1、概述

这篇 RecSys 2019 的 Best Paper,从标题看来就很强,有种"在座各位都是……"的感觉。这两天通读下来,个人认为论文的贡献主要还是在于对学界敲响警钟,而不在于 new idea。

总的来说,作者从2018年的顶会里挑选了18篇(RecSys:7, KDD:4, WWW:4, SIGIR:3)深度学习Top-N 推荐模型的文章,发现其中只有7篇(RecSys:1, KDD:3, WWW:2, SIGIR:1)的结果能被不那么难的进行复现,而这7篇之中有6篇是往往能被相对简单的算法超越。剩下的一篇确实能显著的超越baseline,但并不总能超越非神经网络的线性排序算法。

毕竟通篇强调 Reproducibility,作者当然有将实验代码公开到 GitHub 上: https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation ,有兴趣的同学可以进一步研究。

2. Baseline

作为参考、论文选择了以下7个算法作为 Baseline 算法。

2.1 TopPopular

顾名思义,直接取热门商品种的Top-N。其中热门程度通过显性或隐性的打分数量。

2.2 ItemKNN

传统的基于kNN与物品间相似度的协同过滤算法。

用 $\overrightarrow{r_i},\overrightarrow{r_j}\in R^{||U||}$ 分别表示物品i,j的打分向量,向量维度||U||表示用户总数;则物品间相似度可通过余弦相似度进行计算:

$$s_{ij} = rac{\overrightarrow{r_i}\overrightarrow{r_j}}{||\overrightarrow{r_i}|| * ||\overrightarrow{r_j}|| + h}$$

其中,打分向量可选用 TF-IDF 或者 BM25 进行加权;相似度也可不用余弦相似度,而直接用向量内积。

得到物品间相似度以后,根据用户所浏览过的物品找到相似的物品即可。

2.3 UserKNN

传统的基于kNN与用户间相似度的协同过滤算法。

整体流程与 ItemKNN 相似。用 $\overrightarrow{r_i},\overrightarrow{r_j}\in R^{\|I\|}$ 分别表示用户i,j的打分向量,向量维度 $\|I\|$ 表示物品总数;则用户间相似度可通过余弦相似度进行计算:

$$s_{ij} = rac{\overrightarrow{r_i} \overrightarrow{r_j}}{||\overrightarrow{r_i}|| * ||\overrightarrow{r_j}|| + h}$$

同样的,打分向量可选用 TF-IDF 或者 BM25 进行加权;相似度也可不用余弦相似度,而直接用向量内积。

得到用户间相似度以后,根据用户找到与其相似的用户,推送相似用户所浏览过的物品即可。

2.4 ItemKNN-CBF

与 ItemKNN 基本一致,只是不是简单的使用的物品的打分向量,而是采用基于物品content计算物品的特征向量。

用 $\overrightarrow{f_i},\overrightarrow{f_j}\in R^{\|F\|}$ 分别表示物品i,j的特征向量,向量维度 $\|F\|$ 表示特征总数;则物品间相似度可通过余弦相似度进行计算:

$$s_{ij} = rac{\overrightarrow{f_i}\overrightarrow{f_j}}{||\overrightarrow{f_i}|| * ||\overrightarrow{f_j}|| + h}$$

2.5 ItemKNN-CFCBF

结合 ItemKNN 与 ItemKN-CBF ,将 $\overrightarrow{r_i}$ 与 $\overrightarrow{f_i}$ 简单拼接成 $\overrightarrow{v_i} = [\overrightarrow{r_i}, w\overrightarrow{f_i}]$ 。后面的步骤一样,不再赘述。

2.6 $P^{3} \alpha$

基于图上random-walk的思想。

用 r_{ui} 表示用户u对物品i的打分, N_u 表示用户u打分的总数, N_i 表示物品i打分的总数。物品相似度计算如下:

$$egin{aligned} s_{ij} &= \sum_{u} p_{ju} * p_{ui} \ &= \sum_{u} (rac{r_{uj}}{N_{j}})^{lpha} * (rac{r_{ui}}{N_{u}})^{lpha} \end{aligned}$$

后面的步骤则与 ItemKNN 的一样。

2.7 $RP^{3}\beta$

在 $P^3\alpha$ 的基础上进行改进。假设物品的热门度为 h_i 。(存疑?)则物品相似度改为:

$$s_{ij} = (\sum_u (rac{r_{uj}}{N_j})^lpha * (rac{r_{ui}}{N_u})^lpha)/(q_i^eta * q_j^eta)$$

3、实验

对于所有的Baseline算法,统一利用 Scikit-Optimize 通过 Bayesian Search 自动找到最优参数。k取 5~800,h取0~1000,lpha,eta取0~2。

3.1 Collaborative Memory Networks (CMN)

Table 2: Experimental results for the CMN method using the metrics and cutoffs reported in the original paper. Numbers are printed in bold when they correspond to the best result or when a baseline outperformed CMN.

	CiteULike-a				
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.1803	0.1220	0.2783	0.1535	
UserKNN	0.8213	0.7033	0.8935	0.7268	
ItemKNN	0.8116	0.6939	0.8878	0.7187	
$P^3\alpha$	0.8202	0.7061	0.8901	0.7289	
$RP^3\beta$	0.8226	0.7114	0.8941	0.7347	
CMN	0.8069	0.6666	0.8910	0.6942	
		Pinterest			
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.1668	0.1066	0.2745	0.1411	
UserKNN	0.6886	0.4936	0.8527	0.5470	
ItemKNN	0.6966	0.4994	0.8647	0.5542	
$P^3\alpha$	0.6871	0.4935	0.8449	0.5450	
$RP^3\beta$	0.7018	0.5041	0.8644	0.5571	
CMN	0.6872	0.4883	0.8549	0.5430	
		Epi	nions		
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.5429	0.4153	0.6644	0.4547	
UserKNN	0.3506	0.2983	0.3922	0.3117	
ItemKNN	0.3821	0.3165	0.4372	0.3343	
$P^3\alpha$	0.3510	0.2989	0.3891	0.3112	
$RP^3\beta$	0.3511	0.2980	0.3892	0.3103	
CMN	0.4195	0.3346	0.4953	0.3592	

3.2 Metapath based Context for RECommendation (MCRec)

Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging metapath based context for top-n recommendation with a neural co-attention model. In Proceedings KDD '18. 1531–1540.

Table 3: Comparing MCRec against our baselines (Movie-Lens100k)

	PREC@10	REC@10	NDCG@10
TopPopular	0.1907	0.1180	0.1361
UserKNN	0.2913	0.1802	0.2055
ItemKNN	0.3327	0.2199	0.2603
$P^3\alpha$	0.2137	0.1585	0.1838
$RP^3\beta$	0.2357	0.1684	0.1923
MCRec	0.3077	0.2061	0.2363

3.3 Collaborative Variational Autoencoder (CVAE)

Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for recommender systems. In Proceedings KDD '17. 305–314.

Table 4: Experimental results for CVAE (CiteULike-a).

	REC@50	REC@100	REC@300
TopPopular	0.0044	0.0081	0.0258
UserKNN	0.0683	0.1016	0.1685
ItemKNN	0.0788	0.1153	0.1823
$P^3\alpha$	0.0788	0.1151	0.1784
$RP^3\beta$	0.0811	0.1184	0.1799
ItemKNN-CFCBF	0.1837	0.2777	0.4486
CVAE	0.0772	0.1548	0.3602

3.4 Collaborative Deep Learning (CDL)

HaoWang, NaiyanWang, and Dit-Yan Yeung. 2015. Collaborative deep learning for recommender systems. In Proceedings KDD '15. 1235–1244.

Table 5: Experimental results for CDL on the dense CiteULike-a dataset.

	REC@50	REC@100	REC@300
TopPopular	0.0038	0.0073	0.0258
UserKNN	0.0685	0.1028	0.1710
ItemKNN	0.0846	0.1213	0.1861
$P^3\alpha$	0.0718	0.1079	0.1777
$RP^3\beta$	0.0800	0.1167	0.1815
ItemKNN-CBF	0.2135	0.3038	0.4707
ItemKNN-CFCBF	0.1945	0.2896	0.4620
CDL	0.0543	0.1035	0.2627

3.5 Neural Collaborative Filtering (NCF)

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In Proceedings WWW '17. 173–182.

Table 6: Experimental results for NCF.

	Pinterest				
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.1663	0.1065	0.2744	0.1412	
UserKNN	0.7001	0.5033	0.8610	0.5557	
ItemKNN	0.7100	0.5092	0.8744	0.5629	
$P^3\alpha$	0.7008	0.5018	0.8667	0.5559	
$RP^3\beta$	0.7105	0.5116	0.8740	0.5650	
NeuMF	0.7024	0.4983	0.8719	0.5536	
	Movielens 1M				
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.3043	0.2062	0.4531	0.2542	
UserKNN	0.4916	0.3328	0.6705	0.3908	
ItemKNN	0.4829	0.3328	0.6596	0.3900	
$P^3\alpha$	0.4811	0.3331	0.6464	0.3867	
$RP^3\beta$	0.4922	0.3409	0.6715	0.3991	
NeuMF	0.5486	0.3840	0.7120	0.4369	
SLIM	0.5589	0.3961	0.7161	0.4470	

3.6 Spectral Collaborative Filtering (SpectralCF)

Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral Collaborative Filtering. In Proceedings RecSys '18. 311–319.

Table 7: Experimental results for SpectralCF (MovieLens1M, using own random splits and five repeated measurements).

	Cutoff 20		Cutoff 60		Cutoff 100	
	REC	MAP	REC	MAP	REC	MAP
TopPopular	0.1853	0.0576	0.3335	0.0659	0.4244	0.0696
UserKNN CF	0.2881	0.1106	0.4780	0.1238	0.5790	0.1290
ItemKNN CF	0.2819	0.1059	0.4712	0.1190	0.5737	0.1243
$P^3\alpha$	0.2853	0.1051	0.4808	0.1195	0.5760	0.1248
$RP^3\beta$	0.2910	0.1088	0.4882	0.1233	0.5884	0.1288
SpectralCF	0.1843	0.0539	0.3274	0.0618	0.4254	0.0656

3.7 Variational Autoencoders for Collaborative Filtering (Mult-VAE)

Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018. Variational Autoencoders for Collaborative Filtering. In Proceedings WWW '18. 689–698.

Table 8: Experimental results for Mult-VAE (Netflix data), using metrics and cutoffs reported in the original paper.

	REC@20	REC@50	NDCG@100
TopPop	0.0782	0.1643	0.1570
ItemKNN CF	0.2088	0.3386	0.3086
$P^3\alpha$	0.1977	0.3346	0.2967
$RP^3\beta$	0.2196	0.3560	0.3246
SLIM	0.2551	0.3995	0.3745
Mult-VAE	0.2626	0.4138	0.3756

Table 9: Experimental results for Mult-VAE using additional cutoff lengths for the Netflix dataset.

	NDCG@20	NDCG@50	REC@100	NDCG@100
SLIM	0.2473	0.3196	0.5289	0.3745
Mult-VAE	0.2448	0.3192	0.5476	0.3756

结语

这里先对论文进行简单的总结与摘要。文中提到的七篇论文的对比实验……光看数据也没有什么收获, 得等后面具体的看七篇论文后再展开来说了。