PHYS 8750 NUMERICAL FLUID DYNAMICS

PHYS 8750

Class #13 (Chapter 4.2)

- 1) PDE with two variables
- 2) Lax-Wendroff + CTU

CLASS #14
SUMMARY OF
CHAPTERS 1-4

Outline

1. Summary

Temporal schemes for ODEs (Chapter 2)

Temporal filtering for ODEs (Chapter 2)

Spatial schemes for PDEs (Chapter 3)

Spatial filtering for PDEs (Chapter 3)

Staggered grids for 2 variables (Chapter 4)

Schemes (CTU) for 2 dependents (Chapter 4)

SUMMARY OF CHAPTER 1-4

3

PURPOSE:

Solve the systems/problems described by PDEs numerically (analytical form is too different to obtain)

FINITE-DIFFERENCE SCHEME:

Use discretized form (grids) to approximate partial derivatives/ use discontinuous grids to represent continuous PDE.

CRITERIA TO JUDGE A SCHEME:

- 1. Order of accuracy, convergence, stability (solutions are constrained)
- 2. Amplitude and phase errors ——— damping/dissipation and dispersion

KEY ISSUE: HOW TO IMPROVE 1, AND AVOID 2.

Amplitude and Phase Behavior

E: exact solution T: trapezoidal F: Forward B: Backward R/3/4: 2/3/4-stage Runge-Kunta M: Matsuno

MULTI-STAGE ADVANTAGES

DISADVANTAGES

- High order of accuracy
- Small amp errors
- Small phase errors
- Efficient damping at high-frequency
- > Stability
- \triangleright Large Δt allowed

- Evaluating derivatives multiple times
- Extensive storage
- More expensive computation

Multi-Step Scheme

- Multiple time steps are used to computer the next time step.
- Achieve high (usually second) order of accuracy, without using too much storage.
- Physical and computational modes both exist. Need to suppress the errors arising from computation modes usually by temporal filtering.
- Leapfrog & Adams-Bashforth

PHYS 8750 - Fall 2020 9/1/2020

Multi-Step Scheme

LEAPFROG

$$\frac{\phi_{n+1} \cdot \phi_{n-1}}{2\Delta t} = F(\phi_n, t_n) = i\omega\phi_n$$

$$\left|A_{\pm}\right|=1$$

Since amplification factors for both physical and computational modes are 1, use temporal filtering to suppress computational models

ADAMS-BASHFORTH

$$\phi_{n+1} = \phi_n + \Delta t \left(\frac{3}{2} F(\phi_n, t_n) - \frac{1}{2} F(\phi_{n-1}, t_{n-1}) \right)$$

$$A_{\pm} = \frac{1}{2} \left(1 + \frac{3i\omega\Delta t}{2} \pm \left(1 - \frac{9}{4}\omega^{2}\Delta t^{2} + i\omega\Delta t \right)^{1/2} \right)$$

Filtering is inherently built in scheme

PHYS 8750 - Fall 2020

9/1/2020

Temporal Filtering

7

1. Postprocessing Way:

$$\overline{\phi_n} = \phi_n + \gamma(\phi_{n+1} - 2\phi_n + \phi_{n-1})$$

$$X = \frac{\overline{\phi_n}}{\phi_n} = 1 - 2\gamma(1 - \cos\omega\Delta t)$$

2. INTERACTIVE WAY:

ASSELIN-FILTERED

$$\phi_{n+1} = \overline{\phi_{n-1}} + 2\Delta t F(\phi_n)$$

$$\frac{\overline{\phi_n}}{\gamma(\overline{\phi_{n-1}} - 2\phi_n + \phi_{n-1})}$$

Oscillation Problem

LEAPFROG W/WO FILTER, AND ADAMS-BASHFORTH

Code: LF_AB_StabilityAmplification_ODE_OscillationProb_7.m

- > LF: WOULD SUFFER COMPUTATIONAL MODE
- ASSELIN-LF: DAMP COMPUTATIONAL MODE, ACCURATE AMPLITUDE.
- > AB: DAMP COMPUTATIONAL MODE, ERRORS CONTAMINATE

Chapter 3

PDES (WHEN BOTH TIME AND SPACE ARE PRESENT)

NEW CONCEPTS:

- 1. Courant number $(c\Delta t/\Delta x)$ put constraints on Δt
- 2. Von Neumann's method: decompose solution to different wave scales \longrightarrow Amplification factor depends on Δx .

KEY ISSUE:

How to enable larger Δt for stability. How to suppress short-scale waves.

> CFL condition: Domain 1 includes Domain 2.

STRATEGIES:

- 1. Higher-order of schemes by involving more spatial points.
- 2. Apply spatial filtering.

PHYS 8750 - Fall 2020 9/1/2020

Takacs's Schemes (Lax-Wendroff)

10

• Higher-order of schemes by involving more spatial points.

Spatial Filtering

11)

SECOND-DERIVATIVE SMOOTHER

$$\frac{d\phi_j}{\partial t} = \gamma_2 (\phi_{j+1} - 2\phi_j + \phi_{j-1})$$

4TH-DERIVATIVE SMOOTHER

$$\frac{d\phi_j}{\partial t} = \gamma_4 \left(-\phi_{j+2} + 4\phi_{j+1} - 6\phi_j + 4\phi_{j-1} - \phi_{j-2} \right)$$

6TH-DERIVATIVE SMOOTHER

$$\frac{d\phi_j}{\partial t} = \gamma_6 \begin{pmatrix} \phi_{j+3} - 6\phi_{j+2} + 15\phi_{j+1} - \\ 20\phi_j + 15\phi_{j-1} - 6\phi_{j-2} + \phi_{j-3} \end{pmatrix}$$

DAMPING FACTOR NTH-DERIVATIVE SMOOTHER

$$\frac{db}{dt} = -\gamma_n [2(1 - \cos k\Delta x)]^{n/2} b$$

DAMPING RATE

$$= -\gamma_n [2(1 - \cos k\Delta x)]^{n/2}$$

Pros and Cons from low to high orders?

Multiple Dependent Variables/Staggered Grids

		\neg
//	4	
\parallel	Ш	2)
//		
1	_	_//

	Stability	Phase Performance	Storage	Mean flow limitation
Leapfrog time Center space	$\left \frac{c\Delta t}{\Delta x}\right \le 1$	Most dispersive	More	No
Leapfrog time Staggered space (middle points)	$\left \frac{c\Delta t}{\Delta x}\right \le \frac{1}{2}$	Least dispersive	More	No
Forward- Backward time Staggered space	$\left \frac{c\Delta t}{\Delta x}\right \le 1$	Less dispersive	Less	U< <c U is very small</c

PHYS 8750, Clemson 9/29/20

MULTIPLE DIMENSIONS (2D)

Summary

Temporal schemes for ODEs (Chapter 2)

2-time levels: Forward, backward, trapezoidal

2-time levels & multi-stage: Runge-Kunta, Mastuno

Multi-time levels: Leapfrog (centered), Adams-Bashforth

Temporal filtering for ODEs (Chapter 2)

Applied to multi-time levels: suppress computational modes

Spatial schemes for PDEs (Chapter 3)

Upstream downstream, centered,

Lax-Wendroff, Takacs (forward time, control order of accuracy by involving more spatial points)

Spatial filtering for PDEs (Chapter 3)

2-nd derivative to N-th derivative filters

suppress small scales