One-way analysis of variance Math 463, Spring 2017, University of Oregon

David A. Levin

University of Oregon

May 8, 2017

- > birds = read.table(
- + url("http://pages.uoregon.edu/dlevin/DATA/cuckoo.txt"),
- + header=T)
- > stripchart(length~species, data=birds, vertical=T)

Model

Let x be the vector indicating variety.

•

$$\mathbb{E}[Y_i \mid x_i] = \mu_j \quad \text{if } x_i = \text{species } j$$

• Define "dummy" variables δ_j for $j=2,3,\ldots,r$ (where r is the number of species).

$$\delta_{i,j} = \begin{cases} 1 & \text{if ith data point is from species j} \\ 0 & \text{otherwise} \end{cases}$$

• Using these variables, we obtain linear model:

$$\mathbb{E}[Y_i \mid x_i] = \beta_0 + \sum_{j=2}^r \beta_j \delta_{i,j}$$

• Note the coefficient β_j is the difference $\mu_j - \mu_1$ between the expected response in species j and species 1.

Note that when a variable is a factor (a categorical variable), putting it into a linear model creates many dummy variables automatically:

- > fit1 = lm(length~species, data=birds)
- > model.matrix(fit1)[1:20,]

	(Intercept)	${\tt speciesMDW}$	speciesPIED	speciesROBIN	speciesTREE	speciesWREN
1	1	1	0	0	0	0
2	1	1	0	0	0	0
3	1	1	0	0	0	0
4	1	1	0	0	0	0
5	1	1	0	0	0	0
6	1	1	0	0	0	0
7	1	1	0	0	0	0
8	1	1	0	0	0	0
9	1	1	0	0	0	0
10	1	1	0	0	0	0
11	1	1	0	0	0	0
12	1	1	0	0	0	0
13	1	1	0	0	0	0
14	1	1	0	0	0	0
15	1	1	0	0	0	0
16	1	1	0	0	0	0
17	1	1	0	0	0	0
18	1	1	0	0	0	0
19	1	1	0	0	0	0
20	1	1	0	0	0	0

To test the hypothesis that all the $\beta_2 = \cdots = \beta_r = 0$ (and so that all the species have the same mean), do a F-test comparing the sub-model

$$\mathbb{E}[Y_i \mid x_i] = \beta_0$$

to the "full" model above.

- > fit2 = lm(length~1, data=birds)
- > anova(fit2,fit1)

Analysis of Variance Table

```
Model 1: length ~ 1
```

Model 2: length ~ species

Res.Df RSS Df Sum of Sq F Pr(>F)

119 137.188

114 94.248 5 42.94 10.388 3.152e-08 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

- **(ロ)(**母)(き)(き) き りへぐ

Power

 \bullet Note that to calculate power, one needs to compute, for $\pmb{\theta} = \mathbb{E}[\,\pmb{Y} \mid \pmb{x}\,],$

$$\|\Pi_W \boldsymbol{\theta}\|^2$$
,

where $W = \mathcal{L}(\mathbf{1}, \delta_1, \dots, \delta_e) \cap \mathcal{L}(\mathbf{1})^{\perp}$. (The non-centrality parameter of the F-statistic is $\|\Pi_W \boldsymbol{\theta}\|^2 / \sigma^2$.)

• As seen before,

$$\|\Pi_W(\pmb{\theta})\|^2 = \sum_{j=2}^r \beta_j^2 \|\delta_j^\perp\|^2 + 2 \sum_{2 \leq j < k \leq r} \beta_j \beta_k \langle \delta_j^\perp, \delta_k^\perp \rangle \,,$$

where $z^{\perp}=z-\bar{z}\mathbf{1}$ is the projection of z on the othogonal complement of $\mathcal{L}(\mathbf{1})$.

