UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO

LUCAS BARROS DE ASSIS

Modelagem de ondas sísmicas através de paralelismo de tarefas

Monografia apresentada como requisito parcial para a obtenção do grau de Bacharel em Ciência da Computação

Orientador: Prof. Dr. Lucas Mello Schnorr

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhões Vice-Reitora: Prof^a. Patricia Pranke

Pró-Reitora de Graduação: Profa. Cíntia Inês Boll

Diretora do Instituto de Informática: Prof^a. Carla Maria Dal Sasso Freitas Coordenador do Curso de Ciência de Computação: Prof. Rodrigo Machado Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

RESUMO

A aplicação *Ondes3D* tem como objetivo realizar a simulação dos efeitos de uma onda sísmica. Apesar de contar com uma implementação paralela utilizando *OpenMP*, esse paralelismo só é obtido dentro de cada um de seus *macro-kernels*. O trabalho aqui apresentado estuda as alterações necessárias para dividir as estruturas utilizadas pelo simulador em ladrilhos, possibilitando posteriormente uma implementação em forma de tarefas utilizando a biblioteca *StarPU*. Essa divisão em tarefas permite um controle da granularidade dos processos paralelos através do tamanho dos ladrilhos utilizados, o que leva à uma otimização dos acessos em memória. Além disso, é possível que diferentes etapas do processo sejam executadas simultaneamente graças às especificações das dependências que o modelo de programação em tarefas inclui. Dessa forma, espera-se alcançar uma execução que aproveita arquiteturas *multi-core* de forma mais vantajosa que a versão original.

Palavras-chave: Programação paralela. programação baseada em tarefas. Ondes3D. StarPU.

Seismic waves modelling through task-based programming

ABSTRACT

The *Ondes3D* simulator aims to simulate the effects of a seismic wave. Even though it has a parallel implementation using *OpenMP*, this parallelism is only achieved inside each of its macro-kernels. The study presented in this document studies the modifications needed to split the structures used by *Ondes3D* in tiles, which allows a task-based implementation using the *StarPU* library. By splitting the code in tasks, it becomes is possible to control the granularity of the parallel processes through the tile sizes, which enables a memory access optimization. Other than that, different steps of the computation can be executed simultaneously thanks to the dependency specifications from the task-based model. With these modifications, it may be possible to achieve an execution which exploits multi-core architectures even better than the original version.

Keywords: Parallel programming. Task-based programming. Ondes3D. StarPU.

LISTA DE FIGURAS

LISTA DE TABELAS

LISTA DE ABREVIATURAS E SIGLAS

MPI Message Passing Interface

SUMÁRIO

1 INTRODUÇÃO	9
1.1 Contribuições	
2 FUNDAMENTAÇÃO TEÓRICA	
2.1 Ondes3D	
2.2 Programação baseada em tarefas	10
2.2.1 StarPU	
2.2.2 Matrizes <i>ladrilhadas</i>	10
3 PROJETO E IMPLEMENTAÇÃO	11
3.1 Estruturas de dados	11
3.2 Tarefização dos macro-kernels	
4 AVALIAÇÃO EXPERIMENTAL	
4.1 Ambiente de testes	
4.2 Resultados	
5 CONCLUSÃO	
REFERÊNCIAS	

1 INTRODUÇÃO

Uma ferramenta importante para a mitigação dos riscos decorrentes de terremotos é a simulação da propagação de ondas sísmicas (DUPROS et al., 2010). A aplicação Ondes3D realiza essa simulação através do método de diferenças finitas, utilizando a biblioteca *OpenMP* para produzir paralelismo local e o protocolo *MPI* em contextos distribuídos. No entanto, o paralelismo local somente existe dentro de cada macro-kernel, isto é, não existe execução paralela entre diferentes etapas do cálculo. Uma possível melhoria pode ser obtida utilizando um modelo que permita um paralelismo ainda maior que o atual. A biblioteca StarPU é uma alternativa atual que implementa a programação baseada em tarefas para obter paralelismo. Dentro dese modelo, uma tarefa consiste em uma função cuja especificação inclui, além de seus parâmetros, os seus modos de acesso: somente leitura, somente escrita ou leitura e escrita. Essas tarefas são incluídas ao longo do código e, baseando-se na ordem de inserção e nos modos de acesso de cada uma delas, a biblioteca StarPU constrói um grafo acíclico direcionado representando as dependências entre essas tarefas. Durante a execução do programa, esse grafo é utilizado para escalonar as tarefas conforme a disponibilidade dos recursos computacionais. Implementando a aplicação Ondes3D sob a forma de tarefas, acredita-se ser possível alcançar uma performance superior na execução de suas simulações. No entanto, o modelo de tarefas e a biblioteca StarPU exigem que mudanças sejam feitas nas estruturas de dados e no fluxo de código da aplicação. Este trabalho tem como objetivo estudar as alterações necessárias e analisar o nível de paralelismo alcançado pela implementação proposta.

1.1 Contribuições

2 FUNDAMENTAÇÃO TEÓRICA

- **2.1 Ondes3D**
- 2.2 Programação baseada em tarefas
- **2.2.1 StarPU**
- 2.2.2 Matrizes ladrilhadas

3 PROJETO E IMPLEMENTAÇÃO

- 3.1 Estruturas de dados
- 3.2 Tarefização dos macro-kernels

- 4 AVALIAÇÃO EXPERIMENTAL
- 4.1 Ambiente de testes
- 4.2 Resultados

5 CONCLUSÃO

REFERÊNCIAS

DUPROS, F. et al. High-performance finite-element simulations of seismic wave propagation in three-dimensional nonlinear inelastic geological media. **Parallel Comput.**, v. 36, p. 308–325, 2010.