FaceNet: A Unified Embedding for Face

Recognition and Clustering

(Florian Schroff, Dmitry Kalenichenko, James Philbin, 2015)

Background - Metric Learning

Image space

Geometric distance
≠ Semantic distance

pixel by pixel 비교 동일 인물이면 distance가 가까워야함 but, 배경, 옷등에 의해 달라진다

Abstract & Introduction

Related Work - based model

- Visualizing and understandingconvolutional networks

Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus Dept. of Computer Science, New York University, USA, 2014

Related Work - based model - Inception model - Going deeper with convolutions

Going deeper with convolutions, Szegedy, Dept of Computer Vision and Pattern Recognition, Cornell University, 2014

Method - Triplet Loss

Method - Triplet Loss

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2$$

Loss =
$$\sum_{i}^{N} \left[\|f(x_{i}^{a}) - f(x_{i}^{p})\|_{2}^{2} - \|f(x_{i}^{a}) - f(x_{i}^{n})\|_{2}^{2} + \alpha \right]$$

Method - Triplet Selection

$$rgmax_{x_i^p}\|f(x_i^a)-f(x_i^p)\|_2^2$$
 Hard positive $rgmin_{x_i^n}\|f(x_i^a)-f(x_i^n)\|_2^2$ Hard negative

Method - Deep Convolutional Networks - NN1

layer	size-in	size-out	kernel	param	FLPS
conv1	$220\times220\times3$	$110{\times}110{\times}64$	$7 \times 7 \times 3, 2$	9K	115M
pool1	$110{\times}110{\times}64$	$55 \times 55 \times 64$	$3\times3\times64, 2$	0	
rnorm1	$55 \times 55 \times 64$	$55 \times 55 \times 64$		0	
conv2a	$55 \times 55 \times 64$	$55 \times 55 \times 64$	$1 \times 1 \times 64, 1$	4K	13M
conv2	$55 \times 55 \times 64$	$55 \times 55 \times 192$	$3\times3\times64,1$	111K	335M
rnorm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$		0	
pool2	$55 \times 55 \times 192$	$28 \times 28 \times 192$	$3\times3\times192, 2$	0	
conv3a	$28 \times 28 \times 192$	$28 \times 28 \times 192$	$1 \times 1 \times 192, 1$	37K	29M
conv3	$28 \times 28 \times 192$	$28 \times 28 \times 384$	$3\times3\times192,1$	664K	521M
pool3	$28 \times 28 \times 384$	$14 \times 14 \times 384$	$3\times3\times384, 2$	0	
conv4a	$14 \times 14 \times 384$	$14 \times 14 \times 384$	$1 \times 1 \times 384, 1$	148K	29M
conv4	$14{\times}14{\times}384$	$14{\times}14{\times}256$	$3 \times 3 \times 384, 1$	885K	173M
conv5a	$14{\times}14{\times}256$	$14{\times}14{\times}256$	$1 \times 1 \times 256, 1$	66K	13M
conv5	$14{\times}14{\times}256$	$14{\times}14{\times}256$	$3 \times 3 \times 256, 1$	590K	116M
conv6a	$14{\times}14{\times}256$	$14{\times}14{\times}256$	$1 \times 1 \times 256, 1$	66K	13M
conv6	$14{\times}14{\times}256$	$14{\times}14{\times}256$	$3 \times 3 \times 256, 1$	590K	116M
pool4	$14{\times}14{\times}256$	$7 \times 7 \times 256$	$3 \times 3 \times 256, 2$	0	
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$		0	
fc1	$7 \times 7 \times 256$	$1\times32\times128$	maxout p=2	103M	103M
fc2	$1{\times}32{\times}128$	$1\times32\times128$	maxout p=2	34M	34M
fc7128	$1{\times}32{\times}128$	$1\times1\times128$		524K	0.5M
L2	$1\times1\times128$	$1\times1\times128$		0	
total				140M	1.6B

Method - Deep Convolutional Networks - NN2

type	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj (p)	params	FLOPS
conv1 $(7 \times 7 \times 3, 2)$	112×112×64	1							9K	119M
max pool + norm	$56 \times 56 \times 64$	0						m 3×3, 2		
inception (2)	$56 \times 56 \times 192$	2		64	192				115K	360M
norm + max pool	28×28×192	0						m 3×3,2		
inception (3a)	$28 \times 28 \times 256$	2	64	96	128	16	32	m, 32p	164K	128M
inception (3b)	$28 \times 28 \times 320$	2	64	96	128	32	64	L_2 , 64p	228K	179M
inception (3c)	$14 \times 14 \times 640$	2	0	128	256,2	32	64,2	m 3×3,2	398K	108M
inception (4a)	$14 \times 14 \times 640$	2	256	96	192	32	64	L_2 , 128p	545K	107M
inception (4b)	14×14×640	2	224	112	224	32	64	L_2 , 128p	595K	117M
inception (4c)	14×14×640	2	192	128	256	32	64	L_2 , 128p	654K	128M
inception (4d)	$14 \times 14 \times 640$	2	160	144	288	32	64	L_2 , 128p	722K	142M
inception (4e)	$7 \times 7 \times 1024$	2	0	160	256,2	64	128,2	m 3×3,2	717K	56M
inception (5a)	$7 \times 7 \times 1024$	2	384	192	384	48	128	L_2 , 128p	1.6M	78M
inception (5b)	$7 \times 7 \times 1024$	2	384	192	384	48	128	m, 128p	1.6M	78M
avg pool	$1\times1\times1024$	0								
fully conn	$1\times1\times128$	1							131K	0.1M
L2 normalization	$1\times1\times128$	0								
total									7.5M	1.6B

Method - Deep Convolutional Networks

architecture	VAL
NN1 (Zeiler&Fergus 220×220)	$87.9\% \pm 1.9$
NN2 (Inception 224×224)	$89.4\% \pm 1.6$
NN3 (Inception 160×160)	$88.3\% \pm 1.7$
NN4 (Inception 96×96)	$82.0\% \pm 2.3$
NNS1 (mini Inception 165×165)	$82.4\% \pm 2.4$
NNS2 (tiny Inception 140×116)	$51.9\% \pm 2.9$

Method - Deep Convolutional Networks

Datasets and Evaluation

$$\mathrm{TA}(d) = \{(i,j) \in \mathcal{P}_{\mathrm{same}} | D(x_i,x_j) \leq d \}$$
 $\mathrm{FA}(d) = \{(i,j) \in \mathcal{P}_{\mathrm{diff}} | D(x_i,x_j) \leq d \}$

$$ext{VAL}(d) = rac{| ext{TA}(d)|}{|\mathcal{P}_{ ext{same}}|}, ext{FAR}(d) = rac{| ext{FA}(ext{d})|}{|\mathcal{P}_{ ext{diff}}|}$$

Datasets and Evaluation

- Hold-out Data Set
- Personal Photos
- Academic Datasets

Experiments - Computation Accuracy Trade-off

Experiments - Effect of CNN Model

Experiments - Sensitivity to Image Quality

jpeg q	val-rate
10	67.3%
20	81.4%
30	83.9%
50	85.5%
70	86.1%
90	86.5%

#pixels	val-rate
1,600	37.8%
6,400	79.5%
14,400	84.5%
25,600	85.7%
65,536	86.4%

Experiments - Embedding Dimensionality

#dims	VAL
64	$86.8\% \pm 1.7$
128	$87.9\% \pm 1.9$
256	$87.7\% \pm 1.9$
512	$85.6\% \pm 2.0$

Experiments - Amount of Training Data

#training images	VAL
2,600,000	76.3%
26,000,000	85.1%
52,000,000	85.1%
260,000,000	86.2%

Experiments - Performance on LFW

Experiments - Face Clustering

