Algèbre 3 Chapitre 9 Arithmétique des Polynômes

Licence 2 MAE 2020-2021 Université de Paris - Paris Descartes $Marc\ Briant$

(Fortement inspiré des cours de MM. G. Roussel et R. Lounès)

Table des matières

1	Div	$\operatorname{risibilit\'e} \ \operatorname{\mathbf{dans}} \ \mathbb{K}[X]$	1
	1.1	Division euclidienne	1
	1.2	PGCD et algorithme d'Euclide	1
2	Décomposition en produit d'irréductibles		
2	Déc	composition en produit d'irréductibles	2
2		composition en produit d'irréductibles Les polynômes irréductibles	2
2	2.1	-	2

Avant-propos : En construisant l'ensemble des polynômes sur un corps commutatif, il est apparu que la division jouait un rôle important. Dans $\mathbb Z$ grâce à la division euclidienne, tous les nombres s'écrivent avec des "briques élémentaires" : les nombres premiers. Essayons alors de voir si de telles écritures existent pour les polynômes.

Dans tout ce cours, $(\mathbb{K},+,.)$ désigne un corps commutatif.

1 Divisibilité dans $\mathbb{K}[X]$

1.1 Division euclidienne

Nous rappelons la définition de divisibilité dans $\mathbb{K}[X]$.

Définition 1.1. Soient P et Q deux polynômes de $\mathbb{K}[X]$. Nous disons que Q divise P ou Q est un diviseur de P ou P est un multiple de Q dans $\mathbb{K}[X]$ si et seulement si

$$\exists R \in \mathbb{K}[X], \quad P = QR.$$

Nous le notons alors Q|P.

Exemple: 1) Le polynôme nul. Le polynôme $0_{\mathbb{K}[X]}$ est divisible par tous les polynômes de $\mathbb{K}[X]$.

- 2) (X-1) et X+2 divisent $-2+X+X^2$ dans $\mathbb{R}[X]$.
- 3) Dépendance du corps \mathbb{K} . Dans la définition ci-dessus la mention du corps \mathbb{K} est importante puisque $(X+i)|(X-1)(X^2+1)$ dans $\mathbb{C}[X]$ mais pas dans $\mathbb{R}[X]$ alors que $(X^2+1)|(X-1)(X^2+$
- 1) dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$.

Remarque 1.2

Remarquons que pour tout $\alpha \neq 0_{\mathbb{K}}$, $\alpha P|P$. En réalité dans $\mathbb{K}[X]$ nous avons que P|Q et Q|P si et seulement si $Q = \alpha P$ avec $\alpha \neq 0_E$. Nous dirons alors que P et Q sont **associés**.

Théorème 1.3 (Division euclidienne)

Soient A et B dans $\mathbb{K}[X]$ avec $B \neq 0$. Alors

$$\exists ! (Q, R) \in \mathbb{K}[X]^2, \quad \left\{ \begin{array}{l} A = BQ + R \\ \deg(R) < \deg(B) \end{array} \right.$$

Remarque 1.4 (Hors Programme)

Lorsque l'on a une division euclidienne alors il est très facile de trouver les sous-ensembles stables par sous-traction et multiplication externe (on les appelle des **idéaux**) : ce sont les $D\mathbb{K}[X]$ - ce que montre le prochain corollaire. On dit alors que l'anneau des polynômes est **principal** (de la même manière les sous-groupes de $(\mathbb{Z}, +)$ sont les $n\mathbb{Z}$).

Corollaire 1.5

Soit $F\subset \mathbb{K}[X]$ un idéal de $(\mathbb{K}[X],+,\cdot)\,;$ c'est-à-dire que $0\in F$ et

- (i) $\forall (P,Q) \in F^2$, $P-Q \in F$
- (ii) $\forall P \in F, \forall Q \in \mathbb{K}[X], PQ \in F.$

Il existe $D \in \mathbb{K}[X]$ tel que $F = D\mathbb{K}[X]$. De plus s'il existe $D' \in \mathbb{K}[X]$ tel que $F = D'\mathbb{K}[X]$ alors D et D' sont associés.

1.2 PGCD et algorithme d'Euclide

Comme toujours lorsque l'on a de la division nous pouvons définir un PGCD . Pour éviter les polynômes associés nous demanderons que ces derniers soient unitaires.

Définition 1.6. Soient A et B deux polynômes de $\mathbb{K}[X]$. On appelle **Plus Grand Commun Diviseur (PGCD)** de A et B un polynôme unitaire $D \in \mathbb{K}[X]$ tel que

- (i) D|A et D|B,
- (ii) $\forall P \in \mathbb{K}[X], (P|A \text{ et } P|B) \Rightarrow P|D.$

Exemple: Soit P un polynôme de $\mathbb{K}[X]$ de coefficient dominant $a \neq 0$. Alors $pgcd(P,0) = \frac{1}{a}P$.

Bien entendu, la définition n'implique pas qu'un tel PGCD existe, et si c'est le cas qu'il est unique! Mais il se trouve que dans $\mathbb{K}[X]$ c'est le cas.

Théorème 1.7 (Existence du PGCD)

Soient A et B dans $\mathbb{K}[X]$ tels que A ou B soit non nul. Alors

$$\exists! D \in \mathbb{K}[X] \text{ unitaire}, \quad A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X].$$

D est alors le PGCD de A et B, noté D = pgcd(A, B).

Définition 1.8. Nous dirons que deux polynômes que $\mathbb{K}[X]$ sont **premiers entre eux** si et seulement si leur PGCD vaut $1_{\mathbb{K}[X]}$.

Remarque 1.9

Puisque dans $\mathbb{K}[X]$ les seuls polynômes inversibles sont les polynômes constants non nuls il vient que deux polynômes sont premiers entre eux si et seulement si leurs seuls diviseurs communs dans $\mathbb{K}[X]$ sont les polynômes constants non nuls.

Corollaire 1.10 (Théorème de Bezout)

Soient A et B dans $\mathbb{K}[X]$ tels que A ou B soit non nul. Alors

$$\exists (U, V) \in \mathbb{K}[X]^2, \quad pgcd(A, B) = AU + BV.$$

De plus, A et B sont premiers entre eux si et seulement si

$$\exists (U, V) \in \mathbb{K}[X]^2, \quad 1_{\mathbb{K}[X]} = AU + BV.$$

Corollaire 1.11 (Théorème de Gauss)

Soient A, B et C dans $\mathbb{K}[X]$. Alors si (B|A et C|A) et que pgcd(B,C)=1 alors BC|A.

Remarque 1.12 (Algorithme d'Euclide)

Remarquons de suite que si A = BC + D alors pgcd(A,B) = pgcd(B,D). Ceci est l'essence de l'algorithme d'Euclide pour calculer un pgcd. En effet faisons des divisions euclidiennes successives :

$$A = BQ_1 + R_1 \quad \text{avec} \quad \deg(R_1) < \deg(B)$$

$$B = R_1Q_2 + R_2 \quad \text{avec} \quad \deg(R_2) < \deg(R_1)$$

$$R_1 = R_2Q_3 + R_3 \quad \text{avec} \quad \deg(R_3) < \deg(R_1)$$

$$\vdots$$

$$R_{k-1} = R_kQ_{k+1} + R_{k+1} \quad \text{avec} \deg(R_{k+1}) < \deg(R_k).$$

Comme le degré est un entier positif, et que $\deg(R_{k+1}) < \deg(R_k)$ le processus s'arrête forcément à un certain rang $N+1: R_N \neq 0$ et $R_{N+1}=0$. Il vient alors

$$\begin{split} pgcd(A,B) &= pgcd(B,R_1) = pgcd(R_1,R_2) = \dots \\ &= pgcd(R_N,0) = \frac{1}{\text{coef dominant}(R_N)} R_N. \end{split}$$

2 Décomposition en produit d'irréductibles

2.1 Les polynômes irréductibles

Les "briques élémentaires" de $\mathbb N$ sont les nombres premiers p positifs, tandis que celles de $\mathbb Z$ sont les $\pm p$. Ce sont donc des nombres divisibles uniquement par euxmême (pour $\mathbb N$) ou uniquement par eux-même ou leur opposé (dans $\mathbb Z$). Élargissons donc cette définition dans $\mathbb K[X]$: dans $\mathbb K[X]$ les associés αP de P et les polynômes constants non nuls divisent tous P.

Définition 2.1. Un polynôme P de $\mathbb{K}[X]$ est un **polynôme irréductible de** $\mathbb{K}[X]$ si et seulement si P n'est pas constant et que les seuls diviseurs de P dans $\mathbb{K}[X]$ sont les polynômes constants non nuls et ses associés.

Exemple: 1) Les polynômes de degré 1 sont irréductibles dans $\mathbb{K}[X]$.

- 2) Si $P \in \mathbb{K}[X]$ est irréductible alors tous ses associés (αP avec $\alpha \neq 0$) le sont également.
- 3) Irréductibilité et division. Soit $P \in \mathbb{K}[X]$. S'il existe $Q \in \mathbb{K}[X]$ tel que Q|P et $0 < \deg(Q) < \deg(P)$ alors P n'est pas irréductible dans $\mathbb{K}[X]$.
- 4) Influence du corps \mathbb{K} . Le polynôme X^2+121 est irréductible dans $\mathbb{R}[X]$ mais pas dans $\mathbb{C}[X]$. De même, X^2-3 est irréductible sur $\mathbb{Q}[X]$ mais pas sur $\mathbb{R}[X]$.

2.2 Écriture en polynômes irréductibles Proposition 2.2

Soit P un polynôme irréductible de $\mathbb{K}[X]$

- 1. $\forall A \in \mathbb{K}[X], \quad pgcd(P, A) = 1_{\mathbb{K}[X]} \Leftrightarrow P \not|A.$
- 2. Pour tout $A_1, ..., A_n$ de $\mathbb{K}[X]$, si P divise $\prod_{1 \leq i \leq n} A_i$ alors P divise l'un des A_i .

Théorème 2.3

Pour tout polynôme A non constant de $\mathbb{K}[X]$ il existe r polynômes distincts $P_1,...,P_r$ irréductibles et unitaires dans $\mathbb{K}[X]$, r entiers non nuls $\alpha_1,...,\alpha_r$ et un scalaire $\lambda \in \mathbb{K}$ tels que

$$A = \lambda P_1^{\alpha_1} P_2^{\alpha_2} \cdots P_r^{\alpha_r}.$$

De plus cette écriture est unique à l'ordre près des facteurs - c'est-à-dire que si A s'écrit comme un produit d'irréductibles unitaires distincts $A = \lambda' Q_1^{\beta_1} \cdots Q_s^{\beta_s}$ alors r = s, $\lambda = \lambda'$ et pour tout i il existe j tel que $Q_i = P_j$ et $\alpha_i = \beta_j$.

Remarque 2.4

Notons que cette histoire d'unicité à l'ordre près des facteurs prend place aussi dans \mathbb{N} et la décomposition en nombres premiers mais c'est moins lourd à écrire puisque dans \mathbb{N} il suffit de demander que $p_1 < p_2 < .. < p_r$ pour avoir unicité. Ordre que nous n'avons pas dans $\mathbb{K}[X]$...

2.3 Les cas spécifiques de $\mathbb R$ et $\mathbb C$

Nous rappelons le théorème vu au chapitre précédent.

Théorème 2.5 (Théorème de d'Alembert-Gauss)

Tout polynôme de $\mathbb{C}[X]$ de degré supérieur ou égal à 1 admet une racine dans \mathbb{C} .

Ceci nous permet de connaître tous les polynômes irréductibles de $\mathbb{R}[X]$ et $\mathbb{C}[X]$.

Théorème 2.6

- 1. Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.
- 2. Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 à discriminant négatif.

Nous pouvons donc écrire les polynômes de $\mathbb{C}[X]$ comme des produits de polynômes de degré 1 et les polynômes de $\mathbb{R}[X]$ comme le produit de polynômes de degré 1 et de degré 2 à discriminant négatif (n'ayant donc pas de racine réelle).