- 689) La desviación estándar de los datos 4a, 4b y 4c es 0,16, entonces la desviación estándar de los datos a, b y c es igual a:
 - A) 0,1
 - B) 0,04
 - C) 0,16
 - D) 0,64
 - E) 1
- 690) Si se consideran dos muestras, en una de ellas el peso promedio de un mamut adulto se estimaba en 7.500 kg, y en la otra, el peso promedio de un ratón es de 30 gramos, con una desviación estándar de 5 gramos. De acuerdo con estos datos, se puede determinar que:
 - A) Ambas muestras tiene igual dispersión
 - B) La muestra de los mamuts es más homogénea que la de los ratones
 - C) La muestra de los ratones es más homogénea que la de los mamuts.
 - Una muestra para el peso de los mamuts siempre tendrá mayor dispersión que una muestra para el peso de los ratones.
 - E) No es posible comparar su dispersión

- 691) Sean a, b, c y d números positivos con varianza σ^2 y media \bar{x} , entonces es FALSO afirmar que:
 - A) Si n > 0, entonces la varianza de a + n, b + n, c + n y d + n es $(\sigma^2 + n)$.
 - B) Si a = b = c = d, entonces $\sigma^2 = 0$.
 - C) La varianza de 3a, 3b, 3c, 3d es de $9\sigma^2$.
 - D) Si q > 0, entonces la media aritmética de a + q, b + q, c + q, d + q es $(\bar{x} + q)$.
 - E) La varianza y la desviación estándar pueden ser iguales.
- 692) Se tiene cuatro números naturales de la forma (2p-1), (2p+1), (2p+3) y (2p+5). La media aritmética y la desviación típica de ellos, son respectivamente:
 - A) (2p + 2) y $\sqrt{6}$
 - B) $(2p + 2) y \sqrt{5}$
 - C) (2p + 1) y $2\sqrt{3}$
 - D) (8p + 8) y $\sqrt{5}$
 - E) (8p + 2) y $2\sqrt{6}$

- 693) Se tiene un conjunto formado por el número positivo "n", por la mitad de n y por el doble de n La desviación estándar del conjunto dado, es siempre:
 - A) $\sqrt{\frac{7}{6}} \, n$
 - B) $\sqrt{\frac{1}{2}} n$
 - C) $\frac{1}{3}\sqrt{\frac{7}{2}}n$
 - D) $\sqrt{\frac{5}{6}} n$
 - E) Independiente del valor de n
- 694) Con respecto a la tabla de frecuencias adjunta, ¿Cuál(es) de las siguientes proposiciones es (son) verdadera(s)?
 - I) El promedio es 6.
 - II) El total de datos es 5.
 - III) La desviación estándar es $\sqrt{12,8}$

A)) Sol	lo l
\sim		0

- B) Solo I y II
- C) Solo I y III
- D) Solo II y III
- E) I, II y III

Edad (años)	N° de niños
[0-4[2
[4 - 8[1
[8 - 12[2

- 695) En una familia las edades de sus hijos son 3, 4, 7, 9 y 12 años. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) Si todos aumentaron un año, entonces la media sería 5 unidades mayores.
 - II) La muestra es amodal.
 - III) La desviación estándar es de $\sqrt{10,8}$ años.
 - A) Solo II
 - B) Solo III
 - C) Solo I y II
 - D) Solo I y III
 - E) Solo II y III
- 696) La varianza de los datos de la tabla es:
 - A) 0.5
 - B) 0,575
 - C) 1,11
 - D) 1,25
 - E) 1,438

Dato	Frecuencia
12	3
13	1
14	4
15	2

697) Una prueba consta de 40 preguntas y fue respondida por 70 alumnos obteniéndose un promedio de 30 respuestas correctas con una varianza igual a 9. Si el puntaje de la prueba se calcula mediante la fórmula:

$$puntaje = 4 \cdot n^{\circ} respuestas correctas + 64$$

¿Cuál es la desviación estándar para el puntaje?

- A) 6
- B) 10
- C) 12
- D) 36
- E) 100

698) Se tienen cuatro números x, y, z, w cuya varianza es λ , entonces la varianza de kx, ky, kz y kw, siendo k un número natural, es:

- A) $4k\lambda$
- B) $k^4\lambda$
- C) $k^2\lambda$
- D) $\sqrt{k}\lambda$
- E) $4(k + \lambda)$

699) De acuerdo a la tabla adjunta, ¿Cuál(es) de las siguientes proposiciones es (son) verdadera(s)?

I)
$$A + B = 3$$

- II) La desviación estándar es $\sqrt{2}$.
- III) La varianza es 2.

x_i	$(x_i - \bar{x})^2$
4	В
5	1
6	0
7	A
8	4

- A) Solo I
- B) Solo II
- C) Solo II y III
- D) I, II y III
- E) Ninguna de las anteriores

700) Si todos los datos de una muestra se incrementan en 4 unidades, entonces la varianza:

- A) Se incrementa en 4 unidades
- B) Se incrementa en 2 unidades
- C) Queda igual
- D) Se incrementa en un 25%
- E) Se incrementa en un 50%

- 701) Si todos los datos de una muestra se multiplican por 4, ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera (s)?
 - I) El promedio se cuadruplica.
 - II) La desviación típica se cuadruplica.
 - III) La varianza se duplica.
 - A) Solo I
 - B) Solo II
 - C) Solo I y II
 - D) Solo I y III
 - E) I, II y III

702) Al analizar los puntajes de los 4 controles realizados por Juan y Pedro, se tuvieron los siguientes resultados.

	Juan	Pedro
Promedio	613	613
Desviación	54,47	168,74
estándar		

De acuerdo con esta información, ¿Cuál (es) de las siguientes afirmaciones es (son) siempre verdadera (s)?

- I) Juan tiene puntajes más cercanos a su promedio.
- II) Ambos han obtenido los mismos puntajes en los controles.
- III) Existe un error en el cálculo de las desviaciones estándar de Pedro o de Juan, porque ambos tienen el mismo promedio.
- A) Solo I
- B) Solo I y II
- C) Solo I y III
- D) Solo II y III
- E) I, II y III

703) En una muestra de 10 datos se obtiene una desviación estándar igual a 1,5, Si a cada elemento de la muestra se agregan 10 unidades entonces la nueva desviación estándar y varianza son, respectivamente:

- A) 101,5 102,25
- B) 101,5 12,25
- C) 11,5 12,25
- D) 1,5 102,25
- E) 1,5 2,25

704) ¿Cuál de las siguientes alternativas es FALSA?

- A) Una desviación estándar pequeña, significa que los datos están concentrados cerca de la media aritmético.
- B) Una desviación estándar grande, indica poca confianza en la media aritmética.
- C) La desviación estándar siempre es no negativa.
- D) Dos muestras con igual número de datos y con la misma media aritmética, tienen desviaciones estándar iguales.
- E) La desviación estándar siempre se mide en la misma unidad que los datos.

- 705) Se tiene una muestra de datos n_1, n_2, n_3 y n_4 , donde μ es el promedio. Si a la muestra se le agrega un dato p. ¿Cuál(es) de las siguientes afirmaciones es o son verdaderas?
 - I) Si $p = \mu$ la desviación estándar aumenta.
 - II) Si p = 0 la desviación estándar disminuye.
 - III) Si n_1, n_2, n_3, n_4 y p son enteros consecutivos, la desviación estándar es $\sqrt{2}$.
 - A) Solo I
 - B) Solo II
 - C) Solo III
 - D) Solo I y III
 - E) Solo II y III
- 706) ¿Cuál es la correcta relación de las desviaciones estándar entre los datos de las tablas A y B?

Tabla A		
Variable Frecuencia		
3	3	
5	4	
7	2	
Total	9	

Tabla B			
Variable Frecuencia			
555.553	3		
555.555	4		
555.557	2		
Total	9		

- A) $S_A = 1.000 \cdot S_B$
- B) $S_A = 555.555 \cdot S_B$
- C) $S_A < S_B$
- D) $S_B > S_A$
- E) $S_A = S_B$
- 707) Si el promedio y la varianza de una población compuesta por los números 1, 3, p, q son 3 y 2 respectivamente, entonces el valor de $(3p^2 + 3q^2)$ es:
 - A) 12
 - B) 34
 - C) 64
 - D) 102
 - E) 202

7	'13) Se tienen los siguientes datos de una variable X.
	10, 12, 14, 16
'	Respecto de los estadígrafos de X se afirma que:
	I) Mediana (X) = 13
	II) Varianza (X) = 5
	III) Rango (X) = 6
	Es(son) verdadera(s):
	A) Solo I
	B) Solo I y II
	C) Solo II y III
	D) Solo I y III
	E) I, II y III
7	Se tiene una muestra de n elementos con media μ y desviación estándar σ . Considere
	una nueva muestra formada por el doble de cada elemento de la muestra original,
	aumentada en 5. Con respecto a la nueva muestra, se puede afirmar que:
	A) Su media es $2\mu + 5$ y su varianza 2σ .
	B) Su media es $\mu + 5n$ y su desviación estándar 2σ .
	C) Su media es 2μ y su desviación estándar $2\sigma + 5$.
	D) Su media es $2\mu + 5$ y su varianza $4\sigma^2$.
	E) Su media es $\mu + 5n$ y su varianza estándar es $2\sigma + 5$.
7	'15) Se puede determinar la mediana de una población de 100 datos si:
	(1) La media aritmética es 39
	(2) La varianza es 0
	A) (1) por sí sola
	B) (2) por sí sola
	C) Ambas juntas, (1) y (2)
	D) Cada una por sí sola, (1) ó (2)
	E) Se requiere información adicional

EJERCICIOS

- Un alumno obtuvo las siguientes notas parciales en Matemática: 4,8; 2,5; 6,0; 3,9 y una quinta nota que no recuerda. Si su promedio fue 4,6, calcula la nota que falta.
- Dos alumnos obtuvieron el mismo promedio semestral de notas. ¿Significa que tuvieron las mismas notas? Justifica numéricamente tu respuesta.
- 3. En una oficina, el jefe gana \$ 540.000 y tres empleados ganan \$ 100.000, \$ 155.000 y \$ 165.000, respectivamente. La media aritmética de los sueldos, ¿es un valor representativo de esos sueldos?
- 4. En una muestra de control se midieron 10 clavos de una bolsa, con los siguientes resultados: 5 de 2,00"; 3 de 1,99" y 2 de 2,05".
 Calcula la longitud media de la muestra.

EJERCICIOS

 El análisis de las notas de un curso señala que en ambos trimestres el promedio en matemática es 5,1, al término del primer y segundo trimestre, la nota máxima es 7,0 y la mínima es 3,2. Sin embargo, los alumnos tienen la sensación de mejores resultados en un trimestre que en otro.

Primer trimestre

7,0	5,6	4,3	7,0	5,4	4,3
6,9	5,4	4,3	6,8	5,2	4,1
6,5	5,2	4,1	6,3	5,2	4,1
5,8	4,8	4,1	5,7	4,8	3,2
5,6	4,8	3,2	5,6	4,5	3,2

Segundo trimestre

7,0	5,3	5,0	6,4	5,2	4,9
6,1	5,2	4,7	6,0	5,2	4,1
5,7	5,1	4,7	5,5	5,0	4,6
5,4	5,0	4,5	5,3	5,0	4,5
5,3	5,0	3,2	5,3	5,0	3,2

Responde las siguientes preguntas:

- a. ¿Cuánto es el coeficiente del rango en cada trimestre? ¿Qué trimestre tiene un coeficiente de rango menor?
- b. Según el coeficiente del rango, ¿qué trimestre presenta calificaciones más dispersas, en relación al promedio?
- c. ¿Cuánto es el valor del coeficiente de la desviación media en cada trimestre?
- d. Según la situación, ¿cómo interpretarías el coeficiente de desviación media? ¿Corrobora la "sensación" de los estudiantes?
- e. Calcula el coeficiente de la desviación estándar para cada trimestre.
- f. ¿Qué trimestre presenta calificaciones más homogéneas?
- g. ¿Cómo interpretarías el valor del coeficiente de desviación estándar?
- h. ¿Cuál fue el mejor trimestre?, ¿por qué lo consideras mejor?
- Construye la gráfica que mejor represente la situación.

- Un grupo de alumnos obtuvo las siguientes marcas, en salto con garrocha, expresadas en metros: 2,50; 2,80; 2,60; 3,00; 2,90.
 - a. Comprueba que la suma de las desviaciones de estos datos respecto a x̄ es 0.
 - b. Calcula la desviación media de los datos.
- La tabla de distribución de frecuencias muestra la puntuación obtenida por 1.800 alumnos de 5° a 8° Básico en un cuestionario de cultura general.

Puntaje	Frecuencia
0 – 2	21
3 – 5	50
6 – 8	110
9 – 11	241
12 - 14	423
15 – 17	457
18 – 20	275
21 – 23	134
24 – 26	66
27 – 29	23

- a. Calcula la desviación estándar de la distribución
- b. ¿A qué cantidad de puntos corresponden los valores de x̄ + s y x̄ - s?
- 4. En una misma prueba de Matemática dos cursos A y B, obtuvieron resultados cuyos datos estadísticos son los siguientes:

	Curso A	Curso B
x	5,3	5,4
s	0,7	0,4

De acuerdo con estos datos:

- a. Un alumno del curso A obtuvo un 6,7 y uno del curso B un 6,6. ¿A cuál de los alumnos le fue mejor en la prueba, en relación a su curso?
- b. Justifica la respuesta anterior y compártela con un compañero.