Байесовский выбор моделей: введение

Александр Адуенко

19е сентября 2023

Содержание предыдущих лекций

- lacktriangle Формула Байеса: $\mathsf{P}(A|B) = rac{\mathsf{P}(B|A)\mathsf{P}(A)}{\mathsf{P}(B)};$
- lacktriangle Формула полной вероятности: $\mathsf{P}(B) = \mathsf{P}(B|A)\mathsf{P}(A) + \mathsf{P}(B|\overline{A})\mathsf{P}(\overline{A})$;
- Определение априорных вероятностей и selection bias;
- Тестирование гипотез
 - Ошибка первого рода и мощность критерия;
 - Критическая область и как ее определить;
- Проблема множественного тестирования гипотез
 - Проблема ложных открытий при независимом одновременном тестировании множества гипотез;
 - FWER и FDR как обобщения вероятности ошибки первого рода;
 - Поправка Бонферрони как консервативное средство контроля FWER;
 - Поправка Бенджамини-Хохберга для контроля FDR для положительно регрессионно зависимых гипотез.

Тестирование гипотез

Статистика – измеримая функция выборки (тоже случайная величина). Пусть требуется проверить утверждение: «чем больше сахара добавлено в продукт, тем больше его душевое потребление».

Пусть даны НОР пары $\mathbf{z}_i=(x_i,\ y_i),\ i=\overline{1,\ n},$ показывающие для ветчины, сколько сахара добавлено, и сколько её продано на одного человека. Гипотеза \mathbf{H}_0 : монотонной зависимости нет.

Требуется: построить статистику $T({\bf Z})$ и на уровне значимости $\alpha=0.05$ проверить гипотезу.

Идеальная положительная монотонная зависимость:

$$x_{i_1} > x_{i_2} \Longrightarrow y_{i_1} > y_{i_2}.$$

Идея: введем $\xi_i=F_x(x_i),\ \eta_i=F_y(y_i),\ \xi_i,\ \eta_i\sim U[0,\ 1].$ Скажем, что монотонной зависимости нет, если $F_{\xi\eta}(a,\ b)=F_{\xi}(a)F_{\eta}(b).$

Тестирование гипотез: продолжение

$$T(\mathbf{Z}) = \frac{2}{n(n-1)} \sum_{i < j} \operatorname{sign}(x_i - x_j) \operatorname{sign}(y_i - y_j).$$

$$ET(\mathbf{Z})|H_0 = 0, \ DT(\mathbf{Z})|H_0 = \frac{2(2n+5)}{9n(n-1)}.$$

Гипотеза Н $_0$: монотонной зависимости нет.

Контроль вероятности ошибки первого рода:

 $\mathsf{P}(H_0 \, \mathsf{отвергнутa}|H_0) \leq \alpha.$

Мощность критерия: $\mathsf{P}(H_0 \text{ отвергнута}|\overline{H_0}) \to \max.$

Критическая область: $|T(\mathbf{Z})| > t_{\alpha}$.

Множественное тестирование гипотез

$$H_0 = \cup_{i \in M} H_0^i, \ M = \{1, \dots, m\}, \ M_0 = \{i : H_0^i - \text{верна}\},$$
 $R = \{i : H_0^i - \text{отвергнута}\}.$

	# верных	# неверных	Всего
$\#$ принятых H_0	U	T	m-R
$\#$ отвергнутых H_0	V	S	R
Всего	m_0	$m-m_0$	m

Меры качества:

Меры качества:
$$\mathrm{FWER} = \mathsf{P}(V \geq 1) \leq \alpha, \ \mathrm{FDR} = \mathsf{E}\left(\frac{V}{R}I(R > 0)\right).$$

Поправки для учета эффекта множественных проверок

Поправка Бонферрони. Заменим достигаемые уровни значимости p_1, \ldots, p_m на поправленные (adjusted) уровни значимости $\tilde{p}_1, \ldots, \tilde{p}_m$, где $\tilde{p}_i = \min(1, mp_i)$.

Теорема. Поправка Бонферрони обеспечивает $\mathrm{FWER} \leq \frac{m_0 \alpha}{m} \leq \alpha.$

Доказательство.
$$\mathrm{FWER} = \mathsf{P}(V \geq 1) = \mathsf{P}\left(\cup_{j=1}^{m_0} \{p_{i_j} \leq \alpha/m\}\right) \leq \sum_{m_0}^{m_0} \mathsf{P}(p_{i_j} \leq \alpha/m) \leq \frac{m_0\alpha}{m} \leq \alpha.$$

Поправка Бенджамини-Хохберга.

Пусть $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}$, тогда при положительной регрессионной зависимости для $p(p_1, \ldots, p_m)$ при $\tilde{p}_{(m)} = \min(1, \, p_{(m)}),$ $\tilde{p}_{(m-i)} = \min(1, \, \frac{m}{m-i} p_{(m-i)}, \, \tilde{p}_{(m-i+1)})$

$$p_{(m-i)} = \min(1, \frac{m}{m-i} p_{(m-i)}, p_{(m-i+1)})$$
 обеспечивается $\mathrm{FDR} \leq \frac{m_0}{m} \alpha$.

Наивный байесовский классификатор

Пусть имеется K классов $C = \{C_1, \ldots, C_K\}$ и $\mathbf{x} \in \mathbb{R}^n$.

Требуется построить классификатор $f(\cdot): \mathbb{R}^n \to C$.

$$p(C_k|\mathbf{x}) = \frac{p(C_k)p(\mathbf{x}|C_k)}{p(\mathbf{x})} \propto p(C_k)p(\mathbf{x}|C_k).$$

$$p(C_k)p(\mathbf{x}|C_k) = p(C_k)p(x_1|C_k)p(x_2|x_1, C_k) \cdot \dots \cdot p(x_n|x_1, \dots, x_{n-1}, C_k).$$

«Наивность»: $p(x_i|x_1, \ldots, x_{i-1}, C_k) = p(x_i|C_k)$.

$$p(C_k|\mathbf{x}) = \frac{p(C_k) \prod_{i=1}^n p(x_i|C_k)}{p(\mathbf{x})}.$$

Классификатор:
$$f(\mathbf{x}) = \arg\max_{k} \left(p(C_k) \prod_{i=1}^{n} p(x_i | C_k) \right)$$
.

Вопросы:

- lacksquare Как определить $p(C_k)$ и $p(x_i|C_k)$?
- Насколько плоха «наивность», и зачем она вводится?
- Почему классификатор такого вида?

Наивный байесовский классификатор: продолжение

Вопрос: как определить $p(C_k)$ и $p(x_i|C_k)$?

- **1** Определяем $p(C_k)$ частотно по выборке, а для $p(x_i|C_k)$ строим параметрическую модель и используем ML-оценки ее параметров по выборке;
- **2** Аналогично п.1, но используем непараметрическое оценивание плотностей;
- 3 Вводим априорное распределение на вектор вероятностей $\left[p(C_1),\,\ldots,\,p(C_K)\right]^\mathsf{T}$, параметрическую модель на $p(x_i|C_k)$ с неизвестыми параметрами, и априорное распределение на параметры моделей.

Вопрос: насколько плоха «наивность», и зачем она вводится? Пример: K=2,

$$p(\mathbf{x}|C_1) = \mathcal{N}\left(\mathbf{0}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right), \ p(\mathbf{x}|C_2) = \mathcal{N}\left(\mathbf{0}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right).$$

Наивный байесовский классификатор: продолжение

Пример. Классификация пользователей по интересующему атрибуту (например, полу, возрасту, достатку, интересу к некоторому товару) по истории ${\bf x}$ переходов между веб-страницами.

Предположение: переходы между страницами для каждого класса C_k описываются марковской цепью с некоторыми вероятностями перехода (разными для разных классов) между состояниями (веб-страницами).

$$p(C_k)p(\mathbf{x}|C_k) = p(C_k)p(x_1|C_k)p(x_2|x_1, C_k) \cdot \dots \cdot p(x_n|x_1, \dots, x_{n-1}, C_k) = p(C_k)p(x_1|C_k)p(x_2|x_1, C_k) \cdot \dots \cdot p(x_n|x_{n-1}, C_k).$$

 $p(C_k)p(x_1|C_k)p(x_2|x_1,\ C_k)\cdot\ldots\cdot p(x_n|x_{n-1},\ C_k).$ Вопрос: как оценить $p(x_1|C_k),\ p(C_k)$ и $p(x_i|x_{i-1},\ C_k)$?

Наивный байесовский классификатор: продолжение

Классификатор:

$$f(\mathbf{x}) = \arg\max_{k} p(C_k|\mathbf{x}) = \arg\max_{k} \left(p(C_k) \prod_{i=1}^{n} p(x_i|C_k) \right).$$

Вопрос. Пусть $p(C_k|\mathbf{x})$ известна точно. Какой классификатор оптимален?

Пусть
$$K=2$$
 и $P=\begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$ есть матрица штрафа.

Пример 1.
$$p_{11} = p_{22} = 0$$
, $p_{12} = 0$, $p_{21} = 1$;

Пример 2.
$$p_{11} = p_{22} = 0$$
, $p_{12} = 1$, $p_{21} = 1$;

Пример 3.
$$p_{11} = p_{22} = 0$$
, $p_{12} = 1$, $p_{21} = 10$;

Пример 4.
$$p_{11} = -1$$
, $p_{22} = -100$, $p_{12} = 1$, $p_{21} = 1$.

Экспоненциальное семейство распределений

Распределение $p(\mathbf{x})$ в экспоненциальном семействе, если плотность вероятности (функция вероятности) представима в виде $p(\mathbf{x}|\mathbf{\Theta}) = \frac{1}{Z(\mathbf{\Theta})} h(\mathbf{x}) \exp(\mathbf{\Theta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})).$

Распределение	Плотность	$\mathbf{u}(\mathbf{x})$	Θ	$Z(\mathbf{\Theta})$
$\mathrm{Be}(p)$	$p^x (1-p)^{1-x}$	x	$\log \frac{p}{1-p}$	$\frac{1}{1-p}$
$Poison(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	x	$\log \lambda$	e^{λ}
$\Gamma(\alpha, \beta)$	$\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$	$[\log x, x]$	$[\alpha, \ -\beta]$	$\frac{\Gamma(\alpha)}{\beta^{\alpha}}$
$B(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$[\log x, \log(1-x)]$	$[\alpha,\ eta]$	$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$
$\mathrm{Dir}(oldsymbol{lpha})$	$\frac{\Gamma(\sum \alpha_i)}{\prod_j \Gamma(\alpha_j)} \prod_i p_i^{\alpha_i - 1}$	$[\log p_i]$	α	$\frac{\prod_{j} \Gamma(\alpha_{j})}{\Gamma(\sum \alpha_{i})}$
	/ 1-4-\(\sigma\) 1 T	_		$(2\pi)^n/2 = \frac{1}{2}m^T \Sigma m$

$$\begin{array}{c|c} \mathbf{N}(\mathbf{m},\,\mathbf{\Sigma}^{-1}) & \frac{\sqrt{\det\mathbf{\Sigma}}}{(2\pi)^{n/2}}e^{-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{\mathsf{T}}\,\mathbf{\Sigma}(\mathbf{x}-\mathbf{m})} & [\mathbf{x},\,\mathbf{x}^{\mathsf{T}}] & [\mathbf{\Sigma}\mathbf{m},\,-\frac{1}{2}\mathbf{\Sigma}] & \frac{(2\pi)^{n/2}e^{-\frac{1}{2}\mathbf{m}}\,\mathbf{Z}}{\sqrt{\det\mathbf{\Sigma}}} \\ \\ \mathbf{\Pi} \mathbf{р} \mathbf{\mu} \mathbf{m} \mathbf{e} \mathbf{p} \colon p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\sigma^2}(x-m)^2 = \underbrace{\frac{1}{\sqrt{2\pi}\sigma e^{\frac{m^2}{2\sigma^2}}}e^{\frac{u_1(x)}{2\sigma^2}}}_{Z(\Theta)} & \underbrace{\frac{u_1(x)}{\sigma^2} + \underbrace{\frac{u_2(x)}{\sigma^2} + \underbrace{\frac{u_2(x)}{2\sigma^2}}_{\frac{2}{2}\sigma^2}}}_{Z(\Theta)} \\ \end{array} ,$$

 $[\mathbf{x}, \mathbf{x}\mathbf{x}]$ $[\mathbf{\Sigma}\mathbf{m}, -\frac{1}{2}\mathbf{\Sigma}]$

Достаточные статистики

Статистика $T(\mathbf{x})$ называется достаточной относительно параметра $\mathbf{\Theta}$, если $p(\mathbf{x}|T(\mathbf{x})=t,\;\mathbf{\Theta})=p(\mathbf{x}|T(\mathbf{x})=t).$

Пример:
$$p(\mathbf{x}|\mathbf{\Theta}) = \frac{1}{Z^n(\mathbf{\Theta})} \exp(\theta_1 \sum_{i=1}^n x_i + \theta_2 \sum_{i=1}^n x_i^2).$$

Теорема Фишера-Неймана о факторизации. $T(\mathbf{x})$ достаточна относительно параметра $\mathbf{\Theta} \Longleftrightarrow p(\mathbf{x}|\mathbf{\Theta}) = h(\mathbf{x})g(\mathbf{\Theta},\ T(\mathbf{x})).$

Экспоненциальное семейство: $p(\mathbf{x}|\mathbf{\Theta}) = \frac{1}{Z(\mathbf{\Theta})} h(\mathbf{x}) \exp(\mathbf{\Theta}^\mathsf{T} \mathbf{u}(\mathbf{x})).$

Свойство:
$$\operatorname{Eu}(\mathbf{x}) = \nabla \log Z(\mathbf{\Theta}), \ \operatorname{Euu}^\mathsf{T} = \nabla \nabla \log Z(\mathbf{\Theta}).$$

Пример (нормальное распределение): $Z(\mathbf{\Theta}) = \sqrt{-\pi/\theta_2}e^{-\frac{\theta_1^2}{4\theta_2}}$

$$\mathsf{E}u_1(x) = \mathsf{E}x = -\frac{\theta_1}{2\theta_2} = m, \; \mathsf{E}x^2 = \frac{\theta_1^2}{4\theta_2^2} - \frac{1}{2\theta_2} = m^2 + \sigma^2;$$

$$\mathsf{E}\mathring{u}_1^2 = \mathsf{D}x^2 = \frac{1}{2\theta^2} - \frac{\theta_1^2}{2\theta^3} = 2\sigma^4 + 4m^2\sigma^2.$$

Пример (гамма-распределение):
$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
.

 $\log Z(\mathbf{\Theta}) = \log \frac{\Gamma(\alpha)}{\beta^{\alpha}} = \log \Gamma(\theta_1) - \theta_1 \log(-\theta_2);$

$$\mathsf{E}\log x = \frac{\Gamma'(\theta_1)}{\Gamma(\theta_1)} - \log(-\theta_2) = \psi(\alpha) - \log\beta; \; \mathsf{E}x = -\frac{\theta_1}{\theta_2} = \frac{\alpha}{\beta}.$$

Литература

- Bishop, Christopher M. "Pattern recognition and machine learning". Springer, New York (2006).
- MacKay, David JC. Bayesian methods for adaptive models. Diss. California Institute of Technology, 1992.
- MacKay, David JC. "The evidence framework applied to classification networks." Neural computation 4.5 (1992): 720-736.
- 4 Gelman, Andrew, et al. Bayesian data analysis, 3rd edition. Chapman and Hall/CRC, 2013.
- 5 Agresti, Alan. Analysis of ordinal categorical data. Vol. 656. John Wiley & Sons, 2010.
- **б** Дрейпер, Норман Р. Прикладной регрессионный анализ. Рипол Классик, 2007.
- **7** Кобзарь, Александр Иванович. Прикладная математическая статистика. Физматлит, 2006.