Отчёт по лабораторной работе №5

Модель хищник-жертва. Вариант №38

Павлова Полина Алексеевна

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Задачи	8
4	Задание	9
5	Выполнение лабораторной работы 5.1 Построение математической модели. Решение с помощью программ 5.1.1 Julia	10 10 13 14 15
6	Анализ полученных результатов. Сравнение языков.	17
7	Вывод	18
8	Список литературы. Библиография	19

Список иллюстраций

5.1	График численности хищников от численности жертв	13
5.2	График численности жертв и хищников от времени	13
5.3	Стационарное состояние	14
5.4	График численности хищников от численности жертв	15
5.5	График численности жертв и хищников от времени	15
5.6	Стационарное состояние	16

Список таблиц

1 Цель работы

Изучить жесткую модель хищник-жертва и построить эту модель.

2 Теоретическое введение

 Модель Лотки—Вольтерры — модель взаимодействия двух видов типа «хищник — жертва», названная в честь её авторов, которые предложили модельные уравнения независимо друг от друга. Такие уравнения можно использовать для моделирования систем «хищник — жертва», «паразит — хозяин», конкуренции и других видов взаимодействия между двумя видами. [4]

Данная двувидовая модель основывается на следующих предположениях [4]:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{dx}{dt} = (-ax(t) + by(t)x(t)) \\ \frac{dy}{dt} = (cy(t) - dy(t)x(t)) \end{cases}$$

В этой модели x – число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой (жёсткой) модели показывает, что имеется стационарное состояние, всякое же другое начальное состояние приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени такая система вернётся в изначальное состояние.

Стационарное состояние системы (положение равновесия, не зависящее от времени решения) будет находиться в точке $x_0 = \frac{c}{d}, y_0 = \frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0) = x_0, y(0) = y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.

3 Задачи

- 1. Построить график зависимости численности хищников от численности жертв
- 2. Построить график зависимости численности хищников и численности жертв от времени
- 3. Найти стационарное состояние системы

4 Задание

Вариант 38:

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.7x(t) + 0.06y(t)x(t) \\ \frac{dy}{dt} = 0.6y(t) - 0.07y(t)x(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=8, y_0=15$ Найдите стационарное состояние системы.

5 Выполнение лабораторной работы

5.1 Построение математической модели. Решение с помощью программ

5.1.1 Julia

```
Код программы для нестационарного состояния:
```

```
using Plots
using DifferentialEquations

x0 = 8
y0 = 15

a = 0.7
b = 0.06
c = 0.6
d = 0.07

function hunt(du, u ,p ,t)
    x,y = u
    du[1] = -a*u[1] + b*u[1] * u[2]
    du[2] = c*u[2] - d*u[1] * u[2]
end
```

```
v0 = [x0, y0]
tspan = (0.0, 60.0)
prob = ODEProblem(hunt, v0, tspan)
sol = solve(prob, dtmax=0.05)
X = [u[1] \text{ for } u \text{ in sol.} u]
Y = [u[2] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt = plot(dpi=300, legend=false)
plot!(plt,X,Y,color=:blue)
savefig(plt,"lab5_1.png")
plt2 = plot(dpi=300, legend=true)
plot!(plt2,T,X,label="Численность жертв",color=:red)
plot!(plt2,T,Y,label="Численность хищников",color=:green)
savefig(plt2,"lab5_2.png")
  Код программы для стационарного состояния:
using Plots
using Differential Equations
a = 0.7
b = 0.06
c = 0.6
d = 0.07
x0 = c / d
y0 = a / b
```

```
function hunt(du, u ,p ,t)
    x,y = u
    du[1] = -a*u[1] + b*u[1] * u[2]
    du[2] = c*u[2] - d*u[1] * u[2]
end
v0 = [x0, y0]
tspan = (0.0, 60.0)
prob = ODEProblem(hunt, v0, tspan)
sol = solve(prob, dtmax=0.05)
X = [u[1] \text{ for } u \text{ in sol.} u]
Y = [u[2] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt2 = plot(dpi=300, legend=true)
plot!(plt2,T,X,label="Численность жертв",color=:red)
plot!(plt2,T,Y,label="Численность хищников",color=:green)
savefig(plt2,"lab5_3.png")
```

В стационарном состоянии решение вида y(x) = some function будет представлять собой точку.

5.1.2 Результаты работы кода на Julia

Рис. 5.1: График численности хищников от численности жертв

Рис. 5.2: График численности жертв и хищников от времени

Рис. 5.3: Стационарное состояние

5.2 OpenModelica

Код программы для нестационарного состояния:

```
model lab5_1
Real a = 0.7;
Real b = 0.06;
Real c = 0.6;
Real d = 0.07;
Real x;
Real y;
initial equation
x = 8;
y = 15;
equation
der(x) = -a*x + b*x*y;
der(y) = c*y - d*x*y;
```

```
end lab5_1;
```

Код программы для стационарного состояния:

```
model lab5_2
Real a = 0.7;
Real b = 0.06;
Real c = 0.6;
Real d = 0.07;
Real x;
Real y;
initial equation
x = c / d;
y = a / b;
equation
der(x) = -a*x + b*x*y;
der(y) = c*y - d*x*y;
end lab5_2;
```

В стационарном состоянии решение вида y(x) = some function будет представлять собой точку.

5.2.1 Результаты работы кода на OpenModelica

График численности хищников от численности жертв

Рис. 5.4: График численности хищников от численности жертв

График численности жертв и хищников от времени

Рис. 5.5: График численности жертв и хищников от времени

Стационарное состояние

Рис. 5.6: Стационарное состояние

6 Анализ полученных результатов.Сравнение языков.

В итоге проделанной работы мы построили график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв на языках Julia и OpenModelica. Построение модели хищник-жертва на языке openModelica занимает меньше строк, чем аналогичное построение на Julia.

7 Вывод

В ходе выполнения лабораторной работы была изучена модель хищникжертва и построена модель на языках Julia и Open Modelica.

8 Список литературы. Библиография

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Документация по OpenModelica: https://openmodelica.org/
- [3] Решение дифференциальных уравнений: https://www.wolframalpha.com/
- [4] Модель Лотки—Вольтерры: https://math-it.petrsu.ru/users/semenova/MathECO/Lections/L