Dynamic Programming

CS3230: Design and Analysis of Algorithms

Roger Zimmermann

National University of Singapore Spring 2017

Introduction

- Dynamic Programming is a general algorithm design technique.
 "Programming" here means "planning."
 - Invented by the American mathematician Richard Bellman in the 1950s to solve optimization problems.

Fundamentals

- Main idea
 - Solve several smaller (overlapping) subproblems
 - Record solutions in a table so that each subproblem is only solved once
 - Final state of the table will be (or contain) the solution
- Dynamic programming versus Divide-and-Conquer
 - Partition a problem into overlapping subproblems versus independent ones
 - Storing versus not storing of solutions to subproblems

Example: Fibonacci Numbers

Recall the definition of Fibonacci numbers

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$

• Computing the n^{th} Fibonacci number recursively (top-down):

• •

Example: Fibonacci Numbers

• Computing the n^{th} Fibonacci number using bottom-up iteration:

$$f(0) = 0$$

$$f(1) = 1$$

$$f(2) = 0 + 1 = 1$$

$$f(3) = 1 + 1 = 2$$

$$f(4) = 1 + 2 = 3$$

$$f(5) = 2 + 3 = 5$$
...
$$f(n-2) = \dots$$

$$f(n-1) = \dots$$

$$f(n) = f(n-1) + f(n-2)$$

Example: Fibonacci Numbers

• Algorithm for computing the n^{th} Fibonacci number using bottom-up iteration:

ALGORITHM FIB(n) $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for $i \leftarrow 2$ to n do $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

• Uses extra space: Array F[0..n]

More Examples

- Computing binomial coefficients
- Warshall's algorithm for transitive closure
- Floyd's algorithms for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
 - E.g.: Knapsack

Computing Binomial Coefficients

- A binomial coefficient, denoted C(n,k) or $\binom{n}{k}$, is the number of combinations of k elements from an n-element set $(0 \le k \le n)$.
- Recurrence relation (a problem ⇒ 2 overlapping problems):

$$-C(n,k) = C(n-1,k-1) + C(n-1,k)$$
, for $n > k > 0$, and

$$-C(n,0) = C(n,n) = 1$$

Computing Binomial Coefficients

- Dynamic programming solution
 - Record the values of the binomial coefficients in a table of n+1 rows and k+1 columns, numbered from 0 to n and 0 to k respectively.

	0	1	2	3	4	k
0	1					
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
n	1	5	10	10	5	1

Computing Binomial Coefficients

- The first k+1 rows form a triangle, while the remaining rows form a rectangle.
- Time efficiency:

$$A(n,k) = \sum_{i=1}^{k} \sum_{j=1}^{i-1} 1 = \sum_{i=k+1}^{n} \sum_{j=1}^{k} 1 = \sum_{i=1}^{k} (i-1) + \sum_{i=k+1}^{n} k$$

$$= \frac{(k-1)k}{2} + k(n-k) \in \Theta(nk).$$

Transitive Closure

- The transitive closure of a directed graph with n vertices can be defined as the $n \times n$ matrix T in which $t_{ij} = 1$ if there exists a non-trivial directed path (i.e., a directed path of a positive length) from the i^{th} to the j^{th} vertex; otherwise $t_{ij} = 0$.
- Solution: graph traversal-based algorithm and Warshall's algorithm.

Transitive Closure

From adjacency matrix to transitive closure:

- Main idea: use a bottom-up method to construct the transitive closure of a given digraph with n vertices through a series of $n \times n$ boolean matrices: $R^{(0)}, \ldots, R^{(k-1)}, R^{(k)}, \ldots, R^{(n)}$.
- Q: how to obtain $R^{(k)}$ from $R^{(k-1)}$?
- $R^{(k)}$: $r_{ij}(k) = 1$ in $R^{(k)}$, iff there is an edge from i to j; or there is a path from i to j going through vertex 1; or there is a path from i to j going through vertex 1 and/or 2; or ... there is a path from i to j going through vertex 1,2, ..., and or k

Illustration

Rule for changing zeros in Warshall's algorithm:

Illustration

Do not allow an intermediate node

be an intermediate node

Allow 1 to Allow 1,2 to be an intermediate node

to be an intermediate node

Allow 1,2,3 Allow 1,2,3,4 to be an intermediate node

• In the k^{th} stage: to determine $R^{(k)}$ is to determine if a path exists between two vertices i, j using just vertices among $1, \ldots, k$.

```
r_{ij}^{(k)}=1: \begin{cases} r_{ij}^{(k-1)}=1 & \text{path using just } 1,\dots,k-1\\ \text{or}\\ (r_{ik}^{(k-1)}=1 \text{ and } r_{kj}^{(k-1)}=1) & \text{path from } i \text{ to } k \text{ and from } k\\ \text{to } i \text{ using just } 1,\dots,k-1 \end{cases}
```

- Rule to determine whether $r_{ij}^{(k)}$ should be 1 in $R^{(k)}$:
- a) If an element r_{ij} is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$.
- b) If an element r_{ij} is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ iff the element in its row i and column k and the element in its column i and row k are both 1's in $R^{(k-1)}$.

- In a naive implementation it uses additional memory for all the matrices.
- Time efficiency: $\Theta(n^3)$.

Floyd's Algorithm

- All pairs shortest paths problem: In a weighted graph, find shortest paths between every pair of vertices.
- Applicable to: undirected and directed weighted graphs; no cycles of negative length.
- Same idea as Warshall's algorithm: construct solution through a series of matrices $D^{(0)}, D^{(1)}, \ldots, D^{(N)}$.
 - $d_{ij}^{(k)} = \text{length of the shortest path from } i \text{ to } j \text{ with each vertex numbered no higher than } k.$

Floyd's Algorithm

• $D^{(k)}$: allow 1, 2, ..., k to be intermediate vertices. In the k^{th} stage, determine whether the introduction of k as a new eligible intermediate vertex will bring about a shorter path from i to j.

$$d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$$
 for $k \ge 1$, $d_{ij}^{(0)} = w_{ij}$

Example: Floyd's Algorithm (1)

Example: Floyd's Algorithm (2)

Example: Floyd's Algorithm (3)

Example: Floyd's Algorithm (4)

Example: Floyd's Algorithm (5)

General Comments

- The crucial step in designing a dynamic programming algorithm
 - Deriving a recurrence relating a solution to the problem's current instance with solutions of its smaller (and overlapping) subinstances.

The Knapsack Problem (1)

- The problem: Find the most valuable subset of n given items that fit into a knapsack of capacity W.
- Consider the following subproblem P(i, j):
 - Find the most valuable subset of the first i items that fit into a knapsack of capacity j, where $1 \le i \le n$, and $1 \le j \le W$.
 - Let V[i,j] be the value of an optimal solution to the above subproblem P(i,j). Goal: V[n,m].
 - The question: What is the recurrence relation that expresses a solution to this instance in terms of solutions to smaller subinstances?

The Knapsack Problem (2)

- The recurrence
 - Two possibilities for the most valuable subset for the subproblem P(i, j):
 - 1. It does *not* include the i^{th} item: V[i,j] = V[i-1,j].
 - 2. It includes the i^{th} item: $V[i,j] = v_i + V[i-1,j-w_i]$.

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \geq 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$

$$V[0,j] = 0 \text{ for } j \ge 0 \text{ and } V[i,0] = 0 \text{ for } i \ge 0$$

Illustration

 Table for solving the knapsack problem by dynamic programming:

		capacity j						
		0	$j-w_j$	j	W			
	0	0	0	0	0			
	i-1	0	$V[i-1, j-w_j]$	V[i-1,j]				
w_j , v_j	i	0		V[i,j]				
J · J				[/ 6]				
	n	0			goal			

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \geq 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$
 capacity j

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \geq 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$

 $w_3 = 3, v_3 = 20$ 3

 $w_4 = 2, v_4 = 15$ 4

$$V[i,j] = \left\{ \begin{array}{lll} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j - w_i \geq 0 \\ V[i-1,j] & \text{if } j - w_i < 0 \end{array} \right.$$
 capacity j
$$\frac{i}{0} \quad \frac{0}{0 + v_1} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$w_1 = 2, v_1 = 12 \quad 1 \quad 0 \quad 0 \quad 12 \quad - \quad - \quad -$$

$$w_2 = 1, v_2 = 10 \quad 2 \quad 0 \quad - \quad - \quad - \quad - \quad -$$

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \geq 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$
 capacity j
$$i \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j - w_i \ge 0 \\ V[i-1,j] & \text{if } j - w_i < 0 \end{cases}$$

		capacity j						
	i	0	1	2	3	4	5	
	0	0	0	0	0	0	0	
$w_1 = 2, v_1 = 12$	1	0	$0+v_2$	12	12	12	12	
$w_2 = 1, v_2 = 10$	2	0	10	12	-	-	-	
$w_3 = 3, v_3 = 20$	3	0	-	-	-	-	-	
$w_4 = 2, v_4 = 15$	4	0	-	-	-	-	-	

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \geq 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$

		capacity j						
	i	0	1	2	3	4	5	
	0	0	0			0		
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12	
$w_2 = 1, v_2 = 10$	2	0	10	12	22	22	22	
$w_3 = 3, v_3 = 20$	3	0		12			32	
$w_4 = 2, v_4 = 15$	4	0	10	15	25	30	37	

Example Observations

- Found maximal value V[n,m] = V[4,5] = 37 for capacity W = 5.
- Problem: not all values that we computed were really necessary to obtain the final solution.
- This happens because of bottom-up approach.

Memory Functions

- Memory functions: a combination of bottom-up and top-down method.
- Idea: solve the subproblems that are necessary and do it only once.
 - Top-down: solve common subproblems more than once.
 - Bottom-up: solve subproblems whose solutions are not necessary for solving the original problem.

MFKnapsack

```
ALGORITHM MFKnapsack(i, j)
if V[i,j] < 0 // if subproblem P(i,j) has not been solved yet
  if j < Weights[i]
     value = MFKnapsack(i-1, j)
  else
     value = \max(MFKnapsack(i-1, j),
       Values[i] + MFKnapsack(i-1, j-Weights[i]))
  // Store result in table
  V[i,j] = value
return V[i,j]
```

MF Example

$$V[i,j] = \begin{cases} \max\{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \geq 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$

		capacity j						
	i	0	1	2	3	4	5	
	0	0	0	_	0	0	0	
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12	
$w_2 = 1, v_2 = 10$	2	0	-	12	22	-	22	
$w_3 = 3, v_3 = 20$	3	0	-	-	22	-	32	
$w_4 = 2, v_4 = 15$	4	0	-	-	-	-	37	

Principle of Optimality

- An optimal solution to any instances of a problem must be made up of optimal solutions to its subinstances.
 - It underlies dynamic programming algorithms for optimization problems.
- Richard Bellman: an optimal solution to any instance of an optimization problem is composed of optimal solutions to its subinstances.

Take Away Message on Dynamic Programming

- The main idea of dynamic programming is to
 - solve several smaller (overlapping) subproblems;
 - record solutions in a table so that each subproblem is only solved once; and then
 - the final state of the table will be (or contain) the solution.
- Dynamic programming versus Divide-and-Conquer:
 - Partitioning a problem into overlapping subproblems versus independent ones.
 - Storing versus not storing of solutions to subproblems.