Exercises

16.4-1

Show that (S, \mathcal{I}_k) is a matroid, where S is any finite set and \mathcal{I}_k is the set of all subsets of S of size at most k, where $k \leq |S|$.

16.4-2 ★

Given an $m \times n$ matrix T over some field (such as the reals), show that (S, \mathcal{I}) is a matroid, where S is the set of columns of T and $A \in \mathcal{I}$ if and only if the columns in A are linearly independent.

16.4-3 *

Show that if (S, \mathcal{I}) is a matroid, then (S, \mathcal{I}') is a matroid, where

 $\mathcal{I}' = \{A' : S - A' \text{ contains some maximal } A \in \mathcal{I}\}$.

That is, the maximal independent sets of (S, \mathcal{I}') are just the complements of the maximal independent sets of (S, \mathcal{I}) .

16.4-4 ★

Let S be a finite set and let S_1, S_2, \ldots, S_k be a partition of S into nonempty disjoint subsets. Define the structure (S, \mathcal{I}) by the condition that $\mathcal{I} = \{A : |A \cap S_i| \le 1 \text{ for } i = 1, 2, \ldots, k\}$. Show that (S, \mathcal{I}) is a matroid. That is, the set of all sets A that contain at most one member of each subset in the partition determines the independent sets of a matroid.

16.4-5

Show how to transform the weight function of a weighted matroid problem, where the desired optimal solution is a *minimum-weight* maximal independent subset, to make it a standard weighted-matroid problem. Argue carefully that your transformation is correct.

★ 16.5 A task-scheduling problem as a matroid

An interesting problem that we can solve using matroids is the problem of optimally scheduling unit-time tasks on a single processor, where each task has a deadline, along with a penalty paid if the task misses its deadline. The problem looks complicated, but we can solve it in a surprisingly simple manner by casting it as a matroid and using a greedy algorithm.

A *unit-time task* is a job, such as a program to be run on a computer, that requires exactly one unit of time to complete. Given a finite set S of unit-time tasks, a

schedule for S is a permutation of S specifying the order in which to perform these tasks. The first task in the schedule begins at time 0 and finishes at time 1, the second task begins at time 1 and finishes at time 2, and so on.

The problem of *scheduling unit-time tasks with deadlines and penalties for a single processor* has the following inputs:

- a set $S = \{a_1, a_2, \dots, a_n\}$ of n unit-time tasks;
- a set of *n* integer *deadlines* d_1, d_2, \ldots, d_n , such that each d_i satisfies $1 \le d_i \le n$ and task a_i is supposed to finish by time d_i ; and
- a set of n nonnegative weights or **penalties** w_1, w_2, \ldots, w_n , such that we incur a penalty of w_i if task a_i is not finished by time d_i , and we incur no penalty if a task finishes by its deadline.

We wish to find a schedule for S that minimizes the total penalty incurred for missed deadlines.

Consider a given schedule. We say that a task is *late* in this schedule if it finishes after its deadline. Otherwise, the task is *early* in the schedule. We can always transform an arbitrary schedule into *early-first form*, in which the early tasks precede the late tasks. To see why, note that if some early task a_i follows some late task a_j , then we can switch the positions of a_i and a_j , and a_i will still be early and a_j will still be late.

Furthermore, we claim that we can always transform an arbitrary schedule into **canonical form**, in which the early tasks precede the late tasks and we schedule the early tasks in order of monotonically increasing deadlines. To do so, we put the schedule into early-first form. Then, as long as there exist two early tasks a_i and a_j finishing at respective times k and k+1 in the schedule such that $d_j < d_i$, we swap the positions of a_i and a_j . Since a_j is early before the swap, $k+1 \le d_j$. Therefore, $k+1 < d_i$, and so a_i is still early after the swap. Because task a_j is moved earlier in the schedule, it remains early after the swap.

The search for an optimal schedule thus reduces to finding a set A of tasks that we assign to be early in the optimal schedule. Having determined A, we can create the actual schedule by listing the elements of A in order of monotonically increasing deadlines, then listing the late tasks (i.e., S - A) in any order, producing a canonical ordering of the optimal schedule.

We say that a set A of tasks is *independent* if there exists a schedule for these tasks such that no tasks are late. Clearly, the set of early tasks for a schedule forms an independent set of tasks. Let \mathcal{I} denote the set of all independent sets of tasks.

Consider the problem of determining whether a given set A of tasks is independent. For t = 0, 1, 2, ..., n, let $N_t(A)$ denote the number of tasks in A whose deadline is t or earlier. Note that $N_0(A) = 0$ for any set A.

Lemma 16.12

For any set of tasks A, the following statements are equivalent.

- 1. The set *A* is independent.
- 2. For t = 0, 1, 2, ..., n, we have $N_t(A) \le t$.
- 3. If the tasks in A are scheduled in order of monotonically increasing deadlines, then no task is late.

Proof To show that (1) implies (2), we prove the contrapositive: if $N_t(A) > t$ for some t, then there is no way to make a schedule with no late tasks for set A, because more than t tasks must finish before time t. Therefore, (1) implies (2). If (2) holds, then (3) must follow: there is no way to "get stuck" when scheduling the tasks in order of monotonically increasing deadlines, since (2) implies that the ith largest deadline is at least i. Finally, (3) trivially implies (1).

Using property 2 of Lemma 16.12, we can easily compute whether or not a given set of tasks is independent (see Exercise 16.5-2).

The problem of minimizing the sum of the penalties of the late tasks is the same as the problem of maximizing the sum of the penalties of the early tasks. The following theorem thus ensures that we can use the greedy algorithm to find an independent set A of tasks with the maximum total penalty.

Theorem 16.13

If S is a set of unit-time tasks with deadlines, and \mathcal{I} is the set of all independent sets of tasks, then the corresponding system (S, \mathcal{I}) is a matroid.

Proof Every subset of an independent set of tasks is certainly independent. To prove the exchange property, suppose that B and A are independent sets of tasks and that |B| > |A|. Let k be the largest t such that $N_t(B) \le N_t(A)$. (Such a value of t exists, since $N_0(A) = N_0(B) = 0$.) Since $N_n(B) = |B|$ and $N_n(A) = |A|$, but |B| > |A|, we must have that k < n and that $N_j(B) > N_j(A)$ for all j in the range $k + 1 \le j \le n$. Therefore, B contains more tasks with deadline k + 1 than A does. Let a_i be a task in B - A with deadline k + 1. Let $A' = A \cup \{a_i\}$.

We now show that A' must be independent by using property 2 of Lemma 16.12. For $0 \le t \le k$, we have $N_t(A') = N_t(A) \le t$, since A is independent. For $k < t \le n$, we have $N_t(A') \le N_t(B) \le t$, since B is independent. Therefore, A' is independent, completing our proof that (S, \mathcal{I}) is a matroid.

By Theorem 16.11, we can use a greedy algorithm to find a maximum-weight independent set of tasks A. We can then create an optimal schedule having the tasks in A as its early tasks. This method is an efficient algorithm for scheduling

				Task			
a_i	1	2	3	4	5	6	7
d_i w_i	4	2	4	3	1	4	6
w_i	70	60	50	40	30	20	10

Figure 16.7 An instance of the problem of scheduling unit-time tasks with deadlines and penalties for a single processor.

unit-time tasks with deadlines and penalties for a single processor. The running time is $O(n^2)$ using GREEDY, since each of the O(n) independence checks made by that algorithm takes time O(n) (see Exercise 16.5-2). Problem 16-4 gives a faster implementation.

Figure 16.7 demonstrates an example of the problem of scheduling unit-time tasks with deadlines and penalties for a single processor. In this example, the greedy algorithm selects, in order, tasks a_1, a_2, a_3 , and a_4 , then rejects a_5 (because $N_4(\{a_1, a_2, a_3, a_4, a_5\}) = 5$) and a_6 (because $N_4(\{a_1, a_2, a_3, a_4, a_6\}) = 5$), and finally accepts a_7 . The final optimal schedule is

$$\langle a_2, a_4, a_1, a_3, a_7, a_5, a_6 \rangle$$
,

which has a total penalty incurred of $w_5 + w_6 = 50$.

Exercises

16.5-1

Solve the instance of the scheduling problem given in Figure 16.7, but with each penalty w_i replaced by $80 - w_i$.

16.5-2

Show how to use property 2 of Lemma 16.12 to determine in time O(|A|) whether or not a given set A of tasks is independent.

Problems

16-1 Coin changing

Consider the problem of making change for n cents using the fewest number of coins. Assume that each coin's value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and pennies. Prove that your algorithm yields an optimal solution.