CSCI 6470 Quiz #7 Questions Answers

November 13, 2023 (12:40pm-1:10pm EST)

Student Name	Student	; ID

Rules. Violation will result in zero credit for the exam and possibly the final grade.

- 1. Closed book/note/electronics/neighborhood.
- 2. Surrender your cell phone to the podium before using the restroom.

There are 4 questions and 60 points in total. Good luck!

1. (15 points) Run Prim's algorithm on the following graph to find a minimum spanning tree. Show in the table changes of cost values for vertices after every vertex is dequeued. Assume the algorithm starts from vertex C. for the table total: 10 points

Vertex	A	В	С	D	Е	vertex dequeued
cost	∞	∞	0	∞	∞	
cost	3	10	0	2	6	C
cost	3	4	0	2	1	D
cost	3	4	0	2	1	E
cost	3	4	0	2	1	A
cost	3	4	0	2	1	В

In addition,

(1) Show the cut for which edge (D, E) is a light edge: $(\{C, D\}, V - \{C, D\})$

3 points

(2) Show the cut for which edge (C, E) is a light edge: There is NO such cut

2 points

- 2. (15 points) Prim's algorithm does NOT work well on disconnected non-directed graphs. However, it can be fixed to suit the need. Let the input graph G consist of two disconnected components H_1 and H_2 . Assume the algorithm starts from some vertex in H_1 . Answer the following questions:
 - (1) Will the algorithm output correctly an m.s.t. for component H_1 ? "Yes" 3 points
 - (2) After the algorithm is done with all vertices in H_1 , what vertices and of what cost values are still in the priority queue? All vertices in H_2 and of the cost values ∞ 4 points
 - (3) Why the algorithm may not find an m.s.t. for component H_2 ? vertices with ∞ cost will be dequeued but costs and prev will not be updated. 4 points
 - (4) Suggest a simple modification to Prim's so it can find m.s.t. for all disconnected components in the input graph.

when there is vertex with cost ∞ is dequeued, its cost should be set to 0.

4 points

3. (15 points) Run Kruskal's algorithm on the following graph to find an m.s.t. Fill in the table changes of disjoint sets after each edge is selected.

Edge selected	Disjoint sets
	Γ Α 1

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]
(A,G)	[A,G]	[B]	[C]	[D]	[E]	[F]		[H]	[I]
(C,F)	[A,G]	[B]	[C,F]	[D]	[E]			[H]	[I]
(B,E)	[A,G]	[B,E]	[C,F]	[D]				[H]	[I]
(D,I)	[A,G]	[B,E]	[C,F]	[D,I]				[H]	
(E,H)	[A,G]	$[\mathrm{B,E,H}]$	[C,F]	[D,I]					
(E,G)	[A,G, B,E,H]	[C,F]	[D,I]						
(F,I)	[A,G,B,E,H]	[C,F,D,I]							
(B,D)	[A,G, B,E,H, C,F, D,I]								

Every edge selected: 1 points

every corresponding set joining: 1 points

- 4. (15 points) This question concerns greedy-choice property. Answer the following questions.
 - (1) State a greedy-choice property for the Fractional Knapsack problem: total: 7 points

Greedy-choice property: The item with the maximum value density $d_k = \frac{v_k}{s_k}$

- (1) belongs to some optimal solution,
- (2) where $f_k = 1$ if knapsack size $W \ge s_k$, (3) or $f_k = W/s_k$ if $W < s_k$. 2 points
- (2) A greedy-choice property for the Activities Scheduling problem states that the activity a with the earliest finish time belongs to some optimal solution. If a given optimal solution S does not contains a, show that the greedy-choice property still holds for a. total: 8 points

Let $S = \{e, x_1, \dots, x_m\}$, where e is the activity of the earliest finish time in S; 3 points

Define $S' = S \cup \{a\} - \{e\}$ 2 points;

 x_1, \ldots, x_m do not conflict with a; so S' is an optimal solution that contains a 3 points

The following space will not be graded.