Title

Text

David Bachmann | 5/21/19 | 1

Exercise 12: Sampling

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory/ Recap
- 4. Exercises

Information

General

- Lecture material & problem sets available <u>here</u>
- Tutorial material available here

Goals

Goals of Today

- Understand why we want to sample from a distribution
- Understand inverse CDF sampling
- Understand limitations of inverse CDF sampling
- Understand rejection sampling
- Understand Markov Chain Monte Carlo sampling
- Difficult examples today! Don't be intimidated!

Theory / Recap

Why do we sample?

- Simulate a probabilistic model
- Obtain statistical insights

Inverse CDF sampling

Cumulative Distribution Function:

$$cdf(x) = \int_{-\infty}^{x} p(\bar{x}) d\bar{x}$$

- Inverse CDF sampling:
 - Sample $u \sim unif(0,1)$
 - Generate sample $x = cdf^{-1}(u)$
- Difficult: Have to compute integral & inverse!

Example 1: Sampling from a uniform distribution

- Assume we want to sample from the uniform distribution $p(x) = \frac{1}{2}$, $x \in [-1, 1]$
- We can generate sample from $p(y) = 1, y \in [0, 1]$
- Tasks:
 - Set up the inverse sampling algorithm by:
 - Compute the cdf of p(x)
 - Compute the inverse of the cdf
 - Show that we are effectively sampling from p(x) by using $p(x) = \frac{p(f(x))}{|f^{-1}(y)|}$

Rejection Sampling

- If we cannot compute $cdf^{-1}(x)$
- Define envelope "proposal": $p(x) \le L \cdot q(x)$
- Rejection Sampling:
 - 1. Draw $y \sim q$ and $u \sim unif(0,1)$
 - 2. If $u \cdot L \cdot q(y) \le p(y)$ keep the sample y, else discharge
- Note: We are not sampling from pdirectly, only evaluating!

Example 2: Rejection sampling with normal proposal

- We want to sample from a uniform distribution $p(x) = \frac{1}{2}$, $x \in [-1, 1]$
- But can only generate samples from $q(x) = 1/\sqrt{\pi} \cdot \exp{-x^2}$ (normal dist)
- Tasks:
 - Determine an optimal L such that $p(x) \le L \cdot q(x)$, use $L_{optimal} = \left\| \frac{p(x)}{q(x)} \right\|_{\infty}$
 - You draw y = 1.1 and u = 0.9 is the sample accepted or rejected?
- Tipps:
 - If $u \cdot L \cdot q(y) \le p(y)$ keep the sample y, else discharge

Markov Chain Monte Carlo

MCMC:

- 1. Sample $y \sim \mathcal{N}(x, \sigma^2)$ and $u \sim unif(0,1)$
- 2. If $u \cdot p(x) \le p(y)$ set $x \leftarrow y$ else keep $x \leftarrow x$

Analogy:

- You hike in the mountains, you want to take more photos at the top and less at the bottom ("nice view")
- If you move around the mountain according to MCMC and take a photo after every step you will end up with the desired photo collage
- Note: If $p(y) \ge p(x)$ we always move to y

Example 3: MCMC step

- Perform MCMC for two steps of MCMC
- The target distribution is $p(x) = 2x, x \in [0, 1]$
- You have access to the following values:
 - $x_1 = 0.5$
 - $s_1 = 0.1$ and $s_2 = -0.2$ both drawn from $s \sim \mathcal{N}(0, \sigma^2)$
 - $u_1 = 0.9$ and $u_2 = 0.3$ both drawn from $u \sim unif(0,1)$
- Tipps:
 - $y = \mu + s$ then $y \sim \mathcal{N}(\mu, \sigma^2)$ if $s \sim \mathcal{N}(0, \sigma^2)$
 - MCMC:
 - 1. Sample $y \sim \mathcal{N}(x, \sigma^2)$ and $u \sim unif(0,1)$
 - 2. If $u \cdot p(x) \le p(y)$ set $x \leftarrow y$ else keep $x \leftarrow x$

Exercises

Q1

Implement rejection sampling and MCMC for the Gibbs Distribution

Questions?

David Bachmann | 5/21/19