Circuite logice NMOS

Introducere
Circuite NMOS statice

Introducere

- Familiile de circuite PMOS şi NMOS bazate pe folosirea tranzistoarelor MOS cu canal indus p, respectiv n
- In circuitele de comutaţie se folosesc cu precădere circuite din familia NMOS datorită vitezei de comutaţie superioare
- Compuse exclusiv din tranzistoare NMOS
- Alimentate de la o singură sursă de tensiune pozitivă
- Nivelele logice depind de tensiunea de alimentare

Tranzistor bipolar vs MOS

Inversorul NMOS static

- Inversor realizat cu tranzistorul T₁
- T₂ funcţionează ca sarcină activă
- In tehnologia MOS rezistenţele sunt realizate printr-un tranzistor MOS
- Sarcina externă este în general constituită tot din intrări de tranzistoare NMOS, rezistenţă de intrare foarte mare, caracter capacitiv

Caracteristica de transfer

Rezistenţa de sarcină

Realizată cu un tranzistor MOS

Grila alimentată la o tensiune V_{GG}

 T_1 conduce, pentru ca V_0 sa fie cât mai apropiată de zero, $R_{T_2} >> R_{T_1}$:

$$\frac{W_1/L_1}{W_2/L_2} >> 1$$

 R_{T1} are valori cuprinse intre 0,5 si $10K\Omega$ Daca R_{T1} = $10K\Omega$ si R_{T2} = $250K\Omega$ = R_s

$$V_0 = \frac{V_{DD}}{R_S + R_{T1}} R_{T1}$$

Pentru $V_{DD} = 15V$, $V_o = 0.5V$

 T_1 este blocat, $V_0 = V_{GG} - V_{T2}$, pentru ca V_0 sa fie aproximativ V_{DD} , $V_{GG} = V_{DD} + V_T$

Poarta ŞI-NU statică

Pentru asigurarea la ieşire a unui nivel inferior al tensiunii de ieşire suficient de apropiat de masă, este necesar ca rezistenta activă să fie de câre. f + mai mare decât rezistența de trecere a ranzistoarelor de intrare; nu se recomandă legarea în serie a mai multor tranzistoare deoarece creșterea exagerată a rezistenței de sarcină duce la creșterea corespunzătoare a timpilor de comutare

Dacă la ambele intrări se aplică $V_{IH} = V_{DD}$, T_1 şi T_2 conduc, $V_0 \approx 0V$ Dacă la cel puţin o intrare se aplică o tensiune $V_{II} = 0V$, tranzistorul de intrare respectiv se

 $V_{IL} = 0V$, tranzistorul de intrare respectiv se bľochează, V_o ≈ V_{DD}

$$F = AB$$

Poarta SAU-NU statică

T₁ şi T₂ conectate in paralel, pe ale căror grile se aplică semnalele de intrare
T₃ rezistență de sarcină

Legarea in paralel a tranzistoarelor nu afecteaza dimensionarea rezistentei active; numarul de intrari nu este limitat din considerente dinamice.

Dacă la ambele intrări se aplică V_{IL} = 0V, T₁ și T₂ blocate, V_o ≈ V_{DD}

Dacă la cel puţin o intrare se aplică o tensiune $V_{IH} = V_{DD}$, tranzistorul de intrare respectiv conduce, $V_o \approx 0V$

$$F = \overline{A + B}$$

Poarta ŞI-SAU-NU statică

 Prin combinarea procedeelor de legare în serie şi în paralel a tranzistoarelor MOS se pot obţine porţi ce implementează funcţii complexe, menţinând o structură simplă a circuitului

Circuite logice integrate CMOS

Introducere

Inversorul CMOS

Parametri circuitelor CMOS

Circuite de protecţie

Comportamentul la ieşire al circuitelor CMOS

Circuite tampon

Introducere

- structuri metal-oxid-semiconductor cu simetrie complementară
- parametri cei mai apropiaţi de cei ai unei familii ideale
- consum extrem de redus (100 nW în regim static, per poartă)
- gamă largă a tensiunilor de alimentare: 3-15V sau 3-18V
- posibilitatea ca în regim static numărul sarcinilor comandate să fie foarte mare (peste 100)
- în regim dinamic, sarcina de circa 5pF a fiecărei intrări CMOS necesită realizarea unui compromis între numărul sarcinilor comandate şi viteză
- gamă largă a temperaturilor ambiante de funcţionare (-40°C ÷ +85°C)
- niveluri ale semnalelor de ieşire extrem de apropiate de 0V pentru starea 0 logic şi, respectiv, de valoarea tensiunii de alimentare, pentru starea 1 logic

Inversorul CMOS

- pereche de tranzistoare MOS, unul cu canal n și unul cu canal p
- V_i=V_{DD}= '1', M_n deschis şi M_p blocat, $V_0 = V_{SS} = '0'$
- deschis, $V_0 = V_{DD} = '1'$

Caracteristica statică de transfer

- dependentă de tensiunea de alimentare V_{DD}
- împărţită în cinci regiuni distincte
- V_{TN} tensiunea de prag a tranzistorului M_n
- V_{TP} tensiunea de prag a tranzistorului M_p

TENSIUNEA DE INTRARE $V_{ ext{IN}}$	REGIUNEA	$ m M_{P}$	$ m M_N$
$0 \le V_{IN} \le V_{TN}$	I	LINIAR	BLOCAT
V_{OUT} - $\mid V_{\text{TP}} \mid \ge V_{\text{IN}} \ge V_{\text{TN}}$	II	LINIAR	SATURAT
V_{OUT} - $V_{\text{TP}} = V_{\text{IN}} \leq V_{\text{OUT}} + V_{\text{TN}}$	III	SATURAT	SATURAT
$V_{\text{OUT}}+V_{\text{TN}} \mid \leq V_{\text{IN}} \leq V_{\text{DD}} - \mid V_{\text{TP}} \mid$	IV	SATURAT	LINIAR
V_{DD} - $\mid V_{TP} \mid \le V_{IN} \le V_{DD}$	V	BLOCAT	LINIAR

Tensiunea de alimentare minimă

- Dacă V_{DD} este mai mică decât V_{DDmin}=V_{Tn}+|V_{Tp}|, inversorul va prezenta o caracteristică de transfer cu histerezis, şi circuitul nu va mai putea fi utilizat ca poartă logică
- Valoarea tipică a tensiunii de prag pentru structurile CMOS standard este: $V_{Tn} = |V_{Tp}| = 1,5V$
- $V_{DDmin}=3V$

Nivelele de tensiune şi marginea de imunitate la perturbaţii statice

- V_{OHmin}=V_{DD}-0.5V (valoarea tipică: V_{DD}-0.01V)
- V_{0Lmax}=0.05V (valoarea tipică: 0.01V)
- $V_{IHmin} = 70\% V_{DD}$
- $V_{II max} = 30\% V_{DD}$
- $M_{ZL}=V_{ILmax}-V_{OLmax}=30\%V_{DD}$
- $M_{ZH}=V_{OHmin}-V_{IHmin}=30\%V_{DD}$
- Practic, imunitatea la zgomot este 45...50% din valoarea tensiunii de alimentare

Puterea disipată

- În regim static unul dintre cele doua tranzistoare este blocat; poarta nu consumă curent, cu excepţia curentului de fugă ce se propagă prin rezistenţe de ordinul megaohmilor, rezistenţele tranzistoarelor în regim de blocare
- În regim dinamic, pe fiecare front de comutaţie creşte consumul de putere. La aceasta contribuie două cauze:
 - ambele tranzistoare MOS complementare se află în regim de conducţie
 - apare necesitatea încărcării sau descărcării capacităților parazite de la ieşirea circuitului şi eventual a capacității de sarcină

Puterea disipată

- $P_t = P_{cc} + P_{dc} + P_{df}$
- P_{cc} este puterea statică, disipată când circuitul este într-o stare stabilă, datorită curentului rezidual prin tranzistorul blocat
- P_{dc} este puterea dinamică disipată datorită încărcării şi descărcării sarcinii capacitive a circuitului
- P_{df} este puterea dinamică în momentul comutării circuitului, când fronturile semnalului de comandă sunt nenule

Factorul de încărcare

Impedanță de intrare mare, curent de intrare scăzut (10pA) O componentă a curentului de intrare de valoare mai mare o reprezintă curentul de incărcare-descărcare a capacității de intrare a structurilor CMOS

 I_{OL} =0,44mA, I_{OH} = -0,5mA pentru V_{DD} =5V; I_{OL} =0,9 mA, I_{OH} =-0,9 mA pentru V_{DD} =10V

Aceşti curenţi de ieşire pot comanda un număr foarte mare de porţi CMOS. Având în vedere sarcina capacitivă, care este proporţională cu numărul de porţi comandate, şi care are efecte negative asupra timpului de propagare şi a puterii disipate, în practică se limitează factorul de încărcare la ieşire la valori maxime de 50

basic CMOS NAND gate

more input combinations pull output high than low → P-channel pull-ups in parallel ("OR"), N-channel pull-downs in series ("AND")

basic CMOS NOR gate

more input combinations pull output low than high → P-channel pull-ups in series ("AND"), N- channel pull-downs in parallel ("OR")

Circuite logice integrate HCT High-speed CMOS TTL compatible

Tensiunea de alimentare

$$V_{CC} = 4,5 V \div 5,5 V$$

Nivelele de tensiune

$$V_{OHmin} = V_{CC} - 0.1V$$

$$V_{Ol max} = 0.1V$$

$$V_{IHmin}=2V$$

$$V_{II max} = 0.8V$$

Marginea de imunitate la perturbaţii statice

$$V_{CC}=4,5V$$

$$M_H = V_{OHmin} - V_{IHmin} = 2.4V$$

$$M_L = V_{ILmax} - V_{OLmax} = 0.7V$$

Curentii de intrare/iesire

I_{OH}=I_{OL}=4mA I_{IH}, I_{IL} – neglijabili (≈10pA)

Factorul de încărcare

Ca şi în cazul circuitelor CMOS, curenţii de ieşire ai porţilor HCT pot comanda un număr foarte mare de porţi HCT. În practică, numărul porţilor comandate este limitat pentru a permite funcţionarea sistemului numeric la frecvenţe mari Folosind o poarta HCT se pot comanda maximum 2 porti TTL

Timpul de propagare

$$t_{pHL} = t_{pLH} = t_{pd} = 7 \text{ns}$$

Puterea statica disipata

Probleme propuse

- Cate porti TTL din seria 74 pot fi comandate cu o poarta HCT?
- Sa se calculeze valoarea maxima a rezistentei care poate fi conectata intre doua porti CMOS fara modificarea comportamentului circuitului. Cum afecteaza aceasta rezistenta marginea de zgomot?
- Sa se proiecteze un circuit care comanda un LED folosind o poarta CMOS. Pentru LED se considera urmatoarele valori: V_{LED}=1,6V si I_{LED}=20mA.
 - Daca I='0' -> Q₁ deschis -> LED aprins
 - Daca I='1' -> Q₁ blocat -> LED stins

$$R_E = \frac{V_{OH \min} - V_{BE} - V_{LED}}{I_{LED}} \approx 110\Omega$$

