## I J'approfondis le cours

- Q1. On considère un signal porteur  $u_p(t) = U_0 \cos 2\pi f_p t$  modulé par un signal modulant  $u_m(t)$  dont le spectre donné Figure 1. Les fréquences  $f_1, f_2, f_3$  sont toutes suffisamment inférieur à  $f_p$  pour réaliser une modulation. On pourra néanmoins pour les graphiques simplement considérer que  $f_p > f_3$ . Représenter le spectre du signal modulé en amplitude  $u(t) = Ku_p(t) \times u_m(t)$ . On respectera l'échelle des amplitudes sans forcément préciser leurs valeurs.
- Q2. On considère le même signal porteur mais le signal modulant possède un spectre continu (Figure 2), c'est-à-dire que toutes les fréquences qu'on somme continuement toutes les fréquences de l'intervalle  $[f_1; f_2]$ . L'expression mathématique traduisant cette décomposition n'est pas donnée et il n'est pas nécessaire de savoir l'écrire. Représenter le spectre du signal modulé en amplitude :  $u(t) = Ku_p(t) \times u_m(t)$ .



Figure 1 – Signal à spectre discret

Figure 2 – Signal à spectre continu

Q3. Déterminer maintenant le spectre du signal  $u_2(t) = Ku_p(t)u(t)$  pour le signal de la question Q1 puis de la question Q2. Comment pourrait-on faire pour obtenir (à un facteur près) le signal initial  $u_m(t)$  à partir de  $u_2(t)$ ?