Optimizers in Deep Learning

The optimizer we use in DL is **Gradient Descent**:

Challenges with GD:

- Deciding the value of learning rate (η)
- Cannot set a custom learning rate for individual weights and biases
- Local minima problem
 - We can get stuck in Local Minima
- Saddle point
 - There's a point where slope does not change
 - Therefore, weights don't get updated.

The following optimizers solve the above issues:

- 1. Momentum
- 2. Adagrad (Adaptive Gradient Algorithm)
- 3. NAG
- 4. RMSprop (Root Mean Square Propagation)
- 5. Adam

Key concept used in above optimizers → **Exponentially weighted moving average**

Exponentially weighted moving average

• The **Exponentially Weighted Moving Average (EWMA)** is a smoothing technique that gives more weight to recent data while gradually "forgetting" older observations.

- It's a weighted average, but the weights decay exponentially
- EWMA gives more importance to recent weights
- As time passes, the weight of a point decreases exponentially

It's widely used in:

- Time series forecasting (e.g., stock prices, weather data).
- Optimization algorithms (e.g., Momentum in SGD, Adam, RMSprop).
- Signal processing (noise reduction).

6 Goal: Capture short-term trends while still considering past data.

Why Use EWMA?

Problem	EWMA Fix
Too much noise in time-series	✓ Smooths fluctuations
Need quick reaction to new data	Gives recent data more weight
Need memory of older data	✓ Never fully discards old values

Formula:

$$v_t = eta \cdot v_{t-1} + (1-eta) \cdot heta_t$$

- θ_t : Current observation (e.g., gradient, stock price).
- β: Decay rate (typically **0.9**, **0.99**, etc.).
 - Higher β = smoother but slower to adapt.
 - Lower β = noisier but more responsive.

Intuition

- Think of it as a leaky average, where older data decays exponentially.
- **Example**: If β =0.9, the weight of past observations decays like:

```
Current=10%,
1 step back=9%,
2 steps back=8.1%,etc.
```

β Value:

Close to 1 (e.g., 0.9)	Fast response, recent data dominates (Most common)
Close to 0 (e.g., 0.1)	Slow response, more smoothing

- β closer to 1: The weight on the most recent observation x_i is larger, meaning the EWMA is more sensitive to recent changes and reacts more quickly to new data.
 - This is typically used when you want to prioritize recent values more heavily.
- β closer to 0: The weight on the most recent observation is smaller, and the EWMA places more importance on older values, making it less sensitive to recent changes.
 - This is used when you want a **smoother** time series that reacts more slowly to new data.

EWMA in Python:

df['Close'].ewm(alpha=0.9).mean()

```
9.710000
1
        9.791818
        9.934324
        9.849424
        9.854442
246
       10.573514
247
       10.435351
248
       10.475535
249
       10.695554
       11.329555
250
Name: Close, Length: 251, dtype: float64
```

```
plt.plot(df['Date'], df['Close'])
df['Close'].ewm(alpha=0.3).mean().plot(color='r')
```


OPTIMIZERS

1. SGD with Momentum (Speeed)

SGD with Momentum is an extension of the basic **Stochastic Gradient Descent (SGD)** optimization algorithm.

• Stochastic Gradient Descent (SGD) with Momentum is like rolling a ball downhill—it uses past gradients to accelerate convergence and escape local minima.

Key Benefits

- **▼ Faster convergence**: Especially in flat or noisy loss landscapes.
- ▼ Escapes local minima: Momentum carries it through small bumps.
- **Less oscillation**: Smoother updates than vanilla SGD.
- Solves High Curvature problem

X Problem with vanilla SGD:

Slow in narrow valleys

- Oscillates up and down in steep areas
- Gets stuck in local minima

Momentum Fix:

- Adds inertia to the updates
- Helps SGD roll down like a **ball** with memory of past direction

Formula:

- v_t : Velocity (exponentially weighted average of past gradients).
- β : Momentum hyperparameter (**0.9** is typical).
- α: Learning rate.
- You use history of past velocities.

It provides momentum

β Value:

- $\beta = 0 \rightarrow SGD$
- $\beta = 1 \rightarrow$ Dynamic equilibrium. No decay
- $\beta = 0.9$ (Most common)

Intuition (Ball in a Valley Analogy)

- Plain SGD: Like dropping a ball in a bumpy valley; it jumps side to side.
- SGD with Momentum: Ball gains **velocity** and rolls faster, **smoother**, and more directly toward the bottom.

Python code:

```
from keras.optimizers import SGD

# SGD with momentum = 0.9
optimizer = SGD(learning_rate=0.01, momentum=0.9)

model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics= ['accuracy'])
```

learning_rate=0.01 → By default

momentum= 0.0 (Default)

SGD vs SGD + Momentum

Feature	SGD	SGD + Momentum
Uses gradient only		▽
Uses past gradients	×	V
Smooth updates	×	~
Converges faster	×	✓
Handles ravines	×	~

Why Momentum Beats Vanilla SGD

Scenario	Vanilla SGD	SGD + Momentum
Flat regions	Crawls slowly	Accelerates through
Noisy gradients	Oscillates wildly	Smoothens updates
Local minima	Gets stuck	Rolls past them

Disadvantage of SGD + Momentum

• Oscillations: In regions of the loss surface where the gradient points in opposite directions (e.g., in valleys), SGD might oscillate back and forth.

2. Nesterov Accelerated Gradient (NAG) 2

SGD(learning_rate=0.01, momentum=0.9, nesterov=True)

- Upgrade to SGD Momentum
- Mostly performs better than SGD Momentum

attachment:e9887393-6286-49e9-8a30-a05a3d4d7f45:2025-04-05_23-4 6-22.mp4

SGD Momentum 🖕 👇

- The above \(\frac{1}{2} \) graph is taking more epochs to reach to minima cuz the decay factor is 0.9.
 - i.e. it's giving more importance to the recept weights
- If we decrease the decay factor, the oscillations will reduce
- NAG helps to decrease the oscillations by keeping the decay constant.

NAG with same decay i.e. 9 -

Goal: Make more accurate and faster updates by "looking ahead" before calculating the gradient.

"Before I take the next step, let me check the slope a little ahead of where I'm going."

Why Use NAG?

Issue in SGD + Momentum	NAG Solution
Momentum blindly trusts past direction	NAG looks ahead before moving
Overshoots minima	NAG applies correction before stepping
Slower convergence	NAG converges faster and smoother

NAG vs. Classic Momentum

Aspect	Classic Momentum	Nesterov Momentum
--------	------------------	-------------------

Gradient Calculation	At current position	At "lookahead" position
Overshooting	More likely	Reduced
Convergence Speed	Fast	Faster
Stability	Good	Better

Update Rules – Step by Step

Step 1:

 Lookahead Step: Instead of applying the momentum update directly on the current parameters

 θ_t , NAG first performs a lookahead step to predict where the parameters will be after the update:

$$ilde{ heta}_t = heta_t - \gamma \cdot v_{t-1}$$

- Step 2: Compute Gradient at Lookahead
 - Gradient is taken at the lookahead position, not current position.

$$abla J(ilde{ heta}_t)$$

Step 3: Update Velocity

$$v_t = \gamma \cdot v_{t-1} + \eta \cdot
abla J(ilde{ heta}_t)$$

Step 4: Update Weights

Python (Keras) Implementation

from keras.optimizers import SGD

SGD with Nesterov Momentum optimizer = SGD(learning_rate=0.01, momentum=0.9, nesterov=True)

Explanation:

- momentum=0.9: Standard momentum value
- nesterov=True: Enables lookahead behavior

Simple Analogy

Plain Momentum:

"I'm going downhill fast. Keep going!"

NAG:

"I'm going downhill fast. But let me look a little ahead first to see if I should slow down."

X When to Use NAG?

- ✓ Ideal for:
 - Deep neural networks
 - Highly non-convex loss surfaces
- Image classification, NLP, time series forecasting

Disadvantage of NAG

- You can get stuck in local minima.
 - Momentum has enough power(momentum) to get out of the local minima.

When to Avoid NAG?

- When you're using **Adam** or **RMSProp**, which already handle momentum smartly.
- X Very noisy gradients (Adam/RMSprop may be better).
- X Extremely large batches (momentum matters less).

3. AdaGrad Optimizer

AdaGrad (Adaptive Gradient Algorithm) adjusts the learning rate individually for each parameter, based on how frequently it's been updated.

Adagrad is not used in Neural Networks.

6 Goal: Take larger steps for infrequent features, and smaller steps for frequent ones.

Why Use AdaGrad?

Problem with SGD:

• Uses same learning rate for all weights → inefficient

AdaGrad Fix:

- Tracks the sum of squared gradients for each weight
- Adjusts learning rate based on parameter history

★ When to Use AdaGrad?

- When scale of input features is different
 - o eg. CGPA (scale: 0 to 10) & salary (scale: in Lacs)
 - But we normalize the data in such case so Adagrad is not much useful.
- When **features** are **sparse** (most of the values are zero)

- The movement is slow for sparse columns cuz weight update is small

★Big gradient → Small Learning Rate (& vice versa)

Formula:

Update Rule:

$$heta_{t+1} = heta_t - rac{lpha}{\sqrt{G_t + \epsilon}} \cdot g_t$$

- ullet G_t : Sum of squared past gradients (per parameter).
- ϵ : Small constant (~1e-8) to avoid division by zero.

$$W_{t+1} = W_t - \eta \nabla W_t$$

$$\sqrt{V_{t} + \epsilon}$$

 v_t : Sum of squared past gradients (per parameter)

 ϵ : Small constant (~1e-8) to avoid division by zero.

$$V_{t} = V_{t-1} + (\nabla W_{t})^{2}$$

AdaGrad vs. SGD

Scenario	SGD	AdaGrad
Sparse features	Fails to train rare features	Excels
Learning rates	Fixed for all parameters	Adapts per parameter
Convergence	Slow for ill-conditioned data	Faster

Disadvantages of AdaGrad

- AdaGrad can get close to solution but can never converge
 - \circ $\mbox{\bf Reason}:$ we divide LR by $v_t.$ It eventually gets large and LR decreases \Rightarrow Small Updates

Behavior Summary:

Feature	Effect
Large gradient (frequent)	Step gets smaller
Small gradient (infrequent)	✓ Step stays large
Converges fast	✓ Initially
Long-term learning	X Learning rate may become too small to continue

Python/Keras Implementation

```
from keras.optimizers import Adagrad

optimizer = Adagrad(learning_rate=0.01)

model.compile(optimizer=optimizer, loss='mse')
```

learning_rate=0.001 (Default)

4. RMSProp (Root Mean Square Propagation)

- Adaptive learning rate optimization algorithm that fixes AdaGrad's main weakness: its learning rate decays too aggressively.
- One of the best optimization techniques

RMSProp was used before Adam.

Goal: Maintain stable, adaptive learning rates for each weight without vanishing updates.

- **Problem with AdaGrad**: The sum of squared gradients (G_t) grows monotonically, causing learning rates to vanish over time.
- RMSProp's Fix: Replace GtGt with a leaky average (like momentum for gradients).

Real-World Analogy

AdaGrad: "Every time I step, I get more cautious permanently."

RMSProp: "I remember the recent terrain and adjust my step size based on it—not the whole history."

Update Rule:

$$E[g^2]_t = \beta E[g^2]_{t-1} + (1-\beta)g_t^2$$

$$heta_{t+1} = heta_t - rac{lpha}{\sqrt{E[g^2]_t + \epsilon}} \cdot g_t$$

- $E[g^2]_t$: Exponentially weighted average of squared gradients.
- β: Decay rate (typically 0.9).
- ε: Small constant (~1e-8) for numerical stability.

3. RMSProp Update Rule – Step by Step

Let:

- θ: parameter (weight)
- g_t : gradient at time t
- ullet $E[g^2]_t$: exponentially decaying average of squared gradients
- ρ: decay factor (default = 0.9)
- η : learning rate
- ε: small constant to avoid division by zero

Step 1: Update Moving Average of Squared Gradients

$$E[g^2]_t =
ho \cdot E[g^2]_{t-1} + (1-
ho) \cdot g_t^2$$

Like an Exponentially Weighted Moving Average (EWMA)

Step 2: Parameter Update

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{E[g^2]_t} + \epsilon} \cdot g_t$$

RMSProp vs. AdaGrad

Scenario	AdaGrad	RMSProp
Learning Rates	Vanish over time	Stabilize
Convergence	Stalls in deep nets	Works well
Hyperparameter	None	Decay rate (β)
Deep networks	X Not good	Reliable

Python/Keras Implementation

from keras.optimizers import RMSprop

optimizer = RMSprop(learning_rate=0.001, rho=0.9)

model.compile(optimizer=optimizer, loss='mse')

learning_rate=0.001 (Default)

rho=0.9 (Default)

Pro Tips

1. Default Hyperparameters:

- Learning rate ($\alpha\alpha$): **0.001** (start small).
- Decay rate ($\beta\beta$): **0.9** (standard).

2. Combine with Momentum:

- RMSProp focuses on gradient magnitude; momentum handles direction.
- Result: Adam optimizer (next-gen default).

3. Use For:

- RNNs, non-convex problems.
- Replaced by Adam in most cases, but still useful for some tasks.

5. Adam (Adaptive Moment Estimation)

- Adam combines RMSProp (adaptive learning rates) and Momentum (gradient history) into one powerful optimizer.
- It's the default choice for most deep learning tasks due to its robustness and speed.

Goal: Achieve fast convergence with stable updates in deep learning models.

Why Use Adam?

Problem	Fix Adam Provides
Learning rate needs tuning	Automatically adapts per weight
Momentum or RMSProp alone isn't enough	✓ Combines both
Noisy gradients in mini-batch training	✓ Smooth updates
Training unstable	✓ Stabilizes with bias correction

Update Rule – Step by Step

- θ_t : current weight
- g_t : current gradient
- m_t : moving average of gradient (1st moment)
- v_t : moving average of squared gradient (2nd moment)
- β1: decay for momentum (default = 0.9)
- β2 : decay for RMS (default = 0.999)
- ε: small constant (default = 1e-7)

Step 1: Compute Gradients

$$g_t =
abla_{ heta} J(heta_t)$$

Step 2: Update First Moment (Momentum)

$$m_t = \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t$$

Step 3: Update Second Moment (RMS)

$$v_t = \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2$$

Step 4: Bias Correction

$$\hat{m}_t = rac{m_t}{1-eta_1^t}, \quad \hat{v}_t = rac{v_t}{1-eta_2^t}$$

Corrects for initialization bias early in training.

Step 5: Update Parameters

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \cdot \hat{m}_t$$

$$egin{aligned} m_t &= eta_1 m_{t-1} + (1-eta_1) g_t \quad ext{(1st moment)} \ v_t &= eta_2 v_{t-1} + (1-eta_2) g_t^2 \quad ext{(2nd moment)} \ \hat{m}_t &= rac{m_t}{1-eta_1^t} \quad ext{(bias correction)} \ \hat{v}_t &= rac{v_t}{1-eta_2^t} \ ext{} \ heta_{t+1} &= heta_t - rac{lpha \cdot \hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} \end{aligned}$$

Adam vs. Other Optimizers			
Optimizer	Adaptive LR?	Momentum?	Best For
SGD	×	×	Simple convex problems
SGD + Momentum	×	~	Deeper networks
AdaGrad	<u>~</u>	×	Sparse data
RMSProp	<u>~</u>	×	RNNs, non-convex landscapes
Adam	<u> </u>	M	Most deep learning tasks

Keras Code

from keras.optimizers import Adam

optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999)

model.compile(optimizer=optimizer, loss='mse')

learning_rate=0.001 (Default)

beta_1=0.9 (Default)

beta_2=0.999 (Default)

Why Adam Dominates?

- ✓ Adaptive Learning Rates: Each parameter gets a custom step size.
- **✓ Momentum Acceleration:** Smoothens noisy gradients.
- ▼ Bias Correction: Fixes early training instability.
- Works Out-of-the-Box: Default hyperparameters suit most problems.

o Use Cases

Task	Adam Use?
Deep neural networks	Excellent
NLP & Transformers	▼ Standard choice
Image classification	✓ Common
RNNs & LSTMs	✓ Very effective
Tabular data	✓ Works well

Real-World Analogy

Adam is like a self-driving car:

It adjusts its speed based on road slope (gradient), remembers recent direction (momentum), and avoids overreacting (bias correction).

★ When to Avoid Adam?

- **X** Theoretical convex problems (SGD may generalize better).
- **Extremely large batches** (momentum becomes less useful).

o Summary

- Adam = RMSProp + Momentum + Bias Correction.
- Use For: Almost all deep learning (CNNs, RNNs, Transformers).
- Implementation: 1 line in PyTorch/Keras.