Week 5 Review

Week 5

- Registers
- Counters
- Basics of state machines
- How to design state machines

Registers

- An n-bit register: a bank of n flip-flops that share a common clock.
- Registers store a multi-bit value.

- All bits written at the same time.
- Key building block of sequential systems and CPUs.

Load registers

- Write value in parallel
- Write-enable (write) signal controls if writing or not.

Shift Registers

 A series of D flip-flops where output of flipflop i is connected to input of i+1

- Load bits one bit at a time.
- Or implement parallel load.
- Useful to save space or when we want to shift.

Counters

Basic idea...

one bit...
two bit...
three bits...

Counters

Basic idea...

Ripple Counter (async!)

Synchronous Counter

This is a synchronous counter, with a slight delay.

Counters with Load

- Counter with parallel load, write, and clear (reset) inputs.
- Useful for countdowns and more.

We want to build a change machine

- We can add either \$0.05 or \$0.10 at a time
- We want to keep track of the current amount in the machine
- We can hold a maximum of \$0.50
- Draw the state diagram
 - For now, ignore the possibility of going over \$0.50

• How many flipflops would you need to implement the following finite state machine (FSM)?

- 11 states
- # flip-flops = 4

- Dealing with too much money means when we don't accept any more coins.
- New outputs tell machine what to do:
 - $A = 1 \rightarrow reject 5c$
 - $B = 1 \rightarrow reject 10c$
- Complete the state machine for this addition

- Dealing with too much money means when we don't accept any more coins.
- New outputs tell machine what to do:
 - \blacksquare A = 1 \rightarrow reject 5c
 - B = 1 \rightarrow reject 10c
- Complete the state machine for this addition

When scanning UPC
 barcodes, the laser
 scanner looks for black
 and white bars that
 indicate the start of the code.

- If black is read as a 1 and white is read as a 0, the start of the code has a 1010 pattern.
 - Create a state machine that detects this pattern

 Build a machine that detects a 1010 pattern.

- Build a machine that detects a 1010 pattern.
- We know how to build a pattern recognizer:

- One state for each possible sequence of 4 bits.
- In other words, one FF per bit: \mathbb{F}_0 last seen bit, \mathbb{F}_1 the bit before that, \mathbb{F}_2 for bit seen before that, and \mathbb{F}_3 .
- Can we do better than 4 FFs?

- The previous pattern recognizer: state for each possible sequence of 4 bits.
 - It essentially memorized
- Do you have another idea?

- The previous pattern recognizer: state for each possible sequence of 4 bits.
 - It essentially memorized
- Do you have another idea?
 - How about a state that shows us where we are in the pattern?

Step #1: Draw state diagram

1 0 1 0

Step #1: Draw state diagram

Step #1: ... and outputs

Step #2: State Table

Write state table with Z

Present State	X	Z	Next State

Step #2: State Table

- Write state table with Z
- Output Z is determined by the current state.
 - Denotes Moore machine.
- Next step: allocate flipflops values to each state.
 - How many flip-flops will we need for 5 states?
 - # flip-flops = \[log(# of states) \]

A		U	_
В	0	0	C
В	1	0	E
С	0	0	Z.
С	1	0	Γ
D	0	0	E
D	1	0	E
E	0	1	P
E	1	1	Γ
_	_		

Next

State

A

Present

State

Α

→ We need 3 flipflops

Discussion!

- Wait a minute... we built a recognizer before!
- We needed 8 states to recognize 3-bit pattern.
- Now we need only 5 states for a 4-bit pattern
- Why?

Discussion!

- The 3-bit pattern recognizer is doing more!
 - It is memorizing the last 3 bits.
 - To recognize another pattern, simply set the output of the relevant state to one.
 - Even multiple patterns by the same machine.
- The 4-bit pattern recognizer can only recognize one specific pattern.
 - Different pattern \rightarrow different state machine.
 - To recognize n-bit pattern → need n+1 states.

Step #3: Flip-Flop Assignment

 3 flip-flops needed here.

Assign states carefully though!

Can't simply do this:

Why not?

Step #3: Flip-Flop Assignment

 Be careful of race conditions.

Better solution:

$$A = 000$$
 $B = 001$

> E = 100

- "Safer" is defined according to output behaviour.
- Sometimes, extra flip-flops are used for extra insurance.

Step #4: Redraw State Table

- We can now construct the K-maps for the state logic combinational circuit.
 - Derive equations for each flip-flop value, given the previous values and the input X.
 - Three equations total, plus one more for \mathbb{Z} (trivial for Moore machines).

F ₂	F ₁	F ₀	x	Z	F ₂	F ₁	F ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	0	1
0	1	1	0	0	0	0	0
0	1	1	1	0	1	0	1
1	0	1	0	0	1	0	0
1	0	1	1	0	0	0	1
1	0	0	0	1	0	0	0
1	0	0	1	1	1	0	1

• Karnaugh map for F₂:

	$\overline{\mathbf{F}}_0 \cdot \overline{\mathbf{X}}$	$\overline{\mathbf{F}}_0 \cdot \mathbf{X} \qquad \mathbf{F}_0 \cdot \mathbf{X}$		$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$	
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	0	
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	X	X	1	0	
$\mathbf{F}_2 \cdot \mathbf{F}_1$	X	X	X	X	
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	1	0	1	

$$F_2 = F_1X + F_2\overline{F}_0X + F_2F_0\overline{X}$$

• Karnaugh map for F₁:

	$\overline{\mathbf{F}}_0 \cdot \overline{\mathbf{X}}$	F ₀ ⋅ x	F ₀ · X	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	1
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	X	X	0	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	X	X	X	X
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	0

$$F_1 = \overline{F}_2 \overline{F}_1 F_0 \overline{X}$$

Karnaugh map for F_o:

	$\overline{\mathbf{F}}_0 \cdot \overline{\mathbf{X}}$	$\overline{\mathbf{F}}_0 \cdot \mathbf{x}$	F ₀ · X	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	1	1	1
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	X	X	1	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	X	X	X	X
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	1	1	0

$$F_0 = X + \overline{F}_2 \overline{F}_1 F_0$$

Output value Z goes high for state E (100), so the output expression is:

$$Z = F_2 \overline{F}_1 \overline{F}_0$$

- Note: All of these expressions would be different, given different flip-flop assignments!
 - Practice alternate assignments!

Circuit

Ugh....

Circuit

This is why people use automatic tools!

Question: Mouse clicks

- Design a state machine that takes in two signals:
 - P is high if the user is pressing the mouse button.

- M is high if the mouse is being moved.
- Based on the inputs, the state indicates whether the user is clicking, double-clicking, or dragging the mouse on the screen.
 - Hint: you will need more states than that!

Question: Mouse clicks

Question: Mouse clicks

- Transitions indicate the values of P and M.
- X means this transition happens for both o and for 1.
- Outputs depend on the state (Moore machine)
- Home exercise: build this FSM.

Week 6: Processor Components

Microprocessors

So far, we've been making devices, such such as adders, counters and registers.

The ultimate goal is to make a microprocessor, which is a digital device that processes input, can store values and produces output, according to a set of onboard instructions.

Microprocessors

• Microprocessors are a combination of the units that we've discussed so far:

- Registers to store values.
- Adders and shifters to process data.
- Finite state machines to control the process.
- Microprocessors have been the basis of all computing since the 1970's, and can be found in nearly every sort of electronics.

To get to this

We build these

The Final Destination

The Final Destination

Deconstructing processors

Simpler at a high level:

The "Arithmetic Thing"

aka: the Arithmetic Logic Unit (ALU)

Arithmetic Logic Unit

- The first microprocessor applications were calculators.
 - Remember adders and subtractors?
 - These are part of a larger structure called the arithmetic logic unit (ALU).
 - You made a simple one for lab 2 and 3!
- This larger structure is responsible for the processing of all data values in a basic CPU.

ALU inputs

The ALU performs all of the arithmetic operations covered in this course so far, and logical operations as well (AND, OR, NOT, etc.)

- Input S represents select bits (in this case, $S_2 S_1 \& S_0$) that specify which operation to perform.
 - For example: S2 is a mode select bit, indicating whether the ALU is in arithmetic or logic mode
- The carry-in bit C_{in} is used in operations such as incrementing an input value or the overall result.

ALU outputs

• In addition to the input signals, there are output signals V, C, N & Z which indicate special conditions in the arithmetic result:

- V: overflow condition
 - The result of the operation could not be stored in the n bits of G, meaning that the result is incorrect.
- C: carry-out bit
- N: Negative indicator
- Z: Zero-condition indicator (result is zero)

The "A" of ALU

- To understand how the ALU does all of these operations, let's start with the arithmetic side.
- Fundamentally, this side is made of an adder / subtractor unit, which we've seen already:

Arithmetic components

 In addition to addition and subtraction, many more operations can be performed by manipulating what is added to input A, as shown in the diagram above.

Arithmetic operations

- If the B input logic sends B straight through?
- What if B was replaced by all-ones instead?
 - Y = $111...1 \rightarrow$ Result of addition operation: G = A-1
- What if B was replaced by B?
 - Y = $\overline{B} \rightarrow \text{Result of addition operation: } G = A B 1$
- And what if B was replaced by all zeroes?
 - $Y = 000...0 \rightarrow Result is: G = A.$
 - We'll see later: this is useful for moving values between registers, and for loading values into registers.
- \rightarrow Instead of a Sub signal, the operation you want is signaled using the select bits $S_0 \& S_1$.

Operation selection G = A + Y

Select bits		Y	Result	Operation
S ₁	S ₀	Input		• •
0	0	All 0s	G = A	Transfer
0	1	В	G = A+B	Addition
1	0	В	$G = A + \overline{B}$	Subtraction - 1
1	1	All 1s	G = A-1	Decrement

- This is a good start! But something is missing...
- Wait, what about the carry-in bit?

Full operation selection

Select		Input	Operation	
S_1	S ₀	Y	C _{in} =0	C _{in} =1
0	0	All 0s	G = A (transfer)	G = A+1 (increment)
0	1	В	G = A + B (add)	G = A+B+1
1	0	B	$G = A + \overline{B}$	$G = A + \overline{B} + 1$ (subtract)
1	1	All 1s	G = A-1 (decrement)	G = A (transfer)

Based on the values on the select bits and the carry bit, we can perform any number of basic arithmetic operations by manipulating what value is added to A.

Full operation selection

Select		Input	Operation	
S ₁	S ₀	Y	C _{in} =0	C _{in} =1
0	0	All 0s	G = A (transfer)	G = A+1 (increment)
0	1	В	G = A + B (add)	G = A+B+1
1	0	B	$G = A + \overline{B}$	$G = A + \overline{B} + 1$ (subtract)
1	1	All 1s	G = A-1 (decrement)	G = A (transfer)

 Based on the values on the select bits and the carry bit, we can perform any number of basic arithmetic operations by manipulating what value is added to A.

The "L" of ALU

- We also want a circuit that can perform logical operations, in addition to arithmetic ones.
- How do we tell which operation to perform?
 - Another select bit!
- If $S_2 = 1$, then logic circuit block is activated.
- Multiplexer is used to determine which block (logical or arithmetic) goes to the output.

Single ALU Stage

ALU block diagram

- In addition to data inputs and outputs, this circuit also has:
 - outputs indicating the different conditions,
 - inputs specifying the operation to perform (similar to Sub).

What about multiplication?

- Multiplication (and division) operations are more complicated than other arithmetic (plus, minus) or logical (AND, OR) operations.
- Three major ways that multiplication can be implemented in circuitry:
 - Layered rows of adder units.
 - An adder/shifter circuit with accumulator.
 - Booth's Algorithm

Multiplication

Revisiting grade 3 math...

Binary Multiplication

And now, in binary...

101 <u>x 110</u>

Binary Multiplication

Or seen another way....

Binary Multiplication

Implementation

- Implementing this in circuitry involves the summation of several AND terms.
 - AND gates combine input signals.
 - Adders combine the outputs of the AND gates.

Multiplication

- This implementation results in an array of adder circuits to make the multiplier circuit.
- This can get a little expensive as the size of the operands grows.
- - N-bit numbers \rightarrow O(1) clock cycles, but O(\mathbb{N}^2) size.
- Is there an alternative to this circuit?

Accumulator circuits

- What if you could perform each stage of the multiplication operation, one after the other?
 - This circuit would only need a single row of adders and a couple of shift registers.
 - How wide does register R have to be?
 - Is there a simpler way to do this?

