Transformada de **WAVELET**

Curso PISB:

Processamento de Imagens e Sinais Biológicos

Cap. 5 : K. Najarian and R. Splinter, **Biomedical Signal and Image**

Processing CRC Press - Taylor & Francis Group, 2006

A Transformada de Fourier (TF) descreve as diferentes freqüências contidas em uma imagem, mas não a localização espacial destas freqüências

Fourier (1807)

Fourier é ótimo para sinais estacionários

- Sinais cujo conteúdo não mudam no tempo de sinais estacionários.
- Em outras palavras, o conteúdo de frequência de sinais são chamados estacionários não mudam com o tempo.
- Neste caso, não é preciso saber "quando" um determinado componentes de freqüência existe, já que todos os componentes de freqüência existem em todos os momentos!

```
x(t) = cos(2*pi*10*t) + cos(2*pi*25*t) + cos(2*pi*50*t) + cos(2*pi*100*t)
```

Fourier não distingue sinais não estacionários

- Sinais cuja freqüência muda -> sinais não estacionários.
- Por exemplo tem a mesma TF:

```
x(t)=\cos(2*pi*10*t), para 0 < t < 200 mili segundos x(t)=\cos(2*pi*25*t) para 200 < t < 400 mili segundos x(t)=\cos(2*pi*50*t) para 400 < t < 800 mili segundos x(t)=\cos(2*pi*100*t) para 800 < t < 1000 mili segundos
```

 $y(t)=\cos(2*pi*25*t)$, para 0 < t < 200 mili segundos $y(t)=\cos(2*pi*100*t)$ para 200 < t < 400 mili segundos $y(t)=\cos(2*pi*10*t)$ para 400 < t < 800 mili segundos $y(t)=\cos(2*pi*50*t)$ para 800 < t < 1000 mili segundos

A TF dos 3 sinais anteriores tem quatro picos, correspondendo a quatro freqüências

- 10, 25, 50 e 100 Hz.
- FT não é uma técnica adequada para o sinal nãoestacionário.
- FT pode ser usado para sinais não-estacionários, se estamos interessados apenas em quais componentes de freqüência existem no sinal, mas não em que tempo estes ocorrem.
- No entanto, se for necessário saber, em que tempo um componente (que momento), a transformada de Fourier não é a mais adequada para se usar.

Para contornar isso algumas propostas foram surgindo: técnicas que aplicam **partições e multi resolução** visando incluir informações espaciais junto com as de freqüência, uma destas foi a

Windowed Fourier T ou Short Time Fourier Transform (STFT) .

Gabor (1946)

sugestion: http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html

Windowed Fourier T ou Short Time Fourier Transform (STFT)

• Problema: Janela de tamanho invariante

- Além disso, como definir o tamanho da janela?
 - Janela pequena:
 - Pouca informação sobre o sinal
 - Muito processamento
 - Janela grande:
 - Aumenta o erro na consideração do sinal ser estacionário

Próximo passo na evolução....

• Uma transformada em janelas, mas com janelas de tamanho variável:

Intervalos maiores quando queremos informações mais precisas sobre baixas freqüências

Intervalos menores quando queremos informações mais precisas sobre altas freqüência

Mas a mais interessante foi a idéia inicialmente proposta por Mallat em 1989, que hoje chamamos:

Transformada de Wavelet

A área de uma janela é constante mas sua largura pode variar com o tempo

Resumindo a Evolução das Transformadas

amplitude

Todos os pontos no plano tempo - frequência, que estão dentro de uma caixa são representada por um valor da WT.

 \mathbf{E}

S

a

a

time Wavelet T.

A resolução ou detalhamento (da análise) no domínio da freqüência (Fourier) diminui enquanto a resolução no tempo aumenta.

É impossível aumentar o detalhamento em um dos domínios sem diminuí-lo no outro (chama-se esta relação entre os domínios da freqüência e do tempo de) : princípio da incerteza.

Usando as wavelet, é possível escolher a melhor combinação dos detalhamentos para um objetivo estabelecido.

TW

- Transformada wavelet é capaz de fornecer a informação do tempo e da freqüência em simultâneo, por conseguinte, dando uma representação de tempo e freqüência do sinal ao mesmo tempo
- A WT passam o sinal no domínio do tempo (ou espaço) por vários **filtros passa alta e passa-baixa**, que filtram as altas e baixa freqüência do sinal.
- Este procedimento é repetido, cada vez que uma parte do sinal que corresponde a algumas freqüências seja removidos do sinal.

Análise Multi resolução (MRA)

- Embora o problemas de analisar em detalhes no tempo e freqüência ao mesmo tempo seja devido a fenômeno físico (o princípio da incerteza de Heisenberg) e existir independentemente do fenômeno em analise, é possível analisar qualquer sinal, utilizando uma abordagem alternativa denominada análise multi resolução (MRA).
- MRA, como o nome sugere, analisa o sinal em freqüências diferentes, com diferentes resoluções. Cada componente espectral não é resolvido igualmente como foi o caso no STFT (TF ou TF janelada).
- MRA é projetada para uma resolução de **tempo boa e resolução de frequência pobre** em altas frequências e **resolução boa em frequência e em tempo ruim** em baixas frequências.
- Essa abordagem faz sentido, especialmente quando o sinal tem componentes de alta frequência por períodos curtos e componentes de baixa frequência para durações longas.
- Felizmente, os sinais e imagens que são encontradas em aplicações práticas são deste tipo.
- Mas os das imagens térmicas seria? (Esse é o objetivo do nosso Trab 3!)

TRAB 3 - Final!!!

- Qual a melhor base wavelets e tipo de limiarização dos coeficientes para imagens termicas (IR)
- Cada aluno (ou grupo de até 3 alunos) deve usar uma base wavelet ou técnica de limiariazação diferente e **experimentar a denoising das imagens termicas com ruido adicionado, do exercicio 1** (ou seja cada grupo terá para isso até 3 níveis diferentes de ruído a experimentar !), para tentarmos responder a essa pergunta. <u>Dica.</u>
- Esperamos até um máximo de 5 grupos, com bases diferentes ou mudando a forma de limiarização dos coeficientes para a redução do ruído!
- Assim use suas ideias e as do seu grupo (procure e=nos diversos trabalhos de denosing que exixtem na literatura, mas não use as mesmas idéias dos outros colegas colegas do curso! Há muito o que varias nisto!)
- Entrega: 23/11/2012! (Último dia de aula!)
- Como os demais trabalhos esperamos uma apresentação para a turma dos resultados!

A transformada de wavelet

- Foi desenvolvido como uma abordagem alternativa para a STFT no sentido re resolver o problema de resolução.
- A análise wavelet é feita de uma maneira similar à análise STFT, no sentido em que o sinal é multiplicado com uma função, (a wavelet), semelhante à função janela no STFT e a transformação é calculada em separado para diferentes segmentos do sinal no domínio de tempo.
- No entanto, existem duas diferenças principais entre a STFT e a WT:
- 1. A transformação de Fourier das janelas não é calculada; e
- 2. A largura da janela (**resolução**) é alterada quando a transformação é calculada para cada componente, o que é provavelmente a característica mais significativa da transformada wavelet.

O que é Wavelet (significa pequena onda , ou em português: onduleta ou ondaleta)

(ondeletes, em frances) ?

- Wavelets são uma classe de funções usadas para re escrever uma determinada imagem ou sinal ao mesmo tempo em posição e escala.
- Uma família de Wavelets pode ser construído a partir de uma função, chamada "wavelet mãe".
- As "Wavelets filhas" são, então, formadas por translação e contração da "wavelet mãe".

Fator de escala de uma função

Se a define a escala e b a translação, uma wavelet individual (normalisada) pode ser definida como:

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a \neq 0, \quad b \in \Re$$

Parâmetro de Escala

O fator escala a representa uma contração ou dilatação no sinal.

Para a>1 a função sofre uma dilatação,

para *a*<1 obtém uma contração do sinal.

As escalas maiores correspondem a uma vista não detalhada (global) e as escalas menores correspondem a uma vista detalhada.

De modo semelhante, em freqüência, as baixas freqüências correspondem a uma informação global (que geralmente se estende por todo o sinal ou imagem), enquanto as freqüências altas (escalas reduzidas) correspondem a uma informação detalhada (que geralmente dura um período de tempo relativamente curto).

Transformada wavelet

- A decomposição de uma função (imagem ou sinal) com o uso de wavelets é conhecida como transformada wavelet e pode ser
 - continua ou
 - discreta.
- Graças a capacidade de decompor as funções tanto no domínio da freqüência quanto no domínio do tempo => as wavelet são **poderosas** no processamento de sinais e imagens.

Transformada de Wavelet Contínua

Transformada de *Wavelet* Contínua é a integral ao longo do tempo de um sinal multiplicado por uma escala, e deslocado por uma função *wavelet* (*Psi*), também chamada *wavelet* mãe:

$$C(escala, posição) = \int_{-\infty}^{\infty} f(t) \Psi(escala, posição, t) dt$$

O número ao lado do nome da wavelet representa o número de momentos nulos!

Repare que mais de uma forma (função base ou mãe) pode ser usada para gerar uma familia

Para ser considerada uma wavelet, uma função inversivel tem que:

Ter uma área total NULA sob a curva da função (ou integral nula); e

$$\int \Psi(t) dt = 0$$

Ter energia (ou integral do quadrado da função) finita,

$$C_{\Psi} = 2 \pi \int |u|^{-1} |\hat{\Psi}(u)|^2 du < \infty$$

Para que um f seja uma $Psi \Psi$

• Área zero

$$\int_{-\infty}^{\infty} \psi(t)dt = 0$$

energia finita:

$$\int_{-\infty}^{\infty} |\psi(t)|^2 dt$$

Tem que ter um suporte compacto

->

o que significa que ela deve desaparecer fora de um intervalo finito

Resumindo: Wavelet x Fourier

- Essa característica de **energia concentrada em uma região finita** é que diferencia as wavelets da Fourier
- Lembrem que a TF usa as funções de seno e cosseno que são **periódicas e infinitas**.
- A Teoria Wavelet foi estruturada na década de 80, embora as origens da sua teoria Wavelet remontam aos anos 30.
- Teoricamente infinitas possibilidades de se projetar wavelets !!
- Pode-se projetar wavelets otimizadas para realizar análises especiais, onde as wavelets tenham características semelhantes aos sinais sob análise.
- Assim, wavelets que são utilizadas para compressão de dados, podem revelar-se péssimas para aplicações de analises de sinais biológicos, restauração de imagens ou síntese de musica.
- Obs. JPEG 2000 usa wavelets bi ortogonais.

A Transformada de *Wavelets* contínua em F(a,b) é: (repare que é uma função de dois parâmetros reais, $a \in b$)

$$F(a,b) = \int f(t) \Psi_{a,b} (t) dt$$

A função $\Psi_{a,b}(t)$ é denominada função wavelet e definida como:

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a \neq 0, \quad b \in \Re$$

Chapéu Mexicano

A transformada de wavelet decompõe uma função definida no **domínio do tempo** em outra função, definida no **domínio do tempo e no domínio da frequência.**

A base de Haar é a mais simples, e útil para fins de entendimento inicial:

- Dilatações e translações da "função de mãe" definem uma base ortogonal (a base wavelet) a qual é usada para descrever o sinal ou a imagem:
 - como termo escala é usado na frequência e no denominador, deve se tomar cuidado

Quadrature mirror filter pair

- É útil pensar os coeficientes como um filtro.
- Os filtro ou coeficientes são colocados em uma matriz de transformação, o qual é aplicado a um vector de dados.
- Os coeficientes são ordenados usando dois padrões dominantes: um que funciona como um filtro de suavização (média), e outro que trabalha para obter os dados da "detalhe" da informação.
- Essas duas ordenações dos coeficientes são chamados de um par de espelhados de quadratura (quadrature mirror filter pair).

Exemplo de escala agindo em uma função wavelet

Combinando escala e translação tem-se Um exemplo de família de Wavelets

$$f(t)=sen(t); a=1$$

 $mother wavelet$
 $a=1,b=0$

$$f(t)=sen(2t); a=1/2$$

$$f(t) = sen(4t); a = 1/4$$

Wavelet Transform

escala

$$f(t) = \Psi(t); a=1$$

$$f(t) = \Psi(2t); a=1/2$$

$$f(t) = \Psi(4t); a=1/4$$

Wavelet Transform

Parametro de Posição

A translação é usado no mesmo sentido, utilizado no STFT: está relacionado com a localização da janela

Wavelet Transform

escala, posição e tempo:

mother wavelet a=1,b=0

scale

time

Wavelets

$$F(a,b) = \int f(t) \Psi_{a,b} (t) dt$$

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a \neq 0, \quad b \in \Re$$

condição de admissibilidade

$$C_{\Psi} = 2 \pi \int |u|^{-1} |\hat{\Psi}(u)|^2 du < \infty$$

$$\hat{\Psi}(0) = 0$$

A Transformada de *Wavelets* contínua em F(a,b) é:

$$F(a,b) = \int f(t) \Psi_{a,b} (t) dt$$

A função $\Psi_{a,b}(t)$ é denominada wavelet:

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a \neq 0, \quad b \in \Re$$

As funções wavelets devem ter área zero e energia finita:

$$C_{\Psi} = 2 \pi \int |u|^{-1} |\hat{\Psi}(u)|^2 du < \infty$$

condição de admissibilidade

Análise de Wavelet (AW)

A Análise de *Wavelet* (AW) é feita pela aplicação sucessiva da transformada de wavelet com **diversos valores para** *a* (**resolução**) e *b*,

AW é uma ferramenta matemática para decomposição em nível hierárquico em um conjunto de aproximações e detalhes.

O nível hierárquico corresponde à escala diática (formado por potência de 2).

AW Permite a descrição de uma "função" em termos globais, mais termos que variam de detalhes globais até detalhes finos.

A "função" em questão pode ser uma imagem, uma curva, um exame médico, um objeto ou uma superfície.

WT Discreta

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a = 2^{j}, b = k \ 2^{j}, \quad (j,k) \in \mathbb{Z}^{2}$$

mother wavelet a=1,b=0 => j=0 e k=0

Função mãe discreta: Haar

• Função mãe

$$\psi(x) \equiv \begin{cases} 1 & 0 \le x < \frac{1}{2} \\ -1 & \frac{1}{2} < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Transformada de Haar

» Considerando j um inteiro positivo e

$$0 \le k \le 2^j - 1$$

$$\psi_{jk}(x) \equiv \psi\left(2^{j} x - k\right)$$

mother wavelet j=k=0

A família de Haar discreta:

Proposta pelo matemático Alfred Haar (húngaro) em 1909.

A transformada de Haar é (considerada hoje) um caso particular das de Ingrid Daubechies, onde é usado um pulso quadrado definido por:

Era uma vez...

- Depois de Haar em 1985, Stephane Mallat deu as wavelets mais um impulso em um trabalho em processamento digital de imagens.
- Y. Meyer construiu a primeira wavelet suave e continuamente diferenciáveis (mas sem suportes compactos, contidas em regiões finitas).
- Ingrid Daubechies (usando os trabalhos de Mallat) construiu um conjunto de bases ortonormais de wavelets suaves, com suportes compactos.
- Os trabalhos de Daubechies são as bases das aplicações atuais.
- Em 1989, Coifman sugeriu a Daubechies uma base ortormal de wavelets que foram denominadas de coifets
- http://www.mat.ufmg.br/~lima/artigos/rmu33.pdf

A base de um espaço vetorial V

- é um conjunto de vetores linearmente independentes, que fazem com que qualquer vetor v em V pode ser escrito como uma combinação linear dos vetores da base.
- Pode haver mais do que uma base de um espaço vectorial.
- No entanto, todas têm o mesmo número de vectores, e este número é conhecido como a dimensão do espaço vectorial.
- Por exemplo, no espaço bidimensional, a base terá dois vetores. Esses podem ser (1,0) ou (0,1) para o R² por exemplo.
- Os senos e cossenos são as funções de base para a TF.

Uma função f(x) pode ser escrita como combinação linear de uma base.

A wavelet de Haar esta associada a uma base de ondas quadradas em diversas resoluções.

V3 approximation

V2 approximation

V approximation

V⁰ approximation

Considerando diversos coeficientes c

http://mathworld.wolfram.com/HaarFunction.html

EXEMPLO, UM SINAL COM 4 AMOSTRAS e seus coeficientes de Haar:

A primeira amostra no sinal em codificado contém o coeficiente que descreve o componente DC (MÉDIA GERAL).

Depois o coeficiente que descreve uma única wavelet Haar.

Em seguida, o coeficiente para duas wavelets Haar (com metade da primeira)

	mé	dias	R e	De lhe		
9	1	2	0	s.	1110	<i>,</i> 5
				4		
4	5	1		2	4	1
		3	1	4	2	

Depois a última com metade da wavelet anterior.

Para chegar aos coeficientes calculamos em diferentes resoluções esses valores de médias e detalhes para reconstruir o sinal

- A **resolução** corresponde ao número de divisões do intervalo [0,1] que consideramos.
- Os valores de média correspondem, na representação codificada do sinal, a sua descrição por uma **onda quadrada** (no caso de Haar).
- Os detalhes são relacionados a forma da base da família Haar usada (ondas de área zero de Haar)

Outro exemplo: Qual seria a representação do sinal: 9 7 3 5 em TW de Haar?

 Repare que esse sinal pode ser entendido como decomposto no mesmo nível de resolução das bases:

Ou seja ficaria como

(mas ai todas as ondas estão com

a mesma resolução)

Mas podemos também re-escrêve-lo considerando médias e detalhes como:

$$I(x) = c_0^1 \phi_0^1(x) + c_1^1 \phi_1^1(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$$

$$= 8 \times \boxed{ }$$

$$+ 4 \times \boxed{ }$$

$$+ 1 \times \boxed{ }$$

$$- 1 \times \boxed{ }$$

 $I(x) = c_0^0 \phi_0^0(x) + d_0^0 \psi_0^0(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$ $= 6 \times \boxed{ }$ $+ 2 \times \boxed{ }$ $+ 1 \times \boxed{ }$ $- 1 \times \boxed{ }$

(agora estamos mesmo fazendo análise em multi resolução)

1925 T. L. L. L.	-					
Resolution	Averages			es	Detail Coefficients	
4	9	7	3	5		
2		8	4		1 -1	
- 100 pt	6				2	

Aplicação em compressão sem perdas

 Repare que só em escrever esse sinal na última base já temos menos espaço de armazenamento do mesmo
 (11 bits x 7 bits)

Como automatizar o processo de codificação e de reconstrução?

 Cada conjunto : resolução, base, função de escala é representada por um conjunto de filtros de médias e detalhes aplicado até um determinado nível.

Filtros normalizados de Haar e Daubechies

• Os filtros normalizados de Haar passam a ser:

$$\phi_i^j(x) := 2^{j/2} \phi(2^j x - i)$$

 $\psi_i^j(x) := 2^{j/2} \psi(2^j x - i)$

- De modo que os coeficientes do exemplo anterior mudam de $_{6\ 2\ 1\ -1}$ para : $_{6\ 2\ \frac{1}{\sqrt{2}}\ \frac{-1}{\sqrt{2}}}$
- Ou seja os filtros ficam:

$$l = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \qquad h = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$l = \begin{bmatrix} \frac{1+\sqrt{3}}{4\sqrt{2}} & \frac{3+\sqrt{3}}{4\sqrt{2}} & \frac{3-\sqrt{3}}{4\sqrt{2}} & \frac{1-\sqrt{3}}{4\sqrt{2}} \end{bmatrix} \qquad h = \begin{bmatrix} \frac{1-\sqrt{3}}{4\sqrt{2}} & -\frac{3-\sqrt{3}}{4\sqrt{2}} & \frac{3+\sqrt{3}}{4\sqrt{2}} & -\frac{1+\sqrt{3}}{4\sqrt{2}} \end{bmatrix}$$

Wavelets em 2D

- Cada linha (ou coluna) da imagem pode ser vista como um sinal 2D.
- Depois de se tratar todas as linhas (ou coluna), se consideram o mesmo nas colunas (ou linhas).
- Essa forma é chamada de **decomposição padrão** (foi a primeira usada)
- Considerando o mesmo nível de resolução do exemplo do sinal 1D anterior, a base de Haar 2D pode ser representado como (próximos slides)

Base de Haar 2D da decomposição padrão

 Considerando o mesmo nível de resolução de exemplo do sinal 1D anterior,

e que + = +1, = -1, e Sem sinal = 0

Base de Haar 2D da decomposição não padrão ou piramidal

 Considerando o mesmo nível de resolução de exemplo do sinal 1D anterior, e que

$$- + = +1$$
,

$$- \blacksquare = -1$$
, e

$$-$$
 Sem sinal $=0$

Intuitivamente

- nós sabemos que a freqüência é algo a ver com a taxa de alteração de alguma coisa.
- Se algo (uma variável) muda rapidamente, dizemos que tem alta frequência, e
- se esta variável **mudar lentamente**, dizemos que tem **baixa freqüência**.
- Quando a variável **não muda** nunca, dizemos que ela tem **frequência zero**, ou não tem nenhuma frequência.
- A frequência é medida em ciclos por segundo, ou em unidades de "Hertz".

Numa imagem típica

- o que se vê são regiões enormes onde os valores dos pixels são muito próximos, o que significa que os coeficientes de wavelets associadas ou são nulos ou desprezíveis.
- Somente em regiões de transições, próximas aos contornos onde os valores dos "pixels" variam muito, teremos uma mudança significativa nos valores dos "pixels", portanto, haverá coeficientes de wavelets apreciáveis.
- Será que o mesmo ocorre com imagens térmicas?

- DWT emprega dois conjuntos de funções, chamadas funções de escala e funções wavelet, que estão associados com filtros passa-baixa e passa-alta, respectivamente.
- A decomposição do sinal em bandas de frequência diferentes são simplesmente obtidas por sucessivas filtragem do sinal no domínio do tempo por esses filtros.
- O sinal original x[n] é primeiro analisado através de um filtro passa-alta g[n], e um filtro passa-baixo h[n].
- Após a filtragem, a metade das amostras pode ser eliminada de acordo com a regra de Nyquist, uma vez que o sinal tem agora uma freqüência alterada.
- O sinal pode, portanto, ser sub-amostrado, simplesmente, descartando uma parte da amostra.
- Isto constitui um nível de decomposição

Em uma imagem digital ou sinal (bi-dimensional),

- Calcula-se seus coeficientes de wavelets tratando suas linhas e suas colunas como se fossem sinais ou "imagens unidimensionais".
- Imagine que tenhamos uma imagem com 2^k x 2^k pixels, a qual pode ser armazenada numa matriz quadrada, A[i; j], i; j = 0; ... 2^k -1.
- Cada linha ou coluna é considerada como se fosse uma imagem unidimensional, aplicando-se o processo de obtenção dos coeficientes de wavelets, separadamente.
- Existem dois tipos de decomposições de imagens digitais: a padrão (vai-se até o fim por linhas de pois por colunas) e a não padrão ou piramidal (decompomos cada linha aplicando-se apenas um passo no processo e depois, tratamos cada coluna resultante).
- De modo que uma imagem unidimensional (ou sinal) com 2^k pixels é uma a seqüência de números onde cada um é a intensidade correspondente ao valor do pixels

Bidirecionalmente

Componentes passa baixa e alta

WA => codificação esparça

- Uma vez que o sinal original ou a função pode ser representado em termos de expansão de wavelet (utilizando coeficientes de uma combinação linear das funções wavelet)
- Operações pode ser executada utilizando apenas os coeficientes wavelet correspondentes.
- Pode-se ainda escolher as melhores formas adaptadas aos dados, e truncar os coeficientes abaixo de um limite (dados pouco representativos).
- Isto faz com que a codificação wavelets seja uma excelente forma de compressão de dados.

Compressão de dados com perda?

- Exemplo de reconstrução de uma imagem usando-se diferentes percentagens de seus coeficientes de wavelets.
- Note que mesmo usando apenas cerca de 5% dos coeficientes de wavelets a reconstrução é perfeita
- Só se inicia a ver defeitos com menos de 2% dos coeficientes.

Reconstrução com a wavelet Daub4

Wavelet Packets

- A transformada wavelet é um subconjunto de uma transformação muito mais versátil, chamada Wavelet packets (pacote de wavelet).
- Wavelet packets são combinações lineares de Wavelet.
- Eles formam bases que mantêm muitas das propriedades das wavelets-mãe como ortogonalidade, suavidade e localização.
- Os coeficientes das combinações lineares calculados por um algoritmo recursivo calculado por uma estrutura de árvore.

Wavelets pode ajudar a resolver o problema de ruido?

• Em diversos campos do uso de sinais, os cientistas se deparam com o problema de recuperação de dados ruidosos.

• AW, através de uma técnica chamada de wavelet shrinkage ou thresholding (encolhimento ou limiarização),

proposta por David Donoho pode resolver sim!!

Decomposição & Denoising

100

A maioria das imagens tem ruído estocástico, com distribuição Gaussiana.

LL	HL	HL
LH	НН	1112
L	Н	НН

A técnica funciona da seguinte maneira.

- Quando se decompõem dados usando wavelets, usa-se filtros que agem como filtros de média e detalhes.
- Assim alguns dos coeficientes wavelet resultantes correspondem aos detalhes do conjunto de dados.
- Se os detalhes são pequenos, eles podem ser omitidos sem afetar substancialmente as principais características do conjunto de dados.
- A idéia de linearização, então, é zerar todos os coeficientes que são menores que um determinado limite.
- Estes coeficientes são utilizados como zeros na transformação wavelet inversa para reconstruir o conjunto de dados.
- Essa técnica é um passo significativo na melhoria de dados ruidosos, pois o denoising é realizado sem que se perca as estruturas finas.
- O resultado é um sinal mais limpo, mas que ainda mostra detalhes importantes.

Imagem de Ingrid Daubechies (de 1993) e closes em seus olhos: original, com adição de ruído e com denoise

Donoho denoise:

- a imagem é transformada para o domínio de wavelet (usando Coiflets-3)
- Aplica-se um limiar (threshold) e
- Faz-se a transformada inversa.

Wavelet denoising

- Identify low and high energy coefficients
- Modify noisy coefficients by adaptive thresholding
- We use the optimal adaptive threshold [1-6]:

$$T = \sigma_n^2 / \sigma$$

 σ_n^2 = Noise variance

 σ = Original Signal variance

(this is a Hard Thresholding approach)

Comparando a performance

Compression ratio

- •Quality:
 - •Root Mean Square Error (RMSE),
 - •Sign Noise Ratio (SNR) and
 - •Peak Sign Noise Ratio (PSNR)

Denoising

coeficientes de detalhes

Aproximação A1

Detalhes Verticais V1

Detalhes Horizontal H1

Detalhes Diagonais D1

Onde está o ruido, na região suave ou nos detalhes?

Familia wavelet e variations

Teste anterior com imagens usuais

Lena

Cameramen

Goldhill

Peppers

Acrobat 3.0 is the fast publish any docume

Take the PDF file you're looking Adobe PageMaker* software a with fonts, formatting, colors, a Then, hypertext links, form field Acrobat 3.0 software to make i optimized the file, making it co on any platform—Macintosh,*\text{\text{\text{opt}}}

Text

3 resolution: 28x128, 256x256 and 512x512

3 degradation levels Additive White Gaussian Noise (AWGN):

?= 5, ?=10,

?≔10 and

= 20

Neste caso se fizerma 3456 cases, apresentados em 96 tabelas ou em 288 graficos

Formas de quantificas as perdas usadas:

$$RMSE = \sqrt{\left[\frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [G(x,y) - F(x,y)]^{2}\right]}$$
 (1)

$$SNR_{ms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{M-1} G(x,y)^{2}}{\sum_{x=0}^{M-1} \sum_{y=0}^{M-1} G(x,y) - F(x,y)^{2}}$$
(2)

$$SNR_{rms} = \sqrt{SNR_{ms}}$$
 (3)

$$PSNR = 20\log_{10}\left(\frac{2^n - 1}{RMSE}\right) \tag{4}$$

Trabalho 3

- Vamos refazer isso agora com as imagens do Exercicio individual 1
- Qual a melhor base wavelets e tipo de limiarização dos coeficientes para imagens termicas (IR) ?
- Cada aluno (ou grupo de até 3 alunos) deve usar uma base wavelet ou técnica de limiariazação diferente e **experimentar a denoising das imagens termicas com ruido adicionado, do exercicio 1** (ou seja cada grupo terá para isso até 3 níveis diferentes de ruído a experimentar!), para tentarmos responder a essa pergunta. Dica.
- Esperamos até um máximo de 5 grupos, com bases diferentes ou mudando a forma de limiarização dos coeficientes para a redução do ruído!
- Assim use suas idéias e as do seu grupo (procure e=nos diversos trabalhos de denosing que existem na literatura, mas não use as mesmas idéias dos outros colegas do curso! Há muito o que varias nisto!)
- Entrega: 23/11/2012! (Último dia de aula!)
- Como os demais trabalhos esperamos uma apresentação para a turma dos resultados!

WaveLab

- é um biblioteca de rotinas para analise wavelets para Matlab desenvolvida em Stanford.
- Se usar o Matlab, copie os arquivos do diretório **~wavelet/matlab** para o seu diretório /matlab e divirta-se!
- A Universidade Rice, nos EUA, também desenvolveu um pacote para implementar analise e projeto de bancos de filtros em aplicações 1D e 2D para Matlab 4.1

RMSE

Mesma imagem em com ruidos com σ em 3 niveis

RMSE

Xadrez 256x256

Círculo 256x256

RMSE

Seniodal 256x256

Texto 256x256

Lena 128x128

Camera 128x128

Camera 256x256

Goldhill 128x128

Goldhill 256x256

Peppers 128x128

Peppers 512x512

Xadrez 256x256

Círculo 256x256

Seniodal 256x256

texto 256x256

Lena 128x128

Camera 128x128

Camera 256x256

Goldhill 128x128

Goldhill 256x256

Peppers 128x128

Peppers 512x512

Peppers 128x128

Peppers 512x512

Xadrez 256x256

Círculo 256x256

Seniodal 256x256

Texto 256x256

Conclusão

Este trabalho visa investigar a relação entre compressão denoising-wavelet relacionada com o tipo de wavelet utilizado (Haar, Daubechies, Biorthogonal, Coiflets e Symlets etc.), o conteúdo de imagem e nível de ruído.

Comparando processo de limiarização para remover o ruído em determinado nível (de baixo a alto)

A meta do trabalho é definir qual a combinação apresentar os resultados melhores e piores

A melhor escolha relacionada com a qualidade é mais dependente do conteúdo da imagem

Por exemplo no trabalho anterioir obtivemos

- Haar e Biortogonal 1,3 tipos apresenta a melhor qualidade e segunda melhor.
- Piores resultados são obtidos com o 3 Biortogonal.
- Considerando o conteúdo da imagem, eles mostram mais dependentes do tipo de imagem e wavelet usada (Haar, Daubechies, Biorthogonal, Coiflets, ou Symlets) do que se poderia esperar.

Verificar a possibilidade do armazenamento das imagens térmicas por wavelets

E seu uso para retirar ruído, qual melhor técnica, melhor base, etc...

Referências

- Benedetto, J. J. and Frazier, M. (Eds.). Wavelets: Mathematics and Applications. Boca Raton, FL: CRC Press, 1994.
- Chui, C. K. An Introduction to Wavelets. San Diego, CA: Academic Press, 1992.
- Chui, C. K. (Ed.). Wavelets: A Tutorial in Theory and Applications. San Diego, CA: Academic Press, 1992.
- Chui, C. K.; Montefusco, L.; and Puccio, L. (Eds.). Wavelets: Theory, Algorithms, and Applications. San Diego, CA: Academic Press, 1994.
- Daubechies, I. <u>Ten Lectures on Wavelets</u>. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.
- Erlebacher, G. H.; Hussaini, M. Y.; and Jameson, L. M. (Eds.). Wavelets: Theory and Applications, New York: Oxford University Press, 1996.
- Foufoula-Georgiou, E. and Kumar, P. (Eds.). Wavelets in Geophysics. San Diego, CA: Academic Press, 1994.
- Hernández, E. and Weiss, G. A First Course on Wavelets. Boca Raton, FL: CRC Press, 1996.
- Hubbard, B. B. The World According to Wavelets: The Story of a Mathematical Technique in the Making, 2nd rev. upd. ed. New York: A K Peters, 1998.
- Jawerth, B. and Sweldens, W. "An Overview of Wavelet Based Multiresolution Analysis." SIAM Rev. 36, 377-412, 1994.
- Kaiser, G. A Friendly Guide to Wavelets. Cambridge, MA: Birkhäuser, 1994.
- Massopust, P. R. Fractal Functions, Fractal Surfaces, and Wavelets. San Diego, CA: Academic Press, 1994.
- Meyer, Y. Wavelets: Algorithms and Applications. Philadelphia, PA: SIAM Press, 1993.
- Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Wavelet Transforms." §13.10 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 584-599, 1992.
- Resnikoff, H. L. and Wells, R. O. J. Wavelet Analysis: The Scalable Structure of Information. New York: Springer-Verlag, 1998.
- Schumaker, L. L. and Webb, G. (Eds.). Recent Advances in Wavelet Analysis. San Diego, CA: Academic Press, 1993.
- Stollnitz, E. J.; DeRose, T. D.; and Salesin, D. H. "Wavelets for Computer Graphics: A Primer, Part 1." IEEE Computer Graphics and Appl. 15, No. 3, 76-84, 1995.
- Stollnitz, E. J.; DeRose, T. D.; and Salesin, D. H. "Wavelets for Computer Graphics: A Primer, Part 2." *IEEE Computer Graphics and Appl.* 15, No. 4, 75-85, 1995.
- Strang, G. "Wavelets and Dilation Equations: A Brief Introduction." SIAM Rev. 31, 614-627, 1989.
- Strang, G. "Wavelets." *Amer. Sci.* **82**, 250-255, 1994.
- Taswell, C. Handbook of Wavelet Transform Algorithms, Boston, MA: Birkhäuser, 1996.
- Teolis, A. Computational Signal Processing with Wavelets. Boston, MA: Birkhäuser, 1997.
- Vidakovic, B. Statistical Modeling by Wavelets. New York: Wiley, 1999.
- Walker, J. S. A Primer on Wavelets and their Scientific Applications. Boca Raton, FL: CRC Press, 1999.
- Walter, G. G. Wavelets and Other Orthogonal Systems with Applications, Boca Raton, FL: CRC Press, 1994.
- Weisstein, E. W. "Books about Wavelets." http://www.ericweisstein.com/encvclopedias/books/Wavelets.html.
- Wickerhauser, M. V. Adapted Wavelet Analysis from Theory to Software. Wellesley, MA: Peters, 1994.