King Saud University College of Computer and Information Sciences Computer Science Department

	Computer Science D	Computer Science Department	
Course Code	CSC 220		
Course Title	Computer Organization		
Semester	S1 – 1441 (Fall-2020-21))	
Exam	Final		
Date	29/12/2020	Duration	3 Hours
Student Name			
Student ID			
Section No.			

Course Learning C	Outcomes	Relevant question	Full mark	Student mark
Knowledge	CLO 1, 2, 3	1	8	
Knowledge	CLO 4, 5, 6, 7	2	8	
Cognitive Skills	CLO 2, 3, 5	3	6	
Cognitive Skills	CLO 4, 5	4	6	
Cognitive Skills	CLO 3, 5	5	6	
Cognitive Skills	CLO 3, 6, 7	6	6	

Feedback/Comments:

Question 1. Short Questions (8 Marks: 8×1)

i. Extend the sign of the 4-bit 2's complement binary number 1011 to convert it into a 8-bit number.

Ans. 11111011

ii. What are the disadvantages of 1's complement representation of binary number?

Ans. Two representation for 0 (+0=0000, -0=1111)

iii. How many full adders are required to design a 32-bit parallel adder?

Ans. 32 full adder

iv. Give the truth table for a 1-to-4 demultiplexer.

v. A digital computer has a common bus system for 64 registers of 16 bits each. The bus is constructed with multiplexers. How many multiplexers are needed? How many selection bits are required?

Ans. 16 multiplexer

6 selection bits required

vi. Give the transition table of J-K Flip Flop.

Clk	J	K	Q(t+1)
0	X	X	No change Q(t)
1	0	0	No Change Q(t)
1	0	1	0
1	1	0	1
1	1	1	Q'(t)

vii. Write RTL instructions for the following operations: write the data contained in register R3 to the memory location contained in register AR.

Ans. $M[AR] \leftarrow R3$

viii. If a register containing data (11001100) is subjected to arithmetic shift right operation, then the content of the register after the operation.

Ans. 11100110

Question 2. Short Questions (8 Marks: 2+2+2+2)

i. Suppose we have 1024 x 16 RAM chips. How many chips are needed to provide a memory capacity of 16KB? What will be the size of address bus for the 16 KB RAM?

Number of chips	Size of address bus
8	13

ii. Assuming registers are 8-bits width, and R1 = BE, R2 = 6D, R3 = 9F, R4 = FF, where numbers are represented in HEX and in 2's complement. If the instruction R3 <-- R1 - R2 is executed? (Show the steps of computation). What is the content of R3 in Hex and what are the value of flags overflow "V", zero "Z", carry "C', and negative "N"?

R3	V	Z	C	N
51	1	0	1	0

iii. Give the block diagram of a datapath, that contains a register file $(16 \times n)$ and a function unit, showing all the control signals.

- iv. Write the instruction format for
 - a) Register type instructions

b) Jump and branch type instructions

Question 3 (6 Marks: 2+2+2)

(a) Construct a 4x16 decoder from two 3x8 decoders with 1-enable.

(b) For the given diagram below, what will be the output waveform at Q and Y (assuming that initially Q = 0)?

(c) Determine the output frequency (f_{out}) for a frequency division circuit that contains 3 flip-flops with an input clock frequency of 24.48 MHz

Output Frequency

Question 4 (6 Marks: 4+2)

(a) Consider the following arithmetic unit. Write the function Y and D in terms of A and B for each of the three bit selections.

S2	S1	S0	Y =	D =
0	0	0	В	D= A+B
0	0	1	В	D= A+B+1
0	1	0	0	D= A
0	1	1	0	D= A+1
1	0	0	1111(-1)	D= A-1
1	0	1	1111(-1)	D= A
1	1	0	В'	D= A+B'
1	1	1	В'	D= A+B'+1 = A-B

Question 5 (6 Marks: 3+2+1)

Consider the datapath below described by table 8.5.

□ TABLE 8-5 Encoding of Control Word for the Datapath

DA, AA	, BA	MB		FS		MD	MD		1
Function	Code	Function	Code	Function	Code	Function	Code	Function	Code
R0	000	Register	0	F = A	0000	Function	0	No Write	0
R1	001	Constant	1	F = A + 1	0001	Data in	1	Write	1
R2	010			F = A + B	0010				
R3	011			F = A + B + 1	0011				
R4	100			$F = A + \overline{B}$	0100				
R5	101			$F = A + \overline{B} + 1$	0101				
R6	110			F = A - 1	0110				
<i>R</i> 7	111			F = A	0111				
				$F = A \wedge B$	1000				
				$F = A \vee B$	1001				
				$F = A \oplus B$	1010				
				$F = \overline{A}$	1011				
				F = B	1100				
				$F = \operatorname{sr} B$	1101				
				$F = \operatorname{sl} B$	1110				

Fill the required information in the table below to perform the following instructions assuming that the registers are of 8 bits, and their initial signed 2's complement values (in HEX) were, R0 = 0E, R1 = 09, R2 = 2E, R3 = 2F, data in memory (in HEX) are all shown in the table. The required information is:

- a. The generated control signals (DA, AA, BA, WR, MB, MD, MW, FS) on the diagram to perform the instruction.
- b. The **contents of memory and registers** after executing following 6 instructions.

$R0 \leftarrow M[R1]$	Address	memory
$R0 \leftarrow R0 + 1$	09	20
$R1 \leftarrow M[R3]$		
$R1 \leftarrow R0 + R1$	0A	A3
$M[R2] \leftarrow R1$	0B	21
$M[R3] \leftarrow R0$		
	2E	34
	2F	A4
	30	71

Microoprations	DA	AA	BA	WR	MB	MD	MW	FS
R0 ← M[R1]	000	001	XXX	1	0	1	0	XXXX
R0 ← R0 + 1	000	000	XXX	1	0	0	X	0001
R1 ← M[R3]	001	011	XXX	1	0	1	0	XXXX
R1 ← R0 + R1	001	000	001	1	0	0	X	0010
M[R2] ← R1	XXX	010	001	0	0	X	1	XXXX
M[R3] ← R0	XXX	011	000	0	0	X	1	XXXX

	address	memory
The contents of Registers and Memory are as shown:	09	20
R0= 21	0A	A3
R1 = C5	0B	21
R2 = 2E		
R3 = 2F	2E	C5
	2F	21
	30	71

Question 6 (6 Marks: 3+3)

(a)

☐ TABLE 8-8 Instruction Specifications for the Simple Computer

Instruction	Opcode	Mne- monic	Format	Description	Status Bits
Move A	0000000	MOVA	RD, RA	$R[DR] \leftarrow R[SA]^*$	N, Z
Increment	0000001	INC	RD, RA	$R[DR] \leftarrow R[SA] + 1*$	N, Z
Add	0000010	ADD	RD, RA, RB	$R[DR] \leftarrow R[SA] + R[SB]^*$	N, Z
Subtract	0000101	SUB	RD, RA, RB	$R[DR] \leftarrow R[SA] - R[SB]^*$	N, Z
Decrement	0000110	DEC	RD, RA	$R[DR] \leftarrow R[SA] - 1*$	N, Z
AND	0001000	AND	RD, RA, RB	$R[DR] \leftarrow R[SA] \wedge R[SB]^*$	N, Z
OR	0001001	OR	RD, RA, RB	$R[DR] \leftarrow R[SA] \vee R[SB]^*$	N, Z
Exclusive OR	0001010	XOR	RD, RA, RB	$R[DR] \leftarrow R[SA] \oplus R[SB]^*$	N, Z
NOT	0001011	NOT	RD, RA	$R[DR] \leftarrow \overline{R[SA]}^*$	N, Z
Move B	0001100	MOVB	RD, RB	$R[DR] \leftarrow R[SB]^*$	
Shift Right	0001101	SHR	RD, RB	$R[DR] \leftarrow sr R[SB]^*$	
Shift Left	0001110	SHL	RD, RB	$R[DR] \leftarrow sl R[SB]^*$	

Load Immediate	1001100	LDI	RD, OP	$R[DR] \leftarrow zf OP^*$
Add Immediate	1000010	ADI	RD, RA, OP	$R[DR] \leftarrow R[SA] + zf OP*$ N, Z
Load	0010000	LD	RD, RA	$R[DR] \leftarrow M[SA]^*$
Store	0100000	ST	RA, RB	$M[SA] \leftarrow R[SB]^*$
Branch on Zero	1100000	BRZ	RA,AD	if $(R[SA] = 0) PC \leftarrow PC + se AD, N, Z$ if $(R[SA] \neq 0) PC \leftarrow PC + 1$
Branch on Negative	1100001	BRN	RA,AD	if $(R[SA] < 0) PC \leftarrow PC + se AD, N, Z$ if $(R[SA] \ge 0) PC \leftarrow PC + 1$
Jump	1110000	JMP	RA	$PC \leftarrow R[SA]^*$

 $^{\circ}$ For all of these instructions, PC \leftarrow PC + 1 is also executed to prepare for the next cycle.

Consider Table 8-8 containing instruction specification for a simple computer. Translate the following instructions into 16-bit binary machine codes. (**NB**: use 0 for don't care)

Instruction	tion Binary machine code			
	Opcode	RD/AD(left)	RA	RB/OP/AD(Right)
LDI R5, 5	1001100	101	000	101
SUB R3, R5, R1	0000101	011	101	001
ST (R6), R1	0100000	000	110	001
SHR R0, R2	0001101	000	000	010
BRZ R5 AD (AD = 101 011)	1100000	101	101	011
JMP R6	1110000	000	110	000

(b) Assume that an array A with 4 elements is located at the address 200 in data memory containing values shown in the figure. Write an assembly language program to calculate the summation of all elements in the array and store the **average** in variable S is located at the address 220. (**NB:** use register R0 as an address register only).

1	`	
1	~ 1	
ı	-	

) <u> </u>	
LDI R0, 200	INC R0, R0
LD R1, (R0)	LD R2, (R0)
	ADD R1, R1, R2
INC R0, R0	
LD R2, (R0)	SHR R1, R1
ADD R1, R1, R2	SHR R1, R1
INC R0, R0	LDI R0, 220
LD R2, (R0)	ST (R0), R1
ADD R1, R1, R2	

_	
address	memory
	•••
200	2
201	83
202	-21
203	98
	•••
220	