DSC 40A

Theoretical Foundations of Data Science I

How do you know when we're ripe?

AVOCADO COLOUR & RIPENESS CHART

HASS Look & Touch

Rating

Hard

Rubbery

Softening

Firm Ripe 1kgf

Medium to Soft Ripe

Soft to Over Ripe

GREEN SKINS Touch

...by **learning** from data.

How do we learn from data?

The fundamental approach:

- 1) Turn learning into a math problem.
- 2) Solve that problem.

After this quarter, you'll...

- understand the basic principles underlying almost every machine learning and data science method.
- be better prepared for the math in upper division: vector calculus, linear algebra, and probability.
- be able to tackle the problems mentioned at the beginning.

Theoretical Foundations of Data Science

In This Video

How do we make good predictions? What is a good prediction?

Recommended Reading

Course Notes: Chapter 1, Section 1

Learning from Data

- Idea: ask a few data scientists about their salary.
- StackOverflow survey.
- Five random responses:

```
90,000 94,000 96,000 120,000 160,000
```

Question

Given this data, how might you predict your future salary?

Some Common Approaches

► The mean:

$$\frac{1}{5} \times (90,000 + 94,000 + 96,000 + 120,000 + 160,000)$$

= 112,000

► The **median**:

90,000 94,000
$$\underbrace{96,000}_{\uparrow}$$
 120,000 160,000

► Which is better? Are these good ways of predicting future salary?

Quantifying goodness/badness of a prediction

► The **error**: distance from prediction to the right answer.

$$error = |prediction - (actual\ future\ salary)|$$

- Find prediction with smallest possible error.
- ► There's a problem with this:

What is good/bad, intuitively?

► The data:

Consider these hypotheses:

$$h_1 = 150,000$$
 $h_2 = 115,000$

What is good/bad, intuitively?

The data:

Question

Which do you think is better, h_1 or h_2 ? Why?

Quantifying our intuition

Intuitively, a good prediction is close to the data.

Suppose we predicted a future salary of $h_1=150{,}000$ before collecting data.

	salary	error of h_1
	90,000	60,000
Lo L	94,000	56,000
chial	96,000	54,000
W	120,000	30,000
	160,000	10,000 6 5 mall

total error: 210,000 mean error: 42,000

Quantifying our intuition

Now suppose we had predicted $h_2 = 115,000$.

_		
	error of h_2	salary
) 11	25,000	90,000
small	21,000	94,000
\	19,000	96,000
<i>I</i>	5,000	120,000
high	• 45,000	
•	total error: 115,000	
	mean error: 23,000	

Mean Errors

Mean error on data:

$$h_1:42,000$$
 $h_2:23,000$

- ightharpoonup Conclusion: h_2 is the better prediction.
- In general: pick prediction with the smaller mean error.

We are making an assumption...

- ► We're assuming that future salaries will look like present salaries.
- That a prediction that was good in the past will be good in the future.

Question

Is this a good assumption?

Which is better: the mean or median?

Recall:

$$median = 96.000$$

► We can calculate the average error of each:

The median is the best prediction so far!

But is there an even better prediction?

Finding the best prediction?

- Any (non-negative) number is a valid prediction.
- ▶ Goal: out of all predictions, find the prediction h^* with the smallest mean error.
- This is an optimization problem.

among hER, find the one he, that minimizes mean error

We have data:

$$90,000 \quad 94,000 \quad 96,000 \quad 120,000 \quad 160,000$$

- Suppose our prediction is h.
- ► The mean error of our prediction is:

$$R(h) = \frac{1}{5} \left(|90,000 - h| + |94,000 - h| + |96,000 - h| + |120,000 - h| + |160,000 - h| \right)$$

We have a function for computing the mean error of any possible prediction.

$$R(150,000) = \frac{1}{5} (|90,000 - 150,000| + |94,000 - 150,000| + |96,000 - 150,000| + |120,000 - 150,000| + |160,000 - 150,000|)$$

$$= 42,000$$

We have a function for computing the mean error of any possible prediction.

$$R(115,000) = \frac{1}{5} \Big(|90,000 - 115,000| + |94,000 - 115,000| + |96,000 - 115,000| + |120,000 - 115,000| + |160,000 - 115,000| \Big)$$

$$= 23,000$$

We have a function for computing the mean error of any possible prediction.

$$R(\pi) = \frac{1}{5} \Big(|90,000 - \pi| + |94,000 - \pi| + |96,000 - \pi| + |120,000 - \pi| + |160,000 - \pi| \Big)$$
$$= 111,996.8584...$$

We have a function for computing the mean error of any possible prediction.

$$R(\pi) = \frac{1}{5} \Big(|90,000 - \pi| + |94,000 - \pi| + |96,000 - \pi| + |120,000 - \pi| + |160,000 - \pi| \Big)$$
$$= 111,996.8584...$$

Question

Without doing any calculations, which is correct?

- A) R(50) < R(100)
- B) R(50) = R(100)
- C) R(50) > R(100)

\$50

A General Formula for the Mean Error

- Suppose we collect n salaries, y_1, y_2, \ldots, y_n .
- ► The mean error of the prediction *h* is:

$$R(h) = \frac{1}{n} (|y_1 - h| + |y_2 - h| + ... + |y_n - h|)$$

► Or, using summation notation: ↑

Ih-yil

The Best Prediction

- \triangleright We want the best prediction, h^* .
- ightharpoonup The smaller R(h), the better h.
- ightharpoonup Goal: find h that minimizes R(h).

Summary

We started with the learning problem:

Given salary data, predict your future salary.

We turned it into this problem:

Find a prediction h* which has smallest mean error on the data.

- ► We have turned the problem of learning into a specific type of math problem: an **optimization problem**.
- Next time: We solve this math problem.