第4节 高考中抛物线常用的二级结论(★★☆)

强化训练

1. $(2020 \cdot 新高考 I 卷 \cdot ★★)$ 斜率为 $\sqrt{3}$ 的直线过抛物线 $C: y^2 = 4x$ 的焦点,且与 C 交于 A, B 两点,则 $|AB| = _____.$

答案: $\frac{16}{3}$

解法 1: 直线 AB 过焦点且已知斜率,可写出其方程,与抛物线联立,用坐标版焦点弦公式求 |AB|,

由题意,p=2,抛物线 C 的焦点为 F(1,0),过 F 且斜率为 $\sqrt{3}$ 的直线为 $y=\sqrt{3}(x-1)$,

联立
$$\begin{cases} y = \sqrt{3}(x-1) \\ y^2 = 4x \end{cases}$$
 消去 y 整理得: $3x^2 - 10x + 3 = 0$, 所以 $x_A + x_B = \frac{10}{3}$, 故 $|AB| = x_A + x_B + 2 = \frac{16}{3}$.

解法 2: 由斜率能求出倾斜角,故也可用角版焦点弦公式算 | AB |,

由题意, p=2 ,直线 AB 的斜率为 $\sqrt{3}$ ⇒其倾斜角 $\alpha=60^\circ$,所以 $|AB|=\frac{2p}{\sin^2\alpha}=\frac{4}{\sin^260^\circ}=\frac{16}{3}$.

2. (★★)设 F 为抛物线 $C: y^2 = 3x$ 的焦点,过 F 且倾斜角为 30°的直线交 C 于 A, B 两点,O 为原点,则 ΔAOB 的面积为_____.

答案: 9/4 《一数•高考数学核心方法》

解析: 已知直线的倾斜角,代公式 $S = \frac{p^2}{2\sin\alpha}$ 即可求 ΔAOB 的面积,

由题意, $p = \frac{3}{2}$,直线 AB 的倾斜角 $\alpha = 30^{\circ}$,所以 $S_{\Delta AOB} = \frac{p^2}{2\sin\alpha} = \frac{(\frac{3}{2})^2}{2\sin30^{\circ}} = \frac{9}{4}$.

3. (★★★) 过抛物线 $y^2 = 2x$ 的焦点 F 作直线交抛物线于 A, B 两点,若 $|AB| = \frac{25}{12}$,|AF| < |BF|,则 $|AF| = \frac{1}{12}$

答案: $\frac{5}{6}$

解法 1: 已知|AB|,可由角版焦点弦公式求角,再代入焦半径公式第|AF|,

不妨设直线 AB 为如图所示的情形,设 $\angle AFO = \alpha(0 < \alpha < \frac{\pi}{2})$,则 $|AB| = \frac{2}{\sin^2 \alpha} = \frac{25}{12} \Rightarrow \sin \alpha = \frac{2\sqrt{6}}{5}$,

所以 $\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{5}$,故 $|AF| = \frac{1}{1 + \cos \alpha} = \frac{1}{1 + \frac{1}{5}} = \frac{5}{6}$.

解法 2: |AB|可转换成|AF| + |BF|,把|AF|,|BF|看成未知数,结合 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$ 即可求解|AF|,

由题意,
$$p=1$$
,所以 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = 2$ ①,又 $|AB| = |AF| + |BF| = \frac{25}{12}$ ②,

由①可得
$$\frac{|AF| + |BF|}{|AF| \cdot |BF|} = 2$$
,结合式②可得 $|AF| \cdot |BF| = \frac{25}{24}$ ③,

由②③知
$$|AF|$$
, $|BF|$ 是一元二次方程 $x^2 - \frac{25}{12}x + \frac{25}{24} = 0$ 的两根,解得: $x = \frac{5}{6}$ 或 $\frac{5}{4}$,

因为
$$|AF| < |BF|$$
,所以 $|AF| = \frac{5}{6}$.

4. (★★★) 过抛物线 $C: y^2 = 3x$ 的焦点 F 的直线与 C 交于 A, B 两点,若 |AF| = 2|BF|,则 $|AB| = _____$.

答案:
$$\frac{27}{8}$$

解法 1: 由|AF|=2|BF|可用角版焦半径公式建立方程求角,从而求得|AB|,

如图,设
$$\angle AFO = \alpha$$
,则 $|AF| = \frac{p}{1 + \cos \alpha}$, $|BF| = \frac{p}{1 + \cos(\pi - \alpha)} = \frac{p}{1 - \cos \alpha}$,

因为
$$|AF| = 2|BF|$$
,所以 $\frac{p}{1+\cos\alpha} = 2 \cdot \frac{p}{1-\cos\alpha}$,从而 $\cos\alpha = -\frac{1}{3}$,故 $|AB| = \frac{2p}{\sin^2\alpha} = \frac{2p}{1-\cos^2\alpha} = \frac{3}{1-(-\frac{1}{3})^2} = \frac{27}{8}$.

解法 2: 由
$$|AF| = 2|BF|$$
 结合 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$ 也可求出 $|AF|$ 和 $|BF|$, 进而求得 $|AB|$,

由题意,
$$p = \frac{3}{2}$$
, 所以 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = \frac{4}{3}$, 结合 $|AF| = 2|BF|$ 可得 $|AF| = \frac{9}{4}$, $|BF| = \frac{9}{8}$,

所以
$$|AB| = |AF| + |BF| = \frac{27}{8}$$
.

5.(2023•广东模拟•★★★)已知抛物线 $E:y^2=4x$ 的焦点为 F,过 F 的直线与 E 交于 A, B 两点,且

$$|AF|=3|BF|$$
,则 $\triangle AOB$ 的面积为 ()

(A)
$$\frac{4\sqrt{3}}{3}$$
 (B) $\frac{2\sqrt{3}}{3}$ (C) $4\sqrt{3}$ (D) $8\sqrt{3}$

(B)
$$\frac{2\sqrt{3}}{3}$$

(C)
$$4\sqrt{3}$$

(D)
$$8\sqrt{3}$$

答案: A

解析: 题干给了|AF|=3|BF|,可用角版焦半径公式翻译它,求出角,并用角来计算 $S_{\Delta AOB}$,

如图,设
$$\angle AFO = \alpha$$
,则 $\left|AF\right| = \frac{p}{1 + \cos \alpha} = \frac{2}{1 + \cos \alpha}$, $\left|BF\right| = \frac{p}{1 + \cos(\pi - \alpha)} = \frac{2}{1 - \cos \alpha}$,

因为
$$|AF|=3|BF|$$
,所以 $\frac{2}{1+\cos\alpha}=3\cdot\frac{2}{1-\cos\alpha}$,

解得:
$$\cos \alpha = -\frac{1}{2}$$
, 结合 $0 < \alpha < \pi$ 可得 $\alpha = \frac{2\pi}{3}$,

所以
$$S_{\Delta AOB} = \frac{p^2}{2\sin\alpha} = \frac{4}{2\sin\frac{2\pi}{3}} = \frac{4\sqrt{3}}{3}$$
.

6. (★★★) 已知拋物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,准线为 l,过点 F 作倾斜角为 120° 的直线与准线 l 相交于点 A,线段 AF 与 C 相交于点 B,且 $|AB| = \frac{4}{3}$,则 C 的方程为_____.

答案: $y^2 = 2x$

解析:如图,过B作 $BD \perp l$ 于D,因为直线AF的倾斜角为120°,所以 $\angle AFO = \angle ABD = 60°$,

已知 $|AB| = \frac{4}{3}$,可在 ΔABD 中求|BD|,结合抛物线定义得出|BF|,再由角版焦半径公式建立方程求p,

从而
$$|BD|=|AB|\cos\angle ABD=\frac{2}{3}$$
,由抛物线定义, $|BF|=|BD|=\frac{2}{3}$,

$$\mathbb{Z}[BF] = \frac{p}{1 + \cos \angle BFO} = \frac{p}{1 + \cos 60^{\circ}} = \frac{2p}{3}$$
,所以 $\frac{2p}{3} = \frac{2}{3}$,解得: $p = 1$,故 C 的方程为 $y^2 = 2x$.

答案: 2

解法 1: 涉及中垂线,可先把直线 l 与抛物线联立,结合韦达定理求出 AB 中点,写出中垂线的方程,

由题意, $F(\frac{p}{2},0)$,直线 AB 的方程为 $y=x-\frac{p}{2}$,即 $x=y+\frac{p}{2}$,设 $A(x_1,y_1)$, $B(x_2,y_2)$,

将 $x = y + \frac{p}{2}$ 代入 $y^2 = 2px$ 消去 x 整理得: $y^2 - 2py - p^2 = 0$,判别式 $\Delta = (-2p)^2 - 4 \times 1 \times (-p^2) = 8p^2 > 0$,

由韦达定理, $y_1+y_2=2p$,所以 $x_1+x_2=y_1+\frac{p}{2}+y_2+\frac{p}{2}=y_1+y_2+p=3p$,故 AB 中点 G 为 $(\frac{3p}{2},p)$,

所以 AB 中垂线的方程为 $y-p=-(x-\frac{3p}{2})$ ①,由此中垂线可求 M 的坐标,进而求得 |FM|,

在①中令y=0得: $x=\frac{5p}{2}$, 故 $M(\frac{5p}{2},0)$, 所以 $|FM|=\frac{5p}{2}-\frac{p}{2}=2p$, 故 $\frac{4p}{|FM|}=2$.

解法 2: 如图,要求|FM|,结合 $\angle GFM$ 是已知的,可先求|FG|,

因为 G 为 AB 中点,所以 $|FG| = |AF| - |AG| = |AF| - \frac{1}{2} |AB|$ ①,

已知l的倾斜角,可用角版焦半径和焦点弦公式来算|AF|和|AB|,

直线 l 的倾斜角为 $45^{\circ} \Rightarrow \angle GFM = 45^{\circ} \Rightarrow \angle AFO = 135^{\circ}$,所以 $|AF| = \frac{p}{1 + \cos 135^{\circ}}$, $|AB| = \frac{2p}{\sin^2 135^{\circ}}$,

代入①得: $|FG| = \frac{p}{1 + \cos 135^{\circ}} - \frac{1}{2} \cdot \frac{2p}{\sin^2 135^{\circ}} = \sqrt{2}p$,

又 $\angle GFM = 45^{\circ}$,所以 $\triangle GFM$ 是等腰直角三角形,从而 $|FM| = \sqrt{2}|FG| = 2p$,故 $\frac{4p}{|FM|} = 2$.

