TP no 1: Distributions

L'objectif de ce TP est de réaliser avec le logiciel R des représentations graphiques basiques des variables quantitatives et qualitatives, puis le test d'ajustement à une distribution connue.

I. Représentations graphiques

Diagramme à bâtons

Considérons le tableau suivant :

Nombre de personnes	Effectif
1	125
2	200
3	295
4	100
5	50

Table 1: Distribution du nombre de personnes par ménage

- 1. Quel est le type de la variable étudiée ?
- 2. Rentrer les modalités puis les effectifs dans un vecteur.
- 3. Créer une variable *n* calculant l'effectif total de l'échantillon étudié.
- 4. Créer ensuite le vecteur des fréquences de cette distribution.
- 5. Tracer le diagramme en bâtons des effectifs de cette distribution. Pour y arriver, utiliser la fonction *plot* avec l'argument *type="h"*.
- 6. Tracer le diagramme en bâtons des fréquences de cette distribution en utilisant la fonction *barplot*.

II. Polygone des fréquences

On va maintenant comparer les trois distributions de la table 2 en superposant leur polygone des fréquences.

- 1. Créer les vecteurs contenant les centres des classes (on pourra utiliser la fonction *seq*) et les fréquences des trois distributions.
- 2. Tracer avec la fonction *plot* le polygone des fréquences de la distribution des célibataires.
- 3. Avec la fonction *lines*, ajouter sur le même graphique les polygones des fréquences de deux autres distributions. Contrôler le type de symbole de chaque polygone par l'argument *pch*.
- 4. Utiliser la fonction *legend* pour ajouter une légende au graphique.

Etat civil									
Age	Célibataires	Veuves	Divorcées						
15-19	44827	20	86						
20-24	81345	175	2558						
25-29	21774	391	6162						
30-34	5216	394	4785						
35-39	1768	425	2958						
40-44	833	529	2121						
45-49	521	795	1589						
50-54	383	932	1125						
55-59	265	1041	563						
60-64	176	947	235						

Table 2: Répartition des mariages au Canada selon l'âge et l'état civil de l'épouse-1976

Continent	Fréquence
Afrique	0.111
Amérique du Nord	0.082
Amérique du Sud	0.0554
Asie	0.608
Europe	0.139
Océanie	0.005

Table 3: Distribution de la population mondiale sur les continents

III. Camembert

La distribution de la population mondiale sur les continents est donnée par la table 3.

- 1. Quel est le type de la variable observée ?
- 2. Créer un vecteur contenant les fréquences puis un autre contenant les modalités.
- 3. Tracer le camembert de cette distribution (fonction *pie*).

II. TEST D'AJUSTEMENT

Le logiciel R permet d'effectuer le test d'ajustement à une distribution connue avec la fonction *chisq.test* et les arguments x *et p* (?chisq.test pour plus de détails).

On considère la distribution suivante de 300 accouchements selon les jours de la semaine :

Jour	L	M	M	J	V	S	D	Total
Effectif	50	42	47	42	44	40	35	300

Effectuer un test d'ajustement pour déterminer si les accouchements se répartissent uniformément.

ν	1	2	3	4	5	6	7	8	9	10
Point critique	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	16.92	18.31