tarea com-117

Cesar Lucas Mamani Posto

September 2024

Integral Definida

Teorema 0.1. 1. $\int_a^b f(x)dx = \int_a^b f(s)ds$ (variable muda)

- 2. Si b > a, entonces $\int_a^b f(x)dx = -\int_b^a f(x)dx$
- 3. Si f(a) existe, entonces $\int_a^a f(x)dx = 0$

Como es evidente, la integral definida resuelve el problema del área bajo la curva; sin embargo, es muy importante aclarar que la integral definida se utiliza para muchas otras aplicaciones físicas, económicas y matemáticas

Teorema 0.2. Si f es una función integrable y $f(x) \ge 0$ para todo x en [a,b], entonces el área bajo la curva trazada por f entre a y b es

$$A = \int_{a}^{b} f(x) \, dx$$

No todas las funciones son integrables, pero las continuas sí lo son

Teorema 0.3. Si f es continua en [a,b], entonces f es integrable en [a,b]

Teorema 0.4. $\int_a^b cdx = c(b-a)$ donde c es una constante

Teorema 0.5. Si f es integrable en [a,b] y c es un número real arbitrario, entonces cf es integrable en [a,b] y

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

Teorema 0.6. Si f y g son integrables en [a,b], entonces f+g y f-g son integrables en [a,b] y

$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

Teorema 0.7. Si a < c < b y f es integrable en [a, c] y en [c, b], entonces f es integrable en [a, b] y

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Teorema 0.8. Si f es integrable en [a,b] y $f(x) \ge 0$ para todo x en [a,b], entonces

$$\int_{a}^{b} f(x)dx \ge 0$$