Modelagem Matemática para Alocação de Entregadores do iFood em Juiz de Fora-MG

Trabalho de Otimização - Pesquisa Operacional

9 de agosto de 2025

1 Definição do Problema

Objetivo: Alocar entregadores do iFood a pedidos em Juiz de Fora-MG de forma a minimizar o tempo total de entrega ponderado por prioridade, considerando capacidades dos entregadores, prioridades dos pedidos e custos operacionais.

2 Conjuntos e Índices

$I = \{1, 2, \dots, m\}$	conjunto de entregadores disponíveis	(1)
$J = \{1, 2, \dots, n\}$	conjunto de pedidos a serem entregues	(2)
$R = \{1, 2, \dots, r\}$	conjunto de restaurantes	(3)
$K = \{1, 2, \dots, k\}$	conjunto de clientes/endereços de entrega	(4)

3 Parâmetros

3.1 Tempos e Distâncias

t_{ij}^{ER} : tempo de deslocamento do entregador i até o restaurante do pedido j	(5)
t_{jk}^{RC} : tempo de deslocamento do restaurante ao cliente do pedido \boldsymbol{j}	(6)
t_{j}^{prep} : tempo de preparo do pedido j no restaurante	(7)

3.2 Características dos Entregadores

cap_i : capacidade máxima de pedidos simultâneos do entregador i	
v_i : velocidade média do entregador i (km/h)	(9)
c_i^{op} : custo operacional por hora do entregador i	(10)
$disp_i$: disponibilidade do entregador i (binário: 1=disponível, 0=indisponível)	(11)

3.3 Características dos Pedidos

$$p_j$$
: nível de prioridade do pedido j (1=normal, 2=prioritário, 3=expresso) (12)

$$val_j$$
: valor monetário do pedido j (13)

$$dist_{jk}$$
: distância em km do restaurante j ao cliente k (14)

4 Variáveis de Decisão

4.1 Principais

$$x_{ij} \in \{0,1\}$$
: vale 1 se o entregador i é designado para entregar o pedido j (15)

4.2 Auxiliares

$$T_j \ge 0$$
: tempo total de entrega do pedido j (em minutos) (16)

5 Função Objetivo

Minimizar:

$$Z = \sum_{j=1}^{n} T_j \times p_j \tag{17}$$

Interpretação da função objetivo:

- A função minimiza o tempo total de entrega ponderado pela prioridade dos pedidos
- \bullet Pedidos com prioridade mais alta (valores de p_j maiores) recebem peso proporcional na função objetivo
- Este approach garante que atrasos em pedidos prioritários sejam penalizados mais severamente
- A otimização favorece alocações que reduzem tempos de entrega para pedidos expressos e prioritários

6 Restrições

R1 - Atribuição Única de Pedidos:

$$\sum_{i=1}^{m} x_{ij} = 1, \quad \forall j \in J \tag{18}$$

Cada pedido deve ser atribuído a exatamente um entregador

R2 - Cálculo do Tempo de Entrega:

$$T_j = \sum_{i=1}^m x_{ij} \times (t_{ij}^{ER} + t_j^{prep} + t_{jk}^{RC}), \quad \forall j \in J$$

$$\tag{19}$$

Tempo total = deslocamento até restaurante + preparo + entrega ao cliente

R3 - Capacidade dos Entregadores:

$$\sum_{i=1}^{n} x_{ij} \le cap_i, \quad \forall i \in I \tag{20}$$

Número de pedidos atribuídos não pode exceder a capacidade do entregador

7 Características da Modelagem

- Tipo: Problema de Programação Linear Inteira Mista (MILP)
- Complexidade: NP-difícil (variante do problema de atribuição generalizada com ponderação)
- Variáveis: $m \times n$ binárias + n variáveis auxiliares contínuas
- Restrições: O(m+n) restrições principais
- Função objetivo: Linear ponderada que prioriza pedidos de alta importância

Esta modelagem captura os aspectos essenciais do problema real, incluindo a diferenciação por prioridade de pedidos, mantendo tratabilidade computacional para instâncias de tamanho médio (até ~ 100 entregadores e ~ 250 pedidos).