In [1]: import numpy as np
import pandas as pd

In [2]: data=pd.read_csv(r"C:\Users\DELL\Downloads\ML Project - Naive Bayes Loan Status Classification U16955482770.c

In [3]: data

Out[3]:

		ID	LIMIT_BAL	AGE	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILL_AMT6	PAY_AMT1	PAY_AMT2	P
	0	1	2.0	24	3913.0	312.0	689.0	NaN	NaN	NaN	NaN	689.0	
	1	2	12.0	26	2682.0	1725.0	2682.0	3272.0	3455.0	3261.0	NaN	1.0	
	2	3	9.0	34	29239.0	1427.0	13559.0	14331.0	14948.0	15549.0	1518.0	15.0	
	3	4	5.0	37	4699.0	48233.0	49291.0	28314.0	28959.0	29547.0	2.0	219.0	
	4	5	5.0	57	8617.0	567.0	35835.0	294.0	19146.0	19131.0	2.0	36681.0	
29	995	29996	22.0	39	188948.0	192815.0	28365.0	884.0	31237.0	1598.0	85.0	2.0	
29	996	29997	15.0	43	1683.0	1828.0	352.0	8979.0	519.0	NaN	1837.0	3526.0	
29	997	29998	3.0	37	3565.0	3356.0	2758.0	2878.0	2582.0	19357.0	NaN	NaN	
29	998	29999	8.0	41	-1645.0	78379.0	7634.0	52774.0	11855.0	48944.0	859.0	349.0	
29	999	3	5.0	46	47929.0	4895.0	49764.0	36535.0	32428.0	15313.0	278.0	18.0	

30000 rows × 16 columns

```
In [4]: data.isnull().sum()
Out[4]: ID
                              0
         LIMIT BAL
                              0
         AGE
                              0
         BILL AMT1
                           2008
        BILL_AMT2
                           2506
         BILL AMT3
                           2870
         BILL AMT4
                           3195
         BILL AMT5
                           3506
         BILL AMT6
                           4020
        PAY AMT1
                           5249
        PAY_AMT2
                           5396
         PAY AMT3
                           5968
        PAY AMT4
                           6408
        PAY_AMT5
                           6703
        PAY_AMT6
                           7173
        Default Status
                              0
        dtype: int64
In [5]:
        data.columns
Out[5]: Index(['ID', 'LIMIT_BAL', 'AGE', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3',
                'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2',
                'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'Default Status'],
              dtype='object')
In [6]: lis=['ID', 'LIMIT_BAL', 'AGE', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3',
                'BILL AMT4', 'BILL AMT5', 'BILL AMT6', 'PAY AMT1', 'PAY AMT2',
                'PAY AMT3', 'PAY AMT4', 'PAY AMT5', 'PAY AMT6', 'Default Status']
In [7]: for i in lis:
            data[i]=data[i].fillna(data[i].mean())
```

```
In [8]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 16 columns):
```

		- / -					
#	Column	Non-Null Count	Dtype				
0	ID	30000 non-null	int64				
1	LIMIT_BAL	30000 non-null	float64				
2	AGE	30000 non-null	int64				
3	BILL_AMT1	30000 non-null	float64				
4	BILL_AMT2	30000 non-null	float64				
5	BILL_AMT3	30000 non-null	float64				
6	BILL_AMT4	30000 non-null	float64				
7	BILL_AMT5	30000 non-null	float64				
8	BILL_AMT6	30000 non-null	float64				
9	PAY_AMT1	30000 non-null	float64				
10	PAY_AMT2	30000 non-null	float64				
11	PAY_AMT3	30000 non-null	float64				
12	PAY_AMT4	30000 non-null	float64				
13	PAY_AMT5	30000 non-null	float64				
14	PAY_AMT6	30000 non-null	float64				
15	Default Status	30000 non-null	object				
<pre>dtypes: float64(13), int64(2), object(1)</pre>							
memory usage: 3.7+ MB							

In [9]: data.describe()

Out[9]:

	ID	LIMIT_BAL	AGE	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILI
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.00000	30000.000000	30000
mean	10666.660700	14.648867	32.427900	33989.494570	33938.750418	32617.867011	30709.50416	29015.123424	28526
std	9698.091793	189.496507	12.718991	59472.881131	58305.224138	55777.906879	51825.29715	48612.594594	48042
min	1.000000	1.000000	3.000000	-154973.000000	-69777.000000	-157264.000000	-81334.00000	-81334.000000	-94625
25%	1850.500000	4.000000	26.000000	1788.000000	1847.750000	1862.000000	1782.00000	1718.000000	1724
50%	7483.500000	9.000000	33.000000	11569.000000	12637.000000	13255.000000	13350.00000	12847.000000	13398
75%	18746.250000	21.000000	41.000000	33989.494570	33938.750418	32617.867011	30709.50416	29015.123424	28526
max	29999.000000	32768.000000	79.000000	964511.000000	983931.000000	693131.000000	891586.00000	927171.000000	961664

In [10]: import matplotlib.pyplot as plt

```
plt.boxplot(data["LIMIT_BAL"])
In [11]:
Out[11]: {'whiskers': [<matplotlib.lines.Line2D at 0x196e5d9dd90>,
           <matplotlib.lines.Line2D at 0x196e5d9ea90>],
           'caps': [<matplotlib.lines.Line2D at 0x196e5d6c250>,
           <matplotlib.lines.Line2D at 0x196e5dac2d0>],
           'boxes': [<matplotlib.lines.Line2D at 0x196e5d668d0>],
           'medians': [<matplotlib.lines.Line2D at 0x196e5dace10>],
           'fliers': [<matplotlib.lines.Line2D at 0x196e5dad890>],
           'means': []}
                                                 0
           30000
           25000
           20000
           15000
           10000
            5000
               0
```

```
plt.boxplot(data["AGE"])
In [12]:
Out[12]: {'whiskers': [<matplotlib.lines.Line2D at 0x196e664dbd0>,
           <matplotlib.lines.Line2D at 0x196e664e890>],
           'caps': [<matplotlib.lines.Line2D at 0x196e5daf490>,
           <matplotlib.lines.Line2D at 0x196e664ff90>],
           'boxes': [<matplotlib.lines.Line2D at 0x196e5dbe8d0>],
           'medians': [<matplotlib.lines.Line2D at 0x196e665cad0>],
           'fliers': [<matplotlib.lines.Line2D at 0x196e665d590>],
           'means': []}
           80
           70
           60
           50
           40
           30
           20
           10
```

1

```
In [13]: plt.scatter(data['AGE'],data['LIMIT_BAL'])
```

Out[13]: <matplotlib.collections.PathCollection at 0x196df341390>


```
In [14]: plt.scatter(data['LIMIT_BAL'],data['PAY_AMT6'])
```

Out[14]: <matplotlib.collections.PathCollection at 0x196e5e6e650>


```
In [15]: data.shape
```

Out[15]: (30000, 16)

In [16]: from sklearn.preprocessing import LabelEncoder

In [17]: enc=LabelEncoder()

```
data["Default Status"]=enc.fit_transform(data["Default Status"])
In [18]:
In [19]:
          data.head()
Out[19]:
              ID LIMIT BAL AGE BILL AMT1 BILL AMT2 BILL AMT3
                                                                    BILL AMT4
                                                                                                          PAY AMT1 PAY AMT2
                                                                                 BILL AMT5
                                                                                             BILL AMT6
                                                                                                                                PA
                              24
           0
             1
                        2.0
                                      3913.0
                                                  312.0
                                                             689.0
                                                                   30709.50416
                                                                               29015.123424
                                                                                            28526.276559 2613.957537
                                                                                                                         689.0
                                                                                                                               2584
              2
                       12.0
                              26
                                      2682.0
                                                 1725.0
                                                            2682.0
                                                                    3272.00000
                                                                                3455.000000
                                                                                             3261.000000 2613.957537
                                                                                                                           1.0
           2
              3
                        9.0
                              34
                                     29239.0
                                                 1427.0
                                                           13559.0
                                                                   14331.00000 14948.000000
                                                                                           15549.000000 1518.000000
                                                                                                                          15.0
                        5.0
                              37
                                                48233.0
                                                                                                                         219.0
           3
              4
                                      4699.0
                                                           49291.0 28314.00000 28959.000000
                                                                                           29547.000000
                                                                                                            2.000000
                                                                                                                                 12
             5
                        5.0
                              57
                                      8617.0
                                                  567.0
                                                           35835.0
                                                                     294.00000 19146.000000
                                                                                           19131.000000
                                                                                                            2.000000
                                                                                                                       36681.0
          x=data.drop("Default Status",axis=1)
In [20]:
          y=data["Default Status"]
          from sklearn.model_selection import train_test_split
In [21]:
In [22]: |x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.8)
In [25]: from sklearn.naive_bayes import GaussianNB
          clf=GaussianNB()
In [26]:
          clf.fit(x_train,y_train)
Out[26]: GaussianNB()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
```

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [27]: clf.score(x_train,y_train)
Out[27]: 0.7541666666666667
In [28]: clf.score(x_test,y_test)
Out[28]: 0.7459583333333333
In [30]: y_pred=clf.predict(x_test)
In [35]: from sklearn.metrics import classification_report
         print(classification_report(y_test,y_pred))
In [36]:
         print(classification_report(y_test,y_pred))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.16
                                       0.04
                                                 0.06
                                                           5325
                             0.78
                     1
                                       0.95
                                                 0.85
                                                           18675
                                                 0.75
                                                          24000
              accuracy
                                                 0.46
                                                           24000
             macro avg
                             0.47
                                       0.49
         weighted avg
                             0.64
                                       0.75
                                                 0.68
                                                           24000
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.16
                                       0.04
                                                 0.06
                                                           5325
                             0.78
                     1
                                       0.95
                                                 0.85
                                                           18675
                                                 0.75
                                                           24000
              accuracy
                                                 0.46
                                                           24000
             macro avg
                             0.47
                                       0.49
         weighted avg
                             0.64
                                       0.75
                                                 0.68
                                                           24000
```

In []: