Problem Statement

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use linear regression model.Create a model that helps him to estimate of what the house would sell for

Import libraries

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

```
In [2]: # To import dataset
    df=pd.read_csv('17 student csv')
    df
```

Out[2]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	Те
0	22000	78	87	91	91	88	98	94	100	100	100	100	
1	22001	79	71	81	72	73	68	59	69	59	60	61	
2	22002	66	65	70	74	78	86	87	96	88	82	90	
3	22003	60	58	54	61	54	57	64	62	72	63	72	
4	22004	99	95	96	93	97	89	92	98	91	98	95	
5	22005	41	36	35	28	35	36	27	26	19	22	27	
6	22006	47	50	47	57	62	64	71	75	85	87	85	
7	22007	84	74	70	68	58	59	56	56	64	70	67	
8	22008	74	64	58	57	53	51	47	45	42	43	34	
9	22009	87	81	73	74	71	63	53	45	39	43	46	
10	22010	40	34	37	33	31	35	39	38	40	48	44	
11	22011	91	84	78	74	76	80	80	73	75	71	79	
12	22012	81	83	93	88	89	90	99	99	95	85	75	
13	22013	52	50	42	38	33	30	28	22	12	20	19	
14	22014	63	67	65	74	80	86	95	96	92	83	75	
15	22015	76	82	88	94	85	76	70	60	50	58	49	
16	22016	83	78	71	71	77	72	66	75	66	61	61	
17	22017	55	45	43	38	43	35	44	37	45	37	45	
18	22018	71	67	76	74	64	61	57	64	61	51	51	
19	22019	62	61	53	49	54	59	68	74	65	55	60	
20	22020	44	38	36	34	26	34	39	44	36	45	35	
21	22021	50	56	53	46	41	38	47	39	44	36	43	
22	22022	57	48	40	45	43	36	26	19	9	12	22	
23	22023	59	56	52	44	50	40	45	46	54	57	52	
24	22024	84	92	89	80	90	80	84	74	68	73	81	
25	22025	74	80	86	87	90	100	95	87	85	79	85	
26	22026	92	84	74	83	93	83	75	82	81	73	70	
27	22027	63	70	74	65	64	55	61	58	48	46	46	
28	22028	78	77	69	76	78	74	67	69	78	68	65	
29	22029	55	58	59	67	71	62	53	61	67	76	75	
30	22030	54	54	48	38	35	45	46	47	41	37	30	
31	22031	84	93	97	89	86	95	100	100	100	99	100	
32	22032	95	100	94	100	98	99	100	90	80	84	75	
33	22033	64	61	63	73	63	68	64	58	50	51	56	
34	22034	76	79	73	77	83	86	95	89	90	95	100	
35	22035	78	71	61	55	54	48	41	32	41	40	48	
36	22036	95	89	91	84	89	94	85	91	100	100	100	
37	22037	99	89	79	87	87	81	82	74	64	54	51	

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	Те
38	22038	82	83	85	86	89	80	88	95	87	93	90	
39	22039	65	56	64	62	58	51	61	68	70	70	63	
40	22040	100	93	92	86	84	76	82	74	79	72	79	
41	22041	78	72	73	79	81	73	71	77	83	92	97	
42	22042	98	100	100	93	94	92	100	100	98	94	97	
43	22043	58	62	67	77	71	63	64	73	83	76	86	
44	22044	96	92	94	100	99	95	98	92	84	84	84	
45	22045	86	87	85	84	85	91	86	82	85	87	84	
46	22046	48	55	46	40	34	29	37	34	39	41	31	
47	22047	56	52	54	47	40	35	43	44	40	39	47	
48	22048	42	44	46	53	62	59	57	53	43	35	37	
49	22049	64	54	49	59	54	55	57	59	63	73	78	
50	22050	50	44	37	29	37	46	53	57	55	61	64	
51	22051	70	60	70	62	67	67	68	67	72	69	64	
52	22052	63	73	70	63	60	67	61	59	52	58	56	
53	22053	92	100	100	100	100	100	92	87	94	100	94	
54	22054	64	55	54	61	63	57	47	37	44	48	54	
55	22055	60	66	68	58	49	47	39	29	39	44	39	

In [3]: # To display top 10 rows
 df.head(10)

Out[3]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	Tes
0	22000	78	87	91	91	88	98	94	100	100	100	100	
1	22001	79	71	81	72	73	68	59	69	59	60	61	
2	22002	66	65	70	74	78	86	87	96	88	82	90	
3	22003	60	58	54	61	54	57	64	62	72	63	72	
4	22004	99	95	96	93	97	89	92	98	91	98	95	
5	22005	41	36	35	28	35	36	27	26	19	22	27	
6	22006	47	50	47	57	62	64	71	75	85	87	85	
7	22007	84	74	70	68	58	59	56	56	64	70	67	
8	22008	74	64	58	57	53	51	47	45	42	43	34	
9	22009	87	81	73	74	71	63	53	45	39	43	46	
4													•

Data Cleaning and Pre-Processing

```
In [4]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 56 entries, 0 to 55
         Data columns (total 13 columns):
              Column
                           Non-Null Count Dtype
              -----
                           _____
                                            ----
          0
              Student_ID
                           56 non-null
                                            int64
          1
              Test 1
                           56 non-null
                                            int64
              Test_2
          2
                           56 non-null
                                            int64
          3
              Test 3
                           56 non-null
                                            int64
          4
              Test 4
                           56 non-null
                                            int64
          5
              Test 5
                           56 non-null
                                            int64
          6
              Test_6
                           56 non-null
                                            int64
          7
              Test 7
                           56 non-null
                                            int64
          8
              Test_8
                           56 non-null
                                            int64
          9
              Test_9
                           56 non-null
                                            int64
          10
             Test 10
                           56 non-null
                                            int64
                           56 non-null
                                            int64
          11
              Test_11
              Test 12
                           56 non-null
                                            int64
          12
         dtypes: int64(13)
         memory usage: 5.8 KB
In [5]:
        df.describe()
Out[5]:
                  Student_ID
                                Test_1
                                           Test_2
                                                     Test_3
                                                                Test_4
                                                                          Test_5
                                                                                     Test_6
                                                                                               Test_7
          count
                   56.000000
                             56.000000
                                        56.000000
                                                  56.000000
                                                             56.000000
                                                                        56.000000
                                                                                  56.000000
                                                                                             56.000000
                22027.500000
                             70.750000
                                        69.196429
                                                  68.089286
                                                             67.446429
                                                                        67.303571
                                                                                  66.000000
                                                                                             66.160714
          mean
            std
                   16.309506
                             17.009356
                                        17.712266
                                                  18.838333
                                                             19.807179
                                                                        20.746890
                                                                                  21.054043
                                                                                             21.427914
           min
                22000.000000
                             40.000000
                                        34.000000
                                                  35.000000
                                                             28.000000
                                                                        26.000000
                                                                                  29.000000
                                                                                             26.000000
                22013.750000
           25%
                             57.750000
                                        55.750000
                                                  53.000000
                                                             54.500000
                                                                        53.750000
                                                                                  50.250000
                                                                                             47.000000
                22027.500000
                             70.500000
                                                  70.000000
           50%
                                        68.500000
                                                             71.500000
                                                                        69.000000
                                                                                  65.500000
                                                                                             64.000000
                22041.250000
                             84.000000
                                        83.250000
                                                  85.000000
                                                             84.000000
                                                                        85.250000
                                                                                  83.750000
                                                                                             85.250000
           75%
           max 22055.000000 100.000000
                                       100.000000
                                                 100.000000
                                                                                 100.000000
                                                                                            100.000000 1
                                                            100.000000
                                                                       100.000000
In [6]: df.columns
Out[6]: Index(['Student_ID', 'Test_1', 'Test_2', 'Test_3', 'Test_4', 'Test_5',
                 'Test_6', 'Test_7', 'Test_8', 'Test_9', 'Test_10', 'Test_11',
                 'Test_12'],
                dtype='object')
In [7]: | a = df.dropna(axis='columns')
         a.columns
Out[7]: Index(['Student_ID', 'Test_1', 'Test_2', 'Test_3', 'Test_4', 'Test_5',
                 'Test_12'],
               dtype='object')
```

EDA and Visualization

In [8]: sns.pairplot(a)

Out[8]: <seaborn.axisgrid.PairGrid at 0x1a4cec39520>


```
In [9]: sns.distplot(a['Test_1'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Test_1', ylabel='Density'>


```
In [11]: sns.heatmap(a1.corr())
```

Out[11]: <AxesSubplot:>

To Train the Model - Model Building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output). We could ignore address column as it is not required for our model.

To split my dataset into training and test data

	Co-efficient
Student_ID	0.021524
Test_2	1.371784
Test_3	-0.484573
Test_4	0.303831
Test_5	-0.043503
Test_6	-0.020530
Test_7	-0.430106
Test_8	0.232806
Test_9	0.168431
Test_10	-0.373310
Test_11	0.290242
Test 12	-0.079869

```
In [17]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[17]: <matplotlib.collections.PathCollection at 0x1a4d8ba4430>


```
In [18]: print(lr.score(x_test,y_test))
```

0.6860513536790499

ACCURACY

```
In [19]: from sklearn.linear model import Ridge, Lasso
In [20]:
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
         rr.score(x_test,y_test)
         rr.score(x_train,y_train)
Out[20]: 0.9264488714918545
In [21]: |rr.score(x_test,y_test)
Out[21]: 0.6967468949829723
In [22]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[22]: Lasso(alpha=10)
In [23]: la.score(x_test,y_test)
Out[23]: 0.8133087428337462
In [24]: from sklearn.linear_model import ElasticNet
         en = ElasticNet()
         en.fit(x_train,y_train)
```

Out[24]: ElasticNet()

```
In [25]:
        print(en.coef_)
         -0.35635745 0.16105106 0.11314822 -0.26521633 0.20789316 -0.0509808 ]
In [26]: print(en.intercept )
         -320.51924467792674
In [27]:
        print(en.predict(x_test))
         [69.98119187 55.35490241 56.73898486 86.34940796 63.27816679 78.9172976
         72.05153654 97.52738893 75.00811943 82.46656008 70.24676363 33.42054178
         67.57643696 83.19884718 56.97093696 62.54465636 68.43819194]
In [28]: |print(en.score(x_test,y_test))
        0.7331201899033878
In [29]: | from sklearn import metrics
        print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
        print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
        print("Root Mean Squared Error:",np.sqrt(metrics.mean squared error(y test,prediction))
        Mean Absolytre Error: 5.648956640899401
        Mean Squared Error: 52.81941550663404
        Root Mean Squared Error: 7.267696712620446
```