Alessandro Baccarini

Curriculum Vitae

Contact Information

\searrow	Email	abaccarini@proton.me
3	Website	abaccarini.github.io
②	Telegram	alessandro_baccarini
in	LinkedIn	alessandro-baccarini
(7)	GitHub	abaccarini
g i	Scholar	1026 citations, Aug. 2024

Research Interests

My interests span across areas of information security, applied cryptography, and privacy-enhancing technologies. I design and implement protocols for secure multi-party computation (MPC) based on secret sharing for a variety of practical applications, such as privacy-preserving machine learning, sustainability, and outsourcing. Additionally, I research how to quantify information disclosure from arbitrary secure function evaluations through information-theoretic approaches. I am also interested in quantum-resilient cryptographic techniques.

Education

Aug. 2024
May 2019
May 2017

Work Experience

Research/Teaching Assistant, Computer Science	Jun. 2019 – July 2024
University at Buffalo	
Adjunct Assistant Professor , Physics Fordham University	Aug. 2017 – May 2019
Graduate Research Assistant , Cybersecurity Fordham University	Aug. 2017 – May 2019

Awards and Recognition

Alan Selman Scholarship, University at Buffalo

Mar. 2024

First place \$2000 cash prize, focus in theoretical computer science.

GSAS Centennial Scholarship, Fordham University

2017 - 2019

Tuition support, stipend for both academic years and summer semesters.

Publications

Thesis

[1] Alessandro Baccarini. New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis. PhD thesis, University at Buffalo, 2024.

Conference Proceedings

- [2] **Alessandro Baccarini**, Marina Blanton, and Shaofeng Zou. Understanding information disclosure from secure computation output: A study of average salary computation. In *ACM Conference on Data and Application Security and Privacy (CODASPY)*, pages 187–198, 2024.
- [3] **Alessandro Baccarini** and Thaier Hayajneh. Evolution of format preserving encryption on IoT devices: FF1+. In *Hawaii International Conference on System Sciences (HICSS)*, pages 1628–1637, 2019.
- [4] Abdullah Alhayajneh, **Alessandro Baccarini**, and Thaier Hayajneh. Quality of service analysis of VoIP services. In *IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)*, pages 812–818, 2018.

Refereed Journals

- [5] **Alessandro Baccarini**, Marina Blanton, and Shaofeng Zou. Understanding information disclosure from secure computation output: A comprehensive study of average salary computation. *ACM Transactions on Privacy and Security (TOPS)*, 2024, to appear.
- [6] Alessandro Baccarini, Marina Blanton, and Chen Yuan. Multi-party replicated secret sharing over a ring with applications to privacy-preserving machine learning. *Proceedings on Privacy Enhancing Technologies (PoPETs)*, 2023(1):608–626, 2023.
- [7] Abdullah Alhayajneh, **Alessandro Baccarini**, Gary Weiss, Thaier Hayajneh, and Aydin Farajidavar. Biometric authentication and verification for medical cyber physical systems. *Electronics*, 7(12):436, 2018.
- [8] Kristen Griggs, Olya Ossipova, Christopher Kohlios, **Alessandro Baccarini**, Emily Howson, and Thaier Hayajneh. Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. *Journal of Medical Systems*, 42(7):130, 2018.

Technical Reports

[9] **Alessandro Baccarini**, Marina Blanton, and Shaofeng Zou. Understanding information disclosure from secure computation output: A study of average salary computation. arXiv preprint arXiv:2209.10457, 2024.

Research Projects

MPC and Privacy-Preserving Machine Learning University at Buffalo

2020 – Present Repository

- Designed a comprehensive ring-based framework of replicated secret sharing multi-party protocols for an arbitrary number of parties in the semi-honest (passively secure), honest majority setting.
- Implemented protocol constructions in C++ and extensively benchmarked our framework, obtaining an up to 33× performance gain over existing state-of-the-art secret sharing techniques.
- Applied techniques to privacy-preserving machine learning tasks, including (quantized) neural network inference and support vector machine classification.
- Discovered an algebraic optimization for secure quantized neural network inference that significantly improved efficiency and led to an over 2× improvement over prior works.

PICCO Compiler

2022 – Present Repository

- University at Buffalo
- Core developer and maintainer of *PICCO*, a source-to-source compiler used to translate general-purpose programs into their secure implementations for deployment in a distributed setting.
- Extensively optimized existing field-based protocol implementations, while simultaneously performing a large-scale refactor to improve future maintainability and support extensibility to stronger security settings.
- Integrated ring-based protocol constructions into the compiler to support general-purpose computation over integer and floating-point inputs.
- Mentored two REU students tasked with optimizing the compiler's networking functionalities, along
 with developing a web interface for entering private inputs and retrieving outputs of secure computation.

Disclosure Analysis from Secure Function Evaluation University at Buffalo

2021 – Present Repository

- Designed a novel information-theoretic approach for evaluating the information disclosure about private inputs from the output of secure function evaluations.
- Comprehensively analyzed a practically significant statistical function (the average salary) through extensive theoretical and analytical analysis in a variety of computational configurations.
- Applied our framework to complex descriptive statistical functions in conjunction with data-driven techniques to measure information disclosure.

Blockchain Applications in Healthcare

2017 - 2019

Fordham University

- Led the design of one of the first frameworks that fused blockchain and healthcare into a HIPAA-compliant IoT remote patient monitoring system, based on the Ethereum protocol.
- Assisted in prototype smart contract development in Solidity to support real-time automated monitoring.

Significant Course Projects

Implementation of the Apple PSI System

University at Buffalo, Security and Privacy in IoT

Repository

2021

- Developed a modified variant of Apple's private set intersection (PSI) system in Python to obliviously detect harmful media within a database through neural network-based perceptual hash functions.
- Implemented various necessary cryptographic primitives to build the framework, including secret sharing of private keys, HMAC key derivation and pseudorandom functions, and Diffie-Hellman group construction.

Quantum Secret Sharing of Classical Information

2020

University at Buffalo, Applied Cryptography and Computer Security

Repository

• Analyzed the Hillery-Buek-Berthiaume quantum secret sharing protocol of classical information, and implemented the construction in IBM's Python Qiskit framework.

Professional Service

Conference Committees

USENIX Security Symposium, artifact evaluation committee member	2024
USENIX Security Symposium, artifact evaluation committee member	2023

Conference and Journal Refereeing

IEEE Transactions on Information Forensics and Security (TIFS)

IEEE Transactions on Dependable and Secure Computing (TDSC)

European Symposium on Research in Computer Security (ESORICS)

IEEE/ACM International Conference on Automated Software Engineering (ASE)

Multidisciplinary Digital Publishing Institute (MDPI) Entropy, Sensors, Symmetry, Information

Hawaii International Conference on System Sciences (HICSS)

Technical Skills

Cryptographic secure multi-party computation, secret sharing, differential privacy, encryption, signa-

tures and commitments, zero-knowledge proofs

Languages C/C++, Python, Bash, Lua, Solidity, LATEX

Developer Git, SVN, CMake, GDB, Neovim, VS Code, Unix

Libraries GMP, GMPFR, GSL, OpenSSL, NumPy, Matplotlib, TensorFlow

Teaching

At the **University at Buffalo**:

CSE 116 Computer science II (Instructor)	2 semesters
CSE 4/529 Algorithms for Modern Computing Systems	3 semesters
CSE 4/531 Analysis of Algorithms	1 semester
CSE 542 Software Engineering Concepts	1 semester

At Fordham University:

PHYS 1511/12 Physics I/II Lab (Instructor) 4 semesters