Naïve Bayesians

Back to Basics Series

06 Feb 2021

Developing the Bayesian muscle to solve a wide range of problems

Naïve Bayesian Philosophy

Intuitive (Visual)
Understanding of the
Bayesian Reasoning

Ability to model real world problems in a Bayesian Setting

Starting from Simple Probabilistic modelling

Adapting it in a a Bayesian setting
And moving towards ML models

Fluency in the Calculus of Bayesian Stats & ML model

Season 2: Back to Basics

Back to Basics

		Canonical Problem	Applications
Ep 1	Bayes Theorem	There are 2 boxes from which cookies can be taken from. Box A and Box B. Box A contains 10 chocolate cookies, Box B contains 5 ginger cookies. Given that you get a chocolate cookie which box was it taken from?	The Shy Librarian Problem Naive Bayes algorithm
Ep 2	Problems with Binomial Likelihoods	You have 2 coins C1 and C2. p(heads for C1) = .7 & P(heads for C2) = 0.6 You flip the coin 10 times. What is the probability that the given coin you picked is C1 given you have 7 heads and 3 tails?	A/B Testing
Ep 4	Disease Detection	A particular disease affects 1% of the population. There is an imperfect test for this disease: The test gives a positive result for 90% of people who have the disease, and 5% of the people who are disease-free. Given a positive test result – what is the probability of having the disease?	COVID Tests (PCR & Antibody)! Fraud Detection
Ep 5	Naive Bayes Classification	Given these words occur in this text what's the probability it's spam?	
Ep 6	Gaussian Naive Bayes Classification	Given the weights and heights of basketball players, what's the probability that person a is a basketball player given weight = w and height = h?	Any Classification Problem

Back to Basics

Canonical Problem **Applications** Ep 7 Suppose tanks were given a serial number based on the order in which they were German Tank manufactured. Given that you've observed a tank with serial number "10", how Problem many tanks were actually manufactured in total? Waiting Times Suppose you need to gather 10 patients for a trial. Each signup happens at time Planning Trials t_i (i=1, 10). How long do you have to wait after it took you 3 weeks to accrue 2 (Continuous Estimating Queues Distributions) signups?

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$\sum_{all j} P(D \mid \theta_j) P(\theta_j)$$
Normalising Constant

Recap | Canonical Problem

Given the words "Dear Friend" occur in this email what's the probability it's spam?

P(S | Dear Friend)

Canonical Problem

Given the size of an email is 1.8 MB & the time to read it is 2 seconds what's the probability it's spam?

P(S | 1.8MB, 2sec)

Canonical Problem Simplified

Given the size of an email is 1.8 MB & the time to read it is 2 seconds what's the probability it's spam?

P(5 | 1.8 MB)

KB

8 Normal Emails

180	976
190	1280
256	1500
780	1798

4 Spam Emails

KB

IN Normal

Spam

Fitting a Gaussian Distribution

8 Normal Emails

	976	180
KE	1280	190
	1500	256
	1798	780

$$\mu = 870 \text{ KB}$$
 $\sigma = 628 \text{ KB}$

4 Spam Emails

KB	980
	1850
	1950
	2000

$$\mu = 1697 \text{ KB}$$
 $\sigma = 481 \text{ KB}$

Fitting a Gaussian Distribution

P(S | 1.8MB) > P(N | 1.8MB)

Canonical Problem

Given the size of an email is 1.8 MB & the time to read it is 2 seconds what's the probability it's spam?

P(S | 1.8MB, 2sec)

Given the size of an email is 1.8MB & the time to read it is 2 seconds

8 Normal Emails

4 Spam Emails

Size

$$\mu = 870 \text{ KB}$$

$$\sigma = 628 \text{ KB}$$

 $\mu = 1697 \text{ KB}$ $\sigma = 481 \text{ KB}$

Time to read

2	5.2
2.5	6.5
3.8	7
4.5	10

sec

sec	1.8
	2
	2.95
	3.75

Given the size of an email is 1.8MB & the time to read it is 2 seconds

8 Normal Emails

4 Spam Emails

Size

$$\mu = 870 \text{ KB}$$
 $\sigma = 628 \text{ KB}$

 $\mu = 1697 \text{ KB}$ $\sigma = 481 \text{ KB}$

Time to read

$$\mu = 25.2 \text{ sec}_{.5}^{5.2}$$
 $\sigma = 2.6 \text{ sec}_{.0}^{7}$

$$\mu = 2.7 \sec_{\text{sec}}$$
 $\sigma = 0.9 \sec_{\text{3.75}}$

Fitting multiple Gaussian Distributions


```
P(S \mid 1.8MB, 2s) \propto P(1.8MB, 2s \mid S) \times P(S)
```

 \approx P(1.8MB | S) x P(2s | S) x P(S)

$$P(N | 1.8MB, 2s) \propto P(1.8MB | N) \times P(2s | N) \times P(N)$$

= $(2.1 \times E-4) \times (0.073) \times (2/3)$
= $1.0 E-5$

Given the size of an email is 1.8MB & the time to read it is 2 seconds...

Takeaways

References

StatQuest: Naive Bayes, Clearly Explained

https://www.youtube.com/watch?v=O2L2Uv9pdDA

StatQuest: Gaussian Naive Bayes, Clearly Explained!!!

https://www.youtube.com/watch?v=H3EjCKtlVog

