

TỔNG QUAN

MÁY TÍNH

MÔ HÌNH PHÂN LỚP CỦA 1 HỆ THỐNG MÁY TÍNH

KIẾN TRÚC MÁY TÍNH & TỔ CHỨC MÁY TÍNH

- Kiến trúc máy tính: những đặc tả hệ thống mà lập trình viên có thể quan sát được.
- Tổ chức máy tính: các đơn vị vận hành và sự kết nối giữa chúng nhằm hiện thực hóa những đặc tả về kiến trúc.

CẦU TRÚC VÀ CHỨC NĂNG CỦA MÁY TÍNH

- Cấu trúc: cách thức các thành phần hệ thống liên hệ với nhau.
- Chức năng: hoạt động của mỗi thành phần riêng lẻ với tư cách là một phần của cấu trúc.

CHỨC NĂNG

CÁU TRÚC

BUS HỆ THỐNG

CẤU TRÚC TỔNG QUAN

CÁU TRÚC CPU

CÂU TRÚC CPU (TT)

CÔNG SUẤT CỦA BỘ VI XỬ LÝ

- Độ dài từ dữ liệu (4 bit đến 64 bit)
- Khả năng đánh địa chỉ nhớ vật lý
- Tốc độ xử lý lệnh

MIPS = (fxN)/(M+T)

f: tần số làm việc của bộ VXL

N: số lượng các đơn vị ALU

M: số lượng vi lệnh

T: hệ số thời gian truy cập bộ nhớ

TỐC ĐỘ CỦA BỘ VI XỬ LÝ

- Tính bằng số lệnh thực hiện trong 1 giây
- MIPS (Millions of Instructions Per Second)
- Bộ VXL hoạt động theo một xung nhịp có tần số xác định. Tốc độ của bộ VXL được đánh giá gián tiếp thông quan tần số xung nhịp.

NÂNG CAO CHẤT LƯỢNG

- Tốc độ bộ VXL.
- Cân đối hiệu suất.
- Cải thiện tổ chức và cấu trúc chip.

SƠ LƯỢC LỊCH SỬ PHÁT TRIỂN

- Thế hệ thứ 1: vacuum tube
- Thế hệ thứ 2: transistor
- Thế hệ thứ 3: SSI, MSI
- Thế hệ thứ 4: LSI, VLSI, ULSI

STORED-PROGRAM & GENERAL-PUSPOSE HARDWARE

Phần cứng được xây dựng từ các thành phần logic

STORED-PROGRAM & GENERAL-PUSPOSE HARDWARE

STORED-PROGRAM & GENERAL-PUSPOSE HARDWARE

- Dữ liệu và mã lệnh được lưu trữ trong một bộ nhớ đọc – ghi.
- Nội dung trong bộ nhớ được định vị theo vị trí.
- Thực thi chương trình theo kiểu tuần tự.

BỘ NHỚ MÁY TÍNH

- Chức năng: lưu trữ chương trình và dữ liệu.
- Các thao tác cơ bản:
 - Doc (Read)
 - ☐ Ghi (Write)
- Các thành phần chính:
 - Bộ nhớ trong (Internal Memory)
 - Bộ nhớ ngoài (External Memory)

BỘ NHỚ TRONG

- Chức năng và đặc điểm
 - Chứa thông tin mà CPU có thể trao đổi trực tiếp
 - □ Tốc độ nhanh
 - Dung lượng không lớn
 - Sử dụng bộ nhớ bán dẫn: ROM, RAM
- Các loại bộ nhớ trong:
 - Bộ nhớ chính
 - Bộ nhớ cache

BỘ NHỚ CHÍNH

- Chứa các chương trình và dữ liệu đang được CPU sử dụng.
- Tổ chức thành các ngăn nhớ được đánh địa chỉ.
- Ngăn nhớ thường được tổ chức theo byte.
- Nội dung của ngăn nhớ có thể thay đổi, nhưng địa chỉ vật lý của ngăn nhớ luôn cố định.

Nội dung	Địa chỉ
00101011	0000
11010101	0001
00001010	0010
01011000	0011
11111011	0100
00001000	0101
11101010	0110
00000000	0111
10011101	1000
00101011	1001
11101011	1010
00101000	1011
11111111	1100
10101010	1101
00101011	1110
01010101	1111

BỘ NHỚ CACHE

- Bộ nhớ có tốc độ nhanh được đặt đệm giữa CPU và bộ nhớ chính nhằm tăng tốc độ CPU truy nhập bộ nhớ.
- Dung lượng nhỏ hơn bộ nhớ chính
- Tốc độ nhanh hơn
- Cache thường được chia thành một số mức
- Cache có thể được tích hợp trên chip vi xử lý.
- Cache có thể có hoặc không.

BỘ NHỚ NGOÀI

- Chức năng và đặc điểm:
 - Lưu trữ tài nguyên phần mềm của máy tính
 - Dược kết nối với hệ thống dưới dạng các thiết bị vào/ra.
- Dung lượng lớn
- Tốc độ chậm
- Các loại bộ nhớ ngoài:
 - Bộ nhớ từ: đĩa cứng, đĩa mềm
 - Bộ nhớ quang: CD, DVD
 - Bộ nhớ bán dẫn: Flash disk, memory card

HỆ THỐNG VÀO/RA

- Chức năng: trao đổi thông tin giữa máy tính và thế giới bên ngoài.
- Các thao tác cơ bản:
 - Vào dữ liệu (Input)
 - □ Ra dữ liệu (Output)
- Các thành phần chính:
 - □ Các thiết bị ngoại vi (Peripheral Devices)
 - □ Các module vào/ra (IO Modules)

CẦU TRÚC CƠ BẢN CỦA HỆ THỐNG VÀO/RA

THIẾT BỊ VÀO/RA

- Chức năng: chuyển đổi dữ liệu giữa bên trong và bên ngoài máy tính.
- Các loại thiết bị ngoại vi cơ bản:
 - □ Thiết bị vào: bàn phím, chuột, máy quét ...
 - □ Thiết bị ra: màn hình, máy in ...
 - ☐ Thiết bị nhớ: các ổ đĩa ...
 - □ Thiết bị truyền thông: MODEM ...

MODULE VÀO/RA

- Chức năng: nối ghép các thiết bị ngoại vi với máy tính.
- Mỗi module vào/ra có một hoặc một vài cống vào/ra (I/O Port).
- Mỗi cống vào/ra được đánh một địa chỉ xác định.
- Các TBNV được kết nối và trao đổi dữ liệu với máy tính thông qua các cổng vào/ra.

HOẠT ĐỘNG CỦA MÁY TÍNH

- Thực hiện chương trình
- Ngắt

THỰC HIỆN CHƯƠNG TRÌNH

- Là hoạt động cơ bản của máy tính
- Máy tính lặp đi lặp lại hai bước:
 - Nhận lệnh
 - □ Thực hiện lệnh
- Thực hiện chương trình bị dừng nếu thực hiện lệnh bị lỗi hoặc gặp lệnh dừng.

CHU KÝ LỆNH

QUY TRÌNH NHẬN LỆNH

- Bắt đầu mỗi chu trình lệnh, CPU nhận lệnh từ bộ nhớ chính.
- Bộ đếm chương trình PC của CPU giữ địa chỉ của lệnh sẽ được nhận.
- CPU nhận lệnh từ ngăn nhớ được trỏ bởi PC.
- Lệnh được nạp vào thanh ghi lệnh IR.
- Sau khi lệnh được nhận vào, nội dung PC tự động tăng để trỏ sang lệnh kế tiếp.

QUY TRÌNH NHẬN LỆNH

Trước khi nhận Lệnh i

Sau khi nhận Lệnh i

QUY TRÌNH THỰC HIỆN LỆNH

- Bộ xử lý giải mã lệnh đã được nhận và phát tín hiệu điều khiển thực hiện thao tác mà lệnh yêu cầu.
- Các kiểu thao tác của lệnh:
 - Trao đổi dữ liệu giữa CPU và bộ nhớ chính
 - □ Trao đổi dữ liệu giữa CPU và module vào/ra
 - Xử lý dữ liệu: thực hiện các phép toán số học hoặc phép toán logic với các dữ liệu
 - □ Điều khiển rẽ nhánh
 - Kết hợp các thao tác trên

NGÁT (INTERRUPT)

- Là cơ chế cho phép CPU tạm dừng chương trình đang thực hiện để chuyển sang thực hiện một chương trình khác, gọi là chương trình con phục vụ ngắt.
- Các loại ngắt:
 - Ngắt do lỗi khi thực hiện chương trình
 - Ngắt do lỗi phần cứng
 - Ngắt do module vào/ra phát tín hiệu ngắt đến CPU yêu cầu trao đổi dữ liệu.

HOẠT ĐỘNG NGẮT

CHU KỲ LỆNH CÓ NGẮT

XỬ LÝ NHIỀU YÊU CẦU NGẮT

- Xử lý ngắt tuần tự
- Xử lý ngắt ưu tiên

HOẠT ĐỘNG VÀO/RA

- Hoạt động vào/ra: là hoạt động trao đổi dữ liệu giữa TBNV với bên trong máy tính.
- Các kiểu hoạt động vào ra:
 - CPU trao đổi dữ liệu với module vào/ra
 - Module vào ra trao đổi dữ liệu với bộ nhớ

HỆ THỐNG BUS

- Bus: tập hợp các đường kết nối dùng để vận chuyển thông tin giữa các thành phần của máy tính với nhau.
- Độ rộng bus: là số đường dây của bus có thể truyền các bit thông tin đồng thời (chỉ dùng cho bus địa chỉ và bus dữ liệu).

HỆ THỐNG BUS

KIÉN TRÚC VON NEUMANN VS. HARVARD

KIÉN TRÚC VON NEUMANN VS. HARVARD

MICROPROCESSOR

