# Введение в современный MLOps

Владислав Гончаренко girafe.ai





#### Владислав Гончаренко

- Автор курсов по машинному обучению и магистерской программы в МФТИ
- Исследователь МЛ (аспирант Физтеха)
- Руководитель команды ранжирования видео в Дзене
- ех-руководитель команды восприятия в беспилотных грузовиках
- фанат open source









## Что такое MLOps?

girafe ai



#### Зачем нужен MLOps?

- Ресурсы, затрачиваемые на разработку моделей, всё растут
  - майнинг данных (сри)
  - разметка данных (люди)
  - обучение моделей (gpu)
- Воспроизводимость тренировок
  - не только в индустрии, но и в исследованиях
- Организация доставки
  - o сократить time-to-market
  - о исключить рутину
- Декомпозиция компетенций
  - более глубокое разделение труда

#### Определение

**MLOps** is a paradigm that aims to deploy and maintain machine learning models in production reliably and efficiently.

**MLOps** seeks to increase automation and improve the quality of production models, while also focusing on business and regulatory requirements

Well-known common knowledge site



#### Зачем MLOps МЛщикам?

потому что никто другой для вас её не построит!!!

Для приобщения к теме проектирования систем рекомендую system design primer

#### Стандарты разработки МЛ проектов

#### CRISP DM

- Cross-industry standard process for data mining
- o proposed in 1999
- o upgraded to ASUM-DM in 2015

#### TDSP

- Team standard Data Science Process
- by Microsoft



#### MLOps в крупных компаниях

- Amazon <a href="https://aws.amazon.com/sagemaker/mlops/">https://aws.amazon.com/sagemaker/mlops/</a>
- Google
   <u>https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning</u>
- Nvidia <a href="https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/">https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/</a>
- Яндекс: YTSaurus + Nirvana + Toloka



#### Даже Гуччи!!!



BY 

databricks

#### MLOps at Gucci: from zero to hero

An overview on implementing an MLOps solution from scratch

**Databricks** 2023



## **Темы на сегодня**



- Хранение кода
- Хранение данных
- Модель вычислений
- Логирование + визуализация
- Регулярные запуски кода

https://t.me/girafe\_ai



#### Хранение кода

- Одна локальная копия
- Много локальных копий
- Удалённые копии
- Система контроля версий (git, svn, etc.)





#### **Version Control System (VCS)**

- Source code <u>ait</u>
- Cloud remote gitlab or github
- Best practice <u>merge requests</u> (<u>pull requests</u>)





#### Дистрибуция кода

- Source code
  - клонируем проект на финальную машину
  - обновляем с помощью git pull
  - не требует структуры
- Пакеты
  - устанавливаем с помощью pip install
  - o обновляем через pip update
  - о предполагает структуру
  - для простого пакетирования подходит <u>poetry</u>



#### Хранение данных

Актуально как для датасетов, так и для готовых моделей

- Локально
- Удалённо
- Распределённо
  - небольшие данные
    - dvc
    - git LFS
  - большие данные
    - парадигма MapReduce
    - стек hadoop или система YTsaurus
  - о дата каталог <u>datahubproject.io</u>







#### **Data Version Control (DVC)**

- git for data is <u>DVC</u> (tutorials: <u>one</u>, <u>two</u>)
- Versioning and Access submodules





#### Модель вычислений

Типы вычислительных мощностей

- Железные
- Виртуальные
  - o classical VMs: KVM, vmware
  - docker
- Создаваемые под задачу
  - o Очереди задач (slurm, clearml)
  - MapReduce
  - Kubernetes, k8s (Kubeflow)
  - Serverless computing (Amazon Lambda)









#### Логирование и визуализация

Тем важнее, чем больше экспериментов и крупнее каждый из них

Подходит для экспериментов, не для логирования прода

- отсутствие
- print
- local service
  - tensorboard
- remote service
  - o ml-flow
  - clear-ml
  - kubeflow
  - w&b, neptune и прочая проприетарщина



#### **Experiments Tracker**

- Tensorboard
- MLFlow
- <u>ClearML</u>
- <u>sacred</u>
- <u>Kubeflow</u>
- <u>neptune.ai</u>
- weights and biases
- .......





#### Регулярные запуски кода

Дефакто стандарт индустри это airflow

Для других стеков применяются свои инструменты



#### Разметка данных

- Self-hosted
  - o cvat
  - o and many more
- Cloud
  - o toloka
  - o mturk





#### **Self-hosted**

Solutions specific to Computer Vision

- simple cases <u>VIA</u> (free software, standalone)
- scalable solution <u>CVAT</u> (free software, server based)
- special cases <u>hasty.ai</u> (proprietary, server based)

name good

1 Swan Yes
No

View

Annotation

Project

All of them are web based

Suggest your favorite tools in comments! (especially for other tasks)



### О чём поговорили



- Определение и важность MLOps
- Хранение кода
- Хранение данных
- Модель вычислений
- Логирование + визуализация
- Регулярные запуски кода

#### Не вошло сегодня:

- Параллелизация GPU
- Разметка данных
- Инференс
- Сохранение артефактов + восстановление

## Спасибо за внимание!

Жду вопросов и обсуждений



