Are Larger Pre-trained Language Models Uniformly Better? Comparing Performance at the Datapoint Level

Ruiqi Zhong, Dhruba Ghosh, Dan Klein, and Jacob Steinhardt

Larger → Uniformly Better?

Size of BERT (# Parameters in Million)

Larger → Uniformly Better?

How many datapoints are smaller models better at?

MNLI

Datapoint 1

Datapoint 2

Datapoint 3

Datapoint 4

Datapoint 5

. . .

MNLI	BERT-Base	
Datapoint 1	√	
Datapoint 2		
Datapoint 3	X	
Datapoint 4	√	
Datapoint 5	X	
• • •	• • •	
Accuracy	81.0%	

MNLI	BERT-Base	BERT-Large	
Datapoint 1	✓	X	
Datapoint 2	√	√	
Datapoint 3	X	√	
Datapoint 4	√	√	
Datapoint 5	X	√	
• • •	• • •	•••	
Accuracy	81.0%	83.5%	

MNLI	BERT-Base	BERT-Large	
Datapoint 1	✓	X	4.5%
Datapoint 2		√	
Datapoint 3	X	√	
Datapoint 4		√	
Datapoint 5	X	√	
• • •	0 0 0	0 0 0	
Accuracy	81.0%	83.5%	

Wait a Second ...

MNLI	BERT-Base Seed 1	BERT-Base Seed 2	
Datapoint 1		X	4.0%???
Datapoint 2	√		
Datapoint 3	X	√	
Datapoint 4	√	√	
Datapoint 5	X	X	
0 0 0	• • •	0 0 0	
Accuracy	81.0%	81.2%	

Naïvely comparing models at the datapoint level is extremely noisy!

• New concept: "better" if more likely to be correct.

- New concept: "better" if more likely to be correct.
- Denoise:

- New concept: "better" if more likely to be correct.
- Denoise:
 - 10 pre-training seeds × 5 fine-tuning seeds

- New concept: "better" if more likely to be correct.
- Denoise:
 - 10 pre-training seeds × 5 fine-tuning seeds
 - an easy and efficient statistical tool to upper-bound the noises

• BERT-Mini is better than BERT-Large on at least 1-4% datapoints across MNLI, SST-2, QQP

- BERT-Mini is better than BERT-Large on at least 1-4% datapoints across MNLI, SST-2, QQP
- Larger models have higher variance w.r.t. fine-tuning seeds.

- BERT-Mini is better than BERT-Large on at least 1-4% datapoints across MNLI, SST-2, QQP
- Larger models have higher variance w.r.t. fine-tuning seeds.
- (many others)

• New concepts & statistical tools for datapoint level understanding.

- New concepts & statistical tools for datapoint level understanding.
- Predictions from > 500 models.

- New concepts & statistical tools for datapoint level understanding.
- Predictions from > 500 models.
- Pre-trained models with different random seeds.