Package 'rhep'

April 24, 2015

Index	1
tfreq	
minota	
-	
*	
R topics docume	ted:
NeedsCompilation no	
Suggests testthat	
•	
LazyData true	
License GPL-3	
Imports shiny	
Depends R (>= $3.1.2$)	
Description Miscellaneo	s R functions
Maintainer Raul Eyzagu	rre <reyzaguirre@gmail.com></reyzaguirre@gmail.com>
Author Raul Eyzaguirre	
Version 0.1.0	
Title Raul Eyzaguirre's R	zoue -
Title Dayl Everaguimala D	vada

Description

This function performs a chi-square goodness of fit test for a binomial distribution.

Usage

```
chisq.bin(x, f, n = NULL, p = NULL)
```

2 chisq.comb

Arguments

X	The observed values.
f	The observed counts.
n	Binomial parameter n.
р	Binomial parameter pi.

Details

If p is not specified, then it is estimated from the data. If there are categories with expected counts less than 5 or less than 1 a warning is shown.

Value

It returns a table with the contribution to the chi-square statistic for each category, the chi-square statistic, the degrees of freedom, and the p-value.

Author(s)

Raul Eyzaguirre.

Examples

```
x <- 0:6
f <- c(334, 369, 191, 63, 22, 12, 9)
chisq.bin(x, f, n = 10)
```

chisq.comb

Combine categories for a chi-square goodness of fit test

Description

This function combines categories for a chi-square goodness of fit test.

Usage

```
chisq.comb(chisq.test, combine)
```

Arguments

chisq.test The output of a chi-square goodness of fit test by functions chisq.bin or chisq.Pois.

combine A vector with the numbers of the categories to combine.

Details

This function only cobines categories on the extremes. It is recommended to combine categories when the expected counts are too low. As a rule of thumb, the chi-square approximation for the test statistic can be unreliable if some categories have expected counts smaller than 5 or if there is any with an expected count smaller than 1.

chisq.pois 3

Value

It returns a table with the contribution to the chi-square statistic for each category, the chi-square statistic, the degrees of freedom, and the p-value.

Author(s)

Raul Eyzaguirre.

Examples

```
x <- 0:6
f <- c(334, 369, 191, 63, 22, 12, 9)
output <- chisq.bin(x, f, n = 10)
# Combine categories 5, 6, and 7
chisq.comb(output, combine = c(5, 6, 7))</pre>
```

chisq.pois

Chi-square goodness of fit test for Poisson distribution

Description

This function performs a chi-square goodness of fit test for a Poisson distribution.

Usage

```
chisq.pois(x, f, lambda = NULL)
```

Arguments

x The observed valuesf The observed counts.lambda Poisson parameter.

Details

If lambda is not specified, then it is estimated from the data. If there are categories with expected counts less than 5 or less than 1 a warning is shown.

Value

It returns a table with the contribution to the chi-square statistic for each category, the chi-square statistic, the degrees of freedom, and the p-value.

Author(s)

Raul Eyzaguirre.

```
x <- 0:9
f <- c(6, 16, 48, 77, 72, 72, 46, 39, 15, 9)
chisq.pois(x, f)
```

4 histo_plot

emtd

Location and scale parameters estimation of a t distribution

Description

EM algorithm to estimate the location and scale of a t distribution for given degrees of freedom.

Usage

```
emtd(y, v, initmu = mean(y), inits = sd(y), tol = 1e-04)
```

Arguments

y The data.

v Degrees of freedom.

initmu Initial value for the location parameter.inits Initial value for the scale parameter.tol Tolerance for the iterative procedure.

Details

By default the initial values are set to the sample mean and standard deviation.

Value

It returns the estimated location and scale parameters for each iteration.

Author(s)

Raul Eyzaguirre.

Examples

```
# Some data y = c(10,12,16,15,15,17,20,21,16,24,13,22,14,15,16,16,17,18,19,18,23,20,30) # Estimates for a t(10) emtd(y, 10)
```

histo_plot

My first Shiny app

Description

A shiny user interface fragment to show an histogram.

Usage

```
histo_plot()
```

minota 5

mi	n	\cap	t	а

Predice la nota final del curso EP1 y EP2

Description

Esta funcion predice la nota final del curso basado en datos historicos y un modelo de regresion lineal.

Usage

```
minota(curso = NULL, vez = NULL, pp = NULL, prob = 0.95, pa1 = NULL,
  pa2 = NULL, pa3 = NULL, pa4 = NULL, pi1 = NULL, pi2 = NULL,
  ep = NULL)
```

Arguments

curso	1 o 2 (corresponde a EP1 o EP2).
vez	Numero de veces que se lleva el curso (1, 2 o 3).
рр	Promedio ponderado.
prob	Probabilidad para la prediccion.
pa1	Practica de aula 1.
pa2	Practica de aula 2.
pa3	Practica de aula 3.
pa4	Practica de aula 4.
pi1	Practica integrada 1.
pi2	Practica integrada 2.
ер	Examen parcial.

Details

No es necesario introducir todos los parametros, el modelo solo considera los que son introducidos.

Value

Devuelve la nota final estimada con un intervalo de prediccion, y el coeficiente de determinacion del modelo.

Author(s)

Raul Eyzaguirre.

```
minota(curso = 1, pa1 = 12)
```

6 multcoef

multcoef

Multinomial coefficient

Description

Computes the number of permutations of a multiset M of size n.

Usage

```
multcoef(n, counts)
```

Arguments

The size of M.

counts The counts for the repeated elements.

Details

For a set M with k unique elements with associate counts n_1, n_2, \ldots, n_k , you only need to specify in the counts argument the counts that are bigger than 1.

Value

It returns the multinomial coefficient

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

where

$$n = n_1 + n_2 + \ldots + n_k.$$

Author(s)

Raul Eyzaguirre.

```
# The number of permutations of the letters in the set M = {A,A,A,B,B,C} multcoef(6, c(3,2,1))   
# Same result with multcoef(6, c(3,2))
```

tfreq 7

|--|

Description

Constructs a frequency distribution table for a quantitative variable.

Usage

```
tfreq(data, limits = NULL, open = "right")
```

Arguments

data The observations to construct the frequency distribution table.

limits The class limits.

open Where to leave the class limits open, left or right. Defaults to right.

Details

If class limits are not specified, the Sturges' rule is used to calculate the number of class intervals k:

$$k \approx 1 + 3.3 \log n$$

Then, the left limit for the first class interval is set to the minimum value of the data, the range r is computed and the size of the class intervals is defined by:

$$c \approx \frac{r}{k}$$

where c is rounded up with the same number of decimal places as the data.

Value

It returns a frequency distribution table with columns for class mark, absolute and relative frequencies, and cumulative absolute and relative frequencies.

Author(s)

Raul Eyzaguirre.

```
# Some random data from a normal population with mean 10 and standard deviation 1
set.seed(1)
datos <- rnorm(100, 10, 1)
# Data with 3 decimal places
datos <- round(datos, 3)
# A summary of the data
summary(datos)
# Frequency table with 6 specified limits
tfreq(datos, c(7, 8, 9, 10, 11, 12, 13))
# Default method
tfreq(datos)</pre>
```

Index

```
chisq.bin, 1
chisq.comb, 2
chisq.pois, 3
emtd, 4
histo_plot, 4
minota, 5
multcoef, 6
tfreq, 7
```