Sottoinsiemi di Pompeiu di R

Isabella Bosia

In questo documento, $\Sigma(\mathbf{A})$ è l'insieme delle traslazioni e delle riflessioni σ di \mathbf{A} . $\mathbf{A} + t$ indicherà l'insieme \mathbf{A} traslato di t.

Definizione. $\mathbf{A} \subseteq \mathbb{R}$ è di Pompeiu se data $f : \mathbb{R} \to \mathbb{R}$ continua tale che $\int f dx = k \in \mathbb{R}$ non dipende da $\sigma \in \Sigma$ si ha che f è costante. $\sigma(\mathbf{A})$

Sia **A** un insieme di misura infinita, sia $\sigma(\mathbf{A})$ una sua traslazione di t tale che $\mu(\mathbf{A} \cap \sigma(\mathbf{A})) = 0$ (dove μ è la misura di Lebesgue) e sia $\mathbf{B} = \mathbf{A} \cup \sigma(\mathbf{A})$.

Teorema 1. B è di Pompeiu ← A è di Pompeiu.

Dimostrazione. Dimostriamo prima che ${\bf B}$ è di Pompeiu $\Longrightarrow {\bf A}$ è di Pompeiu.

Supponiamo che **A** non sia di Pompeiu. Allora $\exists g$ non costante tale che $\int_{\sigma(\mathbf{A})} g(x) dx = k$ non dipende da σ .

Poiché A e A + t sono quasi disgiunti, abbiamo che

$$\int_{\mathbf{B}} g(x) dx = \int_{\mathbf{A}} g(x) dx + \int_{\mathbf{A}+t} g(x) dx = 2k$$
 (1)

Quindi $\exists g$ non costante con integrale costante sulle traslazioni di \mathbf{B} , il che contraddice il fatto che \mathbf{B} è di Pompeiu.

Si noti che questa implicazione non è limitata al caso in cui **A** sia di misura infinita.

Vediamo ora l'implicazione inversa, cioè ${\bf A}$ è di Pompeiu $\Longrightarrow {\bf B}$ è di Pompeiu.

Poiché A è di Pompeiu abbiamo

$$F(t) = \int_{\mathbf{A}} f(x+t) dx = k \quad \forall t,$$
 (2)

quindi

$$\int_{\mathbf{B}} f(x) dx = \int_{\mathbf{A}} f(x) dx + \int_{\mathbf{A}+t} f(x) dx = F(0) + F(t) = 2k.$$

Prendiamo una g continua per cui valga

$$\int_{\mathbf{B}+t} g(x) \mathrm{d}x = q \quad \forall t. \tag{3}$$

Se g non è costante, allora $\exists t'$ tale che $\int_{\mathbf{A}+t'} f(x) dx = q' \neq \frac{q}{2}$.

Sia A' = A + t'. Allora poiché la somma è costante,

$$\int_{\mathbf{A}'+t} g(x) \mathrm{d}x = q - q'.$$

Senza perdita di generalità, assumiamo q = 0.

$$\int_{\mathbf{A}'} g(x) dx + \int_{\mathbf{A}'+t} g(x) dx = 0$$

per cui

$$G(0) + G(t) = 0 \qquad \text{con } G(t) = \int_{A'} g(x+t) dx.$$

$$\int_{\mathbf{R}} g(x) dx = q \text{ (costante)} \implies G(0+y) + G(t+y) = 0 \quad \forall y$$

dunque G è periodica di periodo 2t.

$$\int_{\mathbf{B}+y} g(x) dx = \int_{\mathbf{A}'+y} g(x) dx + \int_{\mathbf{A}'+t+y} g(x) dx =
\int_{\mathbf{A}'} g(x+y) + g(x+t+y) dx = 0 \quad \forall y$$
(4)

Per la (4) abbiamo che g(x) + g(x + t) è periodica.

Se g(x) = k, allora g(x+t) = g(x) - k, perciò g(x+t) + g(x+t+t) = k, dunque anche g è periodica.

Per concludere la dimostrazione, l'unica funzione periodica con integrale convergente su un insieme di misura infinita e su tutte le sue traslazioni è la costante nulla, il che contraddice la (3).

Ecco alcuni esempi di applicazioni del teorema.

Esempio 1. $(a, +\infty)$ è di Pompeiu per ogni $a \in \mathbb{R}$.

Dimostrazione. Per ipotesi, abbiamo

$$\int_{a}^{\infty} f(x) dx = \int_{a+t}^{\infty} f(x) dx$$

per ogni $t \in \mathbb{R}$ e dunque $\int\limits_{a}^{a+t} f(x) \mathrm{d}x = 0$ per ogni $t \in \mathbb{R}$.

Poiché f è continua, se è positiva in un certo punto x_0 è positiva in tutto un intervallo $(x_0 - \varepsilon, x_0 + \varepsilon)$, quindi l'integrale su quell'intervallo non è 0. Dunque deve essere identicamente nulla su tutto \mathbb{R} .

Esempio 2. Insiemi come $\mathbf{X} = \bigcup_{k \in \mathbb{Z}} (a + 2kb, b + 2kb)$ non sono di Pompeiu.

Dimostrazione. Ovviamente esiste una traslazione σ tramite cui due copie di **X** ricoprono quasi tutto \mathbb{R} . Un semplice controesempio è:

$$f(x) = \begin{cases} 0 & x < 0 \\ x & x \in (0,1] \\ -x + 2 & x \in (1,3] \\ x - 4 & x \in (3,4] \\ 0 & x > 4 \end{cases}$$

con a = 0, b = 1 e k = 1, per cui l'integrale è uguale a 0 indipendentemente dalla traslazione σ .

Esempio 3. Insiemi come $\mathbf{Y} = \mathbf{X} \cap (a, \infty)$ sono di Pompeiu.

Dimostrazione. Esiste una traslazione σ tramite cui due copie di **Y** formano una semiretta, per cui la tesi segue dall'esempio 1.

Esempio 4. Se a > 0 allora $\mathbf{X} = (-\infty, a) \cup (2a, 3a)$ è di Pompeiu.

Dimostrazione. Poiché la lunghezza dell'intervallo (a, 2a) è la stessa dell'intervallo (2a, 3a), possiamo dividere **X** in due sottoinsiemi che sono l'uno la copia dell'altro, ed essi sono di Pompeiu come mostrato nell'esempio 3. Il discorso si può estendere anche a insiemi come $(-∞, a) \bigcup_{n < m} (2na, (2n + 1)a)$ per $m \in \mathbb{N}$. □

Alcune osservazioni non correlate al teorema 1 ma al problema in generale.

Esempio 5. Esiste una funzione non periodica con integrale indipendente da traslazioni su un compatto:

$$f(x) = \cos(2\pi x) + \cos\left(\frac{\sqrt{2}}{2}\pi x\right)$$
 $\mathbf{K} = [0,1] \cup \left[\sqrt{2}, \sqrt{2} + 1\right]$

Dimostrazione. L'integrale è costante perché

$$\int_{\mathbf{K}+t} \cos(2\pi x) + \cos\left(\frac{\sqrt{2}}{2}\pi x\right) dx = \tag{5}$$

$$\int_{\mathbf{K}} \cos(2\pi (x+t)) dx + \int_{\mathbf{K}} \cos\left(\frac{\sqrt{2}}{2}\pi (x+t)\right) dx =$$

$$= \frac{\sqrt{2}}{\pi} \left[\sin\left(\frac{\sqrt{2}}{2}\pi x\right) \Big|_{0}^{1} + \sin\left(\frac{\sqrt{2}}{2}\pi x\right) \Big|_{\sqrt{2}}^{\sqrt{2}+1} \right] =$$

$$= \frac{\sqrt{2}}{\pi} \left[\sin\left(\frac{\sqrt{2}}{2}\pi (1+t)\right) - \sin\left(\frac{\sqrt{2}}{2}\pi t\right) +$$

$$+ \sin\left(\frac{\sqrt{2}}{2}\pi (\sqrt{2}+1+t)\right) - \sin\left(\frac{\sqrt{2}}{2}\pi (\sqrt{2}+t)\right) \right]$$

Il primo seno diventa $\sin\left(\frac{\sqrt{2}}{2}\pi + \frac{\sqrt{2}}{2}\pi t\right)$, il terzo $-\sin\left(\frac{\sqrt{2}}{2}\pi + \frac{\sqrt{2}}{2}\pi t\right)$ e il quarto $-\sin\left(\frac{\sqrt{2}}{2}\pi t\right)$ per cui l'integrale nella (5) è uguale a 0.

Naturalmente la funzione non è periodica perché il periodo di $\cos(2\pi x)$ è 1 mentre quello di $\cos\left(\frac{\sqrt{2}}{2}\pi x\right)$ è $2\sqrt{2}$, il che risulta in qualche modo controintuitivo.

Gli strumenti dell'analisi di Fourier risultano poco applicabili, in quanto servono condizioni molto forti sull'insieme in esame perché ne consegua la convergenza $L^1(\mathbb{R})$ della funzione.

Esempio 6. Il fatto che $\mu(\mathbf{X}) = \infty$ e che $\int_{\mathbf{X}+t} f(x) dx = k \quad \forall t \in \mathbb{R}$ non è condizione sufficiente perché $f \in L^1(\mathbb{R})$.

Dimostrazione. Sia $b_0=-1$, $a_n=b_{n-1}+1$ e $b_n=a_n+\frac{1}{n}$. Ora consideriamo gli insiemi $\mathbf{A}=\bigcup_{n=1}^{\infty}(a_n,b_n)$, $\mathbf{B}=\bigcup_{n=1}^{\infty}(-b_n,-a_n)$ e $\mathbf{C}=\mathbf{A}\cup\mathbf{B}$. Nonostante la misura di \mathbf{C} sia infinita, l'unione finita di traslati di \mathbf{C} non ricopre mai tutto \mathbb{R} .

La funzione

$$f(x) = \begin{cases} 1 & -1 < x < 1\\ \frac{1}{|x|} & \text{altrimenti} \end{cases}$$

ha integrale convergente su ${\bf C}$ e su tutte le sue traslazioni ma naturalmente non su ${\mathbb R}$.