Data Analytics Assignment 5

Jing Pang, Tian Xue, Chuqian Ma, Jiaxiang Leng

Replicate the analysis of the correlation between Nobel prizes and chocolate consumption

a. Find data from the given website and create a new .csv file to store these data In this assignment, choosing the data of cocoa consumption per capita by countries in 2010. Then, creating a new file to store Nobel laureates per 10 million population and chocolate population per capita by countries.

Rank	Entity	Nobel laureates	Population	Laureates/ 10 million	2010coco
50	Algeria	2	42008054	0.476	
	Argentina	5	44688864	1.119	NA
26	Australia	12	24772247	4.844	4.61
8	Austria	21	8751820	23.995	8.16
49	Azerbaijan	1	9923914	1.008	NA
72	Bangladesh	1	1.66E+08	0.06	NA
36	Belarus	2	9452113	2.16	NA
19	Belgium	10	11498519	8.697	8.1
24	Bosnia and Herzegovina	2	350354	5.708	NA
74	Brazil	1	2.11E+08	0.047	2.93
45	Bulgaria	1	7036848	1.421	1.26
22	Canada	24	33953765	6.495	NA
48	Chile	2	18197209	1.099	NA
71	China	9	1.42E+09	0.064	NA
53	Colombia	2	49464683	0.404	NA
38	Costa Rica	1	4953199	2.019	NA
34	Croatia	1	4164783	2.401	NA
20	Cyprus	1	1189085	8.41	NA
29	Czech Republic	5	10625250	4.706	NA
6	Denmark	14	5754356	24.329	8.49
67	DR Congo	1	84004989	0.119	NA
10	East Timor	2	1324094	15.105	NA
54	Egypt	4	99375741	0.403	NA
/	European Union	481	5.1E+08	9.437	NA
/	Faroe Islands	1	49489	202.065	NA
18	Finland	5	5542517	9.021	7.26
16	France	63	65233271	9.658	6.34
13	Germany	108	82293457	13.124	11.56

b. R programming to input data and process data Input the data, and use function complete.case() to remove missing values.

```
which(complete.cases(combine)==F)
newcombine<-combine[complete.cases(combine),]</pre>
```

Rank [‡]	Entity [‡]	Nobel.laureates 🕏	Population.2018.	Laureates10.million	X2010cocoa 🗘
26	Australia	12	24772247	4.844	4.61
8	Austria	21	8751820	23.995	8.16
19	Belgium	10	11498519	8.697	8.10
74	Brazil	1	210867954	0.047	2.93
45	Bulgaria	1	7036848	1.421	1.26
6	Denmark	14	5754356	24.329	8.49
18	Finland	5	5542517	9.021	7.26
16	France	63	65233271	9.658	6.34
13	Germany	108	82293457	13.124	11.56
41	Greece	2	11142161	1.795	3.51
17	Hungary	9	9688847	9.289	3.33
32	Italy	20	59260969	3.373	3.74
35	Japan	27	127185332	2.123	2.09
31	Lithuania	1	2876475	3.476	5.40
7	Norway	13	5353363	24.284	9.44
33	Poland	12	38104832	3.149	3.61
40	Porturgal	2	10291196	1.943	2.72
43	Spain	8	46397452	1.724	3.60

c. Plot the correlation between the two quantities

Use function plot() to draw a diagram of the relation between nobel laureates and chocolate consumption.

Use function text() to mark the country of each point.

Use Summary (relation) get the data of linear regression.

```
x=newcombine[,6]
y=newcombine[,5]
relation <- lm(x~y)
summary(relation)
plot(x, y, abline(lm(y~x)), xlab="cocoa", ylab="nobel", col="blue")
text(x, y, newcombine[,2], cex=0.7, col="green")</pre>
```



```
Call:
lm(formula = x \sim y)
Residuals:
           10 Median
                      30
-3.8056 -0.6683 -0.3260 0.7317 5.2199
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
            (Intercept)
            0.2266
                     0.0421 5.382 2.87e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.938 on 20 degrees of freedom
Multiple R-squared: 0.5916, Adjusted R-squared: 0.5711
F-statistic: 28.97 on 1 and 20 DF, p-value: 2.875e-05
```

2. Correlation between Nobel prizes and wine consumption

a. Find data from websites about wine consumption per capita by country and create a new .csv file to store these data

Website: https://www.statista.com/statistics/232754/leading-20-countries-of-wine-consumption/

	6	Denmark	14	5754356	24.329	35	5.9
	67	DR Congo	1	84004989	0.119	NA	
	10	East Timor	2	1324094	15.105	NA	
	54	Egypt	4	99375741	0.403	NA	
/		European Union	481	5.1E+08	9.437	NA	
/		Faroe Islands	1	49489	202.065	NA	
	18	Finland	5	5542517	9.021	NA	
	16	France	63	65233271	9.658	47	7.4
	13	Germany	108	82293457	13.124	36	5.2
	56	Ghana	1	29463643	0.339	NA	
	41	Greece	2	11142161	1.795	38	3.1
	46	Guatemala	2	17245346	1.16	NA	
/		Hong Kong	1	7428887	1.346	NA	
	17	Hungary	9	9688847	9.289	30	0.9

b. R programming to input data and process data

Rank ‡	Entity ‡	Nobel.laureates ‡	Population.2018.	Laureates10.million 🕏	X2014wine ‡
47	Argentina	5	44688864	1.119	33.6
26	Australia	12	24772247	4.844	29.3
8	Austria	21	8751820	23.995	41.1
19	Belgium	10	11498519	8.697	30.5
6	Denmark	14	5754356	24.329	35.9
16	France	63	65233271	9.658	47.4
13	Germany	108	82293457	13.124	36.2
41	Greece	2	11142161	1.795	38.1
17	Hungary	9	9688847	9.289	30.9
32	Italy	20	59260969	3.373	48.1
14	Netherlands	20	17084459	11.707	27.0
23	New Zealand	3	4749598	6.316	27.1
40	Porturgal	2	10291196	1.943	42.6
37	Romania	4	19580634	2.043	25.5
43	Spain	8	46397452	1.724	19.8
4	Sweden	30	9982709	30.052	27.1
3	Switzerland	26	8544034	30.431	44.7
9	United Kingdom	133	66573504	19.978	23.9

c. Plot the correlation between the two quantities

```
x=newcombine[,6]
y=newcombine[,5]
relation <- lm(x~y)
summary(relation)
plot(x, y, abline(lm(y~x)), xlab="wine", ylab="nobel", col="blue")
text(x, y, newcombine[,2], cex=0.7, col="red")</pre>
```



```
Call:
lm(formula = x \sim y)
Residuals:
   Min
            1Q Median
                         3Q
                                  Max
-13.189 -6.711 -1.040 5.915 14.968
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.84034 3.11539 10.541 1.31e-08 ***
            0.08646
                     0.20768 0.416
                                        0.683
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.636 on 16 degrees of freedom
Multiple R-squared: 0.01072, Adjusted R-squared: -0.05111
F-statistic: 0.1733 on 1 and 16 DF, p-value: 0.6827
```

3. Correlation between Nobel prizes and tea consumption

a. Find data from websites about wine consumption per capita by country and create a new .csv file to store these data

Website: https://www.statista.com/statistics/507950/global-per-capita-tea-consumption-by-country/

59	Morocco	1	36191805	0.276		2.68
66	Myanmar	1	53855735	0.186	NA	
14	Netherlands	20	17084459	11.707		1.72
23	New Zealand	3	4749598	6.316		2.63
73	Nigeria	1	1.96E+08	0.051	NA	
7	Norway	13	5353363	24.284	NA	
69	Pakistan	2	2.01E+08	0.1	NA	
39	Palestine	1	5052776	1.979	NA	
58	Peru	1	32551815	0.307	NA	
33	Poland	12	38104832	3.149		2.2
40	Porturgal	2	10291196	1.943	NA	
37	Romania	4	19580634	2.043	NA	
44	Russia	23	1.44E+08	1.598		3.05

b. R programming to input data and process data

26	Australia	12	24772247	4.844	1.65
71	China	9	1415045928	0.064	1.25
54	Egypt	4	99375741	0.403	2.23
13	Germany	108	82293457	13.124	1.52
11	Ireland	7	4803748	14.572	4.83
35	Japan	27	127185332	2.123	2.13
59	Morocco	1	36191805	0.276	2.68
14	Netherlands	20	17084459	11.707	1.72
23	New Zealand	3	4749598	6.316	2.63
33	Poland	12	38104832	3.149	2.20
44	Russia	23	143964709	1.598	3.05
61	Turkey	2	81916871	0.244	6.96
9	United Kingdom	133	66573504	19.978	4.28

c. Plot the correlation between the two quantities

```
x=newcombine[,6]
y=newcombine[,5]
relation <- lm(x~y)
summary(relation)
plot(x, y, abline(lm(y~x)), xlab="tea", ylab="nobel", col="blue")
text(x, y, newcombine[,2], cex=0.7, col="blue")</pre>
```



```
Call:
lm(formula = x \sim y)
Residuals:
             1Q Median
                                    Max
    Min
                             30
-1.4499 -0.5581 0.1292 0.5495
                                 1.7296
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  5.291 0.000146 ***
             1.78692
                       0.33774
(Intercept)
             0.09014
                       0.04041
                                2.231 0.043958 *
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.' 0.1 ', 1
Residual standard error: 0.9369 on 13 degrees of freedom
Multiple R-squared: 0.2768, Adjusted R-squared:
F-statistic: 4.975 on 1 and 13 DF, p-value: 0.04396
```

4. Result

In the three pairs of correlations, the first one replicate the correlation between Nobel prize and chocolate consumption in the lecture "Chocolate Consumption, Cognitive Function, and Nobel Laureates", which shows that there is a linear regression between the two characteristics – the amount of Nobel Prizes of each country increases as the chocolate consumption increases.

The following two pairs relation shows that the wine consumption does not have a great influence on Nobel laureates and tea consumption of each country has a same positive influence as chocolate consumption on the amount of Nobel Prize.