Week 2 – Physical Layer

Assignment Project Exam Help

COMP PROPERTY PRINCIPAL COMP PRINCIP

Add WeChat powcoder

Lecturer: Ling Luo

Semester 2, 2021

What is the Physical Layer?

- Recall the layer hierarchy from network reference models
 - In OSI model, the physical layer is the lowest layer
 - In TCP/IFAmore in the introduction of the interest of the inte "host-to-network" division.
- The physical laters from the electrical, timing and mechanical interfaces of the network Add WeChat powcoder

 Electrical: voltage levels, signal strength ...

 - Timing: data rate ...
 - Mechanical: material, cable length ...

Outline

- Timing aspect
 - Bandwidth and Latency
- Mechanical aspect: transmission.media.

 Twisted pair

 Twisted pair

 Twisted pair

 - Co-axial

https://powcoder.com

- Fibre optics
- Wireless: EM waves satellites hat powcoder
- Electrical aspect
 - Data communication using signals
 - Digital modulation
- Capacity of a channel
 - Maximum data rate
 - Multiplexing

Link Model

- We can abstract the physical channel as a link
- Simplified Link Model: Consider the network as a connected link between computers Assignment Project Exam Help

Link Model

- Bandwidth is usually treated as the rate of transmission in bits/second. Assignment Project Exam Help
- Delay is the time required for the first bit to travel from computer At to computer B.

Example

- We need about 1 kbit/sec to transmit voice.
- Bandwidth of single mode fibre can reach Assignment Project Exam Help 1 Tbit/sec.

Message Latency

- Latency is the time delay associated with sending a message over a link
- This is made of up two parts Help
 - Transmission delay
 - T-delay = Message in bits Rate of transmission
 - = M/R seconded WeChat powcoder
 - Propagation delay
 - P-delay= length of the channel/ speed of signals
 - = Length / Speed of signal (2/3 of speed of light for wire)
 - □ Latency = L = M/R + P-delay

| Example-1

- A home computer is connected to an ISP server through 56 K bps modem. Assuming a frame size of 5000 bits, computer Delay and T-Delay for the linko Assume speed of signal = 2/3 C and length of the link is 5 K metres.
 Add WeChat powcoder
 T-delay = 5600 (bits)/ 56 000 (bps) = 100 m sec
- P-delay = 5 (km)/200000 (km/s) = 0.025 m sec
- Latency = 100.025 m sec

Example-2

- Now for the previous question, assume a countrywide optical broadband link of length 1000 kms of bandwidth 100 M bits/sec. AssumingsaigrametsPzejoft5600nbits|pcompute P-Delay and T-Delay for the link. Assume speed of signal = C = 300000 km/sec.
- P-delay = 1000 (km) /300000 (km/s) = 3.33 m sec
- Latency = 3.386 m sec

The Growth of Bandwidth

- CPU speeds increase by a factor of ~20 per decade
 - 1981: PC 4.77MHz vs. 2020: PC 4GHz
 - Current CRUspeed now approaching physical properties pertaining to granularity of engraving on silicons://powcoder.com
- Bandwidth increases by a factor of ~125 per decade
 - □ 1981: Modem 56kbdsWeChat powcoder
 - Current bandwidth available up to 65 Tbps vastly exceeding the rate at which we can convert electrical impulses to optical pulses

Outline

- Timing aspect
- Mechanical aspect: transmission media
- Electrical Assignment Project Exam Help
- Capacity of a channel/powcoder.com
 - Maximum data rate
 - Multiplexing Add WeChat powcoder

Transmission Media

- How many different types of physical media can you think of?
 - Wired: twistednpairncopayiet florand the p
 - Wireless: electromagnetic waves and satellites https://powcoder.com
- Various physical de diac cambe on se de transmit data, but the performance is affected by physical properties.

Signal Attenuation

- The loss or reduction in the amplitude (strength) of a signal as it passes through a medium.
- Signal attenuation imparts how far and how much data a medium can carry.

https://powcoder.com

Image source: https://www.signalintegrityjournal.com/articles/1734-how-to-reduce-attenuation-in-a-differential-channel

Wires – Twisted Pair

- Two insulated copper wires, twisted in helical (DNA) form.
- Twisting reduces interference: canceling out electromagnetic interference from external sources
- Distance up to 5km, repeaters can extend this distance Assignment Project Exam Help

Properties and Types of Twisted Pair

- Bandwidth depends on distance, wire quality/density
- Cat 3 2 wires, 4 pairs in sheath, 16MHz
- Cat 5 2 wires, 4 pair in sheath, more twists = less interference, higher quality over longer distance, 100 MHz
 https://powcoder.com
- □ Cat 8 2000 MHz

 Add WeChat powcoder

 unit for now, just higher

 value is better!

Coaxial Cable (Co-ax)

- Copper core with insulation, mesh, and sheath
- Better shielding than twisted pair = higher speeds over greater distances
- Bandwidtgrapperdalehejedt@Hzam Help
- Still widely used for cable TV/Internet https://powcoder.com

A diagram of a coaxial cable

Fibre Optics

- Fibre has enormous bandwidth (THz) and tiny signal loss
- Data transmission over a fibre of glass
- Comman for high rates and tong distances
 - e.g. backbone links between ISP facilities, Fibreto-the-Hottles, Fibre-to-the-Hottles, F

Add WeChat powcoder

Transmission of Light Through Fibre

- 3 components: light source, transmission medium, detector
- Semantics: light = 1, no light = 0 (basic binary system)
- Signalling using LED's or semiconductor lasers
- A detector generates electrical pulse when light hits it
- Refraction between air/silica boundary is compensated for by design total internal reflection oder.com

Fibre Optic Cables

Single-mode

Narrow core (10um), light can't even bounce around

Used with Agsets for long pistages Exam Help e.g., 100km

Multi-mode

https://powcodergeom

50um core, light can bounce Used with LEDs for cheaper, shorter distance links

Jacket

(plastic)

Cladding

(glass)

Fibre Optic Connections

- Connectors and Fibre Sockets (10-20% loss)
- Mechanical Splice (10% loss)

Fusion (<1% loss)

Example: mechanical splice

Fibre Optic Networks

- Fibre optic cable is a scalable network media LAN,
 WAN, long distances
- Fibre optic Applemet Morks gent become a print of a point of a p

Comparison: Wires and Fibre

Comparison of the properties of wires (i.e. twisted pairs and co-ax cable) and fibre:

Property Assignm	nwnteProject Exan	nFHtelp
Distance	Short (100s of m)	Long (tens of km)
Bandwidth http	Side pay coder.con	Very High
Security	Easy to tap	Hard to tap
Cost	Easy to tap WeChat powcoo Inexpensive	More Expensive
Convenience	Easy to use	Harder to use