This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A61K 35/14, 39/00, 37/22 C07K 3/00, 13/00, 15/00 C07K 17/00, C12Q 1/68, 1/00 C12Q 15/00, C12N 1/20, 1/00

(11) International Publication Number:

WO 92/20356

26 November 1992 (26.11.92) (43) International Publication Date:

(21) International Application Number:

PCT/US92/04354

A1

(22) International Filing Date:

22 May 1992 (22.05.92)

(30) Priority data: 705,702 728,838 23 May 1991 (23.05.91) 9 July 1991 (09.07.91) 764,364 23 September 1991 (23.09.91) US 12 December 1991 (12.12.91) 807,043

(71) Applicant (for all designated States except US): LUDWIG IN-STITUTE FOR CANCER RESEARCH [US/US]; 1345 Avenue of the Americas, New York, NY 10105 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): BOON, Thierry [BE/BE]; VAN DER BRUGGEN, Pierre [BE/BE]; VAN DEN EYNDE, Benoit [BE/BE]; VAN PEL, Aline [BE/BE]; DE PLAEN, Etienne [BE/BE]; LURQUIN, Christophe [BE/BE]; CHOMEZ, Patrick [BE/BE]; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). TRAVERSA-RI, Catia [IT/IT]; Sesto S. Giovanni, 1-20099 Milano (74) Agent: HANSON, Norman, D.; Felfe & Lynch, 805 Third Avenue, New York, NY 10022 (US).

(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC (European patent), MC (OAPI patent), MW, NL (European patent), NO, PL, RO, RU, SD, SE (European patent), SN (OAPI patent), TO (OAPI patent), TG (OAPI patent), US.

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TUMOR REJECTION ANTIGEN PRECURSORS, TUMOR REJECTION ANTIGENS AND USES THEREOF

(57) Abstract

The invention relates to an isolated DNA sequence which codes for an antigen expressed by tumor cells which is recognized by cytotoxic T cells, leading to lysis of the tumor which expresses it. Also described are cells transfected by the DNA sequence, and various therapeutic and diagnostic uses arising out of the properties of the DNA and the antigen for which it codes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FI	Proland	MI	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
8E	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
ВJ	Benin	HU	. Hungary	PL	Poland
BK	Brazil	ΙE	Ireland	RO	Romania
CA	Canada	ıT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM1	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DΕ	Gernany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

1

TUMOR REJECTION ANTIGEN PRECURSORS, TUMOR REJECTION ANTIGENS AND USES THEREOF

This application is a continuation-in-part of Serial Number 807,043, filed December 12, 1991, which is a continuation-in-part of Serial Number 764,364, filed September 23, 1991, which is a continuation-in-part of Serial Number 728,838, filed July 9, 1991, which is a continuation-in-part of Serial Number 705,702, filed May 23, 1991, and now abandoned.

10 FIELD OF THE INVENTION

This invention relates in general to the field of immunogenetics as applied to the study of oncology. More specifically, it relates to the study and analysis of mechanisms by which tumors are recognized by the organism's immune system such as through the presentation of so-called tumor rejection antigens, and the expression of what will be referred to herein as "tumor rejection antigen precursors".

BACKGROUND AND PRIOR ART

The study of the recognition or lack of recognition of cancer cells by a host organism has proceeded in many different directions. Understanding of the field presumes some understanding of both basic immunology and oncology.

20

Early research on mouse tumors revealed that these displayed molecules which led to rejection of tumor cells when transplanted into syngeneic animals. These molecules are "recognized" by T-cells in the recipient animal, and provoke a cytolytic T-cell response with lysis This evidence was first of the transplanted cells. induced in vitro by obtained with tumors carcinogens, such as methylcholanthrene. The antigens expressed by the tumors and which elicited the T-cell response were found to be different for each tumor. Prehn, et al., J. Natl. Canc. Inst. 18: 769-778 (1957); Klein et al., Cancer Res. 20: 1561-1572 (1960); Gross, Cancer Res. 3: 326-333 (1943), Basombrio, Cancer Res. 30: 2458-2462 (1970) for general teachings on inducing tumors with chemical carcinogens and differences in cell surface This class of antigens has come to be known as "tumor specific transplantation antigens" or "TSTAs". Following the observation of the presentation of such antigens when induced by chemical carcinogens, similar results were obtained when tumors were induced in vitro via ultraviolet radiation. See Kripke, J. Natl. Canc. Inst. 53: 333-1336 (1974).

While T-cell mediated immune responses were observed for the types of tumor described <u>supra</u>, spontaneous tumors were thought to be generally non-immunogenic. These were therefore believed not to present antigens which provoked a r sponse to the tumor in the tumor carrying subject. See Hewitt, et al., Brit. J. Cancer 33: 241-259 (1976).

3

The family of tum antigen presenting cell lines are immunogenic variants obtained by mutagenesis of mouse tumor cells or cell lines, as described by Boon et al., J. Exp. Med. 152: 1184-1193 (1980), the disclosure of which is incorporated by reference. To elaborate, tum antigens are obtained by mutating tumor cells which do not generate an immune response in syngeneic mice and will form tumors (i.e., "tum" cells). When these tum cells are mutagenized, they are rejected by syngeneic mice, and fail to form tumors (thus "tum"). See Boon et al., Proc. Natl. Acad. Sci. USA 74: 272 (1977), the disclosure of which is incorporated by reference. Many tumor types have been shown to exhibit this phenomenon. See, e.g., Frost et al., Cancer Res. 43: 125 (1983).

It appears that tum variants fail to form progressive tumors because they elicit an immune rejection process. The evidence in favor of this hypothesis includes the ability of "tum" variants of tumors, i.e., those which do not normally form tumors, to do so in mice with immune systems suppressed by sublethal irradiation, Van Pel et al., Proc. Natl, Acad. Sci. USA 76: 5282-5285 (1979); and the observation that intraperitoneally injected tum cells of mastocytoma P815 multiply exponentially for 12-15 days, and then are eliminated in only a few days in the midst of an influx of lymphocytes and macrophages (Uyttenhove et al., J. Exp. Med. 152: 1175-1183 (1980)). Further evidence includes the observation that mice acquire an immune memory

10

4

which permits them to resist subsequent challenge to the same tum variant, even when immunosuppressive amounts of radiation are administered with the following challenge of cells (Boon et al., Proc. Natl, Acad. Sci. USA 74: 272-275 (1977); Van Pel et al., supra; Uyttenhove et al., supra).

Later research found that when spontaneous tumors were subjected to mutagenesis, immunogenic variants were produced which did generate a response. Indeed, these variants were able to elicit an immune protective response against the original tumor. See Van Pel et al., J. Exp. Med. 157: 1992-2001 (1983). Thus, it has been shown that it is possible to elicit presentation of a so-called "tumor rejection antigen" in a tumor which is a target for a syngeneic rejection response. Similar results have been obtained when foreign genes have been transfected into spontaneous tumors. See Fearson et al., Cancer Res. 48: 2975-1980 (1988) in this regard.

A class of antigens has been recognized which are presented on the surface of tumor cells and are recognized by cytotoxic T cells, leading to lysis. This class of antigens will be referred to as "tumor rejection antigens" or "TRAs" hereafter. TRAs may or may not elicit antibody responses. The extent to which these antigens have been studied, has been via cytolytic T cell characterization studies, in vitro i.e., the study of the identification of the antigen by a particular cytolytic T cell ("CTL" hereafter) subset. The subset proliferates upon recognition of the presented tumor rejection antigen, and

20

the cells presenting the antigen are lysed. Characterization studies have identified CTL clones which specifically lyse cells expressing the antigens. Examples of this work may be found in Levy et al., Adv. Cancer Res. 24: 1-59 (1977); Boon et al., J. Exp. Med. 152: 1184-1193 (1980); Brunner et al., J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982); Palladino et al., Canc. Res. 47: 5074-5079 (1987). This type of analysis is required for other types of antigens recognized by CTLs, including minor histocompatibility antigens, the male specific H-Y antigens, and a class of antigens, referred to as "tum-" antigens, and discussed herein.

A tumor exemplary of the subject matter described supra is known as P815. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988); Szikora et al., EMBO J 9: 1041-1050 (1990), and Sibille et al., J. Exp. Med. 172: 35-45 (1990), the disclosures of which 20 incorporated by reference. The P815 tumor is mastocytoma, induced in a DBA/2 mouse with methylcholanthrene and cultured as both an in vitro tumor and a cell line. The P815 line has generated many tum variants following mutagenesis, including variants referred to as P91A (DePlaen, supra), 35B (Szikora, supra), and P198 (Sibill , supra). In contrast to tumor rejection antigens - and this is a key distinction - the tum antigens are

6

only present after the tumor cells are mutagenized. rejection antigens are present on cells of a given tumor Hence, with reference to the without mutagenesis. literature, a cell line can be tum+, such as the line referred to as "P1", and can be provoked to produce tumvariants. Since the tum phenotype differs from that of the parent cell line, one expects a difference in the DNA of tum cell lines as compared to their tum parental lines, and this difference can be exploited to locate the gene of interest in tum cells. As a result, it was found that genes of tum variants such as P91A, 35B and P198 differ from their normal alleles by point mutations in the coding regions of the gene. See Szikora and Sibille, supra, and Lurquin et al., Cell 58: 293-303 (1989). This has proved not to be the case with the TRAs of this invention. papers also demonstrated that peptides derived from the tumantigen are presented by the $L^{\mathbf{d}}$ molecule for recognition by CTLs. P91A is presented by L^d, P35 by D^d and P198 by K^d.

It has now been found that the genes which code for the molecules which are processed to form the presentation tumor rejection antigens (referred to as "tumor rejection antigen precursors", "precursor molecules" or "TRAPs" hereafter), are not expressed in most normal adult tissues but are expressed in tumor cells. Genes which code for the TRAPs have now been isolated and cloned, and represent a portion of the invention disclosed herein.

10

20

7

The gene is useful as a source for the isolated and purified tumor rejection antigen precursor and the TRA themselves, either of which can be used as an agent for treating the cancer for which the antigen is a "marker", as well as in various diagnostic and surveillance approaches to oncology, discussed <u>infra</u>. It is known, for example, that tum cells can be used to generate CTLs which lyse cells presenting different tum antigens as well as tum cells. See, e.g., Maryanski et al., Eur. J. Immunol 12: 401 (1982); and Van den Eynde et al., Modern Trends in Leukemia IX (June 1990), the disclosures of which are incorporated by reference. The tumor rejection antigen precursor may be expressed in cells transfected by the gene, and then used to generate an immune response against a tumor of interest.

In the parallel case of human neoplasms, it has been observed that autologous mixed lymphocyte-tumor cell cultures ("MLTC" hereafter) frequently generate responder lymphocytes which lyse autologous tumor cells and do not lyse natural killer targets, autologous EBV-transformed B cells, or autologous fibroblasts (see Anichini et al., Immunol. Today 8: 385-389 (1987)). This response has been particularly well studied for melanomas, and MLTC have been carried out either with peripheral blood cells or with tumor infiltrating lymphocytes. Examples of the literature in this area including Knuth et al., Proc. Natl. Acad. Sci. USA 86: 2804-2802 (1984); Mukherji et al., J. Exp. Med.

20

158: 240 (1983); Hérin et all, Int. J. Canc. 39: 390-396 (1987); Topalian et al, J. Clin. Oncol 6: 839-853 (1988). Stable cytotoxic T cell clones ("CTLs" hereafter) have been derived from MLTC responder cells, and these clones are specific for the tumor cells. See Mukherji et al., supra, Hérin et all, <u>supra</u>, Knuth et al., <u>supra</u>. The antigens recognized on tumor cells by these autologous CTLs do not appear to represent a cultural artifact, since they are Topalian et al., supra; found on fresh tumor cells. Degiovanni et al., Eur. J. Immunol. 20: 1865-1868 (1990). These observations, coupled with the techniques used herein to isolate the genes for specific murine tumor rejection antigen precursors, have led to the isolation of nucleic acid sequences coding for tumor rejection antigen precursors of TRAs presented on human tumors. It is now possible to isolate the nucleic acid sequences which code for tumor rejection antigen precursors, including, but not being limited to those most characteristic of a particular tumor, with ramifications that are described infra. isolated nucleic acid sequences for human tumor rejection antigen precursors and applications thereof, as described infra, are also the subject of this invention.

These and various other aspects of the invention are elaborated upon in the disclosure which follows.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 depicts detection of transfectants expressing antigen P815A.

Figure 2 shows the sensitivity of clones P1.HTR, PO.HTR, genomic transfectant P1A.T2 and cosmid transfectant P1A.TC3.1 to lysis by various CTLs, as determined by chromium release assays.

Figure 3 is a restriction map of cosmid C1A.3.1.

Figure 4 shows Northern Blot analysis of expression of gene 10 P1A.

Figure 5 sets forth the structure of gene P1A with its restriction sites.

Figure 6 shows the results obtained when cells were transfected with the gene from P1A, either isolated from P815 or normal cells and then tested with CTL lysis.

Figure 7 shows lytic studies using mast cell line L138. 8A.

Figure 8 is a map of subfragments of the 2.4 kb antigen E fragment sequence which also express the antigen.

Figure 9 shows homology of sections of exon 3 from genes mage 1, 2 and 3.

Figur 10 shows the result of Northern blots for MAGE genes on various tissues.

Figure 11 presents the data of Figure 13 in table form.

Figure 12 shows Southern Blot experiments using the various human melanoma cell lines employed in this application.

Figure 13 is a generalized schematic of the expression of MAGE 1, 2 and 3 genes by tumor and normal tissues.

BRIEF DESCRIPTION OF SEQUENCES

SEQ ID NO: 1 is cDNA for part of gene P1A.

SEQ ID NO: 2 presents coding region of cDNA for gene P1A.

SEQ ID NO: 3 shows non coding DNA for P1A cDNA which is 3' to the coding region of SEQ ID NO: 2.

SEQ ID NO: 4 is the entire sequence of cDNA for P1A.

SEQ ID NO: 5 is the genomic DNA sequence for P1A.

SEQ ID NO: 6 shows the amino acid sequence for the antigenic peptides for P1A TRA. The sequence is for cells which are A^+ B^+ , i.e., express both the A and B antigens.

SEQ ID NO: 7 is a nucleic acid sequence coding for antigen E.

SEQ ID NO: 8 is a nucleic acid sequence coding for MAGE1.

20 SEQ ID NO: 9 is the gene for MAGE-2.

SEQ ID NO: 10 is the gene for MAGE-21.

SEQ ID NO: 11 is cDNA for MAGE-3.

SEQ ID NO: 12 is the gene for MAGE-31.

SEQ ID NO: 13 is the gene for MAGE-4.

SEQ ID NO: 14 is the gene for MAGE-41.

SEQ ID NO: 15 is cDNA for MAGE-4.

SEQ ID NO: 16 is cDNA for MAGE-5.

SEQ ID NO: 17 is genomic DNA for MAGE-51.

SEQ ID NO: 18 is cDNA for MAGE-6.

SEQ ID NO: 19 is genomic DNA for MAGE-7.

10 SEQ ID NO: 20 is genomic DNA for MAGE-8.

SEQ ID NO: 21 is genomic DNA for MAGE-9.

SEQ ID NO: 22 is genomic DNA for MAGE-10.

SEQ ID NO: 23 is genomic DNA for MAGE-11.

SEQ ID NO: 24 is genomic DNA for smage-I.

SEQ ID NO: 25 is genomic DNA for smage-II.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Many different "MAGE" genes have been identified, as will be seen from the s quences which follow the application. The protocols described in the foll wing

12

examples were used to isolate these genes and cDNA sequences.

"MAGE" as used herein refers to a nucleic acid sequence isolated from human cells. The acronym "smage" is used to describe sequences of murine origin.

When "TRAP" or "TRAs" are discussed herein as being specific to a tumor type, this means that the molecule under consideration is associated with that type of tumor, although not necessarily to the exclusion of other tumor types.

Example 1

In order to identify and isolate the gene coding for antigen P815A, gene transfection was used. This approach requires both a source of the gene, and a recipient cell line. Highly transfectable cell line P1.HTR was the starting material for the recipient, but it could not be used without further treatment, as it presents "antigen A", one of four recognized P815 tumor antigens. See Van Pel et al., Molecular Genetics 11: 467-475 (1985). Thus, screening experiments were carried out to isolate cell lines which did not express the antigen and which nonetheless possessed P1.HTR's desirable qualities.

To do this, P1.HTR was screened with CTLs which were specific for each of tumor antigens A, B, C and D. Such CTLs are described by Uyttenhove et al., J. Exp. Med. 157: 1040-1052 (1983).

20

To carry out the selection, 106 cells of P1.HTR were mixed with $2-4\times10^6$ cells of the CTL clone in a round bottom tube in 2 ml of medium, and centrifuged for three minutes at 150xg. After four hours at 37°C, the cells were washed and resuspended in 10 ml of medium, following Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982). Additional information on the CTL assay and screening protocol, in general may be found in Boon et al., J. Exp. Med. 152: 1184-1193 (1980), and Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982), the disclosure of which are incorporated by reference.

When these selections were carried out, a cell line variant was found which expressed neither antigen A or B. Additional selections with CTLs specific for antigen C then yielded a variant which also lacked antigen C. Please see figure 2 for a summary of the results of these screenings. The variant PO.HTR is negative for antigens A, B and C, and was therefore chosen for the transfection experiments.

The cell line PO.HTR has been deposited in accordance with the Budapest Treaty at the Institute Pasteur Collection Nationale De Cultures De Microorganismes, 28, Rue de Docteur Roux, 75724 Paris France, and has accession number I-1117.

This methodology is adaptable to secure other cell lines which are variants of a cell type which normally presents at least one of the four recognized P815 tumor antigens, i.e., antigens A, B, C and D, where the variants

present none of antigens A, B and C. P1.HTR is a mastocytoma cell line, so it will be seen that the protocol enables the isolation of biologically pure mastocytoma cell lines which express none of P815 antigens A, B and C, but which are highly transfectable. Other tumor types may also be screened in this fashion to secure desired, biologically pure cell lines. The resulting cell lines should be at least as transfectable with foreign DNA as is P1.HTR, and should be selected so as to not express a specific antigen.

10 Example 2

Previous work reported by DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988) the disclosure of which is incorporated by reference herein had shown the efficacy of using cosmid library transfection to recover genes coding for tum antigens.

Selective plasmid and genomic DNA of P1.HTR were prepared, following Wölfel et al., Immunogenetics 26: 178-187 (1987). The transfection procedure followed Corsaro et al., Somatic Cell Molec. Genet 7: 603-616 (1981), with some modification. Briefly, 60 µg of cellular DNA and 3 µg of DNA of plasmid pHMR272, described by Bernard et al., Exp. Cell. Biol. 158: 237-243 (1985) were mixed. This plasmid confers hygromycin resistance upon recipient cells, and therefore provides a convenient way to screen for transfectants. The mixed DNA was combined with 940 ul of 1 mM Tris-HCl (pH 7.5), 0.1 mM EDTA; and 310 ul 1M CaCl,.

The solution was added slowly, and under constant agitation to 1.25 ml of 50 mM Hepes, 280 mM NaCl, 1.5 mM Na2HPO4, adjusted to pH 7.1 with NaOH. Calcium phosphate - DNA precipitates were allowed to form for 30-45 minutes at room temperature. Following this, fifteen groups of PO.HTR cells (5x106) per group were centrifuged for 10 minutes at 400 a. Supernatants were removed, and pellets were resuspended directly into the medium containing the DNA precipitates. This mixture was incubated for 20 minutes at 37°C, after which it was added to an 80 cm² tissue culture flask containing 22.5 ml DMEM, supplemented with 10% fetal calf serum. After 24 hours, medium was replaced. Fortyeight hours after transfection, cells were collected and Transfected cells were selected in mass culture counted. using culture medium supplemented with hygromycin B: (350 ug/ml). This treatment selected cells for hygromycin resistance.

For each group, two flasks were prepared, each containing 8×10^6 cells in 40 ml of medium. In order to estimate the number of transfectants, 1×10^6 cells from each group were plated in 5 ml DMEM with 10% fetal calf serum (FCS), 0.4% bactoagar, and 300 ug/ml hygromycin B. The colonies were then counted 12 days later. Two independent determinations were carried out and the average taken. This was multiplied by 5 to estimate the number of transfectants in the corresponding group. Correction had

10

16

to be made for the cloning efficiency of P815 cells, known to be about 0.3.

Example 3

Eight days after transfection as described in example 2, supra, antibiotic resistant transfectants were separated from dead cells, using density centrifugation with Ficoll-Paque. These cells were maintained in non-selective medium for 1 or 2 days. The cells were plated in 96 well microplates (round bottom), at 30 cells/microwell in 200 ul of culture medium. Anywhere from 100-400 microwells were prepared, depending on the number of transfectants prepared. Agar colony tests gave estimates of 500-3000. After 5 days, the wells contained about 6x104 cells and replicate plates were prepared by transferring 1/10 of the wells to microplates which were then incubated at 30°C. One day later, master plates were centrifuged, medium removed, and 750 CTLs against P815 antigen A (CTL-P1:5) were added to each well together with 106 irradiated syngeneic feeder spleen cells in CTL culture medium containing 40 U/ml recombinant human IL-2, and HAT medium to kill stimulator cells. Six days later, plates were examined visually to identify wells where CTLs had proliferated. Where plates showed proliferating microcultures, aliquots of 100 ul of the wells were transferred to another plate containing 51Cr labeled P1.HTR target cells $(2x10^3 - 4x10^3 \text{ per well})$, and chromium release

10

17

was masured after 4 hours. Replicate microcultures corresponding to those showing high CTL activity were expanded and cloned by limited dilution in DMEM with 10% FCS. Five days later, about 200 clones were collected and screened with the CTL.P1:5 cell line, described supra, in a visual lysis assay. See figure 1A for these results.

In these experiments, three of the fifteen groups of transfectants yielded a few positive microcultures. microcultures were tested for lytic activity against P1.HTR, as described supra. Most of the microcultures where proliferation was observed showed lytic activity. This activity was well above background, as shown in figure 1B. This figure summarizes data wherein two groups of cells (groups "5" and "14"), 400 and 300 microwells were seeded with 30 hygromycin resistant transfected cells. Amplification and duplication of the microcultures was followed by addition of anti-A CTL P1:5. Six days later, lytic activity against P1.HTR was tested. In the figure, point represents lytic activity of microculture.

Duplicate microcultures corresponding to several positive wells were subcloned, and more than 1% of the subclones were found to be lysed by anti-A CTL. Thus, three independent transfectants expressing P815A were obtained from 33,000 hygromycin resistant transfectants. One of these lines, referred to hereafter as P1A.T2 was tested further.

10

The relevant antigen profile of P1A.T2 is shown in figure 2, this being obtained via anti-CTL assays of the type described supra.

Example 4

The CTL assays carried out for P1A.T2 demonstrated that it presented antigen A ("P815A"), and therefore had received the gene from P1.HTR. To that end, this cell line was used as a source for the gene for the antigen precursor in the following experiments.

10

20

Prior work had shown that genes coding for tum antigens could be recovered directly from transfectants obtained with a cosmid library. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). This procedure was followed for recovery of the P815 gene.

Total genomic DNA of P1A.T2 was partially digested

with restriction endonuclease Sau 3A1, and fractionated by NaCl density gradient ultracentrifugation to enrich for 35-50 kb DNA fragments, following Grosveld et al., Gene 10: 6715-6732 (1982). These fragments were ligated to cosmid arms of C2RB, described by Bates et al., Gene 26: 137-146 disclosure of which is incorporated by (1983), the reference. These cosmid arms had been obtained by cleavage with SmaI and treatment with calf intestinal phosphatase, followed by dig stion with BamHI. Ligated DNA was packaged into lambda phage components, and titrated on E. coli ED 8767, following Grosveld et al., supra. Approximately 9x105

19

ampicillin resistant colonies were obtained per microgram of DNA insert.

The cosmid groups were amplified by mixing 30,000 independent cosmids with 2 ml of ED 8767 in 10 mM MgCl₂, incubated 20 minutes at 37°C, diluted with 20 ml of Luria Bertani ("LB") medium, followed by incubation for one hour. This suspension was titrated and used to inoculate 1 liter of LB medium in the presence of ampicillin (50 ug/ml). At a bacterial concentration of 2x10⁸ cells/ml (OD₆₀₀=0.8), a 10 ml aliquot was frozen, and 200 ug/ml chloramphenicol was added to the culture for overnight incubation. Total cosmid DNA was isolated by alkaline lysis procedure, and purified on CsCl gradient.

In these experiments, a library of 650,000 cosmids was prepared. The amplification protocol involved the use of 21 groups of approximately 30,000 cosmids.

Example 5

10

20

Using the twenty-one groups of cosmids alluded to supra, (60 ug) and 4 ug of pHMR272, described supra, groups of 5x10⁶ PO.HTR cells were used as transfectant hosts. Transfection was carried out in the same manner described in the preceding experiments. An average of 3000 transfectants per group were tested for presentation, again using CTL assays as described. group of cosmids repeatedly yielded positive transfectants, at frequency of about 1/5,000 drug

transfectants. The transfectants, as with P1A.T2, also showed expression of both antigen A and B. The pattern of expression of transfectant P1A.TC3.1 is shown in figure 2.

Example 6

As indicated in Example 5, <u>supra</u>, three independent cosmid transfected cells presenting P815A antigen wer isolated. The DNA of these transfectants was isolated and packaged directly with lambda phage extracts, following DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). The resulting product was titrated on <u>E. coli</u> ED 8767 with ampicillin selection, as in Example 5. Similarly, amplification of the cosmids and transfection followed Example 5, again using PO.HTR.

High frequencies of transfection were observed, as described in Table 1, which follows:

Table 1. Transfer of the expression of antigen P&15A by cosmids obtained by direct packaging

Transfectant obtained with the cosmid library	No. of cosmids obtained by direct packaging of 0.5 µg of DNA	No. of transfectants expressing PE15A / no. of HmBr transfectants	
TC3.1	32	87/192	
TC3.2	32000	49/384	
TC3.3	44	25/72	

The cosmids were analyzed with restriction enzymes and it was found that directly packaged transfectant P1A.TC3.1 contained 32 cosmids, 7 of which were different. Each of these 7 cosmids was transfected into PO.HTR, in the manner described supra, and again, following the protocols described above, transfectants were studied for presentation of P815A. Four of the cosmid transfectants showed P815A presentation and, as with all experiments described herein, P815B was co-expressed.

10

Of the four cosmids showing presentation of the two antigens, cosmid C1A.3.1 was only 16.7 kilobases long, and was selected for further analysis as described <u>infra</u>.

The cosmid C1A.3.1 was subjected to restriction endonuclease analysis, yielding the map shown in Figure 3.

All EcoRI fragments were transfected, again using the above described protocols, and only the 7.4 kilobase fragment produced a transfectant that anti-A CTLs could lyse. Similar experiments were carried out on the PstI fragments, and only a 4.1 kb fragment fully contained within the 7.4 kb EcoRI fragment produced lysable transfectants.

20

This fragment (i.e., the 4.1 kb PstI fragment), was digested with SmaI, giving a 2.3 kb fragment which also yielded host cells presenting antigens A and B after transfection. Finally, a fragment 900 bases long, secured with SmaI/XbaI, also transferred expression of the precursors of these two antigens, i.e., the transfected h st cell presented both antigen A and antigen B.

20

Example 7

The 900 base fragment described above was used as a probe to detect the expression of the P815A gene in parent cell line P1.HTR. To accomplish this, total cellular RNA was first isolated using the guanidine-isothiocyanate procedure of Davis et al., <u>Basic Methods In Molecular Biology</u> (Elseview Science Publishing Co, New York) (1986). The same reference was the source of the method used to isolate and purify polyA⁺ mRNA using oligodT cellulose column chromatography.

Samples were then subjected to Northern Blot analysis. RNA samples were fractionated on 1% agarose gels containing 0.66 M formaldehyde. The gels were treated with 10xSSC (SSC: 0.15 M NaCl; 0.015 M sodium citrate, pH 7.0) for 30 minutes before overnight blotting on nitrocellulose membranes. These were baked for two hours at 80°C, after which the membranes were prehybridized for 15 minutes at 60°C in a solution containing 10% dextran sulfate, 1% SDS and 1M NaCl. Hybridization was then carried out using denatured probe (the 900 base fragment), together with 100 ug/ml salmon sperm DNA.

When this protocol was carried out using P1.HTR poly A+ RNA, a band of 1.2 kb and two fainter bands were identified, as shown in Figure 4, lane 1 (6 ug of the RNA).

The same probe was used to screen a cDNA library, prepared from poly-A+ RNA from the cell line. This yielded

23

a clone with a 1kb insert, suggesting a missing 5' end. The Northern blots for the cDNA are not shown.

Hybridization experiments in each case were carried out overnight at 60°C. The blots were washed twice at room temperature with 2xSSC and twice at 60°C with 2xSSC supplemented with 1% SDS.

The foregoing experiments delineated the DNA expressing the P815A antigen precursor sufficiently to allow sequencing, using the well known Sanger dideoxy chain termination method. This was carried out on clones generated using a variety of restriction endonucleases and by specific priming with synthetic oligonucleotide primers. The results for exons of the gene are set forth in sequence id no: 4.

Example 8

10

20

The Northern analysis described <u>supra</u> suggested that the 5' end of the cDNA was missing. To obtain this sequence, cDNA was prepared from P1.HTR RNA using a primer corresponding to positions 320-303. The sequence was then amplified using the polymerase chain reaction using a 3' primer corresponding to positions 286-266 and a 5' primer described by Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002 (1988). A band of the expected size (270 bases) was found, which hybridized to the 900 bp SmaI/XbaI fragment described <u>supra</u> on a Southern blot. Following cloning into m13tg 130 \(\lambda\) tg 131, the small, 270 bp fragment was sequenced. The sequence is shown in sequence id no: 1.

20

Example 9

Following the procurement of the sequences described in Examples 7 and 8 and depicted in seq id no: 4, a 5.7 kb region of cosmid C1A.3.1 was sequenced. This fragment was known to contain the 900 base fragment which expressed P815A in transfectants. This experiment permitted delineation of introns and exons, since the cosmid is genomic in origin.

The delineated structure of the gene is shown in figure 5. Together with seq id no: 4, these data show that the gene for the antigen precursor, referred to as "P1A" hereafter, is approximately 5 kilobases long and contains 3 exons. An ORF for a protein of 224 amino acids starts in exon 1, ending in exon 2. The 900 base pair fragment which transfers expression of precursors for antigens A and B only contains exon 1. The promoter region contains a CAAT box, as indicated in seq. id no: 1, and an enhancer sequence. This latter feature has been observed in promoters of most MHC class I genes, as observed by Geraghty et al., J. Exp. Med 171: 1-18 (1990); Kimura et al., Cell 44: 261-272 (1986).

A computer homology search was carried out, using program FASTA with K-triple parameters of 3 and 6, as suggested by Lipman et al., Science 227: 1435-1441 (1985), and using Genbank database release 65 (October 1990). No homology was found except for a stretch of 95 bases corresponding to part of an acid region cod d by exon 1 (positions 524-618), which is similar to sequences coding

25

for acidic regions in mouse nucleolar protein NO38/B23, as described by Bourbon et al., Mol. Biol. 200: 627-638 (1988), and Schmidt-Zachmann et al., Chromosoma 96: 417-426 (1988). Fifty six of 95 bases were identical. In order to test whether these homologies were the reason for cross hybridizing, experiments were carried out using a mouse spleen cDNA library screened with the 900 base fragment. cDNA clones corresponding closely to the sizes of the cross hybridizing bands were obtained. These were partially sequenced, and the 2.6 kb cDNA was found to correspond exactly to reported cDNA sequence of mouse nucleolin, while the 1.5 kb cDNA corresponded to mouse nucleolar protein NO38/B23.

Analysis of the nucleotide sequence of the gene, referred to as "P1A" hereafter, suggests that its coded product has a molecular mass of 25 kd. Analysis of the sequence id no: 4 shows a potential nuclear targeting signal at residues 5-9 (Dingwall et al., Ann. Rev. Cell Biol. 2: 367-390 (1986)), as well as a large acidic domain at positions 83-118. As indicated <u>supra</u>, this contains the region of homology between P1A and the two nucleolar proteins. A putative phosphorylation site can be found at position 125 (serine). Also, a second acidic domain is found close to the C-terminus as an uninterrupted stretch of 14 glutamate residues. A similar C-terminal structure has been found by Kessel et al. Proc. Natl. Acad. Sci. USA 84: 5306-5310 (1987), in a murine homeodomain protein having nuclear localization.

10

26

In studies comparing the sequence of gene P1A to the sequences for P91A, 35B and P198, no similarities were found, showing that P1A is indicative of a different class of genes and antigens.

Example 10

10

20

hand, and sequence in probe With the P1A investigations were carried out to determine whether the gene present in normal tissue was identical to that expressed by the tumor. To do this, phage libraries were prepared, using lambda zapII 10 and genomic DNA of DBA2 murine kidney cells. P1A was used as probe. Hybridization conditions were as described supra, and a hybridizing clone was found. The clone contained exons one and two of the P1A gene, and corresponded to positions -0.7 to 3.8 of figure 5. Following localization of this sequence, PCR amplification was carried out to obtain the sequence corresponding to 3.8 to 4.5 of figure 5.

Sequence analysis was carried out, and no differences were found between the gene from normal kidneys and the P1A gene as obtained from the P815 tumor cells.

In further experiments, the gene as found in DBA/2 kidney cells was transfected into PO.HTR, as described supra. These experiments, presented pictorially in figure 7, showed that antigens A and B were expressed as efficiently by the kidney gene isolated from normal kidney cells as with the P1A gene isolated from normal kidney cells.

These experiments lead to the conclusion that the gene coding for the tumor rejection antigen precursor is a gene that does not result from a mutation; rather, it would appear that the gene is the same as one present in normal cells, but is not expressed therein. The ramifications of this finding are important, and are discussed <u>infra</u>.

In studies not elaborated upon herein, it was found that variants of the gene were available. Some cells were "PlA", rather than the normal "PlA". The only difference between these is a point mutation in exon 1, with the 18th triplet coding for Ala in the variant instead of Val.

Example 11

Additional experiments were carried out with other cell types. Following the protocols described for Northern blot hybridizations <u>supra</u>, RNA of normal liver and spleen cells was tested to determine if a transcript of the P1A gene could be found. The Northern blot data are presented in figure 4 and, as can be seen, there is no evidence of expression.

20

10

The murine P815 cell line from which P1A was isolated is a mastocytoma. Therefore, mast cell lines were studied to determine if they expressed the gene. Mast cell line MC/9, described by Nabel et al., Cell 23: 19-28 (1981), and short term cultures of bone marrow derived mast cells were tested in the manner described <u>supra</u> (Northern blotting), but no transcript was found. In contrast when a Balb/C derived IL-3 depend nt cell lin L138.8A (Hültner et al.,

28

J. Immunol. 142: 3440-3446 (1989)) was tested, a strong signal was found. The mast cell work is shown in figure 4.

It is known that both BALB/C and DBA/2 mice share H-2^d haplotype, and thus it was possible to test sensitivity to lysis using the CTLs described <u>supra</u>. Figure 8 shows these results, which essentially prove that anti-A and anti-B CTLs lysed the cells strongly, whereas anti-C and anti-D lines did not.

Further tests were carried out on other murine tumor cell lines, i.e., teratocarcinoma cell line PCC4 (Boon et al., Proc. Natl. Acad. Sci. USA 74: 272-275 (1977), and leukemias LEC and WEH1-3B. Expression could not be detected in any of these samples.

Example 12

The actual presentation of the P1A antigen by MHC molecules was of interest. To test this, cosmid C1A.3.1 was transfected into fibroblast cell line DAP, which shows phenotype $H-2^k$. The cell lines were transfected with genes expressing one of the K^d , D^d , and L^d antigen. Following transfection with both the cosmid and the MHC gene, lysis with CTLs was studied, again as described <u>supra</u>. These studies, summarized in Table 2, show that L^d is required for presentation of the P1A antigens A and B.

Table 2. H-2-restriction of antigens PEISA and PEISB

Recipient cell*	No of clones lysed by the CTL/ no. of HmB1 clones#			
	CTL anti-A	CTL znij-B	٠.	
DAP (H-2k)	0/208	0/194	-	
DAP + Kd	0/165	0/162		
DAP + Dd	0/157	0/129		
DAP+Ld	25/33	15/20		

^{*}Cosmid C1A.3.1 containing the entire P1A gene was transfected in DAP cells previously transfected with H-2d class I genes as indicated.

The observation that one may associate presentation of a tumor rejection antigen with a particular MHC molecule was confirmed in experiments with human cells and HLA molecules, as elaborated upon <u>infra</u>.

Example 13

Using the sequence of the P1A gene as well as the amino acid sequence derivable therefrom, antigenic peptides which were A^+ B^+ (i.e., characteristic of cells which express both the A and B antigens), and those which are $A^ B^+$ were identified. The peptide is presented in Figure 10. This peptide when administered to samples of PO.HTR cells

[&]quot;Independent drug-resistant colonies were tested for lysis by anti-A or anti-B CTL in a visual assay.

30

in the presence of CTL cell lines specific to cells presenting it, led to lysis of the PO.HTR cells, lending support to the view that peptides based on the product expressed by the gene can be used as vaccines.

Example 14

10

20

The human melanoma cell line referred to hereafter as MZ2-MEL is not a clonal cell line. It expresses four stable antigens recognized by autologous CTLs, known as antigens "D, E, F, and A". In addition, two other antigens "B" and "C" are expressed by some sublines of the tumor. CTL clones specific for these six antigens are described by Van den Eynde et al., Int. J. Canc. 44: 634-640 (1989). Among the recognized subclones of MZ2-MEL are MEL.43, MEL3.0 and MEL3.1. (Van den Eynde et al., supra). Cell line MEL3.1 expresses antigen E, as determined by CTL studies as described for P815 variants, supra, so it was chosen as a source for the nucleic acid sequence expressing the antigen precursor.

In isolating the pertinent nucleic acid sequence for a tumor rejection antigen precursor, the techniques developed <u>supra</u>, showed that a recipient cell is needed which fulfills two criteria: (i) the recipient cell must not express the TRAP of interest under normal conditions, and (ii) it must express the relevant class I HLA molecule. Also, the recipient cell must have a high transfection frequency, i.e., it must be a "good" recipient.

....

In order to secure such a cell line, the clonal subline ME3.1 was subjected to repeated selection with anti-E CTL 82/30 as described by Van den Eynde, <u>supra</u>. The repeated cycles of selection led to isolation of subclone MZ2-MEL-2.2 isc E⁻. This subclone is also HPRT⁻, (i.e., sensitive to HAT medium: 10⁻⁴ M hypoxanthine, 3.8 x 10⁻⁷ aminopterine, 1.6 x 10⁻⁵ M 2-deoxythymidine). The subclone is referred to as "MEL-2.2" for simplicity hereafter.

Example 15

10

The genomic DNA of MEL3.0 was prepared following Wölfel et al., Immunogenetics 26: 178-187 (1987), the disclosure of which is incorporated by reference. The plasmid pSVtkneoß, as described by Nicolas et al., Cold Spring Harb., Conf. Cell Prolif. 10: 469-485 (1983) confers geneticin resistance, so it can be used as a marker for cotransfection, as it was in this experiment.

20

Following a procedure similar but not identical to that of Corsao et al., Somatic Cell Molec. Genet 7: 603-616 (1981), total genomic DNA and the plasmid were cotransfected. The genomic DNA (60 μ g) and plasmid DNA (6 μ g) were mixed in 940 μ l of 1 mM Tris HCl (pH 7.5), 0.1 mM EDTA, after which 310 μ l of 1M CaCl₂ was added. This solution was slowly added, under constant agitation, to 1.25 ml of 2xHBS (50 mM HEPES, 280 mM NaCl 1.5 mM Na₂HPO₄, adjusted to pH 7.1 with NaOH). The calcium phosphate DNA precipitates were allowed to form for 30-45 minutes at room

temperature, after which they were applied to 80 cm² tissue culture flasks which had been seeded 24 hours previously with 3x10⁶ MEL2.2 cells, in 22.5 ml of melanoma culture medium (Dulbecco's Modified Eagle's Medium) supplemented with 10% fetal calf serum. After 24 hours, the medium was replaced. Forty eight hours after transfection, the cells were harvested and seeded at 4x10⁶ cells per 80 cm² flask in melanoma culture medium supplemented with 2 mg/ml of geneticin. The geneticin serves as a selection marker.

10 Example 16

Thirteen days after transfection, geneticin-resistant colonies were counted, harvested, and cultured in nonselective medium for 2 or 3 days. Transfected cells were then plated in 96-well microplates at 200 cells/well in 200 ul of culture medium with 20% fetal calf serum (FCS) in order to obtain approximately 30 growing colonies per well. The number of microcultures was aimed at achieving redundancy, i.e., such that every independent transfectant should be represented at least four times.

20

After 10 days, wells contained approximately $6x10^4$ cells. These cells were detached, and 1/3 of each microculture was transferred to a duplicate plate. After 6 hours, i.e., after readherence, medium was removed and 1500 anti-E CTL (CTL 82/30), were added to each well in 100 μ l of CTL culture medium with 35 U/ml of IL-2. One day later, the supernatant (50 μ l) was harvested and examined

...

for TNF concentration, for reasons set forth in the following example.

Example 17

10

20

The size of the mammalian genome is 6×10^6 kb. As the average amount of DNA integrated in each drug-resistant transfectant was expected to be about 200 kb, a minimum of 30,000 transfectants would need to be examined to ascertain whether antigen E had been transfected. Prior work with murine cells had shown that when a CTL stimulation assay was used, groups containing only 3% of cells expressing the antigen of interested could be identified. This should reduce the number of assays by a factor of 30. While an anti-E CTL assay, as described supra, in mixed E⁺/E⁻ cells was helpful, it was not sufficient in that consistent results could not be obtained.

As a result, an alternative test was devised. Stimulation of CTLs was studied by release of tumor necrosis factor ("TNF") using well known methodologies which need not be repeated here. As described in Example 15, 1500 CTL 82/30 cells had been added per well of transfectants. These CTLs were collected 6 days after stimulation. As indicated supra, after 1/3 of the cells in each well had been removed and the remaining 2/3 (4×10^4) had readhered, the CTLs and IL-2 were added thereto. The 50 μ l of supernatant was removed 24 hours later and transferred to a microplate containing 3×10^4 W13 (WEHI-164 clone 13;

20

Espevik et al., J. Immunol. Meth. 95: 99-105 (1986)) cells in 50 μ l of W13 culture medium (RPMI-1640, supplemented with L-arginine (116 mg/l), L-asparagine (36 mg/l), L-glutamine (216 mg/l), and 10% FCS supplemented with 2 μ g of actinomycin D at 37% in an 8% CO₂ atmosphere. The cell line W13 is a mouse fibrosarcoma cell line sensitive to TNF. Dilutions of recombinant TNF-B in RPMI 1640 were added to target cell controls.

The W13 cultures were evaluated after 20 hours of incubation, and dead cell percentage was measured using an adaptation of the colorimetric assay of Hansen et al., J. Immunol. Meth. 119: 203-210 (1989). This involved adding (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 50 ml tetrazolium bromide at 2.5 mg/ml in PBS, followed by two hours of incubation at 37°C. Dark blue formazan crystals were dissolved by adding 100 μ l of lysis solution (1 volume N,N dimethyl formamide mixed at 37°C with two volumes of water containing 30% (w/v) sodium dodecyl sulphate, at pH 4.7 from 1.6% acetic acid and 2.5% 1N HCl). Plates were incubated at 37°C overnight, and ODs were taken at 570 nm using 650 nm as control. Dead cell percentage was determined via the formula:

20

following Espevik et al., J. Immunol. Meth. 95: 99-105 (1986). The results showed that even when the ratio of E^+/E^- cells was as low as 1/45, significant production of TNF was observed, thus showing active CTLs. This led to the decision to test the drug resistant transfectants in groups of 30.

Example 18

Cells were tested for TNF production as discussed in Example 17, <u>supra</u>. A total of 100 groups of E⁻ cells (4x10⁶ cells/group) were tested following transfection, and 7x10⁴ independent geneticin resistant transfectants were obtained, for an average of 700 per group. Only one group of transfected cells led to a microculture which caused anti-E antigen CTL clone 82/30 to produce TNF. Of 300 clones tested, 8 were positive. These clones were then tested for lysis by anti-E CTL, using the standard ⁵¹Cr release assay, and were found to be lysed as efficiently as the original E⁺ cell line. The transfectant E.T1, discussed herein, had the same lysis pattern as did MEL2.2 for CTLs against antigens B,C,D and F.

The fact that only one transfectant presented the antigen out of 70,000 geneticin resistance transfectants may at first seem very low, but it is not. The work described <u>supra</u> for P815 showed an average frequency of 1/13,000. Human DNA recipient MEL2.2 appears to integrate 5 times less DNA than P1.HTR.

36

Exampl 19

Once transfectant E.T1 was found, analysis had to address several questions including whether an E⁺ contaminant of the cell population was the cause. The analysis of antigen presentation, described <u>supra</u>, shows that E.T1 is B⁻ and C⁻, just like the recipient cell MEL2.2. It was also found to be HPRT⁻, using standard selection procedures. All E⁺ cells used in the work described herein, however, were HPRT⁺.

10

20

It was also possible that an E+ revertant of MEL2.2 was the source for E.T1. To test this, the observation by Perucho et al., Cell 22: 309-317 (1980), that cotransfected sequences usually integrate together at a single location of recipient genome was employed. If antigen E in a transfectant results from cotransfec-tion with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. Wölfel et al., supra, has shown this to be true. If a normally E cell is transfected with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. a normally E+ cell transfected with pSVtkneoß is E.T1, however, "co-deletion" should not take place. E.T1 subjected transfectant was the this. immunoselection with 82/30, as described supra. Two antigen loss variants were obtained, which resisted lysis by this CTL. Neither of these had lost geneticin resistance; however, Southern blot analysis showed loss of several neo^r sequences in the variants, showing close linkage between the E gene and neo^r gene in E.T1, leading to the conclusion that E.T1 was a transfectant.

Example 20

10

20

The E⁺ subclone MZ2-MEL 4B was used as a source of DNA for preparation of a cosmid library. This library of nearly 700,000 cosmids was transfected into MZ2-MEL 2.2 cells, following the cosmid transfection protocols described supra.

By packaging the DNA of cosmid transfectants directly into lambda phase components, it is sometimes possible to retrieve cosmids that contain the sequences of interest. This procedure was unsuccessful here, so we rescued the transfected sequence by ligating DNA of the transfectant to appropriate restriction fragments of cosmid vector pTL6. This was tried with two transfectants and was successful with one of them. One cosmid, referred to as B3, was recovered from this experiment, and subjected restriction endonuclease digestion via XmaI, or by BamHI digestion of a large, 12 kb XmaI transfected fragment. The fragments were cloned into vector pTZ 18R, and then transfected into MEL2.2. Again, TNF production was the measure by which successful transfection was determined. The experiments led to the determination of a gene sequence capable of transfecting antigen E on the 12 kb XmaI

38

fragm nt, and then on the 2.4 kb fragment of BamHI digestion of the 12 kb segment.

The 2.4 kb fragment hybridizes with a 2.4 kb fragment from MZ2-MEL and with a T cell clone of patient MZ-2, as determined by Southern Blots (BamHI/SmaI digested DNA). The band is absent from E antigen loss variants of MZ2-MEL, as seen in Figure 12.

The sequence for the E antigen precursor gene has been determined, and is presented herein:

					•		
	1 10	1 2	0 30	-, 1 40	1 50	1 60	
			a monthemag	6600076067	<u> ಅಸ್ತಾನ್ಯಾ</u>	66657EATCC (ES
63	ACTGCATGA	acresseat	s teachers	EYECOGYCCC	TECTOSTAGE	ACTONSWASC :	120
123	CAGGGCTGTG	CTTGCGGTC	P OCACCETGAG	egacces 10 ay	TICCICITCC	TGSAGCTCCA :	160
283	GENN SCAGG	agtgaggee	TOTTCTCACA	EXSTATECTE	AGSTENENSA	ecrevente:	240
241	CACASSTER	و و المحكون الم	S ANTETTT GCC	ETGULTGEAC	ACCUAGGGGC	CCACCIGCCA :	300
301	. ರಾಜಾರಾವಾ	L Year Steen	: AGAGTCTSSC	CICYCCICCC	EXCITETELET	CCTGIAGNAT :	3 E C
362	בפאככזכזפס	: TGGCCGGCT	S EXCECTENST	Accerera	TICCICCITC	AGGTTTTTEAG 4	420
421	. ಅಂದು ಮೂರವರ	: ANCCENGNE	: ACAGGATTCC	<u>೯೯೯೮</u>	ದಾಣಾವಾನ	consoron a	4 E C
461	<u> GATOTOTANO</u>	: TAGGCCTTT	S TINGAGTOTE			AGGCCTCTCA S	
543	CACACTCCC	. 616166667	s scensissis	· CTICATISCC	CYPCICCICC	CONCIOCIO (EDD
601	GCCTGCTGCC	: CTGACGAGA	: TCATCATGTC	actionerre	AGGAGTETGE	TLLECTYCCC (EED
661	Teassaasc	: ETTGAGGGCC	C SYCHYCHES	ರದಾ ಅತಿಕರಾಕು	tererera	GGCTGCCACC T	720
721	TOCTOCTOCT	CICCICIGG:	CCTGGGGCACC	CTGGAGGAGG	TOCCOLUTEC	tentering !	7€0
781	<u>evicatede</u>	: Yeyeteete	(60:37:30:21 0:0			CTICACTOCA 8	
841	CYCYCCON	: CCASTGAGG	TTCCAGCAGC	CCTCLACAGE	AGGGGGCANG	EXCEPTIBLE S	800
			* AGCASTAATC	TC:Meme	1000107111	enteritti 1) E C
			: creecescer	6107777738	CYCHYLOCA	BEYEVELES. 3	1020
1021	ATCHMATT	NCANGENETS	TITICCTGAG	Atottossca	westerey	diccilecye 7	080
1081	Elegicilie	CONTRACT	enemen	exceerses	CCCYCLCCLY	reiccircic 7	1140
2343	ACCTGCCTAG	Gicicicci)	Tex.155cc16	CTGGGTGATA	ATCAGATCAT	accentation 1	1200
1201	escritterey	INATTOTOC	GSTEATGATT			tecteneous 1	
2261	GLULTITOSS	AGGAGCTGAG	TETCATEGAS	4 - 4 - 11 - 1	•	ENGIGCEINT 1	-
7357	eccepteccy	GGANGCTGCT	CYCCCTYCYL	2166155256	ANAGTACET	Geyelysees 1	350
1381	AGGTGGGGA	Cheichico	: GCACGCTATG	Abtroctors	GGSTCCAAGG	ecceseses 1	440
2441	MACCAGCTA	TGTGNANGTO	CTTGAGIATG			CIICGCIIII 1	
1501	TCTTCCCATC	ccteceten	GC AGCTTTGA			ichections i	
2561	110CY COCTY	GGCCASTGGS	A 900GGSAETIG			coccateers 3	
	CAGCTTCCCC					YCCCCLCY21 3	
	*		BITCIATIGG		=	remercial ;	
-	100774014				-	ATCCAAGTTT 3	
-	ateuateuea					acticiditi 1	
	SYLLOCYLL	•				acternia 1	
	GIYCLIYCYY					ALLSLANTIA 1	
	reversesc					ALAGATATAT 2	
2041	BCATACCTGS	ATTTCCTTGG	crittien			lonismen 5	
	ATTOTTCCTG					titiggaags 2	
_	CCCTGGGTTA					Ataggtegt 2	
2221	Agasteragg	AGCTGCAGTC	acctuatical			agatgtaggs 2	
	ANNETCKEN.					tetentece 2	
_	CTGAGCTGGG		Cillecony	ETGCAGTICC	Ticigggga	OCIGNITOIN S	
2401	Atchtettes						418
	1 10	1 20	1 30	1 40	1 50	1 60	

Exampl 21

After the 2.4 kb genomic segment had been identified, studies were carried out to determine if an "E" subline expressed any homologous DNA. Cell line MZ2-MEL 3.0 was used as a source, and a cDNA library was prepared from its mRNA, using art known techniques. The 2.4 kb segment was used as a probe, and mRNA of about 1.8 kb was identified as homologous, using Northern blot analysis. When cDNA was screened, clones were obtained showing almost complete identity to parts of the 2.4 kb fragment. Two exons were thus identified. An additional exon was located upstream of these, via sequencing segments of cosmid B3 located in front of the 2.4 kb BamHI fragment. The gene extends over about 4.5 kb, as shown in Figure 8. The starting point of the transcribed region was confirmed using PCR for the 5' end of the cDNA. The three exons comprise 65, 73, and 1551 base pairs. An ATG is located at position 66 of exon 3, followed by an 828 base pair reading frame.

Example 22

20

10

To determine if smaller segments of the 2.4 kb fragment could transfer the expression of antigen E, smaller pieces corresponding to the larger gene were prepared, using art recognized techniques, and transferred into E⁻ cells. Figure 8 shows the boundaries of the three segments.

41

Transfer of antigen expression in this manner indicates that the gene codes for the antigen precursor, rather than coding for a protein which activates the antigen.

Example 23

10

20

The probing of cDNA described supra revealed, surprisingly, two different but closely related cDNAs. These cDNAs, when tested, did not transfer expression of antigen E, but they do show substantial homology to the first cDNA segment. The three segments, appear to indicate a newly recognized family of genes, referred to as "MAGE" for "melanoma antigen". In Figure 9, "mage -1" directs expression of the antigen from MZ2 cells. Portions of the third exon of each gene are presented in Figure 9. second and third sequences are more closely related to each other than the first (18.1 and 18.9% difference compared to the first; 12% with each other). Out of 9 cDNA clones obtained, three of each type were obtained, suggesting equal expression. "MAGE" as used hereafter refers to a family of molecules, and the nucleic acids coding for them. These nucleic acids share a certain degree of homology and are expressed in tumor cells including several types of human tumor cells as well as in human tumors. The family is referred to as "MAGE" because the first members were identified in human melanoma cells. As the experiments which follow indicate, however, the members of th family are not at all restricted to melanoma tumors;

42

rather, MAGE refers to a family of tumor rejection antigen precursors and the nucleic acid sequences coding therefore. The antigens resulting therefrom are referred to herein as "MAGE TRAS" or "melanoma antigen tumor rejection antigens"

Example 24

Experiments with mouse tumors have demonstrated that new antigens recognized by T cells can result from point mutations that modify active genes in a region that codes for the new antigenic peptide. New antigens can also arise from the activation of genes that are not expressed in most normal cells. To clarify this issue for antigen MZ2-E, the mage-1 gene present in the melanoma cells was compared to that present in normal cells of patient MZ2.

Amplification by polymerase chain reaction (PCR) of DNA of lymphocytes using phytohemagglutinin-activated blood primers surrounding a 1300 bp stretch covering the first half of the 2.4 kb fragment was carried out. As expected, a PCR product was obtained whereas none was obtained with the DNA of the E variant. The sequence of this PCR product proved identical to the corresponding sequence of the gene carried by the E+ melanoma cells. Moreover, it was found that antigen MZ2-E was expressed by cells transfected with This result suggests that the the cloned PCR product. activation of a gene normally silent is responsible for the appearance of tumor rejection antigen MZ2-E.

43

Exampl 25

10

20

In order to evaluate the expression of gene mage-1 by various normal and tumor cells, Northern blots were hybridized with a probe covering most of the third exon. In contrast with the result observed with human tumor cell line MZ2-MEL 3.0, no band was observed with RNA isolated from a CTL clone of patient MZ2 and phytohemagglutininactivated blood lymphocytes of the same patient. negative were several normal tissues of other individuals (Figure 10 and Figure 11). Fourteen melanoma cell lines of other patients were tested. Eleven were positive with bands of varying intensities. In addition to these culture cell lines, four samples of melanoma tumor tissue were analyzed. Two samples, including a metastasis of patient MZ2 proved positive, excluding the possibility that expression of the gene represented a tissue culture A few tumors of other histological types, artefact. including lung tumors were tested. Most of these tumors were positive (Figures 10 and 11). These results indicated that the MAGE gene family is expressed by many melanomas and also by other tumors. However, they provided no clear indication as to which of genes mage-1, 2 or 3 were cells, because the DNA probes expressed by these corresponding to the three genes cross-hybridized to a render this analysis more considerable extent. To specific, PCR amplification and hybridization with highly specific oligo- nucleotide probes were used. cDNAs were obtained and amplified by PCR using oligonucleotide primers

44

corresponding to sequences of exon 3 that were identical for the three MAGE genes discussed herein. products were then tested for their ability to hybridize to showed complete oligonucleotides that three other specificity for one of the three genes (Figure 9). Control experiments carried out by diluting RNA of melanoma MZ2-MEL 3.0 in RNA from negative cells indicated that under the conditions used herein the intensity of the signal decreased proportionally to the dilution and that positive signals could still be detected at a dilution of 1/300. The normal cells (lymphocytes) that were tested by PCR were confirmed to be negative for the expression of the three MAGE genes, suggesting therefore a level of expression of less than 1/300th that of the MZ2 melanoma cell line (Figure 11). For the panel of melanoma cell lines, the results clearly showed that some melanomas expressed MAGE genes mage 1, 2 and 3 whereas other expressed only mage-2 and 3 Some of the other tumors also (Figures 11 and 10). expressed all three genes whereas others expressed only mage-2 and 3 or only mage-3. It is impossible to exclude formally that some positive PCR results do not reflect the expression of one of the three characterized MAGE genes but that of yet another closely related gene that would share the sequence of the priming and hybridizing oligonucleotides. It can be concluded that the MAGE gene family is expressed by a large array of different tumors and that these genes are silent in the normal cells tested to this point.

10

20

Exammple 26

The availability of a sequence that transfects at high efficiency and efficiently expresses a TRAP made it possible to search for the associated major histocompatibility complex (MHC) class I molecule. The class I specificities of patient MZ2 are HLA-A1, A29, B37, B44 and C6. Four other melanomas of patients that had A1 in common with MZ2 were cotransfected with the 2.4 kb fragment and pSVtkneoß. Three of them yielded neor transfectants that stimulated TNF release by anti-E CTL clone 82/30, which is CD8+ (Figure 10). No E- transfectant was obtained with four other melanomas, some of which shared A29, B44 or C6 with MZ2. This suggests that the presenting molecule for antigen MZ2-E is HLA-A1. In confirmation, it was found that, out of 6 melanoma cell lines derived from tumors of HLA-A1 patients, two stimulated TNF release by anti-E CTL clone 82/30 of patient MZ2. One of these tumor cell lines, MI13443-MEL also showed high sensitivity to lysis by these anti-E CTL. These two melanomas were those that expressed mage-1 gene (Figure 13). Eight melanomas of patients with HLA haplotypes that did not include A1 were examined for their sensitivity to lysis and for their ability to stimulate TNF release by the CTL. None was found to be positive. The ability of some human anti-tumor CTL to lyse allogeneic tumors sharing an appropriate HLA specificity with the original tumor has been reported previously (Darrow, et al., J. Immunol. 142: 3329 (1989)). quite possible that antigenic peptides encoded by genes

46

mage 2 and 3 can also be presented to autologous CTL by HLA-Al or other class I molecules, especially in view of the similar results found with murine tumors, as elaborated upon supra.

Example 27

10

20

As indicated <u>supra</u>, melanoma MZ2 expressed antigens F, D and A', in addition to antigen E. Following the isolation of the nucleic acid sequence coding for antigen E, similar experiments were carried out to isolate the nucleic acid sequence coding for antigen F.

To do this, cultures of cell line MZ2-MEL2.2, an E-cell line described <u>supra</u>, were treated with anti-F CTL clone 76/6, in the same manner described for treatment with anti-E CTL clones. This resulted in the isolation of an F antigen loss variant, which was then subjected to several rounds of selection. The resulting cell line, "MZ2-MEL2.2.5" was completely resistant to lysis by anti-F CTLs, yet proved to be lysed by anti-D CTLs.

Again, following the protocols set forth for isolation of antigen -E precursor DNA, the F variant was transfected with genomic DNA from F cell line MZ2-MEL3.0. The experiments yielded 90,000 drug resistant transfectants. These were tested for MZ2-F expression by using pools of 30 cells in the TNF detection assay elaborated upon supra. One pool stimulated TNF release by anti-F CTLs, and was cloned. Five of 145 clones were found to stimulate anti-

20

F CTLs. Lysis assays, also following protocols described supra, confirmed (i) expression of the gene coding for antigen F, and (ii) presentation of antigen F itself.

Example 28

Following identification of F⁺ cell lines, the DNA therefrom was used to transfect cells. To do this, a cosmid library of F⁺ cell line MZ2-MEL.43 was prepared, again using the protocols described <u>supra</u>. The library was divided into 14 groups of about 50,000 cosmids, and DNA from each group was transfected into MZ2-MEL2.2.5. Transfectants were then tested for their ability to stimulate TNF release from anti-F CTL clone 76/6. Of 14 groups of cosmids, one produced two independent transfectants expressing antigen F; a yield of two positives out of 17,500 geniticin resistant transfectants.

Example 29

The existence of a gene family was suggested by the pattern observed on the Southern blot (Figure 12). To do this, the 2.4 kb BamHI fragment, which transferred the expression of antigen M22-E, was labelled with 32p and used as a probe on a Southern Blot of BamHI digested DNA of E + cloned subclone M22-MEL2.2. Hybridization conditions included 50 μ l/cm² of 3.5xSSC, 1xDenhardt's solution; 25 mM sodium phosphate buffer (pH 7.0), 0.5% SDS, 2mM EDTA, where th 2.4 kb probes had been labelled with [α^{32} p]dCTP (2-3000)

48

Ci/mole), at 3x10⁶ cpm/ml. Hybridization was carried out for 18 hours at 65°C. After this, the membranes were washed at 65°C four times for one hour each in 2xSSC, 0.1% SDS, and finally for 30 minutes in 0.1xSSC, 0.1% SDS. To identify hybridization, membranes were autoradiographed using Kodak X-AR film and Kodak X-Omatic fine intensifying screens.

In the following examples, whenever "hybridization" is referred to, the stringency conditions used were similar to those described <u>supra</u>. "Stringent conditions" as used herein thus refers to the foregoing conditions; subject to routine, art recognized modification.

Example 30

10

20

The cDNA coding for mage 4 was identified from a sample of the human sarcoma cell line LB23-SAR. This cell line was found to not express mage 1, 2 or 3, but the mRNA of the cell line did hybridize to the 2.4 kb sequence for mage 1. To study this further, a cDNA library was prepared from total LB23-SAR mRNA, and was then hybridized to the 2.4 kb fragment. A cDNA sequence was identified as hybridizing to this probe, and is identified hereafter as mage 4.

Example 31

Experiments were carried out using PHA-activated lymphocytes from patient "MZ2", the source of the "MZ" cells discussed supra. An oligonucleotide probe which

49

showed homology to mage 1 but not mage 2 or 3 was hybridized with a cosmid library derived from the PHA activated cells. The size of the hybridizing BamHI cosmid fragment, however, was 4.5 kb, thus indicating that the material was not mage 1; however, on the basis of homology to mage 1-4, the fragment can be referred to as "mage 5". The sequence of MAGE 5 is presented in SEQ ID NO: 16.

Example 32

10

20

Melanoma cell line LB-33-MEL was tested. Total mRNA from the cell line was used to prepare cDNA, which was then amplified with oligos CHO9: (ACTCAGCTCCTCCCAGATTT), and CHO10: (GAAGAGGAGGGCCAAG). These oligos correspond to regions of exon 3 that are common to previously described mage 1, 2 and 3.

To do this, 1 μ g of RNA was diluted to a total volume of 20 μ l, using 2 μ l of 10x PCR buffer, 2 μ l of each of 10 mM dNTP, 1.2 μ l of 25 mM MgCl₂, 1 μ l of an 80 mM solution of CHO9, described supra, 20 units of RNAsin, and 200 units of M-MLV reverse transcriptase. This was followed by incubation for 40 minutes at 42°C. PCR amplification followed, using 8 μ l of 10x PCR buffer, 4.8 μ l of 25 mM MgCl₂, 1 μ l of CHO10, 2.5 units of Thermus acquaticus ("Taq") polymerase, and water to a total volume of 100 μ l. Amplification was then carried out for 30 cycles (1 minute 94°C; 2 minutes at 52°C, 3 minutes at 72°C). Ten μ l of each reaction were then size fractionated on agarose gel,

50

followed by nitrocellulose blotting. The product was found oligonucleotide probe CHO18 with hybridize to (TCTTGTATCCTGGAGTCC). This probe identified mage 1 but not mage 2 or 3. However, the product did not hybridize to probe SEQ 4 (TTGCCAAGATCTCAGGAA). This probe also binds This indicated that the PCR mage 1 but not 2 and 3. product contained a sequence that differed from mage 1, 2 Sequencing of this fragment also indicated differences with respect to mage 4 and 5. These results indicate a sequence differing from previously identified mage 1, 2, 3, 4 and 5, and is named mage 6.

Example 33

10

20

In additional experiments using cosmid libraries from PHA-activated lymphocytes of MZ2, the 2.4 kb mage 1 fragment was used as a probe and isolated a complementary fragment. This clone, however, did not bind to oligonucleotides specific for mage 1, 2, 3 or 4. The sequence obtained shows some homology to exon 3 of mage 1, and differs from mages 1-6. It is referred to as mage 7 hereafter. Additional screenings yielded mage 8-11.

Example 34

The usefulness of the TRAPs, as well as TRAs derived therefrom, was exemplified by the following.

Exon 3 of mage 1 was shown to transfer expression of antigen E. As a result, it was decided to test whether

51

synthetic peptides derived from this exon 3 could be used to confer sensitivity to anti-E CTL.

To do this, and using standard protocols, cells normally insensitive to anti-E/CTLs were incubated with the synthetic peptides derived from Exon 3.1. Using the CTL lytic assays described supra on P815A, and a peptide concentration of 3 mM, the peptide Glu-Ala-Asp-Pro-Thr-Gly-His-Ser-Tyr was shown to be best. The assay showed lysis of 30%, indicating conferring of sensitivity to the anti-E CTL.

Example 35

10

Nucleic acid sequences referred to as "smage" were isolated from murine cells. Using the protocols described supra, a cosmid library was prepared from the DNA of normal DBA/2 kidney cells, using cosmid vector C2RB. As a probe, the 2.4 kb BamHI fragment of MAGE-1 was used. The DNA was blotted to nylon filters, and these were washed in 2xSSC at 65°C to identify the smage material.

Example 36

4

Further tissue samples were tested for the presence of MAGE genes, using the protocols discussed <u>supra</u>. Some of these results follow.

There was no expression of the MAGE genes in brain or kidney tumor tissue. Colon tumor tissue showed expression of MAGE 1, 2, 3 and 4, although not all tumors tested showed expression of all MAGE genes. This is also true for

20

pancreatic tumor (MAGE 1); non-small cell lung (MAGE 1, 2, 3 and 4), prostate (MAGE 1), sarcomas (MAGE 1, 2, 3 and 4), breast (MAGE 1, 2 and 3), and larynx (MAGE 1 and 4).

The foregoing disclosure, including the examples, places many tools of extreme value in the hands of the skilled artisan. To begin, the examples identify and provide a methodology for isolating nucleic acid molecules which code for tumor rejection antigen precursors as well as the nucleic acid molecules complementary thereto. It is known that DNA exists in double stranded form, and that each of the two strands is complementary to the other. Nucleic acid hybridization technology has developed to the point where, given a strand of DNA, the skilled artisan can isolate its complement, or synthesize it.

"Nucleic acid molecule" as used herein refers to all species of DNA and RNA which possess the properties discussed <u>supra</u>. Genomic and complementary DNA, or "cDNA" both code for particular proteins, and as the examples directed to isolation of MAGE coding sequences show, this disclosure teaches the artisan how to secure both of these.

Similarly, RNA molecules, such as mRNA can be secured. Again, with reference to the skilled artisan, once one has a coding sequence in hand, mRNA can be isolated or synthesized.

Complementary sequences which do not code for TRAP, such as "antisense DNA" or mRNA are useful, e.g., in

probing for the coding sequence as well as in methodologies for blocking its expression.

It will also be clear that the examples show the manufacture of biologically pure cultures of cell lines which have been transfected with nucleic acid sequences which code for or express the TRAP molecules. Such cultures can be used as a source for tumor rejection antigens, e.g., or as therapeutics. This aspect of the invention is discussed infra.

10

20

Cells transfected with the TRAP coding sequences may also be transfected with other coding sequences. Examples of other coding sequences include cytokine genes, such as (e.g., IL-2 or IL-4), or major histointerleukins compatibility complex (MHC) or human leukocyte antigen (HLA) molecules. Cytokine gene transfection is of value because expression of these is expected to enhance the therapeutic efficacy of the biologically pure culture of the cells in vivo. The art is well aware of therapies where interleukin transfectants have been administered to subjects for treating cancerous conditions. particularly preferred embodiment, cells are transfected with sequences coding for each of (i) a TRAP molecule, (ii) an HLA/MHC molecule, and (iii) a cytokine.

Transfection with an MHC/HLA coding sequence is desirable because certain of the TRAs may be preferentially or specifically presented only by particular MHC/HLA molecules. Thus, where a recipient cell already expresses the MHC/HLA molecule associated with presentation of a TRA,

54

additional transfection may not be necessary although further transformation could be used to cause over-expression of the antigen. On the other hand, it may be desirable to transfect with a second sequence when the recipient cell does not normally express the relevant MHC/HLA molecule. It is to be understood, of course, that transfection with one additional sequence does not preclude further transfection with other sequences.

The term "biologically pure" as used in connection with the cell line described herein simply means that these are essentially free of other cells. Strictly speaking, a "cell line" by definition is "biologically pure", but the recitation will establish this fully.

Transfection of cells requires that an appropriate vector be used. Thus, the invention encompasses expression vectors where a coding sequence for the TRAP of interest is operably linked to a promoter. The promoter may be a strong promoter, such as those well known to the art, or a differential promoter, i.e., one which is operative only in specific cell types. The expression vectors may also contain all or a part of a viral or bacterial genome, such as vaccinia virus or BCG. Such vectors are especially useful in preparing vaccines.

The expression vectors may incorporate several coding sequences, as long as the TRAP sequence is contained therein. The cytokine and/or MHC/HLA genes discussed supramay be included in a single vector with the TRAP sequence. Where this is not desired, then an expression system may be

10

provided, where two or more separate vectors are used where each coding sequence is operably linked to a promoter. Again, the promoter may be a strong or differential promoter. Co-transfection is a well known technique, and the artisan in this field is expected to have this technology available for utilization. The vectors may be constructed so that they code for the TRA molecule directly, rather than the TRAP molecule. This eliminates the need for post-translational processing.

10

20

As the foregoing discussion makes clear, the sequences code for "tumor rejection antigen precursors" ("TRAPs") which, in turn, are processed into tumor rejection antigens Isolated forms of both of these categories are ("TRAs"). described herein, including specific examples of each. Perhaps their most noteworthy aspect is as vaccines for treating various cancerous conditions. The evidence points to presentation of TRAs on tumor cells, followed by the development of an immune response and deletion of the cells. The examples show that when various TRAs are administered to cells, a CTL response is mounted and presenting cells are deleted. This is behavior characteristic of vaccines, and hence TRAPs, which are processed into TRAs, and the TRAs themselves may be used, pharmaceutically appropriate alone or in compositions, as vaccines. Similarly, presenting cells may be used in the same manner, either alone or as combined with ingredients to yield pharmaceutical compositions. Additional materials which may be used as vaccines include

56

isolated cells which present the TRA molecule on their surface, as well as TRAP fragments, mutated viruses, especially etiolated forms, and transfected bacteria. "Fragments" as used herein refers to peptides which are smaller than the TRA, but which possess the properties required of a vaccine, as discussed <u>supra</u>. Another vaccine comprises or consists of complexes of TRA and HLA molecule. Vaccines of the type described herein may be used preventively, i.e., via administration to a subject in an amount sufficient to prevent onset of a cancerous condition.

The generation of an immune response, be it T-cell or B-cell related, is characteristic of the effect of the presented tumor rejection antigen. With respect to the Bcell response, this involves, inter alia, the generation of antibodies to the TRA, i.e., which specifically bind thereto. In addition, the TRAP molecules are of sufficient size to render them immunogenic, and antibodies which specifically bind thereto are a part of this invention. These antibodies may be polyclonal or monoclonal, the latter being prepared by any of the well recognized methodologies for their preparation which need not be repeated here. For example, mAbs may be prepared using an animal model, e.g., a Balb/C mouse or in a test tube, using, e.g., EBV transformants. In addition, antiserum may be isolated from a subject afflicted with a cancerous condition where certain cells present a TRA. Such

10

antibodies may also be generated to epitopes defined by the interaction of TRA and HLA/MHC molecules.

Review of the foregoing disclosure will show that there are a number of facets to the system which may be referred to as "tumor rejection antigen presentation and recognition". Recognition of these phenomena has diagnostic consequences. For example, the existence of specific CTL clones, or antibodies to the TRA makes it possible to diagnose or monitor cancerous conditions (explained infra), by monitoring the CTLs in a sample from a subject, binding of antibodies to TRAs, or the activity of anti-TRA CTLs in connection with subject samples. Similarly, the expression of nucleic acid molecules for TRAPs can be monitored via amplification (e.g., "polymerase chain reaction"), anti-sense hybridization, probe . technologies, and so forth. Various subject samples, including body fluids (blood, serum, and other exudates, e.g.), tissues and tumors may be so assayed.

A particular manner of diagnosis is to use an adaptation of the standard "tuberculin test" currently used for diagnosis of tuberculosis. This standard skin test administers a stable form of "purified protein derivative" or "PPD" as a diagnostic aid. In a parallel fashion, TRAs in accordance with this invention may be used in such a skin test as a diagnostic aid or monitoring method.

The term "cancerous condition" is used herein to embrac all physiological events that commence with the initiation of the cancer and result in final clinical

20

10

5.15 1 8

58

Tumors do not spring up "ab initio" as manifestation. visible tumors; rather there are various events associated with the transformation of a normal cell to malignancy, followed by development of a growth of biomass, such as a tumor, metastasis, etc. In addition, remission may be conceived of as part of "a cancerous condition" as tumors seldom spontaneously disappear. The diagnostic aspects of involved events invention include all carcinogenesis, from the first transformation to malignancy of a single cell, through tumor development and metastasis, as well as remission. All are embraced herein.

Where "subject" is used, the term embraces any species which can be afflicted with a cancerous condition. This includes humans and non-humans, such as domesticated animals, breeding stock, and so forth.

There are therapeutic aspects of this invention as well. The efficacy of administration of effective amounts of TRAPs and TRAs as vaccines has already been discussed supra. Similarly, one may develop the specific CTLs in vitro and then administer these to the subject. Antibodies may be administered, either polyclonal or monoclonal, which specifically bind to cells presenting the TRA of interest. These antibodies may be coupled to specific antitumor agents, including, but not being limited to, methotrexate radio-iodinated compounds, toxins such as ricin, other cytostatic or cytolytic drugs, and so forth. Thus, "targeted" antibody therapy is included herein, as is the

10

59

application of deletion of the cancerous cells by the use of CTLs.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Boon, Thierry, Van den Eynde, Benoît
- (ii) TITLE OF INVENTION: Isolated And Purified DNA Sequenc Coding Antigen Expressed By Tumor Cells And Recognized By Cytotoxic T Cells, And Uses Thereof
- (iii) NUMBER OF SEQUENCES: 26
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Felfe & Lynch
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York City
 - (D) STATE: New York
 - (F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 - (B) COMPUTER: IBM
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/807,043
 - (B) FILING DATE: 12-DECEMBER-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/764,364
 - (B) FILING DATE: 23-SEPTEMBER-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/728,838
 - (b) FILING DATE: 9-JULY-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/705,702
 - (B) FILING DATE: 23-May-1991
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hanson, Norman D.
 - (B) REGISTRATION NUMBER: 30,946
 - (C) REFERENCE/DOCKET NUMBER: LUD 253.4
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212) 688-9200
 - (B) TELEFAX: (212) 838-3884

- (2) INFORMATION FOR SEQUENCE ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 462 bas pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACCACAGGAG	AATGAAAAGA	ACCCGGGACT	CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG	ATCACTCATT	GGGTGTCTGA	GTTCTGCGAT	ATTCATCCCT	100
CAGCCAATGA	GCTTACTGTT	CTCGTGGGGG	GTTTGTGAGC	CTTGGGTAGG	150
AAGTTTTGCA	AGTTCCGCCT	ACAGCTCTAG	CTTGTGAATT	TGTACCCTTT	200
CACGTAAAAA	AGTAGTCCAG	AGTTTACTAC	ACCCTCCCTC	CCCCCTCCCA	250
CCTCGTGCTG	TGCTGAGTTT	AGAAGTCTTC	CTTATAGAAG	TCTTCCGTAT	300
AGAACTCTTC	CGGAGGAAGG	AGGGAGGACC	CCCCCCTTT	GCTCTCCCAG	350
CATGCATTGT	GTCAACGCCA	TTGCACTGAG	CTGGTCGAAG	AAGTAAGCCG	400
CTAGCTTGCG	ACTCTACTCT	TATCTTAACT	TAGCTCGGCT	TCCTGCTGGT	450
ACCCTTTGTG	CC				462

•	(2)	i)	L) SI	(B)	CE C LENC TYPI TOPC	CHARA STH: E: r OLOGY	ACTER 679 nucle	RISTI bas eic s Lines	CS: se pa acid ar	lirs	:						
				KOLEC SEQUE							ONO:	2:					
				AAC Asn													48
	GAC Asp	GGT Gly	GAT Asp	GGG Gly 20	AAT Asn	AGG Arg	TGC Cys	AAT Asn	TTA Leu 25	TTG Leu	CAC His	CGG Arg	TAC Tyr	TCC Ser 30	CTG Leu	GAA Glu	96
				CCT Pro													144
				GCG Ala													192
				GAT Asp													240
				GAG Glu													288
				GAC Asp 100													336
				GAA Glu	Leu												384
				GAG Glu												ATG Met	432
	GGT Gly 145	GCT Ala	GGC Gly	GCT Ala	AAC Asn	TGT Cys 150	GCC Ala	TGT	GTT Val	CCT Pro	GGC Gly 155	CAT His	CAT His	TTA Leu	AGG Arg	AAG Lys 160	480
	AAT	GAA	GTG	AAG									GAC				528

Asn Glu Val Lys Cys Arg Met Ile Tyr Phe Phe His Asp Pro Asn Phe

170

CTG	GTG	TCT	ATA	CCA	GTG	AAC	CCT	AAG	GAA	CAA	ATG	GAG	TGT	AGG	TGT	576
Leu	Val	Ser	Ile	Pro	Val	Asn	Pro	Lys	Glu	Gln	Met	Glu	Сув	Arg	Сув	
			180					185					190			
GAA	AAT	GCT	GAT	GAA	GAG	GTT	GCA	ATG	GAA	GAG	GAA	GAA	GAA	GAA	GAG	624
Glu	Asn	Ala	Asp	Glu	Glu	Val	Ala	Met	Glu							
		195					200				210					
GAG	GAG	GAG	GAG	GAA	GAG	GAA	ATG	GGA	AAC	CCG	GAT	GGC	TTC	TCA	CCT	672
Glu	Met	Gly	Asn	Pro	Asp	Gly	Phe	Ser	Pro							
220					225					230					235	
TAG																675

(2)	INFORMATION FOR SEQUENCE ID NO: 3:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 228 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GCATGCAGTT	GCAAAGCCCA	GAAGAAAGAA	ATGGACAGCG	GAAGAAGTGG	TTGTTTTTT	60
						120
					CATATGATAC	180
ATAGGATTAC	ACTTGTACCT	GTTAAAAATA	AAAGTTTGAC	TTGCATAC		228

- (2) INFORMATION FOR SEQUENCE ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1365 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ACCACAGGAG AATGAAAAGA ACCCGGGACT CCC	AAAGACG CTAGATGTGT 50
· -	CTGCGAT ATTCATCCCT 100
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTT	TGTGAGC CTTGGGTAGG 150
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTT	GTGAATT TGTACCCTTT 200
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACC	CTCCCTC CCCCTCCCA 250
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTT	ATAGAAG TCTTCCGTAT 300
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCC	CCCCTTT GCTCTCCCAG 350
CATGCATTGT GTCAACGCCA TTGCACTGAG CTG	GTCGAAG AAGTAAGCCG 400
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGG	CTCGGCT TCCTGCTGGT 450
ACCCTTTGTG CC	462
ATG TCT GAT AAC AAG AAA CCA GAC AAA	GCC CAC AGT GGC TCA 504
GGT GGT GAC GGT GAT GGG AAT AGG TGC	AAT TTA TTG CAC CGG 546
TAC TCC CTG GAA GAA ATT CTG CCT TAT	CTA GGG TGG CTG GTC 588
TTC GCT GTT GTC ACA ACA AGT TTT CTG	GCG CTC CAG ATG TTC 630
ATA GAC GCC CTT TAT GAG GAG CAG TAT	GAA AGG GAT GTG GCC 672
TGG ATA GCC AGG CAA AGC AAG CGC ATG	TCC TCT GTC GAT GAG 714
GAT GAA GAC GAT GAG GAT GAG GAT	GAC TAC TAC GAC GAC 756
	GAT GAT GAG GAT GAT 798
GAG GAA GAA TTG GAG AAC CTG ATG	
GAT GAG GCC GAA GAA GAG ATG AGC GTG	GAA ATG GGT GCC GGA 882
GCT GAG GAA ATG GGT GCT GGC GCT AAC	TGT GCC TGT GTT CCT 924
GGC CAT CAT TTA AGG AAG AAT GAA GTG	AAG TGT AGG ATG ATT 966
TAT TTC TTC CAC GAC CCT AAT TTC CTG	GTG TCT ATA CCA GTG 1008
	TGT GAA AAT GCT GAT 1050
GAA GAG GTT GCA ATG GAA GAG GAA GAA	
GAG GAG GAA GAG GAA ATG GGA AAC CCG	GAT GGC TTC TCA CCT 1134
TAG	1137
GCATGCAGTT GCAAAGCCCA GAAGAAAGAA ATGC	GACAGCG GAAGAAGTGG 1187
	TTTTAGT AATCCAGAAA 1237
	ATGTCAC CAACAGACTT 1287
	GGATTAC ACTTGTACCT 1337
GTTAAAAATA AAAGTTTGAC TTGCATAC	1365

- (2) INFORMATION FOR SEQUENCE ID NO: 5: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4698 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG	СТАСАТСТСТ	50
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT	ATTCATCCCT	100
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT	CONCCCONCC	150
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC	TOTAL COUNTY	200
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT	COCCOTOCO	250
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC		300
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG		
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT		350
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG		400
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT	TCCTGCTGGT	450
ACCCTTTGTG CC		462
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC		504
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA		546
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG		588
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC	CAG ATG TTC	630
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG	GAT GTG GCC	672
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT	GTC GAT GAG	714
GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC	TAC GAC GAC	756
GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT		798
GAG GAA GAA TTG GAG AAC CTG ATG GAT GAT		840
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG		882
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC		916
GTGAGTAACC CGTGGTCTTT ACTCTAGATT CAGGTGGGGT		966
CTCTTGCCCA CATCTGTAGT AAAGACCACA TTTTGGTTGG		1016
TGGAGCCATT CCTGGCTCTC CTGTCCACGC CTATCCCCGC		1066
CCCCACTCCT TGCTCCGCTC TCTTTCCTTT TCCCACCTTG		1116
TTCAGTCCAT CCTGCTCTGC TCCCTTTCCC CTTTGCTCTC		1166
TCCCCTCGG CTCAACTTTT CGTGCCTTCT GCTCTCTGAT		1216
TTCAGGCTTC CCCATTTGCT CCTCTCCCGA AACCCTCCCC		1266
CCTTTTCGCG CCTTTTCTTT CCTGCTCCCC TCCCCCTCCC		1316
TCACCAGCTT TGCTCTCCCT GCTCCCCTCC CCCTTTTGCA		1366
TCCTGCTCCC CTCCCCTCC CCTCCCTGTT TACCCTTCAC		1416
CTACCTGCTT CCCTCCCCCT TGCTGCTCCC TCCCTATTTG		1466
TGCTCCTCCC TCCCCCTCCC CCTCCCTCCC TATTTGCATT		1516
CCTCCTCCC CCTCCCCAGG CCTTTTTTT TTTTTTTTT		1566
TTGGTTTTTC GAGACAGGGT TTCTCTTTGT ATCCCTGGCT		1616
TCACTCTGTA GACCAGGCTG GCCTCAAACT CAGAAATCTG		1666
CCTCCCAAAT GCTGGGATTA AAGGCTTGCA CCAGGACTGC		1716
GCCTTTCTTT TTTCTCCTCT CTGGTCTCCC TAATCCCTTT		1766
AACTCCCCTT TTGGCACCTT TCCTTTACAG GACCCCCTCC		1816
		1866
TTCCCTTCCG GCACCCTTCC TAGCCCTGCT CTGTTCCCTC CCTCCCCCTC TTTGCTCGAC TTTTAGCAGC CTTACCTCTC		1916
GCCCGTTCC CCTTTTTTGT GCCTTTCCTC CTGGCTCCCC		1966
		2016
AGCTCACCTT TTTGTTTGTT TGGTTGTTTG GTTGTTTGGT		2016
TTTTTTTTT GCACCTTGTT TTCCAAGATC CCCCTCCCCC		2116
CCTCTGTGTG CCTTTCCTGT TCCCTCCCC TCGCTGGCTC	CCCCTCCCTT	2110

TCTGCCTTTC CTGTCCCTGC TCCCTTCTCT GCTAACCTTT TAATGCCTTT	2166
CTTTTCTAGA CTCCCCCTC CAGGCTTGCT GTTTGCTTCT GTGCACTTTT	2216
CCTGACCCTG CTCCCCTTCC CCTCCCAGCT CCCCCCTCTT TTCCCACCTC	2266
CCTTTCTCCA GCCTGTCACC CCTCCTTCTC TCCTCTGT TTCTCCCACT	2316
TCCTGCTTCC TTTACCCCTT CCCTCTCCT ACTCTCCTCC CTGCCTGCTG	2366
GACTTCCTCT CCAGCCGCCC AGTTCCCTGC AGTCCTGGAG TCTTTCCTGC	2416
CTCTCTGTCC ATCACTTCCC CCTAGTTTCA CTTCCCTTTC ACTCTCCCCT	2466
ATGTGTCTCT CTTCCTATCT ATCCCTTCCT TTCTGTCCCC TCTCCTCTGT	2516
CCATCACCTC TCTCCTCCCT TCCCTTTCCT CTCTCTTCCA TTTTCTTCCA	2566
CCTGCTTCTT TACCCTGCCT CTCCCATTGC CCTCTTACCT TTATGCCCAT	2616
TCCATGTCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTTCC	2666
ATTTCCCTCT TTCTCCCTTA GCCTCTTCTT CCTCTTCTCT TGTATCTCCC	2716
TTCCCTTTGC TTCTCCCTCC TCCTTTCCCC TTCCCCTATG CCCTCTACTC	2766
TACTTGATCT TCTCTCCTCT CCACATACCC TTTTTCCTTT CCACCCTGCC	2816
CTTTGTCCCC AGACCCTACA GTATCCTGTG CACAGGAAGT GGGAGGTGCC	2866
ATCAACAACA AGGAGGCAAG AAACAGAGCA AAATCCCAAA ATCAGCAGGA	2916
AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC	
AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT	2966
	3016
CITGATECTT GETGETTETT TTACATATGT TGGCACATET TTETCAAATG CAGGCCATGE TCCATGETTG GEGETTGETE AGCGTGGTTA AGTAATGGGA	3066
GAATCTGAAA ACTAGGGGCC AGTGGTTTGT TTTGGGGACA AATTAGCACG	3116
TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA	3166
TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA	3216
GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTTAAAATA CTGCTTTCTT	3266
TTGCTAAAAT ATTCTTTCTC ACATATTCAT ATTCTCCAG	3316
CT CTT CCT CCC CTT CTT CTT	3355
ACC AMC AMM MAM MMC MMC CAC CAC CAC	3396
The call and the tree the die out har the city did let	3438
ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAA GAA GAA	3480
GAG GAG GAG GAG GAA GAG GAA GAA GAA GAA	3522
TTC TCA CCT TAG	3564
GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCCTAACA TATGCCTGTA	3576
	3626
GCTAAGAGCA TCTTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA	3676
TCTTTTTACA TTAATAAGTA TTAAATTAAT CCAGTATACA GTTTTAAGAA	3726
CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT	3776
GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA	3826
GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG	3876
TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT	3926
TTCAAGAAAG ATCACACGCC ATGGTTCACA TGCAAATTAT TATTTTGTCG	3976
TTCTGATTTT TTTCATTTCT AGACCTGTGG TTTTAAAGAG ATGAAAATCT	4026
CTTAAAATTT CCTTCATCTT TAATTTTCCT TAACTTTAGT TTTTTTCACT	4076
TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTTA GATTTCTTAA	4126
AATGTTTTTT AAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA	4176
GTAACTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA	4226
GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGGAAAACC AGGCCCTTGC	4276
CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCCAAATC	4326
ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT	4376
ATTTTAGTTT CTCCTTGAGA AACAATGACA AGACATAAAA TTGGCAAGAA	4426
AGTCAGGAGT GTATTCTAAT AAGTGTTGCT TATCTCTTAT TTTCTTCTAC	4476
AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT	4526
TTTTTTCCCC TTCATTAATT TTCTAGTTTT TAGTAATCCA GAAAATTTGA	4576
TTTTGTTCTA AAGTTCATTA TGCAAAGATG TCACCAACAG ACTTCTGACT	4626
GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA	4676
AATAAAAGTT TGACTTGCAT AC	4698

- (2) INFORMATION FOR SEQUENCE ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Leu Pro Tyr Leu Gly Trp Leu Val Phe

- (2) INFORMATION FOR SEQUENCE ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2418 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGATCCAGGC	CCTGCCAGGA	AAAATATAAG	GGCCCTGCGT	GAGAACAGAG	50
GGGGTCATCC	ACTGCATGAG	AGTGGGGATG	TCACAGAGTC	CAGCCCACCC	100
TCCTGGTAGC	ACTGAGAAGC	CAGGGCTGTG	CTTGCGGTCT	GCACCCTGAG	150
GGCCCGTGGA	TTCCTCTTCC	TGGAGCTCCA	GGAACCAGGC	AGTGAGGCCT	200
TGGTCTGAGA	CAGTATCCTC	AGGTCACAGA	GCAGAGGATG	CACAGGGTGT	250
GCCAGCAGTG	AATGTTTGCC	CTGAATGCAC	ACCAAGGCC	CCACCTGCCA	300
CAGGACACAT	AGGACTCCAC	AGAGTCTGGC	CTCACCTCCC	TACTGTCAGT	350
CCTGTAGAAT	CGACCTCTGC	TGGCCGGCTG	TACCCTGAGT	ACCCTCTCAC	400
TTCCTCCTTC	AGGTTTTCAG	GGGACAGGCC	AACCCAGAGG	ACAGGATTCC	450
CTGGAGGCCA	CAGAGGAGCA	CCAAGGAGAA	GATCTGTAAG	TAGGCCTTTG	500
TTAGAGTCTC	CAAGGTTCAG	TTCTCAGCTG	AGGCCTCTCA	CACACTCCCT	550
CTCTCCCCAG	GCCTGTGGGT	CTTCATTGCC	CAGCTCCTGC	CCACACTCCT	600
GCCTGCTGCC	CTGACGAGAG	TCATCATGTC	TCTTGAGCAG	AGGAGTCTGC	650
ACTGCAAGCC	TGAGGAAGCC	CTTGAGGCCC	AACAAGAGGC	CCTGGGCCTG	700
GTGTGTGTGC	AGGCTGCCAC	CTCCTCCTCC	TCTCCTCTGG	TCCTGGGCAC	750
CCTGGAGGAG	GTGCCCACTG	CTGGGTCAAC	AGATCCTCCC	CAGAGTCCTC	800
AGGGAGCCTC	CGCCTTTCCC	ACTACCATCA	ACTTCACTCG	ACAGAGGCAA	850
CCCAGTGAGG	GTTCCAGCAG	CCGTGAAGAG	GAGGGGCCAA	GCACCTCTTG	900
TATCCTGGAG	TCCTTGTTCC	GAGCAGTAAT	CACTAAGAAG	GTGGCTGATT	950
TGGTTGGTTT	TCTGCTCCTC	AAATATCGAG	CCAGGGAGCC	AGTCACAAAG	1000
GCAGAAATGC	TGGAGAGTGT	CATCAAAAAT	TACAAGCACT	GTTTTCCTGA	1050
GATCTTCGGC	AAAGCCTCTG	AGTCCTTGCA	GCTGGTCTTT	GGCATTGACG	1100
TGAAGGAAGC	AGACCCCACC	GGCCACTCCT	ATGTCCTTGT	CACCTGCCTA	1150
GGTCTCTCCT	ATGATGGCCT	GCTGGGTGAT	AATCAGATCA	TGCCCAAGAC	1200
AGGCTTCCTG	ATAATTGTCC	TGGTCATGAT	TGCAATGGAG	GGCGGCCATG	1250
CTCCTGAGGA	GGAAATCTGG	GAGGAGCTGA	GTGTGATGGA	GGTGTATGAT	1300
GGGAGGGAGC	ACAGTGCCTA	TGGGGAGCCC	AGGAAGCTGC	TCACCCAAGA	1350
TTTGGTGCAG	GAAAAGTACC	TGGAGTACGG	CAGGTGCCGG	ACAGTGATCC	1400
CGCACGCTAT	GAGTTCCTGT	GGGGTCCAAG	GGCCCTCGCT	GAAACCAGCT	1450
			TCAGTGCAAG		1500
TTCTTCCCAT	CCCTGCGTGA	AGCAGCTTTG	AGAGAGGAGG	AAGAGGGAGT	1550
CTGAGCATGA	GTTGCAGCCA	AGGCCAGTGG	GAGGGGGACT	GGGCCAGTGC	1600
ACCTTCCAGG	GCCGCGTCCA	GCAGCTTCCC	CTGCCTCGTG	TGACATGAGG	1650
CCCATTCTTC	ACTCTGAAGA	GAGCGGTCAG	TGTTCTCAGT	AGTAGGTTTC	1700
TGTTCTATTG	GGTGACTTGG	AGATTTATCT	TTGTTCTCTT	TTGGAATTGT	1750
TCAAATGTTT	TTTTTTAAGG	GATGGTTGAA	TGAACTTCAG	CATCCAAGTT	1800
TATGAATGAC	AGCAGTCACA	CAGTTCTGTG	TATATAGTTT	AAGGGTAAGA	1850
GTCTTGTGTT	TTATTCAGAT	TGGGAAATCC	ATTCTATTTT	GTGAATTGGG	1900
ATAATAACAG	CAGTGGAATA	AGTACTTAGA	AATGTGAAAA	ATGAGCAGTA	1950
AAATAGATGA	GATAAAGAAC	TAAAGAAATT	AAGAGATAGT	CAATTCTTGC	2000
CTTATACCTC	AGTCTATTCT	GTAAAATTTT	TAAAGATATA	TGCATACCTG	2050
GATTTCCTTG	GCTTCTTTGA	GAATGTAAGA	GAAATTAAAT	CTGAATAAAG	2100
AATTCTTCCT	GTTCACTGGC	TCTTTTCTTC	TCCATGCACT	GAGCATCTGC	2150
TTTTTGGAAG	GCCCTGGGTT	AGTAGTGGAG	ATGCTAAGGT	AAGCCAGACT	2200

CATACCCACC CATAGGGTCG	TAGAGTCTAG	GAGCTGCAGT	CACGTAATCG	2250
AGGTGGCAAG ATGTCCTCTA				2300
GGGTGTGGGG CTCCGGGTGA				2350
GGCATTTTGG GCTTTGGGAA				2400
AATGATCTTG GGTGGATCC				2418

- (2) INFORMATION FOR SEQUENCE ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5724 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-1 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

CCCGGGGCAC	CACTGGCATC	CCTCCCCTA	CCACCCCAA	TCCCTCCCTT	50
TACGCCACCC	ATCCAAACAT	CTTCACGCTC	ACCCCCAGCC	CAAGCCAGGC	100
AGAATCCGGT	TCCACCCCTG	CTCTCAACCC	AGGGAAGCCC	AGGTGCCCAG	150
ATGTGACGCC	ACTGACTTGA	GCATTAGTGG	TTAGAGAGAA	GCGAGGTTTT	200
CGGTCTGAGG	GGCGGCTTGA	GATCGGTGGA	GGGAAGCGGG	CCCAGCTCTG	250
TAAGGAGGCA	AGGTGACATG	CTGAGGGAGG	ACTGAGGACC	CACTTACCCC	300
AGATAGAGGA	CCCCAAATAA	TCCCTTCATG	CCAGTCCTGG	ACCATCTGGT	350
GGTGGACTTC	TCAGGCTGGG	CCACCCCCAG	CCCCCTTGCT	GCTTAAACCA	400
CTGGGGACTC	GAAGTCAGAG	CTCCGTGTGA	TCAGGGAAGG	GCTGCTTAGG	450
AGAGGGCAGC	GTCCAGGCTC	TGCCAGACAT	CATGCTCAGG	ATTCTCAAGG	500
AGGGCTGAGG	GTCCCTAAGA	CCCCACTCCC	GTGACCCAAC	CCCCACTCCA	550
ATGCTCACTC	CCGTGACCCA	ACCCCCTCTT	CATTGTCATT	CCAACCCCCA	600
CCCCACATCC	CCCACCCCAT	CCCTCAACCC	TGATGCCCAT	CCGCCCAGCC	650
ATTCCACCCT	CACCCCCACC	CCCACCCCCA	CGCCCACTCC	CACCCCCACC	700
CAGGCAGGAT	CCGGTTCCCG	CCAGGAAACA	TCCGGGTGCC	CGGATGTGAC	750
GCCACTGACT	TGCGCATTGT	GGGGCAGAGA	GAAGCGAGGT	TTCCATTCTG	800
AGGGACGGCG	TAGAGTTCGG	CCGAAGGAAC	CTGACCCAGG	CTCTGTGAGG	850
AGGCAAGGTG	AGAGGCTGAG	GGAGGACTGA	GGACCCCGCC	ACTCCAAATA	900
GAGAGCCCCA	AATATTCCAG	CCCCGCCCTT	GCTGCCAGCC	CTGGCCCACC	950
CGCGGGAAGA	CGTCTCAGCC	TGGGCTGCCC	CCAGACCCCT	GCTCCAAAAG	1000
CCTTGAGAGA	CACCAGGTTC	TTCTCCCCAA	GCTCTGGAAT	CAGAGGTTGC	1050
TGTGACCAGG	GCAGGACTGG	TTAGGAGAGG	GCAGGGCACA	GGCTCTGCCA	1100
GGCATCAAGA	TCAGCACCCA	AGAGGGAGGG	CTGTGGGCCC	CCAAGACTGC	1150
ACTCCAATCC	CCACTCCCAC	CCCATTCGCA	TTCCCATTCC	CCACCCAACC	1200
CCCATCTCCT	CAGCTACACC	TCCACCCCCA	TCCCTACTCC	TACTCCGTCA	1250
CCTGACCACC	ACCCTCCAGC	CCCAGCACCA	GCCCCAACCC	TTCTGCCACC	1300
TCACCCTCAC	TGCCCCCAAC	CCCACCCTCA	TCTCTCTCAT	GTGCCCCACT	1350
CCCATCGCCT	CCCCCATTCT	GGCAGAATCC	GGTTTGCCCC	TGCTCTCAAC	1400
CCAGGGAAGC	CCTGGTAGGC	CCGATGTGAA	ACCACTGACT	TGAACCTCAC	1450
AGATCTGAGA	GAAGCCAGGT	TCATTTAATG	GTTCTGAGGG	GCGGCTTGAG	1500
ATCCACTGAG	GGGAGTGGTT	TTAGGCTCTG	TGAGGAGGCA	AGGTGAGATG	1550
CTGAGGGAGG	ACTGAGGAGG	CACACACCCC	AGGTAGATGG	CCCCAAAATG	1600
ATCCAGTACC	ACCCCTGCTG	CCAGCCCTGG	ACCACCGGC	CAGGACAGAT	1650
GTCTCAGCTG	GACCACCCC	CGTCCCGTCC	CACTGCCACT	TAACCCACAG	1700
GGCAATCTGT	AGTCATAGCT	TATGTGACCG	GGGCAGGGTT	GGTCAGGAGA	1750
GGCAGGGCCC	AGGCATCAAG	GTCCAGCATC	CGCCCGGCAT	TAGGGTCAGG	1800
ACCCTGGGAG	GGAACTGAGG	GTTCCCCACC	CACACCTGTC	TCCTCATCTC	1850
CACCGCCACC	CCACTCACAT	TCCCATACCT	ACCCCCTACC	CCCAACCTCA	1900
TCTTGTCAGA	ATCCCTGCTG	TCAACCCACG	GAAGCCACGG	GAATGGCGGC	1950
CAGGCACTCG	GATCTTGACG	TCCCCATCCA	GGGTCTGATG	GAGGGAAGGG	2000
GCTTGAACAG	GGCCTCAGGG	GAGCAGAGGG	AGGGCCCTAC	TGCGAGATGA	2050
GGGAGGCCTC	AGAGGACCCA	GCACCCTAGG	ACACCGCACC	CCTGTCTGAG	2100
ACTGAGGCTG	CCACTTCTGG	CCTCAAGAAT	CAGAACGATG	GGGACTCAGA	2150

TTGCATGGGG GTGGGACCCA GGCCTGC	AAG GCTTACGCGG AGGAAGAGGA 2200
GGGAGGACTC AGGGGACCTT GGAATCC	AGA TCAGTGTGGA CCTCGGCCCT 2250
GAGAGGTCCA GGGCACGGTG GCCACAT	ATG GCCCATATTT CCTGCATCTT 2300
TGAGGTGACA GGACAGAGCT GTGGTCT	GAG AAGTGGGGCC TCAGGTCAAC 2350
AGAGGGAGGA GTTCCAGGAT CCATATG	CC CAAGATGTGC CCCCTTCATG 2400
AGGACTGGGG ATATCCCCGG CTCAGAA	AGA AGGGACTCCA CACAGTCTGG 2450
CTGTCCCCTT TTAGTAGCTC TAGGGGG	ACC AGATCAGGGA TGGCGGTATG 2500
TTCCATTCTC ACTTGTACCA CAGGCAG	GAA GTTGGGGGGC CCTCAGGGAG 2550
ATGGGGTCTT GGGGTAAAGG GGGGATG	CT ACTCATGTCA GGGAATTGGG 2600
GGTTGAGGAA GCACAGGCGC TGGCAGG	AAT AAAGATGAGT GAGACAGACA 2650
AGGCTATTGG AATCCACACC CCAGAAC	CAA AGGGGTCAGC CCTGGACACC 2700
TCACCCAGGA TGTGGCTTCT TTTTCAC	ICC TGTTTCCAGA TCTGGGGCAG 2750
GTGAGGACCT CATTCTCAGA GGGTGAC	ICA GGTCAACGTA GGGACCCCCA 2800
TCTGGTCTAA AGACAGAGCG GTCCCAG	SAT CTGCCATGCG TTCGGGTGAG 2850
GAACATGAGG GAGGACTGAG GGTACCC	CAG GACCAGAACA CTGAGGGAGA 2900
CTGCACAGAA ATCAGCCCTG CCCCTGC	IGT CACCCCAGAG AGCATGGGCT 2950
GGGCCGTCTG CCGAGGTCCT TCCGTTA	ICC TGGGATCATT GATGTCAGGG 3000
ACGGGGAGGC CTTGGTCTGA GAAGGCT	GCG CTCAGGTCAG TAGAGGGAGC 3050
GTCCCAGGCC CTGCCAGGAG TCAAGGT	GAG GACCAAGCGG GCACCTCACC 3150
CAGGACACAT TAATTCCAAT GAATTTT	GAT ATCTCTTGCT GCCCTTCCCC 3200
AAGGACCTAG GCACGTGTGG CCAGATG	TTT GTCCCCTCCT GTCCTTCCAT 3250
TCCTTATCAT GGATGTGAAC TCTTGAT	ITG GATTTCTCAG ACCAGCAAAA 3300
GGGCAGGATC CAGGCCCTGC CAGGAAA	AAT ATAAGGGCCC TGCGTGAGAA 3350
CAGAGGGGT CATCCACTGC ATGAGAG	TGG GGATGTCACA GAGTCCAGCC 3400
CACCCTCCTG GTAGCACTGA GAAGCCA	GGG CTGTGCTTGC GGTCTGCACC 3450
CTGAGGGCCC GTGGATTCCT CTTCCTG	GAG CTCCAGGAAC CAGGCAGTGA 3500
GGCCTTGGTC TGAGACAGTA TCCTCAG	GTC ACAGAGCAGA GGATGCACAG 3550
GGTGTGCCAG CAGTGAATGT TTGCCCT	GAA TGCACACCAA GGGCCCCACC 360
TGCCACAGGA CACATAGGAC TCCACAG	AGT CTGGCCTCAC CTCCCTACTG 365
TCAGTCCTGT AGAATCGACC TCTGCTG	GCC GGCTGTACCC TGAGTACCCT 370
CTCACTTCCT CCTTCAGGTT TTCAGGG	GAC AGGCCAACCC AGAGGACAGG 375
ATTCCTGGA GGCCACAGAG GAGCACC	AAG GAGAAGATCT GTAAGTAGGC 380
CTTTGTTAGA GTCTCCAAGG TTCAGTT	CTC AGCTGAGGCC TCTCACACAC 385
TCCTCTCTC CCCAGGCCTG TGGGTCT	TCA TTGCCCAGCT CCTGCCCACA 390
CTCCTGCCTG CTGCCCTGAC GAGAGTC	
ATG TCT CTT GAG CAG AGG AGT C	TG CAC TGC AAG CCT GAG GAA 397
GCC CTT GAG GCC CAA CAA GAG	CC CTG GGC CTG GTG TGT GTG 401
CAG GCT GCC ACC TCC TCC TCC	CT CCT CTG GTC CTG GGC ACC 405
CTG GAG GAG GTG CCC ACT GCT G	GG TCA ACA GAT CCT CCC CAG 409
AGT CCT CAG GGA GCC TCC GCC 1	TT CCC ACT ACC ATC AAC TTC 414
NOW GON CAR ACC CAN CCC AGT (AG GGT TCC AGC AGC CGT GAA 418
CAG GAG GGG CCA AGC ACC TCT	GT ATC CTG GAG TCC TTG TTC 422
CGA GCA GTA ATC ACT AAG AAG (TG GCT GAT TTG GTT GGT TTT 426
CTC CTC CTC AAA TAT CGA GCC A	GG GAG CCA GTC ACA AAG GCA 430
CAR ATC CTG GAG AGT GTC ATC	AA AAT TAC AAG CAC TGT TTT 435
COT GAG ATC TTC GGC AAA GCC	CT GAG TCC TTG CAG CTG GTC 439
THE CAC ATT CAC GTG AAG GAA	CA GAC CCC ACC GGC CAC TCC 443
THE COURT CTC ACC TGC CTA	GT CTC TCC TAT GAT GGC CTG 447
CTG GGT GAT AAT CAG ATC ATG	CC AAG ACA GGC TTC CTG ATA 451
_	ASE
> >	reg bet ete bte eag ete tat 460
	AA AAG TAC CTG GAG TAC GGC 468
AGG TGC CGG ACA GTG ATC CCG	PAC GCT ATG AGT TCC TGT GGG 472
GTC CAA GGG CCC TCG CTG AAA	CCA GCT ATG TGA 476
GIC CWW GOG CCC ICG CIG WWW	· · · · · · · · · · · · · · · · · · ·

AAGTCCTTGA	GTATGTGATC	AAGGTCAGTG	CAAGAGTTC		4800
GCTTTTTCTT	CCCATCCCTG	CGTGAAGCAG	CTTTGAGAGA	GGAGGAAGAG	4850
GGAGTCTGAG	CATGAGTTGC	AGCCAAGGCC	AGTGGGAGGG	GGACTGGGCC	4900
AGTGCACCTT	CCAGGGCCGC	GTCCAGCAGC	TTCCCCTGCC	TCGTGTGACA	4950
TGAGGCCCAT	TCTTCACTCT	GAAGAGAGCG	GTCAGTGTTC	TCAGTAGTAG	5000
GTTTCTGTTC	TATTGGGTGA	CTTGGAGATT	TATCTTTGTT	CTCTTTTGGA	5050
ATTGTTCAAA	TGTTTTTTT	TAAGGGATGG	TTGAATGAAC	TTCAGCATCC	5100
AAGTTTATGA	ATGACAGCAG	TCACACAGTT	CTGTGTATAT	AGTTTAAGGG	5150
TAAGAGTCTT	GTGTTTTATT	CAGATTGGGA	AATCCATTCT	ATTTTGTGAA	5200
TTGGGATAAT	AACAGCAGTG	GAATAAGTAC	TTAGAAATGT	GAAAAATGAG	5250
CAGTAAAATA	GATGAGATAA	AGAACTAAAG	AAATTAAGAG	ATAGTCAATT	5300
CTTGCCTTAT	ACCTCAGTCT	ATTCTGTAAA	ATTTTTAAAG	ATATATGCAT	5350
ACCTGGATTT	CCTTGGCTTC	TTTGAGAATG	TAAGAGAAAT	TAAATCTGAA	5400
TAAAGAATTC	TTCCTGTTCA	CTGGCTCTTT	TCTTCTCCAT	GCACTGAGCA	5450
TCTGCTTTTT	GGAAGGCCCT	GGGTTAGTAG	TGGAGATGCT	AAGGTAAGCC	5500
AGACTCATAC	CCACCCATAG	GGTCGTAGAG	TCTAGGAGCT	GCAGTCACGT	5550
AATCGAGGTG	GCAAGATGTC	CTCTAAAGAT	GTAGGGAAAA	GTGAGAGAGG	5600
GGTGAGGGTG	TGGGGCTCCG	GGTGAGAGTG	GTGGAGTGTC	AATGCCCTGA	5650
GCTGGGGCAT	TTTGGGCTTT	GGGAAACTGC	AGTTCCTTCT	GGGGGAGCTG	5700
ATTGTAATGA	TCTTGGGTGG	ATCC			5724

- (2) INFORMATION FOR SEQUENCE ID NO: 9: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4157 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-2 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCCATCCAGA	TCCCCATCCG	GGCAGAATCC	GGTTCCACCC	TTGCCGTGAA	50
			CCACTGACTT		100
GGTCAGAGGA	CAGCGAGATT	CTCGCCCTGA	GCAACGGCCT	GACGTCGGCG	150
GAGGGAAGCA	GGCGCAGGCT	CCGTGAGGAG	GCAAGGTAAG	ACGCCGAGGG	200
AGGACTGAGG	CGGGCCTCAC	CCCAGACAGA	GGGCCCCCAA	TTAATCCAGC	250
GCTGCCTCTG	CTGCCGGGCC	TGGACCACCC	TGCAGGGGAA	GACTTCTCAG	300
			CCCCGCCGCT		350
GGAACTCTGG	CGTAAGAGCT	TTGTGTGACC	AGGGCAGGGC	TGGTTAGAAG	400
TGCTCAGGGC	CCAGACTCAG	CCAGGAATCA	AGGTCAGGAC	CCCAAGAGGG	450
GACTGAGGGC	AACCCACCCC	CTACCCTCAC	TACCAATCCC	ATCCCCCAAC	500
			ACCCCACCCC		550
TCCCATCTCC	TCCCCCACCA	CCATCCTGGC	AGAATCCGGC	TTTGCCCCTG	600
CAATCAACCC	ACGGAAGCTC	CGGGAATGGC	GGCCAAGCAC	GCGGATCCTG	650
ACGTTCACAT	GTACGGCTAA	GGGAGGGAAG	GGGTTGGGTC	TCGTGAGTAT	700
GGCCTTTGGG	ATGCAGAGGA	AGGGCCCAGG	CCTCCTGGAA	GACAGTGGAG	750
TCCTTAGGGG	ACCCAGCATG	CCAGGACAGG	GGGCCCACTG	TACCCCTGTC	800
			GGGAATCCTA		850
CCCACTTCAG	GGGGTTGGGG	CCCAGCCTGC	GAGGAGTCAA	GGGGAGGAAG	900
			CAGATCAGTG		950
			GTGCCCCGTG		1000
			GTCTGAGGGC		1050
			CCGGACCCAA		1100
CTTCATGAGG	ACTCCCCATA	CCCCGGCCC	AGAAAGAAGG	GATGCCACAG	1150
AGTCTGGAAG	TAAATTGTTC	TTAGCTCTGG	GGGAACCTGA	TCAGGGATGG	1200
			GCAGGAGGTT		1250
CAGGGAGATA	AGGTGTTGGT	GTAAAGAGGA	GCTGTCTGCT	CATTTCAGGG	1300
			CAGGAGTAAA		1350
CCACAGGAGG	CCATCATAAC	GTTCACCCTA	GAACCAAAGG	GGTCAGCCCT	1400
			CCCCTCCTCA		1450
CAGATCTCAG	GGAGTTGATG	ACCTTGTTTT	CAGAAGGTGA	CTCAGTCAAC	1500
ACAGGGGCCC	CTCTGGTCGA	CAGATGCAGT	GGTTCTAGGA	TCTGCCAAGC	1550
			GGGTACCCCT		1600
GCAGCAAGGG	GGCCCCATAG	AAATCTGCCC	TGCCCCTGCG	GTTACTTCAG	1650
			CCTCCATTAT		1700
			AAGGGGCTGG		1750
			GTGGACGTGA		1800
			TGAATTTGAC		1850
			CCAGATGTGG		1900
			TTCTTGACAT		1950
CAAGCCAGCA	AAAGGGTGGG	ATTAGGCCCT	ACAAGGAGAA	AGGTGAGGGC	2000
			CAAGTAGAGT		2050
CGGAGTCTGG	CCAACCCTGC	TGAGACTTCT	GGGAATCCGT	GGCTGTGCTT	2100
GCAGTCTGCA	CACTGAAGGC	CCGTGCATTC	CTCTCCCAGG	AATCAGGAGC	2150

TCCAGGAACO	AGGCA	GTGAG	GCCTT	GGTCI	GAG	TCAC	TGC	CTC	AGGT	CAC	2200
AGAGCAGAGG	GGACG	CAGAC	AGTGC	CAAC	CTC	AAGG	TTT	GCC	rgga.	ATG	2250
CACACCAAGG	GCCCC	CACCCG	CCCAG	AACA	ATG	GGAC	CTCC	AGAC	GGC	CTG ·	2300
GCCTCACCCT											2350
CTGTACCCTG											2400
AGGCTGACAA											2450
CTGTAAGTAA											2500
TAAGGCCTCA											2550
CCCAGCTCCI											2597
ATG CCT CT										CAA	2639
GGC CTT GA											2681
CAG GCT CC											
TCT ACT CI											2723
GAC TCA CC											2765
TTC TCG AC											2807
											2849
GAG GGC TC											2891
CCC GAC CT											2933
ATG GTT GA											2975
AGG GAG CC											3017
AGA AAT TO											3059
TCC GAG TA											3101
GTG GTC CC											3143
GGC CTC TC											3185
CCC AAG AC											3227
ATA GAG GG											3269
CTG AGT AT											3311
TTC GCA CA											3353
GAA AAC TA											3395
GCA TGC TA											3437
ACC AGC TA	T GTG	AAA G	TC CTG	CAC	CAT	ACA	CTA	AAG	ATC	GGT	3479 -
GGA GAA CC	T CAC	ATT T	CC TAC	CCA	CCC	CTG	CAT	GAA	CGG	GCT	3521
TTG AGA GA											3542
GTCTCAGCAC	ATGTT	GCAGC	CAGGG	CCAGI	GGG	AGGG	GGT	CTGG	GCCA	GT	3592
GCACCTTCCA	GGGCC	CCATC	CATTA	GCTTC	CAC	TGCC	TCG	TGTG	TATA	'GA	3642
GGCCCATTCC	TGCCT	CTTTG	AAGAG	AGCAG	TCA	GCAT	TCT	TAGO	AGTO	AG	3692
TTTCTGTTCT	GTTGG	ATGAC	TTTGA	GATTI	ATC	TTTC	TTT	CCTC	TTGG	AA	3742
TTGTTCAAAT	GTTCC	TTTTA	ACAAA!	rggti	GGA	TGAA	CTT	CAGO	CATCO	AA	3792
GTTTATGAAT											3842
TAAGAGTCCT											3892
TTGTCACATA											3942
AATTAGCAGT											3992
TGCCTTATAC											4042
TGCTTCTTTG											4092
TCACTGGCTC											4142
CCTGGTAGTA										· - •	4157
											T

- (2) INFORMATION FOR SEQUENCE ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 662 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-21 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GGATCCCCAT	GGATCCAGGA	AGAATCCAGT	TCCACCCCTG	CTGTGAACCC	50
AGGGAAGTCA	CGGGGCCGGA	TGTGACGCCA	CTGACTTGCG	CGTTGGAGGT	100
CAGAGAACAG	CGAGATTCTC	GCCCTGAGCA	ACGGCCTGAC	GTCGGCGGAG	150
GGAAGCAGGC	GCAGGCTCCG	TGAGGAGGCA	AGGTAAGATG	CCGAGGGAGG	200
ACTGAGGCGG	GCCTCACCCC	AGACAGAGGG	CCCCCAATAA	TCCAGCGCTG	250
CCTCTGCTGC	CAGGCCTGGA	CCACCCTGCA	GGGGAAGACT	TCTCAGGCTC	300
AGTCGCCACC	ACCTCACCCC	GCCACCCCC	GCCGCTTTAA	CCGCAGGGAA	350
CTCTGGTGTA	AGAGCTTTGT	GTGACCAGGG	CAGGGCTGGT	TAGAAGTGCT	400
CAGGGCCCAG	ACTCAGCCAG	GAATCAAGGT	CAGGACCCCA	AGAGGGGACT	450
GAGGGTAACC	CCCCGCACC	CCCACCACCA	TTCCCATCCC	CCAACACCAA	500
CCCCACCCC	ATCCCCCAAC	ACCAAACCCA	CCACCATCGC	TCAAACATCA	550
ACGGCACCCC	CAAACCCCGA	TTCCCATCCC	CACCCATCCT	GGCAGAATCG	600
GAGCTTTGCC	CCTGCAATCA	ACCCACGGAA	GCTCCGGGAA	TGGCGGCCAA	650
GCACGCGGAT	CC				662

- (2) INFORMATION FOR SEQUENCE ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1640 base pairs

 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (ix) FEATURE:
 - (A) NAME/KEY: cDNA MAGE-3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GCCGCGAGGG AAGCCGGCCC AGGCTCGGTG AGGAGGCAAG GTTCTGAGGG	50
GACAGGCTGA CCTGGAGGAC CAGAGGCCCC CGGAGGAGCA CTGAAGGAGA	100
AGATCTGCCA GTGGGTCTCC ATTGCCCAGC TCCTGCCCAC ACTCCCGCCT	150
GTTGCCCTGA CCAGAGTCAT C	171
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	213
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GGT GCG	255
CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCT	297
TCT ACT CTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCC	
GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC AGC	
CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC CAA TCC TAT	423
GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGC ACC TTC	465
CCT GAC CTG GAG TCC GAG TTC CAA GCA GCA CTC AGT AGG AAG	507
GTG GCC GAG TTG GTT CAT TTT CTG CTC CTC AAG TAT CGA GCC	549
AGG GAG CCG GTC ACA AAG GCA GAA ATG CTG GGG AGT GTC GTC	591
GGA AAT TGG CAG TAT TTC TTT CCT GTG ATC TTC AGC AAA GCT	
TCC AGT TCC TTG CAG CTG GTC TTT GGC ATC GAG CTG ATG GAA	675
GTG GAC CCC ATC GGC CAC TTG TAC ATC TTT GCC ACC TGC CTG	, - ,
GGC CTC TCC TAC GAT GGC CTG CTG GGT GAC AAT CAG ATC ATG	
CCC AAG GCA GGC CTC CTG ATA ATC GTC CTG GCC ATA ATC GCA	
AGA GAG GGC GAC TGT GCC CCT GAG GAG AAA ATC TGG GAG GAG	
CTG AGT GTG TTA GAG GTG TTT GAG GGG AGG GAA GAC AGT ATG	
TTG GGG GAT CCC AAG AAG CTG CTC ACC CAA CAT TTC GTG CAG	
GAA AAC TAC CTG GAG TAC CGG CAG GTC CCC GGC AGT GAT CCT	969
GCA TGT TAT GAA TTC CTG TGG GGT CCA AGG GCC CTC GTT GAA	
ACC AGC TAT GTG AAA GTC CTG CAC CAT ATG GTA AAG ATC AGT	
GGA GGA CCT CAC ATT TCC TAC CCA CCC CTG CAT GAG TGG GTT	1095
TTG AGA GAG GGG GAA GAG TGA	1116
GTCTGAGCAC GAGTTGCAGC CAGGGCCAGT GGGAGGGGGT CTGGGCCAGT	1166
GCACCTTCCG GGGCCGCATC CCTTAGTTTC CACTGCCTCC TGTGACGTGA	1216
GGCCCATTCT TCACTCTTTG AAGCGAGCAG TCAGCATTCT TAGTAGTGGG	1266
TTTCTGTTCT GTTGGATGAC TTTGAGATTA TTCTTTGTTT CCTGTTGGAG	1316
TTGTTCAAAT GTTCCTTTTA ACGGATGGTT GAATGAGCGT CAGCATCCAG	1366
GTTTATGAAT GACAGTAGTC ACACATAGTG CTGTTTATAT AGTTTAGGAG	1416
TAAGAGTCTT GEETTTTACT CAAATTGGGA AATCCATTCC ATTTTGTGAA	1466
TTGTGACATA ATAATAGCAG TGGTAAAAGT ATTTGCTTAA AATTGTGAGC	1516
GAATTAGCAA TAACATACAT GAGATAACTC AAGAAATCAA AAGATAGTTG	1566
ATTCTTGCCT TGTACCTCAA TCTATTCTGT AAAATTAAAC AAATATGCAA	1616
ACCAGGATTT CCTTGACTTC TTTG	1640

- (2) INFORMATION FOR SEQUENCE ID NO: 12: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 943 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-31 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GGATCCTCCA CCCCAGTAGA GTGGGGAC	CT CACAGAGTCT GGCCAACCCT	50
CCTGACAGTT CTGGGAATCC GTGGCTGC	GT TTGCTGTCTG CACATTGGGG	100
GCCCGTGGAT TCCTCTCCCA GGAATCAG	GA GCTCCAGGAA CAAGGCAGTG	L50
AGGACTIGGT CTGAGGCAGT GTCCTCAG	GT CACAGAGTAG AGGGGGCTCA	200
GATAGTGCCA ACGGTGAAGG TTTGCCTT	CG ATTCAAACCA AGGGCCCCAC	250
CTGCCCAGA ACACATGGAC TCCAGAGG	TO CTOCCTCAC CCTCAATACT	300
TTCAGTCCTG CAGCCTCAGC ATGCGCTC		350
CTCTCACTTC CTCCTTCAGG TTCTGAGG	ECG ACAGGCTGAC CTGGAGGACC	100
AGAGGCCCC GGAGGAGCAC TGAAGGAC	A CAMOTOTARO TARCOTTTO	450
		500
TTAGAGCCTC CAAGGTTCCA TTCAGTAG	TC WGCIGWGGIC ICIONGGIIG	550
TCCCTCTCTC CCCAGGCCAG TGGGTCTC	CM IIGCCCAGCI CCIGOCOMICA	580
CTCCCGCCTG TTGCCCTGAC CAGAGTC	110	522
ATG CCT CTT GAG CAG AGG AGT CA	de cac les and sol sill sill	
GGC CTT GAG GCC CGA GGA GAG GC	SC CIG GGC CIG GIG GGI GGG	664
CAG GCT CCT GCT ACT GAG GAG CA	de dag det dec tec tec tec	706
TCT AGT GTA GTT GAA GTC ACC CT		748
GAG TCA CCA GAT CCT CCC CAG AG	GT CCT CAG GGA GCC TCC AGC	790
CTC CCC ACT ACC ATG AAC TAC CO		832
GAG GAC TCC AGC AAC CAA GAA G		874
CCT GAC CTG GAG TCT GAG TTC C		916
GTG GCC AAG TTG GTT CAT TTT C	•	943
GIG GOO NUG IIG GII GIII III G	· · · · ·	

- (2) INFORMATION FOR SEQUENCE ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2531 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-4 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAG	GAACACAGTG	50
GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTG	CAGCCTACCC	100
TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTC	GCACCCTAAG	150
GGCCCATGGA TTCCTCTCCT AGGAGCTCCA GGAACAAGG	AGTGAGGCCT	200
TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGAT		250
GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC		300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC		350
CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG	TGCTCTCTCA	400
CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA	CAGGATTCCC	450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAG	AAGCCTTTGT	500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAG	ATGCTCCCTC	550
TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC		600
CCTGCTGCCC TGACCAGAGT CATC		624
ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG	CCT GAG GAA	666
GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTC	GTG GGT GCA	708
CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT	GTC TCC TCC	750
TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAI		792
GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG	GGA GCC TCT	834
GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGC	AGG CAA CCC	876
AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG	CCA AGC ACC	918
TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GC	A CTC AGT AAC	960
AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGG	AAG TAT CGA	1002
GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG	GAG AGA GTC	1044
ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC	TTC GGC AAA	1086
GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT	GAC GTG AAG	1128
GAA GTG GAC CCC GCC AGC AAC ACC TAC ACC CTT	GTC ACC TGC	1170
CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AA	AAT CAG ATC	1212
TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTC	GGC ACA ATT	1254
GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAI	A ATC TGG GAG	1296
GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG	GAG CAC ACT	1338
GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAI	A GAT TGG GTG	1380
CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCG	GGC AGT AAT	1422
CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG	GCT CTG GCT	1464
GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG	GTC AGG GTC	1506
AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTC	G CGT GAA GCA	1548
GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA		1578
GCATGAGTTG CAGCCAGGGC TGTGGGGAAG GGGCAGGGC	GGGCCAGTGC	1628
ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGT	ACATGAGGCC	1678
CATTCTTCAC TCTGTTTGAA GAAAATAGTC AGTGTTCTTA	GTAGTGGGTT	1728
TCTATTTTGT TGGATGACTT GGAGATTTAT CTCTGTTTCC	TTTTACAATT	1778
GTTGAAATGT TCCTTTTAAT GGATGGTTGA ATTAACTTC	GCATCCAAGT	1828
TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGT		1878
AGTCTTGTTT TTTATTCAGA TTGGGAAATC CGTTCTATT	TGTGAATTTG	1928

GGACATAATA	ACAGCAGTGG	AGTAAGTATT	TAGAAGTGTG	AATTCACCGT	1978
			AATTCCCGCC		2028
GTCTATTCTG	TAAAATTTAA	AAATATATAT	GCATACCTGG	ATTTCCTTGG	2078
CTTCGTGAAT	GTAAGAGAAA	TTAAATCTGA	ATAAATAATT	CTTTCTGTTA	2128
ACTGGCTCAT	TTCTTCTCTA	TGCACTGAGC	ATCTGCTCTG	TGGAAGGCCC	2178
AGGATTAGTA	GTGGAGATAC	TAGGGTAAGC	CAGACACACA	CCTACCGATA	2228
GGGTATTAAG	AGTCTAGGAG	CGCGGTCATA	TAATTAAGGT	GACAAGATGT	2278
CCTCTAAGAT	GTAGGGGAAA	AGTAACGAGT	GTGGGTATGG	GGCTCCAGGT	2328
GAGAGTGGTC	GGGTGTAAAT	TCCCTGTGTG	GGGCCTTTTG	GGCTTTGGGA	2378
AACTGCATTT	TCTTCTGAGG	GATCTGATTC	TAATGAAGCT	TGGTGGGTCC	2428
AGGGCCAGAT	TCTCAGAGGG	AGAGGGAAAA	GCCCAGATTG	GAAAAGTTGC	2478
TCTGAGCAGT	TCCTTTGTGA	CAATGGATGA	ACAGAGAGGA	GCCTCTACCT	2528
GGG					2531

- (2) INFORMATION FOR SEQUENCE ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2531 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-41 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

•	
GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT GAACACAC	STG 50
GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCCTAG	CCC 100
TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACCCTA	AAG 150
GGCCCATGGA TTCCTCTCT AGGAGCTCCA GGAACAAGGC AGTGAGGG	CCT 200
TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGATG CACAGGCT	rgt 250
GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTG	CCA 300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCATCA	AAT 350
CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG TGCTCTC	TCA 400
CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGATTC	CCC 450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCCTT	rgt 500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCTCC	CTC 550
TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC TGCACTC	rtg 600
CCTGCTGCCC TGAGCAGAGT CATC	624
ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG	GAA 666
GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GTG GGT	GCG 708
CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT CCC	TCC 750
TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CCT	GCT 792
GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GCC	TCT 834
GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG CAA	CCC 876
AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AGC	ACC 918
TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA CTC AGT	
AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC AAG TAT	CGA 1002
GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG GAG AGA	GTC 1044
ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC TTC GGC	
GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT GAC GTG	AAG 1128
GAA GTG GAC CCC ACC AGC AAC ACC TAC ACC CTT GTC ACC	TGC 1170
CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AAT AAT CAG	
TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTG GGC ACA	
GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAA ATC TGG	GAG 1296
GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG GAG CAC	ACT 1338
GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAA GAT TGG	
CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCC GGC AGT	_
CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG GCT CTG	
GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG GTC AGG	
AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTG CGT GAA	
GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA	1578
GCATGAGTTG CAGCCAGGGC TGTGGGGAAG GGGCAGGGCT GGGCCAG	
ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGTA ACATGAGC	
CATTCTTCAC TCTGTTTGAA GAAAATAGTC AGTGTTCTTA GTAGTGGG	
TCTATTTTGT TGGATGACTT GGAGATTTAT CTCTGTTTCC TTTTACA	
GTTGAAATGT TCCTTTTAAT GGATGGTTGA ATTAACTTCA GCATCCA	
TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGTT TAGGAGTA	
AGTCTTGTTT TTTATTCAGA TTGGGAAATC CGTTCTATTT TGTGAATT	
GGACATAATA ACAGCAGTGG AGTAAGTATT TAGAAGTGTG AATTCACG	CGT 1978

GAAATAGGTG	AGATAAATTA	AAAGATACTT	AATTCCCGCC	TTATGCCTCA	2028
GTCTATTCTG	TAAAATTTAA	AAATATATAT	GCATACCTGG	ATTTCCTTGG	2078
CTTCGTGAAT	GTAAGAGAAA	TTAAATCTGA	ATAAATAATT	CTTTCTGTTA	2128
ACTGGCTCAT	TTCTTCTCTA	TGCACTGAGC	ATCTGCTCTG	TGGAAGGCCC	2178
AGGATTAGTA	GTGGAGATAC	TAGGGTAAGC	CAGACACACA	CCTACCGATA	2228
GGGTATTAAG	AGTCTAGGAG	CGCGGTCATA	TAATTAAGGT	GACAAGATGT	2278
CCTCTAAGAT	GTAGGGGAAA	AGTAACGAGŢ	GTGGGTATGG	GGCTCCAGGT	2328
	GGGTGTAAAT			GGCTTTGGGA	2378
AACTCCATTT	TCTTCTGAGG	GATCTGATTC	TAATGAAGCT	TGGTGGGTCC	2428
	TCTCAGAGGG				2478
TCTGAGCGGT	TCCTTTGTGA	CAATGGATGA	ACAGAGAGGA	GCCTCTACCT	2528
GGG					2531

- (2) INFORMATION FOR SEQUENCE ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1068 bas pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (ix) FEATURE:
 - (A) NAME/KEY: cDNA MAGE-4
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

G	GGG	CCA	AGC	ACC	TCG	CCT	GAC	GCA	GAG	TCC	TTG	TTC	CGA	40
GAA	GCA	CTC	AGT	AAC	AAG	GTG	GAT	GAG	TTG	GCT	CAT	TTT	CTG	82
CTC	CGC	AAG	TAT	CGA	GCC	AAG	GAG	CTG	GTC	ACA	AAG	GCA	GAA	124
ATG	CTG	GAG	AGA	GTC	ATC	AAA	AAT	TAC	AAG	CGC	TGC	TTT	CCT	166
GTG	ATC	TTC	GGC	AAA	GCC	TCC	GAG	TCC	CTG	AAG	ATG	ATC	TTT	208
GGC	ATT	GAC	GTG	AAG	GAA	GTG	GAC	CCC	GCC	AGC	AAC	ACC	TAC	250
ACC	CTT	GTC	ACC	TGC	CTG	GGC	CTT	TCC	TAT	GAT	GGC	CTG	CTG	292
GGT	AAT	AAT	CAG	ATC	TTT	CCC	AAG	ACA	GGC	CTT	CTG	ATA	ATC	334
GTC	CTG	GGC	ACA	ATT	GCA	ATG	GAG	GGC	GAC	AGC	GCC	TCT	GAG	376
GAG	GAA	ATC	TGG	GAG	GAG	CTG	GGT	GTG	ATG	GGG	GTG	TAT	GAT	418
GGG	AGG	GAG	CAC	ACT	GTC	TAT	GGG	GAG	CCC	AGG	AAA	CTG	CTC	460
ACC	CAA	GAT	TGG	GTG	CAG	GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	502
GTA	CCC	GGC	AGT	AAT	CCT	GCG	CGC	TAT	GAG	TTC	CTG	TGG	GGT	544
CCA	AGG	GCT	CTG	GCT	GAA	ACC	AGC	TAT	GTG	AAA	GTC	CTG	GAG	586
CAT	GTG	GTC	AGG	GTC	AAT	GCA	AGA	GTT	CGC	ATT	GCC	TAC	CCA	628
TCC	CTG	CGT	GAA	GCA	GCT	TTG	TTA	GAG	GAG	GAA	GAG	GGA	GTC	670
TGAC	CAT	GAG :	TTGC	AGCC	AG GC	GCTG:	rggg	AAC	GGGG	CAGG	GCT	GGC	CAG	720
			AGCC											770
GCCC	CATTO	CTT (CACT	CTGT	rt G	AAGA	AAATA	A GTO	CAGTO	STTC	TTAC	GTAG	rgg	820
GTTT	CTA	TTT :	TGTT	GAT	SA C	rtgg/	AGATT	TAT	CTC	rgtt	TCC	TTTT <i>1</i>	ACA	870
ATTO	GTTG!	AAA :	TGTT	CCTT	IA TI	ATGG!	ATGGT	TG!	AATTA	AACT	TCA	CAT	CCA	920
AGT	TAT	GAA :	TCGT	AGTT	AA CO	TAT	ATTG	TG	CAATI	ATA	GTT:	ragg <i>i</i>	AGT	970
AAG	AGTC	rtg :	TTTT	TAT	C AC	GATT	GGA	ATC	CCGT	CTA	TTT	rgtg <i>i</i>	ΑĄΤ	1020
TTGG	GAC	ATA A	ATAAC	CAGC	AG TO	GAG:	raag:	CAT	TAG	AAGT	GTG	AATTO	3	1068

- (2) INFORMATION FOR SEQUENCE ID NO: 16: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2226 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-5 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT	GAGCACAGAG	50
GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC	CAGCCTACCC	100
TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT	GCACCCTGAG	150
GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC	ACTGAGGCCT	200
TGGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA	TGCAGACGTC	250
TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT	GGCCCCCATC	300
GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC	CTCTCTACTG	350
TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT	GAGGTGCCCT	400
CTCACTTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA	GGATCACCAG	450
GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC	AAAGGAGAAG	500
ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT	TTTTAGCTGA	550
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC	TCCATTGCCC	600
AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT	CGTC	644
ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG	CCT GAG GAA	684
CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC	CTG CTG CTG	728
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG	CCT CCG CCA	770
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC	AAT CCA TTA	812
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA	GCA CCT CCC	854
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA	GTA AGA AGG	896
TGG CTG ACT TGA		908
TTCATTTTCT GCTCCTCAAG TATTAAGTCA AGGAGCTGGT	CACAAAGGCA	958
GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT	TTCCTGAGAT	1008
CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC	ATTGACGTGA	1058
AGGAAGCGGA CCCCACCAGC AACACCTACA CCCTTGTCAC	CTGCCTGGGA	1108
CTCCTATGAT GGCCTGCTGG TTGATAATAA TCAGATCATG	CCCAAGACGG	1158
GCCTCCTGAT AATCGTCTTG GGCATGATTG CAATGGAGGG		1208
CCTGAGGAGA AAATCTGGGA GGAGCTGAGT GTGATGAAGG	TGTATGTTGG	1258
GAGGGAGCAC AGTGTCTGTG GGGAGCCCAG GAAGCTGCTC	ACCCAAGATT	1308
TGGTGCAGGA AAACTACCTG GAGTACCGGC AGGTGCCCAG	CAGTGATCCC	1358
ATATGCTATG AGTTACTGTG GGGTCCAAGG GCACTCGCTG	CTTGAAAGTA	1408
CTGGAGCACG TGGTCAGGGT CAATGCAAGA GTTCTCATTT	CCTACCCATC	1458
CCTGCGTGAA GCAGCTTTGA GAGAGGAGGA AGAGGGAGTC	TGAGCATGAG	1508
CTGCAGCCAG GGCCACTGCG AGGGGGGCTG GGCCAGTGCA	CCTTCCAGGG	1558
CTCCGTCCAG TAGTTTCCCC TGCCTTAATG TGACATGAGG	CCCATTCTTC	1608
TCTCTTTGAA GAGAGCAGTC AACATTCTTA GTAGTGGGTT	TCTGTTCTAT	1658
TGGATGACTT TGAGATTTGT CTTTGTTTCC TTTTGGAATT	GTTCAAATGT	1708
TTCTTTTAAT GGGTGGTTGA ATGAACTTCA GCATTCAAAT	TTATGAATGA	1758
CAGTAGTCAC ACATAGTGCT GTTTATATAG TTTAGGAGTA	AGAGTCTTGT	1808
TTTTTATTCA GATTGGGAAA TCCATTCCAT TTTGTGAATT	GGGACATAGT	1858
TACAGCAGTG GAATAAGTAT TCATTTAGAA ATGTGAATGA	GCAGTAAAAC	1908
TGATGACATA AAGAAATTAA AAGATATTA ATTCTTGCTT	ATACTCAGTC	1958
TATTCGGTAA AATTTTTTT AAAAAATGTG CATACCTGGA	TTTCCTTGGC	2008
TATTCGGTAA AATTTTTTT AAAAAATGTG CATACCTGG. TTCTTTGAGA ATGTAAGACA AATTAAATCT GAATAAATCA	TTCTCCCTGT	2058
TICTITIONEM MIGIMMONCH ANTINANTOL CANTANTOL		

85

TCACTGGCTC	ATTTATTCTC	TATGCACTGA	GCATTTGCTC	TGTGGAAGGC	2108
CCTGGGTTAA	TAGTGGAGAT	GCTAAGGTAA	GCCAGACTCA	CCCCTACCCA	2158
CAGGGTAGTA	AAGTCTAGGA	GCAGCAGTCA	TATAATTAAG	GTGGAGAGAT	`2208
GCCCTCTAAG	ATGTAGAG				2226

- (2) INFORMATION FOR SEQUENCE ID NO: 17: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2305 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-51 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT		50
GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC		100
TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT		150
GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC		200
TGGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA		250
TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT		300
GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC		350
TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT	GAGGTGCCCT	400
CTCACTTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA	GGATCACCAG	450
GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC		500
ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT	TTTTAGCTGA	550
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC		600
AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT		644
ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG	CCT GAG GAA	686
GGC CTT GAC ACC CAA GAA GAG CCC TGG GCC TGG		728
AGG CTG CCA CTA CTG AGG AGC AGG AGG CTG TGT		770
CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC		812
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG		854
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC		896
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA		938
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA		980
TGG CTG ACT TGA		992
TTCATTTCT GCTCCTCAAG TATTAAGTCA AGGAGCCGGT	CACAAAGGCA	1042
GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT		1092
CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC		1142
AGGAAGCGGA CCCCACCAGC AACACCTACA CCCTTGTCAC		1192
CTCCTATGAT GGCCTGGTGG TTTAATCAGA TCATGCCCAA		1242
CTGATAATCG TCTTGGGCAT GATTGCAATG GAGGGCAAAT		1292
GGAGAAAATC TGGGAGGAGC TGGGTGTGAT GAAGGTGTAT		1342
AGCACAGTGT CTGTGGGGAG CCCAGGAAGC TGCTCACCCA		1392
CAGGAAAACT ACCTGGAGTA CCGCAGGTGC CCAGCAGTGA		1442
TATGAGTTAC TGTGGGGTCC AAGGGCACTC GCTGCTTGAA		1492
CACGTGGTCA GGGTCAATGC AAGAGTTCTC ATTTCCTACC		1542
TGAAGCAGCT TTGAGAGAGG AGGAAGAGGG AGTCTGAGCA		1592
CCAGGCCAC TGCGAGGGGG GCTGGGCCAG TGCACCTTCC		1642
CCAGTAGTTT CCCCTGCCTT AATGTGACAT GAGGCCCATT		1692
TGAAGAGAC AGTCAACATT CTTAGTAGTG GGTTTCTGTT		1742
ACTITGAGAT TIGTCTTTGT TICCTTTTGG AATTGTTCAA		1792
TAATGGGTGG TTGAATGAAC TTCAGCATTC AAATTTATGA		1842
TCACACATAG TGCTGTTTAT ATAGTTTAGG AGTAAGAGTC		1892
TTCAGATTGG GAAATCCATT CCATTTTGTG AATTGGGACA		1942
AGTGGAATAA GTATTCATTT AGAAATGTGA ATGAGCAGTA		1992
GATAAAGAA TTAAAAGATA TTTAATTCTT GCCTTATACT	CAGTCTATTC	2042
AUTURNIALITH: PPINNHIALITH PPPINITOASS ACASSISTED		

87

GGTAAAATTT	TTTTTTAAAA	ATGTGCATAC	CTGGATTTCC	TTGGCTTCTT	2092
TGAGAATGTA	AGACAAATTA	AATCTGAATA	AATCATTCTC	CCTGTTCACT	2142
GGCTCATTTA	TTCTCTATGC	ACTGAGCATT	TGCTCTGTGG	AAGGCCCTGG	2192
GTTAATAGTG	GAGATGCTAA	GGTAAGCCAG	ACTCACCCCT	ACCCACAGGG	2242
TAGTAAAGTC	TAGGAGCAGC	AGTCATATAA	TTAAGGTGGA	GAGATGCCCT	2292
CTAAGATGTA	GAG				2305

- (2) INFORMATION FOR SEQUENCE ID NO: 18: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 225 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-6 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

ጥልጥ	ጥጥር	ጥጥጥ	CCT	GTG	ATC	TTC	AGC	AAA	GCT	TCC	GAT	TCC	TTG	42
CAC	CTC	GTC	ጥጥጥ	GGC	ATC	GAG	CTG	ATG	GAA	GTG	GAC	CCC	ATC	84
CAG	CIG	CTC	m2C	D.T.C	TTT	GCC	ACC	TGC	CTG	GGC	CTC	TCC	TAC	126
	CAC	GIG	CEC	AIC	CAC	חת ת	CAG	ATC	ATG	CCC	AGG	ACA	GGC	168
GAT	GGC	CTG	CTG	GGI	GAC	VVI	S TT S	NTC	CCA	AGA	GAG	GGC	GAC	210
					CTG	GCC	AIA	AIC	GCA	AGA	GAG	-	GAC	225
TOT	CCC	CCT	GAG	GAG										223

- (2) INFORMATION FOR SEQUENCE ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1947 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-7 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

TGARTGGACA ACAAGGGCCC CACACTCCCC AGAACACAAG GAACTCCAGA GAGCCCAGCC TCACCTTCCC TACTGTCAGT CCTGCAGCCT CAGCCTCTGC GCGGCCGCTG TACCCTGAGG TGCCCTCTCA CTTCCTCCTT CAGGTTCTCA TGGCCGGCTG TACCCTGAGG TGCCCTCTCA CTTCCTCCTT CAGGTTCTCA 150 GCGGACAGGC CGGCCAGGAG GTCAGAAGCC CCAGGAGGCC CCAGAGGAGC ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT 250 GTTCCTCCCC ATCGCCCCAC TGCTCCCCCC ACTCCTCCCC AGATCTGTGG GTTCCTCCC ATCGCCCAGC TGCTGCCCGC ACTCCACCCT GCTGCCCTGA 350 CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG 400 GATGCCTTGA GGCCCAAGGA CAGAGCTGC TCCTCCTTCA CTCTGATTGA 500 GAGCACCCTG GAGGAGGA CAGAGCTGC TCCTCCTTCA CTCTGATTGA 500 AGGCACCCTG GAGGAGGCA CAGAGCCTGC TCCTCCTTCA CTCTGATTGA 500 AGGCACCCTG GAGGAGGCA CAGAGCCGC AGACACAC ACTCTATGGA 600 GCCAATCCAG TGAGGCCAC AGCAGCCGG AAGAGGAGGG GCCAACCACC 650 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT TCCCA GCCAATCCAG TGAGGCCACC AGCAGCCGG AAGAGGAGGG GCCAACCACC 650 GTCTCAGGGT TCCTCCTTTT TCCTGACTTG TTCCA 665 ATG GAA AGG TGG TGA AGT TGC TTCC TCC TGC TGC ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 ATG GAA AGG TGG TGA AGT AGT TTC CTC TGC TGC ACA AGT 727 ATC GAG TCA AGA ATT ACA AGC ACT AGT TTC CTT GTG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ACA AGT 769 ATG AAA GCC TCA GAG TGC ATG CAG GTG ATT TTT GAC ATG ACA AGT 727 ATG GAA GCC TCA GAG TGC ATG CAG GTG ATT TTT GAC ATG ACA AGT 727 ATG GAA GCC TCA GAA CCC GCC GCC GCC ACT CCT ACA TTT GAC 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGC TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGC TCC TTG TCA 895 CCT GCT TGG GCC TCT TCATAGAGAG GCCACTGTGC CCCTGAGGAG 1014 CCCAATCTGG AAGCCTTGAG TGTAAATGGTG TATGATGGG TGCACGATT 1064 CCCATGTGGGC CAGGGCC TCATTGAAAC CAGCTATTGC CCCTGAGGAG 1014 CCCATGCGGC AGGGCCC TCATTGAAAC CAGCTATTGC CAGGACACT 1114 TACCTCCAAT ACCGCCAGGT GCCCACCAGT GATCCCCCGT GCAGAAACC 1114 CACCTCCAAT ACCGCCAGGT GCCCACCAGT GATCCCCCGT GCAGAAACC 1114 CACCTCCAAT ACCGCCAGGT GCCCACCAGT GATCCCCCGT GCAGAAACC 1114 CCTGTGTGTGA AAGGGCCC TCATTGAAAC CAGCTATTCCT CAGAGCCC TCCTCCCT 1264 CATGAAGGCC CAGGGCAG ATTGGGGGAG GCCTTCCTC
TGGCCGGCTG TACCCTGAGG TGCCCTCTCA CTTCCTCTT CAGGTTCTCA 150 CGGGACAGGC CGGCCAGGAG GTCACAAGCC CCAGGAGGC CAGAGGAGC 200 ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGCCC TCCAGGAGGC 250 GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG 300 GTTCCTCCCC ATCGCCCAGC TGCTCCCCG ACTCCAGCCT GCTGCCCTGA 350 CCAGAGGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG 400 GATGCCTTGA GGCCCAAGCA CAGGAGGCTC TGGGCCTGT GGGTCCCAGG 450 GCTCCCCCCA CCGAGGAGCA CAGGAGGCTC TCCCCCTGA CTCTCATTGA 500 AGGCACCCTG GAGGAGGCTC CTGCTCCCCAGT CCTCCCCTGA 550 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGA 600 GCCAATCCAG TAGGGCACC AGCAGCCGG AAGAGAGGAGG GCCAACCACC 650 ATG GGA AGG TGG CTG GTC CTCT TTCCA 685 ATG GGA AGG TGG CTG GTC CTC TCC TC TG ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ACT ATT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 727 AGA GCA TGC CCG AGA CCG GCC TCC TGA 769 GCAATCTGG AAGCGTTGAT TTAATGGAGG GCCACTGTC CCCTGAGGAG 1014 CCATGTAGGA AAGCGTTGA TGTAATGGTG TATGATGGGT TGAGCAGATA 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT TATGATGGGT TATGAGGAGA 1114 CCTGTGGGGT CAAGGGCC TCATTGAACAC CAGGTTATCTA CCCATCCCTG 1264 AGTATCAGC CAAGGGCC TCATTGAACAC CAGGTTATCTA CCCATCCCTG 1264 AGCAACTCCA CAAGGGCCA TCTAATGAGA GAGTTCCTAC CCAAGGGCC TCTTCCTG 1264 AGCAACTCCA CAAGGGCCA TCTAATGAGA GAGTTCCTA CCCATCCCTG 1264 AGCAACTCCA CAAGGGCCC TCTTCAACA CAGCTTTCCTA CCCATCCCTG 1264 AGCAACATCCA CAAGGGCCC TCATTCAACA CAGCTTTCCTA CCCATCCCTG 1264 AGCAAGGCC AATGGGGCA ATTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 AGCAAGAGCC CAAGGGCAC TCAATAAGAGA GAGCTCTACC AAGATTCCTA CCCATCCCTG 1264 CAACATCCA CAAGAGGCAC TAATAAGAGA GAGCTCTCT CAGTTCCTTG CCATCCCTG 1264 CAACATCCA CCACCTTCCC TGTCC
GCGGACAGGC CGGCCAGGAG GTCAGAAGCC CCAGGAGGCC CCAGAGGAGC 200 ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT 250 GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG 300 GTTCCTCCCC ATCGCCCAGC TGCTCCCCC ACTCCAGCCT GCTGCCCTGA 350 CCAGAGGTCAT CATGTCTTCT GAGCAGAGGGA GTCAGCACTG CAGACCTGAG 400 GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGCT GGGCCCAGAG GCCCACCGCCA CCGAGGAGCA CAGGAGGCTC TCGCCCCAGT GCTCCCCTGA 550 AGGCACCCTG GAGGAGGGC CTGCTCCTGG GTCCCCCCAGT CCTCCCCTGA 550 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCACAAC ACTCTATGGA 600 GCCAATCCAG TCAGGGCACC AGCACCCGGG AAGAGGAGGG GCCAACCACC 650 AGGCACCCC CCGCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT 727 ATC GAG TCA AGA ATT ACA AGC ACT AGT TTC CTT GAT AGC ACA AGT 727 ATC GAG TCA AGA ATT ACA AGC ACT AGT TTC CTT GGA ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GGA ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ACC ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTT GGC ATA GAC 853 ATG AAG GAA GCT GG CTC CCT ACA GTG TTC TTT GAC 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGC TGC ATG ATC 937 AGA GCA TGC CCG GCC CTT TCA AAA ATC CAG GCC ACT CCT ACG TCC TTG TCA 964 TTATTGGTCTT GACCATGATC TTAATGGAGG GCCACCTGTC CCCTGAGGAG 1014 GCAATCTAGG AACGTTGAC TGTAATGGGT TATGATGGGA TGGACCAGTT 1064 TCTTTGGGCA GCTGAGGAG CTGCTCACC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GACCACCTG GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GACCACCTG GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GACCACCTG CCCTGAGGAG 1014 TACCTGCAAT ACGGCCAGGT GCTCACCC AAGATTGGGT GCAGGAAAAC 1114 AGCCAGGGCC TCATTGAAAGGA GCATTTCCTA CCATCCCTG 1264 CATGAAGAGC CTTGGGACA GAGGAGAGG GGACTCTAG CAAAGTTGC 1314 AGCCAGGGCC AGTGGGCA ATTGGGGGA GTGCCTCTACCAGTT 1164 CCTGTGGGAA ACCAGCTCT TCATTGAAAC CAGCTTCTAC CCATCCCTG 1264 CATGAACACC CAGGGCCC TCATTAAAGAGA GCATTTCCTA CCATCCCTG 1264 CACAACATCCA CACCTTCCC TGTCCTGTTA CATGAGGCC ATTCTTCACT 1414 CTGTGTTTGA ACAAGGGG CAACTCTCT CAGTTCCTTA CACTTCTTCACT 1414 CTGTGTTTGA ACAAGGAG C
ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT 250 GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG 300 GTTCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA 350 CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG 400 GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGAT GGGTGCCAGA 450 GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTCA CTCTGATTGA 500 AGGCACCCTG GAGGAGGTC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA 550 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA 600 GCCAATCCAG TGAGGGCACC AGCACCGGG AAGAGGAGGG GCCAACCACC 650 TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT 727 ATC GAG TCA AGA AGT AGT TGG TTC CTT TGC TGC ACA AGT 727 ATC GAG TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ACC AGC GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGA AGT 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ACC ATT ATT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC ATG AAG GAA GTG GC CC GCG GCC ACT CCT ACC TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGC TGC TGC ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC TTC TCA 769 CCAATCTGT GACCATGATC TTAATGGAGG GCCACCTGTC CCCTGAGGAG 1014 GCCAATCTGG AACCGTTGA TTAATGGAGG GCCACTGTC CCCTGAGGAG 1014 GCCAATCTGG AACCGTGA TCTAATGGAG GCCACTGTC CCCTGAGGAG 1014 CCTGTGGGGT CCAAGGGCC TCTAATGGGG GCCACTGTC CCCTGAGGAG 1014 CCAATGAACAG CTTGAGGAA CTGCTCACC AAGATTGGT GACAGAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCACGAGT GATCCCCCT GCTACCAGTT 1064 CCTGTGGGGT CCAAGGGCC TCATTAAAGGAG GCATTTCCTA CCCATCCCTG 1264 CATGAACAGC CAGGGTCAGT ACTAAAGGAG GGAGTCCTAG CCAAGAGTTC 1264 CATGAACAGC CAGGGCAG ACTGGGGAG GGACTCCTAG CCAAGGTCC 1264 CATGAACAGC CAGGGCAG ACTGGGGAG GGACTCCTAG CCAAGAGTTC 1264 CATGAACAGC CAGGGCAG ACTGGGGAG GGACTCCTAG CAGAAGTTC 1264 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCC ATTCTTCACT 1264 CATGAACAGC CACCTTCCC TGTCCTGTTA CATGAGGGC ATTCTTCACT 1264 CATGAACAGG CTTTCGGAGA CATCTCT CAGTTCCTTA CATTCTCTT TCTCTTTGGC 1514 CATTTGGAGG ATTAATCTTT CTTTCCTTTTG CAGTTCCTTA AATGTCTTT 1564 CATTTGGAGG ATTAATGAA CTTCAACATT CAGTTCCTTA AATGTCCTT 1564 CTTTTGGAGG ATTAATCTTT TTT
GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG GTTCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA 350 CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG GATGCCTTGA GGCCCAAGGA CAGGAGGGTC TGGGCCTGT GGGTGCGCAG GCTCCCGCCA CCGAGGAGCA CGAGGCTGC TCCTCCTTCA CTCTGATTGA 500 AGGCACCCTG GAGGAGGTGC CTCCTGCTGG GTCCCCCAGT CCTCCCCTCA 550 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA 600 GCCAATCCAG TGAGGGGCAC AGCAGCCGG AAGAGGAGGG GCCAACCACC 650 TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT 727 ATC GAG TCA AGA ATT ACA AGC ACT AGT TTC CTT GTG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TG GTG ATC ATC 937 AGA GCA TGC CCG AGA CCG GCC TTC TGA TTATGGTCTT GACCATGACT TTAATGGAGG GCCACTGTGC CCCTGAGGAG TCATTGGGCA AGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAG CTGCTCACCC AAGATTGGTG CCCTGAGGAG 1014 GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAGA CTGCTCACCC AAGATTGGTG AAAGTCCTGG 1214 AGCATGTGGG CCAGCGGGA ATTGGAGA GAGCCTTGAC CAGGAGAACC 1114 AGCAGGGCC AGTGGGGCA ACTTAAAGAGA GAGCTTGAG CAGCACGCTT 1164 CCTGTGGGGT CCAGGGCCA TCTTCTAAAGAGA GAGCTTTCCTA CAGAGCCCTG 1264 CATGAAGAGC CTTGGGAGA GAGCGAAGAG GAGCTTTCCTA CCCATCCCTG 1264 CATGAAGAGC CAGGGCCAG TACTTGAAAC CAGCTATGTG AAAGTCCTCGT 1264 CATGAAGAGC CAGGGCCAG TACTTGAAAGAGA GAGCTTTCCTA CCCATCCCTG 1264 CATGAAGAGC CAGGGCCAG TACTTGAAAGAGA GAGCTTTCCTA CAGAGACCTC 1264 CATGAAGAGC CAGGGCCAG ATTGGGGAG GAGCTTCCTC 1264 CACACATCCA CACCTTCCC TGTCCCC TATGAAGGCC ATTCTTCACT 1264 CACACATCCA CACCTTCCC TGTCCTGTTA CATGAGGGCC ATTCTTCACT 1264 CACACATCCA CACCTTCCC TGTCCTGTTA CATGAGGGCC ATTCTTCACT 1264 CATGAAGGGG ATACAAGGTG GACCATCTCT CAGTTCCTG TCTCTTTGGGC 1514 CACTGTGTTGA AAAGCCAGT TCTTCTTTTG CAGTGCTGT TCTCTTTGGGC 1514 CATTTGGAGG ATACAAGGTG GACCATCTCT CAGTTCCTT TCTCTTTGGC 1564 CTTGTGTTTGA AAAGCCAGT TATTCTTTTG CAGTGTTCA
GTTCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA 350 CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG 400 GATGCCTTGA GGCCCAAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG 450 GCTCCCGCCA CCGAGGAGCA CAGGAGGCTC TCCTCCTTCA CTCTGATTGA 500 AGGCACCCTG GAGGAGGCT CTCCTCGTTGG CTCCCCCTGA CCTCCCCTGA 550 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA 600 GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC 650 TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 727 AGA GCA TGC CCG AGA CCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 727 AGA GCA TGC CCG AGA CCG GCC TTC TGA 769 TTATGGTCTT GACCATCACT TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGT TGCAGGAACAC 1114 CCTGTGGGGT CCAAGCGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTCG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1224 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 124 AGCCAGGGCC AGGGGCAG ATTGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACCACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGGCA ATTCTTCACT 1414 CCTGTGTTTGA AGAGAGCAGT CATTGTCTA CATGAGGGCA ATTCTTCACT 1414 CCTGTGTTTGA AGAGAGCAGT CATTGTCTA CATGAGGGCA ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CATTGTCTA CATGAGGGCA ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CATTCTTC CAGTGTCTA CATTCTTTGGGC 1514 CATTTGGAGGA TTTATCTTTG TTTCCTTTTG CAGTGTTCA AATGTTCCTT 1564 CTGTGTGTGAGGA TTTATCTTTG TTTCCTTTTG CAGTGTTCA AATGTTCCTT 1564 CTGTGTGAGGGA TTTATCTTTG TTTCCTTTTG CAGTGTTCA AATGTTCCTT 1564 CTGTGTGAGGGA TTTATCTTTG TTTCCTTTTG CAGTGTTCA AATGTTCCTT 156
CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTCTCA CTCTCATTGA AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA GCCCATCCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC ATGACACACC CCGCTCACCT GCGCTCCTTG TTCCA ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC ACA AGT ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA ATC GAG TCA AGA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT ATC GAG TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT AGG AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA AGA GAA GCC TCA CAA ATG GCC TGC TGC TGC TGC AGA ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA AGA GCA TGC CCG AGA CCG GCC TTC TGA AGA GCA TGC CCG AGA CCG GCC TTC TGA AGA GCA TGC CCG AGA CCG GCC TTC TGA AGAACCTGGG AAGCGTTGAG TGTAATGGAG GCCAACCAGTT ACCTTGGGCA GCTGAGGAAG CTGCTCACC AGAATTGGGT GCAGGAAAAC CCTTTTGGGAG CCTAGGGAG TGTAATGGTG TATGATGGGT GCAGGAAAAC CCTTTTGGGGT CCAAGGGCC TCATTGAACAC GAGCTTTGTG CCAGGAAAAC CCTTTTGGGGT CCAAGGGCC TCATTGAACAC GAGCTTTGTG AAAGTCCTGG AGCCAAGGGCC TCATTGAAC CAGCTTTGTG AAAGTCCTGG CAAGGGCC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG AGCCAGGGCC TCATTGAAC CAGCTTTGTG AAAGTCCTGG AGCCAGGGCC TCATTGAAC CAGCTTTCTA CCCATCCCTG AGCCAGGGCC AGTGGGGAG GGCCTGGGCA GTGCACGTTC AGCCAGGGCC AGTGGGGAG GGAGGAAGG GAGTTTCCTA CCCATCCCTG AGCCAGGGCC AGTGGGGAG GAGGAAGAG GAGTTTCCTA CCCATCCCTG AGCCAGGGCC AGTGGGGAG ATTGGGGGGA GCCTTGGC AGCAGTTCC AGCTTTTGAACACATCCC AGGTTTCCTACC AGTTCCTTTCACT AGCCAGGGCC ATTGGGGGGA GACCATCTCT CATTCACTT AGCCAGGGCC ATTGCTGTTA CATGAGGGCC ATTCTTCACT AGCCAGGGCC ATTGCTGTTA CATGAGGGCC ATTCTTCACT AGCCAGGGCC ATTGCTTTTG CATTGGGGGA ATTCCTCTTTTGGC TATTCCTTTTGGC TTTTTCTTTTTTTTTT
GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTTCA CTCTGATTGA AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA GCCAATCCAG TGAGGGCACC AGCAGCCAGC AACAGCAACAAC ACTCTATGGA GCCAATCCAG TGAGGGCACC AGCAGCCGG AACAGCAGGG GCCAACCACC GCCAATCCAG TGAGGGCACC AGCAGCCGG AACAGCAGGG GCCAACCACC GCGCTCACCT GGCGTCCTTG TTCCA ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA ATC GAG TCA AGA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT ATC GAG TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT B11 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA AGA GCA TGC CCG AGA CCG GCC TTC TGA CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC ATTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG TCTTTGGGCA AGCGGTCAGT GTAATGGTG TATGATGGGA TGGAGCAGTT ACCAATCTGGG AAGCGTTCAGC AAGATTGGGT AAGATTGGGT GCAGGAAAAC CCTGTGGGGT CCAAGGGCC TCATTGAAAC CAGCTTTGTG CCCTGAGGAG CCTGTGGGGT CCAAGGGCC TCATTGAAAC CAGCTTTGTG AAAGTCCTGG AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG AGCACATCCA CCACCTTCCC TGTCCTGTTA CAGGGCC AGGACAGTTC AGCACAGCGC AGTGGGCAG ATTGGGGAAG GGAGTCTGAG CAGAAGTTGC ATTGAGAGGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG AGCCAGGCC AGTGGGCAG ATTGGGGGA GGCCTTGGGC ATTCTTCACT AGCCAGGGCC AGTGGGCAG ATTGGGGGA GGCCTTGGGC ATTCTTCACT AGCCAGGGCC AGTGGGCAG CAATGTTCC AGTAGCGGC AGTGGCACTTC AGTGGAGGAG ATTCTCTCC TGTCCTGTTA CATGAGGGCC ATTCTTCACT AGCCAGGGCC AGTGGGGAG CAATGTTCC AGTTGGGGCA AGTGTGTTGG AGAGCAGTC CAATGTTCTC AGTTGCGGGA AGTGTGTTGG AGCCAGGGCA ATTCCTTCC TGTCCTGTTA CATGAGGGCC AGTGTGTTGG AGAGCAGTC CAATGTTCTC AGTTACCGGG AGTGTTCTGGC AGGCAGGGA ATACAAAGGT CAATGTTCTC AGTTACCGTT TCTCTTTGGCC AGTGGGGGA ATACAAAGGT GACCATCTCT CAGTTCCTGT TCTCTTTGGCC AGTGGGGGA ATACAAAGGT GACCATCTCT CAGTTCCTTTA AATGTTCCTT AGTGGGGGA ATCCAGGTA CATGTTCTT CAGTTCCTT TCTCTTTGGGC AGTGTGAGGGA TTTATCTTTT TTTCCTTTT
GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTTCA CTCTGATTGA AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA 550 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA GCCAATCCAG TGAGGGCACC AGCAGCCGGG AACAGGAGGG GCCAACCACC CCCAATCCAG TGAGGGCACC AGCAGCCGGG AACAGGAGGG GCCAACCACC CCCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA ATC GAG TCA AGA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT ATC GAG TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT B11 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GAC AGG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA AGA GCA TGC CCA GAG CCC GCC TCC TGA CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC TATAGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG CCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGT TGGAGCAGTT TOAT TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCAGGAGAAAC CCTGTGGGGT CCAAGGGCC TCATTGAAC CAGCTTTGTA AGCAGTGGGCA GCTGAGGAAG CTGCTCACCC AACATTGGGT GCAGGAAAAC CCTGTGGGGT CCAAGGGCC TCATTGAAAC CAGCTTTGTA AGCAGTGGGCA GCTGAGGAAG GCACTCTCAC CAACATTGGGT GCAGGAAAAC CCTGTGGGGT CCAAGGGCC TCATTGAAAC CAGCTTTGTA AAAGTCCTGG 1214 AGCATGAAGAGG CTTTGGGAGA GGAGGAAAG GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAAG GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAAG GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGACTTCTGA CAGGACGTTC 1364 CCTGTGGGGCA ACTGGGGCA GGAGGAAGAG GAGCTTCTGA CATGAGGCC ATTCTTCACT 1414 CCTGTGTTTGA AGAGAGAGT CAATGTTCTC AGTTAGCGGGA AGTGTTCTGG 1514 CACCAGCATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGAG CAATCTCTC CAGTTCCTGT TCTCTTTGGC 1514 CATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTTCCTA AATGTTCCTT 1564 CTTTATTGGAGG TTTATCTTTG TTTCCTTTTG CAGTTCCTA AATGTTCCTT 1564 CTTATATGGAGG TTTATCTTTG TTTCCTTTTG CAGTTCTA AATGTTCCTT 1564
AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA 550 GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA 600 GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC 650 TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TGC TGC ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC TC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAC CAGCTATCTC AAGAGTCGC 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GCATTTCCTA CCCATCCCTG 1264 CACACACCAC ACGCTTCCC TGTCCTGTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGGAGA GAGGGAAGAG GGACTTGAG CAGAAGTTGC 1314 CCTGTGTTGA AGAGGAGAG GAGGAAGAG GAGTTTGAC CAGAAGTTGC 1364 CCTGTGTTGA AGAGGAGAG CAATGTTCT CAGTGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGAG CAATGTTCT CAGTTCCTGT TCTCTTGGC 1564 CTGTGTGTGGAG AGAGAGAG GACCATCTC CAGTTCCTGT TCTCTTCACT 1414 CTGTGTTTGA AGAGAGAGA CAATGTTCT CAGTTCCTGT TCTCTTCACT 1414 CTGTGTTTGA AGAGAGAGA CAATGTTCT CAGTTCCTGT TCTCTTCACT 1414 CTGTGTTTGA AGAGAGAGA CAATGTTCTC CAGTTCCTGT TCTCTTGGC 1564 CTGTGTGGGGG ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGC 1564 CTGTGTGGGGG ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1564 CTGTGTGGGGG ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1564 CTGTGTGGGGG ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1564 CTGTGTGGGGG ATACAAGGTG CAATGTTCTC CAGTTCCTGT TCTCTTGGGC 1564 CTGTGTGGGGG ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1564 CTGTGTGGGGGG ATACAAGGTG CAATGTTCTC CAGTTCCTGT TCTCTTGGGC 1564 CTGTGTGGGGGG ATACAAGGTG CAATGTTCTC CAGTTCCTGT TCTCTTGGGC 1564 CTGTGT
GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA 600 GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC 650 TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT 727 ATC GAG TCA AGA AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGC GTG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC TCC TGC GTG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC TCC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGAGGA GGAGGAAGAG GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTTTCCTA CCCATCCCTG 1264 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCC ATTCTTCACT 1414 CTGTGTTTGA AGAGGAGGT CAATGTTCT CAGTTGCG ATTCTTCACT 1414 CTGTGTTTGA AGAGGAGGT CAATGTTCT CAGTTCCTT TCTCTTGGGC 1514 GTTTTGGAGG AGAGAGAG GACCATCTCT CAGTTCCTTT TCTCTTGGGC 1514 GTTTTGGAGG ATACAAGGTG GACCATCTCT CAGTTCCTTT TCTCTTGGGC 1514 GTTTTGGAGG ATACAAGGTG GACCATCTCT CAGTTCCTTT TCTCTTTGGC 1514 CTTTTGGAGG ATACAAGGTG GACCATCTCT CAGTTCCTTT ATGACAGTAG 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATCT ATGACAGTAG 1614
GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC 650 TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA 685 ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 937 AGA GCA TC CCG AGA CCG GCC TTC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG AGCCATGATC TTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAGAAC 1114 AGCTACAGC CCAAGGGCCC TCATTGAAAC CAGCTTATCTG GCAGCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTTTCTG CCCTGAGGAG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CAGAAGTTGC 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTTTCTA AAAGTCCTGG 1214 AGCAAGACCC CACGCTTCCC TGTCCTGTC CCAGCAGTT CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTTCTGA CAGCATCCTG 1214 AGCCAGGGCC CAGCGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTTCTAAC CAGCTTTCACT 1414 CCTGTGTTTGA AGAGAGCAGT CAATGTTCT CAGTTCCTGT TCTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCT CAGTTCCTGT TCTCTTGGGC 1514 CACCACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC CAGTTCCTGT TCTCTTGGGC 1514 CACTTTGGAGG TTTATCTTTG TTTCCTTTTT CAGTTCTTA ATGGAGGCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC CAGTTCCTGT TCTCTTGGGC 1514 CACTTTTGGAGG TTTATCTTTG TTTCCTTTTT CAGTTCTT TCTCTTTTGGC 1514
TAGACACACC CCGCTCACCT GGCGTCCTTG TTCCA ATG GGA AGG TGG CTG AGT TGG TTC GCT TGC TGC ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC TTC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG ACGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAGA CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GAGGAAGAG GGAGTTCCTA CCCATCCCTG 1264 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGGGGA AGTGTCTTGG 1464 GTGTGGAGGA ATACAAGGT GACCATCTCT CAGTTCCTT TCTCTTGGC 1514 GTTTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTTCCTT TCTCTTTGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTTCCTT AATGGTAG 1514
ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT 727 ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC TTC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGA GGAGTTCCCC ATGAGGGCC ATTCCTGC 1314 AGCCAGGGCC AGTGGGGCA ATTGGGGGAG GGCCTGGGCA GTGCACGTT 1364 CCACCACTCCA CCACCTTCCC TGTCCTGTTA CATGAGGGCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGGGGG AGTGTTTGG 1464 CTGTGTGGGGA ATACAAGGTG GACCATCTCT CAGTTCCTG TCTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTTCCTT TCTCTTTGGC 1514 CTTTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA 769 GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT 811 GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC 853 ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA 895 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC 937 AGA GCA TGC CCG AGA CCG GCC TTC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGA GAGTTTCCTA CCCATCCCTG 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCT AGTAGGGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTC AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1514
GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA ATG AAG GAA GTG GAC CCC GCG GCC ACT CTT ACG TCC TTG TCA AGA GCA TGC CCG AGA CCG GCC TTC TGA AGA GCA TGC CCG AGA CCG GCC TTC TGA GCAATCTGGG AAGCGTTGAT TTAATGGAGG GCCACTGTGC CCCTGAGGAG TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT TCTTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGGT GCTACCAGTT TACTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC TACCACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG CAGTTTGGAGG ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA B95 CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC AGA GCA TGC CCG AGA CCG GCC TTC TGA TTATTGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGCCTGGGCA GTGCACGTT AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG GTGTGAGGG ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC AGA GCA TGC CCG AGA CCG GCC TTC TGA TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT TACCTGCGAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC TAGACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC TS14 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT TS64 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC AGA GCA TGC CCG AGA CCG GCC TTC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC CATGAAGAGG CTTTGGGAGA ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTTTGG GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
AGA GCA TGC CCG AGA CCG GCC TTC TGA 964 TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC 1314 AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGG AGTGTTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG 1014 GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC 1314 AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT 1064 TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC 1314 AGCCAGGGCC AGTGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC 1114 TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC 1314 AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGCC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT 1164 CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG 1214 AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC 1314 AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG 1264 CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC 1314 AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC 1314 AGCCAGGCC AGTGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC 1364 CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT 1414 CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG 1464 GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC 1514 GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT 1564 TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG 1614
GCAGACTTAC TGTTTTTAT ATAGTTAAAA GTAAGTGCAT TGTTTTTAT 1664
2001
TTATGTAAGA AAATCTATGT TATTTCTTGA ATTGGGACAA CATAACATAG 1714
CAGAGGATTA AGTACCTTTT ATAATGTGAA AGAACAAAGC GGTAAAATGG 1764
GTGAGATAAA GAAATAAAGA AATTAAATTG GCTGGGCACG GTGGCTCACG 1814
CCTGTAATCC CAGCACTTTA GGAGGCAGAG GCACGGGGAT CACGAGGTCA 1864
GGAGATCGAG ACCATTCTGG CTAACACAGT GAAACACCAT CTCTATTAAA 1914

- (2) INFORMATION FOR SEQUENCE ID NO: 20: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1810 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-8 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

GAGCTCCAGG AACCAGGCTG TGAGGTCTTG GTCTGAGGCA GTATCTTCAA	50
TCACAGAGCA TAAGAGGCCC AGGCAGTAGT AGCAGTCAAG CTGAGGTGGT	100
GTTTCCCCTG TATGTATACC AGAGGCCCCT CTGGCATCAG AACAGCAGGA	150
ACCCCACAGT TCCTGGCCCT ACCAGCCCTT TTGTCAGTCC TGGAGCCTTG	200
GCCTTTGCCA GGAGGCTGCA CCCTGAGATG CCCTCTCAAT TTCTCCTTCA	250
GGTTCGCAGA GAACAGGCCA GCCAGGAGGT CAGGAGGCCC CAGAGAAGCA	300
CTGAAGAAGA CCTGTAAGTA GACCTTTGTT AGGGCATCCA GGGTGTAGTA	350
CCCAGCTGAG GCCTCTCACA CGCTTCCTCT CTCCCCAGGC CTGTGGGTCT	400
CAATTGCCCA GCTCCGGCCC ACACTCTCCT GCTGCCCTGA CCTGAGTCAT	450
С	451
ATG CTT CTT GGG CAG AAG AGT CAG CGC TAC AAG GCT GAG GAA	493
GGC CTT CAG GCC CAA GGA GAG GCA CCA GGG CTT ATG GAT GTG	535
CAG ATT CCC ACA GCT GAG GAG CAG AAG GCT GCA TCC TCC	577
TCT ACT CTG ATC ATG GGA ACC CTT GAG GAG GTG ACT GAT TCT	619
GGG TCA CCA AGT CCT CCC CAG AGT CCT GAG GGT GCC TCC TCT	661
TCC CTG ACT GTC ACC GAC AGC ACT CTG TGG AGC CAA TCC GAT	703
GAG GGT TCC AGC AGC AAT GAA GAG GAG GGG CCA AGC ACC TCC	745
CCG GAC CCA GCT CAC CTG GAG TCC CTG TTC CGG GAA GCA CTT	787
GAT GAG AAA GTG GCT GAG TTA GTT CGT TTC CTG CTC CGC AAA	829
TAT CAA ATT AAG GAG CCG GTC ACA AAG GCA GAA ATG CTT GAG	871
AGT GTC ATC AAA AAT TAC AAG AAC CAC TTT CCT GAT ATC TTC	913
AGC AAA GCC TCT GAG TGC ATG CAG GTG ATC TTT GGC ATT GAT	955
GTG AAG GAA GTG GAC CCT GCC GGC CAC TCC TAC ATC CTT GTC	997
ACC TGC CTG GGC CTC TCC TAT GAT GGC CTG CTG GGT GAT GAT	1039
CAG AGT ACG CCC AAG ACC GGC CTC CTG ATA ATC GTC CTG GGC	1081
ATG ATC TTA ATG GAG GGC AGC CGC GCC CCG GAG GAG GCA ATC	1123
TGG GAA GCA TTG AGT GTG ATG GGG GCT GTA TGA	1156
TGGGAGGGAG CACAGTGTCT ATTGGAAGCT CAGGAAGCTG CTCACCCAAG	1206
AGTGGGTGCA GGAGAACTAC CTGGAGTACC GCCAGGCGCC CGGCAGTGAT	1256
CCTGTGCGCT ACGAGTTCCT GTGGGGTCCA AGGGCCCTTG CTGAAACCAG	1306
CTATGTGAAA GTCCTGGAGC ATGTGGTCAG GGTCAATGCA AGAGTTCGCA	1356
TTTCCTACCC ATCCCTGCAT GAAGAGGCTT TGGGAGAGGA GAAAGGAGTT	1406
TGAGCAGGAG TTGCAGCTAG GGCCAGTGGG GCAGGTTGTG GGAGGGCCTG	1456
GGCCAGTGCA CGTTCCAGGG CCACATCCAC CACTTTCCCT GCTCTGTTAC	1506
ATGAGGCCCA TTCTTCACTC TGTGTTTGAA GAGAGCAGTC ACAGTTCTCA	1556
GTAGTGGGGA GCATGTTGGG TGTGAGGGAA CACAGTGTGG ACCATCTCTC	1606
AGTTCCTGTT CTATTGGGCG ATTTGGAGGT TTATCTTTGT TTCCTTTTGG	1656
AATTGTTCCA ATGTTCCTTC TAATGGATGG TGTAATGAAC TTCAACATTC	1706
ATTTTATGTA TGACAGTAGA CAGACTTACT GCTTTTTATA TAGTTTAGGA	1756
GTAAGAGTCT TGCTTTTCAT TTATACTGGG AAACCCATGT TATTTCTTGA	1806
ATTC	1810

- (2) INFORMATION FOR SEQUENCE ID NO: 21:

 (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1412 base pairs

 (B) TYPE: nucleic acid

 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: genomic DNA

 (ix) FEATURE:

 (A) NAME/KEY: MAGE-9 gene

 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:
- TCTGAGACAG TGTCCTCAGG TCGCAGAGCA GAGGAGACCC AGGCAGTGTC 50 AGCAGTGAAG GTGAAGTGTT CACCCTGAAT GTGCACCAAG GGCCCCACCT 100 GCCCCAGCAC ACATGGGACC CCATAGCACC TGGCCCCATT CCCCCTACTG 150 TCACTCATAG AGCCTTGATC TCTGCAGGCT AGCTGCACGC TGAGTAGCCC 200 TCTCACTTCC TCCCTCAGGT TCTCGGGACA GGCTAACCAG GAGGACAGGA 250 GCCCCAAGAG GCCCCAGAGC AGCACTGACG AAGACCTGTA AGTCAGCCTT 300 TGTTAGAACC TCCAAGGTTC GGTTCTCAGC TGAAGTCTCT CACACACTCC 350 CTCTCTCCCC AGGCCTGTGG GTCTCCATCG CCCAGCTCCT GCCCACGCTC 400 CTGACTGCTG CCCTGACCAG AGTCATC 427 ATG TCT CTC GAG CAG AGG AGT CCG CAC TGC AAG CCT GAT GAA GAC CTT GAA GCC CAA GGA GAG GAC TTG GGC CTG ATG GGT GCA 511 CAG GAA CCC ACA GGC GAG GAG GAG GAG ACT ACC TCC TCT 553 GAC AGC AAG GAG GAG GTG TCT GCT GCT GGG TCA TCA AGT 595 CCT CCC CAG AGT CCT CAG GGA GGC GCT TCC TCC TCC ATT TCC 637 GTC TAC TAC ACT TTA TGG AGC CAA TTC GAT GAG GGC TCC AGC 679 . AGT CAA GAA GAG GAA GAG CCA AGC TCC TCG GTC GAC CCA GCT CAG CTG GAG TTC ATG TTC CAA GAA GCA CTG AAA TTG AAG GTG 763 GCT GAG TTG GTT CAT TTC CTG CTC CAC AAA TAT CGA GTC AAG 805 GAG CCG GTC ACA AAG GCA GAA ATG CTG GAG AGC GTC ATC AAA 847 AAT TAC AAG CGC TAC TTT CCT GTG ATC TTC GGC AAA GCC TCC 889 GAG TTC ATG CAG GTG ATC TTT GGC ACT GAT GTG AAG GAG GTG 931 GAC CCC GCC GGC CAC TCC TAC ATC CTT GTC ACT GCT CTT GGC 973 CTC TCG TGC GAT AGC ATG CTG GGT GAT GGT CAT AGC ATG CCC 1015 AAG GCC GCC CTC CTG ATC ATT GTC CTG GGT GTG ATC CTA ACC 1057 AAA GAC AAC TGC GCC CCT GAA GAG GTT ATC TGG GAA GCG TTG 1099 AGT GTG ATG GGG GTG TAT GTT GGG AAG GAG CAC ATG TTC TAC 1141 GGG GAG CCC AGG AAG CTG CTC ACC CAA GAT TGG GTG CAG GAA 1183 AAC TAC CTG GAG TAC CGG CAG GTG CCC GGC AGT GAT CCT GCG CAC TAC GAG TTC CTG TGG GGT TCC AAG GCC CAC GCT GAA ACC 1267 AGC TAT GAG AAG GTC ATA AAT TAT TTG GTC ATG CTC AAT GCA 1309 AGA GAG CCC ATC TGC TAC CCA TCC CTT TAT GAA GAG GTT TTG 1351 GGA GAG GAG CAA GAG GGA GTC TGA 1375 GCACCAGCCG CAGCCGGGGC CAAAGTTTGT GGGGTCA 1412

- (2) INFORMATION FOR SEQUENCE ID NO: 22: (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 920 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-10 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACCTGCTCCA GGACAAAGTG GACCCCACTG CATCAGCTCC ACCTACCCTA	50
CTGTCAGTCC TGGAGCCTTG GCCTCTGCCG GCTGCATCCT GAGGAGCCAT	100
CTCTCACTTC CTTCTTCAGG TTCTCAGGGG ACAGGGAGAG CAAGAGGTCA	150
AGAGCTGTGG GACACCACAG AGCAGCACTG AAGGAGAAGA CCTGTAAGTT	200
GGCCTTTGTT AGAACCTCCA GGGTGTGGTT CTCAGCTGTG GCCACTTACA	250
CCCTCCCTCT CTCCCCAGGC CTGTGGGTCC CCATCGCCCA AGTCCTGCCC	300
ACACTCCCAC CTGCTACCCT GATCAGAGTC ATC	333
ACACTECCAC CIGCIACCCI GAICACATO INC. ATG CCT CGA GCT CCA AAG CGT CAG CGC TGC ATG CCT GAA GAA	375
THE TAX AND THE CASE AND THE COLUMN CASE CASE CASE CASE CASE CASE CASE CASE	417
CAG GCT CCC CTG GCT GTG GAG GAG GAT GCT TCA TCC ACT	459
TCC ACC AGC TCC TCT TTT CCA TCC TCT TTT CCC TCC TC	501
THE THE THE THE THE TANK COT CTA ATA CCA AGC ACC	543
CCA GAG GAG GTT TCT GCT GAT GAT GAG ACA CCA AAT CCT CCC	585
THE THE THE SEC TOO TOO TOO TOO TOO GTO GTT GOT	627
TCC CTT CCA TTA GAT CAA TCT GAT GAG GGC TCC AGC AGC CAA	669
THE THE TAX AND ADD CONTROL OF COME CAN GAC AGT	711
ACT CAC ACT CAA AAC GTG ACT GAT	753
TTG GTG CAG TTT CTG CTC TTC AAG TAT CAA ATG AAG GAG CCG	795
TTG GTG CAG TTT CTG CTC TTC AAG IAI CAA AIG AAG GAG GGG	837
ATC ACA AAG GCA GAA ATA CTG GAG AGT GTC ATA AAA AAT TAT	879
OWN GUC CUC 110 OLL III	920
ATG CTG CTG GTC TTT GGC ATT GAT GTA AAG GAA GTG GAT CC	,,,,

oges o Com

- (2) INFORMATION FOR SEQUENCE ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1107 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-11 gene
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

AGAGAACAG	G CCAACCI	GGA GGACA	GGAGT C	CCAGGAGAA	CCCAGAGGAT	50
CACTGGAGG	A GAACAAG	TGT AAGTA	GCCT I	TGTTAGATT	CTCCATGGTT	100
CATATCTCA	T CTGAGTO	CTGT TCTCA	CGCTC C	CTCTCTCCC	CAGGCTGTGG	150
GGCCCCATC	A CCCAGAI	TATT TCCCA	CAGTT C	CGCCTGCTG	ACCTAACCAG	200
AGTCATCAT	G CCTCTTG	GAGC AAAGA	AGTCA G	CACTGCAAG	CCTGAGGAAG	250
CCTTCAGGC	C CAAGAAG	SAAG ACCTO	GGCCT G	GTGGGTGCA	CAGGCTCTCC	300
AAGCTGAGG.	A GCAGGAG	GCT GCCTI	CTTCT C	CTCTACTCT	GAATGTGGGC	350
ACTCTAGAG	G AGTTGCC	CTGC TGCTG	AGTCA C	CAAGTCCTC	CCCAGAGTCC	. 400
TCAGGAAGA	G TCCTTCI	CTC CCACT	GCCAT G	GATGCCATC	TTTGGGAGCC	450
TATCTGATG	A GGGCTCI	GGC AGCCA	AGAAA A	LGGAGGGGCC	AAGTACCTCG	500
CCTGACCTG	A TAGACCO	CTGA GTCCT	TTTCC C	CAAGATATAC	TACATGACAA	550
GATAATTGA	T TTGGTTC	CATT TATTO	TCCGC A	AGTATCGAG	TCAAGGGGCT	600
GATCACAAA	G GCAGAA					616
ATG CTG G	GG AGT GI	C ATC AAA	AAT TA	T GAG GAC	TAC TTT CCT	658
GAG ATA T	TT AGG GA	LA GCC TCI	GTA TG	C ATG CAA	CTG CTC TTT	700
GGC ATT G	AT GTG AA	NG GAA GTO	GAC CC	C ACT AGC	CAC TCC TAT	742
GTC CTT G	TC ACC TO	CC CTC AAC	CTC TC	TAT GAT	GGC ATA CAG	784
TGT AAT G	AG CAG AG	C ATG CCC	AAG TO	T GGC CTC	CTG ATA ATA	826
GTC CTG G	GT GTA A1	C TTC ATG	GAG GG	G AAC TGC	ATC CCT GAA	868
GAG GTT A	TG TGG GA	A GTC CTG	AGC AT	T ATG GGG	GTG TAT GCT	910
GGA AGG G	AG CAC TI	C CTC TTT	GGG GA	G CCC AAG	AGG CTC CTT	952
ACC CAA A	AT TGG G1	G CAG GAA	AAG TA	C CTG GTG	TAC CGG CAG	994
GTG CCC G	GC ACT GA	AT CCT GCA	TGC TA	T GAG TTC	CTG TGG GGT	1036
CCA AGG G	CC CAC GC	T GAG ACC	AGC AA	G ATG AAA	GTT CTT GAG	1078
TAC ATA G	CC AAT GC	C AAT GGG	AGG GA	T CC		1107

- (2) INFORMATION FOR SEQUENCE ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2150 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: smage-I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

												PATCI		50
CTCI	CACAC	AC C	CTCTC	TCTC	ST G1	CTG	CACC	CTA	AGTO	GCT	TTG	CATGO	GC	100
ACAG	GTT	CT C	ccc	CTGC	AT GO	AGCI	TAAAT	TAC	ATCI	TTC	TCC	ACAGO	GCC	150
TATE	ACCCC	CTG (CATTO	TAAC	T T	CAAGI	GGCI	TT	TGT	GAT	ACAC	GTC1	CT	200
														250
GCCCTTGTAT GCAGGCCTAA GTTTTTCTGT CTGCTTAACC CCTCCAAGTG AAGCTAGTGA AAGATCTAAC CCACTTTTGG AAGTCTGAAA CTAGACTTTT									300					
ATGCAGTGGC CTAACAAGTT TTAATTTCTT CCACAGGGTT TGCAGAAAAG									350					
AGCTTGATCC ACGAGTTCAG AAGTCCTGGT ATGTTCCTAG AAAG								394						
												TTA		436
CCA	AGG	TAT	TCT	CTA	CCT	GGT	AGT	ACA	GAG	GTA	CTT	ACA	GGT	478
TGT	CAT	TCT	TAT	CCT	TCC	AGA	TTC	CTG	TCT	GCC	AGC	TCT	TTT	520
ACT	TCA	GCC	CTG	AGC	ACA	GTC	AAC	ATG	CCT	AGG	GGT	CAA	AAG	565
AGT	AAG	ACC	CGC	TCC	CGT	GCA	AAA	CGA	CAG	CAG	TCA	CGC	AGG	604
GAG	GTT	CCA	GTA	GTT	CAG	CCC	ACT	GCA	GAG	GAA	GCA	GGG	TCT	646
TCT	CCT	GTT	GAC	CAG	AGT	GCT	GGG	TCC	AGC	TTC	CCT	GGT	GGT	688
TCT	GCT	CCT	CAG	GGT	GTG	AAA	ACC	CCT	GGA	TCT	TTT	GGT	GCA	730
												AAT		772
												CAG		814
												ATG		856
												TTT		898
ATG	AAA	GAA	GCA	GTT	ACA	AGG	AGT	GAA	ATG	CTG	GCA	GTA	GTT	940
												AGG		982
												TTG		1024
												GGC		1066
												TGG		1108
												GTG		1150
TTC	ATG	AAG	GGT	AAC	CGT	GCC	ACT	GAG	CAA	GAG	GTC	TGG	CAA	1192
												CAC		1234
												GTG		1276
												GAT		1314
												GCT		1360
												GTC		1402
												TTG		1444
												GTT		1486
												TCC		1528
	ATG													1537
			rctg:	rtgt(GT T	rgaal	AAAC	A GT	CAGG	CTCC	TAA!	rcag:	rag	1587
TTGAGTCTGT TCTGTTGTGT TTGAAAAACA GTCAGGCTCC TAATCAGTAG AGAGTTCATA GCCTACCAGA ACCAACATGC ATCCATTCTT GGCCTGTTAT 163								1637						
								1687						
								1737						
														1787
TGTCACTTGT CAGATTAGGA CTTGTTTTGT TATTTGCAAC AAACTGGAAA 1787														

ACATTATTTT	GTTTTTACTA	AAACATTGTG	TAACATTGCA	TTGGAGAAGG	1837
GATTGTCATG	GCAATGTGAT	ATCATACAGT	GGTGAAACAA	CAGTGAAGTG	1887
GGAAAGTTTA	TATTGTTAAT	TTTGAAAATT	TTATGAGTGT	GATTGCTGTA	1937
TACTTTTTTC	TTTTTTGTAT	AATGCTAAGT	GAAATAAAGT	TGGATTTGAT	1987
GACTTTACTC	AAATTCATTA	GAAAGTAAAT	CGTAAAACTC	TATTACTTTA	2037
TTATTTTCTT	CAATTATGAA	TTAAGCATTG	GTTATCTGGA	AGTTTCTCCA	2087
GTAGCACAGG	ATCTAGTATG	AAATGTATCT	AGTATAGGCA	CTGACAGTGA	2137
GTTATCAGAG	TCT				2150

- INFORMATION FOR SEQUENCE ID NO: 25: (2) (i) SEQUENCE CHARACTERISTICS:
 - - (A) LENGTH: 2099 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: smage-II
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

		·			
ACCTTATTGG	GTCTGTCTGC	ATATGCCTCC	ACTTGTGTGT	AGCAGTCTCA	50
AATGGATCTC	TCTCTACAGA	CCTCTGTCTG	TGTCTGGCAC	CCTAAGTGGC	100
TTTGCATGGG	CACAGGTTTC	TGCCCCTGCA	TGGAGCTTAA	ATAGATCTTT	150
CTCCACAGGC	CTATACCCCT	GCATTGTAAG	TTTAAGTGGC	TTTATGTGGA	200
TACAGGTCTC	TGCCCTTGTA	TGCAGGCCTA	AGTTTTTCTG	TCTGCTTAGC	250
CCCTCCAAGT	GAAGCTAGTG	AAAGATCTAA	CCCACTTTTG	GAAGTCTGAA	300
ACTAGACTTT	TATGCAGTGG	CCTAACAAGT	TTTAATTTCT	TCCACAGGGT	350
TTGCAGAAAA	GAGCTTGATC	CACGAGTTCG	GAAGTCCTGG	TATGTTCCTA	400
GAAAGATGTT	CTCCTGGAAA	GCTTCAAAAG	CCAGGTCTCC	ATTAAGTCCA	450
AGGTATTCTC	TACCTGGTAG	TACAGAGGTA	CTTACAGGTT	GTCATTCTTA	500
TCTTTCCAGA	TTCCTGTCTG	CCAGCTCTTT	TACTTCAGCC	CTGAGCACAG	550
TCAACATGCC	TAGGGGTCAA	AAGAGTAAGA	CCCGCTCCCG	TGCAAAACGA	600
CAGCAGTCAC	GCAGGGAGGT	TCCAGTAGTT	CAGCCCACTG	CAGAGGAAGC	650
AGGGTCTTCT	CCTGTTGACC	AGAGTGCTGG	GTCCAGCTTC	CCTGGTGGTT	700
CTGCTCCTCA	GGGTGTGAAA	ACCCCTGGAT	CTTTTGGTGC	AGGTGTATCC	750
TGCACAGGCT	CTGGTATAGG	TGGTAGAAAT	GCTGCTGTCC	TGCCTGATAC	800
AAAAAGTTCA	GATGGCACCC	AGGCAGGGAC	TTCCATTCAG	CACACACTGA	850
AAGATCCTAT	CATGAGGAAG	GCTAGTGTGC	TGATAGAATT	CCTGCTAGAT	900
AAGTTTAAGA	TGAAAGAAGC	AGTTACAAGG	AGTGAAATGC	TGGCAGTAGT	950
TAACAAGAAG	TATAAGGAGC	AATTCCCTGA	GATCCTCAGG	AGAACTTCTG	1000
CACGCCTAGA	ATTAGTCTTT	GGTCTTGAGT	TGAAGGAAAT	TGATCCCAGC	1050
ACTCATTCCT	ATTTGCTGGT	AGGCAAACTG	GGTCTTTCCA	CTGAGGGAAG	1100
TTTGAGTAGT	AACTGGGGGT	TGCCTAGGAC	AGGTCTCCTA	ATGTCTGTCC	1150
TAGGTGTGAT	CTTCATGAAG	GGTAACCGTG	CCACTGAGCA	AGAGGTCTGG	1200
CAATTTCTGC	ATGGAGTGGG	GGTATATGCT	GGGAAGAAGC	ACTTGATCTT	1250
TGGCGAGCCT	GAGGAGTTTA	TAAGAGATGT	AGTGCGGGAA	AATTACCTGG	1300
AGTACCGCCA	GGTACCTGGC	AGTGATCCCC	CAAGCTATGA	GTTCCTGTGG	1350
GGACCCAGAG	CCCATGCTGA	AACAACCAAG	ATGAAAGTCC	TGGAAGTTTT	1400
AGCTAAAGTC	AATGGCACAG	TCCCTAGTGC	CTTCCCTAAT	CTCTACCAGT	1450
TGGCTCTTAG	AGATCAGGCA	GGAGGGGTGC	CAAGAAGGAG	AGTTCAAGGC	1500
AAGGGTGTTC	ATTCCAAGGC	CCCATCCCAA	AAGTCCTCTA	ACATGTAGTT	1550
GAGTCTGTTC	TGTTGTGTTT	GAAAAACAGT	CAGGCTCCTA	ATCAGTAGAG	1600
AGTTCATAGC	CTACCAGAAC	CAACATGCAT	CCATTCTTGG	CCTGTTATAC	1650
ATTAGTAGAA	TGGAGGCTAT	TTTTGTTACT	TTTCAAATGT	TTGTTTAACT	1700
AAACAGTGCT	TTTTGCCATG	CTTCTTGTTA	ACTGCATAAA	GAGGTAACTG	1750
TCACTTGTCA	GATTAGGACT	TGTTTTGTTA	TTTGCAACAA	ACTGGAAAAC	1800
ATTATTTTGT	TTTTACTAAA	ACATTGTGTA	ACATTGCATT	GGAGAAGGGA	1850
TTGTCATGGC	AATGTGATAT	CATACAGTGG	TGAAACAACA	GTGAAGTGGG	1900
	TTGTTAGTTT				1950
	TTTTGTATAA				2000
	ATTCATTAGA				2050
	ATTATTAATT				2099

- (2) INFORMATION FOR SEQUENCE ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acids
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Glu Ala Asp Pro Thr Gly His Ser Tyr 5

Claims:

- Isolated nucleic acid molecule which codes for a tumor rejection antigen precursor or is complementary to a nucleic acid molecule which codes for a tumor rejection antigen precursor.
- 2. The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a tumor rejection antigen precursor.
- 3. Isolated nucleic acid molecule of claim 1, wherein said molecule codes for a human tumor rejection antigen precursor.
- 4. The isolated nucleic acid molecule of claim 1, wherein said molecule is complementary to a nucleic acid molecule which codes for tumor rejection antigen precursor.
- 5. The isolated nucleic acid molecule of claim 1, wherein said molecule is DNA.
- 6. The isolated nucleic acid molecule of claim 1, wherein said molecule is RNA.
- 7. The isolated nucleic acid molecule of claim 1, wherein said molecule is a gene.

- 8. The isolated nucleic acid molecule of claim 5, wherein said DNA is genomic DNA.
- 9. The isolated nucleic acid molecule of claim 5, wherein said DNA is cDNA.
- 10. The isolated nucleic acid molecule of claim 6, wherein said RNA is mRNA.
- 11. The isolated nucleic acid molecule of claim 4, wherein said molecule hybridizes to isolated nucleic acid which codes for tumor rejection antigen precursor under stringent conditions.
- 12. The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a MAGE antigen precursor or is complementary to a molecule which codes for a MAGE antigen precursor.
- 13. The isolated nucleic acid molecule of claim 12, wherein said MAGE antigen precursor is selected from the group consisting of mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 14. The isolated nucleic acid molecule of claim 12, wherein said molecule codes for a MAGE antigen precursor.

- 15. The isolated nucleic acid molecule of claim 12, wherein said molecule is complementary to a molecule which codes for a MAGE antigen precursor.
- 16. The isolated nucleic acid molecule of claim 12, wherein said molecule is DNA.
- 17. The isolated nucleic acid molecule of claim 12, wherein said molecule is RNA.
- 18. The isolated nucleic acid molecule of claim 12, wherein said molecule is a gene.
- 19. The isolated nucleic acid molecule of claim 16, wherein said DNA is genomic DNA.
- 20. The isolated nucleic acid molecule of claim 16, wherein said DNA is cDNA.
- 21. The isolated nucleic acid molecule of claim 17, wherein said RNA is mRNA.
- 22. The isolated nucleic acid molecule of claim 12, comprising a nucleotide sequence set forth in figure 9.

- 23. The isolated nucleic acid molecule of claim 15, wherein said molecule hybridizes to a molecule which codes for a MAGE antigen precursor under stringent conditions.
- 24. Isolated nucleic acid molecule of claim 1, coding for a tumor rejection antigen precursor for mastocytoma.
- 25. Isolated nucleic acid molecule of claim 1, coding for tumor rejection antigen precursor P1A.
- 26. Isolated nucleic acid molecule of claim 1, having the nucleotide sequence of figure 5.
- 27. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 2.
- 28. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 12.
- 29. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 22.
- 30. Biologically pure culture of a cell line of claim 27, selected from the group consisting of P1A.T2 and P1A.TC3.1.

- 31. Biologically pure culture of a highly transfectable cell line derived from a parent cell line which expresses at least one P815 tumor antigen, wherein said highly transfectable cell line does not express any of P815 tumor antigens A, B and C.
- 32. Biologically pure cell line of claim 31, comprising cell line PO.HTR.
- 33. Biologically pure culture of a cell line of claim 27, wherein said tumor rejection antigen precursor is a human tumor antigen precursor.
- 34. Biologically pure culture of a cell line of claim 33, wherein said human tumor antigen precursor is found in melanoma cells.

35. Biologically pure cell line of claim 34, said tumor rejection antigen precursor is mage-1 and said isolated DNA has nucleic acid sequence:

```
30-
                          20
                                              1 40
                                                              50 ' '1
                                                                           €0
                                                           1
    1 GONTOCKOSC DOTGOCKOSK ANNITARNIG GOCCOTGOCGT GRENKOKOKO GGGGTCKTCC 60 8 61 ACTGCKTOKO ACTGGGGGKTG TOKCKGAGTC CAGCOCKCCC TOCTGGTKGC ACTGAGKKGC 120
  121 CAGGGCTGTG CTTGCGGTCT GCACCCTGAG GGCCCGTGGA TTCCTCTTCC TGGAGCTCCA 180 :
  181 GUARDAGGO AGTGAGGOOT TGGTCTGAGA DAGTATOCTO AGGTCADAGA GCAGAGGATG 240
  241 EXCAGGREG GERAGEAGEG ANTOTTTGCC CTGANTGENC ACCANGEGEC CCACCTGCCA 300
  301 EAGGACACHT AGGACTOCHC AGAGTCTGGC CTCACCTCCC TACTGTCAGT CCTGTAGAAT 360
  361 CGADOTOTGO TGGOOGGOTG TACCOTGAGT ACCORDIGAD TTCCTCCTTC AGGTTTTCAG 420 48 84
  421 GGGACAGGGC AACCCAGAGG ACAGGATTCC CTGGAGGGCA CAGAGGAGGA CCAAGGAGAA 480
  481 GATOTGTANG TAGGOOTTTG TTAGAGTOTO CANGGTTCAG TTCTCAGCTG AGGOOTCTCA 540 200 2
  541 CACACTOCCI ETCTCCCCAG GCCTGTGGGT · ETTCATTGCC CAGCTCCTGC CCACACTCCT 600
  601 GOOTGOTGOO CTGACGAGAG TEATCATGTO TOTTGAGCAG AGGAGTOTGO ACTGCAAGGO 660 ...
  661 TEAGGNAGGE ETTGAGGGCC AACAAGAGGC ECTGGGCTGG TGTGTGTGCA GGCTGCCACC 720
  721 TOOTOCTOCT ETOCTOTGGT COTGGGCACC CTGGAGGAGG TGCCCACTGC TGGGTCAACA 780
  781 GATOCTCCCC AGAGTCCTCA GGGAGCCTCC GCCTTTCCCA CTACCATCAA CTTCACTCGA 840
  $41 CAGAGGCAAC CCAGTGAGGG TTCCAGCAGC CGTGAAGAGG AGGGGGCCAAG CACCTCTTGT 900 ...
  901 ATCCTGGAGT CCTTGTTCCG AGCASTAATC ACTAGAAGG TGGCTGATTT GGTTGGTTTT 960
  961 ETGCTCCTCA ANTATCGAGC CAGGGAGCCA GTCACAAAGG CAGAAATGCT GGAGAGTGTC 1020.
 1021 ATCANANTI ACANGENCIG TITTCCTGAG ATCTTCGGCA ANGCCTCTGA GTCCTTGCAG 1060
 1011 ETGGTCTTTG GCATTGACGT GAAGGAAGGA GACCCCACCG GCCACTCCTA TGTCCTTGTC 1140
1141 ACCTGCCTAG GTCTCTCCTA TGATGGCCTG CTGGGTGATA ATCAGATCAT GCCCAAGACA 1200
1201 GGCTTCCTGA TAATTGTCCT GGTCATGATT GCAATGGAGG GCGGCCLTGC TCCTGAGGAG 1260
 1261 GAAATCTGGG AGGAGCTGAG TGTGATGGAG GTGTATGATG GGAGGGAGGA CAGTGCCTAT 1320
 1321 GGGGAGCCCA GGAAGCTGCT EACCCAAGAT TIGGTGCAGG AAAAGTACCT GGAGTACGGC 1380
 1381 AGGTGCGGGA EAGTGATCCC GCACGCTATG AGGTCCTGTG GGGTCCAAGG GCCCTGGCTG 1440
 1441 ARRICAGETA TETERRAGIC ETTERETATE TERTERREGIT ERSTECRAGA ETTEGETTIT 1500
1501 TETTECENTE COTOCOTONA GENGETTTON GRONGWAGN AGROGGATE TONGCATGAG 1560
 1561 TIGCAGCCAA GOCCAGTGGG AGGGGGACTG GGCCAGTGCA CCTTCCAGGG CCGCGTCCAG 1620
 1621 CASCITCOCC TOCCTCGTGT GACATGAGGC CCATTCTTCA CTCTGAAGAG AGCGGTCAGT 1680
 1681 GITCTCASTA GIAGGITTCT GTTCTATTGG GTGACTTGGA GATTTATCTT IGTTCTCTTT 1740
 1741 TGGAATTGTT CAAATGTTTT TTTTTAAGGG ATGGTTGAAT GAACTTCAGC ATCCAAGTTT 1800
1801 ATGLATGACA GCAGTCACAC ACTTCTGTGT ATATAGTTTA AGGGTAAGAG TCTTGTGTTT 1860
1861 EXITCAGATI OGGULATOCA TICIATITIG TGAATIGGGA EALIAACAGO AGTGGALIAA 1920
1921 GIACTIAGAA ATGIGAAAAA TGAGCAGTAA AATAGATGAG ATAAAGAACT AAAGAAATTA 1980
1981 AGAGATAGIC ANTICITGCC TIATACCICA GICIATICIG TAAAATTIII AAAGATATAT 2040
2041 SCATACOTGS ATTICCTTGS CTICTITGAS AARGIAAGAS AAATIAAATC TGAATAAGA 2100
2101 ACTOTICCTS TICACTSSCT STITICTICT SCATSCASTS ASCATCTSCT TITISGAAGS 2160
2161 ECCTGGGTTA GTAGTGGAGA TGCTAAGGTA AGCCAGACTC ATACCCACCC ATAGGGTCGT 2220
2221 AGNOTOTAGG AGCTGCAGTC ACGTANTCGA GGTGGCANGA TGTCCTCTAN AGATGTNGGG 2280
2281 ANNOTONON CAGGOSTONS OCTOTOGOGO: TCCGGSTGAG ACTOSTGGAG TGTCANTGCC 2340
2341 ETGAGCTGGG GCATTITTGGG CTTTGGGALA ETGCAGTTCC TTCTGGGGGA OCTGATTGTA 2400
2401 ATGATETTGG GTGGATCC
                                                                              2418
                               1 30 1 40 1 50
                                                                         60
                     1 20
              10
```

- 36. The biologically pure culture of claim 27, wherein said cell line is transfected by a nucleic acid sequence coding for a cytokine.
- 37. The biologically pure culture of claim 36, wherein said cell line is further transfected by a nucleic acid sequence coding for an HLA molecule.
- 38. The biologically pure culture of claim 36, wherein said cytokine is an interleukin.
- 39. The biologically pure culture of claim 38, wherein said interleukin is IL-2.
- 40. The biologically pure culture of claim 38, wherein said interleukin is IL-4.
- 41. The biologically pure culture of claim 27, wherein said cell line is transfected by a nucleic acid sequence which codes for an MHC molecule or an HLA molecule.
- 42. The biologically pure culture of claim 27, wherein said cell line expresses an MHC or HLA molecule which presents a tumor rejection antigen derived from a tumor rejection antigen precursor (TRAP), wherein said TRAP is coded for by a nucleic acid sequence transfected into said cell line.

Ě

- 43. The biologically pure culture of claim 27, wherein said culture is non-proliferative.
- 44. The biologically pure culture of claim 27, wherein said cell line is a fibroblast cell line.
- 45. Transfected bacteria containing the nucleic acid sequence of claim 2.
- 46. Mutated virus containing the nucleic acid sequence of claim 2.
- 47. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 2 operably linked to a promoter.
- 48. Expression vector useful in transfecting a cell comprising a nucleic acid sequence coding for a tumor rejection antigen operably linked to a promoter.
- 49. Expression vector of claim 47, wherein said promoter is a strong promoter.
- 50. Expression vector of claim 47, wherein said promoter is a differential promoter.

- 51. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 7 operably linked to a promoter.
- 52. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 13 operably linked to a promoter.
- 53. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 14 operably linked to a promoter.
- 54. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 18 operably linked to a promoter.
- 55. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 22 operably linked to a promoter.
- 56. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for an MHC or HLA.
- 57. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for a cytokine.
- 58. The expression vector of claim 57, wherein said cytokine is an interleukin.

- 59. The expression vector of claim 58, wherein said interleukin is IL-2.
- 60. The expression vector of claim 58, wherein said interleukin is IL-4.
- 61. The expression vector of claim 47, further comprising a bacterial or viral genome or portion thereof.
- 62. The expression vector of claim 61, wherein said viral genome vaccinia virus DNA and said bacterial genome or portion thereof in BCG DNA.
- 63. Expression system useful in transfecting a cell, comprising (i) a first vector containing a nucleic acid molecule which codes for a tumor rejection antigen precursor, and (ii) a second vector selected from the group consisting of (a) a vector containing a nucleic acid molecule which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor, and (b) a vector containing a nucleic acid sequence which codes for an interleukin.
- 64. Isolated tumor rejection antigen precursor.
- 65. Isolated human tumor rejection antigen precursor.

- 66. Isolated tumor rejection antigen precursor of claim 65, wherein said precursor is mage-1.
- 67. Isolated tumor rejection antigen precursor of claim 65, wherein said precursor is a precursor for antigen F.
- 68. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 2.
- 69. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 12.
- 70. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 13.
- 71. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 22.
- 72. Isolated tumor rejection antigen.
- 73. Isolated human tumor rejection antigen.
- 74. Isolated tumor rejection antigen of claim 72 having amino acid sequence of SEQ ID NO: 4.
- 75. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen E.

- 76. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen F.
- 77. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a tumor rejection antigen precursor which provokes an immune response when administered to a subject.
- 78. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a peptide fragment derived from a tumor rejection antigen precursor, wherein said fragment is larger than the tumor rejection antigen derived from said tumor rejection antigen precursor and smaller than said tumor rejection antigen precursor and which provokes an immune response when administered to a subject.
- 79. Vaccine of claim 77, wherein said TRAP is a human TRAP.
- 80. Vaccine of claim 77 wherein said precursor is mage1.
- 81. Vaccine of claim 79, wherein said precursor is antigen F precursor.

- 82. Vaccine useful in treating a patient with a cancer comprising a tumor rejection antigen of claim 72 which provokes an immune response when administered to a subject.
- 83. Vaccine of claim 82, wherein said tumor rejection antigen has amino acid sequence of SEQ ID NO: 4.
- 84. The vaccine of claim 81, wherein said tumor rejection antigen is antigen E.
- 85. The vaccine of claim 81, wherein said tumor rejection antigen is antigen F.
- 86. The vaccine of claim 77, wherein said tumor rejection antigen precursor is the expression product of an expression vector containing a viral genome or portion thereof.
- 87. Vaccine useful in treating a patient with a cancer comprising the transfected bacterial of claim 45 and a pharmaceutically acceptable adjuvant.
- 88. Vaccine useful in treating a cancerous condition comprising the mutated virus of claim 46, and a pharmacologically acceptable adjuvant.

- 89. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a complex of a tumor rejection antigen and an HLA molecule.
- 90. Isolated peptide useful in treating a subject afflicted with a cancerous condition, said peptide having the amino acid of SEQ ID NO: 26.
- 91. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 27 and a pharmacologically acceptable adjuvant.
- 92. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 37 and a pharmacologically acceptable adjuvant.
- 93. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen precursor specific for a tumor characteristic of said cancerous condition, and a pharmaceutically acceptable carrier.
- 94. Composition of matter of claim 93, wherein said cell line is a human cell line.

- 95. Composition of matter of claim 93, wherein said pharmaceutically acceptable carrier is a liposome.
- 96. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen specific for a tumor characteristic of said cancerous condition, and a pharma- ceutically acceptable carrier.
- 97. Composition of matter of claim 96, wherein said cell line is a human cell line.
- 98. Composition of matter of claim 96, wherein said pharma ceutically acceptable carrier is a liposome.
- ondition, comprising (i) a tumor rejection antigen or tumor rejection antigen precursor, (ii) an MHC or HLA molecule, and (iii) a pharmaceutically acceptable carrier.
- 100. Composition of matter of claim 99, wherein said pharmaceutically acceptable carrier is a liposome.
- 101. Antibody which specifically binds to a tumor rejection antigen precursor.

- 102. Antibody of claim 101, wherein said antibody is a monoclonal antibody.
- 103. Antibody of claim 101, wherein said tumor rejection antigen precursor is mage-1.
- 104. Antibody of claim 103, wherein said antibody is a monoclonal antibody.
- 105. Antibody of claim 101, wherein said tumor rejection antigen precursor is antigen F precursor.

Section 1

- 106. Antibody of claim 105, wherein said antibody is a monoclonal antibody.
- 107. Antibody of claim 101, wherein said tumor rejection antigen precursor is a MAGE precursor.
- 108. Antibody of claim 107, wherein said antibody is a monoclonal antibody.
- 109. Antibody of claim 107, wherein said MAGE precursor is mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 110. Antibody of claim 109, wherein said antibody is a monoclonal antibody.

- 111. Antibody which specifically binds to a tumor rejection antigen.
- 112. Antibody of claim 111, wherein said antibody is a monoclonal antibody.
- 113. Antibody of claim 111, wherein said tumor rejection antigen is that set forth in SEQ ID NO: 4.
- 114. Antibody of claim 113, wherein said antibody is a monoclonal antibody.
- 115. Antibody of claim 111, wherein said tumor rejection antigen is antigen E.
- 116. Antibody of claim 115, wherein said antibody is a monoclonal antibody.
- 117. Antibody of claim 111, wherein said tumor rejection antigen is antigen F.
- 118. Antibody of claim 117, wherein said antibody is a monoclonal antibody.
- 119. Antibody which specifically binds to a complex of (i) tumor rejection antigen and (ii) HLA molecule, but does not bind to (i) or (ii) alone.

WO 92/20356 PCT/US92/04354

- 120. The antibody of claim 119, wherein said antibody is a monoclonal antibody.
- 121. Method for diagnosing a cancerous condition in a subject, comprising contacting a lymphocyte containing sample of said subject to a cell line transfected with a DNA sequence coding for a tumor rejection antigen precursor expressed by cells associated with said cancerous condition, and determining lysis of said transfected cell line by a cytotoxic T cell line specific for a tumor rejection antigen derived from said tumor rejection antigen precursor, said lysis being indicative of said cancerous condition.
- 122. Method of claim 121, wherein said tumor rejection antigen precursor is a MAGE antigen.
- 123. Method for determining regression, progression or onset of a cancerous condition comprising monitoring a sample from a patient with said cancerous condition for a parameter selected from the group consisting of (i) tumor rejection antigen precursor, (ii) tumor rejection antigen and (iii) cytolytic T cells specific for a tumor rejection antigen associated with said cancerous condition, wherein amount of said parameter is indicative of progression or regression or onset of said cancerous condition.

- 124. Method of claim 123, wherein said sample is a body fluid.
- 125. Method of claim 123, wherein said sample is a tissue.
- 126. Method of claim 123, comprising contacting said sample with an antibody which specifically binds with said tumor rejection antigen or tumor rejection antigen precursor.
- 127. Method of claim 126, wherein said antibody is labelled with a radioactive label or an enzyme.
- 128. Method of claim 126, wherein said antibody is a monoclonal antibody.
- 129. Method of claim 123, comprising amplifying RNA which codes for said tumor rejection antigen precursor.
- 130. Method of claim 129, wherein said amplifying comprises carrying out polymerase chain reaction.
- 131. Method of claim 123, comprising contacting said sample with a nucleic acid molecule which specifically hybridizes to a nucleic acid molecule which codes for or expresses said tumor rejection antigen precursor.
- 132. Method of claim 123, comprising assaying said sampl for shed tumor rejection antigen.

- assaying a sample taken from a subject for a cytolytic T cell specific for a tumor rejection antigen, presence of said cytolytic T cell being indicative of said cancerous condition.
- 134. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) removing a lymphocyte containing sample from said subject,

.14

- (ii) contacting the lymphocyte containing sample to a cell line transfected with a gene coding for and expressing a gene for a tumor rejection antigen precursor expressed by cancer cells associated with said conditions, under conditions favoring production of cytotoxic T cells against a tumor rejection antigen derived from said tumor rejection antigen precursor, and
- (iii) introducing said cytotoxic T cells to said subject in an amount sufficient to lyse said cells.
- 135. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying a MAGE gene expressed by cancer cells associated with said condition;
 - (ii) identifying an HLA molecule which presents a portion of an expr ssion product of said MAGE gene;

- (iii) transfecting a host cell having the same HLA molecule as identified in (ii) with said MAGE gene;
- (iv) culturing said transfected cells to express
 said MAGE-gene, and;
- (v) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 136. Method of claim 135, wherein said immune response comprises a B-cell response.
- 137. Method of claim 135, wherein said immune response is a T-cell response.
- 138. Method of claim 136, wherein said B cell response comprises production of antibodies specific to said tumor rejection antigen or tumor rejection antigen precursor.
- 139. Method of claim 137, wherein said T-cell response comprises generation of cytolytic T-cells specific for cells presenting said tumor rejection antigen.
- 140. Method of claim 139, further comprising treating said cells to render them non-proliferative.

- 141. Method for treating a subject with a cancerous condition, comprising:
 - (i) identifying a MAGE gene expressed by said tumor;
 - (ii) transfecting a host cell having the same HLA type as said patient with said MAGE gene;
 - (iii) culturing said transfected cells to express
 said MAGE gene, and;
 - (iv) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 142. Method of claim 141, further comprising treating said cells to render them non proliferative.
- 143. Method for treating a subject with a cancerous condition, comprising administering to said subject an amount of a cell transfected with (i) a nucleic acid sequence which codes for a tumor rejection antigen precursor (TRAP) and (ii) a nucleic acid sequence which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said TRAP, wherein said tumor rejection antigen is presented by cells associated with said cancerous condition, sufficient to alleviate said cancerous condition.
- 144. Method of claim 143, further comprising treating said cell to render it non-proliferative.

- 145. Method for preparing a biological material useful in treating a subject afflicted with a cancerous condition, comprising:
 - (i) transfecting a host cell with a nucleic acid molecule which codes for or expresses a tumor rejection antigen precursor;
 - (ii) transfecting said host cell with a nucleic acid molecule which codes for an HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor on a cell surface, and;
 - (iii) treating said host cells under conditions favoring expression of said nucleic acid molecules, and presentation of said tumor rejection antigen by said human leukocyte antigen.
- 146. Method of claim 145, further comprising treating said host cells to render them non proliferative following presentation of said tumor rejection antigen.
- 147. Method of claim 146, further comprising transfecting said host cell with a nucleic acid molecule which codes for or expresses a cytokine.
- 148. Method of claim 146, wherein said cytokine is an interleukin.

- 149. Method of claim 146, wherein said human leukocyte antigen is HLA-A1.
- 150. Method of claim 148, wherein said interleukin is IL2.
- 151. Method of claim 146, wherein said interleukin is IL-4.
- 152. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an amount of a reagent consisting essentially of non-proliferative cell having expressed on its surface a tumor rejection antigen characteristic of cancerous cells in an amount sufficient to elicit an immune response thereto.

43

4.3

- 153. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a tumor rejection antigen expressed on a cancer cell associated with said condition, said antibody being coupled to an anticancer agent, in an amount sufficient to treat said cancerous condition.
- 154. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a

tumor rej ction antigen precursor expressed by a cancer cell associated with said condition, said antibody being coupled to an anticancer agent, in an amount sufficient to treat said cancerous condition.

- 155. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject a biological sample prepared in accordance with claim 142 in an amount sufficient to alleviate said cancerous condition.
- 156. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 77 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 157. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 78 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 158. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 82 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 159. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 86 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 160. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 87 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 161. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 88 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 162. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 163. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 164. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 90 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 165. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying cells from said subject which express a tumor rejection antigen precursor and present a tumor rejection antigen derived from said precursor on their surface;
 - (ii) isolating a sample of said cells;
 - (iii) cultivating said cell, and;
 - (iv) introducing said cells to said subject in an amount sufficient to provoke an immune response against said cells.
- 166. Method of claim 165, further comprising rendering said cells non proliferative, prior to introducing them to said subject.
- 167. Method for identifying a cytotoxic T cell useful in treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying a tumor rejection antigen presented by cells associated with said cancerous condition derived from a tumor rejection antigen

WO 92/20356 PCT/US92/04354

precursor expressed by said cells, prior to introducing them to said subject;

- (ii) contacting a cell presenting said antigen to a cytotoxic T cell, and;
- (iii) measuring a parameter selected from the group consisting of (i) proliferation of said cytotoxic T cell and (ii) release of a cytotoxic T cell produced factor, wherein increase in said parameter is indicative of said cancerous condition.
- 168. Method of claim 167, wherein said factor is tumor necrosis factor.
- 169. Method for following progress of a therapeutic regime designed to alleviate a cancerous condition, comprising:
 - (a) assaying a sample from a subject to determine level of a parameter selected from the group consisting of (i) tumor rejection antigen, (ii) a cytolytic T cell specific for cells presenting said tumor rejection antigen, and (iii) an antibody which specifically binds to said tumor rejection antigen at a first time period;
 - (b) assaying level of the parameter selected in (a) at a second period of time and comparing it to the level determined in (a) as a determination of effect of said therapeutic regime.

- assaying a sample taken from a subject for expression of a TRAP molecule, and comparing levels of expression to a normal level, wherein variance there between is indicative of a cancerous condition.
- 171. Method of claim 164, comprising measuring expression via polymerase chain reaction.
- 172. Method of claim 123, comprising intradermally administering an amount of a tumor rejection antigen sufficient to generate a delayed type response in a subject.

FIG. 1A

BNSDOCID: <WO 9220356A1>

2/13

O C **G**r. 5 $\mathbf{\omega}$ 50 40 30 2 % SPECIFIC LYSIS

16. 18

FIG. 2

FIG. 3

FIG. 6

8/13

FIG. 7

FIG. 9

MAGE-3 MAGE-2 MAGE-1	= -
	 GGCCAAGAAtgItIcccgaCCtIGGAGICCGAGITCCAAGCAGCACTCAGIAGGAAGGIGGCCGAGITGGITCAITTICTGCTCCTCAAGIAICGAGCCA GGCCAAGAAtgItIcccgaCCtIGGAGICCGAGITCCAAGCAGCAAICAGIAGGAAGAIGGtIGAGITGGITCAITTICTGCTCCTCAAGIAICGAGCCA
	/ ggccaagcaccittistatcc-tggagiccitgitccgagcagtaatcactaagaaggtggtgatitggtiggtitgtttctgtctctcaaatatcgagcca g 325
	$I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!I\!$
	H GGGAGCCGGTCACAAAGGCAGAAATGCTGGAGAGTGTCCTCAGAAATTGCCAGGACT ${ t t}$ CTTCC ${ t c}$ GGAGCCAGCAAAGCCTC ${ t c}$ GGAGT ${ t c}$ TTGCAGCT ${ t c}$
·	/ GGGAGCCAGTCACAAAGGCAGAAATGCTGGAGAGTGTCATCAAAATTACAAGCACTGTTTTCCTGAGATCTTCGGCAAAGCCTCTGAGTCCTTGCAGCT
	$\it M$ GGTCTTTGGCATcGAgCTGAtGGAAGtgGACCCCAtCGGCCACTtgTAcaTCtTTGcCACCTGCCTGGGcCTCTCCTAcGATGGCCTGCTGGGTGAcAAT
	$m{H}$ GGTCTTTGGCATCGAGGTGG $m{G}$ CGCAGCCACT $m{G}$ CCACT $m{G}$ TACaTCCTTGTCACCTGCCTGGCCTCTCCTACGATGGCCTGCTGGGGGACAAT
	 GETCTTTGGCATTGACGTGAAGGAAGCCACCCCACCCCAC
	M CAGATCATGCCCAAGGCAGGCCTCCTGATAATCGTCCTGGCCATAATCGCAAgaGAGGGCGaCtgTGCCCCTGAGGAGAAAATCTGGGAGGAGGTGAGTG
	H caggicatecceaseagacage cutcusataates T coccataates caraseages couts at secontrasea and the cases and the case H
	/ CAGATCATGCCCAAGACAGGCTTCCTGATAATTGTCTGGTCATGATTGCAATGGAGGGCGGCCATGCTCGTGAGGAAATCTGGGAGGAGGTGTG 625

β-action	MAGE	PROBES	
		MZ2-MEL.3.0 MZ2-MEL 1982 MZ2-MEL.2.2 E- MZ2-PBL-PHA	FIG. 10
		Lung Kidney	
		MZ2-MEL 3.0 MZ2-CTL 82/30 LB34-MEL	1
	€ Company of the Com	LB17-MEL MI665/2-MEL	
		LB41-MEL MI10221-MEL MI13443-MEL	
3		SK23-MEL SK33-MEL	Other melanomas
		LB4-MEL MI4024-MEL MZ3-MEL MZ5-MEL SK29-MEL LB31-COL LS411-COL	
		H209-SCLC H345-SCLC H510-SCLC TT	Other tumors

11/13 FIG. 11

Expression of antigen MZ2-E after transaction**

		EXP	RSSION C	OF MAGE MILY	GENE	RECOGN ANI-E	NITIN BY		
		Northern blot probed with			ct probed specific for	teste	d by:		
		cross-reactive MAGE-1 probe*	MAGE-1	MAGE-2	MAGE-31	TNF release‡	Lysis§		
Cells of patient MZ2	melanoma cell line MZ2-MEL.3.0	+	++++	11111	+++++	+	+		
	tumor sample MZ2 (1982)	+	+++	+++	+++				
	antigen-loss variant MZ2-MEL 2.2	+		+++	+++	-	-		
	CTL done MZ2-CTL.82/30	-	-	-	-				
	PHA-activated blood lymphocytes	-	-	-	-				
Normal tissues	Liver	_	-	_	_				
	Muscle	_	-	-	-				
	S kin		-	- .	-	,			
	Lung	-	-	-	- '				
•	Brain	-	-	-	-				
	Kidney	-	-	-	-				
Melanoma cell lines of	LB34-MEL	+	++	++++	++++	+	+-		
HLA-A1 patients	MI665/2-MEL	-	_	-	-	-	-	+	
	MI10221-MEL	+	-	++	+++	-	-	+	
	MI13443-MEL	+	+++	++++	++++	+	+		
	SK33-MEL	+	-	++++	++++	-	-	-	
	SK23-MEL	+	-	++++	++++	-	-	+	
Melanoma cell lines of	LB17-MEL	+	+	++++	 	-	-	-	
other patients	LB33-MEL	+	. -	+++	+++	-	-		
	LB4-MEL	-	-	-	-	-	-		
	LB41-MEL	-	-		-	-	-		
	MI4024-MEL	+	+++	++++	++++	-	-		
	SK29-MEL	-	-	-	-	-	-		
	MZ3-MEL .	+	+	++++	++++	-	-		
	MZ5-MEL	+	-	++++	++++	-	-		
Melanoma tumor sample	BB5-MEL	+	+++	++	+++				
Other tumor cell lines	small cell lung cancer H209	+	_	++++	++++				
	small cell lung cancer H345	+	-	++++	++++				
	small cell lung cancer H510	+	-	++++	++++				
	small cell lung cancer LB11	+	+	++++	++++				
	bronchial squamous cell carcinom		-	_	+++				
	thyroid medullary carcinoma TT		++++	+++	++++				
	colon carcinoma LB31	+	-	+++	++++	-			
	colon carcinoma LS411	-	-	-	-				
Other tumor samples	chronic myeloid leukemia LLC5	_	_	_					
•	acute myeloid leukemia TA	-	-	-	-				

^{*} Data obtained in the conditions of figure 5.

[†] Data obtained as described in figure 6.

[‡] TNF release by CTL 82/30 after stimulation with the tumor cells as described in (11).

 [§] Lysis of 51 Cr labelled target by CTL 82/30 in the conditions of figure 1.
 Cells transfected with the 2.4 kb fragment of gene MAGE-1 were tested for their ability fo stimulate TNF release by CTL 82/30.

12/13 **FIG. 12**

MZ2-CTL 82/30 MZ2-MEL.3.0 (E+)

MZ2-MEL.3.0 (E+) MZ2-MEL.2.2 (E-)

-12 kb

- 8

- 4

- 3

_ 2

_ 1

D

FIG. 13

International application No. PCT/US92/04354

		PC1/US92/043	34		
A. CLA	SSIFICATION OF SUBJECT MATTER	<u> </u>			
IPC(5)	:Please See Extra Sheet. :Please See Extra Sheet.				
	to International Patent Classification (IPC) or to both	national classification and IPC	-		
B. FIE	LDS SEARCHED				
Minimum d	locumentati n searched (classification system follower	d by classification symbols)			
U.S. :	536/25; 530/350, 387; 424/88, 450; 435/320.1, 7.2,	7.1, 243, 252.32			
Documenta	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched		
Electronic of APS, Dia	data base consulted during the international search (na	ame of data base and, where practicable	, search terms used)		
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.		
<u>X</u> Y	Journal of Experimental medicine, Volume 172, iss of the Gene of tum- Transplantation Antigen P198 Antigenic Peptide", pages 35-45, see entire docum	8: A Point Mutation Generates a New	<u>1-63</u> 121-134		
Y	International Journal of Cancer, Volume 30, issued Specific Oncofetal Antigen Defined By A Mouse I see entire article.		121-133		
х	Journal of the National Cancer Institute, Volume 73 al., "Studies of a Melanoma Tumor-Associated A Meidum of a Human Melanoma Cell Line by Allo Characterization", pages 75-82, see entire article.	Antigen Detected in the Spent Culture	154, 155		
х	Journal of Experimental Medicine, Volume 152, "Immunogenic Variants Obtained by Mutagenesis Lymphocyte Meidated Cytolysis", pages 1184-1193	s of Mouse Mastocytoma P815 II. T	64-76, 152, 153		
X Furth	ner documents are listed in the continuation of Box C	See patent family annex.			
A do	ecial categories of cited documents: cument defining the general state of the art which is not considered be part of particular relevance	"I" later document published after the inte date and not in conflict with the applica principle or theory underlying the inv	ation but cited to understand the		
E earlier document published on or after the international filing dute *L* document which may throw doubts on priority claim(s) or which is		"X" document of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an inventive st when the document is taken alone			
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination			
P do	cument published prior to the international filing date but later than priority date claimed	being obvious to a person skilled in the art '&' document member of the same patent family			
	actual completion of the international search	Date of mailing of the international sea	irch report		
08 SEPTEMBER 1992 15 SEP 1992					
Name and mailing address of the ISA/ Commissioner of Patents and Trademarks Box PCT Authorized officer LYNETTE F. SMITH					
Washington	n, D.C. 20231 Io. NOT APPLICABLE		11		
racsimile N	U. NOT APPLICABLE	Telephone No. (703) 308-0196			

Form PCT/ISA/210 (second sheet)(July 1992)*

 \mathfrak{r}

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Υ .	Cell, Volume 58, issued 28 July 1989, Lurquin et al, "Structure of the Gene of Tum- Transplantation antigen P91A: The Mutated Exon Encodes a Peptide Recognized with L ^d by Cytolytic T Cells", pages 293-303, see entire article.	1-63, 165-172
,E	US, A, 5,141,742 (Brown et al) 25 August 1992 columns 5-9.	77-100, 135-144, 156- 164
Ý	Journal of Virology, Volume 49, No. 3, issued March 1984, Mackett, et al., "General Method for Production and Selection of Infectious Vaccinia Virus Recombinants Expressing Foreign Genes", pages 857-864, see entire document.	47-63
r	Cancer Research, Volume 48, issued 01 June 1988, Fearon, et al, "Induction in a Murine Tumor of Immunogenic Tumor Variants by Transfection with a Foreign Gene", pages 2975-2980, see entire article.	77-100
?	Cancer Research, Volume 39, issued May 1979, Gupta et al, "Isolation and Immunochemical Characterization of Antibodies from the Sera of Cancer Patients Which are Reactive against Human Melanoma Cell Membranes by Affinity Chromatography", pages 1683-1695, see pages 1686-1689.	101-120
(Cancer Research, Volume 43, issued July 1983, Morgan et al, "Monoclonal Antibodies to Human Melanoma-associated Antigens: An Amplified Enzyme-linked Immunosorbent Assay for the Detection of Antigen, antibody and Immune Complexes", pages 3155-3159, see entire article.	101-120
r	Journal of Surgical Research, Volume 48, issued 1990, Wong et al, "Immunochemical Characterization of a Tumor-Associated Antigen Defined by a Monoclonal Antibody", pages 539-546, see entire article.	101-120
		• ;
		10.5 1
	·	Ī

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/I S92/04354

IPC (5):	0, 37/22; CO7K 3/00, 13/00,	15/00 17/00 0120 1/6	58 1/00 15/00·C	12N 1/20 1/00				
	TON OF SUBJECT MATTE		58, 1700, 15700, C.	1211 1/20, 1/00				
US CL :	TON OF SUBJECT WATTE	κ.						
536/25; 530/350, 387; 424/88, 450; 435/320.1, 7.2, 7.1, 243, 252.32								
•	·		,					
		•						
		-						
			•					

Form PCT/ISA/210 (extra sheet)(July 1992)*