

Escola Superior de Tecnologia e Gestão Instituto Politécnico da Guarda

PLANEAR A PRODUÇÃO COM BASE NAS ENCOMENDAS

RUI CONDESSO 1701429 RICARDO SOUSA 1705109 PEDRO MATOS 1700789

ENGENHARIA DE SOFTWARE II Dezembro de 2022

Índice de Conteúdos

1.	Introdução	4
2.	Estado Arte	5
1	MRpeasy	5
2	. OpenProject	5
3.	Diagrama de Casos de Uso	7
3.2	Gerir previsões da entrega das encomendas	10
3.3	Diagrama de Sequencia	11
4.	User Stories	12
5.	Diagrama de Classes	14
6.	Diagrama de Estados	18
7.	Diagrama de Pacotes	19
8.	Diagramas de Instalação	21
9.	Tabelas de Casos de Teste	22
10.	Protótipos	23
11.	Conclusão	25
12.	Referencias Biográficas	26
13.	Anexos	27
14.	Autoavaliação	30

Índice de Figuras

Figura 3	.1 Casos	de uso				7
Figura 2	-Diagran	na de Seq	Juencia	ıs		11
Figura 5	.1 Diagra	ama de cl	asses			14
Figura 7	.1 Diagra	ama de Pa	acotes.			19
Figura -	Diagram	ia de Com	nponer	ites		20
Figura 8	.1 Diagra	ama de in	stalaçã	ĭо		21
Figura -	Página Ir	nicial do p	rojeto			23
Figura -	Pagina L	ogin do P	rojeto			23
Figura -	Pagina S	tockFinall	Produc	t		24
Figura -	Pagina N	1odelPart	S			24
Figura	1.13	.1 Tr	ello	do	grupo	https://trello.com/b/BjVoUXpE/planejar-
produ%	C3%A7%	C3%A3o-	-com-b	ase-nas-e	encomenda	s27
Figura	13.2	Trello	do	grupo	(Cont.)	https://trello.com/b/BjVoUXpE/planejar-
produ%	C3%A7%	C3%A3o-	-com-b	ase-nas-e	encomenda	s27
Figura -	Trello Fi	nal				28
Figura -	Pagina d	o GitHub	- https	://github	.com/noell	opes/CarManufactoring29

Índice de Tabelas

Tabela 2.2.1 Requisitos funcionais de MRpeasy Tabela 2.2.2 Requisitos funcionais de OpenProject	
Tabela 2.2.3 Tabela de funcionalidades	6
Tabela 4.2 Descrição de Casos de Uso" Gerir previsões da entrega das encomendas"	10
Tabela 4.1 Tabela de User Stories	13
Tabela 5.1 Classe Pecas	15
Tabela 5.2 Tabela Modelo_Carro	15
Tabela 5.3 Tabela Modelo_Carro_Pecas	16
Tabela 5.4 Tabela Modelo_Carro_Encomenda	16
Tabela 5.5 Tabela Operacao inserir na tabela Pecas	17
Tabela 5.6 Tabela Operacao inserir na tabela Modelo_Carro_Pecas	17
Tabela 5.7 Operacao inserir na tabela Modelo_Carro	17
Tabela 6.1 Diagrama de estados	18
Tabela 6.2 Classe produção	18
Tabela 9.1 Tabela de casos de teste inserir novo modelo e peça na tabela ModelParts	22
Tabela 9.2 Tabela de casos de teste inserir novo modelo de Carros na tabela CarModels	22

1. Introdução

No âmbito das cadeiras Engenharia de Software II e Programação para a Internet foi proposto a turma desenvolver um software que tivesse como objetivo a gestão de uma empresa de produção de automóveis.

O desenvolvimento desse mesmo software foi dividido em várias partes sendo que o nosso grupo ficou encarregue da parte do "planeamento da produção com base nas encomendas".

2. Estado Arte

1. MRpeasy

Tabela 2.2.1 Requisitos funcionais de MRpeasy

Requisitos funcionais

Planear a produção de forma automática mediante pedido

Programar a produção(cronograma)

Permitir o reagendamento da produção através de drag and drop no cronograma

Fazer a gestão do inventário

Mover o stock

Permitir o Tracking por números de série

Definir níveis ideais de stock e otimização dos já existentes de forma a evitar a falta dos mesmos

Manter histórico de operações do stock

Calcular custos de produção

Calcular o tempo de entrega

Ver todo o processo de produção e entrega ao cliente através de uma pipeline

Permitir aceder a todos os dados em tempo real através de um pc ou um dispositivo móvel

Efetuar previsões de procura e vendas

Monitorar a performance do negócio e de toda a empresa em tempo real.

2. OpenProject

Tabela 2.2.2 Requisitos funcionais de OpenProject

Requisitos funcionais

Permitir a comunicação entre os membros dos projetos e os stakeholders numa única página

Gestores de projeto e managers podem ver o progresso do projeto a qualquer altura em qualquer momento e a partir de qualquer lugar.

Os atrasos e os avanços têm de ser visíveis em tempo real

Toda a gente deve conseguir ver o progresso e os timings de todas as tarefas e os responsáveis pelas mesmas.

Os objetivos, os projetos, os processos, as funções e as dashboards devem ser personalizáveis

Deve ser possível ver quantas horas cada pessoa trabalhou e que tarefas executou e com base nisso calcular o seu pagamento

Deve ser possível todos os membros do projeto colocarem os requisitos para esse mesmo projeto.

Tabela 2.2.3 Tabela de funcionalidades

Funcionalidades	MRpeasy	SYSPRO	Nosso software
Apresenta Cronograma da produção	Sim	Não	Sim
Traking de encomenda	Sim	Sim	Sim
Calcular custos de produção	Sim	Não	Sim
Calcular tempo de entrega	Sim	Não	Sim
Ver estado da produção em tempo real	Sim	Sim	Sim
Visualizar responsável por cada etapa da produção	Não	Não	Não
Informar atrasos	Não	Não	Sim
Relatório detalhado de produção	Não	Sim	Não
Pedido de materiais necessários ao stock	Não	Sim	Sim
Histórico de materiais usados no processo de fabrico.	Sim	Sim	Sim
Apresenta todos os passos necessários para produzir a encomenda	Sim	Sim	Sim

3. Diagrama de Casos de Uso

Depois de apresentado no tópico anterior os atores que fazem parte do sistema, bem como os objetivos e o papel de cada um, segue-se o diagrama de casos de uso. Um diagrama de casos de uso mostra os casos de uso, atores e as suas interações. Na Figura 3.1, encontrase ilustrado num diagrama os casos de uso e os respetivos atores. Este serve para mostrar todas as funcionalidades do tema que escolhemos e para observar o acesso a todas as funcionalidades.

Figura 3.1 Casos de uso

3.1 Descrição dos casos de uso

O próximo passo a ser efetuado depois da identificação da forma como os atores irão interagir com a aplicação irá ser documentar os casos de uso. Deverá ser detalhado aquilo que o sistema tem de fornecer ao ator quando o caso de uso é executado, mostra também como o caso de uso começa e termina. Como aspeto de chave para a compreensão deste conceito, convém ter em atenção que um caso de uso não é um módulo de software — é antes algo que fornece valor ao ator. A descrição de um caso de uso mostra a razão da necessidade do Sistema. São muito úteis para auxiliar na análise de requisitos do sistema. Cada caso de uso corresponde a um requisito potencial, sendo por isso essencial para se obter uma visão mais aprofundada de como o utilizador fará a interação com a aplicação.

O que tem de ter a descrição de um caso de uso?

Por um lado, o fluxo normal de eventos (happy path), em que tudo corre bem. Por outro lado, existe o fluxo de eventos anormal, em que as coisas não correm de forma normal. Cada descrição de caso de uso é constituída pelos seguintes tópicos (template):

- Nome: nome do caso de uso que se irá descrever;
- Descrição: descrição curta e sucinta do caso de uso em questão. Deverá ser percetível o que se pretende numa curta frase;
- Pré-Condição: condição inicial necessária para que o caso de uso decorra com sucesso;
- Caminho Principal: descrição de como o utilizador deve proceder para que tudo corra com sucesso;
- Caminhos Alternativos: descrição do que poderá correr mal em determinado passo do caminho principal;
- Pós-Condição: condição em que se encontra o sistema após o término deste caso de uso;

• Suplementos ou adornos: descrição de testes a realizar, requisitos não

funcionais.

As secções seguintes descrevem os principais dos casos de uso com o template apresentado

3.2 Gerir previsões da entrega das encomendas

Quando o ator (Vendas) interage com o planeamento da produção com base nas encomendas desencadear uma sequência de eventos que permitem desenvolver este caso de uso. A Tabela 4.2 descreve o processo que o autor executa para conseguir gerir as encomendas.

Nome	Gerir previsões da entrega das encomendas					
Descrição	Este caso de uso tem como objetivo descrever o processo para Gerir previsões da entrega das encomendas					
Pré-condição	Assegurar que o administrador tem privilégios para aceder as encomendas					
Caminho Principal	 O administrador consegue altera a data das encomendas O sistema guarda a alteração O sistema informa o cliente que a data da encomenda foi alterada 					
Caminho Alternativos	 1.a) O administrador não tem privilégios suficientes para podes gerir as encomendas 4.a) O sistema não consegue avisar o cliente por falta de credenciais 					
Pós-Condição	O administrador precisa de ter privilégios suficientes para poder gerir as encomendas					
Suplementos ou adornos	Testar se reunimos todas as informações necessárias para pode avisar o cliente em caso de alteração da data da sua encomenda					

Tabela 4.2 Descrição de Casos de Uso" Gerir previsões da entrega das encomendas"

3.3 Diagrama de Sequencia

Um diagrama de sequência consiste em um grupo de objetos representados por linhas de vida e as mensagens que eles trocam durante a interação. Um diagrama de sequência mostra a sequência de mensagens transmitidas entre objetos

Figura 2-Diagrama de Sequencias

4. User Stories

Uma User Storie é uma explicação informal e geral de uma funcionalidade na perspetiva do utilizador final ou cliente. Como ilustrado na Figura abaixo, podem-se ver as User Stories que decidimos aplicar no nosso trabalho.

Epic 1	User Story	Acceptance Criteria
Como gestor eu quero ter a possibilidade de atribuir tarefas a um colaborador	Assegurar que o admin temprivilégios para aceder as encomendas Assegurar que o admin temprivilégios para consultar a produção	 Acesso a lista de encomendas Consulta estado daencomenda Consulta a quantidade daspeças de cada encomenda Consultar o estado encomendas Acesso a lista deprodução Consultar a lista deprodução Consulta estado daprodução
	Como admin quero ver todas asencomendas	 Acesso a lista de encomendas Consultar a lista deencomendas Consulta estado da encomenda Consulta estado daprodução

Epic 1	User Story	Acceptance Criteria
Como Engenheiro mecânico eu quero ter a possibilidade de associar peças a carros, no entanto, não quero que outros funcionários o façam,	Assegurar que só o engenheiro mecânico tem privilégios suficientes para criar associações entre peças e carros.	 Acesso a página de Criar das associações entre Carros e peças.
no entanto eles podem ver as associações entre as peças e os carros	Assegurar que só o engenheiro mecânico tem privilégios suficientes para editar associações entre peças e carros.	 Acesso a página de Edit das associações entre Carros e peças.
	Assegurar que só o engenheiro mecânico tem privilégios suficientes para eliminar associações entre peças e carros.	 Acesso a página de Delete das associações entre Carros e peças.
	Assegurar que para além do engenheiro mecânico, os restantes colaboradores têm privilégios suficientes para ver as associações entre peças e carros.	 Acesso a lista de associações entre carros e peças.

Tabela 4.1 Tabela de User Stories

5. Diagrama de Classes

Uma classe é uma descrição de um conjunto de objetos (um objeto é uma instância de uma classe, isto é, uma manifestação concreta de algo abstrato) que partilham os mesmos atributos, operações, relacionamentos e semântica.

Nesta fase do projeto foi desenvolvido o diagrama de classes apresentado na Figura.

Figura 5.1 Diagrama de classes

Pecas

A Classe peças participa nos seguintes caos de uso:

ConsultarStock

Nome do Campo	Tipo de Dados	Descrição	Valores Validos	Formato	Restrições
Peça_ID	Inteiro	Numero sequencial que identifica de forma única cada evento	Maiores que 0	Ate 8 dígitos	Gerado pelo Sistema/ não alterável
Nome_peça	String	Nome que identifica cada evento	De A -z	Entre 5 a 20 caracteres	Introduzido/Obrigatório /Alterável
Quantidade	Inteiro	Numero de artigos que identifica cada evento	Maiores que 0	Ate 8 dígitos	Introduzido/Obrigatório /Alterável

Tabela 5.1 Classe Pecas

Modelo_Carro

A Classe Modelo_Carro participa nos seguintes caos de uso:

• VerPeças

+ VerPecas()					
Nome do Campo	Tipo de Dados	Descrição	Valores Validos	Formato	Restrições
ModeloCarro_ID	Inteiro	Numero sequencial que identifica de forma única cada evento	Maiores que 0	Ate 8 dígitos	Gerado pelo Sistema/ não alterável
Peça	Array de peças	Array que contem o numero de peças usadas num único evento			Introduzido/Obrigatório /Alterável
Quantidade	Inteiro	Numero de artigos que identifica cada evento	Maiores que 0	Ate 8 dígitos	Introduzido/Obrigatório /Alterável

Tabela 5.2 Tabela Modelo_Carro

■ Modelo_Carro_Peca	ıs
+ peca_ID: int	
+ modeloCarro_ID	

Modelo_Carro_Pecas

A Classe Modelo_Carro_Pecas participa nos seguintes caos de uso:

•

Nome do Campo	Tipo de Dados	Descrição	Valores Validos	Formato	Restrições
Peça_ID	Inteiro	Numero sequencial que identifica de forma única cada evento	Maiores que 0	Ate 8 dígitos	Gerado pelo Sistema/ não alterável
ModeloCarro_ID	Inteiro	Numero sequencial que identifica de forma única cada evento	Numero Maiores que 0	Ate 8 dígitos	Introduzido/Obrigatório /Alterável

Tabela 5.3 Tabela Modelo_Carro_Pecas

${\bf Modelo_Carros_ecn comendas}$

A Classe Modelo_Carro_Enventos participa nos seguintes caos de uso:

•

Nome do Campo	Tipo de Dados	Descrição	Valores Validos	Formato	Restrições
ModeloCarro_ID	Inteiro	Numero sequencial que identifica de forma única cada evento	Maiores que 0	Ate 8 dígitos	Gerado pelo Sistema/ não alterável
Encomendas_ID	Inteiro	Introduzido/Obrigatório /Alterável	Maiores que 0	Ate 8 dígitos	Gerado pelo Sistema/ não alterável
DataInicioProduçao	Date	Data que identifica a alteração de estado	DD-MM- AAAA	Data	Introduzido/Obrigatório /Alterável
DataPrevisaoProduçao	Date	Data que identifica a alteração de estado	DD-MM- AAAA	Data	Introduzido/Obrigatório /Alterável
Quantidade	Inteiro	Numero de artigos que identifica cada evento	Maiores que 0	Ate 8 dígitos	Introduzido/Obrigatório /Alterável

Tabela 5.4 Tabela Modelo_Carro_Encomenda

Operações "Inserir Peças"			
Nome	Descrição		
Inserir()	Operação que permite inserir uma nova peça 1. Sistema gera o ID da peça 2. Introduz o nome da peça 3. Introduz a quantidade de peças 4. Salvar Informações		

Tabela 5.5 Tabela Operacao inserir na tabela Pecas

Operações " Modelo_Carro_Pecas" "			
Nome	Descrição		
Inserir()	Operação que permite inserir uma nova peça 1. Sistema gera o ID da peça 2. Sistema gera o ID do Modelo do carro 3. Salvar Informações		

Tabela 5.6 Tabela Operacao inserir na tabela Modelo_Carro_Pecas

Operações "Modelo de carro"			
Nome	Descrição		
Inserir()	Operação que permite inserir uma nova peça 1. Sistema gera o ID do Modelo do carro 2. Introduz quais peças o modelo é constituído 3. Introduz a quantidade de peças que o modelo usa 4. Salvar Informações		

Tabela 5.7 Operacao inserir na tabela Modelo_Carro

6. Diagrama de Estados

Um diagrama de estados mostra os eventos que causam transição de um estado para o outro, assim como as ações que resultam de uma alteração de estado. Um evento é uma ocorrência significativa que tem uma localização no tempo e no espaço.

Na Figura, mostra-se o diagrama de estados da encomenda.

Tabela 6.1 Diagrama de estados

Producao		
PK	Producaold	
	+Data: Date	
	+ CarConfigld : int	
	+Quantidade: int	
	AdicionarEncomendas()	
	DefinirEstadoProducao()	
	VerEstadoProducao()	
	PararProducao()	
	PararProducao()	

Tabela 6.2 Classe produção

7. Diagrama de Pacotes

O Diagrama de pacotes, ou diagrama de módulos, definido pela UML, descreve os pacotes ou pedaços do sistema divididos em agrupamentos lógicos mostrando as dependências entre eles. Este diagrama é muito utilizado para ilustrar a arquitetura de um sistema mostrando o agrupamento de suas classes. Um pacote representa um grupo de classes (ou outros elementos).

Nesta fase foi realizado o diagrama de pacotes apresentado na Figura.

Figura 7.1 Diagrama de Pacotes

Diagrama de Componentes

Os diagramas de componentes são utilizados para ilustrar as dependências entre componentes de software, incluindo componentes de código fonte ou executáveis. Apresentam os componentes que compõem uma aplicação, sistema ou empresa. São apresentados os componentes, as suas inter-relações, interações e interfaces públicas. Os componentes encontram-se interligados por uma relação de dependência para mostrar o impacto nos diversos componentes das alterações de um componente em particular.

Nesta fase do projeto foi desenvolvido o diagrama de componentes apresentado na Figura abaixo.

Figura 2- Diagrama de Componentes

8. Diagramas de Instalação

Os diagramas de instalação ilustram a arquitetura do sistema em termos de nós (nodes) que efetuam o processamento de componentes. Permite mostrar como o hardware estará organizado e como os componentes (software) estarão distribuídos.

Nesta fase do projeto foi desenvolvido o diagrama de instalação apresentado na Figura x.

Figura 8.1 Diagrama de instalação

9. Tabelas de Casos de Teste

ID do teste	O que vamos testar	Valor introduzido	Valor esperado
ID1	Introduzir peça	n/d	Por favor, introduza uma peça
ID2	Introduzir model	n/d	Por favor, introduza um modelo
ID3	introduzir peça em modelo sendo que ambos já se encontram na tabela	modelo, peça	O modelo e peça introduzida já se encontram relacionados

Tabela 9.1 Tabela de casos de teste inserir novo modelo e peça na tabela ModelParts

Inserir um modelo de Carros

	o que vamos			Resultado
1D do Teste	testar	Nome	DeadLine	Esperado
ID1	Verificar se o modelo já foi criado	V	Х	" THE MODEL IS REQUIED"
ID2	Verificar se a quantidade do modelo	V	Х	" The values is valid"
ID3	DeadLine (o modelo não foi selecionado)	Х	V	"DeadLine the model not selected"
ID4	Todos os valores estão corretos	Х	Х	A Tarefa é criada

Tabela 9.2 Tabela de casos de teste inserir novo modelo de Carros na tabela CarModels

10. Protótipos

Nesta parte do projeto será possível ver alguns dos ecrãs presentes na nossa aplicação.

Figura 2-Página Inicial do projeto

Figura 3-Pagina Login do Projeto

Figura 4-Pagina StockFinalProduct

Figura 5-Pagina ModelParts

11. Conclusão

Ao realizar este trabalho conseguimos ter uma melhor visão sobre o quão difícil é o desenvolvimento de um Software ERP e a juntou-nos também a perceber o quão difícil é desenvolver um software de grande dimensão.

O maior obstáculo que enfrentamos durante todo o processo foi a falta de comunicação e organização entre grupos, para alem disso durante grande parte do tempo houve diversas incoerências entre os diagramas de classes de todos os grupos.

Concluindo, acreditamos ter tido sucesso na elaboração do trabalho sendo que todos os pontos definidos pelos docentes, foram realizados.

12. Referencias Biográficas

Silveira, M. C. Apontamentos Engenharia Software II.

Ovelheiro. B.S.R Relatório para a obtenção do grau de licenciado em engenharia informática

Guia Gastronómico -Relatório Engenharia Software 2020

13. Anexos

Trelo Inicial

Figura 13.2 Trello do grupo (Cont.) https://trello.com/b/BjVoUXpE/planejar-produ%C3%A7%C3%A3o-com-base-nas-encomendas

Trello Final

Figura 13- Trello Final

GIt Hub

Figura 4-Pagina do GitHub - https://github.com/noellopes/CarManufactoring

14. Autoavaliação

Engenharia de Software II

Rui Condesso 1701429 – 13 Valores Ricardo Sousa 1705109 – 13 Valores

Programação para a Internet

Rui Condesso 1701429 – 11 Valores Ricardo Sousa 1705109 – 13 Valores Pedro Matos 1700789 – 12 Valores