18ECC102J ELECTRONIC DEVICES

Syllabus

Course	HECOCHOSI	Course	D ECTRONIC DEVICES	Course	Quebusined Four	L	Т	P	0]
Code	HOECU-HUZZ	Name	ELECTRONIC DEVILES	Category	Honessoner Core	3	0	2	4]

Pre-requisite Courses	18EES101J	Co-requisite Courses	NI	Progressive Courses	18ECC201J, 18ECC202J, 18ECE203T, 18ECE303T, 18ECE321T, 18ECE322T
Course Offering	Department	Electronics and Communication Engineer	ing Data Book / Codes/Standards	All I	

Course L	Learning Rationale (CLR):	The purpose of learning this course is to:	L	earnin	ng
CLR-1:	Provide a basis for underst	anding semiconductor meterial, how a pn junction is formed and its principle of operation	1	2	3
CLR-2:	Explain the importance of a	fode in electronic circuits by presenting appropriate diode applications			
CLR-3:	Discuss the basic character	ristics of several other types of diodes that are designed for specific applications			1 1
CLR4:	Describe the basic structure	e, operation and characteristics of BJT, and discuss its use as a switch and an amplifier.		-	_
CLR-5:	Describe the basic structure	e, operation and characteristics of MOSFET, and discuss its use as a switch and an amplifier.	- 5	15	8
CLR46:		ois such as PSPICE to carry out design experiments and gain experience with instruments ricians and electronic engineers	New Page (B)	Profidency	Athermen
Course L	Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Tholera	papida	phode
CL0-1:	Understand the operation,	characteristics, parameters and specifications of semiconductor diodes and special diodes	1	90	80
CLO-2:	Demonstrate important app	lications of semiconductor diodes and special diodes.	2	80	75
CLO-3:	Review bipolar transistor or and switching.	onstruction, operation, characteristics and parameters, as well as its application in emplification	1	90	80
CL04:	Review field-affect transists emplification and switching.	or construction, operation, characteristics and parameters, as well as its application in	1	80	75
CL0-5:	Build a circuit, then make for	inctional measurements to understand the operating characteristics of the device / circuit.	3 .	80	75
CLO-6:					75

				Prog	ram t	earn	ing O	utico	mes (PLO!				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Amalysis	Transplant Development	dates Despri Pesench	distain Tool Usage	Sod by & Culture	Snitzenerik Salababiliy	Bites	reliebled & Team Work	Communication	Projectifigt & France	Support of the same of the sam	2 O-1; Professional Achian ement	NO-2 Pojed Mangered Sebsons	中華的一個學術學
H	-				/-	-	-	-			М		-	
23	-	-	į		+	-		-	-		М		-	
н	83	+	- 1	40	2.0	-	-	3			м	+	-	-
н	83	+		+	2	-	-	3	200		М	+	L	-
	-	-	-	Н	-	-	-	-	-	-		L	L	-
+		-	-	Н	-	-	L	H	M	-	M	. 4	-	-

Du	ration	Semiconductor Diodes	Diode Circuits	Special Diodes	Bipolar Junction Transistors	MOS Field-Effect Transistors
(h	nour)	15	15	15	15	15
		Basic semiconductor theory: Intrinsic & extrinsic semiconductors	HWR operation, Efficiency and ripple factor	Backward diode	Physical structure	Physical structure
S-1	SLO-2	Current flow in semiconductors	Problem solving	Varactor diode	Device operation of BJT	Device operation of E-MOSFET & D- MOSFET
	SL0-1		Center-Tapped Transformer FWR operation, Efficiency and ripple factor	Stap recovery diode	Current-Voltage characteristics of CE BJT configuration	I-V characteristics of E-MOSFET
8-2	SLO-2	Forward biased PN junction	Problem solving	Point-contact diode	Current-Voltage characteristics of CE BJT configuration	Problem solving
	SL0-1	Reverse biased PN junction	Bridge FWR operation, Efficiency and ripple factor	Metal-semiconductor junction: Structure, Energy band diagram	Current-Voltage characteristics of CB BJT configuration	Derive drain current
8-3	SL0-2	Relation between Current and Voltage	Problem solving	Forward & Reverse Characteristics of Schottky Diode	Current-Voltage characteristics of CB BJT configuration	Problem solving
8 45	SLO-1 SLO-2	Lab 1: PN Junction Diode Characteristics	Lab 4: Diode clipping and clemping circuits	Lab 7: Series and Shunt Regulators	Lab 10: BJT and MOSFET Switching Circuits	Lab 13: Repeat Experiments
	SL0-1	Calculate depletion witth	Filters: Inductor & Capacitor Filters	Tunnel Diode	Current-Voltage characteristics of CC BJT configuration	Denive transconductance
8-6	9.0-2	Calculate barrier potential	Problem solving	Tunnel Diode	Current-Voltage characteristics of CC BJT configuration	Problem solving
8-7	8.0-1	Derive diade current equation	Filters: LC & CLC Filters	Gunn Diade	BJT as an amplifier	CMOS FET

	SLO-2	Derive diade current equation	Problem solving	Gunn Diode	BJT as a switch	MOSFET as an amplifier
5-8		Effect of Capacitance in PN junction: Transition Capacitance	Diode Clippers	IMPATT Diode	BJT circuit models – h-parameter	MOSFET as a switch
0-0	SL0-2	Diffusion Capacitance	Problem solving	MMPATT Diode	BJT circuit models – hybrid-tr parameter	Problem solving
8 9-10	SLO-1 SLO-2	Lab 2: Zener diode characteristics	Lab 5: BJT Characteristics	Lab 8: MOSFET Characteristics	Lab 11: Photoconductive Cell, LED, and Solar Cell Characteristics	Lab-14: Model Examination
375	8.0.1	Energy band structure of PN Junction Diade	Diode Clampers	PIN Diode	BJT bissing circuits and stability analysis: Base bias and emitter bias	Biasing Circuits for MOSFET: Gate Bias
8-11		Ideal diode and its current-voltage characteristics	Problem solving	PW Photodiode	Problem solving	Problem Solving
		Terminal characteristics & parameters	Voltage Multipliers	Avalanche photodiode	Voltage-divider bias	Self-bies
S-12		Diade modeling	Zener diode: Characteristics, breakdown machanisms	Laser diode	Problem solving	Problem Solving
S-13		DC load line and analysis	Zener resistances and temperature effects Zener diode as voltage regulator	Problem solving	Collector-feedback bias	Voltage-divider bias
3-13	100000	Problem solving	Problem solving	Problem solving	Problem solving	Problem Solving
8	SLO-1 SLO-2	Lab 3: Diode rectifier circuits	Lab 6: BJT Bissing Circuits	Lab 9: MOSFET Blasing Circuits	Lab 12: Simulation experiments using PSPICE	Lab 15: End-Samester Practical Exemination

Learning	2.	Donald Neaman, Electronic Circuits: Analysis and Design, 3≃ ed., McGraw-Hill Education, 2011 Adal S. Sedra, Kanneth C. Smith, Microelectronic Circuits: Theory and Applications, OUP, 2014	6. 7.	Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 11 th ed., Pearson Education, 2013 Muhammed Rashid, Microelectronic Circuits: Analysis & Design, 2 st ed., Cengage Learning, 2010 Muhammed H Rashid, Introduction to Pspice using OrCAD for circuits and electronics, 3 st ed., Pearson, 2004 Laboratory Manual, Department of ECE, SRM University	
----------	----	---	----------	---	--

Learning Ass	sessment										
	Bloom's			Cont	Inuous Learning Ass	essment (50% weig	htage)			Final Functionis	n (50% weightage)
		CLA-	1 (10%)	CLA-	2 (15%)	CLA-	3 (15%)	CLA-	4 (10%)#	Final Examination	u (anse weitkunde)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
land f	Remember	20%	20%	15%	15%	4500	15%	15%	15%	15%	15%
Level 1	Understand	2076	23/76	1076	1376	15%	1076	1076	1076	1379	1076
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Analyze	2076	2070	2010	2016	2076	2074	2074	20.4	2010	20.0
land 3	Evaluate	10%	10%	15%	15%	4500	Appl.	15%	15%	15%	15%
Level 3	Create	10%	10%	1079	10%	15%	15%	70%	70%	1379	10%
5	Total	10	0 %	10	00%	10	0%	10	0%	55	

CLA - 4 can be from any combination of these: Assignments, Seninars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MODCs, Certifications, Conf. Paper etc.,

ourse Designers					
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts			
1. Mr. Anuj Kumar, Bomberder Transportation, Ahmedabad. jumaranuj anii Gamai com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University. magnet Stjannaum, edu.	1. Mr. Manikandan AVM, SRMIST			
2. Mr. Hariharasudhan – Johnson Controls, Pune, hariharasudhan viligiol com	2 Dr. Venkatesen, Sr. Scientist, MOT, Chennel, venkat@niot.res.in	2. Dr. Diweker R Merur, SRMIST			

UNIT I SEMICONDUCTOR DIODES

Semiconductors

Materials having an electrical conductivity
 value falling between that of a conductor, such
 as metallic copper, and an insulator, such as
 glass.

Electrical conductivity

- The highest occupied energy band is called the valence band.
- Most electrons remain bound to the atoms in this band.
- The conduction band is the band of orbitals that are high in energy and are generally empty.
- It is the band that accepts the electrons from the valence band
- The "leap" required for electrons from the Valence Band to enter the Conduction Band.

Energy band Diagram

Types of semiconductors

Intrinsic Semiconductor

• A crystal of pure and regular lattice structure is called intrinsic semiconductor.

each silicon atom has four valence electrons two valence electrons from two silicon atoms form the covalent bond

- Be intact at sufficiently low temperature
- Be broken at room temperature

Free Electrons and Holes

DFree electrons are produced by thermal ionization, which can move freely in the lattice structure.

Dholes are empty position in broken covalent bond, which can be filled by free electron, positive charge

Creation of Electron and hole in a semiconductor

Creation of electron-hole pair in a semiconductor

Current Conduction in semiconductor

Current conduction in semiconductor

Extrinsic Semiconductor

- The conductivity of semiconductors improved by introducing a small number of suitable replacement atoms called IMPURITIES.
- The process of adding impurity atoms to the pure semiconductor is called **DOPING**.
- Usually, only 1 atom in 10⁷ is replaced by a dopant atom in the doped semiconductor.
- An extrinsic semiconductor can be further classified into:
 - N-type Semiconductor
 - P-type Semiconductor

N-type Semiconductor

- A silicon crystal doped
 by a pentavalent
 element. (phosphorus or arsenic)
- Each dopant atom donates a free electron and is thus called a donor.
- The dopedsemiconductor becomesn type.

P-type Semiconductor

- A silicon crystal doped with a trivalent impurity.(aluminum, boron)
- Each dopant atom gives rise to a hole, and called acceptor
- the semiconductor becomes p type.

Difference between Intrinsic and Extrinsic Semiconductor

Intrinsic Semiconductor	Extrinsic Semiconductor
Pure semiconductor	Impure semiconductor
Density of electrons is equal to the density of holes	Density of electrons is not equal to the density of holes
Electrical conductivity is low	Electrical conductivity is high
Dependence on temperature only	Dependence on temperature as well as on the amount of impurity
No impurities	Trivalent impurity, pentavalent impurity

Mass Action Law

 Under thermal equilibrium the product of the free electron concentration and the free hole concentration is equal to a constant equal to the square of intrinsic carrier concentration.

$$np = n_i^2$$

Electrical Neutrality in Semiconductor

Positive Charge Density

p

Hole Concentration

N

Concentration of donor ions D

Negative Charge Density

n

Electron Concentration

N

Concentration of Acceptor ions A

$$p + N_D = n + N_A$$

_1

Charge Density in a Semiconductor

$$N_{D} = n_{n} - p_{n} \{n_{n} >> p_{n}\}$$

$$N_{D} = n_{n}$$

$$n_{n} p_{n} = n_{i}^{2}$$

Mass action Law:

$$n^2$$
 $p_n \approx$

Conductivity of Semiconductor

$$J = J_{p} + J_{n}$$

$$J_{p} = qp\mu_{p} E$$

$$J_{n} = -qn(-\mu_{n} E)$$

$$J = qp\mu_{p} E + qn\mu_{n} E$$

$$J = q(p\mu_{p} + n\mu_{n})E$$

$$J \equiv \sigma .E$$

The *conductivity* of a semiconductor is

$$\sigma \equiv qp\mu_p + qn\mu_n$$

The *resistivity* of a semiconductor is

$$\rho = -\frac{1}{\sigma}$$

Problems

The mobility of free electrons and holes in pure germanium are 3800 and 1800 cm²/V-s respectively. The corresponding values for pure silicon are 1300 and 500 cm²/V-s, respectively. Determine the values of intrinsic conductivity for both germanium and silicon. Assume $n_i = 2.5 \times 10^{13}$ cm⁻³ for germanium and $n_i = 1.5 \times 10^{10}$ cm⁻³ for silicon at room temperature.

Solution: (i) The intrinsic conductivity for germanium,

$$\sigma_i = q n_i (\mu_n + \mu_p)$$

= $(1.6 \times 10^{-19}) (2.5 \times 10^{13}) (3800 + 1800)$
= 0.0224 S/cm

(ii) The intrinsic conductivity for silicon,

$$\sigma_i = q n_i (\mu_n + \mu_p)$$

= $(1.6 \times 10^{-19}) (1.5 \times 10^{10}) (1300 + 500)$
= 4.32×10^{-6} S/cm

CARRIER CONCENTRATION IN INTRINSIC SEMICONDUCTOR

The Fermi Dirac probability function f(E) is given by

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

where E_F is the Fermi level or characteristic energy for the crystal in eV.

Positions of Fermilevel in (a) N-type and (b) P-type semiconductors.

The concentration of electrons in the conduction band is,

$$n = N_C e^{-(E_c - E_F)/kT}$$

$$n = N_C e^{-\left(E_c - E_F\right)/kT}$$
 where $N_C = 2\left(\frac{2\pi m_n kT}{h^2}\right)^{3/2}$ (1.60 × 10⁻¹⁹)^{3/2}, where m_n is the effective mass of an electron.

The concentration of holes in the valence band is,

$$p = NV e^{(E_F - E_v)/kT}$$

where

$$N_V = 2\left(\frac{2\pi m_p kT}{h^2}\right)^{3/2} (1.60 \times 10^{-19})^{3/2}$$
, where m_p is the effective mass of a hole.

Fermi level in an Intrinsic

Fermi level in an intrinsic semiconductor In the case of intrinsic material, the crystal must be electrically neutral.

$$n_i = p_i$$

Therefore, $N_C e^{-(E_c - E_f)/kT} = N_V e^{-(E_F - E_V)/KT}$

Taking the logarithm on both sides,

$$\operatorname{In} \frac{N_C}{N_V} = \frac{E_C + E_V - 2E_F}{kT}$$

$$E_F = \frac{E_C + E_V}{2} - \frac{kT}{2} \ln \frac{N_C}{N_V}$$

If the effective masses of a free electron and hole are the same,

$$N_C = N_V$$

Then,

$$E_F = \frac{E_C + E_V}{2}$$

From the above equation, at the centre of the forbidden energy band, Fermi level is present.

Fermi level in an Extrinsic Semiconductor

Fermi level in a semiconductor having impurities The Fermi level in an N-type material is given by

$$E_F = E_C + kT \ln \frac{N_C}{N_D}$$

where $N_D = N_C e^{-(E_C - E_F)/kT}$, the concentration of donor atoms.

The Fermi level in a P-type material is given by

$$E_F = E_V + kT \ln \frac{N_V}{N_A}$$

where $N_A = N_V e^{-(E_F - E_V)/KT}$, the concentration of acceptor atoms.

Drahlama

In an N-type semiconductor, the Fermi level is 0.3 eV below the conduction level at a room temperature of 300 K. If the temperature is increased to 360 °K, determine the new position of the Fermi level.

Solution: The Fermi level in an N-type material is given by

$$E_F = E_C - kT \ln \frac{N_C}{N_D}$$

Therefore, $(E_C - E_F) = kT \ln \frac{N_C}{N_D}$

At
$$T = 300 \text{ K}$$
, $0.3 = 300 \text{ °K ln } \frac{N_C}{N_D}$ (1)

Similarly,
$$E_C - E_{F1} = 360 k \ln \frac{N_C}{N_D}$$
 (2)

Eqn. (2) divided by Eqn. (1) gives

$$\frac{E_C - E_{F1}}{0.3} = \frac{360}{300}$$

Therefore,
$$E_C - E_{F1} = \frac{360}{300} \times 0.3 = 0.36 \text{ eV}$$

Hence, the new position of the Fermi level lies 0.36 eV below the conduction level.

Find the conductivity of silicon (a) in intrinsic condition at a room temperature of 300 °K, (b) with donor impurity of 1 in 10^8 , (c) with acceptor impurity of 1 in 5×10^7 and (d) with both the above impurities present simultaneously. Given that n_i for silicon at 300 °K is 1.5×10^{10} cm⁻³, $\mu_n = 1300$ cm²/V-s, $\mu_p = 500$ cm²/V-s, number of Si atoms per cm³ = 5×10^{22} .

(a) In intrinsic condition,
$$n = p = n_i$$

Hence, $\sigma_i = qn_i (\mu_n + \mu_p)$
 $= (1.6 \times 10^{-19}) (1.5 \times 10^{10}) (1300 + 500)$
 $= 4.32 \times 10^{-6} \text{ S/cm}$

(b) Number of silicon atoms/cm³ =
$$5 \times 10^{22}$$

Hence, $N_D = \frac{5 \times 10^{22}}{10^8} = 5 \times 10^{14} \text{ cm}^{-3}$
Further, $n \approx N_D$
Therefore, $p = \frac{n_i^2}{n} \approx \frac{n_i^2}{N_D}$
 $= \frac{(1.5 \times 10^{10})^2}{5 \times 10^{14}} = 0.46 \times 10^6 \text{ cm}^{-3}$

Thus $p \ll n$. Hence p may be neglected while calculating the conductivity.

Hence,
$$\sigma = nq\mu_n = N_D q \mu_n$$
$$= (5 \times 10^{14}) (1.6 \times 10^{-19}) (1300)$$
$$= 0.104 \text{ S/cm}.$$

(c)
$$N_A = \frac{5 \times 10^{22}}{5 \times 10^7} = 10^{15} \text{ cm}^{-3}$$

Further, $p \approx N_A$
Hence, $n = \frac{n_i^2}{p} \approx \frac{n_i^2}{N_A}$
 $= \frac{(1.5 \times 10^{10})^2}{10^{15}} = 2.25 \times 10^5 \text{ cm}^{-3}$

Thus, p >> n. Hence n may be neglected while calculating the conductivity.

Hence,
$$\sigma = pq\mu_P = N_A q \mu_P$$
$$= (10^{15} \times 1.6 \times 10^{-19} \times 500)$$
$$= 0.08 \text{ S/cm.}$$

(d) With both types of impurities present simultaneously, the net acceptor impurity density is,

$$N_A' = N_A - N_D = 10^{15} - 5 \times 10^{14} = 5 \times 10^{14} \text{ cm}^{-3}$$
Hence,
$$\sigma = N_A' q \mu_p$$

$$= (5 \times 10^{14}) (1.6 \times 10^{-19}) (500)$$

$$= 0.04 \text{ S/cm}.$$

Current Flow in Semiconductors

There are two mechanisms by which holes and free electrons move through a silicon crystal.

• Drift

 The carrier motion is generated by the electrical field across a piece of silicon. This motion will produce drift current.

Diffusion

The carrier motion is generated by the different concentration of carrier in a piece of silicon. The diffused motion, usually carriers diffuse from high concentration to low concentration, will give rise to diffusion current.

Drift Current (I_s)

 \square When an electrical field (E) is applied to a semiconductor crystal holes are accelerated in the direction of E, free electrons are

$$\mu_n$$
=electron mobility
 E =electric field
 $V_{n-drift} = -\mu_n E$

The flow of electric current due to the motion of the charge carriers under The influence of an external electric field is called Drift Current

$$J_{Drift} = J_{p}^{Drift} + J_{n}^{Drift}$$
 $J_{p}^{Drift} = I_{p}^{Drift} + J_{n}^{Drift}$
 $J_{p}^{Drift} = I_{p}^{Drift} + I_{n}^{Drift}$
 $J_{p}^{Drift} = J_{n}^{Drift} + I_{n}^{Drift}$
 $J_{p}^{E} = I_{p}^{E} = I_{n}^{E} + I_{n}^{E}$
 $J_{p}^{E} = I_{p}^{E} = I_{n}^{E} + I_{n}^{E}$
 $J_{p}^{Drift} = I_{p}^{E} = I_{n}^{E}$

Diffusion Current (I_D)

- Carrier diffusion is the flow of charge carriers from area of high concentration to low concentration.
 - It requires non-uniform distribution of carriers.
- Diffusion current is the current flow that results from diffusion.
- Current flow due to mobile charge diffusion is proportional to the carrier concentration gradient.
- The proportionality constant is the diffusion constant.

 J_p = current flow density attributed to holes q = magnitude of the electron charge D_p = diffusion constant of holes (12cm²/s for silicon) $\mathbf{p}(x)$ = hole concentration at point x $d\mathbf{p}/dx$ = gradient of hole concentration

hole diffusion current density:
$$J_p = -qD_p \frac{d\mathbf{p}(x)}{dx}$$

electron diffusion current density: $J_n = -qD_n \frac{d\mathbf{n}(x)}{dx}$

 J_n = current flow density attributed to free electrons D_n = diffusion constant of electrons (35cm²/s for silicon) n(x) = free electron concentration at point x $d\mathbf{n}/dx$ = gradient of free electron concentration

■ Diffusion Current
$$I_p = J_p \cdot A; I_n = J_n \cdot A$$
 $I_D = I_p + I_n$

• Drift current $I_S = J_{drift} A$; Due to electric field • Diffusion current $I_D = J_{diff} A$; Due to concentration gradient

Total Current

Total Current in P type semiconductor

$$J = J + J$$

$$p \int_{p} p dp \mu_{p}^{p} E - q D_{p}^{p} dx$$

Total Current in N type semiconductor

$$J = J + J$$

$$I_n = \prod_{n \in A} \prod_{n \in$$