Boston Housing Prediction Results

Row	Prediction Model	Feature Selection Method	Feature removed	Normalization Method	Train Test Method	Test Size	Train Score	Test Score	Train & Test Score (Weighted AVG)	Model Rank
1	Linear Regression	-	-	-	70% Train_30% Test	30%	87%	-72 2%	-156%	15
2	Linear Regression	-	-	Standard Scalar	70% Train_30% Test	30%	87%	-72 2%	-15 6%	15
3	Linear Regression	-	-	-	Train_Test_Split	30%	76%	67%	73%	7
4	Linear Regression	-	-	Standard Scalar	Train_Test_Split	30%	76%	67%	73%	7
5	Linear Regression	Correlations (>0.7 or <-0.7)	'INDUS', 'DIS', 'NOX', 'TAX'	1	70% Train_30% Test	30%	85%	<mark>-25</mark> 7%	- <mark>1</mark> 8%	13
6	Linear Regression	Correlations (>0.7 or <-0.7)	'INDUS', 'DIS', 'NOX', 'TAX'	Standard Scalar	70% Train_30% Test	30%	85%	<mark>-25</mark> 7%	- <mark>1</mark> 8%	13
7	Linear Regression	Correlations (>0.7 or <-0.7)	'INDUS', 'DIS', 'NOX', 'TAX'	1	Train_Test_Split	30%	73%	62%	70%	10
8	Linear Regression	Correlations (>0.7 or <-0.7)	'INDUS', 'DIS', 'NOX', 'TAX'	Standard Scalar	Train_Test_Split	30%	73%	62%	70%	10
9	Linear Regression	Chi2	'NOX', 'RM', 'PTRATIO', 'CHAS'	1	70% Train_30% Test	30%	60%	-11 18%	- <mark>29</mark> 3%	17
10	Linear Regression	Chi2	'NOX', 'RM', 'PTRATIO', 'CHAS'	-	Train_Test_Split	30%	67%	58%	64%	12
11	Random Forest Regressor	Chi2	'NOX', 'RM', 'PTRATIO', 'CHAS'	Standard Scalar	Train_Test_Split	30%	98%	72%	90%	3
12	Random Forest Regressor	Chi2	'NOX', 'RM', 'PTRATIO', 'CHAS'	-	Train_Test_Split	30%	98%	71%	90%	4
13	Random Forest Regressor	Correlations (>0.7 or <-0.7)	'INDUS', 'DIS', 'NOX', 'TAX'	-	Train_Test_Split	30%	98%	76%	91%	2
14	Random Forest Regressor	-	-	Standard Scalar	Train_Test_Split	30%	98%	84%	94%	1
15	Random Forest Regressor	-	-	Standard Scalar	70% Train_30% Test	30%	99%	24%	77%	6
16	Plynomial (Degree 2)	Chi2	'NOX', 'RM', 'PTRATIO', 'CHAS'	Standard Scalar	Train_Test_Split	30%	80%	53%	72%	9
17	Plynomial (Degree 2)	Correlations (>0.7 or <-0.7)	'INDUS', 'DIS', 'NOX', 'TAX'	Standard Scalar	Train_Test_Split	30%	89%	51%	78%	5
18	Plynomial (Degree 3)	Correlations (>0.7 or <-0.7)	'INDUS', 'DIS', 'NOX', 'TAX'	Standard Scalar	Train_Test_Split	30%	96%	<mark>-78</mark> 22%	<mark>-22</mark> 79%	18
19										
20										

Description:

- 1- One of the most important reasons for the difference between the scores of the models is the training and testing method (Rows: 1, 3 or 14, 15).
- 2- Normalization of the available samples makes very little difference in the final results (Rows: 1, 2).
- 3 In a specified model, assuming the stability of other conditions, the removal of features in various methods, contrary to expectations, reduces the performance of the prediction model! (Rows: 3, 7, 10).
- 4 Increasing the degree in the polynomial method increases the consistency of the training part, but at the same time greatly reduces the test result. In a way, it can be said that Increasing the degree will result model suffers from overfit (Rows: 17, 18).