

<u>Help</u>

HuitianDiao >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

☆ Course / Unit 1 Introduction to statistics / Lecture 2: Probability Redux

2. Two important probability tools

☐ Bookmark this page

Exercises due May 25, 2021 19:59 EDT

Two important probability tools

And so, what is n close to infinity?

Well, for this class, the rule of thumb

will be n larger than or equal to 30.

OK?

So of course, those numbers depend on how sure you want to be about your results.

If this was a life and death situation, you might want to go to n larger than 50, but n larger

than 30 will be fine enough for the purpose of this class.

Video

Download video file

Transcripts

Download SubRip (.srt) file
Download Text (.txt) file

Averages of random variables: Laws of Large Numbers and Central Limit Theorem

Let X, X_1, X_2, \ldots, X_n be i.i.d. random variables, with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X]$.

Laws (weak and strong) of large numbers (LLN):

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow[n \to \infty]{\mathbf{P}, \text{ a.s.}} \mu$$

where the convergence is in probability (as denoted by $\bf P$ on the convergence arrow) and almost surely (as denoted by a.s. on the arrow) for the weak and strong laws respectively.

Central limit theorem (CLT):

$$\sqrt{n} \xrightarrow{\bar{X}_n - \mu} \xrightarrow{(d)} \mathcal{N}(0, 1)$$

or equivalently,
$$\sqrt{n} \left(\bar{X}_n - \mu \right) \xrightarrow[n \to \infty]{(d)} \mathcal{N} \left(0, \sigma^2 \right)$$

where the convergence is in distribution, as denoted by (d) on top of the convergence arrow.

We will revisit the different modes of convergence near the end of this lecture.

Note: In 6.431x: Probability—the Science of Uncertainty and Data, we used yet another equivalent formulation of the CLT:

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1)$$

where $S_n = \sum_{i=1}^n X_i$ is the sum (not the average) of X_i .

Average of Gaussians

3 points possible (graded)

Let X_1, X_2, \ldots, X_n be i.i.d. **standard normal random variables**. For a finite n, what is the distribution of

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$
?

A Gaussian.
\bigcirc A χ^2 -distribution.
\bigcirc Cannot be determined for finite n , but asymptotically Gaussian.

In terms of n, what are the variance and mean of \overline{X}_n ?

$$Var(\overline{X_n}) =$$

$$\mathbb{E}\left[\overline{X_n}\right] = \boxed{}$$

Submit

You have used 0 of 3 attempts

CLT Concept Check

1 point possible (graded)

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with $\mathbb{E}[X] = \mu$, and $\text{Var}(X) = \sigma^2$. Assuming that n is very large, according to the Central Limit Theorem, what is the best approximate characterization of the distribution of \overline{X}_n ?

N	(0,	1).

$$\bigcap N(\mu, \sigma^2/n).$$

 \sim NT (\sim -21...)

	ends on the distribution of X .	
Submit	You have used 0 of 2 attempts	
. .		
	troduction to statistics:Lecture 2: Probability Redux / 2. Two important	Hide Discussion
	troduction to statistics:Lecture 2: Probability Redux / 2. Two important	Hide Discussion Add a Po
Г оріс: Unit 1 In	troduction to statistics:Lecture 2: Probability Redux / 2. Two important s	
Topic: Unit 1 In probability tool Show all pos	troduction to statistics:Lecture 2: Probability Redux / 2. Two important s	Add a Poble by recent activity > 5
Show all pos Not all In the s	troduction to statistics:Lecture 2: Probability Redux / 2. Two important s ts owed to use sigma or X	Add a Poble by recent activity > 5

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

<u>Open edX</u>

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

 \circledcirc 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>