CHAPTER-5

Synchronous Sequential Logic

Digital Design (with an introduction to the Verilog HDL) 6th Edition, M. Morris Mano, Michael D. Ciletti

ECE, IIITDM Kancheepuram

Outline

- Sequential Circuit
- > Storage Elements: Latches
- Storage Elements: Flip-flops
- Analysis of Clocked Sequential Circuits
- HDL models (Skipped)
- State Reduction and Assignment
- Design Procedure

Sequential Circuits

Sequential circuits employ storage elements or feedback path besides logic gates. The outputs depend on both memory values (in the past) and present values of inputs.

- Inputs, present state
- Outputs, next state
- A sequential circuit is specified by a time sequence of inputs, outputs, and internal states.

Synchronous and Asynchronous

- A synchronous sequential circuit: behavior defined at determined discrete instants of time.
- A asynchronous sequential circuit: at any instant of time.
- Synchronization is achieved by a timing device called a clock generator, commonly denoted by "clock" or "clk".

Storage Elements

- An electronic device that can be used to store one bit of information.
- Two main types of storage elements
 - latch
 - flip-flop
- Latch: the storage element is controlled by signal levels (usually H or L), also called level sensitive devices.

Flip-flop: the storage element is controlled by a clock transition (i.e. L→H or H→L), also called edge-sensitive devices.

Storage Elements

- Trigger
 - The state of a latch or flip-flop is switched by a change in the control input.
- ➤ Level triggered → latches
- ➤ Edge triggered → flip flops

SR Latches with NOR Gates

- The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, and two inputs labeled S for set and R for reset.
- \triangleright Q and Q' are normally the complement of each other. Q = 1 and Q' = 0, the latch is said to be in the set state. Q = 0 and Q' = 1, it is in the reset state.
- The SR latches constructed with two cross-coupled NOR gates are active-high.

FIGURE 5.3
SR latch with NOR gates

S	R	Q	Q'	
1	0	1	0	(after $S = 1, R = 0$
0	0	1	0	(after $S = 1$, $R = 0$
0	1	0	1	
0	0	0	1	(after $S = 0, R = 1$
1	1	0	0	(after $S = 0$, $R = 1$) (forbidden)

(b) Function table

value

- S=1, R=0 → set state (Q will become 1)
- S=0, R=1 → reset state (Q will become 0)
- When S=0 and R=0 → keep the current

SR Latches with NOR Gates

S (set)

	NOR gate					
l l	Input _B Output					
	A	В	Output			
	0	0	1			
	0	1	0			
	1	0	0			
	1	1	0			

S	R	Q	Q'	_		
1	0	1	0			
0	0	1	0	(after $S = 1, R = 0$		
	1	0	1			
0	0	0	1	(after $S = 0, R = 1$		
1	1	0	0	(after $S = 0, R = 1$ (forbidden)		
b) Function table						

- S=1, R=O \rightarrow set state (Q will become to 1)
- S=0, R=1 \rightarrow reset state (Q will become to 0)
- When S=O and R=O → keep the current value

S (set)

Q' 0

Q' 0

SR Latch Timing Waveform

R

SR Latches with NAND Gates

- The SR latches constructed with two cross-coupled NAND gates are active-low
 - S=1, R=O → reset state (Q will become to O)
 - S=O, R=1 → set state (Q will become to 1)
 - ➤ S=1, R=1 → unchanged

FIGURE 5.4
SR latch with NAND gates

	R			_
1	0	0	1	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
1	1	0	1	(after $S = 1, R = 0$)
0	1	1	0	
1	1	1	0	(after $S = 0, R = 1$)
0	0	1	1	(forbidden)

(b) Function table

What is the difference between SR latches with NOR gates and NAND

SR Latches with NAND Gates

S	R	Q	Q'	_				
1	0	0	1					
1	1	0	1	(after $S = 1, R = 0$)				
	1	1	0					
1	1	1	0	(after S = 0, R = 1)				
	0	1	1	(forbidden)				
(b	(b) Function table							

- S=1, R=0 \rightarrow reset state (Q will become to 0)
- S=0, R=1 \rightarrow set state (Q will become to 1)
- When S=1 and $R=1 \rightarrow$ keep the current value

SR Latch with Control Input

- Add an additional control input to determine when the state of the latch can be changed
- En = 0: S and R are disabled (no change at outputs)
- En = 1: S and R are active-high

FIGURE 5.5
SR latch with control input

En	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0 1	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

D Latch (Transparent Latch)

- Eliminate the indeterminate state in the SR latches
- D latch has only two inputs: D (data) and En (control)
- Use the value of D to set the output value
- The D input goes directly to the S input and its complement is applied to the R input
 - D=1 \rightarrow S=1, R=0 \rightarrow Q=1

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

(b) Function table

FIGURE 5.6
D latch

D Latch Timing Waveform

Graphic symbols for Latches

FIGURE 5.7 Graphic symbols for latches

- You should know the operation in your mind when seeing the block diagrams of latches.
- ightharpoonup SR latch: (S,R) = (1,0)(0,1)(0,0)
- ightharpoonup S'R' latch: (S,R) = (0,1) (1,0) (1,1)
 - In the case of a NAND gate latch, bubbles are added to the inputs to indicate that setting and resetting occur with a logic-0 signal.

Storage Elements: Flip-flops

The state of a latch or flip-flop is switched by a change in the control input. This momentary change is called a trigger, and the transition it causes is said to trigger the flip-flop.

Negative Edge-Triggered D Flip-flops

FIGURE 5.9
Master–slave D flip-flop

- Constructed with two D latches and an inverter
- The first latch (master) is enabled when CLK=1
 - the data from the external D input are transferred to the master
- The second latch (slave) is enabled when CLK=0
 - When the clock pulse returns to 0, the master is disabled and is isolated from the D input.
 - At the same time, the slave is enabled and the value of Y is transferred to the output of the flip-flop at Q.
- The circuit samples the D input and changes its output Q only at the negative-edge of the controlling clock

Negative Edge-Triggered D Flip-flops

- Only the transition from high to low, the input D can be passed over the cascaded latches
- Negative edge-triggered
- How do you change it to positive edge-triggered?

Positive Edge-Triggered D Flip-flops

- An edge-triggered D flip-flop uses three SR latches
- Two latches respond to the external D (data) and Clk (clock) inputs.
- The third latch provides the outputs for the flipflop.
- When the input clock in the positive-edgetriggered flip-flop makes a positive transition, the value of D is transferred to Q.
- A negative transition of the clock (i.e., from 1 to 0) does not affect the output, nor is the output affected by changes in D when Clk is in the steady logic-1 level or the logic-0 level.
- Hence, this type of flip-flop responds to the D-type positive-edge-triggered flip-flop transition from 0 to 1 and nothing else.

FIGURE 5.10

Positive Edge-Triggered D Flip-flops

- Clk=0; S and R are maintained at 1::Q and Q' in the present state
- ▶ If D=0; and Clk=0 to 1:: R=0 which makes Q=0 (reset)
- ▶ If there is a change in the input if clk is 1 :: Flip-flop is locked.
- Clk=0::R=1:: No change sin the output
- If D=1; Clk=0 to 1, S=0 and Q=1

FIGURE 5.10

D-type positive-edge-triggered flip-flop

D Flip-flop

Setup Time and Hold Time

- The timing of the response of a flip-flop to input data and to the clock must be taken into consideration when one is using edge-triggered flip-flops.
- There is a minimum time called the *setup time* during which the *D* input must be maintained at a constant value prior to the occurrence of the clock transition.
- Similarly, there is a minimum time called the *hold time* during which the *D* input must not change after the application of the positive transition of the clock.
- The propagation delay time of the flip-flop is defined as the interval between the trigger edge and the stabilization of the output to a new state.

DFF (D Flip-Flop) Symbol

- The dynamic indicator (>) denotes the fact that the flip-flop responds to the edge transition of the clock.
- A bubble (o) outside the block adjacent to the dynamic indicator designates a negative edge trigger.

FIGURE 5.11

Graphic symbol for edge-triggered D flip-flop

Characteristic Table

- A characteristic table defines the logical properties of a flip-flop by describing its operation in tabular form.
- > The table defines the next state as a function of the inputs and the present state.
- Q(t) refers to the present state (i.e., the state present prior to the application of a clock edge).
 Q(t + 1) is the next state one clock period later.
- Note that the clock edge input is not included in the characteristic table, but is implied to occur between times t and t + 1.
 - Q(t) → state of the flip-flop immediately before the clock edge
 - $Q(t + 1) \rightarrow$ state that results from the clock transition

Characteristic Table D Flip-Flop

D	Q(t +	1)
0	0	Reset
1	1	Set

Characteristic Equation

$$Q(t+1) = D$$

Other Flip-Flops

- JK and T flip-flops
- There are three operations that can be performed with a flip-flop:
 - Set it to 1
 - reset it to 0
 - Complement its output
- With only a single input, the **D** flip-flop can set or reset the output, depending on the value of the D input immediately before the clock transition.
- Synchronized by a clock signal, the JK flip-flop has two inputs and performs all three operations.
- > The **T** (toggle) flip-flop is a complementing flip-flop.

JK Flip-Flops

$$Q(t+1) = JQ' + K'Q$$

➤ JK flip-flop function: The J input sets the flip-flop to 1, the K input resets it to 0, and when both inputs are enabled, the output is complemented.

FIGURE 5.12

//K flip-flop

(1).
$$(J=1, K=0)$$
 \rightarrow $D = JQ' + K'Q = 1 \cdot Q' + 1 \cdot Q = Q' + Q = 1$

(2).
$$(J=0, K=1)$$
 \longrightarrow $D = JQ' + K'Q = 0 \cdot Q' + 0 \cdot Q = 0 + 0 = 0$

(3).
$$(J=1, K=1)$$
 \longrightarrow $D = JQ' + K'Q = 1 \cdot Q' + 0 \cdot Q = Q'$

(4).
$$(J=0, K=0)$$
 \longrightarrow $D = JQ' + K'Q = 0 \cdot Q' + 1 \cdot Q = Q$, No change

Characteristic Table

JK Flip-Flop

Characteristic Table

J	K	Q(t + 1)	I)
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Characteristic Equation

$$Q(t+1) = JQ' + K'Q$$

Graphic symbol

T Flip-Flops

- ➤ T flip-flop: "toggle" flip-flop → complementing flip-flop
- Constructed with JK flip-flop when inputs J and K are tied together
- When T = 0 (J = K = 0), a clock edge does not change the output.
- ightharpoonup When T = 1 (J = K = 1), a clock edge complements the output.

(3).
$$(J=1, K=1) \rightarrow D = JQ' + K'Q = 1 \cdot Q' + 0 \cdot Q = Q'$$

(4).
$$(J=0, K=0) \rightarrow D = JQ' + K'Q = 0 \cdot Q' + 1 \cdot Q = Q$$

T Flip-Flops

T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate

(b) From D flip-flop

$$\Rightarrow$$
 $D = T \oplus Q = TQ' + T'Q$

- ➤ When T = 0, $D = Q \rightarrow$ no change
- \triangleright When T = 1, D = Q' \rightarrow complement

Characteristic Table

T Flip-Flop

Assume initial value $Q_{init} = 0$

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

$$Q(t+1) = T \oplus Q = TQ' + T'Q$$

DFF with Asynchronous Reset

- > Some flip-flops have asynchronous inputs that are used to force the flip-flop to a particular state independently of the clock.
- The input that sets the flip-flop to 1 is called preset or direct set.
- > The input that clears the flip-flop to 0 is called clear or direct reset.

R	Clk	D	Q	Q'
0	X ↑	X	0	1
1		0	0	1
1		1	1	0

DFF with Asynchronous Reset

Asynchronous reset is used to force the flip-flop to reset to 0, independently of the clock.

- Active high reset: a circuit is reset when R = "1".
- \triangleright Active low reset: a circuit is reset when $R = 0^{\circ}$.

Analysis of Clocked Sequential Circuits

- Analysis describes what a given circuit will do under certain operating conditions.
- The behavior of a clocked sequential circuit is determined from the inputs, the outputs, and the state of its flip-flops.
- The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of inputs, outputs, and internal states.

Analysis of Clocked Sequential Circuits

- The next state of a flip-flop is determined by
 - > Input values
 - Current state of the FF
 - Clock trigger

input value determines Q(t+1)

next clock edge comes

State Equations (Transition Equations)

- The behavior of a clocked sequential circuit can be described algebraically by means of state equations.
- A state equation (also called a transition equation) specifies the next state as a function of the present state and inputs.
- A state equation is an algebraic expression that specifies the condition for a flip-flop state transition.

State Equations (Transition Equations)

D input of a flip-flop determines the value of the next state

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = A'(t)x(t)$$

$$y(t) = [A(t) + B(t)]x'(t)$$

State Equations

- The left side of the equation, with (t + 1), denotes the next state of the flip-flop one clock edge later.
- The right side of the equation is a Boolean expression that specifies the present state and inputs.

$$A(t + 1) = A(t)x(t) + B(t)x(t)$$

$$B(t + 1) = A'(t)x(t)$$

$$y(t) = [A(t) + B(t)]x'(t)$$

$$A(t + 1) = Ax + Bx$$

$$B(t + 1) = A'x$$

$$y = (A + B)x'$$

State Table

- The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (or transition table).
- The table consists of four sections labeled present state, input, next state, and output.
- The derivation of a state table requires listing all possible binary combinations of present states and inputs.

Present State		Input	Next State		Output	
A	В	X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

$$A(t + 1) = Ax + Bx$$

$$B(t + 1) = A'x$$

$$y = (A + B)x'$$

State Table

• It is sometimes convenient to express the state table in a slightly different form having only three sections: present state, next state, and output.

Table 5.2 *State Table for the Circuit of Fig. 5.15*

Present State		Input	Input State		Output	
A	В	x	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Table 5.3Second Form of the State Table

Present State		N	ext	Stat	e	Out	tput
		x = 0		<i>x</i> = 1		x = 0	<i>x</i> = 1
Α	В	A	В	A	В	y	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

State Diagram

The information available in a state table can be represented graphically in the form of a state diagram.

Table 5.2 *State Table for the Circuit of Fig. 5.15*

Present State		State Input S		ext ate	Output	
A B				В		
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

State Diagram

State Table & State Diagram

Summarized procedure:

Circuit diagram → Equations – State table → State diagram

- There is no difference between a state table and a state diagram.
- The state table is easier to derive from a given logic diagram and the state equation.
- The state diagram is the form more suitable for human interpretation of the circuit's operation.
 - Easier for an HDL model in the form of gate-level description or in the form of a behavior description
 - Easier for the design of an automatic synthesis tool

Flip-Flop Input Equations (Excitation Equations)

- ➤ The part of the circuit that generates the inputs to flip-flops is described algebraically by a set of Boolean functions called flip-flop input equations.
- The flip-flop input equations can be used to obtain state equations.

Output Equations

External outputs are described algebraically by a set of Boolean functions called output equations.

$$D_A = Ax + Bx$$

$$D_B = A'x$$

$$y = (A + B)x'$$

The Boolean expressions associated with the input/output equations specify the combinational circuit part of the sequential circuit

$$A(t+1) = Ax + Bx$$

$$B(t+1) = A'x$$

Analysis with DFF

> Input equation

$$D_A = A \oplus x \oplus y$$

The state equation

$$A(t+1) = A \oplus x \oplus y$$

Present state	Inpu	ıts	Nex state
A	x	y	A
0	0 ()	0
0	0 1	1	1
0	1 ()	1
0	1 1	1	0
1	0 ()	1
1	0 1	1	0
1	1 ()	0
1	1 1	1	1

(b) State table

FIGURE 5.18

Sequential circuit with *JK* flip-flop

Write state equations

Q(t+1) = JQ' + K'Q

Characteristic equations of a JK flip-flop.

$$A(t+1) = JA' + K'A$$

$$B(t+1) = JB' + K'B$$

Input equations of the circuit

$$J_A = B$$
 $K_A = Bx'$
 $J_B = x'$ $K_B = A'x + Ax' = A \oplus x$

FIGURE 5.18
Sequential circuit with JK flip-flop

State equations of the circuit

Characteristic equation for JK flip-flop:

$$Q(t+1) = JQ' + K'Q$$

$$A(t + 1) = BA' + (Bx')'A = A'B + AB' + Ax$$

 $B(t + 1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$

$$A(t + 1) = BA' + (Bx')'A = A'B + AB' + Ax$$

 $B(t + 1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$
 $J_A = B \quad K_A = Bx'$
 $J_B = x' \quad K_B = A'x + Ax' = A \oplus x$

State Table for Sequential Circuit with JK Flip-Flops

Present State				ext ate	Flip-Flop Inputs
A	В	x	A	В	J _A K _A J _B K _B
0	0	0	0	1	0 0 1 0
0	0	1	0	0	0 0 0 1
0	1	0	1	1	1 1 1 0
0	1	1	1	0	1 0 0 1
1	0	0	1	1	0 0 1 1
1	0	1	1	0	0 0 0 0
1	1	0	0	0	1 1 1 1
1	1	1	1	1	1 0 0 0

State Diagram of the Circuit

	Present State Input		Next State	
A	В	x	A	В
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Analysis with TFF

Analysis with TFF

$$A(t + 1) = (Bx)'A + (Bx)A' = AB' + Ax' + A'Bx$$

$$B(t + 1) = x \oplus B$$

$$y = AB$$

State Table

Present State		Input	Next State		Output	
A	В	X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

- As long as input x is equal to 1, the circuit behaves as a binary counter.
- Here, the output depends on the present state only and is independent of the input.
- The two values inside each circle and separated by a slash are for the present state and output.

