Chimook Database Analysis

Negar Ghiasi Far March 2025

TABLE OF CONTENTS *

Loading Database

Understanding Data

Hypothesis Test

04

Initial Review

Normality

08 ×

Confidence Interval

03

Key Variables

06

Outliers

01 & 02 *

Loading
Database

F
Initial Review

Loading Database

Using **SQL alchemy** python library I have loaded **Chinook Database** into data frames and started the analysis.

The Chinook Database holds information about a music store, containing tables for artists, albums, media tracks, invoices, and customers.

Initial Review

Checked data types, missing values, and basic statistics to ensure data quality.

03 * Key Variables

★ Key Variables ●

There are many variables that describe each **Track**. Below are the distrubutions.

★ Key Variables ●

Plots below show key variables about purchases.

04 *

Understanding Data

★ Understanding Data 👳

Customer / Support Rep

This plot shows distribution of support representatives across customers.

★ Understanding Data 🖭

Genre

This plot shows distribution of genres of each track.

★ Understanding Data 👳

Media Type

This plot shows distribution of Media Types of each track.

Track / Album

This plot shows distribution of Tracks per album.

The average number of tracks per album is 10.

50% of albums have 2 to 14 tracks.

05 * Normality

SIZE OF EACH Track

SHapiro-Wilk Test

Statistic = 0.275, p-value = 1.72e-79

Normality Disproved

Q-Q PLOT

Q-Q PLOT

DURATION OF EACH TRACK

SHapiro-Wilk Test

Statistic = 0.406, p-value = 2.72e-75

Normality Disproved

Price of each track purchased

SHAPIPO-WILK TEST

Statistic = 0.222, p-value = 2.10e-70

Normality Disproved

Q-Q PLOT

Normality B

Q-Q PLOT

Price of each track

SHapiro-Wilk Test

Statistic = 0.253, p-value = 3.98e-80

Normality Disproved

TOTAL AMOUNT SPENT BY CUSTOMERS

SHapiro-Wilk Test

Statistic = 0.836, p-value = 3.4e-20

Normality Disproved

Q-Q PLOT

06 *
Outliers

Outliers

Number of Outliers

- Size of each track (343 points)
- Duration of each track (357 points)
- Price of each track purchased (111 points)
- Price of each track (213 points)
- Total amount spent by customers (4 points)

Given the high number of detected outliers, removing them could introduce bias and distort the true distribution of the data. So I did not remove the outliers.

07 * Hypothesis Test

1) 3 Most popular genres

Genreld		Name_genre	Count
	1	Rock	835
	7	Latin	386
	3	Metal	264

Kruskal-wallis test

Null hypothesis: No difference in price between most popular genres.

Alternative hypothesis: Significant difference in price between most popular genres.

There is no need for a hypothesis test because all the prices in these genres are the same.

2) Dependency of Track duration and price

Spearman correlation

Spearman Correlation Coefficient: 0.409, p-value: 4.57e-142

The track duration and price are dependent. There is a medium dependency between duration and price of each track.

4) Dependency of Genres and Media Types

CHI-SQUARE TEST

Null hypothesis: No difference in Genre and Media Type. Alternative hypothesis: Significant difference in Genre and Media Type.

Reject the null hypothesis.

There is a significant association between Genre and Media Type.

5) Dependency of the Customer's Total spent and their Country

Kruskal-Wallis Test

Null hypothesis: No difference in the Total spending of customers across different countries. Alternative hypothesis: Significant difference in the Total spending of customers across different countries

Fail to reject the null hypothesis.

There is no significant difference in the Total spending of customers across different countries.

5) Dependency of the Customer's Total spent and their Country

6) Dependency of track Media Types and track Size

Kruskal-Wallis Test

Null hypothesis: No difference in track Size between different Media Types. Alternative hypothesis: Significant difference in track Size between different Media Types.

Reject the null hypothesis.

There is a significant difference in track Size between different Media Types.

7) Dependency of Support Representative and Customer Total spent

Kruskal-Wallis Test

Null hypothesis: No difference in customer Total spending between different Support Representatives.

Alternative hypothesis: Significant difference in customer Total spending between different Support Representatives.

Fail to reject the null hypothesis.

There is no significant difference in customer Total spending between different Support Representatives.

7) Dependency of Support Representative and Customer Total spent

08 *
Confidence
Interval

1) Average Duration of Tracks in different genres

Kruskal-Wallis Test

Null hypothesis: No difference in Track durations between different Genres. Alternative hypothesis: Significant difference in Track durations between different Genres.

Reject the null hypothesis.

There is a significant difference in Track durations between different Genres.

1) Average Duration of Tracks in different genres

1) 95% Confidence Interval of genre durations

2) 95% Confidence Interval of different countries sales

3) Average number of tracks purchased by each customer

The average number of tracks purchased by each customer is 38 tracks.

