Получение и измерение Вакуума

 $\mathsf{M}.\ \mathsf{A}$ ношин 1 Д. Шашков 1

МФТИ, Февраль 2023

Цель работы

Цель работы - Получение и измерение параметров высокого вакуума

В работе используются: Вакуумная установка с манометрами: масляным, термопарным, ионизационным.

Установка

Рис.: 1. Полная фотография установки

Изначально все краны открыты, в установке находится атмосферный воздух. Далее закрываются краны $\bf 5$ и $\bf 6$ и включается форвакуумный насос, объём запертого в перемычке между ними воздуха $V_1=50$ см 3

По достижении $p_{c0}\approx 10^{-2}$ мм.рт.столба закрываем **2** и **4** краны, форвакуумный насос работает. Манометр уже готов к работе, в его правом колене вакуум.

Далее закрывается 3 кран, отделяющий форвакуумную часть от высоковакуумного баллона. Масляный манометр показывает высоты (см.масл.столб)

h _{up}	h _{down}
39.9	12.9

Что дает давление: $p_1=27$ см.масл.столба =17.36 мм.рт.столба Откуда объем форвакуумной части ($T=T_{room}$) $V_f=V_0 rac{p_0}{p_1}=3.1$ л

Далее открывается высоковакуумный баллон, и манометр показывает

h _{up}	h _{down}
35.3	18.3

Откуда давление в системе: $p_2=
ho g(h_1-h_2)=17$ см.масл.столб И объем баллона $V_h=V_f(rac{
ho 1}{
ho 2}-1)=1.82$ л

Ход работы: создание высокого вакуума

После измерения объёмов открываем все краны, откачиваем воздухю Проводим измерение давления в высоковакуумной и форвакуумной частях при помощи термопарных манометров.

Ход работы: создание высокого вакуума

При достижении давления p_{c0} закрывается кран **6**, высоковакуумный баллон остаеться связаным с форвакуумной частью только включенным масляным насосом.

Ход работы: создание высокого вакуума

Когда давление в высоковакуумном баллоне становится ниже $p_{c1}=1.2\cdot 10^{-4}$ мм.рт.столба происходит инициация ионизационного манометра. Можно приступать к измерению скоростей откачки

Измерение скорости откачки газа

Основное уравнение откачки газа из высоковакуумного баллона:

$$-V_h dp = (pW - Q_v - Q_c)dt$$

при достижении p_{lim} $\frac{dp}{dt}=0$, тогда

$$p_{lim}W = Q_v + Q_c$$

проинтегрировав первое выражение получим

$$p - p_{lim} = p_0 - p_{lim} \cdot exp(-\frac{W}{V_h}t)$$

Графики откачки

Измеряем p Открыва- $_{7}$ ем кран и с помощью ионизационного мано- $_{6}$ метра получаем зави- $_{94}$ симость p(t). Давление $_{94}$ убывает по экспоненци- $_{94}$ альному закону:

$$p = p_0 \exp(-\frac{W}{V_h}t),$$

откуда
$$W=-k_1V_h$$

Рис.: Чистые данные

График откачки - Логарифм

 $k_1 = -0.013 \Rightarrow W = 4 \cdot 10^{-5} \text{ n/c}$

Рис.: Логарифм + МНК

Графики откачки

Снова закрываем кран 3 и получаем зависимость давления от времени (p от t) для истечения через микротечи, здесь насос не возращает воздух в систему, поэтому $Q_{\rm V}=0$ откуда:

$$V_h dp = Q_c dt$$

 $Q_c = 1.12 \cdot 10^{-4}$ k_2 - коэфф. наклона $k_2 = 0.039 \Rightarrow Q_v = p_{lim} \cdot W - Q_c = 3.4 \cdot 10^{-4}$

Рис.: Чистые данные

Вывод:

Вывод: В ходе работы был получены высокий вакуум (через 3 стадии), расчитаны объемы частей насоса:

$$V_f = 1.82 \cdot 10^{-4}$$
 и $V_f = 3.1$ л

и скорости откачки:

$$Q_c = 1.12 \cdot 10^{-4}$$
 и $Q_v = 3.4 \cdot 10^{-4}$ мВт

Исходники:

- Github с обработкой данных и .tex презентацией
- Снятые данные

Приложение:

