Corrigé du partiel

mercredi 6 avril

1 Ensembles et applications

Solution de l'exercice 1.

Les réponses sont dans le cours.

Solution de l'exercice 2.

1. On peut considérer l'application suivante :

$$\begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n \end{array}$$

2. On peut considérer l'application suivante :

$$\begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array}$$

3. On peut considérer l'application suivante :

$$\begin{array}{ccc}
\mathbb{N} & \to & \mathbb{N} \\
n & \mapsto & \begin{cases}
n-1 & si \ n \neq 0, \\
0 & si \ n = 0.
\end{cases}$$

4. On peut considérer l'application suivante :

Solution de l'exercice 3.

Exercice 3 de la feuille de TD 1.

Solution de l'exercice 4.

1. On
$$a g^{-1}(\{5,6\}) = \{1,2,3\}.$$

2.(a) Supposons $A \subseteq B$. Montrons que $f^{-1}(A) \subseteq f^{-1}(B)$. Soit $x \in f^{-1}(A)$. Par définition, $f(x) \in A$. Comme $A \subseteq B$, on a que $f(x) \in B$. Par définition, on a donc bien que $x \in f^{-1}(B)$.

- **2.(b)** Procédons par double inclusion. Soit $x \in f^{-1}(A \cup B)$. Alors $f(x) \in A \cup B$ donc $f(x) \in A$ ou $f(x) \in B$. Si $f(x) \in A$, alors $x \in f^{-1}(A)$ par définition et si $f(x) \in B$ alors $x \in f^{-1}(B)$ par définition. Dans tous les cas, on a bien $x \in f^{-1}(A) \cup f^{-1}(B)$. Soit maintenant $x \in f^{-1}(A) \cup f^{-1}(B)$. Alors $f(x) \in A$ ou $f(x) \in B$. Donc $f(x) \in A \cup B$ et $x \in f^{-1}(A \cup B)$.
- **2.(c)** Procédons par double inclusion. Soit $x \in X \setminus f^{-1}(A)$. Alors $x \notin f^{-1}(A)$, i.e. $f(x) \notin A$, i.e. $f(x) \in Y \setminus A$, i.e. $x \in f^{-1}(Y \setminus A)$. Soit $x \in f^{-1}(Y \setminus A)$. De même, on a $f(x) \notin A$ donc $x \notin f^{-1}(A)$, i.e. $x \in X \setminus f^{-1}(A)$.
- **3.** Montrons que f est injective. Soit $x \in X$ et $x' \in X$ tel que f(x) = f(x'). En posant y = f(x) on a que $f(x) \in \{y\}$ et $f(x') = f(x) \in \{y\}$. Donc $x \in f^{-1}(\{y\})$ et $x' \in f^{-1}(\{y\})$. Comme l'ensemble $f^{-1}(\{y\})$ ne contient au plus qu'un seul élément, on a x = x'.
- **4.(a).i** L'application ϕ est injective si pour tout $A \in \mathcal{P}(X)$ et $A' \in \mathcal{P}(X)$ tels que $A \neq A'$, on $a \phi(A) \neq \phi(A')$, i.e. $f^{-1}(A) \neq f^{-1}(A')$.
- **4.(a).ii** Autrement dit, l'application ϕ est injective si pour tout $A \in \mathcal{P}(X)$ et $A' \in \mathcal{P}(X)$ tels que $f^{-1}(A) = f^{-1}(A')$, on A = A'.
- **4.(a).iii** Soient $A \in \mathcal{P}(X)$ et $A' \in \mathcal{P}(X)$ tels que $f^{-1}(A) = f^{-1}(A')$. Montrons que A = A'. Procédons par double-inclusion. Soit $y \in A$. Comme f est surjective, il existe $x \in X$ tel que y = f(x). Dans ce cas, $f(x) = y \in A$ donc $x \in f^{-1}(A)$. Comme $f^{-1}(A) = f^{-1}(A')$, on a aussi que $x \in f^{-1}(A')$, i.e. $f(x) \in A'$. Donc $y = f(x) \in A'$. L'autre inclusion est symétrique.
- **4.(b).i** L'application ϕ est surjective si pour tout $B \in \mathcal{P}(X)$, il existe $A \in \mathcal{P}(Y)$ tel que $\phi(A) = B$, i.e. $f^{-1}(A) = B$.
- **4.(b).ii** Montrons que $\phi(A) = B$, i.e. $f^{-1}(A) = B$. Procédons par double-inclusion. Soit $x \in B$. Montrons que $x \in f^{-1}(A)$, i.e. $f(x) \in A$. En posant y = f(x), on a bien l'existence de $x \in B$ tel que f(x) = y, i.e. $y \in A$ par définition de A. Donc $f(x) \in A$ et $x \in f^{-1}(A)$. Soit maintenant $x \in f^{-1}(A)$. Montrons que $x \in B$. Alors $f(x) \in A$. En posant y = f(x), on a $y \in A$ donc il existe $x' \in B$ tel que y = f(x'). On a alors f(x) = y = f(x'). Comme f est injective, ceci implique x = x'. Comme $x' \in B$, on a aussi $x \in B$.
- **4.(b).iii** Soit $B \in \mathcal{P}(X)$. On pose A comme dans la question précédente. On a alors que $\phi(A) = B$ par la question précédente. On a donc bien montré que pour tout $B \in \mathcal{P}(X)$, il existe $A \in \mathcal{P}(Y)$ tel que $\phi(A) = B$, i.e. ϕ est surjective.

Solution de l'exercice 5.

Les réponses sont dans le cours pour 1., 2. et 3. et dans la feuille d'exercice pour 4.

Solution de l'exercice 6.

1. Vrai, c'est le théorème d'opération sur les limites.

2. Faux. Les suites

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n \end{array}$$

et

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & -n \end{array}$$

divergent. On sait que u diverge par le cours et si par l'absurde la suite v convergeait alors -v=u aussi. De plus, la suite u+v est la suite constance égale à 0, qui converge donc vers 0.

- **3.** Vrai. Si par l'absurde u + v convergeait alors v = (u + v) u aussi par le théorème d'opérations sur les limites. Absurde, puisque v diverge.
- **4.** Faux. On prend u la suite constante égale à 0 et v la suite identité. Alors $u \times v$ est aussi la suite constante égale à 0, qui converge.

Solution de l'exercice 7.

- **1.(a)** Soit A > 0. Comme \mathbb{R} est archimédien, il existe $N \in \mathbb{N}$ tel que A < N. Soit $n \ge N$. On $a : n \ge N > A$ donc $u_n = n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n > A$, i.e. u tend $vers +\infty$.
- **1.(b)** Supposons par l'absurde que v tend $vers +\infty$. On pose A=2. Alors, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n > A$. En particulier c'est vrai pour l'indice N, on a $u_N > A$, i.e. 1 > 2, absurde.
- **2.(a)** Soit A > 0. Comme u tend $vers + \infty$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n > A$. Soit $n \ge N$. Comme $v_n \ge u_n > A$, on a $v_n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $v_n > A$, i.e. v tend $vers + \infty$.
- **2.(b)** Soit A > 0. Comme A/2 > 0, et u tend vers $+\infty$, il existe $N' \in \mathbb{N}$ tel que pour tout $n \geq N'$, on a $u_n > A/2$. Comme également v tend vers $+\infty$, il existe $N'' \in \mathbb{N}$ tel que pour tout $n \geq N''$, on a $v_n > A/2$. On pose $N = \max(N', N'')$. Soit $n \geq N$. Comme $n \geq N'$ par définition du maximum, on a $u_n > A/2$. Comme $n \geq N''$ par définition du maximum, on a $v_n > A/2$. En additionnant ces deux inégalités, on obtient que $u_n + v_n > A/2 + A/2 = A$.
- **3.** Soit $u: \mathbb{N} \to \mathbb{R}$ croissante et non-majorée. Soit A > 0. Comme u n'est pas majorée, il existe $N \in \mathbb{N}$ tel que $u_N > A$. Soit $n \geq N$. Comme u est croissante, et que $N \leq n$, on a $u_N \leq u_n$. Ainsi, $u_n \geq u_N > A$, donc $u_n > A$. On a donc bien montré que pour tout A > 0 il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $u_n > A$, i.e. u tend vers $+\infty$.
- **4.(a)** On dit qu'une suite réelle u tend vers $-\infty$, et l'on note $u_n \xrightarrow[n \to +\infty]{} -\infty$, si : pour tout A < 0, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, on a $u_n < A$.

- **4.(b)** On peut adapter les questions 2.(a) et 2.(b) ainsi : soient $u : \mathbb{N} \to \mathbb{R}$ et $v : \mathbb{N} \to \mathbb{R}$ deux suites réelles.
 - 1. Si u tend vers $-\infty$ et que pour tout $n \in \mathbb{N}$, on a $v_n \leq u_n$, alors v tend vers $-\infty$.
 - 2. Si u et v tendent vers $-\infty$, alors u + v tend aussi vers $-\infty$.

Les preuves sont similaires à celles des questions 2.(a) et 2.(b).

- **4.(c)** On peut adapter la question 3 ainsi : si $u : \mathbb{N} \to \mathbb{R}$ est décroissante et non-minorée, alors u tend vers $-\infty$. La preuve est similaire. On rappelle les définitions suivantes :
 - (i) On dit que u est décroissante si pour tout $n \in \mathbb{N}$ et $m \in \mathbb{N}$ tels que $n \leq m$, on $a u_n \geq u_m$.
 - (ii) On dit que u est non-minorée si pour tout $M \in \mathbb{R}$, il existe $N \in \mathbb{N}$ tel que $u_N < M$.