Mathematics: analysis and approaches

Higher level

Additional Practice

Counterexample & Contradiction (Non-Calculator)

ID: 4002

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [125 marks].

(a)	All solutions of $g(x) = 2$ are also solutions of $(f \circ g)(x) = 4$.	[3
(b)	All solutions of $(f \circ g)(x) = 4$ are also solutions of $g(x) = 2$.	[5

[Maximum points: 8]

onsider events A and B where $P(A) > 0$ and $P(B) > 0$. Prove that the events cannot be oth mutually exclusive and independent at the same time.	
 	•••
 	•••

2.

[Maximum points: 4]

[Maximum points: 6]

 ,	 	 	
 ,	 	 	

[Maximum points: 6]

(a)			that $\frac{x^2+1}{x} \ge 2$				[4
(b)	Hence de	etermine the la	rgest value of	a such that $\frac{(x)}{x}$	$\frac{(x^2+1)(y^2+1)}{xy} \ge $	$a ext{ for } x, y > 0.$	[2
							• •
							•

[Maximum points: 6]

Coms	ider the series $S_n = 1 + x + x^2 + \dots + x^{n-2} + x^{n-1}$ where $n \in \mathbb{Z}^+$.	
(a)	Write down an expression for the value of S_n in terms of x and n .	[1]
(b)	Hence find $f(x)$ if $x^n - 1 = f(x)S_n$.	[1]
(c)	Show that	[3]
	$2^{ab} - 1 = (2^a - 1)(1 + 2^a + 2^{2a} + \dots + 2^{a(b-2)} + 2^{a(b-1)})$	
	where $a,b \in \mathbb{Z}^+$.	
(d)	Prove by contradiction that if $2^n - 1$ is prime then n must be prime.	[3]

6.

[Maximum points: 8]

7.	[Maximum points: 8]	
	Let $N = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9}$.	
	Assume that the value of N is an integer.	
	(a) Show that $-\frac{1}{2} = 4 + 2 + \frac{4}{3} + 1 + \frac{4}{5} + \frac{2}{3} + \frac{4}{7} + \frac{4}{9} - 4N$	[2]
	(b) When the right side of the equation in part (a) is written as a single fraction in the lowest terms determine whether the denominator is even or odd.	[2]
	(c) Hence prove by contradiction that N is not an integer.	[2]
	Let $M = \sum_{n=1}^{20} \frac{1}{n}$. (d) Explain how we can modify the step of the proof in part (a) to show that M is not an integer. All other parts of the proof are identical.	[2]

ο.	[Maz	[Maximum points: 9]								
	Let f	f(x) be an odd function and $g(x)$ be an even function.								
	Prove or disprove the following									
	(a)	$(f(x))^2$ is always even	[3]							
	(b)	$f(x) \cdot g(x)$ is always odd	[2]							
	(c)	f(x) + g(x) is always odd	[4]							

9. [Maximum points: 12]

The table below shows the values of x^n for various values of x and n.

n	3 n	5 <i>n</i>	7 <i>n</i>	9 <i>n</i>
1	3	5	7	9
2	9	25	С	81
3	27	125	343	d
4	81	625	2401	6561
5	а	b	16807	59049

- (a) Write down the values of a, b, c and d.
- (b) Find the final digit of 7^{165} . [3]

[2]

(c) Prove by contradiction that $\sqrt{5}$ is irrational. [7]

4.0	F3 6 '	• ,	107
10.	Maximum	noints:	-121
10.	1,100,111110111	points.	

- (a) Prove that if a prime number p divides x^2 , where $x \in \mathbb{Z}$, then p must also divide x. [4]
- (b) Prove by contradiction that $\sqrt{11}$ is irrational. [8]

4.4	T3 f '	• ,	107
11.	Maximum	noints:	-121
,	1,100,111110,111	points.	

(a) Prove that if a prime number p divides x^2 , where $x \in \mathbb{Z}$, then p must also divide x. [4]

(b) Prove by contradiction that $\sqrt{7}$ is irrational. [8]

4.0	F3 f '	• ,	107
12.	Maximum	points:	121

Any positive integer greater than 1 is either prime, or can be written as the product of prime numbers. For example $18 = 2 \times 3 \times 3$ and $60 = 2 \times 2 \times 3 \times 5$.

(a) Write 120 as the product of prime numbers. [1]

Assume there are a finite number of prime numbers. Let these numbers be represented by p_1, p_2, \dots, p_n where $p_1 < p_2 < \dots < p_n$.

- (b) Write down the values of p_1 , p_2 and p_3 . [1]
- (c) Determine whether the following are prime or composite [3]
 - (i) $p_1 + 1$
 - (ii) $p_1p_2 + 1$
 - (iii) $p_1p_2p_3 + 1$

Consider the integer $P = p_1 p_2 \cdots p_n + 1$.

- (d) Explain why none of the prime numbers p_1, p_2, \dots, p_n divide P. [3]
- (e) Hence prove that there are an infinite amount of prime numbers. [2]
- (f) Prove or disprove the following statement: [2]

If p and q are distinct primes then pq + 1 is also prime.

13. [Maximum points: 22]

Let $f(x) = \sin x \tan x$.

(a) Find
$$f'(x)$$
. [3]

(b) Show that
$$f''(x) = \frac{\cos^4 x - \cos^2 x + 2}{\cos^3 x}$$
. [5]

Consider the graph of y = f(x) on the interval $[-3\pi/2, 3\pi/2]$.

- (c) Find the equations of the vertical asymptotes. [3]
- (d) Find the coordinates of any turning points, justifying whether they are maximum or minimum points. [5]
- (e) Show that the graph has no points of inflection. [3]
- (f) Sketch the graph of y = f(x). [3]