Produits de solubilités de quelques composés à 298 K Ordre de grandeur de pK_S

IONS	Cl	Br ⁻	I ⁻	CrO ₄ ²⁻	S ²⁻	SO ₄ ² -	OH.
\mathbf{Ag}^{+}	9,7	12,5	16	12	50	5	8
Al ³⁺							32
Ba ²⁺				10		10	2
Bi ³⁺			18		15		
Co ²⁺					21		15
Co ²⁺							30,2
Cu ²⁺				5	35,5		19,8
Fe ²⁺				6	17		14,5
Fe ³⁺				30	85		38,5
Hg ₂ ²⁺	17		28	8	47	5,5	23
Mn ²⁺					12,5		8,7
Ni ²⁺					20,5		14,7
Pb ²⁺	4,8		8,1	13,4	28	7,8	15,5
Zn ²⁺					24		17

Constantes de dissociation d'acides en solution aqueuse à 298 K - pK_A

ACIDE	pK ₁	pK ₂
Acide carbonique H ₂ CO ₃	6,5	10,5
Acide sulfurique H ₂ SO ₄	fort	2,0
Acide sulfhydrique H ₂ S	7, 0	13,0
Ion ammonium NH ₄ ⁺	9,3	

Constantes de dissociation d'ions complexes à 298 K - pK_d

ION	pK _d
$[\mathbf{Ag}(\mathbf{NH}_3)_2]^+$	7,1
[Al(OH) ₄] ⁻	35
[Cu(NH ₃) ₄] ²⁺	12
[Fe(SCN)(H ₂ O) ₅] ²⁺	3
[HgI ₄] ²⁻	29,6
[Zn(OH)4] ²⁻	17,7

Quelques potentiels standards d'oxydoréduction à pH = 0 et 298~K

Couple rédox	E° en volt	Système
F ₂ / F	2,87	$F_2 + 2e^- \longrightarrow 2F^-$
S ₂ O ₈ ²⁻ / SO ₄ ²⁻	2,00	$S_2O_8^{2-} + 2 e^- \longrightarrow 2 SO_4^{2-}$
H ₂ O ₂ / H ₂ O	1,78	$H_2O_2 + 2 H^+ + 2 e^- \longrightarrow 2 H_2O$
HClO / Cl ₂	1,59	$2 \text{ HClO} + 2 \text{ H}^+ + 2 \text{ e}^- \longrightarrow \text{Cl}_2 + 2 \text{ H}_2\text{O}$
MnO_4 / Mn^{2+}	1,51	$MnO_4^- + 8 H^+ + 5 e^- \longrightarrow Mn^{2+} + 4 H_2O$
PbO ₂ / Pb ²⁺	1,42	$PbO_2 + 4 H^+ + 2 e^- \longrightarrow Pb^{2+} + 2 H_2O$
Cl ₂ / Cl ⁻	1,38	$Cl_2 + 2 e^{-} \longrightarrow 2 Cl^{-}$
$Cr_2O_7^{2-}/Cr^{3+}$	1,33	$Cr_2O_7^{2-} + 14 H^+ + 6 e^- \longrightarrow 2 Cr^{3+} + 7 H_2O$
O_2 / H_2O	1,23	$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2O$
Br ₂ / Br ⁻	1,08	$Br_2 + 2e^- \longrightarrow 2Br^-$
NO ₃ -/NO	0,99	$NO_3^- + 4 H^+ + 3e^- \longrightarrow NO + 2 H_2O$
Hg^{2+}/Hg_2^{2+}	0,91	$2 \operatorname{Hg}^{2+} + 2 \operatorname{e}^{-} \longleftrightarrow \operatorname{Hg}_{2}^{2+}$
Ag^+/Ag	0,80	$Ag^+ + e^- \longrightarrow Ag$
Fe^{3+} / Fe^{2+}	0,77	$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$
$[Fe(CN)_6]^{3-} / [Fe(CN)_6]^{4-}$	0,70	$[Fe(CN)_6]^{3-} + e^{-} \longrightarrow [Fe(CN)_6]^{4-}$
I ₂ / I ⁻	0,62	$I_2 + 2e^- \longrightarrow 2\Gamma$
Cu ²⁺ / Cu	0,34	$Cu^{2+} + 2e^{-} \longleftrightarrow Cu$
$\operatorname{Sn}^{4+}/\operatorname{Sn}^{2+}$	0,15	$\operatorname{Sn}^{4+} + 2 e^{-} \iff \operatorname{Sn}^{2+}$
S / H ₂ S	0,14	$S + 2 H^+ + 2 e^- \longleftrightarrow H_2 S$
SO_4^{2-}/SO_2	0,12	$SO_4^{2-} + 3 H^+ + 2 e^- \longrightarrow SO_2 + 2 H_2O$
$2 \text{ H}^+ / \text{H}_2$	0,00	$2 H^+ + 2 e^- \longleftrightarrow H_2$
Pb ²⁺ / Pb	- 0,13	$Pb^{2+} + 2 e_{-} \longrightarrow Pb$
$\operatorname{Sn}^{2+}/\operatorname{Sn}$	- 0,14	$\operatorname{Sn}^{2+} + 2 e^{-} \Longrightarrow \operatorname{Sn}$
Fe ²⁺ / Fe	- 0,44	$Fe^{2+} + 2e^{-} \longrightarrow Fe$
Zn ²⁺ / Zn	- 0,76	$Zn^{2+} + 2e^{-} \longrightarrow Zn$
Al ³⁺ / Al	- 1,66	$Al^{3+} + 3e^{-} \longrightarrow Al$
Na ⁺ / Na	- 2,71	$Na^+ + 1e^- \longrightarrow Na$