Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Oxidation of primary alcohols with DMP

${\bf Substrates:}$

1. 2-Methyl-3-buten-1-ol - available at Sigma-Aldrich

Products:

 $1. \ \, \hbox{$2$-methyl-but-$3$-enal}$

Typical conditions: DMP.DCM.0-25 $\rm C$

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.1.2 Condensation of esters with aldehydes

Substrates:

1. 2-methyl-but-3-enal

2. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

Products:

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

Retrosynthesis ID: 14981

2.1.3 Ring-Closing Metathesis

Substrates:

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Products:

1. CC1C=CC2COC(=O)C2=C1

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.1.4 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

1. Acetyl chloride - available at Sigma-Aldrich

 $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

3. 4-Iodobenzonitrile - available at Sigma-Aldrich

Products:

 $1. \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C\#N)cc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.2 Path 2

Score: 76.25

Figure 2: Outline of path 2

2.2.1 Condensation of esters with aldehydes

Substrates:

2. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

Products:

1. C=CC1COC(=O)/C1=C/c1ccc(C#N)cc1

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

Retrosynthesis ID: 14981

2.2.2 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. Acetyl chloride available at Sigma-Aldrich
- 2. C=CC1COC(=O)/C1=C/c1ccc(C#N)cc1
- 3. 3-brom-but-1-en

Products:

 $1. \ C = CC(C)C(c1ccc(C\#N)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

2.2.3 Ring-Closing Metathesis

Substrates:

 $1. \ C = CC(C)C(c1ccc(C\#N)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C}(=\mathrm{O})\mathrm{O}\mathrm{C}\mathrm{C}1\mathrm{C}=\mathrm{CC}(\mathrm{C})\mathrm{C}2\mathrm{c}1\mathrm{c}\mathrm{c}\mathrm{c}(\mathrm{C}\#\mathrm{N})\mathrm{c}\mathrm{c}1$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and}$

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.3 Path 3

Score: 106.04

Figure 3: Outline of path 3

2.3.1 NHC-catalyzed Grignard allylic substitution

Substrates:

- 1. crotyl chloride
- 2. (furan-3-ylmethyl)magnesium chloride

Products:

1. 3-(2-methyl-but-3-enyl)-furan

Typical conditions: RMgCl.THF.NHC-complex

Protections: none

Reference: 10.1016/j.tetlet.2012.12.124

2.3.2 Ozonolysis

Substrates:

1. 3-(2-methyl-but-3-enyl)-furan

Products:

1. CC(C=O)Cc1ccoc1

Typical conditions: O3.MeOH.CH2Cl2.PPh3 or Me2S.low temperature

Protections: none

Reference: 10.1016/j.tet.2017.03.039

Retrosynthesis ID: 5074

2.3.3 Iodoolefination of aldehydes

Substrates:

1. Diiodomethane - available at Sigma-Aldrich

2. CC(C=O)Cc1ccoc1

Products:

1. $CC(/C=C\backslash I)Cc1ccoc1$

 $\textbf{Typical conditions:}\ 1.PPh 3.2.NaN (TMS) 2.HMPA.THF$

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C0OB00977F and WO2009033499

(p.25)

Retrosynthesis ID: 10001773

2.3.4 NBS-promoted oxidation of furans to lactones

Substrates:

1. $CC(/C=C\setminus I)Cc1ccoc1$

Products:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Typical conditions: NBS.MW.MeOH

Protections: none

Reference: DOI: 10.1016/S0040-4039(01)01261-8

2.3.5 Heck Reaction

Substrates:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K or DOI: 10.1002/9780470716076

Retrosynthesis ID: 8584

2.3.6 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

1. Acetyl chloride - available at Sigma-Aldrich

2. CC1C=CC2COC(=O)C2=C1

3. 4-Iodobenzonitrile - available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C\#N)cc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.4 Path 4

Score: 106.04

Figure 4: Outline of path 4

2.4.1 Condensation of esters with aldehydes/ketones

Substrates:

1. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

2. 2-methyl-[1,3]dioxolane-2-carbaldehyde

Products:

1. C=CC1COC(=O)C1=CC1(C)OCCO1

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

Retrosynthesis ID: 14983

2.4.2 Hydrolysis of ketals

Substrates:

 $1. \ C{=}CC1COC({=}O)C1{=}CC1(C)OCCO1$

Products:

 $1. \ C{=}CC1COC(=O)C1{=}CC(C){=}O$

Typical conditions: H2O.HCl

Protections: none

Reference: 10.1021/jo0159035 and 10.1021/jo00194a003 and

2.4.3 Olefination of ketones followed by hydrolysis

Substrates:

- $1. \ C{=}CC1COC(=O)C1{=}CC(C){=}O$
- 2. triphenylphosphonium methoxymethylide

Products:

1. C=CC1COC(=O)C1=CC(C)C=O

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.4.4 Tebbe Olefination

Substrates:

1. C=CC1COC(=O)C1=CC(C)C=O

Products:

1. C=CC(C)C=C1C(=O)OCC1C=C

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.4.5 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. C=CC(C)C=C1C(=O)OCC1C=C
- 2. 4-Iodobenzonitrile available at Sigma-Aldrich
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ C = CC(C)C(c1ccc(C\#N)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

2.4.6 Ring-Closing Metathesis

Substrates:

 $1. \ C = CC(C)C(c1ccc(C\#N)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C#N)cc1

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and}$

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.5 Path 5

Score: 106.04

Figure 5: Outline of path 5

2.5.1 Suzuki Coupling of aryltrifluoroborates with alkyl bromides

Substrates:

- 1. potassium trifluoro(3-furyl)borate(1-) available at Sigma-Aldrich
- 2. brom-aceton AstaTech

Products:

1. 1-(furan-3-yl)propan-2-one - available at Sigma-Aldrich

 $\textbf{Typical conditions:}\ \ NiBr2.glyme.Bphen.LiHMDS.sBuOH.60C$

Protections: none

Reference: 10.1021/ol102717x and 10.1021/jo061699f and 10.1016/j.tetlet.2016.09.040 and 10.1016/j.catcom.2017.06.052

2.5.2 Oxidation furans to 2-(5H)-furanones

Substrates:

1. 1-(furan-3-yl)propan-2-one - available at Sigma-Aldrich

Products:

1. CC(=O)CC1=CCOC1=O

Typical conditions: 1. NBS.CHCl3.EtOH.rt 2. HCl.acetone.H2O.rt

Protections: none

Reference: DOI: 10.1055/s-2005-869865

Retrosynthesis ID: 50717

2.5.3 Olefination of ketones followed by hydrolysis

Substrates:

1. triphenylphosphonium methoxymethylide

$$2. \ \mathrm{CC}(=\mathrm{O})\mathrm{CC1}{=}\mathrm{CCOC1}{=}\mathrm{O}$$

Products:

1. CC(C=O)CC1=CCOC1=O

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.5.4 Iodoolefination of aldehydes

Substrates:

1. Diiodomethane - available at Sigma-Aldrich

2. CC(C=O)CC1=CCOC1=O

Products:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Typical conditions: 1.PPh3.2.NaN(TMS)2.HMPA.THF

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C0OB00977F and WO2009033499

(p.25)

2.5.5 Heck Reaction

Substrates:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K or DOI: 10.1002/9780470716076

Retrosynthesis ID: 8584

2.5.6 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. Acetyl chloride available at Sigma-Aldrich
- 2. CC1C=CC2COC(=O)C2=C1
- 3. 4-Iodobenzonitrile available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C\#N)cc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1