

Sabancı

1. Consider the recurrence

$$T(n) = \begin{cases} 9T(n/3) + \mathcal{O}(n^2) & \text{for } n > 1\\ 1 & \text{for } n = 1. \end{cases}$$
 (1)

Solve the recurrence to find a tight upper bound by using substitution method.

- 2. An algorithm solves a problem of size n by dividing it into 5 sub-problems, each of which has the size of n/2, and it recursively solves each of these 5 sub-problems. Then it combines solutions of sub-problems to form the solution of the initial problem in linear time $(\mathcal{O}(n))$.
 - (a) Write the recurrence of this algorithm.
 - (b) Solve the recurrence to find a tight bound for the recurrence by using a recursion tree.
- 3. For the below functions, show which of the asymptotic bounds hold for f(n).
 - 1. $\mathcal{O}(q(n))$
 - 2. $\Omega(g(n))$
 - 3. Both (i.e. $\Theta(q(n))$)

In order to get full-credit, you need to find constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$, if you think that f(n) is $\mathcal{O}(g(n))$. Similarly, find c and n_0 such that $f(n) \geq c \cdot g(n)$ for all $n \ge n_0$, if f(n) is $\Omega(g(n))$. (NOTE: Every log is base 2.)

(a)
$$f(n) = 3n^2$$
 $g(n) = n^2$

(b)
$$f(n) = 2n^4 - 3n^2 + 7$$
 $g(n) = n^5$

(c)
$$f(n) = \frac{\log n}{n}$$
 $g(n) = \frac{1}{n}$

(c)
$$f(n) = \frac{\log n}{n}$$
 $g(n) = \frac{1}{n}$
(d) $f(n) = \log n$ $g(n) = \log n + \frac{1}{n}$

(e)
$$f(n) = 2^{k \log n}$$
 $g(n) = n^k$

(f)
$$f(n) = 2^n$$
 $g(n) = 2^{2^n}$

(g)
$$f(n) = 2^{\sqrt{\log n}}$$
 $g(n) = (\log n)^{100}$

(a)
$$f(n) = 2$$
 $g(n) = 2$
(b) $f(n) = 2^{\sqrt{\log n}}$ $g(n) = (\log n)^{100}$
(c) $f(n) = \begin{cases} 4^n & n < 2^{1000} \\ 2^{1000}n^2 & n \ge 2^{1000} \end{cases}$ $g(n) = \frac{n^2}{2^{1000}}$

- 4. State the runtime recurrence if it is not given. Then find the asymptotic running time (big-O) of the following algorithms using the Master theorem. If it is not solvable using Master theorem, explain your reasoning.
 - (a) T(n) = 3T(n/4) + O(n)
 - (b) An algorithm solves a problem of size n by dividing it into 2^n sub-problems of size n/2, and recursively solves corresponding sub-problems. It takes linear time, $\mathcal{O}(n)$ to combine solutions of the sub-problems.