Содержание

1. Поляризация	2
2. Дисперсия света	4
3. Тепловое излучение	7
4. Давление света	10
5. Строение атома	12

1. Поляризация

В прошлом семестре мы говорили о плоских бесконечных волнах. В реальности волны не бесконечные – о них говорят, как о импульсе, одиночном, кратковременном возмущении Свет излучается атомами за конечное время, порядка наносекунд. Получаем конечный световой импульс, длину распространения которого можно посчитать – $l = c \cdot t$, а значит мы можем говорить о световом импульсе, который локализован, как о частице. Здесь появляется понятие кванта: атом не может излучить меньше одного фотона, поэтому фотон – это квант, неделимая часть

Из прошлого семестра мы знаем, что электрон может преодолеть потенциальный барьер, действуя как волна, из-за своего размера. Следствием этого является ограничением на размер транзистора

Такой эффект не сходится с представлениями классической физики. В классической физике (в том числе в механике Ньютона) рассматриваются более высокие порядки размеров и на более низких скоростях, чем скорость света. В механике Гамильтона, основывающейся на концепции гамильтониана (оператора полной энергии) отпадает понятие траектории

Будем говорить, что волна представляет $E(z,t) = (E_0 e^{i(\omega t - kz)})$

Если волна не лежит в системе координат, то добавляют матрицу поворота: $E(z,t) = \left(E_0\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}e^{i(\omega t - kz)}\right)$

Свет считается **поляризованным**, если направления колебания светового вектора \vec{E} упорядочены каким-либо образом

В простом случае поляризация бывает линейной (или плоской) – в этом случае вектор напряженности движется в одной плоскости

Большинство бытовых источников света излучают неполяризованные волны — в них колебания разных направлений быстро и беспорядочно сменяют друг друга. С помощью устройства с названием **поляризатор** можно получить поляризованный свет, поглощая другие. Поляризатор лишь частично задерживающий колебания, перпендикулярные к его плоскости, называется несовершенным. Качество поляризатора зависит от толщины и материала

С помощью другого прибора – монохроматора – можно получить монохроматическую волну. Так как свет с разной длиной волны имеет разные коэффициенты преломления, то монохроматор способен пропускать свет с нужной длиной волны

Если свет поляризован плохо, то его называют частично поляризованным

Если пропустить частично поляризованный свет через поляризатор, прибора вокруг направления луча интенсивность прошедшего света будет изменяться от I_{\min} до I_{\max} . Причем, так как поляризатор симметричен, то угол между I_{\min} и I_{\max} равен $\frac{\pi}{2}$

Степенью поляризации $P = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$ можно выразить, насколько сильно поляризован свет

Однако, так как поляризатор не пропускает лучи в неправильном направлении, то интенсивность света уменьшиться. Закон Малюса гласит, что доля интенсивность выходящего света от интенсивность входящего равна $\cos^2 \varphi$, где φ — угол между плоскостью поляризатора и плоскостью колебания \vec{E}

$$I = I_0 \cos^2 \varphi$$

Если пропустить естественный свет через поляризатор, то интенсивность выходящего света равна $I=\frac{1}{2}I_0$. Это объясняется тем, что в естественном свете волны направлены во все стороны равновероятно, а среднее значение $\cos^2\varphi$ равна $\frac{1}{2}$

Существует круговая (или эллиптическая) поляризация, когда вектор \vec{E} вращается в плоскости, перпендикулярной направлению распространения волны Всего существуют 3 способа поляризации:

- 1. Поглощение (или дихроизм): свет проходит через вещество с длинными нитевидными молекулами. Проходя вдоль молекулы, свет свободно проходит, а поперек молекул свет не проходит
 - Большинство таких линейных поляризаторов (или так называемых поляроидов) состоят из полимерной пленки или частиц кристаллов турмалина или герапатита в нитроцеллюлозной пленке
- 2. Преломление: в призме Николя используется двойное лучепреломления света. В ней используется анизотропный кристалл исландского шпата, в котором
 - лучи, поляризованные горизонтально, имеют показатель преломления $n_o = 1.66$ их называют обыкновенными
 - лучи, поляризованные вертикально, имеют показатель преломления $n_o = 1.51$ их называют необыкновенными

Призма Николя представляет собой две одинаковые треугольные в сечении призмы. Обыкновенный луч испытывает полное внутреннее отражение от склеивающего слоя с n=1.55 и поглощается, а необыкновенный свободно проходит через него и вторую призму, так как показатели преломления приблизительно равны

- 3. Отражение: Столетов предложил сделать поляризатор из стекла. При определенном угле падения $\alpha = \arctan n$ (известном как угол Брюстера) отраженный свет получается поляризованным. Для стекла этот угол равен примерно 59°, однако отраженный свет получается с интенсивностью 4% от интенсивности входящего света.
 - Столетов предложил использовать несколько стеклянных пластин, чтобы увеличить

интенсивность – данное устройство, состоящее из стопки стекла, получило название стопа Столетова

Угол Брюстера применяется в изготовлении лазеров для получения поляризованных волн

2. Дисперсия света

Дисперсией света называется зависимость показателя преломления от частоты волны света Данных эффект был обнаружен Исааком Ньютоном при разложении света в спектр. Тогда Ньютон обнаружил, что для разных частот света (а следовательно для разных волн) показатель преломления разный, поэтому в стекле лучи разных частот двигаются с разной скоростью, на выходе призмы получается радужный спектр

Благодаря дисперсии существует радуга: лучи Солнца, проходя под определенным углом (42 градуса над горизонтом) через капельки воды в воздухе, раскладываются в спектр и попадают на сетчатку глаза

На сайте https://refractiveindex.info можно узнать показатель преломления. Например, металл германий, использующийся в тепловизорах, имеет показатель преломления 3.5-4 в инфракрасном спектре волн, что улучшает разрешение тепловизора при ограниченном объёме устройства Подобные призмы используются в спектрометрах - приборах, позволяющих разложить свет в спектр и узнать, какие длины волн пресутсвуют в спектре

стоит источник света (например, Солнца): зная спектр горения водорода и гелия, можно предположить концентрацию горящего вещества на поверхности Солнца

Более продвинутый прибор – масс-спектрометр – используется для изучения состава вещества: вещество нагревают, излученный свет попадает на масс-спектрометр, который определяет интенсивность для разных волн света

Дисперсия возникает как следствие уравнение Максвелла. Допустим для слабопроводящей среды $\sigma, \varepsilon, \mu = \mathrm{const} \ (\sigma = \frac{1}{\rho} - \mathrm{удельная} \ \mathrm{проводимость} \ \mathrm{в} \ \mathrm{сименсаx})$

По закону индукции Фарадея $\vec{\nabla} \times \vec{E} = -\mu \mu_0 \frac{\partial \vec{H}}{\partial t}$

$$\nabla \times (\nabla \times \vec{E}) = -\mu \mu_0 \frac{\partial}{\partial t} (\nabla \times \vec{H})$$
$$\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \vec{E})$$

$$\nabla^2 \times \vec{E} = -\mu \mu_0 \frac{\partial}{\partial t} (\nabla \times \vec{H})$$

По теореме о циркуляции магнитного поля $\nabla \times \vec{H} = \sigma \vec{E} + \varepsilon \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$

Получаем
$$\frac{\partial^2 \vec{E}}{\partial t^2} + \frac{\sigma}{\varepsilon \varepsilon_0} \frac{\partial \vec{E}}{\partial t} = v^2 \Delta \vec{E}$$
 – волновое уравнение, где $v^2 = \frac{1}{\varepsilon \varepsilon_0 \mu \mu_0}$

Из этого волнового уравнения для волны, направленной в сторону оси Ox, получаем $\frac{\partial^2 E_y}{\partial t^2} = \sigma \frac{\partial E_y}{\partial t}$

$$v^2 \Delta E_y - \frac{\sigma}{\varepsilon \varepsilon_0} \frac{\partial E_y}{\partial t}$$

Решение его является функция $E_y = E_0 e^{i(\omega t - kx)}$, то есть $\omega^2 = v^2 k^2 - \frac{i\omega\sigma}{\varepsilon\varepsilon_0}$, где $k = \frac{2\pi}{\lambda}$ — волновое число

Уравнение

$$k^2 = \frac{\omega}{v^2} - \frac{i\omega\sigma}{\varepsilon\varepsilon_0 v^2}$$

называют дисперсионным (то есть зависимость $k(\omega)$). Из него $k=\pm\frac{\omega}{v}\sqrt{1-\frac{i\sigma}{\varepsilon\varepsilon_0\omega}}$

Для
$$\frac{\omega}{\varepsilon\varepsilon_0\omega}\ll 1$$
 можем аппроксимировать корень, получаем $k\approx\frac{\omega}{v}\left(1-i\frac{\sigma}{2\varepsilon\varepsilon_0\omega}\right)=k'-ik''$

В ходе вычисления получаем комплексное k: вещественная часть волнового числа k' определяет длину волны, мнимая часть k'' = показывается коэффициент затухания волн, то есть поглощение, получаем $E_y = E_0 e^{i(\omega t - k'x) - k''x}$

Зависимость фазовой скорость волны (то скорость волны с одной длиной) от частоты в среде $v_{\rm фаз}(\omega)=\frac{\omega}{k'(\omega)}$ называют дисперсией (также обозначают $v_{\rm фаз}=v$)

Для световых волн дисперсия – $n(\omega) = \frac{c}{v_{\text{da3}}(\omega)}$ или $n(\lambda_0) = \frac{c}{v_{\text{da3}}(\lambda_0)}$

Если
$$\sigma=0,$$
 то $v_{\rm фаз}=\frac{1}{\sqrt{\varepsilon\varepsilon_0\mu\mu_0}}$

Получаем дисперсию световых волн:
$$n(\omega) = \frac{c}{v_{\hat{\text{oàc}}}(\omega)}$$
 или $n(\lambda_0) = \frac{c}{v_{\hat{\text{oàc}}}(\lambda_0)}$ Из этого выходит закон Бугера: пусть свет интенсивности I_0 падает на вещество толщины L ,

Из этого выходит закон Бугера: пусть свет интенсивности I_0 падает на вещество толщины L тогда интенсивность света уменьшается по экспоненциальному закону: $I = I_0 e^{-kL}$

При сложении волн из квазимонохроматического спектра получаем ограниченную в пространстве волну – так называемый волновой пакет. Длительность волнового пакета τ пропорциональна обратной разности частот $\frac{1}{\Delta v}$

В среде волны с разными длинами двигаются с разной скорость, поэтому пакет будет деформироваться из-за дисперсии. Из-за этого пакет получает приращение $\Delta t = \frac{L}{v_{\rm lèi}} - \frac{L}{v_{\rm làêñ}} = \frac{L}{c} \Delta n$ При увеличении пропускной способности оптоволокна нужно уменьшить длительности импульса τ . Из этого получаем, что разность частот увеличивается

Если импульс занимает весь видимый диапазон, то $\Delta n \approx 0.03$. При прохождении 1 метра волокна получаем $\Delta t = \frac{1}{3 \cdot 10^8} 0.03 = 10^{-10}$ с. Если длительность пакета меньше Δt , то импульсы

сливаются во время прохождения и на приемнике их становится невозможно различить Групповая скорость $v_{\rm rp}=\frac{d\omega}{dk}$ - это скорость движения волнового пакета (также обозначают

 $u=v_{\rm rp}).$ Если среда дисперсионная, то $v_{\rm rp}\neq v_{\rm фаз}$

Заметим, что
$$v_{\rm фаз}=\frac{\omega}{k}$$
, тогда $v_{\rm rp}=\frac{d\omega}{dk}=v_{\rm фаз}+k\frac{dv_{\rm фаз}}{dk}=v_{\rm фаз}+k\frac{dv_{\rm фаз}}{d\lambda}\frac{d\lambda}{dk}$

Так как
$$\frac{dk}{d\lambda} = -\frac{2\pi}{\lambda^2}$$
, то $v_{\rm rp} = v_{\rm фаз} - \lambda \frac{dv_{\rm фаз}}{d\lambda}$

$$dv = -\frac{c}{n^2}dn = -v\frac{dn}{n}, d\lambda = \frac{d\lambda_0}{n} - \frac{\lambda_0}{n^2}dn$$

$$u = v - \lambda \frac{dv}{d\lambda} = v + \frac{\lambda_0}{n} \frac{\frac{v}{n} dn}{\frac{d\lambda_0}{n} - \lambda_0 \frac{dn}{n^2}} = v \frac{n d\lambda_0}{n d\lambda_0 - \lambda_0 dn} = \frac{v}{1 - \frac{\lambda_0}{n} \frac{dn}{d\lambda}}$$

Если дисперсии нет, то $k_1-k_2=\frac{\omega_1}{c}-\frac{\omega_2}{c}$, и тогда $v_{\rm rp}=c$

Нормальной дисперсией считается дисперсия при $\frac{dn}{d\lambda_0} < 0$, то есть $v_{\rm rp} < v_{\rm фаз}$. В нормальной дисперсии с увеличением частоты света показатель преломления увеличивается

Аномальной дисперсией считается при $\frac{dn}{d\lambda_0} > 0$. Аномальная дисперсия была открыта позже и проявляется реже, поэтому при открытии казалась исключением из правила

Оценим воздействие электромагнитной волны на электроны. Сила Лоренца намного меньше силы Кулона из-за того, что скорость свободного электрона намного меньше скорость света: $\frac{F_{\rm Лоренца}}{F_{\rm Кулона}} \sim \frac{veB}{eE} \sim \frac{v\mu_0 H}{E} \sim v\sqrt{\varepsilon_0\mu_0} = \frac{v}{c} \ll 1$

$$rac{F_{
m Лоренца}}{F_{
m Kynoha}} \sim rac{veB}{eE} \sim rac{v\mu_0 H}{E} \sim v\sqrt{arepsilon_0 \mu_0} = rac{v}{c} \ll 1$$

Поэтому рассмотрим электрон как совершающий вынужденные из-за силы Кулона колебания: $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = \frac{eE_0}{e^{i\omega t}} e^{i\omega t}$

Если дипольный момент электрона в веществе p = -ex, то поляризованность вещества P =

$$Np=-Nex$$
. Тогда $\ddot{P}+2\beta\dot{P}+\omega_0^2P=rac{e^2NE_0}{m_e}e^{i\omega t}$

Пусть
$$P = P_0 e^{i\omega t}$$
, тогда $(-\omega^2 + 2i\omega + \omega_0^2)P_0 = \frac{e^2 N E_0}{m_e}$

Для линейной среды
$$P_0 = \varepsilon_0(\varepsilon - 1)E_0$$
, получаем $\varepsilon = 1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 + 2i\beta\omega} = \varepsilon' - i\varepsilon''$

 $\omega_p^2 = \frac{e^2 N}{m_e \varepsilon_0}$ называют плазменной частотой. В электромагнитной волне с такой частотой электроны в веществе не успевают начать движение и остаются на месте

Если β мало, то $\varepsilon'' \ll \varepsilon'$, значит корень можно представить в виде двух членов ряда Тейлора:

$$n = \sqrt{\varepsilon} = \sqrt{\varepsilon' \left(1 - \frac{i\varepsilon''}{\varepsilon'}\right)} = n' - in''$$

Если $\beta=0$, то есть поглощения волн нет, то $n=\sqrt{\varepsilon}=1+\frac{b}{\omega_o^2-\omega^2}$, где $b=\omega_p^2=\frac{e^2N}{m_e\varepsilon_0}$, $\omega_0=0$

собственная частота вещества, ω – частота волны

3. Тепловое излучение

Тепловое излучение – это испускание электромагнитных воли телами за счет их внутренней энергии

Тепловое излучения имеет место при любой температуре T > 0 K, но при невысоких температурах излучаются практически длинные (инфракрасные) электромагнитные волны

В начале развития металлургии кузнец на глаз могли определять температуру металла при ковке по его цвету. Лампа накаливания использует тепловое излучение. В ней раскаляется спираль из вольфрама, которая начинает излучать свет

Энергетическая светимость R_T — это энергия, испускаемая в единицу времени с единицы поверхности излучающего тела во всем интервале частот по всем направлениям

Спектральная плотность энергетической светимости (или испускательная способность) $r_{\omega T}$ – это энергия, испускаемая в единицу времени с единицы поверхности излучающего тела в узком интервале частот от ω до $\omega + d\omega$. Очевидно, что $r_{\omega T} = \frac{dR_{\omega T}}{d\omega}$, тогда как $R_T = \int_0^\infty r_{\omega T} d\omega$ Поглощательная способность $\alpha_{\omega T}$ – это отношение поглощенного телом потока лучистой энергии к падающему потоку этой энергии, заключенному в узком интервале частот от ω до $\omega + d\omega$. Поглощательная способность вычисляется как $\alpha_{\omega T} = \frac{d\Phi_{\text{погл}}}{d\Phi_{\text{пал}}}$

Если $\alpha_{\omega T}=1$ для всех частот и температур, то тело называется абсолютно черным. Аналогично, абсолютно белое тело – тело, для которого $\alpha_{\omega T}=0$. Серое тело - тело, для которого $\alpha_{\omega T}=$ const < 1

Физик Густав Кирхгофа на основе наблюдений выразил закон Кирхгофа: отношение испускательной и поглощательной способности не зависит от природы тела, оно является для всех тел одной и той же функцией частоты и температуры

$$\left(\frac{r_{\omega T}}{\alpha_{\omega T}}\right)_1 = \left(\frac{r_{\omega T}}{\alpha_{\omega T}}\right)_2 = \dots = \left(\frac{r_{\omega T}}{\alpha_{\omega T}}\right)_n = f(\omega, T)$$

Для абсолютно черного тела $f(\omega, T) = r_{\omega T}$

Далее экспериментально были получены кривые функций $\varphi(\lambda,T)=f\left(2\pi\frac{c}{\lambda},T\right)$ для разных температур для абсолютно черного тела

На ней можно заметить, что при высоких температурах

1.5 Я 0.5 1600 К Х 0 0.5 1 1.5 2 2.5 3 3.5 λ , мкм н лежит в видимом для человека спектре,

2000 K

 $\varphi(\lambda, T), 10^{11} \frac{\mathrm{Br}}{\mathrm{M}^2}$

Видимый спектр

3.5

2.5

(2300 - 3100 K) лишь малая часть теплового излучения лежит в видимом для человека спектре, что объясняет малый КПД лампы накаливания

Позже был сформулирован закон Стефана-Больцмана: $R_T = \int_0^\infty r_{\omega T} d\omega = \int_0^\infty f(\omega, T) d\omega = \sigma T^4$,

где $\sigma = 5.67 \cdot 10^{-8} \frac{\rm BT}{{\rm m}^2 \cdot {\rm K}^4}$ — постоянная Стефана-Больцмана

Таким образом, можно вычислить мощность света от Солнца, попадающего на квадратный метр площадки на Земле и получить примерно $130\frac{\text{BT}}{\text{M}^2}$

Из этого появился закон Вина, который гласит, что максимум спектральной плотности энергетической светимости обратно пропорционален абсолютной температуре $\lambda_{\max} = \frac{b}{T}$, где $b = 2.9 \cdot 10^{-3} \text{м} \cdot \text{K}$ – постоянная Вина

Функцию $f(\omega,T)$ пытались представить аналитически. Физики Рэлей и Джинс сформировали формулу Рэлея-Джинса: $f(\omega,T)=\frac{\omega^2}{4\pi^2c^2}kT$. Эта формула хорошо сходится для больших длин

волн, но плохо для маленьких в ультрафиолетовом спектре, так как $\int_0^\infty \frac{\omega^2}{4\pi^2c^2}kTd\omega = \infty$ – этот результат получил название ультрафиолетовой катастрофы

Позже Макс Планк высказал гипотезу Планка: электромагнитное излучение испускается телами не непрерывно, а в виде отдельных порций энергии (квантов), величина которых равна

$$\varepsilon = hv = \frac{hc}{\lambda} = \hbar\omega,$$

где $h = 6.63 \cdot 10^{34}$ Дж · c — постоянная Планка, $\hbar = \frac{h}{2\pi} = 1.05 \cdot 10^{34}$ Дж · c — постоянная Планка с чертой

Энергия излучения получается, как сумма порций энергий $\varepsilon_n=n\hbar\omega,$ где $n\in\mathbb{N}$

Далее Планк описал формулу спектральной плотности излучения абсолютно черного тела:

$$r_{\omega T} = \frac{\hbar \omega^3}{4\pi^2 c^2} \frac{1}{e^{\frac{\hbar \nu}{kT}} - 1}$$

Или для спектральной плотности от длины волны:

$$r_{\lambda T} = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

При $\frac{\hbar\omega}{kT}\gg 1$ (область высоких частот) получаем $f(\omega,T)=\frac{\omega^3}{4\pi^2c^2}\frac{1}{1+\frac{\hbar\omega}{kT}-1}=\frac{\omega^3}{4\pi^2c^2}kT$ — формула

Рэлея-Джинса

При $\frac{\hbar\omega}{kT}\ll 1$ (область низких частот) получаем $f(\omega,T)=\frac{\omega^3}{4\pi^2c^2}e^{-\frac{\hbar\omega}{kT}}=\omega^2\cdot F\left(\frac{\omega}{T}\right)$ — формула Вина

Для абсолютно черного тела $R_T=\int_0^\infty \frac{\hbar}{4\pi^2c^2}\frac{\omega^3d\omega}{e^{-\frac{\hbar\omega}{kT}}-1}=\frac{\pi^2k^4}{60c^2\hbar^3}T^4=\sigma T^4$ — закон Стефана-Больцмана

Исследуем формулу Планка на экстремум, возьмем $\frac{d\varphi(\lambda,T)}{d\lambda}=0$, получим трансцендентное уравнение $xe^x-5(e^x-1)=0$, решением которого является $\frac{2\pi\hbar c}{kT\lambda_{\max}}=4.965$, отсюда получаем

закон смещения Вина:
$$T\lambda_m = \frac{2\pi\hbar c}{4.965k} = b$$

Фотоэффект – эффект, при котором электроны двигаются в веществе под действием светового излучения

Различают 3 типа фотоэффекта:

- Внешний электрон покидает вещество. На основе внешнего фотоэффекта работают фотоэлементы
 - Внешний фотоэффект создается так: помещаются фотокатод и анод в прозрачную колбу и откачивают воздух. При попадании света на фотокатод электроны переносятся с него на анод, создавая ток
- Внутренний перераспределение электронов внутри чистого полупроводника под действием света. На внутреннем фотоэффекте основаны фоторезисторы
- Вентильный пропускание электроном через p-n переход при его обратном включении под действием света. На основе этого фотоэффекта работают фотодиоды

Наблюдения помогли понять, что при определенной длины волны фотоэффект резко прекращается. Чтобы выбить электрон из кристаллической решетки наружу, нужно сообщить ему энергию

Основные закономерности внешнего фотоэффекта отражены зависимостью величины фототока от напряжения между анодом и катодом. Такая зависимость называется вольт-амперной характеристикой: I = I(U)

На вольт-амперной характеристике можно заметить две точки:

- Напряжение, при котором тока нет. Его называют задерживающим (или запирающим) и оно обратного направления
- Ток насыщения, при котором выбивается максимально возможное число электронов из пластинки

Далее явление фотоэффекта изучал Столетов, который сформулировал первый закон фотоэффекта: сила фототока насыщения пропорциональная падающему световому потоку, то есть $I=\Phi$

Величина задерживающего напряжения позволяет определить максимальную скорость электронов

Второй закон фотоэффекта гласит, что задерживающее напряжение прямо пропорционально зависит от частоты: $U_{\text{зап}} = av + b$, то есть $\operatorname{tg} \alpha = a = \operatorname{const}$

Третий закон фотоэффекта утверждает, что для каждого металла существует минимальная частота $v_{\rm kp}$, при которой начинается фотоэффект

Часто длина волны такой частоты является красной, поэтому ее называют красной границей фотоэффекта

Разные металлы имеют различную частоту красной границы и одинаковую зависимость задерживающего напряжения от частоты

В 1905 году Альберт Эйнштейн объяснил второй закон тем, что металл поглощает свет порциями, то есть квантами. Тогда по формуле Планка $\varepsilon_{\text{фотона}} = hv$ получаем:

$$hv = A_{\text{выхода}} + E_{\text{кин. элект.}} = A_{\text{выхода}} + \frac{mv_{\max}^2}{2}$$
 — уравнение Эйнштейна для фотоэффекта

Здесь $A_{\rm выхода}$ — работа выхода, необходимая энергия для вытеснения электрона из вещества при температуре абсолютного нуля. Работа выхода для многих металлов находится в интервале от 1 до 10 эВ

При
$$v_{\mathrm{max}}$$
 получаем $v_{\mathrm{kp}} = \frac{A_{\mathrm{вых}}}{h}$

Также можем представить второй закон фотоэффекта так: $U_{3\text{all}} = \frac{h}{e} v - \frac{A_{\text{вых}}}{e}$

4. Давление света

Фотоны, частицы света, имеют массу покоя равную нулю, движутся в вакууме со скоростью $c = 3 \cdot 10^8$, имеют энергию и импульс

Энергия фотона зависит от частоты света: $\varepsilon = h\nu = \hbar\omega = \frac{hc}{\lambda}$

Из специальной теории относительности нам известна формула связи энергии с массой и скоростью: $E^2 = m^2c^4 + p^2c^2$. Если тело покоится, то его энергия равна $E^2 = p^2c^2$. Если масса равна нуля $E^2 = p^2c^2$ или E = pc

Тогда импульс (то есть мера количества движения) фотона равен $p = \frac{\varepsilon}{c} = \frac{hv}{c} = \frac{h}{\lambda}$

Рассмотрим такую модель: электромагнитная волна падает на металлическую пластину. Пластина содержит свободные электроны, которые двигаются циклично из-за электрического поля в волне, а магнитное поле создает

Свет, падая на поверхность, создает давление. В общем случае, часть фотонов отражается от поверхности, а часть поглощается

Давление света определяется импульсом, который передается поверхности фотонами, падающими на поверхность за время наблюдения

$$P = \frac{F}{S} = \frac{\Delta p}{S\Delta t}$$

При отражении импульс фотона меняется на $2\frac{h}{\lambda}$ (так как направление становится противопо-

ложным), а при поглощении – на $\frac{h}{\lambda}$ Пусть α – коэффициент отражения, тогда αN фотонов отразится, а $(1-\alpha)N$ – поглотится Полное изменение импульса равно $\Delta p = \alpha 2 \frac{h}{\lambda} N + (1-\alpha) \frac{h}{\lambda} N$ или $\Delta p = (1+\alpha) \frac{h}{\lambda} N$

Количество фотонов, падающих на поверхность, можно выразить так: $N = nSc\Delta t$

Тогда давление $P=(1+\alpha)n\frac{hc}{\lambda}=(1+\alpha)nhv$

Введем другую переменную w = nhv — объемная плотность световой энергии, тогда $P = (1+\alpha)w$ Так как $w = \frac{I}{c}$, $P = (1+\alpha)\frac{I}{c}$, то есть световое давление определяется энергией (интенсивностью света)

Общее давление солнечных лучей на Землю равно 4.3 мкПа, поэтому в земных условиях заметить величину светового давления тяжело. Впервые давление света измерил физик Лебедев в 1899 году

В 1922 году физик Комптон изучал взаимодействие рентгеновского излучения с парафином и графита и наблюдал дифракционные картины рассеянного излучения

Предполагалось, согласно классической волновой теории рассеяния ЭМИ, что длина волны волны не должна изменяться

Под действием периодического электрического поля электромагнитной волны электрон вещества должен колебаться с частотой поля. Поэтому рассеянные веществом вторичные волны должны иметь ту же частоту, что и первичное излучение

Рассеянное рентгеновское излучение состояло не только из компонент с исходной длины волны λ , но и из компоненты с другой длиной волны λ' , которые рассеивались под другим углом Подобное явление получило название эффекта Комптона – явление упругого рассеяния электромагнитного излучения на свободных электронах вещества, сопровождающееся увеличением длины волны. Дело в том, что при столкновении фотона с электроном фотон теряет часть импульса, которая передается электрону, таким образом, фотон меняет длину волны Сдвиг волны составляет $\Delta \lambda = \lambda_K (1 - \cos \varphi)$, где φ – угол отклонения вторичной волны, а

 $\lambda_K = \frac{h}{m_{
m nok}c} = 2.426\ {
m nm}$ — Комптоновская длина волны

Таким образом, в разных опытах свет ведет себя по-разному. Явления интерференции, дифракции, поляризации, дисперсии объясняются электромагнитной волновой природой света. В тепловом излучении, фотоэффекте, эффекте Комптона, давления света свет представляется как поток частиц

Поэтому свет обладает двойственностью: он является и частицей и волной. Тогда Луи де Бройль в 1924 году выдвинул гипотезу, что частицы вещества наряду с корпускулярными свойствами обладают свойствами волны

свойствами обладают свойствами волны Тогда
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
 (а в релятивистском случае $p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$)

А это значит, что маленькие частицы, такие как электроны, протоны, нейтроны, могут обладать длиной волны

С помощью этого можно измерить период решетки: направляя пучок электронов с известной скоростью (а значит известной длиной волны де Бройля) на монокристалл, измерив углы

дифракции, можем получить период по формуле $d\sin\varphi = k\lambda$ Разберем примеры длин волн де Бройля:

- У частицы массой 1 г и скорость 1 метр в секунду получим $\lambda_{\rm B} = \frac{h}{p} = \frac{h}{1} = 6.63 \cdot 10^{-34}$ м
- Молекула кислорода со скоростью 500 м/с имеет длину волны $\lambda_{\rm B} = \frac{6.63 \cdot 10^{-34}}{5.32 \cdot 10^{-26} \cdot 500} = 0.025$ нм

Опыт Дэвиссона и Джермера подтверждал гипотезу де Бройля:

Узкий пучок моноэнергетических электронов направлялся на поверхность монокристалла никеля и наблюдалось отражение электронов от его поверхности. Атом в кристалле образуют упорядоченную периодическую структуру, поэтому интенсивность отраженного пучка на экране показывала распределение с резкими максимумами, как при дифракции

По закону Вульфа-Брэгга $2d\sin\varphi=n\lambda_{\rm B}$ можно узнать длину волны де Бройля и сравнить ее с формулой $\lambda_{\rm B}=\frac{h}{p}$

Аналогично опыт Томсона и Тартаковского с прохождение электронов через металлическую фольгу показала это

Также можно повторить опыт Юнга с электроном и получить дифракционную картину Если взять одну щель, то распределение электронов на экране будет соответствовать функции

$$\frac{\sin x}{x}$$
 — преобразование Фурье от $t(x) = \begin{cases} 0, & |x| < \Delta x/2 \\ 1, & |x| \ge \Delta x/2 \end{cases}$, функции пропускания, где Δx — ширина щели

Здесь можно определить, что первый минимум находится на угле φ_1 , для которого выполнено $\Delta x \sin \varphi_1 = \lambda_{\rm B}$. Если пучок отклонился, значит появилась проекция импульса на плоскость экрана. При малом угле $\sin \varphi_1 \approx \operatorname{tg} \varphi_1 = \frac{p_x}{p_0}$

Так как
$$\Delta p_x \approx p_x$$
, $\operatorname{tg} \varphi_1 = \frac{\Delta p_x}{p_0} \Longrightarrow \Delta x \cdot \Delta p_x = \lambda_{\mathrm{B}} p_0$

Получим $\Delta x \cdot \Delta p_x \approx h$ — соотношение неопределенностей Гейзенберга. Оно означает, что, чем точнее измеряется одна характеристика частицы (либо расстояние, либо импульс), тем менее точно можно измерить вторую

По-другому можно соотношение представить как $\Delta t \Delta v \approx 1$ — оптическое соотношение неопределенности

Или как $\Delta x \cdot \Delta k \approx 1$ — пространственное соотношение, где Δk — неопределенность измерения волнового числа

В макромире соотношение Гейзенберга можно смело игнорировать

С помощью принципа неопределенности можно объяснить природу электронов внутри атома. Чтобы не упасть на ядро под действием силы Кулона, электрон должен иметь скорость. Масса электрона равна $9.1 \cdot 10^{-31}$ кг, поэтому из-за принципа неопределенности нельзя точно узнать положение электрона внутри атома, отсюда появляется понятие электронного облака

(или орбитали) – область внутри атома, внутри которой с какой-то вероятностью находится электрон

5. Строение атома

В конце XIX века был открыт электрон. Электрон имеет отрицательный заряд, но, так как атом по заряду нейтрален, ядро должно быть положительным. В 1903 году появилась модель Томпсона, которая предполагала, что электроны находились в положительно заряженном атоме, словно изюм в кексе

По расчета Томпсона размер атома равен приблизительно 10^{-10} м

Далее Резерфорд провел такой опыт: альфа-частицы разгонялись на тонкую золотую фольгу, затем отклонялись на экран. Альфа-частицы были обнаружены позади фольги, немного в бок и напротив фольги. Модель Томпсона утверждала, что напряженность атома была равномерно распространена, поэтому ее бы не хватило, чтобы отклонить альфа-частицу на меньший угол Значит, модель Томпсона оказалась неверной. Потом появилась модель Резерфорда — в ней в центра атома есть ядро, в котором был заключен весь положительный заряд, а вокруг ядра вращались электроны. Возникает несостыковка: заряженные электроны, вращаясь, создают переменное магнитное поле, перенося энергию, значит, скорость электронов должна уменьшаться, а атом прекращать существование

Тогда Нильс Бор выдвинул гипотезу, что на некоторых орбитах электроны не излучают энергию. Удивительно, что момент импульса L=mvr имеет такую же размерность, что и постоянная планка h

Бор предположил, что если момент импульса $L=n\hbar$, где $n\in\mathbb{N}$, то орбита считается стабильной (или стационарной)

После этого Нильс Бор сформулировал свои постулаты

Первый постулат Бора: атомная система может находиться только в особых стационарных состояниях. Каждому стационарному состоянию соответствует определённая энергия E_n

Выбор радиусов стационарных орбит подчиняется условию квантования момента импульса озлектрона: момент импульса L = mvr электрона в стационарных состояниях принимает дискретные значения

Второй постулат Бора: излучение (или поглощение) электромагнитного излучения атомом происходит при переходе электрона из одного состояния в другой

Тогда энергия излученного фотона равна разности энергий двух стационарных состояний $\varepsilon = hv = E_n - E_m$

При поглощении электрон переходит на состояние выше с большей энергией, а при излучении – на состояние ниже с меньшей энергией

По второму закону Ньютона
$$F = ma = m\frac{v^2}{r} = \frac{kZe^2}{r^2} = m\frac{\hbar^2 n^2}{m^2 r^3}$$
 — квантование орбит

Радиус орбиты вычисляется так: $r_n = \frac{\hbar^2 n^2}{kZme^2}$, где Z — порядковый номер атома

Для водорода радиус первой орбиты равен $r_1 = \frac{\hbar^2}{ke^2m} = 0.529$ нм

Далее, зная радиус первой орбиты, можно вычислить другие орбиты по формуле $r_n = n^2 r_1$

Полная энергия электрона на стационарных орбитах складывается как сумма кинетической и потенциальной: $E=\frac{mv^2}{2}-\frac{kZe^2}{r}$

Потенциальная энергия притяжения электрона к ядру меньше нуля. Также полную энергию можно выразить как $E=-\frac{k^2Z^2e^4m}{2\hbar^2n^2}$

Основным состоянием электрона называется такое, что при n=1 $E=-\frac{k^2Z^2me^4}{2\hbar^2}=-13.6$ эВ Все состояния, кроме основного, называются возбужденными. Время жизни в них ограничено и равно 10^8 с

При E=0 атом ионизуется, то есть электрон покидает пределы атома и становится свободным. Для ионизации требуется сообщить энергию $E_i=0-E_1$ (для водорода 13.6 эВ)

Теория Бора привела к количественному согласию с экспериментом для значений частот, излучаемых водородом. Так частоты излучений образуют ряд серий, при которых электрон перемещается из уровня n в уровень m (n > m)

Частоту можно вычислить по формуле $v = \frac{k^2 Z^2 e^4 m_e}{4\pi\hbar^3} \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$

Отсюда $R_c=rac{m_e k^2 e^4}{4\pi\hbar^3},~{\rm a}~R=rac{R_c}{c}$ — постоянная Ридберга

Тогда $\frac{1}{\lambda} = RZ^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$ — формула Ридберга

Излучение фотонов из первой серии или серии Лаймера было открыто в 1906 году. Частоты этой серии относятся к ультрафиолетовой области

Серия Бальмера была открыта в 1885 году, излучение таких фотонов относят к видимой области спектра. Серия Пашнеа была открыта в 1908 году, излучение таких фотонов относят к инфракрасной области спектра

Доказательство существование дискретных энергетических уровней у атомов было предоставлено опытом Франка-Герца

В этом опыте электроны с катода переходили на анод через колбу с парами ртути. Ртуть - атом тяжелый, но ее пары можно получить при комнатной температуре. По классическим представления ВАХ должна была быть линейной, однако в реальности на ВАХ были обнаружены локальные максимумы.

Дело в том, что при определенном напряжении на аноде и катоде, электроны при столкновении с ртутью передавали ровно столько энергии, чтобы электроны в атомах ртути переходили с одного состояния на другой, излучая ультрафиолетовое свечение

Теория Бора:

- построила количественную теорию спектра атома водорода
- согласовала теоретически вычисленные значения частот с экспериментальными значениями;
- позволила сделать качественные заключения о водородоподобных атомах

Однако теория Бора имеет недостатки:

- не удалось создать количественную теорию водородоподобных атомов
- не является последовательно классической теорией (электрон классическая частица, но его энергия квантуется)
- не является последовательно квантовой теорией (электрон движется по круговым орбитам, но для квантовой частицы не применимо понятие траектории)

Потребность в квантовой механике возникает тогда, когда характерный размер исследуемого объекта становится сравнимым или меньше длины волны де Бройля: $L < \lambda_{\rm B} = \frac{h}{p}$

Это условие означает, что волновые свойства материи начинают играть существенную роль, и классическое описание (через координаты и силы) перестает быть точным

В квантовой механике состояние системы описывается волновой функцией $\psi(\vec{r},t)$, которая содержит полную информацию о системе. Физический смысл имеет не сама ψ , а ее модуль в квадрате:

$$|\psi(\vec{r},t)|^2 = \psi^*(\vec{r},t)\psi(\vec{r},t),$$

который задает плотность вероятности обнаружения частицы в точке \vec{r} в момент времени t

В отличие от классической механики Ньютона, где движение описывается через силы и ускорения, квантовая механика оперирует *операторами* физических величин, действующих на волновые функции.

Для описания различных физических величин вводят соответствующие операторы:

- ullet оператор координаты \hat{x}
- \bullet оператор импульса \hat{p}
- оператор кинетической энергии
- оператор потенциальной энергии
- ullet оператор полной энергии (гамильтониан) \hat{H}

Все эти операторы линейные. Это значит, что для любых констант c_1, c_2 и функций ψ_1, ψ_2 выполняется: $\hat{L}(c_1\psi_1+c_2\psi_2)=c_1\hat{L}\psi_1+c_2\hat{L}\psi_2$

Оператор координаты действует как простое умножение на саму координату: $\hat{x}\psi(x) = x\psi(x)$ Оператор потенциальной энергии также представляет собой умножение на соответствующую функцию потенциала: $\hat{U}\psi(x) = U(x)\psi(x)$

Так как потенциальная энергия U(x) зависит только от координаты, ее оператор не изменяет форму функции ψ , а лишь масштабирует ее

Оператор импульса: из соотношений де Бройля $p=\hbar k$ и волнового выражения $\psi(x)\sim e^{ikx}$ следует, что $\frac{d\psi}{dx}=ik\psi=\frac{ip}{\hbar}\psi$

Отсюда, действуя на ψ , можно записать оператор импульса как: $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ или в трехмерном случае $\hat{\vec{p}} = -i\hbar \vec{\nabla}$

Оператор кинетической энергии выражается через оператор импульса: $\hat{T} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \nabla^2$

Теперь можно записать уравнение Шрёдингера. В общем (учитывающем время, то есть временном) виде оно имеет вид:

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + U(\vec{r})\psi$$

Здесь первый член $-\frac{\hbar^2}{2m}\nabla^2\psi$ в скобках отвечает за кинетическую энергию, а второй $U(\vec{r})\psi$ — за потенциальную. Суммарный оператор называется **гамильтонианом**: $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + U(\vec{r})$ И уравнение принимает компактный вид:

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi.$$

Решением этого уравнения является волновая функция ψ , описывающая эволюцию состояния системы во времени

Если состояние можно описать одной функцией ψ , то оно называется чистым состоянием

Далее были сформулированы постулаты квантовой механики:

- 1. **1-ый постулат**: состояние квантовой системы полностью определяется ее волновой функцией $\psi(\vec{r},t)$. Квадрат модуля волновой функции $|\psi|^2$ задает плотность вероятности нахождения системы в данном состоянии
- 2. **2-ой постулат**: каждой физической величине соответствует линейный оператор \hat{A} , действующий в пространстве волновых функций
- 3. **3-ий постулат**: при измерении физической величины можно получить только одно из собственных значений оператора, соответствующего этой величине
- 4. **4-ый постулат**: квадрат модуля волновой функции $\psi(\vec{r},t)$ определяет плотность W вероятности того, что в момент времени $t \geq 0$ частица может быть обнаружена в точке пространства \vec{r}

Если потенциальная энергия не зависит от времени, то волновую функцию можно искать в

виде разделения переменных: $\psi(\vec{r},t)=\phi(\vec{r})e^{-\frac{iEt}{\hbar}}$

Подставив это выражение в уравнение Шрёдингера, получаем стационарное уравнение Шрёдингера:

$$-\frac{\hbar^2}{2m}\nabla^2\phi + U(\vec{r})\phi = E\phi.$$

Здесь E — собственное значение гамильтониана, соответствующее энергии данного стационарного состояния

Ех. Одномерный гармонический осциллятор:

Потенциал имеет вид $U(x) = \frac{1}{2}kx^2$ и уравнение Шрёдингера принимает вид:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{kx^2}{2}\psi = E\psi.$$

Это уравнение имеет дискретные значения энергии:

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right), \qquad n = 0, 1, 2, ...,$$

где
$$\omega = \sqrt{\frac{k}{m}}$$
 — собственная частота осциллятора

Таким образом, квантовая механика описывает не отдельные траектории частиц, а распределения вероятностей и энергетические уровни, определяемые волновыми функциями и их собственными значениями

Сравним физический величины классической механики и операторы квантовой

Физическая величина	Классическая	Квантовая
Координата	$\vec{r} = (x, y, z)$	$\vec{r} = (x, y, z)$
Импульс	$\vec{p} = (p_x, p_y, p_z)$	$-ih\vec{\nabla} = \left(-ih\frac{\partial}{\partial x}, -ih\frac{\partial}{\partial y}, -ih\frac{\partial}{\partial z}\right)$
Угловой момент	$\vec{L} = [\vec{r} \times \vec{p}] = (yp_x - zp_y, zp_x - xp_z, xp_y - yp_x)$	$\vec{\hat{L}} = -i\hbar [\vec{r} \times \vec{\nabla}] = $ $\left(-i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \right.$ $\lefti\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right), \right.$ $\lefti\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \right)$
Энергия (в нерелятивистском приближении)	$E = \frac{p^2}{2m} + U(\vec{r})$	$H = -\frac{\hbar^2}{2m}\nabla^2 + U(\vec{r})$