- **1.** (А.М. Кабанов) Юрий составляет 4-буквенные слова из букв П, Р, И, К, А, З. Каждую букву можно использовать не более одного раза, при этом в слове нельзя использовать более одной гласной. Сколько различных кодов может составить Юрий?
- 2. Вася составляет 4-буквенные коды из букв У, Л, Е, Й. Каждую букву нужно использовать ровно 1 раз, при этом код не может начинаться с буквы Й и не может содержать сочетания ЕУ. Сколько различных кодов может составить Вася?
- **3.** Вася составляет 6-буквенные коды из букв П, А, Н, Е, Л, Ь. Каждую букву нужно использовать ровно 1 раз, при этом код не может начинаться с буквы Ь и не может содержать сочетания ЕАП. Сколько различных кодов может составить Вася?
- **4.** Вася составляет слова из букв слова ABTOMAT. Код должен состоять из 7 букв, и каждая буква в нём должна встречаться столько же раз, сколько в заданном слове. Кроме того, в коде не должны стоять рядом две гласные и две согласные буквы. Сколько различных слов может составить Вася?
- **5.** Из букв слова Р А Д У Г А составляются 6-буквенные последовательности. Сколько можно составить различных последовательностей, если известно, что в каждой из них содержится не менее 3 согласных?
- **6.** Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь».

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 156 идущих подряд цифр 5? В ответе запишите полученную строку.

```
НАЧАЛО
ПОКА нашлось (333) ИЛИ нашлось (555)
ЕСЛИ нашлось (555)
ТО заменить (555, 3)
ИНАЧЕ заменить (333, 5)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
```

7. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (111)
заменить(111, 2)
заменить(222, 3)
заменить(333, 1)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 120 единиц? 8. (Е. Джобс) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Дана программа для исполнителя Редактор:

```
НАЧАЛО ПОКА нашлось(11) заменить(112, 4) заменить(113, 2) заменить(42, 3) заменить(43, 1) КОНЕЦ ПОКА КОНЕЦ
```

Какая строка получится в результате применения приведённой программы к строке вида 1...13...32...2, состоящей из 170 единиц, 100 троек и 7 двоек?

9. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь».

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 184 идущих подряд цифр 5? В ответе запишите полученную строку.

```
НАЧАЛО
ПОКА нашлось (333) ИЛИ нашлось (555)
ЕСЛИ нашлось (555)
ТО заменить (555, 3)
ИНАЧЕ заменить (333, 5)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

10. Исполнитель Чертёжник перемещается на координатной плоскости, оставляя след в виде линии. Чертёжник может выполнять команду *Сместиться на (a, b)* (где a, b - целые числа), перемещающую Чертёжника из точки с координатами (x, y) в точку с координатами (x + a, y + b). Чертёжнику был дан для исполнения следующий алгоритм:

```
Сместиться на (-1, 2)
Повтори N раз
Сместиться на (a, b)
Сместиться на (-1, -2)
конец
Сместиться на (-24, -12)
```

После выполнения этого алгоритма Чертёжник возвращается в исходную точку. Какое наибольшее число повторений могло быть указано в конструкции «Повтори ... раз»?

11. Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

```
(\neg ДЕЛ(x, A) \land ДЕЛ(x, 21)) \rightarrow \neg ДЕЛ(x, 14)
```

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

12. (А.М. Кабанов) Для какого наименьшего целого неотрицательного числа А выражение

$$(x^2 - 10x + 16 > 0) \vee (y^2 - 10y + 21 > 0) \vee (xy < 2A)$$

тождественно истинно, т.е. принимает значение 1 при любых целых положительных х и у?

13. Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

```
ДЕЛ(40, A) \land ((¬ДЕЛ(x, A) \land ДЕЛ(x, 54)) \rightarrow ¬ДЕЛ(x, 72))
```

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

14. Укажите наименьшее целое значение А, при котором выражение

```
(7y + x < A) \lor (2x + 3y > 98)
```

истинно для любых целых положительных значений х и у.

15. На числовой прямой даны два отрезка: P=[25, 98], Q=[1, 42]. Найдите наименьшую возможную длину отрезка A, при котором формула

```
(x \in Q) \rightarrow (\neg(x \in P) \land (x \in Q) \rightarrow (x \in A))
```

тождественно истинна, то есть принимает значение 1 при любых х.

16. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = 2*n*n*n + 1, при n > 25

F(n) = F(n+2) + 2*F(n+3), при n \le 25
```

Определите количество натуральных значений п из отрезка [1; 1000], для которых значение F(n) кратно 11.

17. Определите, сколько символов * выведет эта процедура при вызове F(140):

```
Паскаль
                                 Python
                                                  C++
                                            void F( int n )
procedure F( n: integer );
begin
                               def F(n): {
    print('*') cout << '*';
write('*');
                               print('*')
                               \inf_{n \to \infty} \int_{0}^{n} if(n) = 1, \{
if n \ge 1 then begin
write('*');
                                            cout << '*';
                               print('*')
                                            F(n-1):
F(n-1);
                               F(n-1)
F(n \text{ div } 2);
                                            F(n/2);
                               F(n/2)
end;
end;
```

18. Процедура F(n), где n – натуральное число, задана следующим образом:

Паскаль	Python	Си
procedure $F(n: integer)$; begin if $n < 3$ then write('*') else begin $F(n-1)$; $F(n-2)$; $F(n-2)$ end; end;	def F(n): if n < 3: print("*")	F(n-1); F(n-2);

Derthon

Сколько звездочек напечатает эта процедура при вызове F(6)?

19. Алгоритм вычисления значения функции F(n), где n – целое число, задан следующими соотношениями:

```
F(0) = 0
 F(n) = F(n/2) + 3, при чётном n > 0
 F(n) = 2 \cdot F(n - 1) + 1, при нечётном n > 0
```

Сколько различных значений может принимать функция F(n) при n, принадлежащих отрезку [1; 1000]?

20. Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

```
F(0) = 8

F(n) = 5 + F(n / 3) если n > 0 и n делится на 3

F(n) = F(n / / 3) в остальных случаях
```

Здесь // означает деление нацело. Определите количество значений n на отрезке [1, 100 000 000], для которых F(n) = 18.

- **21.** (А. Кабанов) В файле <u>17-3.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите и запишите в ответе сначала количество четвёрок элементов последовательности, в которых чётность соседних чисел различна, затем максимальную сумму среди таких четвёрок. В данной задаче под четвёркой подразумевается четыре идущих подряд элемента последовательности.
- 22. В файле 17-1.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите количество троек, в которых хотя бы два из трёх элементов меньше, чем среднее арифметическое всех чисел в файле, и хотя бы два из трёх элементов делятся на 19. В ответе запишите два числа: сначала количество найденных троек, а затем максимальную сумму элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.
- 23. В файле 17-1.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите количество троек, в которых хотя бы два из трёх элементов больше, чем среднее арифметическое всех чисел в файле. В ответе запишите два числа: сначала количество найденных троек, а затем максимальную сумму элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.
- **24.** (П. Волгин) В файле <u>17-8.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать значения от 0 до 1000 включительно. Определите сначала количество пар элементов последовательности, в которых сумма цифр в двоичной записи хотя бы одного из чисел больше 5 и нечетна, а затем максимальную из сумм элементов таких пар. Под парой подразумевается два идущих подряд элемента последовательности.
- **25.** (А. Кабанов) В файле <u>17-4.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Рассматривается множество элементов последовательности, которые оканчиваются на 5 или 7 и при этом не делятся ни на 9, ни на 11. Найдите количество таких чисел и сумму минимального и максимального из них.