CALCULUS III FINAL REVIEW

Convergence: 10.3–10.5	
Convergence Notes	2
Tests for Positive Series	2
Tests for Non-Positive Series	3
Convergence Problems	4
10.5 Exercises	4
Power/Taylor Series: 10.6–10.8	
Power/Taylor Series Notes	12
Power Series	12
Taylor Series	13
Power/Taylor Series Problems	14
10.6 Exercises	14
10.8 Exercises	14
PARAMETRIC EQUATIONS: 11.1	
Parametric Equations Notes	15
Parametric Problems	16
11.1 Exercises	16
ARC LENGTH, POLAR COORDINATES: 11.2-11.4	
11.2-11.4 Notes	17
Arc Length and Speed	17
Polar Coordinates	17
Area and Arc Length in Polar Coordinates	17
Polar Coordinate Problems	18
11.2 Exercises	18
11.3 Exercises	18
11.4 Exercises	18
Quiz Questions	
Quiz 3	19
Quiz 4	22
FINAL REVIEW QUESTIONS	

CONVERGENCE: 10.3-10.5

Convergence Notes

• Let $\sum_{n=1}^{\infty} a_n$ be given and note for which series convergence is known, i.e.:

Geometric: let $c \neq 0$, if |r| < 1, then **p-Series**: converges if p > 1.

$$\sum_{n=0}^{\infty} cr^n = \frac{c}{1-r}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^p}$$

 $|r| > 1 \implies$ diverges $p < 1 \implies$ diverges

• The n^{th} Term Divergence Test: a relatively easy test that can be used to quickly determine if a test diverges if the $\lim_{n\to\infty}a_n\neq 0$. If $\lim_{n\to\infty}a_n=0$, then the test is inconclusive and other tests must be applied.

Tests for Positive Series

• **Direct Comparison Test**: use if dropping terms from the denominator or numerator gives a series b_n wherein convergence is easily found, then compare to the original series a_n as follows:

$$\sum_{n=1}^{\infty} b_n \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges } \leftarrow 0 \le a_n \le b_n$$

$$\sum_{n=1}^{\infty} b_n \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges } \leftarrow 0 \le b_n \le a_n$$

• **Limit Comparison Test**: use when the direct comparison test isn't convenient or when comparing two series. One can to take the dominant term in the numerator and denominator from a_n to form a new positive sequence b_n if needed.

Assuming the following limit $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists, then:

$$L>0 \implies \sum_{n=1}^{\infty} a_n \text{ converges} \iff \sum_{n=1}^{\infty} b_n \text{ converges}$$
 $L=0 \text{ and } \sum_{n=1}^{\infty} b_n \text{ converges} \implies \sum_{n=1}^{\infty} a_n \text{ converges}$
 $L=\infty \text{ and } \sum_{n=1}^{\infty} a_n \text{ converges} \implies \sum_{n=1}^{\infty} b_n \text{ converges}$

• **Ratio Test**: often used in the presence of a factorial (n!) or when the are constants raised to the power of $n(c^n)$.

Assuming the following limit
$$ho = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$$
 exists, then

$$\rho < 1 \implies \sum a_n$$
 converges absolutely

$$\rho > 1 \implies \sum a_n$$
 diverges

$$\rho = 1 \implies$$
 test is inconclusive

• Root Test: used when there is a term in the form of $f(n)^{g(n)}$.

Assuming the following limit $C=\lim_{n\to\infty}|a_n|^{\frac{1}{n}}$ exists, then

$$C < 1 \implies \sum a_n$$
 converges absolutely

$$C > 1 \implies \sum a_n$$
 diverges

$$C = 1 \implies$$
 test is inconclusive

• Integral Test: if the other tests fail and $a_n = f(n)$ is a decreasing function, then one can use the improper integral $\int_1^\infty f(x)dx$ to test for convergence.

Let $a_n = f(n)$ be a positive, decreasing, and continuous function $\forall x \geq 1$, then:

$$\int_{1}^{\infty} f(x) dx \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges}$$

$$\int_{1}^{\infty} f(x) dx \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges}$$

Tests for Non-Positive Series

• Alternating Series Test: used for series in the form $\sum_{n=0}^{\infty} (-1)^n a_n$

Converges if $|a_n|$ decreases monotonically $(|a_n+1|\leq |a_n|)$ and if $\lim_{n\to\infty}a_n=0$

• **Absolute Convergence**: used if the series $\sum a_n$ is not alternating (if it is alternating, use the alternating test in conjunction); simply test if $\sum |a_n|$ converges using the test for positive series.

$$\sum a_n$$
 converges **conditionally** if $\sum a_n$ converges, but $\sum |a_n|$ diverges.

 $\sum a_n$ converges **absolutely** if $\sum |a_n|$ converges.

Convergence Problems

10.5 Exercises

Determine convergence or divergence using any method.

1.
$$\sum_{n=1}^{\infty} \frac{2^n + 4^n}{7^n}$$

$$\implies \sum_{n=1}^{\infty} \frac{2^n}{7^n} + \sum_{n=1}^{\infty} \frac{4^n}{7^n}$$

$$\implies r = \frac{2}{7} < 1, \quad r = \frac{4}{7} < 1$$

Separate into two geometric series $^{\uparrow}$

Both geometric series converge, thus the original series converges.

$$2. \sum_{n=1}^{\infty} \frac{n^3}{n!}$$

$$\Rightarrow \rho = \lim_{n \to \infty} \left| \frac{(n+1)^3}{(n+1)!} \cdot \frac{n!}{n^3} \right|$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{(n+1)n!} \cdot \frac{n!}{n^3}$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{n^4 + n^3}$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{n^4 + n^3} \cdot \frac{n^{-4}}{n^{-4}}$$

$$= \lim_{n \to \infty} \frac{n^{-1} + 3n^{-2} + 3n^{-3} + n^{-4}}{1 + n^{-1}} = 0$$

Apply the ratio test[↑]

ho=0<1, thus the series converges.

$$3. \sum_{n=1}^{\infty} \frac{n}{2n+1}$$

$$\implies \lim_{n \to \infty} \frac{n}{2n+1}$$

$$\implies \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$$

Apply the n^{th} term test[†]

By L'Hôpital's Rule

 $\lim_{n\to\infty} a_n \neq 0$, thus the series diverges.

4.
$$\sum_{n=1}^{\infty} 2^{\frac{1}{n}}$$

$$\implies \lim_{n \to \infty} 2^{\frac{1}{n}} = 2^0 = 1$$

Apply the n^{th} term test $^{\uparrow}$

 $\lim_{n\to\infty} a_n \neq 0$, thus the series diverges.

$$5. \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

$$0 \le \sin n \le 1$$

$$0 \le \frac{\sin n}{n^2} \le \frac{1}{n^2}$$

$$b_n = \frac{1}{n^2} \to \text{ converges}$$

$$\leftarrow \forall n \geq 1$$

Apply the direct comparison test[†]

by *p*-series[↑]

The larger (b_n) series converges, thus the smaller (a_n) converges.

6.
$$\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$$

$$\Rightarrow \rho = \lim_{n \to \infty} \left| \frac{(n+1)!}{(2n+2)!} \cdot \frac{(2n)!}{n!} \right|$$
 Apply the ratio test[†]

$$= \lim_{n \to \infty} \frac{(n+1)n!}{(2n+2)(2n+1)2n!} \cdot \frac{(2n)!}{n!}$$

$$= \lim_{n \to \infty} \frac{n+1}{(2n+2)(2n+1)} = \frac{n+1}{4n^2 + 6n + 2}$$

$$= \lim_{n \to \infty} \frac{1}{8n+6} = 0$$
 By L'Hôpital's Rule

 $\rho = 0 < 1$, thus the series converges.

7.
$$\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$$

$$0 \le n \le n+\sqrt{n} \qquad \qquad \leftarrow \forall n \ge 1$$

$$0 \le \frac{1}{n+\sqrt{n}} \le \frac{1}{n} \qquad \qquad \text{Apply the direct comparison test}^{\uparrow}$$

$$b_n = \frac{1}{n} \to \text{ diverges}$$

The smaller (b_n) series diverges, thus the larger a_n original series diverges.

8.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

f is positive, decreasing, and continuous for $x \geq 2$ Apply the integral test \uparrow

$$\implies \int_2^\infty f(x)dx = \lim_{R \to \infty} \int_2^R \frac{1}{x(\ln x)^3} dx \qquad \ln x = u, \quad xdu = dx$$

$$\implies \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x(u)^{3}} x du = \int_{2}^{R} \frac{1}{u}^{3} du$$

$$= -\frac{1}{2(u)^{2}}$$

$$= -\frac{1}{2 \ln^{2}(x)} + C \Big|_{2}^{\infty}$$

$$\implies 0 - \left(-\frac{1}{2 \ln^{2}(2)} \right) = \frac{1}{2 \ln^{2}(2)}$$

The improper integral converges, thus the original series converges.

9.
$$\sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

$$\implies \rho = \lim_{n \to \infty} \left| \frac{(n+1)^3}{5^{n+1}} \cdot \frac{5^n}{n^3} \right|$$
$$= \lim_{n \to \infty} \frac{n^3 + 1}{5^n + 5^1} \cdot \frac{5^n}{n^3} = \frac{1}{5}$$

Apply the ratio test $^{\uparrow}$

 $ho=rac{1}{5}<1$, thus the series converges.

10.
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^3 - n^2}}$$

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}, \quad b_n = \frac{1}{\sqrt{n^3}}$$
 Apply the limit comparison test \(^\dagger
$$\implies L = \lim_{n \to \infty} \frac{1}{\sqrt{n^3 - n^2}} \cdot \frac{\sqrt{n^3}}{1}$$

$$= \lim_{n \to \infty} \sqrt{\frac{n^3}{n^3(1 - n^{-1})}}$$

$$= \sqrt{\frac{1}{1(1 - 0)}} = 1$$

L > 0, thus a_n converges if b_n converges.

 b_n converges by the p-series test, as $\frac{3}{2} > 1$, thus a_n converges.

11.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n}{3n^4 + 9}$$

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}, \quad b_n = \frac{1}{n^2}$$

$$= \lim_{n \to \infty} \frac{n^2 + 4n}{3n^4 + 9} \cdot n^2$$

$$= \lim_{n \to \infty} \frac{n^4 + 4n^3}{3n^4 + 9} \cdot \frac{n^{-4}}{n^{-4}}$$

$$= \lim_{n \to \infty} \frac{1 + 4n^{-1}}{3 + 9n^{-4}} = \frac{1}{3}$$

Apply the limit comparison test [↑]

L > 0, thus a_n converges if b_n converges.

 b_n converges by the *p*-series test, as 2 > 1, thus a_n converges.

12.
$$\sum_{n=1}^{\infty} (0.8)^{-n} n^{-0.8}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \\
= \lim_{n \to \infty} \left| \frac{(0.8)^{-(n+1)} (n+1)^{-0.8}}{(0.8)^{-n} n^{-0.8}} \right| \\
= \lim_{n \to \infty} \frac{(0.8)^n n^{0.8}}{(0.8)^{n+1} (n+1)^{0.8}} \\
= \lim_{n \to \infty} \frac{1}{0.8} = 1.25$$

Apply the ratio test [↑]

 $\rho = 1.25 > 1$, thus a_n diverges.

13.
$$\sum_{n=1}^{\infty} 4^{-2n+1}$$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$= \lim_{n \to \infty} \frac{4^{-2(n+1)+1}}{4^{-2n+1}}$$

$$= \lim_{n \to \infty} \frac{4^{-2n-1}}{4^{-2n+1}}$$

$$= \lim_{n \to \infty} \frac{4^{-2n}4^{-1}}{4^{-2n}4} = \frac{1}{16}$$

Apply the ratio test↑

 $ho=rac{1}{16}<1$, thus a_n converges.

14.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} |a_n|$$

Apply the Absolute convergence test

$$\implies \sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$$

 $|a_n|$ diverges by the p-series, as $\frac{1}{2} < 1$, meaning a_n converges conditionally since $|a_n|$ decreases monotonically and $\lim_{n\to\infty} a_n = 0$

15.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}, \quad b_n = \frac{1}{n^2}$$

$$\implies \lim_{n \to \infty} \frac{\sin(n^{-2})}{n^{-2}} = \frac{0}{0}$$

$$= \lim_{n \to \infty} \frac{\cos(n^{-2})(-2n^{-3})}{-2n^{-3}}$$

$$= \lim_{n \to \infty} \cos(n^{-2}) = 1$$

Apply the limit comparison test [↑]

by L'Hôpital's Rule

L > 0, thus a_n converges if b_n converges.

 b_n converges by the p-series test, as 2 > 1, thus a_n converges.

16.
$$\sum_{n=1}^{\infty} (-1)^n \cos n^{-1}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \cos(n^{-1})$$
 Apply the alternating series test \uparrow $\Longrightarrow L = \lim_{n \to \infty} \cos(n^{-1}) = 1$

 $L \neq 0$, thus the series diverges

17.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}}$$

$$\sum_{n=1}^{\infty} (-1)^n a_n, \quad a_n = \frac{2^n}{\sqrt{n}}$$
 Apply the alternating series test \(^1\)
$$\implies L = \lim_{n \to \infty} \frac{2^n}{\sqrt{n}} = \frac{\infty}{\infty}$$

$$= \frac{2^n \ln 2}{\frac{1}{2} n^{-\frac{1}{2}}} = 2^n \ln 2 \cdot 2\sqrt{n}$$
 By L'Hôpital's Rule
$$= 2 \lim_{n \to \infty} 2^n \ln(2) \sqrt{n} = \infty$$

 $L \neq 0$, thus the series diverges

18.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+12}\right)^n$$

$$L = \lim_{n \to \infty} a_n \neq 0 \to \text{ diverges} \qquad \text{Apply the } n^{th} \text{ term test}^{\uparrow}$$

$$\implies L = \lim_{n \to \infty} \left(\frac{n}{n+12}\right)^n$$

$$= \lim_{n \to \infty} e^{-12} \qquad \text{By common limit } \left(\frac{x}{x+k}\right)^x = e^{-k}$$

 $L \neq 0$, thus the series diverges.

Power/Taylor Series: 10.6-10.8

Power/Taylor Series Notes

Power Series

• Power series: a infinite series in the form:

$$F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

Where the constant c is the *center* of the power series F(x).

- Radius of convergence R: the range of values of the variable x whereby the power series F(x) converges.
 - Every power series converges at x = c, as $(x c)^0 = 1$, though the series may diverge for other values of x.
 - F(x) converges for |x-c| < R and diverges for |x-c| > R
 - \circ F(x) may converge of diverge at endpoints c-R and c+R
 - **Interval of convergence**: the open interval (c R, c + R) and possibly one of both of the endpoints, each must be tested.
 - In most cases, the ratio test[↑] can be used to find R.
 - If R > 0, then F is differentiable over the interval of convergence; the derivative and antiderivative can be obtained using the following:

$$F'(x) = \sum_{n=1}^{\infty} n a_n (x - c)^{n-1} \qquad F(x) dx = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - c)^{n+1}$$

• **Useful Power Series**: the following power series (more examples: Taylor series \(\psi \) can be used to drive expansions of other related functions via substitution, integration, or differentiation:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \leftarrow |x| < 1 \qquad \qquad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Taylor Series

•

Power/Taylor Series Problems

10.6 Exercises

1.

10.8 Exercises

1.

PARAMETRIC EQUATIONS: 11.1

Parametric Equations Notes

•

Parametric Problems

11.1 Exercises

1.

ARC LENGTH, POLAR COORDINATES: 11.2-11.4

11.2-11.4 Notes

Arc Length and Speed

•

Polar Coordinates

•

Area and Arc Length in Polar Coordinates

•

Polar Coordinate Problems

11.2 Exercises

1.

11.3 Exercises

1.

11.4 Exercises

1.

QUIZ QUESTIONS

Quiz 3

- 1. For each statement below, indicate whether it is **True** or **False** and provide a brief justification.
 - (a) The series $\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{1}{n}\right)$ converges.

(b) If the radius of converges of the power series $\sum_{n=0}^{\infty} a_n x^n$ is R=5, then the series must converge for x=-3 and x=-4.

2. Determine whether the following series converge absolutely/conditionally, or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{2+5}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2\sqrt{n}-1}$$

3. Find a power series expansion with the center c=0 for

$$f(x) = \frac{1}{1 + x^3}$$

and find the interval of convergence. Hint: use
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \leftarrow |x| < 1$$

4. Find the radius of convergence of the power series given by

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2^n n}$$

Quiz 4

•

FINAL REVIEW QUESTIONS

Note: these questions were taken form a provided review sheet; they focus on sections 10.6–11.4. Some questions already exist on the quizzes, but will be duplicated here.

1. Find the interval of convergence of the following power series.

(a)
$$\sum_{n=1}^{\infty} \frac{5^n}{n} x^n$$

(b)
$$\frac{(x-2)^n}{n^2+1}$$

2. Find the Taylor series of the following functions f(x) centered at the given value of c using the definition.

(a)
$$f(x) = e^x$$
, $c = 2$

(b)
$$f(x) = \sqrt{x}, c = 1$$

3. Find the Maclaurin series of the following functions using substitution and/or multiplication.

(a)
$$f(x) = x \cos(2x)$$

(b)
$$f(x) = \frac{x^3}{1+x}$$

4. Express the following integral as a power series, first by finding the Maclaurin series of the integrand, then integrating this series term-by-term:

$$\int_0^1 e^{-x^2} dx$$

- 5. Find the parametric equations for the following curves.
 - (a) The line through (3, 6) and (-2, 0).

(b) The circle of radius 5 centered at (1, 7).

(c) The ellipse

$$\left(\frac{x-1}{2}\right)^2 + \frac{y+1^2}{3} = 1$$

6. Find the equation of the tangent line to the curve

$$x = \sin(2t) + \cos(t), \quad y = \cos(2t) - \sin(t), \qquad \leftarrow t = \pi$$

7. Find the arc length of the curve

$$x = \frac{2}{3}t^2$$
, $y = t^2 - 2$, $\leftarrow 0 \le t \le 2$

8. Find the surface area obtained by rotating the following around the x-axis;

$$x = e^t - t$$
, $y = 4e^{\frac{t}{2}}$, $\leftarrow 0 \le t \le 1$

9. Match each equation in rectangular coordinates with its equation in polar coordinates.

(a)
$$x^2 + y^2 = 4$$

(i)
$$r^2(1-2\sin^2\theta)=4$$

(b)
$$x^2 + (y-1)^2 = 1$$

(ii)
$$r(\cos\theta + \sin\theta) = 4$$

(c)
$$x^2 - y^2 = 4$$

(iii)
$$r = \sin \theta$$

(d)
$$x + y = 4$$

(iv)
$$r = 2$$

10. Find the area enclosed by one loop of the curve

$$r^2 \cos 2\theta$$