

Matemática

Folha 8 - Funções Quadráticas

Chama-se função quadrática numa variável x a toda a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto y = ax^2 + bx + c$ em que a, b e c são número reais e $a \neq 0$, ou seja, a uma função que pode ser definida por um polinómio de grau 2 na variável x.

Zeros:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

Sendo $\Delta=b^2-4ac$ (chamado binómio discriminante), tem-se:

- se $\Delta>0$, existem dois zeros reais, $x_1=rac{-b+\sqrt{\Delta}}{2a}$ e $x_2=rac{-b-\sqrt{\Delta}}{2a}$;
- $-\,$ se $\Delta=$ 0, existe um zero real (duplo) $x=\frac{-b}{2a};$
- se $\Delta < 0$, não existem zeros reais.

Gráfico:

Funções do tipo $y=ax^2$, $a\neq 0$

Os gráficos desta família de funções são parábolas com vértice em (0,0), eixo de simetria coincidente com o eixo dos yy, concavidade no sentido positivo do eixo dos yy (voltada para cima) se a>0 e concavidade no sentido negativo do eixo dos yy (voltada para baixo) se a<0.

Funções do tipo $y=ax^2+k$, $a\neq 0$, $k\in \mathbb{R}$.

Os gráficos desta família de funções obtêm-se a partir dos gráficos de $y=ax^2$ adicionando k à ordenada de cada um dos seus pontos, o que equivale a aplicar a cada curva uma translação definida pelo vetor $\vec{u}=(0,k)$. O vértice da nova parábola é o ponto (0,k) que se obtém somando à origem o vetor $\vec{u},(0,0)+(0,k)=(0,k)$, e o eixo de simetria é o eixo dos yy.

Exemplo 1 Função definida, em \mathbb{R} , por $y = -x^2 + 2$.

A concavidade da parábola está voltada para baixo visto o coeficiente de x^2 ser negativo, o seu vértice é o ponto (0,2) e o eixo de simetria o eixo dos yy. Existem dois zeros reais,

$$-x^2 + 2 = 0 \iff x = -\sqrt{2} \quad \forall \quad x = \sqrt{2},$$

e da observação da representação gráfica constata-se que:

- é positiva se $x \in]-\sqrt{2}, \sqrt{2}[$ e negativa se $x \in]-\infty, -\sqrt{2}[\cup]\sqrt{2}, +\infty[$;
- é crescente em $]-\infty,0]$ e decrescente em $[0,+\infty[$;
- é não injetiva;
- $D_f' =]-\infty,2]$, donde não é sobrejetiva.

Funções do tipo $y = a(x - h)^2$, $a \neq 0$, $h \in \mathbb{R}$.

Os gráficos desta família de funções obtêm-se a partir dos gráficos de $y=ax^2$ adicionando h à abcissa de cada um dos seus pontos, o que equivale a aplicar a cada curva uma translação definida pelo vetor $\vec{v}=(h,0)$. O vértice da nova parábola é o ponto (h,0) e o eixo de simetria é a reta vertical que passa no vértice, reta de equação x=h.

Exemplo 2 $y = 2(x-3)^2$

O vértice da parábola é o ponto (3,0) e o eixo de simetria é a reta de equação x=3.

Funções do tipo $y = ax^2 + bx + c$, $a \neq 0$.

O polinómio $ax^2 + bx + c$ pode transformar-se, por equivalência, numa expressão do tipo $a(x-h)^2 + k$. Com efeito, sendo $a \neq 0$, pode pôr-se a em evidência nos dois primeiros termos e tem-se

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}}\right) - \frac{b^{2}}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}.$$

Assim, fazendo

$$h = -\frac{b}{2a}$$
 e $k = -\frac{b^2 - 4ac}{4a} = -\frac{\Delta}{4a}$

vem

$$ax^{2} + bx + c = a(x - h)^{2} + k.$$

Como consequência, o gráfico de $y=ax^2+bx+c$ pode obter-se a partir do gráfico de $y=ax^2$, aplicando a este uma translação associada ao vetor $\vec{w}=\vec{u}+\vec{v}=(h,k)$.

O gráfico da função é então uma parábola cujo vértice é o ponto (h,k) e o eixo de simetria é a reta de equação x=h.

Exemplo 3 Relativamente à função definida em $\mathbb R$ por

$$y = 4x^2 - 8x + 6.$$

ои

$$y = 4(x^2 - 2x) + 6 = 4(x - 1)^2 - 4 + 6 = 4(x - 1)^2 + 2$$

conclui-se que o gráfico é uma parábola de vértice no ponto (1,2), de eixo x=1 e com a concavidade voltada para cima.

Sinal $f(x) = ax^2 + bx + c$, $a \neq 0$, com:

- $\Delta > 0$

/

- $\boxed{\Delta=0}$ A função tem um único zero (duplo) x_1 . Para todos os valores de $x\neq x_1$ a função toma o sinal de a.

a>0 - $\Delta<0$ A função não tem zeros e o seu gráfico toma sempre o sinal de a.

Exemplo 4 *Para* $f(x) = -3x^2 + 4x + 1$, $x \in \mathbb{R}$,

$$\Delta = 16 - 4 \times (-3) \times 1 = 28.$$

Como $\Delta > 0$, a função admite dois zeros,

$$-3x^{2} + 4x + 1 = 0 \Longleftrightarrow x = \frac{-2 \pm \sqrt{28}}{2 \times (-3)}$$
$$\iff x = \frac{2 - \sqrt{7}}{3} \quad \forall x = \frac{2 + \sqrt{7}}{3}.$$

Como a<0 a função é positiva no intervalo $\left]\frac{2-\sqrt{7}}{3},\frac{2+\sqrt{7}}{3}\right[$ e negativa fora deste intervalo.

Exercícios Propostos

Exercício 1 Considere a função quadrática definida por $f(x) = x^2 - 2x - 3$, $x \in \mathbb{R}$.

- a) Escreva a expressão $x^2 2x 3$ na forma $(x h)^2 + k$.
- b) Calcule os zeros de f.
- c) Represente graficamente f.
- d) Indique os valores de x que têm imagem negativa.

Exercício 2 Considere a função real de variável real definida por

$$f(x) = -(x+2)^2 - 1, \qquad x \in \mathbb{R}.$$

a) Determine as coordenadas do vértice da parábola representativa do gráfico da função e escreva uma equação do seu eixo de simetria.

4

- b) Indique dois objetos diferentes que tenham a mesma imagem por f.
- c) Qual o sentido da concavidade da parábola? Justifique.
- d) Represente graficamente f.
- e) Indique o seu contradomínio.

Exercício 3 Resolva em $\mathbb R$ cada uma das condições:

a)
$$9x^2 + 12x + 4 \le 0$$
;

d)
$$x^2 + x - 2 > 0$$
:

b)
$$-x^2 + 9 < 0$$
:

c)
$$-x^2 - 5x \ge 6$$
;

e)
$$4x^2 + x + 1 < 0$$
.

Exercício 4 Determine o domínio das funções definidas por:

$$a) \quad f(x) = \sqrt{2x^2 - 4x}$$

b)
$$g(x) = \frac{x}{\sqrt{(x-1)(x-2)}}$$

Exercício 5 Represente graficamente as funções definidas em $\mathbb R$ por:

a)
$$f(x) = \begin{cases} 2x - x^2 & \text{se } x \le 2\\ x & \text{se } x > 2 \end{cases}$$

b)
$$g(x) = |x^2 - 4|$$