Definition 1. Polynomial Ring $\mathbb{R}[X]$ in x over the ring \mathbb{R} is defined as set of expressions, called polynomials in X, of the form

$$f(x) = a_0 + a_1 x^1 + \dots + a_m x^m$$

where a_0, a_1, \ldots, a_n , the coefficients of p(x) are elements of \mathbf{R} , and x, x^2 are symbols

Definition 2. Let F be a field. By the ring of polynomial in the indeterminate, x, written as $\mathbf{R}[X]$, we mean the set of all symbols $f(x) = a_0 + a_1 x^1 + \cdots + a_m x^m$, where n can be any nonnegative integer and where the coefficient $a_0, a_1 + \cdots + a_n$ are all in F. In order to make a ring out of $\mathbf{F}[X]$, we must be able to recognize when the two elements in it are equal, we must add and multiply element of $\mathbf{F}[X]$ so that the axiom defining the ring hold true for $\mathbf{F}[X]$.

Definition 3. If $f(x) = a_0 + a_1x^1 + \cdots + a_mx^m$ and $g(x) = b_0 + b_1x^1 + \cdots + b_mx^m$ are in $\mathbf{F}[X]$, then f(x) = g(x) if and only if for every integer $i \geq 0$, such as $a_i = b_i$

Definition 4. If $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$, then f(x) + g(x) is equal

$$\sum_{i=0}^{n} a_i x^i + \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{k} (a_i + b_j) x^k \quad \text{where } k = \max(n, m)$$

If f(x) or g(x) do not contain the term cx^t , then assume c=0, $k \ge t \ge 0$

Definition 5. If $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$, then f(x)g(x) is equal

$$\sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right)$$

The definition say nothing more than: multiply two polynomials by multiplying out two symbols formally, use the relation $x^i x^j = x^{i+j}$ and collect terms

Definition 6. The degree of nonzero polynomial is defined as the maximus power of a term with nonzero coefficients.

Definition 7. If f(x) and g(x) are nonzero polynomials in $\mathbf{F}[X]$, then

$$\deg(f(x)q(x)) = \deg(f(x)) + \deg(q(x))$$

Proof. let $f(x) = \sum_{i=0}^n a_i x^i$, $a_n \neq 0$ and $g(x) = \sum_{j=0}^m b_j x^j$, $b_m \neq 0$ we have

$$\deg(f(x)) = n$$
$$\deg(g(x)) = m$$

let $\alpha \in \{0 \dots n\}, \alpha \neq n \text{ and } \beta \in \{0 \dots m\}, \beta \neq m$

$$\therefore \alpha < n \text{ and } \beta < m$$

$$\implies \alpha + \beta < n + m$$

From the defintion of multiplication of two polynomials

$$f(x)g(x) = \sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right)$$

We need to show $a_n b_m \neq 0$, from the defintion

$$a_n \neq 0$$

 $b_m \neq 0$
 $\implies a_n b_m \neq 0 \quad \because F \text{ is a integral domain}$
 $\implies \text{the maximus power of term is } a_n b_m x^{n+m}$
 $\implies \deg(f(x)g(x)) = n + m = \deg(f(x)) + \deg(g(x))$

Proof. By induction

Definition 8. If f(x) and g(x) are nonzero element in $\mathbf{F}[X]$, then $\deg(f(x)) \leq \deg(f(x)g(x))$

Proof. from above proof, we have

$$\begin{split} \deg(f(x)) + \deg(g(x)) &= \deg(f(x)g(x)) \\ &\deg(f(x)) = \deg(f(x)g(x)) - \deg(g(x)) \\ &\because \deg(g(x)) \geq 0 \\ &\therefore \deg(f(x)) \leq \deg(f(x)g(x)) \end{split}$$

Lemma 1. Given F is integral domain, prove $f(x)g(x) = 0 \Leftrightarrow f(x) = 0$ or g(x) = 0

Proof. Proof by contradition

Assume f(x) and g(x) are nonzero polynomials

From the defintion of multiplication of two polynomials

$$f(x)g(x) = \sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right) \quad a_n \neq 0, b_m \neq 0$$

The leading term is $a_n b_m x^{n+m}$

 $\implies a_n b_m \neq 0$: F is integral domain

 $\implies f(x)g(x) \neq 0$, therefore, that contradits our assumtion

$$\implies f(x) = 0 \text{ or } g(x) = 0$$

Proof. Proof by the degree of polynomial, need to prove F is integral domain for the formula

$$\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$$
$$\deg(f(x)g(x)) = \deg(0) = -\infty$$
$$\therefore \deg(f(x)) = -\infty \text{ or } \deg(g(x)) = -\infty$$
$$\implies f(x) = 0 \text{ or } g(x) = 0$$

Lemma 2. Division Algorithm

Let $f(x) = a_0 + a_1 x^1 + \cdots + a_m x^m$, there exists g(x) and r(x) such that

$$f(x) = h(x)g(x) + r(x)$$
 where $r(x) = 0$ or $\deg(r(x)) < \deg(g(x)), a_m \neq 0, b_n \neq 0$

Proof. If $\deg(f(x)) < \deg(g(x))$, then we have

$$f(x) = 0 \cdot g(x) + r(x)$$
$$\therefore f(x) = r(x)$$
$$\therefore \deg(r(x)) < \deg(g(x))$$

If $\deg(f(x)) \ge \deg(g(x))$ Let

$$f_{1}(x) = f(x) - \frac{a_{m}x^{m}}{b_{n}x^{n}}g(x)$$

$$f_{1}(x) = f(x) - \frac{a_{m}x^{m}}{b_{n}x^{n}}(b_{0} + b_{1}x + \dots + b_{n-1}x^{n-1} + b_{n}x^{n})$$

$$f_{1}(x) = f(x) - \frac{a_{m}x^{m}}{b_{n}x^{n}}(b_{0} + b_{1}x + \dots + b_{n-1}x^{n-1}) - a_{m}x^{m}$$

$$\implies \deg(f_{1}(x)) \leq m - 1$$

$$(1)$$

Use induction on the degree of $f_1(x)$, e.g. m-1, and assume the follow hold

$$f_1(x) = h(x)g(x) + r(x) \text{ such as } r(x) = 0 \text{ or } \deg(r(x)) < \deg(g(x))$$

$$f(x) - \frac{a_m x^m}{b_n x^n} g(x) = h(x)g(x) + r(x) \quad \text{from } (1), (2)$$

$$f(x) = (h(x) + \frac{a_m x^m}{b_n x^n})g(x) + r(x)$$

$$\implies r(x) = 0 \text{ or } \deg(r(x)) < \deg(g(x)) \text{ for } \deg(f(x)) = m$$

$$\therefore \text{ The Division Algorithm is true}$$

Definition 9. Principal Idea is the ideal that generated by single element from \mathbf{R} . Let $a \in \mathbf{I}$ and $r \in \mathbf{R}$, if ar or $ra \in \mathbf{I}$, then ar or ra is principal idea. For example, $2\mathbf{Z}$ is principal ideal of \mathbf{Z}

3

Theorem 1. Fermat Little Theorem: $a, p \in \mathbb{Z}$, p is prime and gcd(a, p) = 1

$$a^p \equiv a \mod p$$

Proof. 1. Use induction and Binomial Theorem:

base case: a = 1

 $1^p \equiv 1 \mod p$ Obviously, it is true

try to show a=2

$$2^p \equiv 2 \mod p$$

from Binomial Theorem

$$(1+1)^p = \sum_{k=0}^p \binom{p}{k} = \binom{p}{0} + \binom{p}{1} + \dots \binom{p}{p-1} + \binom{p}{p}$$

$$(1+1)^p \mod p \equiv \binom{p}{0} + \binom{p}{1} + \dots \binom{p}{p-1} + \binom{p}{p} \mod p$$

$$(1+1)^p \mod p \equiv \binom{p}{0} + \binom{p}{p} \mod p$$

$$2^p \mod p \equiv 2 \mod p$$

$$2^p \equiv 2 \mod p$$

$$\therefore \text{ it hold for } a = 2$$

let assume:

$$a^p \equiv a \mod p \tag{1}$$

$$(a+1)^p = \sum_{k=0}^p \binom{p}{k} a^k \quad \text{from Binomial Theorem}$$

$$(a+1)^p = \sum_{k=0}^p \frac{p!}{(p-k)!k!} a^k$$

$$(a+1)^p = a^0 + \frac{p!}{(p-1)!1!} a^1 + \dots + \frac{p!}{(p-(p-1))!(p-1)!} a^{p-1} + a^p$$

$$\gcd(p,(p-k)!) = 1 \text{ and } \gcd(p,k!) = 1 \quad \text{if } 1 \leq k \leq p-1$$

$$(a+1)^p \mod p \equiv a^0 + \frac{p!}{(p-1)!1!} a^1 + \dots + \frac{p!}{(p-(p-1))!(p-1)!} a^{p-1} + a^p \mod p$$

$$(a+1)^p \mod p \equiv a^0 + a^p \mod p \quad \text{(All other terms contain the factor of } p)$$

$$(a+1)^p \mod p \equiv 1 + a^p \mod p$$

$$(a+1)^p \equiv 1 + a^p \mod p$$

Proof. let $S = \{1, 2, \dots, p-1\}$ then $a \cdot S = \{a, a2, \dots, a(p-1)\}$ In $a \cdot S$, none of them is divisible by $p \quad \because \gcd(a, p) = 1$ It is sufficient to show all of them in $a \cdot S$ are distinct.

 $\text{Assume } ai \equiv aj \mod p \text{ where } i \neq j, \quad 1 \leq i,j \leq p-1$

But $i \equiv j \mod p$ cancel both side by aThat contracts our assumption $i \neq j$ \implies the permuation of $S \equiv a \cdot S \mod p$ $\implies a \cdot S \mod p \equiv S \mod p$ $\implies a^{p-1} 1 \cdot 2 \cdot \dots (p-1) \mod p \equiv 1 \cdot 2 \cdot \dots p-1 \mod p$ $\implies a^{p-1} \equiv 1 \mod p$ $\implies a^p \equiv a \mod p$

Note 1. let $S = \{1, 2, 3, 4\}, a = 2, p = 5$ $a \cdot S = \{2, 4, 6, 8\} \mod 5$ $a \cdot S = \{2, 4, 1, 3\} \mod 5$ $a \cdot S$ is just a different arrange of $\{1, 2, 3, 4\}$ as long as $\gcd(a, p) = 1$