PHY 471: Homework 7 Solutions

a) We know the answers from Chapter 1, but let's calculate them anyway:

 $P(S_y=+\frac{1}{2})=|\langle +|+\rangle|^2=|_{\overline{\mathbb{Q}}}(1-\lambda)(1)|^2=\frac{1}{2}$ $P(S_y=+\frac{1}{2})=|\langle -|+\rangle|^2=|_{\overline{\mathbb{Q}}}(1-\lambda)(1)|^2=\frac{1}{2}$

b) $\vec{B} = B \cdot \hat{x}$ $\hat{H} = \frac{e}{m} \vec{S} \cdot \vec{B} = \frac{e}{m} \hat{S} \cdot \vec{B} = \omega \cdot \hat{S}_{x}$

The eigenstates of IV are 1+2 with energy + hw. and 1-2 with energy - hwo.

We need to express the initial state fx(t=0) = (+)

as a hinear superposition of energy eigenstates:

There are several ways to find c, and c2. The most direct way is this:

Take inner product with bra St!:

 $\langle t | t \rangle = c_1 \langle t | t \rangle + c_2 \langle t | - \rangle = c_1$

 $40 < 1 = \sqrt{+/+} = \frac{1}{12} (1 | 1) (\frac{1}{0}) = \frac{1}{12}$

Similarly $c_2 = \langle -|+ \rangle = \sqrt{2} (1-1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \sqrt{2}$

Otherwater solutions to problem 1. b) and 1.c)

If you show to with
$$|\psi(t)| > as a solution vector in the usual z -bries, you would get

b) $|\psi(t)| > z$ $\int_{\Sigma} \left(z - \frac{1}{2} \frac{1}{$$$

If you leave your ensurer as $\frac{1}{2}(\cos\frac{\omega t}{2} - \sin\frac{\omega t}{2})^2$, that is correct, but it's difficult to see what's going on.

The sarliest time when $P = \frac{1}{\lambda}$ is $w_0 t = \pi$ or $t = \frac{\pi}{\omega_0}$

a) If
$$B_0 = 0$$
, no particles pass through, because $P = |\langle -1+ \rangle|^2 = 0$ find initial state state

2. (6) Since B points along \hat{x} the spins will precess in the y-z plane at angular frequency w = eBo . The probability of getting through the second Stern-Serboch will be 50% when (5) point in the + i or - i direction, which occurs after $\frac{1}{4}$ of a cycle: $w, t = \frac{2\pi}{4} = \frac{\pi}{2}$. Let's check that answer using results from the previous problem: $|\psi(t=0)\rangle = |+\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle_{x} + |-\rangle_{x} \right)$ $|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left(e^{-i\omega_{x}t/2} |+\rangle_{x} + e^{+i\omega_{x}t/2} |-\rangle_{x} \right)$

 $|\Psi(t)\rangle = \frac{1}{\sqrt{2}} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{1}{2} \frac{i\omega_s t}{2} / t \right)$ $P\left(\frac{1}{2} - \frac{1}{2} \right) = \left(\frac{-i\omega_s t}{2} / t \right) = \frac{1}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) = \frac{1}{2} \left(\frac{-i\omega_s t}{2} / t \right) = \frac{1}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_s t}{2} \left(\frac{-i\omega_s t}{2} / t \right) \times + \frac{i\omega_$

So $P = \frac{1}{2}$ when $\sin^2\left(\frac{\omega_i t}{\lambda}\right) = \frac{1}{2}$ $\Rightarrow \sin\frac{\omega_i t}{\lambda} = \frac{1}{\sqrt{2}} \Rightarrow \omega_i t = \frac{\pi}{4}$ as we said at the beginning.

Particles are moving at speed v, so $d = vt = v\frac{\pi}{2w_0}$.

Plug in $\omega_i = \frac{e G_0}{m_0}$: $d = \frac{\pi}{2} \frac{m_e v}{e R}$.

c) In put b, the spins precess around $B=B_{o}\hat{x}$, so particles with spins up along z have their spins rotated. In part a, the spins stay in the $|+\rangle$ state.

d) $P(S_z = -\frac{h}{2}) = \sin^2(\frac{\omega_c t}{2})$ from part 6). P = 1 when $\frac{\omega_c t}{2} = \frac{\pi}{2}$ or $\omega_c t = \pi$ This is twice as long as in part 1), so $d = \pi \frac{m_c V}{\epsilon B_c}.$

3.	JM	, drew	the X-Z	plane	in the plane	of the paper.	
5	(i)) / /		Stud Y	rent A	Student B	3 2 1 (5(0))	
7	\ \		Y	B=Box	Bo B, R		-
1		R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		充=/(x+)	(3(4))	×
	` ` ` `	4-1	4 cycle	later		a cycle lader	•

(a)
$$(\vec{S}(t))$$
 precesses around $\vec{B} = \vec{B}_0 \hat{\gamma}$ at angular frequency ω_0 .
($\vec{S}(t)$) points along $+\hat{\chi}$ after $\vec{\zeta}$ cycle, or $\omega_0 t = \vec{\zeta} \Rightarrow t = \frac{4\tau}{2\omega_0}$.
(b) $(\vec{S}(t))$ precesses around $\vec{B} = \vec{B}_0 \hat{n}$, with $\hat{n} = \vec{\zeta}_2(\hat{\chi} + \hat{\chi})$,

at the same argular frequency ω_o . It points along $+\hat{x}$ after \hat{z} eyels $\Rightarrow \hat{z} = \frac{\pi}{\omega_o}$

c) Now (5(1)) precesses in the opposite direction, so after 4 cycle it points along - x, which means /4 = [-]x.

Since (41-)x =0, no particles get through the x-analyzer.

If they wit 34 cycle, or t = 300, then (00% will be transmitted, d) 100%. After 2 cycle, you get to the same place

if you go around clockwise or counter-clockwise.