20. Probabilistic Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Reminders & updates

- No lectures next week
- Assessment 4 (SPIN)
 - due 12 noon Thur 22 Mar
 - help: Facebook, email, office hours, ...
- Exam & revision
 - revision lecture at start of summer term
 - see message next week about content/resources

Module syllabus

- Modelling sequential and parallel systems
 - labelled transitions systems, parallel composition
- Temporal logic
 - LTL, CTL and CTL*, etc.
- Model checking
 - CTL model checking algorithms
 - automata-theoretic model checking (LTL)
- Verification tools: SPIN
- Advanced verification techniques
 - bounded model checking via propositional satisfiability
 - symbolic model checking
 - probabilistic model checking

Overview

- Quantitative verification
 - motivation
 - application areas
- Probabilistic model checking
 - discrete-time Markov chains (DTMCs)
 - probabilistic temporal logic (PCTL)

- Background reading:
 - "Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance"
 - PRISM: http://www.prismmodelchecker.org/
 - [BK08] Chapter 10

Verification via model checking

Motivation

- Verifying probabilistic systems...
 - unreliable or unpredictable behaviour
 - failures of physical components
 - unreliable sensors/actuators
 - message loss in wireless communication
 - randomisation in algorithms/protocols
 - random back-off in communication protocols
 - random routing to reduce flooding or provide anonymity
- We need to verify quantitative system properties
 - "the probability of the airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
 - "with probability 0.99, the packet arrives within 10 ms"

Probabilistic model checking

Probabilistic model checking

- Construction and analysis of finite probabilistic models
 - e.g. Markov chains, Markov decision processes, ...
 - specified in high-level modelling formalisms
 - exhaustive model exploration (all possible states/executions)
- Automated analysis of wide range of quantitative properties
 - properties specified using temporal logic
 - "exact" results obtained via numerical computation
 - linear equation systems, iterative methods, uniformisation, ...
 - as opposed to, for example, Monte Carlo simulations
 - efficient techniques from verification + performance analysis
 - mature tool support available, e.g. PRISM

Case studies

- Randomised communication protocols
 - Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
- Security protocols/systems
 - pin cracking, anonymity, quantum crypto, contract signing, ...
- Performance & reliability
 - airbag controller, nanotechnology, cloud computing, ...
- Planning & controller synthesis
 - robotics, autonomous driving, dynamic power management, ...
- And many more
 - cell signalling pathways, DNA computing, randomised algorithms
 - see: www.prismmodelchecker.org/casestudies

Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - labelled transition systems augmented with probabilities

States

 set of states representing possible configurations of the system being modelled

Transitions

 transitions between states model evolution of systems state; occur in discrete time-steps

Probabilities

 probabilities of making transitions between states are given by discrete probability distributions

Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel unready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, restart

Discrete-time Markov chains

- Formally, a DTMC D is
 - a tuple (S,s_{init},P,L)

where:

- S is a set of states ("state space")
- $-s_{init} \in S$ is the initial state
- P: S \times S \rightarrow [0,1] is the transition probability matrix
 - where $\Sigma_{s' \in S} P(s,s') = 1$ for all $s \in S$
- AP is a set of atomic propositions
- L: $S \rightarrow 2^{AP}$ is a labelling function
- Transition probabilities
 - P(s,s') gives the probability of moving from s to s'

DTMC example - Zeroconf

- Zeroconf = "Zero configuration networking"
 - self-configuration for local, ad-hoc networks
 - automatic configuration of unique IP for new devices
 - simple; no DHCP, DNS, ...

Basic idea:

- 65,024 available IP addresses (IANA-specified range)
- new node picks address U at random
- broadcasts "probe" messages: "Who is using U?"
- any node already using U replies; protocol restarts
- messages may not get sent (transmission fails, host busy, ...)
- so: nodes send multiple (n) probes, waiting after each one

DTMC for Zeroconf

- n=4 probes, m existing nodes in network
- probability of message loss: p
- probability that new address is in use: q = m/65024

Paths in DTMCs

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \ \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
 - Paths(s) is the set of all (infinite) paths starting in s

Examples:

- never succeeds: $(s_0s_1s_2)^{\omega}$
- tries, waits, fails, retries, succeeds: $s_0s_1s_1s_2s_0s_1(s_3)^{\omega}$

Paths and probabilities

- To reason (quantitatively) about this system
 - need to define a probability measure over paths
- More precisely:
 - probability measure Pr_s over Paths(s)
 - basic idea: defined on finite paths, extended to infinite paths
 - $P(ss_1s_2) = P(s,s_1)P(s_1,s_2)$

Paths and probabilities

- Examples
- "try and fail immediately"
 - paths starting with prefix s₀s₁s₂
 - probability : $P(s_0s_1s_2)$

$$= P(s_0, s_1)P(s_1, s_2) = 1 \cdot 0.01 = 0.01$$

- "eventually successful and with no failures"
 - paths $s_0s_1s_3...$, $s_0s_1s_1s_3...$, $s_0s_1s_1s_1s_3...$, ...
 - probability:

$$= \mathbf{P}_{s0}(s_0s_1s_3) + \mathbf{P}_{s0}(s_0s_1s_1s_3) + \mathbf{P}_{s0}(s_0s_1s_1s_1s_3) + \dots$$

$$= 1.0.98 + 1.0.01.0.98 + 1.0.01.0.01.0.98 + ...$$

- = 0.9898989898...
- = 98/99

In practice, computed by solving linear equation systems

Case study: Bluetooth

- Device discovery between a pair of Bluetooth devices
 - performance essential for this phase
- Complex discovery process
 - two asynchronous 28-bit clocks
 - pseudo-random hopping between 32 frequencies
 - random waiting scheme to avoid collisions
 - 17,179,869,184 initial configurations
- Probabilistic model checking (PRISM)
 - "probability discovery time exceeds 6s is always < 0.001"
 - "worst-case expected discovery time is at most 5.17s"

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's ∀ and ∃ operators
- Example
 - send $\rightarrow P_{>0.95}$ [$\diamondsuit \le 10$ deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

CTL syntax

- Syntax split into state and path formulae
 - specify properties of states/paths, respectively
 - a CTL formula is a state formula •
- State formulae:
 - $\varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | \forall \psi | \exists \psi$
 - where $a \in AP$ and ψ is a path formula
- Path formulae
 - $\psi ::= \bigcirc \phi | \phi \cup \phi | \dots$
 - where ϕ is a state formula

PCTL syntax

- Syntax split into state and path formulae
 - specify properties of states/paths, respectively
 - a PCTL formula is a state formula
- State formulae:
 - $\varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$
 - where $a \in AP$ and ψ is a path formula, $p \in [0,1]$ is a probability bound, $\sim \in \{<,>,\leq,\geq\}$
- Path formulae
 - $\psi ::= \bigcirc \varphi | \varphi U \varphi | \varphi U^{\leq k} \varphi | \dots$
 - where ϕ is a state formula, $k \in \mathbb{N}$

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - example: $s \models P_{<0.25}$ [\bigcirc fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - informal definition: $s \models P_{\sim p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - formally: $s \models P_{\sim p}[\psi] \Leftrightarrow Pr_s \{\pi \in Path(s) \mid \pi \models \psi \} \sim p$

PCTL examples

- $P_{\leq 0.05}$ [\Leftrightarrow err/total>0.1]
 - "with probability at most 0.05, more than 10% of the NAND gate outputs are erroneous"
- $P_{\geq 0.8}$ [$\diamondsuit^{\leq k}$ reply_count=n]
 - "the probability that the sender has received n acknowledgements within k clock-ticks is at least 0.8"
- $P_{<0.4}$ [$\neg fail_A$ U $fail_B$]
 - "the probability that component B fails before component A is less than 0.4"
- $\neg oper \rightarrow P_{>1} [\diamondsuit (P_{>0.99} [\square^{\leq 100} oper])]$
 - "if the system is not operational, it almost surely reaches a state from which it has a greater than 0.99 chance of staying operational for 100 time units"

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators ∀ (for all) and ∃ (there exists)
- Qualitative PCTL properties
 - $-P_{\sim p}[\Psi]$ where p is either 0 or 1
- Quantitative PCTL properties
 - $-P_{\sim p}[\Psi]$ where p is in the range (0,1)
- $P_{>0}$ [$\diamondsuit \varphi$] is identical to $\exists \diamondsuit \varphi$
 - there exists a finite path to a ϕ -state
- $P_{>1}$ [$\diamondsuit \varphi$] is (similar to but) weaker than $\forall \diamondsuit \varphi$
 - a φ-state is reached "almost surely"

Numerical properties

- Consider a PCTL formula $P_{\sim p}$ [ψ]
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - PRISM allows formulae of the form $P_{=?}$ [ψ]
 - "what is the probability that path formula ψ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $P_{=?} [\diamondsuit err/total > 0.1]$
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

Probabilistic model checking

More specification formalisms

- probabilistic LTL
- e.g. $P_{=?}$ ($\square \diamondsuit$ send): "what is the probability that the protocol successfully sends a message infinitely often?"
- e.g. $P_{=?}$ ($\neg zone_3$ U ($zone_1 \land (\diamondsuit zone_4)$)): "what is the probability of visiting zone 1, without passing through zone 3, and then going to zone 4?"
- PCTL* (subsumes PCTL and probabilistic LTL)
- costs, rewards, …

More probabilistic models

- continuous-time Markov chains
 - adds a notion of real (not discrete) time
- Markov decision processes...
 - adds nondeterminism

Probabilistic model checking

Markov decision processes (MDPs)

- Markov decision processes (MDPs)
 - model nondeterministic as well as probabilistic behaviour
 - widely used also in: AI, planning, optimal control, ...

- Nondeterminism for:
 - control: decisions made by a controller or scheduler
 - adversarial behaviour of the environment
 - concurrency/scheduling: interleavings of parallel components
 - abstraction, or under-specification, of unknown behaviour

Summary

- Quantitative verification
 - reasoning about probability, time, ...
 - unreliable or unpredictable behaviour, randomisation
 - quantitative "correctness": reliability, timeliness, performance, ...
- Probabilistic model checking
 - discrete-time Markov chains (DTMCs)
 - paths, probability measures
 - probabilistic temporal logic (PCTL)
- PRISM
 - http://www.prismmodelchecker.org/