Math 225 Midterm

Show all work, and carefully justify your answers. Correct answers without supporting work will not receive credit. This is a closed book exam. Notes are not permitted.

- ** Get 2 points EXTRA CREDIT by tagging which problems appear on each page of your file, in gradescope, before clicking submit. **
- (1) Let A be an $n \times n$ matrix whose null space is $\{0\}$. If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are independent show that $A(\mathbf{v}_1), \ldots, A(\mathbf{v}_n)$ are also independent. (20 points)
- (2) Let P_2 be the vector space of polynomials of degree \leq 2. Let B be the basis B={1- x^2 , 3+2x, 2 x^2 }, and C the basis C={x, x^2 , 2}. (20 points)
- a) Find the change of basis matrix $P_{C\leftarrow B}$.
- b) Find the component vector of $4x^2+3x+2$ with respect to B.

- a) Use elementary row operations to find the reduced row echelon form of A.
- b) Find a basis for the row space of A.
- c) Find a basis for the image of A.
- d) Find a basis for the null space of A.
- (4) Let $V=P_3$, the polynomials of degree at most 3, and let W be the subset of polynomials p(x) satisfying p(1) = p(0) = 0. Explain why W is a subspace of V, and find a basis for W. (20 points)
- (5) Find all values of a for which the vectors (a,2,2), (1,2,a), and (1,1,1) are independent. Carefully explain why your answer is complete. (16 points)