Математическая логика *КТ ИТМО, осень 2025 года*

Что такое правильное рассуждение?

- ▶ Органон, Аристотель: 384-322 гг. до н.э.
- ▶ Средневековье («фигуры», терминология).
- Например, категорический силлогизм:

Каждый	человек	смертен	Сократ	есть	человек
Сократ смертен					

 Это не формальная логика — сделать неформальный текст на естественном языке понятным.

Пример

(Приводится по учебнику Ивлева Ю.В. «Логика», 2006 год) Определите состав, фигуру, модус силлогизма и проверьте его.

Некоторые учащиеся являются троечниками. Все студенты — учащиеся. Следовательно, некоторые студенты — троечники.

Математический анализ и его формализация

- ▶ Ньютон, Лейбниц неформальная идея (1664+).
 (Критика: Джордж Беркли. Аналитик, или Рассуждение, адресованное неверующему математику. Опыт новой теории зрения)
- ▶ Коши последовательности вместо бесконечно-малых, пределы
- Вейерштрасс вещественные числа
- Кантор теория множеств (1875), формализующая вещественные числа.
- ▶ Парадокс Рассела (1901). «Никто не изгонит нас из рая, который основал Кантор» (Давид Гильберт).

► На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?

- ► На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

то что можно сказать про

$$X \in X$$

▶ Пусть $X \in X$. Тогда $X : X \notin X$

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ Пусть $X \in X$. Тогда $X : X \notin X$
 - lacktriangle Пусть X
 otin X . Тогда X должен принадлежать X

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ Пусть $X \in X$. Тогда $X : X \notin X$
 - ightharpoonup Пусть X
 otin X . Тогда X должен принадлежать X
- ightharpoonup Не совсем парадокс: откуда мы знаем, что X существует?

- ► На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ Пусть $X \in X$. Тогда $X : X \notin X$
 - ightharpoonup Пусть $X \notin X$. Тогда X должен принадлежать X
- Не совсем парадокс: откуда мы знаем, что X существует? Не совсем разрешение парадокса: а откуда мы знаем, что вещественные числа существуют?

Программа Гильберта

- Программа Гильберта: полностью формализовать математику, доказать непротиворечивость: Neubegründung der Mathematik: Erste Mitteilung", Abhandlungen aus dem Seminar der Hamburgischen Universität, 1: 157–177. Series of talks given at the University of Hamburg, July 25–27, 1921
 - формализация всей математики;
 - доказательство полноты формализации (все факты могут быть доказаны в формализации):
 - непротиворечивость (невозможно вывести противоречие);
 - консервативность (любое доказательство о реальных объектах может быть сформулировано без использования идеальных объектов);
 - разрешимость (существует алгоритм, проверяющий истинность любого математического факта).
- ▶ Теоремы Гёделя о неполноте формальной арифметики (1930) не дали реализовать её в полном объёме.
- ▶ В данном курсе мы будем следовать этой программе в некоторой степени, формализуя некоторые разделы математики — и изучая проблемы, которые возникают в связи с этой формализацией.

Общее о логических исчислениях

- Задание логического исчисления мы будем начинать с определения предметного языка. Мы всегда должны чётко отличать предметный и метаязыки:
 - ▶ Предметный язык формальный язык, тексты на котором мы будем анализировать.
 - Метаязык (язык исследователя) язык, с помощью которого мы анализируем предметный язык.
 - Например, при изучении программирования, предметный язык собственно изучаемый язык программирования (скажем, Хаскель), языки исследователя русский, английский, язык грамматик для задания языка, язык блоксхем и т.п.
- Для задания исчисления мы, помимо предметного языка, должны задать теорию моделей и теорию доказательств.
- Начнём с очень простой теории: классическое исчисление высказываний (гильбертовского типа).

Основой предметного языка КИВ является высказывание (иначе: формула). Высказывание — это строка, сформированная по следующим правилам.

ightharpoonup Атомарное высказывание (пропозициональная переменная): A, B', C_{1234}

- ightharpoonup Атомарное высказывание (пропозициональная переменная): A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: $(\neg \alpha)$

- ightharpoonup Атомарное высказывание (пропозициональная переменная): A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: (¬α)
 - ► Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$

- ▶ Атомарное высказывание (пропозициональная переменная): A, B', C₁₂₃₄
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: (¬α)
 - ► Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - ightharpoonup Дизъюнкция: $(\alpha \lor \beta)$

- ightharpoonup Атомарное высказывание (пропозициональная переменная): A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: (¬α)
 - ightharpoonup Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - ightharpoonup Дизъюнкция: $(\alpha \lor \beta)$
 - ightharpoonup Импликация: (lpha
 ightharpoonup eta) или $(lpha \supset eta)$

Основой предметного языка КИВ является высказывание (иначе: формула). Высказывание — это строка, сформированная по следующим правилам.

- ightharpoonup Атомарное высказывание (пропозициональная переменная): A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: $(\neg \alpha)$
 - ► Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - ightharpoonup Дизъюнкция: $(\alpha \lor \beta)$
 - ▶ Импликация: $(\alpha \to \beta)$ или $(\alpha \supset \beta)$

Пример:

$$(((A \rightarrow B) \lor (B \rightarrow C)) \lor (C \rightarrow A))$$

- Для упрощения изложения давайте договоримся о некоторых сокращениях записи и метаязыковых конструкциях.
- Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

- Для упрощения изложения давайте договоримся о некоторых сокращениях записи и метаязыковых конструкциях.
- Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Если lpha — высказывание, то $(\neg lpha)$ — высказывание

- Для упрощения изложения давайте договоримся о некоторых сокращениях записи и метаязыковых конструкциях.
- Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Если α — высказывание, то $(\neg \alpha)$ — высказывание

Метапеременные для пропозициональных переменных:

$$X, Y_n, Z'$$

- Для упрощения изложения давайте договоримся о некоторых сокращениях записи и метаязыковых конструкциях.
- Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Если lpha — высказывание, то $(\neg lpha)$ — высказывание

Метапеременные для пропозициональных переменных:

$$X, Y_n, Z'$$

Пусть дана пропозициональная переменная X, тогда $(X \& (\neg X))$ — высказывание

Способы упростить запись

Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация

Способы упростить запись

- Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация
- Ассоциативность: левая для конъюнкции и дизъюнкции, правая для импликации

Способы упростить запись

- Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация
- Ассоциативность: левая для конъюнкции и дизъюнкции, правая для импликации

Пример:

$$((((A \rightarrow B) \& Q) \lor (((\neg B) \rightarrow B) \rightarrow C)) \lor (C \rightarrow (C \rightarrow A)))$$

можем записать так:

$$(A \rightarrow B) \& Q \lor ((\neg B \rightarrow B) \rightarrow C) \lor (C \rightarrow C \rightarrow A)$$

Теория моделей: оценка высказываний

Чтобы задать оценку высказываний:

- lacktriangle Зафиксируем множество истинностных значений $V=\{\mathcal{U},\mathcal{J}\}$
- Определим функцию оценки переменных (интерпретацию) $f: \mathcal{P} \to V$ (\mathcal{P} множество пропозициональных переменных).
- Для удобства определим синтаксис для указания функции оценки переменных

$$\llbracket \alpha \rrbracket^{X_1:=v_1, \dots, X_n:=v_n}$$

Это всё метаязык — потому полагаемся на здравый смысл

$$[A \& B \& (C \to C)]^{A:=\mathcal{U}, B:=[\neg A]}$$

Оценку выражений мы будем вести рекурсивно, а именно ...

Переменные

$$[\![X]\!] = f(X) \qquad [\![X]\!]^{X:=a} = a$$

$$[X]^{\Lambda}$$

Переменные

$$[\![X]\!] = f(X)$$
 $[\![X]\!]^{X:=a} = a$

Отрицание

$$\llbracket
eg lpha
rbracket = \left\{ egin{array}{ll} \mathcal{J}, & ext{если } \llbracket lpha
rbracket = \mathcal{U} \ \mathcal{U}, & ext{иначе} \end{array}
ight.$$

Переменные

$$[X] = f(X)$$
 $[X]^{X:=a} = a$

Отрицание

$$\llbracket \neg \alpha
\rrbracket = \left\{ egin{array}{ll} \mathcal{I}, & \textit{если } \llbracket \alpha
\rrbracket = \mathcal{U} \ \mathcal{U}, & \textit{иначе} \end{array} \right.$$

Конъюнкция

$$\llbracket \alpha \& \beta \rrbracket = \left\{ egin{array}{ll} \mathcal{U}, & \mathit{если} \ \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \mathcal{U} \\ \mathcal{J}, & \mathit{иначe} \end{array} \right.$$

Переменные

$$[X] = f(X)$$
 $[X]^{X:=a} = a$

Отрицание

$$\llbracket \neg \alpha \rrbracket = \left\{ egin{array}{ll} \mathcal{I}, & \textit{если } \llbracket \alpha \rrbracket = \mathcal{U} \\ \mathcal{U}, & \textit{иначе} \end{array} \right.$$

Конъюнкция

$$\llbracket \alpha \& \beta \rrbracket = \left\{ egin{array}{ll} \mathcal{U}, & \mathit{если} \ \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \mathcal{U} \\ \mathcal{J}, & \mathit{иначе} \end{array} \right.$$

Дизъюнкция

$$\llbracket \alpha \lor \beta \rrbracket = \left\{ egin{array}{ll} arPi, & \mathit{если} \ \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = arPi \end{matrix} \right.$$
 И, иначе

Переменные

$$[X] = f(X) \qquad [X]^{X:=a} = a$$

Отрицание

$$\llbracket \neg \alpha \rrbracket = \left\{ egin{array}{ll} arOmega, & ext{если } \llbracket lpha \rrbracket = arOmega \end{matrix}
ight.$$
 И, иначе

Конъюнкция

$$\llbracket \alpha \ \& \ eta
rbracket = \left\{egin{array}{ll} \emph{\emph{И}}, & \textit{если} \ \llbracket \alpha
rbracket = \llbracket eta
rbracket = \emph{\emph{I}} \emph{\emph{B}}
rbracket = \emph{\emph{V}} \emph{\emph{I}}, & \textit{\emph{иначе}} \end{array}\right.$$

Дизъюнкция

$$oxed{ }$$
 Дизъюнкция $egin{aligned} & [\![lphaee eta]\!] = egin{aligned} & \mathcal{J}, & \mathit{если} & [\![lpha]\!] = eta. \end{aligned}$ $egin{aligned} & [\![lphaee eta]\!] = \mathcal{J}. \end{aligned}$

Импликация

$$\llbracket lpha
ightarrow eta
rbracket = \left\{ egin{array}{ll} arDelta, & ext{ecan} \ arUle d, & ext{uhave} \end{array}
ight. = arUle d, \ arUle d \ arUle d, & ext{uhave} \end{array}
ight.$$

Тавтологии

Если α истинна при любой оценке переменных, то она *общезначима* (является тавтологией):

 $\models \alpha$

Тавтологии

Если α истинна при любой оценке переменных, то она *общезначима* (является *тавтологией*):

$$\models \alpha$$

Выражение $A \to A$ — тавтология. Переберём все возможные значения единственной переменной A:

$$[A \to A]^{A:=\mathcal{U}} = \mathcal{U}$$
$$[A \to A]^{A:=\mathcal{I}} = \mathcal{U}$$

Тавтологии

Если α истинна при любой оценке переменных, то она *общезначима* (является *тавтологией*):

$$\models \alpha$$

Выражение $A \to A$ — тавтология. Переберём все возможные значения единственной переменной A:

$$[A \to A]^{A:=\mathcal{N}} = \mathcal{N}$$
$$[A \to A]^{A:=\mathcal{I}} = \mathcal{N}$$

Выражение A o
eg A тавтологией не является:

$$[\![A \to \neg A]\!]^{A:=\mathcal{U}} = \mathcal{J}$$

Ещё определения

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n\models\alpha$$

Ещё определения

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n\models\alpha$$

Истинна при какой-нибудь оценке — выполнима.

Ещё определения

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n \models \alpha$$

- Истинна при какой-нибудь оценке выполнима.
- ▶ Не истинна ни при какой оценке невыполнима.

Ещё определения

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n \models \alpha$$

- Истинна при какой-нибудь оценке выполнима.
- ▶ Не истинна ни при какой оценке невыполнима.
- ▶ Не истинна при какой-нибудь оценке опровержима.

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием— вместо пропозициональных переменных можно указывать маленькие греческие буквы.

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием— вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием — вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Пример

$$\blacktriangleright (A \to \alpha) \lor (\beta \to B)$$

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием — вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Пример

- $\blacktriangleright (A \to \alpha) \lor (\beta \to B)$
- $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием — вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Пример

- $\blacktriangleright (A \to \alpha) \lor (\beta \to B)$
- $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
- ► A ∨ B & A

Схемы высказываний: определение

Определение

Будем говорить, что высказывание σ строится (иначе: задаётся) по схеме Ш, если существует такая замена метапеременных $u_1, u_2, ..., u_n$ в схеме Ш на какие-либо выражения $\varphi_1, \varphi_2, ..., \varphi_n$, что после её проведения получается высказывание σ :

$$\sigma = \coprod [\mathsf{v}_1 := \varphi_1][\mathsf{v}_2 := \varphi_2]...[\mathsf{v}_n := \varphi_n]$$

Схемы высказываний: примеры

Схема

$$A \rightarrow \alpha \lor B \lor \alpha$$

задаёт, к примеру, следующие высказывания:

- $ightharpoonup A
 ightarrow X \lor B \lor X$, при lpha := X.
- $ightharpoonup A
 ightarrow (M
 ightarrow N) \lor B \lor (M
 ightarrow N)$, при lpha := M
 ightarrow N.

Схемы высказываний: примеры

Схема

$$A \rightarrow \alpha \lor B \lor \alpha$$

задаёт, к примеру, следующие высказывания:

- $ightharpoonup A
 ightarrow X \lor B \lor X$, при $\alpha := X$.
- ightharpoonup A
 ightarrow (M
 ightarrow N) ee B ee (M
 ightarrow N), при lpha := M
 ightarrow N.

и НЕ задаёт следующие высказывания:

- $ightharpoonup A
 ightharpoonup X \lor B \lor Y$ все вхождения lpha должны заменяться одинаково во всём выражении.
- $lackbrack (A o (M o N) \lor B \lor M) o N$ структура скобок должна сохраняться.

Аксиомы исчисления высказываний

Определение

Назовём следующие схемы высказываний схемами аксиом исчисления высказываний:

(1)
$$\alpha \to \beta \to \alpha$$

$$(2) \qquad (\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

(3)
$$\alpha \rightarrow \beta \rightarrow \alpha \& \beta$$

(4)
$$\alpha \& \beta \rightarrow \alpha$$

(5)
$$\alpha \& \beta \rightarrow \beta$$

(6)
$$\alpha \to \alpha \vee \beta$$

(7)
$$\beta \rightarrow \alpha \vee \beta$$

(8)
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

$$(9) \quad (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

$$(10) \quad \neg \neg \alpha \to \alpha$$

Все высказывания, которые задаются схемами аксиом, назовём аксиомами исчисления высказываний.

Правило вывода Modus Ponens

Первый, упомянувший правило — Теофраст (древнегреческий философ, IV-III век до н.э.).

Правило вывода Modus Ponens

Первый, упомянувший правило — Теофраст (древнегреческий философ, IV-III век до н.э.).

Переход по следствию: «сейчас сентябрь; если сейчас сентябрь, то сейчас осень; следовательно, сейчас осень».

Правило вывода Modus Ponens

Первый, упомянувший правило — Теофраст (древнегреческий философ, IV-III век до н.э.).

Переход по следствию: «сейчас сентябрь; если сейчас сентябрь, то сейчас осень; следовательно, сейчас осень».

Если имеет место α и $\alpha \to \beta$, то имеет место β .

$$\frac{\alpha \quad \alpha \to \beta}{\beta}$$

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$,

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

ightharpoonup является аксиомой — существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

- ightharpoonup является аксиомой существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо
- ▶ получается из $\delta_1, \dots, \delta_{i-1}$ по правилу Modus Ponens существуют такие индексы j < i и k < i, что $\delta_k \equiv \delta_j \to \delta_i$.

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

- ightharpoonup является аксиомой существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо
- lacktriangle получается из $\delta_1,\ldots,\delta_{i-1}$ по правилу Modus Ponens существуют такие индексы j< i и k< i, что $\delta_k\equiv \delta_j \to \delta_i$.

Пример:

$$A \rightarrow (A \rightarrow A),$$

 $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A),$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A),$
 $A \rightarrow ((A \rightarrow A) \rightarrow A),$
 $A \rightarrow A$

Почему это доказательство? То же подробнее:

(1)
$$A \rightarrow (A \rightarrow A)$$

 $\alpha \rightarrow \beta \rightarrow \alpha \ [\alpha, \beta := A]$

Cx. akc. 1

(1)
$$A \to (A \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha, \beta := A]$

(2)
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$
 Cx. akc. 2 $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma) \ [\alpha, \gamma := A; \beta := A \rightarrow A]$

(1)
$$A \to (A \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha, \beta := A]$

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma) [\alpha, \gamma := A; \beta := A \to A]$

(3)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A) \qquad \text{M.P. 1,2}$$
$$A \rightarrow (A \rightarrow A) \qquad (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$

(1)
$$A o (A o A)$$
 Cx. akc. 1 $\alpha o \beta o \alpha \ [\alpha, \beta := A]$

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma) [\alpha, \gamma := A; \beta := A \to A]$

(4)
$$A \to ((A \to A) \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha := A, \beta := A \to A]$

(1)
$$A \to (A \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha, \beta := A]$

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ $[\alpha, \gamma := A; \beta := A \to A]$

(3)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$
 M.P. 1,2
 $A \rightarrow (A \rightarrow A) \quad (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$

(4)
$$A \to ((A \to A) \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha := A, \beta := A \to A]$

(5)
$$A \rightarrow A$$
 M.P. 4,3 $A \rightarrow ((A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$ M.P. 4,3 $A \rightarrow A$

Дополнительные определения

Определение (доказательство формулы α)

— такое доказательство (вывод) $\delta_1, \delta_2, \dots, \delta_n$, что $\alpha \equiv \delta_n$. Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

Дополнительные определения

Определение (доказательство формулы lpha)

— такое доказательство (вывод) $\delta_1, \delta_2, \dots, \delta_n$, что $\alpha \equiv \delta_n$. Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

Определение (вывод формулы lpha из гипотез γ_1,\ldots,γ_k)

- такая последовательность $\delta_1, \ldots, \delta_n$, причём каждое δ_i либо:
 - является аксиомой;
 - либо получается по правилу Modus Ponens из предыдущих;
 - lacktriangle либо является одной из гипотез: существует $t:\delta_i\equiv\gamma_t.$

Формула α выводима из гипотез γ_1,\dots,γ_k , если существует её вывод. Обозначение:

$$\gamma_1,\ldots,\gamma_k\vdash\alpha$$

Корректность и полнота

Определение (корректность теории)

Теория корректна, если любое доказуемое в ней утверждение общезначимо. То есть, $\vdash \alpha$ влечёт $\models \alpha$.

Определение (полнота теории)

Теория полна, если любое общезначимое в ней утверждение доказуемо. То есть, $\models \alpha$ влечёт $\vdash \alpha$.

Корректность исчисления высказываний

Лемма (корректность)

Если $\vdash \alpha$, то $\models \alpha$

Доказательство.

Индукция по длине вывода n. Для каждого высказывания δ_n из вывода разбор случаев:

- 1. Аксиома убедиться, что все аксиомы общезначимы.
- 2. Modus Ponens $j,\ k$ убедиться, что если $\models \delta_j$ и $\models \delta_j \to \delta_n$, то $\models \delta_n$.

Общезначимость схемы аксиом №9

Общезначимость схемы аксиом — истинность каждой аксиомы, задаваемой данной схемой, при любой оценке:

$$[\![(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha]\!] = \mathsf{M}$$

Построим таблицу истинности формулы в зависимости от оценки α и β :

$[\![\alpha]\!]$	$\llbracket\beta\rrbracket$	$\llbracket \neg \alpha \rrbracket$	$\llbracket \alpha \to \beta \rrbracket$	$[\![\alpha \to \neg \beta]\!]$	$\llbracket (\alpha \to \neg \beta) \to \neg \alpha \rrbracket$	$\llbracket (lpha ightarrow eta) ightarrow (lpha ightarrow \lnot eta) ightarrow \lnot lpha rbracket$
Л	Л	И	И	И	И	И
Л	И	И	И	И	И	И
И	Л	Л	Л	И	Л	И
И	И	Л	И	Л	И	И

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_n$ общезначимы. Поэтому при данной оценке $[\![\delta_i]\!] = \mathsf{N}$ и $[\![\delta_i]\!] = \mathsf{N}$.

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_n$ общезначимы. Поэтому при данной оценке $[\![\delta_j]\!] = \mathsf{N}$ и $[\![\delta_j \to \delta_n]\!] = \mathsf{N}$.

Построим таблицу истинности для импликации:

$[\![\delta_j]\!]$	$[\![\delta_n]\!]$	$[\![\delta_j o \delta_n]\!]$
Л	Л	И
Л	И	И
И	Л	Л
И	И	И

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_n$ общезначимы. Поэтому при данной оценке $[\![\delta_j]\!] = \mathsf{N}$ и $[\![\delta_j \to \delta_n]\!] = \mathsf{N}$.

Построим таблицу истинности для импликации:

$[\![\delta_j]\!]$	$\llbracket \delta_{\boldsymbol{n}} \rrbracket$	$\llbracket \delta_j \to \delta_n rbracket$
Л	Л	И
Л	И	И
И	Л	Л
И	И	И

Из таблицы видно, что $[\![\delta_n]\!]=\Pi$ только если $[\![\delta_j\to\delta_n]\!]=\Pi$ или $[\![\delta_j]\!]=\Pi$. Значит, это невозможно, и $[\![\delta_n]\!]=\Pi$

Теорема о дедукции

Соглашение о записи (метаязык): будем большой греческой буквой (Γ , Δ , ...) обозначать набор гипотез.

Theorem (О дедукции, Жак Эрбран, 1930)

 $\Gamma, \alpha \vdash \beta$ выполнено тогда и только тогда, когда выполнено $\Gamma \vdash \alpha \to \beta$

Доказательство у данной теоремы — конструктивное, то есть, если дан некоторый вывод $\delta_1,\ldots,\delta_{n-1},\beta$ из гипотез Γ,α , то теорема предложит метод перестроения его в вывод $\eta_1,\ldots,\eta_{k-1},\alpha\to\beta$ из гипотез Γ .

Само доказательство будет приведено на следующей лекции.