Facts about limits.

Definition 1 (Formal). We say $\lim_{n\to\infty} a_n = L$ if

for all $\epsilon > 0$, there exists $K \in \mathbb{N}$, so that if $n \geq K$, then $|a_n - L| < \epsilon$.

Definition 2 (Intuitive). We say $\lim_{n\to\infty} a_n = L$ if

however close we want to be, there's a place we can go, so that beyond that place, we are that close.

Proposition 3 (Limits are unique). If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} a_n = M$, then L = M.

Proposition 4. If the sequence a_n converges, then a_n is bounded.

Corollary 5. If the sequence a_n is not bounded, then a_n diverges.

Proposition 6. If $\lim_{n\to\infty} a_n = L$, and $c \in \mathbb{R}$, then $\lim_{n\to\infty} c \cdot a_n = c \cdot L$.

Proposition 7. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$, then $\lim_{n\to\infty} a_n + b_n = L + M$.

Proposition 8. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$, then $\lim_{n\to\infty} a_n \cdot b_n = L \cdot M$.

Proposition 9. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$, and $b_n \neq 0$ and $M \neq 0$, then $\lim_{n\to\infty} a_n/b_n = L/M$.

Proposition 10. If $\lim_{n\to\infty} a_n = L$ and $m \in \mathbb{N}$, then $\lim_{n\to\infty} a_{n+m} = L$.

Proposition 11. If $\lim_{n\to\infty} a_n = L$, and b_n is a sequence differing from a_n in finitely many terms, then $\lim_{n\to\infty} b_n = L$.

Theorem 12. If a_n is a nondecreasing bounded above sequence, then a_n converges.

Theorem 13. If a_n is a nonincreasing bounded below sequence, then a_n converges.

Theorem 14 (Squeezing theorem). If a_n , b_n , and c_n are sequences of real numbers, and for all $n \in \mathbb{N}$, we have $a_n \leq b_n \leq c_n$, and $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Theorem 15 (Sequences and continuity). If a function $f: \mathbb{R} \to \mathbb{R}$ is continuous at L, and $\lim_{n \to \infty} a_n = L$, then $\lim_{n \to \infty} f(a_n) = f(L)$.

Example 16. For a real number x > 0,

$$\lim_{n \to \infty} x^{1/n} = 1.$$

Example 17. For a real number x with -1 < x < 1,

$$\lim_{n \to \infty} x^n = 0.$$

Example 18. For a real number x > 0,

$$\lim_{n \to \infty} \frac{1}{n^x} = 0.$$

Example 19. For $x \in \mathbb{R}$,

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0.$$

Example 20. $\lim_{n\to\infty} \frac{\log n}{n} = 0.$

Example 21. $\lim_{n\to\infty} n^{1/n} = 0$.

Example 22. For $x \in \mathbb{R}$,

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$$