#### UNIVERSITY OF BUEA

#### REPUBLIC OF CAMEROON

Buea, South West Region

Cameroon

P.O. Box 63,

Tel: (237) 3332 21 34/3332 26



PEACE - WORK - FATHERLAND

#### Task3:

REQUIREMENT ANALYSIS FOR A SMART ATTENDANCE MONITORING SOLUTION USING FACIAL RECONITION AND GEOFENCING

Instructor: Dr Nkemeni Valery

Course: CEF440: Internet Programming and Mobile Programming

#### By Group7

| NAMES                      | MATRICULE |
|----------------------------|-----------|
| FONYUY VERENA MONYUYTA-AH  | FE22A220  |
| KENFACK DONJIO ABEL BRUNEL | FE22A380  |
| NSONDO MIRELLE NYISEKINYI  | FE22A283  |
| TATA THECLAIRE GHALANYUY   | FE22A310  |
| UNJI STEPHEN UKU           | FE22A323  |

2024/2025 ACADERMIC YEAR

### Table of content

| Table of content                                                            | 1 -    |
|-----------------------------------------------------------------------------|--------|
| Introduction                                                                | 3 -    |
| I. Review and analysis of the requirements gathered                         | 3 -    |
| 1. Completeness Analysis                                                    | 4 -    |
| 1.1 Present Functional Requirements                                         | 4 -    |
| 1.2 Missing Functional Requirements                                         | 4 -    |
| 1.3 some resolutions                                                        | 6 -    |
| 2. Clarity Analysis                                                         | 6 -    |
| 2.1 Clear Requirements                                                      | 6 -    |
| 2.2 Ambiguous or Vague Requirements                                         | 7 -    |
| 3. Technical Feasibility Analysis                                           | 7 -    |
| 3.1 Feasibility of Facial Recognition                                       | 8 -    |
| 3.2 Feasibility of Geofencing                                               | 8 -    |
| 3.3 Feasibility of Real-Time Processing                                     | 8 -    |
| 3.4 Security and Privacy Feasibility                                        | 8 -    |
| 4. Dependency Relationships                                                 | 9 -    |
| Risks                                                                       | 9 -    |
| 5. Potential Risks and Mitigation                                           | 10 -   |
| 6. Summary of Analysis                                                      | 10 -   |
| 7. Final Thoughts for this section                                          | 10 -   |
| II. Identification of Inconsistencies, Ambiguities, and Missing Information | 11 -   |
| 1. Identified Inconsistencies                                               | 11 -   |
| 1.1. System Architecture Definition                                         | 11 -   |
| 1.2. Geofencing Parameters                                                  | 12 -   |
| 1.3. Facial Recognition Accuracy                                            | 12 -   |
| 1.4. Handling Multiple Attendance Events within Geofence                    | 12 -   |
| 2. Identified Ambiguities                                                   | 13 -   |
| 2.1. User Consent and Data Privacy                                          | 13 -   |
| 2.2. Relationship Between Authentication Methods                            | 13 -   |
| 2.3. Data Storage and Security                                              | 13 -   |
| 2.4. Offline Functionality Requirements                                     | 14 -   |
| 2.5. User Roles and Permissions                                             | - 14 - |

| 3. Missing Information                            | 14 - |
|---------------------------------------------------|------|
| 3.1. Detailed System Architecture Diagram:        | 14 - |
| 3.2. Integration with Existing School Systems     | 14 - |
| 3.3. Handling of Exceptional Scenarios            | 15 - |
| 4.4 Scalability and Performance Requirements      | 15 - |
| 4.5 Error Handling and Reporting Mechanisms       | 15 - |
| 4.6. Backup and Recovery Plan                     | 15 - |
| III. Prioritization of Requirements               | 16 - |
| MoSCoW Prioritization                             | 17 - |
| IV.Classification of Requirements                 | 19 - |
| Functional vs. Non-Functional Classification      | 20 - |
| V. Software Requirements Specification (SRS)      | 22 - |
| 1. Introduction                                   | 22 - |
| 1.1 Purpose                                       | 22 - |
| 1.2 Scope                                         | 22 - |
| 1.4 Overview                                      | 24 - |
| 2. Overall Description                            | 24 - |
| 2.1 Product Perspective                           | 24 - |
| 2.2 Product Functions                             | 24 - |
| 2.3. Operating Environment                        | 25 - |
| 2.4 Design and Implementation Constraints         | 25 - |
| 2.5 Assumptions and Dependencies                  | 27 - |
| 3. Specific Requirements                          | 27 - |
| 3.1 Functional Requirements                       | 27 - |
| 3.2 Non-Functional Requirements                   | 30 - |
| 3.3 External Interface Requirements               | 33 - |
| VI. Validate Requirements with Stakeholders       | 35 - |
| 1. Aim of Validate Requirements with Stakeholders | 35 - |
| 2. Expected Outcomes:                             | 36 - |
| 3. Validation Activities Conducted                | 36 - |
| 4. Key Validation Results                         | 37 - |
| 5. Final Validation Summary                       | 37 - |
| 5. Adjustments Made Based on Stakeholder Feedback | 38 - |
| Conclusion                                        | 38 - |
|                                                   |      |

### Introduction

Requirement analysis is a critical phase in the software development lifecycle (SDLC). It serves as the foundation for successful system design and implementation by evaluating the expectations, constraints, and dependencies of a project.

Before diving into the analysis, here's a quick recap of the project features:

| Component              | Description                                             |  |
|------------------------|---------------------------------------------------------|--|
| Platform               | Mobile-based (likely Android, iOS )                     |  |
| Core Features          | Facial recognition, geofencing, real-time check-in      |  |
| Users                  | Students, Instructors (and possibly Admins)             |  |
| Supporting Modules     | Attendance history, dashboard, course filtering         |  |
| Objective              | Accurate, quick, and tamper-proof attendance collection |  |
| Technologies Mentioned | Machine learning libraries, GPS, mobile cameras         |  |

# I. Review and analysis of the requirements gathered

This section provides a foundational overview of the project to establish the technical and functional context in which the requirement analysis is based. It defines key components, user roles, objectives, and enabling technologies that frame the system's scope.

In this section, we rigorously analyze the requirements of a mobile-based attendance management system that integrates **facial recognition** and **geofencing**, focusing on:

- Completeness: Are all necessary requirements captured?
- **Clarity**: Are the requirements unambiguous and measurable?
- **Technical Feasibility**: Can the requirements be implemented given current technology?
- ❖ Dependency Relationships: What interdependencies exist among features or components?

### 1. Completeness Analysis

Completeness ensures that all the functional and non-functional expectations of the stakeholders are identified and captured in the requirement document in the previous stage (require, leaving no critical functionality unaddressed.

Completeness refers to whether the requirements fully describe all system functionalities, boundary conditions, user scenarios, and constraints.

#### 1.1 Present Functional Requirements

The current documentation mentions the following explicit requirements:

| Requirement                        | Present? | Notes                    |
|------------------------------------|----------|--------------------------|
| Facial recognition check-in        | yes      | Clearly stated           |
| Geofencing validation              | yes      | Clearly stated           |
| Student check-in process (< 5s)    | yes      | Quantified requirement   |
| Instructor attendance dashboard    | yes      | Included                 |
| Filtering by course/date/student   | yes      | Important for management |
| Student view of attendance history | yes      | Included                 |

### 1.2 Missing Functional Requirements

While core features are covered, several critical system functions and constraints are not mentioned:

#### A. User Authentication

- ❖ No mention of:
  - Student login/logout
  - o Instructor/admin authentication
  - Password reset, account recovery

#### **B.** Role Management

- Undefined user roles: Can instructors register students or courses?
- ❖ Is there a Super Admin for overall system control?

#### C. Course and Schedule Management

- \* How are courses created?
- ❖ Is the check-in tied to a course schedule (date/time)? Or is it open-ended?

#### **D. Session Control**

- \* When is check-in enabled or disabled?
- ❖ Is attendance only possible during class time?

#### E. Error Handling

- **❖** What happens if:
  - o Face not recognized?
  - Student is at location but GPS is inaccurate?
  - o Face matches multiple records?

#### F. Notification System

- **❖** No alerts for:
  - Missed attendance
  - o Successful/failed check-in
  - o Instructor notifications for low attendance

#### **G.** Reporting and Analytics

- ❖ No mention of:
  - Attendance statistics over time
  - o Export features (PDF/CSV)
  - Institutional performance metrics

#### H. Administrative Controls

- Not clear how users or data are managed:
  - o Who creates student accounts?
  - o Can instructors modify records?
  - How are students registered to courses?

#### 1.3 some resolutions

**System Resolutions:** 

- Student management modules will be developed to handle registrations, password recovery, and role-based access.
- ❖ A course management feature will be introduced, allowing instructors to create and manage course schedules tied to attendance sessions.
- Session control logic will restrict check-in strictly to scheduled class times and locations.
- Error handling mechanisms will be incorporated to manage face recognition failures and GPS inaccuracies, including retry options.
- Notification services will send real-time alerts on successful/failed check-ins and missed sessions to students and instructors.
- \* Reporting modules will generate real-time attendance analytics and allow data exports in formats such as CSV and PDF.
- ❖ Administrative tools will enable authorized personnel to create and manage user accounts and system settings securely.
- Student and instructor authentication will be implemented through secure login and multifactor authentication.

### 2. Clarity Analysis

This section measures the preciseness of requirement definitions, ensuring that they are expressed in an unambiguous, testable, and measurable manner to guide the system's development.

Clarity ensures each requirement is **specific**, **unambiguous**, and **measurable**, leaving no room for misinterpretation by developers, testers, or stakeholders.

### 2.1 Clear Requirements

Some requirements are well-defined and measurable:

- "Check-in must take no more than 5 seconds per student" is a clearly measurable performance benchmark.
- \* "Students must be within the geofenced classroom boundary before check-in is permitted" clearly defines an access constraint.

#### 2.2 Ambiguous or Vague Requirements

| Requirement               | Ambiguity                                                                  |  |  |
|---------------------------|----------------------------------------------------------------------------|--|--|
| "Uses geofencing"         | No details on the boundary radius (e.g., 20m? 50m?). What about GPS drift? |  |  |
| "Facial recognition using | Unclear: which algorithm? CNN? Haar Cascades? Will models be pre-trained   |  |  |
| ML"                       | or custom-trained? Will it run on-device or in the cloud?                  |  |  |
| "Supports mobile          | Android only? iOS? be cross-platform (iOS and Android)? Minimum version    |  |  |
| devices"                  | support?                                                                   |  |  |
| "Secure storage of        | Local or cloud storage? Encryption standard (e.g., AES-256)?               |  |  |
| biometric data"           | JI ( G,                                                                    |  |  |
| "Real-time attendance"    | What defines real-time? Instant DB update? < 1 second latency?             |  |  |
| Unclear error             | what if a student is in the geofence but not recognized by the camera?     |  |  |
| boundaries                | what it a student is in the georenee but not recognized by the camera:     |  |  |

#### **SOME RESOLUTIONS**

- Geofence radius: e.g., 30 meters with a  $\pm 5$ m tolerance.
- \* Recognition threshold: 85% similarity score for match.
- **❖** Device support: Android 9+, camera ≥ 8MP, GPS access.
- Security standard: AES encryption, SSL transport.

### 3. Technical Feasibility Analysis

Technical feasibility assesses whether the envisioned system can be realistically built and deployed given available technology frameworks, device capabilities, security standards, and resource constraints.

Technical feasibility analyzes whether the proposed system can realistically be implemented with current technology, performance limits, and integration complexity, within project constraints such as time, cost, and device capabilities.

#### 3.1 Feasibility of Facial Recognition

- Mobile Device Capability: Most modern smartphones support real-time camera input and image processing.
- ❖ Available Frameworks: Libraries such as OpenCV, MediaPipe, TensorFlow Lite, and Google ML Kit provide APIs for facial recognition that can run efficiently on-device.
- Challenges: Varying lighting conditions, face occlusions (e.g., masks, hats), and camera quality can affect accuracy.

#### 3.2 Feasibility of Geofencing

- ❖ Technological Availability: Android and iOS natively support geofencing APIs via Google Location Services and Core Location respectively.
- **\*** Feasibility Issues:
  - o GPS signal is weak indoors or in dense urban environments.
  - o Typical GPS accuracy on mobile devices ranges from 3–10 meters.
  - o Dependence on background location permissions can affect user adoption.

#### 3.3 Feasibility of Real-Time Processing

- Check-in completion within 5 seconds is feasible if:
  - o Facial recognition is done on-device (to avoid network latency).
  - Geofencing is pre-initialized and processed via cached coordinates.
- \* Requires efficient multi-threaded programming and device resource management.

#### 3.4 Security and Privacy Feasibility

- \* Facial biometric data is highly sensitive.
- Storing and processing such data requires compliance with data protection standards (e.g., GDPR, HIPAA).
- ❖ Encrypted storage (AES, SSL/TLS in transit) must be enforced.

# 4. Dependency Relationships

Dependencies define how different system components rely on each other. Understanding these relationships is critical to identifying potential bottlenecks or failure points during system integration.

Interdependencies among components define the critical path for development and testing.

Understanding the interdependence of various system components is crucial for project scheduling, risk mitigation, and system integration.

| Component              | Depends On                                        | Impact                                 |
|------------------------|---------------------------------------------------|----------------------------------------|
| Face Recognition       | Camera, image preprocessing, ML inference         | Failure in any = invalid check-in      |
| Geofencing             | GPS, network, user permissions, OS power settings | May fail silently if disabled          |
| Check-in Timing        | Both Face + Geofence success                      | All must sync within time limit        |
| Dashboard              | Backend data sync, role-based access              | Requires real-time DB                  |
| Notification<br>System | Background tasks, OS support                      | Background restrictions on Android 10+ |
| App Launch             | Auth + Role check                                 | Cannot proceed without valid login     |
| Attendance<br>Logging  | Secure, fast DB write                             | Delay here affects real-time promise   |

#### **Risks**

- **Permission Denial:** Users may decline camera/GPS access, rendering features inoperable.
- **❖ Battery Optimization Policies:** May prevent background services (like geofencing) from functioning properly on certain devices.
- Model Drift: Facial recognition models may lose accuracy over time without periodic retraining.

### 5. Potential Risks and Mitigation

| Risk                       | Impact                  | Mitigation                                        |  |  |
|----------------------------|-------------------------|---------------------------------------------------|--|--|
| Low-light or occluded face | Recognition failure     | Use pre-processing (e.g., histogram equalization) |  |  |
| GPS spoofing or drift      | False check-in          | Validate with Wi-Fi + cell tower + GPS fusion     |  |  |
| Permissions denied         | App unusable            | Prompt clearly with rationale + fallback options  |  |  |
| Device variance            | Inconsistent experience | Set minimum hardware requirements                 |  |  |
| Network dependency         | Offline unavailability  | Allow offline caching with delayed sync           |  |  |
| Privacy violation          | Legal consequences      | Anonymize data, store embeddings not photos       |  |  |

Every system faces inherent risks during its development and deployment. This section identifies these potential risks early on and outlines clear strategies for mitigating their impacts.

#### **6. Summary of Analysis**

| Criteria                 | Evaluation                                                                                                            |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Completeness             | Core features included, but missing critical sub-features (auth, roles, error handling, session logic, notifications) |
| Clarity                  | Several ambiguities exist; needs quantification and technical specificity                                             |
| Technical<br>Feasibility | Achievable with current tools and libraries on modern devices                                                         |
| Dependencies             | Multiple real-time dependencies; must be rigorously tested together                                                   |

A detailed synthesis of how well the system's requirements meet the project's completeness, clarity, feasibility, and interdependency standards, laying the groundwork for the design phase.

# 7. Final Thoughts for this section

Final thoughts summarize the overarching importance of thoroughly addressing all requirement-related gaps and ambiguities to ensure a successful system outcome.

This system concept is timely and technologically grounded. However, to ensure a robust implementation:

- Complete the functional scope (especially user management, access control, error scenarios).
- **Clarify technical parameters** to avoid ambiguities.
- **❖ Pre-plan fallback logic** for GPS/camera failures.
- **Prioritize privacy and performance** from day one.

The requirement analysis for the mobile-based attendance management system identified key functionalities such as authentication, user management, session scheduling, notifications, and reporting as essential for robust implementation. Gaps in geofence definitions, model specifications, and device compatibility were noted, with strategies proposed for clarification. The system is technically feasible with current mobile technologies, assuming careful management of resources, permissions, and background services, especially for integrating facial recognition and geofencing modules.

# II. Identification of Inconsistencies, Ambiguities, and Missing Information

This section aims to identify and analyze potential inconsistencies, ambiguities, and missing information in the proposed mobile-based attendance management system that integrates geofencing and facial recognition technologies. The objective is to ensure a comprehensive understanding of the system requirements and to highlight areas that require clarification or further development.

#### 1. Identified Inconsistencies

#### 1.1. System Architecture Definition

- **\Lambda** Issue: The system architecture (cloud-based, on-premises, or hybrid) is not clearly defined.
- **❖ Implication:** Lack of architectural clarity may lead to improper infrastructure planning, scalability issues, and inconsistent system performance.

❖ **Resolution:** Implement a hybrid architecture with core authentication processing on secure cloud servers while allowing for basic offline functionality on devices. Document the complete architecture with component diagrams.

#### 1.2. Geofencing Parameters

- ❖ Issue: The specific parameters defining the geofence boundaries and accuracy requirements are not clearly outlined.
- ❖ Implication: Without precise geofence definitions, the system may inaccurately determine whether a user is within the designated area, leading to erroneous attendance records.
- ❖ Resolutions: acceptable radius will be defined for the geofence, with configurable parameters based on facility size, and implement a buffer zone system that provides warnings when users are near boundaries. Also environmental factors that may affect GPS accuracy, such as urban canyons or indoor settings are also considered.

#### 1.3. Facial Recognition Accuracy

- ❖ Issue: The system's expected accuracy rate for facial recognition and integration with geofencing is not specified.
- Implication: Lack of defined accuracy metrics can result in unreliable attendance verification, especially in diverse real-world scenarios.
- \* Resolutions: Establish minimum 95% confidence threshold for positive identification with false positive rate below 0.1%, and create a clear workflow where facial recognition is triggered only after successful geofence verification.

# 1.4. Handling Multiple Attendance Events within Geofence

- ❖ Issue: The system needs to capture each and every user attendance during a single day without any delay. Since the whole day is taken into account the time each student takes attendance should also be mentioned.
- \* **Resolutions:** Need to ensure that there is time period allotted to avoid such complications.

# 2. Identified Ambiguities

#### 2.1. User Consent and Data Privacy

- ❖ Issue: The process for obtaining user consent for collecting and processing biometric data is not detailed.
- ❖ Implication: Ambiguity in consent procedures may lead to non-compliance with data protection regulations and potential user distrust.
- ❖ Resolutions: Implement a transparent consent mechanism that informs users about data collection, usage, storage, and their rights. Ensure compliance with relevant data protection laws like GDPR, CCPA, and BIPA.

#### 2.2. Relationship Between Authentication Methods

- ❖ Issue: The relationship between geofencing and facial recognition components is not clearly defined.
- ❖ Implication: Without a clear authentication workflow, the system may implement inconsistent verification procedures, leading to security gaps or unnecessarily complex user experiences.
- ❖ **Resolutions:** Document a sequential verification process where geofencing triggers facial recognition requirement with clear workflow diagrams.

### 2.3. Data Storage and Security

- Issue: The system's approach to storing and securing sensitive biometric data is not clearly defined.
- ❖ Implication: Unclear data storage practices may expose the system to security vulnerabilities and data breaches.
- \* **Resolutions:** secure on-server processing with encrypted transmission of biometric data, and data classification system with appropriate encryption levels for each type will be implemented (e.g., AES-256 for biometric templates).

### 2.4. Offline Functionality Requirements

- **❖ Issue:** Whether the system works offline or requires continuous internet connectivity is ambiguous.
- ❖ Implication: Unclear connectivity requirements may result in system failures in areas with poor network coverage, affecting user experience and reliability.
- ❖ **Resolutions:** a hybrid system with essential functions available offline and background synchronization when connectivity is restored.

#### 2.5. User Roles and Permissions

- ❖ Issue: While the system mentions students, instructors, and administrators, it does not fully define the permissions and access levels for each role. For example, can instructors view the attendance records of other instructors? How are new users added and assigned roles?
- **Resolutions:** Provide a detailed role-based access control matrix specifying which functions and data are accessible to each user role.

### 3. Missing Information

### 3.1. Detailed System Architecture Diagram:

- ❖ Observation: The available documentation lacks a clear system architecture diagram that illustrates the components of the system (mobile app, server, database, APIs), their interactions, and the flow of data.
- \* Resolutions: Develop Create a system architecture diagram to provide a high-level overview of the system's structure and components.

### 3.2. Integration with Existing School Systems

- ❖ **Observation:** It is unclear how the new attendance management system will integrate with existing school systems (e.g., student information systems, grading systems).
- ❖ **Resolutions:** Define the integration requirements with existing school systems. Specify the data exchange formats and APIs to be used.

#### 3.3. Handling of Exceptional Scenarios

- ❖ **Observation:** There is no mention of how the system will handle scenarios such as facial recognition failures, device unavailability, or network issues.
- \* Resolutions: Implement a tiered fallback system with alternative authentication methods and supervisor override, and develop adaptive functionality that gracefully degrades features in poor connectivity.

#### 4.4 Scalability and Performance Requirements

- ❖ Observation: There are no specified scalability requirements. How many users will the system support? What are the performance targets for attendance capture and data retrieval?
- \* **Resolutions:** specific scalability and performance requirements for the system will be designed, including the maximum number of concurrent users, attendance capture time, and data retrieval latency.

#### 4.5 Error Handling and Reporting Mechanisms

- ❖ Observation: The system does not describe how it will handle errors (e.g., GPS signal loss, facial recognition failure, server downtime) or how errors will be reported to users and administrators.
- \* Resolutions: Describe the error handling and reporting mechanisms of the system. Provide examples of error messages and reporting procedures.

# 4.6. Backup and Recovery Plan

- ❖ Observation: The system lacks a backup and recovery plan in case of data loss or system failure.
- \* Resolutions: Document the backup and recovery plan, including backup frequency, storage location, and recovery procedures.

The identification of these inconsistencies, ambiguities, and missing information is crucial for the successful development and implementation of the mobile-based attendance management system.

Addressing these areas will enhance system reliability, user trust, and compliance with legal standards. By implementing the recommended solutions, we can develop a robust attendance management system that effectively utilizes geofencing and facial recognition technologies while maintaining security, compliance, and positive user experience.

# III. Prioritization of Requirements

Prioritizing requirements is fundamental to ensuring the system meets its objectives effectively. This process helps allocate resources efficiently while maintaining the integrity of core functionalities. We focused on the essential aspects of real-time attendance tracking, security, and accuracy, ensuring that the most critical features receive top priority.

To achieve this, we utilized various elicitation techniques, including surveys, interviews, focus groups, prototyping, and reverse engineering, to gather stakeholder input and system expectations. Once the requirements were compiled, we applied the MoSCoW prioritization method, which categorizes requirements into four levels based on importance and feasibility:

- ♦ Must-Have: These features are essential for the system's core functionality. Without them, the project cannot fulfill its objectives.
- ❖ Should-Have: These requirements are highly beneficial but not mandatory for the initial deployment. They improve usability and efficiency but are not strictly necessary. An example is the instructor dashboard, which simplifies attendance tracking but does not affect core system operations.
- ❖ Could-Have: These features enhance user experience but are not crucial for fundamental functionality. For instance, UI theming (dark mode) improves aesthetics but does not affect attendance tracking.
- ❖ Won't-Have: These requirements are either impractical due to current constraints or unnecessary within the current scope. Blockchain-based storage falls into this category because it introduces complexity without immediate benefits.

# **MoSCoW Prioritization**

| Requirement                                                     | MoSCoW    | Priority(Feasibili | Rationale and Support for Project                                                                                                                                  |
|-----------------------------------------------------------------|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requirement                                                     | Priority  | ty)                | Goals                                                                                                                                                              |
| Facial-recognition check-in                                     | Must Have | High               | Core to automatic attendance capture; enables accurate, real-time identity verification. Identified by stakeholders as central to the concept. Requires camera/ML. |
| Geofencing with radius control                                  | Must Have | High               | Ensures students are within the classroom location at check-in, preventing fraudulent remote attendance and supporting accuracy and security.                      |
| Lecturer activates attendance tracking within the goefence area | Must Have | High               | Defines when check-in opens; ensures only authorized sessions allow attendance capture, maintaining control and security of the process.                           |
| Face spoof (liveness) detection                                 | Must Have | Medium             | Protects against impersonation and unauthorized check-ins, directly supporting system security and integrity of attendance data.                                   |
| End-to-end check-in latency <= 5s                               | Must Have | High               | Ensures efficient check-in by limiting processing time for students                                                                                                |

| Secure user authentication and roles       | Must Have   | High   | Requires all users (students/instructors) to log in with credentials. Ensures only authorized users can mark or manage attendance, aligning with security and privacy needs. |
|--------------------------------------------|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data encryption (at rest and transit)      | Must Have   | High   | Encrypting biometric and location data mitigates privacy risk and complies with legal standards, directly supporting security and stakeholder trust.                         |
| GDPR compliance and consent handling       | Must Have   | Medium | Addresses stakeholder privacy concerns by managing user consent and adhering to regulations; essential for ethical handling of sensitive data.                               |
| Attendance<br>dashboard (instructor<br>UI) | Should Have | High   | Provides instructors a real-time view of attendance and alerts. Improves usability and instructor experience, but not strictly necessary in MVP.                             |
| Concurrent check-in performance            | Should Have | Medium | Ensures system remains responsive under load (e.g. many students checking in simultaneously). Supports real-time performance and scalability.                                |
| Filter attendance by course/date/team      | Should Have | High   | Enables instructors to sort and view attendance by course, date, or individual student, enhancing data analysis and reporting capabilities.                                  |

| Manual attendance override         | Should Have | High   | Allows lecturers to flag/unflag attendance records to handle discrepencies                                                                                 |
|------------------------------------|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Offline check-in mode              | Could Have  | Medium | Allows attendance marking without Internet (sync later). Useful for reliability but not mandatory for initial deployment.                                  |
| User interface theming (UI themes) | Could Have  | High   | Improves user experience (e.g. dark mode), but does not affect core attendance function. Considered a lower priority UX enhancement.                       |
| Student view attendance history    | Could Have  | High   | Allows students to see their own past attendance records, supporting transparency and self-monitoring.                                                     |
| Blockchain-based storage           | Won't Have  | Low    | Innovative data storage was evaluated but deemed overkill for MVP. Not prioritized as it would add complexity without essential benefits in current scope. |

This prioritization framework helps **streamline development efforts**, ensuring essential functionalities are addressed first while allowing room for future enhancements. By structuring features based on importance and feasibility, the project remains **efficient and adaptable to technological and institutional needs**.

# IV. Classification of Requirements

To clarify scope and ensure comprehensive coverage, we separated all gathered requirements into functional and non-functional categories. Functional requirements define what the system must do (features and behaviors), while non-functional requirements define system qualities (performance,

security, usability, etc.). This distinction helps structure our development efforts and validates that both feature completeness and quality attributes meet our objectives.

### **Functional vs. Non-Functional Classification**

| Requirement                                                     | Classification | Description                                                                                                                          |
|-----------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Facial-recognition check-in                                     | Functional     | The app uses the front camera and ML model to verify a student's face for attendance in real time.                                   |
| Geofencing (location-based verification)                        | Functional     | The system checks device GPS to confirm the student is within the classroom boundary before allowing check-in.                       |
| Lecturer activates attendance tracking within the goefence area | Functional     | Allows the lecturer to trigger the start of the attendance session by activating the attendance tracking within the virtual boundary |
| Attendance data storage and reporting                           | Functional     | System must log each check-in and allow queries/reports, including database schemas for attendance records.                          |
| Instructor dashboard (attendance overview)                      | Functional     | Displays real-time attendance lists and alerts for instructors based on recorded check-ins.                                          |
| Offline mode for attendance                                     | Functional     | Allows check-in when offline by caching data locally and syncing when online.                                                        |
| Face spoof/liveness detection                                   | Functional     | Analyzes captured face for liveness (e.g. blinking) to prevent use of photographs.                                                   |

| User account management                     | F 1            | Allows students and staff to register,                                               |
|---------------------------------------------|----------------|--------------------------------------------------------------------------------------|
| (login, roles)                              | Functional     | log in, and have different permissions.                                              |
| UI/UX design and ease of use                | Functional     | The interface will be intuitive with minimal clicks for check-in and clear feedback. |
| Manual attendance overide                   | Functional     | Allow lecturers to flag/unflag attendance to correct errors                          |
| Data encryption (biometric & GPS data)      | Non-Functional | All sensitive data at rest or in transit will be encrypted, protecting privacy.      |
| Access control and authentication security  | Non-Functional | Robust authentication and session management to prevent unauthorized access.         |
| Data protection and compliance (GDPR, etc.) | Non-Functional | System design must comply with privacy laws by managing user consent and data usage. |
| Recognition accuracy (≥95%)                 | Non-Functional | The face recognition model should achieve a high accuracy rate to minimize errors.   |
| System response time (low latency)          | Non-Functional | Ensures near real-time check-in processing to meet performance goals.                |
| End-to-end check-in latency <= 5s           | Non-Functional | Limits processing time for attendance check-in to improve system responsiveness      |
| Concurrency/performance (scalability)       | Non-Functional | Supports many simultaneous checkins without delay.                                   |
| Reliability/availability (uptime target)    | Non-Functional | Highly available during class hours with fallback when connectivity is poor.         |
| Platform compatibility (Android)            | Non-Functional | The app should support major mobile platforms for broad accessibility.               |

| Daway/hattawy antimization | Non Experience | Minimizes battery drain from         |
|----------------------------|----------------|--------------------------------------|
| Power/battery optimization | Non-Functional | GPS/camera use for user convenience. |
|                            |                | Clean, modular code structure to     |
| Maintainability/modularity | Non-Functional | facilitate updates and feature       |
|                            |                | expansions.                          |

Defining these categories helps **structure system development efficiently**, allowing developers to focus on **feature completeness and long-term reliability**. This classification ensures that both functional and non-functional aspects of the system are well-integrated, contributing to a **robust and user-friendly attendance management solution**.

# V. Software Requirements Specification (SRS)

### 1. Introduction

# 1.1 Purpose

This Software Requirements Specification (SRS) document provides a comprehensive description of the Mobile-Based Attendance Management System. It details both functional and non-functional requirements, system constraints, and design specifications for an attendance tracking solution that leverages facial recognition and geofencing technologies. This document serves as a definitive reference for stakeholders, developers, and quality assurance teams throughout this development lifecycle.

# 1.2 Scope

The Mobile-Based Attendance Management System aims to revolutionize traditional attendance tracking methods in educational institutions by leveraging cutting-edge technologies. The system will:

- Enable real-time attendance marking through GPS geofencing
- Provide secure verification using facial recognition technology

- Offer cross-platform accessibility through mobile (Android/iOS)
- > Implement role-based access control for students, instructors, and administrators
- Generate comprehensive attendance reports and analytics
- Deliver timely notifications through email and push notifications
- > Integrate seamlessly with existing institutional information systems through RESTful APIs
- Support offline functionality for areas with limited connectivity
- > Ensure data privacy and security compliant with relevant regulations

# 1.3 Definitions, Acronyms, and Abbreviations

| Term/Acronym | Definition                                   |  |  |
|--------------|----------------------------------------------|--|--|
| SRS          | Software Requirements Specification          |  |  |
| GPS          | Global Positioning System                    |  |  |
| FR           | Facial Recognition                           |  |  |
| API          | Application Programming Interface            |  |  |
| CRUD         | Create, Read, Update, Delete                 |  |  |
| UI           | User Interface                               |  |  |
| UX           | User Experience                              |  |  |
| ML           | Machine Learning                             |  |  |
| DBMS         | Database Management System                   |  |  |
| RDS          | Relational Database Service (AWS)            |  |  |
| ОТР          | One-Time Password                            |  |  |
| GDPR         | General Data Protection Regulation           |  |  |
| FERPA        | Family Educational Rights and Privacy Act    |  |  |
| JWT          | JSON Web Token                               |  |  |
| MVC          | Model-View-Controller                        |  |  |
| SLA          | Service Level Agreement                      |  |  |
| CI/CD        | Continuous Integration/Continuous Deployment |  |  |

#### 1.4 Overview

This SRS document is structured to provide a comprehensive understanding of the Mobile-Based Attendance Management System. It begins with an introduction and general description of the system, followed by detailed functional and non-functional requirements. The document includes use case scenarios for each requirement to illustrate system behavior, and appendices containing supplementary information.

The intended audience includes:

- Development team members
- Quality assurance testers
- Project managers
- Educational institution stakeholders
- System administrators

# 2. Overall Description

### 2.1 Product Perspective

The Mobile-Based Attendance Management System is designed as a self-contained solution with integration capabilities for existing educational information systems. It operates within the broader ecosystem of educational technology, complementing student information systems, learning management systems, and administrative tools.

The system architecture follows a client-server model with:

- Client-side applications built using Flutter for cross-platform compatibility
- Server-side components providing RESTful API services
- Cloud-based database and authentication services
- Integration of ML services for facial recognition
- GPS and camera hardware integration for location and biometric verification

#### 2.2 Product Functions

# 2.3. Operating Environment

The Mobile-Based Attendance Management System operates within the following technical environment:

# 2.3.1 Client Applications

- **\*** Mobile Application:
  - Android
  - o iOS
  - o Flutter
  - Access to camera and GPS hardware

### 2.3.2 Server Infrastructure

- \* Backend Services: Cloud-based
- \* Database: Firebase Firestore
- \* Authentication: Firebase Authentication
- Storage: Firebase Storage
- \* ML Services: Firebase ML Kit

# 2.3.3 Network Requirements

- Internet connectivity
- GPS capability on mobile devices
- Firewall configurations allowing necessary ports/protocols

# 2.4 Design and Implementation Constraints

The development and deployment of this Mobile-Based Attendance Management System are subject to the following constraints:

# 2.4.1 Regulatory Constraints

- Must comply with GDPR for data privacy
- Must adhere to FERPA requirements
- Must follow local data protection laws in operating regions
- Special consideration for biometric data storage and processing
- \* Attendance data must be retained according to institutional policies

#### 2.4.2 Technical Constraints

- ❖ Frontend development limited to Flutter and Dart
- \* Facial recognition must work with various lighting conditions
- Database design must support both SQL and NoSQL options
- System must function in environments with intermittent connectivity
- Mobile app must minimize battery consumption during GPS and camera usage
- Facial recognition check-in must complete within a specified amount of time
- ❖ GPS accuracy can vary by device and location

### 2.4.3 Business Constraints

- Development timeline of 2 months
- Budget limitations affecting hosting and third-party service options
- Must provide migration path from existing attendance systems
- System must be maintainable by institution's IT staff

# 2.4.4 Security Constraints

- Biometric templates must be securely encrypted
- Data encryption for all personal information
- Secure authentication with multi-factor options
- \* Regular security audits and penetration testing
- Comprehensive access logging and monitoring

# 2.5 Assumptions and Dependencies

#### 2.5.1 Assumptions

- Students possess GPS-enabled smartphones with cameras (Android or iOS)
- Educational institutions have reliable internet connectivity
- Faculty members can access computers or smartphones during classes
- ❖ IT support is available for system deployment and maintenance
- \* Attendance policies are clearly defined by the institution
- Users consent to biometric data collection

### 2.5.2 Dependencies

- Availability of Firebase or AWS cloud services
- Flutter SDK compatibility with target platforms
- ML libraries for facial recognition processing
- Institution's ability to provide necessary server infrastructure
- ❖ Availability of technical resources for integration with existing systems
- Cooperation from stakeholders for requirements validation and testing

# 3. Specific Requirements

# 3.1 Functional Requirements

#### 3.1.1 Attendance Management

| ID    | Requirement     | Priority | Description                                            |
|-------|-----------------|----------|--------------------------------------------------------|
| FR2.1 | Facial          | High     | Students shall be able to mark attendance using facial |
|       | Recognition     |          | recognition verification.                              |
| FR2.2 | GPS Attendance  | High     | Students shall be able to mark attendance only when    |
|       |                 |          | physically present within the configured geofence of   |
|       |                 |          | the class location.                                    |
| FR2.3 | Manual override | Medium   | The lectures will manually be able to mark student     |
|       |                 |          | present if they are not able to.                       |

| FR2.4 | Attendance   | High   | The system shall verify and confirm attendance          |
|-------|--------------|--------|---------------------------------------------------------|
|       | Verification |        | marking with a success notification to the user.        |
| FR2.5 | Attendance   | High   | The system shall enforce configurable time windows      |
|       | Window       |        | for marking attendance (e.g. 30 minuets to class end ). |
| FR2.6 | Attendance   | Medium | Students shall be able to view their personal           |
|       | History      |        | attendance history with filtering options.              |
| FR2.7 | Attendance   | Low    | Faculty shall be able to manually correct or overrides  |
|       | Correction   |        | attendance records with justification notes.            |

# 3.1.2 Course and Class Management

| ID    | Requirement            | Priority | Description                                                                                                 |
|-------|------------------------|----------|-------------------------------------------------------------------------------------------------------------|
| FR3.1 | Course Creation        | High     | Administrators shall be able to create, update, and courses with relevant details.                          |
| FR3.2 | Class Scheduling       | High     | Administrators shall be able to schedule classes with date, time, duration, and location information.       |
| FR3.3 | Student<br>Enrollment  | High     | Administrators shall be able to enroll students in courses individually or via batch upload.                |
| FR3.4 | Timetable  Management  | Medium   | The system shall provide timetable views for students and faculty based on their enrolled/assigned courses. |
| FR3.5 | Location<br>Management | High     | Administrators shall be able to define and manage location geofences for attendance marking.                |

# 3.1.3 Reporting and Analytics

| ID    | Requirement | Priority | Description                                         |
|-------|-------------|----------|-----------------------------------------------------|
| FR4.1 | Attendance  | High     | Administrators shall be able to generate attendance |
|       | Reports     |          | reports by class, course, or student.               |

| FR4.2 | Export         | Medium | The system shall allow exporting reports in multiple   |
|-------|----------------|--------|--------------------------------------------------------|
|       | Functionality  |        | formats (PDF, CSV, Excel).                             |
| FR4.3 | Attendance     | Medium | The system shall provide statistical analysis of       |
|       | Statistics     |        | attendance patterns with visual representations.       |
| FR4.4 | Absence        | Medium | The system shall identify and highlight students with  |
|       | Tracking       |        | attendance below configurable thresholds.              |
| FR4.5 | Custom Reports | Low    | Administrators shall be able to create and save custom |
|       |                |        | report templates with selected parameters.             |

# **3.1.4 Notification System**

| ID    | Requirement    | Priority | Description                                           |
|-------|----------------|----------|-------------------------------------------------------|
| FR5.1 | Attendance     | High     | The system shall send push notifications confirming   |
|       | Confirmation   |          | successful attendance marking.                        |
| FR5.2 | Absence Alerts | Medium   | The system shall notify students about missed classes |
|       |                |          | at configurable intervals.                            |
| FR5.3 | Attendance     | Medium   | The system shall send reminders before scheduled      |
|       | Reminders      |          | classes based on user preferences.                    |
| FR5.4 | System         | Low      | Administrators shall be able to send system-wide      |
|       | Announcements  |          | announcements to all users or specific groups.        |
| FR5.5 | Notification   | Medium   | Users shall be able to configure their notification   |
|       | Preferences    |          | preferences by type.                                  |

# 3.1.6 System Administration

| ID    | Requirement     | Priority | Description                                                                           |
|-------|-----------------|----------|---------------------------------------------------------------------------------------|
| FR6.1 | User Management | High     | Administrators shall be able to create, update, deactivate, and delete user accounts. |
|       |                 |          | deterrate, and defete ager decounts.                                                  |

| FR6.2 | Role Management               | High   | Administrators shall be able to define and assign roles with specific permissions.         |
|-------|-------------------------------|--------|--------------------------------------------------------------------------------------------|
| FR6.3 | System Configuration          | Medium | Administrators shall be able to configure system parameters and thresholds.                |
| FR6.4 | Audit Logging                 | Medium | The system shall maintain audit logs of critical actions for security and troubleshooting. |
| FR6.5 | Data Backup                   | High   | The system shall support scheduled backups of all critical data.                           |
| FR6.6 | Biometric Template Management | High   | Administrators shall be able to manage and reset biometric templates when necessary.       |

# 3.1.7 Integration Capabilities

| ID    | Requirement  | Priority | Description                                                 |
|-------|--------------|----------|-------------------------------------------------------------|
| FR7.1 | API Access   | Medium   | The system shall provide RESTful API endpoints for          |
|       |              |          | integration with external systems.                          |
| FR7.2 | Data Import  | Medium   | The system shall support importing user and course data     |
|       |              |          | from CSV or Excel files.                                    |
| FR7.3 | Single Sign- | Low      | The system shall support integration with institutional SSO |
|       | On           |          | solutions.                                                  |

# **3.2 Non-Functional Requirements**

# **3.2.1 Performance Requirements**

| ID     | Requirement      | Description                           | Metric            |
|--------|------------------|---------------------------------------|-------------------|
| NFR1.1 | Concurrent Users | The system shall support at least 500 | Response time < 3 |
|        |                  | concurrent users without performance  | seconds           |
|        |                  | degradation.                          |                   |
| NFR1.2 | Response Time    | The system shall provide attendance   | 95% of requests   |
|        |                  | confirmation within 3 seconds under   |                   |
|        |                  | normal network conditions.            |                   |

| NFR1.3 | Database    | The system shall handle at least 100   | Latency < 500ms      |
|--------|-------------|----------------------------------------|----------------------|
|        | Performance | database transactions per second.      |                      |
| NFR1.4 | Mobile      | The mobile application shall launch    | 90% of launches      |
|        | Application | within 5 seconds on supported devices. |                      |
|        | Launch      |                                        |                      |
| NFR1.5 | Report      | The system shall generate standard     | For reports covering |
|        | Generation  | reports within 10 seconds.             | up to 1000 records   |
| NFR1.6 | Facial      | The facial recognition process shall   | 90% of verification  |
|        | Recognition | complete within 5 seconds.             | attempts             |
|        | Speed       |                                        |                      |

# **3.2.2 Security Requirements**

| ID     | Requirement       | Description                                                               | Verification    |
|--------|-------------------|---------------------------------------------------------------------------|-----------------|
| NFR2.1 | Data Encryption   | All sensitive data shall be encrypted both in transit and at rest.        | Security audit  |
| NFR2.2 | Authentication    | The system shall enforce password complexity                              | Penetration     |
|        | Security          | rules and account lockout after failed attempts.                          | testing         |
| NFR2.3 | Session           | User sessions shall expire after 30 minutes of                            | User acceptance |
|        | Management        | inactivity.                                                               | testing         |
| NFR2.4 | Authorization     | The system shall implement role-based access control for all resources.   | Security audit  |
| NFR2.5 | Security Auditing | The system shall log all authentication attempts and critical operations. | Log review      |
| NFR2.6 | Biometric         | Biometric templates shall be stored using                                 | Security audit  |
|        | Security          | industry-standard encryption (AES-256).                                   |                 |

# 3.2.3 Reliability Requirements

| ID | Requirement | Description | Metric |
|----|-------------|-------------|--------|
|----|-------------|-------------|--------|

| NFR3.1 | Availability | The system shall maintain 99.9% uptime during     | Monthly          |
|--------|--------------|---------------------------------------------------|------------------|
|        |              | academic hours.                                   | uptime report    |
| NFR3.2 | Data Backup  | The system shall perform daily backups with       | Backup           |
|        |              | retention for 30 days.                            | verification     |
| NFR3.3 | Failure      | The system shall recover from failures within few | Disaster         |
|        | Recovery     | hours say 4                                       | recovery testing |
| NFR3.4 | Offline      | The mobile application shall support offline      | User             |
|        | Operation    | attendance marking with synchronization when      | acceptance       |
|        |              | connectivity is restored.                         | testing          |
| NFR3.5 | Fault        | The system shall handle input errors gracefully   | Error handling   |
|        | Tolerance    | with appropriate user feedback.                   | review           |

# **3.2.4** Usability Requirements

| ID     | Requirement    | Description                                                                 | Verification          |
|--------|----------------|-----------------------------------------------------------------------------|-----------------------|
| NFR4.1 | User Interface | The user interface shall follow Material Design guidelines for consistency. | UI review             |
| NFR4.2 | Accessibility  | The system shall comply with WCAG 2.1 Level AA standards.                   | Accessibility testing |
| NFR4.3 | Learnability   | New users shall be able to use core functions without training.             | Usability testing     |
| NFR4.4 | Documentation  | The system shall provide context-sensitive help and documentation.          | Documentation review  |

# 3.2.5 Maintainability Requirements

| ID     | Requirement  | Description                                                     | Verification |
|--------|--------------|-----------------------------------------------------------------|--------------|
| NFR5.1 | Code Quality | The codebase shall follow industry-standard coding conventions. | Code review  |
|        |              | county conventions.                                             |              |

| NFR5.2 | Documentation   | All code shall be documented with inline    | Documentation   |
|--------|-----------------|---------------------------------------------|-----------------|
|        |                 | comments and API documentation.             | review          |
| NFR5.3 | Modularity      | The system shall be designed with modular   | Architecture    |
|        |                 | components for easier maintenance.          | review          |
| NFR5.4 | Configurability | System parameters shall be configurable     | Configuration   |
|        |                 | without code changes.                       | testing         |
| NFR5.5 | Versioning      | The system shall maintain proper versioning | Version control |
|        |                 | for all components.                         | audit           |

# 3.2.6 Scalability Requirements

| ID     | Requirement      | Description                                  | Metric            |
|--------|------------------|----------------------------------------------|-------------------|
| NFR6.1 | Horizontal       | The system shall support horizontal scaling  | Performance       |
|        | Scaling          | for increased load.                          | testing           |
| NFR6.2 | Multi-Campus     | The system shall support multiple campuses   | Multi-tenancy     |
|        | Support          | with distinct configurations.                | testing           |
| NFR6.3 | Database Scaling | The database shall scale to support at least | Database          |
|        |                  | 500 students.                                | performance test  |
| NFR6.4 | Growth Support   | The system shall accommodate 20% annual      | Capacity planning |
|        |                  | growth without architectural changes.        |                   |
| NFR6.5 | API Scalability  | API endpoints shall handle at least 100      | Load testing      |
|        |                  | requests per second.                         |                   |

# **3.3 External Interface Requirements**

### 3.3.1 User Interfaces

| ID    | Requirement        | Description                                       | Priority |
|-------|--------------------|---------------------------------------------------|----------|
| UI1.1 | Mobile Application | Native-feeling mobile application with responsive | High     |
|       |                    | design for various screen sizes.                  |          |

| UI1.2 | Administrator  | Comprehensive dashboard for system administration                   | Medium |
|-------|----------------|---------------------------------------------------------------------|--------|
|       | Dashboard      | and analytics.                                                      |        |
| UI1.3 | Faculty Portal | Specialized interface for faculty to manage classes and attendance. | High   |
| UI1.4 | Accessibility  | All interfaces shall be accessible to users with disabilities.      | Medium |

# 3.3.2 Hardware Interfaces

| ID    | Requirement     | Description                                               |      |  |
|-------|-----------------|-----------------------------------------------------------|------|--|
| HI1.1 | Camera          | Integration with device camera for facial recognition and |      |  |
|       | Integration     | QR code scanning.                                         |      |  |
| HI1.2 | GPS Integration | Integration with device GPS sensors for location          | High |  |
|       |                 | verification.                                             |      |  |
| HI1.3 | Biometric       | Integration with facial recognition.                      |      |  |
|       | Sensors         |                                                           |      |  |

# 3.3.3 Software Interfaces

| ID    | Requirement       | Description                                                    | Priority |
|-------|-------------------|----------------------------------------------------------------|----------|
| SI1.1 | ML API            | Integration with machine learning APIs for facial recognition. | High     |
| SI1.2 | SIS Integration   | Integration with Student Information Systems through API.      | Medium   |
| SI1.3 | Email Services    | Integration with SMTP services for email notifications.        | High     |
| SI1.4 | Push Notification | Integration with FCM (Firebase Cloud Messaging)                | High     |
| SI1.5 | Calendar Systems  | Integration with institutional calendars.                      | Low      |

| <b>SI1.6</b> | Authentication | Integration with OAuth | Medium |
|--------------|----------------|------------------------|--------|
|              | Services       |                        |        |

# VI. Validate Requirements with Stakeholders

Following the completion of the requirements gathering phase for the Mobile-Based Attendance Management System Based on Geofencing and Facial Recognition, a structured stakeholder validation exercise was conducted to ensure that the identified requirements accurately reflect user needs, are technically and ethically feasible, and align with the project's objectives.

# 1. Aim of Validate Requirements with Stakeholders

Validation Requirements with Stakeholders session in the Requirement Analysis aims to ensure that all gathered and documented requirements are:

- ❖ Accurate: They truly reflect what the stakeholders (clients, users, business owners) need.
- **Complete**: No critical requirements are missing.
- Understandable: The requirements are clear to all stakeholders, with no ambiguities or confusion.
- **Feasible:** Stakeholders confirm that the requirements are achievable within the available resources, budget, and timeline.
- ❖ **Agreed Upon:** There is mutual consensus and formal approval (sign-off), confirming the development team can proceed.

This section helps to **prevent costly misunderstandings** later in the project by aligning the expectations of stakeholders with what will actually be built.

Before we proceed, let us have a reminder on what were the **expected outcome** and what are our **requirements** in the Implementation of a **Mobile-Based Attendance Management System Based on Geofencing and Facial Recognition**:

# 2. Expected Outcomes:

A fully functional mobile application that:

- ❖ Supports real-time attendance check-in using facial recognition.
- Uses geofencing to validate that student are within a specified classroom location before check-in is permitted.
- Ensures that the entire check-in process takes no more than 5 seconds per student.
- ❖ Integrates a face capture and recognition module using machine learning libraries
- Provides secure storage and comparison of facial biometric data.
- ❖ Integrates GPS services to define virtual classroom boundaries.
- \* Restricts check-in functionality to students within this boundary.
- ❖ Allows instructors to view real-time attendance data.
- Offers functionalities such as filtering by course, date, or student.
- Enables students to view their attendance history and participation status for each registered course.

#### 3. Validation Activities Conducted

To achieve this, the following methods were used:

- Stakeholder meetings with lecturers and students to present the documented functional and non-functional requirements.
- Walkthroughs of use cases and interface mockups to make the requirements understandable to non-technical participants.
- Feedback forms and discussions to collect acceptance, rejections, and suggestions for improvement.
- \* Consensus sessions to prioritize features and finalize requirement lists.

# 4. Key Validation Results

| Stakeholders' Expectations                    | Validated<br>Requirements        | Stakeholder Concerns/Feedback                                                                                 |
|-----------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------|
| Real-time facial recognition for attendance   | Facial-recognition check-in      | Students raised <b>privacy concerns</b> about biometric data usage. A consent-based approach was recommended. |
| Geofencing to confirm physical presence       | Geofencing location verification | Students questioned GPS accuracy in some campus areas. Lecturers requested a manual override option.          |
| Fast attendance check-in (<5s)                | Low-latency processing           | Fully supported by all stakeholders. Seen as critical for practical use.                                      |
| Use of machine learning for face recognition  | ML facial recognition module     | Admins requested bias mitigation strategies and model transparency.                                           |
| Secure biometric data storage                 | Data encryption, GDPR compliance | Strong support, with emphasis on data retention policies and student data rights.                             |
| Instructor access to real-<br>time attendance | Instructor dashboard             | Fully endorsed by lecturers for improving class management.                                                   |
| Filtering and reporting features              | Filtering by course/date/student | Approved; suggestions made to include data export (CSV/PDF) options.                                          |
| Student access to attendance records          | Student dashboard                | Supported by students; requests made to include absence notifications.                                        |

# 5. Final Validation Summary

**❖ Accuracy**: Requirements accurately capture the expectations and real-world needs of end users.

- Completeness: All core functionalities and constraints are well-represented in the documented requirements.
- Clarity: Use of mockups and walkthroughs helped clarify all system features for stakeholders.
- **❖ Feasibility**: Some technical concerns (e.g., GPS accuracy, facial recognition bias) were noted and mitigation strategies proposed.
- ❖ **Agreement**: All primary stakeholder groups formally approved the validated requirements with minor adjustments integrated.

### 5. Adjustments Made Based on Stakeholder Feedback

- ❖ Implementing a **user consent flow** for biometric data usage.
- ❖ Adding a **manual override function** for attendance in exceptional cases.
- Incorporating bias monitoring and fairness auditing in the face recognition system.
- Allowing data export and student notifications for improved usability.

The validation process successfully confirmed that the requirements for the attendance system are both stakeholder-approved and technically viable. Incorporating feedback from this phase ensures that the system will not only meet user needs but also gain trust and adoption across all intended user groups.

# **Conclusion**

The requirement analysis phase serves as the backbone of our mobile-based attendance management system project. Through this task, we have systematically examined both functional and non-functional requirements to ensure they align with user expectations and project objectives. By clearly defining system capabilities, user roles, and constraints, this analysis provides a well-informed foundation for design, development, and testing. It also helps to preempt implementation issues and ensures that all stakeholders have a shared understanding of the system's goals and scope

#### VII. References

- Trackobit. "Key Features & Benefits of a Geofencing Attendance System." <a href="https://trackobit.com/blog/geofencing-attendance-system-work-and-benefits">https://trackobit.com/blog/geofencing-attendance-system-work-and-benefits</a>
- ResearchGate. "Survey of Evaluation Metrics in Facial Recognition Systems."
  <a href="https://www.researchgate.net/publication/372232460\_Survey\_of\_Evaluation\_Metrics\_in\_Facial\_Recognition\_Systems">https://www.researchgate.net/publication/372232460\_Survey\_of\_Evaluation\_Metrics\_in\_Facial\_Recognition\_Systems</a>
- ➤ Outside GC. "Biometric Privacy Laws." <a href="https://www.outsidegc.com/blog/biometric-data-protection-a-growing-trend-in-state-privacy-legislation">https://www.outsidegc.com/blog/biometric-data-protection-a-growing-trend-in-state-privacy-legislation</a>
- ➤ Information Commissioner's Office (ICO). "How do we keep biometric data secure?"

  <a href="https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/lawful-basis/biometric-data-guidance-biometric-recognition/how-do-we-keep-biometric-data-secure/">https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/lawful-basis/biometric-data-guidance-biometric-recognition/how-do-we-keep-biometric-data-secure/</a>
- ➤ ZohoPeople."AttendanceManagementSystem." <a href="https://www.zoho.com/people/attendance-management-system.html">https://www.zoho.com/people/attendance-management-system.html</a>
- Clockgogo. "How Time Attendance Systems can Aid Management during Unexpected Events."<a href="https://clockgogo.com/2023/09/13/how-time-attendance-systems-can-aid-management-during-unexpected-events">https://clockgogo.com/2023/09/13/how-time-attendance-systems-can-aid-management-during-unexpected-events</a>
- NIST."FaceRecognitionVendorTest
  (FRVT)."<a href="https://www.nist.gov/programs">https://www.nist.gov/programs</a>projects/face-recognition-vendor-test-frvt
- ➤ ISO. "ISO/IEC 24745:2022 Information security, cybersecurity and privacy protection Biometric information protection." <a href="https://www.iso.org/standard/75302.html">https://www.iso.org/standard/75302.html</a>
- ➤ IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications <a href="https://standards.ieee.org/standard/830-1998.html">https://standards.ieee.org/standard/830-1998.html</a> (Also available at: <a href="https://ieeexplore.ieee.org/document/720574">https://ieeexplore.ieee.org/document/720574</a>)
- ➤ Android SDK Documentation https://developer.android.com/docs
- Firebase ML Kit Documentation https://firebase.google.com/docs/ml-kit
- OpenCV Documentation <a href="https://docs.opencv.org/">https://docs.opencv.org/</a>
- ➢ GDPR (EU) 2016/679, General Data Protection Regulation <a href="https://gdpr.eu/tag/gdpr/">https://gdpr.eu/tag/gdpr/</a> (Official text: <a href="https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679">https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679</a>)

- ➤ FERPA (20 U.S.C. 1232g; 34 CFR Part 99), Family Educational Rights and Privacy Act <a href="https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html">https://www2.ed.gov/policy/gen/guid/fpco/ferpa/index.html</a> (Full text: <a href="https://www.ecfr.gov/current/title-34/subtitle-A/part-99">https://www.ecfr.gov/current/title-34/subtitle-A/part-99</a>)
- ➤ Flutter & Dart Official Documentation
  - Flutter: https://flutter.dev/docs
  - Dart: <a href="https://dart.dev/guides">https://dart.dev/guides</a>
- ➤ Firebase Documentation https://firebase.google.com/docs
- ➤ AWS Documentation <a href="https://docs.aws.amazon.com">https://docs.aws.amazon.com</a>
- ➤ ISO/IEC 25010:2011, Systems and software Quality Requirements and Evaluation (SQuaRE) <a href="https://www.iso.org/standard/35733.html">https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en</a>)
- ➤ Material Design Guidelines <a href="https://m3.material.io">https://m3.material.io</a>