控制

E	:	录			6.3 线性定常离散系统	14
				П	现代控制	14
ı	自	动控制	4	7	控制系统	14
1]控制基础	4		7.1 状态空间	14
_	1.1	· 自动控制 · · · · · · · · · · · · · · · · · · ·	4		7.2 线性控制系统	14
	1.2	数学模型	5	8	控制系统的结构性质	14
		1.2.1 拉氏变换	5		8.1 能控性与能观测性	14
		1.2.2 控制微分方程	6		8.2 稳定性	14
		1.2.3 传递函数	7	9	反馈控制系统	14
		1.2.4 结构图	8		9.1 反馈	14
		1.2.5 信号流图	9		9.2 李雅普诺夫方法设计反馈系统 .	14
2	时域	3分析	10		9.3 极点配置	14
	2.1	性能指标	10		9.4 解耦	14
	2.2	一阶系统	11	10	状态观测器与动态反馈	14
		二阶系统			10.1 观测器	14
	2.4	稳定性分析			10.2 动态反馈	14
3	•	L迹分析	14		10.3 鲁棒控制	14
J	3.1	概念	•			
		绘制	-	Ш	最优控制	14
	_	广义根轨迹				14
4		分析	14		11.1 概念	
•	4.1	概念				
	4.2	图像				14
	4.3	稳定性分析				
5	校正		14		12.2 最大值原理	
,	5.1	概念			12.3 线性二次型	
	5.2	串联校正			12.4 动态规划	
		反馈校正		13		14
6		双系统	14		13.1 最大值原理	
		概念			13.2 线性二次型	
		z变换			13.3 动态规划	

冬	片		图 2图 3	结构图 信号流图	9
			图 4	二阶欠阻尼系统	10
图 1	自动控制系统方框图	4	图 5	一阶系统结构图	11
表	格		表 3	典型输入信号	6
表	格		表 3 表 4	典型输入信号 典型传递函数 (单位阶跃)	
表 表 1	格 控制方式分类	4	9		8

要 点

Part I.

自动控制

1 自动控制基础

1.1 自动控制

没有人直接参与,通过控制器使被控对象的被控量自动地按预定规律运行。

组成

- 被控对象。
- 被控/输出量C(s)。
- 控制量。
- 期望/给定/输入量R(s)。
- 扰动N(s)。

图 1: 自动控制系统方框图

分类

	价格	复杂度	精度	抗干扰性能	其它		
开环	低	简单	低	差	稳定		
闭环/反馈	高	复杂	高	强			
前馈	高				补偿可测量扰动		
复合	闭环 + 前馈						

表 1: 控制方式分类

输入量变化特性: 系统特性: 传输数据类型:

恒值。

- 非线性: 常数、幂。
- 连续。

- 随动:未知时间函数。 线性:导数。(齐次性,线 离散。

性)

- •程序控制: 预设时间函 数。
- 定常: 常系数。
- 时变: 系数不全是常

数。

- 时延: 变量位移。

性能

• 稳定性: 有无稳态。

• 快速性: 到达稳态快慢。

• 准确性: 稳态误差大小。

信号	阶跃	跃 斜坡 加速度		脉冲	脉动	正弦
$f(t)(t \geqslant 0)$	R(t)	$R(t)$ Rt $\frac{1}{2}Rt^2$		$f(0) = \infty, \int_{-\infty}^{\infty} f(t)dt = A$		$A\sin(\omega t - \phi)$
单位化	R = 1		$A = 1, \delta(t)$			
图像	$R \downarrow 0 $ t			$ \begin{array}{c} f(t) \\ \uparrow \\ 0 \end{array} $		

表 2: 典型输入信号

外作用

1.2 数学模型

1.2.1 拉氏变换

微分方程(时域) ^{拉氏变换} 代数方程(频域) ^{蒸解} 输出量表达式(频域) ^{反拉氏变换} 方程解(时域)

变换 单边衰减的傅里叶变换,记 $s = \sigma + i\omega t$

$$F(s) = L[f(t)] = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty f(t)e^{-\sigma t}e^{-j\omega t}dt$$

而傅里叶变换为 $F(\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt$ 。

性质

- 微分定理(非零初始条件): $L[f^{(n)}(t)] = s^n F(s) f^{(n-1)}(0) s f^{(n-2)}(0) \cdots s^{n-1} f(0)$ 。
- 线性: $f(t) = f_1(t) + f_2(t) \Rightarrow F(s) = F_1(s) + F_2(s)$ 。
- 终值定理: $f(\infty) = \lim_{s \to 0} sF(s)$ 。 初值定理: $f(0^+) = \lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$ 。
- 位移定理: $L[f(t)] = F(s) \Rightarrow L[f(t-\tau)] = e^{-\tau s}F(s), L[f(t)e^{\alpha t}] = F(s-\alpha)$ 。
- 相似定理: $L[f(t)] = F(s) \Rightarrow L[f(\frac{t}{\alpha})] = \alpha F(\alpha s)$ 。

时域	$\delta(t)$	1(t)	$\frac{t^{n-1}}{(n-1)!}$	e ^{-at}	sin wt	cos wt	$e^{-at}\sin \omega t$	$e^{-at}\cos \omega t$
频域	1	$\frac{1}{s}$	$\frac{1}{s^n}$	$\frac{1}{s+a}$	$\frac{\omega}{s^2+\omega^2}$	$\frac{s}{s^2+\omega^2}$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$	$\frac{s+a}{(s+a)^2+\omega^2}$

表 3: 典型输入信号

常用变换

1.2.2 控制微分方程

输入输出方程 ⇒ 按信号传递顺序列微分方程 ⇒ 消去中间变量 ⇒ 输出量归一得到标准形式

非线性微分方程的线性化

- 泰勒展开: $y = f(x_0) + \frac{df(x)}{dx}|_{x_0} \cdot \Delta x + o(\Delta x)$ 。
- 增量线性化方程: $\Delta y = \frac{df(x)}{dx}|_{x_0} \cdot \Delta x$ 。

解

- 解 = 特解 + 通解 (特征根)。
- 解的模态: 几点。

1.2.3 传递函数

概念 系统在零初始条件下,输出输入量拉式变换之比, $G(s) = \frac{C(s)}{R(s)}$ 。反应线性系统特性,与输入量无关,对应微分方程为s的有理真分式。

求解

- 零初始条件: G(s) = L[q(t)], 其中q(t)为单位脉冲响应(等效反馈函数)。
- 非零初始条件: 微分定理。

应用

$$R(s) = L[r(t)] \Rightarrow C(s) = G(s)R(S) \Rightarrow c(t) = L^{-1}[C(s)]$$

输入输出关系 输入是微积分关系,则输出也是,常数用零初始条件确定。

$$r_2(t) = r_1(t) \Rightarrow c_2(t) = c_1(t)$$

零极点

$$\begin{split} G(s) &= \frac{C(s)}{R(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}, \quad n > m \\ &= K^* \frac{\prod_{i=1}^m (s - z_i)}{\prod_{j=1}^n (s - p_j)} \end{split}$$

- 零点z_i: 影响比重、曲线形状,不决定模态。
- 极点p_i: 特征根,决定模态,对系统响应影响大(近原点、远零点的影响大)。
- 传递系数/根轨迹增益K*。

	微分方程	输出X _c (t)	传递函数G(s)	图像
				X _c (t) K
比例	$X_{c}(t) = KX_{r}(t)$)	K	$\begin{array}{c} \\ \\ \\ \\ \\ \end{array} $
				$\begin{array}{c} X_{c}(t) \\ 1 \\ 0.632 \\ \end{array} \longrightarrow t$
惯性	$T\frac{dX_c(t)}{dt} + X_c(t) = X_r(t)$	$1 - e^{-\frac{t}{T}}$	$\frac{1}{Ts+1}$	0.832
				X _c (t)
积分	$X_{c}(t) = K \int X_{r}(t)dt$	t	<u>K</u> s	$\stackrel{\textstyle \searrow}{\underset{\scriptstyle 0}{\longrightarrow}} t$
				X _c (t)
微分	$X_c(t) = K \frac{dX_r(t)}{dt}$	$\delta(t)$	Ks	$\stackrel{\longleftarrow}{0} t$
				X _c (t)
滞后	$X_{c}(t) = X_{r}(t - $	τ)	$e^{-T s}$	$\bigcup_{\mathfrak{g} \; \tau} t$

表 4: 典型传递函数(单位阶跃)

典型传递函数

开环与闭环

- 开环 (断开主反馈): $G_k(s) = G(s)H(s)$ 。
- 闭环: $G_B(s) = \frac{G(s)}{1+G_k(s)}$ 。

1.2.4 结构图

简化 原则:等效原则,引出点信号保持不变。

- 串联和并联积。
- 反馈: G(s) 1∓G(s)H(s)。
- 比较点、引出点移动: 前后通路/回路乘积不变。
- 相邻信号相加点、同一信号分支点位置可互换,二者间不可互换。

1.2.5 信号流图

适用于复杂系统。

图 3: 信号流图

概念

- 混合节点: 流向该结点信号代数和。
- 支路: 方向+传递函数,相当于乘法器,保证信号单向传递。
- 前向通路: 输入到输出, 不重复过节点。
- 回路: 起止于同一节点,不重复过节点。
- 不接触回路: 回路间无公共节点。

简化

- 串联积并联和。
- 回路消除:反馈消去。自回路消除:节点自延长,增益为1,有回路,反馈消去。

绘制 根据结构图或拉屎变换得到的微分方程。

- 节点: 比较点右侧、分支点, 可多画再删除。
- 源点、阱点不要和相邻节点合并。

梅森公式

$$\begin{split} P &= \frac{1}{\underbrace{\Delta}} \sum_{k=1}^{n} \underbrace{P_k}_{\text{$\hat{\mathbf{h}}$ $\hat{\mathbf{h}}$ $\hat{\mathbf$$

其中, Δ_k 是余子式,由 Δ 略去与 P_k 接触项获得。

- 两节点间增益为1, 若合并后两回路接触, 则不可合并。
- 求解的是输出对输入的增益, 若求解中间变量, 可省去前面输入、比值进行计算。

2 时域分析

2.1 性能指标

典型输入信号:线性系统选取单位阶跃信号。

图 4: 二阶欠阻尼系统

状态	指标	符号	定义			
	延迟时间	t _d	首次达到终值50%的时间			
	上升时间 t _r 终值10%-90%的时		终值10%-90%的时间(有震荡系统为0%-100%)			
动态	峰值时间	tp	首次达到最大值的时间			
	超调量	σ	$\frac{h(t_p) - h(\infty)}{h(\infty)} \times 100\%$			
	调整时间	t_{s}	达到并保持在误差带的时间			
稳态	稳态误差	ess	$e(t) _{t\to\infty} = r(t) _{t\to\infty} - h(t) _{t\to\infty}$			

表 5: 性能指标

2.2 一阶系统

图 5: 一阶系统结构图

$r(t) \rightarrow R(s)$	c(t)	e(t)	e_{ss}	备注	图像
					h(t)
$1(t) o rac{1}{s}$	$1 - e^{-\frac{t}{T}}$	$-\frac{1}{T}e^{-\frac{t}{T}}$	0		$t \longrightarrow t$
					h(t)
$\delta(t) o 1$	$\frac{1}{T}e^{-\frac{t}{T}}$	$-\frac{1}{T}e^{-\frac{t}{T}}$	0		$ \begin{array}{c} 1 \\ 0 \end{array} $
. ,	<u> </u>	1			h(t)
1	t	t ,	_		t t
$t o \frac{1}{s^2}$	$t-T+Te^{-\frac{t}{T}}$	$T(1-e^{-\frac{t}{T}})$	T	T越小跟踪精度越高	O
$\frac{1}{2}t^2 \rightarrow \frac{1}{s^3}$	$(\frac{1}{2}t^2 + Tt) + T^2(1 - e^{-\frac{t}{T}})$	$Tt - T^2 (1 - e^{-\frac{t}{T}})$	∞	无法跟踪	

表 6: 一阶系统响应情况

响应情况

单位阶跃响应 T越大,惯性越大,响应越慢。

$$h(T) = 0.632,$$

$$h(T) = 0.632, \qquad \qquad h(2T) = 0.865, \qquad \qquad h(3T) = 0.95$$

$$t_{\rm d} = 0.69T$$
, $t_{\rm r} = 2.2T$,

$$h(3T) = 0.95$$

$$t_s = 3T$$

- 2.3 二阶系统
- 2.4 稳定性分析
- 3 根轨迹分析
- 3.1 概念
- 3.2 绘制
- 3.3 广义根轨迹
- 4 频域分析
- 4.1 概念
- 4.2 图像
- 4.3 稳定性分析
- 5 校正
- 5.1 概念
- 5.2 串联校正
- 5.3 反馈校正
- 6 离散系统
- 6.1 概念
- 6.2 z变换
- 6.3 线性定常离散系统

返回目录

Part II.