

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree Second year - Semester I Examination - February\March 2013

PHY 2101 - THERMODYNAMICS AND RADIATION

Answer two questions only

TIME: 1 Hour

Universal gas constant (R) = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ The use of a non-programmable electronic calculator is permitted.

- 1) Write down the first law of thermodynamics.
 - a) Prove that the work done on a system of a fixed gas mass is given by -pdv for a small volume change dv, where "p" is the pressure and "v" is the volume.
 - b) Show that the work done (W) on a system for,
 - i) an isobaric process, $W = P(V_1 V_2)$
 - ii) an isovolumetric process, W = 0
 - iii) an isothermal process $W = nRT \ln(V_1/V_2)$. The symbols have their usual meanings.
 - c) One mole of an ideal gas at 25 °C is compressed isothermally and adiabatically until the pressure doubles, Calculate;
 - i) the work done on the system,
 - ii) the heat input to the system and
 - iii) the internal energy change.
- 2) a) Write down the second law of thermodynamics.
 - i) Prove that for an adiabatic and reversible process; $PV^{\gamma} = \text{constant}$, where $\frac{C_p}{C_v} = \gamma$, C_p is the molar heat capacity at constant pressure and C_v is the molar heat capacity at constant volume.
 - ii) Derive equation, $C_p C_v = R$ for an ideal gas.
 - b) Determine the entropy change of the universe when 3.0 kg of water is boiled on a stove burner at 500 °C. (The latent heat of vaporization of water, $L_V = 2.26 \times 10^6 \,\mathrm{J\,kg^{-1}}$).

- 3) What do you mean by perfect black body?
 - a) Define absorptive power and emissive power of black body radiation.
 - b) Write down the Kirchoff's law for the black body radiation and prove it.
 - c) Write down Stefan-Boltzman law for the black body radiation.
 - d) A hot sphere with radius 1 cm radiates 1.3 x 10^{-5} J h⁻¹. Calculate the temperature of the sphere if the relative emittance of the sphere is 0.8. (Stefans constant, $\sigma = 5.67 \times 10^{-8}$ J m⁻² s⁻¹ K⁻⁴)