

## Turno preliminare 2019

Losanna, Lugano, Zurigo 8 dicembre 2018

Durata: 3 ore

Difficoltà: Gli esercizi relativi ad ogni tema sono ordinati secondo un ordine crescente di difficoltà.

Punti: Ogni esercizio vale 7 punti.

## Geometria

- G1) Sia k un cerchio con centro O e siano A, B, C tre punti giacenti su k in modo tale che  $\angle ABC > 90^{\circ}$ . La bisettrice dell'angolo  $\angle AOB$  interseca il cerchio circoscritto al triangolo BOC nel punto D. Mostrare che D giace sulla retta AC.
- **G2)** Sia  $k_1$  un cerchio e l una linea intersecante  $k_1$  in due punti distinti chiamati A e B. Sia  $k_2$  un secondo cerchio non contenuto (all'esterno di) in  $k_1$  toccante  $k_1$  tangenzialmente in C e l tangenzialmente in D. Sia T la seconda intersezione di  $k_1$  con la linea CD. Mostrare che AT = TB.

## Calcolo combinatorio

C1) Dato un intero positivo n, Paolo scrive tutti i  $2^n - 1$  sottoinsiemi non vuoti di  $\{1, \ldots, n\}$  su una linea. In seguito, Paolo scrive sotto ogni singolo insieme il prodotto di tutti i loro elementi. Infine, scrive l'inverso di tutti i numeri nella seconda linea e calcola la loro somma. Determinare il valore della somma (in funzione di n) ottenuto da Paolo.

Esempio: per n = 3, Paolo ottiene:

C2) Sia n un intero positivo. Una squadra di volley composta da n uomini e n donne sta per giocare. Ad ogni giocatore è assegnata una delle posizioni 1, 2, ..., 2n. Tra queste posizioni, solo la 1 e la n+1 giacciono fuori dal prato. Durante la partita i giocatori effettuano delle rotazioni come segue: il giocatore in postazione i si muove nella postazione i+1 (il giocatore con la posizione 2n andrà ad accasarsi alla postazione 1). In quanti modi possiamo assegnare le posizioni di partenza in modo tale che ci siano sempre **almeno** n-1 donne sul prato, indipendentemente dal numero di rotazioni occorse durante la partita?

Osservazione: due configurazioni iniziali sono considerate differenti se almeno un giocatore occupa una posizione differente nelle due configurazioni.

## Teoria dei numeri

N1) Determinare tutte le coppie di interi positivi (a, b) tali che

$$ab + 2 = a^3 + 2b$$
.

**N2)** Determinare tutti gli interi positivi  $n \geq 2$  tali da poter essere scritti come

$$n = k^2 + d^2,$$

dove k è il più piccolo divisore di n diverso da 1 e d è un (qualsiasi) divisore di n.

Buona fortuna!