

SEQUENCE LISTING

HEALTH AND SCIENCES UNIVERSITY
BURROWS, GREGORY G.
VANDENBARK, ARTHUR A.

DEC 1 4 2001

TECH CENTER 1600/2900

<120> RECOMBINANT MHC MOLECULES USEFUL FOR MANIPULATION OF ANTIGEN-SPECIFIC T-CELLS

<130>	RECEIVED														
<140> <141>	US 09/847,172 2001-05-01	DEC 1 4 2001													
<150> <151>	US 60/200,942 2000-05-01														
	US 09/153,586 1998-09-15														
	US 60/064,555 1997-10-10														
	US 60/064,552 1997-09-16														
<160>	44														
<170>	PatentIn version 3.1														
<220> <221> <222>															
<223>															
	ggc aga gac tcc cca agg ga	at ttc gtg tac cag ttc aag g sp Phe Val Tyr Gln Phe Lys G 10													
		eag cgc ata cgg gat gtg atc In Arg Ile Arg Asp Val Ile 25 30													
	e Tyr Asn Gln Glu Glu Tyr I	etg cgc tac gac agc gac gtg eu Arg Tyr Asp Ser Asp Val 0 45													
		ggg cgg ccc tca gcc gag tac ly Arg Pro Ser Ala Glu Tyr 60													

					gag Glu											239
_					999 Gly 85	_		_	_							287
					att Ile											335
					tat Tyr											383
-		_		_	ttc Phe			_	_	_	_	_	_			431
					ttt Phe		_	_		_		_				479
					gct Ala 165											527
_					acc Thr					taa	ctcg	gag				566
<210> 2 <211> 185 <212> PRT <213> Rattus sp.																
<400)> 2	2														
Met 1	Gly	Arg	Asp	Ser 5	Pro	Arg	Asp	Phe	Val 10	Tyr	Gln	Phe	Lys	Gly 15	Leu	
Cys	Tyr	Tyr	Thr 20	Asn	Gly	Thr	Gln	Arg 25	Ile	Arg	Asp	Val	Ile 30	Arg	Tyr	
Ile	Tyr	Asn 35	Gln	Glu	Glu	Tyr	Leu 40	Arg	Tyr	Asp	Ser	Asp 45	Val	Gly	Glu	
Tyr	Arg	Ala	Leu	Thr	Glu	Leu 55	Gly	Arg	Pro	Ser	Ala	Glu	Tyr	Phe	Asn	

r

Lys 65	Gln	Tyr	Leu	Glu	Gln 70	Thr	Arg	Ala	Glu	Leu 75	Asp	Thr	Val	Cys	Arg 80	
His	Asn	Tyr	Glu	Gly 85	Ser	Glu	Val	Arg	Thr 90	Ser	Leu	Arg	Arg	Leu 95	Gly	
Gly	Gln	Asp	Asp 100	Ile	Glu	Ala	Asp	His 105	Val	Ala	Ala	Tyr	Gly 110	Ile	Asn	
Met	Tyr	Gln 115	Tyr	Tyr	Glu	Ser	Arg 120	Gly	Gln	Phe	Thr	His 125	Glu	Phe	Asp	
Gly	Asp 130	Glu	Glu	Phe	Tyr	Val 135	Asp	Leu	Asp	Lys	Lys 140	Glu	Thr	Ile	Trp	
Arg 145	Ile	Pro	Glu	Phe	Gly 150	Gln	Leu	Thr	Ser	Phe 155	Asp	Pro	Gln	Gly	Gly 160	
Leu	Gln	Asn	Ile	Ala 165	Ile	Ile	Lys	His	Asn 170	Leu	Glu	Ile	Leu	Met 175	Lys	
Arg	Ser	Asn	Ser 180	Thr	Gln	Ala	Val	Asn 185								
<210> 3 <211> 113 <212> DNA <213> Artificial Sequence																
<220 <223		Antig	jen/l	inke	er in	sert	:									
<220 <221 <222 <223	.> (CDS (3)	(113	3)												
cc a	let C	gc a			er P		_	_	er G	_	igg a irg T			sp G	_	47
											cta Leu					95
		ggt Gly														113

35

```
<210> 4
<211> 37
<212> PRT
<213> Artificial Sequence
<220>
<223> Antigen/linker insert
<400> 4
Met Gly Arg Asp Ser Pro Gln Lys Ser Gln Arg Thr Gln Asp Glu Asn
               5
                                   10
Pro Val Val His Phe Gly Gly Gly Ser Leu Val Pro Arg Gly Ser
Gly Gly Gly Ser
       35
<210> 5
<211> 83
<212> DNA
<213> Artificial Sequence
<220>
<223> Alternative antigen encoding sequences for the expression cassett
<220>
<221> CDS
<222> (3)..(83)
<223>
<400> 5
cc atg ggc aga gac tcc tcc ggc aag gat tcg cat cat gcg gcg cgg
                                                                     47
  Met Gly Arg Asp Ser Ser Gly Lys Asp Ser His His Ala Ala Arg
                                      10
                                                                     83
acg acc cac tac ggt gga ggt gga ggc tca cta gtg
Thr Thr His Tyr Gly Gly Gly Gly Ser Leu Val
               20
<210> 6
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Alternative antigen encoding sequences for the expression cassett
```

•

<400> 6 Met Gly Arg Asp Ser Ser Gly Lys Asp Ser His His Ala Ala Arg Thr 5 10 Thr His Tyr Gly Gly Gly Gly Ser Leu Val <210> 7 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> Alternative antigen encoding sequences for the expression cassett <220> <221> CDS <222> (3)..(89) <223> <400> 7 cc atg ggc aga gac tcc aaa ctg gaa ctg cag tcc gct ctg gaa gaa 47 Met Gly Arg Asp Ser Lys Leu Glu Leu Gln Ser Ala Leu Glu Glu 10 89 gct gaa gct tcc ctg gaa cac gga ggt gga ggc tca cta gtg Ala Glu Ala Ser Leu Glu His Gly Gly Gly Ser Leu Val 20 <210> 8 <211> 29 <212> PRT <213> Artificial Sequence <220> Alternative antigen encoding sequences for the expression cassett <223> <400> 8 Met Gly Arg Asp Ser Lys Leu Glu Leu Gln Ser Ala Leu Glu Glu Ala 5 10 15

Glu Ala Ser Leu Glu His Gly Gly Gly Ser Leu Val

25

<210> 9

20

е

```
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 9
                                                                     28
aattcctcga gatggctctg cagacccc
<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 10
tcttgacctc caagccgccg cagggaggtg
                                                                     30
<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 11
                                                                     31
cggcggcttg gaggtcaaga cgacattgag g
<210> 12
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 12
gcctcggtac cttagttgac agcttgggtt gaatttg
                                                                    37
<210> 13
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 13
cagggaccat gggcagagac tcccca
                                                                    26
```

<210> <211>	14 30	
	DNA	
<213>	Artificial Sequence	
<220>		
	DCD primar	
<223>	PCR primer	
<400>	14	
gcctcct	tcga gttagttgac agcttgggtt	30
_	3 3 3 3 3 33	
<210>	15	
<211>	128	
<212>	DNA .	
	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	15	
gaaatco	ccgc ggggagcctc cacctccaga gcctcggggc actagtgagc ctccacctcc	60
gaagtgo	cacc actgggttct catcctgagt cctctggctc ttctgtgggg agtctctgcc 🕟	120
ctcagto	CC	128
•		
<210>	16	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	16	
gctcccc	egeg ggatttegtg taccagttea a	31
010	10	
<210>	17	
<211>	92	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
-400-	17	
<400>	17	60
Lattacc	catg ggcagagact cctccggcaa ggattcgcat catgcggcgc ggacgaccca	60
ct accct	rana antanagast cactantace ce	92
ccacygi	egga ggtggagget cactagtgee ee	36

<210> 18

<211> <212> <213>	92 DNA Arti	ficia	al Se	equei	nce											
<220> <223>	PCR	prime	er													
<400> ggggcac	18 tag	tgago	ctco	ca co	ctcca	accgt	t agi	tgggt	cgt	ccg	cgcc	gca	tgato	gcga	at	60
ccttgcc	:gga	ggagt	ctct	g co	ccat	ggtaa	a ta									92
<211>	19 98 DNA Arti	ficia	al Se	equei	nce											
<220> <223>	PCR	prime	er													
tattacc										gcto	ctgga	aag	aagct	gaa	.gc	60
ttccctg	gaa	cacgg	gaggt	g ga	aggct	cact	t agt	gcc	cc							98
<211> <212> <213>				equer	nce											
	20	prime tgago		a co	etecç	gtgtt	c cca	aggga	agc	ttca	agctt	cct 1	tccag	gagc	99	60
actgcag	ittc	cagtt	tgga	ıg to	ctctg	gccca	a tgg	gtaat	a							98
<211> <212>	21 184 PRT Homo	sapi	ens.													
<400>	21															
Gly Ser 1	His	Ser	Met 5	Arg	Tyr	Phe	Tyr	Thr 10	Ala	Met	Ser	Arg	Pro 15	Gly		
Arg Gly	Glu	Pro 20	Arg	Phe	Ile	Ala	Val 25	Gly	Tyr	Val	Asp	Asp 30	Thr	Gln		

Phe Val Arg Phe Asp Ser Asp Ala Ala Ser Pro Arg Thr Glu Pro Arg

35 40 45

Pro Pro Trp Ile Glu Gln Glu Gly Pro Glu Tyr Trp Asp Arg Asn Thr 50 55 60

Gln Ile Phe Lys Thr Asn Thr Gln Thr Tyr Arg Glu Asn Leu Arg Ile
65 70 75 80

Ala Leu Arg Tyr Tyr Asn Gln Ser Glu Ala Gly Ser His Ile Ile Gln 85 90 95

Arg Met Tyr Gly Cys Asp Leu Gly Pro Asp Gly Arg Leu Leu Arg Gly
100 105 110

His Asp Gln Ser Ala Tyr Asp Gly Lys Asp Tyr Ile Ala Leu Asn Glu 115 120 125

Asp Leu Ser Ser Trp Thr Ala Ala Asp Thr Ala Ala Gln Ile Thr Gln 130 135 140

Arg Lys Trp Glu Ala Ala Arg Val Ala Glu Gln Leu Arg Ala Tyr Leu 145 150 155 160

Glu Gly Leu Cys Val Glu Trp Leu Arg Arg Tyr Leu Glu Asn Gly Lys 165 170 175

Glu Thr Leu Gln Arg Ala Asp Pro 180

<210> 22

<211> 174

<212> PRT

<213> Homo sapiens

<400> 22

Arg Pro Arg Phe Leu Trp Gln Leu Lys Phe Glu Cys His Phe Phe Asn 1 5 10 15

Gly Thr Glu Arg Val Arg Leu Leu Glu Arg Cys Ile Tyr Asn Gln Glu 20 25 30

Glu Ser Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr 35 40 45

Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu 55 Leu Glu Gln Arg Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr 70 75 Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Glu Glu His Val 90 Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe 100 Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys 115 120 Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe 135 Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu 150 155 Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn 165 170 <210> 23 <211> 174 <212> PRT <213> Mus sp. <400> 23 Arg Pro Trp Phe Leu Glu Tyr Cys Lys Ser Glu Cys His Phe Tyr Asn Gly Thr Gln Arg Val Arg Leu Leu Val Arg Tyr Phe Tyr Asn Leu Glu 20 Glu Asn Leu Arg Phe Asp Ser Asp Val Gly Glu Phe Arg Ala Val Thr 35 40 45 Glu Leu Gly Arg Pro Asp Ala Glu Asn Trp Asn Ser Gln Pro Glu Phe

55

Leu Glu Gln Lys Arg Ala Glu Val Asp Thr Val Cys Arg His Asn Tyr

50

65	70	75	80

Glu Ile Phe Asp Asn Phe Leu Val Pro Arg Arg Val Glu Glu His Thr 85 90 95

Ile Ile Gln Ala Glu Phe Tyr Leu Leu Pro Asp Lys Arg Gly Glu Phe
100 105 110

Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Ile Glu Lys
115 120 125

Ser Glu Thr Ile Trp Arg Leu Glu Glu Phe Ala Lys Phe Ala Ser Phe 130 135 140

Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu 145 150 155 160

Asp Val Met Lys Glu Arg Ser Asn Asn Thr Pro Asp Ala Asn 165 170

<210> 24

<211> 180

<212> PRT

<213> Rattus sp.

<400> 24

Met Gly Arg Asp Ser Pro Arg Asp Phe Val Tyr Gln Phe Lys Gly Leu 1 5 10 15

Cys Tyr Tyr Thr Asn Gly Thr Gln Arg Ile Arg Asp Val Ile Arg Tyr
20 25 30

Ile Tyr Asn Gln Glu Glu Tyr Leu Arg Tyr Asp Ser Asp Val Gly Glu
35 40 45

Tyr Arg Ala Leu Thr Glu Leu Gly Arg Pro Ser Ala Glu Tyr Trp Asn 50 55 60

Ser Gln Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val 65 70 75 80

Cys Arg His Asn Tyr Glu Gly Ser Glu Val Arg Thr Ser Leu Arg Arg
85 90 95

Leu Ala Asp His Val Ala Ala Tyr Gly Ile Asn Met Tyr Gln Tyr Tyr 100 105 Glu Ser Arg Gly Gln Phe Thr His Glu Phe Asp Gly Asp Glu Glu Phe 120 Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Arg Ile Pro Glu Phe 130 135 Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala 145 150 155 Ile Ile Lys His Asn Leu Glu Ile Leu Met Lys Arg Ser Asn Ser Thr 165 170 Gln Ala Val Asn 180 <210> 25 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Artificial peptide <400> 25 Gly Ser Leu Pro Gln Lys Ser Gln Arg Ser Gln Asp Glu Asn Pro Val 5 10 Val His Phe <210> 26 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Artificial peptide <400> 26 Ser Gly Lys Asp Ser His His Ala Ala Arg Thr Thr His Tyr Gly 10

```
<210> 27
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 27
Lys Leu Glu Leu Gln Ser Ala Leu Glu Glu Ala Glu Ala Ser Leu Glu
His
<210> 28
<211> 95
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 28
tattaccatg ggcagagact ccccacagaa gagccagagg tctcaggatg agaacccagt
                                                                     60
                                                                     95
ggtgcacttc ggaggtggag gctcactagt gcccc
<210> 29
<211> 94
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 29
ggggcactag tgagcctcca cctccgaagt gcaccactgg gttctcatcc tgagacctct
                                                                     60
ggctcttctg tggggagtct ctgcccatgg taat
                                                                     94
<210> 30
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 30
Gly Ser Leu Pro Gln Lys Ser Gln Arg Thr Gln Asp Glu Asn Pro Val
```

Val His Phe <210> 31 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 31 29 attaccatgg gggacacccg accacgttt <210> 32 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 32 ggatgatcac atgttcttct ttgatgactc gccgctgcac tgtga 45 <210> 33 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 33 tcacagtgca gcggcgagtc atcaaagaag aacatgtgat catcc 45 <210> 34 <211> 37 <212> DNA

10

15

37

<210> 35 <211> 20

<223> PCR primer

<220>

<400> 34

<213> Artificial Sequence

tggtgctcga gttaattggt gatcggagta tagttgg

1

5

```
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 35
                                                                    20
taatacgact cactataggg
<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 36
                                                                    19
gctagttatt gctcagcgg
<210> 37
<211> 132
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
aggetgecae aggaaacgtg ggeetecaee tecagageet eggggeaeta gtgageetee 60
acctccacgc ggggtaacga tgtttttgaa gaagtgaaca accgggtttt ctcgggtgtc
                                                                   120
ccccatggta at
                                                                   132
<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 38
                                                                    20
ccacgtttcc tgtggcagcc
<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
```

```
<400> 39
                                                                     22
tcaaagtcaa acataaactc gc
<210> 40
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 40
gcgagtttat gtttgacttt ga
                                                                     22
<210> 41
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 41
Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr Pro Arg
               5
<210> 42
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 42
Ala Thr Gly Phe Lys Gln Ser Ser Lys Ala Leu Gln Arg Pro Val Ala
               5
Ser
<210> 43
<211> 641
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (3)..(635)
```

I	atg									cac His				47	
													tct Ser	95	
					_	_		_		_	 	_	cat His	143	
													tat Tyr	191	
													cgg Arg	239	
		_		_			_	_				_	cag Gln 95	287	
									Val	gac Asp			aga Arg	335	
				_		 _				cag Gln	 _	_		383	
										tat Tyr				431	
										gat Asp 155				479	
										ctt Leu				527	
										gcc Ala				575	
_		_		-	_	_		_	_	tcc Ser			_	623	
atc	acc	aat	taa	ctc	jag									641	

Ile Thr Asn 210 <210> 44 <211> 210

<212> PRT

<213> Homo sapiens

<400> 44

Met Gly Asp Thr Arg Glu Asn Pro Val Val His Phe Phe Lys Asn Ile 1 5 10 15

Val Thr Pro Arg Gly Gly Gly Ser Leu Val Pro Arg Gly Ser Gly 20 25 30

Gly Gly Gly Pro Arg Phe Leu Trp Gln Pro Lys Arg Glu Cys His Phe 35 40 45

Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr Asn 50 60

Gln Glu Glu Ser Val Arg Phe Asp Ser Asp Val Gly Glu Phe Arg Ala 65 70 75 80

Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys 85 90 95

Asp Ile Leu Glu Gln Ala Arg Ala Ala Val Asp Thr Tyr Cys Arg His
100 105 110

Asn Tyr Gly Val Val Glu Ser Phe Thr Val Gln Arg Arg Val Ile Lys 115 120 125

Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln 130 135 140

Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val 145 150 155 160

Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg 165 170 175

Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp 180 185 190 Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile 195 200 205

Thr Asn 210