RÉSISTANCE ÉLECTRIQUE

Table des matières

1. Symboles et conventions	2
1.1. Convention générateur	2
1.1. Convention récepteur	2
2. Loi d'ohm	2
Loi d'ohm Loi des nœuds (loi de kirchhoff)	3
4. Loi des mailles (loi de kirchhoff)	
5. Différents types de montage des résistances	2
5.1. Montage des résistances en série	2
5.2. Montage des résistances en parallèle (dérivation)	5
5.3. Montage des résistances en mixte (série et parallèle)	
6. Puissance électrique	
7. Choix d'une résistance	
8. Le code des couleurs	ç

La résistance électrique traduit la propriété d'un matériau à s'opposer au passage d'un courant électrique (l'une des causes de perte en ligne d'électricité). Elle est souvent désignée par la lettre R et son unité de mesure est l'ohm (symbole : Ω). Elle est liée aux notions de résistivité et de conductivité électrique.

1. Symboles et conventions

1.1. Convention générateur

Le courant I sort par la borne + du générateur pour revenir à la borne - (extérieur du générateur).

On place la tension U dans le même sens que le courant I.

1.1. Convention récepteur

Le sens du courant dans le récepteur étant défini (même que celui du générateur)

On place la tension U aux bornes du récepteur dans le sens inverse de celui du courant I.

2. Loi d'ohm

La tension U aux bornes d'un récepteur de résistance R et parcouru par un courant I est donnée par une formule dite « Loi D'OHM » qui s'écrit :

 $U = R \times I$

avec:

- U : la tension aux bornes du récepteur en volt (V)
- R : la résistance ohmique du récepteur en ohm (Ω)
- I : l'intensité du courant circulant dans le récepteur en ampère (A)

3. Loi des nœuds (loi de kirchhoff)

La somme des courants entrant dans un nœud est égale à la somme des courants sortants.

Soit le schéma ci-dessous :

Question 1 : Placer sur le schéma les courants et les tensions.

Question 2 : D'après la loi des nœuds, écrire l'équation en fonction des différents courants dans le schéma au nœud A puis au nœud B.

Nœud A : I1 = I2 + I3 Nœud B : I2 + I3 = I

4. Loi des mailles (loi de kirchhoff)

Dans une maille quelconque d'un réseau, la somme algébrique des tensions de la maille est nulle.

Soit le schéma ci-dessous :

Question 1 : Placer sur le schéma les tensions.

Question 2 : Tracer sur le schéma les mailles (boucles).

Question 3 : Écrire les équations des mailles.

Maille rouge : U - U1 - U3 = 0Maille bleue : U - U1 - U2 = 0

5. Différents types de montage des résistances

5.1. Montage des résistances en série

Lorsque les résistances sont montées en série, leurs résistances s'additionnent.

Soit le schéma ci-dessous :

Question : Rechercher la résistance équivalente (Reg) du montage.

Req = R1 + R2 + R3 = 390 + 59 + 1200 = 1649 Ω soit 1,649 k Ω

5.2. Montage des résistances en parallèle (dérivation)

L'inverse de la résistance équivalente $\frac{1}{Req}$ (ou conductance en Siemens) est égale à la somme des inverses des résistances.

Soit le schéma ci-dessous :

Question : Rechercher la résistance équivalente (Req) du montage.

$$\frac{1}{Req} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} = \frac{1}{43} + \frac{1}{300} + \frac{1}{3} = 0,3599 S$$

$$Req = \frac{1}{0,3599} = 2,77 \Omega$$

5.3. Montage des résistances en mixte (série et parallèle)

Soit le schéma ci-dessous :

Question : Rechercher la résistance équivalente (Reg) du montage.

Req23 = 226 + 226 = 452
$$\Omega$$

Req45 = 226 + 226 = 452
$$\Omega$$

$$\frac{1}{Req2345} = \frac{1}{Req23} + \frac{1}{Req45} = \frac{1}{452} + \frac{1}{452} = 0,00442 S$$

$$Req 2345 = \frac{1}{Req 23} = \frac{1}{0,00442} = 226,2 \Omega$$

Reg = Reg2345 + R1 = 226,2 + 300 = 526,2 Ω

6. Puissance électrique

Si une portion de circuit soumise à une différence de potentiel (ddp), est traversée par un courant I, il y aura une puissance électrique P mise en jeu dans cette portion de circuit.

La puissance peut s'énoncer selon la formule :

 $P = U \times I$

avec:

- P: puissance en watt (W)
- U : la tension aux bornes du récepteur en volt (V)
- I : l'intensité du courant circulant dans le récepteur en ampère (A)

7. Choix d'une résistance

Une résistance ou un élément résistif se définit par :

· la valeur de sa résistance

- la puissance qu'il peut dissiper
- sa tolérance sur la valeur de sa résistance
- sa technologie (couche de carbone, couche métallique, bobinée, agglomérée, etc.)

Remarque : sur les schémas on ne trouve pas toujours représentée l'alimentation dans sa totalité.

Exemples: (les schémas ci-dessous sont identiques du point de vue fonctionnement)

Les éléments résistifs d'usage courant sont livrées en bande avec le code de marquage « couleur ».

Les éléments de précision sont marqués en clair.

Les éléments de puissance sont marqués en clair et livrés à l'unité.

Les elements de puissance sont marques en clair et rivies à l'anno.						Q,	1		1
Application	Technologie	Puissance		Gamme de valeurs	Série	Dimensions			Modèle
		W				L	D	d	RTC
Usage courant	Métal film	0,5	5	0 - 10 MΩ	E24	6,5	2,5	0,6	SFR25
		0,5	5	1-3 ΜΩ	E24	3,5	1,9	0,5	SFR16T
		0,6	1	1 - 10 MΩ	E96	6,5	2,5	0,6	MRS25
		0,4	1	4,9 - 1 MΩ	E96	3,5	1,9	0,5	MRS16T
Précision	Métal film	0,125	0,01	24 - 100 kΩ	E192	6,5	2,5	0,6	MRP24
		0,25	0,1	4,9 - 1 MΩ	E192	6,5	2,5	0,6	MPR24
		0,25	0,01	24 - 100 kΩ	E192	10	3	0,6	MPR34
		0,4	0,1	4,9 - 1 MΩ	E 192	10	3	0,6	MPR34
Pulssonce	Métal film	1	5	1-1 ΜΩ	E24	6,5	2,5	0,6	PRO1
		2	5	1-1 ΜΩ	E24	10	3,9	8,0	PRO2
		3	5	1 - 1 ΜΩ	E 24	10	3,9	0,8	PRO3
	Bobinée	3,5	10	0,1 - 8,2 Ω	E12	17	5,5	0,8	AC04
		3,5	5	10 - 6,8 kΩ	E24	17	5,5	0,8	AC04
		5,8	10	0,1 - 8,2 Ω	E12	25	7,5	0,8	AC07
		5,8	5	10 - 15 kΩ	E24	25	7,5	0,8	AC07
		8,4	10	0,1 - 8,2 Ω	E12	44	8	0,8	AC10
		8,4	5	10 - 15 kΩ	E24	44	8	0,8	AC10
		12,5	10	0,1 - 8,2 Ω	E12	51	10	0,8	AC15
		12,5	5	10 - 22 kΩ	E24	51	10	0,8	AC15
		16	10	0,1 - 8,2 Ω	E12	67	10	0,8	AC20
		16	5	10 - 33 kΩ	E24	67	10	0,8	AC20
Haute tension	Métal verre	0,25	5	100 k - 10 MΩ	E24	6,5	2,5	0,6	VR25
		0,25	10	12 M - 22 MΩ	E12	6,5	2,5	0,6	VR25
		0,5	5	100 k - 33 MΩ	E24	9	3,7	0,7	VR37
		1	5	100 k - 68 MΩ	E 24	16,5	6,8	0,8	VR68

RÉSEAUX DE RÉSISTANCES

Réseaux SIL (Single In Line)

$R = 22 \Omega \dot{a} 1 M\Omega$

Gamme de réseaux de résistances à couche métallique 1/8~W à 2~% en boîtier ÉPOXY, au pas de 2,54~mm.

- Dissipation par R: 1/8 W à 70 °C.
- Tolérance sur R: ± 2 %.
- Coefficient de température : 200 ppm/°C.
- Tension de service : 200 V max.
- Température de service : 55 à + 125 °C.
- Type 1 : L 83 S BECKMAN ou équivalent.

Réseaux DIL (Dual In Line)

Gamme de réseaux de résistances à couche métallique 1/8~W à 2~% en boîtier céramique, au pas de 2,54~mm.

- Dissipation par R: 1/8 W.
- Tolérance sur R: ±2%.
- Coefficient de température : 100 ppm/°C.
- Tension de service : 100 V max.
- Température de service : 55 à + 125 °C.
- Modèle 898 BECKMAN ou équivalent.

8. Le code des couleurs

Les bagues de couleur sur la résistance nous informent sur sa valeur.

Exemple:

rouge, rouge, orange, argent

 $22 \times 1000 = 22 \text{ k} \Omega$

à plus ou moins 5%