

2022 牛客 OI 赛前集训营-提高组(第五场)

比赛地址: https://ac.nowcoder.com/acm/contest/40649

题目名称	喷泉	红绿灯	子集	佛怒火莲
题目类型	传统型	传统型	传统型	传统型
每个测试点	C/C++ 2 秒,	C/C++1秒,	C/C++1秒,	C/C++ 4 秒,
时限	其他语言 4 秒	其他语言 2 秒	其他语言 2 秒	其他语言8秒
内存限制	C/C++ 256MB,	C/C++ 256MB,	C/C++ 256MB,	C/C++ 256MB,
	其他语言 512MB	其他语言 512MB	其他语言 512MB	其他语言 512MB
子任务数目	10	10	20	20
测试点是否	是	是	是	是
等分				

注意事项

- 1、所有参与牛客 OI 赛前集训营的选手必须遵守约定的纪律:
- (1) 比赛账号不能外传。
- (2) 比赛中不能抄袭代码。
- (3) 比赛中不能恶意卡评测。
- 2、报名支付账号即为比赛账号。
- 3、一旦报名牛客 OI 赛前集训营活动,不支持退费,请考虑清楚后报名。
- 4、本活动解释权归牛客网所有,活动介绍未尽事宜以牛客网官方解释为准。

欢迎关注"比赛自动姬"公众号,关注更多比赛资讯~

1.喷泉

【题目描述】

鸡尾酒喜欢打保龄球,他觉得打了保龄球就可以确保爆零。但是 *OIer* 不打保龄球,鸡尾酒想了一个办法—— *OIer* 都不会几何,那就搞一道几何 *T1* 帮助大家爆零。

鸡尾酒道白浅妹妹家的路是一条线段。在这条路的旁边有一个圆形的喷泉,它喷出的水晶莹透明,美丽~~动人~~。于是,它就引来了一条小狗,天天围着喷泉转。

白浅妹妹很喜欢这条狗, 天天都在路上距离最近的点看小狗, 而小狗也很喜欢她, 也在最近的地方看她。

而鸡尾酒不喜欢,每次都要躲在路上最远的地方,而小狗就在最远的地方躲鸡尾酒。

请问,白浅妹妹看小狗时,和鸡尾酒躲狗的时候,他们与狗的欧几里得距离分别是多少?(欧几里德距离即直线距离,由两点的横坐标之差的平方加纵坐标之差的平方求和再开根号获得,即勾股定理)

另外一提,为了简化题意,路上总有一个点使得它到喷泉的连线垂直于路。鸡尾酒和白浅妹妹不会同时出现在这条路上。

【输入格式】

第一行一个正整数 t 表示数据组数。

接下来 t 行,每行七个正整数 $x_1, y_1, x_2, y_2, x_3, y_3, r$,表示鸡尾酒家的坐标、白浅妹妹家的坐标、喷泉圆心的坐标及半径。

【输出格式】

对于每组数据,输出一行两个两位实数,表示白浅妹妹与狗的距离和鸡尾酒与狗的距离。注意:本题输出量较大,请尽量选择较快速的输出方式(例如 *printf*)

【样例1 输入】

4

1114440

11114980

11 4 1 4 9 8 1

91665 81788 66905 42038 75347 76904 2844

【样例1 输出】

3.00 4.24

6.13 8.94

3.00 9.94

8424.51 38717.46

【样例1 说明】

三 张 图 分 别 对 应 样 例 1 的 前 三 组 数 据。

第 4 页 共 12 页

【数据范围】

对于所有数据, $1 \le t \le 10^5$, $0 \le x_i$, y_i , $r \le 10^5$, $(x_1, y_1) \ne (x_2, y_2)$ 。

保证题面中所提到的垂直条件,并且路上不存在点使得其在喷泉的边缘或内部。

测试点编号	特殊限制
1	$x_1=y_1=y_2=r=0, y_1==2, x_3=y_3=1$
2,3	$x_1=x_2,r=0$
4, 5	$y_1=y_2,r=0$
6, 7	r = 0
8, 9, 10	无

2. 红绿灯

【题目描述】

清楚姐姐又迟到了, 就因为路上那些红绿灯。

清楚姐姐家到学校的路上一共有 m 个红绿灯。已知每个红绿灯的周期为 a_i 秒,奇怪的是,这些红绿灯的绿灯非常的短(这就是清楚姐姐迟到的原因)。具体来说,在一个周期里,只有最后一秒是绿灯,其余时候均是红灯。

现在,清楚姐姐给出了 n 个连续的时刻([1,n] 中的整数时刻),请问,如果清楚姐姐在 i 时刻出发,他到学校的时刻是多少?

注意, 第 0 时刻刚好所有红绿灯都亮起绿灯, 并且清楚姐姐跑得很快, 除等待红绿灯外不会在路上花费时间。

【输入格式】

第一行两个整数 n, m。

第二行 m 个整数,表示序列 a。

【输出格式】

一行 n 个整数, 第 i 个表示清楚姐姐从第 i 时刻出发, 最后到达学校的时间。

【样例1 输入】

6 2

2 3

【样例1 输出】

336666

【样例1 说明】

一个红绿灯过后, 1、2时刻会在2时刻到达第二个红绿灯, 3、4时刻会在4时刻到达第二个红绿灯, 5、6时刻会在6时刻到达第二个红绿灯。

两个红绿灯过后,2时刻会在3时刻到达学校,4、6时刻会在6时刻到达学校。 于是答案为336666。

【样例2输入】

6 2

3 2

【样例2输出】

444666

【数据范围】

保证数据在满足条件的情况下随机,不保证均匀,但保证无特殊的构造方法。 a_i 的随机方式为取一个 limit,然后在 [1, limit] 的范围内随机。

数据点编号	$n \le$	$m \leq$	$a_i \le$	特殊限制
1	10^{5}	0	10^5	无
2,3	10^{5}	1	10^{5}	无
4,5	10^{3}	10^{3}	10^{3}	无
6,7	10^{5}	10^{5}	3	a_i 为 $2,3$ 的循环
8, 9, 10	10^{5}	10^{5}	10^{5}	无

3.子集

【题目描述】

清楚姐姐有一个正整数 M。对于集合 S, 她定义

$$F_0(S) = [\sum_{x \in S} x = M]$$

以及

$$F_k(S) = \sum_{T \subseteq S} F_{k-1}(T)(k > 0)$$

给定集合 $S = \{a_1, a_2, \dots, a_n\}$ 与非负整数 k,你需要求出 $F_k(S)$ 对 $10^9 + 7$ 取模的值。

其中:

[condition] 表示当 condition 为真时值为 1, 否则为 0。

特别地, 我们认为空集内所有元素和为 0; $\emptyset \subseteq \emptyset$ 。

你可以通过样例 1 的第二组数据来更好地理解第二点。

【输入格式】

本题有多组数据。第一行一个正整数 T 表示数据组数;对于每组数据:

第一行三个正整数 n, M, k。

第二行 n 个正整数 a_1, a_2, \dots, a_n 。

【输出格式】

输出一行一个正整数表示 $F_k(S)$ 对 $10^9 + 7$ 取模的值。

【样例1 输入】

3

3 5 2

253

602

114514

7 10 3

1919810

【样例1 输出】

6

64

2268

【样例1 说明】

对于第一组数据:

对于 k = 0, $F_0(\{2,3\}) = F_0(\{5\}) = 1$, 其余的都是 0。

对于 k=1:

$$F_1(\{2,3\}) = F_1(\{5\}) = F_1(\{2,5\}) = F_1(\{3,5\}) = 1;$$

 $F_1(\{2,5,3\}) = 2;$

其余的都是 0。

因此, $F_1(\{2,3,5\}) = 1 + 1 + 1 + 1 + 2 = 6$;

对于第二组数据: 由于 M=0 且任意 $a_i \neq 0$,因此只有 $F_0\left(\emptyset\right)=1$,其余的都是 0。

因此,对于任意集合 T 均有 $F_1(T)=1$,从而 $F_2(S)=\sum_{T\subseteq S}F_1(T)=2^{|S|}=64$ 。 注意,由于我们认为 $\emptyset\subseteq\emptyset$,因此同样有 $F_1(\emptyset)=F_0(\emptyset)=1$ 。

【数据范围】

对于 100% 的数据, $1 \le T \le 5,0 \le a_i \le M \le 5000,1 \le n \le 5000,0 \le k \le 10^9$ 。

测试点编号	n	M	k	a_i
$1\sim 2$	≤ 10	≤ 10	= 1	$\leq M$
$3\sim 4$	≤ 20	≤ 20	$\leq 10^9$	= 1
$5\sim7$	≤ 20	≤ 20	$\leq 10^9$	$\leq M$
$8\sim 9$	≤ 1000	≤ 1000	$\leq 10^9$	= 1
$10\sim14$	≤ 200	≤ 200	$\leq 10^9$	$\leq M$
$15\sim16$	≤ 1000	≤ 1000	= 1	$\leq M$
$17\sim18$	≤ 3000	≤ 3000	$\leq 10^9$	$\leq M$
$19\sim 20$	≤ 5000	≤ 5000	$\leq 10^9$	$\leq M$

4. 佛怒火莲

【题目描述】

某中二少年 AQX 看完《斗破苍穹》以后就在YY自己能不能搓得出佛怒火莲(一个技能)。

这个技能需要融合五种不同属性的火焰。

现在,火焰商店里面摆着一排N堆火焰,第i堆火焰的属性(类似风雷电)是 a_i ,不稳定度是 b_i 。

已知, 佛怒火莲需要凑齐恰好*k*种属性不同的火焰才能释放, 释放时的威力计算方式如下:

假设选择的k种火焰的不稳定度排序后分别是 b_1,b_2,b_3,\ldots,b_k ,那么,这一发佛怒火莲的威力是 $min_{i=1}^{k-1}|b_i-b_{i+1}|$,也就是按 b_i 排序后,相邻两个火焰不稳定度的差的最小值。

现在, *FFY* 想搓一个威力最大的火莲, 请帮助 *FFY* 计算, 他能搓出的火莲, 威力最大是多少?

【输入格式】

第一行输入T.表示一共T组测试数据。

对干每组测试数据:

第一行三个正整数N,k,TP,表示火焰个数,需求的属性种类数,以及测试数据类型,TP有助于你识别这是哪一类测试数据。

接下来N行,每行两个正整数 a_i , b_i ,表示第i个火焰的属性和不稳定度。

【输出格式】

一个数字表示答案,数据保证一定有解。

【样例1 输入】

1

- 531
- 11
- 12
- 33
- 24
- 25

【样例1输出】

2

【样例1 说明】

选择 $\{1,3,5\}$ 这三个火焰,凑齐了三种不同的a,威力是min(|1-3|,|3-5|)=2。

【数据范围】

测试点1-2: $N \leq 100$, TP = 1。

测试点3-6: $N \le 1000, k = 5, 1 \le a_i \le 5, TP = 2$ 。

测试点7-10: $N \le 1000, k = 5, TP = 3$ 。

测试点11-14: $N \leq 10000, k = 3, TP = 4$ 。

测试点15-17: $N \le 10000$, $k = 5,1 \le a_i \le 5, TP = 5$ 。

测试点18-20: TP=6。

对于所有数据: $1 \le N \le 10000, 2 \le k \le 5, 1 \le a_i \le N, 1 \le b_i \le 10^6$, $T \le 5$ 。