Chemistry 123: Final Exam A

The 68 pts exam consists of 7 questions and students have the whole class period to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table is provided at the end. Fill in your name along with your student ID number.

Problem 1 : Sulfur Phase Diagram Answer the following questions for the phase diagram of sulfur. (4 pts)

Phase diagram for sulfur

- (a) Determine all triple points.
- (b) Suppose a sulfur sample is at 1 atm and 80°C. The sample is heated to 160°C at constant pressure then subsequently, the pressure is decreased to 10⁻⁶ atm at constant temperature. What state of matter is sulfur?

mater heat to Entha	blem 2: Heating Curve Iodine (I_2) is a unique element in that the non-metallic and dark-grey rial is solid at room temperature. Suppose you have 50.0g of I_2 at room temperature 25.0°C and the material to 175.5°C. The melting and boiling points of I_2 are 114°C and 184°C, respectively. alpy of fusion and enthalpy of vaporization are 7.824 kJ/mol and 20.752 kJ/mol, respectively. I_2 has specific heat of 0.427 J/(g °C) and liquid I_2 has specific heat of 2.150 J/(g °C). (10 pts)
	Give a brief answer why I_2 is a solid at room temperature while Bromine (Br ₂) is a gas.
(b)	Draw a graph of the heating curve for I_2 described in the problem above. Label the y-axis as temperature (°C) and the x-axis as heat added.
(c)	Using the graph in (b), calculate the total heat in kJ required to heat 50.0g I ₂ from 25.0°C to 175.5°C.

e.
de both the textbook on. Include illustration

Problem 4: Limiting Reagent Magnesium silicide (Mg_2Si) is a type of semiconductor. However, it is highly reactive reactive with water (H_2O) according to the unbalanced chemical equation (14 pts)

$$Mg_2Si(s) + H_2O(l) \rightarrow Mg(OH)_2(aq) + SiH_4(g)$$

- (a) Write the balanced chemical equation of the reaction above.
- (b) Which reactant is the limiting if there are 50.0g of each reactant?

(c) How much Mg(OH)₂ in g is produced based on the amount of reactant in part (b)?

(d) What is the percent yield if a scientist collected 75.2g of $Mg(OH)_2$?

Problem 5 : Photoelectric Effect When light shines on a metal, electrons can be ejected from the surface of the metal in a phenomenon known as the photoelectric effect. You perform an experiment to eject electrons from aluminum (Al) metal. It is known that a wavelength of 302 nm is the minimum energy to eject an electron from Al. (12 pts)

(a) Determine the work function (Φ) , or the minimum energy in J to eject an electron, of the Al metal.

(b) How much energy in kJ is required to eject a mole of electrons from Al metal? (Hint : One photon with enough energy ejects 1 electron.)

(c) What is the velocity of the electron if a photon with a frequency 1.5×10^{15} Hz hits the surface of Al metal and ejects an electron? The mass of an electron is 9.109×10^{-31} kg.

Problem 6 : Osmotic Pressure Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. (8 pts)

(a) For the image above, there is pure water and glucose solutions separated by a semipermeable membrane. Describe what will happen to the water level of each solution once equilibrium is achieved.

(b) What is the osmotic pressure of a solution prepared by adding 15.50 g of sucrose (C₁₂H₂₂O₁₁) to water to make 250.0 mL of solution at 25.00°C.

Problem 7 : Valence Bond Theory and Molecular Orbital Theory $(10~\mathrm{pts})$

e definitions between the		ory and mo	olecular or	pital theor	y. What i	s the nua
		ory and mo	olecular orl	oital theor	y. What i	s the nua
		ory and mo	olecular orl	bital theor	y. What i	s the nua
		ory and mo	olecular orl	oital theor	y. What i	s the nua
		ory and mo	olecular or	oital theor	y. What i	s the nua
		ory and mo	olecular or	oital theor	y. What i	s the nua
		ory and mo	olecular or	bital theor	y. What i	s the nua
		ory and mo	olecular or	bital theory	y. What i	s the nua
		ory and mo	olecular or	oital theor	y. What i	s the nua
		ory and mo	olecular orl	oital theor	y. What i	s the nua
		ory and mo	olecular or	oital theor	y. What i	s the nu
		ory and mo	olecular or	bital theor	y. What i	s the nua

Chemistry 123 : Apppendix 2 - Formulas and Constants

$$c = \lambda \nu$$

$$E = h\nu = \frac{hc}{\lambda}$$

$$h = 6.626 \times 10^{-34} \text{ J s}$$

$$c = 3.00 \times 10^8 \text{ m/s}$$

$$KE = h\nu - \Phi$$

$$KE = \frac{1}{2}mv^2$$

$$m_{\text{electron}} = 9.109 \times 10^{-31} \text{ kg}$$

$$N_A = 6.022 \times 10^{23} \text{particles/mol}$$

$$q = mc\Delta T$$

$$q = n\Delta H_{\text{fus/vap}} = m\Delta H_{\text{fus/vap}}$$

$$\Pi = iMRT$$

$$R = 8.3145 \text{J/(mol K)} = 0.08205 \text{L atm/(mol K)}$$

2 Helium 4.003	Neon 20.180	18 Ar Argon 39.948	36 Krypton 83.798	54 Kenon 131.293	Rn Padon [222]	00 00 09anes son [294]		
	9 Fluorine 18.998	Chorine 35.45	35 Br Bromine 79.904	53 — lodine 126,904	At Astatine [210]	117 5 Ennes sine [293]		
	8 Oxygen 15.999	16 S uffur 32.06	Selenium 78.97	53 E Tellurium 127.60	84 PO Polonium [209]	116 LV Livermorium [293]		
				51 Sb Antimony 121.760			70 Yb xterbium 173.045	
	6 Carbon 12.011	28.085	32 Ge Germanium 72.630	50 Tm 118.710	82 Pb Lead 207.2	114 Flerovium [289]		
	5 Boron 10.81	13 A I Aluminum 26.982	31 Gallium 69.723	49	81 Thallium 204.38	Nhonium [286]		
			30 Zinc zinc 65.38	48 Cd Cadmium 112.414	81 Hg Mercury 200.592	Cn Coperacium [285]		
			29 Comper 63.546	47 Ag silver 107.868	80 AU 604 196.997	Roentgenium [281]		
			28 Nickel 58.693	Pd Palladium 106.42	79 Platinum 195.084	DS Darmstackiun [281]	65 Tb Ferbium 158.925	97 Bk Berkelium [247]
			27 CO cobalt 58.933	45 Rh Rhodium 102:906	78	109 Meitnerium [278]		
			26 Feb	Ruthenium 101.07	76 OSmium 190.23	108 Hassium [270]	63 EU Europium 151.964	95 Am Americium [243]
			25 Mn Manganes e 54.938	43 E Fechnetium [97]	75 Re Rhenium 186.207	Bohrium [270]	62 Samarium 150.36	94 Plutonium [244]
				42 MO Molybdenum 95.95			Pm Promethium [145]	
			23 Vanadium 50.942	41 Nbinim Nobium 92.906	73 D Tantalum 180.948	105 Db Dubnium [270]		92 Unanium 238.029
			22 ———————————————————————————————————	40 Z r zirconium 91.224	72 Hafnium 178.49	104 Rutherfordium [267]	59 Pr Praseodymium 140.908	91 Pa Protactinium 231.036
			Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967		58 Cerium 140.116	90 Th Thorium 232.038
					* 57 - 70	** 89 - 102	57 La Lanthanum 138.905	89 AC Actinium [227]
	Beryllium	12 Mg Magnesium 24.305	20 Cakium 40.078	Strontium 87.62				
1 Hydrogen 1.008	3 Lithium 6.94	Na Sædium 22.990	19 K	Rubidium 85.468	55 Cestum 132.905	87 Fr Fancium [223]	*Lanthanide series	**Actinide series