

GEANT4 SIMULATION OF IRRADIATION FACILITIES AND NEUTRON SOURCES AT UNIVERSITY OF UTAH TRIGA FOR **NUCLEAR FORENSICS AND** DETECTION

ANDREW VOYLES

University of Utah Nuclear Engineering Program: **Advanced Radiation Simulation Laboratory**

Presented at 2nd National Conference in Advancing Tools and Solutions for Nuclear Material Detection Salt Lake City, UT, 2 May 2011

Andrew Voyles

Major: Chemical Engineering Minors: Nuclear Engineering, Chemistry

As a young child, my only wish for my future was to someday be in a history textbook. Now, I have the opportunity to be able to actually succeed in this effort:

I want to be able to improve the world through nuclear technologies, and my current dream is to be able to help develop sustainable fusion as a viable power source for the future.

Goals for Project:

- Model UUTR irradiation facilities, using GEANT4 simulation toolkit
- Calculate dose from irradiated samples at various distances
- Provide method of benchmarking experiments at irradiation facilities
- Simulate shielding of neutron source
 - THEREFORE, create nuclear signatures for nuclear forensics involving UUTR

GEANT4 (GEometry ANd Tracking)

- "Toolkit for the simulation of the passage of particles through matter" (http://geant4.cern.ch)
 - Developed at CERN for studying particle interactions
- Utilizes Monte Carlo methods for simulations
- Freely distributed open source code
- Written in C++
 - All Object-Oriented Programming concepts are utilizable
- Application areas include:
 - High energy physics
 - Nuclear experiments
 - Nuclear medicine studies
 - Particle accelerator studies
 - Space physics studies

Neutron Activation Analysis

- Nondestructive method to find
 - Sample composition and concentrations
- Sample is exposed to neutrons
 - Becomes activated
 - Isotopes decay to become more stable
 - Decay emission paths used to determine the composition of the sample

Neutron Activation at UNEP

University of Utah TRIGA

MCNP5 & GEANT4 Synergism Muclear Engineering THE UNIVERSITY OF U for TRIGA Central Irradiator Model

values for TRIGA

MCNP5 to GEANT4 Scaling of Flux

- In GEANT4, a homogeneous flux is simulated by selecting massive number of particles
- MCNP5 simulation of irradiator used to calculate flux per source particle
 - Central facility → 1.07745 * 10⁻³ neutrons / cm² * sec per particle
 - Dividing known flux for irradiator by flux per particle yields number of particles necessary for GEANT4 modeling

TRIGA Central Irradiator GENAT4 Model

Isometric view, 1000 neutrons

University of Utah TRIGA

TRIGA Thermal Irradiator Facility - GEANT4 Model

Neutron Energy Distributions in GEANT4 Models for CI and TI in TRIGA

Watt model of thermal fission neutron energy spectrum.

Source: Tatjana Jevremovic, "Nuclear Principles in Engineering"

GEANT4 Detectors: Scoring / Dose Deposition

- Using sensitive detectors (sensitive to only gammas) to calculate dose deposition at various distances from sample
- Set up concentric tube detectors at various distances from center of sample, to calculate dose at various distances

- Example detector array, for central irradiator model
 - Array is same for thermal model, other than geometry of the actual irradiation facility

Dose at Distance vs. Number of Source Neutrons (Thermal Irradiator)

Dose at Distance vs. Number of Source Neutrons (Central Irradiator)

Example Dose Results

- At 25cm from the irradiated sample, absorbed dose for 0.154 μs irradiation time of aluminum sample from thermal irradiator is 5.995 10⁻¹⁵ Gray.
- For a 2 hour irradiation time common for NAA, this equals a dose rate of $0.139 \,^{Sv}/_{hr} = 1.39 \cdot 10^4 \,^{mrem}/_{hr}$.
- At University of Utah TRIGA, Area Radiation Monitors SCRAM reactor for detection of > 10 mrem/hr dose rates
 - In this case, samples are suspended at half depth in reactor pool to cool until < 10 mrem/hr
 - For 1 $^{\rm mrem}/_{\rm hr}$ < dose rates < 10 $^{\rm mrem}/_{\rm hr}$, samples are cooled inside 4"-thick lead box until < 1 $^{\rm mrem}/_{\rm hr}$
 - Samples < 1 mrem/hr are deemed safe

University of Utah TRIGA

GEANT4 -

Shielding Modeling of a Pu-Be Neutron Source

Pu-Be Source

• Pu-Be neutron source at UNEP exhibits three different neutron flux values:

```
    6.700 - 10<sup>6</sup> neutrons / cm<sup>2</sup> * sec
    3.350 - 10<sup>6</sup> neutrons / cm<sup>2</sup> * sec
    1.675 - 10<sup>6</sup> neutrons / cm<sup>2</sup> * sec
```

• The simulation is performed for each of these flux values, and the resulting absorbed doses are reported.

Pu-Be Source (cont.)

 239 Pu → 235 U + α

²³⁹Pu α decay diagram, T_{1/2} = 24110 years
Source: http://atom.kaeri.re.kr/cgi-bin/decay?Pu-239%20A</sup>

Pu-Be Source (cont.)

- C-12 and Be-9 are stable isotopes, and produce no decay products.
 - Decay products from original Pu-Be source include all isotopes in U-235 decay chain, as well as neutrons and gammas.
- Both Plutonium and Beryllium, as well as many of the decay products are both chemically toxic (Beryllium and Plutonium when inhaled deposit in the lungs and cause severe respiratory inflammation and pneumonia-like symptoms due to exposure), and many can cause cancer.

9
Be + $\alpha \rightarrow ^{12}$ C + n + γ

Source: The (α, n) cross sections of Beryllium, Magnesium, and Aluminum, I. Halpern, Phys. Rev., Vol 76.2, 1949.

U-235 Decay Chain

Uranium²³⁵ Decay Chain (Actinium Series)

The 4n+2 chain of U235 is commonly called the "Actinium Series"

Nuclide	Element Name	Historic Name	Decay Mode	Half Life	MeV	Product of Decay
₉₂ U ²³⁵	Uranium - 235	Pitchblende, Actin Uranium	α	7.04 x 10 ⁸ yrs	4.67826	₉₀ Th ²³¹
₉₀ Th ²³¹	Thorium - 231	Uranium Y	β-	1.06331 d	0.39156	₉₁ Pa ²³¹
₉₁ Pa ²³¹	Protactinium - 231	Brevium	α	32,788 yrs	5.14987	89Ac ²²⁷
89Ac ²²⁷	Actinium - 227	Emanium	β ⁻ 98.62% α 1.38%	21.7865 yrs	0.044765 5.04219	90Th ²²⁷ 87Fr ²²³
₉₀ Th ²²⁷	Thorium - 227	Radioactinium	α	18.681 d	6.1466	88Ra ²²³
87Fr ²²³	Francium - 223	Eka-Caesium, Actinium-K	β ⁻ 99.994% α 0.006%	21.7 min	1.149171 5.56187	88Ra ²²³ 85At ²¹⁹
88Ra ²²³	Radium - 223	Actinium X	α	11.431 d	5.97899	86Rn ²¹⁹
85At ²¹⁹	Astatine - 219	Eka-lodine, Dakin	α 97% β⁻3%	0.933 min	6.3236 1.5663	83Bi ²¹⁵ 86Rn ²¹⁹
86Rn ²¹⁹	Radon - 219	Actinon	α	3.96 sec	6.94612	84Po ²¹⁵
83Bi ²¹⁵	Bismuth - 215		β	7.667 min	2.1888	84Po ²¹⁵
84Po ²¹⁵	Polonium - 215	Actinium A	α 99.99977% β*0.00023%	1.781 msec	7.52626 0.71484	82Pb ²¹¹ 85At ²¹⁵
85At ²¹⁵	Astatine - 215		α	100 µsec	8.17838	83Bi ²¹¹
82Pb ²¹¹	Lead - 211	Actinium B	β-	31.167 min	1.36697	83Bi ²¹¹
83Bi ²¹¹	Bismuth - 211	Actinium C	α 99.724% β* 0.276%	2.14 min	6.75033 0.57409	₈₁ TI ²⁰⁷ ₈₄ Po ²¹¹
₈₄ Po ²¹¹	Polonium - 211	Actinium C'	α	516 msec	7.59448	₈₂ Pb ²⁰⁷
81 TI ²⁰⁷	Thallium - 207	Actinium C"	β	4.767 min	1.41824	₈₂ Pb ²⁰⁷
82Pb ²⁰⁷	Lead - 207		-	Stable	-	_

Source:

http://www.periodictable.com/Isotopes/092.2 35/index.p.full.html

Simulation Geometry

HepRApp wireframe rendering of simulation geometry. Innermost shell (white) is paraffin shell, next outer shell (yellow) is lead shell, next outer shell (purple) is sensitive gamma and neutron detector

Neutron Energy Distributions

Used monoenergetic 3 MeV neutron source, as per project specifications

Pu-Be neutron energy spectrum
Source: New Neutron Source Algorithms In the ORIGEN-S Code,
http://ornl.gov/sci/scale/papers/RPSD2002_Origen_Sources.pdf

Results

- •Top-down view of experimental setup for 6.700 · 10⁶, with particle tracks. Red lines indicate negatively-charged particle trajectory, green lines indicate neutrally-charged particle trajectory, blue lines indicate positively-charged particle trajectory, yellow dots indicate the actual step points used by Geant4.
- •Note how vast majority of neutrons and gammas are contained within the paraffin shell, and nearly all within lead shell.

Results (cont.)

Results (cont.)

Neutron Flux ()	Thickness of Paraffin Shell (cm)	Thickness of Lead Shell (cm)	Absorbed dose at 30 cm ()
6.700 · 10 ⁶	15	15	0.00183
3.350 · 10 ⁶	15	15	0.00091
1.675 · 10 ⁶	15	15	0.00046

- •At University of Utah TRIGA, Area Radiation Monitors SCRAM reactor for detection of > 10 mrem/hr dose rates
 - •In this case, samples are suspended at half depth in reactor pool to cool until $< 10^{\text{mrem}}/_{\text{hr}}$
 - •For 1 mrem/_{hr} < dose rates < 10 mrem/_{hr}, samples are cooled inside 4"-thick lead box until < 1 mrem/_{hr}
 - •Samples < 1 mrem/hr are deemed safe

Future Work

- Expand the current model to include the fast neutron irradiation facility at Utah TRIGA facility.
- Benchmark simulation results against experimental results
 - Make this application suitable for export, to provide method of benchmarking experiments at irradiation facilities.
- Examine and assess assumptions and simplifications made in this first version of the simulation
 - Will make simulation as realistic and versatile as possible
 - I intend to accomplish this task this summer, and, ideally, get published when finished.
- Implement histograms of gamma energies, to deliver energy spectra of gamma energies
 - Create nuclear signatures for nuclear forensics