Método Newton-Raphson

John Jairo Gonzalez Martinez Daniel Esteban Tibaquira Galindo Karen Sofia Coral Godoy Stiven Gonzalez Olaya

FÓRMULA

$$\chi_{i+1} = \chi_i - \frac{f(\chi_i)}{f'(\chi_i)}$$

ALGORITMO

Sea x un estimado de la raíz de f(x) = 0

Iterar hasta
$$|\Delta x| < \epsilon$$

Calcular $\Delta x = -f(x)/f'(x)$
 $x + \Delta x$

CONDICIONES DE CONVERGENCIA

Existe a y b tal que $\int (a) *f(b) > 0$

f"(x)

No cambia de signo en [a, b]

Las tangentes a **f(x)** en a y b cortan al eje de abscisas en [a, b]

CONDICIONES PARA APLICAR

- La función debe ser derivables y continuas
- Proporcionar un valor x inicial

RESULTADOS

Valores de las raíces	0.51493326466112941380 10592584369123175782	1.11415714087193008730 0525178169203903956	0.66666987095209829807 33018212248904119862
	$f(x)=\cos^2(2x)-x^2$	$f(x) = x \sin(x) - 1$	$f(x) = x^3 2x^2 + rac{4}{3}x - rac{8}{27}$
$arepsilon=10^{-8}$	5	3	31
$arepsilon=10^{-16}$	6	4	34
$arepsilon=10^{-32}$	7	5	35

GRÁFICAS TOLERANCIA - NÚMERO DE ITERACIONES

$$arepsilon=10^{-32}$$

$$f(x) = x\sin(x) - 1$$

$$f(x) = x^3 2x^2 + \frac{4}{3}x - \frac{8}{27}$$

 $=\cos^2(2x)-x^{2/2}$

COMPARACIÓN CONTRA BISECCIÓN

