Projekty zaliczeniowe

Implementacja modeli ryzyka

- Dokonać wyceny algorytmem Longstaff-Schwartz [3] następującego portfolio:
 - (a) 10 letnia azjatycka opcja na stopę procentową USD (model Blacka-Scholes do modelowania stopy)
 - (b) 10 letni IR swap w USD (model Blacka-Scholes do modelowania stopy)

Przedstawić profile Expected Positive Exposure (inaczej Expected Exposure), oraz profile kwantyli 2.5%, 97.5%. Zbadać wpływ zmiany parametrów modelu na kształt profili ryzyka.

- 2. Dokonać wyceny algorytmem Tsitsiklis-Van Roy[1]następującego portfolio:
 - (a) 5 letnia opcja amerykańska na stopę procentową USD (model Blacka-Scholes do modelowania stopy)
 - (b) 5 letni IR swap w USD (model Blacka-Scholes do modelowania stopy)

Przedstawić profile Expected Positive Exposure (inaczej Expected Exposure), oraz profile kwantyli 2.5%, 97.5%. Zbadać wpływ zmiany parametrów modelu na kształt profili ryzyka.

- 3. Zbadać profile ryzyka następującego portfolio:
 - (a) 5 letnia azjatycka opcja na stopę procentowa USD,
 - (b) 5 letnia opcja amerykańska na stopę procentową USD,
 - (c) 5 letni IR swap w USD,

wykorzystując model Vasicka ([5]). Przedstawić profile Expected Positive Exposure (inaczej Expected Exposure), oraz profile kwantyli 2.5%, 97.5%. Zbadać wpływ zmiany parametrów modelu na kształt profili ryzyka.

Zbudowanie optymalnego modelu PD korzystając z danych o spłacalności kredytów hipotecznych (dane: data_20200311_proj4.csv). Model powinien adresować zdiagnozowane problemy: współliniowość; niemonotoniczność części transformowanych zmiennych; zbyt mało liczne kategorie przy niektórych zmiennych, itd.

- 4. Zadaniem jest zbudowanie modelu PD dla banków. Plik DataPD_proj5.txt zawiera informację o roku, w którym default wystąpił (bądź nie), risk domicile banku (MKMV_Region), indykator defaultu (deflag) oraz dane finansowe za rok wstecz. Należy zwrócić uwagę na:
 - Univariate analysis (AUC, pokrycie danych, pokrycie defaultów),
 - Analizę default rate (ilość defaultów do wielkości próby w danym roku) w grupach (rok, region),
 - Motywację wyboru modelu,
 - Potencjalne ulepszenia modelu (outliers).

Analiza modelu powinna uwzgledniać: jego performance (AUC, istotność zmiennych i ich interpretację – pomocny będzie plik Description_proj5.txt), pokrycie danych, pokrycie defaultów, porównanie PD estymowanego z default rate w grupach. Finalnie należy wylosować 100 wierszy z oryginalnego zbioru danych i policzyć na ich podstawie PD. Oznacza to zmierzenie się z problemem brakujących danych.

Do projektów proszę się zgłaszać mailowo do Piotra Morawskiego. Decyduje kolejność zgłoszeń. Aktulna lista wraz z dostępnością na githubie.

Dane potrzebne w poszczególnych projetkach dostępne są na githubie. W razie jakichkolwiek pytań lub niejasności proszę o kontakt mailowy: Piotr Morawski. Parametry niepodane proszę przyjąć ad-hoc.

Projekty proszę przygotować w grupach 4 osobowych.

Projekty będą oceniane na podstawie prezentacji na ostatnich zajęciach (ok. 15-20 minut/grupę).

W razie jakichkolwiek pytań lub wątpliwości proszę do nas pisać, chętnie odpowiemy na wszystkie pytania:

1. Piotr Morawski

Literatura

- [1] Tsitsiklis, John N. and Van Roy, Benjamin Regression Methods for Pricing Complex American-Style Options, IEEE TRANSACTIONS ON NEURAL NETWORKS, Vol.12, 4, 200
- [2] Tsitsiklis, John N. and Van Roy, Benjamin Optimal Stopping of Markov Processes: Hilbert Space Theory, Approximation Algorithms, and an Application to Pricing High-Dimensional Financial Derivatives, IEEE Transactions on Automatic Control, Vol.40, 10, 1999
- [3] Longstaff, Francis A. and Schwartz, Eduardo S. Valuing American Options by Simulation. A Simple Least-Squares Approach, Review of Financial Studies, Vol.14, 113-147, 2001

- [4] Tilley, James A. Valuing American Options in a Path Simulation Model, Transactions of the Society of Actuaries, Vol.45, 499-520, 1993
- [5] Vasicek, Oldrich An equilibrium characterization of the term structure, Journal of Financial economics,5(2):177-188, 1977
- [6] Rachev, Svetlozar T. and Trueck, Stefan Rating Based Modeling of Credit Risk, Elsevier, 2008