National University of Computer and Emerging Sciences, Lahore Campus

SOUTH SEMERGING SOUTH SO	Course: Program: Duration: Paper Date: Section: Exam:	Theory of Programming Languages MS 40 Minutes 21 September 2020 Quiz 1	Course Code: Semester: Total Marks: Weight Page(s):	CS507 Fall 2020 25
Instruction/Notes:	Attempt all questions on the question paper.			
Name:	Roll Number:			

- 1. [5] Find DFA for the following language on $\Sigma = \{a, b\}$. (Try and do this in as few states as possible)
 - a) L={w: $(nb(w)-na(w)) \mod 5 > 0$ } //to be done by roll numbers ending with even number
 - b) L= $\{w: (na(w)-nb(w)) \mod 4 > 0\}$ //to be done by roll numbers ending with odd number

Note: a similar question is given in the assignment. If answer to this question is incorrect, marks will not be given in the assignment question as well.

 [10] Create a Deterministic Finite Automata that accepts strings over 0,1 such that their decimal equivalent is multiple of 2 and greater than 3. 					

3. [10]

Convert the following NFA null (over the alphabet $\Sigma = \{0, 1\}$) to a DFA using the **subset construction method**. Label each state of the DFA appropriately to indicate which states of the NFA it corresponds to. Show complete working.

