## Life Expectancy Analysis

VMC

4/27/2021

```
library(rmarkdown)
library (ggplot2)
life_expectancy_data <- read.csv("Life Expectancy Data.csv", header = TRUE)</pre>
```

#### **Scatter Plots**

#ggplot(life\_expectancy\_data, aes(Year, Life.expectancy, fill = Life.expectancy)) + geom\_point(shape=21
life\_expectancy\_data\$Developed <- as.integer (as.logical(life\_expectancy\_data\$Status == "Developed"))
#ggplot (life\_expectancy\_data, Developed, Life.expectancy, ylab = "Life Expectancy", xlab = "O = Developed")
plot (life\_expectancy\_data\$Alcohol, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy", xlab")</pre>





plot (life\_expectancy\_data\$Hepatitis.B, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy",



plot (life\_expectancy\_data\$Measles, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy", xla



plot (life\_expectancy\_data\$BMI, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy", xlab =



plot (life\_expectancy\_data\$under.five.deaths, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expect



plot (life\_expectancy\_data\$Polio, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy", xlab



plot (life\_expectancy\_data\$Total.expenditure, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expect



plot (life\_expectancy\_data\$Diphtheria, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy",



plot (life\_expectancy\_data\$HIV.AIDS, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy", xl



plot (life\_expectancy\_data\$GDP, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy", xlab =



plot (life\_expectancy\_data\$Population, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy",



plot (life\_expectancy\_data\$thinness..1.19.years, life\_expectancy\_data\$Life.expectancy, ylab = "Life Exp



plot (life\_expectancy\_data\$thinness.5.9.years, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy")



plot (life\_expectancy\_data\$Income.composition.of.resources, life\_expectancy\_data\$Life.expectancy, ylab



plot (life\_expectancy\_data\$Schooling, life\_expectancy\_data\$Life.expectancy, ylab = "Life Expectancy", x



# Histograms

hist (life\_expectancy\_data\$Life.expectancy, xlab="Life Expectancy", ylab="Frequency of Life Expectancy"



#### Fitting the model

In the following step, we will perform hypothesis testing to figure out variables that have a high linear corelation with life expectancy to arrive at a fitted multiple linear regression model

### Residual Analysis

In the following step, we will perform residual analysis, to figure out outliers and variables that contribute for and against the accuracy of our model.

### this is updated text