Basis flavio (EFT WET)

Basis used by the flavio package. Neutrinos are in the flavour basis.

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

sbsb

WC name	Operator	Type
CVLL_bsbs	$(\bar{s}_L \gamma^\mu b_L)(\bar{s}_L \gamma_\mu b_L)$	С
CVRR_bsbs	$(\bar{s}_R \gamma^\mu b_R)(\bar{s}_R \gamma_\mu b_R)$	\mathbf{C}
CSLL_bsbs	$(\bar{s}_R b_L)(\bar{s}_R b_L)$	\mathbf{C}
CSRR_bsbs	$(\bar{s}_L b_R)(\bar{s}_L b_R)$	\mathbf{C}
CTLL_bsbs	$(\bar{s}_R \sigma^{\mu\nu} b_L)(\bar{s}_R \sigma_{\mu\nu} b_L)$	\mathbf{C}
CTRR_bsbs	$(\bar{s}_L \sigma^{\mu\nu} b_R)(\bar{s}_L \sigma_{\mu\nu} b_R)$	\mathbf{C}
CVLR_bsbs	$(\bar{s}_L \gamma^\mu b_L)(\bar{s}_R \gamma_\mu b_R)$	\mathbf{C}
CSLR_bsbs	$(ar{s}_R b_L)(ar{s}_L b_R)$	\mathbf{C}

dbdb

WC name	Operator	Type
CVLL_bdbd	$(\bar{d}_L \gamma^\mu b_L)(\bar{d}_L \gamma_\mu b_L)$	С
CVRR_bdbd	$(\bar{d}_R \gamma^\mu b_R)(\bar{d}_R \gamma_\mu b_R)$	\mathbf{C}
CSLL_bdbd	$(ar{d}_R b_L)(ar{d}_R b_L)$	\mathbf{C}
CSRR_bdbd	$(ar{d}_L b_R)(ar{d}_L b_R)$	\mathbf{C}
CTLL_bdbd	$(\bar{d}_R \sigma^{\mu\nu} b_L)(\bar{d}_R \sigma_{\mu\nu} b_L)$	\mathbf{C}
CTRR_bdbd	$(\bar{d}_L \sigma^{\mu\nu} b_R)(\bar{d}_L \sigma_{\mu\nu} b_R)$	\mathbf{C}
CVLR_bdbd	$(\bar{d}_L \gamma^\mu b_L)(\bar{d}_R \gamma_\mu b_R)$	\mathbf{C}
CSLR_bdbd	$(ar{d}_R b_L)(ar{d}_L b_R)$	С

sdsd

WC name	Operator	Type
CVLL sdsd	$(\bar{d}_L \gamma^\mu s_L)(\bar{d}_L \gamma_\mu s_L)$	$^{\rm C}$

WC name	Operator	Type
CVRR_sdsd	$(\bar{d}_R \gamma^\mu s_R)(\bar{d}_R \gamma_\mu s_R)$	С
CSLL_sdsd	$(ar{d}_R s_L)(ar{d}_R s_L)$	\mathbf{C}
CSRR_sdsd	$(ar{d}_L s_R)(ar{d}_L s_R)$	\mathbf{C}
CTLL_sdsd	$(\bar{d}_R \sigma^{\mu\nu} s_L)(\bar{d}_R \sigma_{\mu\nu} s_L)$	\mathbf{C}
CTRR_sdsd	$(\bar{d}_L \sigma^{\mu\nu} s_R)(\bar{d}_L \sigma_{\mu\nu} s_R)$	\mathbf{C}
CVLR_sdsd	$(\bar{d}_L \gamma^\mu s_L)(\bar{d}_R \gamma_\mu s_R)$	\mathbf{C}
CSLR_sdsd	$(ar{d}_R s_L)(ar{d}_L s_R)$	$^{\mathrm{C}}$

cucu

WC name	Operator	Type
CVLL_ucuc	$(\bar{c}_L \gamma^\mu u_L)(\bar{c}_L \gamma_\mu u_L)$	С
CVRR_ucuc	$(\bar{c}_R \gamma^\mu u_R)(\bar{c}_R \gamma_\mu u_R)$	\mathbf{C}
CSLL_ucuc	$(\bar{c}_R u_L)(\bar{c}_R u_L)$	\mathbf{C}
CSRR_ucuc	$(\bar{c}_L u_R)(\bar{c}_L u_R)$	\mathbf{C}
CTLL_ucuc	$(\bar{c}_R \sigma^{\mu\nu} u_L)(\bar{c}_R \sigma_{\mu\nu} u_L)$	\mathbf{C}
CTRR_ucuc	$(\bar{c}_L \sigma^{\mu\nu} u_R)(\bar{c}_L \sigma_{\mu\nu} u_R)$	\mathbf{C}
CVLR_ucuc	$(\bar{c}_L \gamma^\mu u_L)(\bar{c}_R \gamma_\mu u_R)$	\mathbf{C}
CSLR_ucuc	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	\mathbf{C}

sb

WC name	Operator	Type
C9_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}e)$	$^{\mathrm{C}}$
C9p_bsee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_bsee	$rac{4 ilde{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^\mu b_L)(ar{e}\gamma_\mu\gamma_5 e)$	\mathbf{C}
C10p_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}e)$	\mathbf{C}
CSp_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e}e)$	\mathbf{C}
CP_bsee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}\gamma_5e)$	\mathbf{C}
CPp_bsee	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e}\gamma_5e)$	\mathbf{C}
C9_bsmumu	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}rac{e^{2}}{16\pi^{2}}(ar{s}_{L}\gamma^{\mu}b_{L})(ar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C9p_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C10_bsmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
C10p_bsmumu	$rac{4 { m G}_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16 \pi^2} (ar{s}_R \gamma^\mu b_R) (ar{\mu} \gamma_\mu \gamma_5 \mu)$	\mathbf{C}
CS_bsmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}m_b(ar{s}_Lb_R)(ar{\mu}\mu)$	\mathbf{C}

WC name	Operator	Type
CSp_bsmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}\mu)$	C
CP_bsmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
CPp_bsmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_R b_L)(\bar{\mu}\gamma_5 \mu)$	\mathbf{C}
C9_bstautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu b_L)(\bar{\tau}\gamma_\mu \tau)$	\mathbf{C}
C9p_bstautau	$rac{4 \tilde{G_F}}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (ar{s}_R \gamma^\mu b_R) (ar{ au} \gamma_\mu au)$	\mathbf{C}
C10_bstautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\tau}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
C10p_bstautau	$\frac{4\tilde{G}_{F}^{2}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{ au}\gamma_{\mu}\gamma_{5} au)$	\mathbf{C}
CS_bstautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_L b_R)(\bar{ au} au)$	\mathbf{C}
CSp_bstautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_R b_L)(\bar{ au} au)$	\mathbf{C}
CP_bstautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\tau}\gamma_5 \tau)$	\mathbf{C}
CPp_bstautau		\mathbf{C}
C7_bs	$\frac{\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\tau}\gamma_5\tau)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e}{16\pi^2}m_b(\bar{s}_L\sigma^{\mu\nu}b_R)F_{\mu\nu}}$	\mathbf{C}
C7p_bs	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e}{16\pi^2}m_b(\bar{s}_R\sigma^{\mu\nu}b_L)F_{\mu\nu}$	\mathbf{C}
C8_bs	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{g_s}{16\pi^2}m_b(\bar{s}_L\sigma^{\mu\nu}T^ab_R)G_{\mu\nu}^a$	\mathbf{C}
C8p_bs	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{g_s}{16\pi^2} m_b (\bar{s}_R \sigma^{\mu\nu} T^a b_L) G_{\mu\nu}^a$	$^{\mathrm{C}}$
CVLL_bsbb	$\frac{4\check{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{b}_L\gamma_{\mu}b_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{b}_R\gamma_{\mu}b_R)$	\mathbf{C}
CVLR_bsbb	$rac{4igvee_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar s_L\gamma^\mu b_L)(ar b_R\gamma_\mu b_R)$	\mathbf{C}
CVRL_bsbb	$rac{4igvee_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
CVRR_bsbb	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{b}_R\gamma_\mu b_R)$	\mathbf{C}
CSLL_bsbb	$rac{4 \widetilde{G_F}}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_R b_L) (ar{b}_R b_L)$	\mathbf{C}
CSLR_bsbb	$\frac{4\tilde{G}_{F}^{c}}{\sqrt{2}}V_{tb}V_{ts}^{*}(\bar{s}_{R}b_{L})(\bar{b}_{L}b_{R})$	\mathbf{C}
CSRL_bsbb	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{b}_Lb_R) \ rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{b}_Rb_L)$	\mathbf{C}
CSRR_bsbb	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(b_Lb_R)$	\mathbf{C}
CTLL_bsbb	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\sigma^{\mu\nu}b_L)(\bar{b}_R\sigma_{\mu\nu}b_L)$	\mathbf{C}
CTRR_bsbb	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\sigma^{\mu u}b_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}
CVLL_bsss	$\frac{4\check{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{s}_L\gamma_{\mu}s_L)$ $\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{s}_R\gamma_{\mu}s_R)$	\mathbf{C}
CVLR_bsss	$\frac{4\check{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVRL_bsss	$\frac{4Q_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^\mu b_R)(\bar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVRR_bsss	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_R \gamma^\mu b_R) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CSLL_bsss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Rb_L)(\bar{s}_Rs_L)$	\mathbf{C}
CSLR_bsss	$rac{4\widetilde{Y}_{F}^{2}}{\sqrt{2}}V_{tb}V_{ts}^{*}(ar{s}_{R}b_{L})(ar{s}_{L}s_{R})$	\mathbf{C}
CSRL_bsss	$\frac{4\overset{\checkmark}{Q_F}}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(\bar{s}_Rs_L)$	\mathbf{C}
CSRR_bsss	$\frac{4\tilde{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(\bar{s}_Ls_R)$	$^{\mathrm{C}}$
CTLL_bsss	$\frac{\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\sigma^{\mu\nu}b_L)(\bar{s}_R\sigma_{\mu\nu}s_L)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\sigma^{\mu\nu}b_R)(\bar{s}_L\sigma_{\mu\nu}s_R)}$ $\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{d}_L\gamma_{\mu}d_L)$	$^{\mathrm{C}}$
CTRR_bsss	$rac{4rack{arphi_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\sigma^{\mu u}b_R)(ar{s}_L\sigma_{\mu u}s_R)$	\mathbf{C}
CVLL_bsdd	$\frac{4G_F}{4G_F}V_{ij}V^*(\bar{s}_I\gamma^{\mu}h_I)(\bar{d}_I\gamma^{\nu}d_I)$	$^{\mathrm{C}}$

VC name	Operator	Type
CVLR_bsdd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{d}_R\gamma_\mu d_R)$	C
CVRL_bsdd	$\frac{4G_F}{G_F}V_{\mu}V^*(\bar{s}_{D}\gamma^{\mu}h_{D})(\bar{d}_{I}\gamma_{\mu}d_{I})$	\mathbf{C}
CVRR_bsdd	$ \frac{\sqrt{2}}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_R \gamma^{\mu} b_R) (\bar{d}_R \gamma_{\mu} d_R) \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_R p_L) (\bar{d}_R d_L) \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_R b_L) (\bar{d}_L d_R) \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_L b_R) (\bar{d}_R d_L) \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\bar{s}_L b_R) (\bar{d}_R d_L) $	\mathbf{C}
CSLL_bsdd	$rac{4ar{G}_F^F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{d}_Rd_L)$	\mathbf{C}
SLR_bsdd	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Rb_L)(\bar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRL_bsdd	$\frac{4\widetilde{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(\bar{d}_Rd_L)$	$^{\mathrm{C}}$
SRR_bsdd	$\frac{1}{\sqrt{2}}v_{tb}v_{ts}(s_Lo_R)(a_La_R)$	$^{\mathrm{C}}$
CTLL_bsdd	$rac{4ar{G}_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\sigma^{\mu u}b_L)(ar{d}_R\sigma_{\mu u}d_L)$	$^{\mathrm{C}}$
CTRR_bsdd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\sigma^{\mu u}b_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CVLLt_bsdd	$rac{4 ar{G}_F}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_L^lpha \gamma^\mu b_L^eta) (ar{d}_L^eta \gamma_\mu d_L^lpha)$	$^{\mathrm{C}}$
CVLRt_bsdd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L^{\alpha}\gamma^{\mu}b_L^{\beta})(\bar{d}_R^{\beta}\gamma_{\mu}d_R^{\alpha})$	\mathbf{C}
CVRLt_bsdd	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R^{lpha}\gamma^{\mu}b_R^{eta})(\bar{d}_L^{eta}\gamma_{\mu}d_L^{lpha})$	\mathbf{C}
CVRRt_bsdd	$rac{4G_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\gamma^\mu b_R^eta)(ar{d}_R^eta\gamma_\mu d_R^lpha)$	\mathbf{C}
CSLLt_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{d}_R^eta d_L^lpha)$	\mathbf{C}
CSLRt_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{d}_L^eta d_R^lpha)$	\mathbf{C}
SRLt_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_{L}^{lpha}b_{B}^{eta})(ar{d}_{B}^{eta}d_{L}^{lpha})$	$^{\mathrm{C}}$
SRRt_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{d}_L^eta d_R^lpha)$	$^{\mathrm{C}}$
_ CTLLt_bsdd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\sigma^{\mu u}b_L^eta)(ar{d}_R^eta\sigma_{\mu u}d_L^lpha)$	$^{\mathrm{C}}$
- TRRt_bsdd	$\frac{\sqrt{2}}{4G_F}V_{tb}V_{ts}^*(\bar{s}_L^{lpha}\sigma^{\mu u}b_R^{eta})(\bar{d}_L^{eta}\sigma_{\mu u}d_R^{lpha})$	\mathbf{C}
- VLL_bsuu	$\frac{4G_F}{\overline{c}}V_{th}V_{ts}^*(\bar{s}_L\gamma^{\mu}b_L)(\bar{u}_L\gamma_{\mu}u_L)$	$^{\mathrm{C}}$
- VLR_bsuu	$\frac{4G_2}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{u}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
VRL_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\gamma^\mu b_R)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_bsuu	$\frac{4G_F}{4G_F}V_{\mu}V^*(\bar{s}_{B}\gamma^{\mu}h_{B})(\bar{u}_{B}\gamma, u_{B})$	\mathbf{C}
SLL_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R h_L)(\bar{u}_R u_L)$ $\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R h_L)(\bar{u}_L u_R)$	\mathbf{C}
SLR_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{u}_Lu_R)$	\mathbf{C}
SRL_bsuu	$\frac{4\overset{Y}{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(\bar{u}_Ru_L)$	\mathbf{C}
SRR_bsuu	$\frac{4 \tilde{G}_{F}^{2}}{\sqrt{2}} V_{tb} V_{ts}^{*} (\bar{s}_{L} b_{R}) (\bar{u}_{L} u_{R})$	\mathbf{C}
TLL_bsuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R\sigma^{\mu\nu}b_L)(\bar{u}_R\sigma_{\mu\nu}u_L)$	$^{\mathrm{C}}$
TRR_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\sigma^{\mu\nu}b_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	\mathbf{C}
VLLt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha\gamma^\mu b_L^eta)(ar{u}_L^eta\gamma_\mu u_L^lpha)$	\mathbf{C}
VLRt_bsuu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L^\alpha\gamma^\mu b_L^\beta)(\bar{u}_R^\beta\gamma_\mu u_R^\alpha)$	\mathbf{C}
VRLt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\gamma^\mu b_R^eta)(ar{u}_L^eta\gamma_\mu u_L^lpha)$	\mathbf{C}
VRRt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\gamma^\mu b_R^eta)(ar{u}_R^eta\gamma_\mu u_R^lpha)$	\mathbf{C}
SLLt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{u}_R^eta u_L^lpha)$	\mathbf{C}
SLRt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha b_L^eta)(ar{u}_L^eta u_R^lpha)$	$^{\mathrm{C}}$
- SRLt_bsuu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{u}_R^lpha u_L^lpha)$	\mathbf{C}

WC name	Operator	Type
CSRRt_bsuu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L^{lpha}b_R^{eta})(\bar{u}_L^{eta}u_R^{lpha})$	C
CTLLt_bsuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R^{lpha}\sigma^{\mu u}b_L^{eta})(\bar{u}_R^{eta}\sigma_{\mu u}u_L^{lpha})$	\mathbf{C}
CTRRt_bsuu	$rac{4\widetilde{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha\sigma^{\mu u}b_R^eta)(ar{u}_L^eta\sigma_{\mu u}u_R^lpha)$	\mathbf{C}
CVLL_bscc	$\frac{4\check{G}_F^F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVLR_bscc	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_L\gamma^\mu b_L)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CVRL_bscc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVRR_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\gamma^\mu b_R)(ar{c}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CSLL_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSLR_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Rb_L)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRL_bscc	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_Lb_R)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSRR_bscc	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_Lb_R)(\bar{c}_Lc_R)$	$^{\mathrm{C}}$
CTLL_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R\sigma^{\mu u}b_L)(ar{c}_R\sigma_{\mu u}c_L)$	$^{\mathrm{C}}$
CTRR_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L\sigma^{\mu u}b_R)(ar{c}_L\sigma_{\mu u}c_R)$	$^{\mathrm{C}}$
CVLLt_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar s_L^lpha\gamma^\mu b_L^eta)(ar c_L^eta\gamma_\mu c_L^lpha)$	$^{\mathrm{C}}$
CVLRt_bscc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha\gamma^\mu b_L^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	$^{\mathrm{C}}$
CVRLt_bscc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\gamma^\mu b_R^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	\mathbf{C}
CVRRt_bscc	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* (ar{s}_R^lpha \gamma^\mu b_R^eta) (ar{c}_R^eta \gamma_\mu c_R^lpha)$	\mathbf{C}
CSLLt_bscc	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R^{\alpha}b_L^{\beta})(\bar{c}_R^{\beta}c_L^{\alpha})$	\mathbf{C}
CSLRt_bscc	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*(\bar{s}_R^{lpha}b_L^{eta})(\bar{c}_L^{eta}c_R^{lpha})$	$^{\mathrm{C}}$
CSRLt_bscc	$rac{4\widetilde{G_F}}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSRRt_bscc	$rac{4G_F^2}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_L^lpha b_R^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CTLLt_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar{s}_R^lpha\sigma^{\mu u}b_L^eta)(ar{c}_R^eta\sigma_{\mu u}c_L^lpha)$	\mathbf{C}
CTRRt_bscc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*(ar s_L^lpha\sigma^{\mu u}b_R^eta)(ar c_L^eta\sigma_{\mu u}c_R^lpha)$	\mathbf{C}

sbnunu

WC name	Operator	Type
CL_bsnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L) (\bar{\nu}_e \gamma_{\mu} (1-\gamma_5) \nu_e)$	С
${\tt CL_bsnumunumu}$	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu b_L) (\bar{\nu}_\mu \gamma_\mu (1 - \gamma_5) \nu_\mu)$	\mathbf{C}
CL_bsnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L) (\bar{\nu}_{\tau} \gamma_{\mu} (1 - \gamma_5) \nu_{\tau})$	\mathbf{C}
CL_bsnuenumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_bsnumunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L) (\bar{\nu}_e \gamma_{\mu} (1 - \gamma_5) \nu_{\mu})$	\mathbf{C}
CL_bsnumunutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_{\mu})$	\mathbf{C}
CL_bsnutaunumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{ u}_{\mu}\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CL_bsnuenutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu b_L) (\bar{\nu}_\tau \gamma_\mu (1-\gamma_5) \nu_e)$	\mathbf{C}

WC name	Operator	Type
CL_bsnutaunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	С
CR_bsnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^\mu b_R) (\bar{\nu}_e \gamma_\mu (1-\gamma_5) \nu_e)$	\mathbf{C}
CR_bsnumunumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bsnutaunutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_bsnuenumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bsnumunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bsnumunutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bsnutaunumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CR_bsnuenutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bsnutaunue	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}

sd

WC name	Operator	Type
C9_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}e)$	С
C9p_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_sdee	$rac{4 {f G}_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{e} \gamma_\mu \gamma_5 e)$	\mathbf{C}
C10p_sdee	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{R}\gamma^{\mu}s_{R})(\bar{e}\gamma_{\mu}\gamma_{5}e)$	\mathbf{C}
CS_sdee	$\frac{4\ddot{G_F}}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{e}e)$	\mathbf{C}
CSp_sdee	$\frac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* \frac{e^2}{16\pi^2} m_s(\bar{d}_R s_L)(\bar{e}e)$	\mathbf{C}
CP_sdee	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(\bar{d}_Ls_R)(\bar{e}\gamma_5e)$	\mathbf{C}
CPp_sdee	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_R s_L)(ar{e}\gamma_5 e)$	\mathbf{C}
C9_sdmumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C9p_sdmumu	$rac{4 \overset{\leftarrow}{V_{F}}}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} (\bar{d}_R \gamma^\mu s_R) (\bar{\mu} \gamma_\mu \mu)$	\mathbf{C}
C10_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
C10p_sdmumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
CS_sdmumu	$rac{4 \overset{\leftarrow}{V_{F}}}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} m_s(\bar{d}_L s_R) (\bar{\mu} \mu)$	\mathbf{C}
CSp_sdmumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_R s_L)(ar{\mu}\mu)$	\mathbf{C}
CP_sdmumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{\mu}\gamma_5\mu)$	\mathbf{C}
CPp_sdmumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_R s_L)(ar{\mu}\gamma_5\mu)$	\mathbf{C}
C9_sdtautau	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}(ar{d}_{L}\gamma^{\mu}s_{L})(ar{ au}\gamma_{\mu} au)$	\mathbf{C}
C9p_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\tau}\gamma_{\mu}\tau)$	\mathbf{C}
C10_sdtautau	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{ au} \gamma_\mu \gamma_5 au)$	\mathbf{C}
C10p_sdtautau	$\frac{\mathring{4}\mathring{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^\mu s_R)(\bar{\tau}\gamma_\mu\gamma_5\tau)$	\mathbf{C}

WC name	Operator	Type
S_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\tau)$	C
Sp_sdtautau	$rac{4G_F}{4G_F}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Rs_L)(ar{ au} au)$	\mathbf{C}
_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\gamma_5\tau)$	C
o_sdtautau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Rs_L)(ar{ au}\gamma_5 au)$	С
_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e}{16\pi^2}m_s(\bar{d}_L\sigma^{\mu\nu}s_R)F_{\mu\nu}$	\mathbf{C}
o_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e}{16\pi^2}m_s(\bar{d}_R\sigma^{\mu\nu}s_L)F_{\mu\nu}$	\mathbf{C}
sd	$rac{4G_F^2}{4G_F^2}V_{ts}V_{td}^*rac{g_s}{16\pi^2}m_s(ar{d}_L\sigma^{\mu u}T^as_R)G_{\mu u}^a$	\mathbf{C}
_sd	$\frac{4G_F^2}{4G_F}V_{ts}V_{td}^* \frac{g_s}{16\pi^2}m_s(\bar{d}_R\sigma^{\mu\nu}T^as_L)G_{\mu\nu}^a$	\mathbf{C}
LL_sdss	$\frac{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{g_s}{16\pi^2}m_s(\bar{d}_R\sigma^{\mu\nu}T^as_L)G_{\mu\nu}^a}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{s}_L\gamma_{\mu}s_L)}$	\mathbf{C}
LR_sdss	$rac{4ar{G}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu s_R)$	\mathbf{C}
RL_sdss	$\frac{\frac{4\tilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{s}_R\gamma_{\mu}s_R)}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^{\mu}s_R)(\bar{s}_L\gamma_{\mu}s_L)}$	\mathbf{C}
R_sdss	$ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^{\mu}s_R)(\bar{s}_R\gamma_{\mu}s_R) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{s}_Rs_L) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{s}_Ls_R) $	\mathbf{C}
LL_sdss	$\frac{4 \widetilde{G_F}}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_R s_L) (\bar{s}_R s_L)$	\mathbf{C}
LR_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{s}_Ls_R)$	\mathbf{C}
RL_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{s}_Rs_L)$	\mathbf{C}
R_sdss	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L s_R)(ar{s}_L s_L) \ rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L s_R)(ar{s}_L s_R)$	\mathbf{C}
LL_sdss	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_R\sigma^{\mu\nu}s_L)(\bar{s}_R\sigma_{\mu\nu}s_L)$	\mathbf{C}
R_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{s}_L\sigma_{\mu u}s_R)$	\mathbf{C}
LL_sddd	$ \begin{array}{c} \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_L \gamma^\mu s_L) (\bar{d}_L \gamma_\mu d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_L \gamma^\mu s_L) (\bar{d}_R \gamma_\mu d_R) \end{array} $	\mathbf{C}
R_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
RL_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
RR_sddd	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
LL_sddd	$ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{d}_Rd_L) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{d}_Ld_R) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{d}_Rd_L) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{d}_Rd_L) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{d}_Ld_R) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{d}_Ld_R) $	\mathbf{C}
R_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{d}_Ld_R)$	\mathbf{C}
L_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{d}_Rd_L)$	\mathbf{C}
R_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{d}_Ld_R)$	\mathbf{C}
L_sddd	$\frac{1}{\sqrt{2}} v_{ts} v_{td} (a_R \sigma^{\mu\nu} s_L) (a_R \sigma_{\mu\nu} a_L)$	$^{\mathrm{C}}$
R_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{d}_L\sigma_{\mu u}d_R)$	C
L_sdbb	$\frac{\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{b}_L\gamma_\mu b_L)}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{b}_R\gamma_\mu b_R)}$	С
R_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{b}_R\gamma_\mu b_R)$	С
L_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
RR_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_R\gamma^\mu s_R)(ar{b}_R\gamma_\mu b_R)$	\mathbf{C}
L_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_Rs_L)(b_Rb_L)$	\mathbf{C}
_R_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_Rs_L)(b_Lb_R)$	\mathbf{C}
RL_sdbb	$ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^{\mu}s_R)(\bar{b}_L\gamma_{\mu}b_L) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^{\mu}s_R)(\bar{b}_R\gamma_{\mu}b_R) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{b}_Rb_L) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{b}_Lb_R) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{b}_Rb_L) \\ \frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{b}_Rb_L) $	\mathbf{C}
L_sdbb	$rac{4reve{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{b}_Lb_R)$	\mathbf{C}

WC name	Operator	Typ
CTLL_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{b}_R\sigma_{\mu\nu}b_L)$	С
CTRR_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}
CVLLt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{b}_L^eta\gamma_\mu b_L^lpha)$	\mathbf{C}
CVLRt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{b}_R^eta\gamma_\mu b_R^lpha)$	\mathbf{C}
CVRLt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{b}_L^eta\gamma_\mu b_L^lpha)$	\mathbf{C}
CVRRt_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}\gamma^{\mu}s_R^{eta})(\bar{b}_R^{eta}\gamma_{\mu}b_R^{lpha})$	C
CSLLt_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}s_L^{eta})(\bar{b}_R^{eta}b_L^{lpha})$	C
CSLRt_sdbb	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_{\alpha}^{\alpha}s_L^{\beta})(\bar{b}_{\beta}^{\beta}b_R^{\alpha})$	\mathbf{C}
CSRLt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^{lpha}s_R^{eta})(ar{b}_R^{eta}b_L^{lpha})$	\mathbf{C}
CSRRt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^{lpha}s_R^{eta})(ar{b}_L^{eta}b_R^{lpha})$	\mathbf{C}
- CTLLt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^{lpha}\sigma^{\mu u}s_L^{eta})(ar{b}_R^{eta}\sigma_{\mu u}b_L^{lpha})$	\mathbf{C}
- CTRRt_sdbb	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^{lpha}\sigma^{\mu u}s_R^{eta})(ar{b}_L^{eta}\sigma_{\mu u}b_R^{lpha})$	С
- CVLL_sduu	$\frac{4\ddot{Q}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLR_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVRL_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_sduu	$rac{4ar{G}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CSLL_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{u}_Ru_L)$	\mathbf{C}
CSLR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R s_L)(\bar{u}_L u_R)$	\mathbf{C}
CSRL_sduu	$rac{4Q_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L s_R)(ar{u}_R u_L)$	\mathbf{C}
CSRR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_L s_R)(\bar{u}_L u_R)$	\mathbf{C}
CTLL_sduu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{u}_R\sigma_{\mu\nu}u_L)$	\mathbf{C}
CTRR_sduu	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{u}_L\sigma_{\mu u}u_R)$	\mathbf{C}
CVLLt_sduu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{\alpha}\gamma^{\mu}s_L^{\beta})(\bar{u}_L^{\beta}\gamma_{\mu}u_L^{\alpha})$	\mathbf{C}
CVLRt_sduu	$\frac{4\widetilde{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{lpha}\gamma^{\mu}s_L^{eta})(\bar{u}_R^{eta}\gamma_{\mu}u_R^{lpha})$	\mathbf{C}
CVRLt_sduu	$rac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{u}_L^eta\gamma_\mu u_L^lpha)$	\mathbf{C}
CVRRt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{u}_R^eta\gamma_\mu u_R^lpha)$	\mathbf{C}
CSLLt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{u}_B^eta u_L^lpha)$	\mathbf{C}
CSLRt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{u}_L^eta u_R^lpha)$	\mathbf{C}
CSRLt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{u}_R^eta u_L^lpha)$	\mathbf{C}
CSRRt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha S_R^eta)(ar{u}_L^eta u_R^lpha)$	\mathbf{C}
CTLLt_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}s_L^eta)(ar{u}_R^eta\sigma_{\mu u}u_L^lpha)$	\mathbf{C}
CTRRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}s_R^eta)(ar{u}_L^eta\sigma_{\mu u}u_R^lpha)$	\mathbf{C}
- CVLL_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{c}_L\gamma_{\mu}c_L)$	\mathbf{C}
- CVLR_sdcc	$\frac{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{c}_L\gamma_{\mu}c_L)}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{c}_R\gamma_{\mu}c_R)}$ $\frac{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^{\mu}s_R)(\bar{c}_L\gamma_{\mu}c_L)}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^{\mu}s_R)(\bar{c}_R\gamma_{\mu}c_R)}$	\mathbf{C}
- CVRL_sdcc	$\frac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVRR_sdcc	$\frac{4G_F}{4G_F}V_*V_*(\bar{d}_D \gamma^{\mu} s_D)(\bar{c}_D \gamma_{\mu} c_D)$	$^{\mathrm{C}}$

WC name	Operator	Type
CSLL_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{c}_Rc_L)$	C
CSLR_sdcc	$\frac{4\overset{\checkmark}{Q_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRL_sdcc	$\frac{4\overset{\leftarrow}{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{c}_Rc_L)$	$^{\mathrm{C}}$
CSRR_sdcc	$\frac{4\overset{\sim}{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{c}_Lc_R)$	\mathbf{C}
CTLL_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{c}_R\sigma_{\mu\nu}c_L)$	\mathbf{C}
CTRR_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}s_R)(\bar{c}_L\sigma_{\mu\nu}c_R)$	\mathbf{C}
CVLLt_sdcc	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	\mathbf{C}
CVLRt_sdcc	$rac{4 ilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CVRLt_sdcc	$rac{4ar{Q}_{F}^{2}}{\sqrt{2}}V_{ts}V_{td}^{*}(ar{d}_{R}^{lpha}\gamma^{\mu}s_{R}^{eta})(ar{c}_{L}^{eta}\gamma_{\mu}c_{L}^{lpha})$	\mathbf{C}
CVRRt_sdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\gamma^\mu s_R^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CSLLt_sdcc	$rac{4ar{Q}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSLRt_sdcc	$rac{4ar{Q}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CSRLt_sdcc	$rac{4ar{Q}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSRRt_sdcc	$rac{4ar{Q}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CTLLt_sdcc	$rac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}s_L^eta)(ar{c}_R^eta\sigma_{\mu u}c_L^lpha)$	\mathbf{C}
CTRRt_sdcc	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}s_R^eta)(ar{c}_L^eta\sigma_{\mu u}c_R^lpha)$	C

sdnunu

WC name	Operator	Type
CL_sdnuenue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	
${\tt CL_sdnumunumu}$	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_sdnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
${\tt CL_sdnuenumu}$	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_sdnumunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_sdnumunutau}$	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_sdnutaunumu}$	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CL_sdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_sdnutaunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CR_sdnuenue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
$CR_sdnumunumu$	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_sdnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_sdnuenumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnumunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}

WC name	Operator	Type
CR_sdnumunutau	$rac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*rac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_{\mu})$	C
CR_sdnutaunumu	$rac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*rac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CR_sdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnutaunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R\gamma^\mu d_R)(\bar{\nu}_e\gamma_\mu(1-\gamma_5)\nu_\tau)$	\mathbf{C}

db

WC name	Operator	Type
C9_bdee	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{e}\gamma_{\mu}e)$	С
C9p_bdee	$\frac{4Q_F^2}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_bdee	$rac{4 \overset{.}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_L \gamma^\mu b_L) (ar{e} \gamma_\mu \gamma_5 e)$	\mathbf{C}
C10p_bdee	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_bdee	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{e}e)$	\mathbf{C}
CSp_bdee	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e}e)$	\mathbf{C}
CP_bdee	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Lb_R)(ar{e}\gamma_5e)$	\mathbf{C}
CPp_bdee	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} m_b (ar{d}_R b_L) (ar{e} \gamma_5 e)$	\mathbf{C}
C9_bdmumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C9p_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C10_bdmumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu}\gamma_{5}\mu)$	\mathbf{C}
C10p_bdmumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
CS_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\mu)$	\mathbf{C}
CSp_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\mu)$	\mathbf{C}
CP_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
CPp_bdmumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\gamma_5\mu)$	\mathbf{C}
C9_bdtautau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu} au)$	\mathbf{C}
C9p_bdtautau	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{ au}\gamma_{\mu} au)$	\mathbf{C}
C10_bdtautau	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}rac{e^{2}}{16\pi^{2}}(ar{d}_{L}\gamma^{\mu}b_{L})(ar{ au}\gamma_{\mu}\gamma_{5} au)$	\mathbf{C}
C10p_bdtautau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{ au}\gamma_{\mu}\gamma_5 au)$	\mathbf{C}
CS_bdtautau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Lb_R)(ar{ au} au)$	\mathbf{C}
CSp_bdtautau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Rb_L)(ar{ au} au)$	\mathbf{C}
CP_bdtautau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{ au}\gamma_5 au)$	\mathbf{C}
CPp_bdtautau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\tau}\gamma_5\tau)$	\mathbf{C}
C7_bd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e}{16\pi^2}m_b(\bar{d}_L\sigma^{\mu\nu}b_R)F_{\mu\nu}$	\mathbf{C}
C7p_bd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e}{16\pi^2} m_b (\bar{d}_R \sigma^{\mu\nu} b_L) F_{\mu\nu}$	$^{\mathrm{C}}$

WC name	Operator	Type
C8_bd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{g_s}{16\pi^2} m_b (\bar{d}_L \sigma^{\mu\nu} T^a b_R) G_{\mu\nu}^a$	C
C8p_bd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{g_s}{16\pi^2}m_b(\bar{d}_R\sigma^{\mu\nu}T^ab_L)G_{\mu\nu}^a$	\mathbf{C}
CVLL_bdbb	$rac{4 ilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
CVLR_bdbb	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\gamma^\mu b_L)(\bar{b}_R\gamma_\mu b_R)$	$^{\mathrm{C}}$
CVRL_bdbb	$\frac{4\breve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{b}_L\gamma_\mu b_L)$	$^{\mathrm{C}}$
CVRR_bdbb	$\frac{4\breve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu b_R)$	$^{\mathrm{C}}$
CSLL_bdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{b}_Rb_L)$	\mathbf{C}
CSLR_bdbb	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Rb_L)(\bar{b}_Lb_R)$	$^{\mathrm{C}}$
CSRL_bdbb	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Lb_R)(\bar{b}_Rb_L)$	\mathbf{C}
CSRR_bdbb	$rac{4ar{Q}_F^2}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{b}_Lb_R)$	\mathbf{C}
CTLL_bdbb	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}b_L)(\bar{b}_R\sigma_{\mu\nu}b_L)$	\mathbf{C}
CTRR_bdbb	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}
CVLL_bddd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\gamma^\mu b_L)(\bar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLR_bddd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CVRL_bddd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVRR_bddd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CSLL_bddd	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{d}_Rd_L)$	$^{\mathrm{C}}$
CSLR_bddd	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{d}_Ld_R)$	\mathbf{C}
CSRL_bddd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRR_bddd	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L b_R)(\bar{d}_L d_R)$	$^{\mathrm{C}}$
CTLL_bddd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\sigma^{\mu u}b_L)(ar{d}_R\sigma_{\mu u}d_L)$	\mathbf{C}
CTRR_bddd	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CVLL_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLR_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVRL_bdss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVRR_bdss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CSLL_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{s}_Rs_L)$	\mathbf{C}
CSLR_bdss	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{s}_Ls_R)$	\mathbf{C}
CSRL_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{s}_Rs_L)$	$^{\mathrm{C}}$
CSRR_bdss	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CTLL_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\sigma^{\mu u}b_L)(ar{s}_R\sigma_{\mu u}s_L) \\ rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{s}_L\sigma_{\mu u}s_R) \\ rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CTRR_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\sigma^{\mu u}b_R)(ar{s}_L\sigma_{\mu u}s_R)$	\mathbf{C}
CVLLt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{s}_L^eta\gamma_\mu s_L^lpha)$	$^{\mathrm{C}}$
CVLRt_bdss	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{s}_R^eta\gamma_\mu s_R^lpha)$	\mathbf{C}
CVRLt_bdss	$rac{4ec{Q}_{F}^{2}}{\sqrt{2}}V_{tb}V_{td}^{*}(ar{d}_{R}^{lpha}\gamma^{\mu}b_{R}^{eta})(ar{s}_{L}^{eta}\gamma_{\mu}s_{L}^{lpha})$	\mathbf{C}
CVRRt_bdss	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\gamma^\mu b_R^eta)(ar{s}_R^eta\gamma_\mu s_R^lpha)$	C

WC name	Operator	Type
CSLLt_bdss	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{\alpha}b_L^{\beta})(\bar{s}_R^{\beta}s_L^{\alpha})$	С
CSLRt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha b_L^eta)(ar{s}_L^eta s_R^lpha)$	\mathbf{C}
CSRLt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha b_R^eta)(ar{s}_R^eta s_L^lpha)$	\mathbf{C}
CSRRt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha b_R^eta)(ar{s}_L^eta s_R^lpha)$	\mathbf{C}
CTLLt_bdss	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}b_L^eta)(ar{s}_R^eta\sigma_{\mu u}s_L^lpha)$	\mathbf{C}
CTRRt_bdss	$rac{4G_F^2}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}b_R^eta)(ar{s}_L^eta\sigma_{\mu u}s_R^lpha)$	\mathbf{C}
CVLL_bduu	$\frac{\frac{4G_F^2}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\gamma^{\mu}b_L)(\bar{u}_L\gamma_{\mu}u_L)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\gamma^{\mu}b_L)(\bar{u}_R\gamma_{\mu}u_R)}$	\mathbf{C}
CVLR_bduu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\gamma^\mu b_L)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVRL_bduu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CSLL_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(d_Rb_L)(\bar{u}_Ru_L)$	$^{\mathrm{C}}$
CSLR_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Rb_L)(\bar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRL_bduu	$\frac{4\bar{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}(\bar{d}_{L}b_{R})(\bar{u}_{R}u_{L})$	\mathbf{C}
CSRR_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Lb_R)(\bar{u}_Lu_R)$	\mathbf{C}
CTLL_bduu	$\frac{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}b_L)(\bar{u}_R\sigma_{\mu\nu}u_L)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}b_R)(\bar{u}_L\sigma_{\mu\nu}u_R)}$	\mathbf{C}
CTRR_bduu	$rac{4 \overline{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (\bar{d}_L \sigma^{\mu u} b_R) (\bar{u}_L \sigma_{\mu u} u_R)$	\mathbf{C}
CVLLt_bduu	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{u}_L^eta\gamma_\mu u_L^lpha)$	\mathbf{C}
CVLRt_bduu	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{u}_R^eta\gamma_\mu u_R^lpha)$	\mathbf{C}
CVRLt_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{lpha}\gamma^{\mu}b_R^{eta})(\bar{u}_L^{eta}\gamma_{\mu}u_L^{lpha})$	\mathbf{C}
CVRRt_bduu	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^lpha\gamma^\mu b_R^eta)(\bar{u}_R^eta\gamma_\mu u_R^lpha)$	\mathbf{C}
CSLLt_bduu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{\alpha}b_L^{\beta})(\bar{u}_R^{\beta}u_L^{\alpha})$	\mathbf{C}
CSLRt_bduu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{\alpha}b_L^{\beta})(\bar{u}_L^{\beta}u_R^{\alpha})$	\mathbf{C}
CSRLt_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L^{\alpha}b_R^{\beta})(\bar{u}_R^{\beta}u_L^{\alpha})$	\mathbf{C}
CSRRt_bduu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha b_R^eta)(ar{u}_L^eta u_R^lpha)$	\mathbf{C}
CTLLt_bduu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R^{lpha}\sigma^{\mu u}b_L^{eta})(\bar{u}_R^{eta}\sigma_{\mu u}u_L^{lpha})$	\mathbf{C}
CTRRt_bduu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}b_R^eta)(ar{u}_L^eta\sigma_{\mu u}u_R^lpha)$	\mathbf{C}
CVLL_bdcc	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVLR_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L\gamma^\mu b_L)(ar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CVRL_bdcc	$\frac{4G_F}{\sqrt{c}}V_{th}V_{td}^*(\bar{d}_R\gamma^\mu b_R)(\bar{c}_L\gamma_\mu c_L)$	$^{\mathrm{C}}$
CVRR_bdcc	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R\gamma^\mu b_R)(ar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CSLL_bdcc	$ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\gamma^{\mu}b_R)(\bar{c}_R\gamma_{\mu}c_R) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Rb_L)(\bar{c}_Rc_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Rb_L)(\bar{c}_Lc_R) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Lb_R)(\bar{c}_Rc_L) \\ \frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_Lb_R)(\bar{c}_Rc_L) $	\mathbf{C}
CSLR_bdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Rb_L)(ar{c}_Lc_R)$	\mathbf{C}
CSRL_bdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_Lb_R)(ar{c}_Rc_L)$	\mathbf{C}
CSRR_bdcc	$\frac{1}{\sqrt{2}}V_{tb}V_{td}(a_L o_R)(c_L c_R)$	\mathbf{C}
CTLL_bdcc	$\frac{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}b_L)(\bar{c}_R\sigma_{\mu\nu}c_L)}{\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L\sigma^{\mu\nu}b_R)(\bar{c}_L\sigma_{\mu\nu}c_R)}$	\mathbf{C}
CTRR_bdcc	$\frac{4\check{G}_{F}}{\bar{c}}V_{th}V_{ts}^{*}(\bar{d}_{L}\sigma^{\mu\nu}b_{R})(\bar{c}_{L}\sigma_{uu}c_{R})$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLLt_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	C
CVLRt_bdcc	$rac{4reve{G_F}}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_L^lpha\gamma^\mu b_L^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CVRLt_bdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\gamma^\mu b_R^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	\mathbf{C}
CVRRt_bdcc	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\gamma^\mu b_R^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CSLLt_bdcc	$rac{4 \overline{G}_F}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_R^lpha b_L^eta) (ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSLRt_bdcc	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_R^lpha b_L^eta) (ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CSRLt_bdcc	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_L^lpha b_R^eta) (ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSRRt_bdcc	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* (ar{d}_L^lpha b_R^eta) (ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CTLLt_bdcc	$rac{4ar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}b_L^eta)(ar{c}_R^eta\sigma_{\mu u}c_L^lpha)$	\mathbf{C}
CTRRt_bdcc	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{tb}V_{td}^*(\bar{d}_L^\alpha\sigma^{\mu\nu}b_R^\beta)(\bar{c}_L^\beta\sigma_{\mu\nu}c_R^\alpha)$	С

dbnunu

WC name	Operator	Type
CL_bdnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	C
${\tt CL_bdnumunumu}$	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{ u}_{\mu}\gamma_{\mu}(1-\gamma_5) u_{\mu})$	\mathbf{C}
${\tt CL_bdnutaunutau}$	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CL_bdnuenumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_bdnumunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
${\tt CL_bdnumunutau}$	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_{\mu})$	\mathbf{C}
${\tt CL_bdnutaunumu}$	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{ u}_{\mu}\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CL_bdnuenutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_bdnutaunue	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{ u}_e\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CR_bdnuenue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bdnumunumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bdnutaunutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CR_bdnuenumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bdnumunue	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{ u}_e\gamma_{\mu}(1-\gamma_5) u_{\mu})$	\mathbf{C}
CR_bdnumunutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_bdnutaunumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{ u}_{\mu}\gamma_{\mu}(1-\gamma_5) u_{ au})$	\mathbf{C}
CR_bdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_{ au}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_bdnutaunue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	C

sbmue

WC name	Operator	Type
C9_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L)(\bar{\mu}\gamma_{\mu} e)$	C
C9p_bsemu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{\mu}\gamma_{\mu}e)$	\mathbf{C}
C10_bsemu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_bsemu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_R\gamma^{\mu}b_R)(ar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_bsemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{\mu}e)$	\mathbf{C}
CSp_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}e)$	\mathbf{C}
CP_bsemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{\mu}\gamma_5e)$	\mathbf{C}
CPp_bsemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}\gamma_5 e)$	С

sbemu

WC name	Operator	Type
C9_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L)(\bar{e}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C9p_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{e} \gamma_{\mu} \mu)$	\mathbf{C}
C10_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
C10p_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{e} \gamma_{\mu} \gamma_5 \mu)$	\mathbf{C}
CS_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}\mu)$	\mathbf{C}
CSp_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e}\mu)$	\mathbf{C}
CP_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}\gamma_5\mu)$	\mathbf{C}
CPp_bsmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_R b_L)(\bar{e}\gamma_5 \mu)$	C

sbtaue

WC name	Operator	Type
C9_bsetau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu}e)$	C
C9p_bsetau	$\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{\tau} \gamma_{\mu} e)$	\mathbf{C}
C10_bsetau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^\mu b_L)(ar{ au}\gamma_\mu\gamma_5 e)$	\mathbf{C}
C10p_bsetau	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}rac{e^{2}}{16\pi^{2}}(ar{s}_{R}\gamma^{\mu}b_{R})(ar{ au}\gamma_{\mu}\gamma_{5}e)$	\mathbf{C}
CS_bsetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\tau}e)$	\mathbf{C}
CSp_bsetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} m_b(\bar{s}_R b_L)(\bar{\tau}e)$	\mathbf{C}
CP_bsetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\tau}\gamma_5 e)$	\mathbf{C}

WC name	Operator	Type
CPp_bsetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\tau}\gamma_5e)$	С

sbetau

WC name	Operator	Type
C9_bstaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^{\mu}b_L)(ar{e}\gamma_{\mu} au)$	\mathbf{C}
C9p_bstaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{e}\gamma_{\mu} au)$	$^{\mathrm{C}}$
C10_bstaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*rac{e^2}{16\pi^2}(ar{s}_L\gamma^\mu b_L)(ar{e}\gamma_\mu\gamma_5 au)$	$^{\mathrm{C}}$
C10p_bstaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{e}\gamma_{\mu}\gamma_5 \tau)$	$^{\mathrm{C}}$
CS_bstaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e} au)$	\mathbf{C}
CSp_bstaue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{e} au)$	\mathbf{C}
CP_bstaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{e}\gamma_5 au)$	$^{\mathrm{C}}$
CPp_bstaue	$rac{4ar{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}rac{e^{2}}{16\pi^{2}}m_{b}(ar{s}_{R}b_{L})(ar{e}\gamma_{5} au)$	C

sbtaumu

WC name	Operator	Type
C9_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^{\mu} b_L) (\bar{\tau} \gamma_{\mu} \mu)$	C
C9p_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{\tau} \gamma_{\mu} \mu)$	$^{\mathrm{C}}$
C10_bsmutau	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{tb}V_{ts}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{\tau}\gamma_{\mu}\gamma_{5}\mu)$	$^{\mathrm{C}}$
C10p_bsmutau	$rac{4 { m G}_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16 \pi^2} (ar{s}_R \gamma^\mu b_R) (ar{ au} \gamma_\mu \gamma_5 \mu)$	$^{\mathrm{C}}$
CS_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{ au}\mu)$	$^{\mathrm{C}}$
CSp_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_R b_L)(\bar{ au}\mu)$	$^{\mathrm{C}}$
CP_bsmutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Lb_R)(\bar{\tau}\gamma_5\mu)$	$^{\mathrm{C}}$
CPp_bsmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\tau}\gamma_5\mu)$	\mathbf{C}

${\tt sbmutau}$

WC name	Operator	Type
C9_bstaumu	$rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} (ar{s}_L \gamma^\mu b_L) (ar{\mu} \gamma_\mu au)$	C
C9p_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R\gamma^\mu b_R)(\bar{\mu}\gamma_\mu \tau)$	\mathbf{C}
C10_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^\mu b_L)(\bar{\mu}\gamma_\mu\gamma_5\tau)$	\mathbf{C}

WC name	Operator	Type
C10p_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_R \gamma^{\mu} b_R) (\bar{\mu} \gamma_{\mu} \gamma_5 \tau)$	С
CS_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\mu} au)$	\mathbf{C}
CSp_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \frac{e^2}{16\pi^2}m_b(\bar{s}_R b_L)(\bar{\mu}\tau)$	\mathbf{C}
CP_bstaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_L b_R)(\bar{\mu}\gamma_5 au)$	\mathbf{C}
CPp_bstaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{e^2}{16\pi^2}m_b(\bar{s}_Rb_L)(\bar{\mu}\gamma_5\tau)$	С

${\tt dbmue}$

WC name	Operator	Type
C9_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{\mu}\gamma_{\mu}e)$	С
C9p_bdemu	$rac{4 ar{G}_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu b_R) (ar{\mu} \gamma_\mu e)$	\mathbf{C}
C10_bdemu	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu b_L) (ar{\mu} \gamma_\mu \gamma_5 e)$	\mathbf{C}
C10p_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}e)$	\mathbf{C}
CSp_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}e)$	\mathbf{C}
CP_bdemu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\gamma_5e)$	\mathbf{C}
CPp_bdemu	$\frac{4\bar{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\gamma_5 e)$	\mathbf{C}

dbemu

WC name	Operator	Type
C9_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}\mu)$	C
C9p_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{e}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C10_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
C10p_bdmue	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu b_R) (ar{e} \gamma_\mu \gamma_5 \mu)$	$^{\mathrm{C}}$
CS_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{e}\mu)$	$^{\mathrm{C}}$
CSp_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e}\mu)$	$^{\mathrm{C}}$
CP_bdmue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{e}\gamma_5\mu)$	$^{\mathrm{C}}$
CPp_bdmue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e}\gamma_5\mu)$	\mathbf{C}

dbtaue

WC name	Operator	Type
C9_bdetau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{ au}\gamma_{\mu}e)$	C
C9p_bdetau	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}b_R)(ar{ au}\gamma_{\mu}e)$	$^{\mathrm{C}}$
C10_bdetau	$rac{4 \overline{G_F}}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_L \gamma^\mu b_L) (ar{ au} \gamma_\mu \gamma_5 e)$	$^{\mathrm{C}}$
C10p_bdetau	$rac{4 \overset{\leftarrow}{G_F}}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu b_R) (ar{ au} \gamma_\mu \gamma_5 e)$	$^{\mathrm{C}}$
CS_bdetau	$rac{4ar{G_F}}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_L b_R)(ar{ au}e)$	$^{\mathrm{C}}$
CSp_bdetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}m_b(\bar{d}_R b_L)(\bar{\tau}e)$	$^{\mathrm{C}}$
CP_bdetau	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} m_b (ar{d}_L b_R) (ar{ au} \gamma_5 e)$	$^{\mathrm{C}}$
CPp_bdetau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\tau}\gamma_5e)$	C

dbetau

WC name	Operator	Type
C9_bdtaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}b_L)(\bar{e}\gamma_{\mu}\tau)$	$\overline{\mathbf{C}}$
C9p_bdtaue	$rac{4 \ddot{G}_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu b_R) (ar{e} \gamma_\mu au)$	$^{\mathrm{C}}$
C10_bdtaue	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{e}\gamma_{\mu}\gamma_5 au)$	$^{\mathrm{C}}$
C10p_bdtaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}b_R)(\bar{e}\gamma_{\mu}\gamma_5\tau)$	$^{\mathrm{C}}$
CS_bdtaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{e} au)$	$^{\mathrm{C}}$
CSp_bdtaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{e} au)$	$^{\mathrm{C}}$
CP_bdtaue	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{e}\gamma_5\tau)$	$^{\mathrm{C}}$
CPp_bdtaue	$\frac{4\bar{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{b}(\bar{d}_{R}b_{L})(\bar{e}\gamma_{5}\tau)$	C

${\tt dbtaumu}$

WC name	Operator	Type
C9_bdmutau	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^* \frac{e^2}{16\pi^2} (\bar{d}_L\gamma^{\mu}b_L)(\bar{\tau}\gamma_{\mu}\mu)$	C
C9p_bdmutau	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu b_R) (ar{ au} \gamma_\mu \mu)$	$^{\mathrm{C}}$
C10_bdmutau	$rac{4 \check{G}_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu b_L) (ar{ au} \gamma_\mu \gamma_5 \mu)$	$^{\mathrm{C}}$
C10p_bdmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu b_R)(ar{ au}\gamma_\mu\gamma_5\mu)$	$^{\mathrm{C}}$
CS_bdmutau	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}m_b(ar{d}_Lb_R)(ar{ au}\mu)$	$^{\mathrm{C}}$
CSp_bdmutau	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} m_b(ar{d}_R b_L) (ar{ au} \mu)$	$^{\mathrm{C}}$
CP_bdmutau	$rac{4 G_F}{\sqrt{2}} V_{tb} V_{td}^* rac{e^2}{16 \pi^2} m_b (ar{d}_L b_R) (ar{ au} \gamma_5 \mu)$	$^{\mathrm{C}}$
CPp_bdmutau	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\tau}\gamma_5\mu)$	\mathbf{C}

${\tt dbmutau}$

WC name	Operator	Type
C9_bdtaumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}b_L)(ar{\mu}\gamma_{\mu} au)$	С
C9p_bdtaumu	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{tb}V_{td}^{*}rac{e^{2}}{16\pi^{2}}(ar{d}_{R}\gamma^{\mu}b_{R})(ar{\mu}\gamma_{\mu} au)$	\mathbf{C}
C10_bdtaumu	$rac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu b_L)(ar{\mu}\gamma_\mu\gamma_5 au)$	\mathbf{C}
C10p_bdtaumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu b_R)(ar{\mu}\gamma_\mu\gamma_5 au)$	\mathbf{C}
CS_bdtaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu} au)$	\mathbf{C}
CSp_bdtaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu} au)$	\mathbf{C}
CP_bdtaumu	$\frac{4G_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Lb_R)(\bar{\mu}\gamma_5\tau)$	\mathbf{C}
CPp_bdtaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{tb}V_{td}^*\frac{e^2}{16\pi^2}m_b(\bar{d}_Rb_L)(\bar{\mu}\gamma_5\tau)$	С

sdemu

WC name	Operator	Type
C9_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}e)$	С
C9p_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}e)$	$^{\mathrm{C}}$
C10_sdemu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu s_L)(ar{\mu}\gamma_\mu\gamma_5 e)$	$^{\mathrm{C}}$
C10p_sdemu	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{R}\gamma^{\mu}s_{R})(\bar{\mu}\gamma_{\mu}\gamma_{5}e)$	\mathbf{C}
CS_sdemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}e)$	\mathbf{C}
CSp_sdemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\mu}e)$	\mathbf{C}
CP_sdemu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}\gamma_5 e)$	\mathbf{C}
CPp_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\gamma_5 e)$	С

sdmue

WC name	Operator	Type
C9_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\mu)$	$\overline{\mathbf{C}}$
C9p_sdmue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{e}\gamma_\mu\mu)$	$^{\mathrm{C}}$
C10_sdmue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{e}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
C10p_sdmue	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_R \gamma^\mu s_R) (ar{e} \gamma_\mu \gamma_5 \mu)$	$^{\mathrm{C}}$
CS_sdmue	$\frac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* \frac{e^2}{16\pi^2} m_s(\bar{d}_L s_R)(\bar{e}\mu)$	$^{\mathrm{C}}$
CSp_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}\mu)$	\mathbf{C}
CP_sdmue	$rac{4 \ddot{G}_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} m_s(ar{d}_L s_R) (ar{e} \gamma_5 \mu)$	\mathbf{C}

WC name	Operator	Type
CPp_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}\gamma_5\mu)$	С

sdetau

WC name	Operator	Type
C9_sdetau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\tau}\gamma_{\mu}e)$	\mathbf{C}
C9p_sdetau	$rac{4ar{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}(ar{d}_{R}\gamma^{\mu}s_{R})(ar{ au}\gamma_{\mu}e)$	$^{\mathrm{C}}$
C10_sdetau	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{ au} \gamma_\mu \gamma_5 e)$	$^{\mathrm{C}}$
C10p_sdetau	$rac{4 \overline{G}_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu s_R) (ar{ au} \gamma_\mu \gamma_5 e)$	$^{\mathrm{C}}$
CS_sdetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{ au}e)$	$^{\mathrm{C}}$
CSp_sdetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\tau}e)$	$^{\mathrm{C}}$
CP_sdetau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{ au}\gamma_5 e)$	$^{\mathrm{C}}$
CPp_sdetau	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{s}(\bar{d}_{R}s_{L})(\bar{\tau}\gamma_{5}e)$	\mathbf{C}

sdtaue

WC name	Operator	Type
C9_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\tau)$	С
C9p_sdtaue	$rac{4ar{Q}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{\dot{e}^{2}}{16\pi^{2}}(ar{d}_{R}\gamma^{\mu}s_{R})(ar{e}\gamma_{\mu} au)$	\mathbf{C}
C10_sdtaue	$rac{4ar{Q}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu s_L)(ar{e}\gamma_\mu\gamma_5 au)$	\mathbf{C}
C10p_sdtaue	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu s_R) (ar{e} \gamma_\mu \gamma_5 au)$	\mathbf{C}
CS_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Ls_R)(ar{e} au)$	\mathbf{C}
CSp_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Rs_L)(ar{e} au)$	\mathbf{C}
CP_sdtaue	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{L}s_{R})(ar{e}\gamma_{5} au)$	\mathbf{C}
CPp_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}\gamma_5 \tau)$	\mathbf{C}

${\tt sdmutau}$

WC name	Operator	Type
C9_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\tau}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C9p_sdmutau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{ au}\gamma_{\mu}\mu)$	\mathbf{C}
C10_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2} (\bar{d}_L\gamma^{\mu}s_L)(\bar{\tau}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}

WC name	Operator	Type
C10p_sdmutau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{ au}\gamma_{\mu}\gamma_{5}\mu)$	С
CS_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\mu)$	\mathbf{C}
CSp_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\tau}\mu)$	\mathbf{C}
CP_sdmutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\gamma_5\mu)$	\mathbf{C}
CPp_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\tau}\gamma_5\mu)$	C

${\tt sdtaumu}$

WC name	Operator	Type
C9_sdtaumu	$rac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_L \gamma^\mu s_L) (ar{\mu} \gamma_\mu au)$	С
C9p_sdtaumu	$rac{4 \overset{.}{G_F}}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_R \gamma^\mu s_R) (ar{\mu} \gamma_\mu au)$	\mathbf{C}
C10_sdtaumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{\mu}\gamma_{\mu}\gamma_5 au)$	\mathbf{C}
C10p_sdtaumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{\mu}\gamma_\mu\gamma_5 au)$	\mathbf{C}
CS_sdtaumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{\mu} au)$	\mathbf{C}
CSp_sdtaumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_R s_L)(ar{\mu} au)$	\mathbf{C}
CP_sdtaumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{\mu}\gamma_5 au)$	\mathbf{C}
CPp_sdtaumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\mu}\gamma_5\tau)$	\mathbf{C}

cbenu

WC name	Operator	Type
CVL_bcenue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^{\mu}b_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	
CVR_bcenue	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_bcenue	$-\frac{4\widetilde{G_F}}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{e}_R u_{eL})$	\mathbf{C}
CSL_bcenue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{e}_R\nu_{eL})$	\mathbf{C}
CT_bcenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_bcenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_bcenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_bcenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_Lb_R)(ar{e}_R u_{\mu L})$	\mathbf{C}
CSL_bcenumu	$-\frac{4\bar{G_F}}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{e}_R u_{\mu L})$	\mathbf{C}
CT_bcenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_bcenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_bcenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_bcenutau	$-rac{4 \widetilde{G_F}}{\sqrt{2}} V_{cb} (ar{c}_L b_R) (ar{e}_R u_{ au L})$	\mathbf{C}

WC name	Operator	Type
CSL_bcenutau	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{e}_R\nu_{\tau L})$	С
CT_bcenutau	$-rac{4G_F}{\sqrt{2}}V_{cb}(ar{c}_Rb_L)(ar{e}_R u_{ au L}) \ -rac{4G_F}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

${\tt ubenu}$

WC name	Operator	Type
CVL_buenue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_buenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^\mu b_R)(\bar{e}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_buenue	$-\frac{4\check{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_buenue	$-\frac{4 \tilde{G}_F}{\sqrt{2}} V_{ub}(\bar{u}_R b_L)(\bar{e}_R \nu_{eL})$	$^{\mathrm{C}}$
CT_buenue	$-rac{4 \widetilde{G_F}}{\sqrt{2}} V_{ub} (\bar{u}_R \sigma^{\mu u} b_L) (\bar{e}_R \sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_buenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_buenumu	$-rac{4ar{Q}_F}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_buenumu	$-\frac{4\widetilde{G_F}}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{e}_R u_{\mu L})$	$^{\mathrm{C}}$
CSL_buenumu	$-\frac{4\check{G}_{F}}{\sqrt{2}}V_{ub}(\bar{u}_{R}b_{L})(\bar{e}_{R} u_{\mu L})$	$^{\mathrm{C}}$
CT_buenumu	$-rac{4\overset{\circ}{N_L}}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu u}b_L)(\bar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_buenutau	$-rac{4\overset{\circ}{V_L}}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_buenutau	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_buenutau	$-\frac{4 {\rm Y}_{F}^{2}}{\sqrt{2}} V_{ub}(\bar{u}_{L} b_{R})(\bar{e}_{R} u_{ au L})$	\mathbf{C}
CSL_buenutau	$-rac{4 V_{GF}^2}{\sqrt{2}} V_{ub}(\bar{u}_R b_L)(\bar{e}_R u_{ au L})$	\mathbf{C}
CT_buenutau	$-rac{4igsee_F^2}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

usenu

WC name	Operator	Type
CVL_suenue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_suenue	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{e}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_suenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{e}_R \nu_{eL})$	\mathbf{C}
CSL_suenue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{eL})$	\mathbf{C}
CT_suenue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_suenumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_suenumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_suenumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{e}_R u_{\mu L})$	\mathbf{C}
CSL_suenumu	$-rac{4G_F^{\prime\prime}}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{\mu L})$	\mathbf{C}
CT_suenumu	$-\frac{4\overset{Q'}{C_F}}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}

WC name	Operator	Type
CVL_suenutau	$-rac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^\mu s_L)(\bar{e}_L\gamma_\mu u_{ au L})$	C
CVR_suenutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{e}_L\gamma_{\mu}\nu_{\tau L}) \\ -\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^{\mu}s_R)(\bar{e}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CSR_suenutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{e}_R \nu_{\tau L})$	\mathbf{C}
CSL_suenutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{e}_R\nu_{\tau L})$	\mathbf{C}
CT_suenutau	$-\frac{4G_F^2}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{e}_R \nu_{\tau L}) \\ -\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{e}_R \nu_{\tau L}) \\ -\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R \sigma^{\mu\nu} s_L)(\bar{e}_R \sigma_{\mu\nu} \nu_{\tau L})$	С

csenu

WC name	Operator	Type
CVL_scenue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_scenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_scenue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{e}_R \nu_{eL})$	\mathbf{C}
CSL_scenue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{e}_R\nu_{eL})$	\mathbf{C}
CT_scenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_scenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_scenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_scenumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{cs}(ar{c}_L s_R)(ar{e}_R u_{\mu L})$	\mathbf{C}
CSL_scenumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{e}_R u_{\mu L})$	\mathbf{C}
CT_scenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_scenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_scenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_scenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L s_R)(ar{e}_R u_{ au L})$	\mathbf{C}
CSL_scenutau	$-rac{4ar{G}_F}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{e}_R u_{ au L})$	\mathbf{C}
CT_scenutau	$-rac{4 G_F}{\sqrt{2}} V_{cs} (ar{c}_R \sigma^{\mu u} s_L) (ar{e}_R \sigma_{\mu u} u_{ au L})$	C

cdenu

WC name	Operator	Type
CVL_dcenue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	C
CVR_dcenue	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dcenue	$-\frac{4G_F}{\sqrt{c}}V_{cd}(\bar{c}_Ld_R)(\bar{e}_R\nu_{eL})$	\mathbf{C}
CSL_dcenue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{e}_R\nu_{eL})$	\mathbf{C}
CT_dcenue	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_dcenumu	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dcenumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{e}_R\nu_{eL}) \\ -\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{eL}) \\ -\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^{\mu}d_L)(\bar{e}_L\gamma_{\mu}\nu_{\mu L}) \\ -\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^{\mu}d_R)(\bar{e}_L\gamma_{\mu}\nu_{\mu L})$	\mathbf{C}

WC name	Operator	Type
CSR_dcenumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{e}_R\nu_{\mu L})$	C
CSL_dcenumu	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_L d_R)(ar{e}_R u_{\mu L}) \ -rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_R d_L)(ar{e}_R u_{\mu L})$	\mathbf{C}
CT_dcenumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_dcenutau	$-rac{4G_F^c}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dcenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dcenutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{e}_R\nu_{\tau L})$	\mathbf{C}
CSL_dcenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cd}(ar{c}_Rd_L)(ar{e}_R u_{ au L})$	\mathbf{C}
CT_dcenutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

cbmunu

WC name	Operator	Type
CVL_bcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^{\mu}b_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	C
CVR_bcmunue	$-rac{4rac{G_F}{\sqrt{2}}}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_bcmunue	$-rac{4\widetilde{G}_F^r}{\sqrt{2}}V_{cb}(ar{c}_Lb_R)(ar{\mu}_R u_{eL})$	$^{\mathrm{C}}$
CSL_bcmunue	$-\frac{4\widetilde{G_F}}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\mu}_R u_{eL})$	$^{\mathrm{C}}$
CT_bcmunue	$-rac{4raket{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_bcmunumu	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_bcmunumu	$-rac{4\widetilde{G}_F^c}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_bcmunumu	$-\frac{4G_F^2}{\sqrt{2}}V_{cb}(\bar{c}_L b_R)(\bar{\mu}_R \nu_{\mu L})$	\mathbf{C}
CSL_bcmunumu	$-\frac{4G_F^2}{\sqrt{2}}V_{cb}(\bar{c}_R b_L)(\bar{\mu}_R \nu_{\mu L})$	\mathbf{C}
CT_bcmunumu	$-rac{4Q_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_bcmunutau	$-rac{4G_F^2}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CVR_bcmunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_bcmunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_Lb_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_bcmunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_Rb_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_bcmunutau	$-rac{4ar{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

ubmunu

WC name	Operator	Type
CVL_bumunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	С
CVR_bumunue	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{eL}) \ -rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_bumunue	$-rac{4\check{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\mu}_R u_{eL})$	$^{\mathrm{C}}$
CSL_bumunue	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_Lb_R)(ar{\mu}_R u_{eL}) \ -rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_Rb_L)(ar{\mu}_R u_{eL})$	$^{\mathrm{C}}$

WC name	Operator	Type
CT_bumunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{eL})$	C
CVL_bumunumu	$-rac{4G_F}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_bumunumu	$-rac{4G_F^c}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_bumunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\mu}_R u_{\mu L})$	\mathbf{C}
CSL_bumunumu	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ub}(ar{u}_Rb_L)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CT_bumunumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{ub}(ar{u}_R\sigma^{\mu u}b_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_bumunutau	$-rac{4reve{G_F}}{\sqrt{2}}V_{ub}(ar{u}_L\gamma^\mu b_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_bumunutau	$-rac{4rac{ec{G}_F}}{\sqrt{2}}V_{ub}(ar{u}_R\gamma^\mu b_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_bumunutau	$-rac{4reve{G_F}}{\sqrt{2}}V_{ub}(ar{u}_Lb_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_bumunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{\mu}_R u_{ au L})$	\mathbf{C}
CT_bumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu u}b_L)(\bar{\mu}_R\sigma_{\mu u} u_{ au L})$	С

usmunu

WC name	Operator	Type
CVL_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	C
CVR_sumunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_sumunue	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{\mu}_R u_{eL})$	$^{\mathrm{C}}$
CSL_sumunue	$-rac{4reve{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{\mu}_R u_{eL})$	$^{\mathrm{C}}$
CT_sumunue	$-rac{4G_F^2}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_sumunumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_sumunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_sumunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{us}(\bar{u}_Ls_R)(\bar{\mu}_R u_{\mu L})$	\mathbf{C}
CSL_sumunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CT_sumunumu	$-rac{4\check{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_sumunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_sumunutau	$-rac{4\widetilde{G}_F^c}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_sumunutau	$-rac{4\widetilde{G}_F^c}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_sumunutau	$-rac{4G_F^2}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_sumunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

csmunu

WC name	Operator	Type
CVL_scmunue	$-rac{4G_F}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{eL})$	C

WC name	Operator	Type
CVR_scmunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^{\mu}s_R)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	C
CSR_scmunue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\mu}_R \nu_{eL})$	\mathbf{C}
CSL_scmunue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CT_scmunue	$-rac{4reve{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_scmunumu	$-rac{4 ilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_scmunumu	$-rac{4reve{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_scmunumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L s_R)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CSL_scmunumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CT_scmunumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_scmunutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_scmunutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_scmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\mu}_R \nu_{\tau L})$	\mathbf{C}
CSL_scmunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_scmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu\nu}s_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

cdmunu

WC name	Operator	Type
CVL_dcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	C
CVR_dcmunue	$-rac{4 ilde{Q}_F^2}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dcmunue	$-rac{4G_F^2}{\sqrt{2}}V_{cd}(ar{c}_L d_R)(ar{\mu}_R u_{eL})$	\mathbf{C}
CSL_dcmunue	$-rac{4rac{arphi_F}{\sqrt{2}}V_{cd}(ar{c}_Rd_L)(ar{\mu}_R u_{eL})}{2}$	\mathbf{C}
CT_dcmunue	$-rac{4rac{arphi_F}{\sqrt{2}}}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_dcmunumu	$-rac{4rac{arphi_F}{\sqrt{2}}}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dcmunumu	$-rac{4rac{arphi_F}{\sqrt{2}}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_dcmunumu	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\mu}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CSL_dcmunumu	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\mu}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_dcmunumu	$-rac{4 \check{G}_F}{\sqrt{2}} V_{cd} (\bar{c}_R \sigma^{\mu u} d_L) (\bar{\mu}_R \sigma_{\mu u} u_{\mu L})$	$^{\mathrm{C}}$
CVL_dcmunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{\tau L})$	$^{\mathrm{C}}$
CVR_dcmunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{\tau L})$	$^{\mathrm{C}}$
CSR_dcmunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\mu}_R\nu_{\tau L})$	$^{\mathrm{C}}$
CSL_dcmunutau	$-rac{4reve{G}_F^c}{\sqrt{2}}V_{cd}(ar{c}_Rd_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_dcmunutau	$-rac{4\overleftarrow{G}_F}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

${\tt cbtaunu}$

WC name	Operator	Type
CVL_bctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_bctaunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{ au}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_bctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_bctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_bctaunue	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_R\sigma^{\mu u}b_L)(\bar{ au}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_bctaunumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_L\gamma^\mu b_L)(ar{ au}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_bctaunumu	$-rac{4G_F}{\sqrt{2}}V_{cb}(ar{c}_R\gamma^\mu b_R)(ar{ au}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_bctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CSL_bctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_bctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVL_bctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	$^{\mathrm{C}}$
CVR_bctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_R\gamma^\mu b_R)(\bar{\tau}_L\gamma_\mu u_{\tau L})$	$^{\mathrm{C}}$
CSR_bctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cb}(\bar{c}_Lb_R)(\bar{\tau}_R\nu_{\tau L})$	$^{\mathrm{C}}$
CSL_bctaunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cb}(\bar{c}_Rb_L)(\bar{\tau}_R\nu_{\tau L})$	$^{\mathrm{C}}$
CT_bctaunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{cb}(ar{c}_R\sigma^{\mu u}b_L)(ar{ au}_R\sigma_{\mu u} u_{ au L})$	С

${\tt ubtaunu}$

WC name	Operator	Type
CVL_butaunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_butaunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^\mu b_R)(\bar{ au}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_butaunue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_butaunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_butaunue	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	$^{\mathrm{C}}$
CVL_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVR_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^{\mu}b_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\mu L})$	$^{\mathrm{C}}$
CSR_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L b_R)(\bar{\tau}_R \nu_{\mu L})$	\mathbf{C}
CSL_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CT_butaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
$\mathtt{CVL_butaunutau}$	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_L\gamma^{\mu}b_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CVR_butaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\gamma^{\mu}b_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	$^{\mathrm{C}}$
CSR_butaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Lb_R)(\bar{\tau}_R u_{\tau L})$	\mathbf{C}
CSL_butaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_Rb_L)(\bar{\tau}_R\nu_{\tau L})$	\mathbf{C}
CT_butaunutau	$-\frac{4G_F}{\sqrt{2}}V_{ub}(\bar{u}_R\sigma^{\mu\nu}b_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

ustaunu

WC name	Operator	Type
CVL_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_sutaunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\tau}_R \nu_{eL})$	$^{\mathrm{C}}$
CSL_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	$^{\mathrm{C}}$
CVL_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^\mu s_L)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	$^{\mathrm{C}}$
CVR_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^{\mu}s_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\mu L})$	$^{\mathrm{C}}$
CSR_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\tau}_R \nu_{\mu L})$	$^{\mathrm{C}}$
CSL_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVL_sutaunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{ au}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CVR_sutaunutau	$-rac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{ au}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CSR_sutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\tau}_R \nu_{\tau L})$	$^{\mathrm{C}}$
CSL_sutaunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CT_sutaunutau	$-rac{4ar{\zeta}_F^c}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{ au}_R\sigma_{\mu u} u_{ au L})$	С

${\tt cstaunu}$

WC name	Operator	Type
CVL_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_sctaunue	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^\mu s_R)(\bar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\tau}_R \nu_{eL})$	$^{\mathrm{C}}$
CSL_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	$^{\mathrm{C}}$
CVL_sctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^\mu s_L)(\bar{\tau}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_sctaunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{ au}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_sctaunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{ au}_R u_{\mu L})$	$^{\mathrm{C}}$
CSL_sctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_sctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVL_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	$^{\mathrm{C}}$
CVR_sctaunutau	$-rac{4 ilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\tau}_R \nu_{\tau L})$	$^{\mathrm{C}}$
CSL_sctaunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{ au}_R u_{ au L})$	$^{\mathrm{C}}$
CT_sctaunutau	$-\frac{4\tilde{G}_F^2}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

cdtaunu

WC name	Operator	Type
CVL_dctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\tau}_L\gamma_\mu\nu_{eL})$	C
CVR_dctaunue	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_dctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\tau}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_dctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	$^{\mathrm{C}}$
CVL_dctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	$^{\mathrm{C}}$
CVR_dctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	$^{\mathrm{C}}$
CSR_dctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CSL_dctaunumu	$-\frac{4\ddot{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\tau}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_dctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVL_dctaunutau	$-rac{4\ddot{G}_F}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{ au}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$
CVR_dctaunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{\tau L})$	$^{\mathrm{C}}$
CSR_dctaunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\tau}_R\nu_{\tau L})$	$^{\mathrm{C}}$
CSL_dctaunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CT_dctaunutau	$-rac{4reve{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{ au}_R\sigma_{\mu u} u_{ au L})$	С

udenu

WC name	Operator	Type
CVL_duenue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	C
CVR_duenue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{e}_L\gamma_\mu\nu_{eL})$	\mathbf{C}
CSR_duenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Ld_R)(ar{e}_R u_{eL})$	$^{\mathrm{C}}$
CSL_duenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{e}_R u_{eL})$	$^{\mathrm{C}}$
CT_duenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$
CVL_duenumu	$-rac{4reve{G_F}}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CVR_duenumu	$-rac{4reve{Q}_F^2}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{\mu L})$	$^{\mathrm{C}}$
CSR_duenumu	$-rac{4reve{Q}_F^2}{\sqrt{2}}V_{ud}(ar{u}_Ld_R)(ar{e}_R u_{\mu L})$	$^{\mathrm{C}}$
CSL_duenumu	$-\frac{4\overset{\sim}{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{e}_R\nu_{\mu L})$	\mathbf{C}
CT_duenumu	$-rac{4reve{Q}_F^2}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_duenutau	$-rac{4reve{Q}_F^2}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_duenutau	$-rac{4reve{Q}_F^2}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_duenutau	$-\frac{4 \check{G}_{F}^{c}}{\sqrt{2}} V_{ud}(\bar{u}_{L} d_{R})(\bar{e}_{R} \nu_{\tau L})$	\mathbf{C}
CSL_duenutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{e}_R\nu_{\tau L})$	\mathbf{C}
CT_duenutau	$-rac{4ar{\zeta}_F^c}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	С

udmunu

WC name	Operator	Type
CVL_dumunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	C
CVR_dumunue	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CSL_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CT_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_dumunumu	$-rac{4\check{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CSL_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CT_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_dumunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CVR_dumunutau	$-rac{4\check{G}_F^c}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CSR_dumunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R u_{\tau L})$	\mathbf{C}
CSL_dumunutau	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_dumunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\tau L})$	C

${\tt udtaunu}$

WC name	Operator	Type
CVL_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\tau}_L\gamma_\mu\nu_{eL})$	C
CVR_dutaunue	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CSL_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CT_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_dutaunumu	$-\frac{4G_F^2}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CVR_dutaunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_dutaunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CSL_dutaunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{ au}_R u_{\mu L})$	\mathbf{C}
CT_dutaunumu	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{ au}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_dutaunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dutaunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dutaunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Ld_R)(ar{ au}_R u_{ au L})$	\mathbf{C}
CSL_dutaunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{ au}_R u_{ au L})$	\mathbf{C}
CT_dutaunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

dF=0

WC name	Operator	Type
CG	$\frac{4G_F}{\sqrt{2}}f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	R
CGtilde	$rac{4G_F^C}{\sqrt{2}}f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ u}$	${ m R}$
C7_uu	$rac{4\widetilde{G}_F}{\sqrt{2}}f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu} \ rac{4G_F}{\sqrt{2}}rac{e}{16\pi^2}m_uar{u}_L\sigma^{\mu u}u_RF_{\mu u}$	$^{\mathrm{C}}$
C7_cc	$\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_c \bar{c}_L \sigma^{\mu\nu} c_R F_{\mu\nu}$	$^{\mathrm{C}}$
C7_dd	$\frac{4G_F}{\sqrt{2}}\frac{e}{16\pi^2}m_dar{d}_L\sigma^{\mu\nu}d_RF_{\mu\nu}$	\mathbf{C}
C7_ss	$rac{4G_F}{\sqrt{2}}rac{e}{16\pi^2}m_sar{s}_L\sigma^{\mu u}s_RF_{\mu u}$	\mathbf{C}
C7_bb	$rac{4Q_F^2}{\sqrt{2}}rac{e}{16\pi^2}m_bar{b}_L\sigma^{\mu u}b_RF_{\mu u}$	$^{\mathrm{C}}$
C7_ee	$\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_e \bar{e}_L \sigma^{\mu\nu} e_R F_{\mu\nu}$	\mathbf{C}
C7_mumu	$\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_\mu \bar{\mu}_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$	\mathbf{C}
C7_tautau	$\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_{ au} ar{ au}_L \sigma^{\mu u} au_R F_{\mu u}$	\mathbf{C}
C8_uu	$\frac{4G_F}{\sqrt{2}} \frac{g_s}{16\pi^2} m_u \bar{u}_L \sigma^{\mu\nu} T^A u_R G_{\mu\nu}^A$	\mathbf{C}
C8_cc	$rac{4G_F}{\sqrt{2}} rac{g_s}{16\pi^2} m_c ar{c}_L \sigma^{\mu u} T^A c_R G^A_{\mu u} \ rac{4G_F}{\sqrt{2}} rac{g_s}{16\pi^2} m_d ar{d}_L \sigma^{\mu u} T^A d_R G^A_{\mu u} \ rac{4G_F}{\sqrt{2}} rac{g_s}{16\pi^2} m_s ar{s}_L \sigma^{\mu u} T^A s_R G^A_{\mu u} \ rac{4G_F}{\sqrt{2}} rac{g_s}{16\pi^2} m_s ar{s}_L \sigma^{\mu u} T^A s_R G^A_{\mu u} \ rac{4G_F}{\sqrt{2}} rac{g_s}{16\pi^2} m_s ar{s}_L \sigma^{\mu u} T^A s_R G^A_{\mu u} \ rac{4G_F}{\sqrt{2}} rac{g_s}{16\pi^2} m_s ar{s}_L \sigma^{\mu u} T^A s_R G^A_{\mu u} \ rac{4G_F}{\sqrt{2}} rac{g_s}{16\pi^2} m_s ar{s}_L \sigma^{\mu u} T^A s_R G^A_{\mu u} \ rac{G_A}{\sqrt{2}} \ rac{G_A}{\sqrt$	\mathbf{C}
C8_dd	$rac{4G_F^2}{\sqrt{2}}rac{g_s}{16\pi^2}m_dar{d}_L\sigma^{\mu u}T^Ad_RG^A_{\mu u}$	$^{\mathrm{C}}$
C8_ss	$rac{4G_F^2}{\sqrt{2}}rac{g_s}{16\pi^2}m_sar{s}_L\sigma^{\mu u}T^As_RG^A_{\mu u}$	$^{\mathrm{C}}$
C8_bb	$rac{4G_F}{\sqrt{2}}rac{g_s}{16\pi^2}m_bar{b}_L\sigma^{\mu u}T^Ab_RG^A_{\mu u}$	\mathbf{C}
CTRR_eeuu	$\frac{4G_F}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{u}_L\sigma_{\mu u}u_R)$	$^{\mathrm{C}}$
CTRR_eecc	$\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{e}_L\sigma^{\mu\nu}e_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$ $\frac{4G_F}{\sqrt{2}}(\bar{e}_L\sigma^{\mu\nu}e_R)(\bar{c}_L\sigma_{\mu\nu}c_R)$	$^{\mathrm{C}}$
CTRR_mumuuu	$rac{4 \overset{f C_F}{\sqrt{2}}}{\sqrt{2}} (ar{\mu}_L \sigma^{\mu u} \mu_R) (ar{u}_L \sigma_{\mu u} u_R)$	\mathbf{C}
CTRR_mumucc	$rac{4 \check{G}_F}{\sqrt{2}} (ar{\mu}_L \sigma^{\mu u} \mu_R) (ar{c}_L \sigma_{\mu u} c_R)$	$^{\mathrm{C}}$
CTRR_tautauuu	$rac{4 ackslash G_F}{\sqrt{2}} (ar{ au}_L \sigma^{\mu u} au_R) (ar{u}_L \sigma_{\mu u} u_R)$	$^{\mathrm{C}}$
CTRR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\sigma^{\mu u} au_R)(ar{c}_L\sigma_{\mu u}c_R)$	$^{\mathrm{C}}$
CTRR_eedd	$rac{4rac{rack{V}^2}{\sqrt{2}}}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_eess	$rac{4ar{Q}_F^2}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CTRR_eebb	$\frac{4G_F^{\Gamma}}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{b}_L\sigma_{\mu u}b_R)$	$^{\mathrm{C}}$
CTRR_mumudd	$rac{4reve{Q}_F^2}{\sqrt{2}}(ar{\mu}_L\sigma^{\mu u}\mu_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_mumuss	$rac{4reve{G_F}}{\sqrt{2}}(ar{\mu}_L\sigma^{\mu u}\mu_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CTRR_mumubb	$rac{4 \check{G}_F}{\sqrt{2}} (ar{\mu}_L \sigma^{\mu u} \mu_R) (ar{b}_L \sigma_{\mu u} b_R)$	$^{\mathrm{C}}$
CTRR_tautaudd	$rac{4ar{G}_F^2}{\sqrt{2}}(ar{ au}_L\sigma^{\mu u} au_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_tautauss		\mathbf{C}
CTRR_tautaubb	$rac{4ar{G_F}}{\sqrt{2}}(ar{ au}_L\sigma^{\mu u} au_R)(ar{s}_L\sigma_{\mu u}s_R) \ rac{4G_F}{\sqrt{2}}(ar{ au}_L\sigma^{\mu u} au_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}
CS1RR_uuuu	$\frac{4\overleftarrow{\nabla_L^2}}{\sqrt{2}}(\bar{u}_Lu_R)(\bar{u}_Lu_R)$	\mathbf{C}
CS1RR_uucc	$\frac{4\overset{C}{G_F}}{\sqrt{2}}(\bar{u}_L u_R)(\bar{c}_L c_R)$	\mathbf{C}
CS1RR_uccu	$\frac{4\overset{C}{G_F}}{\sqrt{2}}(\bar{u}_L c_R)(\bar{c}_L u_R)$	\mathbf{C}
CS1RR_cccc	$\begin{array}{l} \frac{\sqrt{2}}{\sqrt{F_{E}}}(\bar{u}_{L}u_{R})(\bar{u}_{L}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}u_{R})(\bar{u}_{L}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}u_{R})(\bar{c}_{L}c_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}c_{R})(\bar{c}_{L}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{c}_{L}c_{R})(\bar{c}_{L}c_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}T^{A}u_{R})(\bar{u}_{L}T^{A}u_{R}) \end{array}$	\mathbf{C}
CS8RR_uuuu	$AG_{\pi}^{\mathbf{v}} = \pi A \qquad (= \pi A)$	$^{\mathrm{C}}$

WC name	Operator	Type
CS8RR_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{c}_L T^A c_R)$	$^{\mathrm{C}}$
CS8RR_uccu	$rac{4G_F}{\sqrt{2}}(ar{u}_L T^A c_R)(ar{c}_L T^A u_R)$	$^{\mathrm{C}}$
CS8RR_cccc	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{c}_L T^A c_R)(\bar{c}_L T^A c_R)$	$^{\mathrm{C}}$
CS1RR_uudd	$rac{4 \dot{G_F}}{\sqrt{2}} (ar{u}_L u_R) (ar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L u_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS1RR_uubb	$rac{4\dot{G}_F}{\sqrt{2}}(ar{u}_L u_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS1RR_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L c_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L c_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS1RR_ccbb	$rac{4ar{G}_F}{\sqrt{2}}(ar{c}_L c_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS8RR_uudd	$rac{4G_F}{\sqrt{2}}(ar{u}_L T^A u_R)(ar{d}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L T^A u_R)(ar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_uubb	$rac{4G_F}{\sqrt{2}}(ar{u}_L T^A u_R)(ar{b}_L T^A b_R)$	$^{\mathrm{C}}$
CS8RR_ccdd	$rac{4\dot{G}_F}{\sqrt{2}}(ar{c}_L T^A c_R)(ar{d}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_ccss	$rac{4ar{G}_F}{\sqrt{2}}(ar{c}_L T^A c_R)(ar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L T^A c_R)(ar{b}_L T^A b_R)$	$^{\mathrm{C}}$
CS1RR_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_L d_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ddss	$rac{4G_F}{\sqrt{2}}(ar{d}_L d_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS1RR_ddbb	$rac{4G_F}{\sqrt{2}}(ar{d}_L d_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS1RR_dssd	$rac{4G_F}{\sqrt{2}}(ar{d}_L s_R)(ar{s}_L d_R)$	$^{\mathrm{C}}$
CS1RR_dbbd	$rac{4G_F}{\sqrt{2}}(ar{d}_L b_R)(ar{b}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ssss	$rac{4G_F}{\sqrt{2}}(ar{s}_L s_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS1RR_ssbb	$rac{4G_F}{\sqrt{2}}(ar{s}_L s_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS1RR_sbbs	$rac{4G_F}{\sqrt{2}}(ar{s}_L b_R)(ar{b}_L s_R)$	$^{\mathrm{C}}$
CS1RR_bbbb	$rac{4G_F}{\sqrt{2}}(ar{b}_L b_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CS8RR_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_L T^A d_R)(ar{d}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_ddss	$rac{4G_F}{\sqrt{2}}(ar{d}_L T^A d_R)(ar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_ddbb	$rac{4G_F}{\sqrt{2}}(ar{d}_L T^A d_R)(ar{b}_L T^A b_R)$	$^{\mathrm{C}}$
CS8RR_dssd	$rac{4G_F}{\sqrt{2}}(ar{d}_L T^A s_R)(ar{s}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_dbbd	$\frac{4\overleftarrow{G}_F}{\sqrt{2}}(ar{d}_LT^Ab_R)(ar{b}_LT^Ad_R)$	$^{\mathrm{C}}$
CS8RR_ssss	$rac{4\dot{G}_F}{\sqrt{2}}(ar{s}_L T^A s_R)(ar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_ssbb	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L T^A s_R)(\bar{b}_L T^A b_R)$	$^{\mathrm{C}}$
CS8RR_sbbs	$rac{4G_F}{\sqrt{2}}(ar{s}_L T^A b_R)(ar{b}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_bbbb	$rac{4G_F}{\sqrt{2}}(ar{b}_L T^A b_R)(ar{b}_L T^A b_R)$	$^{\mathrm{C}}$
CS1RR_uddu	$rac{4G_F}{\sqrt{2}}(ar{u}_L d_R)(ar{d}_L u_R)$	$^{\mathrm{C}}$
CS1RR_ussu	$rac{4G_F}{\sqrt{2}}(ar{u}_L s_R)(ar{s}_L u_R)$	$^{\mathrm{C}}$
CS1RR_ubbu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L b_R)(b_L u_R)$	$^{\mathrm{C}}$
CS1RR_cddc	$rac{4G_F}{\sqrt{2}}(ar{c}_L d_R)(ar{d}_L c_R)$	$^{\mathrm{C}}$

WC name	Operator	Type
CS1RR_cssc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L s_R)(\bar{s}_L c_R)$	C
CS1RR_cbbc	$\frac{4G_F^2}{\sqrt{2}}(\bar{c}_L b_R)(\bar{b}_L c_R)$	\mathbf{C}
CS8RR_uddu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L T^A d_R)(\bar{d}_L T^A u_R)$	\mathbf{C}
CS8RR_ussu	$\frac{4Q_F^2}{\sqrt{2}}(\bar{u}_L T^A s_R)(\bar{s}_L T^A u_R)$	\mathbf{C}
CS8RR_ubbu	$\frac{4\overset{V_{F}^{2}}{\sqrt{2}}}{\sqrt{2}}(\bar{u}_{L}T^{A}b_{R})(\bar{b}_{L}T^{A}u_{R})$	\mathbf{C}
CS8RR_cddc	$\frac{4\tilde{\zeta}_F^2}{\sqrt{2}}(\bar{c}_L T^A d_R)(\bar{d}_L T^A c_R)$	\mathbf{C}
CS8RR_cssc	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{c}_L T^A s_R)(\bar{s}_L T^A c_R)$	\mathbf{C}
CS8RR_cbbc	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{c}_L T^A b_R)(\bar{b}_L T^A c_R)$	$^{\mathrm{C}}$
CSRL_eebb	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{b}_R b_L)$	$^{\mathrm{C}}$
CSRL_eecc	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{c}_R c_L)$	\mathbf{C}
CSRL_eedd	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{d}_R d_L)$	$^{\mathrm{C}}$
CSRL_eess	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{s}_R s_L)$	$^{\mathrm{C}}$
CSRL_eeuu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{u}_R u_L)$	$^{\mathrm{C}}$
CSRL_mumubb	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{b}_Rb_L)$	$^{\mathrm{C}}$
CSRL_mumucc	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{c}_Rc_L)$	\mathbf{C}
CSRL_mumudd	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRL_mumuss	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{s}_Rs_L)$	\mathbf{C}
CSRL_mumuuu	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{u}_Ru_L)$	\mathbf{C}
CSRL_tautaubb	$rac{4ar{G_F}}{\sqrt{2}}(ar{ au}_L au_R)(ar{b}_Rb_L)$	$^{\mathrm{C}}$
CSRL_tautaucc	$rac{4ar{G}_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{c}_Rc_L)$	\mathbf{C}
CSRL_tautaudd	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ au}_L au_R) (ar{d}_R d_L)$	\mathbf{C}
CSRL_tautauss	$rac{4ar{G}_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{s}_Rs_L)$	\mathbf{C}
CSRL_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L au_R)(\bar{u}_Ru_L)$	\mathbf{C}
CSRR_eebb	$rac{4ar{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{b}_L b_R)$	\mathbf{C}
CSRR_eecc	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{c}_L c_R)$	\mathbf{C}
CSRR_eedd	$rac{4ar{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{e}_L e_R)$	\mathbf{C}
CSRR_eemumu	$rac{4ar{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{\mu}_L \mu_R)$	\mathbf{C}
CSRR_eess	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{s}_L s_R)$	\mathbf{C}
CSRR_eetautau	$rac{4ar{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{ au}_L au_R)$	\mathbf{C}
CSRR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{u}_L u_R)$	\mathbf{C}
CSRR_emumue	$rac{4G_F}{\sqrt{2}}(ar{e}_L\mu_R)(ar{\mu}_Le_R)$	\mathbf{C}
CSRR_etautaue	$rac{4G_F}{\sqrt{2}}(ar{e}_L au_R)(ar{ au}_Le_R)$	\mathbf{C}
CSRR_mumubb	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{b}_Lb_R)$	\mathbf{C}
CSRR_mumucc	$rac{4ar{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{c}_Lc_R)$	\mathbf{C}
CSRR_mumudd	$rac{4\widetilde{G}_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{d}_Ld_R)$	\mathbf{C}
CSRR_mumumumu	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{\mu}_L\mu_R)$	$^{\mathrm{C}}$

WC name	Operator	Type
CSRR_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{s}_Ls_R)$	C
CSRR_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{\tau}_L\tau_R)$	C
CSRR_mumuuu	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_mutautaumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L \tau_R)(\bar{\tau}_L \mu_R)$	C
CSRR_tautaubb	$rac{4ar{G}_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CSRR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRR_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRR_tautauss	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L au_R)(\bar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_tautautautau	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L au_R)(\bar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\tau_R)(\bar{u}_Lu_R)$	$^{\mathrm{C}}$
CV1LL_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{b}_L\gamma_\mu b_L)$	R
CV1LL_ccdd	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{d}_L\gamma_\mu d_L)$	R
CV1LL_ccss	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{s}_L\gamma_\mu s_L)$	R
CV1LL_uubb	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{b}_L\gamma_\mu b_L)$	R
CV1LL_uudd	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{d}_L\gamma_\mu d_L)$	R
CV1LL_uuss	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{s}_L\gamma_\mu s_L)$	R
CV1LR_bbbb	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu b_R)$	R
CV1LR_bbcc	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_bbdd	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_bbss	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_bbuu	$\frac{4G_F}{\sqrt{2}}(\bar{b}_L\gamma^\mu b_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_cbbc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CV1LR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{b}_R\gamma_\mu b_R)$	R
CV1LR_cccc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{c}_R\gamma_\mu c_R)$	R
CV1LR_ccdd	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{d}_R\gamma_\mu d_R)$	R
CV1LR_ccss	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{s}_R\gamma_\mu s_R)$	R
CV1LR_ccuu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_cddc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu d_L)(\bar{d}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CV1LR_cssc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CV1LR_dbbd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CV1LR_ddbb	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{b}_R\gamma_\mu b_R)$	\mathbf{R}
CV1LR_ddcc	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{c}_R\gamma_\mu c_R)$	R
CV1LR_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ddss	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{s}_R\gamma_\mu s_R)$	R
CV1LR_dduu	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_dssd	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CV1LR_sbbs	$\begin{array}{c} \frac{1}{\sqrt{2}}(a_L\gamma^{\mu}o_L)(b_R\gamma_{\mu}a_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{b}_R\gamma_{\mu}b_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{c}_R\gamma_{\mu}c_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{d}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{s}_R\gamma_{\mu}s_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{u}_R\gamma_{\mu}u_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}s_L)(\bar{s}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}b_L)(\bar{b}_R\gamma_{\mu}s_R) \end{array}$	$^{\mathrm{C}}$

WC name	Operator	Type
CV1LR_ssbb	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{b}_R\gamma_\mu b_R)$	${ m R}$
CV1LR_sscc	$rac{4ar{G_F}}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{c}_R\gamma_\mu c_R)$	\mathbf{R}
CV1LR_ssdd	$rac{4ar{G}_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{d}_R\gamma_\mu d_R)$	\mathbf{R}
CV1LR_ssss	$rac{4ar{G_F}}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu s_R)$	\mathbf{R}
CV1LR_ssuu	$rac{4ar{G_F}}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{u}_R\gamma_\mu u_R)$	\mathbf{R}
CV1LR_ubbu	$rac{4ar{G_F}}{\sqrt{2}}(ar{u}_L\gamma^\mu b_L)(ar{b}_R\gamma_\mu u_R)$	\mathbf{C}
CV1LR_uccu	$rac{4ar{G_F}}{\sqrt{2}}(ar{u}_L\gamma^\mu c_L)(ar{c}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CV1LR_uddu	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu d_L)(ar{d}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CV1LR_ussu	$rac{4ar{G_F}}{\sqrt{2}}(ar{u}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CV1LR_uubb	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{b}_R\gamma_\mu b_R)$	R
CV1LR_uucc	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{c}_R\gamma_\mu c_R)$	\mathbf{R}
CV1LR_uudd	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{d}_R\gamma_\mu d_R)$	\mathbf{R}
CV1LR_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_uuuu	$rac{4ar{G_F}}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{u}_R\gamma_\mu u_R)$	R
CV1RR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_R\gamma^\mu c_R)(ar{b}_R\gamma_\mu b_R)$	R
CV1RR_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_R\gamma^\mu c_R)(ar{d}_R\gamma_\mu d_R)$	${ m R}$
CV1RR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_R\gamma^\mu c_R)(ar{s}_R\gamma_\mu s_R)$	${ m R}$
CV1RR_uubb	$rac{4G_F}{\sqrt{2}}(ar{u}_R\gamma^\mu u_R)(ar{b}_R\gamma_\mu b_R)$	R
CV1RR_uudd	$rac{4ar{G_F}}{\sqrt{2}}(ar{u}_R\gamma^\mu u_R)(ar{d}_R\gamma_\mu d_R)$	${ m R}$
CV1RR_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_R\gamma^\mu u_R)(ar{s}_R\gamma_\mu s_R)$	R
CV8LL_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{b}_L\gamma_\mu T^A b_L)$	R
CV8LL_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{d}_L\gamma_\mu T^A d_L)$	R
CV8LL_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{s}_L\gamma_\mu T^A s_L)$	R
CV8LL_uubb	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A u_L)(ar{b}_L\gamma_\mu T^A b_L)$	R
CV8LL_uudd	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A u_L)(ar{d}_L\gamma_\mu T^A d_L)$	R
CV8LL_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A u_L)(ar{s}_L\gamma_\mu T^A s_L)$	R
CV8LR_bbbb	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu T^A b_L)(ar{b}_R\gamma_\mu T^A b_R)$	R
CV8LR_bbcc	$rac{4 G_F}{\sqrt{2}} (ar{b}_L \gamma^\mu T^A b_L) (ar{c}_R \gamma_\mu T^A c_R)$	R
CV8LR_bbdd	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu T^Ab_L)(ar{d}_R\gamma_\mu T^Ad_R)$	R
CV8LR_bbss	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu T^A b_L)(ar{s}_R\gamma_\mu T^A s_R)$	R
CV8LR_bbuu	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu T^A b_L)(ar{u}_R\gamma_\mu T^A u_R)$	R
CV8LR_cbbc	$\begin{array}{c} \frac{\sqrt{2}}{\sqrt{2}} (\bar{b}_L \gamma^{\mu} T^A b_L) (\bar{u}_R \gamma_{\mu} T^A u_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{b}_L \gamma^{\mu} T^A b_L) (\bar{u}_R \gamma_{\mu} T^A c_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{b}_R \gamma_{\mu} T^A c_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{c}_R \gamma_{\mu} T^A c_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{d}_R \gamma_{\mu} T^A d_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{d}_R \gamma_{\mu} T^A d_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{s}_R \gamma_{\mu} T^A s_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^{\mu} T^A c_L) (\bar{u}_R \gamma_{\mu} T^A u_R) \end{array}$	$^{\mathrm{C}}$
CV8LR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{b}_R\gamma_\mu T^A b_R)$	${ m R}$
CV8LR_cccc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{c}_R\gamma_\mu T^A c_R)$	R
CV8LR_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{d}_R\gamma_\mu T^A d_R)$	R
CV8LR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{s}_R\gamma_\mu T^A s_R)$	${ m R}$
CV8LR_ccuu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{u}_R\gamma_{\mu}T^Au_R)$	R

WC name	Operator	Type
CV8LR_cddc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R)$	\mathbf{C}
CV8LR_cssc	$rac{4ar{G_F}}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A s_L)(ar{s}_R\gamma_\mu T^A c_R)$	\mathbf{C}
CV8LR_dbbd	$\frac{4\breve{G}_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^Ab_L)(\bar{b}_R\gamma_\mu T^Ad_R)$	\mathbf{C}
CV8LR_ddbb	$rac{4ar{G}_F}{\sqrt{2}}(ar{d}_L\gamma^\mu T^A d_L)(ar{b}_R\gamma_\mu T^A b_R)$	R
CV8LR_ddcc	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{c}_R\gamma_\mu T^A c_R)$	R
CV8LR_dddd	$\frac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu T^A d_L)(ar{d}_R\gamma_\mu T^A d_R)$	R
CV8LR_ddss	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}T^Ad_L)(\bar{s}_R\gamma_{\mu}T^As_R)$	R
CV8LR_dduu	$rac{4ar{G_F}}{\sqrt{2}}(ar{d}_L\gamma^\mu T^A d_L)(ar{u}_R\gamma_\mu T^A u_R)$	R
CV8LR_dssd	$\frac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu T^A s_L)(ar{s}_R\gamma_\mu T^A d_R)$	\mathbf{C}
CV8LR_sbbs	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A b_L)(\bar{b}_R\gamma_\mu T^A s_R)$	\mathbf{C}
CV8LR_ssbb	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{b}_R\gamma_\mu T^A b_R)$	R
CV8LR_sscc	$rac{4ar{G}_F}{\sqrt{2}}(ar{s}_L\gamma^\mu T^A s_L)(ar{c}_R\gamma_\mu T^A c_R)$	R
CV8LR_ssdd	$rac{4ar{G}_F}{\sqrt{2}}(ar{s}_L\gamma^\mu T^A s_L)(ar{d}_R\gamma_\mu T^A d_R)$	R
CV8LR_ssss	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu T^A s_L)(ar{s}_R\gamma_\mu T^A s_R)$	R
CV8LR_ssuu	$rac{4ar{G}_F}{\sqrt{2}}(ar{s}_L\gamma^\mu T^A s_L)(ar{u}_R\gamma_\mu T^A u_R)$	R
CV8LR_ubbu	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A b_L)(ar{b}_R\gamma_\mu T^A u_R)$	\mathbf{C}
CV8LR_uccu	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A c_L)(ar{c}_R\gamma_\mu T^A u_R)$	\mathbf{C}
CV8LR_uddu	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A d_L)(ar{d}_R\gamma_\mu T^A u_R)$	\mathbf{C}
CV8LR_ussu	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A s_L)(ar{s}_R\gamma_\mu T^A u_R)$	\mathbf{C}
CV8LR_uubb	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A u_L)(ar{b}_R\gamma_\mu T^A b_R)$	R
CV8LR_uucc	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A u_L)(ar{c}_R\gamma_\mu T^A c_R)$	R
CV8LR_uudd	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A u_L)(ar{d}_R\gamma_\mu T^A d_R)$	R
CV8LR_uuss	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L\gamma^\mu T^A u_L)(ar{s}_R\gamma_\mu T^A s_R)$	R
CV8LR_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{u}_R\gamma_{\mu}T^Au_R)$	R
CV8RR_ccbb	$rac{4G_F}{\sqrt{2}}(ar{c}_R\gamma^\mu T^Ac_R)(b_R\gamma_\mu T^Ab_R)$	R
CV8RR_ccdd	$rac{4ar{G}_F}{\sqrt{2}}(ar{c}_R\gamma^\mu T^A c_R)(ar{d}_R\gamma_\mu T^A d_R)$	R
CV8RR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_R\gamma^\mu T^A c_R)(ar{s}_R\gamma_\mu T^A s_R)$	R
CV8RR_uubb	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_R\gamma^\mu T^A u_R)(ar{b}_R\gamma_\mu T^A b_R)$	R
CV8RR_uudd	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_R\gamma^\mu T^A u_R)(ar{d}_R\gamma_\mu T^A d_R)$	R
CV8RR_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_R\gamma^\mu T^A u_R)(ar{s}_R\gamma_\mu T^A s_R)$	R
CVLL_bbbb	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{b}_L\gamma_\mu b_L)$	R
CVLL_cccc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{c}_L\gamma_\mu c_L)$	R
CVLL_dbbd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu b_L)(ar{b}_L\gamma_\mu d_L)$	R
CVLL_ddbb	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{b}_L\gamma_\mu b_L)$	R
CVLL_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_L\gamma_\mu d_L)$	R
CVLL_ddss	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{s}_L\gamma_\mu s_L)$	R
CVLL_dssd	$\frac{\frac{\sqrt{2}}{\sqrt{2}}(b_L\gamma^{\mu}b_L)(b_L\gamma_{\mu}b_L)}{\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}c_L)(\bar{c}_L\gamma_{\mu}c_L)}$ $\frac{\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}b_L)(\bar{b}_L\gamma_{\mu}d_L)}{\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{b}_L\gamma_{\mu}b_L)}$ $\frac{\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{d}_L\gamma_{\mu}d_L)}{\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{s}_L\gamma_{\mu}s_L)}$ $\frac{\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}s_L)(\bar{s}_L\gamma_{\mu}d_L)}{\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}s_L)(\bar{s}_L\gamma_{\mu}d_L)}$	R

WC name	Operator	Type
CVLL_eebb	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{b}_L\gamma_\mu b_L)$	R
CVLL_eecc	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{c}_L\gamma_{\mu}c_L)$	R
CVLL_eedd	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{d}_L\gamma_\mu d_L)$	R
CVLL_eeee	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{e}_L\gamma_\mu e_L)$	R
CVLL_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\mu}_L\gamma_{\mu}\mu_L)$	R
CVLL_eess	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{s}_L\gamma_\mu s_L)$	R
CVLL_eetautau	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\tau}_L\gamma_{\mu}\tau_L)$	R
CVLL_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{u}_L\gamma_{\mu}u_L)$	R
CVLL_mumubb	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{b}_L\gamma_\mu b_L)$	R
CVLL_mumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{c}_L\gamma_\mu c_L)$	R
CVLL_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_L\gamma_\mu d_L)$	R
CVLL_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_L\gamma_\mu\mu_L)$	R
CVLL_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_L\gamma_\mu s_L)$	R
CVLL_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_L\gamma_\mu\tau_L)$	R
CVLL_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_L\gamma_\mu u_L)$	R
CVLL_sbbs	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu b_L)(ar{b}_L\gamma_\mu s_L)$	R
CVLL_ssbb	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{b}_L\gamma_\mu b_L)$	R
CVLL_ssss	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{s}_L\gamma_\mu s_L)$	R
CVLL_tautaubb	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{b}_L\gamma_\mu b_L)$	R
CVLL_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{c}_L\gamma_\mu c_L)$	R
CVLL_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{d}_L\gamma_\mu d_L)$	R
CVLL_tautauss	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{s}_L\gamma_\mu s_L)$	R
CVLL_tautautautau	$-rac{4G_F}{\sqrt{2}}(ar au_L\gamma^\mu au_L)(ar au_L\gamma_\mu au_L)$	R
CVLL_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_L\gamma_\mu u_L)$	R
CVLL_uccu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu c_L)(\bar{c}_L\gamma_\mu u_L)$	R
CVLL_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{c}_L\gamma_\mu c_L)$	R
CVLL_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{u}_L\gamma_\mu u_L)$	R
CVLR_bbee	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{e}_R\gamma_\mu e_R)$	R
CVLR_bbmumu	$\frac{4G_F}{\sqrt{2}}(\bar{b}_L\gamma^{\mu}b_L)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_bbtautau	$rac{4G_F}{\sqrt{2}}(ar{b}_L\gamma^\mu b_L)(ar{ au}_R\gamma_\mu au_R)$	R
CVLR_ccee	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{e}_R\gamma_\mu e_R)$	R
CVLR_ccmumu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_cctautau	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{\tau}_R\gamma_\mu \tau_R)$	R
CVLR_ddee	$\frac{4\dot{G}_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_ddmumu	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_ddtautau	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{ au}_R\gamma_\mu au_R)$	R
CVLR_eebb	$ \frac{\sqrt{2}}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}c_L)(\bar{e}_R\gamma_{\mu}e_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}c_L)(\bar{\mu}_R\gamma_{\mu}\mu_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}c_L)(\bar{\tau}_R\gamma_{\mu}\tau_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{e}_R\gamma_{\mu}e_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{\mu}_R\gamma_{\mu}\mu_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{\tau}_R\gamma_{\mu}\tau_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{\tau}_R\gamma_{\mu}\mu_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{b}_R\gamma_{\mu}b_R) $	R

$\begin{array}{c} \text{CVLR_eecc} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu c_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{d}_R\gamma_\mu d_R)} & \text{R} \\ \text{CVLR_eeed} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_eemumu} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_eess} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_eetautau} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & \text{C} \\ \text{CVLR_eenu} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)} & \text{C} \\ \text{CVLR_mumubb} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_mumudc} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_mumudd} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_mumude} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_mumudum} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_mumutautau} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_mumutautau} & \frac{4C_F}{4C_F}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_ssee} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_ssemumu} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \mu_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_stautaubb} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_tautaudd} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_tautaudd} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_tautaudd} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu e_R)} & \text{R} \\ \text{CVLR_tautauudu} & \frac{4C_F}{4C_F}(\bar{e}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R)}{4C_F}(\bar{e}_R\gamma_\mu $	WC name	Operator	Type
$\begin{array}{c} \text{CVLR_eeee} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_eemumu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_eess} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{s}_R \gamma_\mu s_R) \\ \text{CVLR_eetautau} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{s}_R \gamma_\mu s_R) \\ \text{CVLR_eeuu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{u}_R \gamma_\mu u_R) \\ \text{CVLR_eeuu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{u}_R \gamma_\mu u_R) \\ \text{CVLR_emumue} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu e_R) \\ \text{CVLR_emumubb} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_mumucc} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumude} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumudu} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumudu} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutu} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumutu} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_see} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_ssnumu} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_ssnumu} & \frac{4G_F^*}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_stautaub} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaud} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaud} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaud} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaumumu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaumumu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautaumumu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_tautauumu} & \frac{4G_F^*}{\sqrt{2}} (\bar{e}_L \gamma^\mu e_L) (\bar{e}_R \gamma_\mu e_R) \\ \frac{4G_F^*}{\sqrt{2}} (e$	CVLR_eecc	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^{\mu}e_L)(ar{c}_R\gamma_{\mu}c_R)$	R
$\begin{array}{c} \text{CVLR_eemumu} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu\mu_R) \\ \text{CVLR_eess} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{s}_R\gamma_\mu s_R) \\ \text{CVLR_eetautau} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{r}_R\gamma_\mu r_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{r}_R\gamma_\mu r_R) \\ \text{CVLR_eeuu} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{u}_R\gamma_\mu u_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{u}_R\gamma_\mu u_R) \\ \text{CVLR_emumue} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\tilde{\mu}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\tilde{\mu}_R\gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\tilde{b}_R\gamma_\mu b_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{b}_R\gamma_\mu e_R) \\ \text{CVLR_mumucc} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_mumude} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_mumuumu} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_mumutautau} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_ssee} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_stautaubb} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_tautaude} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_tautaude} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_tautauu} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \text{CVLR_tautauu} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R\gamma_\mu e_R) \\ \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu r_L)(\tilde{e}_R$	CVLR_eedd	V Z	R
$\begin{array}{c} \text{CVLR_eess} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{s}_R\gamma_\mu s_R)}{2\tilde{G}_E}(\tilde{e}_L\gamma^\mu e_L)(\tilde{\tau}_R\gamma_\mu \tau_R)} \\ \text{CVLR_eetautau} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{\tau}_R\gamma_\mu \tau_R)}{2\tilde{G}_E\gamma^\mu e_L)(\tilde{u}_R\gamma_\mu u_R)} \\ \text{CVLR_eenuu} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu e_L)(\tilde{u}_R\gamma_\mu u_R)}{2\tilde{G}_E\gamma^\mu \mu_L)(\tilde{\mu}_R\gamma_\mu e_R)} \\ \text{CVLR_emumue} & \frac{4\tilde{G}_F}{2}(\tilde{e}_L\gamma^\mu \mu_L)(\tilde{\mu}_R\gamma_\mu e_R)}{2\tilde{G}_E\gamma^\mu \tau_L)(\tilde{\tau}_R\gamma_\mu e_R)} \\ \text{CVLR_mumubb} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{b}_R\gamma_\mu b_R)}{2\tilde{G}_L\gamma^\mu \mu_L)(\tilde{b}_R\gamma_\mu e_R)} \\ \text{CVLR_mumucc} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{b}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \mu_L)(\tilde{G}_R\gamma_\mu e_R)} \\ \text{CVLR_mumudd} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_mumuue} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \mu_L)(\tilde{b}_R\gamma_\mu e_R)} \\ \text{CVLR_mumuus} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{g}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \mu_L)(\tilde{g}_R\gamma_\mu e_R)} \\ \text{CVLR_mumuuu} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_mumuuu} & \frac{4\tilde{G}_F}{2}(\tilde{\mu}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_ssee} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu s_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu s_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_stautaud} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \mu_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_tautaude} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_tautaude} & \frac{4\tilde{G}_F}{2}(\tilde{g}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_tautaude} & \frac{4\tilde{G}_F}{2}(\tilde{\tau}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)} \\ \text{CVLR_tautautautau} & \frac{4\tilde{G}_F}{2}(\tilde{\tau}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)}{2\tilde{G}_L\gamma^\mu \tau_L)(\tilde{e}_R\gamma_\mu e_R)} \\ CVLR_tautautautautautautautautautautautautaut$	CVLR_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{e}_R\gamma_{\mu}e_R)$	R
$\begin{array}{c} \text{CVLR}_\text{eetautau} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{\tau}_R\gamma_\mu \tau_R) \\ \text{CVLR}_\text{eeuu} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{u}_R\gamma_\mu u_R) \\ \text{CVLR}_\text{emumue} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu \mu_L)(\bar{\mu}_R\gamma_\mu e_R) \\ \text{CVLR}_\text{emumue} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu \mu_L)(\bar{\tau}_R\gamma_\mu e_R) \\ \text{CVLR}_\text{mumubb} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu e_R) \\ \text{CVLR}_\text{mumucc} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu b_R) \\ \text{CVLR}_\text{mumudd} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{mumuee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{mumumum} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{mumutau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{ssee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu \mu_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{t}_L\gamma^\mu \tau_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{stautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{tautautaud} & \frac{4G_F}{\sqrt{2}}(\bar{t}_L\gamma^\mu \tau_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{tautaudu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{t}_R\gamma_\mu d_R) \\ \text{CVLR}_\text{tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{t}_R\gamma_\mu$	CVLR_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
$\begin{array}{c} \text{CVLR_eeuu} & \frac{\lambda G_F}{\sqrt{2}} \left(\bar{e}_L \gamma^\mu e_L \right) (\bar{u}_R \gamma_\mu u_R) \\ \text{CVLR_emumue} & \frac{4 G_F}{\sqrt{2}} \left(\bar{e}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu e_R) \\ \text{CVLR_etautaue} & \frac{4 G_F}{\sqrt{2}} \left(\bar{e}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{b}_R \gamma_\mu b_R) \\ \text{CVLR_mumucc} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumudd} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumuuee} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{e}_R \gamma_\mu e_R) \\ \text{CVLR_mumuumum} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_mumuutautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_mumutautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_mumuutautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_mumuutautaumu} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_ssee} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_ssmumu} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \mu_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_stautaua} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \tau_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_tautaubb} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\mu}_L \gamma^\mu \tau_L \right) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \text{CVLR_tautaudd} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu \tau_R) \\ \text{CVLR_tautaudd} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu \tau_R) \\ \text{CVLR_tautaudd} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudd} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautaudu} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4 G_F}{\sqrt{2}} \left(\bar{\tau}_L \gamma^\mu \tau_L \right) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac$	CVLR_eess	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{s}_R\gamma_\mu s_R)$	R
$\begin{array}{c} \text{CVLR_emumue} & \frac{4G_F^2}{\sqrt{2}} (\bar{e}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_etautaue} & \frac{4G_F^2}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu e_R) & \text{C} \\ \text{CVLR_mumubb} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVLR_mumucc} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumutautaumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{\tau}_R \gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssemumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_ssautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_stautaubb} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudumum} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaumum} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu r_L) (\bar{\tau}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} ($	CVLR_eetautau	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{ au}_R\gamma_\mu au_R)$	R
$\begin{array}{c} \text{CVLR_etautaue} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu e_R) \\ \text{CVLR_mumubb} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu b_R) \\ \text{CVLR_mumucc} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu b_R) \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu d_R) \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu d_R) \\ \text{CVLR_mumumum} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu \mu_R) \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu \mu_R) \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu u_R) \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu u_R) \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{b}_R \gamma_\mu u_R) \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}} (\bar{b}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu \mu_R) \\ \text{CVLR_sseumu} & \frac{4G_F}{\sqrt{2}} (\bar{b}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu \mu_R) \\ \text{CVLR_sstautau} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{b}_R \gamma_\mu \mu_R) \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu \mu_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{c}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu \sigma_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu \sigma_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu d_R) \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu d_R) \\ \text{CVLR_tautaudumu} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu d_R) \\ \text{CVLR_tautauss} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu d_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{b}_R \gamma_\mu e_R) \\ \text{CVLR_tautautautau} & $	CVLR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{u}_R\gamma_{\mu}u_R)$	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CVLR_emumue	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
$\begin{array}{c} \text{CVLR_mumucc} & \frac{\sqrt{3}{F_E}}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVLR_mumudd} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu r_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \mu_L) (\bar{e}_R \gamma_\mu u_R) & \text{R} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}} (\bar{\mu}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}} (\bar{e}_L \gamma^\mu s_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{e}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaudb} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu s_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudumu} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{e}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \tau_L) (\bar{\tau}_R \gamma_\mu e_R) & \text{R} \\ \text{CVIR_tautautau} & 4G_F$	CVLR_etautaue	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu au_L)(\bar{ au}_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
$\begin{array}{c} \text{CVLR_mumudd} & \frac{\sqrt{G_F}}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \text{R} \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautauss} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ CVLR$	CVLR_mumubb	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{b}_R\gamma_\mu b_R)$	R
$\begin{array}{c} \text{CVLR_mumuee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_mumumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \text{R} \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumutautauu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mumutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\theta}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_sstautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_tautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ CVLR_tauta$	CVLR_mumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{c}_R\gamma_\mu c_R)$	R
$\begin{array}{c} \text{CVLR_mumumum} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R) & \text{R} \\ \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu u_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_sstautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaucc} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaudud} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaumumu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautautautautautautautautautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu r_R) & \text{R} \\ \end{array}$	CVLR_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_R\gamma_\mu d_R)$	R
$\begin{array}{c} \text{CVLR_mumuss} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_mumutautau} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu \tau_R) & \text{R} \\ \text{CVLR_mumuuu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) & \text{R} \\ \text{CVLR_mutautaumu} & \frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{C} \\ \text{CVLR_ssee} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_ssmumu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_stautau} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_tautaubb} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautaucc} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{c}_R\gamma_\mu c_R) & \text{R} \\ \text{CVLR_tautaudd} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CVLR_tautauee} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautaumum} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_tautauss} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu s_R) & \text{R} \\ \text{CVLR_tautautautau} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu r_R) & \text{R} \\ \text{CVLR_tautauuu} & \frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{e}_R\gamma_\mu r_R) & \text{R} \\ \end{array}$	CVLR_mumuee	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_mumutautau $\frac{AG_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_mumuuu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_mutautaumu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu u_R) \qquad \qquad C$ CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{t}_R\gamma_\mu t_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{t}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_mumuuu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_mutautaumu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu u_R) \qquad \qquad C$ CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_mumuss	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\gamma^\mu\mu_L)(ar{s}_R\gamma_\mu s_R)$	R
CVLR_mutautaumu $\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\mu_R) \qquad \qquad C$ CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\sigma}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu\tau_R)$	R
CVLR_ssee $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R)$	R
CVLR_ssmumu $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_mutautaumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu au_L)(\bar{ au}_R\gamma_\mu\mu_R)$	$^{\mathrm{C}}$
CVLR_sstautau $\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautautautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu \tau_L)(\bar{\tau}_R\gamma_\mu \tau_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_ssee	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_tautaubb $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad R$ CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$	CVLR_ssmumu	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}s_L)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_tautaucc $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{c}_R\gamma_\mu c_R) \qquad \qquad R$ CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu r_L)(\bar{\tau}_R\gamma_\mu r_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_sstautau	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\tau}_R\gamma_\mu au_R)$	R
CVLR_tautaudd $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad R$ CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu \mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautautautautautautautautautautaut	CVLR_tautaubb	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{b}_R\gamma_\mu b_R)$	R
CVLR_tautauee $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{e}_R\gamma_\mu e_R) \qquad \qquad R$ CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu u_R) \qquad \qquad R$	CVLR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{c}_R\gamma_\mu c_R)$	R
CVLR_tautaumumu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R) \qquad \qquad R$ CVLR_tautauss $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{s}_R\gamma_\mu s_R) \qquad \qquad R$ CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R) \qquad \qquad R$ CVLR_tautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R) \qquad \qquad R$ CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{v}_R\gamma_\mu u_R) \qquad \qquad R$	CVLR_tautaudd	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{d}_R\gamma_\mu d_R)$	R
CVLR_tautauss $\frac{\sqrt{G_F}}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{s}_R\gamma_{\mu}s_R)$ R CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{\tau}_R\gamma_{\mu}\tau_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{u}_R\gamma_{\mu}u_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^{\mu}\tau_L)(\bar{u}_R\gamma_{\mu}u_R)$ R	CVLR_tautauee	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_tautautautau $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\tau_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R)$ R CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R)$ R	CVLR_tautaumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_tautauuu $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L \gamma^{\mu} \tau_L)(\bar{u}_R \gamma_{\mu} u_R)$ R $\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L \gamma^{\mu} u_L)(\bar{e}_R \gamma_{\mu} e_R)$ R	CVLR_tautauss	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{s}_R\gamma_\mu s_R)$	R
CVI R 11100 $\frac{4G_F(\bar{\eta}_L \circ \mu_{M_F})(\bar{e}_D \circ e_D)}{4G_F(\bar{\eta}_L \circ \mu_{M_F})(\bar{e}_D \circ e_D)}$	CVLR_tautautautau	$-rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{ au}_R\gamma_\mu au_R)$	R
$\begin{array}{lll} \text{CVLR_uuee} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu e_R) & \text{R} \\ \text{CVLR_uumumu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\mu}_R\gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_uutautau} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\tau}_R\gamma_\mu \tau_R) & \text{R} \\ \text{CVRR_bbbb} & \frac{4G_F}{\sqrt{2}}(\bar{b}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu d_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_R\gamma_\mu u_R)$	R
$\begin{array}{ccccc} \text{CVLR_uumumu} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{\mu}_R \gamma_\mu \mu_R) & \text{R} \\ \text{CVLR_uutautau} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \text{R} \\ \text{CVRR_bbbb} & \frac{4 G_F}{\sqrt{2}} (\bar{b}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4 G_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_uuee	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu e_R)$	R
$\begin{array}{cccc} \text{CVLR_uutautau} & \frac{4 \ddot{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{\tau}_R \gamma_\mu \tau_R) & \text{R} \\ \text{CVRR_bbbb} & \frac{4 G_F}{\sqrt{2}} (\bar{b}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4 G_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_uumumu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
$\begin{array}{cccc} \text{CVRR_bbbb} & \frac{4G_F^-}{\sqrt{2}}(\bar{b}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVRR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \end{array}$	CVLR_uutautau	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\tau}_R\gamma_\mu \tau_R)$	R
$\begin{array}{ll} \text{CVRR_cccc} & \frac{4 \overline{G_F}}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu c_R) & \text{R} \\ \text{CVRR_dbbd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu b_R) (\bar{b}_R \gamma_\mu d_R) & \text{R} \\ \text{CVRR_ddbb} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{b}_R \gamma_\mu b_R) & \text{R} \\ \text{CVRR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \end{array}$	CVRR_bbbb	$\frac{4\dot{G}_F}{\sqrt{2}}(\bar{b}_R\gamma^{\mu}b_R)(\bar{b}_R\gamma_{\mu}b_R)$	R
CVRR_dbbd $\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{d}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu d_R) \qquad \qquad \text{R}$ CVRR_ddbb $\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu b_R) \qquad \qquad \text{R}$ CVRR_dddd $\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R) \qquad \qquad \text{R}$	CVRR_cccc	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu c_R)$	R
CVRR_ddbb $\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu b_R)$ R CVRR_dddd $\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R)$ R	CVRR_dbbd	$\frac{4\ddot{G_F}}{\sqrt{2}}(\bar{d}_R\gamma^{\mu}b_R)(\bar{b}_R\gamma_{\mu}d_R)$	R
CVRR_dddd $\frac{4\check{G}_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R)$ R	CVRR_ddbb	$\frac{4\check{G}_F^r}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{b}_R\gamma_\mu b_R)$	R
	CVRR_dddd	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R)$	R

WC name	Operator	Type
CVRR_ddss	$\frac{4G_F}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{s}_R\gamma_\mu s_R)$	R
CVRR_dssd	$\frac{4\check{G}_F^F}{\sqrt{2}}(\bar{d}_R\gamma^\mu s_R)(\bar{s}_R\gamma_\mu d_R)$	R
CVRR_eebb	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{b}_R\gamma_{\mu}b_R)$	R
CVRR_eecc	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{c}_R\gamma_{\mu}c_R)$	R
CVRR_eedd	$\frac{4 \overleftarrow{G}_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{d}_R \gamma_\mu d_R)$	R
CVRR_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{e}_R\gamma_{\mu}e_R)$	R
CVRR_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVRR_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{s}_R\gamma_{\mu}s_R)$	R
CVRR_eetautau	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{\tau}_R\gamma_{\mu}\tau_R)$	R
CVRR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{u}_R\gamma_{\mu}u_R)$	R
CVRR_mumubb	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{b}_R\gamma_\mu b_R)$	R
CVRR_mumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{c}_R\gamma_\mu c_R)$	R
CVRR_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{d}_R\gamma_\mu d_R)$	R
CVRR_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVRR_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{s}_R\gamma_\mu s_R)$	R
CVRR_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{\tau}_R\gamma_\mu\tau_R)$	R
CVRR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{u}_R\gamma_\mu u_R)$	R
CVRR_sbbs	$\frac{4G_F}{\sqrt{2}}(\bar{s}_R\gamma^\mu b_R)(\bar{b}_R\gamma_\mu s_R)$	R
CVRR_ssbb	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{s}_R\gamma^\mu s_R)(\bar{b}_R\gamma_\mu b_R)$	R
CVRR_ssss	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{s}_R\gamma^\mu s_R)(\bar{s}_R\gamma_\mu s_R)$	R
CVRR_tautaubb	$rac{4G_F}{\sqrt{2}}(ar{ au}_R\gamma^\mu au_R)(ar{b}_R\gamma_\mu b_R)$	R
CVRR_tautaucc	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ au}_R\gamma^\mu au_R)(\bar{c}_R\gamma_\mu c_R)$	R
CVRR_tautaudd	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_R\gamma^\mu\tau_R)(\bar{d}_R\gamma_\mu d_R)$	R
CVRR_tautauss	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{\tau}_R \gamma^\mu \tau_R) (\bar{s}_R \gamma_\mu s_R)$	R
CVRR_tautautautau	$4\frac{4G_F}{\sqrt{2}}(\bar{ au}_R\gamma^\mu au_R)(\bar{ au}_R\gamma_\mu au_R)$	R
CVRR_tautauuu	$\frac{4\overset{\sim}{G_F}}{\sqrt{2}}(\bar{ au}_R\gamma^\mu au_R)(\bar{u}_R\gamma_\mu u_R)$	R
CVRR_uccu	$\frac{4\overset{\sim}{G_F}}{\sqrt{2}}(\bar{u}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu u_R)$	R
CVRR_uucc	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{c}_R\gamma_\mu c_R)$	R
CVRR_uuuu	$\frac{4\overleftarrow{G_F}}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{u}_R\gamma_\mu u_R)$	R

${\tt mue}$

WC name	Operator	Type
Cgamma_mue	$ar{e}_L \sigma^{\mu u} \mu_R F_{\mu u}$	C
Cgamma_emu	$ar{\mu}_L \sigma^{\mu u} e_R F_{\mu u}$	$^{\mathrm{C}}$
CVLL_eemue	$(ar{e}_L \gamma^\mu e_L) (ar{e}_L \gamma_\mu \mu_L)$	$^{\mathrm{C}}$
CVLL_muemumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_L \gamma_\mu \mu_L)$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLL_muetautau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_L \gamma_\mu \tau_L)$	C
CVLL_mueuu	$(ar{e}_L\gamma^\mu\mu_L)(ar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLL_muecc	$(ar{e}_L \gamma^\mu \mu_L) (ar{c}_L \gamma_\mu c_L)$	\mathbf{C}
CVLL_muedd	$(ar{e}_L \gamma^\mu \mu_L) (ar{d}_L \gamma_\mu d_L)$	\mathbf{C}
CVLL_muess	$(ar{e}_L \gamma^\mu \mu_L) (ar{s}_L \gamma_\mu s_L)$	\mathbf{C}
CVLL_muebb	$(ar{e}_L \gamma^\mu \mu_L) (ar{b}_L \gamma_\mu b_L)$	\mathbf{C}
CVRR_eemue	$(ar{e}_R \gamma^\mu e_R)(ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVRR_muemumu	$(ar{e}_R\gamma^\mu\mu_R)(ar{\mu}_R\gamma_\mu\mu_R)$	\mathbf{C}
CVRR_muetautau	$(ar{e}_R \gamma^\mu \mu_R) (ar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVRR_mueuu	$(ar{e}_R \gamma^\mu \mu_R) (ar{u}_R \gamma_\mu u_R)$	\mathbf{C}
CVRR_muecc	$(ar{e}_R \gamma^\mu \mu_R) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVRR_muedd	$(ar{e}_R \gamma^\mu \mu_R) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVRR_muess	$(ar{e}_R \gamma^\mu \mu_R) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVRR_muebb	$(ar{e}_R \gamma^\mu \mu_R) (ar{b}_R \gamma_\mu b_R)$	\mathbf{C}
CVLR_eemue	$(ar{e}_L \gamma^\mu e_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_mueee	$(ar{e}_L \gamma^\mu \mu_L) (ar{e}_R \gamma_\mu e_R)$	\mathbf{C}
CVLR_muemumu	$(ar{e}_L \gamma^\mu \mu_L)(ar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_muetautau	$(ar{e}_L \gamma^\mu \mu_L) (ar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_tauemutau	$(ar{e}_L \gamma^\mu au_L) (ar{ au}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_mumumue	$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_taumuetau	$(ar{\mu}_L \gamma^\mu au_L) (ar{ au}_R \gamma_\mu e_R)$	$^{\mathrm{C}}$
CVLR_tautaumue	$(ar au_L\gamma^\mu au_L)(ar e_R\gamma_\mu\mu_R)$	\mathbf{C}
CVLR_mueuu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}
CVLR_muecc	$(ar{e}_L \gamma^\mu \mu_L) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVLR_muedd	$(ar{e}_L \gamma^\mu \mu_L) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVLR_muess	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_muebb	$(ar{e}_L \gamma^\mu \mu_L) (ar{b}_R \gamma_\mu b_R)$	$^{\mathrm{C}}$
CVLR_uumue	$(\bar{u}_L \gamma^\mu u_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_ccmue	$(\bar{c}_L \gamma^\mu c_L)(\bar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_ddmue	$(ar{d}_L \gamma^\mu d_L) (ar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_ssmue	$(ar{s}_L \gamma^\mu s_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_bbmue	$(ar{b}_L\gamma^\mu b_L)(ar{e}_R\gamma_\mu\mu_R)$	$^{\mathrm{C}}$
CSRL_mueuu	$(ar{e}_L \mu_R)(ar{u}_R u_L)$	$^{\mathrm{C}}$
CSRL_muecc	$(ar{e}_L\mu_R)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSRL_emuuu	$(ar{\mu}_L e_R)(ar{u}_R u_L)$	$^{\mathrm{C}}$
CSRL_emucc	$(ar{\mu}_L e_R)(ar{c}_R c_L)$	$^{\mathrm{C}}$
CSRL_muedd	$(ar{e}_L \mu_R) (ar{d}_R d_L)$	$^{\mathrm{C}}$
CSRL_muess	$(ar{e}_L\mu_R)(ar{s}_Rs_L)$	$^{\mathrm{C}}$
CSRL_muebb	$(ar{e}_L\mu_R)(ar{b}_Rb_L)$	$^{\mathrm{C}}$
CSRL_emudd	$(ar{\mu}_L e_R)(ar{d}_R d_L)$	$^{\mathrm{C}}$
CSRL_emuss	$(ar{\mu}_L e_R)(ar{s}_R s_L)$	$^{\mathrm{C}}$
CSRL_emubb	$(ar{\mu}_L e_R)(ar{b}_R b_L)$	$^{\mathrm{C}}$
CSRR_eemue	$(ar{e}_L e_R)(ar{e}_L \mu_R)$	$^{\mathrm{C}}$

WC name	Operator	Type
CSRR_eeemu	$(\bar{e}_L e_R)(\bar{\mu}_L e_R)$	C
CSRR_muemumu	$(ar{e}_L\mu_R)(ar{\mu}_L\mu_R)$	\mathbf{C}
CSRR_muetautau	$(ar{e}_L\mu_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_tauemutau	$(ar{e}_L au_R)(ar{ au}_L\mu_R)$	$^{\mathrm{C}}$
CSRR_emumumu	$(ar{\mu}_L e_R)(ar{\mu}_L \mu_R)$	$^{\mathrm{C}}$
CSRR_emutautau	$(ar{\mu}_L e_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_taumuetau	$(ar{\mu}_L au_R)(ar{ au}_Le_R)$	$^{\mathrm{C}}$
CSRR_mueuu	$(ar{e}_L\mu_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_muecc	$(ar{e}_L\mu_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRR_emuuu	$(ar{\mu}_L e_R)(ar{u}_L u_R)$	$^{\mathrm{C}}$
CSRR_emucc	$(ar{\mu}_L e_R)(ar{c}_L c_R)$	$^{\mathrm{C}}$
CTRR_mueuu	$(\bar{e}_L \sigma^{\mu\nu} \mu_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$	$^{\mathrm{C}}$
CTRR_muecc	$(\bar{e}_L \sigma^{\mu\nu} \mu_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$	\mathbf{C}
CTRR_emuuu	$(\bar{\mu}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$	\mathbf{C}
CTRR_emucc	$(ar{\mu}_L \sigma^{\mu u} e_{R}) (ar{c}_L \sigma_{\mu u} c_R)$	\mathbf{C}
CSRR_muedd	$(ar{e}_L \mu_R)(d_L d_R)$	\mathbf{C}
CSRR_muess	$(ar{e}_L\mu_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_muebb	$(ar{e}_L\mu_R)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CSRR_emudd	$(ar{\mu}_L e_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_emuss	$(ar{\mu}_L e_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CSRR_emubb	$(ar{\mu}_L e_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CTRR_muedd	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{d}_L\sigma_{\mu u}d_R)$	C
CTRR_muess	$(\bar{e}_L \sigma^{\mu\nu} \mu_R)(\bar{s}_L \sigma_{\mu\nu} s_R)$	$^{\mathrm{C}}$
CTRR_muebb	$(\bar{e}_L \sigma^{\mu u} \mu_R) (\bar{b}_L \sigma_{\mu u} b_R)$	\mathbf{C}
CTRR_emudd	$(\bar{\mu}_L \sigma^{\mu u} e_R) (\bar{d}_L \sigma_{\mu u} d_R)$	\mathbf{C}
CTRR_emuss	$(ar{\mu}_L \sigma^{\mu u} e_R) (ar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}
CTRR_emubb	$(ar{\mu}_L\sigma^{\mu u}e_R)(ar{b}_L\sigma_{\mu u}b_R)$	\mathbf{C}

mutau

WC name	Operator	Type
Cgamma_taumu	$\bar{\mu}_L \sigma^{\mu u} au_R F_{\mu u}$	C
Cgamma_mutau	$ar{ au}_L \sigma^{\mu u} \mu_R \dot{F}_{\mu u}$	C
CVLL_eetaumu	$(ar{e}_L\gamma^\mu e_L)(ar{\mu}_L\gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_mumutaumu	$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{\mu}_L \dot{\gamma}_\mu \tau_L)$	$^{\mathrm{C}}$
CVLL_taumutautau	$(\bar{\mu}_L \gamma^\mu au_L)(\bar{ au}_L \gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_taumuuu	$(\bar{\mu}_L \gamma^\mu au_L)(\bar{u}_L \gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLL_taumucc	$(ar{\mu}_L \gamma^\mu au_L) (ar{c}_L \gamma_\mu c_L)$	С
CVLL_taumudd	$(ar{\mu}_L \gamma^\mu au_L) (ar{d}_L \gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_taumuss	$(ar{\mu}_L \gamma^\mu au_L) (ar{s}_L \gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLL_taumubb	$(ar{\mu}_L \gamma^\mu au_L) (ar{b}_L \gamma_\mu b_L)$	\mathbf{C}
CVRR_eetaumu	$(\bar{e}_R \gamma^\mu e_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}

$\begin{array}{cccc} \text{CVRR_mumutaumu} & (\bar{\mu}_R \gamma^\mu \mu_R) (\bar{\mu}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVRR_taumutautau} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{\tau}_R \gamma_\mu \tau_R) & \text{C} \\ \text{CVRR_taumuuu} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{u}_R \gamma_\mu u_R) & \text{C} \\ \text{CVRR_taumucc} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{c}_R \gamma_\mu c_R) & \text{C} \\ \text{CVRR_taumudd} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVRR_taumuss} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{s}_R \gamma_\mu s_R) & \text{C} \\ \text{CVRR_taumubb} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{b}_R \gamma_\mu b_R) & \text{C} \\ \end{array}$	
$\begin{array}{cccc} \text{CVRR_taumuuu} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{u}_R \gamma_\mu u_R) & \text{C} \\ \text{CVRR_taumucc} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{c}_R \gamma_\mu c_R) & \text{C} \\ \text{CVRR_taumudd} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVRR_taumuss} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{s}_R \gamma_\mu s_R) & \text{C} \\ \text{CVRR_taumubb} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{b}_R \gamma_\mu b_R) & \text{C} \\ \end{array}$	
$\begin{array}{cccc} \text{CVRR_taumucc} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{c}_R \gamma_\mu c_R) & \text{C} \\ \text{CVRR_taumudd} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVRR_taumuss} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{s}_R \gamma_\mu s_R) & \text{C} \\ \text{CVRR_taumubb} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{b}_R \gamma_\mu b_R) & \text{C} \\ \end{array}$	
$\begin{array}{ccc} \text{CVRR_taumudd} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{d}_R \gamma_\mu d_R) & \text{C} \\ \text{CVRR_taumuss} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{s}_R \gamma_\mu s_R) & \text{C} \\ \text{CVRR_taumubb} & (\bar{\mu}_R \gamma^\mu \tau_R) (\bar{b}_R \gamma_\mu b_R) & \text{C} \end{array}$	
CVRR_taumuss $(\bar{\mu}_R \gamma^\mu \tau_R)(\bar{s}_R \gamma_\mu s_R)$ C CVRR_taumubb $(\bar{\mu}_R \gamma^\mu \tau_R)(\bar{b}_R \gamma_\mu b_R)$ C	
CVRR_taumubb $(\bar{\mu}_R \gamma^\mu \tau_R)(\bar{b}_R \gamma_\mu b_R)$ C	
= (110) (10) (10)	
CVLR_eetaumu $(\bar{e}_L \gamma^\mu e_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	
CVLR_mueetau $(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_R \gamma_\mu e_R)$ C	
CVLR_taueemu $(\bar{e}_L \gamma^\mu au_L)(\bar{\mu}_R \gamma_\mu e_R)$ C	
CVLR_mumutaumu $(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \tau_R)$ C	
CVLR_taumuee $(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu e_R)$	
$\text{CVLR_taumumum} \qquad (\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R) \qquad \qquad$	
CVLR_taumutautau $(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\tau}_R \gamma_\mu \tau_R)$	
CVLR_tautautaumu $(\bar{\tau}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	
CVLR_taumuuu $(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{u}_R \gamma_\mu u_R)$ C	
CVLR_taumucc $(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{c}_R \gamma_\mu c_R)$ C	
CVLR_taumudd $(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{d}_R \gamma_\mu d_R)$ C	
CVLR_taumuss $(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{s}_R \gamma_\mu s_R)$ C	
CVLR_taumubb $(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{b}_R \gamma_\mu b_R)$ C	
CVLR_uutaumu $(\bar{u}_L \gamma^\mu u_L)(\bar{\mu}_R \gamma_\mu \tau_R)$ C	
CVLR_cctaumu $(\bar{c}_L \gamma^\mu c_L)(\bar{\mu}_R \gamma_\mu \tau_R)$ C	
CVLR_ddtaumu $(\bar{d}_L\gamma^\mu d_L)(\bar{\mu}_R\gamma_\mu au_R)$ C	
CVLR_sstaumu $(\bar{s}_L \gamma^\mu s_L)(\bar{\mu}_R \gamma_\mu \tau_R)$ C	
CVLR_bbtaumu $(\bar{b}_L \gamma^\mu b_L)(\bar{\mu}_R \gamma_\mu \tau_R)$ C	
$\mathtt{CSRL_taumuuu} \qquad (\bar{\mu}_L \tau_R)(\bar{u}_R u_L) \qquad \qquad \mathbf{C}$	
CSRL_taumucc $(\bar{\mu}_L \tau_R)(\bar{c}_R c_L)$	
CSRL_mutauuu $(\bar{\tau}_L \mu_R)(\bar{u}_R u_L)$	
CSRL_mutaucc $(\bar{\tau}_L \mu_R)(\bar{c}_R c_L)$	
CSRL_taumudd $(\bar{\mu}_L \tau_R)(d_R d_L)$	
CSRL_taumuss $(\bar{\mu}_L \tau_R)(\bar{s}_R s_L)$	
CSRL_taumubb $(\bar{\mu}_L \tau_R)(\bar{b}_R b_L)$ C	
CSRL_mutaudd $(ar{ au}_L \mu_R)(ar{d}_R d_L)$	
CSRL_mutauss $(\bar{\tau}_L \mu_R)(\bar{s}_R s_L)$	
CSRL_mutaubb $(\bar{ au}_L \mu_R)(\bar{b}_R b_L)$	
$\mathtt{CSRR_eetaumu} \qquad (\bar{e}_L e_R)(\bar{\mu}_L \tau_R) \qquad \qquad \mathrm{C}$	
CSRR_eemutau $(\bar{e}_L e_R)(\bar{\tau}_L \mu_R)$	
CSRR_mueetau $(\bar{e}_L \mu_R)(\bar{\tau}_L e_R)$	
CSRR_taueemu $(\bar{e}_L au_R)(\bar{\mu}_L e_R)$	
CSRR_mumutaumu $(\bar{\mu}_L \mu_R)(\bar{\mu}_L \tau_R)$	
CSRR_mumumutau $(\bar{\mu}_L \mu_R)(\bar{\tau}_L \mu_R)$	
CSRR_taumutautau $(\bar{\mu}_L \tau_R)(\bar{\tau}_L \tau_R)$	
CSRR_mutautau $(\bar{\tau}_L \mu_R)(\bar{\tau}_L \tau_R)$	

WC name	Operator	Type
CSRR_taumuuu	$(\bar{\mu}_L au_R)(\bar{u}_L u_R)$	C
CSRR_taumucc	$(ar{\mu}_L au_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRR_mutauuu	$(ar{ au}_L\mu_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_mutaucc	$(ar{ au}_L\mu_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CTRR_taumuuu	$(ar{\mu}_L \sigma^{\mu u} au_R) (ar{u}_L \sigma_{\mu u} u_R)$	$^{\mathrm{C}}$
CTRR_taumucc	$(ar{\mu}_L\sigma^{\mu u} au_R)(ar{c}_L\sigma_{\mu u}c_R)$	$^{\mathrm{C}}$
CTRR_mutauuu	$(\bar{ au}_L \sigma^{\mu u} \mu_R) (\bar{u}_L \sigma_{\mu u} u_R)$	\mathbf{C}
CTRR_mutaucc	$(\bar{ au}_L \sigma^{\mu u} \mu_R) (\bar{c}_L \sigma_{\mu u} c_R)$	$^{\mathrm{C}}$
CSRR_taumudd	$(ar{\mu}_L au_R)(ar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRR_taumuss	$(ar{\mu}_L au_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_taumubb	$(ar{\mu}_L au_R)(ar{b}_Lb_R)$	$^{\mathrm{C}}$
CSRR_mutaudd	$(ar{ au}_L \mu_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_mutauss	$(ar{ au}_L\mu_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_mutaubb	$(ar{ au}_L \mu_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CTRR_taumudd	$(ar{\mu}_L\sigma^{\mu u} au_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_taumuss	$(ar{\mu}_L\sigma^{\mu u} au_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CTRR_taumubb	$(ar{\mu}_L\sigma^{\mu u} au_R)(ar{b}_L\sigma_{\mu u}b_R)$	$^{\mathrm{C}}$
CTRR_mutaudd	$(ar{ au}_L \sigma^{\mu u} \mu_R) (ar{d}_L \sigma_{\mu u} d_R)$	\mathbf{C}
CTRR_mutauss	$(ar{ au}_L \sigma^{\mu u} \mu_R) (ar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}
CTRR_mutaubb	$(ar{ au}_L \sigma^{\mu u} \mu_R) (ar{b}_L \sigma_{\mu u} b_R)$	C

taue

WC name	Operator	Type
Cgamma_taue	$ar{e}_L \sigma^{\mu u} au_R F_{\mu u}$	C
Cgamma_etau	$ar{ au}_L \sigma^{\mu u} e_R \dot{F}_{\mu u}$	\mathbf{C}
CVLL_eetaue	$(ar{e}_L\gamma^\mu e_L)(\dot{ar{e}}_L\gamma_\mu au_L)$	\mathbf{C}
CVLL_muetaumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_L \gamma_\mu \tau_L)$	\mathbf{C}
CVLL_tauetautau	$(ar{e}_L \gamma^\mu au_L) (ar{ au}_L \gamma_\mu au_L)$	\mathbf{C}
CVLL_taueuu	$(\bar{e}_L \gamma^\mu au_L)(\bar{u}_L \gamma_\mu u_L)$	\mathbf{C}
CVLL_tauecc	$(ar{e}_L \gamma^\mu au_L) (ar{c}_L \gamma_\mu c_L)$	C
CVLL_tauedd	$(ar{e}_L \gamma^\mu au_L) (ar{d}_L \gamma_\mu d_L)$	\mathbf{C}
CVLL_tauess	$(\bar{e}_L\gamma^\mu au_L)(\bar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVLL_tauebb	$(ar{e}_L \gamma^\mu au_L) (ar{b}_L \gamma_\mu b_L)$	\mathbf{C}
CVRR_eetaue	$(\bar{e}_R\gamma^\mu e_R)(\bar{e}_R\gamma_\mu au_R)$	\mathbf{C}
CVRR_muetaumu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVRR_tauetautau	$(\bar{e}_R \gamma^\mu au_R)(\bar{ au}_R \gamma_\mu au_R)$	C
CVRR_taueuu	$(\bar{e}_R \gamma^\mu au_R)(\bar{u}_R \gamma_\mu u_R)$	С
CVRR_tauecc	$(ar{e}_R \gamma^\mu au_R) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVRR_tauedd	$(ar{e}_R \gamma^\mu au_R) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVRR_tauess	$(ar{e}_R \gamma^\mu au_R) (ar{s}_R \gamma_\mu s_R)$	C
CVRR_tauebb	$(ar{e}_R \gamma^\mu au_R) (ar{b}_R \gamma_\mu b_R)$	\mathbf{C}

WC name	Operator	Type
CVLR_eetaue	$(\bar{e}_L \gamma^\mu e_L)(\bar{e}_R \gamma_\mu \tau_R)$	C
CVLR_muetaumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	$^{\mathrm{C}}$
CVLR_taueee	$(ar{e}_L \gamma^\mu au_L) (ar{e}_R \gamma_\mu e_R)$	$^{\mathrm{C}}$
CVLR_tauemumu	$(\bar{e}_L \gamma^\mu au_L)(\bar{\mu}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_tauetautau	$(ar{e}_L \gamma^\mu au_L) (ar{ au}_R \gamma_\mu au_R)$	$^{\mathrm{C}}$
CVLR_mumutaue	$(ar{\mu}_L \gamma^\mu \mu_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_taumumue	$(ar{\mu}_L \gamma^\mu au_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_tautautaue	$(ar{ au}_L \gamma^\mu au_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_taueuu	$(\bar{e}_L \gamma^\mu au_L)(\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}
CVLR_tauecc	$(ar{e}_L \gamma^\mu au_L) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVLR_tauedd	$(\bar{e}_L \gamma^\mu au_L)(d_R \gamma_\mu d_R)$	\mathbf{C}
CVLR_tauess	$(ar{e}_L \gamma^\mu au_L) (ar{\underline{s}}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_tauebb	$(ar{e}_L \gamma^\mu au_L)(b_R \gamma_\mu b_R)$	\mathbf{C}
CVLR_uutaue	$(\bar{u}_L \gamma^\mu u_L)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_cctaue	$(\bar{c}_L \gamma^\mu c_L)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_ddtaue	$(ar{d}_L \gamma^\mu d_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_sstaue	$(\bar{s}_L \gamma^\mu s_L)(\bar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_bbtaue	$(ar{b}_L \gamma^\mu b_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CSRL_taueuu	$(ar{e}_L au_R)(ar{u}_Ru_L)$	\mathbf{C}
CSRL_tauecc	$(ar{e}_L au_R)(ar{c}_Rc_L)$	\mathbf{C}
CSRL_etauuu	$(ar{ au}_L e_R)(ar{u}_R u_L)$	\mathbf{C}
CSRL_etaucc	$(ar{ au}_L e_R)(ar{c}_R c_L)$	$^{\mathrm{C}}$
CSRL_tauedd	$(ar{e}_L au_R)(d_Rd_L)$	\mathbf{C}
CSRL_tauess	$(\bar{e}_L au_R)(\bar{s}_R s_L)$	\mathbf{C}
CSRL_tauebb	$(ar{e}_L au_R)(b_{\!\scriptscriptstyle R}b_L)$	\mathbf{C}
CSRL_etaudd	$(ar{ au}_L e_R)(d_R d_L)$	\mathbf{C}
CSRL_etauss	$(ar{ au}_L e_R)(ar{s}_R s_L)$	\mathbf{C}
CSRL_etaubb	$(ar{ au}_L e_R)(ar{b}_R b_L)$	\mathbf{C}
CSRR_eetaue	$(ar{e}_L e_R)(ar{e}_L au_R)$	\mathbf{C}
CSRR_eeetau	$(ar{e}_L e_R)(ar{ au}_L e_R)$	\mathbf{C}
CSRR_muetaumu	$(ar{e}_L\mu_R)(ar{\mu}_L au_R)$	\mathbf{C}
CSRR_tauemumu	$(\bar{e}_L au_R)(\bar{\mu}_L \mu_R)$	C
CSRR_tauetautau	$(\bar{e}_L au_R)(\bar{ au}_L au_R)$	C
CSRR_emumutau	$(ar{\mu}_L e_R)(ar{ au}_L \mu_R)$	C
CSRR_mumuetau	$(\bar{\mu}_L \mu_R)(\bar{\tau}_L e_R)$	C
CSRR_etautautau	$(ar{ au}_L e_R)(ar{ au}_L au_R)$	C
CSRR_taueuu	$(\bar{e}_L au_R)(\bar{u}_L u_R)$	C
CSRR_tauecc	$(ar{e}_L au_R)(ar{c}_Lc_R)$	C
CSRR_etauuu	$(ar{ au}_L e_R)(ar{u}_L u_R)$	C
CSRR_etaucc	$(\bar{\tau}_L e_R)(\bar{c}_L c_R)$	C
CTRR_taueuu	$(\bar{e}_L \sigma^{\mu \nu} au_R) (\bar{u}_L \sigma_{\mu \nu} u_R)$	C
CTRR_tauecc	$(\bar{e}_L \sigma^{\mu\nu} au_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$	C
CTRR_etauuu	$(\bar{\tau}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$	C
CTRR_etaucc	$(\bar{ au}_L \sigma^{\mu u} e_R)(\bar{c}_L \sigma_{\mu u} c_R)$	С

WC name	Operator	Type
CSRR_tauedd	$(ar{e}_L au_R)(ar{d}_Ld_R)$	C
CSRR_tauess	$(ar{e}_L au_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_tauebb	$(ar{e}_L au_R)(ar{b}_Lb_R)$	\mathbf{C}
CSRR_etaudd	$(ar{ au}_L e_R)(ar{d}_L d_R)$	\mathbf{C}
CSRR_etauss	$(ar{ au}_L e_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CSRR_etaubb	$(ar{ au}_L e_R)(ar{b}_L b_R)$	$^{\mathrm{C}}$
CTRR_tauedd	$(ar{e}_L\sigma^{\mu u} au_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_tauess	$(ar{e}_L\sigma^{\mu u} au_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CTRR_tauebb	$(ar{e}_L\sigma^{\mu u} au_R)(ar{b}_L\sigma_{\mu u}b_R)$	$^{\mathrm{C}}$
CTRR_etaudd	$(ar{ au}_L\sigma^{\mu u}e_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_etauss	$(ar{ au}_L \sigma^{\mu u} e_R) (ar{s}_L \sigma_{\mu u} s_R)$	$^{\mathrm{C}}$
CTRR_etaubb	$(ar{ au}_L\sigma^{\mu u}e_R)(ar{b}_L\sigma_{\mu u}b_R)$	C

${\tt nunumue}$

WC name	Operator	Type
CVLL_nuenuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{e}_{L}\gamma_{\mu}\mu_{L})$	С
CVLL_numunueemu	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_numunuemue	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_numunumumue	$(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_L \gamma_{\mu} \mu_L)$	\mathbf{C}
CVLL_nutaunueemu	$(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_nutaunuemue	$(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu}^{}\mu_{L})$	\mathbf{C}
CVLL_nutaunumuemu	$\mathrm{a}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_nutaunumumue	$e(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_nutaunutaumu	$\Phi(ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{e}_L \gamma_{\mu} \mu_L)$	\mathbf{C}
CVLR_nuenuemue	$(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{e}_{R}\gamma_{\mu}\mu_{R})$	\mathbf{C}
CVLR_numunueemu	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{R}\gamma_{\mu}e_{R})$	\mathbf{C}
CVLR_numunuemue	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{R}\gamma_{\mu}\mu_{R})$	\mathbf{C}
	$(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_R \gamma_{\mu} \mu_R)$	\mathbf{C}
CVLR_nutaunueemu	$(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{\mu}_{R}\gamma_{\mu}e_{R})$	\mathbf{C}
CVLR_nutaunuemue	$(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu}\mu_{R})$	\mathbf{C}
CVLR_nutaunumuemu	$\mathrm{a}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{R}\gamma_{\mu}e_{R})$	\mathbf{C}
CVLR_nutaunumumue	$e(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu}\mu_{R})$	\mathbf{C}
CVLR_nutaunutaumu	$\Phi(ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{e}_R \gamma_{\mu} \mu_R)$	\mathbf{C}

nunumutau

WC name	Operator	Type
CVLL_nuenuetaumu	$(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{\mu}_{L}\gamma_{\mu} au_{L})$	C
CVLL_numunuemuta	$\mathrm{a}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{L}\gamma_{\mu}\mu_{L})$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLL_numunueta	umu $(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{L}\gamma_{\mu} au_{L})$	C
CVLL_numunumut	$ au$ uu $(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{\mu}_{L}\gamma_{\mu} au_{L})$	\mathbf{C}
CVLL_nutaunuem	$ au$ ta $ar{\psi}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_nutaunuet	$ au_{ar{ u}} ar{ u}_{eL} \gamma^{\mu} u_{ au L}) (ar{\mu}_L \gamma_{\mu} au_L)$	\mathbf{C}
CVLL_nutaunumu	\mathtt{mut} $(ar{oldsymbol{u}}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{ au}_{L} \gamma_{\mu} \mu_{L})$	\mathbf{C}
CVLL_nutaunumu	$ au$ tau $\piar{m{u}}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu} au_{L})$	C
CVLL_nutaunuta	աես $(ar{\mu}_L \gamma^\mu u_{ au L})(ar{\mu}_L \gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLR_nuenuetau	mu $(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
	$ au(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	C
CVLR_numunueta	umu $(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunumut	$\mathrm{aum}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	\mathbf{C}
CVLR_nutaunuem	$ au$ ta $ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	\mathbf{C}
CVLR_nutaunuet	$ au_{ar{ u}} (ar{ u}_{eL} \gamma^{\mu} u_{ au L}) (ar{\mu}_{R} \gamma_{\mu} au_{R})$	\mathbf{C}
CVLR_nutaunumu	\mathtt{mut} $(ar{m{u}}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{ au}_R \gamma_{\mu} \mu_R)$	$^{\mathrm{C}}$
CVLR_nutaunumu	$ au$ tau $ar{\mu}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nutaunuta	$\mathrm{uta}(ar{ar{\mu}}_L\gamma^\mu u_{ au L})(ar{\mu}_R\gamma_\mu au_R)$	C

nunutaue

WC name	Operator	Type
CVLL_nuenuetaue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_{L}\gamma_{\mu}\tau_{L})$	
CVLL_numunueetau	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_numunuetaue	$e^{-(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{L}\gamma_{\mu} au_{L})}$	$^{\mathrm{C}}$
CVLL_numunumutau	ie $(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_L \gamma_{\mu} au_L)$	$^{\mathrm{C}}$
CVLL_nutaunueeta	$\sin{(ar{ u}_{eL}\gamma^{\mu} u_{ au L})}(ar{ au}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_nutaunuetau	ie $(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
CVLL_nutaunumuet	$ auar u_{\mu L}\gamma^\mu u_{ au L})(ar au_L\gamma_\mu e_L)$	$^{\mathrm{C}}$
CVLL_nutaunumuta	$\sin\!\left(\!ar{ u}_{\mu L}\gamma^{\mu} u_{ au L} ight)\!\left(ar{e}_{L}\gamma_{\mu} au_{L} ight)$	$^{\mathrm{C}}$
CVLL_nutaunutaut	$ auar{ar{e}}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu} au_{L})$	\mathbf{C}
CVLR_nuenuetaue	$(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{e}_{R}\gamma_{\mu} au_{R})$	\mathbf{C}
CVLR_numunueetau	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{R}\gamma_{\mu}e_{R})$	\mathbf{C}
CVLR_numunuetaue	$e^{-(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{R}\gamma_{\mu} au_{R})}$	$^{\mathrm{C}}$
CVLR_numunumutau	ie $(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_nutaunueeta	$\sin{(ar{ u}_{eL}\gamma^{\mu} u_{ au L})}(ar{ au}_{R}\gamma_{\mu}e_{R})$	$^{\mathrm{C}}$
CVLR_nutaunuetau	ie $(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nutaunumuet	$ auar u_{\mu L}\gamma^\mu u_{ au L})(ar au_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
CVLR_nutaunumuta	$\sin(ar{arphi}_{\mu L}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
	$ auar{m{e}}_{ au L} \gamma^{\mu} u_{ au L}) (ar{e}_R \gamma_{\mu} au_R)$	\mathbf{C}

ffnunu

WC name	Operator	Type
CVLL_nuenuebb	$\frac{4G_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{b}_L\gamma_{\mu}b_L)$	R
CVLL_nuenuecc	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{c}_L\gamma_\mu c_L)$	R
CVLL_nuenuedd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{d}_L\gamma_\mu d_L)$	R
CVLL_nuenueee	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{e}_L\gamma_\mu e_L)$	R
CVLL_nuenuemumu	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{\mu}_L\gamma_\mu\mu_L)$	R
CVLL_nuenuess	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{s}_L\gamma_\mu s_L)$	R
CVLL_nuenuetautau		R
CVLL_nuenueuu	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{u}_L\gamma_\mu u_L)$	R
CVLL_nuenumubb	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
CVLL_nuenumucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVLL_nuenumudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_nuenumuee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{e}_L\gamma_\mu e_L)$	$^{\mathrm{C}}$
${\tt CVLL_nuenumumumu}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{\mu}_L\gamma_\mu\mu_L)$	\mathbf{C}
CVLL_nuenumuss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVLL_nuenumutauta	$\sinrac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{ au}_L\gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_nuenumuuu	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{u}_L\gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLL_nuenutaubb	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{b}_L\gamma_\mu b_L)$	\mathbf{C}
CVLL_nuenutaucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{c}_L\gamma_\mu c_L)$	$^{\mathrm{C}}$
CVLL_nuenutaudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_nuenutauee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{e}_L\gamma_\mu e_L)$	\mathbf{C}
CVLL_nuenutaumumu	$1 rac{4G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{\mu}_L \gamma_\mu \mu_L)$	$^{\mathrm{C}}$
CVLL_nuenutauss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLL_nuenutautaut	$\Xi_{\sqrt{2}}^{4G_F}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu} au_{L})$	\mathbf{C}
CVLL_nuenutauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{u}_L\gamma_{\mu}u_L)$	$^{\mathrm{C}}$
CVLL_numunumubb	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{b}_L\gamma_\mu b_L)$	R
CVLL_numunumucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{c}_L\gamma_\mu c_L)$	R
CVLL_numunumudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{d}_L\gamma_\mu d_L)$	R
CVLL_numunumuee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{e}_L\gamma_\mu e_L)$	R
CVLL_numunumumumumumumumumumumumumumumumumum	$\sqrt{2}$	R
CVLL_numunumuss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{s}_L\gamma_\mu s_L)$	R
CVLL_numunumutaut	$\Delta \frac{AG_F}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{\mu L}) (ar{ au}_L \gamma_\mu au_L)$	R
CVLL_numunumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{u}_L\gamma_{\mu}u_L)$	R
${\tt CVLL_numunutaubb}$	$rac{4 G_F}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{ au L}) (ar{b}_L \gamma_\mu b_L)$	$^{\mathrm{C}}$
${\tt CVLL_numunutaucc}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{c}_L\gamma_\mu c_L)$	$^{\mathrm{C}}$
${\tt CVLL_numunutaudd}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
${\tt CVLL_numunutauee}$	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{e}_L\gamma_\mu e_L) \ { m tu} rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{\mu}_L\gamma_\mu\mu_L)$	$^{\mathrm{C}}$
CVLL_numunutaumun	$\sinrac{4G_F}{\sqrt{2}}(ar u_{\mu L}\gamma^\mu u_{ au L})(ar\mu_L\gamma_\mu\mu_L)$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLL_numunutauss	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\tau L})(\bar{s}_L\gamma_{\mu}s_L)$	С
CVLL_numunutauta	ut $\frac{4 \sqrt{ au}}{4 \sqrt{ au}} (ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{ au}_{L} \gamma_{\mu} au_{L})$	\mathbf{C}
CVLL_numunutauuu	$\frac{4G_F^{\sigma}}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{u}_L\gamma_{\mu}u_L)$	\mathbf{C}
CVLL_nutaunutaub	b $rac{4 ar{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{b}_L \gamma_{\mu} b_L)$	R
CVLL_nutaunutauc	c $rac{4igvee{Q}_F^2}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{c}_L\gamma_\mu c_L)$	R
CVLL_nutaunutaud	d $rac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	R
CVLL_nutaunutaue	e $rac{4 \widetilde{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{e}_L \gamma_\mu e_L)$	R
CVLL_nutaunutaum	um $rac{4 ar{G}_F}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{\mu}_L \gamma_\mu \mu_L)$	R
CVLL_nutaunutaus	s $rac{4 ec{G}_F}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{s}_L \gamma_\mu s_L)$	R
CVLL_nutaunutaut	au $ au au au au au au au au au au $	R
CVLL_nutaunutauu	u $rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{u}_L \gamma_\mu u_L)$	R
CVLR_nuenuebb	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{b}_R \gamma_\mu b_R)$	R
CVLR_nuenuecc	$rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{c}_R \gamma_\mu c_R)$	R
CVLR_nuenuedd	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{d}_R \gamma_\mu d_R)$	R
CVLR_nuenueee	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{e}_R \gamma_\mu e_R)$	R
CVLR_nuenuemumu	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_nuenuess	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{s}_R \gamma_\mu s_R)$	R
CVLR_nuenuetauta	u $rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{ au}_R \gamma_\mu au_R)$	R
CVLR_nuenueuu	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{u}_R\gamma_{\mu}u_R)$	R
CVLR_nuenumubb	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{b}_R\gamma_{\mu}b_R)$	$^{\mathrm{C}}$
CVLR_nuenumucc	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{\mu L}) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVLR_nuenumudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{d}_R\gamma_{\mu}d_R)$	$^{\mathrm{C}}$
CVLR_nuenumuee	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^{\mu} u_{\mu L}) (ar{e}_R \gamma_{\mu} e_R)$	\mathbf{C}
CVLR_nuenumumumu	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_R\gamma_{\mu}\mu_R)$	$^{\mathrm{C}}$
CVLR_nuenumuss	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{\mu L}) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_nuenumutaut	au $rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_R\gamma_{\mu} au_R)$	\mathbf{C}
CVLR_nuenumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{u}_R\gamma_{\mu}u_R)$	$^{\mathrm{C}}$
CVLR_nuenutaubb	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{b}_R \gamma_\mu b_R)$	\mathbf{C}
CVLR_nuenutaucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{c}_R\gamma_{\mu}c_R)$	$^{\mathrm{C}}$
CVLR_nuenutaudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{d}_R\gamma_{\mu}d_R)$	$^{\mathrm{C}}$
CVLR_nuenutauee	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{e}_R\gamma_{\mu}e_R)$	$^{\mathrm{C}}$
CVLR_nuenutaumum	u $rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_nuenutauss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{s}_R\gamma_{\mu}s_R)$	\mathbf{C}
CVLR_nuenutautau	$ta_{\sqrt{2}}^{4V_{-F}^{\tau}}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nuenutauuu	$rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{u}_R \gamma_\mu u_R)$	$^{\mathrm{C}}$
CVLR_numunumubb	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{b}_R\gamma_\mu b_R)$	R
CVLR_numunumucc	$rac{4ar{Q}_{F}^{F}}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{c}_{R}\gamma_{\mu}c_{R})$	${ m R}$

WC name	Operator	Type
CVLR_numunumudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{d}_R\gamma_{\mu}d_R)$	R
${\tt CVLR_numunumuee}$	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{e}_R\gamma_{\mu}e_R)$	\mathbf{R}
CVLR_numunumumum	nu $rac{4ar{G_F}}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{\mu}_R\gamma_{\mu}\mu_R)$	\mathbf{R}
${\tt CVLR_numunumuss}$	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{s}_R\gamma_\mu s_R)$	R
CVLR_numunumutau	ıt $rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{ au}_R\gamma_\mu au_R)$	R
${\tt CVLR_numunumuuu}$	$rac{4ar{G_F}}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{u}_R\gamma_{\mu}u_R)$	\mathbf{R}
CVLR_numunutaubl	$\sim rac{4ar{G_F}}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{b}_R\gamma_{\mu}b_R)$	\mathbf{C}
CVLR_numunutauco	$\simeq rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{c}_R\gamma_{\mu}c_R)$	$^{\mathrm{C}}$
CVLR_numunutaudo	${ m d} { m d} { m d} { m d} { m d}_F (ar{ u}_{\mu L} \gamma^\mu u_{ au L}) (ar{d}_R \gamma_\mu d_R)$	$^{\mathrm{C}}$
CVLR_numunutaue	1/2 ($^{\mathrm{C}}$
CVLR_numunutaumu	ມາເນ $rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{\mu}_R\gamma_\mu\mu_R)$	$^{\mathrm{C}}$
CVLR_numunutauss	$=rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{s}_R\gamma_{\mu}s_R)$	$^{\mathrm{C}}$
CVLR_numunutauta	aut $\frac{4G}{4L}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{ au}_R\gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_numunutauuı	$1 rac{4ar{G_F}}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{ au L}) (ar{u}_R \gamma_\mu u_R)$	$^{\mathrm{C}}$
CVLR_nutaunutauk	bb $rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{b}_R\gamma_\mu b_R)$	\mathbf{R}
CVLR_nutaunutau	$\cot rac{4ar{G}_F}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{c}_R \gamma_\mu c_R)$	\mathbf{R}
CVLR_nutaunutaud	$\det rac{4ar{G}_F}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{d}_R \gamma_\mu d_R)$	\mathbf{R}
CVLR_nutaunutaue	ee $rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{e}_R\gamma_\mu e_R)$	\mathbf{R}
CVLR_nutaunutaun	$\min_{rac{4ar{G}_F}{\sqrt{2}}}^{4ar{G}_F}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_nutaunutaus	as $rac{4ar{G_F}}{\sqrt{2}}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{s}_R\gamma_{\mu}s_R)$	R
CVLR_nutaunutaut	$ au_{ au L}^{4ar{C}} (ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{ au}_{R} \gamma_{\mu} au_{R})$	R
CVLR_nutaunutau	iu $rac{4ar{G_F}}{\sqrt{2}}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{u}_R\gamma_{\mu}u_R)$	\mathbf{R}

muemutau

WC name	Operator	Type
CVLL_muemutau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_L \gamma_\mu \mu_L)$	С
CVRR_muemutau	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\tau}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_muemutau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_taumuemu	$(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu e_R)$	\mathbf{C}
CSRR_muemutau	$(\bar{e}_L \mu_R)(\bar{ au}_L \mu_R)$	\mathbf{C}
CSRR_emutaumu	$(\bar{\mu}_L e_R)(\bar{\mu}_L \tau_R)$	\mathbf{C}

etauemu

WC name	Operator	Type
CVLL_muetaue	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_L \gamma_\mu \tau_L)$	С
CVRR_muetaue	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_muetaue	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_tauemue	$(\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CSRR_muetaue	$(\bar{e}_L \mu_R)(\bar{e}_L au_R)$	\mathbf{C}
CSRR_emuetau	$(\bar{\mu}_L e_R)(\bar{\tau}_L e_R)$	\mathbf{C}