

量子系统的演化

定态薛定谔方程 一维无限深势阱 波数随时间的演化 连接条件 阶跃势 方势垒和隧道效应 δ势阱 谐振子

求解薛定谔方程

$$i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = \left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}, \mathbf{t}) \right\} \psi(\vec{r}, t)$$

分离变量
$$ψ(\vec{r},t) \stackrel{\text{def}}{=} u(\vec{r})f(t)$$

$$i\hbar \dot{f}(t)u(\vec{r}) = f(t) \left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right\} u(\vec{r})$$

$$\frac{i\hbar\dot{f}(t)}{f(t)} = \frac{1}{u(\vec{r})} \left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right\} u(\vec{r}) = E$$

$$\left\{-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right\}u(\vec{r}) = Eu(\vec{r})$$

u(r)称为定态波函数

$$i\hbar \dot{f}(t) = Ef(t)$$

 $\Rightarrow f(t) = \mathcal{E}e^{-\frac{i}{\hbar}Et}$

Ĥ不含t, 有一般的定态薛定谔方程

$$\widehat{H}u = Eu$$

定态的几率密度

◆几率密度

$$\rho = \psi^* \psi = u^*(\vec{r}) u(\vec{r})$$

与时间无关

◆几率流密度(与薛定谔方程的形式有关)

$$\vec{j} = i \frac{\hbar}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi) = i \frac{\hbar}{2m} (u \nabla u^* - u^* \nabla u)$$

与时间无关

◆ 几率密度和几率流不随时间改变

定态的正交性

- ◆ 不同能级的定态, 互相正交
- 文 定 を 薛 定 谔 方 程 $\left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right\} u_1 = E_1 u_1 \mathbf{1}$ $\left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right\} u_2 = E_2 u_2 \mathbf{2}$
- ◆ $u_1^* \cdot \mathbf{2} u_2 \cdot \mathbf{0}^*$, 然后积分得 $\iiint_{\mathbb{R}} u_1^* \left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right\} u_2 d^3 \vec{r}$ $\iiint_{\mathbb{R}} u_2 \left\{ -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right\} u_1^* d^3 \vec{r}$ $= (E_2 E_1) \iiint_{\mathbb{R}} u_1^* u_2 d^3 \vec{r}$

$$-\frac{\hbar^2}{2m}\iiint_{\mathbb{R}} \{u_1^* \nabla^2 u_2 - u_2 \nabla^2 u_1^*\} d^3 \vec{r} = (E_2 - E_1)(u_1, u_2)$$

◆ 利用

$$\nabla \cdot \{u_{1}^{*} \nabla u_{2} - u_{2} \nabla u_{1}^{*}\}
= \nabla u_{1}^{*} \cdot \nabla u_{2} + u_{1}^{*} \nabla^{2} u_{2} - \nabla u_{2} \cdot \nabla u_{1}^{*} - u_{2} \nabla^{2} u_{1}^{*}
= u_{1}^{*} \nabla^{2} u_{2} - u_{2} \nabla^{2} u_{1}^{*}
- \frac{\hbar^{2}}{2m} \iiint_{\mathbb{R}} \{u_{1}^{*} \nabla^{2} u_{2} - u_{2} \nabla^{2} u_{1}^{*}\} d^{3} \vec{r}
= - \frac{\hbar^{2}}{2m} \iiint_{\mathbb{R}} \nabla \cdot \{u_{1}^{*} \nabla u_{2} - u_{2} \nabla u_{1}^{*}\} d^{3} \vec{r}$$

◆ 再由散度定理,

$$\iiint_{\mathbb{R}} \nabla \cdot \{u_1^* \nabla u_2 - u_2 \nabla u_1^*\} d^3 \vec{r} = \oiint \{u_1^* \nabla u_2 - u_2 \nabla u_1^*\} \cdot d\vec{S} = 0$$

最后一步成立的原因是平方可积函数在无穷远处为零。

◆ 总之有

$$(E_2 - E_1)(u_1, u_2) = 0 \Rightarrow (u_1, u_2) = 0$$

$$(\psi_1, \psi_2) = \exp\left\{\frac{i}{\hbar}(E_1 - E_2)t\right\}(u_1, u_2) = 0$$

不同能级的定态, 互相正交

定态的能量不变

◆ 定态的叠加态

$$a\psi_1 + b\psi_2$$

- igoplus 按叠加原理,此状态表示系统处于能级 E_1 的概率为 $|a|^2$,处于能级 E_2 的概率为 $|b|^2$
- ◆ 定态的能量值不随时间改变

$$\widehat{H}u(x) = Eu(x)$$

$$\langle \widehat{H} \rangle = \int_{-\infty}^{+\infty} \psi^* \widehat{H} \psi dx = \int_{-\infty}^{+\infty} \exp\left(\frac{i}{\hbar}Et\right) u^* \widehat{H} \exp\left(-\frac{i}{\hbar}Et\right) u dx$$

$$= E \int_{-\infty}^{+\infty} u^* u dx = E$$

◆ 更一般的, 在定态(不含时)力学量本征值的相对分布不会随时间改变

定态薛定谔方程的边界条件

- ? 波函数的"标准条件":
- ◆单值?(不考虑自旋等内部状态时正确。电子的波函数, Dirac方程)
- ◆有限× (波函数可以取为函数δ(x-a))
- ◆ 连续× (对势阱 $V(x) = \delta'(x)$ 不成立)

是否单值、有限、连续,

由Schrödinger equation和统计解释决定

薛定谔方程解的分类

◆ 束缚态Bound state

粒子局限在一个范围之类。

$$\forall \varepsilon > 0, \exists L \in R,$$

$$\iiint_{r\geq L} \psi^* \psi dx dy dz < \varepsilon$$

例如氢原子中的电子, 在无穷远处的概率为零

◆ 散射态Scattering state

粒子可以运动到无穷远处。

$$\lim_{r\to\infty} u(\vec{r}) \to e^{i\vec{k}\cdot\vec{r}}$$

例如电离后的氢离子+电子

一维量子系统束缚态非简并

◆ 设有简并的两个束缚态:

$$\left\{ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right\} u_1(x) = Eu_1(x) \mathbf{0}$$

$$\left\{ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right\} u_2(x) = Eu_2(x) \mathbf{2}$$

♦ $\mathbf{0} \times u_2 - \mathbf{2} \times u_1$ 得

$$u_1 u_2'' - u_2 u_1'' = 0$$

$$\frac{d}{dx} (u_1 u_2' - u_2 u_1') = 0$$

$$u_1 u_2' - u_2 u_1' = c$$

◆ 束缚态当 $x \to \pm \infty$ 时, $u_{1,2} = 0$,因此 $c = 0, \qquad u_1 u_2' - u_2 u_1' = 0$ $\frac{u_1'}{u_1} = \frac{u_2'}{u_2}, \qquad \ln u_1 = \ln u_2 + c', \qquad u_1(x) = A u_2(x)$

两者是同一个状态。

一维定态薛定谔方程

◆ Schrödinger方程:

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x,t) + V(x)\psi(x,t)$$

◆分离变量

$$\psi(x,t) = u(x)e^{-\frac{i}{\hbar}Et}$$

$$\left\{-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right\}u(x) = Eu(x)$$

一维无限深势阱

$$V(x) = \begin{cases} 0, & |x| < \frac{a}{2}; \\ +\infty, & |x| > \frac{a}{2}. \end{cases}$$

$$\left\{-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right\}u(x) = Eu(x)$$

$$\widehat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

$$|x| > \frac{a}{2} : 动能项分部积分后知恒重,$$
总能量
$$\overline{E} = \langle \widehat{H} \rangle < +\infty \Rightarrow u(x) = 0$$

$$|x| < \frac{a}{2} :$$

$$\frac{d^2}{dx^2} u(x) = -k^2 u(x), k \stackrel{\text{def}}{=} \frac{\sqrt{2mE}}{\hbar}$$

$$\Rightarrow u(x) = A \sin(kx + \delta)$$

边界条件

无限深势阱, 是有限深势阱

$$V(x) = \begin{cases} 0, & |x| \le \frac{a}{2}; \\ V_0, & |x| > \frac{a}{2}. \end{cases}$$

的极限 $V_0 \rightarrow +\infty$

反设边界处波函数不连续,

$$x \to -\frac{a}{2}$$
, $u\left(-\frac{a}{2} + \varepsilon\right) = c \neq 0$

则 $x \sim -\frac{a}{2}$ 时

$$u'(x) \approx c\delta(x)$$

 $u''(x) \approx c\delta'(x)$

薛定谔方程

$$u^{\prime\prime}\left(-\frac{a}{2}\right) = -\left(\frac{2mV\left(-\frac{a}{2}\right)}{\hbar^2} + k^2\right)u\left(-\frac{a}{2}\right)$$

不成立: 右边为有限值且在邻域中不过零, 左边在无穷大区间震荡。

在经典物理中,牛顿第二定律在任何时空点都成立;在量子力学中,薛定谔方程必须在任何时空点成立

可见根据薛定谔方程,此例 波函数在边界必须连续

由边界条件确定积分常数

波函数在边界处连续,

$$u\left(\frac{a}{2}\right) = u\left(-\frac{a}{2}\right) = 0$$

$$A\sin\left(\pm\frac{ka}{2}+\delta\right)=0$$

A不可能为零, 所以

$$\sin\left(\pm\frac{ka}{2} + \delta\right) = 0$$

$$\frac{ka}{2} + \delta = l_1 \pi, \qquad -\frac{ka}{2} + \delta = l_2 \pi$$

$$ka = n\pi$$
, $\delta = m\pi$,

$$n = l_1 - l_2 = 0, \pm 1, \pm 2, \pm 3, \cdots$$

 $m = \frac{l_1 + l_2}{2} \iff m = 0, \frac{1}{2}$

$$u(x) = A \sin(kx + \delta)$$

$$u(x) = A \sin\left(\frac{n\pi}{a}x + m\pi\right)$$

负号可吸收进归一化因子 A. n是奇数时, m = 1/2; n是偶数时, m = 0.

$$|x| \le \frac{a}{2} \mathbb{H}:$$

$$u_n(x) = A_n \cos k_n x, \qquad n = 1,3,5, \dots$$

$$u_n(x) = A_n \sin k_n x, \qquad n = 2,4,6, \dots$$

$$k_n \stackrel{\text{def}}{=} \frac{n\pi}{a}$$

≥ 空间反射x → -x,
 波函数不变为偶字称,波函数反号为奇字称
 ▶ 无限深势阱定态
 量子数n是奇数时,偶字称; n是偶数时,奇字称

归一化和能级

归一化

$$\int_{-\infty}^{+\infty} u^2(x) dx = 1 \Rightarrow A = \sqrt{2/a}$$

$$u_n(x) = \begin{cases} 0, & \text{if } |x| \ge \frac{a}{2}; \\ \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x + n\frac{\pi}{2}\right), & \text{if } |x| < \frac{a}{2}. \end{cases}$$

 $\hat{H} = \hat{H}^{\dagger}$,所以 $u_n(x)$ 是(边界处取0的)平方可积函数的正交完备基

$$k = \frac{\sqrt{2mE}}{\hbar} \qquad E_n = \frac{\hbar^2}{2m} \frac{\pi^2}{a^2} n^2$$

能级和定态波函数的性质

◆ 势阱中的能级是量子化的

$$E_n = \frac{\hbar^2}{2m} \frac{\pi^2}{a^2} n^2$$
, $n = 1, 2, 3, \dots$

- ◆ n = 0的能级不存在,零点能非0;与测不准关系的估算一致
- ◆ 粒子同时"在"所有的位置
- n→∞时振荡密集,无法分辨几率密度的起伏,和均匀分布一样,与经典物理学推得的分布几率一致。
- ◆ 节点 (零点) 的数目随量子数递增

宏观物体的基态

图片来源https://news.mit.edu/2020/quantum-fluctuations-jiggle-objects-0701

被冷却的"物体"(LIGO的四片 反射镜)质量相当于约10千克,包 含约10²⁶个原子。

实验中质心运动自由度达到 77 nK, 相对运动的温度仍是常温。

https://news.mit.edu/2021/motional-ground-state-ligo-0618

本征函数的完备性

- (谱分解定理)下列条件等价 1. 算符是规范的($\hat{A}^{\dagger}\hat{A} = \hat{A}\hat{A}^{\dagger}$)
- 2. 算符的本征矢构成正交完备基 (规范 基、标准基)
- 3. 算符在某组正交完备基下是对角化的

 $\widehat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$ 是厄密算符

厄密算符、反厄密算符、幺正算符是规范算符

$$\{u_n(x)|n=1,2,3,\cdots\}$$

$$= \left\{\cos\left(\frac{\pi}{a}x\right),\sin\left(2\frac{\pi}{a}x\right),\cos\left(3\frac{\pi}{a}x\right),\sin\left(4\frac{\pi}{a}x\right),\cos\left(5\frac{\pi}{a}x\right),\sin\left(6\frac{\pi}{a}x\right),\cdots\right\}$$
是 $f\left(\pm\frac{a}{2}\right) = \mathbf{0}$ 的平方可积函数 $L^2\left[-\frac{a}{2},\frac{a}{2}\right]$ 的正交完备基。

例子: 三角形曲线([-1,1]之外为零)可展开为

$$\sqrt{\frac{3}{2}}(1-|x|) \approx \frac{4\sqrt{6}}{\pi^2}u_1(x) + \frac{2}{\pi^2}(2/3)^{\frac{3}{2}}u_3(x)$$
$$\approx \frac{\sqrt{3}(2-\pi)}{2\sqrt{2}} + \frac{2\sqrt{6}}{\pi}\cos x + \frac{(2/3)^{\frac{3}{2}}}{\pi}\cos 3x$$

红色曲线比傅里叶级数收敛更快

波函数的一般解

最一般的波函数一定可以展开为

$$\psi(x,t) \equiv \sum_{n=1}^{\infty} f_n(t) u_n(x)$$

代入薛定谔方程

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = \widehat{H} \psi(x,t)$$

$$i\hbar \sum_{n=1}^{\infty} \dot{f}_n(t)u_n(x) = \sum_{n=1}^{\infty} E_n f_n(t)u_n(x)$$

$$i\hbar \sum_{n=1}^{\infty} \dot{f}_n(t) \int_{-\infty}^{+\infty} u_n(x) u_m^*(x) dx$$
$$= \sum_{n=1}^{\infty} E_n f_n(t) \int_{-\infty}^{+\infty} u_n(x) u_m^*(x) dx$$

利用波函数的正交归一性
$$\int_{-\infty}^{\infty} u_n(x)u_m^*(x)dx = \delta_{nm}$$

$$i\hbar \dot{f}_n(t) = E_n f_n(t)$$

$$f_n(t) = c_n \exp\left\{-\frac{iE_n t}{\hbar}\right\}$$

$$\psi(x,t) \equiv \sum_{n=1}^{\infty} c_n \exp\left\{-\frac{iE_n t}{\hbar}\right\} u_n(x)$$

展开系数 c_n 待定

利用初值确定展开系数

$$\psi(x,t) \equiv \sum_{n=1}^{\infty} c_n \exp\left\{-\frac{iE_n t}{\hbar}\right\} u_n(x)$$

$$\psi(x,0) \equiv \sum_{n=1}^{\infty} c_n u_n(x)$$

利用波函数的正交归一性
$$\int_{-\infty}^{\infty} u_n(x)u_m^*(x)dx = \delta_{nm}$$

$$c_n = \int_{-\infty}^{+\infty} u_n^*(x) \psi(x, 0) dx = \langle E_n | \psi \rangle$$

各定态分量的相位随时间变化:

$$\psi(x,t) \equiv \sum_{n=1}^{\infty} c_n \exp\left\{-\frac{iE_n t}{\hbar}\right\} u_n(x)$$

波包的扩散-几率密度

初始时刻粒子被限制在宽0.2的势阱中,处于基态

撤除窄势阱的两壁,使粒子处于宽为2的无限深势阱中,几率密度立即开始扩散

几率分布随时间的动态演化

取势阱宽2米,人处于势阱中, 约需10²⁶年才能看到明显的波包扩散 电子质量小,只需约10²秒;在原子中需时更短

$$j(x,t) = i\frac{\hbar}{2m} \left(\psi \frac{\partial}{\partial x} \psi^* - \psi^* \frac{\partial}{\partial x} \psi \right)$$

$$i \in \mathcal{E}, \quad \text{MULPARTALE}$$

波包的扩散-波函数

无限深势阱中粒子运动的时空图

色调表示波函数的相位饱和度表示波函数模长

阶跃势

$$V(x) = \begin{cases} 0, & x < 0, \\ V_0, & x > 0. \end{cases}$$

粒子能量 $V_0 > E > 0$, 从左边入射

练习: 是否有E < 0的解?

$$\left\{-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right\}u(x) = Eu(x)$$

$$x < 0:$$

$$-\frac{\hbar^2}{2m} \frac{d^2 u}{dx^2} = Eu, \qquad u'' = -\frac{2mE}{\hbar^2} u \equiv -k_1^2 u$$

$$k_1 \stackrel{\text{def}}{=} \sqrt{2mE}/\hbar$$

通解为

$$u(x) = A e^{ik_1x} + B e^{-ik_1x}$$

$$x > 0$$
:
 $-\frac{\hbar^2}{2m}u'' + V_0 u = Eu, \qquad u'' = \frac{2m(V_0 - E)}{\hbar^2}u \equiv k_2^2 u$
 $k_2 \stackrel{\text{def}}{=} \sqrt{2m(V_0 - E)}/\hbar$

通解为

$$u(x) = Ce^{k_2x} + De^{-k_2x}$$

边界条件

由波函数的几率解释,

波函数一般应该可归一化 (平面波除外)

$$\int_{-\infty}^{\infty} |\psi(x,t)|^2 dx = 1,$$

而

$$1 = \int_{-\infty}^{\infty} |\psi(x, t = 0)|^2 dx = \int_{-\infty}^{\infty} u^2(x) dx > \int_{0}^{\infty} u^2(x) dx$$

 \Rightarrow

$$C = 0$$
, $u(x) = De^{-k_2 x}$, $(x < 0)$

 e^{k_2x} 这种分布在区间[a,a+d]的几率,当 $a\to +\infty$ 时为无穷大即粒子只能出现在无穷远处,出现在离原点距离有限的区域几率为零。没有物理意义。

$$u(x) = \begin{cases} Ae^{ik_1x} + Be^{-ik_1x}, & x < 0; \\ De^{-k_2x}, & x > 0. \end{cases}$$
$$\left\{ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right\} u(x) = Eu(x)$$

x = 0处u(0 -), u(0 +)均有限, 如果 $u(0 -) \neq u(0 -)$, 则 $u''(0) \propto \delta'(x)$, 定态薛定谔方程不成立 ⇒波函数连续:

$$A + B = D$$

对定态薛定谔方程积分一次,

$$u'(0+) - u'(0-) = \int_{0-}^{0+} u''(x)dx$$
$$= \frac{2m}{\hbar^2} \int_{0-}^{0+} (-E + V(x))u(x)dx \to 0$$

波函数一阶导数连续,

$$A - B = i \frac{k_2}{k_1} D$$

波函数的衔接条件:

势函数的有限跳跃点处, 波函数及其一阶导数连续

$$u(x) = \begin{cases} \frac{D}{2} \left(1 + i \frac{k_2}{k_1} \right) e^{ik_1 x} + \frac{D}{2} \left(1 - i \frac{k_2}{k_1} \right) e^{-ik_1 x}, & x \le 0; \\ De^{-k_2 x}, & x > 0. \end{cases}$$

讨论

平面波无法归一化,可取入射波振幅为1

$$u(x) = \begin{cases} e^{ik_1x} + \frac{1 - i\frac{k_2}{k_1}}{1 + i\frac{k_2}{k_1}} e^{-ik_1x}, & x \le 0; \\ \frac{2}{1 + i\frac{k_2}{k_1}} e^{-k_2x}, & x > 0. \end{cases}$$

向右的行波(入射波)向左的行波(反射波)两者振幅的模长相等,相位不同,形成驻波

$$r=rac{1-irac{k_2}{k_1}}{1+irac{k_2}{k_1}}, \qquad t=0$$
 $\Rightarrow |r|^2=1\;(反射率)$ 求波节的位置,几率流

透入距离

$$\frac{1}{k_2} = \frac{\hbar}{\sqrt{2m(V_0 - E)}}$$

方势垒

$$V(x) = \begin{cases} 0, & x < 0; \\ V_0, & 0 < x < a; \\ 0 & x > a. \end{cases}$$

设粒子从左方入射, $0 < E < V_0$.

练习: $E \leq 0$ 的解是否存在?

牛顿力学预期粒子会被反弹

$$\left\{-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right\}u(x) = Eu(x)$$

$$u(x) = \begin{cases} A_1 e^{ik_1 x} + B_1 e^{-ik_1 x}, & x \le 0; \\ A_2 e^{k_2 x} + B_2 e^{-k_2 x}, & 0 < x < a; \\ A_3 e^{ik_1 x} + B_3 e^{-ik_1 x}, & x \ge a. \end{cases}$$

$$k_1^2 \stackrel{\text{def}}{=} \frac{2mE}{\hbar^2}$$
, $k_2^2 \stackrel{\text{def}}{=} \frac{2m(V_0 - E)}{\hbar^2}$

边界条件

设粒子从左边入射,则在x > a区域只有透射波,没有反射波,即 $B_3 = 0$

类似前面的例题,可由几率解释和薛定谔方程得出: 在连接点处

- (1) 波函数连续
- (2)波函数的一次导数连续可得各系数之间的关系。

练习: 取入射波的振幅 $A_1 = 1$, a = 1, $k_1 = k_2 = 1$ 确定系数 A_i , B_i .

隧穿效应

$$u(x) = \begin{cases} A_1 e^{ik_1 x} + B_1 e^{-ik_1 x}, & x \le 0; \\ A_2 e^{k_2 x} + B_2 e^{-k_2 x}, & 0 < x < a; \\ A_3 e^{ik_1 x}, & x \ge a. \end{cases}$$

不仅有被反射的行波, 还有透射波

(Quantum tunnelling effect)

$$k_2 a \gg 1$$
 时
$$T \approx \frac{16E(V_0 - E)}{V_0^2} e^{-2k_2 a}$$

$$= \frac{16E(V_0 - E)}{V_0^2} e^{-\frac{2a}{\hbar}\sqrt{2m(V_0 - E)}}$$

思考: 估算人穿过墙壁的几率

Scanning Tunneling Microscopy原理

隧道电流

$$J_T \propto U_T e^{-A\sqrt{\phi}d}$$
,
其中 U_T 是偏压, ϕ 是势垒高度,
d是探针与表面的距离, A 是常数

STM发明人

Gerd Bining (right) and Heinrich Rohrer with the STM they designed 1986 Nobel prize

G. Binning and H. Rohrer, Helvetica Physica Acta 55, 726 (1982).

Low Temperature Scanning Tunneling Microscope

STM图片

铁原子附着在铜表面形成 直径14.3nm的量子围栏

STM可以绘制表面的三维图

目前精度:横向0.1nm,纵向0.01nm

可以探测DNA等分子结构;

可以操纵、移动单个原子或分子

用氙Xenon原子在镍表面写字

表面上写的汉字用在铁原子在铜

$$V(x) = -\alpha \delta(x), \alpha > 0$$

薛定谔方程

$$u''(x) = -\frac{2m}{\hbar^2} (E + \alpha \delta(x)) u(x)$$

求束缚态解(E < 0):

$$\begin{cases} u(x) = u_1(x) = A e^{kx}, & \text{if } x < 0; \\ u(x) = u_2(x) = B e^{-kx}, & \text{if } x > 0 \end{cases}$$

$$k \stackrel{\text{def}}{=} \sqrt{-2mE}/\hbar$$

波函数在x=0的邻域必须满足薛定谔方程: 对薛定谔方程积分

$$u'(x) = -\frac{2mE}{\hbar^2} \int_{-b}^{x} u(s)ds - \frac{2m\alpha}{\hbar^2} u(0)\theta(x) + u'(b)$$

$$\Rightarrow u'(0+) - u'(0-) = -\frac{2m\alpha}{\hbar^2} u(0)$$

再积分一次,

$$u(+\epsilon) - u(-\epsilon) = \int_{-\epsilon}^{+\epsilon} u' dx$$

$$= -\frac{2mE}{\hbar^2} \int_{-\epsilon}^{+\epsilon} \int_{-b}^{x} u(s) ds \, dx - \frac{2m\alpha}{\hbar^2} u(0) \int_{-\epsilon}^{+\epsilon} \theta(x) dx + u'(b) 2\epsilon = \mathcal{O}(\epsilon^1)$$

$$\to 0$$

$$\Rightarrow u(0, +) - u(0, -) = 0$$

$$\Rightarrow u(0+) - u(0-) = 0$$

$$\begin{cases} u(x) = u_1(x) = A e^{kx}, & \text{if } x < 0; \\ u(x) = u_2(x) = B e^{-kx}, & \text{if } x > 0 \end{cases}$$

$$u_1(0) = u_2(0) \Rightarrow A = B$$

$$u_2'(0) - u_1'(0) = -\frac{2m\alpha}{\hbar^2} u(0)$$

$$\Rightarrow -2kA = -\frac{2m\alpha}{\hbar^2} A \Rightarrow k = \frac{m\alpha}{\hbar^2}$$

$$k = \sqrt{-2mE}/\hbar \Rightarrow E = -\frac{m\alpha^2}{2\hbar^2}$$

リヨー化
$$\int_{-\infty}^{+\infty} u^2(x) dx = 1 \Rightarrow A = \sqrt{k}$$

散射态

$$E > 0$$
, 左侧入射:

$$\begin{cases} u(x) = Ae^{ikx} + Be^{-ikx}, & \text{if } x < 0; \\ u(x) = Ce^{ikx} + De^{-ikx}, & \text{if } x > 0 \end{cases}$$
$$k \stackrel{\text{def}}{=} \sqrt{2mE}/\hbar$$

前面已推得衔接条件:

$$u(0+) - u(0-) = 0$$

$$u'(0+) - u'(0-) = -\frac{2m\alpha}{\hbar^2}u(0)$$

粒子从左侧入射:

$$B = 0$$

$$\diamondsuit A = 1$$

$$\begin{cases} u(x) = e^{ikx}, & \text{if } x < 0; \\ u(x) = \frac{\hbar^2 k}{\hbar^2 k - im\alpha} e^{ikx} + \frac{im\alpha}{\hbar^2 k - im\alpha} e^{-ikx}, & \text{if } x > 0 \end{cases}$$

振幅反射率
$$r = \frac{im\alpha}{\hbar^2 k - im\alpha}$$
振幅透射率
$$t = \frac{\hbar^2 k}{\hbar^2 k - im\alpha}$$

反射率
$$R = |r|^2 = \frac{m^2 \alpha^2}{\hbar^4 k^2 + m^2 \alpha^2}$$
 振幅透射率
$$T = |t|^2 = \frac{\hbar^4 k^2}{\hbar^4 k^2 + m^2 \alpha^2}$$
 几率守恒
$$R + T = 1$$

- 束缚态是分立谱,散射态为连续谱
- ▶ 能量越大, 透射几率越大
- > 势垒越深, 透射几率越小
- > 势垒与势阱, 反射率和透射率相同
- ▶ 散射态简并: 左或右入射的状态, 能量可以相同

微振动系统的哈密顿量

力学系统在稳定平衡位置附近的微振动 V(x)

$$= V(x_0) + \frac{dV}{dx} \bigg|_{x=x_0} + \frac{1}{2!} \frac{d^2V}{dx^2} \bigg|_{x=x_0} (x - x_0)^2 + \mathcal{O}(\epsilon^3)$$

❶力的平衡条件

$$F = -\frac{dV}{dx}\Big|_{x=x_0} = 0$$

- 2作用势的可舍弃
- 3舍弃高阶小量

势能函数泰勒展开的领头项是二次多项式

$$V(x) = \frac{1}{2}kx^2$$

多自由度系统的微振动, 可以得到类似的结论

$$V(x) = \frac{1}{2}kx^2, \qquad x \in \mathbb{R}$$

谐振子的定态薛定谔方程

谐振子的哈密顿量

$$H = T + V = \frac{1}{2m}p^2 + \frac{1}{2}kx^2, \qquad x \in \mathbb{R}$$

定态薛定谔方程

$$\left\{-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2x^2\right\}u(x) = Eu(x), \qquad \omega \stackrel{\text{def}}{=} \frac{k}{m}$$

令

$$x \stackrel{\text{def}}{=} \sqrt{\frac{\hbar}{m\omega}} \xi$$
, $E \stackrel{\text{def}}{=} \lambda \cdot \frac{1}{2} \hbar \omega$, $u \stackrel{\text{def}}{=} h(\xi) e^{\frac{1}{2} \xi^2}$

化简为Hermite方程

$$\left(\frac{d^2}{d\xi^2} - 2\xi \frac{d}{d\xi} + \lambda - 1\right) h(\xi) = 0$$

解为Hermite多项式

$$\lambda = 2n + 1, \qquad n = 0,1,2,\cdots$$

$$h(\xi) = H_n(\xi) = (-1)^n e^{\xi^2} \frac{d^n}{d\xi^n} e^{-\xi^2}$$

其它的特征值求出的幂级数解

$$h(\xi) \xrightarrow{\xi \to \pm \infty} e^{\xi^2}$$
, $u \to e^{\frac{1}{2}\xi^2}$
按统计解释, 粒子永远在无穷远处;
且能量无穷大
没有物理意义

一维谐振子的定态波函数

能级

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega,$$

$$n = 0, 1, 2, \dots$$

定态波函数

$$u_n(x) = \sqrt{\frac{\beta}{2^n n! \sqrt{\pi}}} e^{-\frac{y^2}{2}} H_n(y)$$

$$eta \stackrel{ ext{def}}{=} \left(rac{m \omega}{\hbar}
ight)^{rac{1}{2}}$$
, $y \stackrel{ ext{def}}{=} eta x$, H_n 是 Hermite 多 项 式 , $H_n(y) = (-1)^n e^{y^2} rac{d^n}{dy^n} e^{-y^2}$

- $ightharpoonup u_n$ 是平方可积函数 $L^2[-\infty,\infty]$ 的正交完备基
- ▶ 能极间隔为hv,与旧量子论的Planck假设一致
- ▶ 存在零点能,谐振子不可能完全静止, Casimir效应
- ▶ 宇称为(-1)ⁿ

$$H_0 = 1,$$
 $H_1 = 2\xi,$ $H_2 = 4\xi^2 - 2,$ $H_3 = 8\xi^3 - 12\xi$

概率密度: 经典力学与量子力学

◆ 经典力学允许区

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = E$$

$$x_{\text{max}} = \sqrt{2E/k} = \sqrt{\frac{(2n+1)\hbar}{m\omega}}$$

◆ 经典运动概率分布

$$\rho dx \propto dt$$

$$\Rightarrow \rho \propto \frac{1}{v} = \sqrt{\frac{m}{2E - kx^2}} = \frac{1}{\sqrt{(2n+1)\frac{\hbar\omega}{m} - \omega^2 x^2}}$$

◆ 归一化

$$\int_{-1}^{1} \frac{dx}{\sqrt{1 - x^2}} = \pi$$

$$\rho(x) = \frac{1}{\pi} \frac{1}{\sqrt{(2n + 1)\frac{\hbar}{m\omega} - x^2}}$$

n = 20 经典概率密度 量子概率密度 经典力学禁止区