Music Arrangement via Quantum Annealing

Lucas Kirby 30 January 2025

Department of Physics, Durham University

Overview

Theory

Music arrangement

Quantum annealing

Methods

Results

Conclusions

Music Arrangement via Quantum Annealing

└─Overview

- What is music arrangement? What is quantum annealing?
- Methods used to solve the music arrangement problem
- Preliminary results from application of the method
- Concluding thoughts about this process

Theory

Music arrangement

- Adaptation of previously composed pieces for practical or artistic reasons
- Traditionally complex and time-consuming
- This study focuses on **reduction**

Beethoven's String Quartet No. 10

Music Arrangement via Quantum Annealing

Theory

Music arrangement

Music arrangement

- Adaptation of music in terms of instrumentation, medium, or style
- Traditionally a complex process that requires a deep understanding of musical theory and structure
- Musically interesting whilst still remaining faithful to the source material
- Interest in automating this process
- Reduction is the rewriting of music for a smaller number of instruments (for example string quartet to solo)

Adiabatic quantum computing (AQC)

- Materials heating and cooling a material to alter its physical properties
- Quantum changing a quantum system from one Hamiltonian to another
- Done slowly and adiabatically to remain in the ground state

$$H(t) = \left(1 - rac{t}{T}
ight)H_0 + rac{t}{T}H_p$$

Music Arrangement via Quantum Annealing

—Theory

—Quantum annealing

—Adiabatic quantum computing (AQC)

Adiabatic quantum compating (AQC)

• Materials — heating and coding a material to after its physical properties.

• Counter——changing a quantum system from one Materians to sensing a quantum system from one 100m shoty and ediciatically to remain in the ground still $H(t) = \left(1 - \frac{t}{T}\right) H_0 + \frac{1}{T} H_F$.

- Materials science, annealing is a slow heating/cooling process to make a material softer and less brittle
- Quantum computing, slow evolution of a system between Hamiltonians
- Done adiabatically (closed system), system remains in ground state

Quantum annealing

Ising model

$$H_p(\sigma^z) = \sum_{i < j}^N J_{ij} \sigma_i^z \sigma_j^z + \sum_{i=1}^N h_i \sigma_i^z$$

Initial state

$$H_0 = h_0 \sum_{i=1}^{N} \sigma_i^x$$

Music Arrangement via Quantum Annealing

Theory

Quantum annealing

Quantum annealing

- How is this used to solve problems?
- Ising model, create a lattice of variables with two discrete values (spin up/down)
- Problem Hamiltonian, qubits σ^z , coupling strengths J_{ij} and field strengths h_i
- Initial state is a superposition of all possible states
- If problem solution is encoded within the ground state, system will give solution after evolution

Quantum annealing

MW Johnson et al. Nature 473, 194-198 (2011) doi:10.1038/nature10012

 $\begin{array}{cccc} \text{Music Arrangement via Quantum Annealing} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$

- What does this look like?
- Evolution of superposition to a particular state
- More efficiently escape from local minima via quantum tunneling
- Can solve harder problems with a more turbulent energy landscape

Quadratic Unconstrained Binary Optimisation

$$f(x) = \sum_{i < j}^{N} Q_{i,j} x_i x_j + \sum_{i}^{N} Q_{i,i} x_i$$

- Encodes problem solution into Hamiltonian's ground state
- Remains in low-energy state via quantum tunneling

- How to encode a problem into a Hamiltonian?
- QUBO is a function to be minimised
- ullet Set of binary variables x, matrix Q of real weights that describes interactions between variables

How to combine them?

 How to apply quantum annealing to the problem of music arrangement?

Methods

Music Arrangement via Quantum Annealing ☐ Methods

Methods

Problem formulation

- 1. Split parts into phrases
- 2. Arrange phrases into a graph
- 3. Solve graph problem using QPU
- 4. Construct arrangement from solution

Music Arrangement via Quantum Annealing
—Methods
—Problem formulation

Split parts into phrases
 Arrange phrases into a graph
 Solve graph problem using QPU
 Construct arrangement from solution

Problem formulation

1. Split parts

Local boundary detection model (LBDM)

$$S_i = x_i \times (r_{i-1,i} + r_{i,i+1})$$

Music Arrangement via Quantum Annealing $-\frac{87}{10}$ —Methods -1. Split parts

2. Create graph

Music Arrangement via Quantum Annealing

Methods

2. Create graph

Each phrase becomes a nodeEdges between nodes if phrases overlap

3. Solve graph

Maximal independent set (MIS)

Largest subset of nodes such that no nodes within the subset are connected by an edge.

$$f(x) = A \sum_{ij \in E} x_i x_j - B \sum_i x_i$$

Problem graph

Solution graph

Music Arrangement via Quantum Annealing

4. Construct arrangement

Music Arrangement via Quantum Annealing

Methods

4. Construct arrangement

Take selected nodes and combine to create final arrangement

Results

Excerpt

String Quartet No. 10 by Ludwig van Beethoven

Excerpt Music Arrangement via Quantum Annealing -Results └─Excerpt

Phrase detection

Local boundary detection model (LBDM)

Boundary strengths for the Violin I part

Music Arrangement via Quantum Annealing
Results
Phrase detection

Problem graph

Music Arrangement via Quantum Annealing
Results
Problem graph

Solutions

Solutions returned by the QPU

Lowest energy solution was -26.8 with a degeneracy of 34

Blocks

$$\oint E \cdot dA = \frac{G}{\epsilon}$$

The *net electric flux* through any closed surface is proportional to the **enclosed charge**.

Alert

This is an alert.

Evample

This is an example.

Apperance sync

- Volume rate of flow equal to divergence
- Summed over entire volume
- Equal to net flow across the boundary

Source: Wikimedia Commons

$$\iiint_{V} \nabla \cdot \mathbf{F} \, dV = \oiint_{A} \mathbf{F} \cdot d\mathbf{A}$$

Music Arrangement via Quantum Annealing —Results

—Apperance sync

ratio of flow equal to come of the company of the c

Apperance sync

2025-01-26

Conclusions

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} + \mu_0 I$$

Music Arrangement via Quantum Annealing

Equation gather