- La logique propositionnelle définit la notion de formule vraie (si elle est vraie pour toute valuation). La déduction naturelle permet de formaliser la notion de preuve mathématique.
- Un séquent est noté $\Gamma \vdash A$ où Γ est un ensemble de formules logiques et A une formule logique. $\Gamma \vdash A$ signifie Intuitivement que sous les hypothèses Γ , on peut déduire A.
- Règles de déduction naturelle classique, où $A,\,B,\,C$ sont des formules quelconques :

	Introduction	Élimination
Conjonction	$\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B} \land_i$	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \land_e^g \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \land_e^d$
Disjonction	$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \lor_i^g \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \lor_i^d$	$\begin{array}{c cccc} \Gamma, A \vdash C & \Gamma, B \vdash C & \Gamma \vdash A \lor B \\ \hline \Gamma \vdash C & & \end{array} \lor_e$
Implication	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_i$	$\frac{\Gamma \vdash A \to B \Gamma \vdash A}{\Gamma \vdash B} \to_e$
Négation	$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \ \neg_i$	$\frac{\Gamma \vdash A \Gamma \vdash \neg A}{\Gamma \vdash \bot} \ \neg_e$
Vrai ⊤	$\overline{\Gamma \vdash \top} \ ^{\top_i}$	
Faux ⊥		$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} \perp_e$

Axiome	Affaiblissement	Réduction à l'absurde
$\overline{\Gamma, A \vdash A}$ ax	$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ aff}$	$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \text{ raa}$

Il n'est pas nécessaire d'apprendre ces règles par coeur (elles seront rappelées), mais il faut les comprendre et savoir les utiliser.

- Une **preuve** d'un séquent $\Gamma \vdash A$ est un arbre dont les nœuds sont des séquents, les arcs des règles et la racine est $\Gamma \vdash A$. Exemples :
 - 1. Preuve de $(A \land B) \to C \vdash A \to (B \to C)$.

$$\frac{A \land B \to C \vdash A \land B \to C}{A \land B \to C} \text{ ax } \frac{\overline{A \vdash A} \text{ ax } \overline{B \vdash B} \land_{i}}{A, B \vdash A \land B} \xrightarrow{\land_{i}} \frac{(A \land B) \to C, A, B \vdash C}{(A \land B) \to C, A \vdash B \to C} \xrightarrow{\rightarrow_{i}} \frac{(A \land B) \to C \vdash A \to (B \to C)}{(A \land B) \to C \vdash A \to (B \to C)} \xrightarrow{\rightarrow_{i}}$$

2. Preuve de $A \vdash \neg \neg A$:

$$\frac{A \vdash A \quad \text{ax} \quad \neg A \vdash \neg A}{A \vdash \neg A \vdash \bot} \stackrel{\text{ax}}{\neg_e}$$

$$\frac{A, \neg A \vdash \bot}{A \vdash \neg \neg A} \stackrel{\neg_e}{\neg_e}$$

3. On peut décomposer une preuve longue en plusieurs parties, pour plus de lisibilité. Par exemple pour prouver $\vdash A \lor (B \land C) \longrightarrow (A \lor B) \land (A \lor C)$:

$$\frac{\frac{A \vdash A}{A \vdash A \lor B} \overset{\text{ax}}{\vee_i^g} \quad \frac{\frac{B \land C \vdash B \land C}{B \land C \vdash B} \overset{\text{ax}}{\wedge_e^g}}{B \land C \vdash A \lor B} \overset{\text{d}}{\vee_i^d} \quad \frac{A \lor (B \land C) \vdash A \lor (B \land C)}{A \lor (B \land C) \vdash A \lor B} \overset{\text{ax}}{\vee_e}}{\vee_e}$$

On montre de même $A \vee (B \wedge C) \vdash A \vee C \ (**)$ et finalement :

$$\frac{\overline{A \vee (B \wedge C) \vdash A \vee B} \quad *}{\overline{A \vee (B \wedge C) \vdash A \vee C}} \stackrel{**}{\wedge_i} \\ \frac{\overline{A \vee (B \wedge C) \vdash (A \vee B) \wedge (A \vee C)}}{\vdash \overline{A \vee (B \wedge C)} \longrightarrow_i} \stackrel{\wedge_i}{\wedge_i}$$

(Correction de la déduction naturelle) Si $\Gamma \vdash A$ est prouvable alors $\Gamma \models A$.

Preuve : Soit P(h) : « si T est un arbre de preuve de hauteur h pour $\Gamma \vdash A$ alors $\Gamma \models A$ ».

P(0) est vraie : Si T est un arbre de hauteur 0 pour $\Gamma \models A$ alors il est constitué uniquement d'une application de ax, ce qui signifie que $A \in \Gamma$ et implique $\Gamma \models A$.

Soit T un arbre de preuve pour pour $\Gamma \vdash A$ de hauteur h+1. Considérons la règle appliquée à la racine de T.

Soit
$$T$$
 this arose depretive pour pour $\Gamma \vdash A$ de natueur $n+1$. Consideron $T_1 \vdash A$ de natueur $n+1$. Consideron $T_1 \vdash A \land B$ and $T_2 \vdash A \land B$ Par hypothèse de récurrence sur T_1 et T_2 , on obtient $\Gamma \models A$ et $\Gamma \models B$.

Une valuation v satisfaisant toutes les formules de Γ satisfait donc à la fois A et B, et donc $A \wedge B$. On a bien $\Gamma \models A \wedge B$.

$$- (\land_e)$$
 Supposons T de la forme : $\frac{\Gamma_1}{\Gamma \vdash A \land B} (\land_e^g)$ Par récurrence sur T_1 , $\Gamma \models A \land B$ et donc $\Gamma \models A \land B$.

- Les autres cas sont similaires...