Lecture 14. Final Exam Review

The Final Exam

- Online. June 1 (Mon). 9:30 am 11:00 am. Do not be late.
- Open-book.
- Please bring your student ID.
- Joint a Zoom meeting via Canvas.
 - Turn on your camera and turn off your mic.
 - There are two sessions. Choose one based on your family name.
 - Change your Zoom account name to your **Official Name**, e.g., "LEE, Byoungchan."

Arrangements

 A Dry Run: Please try the pre-exam check-up quiz, which can be found in Quizzes tab. The final exam will be in a similar format.

- In terms of time, the exam duration will be very tight.
- So, focus on your own exam and use your time wisely.

What we have studied so far...

- Lecture 8 / Blanchard, Chapter 7: The Labor Market
- Lecture 9 / Blanchard, Chapter 8: The Phillips Curve
- Lecture 10 / Blanchard, Chapter 9: The IS-LM-PC Model

- Lecture 11 / Blanchard, Chapter 10: The Facts of Growth
- Lecture 12 / Blanchard, Chapter 11: The Solow Model
- Lecture 13 : Technological Progress

Markets and curves

 Goods (and services) Market + Financial Markets + Labor Market Keynesian cross PS and WS Money market • (Y, i or r) LM • (u,π) PC PC (relation) • (Y, π)

• We introduce price, wage, (un)employment, and production to our framework.

Business Cycles in The Short and Medium Run

The Natural Rate of Unemployment

• The equilibrium (or natural) rate of unemployment u when $P^e = P$.

• The Wage-Setting Relation:

$$W = \mathcal{A}P^{e}F(u,z) \quad \Rightarrow \quad \frac{W}{P} = \mathcal{A}F(u,z)$$

• The Price-Setting Relation:

$$P = (1+m)\frac{W}{A} \Rightarrow \frac{W}{P} = \frac{A}{1+m}$$

- WS Relation: $W/P = \mathcal{A}F(u,z)$
- PS Relation: $W/P = \mathcal{A}/(1+m)$

• The natural rate of unemployment u_n satisfies the following condition:

$$F(u_n, z) = \frac{1}{1+m}$$

- It depends on z and m.
- What happens when $m \uparrow$?

The Phillips curve

•
$$\pi_t = \pi_t^e + (m+z) - \alpha u_t = \pi_t^e - \alpha (u_t - u_n)$$
, where $u_n = \frac{m+z}{\alpha}$.

- Interpretation
- u_t : As $u_t \uparrow$, the bargaining power of workers decreases.
 - $\rightarrow W_t \downarrow$ (WS Relation)
 - → marginal costs of production ↓
 - $\rightarrow P_t \downarrow$ (PS Relation)
 - \rightarrow Given P_{t-1} , $P_t \downarrow$ implies $\pi_t \downarrow$.

The Phillips curve relation

• The Phillips curve: $\pi_t - \pi_t^e = -\alpha(u_t - u_n)$

•
$$\underline{u_t - u_n} = \left(1 - \frac{1}{\mathcal{A}L}\right) - \left(1 - \frac{1}{\mathcal{A}L}\right) = -\frac{1}{\mathcal{A}L}\underbrace{(Y_t - Y_n)}$$
 unemployment gap output gap

• The PC Relation: $\pi_t - \pi_t^e = \frac{\alpha}{\epsilon AL} (Y_t - Y_n)$

A Fiscal Consolidation

- SUPPOSE THAT $\pi^e_t = \bar{\pi}$.
- Assume that $Y = Y_n$ initially (Point A)
- What happens if the government increases *T* to reduce its debt?
- In the short run, the IS curve ←. Point A' becomes the short-run equilibrium.
- Overtime, the CB observes that π is low. So, it lowers i (and r).
- This process continues until the LM curve shifts to the LM'.
- The medium-run equilibrium is represented by point A".

In the short run (A vs. A')

- Y decreases.
- r does not change.
- How about the following variables?
 - (
 - *I*
 - G
 - \bullet G-T
 - *u*
 - W/P
 - π
 - *i*

In the medium run (A vs. A'')

- *Y* does not change.
- r decreases.
- How about the following variables?
 - C
 - *I*
 - G
 - \bullet G-T
 - *u*
 - W/P
 - π
 - į

Economic Growth in The Long Run

The aggregate production function

- Y = F(K, N)
- Constant returns to scale $\Rightarrow y = \frac{Y}{N} = F\left(\frac{K}{N}, 1\right) = f(k)$
- An example: $Y = \mathcal{A}K^{\alpha}N^{1-\alpha}$, where $0 < \alpha < 1$. Divide both hand sides by N.

$$\Rightarrow y = \frac{Y}{N} = \mathcal{A}K^{\alpha} \frac{N^{1-\alpha}}{N} = \mathcal{A}K^{\alpha}N^{-\alpha} = \mathcal{A}\left(\frac{K}{N}\right)^{\alpha} = \mathcal{A}k^{\alpha}.$$

• To make y grow, we need to make either k or \mathcal{A} grow. output per worker capital per worker or productivity

The evolution of the capital stock

• The evolution of K_t :

$$K_{t+1} = (1 - \delta)K_t + I_t,$$

where capital depreciates at rate δ .

• Given that N is constant and $I_t = sY_t$, $\frac{K_{t+1}}{N} = (1-\delta)\frac{K_t}{N} + \frac{I_t}{N} = (1-\delta)\frac{K_t}{N} + s\frac{Y_t}{N}$

$$\Rightarrow k_{t+1} = (1 - \delta)k_t + sy_t$$

$$= (1 - \delta)k_t + sf(k_t)$$

$$\Rightarrow \Delta k_{t+1} = sf(k_t) - \delta k_t$$

$$\Delta k_{t+1} = sf(k_t) - \delta k_t$$

•
$$k_t < k^* \Rightarrow \Delta k_{t+1} > 0$$
, i.e., $k \uparrow$

•
$$k_t > k^* \Rightarrow \Delta k_{t+1} < 0$$
, i.e., $k \downarrow$

• The steady state of the economy:

$$k_t = k^* \Rightarrow k_{t+1} = k_{t+2} = \dots = k^*$$
$$\Rightarrow y_t = y_{t+1} = \dots = f(k^*)$$

• k^* satisfies $sf(k^*) = \delta k^*$.

The saving rate, s, increases from s_0 to s_1

• k starts to grow from $k_0 (=$

y and g_y

- The saving rate has no effect on the long-run growth rate of output per worker, which is equal to zero.
- Nonetheless, the saving rate determines the level of output per worker in the long run.
- An increase in the saving rate will lead to higher growth of output per worker for some time, but not forever.

$$c^* = (1 - s)f(k^*)$$

- As $s \uparrow$, $(1-s) \downarrow$ and $f(k^*) \uparrow$.
- There exists the *golden-rule* rate of saving, s_G , that maximizes c^* . The corresponding value of k^* is the golden-rule level of capital (per worker).
- $s < s_G$ \Rightarrow $s \uparrow \text{ increases } c^*$ $s > s_G$ \Rightarrow $s \uparrow \text{ decreases } c^*$

Growth in the steady state

• When N grows at the rate of $g_N \neq 0$ and \mathcal{A} at $g_{\mathcal{A}} \neq 0$, we can still use the Solow model (if you're interested, read Chapter 12).

- In steady state, $\frac{K_t}{N_t}$ and $\frac{Y_t}{N_t}$ grow at the rate of $g_{\mathcal{A}}$.
- Similarly, K_t and Y_t grow at the rate of $g_{\mathcal{A}} + g_N$.
- Once an economy is close enough to its steady state, technology/productivity $\mathcal A$ becomes the key driver of a sustained economic growth!