CPSC 1301 COMPUTER SCIENCE 1 FALL 2014

Assignment 8 - Data Analytics

Posted on 11/30/2014

Due date: Before midnight, Wednesday, December 8

Total Points: 50

You are encouraged to work on this assignment with a partner in your class.

READ ALL INSTRUCTIONS BELOW CAREFULLY

Assignment Overview

"Data analytics (DA) is the science of examining raw <u>data</u> with the purpose of drawing conclusions about that information. Data analytics is used in many industries to allow companies and organization to make better business decisions and in the sciences to verify or disprove existing models or theories. Data analytics focuses on inference, the process of deriving a conclusion based solely on what is already known by the researcher."

[http://searchdatamanagement.techtarget.com/definition/data-analytics]

The purpose of this assignment is to continue your study of computer programming and algorithms through the Python programming language. In this lab you will use several features you have learnt including – conditionals, loops, user-defined functions and lists and a new feature – reading from a file (Read sections 13.1 and 13.2 of chapter 13 in the textbook for information on how to do file input/output).

You will need three files in this assignment: <code>WorldCensus0-14.csv</code>, <code>WorldCensus15-64.csv</code>, and <code>WorldCensus64+.csv</code>. The files are provided in the Programing Assignment 8 Dropbox in CougarView. Each of these files has population information about the countries in the world. The number at the end of file name indicates what age group the date in that file belongs to. In each file, each line consists of a country name, male population for that country, and female population for that country separated by commas. It'd be a good idea to browse through these files before you start working on the assignment so you know what you are dealing with. To open the file, download it, right click and open it with <code>Notepad++</code>.

Problem statement:

Write a Python program that processes demographic data about the population of different countries of the world that are stored in three text files for three different age groups. It will accept user commands by providing a menu of options for the user to select from and produce outputs according to specifications detailed below.

Program Specifications:

Your program should do the following:

1. Define a function called getLists that takes a pointer to a file as a parameter and reads the data in the file into three lists and returns the three lists.

- 2. Define a function called printMenu that prints a menu for the users with the following options:
 - A- Choose a country to display population information about that country.
 - B- Choose a letter to display population information about all countries starting with that letter
 - C- Male to female ratios among different age groups in ascending order
 - D- List of countries with the highest male to female ratios among different age groups
 - E- List of countries with the lowest male to female ratios among different age groups
 - F- Numbers of countries with more males than females in each age group
 - G- Quit
- 3. Define a main function where you
 - a. Print a welcome message
 - b. Call the getLists method three times to
 - i. Read the information from the WorldCensus0-14.csv file into lists
 - ii. Read the information from the WorldCensus15-64.csv file into lists
 - iii. Read the information from the WorldCensus64+.csv file into lists

Note that the country names are the same and appear in the same order in the three files. So you can use the same list for country names for all three calls.

- c. Create three new lists called totalMale, totalFemale, totalPopulation that hold the total male population, total female population, and total population for each country. (all age groups put together)
- d. Display the menu
- e. Get user's choice
- f. Proceed according to user's choice. If the user choses an invalid option, prompt the user to enter their choice again.
- g. Print a good-bye message
- 4. Call the main function in your program.

Note: It is up to you what other functions to include in your program. You may want to have a function for each option or for some of them only. Before you start coding, make sure that you have thought your design thoroughly. Draw a flowchart and/or write a pseudocode so you will spend less time fixing errors when coding!

Sample outputs:

Option A: For example, if the user enters "Turkey" for the country, this information should

be displayed:

								Male to
Country	Age	Both Sexes	Male	Female	% Both	%Male	%Female	Female
Turkey	Total	81619392	41106823	40512569	100	100	100	1.014668386
Turkey	0-14	20839960	10660110	10179850	25.5	25.9	25.1	1.047177512
Turkey	15-64	55288903	27929494	27359409	67.7	67.9	67.5	1.02083689
Turkey	65+	5490529	2517219	2973310	6.7	6.1	7.3	0.846604962

Option B: For example, if the user enters "U" for the letter, this information should be displayed:

								Male to
Country	Age	Both Sexes	Male	Female	% Both	%Male	%Female	Female
Uganda	Total	35918915	17841632	18077283	100	100	100	0.986964247
Uganda	0-14	17480254	8714354	8765900	48.7	48.8	48.5	0.994119714
Uganda	15-64	17695815	8799507	8896308	49.3	49.3	49.2	0.989118969
Uganda	65+	742846	327771	415075	2.1	1.8	2.3	0.789666928
Ukraine	Total	44291413	20333333	23958080	100	100	100	0.848704612
Ukraine	0-14	6204822	3191247	3013575	14	15.7	12.6	1.058957219
Ukraine	15-64	31041037	14831434	16209603	70.1	72.9	67.7	0.914978239
Ukraine	65+	7045554	2310652	4734902	15.9	11.4	19.8	0.488004187
UnitedArabEmirates	Total	5628805	3861930	1766875	100	100	100	2.185740361
UnitedArabEmirates	0-14	1167751	597476	570275	20.7	15.5	32.3	1.04769804
UnitedArabEmirates	15-64	4405595	3229383	1176212	78.3	83.6	66.6	2.745579028
UnitedArabEmirates	65+	55459	35071	20388	1	0.9	1.2	1.720178536
UnitedKingdom	Total	63742977	31688615	32054362	100	100	100	0.98858979
UnitedKingdom	0-14	11041339	5660891	5380448	17.3	17.9	16.8	1.052122611
UnitedKingdom	15-64	41529500	21037700	20491800	65.2	66.4	63.9	1.026639924
UnitedKingdom	65+	11172138	4990024	6182114	17.5	15.7	19.3	0.807171139
UnitedStates	Total	318892103	157082861	161809242	100	100	100	0.970790414
UnitedStates	0-14	61801455	31580349	30221106	19.4	20.1	18.7	1.044976613
UnitedStates	15-64	210911644	105197868	105713776	66.1	67	65.3	0.995119766
UnitedStates	65+	46179004	20304644	25874360	14.5	12.9	16	0.784739951
Uruguay	Total	3332972	1609739	1723233	100	100	100	0.934138912
Uruguay	0-14	701427	356851	344576	21	22.2	20	1.035623491
Uruguay	15-64	2167037	1067756	1099281	65	66.3	63.8	0.971322164
Uruguay	65+	464508	185132	279376	13.9	11.5	16.2	0.662662505
Uzbekistan	Total	28929716	14396548	14533168	100	100	100	0.990599434
Uzbekistan	0-14	7208572	3693838	3514734	24.9	25.7	24.2	1.050958053
Uzbekistan	15-64	20340654	10113829	10226825	70.3	70.3	70.4	0.988951019
Uzbekistan	65+	1380490	588881	791609	4.8	4.1	5.4	0.743903872

Option C: There should be four columns with the male to female ratios for the countries listed in ascending order: One for each age group and one for total population. The results should be printed 15 rows at a time. (The country names do not need to be included)

Option D: Four country names should be displayed one for each age group and one for total population. The ratios should be also displayed along with the country names. It should be clear which country goes with which age group.

Option E: Similar to Option D but the lowest ratios and the corresponding country names are displayed.

Option F: Four numbers for each age group and one for total population should be displayed. It should be clear which number goes with which age group.

EXTRA CREDIT (20pts) - if you provide a GUI using TKinter in your program

What to submit (Deliverables):

Take **five** screenshots of your program's outputs:

- 1. When it first starts the menu and the prompt to the user to choose an option.
- 2. When the user chooses Option B and enters the letter U.
- 3. When the user chooses Option D
- 4. When the user chooses Option E
- 5. When the user chooses Option F

Copy these screenshots into a Word or OpenOffice file. In this file, provide answers to these questions on your thoughts on completing this assignment:

- 1) What was the most challenging part?
- 2) What was the most enjoyable part?
- 3) What topics did you master when completing this assignment?

Save your file as <last name>_<initial>_Assignment8.py>, or <last name>_<last name>_Assignment8.py> (if working as a pair).

Submit the file in the **Assignment 8 Dropbox** in CougarView. <u>Both you and your partner</u> must submit the same files.

Grading Rubric:

Screenshots	5 points
Answers to questions	5 points
Style and documentation	5 points
Program	35 points s

REMINDER ABOUT ACADEMIC INTEGRITY

Any work turned in for individual credit must be entirely the work of the student submitting the work (unless it is a sanctioned pair or group effort). All work must be your own. You may share ideas but submitting identical assignments (for example) will be considered cheating. You may discuss the material in the course and help one another with debugging, however, I expect any work you hand in for a grade to be your own. A simple way to avoid inadvertent plagiarism is to talk about the assignments, but don't read each other's work or write solutions together. Having access to another person's work on the system or giving access to your work to another person is not allowed. It is your responsibility to keep your work confidential.

No cheating in any form will be tolerated. Please be aware that anyone caught cheating or plagiarizing in this class will receive a "0" for the assignment/exam and may receive a "0" for the course.