计算方法

 Cls^1

期末复习资料

目录

第一章	引论	1	5.6	不选主元的 Doolittle 分解(重	
1.1	误差来源、分类	1		点考察)	18
1.2	误差、有效数字	1	5.7	列主元的 Doolittle 分解(了解)	18
<i>**</i>	IT MANA		5.8	平方根法(系数矩阵为正定对称	
第二章	插值法	4		矩阵)	19
2.1	预备知识	4	66 \ 1 7	ATTICLE A TOTAL LEVEL IN ATTAL	
2.2	插值基函数与 Lagrange 插值			解线性方程组的迭代解法	20
2.3	牛顿插值	6	6.1	定义	
2.4	分段插值	8	6.2	距离函数应满足的性质	
2.5	厄米特插值	8	6.3	P 范数	
第三章	最小二乘法	9	6.4	向量间的距离	20
第二章 3.1	定义		6.5	矩阵范数	
3.1	计算		6.6	算子范数	21
			6.7	线性方程组的送代解法	21
3.3	常用正交多项式		笠 レ辛	之 和共相	25
3.4	矛盾方程组求解	11	第七章	方程求根	25
			₽ 1	Ille Ale	25
第四章	数值积分	12	7.1	收敛	
第四章 4.1			7.2	二分法求根	25
	基本思路	12	7.2 7.3	二分法求根	25 25
4.1 4.2	基本思路	12 12	7.2 7.3 7.4	二分法求根	25 25 25
4.1 4.2 4.3	基本思路	12 12 12	7.2 7.3 7.4 7.5	二分法求根	25 25 25 26
4.1 4.2 4.3 4.4	基本思路	12 12 12 13	7.2 7.3 7.4 7.5 7.6	二分法求根 不动点迭代 Newton 迭代法 牛顿下山法 弦截法迭代	25 25 25 26 26
4.1 4.2 4.3 4.4 4.5	基本思路	12 12 12 13 14	7.2 7.3 7.4 7.5	二分法求根	25 25 25 26 26
4.1 4.2 4.3 4.4	基本思路	12 12 12 13 14	7.2 7.3 7.4 7.5 7.6 7.7	二分法求根	25 25 25 26 26 26
4.1 4.2 4.3 4.4 4.5 4.6	基本思路	12 12 12 13 14	7.2 7.3 7.4 7.5 7.6 7.7	二分法求根	25 25 26 26 26 27
4.1 4.2 4.3 4.4 4.5 4.6	基本思路	12 12 12 13 14 15	7.2 7.3 7.4 7.5 7.6 7.7 附录 A A.1	二分法求根	25 25 26 26 26 27
4.1 4.2 4.3 4.4 4.5 4.6	基本思路	12 12 13 14 15 16	7.2 7.3 7.4 7.5 7.6 7.7 附录 A A.1	二分法求根	25 25 26 26 26 27
4.1 4.2 4.3 4.4 4.5 4.6 第五章 5.1	基本思路	12 12 13 14 15 16 16	7.2 7.3 7.4 7.5 7.6 7.7 附录 A A.1	二分法求根	25 25 26 26 26 27
4.1 4.2 4.3 4.4 4.5 4.6 第五章 5.1 5.2	基本思路	12 12 13 14 15 16 16 16	7.2 7.3 7.4 7.5 7.6 7.7 附录 A A.1 A.2	二分法求根	25 25 26 26 26 27 27 27

附录 C	最小二乘法	33	附录 F	解线性方程组得迭代解法	41
	数值积分	35		填空题	
	填空题				45
附录 E	解线性代数的直接方法	39	G.1	填空题	45
E.1	计算题	39	G.2	计算题	45

第一章 引论

1.1 误差来源、分类

- 1. 模型误差:建立数学模型,这就要对实际问题进行抽象、简化,抓住主要特征、舍去次要特征,产生这种误差叫做模型误差;
- 2. 观测误差:由于测量工具的精度、观测方法或客观条件的限制,使数据含有测量误差,这类误差叫做观测误差或数据误差;
- 3. 截断误差 (方法误差): 精确公式用近似公式代替时, 所产生的误差叫截断误差;
- 4. 舍入误差:由于计算机存储字长有限,用有限位数字代替精确数,这种误差叫做舍入误差。

1.2 误差、有效数字

1.2.1 绝对误差、绝对误差限

绝对误差定义: $e^* = x^* - x$,其中 x^* 为准确值 x 的近似值。

绝对误差限: $\varepsilon^* = |e^*|$ 的一个上界。

注: 绝对误差还不能完全表示近似值的好坏。

1.2.2 相对误差、相对误差限

定义: $e_r^* = \frac{e^*}{r}$

例如: $x=10\pm 1, y=1000\pm 5, \frac{\varepsilon_x^*}{|x|}=10\%, \frac{\varepsilon_y^*}{|y|}=0.5\%$

实际计算时,相对误差通常取 $e_r^* = \frac{e^*}{x^*} = \frac{x^*-x}{x^*}$

注: 绝对误差、绝对误差限有量纲; 相对误差、相对误差限无量纲。

1.2.3 有效数字

若近似值 x^* 的误差限是某一位数字的半个单位,该位到 x^* 的第一位数字共有 n 位,就说 x^* 有 n 位有效数字,可表示为

$$x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a_n \times 10^{-(n-1)})$$

其中 $a_i(i=1,2,\ldots,n)$ 是 0 到 9 中的一个数字, $a_1\neq 0$,m 为整数,且 $|x-x^*|\leq \frac{1}{2}\times 10^{m-n+1}$

第一章 引论 2

例如,取 $x^* = 3.14$ 做 π 的近似值, x^* 就看 3 位有效数字,取 $x^* = 3.1416$, x^* 就有 5 位有效数字。

对于"四舍五入"的绝对误差限的说明

- 1. 通过四舍五入得到的数都是有效数;
- 2. 有效数字位数与小数点的位置无关;
- 3. 一般来说,有效位数越多,其误差值越小,但也有例外(如设 x = 1000,它的两个近似值 999.9 和 1000.1,误差相同为 0.1,分别有 3,4 位有效数字)。

设近似数表示为 $x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a_n \times 10^{-(l-1)})$,其中 $a_i (i = 1, 2, \dots, l)$ 是 0 到 9 中的一个数字, $a_1 \neq 0$,m 为正整数,若 x^* 具有 n 位有效数字,则其相对误差限 $\varepsilon_r^* \leq \frac{1}{2a_l} \times 10^{-(n+1)}$

反之,若 x^* 的相对误差限 $\varepsilon_r^* \leq \frac{1}{2a_1+1} \times 10^{-(n+1)}$,则 x^* 至少具有 n 位有效数字。

1.2.4 数值计算的误差估计

记忆时可根据函数的导数法则,本质是误差的一阶泰勒展开。

$$\varepsilon(x_1^* \pm x_2^*) \approx \varepsilon(x_1^*) \pm \varepsilon(x_2^*)$$

$$\varepsilon(x_1^* x_2^*) \approx x_1^* \varepsilon(x_2^*) + x_2^* \varepsilon(x_1^*)$$

$$\varepsilon\left(\frac{x_1^*}{x_2^*}\right) \approx \frac{x_2^* \varepsilon(x_1^*) - x_1^* \varepsilon(x_2^*)}{x_2^{*2}}$$

$$\varepsilon(y^*) \approx \frac{\partial f(x_1^*, x_2^*)}{\partial x_1^*} \varepsilon(x_1^*) + \frac{\partial f(x_1^*, x_2^*)}{\partial x_2^*} \varepsilon(x_2^*)$$

1.2.5 避免误差危害

一个算法如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是数值稳定的,否则称此算法为不稳定的。

数值计算中为防止有效数字损失,通常要避免两相近数相减和用绝对值很小的数做除数,还要注意运算次序和减少运算次数。例如:(常考题,都用右端算式代替左端。)

- 1. 求 $x^2 16x + 1 = 0$ 的小正根: $x_2 = 8 \sqrt{63} \approx 8 7.94 = 0.06 = x_2^*$ 只有一位有效数字,若改用 $x_2 = 8 \sqrt{63} = \frac{1}{8 + \sqrt{63}} \approx \frac{1}{15.94} \approx 0.0627$ 具有三位有效数字。这样便可以通过改变计算公式可以避免或者减少有效数字的损失。
- 2. 类似地,如果 x_1 和 x_2 接近时,则用 $\lg x_1 \lg x_2 = \lg \frac{x_1}{x_2}$,可以避免有效数字的损失。
- 3. 当 x 很大时, $\sqrt{x+1} \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$ 。

第一章 引论

1.2.6 多项式求值的秦九韶算法

一个计算问题如果能减少运算次数,不但可节省计算量还可减少舍入误差,这是算法设计中一个重要原则。以求多项式为例,设给定 n 次多项式

$$p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n, a_0 \neq 0$$

求 x^* 处的值 $p(x^*)$ 。它可表示为

$$\begin{cases} b_0 = a_0 \\ b_i = b_{i-1}x + a_i, i = 1, 2, \dots, n \end{cases}$$

则 $b_n = p(x^*)$ 即为所求。此算法被称为秦九韶算法。

2.1 预备知识

2.1.1 函数逼近

函数 y = f(x) 不知其表达式,其值只能通过实验或观测的到,考虑用一个较为简单的函数 P(x) 近似地表示 f(x),其中 f(x) 为被逼近函数 P(x) 为逼近函数。

逼近的方法:插值与拟合。

2.1.2 插值问题

假设 f 在 [a,b] 上连续 $\{x_i\}$ \subset [a,b] 且互不相同。若存在简单函数 P(x) 使得 $P(x_i) = y_i$ (i=0,1,2...),则称 P(x) 为 f(x) 的插值函数。其中 $P(x_i) = y_i$ 被称为插值条件。 插值函数 P(x) 有各种类型,如多项式,三角函数……

2.1.3 插值多项式的存在为唯一性

$$P(x) = a_0 + a_1 \times x + \dots + a_n x^n \Rightarrow a_0 + a_1 \times x_i + \dots + a_n x_i^n = y_i (i = 0, 1 \dots)$$

其系数行列式刚好为范德蒙德行列式:

$$U = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix} = \prod_{\substack{i,j=0\\i>j}}^n (x_i - x_j) \neq 0$$

即 (a_0, a_1, \ldots, a_n) 存在且唯一的 (n+1) 个插值节点可构造 n 次插值多项式。

2.2 插值基函数与 Lagrange 插值

2.2.1 计算

n=1 时,设 $y_i=f(x_i)(i=0,1)$,作直线方程 $y=L_1(x)$,两点式插值:

$$L_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

n=2 时,设 $y_i=f(x_i)(i=0,1,2)$,作直线方程 $y=L_2(x)$,三点式插值:

$$L_2 = (x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}y_2$$

2.2.2 推广

$$n=1$$
 时,记 $l_0(x)=\frac{x-x_1}{x_0-x_1}, l_1(x)=\frac{x-x_0}{x_1-x_0}$,则

$$L_1(x) = l_0(x)y_0 + l_1(x)y_1$$

$$n=2$$
 时,记 $l_0(x)=rac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}, l_1(x)=rac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}, l_2(x)=rac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$,则

$$L_2(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2$$

一般地, 令:
$$l_k = \prod_{\substack{j \neq k \ j=0}}^n \frac{(x-x_j)}{(x_k-x_j)}, k = 0, 1, 2 \dots$$

$$L_n(x) = \sum_{k=0}^{n} l_k(x) y_k$$

其中称 $l_k(x)$ 为 Lagrange 插值基函数, $L_n(x)$ 为 Lagrange 插值多项式

$$l_k(x_i) = \begin{cases} 0, & i \neq k \\ 1, & i = k \end{cases} (i, k = 0, 1, 2 \dots)$$

2.2.3 Lagrange 插值误差

设 f 在 [a,b] 上 n+1 阶可微, $P_n(x)$ 为 f 的 n 次插值多项式,则

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)} W_{n+1}(x)$$

其中 $W_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$, ξ 依赖于 x。

证明:

易得: x_0, x_1, \ldots, x_n 均为 $R_n(x)$ 的零点,根据零点可设:

$$R_n(x) = K(x)(x - x_0)(x - x_1) \cdots (x - x_n) = K(x)W_{n+1}(x)$$

作辅助函数: $F(t) = f(t) - P_n(t) - R_n(t)$, 有零点: x_0, x_1, \ldots, x_n 。由罗尔中值定理可知: F(n+1) 有 1 个零点, $\xi \in [a, b]$, 则:

$$F^{(n+1)}(\xi) - K(x)(n+1)! = 0$$

得到:

$$K(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

利用余项表达式:

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} W_{n+1}(x)$$

当 $f(x) = x^k (k \le n)$ 时,由于 $f^{(n+1)}(x) = 0$,于是有:

$$R_n(x) = x^k - \sum_{i=0}^n x_i^k l_i(x) = 0$$

由此得:

$$\sum_{i=0}^{n} x_i^k l_i(x) = x^k, k = 0, 1, \dots, n$$

当 k=0 时,有:(填空题常考)

$$\sum_{i=0}^{n} l_i(x) = 1$$

2.3 牛顿插值

2.3.1 计算

记 $f[x,y] = \frac{f(y) - f(x)}{y - x}$ (一阶差商) $f[x,y,z] = \frac{f[y,z] - f[x,y]}{z - x}$ (二阶差商)。则: 两点公式为

$$N_1(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

三点公式为

$$N_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

基函数为

$$1, (x-x_0), (x-x_0)(x-x_1), \dots$$

其系数称为均差 (差商)。

一般地:

$$f[x_0, x_1, \dots, x_{k-1}, x_k] = \frac{f[x_1, x_2, \dots, x_{k-1}, x_k] - f[x_0, x_1, \dots, x_{k-2}, x_{k-1}]}{x_k - x_0}$$

均差与节点的排列顺序无关,从而:

$$f[x_0, x_1, x_2, \dots, x_{k-1}, x_k] = [x_{k-1}, x_1, \dots, x_{k-2}, x_0, x_k]$$

牛顿插值只需要第一排的差商

牛顿插值公式

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n] \prod_{i=0}^{n-1} (x - x_i) + f[x, x_0, \dots, x_n] \prod_{i=0}^{n} (x - x_i)$$

表 2.1: 差尚表							
x_k	$f(x_k)$	一阶差商	二阶差商	三阶差商	四阶差商		
x_0	$f(x_0)$						
x_1	$f(x_1)$	$f[x_0, x_1]$					
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$				
x_3	$f(x_3)$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$F[x_0, x_1, x_2, x_3]$			
x_4	$f(x_4)$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0,x_1,x_2,\ldots]$		

等距节点的牛顿插值(了解)

设
$$f_k = f(x_k)$$
,则

称 $\Delta f_k = f_{k+1} - f_k$ 为 f 在 $x = x_k$ 处的一阶向前差分, Δ 称为向前差分算子。

称 $\nabla f_k = f_k - f_{k-1}$ 为 f 在 $x = x_k$ 处的一阶向后差分, ∇ 称为简后差分算子。

$$\Delta^m f_k = \Delta^{m-1} f_{k+1} - \Delta^{m-1} f_k$$
 为 f 在 $x = x_k$ 处的 m 阶向前差分。

 $\nabla^m f_k = \nabla^{m-1} f_k - \nabla^{m-1} f_{k-1}$ 为 f 在 $x = x_k$ 处的 m 阶向后差分。

$$\Delta^m f_k = \nabla^m f_{k+m}$$

均差与差分有如下关系

$$f[x_0, x_1, \dots, x_k] = \frac{\Delta^k f_0}{k! h^k} = f[x_k, x_{k-1}, x, \dots, x_0] = \frac{\nabla^k f_k}{k! h^k}$$

前插公式 (x 在 x_0 附近)

设
$$x_k = x_0 + kh(h = 0, 1, 2, ..., n)$$
 插值点 $x = x_0 + th(t = 0)$ 则 $h = \frac{x_n - x_0}{n}, t = \frac{x - x_0}{h} \Rightarrow x - x_k = (t - k)h$ 牛顿插值公式中一项式化为:

$$f[x_0, x_1, \dots, x_k] \prod_{i=0}^{k-1} (x - x_i) = \frac{\Delta^k f_0}{k! h^k} \prod_{i=0}^{k-1} (t - i) h = \frac{\Delta^k f_0}{k!} \prod_{i=0}^{k-1} (t - i)$$

$$\Rightarrow N_n(x) = N_n(x_0 + th) = f_0 + \sum_{k=1}^n \frac{\Delta^k f_0}{k!} \prod_{i=0}^{k-1} (t - i)$$

后插公式 (x 在 x_n 附近)

$$x_{n-k} = x_n + kh, x = x_n + th(t < 0)$$

$$(h = \frac{x_n - x_0}{n}, t = \frac{x - x_n}{h}, x - x_{n-k} = (t + k)h)$$

$$\therefore N_n(x) = f_0 + \sum_{k=1}^n \frac{\nabla^k f_0}{k!} \prod_{i=0}^{k-1} (t + i)$$

2.4 分段插值

插值多项式的次数越高,误差不一定越小。

2.4.1 分段线性 Lagrange 插值

取相邻节点,构成插值子区间: $[x_k, x_{k+1}], h_k = x_{k+1} - x_k$ 在子区间上应用两点公式: $L_n^{(k)}(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}} y_k + \frac{x - x_k}{x_{k+1} - x_k} y_{k+1}$ 令

$$L_n(x) = \begin{cases} L_n^0(x) & x \in [x_0, x_1] \\ L_n^1(x) & x \in [x_1, x_2] \\ & \vdots \\ L_n^{(n-1)}(x) & x \in [x_{n-1}, x_n] \end{cases}$$

(分段函数, 计算简单, 但光滑性较差)

2.4.2 分段 2 次插值

将每 3 个节点分为一段,每段都为抛物线 在每个区间内利用三点 Lagrange 插值即可, $(L_3(x) = L_0y_0 + L_1y_1 + L_2y_2)$

2.5 厄米特插值

分段多次插值无法保证插值函数在节点处的光滑性,希望得到光滑性的插值函数 (与原函数 在节点处相切),这就是插值问题。

已知 $y_i = f(x_i), y_i' = f'(x_i), i = 0, 1, ..., n$ 求插值函数 H(x) 满足: $H(x_i) = y_i, H'(x_i) = y_i'$

2.5.1 两点三次插值

$$H(x) = y_0 \alpha_0(x) + y_0' \beta_0(x) + y_1 \alpha_1(x) + y_1' \beta_1(x)$$

其中

$$\alpha_i(x) = \left(1 - 2\frac{x - x_i}{x_i - x_j}\right) \left(\frac{x - x_j}{x_i - x_j}\right)^2 \quad (i = 0, 1)$$
$$\beta_i(x) = (x - x_i) \left(\frac{(x - x_i)}{(x_i - x_j)}\right)^2 \quad (i = 0, 1)$$

第三章 最小二乘法

3.1 定义

在函数类 $\phi = \text{span}\{\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x)\}$ 中求函数 $S^*(x) = \sum_{j=0}^n a_j^* \rho_j(x)$,使

$$\sum_{i=0}^{m} W_i (S^*(x_i) - y_i)^2 = \min_{(S \in \phi)} \sum_{i=0}^{m} W_i (S(x_i) - y_i)^2$$

称 $S^*(x)$ 为最小二乘拟合函数。

3.2 计算

如何确定 S^* 的构造,即求 $\phi = \text{span}\{\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x)\}$ 。

通过观繁数据点的分布情况,若像直线,则设 $S^*(x) = a_0 + a_1 x$; 若像抛物线,则设 $S^*(x) = a_0 + a_1 x + a_2 x^2$

设
$$\varphi = (a_0, a_1, \dots, a_n) = \sum_{i=0}^m W_i (S^*(x_i) - y_i)^2 = \sum_{i=0}^m W_i (\sum_{j=0}^n a_j \varphi_j(x_i) - y_i)^2$$

注:基函数确定后,因为节点已知,所以 $\sum_{i=0}^{m} W_i(S^*(x_i) - y_i)^2$ 的值只与 a_i 有关。

若要 $\sum\limits_{i=0}^m W_i(S^*(x_i)-y_i)^2$ 最小,则使 φ 最小,取其极小值 $(a_0^*,a_1^*,\ldots,a_n^*)\Rightarrow \frac{\partial \varphi}{\partial a_k}=0$ (必要条件)

$$2\sum_{i=0}^{m} W_i \left(\sum_{j=0}^{n} a_j \varphi_j(x_i) - y_i\right) \varphi_k(x_i) W_i = 0$$

$$\sum_{i=0}^{m} W_i \left(\sum_{j=0}^{n} a_j \varphi_j(x_i) - y_i\right) \varphi_k(x_i) = 0$$

$$\sum_{i=0}^{m} W_i \varphi_k(x_i) \sum_{j=0}^{n} a_j \varphi_j(x_i) = \sum_{i=0}^{m} W_i y_i \varphi_k(x_i)$$

$$\sum_{j=0}^{n} \left(\sum_{i=0}^{m} W_i \varphi_j(x_i) \varphi_k(x_i) a_j\right) = \sum_{i=0}^{m} W_i y_i \varphi_k(x_i)$$

设

$$(\varphi_j, \varphi_k) = \sum_{i=0}^m W_i \varphi_k(x_i) \varphi_j(x_i), (f, \varphi_k) = \sum_{i=0}^m W_i y_i \varphi_k(x_i) = (\varphi_k, f)$$

则

$$\sum_{j=0}^{n} (\varphi_j, \varphi_k) a_j = (f, \varphi_k) \quad (k = 0, 1, 2, \dots, n)$$

转化为矩阵形式

$$\begin{pmatrix} (\varphi_0, \varphi_0) & (\varphi_1, \varphi_0) & \cdots & (\varphi_n, \varphi_0) \\ (\varphi_0, \varphi_1) & (\varphi_1, \varphi_1) & \cdots & (\varphi_n, \varphi_1) \\ \vdots & \vdots & \ddots & \vdots \\ (\varphi_0, \varphi_n) & (\varphi_1, \varphi_n) & \cdots & (\varphi_n, \varphi_n) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} (f, \varphi_0) \\ (f, \varphi_1) \\ \vdots \\ (f, \varphi_n) \end{pmatrix}$$

解方程组:

$$(a_0^*, a_1^*, \dots, a_n^*)$$

最小二乘函数:

$$S^*(x) = a_0^* \varphi_0(x), a_1^* \varphi_1(x), \dots, a_n^* \varphi_n(x)$$

最小二乘的平方误差:

$$\|\delta_i\|_2^2 = \sum_{i=0}^m W_i (S^*(x_i) - y_i)^2 = \left| \sum_{i=0}^m W_i y_i^2 - \sum_{j=0}^n a_j^*(\varphi_j, f) \right|$$

若 $\operatorname{span}\{\varphi_0(x),\ldots,\varphi_n(x)\}$ 为正交多项式,即

$$(\varphi_i(x), \varphi_j(x)) = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

则法方程组可化为:

$$\begin{pmatrix} (\varphi_0, \varphi_0) & \Box & \cdots & \Box \\ \Box & (\varphi_1, \varphi_1) & \cdots & \Box \\ \vdots & \vdots & \ddots & \vdots \\ \Box & \Box & \cdots & (\varphi_n, \varphi_n) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} (f, \varphi_0) \\ (f, \varphi_1) \\ \vdots \\ (f, \varphi_n) \end{pmatrix}$$

3.3 常用正交多项式

3.3.1 勒让德多项式

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & , m \neq n \\ \frac{2}{2n+1} & , m = n \end{cases}$$

递推关系:

$$\begin{cases} P_0(x) = 1, P_1(x) = x \\ P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x), n = 1, 2, \dots \end{cases}$$

 $P_n(x)$ 在 (-1,1) 内有必互异的实零点

第三章 最小二乘法 11

3.3.2 切比雪夫多项式

权函数
$$\rho(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} T_m(x) T_n(x) dx = \begin{cases} 0, & m \neq n \\ \pi/2, & m = n \\ \pi, & m = n = 0 \end{cases}$$

递推关系:

$$\begin{cases} T_0(x) = 1, T_1(x) = x \\ T_{n+1} = 2xT_n(x) - T_{n-1}(x) \end{cases}$$

或

$$cos(n+1)\theta = 2cos\theta cos n\theta cos(n-1)\theta, n \ge 1$$

代入 $x = \cos \theta$ 即得递推关系

3.4 矛盾方程组求解

对于方程组 Ax = b, 若 R(A,b) = R(A), 则有解。

若 $R(A,b) \neq R(A)$,则称矛盾方程组,其解即最小二乘解是指在均方误差极小意义下的解,即 $\min \|Ax - b\|_2^2$

方程 $A^{T}Ax = A^{T}b$ 称为矛盾方程组 Ax = b 的法方程, 两解等同。

求解拟合曲线的极小值问题与求解矛盾方程组的法方程等价,即求解拟合曲线的极小问题可转化为求解方程组: $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$

例: 求解拟合函数 $S^*(x) = a_0 + a_1 x$,则可将所有节点代入 $S^*(x)$,构成一个关于 (a_0, a_1) 的方程组 $Aa = b \Rightarrow A^{\mathsf{T}} Aa = A^{\mathsf{T}} b$

有些积分不能用 Nowton-leibniz 公式求解,从而采用用数值计算的办法解决。

基本思路 4.1

积分中值定理

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(\xi)(b-a)$$

4.2 公式

- 1. 梯形公式: 取 $f(\xi)(b-a) \approx \frac{1}{2}[f(a) + f(b)]$, 则有 $\int_a^b f(x) dx \approx \frac{b-a}{2}[f(a) + f(b)]$
- 2. 中矩形公式: 取 $f(\xi) \approx f\left(\frac{b+a}{2}\right)$, 则有 $\int_a^b f(x) \, \mathrm{d}x = (b-a)f\left(\frac{b+a}{2}\right)$

4.3 机械求积

考虑在 [a,b] 上选取某些节点 x_k ,以 $f(x_k)$ 的加权平均 $\frac{1}{b-a}\sum_{i=1}^n A_i f(x_i)$ 来近似 $f(\xi)$,则有 $\int_a^b f(x) \, \mathrm{d}x = \sum_{i=0}^n A_i f(x_i)$ (A_i 相当于两节点的间距) A_i 只与 x_i 的选取有关。由于 f(x) 的函数形式不一定已知,因此求出 f(x) 的近似形式,即插值公式:

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{n}(x) dx \sum_{i=0}^{n} A_{i} f(x_{i})$$

Lagrange 插值: $f(x) = \sum_{i=0}^{n} f(x_k) l_k(x)$, 其中 x_k 为节点, x 为所求点。

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \sum_{k=0}^{n} f(x_{k}) L_{k}(x) dx + \int_{a}^{b} R_{n}(x) dx = \sum_{k=0}^{n} f(x_{k}) \int_{a}^{b} L_{k}(x) dx + \int_{a}^{b} R_{n}(x) dx$$

则令 $A = \int_a^b \prod_{\substack{i \neq j \ i=0}}^n \frac{(x-x_i)}{(x_i-x_j)} \, \mathrm{d}x$,若节点等距分布,将 [a,b] 分成 n 等分, $h = \frac{b-a}{n}, x_k = a + kh$

$$x = a + th(0 \le t \le n) \Rightarrow dx = h dt$$

$$A_{i} = \int_{0}^{n} \prod_{\substack{i \neq j \\ j=0}}^{n} \frac{t-j}{i-j} h \, dt = h \prod_{\substack{i \neq j \\ j=0}}^{n} \frac{1}{i-j} \int_{0}^{n} \prod_{\substack{i \neq j \\ j=0}}^{n} (t-j) \, dt$$

$$= h \frac{(-1)^{n-i}}{\prod\limits_{j=0}^{n} (i-j) \prod\limits_{j=i+1}^{n} (i-j)} \int_{0}^{n} \prod_{\substack{i \neq j \\ j=0}}^{n} (t-j) \, dt$$

$$= h \frac{(-1)^{n-i}}{j!(n-i)!} \int_{0}^{n} \prod_{\substack{i \neq j \\ j=0}}^{n} (t-j) \, dt$$

$$= \frac{(b-a)(-1)^{n-i}}{nj!(n-i)!} \int_{0}^{n} \prod_{\substack{i \neq j \\ j=0}}^{n} (t-j) \, dt = (b-a)C_{k}^{(n)}$$

其中

$$C_k^{(n)} = \frac{(-1)^{n-k}}{nk!(n-k)!} \int_0^n \prod_{\substack{i \neq j \ j=0}}^n (t-j) dt$$
 $h = \frac{b-a}{n}$

当 n=1 时:

$$\begin{cases} C_0^{(1)} = -1 \times \int_0^1 (t - 1) dt = \frac{1}{2} \\ C_1^{(1)} = 1 \times \int_0^1 t dt = \frac{1}{2} \end{cases}$$

$$\therefore \int_a^b f(x) \, \mathrm{d}x = \frac{b-a}{2} (f(a) + f(b)) (梯形公式)$$

当 n=2 时:

$$\begin{cases} C_0^{(2)} = \frac{1}{4} \times \int_0^2 (t-1)(t-2) \, dt = \frac{1}{6} \\ C_1^{(2)} = -\frac{1}{2} \times \int_0^2 t(t-2) \, dt = \frac{4}{6} \\ C_2^{(2)} = \frac{1}{4} \times \int_0^2 t(t-1) \, dt = \frac{1}{6} \end{cases}$$

$$\therefore \int_{a}^{b} f(x) dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] (\text{simpson } \triangle \mathbb{R})$$

当 n=4 时:

$$\therefore \int_{a}^{b} f(x) dx = \frac{b-a}{90} [7f(a) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(b)] (\text{cotes } \triangle \mathbb{R})$$

4.4 代数精度—衡量求积公式的精度

如果某个求积公式对于次数不超过 m 的多项式准确的成立,但对于 m+1 次多项式就不准确地成立,则该求积公式有 m 次代数精度。

设有求积公式 $\int_a^b f(x) dx = \sum_{k=0}^n A_k f(x_k)$, 要使它具有 m 次代数精度, 只要令它对于 f(x) =

 $1, x, \ldots, x^m$ 都能准确成立,这就要求:

$$\begin{cases} \sum_{k=0}^{n} A_k = b - a \\ \sum_{k=0}^{n} A_k x_k = \frac{1}{2} (b^2 - a^2) \\ \dots \\ \sum_{k=0}^{n} A_k x_k^m = \frac{1}{m+1} (b^{m+1} - a^{m+1}) \\ \sum_{k=0}^{n} A_k x_k^{m+1} \neq \frac{1}{m+2} (b^{m+2} - a^{m+2}) \end{cases}$$

14

例题: 求数值求积公式 $\int_0^1 f(x) dx \approx \frac{1}{3} \left[2f\left(\frac{1}{4}\right) - f\left(\frac{1}{2}\right) + 2f\left(\frac{3}{4}\right) \right]$ 的代数精度。

解:

当
$$f(x) = 1$$
 时,
$$\frac{1}{3}(2 - 1 + 2) = 1$$
 当 $f(x) = x$ 时,
$$\frac{1}{3}\left(2 \cdot \frac{1}{4} - \frac{1}{2} + 2 \cdot \frac{3}{4}\right) = \frac{1}{2} = \int_0^1 x \, \mathrm{d}x$$
 当 $f(x) = x^2$ 时,
$$\frac{1}{3}\left(2 \cdot \frac{1}{16} - \frac{1}{4} + 2 \cdot \frac{9}{16}\right) = \frac{1}{3} = \int_0^1 x^2 \, \mathrm{d}x$$
 当 $f(x) = x^3$ 时,
$$\frac{1}{3}\left(2 \cdot \frac{1}{64} - \frac{1}{8} + 2 \cdot \frac{27}{64}\right) = \int_0^1 x^3 \, \mathrm{d}x = \frac{1}{4}$$
 当 $f(x) = x^4$ 时,
$$\frac{1}{3}\left(2 \cdot \frac{1}{256} - \frac{1}{16} + 2 \cdot \frac{81}{256}\right) \neq \int_0^1 x^4 \, \mathrm{d}x$$

因此代数精度为: 3

注:

- 1. 同一求积公式即 A_k 相同,针对不同函数,精度是不相同的。
- 2. 梯形公式, simpson 公式, cotes 公式分别具有 1, 3, 5 次代数精度。
- 3. 当 n 为偶数时, Newtou-cotes 公式至少具有 n+1 代数精度。

4.5 复化求积公式

考虑将 [a,b] 分为小区间,每个小区间上用低阶公式,再将结果求和。

4.5.1 复化梯形公式

令 $f(x_0) = f(a), f(x_n) = f(b)$, 在小区间 $[x_k, x_{k+1}]$ 上用梯形公式:

$$\int_{x_k}^{x_{k+1}} f(x) dx = \frac{h}{2} (f(x_k) + f(x_{k+1}))$$

$$\Rightarrow \int_{x_k}^{x_{k+1}} f(x) dx = \sum_{k=0}^{n-1} \frac{h}{2} (f(x_k) + f(x_{k+1})) = \frac{h}{2} \left[f(a) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b) \right]$$

4.5.2 复化 simpson 公式

在小区间 $[x_k, x_{k+1}]$ 上用 simpson 公式:

$$\int_{x_k}^{x_{k+1}} f(x) dx = \frac{h}{6} \left(f(x_k) + 4f \left(\frac{x_k + x_{k+1}}{2} \right) + f(x_{k+1}) \right)$$

$$\Rightarrow \int_a^b f(x) dx = \sum_{k=0}^n \frac{h}{6} \left[f(x_k) + 4f(x_{k+1/2}) + f(x_{k+1}) \right]$$

$$= \frac{h}{6} \left[f(a) + 4 \sum_{k=0}^{n-1} f(x_{k+1/2}) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b) \right]$$

4.5.3 复化 cotes 公式

$$C_n = \sum_{k=0}^{n-1} \frac{h}{90} \left[7f(x_k) + 32f(x_{k+1/4}) + 12f(x_{k+1/2}) + 32f(x_{k+3/4}) + 7f(x_{k+1}) \right]$$

4.6 复化求积公式余项

复化梯形:
$$R_{T_n}(f) = \frac{h^2}{12}(b-a)f''(\eta) \approx \frac{h^2}{12}[f'(b)-f'(a)](b-a)$$
 复化 simpson: $R_{S_n}(f) = -\frac{b-a}{180}\left(\frac{h}{2}\right)^4f^{(4)}(y) \approx -\frac{b-a}{180}\left(\frac{h}{2}\right)^4[f^{(3)}(b)-f^{(3)}(a)]$ 复化 cotes: $R_{C_n}(f) = -\frac{2(b-a)}{945}\left(\frac{h}{4}\right)^6f^{(6)}(y) \approx -\frac{2(b-a)}{945}\left(\frac{h}{4}\right)^6[f^{(5)}(b)-f^{(5)}(a)]$

第五章 解线性方程的直接方法

5.1 非奇异矩阵

设 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$, 如果 AB = BA = I, 则称 $B \in A$ 的逆矩阵,记为 A^{-1} ,且 $(A^{-1})^{\top} = (A^{\top})^{-1}$,如果 A^{-1} 存在,则称 A 为非奇异矩阵。如果 A, B 均为非奇异矩阵,则 $(AB)^{-1} = B^{-1}A^{-1}$ 。

5.2 矩阵的特征值与谱半径

- 1. 设 $A = (a_{ij}) \in \mathbb{R}^{n \times n}$,若存在数 λ 和非零向量 $x = (x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n$,使 $Ax = \lambda x$,则称 λ 为 A 的特征值,x 为 A 对应 λ 的特征向量,A 的全体特征值称为 A 的谱,记作 $\sigma(A)$,即 $\sigma(A) = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$,记 $\rho(A) = \max_{1 \le i \le n} |\lambda_i|$,则称为矩阵 A 的谱半径。
- 2. 通过求 $\det(\lambda I A) = 0$,得到 A 的特征值(具体分析过程可复习线代),谱半径则是判断特征值绝对值的最大值。

5.3 Gauss 消去法

对于 Ax = b 的矩阵形式。

考虑增广矩阵 (A|b) 行变换为 $(A^{(n)}|b^{(n)})$,其中 $A^{(n)}$ 上三角矩阵。(初等行变换) 例题:

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ 4x_2 - x_3 = 5 \\ 2x_1 - 2x_2 + x_3 = 1 \end{cases}$$

用 Gauss 消去法为:

$$(A|b) = \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 2 & -2 & 1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & -4 & -1 & | & -11 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 4 & -1 & | & 5 \\ 0 & 0 & -2 & | & -6 \end{pmatrix}$$

得

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ 4x_2 - x_3 = 5 \\ -2x_3 = -6 \end{cases}$$

求得 $x = (1, 2, 3)^{\top}$

(与线性代数中的解法是一致的,考试中如果考到高斯消元法,就这样一步一步来,是没有问题的)

总运算次数: $\frac{n^3}{3} + O(n^2) = \frac{n^3}{3} + n^2 - \frac{n}{3}$

5.4 列主元素 Gauss 消元法

为避免小主元作除数,在 $A^{(k)}$ 的第 k 列主对角线以下元素中挑选绝对值最大者,并通过行变换使之位于主对角线上作为主元素。

不带行变换的消元过程: 消元 → 行变换 → 左乘初等矩阵。

$$L_{K}(A^{(k)}|b^{(k)}) = (A^{(k+1)}|b^{(k+1)}) \Rightarrow L_{K-1}L_{K-2}\cdots L_{2}L_{1}(A^{(1)}|b^{(1)}) = (A^{(k)}|b^{(k)})$$
其中 $L_{K-1}L_{K-2}\cdots L_{1}A^{(1)} = A^{(k)} \Rightarrow L_{n-1}L_{n-2}\cdots L_{1}A^{(1)} = A^{(n)}$

$$\therefore A^{(1)} = A$$

$$\therefore A = (L_{n-1}L_{n-2}\cdots L_{1})^{-1}A^{(n)} = LU$$

$$\Rightarrow \begin{cases} L = (L_{n-1}L_{n-2}\cdots L_{1})^{-1} & \text{单位下三角矩阵} \\ U = A^{(n)} & \text{上三角矩阵} \end{cases}$$

称 A = LU 为矩阵 A 的 LU 分解

5.5 直接三角分解法(重点考察)

若有三角阵 L,U,使 A=LU,则方程组 $Ax=b\to LUx=b\to \begin{cases} Ly=b\\ Ux=y \end{cases}$ 注: LU 分解的条件: A 的各阶顺序主子列不为零, $D_1\neq 0, D_2\neq 0,\ldots, D_{n-1}\neq 0$

5.6 不选主元的 Doolittle 分解(重点考察)

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \quad L = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & 1 \end{pmatrix} \quad U = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{pmatrix}$$

$$a_{ij} = \sum_{s=1}^{\min\{ij\}} l_{is} u_{si} \quad 1 \le i, j \le n$$

计算 U 第 r 个行,L 的第 r 列元素 $(r=2,3,\ldots,n)$

$$u_{ri} = a_{ri} - \sum_{k=1}^{r-1} l_{rk} u_{ki} \quad (i = r, r+1, \dots, n)$$
(5.1)

$$l_{ir} = \frac{1}{u_{rr}} \left(a_{ir} - \sum_{k=1}^{r-1} l_{ik} u_{kr} \right) \quad (i = r+1, \dots, n \land r \neq n)$$
 (5.2)

注意 L 和 U 的特征,L 是下三角矩阵,且对角线元素都是 1,U 为上三角矩阵,对角线元素需要计算求得。

例题:用直接三角法解:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 3 & 1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 14 \\ 18 \\ 20 \end{pmatrix}$$

用 (5.1)(5.2) 计算得:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & -24 \end{pmatrix} = LU$$

求解 $Ly = (14, 18, 20)^{\top}$,得 $y = (14, -10, -72)^{\top}$ $Ux = (14, -10, -72)^{\top}$,得 $x = (1, 2, 3)^{\top}$

5.7 列主元的 Doolittle 分解(了解)

通过行变换, 使对对角元最大(即左乘一个初等矩阵 P)

$$\therefore Ax = b \Rightarrow PAx = Pb \Rightarrow LUx = Pb$$

$$\therefore PA = LU$$

$$\therefore \begin{cases} |A| = \pm |L||U| = \pm |U| \\ A^{-1} = U^{-1}L^{-1}P \end{cases}$$
[±由换行次数确定](行列式的计算)

注: 在不选主元的 Doolitle 分解的基础上,通过行变换选主元。每一步变换后都可做行变换选主元。 $Ux = L^{-1}Pb$ (紧凑格式的最后一列)

5.8 平方根法(系数矩阵为正定对称矩阵)

5.8.1 正定矩阵

若 A 为对称正定矩阵,则存在唯一的对角元素全为正的下三角阵 L,使 $A = LL^{\top}$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ \vdots & \vdots & \ddots & 0 \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{pmatrix} \begin{pmatrix} l_{11} & l_{12} & \cdots & l_{1n} \\ 0 & l_{22} & \cdots & l_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & l_{nn} \end{pmatrix}$$

直接运用矩阵乘法求解 L 的元素:

$$\begin{cases} a_u = l_{11}^2 \Rightarrow l_{11} = \sqrt{a_u} \\ a_i = l_{11}l_i \Rightarrow l_{i1} = \frac{a_{1i}}{l_{11}} \\ \dots \end{cases}$$

求解根:
$$Ax = b \Rightarrow LL^{\top}x \Rightarrow \begin{cases} Ly = b \\ L^{\top}x = y \end{cases}$$

5.8.2 平方根的改进方法

若对称矩阵 A 各阶顺序主子式不为 0 时,则 A 可以唯一分解为 $A = LDL^{T}$

$$L = \begin{pmatrix} 1 & \square & \square & \cdots & \square \\ l_{21} & 1 & \square & \cdots & \square \\ l_{31} & l_{32} & 1 & \cdots & \square \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \cdots & 1 \end{pmatrix} \quad D = \begin{pmatrix} d_1 & \square & \cdots & \square \\ \square & d_1 & \cdots & \square \\ \square & \square & \ddots & \vdots \\ \square & \square & \cdots & d_1 \end{pmatrix}$$

 $A = LDL^{\top} = LU$,可用 LU 分解的紧凑格式计算 L

第六章 解线性方程组的迭代解法

6.1 定义

对于线性方程组 AX = b,考虑等阶方程组 X = BX + f 向量迭代公式: $x^{(k+1)} = BX^{(k)} + f$

6.2 距离函数应满足的性质

- 1. 正定性: $\forall x \in U, N(x) \geq 0$
- 2. 齐次性: $\forall k \in \mathbb{R}, N(kx) = |k|N(x)$
- 3. 三角不等式: $N(x+y) \le N(x) + N(y)$

6.3 P 范数

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

最大模范数:

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

绝对值范数:

$$||x||_1 = \sum_{i=1}^n |x_i|$$

常见几种范数的关系:

$$\begin{cases} ||x||_{\infty} \le ||x||_{1} \le n||x||_{\infty} \\ ||x||_{\infty} \le ||x||_{2} \le \sqrt{n}||x||_{\infty} \\ ||x||_{2} \le ||x||_{1} \le \sqrt{n}||x||_{2} \end{cases}$$

6.4 向量间的距离

设向量 $xy \in \mathbb{R}^n$, 则称 ||x-y|| 为, x,y 之间的距离 (\mathbb{R}^n 上的任一种向量范数)

6.5 矩阵范数

只考虑 \mathbb{R}^n 中的方阵 若对应一个实数 ||A||,满足:

$$\begin{cases} ||A|| > 0 \land ||A|| = 0 \Leftrightarrow A = 0 \\ ||KA|| = ||K|| ||A|| \\ ||A + B|| \le ||A|| + ||B|| \\ ||AB|| \le ||A|| ||B|| \end{cases}$$

则称 ||A|| 为方阵的范数

6.6 算子范数

设 $\forall A\in\mathbb{R}^{n\times n}$, $\|\cdot\|$ 为向量范数,称 $\|A\|=\max_{x\neq 0,x\in\mathbb{R}^n}\frac{\|AX\|}{\|X\|}$ 为矩阵 A 的算子范数。 常见的算子范数:

- 1. $\|A\|_{\infty} = \max_{\|X\|=1} \|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \Rightarrow$ 行范数(每行元素绝对值相);
- 2. $||A||_1 = \max_{||X||=1} ||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| \Rightarrow \overline{\mathcal{M}}$ 范数;
- 3. $\|A\|_2 = \max_{\|x\|=1} \|A\|_2 = \sqrt{\lambda_{\max}(A^\top A)} \Rightarrow 2$ 范数,其中 $\lambda_{\max}(A^\top A)$ 为矩阵 $A^\top A$ 的绝对值最大的特征值。

设 $\lambda_i(i=1,2,\ldots,n)$ 为 $A\in\mathbb{R}^{n\times n}$ 的 n 个特征值,则称 $\rho(A)=\max_{1\leq i\leq n}|\lambda_i|$ 为 A 的谱半径。设 A 非奇异, $\|\cdot\|$ 为算子范数,则称 $\operatorname{cond}(A)=\|A\|\|A^{-1}\|$ 矩阵 A 的条件数。条件数的值与范数的类型有关:

$$\begin{cases} \operatorname{cond}(A)_{\infty} = ||A||_{\infty} ||A^{-1}||_{\infty} \\ \operatorname{cond}(A)_{2} = ||A||_{2} ||A^{-1}||_{2} = \sqrt{\frac{\lambda_{\min}}{\sigma_{\max}}} \end{cases}$$

 λ_{\min} 为 $A^{\top}A$ 的特征值。若 $\operatorname{cond}(A) \gg 1$,则称 Ax = b 为病态方程组。

6.7 线性方程组的送代解法

$$x^{(k+1)} = BX^{(k)} + f \Rightarrow x^{(k+1)} = \begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ \vdots \\ x_n^{(k+1)} \end{pmatrix} = B \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{pmatrix} + f$$

其中 B 称为迭代矩阵。如果 $\lim_{k\to\infty}x^k$ 存在(记为 x^*),称此迭代法收敛,显然 x^* 是此方程组的解,否则称此迭代法发散。

 $x^{(k+1)} = BX^{(k)} + f$ 收敛的充要条件是矩阵 B 得谱半径 $\rho(B) < 1$

6.7.1 G-S 法

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

设 $A = (a_{ij})_{n \times n}$ 可逆,且 $a_{ii} \neq 0 (i = 1, 2, ..., n)$,则有:

$$a_{ii}x_i = b_i - \sum_{j=1}^{i-1} a_{ij}x_i - \sum_{j=i+1}^n a_{ij}x_j (i=1,2,\dots,n)$$
 (6.1)

可得

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i}^n a_{ij} x_j \right) \quad (i = 1, 2, \dots, n)$$

写成迭代格式:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i}^n a_{ij} x_j^{(k)} \right) \quad (i = 1, 2, \dots, n)$$

又式6.1写成矩阵形式:

$$\begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} - \begin{pmatrix} 0 & & \\ a_{21} & 0 & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} - \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

即: DX = LX + UX + b, 其中 D - L - U = A

$$D = \begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix}, L = \begin{pmatrix} 0 & & & \\ -a_{21} & 0 & & \\ \vdots & \vdots & \ddots & \\ -a_{n1} & -a_{n2} & \cdots & 0 \end{pmatrix}, U = \begin{pmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & \cdots & -a_{2n} \\ & & \ddots & \vdots \\ & & & 0 \end{pmatrix}$$

得到
$$x^{(k+1)} = -D^{-1}(L+U)x^{(k)} + D^{-1}b$$

$$\therefore B_j$$
(迭代矩阵) = $-D^{-1}(L+U), f_j = D^{-1}b \Rightarrow x = D_j x + f_j$

则有 Jacobi 迭代的矩阵形式:

$$x^{(k+1)} = B_j x^{(k)} + f_j$$

例题:将方程组 $\begin{cases} 8x_1 - 3x_2 + 2x_3 = 20 \\ 4x_1 + 11x_2 - x_3 = 33 \end{cases}$ 写成 Jacobi 迭代格式 $2x_1 + x_2 + 4x_2 - 12$

$$\begin{cases} x_1^{(k+1)} = \frac{1}{8}(20 + 3x_2^{(k)} - 2x_3^{(k)}) \\ x_2^{(k+1)} = \frac{1}{11}(33 - 4x_1^{(k)} + x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{4}(12 - 2x_1^{(k)} - x_2^{(k)}) \end{cases}$$

6.7.2 G-S 法

考虑 Jacobi 迭代分量式

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=i}^{i_1} a_{ij} x_i^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$

通常计算值
$$x_j^{(k+1)}$$
 比前一步计算值 $x_j^{(k)}$ 更精确
$$\mathbbm{R} \ x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum\limits_{j=i}^{i-1} a_{ij} x_i^{(k+1)} - \sum\limits_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$
 称为高斯—赛德尔迭代

迭代公式:

$$\begin{cases} x_1^{(k+1)} = \frac{1}{8}(20 + 3x_2^{(k)} - 2x_3^{(k)}) \\ x_2^{(k+1)} = \frac{1}{11}(33 - 4x_1^{(k+1)} + 4x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{4}(12 - 2x_1^{(k+1)} - x_2^{(k+1)}) \end{cases}$$

6.7.3 SOR 法

迭代公式写法:

$$Dx^{(k+1)} = Dx^{(k)} + \omega(Lx^{(k+1)} + Ux^{(k)} - Dx^{(k)} + b)$$

$$\therefore (D - \omega L)x^{(k+1)} = (D + U\omega - \omega D)x^{(k)} + \omega b$$

$$\therefore x^{(k+1)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U] + (D - \omega U)^{-1}\omega b$$

$$\Rightarrow B_{\omega} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$$

1. 严格对角占优矩阵: A 的元素要满足: $|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|, i = 1, 2, \dots, n$

2. 弱对角占优矩阵: A 的元素要满足: $|a_{ii}| \geq \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|, i = 1, 2, \dots, n$

3. 迭代的收敛性:

$$D = \begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix}, L = \begin{pmatrix} 0 & & & \\ -a_{21} & 0 & & \\ \vdots & \vdots & \ddots & \\ -a_{n1} & -a_{n2} & \cdots & 0 \end{pmatrix}, U = \begin{pmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & \cdots & -a_{2n} \\ & & \ddots & \vdots \\ & & & 0 \end{pmatrix}$$

6.7.4 J法

- 1. $B_j = D^{-1}(L+U)$
- 2. $\rho(B_j) < 1$
- 3. $||B_j|| < 1$
- 4. A 严格对角占优, 或 A 经行变换后的矩阵严格对角占优

6.7.5 G-S 法

- 1. $B_G = (D L)^{-1}U$
- 2. $\rho(B_G) < 1$
- 3. $||B_G|| < 1$
- 4. A 或 A 经行变换后严格对角占优
- 5. $||B_j||_{\infty} < 1$

6.7.6 SOR 法(了解)

- 1. 若 A 的对角无均不为 0,则收敛的必要条件 $0 < \omega < 2$
- 2. 着 A 严格对角占优,则当 $0 < \omega < 1$ 时收敛
- 3. 若 A 为正定矩阵,则当 $0 < \omega < 2$ 时收敛

第七章 方程求根

7.1 收敛

若一个迭代法收敛, x^* 是方程 f(x)=0 的一个根,则令 $e_k=xk-x^*$ 。若存在实数 P 和非零常数 C,使得: $\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^p}=C$,则称该达代法为 P 阶收效 P=1 为线性收敏,P>1 为超线性收敏,P=2 为平方收敛。

7.2 二分法求根

利用 f(a)f(b) < 0, 决定 [a,b] 间存在根, 再取 $f\left(\frac{a+b}{2}\right)\cdots$

7.3 不动点迭代

将 f(x) = 0 化为 $x = \varphi(x)$,取迭代方程为 $x_{k+1} = \varphi(x_k)$,其中 p(x) 称为迭代函数。

- 不动点迭代的误差: $|x-x_k| \le \frac{L}{1-L} |x_k-x_{k-1}|$, L 为小于 1 的正实数;
- 收敛性判断: 若迭代收敛, 设 $\varphi'(x)$ 在 [a,b] 上存在, 且 $|\varphi'(x)| \leq |L|$, 则迭代收敛;
- 收敛速度: 若迭代收敛,设 $\varphi(x)$ 在区间 [a,b] 上为 $P(\geq 2)$ 次可微,且在 $x = \varphi(x)$ 的根 x^* 处有 $\begin{cases} \varphi^{(j)}(x^*) = 0 \\ \varphi^{(p)}(x^*) \neq 0 \end{cases}$, $\underbrace{j = 1, 2, \ldots, P 1}_{\text{不是从 0. 开始}}$ 则不动点迭代为 P 阶收敛。

注:

- 1. 若题目中说,根在 x' 附近,则代入 x' 也可。
- 2. 局部收敛: 若题中告诉了根的大概值 x',判断收敛性, $|\varphi'(x')| < 1$ 收敛且 $|\varphi'(x')| < 1$ 越小,收敛性越好。

7.4 Newton 迭代法

设 x_k 是 f(x) = 0 的根 x^* 的一个近似值

$$\underbrace{f(x) \approx f(x_k) + f'(x_k)(x - x_k)}_{\text{\& phich}} = 0 \Rightarrow x = x_k - \frac{f(x_k)}{f'(x_k)}$$

第七章 方程求根

26

迭代公式: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$

- 1. 收敛性: 若 f(x) 在解 x^* 附近二阶连续可导,且 $f'(x) \neq 0$ (即 x^* 为单根),则在 x^* 附近,Newton 序列至少二阶敛于 x^* 。
- 2. 收敛性判断 $x=x_k-\frac{f(x_k)}{f'(x_k)}$ 则相当于 $\varphi(x)=x-\frac{f(x)}{f'(x)}\Rightarrow |\varphi'(x)|<1$ 则 Newton 迭代收敛。
- 3. 收敛速度: 同不动点迭代。

7.5 牛顿下山法

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, \dots$$

重根情形: 设 $f(x) = (x-x^*)^m g(x)$,整数 $m \ge 2$, $g(x^*) \pm 0$,则 x^* 为 f(x) 的 m 重根,此时有 $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$, $f^{(m)}(x^*) \ne 0$ 。只要 $f'(x_k) \ne 0$ 仍可用牛顿法计算,此时迭代函数 $\varphi(x) = x - \frac{f(x)}{f'(x)}$ 的导数满足 $\varphi'(x) = 1 - \frac{1}{m} < 1$,所以牛顿法求重根只是线性收敛,若取 $\varphi(x) = x - m \frac{f(x)}{f'(x)}$,则 $\varphi'(x^*) = 0$,用迭代法 $x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$ 求重根,则具有二阶收敛性(但要知道 x^* 的重数 m)。

7.6 弦截法迭代

在不动点法基础上,以差商代替导数

单点: 差商:
$$f'(x_k) = \frac{f(x_k) - f(x_0)}{x_k - x_0}$$
, 则迭代公式: $x_{k+1} = \frac{f(x_k)}{f(x_k) - f(x_0)}(x_k - x_0)$ 双点: 差商: $f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$, 则迭代公式: $x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})}(x_k - x_{k-1})$ 收敛阶数约为 1.618

7.7 迭代加速

Aitken 加速

$$\bar{x}_k = x_{k+1} - \frac{(x_{k+1} - x_k)^2}{x_{k-1} - 2x_k + x_{k+1}}$$

但要求 P=1

附录 A 引论

A.1 填空题

- 1. 设 $x_1 = 1.219, x_2 = 3.661$ 均具有 3 位有效数字,则 $x_1 + x_2$ 的误差限为0.01。
- 2. 为了使计算 $y=10+\frac{3}{x-1}+\frac{4}{(x-1)^2}-\frac{6}{(x-1)^3}$ 的乘除法次数尽量地少,应将该表达式改写 为 $y=10+(3+(4-6t)t)t, t=\frac{1}{x-1}$,为了减少舍入误差,应将表达式 $\sqrt{2021}-\sqrt{1999}$ 改写 为 $\frac{2}{\sqrt{2021}+\sqrt{1999}}$ 。
- 3. 为了减少舍入误差的影响, 当 $x \approx y$ 应将表达式 $\lg x \lg y$ 改写为 $\lg(x/y)$ 。
- 4. 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫舍入误差。
- 5. 设 $x_1 = 1.216, x_2 = 3.654$ 均具有 3 位有效数字,则 $x_1 + x_2$ 的误差限为0.01。
- 6. 已知数 e = 2.718281828...,取近似值 x = 2.7182,那么 x 具有的有效数字是4。

A.2 计算题

已知测量某长方形场地的长 a=110 米,宽 b=80 米。若 $|a-a^*| \le 0.1$ (米), $|b-b^*| \le 0.1$ (米) 试求其面积的绝对误差限和相对误差限。

解:

设长方形的面积为 s = ab

当 a=110, b=80 时,有 $s=110\times 80=8800 (m^2)$ 。此时,该近似值的绝对误差可估计为:

$$\Delta(s) \approx \frac{\partial s}{\partial a} \Delta(a) + \frac{\partial s}{\partial b} \Delta(b) = b\Delta(a) + a\Delta(b)$$

相对误差可估计为:

$$\Delta_r(s) = \frac{\Delta(s)}{s}$$

而已知长方形长、宽的数据的绝对误差满足

$$|\Delta(a)| < 0.1, |\Delta(b)| < 0.1$$

故求得该长方形的绝对误差限和相对误差限分别为

$$|\Delta(s)| \le b|\Delta(a)| + a|\Delta(b)| \le 80 \times 0.1 + 110 \times 0.1 = 19.0$$

 $|\Delta_r(s)| = \left|\frac{\Delta s}{s}\right| \le \frac{19.0}{8800} = 0.002159$

附录 A 引论 28

绝对误差限为 19.0; 相对误差限为 0.002159。

测得某桌面的长 a 的近似值 $a^*=120\mathrm{cm}$,宽 b 的近似值 $b^*=60\mathrm{cm}$ 。若已知 $|e(a^*)|\leq 0.2\mathrm{cm}, |e(b^*)|\leq 0.1\mathrm{cm}$ 。试求近似面积 $s^*=a^*b^*$ 的绝对误差限与相对误差限。 解:

面积 s = ab, 则绝对误差限为:

$$e(s^*) = \frac{\partial s(a^*, b^*)}{\partial a} e(a^*) + \frac{\partial s(a^*, b^*)}{\partial b} e(b^*) = b^* e(a^*) + a^* e(b^*)$$
$$|e(s^*)| \le |b^*||e(a^*)| + |a^*||e(b^*)| \le 60 \times 0.2 + 120 \times 0.1 = 24 \text{cm}^2$$

相对误差限为:

$$|e_r(s^*)| = \left|\frac{e(s^*)}{s^*}\right| \le \frac{24}{120 \times 60} = 0.33\%$$

附录 B 插值法

B.1 填空题

1. $\exists \exists f(x) = 2x^3 + 5$, $\bigcup f[1, 2, 3, 4] = \underline{2}$; $f[1, 2, 3, 4, 5] = \underline{0}$.

 $\mathbb{R} x_0 = -1, x_1 = 1, x_2 = 2, y_0 = -3, y_1 = 0, y_2 = 4$

- 2. 设 $x_0, x_1, \ldots, x_n (n \ge 5)$ 为互不相同的节点,则插值多项式 $\sum_{k=0}^n l_k(s) x_k^2 = \underline{x^2}$ 。
- 3. 称 $f[x_0,x_1] = \frac{f(x_1)-f(x_0)}{x_1-x_0}$ 为函数 f(x) 关于点 x_0,x_1 的一阶差商(均差),称 $f[x_0,x_1,x_2] = \frac{f[x_0,x_2]-f[x_0,x_1]}{x_2-x_1}$ 为函数 f(x) 关于点 x_0,x_1,x_2 的二阶差商。

B.2 计算题

当 x = -1, 1, 2 时,对应的函数值分别为 f(x) = -3, 0, 4,求 f(x) 的二次拉格朗日插值插值多项式,并给出插值余项。

解:

$$L_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= -3 \cdot \frac{(x - 1)(x - 2)}{(-2) \cdot (-3)} + 4 \cdot \frac{(x + 1)(x - 1)}{3 \cdot 1}$$

$$= \frac{5}{6}x^2 + \frac{3}{2}x - \frac{7}{3}$$

插值余项

$$R_n(x) = \frac{f^{(3)}(\xi)}{3!}(x - x_0)(x - x_1)(x - x_2) = \frac{f^{(3)}(\xi)}{3!}(x + 1)(x - 1)(x - 2)$$

己知

x_1	1	3	4	5
$f(x_i)$	2	6	5	4

分别用拉格朗日插值法和牛顿插值法求 f(x) 的三次插值多项式 $P_3(x)$

解:

$$L_3(x) = 2\frac{(x-3)(x-4)(x-5)}{(1-3)(1-4)(1-5)} + 6\frac{(x-1)(x-4)(x-5)}{(3-1)(3-4)(3-5)} + 5\frac{(x-1)(x-3)(x-5)}{(4-1)(4-3)(4-5)} + 4\frac{(x-1)(x-3)(x-4)}{(5-1)(5-3)(5-4)}$$
差商表为

x_i	y_i	一阶均差	二阶均差	三阶均差
1	2			
3	6	2		
4	5	-1	-1	
5	4	-1	0	1/4

$$P_3(x) = N_3(x) = 2 + 2(x - 1) - (x - 1)(x - 3) + \frac{1}{4}(x - 1)(x - 3)(x - 4)$$

己知下列函数表:

- 1. 写出相应的三次拉格朗日插值多项式;
- 2. 作均差表,写出相应的三次 Newton 插值多项式,并计算 f(1.5) 的近似值。

解:

(1)

$$L_3(x) = \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} + \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)} + \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)} + \frac{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)}$$
$$= \frac{4}{3}x^3 - 2x^2 + \frac{8}{3}x + 1$$

(2) 差商表:

x_i	一阶差商	二阶差商	三阶差商	四阶差商
0	1			
1	3	2		
2	9	6	2	
3	27	18	6	4/3

$$N_3(x) = 1 + 2x + 2x(x-1) + \frac{4}{3}x(x-1)(x-2)$$
$$f(1.5) \approx N_3(1.5) = 5$$

依据如下函数值表:

附录 B 插值法

x	0	1	2	4
f(x)	1	9	23	3

- 1. 建立三次 Lagrange 插值多项式,并给出插值余项;
- 2. 建立三次 Newton 插值多项式,要求列出差商表。

解:

(1)

$$\begin{split} L_3(x) &= 1 \frac{(x-1)(x-2)(x-4)}{(0-1)(0-2)(0-4)} + 9 \frac{(x-0)(x-2)(x-4)}{(1-0)(1-2)(1-4)} + 23 \frac{(x-0)(x-1)(x-4)}{(2-0)(2-1)(2-4)} + 3 \frac{(x-0)(x-1)(x-2)}{(4-0)(4-1)(4-2)} \\ &= -\frac{11}{4} x^3 + \frac{45}{4} x^2 - \frac{1}{2} x + 1 \end{split}$$

插值余项:

$$R_3(x) = \frac{f^{(4)}(\xi)}{4!}x(x-1)(x-2)(x-4)$$

(2) 建立差商表如下

x_i	$f(x_i)$	$f[x_i, x_j]$	$f[x_i, x_j, x_k]$	$f[x_i, x_j, x_k, x_l]$
0	1			
1	9	8		
2	23	14	3	
4	3	-10	-8	-11/4

Newton 前插公式为

$$N_3(x) = -\frac{11}{4}(x-2)(x-1)x + 3(x-1)x + 8x + 1$$

已知 f(x) 的以下下数据:

x	1	2	3
f(x)	1.0000	1.4142	1.7321

- 1. 求以如上数据为插值结点的 Lagrange 多项式;
- 2. 给定数据表 $f(x) = \ln x$ 数据表

x_i	2.20	2.40	2.60	2.80
$f(x_i)$	0.78846	0.87547	0.95551	1.02962

构造差商表,写出三次 Newton 差商插值多项式 $N_3(x)$ 。

附录 B 插值法

解:

(1)

Lagrange 插值多项式为:

$$L_2(x) = 1.0 \frac{(x-2)(x-3)}{(1-2)(1-3)} + 1.4142 \frac{(x-1)(x-3)}{(2-1)(2-3)} + 1.7321 \frac{(x-1)(x-2)}{(3-1)(3-2)}$$
$$= -0.04815x^2 + 0.55865x + 0.4895$$

(2)

差商表如下:

x_i	$f(x_i)$	一阶差商	二阶差商	三阶差商
2.20	0.78846			
2.40	0.87547	0.43505		
2.60	0.95551	0.40010	-0.087375	
2.80	1.02962	0.37055	-0.073875	0.02250

$$N_3(x) = 0.78846 + 0.43505(x - 2.20) - 0.087375(x - 2.20)(x - 2.40) + 0.0225(x - 2.20)(x - 2.40)(x - 2.60)$$

附录 C 最小二乘法

给定数据表

\boldsymbol{x}	1	2	3	4
y	0.8	0.75	0.6	0.5

求一次最小二乘拟合多项式。

解:

得方程组:

$$\begin{cases} 4a_0 + 10a_1 = 2.65 \\ 10a_0 + 30a_1 = 6.1 \end{cases}$$

解得:

$$\begin{cases} a_0 = 0.925 \\ a_1 = -0.105 \end{cases} \Rightarrow S(x) = -0.105x + 0.925$$

电流通过电阻,用伏安法测得的电压电流如表

I(A)	1	2	4	6	8	10
U(V)	1.8	3.7	8.2	12.0	15.8	20.2

用最小二乘法处理数据。

解:

1. 确定 $U = \varphi(I)$ 的形式。将数据点描绘在坐标上可以看出这些点在一条直线的附近,故用线性拟合数据,即:

$$U = a_0 + a_1 I$$

2. 建立方程组:

$$U = a_0 + a_1 I, m = 6, \sum_{i=1}^{6} I_k = 31, \sum_{i=1}^{6} i_k^2 = 221$$
$$\sum_{i=1}^{6} U_k = 61.7, \sum_{i=1}^{6} I_k U_k = 442.4$$

则法方程组为

$$\begin{pmatrix} 6 & 31 \\ 31 & 221 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 61.7 \\ 442.4 \end{pmatrix}$$

3. 求经验公式,解所得法方程组得:

$$a_0 = -0.215, a_1 = 2.032$$

所求经验公式为

$$U = -0.215 + 2.032I$$

附录 D 数值积分

D.1 填空题

- 1. 梯形公式具有1次代数精度, Simpson 公式有3次代数精度。
- 2. 复化 Simpson 求积公式为: $S_n(f) = \frac{h}{6} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) + 4 \sum_{i=1}^{n-1} f(x_{i+1/2}) \right]$, 该公式是4 阶收敛的。
- 3. 求定积分 $\int_a^b f(x) \, \mathrm{d}x$ 的 Simpson 公式为 $S(f) = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$,该数值求积公式具有3 次代数精度。
- 4. 复化 Simpson 求积公式为: $S_n(f) = \frac{h}{6} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) + 4 \sum_{i=1}^{n-1} f(x_{i+1/2}) \right]$, 该公式是4 阶收敛的。
- 5. 当 n=2 时的 Newton–Cotes 求积公式为 $\int_a^b f(x) \, \mathrm{d}x = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{b+a}{2}\right) + f(b) \right]$,该公式的代数精度为3 次。

D.2 计算题

求积公式 $\int_0^1 f(x) dx \approx A_0 f(0) + A_1 f(1) + B_0 f'(0)$,已知其余项表达式为 $R(f) = k f''(\xi)$, $\xi \in (0,1)$,试确定系数 A_0, A_1, B_0 ,使该求积公式具有尽可能高的代数精度,并给出代数精度的次数及求积公式余项。

解:

本题虽然用到了 f'(0) 的值,仍用代数精度定义确定参数 A_0, A_1, B_0 。令 $f(x) = 1, x, x^2$,分别代入求积公式,令公式两端相等,得:

$$\begin{cases} f(x) = 1, A_0 + A_1 = 1\\ f(x) = x, A_1 + B_0 = \frac{1}{2}\\ f(x) = x^2, A_1 = \frac{1}{3} \end{cases}$$

求得

$$\begin{cases} A_0 = \frac{2}{3} \\ A_1 = \frac{1}{3} \\ B_0 = \frac{1}{6} \end{cases}$$

则有

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{2}{3} f(0) + \frac{1}{3} f(1) + \frac{1}{6} f'(0)$$

再令 $f(x)=x^3$,此时 $\int_0^1 x^3 \, \mathrm{d}x=\frac14$,而上式右端为 $\frac13$,两端不相等,故它的代数精度为 2次。为求余项可将 $f(x)=x^3$ 代入求积公式

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{2}{3} f(0) + \frac{1}{3} f(1) + \frac{1}{6} f'(0) + k f''(\xi), \xi \in (0, 1)$$

当 $f(x) = x^3$, $f'(x) = 3x^2$, f''(x) = 6x, f'''(x) = 6, 代入上式得

$$\frac{1}{4} = \int_0^1 x^3 dx = \frac{1}{3} + 6k \Rightarrow k = -\frac{1}{72}$$

所以余项

$$R(f) = -\frac{1}{72}f''(\xi), \xi \in (0,1)$$

求 A,B 使求积公式 $\int_{-1}^{1}f(x)\,\mathrm{d}x=A[f(-1)+f(1)]+B\left[f\left(-\frac{1}{2}\right)+f\left(\frac{1}{2}\right)\right]$ 的代数精度尽量高,并求其代数精度;利用此公式求 $I=\int_{1}^{2}\frac{1}{x}\,\mathrm{d}x$ (保留四位小数)

解:

f(x) = 1, x, x^2 是精确成立, 即:

$$\begin{cases} 2A + 2B = 2\\ 2A + \frac{1}{2}B = \frac{2}{3} \end{cases}$$

得:

$$A = \frac{1}{9}, B = \frac{8}{9}$$

求积公式为

$$\int_{-1}^{1} f(x) \, \mathrm{d}x = \frac{1}{9} [f(-1) + f(1)] + \frac{8}{9} \left[f\left(-\frac{1}{2}\right) + f\left(\frac{1}{2}\right) \right]$$

当 $f(x)=x^3$ 时,公式显然精确成立,当 $f(x)=x^4$ 时,左 $\frac{2}{5}$,右 $\frac{1}{3}$,所以代数精度为 3。 令 t=2x-3

$$\int_{1}^{2} \frac{1}{x} dx = \int_{-1}^{1} \frac{1}{t+3} dx = \frac{1}{9} \left(\frac{1}{-1+3} + \frac{1}{1+3} \right) + \frac{8}{9} \left(\frac{1}{-\frac{1}{2}+3} + \frac{1}{\frac{1}{2}+3} \right) = \frac{97}{140} \approx 0.69286$$

根据下面给出的函数 $f(x)=\frac{\sin x}{x}$ 的数据表,分别用复合梯形公式和复合辛甫生公式计算 $I=\int_0^1 \frac{\sin x}{x} \,\mathrm{d}x$

附录 D 数值积分 37

x_k	0.0000	0.125	0.250	0.375	0.500
$f(x_k)$	1	0.9973784	0.98961584	0.97672675	0.95885108
x_k	0.625	0.750	0.875	1.000	
$f(x_k)$	0.93615563	0.90885168	0.8719257	0.8417098	

解:

用复合梯形公式,这里 n=8, $h=\frac{1}{8}=0.125$

$$I = \int_0^1 \frac{\sin x}{x} dx$$

$$\approx \frac{0.125}{2} \left\{ f(0) + 2 \left[f\left(\frac{1}{8}\right) + f\left(\frac{2}{8}\right) + \left(\frac{3}{8}\right) + f\left(\frac{4}{8}\right) + f\left(\frac{5}{8}\right) + f\left(\frac{6}{8}\right) + f\left(\frac{7}{8}\right) \right] + f(1) \right\}$$

$$= 0.94569086$$

用复合辛甫生公式,这里 $n=4,h=\frac{1}{4}$,可得

$$I = \int_0^1 \frac{\sin x}{x} dx$$

$$\approx \frac{0.25}{6} \left\{ f(0) + 4 \left[f\left(\frac{1}{8}\right) + f\left(\frac{3}{8}\right) + \left(\frac{5}{8}\right) + f\left(\frac{7}{8}\right) \right] + 2 \left[f\left(\frac{2}{8}\right) + f\left(\frac{4}{8}\right) + f\left(\frac{6}{8}\right) \right] + f(1) \right\}$$

$$= 0.946083305$$

试用梯形公式和 Simpson 公式计算定积分。 $\int_0^1 10x^4 dx$,并与精确解比较,指出有几位有效数字。

解:

梯形公式:

$$T = \frac{1}{2}(f(0) + f(1)) = 0.5 \times 10 = 5$$

Simpson 公式:

$$S = \frac{1}{6}(f(0) + 4f(0.5) + f(1)) \approx 0.20833 \times 10 = 2.0833$$

精确解:

$$\int_0^1 10x^4 \, \mathrm{d}x = 0.2 \times 10 = 2$$

经过与精确解比较得知:

- 梯形公式的计算结果有 0 位有效数字;
- Simpson 公式的计算结果有 1 位有效数字。

附录 D 数值积分 38

选择函数 a,使 $\int_0^h f(x) dx = \frac{h}{2} [f(0) + f(h)] + ah^2 [f'(0) + f'(h)]$ 的代数精度尽量高,并求其代数精度。

解:

取 f(x) = 1, 则上述求积公式中: E = h, E =

取 f(x)=x,则左 $=\frac{h^2}{2}$,右 $=\frac{h^2}{2}+ah^2(1+1)$ 。令 $\frac{h^2}{2}=\frac{h^2}{2}+ah^2(1+1)$,得 a=0 再取 $f(x)=x^2$,则左 \neq 右。当取 a=0 时,求积公式具有 1 次代数精度。

附录 E 解线性代数的直接方法

E.1 计算题

将矩阵 A 分解为单位下三角矩阵 U,其中 $A = \begin{pmatrix} 1 & 2 & 6 \\ 2 & 5 & 15 \\ 6 & 15 & 46 \end{pmatrix}$ 然后求解该方

程组
$$Ax = \begin{pmatrix} 2\\3\\4 \end{pmatrix}$$
。

解:

$$C = \begin{pmatrix} 1 & & \\ 2 & 1 & \\ 6 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 6 \\ & 1 & 3 \\ & & 1 \end{pmatrix}$$

求解 Ly = b 得

$$y = \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}$$

求解 Ux = y 得方程的解为:

$$x = \begin{pmatrix} 4 \\ 14 \\ -5 \end{pmatrix}$$

直接分解法对 $A = \begin{pmatrix} 2 & 2 & 3 \\ 4 & 7 & 7 \\ -2 & 4 & 8 \end{pmatrix}$ 作 LU 分解,L 为单位下三角阵,给出 L 和 U 的具体形

式。

解:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, U = \begin{pmatrix} 2 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 9 \end{pmatrix}$$

用直接三角形分解 Doolittle 法解方程组 (不选主元)

$$\begin{pmatrix} 2 & 3 & 4 & 5 \\ 4 & 8 & 11 & 14 \\ 6 & 13 & 20 & 26 \\ 8 & 18 & 29 & 40 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 14 \\ 37 \\ 65 \\ 95 \end{pmatrix}$$

解:

$$L = \begin{pmatrix} 1 & & \\ 2 & 1 & \\ 3 & 2 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix}, U = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 2 & 3 & 4 \\ & 2 & 3 \\ & & 2 \end{pmatrix}$$
$$y = (14, 9, 5, 2)^{\top}, x = (1, 1, 1, 1)^{\top}$$

给定方程组
$$Ax = b$$
,其中 $A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 3 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 3 \\ 13 \\ 5 \end{pmatrix}.$

- 1. 用矩阵的直接三角分解法,给出矩阵 A 的的 LU 分解,并求方程组解;
- 2. 计算 $||A||_1$, $||A||_\infty$, $||b||_1$, $||b||_2$, $||b||_\infty$ 。

解:

矩阵 A 的 LU 分解为:

$$\begin{pmatrix} 1 & & & \\ 0 & 1 & & \\ 1 & 2 & 1 & \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ & 1 & 0 & 1 \\ & & 2 & 1 \\ & & & 2 \end{pmatrix}$$

方程组的精确解为:

$$x = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \end{pmatrix}$$

计算结果为:

$$||A||_1 = 8, ||A||_{\infty} = 10, ||b||_1 = 25, ||b||_2 = \sqrt{219} \approx 14.79865, ||b||_{\infty} = 13$$

附录 F 解线性方程组得迭代解法

- 1. 对矩阵 $A = \begin{pmatrix} 2 & 2 & 3 \\ 4 & 7 & 9 \\ -2 & 4 & 8 \end{pmatrix}$, $\|A\|_{\infty} = \underline{20}$, 对向量 $b = (4, -3, 9)^{\top}$, $\|b\|_{\infty} = \underline{9}$.
- 2. 对任意初始向量, 求解线性方程组 Ax = b 的迭代公式 $x^{k+1} = Gx^k + q, k = 0, 1, ...,$ 产生 的向量序列收敛到方程组唯一解的充分必要条件是矩阵 G 的谱半径 ho(G) < 1

3.
$$\exists \exists x = (1, -2)^{\top}, A = \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}, \quad \exists \exists x \in [1, -2], \quad \exists x \in [1, -2]$$

4. 己知
$$x = (1,2)^{\top}, A = \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$$
,则 $\|x\|_2 = \underline{\sqrt{5}}, \|Ax\|_1 = \underline{8}$ 。

5. 已知
$$A = \begin{pmatrix} 10 & -1 & -2 \\ 2 & 7 & -3 \\ 1 & -2 & 6 \end{pmatrix}, b = \begin{pmatrix} 7 \\ 6 \\ 5 \end{pmatrix}$$
, 如果用 Gauss-Seidel 迭代法解 $Ax = b$ 的近似

5. 已知
$$A = \begin{pmatrix} 10 & -1 & -2 \\ 2 & 7 & -3 \\ 1 & -2 & 6 \end{pmatrix}, b = \begin{pmatrix} 7 \\ 6 \\ 5 \end{pmatrix}$$
, 如果用 Gauss-Seidel 迭代法解 $Ax = b$ 的近似
$$\begin{cases} x_1^{n+1} = (7 + x_2^n + 2x_3^n)/10 \\ x_2^{n+1} = (6 - 2x_1^{n+1} + 3x_3^n)/7 \\ x_3^{n+1} = (5 - x_1^{n+1} + 2x_2^{n+1})/6 \end{cases}$$
由于系数矩阵 A 为按行主对角占优 的

原因, 所以迭代法收敛(提示: 填写收敛或发

6. 对上题的方程组 Ax = b, 如果要用 Guass 消去法求解方程组的精确解,则消元过程能(请 选择"能"或"不能")进行下去,理由是:系数矩阵 A 按行主对角占优。

计算题

给定线性方程组
$$\begin{cases} 6x_1+3x_2+12x_3=36\\ 8x_1-3x_2+2x_3=20 \end{cases}$$
 适当调整方程组,给出收敛的 Gauss-Seidel 迭
$$4x_1+11x_2-x_3=33$$

代公式。

解:

将原方程改写为

$$\begin{cases} x_1 = \frac{1}{2}(-x_1 - 4x_3 + 12) \\ x_2 = \frac{1}{3}(8x_1 + 2x_3 - 20) \\ x_3 = 4x_1 + 11x_3 - 33 \end{cases}$$

Gauss-Seidel 公式为

$$\begin{cases} x_1^{(k+1)} = \frac{1}{2}(-x_1^{(k)} - 4x_3^{(k)} + 12) \\ x_2^{(k+1)} = \frac{1}{3}(8x_1^{(k+1)} + 2x_3^{(k)} - 20) \\ x_3^{(k+1)} = 4x_1^{(k+1)} + 11x_3^{(k+1)} - 33 \end{cases}$$

对方程组
$$\begin{cases} 3x_1 + 2x_2 + 10x_3 = 15 \\ 10x_1 - 4x_2 - x_3 = 5 \\ 2x_1 + 10x_2 - 4x_3 = 8 \end{cases}$$

- 1. 试建立一种收敛的 Seidel 迭代公式,说明理由;
- 2. 取初值 $x^{(0)} = (0,0,0)^{\mathsf{T}}$,利用 (题1) 中建立的迭代公式求解,要求 $\|x^{(k+1)} x^{(k)}\|_{\infty} < 10^{-3}$ 。

解:

调整方程组的位置, 使系数矩阵严格对角占优:

$$\begin{cases} 10x_1 - 4x_2 - x_3 = 5\\ 2x_1 + 10x_2 - 4x_3 = 8\\ 3x_1 + 2x_2 + 10x_3 = 15 \end{cases}$$

故对应的高斯-赛德尔迭代法收敛, 迭代格式为:

$$\begin{cases} x_1^{(k+1)} = \frac{1}{10} (4x_2^{(k)} + x_3^{(k)} + 5) \\ x_2^{(k+1)} = \frac{1}{10} (-2x_1^{(k+1)} + 4x_3^{(k)} + 8) \\ x_3^{(k+1)} = \frac{1}{10} (-3x_1^{(k+1)} - 2x_2^{(k+1)} + 10) \end{cases}$$

取 $x^{(0)} = (0,0,0)^{\mathsf{T}}$, 经 7 步迭代可得:

$$x^* \ x^{(7)} = (0.999991459, 0.999950326, 1.000010)^\top$$

给定方程组
$$\begin{cases} 5x_1 - x_2 - x_3 - x_4 = 7\\ -x_1 + 7x_2 - 2x_3 - x_4 = 2\\ -x_1 - 2x_2 - 8x_3 - x_4 = 3\\ -x_1 - 2x_2 - 5x_4 = -9 \end{cases}$$

- 1. 写出 Jacobi 迭代法的迭代公式,判断其收敛性
- 2. 写出 Gauss-Seidel 迭代法的迭代公式,判断其收敛性。

解:

(1) Jacobi 迭代公式为:

$$\begin{cases} x_1^{k+1} = \frac{1}{5}(7 + x_2^k + x_3^k + x_4^k) \\ x_2^{k+1} = \frac{1}{7}(2 + x_1^k + 2x_3^k + x_4^k) \\ x_3^{k+1} = -\frac{1}{8}(3 + x_1^k + 2x_2^k + x_4^k) \\ x_4^{k+1} = -\frac{1}{5}(-9 + x_1^k + 2x_2^k) \end{cases}$$
 $(k = 0, 1, 2, ...)$

系数矩阵是主对角占优矩阵,故 Jacobi 迭代法收敛。

(2) Gauss-Seidel 迭代法公式为:

$$\begin{cases} x_1^{k+1} = \frac{1}{5}(7 + x_2^k + x_3^k + x_4^k) \\ x_2^{k+1} = \frac{1}{7}(2 + x_1^k + 2x_3^k + x_4^k) \\ x_3^{k+1} = -\frac{1}{8}(3 + x_1^k + 2x_2^k + x_4^k) \\ x_4^{k+1} = -\frac{1}{5}(-9 + x_1^k + 2x_2^k) \end{cases}$$
 $(k = 0, 1, 2, ...)$

系数矩阵是主对角占优矩阵,故 Gauss-Seidel 迭代法收敛。

对方程组
$$\begin{cases} 3x_1 + 2x_2 + 10x_3 = 15\\ 10x_1 - 4x_2 - x_3 = 5\\ 2x_1 + 10x_2 - 4x_3 = 8 \end{cases}$$

- 1. 试建立一种收敛的 Seidel 迭代公式,说明理由;
- 2. 取初值 $x^{(0)} = (0,0,0)^{\mathsf{T}}$,利用 (题1) 中建立的迭代公式求解,要求 $\|x^{(k+1)} x^{(k)}\|_{\infty} < 10^{-3}$ 。

解:

调整方程组的位置, 使系数矩阵严格对角占优:

$$\begin{cases} 3x_1 + 2x_2 + 10x_3 = 15\\ 10x_1 - 4x_2 - x_3 = 5\\ 2x_1 + 10x_2 - 4x_3 = 8 \end{cases}$$

故对应的高斯-塞德尔迭代法收敛。迭代格式为:

$$\begin{cases} x_1^{(k+1)} = \frac{1}{10} (4x_2^{(k)} + x_3^{(k)} + 5) \\ x_2^{(k+1)} = \frac{1}{10} (-2x_1^{(k+1)} + 4x_3^{(k)} + 8) \\ x_3^{(k+1)} = \frac{1}{10} (-3x_1^{(k+1)} - 2x_2^{(k+1)} + 15) \end{cases}$$

取 $x^{(0)} = (0,0,0)^{\mathsf{T}}$, 经 7 步迭代可得:

$$x^* \approx x^{(7)} = (0.999991459, 0.999950326, 1.000010)^{\top}$$

附录 G 方程求根

G.1 填空题

- 1. 对方程 $f(x) = (x-5)^3(x+2)$,可用牛顿迭代格式 $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$ 求方程根的近似值,署取初值为-1.5,牛顿迭代格式收敛阶至少为2,若取初值 4.5,牛顿迭代格式收敛阶为1,若采用修正的牛顿迭代格式 $x_{k+1} = x_k 3\frac{f(x_k)}{f'(x_k)}$,可使得修正的牛顿迭代格式至少二阶收敛。
- 2. 方程 $x^3 x 1 = 0$ 在区间 [1,2] 根的牛顿迭代格式为 $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)} = \frac{2x_k^3 + 1}{3x_k^2 1}$ 。

G.2 计算题

用迭代法求方程 $f(x) = x^3 + 4x^2 - 10$, 在 [1,1.5] 内的根,判断送代格式的收敛性

1.
$$x_{k+1} = x_k^3 + 4x_k^2 + x_k - 10$$
;

$$2. \ x_{k+1} = \sqrt{\frac{10}{x_k + 4}} \, \circ$$

解: (1) 取
$$x_0 = 1, x_{k+1} = x_k^3 + 4x_k^2 + x_k - 10$$

$$x_1 = -4, x_2 = -14, x_3 = -1984$$

因此此送代格式发散

$$\varphi(x) = x^3 + 4x^2 + x - 10$$

$$\varphi'(x) = 3x^2 + 8x, \varphi''(x) = 6x + 8, \varphi'''(x) = 6 > 1$$

因此, 此迭代格式发散

(2) 取
$$x_0=0, x_{k+1}=\sqrt{\frac{10}{x_k+4}}$$
 $x_1=1.5811,\ x_2=1.3386,\$ 根为 $1.3386,\$ 此迭代方法收敛

用牛顿法求方程 $xe^x - 1 = 0$ 的根, $x_0 = 0.5$,计算结果准确到四位有效数字。

解:

根据牛顿法得:

$$x_{k+1} = x_k - \frac{x_k e^{x_k} - 1}{(1 + x_k)e^{x_k}}$$

取迭代结果如下表

k	x_k	
0	0.5	
1	0.57102	
2	0.56716	
3	0.56714	

所以, 方程的根约为 0.56714

为求方程 $x^3 - x^2 - 1 = 0$ 在 $x_0 = 1.5$ 附近的一个根,要求:

- 1. 给出求解方程根的两种迭代公式;
- 2. 判断两种迭代公式的收敛性;
- 3. 写出求解上述方程的 Newton 送代公式。

解:

- (1) 方程的三种等价形式为:
- 1. $x=1+\frac{1}{x^2}$,相应的迭代公式为: $x_{n+1}=1+\frac{1}{x_n^2}$;
- 2. $x^3 = 1 + x^2$,相应的迭代公式为: $x_{n+1} = \sqrt[3]{1 + x_n^2}$ 。

$$\begin{array}{l} (2)\,\,\diamondsuit\,\,\varphi(x)=1+\frac{1}{x^2}, |\varphi'(1.5)|=\frac{2}{1.5^3}<1\,\, \mathrm{第一种迭代法收敛}\,.\\ \,\diamondsuit\,\,\varphi(x)=\sqrt[3]{1+x^2}, |\varphi'(1.5)|=\frac{2}{3}\times\frac{1.5}{(1+1.5^2)^{\frac{2}{3}}}=(\frac{\sqrt{8}}{1+2.25})^{\frac{2}{3}}<1\,\,\mathrm{第二种迭代法收敛}\,. \end{array}$$

(3) 直线的两点公式为:

$$\frac{y - y_0}{x - x_0} = k$$

把 $y_k = f(x_k) = x_k^3 - x_k^2 - 1, y_{k+1} = 0, k = f'(x_k) = 3x_k^2 - 2x_k^1$ 带入方程整理得:

$$x_{k+1} = x_k - \frac{x_k^3 - x_k^2 - 1}{3x_k - 2x_k} = \frac{2}{3}x_k + \frac{1}{9} + \frac{1}{9}\frac{2x_k - 9}{3x_k^2 - 2x_k}$$

用牛顿迭代法计算 $\sqrt{0.78265}$ 的近似值(保留四位有效数字)。

解:

令 $x=\sqrt{0.78265}$ 问题转化为求 $f(x)=x^2-0.78265=0$ 的正根。 由牛顿迭代公式: $x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}=x_k-\frac{x_k^2-0.78265}{2x_k}$ 取 $x_0=0.88$ 迭代结果

k	0	1	2	3
x_k	0.880000	0.884688	0.884675	0.884675

满足了精度要求: $\sqrt{0.78265} \approx 0.8847$ 。