Numerične metode 2

Zapiski s predavanj prof. Marjetke Knez

Domen Vogrin

Kazalo

1	Teorija aproksimacije									
	1.1	Aprok	ssimacija funkcij	1						
		1.1.1	Splošen optimalni aproksimacijski problem	3						
	1.2	Aprok	ssimacija po metodi najmanjših kvadratov (MNK)	4						
		1.2.1	Normalni oziroma Gramov sistem enačb	6						
		1.2.2	Povezava s predoločenimi sistemi enačb	10						
	1.3	Enako	omerna aproksimacija zveznih funkcij s polinomi	12						
2	Inte	erpolac	cija	14						
	2.1	Poline	omska interpolacija	14						
		2.1.1	Lagrangeva oblika zapisa interpolacijskega polinoma	15						
		2.1.2	Newtonova oblika zapisa interpolacijskega polinoma	19						
			2.1.2.1 Trikotna shema	22						
			2.1.2.2 Posplošitev deljene diference	24						
			2.1.2.3 Posplošitev rekurzivne formule	24						
			2.1.2.4 Odsekoma polinomske funkcije (zlepki)	26						
3	Nu	meričn	o odvajanje	26						
	3.1									
4	Nui	meričn	a integriracija	29						
	4.1									
		4.1.1	Alternativna izpeljava integracijskih pravil - metoda							
			nedoločenih koeficientov	34						
	4.2	Nume	rične napake pri integracijskih pravilih							
	4.3		vljena integracijska pravila							
		4.3.1	Sestavljeno trapezno pravilo							
		4.3.2	·							
		4.3.3	Ocena napake in Richardsonova ekstrapolacija							
	4.4	Gaussova integracijska pravila								
	4.5	Integrali v več dimenzijah								
			Dvojni integral							
		4.5.2	Tenzorska pravila	43						
		4.5.3	Simpsonovo pravilo							
		4.5.4	Metoda Monte-Carlo							
5	Nu	meričn	o reševanje navadnih diferencialnih enačb	44						
		5.0.1	Začetni problem reda 1	45						
		5.0.2								

	5.0.3 Robni problemi												45
5.1	Globalna in lokalna napaka .												49
5.2	Runge-Kutta metode												51
	5.2.1 Primeri R-K metod												52
	5.2.2 Reševanje diferencialnil	h e	nač	b v	višj	ega	re	eda					53
5.3	Veččlenske metode			_						_		_	54

1 Teorija aproksimacije

1.1 Aproksimacija funkcij

Denimo, da imamo podano funkcijo f. Radi bi jo aproksimirali s kakšno 'preprostejšo' funkcijo \tilde{f} , ki bi bila lažje izračunljiva, bi se jo dalo enostavno odvajati, integrirati . . .

Primer.

$$\sin(x) \sim x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Ključna vprašanja, ki se nam postavijo, so:

- V kakšni množici/podprostoru naj iščemo aproksimant \tilde{f} ?
- V čem naj si bo \tilde{f} podobna/sorodna z f?
- Ali \tilde{f} obstaja (v množici, kjer jo iščemo)?
- če obstaja, ali je določen enolično?
- Kako konstruirati aproksimant \tilde{f} ?
- Kako dobro nadomestilo za f je izračunan \tilde{f} ?

V splošnem aproksimacijski problem formaliramo takole:

z X označimo vektorski prostor, katerega elemente želimo aproksimirati, $S\subseteq X$ naj označuje podprostor/podmnožico v X, v katerem iščemo aproksimante. Aproksimacijska shema je operator

$$A: X \to S$$

ki vsakemu elementu $f \in X$ priredi aproksimacijski element (aproksimant)

$$\tilde{f}=\mathcal{A}f\in S$$

Primer. Vektorski prostori:

- $X = \mathcal{C}([a,b]), X = \mathcal{C}^k([a,b])$
- $X = \ell_{\rho}^{2}([a,b]) = \{f : [a,b] \to \mathbb{R} \int_{a}^{b} f^{2}(x)\rho(x)dx < \infty\},$ pri čemer je ρ pozitivna utež: $\rho(x) > 0$ za vsak $x \in [a,b]$
- $X = \mathbb{R}^n$

Primer. Podprostori, v katerih iščemo aproksimante:

• $S = \mathbb{P}_n = Lin\{1, x, x^2, \dots, x^n\}$ polinomi stopnje $\leq n$:

$$S = \{ \sum_{i=0}^{n} a_i x^i; a_i \in \mathbb{R} \}$$

• triginimetrični polinomi

$$S = Lin\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots, \sin nx, \cos nx\}$$

• podprostori racionalnih funkcij, odsekoma polinomskih funkcij

Da bomo lahko definirali aproksimacijski problem in tudi ocenili napako aproksimacije, potrebujemo **normo**. Najbolj znane norme na prostoru funkcij so naslednje:

• neskončna norma ($||f||_{\infty}$)

$$f \in \mathcal{C}([a,b]), ||f||_{\infty,[a,b]} = \max_{x \in [a,b]} |f(x)|$$

Za izračun numeričnega približka za neskončno normo na intervalu [a, b] izberemo dovolj gosto zaporedje točk:

$$a \le x_0 < x_1 < \dots < x_n \le b, \mathbf{x} = (x_i)_{i=0}^N$$

in izračunamo

$$||f||_{\infty,\mathbf{x}} = \max_{i=0,\dots,N} |f(x_i)|$$

• druga norma ($\|\cdot\|_2$) - norma, porojena iz skalarnega produkta. Naj bo vektorski prostor X opremljen s skalarnim produktom $\langle \cdot, \cdot \rangle$. Potem je

$$||f||_2 = \sqrt{\langle f, f \rangle}, f \in X$$

Primeri skalarnih produktov:

·
$$\langle f, g \rangle = \int_a^b f(x)g(x)\rho(x)dx, f, g \in \ell_\rho^2([a, b])$$

$$\cdot \|f\|_2 = \sqrt{\int_a^b f^2(x)\rho(x)dx}$$

Za $f(x) \equiv 1$ to imenujemo standardni skalarni produkt

• diskretni semi-skalarni produkt

$$\mathbf{x} = (x_i)_{i=0}^N, \ a \le x_0 < x_1 < \dots < x_n \le b$$

$$\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)\rho(x_i)$$

Če ga še delimo z dolžino intervala, dobimo približek za prejšnjega.

$$||f||_{2,\mathbf{x}} = \sqrt{\sum_{i=0}^{N} f^2(x_i)\rho(x_i)}$$

Za določanje aproksimanta \tilde{f} ločimo dva primera:

- 1. Optimalni aproksimacijski problemi
- 2. interpolacija

1.1.1 Splošen optimalni aproksimacijski problem

Naj boXvektorski prostor z normo $\|\cdot\|,\,S\subseteq X.$ Za $f\in X$ iščemo $\tilde{f}\in S,$ da velja

$$||f - \tilde{f}|| = \inf_{s \in S} ||f - s|| = dist(f, S)$$

Torej, izmed možnih približkov izberemo najboljšega.

Pri tem predmetu si bomo ogledali:

- aproksimacijo po metodi najmanjših kvadratov
 (za normo izberemo drugo normo normo iz skalarnega produkta)
- 2. enakomerna polinomska aproksimacija $(X = C([a, b]), S = \mathbb{P}_n, \|\cdot\|_{\infty})$

Polinomi so zelo uporabni pri aproksimaciji funkcij, saj so gosti v prostoru zveznih funkcij.

Izrek 1.1. (Weierstrassov izrek) Naj bo $f \in \mathcal{C}([a,b])$. Potem za vsak $\varepsilon > 0$ obstaja polinom p, da je $||f - p||_{\infty,[a,b]} < \varepsilon$. Drugače povedano:

$$dist(f, \mathbb{P}_n) \stackrel{n \to \infty}{\longrightarrow} 0$$

Dokaz. (konstruktivni - ideja) Naj bo [a,b]=[0,1]. Za $f\in \mathcal{C}([0,1])$ definiramo t.i. **Bernsteinov polinom**:

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f(\frac{i}{n}) B_i^n(x)$$

kjer je $B_i^n(x)$ Bernsteinov bazni polinom:

$$B_i^n(x) = \binom{n}{i} x^i (1-x)^{n-i}, i = 0, 1, \dots, n$$

Da se pokazati, da gre $||f - \mathcal{B}_n f||_{\infty,[a,b]} \to 0$, ko gre $n \to \infty$.

Bernsteinov aproksimacijski polinom nam poda en možen način aproksimacije funkcije f (na [0,1]).

Bernsteinov aproksimacijski operator:

$$\mathcal{B}_n : \mathcal{C}([a,b]) \to \mathbb{P}_n$$

$$f \mapsto \mathcal{B}_n f$$

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f(a + \frac{i}{n}(b-a)) B_i^n(\frac{x-a}{b-a})$$

Po Weierstrassovem izreku imamo zagotovljeno konvergenco v neskončni normi, žal pa je konvergenca zelo počasna.

1.2 Aproksimacija po metodi najmanjših kvadratov (MNK)

Sodi pod optimalne aproksimacijske probleme.

Naj bo X normiran vektorski prostor nad \mathbb{R} s skalarnim produktom $\langle \cdot, \cdot \rangle$ in naj bo $\|\cdot\|_2 = \sqrt{\langle \cdot, \cdot \rangle}$. $S \subseteq X$ naj bo končno dimenzionalen podprostor v X, $S = Lin\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$, dimS = n. Za izbran $f \in X$ iščemo $f^* \in S$, da bo veljalo

$$||f - f^*||_2 = \min_{s \in S} ||f - s||_2$$

 f^* naj bo element najbližje aproksimacije (ENA) po MNK za $f \in X$.

Izrek 1.2. Naj bo $S \subseteq X$ končno dimenzionalen podprostor. Element $f^* \in S$ je element najbližje aproksimacije po MNK za $f \in X$ natanko takrat, ko je

$$f - f^* \perp S$$

oziroma

$$\langle f - f^*, S \rangle = 0$$

Dokaz.

(\iff) Predpostavimo, da je $f - f^* \perp S$. Dokazati moramo, da je

$$||f - f^*||_2 = \min_{s \in S} ||f - s||_2$$

Izberimo poljuben $s \in S$.

$$||f - s||_{2}^{2} = ||f - f^{*} + f^{*} - s||_{2}^{2}$$

$$= \langle (f - f^{*}) + (f^{*} - s), (f - f^{*}) + (f^{*} - s) \rangle$$

$$= ||f - f^{*}||_{2}^{2} + 2 \cdot \langle f^{*} - s, f - f^{*} \rangle + ||f^{*} - s||_{2}^{2}$$

$$\geq ||f - f^{*}||_{2}^{2}$$
(1)

Neenakost 1 velja, saj zato, ker velja tako $f^* \in S$ kot $s \in S$ velja tudi $(f^* - s) \in S$, torej veljata tudi enakost $\langle f^* - s, f - f^* \rangle = 0$ in neenakost $||f^* - s||_2 \ge 0$.

 (\Longrightarrow) Predpostavimo, da je f^* ENA po MNK. Dokazati želimo

$$f - f^* \perp S$$

 $\forall s \in S \text{ in } \forall \lambda > 0 \text{ velja}$

$$||f - f^*||_2^2 \le ||f - (f^* - \lambda s)||_2^2$$

$$= \langle f - f^* + \lambda s, f - f^* + \lambda s \rangle$$

$$= ||f - f^*||_2^2 + 2 \cdot \langle f - f^*, \lambda s \rangle + \lambda^2 ||s||_2^2$$

$$0 \le 2\langle f - f^*, \lambda s \rangle + \lambda^2 ||s||_2^2$$

$$0 \le \lambda(2\langle f - f^*, s \rangle + \lambda ||s||_2^2)$$
(2)

$$0 \le \langle f - f^*, s \rangle + \lambda ||s||_2^2 \tag{3}$$

pri čemer iz 2 na 3 pridemo preko začetnega izbora za $\lambda>0$. Ker lahko λ vzamemo tako majhno, da velikost člena $2\langle f-f^*,s\rangle$ prevlada nad $\lambda\|s\|_2^2$, vidimo, da mora biti $0\leq \langle f-f^*,s\rangle$. Če sedaj v S izberemo element -s, potem po istem sklepu velja, da mora biti $0\leq \langle f-f^*,-s\rangle$ oziroma $\langle f-f^*,s\rangle\leq 0$. Sledi, da mora biti

$$\langle f - f^*, s \rangle = 0$$

Iz izreka sledi konstrukcija.

Izberemo $f \in X$. Naj bodo $\varphi_1, \varphi_2, \dots, \varphi_n$ baza za $S \subseteq X$:

$$S = Lin\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

Iščemo $f^* \in S$ ENA po MNK.

$$f^* = \sum_{j=1}^n \alpha_j \varphi_j$$

kjer so $(\alpha_j)_{j=1}^n$ neznani koeficienti. Iz izreka sledi, da mora biti $f - f^* \perp S$. To bo res, ko bo

$$f - f^* \perp \varphi_i, i \in [n]$$

$$0 = \langle f - f^*, \varphi_i \rangle$$

$$= \langle f - \sum_{j=1}^n \alpha_j \varphi_j, \varphi_j \rangle$$

$$= \langle f, \varphi_i \rangle - \sum_{j=1}^n \alpha_j \langle \varphi_j, \varphi_i \rangle$$

Za vsak i tako dobimo enačbo

$$\sum_{i=1}^{n} \alpha_j \langle \varphi_j, \varphi_i \rangle = \langle f, \varphi_i \rangle$$

iz česar skupaj dobimo sistem linearnih enačb. Če zgornje zapišemo po vektorjih, dobimo

$$\begin{bmatrix} \langle \varphi_1, \varphi_i \rangle & \langle \varphi_2, \varphi_i \rangle & \cdots & \langle \varphi_n, \varphi_i \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \langle f, \varphi_i \rangle, \ i \in [n]$$

V matrični obliki:

$$\begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle & \cdots & \langle \varphi_n, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle & \cdots & \langle \varphi_n, \varphi_2 \rangle \\ \vdots & \vdots & & \vdots \\ \langle \varphi_1, \varphi_n \rangle & \langle \varphi_2, \varphi_n \rangle & \cdots & \langle \varphi_n, \varphi_n \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \langle f, \varphi_1 \rangle \\ \langle f, \varphi_2 \rangle \\ \vdots \\ \langle f, \varphi_n \rangle \end{bmatrix}$$

1.2.1 Normalni oziroma Gramov sistem enačb

Gramova matrika G

$$G = (\langle \varphi_j, \varphi_i \rangle)_{i,j=1}^n$$

je **simetrična** matrika. Gramova matrika je tudi pozitivno definitna. To dokažemo tako, da izberemo $x \in \mathbb{R}^n, x \neq 0$.

$$x^{T}Gx = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} \sum_{j=1}^{n} x_{j} \langle \varphi_{j}, \varphi_{1} \rangle \\ \vdots \\ \sum_{j=1}^{n} x_{j} \langle \varphi_{j}, \varphi_{n} \rangle \end{bmatrix}$$

$$= \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} x_{j} \langle \varphi_{j}, \varphi_{1} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x_{j} \varphi_{j}, x_{i} \varphi_{1} \rangle$$

$$= \langle \sum_{j=1}^{n} x_{j} \varphi_{j}, \sum_{i=1}^{n} x_{i} \varphi_{1} \rangle$$

$$= \| \sum_{i=1}^{n} x_{i} \varphi_{i} \|_{2}^{2}$$

$$> 0$$

$$(4)$$

Neenačaj 4 je strog, saj velja

$$\sum_{i=1}^{n} x_i \varphi_i \neq 0$$

To je res zato, ker je $x_i > 0$ in ker je

$$\varphi_i \in Lin\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

kar je baza za S. Dobljeni sistem enačb lahko rešimo z razcepom Choleskega.

Primer. Naj bo f(x) = sin(x), $\langle f, g \rangle = \int_0^{\pi} f(x)g(x)dx$. Aproksimiraj f po MNK v podprostoru \mathbb{P}_1 .

Rešitev: Definirajmo X in S

$$X = \mathcal{C}([0, \pi])(X = \ell^2([0, \pi]))$$

$$S = \mathbb{P}_1 = Lin\{1, x\}, \varphi_1(x) = 1, \varphi_2(x) = x$$

Zdaj definiramo f^*

$$f^*(x) = \alpha_1 \varphi_1(x) + \alpha_2 \varphi_2(x)$$

Imamo Gramovo matriko G

$$\begin{bmatrix} \langle \varphi_1, \varphi_1 \rangle & \langle \varphi_2, \varphi_1 \rangle \\ \langle \varphi_1, \varphi_2 \rangle & \langle \varphi_2, \varphi_2 \rangle \end{bmatrix} = \begin{bmatrix} \pi & \frac{\pi^2}{2} \\ \frac{\pi^2}{2} & \frac{\pi^3}{3} \end{bmatrix}$$

desna stran
$$= \begin{bmatrix} \langle f, \varphi_1 \rangle \\ \langle f, \varphi_2 \rangle \end{bmatrix} = \begin{bmatrix} 2 \\ \pi \end{bmatrix}$$

Zgornji izračuni prihajajo iz postopkov

$$\langle \varphi_1, \varphi_1 \rangle = \int_0^{\pi} dx = \pi$$
$$\langle \varphi_1, \varphi_2 \rangle = \int_0^{\pi} x dx = \frac{\pi^2}{2}$$
$$\langle \varphi_2, \varphi_2 \rangle = \int_0^{\pi} x^2 dx = \frac{\pi^3}{3}$$

in

$$\langle f, \varphi_1 \rangle = \int_0^{\pi} \sin x dx = -\cos x \Big|_0^{\pi} = 2$$

$$\langle f, \varphi_2 \rangle = \int_0^{\pi} x \cdot \sin x dx = \dots = \pi$$

Dobimo:

$$\begin{bmatrix} \pi & \frac{\pi^2}{2} \\ \frac{\pi^2}{2} & \frac{\pi^3}{3} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 2 \\ \pi \end{bmatrix}$$

Ko poračunamo sistem enačb, dobimo

$$\alpha = \begin{bmatrix} \frac{2}{\pi} \\ 0 \end{bmatrix}$$

Geometrijska interpretacija rešitve:

$$\min_{p \in \mathbb{P}_1} ||f - p||_2 = \min_{p \in \mathbb{P}_1} \sqrt{\int_0^{\pi} (sinx - p(x)^2) dx}$$

Slika 1: Z MNK želimo minimizirati ploščino sivega območja.

Primer. Točke (1,2),(2,3),(3,5),(4,8) aproksimiraj po MNK s premico.

Rešitev: $S = \mathbb{P}_1 = Lin\{1, x\}$

$$\langle f, g \rangle = \sum_{i=1}^{4} f(x_i), g(x_i), x = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

f, ki jo aproksimiramo, je znana le v točkah ${\bf x}$.

Izračunamo:

$$\langle 1, 1 \rangle = \sum_{i=1}^{4} 1 \cdot 1 = 4$$

$$\langle 1, x \rangle = \sum_{i=1}^{4} 1 \cdot x_i = 10$$

$$\langle x, x \rangle = \sum_{i=1}^{4} x_i^2 = 30$$

$$\langle f, 1 \rangle = \sum_{i=1}^{4} y_i \cdot 1 = 18$$

$$\langle f, x \rangle = \sum_{i=1}^{4} y_i x_i = 55$$

Dobimo sistem

$$\begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 18 \\ 55 \end{bmatrix}$$

iz katerega dobimo rezultat

$$\alpha = \begin{bmatrix} -\frac{1}{2} \\ 2 \end{bmatrix}$$

Geometrijska interpretacija rešitve:

$$\min_{p \in \mathbb{P}_1} ||f - p||_2 = \sqrt{\sum_{i=1}^4 (y_i - p(x_i))^2}$$

Slika 2: Z MNK želimo najti temnosivo premico, ki minimizira svetlosive razdalje.

1.2.2 Povezava s predoločenimi sistemi enačb

$$Ax = b, A \in \mathbb{R}^{m \times n}, A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}, b \in R^m$$

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2 = \min_{z \in ImA} ||b - z||$$

Aproksimiramo vektor $b \in \mathbb{R}^m(X = \mathbb{R}^m)$

$$S = Lin\{a_1, a_2, \dots, a_n\} = ImA$$
$$b^* = \sum_{j=1}^n x_j a_j = Ax$$
$$\langle x, y \rangle = \sum_{i=1}^m x_i y_i = x^T y$$

 $\langle x, y \rangle = \sum_{i=1}^{m} x_i y_i$:

$$G = (\langle a_i, a_i \rangle)_{i,i=1}^n = A^T A \tag{5}$$

desna stran =
$$(\langle a_i, b \rangle)_{i=1}^n = A^T b$$
 (6)

Primer. $X = \mathcal{C}([0,1])$

$$S = P_{n-1} = Lin\{1, x, x^2, \dots, x^{n-1}\}$$

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$

$$\langle \varphi_i, \varphi_j \rangle = \int_0^1 x^{i-1}x^{j-1}dx = \int_0^1 x^{i+j-2}dx = \frac{1}{i+j-1}$$

$$G = (\frac{1}{i+j-1})_{i,j=1}^n$$

kjer je G Hilbertova matrika. Te so zelo občutljive.

Gramova matrika je lahko zelo občutljiva. Reševanju sistema linearnih enačb se izognemo, če v podprostoru S izberemo **ortonormirano bazo**:

$$\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

je ortonormirana baza, če

$$\varphi_1 \perp \varphi_j \ \forall i \neq j \ \text{in} \ \|\varphi_i\|_2 = 1$$

V tem primeru je G=I in $\alpha_i=\langle f,\varphi_i\rangle,\,f^*=\sum_{i=1}^n\langle f,\varphi_i\rangle\varphi_i.$ Ortonormirano bazo izračunamo z modificiranim Gram-Scmidtovim algoritmom.

Algorithm 1 Modificiran Gram-Schmidtov algoritem

Input baza $\{\psi_1, \psi_2, \dots, \psi_n\}$

- 1: **for** i = 1 : n **do**
- $\varphi_i = \psi_i$
- 3: end for
- 4: **for** i = 1 : n **do**
- $\begin{array}{l} \varphi_i = \frac{\varphi_i}{\|\varphi_i\|_2} \\ \textbf{for } j = i+1: n \textbf{ do} \end{array}$ 6:
- $\varphi_j = \varphi_j \langle \varphi_j, \varphi_i \rangle \varphi_i$
- end for
- 9: end for

Output ortonormirana baza $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$

$$X \in \mathcal{C}([a,b])$$

Slika 3: Druga norma, porojena iz zveznega (levo) in diskretnega (desno) skalarnega produkta

1.3 Enakomerna aproksimacija zveznih funkcij s polinomi

$$X = \mathcal{C}([a,b]), S = \mathbb{P}_n, \|\cdot\|_{\infty}$$

Problem: Za dano funkcijo $f \in \mathcal{C}([a,b])$ iščemo polinom $p^* \in \mathbb{P}_n$, za katerega velja

$$||f - p^*||_{\infty,[a,b]} = \min_{p \in \mathbb{P}_n} ||f - p||_{\infty,[a,b]} = \min_{p \in Pp_n} \max_{x \in [a,b]} |f(x) - p(x)|$$

 p^* imenujemo polinom najboljše enakomerne aproksimacije (PNEA). Problem je nelinearen.

(vstavi skico)

Nasledni izrek nam poda **zadostni pogoj**, da je nek polinom PNEA za neko funkcijo.

Izrek 1.3. Naj bo $f \in \mathcal{C}([a,b])$. Če je polinom $p \in \mathbb{P}_n$ tak, da residual

$$r = f - p \tag{7}$$

alternirajoče doseže svojo normo $||p||_{\infty,[a,b]}$ v vsaj n+2 različnih točkah $(x_i)_{i=0}^{n+1}$

$$a < x_0 < x_1 < \dots < x_{n+1} < b$$

Potem je p polinom najboljše enakomerne aproksimacije za f na [a, b].

Opomba. Kaj pomeni "alternirajoče doseže svojo normo"?

$$||r||_{\infty,[a,b]} = |r(x_i)| \, \forall i \in [n]$$

in

$$r(x_i)r(x_{i+1}) < 0 \forall i$$

(vstavi graf)

Dokaz. Dokaz s protislovjem.

Recimo, da p ne bi bil PNEA za f. Tedaj bi obstajal nek drug polinom $q \in \mathbb{P}_n$, da bi veljalo

$$|f(x_i) - q(x_i)| \le \max_{x \in [a,b]} |f(x) - q(x)|$$

$$= ||f - q||_{\infty,[a,b]}$$

$$< ||f - p||_{\infty,[a,b]}$$

$$= |f(x_i) - p(x_i)| \ \forall i = 0, 1, 2, \dots, n+1$$

Torej za $\forall i$ velja:

$$|f(x_i) - q(x_i)| < |f(x_i) - p(x_i)|$$

To razvijemo v neenakosti

$$-sign(f(x_i) - p(x_i))(f(x_i) - p(x_i)) < f(x_i) - q(x_i)$$

in

$$f(x_i) - q(x_i) < sign(f(x_i) - p(x_i))(f(x_i) - p(x_i))$$

Če v neenakostih x_i spremenimo v x_{i+1} ter upoštevamo enakost

$$sign(f(x_{i+1}) - p(x_{i+1})) = -sign(f(x_i) - p(x_i))$$

dobimo neenakosti

$$sign(f(x_i) - p(x_i))(f(x_{i+1}) - p(x_{i+1})) < f(x_{i+1}) - q(x_{i+1})$$

in

$$f(x_{i+1}) - q(x_{i+1}) < -sign(f(x_i) - p(x_i))(f(x_{i+1}) - p(x_{i+1}))$$

Brez škode za splošnost (BŠS) lahko rečemo, da je $sign(f(x_i) - p(x_i)) = 1$. Potem je $f(x_i) - q(x_i) < f(x_i) - p(x_i)$, $p(x_i) - q(x_i) < 0$ in $f(x_{i+1}) - p(x_{i+1}) < f(x_{i+1}) - q(x_{i+1})$, torej $p(x_{i+1}) - q(x_{i+1}) > 0$.

Vidimo, da ima razlika p-q ničlo na intervalu (x_i, x_{i+1}) za $i \in [n]$. Razlika p-q je polinom stopnje n, ki ima n+1 ničel. Torej mora biti $p \equiv q$.

Izkaže se, da je pogoj tudi potreben (torej da velja ekvivalenca), a je dokaz težek, zato ga bomo izpustili.

Iskanje/računanje PNEA se prevede na iskanje ustrezne množice točk $\{x_i, a \le x_0 < x_1 < \cdots < x_{n+1} \le b\}$.

Definicija 1.4. Naj bo $E = \{x_i, a \le x_0 < x_1 < \dots < x_{n+1} \le b\}$. Definirajmo **minimaks** za f na E konstruirati

$$M_n(f, E) = \min_{p \in \mathbb{P}_n} \max_{x_i \in E} |f(x_i) - p(x_i)|$$

Polinom, pri katerem je ta minimum dosežen, imenujemo **polinom najboljše enakomerne aproksimacije za** f **na množici** E. Izračunamo ga tako, da rešimo naslednji sistem linearnih enačb: (brez izpeljave)

$$f(x_i) - p(x_i) = (-1)^i m, i \in [n+1]$$

Imamo torej n+2 enačb in n+2 neznank (n+1 v polinomu p in eno v m):

$$p(x) = \sum_{j=0}^{n} a_j x^j$$

ter koeficient m, za katerega velja

$$|m| = M_n(f, E)$$

(vstavi slikco)

2 Interpolacija

Problem: Podane imamo vrednosti izbrane funkcije f v n+1 paroma različnih točkah x_0, x_1, \ldots, x_n na realni osi. Te točke bomo imenovali **interpolacijske točke**. Iščemo neko preprostejšo funkcijo g, ki zadošča pohojem

$$g(x_i) = f(x_i) \forall i \in [n]$$

g imenujemo **interpolacijska funkcija**. Za interpolacijske funkcije običajno izberemo polinome, odsekoma polinomske funkcije . . .

Interpolacija se uporablja za

- aproksimacijo dane funkcije
- kadar funkcijo f poznamo le v točkah x_0, x_1, \ldots, x_n , radi pa bi izračunali vrednost te funkcije tudi za x, ki ni ena izmed interpolacijskih točk.
- za izpeljavo formul za numerično integriranje, odvajanje, reševanje navadnih diferencialnih enačb (NDE) . . .

2.1 Polinomska interpolacija

Za $f \in \mathcal{C}([a,b])$ in interpolacijske točke $a \leq x_0 < x_1 < \cdots < x_m \leq b$ iščemo **polinom** p_i , ki zadošča enačbam

$$p(x_i) = f(x_i), i = a, \dots, n$$

Enačb je n+1. Da dobimo enako število enačb, moramo izbrati $p \in \mathbb{P}_n$.

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Enačbe (za i = 0, 1, ..., n)

$$a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n$$

lahko zapišemo matrično

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

Matriko, ki jo uporabimo, imenujemo vandermondova matrika.

$$\det V(x_0, x_1, \dots, x_n) = \prod_{0 \le i < j \le n} (x_j - x_i)$$

Ker je Vandermondova matrika obrnljiva, sledi, da imamo enolično rešitev. Torej obstaja **enoličen** polinom stopnje n, ki interpolira n+1 paroma različnih točk. Tak interpolacijski problem imenujemo **korenten** interpolacijski problem. Vandermondova matrika je primer **zelo občutljive** matrike. Poleg tega nimamo rešitve v **zaključeni obliki**. Spoznali bomo dva druga zapisa interpolacijskega polinoma:

- Lagrangeva oblika zapisa
- Newtonova oblika zapisa

2.1.1 Lagrangeva oblika zapisa interpolacijskega polinoma

Definiramo naslednje polinome:

$$\ell_{0,n}(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)}$$

$$\ell_{1,n}(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_1-x_0)(x_1-x_2)\dots(x_1-x_n)}$$

$$\vdots$$

$$\ell_{n,n}(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_n-x_0)(x_n-x_1)\dots(x_n-x_{n-1})}$$

oziroma

$$\ell_{i,n}(x) = \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

za i = 0, 1, ..., n. To imenujemo **Lagrangevi bazni polinomi**.

Velja:

$$\ell_{i,n}(x) = \delta_{i,j} = \begin{cases} 1 & ; i = j \\ 0 & ; i \neq j \end{cases}$$

Vsi ti polinomi so stopnje točno n.

Izrek 2.1. Polinomi $\ell_{i,n}$ za $i = 0, 1, \ldots, n$ so baza za \mathbb{P}_n .

Dokaz. Dokazati moramo le, da so linearno neodvisni. Preveriti moramo, da je $\alpha_0\ell_{i,n}+\alpha_1\ell_{i,n}+\cdots+\alpha_n\ell_{i,n}=0<=>\alpha_0=\alpha_1=\cdots=\alpha_n=0.$

 (\Longrightarrow)

$$\sum_{j=0}^{n} \alpha_{j} \ell_{j,n}(x) = 0 \ \forall x$$

Vstavimo $x = x_i$ in dobimo

$$0 = \sum_{j=0}^{n} \alpha_j \ell_{j,n}(x_i) = \sum_{j=0}^{n} \alpha_j \delta_{i,j} = \alpha_i$$

(⇐=) Očitno.

Iz dokaza izreka sledi, da lahko vsak polinom $p \in \mathbb{P}_n$ zapišemo kot linearno kombinacijo

$$p(x) = \sum_{j=0}^{n} c_j \ell_{j,n}(x)$$

 $za c_j \in \mathbb{R}$.

Kako izbrati koeficiente, da bo polinom interpolacijski oziroma da bo zadoščal pogojem

$$p(x_i) = \sum_{j=0}^{n} c_j \ell_{j,n}(x_i) = f(x_i)$$

za i = 1, ..., n. Za vsak i je tudi vsota enaka c_i .

Dobili smo

$$p(x) = \sum_{j=0}^{n} f(x_j)\ell_{j,n}(x)$$

kar je Lagrangeva oblika zapisa interpolacijskega polinoma.

Primer. Naj bo $f(x) = e^x$. Pošiči interpolacijski polinom za f na točkah $x_0 = 0, x_1 = 1, x_2 = 3, x_3 = 4$. Za n = 3 izračunamo

$$\ell_{0,3}(x) = \frac{(x-1)(x-3)(x-4)}{((0-1)(0-3)(0-4))}$$

$$= -\frac{1}{12}(x-1)(x-3)(x-4)$$

$$\ell_{1,3}(x) = \frac{x(x-3)(x-4)}{(1(1-3)(1-4))}$$

$$= \frac{1}{6}x(x-3)(x-4)$$

$$\ell_{2,3}(x) = \frac{x(x-1)(x-4)}{(3(3-1)(3-4))}$$

$$= -\frac{1}{6}x(x-1)(x-4)$$

$$\ell_{3,3}(x) = \frac{x(x-1)(x-3)}{(4(4-1)(4-3))}$$

$$= \frac{1}{12}x(x-1)(x-3)$$

in dobimo rešitev

$$p(x) = e^{0}\ell_{0,3}(x) + e^{1}\ell_{1,3}(x) + e^{3}\ell_{2,3}(x) + e^{4}\ell_{3,3}(x)$$

Časovna zahtevnost za evaluacijo $\ell_{i,n}(x)$ v x_i je $\mathcal{O}(n^2)$. Ker v praksi izpustimo skupen polinom, je končna časovna zahtevnost $\mathcal{O}(n)$, tako kot Hornerjev algoritem.

Lema 2.2. Če je $f \in \mathbb{P}_n$, potem je $\sum_{i=0}^n f(x_i)\ell_{i,n}(x) = f(x)$.

Dokaz. Sledi iz enoličnosti interpolacijskega polinoma.

Posledica 2.3.

$$\sum_{i=0}^{n} \ell_{i,n}(x) = 1 \tag{8}$$

Lagrangevi bazni polinomi tvorijo **razčlenitev** oziroma **razčlenitev enote**, ki pozitivno vpliva na stabilnost baze.

Izrek 2.4 (O napaki interpolacije.). Naj bodo $a \le x_0 < x_1 \cdots < x_n \le b$, $f \in \mathcal{C}^{n+1}([a,b])$ in naj bo p interpolacijski polinom za f na teh točkah. Potem za vsak $x \in [a,b]$ obstaja $\xi_x \in (a,b)$, da velja

$$f(x) - p(x) = \omega(x) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

kjer velja

$$\omega(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

Dokaz. Če je $x=x_i$, potem $f(x_i)-p(x_i)=0$ in $\omega(x_i)=0$ ter enakost velja za vsak $\xi_x\in(a,b)$. Naj bo sedaj $x\neq x_i,\,i=0,1,\ldots,n$ in naj bo ta x fiksen. Definirajmo $F(u)=f(u)-p(u)-c\omega(u)$ za neko konstanto c, pri čemer za F velja $F\in \mathbb{C}^{n+1}([a,b]),\,F(x_i)=f(x_i)-p(x_i)-c\omega(x_i)=0$ za $i=0,1,\ldots,n$. Konstanto c izberemo tako, da bo tudi F(x)=0. Torej ima F na [a,b] n+2 različnih ničel. Potem ima F' na (a,b) n+1 različnih ničel. Potem ima F'' na (a,b) n različnih ničel ... Potem ima $F^{(n+1)}$ na (a,b) vsaj eno ničlo. Označimo to ničlo z ξ_x . Torej je

$$0 = F^{(n+1)}(\xi_x)$$

= $f^{(n+1)}(\xi_x) - p^{(n+1)}(\xi_x) - c\omega^{(n+1)}(\xi_x)$

Uporabimo razmislek od zgoraj in dobimo

$$0 = f^{(n+1)}(\xi_x) - c(n+1)!$$

Ko to preuredimo, dobimo

$$c = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x)$$

Za poljuben $c \in [a, b]$ po izreku velja

$$|f(x) - p(x)| = |\omega| \frac{1}{(n+1)!} |f^{(n+1)}(\xi_x)| \le ||\omega||_{\infty, [a,b]} \frac{1}{(n+1)!} ||f^{(n+1)}||_{\infty, [a,b]}$$

Iz tega sledi

$$||f - p||_{\infty,[a,b]} \le \frac{1}{(n+1)!} ||\omega||_{\infty,[a,b]} ||f^{(n+1)}||_{\infty,[a,b]}$$

Ta ocena je uporabna v teoriji, ne pa tudi v praksi.

Lagrangeva oblika je zaradi enostavnosti zelo uporabna pri izpeljavi formul za numerično integracijo, odvajanje ..., ima pa tudi nekaj pomankljivosti pri praktični uporabi:

- numerično računanje vrednosti polinoma v Lagrangevi obliki ...
- Numerične težave, če so interpolacijske točke preblizu skupaj
- Konstrukcija ni rekurzivna. Dodajanje novih točk je zahtevno.

2.1.2 Newtonova oblika zapisa interpolacijskega polinoma

Za bazo, v kateri bomo predstavili interpolacijski polinom, izberemo **prestavljene potence**.

$$\{1, x - x_0, (x - x_0)(x - x_1), \dots, (x - x_0)(x - x_1) \dots (x - x_n)\}\$$

Očitno je to baza: vidimo, da se stopnje povečujejo in je posledično kolokacijska matrika spodnje trikotna. V nadaljevanju bomo naredili rekurzivno konstrukcijo.

Vsak $p \in \mathbb{P}_n$ lahko zapišemo kot

$$\sum_{i=0}^{n} \left(c_i \prod_{j=0}^{i-1} (x - x_j) \right)$$

Iščemo koeficiente $(c_i)_{i=0}^n$, da bo p interpolacijski. Ta p bomo konstruirali **rekurzivno**. Naj bo p_{k-1} interpolacijski polinom za f na točkah $x_0, x_1, \ldots, x_{k-1}$. Kako poiskati p_k , ki bo interpolacijski za f na točkah x_0, x_1, \ldots, x_k , kjer bo $p_{k-1} \in \mathbb{P}_{k-1}$ in $p_k \in \mathbb{P}_k$?

$$p_k(x) = p_{k-1}(x) + c(x - x_0)(x - x_1) \cdots (x - x_{k-1})$$

Vstavimo $x = x_i, j \in \{0, 1, ..., k - 1\}$

$$p_k(x_i) = p_{k-1}(x_i) + c \cdot 0 = f(x_i)$$

Ostane le pogoj za $x = x_k$

$$p_k(x_k) = f(x_k)$$

kjer lahko zapišemo

$$p_k(x_k) = p_{k-1}(x_x) + c \prod_{j=0}^{k-1} (x_k - x_j)$$

S tem je določen c, ki je kar **vodilni koeficient** od p_k . Označimo ga z $[x_0, x_1, \ldots, x_k]f$ in ga imenujemo **deljena diferenca**.

Definicija 2.5. **Deljena diferenca** $[x_0, x_1, \dots, x_k]f$ je vodilni koeficient interpolacijskega polinoma stopnje k (koeficient pri x^k) za funkcijo f na točkah x_0, x_1, \dots, x_k .

Sledi, da lahko $p_k(x)$ zapišemo kot

$$p_k(x) = p_{k-1}(x) + [x_0, x_1, \dots, x_k] f \cdot (x - x_0)(x - x_1) \dots (x - x_{k-1})$$

(vstavi graf) V grafu: $p_0 \in \mathbb{P}_p$, $p_0(x) = x_0 \cdot 1$. Po definiciji je $[x_0]f = f(x_0)$. Iz te rekurzivne konstrukcije dobimo

$$p_{n}(x) = p_{n-1}(x) + [x_{0}, x_{1}, \dots, x_{n}] f(x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$= \dots$$

$$= p_{o}(x) + [x_{0}, x_{1}] f(x - x_{0}) + [x_{0}, x_{1}, x_{2}] f(x - x_{0})(x - x_{1}) + \dots + [x_{0}, x_{1}, \dots, x_{n}] f(x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$p_{n}(x) = \sum_{i=0}^{n} [x_{0}, x_{1}, \dots, x_{i}] f(x - x_{0})(x - x_{1}) \dots (x - x_{i-1})$$

Temu rečemo Newtonova oblika zapisa interpolacijskega polinoma.

Kako izračunati deljene diference?

- $[x_0]f = f(x_0)$
- $[x_0, x_1]f = ?$

(vstavi graf)

$$p_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$
$$= [x_0]f \cdot 1 + [x_0, x_1]f(x - x_0)$$

V zgornji enačbi je $\frac{f(x_1)-f(x_0)}{x_1-x_0}$ vodilni koeficient, 1 in $(x-x_0)$ pa sta baza. Iz tega sledi

$$[x_0, x_1]f = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{[x_1]f - [x_0]f}{x_1 - x_0}$$

Izrek 2.6 (Rekurzivna formula za deljene diference). Naj bodo x_0, x_1, \ldots, x_k paroma različne točke. Tedaj velja

$$[x_0, x_1, \dots, x_k]f = \frac{[x_1, x_2, \dots x_k]f - [x_0, x_1, \dots x_{k-1}]f}{x_k - x_0}$$

Opomba. Pazi na koeficiente! V števcu gredo pri prvem od x_1 do x_k , pri drugem pa od x_0 do x_{k-1} . Tista, ki smo ju izpustili, potem odštejemo v imenovalcu, torej $x_k - x_0$.

Dokaz. Naj bo q_0 interpolacijski za f na točkah $x_0, x_1, \ldots, x_{k-1}$ in q_1 interpolacijski za f na točkah x_1, x_2, \ldots, x_k . Velja, da sta $q_0, q_1 \in \mathbb{P}_{k-1}$. Kako priti do polinoma p, ki bo interpolacijski na x_0, x_1, \ldots, x_k ? Ta p bo tak, da bo veljalo $p \in \mathbb{P}_k$.

Sestavimo model za p

$$p(x) = \ell_0(x)q_0(x) + \ell_1(x)q_1(x), \ell_0, \ell_1 \in \mathbb{P}_1, \ell_0, \ell_1 = ?$$
$$x = x_j, j \in \{x_1, x_2, \dots, x_{k-1}\}$$

Dobimo tri pogoje:

$$(\star\star)$$
 $x=x_i$

$$p(x_j) = \ell_0(x_j)q_0(x_j) + \ell_1(x_j)q_1(x_j) = (\ell_0(x_j) + \ell_1(x_j))f(x_j) \stackrel{?}{=} f(x_j)$$

$$(\star) \ x = x_0$$
$$p(x_0) = \ell_0(x_0) f(x_0) + \ell_1(x_0) g(x_0) \stackrel{?}{=} f(x_0)$$

(*)
$$x = x_k$$

$$p(x_k) = \ell_0(x_k)q(x_k) + \ell_1(x_k)f(x_k) \stackrel{?}{=} f(x_k)$$

Če izberemo

$$\ell_0(x) = \frac{x - x_k}{x_0 - x_k}$$

in

$$\ell_1(x) = \frac{x - x_0}{x_k - x_0}$$

zadostimo pogojema (*). Ker pa je $\ell_0(x) + \ell_1(x) = 1$ za $\forall x$, pa velja tudi (**).

Torej

$$p(x) = \frac{x - x_k}{x_0 - x_k} q_0(x) + \frac{x - x_0}{x_k - x_0} q_1(x)$$

Opomba. V nadaljevanju se bo namesto vodilni koeficient pisalo v.k.

Primerjamo vodilne koeficiente na levi in desni strani in dobimo:

$$v.k.(p) = [x_0, x_1, \dots, x_k]f$$

Na desni strani:

$$\frac{1}{x_0 - x_k} \cdot v.k.(q_0) + \frac{1}{x_k - x_0} \cdot v.k.(q_1) = \frac{[x_1, x_2, ..., x_k]f - [x_0, x_1, ..., x_{k-1}]f}{x_k - x_0}$$

2.1.2.1 Trikotna shema

$$[x_0, x_1, x_2]f = \frac{[x_1, x_2]f - [x_0, x_1]f}{x_2 - x_0}$$

Deljive diference, ki jih potrebujemo v zapisu interpolacijskega polinoma, računamo v **trikotni shemi** (primer za n=3): (vstavi shemo)

Primer. Poišči polinom p, za katerega velja p(0) = 1, p(1) = 3, p(3) = 5 in p(4) = 2.

$$p \in \mathbb{P}_3, x_0 = 1, x_1 = 3, x_2 = 5, x_3 = 4$$
 baza:

$$\{1, x, x(x-1), x(x-1)(x-3)\}$$

(tabela)

$$p(x) = 1 \cdot 1 + 2 \cdot x - \frac{1}{3} \cdot x(x-1) - \frac{1}{4} \cdot x(x-1)(x-3)$$

Za splošen n: (shema)

Kako izračunati vrednost polinoma v Newtonovi bazi pri izbranem x?

Označimo
$$d_i = [x_0, x_1, \dots, x_i] f, i = 0, 1, \dots, n \ n = 4$$

$$p(x) = d_0 \cdot 1 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2) + d_4(x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

= $d_0 + (x - x_0)(d_1 - (x - x_1)(d_2 - (x - x_2)(d_3 - (x - x_3)d_4)))$

zapišemo

$$v_4 = d_4$$

$$v_3 = d_3 + (x - x_3)v_4$$

$$v_2 = d_2 + (x - x_2)v_3$$

$$v_1 = d_1 + (x - x_1)v_2$$

$$v_0 = d_0 + (x - x_0)v_1$$

Algorithm 2 Posplošen Hornerjev algoritem

Input
$$\underline{d}(=[d_0,d_1,\ldots,d_n]), \underline{x}(=[x_0,x_1,\ldots,x_n]), x$$
 $v_n = d_n$
for $i = n-1:-1:0$ do
 $v_i = d_i + (x-x_i)v_{i+1}$
end for
 $v_0 = p(x)$
Output v_0

(tabelca za hronerja)

Poglejmo si za n = 1 (slikca)

$$p(x) = f(x_0) \cdot 1 + [x_0, x_1] f(x - x_0)$$

$$= f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) - (x_1 \to x_0)$$

$$\longrightarrow f(x_0) + \left(\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}\right) (x - x_0) p(x) = f(x_0) - f'(x_0)(x - x_0)$$

Iz tega dobimo sistem enačb:

$$p(x_0) = f(x_0)$$

$$p'(x_0) = f'(x_0)$$

Definicija 2.7. Pravimo, da se polinom p s funkcijo f ujema v točki x_i (k+1)-kratno, če se ujema v vrednosti in prvih k odvodih. Enačbe, ki določajo te pogoje:

$$p(x_i) = f(x_i)$$

$$p'(x_i) = f'(x_i)$$

$$p''(x_i) = f''(x_i)$$

$$\vdots$$

$$p^{(k)}(x_i) = f^{(k)}(x_i)$$

Tak polinom je Taylorjev polinom:

$$p(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(x_i)}{2!}(x - x_i)^2 + \dots + \frac{f^{(k)}(x_i)}{k!}(x - x_i)^k$$

Če bomo v točki x_i zahtevali (k+1)-kratno ujemanje, potem bomo to točko podali (k+1)-kratno:

$$x_{i-1} < x_i = x_{i+1} = x_{i+2} = \dots x_{i+k} < x_{i+k+1}$$

2.1.2.2 Posplošitev deljene diference

Poglejmo si, kako posplošimo deljenje diference.

$$[x_i, x_i, \dots, x_i]f = \frac{f^{(k)}(x_i)}{k!}$$

Opomba. V zgornji enačbi imamo (k+1) x_i -jev

2.1.2.3 Posplošitev rekurzivne formule

Opomba. Vrstni red točk v deljeni diferenci **ni** pomemben.

Naj velja $x_i \leq x_{i+1} \leq x_{i+2} \leq \cdots \leq x_{i+k}$. Potem je

$$[x_i, x_{i+1}, \dots, x_{i+k}]f = \begin{cases} \frac{f^{(k)}(x_i)}{k!} & x_i = x_{i+1} = \dots = x_{i+k} \\ \frac{[x_{i+1}, \dots, x_{i+k}]f - [x_i, \dots, x_{i+k-1}]f}{x_{i+k} - x_i} & \text{sicer} \end{cases}$$

Primer. Poišči polinom p, za katerega velja p(0)=1, p'(0)=2, p''(0)=3, p(1)=-1, p'(1)=3, p(2)=4

Določimo točke x_0, x_1, \ldots, x_5 :

$$x_0 = 0, x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 2$$

Potem sestavimo bazo:

$$\{1, c, x^2, x^3, x^3(x-1), x^3(x-1)^2\}$$

Z uporabo trikotne sheme izračunamo koeficiente za polinom: (trikotna shema) Iz trikotne sheme preberemo koeficiente in sestavimo interpolacijski polinom:

$$p(x) = 1 \cdot 1 + 2 \cdot x + \frac{3}{2}x^2 - \frac{11}{2}x^3 + \frac{29}{2}x^3(x-1) - \frac{79}{8}x^3(x-1)^2$$

Brez izpeljave povejmo še sledeče trditve:

Trditev 2.8. Za $f \in \mathcal{C}^k([a,b]), a \leq x_0 \leq x_1 \leq x_n \leq b$, velja

$$[x_i, x_{i+1}, \dots, x_{i+k}]f = \frac{f^{(k)}(\xi)}{k!}, \xi \in [x_i, x_{i+k}]$$

Trditev 2.9. Za $f \in \mathbb{C}^{n+1}([a,b]), a \leq x_0 \leq x_1 \leq \cdots \leq x_n \leq b$ in interpolacijski polinom p za f na teh točkah velja

$$f(x) - p(x) = \omega(x)[x_0, x_1, \dots, x_n, x]f = \omega(x)\frac{f^{(n+1)(\xi_x)}}{(n+1)!}, \xi_x in(a, b), x \in [a, b]$$

$$\omega(x) = \prod_{i=0}^{n} (x - x_i)$$

Kako izbrati interpolacijske točke na [a, b]? Obstaja več možnosti:

1. Ekvidistantne točke:

$$x_i = a + i \cdot h$$

kjer je $h = \frac{b-a}{n}$ in velja za $i = 0, 1, \dots, n$. (slikca)

2. Čebiševe točke Izbira, pri kateri je neskončna norma polinoma ω najmanjša možna.

$$\min_{a \le x_0 < x_1 < \dots < x_n \le b} \|\omega\|_{\infty, [a,b]} = \min_{a \le x_0 < x_1 < \dots < x_n \le b} \max_{x \in [a,b]} |\omega(x)|$$

Rešitev so

$$x_i = \frac{a+b}{2} + \frac{b-1}{2}\cos(\frac{2i+1}{2n+2}\pi)$$

$$za i = 0, 1, ..., n$$

Recimo, da izberemo $f \in \mathcal{C}([a,b])$, izberemo zaporedje interpolacijskih točk $(\{x_0,x_1,\ldots,x_n\})_n$ in povečujemo stopnjo n. Dobimo zaporedje interpolacijskih polinomov $(p_n)_n$. Zanima nas, kaj se dogaja z napako

$$||f - p||_{\infty, [a, b]} \xrightarrow{n \to \infty} ?? \tag{9}$$

Žal ne velja nujno, da bi šla ta napaka proti 0.

Protiprimer: (Rungejev primer)

Za funkcijo $f(x) = \frac{1}{1-x^2}$ na interalu [-5,5] interpoliramo z ekvidistantnimi točkami. Z večanjem n-ja gre napaka proti ∞ .

2.1.2.4 Odsekoma polinomske funkcije (zlepki)

IDEJA: Interval [a, b] razdelimo na m delov s stičnimi točkami

$$a = x_0 < x_q < \dots < x_m = b$$

(slikca)

$$s: [a, b] \to \mathbb{R}$$

$$s\Big|_{[x_i, x_{i+1}]} \in \mathbb{P}_n$$

V stičnih točkah predpišemo red gladkosti.

Primer. Odsekoma linearne interpolacijske tunkcije (slikca) - funkcija, označene točke, vmes povezane s premicami

Primer. Odsekoma kubičen interpolacijski zlepek. Polinom na $[x_i, x_{i+1})$ določimo tako, da zadostimo pogojem

$$p_{i}(x_{i}) = f(x_{i})$$

$$p'_{i}(x_{i}) = f'(x_{i})$$

$$p_{i}(x_{i} + 1]) = f(x_{i+1})$$

$$p'_{i}(x_{i} + 1]) = f'(x_{i+1}), p_{i} \in \mathbb{P}_{3}$$

3 Numerično odvajanje

Naloga: Iščemo približek za vrednost odvoda funkcije f pri nekem izbranem x-u. Približek bi radi izrazili s kombinacijo vrednosti funkcije f v bližnjih točkah x_0, x_1, \ldots, x_n .

3.1 Ideja za izpeljavo aproksimacijskih formul

Kot približek za odvod funkcije f v izbranem x vzamemo vrednost odvoda interpolacijskega polinoma za f na točkah x_0, x_1, \ldots, x_n pri izbranem x-u.

Za $f \in \mathbb{C}^{n+1}([a,b])$ vemo že:

$$f(x) = p(x) + \omega(x)[x_0, x_1, \dots, x_n, x]f$$

$$p(x) = \sum_{i=0}^n f(x_i)\ell_{i,n}(x)$$

$$\omega(x) = \prod_{i=0}^n (x - x_i)$$

$$f'(x) = p'(x) + (\omega(x)[x_0, x_1, \dots, x_n, x]f)'$$

$$f'(x) = \sum_{i=0}^n f(x_i)(\ell'_{i,n}(x)) + (\omega(x)[x_0, x_1, \dots, x_n, x]f)'$$

kjer prvi sumand imenujemo **aproksimacija odvoda**, drugi pa **napaka**, ki jo označujemo z R(f) oziroma Rf.

Opomba. Odvod deljene diference (brez izpeljave):

$$\frac{d}{dx}[x_0, x_1, \dots, x_n, x]f = [x_0, x_1, \dots, x_n, x, x]f$$

Interpolacijske točke običajno izberemo **ekvidistantno**, za x pa izberemo eno od interpolacijskih točk, na primer x_k , $k \in \{0, 1, ..., n\}$. Tedaj dobimo:

$$f'(x_k) = \sum_{i=0}^{n} f(x_i)\ell_{i,n}(x_k) + \omega'(x_k)[x_0, x_1, \dots, x_k]f + \omega(x_k)[x_0, x_1, \dots, x_k]f$$

kjer je prvi sumand približek, drugi napaka, tretji pa je enak nič. Napako zapišemo kot

$$Rf = \omega'(x_k) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Primer. Vzemimo n=1 in $x_1=x_0+h$. Zanima nas približek za $f'(x_0)$.

$$f(x) = f(x_0)\frac{x - x_1}{x_0 - x_1} + f(x_1)\frac{x - x_0}{x_1 - x_0} + (x - x_0)(x - x_1)[x_0, x_1, x]f$$

$$f'(x_0) = f(x_0) \frac{1}{(-h)} + f(x_1) \frac{1}{h} + ((x_0 - x_1) + 0) \frac{f''(\xi)}{2} + 0$$
$$= \frac{f(x_1) - f(x_0)}{h} - \frac{h}{2} f''(\xi), \xi in[x_0, x_1]$$

Ulomku, ki se pojavi v formuli, pravimo **enostranska diferenca**.

Primer. Za n=2 izberemo $x_0, x_1=x_0+h, x_2=x_0+2h$. Zanima nas približek za $f'(x_1)$ in $f''(x_1)$.

$$f(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} + (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x]f(x_0)$$

Funkcijo odvajamo

$$f'(x_1) = f(x_0) \frac{x_1 - x_2}{2h^2} + f(x_1) \frac{x_1 - x_2 + x_1 - x_0}{-h^2} + f(x_2) \frac{x_1 - x_0}{2h^2} + Rf$$

$$= f(x_0) \frac{1}{2h} + 0 + f(x_2) \frac{1}{2h} + Rf$$

$$= \frac{f(x_2) - f(x_0)}{2h} + Rf$$

$$Rf = \omega'(x_1) [x_0, x_1, x_2, x] f$$

$$= (x_1 - x_0)(x_1 - x_2) \frac{f'''(\xi)}{3!}$$

$$= -\frac{h^2}{6} f'''(\xi)$$

Ko to dvoje združimo, dobimo prvi odvod

$$f'(x_1) = \frac{f(x_2) - f(x_0)}{2h} - \frac{h^2}{6}f'''(\xi)$$

Za izračun drugega ponovno odvajamo

$$f''(x_1) = f(x_0) \frac{2}{2h^2} + f(x_1) \frac{2}{-h^2} + f(x_2) \frac{2}{2h^2} + (\omega(x)[x_0, x_1, x_2, x]f)''\Big|_{x=x_1}$$

$$= \frac{f(x_2) - 2f(x_1) + f(x_0)}{h} + Rf$$

Ulomku se reče simetrična diferenca za drugi odvod.

$$Rf = \omega''(x_1)[x_0, x_1, x_2, x_1]f + 2 * \omega(x_1)[x_0, x_1, x_2, x_1, x_1]f + 0$$

Bralec naj preveri, da je $\omega''(x_1) = 0$ in $\omega'(x_1) = -h^2$.

Sledi

$$Rf = -2h^2 \frac{f^{(4)}(\xi)}{4!} = -\frac{1}{12}h^2 f^{(4)}(\xi)$$
$$f''(x_1) = \frac{f(x_2) - 2f(x_1) + f(x_0)}{h} - \frac{1}{12}h^2 f^{(4)}(\xi)$$

(slikca)

Imamo dve vrsti napake:

- napaka metode Rf (Pada, ko h pada)
- neodstranljiva napaka napake pri izračunu vrednosti funkcije (Raste, ko h pada)

Ko računamo vrednosti funkcije $f(x_i)$, zaradi zaokrožitvenih napak aritmetike dobimo približek $\tilde{f}(x_i)$, da velja

$$\left| f(x_i) - \tilde{f}(x_i) \right| \le \varepsilon$$

Primer. Oceni za obe napaki odvod

$$f'(x_1) = \frac{f(x_2) - f(x_0)}{2h} - \frac{h^2}{6}f'''(\xi)$$

• Napaka metode:

$$D_M \le \frac{h^2}{6} ||f'''||_{\infty, [x_0, x_2]}$$

• Neodstranljiva napaka:

$$D_N \le \frac{2\epsilon}{2h} = \frac{\epsilon}{h}$$

• Skupna napaka:

$$D_S = D_M + D_N$$

(slikca)

4 Numerična integriracija

Naloga: Radi bi izračunali približek za integral

$$Sf = \int_{a}^{b} f(x)dx$$

$$S: \mathfrak{C}([a,b]) \to \mathbb{R}$$

S je linearen funkcional.

Približek za integral bi radi izrazili s kombinacijo vrednosti funkcije f v izbranih točkah x_0, x_1, \ldots, x_n iz intervala [a, b].

IDEJA: Namesto funkcije f integriramo interpolacijski polinom za f na točkah $a \le x_0 < x_1 < \cdots < x_n \le b$.

Vemo že:

$$f(x) = p(x) + \omega(x)[x_0, x_1, \dots, x_n, x] f(zaf \in \mathbb{C}^{n+1}([a, b]))$$

$$p(x) = \sum_{i=0}^{n} f(x_i)\ell_{i,n}(x)$$
(10)

Integriramo 10:

$$\int_a^b f(x)dx = \int_a^b p(x)dx + \int_a^b \omega(x)[x_0, x_1, \dots, x_n, x]fdx$$
$$Sf = \text{približek za integral} + \text{napaka}$$
$$Sf = Ff - Rf$$

To je integracijsko pravilo oziroma kvadratna formula.

$$Ff = \int_{a}^{b} p(x)dx = \sum_{i=0}^{n} f(x_i) \int_{a}^{b} \ell_{i,n}(x)dx = \sum_{i=0}^{n} A_i f(x_i)$$

Za $i=0,\ldots,n$ $\int_a^b \ell_{i,n}(x)dx$ označimo z A_i in jih imenujemo kot uteži integracijskega pravila, točke x_0,x_1,\ldots,x_n pa imenujemo vozli integracijskega pravila.

Definicija 4.1. Red oziroma stopnja integracijskega pravila Sf = Ff + Rf je enaka m, če je pravilo točno za vse polinome stopnje $\leq m$. To je, če velja Rp = 0 za $\forall p \in \mathbb{P}_m$ in $R(x^{m+1}) \neq 0$. To ekvivalentno zapišemo kot

$$Rx^{j} = 0$$
 za $j = 0, 1, \dots, m$

kar je ekvivalentno

$$Sx^j = Fx^j$$

Glede na izbiro vozlov ločimo dve vrsti pravil:

• Newton-Cotesova pravila - vozle izberemo ekvidistantno:

$$x_0 = a, x_i = x_0 + ih, h = \frac{b-a}{n}, i = 0, 1, \dots, n$$

Ločimo:

zaprta pravila (upoštevamo krajišči)

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i}f(x_{i}) + Rf$$

odprta pravila (ne upoštevamo krajišč):

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n-1} A_{i}f(x_{i}) + Rf$$

Gaussova pravila - vozle izračunamo oziroma določimo tako, da je pravilo čim višjega reda.

4.1 Nekaj osnovnih Newton-Cotesovih (N-C) pravil

Primer. n = 1, $a = x_0$, $b = x_1 = x_0 + h$, h = b - a

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (f(x_{0}) \frac{x - x_{1}}{x_{0} - x_{1}} + f(x_{1}) \frac{x - x_{0}}{x_{1} - x_{0}})dx
+ \int_{a}^{b} (x - x_{0})(x - x_{1})[x_{0}, x_{1}, x]fdx
= f(x_{0}) \frac{1}{-h} \int_{x_{0}}^{x_{1}} (x - x_{1})dx + f(x_{1}) \frac{1}{h} \int_{x_{0}}^{x_{1}} (x - x_{0})dx
+ \int_{x_{0}}^{x_{1}} (x - x_{0})(x - x_{1})[x_{0}, x_{1}, x]fdx
= \frac{h}{2} (f(x_{0}) + f(x_{1})) + Rf$$
(11)

Za reševanje Rf uporabimo izrek:

Izrek 4.2. Posplošen izrek o povprečni vrednosti:

če f na [a, b] ne spremeni predznaka, je

$$\int_{a}^{b} f(x)g(x)dx = g(\xi) \int_{a}^{b} f(x)dx$$

za $\xi \in [a, b]$.

Z uporabo izreka dobimo

$$Rf = \int_{x_0}^{x_1} (x - x_0)(x - x_1)[x_0, x_1, x] f dx$$

$$= \dots$$

$$= -\frac{1}{12} h^3 f''(\xi)$$

Uporabili smo tudi trapezno pravilo:

$$\int_{x_0}^{x_1} f(x)dx = \frac{h}{2}(f(x_0) + f(x_1)) - \frac{1}{12}h^3 f''(\xi)$$

za $\xi \in [x_0, x_1]$ in za $f \in \mathcal{C}^2([x_0, x_1])$ (skica)

Določimo še red pravila

• Red je zagotovo vsaj 1

•
$$Rp = ?$$
 za $p \in \mathbb{P}_2$

$$R(x - x_0)^2 = S(\cdot - x_0)^2 + F(\cdot - x_0)^2$$

$$= \int_{x_0}^{x_1} (\cdot - x_0)^2 d \cdot -\frac{h}{2} ((x_0 - x_0)^2 + (x_1 - x_0)^2)$$

$$= \frac{(x_1 - x_0)^3}{3} - \frac{h}{2} h^2$$

$$= \frac{h^3}{3} - \frac{h^3}{2}$$

$$= -\frac{h^3}{6}$$

$$\neq 0$$

Red pravila je torej 1

Primer.
$$n = 2, x_0 = a, x_1 = x_0 + h, x_2 = x_0 + 2h = b, h = \frac{b-a}{2}$$

$$\int_{x_0}^{x_1} f(x)dx = \int_{x_0}^{x_1} \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_2)}{(x_2-x_0)(x_2-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_2)}{(x_0-x_0)(x_0-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_2)}{(x_0-x_0)(x_0-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_2)}{(x_0-x_0)(x_0-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_1)}{(x_0-x_0)(x_0-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_0)}{(x_0-x_0)(x_0-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_0)}{(x_0-x_0)(x_0-x_1)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_0)}{(x_0-x_0)(x_0-x_0)} dx + \int_{x_0}^{x_1} \frac{(x-x_0)(x-x_0)}{(x_0-x_0)(x_0-x_0)} dx + \int_{x_0}^{x_0} \frac{(x-x_0)(x-$$

Izračunamo uteži

$$A_0 = \frac{1}{h^2} \int_{x_0}^{x_1} (x - x_1)(x - x_2) dx$$

$$= \frac{1}{h^2} \int_{x_0}^{x_1} h(t - 1)h(t - 2)h dt$$

$$= \dots$$

$$= \frac{h}{3}$$

Podobno:

$$A_1 = \frac{4}{3}h$$
$$A_2 = \frac{1}{3}h$$

$$\int_{x_0}^{x_2} f(x)dx = \frac{h}{3}(f(x_0) + 4f(x_1) + f(x_2) + Rf)$$

$$Rf = \int_{x_0}^{x_2} (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x]fdx = ??$$

Določimo red pravila. Red pravila je vsaj 2.

$$R(x - x_0)^3 = S(x - x_0)^3 - F(x - x_0)^3$$

$$= \int_{x_0}^{x_2} (x - x_0)^3 dx - \frac{h}{3} ((x_0 - x_0)^3 + 4(x_1 - x_0)^3 + (x_2 - x_0)^3)$$

$$= \frac{(x_2 - x_0)^4}{4} - \frac{h}{3} (4h^3 + 8h^3)$$

$$= \frac{(2h)^4}{4} - 4h^4$$

$$= 0$$

Red je vsaj 3

$$R(x - x_0)^4 = S(x - x_0)^4 - F(x - x_0)^4$$

$$= \int_{x_0}^{x_2} (x - x_0)^4 dx - \frac{h}{3} ((x_0 - x_0)^4 + 4(x_1 - x_0)^4 + (x_2 - x_0)^4)$$

$$= \frac{(2h)^5}{5} - \frac{4}{15} h^5$$

$$\neq 0$$

Red je 3.

Uporabimo nastavek za napako:

$$Rf = Cf^{(m+1)}(\xi), \, \xi \in [a, b]$$

kjer je C konstanta in m red pravila.

Za f izberemo $f(x) = (x - x_0)^4$ in dobimo

$$F(x-x_0)^4 = C \cdot f^{(4)}(\xi) = C \cdot 4!$$

Sledi

$$C = -\frac{h^5}{90}$$

in dobimo

$$Rf = -\frac{h^5}{90}f^{(4)}(\xi)$$

Opomba. Ta nastavek sledi iz razvoja funkcije f v Taylorjevo vrsto

$$f(x) = f(a) + f(a)'(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(m)}(a)}{m!}(x - a)^m + \frac{f^{(m+1)}(\xi)}{(m+1)!}(x - a)^{m+1}$$

Ostanek je

$$Rf = \frac{f^{(m+1)}(\xi)}{(m+1)!}R(x-a)^{m+1}$$

Iz ostanka izpostavimo konstanto C

$$C = \frac{R(x-a)^{m+1}}{(m+1)!}$$

Izpeljali smo Simpsonovo pravilo

$$\int_{x_0}^{x_2} f(x)dx = \frac{h}{3}(f(x_0) + 4f(x_1) + f(x_2)) - \frac{h^5}{90}f^{(4)}(\xi)$$

(slikca?)

4.1.1 Alternativna izpeljava integracijskih pravil - metoda nedoločenih koeficientov

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i}f(x_{i})dx + Rf$$

Ideja je, da neznane uteži določimo tako, da bo red pravila čim višji. Poglejmo si to na primeru Simpsonovega pravila:

Izberemo bazo polinomov

$$\{1, x - x_0, (x - x_0)^2, \dots\}$$

$$\int_{x_0}^{x_2} f(x)dx = A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2) + Rf$$

Če rečemo, da f(x) = 1:

$$\int_{x_0}^{x_2} 1 dx = A_0 + A_1 + A_2$$
$$2h = A_0 + A_1 + A_2$$

Če rečemo, da $f(x) = x - x_0$:

$$\int_{x_0}^{x_2} (x - x_0) dx = A_0(x_0 - x_0) + A_1(x_1 - x_0) + A_2(x_2 - x_0)$$
$$2h = A_1 + 2A_2$$

Če rečemo, da $f(x) = (x - x_0)^2$:

$$\frac{8}{3}h = A_1 + 4A_2$$

Rešimo sistem in dobimo rešitev:

$$A_0 = A_2 = \frac{h}{3}$$
$$A_1 = \frac{4h}{3}$$

Primer. Primer odprtega N-C pravila - pravokotniško pravilo (skica)

$$\int_{a}^{b} f(x)dx = A_{1}f(x_{1}) + Rf = 2hf(x_{1}) + \frac{h^{3}}{3}f''(\xi)$$

4.2 Numerične napake pri integracijskih pravilih

Poglejmo si neodstranljivo napako. Recimo, da velja $|f(x_i) - \tilde{f}(x_i)| \le \epsilon$. Naj bo $Ff = \sum_{i=0}^n A_i f(x_i)$.

$$D_a = \left| \sum_{i=0}^n A_i (f(x_i) - \tilde{f}(x_i)) \right| \le \sum_{i=0}^n |A_i| \epsilon = \epsilon \sum_{i=0}^n |A_i|$$

Upoštevamo, da je pravilo točno vsaj za konstante

$$\sum_{i=0}^{n} A_i \cdot 1 = F1 = S1 = \int_{a}^{b} 1 dx = b - a$$

Če so uteži vse pozitivne, potem $D_a \le \epsilon(b-a)$ in ni numeričnih težav, če n večamo.

Žal pa tako pri zaprtih N-C pravilih za $n \geq 8$ kot tudi pri odprtih N-C pravilih za $n \geq 4$ dobimo negativne uteži.

Primer. $n = 50, [a, b] = [0, 1], \text{ velja } \sum_{i=0}^{n} |A_i| = 6.7 \cdot 10^{10} \text{ (zaprto N-C pravilo)}$

Namesto, da bi uporabljali pravila z visoko stopnjo n raje uporabljamo t.i. sestavljena pravila.

4.3 Sestavljena integracijska pravila

Računamo integral

$$\int_{a}^{b} f(x)dx$$

Ideja: Interval [a,b] razdelimo na manjše podintervale in na vsakem od podintervalov uporabimo integracijsko pravilo nizkega reda in nato rezultate seštejemo.

Recimo, da želimo uporabiti m osnovnih pravil, vsak osnovno pravilo pa zahteva, da razdelimo podinterval na n delov. Imamo korak $h = \frac{b-a}{m \cdot n}$ in točke $x_i = a + i \cdot h$, kjer gre i od 1 do mn. Sestavljeno pravilo bo potem oblike

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{m \cdot n} A_{i}f(x_{i}) + Rf$$

Izpeljimo sestavljeno trapezno pravilo.

4.3.1 Sestavljeno trapezno pravilo

Osnovno:

$$\int_{x_0}^{x_1} f(x)dx = \frac{h}{2}(f(x_0) - f(x_1)) - \frac{h^3}{12}f''(\xi)$$

 $kjer je h = x_1 - x_0.$

(skica) Sestavljeno pravilo:

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{m-1} \int_{x_{i}}^{x_{i}+1} f(x)dx$$
=(vstavimo osnovno pravilo)
$$= \sum_{i=0}^{m-1} (\frac{h}{2}(f(x_{i}) + f(x_{i+1})) - \frac{h^{3}}{12}f''(\xi_{i}))$$

$$= \frac{h}{2}(1 \cdot f(x_{0}) + 2 \cdot f(x_{1}) + 2 \cdot f(x_{2}) + \dots + 2 \cdot f(x_{m-1}) + 1 \cdot f(x_{m})) + Rf$$

Ostanek določimo

$$Rf = \sum_{i=0}^{m-1} \left(-\frac{h^3}{12} f''(\xi_i) \right)$$

$$= -\frac{h^3}{12} \sum_{i=0}^{m-1} f''(\xi_i)$$

$$= -\frac{h^3}{12} m f''(\mu)$$

$$= -\frac{h^3}{12} \frac{b-a}{h} f''(\mu)$$

$$= -\frac{h^2}{12} (b-a) f''(\mu)$$

Ker predpostavimo, da je $f \in \mathcal{C}^2([a,b])$, obstaja $\mu \in [a,v]$, da je

$$\frac{1}{m} \sum_{i=0}^{m-1} f''(\xi_i) = f''(\mu)$$

4.3.2 Sestavljeno Simpsonovo pravilo

Osnovno: n=2

$$\int_{x_0}^{x_2} f(x)dx = \frac{h}{3}(f(x_0) + 4f(x_1) + f(x_2)) - \frac{h^5}{90}f^{(4)}(\xi)$$

kjer je $\xi \in [x_0, x_2]$ in $f \in \mathcal{C}^4([a, b])$ (skica)

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{m-1} \int_{x_{2i}}^{x_{2i+2}} f(x)dx$$

$$= \sum_{i=0}^{m-1} \left(\frac{h}{3}(f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})) - \frac{h^{5}}{90}f^{(4)}(\xi)\right)$$

$$= \frac{h}{3}(f(x_{0}) + 4 \cdot f(x_{1}) + 2 \cdot f(x_{2}) + 4 \cdot f(x_{3}) + 2 \cdot f(x_{4}) + \dots + 2 \cdot f(x_{2m-2}) + 4 \cdot f(x_{2m-1}) + 1 \cdot f(x_{2m})\right) + Rf$$

$$= \frac{h}{3}f(x_{0}) + 4\sum_{i=0}^{m-1} f(x_{2i+1}) + 2\sum_{j=1}^{m-1} f(x_{2i}) + f(x_{2m}) + Rf$$

$$Rf = -\frac{h^{5}}{90}\sum_{i=0}^{m-1} f^{(4)}(\xi_{i}) = -\frac{h^{5}}{90}mf^{(4)}(\mu) = -\frac{h^{4}}{180}(b-a)f^{(4)}(\mu)$$

4.3.3 Ocena napake in Richardsonova ekstrapolacija

Recimo, da računamo približek za integral s sestavljenim N-C pravilom s korakom h. Vprašanje je, kako v praksi določiti ta korak.

Označimo F_h približek, ki ga izračunamo s korakom h za neko fiksno funkcijo f. Predpostavimo, da velja

$$I = F_h + c_0 \cdot h^p + \mathcal{O}(h^{p+1})$$

kjer je c_0 konstanta.

Namesto s korakom h računamo s korakom $\frac{h}{2}$:

$$I = F_{\frac{h}{2}} + c_0 \left(\frac{h}{2}\right)^p + \mathcal{O}(h^{p+1})$$

$$2^p I = 2^p F_{\frac{h}{2}} + c_0 h^p + \mathcal{O}(h^{p+1})(2^p - 1)I = 2^p F_{\frac{h}{2}} - F_h + \mathcal{O}(h^{p+1})$$

$$I = \frac{2^p F_{\frac{h}{2}} - F_h}{(2^p - 1)} + \mathcal{O}(h^{p+1})$$

Ulomku pravimo ekstrapoliran približek.

$$I = \frac{2^{p} F_{\frac{h}{2}} - F_{\frac{h}{2}} + F_{\frac{h}{2}} - F_{h}}{(2^{p} - 1)} + \mathcal{O}(h^{p+1}) = F_{\frac{h}{2}} + \frac{F_{\frac{h}{2}} - F_{h}}{2^{p} - 1} + \mathcal{O}(h^{p+1})$$

Ulomek je ocena za napako približka $F_{\frac{h}{2}}.$

Podobno:

$$I = \frac{2^{p} F_{\frac{h}{2}} - 2^{p} F_{h} + F_{h} - 2^{p} F_{h}}{(2^{p} - 1)} + \mathcal{O}(h^{p+1}) = F_{h} + 2^{p} \frac{F_{\frac{h}{2}} - F_{h}}{2^{p} - 1} + \mathcal{O}(h^{p+1})$$

Ulomek je ocena za napako približka F_h .

Pri sestavljenem Simpsonovem pravilu je p=4 in

$$I = F_{\frac{h}{2}} + \frac{F_{\frac{h}{2}} - F_h}{15} + \mathcal{O}(h^{p+1})$$

Ekstrapoliran približek = $\frac{16F_{\frac{h}{2}}-F_{h}}{15}$

Ekstrapoliran približek za sestavljeno trapezno pravilo = $\frac{4F_h-F_h}{3}$

4.4 Gaussova integracijska pravila

Ideja za izpeljavo: Uteži in vozle izračunamo tako, da je pravilo čim višjega reda oziroma da je pravilo točno za polinome čim višjih stopenj.

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i}f(x_{i}) + Rf$$

Temu rečemo metoda nedoločenih koeficientov:

$$f(x) = x^k \int_a^b x^k dx = \sum_{i=0}^n A_i x_i^k, k = 0, 1, \dots 2n + 1$$

Imamo neznanke $A_0, A_1, \ldots A_n$, ki jim rečemo uteži, in x_0, x_1, \ldots, x_n , ki jim pravimo vozli. Imamo torej 2n+2 neznank, torej rabimo tudi 2n+2 enačb. Zgornji sistem je nelinearen sistem 2n+2 enačb za 2n+2 neznank.

Ideja je ločiti enačbe za neznane vozle od enačb za neznane uteži. Kako?

$$f(x) = p(x) + \omega(x)[x_0, x_1, \dots, x_n, x]f$$

Če je $f \in \mathbb{P}_{n+r}$, je $[x_0, x_1, \dots, x_n, x] f \in \mathbb{P}_{r-1}$

$$Rf = \int_{a}^{b} \omega(x)[x_0, x_1, \dots, x_n, x] f dx$$

Definiramo

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx$$

Če hočemo, da bo pravilo reda vsaj n + r, mora biti

$$\int_{a}^{b} \omega(x)[x_0,\ldots,x_n,x]fdx = 0$$

za nek $f \in \mathbb{P}_{n+r}$.

Če bo $\langle w,q\rangle=0\ \forall q\in\mathbb{P}_{r-1}$, bo pravilo zagotovo reda vsaj n+r. Drugače povedano: Če je $\omega\perp\mathbb{P}_{r-1}$, je pravilo zagotovo reda vsaj n+r. Koliko je lahko r največ?

$$\omega(x) = \prod_{i=0}^{n} (x - x_i)$$

 ω je lahko pravokoten 'največ' na \mathbb{P}_n

$$r - 1 \le n$$
$$r < n + 1$$

Če bo $\omega \perp \mathbb{P}_n$, potem bo pravilo reda n+r=n+n+1=2n+1. Če torej izberemo vozle x_0, x_1, \ldots, x_n tako, da bo $\omega \perp \mathbb{P}_n$, potem je pravilo reda 2n+1. To pravilo imenujemo Gaussovo pravilo. (Prva trditev velja tudi v drugo smer oziroma velja ekvivalenca).

Za neznane vozle dobimo n+1 pogojev za n+1 neznank:

$$\omega \perp 1, \omega \perp x, \omega \perp x^2, \dots, \omega \perp x^n$$

Iz pogojev sestavimo sistem nelinearnih enačb:

$$\langle \omega, 1 \rangle = \int_a^b \omega(x) \cdot 1 dx = 0$$
$$\langle \omega, x \rangle = \int_a^b \omega(x) \cdot x dx = 0$$
$$\vdots$$
$$\langle \omega, x^n \rangle = \int_a^b \omega(x) \cdot x^n dx = 0$$

Opomba. Drug način: Iz baze $1, x, \ldots, x^{n+1}$ izračunamo ortonormirano bazo polinomov $P_0, P_1, \ldots P_{n+1}$ (glede na dan skalarni produkt). Za vozle izberemo ničle polinoma P_{n+1} .

Izrek 4.3. Naj bo $Ff = \sum_{i=0}^{n} A_i f(x_i)$ Gaussovo integracijsko pravilo (Sf = Ff = Rf) reda 2n + 1. Uteži $A_i = \int_a^b \ell_{i,n}(x) dx$ so pozitivne. Za $f \in \mathbb{C}^{2n+2}([a,b])$ je napaka oblike

$$Rf = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{a}^{b} \omega^{2}(x) dx$$

Dokaz.

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i}f(x_{i}) + Rf$$

Če za f izberemo $f(x) = \ell_{j,n}^2(x)$, je Rf = 0.

$$\int_{a}^{b} \ell_{j,n}^{2}(x) dx = \sum_{i=0}^{n} A_{i} \ell_{j,n}^{2}(x_{i}) = A_{j}$$

iz česar sledi $A_j > 0 \ \forall j = 0, 1, \dots, n$.

Naj bo q interpolacijski polinom za f na točkah $x_0, x_0, x_1, x_1, \ldots, x_n, x_n$.

Velja

$$f(x) = q(x) + \omega^{2}(x)[x_{0}, x_{0}, x_{1}, x_{1}, \dots, x_{n}, x_{n}, x]f$$

Vemo tudi, da je $q \in Pp_{2n+1}$, zato sledi, da je

$$\int_{a}^{b} q(x)dx = \sum_{i=0}^{n} A_{i}q(x_{i})$$

kjer je $q(x_i) = f(x_i)$.

Če to formulo integriramo

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} q(x)dx + \int_{a}^{b} \omega^{2}(x)[x_{0}, x_{0}, x_{1}, x_{1}, \dots, x_{n}, x_{n}, x]fdx$$

Leva stran je enaka Sf, desna stran pa Ff + Rf.

$$Sf = \int_a^b f(x)dx$$

$$Ff = \int_a^b q(x)dx$$

$$Rf = \int_a^b \omega^2(x)[x_0, x_0, x_1, x_1, \dots, x_n, x_n, x]fdx$$

Ker $\omega^2(x)$ ne spremeni predznaka na intervalu [a,b],dobimo

$$Rf = \int_{a}^{b} \omega^{2}(x)[x_{0}, x_{0}, x_{1}, x_{1}, \dots, x_{n}, x_{n}, x] f dx$$

$$= [x_{0}, x_{0}, x_{1}, x_{1}, \dots, x_{n}, x_{n}, \tilde{\xi}] f \int_{a}^{b} \omega^{2}(x) dx$$

$$= \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \frac{a}{b} \omega^{2}(x) dx$$

Primer. Določite vozla x_0 in x_1 ter uteži A_0 in A_1 v Gaussovem integracijskem pravilu

$$\int_{-1}^{1} f(x)dx = A_0 fx(x_0) + A_1 f(x_1) + Rf$$

$$\omega(x) = (x - x_0)(x - x_1)$$

Enačbe: $\omega \perp 1, \omega \perp x$

$$0 = \int_{-1}^{1} (x - x_0)(x - x_1) dx = \int_{-1}^{1} (x^2 - (x_0 + x_1)x + x_0x_1) dx = 2(\frac{1}{3} - x_0x_1)$$

$$0 = \int_{-1}^{1} (x - x_0)(x - x_1)x dx = \int_{-1}^{1} (x^3 - (x_0 + x_1)x^2 + x_0x_1x) dx = -2(x_0 + x_1)\frac{1}{3}$$

Dobimo enačbi:

$$2(\frac{1}{3} - x_0 x_1) = 0$$
$$-\frac{2}{3}(x_0 + x_1) = 0$$

Dobimo vozla:

$$x_0 = -\frac{\sqrt{3}}{3}$$
$$x_1 = \frac{\sqrt{3}}{3}$$

Poračunamo tudi uteži:

$$A_0 = \int_{-1}^1 \frac{x - x_1}{x_0 - x_1} dx = \dots = 1 = A_1$$

kjer kot x_0inx_1 vstavimo izračunani vozlišči.

Izračunamo še ostanek (za $f\in \mathcal{C}^4([-1,1]))$:

$$Rf = \frac{f^{(4)}(\xi)}{4!} \int_{-1}^{1} (x - \frac{\sqrt{3}}{3})^2 (x + \frac{\sqrt{3}}{3})^2 dx = \dots = \frac{1}{135} f^{(4)}(\xi)$$

Opomba. V integral lahko dodamo tudi kako pozitivno utež ρ . Računamo torej približek za integral oblike $\int_a^b f(x)\rho(x)dx$.

4.5 Integrali v več dimenzijah

4.5.1 Dvojni integral

Za dano funkcijo f, zvezno na območju $\Omega = [a,b] \times [c,d]$ iščemo integral

$$\iint_{\Omega} f(x,y) dx dy$$

Integracijsko pravilo je oblike

$$\iint_{\Omega} f(x,y)dxdy = \sum_{i=0}^{n} \sum_{j=0}^{m} A_{i,j}f(x_i,y_j) + Rf$$

kjer velja $(x_i, y_j) \in \Omega$.

4.5.2 Tenzorska pravila

(slikca) [a,b] razdelimo s korakom h na n delov: $h=\frac{b-a}{n}, x_i=a+i\cdot h$ za $i=0,1,\ldots,n$. [c,d] razdelimo s korakom k na m delov: $k=\frac{d-c}{m}, y_j=c+j\cdot k$ za $j=0,1,\ldots,m$.

(mogoče bolje skica tu?)

Dobili smo mrežne točke (x_i, y_j) , določiti pa moramo še pripadajoče uteži $A_{i,j}$. Za to bomo uporabili Fubinijev izrek

$$\iint_{\omega} f(x,y)dxdy = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y)dx$$

Poglejmo si natančneje uporabo trapeznega pravila.

$$\iint_{\Omega} f(x,y)dxdy = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy$$
$$= \frac{h}{2}(g(x_{0}) + 2\sum_{i=1}^{n-1} g(x_{i}) + g(x_{n})) - \frac{h^{2}}{12}(b-a)\frac{d^{2}}{dx^{2}}g(x)\Big|_{x=1}$$

$$g(x_i) = \int_c^d f(x_i, y) dy$$

$$= \frac{k}{2} (f(x_i, y) + 2 \sum_{j=1}^{m-1} f(x_i, y_j) + f(x_i, y_m)) - \frac{k^2}{12} (d - c) \frac{d^2}{dx^2} f(x_i, y) \Big|_{y=\mu}$$

Dobimo

$$\iint_{\Omega} f(x,y) dx dy = \frac{h \cdot k}{4} \sum_{i=0}^{n} \sum_{j=0}^{m} A_{i,j} f(x_i, y_j) + \mathcal{O}(h^2 + k^2)$$

Za izračun $A_{i,j}$ se uporabi

$$A_{i,j} = \alpha_i \beta_j$$

$$\alpha = (\alpha_i)_{i=0}^n = (1, 2, 2, 2, \dots, 2, 1)$$

$$\beta = (\beta_j)_{j=0}^m = (1, 2, 2, 2, \dots, 2, 1)$$

kjer imamo n-1 dvojk pri α oziroma m-1 dvojk pri β . (še ena slikca)

4.5.3 Simpsonovo pravilo

(nova skica) Napaka: $Rf = \mathcal{O}(h^4 + k^4)$

Recimo, da računamo integral

$$\int_{\Omega} f(x) dx$$

kjer je $\Omega\subseteq\mathbb{R}^d$ in velja $\Omega=[0,1]^d$. Recimo tudi, da v vsaki dimenziji uporabimo n točk, v katerih evaluiramo funkcijo. Torej je korak $h=\frac{1}{n-1}\approx\frac{1}{n}$. Število vseh izračunov vrednosti funkcije je torej $N=n^d$ $(n=N^{\frac{1}{n}})$, torej $h\approx N^{-\frac{1}{n}}$. Pri sestavljenem trapeznem pravilu je napaka $\mathcal{O}(h^2)=\mathcal{O}(N^{-\frac{2}{d}})$. Pri sestavljenem Simpsonovem pravilu je napaka $\mathcal{O}(h^4)=\mathcal{O}(N^{-\frac{4}{d}})$.

Pri velikih dimenzijah d so alternativa determinističnim metodam verjetnostne metode.

4.5.4 Metoda Monte-Carlo

Z uporabo enakomerno porazdeljene slučajne spremenljivke na intervalu [a, b] in krepkega zakona velikih števil pridemo do sledečega približka:

$$I = \int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$

kjer so x_i naključne vrednosti iz intervala [a,b]. Za napako velja $I-I_N=\mathcal{O}(N^{-\frac{1}{2}})$. Za integral na $\Omega=[a_1,b_1]\times[a_2,b_2]\times\cdots\times[a_d,b_d]$ velja enako, le da so sedaj X_i slučajni vektorji z vrednostmi v Ω .

$$I = \int_{\Omega} f(x)dx \approx \frac{\prod_{j=1}^{d} (b_j - a_j)}{N} \sum_{i=1}^{N} f(x_i)$$

Napaka je enaka kot prej, torej $I - I_N = \mathcal{O}(N^{-\frac{1}{2}})$.

5 Numerično reševanje navadnih diferencialnih enačb

Ponovitev teorije:

• NDE je funkcijska enačba, v kateri poleg neznane funkcije nastopajo tudi njeni odvodi.

- Red NDE je stopnja najvišjega odvoda, ki nastopa v enačbi.
- Rešitev diferencialne enačbe reda p je p-parametrična družina funkcij. Če hočemo točno določeno rešitev, moramo predpisati p pogojev.

Ločimo začetne in robne probleme.

5.0.1 Začetni problem reda 1

$$y' = f(x, y)$$
$$y(a) = y_a$$

kjer je y_a podana konstanta in $f:[a,b]\times\mathbb{R}\to\mathbb{R}$.

5.0.2 Začetni problem reda p

$$y^{(p)} = f(x, y, y', \dots, y^{(p-q)})$$
$$y(a) = y_{a,0}$$
$$y'(a) = y_{a,1}$$
$$\vdots$$
$$y^{(p-q)}(a) = y_{a,p-1}$$

kjer so $y(a), y'(a), \ldots, y^{(p-q)}(a)$ podane konstante.

Pri numeričnem reševanju in analizi rešitev se bomo omejili na probleme, pri katerih so izpolnjeni pogoji eksistenčnega izreka (E.I.).

5.0.3 Robni problemi

$$x^{(4)} + x_y = 0$$

$$y(a) = y_{a,0}$$

$$y'(a) = y_{a,1}$$

$$y(b) = y_{b,0}$$

$$y'(b) = y_{b,1}$$

Robnih primerov pri tem predmetu ne bomo reševali.

Numerične metode za reševanje teh problemov delimo na:

1. Diferenčne metode

Približek k rešitvi iščemo diskretno. Numerična rešitev je sestavljena iz zaporedja točk $a=x_0 < x_1, < x_2 < \cdots < x_m = b$ in pripadajočega zaporedja vrednosti y_0, y_1, \ldots, y_m , pri čemer je

$$y_n \approx y(x_n)$$

za $n = 0, 1, 2, \ldots$, kjer je y_n numerični približek, $y(x_n)$ pa točna rešitev pri x_n . (slikca)

2. Metode, pri katerih iščemo približek k rešitvi kot funkcijo v nekem izbranem podprostoru funkcij

Dve znani metodi sta kolokacija in metoda končnih elementov. Teh metod letos ne bomo obravnavali.

Diferenčne metode delimo na

- 1. enočlenske metode
 - približek za y_{n+1} izračunamo iz približka za y_n
- 2. veččlenske metode (k-členske metode)

približek za y_{n+1} izračunamo iz približkov za $y_n, y_{n-1}, \dots, y_{n-k+1}$

in na

- 1. eksplicitne metode
 - imamo direktno formulo za izračun približka y_{n+1}
- 2. implicitne metode

približek za y_{n+1} izračunamo tako, da rešimo (nelinearno) enačbo.

Poglejmo si izpeljavo najbolj preproste enočlenske metode za reševanje začetnega problema 1. reda oblike

$$y' = f(x, y)$$
$$y(a) = y_a$$

Na vsakem 'koraku' moramo iz točke (x_n, y_n) določiti (x_{n+1}, y_{n+1}) . Poznamo začetno točko $x_0 = a$ ter $y_0 = y_a$. Za premik v x smeri uporabimo konstanten korak h (poenostavljen pristop). Vemo torej $x_0 = a$, $x_1 = a + h$, $x_2 = a - 2h$,

Kako do približka $y_1 \approx y(x_1)$?

(slikca)

Iz DE dobimo vrednost y'(a), to je $y'(a) = f(a, y(a)) = f(x_0, y_0)$. Zdaj znamo narisat tangento na graf funkcije v točki (x_0, y_0) . Dobimo dve novi točki: $(x_1, y(x_1))$, kar je točka na grafu funkcije f, in (x_1, y_1) , kar je točka na tangenti od prej, za njun izračun pa uporabimo

$$p(x) = y(x_0) + (x - x_0)y'(x_0)$$

= $y(x_0) + (x - x_0)f(x_0, y(x_0))$
= $y_0 + (x - x_0)f(x_0, y(x_0))$

Isto idejo uporabimo za izračun vseh naslednjih približkov in dobimo metodo:

$$y_{n+1} = y_n + h f(x_n, y_n)$$

To metodo imenujemo Eksplicitna Eulerjeva metoda.

Drug način izpeljave te metode:

$$y' = f(x, y)$$
$$y(a) = y_a$$

Spomnimo se formule za aproksimacijo odvoda:

$$y(x_0) = \frac{y(x_1) - y(x_0)}{h} - \frac{h}{2}y''(\xi)$$

Vstavimo to aproksimacijo v diferencialno enačbo:

$$y'(x_n) = f(x_n, y(x_n))$$
$$\frac{y(x_{n+1}) - y(x_n)}{h} - \frac{h}{2}y''(\xi) = f(x_n, y(x_n))$$

Napako zanemarimo in točne vrednosti nadomestimo s približki, da ohranimo enačaj:

$$\frac{y_{n+1} - y_n}{h} = f(x_n, y_n)$$
$$y_{n+1} = y_n + hf(x_n, y_n)$$

Dobimo torej isto enačbo kot prej.

Če bi uporabili formulo

$$y'(x_{n+1}) = \frac{y(x_{n+1}) - y(x_n)}{h} + \frac{h}{2}y''(\xi)$$

bi dobili

$$y'(x_{n+1}) = f(x_{n+1}, y(x_{n+1}))$$
$$\frac{y(x_{n+1}) - y(x_n)}{h} + \frac{h}{2}y''(\xi) = f(x_{n+1}, y(x_{n+1}))$$

Odrežemo napako in dobimo

$$\frac{y(x_{n+1}) - y(x_n)}{h} = f(x_{n+1}, y(x_{n+1}))$$

oziroma

$$y_{n+1} = y_n + hf(x_{n+1}, y(x_{n+1}))$$

za $n = 0, 1, 2, \dots$ To je implicitna Eulerjeva metoda.

Pri implicitnih metodah moramo za izračun y_{n+1} rešiti (nelinearno) enačbo. Uporabimo lahko postopek navadne iteracije.

$$y_{n+1} = g(y_{n+1})$$

pri čemer je

$$g(y_{n+1}) = y_n + h f(x_{n+1}, y(x_{n+1}))$$

To računamo tako:

$$\begin{split} y_{n+1}^{(0)} &= y_n \\ \mathbf{do} \\ y_{n+1}^{(r)} &= g(y_{n+1}^{(r-1)}) \\ \mathbf{while} \left| y_{n+1}^{(r)} - y_{n+1}^{(r-1)} \right| > toleranca \left| y_{n+1}^{(r)} \right| \end{split}$$

Primer.

$$y' = x^2 + y^2$$
$$y(0) = 1$$

Z Eulerjevo metodo s korakom $h=\frac{1}{10}$ določi približek za $y_1\approx y(0.1)$ in $y_2\approx y(0.2)$.

$$x_0 = 0, x_1 = 0.1, x_2 = 0.2, f(x, y) = x^2 + y^2$$

$$y_0 = 1$$

$$y_1 = y_0 + h(x_0^2 + y_0^2) = 1 + \frac{1}{10}(0 + 1^2) = 1.1$$

$$y_2 = y_1 + h(x_1^2 + y_1^2) = 1.1 + \frac{1}{10}(0.1^2 + 1.1^2) = 1.222$$

V splošnem bi do predpisov za približke y_n lahko prišli na naslednje načine:

- 1. Odvod y' v DE aproksimiramo s približki izraženimi z vrednostmi funkcije y v bližnjih točkah.
- 2. DE y' = f(x, y) integriramo.

Primer.

$$\int_{x_n}^{x_{n+1}} y'(x)dx = \int_{x_n}^{x_{n+1}} f(x, y(x))dx$$
$$y(x_{n+1}) - y(x_n) = \frac{h}{2} (f(x_n, y(x_n)) + f(x_{n+1}, yx_{n+1})) + \frac{h^3}{12} f^{(2)}(\xi, y(\xi))$$

Napako odrežemo in točne vrednosti nadomestimo s približki in pridemo do metode:

$$y_{n+1} = y_n + \frac{h}{2}(f(x_n, y(x_n)) + f(x_{n+1}, yx_{n+1}))$$

To je trapezna metoda za reševanje diferencialnih enačb.

5.1 Globalna in lokalna napaka

Rešujemo problem $y'=f(x,y),\ y(a)=y_a.$ Numerično rešitev iščemo na intervalu [a,b], pri čemer predpostavimo, da so na tem intervalu izpolnjeni pogoji eksistenčnega izreka.

Interval [a, b] razdelimo na m ekvidistantnih delov s korakom $h = \frac{b-a}{m}$. Dobimo $x_n = a + n \cdot h, n = 0, 1, \dots, m$. Numerične približke $(y_n)_{n=0}^m$ povežemo z odsekoma linearno funkcijo y_h .

(slikca)

Definicija 5.1. Metoda je konvergentna, če za vse DE, ki zadoščajo pogojem eksistenčnega izreka na [a, b], velja

$$||y-y_h||_{\infty,[a,b]}$$

ko $h \to 0$ (oziroma $m \to \infty$)

Ekvivalentno:

$$\max_{0 \le n \le m} |y(x_n) - y_n|$$

ko $m \to \infty$

Definicija 5.2. Globalna napaka (na celem intervalu):

$$\max_{0 \le n \le m} |y(x_n) - y_n|$$

Definicija 5.3. Globalna napaka v točki x_n je $|y(x_n) - y_n|$

Definicija 5.4. Metoda je reda r, če velja

$$\max_{0 \le n \le m} |y(x_n) - y_n| = c \cdot h^r + \mathcal{O}(h^{r+1})$$

Pri določanju reda metode oziroma reda globalne napake si pomagamo z lokalno napako.

Definicija 5.5. Lokalna napaka v točki x_n je razlika med točno rešitvijo v tej točki in njenim numeričnim približkom ob predpostavki, da se točna in numerična rešitev ujemata na vseh prejšnih korakih.

$$T_n(h) = y(x_n) - y_n$$

ob predpostavki

$$y(x_{n-j}) = y_{n-j}, j = 1, 2, \dots$$

Z lokalno napako si pomagamo pri določanju reda globalne napake.

Velja (brez dokaza): Metoda je reda r, brž ko je lokalna napaka reda r+1.

Pri določanju reda lokalne napake si pomagamo z razvoji v Taylorjevo vrsto.

$$y(x_{n+1}) = y(x_n + h)$$

$$= y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + \mathcal{O}(h^4)$$

$$y'(x) = f(x, y(x))$$

$$y' = f$$

$$y'' = f_x + f_y y' = f_x + f_y f$$

$$y''' = f_{xx} + 2f_{xy}f^2 + f_y(f_x + f_y f)$$

$$f(x'\Delta x, y + \Delta y) = f(x, y) + f_x(x, y) \cdot \Delta x + f_y(x, y) \cdot \Delta y + \dots$$

Določi red lokalne napake eksplicitne Eulerjeve metode.

$$y_{n+1} = y_n + hf(x_n, y_n)$$

$$T_{n+1} = y(X_{n+1}) - y_{n+1}$$

$$= y(x_n) + hf(x_n, y(x_n))$$

$$+ \frac{h^2}{2} (f_x(x_n, y(x_n))$$

$$+ f_y(x_n, y(x_n)) \cdot f(x_n, y(x_n))$$

$$+ \mathcal{O}(h^3) - y_n - hf(x_n, y_n)$$

Vstavimo $y(x_n) = y_n$ in dobimo

$$T_{n+1} = \frac{h^2}{2} (f_x(x_n, y_n) + f_y(x_n, y_n) f(x_n, y_n)) = \mathcal{O}(h^2)$$

Red lokalne napake je 2, torej je Eulerjeva metoda reda 1.

5.2 Runge-Kutta metode

s-stopenjska R-K metoda: Izračunamo s-koeficientov

$$k_i = hf(x_n + \alpha_i h, y_n + \sum_{j=1}^{s} \beta_{ij} k_j), i = 1, 2, \dots s$$

$$y_{n+1} = y_n + \sum_{i=1}^{s} \gamma_i k_i$$

pri tem so $(\alpha_i)_{i=1}^s$, $(\beta_{ij})_{i,j=1}^s$ in $(\gamma_i)_{i=1}^s$ prosti koeficienti, ki jih izberemo tako, da bo metoda konvergentna in čim višjega reda.

$$\alpha_i \in [0,1]$$

Velja še $\alpha_i = \sum_{j=1}^s \beta_{ij}$.

Da bo metoda konvergent
na oziroma reda vsaj 1, če bo $\sum_{i=1}^s \gamma_i = 1.$

R-K metodo lahko predstavimo v t.i. Butcherjevi shemi

$$k_i = hf(x_n + \alpha_i h, y_n + \beta_{i1}k_1 + \beta_{i2}k_2 + \dots + \beta_{is}k_s)$$

$$y_{n+1} = y_n + \gamma_1 k_1 + \gamma_2 k_2 + \dots + \gamma_s k_s$$

R-K metoda je eksplicitna, če bodo $\beta_{ij} = 0$ za vse $j \geq i$.

R-K metoda je diagonalno implicitna, če bodo $\beta_{ij} = 0$ za vse j > i in bo vsaj en $\beta_{ii} \neq 0$. Sicer je metoda implicitna.

5.2.1 Primeri R-K metod

(manjka)

Sistemi diferencialnih enačb 1. reda

Začetni problem prvega reda za sistem je oblike

$$y'_{1} = f_{1}(x, y_{1}, x_{2}, \dots, y_{d}) + y_{1}(a) = y_{1,a}$$

$$y'_{2} = f_{2}(x, y_{1}, x_{2}, \dots, y_{d}) + y_{2}(a) = y_{2,a}$$

$$\vdots$$

$$y'_{d} = f_{d}(x, y_{1}, x_{2}, \dots, y_{d}) + y_{d}(a) = y_{d,a}$$

$$f_j: [a,b] \times \mathbb{R}^d \to \mathbb{R}$$

Definiramo

$$y = [y_1, y_2, \dots, y_d]^T$$

$$y:[a,b]\to\mathbb{R}^d$$

$$F = [f_1, f_2, \dots, f_d]^T$$

$$F: [a, b] \times \mathbb{R}^d \to \mathbb{R}^d$$

Sistem lahko sedaj zapišemo kot:

$$y' = F(x, Y)$$
$$Y(a) = Y_a$$

$$Y_a = [y_{1,a}, y_{2,a}, \dots, y_{d,a}]^T$$

Vse metode, ki smo jih spoznali, lahko direktno uporabimo za rešenje sistemov diferencialnih enačb prvega reda.

npr Euler:

$$Y_{n+1} = Y_n + hF(x, Y_n)$$

5.2.2 Reševanje diferencialnih enačb višjega reda

Imamo začetni problem reda p:

$$y^{(p)} = f(x, y, y', y'', \dots, y^{(p)})y(a) = y_{a,1}y'(a) = y_{a,2} : y'(p-1) = y_{a,p}$$

Problem prevedemo na sistem p diferencialnih enačb prvega reda:

Definiramo "nove" neznane funkcije $z_1, z_2, \ldots, z_{p-1}$:

$$z_{1} = y'$$

$$z_{2} = z'_{1} = y''$$

$$z_{3} = z'_{2} = y'''$$

$$\vdots$$

$$z_{p-1} = z'_{p-1} = y(p-1)z'_{p-1} = y^{(p)} = f(x, y, z_{1}, z_{2}, \dots, z_{p-1})$$

$$[y, z_{1}, z_{2}, \dots, z_{p-2}, z_{p-1}]^{T'} = [z_{1}, z_{2}, \dots, z_{p-1}, f(x, y, z_{1}, z_{2}, \dots, z_{p-1})]$$

$$Y = [y, z_{1}, z_{2}, \dots, z_{p-2}, z_{p-1}]^{T} = [Y(1), Y(2), \dots, Y(p)]^{T}$$

$$F(x, Y) = [Y(2), Y(3), \dots, Y(p), f(x, Y(1), \dots, Y(p))]^{T}$$

Matlab:

$$F = @(x,y)([y(2), x + y(2) + y(1)^{2}])$$

$$function[x,y] = IME(F, a, b, h, y0)$$

$$(komentar)x = a : h : b; y = zeros(length(y0), length(x));$$

$$y(:,1) = y0; forn = 2 : length(x)$$

$$k1 = h * F(x(n-1), y(:, n-1));$$

$$y(:,n) = y(:, n-1) + k1;$$

$$end$$

5.3 Veččlenske metode

k-členska metoda: pri izračunu približka $y_n \approx y(x_n)$ uporabimo k vrednosti:

$$y_{n-1}, y_{n-1}, y_{n-3}, \dots, y_{n-k}$$

Splošna linearna k-členska metoda je oblike:

$$y_n = \sum_{i=1}^k \alpha_i y_{n-i} + h \sum_{i=0}^k \beta_i F(x_{n-i}, y_{n-i})$$

Pri tem so α_i in β_i koeficienti, ki določajo metodo. Določimo jih tako, da je metoda konvergentna in čim višjega reda. Metoda je eksplicitna, če je $\beta_0 = 0$. Sicer je implicitna.

k-členske metode so hitrejše od enočlenskih. Slabosti: spreminjanje koraka h ni enostavno.

Prvih k vrednosti $y_0, y_1, \ldots, y_{k-1}k$ moramo določiti z neko enočlensko metodo.

PAZI: Izbrati moramo tako, ki ima enak ali višji red kot izbrana k-členska metoda.

Najbolj znani razredi teh metod so (probably na ustnih)

• Adamsove metode:

$$y' = f(x, y)y(a) = y_a$$

Ideja je, da to enačbo integriramo:

$$\int_{x_{n-1}}^{x_n}$$

(skica) brez x_n je eksplicitna, z njo pa implicitna. Funkcijo f(x, y(x)) nadomestimo z interpolacijskim polinomom. (primer)

- Milneove metode Ideja za izpeljavo: doferencialno enačbo y' = f(x, y) integriramo na $[x_{n-k}, x_n]$, integral funkcije f(x, y(x)) pa nadomestimo z izbranim integracijskim pravilom.
 - odprta pravila eksplicitne metode
 - zaprta pravila implicitne metode (primer)
- BDF metode Odvod $y'(x_n) = f(x_n, y(x_n))$ aproksimiramo z diferencami. (primer?=)

$$y_n = \frac{4}{3}y_{n-1} - \frac{1}{3}y_{n-1} + \frac{2}{3}hf_n$$