Absorção de Raios-X

Material Utilizado:

- 1 unidade de raios-X (PHYWE 09056.97)
- 1 tubo de Geiger-Müller (PHYWE 09025.11)
- 1 contador de Geiger-Müller (PHYWE 13606.99)
- 1 conjunto de placas absorvedoras de raios—X (PHYWE 09056.02)

<u>Objetivo do Experimento</u>: Investigar a atenuação de raios—X monocromáticos com a penetração num meio e a dependência do coeficiente de absorção de raios—X com o comprimento de onda do mesmo. Determinar o limitar desta absorção em casos específicos.

Definições e Referências

Roteiro original: PHYWE 5.4.04 X-ray absorption.

Manuais de instrução:

PHYWE 09056.97 x-ray unit with recorder output.

PHYWE 13606.99 Geiger-Muller counter.

PHYWE 09025.11 Counter tube type A

Atenuação (Lei de Bouguer-Beer-Lambert)

Coeficiente linear de atenuação $\mu(e)$ de uma radiação incidente de intensidade I(0) e intensidade transmitida I(e), por uma camada de espessura e.

$$I(e) = I(0)e^{-\mu(e)e}$$
.

Coeficiente mássico de atenuação $\frac{\mu}{\rho}$, onde ρ é a densidade do material absorvedor.

Lei de Bragg

Condição de ocorrência de máximos de difração de raios—X, de comprimento de onda λ , num monocristal, por uma família de planos atômicos de distância interplanar d, onde n é a ordem de difração e θ é o ângulo de Bragg (ângulo entre o feixe incidente e os planos atômicos).

 $n\lambda = 2d \operatorname{sen}\theta$.

Correção da taxa de contagem devido ao "tempo morto" τ do tubo contador

Se C é a contagem (número de pulsos) registrada durante um intervalo de tempo Δt , então a taxa de contagem R (não corrigida) é $R = \frac{C}{\Delta t}$, A taxa de contagem corrigida R_C será dada por $R_C = \frac{R}{\Delta t} = \frac{1}{L} = \frac{1}{L} = \frac{1}{L}$

2

$$R_{\rm C} = \frac{R}{1 - \tau R} = \frac{1}{\frac{1}{R} - \tau} = \frac{1}{\frac{1}{(C/\Delta t)} - \tau} = \frac{1}{\frac{\Delta t}{C} - \tau}.$$

Níveis de energia do cobre envolvidos com a emissão de raios—X [Copper K Rontgen (2006—Pieter Kuiper) (commons.wikimedia.org)]

PROCEDIMENTO

- 1. Neste experimento você fará uso do obturador de abertura de 2mm, do monocromador de LiF, e do tubo de Geiger-Müller (em conexão com o porta-lâminas). Insira-os na unidade de raios-X. Siga as instruções específicas contidas no texto original (*PHYWE 5.4.04 X-ray absorption*).
- 2. Conecte a unidade de raios-X ao contador. Ligue-os. A unidade de raios-X deverá permanecer ligada por 10 minutos antes do início das medições.

Nas próximas ações, para cada medição contagem C, o tempo de contagem Δt correspondente, a ser selecionado no contador, deve ser o maior possível. Um software de tratamento de dados deverá ser escolhido para o cálculo de diversas grandezas. Elas são:

- Taxa de contagem corrigida $R_{\rm C}$ obtida segundo a prescrição $R_{\rm C} = \frac{1}{\frac{\Delta t}{C} \tau} \frac{1}{\frac{1}{R_{\rm fundo}} \tau}$, onde τ (= 100 μs) é o "tempo morto" do tubo contador e $R_{\rm fundo}$ é a a taxa de contagem associada à radiação de fundo;
- Taxa de transmissão $\frac{tcoef(e) = \frac{R_C(e)}{R_C(0)}}{R_C(0)}$, onde $R_C(e)$ e $R_C(0)$ são as taxas de contagem corrigidas, obtidas para a lâmina de espessura e e na ausência de lâmina;
- Coeficiente mássico de absorção $\frac{\mu(e)}{\rho}$, onde $\mu(e) = \left(\frac{1}{e}\right) ln \left[\frac{R_{\rm C}(0)}{R_{\rm C}(e)}\right]$ é o coeficiente linear de absorção e ρ é a densidade do material absorvedor.
- 3. Meça e registre R_{fundo} .

A partir de agora, você investigará a absorção de raios—X em diversos metais. Para os metais Al e Sn e Ni, estabeleça como tensão de anodo $U_A = 25,0 \text{ kV}$. Para o Cu, $U_A = 15,0 \text{ kV}$.

4a. <u>Atenuação de raios—X no alumínio</u>. Selecione a tensão de anodo U_A adequada e registre-a. Determine a dependência da atenuação no alumínio com a espessura da amostra. Para tanto, na tabela apropriada, registre, para cada espessura sugerida, o tempo de contagem Δt e a contagem C, para os comprimentos de onda $\lambda = 1.04$ Å e $\lambda = 1.54$ Å.

Apresente a tabela produzida pelo software, onde deverão estar calculados as taxas de contagem corrigidas R_{C} e a atenuação representada pela grandeza ln (tcoef).

Construa um gráfico *ln* (*tcoef*) versus *e* (para os dois comprimentos de onda).

4a. <u>Atenuação de raios—X no zinco</u>. Selecione a tensão de anodo U_A adequada e registre-a. Determine a dependência da atenuação no alumínio com a espessura da amostra. Para tanto, na tabela apropriada, registre, para cada espessura sugerida, o tempo de contagem Δt e a contagem C, para o comprimento de onda $\lambda = 1.54 \text{ Å}$.

Apresente a tabela produzida pelo software, onde deverão estar calculados as taxas de contagem corrigidas R_{C} e a atenuação representada pela grandeza ln (tcoef).

Construa um gráfico *ln* (*tcoef*) versus *e*.

5. <u>Determinação do coeficiente mássico de absorção como função do comprimento de onda no alumínio, estanho, cobre e níquel.</u>

Para cada um dos metais citados (Al, Sn, Cu e Ni):

- Estabeleça a tensão de anodo U_A sugerida e registre-a;
- Inicialmente registre na tabela adequada a dependência da contagem C (acompanhada dos correspondentes tempos de contagem Δt) com o ângulo de Bragg θ (para o intervalo sugerido) na ausência da lâmina absorvedora (obviamente, esta curva releva a dependência com o comprimento de onda da intensidade da radiação produzida pela fonte de raios-X (neste caso, trata-se de um anodo de cobre)). Posteriormente, registre a dependência da contagem C (acompanhada dos correspondentes tempos de contagem Δt) com o ângulo de Bragg θ (para o mesmo intervalo sugerido) com a presença da lâmina absorvedora (de espessura especificada) (obviamente, esta curva releva a dependência com o comprimento de onda da intensidade da radiação transmitida pela lâmina);
- Apresente a tabela produzida pelo software, onde deverão estar calculados o comprimento de onda λ , as taxas de contagem corrigidas $R_C(0)$ e $R_C(e)$, e o coeficiente mássico de absorção $\frac{\mu(e)}{2}$;
- Construa um gráfico $\left(\frac{\mu}{\rho}\right)^{(1/3)}$ versus λ .

6. <u>Limiar de absorção</u>.

Com base nos gráficos obtidos no item 5, e para cada os metais $\frac{\text{Cu}}{\text{Cu}}$ e $\frac{\text{Ni}}{\text{Ni}}$, identifique e $\frac{\text{registre}}{\text{registre}}$, o comprimento de onda $\frac{\lambda_K}{\text{K}}$ do limiar de absorção. Calcule e $\frac{\text{registre}}{\text{correspondente}}$.

7. <u>Diagramas de níveis de energia</u>. Com base nos resultados obtidos para E_K , para o Cu e Ni, identifique, nos diagarmas de níveis atômicos desses metais, a possível transição eletrônica associada à absorção de raios—X observada. Para tanto consulte uma literarura apropriada (por exemplo, *X–Ray Atomic Energy Levels, CRC Handbook of Chemistry and Physics 95th Edition*, 10–218)

Folha de Resultados

Absorção de Raios-X

Neste experimento, para todas as coletas de dados, foi usado como monocromador um cristal de fluoreto de lítio (LiF), para o qual a distância interplanar em questão é d = 201,4 pm.

Nas tabelas será utilizada a seguinte legenda

C: Contagem (número de pulsos);

 Δt : tempo de contagem;

 $R_{\rm C}$: taxa de contagem corrigida levando-se em conta a radiação de fundo e "tempo morto" do contador;

 R_{fundo} : taxa de contagem da radiação de fundo;

e: espessura da placa absorvedora;

θ: ângulo de Bragg;

 $\mu(e)$: coeficiente de atenuação linear para a espessura e;

 $\rho: densidade \ do \ material \ absorvedor \left(\rho_{Al}=2,699\frac{g}{cm^3}, \ \rho_{Cu}=8,96\frac{g}{cm^3}, \ \rho_{Ni}=8,902\frac{g}{cm^3}, \ \rho_{Sn}=7,2984\frac{g}{cm^3}\right);$

 $\frac{\mu(e)}{\rho}$: coeficiente mássico de absorção;

 $tcoef(e) = \frac{R_{\rm C}(e)}{R_{\rm C}(0)}$: coeficiente de transmissão.

Os cálculos deverão ser feitos da seguinte forma:

$$\lambda = 2d \operatorname{sen}\theta, \quad R_{\mathrm{C}} = \frac{1}{\frac{\Delta t}{C} - \tau} - \frac{1}{\frac{1}{R_{\mathrm{fundo}}} - \tau} \quad e \quad \mu(e) = \left(\frac{1}{e}\right) \ln\left[\frac{R_{\mathrm{C}}\left(0\right)}{R_{\mathrm{C}}\left(e\right)}\right].$$

1. Radiação de fundo

$$R_{\text{fundo}} = \underline{\qquad} s^{-1}.$$

2. Determinação da atenuação em função da espessura

2a. ALUMÍNIO (medidas)

$$U_{\rm A} = \underline{\hspace{1cm}} kV$$

	θ = 22,5 °		θ = 15,0 °		θ = 22,5 °	θ = 15,0 °	θ = 22,5 °	θ = 15,0 °
	$\lambda = 1,54 \text{ Å}$		$\lambda = 1.04 \text{ Å}$		$\lambda = 1,54 \text{ Å}$	$\lambda = 1,04 \text{ Å}$	$\lambda = 1,54 \text{ Å}$	$\lambda = 1,04 \text{ Å}$
e (mm)	Δt (s)	С	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C} ({\rm s}^{-1})$	ln (tcoef)	ln (tcoef)
0								
0,02								
0,04								
0,06								
0,08								
0,10								
0,12								
0,14								
0,16								

2a. ALUMÍNIO (tabela do software)

mm	S		S		s ⁻¹	s ⁻¹		
e	deltat1	C1	deltat2	C2	RC1	RC2	Intcoef1	Intcoef2
0	1	2098	10	3376	2654,7340361354	349,105586887	1,532107774E-14	-2,6534330289E-14
0,02								
0,04								
0,06								
0,08								
0,10								
0,12								
0,14								
0,16								

2a. ALUMÍNIO (gráfico lntcoef versus e – logaritmo do coeficiente de transmissão versus espessura)

2b. ZINCO (medidas)

$$U_{\rm A} = \underline{\hspace{1cm}} \, \mathrm{kV}$$

	$\theta =$	22,5 °	θ = 22,5 °	θ = 22,5 °
	$\lambda =$	1,54 Å	$\lambda = 1,54 \text{ Å}$	$\lambda = 1,54 \text{ Å}$
e (mm)	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	ln (tcoef)
0	_			
0,025				
0,050				
0,075				
0,100				

2b. ZINCO (tabela do software)

mm	S		s^{-1}	
e	deltat	C	RC	Intcoef
0				
0,025				
0,05				
0,075				
0,1				

2b. ZINCO (gráfico lntcoef versus e – logaritmo do coeficiente de transmissão versus espessura)

3. <u>Determinação do coeficiente mássico de absorção como função do comprimento de onda</u> (Al, Sn, Cu e Ni).

Para os metais Al e Sn e Ni, estabeleça $U_{\rm A}=25{,}0$ kV. Para o Cu, $U_{\rm A}=15{,}0$ kV.

3a. ALUMÍNIO (medidas)

$$U_{\rm A} = \underline{\hspace{1cm}} \, {\rm kV}$$

		e =	0 mm	e =	0,08 mm	e = 0 mm	e = 0.08 mm		
θ (°)	λ (pm)	Δt (s)	С	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)} \left[(cm^2/g)^{(1/3)} \right]$
8,0									
9,0									
10,0									
11,0									
12,0									
13,0									
14,0									
15,0									
16,0									
17,0									
18,0									
19,0									
20,0									

3a. ALUMÍNIO (tabela do software)

0	pm	S		S		s ⁻¹	s ⁻¹	cm ² /g	$(cm^2/g)^{(1/3)}$
teta	lambda	deltat0	C0	deltate	Се	RC0	RCe	absorptionmcoef	absmcoefexp1third
8	56,0589241167	10	1380	60	7951	139,6410400586	134,0063082798	1,9075701553	1,2402050813
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									

3a. ALUMÍNIO (gráfico $\left(\frac{\mu}{\rho}\right)^{(1/3)}$ versus λ – raiz cúbica do coeficiente mássico de absorção versus comprimento de onda)

3b. ESTANHO (medidas)

 $U_{\rm A} = \underline{\qquad} {\rm kV}$

		e =	0 mm	e =	0,025 mm	e = 0 mm	e = 0.025 mm		
θ (°)	λ (pm)	Δt (s)	С	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)} \left[(cm^2/g)^{(1/3)} \right]$
8,0									
9,0									
10,0									
11,0									
12,0									
13,0									
14,0									
15,0									
16,0									
17,0									
18,0									
19,0									
20,0									

3b. ESTANHO (tabela do software)

0	pm	S		S		s^{-1}	s ⁻¹	cm ² /g	$(cm^2/g)^{(1/3)}$
teta	lambda	deltat0	C0	deltate	Ce	RC0	RCe	absorptionmcoef	absmcoefexp1third
8	56,0589241167	10	2037	60	5390	207,6456407634	90,3576429915	45,6021796585	3,5726888979
9									
10									
11									
12									
13									
14									
15									
16									
17									
18						·			
19						·			
20						·			

3b. ESTANHO (gráfico $\left(\frac{\mu}{\rho}\right)^{(1/3)}$ versus λ – raiz cúbica do coeficiente mássico de absorção versus comprimento de onda)

2c. COBRE (medidas)

 $U_{\rm A} = \underline{\qquad} {\rm kV}$

		e =	e = 0 mm		0,025 mm	e = 0 mm	e = 0.025 mm		
θ (°)	λ (pm)	Δt (s)	С	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)} \left[(cm^2/g)^{(1/3)} \right]$
12,0									
13,0									
14,0									
15,0									
16,0									
17,0									
18,0									
19,0									
19,2									
19,4									
19,6									
19,8									

2c. COBRE (medidas)

		e =	0 mm	e =	0,025 mm	e = 0 mm	e = 0.025 mm		
θ (°)	λ (pm)	Δt (s)	C	Δt (s)	C	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)} \left[(cm^2/g)^{(1/3)} \right]$
20,0									
20,2									
20,4									
20,6									
20,8									
21,0									
21,2									
21,4									
21,6									
21,8									
22,0									
22,2									
22,4									
22,6									
22,8									
23,0									

2c. COBRE (medidas)

		e =	0 mm	e =	0,025 mm	e = 0 mm	e = 0.025 mm		
θ (°)	λ (pm)	Δt (s)	С	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)} \left[(cm^2/g)^{(1/3)} \right]$
23,2									
23,4									
23,6									
23,8									
24,0									
24,2									
24,4									
24,6									
24,8									
25,0									

3c. COBRE (tabela do software)

0	pm	S		S		s ⁻¹	s ⁻¹	cm ² /g	$(cm^2/g)^{(1/3)}$
teta	lambda	deltat0	C0	deltate	Ce	RC0	RCe	absorptionmcoef	absmcoefexp1third
12									
13									
14									
15									
16									
17									
18									
19									
19,2									
19,4									
19,6									
19,8									
20									
20,2									
20,4									
20,6									
20,8									
21									
21,2									
21,4									
21,6									
21,8									
22									
22,2									
22,4									
22,6									
22,8									
22,8 23 23,2									
23,2									
23,4									
23,6									
23,8									
24									
24,2									
24,4									
24,6									
24,8 25									
25									

3b. COBRE (gráfico $\left(\frac{\mu}{\rho}\right)^{(1/3)}$ versus λ – raiz cúbica do coeficiente mássico de absorção versus comprimento de onda)

3d. NÍQUEL (medidas)

 $U_{\rm A} = \underline{\hspace{1cm}} \, \mathrm{kV}$

		e =	0 mm	e =	0,025 mm	e = 0 mm	e = 0.025 mm		
θ (°)	λ (pm)	Δt (s)	С	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)} \left[(cm^2/g)^{(1/3)} \right]$
8,0									
9,0									
10,0									
11,0									
12,0									
13,0									
14, 0									
15, 0									
16, 0									
17,0									
18,0									
19,0									
19,2									
19,4									
19,6									
19,8									

3d. NÍQUEL (medidas)

		e =	0 mm	e =	0,025 mm	e = 0 mm	e = 0.025 mm		
θ (°)	λ (pm)	Δt (s)	C	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)} \left[(cm^2/g)^{(1/3)} \right]$
20,0									
20,2									
20,4									
20,6									
20,8									
21,0									
21,2									
21,4									
21,6									
21,8									
22,0									
22,2									
22,4									
22,6									
22,8									
23,0									

3d. NÍQUEL (medidas)

		<i>e</i> =	0 mm	<i>e</i> =	0,025 mm	e = 0 mm	e = 0.025 mm		
θ (°)	λ (pm)	Δt (s)	C	Δt (s)	С	$R_{\rm C}$ (s ⁻¹)	$R_{\rm C}$ (s ⁻¹)	$\frac{\mu}{\rho}$ (cm ² /g)	$\left(\frac{\mu}{\rho}\right)^{(1/3)}\left[(cm^2/g)^{(1/3)}\right]$
23,2									
23,4									
23,6									
23,8									
24,0									
24,2									
24,4									
24,6									
24,8									
25,0									

3d. NÍQUEL (tabela do software)

0	pm	S		S		s ⁻¹	s ⁻¹	cm ² /g	(cm ² /g) ^(1/3) absmcoefexp1third
teta	lambda	deltat0	C0	deltate	Ce	RC0	RCe	absorptionmcoef	absmcoefexp1third
8									·
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
19,2									
19,4									
19,6									
19,8 20									
20									
20,2									
20,4									
20.6									
20,8									
21 21,2									
21,2									
21.4									
21,6									
21,8									
22									
21,6 21,8 22 22,2									
22.4									
22,6									
22,8 23									
23									
23,2									
23,4									
23,6									
23,6 23,8 24 24,2									
24									
24,2									
24,4									
24,6									
24,8 25									
25									

3d. NÍQUEL (gráfico $\left(\frac{\mu}{\rho}\right)^{(1/3)}$ versus λ – raiz cúbica do coeficiente mássico de absorção versus comprimento de onda)

1	LIMIAR	DF AR	SORCÃ	0	$C \cap RRF$
4.	LIMIAK	DE AD	SUKÇA	טעט	CODKE

$$\lambda_{K} = \underline{\hspace{1cm}} pm$$

$$E_{\rm K} =$$
____keV

- 5. TRANSIÇÃO ELETRÔNICA ASSOCIADA PARA O COBRE: _____
- 6. LIMIAR DE ABSORÇÃO DO NÍQUEL

$$\lambda_K = \underline{\hspace{1cm}} pm$$

$$E_{\rm K} = \underline{\hspace{1cm}} {\rm keV}$$

7. TRANSIÇÃO ELETRÔNICA ASSOCIADA PARA O NÍQUEL: _____