1(a) Proof. First note that for any fixed a > 0 and $x \neq 0$.

$$\frac{a^{x} - 1}{x} = \frac{e^{x \log a} - e^{x \log 1}}{x} = \left[\frac{e^{xt}}{x}\right]_{t = \log 1}^{t = \log a} = \int_{\log 1}^{\log a} e^{xt} dt.$$

Now consider any real sequence $(x_n) \subseteq \mathbb{R} \setminus \{0\}$ s.t. $x_n \to 0$. Define $f: I \to \mathbb{R}$, where I is the closed interval between $\log a$ and $\log 1 (= 0)$, as

$$f_n(t) = e^{x_n t}.$$

We claim that $f_n(t)$ converges uniformly to f(t) = 1 on I. To see this, first note that for each n, f_n is monotone on I. Therefore,

$$M_n = \sup_{t \in I} |f_n(t) - f(t)|$$
 (by the def. of M_n)
$$= \sup_{t \in I} |f_n(t) - f_n(0)|$$
 (since $f_n(0) = f(t), \forall n, t$)
$$= \sup_{t \in I} |f_n(\log a) - f_n(0)|$$
 (since f_n monotone on I)
$$= \sup_{t \in I} |f_n(\log a) - 1|.$$
 (since $f_n(0) = 1$)

Therefore, $M_n \to 0$ since $f_n(\log a) \to 1$ as $n \to \infty$. This concludes the proof that $f_n(t)$ converges uniformly to 1. Hence by Rudin Theorem 7.16,

$$\lim_{n\to\infty}\int_{\log 1}^{\log a}f_n(t)\,\mathrm{d}t=\int_{\log 1}^{\log a}f(t)\,\mathrm{d}t,\ \text{i.e.,}\\ \lim_{n\to\infty}\int_{\log 1}^{\log a}e^{x_nt}\,\mathrm{d}t=\int_{\log 1}^{\log a}1\,\mathrm{d}t=\log a.$$

Since (x_n) is an arbitrary sequence in $\mathbb{R} \setminus \{0\}$ that converges to 0, by Rudin Theorem 4.2,

$$\lim_{x \to 0} \int_{\log 1}^{\log a} e^{xt} dt = \log a.$$

Combining with the previous results, we can thus conclude that,

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a$$

1(b) Proof. First note that by HW7(a), if $x \neq 0$ is small enough, say |x| < 1,

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

This means that for a fixed $x \neq 0$ small enough,

$$\frac{1}{x^2} \left[\log(1+x) - x \right] = \frac{1}{x^2} \left[-\frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots \right]
= -\frac{1}{2} + \frac{x}{3} - \frac{x^2}{4} + \frac{x^3}{5} - \frac{x^4}{6} + \cdots \quad \text{(since } \sum_{k=2}^{\infty} (-1)^{k-1} \frac{x^k}{k} \text{ converges)}
= -\frac{1}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}.$$

Note that since

$$\limsup_{k \to \infty} \sqrt[k]{\frac{1}{k+2}} = 1,$$

the series $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$ has raidus of convergence of 1. This means that on (-1,1), the function $f(x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$ is continuous by Rudin Theorem 8.1. Therefore,

$$\lim_{x \to 0} \frac{\log(1+x) - x}{x^2} = \lim_{x \to 0} -\frac{1}{2} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$$
 (since they agree on $|x| < 1$)
$$= -\frac{1}{2} + \lim_{x \to 0} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k+2}$$
 (since the series converges)
$$= -\frac{1}{2} + f(0)$$
 (since f is continous at 0)
$$= -\frac{1}{2}.$$

1(c) Proof. First note that with the results in Rudin Theorem 3.31, it's clear that for any sequence $(a_n) \subseteq \mathbb{R}$ where $a_n \to \infty$,

$$\lim_{n \to \infty} \left(1 + \frac{1}{a_n} \right)^{a_n} = e.$$

We thus fix $x \in \mathbb{R}$. If x = 0, then

$$\lim_{n \to \infty} \left(1 + \frac{0}{n} \right)^n = \lim_{n \to \infty} 1 = 1 = e^0.$$

If $x \neq 0$, then

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \left[\left(1 + \frac{1}{n/x} \right)^{n/x} \right]^x = e^x,$$

since as $n \to \infty$, $n/x \to \infty$.

2(a) Proof. ■

 $egin{array}{c} 3(a) \ \textit{Proof.} \\ 3(b) \ \textit{Proof.} \\ \hline 3(c) \ \textit{Proof.} \\ \hline \end{array}$

4(a) Proof. **4(b)** Proof. **4(c)** Proof.

■