Chapter 4 Input/Output (I/O)

- * peripheral
- * programmed I/O
- * interrupt
- * timer

4.1 peripheral

- general concepts of peripheral
- digital-to-analog conversion (DAC)
- analog-to-digital conversion (ADC)

4.1.1 general concepts of peripheral

- there is an interface circuit between system bus and peripheral
- CPU reads or writes data to the device through the data IN/OUT registers
- status register reflects the status of the device
- CPU writes control words to the control word register to control the operation modes of the device
- each register occupies an address

• for PIC18, TRISA, TRISB, ... are used to control the I/O ports for input or output

• input/output the data from/to the device by accessing PORTA, PORTB, ...

Memory Mapped I/O

I/O devices are addressed and selected by decoders as if they were memory devices.

Advantages:

- addressed and selected like a memory device
- all the memory reference operations and addressing modes can be used for I/O devices.
- e.g.

```
MOVWF TRISC
MOVF PORTB, W
CLRF TRISB
```

Disadvantages:

- some system memory addresses are used up for I/O and are therefore not available for memory
- the total space for memory is reduced

Direct I/O

Use separate address space with separate instructions and separate control signals for I/O.

Advantage:

not using the system memory address space

Disadvantage:

only special IN and OUT instructions can be used for I/O operations

e.g. In 8086

IN AL, iox ; *iox address*, range 00-FFh

OUT iox, AL ; 8-bit I/O address

N.B. Some microprocessors, such as 8051, support only memory mapped I/O and some support both. The Intel 8086 supports both.

4.1.2 digital-to-analog conversion (DAC)

- analog signals are continuous, with infinite values in a given range
- examples: a voltmeter with a needle, music from speakers
- digital signals have discrete values on/off, 0 or 1
- examples: digital voltmeter, digital watch

Data Conversion

- Limitations of analog signals
 - Analog signals pick up noise as they are being amplified.
 - Analog signals are difficult to store.
- Advantages of digital systems (signals)
 - Noise can be reduced by converting analog signals to 0s and 1s.
 - Binary signals can be easily stored in memory.
- The major limitation of a digital system is how accurately it represents the analog signals after conversion.

- embedded system often needs to convert signals from analog to digital, and back to analog
- the system includes:
 - a transducer that converts non-electrical signals into electrical signals (velocity sensor)
 - an A/D converter that converts analog signals into digital signals
 - microprocessor/microcontroller to process digital data
 - a D/A converter that converts digital signals into equivalent analog signals
 - a transducer that converts electrical signals into nonelectrical signals (brake)

DAC

• use current source with digital switches

$V0 = -R_f \left(S3 \frac{V}{R} + S2 \frac{V}{2R} + S1 \frac{V}{2R} \right)$	/ _{4R})
= \frac{-R_f}{4R} \text{ \big(483 + 282 + 81 \big)})

	S3	S2	S1_
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4 5	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

- convert discrete signals into discrete analog values that represent the magnitude of the input signal compared to a standard or reference voltage
- the output of the DAC is discrete analog steps
- by increasing the resolution (number of bits), the step size is reduced, and the output approximates a continuous analog signal

$$V_{REF} = 1V$$

$$D_{2} R_{1} = 2K$$

$$D_{1} R_{2} = 4K$$

$$D_{0} R_{3} = 8K$$

$$0$$

$$D_{0} R_{3} = 8K$$

$$I_{o} = I_{T} = I_{1} + I_{2} + I_{3} = \frac{V_{REF}}{R_{1}} + \frac{V_{REF}}{R_{2}} + \frac{V_{REF}}{R_{3}} = \frac{V_{REF}}{1 \, k} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8}\right) = 0.875 \, \text{mA}$$

$$V_{O} = -R_{f}I_{T} = -(1k) \times (0.875 \text{ mA}) = -0.875 \text{ V} = \frac{7}{8} \text{ V}$$

$$I_{O} = \frac{V_{REF}}{R_{REF}} \left(\frac{DB7}{2} + \frac{DB6}{4} + \frac{DB5}{8} + \dots + \frac{DB0}{2^{8}} \right)$$

$$I_0 = 5 \text{ mA} \left(\frac{1}{2} + \frac{0}{4} + \frac{0}{8} + \frac{1}{16} + \frac{0}{32} + \frac{0}{64} + \frac{0}{128} + \frac{1}{256} \right) = 2.832 \text{ mA}$$

Write a program to generate a sine wave with angles between 0 and 360 degrees (with 30-degree increments). The full-scale output of the DAC is 10V. Output the sine wave to PORT B.

4.1.3 analog-to-digital conversion (ADC)

• convert a continuous varying signal, such as voltage or current, into discrete digital quantities that represent the magnitude of the signal compared to standard or reference voltage

Data Conversion

Flash

- Uses multiple comparators in parallel
- High-speed, high-cost converter

Integrator

- Charges a capacitor for a given amount of time using the analog signal
- Slow, but high accuracy and low noise

Successive Approximation

Effective compromise among resolution, speed, and cost

Counter

- Similar to successive approximation circuit
- Slower, with variable conversion times

Successive Approximation

Major Characteristics

Resolution

- n-bit digital output, n can be 8, 12, ...
- higher resolution, smaller step size (8-bit, $V_{ref} = 5V$, step size = 19.53 mV)

Conversion time

- time to convert the analog input to the digital output
- depend on clock, conversion method, ADC chip technology

• V_{ref}

- lower voltage, smaller step size (8-bit, $V_{ref} = 4V$, step size = 15.62 mV)
- sometimes, differential reference voltage is used, $V_{ref} = V_{ref}(+) V_{ref}(-)$
- $V_{ref}(-)$ pin is connected to ground, $V_{ref}(+)$ is used as $V_{ref}(-)$

Digital output

- $-D_{out} = \frac{V_{in}}{step \ size}, D_{out} = digital \ output \ (in \ decimal)$
- e.g. 8-bit, $V_{ref} = 2.56V$, $V_{in} = 1.7V$, $D_{out} = 170$ (decimal), 10101010 (binary)

Parallel versus serial

- parallel: more data pins, shorter time to get data
- serial: one data pin (parallel-in-serial-out shift register inside ADC), longer time to get data

Analog input

- ADC can have multiple input channels
- can monitor multiple sensors

- Conversion signals
 - start conversion signal (SC), starts converting V_{in} to D_{out}
 - end-of-conversion signal (EOC), notifies CPU the converted data is ready to be picked up

ADC procedure:

- select a channel
- activate SC signal
- monitor EOC signal
- read data from ADC

PIC18F A/D Converter Module

The PIC18F4520 microcontroller includes:

- 10-bit A/D converter
- 13 analog input channels ANO AN12
- 3 control and status registers: ADCON0,
 ADCON1, and ADCON2
- data registers: ADRESH (A/D Result High),
 ADRESL (A/D Result Low), 6 bits unused
- conversion time is dictated by crystal frequency $F_{\rm OSC}$

A/D converter requires a low reference voltage (V_{REF-}) and a high reference voltage (V_{REF+}) to perform conversion.

- 1. An analog input of V_{REF} is converted to digital code 0.
- 2. An analog input of V_{REF+} is converted to digital code $2^n 1$.
- 3. An analog input of V_{in} is converted to digital code

$$k = (2^{n} - 1) \times (V_{in} - V_{REF-}) \div (V_{REF+} - V_{REF-})$$

Given k, the measured voltage is given by

$$V_{in} = V_{REF-} + (V_{REF+} - V_{REF-}) \times k \div (2^{n} - 1)$$

Most systems use V_{DD} and 0V as V_{REF+} and V_{REF-} , respectively.

The output of a transducer should be scaled and shifted to the range of $0V \sim V_{DD}$ in order to achieve the best accuracy.

 T_{AD} is the conversion time per bit T_{ACQT} is the setup time for ADC Both timing parameters can be programed

Param No.	Symbol	Characteristic			Max	Units	Conditions
130	TAD	A/D Clock Period	Clock Period PIC18FXXXX		25.0 ⁽¹⁾	μs	Tosc based, VREF ≥ 3.0V
			PIC18LFXXXX	1.4	25.0 ⁽¹⁾	μs	VDD = 2.0V; Tosc based, VREF full range
			PIC18FXXXX	TBD	1	μs	A/D RC mode
			PIC18LFXXXX	TBD	3	μs	VDD = 2.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisition	11	12	TAD		
132	TACQ	Acquisition Time (Note	1.4 TBD	_	μs μs	-40°C to +85°C 0°C ≤ to ≤ +85°C	
135	Tswc	Switching Time from C	_	(Note 4)			
TBD	TDIS	Discharge Time	0.2	_	μs		

A/D Control Register

- ADCON0 Register
 - Select analog input channel
 - Start a conversion
 - Indicate the end of the conversion

• ADCON1 Register

- Set up the I/O pins either for analog signal or for digital signals
- Select V_{REF} voltages

	7	6	5	4	3	2	1	0
value after	1	-	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
reset	0	0	0	0	0	0	0	0

VCFG1:VCFG0: Voltage reference configuration bits (see Table 12.2)

PCFG3:PCFG0: A/D port configuration control bits

	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
0000	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

ADCON2 Register

- Select an acquisition time and clock frequency
- Right or left justify output reading

Selecting ADC conversion time

- The programming value of T_{AD} (ADCS2-ADCS0) must be greater than the minimum value of T_{AD}
- The programming value of T_{ACQ} (ACQT2-ACQT0) must be greater than the minimum of T_{ACO}

Let

```
the minimum value of T_{AD} = 1.6 \mu s the minimum value of T_{ACQ} = 13 \mu s f_{OSC} = 32 MHz
```

What are (ADCS2-ADCS0) and (ACQS2-ADCS0)?

- $f_{OSC} = 32$ MHz, the A/D clock source must be set to $f_{OSC}/64$ which makes $T_{AD} = 2\mu s$. (ADCS2-ADCS0) = 110
- For $T_{AD} = 2\mu s$, T_{ACQ} must be set to at least 8 T_{AD} . (ACQT2-ACQT0) = 100

Assembly instruction sequence that achieve the desired setting:

movlw	0x01	; select channel ANO and enable A/D
movwf	ADCON0,A	
movlw	0x0E	; configure only channel ANO as analog port
movwf	ADCON1,A	; select VDD and VSS as reference voltages
movlw	0xA6	; set A/D result right justified, set acquisition
movwf	ADCON2.A	: time to 8 TAD, clock source FOSC/64

Procedure for performing A/D Conversion

- Configure the A/D module
 - 1. Configure analog pins, reference voltages
 - 2. Select A/D input channel
 - 3. Select A/D acquisition time (if available)
 - 4. Select A/D conversion clock
 - 5. Enable A/D module
- Configure A/D interrupt
 - 1. Clear ADIF flag
 - 2. Set ADIE bit (if desired)
 - 3. Set GIE bit (if desired)
- Wait for the desired acquisition time (if required)
- Start conversion by setting the GO/DONE bit
- Wait for A/D conversion to complete
- Read the A/D result registers; clear the ADIF flag

Example

Assume that the AN0 pin of a PIC18 running with a 32 MHz crystal oscillator is connected to a potentiometer. The voltage range of the potentiometer is from 0V to 5V. Write a program to measure the voltage applied to the AN0 pin, convert it, and retrieve the conversion result and place it in PRODH:PRODL.

Let the minimum value of $T_{AD} = 1.6 \ \mu s$ and the minimum value of $T_{ACQ} = 13 \ \mu s$

```
org 0x00
      goto start
      org 0x08
      retfie
      org 0x18
      retfie
Start: movlw 0x01; select channel ANO and enable A/D
      movwf ADCON0, A; "
      movlw 0x0E; use VDD & VSS as reference voltages &
      movwf ADCON1,A; configure channel ANO as analog input
      movlw 0xA6; select FOSC/64 as conversion clock,
      movwf ADCON2, A ; 8 TAD for acquisition time,
                      ;right-justified
      bsf ADCON0,GO,A; start A/D conversion
wait con:
      btfsc ADCON0, DONE, A; wait until conversion is done
      bra wait con
      movff ADRESH, PRODH; save conversion result
      movff ADRESL, PRODL ;
end
```

Scaling circuit

Used to amplify the transducer output from a range of $0V \sim V_Z$ to $0 \sim V_{DD}$.

- Usually V_Z is smaller than V_{DD} .
- Voltage gain: $A_V = V_{OUT} \div V_{IN} = (R_1 + R_2) \div R_1 = 1 + R_2/R_1$

Suppose the transducer output voltage ranges from 0V to 200 mV.

Choose the appropriate values for R1 and R2 to scale this range to $0 \sim 5V$.

Solution:

- $R2/R1 = (V_{OUT}/V_{IN}) 1 = 24$
- Choose 240 K Ω for R2 and 10 K Ω for R1.

Voltage translation circuit

Needed to shift and scale the transducer output in a range of $-V_X \sim V_Z$ to $0V \sim V_{DD}$

Choose appropriate resistor values and the adjusting voltage so that the circuit shown in the last page can shift the voltage from the range of $-1.2V \sim 3.0V$ to the range of $0V \sim 5V$.

Solution:

$$0 = -1.2 \times (Rf/R1) - (Rf/R2) \times V1$$

$$5 = 3.0 \times (Rf/R1) - (Rf/R2) \times V1$$

Choose
$$R_0 = R_1 = 10 \text{ K}\Omega$$
 and $V_1 = -5V$
 $R_f = 12 \text{ K}\Omega$, $R_2 = 42 \text{ K}\Omega$

Summary

- general concepts of peripheral
- ♦ DAC
- ♦ ADC