Defin	Efriz defined on E and Efrica) 3 converges + x E E, Then
	$f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in E$
	Efn } converge to f point-wise
	Continuous functions is continuous. Start defined on E [converges] Continuous functions is continuous. Which is not necessarily. The
	[uniformly] to function $f \Leftrightarrow \forall \epsilon > 0, \exists N \text{ st } \forall n > N, f_n(x) - f(x) \leq \epsilon$
	¥ x ∈ E
	clearly, + {fn3 uniformly convergent, {fn3 pointwise convergent
	Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$.
	$\sum_{n=1}^{\infty} f_n(x) \overline{\text{converges uniformly}} \text{ on } E \text{ if } \{sn\} \text{ where } sn(x) = \sum_{i=1}^{n} f_i(x)$ $\text{converges uniformly on } E.$
TMM	$\{f_n\}$ converges uniformly on $E \Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } \forall m, n > N,$ $\forall x \in E, f_n(x) - f_m(x) \leqslant \epsilon$ $\text{(cauchy condition)}$ $* remember that cauchy sequence in a metric space is convergent to point in space. compact MS$
Thm	Ut lim for(x) = f(x) + x E. and Mn = sup for(x) - f(x)
TI	nen fn>f uniformly on E \ Mn>0 as n>10
TMM	suppose $\{f_n\}$ and $ f_n(x) \leq M_n$. Then $\sum f_n$ converges uniformly if $\sum M_n$ converges
(U.C	AND CONTINUITY
Thm	Etn3->f uniformly on ECX metric. ~ a limit point of E.

Let $\lim_{t\to \infty} f_n(t) = A_n$. Then $\{A_n\}$ converges and $\lim_{t\to \infty} f(t) = \lim_{n\to\infty} A_n$ $\Rightarrow \lim_{t\to \infty} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to \infty} f_n(t)$

Thm $\{f_n\}$ continuous on E and $f_n \rightarrow f$ uniformly on $E \Rightarrow f$ continuous on E

Thm K compact and

(a) {fn} continuous on K

(b) {fn} converges pointwise to a continuous f on K

(c) $f_n(x) \ge f_{n+1}(x) \ \forall \ x \in K, \ n = 1, 2, ...$

Then fn > f uniformly on k

Define pointwise bounded: $|f_n(x)| < \phi(x) + n$ uniformly bounded: $|f_n(x)| < M + n$