NOTES ON J-HOMOMORPHISM

AKIRA TOMINAGA

1. Introduction

To begin with, we generalize the Hopf construction a bit.

Definition 1.1. Let $f: S^i \to O(n) \in \pi_i(O(n))$. We define

$$Jf: S^{n+i} = S^i \times D^n \cup D^{i+1} \times S^{n-1} \to S^n$$

sending $(x, y) \in S^i \times D^n$ to $f(x)(y) \in D^n/\partial D^n$ and $D^{i+1} \times S^{n-1}$ to a basepoint.

Jf is homotopy equivalent to the map $S^{n+i} = S^i \wedge S^n \to S^n$ induced by $(x, y) \mapsto f(x)(y)$. In other words,

Proposition 1.2. *J* is equal to the map induced by

$$f: S^i \to \mathsf{Map}_*(S^n, S^n).$$

From this description, we can prove the following properties.

Proposition 1.3. $J \colon \pi_i(O(n)) \to \pi_{n+i}(S^n)$ is a group homomorphism.

Proposition 1.4. The following diagram commute

$$\pi_{i}(O(n)) \xrightarrow{J} \pi_{n+i}(S^{n})$$

$$\downarrow_{i_{*}} \qquad \qquad \downarrow_{\Sigma}$$

$$\pi_{i}(O(n+1)) \xrightarrow{J} \pi_{n+i+1}(S^{n+1})$$

where $i: O(n) \to O(n+1)$ is an inclusion and Σ is a suspension homomorphism.

Therefore we obtain a homomorphism $J\colon \pi_i(O)\to \pi_i^S$. Recall that, by Bott periodicity, $\pi_{4s-1}(O)\cong \mathbb{Z}$. Our goal is to determine the image of J. Let $B_{2s}\in \mathbb{Q}$ be a Bernoulli number.

Theorem 1.5. The order of $J: \pi_{4s-1}(O) \to \pi_{4s-1}^S$ is m(2s), where m(2s) is the denominator of $B_{2s}/4s$.

In this note, our main goal is to provide the lower bound of the order of $\operatorname{Im} J$, i.e., to show that the order of $\operatorname{Im} J$ is a multiple of m(2s). Giving the upper bound concerns with the Adams conjecture. To show that there are a number of non-trivial elements in π_i^S , we need an invariant to distinguish these elements.

Date: October 19, 2020.

2. e-invariant

For $f: X \to Y$, take $d_{\Lambda}(f) := f^*: \tilde{K}_{\Lambda}(Y) \to \tilde{K}_{\Lambda}(X) \in \operatorname{Hom}_{A}(\tilde{K}_{\Lambda}(Y), \tilde{K}_{\Lambda}(X)) = \operatorname{Ext}_{A}^{0}(\tilde{K}_{\Lambda}(Y), \tilde{K}_{\Lambda}(X))$ where $\Lambda = \mathbb{R}$ or \mathbb{C} . (A is an abelian category of finitely generated abelian groups with Adams operations.)¹ The $d_{\Lambda}(f)$ is called the d-invariant of f. If $d_{\Lambda}(f) = 0$ and $d_{\Lambda}(\Sigma f) = 0$, then we have the following short exact sequence

$$0 \longrightarrow \tilde{K}_{\Lambda}(\Sigma X) \longrightarrow \tilde{K}_{\Lambda}(C_f) \longrightarrow \tilde{K}_{\Lambda}(Y) \longrightarrow 0$$

where C_f is the cofiber of f. In other words, we obtain an element $e_{\Lambda}(f) \in \operatorname{Ext}^1_{A}(\tilde{K}_{\Lambda}(Y), \tilde{K}_{\Lambda}(\Sigma X))$. $e_{\Lambda}(f)$ is called the e-invariant of f. We want to compute this invariant, at least for $f \in \pi_m(S^n)$. Since it is hard to distinguish two different elements directly from definition, we attach a number to $e_{\Lambda}(f)$ as we did in the Hopf invariant.

Let $f: S^{n+q} \to S^q \in \pi_n^S$. Suppose that $q \equiv 0 \mod 2$ when $\Lambda = \mathbb{C}$ or $q \equiv 0 \mod 8$ when $\Lambda = \mathbb{R}$. Then $\tilde{K}_{\Lambda}(S^q) \cong \mathbb{Z}$ with $\psi^k(x) = k^q x$. It can be checked that we can define $e_{\Lambda}(f)$ when n = 4s - 1. Now we have $\tilde{K}_{\Lambda}(C_f) \cong \mathbb{Z} \oplus \mathbb{Z}$ as an abelian group. Let $\xi \in \tilde{K}_{\Lambda}(C_f)$ be an element which projects to a generator in $\tilde{K}_{\Lambda}(S^n)$ and $\eta \in \tilde{K}_{\Lambda}(C_f)$ be a image of a generator of $\tilde{K}_{\Lambda}(S^{n+q+1})$. Then we must have

$$\psi^{k}\xi = k^{q}\xi + \lambda(k^{n+q+1} - k^{q})\eta$$
$$\psi^{k}\eta = k^{n+q+1}\eta$$

for some $\lambda \in \mathbb{Q}$. We write $e_{\Lambda}(f) := \lambda \in \mathbb{Q}/\mathbb{Z}$ by abuse of notation. Then it is easy to see that $\lambda \in \mathbb{Q}/\mathbb{Z}$ is independent of the choice of ξ . Also, we can see that λ is independent of k by computing $\psi^k \psi^l = \psi^l \psi^k$.

Now we have the following diagram.

Our next goal is to compute the value of e for the image of the generator of $\pi_{4s-1}(O)$.

3. value of e-invariant

Note that we have following two maps

$$\pi_{4s-1}(U) \xrightarrow{r} \pi_{4s-1}(O) \xrightarrow{e_{\mathbb{R}}} \mathbb{Q}/\mathbb{Z}$$

where *r* is induced by canonical map $U(n) \rightarrow O(2n)$.

Proposition 3.1. $e_{\mathbb{C}} \circ r = 2e_{\mathbb{R}} \circ r$.

Proof. If
$$4s-1\equiv 3 \mod 8$$
, then $r=1$ and $e_{\mathbb{C}}=2e_{\mathbb{R}}$. If $4s-1\equiv 7 \mod 8$, then $r=2$ and $e_{\mathbb{C}}=e_{\mathbb{R}}$. [1]

 $^{^{1}}$ The precice definition of A is in [1].

Hence it suffices to compute the $e_{\mathbb{C}}$ of the generator of $\pi_{4s-1}(U)$. Now we can inject $\tilde{K}_{\mathbb{C}}(C_f)$ to $\tilde{H}^*(C_f;\mathbb{Q})$ by the Chern character. In fact, we have

$$ch \xi = h^q + \lambda h^{4s+q}$$

$$ch \eta = h^{4s+q}$$

where $h \in H^q(C_f; \mathbb{Q})$ is the generator.

Proof. Use the property that $\operatorname{ch}_{2q} \circ \psi^k = k^q \circ \operatorname{ch}_{2q}$ where ch_{2q} is the degree 2q component of ch. [2]

We need a following lemma.

Lemma 3.2. Let $f: S^{4s-1} \to U(n)$. Then C_{Jf} is homotopy equivalent to the Thom space of the complex vector bundle $E_f \to S^{4s}$ determined by f.

Proof. Note that E_f is constructed from $D^{4s} \times \mathbb{C}^n \sqcup \mathbb{C}^n$ by identifying (x,v) and f(x)(v). Therefore $T(E_f)$ is constructed from $D^{4s} \times D^{2n} \sqcup D^{2n}$ by identifying $(x,v) \sim f(x)$ and collapsing $D^{4s} \times S^{2n-1} \cup S^{2n-1}$ to a point. In other words, $T(E_f)$ is constructed from attaching a 4s + 2n-cell to S^{2n} by the attaching map $Jf: D^{4s} \times S^{2n-1} \cup S^{4s-1} \times D^{2n} \to S^{2n}$.

With this identification, we can see that $\xi \in \tilde{K}_{\mathbb{C}}(T(E_f))$ restricts to the generator of $\tilde{K}_{\mathbb{C}}(S^{2n})$. In other words, ξ is the Thom class. We can compute the Chern character of the Thom class. Indeed, we have the following fact.

Theorem 3.3. [3] Let $\Phi: H^*(X; \mathbb{Q}) \to \tilde{H}^*(T(E); \mathbb{Q})$ be a Thom isomorphism and $\xi \in \tilde{K}(T(E))$ be a Thom class. Then we have

$$\log\Phi^{-1}\mathrm{ch}(\xi)=\sum_j\alpha_j\mathrm{ch}_{2j}(E)$$

where $\log((e^y-1)/y)=\sum_j \alpha_j y^j/j!$ is a power series expansion.

computation of e(Jf). Let $f: S^{4s-1} \to U(n)$ be a generator of $\pi_{4s-1}(U)$. We will compute $\mathrm{ch}(\xi) \in \tilde{H}(C_{Jf})$ where $\xi \in \tilde{K}(C_{Jf}) = \tilde{K}(T(E_f))$ is a Thom class. Since $\mathrm{ch}(\xi) = h^{2n} + \lambda h^{4s+2n}$, we have $\Phi^{-1}\mathrm{ch}(\xi) = 1 + \lambda h^{4s}$. Hence $\log \Phi^{-1}\mathrm{ch}(\xi) = \lambda h^{4s}$. (Note that $\log(1+z) = z - z^2/2\dots$) On the other hand, $\log \Phi^{-1}\mathrm{ch}(\xi) = \sum_j \alpha_j \mathrm{ch}_j(E_f) = \alpha_{2s} \mathrm{ch}_{4s}(E_f)$ holds by the general formula above. Since f is a generator of $\pi_{4s-1}(U) = \tilde{K}(S^{4s})$, we must have $\mathrm{ch}_{4s}(E_f) = h^{4s}$. Therefore we have $\lambda = \alpha_{2s}$.

However, we have $\alpha_k = B_k/k$ for k > 1 [3]. This is what we wanted.

References

- [1] J.F. Adams, On the groups of J(X)-IV, Topology, Volume 5, Issue 1, March 1966, pp. 21-71.
- [2] J.F. Adams, Vector field on spheres, Ann. Math., 75 (1962), pp. 603-632.
- [3] Allen Hatcher, Vector bundles and K-Theory.