随机过程核心公式与概念总集

综合整理版

2025年7月3日

目录

1	基础概念与数字特征	2
2	离散时间马尔可夫链 (DTMC)	2
3	连续时间马尔可夫链 (CTMC)	3
4	泊松过程与更新过程	3
5	高斯过程与布朗运动	4
A	附录: 常用概率分布与特征函数	4
	A.1 离散型	4
	A.2 连续型	4

1 基础概念与数字特征

随机过程 一族依赖于参数 $t \in T$ 的随机变量 $\{X(t), t \in T\}$ 。

- 均值函数: $\mu_X(t) = E[X(t)]$
- 自相关函数: $R_X(s,t) = E[X(s)X(t)]$
- 自协方差函数: $C_X(s,t) = \text{Cov}(X(s),X(t)) = R_X(s,t) \mu_X(s)\mu_X(t)$
- 方差函数: $D_X(t) = Var(X(t)) = C_X(t,t)$

平稳过程 • 严平稳 (Strict-Sense Stationary, SSS): 任意有限维分布对时间平移不变。

$$F_{X(t_1),\dots,X(t_n)}(x_1,\dots,x_n) = F_{X(t_1+\tau),\dots,X(t_n+\tau)}(x_1,\dots,x_n)$$

- 宽平稳 (Wide-Sense Stationary, WSS): 二阶矩具有平移不变性。
 - 1. 均值函数为常数: $E[X(t)] = \mu$
 - 2. 自相关函数只与时间差 $\tau = s t$ 有关: $R_X(s,t) = R_X(s-t) = R_X(\tau)$
- **关系**: 严平稳 ⇒ 宽平稳。若为高斯过程,则宽平稳 ⇔ 严平稳。

独立增量与平稳增量过程 • **独立增量**: 对于任意不重叠的时间区间, 过程的增量是相互独立的随机变量。

• 平稳增量: 增量的分布只依赖于时间区间的长度, 而与区间的起始位置无关。

2 离散时间马尔可夫链 (DTMC)

核心性质 • 马尔可夫性: 未来只与现在有关, 与过去无关。

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots) = P(X_{n+1} = j | X_n = i)$$

- 转移概率矩阵 (TPM): $P = [p_{ij}]$, 其中 $p_{ij} = P(X_{n+1} = j | X_n = i)$ 。 P 是一个行和为 1 的随机矩阵。
- C-K 方程: $P^{(n+m)} = P^{(n)}P^{(m)}$, 由此可得 $P^{(n)} = P^n$ 。

平稳分布 π • 定义方程: $\pi = \pi P \perp \sum_i \pi_i = 1$.

• **遍历定理:** 对于不可约、非周期的有限状态马氏链,存在唯一的平稳分布 π ,且

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad$$
対所有 $i, j \in S$

可逆性与细致平衡 • 细致平衡方程 (Detailed Balance): $\pi_i p_{ij} = \pi_i p_{ii}$ for all i, j.

• **可逆性** (Reversibility): 满足细致平衡方程的马氏链称为可逆马氏链。细致平衡是平稳的充分不必要条件。

3 连续时间马尔可夫链 (CTMC)

Q 矩阵与停留时间 • Q 矩阵 (转移速率矩阵): $Q = [q_{ij}]$.

- $-q_{ij}$ $(i \neq j)$: 从状态 i 到 j 的瞬时转移速率。
- $-q_{ii}=-\sum_{i\neq i}q_{ij}=-q_i$ 。Q矩阵行和为 0。
- **状态停留时间:** 在状态 i 的停留时间服从参数为 $q_i = -q_{ii}$ 的指数分布。

动态方程与平稳分布 • Kolmogorov 向前/向后方程:

$$P'(t) = P(t)Q$$
 (向前) 和 $P'(t) = QP(t)$ (向后)

形式解为 $P(t) = e^{Qt} = \sum_{k=0}^{\infty} \frac{(Qt)^k}{k!}$.

平稳分布 π:

$$\pi Q = 0$$
 \coprod $\sum_{i} \pi_i = 1$

生灭过程 (Birth-Death Process) 状态只能在相邻间转移的 CTMC。

- **速率:** 出生率 $\lambda_n = q_{n,n+1}$, 死亡率 $\mu_n = q_{n,n-1}$.
- 细致平衡方程: $\pi_n \lambda_n = \pi_{n+1} \mu_{n+1}$.
- **���**: $\pi_n = \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} \pi_0$.

4 泊松过程与更新过程

泊松过程 (Poisson Process, 速率 λ)

- 计数值分布: $N(t) \sim \text{Poisson}(\lambda t) \implies P(N(t) = k) = \frac{e^{-\lambda t}(\lambda t)^k}{k!}$.
- 到达间隔时间分布: $T_i \sim \text{i.i.d. } E(\lambda)$.
 - PDF: $f_T(t) = \lambda e^{-\lambda t}$
 - CDF: $F_T(t) = 1 e^{-\lambda t}$
 - 均值: $E[T_i] = 1/\lambda$
- 第 k 次事件发生时刻分布: $S_k = \sum_{i=1}^k T_i \sim \Gamma(k, \lambda)$ 。

- PDF:
$$f_{S_k}(t) = \frac{\lambda^k t^{k-1} e^{-\lambda t}}{(k-1)!}$$

- 数字特征:
 - $-E[N(t)] = \lambda t$
 - $\operatorname{Var}(N(t)) = \lambda t$
 - $-C_N(s,t) = \lambda \min(s,t)$
- **叠加与筛选**: 独立泊松过程之和仍是泊松过程,速率相加。对泊松过程以概率 p 筛选,得到的新过程仍是泊松过程,速率为 λp 。

更新过程 (Renewal Process)

- **定义**: 事件间隔时间 T_i 为 i.i.d. 非负随机变量, 分布为 F_T 。
- 更新函数 (均值): m(t) = E[N(t)].
- 基本更新方程: $m(t) = F_T(t) + \int_0^t m(t-u)f_T(u)du = F_T(t) + m(t) * f_T(t)$.
- 拉普拉斯变换解: $m^*(s) = \frac{f_T^*(s)}{s(1-f_T^*(s))}$.
- 初等更新定理: 若 $E[T_i] = \mu$,则 $\lim_{t\to\infty} \frac{m(t)}{t} = \frac{1}{\mu}$ 。

5 高斯过程与布朗运动

高斯过程 任意有限维分布都是多元正态分布。完全由其**均值函数** $\mu_X(t)$ 和**协方差函数** $C_X(s,t)$ 唯一确定。

维纳过程/布朗运动 W(t) 标准维纳过程 $(\sigma^2 = 1)$ 的性质:

- **定义**: W(0) = 0, 具有独立、平稳的高斯增量。
- 增量分布: $W(t) W(s) \sim N(0, t s)$ for s < t.
- 数字特征:
 - E[W(t)] = 0
 - $\operatorname{Var}(W(t)) = t$
 - 相关/协方差函数: $R_W(s,t) = C_W(s,t) = \min(s,t)$
- 高斯变量四阶矩 (零均值):

$$E[Z_1Z_2Z_3Z_4] = E[Z_1Z_2]E[Z_3Z_4] + E[Z_1Z_3]E[Z_2Z_4] + E[Z_1Z_4]E[Z_2Z_3]$$

A 附录: 常用概率分布与特征函数

A.1 离散型

- 二项分布 B(n,p): $P(X=k) = C_n^k p^k (1-p)^{n-k}, \, \phi_X(\omega) = (pe^{i\omega} + 1-p)^n$
- 泊松分布 $P(\lambda)$: $P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$, $\phi_X(\omega) = e^{\lambda(e^{i\omega}-1)}$
- 儿何分布 G(p): $P(X=k)=p(1-p)^{k-1}, k\geq 1, \, \phi_X(\omega)=\frac{pe^{i\omega}}{1-(1-p)e^{i\omega}}$

A.2 连续型

- 均匀分布 U(a,b): $f_X(x)=\frac{1}{b-a},\,\phi_X(\omega)=\frac{e^{i\omega b}-e^{i\omega a}}{i\omega(b-a)}$
- 指数分布 $E(\lambda)$: $f_X(x) = \lambda e^{-\lambda x}$, $\phi_X(\omega) = \frac{\lambda}{\lambda i\omega}$

- 正态分布 $N(\mu, \sigma^2)$: $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \, \phi_X(\omega) = e^{i\omega\mu \frac{\sigma^2\omega^2}{2}}$
- 伽玛分布 $\Gamma(\alpha,\beta)$ (shape-rate): $f_X(x)=\frac{\beta^{\alpha}x^{\alpha-1}e^{-\beta x}}{\Gamma(\alpha)}$