Discrete Structures

Graphs

Today's Lecture

- Graphs
- Directed Graphs
- Simple Graphs
- Complete Graphs
- Complete Bipartite Graphs
- Subgraphs
- The Concept of Degree

Graphs

Imagine an organization that wants to set up teams of three to work on some projects. In order to maximize the number of people on each team who had previous experience working together successfully, the director asked the members to provide names of their past partners. This information is displayed below both in a table and in a diagram.

Name	Past Partners		
Ana	Dan, Flo		
Bev	Cai, Flo, Hal		
Cai	Bev, Flo		
Dan	Ana, Ed		
Ed	Dan, Hal		
Flo	Cai, Bev, Ana		
Gia	Hal		
Hal	Gia, Ed, Bev, Ira		
Ira	Hal		

Drawings such as those shown previously are illustrations of a structure known as a *graph*. The dots are called *vertices* (plural of *vertex*) and the line segments joining vertices are called *edges*. As you can see from the drawing, it is possible for two edges to cross at a point that is not a vertex.

In general, a graph consists of a set of vertices and a set of edges connecting various pairs of vertices. The edges may be straight or curved and should either connect one vertex to another or a vertex to itself, as shown below.

In this drawing, the vertices have been labeled with v's and the edges with e's. When an edge connects a vertex to itself (as e_5 does), it is called a *loop*. When two edges connect the same pair of vertices (as e_2 and e_3 do), they are said to be *parallel*. It is quite possible for a vertex to be unconnected by an edge to any other vertex in the graph (as v_5 is), and in that case the vertex is said to be *isolated*.

Definition: Graphs

A **graph** G consists of two finite sets: a nonempty set V(G) of **vertices** and a set E(G) of **edges**, where each edge is associated with a set consisting of either one or two vertices called its **endpoints.** The correspondence from edges to endpoints is called the **edge-endpoint function.**

An edge with just one endpoint is called a **loop**, and two or more distinct edges with the same set of endpoints are said to be **parallel**. An edge is said to **connect** its endpoints; two vertices that are connected by an edge are called **adjacent**; and a vertex that is an endpoint of a loop is said to be **adjacent to itself**.

An edge is said to be **incident on** each of its endpoints, and two edges incident on the same endpoint are called **adjacent**. A vertex on which no edges are incident is called **isolated**.

Graphs: Examples

Example: Consider the following graph:

- a. Write the vertex set and the edge set, and give a table showing the edge-endpoint function.
- b. Find all edges that are incident on v_1 , all vertices that are adjacent to v_1 , all edges that are adjacent to e_1 , all loops, all parallel edges, all vertices that are adjacent to themselves, and all isolated vertices.

Graphs: Examples (Contd....)

a. vertex set = { v_1 , v_2 , v_3 , v_4 , v_5 , v_6 } edge set = { e_1 , e_2 , e_3 , e_4 , e_5 , e_6 , e_7 }

b. e_1 , e_2 , and e_3 are incident on v_1 , v_2 and v_3 are adjacent to v_1 .

 e_2 , e_3 , and e_4 are adjacent to e_1 .

 e_6 and e_7 are loops.

 e_2 and e_3 are parallel.

 v_5 and v_6 are adjacent to themselves.

 V_4 is an isolated vertex.

Edge-endpoint function

Edge	Endpoints		
e_1	$\{v_1, v_2\}$		
e_2	$\{v_1, v_3\}$		
e_3	$\{v_1, v_3\}$		
e_4	$\{v_2, v_3\}$		
e_5	$\{v_5, v_6\}$		
e_6	$\{v_5\}$		
e_7	$\{v_6\}$		

Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {
$$v_1$$
, v_2 , v_3 , v_4 }
edge set = { e_1 , e_2 , e_3 , e_4 }

Edge	Endpoints		
e_1	$\{v_1, v_3\}$		
e_2	$\{v_2, v_4\}$		
e_3	$\{v_2, v_4\}$		
e_4	$\{v_3\}$		

Edge-endpoint function

Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure. Label vertices and edges in such a way that both drawings represent the same graph.

Labeling Drawings to Show They Represent the Same Graph

Both drawings are representations of the graph with vertex set $\{v_1, v_2, v_3, v_4, v_5\}$, edge set $\{e_1, e_2, e_3, e_4, e_5\}$, and edge-endpoint function as follows:

Edge	Endpoints
e_1	$\{v_1, v_2\}$
e_2	$\{v_2, v_3\}$
e_3	$\{v_3, v_4\}$
e_4	$\{v_4, v_5\}$
e_5	$\{v_5, v_1\}$

Directed Graphs

Definition

A directed graph, or digraph, consists of two finite sets: a nonempty set V(G) of vertices and a set D(G) of directed edges, where each is associated with an ordered pair of vertices called its endpoints. If edge e is associated with the pair (v, w) of vertices, then e is said to be the (directed) edge from v to w.

Directed Graphs: Examples of Graphs

Using a Graph to Represent Knowledge

What paper finish does the *New York Times* use?

Using a Graph to Solve a Problem: Vegetarians and Cannibals

Using a Graph to Represent Knowledge

The following is a variation of a famous puzzle often used as an example in the study of artificial intelligence. It concerns an island on which all the people are of one of two types, either vegetarians or cannibals. Initially, two vegetarians and two cannibals are on the left bank of a river. With them is a boat that can hold a maximum of two people.

The aim of the puzzle is to find a way to transport all the vegetarians and cannibals to the right bank of the river. What makes this difficult is that at no time can the number of cannibals on either bank outnumber the number of vegetarians. Otherwise, disaster befalls the vegetarians!

Using a Graph to Solve a Problem: Vegetarians and Cannibals

Simple Graphs

Definition and Notation

A **simple graph** is a graph that does not have any loops or parallel edges. In a simple graph, an edge with endpoints v and w is denoted $\{v, w\}$.

Example

Draw all simple graphs with the four vertices $\{u, v, w, x\}$ and two edges, one of which is $\{u, v\}$.

Each possible edge of a simple graph corresponds to a subset of two vertices. Given four vertices, there are ${}^4C_2 = 6$ such subsets in all: $\{u, v\}, \{u, w\}, \{u, x\}, \{v, w\}, \{v, x\}, \text{ and } \{w, x\}$. Now one edge of the graph is specified to be $\{u, v\}$, so any of the remaining five from this list can be chosen to be the second edge. The possibilities are shown on the next page.

Simple Graphs

Complete Graphs

Definition

Let n be a positive integer. A complete graph on n vertices, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices.

Example

Complete Graphs on *n* Vertices: K_1 , K_2 , K_3 , K_4 , K_5

The complete graphs K_1 , K_2 , K_3 , K_4 , and K_5 can be drawn as follows:

Complete Graphs

Example

Complete Graphs on *n* Vertices: K_1 , K_2 , K_3 , K_4 , K_5

The complete graphs K_1 , K_2 , K_3 , K_4 , and K_5 can be drawn as follows:

SubGraphs

Definition

A graph H is said to be a **subgraph** of a graph G if, and only if, every vertex in H is also a vertex in G, every edge in H is also an edge in G, and every edge in H has the same endpoints as it has in G.

Example

List all subgraphs of the graph G with vertex set $\{v_1, v_2\}$ and edge set $\{e_1, e_2, e_3\}$, where the endpoints of e_1 are v_1 and v_2 , the endpoints of e_2 are v_1 and v_2 , and e_3 is a loop at v_1 .

SubGraphs

Definition

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the number of edges that are incident on v, with an edge that is a loop counted twice. The **total degree of** G is the sum of the degrees of all the vertices of G.

Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph *G* shown below. Then find the total degree of *G*.

 $deg(v_1) = 0$ since no edge is incident on v_1 (v_1 is isolated).

 $deg(v_2) = 2$ since both e_1 and e_2 are incident on v_2 .

 $deg(v_3) = 4$ since e_1 and e_2 are incident on v_3 and the loop e_3 is also incident on v_3 (and contributes 2 to the degree of v_3).

total degree of $G = \deg(v_1) + \deg(v_2) + \deg(v_3) = 0 + 2 + 4 = 6$.

Theorem 10.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice the number of edges of G. Specifically, if the vertices of G are v_1, v_2, \ldots, v_n , where n is a nonnegative integer, then

the total degree of
$$G = \deg(v_1) + \deg(v_2) + \cdots + \deg(v_n)$$

= $2 \cdot \text{(the number of edges of } G\text{)}.$

Degree of a Vertex and Total Degree of a Graph

Find the degree of each vertex of the graph *G* shown below. Then find the total degree of *G*.

 $deg(v_1) = 0$ since no edge is incident on v_1 (v_1 is isolated).

 $deg(v_2) = 2$ since both e_1 and e_2 are incident on v_2 .

 $deg(v_3) = 4$ since e_1 and e_2 are incident on v_3 and the loop e_3 is also incident on v_3 (and contributes 2 to the degree of v_3).

total degree of $G = \deg(v_1) + \deg(v_2) + \deg(v_3) = 0 + 2 + 4 = 6$.

Theorem 10.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice the number of edges of G. Specifically, if the vertices of G are v_1, v_2, \ldots, v_n , where n is a nonnegative integer, then

the total degree of
$$G = \deg(v_1) + \deg(v_2) + \cdots + \deg(v_n)$$

= $2 \cdot \text{(the number of edges of } G\text{)}.$

Walks

Let G be a graph, and let v and w be vertices in G. A walk from v to w is a finite alternating sequence of adjacent vertices and edges of G. Thus a walk has the form

$$V_0e_1V_1e_2\cdot\cdot\cdot V_{n-1}e_nV_n$$

where the v's represent vertices, the e's represent edges, $v_0 = v$, $v_n = w$, and for all i = 1, 2, ..., n, v_{i-1} and v_i are the endpoints of e_i . The trivial walk from v to v consists of the single vertex v.

Definitions

A **trail from v to w** is a walk from v to w that does not contain a repeated edge.

A path from v to w is a trail that does not contain a repeated vertex.

A **closed walk** is a walk that starts and ends at the same vertex.

A circuit is a closed walk that contains at least one edge and does not contain a repeated edge.

A **simple circuit** is a circuit that does not have any other repeated vertex except the first and last.

For ease of reference, these definitions are summarized in the following table:

	Repeated Edge?	Repeated Vertex?	Starts and Ends at Same Point?	Must Contain at Least One Edge?
Walk	allowed	allowed	allowed	no
Trail	no	allowed	allowed	no
Path	no	no	no	no
Closed walk	allowed	allowed	yes	no
Circuit	no	allowed	yes	yes
Simple circuit	no	first and last only	yes	yes

Notations for Walk

Often a walk can be specified unambiguously by giving either a sequence of edges or a sequence of vertices.

a. In the graph below, the notation $e_1e_2e_4e_3$ refers unambiguously to the following walk: $v_1e_1v_2e_2v_3e_4v_3e_3v_2$. On the other hand, the notation e_1 is ambiguous if used to refer to a walk. It could mean either $v_1e_1v_2$ or $v_2e_1v_1$.

b. In the graph of part (a), the notation v_2v_3 is ambiguous if used to refer to a walk. It could mean $v_2e_2v_3$ or $v_2e_3v_3$. On the other hand, in the graph below, the notation $v_1v_2v_2v_3$ refers unambiguously to the walk $v_1e_1v_2e_2v_2e_3v_3$.

Example: Trails, Paths, Circuits

In the graph below, determine which of the following walks are trails, paths, circuits, or simple circuits.

- a. $v_1e_1v_2e_3v_3e_4v_3e_5v_4$ b. $e_1e_3e_5e_5e_6$ c. $v_2v_3v_4v_5v_3v_6v_2$
- d. $v_2v_3v_4v_5v_6v_2$ e. $v_1e_1v_2e_1v_1$ f. v_1

Solution

- a. This walk has a repeated vertex but does not have a repeated edge, so it is a trail from v_1 to v_4 but not a path.
- b. This is just a walk from v_1 to v_5 . It is not a trail because it has a repeated edge.
- c. This walk starts and ends at v₂, contains at least one edge, and does not have a repeated edge, so it is a circuit. Since the vertex v₃ is repeated in the middle, it is not a simple circuit.
- d. This walk starts and ends at v_2 , contains at least one edge, does not have a repeated edge, and does not have a repeated vertex. Thus it is a simple circuit.
- e. This is just a closed walk starting and ending at v_1 . It is not a circuit because edge e_1 is repeated.
- f. The first vertex of this walk is the same as its last vertex, but it does not contain an edge, and so it is not a circuit. It is a closed walk from v_1 to v_1 . (It is also a trail from v_1 to v_1 .)

Connectedness

Definition

Let G be a graph. Two vertices v and w of G are connected if, and only if, there is a walk from v to w. The graph G is connected if, and only if, given any two vertices v and w in G, there is a walk from v to w. Symbolically,

G is connected \Leftrightarrow \forall vertices $v, w \in V(G), \exists$ a walk from v to w.

Example

Which of the following graphs are connected?

Contd...

Solution The graph represented in (a) is connected, whereas those of (b) and (c) are not. To understand why (c) is not connected, recall that in a drawing of a graph, two edges may cross at a point that is not a vertex. Thus the graph in (c) can be redrawn as follows:

Theorem

Let G be a graph.

- a. If G is connected, then any two distinct vertices of G can be connected by a path.
- b. If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trail from v to w in G.
- c. If G is connected and G contains a circuit, then an edge of the circuit can be removed without disconnecting G.

Connected Component of a Graph

Definition

A graph H is a **connected component** of a graph G if, and only if,

- 1. H is subgraph of G;
- 2. H is connected; and
- 3. no connected subgraph of G has H as a subgraph and contains vertices or edges that are not in H.

Contd...

Find all connected components of the following graph G.

G has three connected components: H_1 , H_2 , and H_3 with vertex sets V_1 , V_2 , and V_3 and edge sets E_1 , E_2 , and E_3 , where

$$V_1 = \{v_1, v_2, v_3\},$$
 $E_1 = \{e_1, e_2\},$ $V_2 = \{v_4\},$ $E_2 = \emptyset,$ $E_3 = \{e_3, e_4, e_5\}.$

Euler Circuits

Definition

Let G be a graph. An Euler circuit for G is a circuit that contains every vertex and every edge of G. That is, an Euler circuit for G is a sequence of adjacent vertices and edges in G that has at least one edge, starts and ends at the same vertex, uses every vertex of G at least once, and uses every edge of G exactly once.

Theorem

If a graph has an Euler circuit, then every vertex of the graph has positive even degree.

Contrapositive Version of Theorem

If some vertex of a graph has odd degree, then the graph does not have an Euler circuit.

Euler Circuits

Show that the graph below does not have an Euler circuit.

Vertices v_1 and v_3 both have degree 3, which is odd. Hence by (the contrapositive form of theorem), this graph does not have an Euler circuit.

Constructing an Euler Circuit

Theorem

If a graph G is connected and the degree of every vertex of G is a positive even integer, then G has an Euler circuit.

Constructing an Euler Circuit

Step I: Pick any vertex *v* of *G* at which to start.

Step II: Pick any vertex v of G at which to start.

Step III: Check whether C contains every edge and vertex of G. If so, C is an Euler circuit, and we are finished. If not, perform the following steps.

Constructing an Euler Circuit

Step IIIa: Remove all edges of C from G and also any vertices that become isolated when the edges of C are removed. Call the resulting subgraph G'.

Step IIIb: Pick any vertex w common to both C and G'.

Step IIIc: Pick any sequence of adjacent vertices and edges of *G*', starting and ending at *w* and never repeating an edge. Call the resulting circuit *C*'.

Step IIId: Patch C and C\$ together to create a new circuit C\$\$ as follows: Start at v and follow C all the way to w. Then follow C\$ all the way back to w. After that, continue along the untraveled portion of C to return to v.

Step IIIe: Let C = C" and go back to step 3.

Since the graph *G* is finite, execution of the steps outlined in this algorithm must eventually terminate. At that point an Euler circuit for *G* will have been constructed.

Example

Check that the graph below has an Euler circuit. Then use the algorithm to find an Euler circuit for the graph.

Observe that

$$deg(a) = deg(b) = deg(c) = deg(f) = deg(g) = deg(i) = deg(j) = 2$$

and that $deg(d) = deg(e) = deg(h) = 4$.

Hence all vertices have even degree. Also, the graph is connected. Thus the graph has an Euler circuit.

To construct an Euler circuit using the algorithm, let v = a and let C be

C: abcda.

C is represented by the labeled edges shown below.

Observe that C is not an Euler circuit for the graph but that C intersects the rest of the graph at d.

Let C' be

C': deghjid.

Patch C' into C to obtain

C": abcdeghjida.

Set C = C". Then C is represented by the labeled edges shown below.

Observe that C is not an Euler circuit for the graph but that it intersects the rest of the graph at e.

Let C' be

C': ef he.

Patch C' into C to obtain

C": abcde f heghjida.

Set C = C". Then C is represented by the labeled edges shown below.

Since C includes every edge of the graph exactly once, C is an Euler circuit for the graph.

Euler Trails

Theorem

A graph G has an Euler circuit if, and only if, G is connected and every vertex of G has positive even degree.

Definition

Let G be a graph, and let v and w be two distinct vertices of G. An Euler trail from v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes through every vertex of G at least once, and traverses every edge of G exactly once.

Corollary

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler path from v to w if, and only if, G is connected, v and w have odd degree, and all other vertices of G have positive even degree.

Finding an Euler Trail

The floor plan shown below is for a house that is open for public viewing. Is it possible to find a trail that starts in room A, ends in room B, and passes through every interior door-way of the house exactly once? If so, find such a trail.

Finding an Euler Trail

Let the floor plan of the house be represented by the graph below.

Each vertex of this graph has even degree except for *A* and *B*, each of which has degree 1. Hence there is an Euler path from *A* to *B*. One such trail is

AGHFEI HEK J DCB.