Эконометрика. Домашняя работа №4 Аверьянов Тимофей ПМ 3-1

Задача №1. Доказать (по правилами дифференцирования сложной функции), что величина \widetilde{g} , обеспечивающая эксремум $ESS\left(\widetilde{g}\right)$ может быть вычислена в процессе решения линейного алгербраического уравнения $R\cdot\widetilde{g}=S$, где $R=\sum_{t=2003}^{T}G_{t-1}^{2}$,

$$S = \sum_{t=2003}^{T} G_{t-1} \cdot G_t.$$

Решение:

$$ESS\left(\widetilde{g}\right) = \sum_{t=2003}^{t=T} \left(G_t - \widetilde{g} \cdot G_{t-1}\right)^2 \to \min$$

$$\frac{\partial ESS\left(\widetilde{g}\right)}{\partial \widetilde{g}} = -2 \sum_{t=2003}^{T} \left(G_t - \widetilde{g} \cdot G_{t-1}\right) \cdot G_{t-1} = 0 \implies$$

$$\Rightarrow \widetilde{g} \sum_{t=2003}^{T} G_{t-1}^2 = \sum_{t=2003}^{T} G_t \cdot G_{t-1}$$

$$\widetilde{g} = \frac{\sum_{t=2003}^{T} G_t \cdot G_{t-1}}{\sum_{t=2003}^{T} G_{t-1}^2} = \frac{S}{R} \blacksquare$$

Задача №2. Завершить обсуждение 2 этапа рассчётом: $\widetilde{\sigma}_w = \sqrt{\frac{\sum \left(\widetilde{w}_t^2\right)}{n(=15)-1}}$.

Решение:

Вычислим оценку среднеквадратичного отклонения случайного возмущения или меру влияния неучтённых факторов. Для это вычислим квадратичные оценки случайных фаткоров \widetilde{w}_{ι} :

10200.39 7821.715 2013.469 10905.66 18339.76 33992.52 10418.54 27265.16 2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483 Sum = 273541.7		wt2
2013.469 10905.66 18339.76 33992.52 10418.54 27265.16 2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		10200.39
10905.66 18339.76 33992.52 10418.54 27265.16 2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		7821.715
18339.76 33992.52 10418.54 27265.16 2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		2013.469
33992.52 10418.54 27265.16 2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		10905.66
10418.54 27265.16 2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		18339.76
27265.16 2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		33992.52
2071.716 18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		10418.54
18424.92 38.82768 47920.98 83092.57 151.7303 883.7483		27265.16
38.82768 47920.98 83092.57 151.7303 883.7483		2071.716
47920.98 83092.57 151.7303 883.7483		18424.92
83092.57 151.7303 883.7483		38.82768
151.7303 883.7483		47920.98
883.7483		83092.57
		151.7303
Sum = 273541.7		883.7483
	Sum =	273541.7

А затем по формуле
$$\widetilde{\sigma}_w = \sqrt{\frac{\sum \left(\widetilde{w}_t^2\right)}{n(=15)-1}}$$

J	V	w	X	Υ	Z	AA	AB	AC	AD	AE	AF	AG	
J	V	VV	٨	Ť	L	AA	AD	AC	AD	AE	AF	AG	
		t	Gt	Gt-1	wt		wt2			Gt-12		G_t*G_{t-1}	
		2003	6540.2	6390	100.997		10200.39			40832100		41791878	
		2004	6679	6540.2	88.44046		7821.715			42774216.04		43681995.8	
		2005	6775.3	6679	44.8717		2013.469			44609041		45252228.7	
		2006	6931.9	6775.3	104.4302		10905.66			45904690.09		46965702.07	
		2007	7120.7	6931.9	135.4244		18339.76			48051237.61		49359980.33	
		2008	7359.9	7120.7	184.3706		33992.52			50704368.49		52407639.93	
		2009	7314.5	7359.9	-102.0712		10418.54			54168128.01		53833988.55	
		2010	7205.7	7314.5	-165.1217		27265.16			53501910.25		52706092.65	
		2011	7306.7	7205.7	45.51611		2071.716			51922112.49		52649888.19	
		2012	7498.7	7306.7	135.7384		18424.92			53387864.89		54790751.29	
		2013	7562.671	7498.7	6.231186		38.82768			56230501.69		56710202.35	
		2014	7401.995	7562.671	-218.9086		47920.98			57193995.32		55978855.19	
		2015	7170.733	7401.995	-288.2578		83092.57			54789531.85		53077728.23	
		2016	7238.265	7170.733	12.31788		151.7303			51419406.94		51903664.63	
		2017	7264.272	7238.265	-29.72791		883.7483			52392482.96		52580726.62	
				AVG =	3.616713	Sum =	273541.7		R =	757881587.6	S =	763691322.5	
					a-c/r	R=R-1*S=	1.007666			Ciama-	1))		
	7322.386				g-5/1	V-IV-T 3-	1.007000			Sigma=	±1)	4	

Таким образом $\overset{\sim}{\sigma}_w~\approx 140.$