# 000 001

010

012

013

020

031 032 033

039 040 041

042043044045

046 047 048

049

# **Sentiment Analysis of Tweets During COVID-19**

George Sun, Yachen Li, Yating Liang

#### **Abstract**

Nowadays, the world is suffering a huge pandemic called COVID-19, which no country can avoid. Through this pandemic, there appears storm not only in reality, but also in social media. As more and more people left, negative emotions gradually spread all areas on the Internet, including songs, messages, videos and so on. As one of the largest social networking platforms, Twitter accordingly gathered proved its significance to help citizens communicate with each other or express their sentiments remotely. Therefore, in order to analyze and even predict the sentiments of the general public towards COVID-19, we decided to treat the messages on twitter as samples to conduct sentiment analysis, based on machine learning models, such as TextBlob, Vader and Random Forest. We gathered data from Kaggle and the result showed that the accuracy of the best model is around 90%.

#### 1 Introduction

Nowadays, internet has already become the most important media through which people can achieve remote communication or share their feelings and attitudes with people that they are even not familiar with. For example, on social media platform such as blogs, Facebook and Twitter, the presidents can immediately communicate with their supporters or detect their attitudes towards specific policy. Then as an unpredictable pandemic called COVID-19 spread all over the world, the importance of these social media applications has been strengthened, for they become the most effective and safe way for the general public globally to immediately get rid of loneliness and anxiety. Since Coronavirus

produced a huge impact on both the global economy and personal life, as members who experienced this pandemic, we are interested in the sentiment or attitudes people had towards Coronavirus. One of the best approaches is to analyze the messages left on social media, such as Twitter. Hence, we gathered data about COVID-19 from Kaggle. Indeed, this paper focus on the sentiment analysis of tweets about COVID-19 and uses sentimental labels to build five models which are capable of predicting the sentiment of a person towards Coronavirus. These labels include Vader, Naive Bayes, TextBlob, Logistic Regression, and Random Forest. Besides, in this paper the dataset was transformed into another mode, in which there are just three kinds of sentimental labels. This paper would show the comparison of separate performance of those models on these two distinct sets.

# 2 Objective

The objective of this paper is to find the distribution of different categories of tweets and compare the performance of each model. As a result, we can obtain a relatively excellent model to predict the label of any tweet in the future as accurately as possible. In this paper, we are going to use both the original dataset and the transformed dataset, so that we can investigate which model performs better than the others and whether less kinds of labels can improve the accuracy of these models.

### 3 Dataset

We gathered the dataset from Kaggle: <a href="https://www.kaggle.com/datatattle/covid-19-nlp-text-classification">https://www.kaggle.com/datatattle/covid-19-nlp-text-classification</a>.

This set was originally used to produce text classification on tweets. The column named "OriginalTweet" contains original messages scraped from Twitter and manual tagging has been

on each tweet to categorize their sentimental labels. Though there are 6 columns in the original dataset, only the "OriginalTweet" and "Sentiment" features are useful in this paper, and accordingly all the remaining variables in pre-processing. Furthermore, inherited the insight from our review literature in which the authors removed neutral sentiments, we also decided to create a new dataset based on the original one in which we removed extra sentimental labels, such as "extremely positive" and "extremely negative" to detect whether the models we chose could generate a better output.



Figure 1: Dataset Overview

## 4 Background

Many researchers have worked on Sentiment Analysis on Twitter social media in literature. Previous work includes research on theoretical comparisons of the state-of-art approaches for Twitter sentiment analysis, which contains machine learning, ensemble approaches and dictionary-based approaches (Alsaeedi & Khan, 2019). Various sentiment-analysis approaches used for Twitter are described including supervised, unsupervised, lexicon, and hybrid approached. Models that were used in their research include MNB, RF, SVM, LR, and etc. The authors also discussed the way of determining the best approach for detecting sentiments by using different WordNet and different measurements. These approaches and combinations they discussed inspired us and were helpful when we explored sentiment analysis on Coronavirus in tweets.

Presented in another article, the research emphasized on people's tweet sentiment regarding coronavirus. The authors (Rajput, Grover, & Rathi, 2020) gathered tweets from both the general public and the WHO account. The authors used the Python built-in package TextBlob to perform sentiment analysis of tweets correlated with the coronavirus outbreak. The polarity values of individual tweets have been computed. The interpretation of these values is as follows: polarity > 0 implies positive; polarity < 0 implies negative; polarity = 0 implies neutral. At the end, the authors removed the neutral tweets and found that positive emotions in the tweets are higher than negative ones, which enlightens us that the contrast between positive and negative tweets might result in further meaningful conclusions.

In another article, the aim of authors (Alanezi, Hewahi, 2020) is to investigate the impact of social distance on people during COVID-19 pandemic using twitter sentiment analysis through a comparison between the k-means clustering and Mini-Batch k-means clustering approaches. In this paper, a comparison between k-means and Mini-Batch k-means is performed to find a pattern. The word frequency shows that there are several words related to the pandemic. In the recent past, the researchers have shown insights on classifying the emotions using the BERT model on tweets (Singh, Jakhar, & Pandey, 2021). They chose Bi-directional Encoding Representation for a Transformer (BERT) model for emotion classification, where the meaning of a word in a given sentence depends on the other words surrounding it. When preprocessing their data, the authors converted the training set into respective torch tensors for the model and defined the batch size to create tensors and iterators to fine-tune the BERT model. When evaluating the model performance, they chose MCC validation accuracy, which is based on the Matthews correlation coefficient, a widely used statistical rate that generates high score prediction results. The combination of BERT and MCC inspired us with more feasible approaches to improve the performance of sentiment analysis.

In another article, the authors (Nemes, Kiss, 2021) applied recurrent neural network (RNN), a neural network that is intentionally run multiple times, where parts of each run feed into the next run. In RNN, hidden layers from the previous run provide part of the input to the same hidden layer in the next run. In addition, recurrent neural networks are particularly useful for evaluating sequences, so that the hidden layers can learn

from previous runs of the neural network on earlier parts of the sequence. Besides, they treated the TextBlob model as the baseline model and used it to compare with the RNN model.

# 5 Methodology

## 5.1 Data Preprocessing

To clean the textual data of tweets sentences, we first removed all the stopwords, punctuations and numbers, then lowercase and lemmatized the texts. The three labels "negative", "positive", and "neutral" were encoded accordingly. We transformed the texts into count vectorizer for some models such as Logistic regression. We also combined the extra sentimental labels, such as "extremely positive" and "extremely negative", into "positive" and "negative" to detect whether the models could generate a better output.

#### 5.2 TextBlob

TextBlob is a python built-in library for processing textual data. It provides a simple API for diving into common NLP tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification and so on. After applying TextBlob to sentences, it would generate a polarity value ranged from [-1.0, 1.0], where -1.0 means a negative polarity and 1.0 means a positive polarity. This score might also be equal to 0.0, which stands for a neutral sentiment. In this paper, we treated this model as a baseline model, which does not need to be trained on the training set and can be directly applied to the test set to predict the label of each tweet. Using the same interpretation approach adopted by Singh, Jakharand and Rathi, we would use the result of this model to compare with performance of the others.

## 5.3 Vader

VADER called Valence Aware Dictionary for Sentiment Reasoning, which is a model used for text sentiment analysis that is sensitive to both polarity (positive/negative) and intensity (strength) of emotion. It is available in the NLTK package and can be applied directly to unlabeled text data. VADER sentimental analysis relies on a dictionary that maps lexical features to emotion intensities known as sentiment scores. The sentiment score of a text can be obtained by summing up the intensity of each word in the text. The SentimentIntensityAnalyzer() in Vader

library takes in a string and returns a dictionary of scores in four categories: negative, neutral, positive and compound(which is computed by normalizing the three scores before). In this paper, we decide to extract the compound value of each sentence from the dictionaries and use a criterion below to categorize each tweet:

If compound  $\geq 0.5$ , its sentiment is positive; If compound  $\leq -0.5$ , its sentiment is negative; If  $-0.5 \leq \text{compound} \leq 0.5$ , its sentiment is neutral.

# 5.4 Logistic Regression

Logistic regression is a fundamental classification technique, which adopted the sigmoid function to classify data into different categories. In this paper, we transformed the dataset into count vectorizer and then use logistic regression to classify our tweets.

## 5.5 Naive Bayes

Bayes' Theorem provides a way that we can calculate the probability of a piece of data belonging to a given class, given our prior knowledge. Naive Bayes is a classification algorithm for binary (two-class) and multi-class classification problems. They are probabilistic classifiers, therefore will calculate the probability of each category using Bayes theorem, and the category with the highest probability will be output.

#### 5.6 Random Forest

Random forests or random decision forests are an ensemble learning method that we can used for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean/average prediction (regression) of the individual trees. In a decision tree, an input is entered at the top and as it traverses down the tree the data gets bucketed into smaller and smaller sets.

#### 5.7 Neural Network

The neural network is organized in a series of layers, where the input vector enters at the left side of the network, which is then projected to a "hidden layer." Each unit in the hidden layer is a weighted sum of the values in the first layer. This layer then projects to an output layer, which is where the desired answer appears. In this paper, we adopted Long short-term memory (LSTM). Indeed LSTM is an artificial recurrent neural

network (RNN) architecture used in the field of deep learning. Unlike standard feedforward neural networks, LSTM has feedback connections. It can not only process single data points (such as images), but also entire sequences of data (such as speech or video). A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The cell remembers values over arbitrary time intervals and the three gates regulate the flow of information into and out of the cell.



Figure 2: LSTM Illustration

# 6 Results

Classification Results

| Models                 | Accuracy | Precision | Recall | F1    |
|------------------------|----------|-----------|--------|-------|
| Logistic<br>Regression | 0.600    | 0.620     | 0.607  | 0.610 |
| Naive<br>Bayes         | 0.432    | 0.527     | 0.396  | 0.411 |
| Random<br>Forest       | 0.494    | 0.562     | 0.479  | 0.483 |

Table 1: Results with 5 labels

From this table, we can see that the performance of these models on dataset with 5 categories of labels is not good enough to generalize a useful model to predict the sentiment of further tweets. Hence, we decided to substitute all extreme sentiments, such as "extreme positive" and "extreme negative" with simply "positive" and "negative". And we have

assumption that after combining to three labels, models will have better performance.

| Models                 | Accuracy | Precision | Recall | F1    |
|------------------------|----------|-----------|--------|-------|
| TextBlob               | 0.556    | 0.534     | 0.549  | 0.530 |
| Vader                  | 0.904    | 0.899     | 0.894  | 0.897 |
| Logistic<br>Regression | 0.802    | 0.778     | 0.782  | 0.780 |
| Naive<br>Bayes         | 0.672    | 0.669     | 0.570  | 0.569 |
| Random<br>Forest       | 0.664    | 0.646     | 0.639  | 0.642 |
| Neural<br>Network      | 0.757    | 0.768     | 0.747  | 0.757 |

Table 2: Results with 3 labels

From the Table 2, we can see that the metrices models increase a lot. Vader generates the highest metrics' scores among all the adopted models. Besides, the logistic regression produced the second-best performance, even better than the one resulted by Neural Network. The metrics from Neural Network might be different each time. However, the difference is not obvious.

# 7 Discussion

It can be perceived that surprisingly; Vader has the best performance among six models. Based on this fact, we suspect that when building the original datasets, the creators applied Vader to put labels on most of the tweets. Hence, it states a fact that complication of machine learning model is not equivalent to better performance.

#### References

Nikhil Kumar Rajput, Bhavya Ahuja Grover, & Vipin Kumar Rathi. 2020. "Word frequency and

sentiment analysis of twitter messages during coronavirus pandemic". A Preprint, 9 April. 2020, https://arxiv.org/pdf/2004.03925.pdf.

Mrityunjay Singh, Amit Kumar Jakhar, & Shivam Pandey. 2021. "Sentiment analysis on the impact of coronavirus in social life using the BERT model". Social Network Analysis and Mining, 15 February. 2021, https://europepmc.org/backend/ptpmcrender.fcgi ?accid=PMC7976692&blobtype=pdf.

László Nemes & Attila Kiss. "Social media sentiment analysis based on COVID-19". Journal of Information and Telecommunication, 14 Jul. 2020, https://www.tandfonline.com/doi/full/10.108 0/24751839.2020.1790793. M. A. Alanezi and N. M. Hewahi, "Tweets

Sentiment Analysis During COVID-19 Pandemic". 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), 20 Jan. 2021, https://ieeexplore.ieee.org/document/932567

Abdullah Alsaeedi & Mohammad Zubair Khan. "A Study on Sentiment Analysis Techniques of Twitter Data". International Journal of Advanced Computer Science and Applications Vol. 10, No. 2. 2019, https://pdfs.semanticscholar.org/6f34/ad869da 01abdf8d183a1786b54ff4217aefd.pdf Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.