RK806 开发指南

文件标识: RK-KF-YF-199

发布版本: V1.0.0

日期: 2021-12-24

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文档主要介绍 RK806 的各个子模块,介绍相关概念、功能、dts 配置和一些常见问题的分析定位。

产品版本

芯片名称	内核版本
RK806	5.10

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	许盛飞	2021-12-24	初始版本

RK806 开发指南

- 1. 基础
 - 1.1 概述
 - 1.2 功能
 - 1.3 芯片引脚功能
 - 1.4 重要概念
 - 1.5 双PMIC协同工作
- 2. 配置
 - 2.1 驱动和 menuconfig
 - 2.2 DTS 配置
 - 2.3 函数接口
- 3. Debug
 - 3.1 内核
 - 3.2 Kernel 5.10 内核

1. 基础

1.1 概述

RK806 是一款高性能 PMIC, RK806 集成 10个大电流 DCDC、5个NLDO、6 个 PLDO、可调上电时序等功能。

系统中各路电源总体分为两种: DCDC 和 LDO。两种电源的总体特性如下(详细资料请自行搜索):

- 1. DCDC: 输入输出压差大时,效率高,但是存在纹波比较大的问题,成本高,所以大压差,大电流负载时使用。一般有两种工作模式。PWM模式:纹波瞬态响应好,效率低; PFM模式:效率高,但是负载能力差。
- 2. PLDO: 和以前PMIC的LDO一样(最低输入电压2.0V,最高5.5V)
- 3. NLDO: 支持低压输入输出,损耗更小(比如1.1V输入0.9V输出)

1.2 功能

从使用者的角度看, RK806 的功能概况起来可以分为 3 个部分:

- 1. regulator 功能: 控制各路 DCDC、LDO 电源状态;
- 2. gpio 功能:有3个IO可用,可以控制整个PMIC进待机,也可以单独分给指定电源进待机,也可当普通 gpio 使用;
- 3. pwrkey 功能: 检测 power 按键的按下/释放,可以为 AP 节省一个 gpio。

1.3 芯片引脚功能

下面描述中, SLEEP 和 INT 引脚需要重点关注:

PIN NO	PIN NAME	PIN DESCRIPTION				
1	VCC9	Power supply of buck9.	I			
2	SYNC	Master and slave synchronization signal.				
3	SYNC_CLK	32k synchronization clk.				
4	PWRON	Power on key. The internal pull-up resistance is about 45K.	I			
5	VOUT8	Output feedback voltage of buck8.	0			
6	SW8	Switching node of buck8.	0			
7	VCC8	Power supply of buck8.	I			
8	NLDO5	NMOS LDO5 output.	0			
9	VCC14	Power supply of NLDO3/4/5.	I			
10	NLDO4	NMOS LDO4 output.	0			
11	NLDO3	NMOS LDO3 output.	0			
12	NLDO2	NMOS LDO2 output.	0			
13	VCC13	Power supply of NLDO1/2.	I			
14	NLDO1	NMOS LDO1 output.	0			
15	MOSI/SCL	SPI MOSI. I2C SCL.	I/O			
16	MISO/SDA/ PWRCRTL3	SPI MISO. I2C SDA. PWRCRTL3 control.	I/O			
17	CLK	SPI CLK.	0			
18	CS	CS is used to select the I2C and SPI functions, when it connected to VCCA is the I2C mode	I			
19	INT	Interruput.	0			
20	VCCIO/ PLDO6	PMOS LDO6 output. VCCIO for SPI/I2C interface.	0			
21	VCCA	Analog power supply. Power supply of PLDO6 and system	I			

PIN NO	PIN NAME	PIN DESCRIPTION	I/ O				
		logic.					
22	VCC4	Power supply of buck4.					
23	SW4	Switching node of buck4.					
24	VOUT4	Output feedback voltage of buck4.					
25	VOUT10	Output feedback voltage of buck10.					
26	SW10	Switching node of buck10.	0				
27	VCC10	Power supply of buck10.	I				
28	VCC6	Power supply of buck6.	I				
29	SW6	Switching node of buck6.	0				
30	VOUT6	Output feedback voltage of buck6.	0				
31	FB6	Externed divided resistor mode feedback voltage of buck6.	0				
32	VDC	VDC power on signal.	I				
33	VCC2	Power supply of buck2.	I				
34	VCC2	Power supply of buck2.	ī				
35	SW2	Switching node of buck2.	0				
36	SW2	Switching node of buck2.	6				
37			0				
	VOUT2	Output feedback voltage of buck2.	_				
38	FB2	Externed divided resistor mode feedback voltage of buck2.	0				
39	EXT_EN	Control externed DCDC enable. Master/Slave select.	I				
40	RESETB	Reset the AP.	I/O O				
41	VOUT7	Output feedback voltage of buck7.					
42	SW7	Switching node of buck7.					
43	VCC7	Power supply of buck7.					
44	VCC5	Power supply of buck5.					
45	SW5	Switching node of buck5.					
46	VOUT5	Output feedback voltage of buck5.					
47	FB5	Externed divided resistor mode feedback voltage of buck5.					
48	FB1	Externed divided resistor mode feedback voltage of buck1.					
49	VOUT1	Output feedback voltage of buck1.					
50	SW1	Switching node of buck1.					
51	SW1	Switching node of buck1.					
52	VCC1	Power supply of buck1.					
53	VCC1	Power supply of buck1.	I				
54	VCC3	Power supply of buck3.	I				
55	SW3	Switching node of buck3.					
56	VOUT3	Output feedback voltage of buck3.					
57	PLDO3	PMOS LDO3 output.	0				
58	PLDO2	PMOS LDO2 output.	0				
59	VCC11	Power supply of PLDO1/2/3.	I				
60	PLDO1	PMOS LDO1 output.	0				
61	PWRCRTL2	PWRCRTL2 control.	I/O				
62	PWRCRTL1						
		PWRCRTL1 control.	1/0				
63	PLDO4	PMOS LDO4 output.	0				
64	VCC12	Power supply of PLDO4/5.	I				
65	PLDO5	PMOS LDO5 output.	0				
66	FB9	Externed divided resistor mode feedback voltage of buck9.	0				
67	VOUT9	Output feedback voltage of buck9.	0				
68	SW9	Switching node of buck9.	0				
Exposed	ePAD	Ground	1				

1.4 重要概念

• 支持SPI和I2C通信

当前软件上只支持SPI通信模式,默认SPI频率是1M。

- PMIC有3种工作模式
 - 1. PMIC normal 模式

系统正常运行时 PMIC 处于 normal 模式,此时 pmic_sleep 的有效电平可配置。

2. PMIC sleep 模式

系统休眠时需要待机功耗尽量低,PMIC 会切到 sleep 模式减低自身功耗,这时候一般会降低某些路的输出电压,或者直接关闭输出,这可以根据实际产品需求进行配置。系统待机时 AP 通过 SPI指令把 pmic_sleep 配置成 sleep 模式,然后拉高 pmic_sleep 即可让 PMIC 进入 sleep 状态;当 SoC 唤醒时 pmic sleep 恢复为低电平,PMIC 退出休眠模式。

3. PMIC shutdown 模式

当系统进入关机流程的时候,PMIC 需要完成整个系统的电源下电操作。AP 通过 SPI指令把 pmic sleep 配置成 shutdown 模式,然后拉高 pmic sleep 即可让 PMIC 进入 shutdown 状态。

• int 引脚

常态为高电平,当有中断产生的时候变为低电平。如果中断没有被处理,则会一直维持低电平。

• pwrcrtl1/pwrcrtl2/pwrcrtl3 引脚

这两个引脚可以当普通的 gpio 使用。

• pwron 引脚

pwrkey 的功能需要硬件上将 power 按键接到这个引脚,驱动通过这个引脚来判断按下/释放。

• 各路 DCDC 的工作模式

DCDC 有 PWM(也叫 force PWM)、PFM 模式,但是 PMIC 有一种模式会动态切换 PWM、PFM,这就是我们通常所说的 AUTO 模式。PMIC 支持 PWM、AUTO PWM/PFM 两种模式,AUTO 模式效率高但是纹波瞬态响应会差。出于系统稳定性考虑,运行时都是设置为 PWM 模式,系统进入休眠时会选择切换到 AUTO PWM/PFM。

• PLDO6 电压调节

PMIC与AP的VCCIO供电口,只要有用到这些io口就必须供电,且供电电压要大于等于1.8V,即PLDO6通常应用中不能底于1.8V,且待机时不能关闭。

- DCDC 和 LDO 的运行时电压调节范围
- 1. DCDC 电压范围不连续:

电压范围(V)	步进值(mV)	具体档位值 (V)
0.7125 ~ 1.45	6.25	0.5、0.50625、 1.5
1.5~ 3.4	25	1.5、1.525、 3.4

2. NLDO/PLDO 电压连续:

电压范围 (V)	步进值(mV)	具体档位值 (V)
0.5 ~ 3.4	12.5	0.5125、0.525、 3.4

1.5 双PMIC协同工作

- 主从: 协同工作时两颗PMIC分主从模式,主从芯片配置通过第一次上电时EXT_EN引脚电平状态来区分。EXT EN和VCCA短接在一起的为Slave, EXT EN悬空或有电阻下拉的为主机。
- 同步:双RK806协同工作,两颗芯片的SYNC_CLK和SYNC互连,主芯片提供时钟(SYNC_CLK,频率接近32K)从芯片接收,SYNC提供同步信号,产生同步脉冲用于实现:开机、关机、复位及上下电时序。
- PWRON、RESETB信号: 主从的这两个信号分别短接在一起,用于PMIC的开机始能,和外接复位 按键时的外部复位信号输入。

• VDC信号: 主从的VDC脚可以短接在一起,也可以把SALVE的VDC接到MASTER的EXT_EN上。

2. 配置

2.1 驱动和 menuconfig

RK806 驱动文件:

```
drivers/mfd/rk806-core.c
drivers/mfd/rk806-spi.c
drivers/pinctrl-rk806.c
drivers/regulator/rk806-regulator.c
```

menuconfig 里对应的宏配置:

```
CONFIG_PINCTRL_RK806=y
CONFIG_MFD_RK806_SPI=y
CONFIG_REGULATOR_RK806=y
```

2.2 DTS 配置

5.10 内核配置

DTS 的配置包括: spi挂载、gpio、regulator 等部分。

单RK806 dts配置

```
&pinctrl {
         pmic {
                 soc slppin gpio: soc slppin gpio {
                         rockchip,pins = <0 RK_PA2</pre>
                                  RK_FUNC_GPIO &pcfg_output_low>;
                 };
                 soc_slppin_shutdown: soc_slppin_shutdown {
                         rockchip,pins = <0 RK PA2
                                  RK_FUNC_GPIO &pcfg_output_high>;
                 };
        };
};
&spi2 {
        status = "okay";
        assigned-clocks = <&cru CLK_SPI2>;
        assigned-clock-rates = <200000000>;
        num-cs = < &spi2 {
        status = "okay";
        assigned-clocks = <&cru CLK_SPI2>;
        assigned-clock-rates = <200000000>;
        num-cs = \langle 2 \rangle;
```

```
rk806single@0 {
                compatible = "rockchip, rk806";
                spi-max-frequency = <1000000>;
                reg = <0x0>;
                interrupt-parent = <&gpio0>;
                interrupts = <7 IRQ TYPE LEVEL LOW>;
                pinctrl-names = "default", "pmic-sleep", "pmic-power-off", "pmic-
reset";
                pinctrl-0 = <&soc slppin gpio>, <&rk806 dvs1 null>,
<&rk806 dvs2 null>, <&rk806 dvs3 null>;
                pinctrl-1 = <&soc_slppin_gpio>, <&rk806_dvs1_slp>,
<&rk806 dvs2 null>, <&rk806 dvs3 null>;
                pinctrl-2 = <&rk806 dvs1 pwrdn>, <&rk806 dvs2 null>,
<&rk806 dvs3 null>;
                pinctrl-3 = <&rk806_dvs1_rst>, <&rk806_dvs2_null>,
<&rk806_dvs3_null>;
                /* 2800mv-3500mv */
                low voltage threshold = <3000>;
                /* 2700mv-3400mv */
                shutdown_voltage_threshold = <2700>;
                /* 140 160 */
                shutdown temperture threshold = <160>;
                hotdie_temperture_threshold = <115>;
                /* 0: restart PMU;
                 * 1: reset all the power off reset registers,
                 * forcing the state to switch to ACTIVE mode;
                 * 2: Reset all the power off reset registers,
                    forcing the state to switch to ACTIVE mode,
                     and simultaneously pull down the RESETB PIN for 5mS before
releasing
                 */
                pmic-reset-func = <1>;
                vcc1-supply = <&vcc5v0 sys>;
                vcc2-supply = <&vcc5v0 sys>;
                vcc3-supply = <&vcc5v0 sys>;
                vcc4-supply = <&vcc5v0 sys>;
                vcc5-supply = <&vcc5v0 sys>;
                vcc6-supply = <&vcc5v0 sys>;
                vcc7-supply = <&vcc5v0 sys>;
                vcc8-supply = <&vcc5v0 sys>;
                vcc9-supply = <&vcc5v0 sys>;
                vcc10-supply = <&vcc5v0 sys>;
                vcc11-supply = <&vcc 2v0 pldo s3>;
                vcc12-supply = <&vcc5v0 sys>;
                vcc13-supply = <&vcc 1v1 nldo s3>;
                vcc14-supply = <&vcc_1v1_nldo_s3>;
                vcca-supply = <&vcc5v0 sys>;2>;
                regulators {
                        vdd_gpu_s0: vdd_gpu_mem_s0: DCDC_REG1 {
                                regulator-always-on;
                                regulator-boot-on;
```

```
regulator-min-microvolt = <550000>;
                               regulator-max-microvolt = <950000>;
                               regulator-ramp-delay = <12500>;
                               regulator-name = "vdd gpu s0";
                               regulator-state-mem {
                                      regulator-off-in-suspend;
                               };
                       };
                       vdd_cpu_lit_s0: vdd_cpu_lit_mem_s0: DCDC_REG2 {
                               regulator-always-on;
                               regulator-boot-on;
                               regulator-min-microvolt = <550000>;
                               regulator-max-microvolt = <950000>;
                               regulator-ramp-delay = <12500>;
                               regulator-name = "vdd cpu lit s0";
                               regulator-state-mem {
                                       regulator-off-in-suspend;
                               };
                       };
                       vdd_log_s0: DCDC_REG3 {
                           . . . . . . . . . . . . . . . . . . .
                       };
                       vdd vdenc s0: vdd vdenc mem s0: DCDC REG4 {
                           };
                      };
       };
};
```

双RK806 dts配置:

```
&pinctrl {
    pmic {
            soc slppin gpio: soc slppin gpio {
                     rockchip,pins = <0 RK PA2</pre>
                              RK_FUNC_GPIO &pcfg_output_low>;
             };
             soc_slppin_shutdown: soc_slppin_shutdown {
                     rockchip,pins = <0 RK PA2</pre>
                              RK FUNC GPIO &pcfg output high>;
             };
    } ;
};
&spi2 {
        status = "okay";
        assigned-clocks = <&cru CLK_SPI2>;
        assigned-clock-rates = <200000000>;
        num-cs = \langle 2 \rangle;
        rk806master@0 {
                 compatible = "rockchip, rk806";
                 spi-max-frequency = <1000000>;
                 reg = <0x0>;
```

```
interrupt-parent = <&gpio0>;
                interrupts = <7 IRQ TYPE LEVEL LOW>;
                /* 0: restart PMU;
                 * 1: reset all the power off reset registers,
                     forcing the state to switch to ACTIVE mode;
                 * 2: Reset all the power off reset registers,
                     forcing the state to switch to ACTIVE mode,
                      and simultaneously pull down the RESETB PIN for 5mS before
releasing
                 */
                pmic-reset-func = <1>;
                vcc1-supply = <&vcc5v0 sys>;
                vcc2-supply = <&vcc5v0_sys>;
                vcca-supply = <&vcc5v0 sys>;
                regulators {
                        vdd_gpu_s0: DCDC_REG1 {
                                 regulator-always-on;
                                 regulator-boot-on;
                                 regulator-min-microvolt = <550000>;
                                 regulator-max-microvolt = <950000>;
                                 regulator-ramp-delay = <12500>;
                                 regulator-name = "vdd_gpu_s0";
                                 regulator-state-mem {
                                        regulator-off-in-suspend;
                                 };
                      };
                        vdd npu s0: DCDC REG2 {
                        . . . . . . . . . . . . . . . . . . .
                        . . . . . . . . . . . . . . . . . . .
              };
       };
       rk806slave@1 {
                compatible = "rockchip,rk806";
                spi-max-frequency = <1000000>;
                reg = <0x01>;
                interrupt-parent = <&gpio0>;
                interrupts = <7 IRQ TYPE LEVEL LOW>;
                /* 0: restart PMU;
                 * 1: reset all the power off reset registers,
                     forcing the state to switch to ACTIVE mode;
                 * 2: Reset all the power off reset registers,
                     forcing the state to switch to ACTIVE mode,
                     and simultaneously pull down the RESETB PIN for 5mS before
releasing
                pmic-reset-func = <1>;
                vcc1-supply = <&vcc5v0 sys>;
                vcc2-supply = <&vcc5v0 sys>;
                . . . . . . . . . . . . . . . . .
                vcca-supply = <&vcc5v0_sys>;
                pwrkey {
```

```
status = "disabled";
                  };
                  regulators {
                          vdd cpu big1 s0: DCDC REG1 {
                                    regulator-always-on;
                                    regulator-boot-on;
                                    regulator-min-microvolt = <550000>;
                                    regulator-max-microvolt = <950000>;
                                    regulator-ramp-delay = <12500>;
                                    regulator-name = "vdd_cpu_big1_s0";
                                    regulator-state-mem {
                                            regulator-off-in-suspend;
                                    };
                           };
                           vdd_cpu_big0_s0: DCDC_REG2 {
                           . . . . . . . . . . . . . . . . . .
                           . . . . . . . . . . . . . . . . .
                 };
       };
};
```

1. spi 挂载

整个完整的 rk806 节点挂在对应的spi 节点下面,并且配置 status = "okay";

- 2. 主体部分
- 不可修改:

```
compatible = "rockchip,rk806";
spi-max-frequency = <1000000>;
reg = <0x0>;
interrupt-parent = <&gpio0>;
interrupts = <7 IRQ_TYPE_LEVEL_LOW>;
```

• 可修改(按照 pinctrl 规则)

interrupt-parent: pmic_int 隶属于哪个 gpio; interrupts: pmic_int 在 interrupt-parent 的 gpio 上的引脚索引编号和极性;

3. pwrkey, gpio

项目中若没有用到pwerkey或者gpio功能,可以在 dts 里增加pwrkey、gpio 节点,并且显式指明状态为 status = "disabled",这样就不会使能驱动,但是开机信息会有错误 log 报出,可以忽略。

```
pwrkey {
     status = "disabled";
};
```

4. regulator

- regulator-compatible: 驱动注册时需要匹配的名字,不能改动,否则会加载失败;
- regulator-name: 电源的名字,建议和硬件图上保持一致,使用 regulator_get 接口时需要匹配这个名字;
- regulator-init-microvolt: u-boot阶段的初始化电压, kernel阶段无效;
- regulator-min-microvolt: 运行时可以调节的最小电压;

- regulator-max-microvolt: 运行时可以调节的最大电压;
- regulator-initial-mode: 运行时 DCDC 的工作模式,一般配置为 1。 1: force pwm, 2: auto pwm/pfm;
- regulator-mode: 休眠时 DCDC 的工作模式, 一般配置为 2。1: force pwm, 2: auto pwm/pfm;
- regulator-initial-state: suspend 时的模式,必须配置成 3;
- regulator-boot-on: 存在这个属性时,在注册 regulator 的时候就会使能这路电源;
- regulator-always-on: 存在这个属性时,表示运行时不允许关闭这路电源且会在注册的时候使能 这路电源:
- regulator-ramp-delay: DCDC 的电压上升时间, 固定配置为 12500;
- regulator-on-in-suspend: 休眠时保持上电状态,想要关闭该路电源,则改成"regulator-off-in-suspend";
- regulator-suspend-microvolt: 休眠不断电情况下的待机电压。

5.10内核配置

请参考5.10内核DTS配置。

2.3 函数接口

如下几个接口基本可以满足日常使用,包括 regulator 开、关、电压设置、电压获取等:

1. 获取 regulator:

```
struct regulator *devm_regulator_get_optional(struct device *dev, const char
*id)
```

dev 为当前设备, id 对应 dts 里的设置的-supply 属性。

2. 释放 regulator

```
void regulator_put(struct regulator *regulator)
```

3. 打开 regulator

```
int regulator_enable(struct regulator *regulator)
```

4. 美闭 regulator

```
int regulator_disable(struct regulator *regulator)
```

5. 获取 regulator 电压

```
int regulator get voltage(struct regulator *regulator)
```

6. 设置 regulator 电压

```
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 传入的参数时保证 min_uV <= max_uV, 由调用者保证。
```

7. 范例

```
struct regulator *vdd_ana;

vdd_ana = devm_regulator_get_optional(dev, "power");

/* 从dts获取power-supply
    power-supply = <&vcc3v3_lcd0_n> */
regulator_enable(vdd_ana);
regulator_disable(vdd_ana);
// 关闭vdd_ana
regulator_put(vdd_ana);
// 释放vdd_ana
```

3. Debug

3.1 内核

因为 PMIC 涉及的驱动在使用逻辑上都不复杂,重点都体现在最后的寄存器设置上。所以目前常用的 debug 方式可以通过过如下节点:

/sys/kernel/debug/regulator

```
ls /sys/kernel/debug/regulator/
ec_s0 vcc5v0_sys
vcc5v0_usb
avcc_1v8_codec_s0
avcc_1v8_s0
avdd1v8_ddr_pl1_s0
avdd_0v75_s0
avdd_0v85_s0
                                                                                                                                    vdd_0v75_s3
vdd_0v85_s0
                                                                                                                                    vdd_1v8_pll_s0
vdd_2v0_pldo_s3
vdd_cpu_big0_mem_s0
                                                                         vcc5v0_usbdcin
                                                                         vcc_1v1_nldo_s3
vcc_1v8_cam_s0
                                                                                                                                   vdd_cpu_bigO_mem_s0
vdd_cpu_big1_mem_s0
vdd_cpu_big1_s0
vdd_cpu_lit_mem_s0
vdd_cpu_lit_s0
vdd_ddr_pl1_s0
avdd_1v2_cam_s0
avdd_1v2_s0
pcie20_avdd0v85
pcie20_avdd1v8
                                                                         vcc_1v8_s0
                                                                        vcc_2v8_cam_s0
vcc_3v3_s0
vcc_3v3_s3
                                                                        vcc_3v3_sd_s0
vcc_mipicsi0
vcc_mipicsi1
vcc_mipidcphy0
vccio_1v8_s3
vccio_sd_s0
 pcie30_avdd0v75
pcie30_avdd1v8
 pldo6_s3
                                                                                                                                    vdd_ddr_s0
reg-dummy-regulator-dummy
regulator_summary
supply_map
vbus5v0_typec
vcc12v_dcin
vcc3v3_lcd0_n
vcc3v3_pcie30
vcc5v0_host
                                                                                                                                   vdd_gpu_mem_s0
vdd_gpu_s0
vdd_log_s0
                                                                        vdd1_1v8_ddr_s3
vdd2_ddr_s3
vdd21_0v9_ddr_s3
vdd_0v75_hdmi_edp_s0
vdd_0v75_pl1_s0
                                                                                                                                    vdd_npu_mem_s0
                                                                                                                                    vdd_npu_s0
vdd_vdenc_mem_s0
                                                                                                                                    vdd_vdenc_s0
                                                                                                                                    vddq_ddr_s0
```

/sys/kernel/debug/regulator/regulator_summary

regulator	use	open	bypass	opmode	voltage	current	min	max
regulator-dummy	5	5	0	unknown	Omv	OmA	OmV	Om∨
fe210000.sata-target	1					OmA	Om∨	Om∨
fe210000.sata-phy	1					OmA	Om∨	Om∨
fe210000.sata-ahci	1					OmA	Om∨	OmV
backlight-power	1					OmA	OmV	OmV
regulator-dummy	o				1.2000	OmA	0mV	0mV
vcc12v_dcin vcc12v_dcin	3 0	4	U	unknown	12000mV	Oma	12000mV 0mV	12000mV 0mV
vcc5v0_sys	30	30	0	unknown	5000mV	OmA	5000mV	5000mV
vcc5v0_sys	0	30	U	UTIKTIOWIT	30001114	OmA	OmV	OmV
vdd_qpu_s0	1	3	0	normal	750mV	OmA	550mV	950mV
fb000000.gpu-mali	ō			TIOT IIICE	. 50	OmA	750mV	950mV
fb000000.gpu-mali	Ö					OmA	OmV	OmV
vdd_gpu_s0	0					OmA	OmV	OmV
vdd_npu_s0	1	1	0	normal	750m∨	OmA	550mV	950m∨
vdd_npu_s0	0					OmA	Om∨	Om∨
vdd_log_s0	1	1	0	normal	750m∨	OmA	750m∨	750m∨
vdd_1og_s0	0					OmA	Om∨	Om∨
vdd_vdenc_s0	1	1	0	normal	750m∨	OmA	550mV	950mV
vdd_vdenc_s0	0				750	OmA	OmV	OmV
vdd_gpu_mem_s0	1	3	0	normal	750m∨	OmA	675mV	950mV
fb000000.gpu-mem	0					OmA	750mV	950mV
fb000000.gpu-mem	0					OmA	OmV	OmV
vdd_gpu_mem_s0 vdd_npu_mem_s0	1	1	0	normal	750mV	OmA OmA	0mV 675mV	0m∨ 950m∨
vdd_npu_mem_s0	9		U	HOFIIIA	7 30IIIV	OmA	OmV	OmV
vdd_2v0_p1do_s3	9	9	0	normal	2000mV	OmA	2000mV	2000mV
vdd_2v0_p1do_s3	ő			HOT IIIA I	20001114	OmA	OmV	OmV
avcc_1v8_s0	ĭ	3	0	unknown	1800mV	OmA	1800mV	1800mV
avcc_1v8_s0	ō				2000	OmA	OmV	OmV
pcie20_avdd1v8	ŏ	1	0	unknown	1800mV	OmA	1800mV	1800mV
pcie20_avdd1v8	0					OmA	Om∨	Om∨
pcie30_avdd1v8	0	1	0	unknown	1800mV	OmA	1800mV	1800mV
pcie30_avdd1v8	0					OmA	Om∨	Om∨
vdd1_1v8_ddr_s3	1	1	0	unknown	1800m∨	OmA	1800m∨	1800m∨
vdd1_1v8_ddr_s3	0					OmA	Om∨	Om∨
avcc_1v8_codec_s0	1	1	0	unknown	1800m∨	OmA	1800m∨	1800m∨
avcc_1v8_codec_s0	0				4300	OmA	OmV	OmV
avdd_1v2_cam_s0	1	1	O	unknown	1200mV	OmA	1200mV	1200mV
avdd_1v2_cam_s0	0			continuo de	1 200-1	OmA	0mV	0mV
avdd_1v2_s0 avdd_1v2_s0	1	1	0	unknown	1200mV	OmA OmA	1200mV 0mV	1200m∨ 0m∨
vcc_1v8_cam_s0	1	1	0	unknown	1800mV	OmA	1800mV	1800mV
vcc_1v8_cam_s0	ō		U	UTIKHOWH	10001114	OmA	OmV	OmV
avdd1v8_ddr_pl1_s0	1	1	0	unknown	1800mV	OmA	1800mV	1800mV
avdd1v8_ddr_pl1_s0	ō	-		dilkilomi	10001114	OmA	OmV	OmV
vdd_1v8_pl1_s0	ĭ	1	0	unknown	1800mV	OmA	1800mV	1800mV
vdd_1v8_pll_s0	ō					OmA	OmV	OmV
vdd_vdenc_mem_s0	1	1	0	normal	750mV	OmA	675mV	950m∨
vdd_vdenc_mem_s0	0					OmA	Om∨	OmV
vdd2_ddr_s3	1	1	0	normal	1100mV	OmA	Om∨	OmV
vdd2_ddr_s3	0					OmA	Om∨	OmV
vcc_1v1_nldo_s3	6	6	0	normal	1100mV	OmA	1100mV	1100mV
vcc_1v1_nldo_s3	0					OmA	Om∨	OmV
avdd_0v75_s0	1	2	0	unknown	750m∨	OmA	750m∨	750m∨

每一路电源对应的属性及电压值可通过以下节点查找

```
console:/sys/kernel/debug/regulator/vdd_gpu_mem_s0 # ls
bypass_count fb000000.gpu-mem mode vdd_gpu_mem_s0
consumers force_disable open_count voltage
enable load use_count
```

3.2 Kernel 5.10 内核

请参考5.10内核命令。