Boston Marathon Finish Time Predictions

Harvard Stats E139 Fall 2015

Nathaniel Burbank Pooja Singh David Wihl December 21, 2015

Abstract

This module contains the base code for the project.

```
# First let's read in the data and calculate finish times:
dfm <- read.csv("Previous Boston Marathon study/BAA data.txt",header=T,sep=" ")
times = as.matrix(dfm[,7:15], ncol=9)
dfm$totaltime = rowSums(times)
dfm = dfm[!is.na(dfm$totaltime), ]
# Baseline regression
base.mod = lm(totaltime~Age+Gender1F2M+K0.5,data=dfm)
summary(base.mod)
##
## lm(formula = totaltime ~ Age + Gender1F2M + K0.5, data = dfm)
##
## Residuals:
##
      Min
               1Q Median
                             3Q
                                     Max
## -376.18 -9.26 -2.64
                             6.48 187.43
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -24.640157  0.595532  -41.38  <2e-16 ***
                0.073888 0.006227 11.87
                                           <2e-16 ***
## Age
## Gender1F2M
                2.847267 0.139233 20.45
                                             <2e-16 ***
## KO.5
              9.703124 0.020687 469.03
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.43 on 64163 degrees of freedom
## Multiple R-squared: 0.8097, Adjusted R-squared: 0.8097
## F-statistic: 9.103e+04 on 3 and 64163 DF, p-value: < 2.2e-16
```

Baseline mean error is 238.002 or approximately 15 minutes.

cat ("Baseline mean error is ",mean(base.mod\$residuals^2),

" or approximately 15 minutes.\n")

```
y.hat = predict(base.mod)
xydata = data.frame(x=y.hat, y=resid(base.mod))
xydata = xydata[sample(1:nrow(xydata), 5000, replace=FALSE),]
plot(xydata$x,xydata$y,ylim=c(-100,100), xlab="Predicted", ylab="Residuals")
```


Step 2: Examination of the data and transformations.
hist(dfm\$totaltime,breaks=50, main="Boston Marathon Finish Time (min) Distribution for '10, '11, '13")

Boston Marathon Finish Time (min) Distribution for '10, '11, '13

Boston Marathon Finish Time (log-min) Distribution for '10, '11, '13


```
# That seems better.

# Let's try a multiple regression on the log transformed data:

tx.mod = lm(log(totaltime)~Age+Gender1F2M+K0.5, data=dfm)
summary(tx.mod)
```

```
##
## lm(formula = log(totaltime) ~ Age + Gender1F2M + K0.5, data = dfm)
##
## Residuals:
       Min
                 1Q
                      Median
                                           Max
                                       0.66161
## -1.64168 -0.04097 -0.01051 0.03117
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.341e+00
                         2.469e-03 1757.820 < 2e-16 ***
              7.015e-04
                         2.582e-05
                                     27.169 < 2e-16 ***
## Gender1F2M
              2.568e-03 5.773e-04
                                      4.449 8.66e-06 ***
              4.131e-02 8.578e-05 481.571 < 2e-16 ***
## KO.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.06397 on 64163 degrees of freedom
```

```
## Multiple R-squared: 0.8232, Adjusted R-squared: 0.8231
## F-statistic: 9.955e+04 on 3 and 64163 DF, p-value: < 2.2e-16

cat("Our transformed mean error is ",sqrt(mean(exp(tx.mod$residuals)^2)),"\n")</pre>
```

Our transformed mean error is 1.004277

```
#plot(dfms$totaltime,model.resid,ylim=c(-100,100))
y.hat = predict(tx.mod)
xydata = data.frame(x=y.hat, y=exp(resid(tx.mod)))
xydata = xydata[sample(1:nrow(xydata), 5000, replace=FALSE),]
plot(xydata$x,xydata$y,ylim=c(-100,100), xlab="Predicted", ylab="Residuals")
```


This appears to be spreading out and trending up.

Let's try a polynomial transformation on the 5k time to see if that improves things:

```
#bestresidsum = 9e9
\#bestpoly = 0
#for (i in seq(from=1.0, to= 2.5, by=0.1)){
# dfms$k5xform = dfms$K0.5 ^ i
# model = lm(totaltime~Age+Gender1F2M+k5xform, data=dfms)
 model.residsum = sum(resid(model)^2)
# if (model.residsum < bestresidsum) {</pre>
     bestresid = resid(model)
     bestresidsum = model.residsum
#
     bestpoly = i
  }
#
#}
#cat("total error went from ",sum(model.resid^2), " (untransformed) to ", bestresidsum," (transformed)
#plot(dfms$totaltime,bestresid,ylim=c(-100,100))
```

Step 3: Clustering the Data into Subgroups

Let's try subsetting the data set in subgroups using an unsupervised learning algorithm.

Note to Pooja and Nathaniel: I'm using the untransformed data set because the transformation part is not complete. When we've completed the transformations, we'll change this to use the transformed data.

```
# Code inspired from https://datayo.wordpress.com/2015/05/06/using-k-means-to-cluster-wine-dataset/
columnstokeep <- c("totaltime", "Age", "Gender1F2M", "K0.5")</pre>
dfm2<- dfm[columnstokeep]</pre>
# Warning: using NbClust never finished even when I tried 2-4 instead of 2-15 clusters.
# install.packages("NbClust")
#library(NbClust)
#nc <- NbClust(data=dfm2,
               min.nc=2, max.nc=4,
               method="kmeans")
#
#barplot(table(nc$Best.n[1,]),
        xlab="Numer of Clusters",
#
         ylab="Number of Criteria",
#
         main="Number of Clusters Chosen by 26 Criteria")
for (num_clusters in c(4,8,10,20)) {
  fit.km <- kmeans(dfm2, num_clusters)</pre>
  cluster.resid = c()
  cat ("Number of clusters:",num_clusters,"\n")
  for (i in 1:num_clusters){
   df = dfm2[ fit.km$cluster == i, ]
   mod = lm(totaltime~Age+Gender1F2M+K0.5,data=df)
   cluster.resid[i] = sqrt(mean(mod$residuals^2))
    cat("For cluster ",i," the mean error is ", cluster.resid[i], "\n")
  cat ("Mean error rate overall:", mean(cluster.resid),"\n\n")
}
## Number of clusters: 4
## For cluster 1 the mean error is 6.638874
## For cluster 2 the mean error is 7.413076
## For cluster 3 the mean error is 19.91491
## For cluster 4 the mean error is 10.80708
## Mean error rate overall: 11.19349
## Warning: Quick-TRANSfer stage steps exceeded maximum (= 3208350)
```

```
## For cluster 2 the mean error is
## For cluster 3 the mean error is
                                     6.049377
## For cluster
              4
                 the mean error is
                                     10.52434
## For cluster 5 the mean error is 5.642851
## For cluster
              6 the mean error is
                                    4.9905
## For cluster
               7 the mean error is
                                     6.449311
## For cluster 8 the mean error is
                                     5.482703
## Mean error rate overall: 7.971531
##
## Number of clusters: 10
## For cluster 1 the mean error is
                                    15.63314
## For cluster
              2 the mean error is
                                     5.98107
## For cluster
               3
                  the mean error is
                                     5.454204
## For cluster
               4
                  the mean error is
                                     4.813172
## For cluster 5
                  the mean error is
                                     5.817653
## For cluster
                 the mean error is
                                     5.511561
## For cluster
               7
                  the mean error is
                                     9.600518
## For cluster
               8
                  the mean error is
                                     8.028015
## For cluster 9 the mean error is
                                     5.451246
## For cluster 10 the mean error is 8.002856
## Mean error rate overall: 7.429344
## Number of clusters: 20
## For cluster 1 the mean error is
                                     7.660649
## For cluster
               2 the mean error is
                                     6.564126
## For cluster 3
                  the mean error is
                                     3.765913
## For cluster
              4 the mean error is
                                    4.481247
## For cluster 5 the mean error is 4.179111
## For cluster
               6 the mean error is
                                     8.174163
## For cluster
               7
                  the mean error is
                                     5.595151
               8 the mean error is
## For cluster
                                     4.236852
## For cluster
               9 the mean error is 4.806284
## For cluster
               10 the mean error is 8.678914
## For cluster 11 the mean error is 4.676358
## For cluster 12 the mean error is 4.250104
## For cluster 13 the mean error is
                                      3.703455
## For cluster
              14
                   the mean error is
                                      5.689772
## For cluster 15
                  the mean error is
                                      3.701783
## For cluster 16 the mean error is
## For cluster
               17
                   the mean error is
                                      13.10157
## For cluster
              18
                   the mean error is
                                      4.002039
## For cluster
              19
                   the mean error is 4.468027
## For cluster 20 the mean error is
                                     3.761239
## Mean error rate overall: 5.586486
# Warning: this takes awhile to run because it includes all data points
# install.packages("fpc")
#library(fpc)
#plotcluster(dfm2, fit.km$cluster)
```

7.944135

Number of clusters: 8

For cluster 1 the mean error is

Note: as you can see, the unsupervised learning found groupings that would have difficult if not impossible to us to find on our own

Conclusion

By transforming and subsetting the data we were able to bring down the size of the residuals significantly and improve the accuracy of the model. . .