Lista 2 Technologie sieciowe

Patryk Majewski 250134

1 Wstęp

1.1 Opis zadania

Celem zadania jest stworzenie modelu sieci, czyli:

- \bullet zaproponowanie jej topologii (przy ograniczeniach: |V|=20, |E|<30, nie ma izolowanych wierzchołków)
- ustalenie macierzy natężeń strumienia pakietów
- określenie funkcji przepustowości i przepływu dla jej krawędzi

Należy stworzyć program szacujący niezawodność sieci, a następnie sprawdzić, jak zmienia się ona:

- przy ustalonej topologii i przepustowościach oraz rosnących wartościach w macierzy natężeń
- przy ustalonej topologii i macierzy natężeń oraz rosnącej przepustowości
- przy ustalonej macierzy natężeń i początkowej topologii, kiedy dodajemy nowe krawędzie

1.2 Implementacja

Potrzebne programy zostały napisane w języku Python z użyciem bibliotek networkx i matplotlib. Do testów wykorzystywana jest też funkcja linspace z biblioteki numpy.

2 Model sieci

2.1 Topologia

Proponowana przeze mnie topologia powstaje poprzez połączenie dwóch grafów cyklicznych o 9 i 11 węzłach w sposób pokazany na rysunku 1.

Rysunek 1: Zaproponowana topologia

2.2 Macierz natężeń

Macierz natężeń $\mathbf{N} = [n_{i,j}]$, gdzie $n_{i,j}$ jest liczbą pakietów wysyłanych z węzła v_i do v_j w ciągu sekundy, wygenerujemy losowo dbając o to, żeby $n_{i,i} = 0$ oraz $n_{i,j} \neq 0$ dla $i \neq j$:

[0	3	2	3	6	9	8	6	9	5	4	8	6	9	2	9	7	8	9	6]
1	0	2	1	2	3	4	1	4	1	1	4	8	7	1	4	3	6	5	4
4	8	0	7	3	1	4	4	6	2	5	7	1	2	8	6	1	5	8	4
2	3	6	0	1	2	6	2	1	6	9	1	5	1	2	1	8	2	3	2
4	8	5	2	0	2	4	3	4	8	6	1	1	2	3	4	2	7	8	7
1	7	5	9	2	0	2	2	5	7	3	3	2	4	1	3	2	9	9	2
7	5	3	3	3	6	0	6	1	8	4	9	4	9	1	6	1	1	9	5
3	5	9	7	5	5	5	0	5	2	6	4	7	2	4	8	7	9	6	4
4	5	5	2	6	5	7	9	0	6	2	2	7	3	5	1	4	5	8	5
4	3	6	3	7	6	5	8	8	0	7	3	7	6	3	9	5	9	1	4
6	5	8	1	6	8	8	3	6	2	0	1	6	5	2	7	6	7	7	1
2	1	5	6	7	4	2	6	8	8	3	0	4	7	7	2	1	1	9	6
6	2	2	3	5	5	2	5	6	5	1	9	0	9	9	4	9	6	7	6
8	4	8	6	5	5	5	3	4	3	3	5	7	0	4	6	7	9	7	1
4	2	1	3	7	9	1	9	6	8	1	3	7	7	0	4	7	6	5	7
7	6	4	7	2	9	7	2	7	3	8	2	2	1	9	0	8	8	1	7
5	9	5	9	2	1	6	1	6	6	4	2	9	8	6	2	0	7	6	9
7	3	4	8	5	5	7	2	9	6	3	2	4	3	7	9	1	0	1	9
1	4	9	4	6	6	4	2	2	4	9	9	2	5	1	8	3	1	0	3
$\lfloor 2$	6	4	4	9	4	9	4	7	6	2	1	2	2	8	3	3	5	2	0

Rysunek 2: Wygenerowana macierz natężeń

2.3 Funkcje krawędzi

2.3.1 Przepływ

Funkcję przepływu, czyli liczbę pakietów przepływających przez daną krawędź, realizujemy następującym wzorem:

$$a(e) = \sum_{v_i, v_j \in V} |\{e\} \cap path(v_i, v_j)| \cdot n_{i,j}$$

gdzie $path(v_i, v_j)$ jest zbiorem krawędzi znajdujących się na najkrótszej ścieżce z v_i do v_j (może istnieć więcej niż jedna taka ścieżka, wówczas wybieramy tę zwracaną przez funkcję shortest_path).

2.3.2 Przepustowość

Przyjmijmy, że pakiet ma rozmiar kilku kB – oznaczmy ten rozmiar jako S. Wówczas kabel o przepustowości 1 Mb/s w sekundę przepuszcza kilkadziesiąt takich pakietów – na przykład 50. Załóżmy też, że mamy do dyspozycji przewody o przepustowościach będących całkowitą wielokrotnością megabita na sekundę. Zależy nam na jak najtańszym skonstruowaniu naszej sieci, więc dla każdej krawędzi wybieramy kabel o najmniejszej odpowiedniej przepustowości mogącej obsłużyć przepływ dziesięciokrotnie większy niż obecny (przy rozmiarze pakietu S). Zgodnie z tymi założeniami, funkcję przepustowości definiujemy następująco:

$$c(e) = \left| \frac{10 \cdot a(e)}{50} \right| \cdot 50 + 50$$

gdzie c(e) = 50n oznacza rzeczywistą przepustowość łącza n Mb/s. Zgodnie z tą umową, kiedy podczas testów podamy średni rozmiar pakietu m = n, mamy na myśli, że w rzeczywistości ma on wartość $n \cdot \mathbf{S}$.

Rysunek 3: Topologia badanej sieci wraz z wartościami funkcji c i a umieszczonymi na krawędziach. Dane są zgodne z macierzą przedstawioną na rysunku 2.

3 Niezawodność

3.1 Definicja

Oprócz topologii sieci, macierzy natężeń oraz wartości funkcji a i c, niezawodność zależeć będzie również od następujących parametrów:

- \bullet T_{max} maksymalne opóźnienie pakietu w sieci
- $\bullet\,\,p$ prawdopodobieństwo nieuszkodzenia krawędzi w dowolnym interwale
- $\bullet \ m$ średnia wartość pakietu w bitach

Za miarę niezawodności sieci przyjmujemy prawdopodobieństwo $P(T < T_{max})$. T jest średnim opóźnieniem pakietu w sieci, wyrażanym wzorem

$$T = \frac{1}{G} \cdot \sum_{e \in E} \frac{a(e)}{\frac{c(e)}{m} - a(e)}$$

gdzie
$$G = \sum_{i,j} n_{i,j}$$
.

Niezawodność będziemy więc szacować według następującej procedury:

- 1. W każdej iteracji rozpoczniemy z wejściową topologią sieci. Iteracja trwać będzie maksymalnie określoną liczbę interwałów.
- 2. Sprawdzimy, które krawędzie uszkodziły się w obecnym interwale. Jeśli graf został rozspójniony, próba kończy się niepowodzeniem.
- 3. Biorąc pod uwagę uszkodzenia krawędzi na nowo wyznaczymy wartości funkcji a.
- 4. Spróbujemy obliczyć wartość T. Jeśli dla dowolnego e otrzymamy $a(e) \ge \frac{c(e)}{m}$, próba kończy się niepowodzeniem (oznacza to, że krawędź została przeciążona).
- 5. Jeśli uda nam się obliczyć T i otrzymamy $T < T_{max}$, uznamy próbę za zaliczoną.
- 6. Wynikiem jednej iteracji bedzie liczba udanych prób pozielona przez maksymalny czas jej trwania.
- 7. Za niezawodność sieci przyjmiemy średnią arytmetyczną wyników wszystkich iteracji.

3.2 Testy

W sprawozdaniu umieszczone zostaną tylko wybrane, w miarę reprezentatywne wykresy, ale wyciągane wnioski opierać się będą na wszystkich wynikach testów. Te niezamieszczone poniżej można znaleźć na moim dysku Google.

3.2.1 Ogólne obserwacje

Te obserwacje pokrywają się dla każdego z poniższych testów, zostały więc zebrane w celu uniknięcia niepotrzebnych powtórzeń. Po przeanalizowaniu wszystkich wyników wnioskujemy, że:

- niezawodność rośnie ze wzrostem T_{max}
- $\bullet\,$ niezawodność rośnie ze wzrostem p
- $\bullet\,$ niezawodność maleje ze wzrostem m

W niektórych przypadkach zauważyć można odstępstwa od tych reguł, jednak dzieje się tak w większości przy skrajnych wartościach parametrów – amplituda niezawodności jest wówczas tak niewielka, że nawet mała anomalia spowodowana czynnikiem losowym (rozspójnienie grafu) bardzo poważnie wygląda na wykresie. Testy przeprowadzimy na następujących zakresach:

- \bullet T_{max} od T bazowej sieci dla obecnego m do dziesięciokrotności tej wartości poniżej wyniki byłyby bliskie zeru dla dowolnego m
- p od 0.90 do 0.99 jw.
- ullet m od 1 do 10 nasza sieć nie jest przygotowana na większe rozmiary, zgodnie ze zdefiniowaną przepustowością.

3.2.2 Zwiększanie liczby pakietów a niezawodność

W pierwszym teście sprawdzimy zachowanie niezawodności sieci przy ustalonej topologii i określonej funkcji przepustowości oraz zmieniającej się macierzy natężeń. W każdej iteracji zwiększymy o step losowy element macierzy N (nieleżący na przekątnej), wyznaczymy nowe wartości funkcji a i oszacujemy niezawodność.

Ogólna obserwacja

Dodawanie pakietów wydaje się wpływać negatywnie na niezawodność sieci.

Zmiana T_{max}

Wraz ze wzrostem T_{max} obserwujemy większą tolerancję na dodawanie pakietów, co objawia się na wykresach jako jaśniejszy lewy górny róg.

Zmiana p

Dzięki zmianie parametru p możemy wyraźniej zauważyć tendencję wspomnianą wyżej.

Zmiana m

Wzrost m zwiększa gwałtowność spadku niezawodności przy dodawaniu pakietów.

3.2.3 Zwiększanie przepustowości a niezawodność

Sprawdzimy teraz, jaki wpływ na niezawodność ma wzrost przepustowości połączeń. Będziemy stopniowo zwiększać przepustowość każdego połączenia o 1 Mb/s, czyli wartości funkcji c zmieniać się będą według wzoru

$$\hat{c}(e,i) = c(e) + 50i$$

gdzie i to numer iteracji.

Ogólna obserwacja

Dane wskazują, że zwiększenie przepustowości prowadzi do wzrostu niezawodności.

Zmiana T_{max}

Przy maksymalnie zwiększonej przepustowości, największe wartości niezawodność osiąga zazwyczaj w okolicy najwyższego T_{max} . Mimo to, zwiększanie przepustowości zdaje się szybciej wpływać na niezawodność (jaśniejszy prawy dolny róg).

Zmiana p

Zmiana m

Zwiększanie m z reguły zmniejsza amplitudę wartości niezawodności, przez co trudniej jest zauważyć zaobserwowaną wcześniej tendencję.

3.2.4 Dodawanie krawędzi a niezawodność

W ostatnim teście sprawdzimy, jak dodawanie krawędzi wpływa na niezawodność. Nowe połączenia będą miały przepustowość równą średniemu c dla sieci początkowej.

Ogólna obserwacja

Dane zdają się jednoznaczenie sugerować wzrost niezawodności przy dodawaniu nowych krawędzi. W wielu przypadkach dodanie 10 krawędzi poprawiało niezawodność około dwukrotnie.

Zmiana T_{max}

Największe wartości osiągane są przy największym T_{max} i dodaniu największej liczby krawędzi. Niektóre wykresy (jak te pokazane) sugerują, że dodawanie krawędzi niesie za sobą szybszy wzrost niezawodności niż zwiększanie T_{max} (jasny prawy dolny róg).

Zmiana p

Zmiana m

Czym wyższe m, tym więcej krawędzi musimy dodać dla uzyskania rezultatów.

4 Wnioski

• Przy przyjętych wielkościach kroków zwiększanie przepustowości skutkuje bardziej regularnym (chociaż niższym) wzrostem niezawodności niż dodawanie krawędzi.

- Prawdopodobieństwo awarii łącza ma tym większe znaczenie, im bliżej jesteśmy do maksymalnego wykorzystania przepustowości połączeń.
- \bullet Trudno stwierdzić, czy większy wpływ na niezawodność ma T_{max} czy p. W przypadku niskich m różnice w testowanych wartościach T_{max} są niewielkie, więc jego zwiększenie jest prawie niezauważalne przy zasadniczo lepszych wynikach. Przy większych rozmiarach pakietów zmniejszenie awaryjności kabli może się okazać mniej uciążliwe.