## Analog Electronic Circuits (EC2.103): Quiz-1

Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad Date: 30th Jan, 2024, Duration: 1 hour, Max. Marks: 10

## Instructions:

- · Clearly write your valid assumptions (if any)
- You can use one A4 sheet own handwritten short notes in the exam hall
- · Mobile phone, computers can not be used during exam
- 1. (a) Find  $V_{C2}(t)$  as a function of time for the circuit given below in Fig. 1. Assume that  $C_2$  was completely discharged at  $t = 0^-$ . [1 Mark]



Figure 1

(b) I-V characteristic of a diode is shown in Fig. 2. Find dynamic resistance of the diode at points A and B as shown in the graph. [I Mark]



Figure 2

- (c) Draw Bode magnitude and phase plots for the transfer function  $H(s) = \frac{1}{(s+10)(s+50)}$ . [1 Mark]
- (d) For a uniformly doped n-type semiconductor bar having length of 2  $\mu m$  and cross sectional area of 0.25  $\mu m^2$ , find the drift current density (*J*) and total current (*I*) flowing through it, when a voltage of 1 *V* is applied across the bar. It is given that  $N_D = 10^{16}/cm^3$ ,  $n_i = 1.5 \times 10^{10}/cm^3$ ,  $e = 1.6 \times 10^{-19}$  *C* and  $\mu_n = 1350$   $cm^2/VS$ . [2 Mark]
- 2. For the circuit shown in figure 3, find  $V_{out}$  for the two cases given below. Validate your assumptions (if any).

(a) 
$$V_1 = 10 V$$
 and  $V_2 = 0 V$ 

[1 Mark]

(b) 
$$V_1 = 10 V$$
 and  $V_2 = 10 V$ 

[1 Mark]



Figure 3

- 3. (a) For the circuit shown in figure 4(a), plot voltage transfer characteristic  $(V_{OUT} \text{ vs } V_{IN})$  considering ideal diodes. Also plot  $V_{OUT}(t)$  as a function of time for  $V_{in} = 20cos(\omega_0 t) V$ . Clearly label axis and values on all plots to get any credit. [1 Mark]
  - (b) For the circuit shown in figure 4(b), prove that both the diodes remain on for all values of input voltage. Considering diode cut-in voltage  $V_{\nu}$  and on resistance  $R_{on}$ , derive  $V_{OUT}$  as a function of  $V_{IN}$ .



Figure 4

Good luck!!