Задание 1. Поговорим о средних... Листы ответов

Задача 1.1 Средняя скорость.

1.1.1 Средняя скорость точки за все время движения равна

$$\langle v \rangle =$$

1.1.2 Средняя скорость точки на всем пути

$$\langle v \rangle =$$

Задача 1.2 Средняя сила.

1.2.1 «Средняя импульсная» сила, действующая на тело за все время движения равна

$$\langle F \rangle_p =$$

1.2.2 «Средняя энергетическая» сила, действующая на тело, за все время движения равна

$$\langle F \rangle_E =$$

1.2.3 «Средняя энергетическая» сила, действующая на тело, при нулевой начальной скорости

$$\langle F \rangle_E =$$

Задача 1.3 Средняя сила тока.

1.3.1 «Средняя зарядовая» сила тока равна

$$\langle I \rangle_q =$$

1.3.2 «Средняя тепловая» сила тока равна

$$\langle I \rangle_{O} =$$

Задание 2. Изучение лампочки накаливания (Листы ответов)

1.1 Построение ВАХ лампочки.

Таблица 1. Результаты измерений

	U, B	U ₀ ,мВ	I, MA
1	0,65	72,6	
2	1,03	88,7	
3	1,51	108,1	
4	2,07	126,9	
5	2,62	143,9	
6	3,22	160,3	
7	3,64	170,9	
8	4,14	182,1	
9	4,55	191,3	
10	4,90	199,7	

1.2 Мощность в цепи равна (численное значение)

$$P_1 =$$

1.3 Мощность в цепи равна (численное значение)

$$P_2 =$$

1.4 Явный вид зависимости силы тока через лампочку от напряжения на ней

$$I(U) =$$

1.5 Явный вид зависимости сопротивления лампочки от выделяющейся на ней мощности

$$R(P) =$$

1.6 Расчет зависимости R(P) (рядом с Таблицей приведите расчетные формулы)

Таблица 1.

U, B	I, MA	P, BT	<i>R</i> , Ом
0,65			
1,03			
1,51			
2,07			
2,62			
3,22			
3,64			
4,14			
4,55			
4,90			

График зависимости R(P)

Почему линейная модель отвергнута? (не более 10 слов)

1.7 Максимальная температура нити накаливания (формула, число)

$$t_{\text{max}} \circ C =$$

Часть 2. Строгая теоретическая модель

2.1 Расчетные формулы для расчета данных в Таблице 2	

Таблица 2.

	U , \mathbf{B}	I, MA				
1	0,65	117				
2	1,03	143				
3	1,51	174				
4	2,07	205				
5	2,62	232				
6	3,22	259				
7	3,64	276				
8	4,14	294				
9	4,55	309				
10	4,90	322				

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

2.2	Показатель	степени	R	формуле	(5)	١:
	HORasaresib	CICIICIIII	ъ	формулс	(-	,.

$$n =$$

2.3 Максимальная температура нити накаливания (формула, число)

$$t_{\max}$$
 $^{\circ}C =$

Задание 3. Дождевые облака (Листы ответов)

Часть 1. Падение дождевых капель

1.1 Нарисуйте схематические графики зависимости силы сопротивления от скорости
--

1.2 Получите формулу и рассчитайте численное значение для «критической» скорости шарика $v_{\kappa p}$.

$$v_{\kappa p} =$$

1.3 Укажите, какую формулу для силы сопротивления следует использовать. Ответ кратко обоснуйте (не более 10 слов).

1.4 Покажите. что скорость установившегося движения капли радиуса r можно представить в виде

$$V =$$

1.5 Рассчитайте численное значение скорости $V_{\scriptscriptstyle 0}$, если $r_{\scriptscriptstyle 0}=$ 1,0 мм .

$$V_0 =$$

1.6 Рассчитайте. чему равна разность времен падения капель

$$\Delta t =$$

1.7 Найдите закон движения испаряющейся капли z(t),

$$z(t) =$$

Часть 2. Капля в облаке

$$r_S =$$

2.3 Рассчитайте, за какое время τ_1 и на какую максимальную высоту z_{\max} поднимется капля.

$$\tau_1 =$$

$$z_{\rm max} =$$

2.4 Рассчитайте радиус капли (или градины) r_{m} при ее возвращении.

$$r_m =$$

Задание 1. Три цепочки (Листы ответов)

Задача 1.1

1.1 Последняя шайба сдвинется через время

$$T =$$

Задача 1.2

1.2.1 Расстояние между точками последовательных столкновений шарика с плоскостью

$$l_k =$$

1.2.2 Смещение шарика вдоль наклонной плоскости

$$L_k =$$

Задача 1.3

1.3.1 Сила тока через источник сразу после замыкания цепи

$$I =$$

1.3.2 Суммарный электрический заряд, который протечет через источник

$$q =$$

Задание 2. Столкновение ядер (Листы ответов)

Часть 1. Порог реакции

1.1	Минимальная	ускоряющая	разность	потенциалов	для	ядра	углерода	(формула,	численное
зна	чение)								

$$U_0 =$$

1.2 Скорость ядра углерода (формула, численное значение)

$$V_0 =$$

1.3 Минимальная ускоряющая разность потенциалов и скорость для ядра свинца (численные значения)

$$U_0 =$$

$$V_0 =$$

Часть 2. Ускоряющая система

2.1 Кинетическая энергия, которую приобретет ядро углерода при пролете через ускоряющую ячейку, равна

$$\Delta W =$$

2.2 Напряженность поля, создаваемого равномерно заряженной плоскостью, равна

$$E_0 =$$

Часть 3. Линейный ускоритель

3.1 Длины должны труб быть равны

$$l_n =$$

Задание 3. ВЭС – волновая электростанция. Листы ответов.

Часть 1. Рабочий цикл установки.

1.1 Давление воздуха в рабочем цилиндре установки

P =

1.2 Минимальная амплитуда волны (формула, численное значение)

 $A_{\min} =$

1.3 Модуль скорости подъема и опускания уровня воды (формула, численное значение)

 $\nu =$

1.4 Зависимость уровня воды от времени на участке 1-2 (формула и график зависимости)

z(t) =

1.5 Воздух начинает поступать в турбину (формулы и численные значения)

 $t_1 =$

 $z_1 =$

 $P_1 =$

1.6 Значения параметров в узловых точках (таблица и график).

Таблица 1. Узловые точки воздушного цикла.

Номер точки	время t, c	высота воды c наружи h , м	высота воды внутри h , м	Давление внутри P , м
0	0	0	0	10
1				
2				
3				
4				
5				
6				
7				
8				

1.7 Рабочий цикл воздушного процесса.

1.8 Повторяющийся цикл между точками:

Начинается в точке -

Конечная точка цикла -

Часть 2. Энергетические характеристики ВЭС.

2.1 Работа совершается на участках

2.2 Масса воздуха, выходящего из рабочего цилиндра

 $\Delta m =$

2.3 Кинетическая энергия воздуха, выходящего из цилиндра

 $E_{\kappa u H.} =$

2.4 Работа воздуха, выходящего из рабочего цилиндра

A =

2.5 Средняя мощность установки

N =

Задание 1. Потери энергии. Листы ответов.

1.1 Количество выделившейся теплоты равно

Q =

1.2 Количество выделившейся теплоты равно

Q =

1.3.1 Зависимость силы F , прикладываемой к цепочке, от высоты z поднятой части цепочки (формула и график)

$$F(z)=$$

1.3.2 Количество выделившейся теплоты равно

Q =

Задание 2. Взаимодействия цилиндрических магнитов (Листы ответов)

Часть 1. Характеристики магнита.

1.1 Масса магнита (формула, число)

m =

1.2 Магнитный момент магнита (формула, число)

 $p_{\scriptscriptstyle m} =$

1.3 Сила тока намагничения, текущего по боковой поверхности магнита (формула, число)

 $I_m =$

Часть 2. Магнитное поле магнита.

2.1 Формулы для осевой и радиальной компонент вектора индукции поля точечного заряда

$$B_z^{(0)}(z,r) =$$

$$B_r^{(0)}(z,r)=$$

2.2 Схематическая картина силовых линий магнитного поля, создаваемого, цилиндрическим магнитом.

2.3 Осевая компонента индукции поля магнитного диполя

$$B_z(z,r) =$$

2.4 Схематический график зависимости $B_z(z_0, r)$ от координаты r:

2.5 Значения индукции поля на оси магнита

$$B_z(z) =$$

2.6 Радиальная компонента магнитного поля:

$$B_r(z,r) =$$

2.7 Схематический график зависимости $B_z(z,r_0)$ от координаты z

2.8	Максимальное значение	функции	B_{z}	(z,r_0)	равно

$$B_{r,\max} =$$

Достигается при

$$z = b =$$

Часть 3. Притяжение и отталкивание.

3.1 Зависимость силы взаимодействия между магнитами от расстояния z между ними:

$$F =$$

3.2 Расстояние между магнитами в состоянии равновесия

случай a) L =

случай б) L =

- 3.3 Какой эксперимент может реализован на практике
- 3.4 Численное значение равновесного расстояния

$$L =$$

Часть 4. Магнитная вязкость – токи Фуко.

4.1 Сила тока, протекающего по выделенному кольцу Δz

$$\Delta I =$$

4.2 Мощность теплоты, выделяющейся в трубке при движении магнита

$$P =$$

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

4.3 Сила вязкого магнитного трения, действующая на движущийся магнит
F =
4.4 Скорость установившегося падения магнита в трубке
V =
4.5 Численное значение скорости падения магнита

V =

1.1 В системе ГЛА универсальная газовая постоянная равна (число и размерность)

Задание 3. Брызги шампанского! (Листы ответов) Часть 1. Предварительная.

R =						
1.2 В сис	геме ГЛА пост	гоянная Генра	и равна (число	и размерность	.)	
$k_m =$						
1.3 Macca	а углекислого	газа				
m =						
Часть 2.	Открываем б	утылку!				
2.1 Форм Промежу	улы для расче точные:	та давления в	бутылке			
Окончате	ельная					
P =						
Таблица	1 2anyawyaa	TI HOD HOWNS	OT TOMMODEW			
1 аолица	1. эависимос	ть давления	от температур)ы	T	
t°C						P_{cym} ,
0						атм
5						
10						
15						
20						

25

30

График зависимости P(t)

2.2 Какой объем шампанского останется в бутылке после выскакивания пробки

$$V_{\it ocm} =$$