Machine learning methods for rare diseases

This manuscript (permalink) was automatically generated from jaybee84/ml-in-rd@2d092e0 on February 2, 2021.

Authors

• Jineta Banerjee

(D 0000-0002-1775-3645 · **(7** jaybee84

Sage Bionetworks · Funded by Neurofibromatosis Therapeutic Acceleration Program; Children's Tumor Foundation

Robert J Allaway

© 0000-0003-3573-3565 · ♠ allaway · ❤ allawayr

Sage Bionetworks · Funded by Neurofibromatosis Therapeutic Acceleration Program; Children's Tumor Foundation

Jaclyn N Taroni

© 0000-0003-4734-4508 · ♥ jaclyn-taroni

Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation

Casey Greene

© 0000-0001-8713-9213 · ♥ cgreene

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation

Justin Guinney

© 0000-0003-1477-1888 · ♥ jguinney

 $Sage\ Bionetworks\cdot Funded\ by\ Neurofibromatosis\ The rapeutic\ Acceleration\ Program;\ Children's\ Tumor\ Foundation$

Synopsis

(Instructions: Describe the background, basic structure of the article, list material to be covered indicating depth of coverage, how they are logically arranged, include recent pubs in the area, 300-500 words)

Substantial technological advances have dramatically changed biomedicine by making deep characterization of patient samples routine and accelerating basic research. These technologies provide a rich portrait of genes, cellular pathways, and cell types involved in complex phenotypes. Machine learning is often a perfect fit to extract disease-relevant patterns from these high dimensional datasets. Often, these methods require many samples to identify reproducible and biologically meaningful patterns. With rare diseases, biological specimens and consequently data, are limited due to the rarity of the condition. In this perspective, we outline the challenges and emerging solutions for using machine learning in rare disease settings. We aim to spur the development of powerful machine learning techniques for rare diseases. We also note that precision medicine presents a similar challenge, in which a common disease is partitioned into small subsets of patients with shared etiologies and treatment strategies. Advances from rare disease research are likely to be highly informative for other applications as well.

Introduction

Rare disease research is increasingly dependent on high-throughput profiling of samples and would greatly benefit from machine learning (ML) analytics. A systematic review of application of ML in rare disease in the last 10 years uncovered 211 human data studies in 74 different rare diseases employing ensemble methods (36.0%), support vector machines (32.2%) and artificial neural networks (31.8%) [1]. While the review points to the increasing popularity of using ML methods in rare disease, there are various hurdles that are inherent to such datasets. ML based methods benefit from using large and high dimensional datasets, but analyzing high dimensional data from rare diseases datasets that typically contain 20 to 99 samples is challenging [1,2]. The small datasets lead to the lack of statistical power and magnify the susceptibility of ML methods to misinterpretation and unstable performance. Additionally, successful training of ML models require training datasets made of "gold standard" data where the diagnosis or label of a data point has very little uncertainty (or "label-noise") associated with it [3]. Due to limited understanding of the biology of rare diseases, the symptoms or disease labels often come with significant label-noise (a *silver standard* dataset) [4]. Thus, specialized computational methods that can learn patterns from small datasets but can also be generalized to newly acquired data are required for rare disease applications [5]. In this perspective, we first highlight few ML approaches that address or better tolerate the limitations of rare disease data, and then discuss the future of ML applications in rare disease.

Manage complex high-dimensional rare disease data

In rare diseases, the high throughput 'omic' methods generate highly dimensional data – data with many features such as all of the mRNA transcripts in a sample – from a vanishingly small number of samples. A lack of samples gives rise to the "curse of dimensionality" (i.e., few samples but many features), which is an impediment in analyzing feature-rich data in sample-deficient contexts such as rare disease. [6] In particular, increased numbers of features results in increased sparsity (missing observations), more dissimilarity between samples, and increased redundancy between individual features or combinations of features [7]; the consequence of this additional data is a challenging prediction problem. Furthermore, rare disease data collection and aggregation methods can add to these challenges by introducing technical variability into the data at hand. In this section, we will discuss strategies like simplifying data and addressing technical artifacts through dimensionality reduction.

Dimensionality reduction methods like multidimensional scaling (MDS), principal components analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold approximation and projection (UMAP) can help 'compress' information from a large number of features into a smaller number of features in an unsupervised manner [8,9,10]. These methods not only help in reducing the number of features in various types of data [12,13], but can also be used to visualize structure or artifacts in the data (e.g. [14]), define subgroups within data (e.g. [15], or for feature selection or extraction during application of specific machine learning models.[16] (Figure 1)

Rare disease datasets are often combined from multiple small studies leading to the confounding of biological characteristics with technical variables such as batch, sample preparation methodology, or sequencing platform [17]. Methods like PCA, MDS, t-SNE, and UMAP can successfully identify the effect of these variables on the original data, though t-SNE and UMAP may require tuning of hyperparameters that may effect the output [10,17]. Furthermore, testing multiple dimensionality reduction methods, rather than a single method, may be desirable to obtain a more comprehensive portrait of the data [18]. Additional important considerations for using dimensionality reduction methods such as criteria for selecting a dimensionality reduction method and interpretation of results are discussed in detail by Nguyen and Holmes [19]. Beyond dimensionality reduction, unsupervised

learning approaches such as k-means clustering or hierarchical clustering have also been used to characterize the structure present in genomic or imaging data [20,21]. Other approaches like reprocessing the raw data using a single analysis pipeline (if the data are obtained from different sources), application of batch correction methods [22,23], and normalization of raw values [24] may be required to obtain value from these datasets.

Dimensionality reduction, or more fundamentally representation learning, learns low-dimensional representations or composites of features from the raw data. For example, representation learning through matrix factorization can extract composite features from transcriptomics datasets that are made of combinations of gene expression levels found in the training data[25], and then use them to interpret test input data [18,26]. To ensure that the learned representations are generalizable, the features learned by the model can be constrained through methods like regularization [27]. Representation learning generally requires many samples in complex biological systems, and thus may appear to aggravate the curse of dimensionality. However, it can be a powerful tool to learn low-dimensional patterns from large datasets and then find those patterns in smaller, related datasets. In the later sections of this perspective, we will discuss this method of leveraging large datasets to reduce dimensionality in smaller datasets, also known as feature-representation-transfer.

Couldn't load plugin.

Figure 1: Dimension reduction can help manage the curse of dimensionality in rare disease data

Manage model complexity while preserving the value of machine learning

Translating machine learning findings into testable hypotheses requires the applied models to be a) stable – the same predicted features should surface from the data if the model is run multiple times – and b) simple, as simple models guard against misinterpretation. Meeting these requirements is challenging in rare disease datasets where there is high label-uncertainty. In this section we highlight a few common ML techniques that can help improve the stability and simplicity of ML models applied to rare disease data.

Techniques like resampling, as well as by combining various ML methods together (ensemble learning) can help achieve stability in predictions (Figure[2]A-B). Resampling without replacement can generate confidence intervals for the model predictions by iteratively exposing the models to incomplete datasets, mimicking real world cases where most rare disease datasets are incomplete [29]. Resampling with replacement, or bootstrapping, helps estimate population values from datasets of limited size, and is also commonly used to find robust models when multiple models are combined into an ensemble ([???,30,31,32,33,34]). Ensemble learning methods like random forests use *bagging* (bootstrap aggregation) of independent decision trees that use similar parameters but different paths to form a consensus about the important predictive features [???,31,35,36,37]. Regular ensemble learning has shown limited success in rare disease datasets where the label-uncertainty can be high. This has led to the adoption of cascade learning, a variant of ensemble learning, where multiple methods leveraging distinct underlying assumptions are used in tandem; and augmented with algorithms like AdaBoost (boosting) to capture stable patterns existing in the silver standard data [38,39,40]. A cascade learning approach for identifying rare disease patients from electronic health

records from the general population utilized independent steps for feature extraction (using natural language processing based word2vec [41]), preliminary prediction using an ensemble of decision trees, and prediction refinement using similarity of data points to resolve sample labels [42]. Combining these three methods resulted in better performance than other methods when implemented on the silver standard dataset in isolation. The presence of multiple phenotypes (or classes) in rare disease datasets further decreases the available data-points per class. In such cases, a one-class-at-a-time cascade learning approach (where at each stage a binary classifier predicts a specific class against all others) has been found to produce simpler models that perform better compared to multi-class ensemble classifiers [43]. (Figure[2]D)

Simplification of models by making the feature space proportionate with the sample space can be achieved through regularization. (Figure[2]C) Regularization can not only protect ML models from poor generalizability that results from overfitting (where the model performs well for the training data but poorly for new test data) [44], but also help penalize model complexity and reduce the feature space to build simpler models using limited datasets. Among the three popular regularized methods, ridge regression can minimize the magnitude of the features, but cannot remove unimportant features. LASSO regression, on the other hand, works well for selecting few important features since it can minimize the magnitude of some features more than the others [45]. A combination of LASSO and ridge, elastic-net regression [46] selects the most useful features, especially in presence of a large number of correlated features.

Rare variant discovery and immune cell signature discovery studies, like rare diseases, face challenges of the sparsity of observations (e.g. rare variants, or rare immune cells). In rare variant discovery, ridge regression has been utilized to combine rare variants into a single score to increase the signal of rare variants [47], while LASSO was implemented along with group penalties to identify rare variants or low frequency predictors [48,49]. Hybrid applications of LASSO in rare variant discovery studies like capturing combinations of variants [50,51], integrating with a probabilistic logistic Bayesian approach [52], combining feature selection methods with a generalized pooling strategy [53], and incorporating prior knowledge into the regularization step to select driver genes in a pathway of interest [54] have proven benefecial. On the other hand, in immune cell signature discovery, elastic-net regression has been used to reduce the feature space and was found to outperform other regression approaches [46,55,56,57]. Regularization methods like LASSO or elastic-net have been methods of choice for making models simpler by reducing the feature space; these methods should be explored while working with rare disease datasets.

Thus by employing bootstrapping, ensemble learning, and regularization methods, researchers may be able to better generate stable, simple models that identify reliable biological phenomena underlying rare diseases .

Couldn't load plugin.

Figure 2: Strategies to simplify models and stabilize predictions preserve the value of machine learning in rare disease. A-B) Strategies to build confidence in model predictions; A) schematic showing the concept of bootstrap, B) schematic showing the concept of ensemble learning to converge on reliable models; C-D) Strategies to simplify models by penalizing complexity in ML models; C) schematic showing the concept of regularization to selectively learn relevant features, D)schematic showing the concept of one-class-at-a-time learning to select few features at a time. Horizontal bars represent health of a model, models are represented as a network of nodes (features) and edges (relationships), nodes with solid edges represent real patterns, nodes with broken edges represent spurious patterns

Build upon prior knowledge and indirectly related data

Rare diseases often lack large, normalized datasets, limiting our ability to study key attributes of these diseases. Thus evaluating genotype-phenotype relationships or repurposing drugs using knowledge graphs can greatly benefit rare disease. Knowledge graphs (KGs) integrate related-but-different data types, creating a rich data source (e.g. Monarch Graph Database[58], hetionet[59], PheKnowLator[60], and the Global Network of Biomedical Relationships[61], Orphanet[62]). These graphs connect genetic, functional, chemical, clinical, and ontological data to enable the exploration of relationships of data with disease phenotypes through manual review[63] or computational methods[64,65].(Figure[3]a) KGs may include links or nodes that are specific to the rare disease of interest (e.g. an FDA approved treatment would be a specific disease-compound link in the KG) as well as links that are more generalized (e.g. gene-gene interactions noted in the literature for a different disease).

Rare disease researchers can leverage the entities and relationships in a knowledge graph outside of the specific disease-context [64]. Such approaches have been used in rare disease research in areas such as drug repurposing[64] and disease classification[65]. Identifying KG encoding methods that can provide actionable insights for a specific rare disease application is an active area of research.

Other approaches that build upon prior knowledge and large volumes of related data include transfer learning, multitask learning, and few-shot learning approaches. These approaches leverage shared features, e.g. normal developmental processes that are aberrant in disease, or an imaging anomaly present in rare and common diseases, for advancing our understanding of rare diseases. Transfer learning, where a model trained for one task or domain (source domain) is applied to another related task or domain (target domain), can be supervised or unsupervised. Among various types of transfer learning, feature-representation-transfer approaches learn representations from the source domain and apply them to a target domain [66] (Figure[3]b). For example, low-dimensional representations can be learned from tumor transcriptomic data and transferred to describe patterns associated with genetic alterations in cell line data [18]. Alternatively, multitask and few-shot learning are forms of supervised learning that often rely on deep neural networks. While multitask learning classifiers use shared representations to learn multiple related but individual predictions (tasks) simultaneously [67], few-shot learning generalizes a model trained on related tasks to a new task with limited labeled data (e.g., the detection of a patient with a rare disease from a low number of examples of that rare disease) [68,69,70] (Figure[???]c-d). Smaller datasets tended to benefit from multitask learning (due to task relatedness, multitask effect) [71], and the performance gains were generally contextdependent, i.e., multitask neural networks outperformed single-task networks for predicting complex rare phenotypes from EHR data or predicting drug sensitivity in rare cancer cell lines [72; TODO: CTDsquared Chemogenomic DREAM Challenge citation]. In contrast, one-shot or few-shot learning used prior knowledge to generalize a distance metric learned from input data to compare with a low number of new examples for prediction [70,73]. In another study, a few-shot learning approach had a performance advantage over multitask learning, since predicting common conditions simultaneously resulted in a loss of performance for the multitask learner [12]. Thus transfer, multi-task, and fewshot learning are appealing approaches for rare disease applications, but their limits and potential utility are still open research questions.

Couldn't load plugin.

Figure 3: Strategies that build upon prior knowledge help ML models learn patterns in rare disease datasets.

Using composite approaches can be a powerful strategy

We have described multiple approaches for maximizing the success of ML applications in rare disease, but it is rarely sufficient to use any of these techniques in isolation. Below, we highlight two recent works in the rare disease domain that draw on concepts of feature-representation-transfer, use of prior data, and regularization.

A large public dataset of acute myeloid leukemia (AML) patient samples with no drug response data and a small *in vitro* experiment with drug response data form the basis of our first example [74]. Training an ML model on the small *in vitro* dataset alone faced the *curse of dimensionality* and the dataset size prohibited representation learning. Dincer et al. trained a variational autoencoder on the large AML patient dataset (VAE; see <u>definitions</u>) to learn meaningful representations in an approach termed DeepProfile [75] (Figure[4]a). The representations or *encodings* learned by the VAE were then *transferred* to the small *in-vitro* dataset reducing it's number of features from thousands to eight, and improving the performance of the final LASSO linear regression model. In addition to improvement in performance, the *encodings* learned by the VAE captured more biological pathways than PCA, which may be attributable to the constraints on the encodings imposed during the training process <u>definitions</u>. Similar results were observed for prediction of histopathology in another rare cancer dataset [75].

While DeepProfile was centered on training on an individual disease and tissue combination, some rare diseases affect multiple tissues that a researcher may be interested in studying together for the purpose of biological discovery. Studying multiple tissues poses significant challenges and a crosstissue analysis may require an analyst to compare representations from multiple models. Models trained on a low number of samples may learn representations that "lump together" multiple biological signals, reducing the interpretability of the results. To address these challenges, Taroni et al. trained a Pathway-Level Information ExtractoR (PLIER) (a matrix factorization approach that takes prior knowledge in the form of gene sets or pathways) on a large generic collection of human transcriptomic data [76]. PLIER used constraints (regularization) that aligned learned *latent variables* with a small number of input gene sets making it suitable for biological discovery or description of rare disease data. The authors transferred the representations or latent variables learned by the model to describe transcriptomic data from the unseen rare diseases antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and medulloblastoma in an approach termed MultiPLIER [77]. (Figure[4]b) MultiPLIER used one model to describe multiple datasets instead of reconciling output from multiple models, thus making it possible to identify commonalities among disease manifestations or affected tissues.

Taken together, DeepProfile [???] and MultiPLIER [77] suggest a combination of the techniques discussed throughout this article can be capitalized on for rare disease research. In cases where we have a few samples from our disease of interest with the required phenotypic labels, we can leverage prior knowledge if we select the models with the right attributes. DeepProfile and MultiPLIER

capitalizes on the fact that biological processes can be shared between biological contexts and that the methods underlying the approaches can effectively learn about those processes.

Couldn't load plugin.

Figure 4: Combining multiple strategies strengthens the performance of ML models in rare disease

Outlook

Throughout this perspective, we have highlighted various challenges in applying ML methods to rare disease data as well as examples of approaches that address these challenges. Scarcity of samples, while significant, is not the only roadblock towards application of ML in rare disease data. The high dimensionality of modern data requires creative approaches, such as learning new representations of the data, to manage the curse of dimensionality. It further requires leveraging prior knowledge and transfer learning methods to appropriately interpret data. Additionally, anyone applying machine learning methods on rare disease data should use techniques that increase confidence (such as bootstrapping) and penalize complexity of the resultant models (such as regularization) to enhance the generalizability of their work.

All of the approaches highlighted in this perspective come with certain challenges or inadequacies that breed mistrust in using these powerful techniques in rare disease. We believe that the same challenges that are currently considered major pitfalls in applying ML to rare disease can be great opportunities for data generation as well as method development in moving the field forward. During our journey through the various challenges, we identified two major areas where mindful strategies can immeasurably enhance the power of machine learning in rare disease and move the field forward.

Emphasis on not just "more n" but "more meaningful n"

Mindful addition of data is key for powering the next generation of analysis in rare disease data. While there are many techniques to collate rare data from different sources, incorrect data generation may hurt the end goal even if it adds to the size of the dataset. In our experience collaboration with domain experts have proved to be critical in gaining insight into potential sources of variation in the datasets. As an example, an neurofibromatosis type 1 (NF1) dataset was found to contain samples collected using vastly different surgical techniques (laser ablation and excision vs standard excision). [29] While the integrative analysis in the study using transfer learning techniques was able to minimize technique related signals [77], a more traditional analysis may have resulted in surfacing of substantial biological differences that are a consequence of process (e.g. activation of heat shock protein related pathways), not disease related biology. Such instances underline the fact that continuous collaboration with domain experts is needed to generate robust datasets in the future. A few such collaborations are beginning to show promise in generating valuable datasets for future use. [78]

In addition to sample scarcity, there is a dearth of comprehensive phenotypic-genotypic databases in rare disease. With the ubiquity of sequencing platforms, genomic data has been, relatively speaking, easy to gather for rare disease patients.[79,80,81] An important next step is to develop

comprehensive comprehensive genomics-driven genotype-phenotype databases that can fuel interpretation of features extracted using ML methods. Finally, mindful sharing of data with proper metadata and attribution to enable prompt data reuse is of utmost important in building datasets that can be of great value in rare disease. [82]

Development of methods that reliably support mechanistic interrogation of specific rare diseases

The majority of ML methods for rare disease that we have investigated are applied to classification tasks. Conversely, we've found few examples of methodologies that interrogate biological mechanisms of rare diseases. This is likely a consequence of a dearth of methods that can tolerate the constraints imposed by rare disease research such as phenotypic heterogeneity and limited data. An intentional push towards developing methods or analytical workflows that address this will be critical to apply machine learning approaches to rare disease data.

Method development with rare disease applications in mind requires the developers to bear the responsibility of ensuring that the resulting model is *trustworthy*. The field of natural language processing has a few examples of how this can be achieved.[83] One way to increase trust in a developed model is by helping users understand the behavior of the developed model through providing explanations regarding why a certain model made certain predictions.[83] Another approach is to provide robust *error analysis* for newly developed models to help users understand the strengths and weaknesses of a model.[84,85,86] Adoption of these kind of approaches into biological data and analysis is still rare but is quickly becoming necessary as machine learning approaches become mainstream in biomedicine.

Finally, methods that can reliably integrate disparate datasets will always remain a need of rare diseases. Moreover, combining data that originated from diverse modalities to create a complete picture of the disease related biology is increasingly becoming common. To facilitate such analyses in rare disease, methods that rely on finding structural correspondences between datasets ("anchors") may be able to transform the status-quo of using machine learning methods in rare disease.[87; 88/~mahadeva/papers/IJCAI2011-DA.pdf; https://www.cell.com/cell/fulltext/S0092-8674(19)30559-8] Overall, we speculate that this an important burgeoning area of research, and we are optimistic about the future of applying machine learning approaches to rare disease.

Definitions

Unsupervised learning:

Machine learning algorithms which can learn features from unlabeled training data (e.g. datasets where the samples do not have disease or phenotype labels) to predict the class or phenotype of new or unseen test data are part of unsupervised learning. Examples of unsupervised learning include principal component analyses, multidimensional scaling, UMAP, t-SNE, k-means clustering etc [TODO - add REFs].

Supervised learning:

Machine learning algorithms that require training data with specific phenotype labels are part of supervised learning. Such algorithms learn correlations of features with the phenotype labels and use the learned correlations to predict the phenotype labels of unseen or new test data.

VAE:

Variational Autoencoders or VAEs are unsupervised neural networks that use hidden layers to learn or encode representations from available data while mapping the input data to the output data. VAEs are distinct from other autoencoders since the distribution of the encodings are regularized such that they are close to a normal distribution, which may contribute to learning more biologically relevant signals [18].

References

1. The use of machine learning in rare diseases: a scoping review

Julia Schaefer, Moritz Lehne, Josef Schepers, Fabian Prasser, Sylvia Thun *Orphanet Journal of Rare Diseases* (2020-06-09) https://doi.org/ghb3wx DOI: 10.1186/s13023-020-01424-6 · PMID: 32517778 · PMCID: PMC7285453

2.

Potomac Publishing

(2018-10-08) https://www.fda.gov/media/99546/download

3. Learning statistical models of phenotypes using noisy labeled training data

Vibhu Agarwal, Tanya Podchiyska, Juan M Banda, Veena Goel, Tiffany I Leung, Evan P Minty, Timothy E Sweeney, Elsie Gyang, Nigam H Shah

Journal of the American Medical Informatics Association (2016-11) https://doi.org/f9bxf9

DOI: 10.1093/jamia/ocw028 · PMID: 27174893 · PMCID: PMC5070523

4. Classification in the Presence of Label Noise: A Survey

Benoit Frenay, Michel Verleysen

IEEE Transactions on Neural Networks and Learning Systems (2014-05) https://doi.org/f5zdgg

DOI: <u>10.1109/tnnls.2013.2292894</u> · PMID: <u>24808033</u>

5. Looking beyond the hype: Applied AI and machine learning in translational medicine

Tzen S. Toh, Frank Dondelinger, Dennis Wang

EBioMedicine (2019-09) https://doi.org/gg9dcx

DOI: 10.1016/j.ebiom.2019.08.027 · PMID: 31466916 · PMCID: PMC6796516

6. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data

Robert Clarke, Habtom W. Ressom, Antai Wang, Jianhua Xuan, Minetta C. Liu, Edmund A. Gehan, Yue Wang

Nature Reviews Cancer (2008-01) https://doi.org/ffksnf

DOI: <u>10.1038/nrc2294</u> · PMID: <u>18097463</u> · PMCID: <u>PMC2238676</u>

7. The curse(s) of dimensionality

Naomi Altman, Martin Krzywinski

Nature Methods (2018-05-31) https://doi.org/ghrqhp

DOI: 10.1038/s41592-018-0019-x · PMID: 29855577

8. Handbook of Data Visualization

Chun-houh Chen, Wolfgang Härdle, Antony Unwin

Springer Science and Business Media LLC (2008) https://doi.org/ckmkfp

DOI: <u>10.1007/978-3-540-33037-0</u>

9. Principal component analysis: a review and recent developments

Ian T. Jolliffe, Jorge Cadima

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (2016-04-13) https://doi.org/gcsfk7

DOI: <u>10.1098/rsta.2015.0202</u> · PMID: <u>26953178</u> · PMCID: <u>PMC4792409</u>

10. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

Leland McInnes, John Healy, James Melville

arXiv:1802.03426 [cs, stat] (2020-09-17) http://arxiv.org/abs/1802.03426

11. (2020-06-01) https://lvdmaaten.github.io/publications/papers/JMLR 2008.pdf

12. Automatic detection of rare pathologies in fundus photographs using few-shot learning

Gwenolé Quellec, Mathieu Lamard, Pierre-Henri Conze, Pascale Massin, Béatrice Cochener *Medical Image Analysis* (2020-04) https://doi.org/ggsrc7

DOI: 10.1016/j.media.2020.101660 · PMID: 32028213

13. Sensitive detection of rare disease-associated cell subsets via representation learning

Eirini Arvaniti, Manfred Claassen

Nature Communications (2017-04-06) https://doi.org/gf9t7w

DOI: <u>10.1038/ncomms14825</u> · PMID: <u>28382969</u> · PMCID: <u>PMC5384229</u>

14. The art of using t-SNE for single-cell transcriptomics

Dmitry Kobak, Philipp Berens

Nature Communications (2019-11-28) https://doi.org/ggdrfz

DOI: <u>10.1038/s41467-019-13056-x</u> · PMID: <u>31780648</u> · PMCID: <u>PMC6882829</u>

15. Dimensionality reduction by UMAP to visualize physical and genetic interactions

Michael W. Dorrity, Lauren M. Saunders, Christine Queitsch, Stanley Fields, Cole Trapnell *Nature Communications* (2020-03-24) https://doi.org/gggcqp

DOI: 10.1038/s41467-020-15351-4 · PMID: 32210240 · PMCID: PMC7093466

16. Feature Selection

Rama Chellappa, Pavan Turaga

Springer Science and Business Media LLC (2020) https://doi.org/ghggb9

DOI: <u>10.1007/978-3-030-03243-2 299-1</u>

17. How to Use t-SNE Effectively

Martin Wattenberg, Fernanda Viégas, lan Johnson

Distill (2016-10-13) https://doi.org/gffk7g

DOI: 10.23915/distill.00002

18. Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations

Gregory P. Way, Michael Zietz, Vincent Rubinetti, Daniel S. Himmelstein, Casey S. Greene

Genome Biology (2020-05-11) https://doi.org/gg2mjh

DOI: <u>10.1186/s13059-020-02021-3</u> · PMID: <u>32393369</u> · PMCID: <u>PMC7212571</u>

19. Ten quick tips for effective dimensionality reduction

Lan Huong Nguyen, Susan Holmes

PLOS Computational Biology (2019-06-20) https://doi.org/gf3583

DOI: <u>10.1371/journal.pcbi.1006907</u> · PMID: <u>31220072</u> · PMCID: <u>PMC6586259</u>

20. Clustering cancer gene expression data: a comparative study

Marcilio CP de Souto, Ivan G Costa, Daniel SA de Araujo, Teresa B Ludermir, Alexander Schliep *BMC Bioinformatics* (2008-11-27) https://doi.org/dggbn6

DOI: <u>10.1186/1471-2105-9-497</u> · PMID: <u>19038021</u> · PMCID: <u>PMC2632677</u>

21. Removing Batch Effects From Histopathological Images for Enhanced Cancer Diagnosis

Sonal Kothari, John H. Phan, Todd H. Stokes, Adeboye O. Osunkoya, Andrew N. Young, May D. Wang

IEEE Journal of Biomedical and Health Informatics (2014-05) https://doi.org/gdm9jd

DOI: 10.1109/jbhi.2013.2276766 · PMID: 24808220 · PMCID: PMC5003052

22. Adjusting batch effects in microarray expression data using empirical Bayes methods

W. Evan Johnson, Cheng Li, Ariel Rabinovic

Biostatistics (2007-01) https://doi.org/dsf386

DOI: 10.1093/biostatistics/kxj037 · PMID: 16632515

23. svaseq: removing batch effects and other unwanted noise from sequencing data

Jeffrey T. Leek

Nucleic Acids Research (2014-12-01) https://doi.org/f8k8kf

DOI: <u>10.1093/nar/gku864</u> · PMID: <u>25294822</u> · PMCID: <u>PMC4245966</u>

24. A scaling normalization method for differential expression analysis of RNA-seq data

Mark D Robinson, Alicia Oshlack

Genome Biology (2010) https://doi.org/cq6f8b

DOI: <u>10.1186/gb-2010-11-3-r25</u> · PMID: <u>20196867</u> · PMCID: <u>PMC2864565</u>

25. Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder

Sanjiv K. Dwivedi, Andreas Tjärnberg, Jesper Tegnér, Mika Gustafsson

Nature Communications (2020-02-12) https://doi.org/gg7krm

DOI: <u>10.1038/s41467-020-14666-6</u> · PMID: <u>32051402</u> · PMCID: <u>PMC7016183</u>

26. CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data

Elana J. Fertig, Jie Ding, Alexander V. Favorov, Giovanni Parmigiani, Michael F. Ochs *Bioinformatics* (2010-11-01) https://doi.org/cwqsv4

DOI: <u>10.1093/bioinformatics/btq503</u> · PMID: <u>20810601</u> · PMCID: <u>PMC3025742</u>

27. Regularized Machine Learning in the Genetic Prediction of Complex Traits

Sebastian Okser, Tapio Pahikkala, Antti Airola, Tapio Salakoski, Samuli Ripatti, Tero Aittokallio *PLoS Genetics* (2014-11-13) https://doi.org/ghrqhq

DOI: <u>10.1371/journal.pgen.1004754</u> · PMID: <u>25393026</u> · PMCID: <u>PMC4230844</u>

28. Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events

Menelaos Pavlou, Gareth Ambler, Shaun Seaman, Maria De Iorio, Rumana Z Omar

Statistics in Medicine (2015-10-29) https://doi.org/ggn9zg

DOI: 10.1002/sim.6782 · PMID: 26514699 · PMCID: PMC4982098

29. Integrative Analysis Identifies Candidate Tumor Microenvironment and Intracellular Signaling Pathways that Define Tumor Heterogeneity in NF1

Jineta Banerjee, Robert J Allaway, Jaclyn N Taroni, Aaron Baker, Xiaochun Zhang, Chang In Moon, Christine A Pratilas, Jaishri O Blakeley, Justin Guinney, Angela Hirbe, ... Sara JC Gosline *Genes* (2020-02-21) https://doi.org/gg4rbj

DOI: <u>10.3390/genes11020226</u> · PMID: <u>32098059</u> · PMCID: <u>PMC7073563</u>

30. Improvements on Cross-Validation: The 632+ Bootstrap Method

Bradley Efron, Robert Tibshirani

Journal of the American Statistical Association (1997-06) https://doi.org/gfts5c

DOI: <u>10.1080/01621459.1997.10474007</u>

31.**:(unav)**

Leo Breiman

Machine Learning (2001) https://doi.org/d8zjwq

DOI: 10.1023/a:1010933404324

32. Bootstrap Methods for Developing Predictive Models

Peter C Austin, Jack V Tu

The American Statistician (2004-05) https://doi.org/bzjjxt

DOI: <u>10.1198/0003130043277</u>

33. Fast bootstrap methodology for regression model selection

A. Lendasse, G. Simon, V. Wertz, M. Verleysen

Neurocomputing (2005-03) https://doi.org/dx5c3p

DOI: 10.1016/j.neucom.2004.11.017

34. A bootstrap resampling procedure for model building: Application to the cox regression model

Willi Sauerbrei, Martin Schumacher

Statistics in Medicine (1992) https://doi.org/cnpg3d

DOI: <u>10.1002/sim.4780111607</u> · PMID: <u>1293671</u>

35. Evaluating predictive modeling algorithms to assess patient eligibility for clinical trials from routine data

Felix Köpcke, Dorota Lubgan, Rainer Fietkau, Axel Scholler, Carla Nau, Michael Stürzl, Roland Croner, Hans-Ulrich Prokosch, Dennis Toddenroth

BMC Medical Informatics and Decision Making (2013-12-09) https://doi.org/f5jqvh

DOI: 10.1186/1472-6947-13-134 · PMID: 24321610 · PMCID: PMC4029400

36. Analyzing bagging

Peter Bühlmann, Bin Yu

The Annals of Statistics (2002-08) https://doi.org/btmtjp

DOI: 10.1214/aos/1031689014

37. Utilising artificial intelligence to determine patients at risk of a rare disease: idiopathic pulmonary arterial hypertension

David G. Kiely, Orla Doyle, Edmund Drage, Harvey Jenner, Valentina Salvatelli, Flora A. Daniels, John Rigg, Claude Schmitt, Yevgeniy Samyshkin, Allan Lawrie, Rito Bergemann

Pulmonary Circulation (2019-11-20) https://doi.org/gg4jc7

DOI: <u>10.1177/2045894019890549</u> · PMID: <u>31798836</u> · PMCID: <u>PMC6868581</u>

38. Component-based face detection

B. Heiselet, T. Serre, M. Pontil, T. Poggio

Institute of Electrical and Electronics Engineers (IEEE) (2005-08-25) https://doi.org/c89p2b

DOI: 10.1109/cvpr.2001.990537

39. The Architecture of the Face and Eyes Detection System Based on Cascade Classifiers

Andrzej Kasinski, Adam Schmidt

Advances in Soft Computing (2007) https://doi.org/cbzq9n

DOI: 10.1007/978-3-540-75175-5 16

40. Real time facial expression recognition with AdaBoost

Yubo Wang, Haizhou Ai, Bo Wu, Chang Huang Institute of Electrical and Electronics Engineers (IEEE) (2004) https://doi.org/crv3sq DOI: 10.1109/icpr.2004.1334680

41. https://arxiv.org/abs/1301.3781v343

42. Learning to Identify Rare Disease Patients from Electronic Health Records.

Rich Colbaugh, Kristin Glass, Christopher Rudolf, Mike Tremblay Volv Global Lausanne Switzerland *AMIA ... Annual Symposium proceedings. AMIA Symposium* (2018-12-05)

https://www.ncbi.nlm.nih.gov/pubmed/30815073

PMID: 30815073 · PMCID: PMC6371307

43. Machine learning for psychiatric patient triaging: an investigation of cascading classifiers

Vivek Kumar Singh, Utkarsh Shrivastava, Lina Bouayad, Balaji Padmanabhan, Anna Ialynytchev, Susan K Schultz

Journal of the American Medical Informatics Association (2018-11) https://doi.org/gfh874

DOI: 10.1093/jamia/ocy109 · PMID: 30380082 · PMCID: PMC6213089

44. Definitions, methods, and applications in interpretable machine learning

W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, Bin Yu *Proceedings of the National Academy of Sciences* (2019-10-29) https://doi.org/ggbhmq DOI: 10.1073/pnas.1900654116 · PMID: 31619572 · PMCID: PMC6825274

45. Regularization

Jake Lever, Martin Krzywinski, Naomi Altman *Nature Methods* (2016-09-29) https://doi.org/gf3zrr

DOI: 10.1038/nmeth.4014

46. Regularization and variable selection via the elastic net

Hui Zou, Trevor Hastie

Journal of the Royal Statistical Society: Series B (Statistical Methodology) (2005-04)

https://doi.org/b8cwwr

DOI: <u>10.1111/j.1467-9868.2005.00503.x</u>

47. Adaptive Ridge Regression for Rare Variant Detection

Haimao Zhan, Shizhong Xu

PLoS ONE (2012-08-28) https://doi.org/f36tm5

DOI: <u>10.1371/journal.pone.0044173</u> · PMID: <u>22952918</u> · PMCID: <u>PMC3429469</u>

48. Statistical analysis strategies for association studies involving rare variants

Vikas Bansal, Ondrej Libiger, Ali Torkamani, Nicholas J. Schork *Nature Reviews Genetics* (2010-10-13) https://doi.org/dn4jtz
DOI: 10.1038/nrg2867 · PMID: 20940738 · PMCID: PMC3743540

49. Association screening of common and rare genetic variants by penalized regression

H. Zhou, M. E. Sehl, J. S. Sinsheimer, K. Lange

Bioinformatics (2010-08-06) https://doi.org/c7ndkx

DOI: <u>10.1093/bioinformatics/btq448</u> · PMID: <u>20693321</u> · PMCID: <u>PMC3025646</u>

50. Methods for Detecting Associations with Rare Variants for Common Diseases: Application to Analysis of Sequence Data

Bingshan Li, Suzanne M. Leal

The American Journal of Human Genetics (2008-09) https://doi.org/d4jpcb
DOI: 10.1016/j.ajhg.2008.06.024 · PMID: 18691683 · PMCID: PMCID: PMC2842185

51. Comparison of statistical approaches to rare variant analysis for quantitative traits

Han Chen, Audrey E Hendricks, Yansong Cheng, Adrienne L Cupples, Josée Dupuis, Ching-Ti Liu *BMC Proceedings* (2011-11-29) https://doi.org/b9mf4x

DOI: <u>10.1186/1753-6561-5-s9-s113</u> · PMID: <u>22373209</u> · PMCID: <u>PMC3287837</u>

52. An Improved Version of Logistic Bayesian LASSO for Detecting Rare Haplotype-Environment Interactions with Application to Lung Cancer

Yuan Zhang, Swati Biswas

Cancer Informatics (2015-02-09) https://doi.org/ggxxfp

DOI: 10.4137/cin.s17290 · PMID: 25733797 · PMCID: PMC4332044

53. Multiple Regression Methods Show Great Potential for Rare Variant Association Tests

ChangJiang Xu, Martin Ladouceur, Zari Dastani, J. Brent Richards, Antonio Ciampi, Celia M. T. Greenwood

PLoS ONE (2012-08-08) https://doi.org/f35726

DOI: <u>10.1371/journal.pone.0041694</u> · PMID: <u>22916111</u> · PMCID: <u>PMC3420665</u>

54. A Sparse-Group Lasso

Noah Simon, Jerome Friedman, Trevor Hastie, Robert Tibshirani *Journal of Computational and Graphical Statistics* (2013-04) https://doi.org/gcvjw8

DOI: <u>10.1080/10618600.2012.681250</u>

55. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification

Zakariya Yahya Algamal, Muhammad Hisyam Lee

Computers in Biology and Medicine (2015-12) https://doi.org/f73xvj

DOI: 10.1016/j.compbiomed.2015.10.008 · PMID: 26520484

56. Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification

Yong Liang, Cheng Liu, Xin-Ze Luan, Kwong-Sak Leung, Tak-Ming Chan, Zong-Ben Xu, Hai Zhang *BMC Bioinformatics* (2013-06-19) https://doi.org/gb8v2x

DOI: <u>10.1186/1471-2105-14-198</u> · PMID: <u>23777239</u> · PMCID: <u>PMC3718705</u>

57. An elastic-net logistic regression approach to generate classifiers and gene signatures for types of immune cells and T helper cell subsets

Arezo Torang, Paraag Gupta, David J. Klinke

BMC Bioinformatics (2019-08-22) https://doi.org/gg5hmj

DOI: <u>10.1186/s12859-019-2994-z</u> · PMID: <u>31438843</u> · PMCID: <u>PMC6704630</u>

58. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species

Christopher J. Mungall, Julie A. McMurry, Sebastian Köhler, James P. Balhoff, Charles Borromeo, Matthew Brush, Seth Carbon, Tom Conlin, Nathan Dunn, Mark Engelstad, ... Melissa A. Haendel *Nucleic Acids Research* (2017-01-04) https://doi.org/f9v7bz

DOI: <u>10.1093/nar/gkw1128</u> · PMID: <u>27899636</u> · PMCID: <u>PMC5210586</u>

59. Systematic integration of biomedical knowledge prioritizes drugs for repurposing

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, Sergio E Baranzini

eLife (2017-09-22) https://doi.org/cdfk

DOI: 10.7554/elife.26726 · PMID: 28936969 · PMCID: PMC5640425

60. A Framework for Automated Construction of Heterogeneous Large-Scale Biomedical Knowledge Graphs

Tiffany J. Callahan, Ignacio J. Tripodi, Lawrence E. Hunter, William A. Baumgartner *Cold Spring Harbor Laboratory* (2020-05-02) https://doi.org/gg338z

DOI: 10.1101/2020.04.30.071407

61. A global network of biomedical relationships derived from text

Bethany Percha, Russ B Altman

Bioinformatics (2018-08-01) https://doi.org/gc3ndk

DOI: <u>10.1093/bioinformatics/bty114</u> · PMID: <u>29490008</u> · PMCID: <u>PMC6061699</u>

62. **Orphanet** https://www.orpha.net/consor/cgi-bin/index.php

63. Structured reviews for data and knowledge-driven research

Núria Queralt-Rosinach, Gregory S Stupp, Tong Shu Li, Michael Mayers, Maureen E Hoatlin, Matthew Might, Benjamin M Good, Andrew I Su

Database (2020) https://doi.org/ggsdkj

DOI: <u>10.1093/database/baaa015</u> · PMID: <u>32283553</u> · PMCID: <u>PMC7153956</u>

64. A Literature-Based Knowledge Graph Embedding Method for Identifying Drug Repurposing Opportunities in Rare Diseases

Daniel N. Sosa, Alexander Derry, Margaret Guo, Eric Wei, Connor Brinton, Russ B. Altman *Cold Spring Harbor Laboratory* (2019-08-08) https://doi.org/gg5j64

DOI: <u>10.1101/727925</u>

65. Improving rare disease classification using imperfect knowledge graph

Xuedong Li, Yue Wang, Dongwu Wang, Walter Yuan, Dezhong Peng, Qiaozhu Mei *BMC Medical Informatics and Decision Making* (2019-12-05) https://doi.org/gg5j65

DOI: <u>10.1186/s12911-019-0938-1</u> · PMID: <u>31801534</u> · PMCID: <u>PMC6894101</u>

66. A Survey on Transfer Learning

Sinno Jialin Pan, Qiang Yang

IEEE Transactions on Knowledge and Data Engineering (2010-10) https://doi.org/bc4vws

DOI: <u>10.1109/tkde.2009.191</u>

67.**:(unav)**

Rich Caruana

Machine Learning (1997) https://doi.org/d3gsgj

DOI: 10.1023/a:1007379606734

68. An Overview of Multi-Task Learning in Deep Neural Networks

Sebastian Ruder

arXiv:1706.05098 [cs, stat] (2017-06-15) http://arxiv.org/abs/1706.05098

69. A Survey on Multi-Task Learning

Yu Zhang, Qiang Yang *arXiv:1707.08114 [cs]* (2018-07-26) http://arxiv.org/abs/1707.08114

70. Generalizing from a Few Examples: A Survey on Few-Shot Learning

Yaging Wang, Quanming Yao, James Kwok, Lionel M. Ni

71. Modeling Industrial ADMET Data with Multitask Networks

Steven Kearnes, Brian Goldman, Vijay Pande arXiv:1606.08793 [stat] (2017-01-12) http://arxiv.org/abs/1606.08793

72. The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data

Daisy Yi Ding, Chloé Simpson, Stephen Pfohl, Dave C. Kale, Kenneth Jung, Nigam H. Shah *arXiv:1808.03331 [cs, stat]* (2019-01-05) http://arxiv.org/abs/1808.03331

73. Low Data Drug Discovery with One-Shot Learning

Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, Vijay Pande *ACS Central Science* (2017-04-03) https://doi.org/f95dnd

DOI: <u>10.1021/acscentsci.6b00367</u> · PMID: <u>28470045</u> · PMCID: <u>PMC5408335</u>

74. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia

Su-In Lee, Safiye Celik, Benjamin A. Logsdon, Scott M. Lundberg, Timothy J. Martins, Vivian G. Oehler, Elihu H. Estey, Chris P. Miller, Sylvia Chien, Jin Dai, ... Pamela S. Becker *Nature Communications* (2018-01-03) https://doi.org/gcpx72

DOI: 10.1038/s41467-017-02465-5 · PMID: 29298978 · PMCID: PMC5752671

75. DeepProfile: Deep learning of cancer molecular profiles for precision medicine

Ayse Berceste Dincer, Safiye Celik, Naozumi Hiranuma, Su-In Lee *bioRxiv* (2018-05-26) https://www.biorxiv.org/content/10.1101/278739v2

DOI: <u>10.1101/278739</u>

76. Pathway-level information extractor (PLIER) for gene expression data

Weiguang Mao, Elena Zaslavsky, Boris M. Hartmann, Stuart C. Sealfon, Maria Chikina *Nature Methods* (2019-06-27) https://doi.org/gf75g6

DOI: <u>10.1038/s41592-019-0456-1</u> · PMID: <u>31249421</u> · PMCID: <u>PMC7262669</u>

77. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease

Jaclyn N. Taroni, Peter C. Grayson, Qiwen Hu, Sean Eddy, Matthias Kretzler, Peter A. Merkel, Casey S. Greene

Cell Systems (2019-05) https://doi.org/gf75g5

DOI: <u>10.1016/j.cels.2019.04.003</u> · PMID: <u>31121115</u> · PMCID: <u>PMC6538307</u>

78. A clinically and genomically annotated nerve sheath tumor biospecimen repository

Kai Pollard, Jineta Banerjee, Xengie Doan, Jiawan Wang, Xindi Guo, Robert Allaway, Shannon Langmead, Bronwyn Slobogean, Christian F. Meyer, David M. Loeb, ... Christine A. Pratilas *Scientific Data* (2020-06-19) https://doi.org/ghv6ch

DOI: <u>10.1038/s41597-020-0508-5</u> · PMID: <u>32561749</u> · PMCID: <u>PMC7305302</u>

79. Rare-disease genetics in the era of next-generation sequencing: discovery to translation

Kym M. Boycott, Megan R. Vanstone, Dennis E. Bulman, Alex E. MacKenzie *Nature Reviews Genetics* (2013-09-03) https://doi.org/ghvhsd

DOI: 10.1038/nrg3555 · PMID: 23999272

80. Paediatric genomics: diagnosing rare disease in children

Caroline F. Wright, David R. FitzPatrick, Helen V. Firth

Nature Reviews Genetics (2018-02-05) https://doi.org/gcxbr8

DOI: <u>10.1038/nrg.2017.116</u> · PMID: <u>29398702</u>

81. Next-Generation Sequencing to Diagnose Suspected Genetic Disorders

David R. Adams, Christine M. Eng

New England Journal of Medicine (2018-10-04) https://doi.org/gf49m7

DOI: 10.1056/nejmra1711801 · PMID: 30281996

82. Responsible, practical genomic data sharing that accelerates research

James Brian Byrd, Anna C. Greene, Deepashree Venkatesh Prasad, Xiaoqian Jiang, Casey S. Greene *Nature Reviews Genetics* (2020-10) https://www.nature.com/articles/s41576-020-0257-5

DOI: <u>10.1038/s41576-020-0257-5</u>

- 83. (2016-06-16) https://www.aclweb.org/anthology/N16-3020.pdf
- 84. (2019-07-15) https://www.aclweb.org/anthology/P19-1073.pdf

85. Towards Automatic Error Analysis of Machine Translation Output

Maja Popović, Hermann Ney

Computational Linguistics (2011-07-14) https://doi.org/10.1162/COLI a 00072

DOI: 10.1162/coli a 00072

86. Recognizing names in biomedical texts: a machine learning approach

G. Zhou, J. Zhang, J. Su, D. Shen, C. Tan

Bioinformatics (2004-02-10) https://doi.org/bxts7r

DOI: <u>10.1093/bioinformatics/bth060</u> · PMID: <u>14871877</u>

87. (2010-06-15) https://www.aclweb.org/anthology/W06-1615.pdf

88. College of Information & Computer Sciences

College of Information & Computer Sciences https://www.cics.umass.edu/