Дървета за търсене

Трифон Трифонов

Структури от данни и програмиране, спец. Компютърни науки, 2 поток, 2024/25 г.

22 декември 2022 г. – 5 януари 2023 г.

Тази презентация е достъпна под лиценза Creative Commons Признание-Некомерсиално-Споделяне на споделеното 4.0 Международен ⊕⊕⊛⊚

Дървета за търсене

- Организация, която позволява бързо намиране на елементи в дървото
- Разчита на линейна наредба на елементите
- Основни операции:
 - create() създаване на празно дърво за търсене
 - insert(x) включване на елемент
 - remove(x) изключване на елемент
 - search(x) търсене на елемент
- Обикновено елементите са двойки (ключ, стойност)
- Елементите са наредени относно ключовете си
- Стойностите носят данните на елемента

Двоично дърво за търсене

Дефиниция (Двоично дърво за търсене)

- Празното дърво \bot е ДДТ
- (X, L, R) е ДДТ, ако
 - ullet X е по-голямо от всички елементи в L
 - X е по-малко от всички елементи в R
 - L и R също са ДДТ

Двоично дърво за търсене

Дефиниция (Двоично дърво за търсене)

- Празното дърво 🗆 е ДДТ
- (X, L, R) е ДДТ, ако
 - ullet X е по-голямо от всички елементи в L
 - \bullet X е по-малко от всички елементи в R
 - L и R също са ДДТ

Пример:

Търсене на елемент

Включване на елемент

Включване на елемент

Включване на елемент

Изключване на елемент

Изключване на елемент

Изключване на елемент

Изключване на елемент — общ случай

Изключване на елемент — общ случай

7/1

Оптимална височина на дърво

Сложността на всички операции за двоично дърво до търсене е O(h), където h е височината на дървото.

Знаем, че $\log_2(n+1) \leq h \leq n$.

- ullet $h=n\leftrightarrow$ дървото е изродено до списък
- $h = \log_2(n+1)$, когато дървото е пълно
- само тогава ли?

Балансирано дърво

Дефиниция (Балансирано дърво)

- Празното дърво \perp е балансирано
- \bullet (X, L, R) е балансирано, ако
 - $|h(L) h(R)| \le 1$
 - L и R също са балансирани

Балансирано дърво

Дефиниция (Балансирано дърво)

- Празното дърво \bot е балансирано
- \bullet (X, L, R) е балансирано, ако
 - $|h(L) h(R)| \le 1$
 - L и R също са балансирани

Балансирано дърво

Дефиниция (Балансирано дърво)

- Празното дърво \bot е балансирано
- \bullet (X, L, R) е балансирано, ако
 - $|h(L) h(R)| \le 1$
 - L и R също са балансирани

Теорема

За балансирани дървета височината е възможно най-малка

Теорема

За балансирани дървета височината е възможно най-малка, т.е. $h = \lceil log_2(n+1) \rceil$.

Теорема

За балансирани дървета височината е възможно най-малка, т.е. $h = \lceil log_2(n+1) \rceil$.

Обратното вярно ли е?

Теорема

За балансирани дървета височината е възможно най-малка, т.е. $h = \lceil log_2(n+1) \rceil$.

Обратното вярно ли е?

He! 1

Идеално балансирано дърво

Дефиниция (Идеално балансирано дърво)

- Празното дърво \perp е идеално балансирано
- \bullet (X, L, R) е идеално балансирано, ако
 - ullet $|s(L)-s(R)|\leq 1$, където s(T) означава броя на възлите в T
 - L и R също са идеално балансирани

Идеално балансирано дърво

Дефиниция (Идеално балансирано дърво)

- Празното дърво \perp е идеално балансирано
- \bullet (X, L, R) е идеално балансирано, ако
 - ullet $|s(L)-s(R)|\leq 1$, където s(T) означава броя на възлите в T
 - L и R също са идеално балансирани

Пример:

11/1

Каква е връзката между балансирани и идеално балансирани дървета?

Каква е връзката между балансирани и идеално балансирани дървета?

Теорема

Всяко идеално балансирано дърво е балансирано.

Каква е връзката между балансирани и идеално балансирани дървета?

Теорема

Всяко идеално балансирано дърво е балансирано.

Доказателство.

Индукция по височината на дървото.

Каква е връзката между балансирани и идеално балансирани дървета?

Теорема

Всяко идеално балансирано дърво е балансирано.

Доказателство.

Индукция по височината на дървото.

Обратното вярно ли е?

Каква е връзката между балансирани и идеално балансирани дървета?

Теорема

Всяко идеално балансирано дърво е балансирано.

Доказателство.

Индукция по височината на дървото.

Обратното вярно ли е? Не:

Построяване на идеално балансирано дърво

По даден сортиран списък можем да построим идеално балансирано двоично дърво за търсене.

Строим рекурсивно:

- Избираме за корен Х "средния" елемент на списъка
- Лявото поддърво строим от подсписъка вляво от "средния" елемент
- Дясното поддърво строим от подсписъка вдясно от "средния" елемент
- Двата подсписъка имат приблизително равни дължини
- Рекурсията ни гарантира идеална балансираност

Можем да постигнем сложност $O(\log n)$ на операциите търсене, включване и изключване, ако работим само с балансирани дървета.

Можем да постигнем сложност $O(\log n)$ на операциите търсене, включване и изключване, ако работим само с балансирани дървета.

Идея: ако дървото се разбалансира след включване или изключване, да го балансираме наново.

Можем да постигнем сложност $O(\log n)$ на операциите търсене, включване и изключване, ако работим само с балансирани дървета.

Идея: ако дървото се разбалансира след включване или изключване, да го балансираме наново.

Има различни вариации на самобалансиращи се дървета:

- 2-3 дърво
- AVL дърво
- червено-черно дърво
- косо дърво (splay tree)
- Декартово дърво (treap)

Можем да постигнем сложност $O(\log n)$ на операциите търсене, включване и изключване, ако работим само с балансирани дървета.

Идея: ако дървото се разбалансира след включване или изключване, да го балансираме наново.

Има различни вариации на самобалансиращи се дървета:

- 2-3 дърво
- AVL дърво
- червено-черно дърво
- косо дърво (splay tree)
- Декартово дърво (treap)

AVL дърво

Предложено от Адельсон-Велский и Ландис през 1962 г.

Основна идея: Всяко поддърво T = (X, L, R) поддържа коефициент на баланс:

$$b(T) = h(R) - h(L)$$

AVL дърво

Предложено от Адельсон-Велский и Ландис през 1962 г.

Основна идея: Всяко поддърво T = (X, L, R) поддържа коефициент на баланс:

$$b(T) = h(R) - h(L)$$

Едно AVL дърво T е балансирано

 $b(T') \in \{-1,0,1\}$ за всяко поддърво T' на T

Самобалансиране

• Операциите за включване и изключване може да променят баланса на някой възел!

- Операциите за включване и изключване може да променят баланса на някой възел!
- ullet Промяната няма как да е с повече от ± 1 (защо?)

- Операциите за включване и изключване може да променят баланса на някой възел!
- ullet Промяната няма как да е с повече от ± 1 (защо?)
- ullet Разбалансиране се получава при $b(T)=\pm 2$

- Операциите за включване и изключване може да променят баланса на някой възел!
- ullet Промяната няма как да е с повече от ± 1 (защо?)
- ullet Разбалансиране се получава при $b(T)=\pm 2$
 - b(T) = -2 лявото поддърво е с 2 нива по-високо от дясното

- Операциите за включване и изключване може да променят баланса на някой възел!
- ullet Промяната няма как да е с повече от ± 1 (защо?)
- ullet Разбалансиране се получава при $b(T)=\pm 2$
 - b(T) = -2 лявото поддърво е с 2 нива по-високо от дясното
 - b(T) = 2 дясното поддърво е с 2 нива по-високо от лявото

- Операциите за включване и изключване може да променят баланса на някой възел!
- ullet Промяната няма как да е с повече от ± 1 (защо?)
- ullet Разбалансиране се получава при $b(T)=\pm 2$
 - b(T) = -2 лявото поддърво е с 2 нива по-високо от дясното
 - b(T) = 2 дясното поддърво е с 2 нива по-високо от лявото
- Дефинираме операции за "завъртане", които възстановяват баланса.

- Операциите за включване и изключване може да променят баланса на някой възел!
- ullet Промяната няма как да е с повече от ± 1 (защо?)
- ullet Разбалансиране се получава при $b(T)=\pm 2$
 - b(T) = -2 лявото поддърво е с 2 нива по-високо от дясното
 - "завъртаме надясно" за да балансираме
 - b(T) = 2 дясното поддърво е с 2 нива по-високо от лявото
- Дефинираме операции за "завъртане", които възстановяват баланса.

- Операциите за включване и изключване може да променят баланса на някой възел!
- ullet Промяната няма как да е с повече от ± 1 (защо?)
- ullet Разбалансиране се получава при $b(T)=\pm 2$
 - b(T) = -2 лявото поддърво е с 2 нива по-високо от дясното
 - "завъртаме надясно" за да балансираме
 - b(T) = 2 дясното поддърво е с 2 нива по-високо от лявото
 - "завъртаме наляво" за да балансираме
- Дефинираме операции за "завъртане", които възстановяват баланса.

$$b'(Y) = ?$$

I сл. $b(X) \geq 0$

$$b'(Y) = ?$$

I сл. $b(X) \geq 0 \Rightarrow h(B) \geq h(A)$

$$b'(Y) = ?$$

I сл. $b(X) \geq 0 \Rightarrow h(B) \geq h(A) \Rightarrow h(X) = h(B) + 1$

$$b'(Y) = ?$$

I сл. $b(X) \geq 0 \Rightarrow h(B) \geq h(A) \Rightarrow h(X) = h(B) + 1 \Rightarrow b(Y) = h(C) - h(X)$

$$b'(Y) = ?$$

I сл.
$$b(X) \geq 0 \Rightarrow h(B) \geq h(A) \Rightarrow h(X) = h(B) + 1 \Rightarrow b(Y) = h(C) - h(X) = \underbrace{h(C) - h(B)}_{b'(Y)} - 1$$

$$b'(Y) = ?$$

I сл.
$$b(X) \geq 0 \Rightarrow h(B) \geq h(A) \Rightarrow h(X) = h(B) + 1 \Rightarrow b(Y) = h(C) - h(X) = \underbrace{h(C) - h(B)}_{b'(Y)} - 1$$

$$\Rightarrow b'(Y) = b(Y) + 1$$

$$b'(Y) = ?$$

II сл. b(X) < 0

$$b'(Y) = ?$$

II сл. $b(X) < 0 \Rightarrow h(B) < h(A)$

$$b'(Y) = ?$$

II сл. $b(X) < 0 \Rightarrow h(B) < h(A) \Rightarrow h(X) = h(A) + 1$

$$b'(Y) = ?$$

II сл. $b(X) < 0 \Rightarrow h(B) < h(A) \Rightarrow h(X) = h(A) + 1 \Rightarrow b(Y) = h(C) - h(A) - 1$

$$b'(Y) = ?$$

$$=\underbrace{h(C)-h(B)}_{h'(Y)}+\underbrace{h(B)-h(A)}_{h(X)}-1$$

$$b'(Y) = ?$$

$$=\underbrace{h(C)-h(B)}_{b'(Y)} + \underbrace{h(B)-h(A)}_{b(X)} - 1 \Rightarrow b'(Y) = h(A) + 1 \Rightarrow b(Y) = h(C)-h(A) - 1$$

$$b'(X) = ?$$

I сл. $b'(Y) \leq 0$

$$b'(X) = ?$$

I сл. $b'(Y) \leq 0 \Rightarrow h(B) \geq h(C)$

$$b'(X) = ?$$

I сл. $b'(Y) \leq 0 \Rightarrow h(B) \geq h(C) \Rightarrow h'(Y) = h(B) + 1$

$$b'(X) = ?$$

I сл. $b'(Y) \leq 0 \Rightarrow h(B) \geq h(C) \Rightarrow h'(Y) = h(B) + 1 \Rightarrow b'(X) = h'(Y) - h(A)$

$$b'(X) = ?$$

I сл.
$$b'(Y) \leq 0 \Rightarrow h(B) \geq h(C) \Rightarrow h'(Y) = h(B) + 1 \Rightarrow b'(X) = h'(Y) - h(A) = \underbrace{h(B) - h(A)}_{b(X)} + 1$$

$$b'(X) = ?$$

I сл.
$$b'(Y) \leq 0 \Rightarrow h(B) \geq h(C) \Rightarrow h'(Y) = h(B) + 1 \Rightarrow b'(X) = h'(Y) - h(A) = \underbrace{h(B) - h(A)}_{b(X)} + 1$$

$$\Rightarrow b'(X) = b(X) + 1$$

$$b'(X) = ?$$

II сл. b'(Y) > 0

$$b'(X) = ?$$

II сл. $b'(Y) > 0 \Rightarrow h(B) < h(C)$

$$b'(X) = ?$$

II сл.
$$b'(Y) > 0 \Rightarrow h(B) < h(C) \Rightarrow h'(Y) = h(C) + 1$$

$$b'(X) = ?$$

II сл. $b'(Y) > 0 \Rightarrow h(B) < h(C) \Rightarrow h'(Y) = h(C) + 1 \Rightarrow b'(X) = h(C) + 1 - h(A)$

$$b'(X) = ?$$

$$=\underbrace{h(C)-h(B)}_{b'(Y)}+\underbrace{h(B)-h(A)}_{b(X)}+1$$

$$b'(X) = ?$$

$$=\underbrace{h(C) - h(B)}_{b'(Y)} + \underbrace{h(B) - h(A)}_{b(X)} + 1 \Rightarrow b'(X) = h(C) + 1 - h(A)$$

$$b'(Y) = egin{cases} b(Y)+1, & ext{ako } b(X) \geq 0, \ b(Y)-b(X)+1, & ext{ako } b(X) < 0. \end{cases}$$

$$b'(X) = egin{cases} b(X)+1, & ext{ако } b'(Y) \leq 0, \ b(X)+b'(Y)+1, & ext{ако } b'(Y)>0. \end{cases}$$

Завъртане надясно (zig)

$$b'(Y) = egin{cases} b(Y)+1, & ext{ako } b(X) \geq 0, \ b(Y)-b(X)+1, & ext{ako } b(X) < 0. \end{cases}$$

$$b'(X)=egin{cases} b(X)+1,& ext{ако }b'(Y)\leq 0,\ b(X)+b'(Y)+1,& ext{ако }b'(Y)>0.\ b'(X)>b(X),& ext{}b'(Y)>b(Y) \end{cases}$$

18 / 1

ullet Въртим надясно, ако b(Z)=-2

- ullet Въртим надясно, ако b(Z)=-2
- Внимание: Ако b(Y) = 1, то

- ullet Въртим надясно, ако b(Z)=-2
- Внимание: Ако b(Y) = 1, то
 - b'(Z) = b(Z) + 1 = -1

- ullet Въртим надясно, ако b(Z)=-2
- Внимание: Ако b(Y) = 1, то
 - b'(Z) = b(Z) + 1 = -1
 - b'(Y) = b(Y) + 1 = 2

- ullet Въртим надясно, ако b(Z)=-2
- Внимание: Ако b(Y) = 1, то
 - b'(Z) = b(Z) + 1 = -1
 - b'(Y) = b(Y) + 1 = 2
- ullet Трябва да подсигурим, че $b(Y) \leq 0...$

19 / 1

- ullet Въртим надясно, ако b(Z)=-2
- Внимание: Ако b(Y) = 1, то
 - b'(Z) = b(Z) + 1 = -1
 - b'(Y) = b(Y) + 1 = 2
- ullet Трябва да подсигурим, че $b(Y) \leq 0...$
- ...с предварително завъртане наляво!

19 / 1

• Ако b(X) = 1, първо завъртаме наляво около X.

- Ако b(X) = 1, първо завъртаме наляво около X.
- ullet Така $b'(X) \leq 0$ и $b'(Y) \leq 0$

- ullet Ако b(X)=1, първо завъртаме наляво около X.
- ullet Така $b'(X) \le 0$ и $b'(Y) \le 0$
- ullet Вече можем да завъртим надясно около Y.

- Ако b(X) = 1, първо завъртаме наляво около X.
- ullet Така $b'(X) \leq 0$ и $b'(Y) \leq 0$
- ullet Вече можем да завъртим надясно около Y.
- ullet След балансиране сме сигурни, че h'(Y) < h(Z), т.е. намаляваме височината.

• Въртим наляво, ако b(Z) = 2

- ullet Въртим наляво, ако b(Z) = 2
- Внимание: Ако b(Y) = -1, то

- ullet Въртим наляво, ако b(Z) = 2
- Внимание: Ако b(Y) = -1, то
 - b'(Z) = b(Z) 1 = 1

- ullet Въртим наляво, ако b(Z) = 2
- Внимание: Ако b(Y) = -1, то
 - b'(Z) = b(Z) 1 = 1
 - b'(Y) = b(Y) 1 = -2

- Въртим наляво, ако b(Z) = 2
- Внимание: Ако b(Y) = -1, то
 - b'(Z) = b(Z) 1 = 1
 - b'(Y) = b(Y) 1 = -2
- ullet Трябва да подсигурим, че $b(Y) \geq 0...$

- Въртим наляво, ако b(Z) = 2
- Внимание: Ако b(Y) = -1, то
 - b'(Z) = b(Z) 1 = 1
 - b'(Y) = b(Y) 1 = -2
- ullet Трябва да подсигурим, че $b(Y) \geq 0...$
- ...с предварително завъртане надясно!

ullet Ако b(Z)=-1, първо завъртаме надясно около Z.

- ullet Ако b(Z)=-1, първо завъртаме надясно около Z.
- ullet Така $b'(Z) \geq 0$ и $b'(Y) \geq 0$

- ullet Ако b(Z)=-1, първо завъртаме надясно около Z.
- ullet Така $b'(Z) \geq 0$ и $b'(Y) \geq 0$
- ullet Вече можем да завъртим наляво около Y.

- ullet Ако b(Z)=-1, първо завъртаме надясно около Z.
- ullet Така $b'(Z) \geq 0$ и $b'(Y) \geq 0$
- ullet Вече можем да завъртим наляво около Y.
- ullet След балансиране сме сигурни, че h'(Y) < h(X), т.е. намаляваме височината.

• Когато включваме или изключваме елемент, трябва да следим кога балансът се променя

- Когато включваме или изключваме елемент, трябва да следим кога балансът се променя
- При промяна на баланс ще трябва да пребалансираме

- Когато включваме или изключваме елемент, трябва да следим кога балансът се променя
- При промяна на баланс ще трябва да пребалансираме
- Затова ще реализираме включването и изключването рекурсивно

- Когато включваме или изключваме елемент, трябва да следим кога балансът се променя
- При промяна на баланс ще трябва да пребалансираме
- Затова ще реализираме включването и изключването рекурсивно
- На обратния ход на рекурсията ще пребалансираме при нужда

- Когато включваме или изключваме елемент, трябва да следим кога балансът се променя
- При промяна на баланс ще трябва да пребалансираме
- Затова ще реализираме включването и изключването рекурсивно
- На обратния ход на рекурсията ще пребалансираме при нужда
- Балансът се променя когато височината на детето се е увеличила или намалила

Балансиране при включване

Балансиране при включване

• При дъното на включването височината винаги се увеличава с 1

Балансиране при включване

- При дъното на включването височината винаги се увеличава с 1
- Ако височината на **по-ниското дете** се увеличи, то височината на родителя не се променя

Балансиране при включване

- При дъното на включването височината винаги се увеличава с 1
- Ако височината на **по-ниското дете** се увеличи, то височината на родителя не се променя
- При балансиране винаги компенсираме за увеличената височина на детето

Балансиране при включване

- При дъното на включването височината винаги се увеличава с 1
- Ако височината на **по-ниското дете** се увеличи, то височината на родителя не се променя
- При балансиране винаги компенсираме за увеличената височина на детето

Балансиране при изключване

Балансиране при включване

- При дъното на включването височината винаги се увеличава с 1
- Ако височината на по-ниското дете се увеличи, то височината на родителя не се променя
- При балансиране винаги компенсираме за увеличената височина на детето

Балансиране при изключване

ullet При дъното на **изключването** дъното височината винаги се намалява с 1

Балансиране при включване

- При дъното на включването височината винаги се увеличава с 1
- Ако височината на по-ниското дете се увеличи, то височината на родителя не се променя
- При балансиране винаги компенсираме за увеличената височина на детето

Балансиране при изключване

- ullet При дъното на **изключването** дъното височината винаги се намалява с 1
- Ако височината на **по-високото дете** се намали, то височината на родителя не се променя

Балансиране при включване

- При дъното на включването височината винаги се увеличава с 1
- Ако височината на по-ниското дете се увеличи, то височината на родителя не се променя
- При балансиране винаги компенсираме за увеличената височина на детето

Балансиране при изключване

- ullet При дъното на **изключването** дъното височината винаги се намалява с 1
- Ако височината на **по-високото дете** се намали, то височината на родителя не се променя
- Ако след балансиране $b(T) \neq 0$, значи сме компенсирали за намалената височина на детето

Балансиране при включване

- При дъното на включването височината винаги се увеличава с 1
- Ако височината на по-ниското дете се увеличи, то височината на родителя не се променя
- При балансиране винаги компенсираме за увеличената височина на детето

Балансиране при изключване

- При дъното на изключването дъното височината винаги се намалява с 1
- Ако височината на **по-високото дете** се намали, то височината на родителя не се променя
- Ако след балансиране $b(T) \neq 0$, значи сме компенсирали за намалената височина на детето
- ullet Ако след балансиране b(T)=0, значи височината се е намалила

В-дървета

Дефиниция (В-дърво)

В-дърво от ред n наричаме n-арно дърво ($n \ge 3$), за което:

- всички листа са на еднаква височина
- ullet всеки възел съдържа най-много n-1 ключа подредени в нарастващ ред
- ullet всеки възел (освен корена) съдържа най-малко $\left\lfloor rac{n-1}{2}
 ight
 floor$ ключа
- всеки възел с m ключа k_1,\ldots,k_m или няма поддървета, или има точно m+1 непразни поддървета T_0,\ldots,T_m , които са разположени максимално вляво (т.е. T_{m+1},\ldots,T_n са празни).
- ullet k_i е по-голям от всички ключове в поддърветата T_i за $j \leq i$
- ullet k_i е по-малък от всички ключове в поддърветата T_i за j>i

Пример за В-дърво от ред 4

• Прави се опит за включване на елемент в някое листо

- Прави се опит за включване на елемент в някое листо
- Ако се окаже, че се опитваме да включим елемент в листо, което вече е пълно с n-1 ключа:

- Прави се опит за включване на елемент в някое листо
- Ако се окаже, че се опитваме да включим елемент в листо, което вече е пълно с n-1 ключа:
 - Разцепваме възела на два други с приблизително еднакъв брой елементи

- Прави се опит за включване на елемент в някое листо
- Ако се окаже, че се опитваме да включим елемент в листо, което вече е пълно с n-1 ключа:
 - Разцепваме възела на два други с приблизително еднакъв брой елементи
 - Средния по големина ключ се опитваме да вмъкнем в родителя

- Прави се опит за включване на елемент в някое листо
- Ако се окаже, че се опитваме да включим елемент в листо, което вече е пълно с n-1 ключа:
 - Разцепваме възела на два други с приблизително еднакъв брой елементи
 - Средния по големина ключ се опитваме да вмъкнем в родителя
 - ullet Ако в родителя вече има n-1 ключа, повтаряме същата схема

- Прави се опит за включване на елемент в някое листо
- Ако се окаже, че се опитваме да включим елемент в листо, което вече е пълно с n-1 ключа:
 - Разцепваме възела на два други с приблизително еднакъв брой елементи
 - Средния по големина ключ се опитваме да вмъкнем в родителя
 - ullet Ако в родителя вече има n-1 ключа, повтаряме същата схема
 - Ако стигнем до корена, правим нов корен само с един ключ и две поддървета

ullet Първо намираме ключа K на елемента в дървото

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - най-малкия ключ > K, или

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - ullet най-малкия ключ > K, или
 - най-големия ключ < K

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - ullet най-малкия ключ > K, или
 - най-големия ключ < К
 - такъв ключ задължително ще се намира в листо

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - ullet най-малкия ключ > K, или
 - най-големия ключ < К
 - такъв ключ задължително ще се намира в листо
- Ако броят на ключовете в листото падне под минимума:

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - ullet най-малкия ключ > K, или
 - най-големия ключ < К
 - такъв ключ задължително ще се намира в листо
- Ако броят на ключовете в листото падне под минимума:
 - Опитваме се да заемем ключ и съответно поддърво от някой от двата съседа

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - ullet най-малкия ключ > K, или
 - най-големия ключ < К
 - такъв ключ задължително ще се намира в листо
- Ако броят на ключовете в листото падне под минимума:
 - Опитваме се да заемем ключ и съответно поддърво от някой от двата съседа
 - Ако и двата съседа също съдържат минимален брой ключове

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - \bullet най-малкия ключ > K. или
 - най-големия ключ < К
 - такъв ключ задължително ще се намира в листо
- Ако броят на ключовете в листото падне под минимума:
 - Опитваме се да заемем ключ и съответно поддърво от някой от двата съседа
 - Ако и двата съседа също съдържат минимален брой ключове
 - Листото се слива с някой от двата си съседа

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - \bullet най-малкия ключ > K. или
 - най-големия ключ < К
 - такъв ключ задължително ще се намира в листо
- Ако броят на ключовете в листото падне под минимума:
 - Опитваме се да заемем ключ и съответно поддърво от някой от двата съседа
 - Ако и двата съседа също съдържат минимален брой ключове
 - Листото се слива с някой от двата си съседа
 - Понеже броят на поддърветата в родителя намалява с 1, прехвърляме в листото ключа, който е стоял между двете слети листа в родителя

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - ullet най-малкия ключ > K, или
 - най-големия ключ < К
 - такъв ключ задължително ще се намира в листо
- Ако броят на ключовете в листото падне под минимума:
 - Опитваме се да заемем ключ и съответно поддърво от някой от двата съседа
 - Ако и двата съседа също съдържат минимален брой ключове
 - Листото се слива с някой от двата си съседа
 - Понеже броят на поддърветата в родителя намалява с 1, прехвърляме в листото ключа, който е стоял между двете слети листа в родителя
 - Сигурни сме, че в новото листо броят ключове не надвишава максимума, понеже $2\left|\frac{n-1}{2}\right| \leq n-1$

28 / 1

- ullet Първо намираме ключа K на елемента в дървото
 - Ако е в листо, изтриваме го
 - Ако е във вътрешен възел, заменяме го с:
 - \bullet най-малкия ключ > K. или
 - ullet най-големия ключ < K
 - такъв ключ задължително ще се намира в листо
- Ако броят на ключовете в листото падне под минимума:
 - Опитваме се да заемем ключ и съответно поддърво от някой от двата съседа
 - Ако и двата съседа също съдържат минимален брой ключове
 - Листото се слива с някой от двата си съседа
 - Понеже броят на поддърветата в родителя намалява с 1, прехвърляме в листото ключа, който е стоял между двете слети листа в родителя
 - Сигурни сме, че в новото листо броят ключове не надвишава максимума, понеже $2\left\lfloor \frac{n-1}{2} \right\rfloor \leq n-1$
- Ако сега броят на ключовете в родителя падне под минимума, повтаряме същата процедура за него