B.TECH / CSE /3RD SEM/ ECEN 2104/2017 DIGITAL LOGIC & COMPUTER ORGANIZATION (ECEN 2104)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

Choose the correct alternative for the following:						10 × 1 = 10		
(i)	Thecomputer system. (a) BCD (b) De	format is	_	used xadecir	to store	data (d) 0		
(ii)	NAND and NOR logic (a) Main Gates (c) Principal Gates	gates are als		` '	versal Gat d Gates.	es		
(iii)	The Boolean expressi the (a) Distributive law (c) law of Identity	on X * (Y + Z		(b) Asso	'Z) holds ociative la of compli	w	-	
(iv)	With respect to the ir represents a correspo (a) Voltage Line (c) Maxterm	-			nber Tagg	•		
(v)	If a function is shown its compliments F' is g (a) F'= \sum (1,2,4,5,8,9,1 (c) F'= \sum (0,3,6,7,12,1	given by. .0,11,15), ((b) F'=∑	(1,2,4,5	,8,9,10,11	,15)	then	
(vi)	A Decoder with an ena (a) Encoder (c) Comparator	ble input rej	•	(b) Mul	onal tiplexer ıultiplexe	r.		

1

B.TECH /CSE /3RD SEM/ ECEN 2104/2017

- (vii) $(x^*y)^*z=x^*(y^*z)$ is the
 - (a) Commutative property

(b) Inverse property

(c) Identity element

- (d) Associative property.
- (viii) The binary equivalent of the Gray code 11100 is
 - (a) 10111
- (b) 00111
- (c) 01011
- (d) 10101
- (ix) Between input and output lines the function of tristate buffer is to
 - (a) connect or isolate

(b) find one 's compliment

(c) compliment the logic

- (d) find two's compliment.
- (x) During transfer of data between the processor and memory we use
 - (a) Cache
- (b) TLB
- (c) Buffers
- (d) Registers.

Group - B

- 2. (a) The quadratic equation $x^2 11x + 22 = 0$ has solutions x = 3 and x = 6. Find the base of the numbers.
 - (b) Simplify T(x,y,z) = (x + y)(x + yz) + x'y' + x'z'
 - (c) Given AB' + A'B = C show that AC' + A'C = B.
- 4 + 4 + 4 = 12
- 3. (a) Determine the canonical sum-of-product representations of the function: f(x,y,z) = z + (x' + y)(x + y').
 - (b) The main stairway in a block of fiats has three switches for controlling the lights. Switch A is located at the top of the stairs, switch B is located halfway up the stairs and switch C is positioned at the bottom of the stairs. Design a logic network to control the lights on the staircase.
 - (c) Prove A XOR B = A' XOR B'.

4 + 5 + 3 = 12

Group - C

- 4. (a) Design a single bit full adder using a Decoder and OR gates.
 - (b) Determine the function $f(A,B,C,D) = \sum (0, 1, 3, 4, 8, 9, 15)$ using a 8 to 1 Mux.
- (c) Use Booth's Algorithm to Multiply $(-5) \times (6)$ and obtain result.

4 + 4 + 5 = 12

1.

B.TECH /CSE /3RD SEM/ ECEN 2104/2017

- 5. (a) Design a 4 bit Adder Subtractor circuit using logic gates.
 - (b) A 8 to 1 MUX is used to implement a function F(A,B,C,D). It has inputs A, B, C connected to selection lines S2, S1, and S0. The data inputs I0 to I7 are as follows. I0 = I1 = I5 = D, I2 = D', I6 = I7=1, I3=I4=0. Determine the function F(A,B,C,D).
 - (c) Design a 4 bit BCD adder and discuss why you add 6.

4 + 4 + 4 = 12

Group - D

- 6. (a) Design a RS Flip Flop with NAND gates, and state with truth tables what is the prohibited state. Mention how to overcome it. What is a race condition in J K Flip Flop? How do you overcome it?
 - (b) Design an synchronous counter using J-K flip flops, which shall count from 000, 010, 011,101,110 and back to 000 state.

(2+1+2+1)+6=12

- 7. (a) (i) Explain the basic concepts of a Finite State machine.
 - (ii) Distinguish between Mealy and Moore machines
 - (b) (i) Design a BCD counter with JK flip-flops.
 - (ii) Distinguish between a register and a latch.

(3+3)+(3+3)=12

Group - E

- 8. (a) Classify the three categories of digital circuits using MOSFET. What is an active load?
 - (b) Describe working operation of NMOS inverter with circuit diagram and waveform.
 - (c) Describe a two input NOR gate using N-type MOSFET.

(3+1)+4+4=12

- 9. (a) (i) How many 128 × 8 RAM chips are needed to provide a memory capacity of 2048 bytes?
 - (ii) Distinguish between SRAM and DRAM.
 - (b) A combinational circuit is defined by the functions:

 $F1(A,B,C) = \sum (3,5,6,7)$

 $F2(A,B,C) = \sum_{i=1}^{n} (0,2,4,7)$

Implement the circuit with a PLA having three inputs, four product terms, and two outputs.

(4+2)+6=12