* ML Fundamentals *

Astificial Intelligence: study of how to train computers, so that computers can do things which humans can do.

Human/non-natural (Ability to understand)

made thing.

Machine Learning (ML): Enable computers to learn automatically from past data, it can improve its performance by gaining more data.

make predictions using historical data/info.

· Applications of ML:

- O Image Recognition
- @ Speech Recognition
- 3 Recommendation systems
- @Fround Detection
- Self Driving cars
- 6 Medical Diagnosis
- Dstock Market Trading

· Limitations of ML:

- OData Quality
- 3 Data Quantity
- 3 Bias & fairness
- 4 Overfitting & understitting
- 5 Proivacy & security
- 6 Interpretability

· Types of ML:

Supervised	Unsupervised	Reinfoscement
Calculate Outcome.	Discover patterns.	Learn series of action
Learn pattern betr i/p & their labels.	Find pattern in i/pa divide in classes.	Find best reward for actions.
Build & train, then test model.	Build & train, then test model.	Train 4 test model simultaneously.
classifican & Regression.	clustering &	Exploration 4 Exploitation.
Algos- O Linear Regro ② Decision Tree ③KNN ⑤SVM ④ Random Forcest.	• Algos - ① K-mean clustering ② Agglomeroative	· Algos - ① Q - Learsning ② SARSA ③ Deep Q network
© Examples - ① Image Detection ② Population Growth Prediction.	• Examples - Ocust segmentation.	• Examples - Opriver less car. Qself-navigating Cleaners.

- · Model Evaluation Techniques in ML:
- · For classification -

Oconfusion Matrix - Detailed view of model's performance by showing counts of True +ve (TP), True -ve (TN), False +ve (FP) & False -ve (FN) predictions.

Actual

	Tove	False
7oue Predicted	True +ve (TP)	False tve
False	False -ve (FN)	Toue -ve (TN)

- Accuracy (Measure model performance).

 Measure how often model is correct.

 Accurace = TP+TN Predictions

 TP+TN+FP+FN

 Total Bredictions
 - 3 Classification Error (Misclassification Rate).

 Le Measure how often classifier is incorrect.

 Error = 1 Accuracy
 - 4 Precision How many predicted True are corrected.

 How accurate model's +ve predictions are.

$$Recall = \frac{TP}{TP+FN}$$

6 F1- Score - Evaluate overall performance of model. Harmonic mean of Precision & Recall.

AUC-ROC CUOVE-

Analyze classifier at different threshold values.

- · ROC Receiver operating characteristics
- · AUC Area under curve of ROC Plot.

PROC CURVE - Probability graph to show the performance of classification model at different threshold levels.

· For Regression -

Mean Absolute Forsor -

GAnalyze 1033 over whole dataset.

Error: Difference beth predicted & actual values.

$$MAE = \sum_{i=1}^{N} \frac{y_{proed} - y_{actual}}{N}$$

(2) Mean Squared Froor-Most commonly used.

wused to calculate 1033.

Over the whole dataset.

Alsways +ve, bcz we square values.

Small MSE, better performance.

$$MSE = \sum_{i=1}^{N} \frac{(y_{pred} - y_{actual})^2}{N}$$

3 Root Mean Squared From - Evaluate performance.

4 Indicates how much data points spread around the best line.

Lestal deviation of MSE,

Grower MSE-Points close to best line.

RMSE =
$$\sqrt{MSE} = \sqrt{\frac{N}{i=1}} \frac{(ypred - yactual)^2}{N}$$

Mean Absolute Percentage Error (MAPE)
Express errors in terms of percentage.

Smaller performance => better performance.

$$MAPE = \sum_{i=1}^{N} \frac{(yproed - yactual)}{yactual} * 100%$$

€ Exploratory Data Analysis (EDA):-

Methods to study & explore record sets to apprehend their predominant traits, discover patterns, locate outliers, & identify relationships between variables.

· Goals of EDA -

- Data cleaning! Handle missing values, duplicates, outliers & handle categorical data.
- Data visualization: Visual techniques represent statistics graphically. Histograms, box plots, scatter plots, line plots, heat maps & bar charts to identify styles, trends & relationships within facts.
 - (3) Feature Engineering: contain scaling, normalization, binning, encoding variables.
 - 4 correlation & Relationships: Allow discover relationships & dependencies bet variables. correlation analysis, scatter-plots & pass-tabulations.
- 5 Data segmentation Divide info into significant segments based totally on suro standards / traits.
 - 6 Hypothesis Generation Generating hypothesis/ studies questions based on proeliminary exploration of data.
 - 7 Data Quality Assessment Permits assessing nice & reliability of the info.

 Lanvolve checking record integrity, consistency & accuracy to make info suitable for analysis.

© EDA Implementation using Python:

· Get Info about Dataset -

>>> df. shape Olp > (rows, cols)

>>> af. describe()

on the numeric columns.

>>> af. info()

O/p -> Information (feature name, no-null counts, dtype) of dataframe

- · Changing Dtype (Object -> Datetime)
 >>> of ['Date'] = pd.to_datetime (of ['Date'])
- Unique elements in dataset
 >>> af. nunique()

 O/p -> No. of unique elements in each column.

Handling Missing Values -

• isnull() - Check any missing values in dataset.

>>> af. isnull(). sum()

O/P -> Return sum of np.nan(NULL) values
in each column.

- fillna() Fill value at ma NULL places.

 >>> of ['column']. fillna(value, inplace = True)
 - <u>replace()</u> used to replace values in dataset.

 >>> df ['col'] = df ['col']. replace (np.nan, value)
 - doopna() Drop records with NULL values.
 >>> of ['col'].dropna (axis=0, how='any')
- duplicated() Check if duplicates present in dataset.
 >>> af.duplicated()
 O/p → Return Boolean(False → Original, True → Duplicate)
 for each row in Dataset.
 >>> af. duplicated(). sum()
 O/p → Return total number of duplicate rows.
 - doop-duplicates Doop the duplicate vows.

 >>> of. doop-duplicates (keep = 'first', inplace = True')

 Olp -> keep first copy & remove all other duplicates.

O Gheck count of values in each column -

• value - counts() - Return count of each unique value in the column.

>>> df ['col']. value - counts()

O Data Encoding -

le Encode categorical data into numerical values.

Pone- not Encoding / Label Encoding.

>>> from sklearn. preprocessing import Label Encodinger

>>> encoder = Label Encoder()

>>> of ['col'] = encoder. fit-transform(of ['col'])

O/p- Assign num to each category, starting from 0.

O Data Visualization: -

translyze data in the form of graphal maps, easy understand trends/patterns.

1) Histogram - count of numeric values present in regular intervals.

>>> sns. histplot (x = 'col', data = df)

3 BOXPlot -

>>> sns. boxplot (x = 'col1', y='col2', data=df)

3 pairplot() - Pairwise distributions in a dataset.

7>> sns. paisplot (df, hue = 'col', height = 2)

Handling Outliers: -

Outlier detection analysis cla outlier mining.

to Many ways to detect, but same way for vernoval.

· Outlier Detection :

>>>sns.boxplot(x = 'col1', data = df)

Outlier of outliers: Outlier of outper Extreme Upper Quartile Lower Quartile Lower Extreme Outlier of:

• IQR (Inter Quartile Range).

Thost commonly used technique.

This is Outlier base value.

IQR = Quartile3 - Quartile1

Q1 = np. perscentile (af ['col'],
25, method = 'midpoint')
Q8 = np. perscentile (af ['col'],
75, method = 'midpoint')

IQR = Q3-Q1

oupper& Lower bound:

upper = Q3+1.5*IQR

lower = Q1-1.5*JQR

Then, use upper & lower value to remove outliers.

upper-val = np.where (af ['col'] >= uppers)

lower-val = np.where (df ['col'] <= lower)

Romove Outliers

df.drop (upper-val [0], inplace = True)

df.drop (lower-val [0], inplace = true)