Week 11: Bootstrap (continued)

MATH-517 Statistical Computation and Visualization

Tomas Masak

December 2nd 2022

The (standard/non-parametric) Bootstrap

- let $\mathcal{X} = \{X_1, \dots, X_N\}$ be a random sample from F
- characteristic of interest: $\theta = \theta(F)$
- estimator: $\widehat{\theta} = \theta(\widehat{F}_N)$
 - write $\widehat{\theta} = \theta[\mathcal{X}]$, since \widehat{F}_N and thus the estimator depend on the sample
- the distribution F_T of a scaled estimator $T = g(\widehat{\theta}, \theta) = g(\theta[\mathcal{X}], \theta)$ is of interest
 - e.g. $T = \sqrt{N}(\widehat{\theta} \theta)$

The workflow of the bootstrap is as follows for some $B \in \mathbb{N}$ (e.g. B = 1000):

Data

Resamples

$$\mathcal{X} = \{X_1, \dots, X_N\} \quad \Longrightarrow \quad \begin{cases} \quad \mathcal{X}_1^{\star} = \{X_{1,1}^{\star}, \dots, X_{1,N}^{\star}\} & \Longrightarrow \quad T_1^{\star} = g(\theta[\mathcal{X}_1^{\star}], \theta[\mathcal{X}]) \\ & \vdots & & \vdots \\ \quad \mathcal{X}_{\mathcal{B}}^{\star} = \{X_{\mathcal{B},1}^{\star}, \dots, X_{\mathcal{B},N}^{\star}\} & \Longrightarrow \quad T_{\mathcal{B}}^{\star} = g(\theta[\mathcal{X}_{\mathcal{B}}^{\star}], \theta[\mathcal{X}]) \end{cases}$$

 F_T now estimated by $\widehat{F}_{T,B}^\star(x) = B^{-1} \sum_{b=1}^B \mathbb{I}_{[T_b^\star \leq x]}$

ullet any characteristic of F_T can be estimated by the char. of $\widehat{F}_{T,B}^\star(x)$

Tomas Masak

Week 11: Bootstrap (continued)

Confidence Intervals

- $T = \sqrt{N}(\widehat{\theta} \theta)$ for $\theta \in \mathbb{R}$
- $T_b^{\star} = \sqrt{\hat{N}}(\hat{\theta}_b^{\star} \hat{\theta})$ for $b = 1, \dots, B$

Asymptotic CI: $q(\alpha)$ is the lpha-quantile of the asymptotic distribution of T

$$\left(\widehat{\theta} - \frac{q(1-\alpha/2)}{\sqrt{N}}, \widehat{\theta} - \frac{q(\alpha/2)}{\sqrt{N}}\right)$$

Bootstrap CI: $q_B^{\star}(\alpha)$ is the empirical α -quantile of $\widehat{F}_{T,B}^{\star}$

$$\left(\widehat{\theta} - \frac{q_B^{\star}(1 - \alpha/2)}{\sqrt{N}}, \widehat{\theta} - \frac{q_B^{\star}(\alpha/2)}{\sqrt{N}}\right)$$

Studentized Cls

Typically
$$\sqrt{N}(\widehat{\theta} - \theta) \to \mathcal{N}(0, v^2)$$
 for $\theta \in \mathbb{R}$

- let \hat{v} be a consistent estimator for v
- re-define $T = \sqrt{N} \frac{\theta \theta}{\hat{v}}$
 - $\bullet \ \ T_b^\star = \sqrt{N} \frac{\widehat{\theta_b^\star} \widehat{\theta}}{\widehat{v_b^\star}} \ \text{for} \ b = 1, \dots, B$
 - this is called studentization, and is always recommended (sometimes provides better rates)
- asymptotic CI: $q(\alpha)$ is the α -quantile of $\mathcal{N}(0,1)$ (for the interval on the previous slide it would have been $\mathcal{N}(0,v^2)$)

$$\left(\widehat{\theta} - \frac{q(1-\alpha/2)}{\sqrt{N}}\widehat{\mathbf{v}}, \widehat{\theta} - \frac{q(\alpha/2)}{\sqrt{N}}\widehat{\mathbf{v}}\right)$$

• bootstrap CI: $q_B^\star(\alpha)$ is the empirical α -quantile of $\widehat{F}_{T,B}^\star$

$$\left(\widehat{\theta} - \frac{q_{\mathcal{B}}^{\star}(1 - \alpha/2)}{\sqrt{N}}\widehat{\mathbf{v}}, \widehat{\theta} - \frac{q_{\mathcal{B}}^{\star}(\alpha/2)}{\sqrt{N}}\widehat{\mathbf{v}}\right)$$

Variance estimation

- often $\sqrt{N}(\widehat{\theta} \theta) \stackrel{d}{\to} \mathcal{N}_p(0, \Sigma)$, but $\Sigma = \Sigma(\theta)$ complicated
- the bootstrap estimator of $N^{-1}\Sigma$ is easy to obtain:

$$\widehat{\Sigma}^{\star} = \frac{1}{B-1} \sum_{b=1}^{B} \left(\widehat{\theta}_b^{\star} - \bar{\theta}^{\star} \right) \left(\widehat{\theta}_b^{\star} - \bar{\theta}^{\star} \right)^{\top}, \qquad \text{where} \qquad \bar{\theta}^{\star} = \frac{1}{B} \sum_{b=1}^{B} \widehat{\theta}_b^{\star},$$

 N^{-1} because one should take $T^\star = \sqrt{N}(\widehat{\theta}_b^\star - \widehat{\theta})$, and estimate Σ by

$$\frac{1}{B-1} \sum_{b=1}^{B} \left(T_b^{\star} - \bar{T}^{\star} \right) \left(T_b^{\star} - \bar{T}^{\star} \right)^{\top} \approx \mathbf{N}^{-1} \frac{1}{B-1} \sum_{b=1}^{B} \left(\widehat{\theta}_b^{\star} - \bar{\theta}^{\star} \right) \left(\widehat{\theta}_b^{\star} - \bar{\theta}^{\star} \right)^{\top}$$

Bias Reduction

- unbiased estimators are exception rather than a rule (apart from basic statistic classes)
- ullet bootstrap estimates the bias as $\hat{b}^\star = ar{ heta}^\star \hat{ heta}$
- bias-corrected estimator defined as $\widehat{\theta}_b = \widehat{\theta} \widehat{b}^\star$

Example: X_1, \ldots, X_N are i.i.d. with $\mathbb{E}|X_1|^3 < \infty$, $\mathbb{E}X_1 = \mu$, and $\theta = \mu^3$. We saw last week

- $\widehat{\theta} = (\bar{X}_N)^3$
- $b := bias(\widehat{\theta}) = \mathbb{E}\widehat{\theta} \theta$ is of order N^{-1}
- $\hat{\theta}_{h}^{\star} = \hat{\theta} \hat{b}^{\star}$ has bias of order N^{-2}

Something similar happens more generally for $\theta=g(\mu)$ when g is sufficiently smooth.

Hypothesis Testing

- testing H_0 using a statistic T
- depending on the form of the alternative H_1 , evidence against H_0 is
 - large values of T,
 - small values of T, or
 - \bullet both large and small values of T
- bootstrap p-values

•
$$\widehat{\mathsf{p} ext{-}\mathsf{val}} = \frac{1}{B+1} \left(1 + \sum_{b=1}^B \mathbb{I}_{[T_b^\star \geq T]} \right)$$
,

•
$$\widehat{\mathsf{p}\text{-val}} = \frac{1}{B+1} \left(1 + \sum_{b=1}^B \mathbb{I}_{[T_b^\star \leq T]} \right)$$
, or

•
$$\widehat{\mathsf{p-val}} = \frac{1}{B+1} \left(1 + \sum_{b=1}^B \mathbb{I}_{[|T_b^\star| \ge |T|]} \right).$$

Example: $X_1, \ldots, X_N \stackrel{\perp}{\sim} Exp(1/2)$ and $H_0: \mu = 1.8$ is tested against

Example

```
the alternative H_1: \mu > 1.8
set.seed(517)
N < -100
X \leftarrow \text{rexp}(N, 1/2)
mu 0 <- 1.8 # hypothesized value, so the hypothesis does not h
T_{stat} \leftarrow (mean(X)-mu_0)/sd(X)*sqrt(N)
B <- 10000
boot_stat <- rep(0,B)
for(b in 1:B){
  Xb <- sample(X,N,replace=T)</pre>
  boot_stat[b] <- (mean(Xb)-mean(X))/sd(Xb)*sqrt(N)</pre>
}
( p_val <- sum(boot_stat > T_stat)/(B+1) )
## [1] 0.04589541
1-pnorm(T stat)
```

Example

```
the alternative H_1: \mu \neq 1.8
set.seed(517)
N < -100
X \leftarrow \text{rexp}(N, 1/2)
mu 0 <- 1.68 # reduced, since harder to reject here => hypothes
T_{stat} \leftarrow (mean(X)-mu_0)/sd(X)*sqrt(N)
B <- 10000
boot_stat <- rep(0,B)
for(b in 1:B){
  Xb <- sample(X,N,replace=T)</pre>
  boot stat[b] <- (mean(Xb)-mean(X))/sd(Xb)*sqrt(N)</pre>
}
( p val <- sum(abs(boot stat) > abs(T stat))/(B+1) )
## [1] 0.06129387
2*(1-pnorm(T stat))
```

[1] 0.0455959

- Antarctic ice shelves data
- interested in the median of the log-area of the ice shelves

```
aa <- read.csv('../data/AAshelves.csv')
  # source: Reinhard Furrer's "Statistical Modeling" lecture at UZH
logarea <- log(aa[[3]]) # log of ice shelf areas
set.seed(517)
N <- 17
B <- 5000
boot_data <- array(sample(logarea, N*B, replace=TRUE), c(B, N))
meds <- apply(boot_data, 1, median)
hist(logarea, col='gray', main='', border=NA)
rug(logarea, ticksize = .04)
abline(v=median(logarea), lwd=2)</pre>
```

- Antarctic ice shelves data
- interested in the median of the log-area of the ice shelves

Is the sample median asymptotically normal?

$$\theta = F^{-1}(1/2)$$
 & $\hat{\theta} = \hat{F}_N^{-1}(1/2)$

$$T = \sqrt{N}(\widehat{\theta} - \theta) \stackrel{?}{\to} \mathcal{N}(0, \nu)$$

Is the sample median asymptotically normal?

$$\theta = F^{-1}(1/2)$$
 & $\hat{\theta} = \hat{F}_N^{-1}(1/2)$

$$T = \sqrt{N}(\widehat{\theta} - \theta) \stackrel{?}{\rightarrow} \mathcal{N}(0, v)$$

- yes, under some conditions
 - verifying conditions of a general theorem for M-estimator yields assumption:
 - $f(\theta) \neq 0$ and f continuous on some neighborhood of θ

Say we wish to construct a confidence interval.

Option I:

approximate only v using bootstrap

Option II:

approximate the quantiles of T using bootstrap

$$T^\star = \sqrt{N}(\widehat{\theta}^\star - \widehat{\theta})$$
 or just $T^\star = \widehat{\theta}^\star$

Option I: approximate $avar(T^*)$ using MC

Option II: approximate the quantiles of T^* using MC

• KDE on the MC draws of T^* can be used to visualize the distribution

```
hist(logarea, prob=TRUE, col='gray', ylim=c(0,2.), main='', border=NA)
rug(logarea, ticksize = .04)
abline(v=median(logarea),lwd=2)
hist(meds, add=T, prob=T, col=rgb(0,0,1,.2), border=NA)
lines(density(meds, adjust=2), col=4, lwd=2)
curve(dnorm(x, median(logarea), sd(meds)), add=T, col=2,lwd=2)
abline(v=c(median(logarea)+qnorm(c(.05,.95))*sd(meds)), col=2, lwd=2) # I
# sd(meds) == sd(sqrt(N)*(meds-median(logarea)))/sqrt(N)
abline(v=c(quantile(meds, c(.05,.95))), col=4, lwd=2) ## II
```


Iterated Bootstrap

Simple bootstrap:

Data

$$\mathcal{X} = \{X_1, \dots, X_N\} \quad \Longrightarrow \quad \begin{cases} &\mathcal{X}_1^{\star} = \{X_{1,1}^{\star}, \dots, X_{1,N}^{\star}\} & \Longrightarrow & T_1^{\star} = g(\theta[\mathcal{X}_1^{\star}], \theta[\mathcal{X}]) \\ & \vdots & & \vdots \\ & & \mathcal{X}_B^{\star} = \{X_{B,1}^{\star}, \dots, X_{B,N}^{\star}\} & \Longrightarrow & T_B^{\star} = g(\theta[\mathcal{X}_B^{\star}], \theta[\mathcal{X}]) \end{cases}$$

Week 11: Bootstrap (continued)

Iterated Bootstrap

Double bootstrap:

Example

- $X_1, \ldots, X_p \in \mathbb{R}^p$ be i.i.d. from a distribution depending on $\theta \in \mathbb{R}^p$
- $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$
- $\widehat{\theta}$ satisfies $\sqrt{N}(\widehat{\theta} \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Sigma)$
- studentized statistic:

$$T = \sqrt{N}\widehat{\Sigma}^{-1/2}(\widehat{\theta} - \theta_0) \stackrel{d}{\to} \mathcal{N}(0, I_{p \times p}) \qquad \text{(under } H_0)$$

- $\widehat{\Sigma}$ is consistent for Σ
- asymptotic test based on: $\|T\|^2 \stackrel{d}{\to} \chi_p^2$ under H_0

Bootstrap can be used

- instead of using the asymptotic distribution to produce a p-value, or
- \bullet when an estimator of Σ is not available

Both of the above combined \Rightarrow double bootstrap

Example

$$\mathcal{X} = \{X_1, \dots, X_N\} \left\{ \begin{array}{ll} \mathcal{X}_1^\star = \{X_{1,1}^\star, \dots, X_{1,N}^\star\} & \left\{ \begin{array}{ll} \mathcal{X}_{1,1}^{\star\star} = \{X_{1,1,1}^{\star\star}, \dots, X_{1,1,N}^{\star\star}\} \\ \vdots & \vdots \\ \mathcal{X}_{1,M}^{\star\star} = \{X_{1,M,1}^{\star\star}, \dots, X_{1,M,N}^{\star\star}\} \end{array} \right\} & \widehat{\Sigma}_1^{\star\star} & \Longrightarrow & T_1^\star \\ \vdots & \vdots & \vdots & \vdots \\ \mathcal{X}_B^\star = \{X_{B,1}^\star, \dots, X_{B,N}^\star\} & \left\{ \begin{array}{ll} \mathcal{X}_{B,1}^{\star\star} = \{X_{B,1,1}^{\star\star}, \dots, X_{B,1,N}^{\star\star}\} \\ \vdots & \vdots & \vdots \\ \mathcal{X}_{B,M}^{\star\star} = \{X_{B,M,1}^{\star\star}, \dots, X_{B,M,N}^{\star\star}\} \end{array} \right\} & \widehat{\Sigma}_B^{\star\star} & \Longrightarrow & T_B^\star \\ \widehat{\Sigma}_B^{\star\star} & \Longrightarrow & T_B^\star \\ \end{array} \right\}$$

$$\begin{split} \widehat{\Sigma}_b^{\star\star} &= \frac{1}{M-1} \sum_{m=1}^M \left(\widehat{\theta}_{b,m}^{\star\star} - \overline{\theta}_b^{\star\star} \right) \left(\widehat{\theta}_{b,m}^{\star\star} - \overline{\theta}_b^{\star\star} \right)^\top, \quad \text{where} \quad \widehat{\theta}_m^{\star\star} = \theta \big[\mathcal{X}_{b,m}^{\star\star} \big] \quad \& \quad \overline{\theta}_b^{\star\star} = \frac{1}{B} \sum_{b=1}^B \widehat{\theta}_{b,m}^{\star\star}, \\ T_b^{\star} &= \sqrt{N} \left(\widehat{\Sigma}_b^{\star\star} \right)^{-1/2} \left(\widehat{\theta}_b^{\star} - \widehat{\theta} \right), \\ \widehat{\mathbf{p}\text{-val}} &= \frac{1}{1+B} \left(1 + \sum_{b=1}^B I \left(\|T_b^{\star}\|^2 \ge \|T\|^2 \right) \right), \end{split}$$

Example: Median (continued)

Goal: construct CI for the median

Option I: approximate only the asymptotic variance v using bootstrap

asymptotic

Option II: approximate directly the quantiles of using bootstrap

non-studentized CI

Option III: approximate the quantiles of a studentized statistic using one bootstrap (requires the knowledge of variance, so get that by using another bootstrap)

studentized CI

Example: Median (continued)

```
set.seed(517)
N <- 17: B <- 5000: C <- 500:
boot_data <- array(sample(logarea, N*B, replace=TRUE), c(B, N))</pre>
# Dboot data \leftarrow array(0,c(B,C,N))
# for(b in 1:B){
# Dboot_data[b,,] \leftarrow array(sample(boot_data[b,], N*C, replace=TRUE), c(C, N))
# }
# meds <- apply(boot data, 1, median)
# Dmeds <- apply(Dboot data, c(1,2), median)
# sds <- apply(Dmeds, 1, sd)
# T stars <- sqrt(N)*(meds - median(logarea))/sds
op \leftarrow par(ps=20)
hist(logarea, prob=TRUE, col='gray', ylim=c(0,2.), main='', border=NA)
rug(logarea, ticksize = .04)
abline(v=median(logarea), lwd=2)
hist(meds, add=T, prob=T, col=rgb(0,0,1,.2), border=NA)
lines(density(meds, adjust=2), col=4, lwd=2)
curve(dnorm(x, median(logarea), sd(meds)), add=T, col=2,lwd=2)
abline(v=median(logarea)+qnorm(c(.05,.95))*sd(meds), col=2, lwd=2)
### sd(meds) == sd(sqrt(N)*(meds-median(logarea)))/sqrt(N)
abline(v=quantile(meds, c(.05,.95)), col=4, lwd=2)
# abline(v=median(logarea)+quantile(T_stars, c(.05,.95))/sqrt(N)*sd(meds), col=3, luminosis | lumino
abline(v=c(9.212299, 11.162336), col=3, lwd=2, lty=2) # studentized CI
```

Example: Median (continued)

Is the studentized CI actually better? Simulations!

Parametric Bootstrap and GoF Testing

- $X_1,\ldots,X_N\stackrel{\perp}{\sim} F$
- **goal**: test $H_0: F \in \mathcal{F} = \{F_{\lambda} \mid \lambda \in \Lambda\}$ against $H_1: F \notin \mathcal{F}$
 - if $\mathcal{F} = \{F_0\}$, we could use the KS statistic: $\sup_x \left| \widehat{F}_N(x) F_0(x) \right|$
- plug in principle: use $T = \sup_{x} \left| \widehat{F}_{N}(x) F_{\widehat{\lambda}}(x) \right|$
 - where $\widehat{\lambda}$ is consistent under H_0 (e.g. the MLE)

Bootstrap procedure: **for** b = 1, ..., B

- ullet generate $\mathcal{X}_b^\star = \{X_{b,1}^\star, \dots, X_{b,N}^\star\}$
 - \bullet this time not by resampling, but by sampling from $F_{\widehat{\lambda}}$
- estimate $\widehat{\lambda}_b^{\star}$ from \mathcal{X}_b^{\star}
- calculate the EDF $\widehat{F}_{N,b}^{\star}$ from \mathcal{X}_{b}^{\star}
- set $T_b^{\star} = \sup_{x} \left| \widehat{F}_{N,b}^{\star}(x) F_{\widehat{\lambda}_b^{\star}}(x) \right|$

Jackknife

- a predecessor to the bootstrap
 - sometimes can achieve a better trade-off between accuracy and computational costs, but hard to quantify
- used first for bias correction, later for variance estimation

 X_1,\ldots,X_N a random sample from F depending on $\theta\in\mathbb{R}^p$

- $\bullet \ \widehat{\theta} = \theta[X_1, \dots, X_N]$
 - interested in some characteristic of the estimator such as the bias
- consider $\bar{\theta} = N^{-1} \sum_n \hat{\theta}_{-n}$, where $\hat{\theta}_{-n} = \theta[X_1, \dots, X_{n-1}, X_{n+1}, \dots, X_N]$

Jackknife estimator of the bias:

$$\widehat{b} = (N-1)(\overline{\theta} - \widehat{\theta})$$

• the scaling factor suprising?

Jackknife Bias - a Heuristic

• assume $b = \text{bias}(\widehat{\theta}) = aN^{-1} + bN^{-2} + \mathcal{O}(N^{-3})$ for some constants a and b

$$\mathsf{bias}(\widehat{\theta}_{-n}) = \mathsf{a}(\mathsf{N}-1)^{-1} + \mathsf{b}(\mathsf{N}-1)^{-2} + \mathcal{O}(\mathsf{N}^{-3}) = \mathsf{bias}(\bar{\theta}).$$

$$\begin{split} \mathbb{E}\widehat{b} &= (N-1)\big[\mathsf{bias}(\overline{\theta}) - \mathsf{bias}(\widehat{\theta})\big] \\ &= (N-1)\left[a\left(\frac{1}{N-1} - \frac{1}{N}\right) + \left(\frac{1}{(N-1)^2} - \frac{1}{N^2}\right) + \mathcal{O}\left(\frac{1}{N^3}\right)\right], \\ &= aN^{-1} + bN^{-2}\frac{2N-1}{N-1} + \mathcal{O}(N^{-3}) \end{split}$$

- so \hat{b} approximates b correctly up to the order N^{-1} , which corresponds to the bootstrap
 - and similarly $\widehat{\theta}_b^{\star} = \widehat{\theta} \widehat{b} = N\widehat{\theta} (N-1)\overline{\theta}$ has bias of order N^{-1} , etc.

Jackknife Variance

John W. Tukey defined the "pseudo-values"

$$\theta_n^{\star} = N\widehat{\theta} - (N-1)\widehat{\theta}_{-n}$$

and conjectured that in some situations these can be treated as i.i.d. with approximately the same variance as $N \text{var}(\widehat{\theta})$, and hence we can take

$$\widehat{\operatorname{var}}(\widehat{\theta}) = \frac{1}{N} \frac{1}{N-1} \sum_{n=1}^{N} \left(\theta_n^{\star} - \bar{\theta}^{\star} \right) \left(\theta_n^{\star} - \bar{\theta}^{\star} \right)^{\top}.$$

- later shown to actually work (studying the theoretical version of the jackknife)
- could be used instead of the second bootstrap in our double bootstrap example above

Assignment 7 [5 %]

For $X_1, \ldots, X_{100} \stackrel{\mathbb{L}}{\sim} Exp(2)$, consider the following CIs for $\mathbb{E}X_1 = 1/2$:

- asymptotic: $\left(-\infty, \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}}z(\alpha)\right)$
- studentized (bootstrap): $\left(-\infty, \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}} q^\star(\alpha)\right)$ with $T^\star = \sqrt{N} \frac{\bar{X}_N^\star \bar{X}_N}{\widehat{\sigma}^\star}$
- non-studentized (*): $\left(-\infty, \bar{X}_N + \frac{1}{\sqrt{N}} q^\star(\alpha)\right)$ with $T^\star = \sqrt{N} \left(\bar{X}_N^\star \bar{X}_N\right)$
- sample-truth-scaled (*): $\left(-\infty, \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}} q^{\star}(\alpha)\right)$ with $T^{\star} = \sqrt{N} \frac{\bar{X}_N^{\star} \bar{X}_N}{\widehat{\sigma}}$

Verify coverage of these intervals via a simulation study of 10^3 runs and report the coverage proportions as a table. Specifically, for every single one of 10^3 simulation runs:

- generate new data $X_1, \ldots, X_{100} \stackrel{\parallel}{\sim} Exp(2)$
- calculate the four confidence intervals
- ullet check whether $\mathbb{E} X_1 = 1/2$ lies inside the respective intervals (yes = coverage)
- report the coverage proportion for the respective intervals as a single table