FMI, Info, Anul I

Logică matematică și computațională

Seminar 4

(S4.1) Să se arate că pentru orice formulă φ , numărul parantezelor deschise care apar în φ coincide cu numărul parantezelor închise care apar în φ .

(S4.2) Să se dea o definiție recursivă a mulțimii variabilelor unei formule.

(S4.3) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

- (i) $((x_0 \to x_1) \to x_0) \to x_0 = 1$;
- (ii) $(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$.

(S4.4) Să se arate că pentru orice $e: V \to \{0,1\}$ și pentru orice formule φ, ψ avem:

- (i) $e^+(\varphi \vee \psi) = e^+(\varphi) \vee e^+(\psi);$
- (ii) $e^+(\varphi \wedge \psi) = e^+(\varphi) \wedge e^+(\psi);$
- (iii) $e^+(\varphi \leftrightarrow \psi) = e^+(\varphi) \leftrightarrow e^+(\psi)$.

(S4.5) Să se găsească câte un model pentru fiecare din formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

(S4.6) Să se demonstreze că, pentru orice formulă φ ,

- (i) φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă dacă și numai dacă $\neg \varphi$ este tautologie.