# Data Structure & Algorithm

# Data Structure

Đồ thị-Graph

### 1. Định nghĩa



Data Structure & Algorithm

### 1. Định nghĩa



Graph



Map



**Computer Network** 



**Molecular Strcuture** 

Theo số cạnh giữa 2 đỉnh



Đơn Đồ Thị



Đa Đồ Thị

Tính có hướng của cạnh



Đồ thị vô hướng



Đồ thị có hướng

### **❖** Trọng số



Đồ thị KHÔNG có trọng số



Đồ thị CÓ trọng số

### **Quiz:**



ĐƠN đồ thị VÔ HƯỚNG



ĐA đồ thị VÔ HƯỚNG



ĐA đồ thị CÓ HƯỚNG



ĐƠN đồ thị CÓ HƯỚNG

Data Structure & Algorithm

- Ma trận kề
- Danh sách cạnh
- > Danh sách kề

Ma trận kề





- Áp dụng:
  - ✓ Đơn đồ thị
  - ✓ Vô hướng / Có hướng
  - ✓ Có trọng số

Danh sách đỉnh kề





- Áp dụng:
  - ✓ Đơn đồ thị
  - √ Vô hướng / Có hướng
  - ✓ Không có trọng số

> Danh sách cạnh



**{0;1} {1;2} {1;4} {2;4} {3;4}** 

- ❖ Áp dụng:
  - ✓ Đơn đồ thị
  - ✓ Vô hướng / Có hướng
  - ✓ Không có trọng số

|               | Ma trận kề **                                                                                                                        | Danh sách đỉnh kề *                                                                                                                                       | Danh sách cạnh                                                                                                    |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Ưu<br>điểm    | <ul> <li>Đơn giản.</li> <li>Trực quan.</li> <li>Dễ cài đặt.</li> <li>Kiểm tra cạnh u,v: a[u,v]: O(1).</li> </ul>                     | <ul> <li>Dễ dàng duyệt qua các đỉnh kề của 1 đỉnh.</li> <li>Tối ưu bộ nhớ hơn Ma trận kề.</li> </ul>                                                      | <ul> <li>Tiết kiệm không gian bộ nhớ.</li> <li>Dễ dàng hơn trong trường hợp muốn duyệt cạnh (Kruscal).</li> </ul> |  |  |
| Nhược<br>điểm | <ul> <li>Trong trường hợp đồ thị thưa (ít cạnh): Tốn bộ nhớ O(n^2).</li> <li>Trong trường hợp muốn xét các đỉnh kề: O(n).</li> </ul> | <ul> <li>Việc xét qua hệ giữa 2 đỉnh u và v cần phải duyệt hết danh sách đỉnh kề của u hoặc của v.</li> <li>Việc cài đặt có phần phức tạp hơn.</li> </ul> | <ul> <li>Khi muốn duyệt tất cả đỉnh<br/>kề với u, phải duyệt hết các<br/>cạnh.</li> </ul>                         |  |  |

### 4. Một số tính chất của đồ thị



Đồ thị liên thông



Dồ thị có tồn tại chu trình



Đồ thị KHÔNG liên thông

- Depth First Search (Stack | Recursion)
- Breadth Frist Search (Queue)

Depth First Search (Stack | Recursion)



|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | - | 1 | - | - | - | - | - |
| 1 | 1 | - | 1 | 1 | 1 | - | - |
| 2 | - | 1 | - | - | - | 1 |   |
| 3 | - | 1 | - | - | - | 1 | 1 |
| 4 | - | 1 | - | - | - | - | 1 |
| 5 | - | - | 1 | 1 | - | - | - |
| 6 | - | - | - | 1 | 1 | - | - |

Depth First Search (Stack | Recursion)



#### ~ Thuật toán ~

```
- Add đỉnh đầu vào stack
- Đánh dấu đã duyệt đỉnh đầu
while(!stack.isEmpty())
    u = stack.pop();
    process(u);
    - Add tất cả các đỉnh kề v với u
    mà chưa được duyệt vào stack.
    - Đánh dấu đã duyệt v.
```

Depth First Search (Stack | Recursion)







- ✓ Implement using Stack
- ✓ Implement using Recursion

Breadth Frist Search (Queue)



~ Thuật toán ~

```
- Add đỉnh đầu vào queue
- Đánh dấu đã duyệt đỉnh đầu
while(!queue.isEmpty())
    u = queue.pop();
    process(u);
    - Add tất cả các đỉnh kề v với u
    mà chưa được duyệt vào queue.
    - Đánh dấu đã duyệt v.
```





Breadth Frist Search (Queue)



















Breadth Frist Search (Queue)





Thứ tự duyệt



✓ Implement using Queue

# Data Structure & Algorithm



Please Like and Subcribe