2011 MST209 exam solutions

The references to the Handbook are given as section followed by page number e.g. (5 p26)

- 1. Multiply by 2x + y to give $xy + 8 = (2x + y)(x - 3) = 2x^2 + xy - 6x - 3y$ which simplifies to $3y = 2x^2 - 5x + 8 = 2(x - 4)(x = 1)$ So the answer is B. 2(2-4/2+1)
- 2. The auxiliary equation is $\lambda^2 + 8\lambda + 16 = (\lambda + 4)^2 = 0$ so $\lambda = -4$ (twice) so the answer is D. (5 p26)
- 3. $\mathbf{b} \times \mathbf{c} = (\mathbf{i} + \mathbf{j}) \times (\mathbf{j} + 2\mathbf{k}) = \mathbf{k} 2\mathbf{j} + 2\mathbf{i} (18 \text{ p29})$ $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = (\mathbf{i} + \mathbf{j}) \cdot (2\mathbf{i} - 2\mathbf{j} + \mathbf{k}) = 2 - 2 = 0$ (15 p29) so the answer is C.
- 4. **j**-component = $|\mathbf{F}|\cos\left(\frac{\pi}{2} \theta\right)| = |\mathbf{F}|\sin\theta$ (8 p31) so the answer is A.
- 5. As x is measured downwards the gravitational PE = -mgx and the PE in the springs is $\frac{2k}{2}(x-l_0)^2$ so the answer is D. (2 p35)
- 6. $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ giving an eigenvalue of 3 so the answer is B. (1 p41).
- 7. $f(x, y) = e^x \cos y$ so f(0,0) = 1 $f_x = e^x \cos y$ so $f_x(0,0) = 1$ $f_{y} = -e^{x} \sin y$ so $f_{y}(0,0) = 0$ $p_{1(x,y)} = 1 + x$ so the answer is A. (12 p45)
- 8. No longer examined (but the answer is C).
- 9. [force] = MLT^{-2} [area] = L^2 [stress] = $\frac{\text{[force]}}{\text{[area]}}$ = ML⁻¹T⁻² so the answer is B. (5 p53)
- 10. Length of damper l = y xRate of change of length $\dot{l} = \dot{y} - \dot{x}$ $\hat{s} = -i$ so $\mathbf{R} = -r(\dot{y} - \dot{x})(-\mathbf{i})$ so the answer is D. (4 p54)
- 11. $\begin{bmatrix} -1 \\ 1 \end{bmatrix}^T$ is an eigenvector for $\lambda = -36$ or $\omega = \sqrt{-36} = 6$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}^T = -1 \begin{bmatrix} -1 \\ 1 \end{bmatrix}^T$ so the answer is D. (9 p57)

- 12. Converting $2\mathbf{i} + 3\mathbf{j}$ to a unit vector we get $\frac{2\mathbf{i} + 3\mathbf{j}}{\sqrt{4+9}}$ (7) p28) so the velocity of the particle is $v \frac{2\mathbf{i}+3\mathbf{j}}{\sqrt{13}}$ and the momentum is $2mv \frac{2\mathbf{i}+3\mathbf{j}}{\sqrt{4+9}}$ (9 p58) so the answer is C.
- 13. The function is even and has period 2 so the answer is A. (7 p61)
- 14. The \mathbf{e}_{θ} -component of grad $f = \frac{1}{\rho} \frac{\partial f}{\partial \theta} = \frac{1}{\rho} (\rho \sec^2 \theta)$ so the answer is B. (15 p65)
- 15. No longer examined (but the answer is B).
- 16. Using a trial solution (7 p27) $y = ax + b \frac{dy}{dx} = a$ and $\frac{d^2y}{dx^2} = 0$. Substituting into the equation gives 7a + 12(ax + b) = 36x

Comparing coefficients we get

$$12a = 36$$
 and $7a + 12b = 0$

So
$$a = 3$$
 and $b = -\frac{21}{12} = -\frac{7}{4}$

So the particular integral is $y = 3x - \frac{7}{4}$

When x becomes large the complementary function tends to zero and the solution tends to the particular integral which is essentially y = 3x for large x.

17.

F is the force due to the friction between the plank and the slope

N is the normal reaction of the slope on the plank W is the weight of the plank **T** is the tension in the rope.

18. (a)
$$\mathbf{r}(0) = 2\mathbf{i}$$
 and $\dot{\mathbf{r}}(0) = 3\mathbf{i}$

W = weight =
$$-5g\mathbf{i}$$

R = air resistance = $-c_2D^2|\mathbf{v}|\mathbf{v}$

 \mathbf{R} = air resistance = $-c_2 D^2 |\mathbf{v}| \mathbf{v}$ where $\mathbf{v} = \dot{x} \mathbf{i}$ $c_2 = 0.2$ and D = 0.1 (13 p34) so $\mathbf{R} = -0.002\dot{x}^2\mathbf{i}$

18 (c) Using Newton's
$$2^{\text{nd}}$$
 law (9 (c) p33)
 $m\ddot{\mathbf{r}} = \mathbf{R} + \mathbf{W}$ where $m = 5$
Resolving in the **i**-direction $5\ddot{x} = -0.002\dot{x}^2 - 5g$
or $\ddot{x} = -0.0004\dot{x}^2 - g$

19. The augmented matrix (11 p37) is

$$\begin{pmatrix} 2 & 3 & -1 & | & 6 \\ 4 & 7 & 1 & | & 10 \\ 2 & 4 & -3 & | & 9 \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 \\ R_3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 3 & -1 & | & 6 \\ 0 & 1 & 3 & | & -2 \\ 0 & 1 & -2 & | & 3 \end{pmatrix} \begin{pmatrix} R_1 \\ R_{2a} = R_2 - R_1 \\ R_{3a} = R_3 - R_1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 3 & -1 & | & 6 \\ 0 & 1 & 3 & | & -2 \\ 0 & 0 & -5 & | & 5 \end{pmatrix} \begin{pmatrix} R_1 \\ R_{2a} \\ R_{3b} = R_{3a} - R_{2a} \end{pmatrix}$$

SO

$$2x + 3y - z = 6$$
 (1)
 $y + 3z = -2$ (2)
 $-5z = 5$ (3)

(3) gives z = -1

Substituting in (2) y = 1

Substituting in (3) 2x = 6 - 3 - 1 = 2 so the solution is x = 1, y = 1 and z = -1.

20.
$$\mathbf{r} = (t^2 - 1)\mathbf{i} + \sqrt{2}(t - 8)\mathbf{j}$$

a) velocity = $\dot{\mathbf{r}} = 2t\mathbf{i} + \sqrt{2}\mathbf{j}$ (3 p32)

b)
$$\dot{\mathbf{r}} \cdot \mathbf{r} = 2t(t^2 - 1) + 2(t - 8) = 2t^3 - 16$$
 (15 p29)
This is zero when $t^3 = 8$ or $t = 2$.

c) The velocity is perpendicular to the position vector (15 p29) and so we are at an extreme of the motion.

21. a)
$$\mathbf{r} = R\mathbf{e}_r$$
 (3 p59)

b)
$$\dot{\mathbf{r}} = R\dot{\theta}\mathbf{e}_{\theta} = R(t + \cos(2t))\mathbf{e}_{\theta}$$
 (3 p59)

c) Angular momentum

 $\mathbf{l} = \mathbf{r} \times m\dot{\mathbf{r}} = mR^2(t + \cos(2t))\mathbf{k}$ as $\mathbf{e}_r \times \mathbf{e}_\theta = \mathbf{k}$ (12 p60)

d) The torque law gives

$$\Gamma = \mathbf{i} = mR^2 (1 - 2\sin(2t)) \mathbf{k}$$
 (13 p60)

22. Let u = X(x)T(t) and substitute into the equation

(9 p63) to give
$$X''T = \frac{1}{c^2}(T''X + T'X)$$
Dividing by $XT \frac{X''}{X} = \frac{1}{c^2}(\frac{T'' + T'}{T}) = \mu$ (a constant)
So $X'' - \mu X = 0$ and $T'' + T' - \mu c^2 T = 0$.

23. a) **F** W

W = weight of cylinder

F = frictional force between the plane and the cylinder N = normal reaction of the plane on the cylinder.

b)

As N and W acts through the centre of the cylinder (the origin) the only force that creates a torque is F.

 $\mathbf{F} = -|\mathbf{F}|\mathbf{i}$ acts at position $-R\mathbf{j}$ and so the total torque is $\mathbf{\Gamma} = -R\mathbf{j} \times \mathbf{F} = -R\mathbf{j} \times -|\mathbf{F}|\mathbf{i} = -R|\mathbf{F}|\mathbf{k}$ (13 p32)

c) The equation of rotational motion is

$$I\ddot{\theta} = -R|\mathbf{F}| \quad (16 \text{ p}75)$$

where the angle θ is measured anticlockwise.

24. a) Separating the variables (9 p26)

$$\frac{1}{v^2}\frac{dy}{dx} = 5 + 6x^2$$

Integrating wrt *x*

$$\int \frac{1}{v^2} dy = 5x + 2x^3 + C \text{ or } -y^{-1} = 5x + 2x^3 + C$$

Giving $y = -\frac{1}{5x + 2x^3 + C}$

y(0) = 1 gives C = -1 so the solution of the equation is

$$y = -\frac{1}{5x + 2x^3 - 1}$$

b)
$$(7 \text{ p25})$$
 $f(x,y) = x^3 - 4xy$
 $x_0 = 0$, $Y_0 = 1$, $h = 0.1 \text{ so } x_1 = 0.1$
 $Y_1 = Y_0 + hf(x_0, Y_0) = 1 + 0.1(0) = 1$ $x_2 = 0.2$
 $Y_2 = Y_1 + hf(x_1, Y_1) = 1 + 0.1(0.001 - 0.4)$
 $= 1 - 0.1(0.399) = 0.9601$

The approximate solution at x = 0.2 is 0.9601.

c) Using the integrating factor method (13 p26). The integrating factor $p(x) = \exp(\int 4x dx) = e^{2x^2}$ Multiplying the equation by the integrating factor gives

$$e^{2x^2} \frac{dy}{dx} + 4xe^{2x^2}y = \frac{d}{dx}(e^{2x^2}y) = x^3e^{2x^2}$$

24 c) cont Integrating using hint

$$e^{2x^2}y = \int x^3 e^{2x^2} dx = \frac{1}{4}x^2 e^{2x^2} - \frac{1}{8}e^{2x^2} + C$$

Dividing by e^{2x^2} $y = \frac{1}{4}x^2 - \frac{1}{8} + Ce^{-2x^2}$

$$y(0) = 1$$
 gives $1 = -\frac{1}{8} + C$ or $C = \frac{9}{8}$

The required solution is $y = \frac{1}{4}x^2 - \frac{1}{8} + \frac{9}{8}e^{-2x^2}$

N is the normal reaction of the track on the particle

W is the weight of the particle

 \mathbf{H}_{A} is the force in spring AP

 \mathbf{H}_{B} is the force in spring PB

 \mathbf{H}_{C} is the force in spring PC

b)
$$\mathbf{W} = -3g\mathbf{j} \quad \mathbf{N} = |\mathbf{N}|\mathbf{j}$$

The length of spring AP is x so using $\mathbf{H} = -k(l - l_0)\hat{\mathbf{s}}$ (1 p34) $\mathbf{H}_{A} = -6(x-1)\mathbf{i}$

The length of the spring PB is 3 - x so

$$\mathbf{H}_{\rm B} = -4(3-x-2)(-\mathbf{i}) = 4(1-x)\mathbf{i}$$

The length of spring PC is 4 - x

$$\mathbf{H}_{C} = -2(4 - x - 3)(-\mathbf{i}) = 2(1 - x)\mathbf{i}$$

In equilibrium $\mathbf{N} + \mathbf{W} + \mathbf{H}_{A} + \mathbf{H}_{B} + \mathbf{H}_{C} = \mathbf{0}$ (3 p30)

Resolving in the **j** direction gives $|\mathbf{N}| = 3g$

c) Resolving in the i direction

$$-6(x-1) + 4(1-x) + 2(1-x) = 0$$

or $-12(x-1) = 0$

This is satisfied by x = 1 which gives the equilibrium position.

d) By Newton's second law (9(c) p33)

$$3\mathbf{a} = \mathbf{N} + \mathbf{W} + \mathbf{H}_{A} + \mathbf{H}_{B} + \mathbf{H}_{C}$$
 where $\mathbf{a} = \ddot{x}\mathbf{i}$

Resolving in the i direction

$$3\ddot{x} = -12(x-1)$$
 or $\ddot{x} = -4x + 4$

e) This can be written $\ddot{x} + 4x = 4$ which has solution $x = A\cos(2t) + B\sin(2t) + 1$ (4 p35)

$$\dot{x} = -2A\sin(2t) + 2B\cos(2t)$$

If it is released from rest, $\dot{x} = 0$ when t = 0 so B = 0Also x = 1.5 at t = 0 so 1.5 = A + 1 or A = 0.5Giving $x = 0.5\cos(2t) + 1$

26. a) In matrix form the equations are

$$\dot{\mathbf{x}} = \begin{bmatrix} 3 & -4 \\ -1 & 3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 4 \\ 2 \end{bmatrix} e^{-t} \quad (1 \text{ p42})$$

The matrix of coefficients has characteristic equation

$$\begin{vmatrix} 3 - \lambda & -4 \\ -1 & 3 - \lambda \end{vmatrix} = 0$$
 (13 p41) or $(3 - \lambda)^2 - 4 = 0$

Giving $\lambda^2 - 6\lambda + 5 = 0$ which factorises to

$$(\lambda - 5)(\lambda - 1) = 0$$
 to give $\lambda = 5$ and $\lambda = 1$

The eigenvectors are given by

$$(3 - \lambda)x - 4y = 0$$
$$-x + (3 - \lambda)y = 0$$

When $\lambda = 5$ these reduce to x = -2y so a typical eigenvector is $[-2\ 1]^T$

When $\lambda = 1$ these reduce to x = 2y so a typical eigenvector is $[2\ 1]^T$

The complementary function is

$$\mathbf{x}_c = C \begin{bmatrix} -2 \\ 1 \end{bmatrix} e^{5t} + D \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^t$$
 (11, 12 p43)

For the particular integral try $\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix} e^{-t}$ (14 p43)

Substituting in the original equation we get
$$-\begin{bmatrix} a \\ b \end{bmatrix} e^{-t} = \begin{bmatrix} 3 & -4 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} e^{-t} + \begin{bmatrix} 4 \\ 2 \end{bmatrix} e^{-t}$$

Cancelling e^{-t} we get

$$-a = 3a - 4b + 4$$
 or $b - a = 1$ (1)

and
$$-b = -a + 3b + 2$$
 or $4b - a = -2$ (2)

Subtracting (1) from (2) we get 3b = -3 or b = -1

Substituting in (1)
$$a = -2$$
 so $\mathbf{x}_p = \begin{bmatrix} -2 \\ -1 \end{bmatrix} e^{-t}$

And the general solutions (13 p43) is

$$\mathbf{x} = C \begin{bmatrix} -2 \\ 1 \end{bmatrix} e^{5t} + D \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{t} + \begin{bmatrix} -2 \\ -1 \end{bmatrix} e^{-t}$$

When t = 0 **x** = **0** so 0 = -2C + 2D - 2 and

0 = C + D - 1 which give D - C = 1 and D + C = 1

So D = 1 and C = 0 giving

$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^t + \begin{bmatrix} -2 \\ -1 \end{bmatrix} e^{-t}$$

b) When $t \to \infty$ $e^t \to 0$ and so **x** will be in the direction $\begin{bmatrix} 2 & 1 \end{bmatrix}^T$ and increase rapidly.

27. a) For equilibrium
$$\frac{dx}{dt} = \frac{dy}{dt} = 0$$
 (6 p47) so $xy - 2x^2 = 0$ or $x(y - 2x) = 0$ (1) $4 - 4x^2 - y^2 = 0$ (2)

From (1) x = 0 and substituting this into (2) gives $y^2 = 4$ or $y = \pm 2$

So (0,2) and (0,-2) are equilibrium points.

From (1) y = 2x and substituting this into (2) gives

$$8x^2 = 4 \text{ or } x^2 = \frac{1}{2} \text{ or } x = \pm \frac{1}{\sqrt{2}} \text{ with } y = \pm \sqrt{2}.$$

We have two more equilibrium points $\left(\frac{1}{\sqrt{2}}, \sqrt{2}\right)$ and $\left(-\frac{1}{\sqrt{2}}, -\sqrt{2}\right)$

b) For the linearised approximation we need the Jacobian for $u = xy - 2x^2$ and $v = 4 - 4x^2 - y^2$

So
$$\mathbf{J}(x,y) = \begin{bmatrix} y - 4x & x \\ -8x & -2y \end{bmatrix}$$
 (8,9 p47)

 $J(0,2) = \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}$ and as it is a diagonal matrix the eigenvalues are 2 and -4 so they are real and distinct with opposite signs making (0, 2) a saddle point. (10 p47)

 $J(0,-2) = \begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix}$ and as it is a diagonal matrix the eigenvalues are -2 and 4 so they are real and distinct with opposite signs making (0,-2)a saddle point.

$$J\left(\frac{1}{\sqrt{2}}, \sqrt{2}\right) = \begin{bmatrix} -\sqrt{2} & \frac{1}{\sqrt{2}} \\ -4\sqrt{2} & -2\sqrt{2} \end{bmatrix} \text{ and its characteristic}$$
equation is $(-\lambda - \sqrt{2})(-\lambda - 2\sqrt{2}) + 4 = 0$ or
$$\lambda^2 + 3\sqrt{2}\lambda + 8 = 0$$

Giving $\lambda = \frac{-3\sqrt{2} \pm i\sqrt{24}}{2}$ so the eigenvalues are complex with negative real component so $\left(\frac{1}{\sqrt{2}}, \sqrt{2}\right)$ is a spiral sink (10 p48)

$$\mathbf{J}\left(-\frac{1}{\sqrt{2}}, -\sqrt{2}\right) = \begin{bmatrix} \sqrt{2} & -\frac{1}{\sqrt{2}} \\ 4\sqrt{2} & 2\sqrt{2} \end{bmatrix} \text{ and its characteristic}$$
 equation is $(\sqrt{2} - \lambda)(2\sqrt{2} - \lambda) + 4 = 0$ or
$$\lambda^2 - 3\sqrt{2}\lambda + 8 = 0$$

Giving $\lambda = \frac{3\sqrt{2} \pm i\sqrt{24}}{2}$ so the eigenvalues are complex with positive real component so $\left(-\frac{1}{\sqrt{2}}, -\sqrt{2}\right)$ is a spiral source. (10 p48)

28. a)

N is the normal reaction of the track on the particle

W is the weight of the particle

 \mathbf{R}_{A} is the force in damper AP

 \mathbf{R}_{C} is the force in damper *PC*

 \mathbf{H} is the force in spring PB

b) $\mathbf{N} = |\mathbf{N}|\mathbf{j}$ $\mathbf{W} = -4g\mathbf{i}$ as there is no motion in the **j**-direction $\mathbf{N} + \mathbf{W} = \mathbf{0}$ so $\mathbf{N} = 4g\mathbf{i}$

Length of damper AP = x - y so

$$\mathbf{R}_{A} = -2(\dot{x} - \dot{y})\mathbf{i}$$
 (4 p54)

Length of damper PC = 3 - x so

$$\mathbf{R}_{A} = -4(-\dot{x})(-\mathbf{i}) = -4\dot{x}\mathbf{i}$$

Length of spring PB = 3 - x so

$$\mathbf{H} - 9(3 - x - 1)(-\mathbf{i}) = 9(2 - x)\mathbf{i}$$
 (1 p34)

c) By Newton's second law

$$4\mathbf{a} = \mathbf{N} + \mathbf{W} + \mathbf{R}_{A} + \mathbf{R}_{C} + \mathbf{H} \text{ where } \mathbf{a} = \ddot{\mathbf{x}}\mathbf{i}$$

Resolving in the i-direction

$$4\ddot{x} = -2\dot{x} + 2\dot{y} - 4\dot{x} + 18 - 9x$$

Giving $4\ddot{x} + 6\dot{x} + 9x = 18 + 2\dot{y}$ as required.

d) i) The natural frequency is $\sqrt{\frac{9}{4}} = \frac{3}{2}$ (8 p55)

ii) The damping ration is $\alpha = \frac{6}{2\sqrt{4\times 9}} = \frac{1}{2}$

As α < 1 the system is weakly damped (7 p55)

e) When $y = 1 + \cos(\Omega t)$ $\dot{y} = -\Omega \sin(\Omega t)$ so the equation becomes $4\ddot{x} + 6\dot{x} + 9x = 18 - 2\Omega \sin(\Omega t)$ As $-\sin(\Omega t) = \cos\left(\Omega t + \frac{\pi}{2}\right)$ (p15) we can use the same formula for the steady state amplitude as for $\cos(\Omega t)$ with $P = 2\Omega$ so using the formula in 14 p56 we have

$$A = \frac{2\Omega}{\sqrt{(9-4\Omega^2)^2 + 36\Omega^2}}$$

f) A = 0 when $\Omega = 0$ and $A \to 0$ when $\Omega \to \infty$

The resonance occurs about the natural frequency as the system is weakly damped.

29. a) At t = 0 we start at the origin and at t = 3 we return to the origin. At t = 1 $x \to R$ and $y \to 0$ from both directions and at t = 2 $x \to -R$ and $y \to 0$ from both directions so the path is continuous and closed.

(The sketch is with R = 1 but shows the shape which is a semi-circle but includes the line y = 0.)

b) The scalar line integral is calculated in three parts. For $0 \le t \le 1$ call the curve OA $\mathbf{r} = Rt\mathbf{i}$ and $\frac{d\mathbf{r}}{dt} = R\mathbf{i}$ and $\mathbf{F} = 3R^2t^2\mathbf{i}$ so $\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = 3R^3t^2$

 $\mathbf{r} = Rt\mathbf{1}$ and $\frac{1}{dt} = R\mathbf{1}$ and $\mathbf{F} = 3R^2t^2\mathbf{1}$ so $\mathbf{F} \cdot \frac{1}{dt} = 3R^3t$ and the line integral on this portion of the curve is (12 p67)

$$\int_{OA} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 3R^3 t^2 dt = [R^3 t^3]_0^1 = R^3$$

For $1 < t \le 2$ call the curve *AB*

$$\mathbf{r} = R\cos(\pi(t-1))\mathbf{i} + R\sin(\pi(t-1))\mathbf{j}$$

$$\frac{d\mathbf{r}}{dt} = -\pi R \sin(\pi(t-1))\mathbf{i} + \pi R \cos(\pi(t-1))$$

 $\mathbf{F} = (3R^2 \cos^2(\pi(t-1)) + 3R^2 \sin^2(\pi(t-1)))\mathbf{i} +$

$$6R^2\cos(\pi(t-1))\sin(\pi(t-1))$$
 j

=
$$3R^2$$
i + $6R^2 \cos(\pi(t-1))\sin(\pi(t-1))$ **j**

$$\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = -3\pi R^3 \sin(\pi(t-1))$$

$$+ 6\pi R^3 \cos^2\!\left(\pi(t-1)\right) \sin\!\left(\pi(t-1)\right)$$

So
$$\int_{AB} \mathbf{F} \cdot d\mathbf{r}$$

$$= \int_{1}^{2} 3\pi R^{3} (2\cos^{2}(\pi(t-1)) - 1) \sin(\pi(t-1)) dt$$

$$= 3\pi R^{3} \left[-\frac{2}{3\pi} \cos^{3}(\pi(t-1)) + \frac{1}{\pi} \cos(\pi(t-1)) \right]_{1}^{2}$$

$$= 3R^{3} \left[-\frac{2}{3} \cos^{3}\pi + \cos\pi + \frac{2}{3} - 1 \right] = 3R^{3} \left[\frac{4}{3} - 2 \right]$$

$$= -2R^{3}$$

For $2 < t \le 3$ call the curve BO $\mathbf{r} = R(t-3)\mathbf{i}$

$$\frac{d\mathbf{r}}{dt} = R\mathbf{i}$$
 and $\mathbf{F} = 3R^2(t-3)^2\mathbf{i}$ so $\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = 3R^3(t-3)^2$

$$\int_{BO} \mathbf{F} \cdot d\mathbf{r} = \int_2^3 3R^3(t-3)^2 dt = [R^3(t-3)^3]_2^3 = R^3$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_{OA} \mathbf{F} \cdot d\mathbf{r} + \int_{AB} \mathbf{F} \cdot d\mathbf{r} + \int_{BO} \mathbf{F} \cdot d\mathbf{r}$$
$$= R^3 - 2R^3 + R^3 = 0$$

c) **curl F** =
$$\left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$
 (7 p67)
= $\left(\frac{\partial}{\partial x} (6xy) - \frac{\partial}{\partial y} (3x^2 + 3y^2)\right) \mathbf{k}$
= $(6y - 6y) \mathbf{k} = \mathbf{0}$

d) The vector field is conservative as **curl** $\mathbf{F} = \mathbf{0}$ (20 p68)

30.a) Let *B* be the hemisphere then as it is symmetrical about the *z*-axis $-\pi < \phi \le \pi$. We are only considering the top half of the sphere so $0 \le \theta \le \frac{\pi}{2}$. The radius of the hemisphere is *R* so $0 \le r \le R$

$$M = \int_{B} f \, dV \text{ where } f \text{ is the density function. (14 p70)}$$

$$= \int_{0}^{R} \int_{0}^{\frac{\pi}{2}} \int_{-\pi}^{\pi} cr(r^{2} \sin \theta) \, d\phi d\theta dr \quad (13 p70)$$

$$= \int_{0}^{R} \int_{0}^{\frac{\pi}{2}} 2\pi cr^{3} \sin \theta \, d\theta dr$$

$$= 2\pi c \int_{0}^{R} [-r^{3} \cos \theta]_{0}^{\frac{\pi}{2}} dr = 2\pi c \int_{0}^{R} r^{3} dr$$

$$= 2\pi c \left[\frac{r^{4}}{4} \right]_{0}^{R} = \frac{\pi c R^{4}}{2}$$

b) M of I about the z-axis= $I = \int_B cr(r \sin \theta)^2 dV$ (16 p71)

$$I = \int_0^R \int_0^{\frac{\pi}{2}} \int_{-\pi}^{\pi} cr^5 \sin^3 \theta \, d\phi d\theta dr$$

$$= 2\pi c \int_0^R \int_0^{\frac{\pi}{2}} r^5 (1 - \cos^2 \theta) \sin \theta \, d\theta dr$$

$$= 2\pi c \int_0^R r^5 \left[-\cos \theta + \frac{1}{3} (\cos^3 \theta) \right]_0^{\frac{\pi}{2}} dr$$

$$= 2\pi c \int_0^R r^5 \left(1 - \frac{1}{3} \right) dr = \frac{4}{3}\pi c \left[\frac{r^6}{6} \right]_0^R$$

$$= \frac{2\pi c}{9} R^6 = \frac{4}{9} M R^2$$

c) Using the parallel axis theorem (8 p74)

M of I about vertical axis through end of diameter

$$= I + MR^2 = \frac{4}{9}MR^2 + MR^2 = \frac{13}{9}MR^2$$