Disproof

Disproof

A "disproof" of a statement P is a proof of $\sim P$.

Suppose the result we are interested is a universally quantified statement of the form:

For all $x \in S$, P(x)

The negation of this statement is:

There exists $x \in S$ such that $\sim P(x)$.

Disproof

For example, if the original statement is:

▶ if $n \in \mathbb{Z}$ and $n^5 - n$ is even, then n is even.

For all $n \in \mathbb{Z}_p$ If $n^S - n$ even the n is even a

The negation is:

▶ There exists an integer n, such that $n^5 - n$ is even and n is odd.

The exists
$$n \in \mathbb{Z}$$
, is such that $\sim (P \Rightarrow Q)$
 $n^{5} = n$ is even

and n is odd

 $p_{and} \sim Q$

Disproof by counterexample

The negation of the "for all statement" is a "there exists" statement. To prove that negation, we need to *find an example that satisfies the negation*.

To disprove

if $n \in \mathbb{Z}$ and $n^5 - n$ is even, then n is even. FALSE, n = 1 is a counterexample.

we must find an integer n such that $\underline{n^5} - n$ is even and \underline{n} is odd.

Try a few n and it doesn't take long to find n = 1.

Let n = 1. Then $n^5 - n = 0$ is even, but n = 1 is odd.

This example which establishes the truth of the negation is called a *counterexample* to the original statement.

Another disproof by counterexample

It may not be obvious that a statement is false. (this is problem 7 on page 179).

Proposition: Suppose that A, B, and C are sets. If $A \times C = B \times C$

AXC = { (a,c): a EA, c eC} then A=B. BXC = S(b,c): b&B, C&C).

Our A & B. Choose a & A. Pick CEC, so that Ma (a,c) EAXC. BA AXC=BXC co

(a,c) eBxC, so aeB.

(a,c) EBAC, Pick CEC, So that

(b,c) EBXC. BXC=AXC, Uh-oh

(b,c) EAXC, threfre b EA.

Choose C=Ø. AXC=BXC=Ø.

A={i} B=IR {i}xØ=\$\pix\$ = \$\pix\$ \$\pi = \$\pix\$ bot {i}th.

Counterexamples, cont'd

Counterexamples often come from "edge cases." - What if a variable is zero? - What if a set is empty? - What if an integer is negative?