Fig. 1



k[38]

Fig. 2



Fig. 3



III AGC

AGC

```
File : H40.AMI
  Range: 1 - 3
Codon Table: Universal
  SEQ ID NO. 1
                                     10
 Met Cys His Gln Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe Leu Ala Ser Pro Leu
 ATG TGY CAY CAR CAR YTN GTN ATH WSN TGG TTY WSN YTN GTN TTY YTN GCN WSN CCN YTN
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 ATG TGT CAT CAA CAA TTA GTT ATT TCT TGG TTT TCT TTA GTT TTT TTA GCT TCT CCT TTA
     TGC CAC CAG CAG TTG GTC ATC TCC . TTC TCC TTG GTC TTC TCC CCC TTG
                     CTT GTA ATA TCA
                                         / TCA CTT GTA
                                                           CTT GCA TCA CCA CTT
                    CTC GTG
                                TCG
                                            TCG CTC GTG
                                                           CTC GCG TCG CCG CTC
                    CTA
                                AGT
                                            AGT CTA
                                                           CTA
                                                                  AGT
                     CTG
                                AGC
                                            AGC CTG
                                                           CTG
                                                                  AGC
                                                                          CTG
 Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr Val Val Glu Leu Asp Trp Tyr Pro Asp
 GTN GCN ATH TGG GAR YTN AAR AAR GAY GTN TAY GTN GAR YTN GAY TGG TAY CCN GAY
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 GTT GCT ATT TGG GAA TTA AAA AAA GAT GTT TAT GTT GAA TTA GAT TGG TAT CCT GAT
 GTC GCC ATC
                GAG TTG AAG AAG GAC GTC TAC GTC GAG TTG GAC
                                                                  TAC CCC GAC
 GTA GCA ATA
                    CTT
                                    GTA
                                           GTA GTA
                                                       CTT
                                                                      CCA
GTG GCG
                    CTC
                                    GTG
                                            GTG GTG
                                                       CTC
                                                                      CCG
                    CTA
                                                       CTA
                    CTG
                                                       CTG
                                     50
Ala Pro Gly Glu Met (Val Val Leu Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr Trp
GCN CCN GGN GAR ATG GTN_GTN YTN ACN TGY GAY ACN CCN GAR GAY GGN ATH ACN TGG
 GCT CCT GGT GAA ATG GTT GTT TTA ACT TGT GAT ACT CCT GAA GAA GAT GGT ATT ACT TGG
GCC CCC GGC GAG GTC GTC TTG ACC TGC GAC ACC CCC GAG GAG GAC GGC ATC ACC
 GCA CCA .GGA
                    GTA GTA CTT ACA
                                        ACA CCA
                                                              GGA ATA ACA
 GCG CCG GGG
                    GTG GTG CTC ACG
                                          ACG CCG
                                                              GGG
                                                                      ACG
                            CTA
                            CTG
                                     70 /
Thr Leu Asp Gln Ser Ser clu Val Leu Gly (Ser Gly Lys Thr Leu Thr Ile Gln Val Lys
ACN YTH GAY CAR WEN WEN GAR GTH YTH GGN WEN GGN AAR ACH YTH ACH ATH CAR GTH AAR
 --- --- --- --- --- --- --- --- --- --- --- --- ---
ACT TTA GAT CAA TCT TCT GAA GTT TTA GGT TCT GGT AAN ACT TTA ACT ATT CAA GTT AAA
ACC TTG GAC CAG TCC TCC GAG GTC TTG GGC TCC GGC AAG ACC TTG ACC ATC CAG GTC AAG
ACA CTT
                         GTA CTT GGA TCA GGA \ \ \ \ ACA CTT ACA ATA
                TCA TCA
ACG CTC
                TCG TCG
                            GTG CTC GGG TCG GGG
                                                  ACG CTC ACG
                                                                      GTG
    CTA
                AGT AGT
                                CTA
                                       AGT
                                                      CTA
    CTG
                AGC AGC
                                CTG
                                       AGC
                                                      CTG
                                     90
Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His Lys Gly Glu Val Leu (Ser )His \Ser
GAR TTY GGN GAY GCN GGN CAR TAY ACN TGY CAY AAR SEE GGN GAR GTN YTN WEN CAY WEN
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
GAA TTT GGT GAT GCT GGT CAA TAT ACT TGT CAT AAA SGT GGT GAA GTT TTA TCT CAT TCT
GAG TTC GGC GAC GCC GGC CAG TAC ACC TGC CAC AAG GGC GAG GTC TTG TCC CAC TCC
        GGA
                GCA GGA
                                ACA
                                               33A 33A
                                                          GTA CTT TCA
        GGG
                GCG GGG
                                ACG
                                               999 999
                                                          GTG CTC TCG
                                                              CTA AGT
                                                                          AGT
```

| Control of the Contro |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|   | Teu | Leu        | Leu | Leu | His | Lvs  | Lvs        | Glu        | Asn  | 110<br>Glv | Tle      | Trn | Ser        | Thr  | Asn  | Tle | T.e.n | Lva            | Agn  | 120<br>Gln |
|---|-----|------------|-----|-----|-----|------|------------|------------|------|------------|----------|-----|------------|------|------|-----|-------|----------------|------|------------|
|   |     |            |     |     |     |      |            |            |      |            |          |     | WSN        |      |      |     |       |                |      |            |
|   |     |            |     |     |     |      |            |            |      |            |          |     |            |      |      |     |       |                |      |            |
|   |     |            |     | TTA |     |      |            |            |      |            |          | TGG | TCT        |      |      |     |       | AAA            |      |            |
|   |     |            |     | CTT |     |      |            | 00         | 01.0 | GGA        |          |     |            | ACA  |      | ATA |       |                | 0110 | CA10       |
|   |     | CTC        |     |     |     |      |            |            |      | GGG        |          |     | TCG        | ACG  |      |     | CTC   |                |      |            |
|   |     | CTA        |     |     |     |      |            |            |      |            |          |     | AGT        |      |      |     | CTA   |                |      |            |
|   | CIG | CTG        | CIG | CIG |     |      |            |            |      |            | ••       |     | AGC        |      |      |     | CTG   |                |      |            |
|   |     |            |     |     |     |      |            |            |      | 130        | `        | 1   |            |      |      |     |       |                | •    | 140        |
|   | _   |            |     | _   |     | -    |            |            |      | _          | -        |     | Ala        | _    |      | -   |       | -              | _    |            |
|   | AAR | GAR        | CCN | AAR | AAY | AAR  | ACN        | 111        | YTN  | MGN        | 1GY      | GAR | GCN        | AAR  | AAY  | TAY | WSN   | GGN            | MGN  |            |
|   | AAA | GAA        | CCT | AAA | AAT | AAA  | ACT        | TTT        | TTA  | CGT        | TGT      | GAA | GCT        | AAA  | AAT  | TAT | TCT   | GGT            | CGT  | TTT        |
|   | AAG | GAG        |     | AAG | AAC | AAG  |            | TTC        |      |            | TGC      | GAG | GCC        | AAG  | AAC  | TAC |       |                |      | TTC        |
|   |     |            | CCA |     |     |      | ACA<br>ACG |            | CTT  |            |          |     | GCA<br>GCG |      |      |     | -     | GGA<br>GGG     |      |            |
|   |     |            | cce |     |     |      | ACG        |            |      | AGA        |          |     | GCG        |      |      |     | AGT   | GGG            | AGA  |            |
|   |     |            |     |     |     |      |            |            | CTG  | AGG        |          |     |            |      |      |     | AGC   |                | AGG  |            |
|   |     |            |     |     |     | •    |            |            |      | 150        |          |     |            |      |      |     |       |                |      | 160        |
|   | Thr | cvs(       | Tro | ONT | Leu | (Thr | Thr        | Ile        | Ser  |            | Asp      | Leu | Thr        | Phe  | Ser  | Val | Lvs   | Ser            | Ser  |            |
|   |     |            |     |     |     |      |            |            |      |            |          |     | ACN        |      |      |     |       |                |      |            |
|   |     |            |     |     |     |      |            |            |      |            |          |     |            |      |      |     |       |                |      |            |
|   |     | TGT        | TGG | TGG |     |      |            |            |      |            |          |     | ACT        |      |      |     |       |                |      |            |
|   | ACA | 160        |     |     |     |      | ACA        |            |      |            | OAC      |     | ACA        | 110  | TCA  |     | AAG   |                | TCA  |            |
|   | ACG |            |     |     | CTC | ACG  | ACG        |            | TCG  | ACG        |          | CIC | ACG        |      | TCG  | GTG |       | TCG            | TCG  | CGG        |
|   |     |            |     |     | CTA |      |            |            | AGT  |            |          | CTA |            |      | AGT  |     |       |                | AGT  |            |
|   |     |            |     |     | CTG |      |            |            | AGC  |            |          | CIG |            |      | AGC  |     |       | AGC            | AGC  | AGG        |
|   |     |            |     |     |     |      |            |            |      | 170        |          |     |            |      |      |     |       |                |      | 180        |
|   | -   | •          | _   |     |     |      | _          |            |      | _          | -        | _   | Ala        |      |      |     |       |                |      |            |
|   | GGN | WSN        | WSN | GAI | CCN | CAR  |            |            | ACN  | 101        | GGN      |     | JEN<br>    | ACN  | 1114 | mon | GCN   | GAR            | MGN  | -'         |
|   | GGT | TCT        | TCT | GAT | ССТ | CAA  | GGT        | GTT        | ACT  | TGT        | GGT      | GCI | GCT        | ACT  | TTA  | TCT | GCT   | GAA            | CGT  | GTT        |
| : | GGC | TCC        | TCC | GAC | CCC | CAG  | GGC        | GTC        | ACC  | TGC        | GGC      | GCC | GCC        | ACC  | TTG  | TCC | GCC   | GAG            | CGC  | GTC        |
|   |     | TCA        |     |     | CCA |      |            | GTA<br>GTG |      |            |          |     | GCA<br>GCG |      |      |     |       |                |      | GTA<br>GTG |
|   | GGG | TCG        | AGT |     | CCG |      | GGG        | GIG        | ACG  |            | .300     | GCG | 326        | ACG. |      | AGT |       |                | AGA  | 010        |
|   |     |            | AGC |     |     |      |            |            |      |            |          |     |            |      |      | AGC |       |                | AGG  |            |
|   |     |            |     |     |     |      |            |            |      | 100        |          |     |            |      |      |     |       |                |      | 200        |
|   | Ara | Glv        | Asp | Asn | Lvs | Glu  | Tyr        | Glu        | Tyr  | 190<br>Ser | Val      | Glu | Cys        | Gln  | Glu  | Asp | Ser   | Ala            | Сув  |            |
|   | _   |            | _   |     |     |      |            |            |      |            |          |     | DGX.       |      |      |     |       |                |      |            |
|   |     |            |     |     |     |      |            |            |      |            |          |     |            |      |      |     |       |                |      |            |
|   | CGT | GGT        | GAT | AAT | AAA | GAA  | TAT        | GAA        | TAT  | ===        | TI       | GAA | . 731      | CAA  |      |     |       |                |      | CCT        |
|   |     | GGC<br>GGA |     | AAC | AAG | GAG  | TAC        | A/3        | TAC  |            | TC<br>TA |     | TGC        | באם: | 3    | GAC |       |                |      | CCC        |
|   |     | GGG        |     |     |     |      |            |            |      |            | GTG      |     |            |      |      |     |       | . GCA<br>: GCG |      | CCA        |
|   | AGA |            |     |     |     |      |            |            |      | AGT        |          |     |            |      |      |     | AGT   |                |      |            |
|   | AGG |            |     |     |     |      |            |            |      | AGC        | •        |     |            |      |      |     | AGC   | •              |      |            |

|        | •               |
|--------|-----------------|
|        |                 |
| 1,00   | aptro.          |
| 1,5    | 5               |
| 1      | Mach            |
| Ì,     | giand<br>d      |
| /#<br> | \$7<br>\$1      |
| 1,00   | i d             |
| į.     |                 |
| 2      | =               |
| 15     |                 |
| 122    | Service Control |
| ļ      | å               |
| 13,    | 1               |
|        |                 |
| .22    | <u>.</u>        |
| 1,00   | 4.              |
|        |                 |

210 220 Ala Ala Glu Glu Ser Leu Pro Ile Glu Val Ket Val Asp Ala Val His Lys Leu Lys Tyr g<del>en g</del>en <del>gar ga</del>r wsn ytn cen ath gar gtn atg gtn gay gen gtn cay aar ytn aar tay ... ... ... ... ... ... ... ... ... ... ... ... GCT GCT GAA GAA TCT TTA CCT ATT GAA GTT ATG GTT GAT GCT GTT CAT AAA TTA AAA TAT GCC GCC GAG GAG TCC TTG CCC ATC GAG GTC GTC GAC GCC GTC CAC AAG TTG AAG TAC TCA CTT CCA ATA GTA GCA GCA GTA GCA GTA CTT CTC GCG GCG TCG CTC CCG GTG GTG GCG GTG AGT CTA CTA AGC CTG CTG **/**230 Glu Asn Tyr Thr (Ser Ser Phe Phe Lle) Arg Asp Lle Ile Lys (Pro) Asp Pro Pro) Lys Asn GAR AAY TAY ACN WEN WEN TTY TTY ATH MGH "AY ATH AAR CCH GAY CON CON AAR AAY TAT CCT CCT AAA AAT GAA AAT TAT ACT TCT TCT TTT TTT ATT CCT 'AT ATT ATT AAA CC GAG AAC TAC ACC TCC TCC TTC TTC ATC CGC AC ATC ATC AAG CC JAC CCC CCC AAG AAC CC . CCA CCA ACA TCA TCA ATA CCA ATA ATA CCG CCG ACG TCG TCG CG? CÇG AGT AGT AGA. AGC AGC AGG 250 Leu Gln Leu Lys Pro (Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp Glu Tyr Pro Asp YTN CAR YTN AAR CCN YTN AAR AAY WSN MGN CAR GTN GAR GTN WSN TGG GAR TAY CCN GAY TTA CAA TTA AAA CCT TTA AAA AAT TCT CGT CAA GTT GAA GTT TCT TGG GAA TAT CCT GAT GAG TAC CCC GAC TTG CAG TTG AAG CCC TTG AAG AAC TCC CCC CAG GTC GAG GTC TCC GTA TCA CCA CCA CTT TCA CGA GTA GTG TCG CCG CCG CTC TCG CGG GTG CTC CTC CTA CTA CTA AGT AGA AGT CTG AGC AGG AGC CTG CTG 270 thr Trp (Sen Thr Pro His (Sen Tyr Phe Sed Leu Thr Fhe Cys (Val Gln Val Glp Gly Lys ACN TGG WEN ACN CON CAY WEN TAY TTY WEN YTH ACN TTY TGY GTN CAR GTN CAR GGN AAR ACT TGG TCT ACT CCT CAT TCT TAT TTT TCT TTA ACT TTT TGT GTT CAA GTT CAA GGT AAA TCC ACC CCC CAC TCC TAC TTC TCC TTG ACC TTC TGC GTC CAG GTC CAG GGC AAG ACC TCA ACA CCA TCA TCA CTT ACA GTA GTA GGA ACA TCG ACG CCG TCG CTC ACG GTG . GTG GGG TCG ACG AGT ACT CTA AGT AGC AGC CTG AGC 300 290 Ser Lys Arg Glu Lys Lys Asp Arg Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys WSN AAR MGN GAR AAR AAR GAY MGN GTN TTY ACN GAY AAR ACN WSN GCN ACN GTN ATH TGY TCT AAA CGT GAA AAA AAA GAT CGT GTT TTT ACT GAT AAA ACT TCT GCT ACT GTT ATT TGT TCC AAG CGC GAG AAG AAG GAC CGC GTC TTC ACC GAC AAG ACC TCC GCC ACC GTC ATC TGC CGA GTA ..CA ACA TCA GCA ACA GTA ATA TCA CGA CGG CGG GTG ACG ACG TCG GCG ACG GTG TCG AGT AGA AGA AGT AGC AGC AGG AGG

TCA TCA TCA

TCG TCG TCG

AGT AGT AGT

AGC AGC AGC

TCC

TCA

TCG

AGT

AGC

310 Arg Lys Asn Ala Ser Ile Ser Val Arg Ala Gln Asp Arg (Tyr Ty) Ser Ser Ser Trp (Ser

Sheet 8 of 16

File: H35.AMI Range: 1 - 2 Codon Table: Universal SEQID NO. 5 10 Met Cys Pro Ala Arg Ser Leu Leu Leu Val Ala Thr Leu Val Leu Leu Asp His Leu Ser ATG TGY CCN GCN MGN WSN YTN YTN GTN GCN ACN YTN GTN YTN YTN GAY CAY YTN WSN ATG TGT CCT GCT CGT TCT TTA TTA GTT GCT ACT TTA GTT TTA TTA GAT CAT TTA TCT TGC CCC GCC CGC TCC TTG TTG GTC GCC ACC TTG GTC TTG TTG GAC CAC TTG TCC CCA GCA CGA TCA CTT CTT CTT GTA GCA ACA CTT GTA CTT CTT CCG GCG CGG TCG CTC CTC GTG GCG ACG CTC GTG CTC CTC CTC TCG AGA AGT CTA CTA CTA CTA CTA CTA CTA AGT AGG AGC CTG CTG CTG CTG CTG CTG CTG AGC 30 Leu Ala Arg Asn Leu Pro Val Ala Thr Pro Asp Pro Gly Met Phe Pro Cys Leu His His YTN GCN MGN AAY YTN CCN GTN GCN ACN CCN GAY CCN GGN ATG TTY CCN TGY YTN CAY CAY TTA GCT CGT AAT TTA CCT GTT GCT ACT CCT GAT CCT GGT ATG TTT CCT TGT TTA CAT CAT TTG GCC CGO AAC TTG CCC GTC GCC ACC CCC GAC CCC (GGC) TTC CCC TGC TTG CAC CAC CTT GCA CGA CTT CCA GTA GCA ACA CCA CCA GGA CCA CTT ...CTC GCG CGG CTC CCG (TG) GCG ACG CCG CCG GGG CCG CTC CTA AGA <u>CT</u>A CTG AGG 50 . Ser Gln Asn Leu Leu Arg Ala Val Ser Asn Met Leu Gln Lys Ala Arg Gln Thr Leu Glu WSN CAR AAY YTN YTN MGN GCN GTN WSN AAY ATG YTN CAR AAR GCN MGN CAR ACN YTN GAR TCT CAA AAT TTA TTA CGT GCT GTT TCT AAT ATG TTA CAA AAA GCT CGT CAA ACT TTA GAA TCC CAG AAC TTG TTG CGC GCC GTC TCC AAC TTG CAG AAG GCC/CGC CAG ACC TTG GAG CTT CTT CGA GCA GTA TCA CTT GCA CGA ACA CTT TCG CTC CTC CGG GCG CTG TCG GCG CGG CTC ACG CTC AGT CTA CTA AGA CTA AGA CTA AGC CTG\CTG AGG AGG CTG) 70 Phe Tyr Pro Cys Thr Ser Glu Glu Ile Asp His Glu Asp Ile Thr Lys Asp Lys Thr Ser TTY TAY CCN TGY ACN WSN GAR GAR ATH GAY CAY GAR GAY ATH ACN AAR GAY AAR ACN WSN TTT TAT CCT TGT ACT TCT GAA GAA ATT GAT CAT GAA GAT ATT ACT AAA GAT AAA ACT TCT TTC TAC CCC TGC ACC TCC GAG GAG ATC GAC CAC GAG GAC ATC ACC AAG GAC AAG ACC TCC ACA TCA CCA ATA ATA ACA . ACA TCA ACG TCG CCG ACG ACG TCG AGT AGT AGC AGC 90 Thr Val Glu Ala Cys Leu Pro Leu Glu Leu Thr Lys Asn Glu Ser Cys Leu Asn Ser Arg ACN GTN GAR GCN TGY YTN CCN YTN GAR YTN ACN AAR AAY GAR WSN TGY YTN AAY WSN MGN --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---ACT GTT GAA GCT TGT TTA CCT TTA GAA TTA ACT AAA AAT GAA TCT TGT TTA AAT TCT CGT ACC GTC GAG GCC TGC TTG CCC TTG GAG TTG ACC AAG AAC GAG TCC TGC TTG AAC TCC (CGC CTT CCA CTT CTT AJA ACA GTA **GCA** TCA TIT. TCA CGA GCG CTC CCC TC CTC ACG ACG GTG 3 TCG CGG CIC CTA ·CTA CTA AGT TA AGT AGA

CTG

CTG

CTG

AGC

**77.**3

AGC AGG

| 1992         |
|--------------|
|              |
| 1.1          |
| Į.           |
| 1200         |
| Land<br>Sant |
| Ž.           |
|              |
|              |
|              |
| :=  = tu     |
|              |
|              |

|      |            |              |             |            |     |     |            |     | _          |             |          |      |            |     |            |       |      |             |      |
|------|------------|--------------|-------------|------------|-----|-----|------------|-----|------------|-------------|----------|------|------------|-----|------------|-------|------|-------------|------|
|      |            |              |             |            |     |     |            |     | 110        |             |          |      |            |     |            |       |      |             | 120  |
| Glu  | Thr        | Ser          | Phe         | Ile        | Thr | Asn | Gly        | Ser | Cys        | Leu         | Ala      | Ser  | Arg        | Lys | Thr        | Ser   | Phe  | Met         |      |
|      |            |              |             | ATH        |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
|      |            |              |             |            |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
|      |            |              |             | ATT        |     |     |            |     |            |             |          |      |            |     |            |       |      | ATG         | ATG  |
| GAG  |            |              | TTC         | ATC        |     | AAC |            |     | TGC        |             |          |      |            | AAG |            |       | TTC  |             |      |
|      | ACA<br>ACG |              |             | ATA        | ACG |     | GGA<br>GGG |     |            |             | GCA      | -    | CGG        |     | ACA<br>ACG |       |      |             |      |
|      | ACG        | AGT          |             |            | nco |     | 000        | AGT |            | CTA         | GCG      |      | AGA        | •   | ACG        | AGT   |      |             |      |
|      |            | AGC          |             |            |     | •   |            | AGC |            | CTG         |          |      | AGG        |     |            | AGC   |      |             |      |
|      |            |              |             |            |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
|      |            |              |             |            |     |     |            |     | 130        | ٦.          |          |      |            |     |            |       |      |             | 140  |
|      |            |              |             | Ser        |     |     |            |     |            |             | • •      |      |            |     |            |       |      | -           |      |
| GCN  | YTN        | TGY          | YTN         | WSN        | WSN | ATH | TAY        | GAR | GAY        | YTN         | AAR      | ATG  | TAY        | CAR | GTN        | GAR   | TTY  | AAR         | ACN  |
| GCT. | στα        | TCT          | מדים        | TCT        | ጥርጥ | ΔΤΤ | TAT        | GAA | CAT        | TTA         | 444      | בידה | יים ד      | CAA | CTT        | GAA   | 4444 | 444         | ACT. |
|      |            |              |             | TCC        |     |     |            |     |            |             |          |      |            |     |            | GAG   |      |             |      |
| GCA  |            |              |             | TCA        |     |     |            |     |            | CTT         |          |      |            |     | GTA        |       |      |             | ACA  |
| GCG  | CTC        |              | ·CTC        | TCG        | TCG |     |            |     |            | CTC         |          |      |            |     | GTG        |       |      |             | ACG  |
|      | CTA        |              |             | AGT        |     | •   |            |     |            | CTA         |          |      |            |     |            |       |      |             |      |
|      | CTG        |              | CTG         | AGC        | AGC |     |            |     |            | CTG         |          |      |            |     |            |       |      |             |      |
|      |            |              |             |            |     |     |            |     | 150        |             |          |      |            | •   |            |       |      |             | 160  |
| Met  | Asn        | Ala          | Lys         | Leu        | Leu | Met | Asp        | Pro |            | Arg         | Gln      | Ile  | Phe        | Leu | Asp        | Gln   | Asn  | Met         |      |
|      |            |              |             | YTN        |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
|      |            |              |             |            |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
| ATG  |            |              |             | TTA        |     | ATG |            |     |            |             |          |      |            |     |            |       |      | ATG         |      |
|      | AAC        | GCC          | AAG         | TTG        | CTT |     | GAC        | CCA | AAG        | CGC         | CAG      | ATA  | TTC        | CTT | GAC        | CAG   | AAC  |             | TTG  |
|      |            | GCG          |             |            | CTC |     |            | CCG |            | CGG         |          | YIY  |            | CTC |            |       |      |             | CTC  |
|      |            |              |             |            | CTA |     |            |     |            | AGA         |          |      |            | CTA |            |       |      |             | CTA  |
|      |            |              |             | CTG        | CTG |     |            |     |            | AGG         |          |      |            | CTG |            |       |      |             | CTG  |
|      |            |              |             |            |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
|      | *** *      | <b>-</b> 3 - | <b>&gt;</b> | <b>a</b> 3 | T   | 1/  | <b>~1</b>  | 21- | 170        | <b>&gt;</b> | <b>D</b> |      | C          | C1  | Th         | 1/- 1 | D=== | <b>~</b> 1~ | 180  |
|      |            |              | -           | Glu<br>GAR |     |     |            |     |            |             |          |      |            |     |            |       |      |             | _    |
|      |            |              |             |            |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
| GCT  | GTT        | ATT          | GAT         | GAA        | TTA | ATG | CAA        | GCT | TTA        | TAA         | FII      | AAT  | TCT        | GAA | ACT        | GTT   | CCT  | CAA         | AAA  |
| GCC  | GTC        | ATC          | GAC         | GAG        | TTG |     | CAG        | GCC | TTG        | AAC         | TTC      | AAC  | TCC        | GAG | ACC        | GTC   | CCC  | CAG         | AAG  |
|      |            | ATA          |             |            | CTT |     |            |     | CTT        |             |          |      | TCA        |     |            | GTA   |      |             |      |
| GCG  | GTG        |              |             |            | CTC |     |            | GCG | CTC        |             |          |      | TCG        |     | ACG        | GTG   | CCG  |             |      |
|      |            |              |             |            | CTA |     |            |     | CTA<br>CTG |             |          |      | AGT<br>AGC |     |            |       |      |             |      |
|      |            |              |             |            | CTG |     |            |     | CIG        |             |          |      | AGC        |     |            |       |      |             |      |
|      |            |              |             |            |     |     |            |     | 190        |             |          |      |            |     |            |       |      |             | 200  |
| Ser  | Ser        | Leu          | Glu         | Glu        | Pro | Asp | Phe        | Tyr | Lys        | Thr         | Lys      | Ile  | Lys        | Leu | Cys        | Ile   | Leu  | Leu         | His  |
|      |            | YTN          | GAR         | GAR        | CCN | GAY | TTY        | TAY | AAR        | ACN         | AAR      | ATH  | AAR        | YTN | TGY        | HTA   | YTN  | YTN         |      |
|      |            |              |             |            |     |     |            |     |            |             |          |      |            |     |            |       |      |             |      |
| TCT  | TCT        | TTA          | GAA         | GAA        | CCT | GAT | TTT        | TAT | AAA        | ACT         | AAA      | ATT  | AAA        | TTA | TGI        | TTA   | TTA  | TTA         | CAT  |
| TCC  | TCC        | TTG          | GAG         | GAG        | CCC | GAC | TC         | TAC | AAG        |             |          |      |            |     |            | ATC   | TTG  | TTG         | CAC  |
|      |            | CTT          |             |            | CCA |     |            |     |            | ACA         |          | ATA  |            | CTT |            | ATA   |      | CTT         |      |
|      |            | CTC          |             |            | CCG |     |            |     |            | ACG         |          |      |            | CTC |            |       |      | CTC<br>CTA  |      |
|      |            | CTA          |             |            |     |     |            |     |            |             |          |      |            | CTA |            |       |      | CTG         |      |
| AGC. | MGC        | CTG          |             |            |     |     |            |     |            |             |          |      |            | -10 |            |       | -10  | -10         |      |

## Fig. 5C

|     |     |     |     |     |     |     |     |     | 210 |     |     |     |     |               |     |     |     |     | 220 |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|-----|-----|-----|-----|-----|--|
| Ala | Phe | Arg | Ile | Arg | Ala | Val | Thr | Ile | Asp | Arg | Val | Thr | Ser | Tyr           | Leu | Asn | Ala | Ser | *** |  |
| GCN | TTY | MGN | ATH | MGN | GCN | GTN | ACN | HTA | GAY | ЗЗИ | GTN | ACN | WSN | TAY           | YTN | AAY | GCN | WSN | TRR |  |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     | , <del></del> |     |     |     |     |     |  |
| GCT | TTT | CGT | ATT | CGT | GCT | GTT | ACT | ATT | GAT | CGT | GTT | ACT | TCT | TAT           | TTA | AAT | GCT | TCT | TAA |  |
| GCC | TTC | CGC | ATC | CGC | GCC | GTC | ACC | ATC | GAC | CGC | GTC | ACC | TCC | TAC           | TTG | AAC | GCC | TCC | TAG |  |
| GCA |     | CGA | ATA | CGA | GCA | GTA | ACA | ATA |     | CGA | GTA | ACA | TCA |               | CTT |     | GCA | TCA | TGA |  |
| GCG |     | CGG |     | CGG | GCG | GTG | ACG |     |     | CGG | GTG | ACG | TCG |               | CTC |     | GCG | TCG |     |  |
|     |     | AGA |     | AGA |     |     |     |     |     | VÇŸ | ٠.  |     | AGT |               | CTA |     |     | AGT |     |  |
|     |     | AGG |     | AGG |     |     |     |     |     | AGG | • ; |     | AGC |               | CTG |     |     | AGC |     |  |

## Codon Frequency Tables

## human\_high.cod

| Codon usega for human thighly empressed genes 1/14/91, |            |                          |                |                |    |  |  |  |  |  |  |  |
|--------------------------------------------------------|------------|--------------------------|----------------|----------------|----|--|--|--|--|--|--|--|
| rescid                                                 | Coden      | Kusb4 t                  | 17000          | Fraction       | •• |  |  |  |  |  |  |  |
| Gly<br>Gly                                             | eae        | 905.00                   | 18.75          | 4.21           |    |  |  |  |  |  |  |  |
| CIY                                                    | ees<br>eey | \$25.00                  | 10.16          | 4.14           |    |  |  |  |  |  |  |  |
| C7Å                                                    | ecc        | 141.00<br>1867.00        | 3.14<br>28.70  | 0.12<br>0.50   | •  |  |  |  |  |  |  |  |
| Clu                                                    | 63.6       | 2420.30                  | 30:26          | 0.75           | •  |  |  |  |  |  |  |  |
| Glu                                                    | CXX        | 792.00                   | 16.62          | 4.25           |    |  |  |  |  |  |  |  |
| ya b<br>Ya b                                           | CAT<br>CAC | 192.66<br>1621.60        | 12.27          | 0.25<br>0.75   |    |  |  |  |  |  |  |  |
| V41<br>V41                                             | CTC        | 1866.00<br>231.00        | 38.68          | 0.6¢<br>4.05   | •  |  |  |  |  |  |  |  |
| Lev                                                    | CII        | 190.00                   | 1.10           | 4.67           |    |  |  |  |  |  |  |  |
| W1                                                     | CIC        | 726.00                   | 15.49          | 8.25           |    |  |  |  |  |  |  |  |
| ala<br>Ala                                             | ece<br>ece | 652.00                   | 13.51          | 0.17           |    |  |  |  |  |  |  |  |
| ALA<br>ALS                                             | oc:        | 186.00                   | 10.12<br>13.56 | 0.13           |    |  |  |  |  |  |  |  |
| AL.                                                    | ecc        | 634.40<br>2057.00        | 42.64          | 0.53           |    |  |  |  |  |  |  |  |
| Arg *                                                  | ace<br>aca | 512.00<br>254.00         | 10.61          | 8.10<br>6.18   |    |  |  |  |  |  |  |  |
| Set                                                    | AGT        | 354.00                   | 7.34           | 8.16           |    |  |  |  |  |  |  |  |
| Ser                                                    | æ          | 1171.00                  | 24.27          | 0.34           | ,  |  |  |  |  |  |  |  |
| Lye                                                    | TTC<br>TTC | 2117.00                  | 6.11           | 6.12           |    |  |  |  |  |  |  |  |
| Lys                                                    | MI         | 471.60<br>314.60         | 9.76<br>6.51   | 0.18<br>0.22   |    |  |  |  |  |  |  |  |
| λsn                                                    | iii.       | 1120.00                  | 23.22          | 0.71           |    |  |  |  |  |  |  |  |
| MAC                                                    | ),TC       | 1077.00                  | 22.32          | 1.60           |    |  |  |  |  |  |  |  |
| Il.                                                    | LTL        | 68.00                    | 1.42           | 0.65           |    |  |  |  |  |  |  |  |
| Ile<br>Ile                                             | ATC        | 315.60<br>1368.30        | 58-38          | 8.18<br>8.77   |    |  |  |  |  |  |  |  |
| The                                                    | LCC        | €05.00                   | E.40           | 21.5           |    |  |  |  |  |  |  |  |
| Dr                                                     | ACA        | 173.00                   | 7.13           | 0.16           |    |  |  |  |  |  |  |  |
| Tar                                                    | ACT<br>ACC | 358.00<br>1502.00        | 7.62           | 8.14<br>8.57   |    |  |  |  |  |  |  |  |
| TED                                                    | 100        | 65Z.08                   | 13.51          | 1.00           |    |  |  |  |  |  |  |  |
| Lad                                                    | 1CT        | 109.06                   | 2.25           | 22.6           |    |  |  |  |  |  |  |  |
| CAT                                                    | TGC        | 325.00<br>106.00         | 6.74<br>24.63  | 0.32<br>6.64   |    |  |  |  |  |  |  |  |
| Ead                                                    | TAG        | 42.04                    | 0.87           | 4.21           |    |  |  |  |  |  |  |  |
| End                                                    | TXL        | 46.00                    | 4.95           | 0.23           |    |  |  |  |  |  |  |  |
| tye                                                    | TAC        | 360,00<br>1042.00        | 7.46<br>21.60  | 8,26<br>8,74   |    |  |  |  |  |  |  |  |
| Leu<br>Leu                                             | 110        | 313.00<br>76.00          | 6.45           | 4.46           |    |  |  |  |  |  |  |  |
| Fit o                                                  | 111<br>117 | 336.00                   | 1.58<br>6.36   | 0,82<br>0,20   |    |  |  |  |  |  |  |  |
| the                                                    | TTC        | 1377.60                  | 21.54          | 9.56           |    |  |  |  |  |  |  |  |
| Ser                                                    | TCG        | . 325.00                 | 6.74           | 1,19           |    |  |  |  |  |  |  |  |
| Ser                                                    | 167        | 165.00                   | 3.42           | 0.05           |    |  |  |  |  |  |  |  |
| Sae<br>Sae                                             | 100        | 450.00<br>958.00         | 19.86          | 4,13<br>8,24   |    |  |  |  |  |  |  |  |
| Arg                                                    | CCC        | £11.06                   | ម.ព            | 0.21           |    |  |  |  |  |  |  |  |
| YEG                                                    | CCY        | 193.00                   | 3.75           | 1.06           |    |  |  |  |  |  |  |  |
| Azg<br>Azg                                             | ccc        | 218.08<br>1486.08        | 4.35<br>22.51  | 6.87<br>5.37   |    |  |  |  |  |  |  |  |
| Cin                                                    | cre        | 2020.00                  | (1.17          | 4.11           |    |  |  |  |  |  |  |  |
| Cla                                                    | cu         | 283.00                   | 5.17           | 673            |    |  |  |  |  |  |  |  |
| Mis<br>Wis                                             | OL:        | 234.60<br>170.06         | 15.63          | 4.31<br>9.75   |    |  |  |  |  |  |  |  |
| Leu                                                    | cze        | 2884.00                  | 51.78          | 4.54           |    |  |  |  |  |  |  |  |
| Leu<br>Leu                                             | CIT        | 166.00<br>234.00         | 3.44<br>1.53   | 8.43<br>8.85   |    |  |  |  |  |  |  |  |
| Liu                                                    | CIC        | 1276.00                  | 26.45          | 1.26           |    |  |  |  |  |  |  |  |
| 120                                                    | ccc        | 487.00                   | 3,11           | 0.17           |    |  |  |  |  |  |  |  |
| Pro                                                    | ees<br>ees | 456.00<br><b>561.</b> 00 | 11,77          | \$.14<br>\$.15 |    |  |  |  |  |  |  |  |
| 310                                                    | eee        | 1410.00                  | 25.23          | 6.18           |    |  |  |  |  |  |  |  |
|                                                        |            |                          |                | ****           |    |  |  |  |  |  |  |  |

Fig. 7



Fig.



And the state of t



ug pDNA Instilled

Fig. 10



M (measurement) = bronchoalveolar lavage total and differential cell count

Gene Medicine

Fig. 11

