

Chapter 2. 파이썬 및 프로그램 설치

2024-1학기

IT융합학부 IT융합전공 김대환

목차

- 2-1. 파이썬 (Python) 개요 (+OpenCV)
- 2-2. 파이썬 설치 및 사용
- 2-3. 파이참(PyCharm) 설치
- 2-4. 파이참 환경 설정
- 2-5. OpenCV-Python 및 라이브러리 설치

2-1. 파이썬 ? (1)

• 파이썬 개발

- 귀도 반 로섬(Guido Van Rossum) 발표(1991년)
- 인터프리터 언어
 - 소스 코드를 1행씩 해석하고 실행해 바로 결과를 확인할 수 있는 언어
- 고급(high level) 프로그래밍 언어
- 플랫폼에 독립적, 객체 지향적이고 동적 타입의 대화형 언어

• 명명이유

반 로섬이 좋아했던 영국의 코미디 프로인 "몬티 파이썬의 날아다니는 서 커스"에서 따옴

2-1. OpenCV (1)

OpenCV

- Open Source Computer Vision의 약자
- 영상 처리와 컴퓨터 비전 관련 오픈 소스 라이브러리
- 2,500개가 넘는 알고리즘으로 구성
 - 영상 처리, 컴퓨터 비전, 기계 학습과 관련된 전통적인 알고리즘
 - 얼굴 검출과 인식, 객체 인식, 객체 3D 모델 추출, 스테레오 카메라에서 3D 좌표 생성
 - 고해상도 영상 생성을 위한 이미지 스티칭, 영상 검색, 적목 현상 제거, 안구 운동 추적
 - 4만 7천 이상의 사용자 그룹과 1,800만 번 이상의 다운로드 횟수
- 구글, 야후, 마이크로소프트, 인텔, IBM, 소니, 혼다, 도요다와 같은 대기업부터 Applied Minds,
 Videosurf 및 Zeitera와 같은 신생 기업들까지 사용
- C, C++, 파이썬(Python), Java, 매트랩 인터페이스 제공
- 윈도우즈, 리눅스, 안드로이드, 맥 OS 등 다양한 운영체제 지원
- MX(Multimedia Extension)와 SSE(streaming SIMD Extensions) 명령어 통해 고속의 알고리즘 구
 현
- CUDA와 OpenCL 인터페이스 개발

2-1. OpenCV (2)

〈표 2.1.1〉OpneCV 버전별 특징

1.0 버전	2.0 버전	2,2 버전
• C 언어 기반 API • 구조체 기반 데이터 구조 사용 • 비주얼 스튜디오에서 라이 브 러리 컴파일 후 사용 • highgui 모듈에서 8비트 PNG, JPEG2000 입출력 지원 • 샘플 예제 파일 추가	C++ 언어 기반 API 클래스 기반 데이터 구조 도입 CMake를 이용하여 라이브러리 컴파 일 후 사용 가능 highgui 모듈에서 스테레오 카메라 지원 소스 디렉터리 구조 구성	· 템플릿 자료구조 추가 · 기존 5개 라이브러리를 12개의 모듈로 재구성(opencv_core, opencv_imgproc, opencv_ highgui, opencv_ml 등) · 안드로이드 지원 가능 · highgui 모듈에서 16비트 LZW- 압축 TIFF 지원
(calibrate.cpp, inpaint.cpp, leter_recog. cpp 등)	• 조스 디렉디디 구조 구경	• GPU 처리 지원

2.4 버전	3.0 버전	3.4 버전
• cv::Algorithm 클래스 도입 • SIFT와 SURF 모듈 유료화 • SIFT 성능 대폭 개선 • 컬러 영상 캐니 에지 수행	cv::Algorithm 적극 사용 1500개 패치 github 제출 OpenCL을 사용하는 투명 GPU 가속 레이어 도입 NEON 내장 함수 사용한 OpenCV 함수 가속화 Python & Java 바인딩 확장 및 Matlab 바인딩 도입 Python 3.0 지원 향상 안드로이드 지원 향상 비디오 캡쳐 및 멀티스레팅 함수 개선	dnn 모듈 개선 fast R-CNN 지원 Javascript 바인딩 OpenCL 가속화 포함 OpenCL 커널 바이너리에 디스크 캐시 및 수동 로딩 구현 GSoC 프로젝트 통합으로 백그라운드 감산 알고리즘 구현

4.0 버전	4.1 버전	4.2 버전
 1.x 버전 C API 대량 제거 효과적인 그래픽 기반 영상처리 엔진으로 G-API 모듈 추가 OpenVION 딥러닝 툴킷으로 dnn 모듈 업데이트 키넥트 퓨전 알고리즘 구현 OR코드 검출기 추가 효과적인 광류 알고리즘 추가 	core와 imgproc 모듈 실행 최적화 dnn 모듈 개선 NN Builder API로 교체 인텔 Neural ComputerStick2 지원 안드로이드 미디어 NDK API 지원 Hand-Eye 캘리브레이션 추가	dnn 모듈 개선 - cuda와 통합된 GSoC 프로젝트 - 성능 개선 - SIMD 지원 확대 - pryDown 멀티스레딩 지원 - FSR 알고리즘

2-2. 파이썬 설치 및 사용 – Python (1)

- 파이썬 다운로드
 - 파이썬 홈페이지 (http://www.python.org)
 - [Downloads] 메뉴 클릭 → 'Download Python 3.8.1' 클릭 및 다운로드
 # (참고) 현재 최신 버전은 3.10.2임. 최신 버전을 설치해도 무방하나 교재의 버전을 따름

2-2. 파이썬 설치 및 사용 – Python (2)

• 파이썬 설치 과정

2-2. 파이썬 설치 및 사용 – Python (3)

• 설치 완료후

〈그림 2.2.3〉 윈도우 시작 메뉴

```
Type "help", "copyright", "credits" or "licen se" for more information.

>>> print ('hello')
hello
>>> a = 5
>>> b=10
>>> c
15
>>>
```

(그림 2.2.4) Python 3.8(32-bit) 실행 화면

2-2. 파이썬 설치 및 사용 – IDLE (1)

- 파이썬 제공 통합 개발 환경
 - IDLE(Integrated Development and Learning Environment)
 - 간단한 소스편집과 실행을 할 수 있는 셀(Shell) 프로그램
 - 윈도우 시작 메뉴→ [Python 3.8] 폴더 클릭 → [IDLE (Python 3.8 32-bit)] 클릭

2-2. 파이썬 설치 및 사용 – IDLE (2)

- 파일 저장
 - [File] → [Save] 클릭 → [다른 이름으로 저장하기] 창 → 적당한 폴더 선택
 - → "hello.py"로 파일 이름 지정 → [저장] 클릭

2-2. 파이썬 설치 및 사용 – IDLE (3)

- 실행
 - 메뉴에서 [Run] → [Run Module] 클릭→ 해당 소스가 파이썬 셀에서 실행

2-3. 파이참 설치 (1)

- 통합 개발 환경 (IDE)
 - IDE (Integrated Development Environment)
 - 하나의 개발 툴에서 애플리케이션을 구축하기 위한 소프트웨어
 - 소스 코드 편집기
 - 로컬 빌드 자동화
 - 디버거

• 파이썬 IDE 종류

- _ 파이참 (PyCharm): https://www.jetbrains.com/ko-kr/pycharm/
- 비주얼 스튜디오 코드 (Visual studio code): https://code.visualstudio.com/
- 쥬피터 노트북 (Jupyter Noterbooks)
- 스파이더 (Spyder): https://docs.spyder-ide.org/current/installation.html
- 아톰 (Atom): https://atom.io/
- 서브라임 텍스트 (Sublime Text): https://www.sublimetext.com/
 # (참고) 개인별로 선호하는 IDE 설치 가능. 하지만 추후 레포트는 파이참에서 실행 !!

2-3. 파이참 설치 (2)

• 파이참 (PyCharm)

 - 젯브레인즈(JetBrains)사의 IntelliJ IDEA에 기반을 두고 개발된 프로그램으로서 파이 선 언어를 위한 거의 모든 기능을 갖춘 통합 개발 환경

• 사용되는 이유

- 프로젝트별로 다른 Python 버전과 환경을 설정 가능
- 소스 코드의 실행 결과를 바로 확인할 수 있음
- 직관적인 사용자 인터페이스를 제공하며, 운영체제와 무관하게 사용할 수 있음

2-3. 파이참 설치 (3)

- 파이참 (PyCharm)
 - 다운로드: https://www.jetbrains.com/ko-kr/pycharm/download/#section=windows
 - 커뮤니티 버전 다운로드

2-3. 파이참 설치 (4)

- 설치진행
 - 다음 사항 체크
 - 전부 체크해도 무방

2-3. 파이참 설치 (5)

• 설치진행

2-3. 파이참 설치 (6)

- 윈도우 시작 메뉴에서 [JetBrains] → [PyCharm Community Edition] 클릭
 - 기존 설치 버전 환경 가져오기 선택 가능
 - 기존 버전 없으면 "Do not import settings" 선택 → [OK] 클릭

2-4. 파이참 환경설정 (1)

- Python 환경 설정: Python 엔진에 파이참 연결하는 과정
 - 아래와 같이 교재 버전 (2019.3.1) 또는 이후 최신 버전 (~2021.3.2) 중 선택하여 설정

[Configure]→[Settings]

[Customize]→[All Settings]

<Ver. 2019.3.1>

<Ver. 2021.3.2>

2-4. 파이참 환경설정 (2)

- Setting (Ver.2019.3.1) or All Setting (Ver.2021.3.2) 메뉴 선택 후
 - 좌측 메뉴에서 [Project interpreter] 클릭
 - 우측 상단에서 추가하기 아이콘 클릭 → [Add] 클릭

2-4. 파이참 환경설정 (3)

- "Add Python Interpreter" 윈도우
 - System Interpreter 설정 클릭하여 파이썬 설치 경로 선택

2-4. 파이참 환경설정 (4)

- 설정 완료후 설치된 라이브러리 확인
 - 현재 설치된 라이브러리는 pip, setuptools 모듈 2개

2-4. 파이참 환경설정 (5)

- 새 프로젝트 생성
 - [Create New Project] 클릭 → "New Project" 윈도우
 - [Location] 항목 : 프로젝트 이름과 폴더 경로 입력
 - [Project Interpreter Python 3.8 or 3.10] 클릭: 드롭다운 옵션들 보이게 함
 - [Existing interpreter] 항목 체크 → [Create] 버튼 클릭 :: 기본 방법
 - 가상 환경으로 프로젝트 생성하는 경우: [New environment using] 체크
 - 가상 환경으로 생성하면 프로젝트 내부에 버전별 독립성 유지

2-4. 파이참 환경설정 (6)

- 프로젝트 생성 완료
- 프로젝트 내 폴더와 파이썬 소스 파일 생성
 - Source 폴더라는 프로젝트
 - 마우스 오른쪽 버튼 클릭 → 팝업 메뉴 → [New] → [Directory] 생성
 - New Directory 팝업창에서 'chap02' 폴더명 입력

2-4. 파이참 환경설정 (7)

- 파이썬 소스 파일 생성
 - 생성된 폴더 'chap2' → 오른쪽 마우스 버튼 → [New] → [Python]
 - "New Python file" 윈도우 팝업 → 파일명 입력

2-4. 파이참 환경설정 (8)

• '01.hello.py' 소스 작성하기

• 상단 메뉴에서 [Run] → [Run] 클릭후 실행 결과 확인

2-5. OpenCV-Python 설치 (1)

- 파이썬에서 라이브러리 설치 방법
 - 콘솔창에서 pip 명령을 이용하여 라이브러리 이름 입력
 - 파이참 (PyCharm)에서는 대화창에서 라이브러리 검색 후 클릭 및 설치
- 라이브러리 설치
 - 파이참 메뉴 [File] → [Settings] 클릭
 - 왼쪽 메뉴 [Project source] → [Project interpreter] 메뉴 클릭
 - 중앙 상단에 [Project interpreter] 항목: 파이참에 연결된 파이썬 설치 버전
 - 아래 [Package] 항목에 현재 설치된 라이브러리명, 설치된 버전, 최신 버전 표시됨
 - 라이브러리 추가하기 [+] 클릭

2-5. OpenCV-Python 설치 (2)

- Available Packages 윈도우
 - 파이썬에 설치 가능한 다양한 라이브러리 검색 가능
 - 상단 검색 창에 라이브러리 'opency-python' 입력
 - 'opencv-python' 라이브러리 선택 → [Install Package] 클릭
 - 이전 버전은 오른쪽 하단 [Specify version] 항목을 체크하여 원하는 이전 버전 선택 설치 가능
 - 'matplotlib' 라이브러리 선택하여 설치 요망

2-5. OpenCV-Python 설치 (3)

- 간단 OpenCV 프로그래밍 테스트
 - 'chap02' 폴더에 '02.opencvtest.py' 소스 파일 생성
 - 300행, 400열 크기의 행렬 생성하여 행렬의 모든 원소의 값을 회색(200)으로 지정
 - 이 행렬을 "window title" 이름의 윈도우에 영상으로 표시

Q&A