Understanding IMU data acquired from May-30-2018 Oshawa Indoor Experiment

Jungwon Kang

Aug 3 2018
*Updated on Aug 20 2018

Objectives

- We acquired $\mathbf{a}^{\mathcal{G}} = (a_x^{\mathcal{G}}, a_y^{\mathcal{G}}, a_z^{\mathcal{G}})$ [acc wrt ground frame \mathcal{G}]
- Our localization algorithms need $\mathbf{a}^{\mathcal{B}} = (a_{x}^{\mathcal{B}}, a_{y}^{\mathcal{B}}, a_{z}^{\mathcal{B}})$ [acc wrt body frame \mathcal{B}]
- Therefore, we need to convert the given a^g into a^g .
 - The flight controller seems to provide us with absolute orientation $R_{\mathcal{G}}^{\mathcal{B}}$ of the drone, we expect we could get $\boldsymbol{a}^{\mathcal{B}}$ by $R_{\mathcal{G}}^{\mathcal{B}} \cdot \boldsymbol{a}^{\mathcal{G}}$.

Our Expected $\mathcal G$ and $\mathcal B$

G: ground frame

B: body frame

- Actually, we don't know exactly how \mathcal{G} and \mathcal{B} are set.
- We initially expect $\mathcal{G} = \mathcal{G}_0$, $\mathcal{B} = \mathcal{B}_0$, where \mathcal{G}_0 is ENU (East-North-Up), \mathcal{B}_0 is FLU (Front-Left-Up).

$$m{a}^{\mathcal{G}_0} = (a_x^{\mathcal{G}_0}, a_y^{\mathcal{G}_0}, a_z^{\mathcal{G}_0})$$

$$m{R}_{\mathcal{G}}^{\mathcal{B}} ext{ (from flight controller)}$$
 $m{a}^{\mathcal{B}_0} = (a_x^{\mathcal{B}_0}, a_y^{\mathcal{B}_0}, a_z^{\mathcal{B}_0})$

Our initially expected \mathcal{G}_0 and \mathcal{B}_0

Our Expected \mathcal{G} and \mathcal{B}

- In the experiment, we aligned the drone with the UWB frame \mathcal{U} $\rightarrow \mathcal{U}$ and \mathcal{B}_0 are aligned. (although aligned axes are different)
- Furthermore, we saw $\phi \approx 180^{\circ}$, which means the drone is located in the opposite direction with the ground frame \mathcal{G}_0 . $\to \mathcal{B}_0$ and \mathcal{G}_0 are aligned.
- In conclusion, \underline{u} and \underline{G}_0 are aligned (although there is little misalignment in real).

Inferring $\mathcal G$ from $m a_{gt}^{\mathcal U}$ and $m a^{\mathcal G}$

- We measured ground-truth position using the total station, \rightarrow We could compute acc wrt the UWB frame $\mathcal{U}: \boldsymbol{a}_{gt}^{\mathcal{U}}$.
- Because \mathcal{U} and \mathcal{G}_0 are thought to be aligned, we could expect the relationship between $\boldsymbol{a}^{\mathcal{G}}$ and $\boldsymbol{a}^{\mathcal{U}}_{gt}$, as in the table below. ("By our expectation based on \mathcal{G}_0 ")
- However, we discovered the relationship in ("By observation").
- Then, we could inversely guess the ground frame G = G'.

By our expectation based on \mathcal{G}_0	By observation
$a^{\mathcal{U}}_{gt,x}pprox a^{\mathcal{G}}_{y}$	$a^{\mathcal{U}}_{gt,x} pprox \lambda \cdot a^{\mathcal{G}}_{x}$
$a_{gt,y}^{\mathcal{U}} pprox -a_{x}^{\mathcal{G}}$	$a_{gt,y}^{\mathcal{U}} pprox \lambda \cdot a_{\mathcal{Y}}^{\mathcal{G}}$
$a_{gt,z}^{\mathcal{U}} pprox a_x^{\mathcal{G}}$	$a_{gt,z}^{\mathcal{U}} pprox -\lambda \cdot a_{z}^{\mathcal{G}}$

$$\lambda = 0.1 \ (\approx \frac{1}{9.8})$$

Note that $a_{gt}^{\mathcal{U}}$ is computed from ground-truth position using total station, and $a^{\mathcal{G}}$ is given from flight controller.

See appendix to see "By observation".

Inferring \mathcal{B} from Newly Inferred \mathcal{G}'

- Based on $\phi \approx 180^{\circ}$, we could infer the updated $\mathcal{B}(=\mathcal{B}')$ from newly inferred \mathcal{G}' .
- However, the inferred \mathcal{B}' does not follow the standard form, as \mathcal{B}' is a left-handed frame and it is not FLU (Front-Left-Up).

Setting New Body Frame \mathcal{B}''

- We hope to convert \mathcal{B}' into new body frame \mathcal{B}'' so that
 - (1) $\mathcal{B}^{\prime\prime}$ is a right-handed frame, and
 - (2) \mathcal{B}'' is matched with the UWB frame \mathcal{U} , because we are doing a localization wrt \mathcal{U} and it simplifies math expression.

Conclusion

• We can convert $\mathbf{a}^{\mathcal{G}} = (a_x^{\mathcal{G}}, a_v^{\mathcal{G}}, a_z^{\mathcal{G}})$ into $\mathbf{a}^{\mathcal{B}=B''} = (a_x^{\mathcal{B}}, a_v^{\mathcal{B}}, a_z^{\mathcal{B}})$, by

•
$$\begin{bmatrix} a_x^B \\ a_y^B \\ a_z^B \end{bmatrix} = R_{\mathcal{G}}^{\mathcal{B}}(\phi - 180^\circ) \begin{bmatrix} \lambda \cdot a_x^{\mathcal{G}} \\ \lambda \cdot a_y^{\mathcal{G}} \\ -\lambda \cdot a_z^{\mathcal{G}} \end{bmatrix}$$
, where $\lambda = 0.1 (\approx \frac{1}{9.8})$ $R_{\mathcal{G}}^{\mathcal{B}}(\phi - 180^\circ)$ is expected to be almost an identity matrix.

• Theoretically,
$$\begin{bmatrix} \Omega_x^B \\ \Omega_y^B \\ \Omega_z^B \end{bmatrix} = \begin{bmatrix} -\Omega_x \\ -\Omega_y \\ -\Omega_z \end{bmatrix}.$$
 However, we found that
$$\begin{bmatrix} \Omega_x^B \\ \Omega_y^B \\ \Omega_z^B \end{bmatrix} = \begin{bmatrix} -\Omega_y \\ \Omega_x \\ \Omega_z \end{bmatrix}$$
 from the real data. This is because axes for acc are different from axes for gyro.

Appendix. I

Velocity comparison

Velocity Comparison

Velocity from ground-truth position	Velocity from linear acceleration
$v_{x}(t_{i}') = \frac{x_{i+1} - x_{i}}{\Delta t}$	$v_x(t_{i+1}) = v_x(t_i) + \lambda \cdot a_{x,i} \cdot \Delta t$
$v_{y}(t_{i}') = \frac{y_{i+1} - y_{i}}{\Delta t}$	$v_{y}(t_{i+1}) = v_{y}(t_{i}) + \lambda \cdot a_{y,i} \cdot \Delta t$
$v_z(t_i') = \frac{z_{i+1} - z_i}{\Delta t}$	$v_z(t_{i+1}) = v_z(t_i) + -\lambda \cdot a_{z,i} \cdot \Delta t$

Blue letters indicate acquired data.

$$\lambda = 0.1$$

$$i$$
: data index $t_i' = \frac{t_{i+1} + t_i}{2}$ $\Delta t = t_{i+1} - t_i$

# of data	26722
Time length (s)	267.196275

# of data	30835
Time length (s)	308.336690

# of data	44134
Time length (s)	441.309840

# of data	22773
Time length (s)	227.711090

# of data	44414
Time length (s)	444.109007

Appendix. II

Angular velocity from flight controller

Appendix. III

Orientation from flight controller

Appendix. IV

Orientation from flight controller + Height

Understanding DJI M100 IMU Gyro Data

Jungwon Kang

2018/08/20

Description

Initially assumed frame

(→ In conclusion, it turned out that the initially assumed frame is the final frame.)

FLU: Front(x)-Left(y)-Up(z) [right-handed frame]

x: roll, y: pitch, z: yaw

Description of Experiment

In all ExpX, we changed 0° to $90^{\circ}.$

Pose (orientation)

We can get orientation (in the form of quaternion) from flight controller. We strongly guess that the orientation is from IMU and Compass as well. When x-axis is aligned with 401-East, it gives us zero yaw.

Question

- 1. IMU gyro data (angular velocity) really follows FLU frame?
 - The answer is yes.
- 2. Orientation (from flight controller) also follows FLU frame?
 - The answer is yes.

Rot 0

Exp1 Rot 0, rotation wrt x (counter-clockwise)

2018-08-20-15-59-41_abs_rot0_exp1

Rot 0, rotation wrt x (clockwise)

2018-08-20-16-00-37_abs_rot0_exp2

Exp3 Rot 0, rotation wrt y (counter-clockwise)

2018-08-20-16-01-10_abs_rot0_exp3

Rot 0, rotation wrt y (clockwise)

2018-08-20-16-01-39_abs_rot0_exp4

Exp5 Rot 0, rotation wrt z (counter-clockwise)

2018-08-20-16-02-18_abs_rot0_exp5

Rot 0, rotation wrt z (clockwise)

2018-08-20-16-02-47_abs_rot0_exp6

Rot 135

Rot 135, rotation wrt x (counter-clockwise)

2018-08-20-16-04-22_abs_rot135_exp1

Rot 135, rotation wrt x (clockwise)

2018-08-20-16-04-22_abs_rot135_exp2

Rot 135, rotation wrt y (counter-clockwise)

2018-08-20-16-04-22_abs_rot135_exp3

Rot 135, rotation wrt y (clockwise)

2018-08-20-16-06-08_abs_rot135_exp4

Rot 135, rotation wrt z (counter-clockwis⊕)

2018-08-20-16-06-41_abs_rot135_exp5

Rot 135, rotation wrt z (clockwise)

2018-08-20-16-07-10_abs_rot135_exp6

