Automatic Repeat Request (ARQ)

Automatic Repeat Request (ARQ)

Obiettivo

assicurare che una sequenza di PDU sia consegnata in ordine e senza errori o duplicazioni in presenza di un servizio offerto dagli strati sottostanti che introduce errori e/o perdite

Possibili procedure alternative

- Stop-and-Wait ARQ
- Go-Back N ARQ
- Selective Repeat ARQ

Elementi chiave delle procedure ARQ

- Codici di rivelazione d'errore
- Riscontri positivi (ACK)
- Riscontri negativi (NACK)
- Timeout

Stop-and-Wait ARQ

L'entità A trasmette una frame ed aspetta l'ACK

Numeri di Sequenza

- L'entità emittente (A) si comporta sempre nello stesso modo
- Nel secondo caso, l'entità ricevente (B) riceve la frame 1 due volte (duplicazione)
- B rivela la duplicazione mediante il numero di sequenza (S_{last}) contenuto nell'header di ciascuna frame

Numeri di Sequenza

Esaurimento prematuro del time-out

- La stazione emittente interpreta in modo scorretto gli ACK
 - Per a il secondo ACK riscntra la frame 1 che invece è persa
- Occorre inserire il numero di squenza anche negli ACK (R_{next})
 - indica il numero di sequenza della prossima frame che il ricevitore si aspetta di ricevere
 - implicitamente riscontra tutte le frame con numero di sequenza R'<R

Numero di sequenza 1-Bit

Stop-and-Wait ARQ (Trasmitter)

Stato Ready

- Attesa di una richiesta di invio di un pacchetto dallo strato superiore
- Quando arriva una richiesta, si trasmette la frame con numero di sequenza Slast e completa di CRC
- Transizione nello stato Wait

State Wait

- Attesa del riscontro della frame emessa o dell'esaurimento del timeout (la ricezione delle richieste dallo strato superiore sono bloccate)
- Se il timeout scade viene ritrasmessa la frame e viene riavviato il timer
- Se viene ricevuto un ACK
 - Se il numero di sequenza non è corretto l'ACK è ignorato
 - Se il numero di sequenza è corretto (Rnext=Slast+1), la frame è accettata e si torna nello stato Ready

Stop-and-Wait ARQ (Receiver)

Sempre nello stato Ready

- Attesa dell'arrivo di una nuova frame
- Quando arriva una frame viene eseguito il controllo d'errore (CRC)
- Se non sono rivelati errori e il numero di sequenza è corretto (Slast=Rnext)
 - la frame è accettata
 - viene aggiornato il valore di Rnext
 - viene emesso l'ACK con valore Rnext
 - il pacchetto è consegnato allo strato superiore
- Se non sono rivelati errori e il numero di sequenza non è corretto
 - la frame è scartata
 - viene emesso un ACK with Rnext (ACK duplicato)
- Se sono rivelati errori
 - la frame è scartata

Modello Stop-and-Wait ARQ

$$t_{0}=2t_{prop}+2t_{proc}+t_{f}+t_{ack}$$
 Lunghezza di una frame $=2t_{prop}+2t_{proc}+rac{n_{f}}{R}+rac{n_{a}}{R}$ Lunghezza di una ACK

Efficienza su un canale senza-errori

Rate di trasmissione efficace

bit di overhead

$$R_{eff}^{0} = \frac{\text{numero di bit infromativi consegnati a destinazione}}{\text{tempo totale necessario per la consegna dei bit informativi}} = \frac{n_f - n_o}{t_o}$$

Efficienza di trasmissione

 $\eta_0 = \frac{R_{\text{eff}}}{R} = \frac{\frac{n_f - n_o}{t_o}}{R} = \frac{1 + \frac{n_o}{n_f}}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}}{1 + \frac{n_o}{n_f}}$ Effetto dell'overhead di una frame

Esempio: Impatto del prodotto banda-ritardo

 $n_f = 1250$ byte = 10000 bits, $n_a = n_o = 25$ byte = 200 bit

2xDelayxBW Efficiency	1 ms	10 ms	100 ms	1 sec
	200 km	2000 km	20000 km	200000 km
1 Mbit/s	10 ³	104	105	106
	88%	49%	9%	1%
1 Gbit/s	106	107	108	109
	1%	0.1%	0.01%	0.001%

La tecnica Stop-and-Wait non è efficiente in link ad alta velocità o con elevati ritardi di propagazione

Efficienza su un canale con errori

- Sia $1-P_f$ = probabilità che una frame arrivi senza errori
- 1/ $(1-P_f)$ = numero medio di trasmissioni necessarie per avere una trasmissione corretta di una frame
- $t_0/(1 P_f)$ = tempo medio di trasferimento di una frame

$$\eta_{SW} = \frac{\frac{n_f - n_o}{t_o}}{R} = \frac{1 - \frac{n_o}{n_f}}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}}$$
Effetto della probo

Effetto della probabilità di perdita delle frame

Esempio: Impatto del Bit Error Rate

- $n_f = 1250$ byte = 10000 bit, $n_a = n_o = 25$ byte = 200 bit
- Calcolo dell'efficienza per un BER p=0, 10-6, 10-5, 10-4

$$1-P_f = (1-p)^{n_f} \approx e^{-n_f p}$$
 per grandi valori di n_f e per piccoli valori di p

1 - P _f Efficiency	0	10-6	10-5	10-4
R=1 Mbps	1	0.99	0.905	0.368
T _{prop} =1 ms	88%	86.6%	79.2%	32.2%

Gli errori introducono un effetto significativo quando il prodotto n_f p si avvicina ad 1

Go-back N ARQ

- Miglioramento del protocollo Stop-and-Wait
- Elimina le attese dei riscontri
 - Il canale è mantenuto occupato inviando altre frame
 - Utilizza una finestra in trasmissione di ampiezza W_s frame
 - Usa m bit per la numerazione delle frame
- Se vengono ricevuti gli ACK delle frame emesse prima di esaurire la finestra, la finestra è aggiornata e la trasmissione delle frame può continuare
- Se la finestra si esaurisce, la trasmissione viene interrotta in attesa degli ACK
- Se non sono ricevuti ACK, allo scadere di un timeout le frame della finestra vengono ritrasmesse

Go-back-N ARQ

Le frame con errori e fuori sequenza sono scartate

Go-Back-N Transmitter & Receiver

Transmitter

Receiver

Il Receiver accetta solo frame corrette e in sequenza (con numero di sequenza = R_{next})

Quando arriva una nuova frame in sequenza, viene incrementato di uno R_{next} , quindi la finestra in ricezione slitta di una unità

Sliding window

Transmitter

Il Transmitter attende gli ACK (con numero di sequenza $S \ge S_{last}$)

Quando arriva un ACK, con numero di sequenza S, viene posto $S_{last} = S$

L'estremo superiore della finestra sarà quindi S_{last} + W_s -1

Numeri di sequenza a m bit modulo M = 2^m

Dimensione massima della finestra

Il massimo valore della finestra è uguale a $W_s = M = 2^m$

Il receiver ha R_{next}= 0, ma non è in grado di distinguere se il suo ACK per la frame 0 è stato ricevuto e quindi la frame arrivata è nuova oppure si tratta della ritrasmissione della vecchia frame 0

Dimensione massima della finestra

$$W_s = M = 2^m - 1 = 3$$

Il massimo valore della finestra è uguale a $W_s = M - 1 = 2^m - 1$

Piggybacking

Dimensionamento della finestra e del timeout

- Il valore del Timeout (T_{out}) deve essere la somma delle seguenti componenti
 - due tempi di propagazione + un tempo di processing = 2 T_{prop} + T_{proc}
 - ullet Un tempo di trasmissione di una frame informativa T_f
 - Un tempo di trasmissione della frame ACK, T_{ACK}
- \mathbf{W}_{s} deve esere grande abbastanza da poter mantenere il canale occupato per tutto il periodo T_{out}

Dimensione della finestra vs. prodotto banda-ritardo

Frame = 1250 bytes =10,000 bits, R = 1 Mbps				
2(t _{prop} + t _{proc})	2 x Delay x BW	Window		
1 ms	1000 bits	1		
10 ms	10,000 bits	2		
100 ms	100,000 bits	11		
1 second	1,000,000 bits	101		

Efficienza del Go-Back-N

Tempo di trasferimento di una frame

$$t_{GBN} = t_f (1 - P_f) + P_f \{t_f + \frac{W_s t_f}{1 - P_f}\} = t_f + P_f \frac{W_s t_f}{1 - P_f}$$

Efficienza

$$\eta_{GBN} = \frac{\frac{n_f - n_o}{t_{GBN}}}{R} = \frac{1 - \frac{n_o}{n_f}}{1 + (W_s - 1)P_f} (1 - P_f)$$

Impatto del BER su GBN

- $n_f = 1250$ bytes = 10000 bits, $n_a = n_o = 25$ bytes = 200 bits
- Random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴
- R = 1 Mbps, Delay = 100 ms
- 1 Mbps x 100 ms = 100000 bits = 10 frames \rightarrow W_s = 11

Efficiency	0	10-6	10-5	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%

- Go-Back-N è migliore di S&W nei casi di elevato valore del prodotto banda ritardo
- Go-Back-N diviene inefficiente se il BER cresce

Selective Repeat ARQ

- Go-Back-N ARQ è inefficiente poichè, in caso di ritrasmissione, è riemesso un numero elevato di frame, anche se ricevute correttemente dal receiver
- Selective Repeat ritrasmette solo le frame che sono state perse
 - l'esaurimento del Timeout determina la ritrasmissione solo del frame corrispondente
 - La ricezione di un NAK causa la ritrasmissione della trama non riscontrata più vecchia
- Il Receiver gestisce una finestra in ricezione che indica i numeri di sequenza che possono essere accettati
 - Farme corrette, ma fuori sequenza con numero disequenza compreso nella finestra in ricezione non sono scartate, ma sono bufferizzate
 - Un arrivo di una frame con Rnext determina lo scorrimento della finestra in trasmissione

Selective Repeat ARQ

Selective Repeat ARQ

Transmitter

Receiver

accettato

Finestre in trasmissione e ricezione

Transmitter

I limiti della finestra si spostano in avanti di k se arriva un ACK con $R_{next} = S_{last} + k$ $k = 1, ..., W_s-1$

Receiver

I limiti della finestra si spostano in avanti di 1 se arriva una frame con numero di sequenza = R_{next}

Valori massimi di W_s e W_r

Esempio: $M=2^2=4$, $W_s=3$, $W_r=3$

La vecchia frame 0 è accettata perchè ricade nella finestra di ricezione

Valori massimi di W_s e W_r

Esempio: $M=2^2=4$, $W_s=2$, $W_r=2$

Il massimo valore permesso è $W_s + W_r = 2^m$

La vecchia frame 0 è rifiutata perchè ricade fuori dalla finestra di ricezione

Perchè $W_s + W_r = 2^m$

- Il Transmitter emette le frame da 0 a W_s-1; la finestra di trasmissione è vuota
- Tutte le frame arrivano al receiver
- Tutti gli ACKs sono persi
- Il Transmitter riemette la frame 0

- La finestra di ricezione inizia a {0, ..., W_r}
- La finestra di ricezione slitta a {W_s, ..., W_s+W_r-1}
- Il ricevitore rifiuta la frame 0 perchè è fuori dalla finestra di ricezione

Efficienza del Selective Repeat

- Assumiamo P_f = frame loss probability
- Il numero di trasmissioni richieste per trasferire una frame è

$$1/(1-P_f)$$

Il tempo di trasferimento è quindi

$$t_f / (1 - P_f)$$

L'efficienza è data da

$$\eta_{SR} = \frac{\frac{n_f - n_o}{t_f / (1 - P_f)}}{R} = (1 - \frac{n_o}{n_f})(1 - P_f)$$

Esempio: Impatto del BER sul Selective Repeat

- n_f =1250 bytes = 10000 bits, n_a = n_o =25 bytes = 200 bits
- Random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴
- R = 1 Mbps, Delay = 100 ms

Efficiency	0	10-6	10-5	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%
SR	98%	97%	89%	36%

Il Selective Repeat ha prestazioni migliori rispetto a GBN e S&W, ma l'efficienza diminuisce al crescere del BER

Confronto tra i metodi ARQ

Assumiamo n_a e n_o trascurabili rispetto a n_f , e $L = 2(t_{prop} + t_{proc})R/n_f = (W_s-1)$

Selective-Repeat

$$\eta_{SR} = (1 - P_f)(1 - \frac{n_o}{n_f}) \approx (1 - P_f)$$

Go-Back-N
$$\eta_{GBN} = \frac{1 - P_f}{1 + (W_S - 1)P_f} = \frac{1 - P_f}{1 + LP_f}$$

per $P_f \approx 0$, SR & GBN uguali

Stop-and-Wait

$$\eta_{SW} = \frac{(1 - P_f)}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}} \approx \frac{1 - P_f}{1 + L}$$

per $P_f \rightarrow 1$, GBN & SW uguali

Efficienza ARQ

Prodotto banda ritardo = 10, 100