AMPTS FTA Electronic Hardware Design

Matt Ruffner

Contents

1	Introduction	3
2	Requirements	4
3	Preliminary Subsystem Design 3.1 Main command and data handling 3.2 Temperature and Pressure Measurement 3.3 Inertial Measurement 3.4 Telemetry 3.5 Storage	5 6 6
4	Other Considerations4.1 Durability4.2 Cost	
A	Schematics A.1 Command and Data Handling	7 7 8
В	Testing setup	10

List of Figures

1	Capsule component overview, showing the various functional blocks	3
2	Main functional components of the capsule and the communication buses between them	5
3	Overview of the TPMS	6
4	Bottom of V1 Evaluation board for MCP9600 TC to digital converter	10
5	Top of V1 Evaluation board for MCP9600 TC to digital converter	11
6	High g accelerometer testing PCB	11
7	Testing setup for the pressure sensors	12
\mathbf{List}	of Tables	
1	List of processors used and their capabilities	4
2	List of pressure sensors and their capabilities	5

1 Introduction

This document outlines the initial design of electrical hardware that will support the flight test article (FTA) being developed for the NASA Flight Opportunities Additive Manufacturing of Thermal Protection Systems (AMTPS) project. This project is a collaboration between several NASA facilities including JSC and Langley as well as other research institutions including the University of Kentucky and Oak Ride National Laboratories. Figure 1 shows a general overview of the various components that are expected to be a part of the flight test article (referred to as 'the capsule') based on current requirements.

Capsule hardware must be capable of robust data acquisition in order to characterize the thermal, pressure, and overall heating environment of supersonic reentry. In addition to collecting multiple data channels, the hardware must be capable of transmitting its location as it about to touch back down to Earth. The multichannel data acquisition system must also save flight data for analysis after it touches back down. Timing the deployment of a parachute before touchdown is also a requirement of the hardware in order to lessen the force of impact.

This document is organized as follows: Section 2 discusses needed capabilities set by the NASA project design document (rev. E) that are relevant to the avionics hardware. Section 3 displays the preliminary designs and testing hardware for the various subsystems of the capsule. This includes data acquisition, logging, and vehicle-to-ground communication for recovery operations. Appendix A contains schematics for PCBs that have been prototyped. Appendix B contains images of testing hardware that has been developed.

Figure 1: Capsule component overview, showing the various functional blocks.

2 Requirements

Based off of the most recent revision (E) of the flight test requirements document.

1. Instrumentation and telemetry

- (a) Shall support between 8 and 20 thermocouples of varying type
- (b) Shall support up to 6 absolute pressure sensors
- (c) Shall support at least 1 intertial measurement unit (IMU)
- (d) Should support 1 heat flux sensor
- (e) Shall contain a GPS for recovery operations
- (f) Telemetry data shall be collected at a minumum of 10Hz
- (g) Telemetry data shall be stored to onboard nonvolatile memory that will survive landing
- (h) Location telemetry shall be transmitted through a vehicle-to-ground system (e.g. Iridium satellite, Xbee)

2. Activation and flight sequencing

- (a) Shall be powered through the duration of the flight
- (b) Shall support continuous operation between -20 deg C and 80 deg C
- (c) Shall support pre-launch activation on the ground; should support low power mode prior to deployment
- (d) Shall detect and/or sense when depayment has occurred via interfacing with the launch vehicle
- (e) Shall trigger parachute deployment at a specified time.

3 Preliminary Subsystem Design

3.1 Main command and data handling

Using off the shelf processors for convenience, and also to avoid bottlenecks in prototyping due to unpredictable chip shortages. Currently, two development boards from Adafruit are being used to prototyping and are listed below in Table 1^{12} .

Table 1: List of processors used and their capabilities.

Part	Description	Role	Product Link
Feather M0 Basic Proto	Cortex-M0 @ 48 MHz	TPM Processor	https://www.adafruit.com/
			product/2772
Feather M4 Express	Cortex-M4 @ 120Mhz	CDH Processor	https://www.adafruit.com/
reather M4 Express			product/3857

The diagram in Figure 2 provides a general overview of the organization of electronic hardware within the capsule.

¹TPM: Temperature and Pressure Measurement

²CDH: Command and Data Handling

Figure 2: Main functional components of the capsule and the communication buses between them.

3.2 Temperature and Pressure Measurement

The temperature and pressure measurement (TPM) Subsystem (TPMS) supports collection of several datapoints needed for recreating the heating environment of reentry.

In order to support the large number of TCs required in the capsule, a breakout board supporting 6 of the MCP9600T-E/MX series TC to digital converter was designed. This TC converter chip was selected due to its support for a wide variety of TC types (K, J, T, N, S, E, B and R)³, as well as its chainable I²C interface, allowing more sensing elements to connected with less wiring (similar SPI based conversion chips have a chip select line per chip that would restrict the number of pins available for other capsule functionality).

A breakout board was designed with 6 MCP9600 converter chips to serve as an initial design for a t ewill be done on a breakout

For pressure meaning meaning solutions temperature compensated absolution digital pressure sensors were selected and are shown in Table 2. These single port absolute pressure sensors are available with a variety of sensitivities, allowing a different sensor to be exchanged later on in the design process if it is determined that the current predicted pressure environment is no longer accurate.

A picture of the preliminary pressure sensor evaluative setup in shown in Appendix B, Figure 7.

Table 2: List of pressure sensors and their capabilities Measurement Range Product Link

Part	Measurement Range	Product Link
	0-103.42 kPa	https://www.digikey.com/en/products/detail/
SSCSRNN015PA3A3		honeywell-sensing-and-productivity-solutions/
		SSCSRNN015PA3A3/2416212
		https://www.digikey.com/en/products/detail/
SSCSRNN1-6BA7A3	0-160 kPa	honeywell-sensing-and-productivity-solutions/
		SSCSRNN1-6BA7A3/2416214

Finally, Figure 3 shows an overview of the temperature and pressure monitoring subsystem

 $^{^{3} \}texttt{https://www.digikey.com/en/products/detail/microchip-technology/MCP96L00T-E-MX/9606988}$

Figure 3: Overview of the TPMS.

3.3 Inertial Measurement

A breakout board for the H3LIS100DL 4 +/- 100g accelerometer has been designed to help in the evaluation of this IC as an effective way to measure acceleration loads on the capsule. The ADXL377 is another potential high-g 3-axis accelerometer 5 , but has analog output and higher cost since it is currently only available in a pre-assembled breakout board.

In addition to a high-g 3-axis accelerometer, a lower dynamic range 6 axis accelerometer+gyroscope chip will also be included in the capsule (such as a ICM-20949 or MPU6050).

3.4 Telemetry

Iridium modem to send GPS coordinates for recovery operations. University of Kentucky has an Iridium modem available to use, with an account providing message credits. Discussion on the use of this modem is yet to have happened. Additional vehicle-to-ground telemetry would be reassuring as the Iridium network can be unreliable for short periods of time. It is unclear whether this would be achievable with a COTS radio link (such as XBee or LORA) that would not require FCC certification. This requires coordination with launch site for tracking with a directional antenna and other hardware setup. The appeal of the Iridium is we get an email with the GPS coordinates of the capsule and we can tell the recovery crew the location of the capsule from anywhere.

3.5 Storage

On board non-volatile storage is required to log in-flight telemetry data for post processing. Due to the high vibrational loads expected during launch, an SD card might be unreliable (spring loaded contacts could separate from card). For this reason, solid state flash integrated circuits are being explored that can store just as much information as an SD card.

⁴https://www.digikey.com/en/products/detail/stmicroelectronics/H3LIS100DL/7313278

⁵https://www.adafruit.com/product/1413

Exporting logged data from the capsule would then be done via cabled connection to a computer after capsule recovery.

4 Other Considerations

4.1 Durability

Syntactic foam may be used. Consisting of glass microballoons with epoxy resin, it can encase electronics to protect from very high acceleration loads during ascent. Currently working with NASA JSC to get glass microballoons to UK for testing.

4.2 Cost

According the the most recent revision of the project outline, NASA has alotted \$3,000 towards the avionics design. Currently the University of Kentucky has not used any of these funds in the prototyping of capsule hardware.

A Schematics

A.1 Command and Data Handling

Schematics for the Cortex-M0/M4 development boards are available from the links provided to the Adafruit product pages.

A.2 TC breakout board

B Testing setup

Figure 4: Bottom of V1 Evaluation board for MCP9600 TC to digital converter

Figure 5: Top of V1 Evaluation board for MCP9600 TC to digital converter $\,$

Figure 6: High g accelerometer testing PCB.

Figure 7: Testing setup for the pressure sensors.