

Accuracy

Predicted

Real / Actual

	0	1
0	6	2
1	1	1

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

- Correctly classified = 7
- > Total observations = 10
- \triangleright Accuracy = 7 / 10 * 100 = 70%

But the model is not doing a great job on the minority class!!

Recall

Predicted

Real / Actual

	0	1
0	6	2
1	1	1

Class
$$0 = 6 / (6 + 2) = 6 / 8 = 0.75$$

Class
$$1 = 1 / (1 + 1) = 1 / 2 = 0.50$$

True Positive Rate (Recall or Sensitivity)

$$\checkmark$$
 TP rate = TP / (TP + FN)

The percentage of observations of each class that were correctly classified

Recall

True Positive Rate (Recall or Sensitivity)

$$\checkmark$$
 TP rate = TP / (TP + FN)

The percentage of observations of each class that were correctly classified

Predicted

	0	1
0	6	2
1	1	1

Class
$$0 = 6 / (6 + 2) = 6 / 8 = 0.75$$

Class $1 = 1 / (1 + 1) = 1 / 2 = 0.50$

Accuracy within each class

Real / Actual

Balanced accuracy

The balanced accuracy is the average recall obtained in each class

Predicted

O
+
U
4
O
O

	0	1
0	6	2
1	1	1

Class
$$0 = 6 / (6 + 2) = 6 / 8 = 0.75$$

Class $1 = 1 / (1 + 1) = 1 / 2 = 0.50$

Accuracy within each class

Balanced accuracy = $(Recall_0 + Recall_1) / 2 = (0.75 + 0.5) / 2 = 0.625$

THANK YOU

www.trainindata.com