The distribution of each
$$x_i$$
 is

$$P(x_i)' = \frac{1}{b-a}, x_i \pm a \text{ or } x_i \geq b$$

Let $X_{max} \leq X_{min}$ are the estimators for $y_i' \leq a$ is respectively. Where

$$X_{max} = \max(x_1, x_2, -x_n)$$
 $X_{min} = \min(x_1, x_2, -x_n)$

Let f denote the CDF of each x_i'

$$F(x_i) = P(x_i \perp x_i) = 0, \quad x_i \pm a$$

$$= \frac{x-a}{b-a}, \quad a \leq x_i \leq b$$

$$= 10, \quad x_i \geq b$$

Now, consider the CDF of X_{max} ,

$$F(X_{max}) = P(X_{max} \perp x_i) = P(X_i \perp x_i, \forall i)$$

= TT P(X; Lx)

$$= \frac{1}{(x-a)^n}, \alpha \leq x \leq b$$

$$= \frac{(x-a)^n}{(b-a)}, \alpha \leq x \leq b$$

PDF of Xmax is derivative of its COF, 0, x 2 b PLXmax) = $\frac{n(x-a)^{n-2}}{(b-a)^n}, a \leq x \leq b$ $= 0, x \leq a.$ E(Xmax) = fx p(Xmax) dx $= \int_{\alpha}^{b} \frac{n}{(b-a)^{n}} x(x-a)^{n-1} dx$ $= \frac{n}{(b-a)^n} \int_0^{b-a} (a+t) t^{n-1} dt$ $= \frac{n}{(b-a)^n} \left[a \frac{(b-a)^n}{n} + \frac{(b-a)^{n+2}}{n+1} \right]$ $= \alpha + \frac{n}{n+1}(b-\alpha) = \frac{nb+\alpha}{n+1}$ Now, let us proceed to calculate E(Xmin), Note that

E(Xmin), Note that $p(x_i > x) = 1 - p(x_i \perp x) = 1, \quad x_i \leq \alpha$ $= \frac{b - x}{b - \alpha}, \quad \alpha \leq x_i \leq b$ $= 0, \quad x_i \geq b.$

P[Xmin
$$\leq n$$
] = 1 - P(Xmin $\geq n$)

= 1 - Ti P[n ; $\geq n$]

= 1 - $(b-x)^n$,

[Considering for x in $\{a,b\}$], since for outside these intervals,

P[Xmin $\leq x$) is a constant so its derivative will be zero].

PDF of Xmin is derivative of above P[Xmin] = $\frac{n}{(b-a)^n}$ ($b-x$) ^{$n-1$}

E[Xmin] = $\frac{n}{(b-a)^n}$ ($b-x$) ^{$n-1$} dx

Let $t=b-x$,

= $\frac{n}{(b-a)^n}$ $\frac{t}{(b-a)^n}$ - $\frac{b+n}{n+1}$ $\frac{b+n}{n+1}$ $\frac{b}{n+1}$

= $\frac{n}{(b-a)^n}$ $\frac{b(b-a)^n}{n}$ - $\frac{b-a^{n+1}}{n+1}$ $\frac{b}{n+1}$ $\frac{n}{n+1}$

So we have
$$E(X_{mex}) = \frac{nb+a}{n+1}, E(X_{min}) = \frac{na+b}{n+1}$$

$$Bias(X_{mex}) = E(X_{mex}) - b$$

$$= \frac{nb+a}{n+1} - b = \frac{a-b}{n+1}$$

$$Bias(X_{min}) = \frac{na+b}{n+1} - a = \frac{b-a}{n+1}$$

$$Bias(X_{min}) = \frac{na+b}{n+1} - a = \frac{b-a}{n+1}$$

$$So, X_{mex} = 8 \times \text{min are biased estimators.}$$

$$Let A = \frac{n \times \text{mex} - \times \text{min}}{n-1} \quad be \quad an \quad estimators$$

$$Rias(A) = \frac{1}{n-1} \left[\frac{nb+a}{n+1} \right] - \frac{na+b}{n+1} - b$$

$$= \frac{1}{n-1} \left[\frac{nb+a}{n+1} \right] - \frac{na+b}{n+1} - b$$

$$= \frac{1}{n-1} \left[\frac{nb+a}{n+1} \right] - \frac{na+b}{n+1} - b$$

$$= \frac{1}{n-1} \left[\frac{nb+a}{n+1} \right] - \frac{na+b}{n+1} - b$$

$$= \frac{1}{n-1} \left[\frac{nb+a}{n+1} \right] - \frac{na+b}{n+1} - b$$

$$= \frac{1}{n-1} \left[\frac{nb+a}{n+1} \right] - \frac{na+b}{n+1} - \frac{1}{n+1} - \frac{1$$

=\frac{1}{n-1}\left[\frac{n\data}{n+1}\right] - \frac{n\data}{n+1}\right] - \alpha

=\frac{n^2\alpha + n\b - n\b - \alpha - n\alpha \data}{n^2-1}

=\frac{n}{4}\left[\frac{n\data}{n-1}\right] - \alpha

\frac{n}{n-2} - \alpha \data \data

\frac{n\data}{n-1} \tag{n\data} \tag{n\data} \tag{n\data} \tag{n\data} \tag{n-1}

\tag{are unbiased estimators for 'a'

\frac{n}{2}\left[\data'\dat

a comment of the comm