Discrete Mathematics

Tutorial sheet

Boolean Algebra

Question 1.

What is the output for each of the following logic circuits:

Question 2.

Write down the truth table for the output Q of the following circuit.

Question 3.

Simplify each Boolean expression to one of the following expressions: $0, 1, A, B, AB, A+B, \overline{AB}, \overline{A}+\overline{B}, \overline{A}B$ and $A\overline{B}$

- 1. $\overline{\overline{A} + \overline{B}}$
- 2. $A(A + \overline{A}) + B$
- 3. $(A+B)(\overline{A}+B)\overline{B}$

Question 4.

- 1. Use the laws of boolean algebra to simplify the boolean expression: $a + \overline{a}b = a + b$.
- 2. Use the truth table prove that $a + \overline{a}b = a + b$.

3. Use he results from 1 and 2 to find a simplified circuit for the following logic circuit:

Question 5.

1. What is the output of the following logical circuit:

2. Simplify the output form the circuit above and find a simpler circuit which has the same effect.

Question 6.

Use the truth table prove De Morgan's laws: $\overline{ab} = \overline{a} + \overline{b}$ and $\overline{a+b} = \overline{a}.\overline{b}$ Question 7.

Use the laws of boolean algebra to simplify the boolean expression:

$$\overline{ab}(\overline{a}+b)(\overline{b}+b)$$

Question 8.

Use the laws of boolean algebra to simplify the boolean expression:

$$\overline{a}(a+b) + (b+aa)(a+\overline{b})$$

Question 9.

Prove that in a boolean algebra $a^2 = a$. You are required to explain your answer by making a reference to a boolean algebra axioms (laws).

Question 10.

The following diagram shows a circuit with three inputs and two outputs, u and v

- 1. List the logic gates used in this circuit.
- 2. Describe each output u and v as a Boolean expression in terms of x, y and z.

Question 11.

Derive the Boolean expression for the following logic circuit shown below

Question 12.

1. Write down a boolean expression for the following input/output behaviour.

X	у	Z	u
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

2. Construct the corresponding circuit of the above expression using notgates, and-gates and or-gates only.

Question 13.

Given the following boolean expression $\overline{\overline{(x+y)}} + \overline{z}$.

- 1. Construct its corresponding circuit.
- 2. Use DeMorgan's laws to find a simpler form for this expression
- 3. Construct the circuit the simplified expression.

Question 14.

Simplify the following boolean expression using Karnaugh Map

$$\overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + ab\overline{c} + \overline{a}bc$$

Question 15.

Given the following boolean function

$$f(a,b,c,d) = \overline{a}\overline{b}cd + \overline{a}bcd + abcd + a\overline{b}cd + ab\overline{c}\overline{d} + ab\overline{c}d + abc\overline{c}$$

1. Fill in the missing value in the following Karnaugh map of f(a, b, c):

	<u> </u>					
ab cd	00	01	11	10		
00						
01						
11						
10						

2. Use K-map in (1) to find the minimum sum of products of f(a, b, c).

Question 16.

Given the following circuit:

- 1. Find the output of this circuit.
- 2. Use the laws of algebra to give a simpler expression for this output.
- 3. Use the result in 2 to draw a simpler circuit equivalent circuit.

Question 17.

A set of three sensors in a factory detects whether the pollution level it is outputting from an incinerator exceeds the safety limit. In which case the incinerator is shut down. An alarm A goes off if at least two the three sensors s_1, s_2 and s_3 detect a pollution level above the limit. Draw a logic circuit for the system showing the inputs s_1, s_2 and s_3 and the output A.

End of questions