Diagonalisation of Random Real Symmetric Matrices

Lasse Leth Skovsgaard Berthelsen 201504594 - lasseleth.lb@gmail.com June 5, 2019

Diagonalisation of Random Real Symmetric Matrices

Implement a function that takes a positive integer number n as the argument, generates an n^*n random real symmetric matrix (with random elements uniformly distributed in [0,1]), diagonalizes it, and returns the largest eigenvalue as the result.

Make a plot of the function (e.g. for $1 \le n \le 50$) and a reasonable fit. You can generate (pseudo)random real numbers uniformly distributed between zero and one using the *rand* function from stdlib,

 $\#define\ RND\ (double)rand()/RAND_MAX$

You can sort eigenvalues with the gsl_sort_vector function.

Results

Here is an example of a random real symmetric matrix, made with the script:

0.016	0.243	0.137	0.804	0.157
0.243	0.401	0.130	0.109	0.999
0.137	0.130	0.218	0.513	0.839
0.804	0.109	0.513	0.613	0.296
0.157	0.999	0.839	0.296	0.638

Eigenvalues

Figure 1: Homemade figure of the largest Eigenvalues