Exercise 5

Although it was not specified, we assume that v(n) is white.

A)

The variance of x(n) follows easily, as the variance of the sum of uncorrelated variables is the sum of their variances and $\operatorname{var}(ax) = a^2\operatorname{var}(x)$ if a is constant. We were also told that $\operatorname{var}(v(n)) = 1$. We then get

$$var (x(n)) = b(0)var (v(n)) + b(1)var (v(n-1)) + b(2)var (v(n-1))$$

$$= b(0)^{2} + b(1)^{2} + b(2)^{2}$$

$$= 1.53$$

в)

The result of filtering an input v(n) with a LSI filter can be computed from the convolution of the filter's impulse response and the input:

$$x(n) = h(n) * v(n)$$

The impulse response of the MA-process is finite and can be easily read from the coefficients. So we get:

$$x(n) = \sum_{m=-\infty}^{\infty} (b(0)\delta(n-m) + b(1)\delta(n-1-m) + b(2)\delta(n-2-m)) v(m)$$

Now if we think of filtering x(n) again with h(n), we could just take the convolution again. However as the convolution operation corresponds to multiplication of z-transforms, we get:

$$Y(z) = H(z)H(z)V(Z) = \left(b(0) + b(1)z^{-1} + b(2)z^{-2}\right)^{2}V(z)$$

From here we can see that the result is a MA(4) process.

c)

We can simply calculate the difference equation and then take the variance as in A):

$$y(n) = \sum_{l=0}^{2} \sum_{m=0}^{2} b(l)b(m)v(n-m-l)$$

$$\Rightarrow \text{var}(y(n)) = \sum_{l=0}^{2} \sum_{m=0}^{2} b(l)^{2}b(m)^{2} = \sum_{l=0}^{2} b(l)^{2} \sum_{m=0}^{2} b(m)^{2}$$

$$= \text{var}(x(n))^{2} = 2.3409$$