Classifier Evaluation Metrics: Confusion Matrix

□ Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

- In a confusion matrix w. m classes, $CM_{i,j}$ indicates # of tuples in class i that were labeled by the classifier as class j
 - May have extra rows/columns to provide totals

□ Example of Confusion Matrix: Test Positives						
	Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total		
	buy_computer = yes <	6954	/ 46	7000		
	buy_computer = no	412	2588	3000		
	Total	7366	2634	10000		

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

 Accuracy = (TP + TN)/All
- Error rate: 1 accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
 - One class may be rare
 - E.g., fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class
 - Measures handle the class imbalance problem
 - Sensitivity (recall): True positive recognition rate
 - Sensitivity = TP/P
 - Specificity: True negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- **Precision**: Exactness: what % of tuples that the classifier labeled as positive are actually positive? $P = Precision = \frac{TP}{TP + FP} \longrightarrow \frac{1}{9000} \frac{1}{9000$
- **Recall:** Completeness: what % of positive tuples did the classifier label as positive?

$$R = Recall = \frac{TP}{TP + FN} = \frac{6 \times 10^{4} \times 10^{4}}{3000} \times \frac{10^{4} \times 10^{4}}{3000} \times \frac{10^{4}}{3000} \times \frac{10^{4}}{3000} \times \frac{1$$

- Range: [0, 1]
- The "inverse" relationship between precision & recall
- F measure (or F-score): harmonic mean of precision and recall
 - In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 Assigning β times as much weight to recall as to precision)

F1-measure (balanced F-measure)

That is, when
$$\beta = 1$$
,

 $F_1 = \frac{2PR}{P+R}$