

Team Members 224

Tyler McKean Senior EE student

Augustus Standeven Senior EE student

Vulindsky Fanfan Senior EE student

Yohannes Kidane
Junior EE Student

Problem Definition @

- Designing a system of networked sensors for detection and characterization of unauthorized underground activity.
- Capstone Project Requirements:
 - Provide security for government property
 - Military bases at home/abroad
 - Government facilities
 - National Border Security
- Portable, durable, and unobtrusive
- Able to cover a 100-meter radius
- Cheap, Inexpensive Components
- Wireless Network of sensors
- Self-contained power source
- Able to process data and categorize types of signals
 - i.e., determine the likelihood of whether a signal received was from a passing truck or from a tunnel being dug.
- Able to send processed signal data to a smartphone/laptop for user to interpret data

System Diagram :-

Geophone Sensors with DC Offset PCB

 Passive Vibration sensors will be offset by 1.65V to capture peaks and troughs of oscillations.

***** Arduino Due

- 12-bit Resolution for A/D Conversion
- Sample Rate at 500Hz
- Serial communication via USB port to Raspberry Pi for data logging.

* Raspberry Pi w/ LED screen

- Data logging of Serial data from Arduino.
- Python scripts that Preprocess logged data and Extracts Statistical and Analytical Features that are imported into a KNN Machine Learning Model.
- Displays predictions of Vibrations to GUI, which includes History tab for previously occurred events.

❖ Power Brick Battery

Provides 12V 6000mAh/5V USB DC voltage

Design Improvements

First Prototype Design

Second Prototype Design

Design Improvements

- All Components tied together, hardware has changed
- Replaced AD2 with Arduino for ADC of vibrations data
- PCB connected to Geophones
- 2-meter length insulated wires for Geophones
- Raspberry Pi gathers the vibration data and displays it to GUI
- Introduced Power Brick battery to make system portable

Initial Prototype

Final System Design

DC Offset PCB

• Functionality:

- Reasoning:
 - Provide DC Offset to Geophone vibrations
 - Without DC Offset, Arduino would only capture the peaks and not the troughs of the oscillations
 - Allow Arduino to capture full oscillation information
- Equal resistor values will lead to voltage divider of Vref/2
- $^{\circ}$ Digital values range from 0-4095 and will be centered around $(2^{12})/2 => 4096/2 = 2048$

• Results:

- PCB measurements vs expected values have low tolerance
- Observed values from Arduino show 3 geophones (red, blue, green) centered just above 2040
- PCB functioning as intended

PCB Input	Measurement (V)	Expected Value (V)	Tolerance (%)
A0	1.64962	1.65	0.02
A1	1.64984	1.65	0.01
A2	1.65023	1.65	0.01

Collecting Samples-W-

- Performed Signal Capture to obtain 1215 samples across 5 different Vibration Classes
 - o 243 samples/each
- Recorded three 81 sec long observations
- Preprocessed in MATLAB to sparse data into 27 3 sec observations
- ∘ 27 x 3 Geophones = 81 observations
- \circ 3 runs x 81 = 243 samples
- Time performing Test:
- 3 mins per run
- 15 runs total
- ∘ ~ 45 mins 1hr total test length

Design Validation Tests 📠

Test #1: Machine Learning Model

- Performed by: Tyler/Vulindsky/Augustus
 - Extract 32 Features from large set of signals
 - Mean, Max, RMS, etc...
 - Use data to train ML model in MATLAB
 - Validate same model/data in Python
 - Compare results from MATLAB/Python
- Problem Statement:
 - Classify vibrations to 70-80% accuracy
 - Build a Signal Library to classify

Design Validation Tests L

Test #2: Data Acquisition & Logging

- Performed by Augustus/Tyler
 - Interconnections between Arduino and Raspberry Pi subsystems
 - Display vibration data to the LCD Display of Raspberry Pi
 - Additionally, saving the data to a .csv file that will be accessed by Python

Design Validation Tests L

Test #3: Battery Life of Power Supply

- Performed by Tyler/Yohannes
 - Verify the Power Brick total battery life
 - Power Ratings: 12V 6000mAh/5V USB
 - Raspberry Pi: 5V/2.5A
 - Arduino Due: 3.3V
 - Power Daisy Chained from Battery-> Raspberry Pi -> Arduino Due
 - Calculated length: 15 hours

TalentCell Rechargeable 12V 6000mAh/5V 12000mAh DC Output Lithium-Ion Battery Pack

Validation Results 👾

Test #1 Results

- Performed by: Tyler/Vulindsky/Augustus
 - Extract 32 Features from large set of signals
 - Mean, Max, RMS, etc...
 - Use data to train ML model in MATLAB
 - Validate same model/data in Python
 - Compare results from MATLAB/Python
- Problem Statement:
 - Classify vibrations to 70-80% accuracy
 - Build a Signal Library to classify
- Part of Machine Learning Toolbox
- Uses Supervised Learning to train different models of data provided known inputs with known classes
 - UI allows us to train multiple models for reference to which model fits our expected vibration signals

Validation Results 👾

Test#2 & 3: Data Logging and Battery

- Video shows data values captured and converted Arduino and serially sent and saved by Raspberry Pi
- Battery at Full Charge
 - Data acquisition started at 6:15pm and saved to .csv file on Raspberry Pi
 - Last recorded timestamp around4:50am next morning
 - About 10 hrs 35 mins of Battery life
- Total test time ~ 11 hours

2	[18:15:00.251122 0.003687] 2042	2045	2044
3	[18:15:00.256513 0.005392] 2042	2044	2043
4	[18:15:00.261645 0.005133] 2043	2044	2042

Initial recording time: 6:15pm

∢ →	data-03-28T-2021-00_00_00	(+)	
1048576	[04:50:48.916668 0.017031] 2043	2041	2042
1048575	[04:50:48.899638 0.016189] 2041	2040	2043
1048574	[04:50:48.883449 0.015818] 2043	2041	2042

Final recording time: 4:50am

Real-Time Vibration Detection

Serial Import Data Display on GUI Preprocessing Machine Feature Learning Extraction Algorithm

GUI

- GUI made in Python
 - Sensor tabs to display what each sensor predicts
 - History tab to look through previously classified signals and what time they occurred

Final Deliverables

- 9 Geophone Sensors
- DC Offset PCB
- Trained KNN Model that characterizes known vibrations to an 89% accuracy
- Arduino Due & Raspberry Pi 3 B+
- 6000mAh Lithium-Ion Power **Brick Battery**
- GUI that displays real-time data analysis to User via touch screen
- OneDrive folder with all software so that next team could continue and impove project next year

Final Budget & Components III

- Vibration Data Acquisition
 - Geophones
 - Arduino Due
 - Raspberry Pi 3 B+ with LCD Display
- Data Analysis
 - Altium Designer
 - PCB Design and Simulation
 - LTSpice/PSPICE
 - Filter/Amp Circuit Analysis
 - Matlab Toolboxes
 - Signal Processing Toolbox
 - DSP Toolbox
 - Machine Learning Toolbox
- MATLAB
 - Classification Learner for ML model validation
 - Preprocessing/Feature Extraction
- Python
 - GUI Development / Data Logging
- Arduino IDE
 - ADC of Arduino Due

SM-24 Geophone

DC Offset PCB

Arduino Due Raspberry Pi 3 B+ w/ LCD

Power Brick Battery

9 SM-24 Geophones	\$540
BNC Adapter and Alligator Clips for AD2	\$29
Arduino Due	\$42
Raspberry Pi 3 B+	\$35
Lithium Ion Battery	\$38
Raspberry Pi 3 B+ Case and LED screen	\$28
PCB Order	\$20
Micro HDMI to HDMI Adapter	\$11
Raspberry Pi 4 Touchscreen with Case & Fan	\$37
SanDisk 256GB Ultra microSDXC	\$35
	Total: \$815

Project Management =

Team Roles & Communication 🖟

Team Members

- Cpt. William Shepherd (Stevens Institute of Technology
 - Customer Mentor
- Dr. Tomas Materdey (UMass Boston)
 - Technical Manager
- Tyler McKean (Senior EE Student)
 - Time Management, MATLAB/Python Feature Extraction, Classification Learner, Arduino Due, PCB
- Augustus Standeven (Senior EE Student)
 - o Communications, MATLAB/Python Scripting, Signal Library, Raspberry Pi, Data Logging
- Vulindsky R. Fanfan (Senior EE Student)
 - Machine Learning, Python Implementation, GUI development and integration, Real time functionality of the system, Data Capture
- Yohannes Kidane (Junior EE Student)
 - Filter/Amp Design, Power Supply Management

Methods of Communication

Weekly Meetings

Team Meetings: Mon/Wed/Fri 10:00-4:00 PM

CM/TM Meetings: Mon/Fri 3:00-4:00 PM

Ethical Considerations

Engineering Design Ethics

Safety

IEC 60478 - Stabilized Power Supplies, DC Output

o Right supply voltage to each component,

Reassuring electrical safety as to not injure user or damage hardware.

- Use insulated wires
- Assure safe connections to onboard pins
- Design Requirements
 - Signals Classification
 - Self -sustained
- Economic Requirement
 - Stayed within budget
- ISO/IEC 25012 Quality of Data
 - Accuracy, Consistency, Credibility
- ISO/IEC 25064 User Needs Report
 - Accommodating User's needs by reporting necessary data that is useful

COVID-19

- Precautions and Prevention
 - Masks and Weekly Tests
 - Transferring of equipment
 - Stayed at least 6 feet apart
 - Avoid crowds and poorly ventilated space

Future Work *

Immediate Work

- Dataset Library
 - Improve library by collecting new dataset in different environments
- Battery
 - New battery to improve system sustainability
- Filter/Amplifier PCB
 - o Amplifier for weaker/low vibration signals
 - o Increase range of sensors
- Data Processing
 - o Increase the number of features

Potential Improvements

- Wireless Geophones
 - Greatly improve range and flexibility of the system
- Cameras
 - Adding more functionality to the system such as image classification and/or facial recognition
- Accoutic Sensors
 - Detect and classify sound

Acknowledgements †

- Our group would like to acknowledge the input and support of our Customer Mentor: William Shepherd and Technical Manager: Dr. Tomas Materdey
- Andrew Davis for ordering parts and lab access
- UMass Boston Engineering Department & Steven Institute of Technology

References

- [1] D. H. Cross, "Terrain Considerations And DataBase Development For The Design And Testing Of Devices To Detect Intruder-Induced Ground Motion," May-1978. [Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA055602.pdf.
- [2] Rubin, Marc & Camp, Tracy & van Herwijnen, Alec. (2012). Automatically Finding Avalanches in Geophone DataL A Pattern Recognition Workflow. International Snow Science Workshop (ISSW).
- [3] "Signal Processing and Machine Learning Techniques for Sensor Data Analytics Video," Video MATLAB. [Online]. Available: https://www.mathworks.com/videos/signal-processing-and-machine-learning-techniques-for-sensor-data-analytics-107549.html. [Accessed: 19-Apr-2021].
- [4] "Designing and Implementing Real-Time Signal Processing Systems Video," Video MATLAB. [Online]. Available: https://www.mathworks.com/videos/designing-and-implementing-real-time-signal-processing-systems-1502972724722.html. [Accessed: 19-Apr-2021].
- [5] KAFADAR, O. A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements In-text: (Kafadar, 2020) Your Bibliography: Kafadar, O., 2020. A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements. Geoscientific Instrumentation, Methods and Data Systems, 9(2), pp.365-373.
- [6] N. Evans and D. Chesmore, "Automated Identification of Vehicles using Acoustic Signal Processing," The Journal of the Acoustical Society of America, vol. 123, no. 5, pp. 3342–3342, 2008.
- [7] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.