Tools & Models for Data Science Course Overview

Risa Myers & Chris Jermaine

Rice University

Welcome!

Please fill out the questionnaire

Welcome!

- Introductions
- Course overview
- Syllabus / logistics
- Tools

Introductions!

I am

- Risa Myers
- Assistant Teaching Professor
- rbm2@rice.edu
- Duncan Hall 2062

Who Are You?

Trade questionnaires!

This Class is about Data Science

- What is THAT?
- Extraction of actionable knowledge from large volumes of data
 - Encompasses methods from:
 - Computer science
 - Statistics
 - Optimization/Applied Math
 - Also includes
 - Domain knowledge
 - Communication skills
 - Data management

Modern Data Scientists

Marketing/Est/Hory.com is a group of practitioners in the area of e-commonce marketing. Our fields of expertise includemarketing studings and optimization continues tracking and on othe analytics; predictive analytics and economistics data warehousing and the global systems underling channel implies in Paid Society, S.O., Social, Child and branch.

Marketina Distribution

Examples of Data Science Tasks

- Given a huge set of per-customer sales data, build a model to predict customer "churn"
- Given a large graph of Medicare payout data, find suspicious (potentially fraudulent) referral patterns
- Given a set of EMR data, find previously unknown side effects (ex: Vioxx and heart disease)
- Given data from an online learning tool find markers that are an early sign of later academic achievement problems
- Many, many more!

Both Tools and Models are Important

- Back in the day...
 - You had statisticians who dealt primarily with small data sets
 - You had computer scientists who were interested in advanced modeling
- But in the "Big Data" era, the two can't live in isolation
 - You need advanced models to solve challenging prediction/analysis tasks
 - You need computer systems that can scale those models to the largest data sets
 - You need computer tools that make it easy to implement complicated models

Important Disclaimer

- Data Science Tools & Models is fundamentally a computer science class!
- This is not "tools and models" from a naive user's perspective
 - No learning to be an end-user of classical analytics packages
 - This is not a "Get to know R" class
 - Nor is it a "Get to know SAS" class
 - No plugging data into a standard software package and writing a report on the results
 - A class covering such topics WOULD be useful
 - But that's simply not this class
- Lots of focus on algorithms and engineering

When We Say "Models"

- Strong focus on the math foundations of data science
- Lots of optimization theory, probability, statistics
- Even some continuous mathematics

When We Say "Tools"

- We mean tools for manipulating large data sets
- Tools for scalable, distributed computation
- Emphasis is on "Big Data"!
- Specifically, we'll learn about:
 - SQL databases
 - Python programming (NumPy, SciPy)
 - Hadoop (MapReduce software, Big Data file system)
 - Spark (distributed Big Data manipulation software)

Example Use Case for Your Data Science Tools & Models Skill Set

- Imagine...
 - You are working at a hospital
 - You collect 5TB of patient monitoring data each day...
 - And want a software to predict what will happen to a patient in the next hour
 - Such a software does not exist...
 - How to build it?
- Key questions to answer:
 - How will you process the raw data?
 - What model will you use to do prediction?
 - How will you train the model?
 - How will you scale to 5TB per day?
- After this class, you'll have the answers!

As Such, this Class...

- Will give an introduction to modern data management software...
 - First half of the class
 - Relational database systems and SQL
 - No-SQL systems such as Hadoop and Spark
- Will give an introduction to models for modern data analysis...
 - Second half of the class
 - Supervised learning (linear models, support vector machines)
 - Unsupervised learning (clustering, matrix factorization)
 - Text mining
- Assignments will focus on implementing the models using the tools & understanding methods for preparing data

Key Goals

- 1 Respect the data
 - Do good science
 - Make repeatable processes
 - Learn your data/domain
- 2 Build your toolkit
- 3 Know when to use the different tools & models
- 4 Learn to generalize
 - "How can we use what we learned today?"
 - "What do we know now that we didn't know before?"

Skills You Need to Take this Class

- Should be a reasonable programmer
 - Very comfortable with Python
 - Two assignments use SQL (no knowledge assumed)
 - Four assignments use Python

More Skills You Need to Take this Class

- Should not be afraid of a bit of math
 - Some background in probability/statistics
 - Common distributions (e.g. Gaussian)
 - Expected value
 - Variance, covariance
 - Norms (e.g. L_1, L_2)
 - Some calculus (partial derivatives & the chain rule should not freak you out!)
 - Linear algebra
 - Vectors and scalars
 - Matrix inversion
 - Matrix transposition
 - Dot products

Course Norms

- If you don't understand something, say something... you're likely not the only one
- No stupid questions
- We may repeat lectures
- We may adapt assignments
- We may go over some basics that, depending on your background, might be review
- If an assignment is taking too long, speak up! Get help! It may need to be changed

What About Overlap with Other Classes?

- COMP 330/543 and DSCI 302 biggest overlap
 - Both may NOT be taken for credit
 - COMP version is recommended for Computer Science majors
- COMP 430/533—significant overlap
- COMP 440/502/540/602
 - Many/all of the methods we'll cover will also be covered in those classes

Why take this class?

- To learn what Data Science is
- To develop familiarity and proficiency with common data science tools

Class Syllabus

- Communication...
- Grading and Evaluation...
- Exams...
- Academic misconduct...
- Assignments...

Logistics

- Class
 - MWF 9:00 9:50 PM
 - Location: TBD
- Office Hours
 - WF 10:00 11:00 AM
 - MWF 3:00 4:00 PM
 - Or by appointment
 - Duncan Hall 2062
 - TA Office Hours TBD
 - Watch Piazza for changes

Communications

- Canvas canvas.rice.edu
 - Assignments
 - Grades
 - Lecture notes
 - Graded discussions
- Piazza tbd
 - Ungraded discussions
- Email
 - DSTM in subject line

Assignments

- Exercises
 - 4 short programming or theory exercises designed to reinforce in-class concepts
- Labs
 - 6 one-hour activities to get initial hands-on experience with a practical concept
- Programming Assignments
 - 6 more in-depth programming assignments

Class Policies – Due Dates

■ Assignment & Exercise Due Dates

- Typically due at 11:55 PM
- Final assignment is due at the end of the course final exam slot
- 1 second 24 hours late = 10% penalty
- 24 hours + 1 second 48 hours late = 20% penalty
- 48 hours + 1 second 72 hours late = 30% penalty
- > 72 hours late: NOT ACCEPTED
- Last assignment may **NOT** be submitted late
- Canvas is the time keeper if Canvas says it's late, it's late
- Exceptions will only be made for EXTENDED Canvas outages
- Submit early!

Slip Days

- 3 per person
- Used in full day increments
- Email me BEFORE the deadline
- Once they are gone, they are gone
- May NOT be used on final assignment

Regrades

- Must be requested within 1 week of assignment/quiz being returned
- Intended for errors in grading or MINOR errors
- Not a week-long extension to the assignment
- Process
 - Talk to Risa before class or during office hours
 - Write up request with complete details
 - Email to Risa with "DSTM regrade" subject

Academic Misconduct

- Rice Honor Code
- On SOME assignments, you may share answers. Assume you may not. If it is permitted, it will be noted on the assignment.
- No code sharing of ANY kind
 - Email
 - Whiteboard
 - Sharing / showing your screen
 - Piazza posts
 - Verbally

- No outside help
 - No StackOverflow posting
 - No Googling solutions
 - No asking someone who took the class last year/semester
- "2 line rule"
- OK (encouraged) to look up syntax

Questions?

■ If there's time: on to data