Feuille d'exercice n° 17 : **Dérivation**

Exercice 1 (– Limite double –

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0, soit $\ell \in \mathbb{R}$. Montrer que f est dérivable en 0 et $f'(0) = \ell$ si et seulement si:

$$\forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall (h, k) \in]0, \delta[^2, \qquad \left| \frac{f(h) - f(-k)}{h + k} - \ell \right| \le \varepsilon.$$

Soit f l'application : $\mathbb{R} \to \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$, il existe une Exercice 2

 $x \mapsto \frac{1}{1+x^2}$ fonction polynomiale P_n telle que $: \forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+1}}$.

Exercice 3 () Soit $n \in \mathbb{N}^*$. Calculer la fonction dérivée d'ordre n des fonctions suivantes.

1) $f: x \mapsto \sin x$

- 2) $g: x \mapsto \sin^2 x$
- 3) $h: x \mapsto \sin^3 x + \cos^3 x$

Exercice 4 Soit $n \in \mathbb{N}$. Calculer la dérivée n^{e} de chacune des fonctions suivantes.

- $1) f: x \mapsto x^2 e^x$
- **2)** $g: x \mapsto x^2 (1+x)^n$ **3)** $h: x \mapsto \frac{x^2+1}{(x+1)^2}$ **4)** $\varphi: x \mapsto x^{n-1} \ln x$

Exercice 5 Déterminer toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

Exercice 6 (\(\sum_{\text{\subset}}\)) Soit $a, b \in \mathbb{R}$ tels que a < b et $f : [a, b] \to \mathbb{R}$ dérivable telle que f(a) = f(b) = 0. Montrer que par tout point $(x_0,0)$ avec $x_0 \in \mathbb{R}\setminus [a,b]$, il passe au moins une tangente à la courbe représentative de f.

Exercice 7 () Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ sinon

soit dérivable sur \mathbb{R}_{+}^{*} .

Exercice 8 – Rolle à l'infini –

Soit $a \in \mathbb{R}$, f une fonction continue et dérivable sur l'intervalle $[a, +\infty[$, vérifiant $f(x) \xrightarrow[x \to +\infty]{} f(a)$. Montrer qu'il existe un élément c dans $a, +\infty$ tel que f'(c) = 0.

Exercice 9 Soit $a, b \in \mathbb{R}$, avec a < b. Soit $f: [a, b] \to \mathbb{R}$ dérivable telle que f(a) = f(b) = 0, f'(a) > 0et f'(b) > 0.

Montrer qu'il existe $c_1, c_2, c_3 \in]a, b[$ tels que $c_1 < c_2 < c_3$ et $f'(c_1) = f(c_2) = f'(c_3) = 0$.

Exercice 10 Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} à racines simples, de degré supérieur ou égal à 2.

- 1) Montrer que P' est aussi scindé à racines simples réelles.
- 2) Montrer que le polynôme $P^2 + 1$ n'a que des racines simples dans \mathbb{C} .

Exercice 11 (%) - Polynômes de Legendre -

Soit $n \in \mathbb{N}^*$, on pose $f: t \mapsto (t^2 - 1)^n$.

- 1) Montrer que : $\forall k \in \{0, ..., n-1\}, f^{(k)}(1) = f^{(k)}(-1) = 0.$
- **2)** Calculer $f^{(n)}(1)$ et $f^{(n)}(-1)$.
- 3) Montrer que $f^{(n)}$ s'annule au moins n fois dans l'intervalle]-1,1[.

Exercice 12 ($\stackrel{\bullet}{\sim}$) Étant donné α dans]0,1[, montrer que pour tout entier naturel n non nul

$$\frac{\alpha}{(n+1)^{1-\alpha}} \leqslant (n+1)^{\alpha} - n^{\alpha} \leqslant \frac{\alpha}{n^{1-\alpha}}.$$

En déduire la limite de la suite de terme général $\sum_{p=1}^{n} \frac{1}{p^{\alpha}}$.

Exercice 13 – Distance à la corde –

Soit $a, b \in \mathbb{R}$, avec a < b. Soit $f : [a, b] \to \mathbb{R}$ de classe \mathscr{C}^2 .

1) On suppose que f(a) = f(b) = 0. Soit $c \in [a, b[$. Montrer qu'il existe $d \in [a, b[$ tel que :

$$f(c) = -\frac{(c-a)(b-c)}{2}f''(d).$$

Indication : considérer $g: t \mapsto f(t) + \lambda(t-a)(b-t)$ où λ est choisi de sorte que g(c) = 0.

2) On traite maintenant le cas général. Soit $c \in]a, b[$, montrer qu'il existe $d \in]a, b[$ tel que :

$$f(c) = \frac{b-c}{b-a}f(a) + \frac{c-a}{b-a}f(b) - \frac{(c-a)(b-c)}{2}f''(d).$$

Exercice 14 (Soit $f: [0, +\infty[\to \mathbb{R} \text{ une fonction dérivable, soit } \ell \in \mathbb{R}$. On suppose que $f'(x) \xrightarrow[x \to +\infty]{} \ell$. Montrer que $\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \ell$.

Exercice 15

- 1) Montrer que si une fonction f est lipschitzienne sur un intervalle $I \subset \mathbb{R}$, alors, |f| l'est aussi.
- 2) Montrer que la réciproque est fausse.
- 3) Montrer que la somme de deux fonctions lipschitziennes sur I est lipschitzienne sur I.

Exercice 16 La fonction $x \mapsto \frac{1}{x}$ est-elle lipschitzienne sur $]0, +\infty[$? sur $[1, +\infty[$?

Exercice 17 () On considère la suite $(u_n)_{n\geqslant 0}$ définie par $: u_0 \in [-1, +\infty[$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{1+u_n}$.

- 1) Montrer que cette suite ne possède qu'une seule limite finie éventuelle α que l'on calculera.
- 2) Montrer que pour tout $n \ge 2$, $|u_{n+1} \alpha| \le \frac{1}{2\sqrt{2}}|u_n \alpha|$. En déduire la convergence de la suite (u_n) .

2

Exercice 18 On considère la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=\frac{3}{2}$ et, pour tout $n\in\mathbb{N}, u_{n+1}=\frac{2}{u_n}+\ln(u_n)$.

- 1) Montrer que l'équation $x = \frac{2}{x} + \ln(x)$ possède une unique solution réelle L.
- **2)** Justifier que, pour tout $n \in \mathbb{N}$, $u_n \in \left[\frac{3}{2}, 2\right]$ puis, que pour tout $n \geqslant 0$, $|u_n L| \leqslant \frac{1}{2} \left(\frac{2}{9}\right)^n$. Conclure.

Exercice 19 () Soit $p, q \in \mathbb{R}_+^*$ vérifiant $\frac{1}{p} + \frac{1}{q} = 1$. Montrer que pour

$$\forall a, b \in \mathbb{R}_+^*, \ \frac{a^p}{p} + \frac{b^q}{q} \geqslant ab.$$

Exercice 20 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe.

- 1) Montrer que si f est majorée, alors f est constante.
- 2) Est-ce toujours le cas si f est définie sur $[A, +\infty[$, où $A \in \mathbb{R}$?
- 3) Montrer que si f est deux fois dérivable, bornée et non constante, il existe $a, b \in \mathbb{R}$ vérifiant f''(a)f''(b) < 0.

Exercice 21 ($\stackrel{\triangleright}{\triangleright}$) Soit $f: \mathbb{R} \to \mathbb{R}$ continue et vérifiant

$$\forall x, y \in \mathbb{R}, \ f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x) + f(y)}{2}.$$

Montrer que f est convexe.

