Pedro Ribeiro

DCC/FCUP

2016/2017

- Vamos falar de algoritmos greedy.
 Em português são conhecidos como:
 - Algoritmos ávidos
 - Algoritmos gananciosos
 - Algoritmos gulosos

Algoritmo Greedy

- Em cada passo escolher a "melhor" próxima escolha
- Nunca olhar "para trás" ou mudar decisões tomadas
- Nunca olhar "para a frente" para verificar se a nossa decisão tem consequências negativas.

Um primeiro exemplo

O problema do troco (problema do cashier)

Input: Um conjunto de valores de moedas S e uma quantia K a criar com as moedas

Output: O menor número de moedas que fazem a quantia *K* (podemos repetir moedas)

Exemplo de Input/Output

Input: $S = \{1, 2, 5, 10, 20, 50, 100, 200\}$ (temos infinitas moedas de cada tipo) K = 42

Output: 3 moedas (20 + 20 + 2)

O Problema do Troco

Um algoritmo greedy

Em cada passo escolher a maior moeda que não faz passar da quantia k

Exemplos (com $S = \{1, 2, 5, 10, 20, 50, 100, 200\}$):

- K = 35
 - ▶ **20** (total: 20) + **10** (total: 30) + **5** (total: 35) [3 moedas]
- K = 38
 - \triangleright 20 + 10 + 5 + 2 + 1 [5 moedas]
- K = 144
 - ▶ 100 + 20 + 20 + 2 + 2 [5 moedas]
- K = 211
 - ► 200 + 10 + 1 [3 moedas]

O Problema do Troco

- Este algoritmo resulta sempre no mínimo número de moedas?
- Para os sistemas de moedas comuns (ex: euro, dólar)... sim!
- Para um sistema de moedas qualquer... não!

Exemplos:

- $S = \{1, 2, 5, 10, 20, 25\}, K = 40$
 - Greedy dá 3 moedas (25 + 10 + 5), mas é possível 2 moedas (20 + 20)
- $S = \{1, 5, 8, 10\}, K = 13$
 - ▶ Greedy dá 4 moedas (10+1+1+1), mas é possível 2 moedas (5+8)

(Será que basta que uma moeda seja \geq que o dobro da anterior?)

- $S = \{1, 10, 25\}, K = 40$
 - ► Greedy dá 7 moedas (25 + 10 + 1 + 1 + 1 + 1 + 1), mas é possível 4 moedas (10 + 10 + 10 + 10)

- Ideia "simples", mas nem sempre funciona
 - ▶ Dependendo do problema, pode dar resposta não ótima
- Normalmente a complexidade temporal é baixa (ex: linear ou linearítmica)
- Um contra-exemplo prova que um greedy está errado...
- ...o difícil é provar a otimalidade!
- Tipicamente é aplicado em problemas de optimização
 - Encontrar a "melhor" solução entre todas as soluções possíveis, segundo um determinado critério (função objectivo)
 - ► Geralmente descobrir um máximo ou ou mínimo
- Uma passo de pré-processamento muito comum é... ordenar!

Propriedades para um algoritmos greedy funcionar

Subestrutura Ótima

Quando a solução óptima de um problema contém nela própria soluções óptimas para subproblemas do mesmo tipo

Exemplo

Seja min(k) o menor número de moedas para fazer a quantia k. Se essa solução usar uma moeda de valor v, então o resto das moedas a usar é precisamente min(k-v).

 Se um problema apresenta esta característica, diz-se que respeita o princípio da optimalidade.

Propriedades para um algoritmos greedy funcionar

Propriedade da Escolha Greedy

Uma solução ótima é consistente com a escolha greedy que o algoritmo faz.

Exemplo

No caso das moedas de euro, não existe nenhuma solução ótima que não use a maior moeda menor ou igual à quantia a fazer.

• Provar esta propriedade é o mais complicado

Problema da Mochila Fracionada (fractional knapsack)

Input: Uma mochila com capacidade C

Um conjunto de n materiais, cada um com peso w_i e valor v_i

Output: A alocação de materiais para a mochila que maximize o valor transportado.

Os materiais podem ser "partidos" em pedaços mais pequenos, ou seja, podemos decidir levar apenas quantidade x_i do objecto i, com $0 \le x_i \le 1$.

O que queremos é portanto respeitar o seguinte:

- Os materiais cabem na mochila $(\sum_i x_i w_i \leq C)$
- ullet O valor da mochila é o maior possível (maximizar $\sum\limits_i x_i v_i$)

Exemplo de Input

Input: 5 objectos e C = 100

		,j			
i					5
Wi					
Vi	20	30	66	40	60

Qual é a resposta ótima neste caso?

• Escolher sempre o material de maior valor:

i	1	2	3	4	5
Χį	0	0	1	0.5	1

Isto daria um peso total de 100 e um valor total de 146.

Exemplo de Input

Input: 5 objectos e C = 100

	1			4	5			
Wi	10	20	30	40	50			
V _i	20	30	66	40	60			

Qual é a resposta ótima neste caso?

• Escolher sempre o material mais leve:

i	1	2	3	4	5
Χį	1	1	1	1	0

Isto daria um peso total de 100 e um valor total de 156.

Exemplo de Input

Input: 5 objectos e C = 100

i	1	2	3	4	5
Wi	10	20	30	40	50
Vi	20	30	66	40	60

Qual é a resposta ótima neste caso?

• Escolher sempre o material com maior rácio valor/peso:

i	1	2	3	4	5
v_i/w_i	2	1.5	2.2	1.0	1.2
x _i	1	1	1	0	8.0

Isto daria um peso total de 100 e um valor total de 164.

Teorema

Escolher sempre a maior quantidade possível do material com maior rácio *valor/peso* é uma estratégia que dá valor ótimo

1) Subestrutura Ótima

Considere uma solução ótima e o seu material m com melhor rácio.

Se o retirmos da mochila, então o restante tem de conter a solução ótima para os outros materiais que não m e para uma mochila de capacidade $C-w_m$.

Caso assim não seja, então a solução inicial também não era ótima!

Teorema

Escolher sempre a maior quantidade possível do material com maior rácio valor/peso é uma estratégia que dá valor ótimo

2) Propriedade da Escolha Greedy

Queremos provar que a máxima quantidade possível do material m com maior rácio (v_i/w_i) deve ser incluida na mochila.

O valor da mochila: $valor = \sum_{i} x_i v_i$.

Seja $q_i = x_i w_i$ a quantidade de material i na mochila: $valor = \sum_i q_i v_i / w_i$

Se ainda temos material m disponível, então substituir um outro qualquer material i por m vai dar um melhor valor total:

$$q_i v_m / w_m \ge q_i v_i / w_i$$
 (por definição de m)

Algoritmo greedy para Fractional Knapsack

- Ordenar materiais por ordem decrescente de rácio valor/peso
- Processar o próximo material na lista ordenada:
 - Se o elemento couber na totalidade na mochila, incluir todo e continuar para o próximo material
 - Se o elemento não couber na totalidade na mochila, incluir o máximo possível e terminar

Complexidade:

• Ordenar: $O(n \log n)$

• Processar: O(n)

• Total: $O(n \log n)$

Problema do Planeamento de Intervalos (interval scheduling)

Input: Um conjunto de n actividades, cada uma com início no tempo s_i e final no tempo f_i .

Output: Descobrir o maior subconjunto de actividades que não tenham sobreposições

Dois intervalos i e j têm uma sobreposição se existe um tempo k no qual ambos estão activos.

Exemplo de Input

Input: 5 actividades:

i	1	2	3	4	5
s _i f _i	1	2	4	4	5
fi	7	5	6	9	10

17 / 40

"Padrão" greedy: estabelecer uma ordem segundo um determinado critério e depois ir escolher actividades que não sejam sobrepostas com as já escolhidas

Algumas possíveis ideias:

- [Início mais cedo] Alocar por ordem ascendente de s_i
- [Final mais cedo] Alocar por ordem ascendente de f_i
- [Intervalo mais pequeno] Alocar por ordem ascendente de $f_i s_i$
- [Menos conflitos] Alocar por ordem ascendente do número de outras actividades que estão sobrepostas

[Início mais cedo] Alocar por ordem ascendente de si

[Intervalo mais pequeno] Alocar por ordem ascendente de $f_i - s_i$

[Menos conflitos] Alocar por ordem ascendente do número de outras actividades que estão sobrepostas

[Final mais cedo] Alocar por ordem ascendente de f_i

Contra-Exemplo: Não existe!

De facto esta estratégia greedy produz solução ótima!

Teorema

Escolher sempre a actividade não sobreposta com as já escolhidas que tenha o menor tempo de finalização produz uma solução ótima.

1) Subestrutura Ótima

Considere uma solução ótima e actividade m com menor f_m .

Se retirarmos essa actividade então o restante tem de conter a solução ótima para as outras actividades que começam depois de f_m .

Caso assim não seja, então a solução inicial também não era ótima!

Teorema

Escolher sempre a actividade não sobreposta com as já escolhidas que tenha o menor tempo de finalização produz uma solução ótima.

2) Propriedade da Escolha Greedy

Vamos assumir que as actividades estão ordenadas por ordem crescente de tempo de finalização

Seja $G = \{g_1, g_2, \dots, g_m\}$ a solução criada pelo algoritmo greedy.

Vamos mostrar por **indução** que dada qualquer outra solução ótima H, podemos modificar as primeiras k actividades de H para corresponderem às primeiras k actividades de G, sem introduzirmos nenhuma sobreposição.

Quando k = n, a solução H corresponde a G e logo |G| = |H|.

Caso base: k = 1

- ullet Seja outra solução ótima $H=\{h_1,h_2,\ldots,h_m\}$
- Temos de mostrar que g_1 podia substituir h_1
- ullet Por definição, temos que $f_{g_1} \leq f_{h_1}$
- Sendo assim, g_1 podia ficar no lugar de h_1 sem criar nenhuma sobreposição
- ullet Isto prova que g_1 pode ser o início de qualquer solução ótima!

Passo Indutivo (assumindo que é verdade até k)

- Assumimos que outra solução ótima $H = \{g_1, \dots, g_k, h_{k+1}, \dots h_m\}$
- Temos de mostrar que g_{k+1} podia substituir h_{k+1}
- $s_{g_{k+1}} \ge f_{g_k}$ (não existe sobreposição)
- Logo, $f_{g_{k+1}} \le f_{h_{k+1}}$ (o algoritmo greedy escolhe desse modo)
- Sendo assim, g_{k+1} podia ficar no lugar de h_{k+1} sem criar nenhuma sobreposição
- Isto prova que g_{k+1} pode ser ser escolhido para extender a solução greedy!

Algoritmo greedy para Interval Scheduling

- Ordenar actividades por ordem crescente de tempo de finalização
- Comecar por iniciar $G = \emptyset$
- Ir adicionando a G a próxima actividade da lista (com menor f_i, portanto) que não esteja sobreposta com nenhuma actividade de G

Complexidade:

• Ordenar: $O(n \log n)$

• Processar: O(n)

• Total: $O(n \log n)$

Problema da cobertura mínima

Input: Um conjunto de n segmentos de linha com coordenadas não negativas $[l_i, r_i]$, e um número M.

Output: Descobrir a menor quantidade possível de segmentos que cobrem o segmento [0, M].

Exemplo de Input

Input: 5 segmentos, M=6 :

i		2	3	4	5
l _i r _i	0	3	4	3	2
ri	2	5	6	8	4

"Padrão" greedy: estabelecer uma ordem segundo um determinado critério e depois ir escolher segmentos cubram zona ainda não coberta

Algumas possíveis ideias:

- [Início mais cedo] Alocar por ordem ascendente de l_i
- [Final mais cedo] Alocar por ordem ascendente de r_i
- [Tamanho maior] Alocar por ordem descendente de $r_i l_i$

[Final mais cedo] Alocar por ordem ascendente de r_i

Neste problema não faz sentido!

[Tamanho maior] Alocar por ordem descendente de $r_i - l_i$

[Início mais cedo] Alocar por ordem ascendente de l_i

Parece ser uma boa ideia, porque precisamos de alocar o espaço desde início....

Mas o que acontece se existirem empates?

Em caso de empate escolhemos o maior! (o que termina depois) E será isto suficiente?

[Início mais cedo] Alocar por ordem ascendente de l_i e em caso de empate escolher o maior

O que acontece neste caso?

Se já temos coberto até ao ponto *end*, temos de escolher o segmento que começa em ponto inferior ou igual a *end* e termina o mais para a frente possível!

Intuição: temos sempre de cobrir a partir de *end*. Logo, o melhor que podemos fazer é com um único segmento cobrir até o mais longe possível!

Algoritmo greedy para cobertura mínima

- Ordenar actividades por ordem crescente do seu início (I_i) .
- Começar por iniciar end = 0 (sendo que vamos sempre tendo coberto o segmento [0, end])
- Processar na lista todos os segmentos que têm início pelo menos em end (l_i ≤ end), e escolher destes o que termina depois (maior r_i).
- Actualizar end para o sítio onde termina o segmento escolhido e repetir o passo anterior até que end ≥ M

Complexidade:

• Ordenar: $O(n \log n)$

• Processar: O(n)

• Total: $O(n \log n)$

Imagine que somar a e b "custa" a+b. Por exemplo, somar 1 com 10 custaria 11.

Se agora quisermos somar os números $\{1,2,3\}$, existem várias maneiras (ordens) de o fazer, dando origem a custos totais diferentes:

- Hipótese A
 - $\mathbf{0} \ 1 + 2 = 3 \text{ (custo 3)}$
 - **2** 3 + 3 = 6 (custo 6) **Custo Total:** 9
- Hipótese B
 - $\mathbf{0} \ 1 + 3 = 4 \text{ (custo 3)}$
 - **2** 4 + 2 = 6 (custo 6)
 - Custo Total: 10
- Hipótese C
 - $\mathbf{0} \ 2 + 3 = 5 \text{ (custo 5)}$
 - 2 5 + 1 = 6 (custo 6)
 - Custo Total: 11

Problema da Soma de Custo Mínimo

Input: Um conjunto de *n* números inteiros.

Output: Descobrir o menor custo possível para os somar todos, sabendo que somar a com b tem um custo de a+b

Exemplo de Input/Output

Input: 3 números: $\{1, 2, 3\}$

Output: 9 (custo de fazer primeiro 1 + 2 seguido de 3 + 3).

- Que estratégia greedy usar aqui? E já estou a ajudar muito ao dizer que greedy funciona...
- Escolher em cada momento os dois números mais pequenos!
 Intuição:
 - quanto menores os números, menor o custo
 - a soma final é inevitável (seja qual for a ordem terá custo igual à soma de todos)
 - consideremos os números a, b e c. Se a solução greedy optar por a+b é porque $c \ge a$ e $c \ge b$. Sendo assim, o custo de a+c ou de b+c seria superior ou igual a+b e depois viria uma soma com custo a+b+c.
 - ▶ nenhuma outra solução consegue ser melhor que greedy!

Algoritmo greedy para soma de custo mínimo

- Repetir os seguintes passos até a lista de números ficar vazia
 - Remover os dois números mais pequenos a e b
 - Adicionar a + b ao custo total
 - Inserir a + b na lista de números

Complexidade:

- Número de Passos: O(n)
- Cada passo:
 - Remover dois mais pequenos
 - Adicionar dois números
 - Inserir dois números
- Total: Depende das operações de retirar dois mínimos e de inserir!

- Adicionar dois números: O(1)!
- Inserir e Remover (os dois mais pequenos):
 - ▶ Array desordenado: inserir em O(1) e remover em O(n)
 - ▶ Array ordenado: inserir em O(n) e remover em O(1)
 - Estrutura de dados especializada (ex: heap): inserir em $O(\log n)$ e remover em $O(\log n)$

Complexidade:

- Número de Passos: O(n)
- Cada passo:
 - ► O(n) para um algoritmo mais "básico"
 - $ightharpoonup O(\log n)$ se tivermos uma estrutura de dados especializada
- Total: $O(n^2)$ ou $O(n \log n)$

- Uma ideia muito poderosa e flexível
- O difícil é provar que dá origem a resultado ótimo
 - Optimalidade não é garantida porque não explora de forma completa todo o espaço de procura
 - ► Geralmente é mais fácil provar a incorrecção (via contra-exemplo)
 - ► Uma maneira de analisar é pensar num caso onde existem empates na condição greedy: o que escolhe o algoritmo nesse caso?
- Quando funcionam, costumam ter complexidade baixa
- Não existe "receita mágica" para todos os greedy: experiência é necessária!