Report: Analysis and Insights on Implemented Codes

-ANSH MITTAL

2201331540041

Table of Contents

- 1. Chatbot Development
 - Basic Chatbot
 - Healthcare Chatbot
 - o College Virtual Assistant
- 2. Logistic Regression
 - o ROC Curve
 - Classification Report
- 3. Mean Squared Predictor:
 - Housing Data
- 4. Stock Predictor
- 5. K-Means Clustering
 - o Students Clustering (Age and GPA)

1. Chatbot Development

Overview

Chatbots are AI-driven tools designed to interact with users. They streamline user communication by addressing queries and automating repetitive tasks.

Implementation

- Normal Chatbot: A basic chatbot programmed to handle generic conversations.
- **Healthcare Chatbot:** Focused on answering health-related queries, scheduling appointments, and providing general wellness advice.
- College Virtual Assistant: A tailored assistant for students and faculty to check schedules, access academic resources, and interact with administrative processes.

Insights

- **Normal Chatbot:** Demonstrates natural language understanding for broad queries but lacks domain-specific depth.
- **Healthcare Chatbot:** Shows the integration of medical databases and patient records for tailored advice.

• College Virtual Assistant: Highlighted features include schedule management, event reminders, and quick responses to FAQs, improving campus life.

2. Logistic Regression

Overview

Logistic Regression is a supervised learning algorithm used for binary classification tasks. Key metrics include the ROC Curve and Classification Report.

Implementation

- ROC Curve: Visual representation of the trade-off between sensitivity and specificity.
- Classification Report: Summarizes precision, recall, F1-score, and accuracy.

Insights

- The **ROC Curve** illustrates how well the model distinguishes between classes, with an AUC close to 1 indicating strong performance.
- The **Classification Report** highlights areas needing improvement (e.g., class imbalance or feature refinement).

3. Mean Squared Predictor

Housing Data

Overview

Predicting housing prices using regression models based on features like size, location, and amenities.

Metrics

- **Mean Squared Error (MSE):** Measures average prediction error.
- **Root Mean Squared Error (RMSE):** Provides interpretability in the units of the target variable.

Insights

• Lower MSE and RMSE values indicate a reliable model. Adjusting features and hyperparameters can further enhance accuracy.

4. Stock Predictor

Overview

Forecasting stock prices based on historical data.

Metrics

- Loss: Represents the difference between predicted and actual values.
- **R-Squared Value:** Explains the proportion of variance captured by the model.
- MSE and RMSE: Key indicators of prediction performance.

Insights

- An **R-Squared Value** close to 1 suggests a strong model fit.
- High accuracy in stock prediction is often challenging due to market volatility.

5. K-Means Clustering

Overview

K-Means clustering is an unsupervised learning method to group data points into clusters based on similarity.

Implementation

- Features: **Age** and **GPA** of students.
- Goal: Segregate students into distinct groups (e.g., high-performing young students, mature learners).

Insights

- **Cluster Analysis:** Provides insights into student demographics and performance trends.
- **Applications:** Tailoring academic support for each group, identifying high-risk students.