PROBABILISTIC & UNSUPERVISED LEARNING

	Introduction & Foundations
	Unsupervised: Observe data, sind pattern I underlying structure Supervised: Observe input lowput pairs, learn to predict ser novel input Reinsporcements sind policy ser action chaire to maximize reward
· · · · · · · · · · · · · · · · · · ·	Probabilistic approachs p(x10) or p(y1x,0) generative model / likelihood
	Beliefs: isomorphic to probabilities Basic rules of probability: Dutch book theorem: $P(x) \geqslant 0$ $p(x) = 1$ $p(x) = \sum_{p(x)} P(x,y)$
	$P(x y) = P(x,y) / P(y)$ but $P(y x) = \frac{P(x y)P(y)}{P(x)}$ exist set or buts where $P(y x) = \frac{P(x y)P(y)}{P(x)}$ are gnaranteed to loce
,	Bayesian learning: Data D= {\times_1,000, \times_n} \tag{notes are net consistent} Models M, M2,000 Parameters O, (per model)
New M	$\frac{P(D \Theta; M_j)P(\Theta; M_j)}{P(D M_j)} \rightarrow P(M_i D) = \frac{P(D \Theta; M_j)P(\Theta; M_j)}{P(D M_j)}$ $\frac{P(D M_j)}{P(D M_j)} = \frac{P(D M_j)P(M_j)}{P(D M_j)} = \int d\Theta P(D M_j,\Theta)P(\Theta M_j)$ $\frac{P(D M_j)P(\Theta; M_j)P(\Theta; M_j)}{P(D M_j)} = P(D M_j,\Theta)P(\Theta M_j)P(\Theta; M_j$
SOK	Conjugate priors: - ser a given likelihood, conjugate prior give posterior in same samily as prior (Exponential samily likelihood: $\phi(\Theta)^T T(x) = \int_{0}^{\infty} \int_{0}^{$
	$\Rightarrow b(\theta) \propto d(\theta) e^{\phi(\theta)_{\perp} \alpha}$ $\Rightarrow b(\theta) \propto d(\theta) e^{\phi(\theta)_{\perp} \alpha}$ $(\Rightarrow b(\theta) \sim d(\theta)$ $(\Rightarrow b$

· ML learning for a Gaussking p (Στ μ, Σ)=N(μ, Σ) log likelhood --> L= log TTp(x,lµ, I)= Ilog p(x,lµ, I) $\frac{\partial}{\partial x} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = \frac{1}{N} \sum_{x_i} \sum_{x_i} \frac{\partial}{\partial x_i} = 0 \Rightarrow \hat{\mathcal{L}} = 0 \Rightarrow \hat{$ Multivariate linear regression: p(yloc, W, Iy) = N(Woc, Iy) $\frac{\partial L}{\partial W} \Rightarrow \hat{W}_{ML} = \left[\sum_{i} y_{i}, y_{i} \right] \left(\sum_{i} y_{i}, y_{i} \right)^{-1}$ -MAP [earning: $p(\underline{w}) = N(\underline{Q}, \underline{\theta}^{-1}), y_i \text{ Scalar}, y_i | \underline{x}_{\underline{w}} \sigma_y^{-n} N(\underline{w}^{T} \underline{x}_{\underline{w}} \sigma_y^{2})$ = log N(WMAP, Ew) $\left[\underline{W}_{MNP} = \underline{\Sigma}_{M} \frac{1}{\sigma_{0}^{2}} \underline{\Sigma}_{Q_{1}} \underline{x}_{1}, \underline{\Sigma}_{W} = (\underline{\Theta} + \underline{\sigma}_{0}^{2} \underline{\Sigma}_{X_{1}} \underline{x}_{1}) \right]$ Problems with multivariate Gaussian model: ·no higher order structure · ipredicts very sew outlies; not robust · D(0+1) paramotes

2: Latent Variable Models
[2] 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
Explain correlations in 20 by assuming dependence on latent variables y
can reduce parameters needed, capture an underlying generative process
· p(y), p(x/y), maybe p(x,y) in exponential gamily (p(x) is
· Probabilistic PCA:
$D = \{x_1, x_2, \dots, x_N\}, x \in \mathbb{R}^0 $ $Y = \{y_1, \dots, y_N\}, y \in \mathbb{R}^k $ $\{y_1, \dots, y_N\}, y \in \mathbb{R}^k $
note in Y = {y, con un}, y, EIRK
drafton $x = \Delta y + e_i$, $y \sim N(Q, \psi I)$
$\Rightarrow xiy \sim N(\bar{y}y, \psi]) \Rightarrow x \sim N(\bar{0}, \bar{v}_1 + \psi]$
$DK+1$ gree parameters ($VS \frac{O(O+1)}{2}$ is $X \sim N(O, \Sigma)$) Nove I (more interpretable, but harder to be inserence)
to projetin > PCA:
· Os V → O can only carpture K dimensions & Variance
()= UWU, U column = cigarvedon,
$\underline{\underline{W}}$ = diag $(\lambda_1, \ldots, \lambda_D)$
ML Learning
$1 = \log MQ, p(x \underline{A}, \psi)$
$\frac{\partial \lambda}{\partial \lambda} \Rightarrow \frac{\partial \lambda}{\partial \gamma} = 0$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
α , $\nabla = \widetilde{\Omega} \widetilde{\Gamma} \widetilde{\Lambda}$, and $\widetilde{\Sigma} \widetilde{\Omega} = \widetilde{\Omega} (\widetilde{\Gamma}_{-} + \widetilde{\Lambda} \widetilde{\Gamma})$
Projection
$Simd E(y_n x_n)$:
write ρ(ynlxn)=p(yn)p(xnlyn), consider xn sixed > ynlxn~N(βxn, I-βΔ), β= IΛΨ'

 $\Theta = \operatorname{ardian}_{X} E^{d(2)} [\operatorname{pd}_{X} b(x^{2})]$ $\bullet W - 2 \operatorname{pb}_{2}$ $\bullet W - 2 \operatorname{pb}_{2}$ (s) $\log \left[p(s|\theta) p(x|s,\theta) \right]$ sind Mm, Om, TIM by differentialing · EM gur FA: 1,m [log π_m - log σ_m - 20²_m (x; -μ_m)²] $d^{(3)} = b(a^{(3)} \times b(a^{(3)} \times b(a^{(3)} \times b(a^{(3)} \times b(a^{(3)}) \times b(a^{(3)} \times b(a^{(3)} \times b(a^{(3)}) \times b(a^{(3)} \times b(a^$ =N(Bxn, I-BD), B=ENU 0 = argmax, Eq.(4") [log p(x", y" 10)] log p(x,y,10)=logp(y,10)+logp(x,ly,0) do noths, tohe expectation by updaing

JE = 0 = \(\bigcirc \sum_{n, \text{\$\sigma_n \text{\$\s as Ego Hup tend to equations regression $\frac{\partial \hat{h}_{-}}{\partial \hat{z}} = 0 \implies \hat{\vec{b}} = \hat{\nabla} \vec{\Sigma} \hat{\nabla} + \frac{N}{r} \sum_{i} (\vec{x}^{\nu} - \hat{\nabla} \vec{h}^{\nu}) (\vec{x}^{\nu} - \hat{\nabla} \vec{h}^{\nu})_{\perp}$ EM ger Exponential Samilius; p(y,x10) has exp-samily germ $F(q, \Theta) = \int q(y) \log p(y, x|\Theta) dy + H(y|q)$ $= \Theta^{\dagger} E_{q(y)} [T(y, x)] + Nx - \log Z(\Theta) + C$ =) E-step: Compute expected surficient State under $Q = \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} [T(E_i, E_i)] - E[T(E_i, E_i)] = 0$

4: Latent Chain Models · Hidden Morkov Models: $\phi_{ij} = P(S_{i+1} = j | S_{i+1})$ $\Pi_{i} = P(S_{i+1} = j | S_{i+1})$ $A_{jk} = P(x_{j} = k | S_{j} = j)$ [or $A_{j}(x_{j}) = P(x_{j} = x_{j} | S_{j} = j)$ gor continuous x_{j}] $p(x_{11}, 2^{11}) = 11^2 \cdot \theta^{2^1 x^1 + 5} \phi^{2^{11}} \phi^{2^1 x^1}$ ·Learning: use EM · E - step : gird p(Stx1.7) $P(S_{t}=\lambda|x_{1:T}) = \frac{P(S_{t}=\lambda|x_{t+1})P(x_{t+1:T}|S_{t}=\lambda)}{P(x_{t+1})} = \frac{C_{t}(\lambda)B_{t}(\lambda)}{\sum_{i=1}^{\infty}A_{i}(\lambda)B_{t}(\lambda)}$ in produx, $(i) = \Pi_i \Theta_i(x_i)$, $\alpha_{++}(i) = \left(\sum_j \alpha_+(j) \phi_{ji}\right) \Theta_i(x_{++})$ ·Backwords normalise $\rightarrow \beta_{+}(i) = \sum_{j} \phi_{ij} \Theta_{j}(x_{+n}) \beta_{+n}(j)$ on me do $g(S_{i,T}) = \rho(S_{i,T}|X_{i,T},\Theta)$ \mathcal{M} -step: $E_{t}(i \to j) = P(S_{t}^{-1}, S_{t+1}^{-1}) | x_{17}) = \frac{\alpha_{t}(i) \phi_{ij} \beta_{j} (x_{t+1})}{P(x_{t-1})}$ $\hat{\Phi}_{ij} = \frac{\sum_{i=1}^{n} \varepsilon_{i}(x \rightarrow j)}{\sum_{i=1}^{n} \varepsilon_{i}(x \rightarrow j)}$

 $\hat{A}^{k} = \frac{\sum_{i \neq k} d(2^{k})}{\sum_{i \neq k} d(2^{k})}$

	$\mathcal{G}_{1} \sim 10(\mathcal{M}_{0}, \mathcal{Q}_{0})$
	yelgen M(Agen,Q)
•	Linear Gaussian State-Space Models xtlyt N(Cyt, R)
	xt = Cyt + Vt Vt, Wt O-mean uncorrelated Gaussian noise
	yr=Ayr-1+Wr y, Gaussian,
	P (2(1:T, y1:T) Multivariate Gaussian
	P (=1.17 9 17 17 000 32:00 7
5.50	· E-steps
	, Eztebe
	$\gamma \rho(y_t x_{i\tau}) = \rho(y_t y_{t+1},x_{i\tau}) \rho(y_t x_{i\tau})dy_{t+1}$
	alman
5	moothing backwards recursion
. ,	Laterda A a layored
	·M-Step?
	·M-step: Cnew = argmax [/] Eq [In p(x,1y,)] = (I >c, E[y,i) [IE[y,i)]
	0
1	Anew = argmax Eq [In p(yin ly,)]=[[E[yinyi]) [[yiyi]
	·Online: +
	· $\Lambda = \sum_{t=1}^{\infty} \ln p(x_t x_{1:t-1}) = \sum_{t=1}^{\infty} \Lambda_t \left(p(x_t x_{1:t-1}) \text{ determined by} \right)$ · use gradient rules to update A, C, Q, R as we go (learning rate = expectation about non-stationarity)
	Kalman siltering
	· use gradient ruly to update ACQR as we so
	(learning rate = expedation about non-stationarity)
	· Slow Feature Analysis?
	$(H \to T)$
A.	$Q = I - AA^T \rightarrow O$
8.39	R>0
	=> given series och sind C such that y :- changes or slowly or possible
	as slowly as possible
4	

68 Model Selection & GPs · Model Selection: · carnot use MCIMAP; more complex models always have higher likelihood · can compare nested models, stopping when odding complaity Bayesian Model Selection: V generating data

P(m/D)=p(D/m)p(m) openy improve some score · cr cross-validation P(m|0) = P(D|m) p(m), $P(D|m) = \int P(D|\Theta_m, m) P(\Theta_m|m) d\Theta_m$ ogives Bayesian Occams razor · too simple reddy unlikely to generate data
· too complex can generate too many datasets, so
unlikely to generate this specific one ·Computing p (DIM) · if likelihood p(DIOm, m) in exp fam, & using conjugate prior, then joint, pl 0,0 m/m) in exp savity too ·Approximations? · Laplace: approximate posterior by Gaussian antrol Bayerian inso critarians take Laplace & let N-> & log p(DIM) & log p(DIO+, m) - 2 log N
+ quich & easy to compute
+ can use one (as N-> or) . Hyperparameters: · models may be continuously parameterised by hyperparameters n, need p (D/n), can try * exact evidence, approximated, or * gradient ascent Sample n from pp(n10) op(DIn)p(n) (by MCMC Gaussian Process Regressions ·use prediction averagery; integrate out parameters, to predict conditional density at new data point ρ(y1x, D, m)= Sp(y1x, Θ, m) p(Θ1D, m) dΘ eg, linear regression:
wiDaN(w, Ew) => y1x,DM(Wz, x Zwx+o2) Morginalised linear regression: $\frac{\lambda_1 \times \nu_1 + O}{\lambda_2 \times \nu_1 \times \nu_2} = \lambda_1 \times \nu_2 \times \nu_2 \times \nu_2 \times \nu_2 \times \nu_3 \times \nu_4 \times \nu_4 + O \times \nu_4 \times \nu_$ · predicting: $[\overline{\lambda}, \overline{\lambda}] \overline{\lambda}, x \sim \mathcal{N}([\overline{0}], [\overline{\lambda}, \overline{x}, \overline{\lambda}, \overline{\lambda}, \overline{\alpha}, -\alpha, \overline{\lambda}])$ $= \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \kappa^{xy} & \kappa^{xx} \\ \kappa^{\bar{x}\bar{x}} & \kappa^{\bar{x}\bar{x}\bar{t}} \end{bmatrix}\right)$ can replace $x \in with \phi(x)$ & for non-linear regression as only inner products, up kernel trick; $(x_i x_j) = \phi(x_i)^T \phi(x_j)$ $([K_{xx}]_{ij} = K(\underline{x}_{i},\underline{x}_{i}), [K_{xx}]_{ij} = K(\underline{x}_{i},\underline{x}), K_{xx} = K(\underline{x}_{x})$ · Can also Sample Vector from GP (Parametered by mean)
· Can appinish hyperparameters in Fernel by gradient

ascent in log p(YIX, K)