- A. Introduction
 - 3. Load Management

DOMEND VARIES WITH TIME

SYSTEM MUST BE ABLE TO SUPPLY MAXIMUM LOND

Ly LIETAS TO EXCESS

CAPAZITY THAT PERS

NOT RUN OFTEN

STURMOSE CAN HOLD

- INSTALLED CAPACITY

CAN BE REDUCED

SIGNIFICATION

Y

B. Storage System Features

A GOOD STUMBUE SYSTEM ERHBIB SEVENAL CHARACTOLISTICS

- 1. HIGH RATE OF ENORGY SUPPLY & REVLIENTS
 POWDL TO & FROM STREAMS MEETS REQUIREMONS
- 2. HIGH TRINSFER EFFICIENCIES
- 3. LONG \$ LUSS FLEE STORINGE
- 4. HIGH ONTERY CONTONT.

 KEEPS SYSTEM OF REMSEMBLE MUSS/SIZE
- 5. NO CHANGE IN ENUXGY QUALITY
- L. MODEST CONTAINS & THURLY TRANSFOR REGIMENTALS
 ROOM P&T
 NO CORROSIAN

B. Storage System Features

GASOUNE STULAGE SYSTEM 1. HUH RATE OF ENCKLY Surry & Derivary 30 MW (1) Gas Gas Tank Pump (3) (6) (4) SPILLS/ EVAPORITION Fuel Pump Storage Tank 3. LONG & LOSS FLET STRANGE (3)(6)WELL SEALED GAS THUR PULLURS MINIMAR LOSSES GAS CAR! · LASOUNE IS STABLE -> STURAGE TIME IN YEARS

B. Storage System Features

C. Energy Storage Performance Metrics

1. Efficiency

- C. Energy Storage Performance Metrics
- 2. Energy and Power Density ENCLUY STORAGE BROKEN INTO 2 TYPES (SCIONDARY STORAGE PRIMARY STURAGE - ENERGY COMES IN STURES FOR IN SELONDARY STURGET - ENERGY CONFERED TO STURES FRRLY WERGHT OF SYSTEM volume of syston ME/ESE 4470 - Wind & Tidal Power

- C. Energy Storage Performance Metrics
 - 2. Energy and Power Density

POWER DENSITIES DEPEND ON CONVOLSION PRICESSO AS WELL AS STORAGE PROPERTIES

C. Energy Storage Performance Metrics

2. Energy and Power Density

	•		
Storage Form	e_m	e_V	cycle η
Storage Form	kJ/kg	$\mathrm{MJ/m^3}$	
Crude Oil	42,000	37,000	
Coal	32,000	42,000	
Hydrogen Gas	120,000	10	0.4 - 0.6
Hydrogen Liquid	120,000	8700	
Hydrogen Metal Hydride	2000-9000	5000-15,000	
		ŕ	
Ethanol	28,000	22,000	
Methanol	21,000	17,000	
	·	,	
Water 40-100° C	250	250	
Rocks 40-100° C	40-50	100-140	
Iron 40-100° C	30	230	

C. Energy Storage Performance Metrics

2. Energy and Power Density

to an			
Storage Form	e_m	e_V	cycle η
Storage Form	kJ/kg	$\mathrm{MJ/m^3}$	
Rocks 200-400° C	160	430	[
Iron 200-400° C	100	800	
Salts (Phase Change)	>300	>300	
Pumped Hydro - 100 m head	1	1	0.65-0.80
Compressed Air		15	0.40 - 0.50
Flywheels, Steel	30-120	240-950	
Flywheels, Advanced	>200	>100	~ 0.95
Lead-Acid Battery	40-140	100-900	0.7-0.8
Nickel-Cadmium	350	350	
Advanced Battery	>400	>400	