Week 5: Exploring Data Session 1

Spring 2020

Which of the following should I use to read the file mydata.csv into a data frame called dat in R?

```
A dat = read.csv(mydata.csv)
B read.csv(mydata.csv)
C dat = read.csv("mydata.csv")
D read.csv(mydata.csv, row.names = 1)
E read.csv("mydata.csv")
```

Which symbol do we use to represent the **sample mean**?

 $A \sigma$

 $B \bar{s}$

 $C \bar{x}$

 $D \mu$

 $\to \bar{m}$

Which symbol do we use to represent the **population mean**?

 $A \sigma$

B \bar{s}

 $C \bar{x}$

 $D \mu$

 $\mathbf{E} \ \bar{m}$

Which plot type is most appropriate to show the **distribution** of a set of measurements?

- A scatterplot
- B boxplot
- C barchart
- D histogram
- E pie chart

Which of the following lines of code will make a scatterplot of the dataframe with length on the x-axis and mass on the y-axis?

```
##
        length
               width mass
## 1 0.7209039 2.8777226
                           37
  2 0.8757732 1.6052823
                           29
## 3 0.7609823 0.4713699
                           19
 A plot(dat$mass, dat$length)
 B scatter(dat$length, dat$mass)
 C boxplot(dat$length, dat$mass, type = "p")
 D dotplot(dat$length, dat$mass)
 E plot(dat$length, dat$mass)
```

Announcements

Trying a different slide layout today

$Graphical\ exploration$

Why use graphs?

Graphical exploration

Two main reasons to use graphs:

1. Inform how to analyze the data

2. Presentation of the data

Graphical exploration

Two main reasons to use graphs:

- 1. Inform how to analyze the data
 - visualization
 - identify patterns
 - choose appropriate statistical test
- 2. Presentation of the data

Graphical exploration

Two main reasons to use graphs:

- 1. Inform how to analyze the data
 - visualization
 - identify patterns
 - choose appropriate statistical test
- 2. Presentation of the data
 - summarize results
 - communicate results
 - publish results

Types of graphs - Exploratory

Exploratory graphs help understand the distribution of the data:

- ► are the data normally distributed
 - important assumption in statistics
 - determines how data are analyzed
- ▶ what is the central tendency
- ▶ what is the spread
- general summaries of the data

Exploratory: Histogram

- ▶ width of bars are defined data bins or intervals
- ▶ height of bars represent bin-specific frequencies

hist(values)

Exploratory: Histogram

- ▶ width of bars are defined data bins or intervals
- ▶ height of bars represent bin-specific frequencies

You can change the number and widths of the bins.

Exploratory: Histogram + Density Plot

A density plot: smoothed version of histogram

► To overlay on a histogram, tell hist() to plot the *probability* version of the histogram:

```
hist(values, probability=TRUE)
lines(density(values))
```


Exploratory: Box-whisker/Box plot

- ▶ distribution
- outliers
- ► symmetry or skewness

boxplot(values)

Exploratory: Box-whisker/Box plot

► R: boxplot(x) # x is data

Exploratory: Line graph

Line graph is a useful plot for running average or time series data

Differences

To visualize differences between groups

- \blacktriangleright box-whisker plots
 - compares averages
 - compares distribution
- ▶ bar charts
 - compares averages

Differences: Box-whisker plot

Compare salamander snout-vent lengths be three sexes:

boxplot(mander\$SVL ~ mander\$Sex) #formula notation

Differences: Bar chart

Compare salamander snout-vent lengths be three sexes:

Differences: Bar chart with associated error

Compare salamander snout-vent lengths be three sexes:

Links

Two main approaches for relationships between data:

- 1. Correlations
- 2. Associations

Links

Two main approaches for graphing relationships between data:

1. Correlations

- two numeric variables
 - ▶ dependent variable (of primary interest: y-axis)
 - ightharpoonup independent variable (explanatory variable: x-axis)
- how one variable is related to another
- scatter plots

Links: Scatter plot

plot(x,y) # x and y are numeric vectors

Links

Two main approaches for graphing relationships between data:

2. Associations

- categorical data
- summarize categories
 - counts
 - proportions
 - by rows and/or columns of a table
- pie charts for single categories
- bar graphs for several categories

Links: Pie chart

```
pietab <- table(classData$Eyes)
pie(pietab) #(number of people with each eye color)</pre>
```

Eye color

Links: Bar chart

bartab <- table(classData\$Gender,classData\$Eyes)
barplot(pietab, beside=TRUE) #(number of each gender with</pre>

Some graphics pointers

In summary, graphs are a useful data visualization tool

- summarizing
- understanding
- describing
- presenting/communicating

Some graphics pointers

In summary, graphs are a useful data visualization tool

- summarizing
- understanding
- describing
- presenting/communicating

BUT we must label the well or they are useless!

- ▶ label both axes
- ▶ provide a main title for your graph
- ▶ avoid clutter
- ▶ make it readable
- ► I expect graphs to be propery labeled from now on!

Some graphics pointers

In summary, graphs are a useful data visualization tool

Purpose	Graph Type
Illustrating distribution	Histogram, Density plot
	Box(-whisker) plot
Illustrating differences	Bar chart, Box plot
Illustrating correlations	Scatter plot
Illustrating associations	Pie chart, Bar chart
Illustrating sample size	Line plot of running avg

Beyond graphs, Towards statistics

- ► Graphs are powerful tools that provide insight and understanding of the patterns and relationships in the data.
- ▶ Don't give us the answer though:
 - ► are differences *significant*?
 - ► are associations *significatnt*?

Beyond graphs, Towards statistics

- ► Graphs are powerful tools that provide insight and understanding of the patterns and relationships in the data.
- ▶ Don't give us the answer though:
 - ▶ are differences *significant*?
 - ► are associations *significatnt*?

Beyond graphs, Towards statistics

- ► Graphs are powerful tools that provide insight and understanding of the patterns and relationships in the data.
- ▶ Don't give us the answer though:
 - ► are differences *significant*?
 - ► are associations *significatnt*?
- ► Statistics is the tool we use to formally answer these questions!
 - \triangleright the differences are/are not significant!
 - ► are associations *are/are not* significant!