ML Checklist: Getting Started

- What is the objective in business terms?
- Understand how your solution will be used
- Are there current solutions/workarounds?
- What categorization? (supervised/unsupervised, etc)
- How will performance be measured?
- Does the performance measure match the business objective?
- What's the minimum acceptable performance?
- Any reuse possible?
- Is human expertise available?
- What would be the manual solution?
- Are there any assumptions?
- Document! Document! Document!

Selecting Performance Measures

• How will you measure "how good" your model is performing?

Confution Matrix

N=300	Predicted: No	Predicted: Yes	
Actual: No	TN=140	FP=15	155
Actual: Yes	FN=100	TP=45	145
	240	60	

Common Regression Measures

RMSE: Room Mean Squared Error

$$ullet$$
 Most commonly used $RMSE = \sqrt{rac{\displaystyle\sum_{i=i}^{N}(Predicted_i - Actual_i)^2}{N}}$

MAE: Mean Absolute Error

ullet Preferred when many outliers $MAE=rac{1}{n}\sum_{i=1}^n |X_i-X|$

R^2: R-squared

• Also called coefficient of determination Division of the Sum of Square Regression = $\sum (y'-\bar{y'})^2$ and Sum of Square Total = $\sum (y-\bar{y})^2$ where the Sum of Square Regression of made up of $1-SSE \div SST = 1-\frac{\sum (y-\bar{y'})^2}{SST}$

Summar of Common Measures

Acronym	Full Name	Residual Operation	Robust to Outliers
MAE	Mean Absolute Error	Absolute Value	Yes
MSE	Mean Squared Error	Square	No
RMSE	Root Mean Squared Error	Square	No
MAPE	Mean Absolute Percentage Error	Absolute Value	Yes
MPE	Mean Percentage Error	N/A	Yes

Check and Validate All Your Assumptions

Module 2.2 Assignment

Using the data for the California Census, answer the following questions

1. What are the attributes for each district?

```
In []: # package imports
   import pandas as pd
   import matplotlib.pyplot as plt
   import plotly.express as px

In []: # upload the data
   df_cal_cens = pd.read_csv('housing.csv')
   df_cal_cens.head()
```

Out[]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
	0	-122.23	37.88	41.0	880.0	129.0	322.0
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
	2	-122.24	37.85	52.0	1467.0	190.0	496.0
	3	-122.25	37.85	52.0	1274.0	235.0	558.0
	4	-122.25	37.85	52.0	1627.0	280.0	565.0

Out[]:		longitude	latitude	housing_median_age	total_rooms	total_bedro
	count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000
	mean	-119.569704	35.631861	28.639486	2635.763081	537.870
	std	2.003532	2.135952	12.585558	2181.615252	421.38!
	min	-124.350000	32.540000	1.000000	2.000000	1.000
	25%	-121.800000	33.930000	18.000000	1447.750000	296.000
	50%	-118.490000	34.260000	29.000000	2127.000000	435.000
	75 %	-118.010000	37.710000	37.000000	3148.000000	647.000
	max	-114.310000	41.950000	52.000000	39320.000000	6445.000

```
In [ ]: # determine unique values of the categorical features
    print(f"Attributes for each district:\n{df_cal_cens['ocean_proximity'].uniquent
```

Attributes for each district:
['NEAR BAY' '<1H OCEAN' 'INLAND' 'NEAR OCEAN' 'ISLAND']

2. What attributes are confusing to you?

The most confusing attributes to are the difference between the "<1H OCEAN" and "NEAR OCEAN". I would assume that NEAR OCEAN would mean >1H from the ocean but would most likely have to plot on a map chart to understand that information more.

In []:

3. Without graphing tools, what observations can you make about the data?

After reviewing the below information we can point out some key observations

1. There are only 5 ISLAND homes and the largest count attribute is <1H OCEAN at 9,136 observations

- 2. ISLAND homes have the greatest median age with INLAND homes having the lowest median age
- 3. ISLAND homes have the lowest number of total rooms and total bedrooms compared to the other attributes
- 4. ISLAND has the lowest number of households (unsure what this feature means)
- 5. ISLAND has the lowest median income but also has the lowest std of median income compared to the other homes
- 6. INLAND has the lowest median house value

```
In []: # without graphing tools, we can look at the summary stats for each attribut
sum_stats_dict = {}
for val in df_cal_cens['ocean_proximity'].unique():
    # print(f"summary stats for {val}\n{df_cal_cens[df_cal_cens['ocean_proxi
sum_stats_dict[val] = df_cal_cens[df_cal_cens['ocean_proximity'] == val]
```

In []: sum_stats_dict['NEAR BAY']

Out[]:

Out[]:

latitude housing_median_age total_rooms total_bedroom longitude count 2290.000000 2290.000000 2290.000000 2290.000000 2270.00000 mean -122.260694 37.801057 37.730131 2493.589520 514.18281 std 0.147004 0.185434 13.070385 1830.817022 367.88760 min -122.590000 37.350000 2.000000 8.000000 1.00000 25% -122.410000 37.730000 29.000000 1431.250000 289.00000 50% -122.250000 37.790000 39.000000 2083.000000 423.00000 75% -122.140000 37.907500 52.000000 3029.750000 628.75000 18634.000000 max -122.010000 38.340000 52.000000 3226.00000

In []: sum_stats_dict['<1H OCEAN']</pre>

	longitude	latitude	housing_median_age	total_rooms	total_bedroom
coun	t 9136.000000	9136.000000	9136.000000	9136.000000	9034.00000
mea	n -118.847766	34.560577	29.279225	2628.343586	546.53918
st	1.588888	1.467127	11.644453	2160.463696	427.91141
mi	n -124.140000	32.610000	2.000000	11.000000	5.00000
25%	6 -118.500000	33.860000	20.000000	1464.000000	303.00000
50%	6 -118.275000	34.030000	30.000000	2108.000000	438.00000
75%	6 -118.000000	34.220000	37.000000	3141.000000	652.000000
ma	x -116.620000	41.880000	52.000000	37937.000000	6445.00000

Out[]:

Out[

Out[]:

In	[]:	sum_	_stats_	_dict	'NEAR	OCEAN']
----	---	----	------	---------	-------	-------	--------	---

		longitude	latitude	housing_median_age	total_rooms	total_bedroon
(count	2658.000000	2658.000000	2658.000000	2658.000000	2628.00000
I	mean	-119.332555	34.738439	29.347254	2583.700903	538.61567
	std	2.327307	2.275386	11.840371	1990.724760	376.32004
	min	-124.350000	32.540000	2.000000	15.000000	3.00000
	25%	-122.020000	32.780000	20.000000	1505.000000	313.00000
	50%	-118.260000	33.790000	29.000000	2195.000000	464.00000
	75%	-117.182500	36.980000	37.000000	3109.000000	666.00000
	max	-116.970000	41.950000	52.000000	30405.000000	4585.00000

In []: sum_stats_dict['ISLAND']

]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms
	count	5.000000	5.000000	5.000000	5.000000	5.000000
	mean	-118.354000	33.358000	42.400000	1574.600000	420.400000
	std	0.070569	0.040866	13.164346	707.545264	169.320111
	min	-118.480000	33.330000	27.000000	716.000000	214.000000
	25%	-118.330000	33.340000	29.000000	996.000000	264.000000
	50%	-118.320000	33.340000	52.000000	1675.000000	512.000000
	75 %	-118.320000	33.350000	52.000000	2127.000000	521.000000
	max	-118.320000	33.430000	52.000000	2359.000000	591.000000

In []: sum_stats_dict['INLAND']

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms
count	6551.00000	6551.000000	6551.000000	6551.000000	6496.000000
mean	-119.73299	36.731829	24.271867	2717.742787	533.881619
std	1.90095	2.116073	12.018020	2385.831111	446.117778
min	-123.73000	32.640000	1.000000	2.000000	2.000000
25%	-121.35000	34.180000	15.000000	1404.000000	282.000000
50%	-120.00000	36.970000	23.000000	2131.000000	423.000000
75 %	-117.84000	38.550000	33.000000	3216.000000	636.000000
max	-114.31000	41.950000	52.000000	39320.000000	6210.000000