Problemas Sortidos

Guilherme Zeus Moura zeusdanmou@gmail.com

1 Problemas que sobraram da última aula

Problema 5 (RMM 2015, 1). Determine se existe uma sequência infinita de inteiros positivos $a_1, a_2, a_3, ...$ tais que a_m e a_n são coprimos se, e somente se, |m-n|=1?

Problema 6 (APMO 2006, 2). Prove que todo inteiro positivo pode ser escrito como soma de um número finito de potências inteiras distintas da razão áurea $\phi = \frac{1+\sqrt{5}}{2}$. Aqui, uma potência inteira de ϕ é um número da forma ϕ^i , onde i é um inteiro (não necessariamente positivo).

Problema 7 (RMM 2011, 1). Prove que existem funções $f, g : \mathbb{R} \to \mathbb{R}$, tais que $f \circ g$ é estritamente decrescente e $g \circ f$ é estritamente crescente.

2 Novos problemas

Problema 1 (Lemmas in Euclidean Geometry). Seja ABC um triângulo e seja D o pé da bissetriz interna relativa a A. Sejam γ_1, γ_2 os circuncírculos dos triângulos ABD, ACD. Sejam P,Q as intersecções de AD com as tangentes externas comuns a γ_1 e γ_2 . Prove que $PQ^2 = AB \cdot AC$. Ache também uma "volta"!

Problema 2 (Ibero 2020, 3). Seja $n \ge 2$ um inteiro. Uma sequência $\alpha = (a_1, a_2, \dots, a_n)$ de n números é chamada limenha se

$$\operatorname{mdc} \{a_i - a_j \text{ tal que } a_i > a_j \text{ e } 1 \leq i, j \leq n\} = 1,$$

isto é, se o máximo divisor comum de todas as diferenças $a_i - a_j$, com $a_i > a_j$, é 1.

Uma operação consiste em escolher dois elementos a_k e a_ℓ da sequência, com $k \neq \ell$, e substituir a_ℓ por $a'_\ell = 2a_k - a_\ell$.

Demonstre que, dada uma coleção de 2^n-1 sequências limenhas, cada uma formada por n números inteiros, existem duas destas sequências, digamos β e γ , tais que é possível transformar β em γ efetuando um número finito de operações.