第五章 作业

1. 已知函数表

x_i	0. 2	0, 3	0.4
$f(x_i)$	0.04	0.09	0.16

则一阶差商 f[0.2,0.4] 为多少?

$$f[0.2,0.4] = \frac{0.16 - 0.04}{0.4 - 0.2} = 0.6$$

2. 设 f(0) = 0, f(1) = 16, f(2) = 46, 则差商 f[0,1]、f[0,1,2] 为多 f(x) 的二次牛顿插值多项式怎样表达?

$$f[0,1] = \frac{16-0}{1-0} = 16 \qquad f[0,1,2] = \frac{f[0,2] - f[0,1]}{2-1} = \frac{\frac{46-0}{2-0} - \frac{16-0}{1-0}}{2-1} = 7$$

$$\boxed{\mathbb{Z}}: \qquad f[0,1,2] = \frac{f[1,2] - f[0,1]}{2-0} = \frac{\frac{46-16}{2-1} - \frac{16-0}{1-0}}{2-0} = 7$$

$$N_2(x) = f(x_0) + \sum_{k=1}^{2} f[x_0, x_1, ..., x_k] \prod_{j=0}^{k-1} (x - x_j)$$

$$= 0 + f[0,1](x-0) + f[0,1,2](x-0)(x-1) = 16x + 7x(x-1)$$

$$= 7x^2 + 9x$$

3. 设函数 $f(x) = \frac{1}{1+x^2}$,试写它在插值节点组 $\{-1,0,1\}$ 上的插值多项式用它计算 $x = \pm \frac{1}{3}$ 处之值。

X	-1	0	1
y	1/2	1	1/2

$$L_{2}(x) = \sum_{j=0}^{2} f(x_{j})l_{j}(x) = f(x_{0}) \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})}$$

$$+ f(x_{1}) \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} + f(x_{2}) \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$= \frac{1}{2} \frac{x(x - 1)}{-1 \cdot -2} + 1 \cdot \frac{(x + 1)(x - 1)}{1 \cdot -1} + \frac{1}{2} \frac{(x + 1)x}{2 \cdot 1} \qquad L_{2}(\pm \frac{1}{3}) = 1 - \frac{1}{2} \cdot \frac{1}{9} = \frac{17}{18}$$

$$= \frac{1}{4} (x^{2} - x - 4x^{2} + 4 + x^{2} + x) = 1 - \frac{1}{2} x^{2} \qquad \text{At it: } f(\pm \frac{1}{3}) = \frac{9}{10}$$

4. 令 $x_0=0$, $x_1=1$,写出 $y(x)=\mathrm{e}^{-x}$ 的线性插值多项式 $L_1(x)$,并估计排误差。

$$L_{1}(x) = \sum_{j=0}^{1} f(x_{j}) l_{j}(x) = f(x_{0}) \frac{(x - x_{1})}{(x_{0} - x_{1})} + f(x_{1}) \frac{(x - x_{0})}{(x_{1} - x_{0})}$$

$$= 1 \cdot \frac{x - 1}{-1} + \frac{1}{e} \cdot \frac{x - 0}{1 - 0} = 1 - x + \frac{x}{e}$$

$$E(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} p_{n+1}(x) = \frac{1}{2} e^{-x} (x-0)(x-1) = \frac{1}{2} e^{-x} (x^2 - x)$$

$$\left| E(x) \right| \le \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$$

8. 如下列表函数:

x_i	0	1	2	3	4
$f(x_i)$	3	6	11	18	27

试计算此列表函数的差分表,并利用牛顿前插插值公式给出它的插值多项式。

f(x)	1	2	3	4
3	3	2	0	0
6	5	2	0	
11	7	2		
18	9			
27				

$$N_4(x+th) = \sum_{k=0}^{4} \frac{\Delta^k f_0}{k!} \prod_{j=0}^{k-1} (t-j) = 3 + 3t + \frac{2}{2!} (t-1)t = t^2 + 2t + 3$$

9. 设有实验数据如下:

x	0	1	2	3	4
f	1, 1	1.9	3, 1	3.9	4.9

要求按最小二乘法拟合上述数据。经验公式为 $S(x) = a_0 + a_1 x$ 。

$$(\varphi_0, \varphi_0) = \sum_{i=0}^4 \omega_i = 5$$
 $(\varphi_0, \varphi_1) = (\varphi_1, \varphi_0) = \sum_{i=0}^4 \omega_i x_i = 10$

$$(\varphi_1, \varphi_1) = \sum_{i=0}^4 \omega_i x_2^2 = 30$$
 $(f, \varphi_0) = \sum_{i=0}^4 \omega_i y_i = 14.9$

$$(f, \varphi_1) = \sum_{i=0}^{4} \omega_i x_i y_i = 1.9 + 6.2 + 11.7 = 19.6 = 39.4$$

$$\begin{pmatrix} 5 & 10 \\ 10 & 30 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 14.9 \\ 39.4 \end{pmatrix} \qquad a_0 = 1.06, a_1 = 0.96$$

$$a_0 = 1.06, a_1 = 0.96$$

$$S(x) = 1.06 + 0.96x$$

x	0, 125	0.250	0. 375	0.500	0.625	0.750
f(x)	0.79618	0. 77334	0.74371	0.70413	0. 65632	0.60228

14. 用上题数据计算 f(0.385);

- (1) 取 $x_0 = 0.250$,用二次 Newton 前插公式;
- (2) 取 $x_0 = 0.500$,用二次 Newton 后插公式;
- 二者计算结果是否相同? 为什么?

f(x)	1	2
0.77334	-0.02963	-0.00995
0.74371	-0.03958	
0.70413		

h=0.125

$$N_2(x+th) = f_0 + \sum_{k=1}^{2} \frac{\Delta^k f_0}{k!} \prod_{j=0}^{k-1} (t-j) = f_0 + \frac{\Delta f_0}{1!} t + \frac{\Delta^2 f_0}{2!} t (t-1)$$

= 0.77334 - 0.02963t - 0.00995/2·t(t-1)

t=0.135/0.125=1.08

0.77334-0.02963*1.08-0.00995/2*1.08*(1.08-1)= 0.74091

$$N_2(x+th) = f_n + \sum_{k=1}^{2} \frac{\nabla^k f_n}{k!} \prod_{j=0}^{k-1} (t+j) = f_n + \frac{\nabla f_n}{1!} t + \frac{\nabla^2 f_n}{2!} t (t+1)$$

 $= 0.70413 - 0.03958t - 0.00995/2 \cdot t(t+1)$

0.70413+0.03958*0.92+0.00995/2*0.92*(-0.92+1) = 0.74091

基本要求

- 拉格朗日插值法计算;
- 一次和二次分段拉格朗日插值法计算;
- 差商的计算, 牛顿插值法计算;
- 最小二乘法数据拟合的法方程组方法。