M314 REVIEW EXERCISES 11.01.17

You're encouraged to discuss these problems with other students in the class.

1. Fill out the truth table.

P	Q	$P \wedge Q$	$P \lor Q$	P o Q	$P \leftrightarrow Q$	$\neg P$	$\neg Q$	$P o ext{false}$	$Q \wedge ext{ true}$	true	false
1	1									1	0
1	0									1	0
0	1									1	0
0	0									1	0

2. Can you come up with an example of a statement in English (rather than math) for each of these tautologies?

$$-\neg(\neg P) \equiv P \text{ (double negative)}$$

$$-P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$$

$$- P \lor \text{false} \equiv P$$

$$-P \land \neg P \equiv \text{false}$$

–
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$
 (distributive law)

$$-P \lor Q \equiv Q \lor P$$
 (commutative law)

$$-P \to (Q \to R) \equiv Q \to (P \to R)$$

3. Use truth tables to verify if the following arguments are valid:

$$\begin{array}{ccc} - & P \to Q, \, \neg Q \\ & \ddots \, \neg P \end{array}$$

$$\begin{array}{ccc} - & P \rightarrow Q \\ & \therefore Q \rightarrow P \end{array}$$

$$\therefore P \lor Q$$

$$\begin{array}{ccc} - & P \lor Q, \, \neg Q \\ & \ddots P \end{array}$$

$$-P \wedge Q$$

$$-P \rightarrow Q, Q \rightarrow R$$

$$\therefore P \to R$$