Optimization basics

Spring 2020

Amitabh Basu

Introduction to Data Science Johns Hopkins University

The general optimization problem

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

The general optimization problem

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

▶ Unconstrained optimization: $E \cup I = \emptyset$

▶ Constrained optimization: $E \cup I \neq \emptyset$

The general optimization problem

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

- ▶ Unconstrained optimization: $E \cup I = \emptyset$
- ▶ Constrained optimization: $E \cup I \neq \emptyset$

Will assume that f, $c_i, i \in E \cup I$ are all differentiable (even twice continuously differentiable) functions mapping $\mathbb{R}^n \to \mathbb{R}$

- For optimization theory and developing algorithms, we require tools for describing how function values change with their inputs.
- ► When derivatives exist, we use results from Calculus; e.g., gradients and Hessians

- For optimization theory and developing algorithms, we require tools for describing how function values change with their inputs.
- When derivatives exist, we use results from Calculus; e.g., gradients and Hessians

If $g: \mathbb{R}^n \to \mathbb{R}$ is differentiable, the gradient of g at x is

$$abla g(x) := \left(egin{array}{c} rac{\partial g(x)}{\partial x_1} \\ dots \\ rac{\partial g(x)}{\partial x_n} \end{array}
ight)$$

If $g: \mathbb{R}^n \to \mathbb{R}$ is differentiable, the gradient of g at x is

$$abla g(x) := \left(egin{array}{c} rac{\partial g(x)}{\partial x_1} \ dots \ rac{\partial g(x)}{\partial x_n} \end{array}
ight)$$

If $g: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, the Hessian of g at x is

$$\nabla^2 g(x) := \begin{pmatrix} \frac{\partial^2 g(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 g(x)}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 g(x)}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 g(x)}{\partial x_n^2} \end{pmatrix}$$

Vector valued functions:

If $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable, the Jacobian of F at x is

$$J(x) := \nabla F(x) := \begin{pmatrix} \frac{\partial F_1(x)}{\partial x_1} & \cdots & \frac{\partial F_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m(x)}{\partial x_1} & \cdots & \frac{\partial F_m(x)}{\partial x_n} \end{pmatrix}$$

where $F_i(x)$, i = 1, ..., m is the *i*-th component of F(x).

Vector valued functions:

If $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable, the Jacobian of F at x is

$$J(x) := \nabla F(x) := \begin{pmatrix} \frac{\partial F_1(x)}{\partial x_1} & \dots & \frac{\partial F_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m(x)}{\partial x_1} & \dots & \frac{\partial F_m(x)}{\partial x_n} \end{pmatrix}$$

where $F_i(x)$, i = 1, ..., m is the *i*-th component of F(x).

FACT: The Hessian is the Jacobian of the Gradient map.

Global and local solutions

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

Define the feasible region as

$$\Omega := \left\{ x \in \mathbb{R}^n : \begin{array}{ll} c_i(x) & = & 0 & i \in E, \\ c_i(x) & \leq & 0 & i \in I \end{array} \right\}$$

Global and local solutions

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

Define the feasible region as

$$\Omega := \left\{ x \in \mathbb{R}^n : \begin{array}{ll} c_i(x) & = & 0 & i \in E, \\ c_i(x) & \leq & 0 & i \in I \end{array} \right\}$$

 x^* is a global optimum/minimizer if $f(x^*) \leq f(x)$ for all $x \in \Omega$.

Global and local solutions

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

Define the feasible region as

$$\Omega := \left\{ x \in \mathbb{R}^n : \begin{array}{ll} c_i(x) & = & 0 & i \in E, \\ c_i(x) & \leq & 0 & i \in I \end{array} \right\}$$

 x^* is a global optimum/minimizer if $f(x^*) \leq f(x)$ for all $x \in \Omega$.

 x^* is a local optimum/minimizer if there exists $\epsilon > 0$ such that $f(x^*) \le f(x)$ for all $x \in \Omega \cap B(x^*, \epsilon)$, where $B(x^*, \epsilon) := \{x \in \mathbb{R}^n : ||x^* - x|| \le \epsilon\}.$

We are interested in optimality conditions because they

- provide a means of guaranteeing when a candidate solution x is indeed optimal (sufficient conditions)
- ▶ indicate when a point is not optimal (necessary conditions)
- guide in the design of algorithms since

lack of optimality \Leftrightarrow indication of improvement

First order necessary condition

THEOREM Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable. If x^* is a local minimizer of f, then

$$\nabla f(x^{\star}) = 0$$

First order necessary condition

THEOREM Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable. If x^* is a local minimizer of f, then

$$\nabla f(x^*) = 0$$

Second-order necessary conditions

THEOREM Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable. If x^* is a local minimizer of f, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite, i.e.,

$$s^T \nabla^2 f(x^*) s \ge 0$$
 for all $s \in \mathbb{R}^n$

Second-order sufficient conditions

THEOREM Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable. If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, i.e.,

$$s^T \nabla^2 f(x^*) s > 0$$
 for all $s \neq 0$,

then x^* is a local minimizer of f.

Iterative numerical methods: generate iterates ("guesses") x_0, x_1, \ldots such that these converge to a local minimizer, or at the very least to a stationary or critical point, i.e.,

$$\lim_{n\to\infty}x_n=x^{\star}, \quad \text{and} \quad \nabla f(x^{\star})=0.$$

Iterative numerical methods: generate iterates ("guesses") x_0, x_1, \ldots such that these converge to a local minimizer, or at the very least to a stationary or critical point, i.e.,

$$\lim_{n\to\infty} x_n = x^*, \quad \text{and} \quad \nabla f(x^*) = 0.$$

Two main paradigms:

- 1. Line Search Methods
- 2. Trust Region Methods

Iterative numerical methods: generate iterates ("guesses") x_0, x_1, \ldots such that these converge to a local minimizer, or at the very least to a stationary or critical point, i.e.,

$$\lim_{n\to\infty} x_n = x^*,$$
 and $\nabla f(x^*) = 0.$

Typical line search algorithm:

- 1. Initialize at x_0 .
- 2. For $i = 0, 1, 2, \dots$ until stopping criterion
 - 2.1 Choose a descent direction p_i such that $\nabla f^T(x_i)p_i < 0$.
 - 2.2 Do a line search on the one dimensional function $f(x_i + \eta p_i)$ to select step size $\eta_i \ge 0$
 - 2.3 Set $x_{i+1} := x_i + \eta_i p_i$

Typical line search algorithm:

- 1. Initialize at x_0 .
- 2. For $i = 0, 1, 2, \ldots$ until stopping criterion
 - 2.1 Choose a descent direction p_i such that $\nabla f^T(x_i)p_i < 0$.
 - 2.2 Do a line search on the one dimensional function $f(x_i + \eta p_i)$ to select step size $\eta_i \ge 0$
 - 2.3 Set $x_{i+1} := x_i + \eta_i p_i$
- ► Choice of stopping criterion: $\|\nabla f(x_i)\| \le 10^{-6} \|\nabla f(x_0)\|$, Upper bound on number of iterations
- ► Choice of descent direction: $p_i = -\nabla f(x_i)$ (a.k.a. Gradient/Steepest descent), many other possibilities modified Newton/quasi-Newton etc.
- Choice of step size:
 - ► Fixed, constant step size
 - ▶ Exact line search, i.e., find η_i that minimizes $f(x_i + \eta p_i)$,
 - ▶ Goldstein-Armijo condition: Set some global constant 0 < c < 1 and select $\eta \ge 0$ such that

$$f(x_i + \eta p_i) \leq f(x_i) + \eta c \nabla f^T(x_i) p_i$$

Sample convergence result:

THEOREM Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and ∇f is Lipschitz continuous on \mathbb{R}^n . Further assume that f(x) is bounded from below on \mathbb{R}^n . Let $\{x_k\}$ be the iterates generated by the gradient descent algorithm with Goldstein-Armijo linesearch. Then there exists a constant M such that for all $T \geq 1$

$$\min_{k=0,\ldots,T}\|\nabla f(x_k)\|\leq \frac{M}{\sqrt{T+1}}.$$

Consequently, for any $\epsilon > 0$, within $\left\lceil \left(\frac{M}{\epsilon}\right)^2 \right\rceil$ steps, we will see an iterate where the gradient has norm at most ϵ . In other words, we reach an " ϵ -stationary" point in $O((\frac{1}{\epsilon})^2)$ steps

Newton's method for root finding

Suppose we have a function

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

and we wish to find x^* such that $F(x^*) = 0$.

Newton's method for root finding

Suppose we have a function

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

and we wish to find x^* such that $F(x^*) = 0$.

Newton's method: Iteratively solve linear approximation.

Newton's method for root finding

Suppose we have a function

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

and we wish to find x^* such that $F(x^*) = 0$.

Newton's method: Iteratively solve linear approximation.

- 1. Initialize at x_0 .
- 2. For $i = 0, 1, 2, \ldots$ until stopping criterion
 - 2.1 Solve the linear system $F(x_i) + \nabla F(x_i)(y x_i) = 0$ for y.
 - 2.2 Set $x_{i+1} = y$, i.e.,

$$x_{i+1} = x_i - \nabla F(x_i)^{-1} F(x_i).$$

Newton's method for optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

First order necessary condition:

$$\nabla f(x^*) = 0$$

So we are searching for zeros of the gradient map $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$. Ready for applying Newton's method!

Initialize x^0 to some starting point. Compute iterates

$$x_{i+1} = x_i - (\nabla^2 f(x_i))^{-1} \nabla f(x_i)$$

Called the Newton step and $-(\nabla^2 f(x_i))^{-1} \nabla f(x_i)$ is called the Newton direction.

Newton's method for optimization

 Hessian can be expensive to compute. Often simple approximations to Hessian are used: modified Newton, quasi-Newton.

2. Typically also combined with a line search: the full Newton step is not taken.

3. Better convergence guarantees because second order information is used.

Advantages of convexity

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$.

Advantages of convexity

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$.

Main advantages:

- 1. A local minimizer is a global minimizer!
- 2. Much better convergence rates for numerical optimization algorithms, e.g., $O\left(\frac{1}{\epsilon}\right)$ rate of convergence as opposed to $O\left(\left(\frac{1}{\epsilon}\right)^2\right)$ for gradient descent.
- 3. For constrained optimization, if the objective f and all the constraints c_i , $i \in E \cup I$ are convex, then it is called a convex optimization problem.

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

First order necessary conditions: Karush-Kuhn-Tucker (KKT) conditions

THEOREM Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ and c_i , $i \in E \cup I$ are all continuously differentiable. If x^* is a local minimizer of f and some regularity conditions are satisfied, then there exist real scalars λ_i , $i \in E$ and $\mu_i \geq 0$, $i \in I$ such that

$$\nabla f(x^*) + \sum_{i \in E} \lambda_i \nabla c_i(x^*) + \sum_{i \in I} \mu_i \nabla c_i(x^*) = 0$$

$$c_i(x^*) = 0 \quad \forall i \in E$$

$$c_i(x^*) \leq 0 \quad \forall i \in I$$

$$\mu_i c_i(x^*) = 0 \quad \forall i \in I$$

First order necessary conditions: Karush-Kuhn-Tucker (KKT) conditions

THEOREM Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ and c_i , $i \in E \cup I$ are all continuously differentiable. If x^* is a local minimizer of f and some regularity conditions are satisfied, then there exist real scalars λ_i , $i \in E$ and $\mu_i \geq 0$, $i \in I$ such that

$$\nabla f(x^{\star}) + \sum_{i \in E} \lambda_i \nabla c_i(x^{\star}) + \sum_{i \in I} \mu_i \nabla c_i(x^{\star}) = 0$$

$$c_i(x^{\star}) = 0 \quad \forall i \in E$$

$$c_i(x^{\star}) \leq 0 \quad \forall i \in I$$

$$\mu_i c_i(x^{\star}) = 0 \quad \forall i \in I$$

Regularity conditions: Many different forms. Also called constraint qualification. Most common is the Linear Independence Constraint Qualification (LICQ):

Let $J(x^*) \subseteq I$ index those inequality constraints that are satisfied at equality at x^* , i.e., $c_i(x^*) = 0$ for all $i \in J(x^*)$. Then LICQ demands that $\nabla c_i(x^*)$, $i \in J(x^*)$ are linearly independent.

Algorithms: linear programming

Another regularity condition: the objective f and all constraints c_i , $i \in E \cup I$ are all affine functions (special case of convex), i.e.,

$$c_i(x) = \langle a_i, x \rangle + b_i, i \in E \cup I$$

for some vectors $a_i \in \mathbb{R}^n$ and scalars $b_i \in \mathbb{R}$, and similarly

$$f(x) = \langle d, x \rangle$$

for some vector $d \in \mathbb{R}^n$.

This special case is called Linear Programming/Optimization.

Algorithms: linear programming

Another regularity condition: the objective f and all constraints c_i , $i \in E \cup I$ are all affine functions (special case of convex), i.e.,

$$c_i(x) = \langle a_i, x \rangle + b_i, i \in E \cup I$$

for some vectors $a_i \in \mathbb{R}^n$ and scalars $b_i \in \mathbb{R}$, and similarly

$$f(x) = \langle d, x \rangle$$

for some vector $d \in \mathbb{R}^n$.

This special case is called Linear Programming/Optimization.

- 1. Most well studied optimization problem.
- 2. Main building block in more sophisticated algorithms.
- KKT conditions are necessary and sufficient (assuming problem is feasible).
- 4. Highly efficient, specialized algorithms developed: Simplex method, Interior Point methods, Ellipsoid method.

Algorithms: general constraints and objective

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

Algorithms: general constraints and objective

$$\min_{x \in \mathbb{R}^n}$$
 $f(x)$
such that $c_i(x) = 0$ $i \in E$
 $c_i(x) \le 0$ $i \in I$

Penalty Methods. Reduce to an unconstrained problem: Choose some $\gamma > 0$ and minimize the function

$$\phi(x) := f(x) + \gamma \sum_{i \in E} c_i(x)^2 + \gamma \sum_{i \in I} (\min 0, c_i(x))^2$$

- Augmented Lagrangian Methods.
- Interior Point Methods. Adapt Newton's method to the constrained setting.

References

General nonlinear, nonconvex optimization:

- Numerical Optimization, Jorge Nocedal and Stephen J. Wright, Springer 2006.
- Optimization methods for large-scale machine learning, Léon Bottou, Frank E Curtis, Jorge Nocedal, SIAM Review, vol. 60 (2), pp. 223-311, 2018.
- Linear and nonlinear programming, David G. Luenberger and Yinyu Ye. Addison-Wesley, 1984.

Convex optimization:

- 1. **Convex Optimization**, Stephen Boyd and Lieven Vandenberghe, Cambridge University Press, 2004.
- Introductory Lectures on Convex Optimization, Yuri Nesterov, Kluwer Academic Publishers, 2004.

Linear programming/optimization:

- Linear Programming, Vasek Chvatal, W.H. Freeman and Company, 1983.
- 2. **Primal-Dual Interior Point Methods**, Stephen J. Wright, SIAM, 1997.

Software

- 1. SciPy (nonconvex, nonlinear)
- 2. NITRO (nonconvex, nonlinear)
- 3. IPOPT (nonconvex, nonlinear)
- 4. CVX (convex)
- 5. GUROBI (convex and linear)
- 6. CPLEX (convex and linear)
- 7. BARON (global optimization)
- 8. SCIP (global optimization)
- 9. Couenne (global optimization)