Para compilar o ep2 basta dar make no terminal e ./ep2 < nomearquivo.dat > para executá-lo usando o arquivo .dat escolhido como definido no enunciado.

Os testes foram feitos usando um i
7-4500 U CPU @ 1.8 GHz e 8 GB de RAM.

Parte 1: Sistemas definidos positivos Os resultados tiveram uma diferença significativa para problemas dados entre as implementações orientados a coluna e a linha, principalmente entre os problemas com n grande. Sendo os melhores tempo os por linha, já que, a linguagem utilizada foi C.

Problema	cholcol	forwcol	backcol	cholrow	forwrow	backrow
1	0.004556	0.000140	0.000137	0.003550	0.000132	0.000123
2	0.043498	0.000362	0.000301	0.036245	0.000484	0.000317
3	0.117948	0.001343	0.000932	0.087939	0.000951	0.000713
4	0.238581	0.002475	0.001717	0.209548	0.000996	0.000978
5	0.414539	0.002191	0.002124	0.362103	0.001555	0.001536
6	0.731586	0.003469	0.004372	0.619970	0.002447	0.003801
7	1.173883	0.004746	0.004662	1.009653	0.003022	0.003775

As matrizes positivo definidas de testes foram geradas pelo genmatsin.c com n igual a 100, 200, ..., 700 para os testes.

Parte 2: sistemas gerais Assim como previsto, para os sistemas gerais, os métodos foram executados mais rápidos orientado a linha do que a coluna pois foi feito em C, que guarda as matrizes em linhas. E em todos os testes feitos o tempo executado por linha foi mais rápido que o orientado a coluna, com exceção do teste com n=100, onde tiveram teste que os tempos foram bem parecidos e as vezes com o tempo um pouquinho maior que o por coluna, porém julgo como errado já que outras coisas podem afetar o resultado do tempo além do algoritmo feito, ainda mais com um n tão pequeno. E como pode ser visto na tabela quanto maior o n mais eficiente é o orientado a linha em relação ao orientado a coluna:

Problema	PA = LU	LUx = Pb	PA = LU	LUx = Pb
1	0.005329	0.000119	0.005027	0.000123
2	0.045434	0.000401	0.042997	0.000324
3	0.175075	0.000865	0.141306	0.000791
4	0.390028	0.001510	0.312168	0.001346
5	0.788581	0.002498	0.589043	0.002093
6	1.399397	0.003737	1.002722	0.003040
7	2.368173	0.021937	1.591310	0.013574

 ${\bf A}$ segunda e a terceira coluna são os métodos orientados a coluna e a quarta e quinta orientadas a colunas.

As matrizes positivo definidas de testes foram geradas pelo genmat.c e assim como na parte 1 as matrizes tem tamanho n igual a 100, 200, ..., 700 para os testes, como definido no enunciado.