PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Segundo semestre 2020

Ayudantía 14 - MAT1610

- 1. (a) Determine el área de la región comprendida entre las funciones $f(x) = x^3$ y $g(x) = -x^3 + x$.
 - (b) Determine el área de la región R con $r = \{(x,y)|y \le x^2 + 1 \land y \ge x^2 9 \land y \le 3 x\}$
- 2. Calcular el volumen de un cono circular truncado, cuya altura es h, base inferior R y radio superior r, como se muestra en la figura.

- 3. Determinar el volumen del sólido generado por la rotación del área limitada por las curvas asociadas a $-y^2 - 1 = x$ y la recta x = -2 alrededor de la recta x = -2
- 4. Hallar el volumen del sólido generado en la rotación del área limitada por la parábola $y = -x^2 - 3x + 6$ y la recta y = 3 - x alrededor de la recta x = 3.
- 5. Determine:

(a)
$$\int e^{-x} \ln \left(1 + e^x\right) dx$$

(a)
$$\int e^{-x} \ln(1 + e^x) dx$$

(b) $\int_0^{\frac{1}{2}} \frac{x e^{\arcsin(x)}}{\sqrt{1 - x^2}} dx$

Ejercicios extras para los alumnos

- Extra 1 Determine el área de la región comprendida entre las funciones $f(x) = x^4 4x^2 + 4$ y $g(x) = 8 x^2$.
- Extra 2 Determine el área de la región comprendida entre las curvas asociadas a -|y|+3-x=0, $y^2=4x$.
- Extra 3 Determinar el volumen del sólido generado por la rotación alrededor del eje y del área limitada por las curvas asociadas a $y=e^{-x^2}$, y=0, x=0 y x=1.