§8 Предел последовательности обобщённых функций.

Определение 8.1. Скажем, что *последовательность* $(f_n)_{n\in\mathbb{N}}$ обобщённых функций (безразлично, из D'(G), или из $S'(\mathbb{R}^n)$) сходится к обобщённой функции f, и напишем $f_n \to f$, или $\lim_{n\to\infty} f_n = f$, если

 $(f_n, \varphi) \underset{n \to \infty}{\longrightarrow} (f, \varphi)$ для любой основной функции φ (из D(G), или из $S(\mathbb{R}^n)$).

Пример 8.2. $\theta(n-x) \underset{n\to\infty}{\longrightarrow} 1$ в $D'(\mathbb{R})$ и в $S'(\mathbb{R})$, где $\theta(x)$ — функция

Хевисайда.

Доказательство – упражнение.

Справка. Оливер Хевисайд, физик; 1850–1925, Великобритания.

Пример 8.3.
$$\delta(x-x_n) \underset{|x_n| \to \infty}{\longrightarrow} 0$$
 в $D'(\mathbb{R})$ и в $S'(\mathbb{R})$.

Доказательство – упражнение.

Пример 8.4.
$$\frac{1}{x \pm i \cdot \frac{1}{n}} \xrightarrow{n \to \infty} \mp i\pi \cdot \delta(x) + P\frac{1}{x}$$
 в $D'(\mathbb{R})$.

Доказательство. Для удобства будем далее говорить о пределе при $\varepsilon \to 0$ вместо $n \to \infty$. Имеем в виду, что параметр ε принимает произвольные значения, стремящиеся к 0, а не только 1/n.

Функции $f_{\varepsilon}(x) = \frac{1}{x \pm i\varepsilon}$ локально интегрируемы в $\mathbb R$ так как они

непрерывны (знаменатели не обращаются в 0). Поэтому $(f_{\varepsilon}, \varphi) = \int_{-\infty}^{+\infty} \frac{\varphi(x)}{x \pm i\varepsilon} dx =$

(учитываем, что $supp \varphi \subset [-a, a]$)

$$= \int_{-a}^{a} \frac{x \mp i\varepsilon}{x^2 + \varepsilon^2} \varphi(x) dx = \int_{-a}^{a} \frac{x \mp i\varepsilon}{x^2 + \varepsilon^2} (\varphi(x) - \varphi(0)) dx + \int_{-a}^{a} \frac{x \mp i\varepsilon}{x^2 + \varepsilon^2} dx \cdot \varphi(0). \tag{*}$$

Второй интеграл в правой части (*) равен

$$\int_{-a}^{a} \frac{x}{x^2 + \varepsilon^2} dx \cdot \varphi(0) \mp \int_{-a}^{a} \frac{i\varepsilon}{x^2 + \varepsilon^2} dx \cdot \varphi(0) = 0 \mp \varphi(0) \cdot i\varepsilon \cdot \frac{1}{\varepsilon} \operatorname{arctg} \frac{x}{\varepsilon} \Big|_{-a}^{a} = \mp \varphi(0) \cdot 2i \cdot \operatorname{arctg} \frac{a}{\varepsilon}$$

Поэтому он стремится к $\mp \varphi(0) \cdot i\pi = \mp (i\pi \cdot \delta(x), \varphi(x))$ при $\varepsilon \to 0$. (**)

Рассмотрим теперь интеграл $\int_{-a}^{a} \frac{x \mp i\varepsilon}{x^2 + \varepsilon^2} (\varphi(x) - \varphi(0)) dx$. В каждой точке

 $x \in [-a, a]$ подынтегральная функция стремится к $\frac{\varphi(x) - \varphi(0)}{x}$ при $\varepsilon \rightarrow 0$. В то же

время
$$\left| \frac{x \mp i\varepsilon}{x^2 + \varepsilon^2} (\varphi(x) - \varphi(0)) \right| = \frac{\left| x \mp i\varepsilon \right|}{x^2 + \varepsilon^2} |\varphi(x) - \varphi(0)| = \frac{\sqrt{x^2 + \varepsilon^2}}{x^2 + \varepsilon^2} |\varphi(x) - \varphi(0)| \le$$

 $\leq \left| \frac{\varphi(x) - \varphi(0)}{x} \right|$. Полученная функция непрерывна на сегменте [-*a*, *a*], кроме

устранимого разрыва в нуле. Поэтому она интегрируема на [-a, a]. По теореме о предельном переходе под знаком интеграла имеем

$$\lim_{\varepsilon \to +0} \int_{-a}^{a} \frac{x \mp i\varepsilon}{x^{2} + \varepsilon^{2}} (\varphi(x) - \varphi(0)) dx = \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{x} dx = V.p. \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{x}$$

Следовательно, $\lim_{\varepsilon \to 0} \left(f_{\varepsilon}, \varphi \right) = (**) + (***) = \mp \left(i\pi \cdot \delta(x), \varphi(x) \right) + \left(P \frac{1}{x}, \varphi(x) \right)$

По определению 8.1,
$$\lim_{\varepsilon \to +0} f_{\varepsilon}(x) = \lim_{\varepsilon \to +0} \frac{1}{x \pm i \cdot \varepsilon} = \mp i\pi \cdot \delta(x) + P\frac{1}{x}$$
. (67)

Определение 8.5. Формулы (67) называются формулами Сохоцкого.

Справка. Сохоцкий Юлиан Васильевич, 1842–1927, Россия.

Лемма 8.6. Пусть обобщённые функции h, h_k , где $k \in \mathbb{N}$, таковы, что для любой основной функции ϕ существует предел $\lim_{k \to \infty} \left(h_k, \phi \right) = (h, \phi)$. Пусть также

$$\varphi_s \xrightarrow{D(\mathbb{R}^n)} 0.$$
 Тогда $\lim_{k \to \infty} (h_k, \varphi_k) = 0.$

Доказательство. Предположим противное. Тогда, переходя, если надо, к подпоследовательностям, и перенумеровывая их члены заново, можем считать,

что $|(h_k, \varphi_k)| \ge c > 0$. Учитывая, что $\varphi_s \xrightarrow{D(\mathbb{R}^n)} 0$ и снова переходя, если нужно, к подпоследовательности, можем считать, что

$$\left|2^{k}\cdot\varphi_{k}^{(\alpha)}\right|\leq2^{-k}$$
 при $\left|\alpha\right|\leq k,\ k\in\mathbb{N}$. (*)

Стало быть,
$$2^k \cdot \varphi_k \xrightarrow{D(\mathbb{R}^n)} 0$$
, но $\left| \left(h_k, 2^k \cdot \varphi_k \right) \right| = 2^k \cdot \left| \left(h_k, \varphi_k \right) \right| \ge 2^k \cdot c \xrightarrow[k \to \infty]{} \infty$. (**)

Ниже, для краткости, обозначаем числа вида $(h_k, 2^m \cdot \varphi_m)$, $(h, 2^m \cdot \varphi_m)$ символами (k, m), соответственно, (h, m). По (**) можно найти такой номер k(1), что $|(k(1), k(1))| \ge 2$.

Далее, поскольку $2^k \cdot \varphi_k \xrightarrow{D(\mathbb{R}^n)} 0$, то $|(k(1), k)| \to 0$. Поэтому, начиная с некоторого номера N_0 , будет выполняться $|(k(1), k)| \le 2^{-(2-1)}$ $(k > N_0)$. В то же время $(k, k(1)) \to (h, k(1))$, и поэтому при $k > N_1 > N_0$ будет справедливо $|(k, k(1))| \le |(h, k(1))| + 1$. Опять пользуясь (**), найдём номер $k(2) > N_1$ такой, что $|(k(2), k(2))| \ge |(h, k(1))| + 2 \cdot 2$.

На следующем шаге, аналогично учитывая сходимости $\left|\left(k(j),k\right)\right|_{k\to\infty}$ 0, $(k,k(j)) \xrightarrow[k \to \infty]{} (h,k(j)), j = 1,2,$ можем найти номер N такой, что при k > N будет верно $|(k(j), k)| \le 2^{-(3-j)}$, $|(k, k(j))| \le |(h, k(j))| + 1$, j = 1, 2. Опять пользуясь (**) найдём номер k(3) > N такой, что

$$|(k(3), k(3))| \ge |(h, k(1))| + |(h, k(2))| + 2 \cdot 3.$$

Аналогично продолжая это построение неограниченно, получим последовательность $\left\{h_{k(m)}: m \in \mathbb{N}\right\}$ такую, что

$$|(k(j), k(m))| \le 2^{-(m-j)}, j = 1, 2, \dots m-1,$$
 (***)

И

$$|(k(m), k(m))| \ge |(h, k(1))| + \dots + |(h, k(m-1))| + 2 \cdot m.$$
 (****)

Теперь рассмотрим функцию $\psi(x) = \sum_{m \in \mathbb{N}} 2^{k(m)} \cdot \varphi_{k(m)}$. В силу (*) это

основная функция и $(h_{k(m)}, \psi) = (k(m), k(m)) + \sum_{i \in \mathbb{N} \setminus m} (k(m), k(j))$. Отсюда,

учитывая (***), (****), и $|(h,k(j))| \ge |(k(m),k(j))| - 1$ при j < m, получаем

$$\left|\left(h_{k(m)}, \psi\right)\right| \ge \left|\left(k(m), k(m)\right)\right| - \left|\sum_{j \in \mathbb{N} \setminus m} (k(m), k(j))\right| \ge$$

$$\geq \left|(k(m),k(m))\right| - \sum_{j < m} \left|(k(m),k(j))\right| - \sum_{j > m} \left|(k(m),k(j))\right| \geq m + 1 - \sum_{j > m} 2^{m-j} = m \,.$$
 Видим, что $\left|\left(h_{k(m)},\psi\right)\right| \underset{m \to \infty}{\to} \infty$ вопреки условию $\left(h_{k(m)},\psi\right) \underset{m \to \infty}{\to} (h,\psi) \,.$

Видим, что
$$\left|\left(h_{k(m)},\psi\right)\right| \underset{m\to\infty}{\longrightarrow} \infty$$
 вопреки условию $\left(h_{k(m)},\psi\right) \underset{m\to\infty}{\longrightarrow} (h,\psi)$.

Теорема 8.7.(О полноте пространства $D'(\mathbb{R}^n)$). Пусть обобщённые функции $h_k,\ k\in\mathbb{N}$, таковы, что для любой основной функции ф существует предел $\lim_{k\to\infty} \left(h_k,\phi\right) = (h,\phi)$. Тогда h — тоже обобщённая функция.

Доказательство. Линейность h сразу следует из соотношения $\lim_{k\to\infty} (h_k, \varphi) = (h, \varphi)$ и линейности операции предельного перехода. Покажем, что h непрерывно.

Пусть $\varphi_k \xrightarrow{D(\mathbb{R}^n)} 0$. Покажем, что $(h, \varphi_k) \xrightarrow[k \to \infty]{} 0$. Если это не так, то для бесконечного числа номеров k выполнено $|(h, \varphi_k)| > 2a$, где a > 0. Но $(h, \varphi_k) = \lim_{m \to \infty} (h_m, \varphi_k)$, а значит, для каждого такого k найдётся номер m(k)такой, что при m > m(k) будет $|(h_m, \varphi_k)| \ge a$. Перенумеровывая теперь обобщённые функции по правилу $g_k = h_{m(k)+1}$, получаем противоречие с леммой 8.6.

- 1) Что такое функция Хевисайда и функция $\theta(n-x)$?
- 2) Почему непрерывная функция локально интегрируема?
- 3) Почему разрыв функции $\frac{\varphi(x) \varphi(0)}{x}$ устраним?
- 4) Какая теорема о предельном переходе под знаком интеграла имеется в виду?
- 5) Почему верно неравенство (*) в лемме 8.6?
- 6) Как не свихнуться, изучая доказательство леммы 8.6?