# Coding of Stereophonic Signals

Prof. Dr.-Ing. Karlheinz Brandenburg

Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany





#### Introduction

Goal: produce spatial acoustic impression

#### Approach:

- Look at information the ear is using
- Psycho-acoustic effects





# **Psycho-Acoustics - Spatial Hearing (1)**

Interaural time difference (ITD)

different ear arrival times due to different propagation paths





#### Psycho-Acoustics – Spatial Hearing (2)

#### Interaural level difference (ILD)

 Different sound pressure levels due to shadowing of the head (for high frequencies)



#### Psycho-Acoustics – Spatial Hearing (3)

#### Interaural Coherence (IC)

→ degree of "similarity" between left and right ear entrance signals

#### Inter-Channel Coherence (ICC)

→ degree of "similarity" between left and right source signal

width of auditory object increases (1-3) as IC/ICC between left and right ear/channel decreases



 $IC = \frac{\left|\sum_{k} x_{l}(k) x_{r}^{*}(k)\right|}{\sqrt{\sum_{k} x_{l}(k) x_{l}^{*}(k) \cdot \sum_{k} x_{r}(k) x_{r}^{*}(k)}} = \frac{crosscorr(l, r)^{2}}{autocorr(l) \cdot autocorr(r)}$ 

 $X_l$  and  $X_r$  denote complex valued signals resulting from filter bank

1 ... distinct auditory object; IC = 1

2 ... 0 < IC < 1

3 ... diffuse auditory object; IC = 0

TECHNISCHE UNIVERSITÄT
ILMENAU



#### **Psycho-Acoustics Irrelevance (4)**

#### Duplex theory

- ITD dominate localization at low frequencies
- ILD at high frequencies
- Transition between ITD and ILD dominance is about 1-2kHz



ILD and ITD can be intercharged within limits

**BUT:** precedence effect (Haas-Effect)!





## Recording

Delay stereo



Intensity stereo (pan pot)





# Coding

Coding: Distribution of spatial quantization noise?

- signal and noise from same apparent spatial position → optimum solution
- Signal and quantization noise from different spatial positions: quantization noise becomes more audible

Difference in masking levels:

Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de

Binaural Masking Level Difference (BMLD) between 0dB to 18dB





#### **BMLD** experiment

- Masker (audio signal) identical to both ears
- Test tone (quantization noise) identical for both ears, at masking threshold
  - → inaudible
- 2. Same test tone, but different phase relationship between ears
  - → audible
- Difference in masking threshold: BMLD

Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de





#### **Separate Stereo Coding**

- Simplest method for stereo coding
- Problem: e.g. audio signal in center
  - signal appears in center
  - quantization noise is uncorrelated from sides
  - → unmasking can result (BMLD)
- Redundancy between channels not used for compression





# Mid/Side (M/S) Coding (1)

- Matrixing, sum/difference
- For encoding:  $M = \frac{L+R}{2}$   $S = \frac{L-R}{2}$
- For decoding: L = M + S R = M S

- Invertible in the absence of quantization
- Quantization noise: with a factor of  $\sqrt{2}$ 
  - energy conservation



# Mid/Side (M/S) Coding (2)





# Mid/Side (M/S) Coding (3)

- For a centered signal S=0:
  - Few bits
  - Little quantization distortion
- Reduced bit-rate (redundancy reduction)
- Quantization noise centered, like signal
- Works for predominantly centered signals





13

# Mid/Side (M/S) Coding (4)

- Problem: assume signal only in left channel
  - L=A, R=0
- Matrixing, quantization noise n<sub>1</sub>, n<sub>2</sub>:

$$M = A\frac{1}{2} + n_1, \quad S = A\frac{1}{2} + n_2$$

- → unnecessary bits needed
- Decoder:  $L = A + n_1 + n_2$ ,  $R = n_1 n_2$ 
  - → noise spreads to other channel
- For signals with little correlation between channels: switch to separate left/right coding necessary





#### Mid/Side (M/S) Coding (5)







15

# Mid/Side (M/S) Coding (6)

# More efficient if M/S, L/R switch is independent in subbands

Somewhat separating different sources or instruments, as much as the ear needs

M/S, L/R switch

split into bands

r coding

coding

coding

e.g. groups of subbands of the MDCT of the audio coder





# **Intensity Stereo (1)**

- M/S for higher quality
- Goal for intensity: reduce overhead for stereo → bit reduction
- Lossy coding → ILD
- Usually used above a certain frequency (4 kHz)





# Intensity Stereo (2) - Encoder







## Intensity Stereo (3) - Decoder







#### Interaction Intensity Stereo ←→ Dolby Pro-Logic





Simple four-input Pro-Logic encoder

Decoder with Voltage Controlled Amplifier (VCA) and Full Wave Rectification (FWR)

- Pro-Logic: (analog) matrix surround en-/decoding system
- Center and Surround channels are mixed into stereo signal
- Problem: loss of phase information by coding Lt and Rt with intensity stereo coders (crosstalk!)





## Variants of intensity stereo coding – BCC (1)

- Binaural Cue Coding BCC
  - Lucent/Agere





**IDMT** 





#### Variants of intensity stereo coding – BCC (2)

Differences/Advantages

intensity stereo ←→ Binaural Cue Coding

- Sub-band decomposition/time-frequency tradeoff is separate from mono audio codec
- no lower cutoff frequency, because ITD and ILD and IC are transmitted and resynthesized (remember: duplex theory)
- better reconstruction of stereo images





#### **Hybrid Coder using Scalable BCC**

#### TF – time-frequency transform



Source: Baumgarte et alt., 116th AES Convention, Berlin

- BCC parameters
  - ITD (interaural time difference)
  - ILD (interaural level difference)
  - IC (interaural coherence)





#### **Hybrid Coder using Scalable BCC**



Source: Baumgarte et alt., 116th AES Convention, Berlin

- Maximum achievable quality of parametric stereo coders limited due to limited model accuracy
- Hybrid approach closes gap between BCC and conventional coders





#### Parametric Stereo (1)

- Parametric Stereo
  - Is supported within MPEG-4, within the HE-AAC (high-efficiency) profile
  - Delivers 'good' quality at bitrates as low as 24-32 kbps, and 'excellent' quality around 48kbps on a MUSHRA score (Multi Stimulus with Hidden Reference and Anchors – ITU-R BS.1534-2)
  - Is part of the current "state of the art" MPEG Audio codecs (see later)





#### Parametric Stereo (2)

- Parametric Stereo vs. BCC
  - based on identical principles, but different implementation aspects and engineering choices
  - PS supports dynamic segmentation of incoming audio (variable parameter update rate, depending from spatial stability → Haas effect modeling possible)
  - ICTD (inter-channel time difference) is replaced by IPD (inter-channel phase difference) to allow parameterization of out-of-phase signals
  - DFT replaced by QMF filter bank
  - Alternative synthesis for reconstructing out-of-phase signals





#### Parametric Stereo (3)

Time/Frequency resolution



Dynamic window switching in case of transients





#### Parametric Stereo (4)

- Parametric Stereo Decoder
  - Two-stage hybrid quadrature mirror analysis filter bank (QMF; extension to the filter bank used in SBR)
  - Incoherent signal is generated by the decorrelator D (i.e. Laudrisen decorrelator) by convolution of the mono input with an all-pass filter
  - Matrixing: mixing and phase-adjustment process
  - Two-stage hybrid QMF synthesis







#### Parametric Stereo (5)

- Structure of the QMF filter banks
  - lowest QMF sub-bands are filtered through a sub-filterbank of Order N in order to enhance frequency resolution
  - Remaining sub-bands signals are delayed by N/2 samples



Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de









#### Parametric Stereo (6)

- PS in HeAAC
  - SBR and PS operate in virtually the same QMF domain → very effective combination resulting in significant complexity reduction
  - Delay of SBR process is identical to the delay caused by subfilterbank





30

Prof. Dr.-Ing. K. Brandenburg, karlheinz.brandenburg@tu-ilmenau.de Prof. Dr.-Ing. G. Schuller, gerald.schuller@tu-ilmenau.de



#### **MPEG Surround (1)**

- MPEG Surround
  - based on Parametric Stereo
  - spatial parameters enable modification of certain aspects of the downmix
    - matrixed surround compatible
    - artistic downmixes
    - · binaural rendering
  - channel configuration of encoder can be different from the channel configuration of the spatial decoder (e.g. rendering of 4.0 from a 5.1 signal configuration without having to decode all 5.1 channels first)
  - Residual coding possible, to enable MPS to support higher quality





#### **MPEG Surround (2)**

Elementary building block







#### **MPEG Surround (3)**

Channel configuration for 5.1 downmix

 $P_x$  x = 0...4 Parameter sets with spatial information





downmix to mono

downmix to stereo





#### **MPEG Surround (4)**

Channel configuration for 5.1 upmix

 $P_x$  x = 0...4 Parameter sets with spatial information



upmix from mono

upmix from stereo





#### **MPEG Surround (5)**

- Matrixed surround conversion block
  - Method to create a pseudo surround experience based on a stereo downmix with specific downmix properties
  - Conversion from conventional downmix to matrixed downmix: post-processing stage of the encoding tree
  - Conventionally: downmix such that surround signals are in antiphase → impossible to retrieve original input channels
  - MTX conversion: dynamically varying, invertible matrix; dependent on the spatial parameters →decoder can 'undo' the processing





35

#### **MPEG Surround (6)**

- Coding of residual signals
  - TTO and TTT encoding can create residual signals
  - They can be bit-efficiently encoded and transmitted along with downmix and spatial parameters
  - This allows full waveform reconstruction





# Applications – What is used Where

|                  | PAC | Lossless<br>Coders | MP3 | AC3 | AAC |
|------------------|-----|--------------------|-----|-----|-----|
| M/S<br>full band |     | Х                  | Х   |     |     |
| M/S<br>sub band  | X   |                    |     | X   | X   |
| Intensity        | X   |                    | X   | X   | (X) |
| PS               |     |                    |     |     | Х   |
| MPEG<br>Surround |     |                    | X   | X   | X   |

TECHNISCHE UNIVERSITÄT
ILMENAU



37

#### **Conclusions**

- M/S stereo is the most widely used stereo tool
  - used at medium bit-rates and above
  - Produces lossless stereo image
- Intensity stereo is used at lower bit-rates
  - Lossy
  - Stereo image can lose detail
- MPEG Surround is the most recent development
  - Low bit rate, multichannel audio
  - Backwards compatibility with stereo codecs possible
- → Useful literature: J. Breebaart, C. Faller: "Spatial Audio Processing MPEG Surround and other Apllications", Wiley, Chichester, 2007





#### next lecture:

# 18.01. - Parametric Coding of High-Quality Audio

