Metodología del diseño de redes

Conceptos básicos

Contenido

- 1. Introducción
- 2. Requisitos
- 3. Análisis de flujos de datos
- 4. Diseño físico
- 5. Tecnologías actuales LAN y WAN

Características del diseño de redes:

- Algo de arte y experiencia
- Combinación de reglas
- Evaluación y selección de tecnologías de red
- Conocimiento de :
 - Tecnologías
 - Servicios
 - Protocolos
 - Otras experiencias

Enfoques

Tradicional

- Enfocado a la planificación de capacidad
- Ante problemas en la red
 - · Incrementar el ancho de banda

Nuevas consideraciones:

- Tiempos en la comunicación
- Fiabilidad y seguridad
- Servicio hacia los usuarios
- Gestión de los equipos de red y lo recursos
- Integración con Sistema de Información

Caracterización de los servicios

- Peticiones de servicio. Identificadas por el grado de conocimiento del servicio
 - Mejor voluntad. Ningún control sobre la red. Esta tratará de cumplir lo mejor posible la petición sin ninguna garantía.
 - Servicio impredecible. Resultados variables desde el punto de vista del rendimiento
 - El resto de componentes deberá de adecuarse al estado de la red en un momento dado
 - Específico. Determinista o garantizado. Existe control sobre la red.
 - Los servicios deben operar dentro de unos márgenes establecidos
 - Necesidad de poder efectuar mediciones para comprobar si las características de la petición coinciden con las realmente proporcionadas por la red.
 - Contratos de servicio: Acuerdos de Nivel de Servicio: SLA

Requisistos

Recogida de información

Requisitos del usuario

- De tiempo
- Interactividad
- Fiabilidad
- Calidad
- Adaptabilidad
- Seguridad
- Dentro del presupuesto

- Número de usuarios
- Crecimiento esperado

Interrelaciones de requisitos

Requisitos de la aplicación

Tipificación de aplicaciones

- Críticas del negocio
- De capacidad específica
- De tiempo de comunicación específico

Requisitos de:

Fiabilidad

Capacidad

Tiempo de tránsito

Impacto en el nivel inferior

- •Grupos de aplicaciones
- •Tipos de aplicaciones
- Características de rendimiento
- Localización

Caracterización del comportamiento

Sesiones

- Esquemas de uso
 - Número total de usuarios
 - Frecuencia de uso
 - Duración de la sesión
 - Número de usuarios simultáneos
- Comportamiento de la aplicación
 - Tamaño de los datos
 - Duración de tránsito por la red
 - Características de flujo

Análisis de flujos de datos

Tipos de flujos de datos

Conceptos de flujos de datos

- Se trata de determinar las características de los requerimientos extremo a extremo
- Flujos: conjunto de información de aplicación y protocolo con atributos comunes tales como:
 - Origen y destino de los datos
 - Tipo de información
 - Opciones, encaminamiento

Orígenes y destinos de los datos

Modelos de flujos de datos

- 1. A la par
- 2. Cliente servidor
- 3. Proceso cooperativo
- 4. Proceso distribuído
- Caracterizados por:
 - Direccionabilidad

Requisitos en cada dirección

Jerarquía

Grado de concentración de flujos

Modelo de flujo a la par

- •Similares necesidades de las máquinas de usuarios y las de aplicaciones
- Direccionabilidad: En ambas direcciones
- No hay jerarquía
- Primitivo Internet (Transferencia de ficheros y Telnet mutuos)
- Videoconferencia (todos a todos)
- Modelo por defecto ante falta de datos sobre las características

Modelo de flujo Cliente/Servidor

- Flujo asimétrico
 - Más tráfico hacia el cliente
 - Peticiones del cliente muy pequeñas en tamaño.
 - •Cliente es destino de datos
 - •Respuestas del servidor de gran tamaño.
 - Servidor es fuente de datos
- Flujo jerárquico
- Modelo más frecuente en redes departamentales

Modelo de flujo de Proceso Cooperativo

- •Flujo con niveles de jerarquía
- •Flujos entre servidores se consideran más críticos que los de entre servidores de primer nivel y clientes
- •El flujo más crítico es hacia el Servidor Central
- •Los servidores intermedios suelen ser fuentes y destino de los datos
- •El tráfico entre niveles de la jeraquía suele ser asimétrico
- •El tráfico dentro del nivel de servidores intermedios, podría ser simétrico
- •Caso de grandes servidores centrales en redes corporativas

Modelo de flujo de Proceso Distribuido

- •Flujo similar al de cliente/servidor, pero no con las mismas direcciones
- Los nodos de computación pueden estar:
 - •Muy acoplados. Mucha transferencia de información entre ellos
 - Poco acoplados. Poca transferencia de información entre ellos
- Las tareas a realizar pueden tener:
 - •Granularización gruesa. Una tarea se hace en un nodo.
 - •Granularización fina. Una tarea se distribuye entre varios nodos

Distribución del flujo

Ejemplo

Caso de Cliente/Servidor con flujos cruzando fronteras

Aplicando distribuciones de flujo

Con objeto de ver que % del flujo queda en local y cuanto cruza fronteras (remoto)

Diseño Físico

Diseño Físico

- Suministra a partir de los datos anteriores la información necesaria para planificar y comenzar la implementación de la red
- Está basado en reglas acerca de:
 - Infraestructura física
 - Cableados
 - Colocación de dispositivos
 - Topologías
 - Arquitecturas

Diagrama de procesos

Evaluación de opciones de cableado

Distribución del equipamiento de red

- Redundancia. Distintos niveles:
 - Multiples fibras en un manojo formando un cable
 - Multiples cables en un conducto
 - Multiples conductos por un mismo camino.
 - Multiples caminos físicos
- Calidad del cable
 - Categoría 6 o 5E

Distribución lógica

Diseño físico asociado

Tecnologías actuales de LAN y WAN

- Ethernet
 - 1 GigaEthernet
 - 10 Gibabit-Ethernet
- •Wifi

1 Giga-Ethernet

- 1000BASE T. IEEE 802.3ab para par trenzado
 - Cable UTP-5e (125 MHz) con 4 pares.
 - Distancia menor de 100 m.
- 1000BASE TX. Par trenzado
 - Cable UTP-6 y 7
 - Distancia menor de 100 m.
- 1000BASE-CX
 - Cable STP (2 pares) (par trenzado apantallado).
 - Distancia menor 25 m.
 - Conexión de Blade de servidores

1 Giga-Ethernet

- 1000BASE Z. IEEE 802.3z para fibra óptica
 - 1000BASE-SX
 - Fibra Multimodo (MMF).
 - Distancia menor de 550 m.
 - 1000BASE-LX
 - Fibra Multimodo (MMF) y Fibra Monomodo (SMF).
 - Distancia menor de 10 km.
 - 1000BASE-EX
 - Fibra Monomodo (SMF).
 - Distancia menor de 40 km.
 - 1000BASE-ZX
 - Fibra Monomodo (SMF).
 - Distancia menor de 80 km.

•10 Giga-Ethernet

- IEEE 802.3ak y IEEE 802.an para par trenzado
 - 10GBASE-CX4 (IEEE 802.3ak)
 - 2 pares de cable par trenzado, CAT 5e
 - Distancia menor de 15 m.
 - Menor coste para conexión de servidores
 - 10GBASE-T (IEEE 802.an)
 - Par trenzado CAT 6 y 7
 - Distancia menor de 100 m. con CAT 6 STP.
 - Distancia menor de 55 m. con CAT 6 UTP.

•10 Giga-Ethernet

- IEEE 802.3ae para fibra óptica
 - 10GBASE-SR
 - Fibra Multimodo (MMF).
 - Distancia menor de 300 m.
 - Menor coste
 - 10GBASE-LR
 - Fibra Monomodo (SMF).
 - Distancia menor de 10 km.
 - 10GBASE-ER
 - Fibra Monomodo (SMF).
 - Distancia menor de 40 km...

- IEEE 802.11a
 - Banda 5 GHz
 - 56 Mbps
- IEEE 802.11b
 - Banda 2.4 GHz
 - 11 Mbps
- IEEE 802.11g
 - Banda 2.4 GHz
 - 56 Mbps
- IEEE 802.11ac
 - Banda 5 GHz y 2.4 GHz
 - En 5GHz de 7000 Mbps y en 2.4 GHz a 450 Mbps
- IEEE 802.11ax o WiFi 6
 - Bandas 2.4 y 5 GHz
 - En 600 Mbps por stream (80 MHz) Máx. 10000 Mbps
 - Mejora en el gestión de los dispositivos conectados

Opciones tecnológicas en Redes WAN

Depende los proveedores de redes comerciales.

Hay dos opciones:

- Una a nivel 2 que permite conectar las redes y compartir VLAN
- Otra a nivel 3 que da conectividad de IP a través de un tunnel SSL o IPSEC

MetroEthernet

Metro Ethernet es una red L2 VPN, en la que la red del proveedor transporta tramas Ethernet (las direcciones MAC son usadas para determinar el encaminamiento)

Firmas comerciales

Avaya Networks <u>www.avaya.com</u>

Cisco Systems <u>www.cisco.com</u>

HP http://www.hp.com/

HUAWEI http://www.huawei.com/es/

.

•

٠