to a cut surface of the potato slices. All the potato slices were incubated in a Petri dish at 28°C. Maceration area was measured during incubation. Each treatment was repeated 4 to 12 time (12 for Cot1), each repeat was inoculated 3 places on one slice. For the colonisation experiment, each treatment was repeated 4 times, each tuber slice was inoculated only once at the centre of slice. Potato tuber slices were either treated with Bt strain Cot1 or other controls first before inoculation of Erw. carotovora SCG1, or SCG1 bacteria were mixed with Cot1 or other controls before inoculation onto

31

potato slices.

Erw. carotovora SCG1 caused severe tissue maceration of potato slices 20 hr after inoculation, whereas on Bt strain Cot1 pre-treated potato slices the 5 maceration symptom was significantly attenuated (Fig. 12). Co-inoculation of SCG1 with the Bt strain Cot1 also attenuated soft rot symptoms, especially at the lower concentration of inoculum. In contrast, control treatments, either pretreatment of potato slices with E. coli or B. fusiformis before inoculation of SCG1, or 10 co-inoculation of SCG1 with E. coli and B. fusiformis respectively, showed severe tissue maceration symptoms These results suggest that Bt strains could be used as biocontrol agents against soft rot disease 15 in plants.

Example 9: In vitro competition between Bt strain and Erwinia carotovora SCG1

The Bt strains Cot1 and B1 were tested for production antibiotics against Erw. carotovora SCG1. Competition experiments were conducted by co-20 inoculation of the Bt strain and Erw. carotovora in a 1:1 ratio. Each strain was inoculated at the level of about 1 x 10^7 CFU/ml for Erw. carotovora and 1 x 10^6 CFU/ml for other strains. The mixture was incubated at 25 30°C. At different time points the bacteria samples were taken for bioassay of AI production (the bioassay performed as in Example 1), and were diluted in suitable concentrations to spread on plates for colony counting. The experiment was repeated four times. the colonisation experiment, the potato slices 30 inoculated with Erw. carotovora were taken at times as

WO 02/16623

5

10

32

PCT/SG00/00123

indicated, and plant tissues about 15×15 mm circling the inoculation site were cut. The cut tissues were cut into small piece and placed in 10 ml of 0.1 M NaCl. After shaking for 30 min, the supernatant was diluted in suitable concentrations. Viable numbers of bacterial cells were counted.

On plates of both rich and minimum media, Bt strains did not show any inhibitory effect on the growth of SCG1. When strain SCG1 and Bt strain Cot1 or B1 were coinoculated, both Bt strains and SCG1 grew normally, showing the same growth trend over a 24 hr period (Fig. 13).

Example 10: Effect of Bt strain on colonisation of tuber slice by Erwinia carotovora

To investigate colonisation of Erw. carotovora 15 SCG1 on potato slices after incubation, an expression vector containing the GFP gene was transformed into strain SCG1. The expression vector can be maintained in strain SCG1 stably without selection pressure. 20 There was no difference in virulence between the SCG1 (GFP) and the wild-type SCG1. To investigate the effect of Bt bacteria on the survival and growth of SCG1 on plants, potato tuber slices were either dipped into bacterial suspensions of Cot1, then inoculated 25 with SCG1(GFP), or simultaneously inoculated with SCG1(GFP) and Cot1. Changes in bacterial cell numbers and development of soft rotting symptoms of potato tissue were monitored daily for 4 days. Results showed that there were no big changes in cell numbers between 30 SCG1(GFP) on the Cot1-treated slices and the SCG1(GFP) on the water-treated slices during 4-days incubation

33

(Fig. 14). The result indicates that Bt strain Cotl did not significantly affect the growth of SCG1(GFP) on the potato tube slices, suggesting that attenuation of the virulence of *Erwinia* SCG1(GFP) by Bt strain Cotl was not due to inhibition of SCG1(GFP) cell growth.

5

34

WO 02/16623 PCT/SG00/00123

References

5

20

25

30

35

Allison, D., Ruiz, B., SanJose, C., Jaspe, A., and Gilbert, P. (1998). Extracellular products as mediators of the formation and detachment of *Pseudomonas fluorescens* biofilms. FEMS Microbiol Lett 167, 179-184.

Bassler, B. L., Greenberg, E. P., and Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium *Vibrio harveyi*. J Bacteriol 179, 4043-4045.

- Beck von Bodman, S., and Farrand, S. K. (1995). Capsular polysaccharide biosynthesis and pathogenicity in *Erwinia stewartii* require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177, 5000-5008.
- 15 Cao, J. G., and Meighen, E. A. (1989). J. Biol. Chem. 264, 21670-21676.

Cha, C., Gao, P., Chen, Y. C., Shaw, P. D., and Farrand, S. K. (1998). Production of acyl-homoserine lactone quorum-sensing signals by gram- negative plant-associated bacteria. Mol Plant Microbe Interact 11, 1119-1129.

Costa, J. M., and Loper, J. E. (1997). EcbI and EcbR: homologs of LuxI and LuxR affecting antibiotic and exoenzyme production by *Erwinia carotovora* subsp. betavasculorum. Can J Microbiol 43, 1164-1171.

Cronin, D., Moenne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., and O'Gara, F. (1997). Ecological interaction of a biocontrol *Pseudomonas fluorescens* strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen *Erwinia carotovora* subsp. atrosetica. FEMS Microbiol Ecology 23, 95-106.

Crowder, M. W., Maiti, M. K., Banovic, L., and Makaroff, C. A. (1997). Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity. FEBS Lett 418, 351-354.

Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., and Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the develoment of a bacterial biofilm. Science 280, 295-

298.

Dong, Y.-H., Xu, J.-L., Li, X.-C., and Zhang, L.-H. (2000). AiiA, a novel enzyme inactivates acyl homoserine-lactone quorum-sensing signal and attenuates the virulence of *Erwinia carotovora*. Proc. Natl. Acad. Sci. USA 97: 3526-3531.

Dumenyo, C. K. M., Chun, A. W., and Chatterjee, A. K. (1998). Genetic and physiological evidence for the production of N-acyl homoserine lactones by *Pseudomonas syringae* pv. *syringae* and other fluorescent plant pathogenic *Pseudomonas* species. Eur J Plant Pathol 104, 569-582.

- Dunphy, G., Miyamoto, C., and Meighen, E. (1997). A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, *Xenorhabdus nematophilus* (Enterobacteriaceae). J Bacteriol 179, 5288-5291.
- Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H., and Oppenheimer, N. J. (1981). Biochemistry 20, 2444-2449.

Eberl, L., Winson, M. K., Sternberg, C., Stewart, G. S. A. B., Christiansen, G., Chhabra, S. R., Bycroft, B., Williams, P., Molin, S., and Givskov, M. (1996).

- Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of *Serratia liquefaciens*. Mol Microbiol 20, 127-136.
- Emmert, E. A. B., and Handelsman, J. (1999). Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171, 1-9.

Feitelson, J. S., Payne, J., and Kim L. (1992). Bacillus thuringiensis: insects and beyond. Bio/Technology 10, 271-275.

- Flavier, A. B., Schell, M. A., and Denny, T. P. (1998).

 An RpoS (sigmaS) homologue regulates acylhomoserine lactone-dependent autoinduction in *Ralstonia*solanacearum. Mol Microbiol 28, 475-86.
- Fuqua, C., and Winans, S. C. (1996). Conserved cisacting promoter elements are required for density-dependent transcription of *Agrobacterium tumefaciens*

conjugal transfer genes. J Bacteriol 178, 435-40.

5

10

Garfinkel, D. J., and Nester, E. W. (1980). Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144, 732-43.

- Jones, S. M., Yu, B., Bainton, N. J., Birdsall, M., Bycroft, B. W., Chhabra, S. R., Cox, A. J. R., Golby, P., Reeves, P. J., Stephens, S., Winson, M. K., Salmond, G. P. C., Stewart, G. S. A. B., and Williams, P. (1993). The Lux autoinducer regulates the production of exoenzyme virulence determination in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12, 2477-2482.
- Lambert, B., and Peferoen, M. (1992). Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42, 112-122.
- Liao, C.-H., and Sapers, G. M. (1999). Influence of soft rot bacteria on growth of *Listeria monocytogenes* on potato tuber slices. J Food Prot 62, 343-348.
 - Lin, H. C., Lei, S. P., and Wilcox, G. (1985). An improved DNA sequencing strategy. Anal Biochem 1985 May 15;147(1):114-9 147, 114-119.
- Nasser, W., Bouillant , M. L., Salmond, G., and
 Reverchon, S. (1998). Characterization of the *Erwinia*chrysanthemi expl-expR locus directing the synthesis of
 two N-acyl-homoserine lactone signal molecules. Mol
 Microbiol 29, 1391-1405.
- Passador, L., Cook, J. M., Gambello, M. J., Rust, L., and Iglewski, B. H. (1993). Expression of *Pseudomonas aeruginosa* virulence genes requires cell-to-cell communication. Science 260, 1127-1130.
- Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglewski, B. H., and Greenberg, E. P. (1994). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91, 197-201.
 - Piper, K. R., Beck von Bodman, S., and Farrand, S. K.

(1993). Conjugation factor of *Agrobacterium tumefaciens* regulates Ti plasmid transfer by autoinduction. Nature 362, 448-450.

- Pirhonen, M., Flego, D., Heikinheimo, R., and Palva, E. (1993). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen *Erwinia* carotovora. EMBO J 12, 2467-2476.
- Sambrook, J. F., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A laboratory manual (New York: Cold Spring Harbor Laboratory Press).

5

15

- Simon, R., Priefer, U., and Pühler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technol. November, 784-791.
- Staskawicz, B. D., Keen, N. T., and Napoli, C. (1987). Molecular characterization of cloned avirulence genes from race 0 and race 1 of *Pseudomonas syringae* pv. *glycinea*. J Bacteriol 169, 5789-5794.
- Vallee, B. L., and Galdes, A. (1984). The metallobiochemistry of zinc enzymes. Adv Enzymol Relat Areas Mol Biol 56, 283-430.
 - Zhang, L.-H. (1993). Molecular biology and biochemistry of a novel conjugation factor in *Agrobacterium*.
- 25 Doctoral Dissertation, The Adelaide University, Australia.
 - Zhang, L.-H., Xu, J., and Birch, R. G. (1998). High affinity binding of albicidin phytotoxins by the AlbA protein from *Klebsiella oxytoca*. Microbiol 144, 555-559.
 - Zhang, L.-H., and Kerr, A. (1991). A diffusible compound can enhance conjugal transfer of the Ti plasmid in *Agrobacterium tumefaciens*. J Bacteriol 173, 1867-1872.
- Zhang, L.-H., Murphy, P. J., Kerr, A., and Tate, M. E. (1993). Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature (London) 362, 446-447.

38

We claim:

5

5

- 1. An isolated nucleic acid molecule encoding an autoinducer inactivation protein, wherein the encoded protein comprises an amino acid sequence selected from the group consisting of $^{104}\rm HXHXDH^{109}\sim60aa\sim H^{169}\sim21aa\sim D^{191}$ and $^{103}\rm HXHXDH^{108}\sim72aa\sim H^{180}\sim21aa\sim D^{202}$, with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 2. An isolated nucleic acid molecule of claim 1, wherein the encoded protein comprises the amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191}$, with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 3. An isolated nucleic acid molecule of claim 1, wherein the encoded protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOS 11-20.
- 4. An isolated nucleic acid molecule of claim 3, comprising a sequence selected from the group consisting of SEQ ID NOS 1-10.
- 5. A method for increasing in a susceptible plant or animal resistance to a disease in which virulence is regulated by autoinducers, comprising administering to the plant or animal an effective amount of a bacterium that is capable of producing an autoinducer inhibitor.
- 6. The method of claim 5, wherein the bacterium administered is a *Bacillus* sp.

39

PCT/SG00/00123

7. The method of claim 6, wherein the *Bacillus* sp. is a variety of *Bacillus thuringiensis*.

WO 02/16623

5

- 8. The method of claim 7, wherein the *Bacillus* thuringiensus variety is selected from the group consisting of B1, B2, B17, B18, B20, B21, B22 and B25.
- 9. The method of any of claims 5-8, wherein administration is to an animal.
- 10. The method of claim 9, wherein the animal is a human.
- 11. An expression vector comprising at least one nucleic acid sequence encoding for an autoinducer inactivation protein, wherein the encoded protein comprises an amino acid sequence selected from the group consisting of $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191}$ and $^{103}\rm HXHXDH^{108}{\sim}72aa{\sim}H^{180}{\sim}21aa{\sim}D^{202}$, and wherein the expression vector propogates in a procaryotic or eukaryotic cell, with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 12. An expression vector according to claim 11, comprising at least one nucleic acid sequence encoding an autoinducer inactivation protein, wherein the encoded protein comprises the amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191}$, with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
 - 13. An expression vector according to claim 11,

WO 02/16623

5

5

5

comprising at least one nucleic acid sequence encoding an amino acid sequence selected from the group consisting of SEQ ID NOS 11-20.

40

PCT/SG00/00123

- 14. An expression vector according to claim 13, comprising a sequence selected from the group consisting of SEQ ID NOS 1-10.
- 15. A protein having autoinduction inactivation activity, where the protein comprises an amino acid sequence selected from the group consisting of \$\$^{104}\text{HXHXDH}^{109}\$~60aa~\$H^{169}\$~21aa~\$D^{191}\$ and \$\$^{103}\text{HXHXDH}^{108}\$~72aa~\$H^{180}\$~21aa~\$D^{202}\$, with the proviso that the protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 16. A protein of claim 15, wherein the protein comprises the amino acid sequence \$\$^{104}HXHXDH^{109}\sim60aa\simH^{169}\sim21aa\simD^{191}\$, with the proviso that the protein does not consist of the amino acid sequence of SEQ ID NO 22.
 - 17. A protein of claim 15, wherein the protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOS 11-20.
 - 18. A method for increasing disease resistance in a plant or animal, which method comprises introducing into a cell of such plant or animal at least one nucleic acid sequence that encodes an autoinducer inactivation protein, in a manner that allows said cell to express said nucleic acid sequence, wherein said

WO 02/16623

10

5

5

10

41

PCT/SG00/00123

autoinducer inactivation protein comprises an amino acid sequence selected from the group consisting of $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191}$ and

- 103 HXHXDH 108 ~72aa~H 180 ~21aa~D 202 , with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 19. A method according to claim 18, wherein the encoded protein comprises the amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191},$ with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 20. A method according to claim 18, wherein the at least one nucleic acid is selected from the group consisting of SEQ ID NOS 1-10.
- 21. A method of reducing bacterial damage to a plant or animal, which method comprises administering to a plant or animal in need of such reduction an effective amount of an autoinducer inactivation protein, wherein said protein comprises an amino acid sequence selected from the group consisting of \$\$^{104}HXHXDH^{109}\sim60aa\simH^{169}\sim21aa\simD^{191}\$ and \$\$^{103}HXHXDH^{108}\sim72aa\simH^{180}\sim21aa\simD^{202}\$, with the proviso that the protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 22. A method according to claim 21, wherein the protein comprises the amino acid sequence \$\$^{104}HXHXDH^{109}\sim60aa\simH^{169}\sim21aa\simD^{191}\$, with the proviso that the protein does not consist of the amino acid sequence of

42

5 SEQ ID NO 22.

WO 02/16623

5

5

23. A method according to claim 21, wherein the protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOS 11-20.

PCT/SG00/00123

- 24. A method according to any of claims 21-23, wherein administration is to an animal.
- 25. A method according to claim 24, wherein the animal is a human.
- 26. A cell of a procaryote or eukaryote stably transformed with at least one nucleic acid molecule encoding an autoinducer inactivation protein, wherein the encoded protein comprises an amino acid sequence selected from the group consisting of \$\$^{104}HXHXDH^{109}\sim60aa\sim H^{169}\sim21aa\sim D^{191}\$ and \$\$^{103}HXHXDH^{108}\sim72aa\sim H^{180}\sim21aa\sim D^{202}\$, with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 27. A cell of claim, wherein the encoded protein comprises the amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191},$ with the proviso that the encoded protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 28. A cell of claim 26, wherein the encoded protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOS 11-20.

43

- 29. A cell of claim 28, comprising a sequence selected from the group consisting of SEQ ID NOS 1-10.
- 30. A method of reducing the formation of bacterial biofilms, comprising exposing biofilm-forming bacteria to at least one autoinducer inhibitor protein, wherein said protein comprises an amino acid sequence selected from the group consisting of $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191}$ and $^{103}\rm HXHXDH^{108}{\sim}72aa{\sim}H^{180}{\sim}21aa{\sim}D^{202}$, with the proviso that the protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 31. A method of claim 30, wherein the protein comprises the amino acid sequence $^{104}\rm HXHXDH^{109}{\sim}60aa{\sim}H^{169}{\sim}21aa{\sim}D^{191},$ with the proviso that the protein does not consist of the amino acid sequence of SEQ ID NO 22.
- 32. A method of claim 31, wherein the protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOS 11-20.

Figure 2

Clones	Activity	E E E Tn5 E P P E E	
cosmid clone 1	+	Tn5	
cosmid clone 4	+	E P P E E	E E E
sub-clone 1	-	E	
sub-clone 2	+	EPP E Lll E E	
sub-clone 3	-	. PP !	
sub-clone 4	+	L_l	├ 5kb

Figure 3

WO 02/16623 PCT/SG00/00123 4/16

A	
PstI -314 CTGCAGCGTCGCTT	-300
TATGCGGAGCTTGCCGACGTGCTGGGTGTTCCGGGTGAAGGGGATGCGGCAACCCGTTCG	-240
GATGCGTTCGTTCAGCATATGGAAACGCTGATGGACGAAAGCGGCGCGCCGCGACGTCTG	
CGCGATGTCGGCGTGACGGACAACACGCTCGCCATGCTTGCGTCCGACGCAATGAAACAG	
$AGCCGTCTGTTGGTCAATAATCCGGTCGAAG^{\dagger}CCGCGAAGAGGATGCGCTTGCGCTCTAC$	
$CGCGAGGCGTTCTGACCCATTTCTGACAGCAATATCTTCAGTCCCAAGGGAGAAAACGA\\ \overline{\mathtt{sd}}$	
GTGACCGATATCAGACTTTACATGCTTCAGTCGGGTACGCTGAAATGCAAGGTACACAAC	60
ATCAAGATGAACCAGGGGAACGGTGCAGACTATGAGATCCCCGTTCCGTTTTTCCTGATT	120
${\tt ACCCATCCGGGCGGCACACCGTGATCGACGGGCGCAACGCGATTGAAGTTGCAACGGATTGAACGGATTGAAGTTGCAACGGATTGAACGATTGAACATTGAACATTAATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATTAACATT$	180
(h)	240
${\tt GGCTGCGTTGACCAGATCAAGGCGCTTGGTTTCGATCCGGCCGATGTCAAGTATGTTGTG}$	300
CAGTCGCACCTGCATCTCGATCATACCGGCGCCATCGGTCGCTTCCCCAACGCAACCCAC	360
${\tt ATCGTGCAGCGCTCGGAATATGAGTATGCCTTCACGCCCGACTGGTTTGCCGGTGGCGGCCCGACTGGTTTGCCGGTGGCGGCCCGACTGGTTTGCCGGTGGCGGCCGGC$	420
${\tt TATATCCGCAAGGACTTCGACAAGCCGGGCCTGAAGTGGCAGTTCCTCAACGGTACGCAG}$	480
GACGACTATTACGACGTTTACGGCGACGCCACGCTCACCACGATCTTCACGCCCGGTCAT	540
$\tt GCGCCCGGCC\^{A}CCAGTCCTTGCTGGTGCGACTGCCAAACAGCAAACCGCTTCTCCTGACG$	600
$\tt ATCGATGCTGCCTACACCCTGGACCACTGGGAGGAGGAGGAGGCTTTGCCTGGCTTCCTCGCC$	660
${\tt TCGACCGTTGACACGGTCCGTTCGGTTCAGAAACTCCGAACCTATGCCGAAAAGCATGAT}$	720
GCGACGGTCGTTACCGGCCATGACCCTGACGCGTGGGCGAACTTCAAGAAGGCTCCCGAA	780
$\frac{\texttt{TTTTACGCG}\underline{\texttt{TAA}} \texttt{ATAAAACGCGCAAGTCAACAGCCAGATGCGGCGAGGTTGCGTGCAGCC}}{\texttt{stop}}$	840
TCGCCGATTTTTGTCATATGAGCCAAGGACCCCGAACCTGGCGGGACCGTGTATTTCTGC	900
GCAGAGGCCTTTTCAGGATATACGCCTTCACTCAGGTCGTTCGCGTTGTCGCCTCAAGGC	960
CTGAAAGCTGTCCTCCCGCTGCGCGAGTGTCCCCATATGCGGTTTATTACCCCGGCGTTA	1020
CTGTGGGCCATCAGGCTTCGGGCTGACAATTTGCAAATGCCGGATGGCTTAAAGTAGACT	1080
TGTCTCTTTGATCCAAGCCGTCGGCAAATGGTGCAGATTGTGGCGCCTATTTTGCGTTCC	1140
CAAGGCGTCGGGCCAGCCATGCCCCCCAAAACAGGCTTGCGAAAAACCGAAGCGGCTCGT	1200
TGAAACCCGCGCCGGCCAGCAATGAAACGACCTCGTCTTCCGATCGGGGTGGCTCTGCAC	1260
CCTGCAG Psil	1267
В	
VTDIRLYMLQSGTLKCKVHNIKMNQGNGADYEIPVPFFLI 40	
THPGGHTVIDGGNAIEVATDPRGHWGGICDVYWPVLDKDQ 80	
GCVDQIKALGFDPADVKYVVQSHLHLDHTGAIGRFPNATH 120	
IVQRSEYEYAFTPDWFAGGGYIRKDFDKPGLKWQFLNGTQ 160	
DDYYDVYGDGTLTTIFTPGHAPGHQSLLVRLPNSKPLLLT 200	
IDAAYTLDHWEEKALPGFLASTVDTVRSVQKLRTYAEKHD 240	
ATVVTGHDPDAWANFKKAPEFYA. 263	

	AiiB	:	1	VTDIRLY	7
	AttM				
	AiiB	:	8	$\label{localine} $$\operatorname{MLQSGTLKCKVHNIKMNQGNGADYEIPVPFFLITHPGGHTVIDGGNAIEVATDPRGHWGG}$$$\operatorname{MLQSGTLKCKVHNIKMNQGNGADYEIPVPFFLITHP}$$$ GHTVIDGGNAIEVATDPRGHWGG$	67
	AttM	:	1	MLQSGTLKCKVHNIKMNQGNGADYEIPVPFFLITHPAGHTVIDGGNAIEVATDPRGHWGG	60
	AiiB	:	68	ICDVYWPVLDKDQGCVDQIKALGFDPADVKYVVQSHLHLDHTGAIGRFPNATHIVQRSEY ICDVYWPVLDKDQGCVDQIKALGFDPADVKYVVQSHLHLDHTGAIGRFPNATHIVQRSEY	127
	AttM	. :	61	ICDVYWPVLDKDQGCVDQIKALGFDPADVKYVVQSHLHLDHTGAIGRFPNATHIVQRSEY	120
কি	AiiB	:	128	EYAFTPDWFAGGGYIRKDFDKPGLKWQFLNGTQDDYYDVYGDGTLTTIFTPGHAPGHQSL EYAFTPDWFAGGGYIRKDFDKPGLKWQFLNG QDDYYDVYGDGTLTTIFTPGHAPGHQS	187
	AttM	:	121	EYAFTPDWFAGGGYIRKDFDKPGLKWQFLNGAQDDYYDVYGDGTLTTIFTPGHAPGHQSF	180
	AiiB	:	188	LVRLPNSKPLLLTIDAAYTLDHWEEKALPGFLASTVDTVRSVQKLRTYAEKHDATVVTGH LVRLPNSKPLLLTIDAAYTLDHWEEKALPGFLASTVDTVRSVQKLRTYAEKHDATVVTGH	247
	AttM	:	181	LVRLPNSKPLLLTIDAAYTLDHWEEKALPGFLASTVDTVRSVQKLRTYAEKHDATVVTGH	240
	AiiB	:	248,	DPDAWANFKKAPEFYA 263 DPDAWANFKKAPEFYA	
	AttM	:	241	DPDAWANFKKAPEFYA 256	

		T			. 1	L :	Y				. (G			. c	: .							N		•					Consensus
1	V M	T T	D V	I :	R I	P.	Y I	M :	V :	Q i	S (G '	r i	5 3 - 1	K C	: K	. V	H	N H	I S	K:	M V	N	Q S	G I	N	G . T	A: P	D G	AiiB protein.PRO AiiA protein.PRO
						P				. :	L					١ و	€.				D		G				E	•	A	Consensus
31 29	Y E	E L	I L	P	V L	P P	F V	– W	- : C	F Y	L	I L	T I	I P	P C	3 0	3 E	T	r A	I V	D D	G T	G G	N M	A P	I -	E	V S	A A	AiiB protein.PRO AiiA protein.PRO
					G				G				•		٠.	Ι.		P			•				-		v			Consensus
59 58	T V	Ŋ	P N	R	G G	H L	W	G N	G	I T	- F	- V	- ·	3	D 7 Q 7	<i>J</i> 3	Y V	7 P	V	L M	D T	K E	D E	Q	G R	C	v v	D N	Q I	AiiB protein.PRO AiiA protein.PRO
		K			G			P		D		•	Y			. :	S F	11	н	•	D	Н	<u>.</u>	G	•	•	G		F	Consensus
86 87	L	K	A R	V	G	F Y	D	P P	A E	Ď D	V L	K	Y Y	V	V	2 s	S E	I I	H	L F	D D	H H	T A	G	A G	I N	G G	R A	F F	AiiB protein.PRO AiiA protein.PRO
		N				1	V	Q	R	•	E	Y	E		•	-	•		•			•	•		Y		•	K		Consensus
116 117	P	N	A T	T P	H	I	v v	Q Q	R R	s A	E	Y Y	E	Y -	A. :	e :	r I	P I) W	F	A H	G S	G E	G E	Y Y	L	R -	K K	D	AiiB protein.PRO AiiA protein.PRO
			-	P		ь		-				•	G			•		. 3	٠.	v	•			•	•	L		•	•	Consensus
146 141	F	D	K	P P	G N	L	K N	W Y	Q K	F	L	N E	G G	Ť D	Q -	D :	D :	- 3	Z E	v	V	G P	D G	G V	T Q	L	T ~	T -	I L	AiiB protein.PRO AiiA protein.PRO
		T	P	_	1.7		ъ	a	**	_	_		_											m	т	п	Δ		Y	Consensus
176			_	_	п	÷	_		н	Q	5	برز	L	•	•	•	•		3 .	P	٠.	ц	נו,	1	_	ט		Ī	_	COLECTEUS
165	F	T	. Б	<u>ر</u>	н	Д	P	G	н	0	s	L	T.	v	R	L.	P i	N S	5 K	E	, L	L	L	T	I	D	A	A	Y	AiiB protein.PRO AiiA protein.PRO
165	H	T	P	G	H H	АТ	P	G	H H	Q Q	s s	L	L	V	R E	L . T	Pi E:	N S	5 K	F	, A	L	L	T	I	D D	A A	A	Y Y	AiiB protein.PRO
206	H T T	T.	P	G	н	A T E	P	G G	H H	Q Q	s s	L L	L G G	V I F	R E	L. T	Pi E:	N S	5 K 5 G	F	·	L	L	T	I I	D D	A A L	A S	Y Y ·	AiiB protein.FRO AiiA protein.PRO
206	H T T		P	G	H H ·	A T E	P P	G G ·	H H V	Q Q P	s s	L L P	L G G	V I F F	R E · L	L T	P: E: S:	N S K S		: F	Y L	L	LS	T · ·	I Q K	D D K	A L L L	ASRK	Y T E	AilB protein.FRO AilA protein.FRO Consensus AilB protein.FRO
206 195 235	H ;		P	G G H H K	H	A T E E E	P P · · · · · · · · · · · · · · · · · ·	G G · K	H H	Q Q	S S · L F	L L P G G	L G G G H	VI F FF D D	R E · LD · P	L. T.	F: E: A	N S	S K		K K	L	L S S S	T · VI	1	D D · K R	A L L L	A S R K P P	YY · TE	AiiB protein.FRO AiiA protein.FRO Consensus AiiB protein.FRO AiiA protein.FRO
206 195 235	r ir		P	GG	H H · · · · · · · · · · · · · · · · · ·	A T E E E	P P · · · · · · · · · · · · · · · · · ·	G G · K	H H	Q Q	S S · L F	L L P G G	L G G G H	VI F FF D D	R E · LD · P	L. T.	F: E: A	N S	S K		K K	L	L S S S	T · VI	1	D D · K R	A L L L	A S R K P P	YY · TE	AiiB protein.PRO AiiA protein.PRO Consensus AiiB protein.PRO AiiA protein.PRO Consensus AiiB protein.PRO

pGEM7-aiiC (5kb, *Eco*RI)

PBS-aiiC (1339 bp, *Bam*HI) B, E

166

Figure 7

В

8/16

	aiiC seq	
	A ·	
	gaattetttaettetatattatagatggtgaaataetgetatgtaaaaaaaa	60
	tttttctgtaagctgtactgatagtctagaaggagtttatttctaaaaagaagaattttt	120
	tactgtattactttatcccaaactaaatgtaaaggtggatacataATGACAGTAAAGAAG	180
	CTTTATTTCGTTCCAGCAGGTCGTTGTATGTTAGATCATTCTTCTGTTAATAGTACAATC	240
	GCGCCGGGAAATTTATTGAACTTACCTGTATGGTGTTATCTTTTGGAGACGGAAGAAGGT	300
	CCCATTTTAGTAGATACAGGTATGCCAGAAAGTGCGGTTAATAATGAAAACTTGTTTGAA	360
	GGGACATTTGCAGAAGGACAGATTTTACCGAAAATGACTGAAGAAGATAGAATAATAGCT	420
	ATTTTAAAACGTGCAGGGTATGAGCCAGATGACCTCCTATATATTATTAGTTCACATTTG	480
	CATTTTGATCATGCAGGAGGAAATGGTGCTTTTATTAATACTCCAATCATTATACAGCGT	540
17	GCTGAATATGAGGCAGCGCAGTATAGAGAGGAATATTTGAAAGAGTGTATACTGCCGAAT	600
	TTGAACTACAAAATTATTGAAGGGGATTATGAAGTGGTACCAGGTGTTCAACTATTGTAT	660
	ACACCAGGACATTCACCAGGGCATCAGTCACTATTAATTGAGACAGAAAAATCTGGTGTT	720
	GTGTTATTAACCATTGATGCATCTTATACGAAAGAGAATTTTGAAGATGAAGTACCGTTT	780
	GCTGGATTTGATCCAGAATTAGCTTTATCATCAATTAAACGTTTAAAAGAAGTTGTGATG	840
	AAAGAGAAGCCGCTTGTTTTCTTTGGACATGATATAGAGCAGGAAAAGGGATGTAAAGTG	900
	TTCCCGGAATATATATAGtgcaaaaagtcatgagcttacgtgctcatgactttttgáttt	960
	aaataatttttttaaataagttataaacttttttggaactatcttcatttaattgatagt	1020
	acgtaagatttacatcatcaggagtatcttgctgtgcaatcatcacttcgttactatgat	1080
	gatcaactacccatatgaaatattttttataagtaccatcctcaaatgtaatccacatat	1140
	cacaatctattaaatctgatccttcttcatctaatgttaattttccttttttggccgtat	1200
	tcatactgttaatgaatgtctttaattcatctgtttttgcgagaaagatatcttttttg	1260
	ttttaatggactcgacatgtatatcttttatttcctgttttcccaaaaaagacagggggct	1320
	catttggatccctttgagt	1339
	*	
	В	
	${ t MTVKKLYFVPAGRCMLDHSSVNSTIAPGNLLNLPVWCYLLETEEGPILVDTGMPESAVNN}$	60
	ENLFEGTFAEGQILPKMTEEDRIIAILKRAGYEPDDLLYIISSHLHFDHAGGNGAFINTP	120
	IIIQRAEYEAAQYREEYLKECILPNLNYKIIEGDYEVVPGVQLLYTPGHSPGHQSLLIET	180
	EKSGVVLLTIDASYTKENFEDEVPFAGFDPELALSSIKRLKEVVMKEKPLVFFGHDIEQE	240
	KGCKVFPEYI	250

Figure 9

aliD

MTVKKLYFIPAGRCMLDHSSVNSALTPGKLLNLPVWCYLLETEEGPILVDTGMPESAVNNEGLFNGTFVEGQILPKMTEE DRIVNILKRVGYEPDDLLYIISSHLHFDHAGGNGAFTNTPIIVQRTEYEAALHREEYMKECILPHLNYKIIEGDYEVVPG VQLLYTPGHSPGHQSLFIETEQSGSVLLMIDASYTKENFEDEVPFAGFDPELALSSIKRLKEVVKKEKPIIFFGHDTEQE KSCRVFPEYI

wallE.

MTVKKLYFIPAGRCMLDHSSVNSALTPGKLLNLPVWCYLLETEEGPILVDTGMPESAVNNEGLFNGTFVEGQILPKMTEE DRIVNIIKRVGYEPDDLLYIISSHLHFDHAGGNGAFTNTPIIVQRTEYEAALHREEYMKECILPHLNYKIIEGDYEVVPG VQLLYTPGHSPGHQSLFIETEQSGSVLLTIDASYTKENFEDEVPFAGFDPELALSSIKRLKEVVKKEKPIIFFGHDIEQE KSCRVFPEYI

aiiF

MTVKKLYFVPAGRCMLDHSSVNSTLAPGNLLNLPVWCYLLETEEGPILVDTGMPESAVNNEGLFNGTFVEGQILPKMTEE DRIVNILKRVGYEPDDLLYIISSHLHFDHAGGNGAFTNTPIIVQRTEYEAALHREEYMKECILPHLNYKIIEGDYEVVPG VQLLYTPGHSPGHQSLLIETEKSGLVLLTIDASYTKENFEDEVPFAGFDSELALSSIKRLKEVVMKEKPIIFFGHDIEQE KGFKVFPEYI

aiiG

ATGACAGTAAAGAAGCTTTATTTCGTCCCAGCAGGTCGTTGTATGTTGGATCATTCGTCTGTTAACAGTGCGTTAACACC
GGGAAAACTATTAAACTTGCCGGTTTGGTGTATATCTTTTGGAGACCGAAGAAGGTCCTATTTTAGTAGACACAGGTATGC
CAGAAAGTGCAGTTAATAATAATGAAGGGCTTTTTAACCGTACATTTGCAAAAGGACAGATTTTACCGAAAATGACTGAAGAA
GATAGAATTGTAACTATTTTAAAACGTGCAGGGTATGAGCCAGATGATCTCCTATATATTATTAGTTCGCACTTGCATTT
TGATCATGCAGGAGAAATGGTGCTTTTTTGAATACGCCAATCATTATAAAACGTGATAATAAGAGCGGCAGCATA
GAGAGGAATATTGAAAGAGTGCATACTACCAGATTTAAACTACCAAAATTTTGAAGGTAATATGAAGTGGTACCTGGT
GTTCGGTTATTGTATACACCAGGACATTCTCCAGGGCATCAGTCATTATAATTGAAGCGGAATAATCCGGTCCTGTATT
ATTAACGATTGATGCATCTTATACGAAAGAGAATTTTGAAGATGAACCCGTTTCCGCGGATTTGATTCGAATATAGCCT
TATCTTCAATTAAAACGTTTAAAAAGAAGTTGTGATGAAAAAACAGAAACCCGATTGTTTTCTTTGGACATGATATAGAACAGGAA
AAGGGATGTAAAACTGTTCCCTGAATATATATAG

10/16

Figure 9 (continued)

MTVKKLYFVPAGRCMLDHSSVNSALTPGKLLNLPVWCYLLETEEGPILVDTGMPESAVNNEGLFNGTFAKGQILPKMTEE DRIVTILKRAGYEPDDLLYIISSHLHFDHAGGNGAFLNTPIIIQRAEYEAAQHREEYLKECILPDLNYKIIEGDYEVVPG VRLLYTPGHSPGHQSLLIETEKSGPVLLTIDASYTKENFEDEVPFAGFDSELALSSIKRLKEVVMKEKPIVFFGHDIEQE KGCKVFPEYI

aiiH

MTVKKLYFIPAGRCMLDHSSVNSTLAPGNLLNLPVWCYLLETEEGPILVDTGMPESAVNNEGLFNGTFVEGQILPKMTEE DRIVNILKRVGYEPDDLLYIISSHLHFDHAGGNGAFTNTPIIVQRAEYEAALHREEYMKECILPHLNYKIIEGDYEVVPG VQLLYTPGHSPGHQSLFIETEQSGSVLLTIDASYTKENFEDEVPFAGFDPELALSSIKRLKGVVAEEKPIVFFGHDIEQE KGCRVFPEYI

aiiI

ATGACAGTAAAGAAGCTTTATTTCGTCCCAGCAGGTCGTTGTATGTTAGATCATTCTTCTGTTAATAGTACACTCGCGCC
GGGGAATTTATTGAACTTACCTGTATGGTGTTATCTTTTTGGAGACAGAAGAGGGGCCTATTTTAGTAGATACAGGTATGC
CAGAAAGTGCAGTTAATAATGAAGGGCTTTTTAACGGTACATTTGTTGAAGGACAGATTTTACCGAAAATGACTGAAGAA
GATAGAATCGTGAATATATTAAAGCGTGTAGGGTATGAGCCGGACGACCTTTTAATATTATTAGTTCTCACTTACATT
TGATCATGCAGGAGGAAACGGTGCTTTTACAAATACACCGATTATTGTAGAGGAGCAGCAGTATATGAGAGCACTTCATA
GAGAAGAATATATGAAAGAATGTATATTACCCGATTTGAACTACAAAATTATTGAAGGGATTATGAAGTGGTACCAGGT
GTTCAATTATTTGTATACGCCAGGTCATTCTCCAGGCCATCAGTCGTTATTCATTGAAGCAGAATTTCGATCAGATTT
ATTAACAATTGATGCATCGTACACGAAAGAGATTTTCAAGAAGAGTGCCGTTCGCAGGATTTGATCAGAATTAGCTT
TATCTTCAATCAAACGTTTAAAAAGGAGTTGTGGCGGAAGAAAACCAATTGTTTTCTTTGGTCATGATATAGAGCAGGAA
AAGGGTTGTAGAGTGTTCCCTGAGTATATATAG

MTVKKLYFVPAGRCMLDHSSVNSTLAPGNLLNLPVWCYLLETEEGPILVDTGMPESAVNNEGLFNGTFVEGQILPKMTEE DRIVNILKRVGYEPDDLLYIISSHLHFDHAGGNGAFTNTPIIVQRAEYEAALHREEYMKECILPHLNYKIIEGDYEVVPG VQLLYTPGHSPGHQSLFIETDNSGSVLLTIDASYTKENFEDEVPFAGFDPELALSSIKRLKGVVAEEKPIVFFGHDIEQE KGCRVFPEYI

aiiJ

MTVKKLYFIPAGRCMLDHSSVNSTLAPGNLLNLPVWCYLLETEEGPILVDTGMPESAVNNEGLFNGTFVEGQILPKMTEE DRIVNILKRVGYEPDDLLYIISSHLHFDHAGGNGAFTNTPIIVQRAEYEAALHREEYMKECILPHLNYKIIEGDYEVVPG VQLLYTPGHSPGHQSLFIETEQSGSVLLTIDASYTKENFEDEVPFAGPDPELALSSIKRLKGVVAEEKPIVFFGHDIEQE KGCRVFPEYI

aiiK

ATGACAGTAAAGAAGCTTTATTTCATCCCAGCAGGTCGTTGTATGTTAGATCATTCTTCTGTTAATGGTACACTCGCGCC GGGGAATTTATTGAACTTACCTGTATGGTGTTATCTTTTTGGAGACAGAAGAAGGGGCCATTTTAGTAGATACAGGTATGC CAGAAAGTGCAGTTAATAATGAAGGGCTTTTTAACGGTACATTTGTTGAAGGACAGATTTTACCGAAAATGACTGAAGAA

11/16 Figure 9 (continued)

MTVKKLYFIPAGRCMLDHSSVNGTLAPGNLLNLPVWCYLLETEEGAILVDTGMPESAVNNEGLFNGTFVEGQILPKMTEE DRIVNILKRVGYEPDDLLYIISSHLHFDHAGGNGAFTNTPIIVQRTBYEAALHREEYMKECILPHLNYKIIEGDYEVVPG VQLLYTPGHSPGHQSLFIETEQSGSVLLTIDASYTKENFEDEVPFAGFDPELALSSIKRLKGVVAKEKPIVFFGHDIEQE KGCRVFPEYI

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

PCT/SG00/00123 WO 02/16623

SEQUENCE LISTING

<110> Institute of Molecular Agrobiology Zhang, Lianhui Dong, Yihu Zhang, Haibao Xu, Jinling

<120> Bacterial Strains, Genes and Enzymes for Control of Bacterial Diseases by Quenching Quorum-Sensing Signals

<130> 2577-140

<160> 22

<170> PatentIn version 3.0

<210>

<211> 1581

<212> DNA

<213> Agrobacterium tumefaciens M103

<220>

<221> misc feature

(315)...(1103)<222>

<223> Coding sequence

<400> 1 ctqcaqcqtc qctttatqcq qaqcttqccg acgtqctggg tqttccggqt gaaggggatg 60 cggcaacccg ttcggatgcg ttcgttcagc atatggaaac gctgatggac gaaagcggcg 120 cgccgcgacg tctgcgcgat gtcggcgtga cggacaacac gctcgccatg cttgcgtccg 180 acqcaatqaa acaqagccgt ctgttggtca ataatccggt cgaagtccgc gaagaggatg 240

cgcttgcgct ctaccgcgag gcgttctgac ccatttctga cagcaatatc ttcagtccca 360 agggaggaaa acgagtgacc gatatcagac tttacatgct tcagtcgggt acgctgaaat

300

gcaaggtaca caacatcaag atgaaccagg ggaacggtgc agactatgag atccccgttc 420

cqtttttcct qattacccat ccqqqcqqqc acaccqtqat cqacqqcqqc aacqcqattq 480 aaqttqcaac qqatccqcqt qqccattqgq qcqgcatctq cqatqtctat tqqccaqtqc 540

tggacaagga ccagggctgc gttgaccaga tcaaggcgct tggtttcgat ccggccgatg 600

tcaagtatgt tgtgcagtcg cacctgcatc tcgatcatac cggcgccatc ggtcgcttcc 660

ccaacgcaac ccacatcgtg cagcgctcgg aatatgagta tgccttcacg cccgactggt 720

ttqccgqtqq cgqctatatc cgcaaggact tcgacaagcc gggcctgaag tggcagttcc 780

tcaacggtac gcaggacgac tattacgacg tttacggcga cggcacgctc accacgatct 840

tcacgcccgg	tcatgcgccc	ggccaccagt	ccttgctggt	gcgactgcca	aacagcaaac	900
cgcttctcct	gacgatcgat	gctgcctaca	ccctggacca	ctgggaggag	aaggctttgc	960
ctggcttcct	cgcctcgacc	gttgacacgg	tccgttcggt	tcagaaactc	cgaacctatg	1020
ccgaaaagca	tgatgcgacg	gtcgttaccg	gccatgaccc	tgacgcgtgg	gcgaacttca	1080
agaaggctcc	cgaattttac	gcgtaaataa	aacgcgcaag	tcaacagcca	gatgcggcga	1140
ggttgcgtgc	agcctcgccg	atttttgtca	tatgagccaa	ggaccccgaa	cctggcggga	1200
ccgtgtattt	ctgcgcagag	gccttttcag	gatatacgcc	ttcactcagg	tcgttcgcgt	1260
tgtcgcctca	aggcctgaaa	gctgtcctcc	cgctgcgcga	gtgtccccat	atgcggttta	1320
ttaccccggc	gttactgtgg	gccatcaggc	ttcgggctga	caatttgcaa	atgccggatg	1380
gcttaaagta	gacttgtctc	tttgatccaa	gccgtcggca	aatggtgcag	attgtggcgc	1440
ctattttgcg	ttcccaaggc	gtcgggccag	ccatgccccc	caaaacaggc	ttgcgaaaaa	· 1500
ccgaagcggc	tcgttgaaac	ccgcgccggc	cagcaatgaa	acgacctcgt	cttccgatcg	1560
gggtggctct	gcaccctgca	g				1581
<210> 2						

<210> 2
<211> 1339
<212> DNA
<213> Bacillus thuringiensis Cot1
<220>
<221> misc_feature
<222> (166)..(918)
<223> Coding sequence

<400> 2 · gaattettta ettetatatt atagatggtg aaatactget atgtaaaaaa aataccetet 60 tttttctgta agctgtactg atagtctaga aggagtttat ttctaaaaag aagaattttt 120 tactgtatta ctttatccca aactaaatgt aaaggtggat acataatgac agtaaagaag 180 ctttatttcg ttccagcagg tcgttgtatg ttagatcatt cttctgttaa tagtacaatc 240 -300 gcgccgggaa atttattgaa cttacctgta tggtgttatc ttttggagac ggaagaaggt 360 cccattttag tagatacagg tatgccagaa agtgcggtta ataatgaaaa cttgtttgaa qqqacatttq cagaaqqaca gattttaccq aaaatgactg aagaagatag aataatagct 420 attttaaaac gtgcagggta tgagccagat gacctcctat atattattag ttcacatttg 480 cattttgatc atgcaggagg aaatggtgct tttattaata ctccaatcat tatacagcgt 540 gctgaatatg aggcagcgca gtatagagag gaatatttga aagagtgtat actgccgaat 600

ttgaactaca	aaattattga	aggggattat	gaagtggtac	caggtgttca	actattgtat	660
acaccaggac	attcaccagg	gcatcagtca	ctattaattg	agacagaaaa	atctggtgtt	720
gtgttattaa	ccattgatgc	atcttatacg	aaagagaatt	ttgaagatga	agtaccgttt	780
gctggatttg	atccagaatt	agctttatca	tcaattaaac	gtttaaaaga	agttgtgatg	840
aaagagaagc	cgcttgtttt	ctttggacat	gatatagagc	aggaaaaggg	atgtaaagtg	900
ttcccggaat	atatatagtg	caaaaagtca	tgagcttacg	tgctcatgac	tttttgattt	960
aaataatttt	tttaaataag	ttataaactt	ttttggaact	atcttcattt	aattgatagt	1020
acgtaagatt	tacatcatca	ggagtatctt	gctgtgcaat	catcacttcg	ttactatgat	1080
gatcaactac	ccatatgaaa	tatttttat	aagtaccatc	ctcaaatgta	atccacatat	1140
cacaatctat	taaatctgat	ccttcttcat	ctaatgttaa	ttttcctttt	ttggccgtat	1200
tcatactgtt	aatgaatgtc	tttaattcat	ctgtttttgc	gagaaagata	tcttttttg	1260
ttttaatgga	ctcgacatgt	atatctttta	tttcctgttt	tcccaaaaag	acagggggct	1320
catttggatc	cctttgagt					1339
	llus thurir	ngiensis Bl				
<400> 3 atgacagtaa	agaagcttta	tttcatccca	gcaggtcgtt	gcatgttgga	tcattcgtct	60
gttaacagtg	cgttaacacc	ggggaaacta	ttaaacttgc	cggtgtggtg	ttatcttttg	120
gagacggaag	aaggtcctat	tttagtagac	acaggtatgc	cagaaagtgc	agttaataat	180
gaagggcttt	ttaacggtac	atttgttgaa	ggacagatct	taccgaaaat	gactgaagaa	240
gatagaatcg	tgaatatatt	aaagcgtgtg	gggtatgagc	cggacgacct	tttatatatt	300
attagttctc	acttacattt	tgatcatgca	ggaggaaacg	gtgcttttac	aaatacacca	360
attattgtgc	agcgaacgga	atatgaggca	gcacttcata	gagaagaata	tatgaaagaa	420
tgtatattac	cgcatttgaa	ctacaaaatt	attgaagggg	attatgaagt	ggtaccaggt	480
gttcaattat	tgtatacgcc	aggtcattct	ccaggccatc	agtcgctatt	cattgagacg	540
gagcaatccg	gttcagtttt	attaatgatt	gatgcatcgt	acacgaaaga	gaattttgaa	600
gatgaagtgc	cgttcgcagg	atttgatcca	gaattagctt	tatcttcaat	taaacgttta	660
						=
aaagaagttg	tgaaaaaaga	gaaaccaatt	attttctttg	gtcatgatac	agagcaggaa	720

aagagttgta gagtgttccc ggaatatata tag	753
<210> 4 <211> 753 <212> DNA <213> Bacillus thuringiensis B2	
<400> 4	60
atgacagtaa agaagettta tttcatecca geaggtegtt geatgttgga teattegtet	60
gttaacagtg cgttaacacc ggggaaacta ttaaacttgc cggtgtggtg ttatcttttg	120
gagacggaag aaggteetat tttagtagae acaggtatge cagaaagtge agttaataat	180
gaagggettt ttaaeggtae atttgttgaa ggaeagatet taeegaaaat gaetgaagaa	240
gatagaateg tgaatatatt aaagegtgta gggtatgage eggaegaeet tttatatatt	300
attagttctc acttacattt tgatcatgca ggaggaaacg gtgcttttac aaatacacca	360
attattgtgc agcgaacgga atatgaggca gcacttcata gagaagaata tatgaaagaa	420
tgtatattac cgcatttgaa ctacaaaatt attgaagggg attatgaagt ggtaccaggt	480
gttcaattat tgtatacgcc aggtcattct ccaggccatc agtcgctatt cattgagacg	540
gagcaatccg gttcagtttt attaacgatt gatgcatcgt acacgaaaga gaattttgaa	600
gatgaagtgc cgttcgcagg atttgatcca gaattagctt tatcttcaat taaacgttta	660
aaagaagttg tgaaaaaaga gaaaccaatt attttctttg gtcatgatat agagcaggaa	720
aagagttgta gagtgttccc ggaatatata tag	753
<210> 5 <211> 753 <212> DNA <213> Bacillus thuringiensis B17	
<400> 5 atgacagtaa agaagettta tttegteeca geaggtegtt gtatgttaga teattettet	60
gttaatagta cactegegee ggggaattta ttgaacttae etgtatggtg ttatettttg	120
gagacagaag aggggcctat tttagtagat acaggtatgc cagaaagtgc agttaataat	180
gaagggcttt ttaacggtac atttgttgaa ggacagattt taccgaaaat gactgaagaa	240
gatagaatcg tgaatatatt aaagcgtgta gggtatgagc cggacgacct tttatatatt	300
attagttctc acttacattt tgatcatgca ggaggaaacg gtgcttttac aaatacaccg	360
attattgtgc aacgaacgga atatgaggca gcacttcata gagaagaata tatgaaagaa	420
tgtatattac cgcatttgaa ctataaaatt attgaagggg attatgaagt ggtaccaggt	480

gttcaattat tgtatacgcc aggtcattct ccaggccatc agtcgctatt aattgagaca	540
gaaaaatccg gtcttgtatt attaacgatt gatgcatctt atacgaaaga aaattttgaa	600
gatgaagtgc cgttcgcggg atttgattcg gaattagctt tatcttcaat taaacgttta	660
aaagaagttg tgatgaaaga gaagccaatt attttctttg gtcatgatat agaacaggaa	720
aagggattta aagtgttccc tgaatatata taa	753
<210> 6 <211> 753 <212> DNA <213> Bacillus thuringiensis B18	
<400> 6 atgacagtaa agaagcttta tttcgtccca gcaggtcgtt gtatgttgga tcattcgtct	60
gttaacagtg cgttaacacc gggaaaacta ttaaacttgc cggtttggtg ttatcttttg	120
gagacggaag aaggtcctat tttagtagac acaggtatgc cagaaagtgc agttaataat	180
gaagggcttt ttaacggtac atttgcaaaa ggacagattt taccgaaaat gactgaagaa	240
gatagaattg taactatttt aaaacgtgca gggtatgagc cagatgatct cctatatatt	300
attagttcgc acttgcattt tgatcatgca ggaggaaatg gtgctttttt gaatacgcca	360
atcattatac aacgtgctga atatgaggca gcgcagcata gagaggaata tttgaaagag	420
tgcatactac cagatttaaa ctacaaaatt attgaaggtg attatgaagt ggtacctggt	480
gttcggttat tgtatacacc aggacattct ccagggcatc agtcattatt aattgagacg	540
gaaaaatccg gtcctgtatt attaacgatt gatgcatctt atacgaaaga gaattttgaa	600
gatgaagtac cgtttgcggg atttgattcg gaattagcct tatcttcaat taaacgttta	660
aaagaagttg tgatgaaaga gaaaccgatt gttttctttg gacatgatat agaacaggaa	720
aagggatgta aagtgttccc tgaatatata tag	753
<210> 7 <211> 753 <212> DNA <213> Bacillus thuringiensis B20	
<400> 7 atgacagtaa agaagettta ttteateeca geaggtegtt gtatgttaga teattettet	60
gttaatagta cactegegee ggggaattta ttgaacttae etgtatggtg ttatettttg	120
gagacagaag aagggcctat tttagtagat acaggtatgc cagaaagtgc agttaataat	180
gaagggcttt ttaacggtac atttgttgaa ggacagattt taccgaaaat gactgaagaa	240

retargetor treatatatt agardatata godtatora godanata tra	200
gatagaatcg tgaatatatt aaagcgtgta gggtatgagc cggacgacct tttatatatt	300
attagttete aettacattt tgateatgea ggaggaaaeg gtgettttae aaataeaeeg	360
attattgtgc agcgagcgga atatgaggca gcacttcata gagaagaata tatgaaagaa	420
tgtatattac cgcatttgaa ctacaaaatt attgaagggg attatgaagt ggtaccaggt	480
gttcaattat tgtatacgcc aggtcattct ccaggccatc agtcgttatt cattgagacg	540
gagcaatccg gttcagtttt attaacaatt gatgcatcgt acacgaaaga gaattttgaa	600
gatgaagtgc cgttcgcagg atttgatcca gaattagctt tatcttcaat caaacgttta	660
aaaggagttg tggcggaaga gaaaccaatt gttttctttg gtcatgatat agagcaggaa	720
aagggttgta gagtgttccc tgagtatata tag	753
<210> 8 <211> 753 <212> DNA <213> Bacillus thuringiensis B21	
<400> 8 atgacagtaa agaagettta titegteeca geaggtegtt gtatgttaga teattettet	60
gttaatagta cactegegee ggggaattta ttgaacttae ctgtatggtg ttatettttg	120
gagacagaag aggggcctat tttagtagat acaggtatgc cagaaagtgc agttaataat	180
gaagggettt ttaacggtac atttgttgaa ggacagattt taccgaaaat gactgaagaa	240
gatagaatcg tgaatatatt aaagcgtgta gggtatgagc cggacgacct tttatatatt	300
attagttete acttacattt tgateatgea ggaggaaaeg gtgettttae aaataeaeeg	360
attattgtgc agcgagcgga atatgaggca gcacttcata gagaagaata tatgaaagaa	420
tgtatattac cgcatttgaa ctacaaaatt attgaagggg attatgaagt ggtaccaggt	480
gttcaattat tgtatacgcc aggtcattct ccaggccatc agtcgttatt cattgagacg	540
gacaatteeg gtteagtttt attaacaatt gatgeategt acaegaaaga gaattttgaa	600
gatgaagtgc cgttcgcagg atttgatcca gaattagctt tatcttcaat caaacgttta	660
aaaggagttg tggcggaaga gaaaccaatt gttttctttg gtcatgatat agagcaggaa	720
aagggttgta gagtgttccc tgagtatata tag	753
<210> 9 <211> 753 <212> DNA <213> Bacillus thuringiensis B22	

<400> 9

atgacagtaa agaagettta tttcateeca geaggtegtt gtatgttaga teattettet	60
gttaatagta cactcgcgcc ggggaattta ttgaacttac ctgtatggtg ttatcttttg	120
gagacagaag aggggcctat tttagtagat acaggtatgc cagaaagtgc agttaataat	180
gaagggettt ttaacggtac atttgttgaa ggacagattt taccgaaaat gactgaagaa	240
gatagaatcg tgaatatatt aaagcgtgta gggtatgagc cggacgacct tttatatatt	300
attagttctc acttacattt tgatcatgca ggaggaaacg gtgcttttac aaatacaccg	360
attattgtgc agcgagcgga atatgaggca gcacttcata gagaagaata tatgaaagaa	420
tgtatattac cgcatttgaa ctacaaaatt attgaagggg attatgaagt ggtaccaggt	480
gttcaattat tgtatacgcc aggtcattct ccaggccatc agtcgttatt cattgagacg	540
gagcaatccg gttcagtttt attaacaatt gatgcatcgt acacgaaaga gaattttgaa	600
gatgaagtgc cgttcgcagg atttgatcca gaattagctt tatcttcaat caaacgttta	660
aaaggagttg tggcggaaga gaaaccaatt gttttctttg gtcatgatat agagcaggaa	720
aagggttgta gagtgttccc tgagtatata tag	753
<210> 10 <211> 753	
<212> DNA <213> Bacillus thuringiensis B25	
<212> DNA	60
<212> DNA <213> Bacillus thuringiensis B25 <400> 10	60 120
<212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatccca gcaggtcgtt gtatgttaga tcattcttct	
<212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatccca gcaggtegtt gtatgttaga teattettet gttaatggta cactegegee ggggaattta ttgaacettae etgtatggtg ttatettttg	120
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatccca gcaggtcgtt gtatgttaga tcattettet gttaatggta cactcgcgcc ggggaattta ttgaacettac ctgtatggtg ttatettttg gagacagaag aaggggccat tttagtagat acaggtatgc cagaaagtgc agttaataat</pre>	120 180
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatccca gcaggtegtt gtatgttaga tcattettet gttaatggta cactegegee ggggaattta ttgaacettae etgtatggtg ttatettttg gagacagaag aaggggeeat tttagtagat acaggtatge cagaaagtge agttaataat gaagggettt ttaacggtae atttgttgaa ggacagattt taccgaaaat gactgaagaa</pre>	120 180 240
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatccca gcaggtcgtt gtatgttaga tcattcttet gttaatggta cactcgcgcc ggggaattta ttgaacttac ctgtatggtg ttatcttttg gagacagaag aaggggccat tttagtagat acaggtatgc cagaaagtgc agttaataat gaagggettt ttaacggtac atttgttgaa ggacagattt taccgaaaat gactgaagaa gatagaatcg tgaatatatt aaagcgtgta gggtatgagc cggacgacct tttatatatt</pre>	120 180 240 300
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatecca geaggtegtt gtatgttaga teattettet gttaatggta cactegegee ggggaattta ttgaacettae etgtatggtg ttatettttg gagacagaag aaggggeeat tttagtagat acaggtatge eagaaagtge agttaataat gaagggettt ttaacggtae atttgttgaa ggacagattt tacegaaaat gactgaagaa gatagaateg tgaatatatt aaagegtgta gggtatgage eggacgacet tttatatatt attagttete acttacattt tgateatgea ggaggaaacg gtgetttae aaatacaceg</pre>	120 180 240 300 360
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta ttteateeca geaggtegtt gtatgttaga teattettet gttaatggta cactegegee ggggaattta ttgaacettae etgtatggtg ttatettttg gagacagaag aaggggeeat tttagtagat acaggtatge eagaaagtge agttaataat gaagggettt ttaaeggtae atttgttgaa ggacagattt taeegaaaat gaetgaagaa gatagaateg tgaatatatt aaagegtgta gggtatgage eggacgaeet tttatatatt attagttete acttacattt tgateatgea ggaggaaaeg gtgettttae aaataeaeeg attattgtge agegaaegga atatgaggea geaetteata gagaagaata tatgaaagaa</pre>	120 180 240 300 360 420
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatccca gcaggtcgtt gtatgttaga tcattettet gttaatggta cactegegee ggggaattta ttgaacettae etgtatggtg ttatettttg gagacagaag aaggggecat tttagtagat acaggtatge cagaaagtge agttaataat gaagggettt ttaacggtae atttgttgaa ggacagattt tacegaaaat gactgaagaa gatagaateg tgaatatatt aaagegtgta gggtatgage eggacgacet tttatatatt attagttete acttacattt tgatcatgea ggaggaaaeg gtgetttae aaatacaceg attattgtge agegaacgga atatgaggea geacettcata gagaagaata tatgaaagaa tgtatattae egeatttgaa etacaaaatt attgaagggg attatgaag ggtaccaggt</pre>	120 180 240 300 360 420 480
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta ttteateeca geaggtegtt gtatgttaga teattettet gttaatggta cactegegee ggggaattta ttgaacttae etgtatggtg ttatettttg gagacagaag aaggggeeat tttagtagat acaggtatge eagaaagtge agttaataat gaaggettt ttaaeggtae atttgttgaa ggacagattt taeegaaaat gaetgaagaa gatagaateg tgaatatatt aaagegtgta gggtatgage eggacgaeet tttatatatt attagttete acttacattt tgateatgea ggaggaaaeg gtgetttae aaatacaeeg attattgtge agegaaegga atatgaggea geaetteata gagaagaata tatgaaagaa tgtatattae egeatttgaa etacaaaatt attgaagggg attatgaagt ggtaeeaggt gtteaattat tgtataegee aggteattet eeaggeeate agtegttatt cattgagaeg</pre>	120 180 240 300 360 420 480 540
<pre><212> DNA <213> Bacillus thuringiensis B25 <400> 10 atgacagtaa agaagettta tttcatccca gcaggtcgtt gtatgttaga tcattcttct gttaatggta cactcgcgcc ggggaattta ttgaacttac ctgtatggtg ttatcttttg gagacagaag aaggggccat tttagtagat acaggtatgc cagaaagtgc agttaataat gaagggcttt ttaacggtac atttgttgaa ggacagattt taccgaaaat gactgaagaa gatagaatcg tgaatatatt aaagcgtgta gggtatgagc cggacgacct tttatatatt attagttctc acttacattt tgatcatgca ggaggaaacg gtgctttac aaatacaccg attattgtgc agcgaacgga atatgaggca gcacttcata gagaagaata tatgaaagaa tgatattac cgcatttgaa ctacaaaatt attgaagggg attatgaagt ggtaccaggt gttcaattat tgtatacgcc aggtcattct ccaggccatc agtcgttatt cattgagacg gagcaatccg gttcagtttt attaacaatt gatgcatcgt acacgaaaga gaattttgaa</pre>	120 180 240 300 360 420 480 540 600

<210> 11 <211> 26 <212> PR <213> Ag	3	eriur	n tur	mefa	cien	s M10	03						
<400> 11													
Val Thr A	sp Ile	Arg 5	Leu	Tyr	Met	Leu	Gln 10	Ser	Gly	Thr	Leu	Lys 15	Cys
Lys Val H	is Asn 20	Ile	Lys	Met	Asn	Gln 25	Gly	Asn	Gly	Ala	Asp 30	Tyr	Glu
Ile Pro V		Phe	Phe	Leu	Ile 40	Thr	His	Pro	Gly	Gly 45	His	Thr	Val
Ile Asp G	ly Gly	Asn	Ala	Ile 55	Glu	Val	Ala	Thr	Asp 60	Pro	Arg	Gly	His
Trp Gly G	ly Ile	Суз	Asp 70	Val	Tyr	Trp	Pro	Val 75	Leu	Asp	Lys	Asp	Gln 80
Gly Cys Va	al Asp	Gln 85	Ile	Lys	Ala	Leu	Gly 90	Phe	Asp	Pro	Ala	Asp 95	Val
Lys Tyr Va	al Val 100	Gln	Ser	His	Leu	His 105	Leu	Asp	His	Thr	Gly 110	Ala	Ile
Gly Arg Pl 1:	ne Pro 15	Asn	Ala	Thr	His 120	Ile	Val	Gln	Arg	Ser 125	Glu	Tyr	Glu
Tyr Ala Pi 130	ne Thr	Pro	Asp	Trp 135	Phe	Ala	Gly	Gly	Gly 140	Tyr	Ile	Arg	Lys
Asp Phe As	sp Lys	Pro	Gly 150	Leu	Lys	Trp	Gln	Phe 155	Leu	Asn	Gly	Thr	Gln 160
Asp Asp T	yr Tyr	Asp 165	Val	Tyr	Gly	Asp	Gly 170	Thr	Leu	Thr	Thr	Ile 175	Phe
Thr Pro G	ly His 180	Ala	Pro	Gly	His	Gln 185	Ser	Leu	Leu	Val	Arg 190	Leu	Pro
Asn Ser Ly		Leu	Leu	Leu	Thr 200	Ile	Asp	Ala	Ala	Tyr 205	Thr	Leu	Asp
His Trp Gl 210	Lu Glu	Lys	Ala	Leu 215	Pro	Gly	Phe	Leu	Ala 220	Ser	Thr	Val	Asp
Thr Val An 225	rg Ser	Val	Gln 230	Lys	Leu	Arg	Thr	Tyr 235	Ala	Glu	Lys	His	Asp 240
Ala Thr Va	al Val	Thr 245	Gly	His	Asp	Pro	Asp 250	Ala	Trp	Ala	Asn	Phe 255	Lys
Lys Ala Pi	co Glu	Phe	Tyr	Ala									

260

<210> 12 <211> 250 <212> <213> Bacillus thuringiensis Cot1 <400> 12 Met Thr Val Lys Lys Leu Tyr Phe Val Pro Ala Gly Arg Cys Met Leu Asp His Ser Ser Val Asn Ser Thr Ile Ala Pro Gly Asn Leu Leu Asn 25 Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu Val Asp Thr Gly Met Pro Glu Ser Ala Val Asn Asn Glu Asn Leu Phe 55 Glu Gly Thr Phe Ala Glu Gly Gln Ile Leu Pro Lys Met Thr Glu Glu Asp Arg Ile Ile Ala Ile Leu Lys Arg Ala Gly Tyr Glu Pro Asp Asp Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly Asn Gly Ala Phe Ile Asn Thr Pro Ile Ile Ile Gln Arg Ala Glu Tyr Glu Ala Ala Gln Tyr Arg Glu Glu Tyr Leu Lys Glu Cys Ile Leu Pro Asn Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly Val Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu Leu Ile Glu Thr Glu Lys Ser Gly Val Val Leu Leu Thr Ile Asp Ala Ser Tyr Thr Lys Glu Asn Phe Glu Asp Glu Val Pro Phe Ala Gly Phe Asp Pro Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Glu Val Val 215 Met Lys Glu Lys Pro Leu Val Phe Phe Gly His Asp Ile Glu Glu Glu Lys Gly Cys Lys Val Phe Pro Glu Tyr Ile 245

Page 9

<210> 13

```
<211> 250
<212> PRT
<213> Bacillus thuringiensis B1
<400> 13
Met Thr Val Lys Lys Leu Tyr Phe Ile Pro Ala Gly Arg Cys Met Leu
Asp His Ser Ser Val Asn Ser Ala Leu Thr Pro Gly Lys Leu Leu Asn
Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu
Val Asp Thr Gly Met Pro Glu Ser Ala Val Asn Asn Glu Gly Leu Phe
Asn Gly Thr Phe Val Glu Gly Gln Ile Leu Pro Lys Met Thr Glu Glu
Asp Arg Ile Val Asn Ile Leu Lys Arg Val Gly Tyr Glu Pro Asp Asp
Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly
Asn Gly Ala Phe Thr Asn Thr Pro Ile Ile Val Gln Arg Thr Glu Tyr
Glu Ala Ala Leu His Arg Glu Glu Tyr Met Lys Glu Cys Ile Leu Pro
His Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly
Val Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu
Phe Ile Glu Thr Glu Gln Ser Gly Ser Val Leu Leu Met Ile Asp Ala
                                185
Ser Tyr Thr Lys Glu Asn Phe Glu Asp Glu Val Pro Phe Ala Gly Phe
                            200
Asp Pro Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Glu Val Val
Lys Lys Glu Lys Pro Ile Ile Phe Phe Gly His Asp Thr Glu Gln Glu
Lys Ser Cys Arg Val Phe Pro Glu Tyr Ile
<210> 14
      250
<211>
<212> PRT
<213> Bacillus thuringiensis B2
```

<400> 14

Met Thr Val Lys Lys Leu Tyr Phe Ile Pro Ala Gly Arg Cys Met Leu 1 5 10' 15

Asp His Ser Ser Val Asn Ser Ala Leu Thr Pro Gly Lys Leu Leu Asn 20 25 30

Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu 35 40 45

Val Asp Thr Gly Met Pro Glu Ser Ala Val Asn Asn Glu Gly Leu Phe 50 55 60

Asn Gly Thr Phe Val Glu Gly Gln Ile Leu Pro Lys Met Thr Glu Glu 65 70 75 80

Asp Arg Ile Val Asn Ile Leu Lys Arg Val Gly Tyr Glu Pro Asp Asp 85 90 95

Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly 100 105 110

Asn Gly Ala Phe Thr Asn Thr Pro Ile Ile Val Gln Arg Thr Glu Tyr 115 120 125

Glu Ala Ala Leu His Arg Glu Glu Tyr Met Lys Glu Cys Ile Leu Pro 130 140

His Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly 145 150 155 160

Val Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu 165 170 175

Phe Ile Glu Thr Glu Gln Ser Gly Ser Val Leu Leu Thr Ile Asp Ala 180 185 190

Ser Tyr Thr Lys Glu Asn Phe Glu Asp Glu Val Pro Phe Ala Gly Phe 195 200 205

Asp Pro Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Glu Val Val 210 215 220

Lys Lys Glu Lys Pro Ile Ile Phe Phe Gly His Asp Ile Glu Gln Glu 225 230 235 240

Lys Ser Cys Arg Val Phe Pro Glu Tyr Ile 245 250

<210> 15

<211> 250

<213> Bacillus thuringiensis B17

<400> 15

```
Met Thr Val Lys Lys Leu Tyr Phe Val Pro Ala Gly Arg Cys Met Leu
Asp His Ser Ser Val Asn Ser Thr Leu Ala Pro Gly Asn Leu Leu Asn
Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu
Val Asp Thr Gly Met Pro Glu Ser Ala Val Asn Asn Glu Gly Leu Phe
Asn Gly Thr Phe Val Glu Gly Gln Ile Leu Pro Lys Met Thr Glu Glu
Asp Arg Ile Val Asn Ile Leu Lys Arg Val Gly Tyr Glu Pro Asp Asp
Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly
Asn Gly Ala Phe Thr Asn Thr Pro Ile Ile Val Gln Arg Thr Glu Tyr
        115
                            120
Glu Ala Ala Leu His Arg Glu Glu Tyr Met Lys Glu Cys Ile Leu Pro
His Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly
Val Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu
Leu Ile Glu Thr Glu Lys Ser Gly Leu Val Leu Leu Thr Ile Asp Ala
Ser Tyr Thr Lys Glu Asn Phe Glu Asp Glu Val Pro Phe Ala Gly Phe
                            200
Asp Ser Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Glu Val Val
Met Lys Glu Lys Pro Ile Ile Phe Phe Gly His Asp Ile Glu Gln Glu
Lys Gly Phe Lys Val Phe Pro Glu Tyr Ile
               245
<210> 16
<211> 250
<212> PRT
<213> Bacillus thuringiensis B18
```

Met Thr Val Lys Lys Leu Tyr Phe Val Pro Ala Gly Arg Cys Met Leu 1 5 10 15

<400> 16

Asp His Ser Ser Val Asn Ser Ala Leu Thr Pro Gly Lys Leu Leu Asn Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu Val Asp Thr Gly Met Pro Glu Ser Ala Val Asn Asn Glu Gly Leu Phe Asn Gly Thr Phe Ala Lys Gly Gln Ile Leu Pro Lys Met Thr Glu Glu Asp Arg Ile Val Thr Ile Leu Lys Arg Ala Gly Tyr Glu Pro Asp Asp Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly 105 Asn Gly Ala Phe Leu Asn Thr Pro Ile Ile Ile Gln Arg Ala Glu Tyr 120 Glu Ala Ala Gln His Arg Glu Glu Tyr Leu Lys Glu Cys Ile Leu Pro 135 Asp Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly Val Arg Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu Leu Ile Glu Thr Glu Lys Ser Gly Pro Val Leu Leu Thr Ile Asp Ala Ser Tyr Thr Lys Glu Asn Phe Glu Asp Glu Val Pro Phe Ala Gly Phe Asp Ser Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Glu Val Val 215 Met Lys Glu Lys Pro Ile Val Phe Phe Gly His Asp Ile Glu Gln Glu Lys Gly Cys Lys Val Phe Pro Glu Tyr Ile 245 <210> 17 <211> 250 <212> PRT Bacillus thuringiensis B20 <213> <400> 17 Met Thr Val Lys Lys Leu Tyr Phe Ile Pro Ala Gly Arg Cys Met Leu Asp His Ser Ser Val Asn Ser Thr Leu Ala Pro Gly Asn Leu Leu Asn

Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu Val Asp Thr Gly Met Pro Glu Ser Ala Val Asn Asn Glu Gly Leu Phe Asn Gly Thr Phe Val Glu Gly Gln Ile Leu Pro Lys Met Thr Glu Glu Asp Arg Ile Val Asn Ile Leu Lys Arg Val Gly Tyr Glu Pro Asp Asp Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly 105 Asn Gly Ala Phe Thr Asn Thr Pro Ile Ile Val Gln Arg Ala Glu Tyr Glu Ala Ala Leu His Arg Glu Glu Tyr Met Lys Glu Cys Ile Leu Pro 135 His Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly Val Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu Phe Ile Glu Thr Glu Gln Ser Gly Ser Val Leu Leu Thr Ile Asp Ala Ser Tyr Thr Lys Glu Asn Phe Glu Asp Glu Val Pro Phe Ala Gly Phe Asp Pro Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Gly Val Val 215 Ala Glu Glu Lys Pro Ile Val Phe Phe Gly His Asp Ile Glu Glu Lys Gly Cys Arg Val Phe Pro Glu Tyr Ile 245 <210> 18 <211> 250 <212> PRT <213> Bacillus thuringiensis B21 <400> 18 Met Thr Val Lys Lys Leu Tyr Phe Val Pro Ala Gly Arg Cys Met Leu Asp His Ser Ser Val Asn Ser Thr Leu Ala Pro Gly Asn Leu Leu Asn Leu Pro Val Trp Cys Tyr Leu Leu Glu Thr Glu Glu Gly Pro Ile Leu

Val	Asp 50	Thr	Gly	Met	Pro	Glu 55	Ser	Ala	Val	Asn	Asn 60	Glu	Gly	Leu	Phe
Asn 65	Gly	Thr	Phe	Val	Glu 70	Gly	Gln	Ile	Leu	Pro 75	Lys	Met	Thr	Glu	Glu 80
Asp	Arg	Ile	Val	Asn 85	Ile	Leu	Lys	Arg	Val 90	Gly	Tyr	Glu	Pro	Asp 95	Asp
Leu	Leu	Tyr	Ile 100	Ile	Ser	Ser	His	Leu 105	His	Phe	Asp	His	Ala 110	Gly	Gly
Asn	Gly	Ala 115	Phe	Thr	Asn	Thr	Pro 120	Ile	Ile	Val	Gln	Arg 125	Ala	Glu	Tyr
Glu	Ala 130	Ala	Leu	His	Arg	Glu 135	Glu	Tyr	Met	Lys	Glu 140	Cys	Ile	Leu	Pro
His 145	Leu	Asn	Tyr	Lys	Ile 150	Ile	Glu	Gly	Asp	Tyr 155	Glu	Val	Val	Pro	Gly 160
Val	Gln	Leu	Leu	Tyr 165	Thr	Pro	Gly	His	Ser 170	Pro	Gly	His	Gln	Ser 175	Leu
Phe	Ile	Glu	Thr 180	Asp	Asn	Ser	Gly	Ser 185	Val	Leu	Leu	Thr	Ile 190	Asp	Ala
Ser	Tyr	Thr 195	Lys	Glu	Asn	Phe	Glu 200	Asp	Glu	Val	Pro	Phe 205	Ala	Gly	Phe
Asp	Pro 210	Glu	Leu	Ala	Leu	Ser 215	Ser	Ile	Lys	Arg	Leu 220	Lys	Gly	Val	Val
Ala 225	Glu	Glu	Lys	Pro	Ile 230	Val	Phe	Phe	Gly	His 235	Asp	Ile	Glu	Gln	Glu 240
Lys	Gly	Суѕ	Arg	Val 245	Phe	Pro	Glu	Tyr	Ile 250						
<210 <211 <212 <213	L> 2 2> E	.9 250 PRT Bacil	Llus	thur	ingi	.ensi	s B2	22							
<400)> 1	.9													
Met 1	Thr	Val	Lys	Lys 5	Leu	Tyr	Phe	Ile	Pro 10	Ala	Gly	Arg	Cys	Met 15	Leu
Asp	His	Ser	Ser 20	Val	Asn	Ser	Thr	Leu 25	Ala	Pro	Gly	Asn	Leu 30	Leu	Asn
Leu	Pro	Val 35	Trp	Cys	Тух	Leu	Leu 40	Glu	Thr	Glu	Glu	Gly 45	Pro	Ile	Leu

Val Asp Thr Gly Met Pro Glu Ser Ala Val Asn Asn Glu Gly Leu Phe 50 55 60

Asn 65	Gly	Thr	Phe	Val	Glu 70	Gly	Gln	Ile	Leu	Pro 75	Lys	Met	Thr	Glu	Glu 80
Asp	Arg	Ile	Val	Asn 85	Ile	Leu	Lys	Arg	Val 90	Gly	Tyr	Glu	Pro	Asp 95	Asp
Leu	Leu	Tyr	Ile 100	Ile	Ser	Ser	His	Leu 105	His	Phe	Asp	His	Ala 110	Gly	Gly
Asn	Gly	Ala 115	Phe	Thr	Asn	Thr	Pro 120	Ile	Ile	Val	Gln	Arg 125	Ala	Glu	Tyr
Glu	Ala 130	Ala	Leu	His	Arg	Glu 135	Glu	Tyr	Met	Lys	Glu 140	Cys	Ile	Leu	Pro
His 145	Leu	Asn	Tyr	Lys	Ile 150	Ile	Glu	Gly	Asp	Tyr 155	Glu	Val	Val	Pro	Gly 160
Val	Gln	Leu	Leu	Tyr 165	Thr	Pro	Gly	His	Ser 170	Pro	Gly	His	Gln	Ser 175	Leu
Phe	Ile	Glu	Thr 180	Glu	Gln	Ser	Gly	Ser 185	Val	Leu	Leu	Thr	Ile 190	Asp	Ala
Ser	Tyr	Thr 195	Lys	Glu	Asn	Phe	Glu 200	Asp	Glu	Val	Pro	Phe 205	Ala	Gly	Phe
Asp	Pro 210	Glu	Leu	Ala	Leu	Ser 215	Ser	Ile	Lys	Arg	Leu 220	Lys	Gly	Val	Val
Ala 225	Glu	Glu	Lys	Pro	Ile 230	Val	Phe	Phe	Gly	His 235	Asp	Ile	Glu	Gln	Glu 240
Lys	Gly	Cys	Arg	Val 245	Phe	Pro	Glu	Tyr	Ile 250						
<210 <211 <212 <213	> 2 2> E	20 250 PRT Bacil	.lus	thur	ingi	ensi.	.s B2	:5							
<400)> 2	20													
Met 1	Thr	Val	Lys	Lys 5	Leu	Tyr	Phe	Ile	Pro 10	Ala	Gly	Arg	Cys	Met 15	Leu
Asp	Hìs	Ser	Ser 20	Val	Asn	Gly	Thr	Leu 25	Ala	Pro	Gly	Asn	Leu 30	Leu	Asn
Leu	Pro	Val 35	Trp	Суз	Tyr	Leu	Leu 40	Glu	Thr	Glu	Glu	Gly 45	Ala	Ile	Leu
Val	Asp 50	Thr	Gly	Met	Pro	Glu 55	Ser	Ala	Val	Asn	Asn 60	Glu	Gly	Leu	Phe
Asn 65	Gly	Thr	Phe	Val	Glu 70	Gly	Gln	Ile	Leu	Pro 75	Lys	Met	Thr	Glu	Glu 80

Asp Arg Ile Val Asn Ile Leu Lys Arg Val Gly Tyr Glu Pro Asp Asp Leu Leu Tyr Ile Ile Ser Ser His Leu His Phe Asp His Ala Gly Gly Asn Gly Ala Phe Thr Asn Thr Pro Ile Ile Val Gln Arg Thr Glu Tyr 120 Glu Ala Ala Leu His Arg Glu Glu Tyr Met Lys Glu Cys Ile Leu Pro 135 His Leu Asn Tyr Lys Ile Ile Glu Gly Asp Tyr Glu Val Val Pro Gly Val Gln Leu Leu Tyr Thr Pro Gly His Ser Pro Gly His Gln Ser Leu Phe Ile Glu Thr Glu Gln Ser Gly Ser Val Leu Leu Thr Ile Asp Ala 185 Ser Tyr Thr Lys Glu Asn Phe Glu Asp Glu Val Pro Phe Ala Gly Phe Asp Pro Glu Leu Ala Leu Ser Ser Ile Lys Arg Leu Lys Gly Val Val Ala Lys Glu Lys Pro Ile Val Phe Phe Gly His Asp Ile Glu Gln Glu 235 Lys Gly Cys Arg Val Phe Pro Glu Tyr Ile 245 <210> 21 <211> 256 <212> PRT <213> Agrobacterium tumefaciens <400> 21 Met Leu Gln Ser Gly Thr Leu Lys Cys Lys Val His Asn Ile Lys Met 1 5 10 15 Asn Gln Gly Asn Gly Ala Asp Tyr Glu Ile Pro Val Pro Phe Phe Leu Ile Thr His Pro Ala Gly His Thr Val Ile Asp Gly Gly Asn Ala Ile Glu Val Ala Thr Asp Pro Arg Gly His Trp Gly Gly Ile Cys Asp Val

Tyr Trp Pro Val Leu Asp Lys Asp Gln Gly Cys Val Asp Gln Ile Lys 65 70 75 80

Ala Leu Gly Phe Asp Pro Ala Asp Val Lys Tyr Val Val Gln Ser His

Leu	His	Leu	Asp 100	His	Thr	Gly	Ala	Ile 105	Gly	Arg	Phe	Pro	Asn 110	Ala	Thr
His	Ile	Val 115	Gln	Arg	Ser	Glu	Tyr 120	Glu	Tyr	Ala	Phe	Thr 125	Pro	Asp	Trp
Phe	Ala 130	Gly	Gly	Gly	Tyr	Ile 135	Arg	Lys	Asp	Phe	Asp 140	Lys	Pro	Gly	Leu
Lys 145	Trp	Gln	Phe	Leu	Asn 150	Gly	Ala	Gln	Asp	Asp 155	Tyr	Tyr	Asp	Val	Tyr 160
Gly	Asp	Gly	Thr	Leu 165	Thr	Thr	Ile	Phe	Thr 170	Pro	Gly	His	Ala	Pro 175	Gly
His	Gln	Ser	Phe 180	Leu	Val	Arg	Leu	Pro 185	Asn	Ser	Lys	Pro	Leu 190	Leu	Leu
Thr	Ile	Asp 195	Ala	Ala	Tyr	Thr	Leu 200	Asp	His	Trp	Glu	Glu 205	Lys	Ala	Leu
Pro	Gly 210	Phe	Leu	Ala	Ser	Thr 215	Val	Asp	Thr	Val	Arg 220	Ser	Val	Gln	Lys
Leu 225	Arg	Thr	Tyr	Ala	Glu 230	Lys	His	Asp	Ala	Thr 235	Val	Val	Thr	Gly	His 240
Asp	Pro	Asp	Ala		Ala	Asn	Phe	Lys		Ala	Pro	Glu	Phe		Ala
				245					250					255	
<210 <211 <212 <213	L> 2 2> E	22 248 PRT Bacil	lus	245 sp.	2405	31			250					255	
<211 <212	L> 2 2> E 3> E	248 PRT	lus		240E	31			250					255	
<211 <212 <213 <400	L> 2 2> E 3> E	248 PRT Bacil		sp.			Phe	Val		Ala	Gly	Arg	Cys		Leu
<211 <212 <213 <400 Met 1	L> 2 2> E 3> E	248 PRT Bacil 22 Val	Lys	sp. Lys 5	Leu	Tyr			Pro 10		_	J	-	Met 15	
<211 <212 <213 <400 Met 1 Asp	L> 2 2> E 3> E)> 2	248 PRT Bacil 22 Val Ser	Lys Ser 20	sp. Lys 5 Val	Leu Asn	Tyr Ser	Thr	Leu 25	Pro 10 Thr	Pro	Gly	Glu	Leu 30	Met 15 Leu	Asp
<211 <212 <213 <400 Met 1 Asp	L> 2 2> E 3> E Thr	248 PRT Bacil 22 Val Ser Val 35	Lys Ser 20 Trp	sp. Lys 5 Val	Leu Asn Tyr	Tyr Ser Leu	Thr Leu 40	Leu 25 Glu	Pro 10 Thr	Pro Glu	Gly Glu	Glu Gly 45	Leu 30	Met 15 Leu Ile	Asp Leu
<211 <212 <213 <400 Met 1 Asp Leu Val	L> 2 2> E 3> E Thr His Pro	248 PRT Bacil 22 Val Ser Val 35	Lys Ser 20 Trp Gly	sp. Lys 5 Val Cys	Leu Asn Tyr Pro	Tyr Ser Leu Glu 55	Thr Leu 40 Ser	Leu 25 Glu Ala	Pro 10 Thr Thr	Pro Glu Asn	Gly Glu Asn 60	Glu Gly 45 Glu	Leu 30 Pro Gly	Met 15 Leu Ile	Asp Leu Phe
<211 <212 <213 <400 Met 1 Asp Leu Val Asn 65	L> 2 2> E 3> E 0> 2 Thr His Pro	248 PRT Bacil 22 Val Ser Val 35 Thr	Lys Ser 20 Trp Gly	sp. Lys 5 Val Cys Met	Leu Asn Tyr Pro Glu 70	Tyr Ser Leu Glu 55	Thr Leu 40 Ser Gln	Leu 25 Glu Ala Val	Pro 10 Thr Thr Val	Pro Glu Asn Pro 75	Gly Glu Asn 60	Glu Gly 45 Glu Met	Leu 30 Pro Gly	Met 15 Leu Ile Leu	Asp Leu Phe Glu 80

Asn	Gly	Ala 115	Phe	Ile	Asn	Thr	Pro 120	Ile	Ile	Val	Gln	Arg 125	Ala	Glu	Tyr
Glu	Ala 130	Ala	Gln	His	Ser	Glu 135	Glu	Tyr	Leu	Lys	Glu 140	Cys	Ile	Leu	Pro
Asn 145	Leu	Asn	Tyr	Lys	Ile 150	Ile	Glu	Gly	Asp	Tyr 155	Glu	Val	Val	Pro	Gly 160
Val	Gln	Leu	Leu	His 165	Thr	Pro	Gly	His	Thr 170	Pro	Gly	His	Gln	Ser 175	Leu
Leu	Ile	Glu	Thr 180	Glu	Lys	Ser	Gly	Pro 185	Val	Leu	Leu	Thr	Ile 190	Asp	Ala
Ser	Tyr	Thr 195	Lys	Glu	Asn	Phe	Glu 200	Asn	Glu	Val	Pro	Phe 205	Ala	Gly	Phe
Asp	Ser 210	Glu	Leu	Ala	Leu	Ser 215	Ser	Ile	Lys	Arg	Leu 220	Lys	Glu	Val	Val
Met 225	Lys	Glu	Lys	Pro	Ile 230	Val	Phe	Phe	Gly	His 235	Asp	Ile	Glu	Gln	Glu 240
Arg	Gly	Cys	Lys	Val 245	Phe	Pro	Glu								

INTERNATIONAL SEARCH REPORT

Inter nai Application No

		PC1/SG 00,	/00123
A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER C12N15/82 C07K14/195 A61K38/	16	
According to	International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	cumentation searched (classification system followed by classification CO7K C12N	ion symbols)	
	ion searched other than minimum documentation to the extent that s		
	ata base consulted during the international search (name of data ba ternal, WPI Data, PAJ, BIOSIS, STRAM	•	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.
X	DONG YI-HU ET AL: "AiiA, an enzinactivates the acylhomoserine liquorum-sensing signal and attenuvirulence of Erwinia carotovora. PROCEEDINGS OF THE NATIONAL ACADISCIENCES OF THE UNITED STATES, vol. 97, no. 7, 28 March 2000 (2000-03-28), page 3526-3531, XP002166712 March 28, 2000 ISSN: 0027-8424 cited in the application the whole document	actone ates the " EMY OF	1,2,5,6, 11,12, 15,16, 18,19, 21,22, 26,27,30
X Furti	ner documents are listed in the continuation of box C.	Patent family members are listed	in annex.
"A" docume	tegories of cited documents : ent defining the general state of the art which is not lered to be of particular relevance	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or th invention	the application but
"E" earlier o	document but published on or after the international late	"X" document of particular relevance; the cannot be considered novel or canno	claimed invention t be considered to
which citatio	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	involve an inventive step when the do "Y" document of particular relevance; the or cannot be considered to involve an indocument is combined with one or m	cument is taken alone claimed invention ventive step when the
other r		ments, such combination being obvio in the art. "&" document member of the same patent	us to a person skilled
Date of the	actual completion of the International search	Date of mailing of the international se	arch report
8	May 2001	22/05/2001	
Name and r	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax. (+31–70) 340–3016	Oderwald, H	

INTERNATIONAL SEARCH REPORT

Inte nal Application No PCI/SG 00/00123

	·	PC1/SG 00	700123
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X X	DATABASE EMPRO2 'Online! EMBL; AC/ID U59485, 14 February 2000 (2000-02-14) MATTHYSSE A G ET AL.: "Agrobacterium tumefaciens AttM gene, required for attachment to host cells and virulence" XP002166713 see nucleotides 15.490 to 17.100 abstract		1,2,11, 12,15, 16,26,27

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-32 partially

An isolated nucleic acid molecule encoding an autoinducer inactivation protein (aiiB from Agrobacterium tumefaciens) comprising SEQ ID NO: 1. A protein encoded by said nucleic acid comprising SEQ ID NO: 11. Methods for increasing resistance to a disease, a method of reducing bacterial damage, a method of reducing the formation of bacterial biofilms, an expression vector, a host cell transformed with said nucleic acid.

2. Claims: 1-32 partially

same as invention 1 but comprising SEQ ID NO: 2-10 and 12-20 (aiiC to aiiK from Bacillus thuringiensis).