1 Long-run Risk

Consider the following long-run-risk model to the macroeconomy specified as:

$$Y_{t+1} - Y_t = \alpha_y + \beta_y Z_t + \begin{bmatrix} \sigma_y & 0 \end{bmatrix} W_{t+1}$$
$$Z_{t+1} = \beta_z Z_t + \begin{bmatrix} 0 & \sigma_z \end{bmatrix} W_{t+1}$$

where $\{W_{t+1}: t \geq 0\}$ is an iid, bivariate normal with mean zero and covariance I. In this equation, the first difference in Y_{t+1} is the logarithm of the stochastic growth in the macroeconomy. Assume $0 \leq \beta_z < 1$. Note that if $\log X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}[X] = \exp(\mu + 0.5\sigma^2)$.

Problem 1.1. Compute the stationary distribution for the growth rate process $\{Z_t : t \ge 0\}$. In particular, what is the mean of this process and what is the variance as a function of the underlying parameters?

Solution. Define $\mu_t := \mathbb{E}[Z_t]$ and $\Sigma_t := \operatorname{Var}[Z_t]$.

> The mean of the stationary distribution is given as

$$\mu = \beta_z \mu \Rightarrow \mu = 0$$

which is well-defined since $\beta_z < 1$.

▷ The variance of the stationary distribution is given as

$$\Sigma = \beta_z^2 \Sigma + \sigma_z^2 \Rightarrow \Sigma = \frac{\sigma_z^2}{1 - \beta_z^2}$$

which is also well-defined since $\beta_z < 1$.

Since Z_t is a sum of independent normal shocks, it follows that the stationary distribution is $\mathcal{N}\left(0, \frac{\sigma_z^2}{1-\beta_z^2}\right)$.

Problem 1.2. Suppose a decision maker uses the following objective specified recursively to assess the macro economy:

$$\log V_t = [1 - \exp(-\delta)] Y_t + \exp(-\delta) \mathbb{R} (\log V_{t+1} | \mathfrak{F}_t)$$

where

$$\mathbb{R}\left(\log V_{t+1}|\mathfrak{F}_t\right) = \frac{1}{1-\gamma}\log \mathbb{E}\left(\exp\left[(1-\gamma)\log V_{t+1}\right]|\mathfrak{F}_t\right)$$

and \mathfrak{F}_t contains information revealed by shocks $W_1, ..., W_t$ and the initial condition (Y_0, X_0) . Produce a corresponding recursive equation for $v_t = \log V_t - Y_t$.

Solution. Rewriting the objective of the decision maker, we have:

$$\log V_t - Y_t = \exp(-\delta) \mathbb{R} [\log V_{t+1} - Y_t | \mathfrak{F}_t]$$

= \exp(-\delta) \mathbb{R} [\log V_{t+1} - Y_{t+1} + (Y_{t+1} - Y_t) | \mathbf{F}_t]

Plugging in the expression for $Y_{t+1} - Y_t$, we have

$$\underbrace{\log V_t - Y_t}_{\equiv v_t} = \exp(-\delta) \mathbb{R} \left[\underbrace{\log V_{t+1} - Y_{t+1}}_{\equiv v_{t+1}} + \left\{ \alpha_y + \beta_y Z_t + \begin{bmatrix} \sigma_y & 0 \end{bmatrix} W_{t+1} \right\} |\mathfrak{F}_t| \right]$$

Problem 1.3. Do you expect $\log V_t$ and Y_t to be cointegrated? If so, what is the cointegrating vector?

Solution. $\log V_t$ and Y_t are cointegrated if there exists a linear combination of them that is stationary. The cointegrating vector is $[1,-1]^{\top}$.

Problem 1.4. Next, do guess and verify to construct a formula for the coefficients of $v_t = \alpha_v + \beta_v Z_t$. Provide a formula for α_v and β_v .

Solution. We will guess that v_t has the form $\alpha_v + \beta_y Z_t$. Define $M_{t+1} := v_{t+1} + Y_{t+1} - Y_t$. Under this guess,

$$\begin{aligned} M_{t+1} &:= v_{t+1} + Y_{t+1} - Y_t \\ &= (\alpha_v + \beta_v Z_{t+1}) + (\alpha_y + \beta_y Z_t + [\sigma_y \ 0] W_{t+1}) \\ &= (\alpha_v + \alpha_v) + \beta_v (\beta_z Z_t + [0 \ \sigma_z] W_{t+1}) + \beta_y Z_t + [\sigma_y \ 0] W_{t+1} \\ &= (\alpha_v + \alpha_v) + (\beta_v \beta_z + \beta_u) Z_t + \beta_v [0 \ \sigma_z] W_{t+1} + [\sigma_y \ 0] W_{t+1} \end{aligned}$$

This implies that

$$M_{t+1}|\mathfrak{F}_t \sim \mathcal{N}\left((\alpha_v + \alpha_v) + (\beta_v \beta_z + \beta_y) Z_t, \beta_v^2 \sigma_z^2 + \sigma_y^2\right)$$

i.e. M_{t+1} is conditionally normally distributed with mean $(\alpha_v + \alpha_v) + (\beta_v \beta_z + \beta_y) Z_t$ and variance $\beta_z^2 \sigma_z^2 + \sigma_y^2 Z_t$

$$\mathbb{R}\left(M_{t+1}|\mathfrak{F}_{t}\right) = \frac{1}{1-\gamma}\log\mathbb{E}\left(\exp\left[\left(1-\gamma\right)M_{t+1}\right]|\mathfrak{F}_{t}\right)$$

Since

$$(1 - \gamma) M_{t+1} | \mathfrak{F}_t \sim \mathcal{N} \left((1 - \gamma) \left[(\alpha_v + \alpha_v) + (\beta_v \beta_z + \beta_y) Z_t \right], (1 - \gamma)^2 \left\{ \beta_v^2 \sigma_z^2 + \sigma_y^2 \right\} \right)$$

it follows that

$$\log \mathbb{E}\left[\exp\left[(1-\gamma)\,M_{t+1}\right]\right] = (1-\gamma)\left[(\alpha_v + \alpha_v) + (\beta_v\beta_z + \beta_y)\,Z_t\right] + \frac{1}{2}\,(1-\gamma)^2\,\left\{\beta_v^2\sigma_z^2 + \sigma_y^2\right\}$$

which implies

$$\mathbb{R}\left(M_{t+1}|\mathfrak{F}_t\right) = \left[\left(\alpha_v + \alpha_v\right) + \left(\beta_v \beta_z + \beta_y\right) Z_t\right] + \frac{1}{2} \left(1 - \gamma\right) \left\{\beta_v^2 \sigma_z^2 + \sigma_y^2\right\}$$

□ Going back to our original recursion, we have

$$v_t = \exp(-\delta) \mathbb{R} (M_{t+1} | \mathfrak{F}_t)$$

Plugging in our conjecture:

$$\alpha_v + \beta_v Z_t = \exp(-\delta) \left[\left[(\alpha_v + \alpha_v) + (\beta_v \beta_z + \beta_y) Z_t \right] + \frac{1}{2} (1 - \gamma) \left\{ \beta_v^2 \sigma_z^2 + \sigma_y^2 \right\} \right]$$

$$= \left[\exp(-\delta) \left(\alpha_v + \alpha_y \right) + \frac{1}{2} \exp(-\delta) \left(1 - \gamma \right) \left\{ \beta_v^2 \sigma_z^2 + \sigma_y^2 \right\} \right] + \left[\exp(-\delta) \left(\beta_v \beta_z + \beta_y \right) \right] Z_t$$

which yields:

$$\alpha_v = \exp(-\delta) (\alpha_v + \alpha_y) + \frac{1}{2} \exp(-\delta) (1 - \gamma) \{\beta_v^2 \sigma_z^2 + \sigma_y^2\}$$

$$\beta_v = \exp(-\delta) (\beta_v \beta_z + \beta_y)$$

Rearranging:

$$\alpha_{v} = \frac{\exp(-\delta) \alpha_{y} + \frac{1}{2} \exp(-\delta) (1 - \gamma) \left\{ \beta_{v}^{2} \sigma_{z}^{2} + \sigma_{y}^{2} \right\}}{1 - \exp(-\delta)}$$
$$\beta_{v} = \frac{\exp(-\delta) \beta_{y}}{1 - \beta_{z} \exp(-\delta)}$$

Problem 1.5. Consider two processes for $\{Z_t: t \geq 0\}$. The processes differ in terms of the coefficients (β_z^i, σ_z^i) with for process i and the remaining coefficients held the same across models. Presume that $\beta_z^1 > \beta_z^2$ and that σ_z^i s are adjusted so that the stationary distribution for the resulting $\{Z_t: t \geq 0\}$ remains the same. Use your answer in part 1a to answer this. Set $\alpha_y = 0$ to facilitate a small δ limiting comparison between the two processes. Compare the coefficients α_v^i and β_v^i for the two processes in the $\delta = 0$ limit using your answer to 1(d).

Solution. Recall that the stationary distribution for Z_t is given as:

$$\mathcal{N}\left(0, \frac{\sigma_z^2}{1 - \beta_z^2}\right)$$

ightharpoonup If we have $eta_z^1>eta_z^2$, then $\sigma_z^1<\sigma_z^2$ in order to preserve the original stationary distribution.

 \triangleright Now set $\alpha_y = 0$ to the coefficients derived in the previous section:

$$\alpha_v = \frac{\frac{1}{2} \exp(-\delta) (1 - \gamma) \left\{ \beta_v^2 \sigma_z^2 + \sigma_y^2 \right\}}{1 - \exp(-\delta)}$$
$$\beta_v = \frac{\exp(-\delta) \beta_y}{1 - \beta_z \exp(-\delta)}$$

so α_v is increasing in σ_z , which means it is decreasing in β_z . β_v is increasing in β_z .

We see that as $\delta \to \infty$, $\beta_v \to \beta_y$ i.e. the two processes with different $\beta_z^1 > \beta_z^2$ converges to the same value.

Problem 1.6. How does the decision maker view persistence in the growth rate process in this example? Please provide only a short answer that builds, if possible on your answer to part 1e.

Solution. We saw that higher persistence in the growth rate (β_z) implies a lower α_v but a higher β_v . So he prefers higher persistence if β_v is sufficiently higher than α_v .

2 Markov Chain

Suppose that a process $\{Z_t : t \ge 0\}$ evolves as a two-state Markov Chain with transition matrix:

$$\mathbb{P} = \left[\begin{array}{cc} p_{11} & 1 - p_{11} \\ 1 - p_{22} & p_{22} \end{array} \right]$$

where $0 < p_{ii} \le 1, \forall i = \{1, 2\}$. Let realized values of Z_t be one of the two coordinate vectors. Suppose when state i is realized, the next period macroeconomic growth rate, $Y_{t+1} - Y_t$, is distributed as a normal with mean μ_i and standard deviation σ_i .

Problem 2.1. Suppose that p_{11} and p_{22} are both strictly less than 1. Provide a formula for the stationary distribution of $\{Z_t: z \geq 0\}$. Is this process ergodic under this stationary distribution?

Solution. The problem statement implies that

$$Y_{t+1} - Y_t = \begin{bmatrix} \mu_1 & \mu_2 \end{bmatrix} Z_t + \begin{bmatrix} \sigma_1 & \sigma_2 \end{bmatrix} W_{t+1}$$
$$\mathbb{E} [Z_{t+1} | \mathfrak{F}_t] = \mathbb{P}' Z_t$$

where

$$Z_{t} \in \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \qquad W_{t+1} \sim \mathcal{N}\left(0,1\right)$$

To find the stationary distribution, we can solve for

$$\left[\begin{array}{cc} \pi & 1-\pi \end{array}\right] \left[\begin{array}{cc} p_{11} & 1-p_{11} \\ 1-p_{22} & p_{22} \end{array}\right] = \left[\begin{array}{cc} \pi & 1-\pi \end{array}\right]$$

which yields:

$$\mathbb{E}\left[Z_{t}\right] = \left[\begin{array}{c} \pi \\ 1 - \pi \end{array}\right]$$

where

$$\pi = \frac{1 - p_{22}}{2 - p_{11} - p_{22}}, \quad 1 - \pi = \frac{1 - p_{11}}{2 - p_{11} - p_{22}}$$

The process is indeed ergodic under this stationary distribution.

Problem 2.2. Provide a formula for the mean and the variance of $\{Y_{t+1} - Y_t : t \ge 0\}$ for the stationary distribution that you computed in part 2a. Will time-series estimators recover this mean and variance? If so, what estimators? Will the implied stationary distribution for the macro growth rate process be a normal distribution? Why or why not?

Solution. Recall that we had:

$$Y_{t+1} - Y_t = \begin{bmatrix} \mu_1 & \mu_2 \end{bmatrix} Z_t + \begin{bmatrix} \sigma_1 & \sigma_2 \end{bmatrix} W_{t+1}$$
$$\mathbb{E}\left[Z_{t+1} | \mathfrak{F}_t\right] = \mathbb{P}' Z_t$$

$$\mathbb{E}[Y_{t+1} - Y_t] = \mu_1 \pi + \mu_2 (1 - \pi)$$

▷ To obtain the variance, first note that

$$\operatorname{Var}\left[Z_{t}\right] = \left[\begin{array}{cc} \pi - \pi^{2} & -\pi\left(1 - \pi\right) \\ -\pi\left(1 - \pi\right) & \pi - \pi^{2} \end{array}\right]$$

* To see this:

$$\operatorname{Var} [Z_{t+1}] = \mathbb{E} \left[(Z_{t+1} - \mathbb{E} [Z_{t+1}]) (Z_{t+1} - \mathbb{E} [Z_{t+1}])^{\top} \right] = \mathbb{E} \left[Z_{t+1} Z_{t+1}^{\top} \right] - \mathbb{E} [Z_{t+1}] \mathbb{E} [Z_{t+1}]^{\top}$$

$$= \mathbb{E} \left[\left(\begin{array}{c} (Z_{t+1}^{1})^{2} & Z_{t+1}^{1} Z_{t+1}^{2} \\ Z_{t+1}^{1} Z_{t+1}^{2} & (Z_{t+1}^{2})^{2} \end{array} \right) \right] - \mathbb{E} \left[\left(\begin{array}{c} Z_{t+1}^{1} \\ Z_{t+1}^{2} \end{array} \right) \right] \mathbb{E} \left[\left(\begin{array}{c} Z_{t+1}^{1} & Z_{t+1}^{2} \end{array} \right) \right]^{\top}$$

$$(::) Z_{t+1}^{2} = Z_{t+1} = \begin{bmatrix} \mathbb{E} \left[Z_{t+1}^{1} \right] - \mathbb{E} \left[Z_{t+1}^{1} \right]^{2} & 0 - \mathbb{E} \left[Z_{t+1}^{1} \right] \mathbb{E} \left[Z_{t+1}^{2} \right] \\ 0 - \mathbb{E} \left[Z_{t+1}^{1} \right] \mathbb{E} \left[Z_{t+1}^{2} \right] - \mathbb{E} \left[Z_{t+1}^{2} \right]^{2} \end{bmatrix}$$

$$= \begin{bmatrix} \pi - \pi^{2} & -\pi (1 - \pi) \\ -\pi (1 - \pi) & (1 - \pi) - (1 - \pi)^{2} \end{bmatrix}$$

* Simplifying yields:

$$\operatorname{Var}\left[Z_{t}\right] = \left[\begin{array}{cc} \pi - \pi^{2} & -\pi \left(1 - \pi\right) \\ -\pi \left(1 - \pi\right) & \pi - \pi^{2} \end{array} \right]$$

* Now writing out the variance of $Y_{t+1} - Y_t$:

$$\operatorname{Var}\left[Y_{t+1} - Y_{t}\right] = \begin{bmatrix} \mu_{1} & \mu_{2} \end{bmatrix} \operatorname{Var}\left[Z_{t}\right] \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix} + \begin{pmatrix} \sigma_{1}^{2} + \sigma_{2}^{2} \end{pmatrix}
= \begin{bmatrix} \mu_{1} & \mu_{2} \end{bmatrix} \begin{bmatrix} \pi - \pi^{2} & -\pi (1 - \pi) \\ -\pi (1 - \pi) & \pi - \pi^{2} \end{bmatrix} \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix} + \begin{pmatrix} \sigma_{1}^{2} + \sigma_{2}^{2} \end{pmatrix}
= \begin{bmatrix} \mu_{1} (\pi - \pi^{2}) - \mu_{2} (\pi - \pi^{2}) & -\mu_{1} (\pi - \pi^{2}) + \mu_{2} (\pi - \pi^{2}) \end{bmatrix} \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix} + \begin{pmatrix} \sigma_{1}^{2} + \sigma_{2}^{2} \end{pmatrix}
= \mu_{1}^{2} (\pi - \pi^{2}) - 2\mu_{1}\mu_{2} (\pi - \pi^{2}) + \mu_{2}^{2} (\pi - \pi^{2}) + \begin{pmatrix} \sigma_{1}^{2} + \sigma_{2}^{2} \end{pmatrix}$$

Note that the stationary distribution is not necessarily normal because Z_t is not necessarily normally distributed.

Problem 2.3. Now suppose that $p_{11} = p_{22} = 1$. What are the implied stationary distributions for $\{Z_t : t \ge 0\}$? Under which of these distributions the process be ergodic?

Solution. If $p_{11} = p_{22} = 1$, then the transition matrix is

$$\mathbb{P} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

so any stationary distributions $[\alpha, 1-\alpha]^{\mathsf{T}}$ can be sustained. However the process is ergodic only under the following stationary distributions:

 $\left[\begin{array}{c}1\\0\end{array}\right],\left[\begin{array}{c}0\\1\end{array}\right]$

- 5 -

3 Markov Chain

For some GMM estimation problems, there is a special structure for the moment restrictions captured by

$$F(x,b) = \begin{bmatrix} F_1(x,b_1) \\ F_2(x,b_1,b_2) \end{bmatrix}$$

where

$$b = \left[\begin{array}{c} b_1 \\ b_2 \end{array} \right]$$

and b_1 has k_1 entries, b_2 has k_2 entries, F_1 has $r_1 = k_1$ entries and F_2 has $r_2 > k_2$ entries. Suppose that

$$\mathbb{E}\left[F_1\left(X_t,\beta_1\right)\right] = 0$$

is used to identify and estimate β_1 . Given the estimate of β_1 ,

$$\mathbb{E}\left[F_2\left(X_t,\beta_1,\beta_2\right)\right] = 0$$

is used to identify and estimate β_2 given an initial estimate of β_1 . Recall the GMM approximation formulas:

$$\sqrt{N} (b_N - \beta) \approx -\left(A'D\right)^{-1} A' \frac{1}{\sqrt{N}} \sum_{t=1}^N F\left(X_t, \beta\right)$$

$$\frac{1}{\sqrt{N}} \sum_{t=1}^N F\left(X_t, \beta\right) \approx \left[I - D\left(A'D\right)^{-1} A'\right] \frac{1}{\sqrt{N}} \sum_{t=1}^N F\left(X_t, \beta\right)$$

$$\frac{1}{\sqrt{N}} \sum_{t=1}^N F\left(X_t, \beta\right) \Rightarrow \text{Normal} (0, V)$$

Problem 3.1. Show that the matrix D is lower block triangular:

$$D = \left[\begin{array}{cc} D_{11} & 0 \\ D_{21} & D_{22} \end{array} \right]$$

where the partitioning is conformable with the partitioning of b and F.

Solution. Note that the D matrix is defined as

$$D = \mathbb{E} \left[\partial F \left(X_t, \beta \right) / \partial \beta \right]$$

Denote

$$D_{11} := \mathbb{E} \left[\partial F_1 \left(X_t, \beta_1 \right) / \partial \beta_1 \right]$$

$$D_{12} := \mathbb{E} \left[\partial F_1 \left(X_t, \beta_1 \right) / \partial \beta_2 \right]$$

$$D_{21} := \mathbb{E} \left[\partial F_2 \left(X_t, \beta_1, \beta_2 \right) / \partial \beta_1 \right]$$

$$D_{22} := \mathbb{E} \left[\partial F_2 \left(X_t, \beta_1, \beta_2 \right) / \partial \beta_2 \right]$$

It is thus clear that $D_{12} = 0$ since F_1 is not a function of β_2 .

Problem 3.2. The two-step nature of the estimation can be captured by a block diagonal selection matrix:

$$A = \left[\begin{array}{cc} A_{11} & 0 \\ 0 & A_{22} \end{array} \right]$$

Explain.

Solution. Recall that our desired moment conditions are:

$$\mathbb{E}\left[F_1\left(X_t,\beta_1\right)\right] = 0$$

$$\mathbb{E}\left[F_2\left(X_t,\beta_1,\beta_2\right)\right] = 0$$

and the corresponding GMM estimators are given by solutions to

$$A'_{11} \frac{1}{N} \sum_{t=1}^{N} F_1(X_t, \beta_1) = 0$$
$$A'_{22} \frac{1}{N} \sum_{t=1}^{N} F_2(X_t, \beta_1, \beta_2) = 0$$

which can be expressed as

$$\begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}' \begin{bmatrix} \frac{1}{N} \sum_{t=1}^{N} F_1(X_t, \beta_1) & \frac{1}{N} \sum_{t=1}^{N} F_2(X_t, \beta_1, \beta_2) \\ \frac{1}{N} \sum_{t=1}^{N} F_1(X_t, \beta_1) & \frac{1}{N} \sum_{t=1}^{N} F_2(X_t, \beta_1, \beta_2) \end{bmatrix} = 0$$

Problem 3.3. The matrix $(A_{11})'$ can be set to $(D_{11})^{-1}$ for the purposes of deriving limiting properties provided that D_{11} is non-singular. Explain.

Solution. This is setting A_{11} to be the efficient selection matrix.

 \triangleright To see this, recall that for a given A, the asymptotic covariance matrix for a GMM estimator is given as

$$Cov[A] = (AD)^{-1} AVA' (D'A')^{-1}$$

 \triangleright Now consider A that satisfies the above and any BA where B is non-singular. Plugging into the above formula yields:

$$Cov[BA] = Cov[A]$$

which means that without loss of generality, we may assume that

$$AD = 1$$

provided D is non-singular.

Since here we are focusing on β_1 , we can set $A_{11}D_{11} = I$ and retain the same limiting properties.

Problem 3.4. Construct an approximation formula for the GMM estimator of β_2 as a function of the selection matrix A_{22} taking account of the initial stage estimation. You may use the following approximation formulas for a family of GMM estimators.

Solution. The estimation exercise of interest is

$$A_{22}g_N^{[2]}\left(b_N^1,\beta^{[2]}\right)=0$$

To proceed, we use partitioning and the property

$$\sqrt{N} (b_N - \beta_0) \approx -(AD)^{-1} A \sqrt{N} g_N (\beta_0)$$

to obtain the limiting distribution for the estimator $b_N^{[2]}$:

$$\sqrt{N} \left(b_N^{[2]} - \beta_0^{[2]} \right) \approx - \left(A_{22} D_{22} \right)^{-1} A_{22} \left[-D_{21} \left(A_{11} D_{11} \right)^{-1} A_{11} \quad I \right] \sqrt{N} g_N \left(\beta_0 \right)$$

$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}, \qquad D = \begin{bmatrix} D_{11} & 0 \\ D_{21} & D_{22} \end{bmatrix}$$

and the inverse formula for the block matrix:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix}$$

to obtain:

$$AD = \begin{bmatrix} A_{11}D_{11} & 0 \\ A_{22}D_{21} & A_{22}D_{22} \end{bmatrix} \Rightarrow (AD)^{-1} = \begin{bmatrix} (A_{11}D_{11})^{-1} & 0 \\ -(A_{22}D_{22})^{-1} (A_{22}D_{21}) (A_{11}D_{11})^{-1} & (A_{22}D_{22})^{-1} \end{bmatrix}$$

and thus:

$$(AD)^{-1} A = \begin{bmatrix} (A_{11}D_{11})^{-1} & 0 \\ -(A_{22}D_{22})^{-1} (A_{22}D_{21}) (A_{11}D_{11})^{-1} & (A_{22}D_{22})^{-1} \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$$

$$= \begin{bmatrix} (A_{11}D_{11})^{-1} A_{11} & 0 \\ -(A_{22}D_{22})^{-1} (A_{22}D_{21}) (A_{11}D_{11})^{-1} A_{11} & (A_{22}D_{22})^{-1} A_{22} \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{N} \left(b_N^{[1]} - \beta_0^{[1]} \right) \\ \sqrt{N} \left(b_N^{[2]} - \beta_0^{[2]} \right) \end{bmatrix} \approx \begin{bmatrix} (A_{11}D_{11})^{-1} A_{11} & 0 \\ -(A_{22}D_{22})^{-1} (A_{22}D_{21}) (A_{11}D_{11})^{-1} A_{11} & (A_{22}D_{22})^{-1} A_{22} \end{bmatrix} \begin{bmatrix} \sqrt{N} g_N \left(\beta_0^{[1]} \right) \\ \sqrt{N} g_N \left(\beta_0^{[2]} \right) \end{bmatrix}$$

Focusing on the second block, we have

$$\sqrt{N} \left(b_N^{[2]} - \beta_0^{[2]} \right) \approx - \left(A_{22} D_{22} \right)^{-1} \left(A_{22} D_{21} \right) \left(A_{11} D_{11} \right)^{-1} A_{11} \left[\sqrt{N} g_N \left(\beta_0^{[1]} \right) \right]
+ \left(A_{22} D_{22} \right)^{-1} A_{22} \left[\sqrt{N} g_N \left(\beta_0^{[2]} \right) \right]
= - \left(A_{22} D_{22} \right)^{-1} A_{22} \left[-D_{21} \left(A_{11} D_{11} \right)^{-1} A_{11} \quad I \right] \sqrt{N} g_N \left(\beta_0 \right)$$

Therefore, we have the following desired approximation:

$$\sqrt{N} \left(b_N^{[2]} - \beta_0^{[2]} \right) \approx - \left(A_{22} D_{22} \right)^{-1} A_{22} \left[-D_{21} \left(A_{11} D_{11} \right)^{-1} A_{11} \quad I \right] \sqrt{N} g_N \left(\beta_0 \right)$$