DS-GA 1003: Homework 4 Kernels, Duals, and Trees

Due on Tuesday, March 22, 2016

 $Professor\ David\ Ronsenberg$

See complete code at: git@github.com:cryanzpj/1003.git

Yuhao Zhao Yz3085

2 Positive Semidefinite Matrices

- 2.1.

Let
$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, $A^T A = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and A is not symmetric.

- 2.2.

Since M is psd, we assume M is real and symmetric, thus by Spectral Theorem, we have

$$M = Q\Sigma Q^T$$

where Q is an orthogonal matrix $(Q^T = Q^{-1})$, Σ is diagonal.

$$\Sigma = Q^{-1}M(Q^T)^{-1} = Q^TMQ = \begin{pmatrix} q_1^TMq_1 & q_1^TMq_2 & \cdots & q_1^TMq_n \\ q_2^TMq_1 & q_2^TMq_2 & \cdots & q_2^TMq_n \\ \vdots & \vdots & \cdots & \vdots \\ q_d^TMq_1 & q_d^TMq_2 & \cdots & q_d^TMq_n \end{pmatrix}.$$

Since M is psd, $q_i^T M q_i \geq 0$, the diagonals of Σ are eigenvalues of M and are non-negative.

- 2.3.

i). If we have $M = BB^T$ for some B, for $\forall v \in \Re^n$

$$v^T M v = v^T B B^T v = (B^T v)^T (B^T v) = ||B^T v|| \ge 0$$

Therefore, M is psd

ii). If we know M is psd, by spectral theorem

$$M = Q\Sigma Q^T = Q\Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}}Q^T = Q\Sigma^{\frac{1}{2}}(Q\Sigma^{\frac{1}{2}})^T = BB^T$$

where $B = Q\Sigma^{\frac{1}{2}}$

 $\Sigma^{\frac{1}{2}}$ is a diagonal matrix whose diagonal equals the sqrt root of $diag(\Sigma)$

This proves a symmetric matrix M can be expressed as $M = BB^T$ iff M is psd

3 Positive Definite Matrices

- 3.1.

M is pd, by Spectral Theorem,

$$M = Q \Sigma Q^{T}$$

$$\Sigma = Q^{-1} M (Q^{T})^{-1} = Q^{T} M Q = \begin{pmatrix} q_{1}^{T} M q_{1} & q_{1}^{T} M q_{2} & \cdots & q_{1}^{T} M q_{n} \\ q_{2}^{T} M q_{1} & q_{2}^{T} M q_{2} & \cdots & q_{2}^{T} M q_{n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{d}^{T} M q_{1} & q_{d}^{T} M q_{2} & \cdots & q_{d}^{T} M q_{n} \end{pmatrix}.$$

Since M is pd, $q_i^T M q_i > 0$, the diagonals of Σ are eigenvalues of M and are positive.

- 3.2.

since M is positive definite, $M = Q\Sigma Q^T$

$$Q\Sigma Q^T M = Q\Sigma^{-1}Q^T Q\Sigma Q^T$$

Q is an orthogonal matrix, $Q^TQ = I$

$$RHS = Q\Sigma^{-1}\Sigma Q^T = QQ^T = I$$

Therefore, $Q\Sigma Q^T$ is the inverse of M

- 3.3.

M is psd and symmetric, for $\forall v \in \Re^n, v \neq \vec{0}$, and $\lambda > 0$

$$v^T (M + \lambda I)v = v^T M v + \lambda v^T v > 0$$

since $v^T M v \ge 0, \lambda v^T v > 0$. Therefore, $v^T (M + \lambda I) v$ is positive definite.

To show, $M + \lambda I$ is symmetric, we know that $\forall i \neq j, (M + \lambda I)_{i,j} = M_{i,j} = M_{j,i} = (M + \lambda I)_{j,i}$. Thus $M + \lambda I$ is also symmetric.

let $v_1, ..., v_n, \lambda_1, ..., \lambda_n$ be the n eigenvalues and eigenvectors of M

$$(M + \lambda I)v_i = Mv_i + \lambda v_i = \lambda_i v_i + \lambda v_i = (\lambda_i + \lambda)v_i$$

Therefore, v_i is also a eigenvector of $M + \lambda I$ with corresponding eigenvalue equals to $(\lambda_i + \lambda)$. $M + \lambda I = Q \Sigma Q^T, Q = \{v_1, ..., v_n\}, \Sigma_{i,i} = \lambda_i + \lambda$, Then we have

$$(M + \lambda I)^{-1} = (Q^T)^{-1} \Sigma^{-1} Q^{-1} = Q \Sigma^{-1} Q^T = \sum_{i=1}^n \frac{1}{\lambda_i + \lambda} v_i v_i^T$$

- 3.4.

M is symmetric psd and N is symmetric pd, $\forall v \in \Re^n, v \neq \vec{0}$

$$v^T(M+N)v = v^TMv + v^TNv$$

we know $v^T M v > 0, v^T N v > 0$

$$v^T(M+N)v > 0$$

This shows M + N is positive definite.

To show M+N is symmetric, $\forall i \neq j, (M+N)_{i,j} = M_{i,j} + N_{i,j} = M_{j,i} + N_{j,i} = (M+N)_{j,i}$, Thus M+N is also symmetric. From 3.2 we know that positive definite matrix has inverse. Therefore, M+N is invertible.

4 Kernel Matrices

$$K = XX^T = \begin{pmatrix} x_1^T x_1 & \cdots & x_1^T x_m \\ \vdots & \vdots & \vdots \\ x_m^T x_1 & \cdots & x_m^T x_m \end{pmatrix}$$

 $d(x_i, x_j) = ||x_i - x_j|| = \sqrt{(x_i - x_j) \cdot (x_i - x_j)} = \sqrt{x_i \cdot x_i + x_j \cdot x_j - 2x_i \cdot x_j} = \sqrt{K_{i,i} + K_{j,j} - 2K_{i,j}}$ Therefore, knowing K is equivalent to knowing the set of pairwise distance of vectors in S.

5 Kernel Ridge Regression

- 5.1.

Since

$$J(w) = ||Xw - y|| + \lambda ||w^2|| \tag{1}$$

$$\frac{\partial J}{\partial w} = 2X^T (Xw - y) + 2\lambda w I = 0 \tag{2}$$

we have

$$X^T X w - X^T y + \lambda w I = (X^T X + \lambda I)w - X^T y = 0$$
(3)

$$w^* = (X^T X + \lambda I)^{-1} X^T y \tag{4}$$

 XX^T is positive semidefinite and $\lambda > 0$, by 3.3, $XX^T + \lambda I$ is positive definite, thus invertible.

- 5.2.

Since
$$X^TXw + \lambda Iw = X^Ty$$
, $w = \frac{1}{\lambda}(X^Ty - X^TXw) = X^T\frac{1}{\lambda}(y - Xw)$
Thus $w = X^T\alpha$, where $\alpha = \frac{1}{\lambda}(y - Xw)$

- 5.3.

Since $w = X^T \alpha = \sum_{i=1}^{n} \alpha_i x_i$, w is a linear combination of data vectors

- 5.4.

since $w = X^T \alpha$ and $X^T X w + \lambda I w = X^T y$

$$X^T X X^T \alpha + \lambda I X^T \alpha = X^T y \tag{5}$$

$$X^{T}(XX^{T} + \lambda I)\alpha = X^{T}y \tag{6}$$

Therefore $\alpha = (XX^T + \lambda I)^{-1}y$

-5.5.

Since $w = X^T \alpha = X^T (XX^T + \lambda I)^{-1} y, XX^T = K$

$$Xw = XX^{T}(XX^{T} + \lambda I)^{-1}y \tag{7}$$

$$=K(K+\lambda I)^{-1}y\tag{8}$$

- 5.6.

For a new point \tilde{x}

$$\tilde{x}^T w^* = \tilde{x}^T X^T (K + \lambda I)^{-1} y \tag{9}$$

$$= (\tilde{x}^T x_1 \quad \tilde{x}^T x_2 \quad \cdots \quad \tilde{x}^T x_n) (K + \lambda I)^{-1} y \tag{10}$$

$$=k_{\tilde{x}}^{T}(K+\lambda I)^{-1}y\tag{11}$$

6 Decision Trees

• 6.1 Building Trees by Hand.

– 6.1.1.

a) Split on size:

i) Size
$$\leq 1$$
, $p_1 = \frac{2}{3}$, $N_1 = 3$, $Q_1 = \frac{4}{9}$, $p_2 = \frac{3}{8}$, $N_2 = 8$, $Q_2 = \frac{30}{64}$, $N_1Q_1 + N_2Q_2 = \frac{61}{12} \approx 5.08$ ii) Size ≤ 2 , $p_1 = \frac{2}{5}$, $N_1 = 5$, $Q_1 = \frac{12}{25}$, $p_2 = \frac{3}{6}$, $N_2 = 6$, $Q_2 = \frac{18}{36}$, $N_1Q_1 + N_2Q_2 \approx 5.4$ iii) Size ≤ 3 , $p_1 = \frac{2}{6}$, $N_1 = 6$, $Q_1 = \frac{16}{36}$, $p_2 = \frac{3}{5}$, $N_2 = 5$, $Q_2 = \frac{12}{25}$, $N_1Q_1 + N_2Q_2 \approx 5.06$ iv) Size ≤ 4 , $p_1 = \frac{4}{9}$, $N_1 = 9$, $Q_1 = \frac{40}{81}$, $p_2 = \frac{1}{2}$, $N_2 = 2$, $Q_2 = \frac{1}{2}$, $N_1Q_1 + N_2Q_2 \approx 5.4$

ii) Size
$$\leq 2$$
, $p_1 = \frac{2}{5}$, $N_1 = 5$, $Q_1 = \frac{12}{25}$, $p_2 = \frac{3}{6}$, $N_2 = 6$, $Q_2 = \frac{18}{36}$, $N_1Q_1 + N_2Q_2 \approx 5.4$

iii) Size
$$\leq 3$$
, $p_1 = \frac{2}{6}$, $N_1 = 6$, $Q_1 = \frac{16}{36}$, $p_2 = \frac{3}{5}$, $N_2 = 5$, $Q_2 = \frac{12}{25}$, $N_1Q_1 + N_2Q_2 \approx 5.06$

iv) Size
$$\leq 4$$
, $p_1 = \frac{4}{9}$, $N_1 = 9$, $Q_1 = \frac{40}{81}$, $p_2 = \frac{1}{2}$, $N_2 = 2$, $Q_2 = \frac{1}{2}$, $N_1Q_1 + N_2Q_2 \approx 5.4$

b) split on spots:

v) spots = N,
$$p_1 = 0, N_1 = 4, Q_1 = 0, p_2 = \frac{5}{7}, N_2 = 7, Q_2 = \frac{20}{49}, N_1Q_1 + N_2Q_2 \approx 2.85$$

c) split on color:

vi) color = white,
$$p_1 = \frac{2}{5}$$
, $N_1 = 5$, $Q_1 = \frac{12}{25}$, $p_2 = \frac{3}{6}$, $N_2 = 6$, $Q_2 = \frac{18}{36}$, $N_1Q_1 + N_2Q_2 \approx 5.4$

The minimal weighted impurity measure is obtained by splitting on the spots.

				Original				
	Spots	= N	K	×		Spots	= Y	
Poisonous	Size	Spots	Color		Poisonous	Size	Spots	
N	5	N	White	-	N	2	Y	7
N	2	N	Brown		N	3	Y]
N	4	N	White		Y	5	Y	7
N	1	N	Brown		Y	4	Y	I
					Y	4	Y	I
					Y	1	Y	7
					Y	1	Y	I

- 6.1.2.

Since the left node is already pure, we continue splitting on the right node.

a) Split on color:

i) color = white,
$$p_1 = \frac{2}{3}, N_1 = 3, Q_1 = \frac{4}{9}, p_2 = \frac{3}{4}, N_2 = 4, Q_2 = \frac{6}{16}, N_1Q_1 + N_2Q_2 \approx 2.83$$

b) Split on Size:

ii) Size
$$\leq 1$$
, $p_1 = 0$, $N_1 = 2$, $Q_1 = 0$, $p_2 = \frac{3}{5}$, $N_2 = 5$, $Q_2 = \frac{12}{25}$, $N_1Q_1 + N_2Q_2 \approx 2.4$

ii) Size
$$\leq 1$$
, $p_1 = 0$, $N_1 = 2$, $Q_1 = 0$, $p_2 = \frac{3}{5}$, $N_2 = 5$, $Q_2 = \frac{12}{25}$, $N_1Q_1 + N_2Q_2 \approx 2.4$
iii) Size ≤ 2 , $p_1 = \frac{2}{3}$, $N_1 = 3$, $Q_1 = \frac{4}{9}$, $p_2 = \frac{3}{4}$, $N_2 = 4$, $Q_2 = \frac{6}{16}$, $N_1Q_1 + N_2Q_2 \approx 2.83$
iv) Size ≤ 3 , $p_1 = \frac{2}{4}$, $N_1 = 4$, $Q_1 = \frac{1}{2}$, $p_2 = 1$, $N_2 = 3$, $Q_2 = 0$, $N_1Q_1 + N_2Q_2 \approx 2$

v) Size
$$\leq 4$$
, $p_1 = \frac{4}{6}$, $N_1 = 6$, $Q_1 = \frac{4}{9}$, $p_2 = 1$, $N_2 = 1$, $Q_2 = 0$, $N_1Q_1 + N_2Q_2 \approx 2.66$

The minimal weighted impurity measure is obtained by splitting on the Size ≤ 3 .

Let region 1, 2, 3 be $\{SPOT = N\}$, $\{SPOTS = Y, SIZE \le 3\}$, $\{SPOTS = N, SIZE > 3\}$ The predicted probability of poisonous is:

Region	Prob of Poisonous	Prob of not Poisonous
1	0 %	100 %
2	50~%	50~%
1	100~%	0 %

- 6.1.3.

In the given dataset, the three features are binary, there will be at most 8 nodes. If we build the tree until all nodes are either pure or cannot be split further, the error will occurs on the data that have the same feature values but different Y values. In the given dataset, the training error happens in:

Y	A	В	\mathbf{C}
0	0	1	1
1	0	1	1

There will be 2 sample incorrectly labeled, therefore, the training error is $\frac{2}{11}\approx18.1\%$

• 6.2 Investigating Impurity Measures.

- 6.2.1.

Misclassification rates:

Model A:
$$\frac{1}{4} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{2} = \frac{1}{4}$$

Model B: $\frac{2}{6} \times \frac{6}{8} + 0 \times \frac{2}{8} = \frac{1}{4}$

Cross-entropy:

Model A:
$$2(-\frac{3}{4}log(\frac{3}{4}) \times \frac{1}{2} - \frac{1}{4}log(\frac{1}{4}) \times \frac{1}{2}) \approx 0.5623$$

Model B: $-\frac{2}{6}log(\frac{2}{6}) \times \frac{6}{8} - \frac{4}{6}log(\frac{4}{6})\frac{6}{8} - 1log(1) \times \frac{2}{6} - 0 \approx 0.477$

Gini impurity:

Model A:
$$2(\frac{3}{4}\frac{1}{4}\frac{1}{2} + \frac{1}{4}\frac{3}{4}\frac{1}{2}) = \frac{6}{16} = 0.375$$

Model B: $2(\frac{1}{3}\frac{2}{3}\frac{6}{8} + 0) = \frac{2}{6} \approx 0.333$

Therefore, the Misclassification rates are identical for Model A and Model B, while the Cross-entropy and Gini impurity for Model B are less than that for Model A.

7 Representer Theorem

- 7.1.

$$m_0 = Proj_M x$$
, and $||x||^2 = ||m_0||^2 + ||x - m_0||^2$
 $||x|| = ||m_0|| \to ||x - m_0||^2 = 0$
 $||x - m_0||^2 = \langle x - m_0, x - m_0 \rangle = 0$ iff $x - m_0 = \vec{0}$ by positive-definiteness of inner product. Therefore $||x|| = ||m_0||$ only when $x = m_0$

- 7.2.

 $R(\cdot)$ is strictly increasing, let $M = span(\psi(x_1),...,\psi(x_n))$, assume w^* is a minimizer, and $w = \operatorname{Proj}_M w^*$. So $\exists \alpha$ s.t. $w = \sum \alpha_i \psi(x_i)$

case 1:
$$||w|| = ||w^*||$$

from 7.1, we know that if $||w|| = ||w^*||$, then $x = m_0$

This immediately shows that w is a minimizer and w has the form $\sum \alpha_i \psi(x_i)$

case 2: $||w|| < ||w^*||$

Since $R(\cdot)$ is strictly increasing, $R(||w||) < R(||w^*||)$

We know that $w^{\perp} = w^* - w$ is orthogonal to M

$$< w^*, \psi(x_i) > = < w + w^{\perp}, \psi(x_i) > = < w, \psi(x_i) >$$
 (12)

$$L(\langle w^*, \psi(x_1) \rangle, ..., \langle w^*, \psi(x_n) \rangle) = L(\langle w, \psi(x_1) \rangle, ..., \langle w, \psi(x_n) \rangle)$$
(13)

Therefore,

$$J(w) = R(||w||) + L(\langle w, \psi(x_1) \rangle, ..., \langle w, \psi(x_n) \rangle)$$
(14)

$$< R(||w^*||) + L(< w^*, \psi(x_1) >, ..., < w^*, \psi(x_n) >) = J(w^*)$$
 (15)

This contradict to the fact that w^* is a minimizer. Therefore, this case is discarded.

In conclusion, only case 1 is possible, then we proved that all minimizers have the form $w = \sum \alpha_i \psi(x_i)$

- 7.3.

$$w \in \Re^d$$
, let $A = \begin{pmatrix} \psi_1(x_1) & \cdots & \psi_d(x_1) \\ \vdots & \vdots & \vdots \\ \psi_1(x_n) & \cdots & \psi_d(x_n) \end{pmatrix}$ be the design matrix, b be the bias, $L(w) = Aw + b$

R and L are both convex, let $w_1, w_2 \in \mathbb{R}^d$ and $0 \le c \le 1$

$$J(cw_1 + (1-c)w_2) = R(||cw_1 + (1-c)w_2||) + L(A(cw_1 + (1-c)w_2) + b)$$
(16)

Since L is convex and Aw + b is an affine function, L(Aw + b) is convex.

$$L(A(cw_1 + (1-c)w_2) + b) \le cL(Aw_1 + b) + (1-c)L(Aw_2 + b)$$
(17)

 $||cw_1 + (1-c)w_2|| \le c||w_1|| + (1-c)||w_2||$, R is increasing and convex

$$R(||cw_1 + (1 - c)w_2||) \le R(c||w_1|| + (1 - c)||w_2||) \le cR(||w_1||) + (1 - c)R(||w_2||) \tag{18}$$

eqn (17) and (18) together shows that

$$J(cw_1 + (1-c)w_2) < cJ(w_1) + (1-c)J(w_2)$$
(19)

This proves J is convex.

8 Ivanov and Tikhonov Regularization

• 8.1 Tikhnov optimal implies Ivanov optimal.

- 8.1.1.

Since for some $\lambda > 0, f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \ \phi(f) + \lambda \Omega(f),$ then :

$$\nabla \phi(f^*) + \lambda \nabla \Omega(f^*) = 0 \tag{20}$$

Let $r = \Omega(f^*) > 0$, we need to show that :

 f^* is also a solution to argmin $\phi(f)$ s.t $\Omega(f) \leq \Omega(f^*)$

Approach 1:

if f^* is not a optimum for Ivanov, then $\exists \hat{f}$ s.t $\phi(\hat{f}) < \phi(f^*)$, and $\Omega(\hat{f}) \leq \Omega(f^*)$

This means $\phi(\hat{f}) + \lambda \Omega(\hat{f}) < \phi(f) + \lambda \Omega(f)$, and this contradict to the fact that f^* is the Tikhonov solution. Therefore, f^* is also a solution to argmin $\phi(f)$ s.t $\Omega(f) \leq \Omega(f^*)$

Approach 2:

The Lagrangian to this Ivanov problem is:

$$L(f) = \phi(f) + \lambda(\Omega(f) - \Omega(f^*)) \tag{21}$$

We claim that f^* is a solution, by the first order condition:

$$\nabla L(f^*) = \nabla \phi(f^*) + \lambda \nabla \Omega(f^*) = 0 \qquad \text{(from (20))}$$

$$\Omega(f^*) - \Omega(f^*) = 0 \tag{23}$$

Therefore f^* is also a Ivanov solution

• 8.2 Ivanov optimal implies Tikhonov optimal.

-8.2.1.

The Lagrangian for Ivanov problem is:

$$L(w,\lambda) = \phi(w) + \lambda(\Omega(w) - r) \tag{24}$$

- 8.2.2.

The duel problem is:

$$d^* = \sup_{\lambda \succeq 0} g(\lambda) = \sup_{\lambda \succeq 0} \inf_{w} L(w, \lambda) = \max_{\lambda \succeq 0} \min_{w} \phi(w) + \lambda(\Omega(w) - r)$$
 (25)

-8.2.3.

Since we have $\phi(w^*) = g(\lambda^*)$, and $\lambda^* = \underset{\lambda \succeq 0}{\operatorname{argmin}} g(\lambda)$, we also assume strong duality:

$$\phi(w^*) = g(\lambda^*) \tag{26}$$

$$=\inf_{w}\phi(w) + \lambda^{*}(\Omega(w) - r) \tag{27}$$

$$\leq \phi(w^*) + \lambda^*(\Omega(w^*) - r) \tag{28}$$

since $\Omega(w^*) - r \le 0$

$$RHS \le \phi(w^*) \tag{29}$$

LHS of (26) = RHS of (29), this means all the \leq should be = This gives:

$$\inf_{w} \phi(w) + \lambda^*(\Omega(w) - r) = \phi(w^*) + \lambda^*(\Omega(w^*) - r)$$
(30)

Therefore, the minimum is attained at w^*

For $\lambda = \lambda^*$, $w^* = \operatorname{argmin} \phi(w) + \lambda(\Omega(w) - r)$, $-\lambda r$ is just a constant.

Hence,
$$w^* = \underset{w \in \Re^d}{\operatorname{argmin}} \stackrel{w}{\phi}(w) + \lambda \Omega(w)$$

- 8.2.4.

We assume $\inf_{w \in \Re^d} \phi(w) < \inf_{w \in \Re^d, \Omega(w) \le r} \phi(w)$

We have strong duality, which means:

$$\phi(w^*) = g(\lambda^*) = \inf_{w} \phi(w) + \lambda^* (\Omega(w) - r)$$
(31)

if $\lambda^* = 0$, $\Omega(w) - r \le 0$, the constraint is inactive

$$g(\lambda^*) = \inf_{w \in \Re^d, \Omega(w) \le r} \phi(w)$$
(32)

$$> \inf_{w \in \mathbb{R}^d} \phi(w) = \phi(w^*) \tag{33}$$

This is a contradiction to strong duality. Thus $\lambda > 0$

Same as 8.2.3, we now have $w^* = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \phi(w) + \lambda \Omega(w)$ but for some $\lambda > 0$

• 8.3 Ivanov implies Tikhnov for Ridge Regression.

For Ridge:

$$minimize ||Aw - y||^2$$
$$s.t ||w^2|| \le r$$

Both of the object function and constraint are convex.

It's sufficient to show that the problem is strictly feasible $(\exists w, s.t. ||w||^2 < r)$

we can show the prof by letting $w = \vec{0}$, $||w||^2 = 0 < r$ for any positive r

Therefore, The Ivanov form of Ridge is a convex optimization problem with a strictly feasible point.

9 Novelty Detection

- 9.1.

$$Min r^{2}$$
s.t. $||\phi(x_{i}) - c||_{\mathcal{H}}^{2} \le r^{2} \ \forall i$

-9.2.

$$L(c, r, \lambda_i) = r^2 + \sum_i \lambda_i (||\phi(x_i) - c||_{\mathcal{H}}^2 - r^2)$$
(34)

$$\frac{\partial L}{\partial r} = 2r - 2r \sum_{i} \lambda_{i} = 0 \tag{35}$$

$$\frac{\partial L}{\partial c} = \sum -2\lambda_i(\phi(x_i) - c) = 0 \tag{36}$$

From (35) and (36) we know,

$$\sum \lambda_i = 1 \tag{37}$$

$$c = \sum \lambda_i \phi(x_i) \tag{38}$$

Therefore:

$$L(c, r, \lambda_i) = r^2 + \sum_i \lambda_i ||\phi(x_i) - \sum_i \lambda_i \phi(x_i)||_{\mathcal{H}}^2 - r^2 \sum_i \lambda_i$$
(39)

$$= \sum \lambda_i ||\phi(x_i) - \sum \lambda_i \phi(x_i)||_{\mathcal{H}}^2$$
(40)

Since $g(\lambda_i) = \inf_{c,r} L(c,r,\lambda_i)$, the dual is:

$$d^* = \sup_{\lambda_1, \dots, \lambda_n \succ 0} \inf_{c, r} L(c, r, \lambda_i)$$

$$\tag{41}$$

$$= \sup_{\lambda_1, \dots, \lambda_n \succeq 0} \inf_{c,r} \sum_{i,r} \lambda_i ||\phi(x_i) - \sum_{i} \lambda_i \phi(x_i)||_{\mathcal{H}}^2$$
(42)

the prime is:

$$\inf_{c,r} \sup_{\lambda_1,\dots,\lambda_n \succeq 0} \sum_{i} \lambda_i ||\phi(x_i) - \sum_{i} \lambda_i \phi(x_i)||_{\mathcal{H}}^2$$
(43)

-9.3.

Since both of the constraints and object function are convex, it's sufficient to show the problem is strictly feasible.

let $\hat{c} = 0$, and $\hat{r}^2 = max(||\phi(x_i)||_{\mathcal{H}}^2) + \epsilon$, which ϵ is an arbitrary positive number.

Then
$$||\phi(x_i) - \hat{c}||_{\mathcal{H}}^2 - \hat{r}^2 < 0$$
 for any $i = 1, ..., n$

From Slater's Constraint Qualifications for Strong Duality, this problem has strong duality.

- 9.4.

Define $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}$, and $K_{n \times n}$ be the kernel matrix

$$g(\lambda) = \sum \lambda_i \langle \phi(x_i) - \sum \lambda_j \phi(x_j), \phi(x_i) - \sum \lambda_j \phi(x_j) \rangle_{\mathcal{H}}$$

$$(44)$$

$$= \sum \lambda_i ||\phi(x_i)||_{\mathcal{H}}^2 + \sum \lambda_i \lambda_j < \phi(x_i), \phi(x_j) >_{\mathcal{H}} -2 \sum \lambda_i < \phi(x_i), \sum \lambda_j \phi(x_j) >_{\mathcal{H}}$$
(45)

$$= \sum_{i} \lambda_{i} ||\phi(x_{i})||_{\mathcal{H}}^{2} + \sum_{i} \lambda_{i} \lambda_{j} < \phi(x_{i}), \phi(x_{j}) >_{\mathcal{H}} -2 \sum_{i} \lambda_{i} \lambda_{j} < \phi(x_{i}), \phi(x_{j}) >_{\mathcal{H}}$$

$$(46)$$

$$= \sum \lambda_i ||\phi(x_i)||_{\mathcal{H}}^2 - \sum \lambda_i \lambda_j < \phi(x_i), \phi(x_j) >_{\mathcal{H}}$$

$$\tag{47}$$

$$= \sum \lambda_i K(i,i) - \sum \lambda_i \lambda_j K(i,j) \tag{48}$$

The dual optimization is:

$$\max_{\lambda_1,\dots,\lambda_n \in \Re} \sum_{i} \lambda_i K(i,i) - \sum_{i} \lambda_i \lambda_j K(i,j)$$
(49)

subject to:
$$\lambda_i \ge 0, \forall i = 1, ..., n$$
 (50)

$$\sum \lambda_i = 1 \tag{51}$$

-9.5.

Let r^*, c^* be the dual solution, the optimal sphere is :

$$||\phi(x) - c^*||_{\mathcal{H}}^2 = r^{*2}, x \in \text{input space}$$
 (52)

where
$$r^{*2} = ||\phi(x_i) - c^*||_{\mathcal{H}}^2 | \forall i, \lambda_i \neq 0$$
 (53)

- 9.6.

The complementary slackness conditions of this problem is that:

$$\lambda_i^*(||\phi(x_i) - c^*||_{\mathcal{H}}^2 - r^{*2}) = 0, \forall i = 1, ..., n$$
(54)

The support vectors are $x_i's$ that $||\phi(x_i) - c^*||_{\mathcal{H}}^2 - r^{*2} = 0$

- 9.7.

For the training data x_i , it's a 'novel' instance if $||\phi(x_i) - c^*||_{\mathcal{H}}^2 = r^{*2}$ (or x_i is a support vector). For testing data x_i , it's a 'novel' instance if $||\phi(x_i) - c^*||_{\mathcal{H}}^2 \ge r^{*2}$ (or lies outside the sphere)

- 9.8.

If we allow some data to lie outside the sphere:

$$Min \ r^2 + k \sum \xi_i \tag{55}$$

s.t.
$$||\phi(x_i) - c||_{\mathcal{H}}^2 \le r^2 + \xi_i , \forall i$$
 (56)

$$\xi_i \ge 0, \forall i \tag{57}$$

The new Lagrangian is:

$$L(c, r, \xi_i, \lambda_i, \beta_i) = r^2 + k \sum_i \xi_i + \sum_i \lambda_i (||\phi(x_i) - c||_{\mathcal{H}}^2 - r^2 - \xi_i) - \sum_i \beta_i \xi_i$$
 (58)

$$\frac{\partial L}{\partial r} = 2r - 2r \sum \lambda_i = 0 \tag{59}$$

$$\frac{\partial L}{\partial c} = \sum -2\lambda_i(\phi(x_i) - c) = 0 \tag{60}$$

$$\frac{\partial L}{\partial \xi_i} = k - \lambda_i - \beta_i = 0 \tag{61}$$

Then

$$L = \sum_{i} \lambda_{i}(||\phi(x_{i}) - c||_{\mathcal{H}}^{2} + \sum_{i} \xi_{i}(k - \lambda_{i} - \beta_{i}) = \sum_{i} \lambda_{i}||\phi(x_{i}) - c||_{\mathcal{H}}^{2}$$
(62)

From (61) we know, $\lambda_i = k - \beta_i \le k$

Our dual problem is:

$$\max_{\lambda_1,\dots,\lambda_n\in\Re} \sum \lambda_i K(i,i) - \sum \lambda_i \lambda_j K(i,j)$$
(63)

subject to:
$$0 \le \lambda_i \le k, \forall i = 1, ..., n$$
 (64)

$$\sum \lambda_i = 1 \tag{65}$$