

Machine Learning

Unidad # 2 - Aprendizaje Supervisado CC57 — 2019-1

> Profesor Andrés Melgar

Competencias a adquirir en la sesión

- Al finalizar la sesión el alumno comprenderá los conceptos de overfitting y underfitting.
- Al finalizar la sesión el alumno analizará la matriz de confusión resultantes de los modelos algorítmicos.
- Al finalizar la sesión el alumno comprenderá los conceptos de verdaderos positivos, verdaderos negativos, falsos positivos y falsos negativos.
- Al finalizar la sesión el alumno analizará modelos algorítmicos usando la precisión, recall y número F.

Revisión de la sesión anterior

- ¿En qué se fundamenta el algoritmo Naïve Bayes?
- ¿Qué similitudes encuentra en el algoritmo OneR y el algoritmo Naïve Bayes?
- ¿Cómo gestiona el algoritmo Naïve Bayes los atributos numéricos?

Naïve Bayes Texto guía

Witten, Ian H., Frank, Eibe, and Hall, Mark A.. 2011. *Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations.* San Francisco: Elsevier Science & Technology.

CHAPTER

Credibility: Evaluating What's Been Learned

5

5.7 COUNTING THE COST

OUV COOMINING THE COOL

Overfitting

- El modelo capta el ruido de los datos.
- Se da cuando existe poco sesgo y alta varianza.
- Es resultado de un modelo extremadamente complicado.

High variance (overfit)

Underfitting

High bias (underfit)

- El modelo no logra captar el ruido de los datos.
- Se da cuando existe alto sesgo y varianza pequeña.
- Es resultado de un modelo extremadamente simple.

Overfiting vs Underfiting

- El overfitting representa el sobreaprendizaje de un modelo.
- El underfitting representa el subaprendizaje de un modelo.

Matriz de confusión

- Contiene información acerca de la clase actual y la clase predicha por un clasificador.
- Las filas representan la clase actual y las columnas la clase predicha.
- Se busca que la diagonal principal tenga los valores más altos.

	Clase predicha			
		yes	no	
Clase real	yes	а	b	
	no	С	d	

$$AC = \frac{a+d}{a+b+c+d}$$

Matriz de Confusión Actividad en Weka

- Ejecutar el algoritmo Naïve Bayes usando el conjunto de datos weather.nominal.arff y analice la matriz de confusión el modelo algoritmo resultante. Calcule la exactitud del modelo usando la matriz de confusión.
- Ejecutar el algoritmo J48 usando el conjunto de datos weather.nominal.arff y analice la matriz de confusión el modelo algoritmo resultante. Calcule la exactitud del modelo usando la matriz de confusión.

Matriz de Confusión Actividad en Weka


```
=== Confusion Matrix ===

a b <-- classified as
5 4 | a = yes
3 2 | b = no
```


Matriz de Confusión Actividad en RapidMiner

- Ejecutar el algoritmo Naïve Bayes usando el conjunto de datos weather.nominal.csv y analice la matriz de confusión el modelo algoritmo resultante. Calcule la exactitud del modelo usando la matriz de confusión.
- Ejecutar el algoritmo Decision Tree usando el conjunto de datos weather.nominal.csv y analice la matriz de confusión el modelo algoritmo resultante. Calcule la exactitud del modelo usando la matriz de confusión.

Matriz de Confusión Actividad en RapidMiner

Matriz de Confusión Actividad en RapidMiner

Matriz de Confusión Actividad en Python

 Ejecutar el algoritmo Naïve Bayes usando el conjunto de datos iris.data y analice la matriz de confusión el modelo algoritmo resultante. Calcule la exactitud del modelo usando la matriz de confusión.

Matriz de Confusión Actividad en Python

Cargamos el conjunto de datos import pandas

```
archivo="iris.data"
columnas=['longitud-sépalo', 'ancho-sépalo', 'longitud-pétalo', 'ancho-pétalo', 'clase']
conjunto_de_datos = pandas.read_csv(archivo, names=columnas)

[[5.1 3.5]
```

```
X = conjunto_de_datos.iloc[:,0:4].values
y = conjunto_de_datos.iloc[:,4].values
```

print(X)
print(y)

```
[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]
```

```
['Iris-setosa' 'Iris-setosa' 'Iris-setosa'
```


Matriz de Confusión Actividad en Python

from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix

```
gnb = GaussianNB()
modelo = gnb.fit(X, y)
y_predecido = modelo.predict(X)
```

0.96

```
print(accuracy_score(y, y_predecido))
print(confusion_matrix(y, y_predecido))
```

```
[[50 0 0]
[0 47 3]
[0 3 47]]
```


Precisión y Recall

- La precisión y la exhaustividad (recall) son dos métricas empleada en la medida del rendimiento de los sistemas de búsqueda, recuperación de información y reconocimiento de patrones.
- En este contexto se denomina:
 - Precisión como a la fracción de instancias recuperadas que son relevantes.
 - Recall es la fracción de instancias relevantes que han sido recuperadas.
- Tanto la precisión como la exhaustividad son entendidas como medidas de la relevancia.

Conceptos

• True Positives (TP): son instancias pertenecientes a la clase que se clasifican correctamente en dicha clase.

• True Negatives (TN): son instancias no pertenecientes a la clase y que no se clasifican como dicha clase.

• False Positives (FP): son instancias no pertenecientes a la clase pero que se clasifican como dicha clase.

• False Negatives (FN): son instancias pertenecientes a la clase pero que no se clasifican como dicha clase.

Precisión

- Propuesto por Gerald Salton en 1983.
- Fracción de instancias recuperadas que son relevantes.
- Si el resultado es 1, todos los documentos son relevantes.

Recall

- Propuesto a mediados del siglo XX.
- fracción de instancias relevantes que han sido recuperadas.
- Cuantos elementos relevantes son seleccionados.
- Si el valor es 1, se encontraron todos los documentos relevantes.

relevant elements false negatives true negatives true positives false positives selected elements

F-Meassure

- Medida de precisión que tiene un test.
- Obtener valor único ponderado de precisión y recall.

$$F_{\beta} = \frac{Precision \times Recall}{(\beta^2 \times Precision) + Recall}$$

- •Si β es igual a uno, se está dando la misma importancia a Precisión que al Recall.
- •Si β es mayor que uno le damos más importancia al Recall.
- •Si β es menor que uno se le da más importancia a la Precisión.

Precisión, Recall y F1 Actividad en Weka

 Ejecutar el algoritmo One Rule usando el conjunto de datos weather.nominal.arff y analice la precisión, recall y número F1.

Precisión, Recall y F1 Actividad en RapidMiner

 Ejecutar el algoritmo IDE3 usando el conjunto de datos weather.nominal.csv y analice la precisión, recall y número F1.

Precisión, Recall y F1 Actividad en RapidMiner

Precisión, Recall y F1 Actividad en Python

Cargamos el conjunto de datos import pandas

archivo="iris.data"

```
columnas=['longitud-sépalo', 'ancho-sépalo', 'longitud-pétalo', 'ancho-pétalo', 'clase']
conjunto_de_datos = pandas.read_csv(archivo, names=columnas)

X = conjunto_de_datos.iloc[:,0:4].values
y = conjunto_de_datos.iloc[:,4].values
[4.7 3.3]
[4.6 3.3]
```

print(X)
print(y)

```
[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]
```

```
['Iris-setosa' 'Iris-setosa' 'Iris-setosa'
```


Precisión, Recall y F1 Actividad en Python

from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report

```
gnb = GaussianNB()
modelo = gnb.fit(X, y)
y_predecido = modelo.predict(X)
```

0.96

```
print(accuracy_score(y, y_predecido))
print(classification_report(y, y_predecido))
```

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	50
Iris-secosa Iris-versicolor	0.94	0.94	0.94	50
Iris-virginica	0.94	0.94	0.94	50
micro avg	0.96	0.96	0.96	150
macro avg	0.96	0.96	0.96	150
weighted avg	0.96	0.96	0.96	150

Competencias a adquirir en la sesión

- Al finalizar la sesión el alumno comprenderá los conceptos de overfitting y underfitting.
- Al finalizar la sesión el alumno analizará la matriz de confusión resultantes de los modelos algorítmicos.
- Al finalizar la sesión el alumno comprenderá los conceptos de verdaderos positivos, verdaderos negativos, falsos positivos y falsos negativos.
- Al finalizar la sesión el alumno analizará modelos algorítmicos usando la precisión, recall y número F.

