June 3, 2014

Question

Take a $GH(2^k,1)$ matrix and write each entry as a k-tuple consisting of +1 and -1. Then make k matrices $H_i^{2^k}$ $1 \le i \le k$, each formed by taking the i^{th} component of the tuple for each element. Are the $H_i^{2^k}$'s Hadamard matrices? Also, is the Hadamard product of any two $H_i^{2^k}$ a Hadam ard matrix?

1 Sample for k=3

1.1 Making the Generalized Hadamard matrices

The $GH(2^k, 1)$ matrix, for each order was made using the multiplication table of $GF(2^k)$. Two rows u and v of GH are said to be difference balanced if the set $\{u_i - v_i : 1 \le i \le 2^k\}$, (where $-v_i$ represents the additive inverse of v_i) contains each element of the group once.

An index, $(1-2^k)$ was assigned to each element of $GF(2^k)$. An example of a generalized Hadamard matrix of order 2^3 , formed over the elementary abelian 2-group of order 2^3 , $GH(2^3, 1)$ is:

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 3 & 5 & 7 & 4 & 2 & 8 & 6 \\
1 & 4 & 7 & 6 & 8 & 5 & 2 & 3 \\
1 & 5 & 4 & 8 & 7 & 3 & 6 & 2 \\
1 & 6 & 2 & 5 & 3 & 8 & 4 & 7 \\
1 & 7 & 8 & 2 & 6 & 4 & 3 & 5 \\
1 & 8 & 6 & 3 & 2 & 7 & 5 & 4
\end{pmatrix}$$
(1)

1.2 Making the Hadamard matrices from the products

Writing each element as a 3-tuple, we get:

$$\begin{pmatrix} (1,1,1) & (1,1,1) & (1,1,1) & (1,1,1) & (1,1,1) & (1,1,1) & (1,1,1) & (1,1,1) \\ (1,1,1) & (1,1,-) & (1,-,1) & (1,-,-) & (-,1,1) & (-,1,-) & (-,-,1) & (-,-,-) \\ (1,1,1) & (1,-,1) & (-,1,1) & (-,-,1) & (1,-,-) & (1,1,-) & (-,-,-) & (-,1,-) \\ (1,1,1) & (1,-,-) & (-,-,1) & (-,1,-) & (-,-,-) & (-,1,1) & (1,1,-) & (1,-,1) \\ (1,1,1) & (-,1,1) & (1,-,-) & (-,-,-) & (-,-,1) & (1,-,1) & (-,1,-) & (1,1,-) \\ (1,1,1) & (-,1,-) & (1,1,-) & (-,1,1) & (1,-,1) & (-,-,-) & (1,-,1) & (-,1,1) \\ (1,1,1) & (-,-,1) & (-,-,-) & (1,1,-) & (-,1,-) & (1,-,-) & (1,-,1) & (-,1,1) \\ (1,1,1) & (-,-,-) & (-,1,-) & (1,-,1) & (1,1,-) & (-,-,1) & (-,1,1) & (1,-,-) \end{pmatrix}$$

The three matrices obtained from the above matrix are:

 $H_1 =$

 $H_2 =$

 $H_3 =$

The pairwise Hadamard products are:

 $H_1 * H_2 =$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1
\end{pmatrix}$$

 $H_2 * H_3 =$

$$H_3 * H_1 =$$

which are all Hadamard matrices.

The above property was examined for $GH(2^k,1)$, with $2 \le k \le 10$, For orders $n=2^2,2^3,2^4,2^6,2^7,2^9$, $H_i^{2^k}$ were Hadamard matrices, and the pairwise Hadamard product of $H_i^{2^k}$ was found to be Hadamard. For orders $n=2^5,2^8,2^{10}$, $H_i^{2^k}$ were Hadamard matrices, however their pairwise Hadamard product did not always turn out to be a Hadamard matrix.

1.3 Doubts

However, I'm not sure if the latter orders will always fail to satisfy the property. Probably, be re-assigning the tuples to the indices in (1), or by considering some other inequivalent GH matrix, the property might be satisfied.