1 Frame 38 – Derivatives and Integrals

1(b) Breaking the derivative into its complex components,

$$\begin{split} \frac{d}{dt}[w(t)]^2 &= \frac{d}{dt}[u(t) + iv(t)]^2 \\ &= 2[u(t) + iv(t)][u(t) + iv(t)]' \\ &= 2w(t)w'(t) \end{split}$$

2(a) Evaluating the integral,

$$\begin{split} \int_{1}^{2} \left(\frac{1}{t} - i\right)^{2} dt &= \int_{1}^{2} \frac{1}{t^{2}} - 1 - i\frac{2}{t} dt \\ &= -\frac{1}{t} - t - 2i \ln t \Big|_{1}^{2} \\ &= -(\frac{1}{2} - 1) - (2 - 1) - 2i(\ln 2 - 0) \\ &= -\frac{1}{2} - i \ln 4 \end{split}$$

2(b)

$$\begin{split} \int_0^{\pi/6} e^{i2t} &= \frac{1}{2i} e^{i2t} \Big|_0^{\pi/6} \\ &= \frac{1}{2i} (e^{i\pi/3} - 1) \\ &= \frac{1}{2i} \left(i \frac{\sqrt{3}}{2} - \frac{1}{2} \right) \\ &= \frac{\sqrt{3}}{4} + i \frac{1}{4} \end{split}$$

2(c) Converting this improper integral into a limit,

$$\int_0^\infty e^{-zt} = \lim_{L \to \infty} \int_0^L e^{-zt}$$

$$= \lim_{L \to \infty} -\frac{1}{z} e^{-zt} \Big|_0^L$$

$$= -\frac{1}{z} \lim_{L \to \infty} e^{-zL} - 1$$

$$= \frac{1}{z}$$

4 Evaluating the left-side integral,

$$\int_0^{\pi} e^{1+ix} dx = \frac{1}{1+i} e^{1+ix} \Big|_0^{\pi}$$

$$= \frac{1}{1+i} (e^{\pi+i\pi} - 1)$$

$$= \frac{1-i}{2} (-e^{\pi} - 1)$$

$$= -\frac{1}{2} (e^{\pi} + 1) + \frac{i}{2} (e^{\pi} + 1)$$

2 Frame 39 – Contours

2 First, the original parametrization can be written as

$$z(\theta) = 2e^{i\theta} = 2\cos\theta + 2i\sin\theta$$

If $\theta = \arctan \frac{y}{\sqrt{4-y^2}}$, then this becomes

$$z(y) = 2\cos\arctan\frac{y}{\sqrt{4-y^2}} + 2i\sin\arctan\frac{y}{\sqrt{4-y^2}}$$

Next, these terms can be simplified using basic geometry. The expression $\arctan \frac{y}{\sqrt{4-y^2}}$ represents a right-angled triangle with legs of lengths $\sqrt{4-y^2}$ and y, so the hypotenuse must have a length of 2. Then,

$$\cos\arctan\frac{y}{\sqrt{4-y^2}} = \frac{\sqrt{4-y^2}}{2}$$

$$\sin\arctan\frac{y}{\sqrt{4-y^2}} = \frac{y}{2}$$

so the arc is

$$z(y) = \sqrt{4 - y^2} + iy$$

6 (a) First, the function

$$z(t) = t + iy(t) = t + it^3 \sin(\pi/t)$$

intersects the real axis whenever y(t)=0. If t=1/n, then this expression becomes

$$y(1/n) = \frac{\sin\left(\frac{\pi}{1/n}\right)}{n^3} = \frac{\sin(n\pi)}{n^3} = 0$$

as predicted.

(b) An arc is smooth if the function z(t) is continuous and its derivative is piecewise continuous.

First, z(t) is continuous for $0 < x \le 1$ because x(t) = x and y(t) = y(x) are both continuous on this interval. To show continuity at t = 0, we must show that

$$\lim_{t \to 0+} y(t) = 0$$

However, the magnitude of y(t) must be in the range

$$0 \le \left| t^3 \sin\left(\frac{\pi}{t}\right) \right| \le t^3$$

and the left- and right-hand limits are

$$\lim_{t\to 0+} 0 = 0$$

$$\lim_{t \to 0+} 0 = 0$$
$$\lim_{t \to 0+} t^3 = 0$$

so, by the squeeze theorem, the original limit holds, and y(t) is continuous at t = 0.

Finally, the derivative of z(t) is

$$z'(t) = 1 + i \left[3t^2 \sin(\pi/t) - \pi t \cos(\pi/t) \right]$$

Using the same process as above, the limit as t goes to zero is

$$\lim_{t \to 0+} z'(t) = 1 + i0$$

How can I tell whether this is continuous? The derivative isn't defined at zero.

3 Frame 42 – Contour Integrals

1(a) The integrand on this circle is

$$f[z(\theta)] = \frac{2e^{i\theta} + 2}{2e^{i\theta}} = 1 + e^{-i\theta}$$

and the derivative of the contour is

$$z'(\theta) = 2ie^{i\theta}$$

so the first contour integral is

$$\int_C f(z)dz = \int_0^{\pi} (1 + e^{-i\theta})(2ie^{i\theta})d\theta$$
$$= 2i \int_0^{\pi} e^{i\theta} + 1d\theta$$
$$= 2i \left(\frac{e^{i\theta}}{i} + \theta\right)_0^{\pi}$$
$$= 2i \left(\frac{-2}{i} + \pi\right)$$
$$= -4 + 2\pi i$$

1(b) The integrand has not changed, so

$$\int_{C} f(z)dz = 2i\left(\frac{e^{i\theta}}{i} + \theta\right)_{\pi}^{2\pi}$$
$$= 4 + 2\pi i$$

1(c) The integral along the entire circle is just the sum of the two previous results:

$$\int_C f(z)dz = (-4 + 2\pi i) + (4 + 2\pi i)$$
$$= 4\pi i$$

2(a) The function is

$$f[z(\theta)] = 1 + e^{i\theta} - 1 = e^{i\theta}$$

and the contour's derivative is

$$z'(\theta) = ie^{i\theta}$$

so the integral is

$$\int_C f(z)dz = \int_{\pi}^{2\pi} e^{i\theta} \cdot ie^{i\theta}$$

$$= i \int_{\pi}^{2\pi} e^{2i\theta}$$

$$= i \frac{e^{2i\theta}}{2i} \Big|_{\pi}^{2\pi}$$

$$= \frac{e^{4i\pi} - e^{2i\pi}}{2}$$

$$= 0$$

2(b) Now, the function is

$$f[z(x)] = x - 1$$

and the path's derivative is

$$z'(x) = 1$$

so the integral is

$$\int_C f(z)dz = \int_0^2 x - 1dx = \frac{(x-1)^2}{2} \Big|_0^2 = \frac{1-1}{2} = 0$$

 ${f 3}$ Along the first edge, the integral is

$$\int_0^1 \pi e^{\pi x} dx = e^{\pi x} \Big|_0^1 = e^{\pi} - 1$$

Along the second edge, the integral is

$$e^{\pi} \int_0^1 i\pi e^{-i\pi y} dy = e^{\pi} \left(-\frac{\pi}{\pi} e^{-i\pi y} \right)_0^1 = 2e^{\pi}$$

On the third edge, the integral is

$$-\int_0^1 \pi e^{\pi x} \cdot (-1) dx = e^{\pi} - 1$$

Finally, on the fourth edge, the integral is

$$-\int_{0}^{1} i \cdot \pi e^{-i\pi y} dy = \left(e^{-i\pi y}\right)_{0}^{1} = -2$$

so the whole integral is

$$\int_C f(z)dz = 2(e^{\pi} - 1) + 2e^{\pi} - 2 = 4(e^{\pi} - 1)$$

4 If the path is $y = x^3$, then the direction is

$$z'(x) = 1 + iy'(x) = 1 + i3x^2$$

Then, the integral can be done in two parts. First, from x = -1 to 0,

$$\int_{-1}^{0} 1 \cdot (1 + i3x^2) dx = \left(x + ix^3\right)_{-1}^{0} = 1 + i$$

Then, from x = 0 to 1,

$$\int_0^1 4x^3 \cdot (1+i3x^2) dx = \int_0^1 4x^3 + i12x^5 dx = x^4 + i2x^6 \Big|_0^1 = 1 + 2i$$

so the total contour integral is

$$\int_C f(z)dz = 2 + 3i$$

5 If f(z) = 1, then

$$\int_{C} f(z)dz = \int_{a}^{b} 1 \cdot z'(t)dt = z(b) - z(a) = z_{2} - z_{1}$$

6 If $z = e^{i\theta}$, then the function f(z) is

$$f[z(\theta)] = (e^{i\theta})^{-1+i} = e^{-i\theta}e^{-\theta}$$

and the contour integral is

$$\int_C f(z)dz = \int_0^{2\pi} e^{-i\theta} e^{-\theta} \cdot ie^{i\theta} d\theta$$
$$= i \int_0^{2\pi} e^{-\theta} d\theta$$
$$= -ie^{-\theta} \Big|_0^{2\pi}$$
$$= i(1 - e^{-2\pi})$$

7 On this semicircle,

$$f[z(\theta)] = (e^{i\theta})^i = e^{-\theta}$$

SO

$$\int_{C} f(z)dz = \int_{0}^{\pi} e^{-\theta} \cdot ie^{i\theta}d\theta$$

$$= i \int_{0}^{\pi} e^{(-1+i)\theta}d\theta$$

$$= \frac{i}{-1+i} e^{(-1+i)\theta} \Big|_{0}^{\pi}$$

$$= \frac{i(-1-i)}{2} (-e^{-\pi} - 1)$$

$$= \frac{-1+i}{2} (e^{-\pi} + 1)$$