Données haute fréquence

Analyse et modélisation statistique multi-échelle de séries chronologiques financières

Cours de Master - Paris 6 Transparents de la Partie IV : Séries financières hautes fréquences

Emmanuel Bacry Centre de Mathématiques Appliquées Ecole Polytechnique emmanuel.bacry@polytechnique

Fig. 1. Expected quote duration conditioned on time of day.

Robert F. Engle, Jeffrey R. Russell Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model, Journal of Empirical Finance 4 (1997) 187-212.

	acf
lag 1	0.083
lag 2	0.076
lag 3	0.064
lag 4	0.053
lag 5	0.059
lag 6	0.048
lag 7	0.050
lag 8	0.038
lag 9	0.048
lag 10	0.040
lag 11	0.049
lag 12	0.043
lag 13	0.039
lag 14	0.040
lag 15	0.042

Robert F. Engle, Jeffrey R. Russell

Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model, Journal of Empirical Finance 4 (1997) 187-212.

Figure 4d: IBM data

L. Bauwens, P. Giot The Logarithmic ACDModel : An Application to the Bid-Ask Quote Process of Three NYSEStocks Annales d'économie et de statistique 60 (2000)

Microstructure (and (co)variance estimation)

Key issue : (historical) variance/covariance estimation

- diffusion processes : better estimates at fine scales
 ⇒ one should use high frequency data (tick data)
- However : microstructure noise
 - Price processes are point processes
 - Prices "live" on a tick grid
 - Strong mean reversion at very small scales
 - Some references

```
In economics: Roll (1984) [Roll model], Glosten (1987),
Glosten et Harris (1988), Harris (1990)
In statistics and econometrics: Gloter and Jacod (2001)
Ait-Sahalia, Myland et Zhang (2002-2006)
```

Microstructure (and (co)variance estimation)

Key issue : (historical) variance/covariance estimation

- diffusion processes : better estimates at fine scales
 ⇒ one should use high frequency data (tick data)
- However : microstructure noise
 - Price processes are point processes
 - Prices "live" on a tick grid
 - Strong mean reversion at very small scales
 - Some references

```
In economics: Roll (1984) [Roll model], Glosten (1987), Glosten et Harris (1988), Harris (1990)
In statistics and econometrics: Gloter and Jacod (2001), Ait-Sahalia, Myland et Zhang (2002-2006)
```


FIGURE: Bund 10Y, 6 Feb 2007, 09:00–10:00 (UTC) 1 data per second.

Stylized facts of microstructure noise

Two stylized facts of microstructure noise

- signature plot
 - \rightarrow variance estimators increase when going to high frequency
- Epps effect (Epps, 1979)
 - \rightarrow correlation estimators go to 0 when going to high frequency

Signature Plot

$$V_{\Delta t} = \sum_{n=0}^{1 day/\Delta t} |X((n+1)\Delta t) - X(n\Delta t)|^2$$

Bund 10Y, 21 jours (9-11 am), Last traded price Données fournies par QuantHouse

Epps effect

Corrélation :
$$C_{\Delta t} = \tilde{C}_{\Delta t}/\tilde{C}_0$$
, avec

$$ilde{C}_{\Delta t} = \sum_{n=0}^{1 day/\Delta t} (X((n+1)\Delta t) - X(n\Delta t))(Y((n+1)\Delta t) - Y(n\Delta t))$$

Bund 10Y - Bobl 5Y - 40 jours - 9-11 am Donnée fournies par QuantHouse

2d MEP Model Simulation (correlation = 10%)

E.Bacry, S.Delattre, M.Hoffmann, J.F.Muzy (2010,2012)

2d MEP Model Simulation (correlation = 80%)

E.Bacry, S.Delattre, M.Hoffmann, J.F.Muzy (2012)

1d MEP Model Simulation over 10 hours + Zoom on 1h

Microstructure "Stylized facts"

- → Point processes (Hawkes) diffusing at large scales
- → Prices "live" on a tick grid
- → Strong mean reversion at very small scales

Signature plot pour le modèle MEP (Bacry, Delattre, Hoffmann, Muzy, 2010, 2012) :

$$E(V_{\Delta t}) = \Lambda \left[\nu^2 + (1 - \nu^2) \frac{1 - e^{-\gamma \Delta t}}{\gamma \Delta t} \right], \tag{1}$$

où $\Lambda = \frac{\mu}{1 - ||\phi||_1}$, $\nu = \frac{1}{1 + ||\phi||_1}$ and $\gamma = \alpha + \beta$

- $E(V_{\Delta t=0}) = \Lambda = 2E(\lambda^{\pm}) =$ "microstructural" variance
- $E(V_{\Lambda t=+\infty}) = \Lambda \nu^2 =$ "diffusive" variance

Epps effect pour le modèle MEP (Bacry, Delattre, Hoffmann, Muzy, 2010, 2012) :

Non parametric kernel estimation in MEP model on Bund Futures Al Dairy, Bacry, Muzy, 2011

 \simeq 375000 jumps

- (a) : Self exciting kernel $\phi^{N,s}$ estimation
- (b) : Cross exciting kernel $\phi^{N,c}$ estimation

Log-log plot of the cross exciting kernel $\phi^{N,c}$ estimation Al Dairy, Bacry, Muzy, 2011

Power-law fit $\phi^{\textit{N},\textit{c}}(t) \sim t^{-\beta}$ with $\beta \simeq 1$

Non parametric kernel estimation in MEP model on Bund Futures Al Dairy, Bacry, Muzy, 2011

 \simeq 624000 jumps

- (a) : Self exciting kernel $\phi^{N,c}$ estimation
- (b) : Cross exciting kernel $\phi^{N,c}$ estimation

Accounting for market impact of a labeled agent

• Agent at time $t: dA^+(t)$ buy orders $dA^-(t)$ sell orders

$$dA(t) = \begin{pmatrix} dA^+(t) \\ dA^-(t) \end{pmatrix}$$

- \bullet Impacts will be modeled by additive terms on λ^{N^+} , λ^{N^-}
- Single buy order at time t_0 : $dA^+(t) = \delta(t t_0)$, $dA^- = 0$
 - Impact on upward jumps : $\lambda_t^{N^+} o \lambda_t^{N^+} + \varphi^{I,s}(t-t_0)$
 - → "Instantaneous" impact of the trade itself
 - → delayed upward moves (e.g., cancel orders)
 - Impact on donward jumps : $\lambda_t^{N^-} \to \lambda_t^{N^-} + \varphi^{l,c}(t-t_0)$ \longrightarrow delayed downward moves
- Meta order starting at time t₀

$$\lambda_t^N = \mu.u + \Phi^N \star dN_t + \Phi^I \star dA(t),$$
 where $\Phi^I(t) = \begin{pmatrix} \varphi^{I,s} & \varphi^{I,c} \\ \varphi^{I,c} & \varphi^{I,s} \end{pmatrix}$ is the impact kernel

Fitting Market impact curves on CAC40 meta-orders

E.B, M.Hoffmann, A.luga, M.Lasnier, C.A.Lehalle (working paper + Poster)

$$MI(t) = E(X_t - X_{t_0=0})$$
 with $X_t = N_t^+ - N_t^-$

- Concave impact while trading
- Relaxation after trading
- Is able to reproduce both permanent/non permanent impact

What if all available market orders are anonymous?

Markets generally do not provide labeled data

- Flow of anonymous marker orders $T_t = \begin{pmatrix} T_t^+ \\ T_t^- \end{pmatrix}$ T^+ (resp. T^-): trade arrivals at the best ask (resp.bid)
- No more access to market impact profile!
- Only access to the Response function : $R(t-t_0)$: Expectation of the price at time t knowing there was a buying market order at time t_0 , i.e.,

$$R(t-t_0) = E(N_t^+ - N_t^- | dT_{t_0}^+ = \delta(t-t_0))$$

Towards a model for market impact of anonymous market orders?

Model for market impact of a labeled agent

E.B., M.Hoffmann, A.Iuga, M.Lasnier, C.A.Lehalle (2013, Working paper)

The market orders of the labeled agent

$${f A}({f t})=\left(egin{array}{c} A^+(t) \ A^-(t) \end{array}
ight)$$
 A^+ (resp. A^-) : trade arrivals at the best ask (resp.bid)

The Price model

$$X_t = N_t^+ - N_t^-$$

$$\lambda^{N}_{t} = \mu.u + \Phi^{N} \star dN_{t} + \Phi^{I} \star dA(t)$$

Towards a model for market impact of anonymous trades

E.B, J.F.Muzy (2013, Preprint)

- The anonymous market orders flow $\mathbf{T_t} = \begin{pmatrix} T_t^+ \\ T_t^- \end{pmatrix}$ T^+ (resp. T^-): trade arrivals at the best ask (resp.bid)
- The Price model

$$X_t = N_t^+ - N_t^-$$

$$\lambda^{N}_{t} = \mu.u + \Phi^{N} \star dN_{t} + \Phi^{I} \star dT_{t}$$

Towards a model for market impact of anonymous trades

E.B, J.F.Muzy (2013, Preprint)

- The anonymous market orders flow $\mathbf{T_t} = \begin{pmatrix} T_t^+ \\ T_t^- \end{pmatrix}$ T^+ (resp. T^-): trade arrivals at the best ask (resp.bid)
- The Price model

$$X_t = N_t^+ - N_t^-$$

$$\lambda_t^N = \Phi_t^N \star dN_t + \Phi_t^I \star dT(t)$$

Towards a model for market impact of anonymous trades

E.B, J.F.Muzy (2013, Preprint)

- The anonymous market orders flow $\mathbf{T_t} = \begin{pmatrix} T_t^+ \\ T_t^- \end{pmatrix}$ T^+ (resp. T^-): trade arrivals at the best ask (resp.bid)
- The Price model

$$X_t = N_t^+ - N_t^-$$

$$\lambda^{N}_{t} = \Phi^{N} \star dN_{t} + \Phi^{I} \star dT(t)$$

- $\rightarrow \Phi^{I}$: "Instantaneous" impact + influence on price moves
- $\longrightarrow \Phi^N$: Influence of past price moves on future price moves

The model for anonymous trades

E.B, J.F.Muzy (2013, Preprint)

The anonymous trade arrivals model \longrightarrow A 2d Hawkes process

$$T_t = \left(\begin{array}{c} T_t^+ \\ T_t^- \end{array}\right)$$

 T^+ (resp. T^-): trade arrivals at the best ask (resp.bid)

$$\lambda_t^T = \mu.u + \Phi^T \star dT_t + \Phi^R \star dN_t$$

where

$$u = \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \ \Phi^{\textit{T}} = \left(\begin{array}{cc} \varphi^{\textit{T},s} & \varphi^{\textit{T},c} \\ \varphi^{\textit{T},c} & \varphi^{\textit{T},s} \end{array}\right) \ \text{and} \ \Phi^{\textit{R}} = \left(\begin{array}{cc} \varphi^{\textit{R},s} & \varphi^{\textit{R},c} \\ \varphi^{\textit{R},c} & \varphi^{\textit{R},s} \end{array}\right)$$

- $\longrightarrow \mu$: Anonymous trade intensity
- $\longrightarrow \Phi^T$: Auto-correlation of trades
- $\longrightarrow \Phi^R$: Retro-influence of price moves on trades

The overall model is a 4 dimensional Hawkes process P

E.B, J.F.Muzy (2013, Preprint)

$$P_t = \left(egin{array}{c} T_t \\ N_t \end{array}
ight)$$
 whose intensity $\lambda_t = \left(egin{array}{c} \lambda^T_{\ t} \\ \lambda^N_{\ t} \end{array}
ight)$ is given by
$$\lambda_t = M + \Phi \star dP_t,$$

where

$$M = \begin{pmatrix} \mu.u \\ 0 \end{pmatrix}, \quad \Phi(t) = \begin{pmatrix} \Phi^{T}(t) & \Phi^{R}(t) \\ \Phi^{I}(t) & \Phi^{N}(t) \end{pmatrix}$$

- \bullet μ : Anonymous trade intensity
- $\Phi^T(t)$: Auto-correlation of anonymous trades
- $\Phi^I(t)$: "Instantaneous" impact + influence on price moves
- \bullet $\Phi^N(t)$: Influence of past price moves on future price moves
- ullet $\Phi^R(t)$: Retro-influence of price moves on anonymous trades

Non parametric estimation

$$\lambda_t = M(t) + \Phi \star dP_t,$$

where

$$M(t) = \begin{pmatrix} \mu.u \\ 0 \end{pmatrix}, \quad \Phi(t) = \begin{pmatrix} \Phi^{T}(t) & \Phi^{R}(t) \\ \Phi^{I}(t) & \Phi^{N}(t) \end{pmatrix}$$

• Non parametric estimation of μ and all the kernels : Φ^T , Φ^R , Φ^N , Φ^I , from anonymous market data.

Non parametric estimation of Φ^T for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Trade auto-correlation

Non parametric estimation of Φ^T for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Zooming ...

Trade auto-correlation:

→ Mainly "positive" correlation : Splitting and Herding

Non parametric estimation of Φ^I for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Trade "instantaneous" impact + influence on delayed price moves \longrightarrow Mainly instantaneous impact : $\phi^{I,s}(t) \simeq C\delta(t)$ and $\phi^{I,c} \simeq 0$.

Non parametric estimation of Φ^N for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Influence of past price moves on future price moves

Non parametric estimation of Φ^N for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Influence of past price moves on future price moves

→ Mostly mean reverting

Non parametric estimation of Φ^R for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Retro-influence of price moves on anonymous trades :

Non parametric estimation of Φ^R for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Retro-influence of price moves on anonymous trades :

$$\longrightarrow \phi^{R,cross}$$
 large and $\phi^{R,self} \simeq 0!$

 $\textbf{Price goes up} \Longrightarrow \textbf{more sell market orders}$

Non parametric estimation for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

- Most kernels are power-law (when non 0) : $\frac{\alpha}{(\delta+x)^{\beta}}$
- With $\beta \simeq 1$: unstablity limit! (K.Al Dayri, E.B, J.F.Muzy, EPJB 2012).

• Except $\varphi^{I,s} \simeq C\delta$ (C << 1) and $\varphi^{R,c}$

Non parametric estimation for Eurostoxx and Bund Futures 10h-12h, 2009-2012 (800 days)

Kernels can be amazingly stable when asset changes

plain line: Eurostoxx Futures, •: Bund

No adjustment (no prefactors)!

Intraday seasonalities for Eurostoxx Futures 2009-2012

Log-Log plots of $\varphi^{T,s}$ and $\varphi^{N,c}$ for different intraday slices : 9h-11h, 10h-12h, 11h-13h, 12h-14h, 13h-15h, 14h-16h, 15h-17h

The kernel estimations do not depend on the intraday period

Intraday seasonalities for Eurostoxx Futures 2009-2012

The intraday seasonality is only carried by μ (U-shape)

Model with intraday seasonality

$$\lambda_t = M(t) + \Phi \star dP_t,$$

where
$$M(t) = \begin{pmatrix} \mu_{seasonal(t)} \cdot u \\ 0 \end{pmatrix}$$
, $\Phi(t) = \begin{pmatrix} \Phi^T(t) & \Phi^R(t) \\ \Phi^I(t) & \Phi^N(t) \end{pmatrix}$

Closed analytical formula for

Closed analytical formula for many quantities of interest

- Response function
- Diffusive variance of the price
- Auto-correlation function of
 - the trade signs (in practice heavy correlation)
 - the increments of the price (in practice very small correlations)
- Market impact
- ...

Market impact profile estimation from anonymous data

Analytical formula for the Market Impact of a meta-order

A particular case:

- An "impulsive" Impact kernel : $\varphi^{I,s}(t) = C\delta(t)$, $\varphi^{I,c}(t) = 0$
- A single buy order : $dA^+(t) = \delta(t), dA^-(t) = 0$

 \Longrightarrow the Market impact is

$$MI(t) = E(X_t - X_0) = 1_{[0,+\infty]}(t) - \int_0^t \Delta \xi(u) du,$$

where the Laplace transform of $\Delta \xi(t)$ is given by

$$\widehat{\Delta \xi} = 1 - rac{(1 - \Delta \widehat{\phi}^T)}{(1 - \Delta \widehat{\phi}^T)(1 - \Delta \widehat{\phi}^N) - \Delta \widehat{\phi}^R}$$

where $\Delta \varphi^{?} = \varphi^{?,s} - \varphi^{?,c}$ measures the "kernel's imbalance"

Permanent versus non-permanent market impact

Analytical formula for the asymptotic market impact $MI(+\infty)$

In the case of a "cross-only" Retro-kernel : $\varphi^{R,s}(t)=0$

 \Longrightarrow The asymptotic market impact is

$$MI(+\infty) = \frac{1}{(1-\Delta||\varphi^N||_1) + ||\varphi^{R,c}||_1/(1-\Delta||\varphi^T||_1)},$$

where

$$\Delta ||\varphi^T||_1 = ||\varphi^{T,s}||_1 - ||\varphi^{T,s}||_1 \ (\in] -1, 1 [\text{ implied by stability})$$

$$\Delta ||\varphi^{\textit{N}}||_1 = ||\varphi^{\textit{N},\textit{s}}||_1 - ||\varphi^{\textit{N},\textit{c}}||_1$$
 (∈] $-1,1[$ implied by stability)

 $MI(+\infty)$ decreases when mean reversion increases, i.e. :

- when $\Delta ||\varphi^N||_1$ goes to -1
- when $||\varphi^{R,c}||_1$ increases
- when $\Delta ||\varphi^T||_1$ goes to 1

Market impact profile estimation from anonymous data on Eurostoxx Futures

- Non parametric estimation of **all the kernels** : Φ^T , Φ^R , Φ^N , Φ^I
- Setting $\varphi^{T,c}=0$, $\varphi^{I,c}=0$ and $\varphi^{R,s}=0$
- ullet Fitting exponential kernels on $arphi^{I,s}$ and $arphi^{R,c}$
- Fitting Power-law kernels on $\varphi^{T,s}$, $\varphi^{N,c}$ and $\varphi^{N,s}$
- Computing the market impact profile from analytical formula

Market impact profile estimation from anonymous data on Eurostoxx Futures

Replay of 2 hours of Eurostoxx mid-price from real trades

 $T_t^+ - T_t^-$: True cum. Trades on 3/08/2008 - [10am-12am] $N_t^+ - N_t^-$: True mid-price on 3/08/2008 between 10am and 12am Simulation of the mid-price process N given the real trades

000			CU_200	709.SSV					000				CU_200712.	SSV
20070806 CU 200709	1.38190000	1.38600000	1.37960000	1.38180000	177660	222003	178569	224742	20070806 CU 200712	1.38550000	1.38850000	1.38290000	1.38470000	
20070807 CU 200709	1.38140000	1.38350000	1.37540000	1.37790000	159381	224424	160164	227532	20070807 CU 200712	1.38580000	1.38600000	1.37860000	1.38090000	
20070808 CU 200709	1.37600000	1.38450000	1.37390000	1.38160000	170989	226836	171746	229851	20070808 CU 200712	1.38838888	1.38740000	1.37710000	1.38460000	1
20070809 CU 200709	1.38130000	1.38350000	1.36720000	1.37838888	278443	222602	279726	225978	20070809 CU 200712	1.38530000	1.38640000	1.37040000	1.37330000	1:
20070810 CU 200709	1.36980000	1.37260000	1.36610000	1.37160000	179836	218411	180729	222092	20070810 CU 200712	1.37200000	1.37530000	1.36920000	1.37460000	
20070813 CU 200709	1.37110000	1.37280000	1.36220000	1.36380000	154249	216533	155261	220666	20070813 CU 200712	1.37330000	1.37660000	1.36540000	1.36680000	10
20070814 CU 200709	1.36260000	1.36440000	1.35460000	1.35580000	178334	214017	179335	218546	20070814 CU 200712					1
20070815 CU 200709	1.35510000	1.35530000	1.34510000	1.34780000	213781	211204	214926	215818	20070815 CU 200712	1.35800000	1.35820000	1.34750000	1.35060000	10
20070816 CU 200709	1.34390000	1.34610000	1.33780800	1.34190000	269416	213628	261292	218399	20070816 CU 200712	1.34590000	1.34890000	1.33990000	1.34460000	3
20070817 CU 200709	1.34380000	1.35590000	1.33830000	1.34880000	382914	211972	304251	217321	20070817 CU 200712	1.34680000	1.35820000	1.34120000	1.35130000	1
20070820 CU 200709		1.35220000		1.34940000	124404	207485	125460	213269	20070820 CU 200712				1.35170000	10
20070821 CU 200709	1.34880000	1.35330000	1.34690000	1.34800000	144729	289941	145440	216026	20070821 CU 200712	1.35170000	1.35560000	1.34950000	1.35030000	
20070822 CU 200709	1.34750000	1.35630000	1.34620000	1.35440000	151463	213730	152286	219927	20070822 CU 200712	1.34920000	1.35850000	1.34860000	1.35670000	
20070823 CU 200709	1.35590000	1.35990000	1.35460000	1.35680000	128232	211470	128848	217839	20070823 CU 200712	1.35800000	1.36200000	1.35700000	1.35910000	
20070824 CU 200709				1.36820000	148872	214518	149887	220687	20070824 CU 200712					
				1.36620000	83428	214195	84282	220551	20070827 CU 200712					
20070828 CU 200709	1.36530000	1.36910000	1.36100000	1.36420000	129318	214903	138452	221098	20070028 CU 200712	1.36710000	1.37140000	1.36370000	1.36670000	1:
20070829 CU 200709	1.36130000	1.36920000	1.35720000	1.36700000	168740	228237	169668	226488	20070829 CU 200712	1.36380000	1.37178888	1.35998888	1.36960000	
20070830 CU 200709	1.36860000	1.36860000	1.36020000	1.36470000	169905	223758	176365	229894	20070830 CU 200712					6
20070831 CU 200709			1.36300000		189816	218166	193957	224292	20070831 CU 200712					4:
20070904 CU 200709	1.36410000	1.36640000	1.35570000	1.36190000	192186	213184	198469	221662	20070904 CU 200712	1.36780000	1.37818888	1.35900000	1.36560000	6
20070905 CU 200709	1.36140000	1.36800000	1.35760000	1.36600000	168246	207122	186018	223632	20070905 CU 200712					17
20070906 CU 200709	1.36550000	1.37160000	1.36400000	1.36910000	154470	198770	171616	223623	20070906 CU 200712	1.36898888	1.37510000	1.36770000	1.37270000	17:
20070907 CU 200709		1.38040000		1.37730000	192392	193361	212091	227851	20070907 CU 200712				1.38050000	19
				1.38090000	107238	181410	136791	226495	20070910 CU 200712		1.38530000		1.38420000	299
				1.38360000	125226	172423	166524	235169			1.38850000		1.38700000	41
				1.39110000	141825	148928	264072	249373			1.39540000			122
			1.38630000		97454	111214	289727	278858	20070913 CU 200712		1.39640000			191
			1.38448800		68237	92657	240168	288658	20070914 CU 200712					179
20070917 CU 200709	1.38720000	1.38898888	1.38550000	1.38750000	5741	89381	117587	281805	20070917 CU 200712					111
									20070918 CU 200712					164
									20070919 CU 200712					141:
								- 4	20070920 CU 200712	1.39858888	1.41200000	1.39830000	1.40970000	193

Données fournies par SAPIANCE CAPITAL, Londres