Machine Learning II A crash course on Optimization

Le Thi Khanh Hien UMONS, thikhanhhien.le@umons.ac.be

Mons, March 2023

Table of content

Gradient descent method

Newton method

Proximal point algorithm

I. Gradient descent method

References:

- Jorge Nocedal and Stephen J. Wright, "Numerical Optimization", Springer (2006).
- Y. Nesterov, "Lectures on Convex Optimization", Springer Optimization and Its Applications book series, 2018.

Recap

General optimization problem

$$\min_{x} \quad f(x)$$
s.t. $x \in \mathcal{X}$.

- ullet Convex optimization o a local minimizer is also a global minimizer.
- Fermat's optimality condition: Let $f \in \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function. Then \mathbf{x}^* is a minimizer to f if and only if $0 \in \partial f(\mathbf{x}^*)$.

How can we find optimal points?

Iterative Methods

To solve an optimization problem $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$, we start with some initial guess x^0 , and then iteratively update x^k to produce a sequence $\{x^k\}_{k \geq 0}$ with the goal that the sequence converges to x^* , meaning $\|x^k - x^*\|$ for some norm $\|\cdot\|$ as $k \to \infty$.

Iterative Methods

To solve an optimization problem $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$, we start with some initial guess x^0 , and then iteratively update x^k to produce a sequence $\{x^k\}_{k \geq 0}$ with the goal that the sequence converges to x^* , meaning $\|x^k - x^*\|$ for some norm $\|\cdot\|$ as $k \to \infty$.

Iterative Descent Methods

Consider the unconstrained optimization problem $\min_{x \in \mathbb{R}^n} f(x)$, where f is assumed to be continuously differentiable.

- If $\nabla f(x) = 0$: this is a candidate.
- If $\nabla f(x) \neq 0$: can we improve it? $f(x^{k+1}) < f(x^k)$?

If
$$\nabla f(x)^{\top} d < 0$$
 then $\exists \delta$ such that $f(x + \alpha d) < f(x)$, $\forall \alpha \in (0, \delta)$.

Proof. From the Taylor expansion

$$f(x + \alpha d) = f(x) + \alpha \nabla f(x)^{\top} d + o(\alpha),$$

we have

$$f(x + \alpha d) - f(x) = \alpha (\nabla f(x)^{\top} d + o(\alpha)/\alpha)$$

Since $\lim_{\alpha\to 0}\frac{o(\alpha)}{\alpha}=0$, there exists $\delta>0$ such that $\left|\frac{o(\alpha)}{\alpha}\right|<-\nabla f(x)^\top d$ for all $\alpha\in(0,\delta)$.

Proposition 1.2

Suppose B is a positive definite matrix and $\nabla f(x) \neq 0$. Then $-B\nabla f(x)$ is a descent direction.

Proof.

Iterative Descent Methods for solving $\min_{x \in \mathbb{R}^n} f(x)$, where f is continuously differentiable.

$$x^{k+1} = x^k + \alpha_k d^k$$
, for $k = 0, 1, ...$

- $\alpha_k > 0$: step-size
- d^k : descent direction.

Iterative Descent Methods for solving $\min_{x \in \mathbb{R}^n} f(x)$, where f is continuously differentiable.

$$x^{k+1} = x^k + \alpha_k d^k$$
, for $k = 0, 1, ...$

- $\alpha_k > 0$: step-size
- d^k: descent direction.

Choice of direction

- Gradient descent $d^k = -\nabla f(x^k)$
- Diagonally scaled gradient descent $d^k = -B^k \nabla f(x^k)$, for some $B^k \succ 0$
- Newton direction $d^k = -(\nabla^2 f(x^k)^{-1} \nabla f(x^k))$ (suppose that $\nabla^2 f(x^k)^{-1} > 0$
- Modified Newton direction $d^k = -(\nabla^2 f(x^0)^{-1} \nabla f(x^k))$, for all k, or compute Newton direction once every m steps.

Iterative Descent Methods for solving $\min_{x \in \mathbb{R}^n} f(x)$, where f is continuously differentiable.

$$x^{k+1} = x^k + \alpha_k d^k$$
, for $k = 0, 1, ...$

- $\alpha_k > 0$: step-size
- d^k: descent direction.

Choice of direction

- Gradient descent $d^k = -\nabla f(x^k)$
- Diagonally scaled gradient descent $d^k = -B^k \nabla f(x^k)$, for some $B^k \succ 0$
- Newton direction $d^k = -(\nabla^2 f(x^k)^{-1} \nabla f(x^k))$ (suppose that $\nabla^2 f(x^k)^{-1} > 0$
- Modified Newton direction $d^k = -(\nabla^2 f(x^0)^{-1} \nabla f(x^k))$, for all k, or compute Newton direction once every m steps.

Choice of step-size?

Gradient descent method for solving $\min_{x \in \mathbb{R}^n} f(x)$, where f is continuously differentiable.

Starting from an initial point x^0 , update

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k),$$

where α_k is stepsize.

Gradient descent method for solving $\min_{x \in \mathbb{R}^n} f(x)$, where f is continuously differentiable.

Starting from an initial point x^0 , update

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k),$$

where α_k is stepsize.

Example problem:
$$\min_{x \in \mathbb{R}^2} f(x_1, x_2) = x_1^2 + x_1 x_2 + 4x_2^2$$
.

How do we choose a stepsize?

Example problem: $\min_{x \in \mathbb{R}^2} f(x_1, x_2) = x_1^2 + x_1 x_2 + 4x_2^2$.

How do we choose a stepsize?

- $\{\alpha_k\}$ is chosen in advance.
 - Choose $\alpha_k = \alpha$ for some constant $\alpha > 0$ (a constant stepsize). For example, if f is L-smooth then we can choose $0 < \alpha < \frac{2}{L}$.
 - Choose $\frac{\alpha}{\sqrt{k+1}}$ for some constant $\alpha > 0$.
- Backtracking line search. Fix two parameters $0 < \beta < 1$ and $0 < t \le 0.5$. At iteration k: starting with $\alpha_k = 1$, while $f(x^k \alpha_k \nabla f(x^k)) > f(x^k) \alpha_k t \|\nabla f(x^k)\|_2^2$, shrink $\alpha_k = \beta \alpha_k$.
- Exact line search. Choose $\alpha_k = \arg\min_{s \ge 0} f(x^k s\nabla f(x^k))$.

L-smooth function

Definition 1

A continuously differentiable function $f:\mathbb{E}\to\mathbb{R}$ is called an L-smooth function if

$$\|\nabla f(x) - \nabla f(y)\|_* \le L\|x - y\|, \forall x, y \in \mathbb{E}.$$

Example

Show that f is L-smooth and determine L.

•
$$f(x) = \frac{1}{2} ||Ax - b||_2^2$$
.

• (See Lab 2) Logistic regression loss $f(w) = \frac{1}{n} \sum_{i=1}^{n} \log (1 + \exp(-y^{i} \langle x^{i}, w \rangle)).$

L-smooth property of f implies the descent lemma

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \forall x, y \in \mathbb{E}.$$

Proof. We have

$$f(y) - f(x) = \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt$$

Hence,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$

$$= \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt$$

$$\leq \int_0^1 L \|y - x\|^2 t dt = \frac{L}{2} \|y - x\|^2.$$

L-smooth property of f implies the descent lemma

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \forall x, y \in \mathbb{E}.$$

Proof. We have

$$f(y) - f(x) = \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt$$

Hence,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$

$$= \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt$$

$$\leq \int_0^1 L \|y - x\|^2 t dt = \frac{L}{2} \|y - x\|^2.$$

There are a lot of other properties, see here:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient.

L-smooth property of f implies the descent lemma

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \forall x, y \in \mathbb{E}.$$

Proof. We have

$$f(y) - f(x) = \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt$$

Hence,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$

$$= \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt$$

$$\leq \int_0^1 L \|y - x\|^2 t dt = \frac{L}{2} \|y - x\|^2.$$

There are a lot of other properties, see here:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient.

Suppose f is twice continuously differentiable convex function. f is L-smooth $\iff x \mapsto \frac{L}{2} ||x||^2 - f(x)$ is convex $\iff \nabla^2 f(x) \leq LI$

Convergence of GD for convex *L*-smooth function

Suppose f is convex and L-smooth. If $0 < \alpha < \frac{2}{L}$ then we have

- The sequence $\{x^k\}$ converges to a minimizer x^* of f.
- The following inequality holds for all $k \ge 0$

$$f(x^k) - f(x^*) \le \frac{2(f(x^0) - f(x^*) \|x^0 - x^*\|^2}{2\|x^0 - x^*\|^2 + k\alpha(2 - L\alpha)(f(x^0) - f(x^*))}.$$

Corollary. If
$$\alpha = \frac{1}{L}$$
 then $f(x^k) - f(x^*) \le \frac{2L||x^0 - x^*||^2}{k+4}$.

Convergence of GD for convex *L*-smooth function

Suppose f is convex and L-smooth. If $0 < \alpha < \frac{2}{L}$ then we have

- The sequence $\{x^k\}$ converges to a minimizer x^* of f.
- The following inequality holds for all $k \ge 0$

$$f(x^k) - f(x^*) \le \frac{2(f(x^0) - f(x^*) \|x^0 - x^*\|^2}{2\|x^0 - x^*\|^2 + k\alpha(2 - L\alpha)(f(x^0) - f(x^*))}.$$

Corollary. If
$$\alpha = \frac{1}{L}$$
 then $f(x^k) - f(x^*) \le \frac{2L||x^0 - x^*||^2}{k+4}$.

(See Lab 2) This is Theorem 2.1.14 in Y. Nesterov, Lectures on Convex Optimization, Springer Optimization and Its Applications book series, 2018. Read the proof and write it again.

https://tinyurl.com/2tu27k8b

Convergence of GD for strongly convex *L*-smooth function

Recall that f is convex and L-smooth. If there is a constant $\mu>0$ such that $x\mapsto f(x)-\frac{\mu}{2}\|x\|^2$ is convex, we say f is μ -strongly convex. This condition is equivalent to

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||^2, \forall x, y.$$

The value $\kappa = \frac{L}{\mu} \ge 1$ is called the condition number of the function f.

Convergence of GD for strongly convex *L*-smooth function

Recall that f is convex and L-smooth. If there is a constant $\mu>0$ such that $x\mapsto f(x)-\frac{\mu}{2}\|x\|^2$ is convex, we say f is μ -strongly convex. This condition is equivalent to

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||^2, \forall x, y.$$

The value $\kappa = \frac{L}{\mu} \ge 1$ is called the condition number of the function f.

Suppose f is μ -strongly convex and L-smooth. If $\alpha = \frac{2}{\mu + L}$, then

$$f(x^k) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} ||x^0 - x^*||^2$$
, and $||x^k - x^*||^2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k ||x^0 - x^*||$.

See Theorem 2.1.15 in Y. Nesterov, Lectures on Convex Optimization, Springer Optimization and Its Applications book series, 2018.

Iteration Complexity

II. Newton method and quasi-Newton method

References:

- Jorge Nocedal and Stephen J. Wright, "Numerical Optimization", Springer (2006).
- Roger Fletcher, "Practical Methods of Optimization", 2000.

Newton's method for systems of nonlinear equations.

Suppose $\phi : \mathbb{R}^n \to \mathbb{R}^n$, $\phi(x) = (\phi_1(x), \dots, \phi_n(x))$. We need to solve $\phi(x) = 0$:

$$\phi_1(x_1,\ldots,x_n)=0,$$

$$\phi_2(x_1,\ldots,x_n)=0,$$

$$\vdots$$

$$\phi_n(x_1,\ldots,x_n)=0.$$

Key steps: Given an iterate $x^{(k)}$,

- Linearization: $\phi(x) \approx \phi(x^{(k)}) + J\phi(x^{(k)})(x x^{(k)})$, where $J\phi(x)$ is the Jacobian of ϕ at x.
- Solve $\phi(x^{(k)}) + J\phi(x^{(k)})(x x^{(k)}) = 0$ instead of $\phi(x) = 0$.

Newton's method:

Given an iterate $x^{(k)}$, update $x^{(k+1)} = x^{(k)} - J\phi(x^{(k)})^{-1}\phi(x^{(k)})$.

Newton's method for unconstrained optimization.

Let f be a twice differentiable function. Suppose we want to solve

$$\min_{x\in\mathbb{R}^n}f(x).$$

First-order optimality condition: $\nabla f(x) = 0$.

Pure Newton's method for solving $\nabla f(x) = 0$. Given an iterate $x^{(k)}$, update

$$x^{(k+1)} = x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)}).$$

Newton's method

Another interpretation: quadratic Taylor approximation

$$f(x) \approx h(x)$$

$$:= f(x^{(k)}) + \nabla f(x^{(k)})^{T} (x - x^{(k)}) + \frac{1}{2} (x - x^{(k)}) \nabla^{2} f(x^{(k)}) (x - x^{(k)}).$$

Minimizing h(x) yields the update of Newton's method since

$$\nabla h(x) = \nabla f(x^{(k)}) + \nabla^2 f(x^{(k)})(x - x^{(k)}) = 0.$$

Some remarks.

Given an iterate $x^{(k)}$, update

$$x^{(k+1)} = x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)}).$$

- The Newton's direction is not defined when $\nabla^2 f(x^{(k)})$ is not invertible.
- The method can diverge when started far from a solution.

• If $\nabla^2 f(x^{(k)})$ is a positive definite matrix, then $d^{(k)} = -\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$ is a descent direction.

Local quadratic convergence of pure Newton's method.

Theorem 2.1

Let x^* be a minimizer o f. Suppose that f is twice continuously differentiable in an open neighborhood of x^* . Suppose also that the Hessian $\nabla^2 f$ is Lipschitz continuous near x^* and $\nabla^2 f(x^*)$ is positive definite. If x_0 is sufficiently close to x^* , then the generated sequence $\{x^k\}$ is well defined and converges to x^* quadratically, that is,

$$||x^{k+1}-x^*|| \le C ||x^k-x^*||^2$$
,

where C is a constant.

An example

$$\min_{x} f(x) = 6x_1^2 + x_2^2 + 5\log(1 + e^{-x_1 - x_2}).$$

$$\nabla f(x) = \begin{bmatrix} 12x_1 - 5 + \frac{5}{1 + e^{-x_1 - x_2}} & 2x_2 - 5 + \frac{5}{1 + e^{-x_1 - x_2}} \end{bmatrix}^T$$

$$\nabla^2 f(x) = \begin{bmatrix} 12 + 5 \frac{e^{-x_1 - x_2}}{(1 + e^{-x_1 - x_2})^2} & 5 \frac{e^{-x_1 - x_2}}{(1 + e^{-x_1 - x_2})^2} \\ 5 \frac{e^{-x_1 - x_2}}{(1 + e^{-x_1 - x_2})^2} & 2 + 5 \frac{e^{-x_1 - x_2}}{(1 + e^{-x_1 - x_2})^2} \end{bmatrix}$$

An example

Gradient method

Newton's method

(Optional reading)

Definition of Newton decrement

$$\begin{split} \delta(x^k) &:= \|d^k\|_{\nabla^2 f(x^k)} \\ &= \left(d^k \nabla^2 f(x^k) d^k\right)^{1/2} \\ &= \left(\nabla f(x^k)^\top \nabla^2 f(x^k)^{-1} \nabla f(x^k)\right)^{1/2}. \end{split}$$

$\delta(x^k)^2/2$ is an approximate bound for the optimality gap

We have

$$f(x) - \min_{y} (f(y) + \nabla f(y)^{T} (x - y) + \frac{1}{2} (x - y) \nabla^{2} f(y) (x - y))$$

$$= f(x) - (f(x) - \frac{1}{2} \nabla f(x^{k})^{T} \nabla^{2} f(x^{k})^{-1} \nabla f(x^{k}))$$

$$= \frac{1}{2} \delta(x^{k})^{2}.$$

Newton's method - full description

```
1: Initialize: Choosing initial point x_0 \in \text{dom} f and an error tolerance
   \varepsilon > 0.
2: for k = 1, ... do
          Calculate d^k = -\nabla f^2(x^k)^{-1}\nabla f(x^k) and
3:
          \delta_{k}^{2} = \nabla f(x^{k})^{T} \nabla^{2} f(x^{k})^{-1} \nabla f(x^{k}).
      if \delta_{\nu}^2/2 < \varepsilon then
4:
5:
                stop
          end if
6:
          Choose a stepsize \alpha_k and update x^{k+1} = x^k + \alpha_k d^k.
7:
8: end for
                       Algorithm 1: Newton's method
```

Damped Newton's method

Choose stepsize α_k by backtracking line search:

- Choose $0 < \sigma \le 1/2$ and $0 < \beta < 1$.
- Start with $\alpha = 1$ and while

$$f(x^k + \alpha d^k) > f(x^k) + \sigma \alpha \nabla f(x^k)^{\top} d^k,$$

we shrink $\alpha = \beta \alpha$.

• Let $\alpha_k = \alpha$.

(Optional reading)

Quasi-Newton method.

- Quasi-Newton's method replaces the Hessian $\nabla^2 f(x^k)$ by its approximation matrix G_k .
- G_k is a positive definite matrix so that the direction $d_k = -G_k^{-1} \nabla f(x^k)$ is a descent direction.
- Suppose we can calculate $\nabla f(x^{k-1})$, $\nabla f(x^k)$ and want to estimate $\nabla^2 f(x^k)$. Note that

$$\nabla f(x^{k-1}) - \nabla f(x^k) = \nabla^2 f(x^k)(x^{k-1} - x^k) + o\left(\|x^{k-1} - x^k\|\right).$$

We want G_k to satisfy

$$\nabla f(x^{k-1}) - \nabla f(x^k) = G_k(x^{k-1} - x^k),$$

or, equivalently, we want the following quasi-Newton condition to be satisfied

$$H_k(\nabla f(x^{k-1}) - \nabla f(x^k)) = x^{k-1} - x^k,$$

where $H_k = G_k^{-1}$.

Then, from (1) we have $H_{k-1}\gamma_k + \mathsf{auu}^\top\gamma_k = \delta_k$

Idea: suppose H_k is a rank one correction of H_{k-1} , that is

quasi-Newton condition as follows.

We can choose

Update of H_{k} :

$$H_k = H_{k-1} + \mathsf{auu}^ op = H_{k-1} + rac{(\delta_k - H_{k-1}\gamma_k)(\delta_k - H_{k-1}\gamma_k)^ op}{\gamma_k^ op (\delta_k - H_{k-1}\gamma_k)}$$

Denote $\gamma_k = \nabla f(x^k) - \nabla f(x^{k-1})$ and $\delta_k = x^k - x^{k-1}$. We rewrite the

Broyden's method (proposed by Charles George Broyden, 1967).

 $H_{\nu}\gamma_{\nu}=\delta_{\nu}$.

 $H_{\nu} = H_{\nu-1} + auu^{\top}$.

 $u = \delta_k - H_{k-1}\gamma_k, \quad a = \frac{1}{\gamma_L^{\top}(\delta_L - H_{k-1}\gamma_L)}.$

Disadvantage: H_k may not be always positive. definite.

(1)

DFP Method (proposed by Davidon, Fletcher and Powell). **Idea:** use rank two correction from H_{k-1} , that is

$$H_k = H_{k-1} + auu^{\top} + bvv^{\top}.$$

Then, from (1) we have

$$H_{k-1}\gamma_k + auu^{\top}\gamma_k + bvv^{\top} = \delta_k.$$

An obvious solution is

$$u = \delta_k, \quad v = H_{k-1}\gamma_k, \quad a = \frac{1}{u^\top \gamma_k}, \quad b = -\frac{1}{v^\top \gamma_k}.$$

Update of H_k :

$$H_k = H_{k-1} + \frac{\delta_k \delta_k^{\top}}{\delta_k^{\top} \gamma_k} - \frac{H_{k-1} \gamma_k \gamma_k^{\top} H_{k-1}}{(H_{k-1} \gamma_k)^{\top} \gamma_k}.$$

Note: If H_{k-1} is positive definite then H_k is also positive definite.

BFGS Method (proposed by Davidon, Fletcher and Powell).

The quasi-Newton condition can be rewritten as $\gamma_k = G_k \delta_k$.

Idea: Use the DFP formula to obtain G_k from G_{k-1} . This can be done by replacing H_k with G_k , H_{k-1} with G_{k-1} and swap γ_k and δ_k in the DFP formula for H_k

$$G_k = G_{k-1} + \frac{\gamma_k \gamma_k^{\top}}{\gamma_k^{\top} \delta_k} - \frac{G_{k-1} \delta_k \delta_k^{\top} G_{k-1}}{(G_{k-1} \delta_k)^{\top} \delta_k},$$

which implies

$$G_k^{-1} = G_{k-1}^{-1} + \left(1 + \frac{\gamma_k^\top G_{k-1}^{-1} \gamma_k}{\delta_k^\top \gamma_k}\right) \frac{\delta_k \delta_k^\top}{\delta_k^\top \gamma_k} - \frac{\delta_k \gamma_k^\top G_{k-1}^{-1} + G_{k-1}^{-1} \gamma_k \delta_k^\top}{\delta_k^\top \gamma_k}.$$

Hence

$$H_k = H_{k-1} + \left(1 + \frac{\gamma_k^\top H_{k-1} \gamma_k}{\delta_k^\top \gamma_k}\right) \frac{\delta_k \delta_k^\top}{\delta_k^\top \gamma_k} - \frac{\delta_k \gamma_k^\top H_{k-1} + H_{k-1} \gamma_k \delta_k^\top}{\delta_k^\top \gamma_k}.$$

III.Proximal point algorithm

References:

- N Parikh, S Boyd, "Proximal Algorithms", Foundations and Trends in Optimization 1(3), 2014. Link
- Amir Beck, "First-Order Methods in Optimization", MOS-SIAM Series on Optimization, 2017

Problem setting

We consider the following convex composite optimization problem

$$\min_{\mathbf{x} \in \mathbb{E}} F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}), \tag{2}$$

where $f: \mathbb{E} \to \mathbb{R}$ is a differentiable convex function and $g: \mathbb{E} \to \overline{\mathbb{R}}$ is a proper lower-semicontinuous convex function.

Assumptions

- f is L-smooth, which is equivalent to $x \mapsto \frac{L}{2} ||x||^2 f(x)$ is convex.
- f is μ -strongly convex ($\mu \geq 0$).
- The optimal value F^* is attained at x^* .

Example

• General inverse problems: given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $c \in \mathbb{R}^m$, solve

$$\min_{x\in\mathbb{R}^n}\frac{1}{2}\|Ax-c\|_2^2+\lambda R(x),$$

where R(x) is a regularizer.

• *l*₁-regularized logistic regression

$$\min_{w \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp \left(-y^i \left\langle x^i, w \right\rangle \right) \right) + \lambda \|w\|_1.$$

• Generalized constrained low-rank matrix factorization. Given a matrix $M \in \mathbb{R}^{m \times n}_+$ and an integer factorization rank r > 0, find

$$\begin{aligned} & & & \text{min} \\ & & W \in \Omega_W \subseteq \mathbb{R}^{m \times r} \\ & & & H \in \Omega_H \subseteq \mathbb{R}^{r \times n} \end{aligned}$$

where f(M|WH) is a cost function that measures the difference between M and WH, and R is a regularizer.

Recall

Subdifferential of a convex function. Let $f: \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function and $\overline{\mathbf{x}} \in \mathrm{dom} f$. A vector $v \in \mathbb{E}^*$ is called a subgradient of f at $\overline{\mathbf{x}}$ if

$$f(\mathbf{x}) \geq f(\overline{\mathbf{x}}) + \langle v, \mathbf{x} - \overline{\mathbf{x}} \rangle$$
 for all $\mathbf{x} \in \mathbb{E}$.

The subdifferential of f at $\bar{\mathbf{x}}$ is defined by

$$\partial f(\overline{\mathbf{x}}) := \{ v \in \mathbb{E}^* | f(\mathbf{x}) \ge f(\overline{\mathbf{x}}) + \langle v, \mathbf{x} - \overline{\mathbf{x}} \rangle \, \forall \mathbf{x} \in \mathbb{E} \}.$$

Fermat's optimality condition. Let $f \in \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function. Then \mathbf{x}^* is a minimizer to f if and only if $0 \in \partial f(\mathbf{x}^*)$.

Recall

Subdifferential of a convex function. Let $f: \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function and $\overline{\mathbf{x}} \in \mathrm{dom} f$. A vector $v \in \mathbb{E}^*$ is called a subgradient of f at $\overline{\mathbf{x}}$ if

$$f(\mathbf{x}) \geq f(\overline{\mathbf{x}}) + \langle v, \mathbf{x} - \overline{\mathbf{x}} \rangle$$
 for all $\mathbf{x} \in \mathbb{E}$.

The subdifferential of f at $\bar{\mathbf{x}}$ is defined by

$$\partial f(\overline{\mathbf{x}}) := \{ v \in \mathbb{E}^* | f(\mathbf{x}) \ge f(\overline{\mathbf{x}}) + \langle v, \mathbf{x} - \overline{\mathbf{x}} \rangle \, \forall \mathbf{x} \in \mathbb{E} \}.$$

Fermat's optimality condition. Let $f \in \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function. Then \mathbf{x}^* is a minimizer to f if and only if $0 \in \partial f(\mathbf{x}^*)$.

(Optional reading)

Subgradient method

https://stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf

Let \mathbb{E} be a Euclidean space.

Definition 2

Let $f: \mathbb{E} \to \overline{\mathbb{R}}$ be a proper l.s.c. (convex) function. We define the **proximal (prox) operator** $\operatorname{prox}_f : \mathbb{E} \to \mathbb{E}$ of f by

$$\operatorname{prox}_f(x) := \arg\min_{u \in \mathbb{E}} \left\{ f(u) + \frac{1}{2} ||u - x||^2 \right\}.$$

Quiz 1

Do the convex function f and its proximal operator have the same domain?

Let \mathbb{E} be a Euclidean space.

Definition 2

Let $f: \mathbb{E} \to \overline{\mathbb{R}}$ be a proper l.s.c. (convex) function. We define the **proximal (prox) operator** $\operatorname{prox}_f : \mathbb{E} \to \mathbb{E}$ of f by

$$\operatorname{prox}_f(x) := \arg\min_{u \in \mathbb{E}} \left\{ f(u) + \frac{1}{2} \|u - x\|^2 \right\}.$$

Quiz 1

Do the convex function f and its proximal operator have the same domain?

Proposition 3.1

Let $f: \mathbb{E} \to \mathbb{R}$ be a proper l.s.c. convex function. Then prox_f is a well-defined mapping with full domain. Moreover, we have

$$u = \operatorname{prox}_f(x) \Leftrightarrow x - u \in \partial f(u)$$

$$\operatorname{prox}_f(x) = (\operatorname{Id} + \partial f)^{-1}(x)$$
 for all $x \in \mathbb{E}$.

Quiz 2

Find prox_f with $f = \delta_D$, where D is a closed convex set in \mathbb{E} .

- (A) $\operatorname{prox}_f(\mathbf{x}) = \mathbf{x}$.
- (B) $\operatorname{prox}_f(\mathbf{x}) = \Pi_D(\mathbf{x}).$
- (C) $\operatorname{prox}_f(\mathbf{x}) = D$.

Some Prox calculus rules

Proposition 3.2 (prox of separable functions)

Suppose that $f: \mathbb{E}_1 \times \ldots \times \mathbb{E}_s \to (-\infty, \infty]$ satisfies the condition

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_s) = \sum_{i=1}^s f_i(\mathbf{x}_i), \text{ for any } \mathbf{x}_i \in \mathbb{E}_i, \ i=1,\ldots,s.$$

Then for any $x_i \in \mathbb{E}_i$, i = 1, ..., s we have

$$\operatorname{prox}_f(\mathbf{x}_1,\ldots,\mathbf{x}_s) = \operatorname{prox}_{f_1}(\mathbf{x}_1) \times \ldots \times \operatorname{prox}_{f_s}(\mathbf{x}_s),$$

Quiz 3

Suppose $\mathbb{E} = \mathbb{R}^n$. Find prox_f with $f(x) = t \|x\|_1$ and t > 0.

(A)

$$(\operatorname{prox}_f(\mathbf{x}))_i = \begin{cases} \mathbf{x}_i - t, & \text{if } \mathbf{x}_i < -t, \\ 0, & \text{if } |\mathbf{x}_i| \le t, \\ \mathbf{x}_i + t, & \text{if } \mathbf{x}_i > t. \end{cases}$$

- (B) $(\operatorname{prox}_f(\mathbf{x}))_i = \operatorname{sign}(\mathbf{x}_i)[t |\mathbf{x}_i|]_+$.
- (C) $(\operatorname{prox}_f(\mathbf{x}))_i = \operatorname{sign}(\mathbf{x}_i)[|\mathbf{x}_i| t]_+$.

Proposition 3.3 (post-composition)

Let $g : \mathbb{E} \to (-\infty, \infty]$ be a proper function. If $f(\mathbf{x}) = \alpha g(\mathbf{x}) + a$, with $\alpha > 0$ and $a \in \mathbb{R}$, then

$$\operatorname{prox}_f(\mathbf{x}) = \operatorname{prox}_{\alpha g}(\mathbf{x}).$$

Proposition 3.4 (pre-composition)

Let $g : \mathbb{E} \to (-\infty, \infty]$ be a proper function. Let $\alpha \neq 0$ and $\mathbf{y} \in \mathbb{E}$. Suppose $f(\mathbf{x}) = g(\alpha \mathbf{x} + \mathbf{y})$. Then we have

$$\operatorname{prox}_f(\mathbf{x}) = \frac{1}{\alpha} (\operatorname{prox}_{\alpha^2 \mathbf{g}} (\alpha \mathbf{x} + \mathbf{y}) - \mathbf{y}).$$

(See Lab 2) Find prox_f with $f: \mathbb{R}^n \to \mathbb{R}, f(x) = t ||x||_2^2$ and t > 0.

Proposition 3.3 (post-composition)

Let $g: \mathbb{E} \to (-\infty, \infty]$ be a proper function. If $f(\mathbf{x}) = \alpha g(\mathbf{x}) + a$, with $\alpha > 0$ and $a \in \mathbb{R}$, then

$$\operatorname{prox}_f(\mathbf{x}) = \operatorname{prox}_{\alpha g}(\mathbf{x}).$$

Proposition 3.4 (pre-composition)

Let $g : \mathbb{E} \to (-\infty, \infty]$ be a proper function. Let $\alpha \neq 0$ and $\mathbf{y} \in \mathbb{E}$. Suppose $f(\mathbf{x}) = g(\alpha \mathbf{x} + \mathbf{y})$. Then we have

$$\operatorname{prox}_f(\mathbf{x}) = \frac{1}{\alpha} (\operatorname{prox}_{\alpha^2 \mathbf{g}} (\alpha \mathbf{x} + \mathbf{y}) - \mathbf{y}).$$

(See Lab 2) Find prox_f with $f: \mathbb{R}^n \to \mathbb{R}, f(x) = t ||x||_2^2$ and t > 0.

More formulas and codes:

http://proximity-operator.net/proximityoperator.html

Proximal gradient (PG) method

$$\min_{x\in\mathbb{E}} f(x) + g(x).$$

Starting from an initial point x^0 , update

$$x^{k+1} = \operatorname{prox}_{\lambda_k g} (x^k - \lambda_k \nabla f(x^k)).$$

Proximal gradient (PG) method

$$\min_{x\in\mathbb{E}} f(x) + g(x).$$

Starting from an initial point x^0 , update

$$x^{k+1} = \operatorname{prox}_{\lambda_k g} (x^k - \lambda_k \nabla f(x^k)).$$

Example

• Gradient method. When g(x) = 0

• Proximal point algorithm. When f(x) = 0

• Gradient projection method. When $g(x) = \delta_D(x)$

Quiz 4

PG method for solving

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - c||_2^2 + ||x||_1$$

has the update rule

- (A) $(x^{k+1})_i = \text{sign}((y^k)_i) \max\{|(y^k)_i| \lambda_k, 0\}, \text{ for } i = 1, ..., n, \text{ where } y^k = x^k \lambda_k A^{\top} (Ax^k c).$
- (B) $(x^{k+1})_i = \text{sign}((y^k)_i) \max\{|(y^k)_i| \lambda_k, 0\}$, for i = 1, ..., n, where $y^k = x^k + \lambda_k A^{\top}(Ax^k c)$.
- (C) $x^{k+1} = \text{prox}_{\|x\|_1} (x^k \lambda_k A^{\top} (Ax^k c)).$

(Optional reading)

Let
$$x^+ = \operatorname{prox}_{\lambda g} (x - \lambda \nabla f(x))$$
.

• x^+ minimizes g plus a simple quadratic local model of f around x.

$$\begin{aligned} x^+ &= \operatorname*{argmin}_u \lambda g(u) + \frac{1}{2} \left\| u - (x - \lambda \nabla f(x)) \right\|^2 \\ &= \operatorname*{argmin}_u g(u) + f(x) + \langle \nabla f(x), u - x \rangle + \frac{1}{2\lambda} \|u - x\|^2. \end{aligned}$$

• Fixed point iteration. x^* is a solution of $\min_x f(x) + g(x)$ if and only if

$$0 \in \nabla f(x^*) + \partial g(x^*) \Leftrightarrow 0 \in \lambda \nabla f(x^*) + \lambda \partial g(x^*), \text{ where } \lambda > 0$$

$$\Leftrightarrow (x^* - \lambda \nabla f(x^*)) \in (\operatorname{Id} + \lambda \partial g)(x^*)$$

$$\Leftrightarrow x^* \in (\operatorname{Id} + \lambda \partial g)^{-1}(x^* - \lambda \nabla f(x^*))$$

$$\Leftrightarrow x^* = \operatorname{prox}_{\lambda g}(x^* - \lambda \nabla f(x^*))$$

We define gradient map as follows:

$$G_{\lambda}(x) = \frac{1}{\lambda} \Big(x - \operatorname{prox}_{\lambda g} \big(x - \lambda \nabla f(x) \big) \Big).$$

Then we have

$$x^{+} = \operatorname{prox}_{\lambda g}(x - \lambda \nabla f(x))$$
$$= x - \lambda G_{\lambda}(x).$$

Note:

- $G_{\lambda}(x)$ is not a subgradient of F = f + g.
- We have $G_{\lambda}(x) = 0$ if and only if x minimizes f(x) + g(x).
- We have $G_{\lambda}(x) \nabla f(x) \in \partial g(x tG_{\lambda}(x))$.

Convergence properties

Proposition 3.5

Suppose $0 < \lambda_k = \lambda \leq \frac{1}{I}$. We have

- Property 1: PG algorithm is a descent method.
- Property 2: $F(x^k) F^* \le \frac{1}{2\lambda} ||x^0 x^*||^2$.
- Property 3: $||x^k x^*||^2 \le (1 \frac{\mu}{L})^k ||x^0 x^*||^2$.

Proof of Property 1.

(Home reading)

Implications of assumptions

• L-smooth property of f implies

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \forall x, y \in \mathbb{E}.$$

• Convexity of $f(\cdot) - (\mu/2) \| \cdot \|^2$ implies

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2, \forall x, y \in \mathbb{E}.$$

Substitute $y = x - \lambda G_{\lambda}(x)$ in these bounds we have

$$\frac{\mu\lambda^{2}}{2} \|G_{\lambda}(x)\|^{2} \leq f(x - \lambda G_{\lambda}(x)) - f(x) + \lambda \langle \nabla f(x), G_{\lambda}(x) \rangle \leq \frac{L\lambda^{2}}{2} \|G_{\lambda}(x)\|^{2}$$

For all z we have

$$F(x - \lambda G_{\lambda}(x)) \leq f(x) - \lambda \langle \nabla f(x), G_{\lambda}(x) \rangle + \frac{\lambda}{2} \|G_{\lambda}(x)\|^{2} + g(x - \lambda G_{\lambda}(x))$$

$$\leq f(z) - \langle \nabla f(x), z - x \rangle - \frac{m}{2} \|z - x\|^{2}$$

$$- \lambda \langle \nabla f(x), G_{\lambda}(x) \rangle + \frac{\lambda}{2} \|G_{\lambda}(x)\|^{2} + g(x - \lambda G_{\lambda}(x))$$

$$\leq f(z) - \langle \nabla f(x), z - x \rangle - \frac{m}{2} \|z - x\|^{2} - \lambda \langle \nabla f(x), G_{\lambda}(x) \rangle$$

$$+ \frac{\lambda}{2} \|G_{\lambda}(x)\|^{2} + g(z) - \langle G_{\lambda}(x) - \nabla f(x), z - x + \lambda G_{\lambda}(x) \rangle$$

$$= f(z) + g(z) + \langle G_{\lambda}(x), x - z \rangle - \frac{\lambda}{2} \|G_{\lambda}(x)\|^{2} - \frac{m}{2} \|z - x\|^{2}.$$

Let $x^+ = x - \lambda G_{\lambda}(x)$. Taking z = x, we have

$$F(x^+) \leq F(x) - \frac{\lambda}{2} \left\| G_{\lambda}(x) \right\|^2.$$

Hence, PG algorithm is a descent method.

Proof of Property 2

Taking $z = x^*$ we have

$$F(x^{+}) - F(x^{*}) \leq \langle G_{\lambda}(x), x - x^{*} \rangle - \frac{\lambda}{2} \|G_{\lambda}(x)\|^{2} - \frac{\mu}{2} \|x - x^{*}\|^{2}$$

$$= \frac{1}{2\lambda} \left(\|x - x^{*}\|^{2} - \|x - x^{*} - \lambda G_{\lambda}(x)\|^{2} \right) - \frac{\mu}{2} \|x - x^{*}\|^{2}$$

$$= \frac{1}{2\lambda} \left((1 - \mu\lambda) \|x - x^{*}\|^{2} - \|x^{+} - x^{*}\|^{2} \right).$$
(3)

Hence,

$$F(x^{+}) - F(x^{*}) \le \frac{1}{2\lambda} \left(\|x - x^{*}\|^{2} - \|x^{+} - x^{*}\|^{2} \right).$$
 (4)

Adding the Inequality (4) with $x = x^i$, $x^+ = x^{i+1}$ from i = 0 to i = k - 1, we have

$$\sum_{i=1}^{k} \left(F(x^{k}) - F^{*} \right) \leq \frac{1}{2\lambda} \sum_{i=0}^{k-1} \left(\left\| x^{i} - x^{*} \right\|^{2} - \left\| x^{i+1} - x^{*} \right\|^{2} \right)$$
$$\leq \frac{1}{2\lambda} \left\| x^{0} - x^{*} \right\|^{2}.$$

Since $F(x^i)$ is nonincreasing, we have

Distance to optimal set - Proof of Property 3

From Inequality (4) we have

$$||x^+ - x^*||^2 \le ||x - x^*||^2$$
.

Hence, the distance to the optimal set does not increase. When $\lambda_k = \frac{1}{L}$, from Inequality (3) we have

$$||x^+ - x^*||^2 \le (1 - \frac{\mu}{I}) ||x - x^*||^2$$
.

Therefore,

$$||x^{k}-x^{*}||^{2} \leq (1-\frac{\mu}{l})^{k} ||x^{0}-x^{*}||^{2}.$$

This is linear convergence rate if f is strongly convex ($\mu > 0$).

Line search

• If L is not known, we can apply back-tracking line search: start at some $\lambda = \lambda^0$ and back-track $\lambda = C\lambda^0$, with 0 < C < 1, until the following inequality holds

$$f(x - \lambda G_{\lambda}(x)) \leq f(x) - \lambda \langle \nabla f(x), G_{\lambda}(x) \rangle + \frac{\lambda}{2} \|G_{\lambda}(x)\|^{2}.$$

(This inequality holds for $0 < \lambda \le \frac{1}{L}$.)

- The step size λ_i selected by the line search satisfies $\lambda_i \geq \lambda_{\min} = \min \left\{ \lambda^0, \frac{c}{L} \right\}$.
- ullet We obtain a similar O(1/k) rate as for the case of using fixed step size

$$F(x^k) - F^* \le \frac{1}{2\sum_{i=0}^{k-1} \lambda_i} \|x^0 - x^*\|^2 \le \frac{1}{2k\lambda_{\min}} \|x^0 - x^*\|^2.$$

Distance to optimal set

$$||x^k - x^*||^2 \le (1 - m\lambda_{\min})^k ||x^0 - x^*||^2.$$

Quiz 5

Consider the following proximal gradient method for solving the convex composite problem $\min_x f(x) + g(x)$: starting from an initial point x^0 , update

$$x^{k+1} = \operatorname{prox}_{\lambda_k g} (x^k - \lambda_k \nabla f(x^k)).$$

Suppose f is L-smooth and we need to find an ε -optimal solution (that is, x_{ε}^* such that $F(x_{\varepsilon}^*) - F^* \leq \varepsilon$). Estimate the number of iterations of the PG method to obtain an ε -optimal solution:

- (A) $\frac{c}{\varepsilon^2}$, where c is a constant.
- (B) $\frac{c}{\varepsilon}$, where c is a constant.
- (C) $\frac{c}{\sqrt{\varepsilon}}$, where c is a constant.

Find more results in [Amir Beck, "First-Order Methods in Optimization", MOS-SIAM Series on Optimization, 2017].

- The generated sequence $\{x^k\}_{k\geq 0}$ converges to an optimal solution of Problem (2).
- O(1/k) rate of convergence of the norm of the gradient mapping.
- Nonconvex case