Econometrics

Preliminaries

Probability

Probability Space

Definition: (Probability Space) A Probability Space is defined as (Ω, F, P) , where Ω is the sample space, F is the sigma algebra defined on Ω , and P is the probability measure.

Claim:(Properties of Probability) We have $P(\phi) = 0$, $P(A) \in [0,1]$, and $P(A^c) = 1 - P(A)$.

Definition: (Disjoint) Two events are Disjoint if $P(A \cap B) = 0$.

Definition: (Independent) Two events are Independent if $P(A \cap B) = P(A)P(B)$.

Definition: (Conditional Probability) the Conditional Probability is defined as $P(A|B) = P(A \cap B)/P(B)$.

Claim: (Properties of Conditional Probability) We have $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$.

Claim: (Total Probability Formula) We have $P(A) = \sum_i P(A \cap B_i)$ where $\{B_i\}$ is a partition of Ω .

Claim: (Bayes Rule) We have $P(B|A) = \frac{P(A|B)}{P(A)} P(B)$.

Random Variable

Definition: (Random Variable) Random Variable is a function $X: \Omega \to \mathbb{R}$.

Definition: (Cumulative Distribution Function) The Cumulative Distribution Function is the function such that $F_X(a) = P(X \le a)$.

Claim:(Properties of CDF) A CDF of a random variable is non-decreasing, between 0 and 1, and continuous from the right. Plus we have $\lim_{a\to -\infty} F_X(a)=0$, and $\lim_{a\to +\infty} F_X(a)=1$.

Definition: (**Probability Density Function**) For a continuous random variable, the Probability Density Function is defined as $f_X(a) = \frac{d}{da} F_X(a)$.

Definition: (Joint CDF) The Joint CDF is the function such that $F(x_1, x_2, \dots, x_k) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_k \le x_k)$.

Definition: (Joint PDF) For a bunch of continuous variables, the Joint PDF is defined as $f(x_1,\ldots,x_k)=\frac{d}{dx_1}\ldots\frac{d}{dx_k}F(x_1,\ldots,x_k).$

Definition: (Conditional PDF) Given two vectors of continuous random variables, the Conditional PDF is defined as f(y|x) = f(x,y)/f(x).

Claim: (Transformation) If Y = G(X), then $F_Y(a) = P(Y \le a) = P(G(X) \le a)$. Furthermore, if X, Y are two vector, if there exists a function such that X = H(Y), then $f_Y(y) = |J(Y)|f_X(H(y))$, where $J(Y) = [\frac{\partial}{\partial y_j} H_i(y)]$ is the Jacobian matrix of H(.).

Claim: (Monotonic Transformation) Suppose Y=G(X), then $f_Y(y)=|rac{d}{dy}g^{-1}(y)|f_X(G^{-1}(y))$.

Definition: (Moments) The r-th order Moments of a random variable is defined as $E[X^r] = \int_{-\infty}^{+\infty} X^r dF_X(X)$.

Definition: (Expectation, Variance, Covariance) The Expectation of a random variable is defined as $E[X] = \int_{-\infty}^{+\infty} X dF_X(X)$. the Variance is defined as $Var(X) = E[X^2] - E[X]^2 = E[(X - E[X])^2]$. The Covariance of two random variables is defined as Cov(X,Y) = E[XY] - E[X]E[Y] = E[X - E[X]]E[Y - E[Y]].

Claim: (Law of Iterated Expectation) We have E[E[Y|X]] = E[Y], and $E[[Y|X_1, X_2]|X_1] = E[Y|X_1]$.

Definition: (Hazard Function) The Hazard Function is defined as $H(x_0) = f_X(x_0)/(1 - F_X(x_0))$.

Inequalities

Claim: (Chebeshev's Inequality) $P(g(X) \ge r) \le E[g(x)]/r$.

Claim: (Jensen's Inequality) If g(.) is convex, then $E[g(X)] \ge g(E[X])$.

Claim: (Holder's Inequality) If $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$1. ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$$

2.
$$E[|XY|] \le E[|X|^p]^{\frac{1}{p}} E[|Y|^q]^{\frac{1}{q}}$$

Claim: (Minkovski's Inequality) $E[|X+Y|^p]^{\frac{1}{p}} \leq E[|X|^p]^{\frac{1}{p}} + E[|Y|^p]^{\frac{1}{p}}.$

Linear Projection

Definition: (Linear Projection) The best linear predictor is defined as $P(y|x) = x'\beta$, where beta is defined as

$$\beta = E[xx']^{-1}E[xy] = argminE[(y - x'b)^2] \tag{1}$$

Claim: (Law of Iterated Projection) The following statements are true:

1.
$$P(ay_1 + by_2|x) = aP(y_1|x) + bP(y_2|x)$$

2.
$$P(P(y|x)) = p(y)$$
 and $P(P(y|x_1, x_2)|x_1) = P(y|x_1)$.

Distribution

Discrete Random Variable

Distribution	PDF	MGF	Expectation	Variance
Bernoulli	$f(x) = p^x (1-p)^{1-x}, x = 0, 1$	$M(t) = 1 - p + pe^t, t \in \mathbb{R}$	p	p(1-p)
Binomial	$f(x) = rac{n!p^x(1-p)^{n-x}}{x!(n-x)!}, x = 0, 1, \ldots, n$	$M(t)=(1-p+pe^t)^n, t\in \mathbb{R}$	np	np(1-p)
Geometric	$f(x) = (1-p)^{x-1}p, x = 1, 2, 3, \dots$	$M(t) = rac{pe^t}{(1-(1-p)e^t)}, t < -ln(1-p)$	1/p	$\frac{(1-p)}{p^2}$
Hypergeometric	$f(x) = \left(egin{array}{c} N_1 \ x \end{array} ight) \left(egin{array}{c} N_2 \ n-x \end{array} ight) / \left(egin{array}{c} N_1 + N_2 \ n \end{array} ight)$	-	$nrac{N_1}{N_1+N_2}$	$nrac{N_1}{N_1+N_2}rac{N_2}{N_1+N_2}rac{N_1+N_2-n}{N_1+N_2-1}$
Negative Binomial	$f(x)=\left(egin{array}{c} x-1 \ r-1 \end{array} ight)p^r(1-p)^{x-r}, x=r,r+1,\ldots$	$M(t) = (pe^t)^r/[1 - (1 - pe^t)]^r, t < -ln(1 - p)$	r/p	$r(1-p)/p^2$
Poisson	$f(x)=rac{\lambda^{x}e^{-\lambda}}{x!}, x=0,1,2,\ldots$	$M(t) = exp(\lambda(e^t-1)), t \in \mathbb{R}$	λ	λ
Uniform	$f(x)=1/m, x=1,2,3,\dots,m$	-	(m+1)/2	$(m^2-1)/12$

Continuous Random Variable

Distribution	PDF	MGF	Expectation	Variance
Uniform	$f(x)=rac{1}{b-a}, x\in [a,b]$	$M(t)=rac{e^{tb}-e^{ta}}{t(b-a)}, t eq 0$	$\frac{a+b}{2}$	$(b-a)^2/12$
Gamma	$f(x)=rac{1}{\Gamma(lpha)eta^{lpha}}x^{lpha-1}e^{-x/eta}, x>0$	$M(t) = rac{1}{\left(1-eta t ight)^{lpha}}, t < 1/eta$	$\alpha\beta$	$lphaeta^2$
Exponential	$f(x)=e^{-x/\lambda}/\lambda, x\geq 0$	$M(t)=rac{1}{1-\lambda t}, t\leq 1/\lambda$	λ	λ^2
Chi-Squared	$f(x)=rac{1}{\Gamma(r/2)2^{r/2}}x^{r/2-1}e^{x/2}, x>0$	$M(t) = 1/(1-2t)^{r/2}, t < 1/2$	r	2r
Beta	$f(x)=rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}x^{lpha-1}(1-x)^{eta-1}, x\in(0,1)$	-	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(1+\alpha+\beta)(\alpha+\beta)^2}$
Normal	$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}},x\in\mathbb{R}$	$M(t) = exp(\mu t + rac{\sigma^2 t^2}{2}), t \in \mathbb{R}$	μ	σ^2
Т	$f(x)=rac{\Gamma(rac{r+1}{2})}{(\sqrt{r\pi}\Gamma(r/2))}(1+x^2/r)^{-rac{r+1}{2}},x\in\mathbb{R}$	-	0	$\frac{r}{r-2}$
F	$f(x)=(rac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}})^{rac{1}{2}}/(xB(d_1/2,d_2/2)),x\in\mathbb{R}$	-	$d_2/(d_2-2)$	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$
Multinormal	$f(x) = (2\pi)^{-k/2} \Sigma ^{-1/2} e^{-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}, x \in \mathbb{R}^k$	$M(t) = exp(\mu^T t) + rac{1}{2} t^T \Sigma t$	μ	Σ

Definition: (Gamma Function) Gamma Function is $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} dt$. We have $\Gamma(\alpha) > 0$, $\Gamma(\alpha) = (\alpha-1)\Gamma(\alpha-1)$, $\Gamma(n) = n!$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Statistics and Convergence Theory

Random Sampling

Definition: (Random Sample) Suppose $\{X\}$ is the set of population, a subset $\{X_n\} \in \{X\}$ is called a Random Sample, where $X_i \sim f_X$ are mutually independent and have identical distribution.

Note: The joint PMF or PDF of $\{X_n\}$ is $f_{\{X_n\}} = \prod_{i=1}^n f_X(x_i)$.

Definition: (Estimator) An estimator is a function of the sample, i.e. $\hat{\theta} = T(\{X_n\})$.

Definition: (Sampling Distribution) The distribution of $\hat{\theta}$ is called a sampling distribution.

Convergence

Definition: (Convergence in Probability) A sequence of Random Variables is said to converge in probability to $\mu \in \mathbb{R}$ if $\lim_{n \to +\infty} P(|X_n - \mu| < \epsilon) = 1$ for $\epsilon > 0$.

Definition: (Orders in Probability) We write $X_n = O(n^r)$ if X_n/n^r is bounded in probability, i.e. for any $\epsilon > 0$, there exists $b \in \mathbb{R}$ and $N \in \mathbb{R}$ for $P(|X_n/n^r| > b) < \epsilon$.

Definition: (Higher Orders in Probability) We write $X_n = o(n^r)$ if $lim_P X_n/n^r = 0$.

Definition: (Convergence in Distribution) We say X_n converges in distribution to X when the CDF of X_n converges to X, i.e. $\lim_{n\to +\infty}F_{X_n}(x)=F_X(x)$ for all x.

Claim: (Continuous Mapping Theorem) Suppose $lim_p X_n = \mu_X$, $lim_p Y_n = \mu_Y$, and $lim_d Z_n = Z$, the following statements are true:

- 1. $lim_p a X_n = a \mu_X$, where a is a scaler
- 2. $lim_pX_n+Y_n=\mu_X+\mu_Y$, $lim_pX_nY_n=\mu_X\mu_Y$, and $lim_pX_n/Y_n=\mu_X/\mu_Y$ if $\mu_Y
 eq 0$
- 3. If g(.) is a continuous function, then $\lim_{p} g(X_n, Y_n) = g(\mu_X, \mu_Y)$
- 4. $lim_d a Z_n = a Z$, where a is a scaler
- 5. $lim_d X_n + Y_n Z_n = \mu_X + \mu_Y Z$
- 6. If g(.) is a continuous function, then $\, lim_d g(Z_n) = g(Z) \,$
- 7. If $lim_p X_n = Z_n$ and $lim_d Z_n = Z$, then $lim_d X_n = Z$

Law of Large Number

Claim: (Weak Law of Large number) Assume that $\{X_i\}_{i=1}^N$ are i.i.d. with $E[X_i] = \mu < +\infty$, and $Var(X_i) < +\infty$, then we have:

$$\lim_{p} \frac{1}{N} \sum_{i=1}^{N} X_i = \mu \tag{2}$$

Central Limit Theorem

Claim: (Central Limit Theorem) Assume that $\{X_i\}_{i=1}^N$ are i.i.d. with $E[X_i] = \mu < +\infty$, and $Var(X_i) = \Sigma < +\infty$, then we have:

$$\sqrt{n}(\bar{X}_n - \mu) = \sqrt{n}\left(\frac{1}{N}\sum_{i=1}^N X_i - \mu\right) = \rightarrow^d N(0, \Sigma)$$
(3)

Delta Method

Claim: (Delta Method) Suppose g(.) is twice continuously differentiable at μ , such that $\lim_p X_n = \mu$ and $\sqrt{n}(x_n - \mu) \to^d N(0, \Sigma)$, then:

$$\sqrt{n}(g(X_n) - g(\mu)) \to^d Dg(\mu)N(0, \Sigma) = N(0, Dg(\mu)'\Sigma Dg(\mu))$$
(4)

Point Estimation and Confidence Intervals

Maximum Likelihood

Definition: (Likelihood Function) Likelihood Function of a sample is defined as:

$$L_n(\theta) = \prod_{i=1}^n f(X_i, \theta) \tag{5}$$

Definition: (Maximum Likelihood Estimator) Maximum Likelihood Estimator of a sample is defined as:

$$\hat{\theta} = argmax[lnL_n(\theta)] = argmax[\sum_{i=1}^{n} lnf(X_i, \theta)]$$
(6)

Method of Moments

Definition: (Method of Moments Estimator) When the population random variable X have the following property:

$$E[m(X,\theta)] = 0 (7)$$

Then Method of Moments Estimator of a sample is the solution to the following equation:

$$\sum_{i=1}^{n} m(X_n, \hat{\theta})/n = 0 \tag{8}$$

Comparison of Estimators

Definition: (Unbiasedness) If $E[\hat{\theta}] = \theta$, then we say the estimator is unbiased.

Definition: (Mean Square Error) The mean square error of the estimation is defined by $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = (E[\hat{\theta}] - E[\theta])^2 + var(\hat{\theta})$

Definition: (Efficiency) Given two estimator $\hat{\theta}_1$ and $\hat{\theta}_2$, for a given sample size, if $Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$, we say $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$.

Definition: (Consistency) The estimator is consistent if $lim_p\hat{\theta}_n=\theta$.

Confidence Intervals

Definition: (Confidence Interval) Given the data $\{S_n\}$ we observe, suppose $S_i \sim f(\theta)$. Let L and U be two statistics. We say (L,U) is a $1-\alpha$ Confidence Interval for θ if $P(\theta \in (L,U)) = 1-\alpha$.

Statistical Inferences

Hypothesis Test

Definition: (Null Hypothesis) Suppose $\theta \in \Theta$ is a random parameter, Null Hypothesis is $H_0: \theta \in \Theta_0$.

Definition: (Alternative Hypothesis) Suppose $\theta \in \Theta$ is a random parameter, Alternative Hypothesis is $H_1: \theta \notin \Theta_0$.

Definition: (Type I Error) Type I Error is when you reject H_0 when it is correct.

Definition: (Type II Error) Type II Error is when you accept H_0 when it is not correct.

Note: Type I Error is much worse than Type II Error.

Definition: (Decision Rule) Given the data $\{S_n\}$ we observe, we setup a rejection region C, such that if $S_n \in C$ we reject H_0 , if $S_n \notin C$ we refuse to reject H_0 .

Definition: (Size) The size of a Hypothesis Test is the probability of making type I error, i.e. $size = P(S_n \in C | \theta_0)$.

Definition: (P-Value) Suppose H_0 is true and a given rejection region C, P-Value is defined as $P(C)=P(S_n\in C|\theta_0)$

Definition: (Power) The size of a Hypothesis Test is the probability of not making type II error, also known as the probability of rejecting a given alternative hypothesis $\theta \in \Theta \backslash \Theta_0$, i.e. $power(\theta) = P(S_n \in C | \theta \in \Theta \backslash \Theta_0)$.

Note: We would want the power to be high and the size to be low.

Comparison of Decision Rules

Definition: (Unbiased Test) A test is called unbiased if it is more likely to reject under Alternative Hypothesis than under then Null Hypothesis.

Definition: (Consistent Test) A test is called consistent if $\lim_{n\to+\infty} P(S_n\in C|\theta\in\Theta\setminus\Theta_0)=1$.

Ordinary Least Squares Estimation

Regression Model

General Regression Model

Definition: (General Regression Model) A regression model is defined as:

$$y = m(x) + \epsilon \tag{9}$$

with $E[\epsilon|x] = 0$ and $E[\epsilon^2|x] = \sigma^2(x)$.

Linear Regression Model

Definition: (Linear Regression Model) A linear regression model is defined as:

$$y = x'\beta + \epsilon \tag{10}$$

with $E[\epsilon|x]=0$ and $E[\epsilon^2|x]=\sigma^2(x)$.

Definition: (Sample) A sample $\{(X,Y)\}$ is drawn from the population $\{(x,y)\}$.

Definition: (Sample Regression Model) A linear regression model of the sample is defined as:

$$y = X\beta + e \tag{11}$$

with E[e|X]=0 and $E[e^2|X]=\sigma^2(X)$.

Definition: (Least Square Estimator) A least square estimator is defined as:

$$\hat{\beta} = argmin(\frac{1}{n} \sum_{i=1}^{n} (y_i - x_i'b)^2) = argmin(\frac{1}{n} (y - Xb)'(y - Xb))$$
(12)

Assumption

Assumption 1: (Random sampling) Each Sample is drawn with i.i.d.

Assumption 2: (No Perfectly Collinearity) X'X is invertible.

Assumption 3': (Zero Correlation) E[Xe] = 0.

Assumption 3: (Zero Conditional Mean) E[e|X] = 0.

Note: Zero Conditional Mean is stronger than Zero Correlation.

Assumption 4': (Heteroskedasticity) $E[e^2|X] = \sigma^2(X)$.

Assumption 4: (Homoscedasticity) $E[e^2|X] = \sigma^2$.

Assumption 5: (Gaussian Error) $e|X \sim N(0,\sigma^2)$.

Estimator

Maximum Likelihood Estimator

Assumption: (MLE Estimator)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Conditional Mean
- 4. Homoscedasticity
- 5. Gaussian Error

Theorem: (Maximum of Likelihood Estimator of OLS) Under the required assumption, the Maximum of Likelihood Estimator of the regression model is:

$$\hat{\beta} = (X'X)^{-1}X'y = (\sum_{i=1}^{n} x_i x_i')^{-1} \sum_{i=1}^{n} x_i y_i$$

$$\hat{\sigma}^2 = \hat{e}' \hat{e}/n = (y - X\hat{\beta})'(y - X\hat{\beta})/n = \sum_{i=1}^{n} (y_i - x_i'\hat{\beta})^2/n$$
(13)

By definition we have $\hat{\beta}$ is maximizing $\ln(L(\beta,\sigma^2|X)) = \sum_{i=1}^n \log(f(X_i|\beta,\sigma^2))$. When we assume that the Gaussian error is true, we have $\ln(L(\beta,\sigma^2|X)) = \sum_{i=1}^n (-\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln(\sigma^2) - \frac{(y_i-x_i'\beta)^2}{2\sigma^2})$. Now take the first order condition, we have $\sum_{i=1}^n 2x_i(y_i-x_i'\beta) = 0$, which will give us $\hat{\beta} = (\sum_{i=1}^n x_ix_i')^{-1}\sum_{i=1}^n x_iy_i$. Similarly take the first order condition of σ^2 , we have $\sum_{i=1}^n (-\frac{1}{2\sigma^2} + \frac{(y_i-x_i'\beta)^2}{2(\sigma^2)^2}) = 0$, which will give us $\hat{\sigma}^2 = \sum_{i=1}^n (y_i-x_i'\hat{\beta})^2/n$. \square

Least Square Estimator

Assumption: (OLS Estimator)

- 1. Random sampling
- 2. No Perfectly Collinearity

Theorem: (OLS Estimator) Under the required assumption, the OLS Estimator is:

$$\hat{\beta} = (X'X)^{-1}X'y = (\sum_{i=1}^{n} x_i x_i')^{-1} \sum_{i=1}^{n} x_i y_i$$
(14)

Proof:

By definition, the OLS estimator is minimizing $\frac{1}{n}(y-Xb)'(y-Xb)$. Taking the first order condition, we have X'(y-Xb)=0. Suppose X'X is reversible, then we have $\hat{\beta}=(X'X)^{-1}X'y$. \square

Definition: (Prediction) Under the required assumption, the Prediction of the dependent variable is the estimator of E[y|X], defined as:

$$\hat{y} = X\hat{\beta} = X(X'X)^{-1}X'y \tag{15}$$

Definition: (Residual) Under the required assumption, the Residual of the estimation is defined as:

$$\hat{e} = y - \hat{y} = y - X\hat{\beta} = y - X(X'X)^{-1}X'y \tag{16}$$

Definition: (Projection Matrix) The Projection Matrix is Defined as:

$$P_X = X(X'X)^{-1}X' (17)$$

Definition: (Orthogonal Projection Matrix) The Orthogonal Projection Matrix is Defined as:

$$M_X = I - X(X'X)^{-1}X' (18)$$

Leverage

Definition: (Leverage) The Leverage of the estimation is defined as $h_{ii}=x_i'(X'X)^{-1}x_i$.

Definition: (Influence) The predict estimator is defined as $\hat{\beta}_{-i} = \hat{\beta} - (1 - h_{ii})^{-1} (X'X)^{-1} x_i \hat{e}_i$, and we define the prediction residual as $\tilde{e}_i = y_i - x_i' \hat{\beta}_{-i} = \hat{e}_i / (1 - h_{ii})$.

Note: $x_i'\hat{eta} - x_i'\hat{eta}_{-i} = h_{ii}\tilde{e}_i$.

General Properties of the Estimation

Theorem: (Properties of the Estimator and Residual) Under Assumption 1 and 2, the OLS Estimator and the Residual has the following properties:

- 1. $\hat{y} = P_X y$, and $\hat{e} = M_X e = M_X y$
- 2. $\hat{e}'\hat{e} = e'M_X e = y'M_X y$
- 3. $X'\hat{e} = 0$ and $\hat{y}'\hat{e} = 0$
- 4. If the independent variables include constant, i.e. $x_1=\iota$, then $\sum_{i=1}^n \hat{e}=0$, and $ar{y}=ar{\hat{y}}$

- 1. First two can be shown by definition. We only want to show that $\hat{e}'\,\hat{e}=e'M_Xe=y'M_Xy$. This is because $M_Xy=M_X(X\beta+e)$) and $M_XX=0$. Note that $\hat{e}'\,\hat{e}=(M_Xe)'M_Xe=e'M_Xe$.
- 2. The third equation is exactly the first order condition. $X'(y-X\hat{\beta})=X'\hat{e}=0$ and $\hat{y}'\hat{e}=(X\hat{\beta})'\hat{e}=0$.
- 3. The forth argument comes from the first vector of equation 3. Since $\sum_{i=1}^n \hat{e} = 0$, we have $\sum_{i=1}^n \hat{e} = \sum_{i=1}^n (y_i \hat{y}_i) = 0$, i.e. $\bar{y} = \bar{\hat{y}}$

Lemma:(Trace) For any two given matrix, Trace(AB) = Trace(BA), as long as both traces exist.

Theorem: (Properties of the Projection Matrix) Under Assumption 1 and 2, the Projection Matrix has the following properties:

- 1. P_X is symmetric and idempotent, i.e. $P_X^\prime = P_X$, and $P_X P_X = P_X$
- 2. If $X_1 = \iota$, then $P_X \iota = \iota$
- 3. $P_X X = X$
- 4. $P_{\iota} = \iota \iota' / n$
- 5. $P_{\iota}y = \bar{y}$
- 6. $Trace(P_X) = k$

Proof:

Most of the proof is trivial by definition. We only want to show equation 2 and 6. First we want to show equation 2., we have $P_X \iota = X(X'X)^{-1}X'\iota$, which is just regressing a constant on a set of random variables. Now prove equation 6. By the trace lemma, we have $Trace(P_X) = Trace(X(X'X)^{-1}X') = Trace((X'X)^{-1}(X'X)) = Trace(I_k) = k$. \square

Theorem: (Properties of the Orthogonal Projection Matrix) Under Assumption 1 and 2, the Orthogonal Projection Matrix has the following properties:

- 1. M_X is symmetric and idempotent, i.e. $M_X^\prime = M_X$, and $M_X M_X = M_X$
- 2. $M_X X = 0$
- 3. $M_\iota = I \iota \iota' / n$
- 4. $Trace(M_X) = n k$

Proof:

The first three proof is trivial. And we have $Trace(M_X) = Trace(I_n - P_X) = n - k$. \square

Theorem: (Properties of the Leverage) Under Assumption 1 and 2, the Leverage has the following properties:

- 1. h_{ii} is the i-th element on the diagonal of P_X
- $2. \sum_{i=1}^{n} h_{ii} = k$
- 3. $h_{ii} \in [0,1]$

Proof:

By definition, h_{ii} is the i-th element on the diagonal of P_X . Since $Trace(P_X) = \sum_{i=1}^n h_{ii}$ we have $\sum_{i=1}^n h_{ii} = k$. We do not intend to show the last proof here. \square

Special Cases

Theorem: (Special Regressor) The following statements are true:

- 1. When k=1 and $X_1=\iota, \hat{eta}=ar{y}$
- 2. When k = 1 and $X_1 = x$, $\hat{\beta} = \sum_{i=1}^n x_i y_i / \sum_{i=1}^n x_i^2$
- 3. When k=2 and $X_1=\iota$, $X_2=x$, then $\hat{\beta}_1=\bar{y}-\bar{x}\hat{\beta}_2$, and $\hat{\beta}_2=\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})/\sum_{i=1}^n(x_i-\bar{x})^2$
- 4. (Transformations) When regress y on XC, the estimator is $\hat{\beta}^*=C^{-1}\hat{\beta}$, and $\hat{y}^*=\hat{y}$
- 5. (Transformations) When regress $a\iota+by$ on $X_1=\iota$ and X_2 , the estimator is $\hat{eta}_1^*=a+b\hat{eta}_1$, and $\hat{eta}_2^*=b\hat{eta}_2$

- 1. The first two equations are trivial to prove.
- 2. Now prove the third equation. Since we have $\hat{y}'\hat{e}=0$, this implies $\bar{y}=\hat{\bar{y}}=\hat{\beta}_1+\bar{x}\hat{\beta}_2$. And $\hat{\beta}_2=\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})/\sum_{i=1}^n(x_i-\bar{x})^2$ comes from partitioned regression. This is shown in next part. Plug in the formula with dimension 1, we have $\beta_2=(X'M_\iota X)^{-1}X'M_\iota Y=[\sum_{i=1}^n(x_i-\bar{x})(x_i-\bar{x})']^{-1}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})'$.
- 3. Now prove the transformations. Regressing y on XC, we have $\hat{\boldsymbol{\beta}}^* = ((XC)'(XC))^{-1}(XC)'y = (C'X'XC)^{-1}C'X'y$, then we have $\hat{\boldsymbol{\beta}}^* = C^{-1}(X'X)^{-1}C'^{-1}C'X'y = C^{-1}\hat{\boldsymbol{\beta}}$. And $\hat{\boldsymbol{y}}^* = XC\hat{\boldsymbol{\beta}}^* = XCC^{-1}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{y}}$.

Now regress $a\iota + by$ on X_1 and X_2 , we have $\hat{\beta}^* = (X'X)^{-1}X'(a\iota + by) = av + b\hat{\beta}$, where $v = (1,0,0,\dots,0)'$, which will give us what we need. \Box

Partitioned Regression

Partitioned Regression

Theorem: (Partitioned Regression) Suppose we see the regression model as $y = X_1\beta_1 + X_2\beta_2 + e$, then we have:

$$\hat{\beta}_1 = (X_1' M_{X_2} X_1)^{-1} X_1' M_{X_2} y, \ \hat{\beta}_2 = (X_2' M_{X_1} X_2)^{-1} X_2' M_{X_1} y \tag{19}$$

or

$$\hat{\beta}_1 = ((M_{X_1} X_1)' M_{X_2} X_1)^{-1} (M_{X_2} X_1)' y, \ \hat{\beta}_2 = ((M_{X_1} X_2)' M_{X_1} X_2)^{-1} (M_{X_1} X_2)' y \tag{20}$$

i.e. the regression of the residuals of y and X_1 on X_2 .

Proof:

1. Remember we have the first order condition $X'(y-X_1\hat{\beta}_1-X_2\hat{\beta}_2)=0$. Note that $X=[X_1,X_2]$, so the first order condition can be partitioned into two equations. $X'_1(y-X_1\hat{\beta}_1-X_2\hat{\beta}_2)=0$ and $X'_2(y-X_1\hat{\beta}_1-X_2\hat{\beta}_2)=0$. This implies

$$\begin{pmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{pmatrix} \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} X_1'y \\ X_2'y \end{pmatrix}$$
(21)

Now take the inverse of the left hand side we get the equation that we want. When $(X_1'M_{X_2}X_1)^{-1}=(X_1'X_1-X_1'X_2(X_2'X_2)^{-1}X_2'X_1)^{-1}$ exists, we have

$$\hat{\beta}_{1} = (X'_{1}M_{X_{2}}X_{1})^{-1} \begin{pmatrix} 1 & -X'_{1}X_{2}(X'_{2}X_{2})^{-1} \end{pmatrix} \begin{pmatrix} X'_{1}y \\ X'_{2}y \end{pmatrix}$$

$$= (X'_{1}M_{X_{2}}X_{1})^{-1}X'_{1}(I - P_{X_{2}})y = (X'_{1}M_{X_{2}}X_{1})^{-1}X'_{1}M_{X_{2}}y$$
(22)

When $(X_2'M_{X_1}X_2)^{-1} = (X_2'X_2 - X_2'X_1(X_1'X_1)^{-1}X_1'X_2)^{-1}$ exists, we have the other half of the equation.

2. Now prove the same estimator is the result of doing the regression of the residuals of y and X_i on X_j . First regress $M_{X_1}y$ on X, we will get that by definition $M_{X_1}y=M_{X_1}X_1\beta_1+M_{X_1}X_2\beta_2+M_{X_1}e$. However, we know that $M_{X_1}X_1=0$. This implies that $M_{X_1}y=M_{X_1}X_2\beta_2+M_{X_1}e$ and hence the estimator $\hat{\beta}_2=((M_{X_1}X_2)'M_{X_1}X_2)^{-1}(M_{X_1}X_2)'M_{X_1}y$. \square

Special Cases

Theorem: (Special Partitioned Regression) The following statements are true:

- 1. When $\hat{\beta}_1$ is a scaler and there is an intercept in X_2 , then $\hat{\beta}_1 = X_1' M_{X_2} y / (X_1' M_{X_2} X_1)$
- 2. Generally, when $X_1=\iota$, then the regression will pass the mean of the sample, i.e.

$$\hat{\beta}_1 = \bar{y} - \bar{x}'\hat{\beta}_2 = (\iota' M_{X_2} \iota)^{-1} \iota' M_{X_2} y \tag{23}$$

$$\hat{\beta}_2 = \left[\sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})'\right]^{-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})' = (X_2' M_\iota X_2)^{-1} X_2' M_\iota y$$
(24)

Proof:

- 1. Plug in the formula from last theorem.
- 2. Since we have $\hat{y}'\hat{e}=0$, this implies $\bar{y}=\bar{\hat{y}}=\hat{\beta}_1+\bar{x}\hat{\beta}_2$. Plug in the formula from last theorem, we have $\hat{\beta}_2=(X_2'M_tX_2)^{-1}X_2'M_ty=[\sum_{i=1}^n(x_i-\bar{x})(x_i-\bar{x})']^{-1}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})'.$

R-Squared

Variation Partition

Definition:(Total Sum of Square) Total Sum of Square is defined as $SST = (y - \iota \bar{y})'(y - \iota \bar{y})$.

Definition:(Regression Sum of Square) Regression Sum of Square is defined as $SSR = (\hat{y} - \iota \bar{y})'(\hat{y} - \iota \bar{y}) = \hat{\beta}' X' M_{\iota} X \hat{\beta}$.

Definition:(Sum of Square Error) Sum of Square Error is defined as $SSE = \hat{e}' \hat{e} = \sum_{i=1}^{n} \hat{e}_{i}^{2}$.

Theorem: (Variation Partition) The following statements are true:

1.
$$y = P_X y + M_X y$$

2. $SST = SSR + SSE$

Proof:

- 1. First equation is automatically true by definition.
- 2. $SST = (y \iota \overline{y})'(y \iota \overline{y})$, by $y = P_X y + M_X y$ we have $SST = (\hat{y} \iota \overline{y} + \hat{e})'(\hat{y} \iota \overline{y} + \hat{e}) = (\hat{y} \iota \overline{y})'(\hat{y} \iota \overline{y}) + \hat{e}'\hat{e}$ since we have $(\hat{y} \iota \overline{y})'\hat{e} = \hat{e}'(\hat{y} \iota \overline{y}) = 0$. This is because $(\hat{y} \iota \overline{y})'\hat{e} = \hat{y}'\hat{e} \iota \overline{y}'\hat{e} = 0 0 = 0$. \square

R-Squared

Definition:(R-Squared) R-Squared is defined as $R^2 = SSR/SST = 1 - SSE/SST$.

Theorem: (Properties of R-Squared) The following statements are true:

- 1. $R^2 = corr(y, \hat{y})^2$ for the sample
- 2. $R^2 \in [0,1]$
- 3. When k increases, R-squared will always increase.

Proof:

it is trivial to show that $R^2 \in [0,1]$. By definition we have $R^2 = SSR/SST = (\hat{y} - \iota \bar{y})'(\hat{y} - \iota \bar{y})/(y - \iota \bar{y})'(y - \iota \bar{y})'(y - \iota \bar{y})$, where $SSR = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$ and $SST = \sum_{i=1}^n (y_i - \bar{y})^2$. So we can rewrite $R^2 = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2} = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \cdot \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}$. Note that the numerator is

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = (\sum_{i=1}^{n} (\hat{y}_i - \bar{y})(\hat{y}_i - \bar{y}))^2 = (\sum_{i=1}^{n} (\hat{y}_i - \bar{y})(\hat{y}_i - \bar{y}) + \hat{e}_i(\hat{y}_i - \bar{y}))^2$$

$$= (\sum_{i=1}^{n} (\hat{y}_i - \bar{y} + \hat{e}_i)(\hat{y}_i - \bar{y}))^2 = (\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \bar{y}))^2$$
(25)

Hence $R^2 = corr(y, \hat{y})^2$ for the sample.

Now want to show that when k increases, R-squared will always increase. Consider an OLS regressing y on to x_1,\ldots,x_k , and suppose $\hat{\beta}_1,\ldots,\hat{\beta}_k$ minimize the SSE of the regression. Now suppose another x_{k+1} is added to the regression, If we plug in $\hat{\beta}_1,\ldots,\hat{\beta}_k,0$ it will generate the R-squared before adding the variable. If we redo the OLS and get $\hat{\beta}_1^*,\ldots,\hat{\beta}_k^*,\hat{\beta}_{k+1}^*$, we will get the new R-squared. However, $\hat{\beta}_1^*,\ldots,\hat{\beta}_k^*,\hat{\beta}_{k+1}^*$ minimize the new SSE, and hence leading to a higher R-squared.

Adjusted R-Squared

Definition:(Adjusted R-Squared) Adjusted R-Squared is defined as:

$$R^{2} = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$$
 (26)

Properties of Estimator and Applications

General Small Sample Result

Assumption: (Small Sample Assumption)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Conditional Mean, i.e. $E[e_i|x_i]=0$

Theorem: (Small Sample Result) Under Assumption 1, 2 and 3, the following properties are true:

- 1. $\hat{\beta}$ is an unbiased estimator, i.e. $E[\hat{\beta}] = \beta$, and $E[\hat{e}] = 0$
- 2. $Var(\hat{\beta}|X)=(X'X)^{-1}X'\Sigma X(X'X)^{-1}$, where $\Sigma=E[ee'|X]=diag[\sigma^2(x_i)]$
- 3. $Var(\hat{e}|X) = M_X \Sigma M_Y'$

And when homoscedasticity is true, we have:

- 4. $Var(\hat{\beta}|X) = \sigma^{2}(X'X)^{-1}$
- 5. $Var(\hat{e}|X) = \sigma^2 M_X$
- 6. $E[\hat{e}_i^2|X] = \sigma^2(1 h_{ii})$

Proof:

1.
$$E[\hat{\beta}] = E[(X'X)^{-1}X'y] = E[(X'X)^{-1}X'X\beta] + E[(X'X)^{-1}X'e] = \beta + E[(X'X)^{-1}X'E[e|X] = \beta.$$

2.

$$Var(\hat{\beta}|X) = Var((X'X)^{-1}X'y|X) = Var((X'X)^{-1}X'(X\beta + e)|X) = Var((X'X)^{-1}X'e|X) = (X'X)^{-1}X'Var(e|X)X(X'X)^{-1}X'e|X) = Var((X'X)^{-1}X'y|X) = Var(($$

3.
$$Var(\hat{e}|X) = Var(M_Xy|X) = Var(M_Xe|X) = M_X\Sigma M_Y'$$
.

When homoscedasticity is true, we have:

4.
$$Var(\hat{\beta}|X) = (X'X)^{-1}X'\sigma^2X(X'X)^{-1} = \sigma^2(X'X)^{-1}$$

5.
$$Var(\hat{e}|X) = M_X \sigma^2 M_X' = \sigma^2 M_X$$

6. Since by equation 5 we have $Var(\hat{e}|X) = M_X \sigma^2 M_X' = \sigma^2 M_X$. Now by definition h_{ii} is the i-th element on the diagonal of P_X , so $1 - h_{ii}$ is the i-th element on the diagonal of M_X , so we can write the i-th row of equation 5, which is $E[\hat{e}_i^2|X] = \sigma^2(1 - h_{ii})$. \square

Variance Estimation

Definition: (Heteroskedasticity variance estimator) When Assumption 1-3 are true and Heteroskedasticity is true, define the estimator of the variance of $\hat{\beta}$ as:

$$\hat{V}(\hat{\beta}|X) = (X'X)^{-1}X'SX(X'X)^{-1}$$
(27)

where $S = \hat{\Sigma} = diag[\hat{e}_i^2]$

Definition: (Homoscedasticity variance estimator) When Assumption 1-3 are true and Homoscedasticity is true, define the estimator of the variance of \hat{e} as:

$$s^2 = \frac{\hat{e}'\hat{e}}{n-k} \tag{28}$$

Definition: (Standardized Residual) When Homoscedasticity is true, define the Standardized Residual as:

$$\bar{e}_i = \frac{\hat{e}}{\sqrt{1 - h_{ii}}} \tag{29}$$

Definition: (Homoscedasticity variance estimator) When Homoscedasticity is true, define the estimator of the variance of e as:

$$\tilde{\sigma}^2 = \frac{\sum_{i=1}^n \bar{e}_i^2}{n} \tag{30}$$

Note: Under Homoscedasticity, $\hat{\sigma}^2$, s^2 , and $\tilde{\sigma}^2$ are all estimators of σ^2 , where the first is the MLE estimator, and the second and the third are generated because they are unbiased.

Definition: (Homoscedasticity variance estimator) When Homoscedasticity is true, define the estimator of the variance of $\hat{\beta}$ as:

$$\hat{V}(\hat{\beta}|X) = s^2 (X'X)^{-1} \tag{31}$$

Theorem: (Expectation of the variance estimator) Under Assumption 1, 2, and 3, the following properties are true:

1.
$$E[\hat{V}(\hat{\beta}|X)] = Var(\hat{\beta}|X)$$

And when homoscedasticity is true, we have:

2.
$$E[s^2] = E[\tilde{\sigma}^2] = \sigma^2$$
, but $E[\hat{\sigma}^2] = (n-k)\sigma^2$

Proof:

1.
$$E[\hat{V}(\hat{\beta}|X)] = E[(X'X)^{-1}X'SX(X'X)^{-1}] = E[(X'X)^{-1}X'E[S|X]X(X'X)^{-1}] \text{ and } E[\hat{V}(\hat{\beta}|X)] = E[(X'X)^{-1}X'SX(X'X)^{-1}] = E[(X'X)^{-1}X'E[S|X]X(X'X)^{-1}]$$

2.

$$E[\hat{e}'\hat{e}] = E[e'M_Xe|X] = E[Trace(e'M_Xe)|X] = E[Trac(M_Xe'e)|X] = Trace(M_XE[e'e|X]) = \sigma^2Trace(M_X) = \sigma^2(n-k)$$
, so we have when homoscedasticity is true, we have $E[s^2] = E[\tilde{\sigma}^2] = E[\frac{\hat{e}'\hat{e}}{n-k}]$. \square

Gauss Markov Theorem

Efficient Estimator

Assumption: (Gauss Markov Assumption)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Conditional Mean, i.e. $E[e_i|x_i]=0$
- 4. Homoscedasticity
- 5. Gaussian Error

Theorem: (Gauss Markov Theorem) Under Assumption 1-5, OLS estimator is Best Linear Unbiased Estimator(BLUE).

We want to show that there is no linear unbiased estimator that have a lower conditional variance. The conditional variance of any given estimator is $Var(\tilde{\beta}|X) = E[(\tilde{\beta} - \beta)'(\tilde{\beta} - \beta)|X]$, where $\tilde{\beta} = C'y$ is a linear estimator. It is also unbiased so $E[\tilde{eta}] = E[C'(Xeta + e)] = C'Xeta$ implies that C'X = I. So $E[(\tilde{eta} - eta)'(\tilde{eta} - eta)|X] = C'E[ee'|X]C = \sigma^2C'C$.

Now we have $C'C = (C - X(X'X)^{-1} + X(X'X)^{-1})'(C - X(X'X)^{-1} + X(X'X)^{-1}),$ which can be written as $(C-X(X'X)^{-1})'(C-X(X'X)^{-1})+(X'X)^{-1}$. Because $(C-X(X'X)^{-1})'X(X'X)^{-1}=(CX-I)(X'X)^{-1}=0$. Then since the first part of C'C is a positive semi-definite matrix, we have $C'C > (X'X)^{-1}$, which shows that there is no linear unbiased estimator that have a lower conditional variance. \Box

Claim: (WLS Theorem) Under Assumption 1, 2, 3, and Heteroskedasticity, OLS estimator is not the Best Linear Unbiased Estimator(BLUE), instead, The BLUE is:

$$\hat{\beta}_W = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}y \tag{32}$$

Note: Under homoscedasticity WLS will give the same estimator as OLS.

Small Sample Distribution Result

Assumption: (Small Sample Distribution Assumption)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Conditional Mean, i.e. $E[e_i|x_i]=0$
- 4. Homoscedasticity
- 5. Gaussian Error

Theorem: (Conditional Distribution) Under Assumption 1-5, the following statement are true:

- 1. $\hat{\beta}|X \sim N(\beta, \sigma^2(X'X)^{-1})$
- 2. $\hat{e}|X \sim N(0, \sigma^2 M_X)$
- 3. $\hat{\beta}$ is independent to \hat{e}
- 4. $(n-k)s^2/\sigma^2 \sim \chi^2(n-k)$
- 5. $\hat{\beta}$ is independent to s^2

6.
$$T_j | X = rac{\hat{eta}_j - eta_j}{\sqrt{\sigma^2 [(X'X)^{-1}]_{ij}}} | X \sim N(0,1)$$

7.
$$\hat{T}_{j}|X = rac{\hat{eta}_{j} - eta_{j}}{\sqrt{s^{2}[(X'X)^{-1}]_{jj}}}|X \sim T(n-k)$$

8. When
$$C$$
 is a $1 imes k$ vector, we have $\hat{T}'|X = \frac{C\hat{eta} - Ceta}{\sqrt{s^2C(X'X)^{-1}C'}}|X \sim T(n-k)$

9. When
$$R$$
 is a $J \times k$ matrix, we have $F|X = \frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{\sigma^2}|X \sim \chi^2(J)/J$

9. When
$$R$$
 is a $J \times k$ matrix, we have $F|X = \frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{\sigma^2}|X \sim \chi^2(J)/J$ 10. When R is a $J \times k$ matrix, we have $\hat{F}|X = \frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{s^2}|X \sim F(J,n-k)$

1.
$$\hat{\beta}|X = (X'X)^{-1}X'y|X = (X'X)^{-1}X'(X\beta + e)|X \sim N(\beta, \sigma^2(X'X)^{-1})$$
, by assumption $e|X \sim N(0, \sigma^2)$.

2.
$$\hat{e}|X=M_Xe|X\sim N(0,\sigma^2M_X)$$
.

- $Cov(\hat{\beta}, \hat{e}) = 0.$ $Cov(\hat{\beta},\hat{e}) = E[(\hat{\beta} - \beta)\hat{e}'|X] = E[(X'X)^{-1}X'e(M_Xe)'|X] = E[(X'X)^{-1}X'ee'M_X|X]. \text{ But we have } E[ee'|X] = \sigma^2,$ so $Cov(\hat{\beta},\hat{e})=\sigma^2(X'X)^{-1}X'M_X=0$, since $M_XX=0$. Under normality, $\hat{\beta}$ is independent to \hat{e} .
- 4. $(n-k)s^2/\sigma^2 = \frac{1}{\sigma^2}e'M_X'M_Xe = (\frac{e}{\sigma})'M_X'M_X(\frac{e}{\sigma}) = (\frac{e}{\sigma})'M_X(\frac{e}{\sigma})$. We know that $\frac{e}{\sigma}|X \sim N(0,I_n)$. Now we take the spectral decomposition of M_X . We have $M_X = H\Lambda H'$, where

$$\Lambda = \begin{pmatrix} I_{n-k} & 0\\ 0 & 0 \end{pmatrix} \tag{33}$$

Note that the eigenvalues of M_X are either 0 or 1. So $\sum_{i=1}^n \lambda_i = Trace(M_X) = n-k$. We also have $H'H = HH' = I_n$ and $H^{-1} = H'$ because M_X is a symmetric and idempotent matrix. Then we define $(\frac{e}{\sigma})'M_X(\frac{e}{\sigma}) = z'\Lambda z$, and we have $z = H'(\frac{e}{\sigma})|X \sim N(0, H'I_nH) = N(0, I_n)$

$$z'\Lambda z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}' \begin{pmatrix} I_{n-k} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = z_1 I_{n-k} z_1 = \sum_{i=1}^{n-k} z_{1i}^2 \sim \chi^2(n-k)$$
 (34)

- 5. Since $\hat{\beta}$ is independent to \hat{e} , we have $\hat{\beta}$ is independent to s^2 , which is a function of \hat{e} .
- 6. From above this is true by definition.
- 7. From above this is true by definition.
- 8. By linear combination of normal distribution, we have $C(\hat{\beta} \beta)|X \sim N(0, \sigma^2 C(X'X)^{-1}C')$. So this is true by the definition of T distribution.
- 9. From above this is true by definition.
- 10. From above this is true by definition. \square

Theorem: (Partitioned Regression) Suppose we see the regression model as $Y = X_1\beta_1 + X_2\beta_2 + e$. Under Assumption 1-5, we have:

1.
$$\hat{\beta}_1 | X \sim N(\beta_1, \sigma^2(X_1'X_1 - X_1'X_2(X_2'X_2)^{-1}X_2'X_1)^{-1})$$

2. $\hat{\beta}_2 | X \sim N(\beta_2, \sigma^2(X_2'X_2 - X_2'X_1(X_1'X_1)^{-1}X_1'X_2)^{-1})$

Proof:

By argument 1 from the last theorem, we have $\hat{\beta}|X \sim N(\beta, \sigma^2(X'X)^{-1})$. If we write $X = (X_1, X_2)$, we can use the partition of matrix and we will get:

$$X'X = \begin{pmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{pmatrix}$$
 (35)

When $(X_1'M_{X_2}X_1)^{-1}=(X_1'X_1-X_1'X_2(X_2'X_2)^{-1}X_2'X_1)^{-1}$ exists, we have what we want to show. Suppose $(X_2'X_2-X_2'X_1(X_1'X_1)^{-1}X_1'X_2)^{-1}$ exists, we can prove the other half. \Box

Large Sample Theory

Theory Under Heteroscedasticity

Assumption: (Large Sample Distribution Assumption with Heteroscedasticity)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Correlation, i.e. ${\it E}[x_ie_i]=0$
- 4. $E[x_i x_i' e_i^2] = \Omega < +\infty$
- 5. $E[x_i x_i'] = Q_{xx} < +\infty$ and it is positive definite

Theorem: (Consistency) Under Assumption 1-5, suppose we have large sample, then the OLS estimator is consistent.

Proof:

We want to show that $\hat{\beta} \to^p \beta$. We have $\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X/n)^{-1}(X'e/n)$, where $(X'X/n)^{-1} = (\sum_{i=1}^n x_i x_i'/n)^{-1} \to^p Q_{xx}^{-1}$, by the law of large number, and $(X'e/n) = (\sum_{i=1}^n x_i e_i/n) \to^p E[x_i e_i] = 0$ also by the law of large number. \square

Theorem: (Asymptotic Result) Under Assumption 1-5, suppose we have large sample, then the following results are true:

1.
$$\sqrt{n}(\hat{\beta} - \beta)|X \to^d N(0, Q_{xx}^{-1}\Omega Q_{xx}^{-1})$$

```
2. \lim_{p} nV(\hat{\beta}|X) = Q_{xx}^{-1} \Omega Q_{xx}^{-1}
```

3.
$$lim_p n\hat{V}(\hat{eta}|X) = Q_{xx}^{-1}\Omega Q_{xx}^{-1}$$

4.
$$\hat{T}_j|X=rac{\hat{eta}_j-eta_j}{\sqrt{\hat{V}(\hat{eta}|X)_{jj}}}|X
ightarrow^d\,N(0,1)$$

5. When
$$C$$
 is a $1 imes k$ vector, we have $\hat{T}'|X = \frac{C\hat{eta} - Ceta}{\sqrt{C\hat{V}(\hat{eta}|X)C'}}|X o^d N(0,1)$

6. When
$$R$$
 is a $J \times k$ matrix, we have $F|X = (R(\hat{\beta}-\beta))'(RV(\hat{\beta}|X)R')^{-1}(R(\hat{\beta}-\beta))/J|X \to^d \chi^2(J)/J$

7. When
$$R$$
 is a $J \times k$ matrix, we have $\hat{F}|X = (R(\hat{\beta} - \beta))'(R\hat{V}(\hat{\beta}|X)R')^{-1}(R(\hat{\beta} - \beta))/J|X \rightarrow^d \chi^2(J)/J$

8. Generally, suppose
$$g(.)$$
 is a function system with J equations, $\sqrt{n}(g(\hat{\beta})-g(\beta)) \to^d N(0,G'Q_{xx}^{-1}\Omega Q_{xx}^{-1}G)$, where $G=\partial g(\beta)/\partial \beta|_{\hat{\beta}}$

9. Generally, suppose g(.) is a function system with J equations,

$$\hat{W} = (g(\hat{\beta}) - g(\beta))'(G'\hat{V}(\hat{\beta}|X)G)^{-1}(g(\hat{\beta}) - g(\beta))/J \rightarrow^d \chi^2(J)/J, \text{ where } G = \partial g(\beta)/\partial \beta|_{\hat{\beta}}$$

Proof:

1.
$$\sqrt{n}(\hat{\beta}-\beta)=\sqrt{n}((X'X/n)^{-1}(X'e/n))$$
 where $(X'X/n)^{-1}\to^p Q_{XX}^{-1}$ by the law of large number and $\sqrt{n}(X'e/n)\to^d N(0,\Omega)$ by the central limit theorem. Combine them we get $\sqrt{n}(\hat{\beta}-\beta)|X\to^d N(0,Q_{xx}^{-1}\Omega Q_{xx}^{-1})$.

2. Note that
$$V(\hat{\beta}|X) = V((X'X)^{-1}X'e|X)$$
, so $nV(\hat{\beta}|X) = (X'X/n)^{-1}E[X'ee'X/n|X](X'X/n)^{-1}$ Then $(X'X/n)^{-1} \to^p Q_{XX}^{-1}$, and $E[X'ee'X/n|X] \to^p \Omega$. Combine them we have $\lim_p nV(\hat{\beta}|X) = Q_{xx}^{-1}\Omega Q_{xx}^{-1}$.

3. Note that
$$n\hat{V}(\hat{eta}|X)=(X'X/n)^{-1}(X'SX/n)(X'X/n)^{-1}$$
. Then $(X'X/n)^{-1}\to^p Q_{XX}^{-1}$, and $X'SX/n=rac{1}{n}\sum_{i=1}^n x_ix_i'\hat{e}_i^2\to^p\Omega$ by the law of large number. Combine them we have $lim_pnV(\hat{eta}|X)=Q_{xx}^{-1}\Omega Q_{xx}^{-1}$.

4.
$$\hat{T}_j = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{V}(\hat{\beta}|X)_{jj}}}$$
, and since equation 1 and 3 are true, we can combine them and conclude that

$$\hat{T}_j|X=rac{\hat{eta}_j-eta_j}{\sqrt{\hat{V}(\hat{eta}|X)_{jj}}}|X
ightarrow^d N(0,1).$$

$$5. \ \sqrt{n}(C\hat{\beta}-C\beta) = \sqrt{n}C((X'X/n)^{-1}(X'e/n)) \rightarrow^d N(0,CQ_{xx}^{-1}\Omega Q_{xx}^{-1}C'), \ \text{and} \ nC\hat{V}(\hat{\beta}|X)C' \rightarrow^p CQ_{xx}^{-1}\Omega Q_{xx}^{-1}C'.$$
 Combine them we will get $\hat{T}'|X = \frac{C\hat{\beta}-C\beta}{\sqrt{C\hat{V}(\hat{\beta}|X)C'}}|X \rightarrow^d N(0,1).$

6. We have
$$F=(\sqrt{n}R(\hat{\beta}-\beta))'(nRV(\hat{\beta}|X)R')^{-1}(\sqrt{n}R(\hat{\beta}-\beta))/J$$
. Now $\sqrt{n}R(\hat{\beta}-\beta)\to^d N(0,RQ_{xx}^{-1}\Omega Q_{xx}^{-1}R')$, and $nRV(\hat{\beta}|X)R'\to^p RQ_{xx}^{-1}\Omega Q_{xx}^{-1}R'$. Combine them we have
$$F|X=(R(\hat{\beta}-\beta))'(RV(\hat{\beta}|X)R')^{-1}(R(\hat{\beta}-\beta))/J|X\to^d \chi^2(J)/J.$$

7. We have
$$\hat{F} = (\sqrt{n}R(\hat{\beta}-\beta))'(nR\hat{V}(\hat{\beta}|X)R')^{-1}(\sqrt{n}R(\hat{\beta}-\beta))/J$$
. Now $\sqrt{n}R(\hat{\beta}-\beta) \rightarrow^d N(0,RQ_{xx}^{-1}\Omega Q_{xx}^{-1}R')$, and $nR\hat{V}(\hat{\beta}|X)R' \rightarrow^p RQ_{xx}^{-1}\Omega Q_{xx}^{-1}R'$. Combine them we have
$$\hat{F}|X = (R(\hat{\beta}-\beta))'(R\hat{V}(\hat{\beta}|X)R')^{-1}(R(\hat{\beta}-\beta))/J|X \rightarrow^d \chi^2(J)/J.$$

- 8. By equation 1 we have already shown that $\sqrt{n}(\hat{\beta}-\beta)|X\to^d N(0,Q_{xx}^{-1}\Omega Q_{xx}^{-1})$. Use delta method and we get what we want to show.
- 9. We only need to show that $nG'\hat{V}(\hat{\beta}|X)G \to^p G'Q_{xx}^{-1}\Omega Q_{xx}^{-1}G$, which is true from what we have already shown before. \Box

Theory Under Homoscedasticity

Assumption: (Large Sample Distribution Assumption with Homoscedasticity)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Correlation, i.e. $E[x_i e_i] = 0$
- 4. $E[x_ix_i'e_i^2]=\Omega<+\infty$
- 5. $E[x_i x_i'] = Q_{xx} < +\infty$ and it is positive definite
- 6. Homoscedasticity

Theorem: (Asymptotic Result with Homoscedasticity) Under Assumption 1-6, suppose we have large sample and Homoscedasticity is true, we have:

1.
$$\sqrt{n}(\hat{\beta} - \beta)|X \rightarrow^d N(0, \sigma^2 Q_{xx}^{-1})$$

2.
$$\lim_{n} n\sigma^{2}(X'X)^{-1} = \sigma^{2}Q_{xx}^{-1}$$

3.
$$\lim_{n} ns^2 (X'X)^{-1} = \sigma^2 Q_{xx}^{-1}$$

4.
$$\hat{T}_{j}|X=rac{\hat{eta}_{j}-eta_{j}}{\sqrt{s^{2}[(X'X)^{-1}]_{jj}}}|X o^{d}N(0,1)$$

5. When
$$C$$
 is a $1 imes k$ vector, we have $\hat{T}'|X = rac{C\hat{eta} - Ceta}{\sqrt{s^2[C(X'X)^{-1}C']}}|X o^d N(0,1)$

6. When
$$R$$
 is a $J \times k$ matrix, we have $F|X = \frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{\sigma^2}|X \to^d \chi^2(J)/J$

7. When
$$R$$
 is a $J \times k$ matrix, we have $\hat{F}|X = \frac{\sigma^2}{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}}{|X|}|X \to^d \chi^2(J)/J$

- 8. Generally, suppose g(.) is a function system with J equations, $\sqrt{n}(g(\hat{\beta}) g(\beta)) \to^d N(0, \sigma^2 G' Q_{xx}^{-1} G)$, where $G = \partial g(\beta)/\partial \beta|_{\hat{\beta}}$
- 9. Generally, suppose g(.) is a function system with J equations, $\hat{W} = \frac{(g(\hat{\beta}) g(\beta))'(G'(X'X)^{-1}G)^{-1}(g(\hat{\beta}) g(\beta))/J}{e^2} \rightarrow^d \chi^2(J)/J$, where $G = \partial g(\beta)/\partial \beta|_{\hat{a}}$

Proof:

- 1. $\sqrt{n}(\hat{\beta}-\beta)=\sqrt{n}((X'X/n)^{-1}(X'e/n))$ where $(X'X/n)^{-1}\to^p Q_{xx}^{-1}$ by the law of large number and $\sqrt{n}(X'e/n) \to^d N(0,\Omega) = N(0,\sigma^2Q_{xx})$ by the central limit theorem. Combine them we get $\sqrt{n}(\hat{\beta}-\beta)|X\to^d N(0,\sigma^2Q_{xx}^{-1}).$
- 2. Note that $V(\hat{\beta}|X) = V((X'X)^{-1}X'e|X) = \sigma^2(X'X)^{-1}$, so $nV(\hat{\beta}|X) = (X'X/n)^{-1}X'E[ee'/n|X]X(X'X/n)^{-1}$ Then $(X'X/n)^{-1} o^p Q_{XX}^{-1}$. Combine them we have $\lim_p nV(\hat{eta}|X) = \sigma^2 Q_{xx}^{-1}Q_{xx}Q_{xx}^{-1} = \sigma^2 Q_{xx}^{-1}$.
- 3. Note that $n\hat{V}(\hat{\beta}|X)=(X'X/n)^{-1}s^2$. Then $(X'X/n)^{-1}\to^p Q_{XX}^{-1}$, and $s^2=\frac{\hat{e}'\hat{e}}{n-k}\to^p \sigma^2$ by the law of large number. Combine them we have $lim_p ns^2(X'X)^{-1} = \sigma^2 Q_{xx}^{-1}$.
- 4. $\hat{T}_j = \frac{\hat{\beta}_j \beta_j}{\sqrt{s^2[(X'X)^{-1}]_{ii}}}$, and since equation 1 and 3 are true, we can combine them and conclude that

$$\hat{T}_j|X = rac{\hat{eta}_j - eta_j}{\sqrt{s^2[(X'X)^{-1}]_{jj}}}|X
ightarrow^d N(0,1).$$

- $5. \ \sqrt{n}(C\hat{\beta} C\beta) = \sqrt{n}C((X'X/n)^{-1}(X'e/n)) \rightarrow^d N(0, C\sigma^2Q_{xx}^{-1}C'), \text{ and } ns^2[C(X'X)^{-1}C'] \rightarrow^p C\sigma^2Q_{xx}^{-1}C'. \text{ Combine } ns^2[C(X'X)^{-1}C'] \rightarrow^p C\sigma^2Q_{xx}^{-1}C'$ them we will get $\hat{T}'|X=rac{C\hat{eta}-Ceta}{\sqrt{s^2[C(X'X)^{-1}C']}}|X
 ightarrow^d\,N(0,1).$
- 6. We have $F = \frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{\sigma^2}$. Now $\sqrt{n}R(\hat{\beta}-\beta) \to^d N(0,R\sigma^2Q_{xx}^{-1}R')$. So we have $F|X = \frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{\sigma^2}|X \to^d \chi^2(J)/J$. 7. We have $\hat{F} = \frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{s^2}$. Now $\sqrt{n}R(\hat{\beta}-\beta) \to^d N(0,R\sigma^2Q_{xx}^{-1}R')$, and
- $nRs^2Q_{xx}^{-1}R'\to^pR\sigma^2Q_{xx}^{-1}R'.$ Combine them we have $\hat{F}|X=\frac{(R(\hat{\beta}-\beta))'(R(X'X)^{-1}R')^{-1}(R(\hat{\beta}-\beta))/J}{s^2}|X\to^d\chi^2(J)/J.$ 8. By equation 1 we have already shown that $\sqrt{n}(\hat{\beta}-\beta)|X\to^dN(0,\sigma^2Q_{xx}^{-1}).$ Use delta method and we get what we want
- to show.
- 9. We only need to show that $nG's^2Q_{xx}^{-1}G \to^p G'\sigma^2Q_{xx}^{-1}G$, which is true from what we have already shown before. \Box

Theorem: (Partitioned Regression) Suppose we see the regression model as $Y = X_1\beta_1 + X_2\beta_2 + e$. Under Assumption 1-6, suppose we have large sample and Homoscedasticity is true, we have:

1.
$$\sqrt{n}(\hat{\beta}_1 - \beta_1)|X \to^d N(0, \sigma^2(Q_{11} - Q_{12}Q_{22}^{-1}Q_{21})^{-1})$$

2. $\sqrt{n}(\hat{\beta}_2 - \beta_2)|X \to^d N(0, \sigma^2(Q_{22} - Q_{21}Q_{11}^{-1}Q_{12})^{-1})$

Proof:

By argument 1 from the last theorem, we have $\sqrt{n}(\hat{\beta}-\beta)|X\to^d N(0,\sigma^2Q_{xx}^{-1})$. If we write $X=(X_1,X_2)$, we can use the partition of matrix and we will get:

$$Q_{xx} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \tag{36}$$

When $(X_{11}-Q_{12}(Q_{22})^{-1}Q_{21})^{-1}$ exists, we have what we want to show. Suppose $(Q_{22}-Q_{21}Q_{11}^{-1}Q_{12})^{-1}$ exists, we can prove the other half. \square

Hypothesis Test

Assumption

Assumption: (Small Sample)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Conditional Mean, i.e. $E[e_i|x_i]=0$
- 4. Homoscedasticity
- 5. Gaussian Error

Assumption: (Large Sample)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Correlation, i.e. $E[x_ie_i]=0$
- 4. $E[x_i x_i' e_i^2] = \Omega < +\infty$
- 5. $E[x_i x_i'] = Q_{xx} < +\infty$ and it is positive definite

Assumption: (Large Sample with Homoscedasticity)

- 1. Random sampling
- 2. No Perfectly Collinearity
- 3. Zero Correlation, i.e. $E[x_ie_i]=0$
- 4. $E[x_i x_i' e_i^2] = \Omega < +\infty$
- 5. $E[x_i x_i'] = Q_{xx} < +\infty$ and it is positive definite
- 6. Homoscedasticity

T test

Method: (Test with Small Sample) Under the Assumption about small sample, we use the T estimator to do Hypothesis Test for $H_0: \beta = \beta_0$, and $H_1: \beta \neq \beta_0$, i.e. reject if $\hat{T} \notin [-T_{\alpha/2}, T_{\alpha/2}]$, where \hat{T} is defined as:

$$\hat{T}_{j}|X = \frac{\hat{\beta}_{j} - \beta_{0j}}{\sqrt{s^{2}[(X'X)^{-1}]_{jj}}}|X \sim T(n-k)$$
(37)

Method: (Test with Large Sample) Under the Assumption about large sample and heteroskedasticity, we use the T estimator to do Hypothesis Test for $H_0: \beta = \beta_0$, and $H_1: \beta \neq \beta_0$, i.e. reject if $\hat{T} \notin [-T_{\alpha/2}, T_{\alpha/2}]$, where \hat{T} is defined as:

$$\hat{T}_{j}|X = \frac{\hat{\beta}_{j} - \beta_{0j}}{\sqrt{\hat{V}(\hat{\beta}|X)_{jj}}}|X \to^{d} N(0,1)$$
(38)

Method: (Test with Large Sample and Homoscedasticity) Under the Assumption about large sample and homoscedasticity, we use the T estimator to do Hypothesis Test for $H_0: \beta = \beta_0$, and $H_1: \beta \neq \beta_0$, i.e. reject if $\hat{T} \notin [-T_{\alpha/2}, T_{\alpha/2}]$, where \hat{T} is defined as:

$$\hat{T}_{j}|X = \frac{\hat{\beta}_{j} - \beta_{0j}}{\sqrt{s^{2}[(X'X)^{-1}]_{jj}}}|X \to^{d} N(0,1)$$
(39)

Theorem: (Unbiased and Consistent T-Test) The T-Test described above is unbiased under small sample assumption, and consistent under large sample assumption.

- 1. Under small sample assumptions, we want to show that T-test is unbiased. Suppose the true value is β , instead of β_0 . Then the T statistic is $T=\frac{\hat{\beta}_j-\beta_j}{\sqrt{s^2[(X'X)^{-1}]_{jj}}}+\frac{\beta_j-\beta_{0j}}{\sqrt{s^2[(X'X)^{-1}]_{jj}}}$, where the first part of the equation is defined as $T_0=\frac{\hat{\beta}_j-\beta_j}{\sqrt{s^2[(X'X)^{-1}]_{jj}}}\sim T(n-k)$. Under $H_0:\beta_j=\beta_{0j}$, the second term is negative so we have $T=T_0$, and $P(|T|>t_{\alpha/2})<\alpha$. Under $H_1:\beta_j\neq\beta_{0j}$, we have $T\neq T_0$, and $P(|T|>t_{\alpha/2})>\alpha$. So This test is unbiased.
- 2. Under large sample assumptions, and under $H_1:eta_j
 eqeta_{0j}$, we have :

$$|T| = \left| \frac{\hat{\beta}_j - \beta_{0j}}{\sqrt{\hat{V}(\hat{\beta}|X)_{jj}}} \right| = \left| \frac{\beta_j + (X'X)^{-1}(X'e) - \beta_{0j}}{\sqrt{\hat{V}(\hat{\beta}|X)_{jj}}} \right| = \left| \frac{\beta_j - \beta_{0j}}{\sqrt{\hat{V}(\hat{\beta}|X)_{jj}}} + \frac{(X'X)^{-1}(X'e)}{\sqrt{\hat{V}(\hat{\beta}|X)_{jj}}} \right|$$
(40)

where the first term goes to infinity when $H_1: \beta_j \neq \beta_{0j}$ is true. Since the second term goes to a standard normal distribution, we have $P(|T|>z_{\alpha/2}) \to^p 1$, i.e. the test is constant. \square

T Test with General Linear Restriction

Method: (Test with Small Sample) Under the Assumption about small sample, we use the linear combined T estimator to do Hypothesis Test for $H_0: C\beta-r=0$, and $H_1: C\beta-r\neq 0$, where C is a $1\times k$ vector, i.e. reject if $\hat{T}'\notin [-T_{\alpha/2},T_{\alpha/2}]$, where \hat{T}' is defined as:

$$\hat{T}'|X = \frac{C\hat{\beta} - r}{\sqrt{s^2 C(X'X)^{-1}C'}}|X \sim T(n-k)$$
(41)

Method: (Test with Large Sample) Under the Assumption about large sample and heteroscedasticity, we use the linear combined T estimator to do Hypothesis Test for $H_0: C\beta - r = 0$, and $H_1: C\beta - r \neq 0$, where C is a $1 \times k$ vector, i.e. reject if $\hat{T}' \notin [-N_{\alpha/2}, N_{\alpha/2}]$, where \hat{T}' is defined as:

$$\hat{T}'|X = \frac{C\hat{\beta} - r}{\sqrt{C\hat{V}(\hat{\beta}|X)C'}}|X \to^d N(0,1)$$
(42)

Method: (Test with Large Sample and Homoscedasticity) Under the Assumption about large sample and homoscedasticity, we use the linear combined T estimator to do Hypothesis Test for $H_0: C\beta - r = 0$, and $H_1: C\beta - r \neq 0$, where C is a $1 \times k$ vector, i.e. reject if $\hat{T}' \notin [-N_{\alpha/2}, N_{\alpha/2}]$, where \hat{T}' is defined as:

$$\hat{T}'|X = \frac{C\hat{\beta} - r}{\sqrt{s^2[C(X'X)^{-1}C']}}|X \to^d N(0,1)$$
(43)

F test

Method: (Test with Small Sample) Under the Assumption about small sample, we use the F estimator to do Hypothesis Test for $H_0: R\beta - r = 0$, and $H_1: R\beta - r \neq 0$, where R is a $J \times k$ vector, i.e. reject if $\hat{F} \in [F_\alpha, +\infty]$, where \hat{F} is defined as:

$$\hat{F}|X = \frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r))/J}{s^2}|X \sim F(J, n - k)$$
(44)

Theorem: (Alternative Derivation of F Statistic) Under the small sample assumptions, suppose we have $SSE_U = (Y - X\hat{\beta})'(Y - X\hat{\beta})$, and $SSE_R = (Y - X\tilde{\beta})'(Y - X\tilde{\beta})$ where $\tilde{\beta} = \hat{\beta} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)$, then we have:

$$\hat{F} = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} \tag{45}$$

Proof:

Under the small sample assumptions, we have:

$$\hat{F} = \frac{(SSE_R - SSE_U)/J}{SSE_U/(n-k)} = \frac{((y - X\tilde{\beta})'(y - X\tilde{\beta}) - (y - X\hat{\beta})'(y - X\hat{\beta}))/J}{SSE_U/(n-k)}
= \frac{1}{Js^2} ((y - X\tilde{\beta})'(y - X\tilde{\beta}) - (y - X\hat{\beta})'(y - X\hat{\beta}))
= \frac{1}{Js^2} (y'y - \tilde{\beta}'X'y - y'X\tilde{\beta} + \tilde{\beta}'X'X\tilde{\beta} - y'y + \hat{\beta}'X'y + y'X\hat{\beta} - \hat{\beta}'X'X\hat{\beta})
= \frac{1}{Js^2} (-(\tilde{\beta} - \beta)'X'y - y'X(\tilde{\beta} - \beta) + \tilde{\beta}'X'X\tilde{\beta} + (\hat{\beta} - \beta)'X'y + y'X(\hat{\beta} - \beta) - \hat{\beta}'X'X\hat{\beta})
= \frac{1}{Js^2} (0 + 0 + \tilde{\beta}'X'X\tilde{\beta} + 0 + 0 - \hat{\beta}'X'X\hat{\beta})
= \frac{1}{Js^2} (\tilde{\beta}'X'X\tilde{\beta} - \tilde{\beta}'X'X\hat{\beta} + \tilde{\beta}'X'X\hat{\beta} - \hat{\beta}'X'X\hat{\beta})
= \frac{1}{Js^2} ((\tilde{\beta} - \hat{\beta})'X'X(\tilde{\beta} - \hat{\beta})) = \frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r))/J}{s^2}$$

And hence finished the proof. \Box

Method: (Test with Large Sample) Under the Assumption about large sample and heteroscedasticity, we use the F estimator to do Hypothesis Test for $H_0: R\beta - r = 0$, and $H_1: R\beta - r \neq 0$, where R is a $J \times k$ vector, i.e. reject if $\hat{F} \in [\chi^2_{\alpha}, +\infty]$, where \hat{F} is defined as:

$$\hat{F}|X = (R\hat{\beta} - r)'(R\hat{V}(\hat{\beta}|X)R')^{-1}(R\hat{\beta} - r)/J|X \to^d \chi^2(J)/J$$
(47)

Method: (Test with Large Sample and Homoscedasticity) Under the Assumption about large sample and homoscedasticity, we use the F estimator to do Hypothesis Test for $H_0: R\beta - r = 0$, and $H_1: R\beta - r \neq 0$, where R is a $J \times k$ vector, i.e. reject if $\hat{F} \in [\chi^2_{\alpha}, +\infty]$, where \hat{F} is defined as:

$$\hat{F}|X = \frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/J}{s^2}|X \to^d \chi^2(J)/J$$
(48)

Claim: (Unbiased and Consistent F-Test) The F-Test described above is unbiased under small sample assumption, and consistent under large sample assumption.

Wald Test for General Non-linear Restriction

Method: (Test with Large Sample) Under the Assumption about large sample and heteroscedasticity, we use the Wald estimator to do Hypothesis Test for $H_0: g(\beta)=0$, and $H_1: g(\beta)\neq 0$, i.e. reject if $\hat{W}\in [\chi^2_\alpha,+\infty]$, where \hat{W} is defined as:

$$\hat{W} = g(\hat{\beta})'(G'\hat{V}(\hat{\beta}|X)G)^{-1}g(\hat{\beta})/J \to^d \chi^2(J)/J$$
(49)

, where $G=\partial g(eta)/\partial eta|_{\hat{eta}}$

Method: (Test with Large Sample and Homoscedasticity) Under the Assumption about large sample and homoscedasticity, we use the Wald estimator to do Hypothesis Test for $H_0: g(\beta) = 0$, and $H_1: g(\beta) \neq 0$, i.e. reject if $\hat{W} \in [\chi^2_{\alpha}, +\infty]$, where \hat{W} is defined as:

$$\hat{W} = \frac{g(\hat{\beta})'(G'(X'X)^{-1}G)^{-1}g(\hat{\beta})/J}{s^2} \to^d \chi^2(J)/J$$
 (50)

, where $G=\partial g(eta)/\partial eta|_{\hat{eta}}$

Claim: (Consistent Wald Test) The Wald Test described above is consistent under large sample assumption.

Restricted Estimation

Restricted Estimation

Theorem: (Restricted Estimation) Suppose the restriction $R\beta = r$ is true, then the restricted regressor is:

$$\tilde{\beta} = \hat{\beta} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)$$
(51)

Proof:

The restricted estimator solves the following problem: $\min_b \frac{1}{n} (y - Xb)'(y - Xb) \ s.t. \ Rb = r$. Defined the Lagrange function as $L = \frac{1}{2} (y - Xb)'(y - Xb) - \lambda'(Rb - r)$. Take the first order condition we have $X'(y - Xb) - R'\lambda = 0$ and Rb = r. Now multiply the first FOC with $R(X'X)^{-1}$, we obtain $R(X'X)^{-1}X'(y - Xb) - R(X'X)^{-1}R'\lambda = 0$, i.e. $R\hat{\beta} = R\tilde{\beta} + R(X'X)^{-1}R'\lambda$, imposing $R\tilde{\beta} = r$ we can solve the Lagrange multiplier $\lambda = (R'(X'X)^{-1}R)^{-1}(R\hat{\beta} - r)$.

Now plug it back into the first FOC, we have $\tilde{\beta} = \hat{\beta} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)$. \Box

Theorem: (Properties of Restricted Estimation) When the restriction is correct we have:

- 1. the restricted estimator is consistent
- 2. $\sqrt{n}(\tilde{\beta}-\beta) \to^d N(0,AQ_{XX}^{-1}\Omega Q_{XX}^{-1}A')$, where $A=I-Q_{XX}^{-1}R'(RQ_{XX}^{-1}R')^{-1}R$.

Furthermore, if homoscedasticity is true, we have

3. The restricted estimator is more efficient than the OLS Estimator

$$4. \ \sqrt{n}(\tilde{\beta}-\beta) \rightarrow^d N(0,\sigma^2AQ_{XX}^{-1}A'), \ \text{where} \ \sigma^2AQ_{XX}^{-1}A' = \sigma^2Q_{XX}^{-1} - \sigma^2Q_{XX}^{-1}R'(RQ_{XX}^{-1}R')^{-1}RQ_{XX}^{-1} < \sigma^2Q_{XX}^{-1}$$

Proof:

- 1. $\tilde{\beta} = \hat{\beta} (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} r)$ when the restriction $R\beta = r$ is true and $\hat{\beta} \to p$, we have $\tilde{\beta} \to p$.
- 2. Note that r does not contribute to the variance of $\tilde{b}eta$, so $\sqrt{n}(\tilde{\beta}-\beta)=\sqrt{n}A\hat{\beta}+\sqrt{n}(X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}r$. So $\sqrt{n}(\tilde{\beta}-\beta)\to^d N(0,AQ_{XX}^{-1}\Omega Q_{XX}^{-1}A')$.
- 3. the statement 3 is proved by statement 4. \square

Note: When the restriction is incorrect the restricted estimator is inconsistent.

Special Case

Definition: (Special Case) For a linear regression model $y=X_1\beta_1+X_2\beta_2+e$, suppose we impose the constraint $\beta_2=0$, then we have $\tilde{\beta}_1=(X_1'X_1)^{-1}X_1y$.

Theorem: (Properties of the Special Case) When the restriction is correct and if homoscedasticity is true, we have

- 1. the estimator is consistent
- 2. $\sqrt{n}(\tilde{\beta}_1-\beta_1)\to^d N(0,\sigma^2Q_{11}^{-1})$, where $\sigma^2Q_{11}^{-1}\leq\sigma^2(Q_{11}-Q_{12}Q_{22}^{-1}Q_{21})^{-1}$, i.e. the restricted estimator is more efficient than the original OLS estimator

Proof:

The proof of the property comes from the partitioned regression large sample theory. \Box

Definition: (Special Case Efficient Estimator) For a linear regression model $y = X_1\beta_1 + X_2\beta_2 + e$, suppose we impose the constraint $\beta_2 = 0$, the most efficient estimator is $\tilde{\beta}_1^* = (X_1'X(X'\Sigma X)^{-1}X'X_1)^{-1}X_1'X(X'\Sigma X)^{-1}X'y$, where $\Sigma = diag(\sigma^2(x_i))$.

Theorem: (Omitted Variables) When the restriction is incorrect, i.e. $\beta_2 \neq 0$, we have

- 1. Under small sample assumption, the restricted estimator is biased, and $E[\tilde{eta}_1|X]=eta_1+(X_1'X_1)^{-1}(X_1X_2)eta_2$
- 2. Under large sample assumption, the restricted estimator is inconsistent, and $\lim_p \tilde{\beta}_1 | X = \beta_1 + Q_{11}^{-1} Q_{12} \beta_2$

Proof:

We have $\tilde{\beta}_1=(X_1'X_1)^{-1}X_1y=(X_1'X_1)^{-1}X_1(X_1\beta_1+X_2\beta_2+e)$. Under specific conditions, we can show that the restricted estimator is biased or inconsistent. \square

Trinity of Tests

Lagrange Multiplier Test

Definition: (LM Estimator) Define the Lagrange Multiplier Estimator of the restricted estimation as $\tilde{\lambda} = (R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)$.

Claim: (Properties of LM Estimator) Under large sample assumption, we have:

$$\frac{\tilde{\lambda}}{\sqrt{n}} \to^d N(0, (RQ_{xx}^{-1}R')^{-1}(RQ_{xx}^{-1}\Omega Q_{xx}^{-1}R')(RQ_{xx}^{-1}R')^{-1})$$
(52)

Furthermore, under the Assumption about large sample and homoscedasticity, we have:

$$\frac{\tilde{\lambda}}{\sqrt{n}} \to^d N(0, \sigma^2(R(X'X)^{-1}R')^{-1})$$
 (53)

Method: (Lagrange Multiplier Test) Under the Assumption about large sample and heteroscedasticity, we use the LM statistic to do Hypothesis Test for $H_0: R\beta - r = 0$, and $H_1: R\beta - r \neq 0$, where R is a $J \times k$ vector, i.e. reject if $L\hat{M} \in [\chi^2_{\alpha}, +\infty]$, where $L\hat{M}$ is defined as:

$$L\hat{M} = \frac{\tilde{\lambda}' \hat{V}_{\lambda}^{-1} \tilde{\lambda}/J}{n} \to^d \chi^2(J)/J \tag{54}$$

where $\hat{V}_{\lambda} = (R(X'X)^{-1}R')^{-1}(R\hat{V}(\tilde{\beta}|X)R')(R(X'X)^{-1}R')^{-1}/n$ is the variance estimator of the restricted regression.

Method: (Lagrange Multiplier Test with Homoscedasticity) Under the Assumption about large sample and homoscedasticity, we use the LM statistic to do Hypothesis Test for $H_0: R\beta - r = 0$, and $H_1: R\beta - r \neq 0$, where R is a $J \times k$ vector, i.e. reject if $L\hat{M} \in [\chi^2_{\alpha}, +\infty]$, where $L\hat{M}$ is defined as:

$$L\hat{M} = \frac{\tilde{\lambda}' \hat{V}_{\lambda}^{-1} \tilde{\lambda}/J}{n} = \frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/J}{\tilde{z}^2} \to^d \chi^2(J)/J$$
 (55)

where $\tilde{s}^2 = SSE_R/n - (k-J)$ is the variance of the residual of the restricted estimation.

Likelihood Ratio Test

Definition: (LR Estimator) Under homoscedasticity and gaussian error assumption, define the Likelihood Ratio Estimator of the restricted estimation as $LR = 2(lnL(\hat{\beta}, \hat{\sigma}^2) - lnL(\tilde{\beta}, \hat{\sigma}^2))$. note that here $(\hat{\beta}, \hat{\sigma}^2)$ is the MLE estimator.

Theorem: (LR Estimator and F Statistic) We have LR = nlog(1 + JF/(n-k)).

Proof:

Note that $lnL(\hat{\beta},\hat{\sigma}^2)=-\frac{n}{2}(ln(SSE_U/n)+ln(2\pi)+1)$ and $lnL(\tilde{\beta},\tilde{\sigma}^2)=-\frac{n}{2}(ln(SSE_R/n)+ln(2\pi)+1)$. So we can plug them in and get $LR=2(lnL(\hat{\beta},\hat{\sigma}^2)-lnL(\tilde{\beta},\tilde{\sigma}^2))=nln(SSE_R/SSE_U)=nln(1-\frac{J}{n-k}\frac{(SSE_R-SSE_U)/J}{SSE_U/(n-k)})$. Hence we have LR=nlog(1+JF/(n-k)).

By Taylor expansion of a log function, we have $LR \approx n/(n-k)F$. \square

Method: (Likelihood Ratio Test with Homoscedasticity and Gaussian Error) Under the Assumption about large sample and homoscedasticity and Gaussian Error, we use the LR statistic to do Hypothesis Test for $H_0: R\beta - r = 0$, and $H_1: R\beta - r \neq 0$, where R is a $J \times k$ vector, i.e. reject if $\hat{LR} \in [\chi^2_{\alpha}, +\infty]$, where \hat{LM} is defined as:

$$\hat{LR} = \frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/J}{\hat{\sigma}^2} \to^d \chi^2(J)/J$$
 (56)

where $\hat{\sigma}^2$ is the variance of the MLE of σ^2 under the unrestricted estimation.

Note: As n increases, s^2 , \tilde{s}^2 and $\hat{\sigma}^2$ are all consistent estimator of σ^2 . Hence Wald Test, LM Test and LR Test are all consistent and are similar to each other.

Confidence Interval

Definition: (Confidence Interval) Given the data $\{S_n\}$ we observe, suppose $S_i \sim f(\theta)$. Let L and U be two statistics. We say (L,U) is a $1-\alpha$ Confidence Interval for $g(\theta)$ if $P(g(\theta) \in (L,U)) = 1-\alpha$.

Special Issues in OLS

Functional Form

Non-linearities

Method: (High Order Regression) Suppose a model is $y = \beta_0 + x\beta_1 + x^2\beta_2 + x^3\beta_3 + \epsilon$. One can use the OLS estimator to estimate this equation since it is still linear in parameter.

Method: (Interaction) Suppose a model is $y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1x_2\beta_3 + \epsilon$. One can use the OLS estimator to estimate this equation since it is still linear in parameter.

Method: (Dummy Variables) Suppose a model is $y = \beta_0 + x_1\beta_1 + \epsilon$, where x_1 is a dummy variable. One can use the OLS estimator to estimate this equation since it is still linear in parameter.

Method: (Category Variables) Suppose a model is $y = \beta_0 + x_1\beta_1 + \epsilon$, where x_1 is a category variable with $x_1 = 0, 1, 2, \ldots, k$. One can use the OLS estimator to estimate $y = \beta_0 + x_1 1\beta_1 + x_1 2\beta_2 + \ldots + x_1 k\beta_k + \epsilon$.

Note: Remember to leave one category out.

Difference in Difference

Method: (Difference in Difference) Suppose a model is $y = \beta_0 + x_1\beta_1 + x_2\beta_2 + x_1x_2\beta_3 + \epsilon$. x_1, x_2 are two dummy variables, the first is the policy dummy and the second is the trend dummy. Assuming the trend effect is parallel, we can estimate the effect of x_1 with β_3 .

Testing for Functional Form

Method: (Ramsey RESET Test) To test if the functional form is correct, we first run the OLS with $y=x\beta+\epsilon$. Next, get the predictor $\hat{y}=x\hat{\beta}$. Then regress $y=x\gamma_1+\hat{y}^2\gamma_2+\hat{y}^3\gamma_3+\hat{y}^4\gamma_4+\mu$ and do a F test on $H_0:\gamma_2=0,\gamma_3=0,\gamma_4=0$.

Bootstrapping

Method: (Bootstrapping)

- 1. From the original sample $\{X_1,\ldots,X_n\}$ generate an estimator $\hat{\theta}=h(X_1,\ldots X_n)$
- 2. Take a random sample of the same size n from the original sample with replacement, and form a new sample $\{X_1^1,\ldots,X_n^1\}$, get an estimator $\hat{\theta}^1=h(X_1^1,\ldots X_n^1)$
- 3. Repeat step 2 and form a new sample $\{X_1^k,\ldots,X_n^k\}$, get estimators $\hat{\theta}^k=h(X_1^k,\ldots X_n^k)$
- 4. Compute the distribution with the estimators θ^k
- 5. Use the distribution calculated above to do Hypothesis Test or give the Confidence Interval

Claim: (Bootstrapping Theory) When the time bootstrapping repeats increases, the bootstrapping distribution converges to the distribution of the real estimator.

Efficient Estimator with Heteroskedasticity

Method: (Testing for Heteroskedasticity) Consider a model $y=x\beta+\epsilon$, first do the OLS regression as usual. Then get the predicted residual \hat{e}_i . Now regress $\hat{e}^2=\gamma_0+x\gamma_1+\mu$. Now test for heteroskedasticity, with $H_0:E[e^2|X]=\sigma^2$, by doing a F test on $\gamma_1=0$.

Method: (WLS Estimator) Suppose heteroskedasticity is true, then

- 1. Do OLS of y on x and get the estimated residual \hat{e}
- 2. Create $ln(\hat{e}^2)$ and run OLS of $ln(\hat{e}^2)$ on x to get fitted value \hat{g}
- 3. Estimate σ_i^2 with $\hat{\sigma}_i^2 = e^{\hat{g}_i}$
- 4. Do WLS using the estimated weight in the last step

Further Issues

Predictions

Claim: (Prediction) The forecast estimator for a single data point is $\hat{y}_i = x_i \hat{\beta}$. We have:

- 1. $AVar(\hat{y}_i y_i|X) = x_i AVar(\hat{\beta})x_i' + Var(e_i|x_i)$
- 2. Under homoscedasticity, we have $AVar(\hat{y}_i y_i|X) = x_i AVar(\hat{eta})x_i' + \sigma^2$

Clustering

Definition: (Clustering Issue) When the i.i.d. assumption is violated it is called to have a Clustering Issue.

Note: Heteroskedasticity is a special case for clustering issue. The correlation between two observations can be not zero.

Multicollinearity

Claim: (Multicollinearity) Consider the partitioned model $y=x_1'\beta_1+x_K\beta_K+\epsilon$, assuming homoscedasticity, we have $Var(\hat{\beta}_K|X)=\sigma^2/((1-R_K^2)x_K'M_0x_K)$, where $R_K^2=1-(x_K'M_1x_K)/(x_K'M_0x_K)$ is the R squared regressing x_K on x_1 .

Note: This implies that when one of the independent variable X can be predicted pretty well by other independent variables, the variance of the estimator $\hat{\beta}$ would be high. So the estimation might be less precise.

Endogeneity

Source of Endogeneity

Omitted Variables

Definition: (Omitted Variables) For a linear regression model $y = X_1\beta_1 + X_2\beta_2 + e$, suppose we omitted X_2 from the OLS. The OLS Estimator is called having Omitted Variable issue.

Theorem: (Omitted Variables Issues) Suppose we have $X_2 = X_1 \delta + \mu$, the OLS estimator have the following properties:

- 1. Under small sample assumption, the estimator is biased, and $E[\hat{\beta}_1|X_1] = \beta_1 + \delta\beta_2$
- 2. Under large sample assumption, the estimator is inconsistent, and $lim_p\hat{eta}_1|X_1=eta_1+\deltaeta_2$

We have $\hat{\beta}_1 = (X_1'X_1)^{-1}X_1'y = (X_1'X_1)^{-1}X_1'(X_1\beta_1 + X_2\beta_2 + e) = \beta_1 + (X_1'X_1)^{-1}X_1'X_2\beta_2 + (X_1'X_1)^{-1}X_1'e$. We have E[e|X] = 0 and $X'e|X \to^p 0$, hence we have what we want to show. \Box

Errors in Variables

Definition: (Errors in Variables) For a linear regression model $y = X\beta + e$, suppose we can only observe a noisy signal S of X. The OLS Estimator of regression Y on S is called having Errors in Variables issue.

Theorem: (Errors in Variables Issues) Suppose we have that S=X+u, then under large sample assumption, the OLS estimator is inconsistent, and $\lim_p \hat{\beta} = \beta \frac{\sigma_X^2}{\sigma_X^2 + \sigma_u^2}$.

Proof:

We have
$$\hat{\beta}=(S'S)^{-1}S'y=((X+u)'(X+u))^{-1}(X+u)'(X\beta+e)$$
. So $(S'S/n)^{-1}\to^p(\sigma_X^2+\sigma_u^2)^{-1}$, and $S'e\to^p0$, and $S'X\beta\to^p\sigma_X^2\beta$. Combine them we have $\lim_p\hat{\beta}=\beta\frac{\sigma_X^2}{\sigma_X^2+\sigma_u^2}$. \square

Simultaneity

Definition: (Simultaneity) For a linear regression system $Q = P\beta_1 + e_1$ and $Q = P\beta_2 + e_2$, suppose we omitted X_2 from the OLS. The OLS Estimator is called having simultaneity issue.

Note: When we have Simultaneity issues, we cannot run OLS.

Instrument Variable

Definition: (Instrument Variable) Consider a linear regression model $Y=X_1\beta_1+X_2\beta_2+e$, with $E[e|X_2]\neq 0$ and β_2 is $k\times 1$. Suppose we have another set of data Z, which is $J\times 1$ and $J\geq k$, and we have E[Ze]=0, but $E[ZX_{2k}]\neq 0$, then Z is called an Instrument Variable. Furthermore, suppose we have $X_2=X_1\Gamma_1+Z\Gamma_2+u$ then we have the following linear regression $Y=X_1(\beta_1+\Gamma_1\beta_2)+Z\Gamma_2\beta_2+(e+\beta_2u)=X_1\gamma_1+Z\gamma_2+v$.

Definition: (Identification) Let Γ_2 be a $J \times k$ metrics. Suppose the following conditions are satisfied:

- 1. Order Condition: $J \geq k$
- 2. Rank Condition: $rank(\Gamma_2) = k$

We say the endogenous variable X_2 is identified.

Definition: (IV Estimator) When the endogenous variable is identified, we can define the IV Estimator as:

- 1. if J=k, define $\hat{eta}_2^{IV}=\hat{\Gamma}_2^{-1}\hat{\gamma}_2$
- 2. if J>k, define $\hat{eta}_2^{IV}=(\hat{\Gamma}_2^{'}A\hat{\Gamma}_2)^{-1}\hat{\Gamma}_2^{'}A\gamma_2$, where A is a symmetric and positive definite

General Method of Moments

GMM Estimator

Definition: (General Method of Moments) Suppose we have $\frac{1}{n}\sum_{i=1}^n z_i(y_i-x_i'\beta)=0$. Let W_n be a symmetric positive definite matrix, General Method of Moments estimator is defined as:

$$\bar{\beta} = argmin_{\beta} \{ (y - X\beta)' Z W_n Z' (y - X\beta) \}$$
(57)

Note: We only derive the GMM Estimator under the large sample assumptions.

Assumption: (Large Sample Assumption of General Method of Moments)

1. $W_n \to W$ and W is symmetric and positive definite

- 2. $E[z_i e_i] = 0$
- 3. $E[z_i x_i'] = Q_{zx}$ exists
- 4. $E[z_i z_i' e_i^2] = \Omega < +\infty$

Theorem: (GMM Estimator) Under the Assumption of General Method of Moments, the GMM estimator is

$$\bar{\beta} = (X'ZW_nZ'X)^{-1}X'ZW_nZ'y \tag{58}$$

Proof:

GMM Estimator solves $min_{\beta}\{(y-X\beta)'ZW_nZ'(y-X\beta)\}$. The first order condition is $X'ZW_nZ'(y-X\beta)=0$ which will give us what we want to show. \square

Theorem: (GMM Estimator Property) Under the Large Sample Assumption of General Method of Moments, we have

1.
$$\sqrt{n}(ar{eta}-eta)
ightarrow^d N(0, (Q'_{zx}WQ_{zx})^{-1}Q'_{zx}W\Omega WQ_{zx}(Q'_{zx}WQ_{zx})^{-1})$$

- 2. $lim_p\hat{Q}_{zx}=lim_pZ'X/n=Q_{zx}$
- 3. $lim_p\hat{\Omega}=lim_p\sum_{i=1}^n\hat{e}_i^2z_iz_i'/n=\Omega$, where $\hat{e}=y-Xar{eta}$

Proof:

- 1. $\sqrt{n}(\bar{\beta}-\beta)=\sqrt{n}((X'ZW_nZ'X)^{-1}X'ZW_nZ'e)$. Note that $(X'ZW_nZ'X/n^2)^{-1}\to^p (Q'_{zx}WQ_{zx})^{-1}$, and $(X'Z/n)W_n\to^p Q'_{zx}W$, and $\sqrt{n}(Z'e/n)\to^d N(0,\Omega)$. Combine them we get what we want to show.
- 2. This is true by law of large number.
- 3. This is true by law of large number. \Box

Note: From 2 and 3 generate a consistent estimator of the asymptotic variance of the estimator $\bar{\beta}$.

Special Case

Claim: (Special Case) Under the Assumption of General Method of Moments, if J=K, the GMM estimator is

$$\bar{\beta} = (Z'X)^{-1}Z'Y \tag{59}$$

Theorem: (Special Case Property) Under the Large Sample Assumption of General Method of Moments, if J=K, we have

- 1. $\sqrt{n}(\bar{\beta}-\beta) \rightarrow^d N(0, (Q'_{zx}\Omega^{-1}Q_{zx})^{-1})$
- 2. $lim_{p}\hat{Q}_{zx}=lim_{p}Z'X/n=Q_{zx}$
- 3. $lim_p\hat{\Omega}=lim_p\sum_{i=1}^n\hat{e}_i^2z_iz_i'/n=\Omega$, where $\hat{e}=Y-X\bar{\beta}$

Proof:

Just apply the properties of GMM under the special case. \Box

Note: From 2 and 3 generate a consistent estimator of the asymptotic variance of the estimator $\bar{\beta}$.

Efficient GMM Estimator

Theorem: (Optimal Weight Matrix) We have that for any W,

$$(Q'_{zx}WQ_{zx})^{-1}Q'_{zx}W\Omega WQ_{zx}(Q'_{zx}WQ_{zx})^{-1} \ge (Q'_{zx}\Omega^{-1}Q_{zx})^{-1}$$
(60)

Proof:

We want to show $(Q'_{zx}WQ_{zx})(Q'_{zx}W\Omega WQ_{zx})^{-1}(Q'_{zx}WQ_{zx}) \leq Q'_{zx}\Omega^{-1}Q_{zx}$. We can show that:

$$Q'_{zx}\Omega^{-1}Q_{zx} - (Q'_{zx}WQ_{zx})(Q'_{zx}W\Omega WQ_{zx})^{-1}(Q'_{zx}WQ_{zx})$$

$$= Q'_{zx}\Omega^{-\frac{1}{2}}(I - \Omega^{-\frac{1}{2}}Q_{zx}(Q'_{zx}W\Omega WQ_{zx})^{-1}Q'_{zx}\Omega^{-\frac{1}{2}})\Omega^{-\frac{1}{2}}Q_{zx}$$

$$= A'(I - B(B'B)^{-1}B')A = A'M_BA' \ge 0$$
(61)

because $A'M_BA'$ is the SSE of some regression, and SSE are positive semi-definite. \square

 $\textbf{Definition: (Feasible Efficient GMM Estimator)} \ \ \text{The feasible efficient estimator is } \ \overline{\beta} = (X'Z\hat{\Omega}^{-1}Z'X)^{-1}X'Z\hat{\Omega}^{-1}Z'Y.$

Theorem: (Efficient GMM Estimator Property) Under the Large Sample Assumption of GMM Estimator we have

1.
$$\sqrt{n}(\bar{\beta}-\beta) \rightarrow^d N(0, (Q'_{zx}\Omega^{-1}Q_{zx})^{-1})$$

2.
$$lim_p\hat{Q}_{zx}=lim_pZ'X/n=Q_{zx}$$

3.
$$lim_p\hat{\Omega}=lim_p\sum_{i=1}^n\hat{e}_i^2z_iz_i'/n=\Omega$$
, where $\hat{e}=Y-Xar{eta}$

Proof:

Just apply the properties of GMM to $W_n=\Omega^{-1}$. \square

Note: From 2 and 3 generate a consistent estimator of the asymptotic variance of the estimator $\bar{\beta}$.

Note: The Optimal Weight Matrix is such that $W_n o \Omega^{-1}$.

2SLS Estimator

Definition: (2SLS Estimator) the 2 Stage Least Square Estimator is defined as

$$\hat{\beta}^{2SLS} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y \tag{62}$$

Theorem: (2SLS and GMM) 2SLS Estimator is GMM Estimator with $W_n = (Z'Z/n)^{-1}$, which is optimal if Homoscedasticity is true, i.e. $E[z_iz_i'e_i^2] = \sigma^2 E[z_iz_i']$.

Proof:

The 2SLS estimator is defined with 2 stages. First regress X on Z, we have $\hat{X} = P_Z X$. Then regress y on \hat{X} , we will then get the 2 stage least square estimator, i.e. $\hat{\beta} = (\hat{X}'\hat{X})^{-1}\hat{X}'y = (X'P_ZX)^{-1}X'P_Zy$. \square

Identification Issues

Weak IV

Definition: (Weak Identification) When the rank condition is not satisfied, i.e. $rank(\Gamma_2) < k$, we say that the IVs are weak.

Theorem: (Weak IV Problem) When $X_1=0, \ \Gamma_2=\delta/\sqrt{n} \to 0$, the GMM Estimator is inconsistent.

Proof:

For simplicity we prove it with the special case when J=K and $X=X_2$. We have $\bar{\beta}=(Z'X)^{-1}Z'y$ and $\bar{\beta}-\beta=(Z'X)^{-1}Z'e=(\Gamma Z'Z+Z'u)^{-1}Z'e$. Then $\delta Z'Z/n\to^p \delta E[z_i^2]\neq 0$, $\sqrt{n}Z'u/n\to^d N(0,E[z_i^2u_i^2])$ and $\sqrt{n}Z'e/n\to^d N(0,E[z_i^2e_i^2])$. Combine them we can conclude that $\bar{\beta}\to^p \beta$. \Box

Definition: (Weak IV Test) To test if the IVs are weak, we can take the regression $X_2 = X_1\Gamma_1 + Z\Gamma_2 + u$, and do a Wald Test or F test with $H_0: \Gamma_2 = 0$.

Hansen's J Test

Definition: (Over Identification) When we have more IVs than the endogenous variables, i.e. J > k, we say that the endogenous variables are over identified.

Definition: (Hansen's J) Define Hansen's J statistic as $J=n(y-X\bar{\beta})'Z\hat{\Omega}^{-1}Z'X\hat{\Omega}^{-1}X'Z\hat{\Omega}^{-1}Z'(y-X\beta)$.

Theorem: (Hansen's J Property) Under the large sample assumption of General Method of Moments, we have $J \to^d \chi^2 (J-k)$.

For simplicity we add homoscedasticity and try to prove this with the 2SLS estimator.

Under homoscedasticity the statement Hansen's J statistic is defined as $J=(e-\bar{e})'P_Z(e-\bar{e})$, where $\bar{e}=X(X'P_ZX)^{-1}X'P_Ze$. So we have $J=e'Z(Z'Z)^{-\frac{1}{2}}(I-(Z'Z)^{\frac{1}{2}}Z'X(X'Z(Z'Z)^{-\frac{1}{2}}(Z'Z)^{-\frac{1}{2}}Z'X)^{-1}X'Z(Z'Z)^{-\frac{1}{2}})(Z'Z)^{-\frac{1}{2}}Z'e=e'B'_n(I-B_n(B'_nB_n)^{-1}B_n)B_ne$. Note that we have $B_n\to^p B=Q_{ZZ}^{-\frac{1}{2}}Q_{ZX}$. Note that this implies $(I-B_n(B'_nB_n)^{-1}B_n)\to^p M_B$. Since M_B is symmetric and idempotent, we can write $M_B=H\Lambda H'$ where H'H=I and

$$\Lambda = \begin{pmatrix} I_{n-k} & 0\\ 0 & 0 \end{pmatrix} \tag{63}$$

Since $Trace(M_B) = Trace(HH'\Lambda) = Trace(\Lambda) = n - k$.

Now since $Z'e/\sqrt{n} \to^d N(0,\sigma^2Q_{ZZ})$ and $(Z'Z/n)^{-\frac{1}{2}} \to^p Q_{ZZ}^{-\frac{1}{2}}$. Combine everything together we have $J \to^d \chi^2(J-k)$. \Box

Definition: (Hansen's J Test) Under the large sample assumption of General Method of Moments, we use the J estimator to do Hypothesis Test for $H_0: E[z_ie_i] = 0$, and $H_1: E[z_ie_i] \neq 0$, i.e. reject if $\hat{J} \in [\chi^2_\alpha, +\infty]$, where \hat{J} is defined as:

$$\hat{J} = n(Y - X\bar{\beta})'Z\hat{\Omega}^{-1}Z'(Y - X\bar{\beta}) \to^d \chi^2(J - k)$$
(64)

Hausman Test

Definition: (Hausman Test) Under the large sample assumption of General Method of Moments, we do a Hypothesis Test for $H_0: \hat{\beta} = \bar{\beta}$, and $H_1: \hat{\beta} \neq \bar{\beta}$, i.e. if there are endogeneity or not, we define a Hausman statistic:

$$H = n(\hat{\beta} - \bar{\beta})'V^{+}(\hat{\beta} - \bar{\beta}) \to^{d} \chi^{2}(k)$$
(65)

where $V^+ = V(\hat{\beta} - \bar{\beta})^+ = (V(\hat{\beta}) - V(\bar{\beta}))^+$ is the G-inverse of V.

Definition: (Alternative Hausman Test) Under the large sample assumption of General Method of Moments, we do a Hypothesis Test for $H_0: E[z_ie_i]=0$, and $H_1: E[x_ie_i]\neq 0$, i.e. if there are endogeneity or not, by doing OLS on $y=X_1\beta_1+X_2\beta_2+\hat{u}\rho+\epsilon$, where \hat{u} is the OLS residual from regressing $X_2=X_1\Gamma_1+Z\Gamma_2+u$, and do a F Test with ρ .

Claim: (Relationship Between Alternative Hausman Test and 2SLS) If we do the regression of $y=X_1\beta_1+X_2\beta_2+\hat{u}\rho+\epsilon$, the estimator $\hat{\beta}$ will be the 2SLS estimator.